El paquete nacal-moodle*

Marcos Bujosa mbujosab@ucm.es

31 de octubre de 2023

Resumen

Paquete para utilizar los comandos de LATEX del Curso de Álgebra Lineal con Notación Asociativa (NAcAL) con el paquete moodle.sty y así poder generar bancos de preguntas en formato xml con el paquete moodle (https://ctan.org/pkg/moodle) que tengan una notación aproximadamente igual a la del libro Un Curso de Álgebra Lineal (https://github.com/mbujosab/CursoDeAlgebraLineal).

Índice

. U	so		
1.	1. C	Conjur	ntos de números
1.	2. P	arént	esis y corchetes
	1	.2.1.	Regla mnemotécnica para comandos que escriben expresiones con paréntesis .
1.	3. S	ubínd	lices
	1	.3.1.	Subíndices y exponente
	1	.3.2.	Solo subíndices
1.	4. C)perac	dores
	1	.4.1.	Conjugación y concatenación
	1	.4.2.	Norma y valor absoluto
	1	.4.3.	Transposición
	1	.4.4.	Inversa
	1	.4.5.	Operador selector
			por la izquierda de un objeto
			por la derecha de un objeto
			por ambos lados de un objeto
			por la izquierda de un vector
			por la derecha de un vector
			de filas de una matriz
			de columnas de una matriz
			de elementos de una matriz
			de elementos de una matriz transpuesta
	1	.4.6.	Operaciones elementales
			Operaciones elementales generales
	1	.4.7.	Transformaciones elementales
			Transf. elemental aplicada la izquierda o derecha de un objeto
			Sucesiones indiciadas de Transf. elementales
			Transf. elemental genérica aplicada a la izquierda de un objeto (funciones du-
			plicadas sin argumentos opcionales
			Transf. elemental aplicada la derecha de un objeto (funciones duplicadas sin
			argumentos opcionales

^{*}Este documento corresponde a nacal-moodle v1.1, fecha 2023/09/22.

			Transformaciones elementales particulares	16
		1.4.8.	Operador que quita un elemento	18
		1.4.9.	Selección de elementos sin emplear el operador selector	18
	1.5.	Sistem	as genéricos	18
			es y matrices	19
			Vectores genéricos	19
			Vectores de \mathbb{R}^n	19
			Matrices	19
		1.0.0.	Matrices transpuestas	19
			Matrices columna	19
			Matrices fila	19
			Matriz inversa	20
		1.6.4.	Miscelánea matrices	20
		1.0.4.		
			Determinante de una matriz	20
			Orden de las matrices	21
		ъ.	Matriz de autovalores	21
	1.7.		etos entre vectores	21
			Producto escalar	21
			Producto punto	22
			Producto punto a punto o Hadamard	22
			por vector y vector por matriz	22
			por matriz	23
	1.10.	Otros j	productos entre matrices y vectores	23
	1.11.	Sistem	as de ecuaciones	24
	1.12.	Espaci	os vectoriales	24
	1.13.	Notaci	ón funcional	25
				~ -
	1.14.	Estadí	stica	25
2.	Imp	lement	ación	33
2.	Imp 2.1.	lement Conjur	ación atos de números	33
2.	Imp 2.1.	lement Conjur Parént	ación atos de números	33 33
2.	Imp 2.1.	lement Conjur Parént	ación atos de números	33
2.	Imp 2.1. 2.2.	lement Conjur Parént Subínd	ación atos de números	33 33
2.	Imp 2.1. 2.2. 2.3.	lement Conjur Parént Subínd	ación atos de números esis y corchetes ices	33 33 33
2.	Imp 2.1. 2.2. 2.3.	lement Conjur Parént Subínd Operad 2.4.1.	ación atos de números	33 33 33 34
2.	Imp 2.1. 2.2. 2.3.	lement Conjur Parént Subínd Operad 2.4.1.	ación atos de números esis y corchetes ices Conjugación y concatenación	33 33 33 34 34
2.	Imp 2.1. 2.2. 2.3.	lement Conjur Parént Subínd Operad 2.4.1. 2.4.2.	ación atos de números esis y corchetes ices Conjugación y concatenación Norma y valor absoluto Transposición	33 33 33 34 34 34
2.	Imp 2.1. 2.2. 2.3.	Conjur Parént Subínd Operad 2.4.1. 2.4.2. 2.4.3. 2.4.4.	ación atos de números esis y corchetes ices lores Conjugación y concatenación Norma y valor absoluto Transposición Inversa	33 33 33 34 34 34 34
2.	Imp 2.1. 2.2. 2.3.	lement Conjur Parént Subínd Operad 2.4.1. 2.4.2. 2.4.3.	ación atos de números esis y corchetes ices lores Conjugación y concatenación Norma y valor absoluto Transposición Inversa Operador selector	33 33 33 34 34 34 34 34
2.	Imp 2.1. 2.2. 2.3.	Conjur Parént Subínd Operad 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5.	ación atos de números esis y corchetes ices lores Conjugación y concatenación Norma y valor absoluto Transposición Inversa Operador selector Operaciones elementales	33 33 33 34 34 34 34 34 34 36
2.	Imp 2.1. 2.2. 2.3.	Conjur Parént Subíndo Operad 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. 2.4.6.	cación tos de números esis y corchetes ices dores Conjugación y concatenación Norma y valor absoluto Transposición Inversa Operador selector Operaciones elementales Transformaciones elementales generales	33 33 33 34 34 34 34 34 36 37
2.	Imp 2.1. 2.2. 2.3.	Conjur Parént Subínd Operad 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5.	cación tos de números esis y corchetes ices lores Conjugación y concatenación Norma y valor absoluto Transposición Inversa Operador selector Operaciones elementales Transformaciones elementales Transformaciones elementales	33 33 33 34 34 34 34 36 37
2.	Imp 2.1. 2.2. 2.3.	Conjur Parént Subíndo Operad 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. 2.4.6.	ación atos de números esis y corchetes ices lores Conjugación y concatenación Norma y valor absoluto Transposición Inversa Operador selector Operaciones elementales Transformaciones elementales Transformaciones elementales Transf. elemental aplicada la izquierda o derecha de un objeto	33 33 33 34 34 34 34 36 37 37
2.	Imp 2.1. 2.2. 2.3.	Conjur Parént Subíndo Operad 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. 2.4.6.	ación atos de números esis y corchetes ices lores Conjugación y concatenación Norma y valor absoluto Transposición Inversa Operador selector Operaciones elementales Transformaciones elementales Transformaciones elementales Transf. elemental aplicada la izquierda o derecha de un objeto Sucesiones indiciadas de Transf. elementales	33 33 33 34 34 34 34 34 37 37 37 38
2.	Imp 2.1. 2.2. 2.3.	Conjur Parént Subíndo Operad 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. 2.4.6.	ación atos de números esis y corchetes ices lores Conjugación y concatenación Norma y valor absoluto Transposición Inversa Operador selector Operaciones elementales Transformaciones elementales Transformaciones elementales Transf. elemental aplicada la izquierda o derecha de un objeto Sucesiones indiciadas de Transf. elementales Transf. elemental aplicada la izquierda de un objeto	33 33 33 34 34 34 34 36 37 37 38 39
2.	Imp 2.1. 2.2. 2.3.	Conjur Parént Subíndo Operad 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. 2.4.6.	tos de números esis y corchetes ices lores Conjugación y concatenación Norma y valor absoluto Transposición Inversa Operador selector Operaciones elementales Transformaciones elementales Transformaciones elementales Transf. elemental aplicada la izquierda o derecha de un objeto Sucesiones indiciadas de Transf. elementales Transf. elemental aplicada la izquierda de un objeto Transf. elemental aplicada la izquierda de un objeto	33 33 33 34 34 34 34 36 37 37 37 38 39 39
2.	Imp 2.1. 2.2. 2.3.	Conjur Parént Subínd Operad 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. 2.4.6.	ación atos de números esis y corchetes ices ices Conjugación y concatenación Norma y valor absoluto Transposición Inversa Operador selector Operaciones elementales Transformaciones elementales Transformaciones elementales Transf. elemental aplicada la izquierda o derecha de un objeto Sucesiones indiciadas de Transf. elementales Transf. elemental aplicada la izquierda de un objeto Transf. elemental aplicada la izquierda de un objeto Transf. elemental aplicada la derecha de un objeto Transf. elemental aplicada la derecha de un objeto Transformaciones elementales particulares	33 33 33 34 34 34 34 34 36 37 37 37 38 39 40
2.	Imp 2.1. 2.2. 2.3.	lement Conjur Parént Subínd Operad 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. 2.4.6. 2.4.7.	acción atos de números esis y corchetes ices lores Conjugación y concatenación Norma y valor absoluto Transposición Inversa Operador selector Operaciones elementales Transformaciones elementales Transformaciones elementales Transf. elemental aplicada la izquierda o derecha de un objeto Sucesiones indiciadas de Transf. elementales Transf. elemental aplicada la izquierda de un objeto Transf. elemental aplicada la derecha de un objeto Transf. elemental aplicada la derecha de un objeto Transformaciones elementales particulares Operador que quita un elemento	33 33 33 34 34 34 34 36 37 37 38 39 40 40
2.	Imp 2.1. 2.2. 2.3. 2.4.	lement Conjur Parént Subínd Operad 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. 2.4.6. 2.4.7.	ación atos de números esis y corchetes ices lores lores Conjugación y concatenación Norma y valor absoluto Transposición Inversa Operador selector Operaciones elementales Transformaciones elementales Transformaciones elementales Transf elemental aplicada la izquierda o derecha de un objeto Sucesiones indiciadas de Transf. elementales Transf. elemental aplicada la izquierda de un objeto Transf. elemental aplicada la derecha de un objeto Transf. elemental aplicada la derecha de un objeto Transformaciones elementales particulares Operador que quita un elemento Selección de elementos sin emplear el operador selector	33 33 33 34 34 34 34 34 36 37 37 38 39 40 40 41
2.	Imp 2.1. 2.2. 2.3. 2.4.	lement Conjur Parént Subínd Operad 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. 2.4.6. 2.4.7.	tación atos de números esis y corchetes ices ices ices Conjugación y concatenación Norma y valor absoluto Transposición Inversa Operador selector Operaciones elementales Transformaciones elementales Transformaciones elementales Transformaciones elementales Transf. elemental aplicada la izquierda o derecha de un objeto Sucesiones indiciadas de Transf. elementales Transf. elemental aplicada la izquierda de un objeto Transf. elemental aplicada la derecha de un objeto Transf. elemental aplicada la derecha de un objeto Transformaciones elementales particulares Operador que quita un elemento Selección de elementos sin emplear el operador selector as genéricos	33 33 33 34 34 34 34 36 37 37 37 38 39 40 41 41
2.	Imp 2.1. 2.2. 2.3. 2.4.	lement Conjunt Parént Subíndo Operado 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. 2.4.6. 2.4.7.	tación Intos de números esis y corchetes ices Ilores Conjugación y concatenación Norma y valor absoluto Transposición Inversa Operador selector Operaciones elementales Transformaciones elementales Transformaciones elementales Transf. elemental aplicada la izquierda o derecha de un objeto Sucesiones indiciadas de Transf. elementales Transf. elemental aplicada la izquierda de un objeto Transf. elemental aplicada la derecha de un objeto Transf. elemental aplicada la derecha de un objeto Transformaciones elementales particulares Operador que quita un elemento Selección de elementos sin emplear el operador selector as genéricos es y matrices	33 33 33 34 34 34 34 34 36 37 37 38 39 40 41 41 41
2.	Imp 2.1. 2.2. 2.3. 2.4.	lement Conjunt Parént Subíndo Operado 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. 2.4.6. 2.4.7. 2.4.8. 2.4.9. Sistem Vector 2.6.1.	tación tos de números esis y corchetes ices lores Conjugación y concatenación Norma y valor absoluto Transposición Inversa Operador selector Operaciones elementales Transformaciones elementales Transformaciones elementales Transf. elemental aplicada la izquierda o derecha de un objeto Sucesiones indiciadas de Transf. elementales Transf. elemental aplicada la izquierda de un objeto Transf. elemental aplicada la derecha de un objeto Transf. elemental aplicada la derecha de un objeto Transformaciones elementales particulares Operador que quita un elemento Selección de elementos sin emplear el operador selector as genéricos se y matrices Vectores	33 33 33 34 34 34 34 34 36 37 37 37 38 39 40 41 41 41 41
2.	Imp 2.1. 2.2. 2.3. 2.4.	lement Conjunt Parént Subíndo Operado 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. 2.4.6. 2.4.7. 2.4.8. 2.4.9. Sistem Vector 2.6.1. 2.6.2.	tación tos de números	33 33 33 34 34 34 34 36 37 37 37 38 39 40 41 41 41 41 41
2.	Imp 2.1. 2.2. 2.3. 2.4.	lement Conjur Parént Subínd Operad 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. 2.4.6. 2.4.7. 2.4.8. 2.4.9. Sistem Vector 2.6.1. 2.6.2. 2.6.3.	tación tos de números esis y corchetes ices lores Conjugación y concatenación Norma y valor absoluto Transposición Inversa Operador selector Operaciones elementales Transformaciones elementales Transformaciones elementales Transf. elemental aplicada la izquierda o derecha de un objeto Sucesiones indiciadas de Transf. elementales Transf. elemental aplicada la izquierda de un objeto Transf. elemental aplicada la derecha de un objeto Transf. elemental aplicada la derecha de un objeto Transformaciones elementales particulares Operador que quita un elemento Selección de elementos sin emplear el operador selector as genéricos se y matrices Vectores	33 33 33 34 34 34 34 34 36 37 37 37 38 39 40 41 41 41 41

2.7.	Productos entre vectores
	2.7.1. Producto escalar
	2.7.2. Producto punto
	2.7.3. Producto punto a punto o <i>Hadamard</i>
2.8.	Matriz por vector y vector por matriz
2.9.	Matriz por matriz
	Matriz inversa
	. Otros productos entre matrices y vectores
2.11	. Sistemas de ecuaciones
2.12	. Espacios vectoriales
2.13	. Notación funcional
2.14	. Estadística

Introducción

Para el Curso de Álgebra Lineal con Notación Asociativa he creado multitud de macros que definen la notación empleada en el material docente (libro, transparencias, ejercicios, notebooks o vídeos). Fijar la notación en los bancos de preguntas de Moodle no es sencillo (hay que convertir el código LATEX a xml). Este paquete es un intento de aproximar la notación de banco de preguntas al resto del material.

La idea la obtuve al encontrar el paquete aleph-comandos (https://github.com/alephsub0/LaTeX_aleph-moodle/blob/main/aleph-moodle.pdf) de Jonathan Ortiz y Andrés Merino y que hace uso la macro \html@\def del paquete moodle de Anders Hendrickson y Matthieu Guerquin-Kern.

Este método tiene una importante limitación. No es posible implementar todas la macros que definí al escribir el libro, pues al convertir el código IATEX a xml con \html@\def no podemos usar ni las versiones con asterisco de los comandos, ni tampoco comandos con argumentos opcionales. Así pues, la redefinición de las macros en este paquete no usa ni comandos con asterisco ni argumentos opcionales.

1. Uso

 \Nn

 \Zz

\Rr \Cc

\Kk \N

\Z

\R \CC

1.1. Conjuntos de números

Respecto a estos comandos, véase el párrafo explicativo de la Sección 1.4.6

Los comandos \n , \Zz , \Rr , \Cc y \Kk no tienen argumentos y denotan el conjunto de números naturales, de números enteros, de números reales, números complejos y números de un cuerpo arbitrario respectivamente

Los comandos \N , \Z , \R , \CC y \K no tienen argumentos y denotan el conjunto de números naturales, de números enteros, de números reales, números complejos y números de un cuerpo arbitrario respectivamente

 $\N\Z\R\C\K$

1.2. Paréntesis y corchetes

Me resulta agradable normalizar el tamaño de los paréntesis y otros tipos de llaves. En general prefiero que en las expresiones matemáticas de tipo *ecuación* o *displaymath* los paréntesis sean un poco mayores que aquello que encierran. Pero prefiero paréntesis pequeños en las expresiones entre líneas dentro de los párrafos.

La conversión de comandos IATEX a xml no permite ni comandos con estrella ni con argumentos opcionales, así que estamos muy limitados. Tan solo he podido definir dos comandos en este caso.

Con \parentesis (con las primera letra en minúsculas) escribiremos paréntesis pequeños y con \Parentesis (con la primera letra en mayúsculas) el tamaño del paréntesis se ajusta al objeto encerrado (desgraciadamente parece que no puedo hacer más al convertir a xml). Seguiré idéntico convenio con los corchetes.

El comando \parentesis tiene 1 argumento, \parentesis $\{\langle contenido \rangle\}$, y pone un paréntesis con (y) alrededor del $\{\langle contenido \rangle\}$

$$\P \$$

El comando \Parentesis tiene 1 argumento, \Parentesis $\{\langle contenido \rangle\}$, y pone un paréntesis con \left(y \right) alrededor del $\{\langle contenido \rangle\}$, por lo que el paréntesis se ajusta al tamaño del $\{\langle contenido \rangle\}$.

El comando \corchetes tiene 1 argumento, \corchetes $\{\langle contenido \rangle\}$, y pone un corchete con [y] alrededor del $\{\langle contenido \rangle\}$

El comando \Corchetes tiene 1 argumento, \Corchetes $\{\langle contenido \rangle\}$, y pone un corchete con \left[y \right] alrededor del $\{\langle contenido \rangle\}$, por lo que el corchete se ajusta al tamaño del $\{\langle contenido \rangle\}$.

$$\label{limits_a^b h(x) dx } \left[\int\limits_a^b h(x) dx \right]$$

1.2.1. Regla mnemotécnica para comandos que escriben expresiones con paréntesis

Seguiré la siguiente regla con la nomenclatura de algunos comandos.

- \blacksquare Si terminan en "p" minúscula se pondrá un paréntesis $peque\~no$ alrededor del objeto sobre el que se esta realizando una operación.
- Si terminan en "P" mayúscula se pondrá un paréntesis que tendrá un tamaño ajustado al objeto.
- Si terminan en "pE" se pondrá un paréntesis pequeño alrededor de toda la operación.
- Si terminan en "PE" se pondrá un paréntesis ajustado al tamaño del objeto alrededor de toda la operación

Es decir, en Moodle se pintan las versiones con estrella del paquete original.

1.3. Subíndices

1.3.1. Subíndices y exponente

El comando \LRidxE tiene 4 argumentos, \LRidxE{ $\langle objeto \rangle$ }{ $\langle indIzda \rangle$ }{ $\langle indDcha \rangle$ }{ $\langle exponente \rangle$ }, y pone un subíndice a cada lado del objeto (con exponente)

El comando \LidxE tiene 3 argumentos, \LidxE{ $\langle objeto \rangle$ }{ $\langle indIzda \rangle$ }{ $\langle exponente \rangle$ }, y pone un subíndice a la izquierda del objeto (con exponente)

 $\text{LidxE}\{A\}\{1\}\{*\}$ El comando \RidxE tiene 3 argumentos, $\RidxE\{\langle objeto\rangle\}\{\langle indDcha\rangle\}\{\langle exponente\rangle\}$, y pone un a la derecha del objeto (con exponente) $\RidxE{A}{7}{*}$ A_7^* 1.3.2. Solo subíndices El comando \LRidx tiene 3 argumentos, \LRidx $\{\langle objeto\rangle\}$ $\{\langle indIzda\rangle\}$ $\{\langle indDcha\rangle\}$, y pone un \LRidx \LRidxp subíndice a cada lado del objeto \LRidxP $\LRidx{A}{1}{7}$ \LRidxpE \LRidxPE $\LRidxp{\mathrm{A}}{1}{7} \LRidxP{\mathrm{A}}{1}{7}$ $\label{lambda} $$ LRidxpE{\mathcal{A}}_{1}_{7} \ LRidxpE{\mathcal{A}}_{1}_{7}$$ El comando \Lidx tiene 2 argumentos, \Lidx $E\{\langle objeto\rangle\}\{\langle indIzda\rangle\}$, y pone un subíndice a la \Lidx izquierda del objeto \Lidxp \LidxP $Lidx{A}{1}$ \LidxpE \LidxPE $\Lidxp{Mat{A}}{1} \LidxP{Mat{A}}{1}$ $\LidxpE{Mat{A}}{1} \LidxPE{Mat{A}}{1}$ El comando \Lidx tiene 2 argumentos, \Lidx $E\{\langle objeto\rangle\}\{\langle indIzda\rangle\}$, y pone un subíndice a la \Ridx \Ridxp derecha del objeto \RidxP $\Re\{A\}{7}$ A_7 \RidxpE \RidxPE $\left(A^{A}\right)$ $\RidxpE{\mathcal{A}}{7} \RidxpE{\mathcal{A}}{7}$ 1.4. **Operadores** Conjugación y concatenación Definimos un operador con una barra ancha. \widebar El comando \widebar tiene 1 argumento, \widebar $\{\langle objeto \rangle\}$, y pone una barra ancha sobre el $\{\langle objeto \rangle\}.$ \widebar{x} $|\overline{x}|$ Con dicha barra ancha denotaremos el operador conjugación: El comando \conj tiene 1 argumento, \conj $\{\langle objeto \rangle\}$, y pone una barra ancha sobre el $\{\langle objeto \rangle\}$. \conj

.

 $\overline{5+2i}$

#

 $\conj{5+2i}$

\concat

Con el comando \concat denotaremos la concatenación de dos sistemas

El comando \concat no tiene argumentos, \concat.

\concat

1.4.2. Norma y valor absoluto

El comando \norma tiene 1 argumento, \norma $\{\langle objeto \rangle\}$, y denota la norma del $\{\langle objeto \rangle\}$. Las dobles barras verticales se ajustan al tamaño del $\{\langle objeto \rangle\}$.

$$\left\| \int_{a}^{b} h(x) dx \right\|$$

El comando \modulus tiene 1 argumento, \modulus $\{\langle objeto \rangle\}$, y denota el valor absoluto del $\{\langle objeto \rangle\}$. Las barras verticales se ajustan al tamaño del $\{\langle objeto \rangle\}$.

$$\left| \int_{a}^{b} h(x) dx \right|$$

1.4.3. Transposición

El comando **\T** no tiene argumentos y denota el símbolo de la transposición.

El comando \Trans tiene 1 argumento, \Trans $\{\langle objeto \rangle\}$, y denota la transposición del $\{\langle objeto \rangle\}$

$$\boxed{(\mathbf{A}^\mathsf{T})}\boxed{(\mathbf{A}^\mathsf{T})}$$

1.4.4. Inversa

Me gusta que el signo negativo que indica la inversa sea ligeramente más corto que el habitual. Así logramos que las expresiones sean un poco más compactas.

El comando \minus no tiene argumentos

Tiene 1 argumento, $\langle objeto \rangle$, y denota el inverso del $\{\langle objeto \rangle\}$.

$$\Inv{x}$$
 x^{-1}

$$(x)^{-1} \left[\left(\int_a^b h(x) dx \right)^{-1} \right]$$

$$(x^{-1})$$
 (x^{-1})

1.4.5. Operador selector

Denotaremos el operador selector con una barra vertical.

El comando \getItem no tiene argumentos

El comando \getitemL tiene 1 argumento, \getitemL $\{\langle objeto \rangle\}$.

El comando \getitemR tiene 1 argumento, \getitemR $\{\langle objeto \rangle\}$.

```
por la izquierda de un objeto El comando \elemL tiene 2 argumentos, \ensuremath{\langle objeto \rangle} \{ \langle indice(s) \rangle \},
       \elemL
                           y denota la selección de elementos por la izquierda.
     \elemLp
     \elemLP
                                                                                                                                                                           _{i}A
                                                                                                   \elemL{\Mat{A}}{i}
   \elemLpE
   \elemLPE
                                                             \label{lemLp{Mat{A}}{i} \ \elemLp{Mat{A}}{i}
                                                         \elemLpE{\Mat{A}}{i} \elemLPE{\Mat{A}}{i}
       \elemR
                           por la derecha de un objeto El comando \elem\text{R tiene 2 argumentos, \elem\text{\langle objeto \rangle}} {\langle indice(s) \rangle},
     \elemRp
                           y denota la selección de elementos por la derecha.
     \elemRP
                                                                                                   \elemR{\Mat{A}}{j}
                                                                                                                                                                          A_{|j|}
   \elemRpE
  \elemRPE
                                                            \left( A_{A}\right) = \mathbb{N}_{A}
                                                         \label{lemRpE(Mat{A}){j} <caption> lemRPE(Mat{A}){j}} $$ \left( Mat{A} \right) $$
     \elemLR
                           por ambos lados de un objeto El comando \elemLR tiene 3 argumentos, \ensuremath{\mbox{\mbox{demLR}}} {\ensuremath{\mbox{\mbox{\mbox{elemLR}}}} {\ensuremath{\mbox{\mbox{\mbox{elemLR}}}} {\ensuremath{\mbox{\mbox{\mbox{\mbox{elemLR}}}}} {\ensuremath{\mbox{\mbox{\mbox{\mbox{elemLR}}}}} {\ensuremath{\mbox{\mbox{\mbox{\mbox{elemLR}}}}} {\ensuremath{\mbox{\mbox{\mbox{\mbox{elemLR}}}}} {\ensuremath{\mbox{\mbox{\mbox{elemLR}}}} {\ensuremath{\mbox{\mbox{\mbox{elemLR}}}}} {\ensuremath{\mbox{\mbox{\mbox{elemLR}}}}} {\ensuremath{\mbox{\mbox{\mbox{elemLR}}}}} {\ensuremath{\mbox{\mbox{\mbox{\mbox{elemLR}}}}} {\ensuremath{\mbox{\mbox{\mbox{elemLR}}}}} {\ensuremath{\mbox{\mbox{\mbox{\mbox{elemLR}}}}}} {\ensuremath{\mbox{\mbox{\mbox{\mbox{elemLR}}}}}} {\ensuremath{\mbox{\mbox{\mbox{\mbox{elemLR}}}}}} {\ensuremath{\mbox{\mbox{\mbox{\mbox{elemLR}}}}} {\ensuremath{\mbox{\mbox{\mbox{\mbox{elemLR}}}}}} {\ensuremath{\mbox{\mbox{\mbox{\mbox{elemLR}}}}}} {\ensuremath{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{elemLR}}}}}}} {\ensuremath{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox
                           y denota la selección de elementos por ambos lados.
   \elemLRp
  \elemLRP
                                                                                            \elemLR{\Mat{A}}{i}{j}
\elemLRpE
\elemLRPE
                                               \elemLRp{\Mat{A}}{i}{j} \elemLRP{\Mat{A}}{i}{j}
                                           \ellow{A}_{i}_{j} \ellow{A}_{i}_{j}
       \eleVL
                           por la izquierda de un vector El comando \elevll tiene 2 argumentos, \elevll {(nombre)} {(indice(s))},
                           y denota la selección de elementos por la izquierda de un vector.
     \eleVLp
     \eleVLP
                                                                                                            \eleVL{a}{i}
   \eleVLpE
   \eleVLPE
                                                                             \eleVLp{a}{i} \eleVLP{a}{i}
                                                                          \eleVLpE{a}{i} \eleVLPE{a}{i}
                           por la derecha de un vector El comando \eleVR tiene 2 argumentos, \eleVL\{\langle nombre \rangle\}\{\langle indice(s) \rangle\},
       \eleVR
                           y denota la selección de elementos por la derecha de un vector.
     \eleVRp
     \eleVRP
                                                                                                            \eleVR{a}{j}
                                                                                                                                                                  a_{|j}
   \eleVRpE
  \eleVRPE
                                                                             \eleVRp{a}{j} \eleVRP{a}{j}
                                                                          \eleVRpE{a}{j} \eleVRPE{a}{j}
```

\VectFp \VectFpE \VectFpE de filas de una matriz El comando $\ensuremath{\mbox{VectF tiene 2 argumentos}}, \ensuremath{\mbox{VectF}{\langle nombre\rangle}}{\langle indice(s)\rangle},$ y denota la selección de filas de una matriz

 $\VectF{A}{i}$

 $\label{eq:vectfpe} $$ \operatorname{A}_{i} \operatorname{PE}_{A}_{i} $$ is $$ \left(\frac{i}{|\mathbf{A}|} \right) $$$

de columnas de una matriz El comando $\ensuremath{\mbox{VectC tiene 2 argumentos}}, \ensuremath{\mbox{VectC}(\ensuremath{\mbox{(}nombre)})}, y denota la selección de filas de una matriz$

 $\label{eq:local_problem} $$ \end{align*} $$$

 $\label{eq:local_period_of_local} $$\operatorname{VectCPE}_{A}_{j} \leq \left[(\mathbf{A}_{|j}) \right] $$$$ $$ $$ $$ $$ $$ $$ $$ $$$

de elementos de una matriz El comando \eleM tiene 3 argumentos, \eleM{ $\langle nombre \rangle$ }{ $\langle indice(s)Fil \rangle$ }{ $\langle indice(s)Fol \rangle$ } de de elementos de una matriz

 $\label{eq:alpha} $$ \left\{i\right\}{i}$$

 $\label{eq:loss_loss} $$ \left[i\right]_{j} \left[A\right]_{j} \left[\left(A\right)_{j} \right]_{i} \left[A\right]_{j} \right] $$$

 $\label{eq:loss_loss} $$ \left(i \right) = \left(i \right) \left($

de elementos de una matriz transpuesta El comando \eleMT tiene 3 argumentos, \eleMT $\{\langle nombre \rangle\}$ $\{\langle indice(s)Fiy$ denota la selección de filas y columnas de una matriz

 $\label{eq:alpha} $$ \left\{i\right\}{i}{j} $$ \left[i\right]{\mathbf{A}^{\intercal}}_{i}$

El comando \eleMTp tiene 3 argumentos, \eleMTp $\{\langle nombre \rangle\}$ $\{\langle indice(s)Fil \rangle\}$ $\{\langle indice(s)Col \rangle\}$, y denota la selección de filas y columnas de una matriz

 $\label{eq:loss_interparameter} $$ \left(A \right)^{T} \right)_{i} $$$

El comando \eleMTP tiene 3 argumentos, \eleMTP $\{\langle nombre \rangle\}$ $\{\langle indice(s)Fil \rangle\}$ $\{\langle indice(s)Col \rangle\}$, y denota la selección de filas y columnas de una matriz

 $\label{eq:local_ij} $$ \left((\mathbf{A})^{\mathsf{T}} \right)_{i} $$$

El comando \eleMTpE tiene 3 argumentos, \eleMTpE{ $\langle nombre \rangle$ }{ $\langle indice(s)Fil \rangle$ }{ $\langle indice(s)Col \rangle$ }, y denota la selección de filas y columnas de una matriz

 $\label{eq:loss_loss} $$ \left(\frac{\mathbf{A}^{\mathsf{T}}}{i} \right) = \left(\frac{\mathbf{A}^{\mathsf{T}}}{i} \right) = \mathbf{A}^{\mathsf{T}}$

El comando \eleMTPE tiene 3 argumentos, \eleMTPE $\{\langle nombre \rangle\}$ $\{\langle indice(s)Fil \rangle\}$ $\{\langle indice(s)Col \rangle\}$, y denota la selección de filas y columnas de una matriz

1.4.6. Operaciones elementales

Primero fijamos la notación de las operaciones elementales tipo I y II, los intercambios y las reordenaciones (o permutaciones).

\su El comando \su tiene 3 argumentos, \pe{\(\langle escalar\)}{\(\langle indice\)}}{\(\langle indice\)}, e indica una transformación Tipo I.

$$\su{a}{j}{k}$$

\pr El comando \pr tiene 2 argumento, \pr{ $\langle escalar \rangle$ }{ $\langle indice \rangle$ }, e indica una transformación Tipo II.

$$\pr{a}{k} \qquad \boxed{(a)\, \pmb{k}}$$

\pe El comando \pr tiene 2 argumento, \pr{\(\lambda indice\)\}{\(\lambda indice\)}}, e indica un intercambio.

$$\texttt{\pe{i}}\texttt{\{k\}}\qquad \qquad \boxed{i \rightleftharpoons k}$$

\perm El comando \perm no tiene argumentos e indica un reordenamiento o permutación.

Usaremos letra griega tau como símbolo para denotar una operación elemental (o una secuencia de ellas).

\TrEl El comando \TrEl no tiene argumentos

\TrEl
$$au$$

 $\Delta El \Delta Delta El \Delta Delta El \Delta Delta El \Delta Delta Delta$

$$\begin{tabular}{ll} $ \begin{tabular}{ll} $ \begin{tabular}{ll}$$

$$\CEpr{a}{j}$$

 $\verb|VOEin| El comando | OEin tiene 2 argumentos, | OEin{|| (indice|)} { (indice|)}, e indica un intercambio de posición entre componentes | OEin{|| (indice|)} { (indice|)}, e indica un intercambio de posición entre componentes | OEin{|| (indice|)} { (indice|)} { (indice|)}, e indica un intercambio de posición entre componentes | OEin{|| (indice|)} { (indice|)} { (indice|)} { (indice|)}, e indica un intercambio de posición entre componentes | OEin{|| (indice|)} { (indice|)} { (indice|)} { (indice|)}, e indica un intercambio de posición entre componentes | OEin{|| (indice|)} { (indice|$

$$\texttt{`OEin\{k\}\{j\}} \qquad \qquad \boxed{\frac{\tau}{[k \rightleftharpoons j]}}$$

\OEper El comando \OEper no tiene argumentos e indica un reordenamiento o permutación entre componentes

\OEper
$$au_{[\mathfrak{S}]}$$

\E0Esu El comando \E0Esu tiene 3 argumentos, \E0Esu $\{\langle num \rangle\}$ $\{\langle indice \rangle\}$ $\{\langle indice \rangle\}$, e indica la operación espejo de una elemental de Tipo I

\E0Esu{a}{j}{k}
$$esp \binom{ au}{[(a)j+k]}$$

\E0Epr El comando \E0Epr tiene 2 argumentos, \E0Epr $\{\langle num \rangle\}$ $\{\langle indice \rangle\}$, e indica la operación espejo de una elemental de Tipo II

\EOEpr{a}{j}
$$esp \begin{pmatrix} \tau \\ [(a)j] \end{pmatrix}$$

Operaciones elementales generales Desgraciadamente para el propósito de este paquete, las macros que definí para escribir el libro usan mayoritariamente argumentos opcionales, que aquí no se pueden usar. Cambiar las macros originales supondría modificar los archivos del libro, las transparencias de clase, los problemas propuestos, los exámenes pasados... demasiado trabajo. La alternativa que me queda tampoco me gusta, pero al menos no supone tanto trabajo. Dicha alternativa consiste en duplicar comandos, es decir, que por cada comando original (con argumentos opcionales) creemos otro comando que pinte los mismos símbolos pero sin argumentos opcionales (esta solución ya la he tomado con los comandos de notación de los conjuntos de números, de manera que para escribir \mathbb{R}^n ahora tenemos R[n] (el argumento opcional es el superíndice) o bien R^n (que no tiene argumentos opcionales y que es lo que debemos usar al escribir preguntas para Moodle).

El criterio de nomenclatura que he adoptado ha sido repetir la letra del comando pero en minúscula (salvo en el caso de los complejos); es decir, los comandos definidos para el libro son: \N , \Z , \R y \C c (debido a que \C ya es un comando del paquete hyperref). Así, que los nuevos comandos que he creado para duplicar los anteriores pero sin argumentos opcionales son \N n, \Z z, \R r y \C C.

Ahora tengo que pensar en un criterio análogo para que sea fácil pasar del comando original a duplicado sin argumentos opcionales. No lo tengo claro así que voy a probar con mantener los mismo nombres pero con una d delante para indicar que es el comando duplicado (no sé que tal resultará esta solución).

El comando \dOEgE tiene 2 argumentos, $\dOEgE\{\langle indice \rangle\}\{\langle exponente \rangle\}$, e indica una operación elemental genérica con un exponente (y replica el comando \OEg que tiene argumentos opcionales)

$$\label{eq:doege} $$\doege{k}{} \doege{k}{*} \doege{k}{*} \doege{k}{*} $$$$

El comando \dOEg tiene 1 argumento, $\dOEg\{\langle indice\rangle\}$, e indica una operación elemental genérica (y replica el comando \DEg que tiene argumentos opcionales)

\d0Eg{} \d0Eg{k} \0Eg[k]
$$\overline{ au}_k \overline{ au}_k$$

También fijamos la notación para operación inversa, la operación espejo y el espejo de la inversa de una operación elemental

El comando \dE0EgE tiene 2 argumentos, \dE0EgE{ $\langle indice \rangle$ }{ $\langle exponente \rangle$ }, e indica la operación espejo de una elemental genérica con un exponente (y replica el comando \E0Eg que tiene argumentos opcionales)

$$\label{eq:loss_esp} $$ \dedelete{k} {*} \end{minipage} $$ \end{m$$

El comando \dEOEg tiene 1 argumento, \dEOEgE{ $\langle indice \rangle$ }, e indica la operación espejo de una elemental genérica (y replica el comando \EOEg que tiene argumentos opcionales)

$$\label{eq:loss_esp} $$ \deoeg_k \ \eoeg_k $ esp(\tau) esp(\tau_k) esp(\tau_k) $$$$

El comando $\d InvOEg tiene 1 argumento, \d InvOEgE{(\'indice)}, e indica la la inversa de una elemental genérica (y replica el comando \InvOEg que tiene argumentos opcionales)$

\dInv0Eg{\} \dInv0Eg{\k} \Inv0Eg[\k]
$$ag{ au^{-1} au_k^{-1} au_k^{-1}}$$

$$\texttt{\ \ } \texttt{\ \ } \texttt{\$$

El comando \dS0EgE tiene 3 argumento3, \dS0EgE{ $\langle indiceInic \rangle$ }{ $\langle indiceFin \rangle$ }{ $\langle exponente \rangle$ }, e indica una sucesión de operaciones elementales genéricas con exponente

El comando \dS0Eg tiene 2 argumento3, \dS0Eg{ $\langle indiceInic \rangle$ }{ $\langle indiceFin \rangle$ }, e indica una sucesión de operaciones elementales genéricas

$$\texttt{\dSOEg\{j\}\{k\}\ \SOEg[j][k]} \qquad \boxed{\tau_j \cdots \tau_k \tau_j \cdots \tau_k}$$

1.4.7. Transformaciones elementales

\TESF Transf. elemental aplicada la izquierda o derecha de un objeto El comando \TESF tiene 4 argumentos, $\TESF{\langle escalar \rangle} {\langle indice \rangle} {\langle indice \rangle} {\langle indice \rangle}$, e indica una transformación elemental \TESFp \TESFP de Tipo I por la izquierda del objeto. \TESFpE \TESF{\lambda}{i}{j}{\Mat{A}} \TESFPE $\TESFp{\lambda_{i}_{j}_{SV{A}} \TESFP{\lambda_{i}_{j}_{SV{A}}} \TESFP{\lambda_{i}_{j}_{SV{A}}}$ $\label{lambda} $$ \TESFPE{\lambda_{i}_{j}_{SV\{A\}}} \TESFPE{\lambda_{i}_{j}_{SV\{A\}}} $$$ El comando \TESC tiene 4 argumentos, \TESC $\{\langle escalar \rangle\}$ $\{\langle indice \rangle\}$ $\{\langle indice \rangle\}$ $\{\langle objeto \rangle\}$, e indica \TESC una transformación elemental de Tipo I por la derecha del objeto. \TESCp \TESCP \TESC{\lambda}{i}{j}{\Mat{A}}} \TESCpE $oldsymbol{ au}_{[(\lambda)oldsymbol{i}+oldsymbol{j}]}$ \TESCPE $\TESCp{\lambda_{i}_{j}_{SV\{A\}} \TESCP{\lambda_{i}_{j}_{SV\{A\}}} \TESCP{\lambda_{i}_{j}_{SV\{A\}}} \TESCP{\lambda_{i}_{i}_{j}_{SV\{A\}}} \TESCP{\lambda_{i}_{i}_{SV\{A\}}} \TESCP{\lambda_{i}_{SV\{A\}}_{SV\{A\}}} \TESCP{\lambda_{i}_{SV\{A\}}_{SV\{A\}}_{SV\{A\}}} \TESCP{\lambda_{i}_{SV\{A\}}_{SV\{A}_{SV$ $m{ au}_{[(\lambda)m{i}+m{j}]}$ $\TESCpE{\lambda_{i}_{j}_{SV\{A\}} \TESCPE{\lambda_{i}_{j}_{SV\{A\}}} \TESCPE{\lambda_{i}_{j}_{SV\{A\}}} \TESCPE{\lambda_{i}_{j}_{SV\{A\}}} \TESCPE{\lambda_{i}_{j}_{SV\{A\}}} \TESCPE{\lambda_{i}_{j}_{SV\{A\}}} \TESCPE{\lambda_{i}_{SV\{A\}}} \TESCPE{\lambda_{i}_{SV\{A\}$ El comando \TEPF tiene 3 argumentos, \TEPF $\{\langle escalar \rangle\}$ $\{\langle indice \rangle\}$ $\{\langle objeto \rangle\}$, e indica una trans-\TEPF formación elemental de Tipo II por la izquierda del objeto. \TEPFp \TEPFP \TEPF{\lambda}{i}{\Mat{A}}} \TEPFpE \TEPFPE \TEPFp{\lambda}{i}{\Mat{A}} \TEPFP{\lambda}{i}{\Mat{A}} \TEPFpE{\lambda}{i}{\Mat{A}} \TEPFPE{\lambda}{i}{\Mat{A}} El comando \TEPC tiene 3 argumentos, \TEPC $\{\langle escalar \rangle\}$ $\{\langle indice \rangle\}$ $\{\langle objeto \rangle\}$, e indica una trans-\TEPC formación elemental de Tipo II por la derecha del objeto. \TEPCp \TEPCP $\mathbf{A}_{oldsymbol{ au}}^{oldsymbol{ au}}$ \TEPC{\lambda}{j}{\Mat{A}}} \TEPCpE \TEPCPE \TEPCp{\lambda}{j}{\Mat{A}} \TEPCP{\lambda}{j}{\Mat{A}} \TEPCpE{\lambda}{j}{\Mat{A}} \TEPCPE{\lambda}{j}{\Mat{A}}} Α El comando \TEIF tiene 3 argumentos, \TEIF $\{(indice)\}\{(indice)\}\}$, e indica un inter-\TEIF cambio por la izquierda del objeto. \TEIFp \TEIFP \TEIF{i}{j}{\Mat{A}}} \TEIFpE \TEIFPE

El comando \TEIC tiene 3 argumentos, \TEIC $\{(indice)\}\{(indice)\}\{(objeto)\}$, e indica un intercambio por la derecha del objeto.

El comando \Mint tiene 2 argumentos, \Mint{ $\langle indice \rangle$ }{ $\langle indice \rangle$ }, e indica una matriz intercambio.

$$\begin{tabular}{ll} \setminus Mint{i}{j} & \hline {\color{red} I}_{\substack{\tau \\ [i \rightleftharpoons j]}} \end{tabular}$$

El comando \MintT tiene 2 argumentos, \MintT{ $\langle indice \rangle$ }{ $\langle indice \rangle$ }, e indica una matriz intercambio (filas).

El comando \PF tiene 1 argumento, \PF{ $\langle objeto \rangle$ }, e indica una permutación de los elementos de un objeto por la izquierda.

El comando \PC tiene 1 argumento, \PC $\{\langle objeto \rangle\}$, e indica una permutación de los elementos de un objeto por la derecha.

El comando \MP no tiene argumentos e indica una matriz permutación.

\MP
$$I_{\tau}$$

El comando \MPT no tiene argumentos e indica una matriz permutación.

\MPT
$$\begin{bmatrix} \tau \\ [\mathfrak{S}] \end{bmatrix}$$

Sucesiones indiciadas de Transf. elementales por la izquierda, o por la derecha, o por ambos lados.

El comando \SITEF tiene 3 argumentos, \SITEF $\{\langle indInic \rangle\}$ $\{\langle indFinal \rangle\}$ $\{\langle objeto \rangle\}$, e indica una sucesión de transformaciones elementales genéricas por la izquierda del $\{\langle objeto \rangle\}$.

$$\label{eq:compaction} $$ \left\{ \frac{1}{k} \right\} \left(\frac{1}{r_j \cdots r_k} \right) \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_k \cdots r_j} \right) \left(\frac{1}{r_k \cdots r_j} \left(\frac{1}{r_$$

\SITEFC

\SITEFCp

\SITEFCP \SITEFCpE

\SITEFCPE

\SITEFCR

\SITEFCRp \SITEFCRP

\SITEFCRpE

\SITEFCRPE

\dTEEF

\dTEEFp \dTEEFP

\dTEEFpE \dTEEFPE Transf. elemental genérica aplicada a la izquierda de un objeto (funciones duplicadas sin argumentos opcionales. Cuando la aplicamos a la izquierda de una matriz corresponde a una transformación de sus filas

 $\SITEFCRpE{j}{k}{\mathbb{A}} \SITEFCRPE{j}{k}{\mathbb{A}}$

El comando \dTEEF tiene 3 argumentos, \dTEEF{ $\langle indice \rangle$ }{ $\langle exponente \rangle$ }{ $\langle objeto \rangle$ }, e indica una transformación elemental genérica (con exponente) por la izquierda del objeto.

 $\left\lceil \left(au^A
ight)
ight
ceil \left(au_2^A
ight) \left
ceil \left(au_2^* A
ight)$

\dTEFp \dTEFP \dTEFPE \dTEFPE El comando \dTEF tiene 2 argumentos, \dTEF $\{\langle indice \rangle\}$ $\{\langle objeto \rangle\}$, e indica una transformación elemental genérica por la izquierda del objeto.

El comando \dETEF tiene 2 argumentos, \dETEF $\{\langle indice \rangle\}$ $\{\langle objeto \rangle\}$, e indica una transformación elemental espejo genérica por la izquierda del objeto.

El comando \dInvTEF tiene 2 argumentos, \dInvTEF $\{\langle indice \rangle\}\{\langle objeto \rangle\}$, e indica una transformación elemental espejo inversa genérica por la izquierda del objeto.

El comando \dEInvTEF tiene 2 argumentos, \dEInvTEF{ $\langle indice \rangle$ }{ $\langle objeto \rangle$ }, e indica una transformación elemental espejo inversa genérica por la izquierda del objeto.

Transf. elemental aplicada la derecha de un objeto (funciones duplicadas sin argumentos opcionales. Cuando la aplicamos a la derecha de una matriz corresponde a una transformación de sus columnas

El comando \dTEEC tiene 3 argumentos, \dTEEC $\{\langle indice \rangle\}\{\langle exponente \rangle\}\{\langle objeto \rangle\}$, e indica una \dTEEC transformación elemental genérica (con exponente) por la derecha del objeto. \dTEECp \dTEECP \dTEEC{}{}{\SV{A}} \dTEEC{2}{}{\SV{A}} \dTEEC{2}{*}{\SV{A}} \dTEECpE \dTEECPE $\label{eq:dteco} $$ \det p_{2}_{A} \det p_{2}_{A} \\$ (A) $\label{eq:dteecp} $$ \det \mathbb{L}^{A} \det \mathbb{L}^{A} \det \mathbb{L}^{A}$ $\label{lem:dteecpe} $$ dteecpe{2}{}{A} \dteecpe{2}{*}{A} $$ dteecpe{2}{*}{A} $$$ \dTEC El comando \dTEC tiene 2 argumentos, \dTEC $\{\langle indice \rangle\}$ $\{\langle objeto \rangle\}$, e indica una transformación \dTECp elemental genérica por la derecha del objeto. \dTECP $\dTEC{}{\Mat{A}} \dTEC{2}{\Mat{A}}$ \dTECpE \dTECPE \dTECpE{}{\Mat{A}} \dTECpE{2}{\Mat{A}} \dTECPE{}{\Mat{A}} \dTECPE{2}{\Mat{A}}} El comando \dETEC tiene 2 argumentos, \dETEC $\{(indice)\}$, e indica una transformación \dETEC elemental espejo genérica por la derecha del objeto. \dETECp \dETECP \dETEC{}{\Mat{A}} \dETEC{2}{\Mat{A}} $\mathbf{A}_{esp(oldsymbol{ au})}$ $\mathbf{A}_{esp(\pmb{\tau}_2)}$ \dETECpE \dETECPE $\label{eq:local_detection} $$ \dETECp{2}{\mathcal A}$ \end{A}} $$ \dETECp{2}{\mathcal A}$$ \dETECP{}{\Mat{A}} \dETECP{2}{\Mat{A}}} \dETECpE{}{\Mat{A}} \dETECpE{2}{\Mat{A}}} \dETECPE{}{\Mat{A}} \dETECPE{2}{\Mat{A}} El comando \dInvTEC tiene 2 argumentos, \dInvTEC $\{\langle indice \rangle\}\{\langle objeto \rangle\}$, e indica una transfor-\dInvTEC

mación elemental espejo inversa genérica por la derecha del objeto.

\dInvTECp \dInvTECP

\dInvTECPE \dInvTECPE

$$\begin{split} & \langle \mathbf{A} \rangle_{\tau^{-1}} \\ & \langle \mathbf{A} \rangle_{\tau^{-1$$

El comando \dEInvTEC tiene 2 argumentos, \dEInvTEC $\{(indice)\}\{(objeto)\}$, e indica una transformación elemental espejo inversa genérica por la derecha del objeto.

$$\begin{tabular}{ll} $$ \esp(\tau^{-1}) & $ A_{esp(\tau^{-1})} & $ A_{$$

Transformaciones elementales particulares Aquí describimos la notación de transformaciones específicas.

El comando \dTrF tiene 2 argumentos, $\dTrF{\langle operación(es)\rangle}{\langle objeto\rangle}$, e indica una transformación (o transformaciones) elemental(es) por la izquierda del objeto.

El comando \dTrC tiene 2 argumentos, $\dTrC\{\langle operación(es)\rangle\}\{\langle objeto\rangle\}$, e indica una transformación (o transformaciones) elemental(es) por la derecha del objeto.

 $\dTrC{ \dOEgE{1}{'}\cdots\dOEgE{p}{'} } {\Mat{I}}$ $\dTrC{ \pE{\su{5}{i}{j}}\pE{\pr{-7}{j}} }{\Mat{A}}$ [(5)i+j][(-7)j]\dTrCp{ \d0EgE{1}{'}\cdots\d0EgE{p}{'} }{\Mat{I}} $\dTrCp\{ \opE\{\su\{5\}\{i\}\{j\}\}\opE\{\pr\{-7\}\{j\}\} \} \{\Mat\{A\}\}\}$ $oldsymbol{ au} oldsymbol{ au} [(5)oldsymbol{i+j}][(-7)oldsymbol{j}]$ Α $\dTrCP\{ \opE\{\su\{5\}\{i\}\}\} \opE\{\pr\{-7\}\{j\}\} \ \} \{\Mat\{A\}\}\}$ $\boldsymbol{\tau} \quad \boldsymbol{\tau}$ $[(5)\boldsymbol{i}+\boldsymbol{j}][(-7)\boldsymbol{j}]$ \dTrCpE{ \dOEgE{1}{'}\cdots\dOEgE{p}{'} }{\Mat{I}} $\dTrCpE\{ \0pE\{\su\{5\}\{i\}\{j\}\}\0pE\{\pr\{-7\}\{j\}\} \ \}\{\Mat\{A\}\}\}$ $egin{array}{ccc} oldsymbol{ au} & oldsymbol{ au} & oldsymbol{ au} \ [(5)oldsymbol{i+j}][(-7)oldsymbol{j}] \end{array}$ \dTrCPE{ \dOEgE{1}{'}\cdots\dOEgE{p}{'} }{\Mat{I}} $\dTrCPE\{ \opE\{\su\{5\}\{i\}\{j\}\}\opE\{\pr\{-7\}\{j\}\} \ \}\{\Mat\{A\}\}\}$ τ [(5)i+j][(-7)j]

\dTrFCp \dTrFCP \dTrFCpE \dTrFCPE El comando \dTrFC tiene 3 argumentos, \dTrFC{ $\langle operacionesIzda \rangle$ }{ $\langle operacionesDcha \rangle$ }{ $\langle objeto \rangle$ }, e indica una transformación (o transformaciones) elemental(es) por cada lado del objeto.

1.4.8. Operador que quita un elemento

\fueraitemI.

El comando \fueraitemL tiene 1 argumento, \fueraitemL{\langle indice}\rangle, y denota la eliminación por la izquierda del elemento correspondiente al $\{\langle indice \rangle\}$

El comando \fueraitemR tiene 1 argumento, \fueraitemR{ $\langle indice \rangle$ }, y denota la eliminación por la derecha del elemento correspondiente al { $\langle indice \rangle$ }

El comando \quitaLR tiene 3 argumentos, \quitaLR{ $\langle objeto \rangle$ }{ $\langle indIzda \rangle$ }{ $\langle indDcha \rangle$ }, y denota el resultante de quitar un elemento por la izquierda y otro por la derecha

El comando \quitaL tiene 2 argumentos, \quitaL $\{\langle objeto \rangle\}$ $\{\langle indIzda \rangle\}$, y denota el resultante de quitar un elemento por la izquierda

El comando \quitaR tiene 2 argumentos, \quitaR $\{\langle objeto \rangle\}$ $\{\langle indDcha \rangle\}$, y denota el resultante de quitar un elemento por la derecha

1.4.9. Selección de elementos sin emplear el operador selector

El comando \elemUUU tiene 2 argumentos, \elemUUU $\{\langle sistema \rangle\}\{\langle indice \rangle\}$, y denota la selección del elemento correspondiente al $\{\langle indice \rangle\}$

$$\label{eq:continuous} $$ \left(SV\{Z\} \right) = \left(elem_i(Z) \right) $$$$

El comando $\VectFFF\ tiene\ 2$ argumentos, $\VectFFF\{\langle nombre \rangle\}\{\langle indice \rangle\}$, y denota la selección de la fila correspondiente al $\{\langle indice \rangle\}$

El comando $\VectCCC\ tiene\ 2$ argumentos, $\VectCCC\{\langle nombre \rangle\}\{\langle indice \rangle\}$, y denota la selección de la columna correspondiente al $\{\langle indice \rangle\}$

$$| \textbf{VectCCCT{A}{i}} | \textbf{Col}_i(\textbf{A}) | | col_i(\textbf{A}^\intercal) |$$

tiene 3 argumentos, $\{\langle nombre \rangle\}\{\langle indiceFil \rangle\}\{\langle indiceCol \rangle\}$, y denota la selección del elemento correspondiente a los índices indicados

1.5. Sistemas genéricos

El comando \SV tiene 1 argumento, \SV $\{\langle nombre \rangle\}$

El comando \concatSV tiene 2 argumentos, \concatSV{ $\langle sistemaA \rangle$ }{ $\langle sistemaB \rangle$ }, y denota la concatenación del { $\langle sistemaA \rangle$ } con el { $\langle sistemaB \rangle$ }.

$$\label{eq:local_system} $$\operatorname{A}HB$$$

1.6. Vectores y matrices

1.6.1. Vectores genéricos

tiene 1 argumento, $\ensuremath{\mbox{vect}\{\langle nombre\rangle\}}$, y denota un vector genérico. \vect

\vectp \vectP

\vect{a} \vectp{a} \vectP{a}

 (\overrightarrow{a}) (\vec{a})

Vectores de \mathbb{R}^n 1.6.2.

tiene 1 argumento, $\ensuremath{\mbox{Vect}\{\langle nombre\rangle\}}$, y denota un vector de \mathbb{R}^n \Vect

\Vectp \VectP

\Vect{a} \Vectp{a} \VectP{a}

(a) (\boldsymbol{a})

1.6.3. Matrices

tiene 1 argumento, $\{(nombre)\}$, y denota una matriz \Mat

\Matp \MatP

\Mat{A} \Matp{A} \MatP{A}

Matrices transpuestas

El comando \MatT tiene 1 argumento, \MatT $\{\langle nombre \rangle\}$ \MatT

\MatTp

\MatTP

\MatTPE

\MatTpE

\MatT{A}

\MatTp{A} \MatTP{A}

\MatTpE{A} \MatTPE{A}

Matriz transpuesta de la transpuesta

\MatTT

El comando \MatTT tiene 1 argumento, \MatTT $\{\langle nombre \rangle\}$

\MatTTPE

\MatTT{A} \MatTTPE{A}

Matrices columna

\MVectF

El comando \MVectF tiene 2 argumentos, \MVectF $\{\langle nombre \rangle\}$ $\{\langle indice \rangle\}$, y denota una matriz columna creada a partir de una fila de una matriz

El comando \MVectF tiene 2 argumentos, \MVectF $\{\langle nombre \rangle\}$ $\{\langle indice \rangle\}$

\MVectF{A}{i}

\MVectC

El comando \MVectC tiene 2 argumentos, \MVectC $\{\langle nombre \rangle\}$ $\{\langle indice \rangle\}$, y denota una matriz columna creada a partir de una columna de una matriz

\MVectC{A}{j}

Matrices fila

\MVectFT

El comando \MVectFT tiene 2 argumentos, \MVectFT $\{\langle nombre \rangle\}$ $\{\langle indice \rangle\}$, y denota una matriz fila creada a partir de una fila de una matriz

\MVectFT{A}{i}

 $[i|A]^T$

\MVectCT

El comando \MVectCT tiene 2 argumentos, \MVectCT $\{\langle nombre \rangle\}$ $\{\langle indice \rangle\}$, y denota una matriz fila creada a partir de una columna de una matriz

\MVectCT{A}{j}

Matriz inversa Notación para las matrices inversas

El comando \InvMat tiene 1 argumento, \InvMat $\{\langle nombre \rangle\}$, y denota la inversa de una matriz

El comando \InvMatT tiene 1 argumento, $\InvMatT{\langle nombre \rangle}$, y denota la inversa de una matriz transpuesta

 $\label{eq:linear_approx} $$\operatorname{InvMatTpE}_{A} \ \operatorname{InvMatTpE}_{A} = \left(\mathbf{A}^\intercal\right)^{-1} \left[\left(\left(\mathbf{A}^\intercal\right)^{-1}\right)\right] \left(\left(\mathbf{A}^\intercal\right)^{-1}\right) = \left(\left(\mathbf{A}^\intercal\right)^{-1}\right)^{-1} \left(\left(\mathbf{A}^\intercal\right)^{-1}$

El comando \TInvMat tiene 1 argumento, \TInvMat $\{\langle nombre \rangle\}$, y denota la transpuesta de la inversa de una matriz

 $\label{eq:local_transformation} $$ \prod_{\mathbf{A}^{-1}}^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right] = \left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \left[\left(\mathbf{A}^{-1}$

1.6.4. Miscelánea matrices

El comando \Traza no tiene argumentos

\Traza tr

El comando \rg no tiene argumentos

\rg rg

El comando \traza tiene 1 argumento, \traza $\{\langle objeto \rangle\}$

 $\label{traza} $$ \operatorname{Traza}(\mathcal{A})$$

El comando \rango tiene 1 argumento, \rango $\{\langle objeto \rangle\}$

 $\operatorname{rg}(A)$

Determinante de una matriz El comando \cof no tiene argumentos

\cof | cof

El comando \adj no tiene argumentos

\adj Adj

El comando \determinante tiene 1 argumento, \determinante $\{\langle objeto \rangle\}$, y denota el determinante del $\{\langle objeto \rangle\}$ usando las barras verticales

 $\label{eq:local_determinante} $$ \determinante{\Mat{A}} $$$

El comando \subMat tiene 3 argumentos, \subMat $\{\langle nombre \rangle\}\{\langle indIzda \rangle\}\{\langle indDcha \rangle\}$, y denota la submatriz resultante de quitar una o más filas y columnas de la matriz $\{\langle nombre \rangle\}$

 $\hat{i}^{\dagger}\mathbf{A}^{\dagger j}$

El comando \Menor tiene 3 argumentos, \Menor{ $\langle nombre \rangle$ }{ $\langle indFila \rangle$ }{ $\langle indCol \rangle$ }, y denota el menor de la matriz correspondiente a la fila y columna indicadas

 $\Menor{A}{i}{j} \MenoR{A}{i}{j}$

El comando \Cof tiene 3 argumentos, \Cof $\{\langle nombre \rangle\}\{\langle indFila \rangle\}\{\langle indCol \rangle\}$, y denota el cofactor de la fila y columna indicadas

\Cof{A}{i}{j}

 $cof_{ij}(\mathbf{A})$

 $\underset{n \times m}{xxx}$

Orden de las matrices El comando \Dim tiene 3 argumentos, \Dim $\{\langle objeto \rangle\}\{\langle filas \rangle\}\{\langle columnas \rangle\}$ \Dim

\Dimp \DimP

\DimpE \DimPE \Dim{xxx}{n}{m}

 $\displaystyle \prod\{x\}\{n\}\{m\} \quad \\ \displaystyle \lim\{x\}\{n\}\{m\}\}$

 $\DimpE\{x\}\{n\}\{m\} \DimPE\{x\}\{n\}\{m\}$

\Matdim \Matdimp

\MatdimP

\MatdimpE

\MatdimPE

El comando $\Matdim\ tiene\ 3\ argumentos, \Matdim{\langle nombre\rangle}{\langle filas\rangle}{\langle columnas\rangle}$

\Matdim{A}{n}{m}

 $\mathcal{A}_{n}^{n} \ MatdimP\{A\}\{n\}\{m\}$

(A)

\MatdimpE{A}{n}{m} \MatdimPE{A}{n}{m}

Matriz de autovalores

\MDaV

\eSc

\MDaV no tiene argumentos e indica la letra usada par las matrices de autovalores

\MDaV

D

1.7. Productos entre vectores

1.7.1. Producto escalar

tiene 2 argumentos, $\ensuremath{\mbox{\sc hojeto}}\$ { $\ensuremath{\mbox{\sc hojeto}}\$ }, y denota el producto escalar entre dos objetos

 $\ensuremath{\ensuremath{\mbox{eSc}\{f(x)\}\{g(x)\}}}$

 $\langle f(x)|g(x)\rangle$

tiene 2 argumentos, $\ensuremath{\mbox{\sc f}(nombre)}\ensuremath{\mbox{\sc f}(nombre)}\ensuremath{\mbox{\sc f},}$ y denota el producto escalar entre dos vectores \esc genéricos

 $\ensuremath{\ensuremath}\ensuremath{\ensuremath{\ens$

1.7.2. Producto punto

\dotProd \dotProdp \dotProdP tiene 2 argumentos, $\dot Prod(\langle objeto \rangle) \{\langle objeto \rangle\}$, y denota el producto punto entre dos objetos

$$(a+b)\cdot c$$

¡Ojo! en las versiones con paréntesis he me saltado en convenio y en lugar de terminar en pE o PE, sencillamente terminan en p o P.

tiene 2 argumentos, $\dotprod\{\langle nombre\rangle\}\{\langle nombre\rangle\}$, y denota el producto punto entre dos vectores de \mathbb{R}^n

$$oxed{a \cdot b} oxed{(a \cdot b)} oxed{(a \cdot b)}$$

1.7.3. Producto punto a punto o Hadamard

tiene 2 argumentos, $\prodH{\langle objeto\rangle}{\langle objeto\rangle}$, y denota el producto punto a punto entre dos objetos

$$(a+b)\odot c$$

$$$$ \operatorname{\widehat{b}}_{\operatorname{\widehat{b}}}_{\operatorname$$

tiene 2 argumentos, $\prodh{\langle nombre\rangle}{\langle nombre\rangle}$, y denota el producto punto a punto entre dos vectores de \mathbb{R}^n

$$oxed{a \odot b} oxed{(a \odot b)} oxed{(a \odot b)}$$

1.8. Matriz por vector y vector por matriz

tiene 2 argumentos, $\MV{\langle nombre \rangle}{\langle nombre \rangle}$, y denota el producto de una matriz por un vector de \mathbb{R}^n

$$MV{A}{b} \MVpE{A}{b} \MVPE{A}{b}$$

$$oxed{f Ab} oxed{f (Ab)} oxed{f (Ab)}$$

tiene 2 argumentos, $MV{\langle nombre \rangle}{\langle nombre \rangle}$, y denota el producto de un vector de \mathbb{R}^n por una matriz

$$\VM{a}{B} \VMpE{a}{B}$$

$$aB$$
 aB aB

tiene 2 argumentos, $\MTV{\langle nombre \rangle}{\langle nombre \rangle}$, y denota el producto de una matriz transpuesta por un vector de \mathbb{R}^n

$$\label{eq:mtv} $$ \MTV_{A}_{b} \MTV_{A}_{b} \MTV_{A}_{b}$$$

$$\boxed{\mathbf{A}^{\mathsf{T}} b} \boxed{(\mathbf{A}^{\mathsf{T}}) b} \boxed{(\mathbf{A}^{\mathsf{T}}) b}$$

tiene 2 argumentos, $\MTV{\langle nombre \rangle}{\langle nombre \rangle}$, y denota el producto de un vector de \mathbb{R}^n por una matriz transpuesta

$$\VMT{a}{B} \VMTp{a}{B} \VMTP{a}{B}$$

$$oxed{a\mathsf{B}^{\intercal}}oxed{a(\mathsf{B}^{\intercal})}oxed{a(\mathsf{B}^{\intercal})}$$

1.9. Matriz por matriz

tiene 2 argumentos, $\MN{\langle nombre \rangle}{\langle nombre \rangle}$, y denota el producto matriz por matriz

 $\MN{A}{B}$

AB

tiene 2 argumentos, $\MTN{\langle nombre \rangle}{\langle nombre \rangle}$, y denota el producto matriz transpuesta por matriz

 $\label{eq:minimum} $$ \MTNp{A}_B \MTNp{A}_B$$

 $\boxed{\mathbf{A}^{\mathsf{T}}\mathbf{B}} \boxed{(\mathbf{A}^{\mathsf{T}})\mathbf{B}} \boxed{(\mathbf{A}^{\mathsf{T}})\mathbf{B}}$

\MNT tiene 2 argumentos, \MNT{ $\langle nombre \rangle$ }{ $\langle nombre \rangle$ }, y denota el producto matriz por matriz trans-\MNTp puesta

\MNTP

 $\label{eq:mnta} $$ \MNTp{A}{B} \MNTp{A}{B} $$$

\MTM tiene 2 argumentos, \MTM $\{\langle nombre \rangle\}$ $\{\langle nombre \rangle\}$, y denota el producto matriz transpuesta por matriz

\MTMP

 $\MTM{A} \MTMp{A} \MTMP{A}$

 $\boxed{\mathbf{A}^{\mathsf{T}}\mathbf{A}} \boxed{(\mathbf{A}^{\mathsf{T}})\mathbf{A}} \boxed{(\mathbf{A}^{\mathsf{T}})} \mathbf{A}$

 $\verb| \mbox| tiene 2 argumentos, \mbox| \mbox$

 $\label{eq:mmtp} $$ \MMT{A} \MMTp{A} \MMTP{A}$

 $\boxed{\mathbf{A}\mathbf{A}^{\mathsf{T}} \boxed{\mathbf{A}(\mathbf{A}^{\mathsf{T}})} \boxed{\mathbf{A}(\mathbf{A}^{\mathsf{T}})}$

\MNMT tiene 2 argumentos, \MNMT{ $\langle nombre \rangle$ }{ $\langle nombre \rangle$ }, y denota el producto matriz por matriz transpuesta

\MNMT{A}{D} \MNMTp{A}{D} \MNMTP{A}{D}

\MTNM tiene 2 argumentos, \MTNM $\{\langle nombre \rangle\}$ $\{\langle nombre \rangle\}$, y denota el producto matriz transpuesta por matriz por matriz transpuesta

\MTNMP

 $\label{eq:mtnm} $$ \MTNMp{A}{D} \MTNMP{A}{D} $$$

1.10. Otros productos entre matrices y vectores

\MTMV tiene 2 argumentos, \MTMV $\{\langle nombre \rangle\}$ $\{\langle nombre \rangle\}$, y denota el producto matriz transpuesta por \MTMVp matriz por vector

\MTMVP

 $\MTMV{A}{b} \MTMVp{A}{b} \MTMVP{A}{b}$

 $\boxed{ \mathbf{A}^{\mathsf{T}} \mathbf{A} b } \boxed{ (\mathbf{A}^{\mathsf{T}}) \mathbf{A} b } \boxed{ (\mathbf{A}^{\mathsf{T}}) \mathbf{A} b }$

 $\label{eq:local_local_local_local_local} $$\operatorname{VMW}_{\langle nombre \rangle}_{\langle no$

 $\W{a}{B}{c}$

 $a\mathsf{B}c$

 $\label{eq:local_local_local_local} $$\operatorname{VMV}_{\langle nombre\rangle}_{\langle nombr$

 $\W\{a\}\{B\}$

 $a\mathsf{B}a$

\VMTWP

 $\label{eq:local_to_the_problem} $$ \WMTW_{a}_{B}_{c} \WMTWP_{a}_{B}_{c} $$$

 $\boxed{a \mathsf{B}^\intercal c} \boxed{a (\mathsf{B}^\intercal) c} \boxed{a (\mathsf{B}^\intercal) c}$

\VMTV tiene 2 argumentos, \VMTV $\{\langle nombre \rangle\}$ $\{\langle nombre \rangle\}$, y denota el producto vector por matriz por \VMTVp vector

\VMTVP

 $\VMTV{a}{B} \VMTVp{a}{B} \VMTVP{a}{B}$

 $\boxed{a \mathsf{B}^\intercal a \, \boxed{a (\mathsf{B}^\intercal) a \, \boxed{a (\mathsf{B}^\intercal) \, a}}$

\InvMTM tiene 1 argumento, \InvMTM $\{(nombre)\}$, y denota la inversa del producto de una matriz transpuesta por ella misma

\InvMTM{A}

 $\left(\mathbf{A}^{\mathsf{T}}\mathbf{A}\right)^{-1}$

1.11. Sistemas de ecuaciones

tiene 3 argumentos, $\SEL\{\langle nombre\rangle\}\{\langle nombre\rangle\}\{\langle nombre\rangle\}$, y denota un sistema de ecuaciones lineales (con notación matricial)

tiene 3 argumentos, $\SELT{\langle nombre \rangle}{\langle nombre \rangle}{\langle nombre \rangle}$, y denota un sistema de ecuaciones lineales (con notación matricial y matriz de coeficientes transpuesta)

tiene 3 argumentos, $\SELTP{\langle nombre \rangle}{\langle nombre \rangle}{\langle nombre \rangle}$, y denota un sistema de ecuaciones lineales (con notación matricial y matriz de coeficientes transpuesta entre paréntesis)

\SELTP{A}
$$\{x\}\{b\}$$
 $(\mathbf{A}^{\intercal})\, oldsymbol{x} = oldsymbol{b}$

tiene 3 argumentos, $\SELF{\langle nombre\rangle}{\langle nombre\rangle}{\langle nombre\rangle}$, y denota un sistema de ecuaciones lineales en forma de combinaciones de lineales de las filas de la matriz de coeficientes (con notación matricial)

\SELF{y}{A}{b}
$$y A = b$$

1.12. Espacios vectoriales

tiene 1 argumento, $\langle EV\{\langle nombre \rangle\}$, y denota un espacio vectorial

no tiene argumentos y denota al espacio nulo (o núcleo)

$$ackslash$$
EspacioNul

no tiene argumentos y denota al espacio columna

\EspacioCol
$$\overline{\mathcal{C}}$$

tiene 1 argumento, $\{objeto\}$, y denota el espacio nulo (o núcleo) del objeto

\Nulls{f}
$$\mathcal{N}(f)$$

tiene 1 argumento, $\{nombre\}$, y denota el espacio nulo (o núcleo) de una matriz

$$\mathbb{N}(A)$$

tiene 1 argumento, $Cols{\langle objeto \rangle}$, y denota el espacio columna del objeto

$$\Cols{f}$$

tiene 1 argumento, $\langle cols \{\langle nombre \rangle \}$, y denota el espacio columna de una matriz

$$\mathbb{C}(A)$$

tiene 1 argumento, $\S pan\{\langle sistema \rangle\}$, y denota el espacio vectorial generado con los elementos del $\{\langle sistema \rangle\}$ o conjunto

$$\Span{\SV{Z}}$$

tiene 1 argumento, $\PSpan{\langle sistema \rangle}$, y denota el espacio semi-euclídeo de probabilidad generado con los elementos del $\{\langle sistema \rangle\}$ o conjunto

$$\PSpan{\SV{Z}}$$

$$\mathcal{L}(Z)$$

tiene 1 argumento, $\coord{\langle vector\rangle}{\{\langle base\rangle\}}$, y denota las coordenadas de un vector respecto de una base

\coord{\vect{x}}{\SV{Z}}

$$\left[(\overrightarrow{x} + \overrightarrow{y})_{/_{\! \mathsf{Z}}} \right] \left[\left(x_{/_{\! \mathsf{B}}} \right) \right]$$

1.13. Notación funcional

\dom El comando \dom no tiene argumentos y denota el dominio de una función

\dom(f)

dom(f)

\mifun tiene 3 argumentos, \mifun{ $\langle nombre \rangle$ }{ $\langle dominio \rangle$ }{ $\langle conjLlegada \rangle$ }, y denota una función que asigna a los elementos de su dominio elementos del conjunto de llegada

 $\min\{f\}\{X\}\{Y\}$

 $f\colon X \to Y$

\deffun

tiene 3 argumentos, $\langle nombre \rangle \{\langle dominio \rangle \} \{\langle conjLlegada \rangle \} \{\langle variable \rangle \} \{\langle imagen \rangle \}$, y denota una función que asigna a los elementos de su dominio elementos del *conjunto de llegada*

 $\begin{array}{c}
[f \circ g] : \mathbb{R} \longrightarrow \mathbb{R}^n \\
x \longmapsto \mathbf{x}
\end{array}$

1.14. Estadística

\Estmc El comando \Estmc $\{\langle objeto \rangle\}$ tiene 1 argumento y denota el ajuste MCO del $\{\langle objeto \rangle\}$

 $\texttt{\ \ }\widehat{A}$

 $\forall Estmc$ El comando $\forall Estmc \{\langle objeto \rangle\}$ tiene 1 argumento y denota el ajuste MCO del $\{\langle vector \rangle\}$

\VEstmc{y} \widehat{y}

\Estmd El comando \Estmd $\{\langle objeto \rangle\}$ tiene 1 argumento y denota el estimador por MCO del $\{\langle objeto \rangle\}$

 $\verb|\Estmd{A}| \qquad \widehat{A}$

\VEstmd El comando \VEstmd{ $\langle vector \rangle$ } tiene 1 argumento y denota el estimador por MCO del { $\langle vector \rangle$ } de \mathbb{R}^n

 $\VEstmd{\beta}$

 $\label{eq:local_model} $$\operatorname{MCO} = 2 \text{ argumentos } \operatorname{MCO}(\langle regresando \rangle) + \langle regresor \rangle $$ y escribe el cálculo de los parámetros del ajuste MCO$

resi El comando \resi tiene 1 argumento \resi $\{(indice)\}\$ y pinta error de ajuste MCO correspondiente al índice

 $\ \ \ \widehat{e}_{j}$

res El comando \res no tiene argumentos y pinta el vector de residuos de un ajuste MCO

\res $\widehat{\widehat{e}}$

\ajustemlt El comando \ajustemlt no tieneargumentos y denota el ajuste del modelo cuyo único regresor el vector constante

\ajusteMLT $oxed{y=\widehat{eta}\mathbf{1}+\widehat{e}}$

El comando \ajusteMLS no tieneargumentos y denota el ajuste del modelo lineal simple

\ajusteMLS $y = \widehat{eta_1} \mathbf{1} + \widehat{eta_2} x + \widehat{e}$

El comando \ajusteMLG no tiene argumentos y escribe el ajuste del Modelo Lineal General

\ajusteMLG $oxed{y = \mathbf{X}\widehat{eta} + \widehat{e}}$

El comando $\Media{\langle objeto\rangle}$ tiene 1 argumento y pinta una barra horizontal que denota la media (proyección ortogonal sobre los vectores contantes) del $\{\langle objeto\rangle\}$

 $\label{eq:media} $$ \Media{\Vect\{x\}} $$$

El comando \Smedia no tiene argumentos y pinta el símbolo del valor medio

\Smedia μ

El comando \media tiene 1 argumento, \Media $\{\langle objeto \rangle\}$, y denota el valor medio del objeto.

 $\label{eq:local_problem} $$\operatorname{\mathbb{Q}} \operatorname{\mathbb{Q}} \mathbb{Q}^2 \ \mathbb{Q}^2 \ \mathbb{Q}^2 .$

 $\label{eq:local_vect_x}^2 \end{ap_{\vect_x}^2} \end{ap_{\vect_x}^2}^2 \end{ap_{\vect_x}^2}^2 \end{ap_{\vect_x}^2}^2 \end{ap_{\vect_x}^2}^2 \end{ap_{\vect_x}^2}$

El comando \SmediaM no tiene argumentos y pinta el símbolo de la media muestral

 $\$ SmediaM m

El comando \mediaM tiene 1 argumento, \mediaM $\{\langle muestra \rangle\}$, y denota la media muestral.

El comando \dt tiene 1 argumento, \ $dt{\langle objeto \rangle}$, y denota la desviación típica del objeto.

 $\texttt{\dt{\Vect{x}}} \qquad \boxed{\sigma_x}$

 $\label{eq:condition} $$\det\{\Vect\{x\}^2\}$$$

El comando \dtM tiene 1 argumento, $\dtM{\langle muestra \rangle}$, y denota la desviación típica muestral.

 $\texttt{\dtM}\{\texttt{\Vect}\{x\}\} \hspace{1cm} \overline{s_x}$

El comando $\$ tiene 1 argumento, $\$ $\$ denota la varianza del objeto. \var{\Vect{x}} \var{} $\displaystyle \sqrt{x}^{\v}^2$ \varM \varMp \varM{\Vect{x}} \varMP \varMp{\Vect{x}^2} El comando \cvarM tiene 1 argumento, \cvarM $\{\langle muestra \rangle\}$, y denota la cuasi-varianza muestral. \cvarM \cvarMp \cvarM{\Vect{x}} \cvarMP $\cvarMp{\Vect{x}^2}$ El comando \cov tiene 2 argumentos, \cov $\{\langle objeto1\rangle\}$ $\{\langle objeto2\rangle\}$, y denota la covarianza entre \cov $\{\langle objeto1 \rangle\}\ y\ \{\langle objeto2 \rangle\}.$ \covp \covP $\cv{\Vect{x}}{\Vect{y}}$ $\covp{\Vect{x}^2}{\Vect{y}}$ El comando \covM tiene 2 argumentos, \covM $\{\langle muestra1\rangle\}$ $\{\langle muestra2\rangle\}$, y denota la covarianza \covM muestral. \covMp \covMP $\covM{\Vect{x}}{\Vect{y}}$ $\covMp{\Vect{x}^2}{\Vect{y}}$ El comando \corr tiene 2 argumentos, \corr $\{\langle objeto1\rangle\}\{\langle objeto2\rangle\}$, y denota la correlación entre \corr $\{\langle objeto1 \rangle\}\ y\ \{\langle objeto2 \rangle\}.$ \corrp \corrP \corr{\Vect{x}}{\Vect{y}} $\corrp{\Vect{x}^2}{\Vect{y}}$ El comando \corr\ tiene 2 argumentos, \corr\{\langle muestra2\rangle\}, y denota la correla-\corrM ción muestral. \corrMp \corrMP \corrM{\Vect{x}}{\Vect{y}}} \corrMp{\Vect{x}^2}{\Vect{y}} El comando $\ind{\langle conjunto\rangle}$ tiene 1 argumento y denota la función indicatriz del ${\langle conjunto\rangle}$ \ind $\inf{\Omega}$ $\mathbb{1}_{\Omega}$

 $\dtMp{\Vect{x}^2}$

indCero	El comando \indCero no tiene argumentos denota la función indicatriz nula
	\indCero
\indUno	El comando \indUno no tiene argumentos denota la función indicatriz constante uno
	\indUno 1
\PRO	El comando $\PRO\{\langle suceso\rangle\}\$ tiene 1 argumento y denota la probabilidad de un $\{\langle suceso\rangle\}\$
	$\mathtt{\ \ } \mathbb{P}(A)$
	El comando $\PRObh{\langle suceso\rangle}{\langle hipótesis\rangle}$ tiene 2 argumentos y denota la probabilidad de un ${\langle suceso\rangle}$ bajo cierta hipótesis
	$\verb \PRObh{A}{\{\hnula\}} \qquad \boxed{\mathbb{P}_{_{H_0}}(A)}$
	El comando \VAn tiene 2 argumentos, \VAn $\{\langle nombre \rangle\}$ $\{\langle indice \rangle\}$, y denota una variable aleatoria con subíndice
	El comando \VA tiene 2 argumentos, $\VA[\langle indice \rangle] \{\langle nombre \rangle\}$, y denota una variable aleatoria
	$VA\{X\}$ X
	El comando \VAind tiene 1 argumento, $\VAind\{\langle suceso\rangle\}$, y denota una variable aleatoria indicatriz
	$\verb VAind{Omega} $
	El comando \VAindCero no tiene argumentos, \VAindCero , y denota la variable aleatoria cero
	\VAindCero
	El comando \VAindUno no tiene argumentos, \VAindUno , y denota la variable aleatoria constante uno
	\VAindUno 1
	El comando \VVA tiene 1 argumento, \VVA $\{\langle nombre \rangle\}$, y denota un vector aleatorio
	$\ \ \boxed{Y}$
	El comando \MVA tiene 1 argumentos, \MVA{ $\langle nombre \rangle$ }, y denota una matriz aleatoria
	$\label{eq:mva} $$\MVAp{X}$ $$ \MVAp{X}$$
	El comando \MVAT tiene 1 argumento, \MVAT $\{\langle nombre \rangle\}$, y denota una matriz aleatoria traspuesta
	$\label{eq:mvat} $$\operatorname{MVATp}(X) \ \operatorname{MVATpE}(X)$ $$ $X^\intercal \ X^\intercal \ X^$
	El comando \SVA tiene 1 argumento, \SVA $\{\langle nombre \rangle\}$, y denota un sistema de variables aleatorias
	\SVA{X} X
	El comando \SVAT tiene 1 argumento, \SVAT $\{(nombre)\}$, y denota un sistema de variables aleatorias transpuesto
	$\backslash SVAT\{X\}$ X^{T}

El comando \per no tiene argumentos y denota el término de perturbación de un modelo \per El comando $\protection peri no tiene argumentos y denota el término de perturbación <math>n$ -ésimo \peri U_n El comando \Vper no tiene argumento y denota un vector de perturbaciones \Vper El comando \esperanza no tiene argumentos y especifica el símbolo para el operador esperanza \esperanza \mathbf{E} \esperanza \E El comando $\E{\langle variable\ aleatoria \rangle}$ tiene 1 argumento y denota la esperanza de una $\{\langle variable\ aleatoria \rangle\}$ $aleatoria \rangle \}$ $\mathrm{E}\left(X\right)$ $\E{\VA{X}}$ El comando \desviaciontipica no tiene argumentos y especifica el símbolo para la desviación esviaciontipica típica Dt \desviaciontipica El comando \Dt{\(\sigma riable aleatoria\)} tiene 1 argumento y denota la desviación típica de una \Dt $\{\langle variable\ aleatoria \rangle\}$ $\mathrm{Dt}\left(X\right)$ $\Dt{\VA{X}}$ El comando \varianza no tiene argumentos y especifica el símbolo para la varianza \varianza \varianza Var \Var El comando $\operatorname{Var}(\langle variable\ aleatoria \rangle)$ tiene 1 argumento y denota la varianza de una $\{\langle variable\ aleatoria \rangle\}$ $aleatoria \rangle \}$ \Var{\VA{X}} $\operatorname{Var}\left(X\right)$ El comando \covarianza no tiene argumentos y especifica el símbolo para la covarianza \covarianza \covarianza Cov El comando $\texttt{Cov}\{\langle variable\ aleatoria\rangle\}\{\langle variable\ aleatoria\rangle\}\$ tiene 2 argumentos y denota la co-\Cov varianza entre dos variables aleatorias $\Cov{\VA{X}}{\VA{Y}}$ El comando \correlación no tiene argumentos y especifica el símbolo para la correlación \correlacion Corr \correlacion El comando $\operatorname{Corr}\{\langle variable\ aleatoria\rangle\}\{\langle variable\ aleatoria\rangle\}\$ tiene 2 argumentos y denota la \Corr correlación entre dos variables aleatorias Corr(X,Y) $\Corr{VA{X}}{VA{Y}}$ El comando \ECond tiene 2 argumentos, \ECond $\{\langle V. aleatoria \rangle\}$ $\{\langle V. aleatoria \ o \ sistema \rangle\}$ y \ECond

denota la esperanza de $\{\langle V. \ aleatoria \rangle\}$ condicionada a una VA o sistema de variables aleatorias

 $\label{eq:local_va{Y}} {\VA{X}}$

 $\mathbb{E}(Y | X)$

 \EcondYX

El comando \ECondYX tiene 2 argumentos, \ECondYX $\{\langle V. aleatoria \rangle\}$ $\{\langle Sist. VA \rangle\}$ y denota la esperanza de $\{\langle V. aleatoria \rangle\}$ condicionada a un sistema de variables aleatorias

\ECondYX{\VA{Y}}{X}

 $\mathbb{E}(Y | \mathsf{X})$

\DtCond

El comando \DtCond tiene 2 argumentos, \DtCond{ $\langle V. aleatoria \rangle$ }{ $\langle V. aleatoria o sistema \rangle$ } y denota la desviación típica de { $\langle V. aleatoria \rangle$ } condicionada a una VA o sistema de variables aleatorias

\DtCond{\VA{Y}}{\VA{X}}

 $\mathbb{D}t(Y \mid X)$

El comando $\VarCond\$ tiene 2 argumentos, $\VarCond\{\langle V. aleatoria \rangle\}\{\langle V. aleatoria \ o \ sistema \rangle\}\$ y denota la varianza de $\{\langle V. aleatoria \rangle\}$ condicionada a una VA o sistema de variables aleatorias

\VarCond{\VA{Y}}{\VA{X}}

 $\mathbb{V}ar(Y \mid X)$

El comando $\VarCondYX \ tiene 2 \ argumentos, <math>\VarCondYX\{\langle V. \ aleatoria\rangle\}\{\langle Sist. \ VA\rangle\}\ y \ denota la varianza de <math>\{\langle V. \ aleatoria\rangle\}\ condicionada a un sistema de variables aleatorias$

\VarCondYX{\VA{Y}}{X}

 $\mathbb{V}ar(Y \mid X)$

El comando \CovCond tiene 3 argumentos, \CovCond $\{\langle V. \ aleatoria1\rangle\}\{\langle V. \ aleatoria2\rangle\}\{\langle V. \ aleatoria0\rangle\}$ y denota la covarianza entre $\{\langle V. \ aleatoria1\rangle\}$ y $\{\langle V. \ aleatoria2\rangle\}$ condicionada a una VA o sistema de variables aleatorias

 $\label{eq:covCond} \VA{X}}{\VA{Y}}{\SVA{Z}}$

 $\mathbb{C}ov(X,Y|\mathsf{Z})$

El comando \CovCondXYZ tiene 3 argumentos, \CovCondXYZ{ $\langle V. aleatoria1 \rangle$ }{ $\langle V. aleatoria2 \rangle$ }{ $\langle Sist. VA \rangle$ } y denota la covarianza entre { $\langle V. aleatoria1 \rangle$ } y { $\langle V. aleatoria2 \rangle$ } condicionada a un sistema de variables aleatorias

 $\CovCondXYZ{\VA{X}}{\VA{Y}}{Z}$

 $\mathbb{C}ov(X,Y|\mathsf{Z})$

El comando \MLT no tieneargumentos y denota el modelo cuyo único regresor es 1

\MLT

 $Y = \beta_1 \mathbb{1} + U$

El comando \MLS no tieneargumentos y denota el modelo lineal simple

\MLS

 $Y = \beta_1 \mathbb{1} + \beta_2 X + U$

El comando \MLG no tiene argumentos y escribe el Modelo Lineal General

\MLG

 $Y = X\beta + U$

El comando \masMLT no tieneargumentos y denota el modelo muestral cuyo único regresor es 1

 $\mbox{\mbox{\tt masMLT}}$

 $Y = \beta_1 \mathbf{1} + U$

El comando \masMLS no tieneargumentos y denota el modelo muestral lineal simple

\masMLS

 $Y = \beta_1 \mathbf{1} + \beta_2 X + U$

El comando \masMLG no tiene argumentos y escribe el Modelo muestral Lineal General

 $\mbox{\mbox{$\mbox{masMLG}$}}$

 $Y = X\beta + U$

El comando \SupI no tiene argumentos y escribe el primer supuesto del Modelo Lineal General

\SupI
$$Y = X\beta + U$$

El comando \SupII no tiene argumentos y escribe el segundo supuesto del Modelo Lineal General

\SupII
$$\mathbb{E}(U|X) = 0$$

El comando \SupIII no tiene argumentos y escribe el tercer supuesto del Modelo Lineal General

\SupIII
$$\mathbb{E}\left(U^2 \,\middle|\, \mathsf{X}\right) = \sigma^2 \mathbb{I}$$

\SupIV El comando \SupIV no tiene argumentos y escribe el cuarto supuesto del Modelo Lineal General

\SupIV
$$E(X^{T}X)$$
 es invertible

\SupIImas El comando \SupIImas no tiene argumentos y escribe el segundo supuesto muestral del Modelo Lineal General

\SupIImas
$$\mathbb{E}\left(oldsymbol{U}\,|\,\mathbf{X}
ight) = \mathbf{0}$$

\SupIIImas El comando \SupIIImas no tiene argumentos y escribe el tercer supuesto muestral del Modelo Lineal General

\SupIIImas
$$\operatorname{\mathbb{V}}\!\!\operatorname{ar}\left(oldsymbol{U}\mid\mathbf{X}
ight)=\sigma^{2}\mathbf{I}$$

\SupIVmas El comando \SupIVmas no tiene argumentos y escribe el cuarto supuesto muestral del Modelo Lineal General

\SupIVmas
$$E(X^{T}X)$$
 es invertible

\SupVmas El comando \SupVmas no tiene argumentos y escribe el quinto supuesto muestral del Modelo Lineal General

\SupVmas
$$oxed{U \sim N\left(\mathbf{0},\,\sigma^2\mathbf{I}
ight)}$$

\Normal El comando \Normal tiene 2 argumentos \Normal $\{\langle esperanza \rangle\}$ $\{\langle varianza \rangle\}$ y denota la distribución de probabilidad Normal

$$\label{lem:normal} $$ \N\left(\mu,\,\sigma^2\right) $$$$

\TStudent El comando \TStudent tiene 1 argumento \TStudent $\{\langle gl\rangle\}$ y denota la distribución de probabilidad t de Student

\FSnedecor El comando \FSnedecor tiene 2 argumentos \FSnedecor $\{\langle gl\rangle\}\{\langle gl\rangle\}$ y denota la distribución de probabilidad F de Snedecor

$$\label{eq:final_problem} $$ \P_{N-k,r} $$$$

\ChiCuadrado \Chi

\ChiCuadrado{k}
$$\overline{\chi_k^2}$$

 $\label{eq:ValorC} \mbox{ValorCritico tiene 3 argumentos $$\operatorname{Critico}(\langle dist\rangle)_{\langle grados\rangle}_{\langle grados\rangle$

El comando \Hnula no tiene argumentos y denota una hipótesis nula \Hnula \Hnula \Halt El comando \Halt no tiene argumentos y denota la hipótesis alternativa \Halt H_1 El comando \Rcritica no tiene argumentos y denota la región crítica \Rcritica RC\Rcritica El comando \Racept no tiene argumentos y denota la región complementaria a la región crítica RA\Racept El comando \testadistico no tiene argumentos y denota el valor tomado por el estadístico t de student \testadistico El comando \Testadistico no tiene argumentos y denota el estadístico t de student \mathcal{T} \Testadistico El comando \festadistico no tiene argumentos y denota el valor tomado por el estadístico F de Snedecor Ê \festadistico El comando \Festadistico no tiene argumentos y denota el estadístico F de Snedecor $\overline{\mathcal{F}}$ \Festadistico El comando \EstmcDt tiene 1 argumento \EstmcDt $\{\langle objeto \rangle\}$ y denota la estimación de la desviación típica del $\{\langle objeto \rangle\}$ $\widehat{\mathrm{Dt}}(Y)$ \EstmcDt{\VA{Y}} El comando \EstmdDt tiene 1 argumento \EstmdDt $\{\langle objeto \rangle\}$ y denota un estimador de la desviación típica del $\{\langle objeto \rangle\}$ \EstmdDt{\VA{Y}} El comando EstmcVar tiene 1 argumento $\texttt{EstmcVar}\{\langle objeto \rangle\}$ y denota la estimación de la varianza del $\{\langle objeto \rangle\}$ $\widehat{\mathrm{Var}}(\underline{Y})$ \EstmcVar{\VA{Y}}

El comando \EstmdVar tiene 1 argumento \EstmdVar $\{\langle objeto \rangle\}$ y denota un estimador de la varianza del $\{\langle objeto \rangle\}$

 $\label{eq:var} $$\operatorname{VA}(Y)$$

El comando \EstmcCov tiene 2 argumentos \EstmcCov $\{\langle objeto1\rangle\}\{\langle objeto2\rangle\}$ y denota la estimación de la covarianza entre ambos objetos

 $\label{eq:cov} $$\operatorname{Cov}(X,Y) $$$

El comando \EstmdCov tiene 2 argumentos \EstmdCov $\{\langle objeto1\rangle\}\{\langle objeto2\rangle\}\$ y denota un estimador de la covarianza entre ambos objetos

 $\begin{tabular}{ll} $$\operatorname{Cov}(X,Y)$ \\ \hline $\widehat{\operatorname{Cov}}(X,Y)$ \\ \hline $\widehat{\operatorname{Cov}}(X,Y)$ \\ \hline \end{tabular}$

2. Implementación

\RidxP

2.1. Conjuntos de números

```
Números naturales, enteros, reales y complejos
        \Zz
             1 \html@def\Nn{\mathbb{N}}
        \R.r
              2 \html@def\Zz{\mathbb{Z}}
        \Cc
             3 \html@def\Rr{\mathbb{R}}
             4 \html@def\Cc{\mathbb{C}}
              5 \html@def\Kk{\mathbb{K}}
            Números naturales, enteros, reales y complejos con exponente opcional
             6 \html@def\N { \Nn }
         \R.
             7 \html@def\Z { \Zz }
        \CC
             8 \html@def\R { \Rr }
             9 \html@def\CC{ \Cc }
             10 \html@def\K { \Kk }
             2.2.
                    Paréntesis y corchetes
            Paréntesis pequeños
\parentesis
\Parentesis
             11 \html@def\parentesis#1{(#1)}
             12 \html@def\Parentesis#1{\left(#1\right)}
\corchetes
            Corchetes pequeños
\Corchetes
             13 \html@def\corchetes#1{[#1]}
             14 \html@def\Corchetes#1{\left[#1\right]}
\Corchetes Corchetes de tamaño variable
             15 \html@def\Corchetes#1{\left[#1\right]}
             2.3.
                     Subíndices
    \LRidxE Comando para escribir un índice a la derecha y otro a la izquierda de un objeto (con exponente)
    \LidxE
             16 \html@def\LRidxE#1#2#3#4{ {_{#2}^{}}{{#1}}{_{#3}^{#4}} }
     \RidxE 17 \html@def\LidxE
                                  #1#2#3{ {_{#2}^{}}{{#1}}{_{ }^{#3}} }
             18 \html@def\RidxE
                                  #1#2#3{ {
                                                    }{{#1}}{_{#2}^{#3}} }
    \LRidx Comando para escribir un índice a la derecha y otro a la izquierda de un objeto
   \LRidxp
            19 \html@def\LRidx #1#2#3{ \LRidxE{#1}{#2}{#3}{} }
             20 \html@def\LRidxp #1#2#3{ \LRidxE{\parentesis{#1}}{#2}{#3}{} }
    \LRidxP
   \LRidxpE 21 \html@def\LRidxP #1#2#3{ \LRidxE{\Parentesis{#1}}{#2}{#3}{} }
   \LRidxPE 22 \html@def\LRidxpE#1#2#3{ \parentesis{\LRidxE{#1}{#2}{#3}{}} }
             23 \t \E = 1243{ \ensuremath{\t LRidxE\{\#1\}{\#2}{\#3}{}} }
      Lidx Comando para escribir un índice a la izquierda de un objeto
     \Lidxp
             24 \html@def\Lidx #1#2{ \LidxE{#1}{#2}{} }
     \LidxP
             25 \html@def\Lidxp #1#2{ \Lidx{\parentesis{#1}}{#2}{} }
    \label{lidxpe} $$ \mathbb{2}6 \left(\frac{\mu^2 + 1}{2} \right) = 26 \left(\frac{\mu^2 + 1}{2} \right) $$
    \LidxPE
            27 \html@def\LidxpE#1#2{ \parentesis{\Lidx{#1}{#2}{}} }
             28 \html@def\LidxPE#1#2{ \Parentesis{\Lidx{#1}{#2}{}} }
      \Ridx Comando para escribir un índice a la derecha de un objeto
     \Ridxp
             29 \html@def\Ridx #1#2{ \RidxE{#1}{#2}{} }
```

30 \html@def\Ridxp #1#2{ \Ridx{\parentesis{#1}}{#2}{} }

33 $\html@def\RidxPE#1#2{ \Parentesis{<math>\Ridx{#1}{\#2}{}} }$

\RidxpE 31 \html@def\RidxP #1#2{ \Ridx{\Parentesis{#1}}{#2}{} } \RidxPE 32 \html@def\RidxpE#1#2{ \parentesis{\Ridx{#1}{#2}{}} }

2.4. Operadores

2.4.1. Conjugación y concatenación

\widebar Barra ancha para indicar media o conjugación
34 \html@def\widebar#1{\mathop{\overline{#1}}}

\conj Signo de conjugación

35 \html@def\conj#1{\widebar{#1}}

\concat Concatenación

36 \html@def\concat{\large\&\#x29FA;}

2.4.2. Norma y valor absoluto

\norma Norma de un objeto

37 \html@def\norma#1{\left\lVert{#1}\right\rVert}

\modulus Valor absoluto

38 \html@def\modulus#1{\left|{#1}\right|}

2.4.3. Transposición

\T Signo de transposición 39 \html@def\T{\intercal}

\Trans Transposición

 $\label{transp} \ \ 40 \ \ \ \#1{\#1^{\mathbb{T}}}$

\TransP 41 \html@def\Transp #1{\Trans{\parentesis{#1}}}

\TranspE 42 \html@def\TransP #1{\Trans{\Parentesis{#1}}}

\TransPE 43 \html@def\TranspE#1{\parentesis{\Trans{#1}}}

44 \html@def\TransPE#1{\Parentesis{\Trans{#1}}}

2.4.4. Inversa

\minus Signo negativo para indicar la inversa

 $45 \begin{array}{c} 45 \end{array} \\ \begin{array}{c} \text{html@def} \\ \text{minus} \\ \end{array} \\ \begin{array}{c} \text{on} \\ \text{on}$

\Inv Notación de la inversa

\InvP 47 \html@def\Invp #1{\Inv{\parentesis{#1}}}

\InvpE 48 \html@def\InvP #1{\Inv{\Parentesis{#1}}}

\InvPE 49 \html@def\InvpE#1{\parentesis{\Inv{#1}}}

50 \html@def\InvPE#1{\Parentesis{\Inv{#1}}}

2.4.5. Operador selector

\getItem Signo de operador selector

 $51 \begin{array}{c} \text{ } \\ \text{ } \\$

\getitemL Operador selector por la izquierda y operador selector por la derecha

\getitemR 52 \html@def\getitemL#1{{#1}\mathbin{\getItem}}

53 \html@def\getitemR#1{\mathbin{\getItem}{#1}}

por la izquierda de un objeto

```
\elemL Selector por la izquierda
    \elemLp
                        54 \mbox{ } \#1\#2{\Lidx}{\#1}{\getitemL{\#2}}}
    \elemLP
                        55 \html@def\elemLp #1#2{\elemL{\parentesis{#1}}{#2}}
                       56 \html@def\elemLP #1#2{\elemL{\Parentesis{#1}}{#2}}
  \elemLpE
  \elemLPE 57 \html@def\elemLpE#1#2{\parentesis{\elemL{#1}{#2}}}
                         58 \mathbf{\Psi} = 1 + 2{\mathbf \Psi} + 1 + 2{\mathbf \Psi} 
                                por la derecha de un objeto
      \elema Selector por la derecha
    \elemRp
                       59 \html@def\elemR #1#2{\Ridx{#1}{\getitemR{#2}}}
    \elemRP
                        60 \html@def\elemRp #1#2{\elemR{\parentesis{#1}}{#2}}
  \elemRpE 61 \html@def\elemRP #1#2{\elemR{\Parentesis{#1}}{#2}}
  \elemRPE 62 \html@def\elemRpE#1#2{\parentesis{\elemR{#1}{#2}}}
                         63 \html@def\elemRPE#1#2{\Parentesis{\elemR{#1}{#2}}}
                                por ambos lados de un objeto
    \elemLR Selectores por ambos lados
 \elemLRp
                        64 \html@def\elemLR #1#2#3{\LRidx{#1}{\getitemL{#2}}{\getitemR{#3}}}
  \elemLRP
                        65 \html@def\elemLRp #1#2#3{\left\{ \frac{43}{} \right\}}
\elemLRpE
                       66 \html@def\elemLRP #1#2#3{\elemLR{\Parentesis{#1}}{#2}{#3}}
\elemLRPE
                       67 \html@def\elemLRpE#1#2#3{\parentesis{\elemLR{#1}{#2}{#3}}}
                         68 \mathbf{PE\#1\#2\#3} \Pe emLRPE\#1\#2\#3{\Pe} elemLR{\#1}{\#2}{\#3}}
                                por la izquierda de un vector
      \elevl Selector de elementos de un vector por la izquierda
    \eleVLp
                        69 \html@def\eleVL #1#2{\elemL {\Vect{#1}}{#2}}
    \eleVLP
                       70 \html@def\eleVLp #1#2{\elemLp {\Vect{#1}}{#2}}
  \eleVLpE 71 \html@def\eleVLP #1#2{\elemLP {\Vect{#1}}{#2}}
  \eleVLPE 72 \html@def\eleVLpE#1#2{\elemLpE{\Vect{#1}}{#2}}
                         73 \html@def\eleVLPE#1#2{\elemLPE{\Vect{#1}}{#2}}
                                por la derecha de un vector
      \elevr Selector de elementos de un vector por la derecha
    \label{lem:condition} $$ \left( \frac{1}{2} \right)^{-74} \left( \frac{1}{2} \right)^{-74}
    \eleVRP
                       75 \html@def\eleVRp #1#2{\elemRp {\Vect{#1}}{#2}}
  \eleVRpE 76 \html@def\eleVRP #1#2{\elemRP {\Vect{#1}}{#2}}
 \eleVRPE 77 \html@def\eleVRpE#1#2{\elemRpE{\Vect{#1}}{#2}}
                         78 \html@def\eleVRPE#1#2{\elemRPE{\Vect{#1}}{#2}}
                                de filas de una matriz
                       Selector de filas de una matriz
      \VectF
    \VectFp
                        79 \html@def\VectF #1#2{\elemL {\Mat{#1}}{#2}}
    \VectFP
                        80 \html@def\VectFp #1#2{\elemLp {\Mat{#1}}{#2}}
                       81 \html@def\VectFP #1#2{\elemLP {\Mat{#1}}{#2}}
  \VectFpE
                       82 \html@def\VectFpE#1#2{\elemLpE{\Mat{#1}}{#2}}
  \VectFPE
                         83 \t \ \html@def\VectFPE#1#2{\elemLPE{\Mat{#1}}{#2}}
                                de columnas de una matriz
      \VectC Selector de columnas de una matriz
    \VectCP
                        85 \html@def\VectCp #1#2{\elemRp {\Mat{#1}}{#2}}
  \VectCpE 86 \html@def\VectCP #1#2{\elemRP {\Mat{#1}}{#2}}
 \VectCPE 87 \html@def\VectCpE#1#2{\elemRpE{\Mat{#1}}{#2}}
                         88 \html@def\VectCPE#1#2{\elemRPE{\Mat{#1}}{#2}}
```

de elementos de una matriz

```
\eleM Selector de elementos de una matriz
 \eleMp
         89 \html@def\eleM #1#2#3{\elemLR {\Mat{#1}}{#2}{#3}}
 \eleMP
         90 \html@def\eleMp #1#2#3{\elemLRp {\Mat{#1}}{#2}{#3}}
 \eleMpE
        91 \html@def\eleMP #1#2#3{\elemLRP {\Mat{#1}}{#2}{#3}}
 \eleMPE 92 \html@def\eleMpE#1#2#3{\elemLRpE{\Mat{#1}}{#2}{#3}}
         93 \html@def\eleMPE#1#2#3{\elemLRPE{\Mat{#1}}{#2}{#3}}
            de elementos de una matriz transpuesta
        Selector de elementos de una matriz transpuesta
 \eleMT
\eleMTp
        \eleMTP
        95 \html@def\eleMTp #1#2#3{\elemLRp {\MatTpE{#1}}{#2}{#3}}
\eleMTpE 96 \html@def\eleMTP #1#2#3{\elemLRP {\MatTPE{#1}}{#2}{#3}}
\eleMTPE
        97 \html@def\eleMTpE#1#2#3{\elemLRpE{\MatTpE{#1}}{#2}{#3}}
         98 \html@def\eleMTPE#1#2#3{\elemLRPE{\MatTPE{#1}}{#2}{#3}}
         2.4.6. Operaciones elementales
  \Trel Signo de transformación elemental
         99 \html@def\TrEl{\boldsymbol{\tau}}
    \su Transformación elemental Tipo I
        100 \mathbf{\$2}} + {\bf \$2\#3\{\left(\#1\right)} \
    \pr Transformación elemental Tipo II
        101 \frac{42}}
    \pe Intercambio (permuta de dos elementos)
        102 \mathbf{02} \mathbf{02} \mathbf{02} \mathbf{01} 
  \perm Reordenamiento de los elementos (permutación)
        103 \html@def\perm{\mathfrak{S}}
   \Ope Operación elemental
        104 \mathbf{0}ef\mathbb{1}_{\mathbf{41}\rightight} {\bf 1}
  OEsu Oper. elem. que suma un múltiplo de una componente a otra
        105 \mathbf{0Esu}1233 \mathbf{0pE}  \ \ \ \ \}
  \OEpr Oper. elem. que multiplica una componente por un número
        106 \html@def\OEpr#1#2{\OpE{ \pr{#1}{#2} }}
  \OEin Intercambio de posición entre componentes
        107 \html@def\OEin#1#2{\OpE{ \pe{#1}{#2} }}
 \OEper Reordenamiento o permutación entre componentes
        108 \html@def\OEper{\OpE{ \perm }}
 \E0Esu Espejo de oper. elem. que suma un múltiplo de una componente a otra
        109 \ \ (\OEsu{#1}{#2}{#3}\Big()
 \E0Epr Espejo de oper. elem. que multiplica una componente por un número
        110 \theta = 110 \left( \frac{E0Epr#1#2{esp}Big(0epr{#1}{#2}\}Big) \right)
```

Transformaciones elementales generales

```
\dOEgE Operación elemental genérica con exponente y sin exponente
\dOEg 111 \html@def\dOEgE#1#2{\RidxE{\TrE1}{#1}{#2}}

112 \html@def\dOEgE#1#{\dOEgE{#1}{}}

\dEOEgE Operación espejo de una elemental genérica con exponente y sin exponente
\dEOEg 113 \html@def\dEOEgE#1#2{esp(\dOEgE{#1}{#2})}

114 \html@def\dEOEg#1{esp(\dOEgE{#1})}

\dInvOEg Operación inversa de una elemental genérica

115 \html@def\dInvOEg#1{\dOEgE{#1}}{\minus1}}

\dEInvOEg Operación espejo de la inversa de una elemental genérica

116 \html@def\dEInvOEg#1{esp(\dInvOEg{#1})}

\dSOEgE Sucesión de operaciones elementales genéricas con exponente y sin exponente
\dSOEg 117 \html@def\dSOEgE#1#243{\dOEgE{#1}{#3}\cdots\dOEgE{#2}{#3}}

118 \html@def\dSOEg#1#2{\dOEg{#1}\cdots\dOEg{#2}}
```

2.4.7. Transformaciones elementales

Transf. elemental aplicada la izquierda o derecha de un objeto Tipo I - Fil

```
\TESF Una transformación elemental Tipo I por la izquierda
\TESFp 119 \html@def\TESF #1#2#3#4{ \Lidx {#4}{ \OEsu{#1}{#2}{#3}\! } }
\TESFP 120 \html@def\TESFp #1#2#3#4{ \Lidxp {#4}{ \OEsu{#1}{#2}{#3}\!\!} }
\TESFpE 121 \html@def\TESFP #1#2#3#4{ \LidxP {#4}{ \OEsu{#1}{#2}{#3}\!\!} }
\TESFPE 122 \html@def\TESFpE#1#2#3#4{ \LidxpE{#4}{ \OEsu{#1}{#2}{#3}\!\!} }
       123 \html@def\TESFPE#1#2#3#4{ \LidxPE{#4}{ \OEsu{#1}{#2}{#3}\!\!} }
           Tipo I - Col
 \TESC Una transformación elemental Tipo I por la derecha
\TESCP 125 \html@def\TESCp #1#2#3#4{ \Ridxp {#4}{\!\!\OEsu{#1}{#2}{#3} } }
\TESCpE 126 \html@def\TESCP #1#2#3#4{ \RidxP {#4}{\!\!\0Esu{#1}{#2}{#3} } }
\TESCPE 127 \html@def\TESCpE#1#2#3#4{ \RidxpE{#4}{ \!\0Esu{#1}{#2}{#3} } }
       128 \mathbf{TESCPE} 1 + 2 + 3 + 4 \left[ \mathbf{4} \right] - 128 \mathbf{4} 
           Tipo II - Fil
 \TEPF Una transformación elemental Tipo II por la izquierda
\TEPFp 129 \html@def\TEPF #1#2#3{ \Lidx {#3}{ \OEpr{#1}{#2}\! } }
\TEPFP _{130} \rightarrow TEPFp #1#2#3{ \Lidxp {#3}{ \OEpr{#1}{#2}\!\!} }
\TEPFpE 131 \html@def\TEPFP #1#2#3{ \LidxP {#3}{ \OEpr{#1}{#2}\!\!} }
\TEPFPE 132 \html@def\TEPFpE#1#2#3{ \LidxpE{#3}{ \OEpr{#1}{#2}\! } }
       133 \html@def\TEPFPE#1#2#3{ \LidxPE{#3}{ \OEpr{#1}{#2}\! } }
           Tipo II - Col
 \TEPC Una transformación elemental Tipo II por la derecha
\TEPCp 134 \html@def\TEPC #1#2#3{ \Ridx {#3}{ \!\OEpr{#1}{#2} } }
\TEPCP 135 \html@def\TEPCp #1#2#3{ \Ridxp {#3}{\!\!\OEpr{#1}{#2} } }
\TEPCpE 136 \html@def\TEPCP #1#2#3{ \RidxP {#3}{\!\!\OEpr{#1}{#2} } }
\TEPCPE 137 \html@def\TEPCpE#1#2#3{ \RidxpE{#3}{ \!\OEpr{#1}{#2} } }
       138 \html@def\TEPCPE#1#2#3{ \RidxPE{#3}{ \!\0Epr{#1}{#2} } }
```

Intercambio - Fil

```
\TEIF Intercambio por la izquierda
    \TEIFp 139 \html@def\TEIF #1#2#3{ \Lidx {#3}{ \OEin{#1}{#2}\! } }
    \TEIFP 140 \html@def\TEIFp #1#2#3{ \Lidxp {#3}{ \OEin{#1}{#2}\!\!} }
   \TEIFpE 141 \html@def\TEIFP #1#2#3{ \LidxP {#3}{ \OEin{#1}{#2}\!\!} }
   \TEIFPE 142 \html@def\TEIFpE#1#2#3{ \LidxpE{#3}{ \OEin{#1}{#2}\! } }
                 143 \html@def\TEIFPE#1#2#3{ \LidxPE{#3}{ \OEin{#1}{#2}\! } }
                       Intercambio - Col
      \TEIC Intercambio por la derecha
    \TEICp 144 \html@def\TEIC #1#2#3{ \Ridx {#3}{ \!\OEin{#1}{#2} } }
    \TEICP _{145} \in \text{TEICP } \#1\#2\#3\{ \left\{ \frac{\#3}{\cdot!}\right\} \} 
   \TEICPE 147 \html@def\TEICpE#1#2#3{ \RidxpE{#3}{ \!\OEin{#1}{#2} } }
                 148 \html@def\TEICPE#1#2#3{ \RidxPE{#3}{
                                                                                       \OEin{#1}{#2} } }
      \Mint Matriz intercambio
                 149 \html@def\Mint#1#2{ \TEIC{#1}{#2}{\Mat{I}} }
    \MintT Matriz intercambio (filas)
                 150 \html@def\MintT#1#2{ \TEIF{#1}{#2}{\Mat{I}} }
          \PC Permutación por la derecha
                 151 \html@def\PC#1{ \Ridx{#1}{\!\OEper} }
          \PF Permutación por la izquierda
                 152 \html@def\PC#1{ \Lidx{#1}{\!\OEper} }
          MP Matriz permutación
                 153 \html@def\MP{ \PC{\Mat{I}} }
        \MPT Matriz permutación
                 154 \mathbf{\PF}(\mathbf{I}) 
                  Sucesiones indiciadas de Transf. elementales
    \SITEF Sucesión de transformaciones elementales genéricas por la izquierda (filas)
   \SITEFP 155 \html@def\SITEF #1#2#3{\Lidx{#3}{\dSOEg{#1}{#2}}}
   \SITEFP 156 \html@def\SITEFp #1#2#3{\SITEF{#1}{#2}{\parentesis{#3}}}
 \SITEFpE 157 \html@def\SITEFP #1#2#3{\SITEF{#1}{#2}{\Parentesis{#3}}}
 \SITEFPE 158 \html@def\SITEFpE#1#2#3{\parentesis{\SITEF{#1}{#2}{#3}}}
                 159 \html@def\SITEFPE#1#2#3{\Parentesis{\SITEF{#1}{#2}{#3}}}
    \SITEC Sucesión de transformaciones elementales genéricas por la derecha (columnas)
  \SITECp 160 \html@def\SITEC #1#2#3{\Ridx{#3}{\dSOEg{#1}{#2}}}
  \SITECpE 162 \html@def\SITECP #1#2#3{\SITEC{#1}{#2}{\Parentesis{#3}}}
 \verb|\SITECPE 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163 $$ 163
                 164 \mathbf{SITECPE\#1\#2\#3} \Periss \{SITEC\{\#1\}, \#2\}, \#3\}\}
  \SITEFC Sucesión de transformaciones elementales genéricas a izquierda y derecha
 \SITEFCpE 167 \html@def\SITEFCP #1#2#3{\SITEFC{#1}{#2}{\Parentesis{#3}}}
\SITEFCPE 168 \html@def\SITEFCpE#1#2#3{\parentesis{\SITEFC{#1}{#2}{#3}}}
                 169 \mathbf{SITEFCPE#1#2#3{\operatorname{SITEFC}{#1}{#2}{#3}}}
```

```
\SITEFCR Sucesión de transformaciones elementales genéricas a izquierda y derecha
   \SITEFCRP 170 \html@def\SITEFCR #1#2#3{\LRidx{#3}{\dS0Eg{#1}{#2}}{\dS0Eg{#1}{#2}}}
  \SITEFCRP 171 \html@def\SITEFCRp #1#2#3{\SITEFCR{#1}{#2}{\parentesis{#3}}}
 \SITEFCRpE 172 \html@def\SITEFCRP #1#2#3{\SITEFCR{#1}{#2}{\Parentesis{#3}}}
 \SITEFCRPE 173 \html@def\SITEFCRpE#1#2#3{\parentesis{\SITEFCR{#1}{#2}{#3}}}
                   174 \html@def\SITEFCRPE#1#2#3{\Parentesis{\SITEFCR{#1}{#2}{#3}}}
                    Transf. elemental aplicada la izquierda de un objeto
       \dTEEF Una transformación elemental genérica con exponente por la izquierda
      \label{lem:dtefp} $$ 175  \leftarrow $$ 175  \leftarrow $$ 400EgE{#1}{#2}} $$
      \label{linear_transform} $$ dTEEFP 176 \left(\frac{47}{47}\right) = 176 \left(\frac{47}{47}\right) . $$
    \dTEEFpE 177 \html@def\dTEEFP #1#2#3{ \LidxP {#3}{\d0EgE{#1}{#2}} }
    \dTEEFPE 178 \html@def\dTEEFpE#1#2#3{ \LidxpE{#3}{\d0EgE{#1}{#2}} }
                   179 \html@def\dTEEFPE#1#2#3{ \LidxpE{#3}{\dOEgE{#1}{#2}} }
         \dTEF Una transformación elemental genérica por la izquierda
       \dTEFp 180 \html@def\dTEF #1#2{ \Lidx {#2}{{\d0Eg{#1}}} }
       \dTEFP 181 \html@def\dTEFp #1#2{ \Lidxp {#2}{{\d0Eg{#1}}} }
      \dTEFpE 182 \html@def\dTEFP #1#2{ \LidxP {#2}{{\d0Eg{#1}}} }
      \dTEFPE 183 \html@def\dTEFpE#1#2{ \LidxpE{#2}{{\dOEg{#1}}} }
                   184 \html@def\dTEFPE#1#2{ \LidxPE{#2}{{\d0Eg{#1}}} }
       \deter Una transformación elemental espejo genérica por la izquierda
      \dETEFp 185 \html@def\dETEF #1#2{ \Lidx {#2}{{\dEOEg{#1}}} }
      \dETEFpE 187 \html@def\dETEFP #1#2{ \LidxP {#2}{{\dE0Eg{#1}}} }
    \dETEFPE 188 \html@def\dETEFpE#1#2{ \LidxpE{#2}{{\dE0Eg{#1}}} }
                   189 \html@def\dETEFPE#1#2{ \LidxPE{#2}{{\dE0Eg{#1}}} }
    \dInvTEF Una transformación elemental inversa genérica por la izquierda
   \dInvTEFp 190 \html@def\dInvTEF #1#2{ \Lidx {#2}{{\dInvOEg{#1}}} }
  \label{linvTEFP 191 $$ \prod_{191 \in \mathbb{Z}^{191} } 191 \det \mathbb{C}^{191} $$
 \dInvTEFpE 192 \html@def\dInvTEFP #1#2{ \LidxP {#2}{{\dInvOEg{#1}}} }
 \dInvTEFPE 193 \html@def\dInvTEFpE#1#2{ \LidxpE{#2}{{\dInvOEg{#1}}} }
                   194 \html@def\dInvTEFPE#1#2{ \LidxPE{#2}{{\dInvOEg{#1}}} }
  \dEInvTEF Una transformación elemental inversa genérica por la izquierda
 \dEInvTEFp 195 \html@def\dEInvTEF #1#2{ \Lidx {#2}{{\dEInvOEg{#1}}} }
 \dEInvTEFP 196 \html@def\dEInvTEFp #1#2{ \Lidxp {#2}{{\dEInvOEg{#1}}} }
\dEInvTEFpE 197 \html@def\dEInvTEFP #1#2{ \LidxP {#2}{{\dEInvOEg{#1}}} }
\dEInvTEFPE 198 \html@def\dEInvTEFpE#1#2{ \LidxpE{#2}{{\dEInvOEg{#1}}} }
                   199 \html@def\dEInvTEFPE#1#2{ \LidxPE{#2}{{\dEInvOEg{#1}}} }
                    Transf. elemental aplicada la derecha de un objeto
       \dTEEC Una transformación elemental genérica con exponente por la derecha
      \dTEECp 200 \html@def\dTEEC #1#2#3{ \Ridx {#3}{\d0EgE{#1}{#2}} }
      \dTEECpE 202 \html@def\dTEECP #1#2#3{ \RidxP {#3}{\d0EgE{#1}{#2}} }
    \dTEECPE 203 \html@def\dTEECpE#1#2#3{ \RidxpE{#3}{\d0EgE{#1}{#2}} }
                   204 \html@def\dTEECPE#1#2#3{ \RidxPE{#3}{\d0EgE{#1}{#2}} }
         \dTEC Una transformación elemental genérica por la derecha
       \label{lem:dtecp} $$ dTECp _{205} \left(dTEC _{1#2{ \tilde{4}}}{dOEg{#1}}\right) $$
       \label{lem:local_condition} $$ dTECP 206 \left(dTECp #1#2{ \Ridxp {#2}{{\dOEg{#1}}}}\right) $$
      \label{lem:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local
```

209 \html@def\dTECPE#1#2{ \RidxPE{#2}{{\d0Eg{#1}}} }

```
\detection 
         \dETECP 211 \html@def\dETECp #1#2{ \Ridxp {#2}{{\dE0Eg{#1}}} }
       \dETECpE 212 \html@def\dETECP #1#2{ \RidxP {#2}{{\dE0Eg{#1}}} }
       \dETECPE 213 \html@def\dETECpE#1#2{ \RidxpE{#2}{{\dE0Eg{#1}}} }
                               214 \mathbf{ETECPE#1#2{ RidxPE{#2}{{\deoeg{#1}}}} }
       \dInvTEC Una transformación elemental inversa genérica por la derecha
       \dInvTEC 215 \html@def\dInvTEC #1#2{ \Ridx {#2}{{\dInvOEg{#1}}} }
       \dInvTEC 217 \html@def\dInvTECP #1#2{ \RidxP {#2}{{\dInvOEg{#1}}} }
       \dInvTEC 218 \html@def\dInvTECpE#1#2{ \RidxpE{#2}{{\dInvOEg{#1}}} }
                              219 \html@def\dInvTECPE#1#2{ \RidxPE{#2}{{\dInvOEg{#1}}} }
     \dEInvTEC Una transformación elemental inversa genérica por la derecha
     \dEInvTEC 220 \html@def\dEInvTEC #1#2{ \Ridx {#2}{{\dEInvOEg{#1}}} }
     \dEInvTEC 221 \html@def\dEInvTECp #1#2{ \Ridxp {#2}{{\dEInvOEg{#1}}} }
    \dEInvTEC 223 \html@def\dEInvTECpE#1#2{ \RidxpE{#2}{{\dEInvOEg{#1}}} }
                               224 \html@def\dEInvTECPE#1#2{ \RidxPE{#2}{{\dEInvOEg{#1}}} }
                                 Transformaciones elementales particulares
               \dTrF Transformación o sucesión de transformaciones elementales por la izquierda
            \dTrFp 225 \html@def\dTrF #1#2{\Lidx{#2}{#1}}
            \dTrFpE 227 \html@def\dTrFP #1#2{\dTrF{#1}{\Parentesis{#2}}}
          \dTrFPE 228 \html@def\dTrFpE#1#2{\parentesis{\dTrF{#1}{#2}}}
                               229 \html@def\dTrFPE#1#2{\Parentesis{\dTrF{#1}{#2}}}
               \dTrC Transformación o sucesión de transformaciones elementales por la derecha
            \dTrCp 230 \html@def\dTrC #1#2{\Ridx{#2}{#1}}
            \dTrCP 231 \html@def\dTrCp #1#2{\dTrC{#1}{\parentesis{#2}}}
          \dTrCpE 232 \html@def\dTrCP #1#2{\dTrC{#1}{\Parentesis{#2}}}
          \dTrCPE 233 \html@def\dTrCpE#1#2{\parentesis{\dTrC{#1}{#2}}}
                               234 \html@def\dTrCPE#1#2{\Parentesis{\dTrC{#1}{#2}}}
            \dTrFC Transformación o sucesión de transformaciones elementales por ambos lados
         \dTrFCp 235 \html@def\dTrFC #1#2#3{\LRidx {#3}{#2}{#1}}
         \dTrFCP 236 \html@def\dTrFCp #1#2#3{\LRidxp {#3}{#2}{#1}}
       \dTrFCpE 237 \html@def\dTrFCP #1#2#3{\LRidxP {#3}{#1}}
       \label{local_dtrfcpe} 238 \mathbf{dtrfCpe} 238 \mathbf{dtrfCpe} 438 \mathbf{dtrfCp
                               239 \html@def\dTrFCPE#1#2#3{\LRidxPE{#3}{#2}{#1}}
                                 2.4.8. Operador que quita un elemento
\fueraitemL Signo de operador que quita un elemento
                               240 \t 0 
\fueraitemR Signo de operador que quita un elemento
                               241 \frac{(^{\Lambda })}{(1)}
       \quital Sistema resultante de quitar un elemento por la izquierda y otro por la derecha
                               242 \mathbf{42} \mathbf{42} \mathbf{44} \mathbf{44} ^{\text{43}}}{ (\frac{43}}}{ (\frac{43}})}
         \quitaL Sistema resultante de quitar un elemento por la izquierda
                               243 \mathbf{4} \mathbf{4}^{\frac{2}{1}} {^{\frac{41}}{^{1}}} 
          \quitaR Sistema resultante de quitar un elemento por la derecha
```

 $244 \t 0 = 12{\{^{}}{\{^{}}}{\{^{}}}{\{^{}}}$

```
2.4.9. Selección de elementos sin emplear el operador selector
```

```
\elemuuu Selección de un elemento de un sistema
                                              245 \html@def\elemUUU#1#2{\textrm{elem}_{#2}\Parentesis{#1}}
   \Vectccc Selección de una columna de una matriz
\label{lem:local_246} $$ \operatorname{CCC} $1$2{\text{col}_{$2}\mathbb{F}^{*2}} $$
                                              247 \mathbf{0} = 247 \mathbf{0}_{42}\mathbf{0}_{42}\
   \VectFFF Selección de una columna de una matriz
\label{lem:local_vectfff} $$ \operatorname{Local_vectfff} $$ 1#2{\operatorname{local_vectfff} }_{248 \to 248 \to 248
                                              249 \html@def\VectFFFT#1#2{	textrm{\eng{fila}{row}}_{#2}\MatTPE{#1}}
        \eleman Selección de un elemento de una matriz
    \label{lemmt250} $$ \left( \frac{250 \left( \frac{41}{3} \right) }{250 \left( \frac{41}{3} \right) } \right) $$
             2.5.
                                                                                   Sistemas genéricos
                           \SV Sistema de Vectores
                                              253 \html@def\SV#1{\mathbb{41}}
\concatSV Concatenación de sistemas
                                              254 \mbox{ }\mbox{\concat}$V#1#2{{#1}\mathbb{{concat}}{#2}}
                                                                                    Vectores y matrices
                                                   2.6.
                                                  2.6.1. Vectores
                 \vect Vector genérico
             \vectP 256 \html@def\vectp#1{\parentesis{\vect{#1}}}
                                              257 \html@def\vectP#1{\Parentesis{\vect{#1}}}
                                                  2.6.2. Vectores de \mathbb{R}^n
                 \Vector de \mathbb{R}^n
             \label{lem:local_problem} $$\operatorname{Vect}_{258} \left( \frac{1}{\delta} \right) = 1{\color=0.05}
             \label{lem:local_property} $$ \operatorname{\mathbb{Q}} \left( \operatorname{\mathbb{Q}}_{259} \right) \
                                              260 \html@def\VectP#1{\Parentesis{\Vect{#1}}}
                                                  2.6.3. Matrices
                      \Mat Matriz
                 \label{lem:matp262} $$ \mathbf{0}_{262 \rightarrow 1}\left(\frac{1}{\pi}\right)^{262} \left(\frac{1}{\pi}\right)^{262} \left(\frac{1}{\pi}
                                              263 \html@def\MatP#1{\Parentesis{\Mat{#1}}}
                                                                Matrices transpuestas
                 \MatT Matriz transpuesta
             \label{lem:matTp} $$ \MatTp _{264} \left( MatT #1{Trans _{\mathcal{H}1}} \right) $$
             \MatTP 265 \html@def\MatTp #1{\Transp {\Mat{#1}}}
         \MatTpE 266 \html@def\MatTP #1{\TransP {\Mat{#1}}}
        \MatTPE 267 \html@def\MatTpE#1{\TranspE{\Mat{#1}}}
                                              268 \html@def\MatTPE#1{\TransPE{\Mat{#1}}}
```

Matriz transpuesta de la transpuesta

```
\MatTT Matriz transpuesta
    \label{lem:lem:matTPE 269 html@def} $$\operatorname{ITT} #1{\operatorname{IT}}}
              270 \html@def\MatTTPE#1{\Parentesis{\MatTT{#1}}}
                  Matrices columna
     \MVectC Matriz columna creada con una columna
              271 \html@def\MVectC#1#2{\left[\VectC{#1}{#2}\right]}
     \MVectF Matriz columna creada con una fila
              272 \html@def\MVectF#1#2{\left[\VectF{#1}{#2}\right]}
                 Matrices fila
    \MVectCT Matriz fila creada con una columna
              273 \html@def\MVectCT#1#2{\Trans{\left[\VectC{#1}{#2}\right]}}
    \MVectFT Matriz fila creada con una fila
              274 \mathbf{MVectFT#1#2{Trans{\left[\VectF{#1}{#2}\right]}}
              2.6.4. Miscelánea matrices
                  Características de las matrices
      \Traza Operador traza
              275 \html@def\Traza{\mathrm{tr}}
          \rg Operador rango
              276 \mathbf{Rango}{\mathbf{g}}
      \traza Traza
              277 \html@def\traza#1{\Traza{\Parentesis{#1}}}
      \rango Rango
              278 \html@def\rango#1{\rg{\Parentesis{#1}}}
                 Determinante de una matriz
        \cof Cofactor
              279 \html@def\cof{\mathrm{cof}}}
        \adj Adjunta
              280 \html@def\adj{\mathrm{Adj}}
\determinante Determinante con barras
              281 \html@def\determinante#1{\modulus{#1}}
     \subMat Determinante con barras
              282 \mathbf{1} = 282 \mathbf{1} 
      \Menor Menor de una matriz
      \MenoR 283 \html@def\Menor#1#2#3{\det\big({\subMat{#1}{#2}{#3}}\big)}
              284 \mathbf{41}{\#2}{\#3}\big\{ \sum_{k=1}^{42}{\#3}\big\} 
        \Cof Cofactor de una matriz
              285 \mathbf{Cof}_{{\#2}{\#3}}\operatorname{Cof}_{{\#1}}}
```

Orden de las matrices

```
\Dim Orden del objeto
   \Dimp 286 \html@def\Dim #1#2#3{\mathop{#1}\limits_{\scriptscriptstyle #2\times#3}}
   \DimP 287 \html@def\Dimp #1#2#3{\Dim{\parentesis{#1}}{#2}{#3}}
  \label{limbe} $$ \Phi^288 \right] $$ \mathbb{288} \mathbb{288} \mathbb{288} \mathbb{288} \mathbb{41}}{\#2}{\#3}
  \DimPE 289 \html@def\DimpE#1#2#3{\parentesis{\Dim{#1}}{#2}{#3}}
          290 \html@def\DimPE#1#2#3{\Parentesis{\Dim{#1}}{#2}{#3}}
 \Matdim Matriz con el orden por debajo
\MatdimpE 293 \html@def\MatdimP #1#2#3{\DimP {\Mat{#1}}{#2}{#3}}
\MatdimPE 294 \html@def\MatdimpE#1#2#3{\DimpE{\Mat{#1}}{#2}{#3}}
          295 \html@def\MatdimPE#1#2#3{\DimPE{\Mat{#1}}{#2}{#3}}
             Matriz de autovalores
   \MDaV Matriz de autovalores
          296 \html@def\MDaV{D}
          2.7.
                 Productos entre vectores
          2.7.1. Producto escalar
    \eSc Producto escalar
          297 \html@def\eSc#1#2{\left<{#1},{#2}\right>}
    \esc Producto escalar entre vectores genéricos
          298 \html@def\esc#1#2{\left<{\vect{#1}},{\vect{#2}}\right>}
          2.7.2. Producto punto
\dotProd Producto punto
\dotProdp 299 \html@def\dotProd #1#2{{#1}\cdot{#2}}
\dotProdP 300 \html@def\dotProdp#1#2{\parentesis{\dotProd{#1}{#2}}}
         301 \mathbf{41}{42}}
\dotprod Producto punto entre vectores de \mathbb{R}^n
\label{lem:local_continuous_selection} $$\operatorname{local_{00}} \operatorname{local_{00}} {\operatorname{local_{00}}} $$\operatorname{local_{00}} \operatorname{local_{00}} $$
\dotprodP 303 \html@def\dotprodp#1#2{\parentesis{\dotprod{#1}{#2}}}
         304 \mathbf{1}{42}}
          2.7.3. Producto punto a punto o Hadamard
  \prodH Producto punto a punto o Hadamard
  \label{lem:local_prodH} $$\operatorname{Modef} \frac{1}{2}{\#1} \cdot {\#2}}
  \prodHP 306 \html@def\prodHp#1#2{\parentesis{\prodH{#1}{#2}}}
          307 $$ \mathbf{07} \mathbf{41}^2$
  \prodh Producto punto a punto o Hadamard
 \prodhp 308 \html@def\prodh #1#2{\Vect{#1}\odot\Vect{#2}}
 \prodhP 309 \html@def\prodhp#1#2{\parentesis{\prodh{#1}{#2}}}
          310 \html@def\prodhP#1#2{\Parentesis{\prodh{#1}{#2}}}
```

2.8. Matriz por vector y vector por matriz

```
\MV Producto de matriz por vector
  \MvpE 311 \html@def\MV #1#2{\Mat{#1}\Vect{#2}}
  \MVPE _{312} \left( \frac{41}{\text{vect}} \right)
                   313 \html@def\MVPE#1#2{\Parentesis{\Mat{#1}\Vect{#2}}}
        VM Producto de vector por matriz
  \label{local_VMpE} $$14 \left( \frac{1}{Mat}{2} \right) $$
  \VMPE 315 \html@def\VMpE#1#2{\parentesis{\Vect{#1}\Mat{#2}}}
                   316 \html@def\VMPE#1#2{\Parentesis{\Vect{#1}\Mat{#2}}}
     \MTV Producto de matriz por vector
  \label{eq:mtvp} $_{317} \left( \frac{mtV}{317} \right)^{317} \left( \frac
  \label{lem:mtvp} $$ \MTVP $$ 318 \left(MTVp#1#2{\mathcal H}1\right)\Vect{#2}} $$
                   \VMT Producto de vector por matriz
  \VMTp 320 \html@def\VMT #1#2{\Vect{#1}\MatT {#2}}
  \VMTP 321 \html@def\VMTp#1#2{\Vect{#1}\MatTpE{#2}}
                   322 \t \end{array} 1 \t \end{array} 322 \t \end{array} 
                     2.9.
                                       Matriz por matriz
        MN Producto de matriz por matriz
                   323 \html@def\MN#1#2{\Mat{#1}\Mat{#2}}
     \MTN Producto de matriz transpuesta por matriz
  \MTNp 324 \html@def\MTN #1#2{\MatT {#1}\Mat{#2}}
  \label{lem:mtnp} $325 \left(MTNp#1#2{MatTpE{#1}}\right)$
                   326 \t \mathcal{MTNP} 1#2{\MatTPE} 41}\Mat{#2}}
     \MNT Producto de matriz por matriz transpuesta
  \label{eq:mnt_mnt_sigma} $$\operatorname{MNT} \ 327 \left( \frac{42}{} \right) $$
  \MNTP 328 \html@def\MNTp#1#2{\Mat{#1}\MatTpE{#2}}
                   329 \mathbf{41}\mathbf{41}\mathbf{41}\mathbf{41}
    \MTM Producto de matriz transpuesta por matriz
  \label{local_matt} $$ \MTMp $ 330 \left( \HTM #1{\MatT } \{#1\} \right) $$
  \MTMP 331 \html@def\MTMp#1{\MatTpE{#1}\Mat{#1}}
                   332 \html@def\MTMP#1{\MatTPE{#1}\Mat{#1}}
     \MMT Producto de matriz por su transpuesta
  \MMTp 333 \html@def\MMT #1{\Mat{#1}\MatT {#1}}
  \label{lem:mmtp} $334 \left(\frac{41}Mat{#1}\right)$
                  335 \mathbf{1}{\mathbf{41}}\mathbf{41}\\
  \mmmm \mmm Producto de matriz por matriz por matriz transpuesta
\label{local_MNMT} $336 \left( \frac{41}{42} \right) $
\MNMTP 337 \html@def\MNMTp#1#2{\MN{#1}{#2}\MatTp{#1}}
                   338 \html@def\MNMTP#1#2{\MN{#1}{#2}\MatTP{#1}}
  \MTNM Producto de matriz transpuesta por matriz por matriz
\label{lem:mtnmp} \begin{tabular}{ll} $339 $ \mathbb{41}\  $41$\  $41$. \end{tabular}
\label{lem:mtnmp} $$ \MTNMP = 340 \left( \MTNMp #1 #2 {\MatTp { #1 } \MN { #2 } { #1 } } \right) $$
                   341 \html@def\MTNMP#1#2{\MatTP{#1}\MN{#2}{#1}}
```

Matriz inversa

```
\InvMat Inversa de una matriz
    \label{linvMatp} $342 \left( \frac{1}{1} \right) = \frac{1}{1} \left( \frac{41}{1} \right) 
    \InvMatP 343 \html@def\InvMatp #1{\Invp {\Mat{#1}}}
  \InvMatpE 344 \html@def\InvMatP #1{\InvP {\Mat{#1}}}
  \InvMatPE 345 \html@def\InvMatpE#1{\InvpE{\Mat{#1}}}
                           346 \html@def\InvMatPE#1{\InvPE{\Mat{#1}}}
    \InvMatT Inversa de una matriz transpuesta
\label{linvMatTpE} $_{347} \left( \frac{1}{1} \right) = _{347} \left( \frac{1}{1} \right) 
\InvMatTPE 348 \html@def\InvMatTpE#1{\parentesis{\InvMatT{#1}}}
                            349 \html@def\InvMatTPE#1{\Parentesis{\InvMatT{#1}}}
    \TInvMat Transpuesta de la inversa de una matriz
\TInvMatPE 351 \html@def\TInvMatpE#1{\parentesis{\TInvMat{#1}}}
                            352 \html@def\TInvMatPE#1{\Parentesis{\TInvMat{#1}}}
                                                    Otros productos entre matrices y vectores
                              2.10.
            \MTMV Producto de matriz transpuesta por matriz por vector
          \label{local_MTMV} $^{353} \left( \frac{MTMV}{1}2_{MTM} \right)^{2}. $
          \label{lem:modef_MTMVp#1#2{\MTMp{#1}}\Vect{#2}} $$ \MTMVP $354 \rightarrow \MTMV
                            355 \t \mTMVP#1#2{\MTMP}{#1}\Vect{#2}}
               \VMW Producto de vector por matriz por vector
                            356 \html@def\VMW#1#2#3{\VMM{#1}{#2}\Vect{#3}}
               \VMV Producto de vector por matriz por vector
                            357 \html@def\VMV#1#2{\VMW{#1}{#2}{#1}}
            \VMTW Producto de vector por matriz transpuesta por vector
          \VMTWp 358 \html@def\VMTW #1#2#3{\VMT {#1}{#2}\Vect{#3}}
          \VMTWP 359 \html@def\VMTWp#1#2#3{\VMTp{#1}{#2}\Vect{#3}}
                            360 \html@def\VMTWP#1#2#3{\VMTP{#1}{#2}\Vect{#3}}
            \VMTV Producto de vector por matriz transpuesta por vector
          \VMTVP \ 362 \html@def\VMTVp#1#2{\VMTWp{#1}{#2}{#1}}
                            363 \t 0 
       \InvMTM Inversa del producto de una matriz transpuesta por ella misma
                            364 \left\lceil \frac{1}{1}\right\rceil
                                                    Sistemas de ecuaciones
                              2.11.
               \SEL Sistema de ecuaciones lineales con notación matricial
                            365 \html@def\SEL#1#2#3{\MV{#1}{#2}=\Vect{#3}}
            \SELT Sistema de ecuaciones lineales con notación matricial (matriz de coeficientes transpuesta)
          367 \t 0.05 
            \SELF Sistema de ecuaciones lineales con notación matricial (matriz de coeficientes transpuesta)
                            368 \html@def\SELF#1#2#3{\VM{#1}{#2}=\Vect{#3}}
```

2.12. Espacios vectoriales

```
\EV Sistema de ecuaciones lineales con notación matricial (matriz de coef. transpuesta)
                           369 \html@def\EV#1{\mathcal{#1}}
\EspacioNul Letra que denota al Espacio nulo (o núcleo)
                           370 \html@def\EspacioNul{\EV{N}}
\EspacioCol Letra que denota al Espacio Columna
                           371 \html@def\EspacioCol{\EV{C}}
           \Nulls Espacio nulo (o núcleo) de un objeto
                           372 \html@def\Nulls#1{\EspacioNul\Parentesis{#1}}
           \nulls Espacio nulo (o núcleo) de una matriz
                           373 \html@def\nulls#1{\Nulls{\Mat{#1}}}
             \Cols Espacio columna de un objeto
                           374 \html@def\Cols#1{\EspacioCol\Parentesis{#1}}
             \cols Espacio columna de una matriz
                           375 \left(\frac{41}{1}\right)
             \Span Espacio generado por un sistema generador
                           376 \html@def\Span#1{\EV{L}\Parentesis{#1}}
           \PSpan Espacio semi-euclídeo de probabilidad generado por un sistema
                           \coord Coordenadas respecto de una base
         \coordPE 379 \html@def\coordP #1#2{\coord{\Parentesis{#2}}{#1}}
                           380 \html@def\coordPE#1#2{\Parentesis{\coord{#2}{#1}}}
                                                 Notación funcional
                              2.13.
               \dom Dominio de una función
                           381 \mbox{ } \mbox{
           \mifun Breve descripción de una función
                           382 \html@def\mifun#1#2#3{#1 \colon #2 \to #3}
         \deffun Breve descripción de una función
                           383 \html@def\deffun#1#2#3#4#5{%
                                            \begin{array}{r0{\,}ccl}
                           384
                           385
                                                     #1\colon & #2 & \longrightarrow & #3\cr
                           386
                                                              & #4 & \longmapsto & \displaystyle#5
                                            \end{array}}
                           387
```

2.14. Estadística

```
\Estmc Ajuste por MCO
      \label{lem:vestmc} $$ \operatorname{388 \hat{\pm} \mathbb{C}} \left( \frac{1}{2} \right) $$
                        389 \html@def\VEstmc#1{ \widehat{\Vect{#1}} }
        \Estmd Estimador MCO
      \label{lem:local_vertex} $$\operatorname{VEstmd}_{390} \left( \frac{41}{\operatorname{Stmc}} \right) $$
                        391 \html@def\VEstmd#1{ \Vect{\Estmd{#1}}
            \MCO Ajuste por MCO
                        392 \html@def\MCO#1#2{ \InvMTM*{#2}\MTV{#2}{#1} }
      \Serror Símbolo para el error de ajuste
                        393 \html@def\Serror{e}
          \resi Error de ajuste MCO
                        394 \html@def\resi#1{ \Estmc{\Serror}_{#1} }
            \res Vector de errores de ajuste MCO
                        395 \html@def\res{ \Estmc{\Vect{\Serror}} }
\ajusteMLT Ajueste modelos lineal trivial, simple y general
\label{lem:local_selection} $$  \ajusteMLT { \ect{y} = \widetilde{\theta}^{0} + res } $$
\label{lem:local_sym} $$  \agustemLG 397 \t \agustemLS{ \vect{y} = \widehat{\theta_1}\vect{1} + \widehat{\theta_2}\vect{x} + \res } $$  \agustemLG 397 \t \agustemLG
                        398 \html@def\ajusteMLG{ \Vect{y} = \Mat{X}{\widetilde{\vect{beta}}} + \res }
        \Media Media (proyección ortogonal sobre los vectores contantes)
                        399 \html@def\Media#1{ \widebar{#1} }
      \Smedia Símbolo para el valor medio
                        400 \ \mbox{ html@def\Smedia{\mu}}
    \SmediaM Símbolo para el valor medio muestral
                        401 \html@def\SmediaM{m}
        \media Valor medio
      404 \html@def\mediaP#1{\media{\Parentesis {#1}} }
      \mediaM Media muestral
    \label{lem:mediaMp} $$405 \left( \frac{405}{mediaM} \#1{ {\S ediaM}_{\#1} } \right)$
    407 \html@def\mediaMP#1{\media{\Parentesis {#1}} }
          \Scov Símbolo para covarianza
                        408 \html@def\Scov{\sigma}
        \ScovM Símbolo para covarianza muestral
                        409 \html@def\ScovM{s}
          \Svar Símbolo para varianza
                        410 \html@def\Svar{\Scov^2}
        \SvarM Símbolo para varianza muestral
                        411 \html@def\SvarM{\ScovM^2}
```

```
\ScvarM Símbolo para cuasivarianza muestral
        412 \html@def\ScvarM{\mathfrak{s}^2}
    \dt Desviación típica
   \dtp 413 \html@def\dt #1{ \Scov_{#1} }
   \dtP 414 \html@def\dtp#1{ \dt{\parentesis{#1}} }
        415 \html@def\dtP#1{ \dt{\Parentesis{#1}} }
   \dtM Desviación típica muestral
  \label{lem:covM_416} $$ \det M = 1{ \covM_{\#1} } $$
  \label{lem:local_dtMp} $$ \det MP _{417} \left( \det M\right) = \left( \det M \right) . $$
        \var Varianza
  \label{lem:condition} $$\operatorname{419} \left( \frac{419}{\pi} \right) = 1. \
  \varP 420 \html@def\varp#1{ \var{\parentesis {#1}} }
        421 \html@def\varP#1{ \var{\Parentesis {#1}} }
  \varM Varianza muestral
 \varMp 422 \html@def\varM #1{ \SvarM_{#1} }
 \varMP 423 \html@def\varMp#1{ \varM{\parentesis {#1}} }
        424 \html@def\varMP#1{ \varM{\Parentesis {#1}} }
 \cvarM Cuasi-varianza muestral
\cvarMp 425 \html@def\cvarM #1{ \ScvarM_{#1} }
\label{lem:cvarMP} $$ \operatorname{MP}_{426} \left( \operatorname{Mp}_{1}  \right) = 1. $$
        427 \html@def\cvarMP#1{ \cvarM{\Parentesis {#1}} }
   \cov Covarianza
  \covp 428 \html@def\cov #1#2{ \Scov_{#1#2} }
  \label{lower} $$ \downarrow \ \Phi^{429 \left( \ensuremath{\mbox{\mbox{\mbox{$1$}}}} \right) $$
        430 \html@def\covP#1#2{ \cov{\Parentesis {#1#2}} }
  \covM Covarianza muestral
 \label{lem:covMP} $$ 432 \theta^{\cos MP} 1#2{ \covM{\scriptstyle parentesis $$ $$ $$ $} $$} $$
        433 \html@def\covMP#1#2{ \covM{\Parentesis {#1#2}} }
 \Scorr Símbolo para correlación
        434 \html@def\Scorr{\rho}
\ScorrM Símbolo para correlación muestral
        435 \html@def\ScorrM{r}
  \corr Correlación
 \corrp 436 \html@def\corr #1#2{ \Scorr_{#1#2} }
 \corrP 437 \html@def\corrp#1#2{ \corr{\parentesis {#1#2}} }
        438 \html@def\corrP#1#2{ \corr{\Parentesis {#1#2}} }
 \corrM Correlación muestral
\corrMp 439 \html@def\corrM #1#2{ \ScorrM_{#1#2} }
\corrMP 440 \html@def\corrMp#1#2{ \corrM{\parentesis {#1#2}} }
        441 \html@def\corrMP#1#2{ \corrM{\Parentesis {#1#2}} }
\indUno Función indicatriz nula
        442 \html@def\indUno{\k\#x1D7D9;}
```

```
\indCero Función indicatriz nula
           443 \html@def\indCero{\k\mx1D7D8;}
      \ind Función indicatriz
           444 \t (1)_{{\mathbb{1}}_{{\#1}}} 
      \ind Función indicatriz
           445 \html@def\ind#1{ <math display="inline">\langle \html_{\#1} }
   \ColorA Color objeto aleatorio (vector de un espacio euclídeo probabilístico)
           \VColorA Vector de aleatorio (vector de un espacio euclídeo probabilístico)
           447 \html@def\VColorA#1{ \Vect{\ColorA{#1}} }
      VAn Variable aleatoria con subíndice
           448 \html@def\VAn#1#2{ \ColorA{{#1}_{#2}} }
       VA Variable aleatoria
           449 \html@def\VA#1{ \VAn{#1}{} }
     \spro Dimbolo de la Probabilidad
           450 \html@def\spro{\mathbb{P}}
      \PRO Probabilidad de un suceso
           451 \html@def\PRO#1{ \spro\parentesis{#1} }
    \PRObh Probabilidad de un suceso bajo hipótesis
           452 \html@def\PRObh#1#2{ <math display="inline">\pro_{-{#2}\!}\parentesis{#1} }
    \VAind Variable aleatoria
           453 \html@def\VAind#1{ \VA{\ind{#1}} }
\VAindCero Variable aleatoria
           454 \html@def\VAindCero{ \VA{\indCero} }
 \VAindUno Variable aleatoria
           455 \html@def\VAindUno{ \VA{\indUno} }
      \VVA Vector aleatorio
           456 \t \ \text{\VA{#1}} }
      \MVA Matriz aleatoria
     \MVAp _{457} \rightarrow MVAp _{457} \rightarrow MVAp _{457} 
     \MVAP _{458} \rightarrow MVAp#1{ \operatorname{NVAp}#1{ \operatorname{NVA}}}} }
           459 \mbox{ \normalfootnote{1}} \ \
     \MVAT Matriz transpuesta
    \MVATp _{460} \html@def\MVAT #1{ \Trans {\MVA{#1}} }
    \MVATP 461 \html@def\MVATp #1{ \Transp {\MVA{#1}}} }
   \MVATpE 462 \html@def\MVATP #1{ \TransP {\MVA{#1}} }
   \MVATPE 463 \html@def\MVATpE#1{ \TranspE{\MVA{#1}} }
           464 \t \ TransPe{\MVA{#1}} }
      \SVA Sistema de variables aleatorias
           465 \html@def\SVA#1{ \ColorA{\mathsf{#1}} }
```

```
\SVAT Sistema de variables aleatorias transpuesto
               466 \left( \frac{SVAT#1{ \left( SVA{#1} \right)} }{} \right)
 \perturbacion Símbolo para el término de perturbación
               467 \html@def\perturbacion{U}
          \per Perturbación de un modelo
               468 \html@def\per{\VA{\perturbacion}}
         \peri Perturbación con subíndice de un modelo
               469 \html@def\peri{ \VAn{\perturbacion}{n} }
         \Vper Vector de perturbaciones
               470 \verb|\html@def\Vper{\VVA{\perturbacion}}|
    \esperanza Símbolo de la esperanza matemática
               471 \html@def\esperanza{\text{E}}}
            \E Esperanza de una variable aleatoria
               472 \html@def\E#1{ \esperanza\parentesis{#1} }
esviaciontipica Símbolo de la desviación típica
               473 \html@def\desviaciontipica{\text{Dt}}}
           \Dt Desviación típica de una variable aleatoria
               474 \html@def\Dt#1{ \desviaciontipica\Parentesis{#1} }
     \varianza Símbolo de la varianza
               475 \html@def\varianza{\text{Var}}
          Var Varianza de una variable aleatoria
               476 \html@def\Var#1{ \varianza\parentesis{#1} }
   \covarianza Símbolo de la covarianza
               477 \html@def\covarianza{\text{Cov}}
          \Cov Covarianza de dos variables aleatorias
               478 \html@def\Cov#1#2{\covarianza\Parentesis{#1,#2}}
  \correlacion Símbolo de la correlacion
               479 \html@def\correlacion{\text{Corr}}
         \Corr Correlación ente dos variables aleatorias
               480 \html@def\Corr#1#2{\correlacion\Parentesis{#1,#2}}
        \ECond Esperanza condicionada
               481 \html@def\ECond#1#2{ \ColorA{\mathbb{E}}} {\parentesis {#1 \mid
      \ECondYX Esperanza condicionada a un sistema de variables aleatorias
               482 \html@def\ECondYX#1#2{ \ECond {#1} {\SVA{#2}} }
       \DtCond Desviación típica condicionada
               483 \t DtCond#1#2{ \colorA{\mathbb{D}t} \parentesis {#1\mid #2} }
      \VarCond Varianza condicionada
```

```
\VarCondYX Varianza condicionada a un sistema de variables aleatorias
                                          485 \html@def\VarCondYX#1#2{ \VarCond {#1}{\SVA{#2}} }
          \CovCond Covarianza condicionada
                                          486 \html@def\CovCond#1#2#3{ \ColorA{\mathbb{C}\!ov} \parentesis {#1,#2\mid#3} }
\CovCondXYZ Covarianza condicionada a un sistema de variables aleatorias
                                          487 \html@def\CovCondXYZ#1#2#3{ \CovCond {#1}{#2}{\SVA{#3}} }
                        \MLT Modelo lineal trivial, simple y general
                        \MLS 488 \html@def\MLT{ \VA{Y} = \beta_1\VAindUno + \per }
                        \label{eq:mlg_489} $$ \def\\MLS{ \VA{Y} = \beta_1\VAindUno + \beta_2\VA{X} + per } $$
                                          490 \mathbf{VA}(Y) = \mathbf{X}\setminus \{x\} + \mathbf{Y} = \mathbf{X}
              \masMLT Modelos muestrales lineal trivial, simple y general
              \label{eq:local_state} $$\max LG_{492 \in \mathbb{Z}} \left( \frac{492 \left( \frac{494 \left( \frac{494 \left( \frac{494 \left( \frac{494 \left( \frac{494 \left( \frac{492 \left( \frac{494 \left( \frac{494 \left( \frac{494 \left( + \right)} \right)} \right)} {4992 \left( \frac{494 \left( + \right)} \right)} {494 \left( \frac{494 \left( \frac{494 \left( \frac{494 \left( + \right)} {494 \left( \frac{494 \left( + \right)} {494 \left( \frac{494 \left( + \right)} {494 \left( + \right)} 
                                          493 \html@def\masMLG{ \VVA{Y} = \MVA{X}\Vect{\theta} + \Vper }
                    \SupI Primer supuesto del Modelo Lineal General
                                          494 \html@def\SupI{ \MLG }
                \SupII Segundo supuesto del Modelo Lineal General
                                          495 \html@def\SupII{ \ECondYX{\per}{X}=\VAindCero }
              \SupIII Tercer supuesto del Modelo Lineal General
                                          496 \html@def\SupIII{ \ECondYX{\per^2}{X}=\sigma^2\VAindUno }
                 \SupIV Cuarto supuesto del Modelo Lineal General
                                          497 \html@def\SupIV{ \E{\SVAT{X}\SVA{X}} \textrm{ es invertible} }
      \SupIImas Segundo supuesto muestral del Modelo Lineal General
                                          498 \html@def\SupIImas{ \ECond{\VVA{\per}}{\MVA{X}}=\VVA{0} }
   \SupIIImas Tercer supuesto muestral del Modelo Lineal General
                                          499 \mbox{MVA{X}}=\simeq^2\MVA{I} }
      \SupIVmas Cuarto supuesto muestral del Modelo Lineal General
                                          500 \mbox{\colored} \mbox{\c
          \SupVmas Quinto supuesto muestral del Modelo Lineal General
                                          501 \theta {\SupVmas{ \VVA(\per)}sim\Normal(\Vect{0})}{\sigma^2\Mat{I}} }
              \normal Símbolo de la distribución normal
                                          502 \html@def\normal{\mathit{N}}
      \tstudent Símbolo de la distribución t de student
                                          503 \html@def\tstudent{\mathit{t}}
   \fsnedecor Símbolo de la distribución F de Snedecor
                                          \Normal Distribución Normal
                                          505 \html@def\Normal#1#2{ \normal\left(#1,\,#2\right) }
       \TStudent Distribución t de Student
                                          506 \html@def\TStudent#1{ \tstudent_{\left(#1\right)} }
```

```
\FSnedecor Distribución t de FSnedecor
             507 \html@def\FSnedecor#1#2{ \fsnedecor_{\!\left(#1,#2\right)} }
 \ChiCuadrado Distribución Chi cuadrado
             508 \html@def\ChiCuadrado#1{ \chi^2_{\left( #1\right)} }
     \ValorC Valor Critico
             \Hnula Hipótesis nula, hipótesis alternativa, región crítica y regiónde aceptación
       \Halt 510 \  \
                                  { H_O }
   \Rcritica 511 \html@def\Halt
     \Racept 512 \html@def\Rcritica{ RC
             513 \html@def\Racept { RA
     \testad Estadístico t de student
\testadistico _{514} \left( \frac{1}{T} \right)
\Testadistico 515 \html@def\testadistico{ \Estmc{\testad} }
             516 \html@def\Testadistico{ \ColorA{\testad} }
     \festad Estadístico t de student
\label{lem:condition} $$ \operatorname{festad}_{517} \left( \frac{f}{F} \right) $$
519 \html@def\Festadistico{ \ColorA{\festad} }
    \EstmcDt Estimación de la desviación típica
             520 \t \ \Estmc\testmcDt#1{ \Estmc{\desviaciontipica}\Parentesis{#1} }
    \EstmdDt Estimador de la desviación típica
             521 \left( \frac{521 \left( \text{StmdDt#1{ \Estmd}} \right)}{1} \right)
    \EstmcVar Estimación de la varianza
             522 \html@def\EstmcVar#1{ \Estmc{\varianza}\Parentesis{#1} }
   \EstmdVar Estimador de la varianza
             523 \html@def\EstmdVar#1{ \Estmd{\varianza}\Parentesis{#1} }
   \EstmcCov Estimación de la covarianza
             524 \html@def\EstmcCov#1#2{ \Estmc{\covarianza}\Parentesis{#1,#2} }
   \EstmdCov Estimador de la covarianza
             525 \html@def\EstmdCov#1#2{ \Estmd{\covarianza}\Parentesis{#1,#2} }
      \peque No hace nada
             526 \html@def\peque{}
              Change History
              v1.0
                                                             v1.1
                                                                General: Inclusión de notación para
                 General: Versión inicial . . . . . . . . . . . . . . . . . . 1
                                                                   Econometría . . . . . . . . . . . . . . . . . . 1
```

Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

Symbols	\CovCondXYZ <u>487</u>	\dInvTEFP <u>190</u>
\# 36, 442, 443	\covM <u>431</u>	$\verb \dInvTEFp \dots \dots \underline{190}$
\& 36, 442, 443	\covMP $\dots \underline{431}$	\dInvTEFPE <u>190</u>
\/ 509	$\verb \covMp \dots \dots \underline{431}$	$\verb \dInvTEFpE \underline{190}$
	$\texttt{\covP}$ $\underline{428}$	\displaystyle 386
\mathbf{A}	\covp $\underline{428}$	\d0Eg <u>111</u> ,
\adj <u>280</u>	\cr 385	114, 118, 180-184, 205-209
\ajusteMLG $\dots \dots 396$	\cvarM $\underline{425}$	\d0EgE <u>111</u> , 113,
\ajusteMLS <u>396</u>	\cvarMP $\dots \underline{425}$	115, 117, 175-179, 200-204
\ajusteMLT 396	\cvarMp $\underline{425}$	\dom
В	D	\dotProd <u>299</u> \dotprod <u>302</u>
\begin 384	\deffun <u>383</u>	\dotProdP 299
\beta 396-398, 488-493	\dEInv0Eg <u>116</u> , 195–199, 220–224	\dotProdp 299
\Big 109, 110	\dEInvTEC 220	\dotprodP 302
\big 283, 284	\dEInvTECP 222	\dotprodp 302
\boldsymbol 99-102, 258, 261	\dEInvTECp 221	\dSOEg . <u>117</u> , 155, 160, 165, 170
, ,	\dEInvTECPE	\dS0EgE
\mathbf{C}	\dEInvTECpE 223	\Dt
\CC <u>6</u>	\dEInvTEF 195	\dt 413
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\dEInvTEFP <u>195</u>	\DtCond 483
\cdot 299, 302	\dEInvTEFp 195	\dTEC 205
\cdots 117, 118	\dEInvTEFPE	\dTECP \overline{205}
\chi 508	\dEInvTEFpE $\overline{195}$	\dTECp 205
\ChiCuadrado 508	\dE0Eg <u>113</u> , 185–189, 210–214	\dTECPE 205
\Cof <u>285</u>	\dE0EgE <u>113</u>	\dTECpE <u>205</u>
\cof 279 , 285	\desviaciontipica	\dTEEC 200
\colon 382, 385	$\dots $ 473 , 474, 520, 521	\dTEECP $\dots \dots $ $\overline{200}$
\ColorA	\det 283	\dTEECp <u>200</u>
$390, \underline{446}, 447, 448, 465,$	\dETEC $\underline{210}$	\dTEECPE <u>200</u>
481, 483, 484, 486, 516, 519	\dETECP $\underline{210}$	\dTEECpE <u>200</u>
\Cols 374 , 375	$\texttt{\detecp} \dots \underline{210}$	\dTEEF
\cols 375	$\verb \detecpe = 100000000000000000000000000000000000$	\dTEEFP <u>175</u>
\concat <u>36</u> , 254	$\verb \detecpe \underline{210}$	\dTEEFp <u>175</u>
\concatSV $\underline{254}$	\dETEF <u>185</u>	\dTEEFPE
\conj 35	\dETEFP <u>185</u>	\dTEEFpE
\coord <u>378</u>	\dETEFp <u>185</u>	\dTEF <u>180</u>
\coordP <u>378</u>	\dETEFPE	\dTEFP <u>180</u>
\coordPE <u>378</u>	\dETEFpE <u>185</u>	\dTEFp <u>180</u>
\Corchetes $\dots \dots \underline{13}, \underline{15}$	\determinante $\underline{281}$	\dTEFPE <u>180</u>
\corchetes <u>13</u>	\Dim $\underline{286}$, 291	\dTEFpE <u>180</u>
\Corr <u>480</u>	\DimP <u>286</u> , 293	\dtM 416
\corr 436	\Dimp $\underline{286}$, 292	\dtMP <u>416</u>
\correlation $\underline{479}$, 480	\DimPE 286, 295	\dtMp 416
\corrM 439	\DimpE <u>286</u> , 294	\dtP 413
\corrMP	\dInv0Eg <u>115,</u>	\dtp
\corrMp 439	116, 190–194, 215–219	\dTrC
\corrP <u>436</u>	\dInvTEC 215	\dTrCP 230
\corrp	\dInvTECP 217	\dTrCp
\Cov	\dInvTECp	\dTrcPE 230
\cov	\dInvTECPE 219	\dTrCpE 230
\covarianza . <u>477</u> , 478, 524, 525	\dInvTECpE	\dTrF
$\CovCond \dots \underline{486}, 487$	\dInvTEF <u>190</u>	$\verb \dTrFC \dots \dots \underline{235}$

\dTrFCP	\EspacioNul 370 , 372	\Lidx $\underline{24}$, 54,
\dTrFCp <u>235</u>	\esperanza 471, 472	119, 129, 139, 152, 155,
\dTrFCPE 235	\Estmc <u>388</u> , 390, 394,	175, 180, 185, 190, 195, 225
		
\dTrFCpE 235	395, 515, 518, 520, 522, 524	\LidxE <u>16,</u> 24
\dTrFP <u>225</u>	\EstmcCov	\LidxP 24 , 121, 131,
\dTrFp <u>225</u>	\EstmcDt <u>520</u>	141, 177, 182, 187, 192, 197
\dTrFPE 225	\EstmcVar 522	\Lidxp <u>24</u> , 120, 130,
\dTrFpE	\Estmd 390, 521, 523, 525	140, 176, 181, 186, 191, 196
\diffpE <u>223</u>		
	\EstmdCov	\LidxPE <u>24</u> , 123,
${f E}$	\EstmdDt <u>521</u>	133, 143, 184, 189, 194, 199
\E	\EstmdVar $\dots \dots 523$	\LidxpE $\underline{24}$, 122, 132, 142,
\ECond 481, 482, 498	\EV <u>369,</u> 370, 371, 376, 377	178, 179, 183, 188, 193, 198
\ECondYX $\frac{482}{485}$, 495, 496		\limits 286
\eleM 89	${f F}$	\longmapsto
	\festad	3 1
\elemL <u>54,</u> 69, 79		\longrightarrow 385
\elemLP $54, 71, 81$	\Festadistico <u>517</u>	\LRidx $\underline{19}$, 64, 165, 170, 235
\elemLp <u>54</u> , 70, 80	\festadistico 517	\LRidxE <u>16,</u> 19-23
\elemLPE <u>54,</u> 73, 83	\FSnedecor	\LRidxP <u>19,</u> 237
\elemLpE <u>54</u> , 72, 82	\fsnedecor <u>504</u> , 507	\LRidxp 19, 236
\elemLR 64, 89	\fueraitemL $\underline{240}$, $\overline{242}$, $\underline{243}$	\LRidxPE 19, 239
 -	\fueraitemR 241 , 242, 244	
\elemLRP <u>64</u> , 91, 94, 96	(Tuciul Cinit <u>211</u> , 212, 211	\LRidxpE <u>19,</u> 238
\elemLRp $64, 90, 95$	${f G}$	\Lsh 240
\elemLRPE $64, 93, 98$		\lVert 37
\elemLRpE 64, 92, 97	\getItem $\dots \underline{51}, 52, 53$	
\eleMM 250	\getitemL $\dots \dots 52, 54, 64$	${f M}$
\eleMMM	\getitemR $52, 59, 64$	\MakeLowercase 252
		•
\eleMMT <u>250</u>	Н	\masMLG <u>491</u>
\eleMP $\underline{89}$	\Halt 510	\masMLS $\underline{491}$
\eleMp $\underline{89}$	\hbox 45	\masMLT <u>491</u>
\eleMPE 89		\Mat 79-93, 149, 150,
\eleMpE 89	\Hnula <u>510</u>	153, 154, <u>261</u> , 264–268,
<u> </u>		
		282 285 201_205 211_
\elemR	I	282, 285, 291–295, 311–
\elemRP <u>59</u> , 76, 86	I \ind 444, 445, 453	316, 323-335, 342-346,
\elemRP	\ind $\underline{444, 445}, 453$	316, 323–335, 342–346, 373, 375, 398, 457–459, 501
\elemRP <u>59</u> , 76, 86	\ind $\underline{444, 445, 453}$ \indCero $\underline{443, 454}$	316, 323-335, 342-346,
\elemRP	$\begin{array}{llllllllllllllllllllllllllllllllllll$	316, 323–335, 342–346, 373, 375, 398, 457–459, 501
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 316,\ 323-335,\ 342-346,\\ 373,\ 375,\ 398,\ 457-459,\ 501 \\ \verb \Matdim \ \dots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP \frac{59}{59}, 76, 86 \elemRp \frac{59}{59}, 75, 85 \elemRPE \frac{59}{59}, 78, 88 \elemRpE \frac{59}{59}, 77, 87 \eleMT \frac{94}{94} \eleMTP \frac{94}{94}	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94	\ind 444, 445, 453 \indCero 443, 454 \indUno 442, 445, 455 \intercal 39 \Inv 46, 342 \InvMat 342 \InvMatP 342 \InvMatp 342 \InvMatp 342 \InvMatp 342	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94	\ind 444, 445, 453 \indCero 443, 454 \indUno 442, 445, 455 \intercal 39 \Inv 46, 342 \InvMat 342 \InvMatP 342 \InvMatp 342 \InvMatPE 342 \InvMatPE 342 \InvMatPE 342 \InvMatPE 342, 350	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \elemUUU 245 \elevUL 69	\ind 444, 445, 453 \indCero 443, 454 \indUno 442, 445, 455 \intercal 39 \Inv 46, 342 \InvMat 342 \InvMatP 342 \InvMatp 342 \InvMatPE 342 \InvMatPE 342 \InvMatpE 342 \InvMatpE 342, 350 \InvMatT 347	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \elemTpE 94 \elemTpE 69 \elevL 69 \elevLP 69	\ind 444, 445, 453 \indCero 443, 454 \indUno 442, 445, 455 \intercal 39 \Inv 46, 342 \InvMat 342 \InvMatP 342 \InvMatp 342 \InvMatPE 347 \InvMatTPE 347	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \elemTPE 94 \elemTUU 245 \elevL 69 \elevLP 69 \elevLp 69 \elevLp 69 \elevLp 69	\ind \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \elemTUU 245 \elevLP 69 \elevLP 69 \elevLP 69 \elevLPE 69 \elevLPE 69	\ind 444, 445, 453 \indCero 443, 454 \indUno 442, 445, 455 \intercal 39 \Inv 46, 342 \InvMat 342 \InvMatP 342 \InvMatp 342 \InvMatPE 347 \InvMatTPE 347	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \elemUUU 245 \elevLe 69 \elevLP 69 \elevLPE 69 \elevLPE 69 \elevLPE 69 \elevLPE 69 \elevLPE 69 \elevLPE 69	\ind \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \elemTUU 245 \elevLP 69 \elevLP 69 \elevLP 69 \elevLPE 69 \elevLPE 69	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \elemUUU 245 \elevLe 69 \elevLP 69 \elevLPE 69 \elevLPE 69 \elevLPE 69 \elevLPE 69 \elevLPE 69 \elevLPE 69	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 69 \eleVLP 69 \eleVLP 69 \eleVLPE 69 \eleVLPE 69 \eleVLPE 69 \eleVLPE 69 \eleVLPE 74 \eleVRP 74	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 69 \eleVLP 69 \eleVLP 69 \eleVLPE 69 \eleVLPE 69 \eleVLPE 69 \eleVLPE 69 \eleVLP 74 \eleVRP 74 \eleVRP 74 \eleVRP 74	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	316, 323-335, 342-346, 373, 375, 398, 457-459, 501 \Matdim
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 69 \eleVLP 69 \eleVLP 69 \eleVLPE 69 \eleVLPE 69 \eleVLPE 69 \eleVLPE 74 \eleVRP 74 \eleVRP 74 \eleVRPE 74	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	316, 323-335, 342-346, 373, 375, 398, 457-459, 501 \Matdim
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleWLP 69 \eleVLP 69 \eleVLP 69 \eleVLPE 69 \eleVLPE 69 \eleVLPE 69 \eleVLPE 74 \eleVRP 74 \eleVRPE 74 \eleVRPE 74 \eleVRPE 74 \eleVRPE 74	\ind \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \elemUUU 245 \elevULP 69 \elevULP 69 \elevULPE 69 \elevULPE 69 \elevULPE 69 \elevURP 74 \elevRP 74 \elevRPE 74	\ind \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	316, 323-335, 342-346, 373, 375, 398, 457-459, 501 \Matdim
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \elemUUU 245 \elevULP 69 \elevULP 69 \elevULPE 69 \elevULPE 69 \elevULPE 69 \elevULPE 69 \elevURP 74 \elevRP 74 \elevRPE 74 <td>\ind \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	\ind \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \elemUUU 245 \elevULP 69 \elevULP 69 \elevULPE 69 \elevULPE 69 \elevULPE 69 \elevURP 74 \elevRP 74 \elevRPE 74	\ind \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	316, 323-335, 342-346, 373, 375, 398, 457-459, 501 \Matdim
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \elemUUU 245 \elevULP 69 \elevULP 69 \elevULPE 69 \elevULPE 69 \elevULPE 69 \elevULPE 69 \elevURP 74 \elevRP 74 \elevRPE 74 <td>\ind \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	\ind \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 69 \eleVLP 69 \eleVLP 69 \eleVLPE 69 \eleVLPE 69 \eleVLPE 69 \eleVLPE 74 \eleVRPE 74 \eleVRPE 74 \eleVRPE 74 \eleVRPE 74 \eleVEPr 10 \elevEpr 110 \EOEsu 109	\ind \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 69 \eleVLP 69 \eleVLP 69 \eleVLPE 69 \eleVLPE 69 \eleVLPE 69 \eleVRP 74 \eleVRPE 74 \eleVRPE 74 \eleVRPE 74 \eleVEPr 10 \elevRepE 100 \elevEsu 109 \esc 297	\ind \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \elemUUU 245 \elevUP 69 \elevUP 69 \elevUPE 69 \elevUPE 69 \elevUPE 69 \elevRPE 74 \elevRpE 110 \elevEsc 297 \esc 298	\ind \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\elemRP 59, 76, 86 \elemRp 59, 75, 85 \elemRPE 59, 78, 88 \elemRpE 59, 77, 87 \eleMT 94 \eleMTP 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \eleMTPE 94 \elemUUU 245 \elevUP 69 \elevUP 69 \elevUP 69 \elevUP 69 \elevUP 74 \elevRP 74 \elevRPE 74 \elevRPE 74 \elevRPE 74 \elevReg 248, 249 \EOEpr 110 \EOEsu 109 \eSc 297	\ind \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

\MatTpE $95, 97, \underline{264},$	\MVATPE 460	\per <u>468</u> , 488-
318, 321, 325, 328, 331, 334	\MVATpE 460	490, 495, 496, 498, 499, 501
\MatTT 269	\MVectC 271	\peri 469
\MatTTPE	\MVectCT 273	\perm <u>103</u> , 108
\MCO 392	\MVectF 272	\perturbacion $\dots 467, 468-470$
\MDaV		\PF
	\MVectFT <u>274</u>	
\Media \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\MVPE 311	\pr <u>101,</u> 106
\media <u>402</u> , 406, 407	\MVpE 312	\PRO
\mediaM <u>405</u>	\MvpE <u>311</u>	\PR0bh
\mediaMP <u>405</u>		\prodH \dots 305
$\verb \mediaMp \dots \dots \underline{405}$	${f N}$	\prodh <u>308</u>
\mediaP <u>402</u>	\N <u>6</u>	\prodHP <u>305</u>
\mbox{mediap} $\underline{402}$	\Nn <u>1</u> , 6	\prodHp <u>305</u>
\MenoR <u>283</u>	\norma 37	\prodhP 308
\Menor <u>283</u>	\Normal 501, 505	\prodhp 308
\mid 481, 483, 484, 486	\normal $502, \overline{505}$	\PSpan
\mifun 382	\Nulls 372, 373	•
\Mint 149	\nulls 373	${f Q}$
\MintT 150	(Hallb <u>919</u>	\quitaL 243
\minus 45, 46, 115	0	\quitaLR 242, 282
\MLG 488, 494		
\MLS 488	\odot 305, 308	\quitaR <u>244</u>
	\OEin <u>107,</u> 139–148	D
\MLT	\OEper <u>108,</u> 151, 152	R
\MMT	\OEpr <u>106</u> , 129–138	\R <u>6</u>
\MMTP 333	\Oepr 110	\Racept <u>510</u>
\MMTp 333	\OEsu $\underline{105}$, 109, 119–128	\rangle 509
\MN <u>323</u> , 336–341	\OpE $\underline{104}$, $105-108$	\Rango 276
\MNMT <u>336</u>	\overline 34	\rango $\underline{278}$
\MNMTP <u>336</u>		\Rcritica <u>510</u>
\MNMTp <u>336</u>	P	\res 395 , $396-398$
\MNT <u>327</u>	\Parentesis	\resi 394
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\Parentesis	\resi $\frac{394}{276}$
	•	
\MNTP $\dots $ 327	$\underline{11}$, 21, 23, 26, 28, 31,	\rg $\dots \underline{276}, \overline{278}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11, 21, 23, 26, 28, 31, 33, 42, 44, 48, 50, 56,	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\begin{array}{cccc} \verb \mbox{MNTP} & & & & & & & \\ \verb \mbox{MNTP} & & & & & & \\ \verb \mbox{modulus} & & & & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & & \\ \hline & & & \\ \hline & & & & \\ \hline & & & \\ \hline & & $	11, 21, 23, 26, 28, 31, 33, 42, 44, 48, 50, 56, 58, 61, 63, 66, 68, 157, 159, 162, 164, 167, 169,	\rg $\frac{276}{78}$ \rho $\frac{29}{59}$ \Ridx $\frac{29}{59}$
$\begin{array}{c cccc} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	11, 21, 23, 26, 28, 31, 33, 42, 44, 48, 50, 56, 58, 61, 63, 66, 68, 157, 159, 162, 164, 167, 169, 172, 174, 227, 229, 232,	\rg
$\begin{array}{cccc} & & & & & & & & & \\ \mbox{MNTP} & & & & & & & \\ \mbox{Modulus} & & & & & & \\ \mbox{MP} & & & & & & \\ \mbox{153} & & & & \\ \end{array}$	11, 21, 23, 26, 28, 31, 33, 42, 44, 48, 50, 56, 58, 61, 63, 66, 68, 157, 159, 162, 164, 167, 169, 172, 174, 227, 229, 232, 234, 245, 257, 260, 263,	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
\MNTP 327 \MNTp 327 \modulus 38, 281 \MP 153 \MPT 154 \MTM 330, 353, 364 \MTMP 330, 355	11, 21, 23, 26, 28, 31, 33, 42, 44, 48, 50, 56, 58, 61, 63, 66, 68, 157, 159, 162, 164, 167, 169, 172, 174, 227, 229, 232, 234, 245, 257, 260, 263, 270, 277, 278, 288, 290,	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
\MNTP 327 \MNTp 327 \modulus 38, 281 \MP 153 \MPT 154 \MTM 330, 353, 364 \MTMP 330, 355 \MTMP 330, 354	11, 21, 23, 26, 28, 31, 33, 42, 44, 48, 50, 56, 58, 61, 63, 66, 68, 157, 159, 162, 164, 167, 169, 172, 174, 227, 229, 232, 234, 245, 257, 260, 263, 270, 277, 278, 288, 290, 301, 304, 307, 310, 313,	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
MNTP 327 MNTp 327 modulus 38, 281 MP 153 MPT 154 MTM 330, 353, 364 MTMP 330, 355 MTMP 330, 354 MTMV 353	11, 21, 23, 26, 28, 31, 33, 42, 44, 48, 50, 56, 58, 61, 63, 66, 68, 157, 159, 162, 164, 167, 169, 172, 174, 227, 229, 232, 234, 245, 257, 260, 263, 270, 277, 278, 288, 290, 301, 304, 307, 310, 313, 316, 349, 352, 372, 374,	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
\MNTP 327 \MNTp 327 \modulus 38, 281 \MP 153 \MPT 154 \MTM 330, 353, 364 \MTMP 330, 355 \MTMP 330, 354 \MTMV 353 \MTMVP 353	11, 21, 23, 26, 28, 31, 33, 42, 44, 48, 50, 56, 58, 61, 63, 66, 68, 157, 159, 162, 164, 167, 169, 172, 174, 227, 229, 232, 234, 245, 257, 260, 263, 270, 277, 278, 288, 290, 301, 304, 307, 310, 313, 316, 349, 352, 372, 374, 376, 377, 379, 380, 404,	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
\MNTP 327 \MNTp 327 \modulus 38, 281 \MP 153 \MPT 154 \MTM 330, 353, 364 \MTMP 330, 355 \MTMP 330, 354 \MTMV 353 \MTMVP 353 \MTMVP 353 \MTMVP 353	11, 21, 23, 26, 28, 31, 33, 42, 44, 48, 50, 56, 58, 61, 63, 66, 68, 157, 159, 162, 164, 167, 169, 172, 174, 227, 229, 232, 234, 245, 257, 260, 263, 270, 277, 278, 288, 290, 301, 304, 307, 310, 313, 316, 349, 352, 372, 374, 376, 377, 379, 380, 404, 407, 415, 418, 421, 424,	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
\MNTP 327 \MNTp 327 \modulus 38, 281 \MP 153 \MPT 154 \MTM 330, 353, 364 \MTMP 330, 355 \MTMP 330, 354 \MTMV 353 \MTMVP 353 \MTMVp 353 \MTMVp 353 \MTN 324	11, 21, 23, 26, 28, 31, 33, 42, 44, 48, 50, 56, 58, 61, 63, 66, 68, 157, 159, 162, 164, 167, 169, 172, 174, 227, 229, 232, 234, 245, 257, 260, 263, 270, 277, 278, 288, 290, 301, 304, 307, 310, 313, 316, 349, 352, 372, 374, 376, 377, 379, 380, 404, 407, 415, 418, 421, 424, 427, 430, 433, 438, 441,	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
\MNTP 327 \MNTP 327 \modulus 38, 281 \MP 153 \MPT 154 \MTM 330, 353, 364 \MTMP 330, 355 \MTMP 330, 354 \MTMV 353 \MTMVP 353 \MTMVP 353 \MTNV 324 \MTNM 339	$\begin{array}{c} \underline{11},\ 21,\ 23,\ 26,\ 28,\ 31,\\ 33,\ 42,\ 44,\ 48,\ 50,\ 56,\\ 58,\ 61,\ 63,\ 66,\ 68,\ 157,\\ 159,\ 162,\ 164,\ 167,\ 169,\\ 172,\ 174,\ 227,\ 229,\ 232,\\ 234,\ 245,\ 257,\ 260,\ 263,\\ 270,\ 277,\ 278,\ 288,\ 290,\\ 301,\ 304,\ 307,\ 310,\ 313,\\ 316,\ 349,\ 352,\ 372,\ 374,\\ 376,\ 377,\ 379,\ 380,\ 404,\\ 407,\ 415,\ 418,\ 421,\ 424,\\ 427,\ 430,\ 433,\ 438,\ 441,\\ 459,\ 474,\ 478,\ 480,\ 520-525 \end{array}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
\MNTP 327 \MNTp 327 \modulus 38, 281 \MP 153 \MPT 154 \MTM 330, 353, 364 \MTMP 330, 355 \MTMP 330, 354 \MTMV 353 \MTMVP 353 \MTMVP 353 \MTN 324 \MTNM 339 \MTNMP 339	$\begin{array}{c} \underline{11},21,23,26,28,31,\\ 33,42,44,48,50,56,\\ 58,61,63,66,68,157,\\ 159,162,164,167,169,\\ 172,174,227,229,232,\\ 234,245,257,260,263,\\ 270,277,278,288,290,\\ 301,304,307,310,313,\\ 316,349,352,372,374,\\ 376,377,379,380,404,\\ 407,415,418,421,424,\\ 427,430,433,438,441,\\ 459,474,478,480,520-525\\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
MNTP 327 MNTp 327 modulus 38, 281 MP 153 MPT 154 MTM 330, 353, 364 MTMP 330, 355 MTMP 330, 354 MTMV 353 MTMVP 353 MTMVP 353 MTNV 324 MTNM 339 MTNMP 339 MTNMP 339 MTNMP 339	$\begin{array}{c} \underline{11},21,23,26,28,31,\\ 33,42,44,48,50,56,\\ 58,61,63,66,68,157,\\ 159,162,164,167,169,\\ 172,174,227,229,232,\\ 234,245,257,260,263,\\ 270,277,278,288,290,\\ 301,304,307,310,313,\\ 316,349,352,372,374,\\ 376,377,379,380,404,\\ 407,415,418,421,424,\\ 427,430,433,438,441,\\ 459,474,478,480,520-525\\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
\MNTP 327 \MNTP 327 \modulus 38, 281 \MP 153 \MPT 154 \MTM 330, 353, 364 \MTMP 330, 355 \MTMP 330, 354 \MTMV 353 \MTMVP 353 \MTMVP 353 \MTNV 324 \MTNM 339 \MTNMP 339 \MTNMP 339 \MTNP 324	$\begin{array}{c} \underline{11},21,23,26,28,31,\\ 33,42,44,48,50,56,\\ 58,61,63,66,68,157,\\ 159,162,164,167,169,\\ 172,174,227,229,232,\\ 234,245,257,260,263,\\ 270,277,278,288,290,\\ 301,304,307,310,313,\\ 316,349,352,372,374,\\ 376,377,379,380,404,\\ 407,415,418,421,424,\\ 427,430,433,438,441,\\ 459,474,478,480,520-525\\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
\MNTP 327 \MNTP 327 \modulus 38, 281 \MP 153 \MPT 154 \MTM 330, 353, 364 \MTMP 330, 355 \MTMP 330, 354 \MTMV 353 \MTMVP 353 \MTNVP 353 \MTN 324 \MTNMP 339 \MTNMP 339 \MTNP 324 \MTNP 324 \MTNP 324 \MTNP 324 \MTNP 324	$\begin{array}{c} \underline{11},21,23,26,28,31,\\ 33,42,44,48,50,56,\\ 58,61,63,66,68,157,\\ 159,162,164,167,169,\\ 172,174,227,229,232,\\ 234,245,257,260,263,\\ 270,277,278,288,290,\\ 301,304,307,310,313,\\ 316,349,352,372,374,\\ 376,377,379,380,404,\\ 407,415,418,421,424,\\ 427,430,433,438,441,\\ 459,474,478,480,520-525\\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
MNTP 327 MNTp 327 modulus 38, 281 MP 153 MPT 154 MTM 330, 353, 364 MTMP 330, 355 MTMP 330, 354 MTMV 353 MTMVP 353 MTMVP 353 MTNV 324 MTNM 339 MTNMP 339 MTNMP 324 MTNP 324 MTNP 324 MTNP 324 MTV 317, 366, 392	$\begin{array}{c} \underline{11},21,23,26,28,31,\\ 33,42,44,48,50,56,\\ 58,61,63,66,68,157,\\ 159,162,164,167,169,\\ 172,174,227,229,232,\\ 234,245,257,260,263,\\ 270,277,278,288,290,\\ 301,304,307,310,313,\\ 316,349,352,372,374,\\ 376,377,379,380,404,\\ 407,415,418,421,424,\\ 427,430,433,438,441,\\ 459,474,478,480,520-525\\ \end{array}$ \mathref{parentesis} \frac{11}{11},20,22,25,27,\\ 30,32,41,43,47,49,\\ 55,57,60,62,65,67,\\ 156,158,161,163,166,\\ 168,171,173,226,228,\\ \end{array}	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
MNTP 327 \MNTP 327 \modulus 38, 281 \MP 153 \MPT 154 \MTM 330, 353, 364 \MTMP 330, 355 \MTMP 330, 354 \MTMV 353 \MTMVP 353 \MTMVP 353 \MTN 324 \MTNM 339 \MTNMP 339 \MTNP 324 \MTNP 324 \MTNP 324 \MTV 317, 366, 392 \MTVP 317, 367	$\begin{array}{c} \underline{11},21,23,26,28,31,\\ 33,42,44,48,50,56,\\ 58,61,63,66,68,157,\\ 159,162,164,167,169,\\ 172,174,227,229,232,\\ 234,245,257,260,263,\\ 270,277,278,288,290,\\ 301,304,307,310,313,\\ 316,349,352,372,374,\\ 376,377,379,380,404,\\ 407,415,418,421,424,\\ 427,430,433,438,441,\\ 459,474,478,480,520-525\\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
MNTP 327 \MNTP 327 \modulus 38, 281 \MP 153 \MPT 154 \MTM 330, 353, 364 \MTMP 330, 355 \MTMP 330, 354 \MTMV 353 \MTMVP 353 \MTNVP 353 \MTNMP 339 \MTNMP 339 \MTNMP 324 \MTNP 324 \MTNP 324 \MTNP 324 \MTVP 317, 366, 392 \MTVP 317, 367 \MTVP 317, 367 \MTVP 317	$\begin{array}{c} \underline{11},21,23,26,28,31,\\ 33,42,44,48,50,56,\\ 58,61,63,66,68,157,\\ 159,162,164,167,169,\\ 172,174,227,229,232,\\ 234,245,257,260,263,\\ 270,277,278,288,290,\\ 301,304,307,310,313,\\ 316,349,352,372,374,\\ 376,377,379,380,404,\\ 407,415,418,421,424,\\ 427,430,433,438,441,\\ 459,474,478,480,520-525\\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
MNTP 327 \MNTP 327 \modulus 38, 281 \MP 153 \MPT 154 \MTM 330, 353, 364 \MTMP 330, 355 \MTMP 330, 354 \MTMV 353 \MTMVP 353 \MTNVP 353 \MTNN 324 \MTNM 339 \MTNMP 339 \MTNP 324 \MTNP 324 \MTVP 317, 366, 392 \MTVP 317, 367 \MTVP 317, 367 \MTVP 317 \mu 400	$\begin{array}{c} \underline{11},21,23,26,28,31,\\ 33,42,44,48,50,56,\\ 58,61,63,66,68,157,\\ 159,162,164,167,169,\\ 172,174,227,229,232,\\ 234,245,257,260,263,\\ 270,277,278,288,290,\\ 301,304,307,310,313,\\ 316,349,352,372,374,\\ 376,377,379,380,404,\\ 407,415,418,421,424,\\ 427,430,433,438,441,\\ 459,474,478,480,520-525\\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
MNTP 327 \MNTP 327 \modulus 38, 281 \MP 153 \MPT 154 \MTM 330, 353, 364 \MTMP 330, 355 \MTMP 330, 354 \MTMV 353 \MTMVP 353 \MTNVP 353 \MTNM 324 \MTNM 339 \MTNMP 339 \MTNMP 324 \MTNP 324 \MTVP 317, 366, 392 \MTVP 317, 367 \MTVP 317, 367 \MTVP 317, 367 \MTVP 317, 367 \MTVP 317, 365	$\begin{array}{c} \underline{11},21,23,26,28,31,\\ 33,42,44,48,50,56,\\ 58,61,63,66,68,157,\\ 159,162,164,167,169,\\ 172,174,227,229,232,\\ 234,245,257,260,263,\\ 270,277,278,288,290,\\ 301,304,307,310,313,\\ 316,349,352,372,374,\\ 376,377,379,380,404,\\ 407,415,418,421,424,\\ 427,430,433,438,441,\\ 459,474,478,480,520-525\\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
\MNTP 327 \MNTP 327 \modulus 38, 281 \MP 153 \MPT 154 \MTM 330, 353, 364 \MTMP 330, 355 \MTMP 330, 354 \MTMV 353 \MTMVP 353 \MTNVP 353 \MTNM 324 \MTNM 339 \MTNMP 339 \MTNMP 324 \MTNP 324 \MTVP 317, 366, 392 \MTVP 317, 367 \MTVP 317, 367 \MTVP 317, 365 \MV 311, 365 \MVA 457, 460-464, 493, 498-500	$\begin{array}{c} \underline{11},21,23,26,28,31,\\ 33,42,44,48,50,56,\\ 58,61,63,66,68,157,\\ 159,162,164,167,169,\\ 172,174,227,229,232,\\ 234,245,257,260,263,\\ 270,277,278,288,290,\\ 301,304,307,310,313,\\ 316,349,352,372,374,\\ 376,377,379,380,404,\\ 407,415,418,421,424,\\ 427,430,433,438,441,\\ 459,474,478,480,520-525\\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
\mntp \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{c} \underline{11},21,23,26,28,31,\\ 33,42,44,48,50,56,\\ 58,61,63,66,68,157,\\ 159,162,164,167,169,\\ 172,174,227,229,232,\\ 234,245,257,260,263,\\ 270,277,278,288,290,\\ 301,304,307,310,313,\\ 316,349,352,372,374,\\ 376,377,379,380,404,\\ 407,415,418,421,424,\\ 427,430,433,438,441,\\ 459,474,478,480,520-525\\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
\MNTP 327 \MNTP 327 \modulus 38, 281 \MP 153 \MPT 154 \MTM 330, 353, 364 \MTMP 330, 355 \MTMP 330, 354 \MTMV 353 \MTMVP 353 \MTNVP 353 \MTNM 324 \MTNM 339 \MTNMP 339 \MTNMP 324 \MTNP 324 \MTVP 317, 366, 392 \MTVP 317, 367 \MTVP 317, 367 \MTVP 317, 365 \MV 311, 365 \MVA 457, 460-464, 493, 498-500	$\begin{array}{c} \underline{11},21,23,26,28,31,\\ 33,42,44,48,50,56,\\ 58,61,63,66,68,157,\\ 159,162,164,167,169,\\ 172,174,227,229,232,\\ 234,245,257,260,263,\\ 270,277,278,288,290,\\ 301,304,307,310,313,\\ 316,349,352,372,374,\\ 376,377,379,380,404,\\ 407,415,418,421,424,\\ 427,430,433,438,441,\\ 459,474,478,480,520-525\\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
\mntp \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{c} \underline{11},21,23,26,28,31,\\ 33,42,44,48,50,56,\\ 58,61,63,66,68,157,\\ 159,162,164,167,169,\\ 172,174,227,229,232,\\ 234,245,257,260,263,\\ 270,277,278,288,290,\\ 301,304,307,310,313,\\ 316,349,352,372,374,\\ 376,377,379,380,404,\\ 407,415,418,421,424,\\ 427,430,433,438,441,\\ 459,474,478,480,520-525\\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	\rg
\mntp \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{c} \underline{11},21,23,26,28,31,\\ 33,42,44,48,50,56,\\ 58,61,63,66,68,157,\\ 159,162,164,167,169,\\ 172,174,227,229,232,\\ 234,245,257,260,263,\\ 270,277,278,288,290,\\ 301,304,307,310,313,\\ 316,349,352,372,374,\\ 376,377,379,380,404,\\ 407,415,418,421,424,\\ 427,430,433,438,441,\\ 459,474,478,480,520-525\\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	\rg
\MNTP 327 \MNTP 327 \modulus 38, 281 \MP 153 \MPT 154 \MTM 330, 353, 364 \MTMP 330, 355 \MTMP 330, 354 \MTMV 353 \MTMVP 353 \MTNVP 353 \MTNM 324 \MTNM 339 \MTNMP 339 \MTNP 324 \MTNP 324 \MTVP 317, 366, 392 \MTVP 317, 367 \MTVP 317 \mu 400 \MV 311, 365 \MVA 457, 460-464, 493, 498-500 \MVAP 457 \MVAP 457 \MVAP 457 \MVAT 460, 500	$\begin{array}{c} \underline{11}, 21, 23, 26, 28, 31, \\ 33, 42, 44, 48, 50, 56, \\ 58, 61, 63, 66, 68, 157, \\ 159, 162, 164, 167, 169, \\ 172, 174, 227, 229, 232, \\ 234, 245, 257, 260, 263, \\ 270, 277, 278, 288, 290, \\ 301, 304, 307, 310, 313, \\ 316, 349, 352, 372, 374, \\ 376, 377, 379, 380, 404, \\ 407, 415, 418, 421, 424, \\ 427, 430, 433, 438, 441, \\ 459, 474, 478, 480, 520-525 \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	\rg

\ScvarM <u>412</u> , 425	\TEIFp <u>139</u>	\varM 422
\SEL 365	\TEIFPE 139	\varMP 422
		
\SELF	\TEIFpE <u>139</u>	\varMp <u>422</u>
\SELT 366	\TEPC	\varP 419
		
\SELTP <u>366</u>	\TEPCP	\varp <u>419</u>
\Serror 393, 394, 395	\TEPCp <u>134</u>	\VColorA 447
 / /	-	
\sigma 408, 496, 499, 501	\TEPCPE <u>134</u>	\vec 255
\sim 501	\TEPCpE	\Vect 69-
	-	•
\SITEC <u>160</u>	\TEPF <u>129</u>	$78, \ \underline{258}, \ 302, \ 308, \ 311-$
\SITECP 160	\TEPFP 129	322, 353–356, 358–360,
\SITECp 160	\TEPFp 129	
_	· —	365 – 368, 389, 391, 395 –
\SITECPE 160	\TEPFPE	398, 447, 456, 490, 493, 501
\SITECpE 160	\TEPFpE <u>129</u>	\vect 255, 298
\SITEF	\TESC <u>124</u>	\VectC $84, 271, 273$
\SITEFC 165	\TESCP 124	\VectCCC 246
\SITEFCP <u>165</u>	\TESCp <u>124</u>	$\ensuremath{^{ ext{VectCCCT}}}$ $\underline{246}$
\SITEFCp <u>165</u>	\TESCPE 124	\VectCP 84
		
\SITEFCPE <u>165</u>	\TESCpE <u>124</u>	$\ensuremath{\texttt{VectCp}}$
\SITEFCpE <u>165</u>	\TESF <u>119</u>	\VectCPE 84
_	\TESFP 119	
\SITEFCR <u>170</u>		$\verb+\VectCpE+ \dots $
\SITEFCRP 170	\TESFp <u>119</u>	\VectF <u>79, 272, 274</u>
	\TESFPE 119	
\SITEFCRp <u>170</u>		\VectFFF <u>248</u>
\SITEFCRPE 170	\TESFpE <u>119</u>	\VectFFFT 248
\SITEFCRpE <u>170</u>	\testad	\VectFP 79
	\Testadistico 514	 1
\SITEFP <u>155</u>		\VectFp <u>79</u>
\SITEFp <u>155</u>	\testadistico 514	\VectFPE 79
-	\text $471, 473, 475, 477, \overline{479}$	
\SITEFPE		\VectFpE <u>79</u>
\SITEFpE	\textrm $245-251, 497, 500$	\VectP 258
• —	\TInvMat 350	· —
\Smedia $\dots \dots \underline{400}, 402$		\Vectp $\dots \dots \underline{258}$
\SmediaM 401, 405	$\TinvMatPE \dots 350$	\vectP 255
\Span 376	\TInvMatpE <u>350</u>	$\ensuremath{\backslash} \mathtt{vectp} \ \ldots \ \overline{255}$
-	\to	-
		\VEc+mc 222
\spro <u>450</u> , 451, 452		\VEstmc <u>388</u>
<u> </u>	\Trans 40,	
\su <u>100</u> , 105	\Trans $\underline{40}$,	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
<u> </u>	\Trans $\underline{40}$, $264, 273, 274, 350, 460, 466$	
\su	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccc} \texttt{VEstmd} & \dots & & \overline{390} \\ \texttt{VM} & \dots & & \underline{314}, 368 \end{array}$
\su	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} \texttt{VEstmd} & \dots & & & & & & \\ \texttt{VM} & \dots & & & & & & \\ \texttt{VMM} & \dots & & & & & & \\ \texttt{314}, 368 \\ \texttt{VMM} & \dots & & & & & \\ \end{bmatrix}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} \texttt{VEstmd} & \dots & & & & & & \\ \texttt{VM} & \dots & & & & & & \\ \texttt{VMM} & \dots & & & & & & \\ \texttt{314}, 368 \\ \texttt{VMM} & \dots & & & & & \\ \end{bmatrix}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	\text{VEstmd} \\ \frac{390}{368} \text{\text{VM}} \\ \frac{314}{368} \text{\text{VMPE}} \\ \frac{314}{314} \text{\text{VMPE}} \\ \text{VMpE} \\ \frac{314}{320} \\ 358 \end{array}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \\ \frac{390}{368} \text{\text{VM}} \\ \frac{314}{368} \\ \text{\text{VMM}} \\ \frac{314}{356} \\ \text{\text{VMPE}} \\ \frac{314}{320}, 358 \\ \text{\text{VMTP}} \\ \frac{320}{320}, 360 \\ \end{array}
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \\ \frac{390}{390} \text{\text{VM}} \\ \frac{314}{368} \text{\text{SMM}} \\ \frac{356}{356} \text{\text{VMPE}} \\ \frac{314}{320}, 358 \text{\text{VMTP}} \\ \frac{320}{320}, 360 \text{\text{VMTP}} \\ \frac{320}{320}, 359 \text{\text{VMTP}} \\ \frac{320}{320}, 350 \text
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \\ \frac{390}{368} \text{\text{VM}} \\ \frac{314}{368} \\ \text{\text{VMM}} \\ \frac{314}{356} \\ \text{\text{VMPE}} \\ \frac{314}{320}, 358 \\ \text{\text{VMTP}} \\ \frac{320}{320}, 360 \\ \end{array}
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \\ \frac{390}{390} \text{\text{VM}} \\ \frac{314}{368} \\ \text{VMM} \\ 356 \\ \text{VMPE} \\ \frac{314}{314} \\ \text{VMPE} \\ \text{VMT} \\ \frac{320}{358} \\ \text{VMTP} \\ \frac{320}{320}, 359 \\ \text{VMTV} \\ \frac{361}{361} \\ \text{VMTV} \\ \frac{361}{361} \\ \text{VMTV} \\ \frac{368}{361} \\ \text{VMTV} \\ \text{VMTV} \\ \frac{368}{361} \\ \text{VMTV}
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \\ \frac{390}{390} \text{\text{VM}} \\ \frac{314}{368} \\ \text{VMPE} \\ \frac{314}{368} \\ \text{VMPE} \\ \frac{314}{368} \\ \text{VMPE} \\ \frac{314}{368} \\ \text{VMT} \\ \frac{320}{358} \\ \text{VMTP} \\ \frac{320}{360} \\ \text{VMTP} \\ \frac{320}{359} \\ \text{VMTV} \\ \frac{361}{361} \\ \text{VMTVP} \\ \frac{361}{361} \\ \text{VMTVP} \\ \frac{368}{361} \\ \text{VMTVP} \\ \frac{368}{361} \\ \text{VMTVP} \\ \frac{361}{361} \\ \text{VMTVP} \\ \frac{368}{361} \\ \text{VMTVP} \\
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\VEstmd \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \\ \frac{390}{390} \text{\text{VM}} \\ \frac{314}{368} \\ \text{VMPE} \\ \frac{314}{368} \\ \text{VMPE} \\ \frac{314}{368} \\ \text{VMPE} \\ \frac{314}{368} \\ \text{VMT} \\ \frac{320}{358} \\ \text{VMTP} \\ \frac{320}{360} \\ \text{VMTP} \\ \frac{320}{359} \\ \text{VMTV} \\ \frac{361}{361} \\ \text{VMTVP} \\ \frac{361}{361} \\ \text{VMTVP} \\ \frac{368}{361} \\ \text{VMTVP} \\ \frac{368}{361} \\ \text{VMTVP} \\ \frac{361}{361} \\ \text{VMTVP} \\ \frac{368}{361} \\ \text{VMTVP} \\
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \\ \frac{390}{390} \\ \text{VM} \\ \frac{314}{368} \\ \text{VMPE} \\ \frac{314}{368} \\ \text{VMPE} \\ \frac{314}{368} \\ \text{VMPE} \\ \frac{314}{368} \\ \text{VMPE} \\ \frac{314}{368} \\ \text{VMT} \\ \frac{320}{358} \\ \text{VMTP} \\ \frac{320}{360} \\ \text{VMTP} \\ \frac{320}{359} \\ \text{VMTV} \\ \frac{361}{361} \\ \text{VMTVP} \\ \frac{361}{361} \\ \text{VMTW} \\ \frac{358}{361} \\ \text{VMTW} \\ \frac{358}{358} \\ \frac{361}{361} \\ \text{VMTW} \\ \frac{358}{361} \\ \text{VMTW} \\ \frac{361}{361} \\ \text{VMTW} \\ \frac{358}{361} \\ \text{VMTW} \\ \frac{361}{361} \\ \text{VMTW} \\ \frac
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \\ \frac{390}{390} \text{\text{VM}} \\ \frac{314}{368} \\ \text{VMM} \\ \frac{314}{356} \\ \text{VMPE} \\ \frac{314}{314} \\ \text{VMpE} \\ \frac{320}{358} \\ \text{VMTP} \\ \frac{320}{359} \\ \text{VMTP} \\ \frac{320}{361} \\ \text{VMTVP} \\ \frac{361}{361} \\ \text{VMTVP} \\ \frac{358}{361} \\ \text{VMTWP} \\ \frac{358}{358}, 363 \end{array}
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \\ \frac{390}{390} \\ \text{VM} \\ \frac{314}{368} \\ \text{VMPE} \\ \frac{314}{368} \\ \text{VMPE} \\ \frac{314}{368} \\ \text{VMPE} \\ \frac{314}{368} \\ \text{VMPE} \\ \frac{314}{368} \\ \text{VMT} \\ \frac{320}{358} \\ \text{VMTP} \\ \frac{320}{360} \\ \text{VMTP} \\ \frac{320}{359} \\ \text{VMTV} \\ \frac{361}{361} \\ \text{VMTVP} \\ \frac{361}{361} \\ \text{VMTW} \\ \frac{358}{361} \\ \text{VMTW} \\ \frac{358}{358} \\ \frac{361}{361} \\ \text{VMTW} \\ \frac{358}{361} \\ \text{VMTW} \\ \frac{361}{361} \\ \text{VMTW} \\ \frac{358}{361} \\ \text{VMTW} \\ \frac{361}{361} \\ \text{VMTW} \\ \frac
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \tag{390} \text{VM} \tag{314}, 368 \text{VMM} \tag{356} \text{VMPE} \tag{314} \text{VMpE} \tag{314} \text{VMpE} \tag{314} \text{VMT} \tag{320}, 358 \text{VMTP} \tag{320}, 360 \text{VMTP} \tag{320}, 359 \text{VMTV} \tag{361} \text{VMTVP} \tag{361} \text{VMTVP} \tag{361} \text{VMTW} \tag{358}, 361 \text{VMTWP} \tag{358}, 363 \text{VMTWP} \tag{358}, 362
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \\ \frac{390}{368} \text{\text{VM}} \\ \frac{314}{368} \\ \text{VMM} \\ \frac{314}{356} \\ \text{VMPE} \\ \frac{314}{\text{VMpE}} \\ \frac{320}{358} \\ \text{VMTP} \\ \frac{320}{359} \\ \text{VMTV} \\ \frac{361}{361} \\ \text{VMTVP} \\ \frac{358}{361} \\ \text{VMTWP} \\ \frac{358}{358} \\ \frac{361}{358} \\ \text{VMTWP} \\ \frac{358}{361} \\ \text{VMTWP} \\ \frac{358}{358} \\ \frac{362}{359} \\ \text{VMTWP} \\ \frac{358}{361} \\ \text{VMTWP} \\ \frac{358}{358} \\ \frac{362}{359} \\ \text{VMV} \\ \frac{357}{359} \\ \text{VMV} \\ \frac{358}{357} \\ \frac{358}{357} \\ \frac{358}{357} \\ \frac{358}{358} \\ \frac{358}{357} \\ \frac{358}{358} \\ \frac{358}{357} \\ \frac{358}{358} \\ \frac{358}{357} \\ \frac{358}{357} \\ \frac{358}{358} \\ \frac{358}{357} \\ \frac{358}{358} \\ \frac{358}{357} \\ \frac{358}{358} \\ \frac{358}{357} \\ \frac{358}{358} \\
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \tag{390} \text{\text{VM}} \tag{314}, 368 \text{\text{VMM}} \tag{314}, 368 \text{\text{VMPE}} \tag{314} \text{\text{\text{VMPE}}} \tag{314} \text{\text{\text{VMTP}}} \tag{320}, 358 \text{\text{\text{VMTP}}} \tag{320}, 360 \text{\text{\text{VMTP}}} \tag{320}, 359 \text{\text{\text{VMTV}}} \tag{361} \text{\text{\text{VMTVP}}} \tag{361} \text{\text{\text{VMTVP}}} \tag{358}, 361 \text{\text{\text{VMTWP}}} \tag{358}, 363 \text{\text{\text{VMTWP}}} \tag{358}, 362 \text{\text{\text{VMTWP}}} \tag{356}, 357 \text{\text{\text{VMW}}} \tag{356}, 357
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \tag{390} \text{\text{VM}} \tag{314}, 368 \text{\text{VMM}} \tag{314}, 368 \text{\text{VMPE}} \tag{314} \text{\text{\text{VMPE}}} \tag{314} \text{\text{\text{VMTP}}} \tag{320}, 358 \text{\text{\text{VMTP}}} \tag{320}, 360 \text{\text{\text{VMTP}}} \tag{320}, 359 \text{\text{\text{VMTV}}} \tag{361} \text{\text{\text{VMTVP}}} \tag{361} \text{\text{\text{VMTVP}}} \tag{358}, 361 \text{\text{\text{VMTWP}}} \tag{358}, 363 \text{\text{\text{VMTWP}}} \tag{358}, 362 \text{\text{\text{VMTWP}}} \tag{356}, 357 \text{\text{\text{VMW}}} \tag{356}, 357
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \frac{390}{368} \text{\text{VM}} \frac{314}{368} \text{368} \text{\text{VMM}} \frac{314}{356} \text{356} \text{\text{VMPE}} \frac{314}{20} \text{358} \text{\text{VMTP}} \frac{320}{358} \text{\text{VMTP}} \frac{320}{360} \text{\text{VMTP}} \frac{320}{359} \text{\text{VMTV}} \frac{361}{20} \text{\text{VMTVP}} \frac{361}{261} \text{\text{VMTVP}} \frac{358}{361} \text{\text{VMTWP}} \frac{358}{363} \text{\text{VMTWP}} \frac{358}{358}, 363 \text{\text{VMTWP}} \frac{358}{358}, 362 \text{\text{VMV}} \text{\text{VMTWP}} \frac{356}{357} \text{\text{VMW}} \frac{356}{357} \text{\text{VPer}} \frac{470}{491-493} \text{\text{470}} \text{491-493}
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \frac{390}{390} \text{\text{VM}} \frac{314}{368} \text{368} \text{\text{VMM}} \frac{314}{356} \text{356} \text{\text{VMPE}} \frac{314}{314} \text{\text{VMpE}} \frac{314}{320}, 358 \text{\text{VMTP}} \frac{320}{320}, 360 \text{\text{VMTP}} \frac{320}{359} \text{\text{VMTV}} \frac{361}{361} \text{\text{VMTVP}} \frac{361}{361} \text{\text{VMTVP}} \frac{358}{361} \text{\text{VMTWP}} \frac{358}{358}, 363 \text{\text{VMTWP}} \frac{358}{358}, 363 \text{\text{VMTWP}} \frac{358}{358}, 362 \text{\text{VMTWP}} \frac{356}{357} \text{\text{VMW}} \frac{356}{357} \text{\text{VPer}} \frac{470}{491-493} \text{\text{VVA}} \frac{456}{5}, \text{\text{VMS}} \text{\
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \frac{390}{368} \text{\text{VM}} \frac{314}{368} \text{368} \text{\text{VMM}} \frac{314}{356} \text{356} \text{\text{VMPE}} \frac{314}{20} \text{358} \text{\text{VMTP}} \frac{320}{358} \text{\text{VMTP}} \frac{320}{360} \text{\text{VMTP}} \frac{320}{359} \text{\text{VMTV}} \frac{361}{20} \text{\text{VMTVP}} \frac{361}{261} \text{\text{VMTVP}} \frac{358}{361} \text{\text{VMTWP}} \frac{358}{363} \text{\text{VMTWP}} \frac{358}{358}, 363 \text{\text{VMTWP}} \frac{358}{358}, 362 \text{\text{VMV}} \text{\text{VMTWP}} \frac{356}{357} \text{\text{VMW}} \frac{356}{357} \text{\text{VPer}} \frac{470}{491-493} \text{\text{470}} \text{491-493}
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \frac{390}{390} \text{\text{VM}} \frac{314}{368} \text{368} \text{\text{VMM}} \frac{314}{356} \text{356} \text{\text{VMPE}} \frac{314}{314} \text{\text{VMpE}} \frac{314}{320}, 358 \text{\text{VMTP}} \frac{320}{320}, 360 \text{\text{VMTP}} \frac{320}{359} \text{\text{VMTV}} \frac{361}{361} \text{\text{VMTVP}} \frac{361}{361} \text{\text{VMTVP}} \frac{358}{361} \text{\text{VMTWP}} \frac{358}{358}, 363 \text{\text{VMTWP}} \frac{358}{358}, 363 \text{\text{VMTWP}} \frac{358}{358}, 362 \text{\text{VMTWP}} \frac{356}{357} \text{\text{VMW}} \frac{356}{357} \text{\text{VPer}} \frac{470}{491-493} \text{\text{VVA}} \frac{456}{5}, \text{\text{VMS}} \text{\
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \tag{390} \text{\text{VM}} \tag{314}, 368 \text{\text{VMM}} \tag{314}, 368 \text{\text{VMPE}} \tag{314} \text{\text{\text{VMPE}}} \tag{314} \text{\text{\text{VMPE}}} \tag{314} \text{\text{VMTP}} \tag{320}, 358 \text{\text{VMTP}} \tag{320}, 360 \text{\text{\text{VMTP}}} \tag{320}, 359 \text{\text{VMTV}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTWP}} \tag{358}, 361 \text{\text{VMTWP}} \tag{358}, 363 \text{\text{VMTWP}} \tag{358}, 362 \text{\text{VMTWP}} \tag{358}, 362 \text{\text{VMV}} \text{\text{\text{VMTWP}}} \tag{356}, 357 \text{\text{VMW}} \text{\text{\text{\text{\text{VMV}}}} \tag{470}, 491-493 \text{\text{VVA}} \tag{456}, 470, 491-493, 498, 499, 501
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \tag{390} \text{\text{VM}} \tag{314}, 368 \text{\text{VMM}} \tag{314}, 368 \text{\text{VMPE}} \tag{314} \text{\text{VMPE}} \tag{314} \text{\text{VMPE}} \tag{314} \text{\text{VMT}} \tag{320}, 358 \text{\text{VMTP}} \tag{320}, 360 \text{\text{VMTP}} \tag{320}, 359 \text{\text{VMTV}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTWP}} \tag{358}, 361 \text{\text{VMTWP}} \tag{358}, 363 \text{\text{VMTWP}} \tag{358}, 362 \text{\text{VMTWP}} \tag{358}, 362 \text{\text{VMV}} \text{\text{VMV}} \tag{356}, 357 \text{\text{VMW}} \text{\text{\text{\text{\text{VMV}}}} \tag{491} - 493 \text{\text{\text{VVA}} \tag{456}, 470, 491 - 493, 498, 499, 501} \text{\text{W}}
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \tag{390} \text{\text{VM}} \tag{314}, 368 \text{\text{VMM}} \tag{314}, 368 \text{\text{VMPE}} \tag{314} \text{\text{\text{VMPE}}} \tag{314} \text{\text{\text{VMPE}}} \tag{314} \text{\text{VMTP}} \tag{320}, 358 \text{\text{VMTP}} \tag{320}, 360 \text{\text{\text{VMTP}}} \tag{320}, 359 \text{\text{VMTV}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTWP}} \tag{358}, 361 \text{\text{VMTWP}} \tag{358}, 363 \text{\text{VMTWP}} \tag{358}, 362 \text{\text{VMTWP}} \tag{358}, 362 \text{\text{VMV}} \text{\text{\text{VMTWP}}} \tag{356}, 357 \text{\text{VMW}} \text{\text{\text{\text{\text{VMV}}}} \tag{470}, 491-493 \text{\text{VVA}} \tag{456}, 470, 491-493, 498, 499, 501
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \tag{390} \text{\text{VM}} \tag{314}, 368 \text{\text{VMM}} \tag{314}, 368 \text{\text{VMPE}} \tag{314} \text{\text{VMPE}} \tag{314} \text{\text{VMPE}} \tag{314} \text{\text{VMT}} \tag{320}, 358 \text{\text{VMTP}} \tag{320}, 360 \text{\text{VMTP}} \tag{320}, 359 \text{\text{VMTV}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{358}, 361 \text{\text{VMTWP}} \tag{358}, 363 \text{\text{VMTWP}} \tag{358}, 363 \text{\text{VMTWP}} \tag{358}, 362 \text{\text{VMV}} \text{\text{\text{\text{VMTWP}}} \tag{358}, 362 \text{\text{VMV}} \text{\text{\text{\text{\text{VMV}}}} \tag{356}, 357 \text{\text{\text{VMV}} \text{\text
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \tag{390} \text{\text{VM}} \tag{314}, 368 \text{\text{VMM}} \tag{314}, 368 \text{\text{VMPE}} \tag{314} \text{\text{VMPE}} \tag{314} \text{\text{VMPE}} \tag{314} \text{\text{VMT}} \tag{320}, 358 \text{\text{VMTP}} \tag{320}, 360 \text{\text{VMTP}} \tag{320}, 359 \text{\text{VMTV}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTWP}} \tag{358}, 361 \text{\text{VMTWP}} \tag{358}, 363 \text{\text{VMTWP}} \tag{358}, 362 \text{\text{VMTWP}} \tag{358}, 362 \text{\text{VMV}} \text{\text{VMV}} \tag{356}, 357 \text{\text{VMW}} \text{\text{\text{\text{\text{VMV}}}} \tag{491} - 493 \text{\text{\text{VVA}} \tag{456}, 470, 491 - 493, 498, 499, 501} \text{\text{W}}
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \tag{390} \text{\text{VM}} \tag{314}, 368 \text{\text{VMM}} \tag{314}, 368 \text{\text{VMPE}} \tag{314} \text{\text{VMPE}} \tag{314} \text{\text{VMPE}} \tag{314} \text{\text{VMT}} \tag{320}, 358 \text{\text{VMTP}} \tag{320}, 360 \text{\text{VMTP}} \tag{320}, 359 \text{\text{VMTV}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{358}, 361 \text{\text{VMTWP}} \tag{358}, 363 \text{\text{VMTWP}} \tag{358}, 363 \text{\text{VMTWP}} \tag{358}, 362 \text{\text{VMV}} \text{\text{\text{\text{VMTWP}}} \tag{358}, 362 \text{\text{VMV}} \text{\text{\text{\text{\text{VMV}}}} \tag{356}, 357 \text{\text{\text{VMV}} \text{\text
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \tag{390} \text{\text{VM}} \tag{314}, 368 \text{\text{VMM}} \tag{314}, 368 \text{\text{VMPE}} \tag{314} \text{\text{VMPE}} \tag{314} \text{\text{VMPE}} \tag{314} \text{\text{VMT}} \tag{320}, 358 \text{\text{VMTP}} \tag{320}, 360 \text{\text{VMTP}} \tag{320}, 359 \text{\text{VMTV}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{358}, 361 \text{\text{VMTWP}} \tag{358}, 363 \text{\text{VMTWP}} \tag{358}, 363 \text{\text{VMTWP}} \tag{358}, 362 \text{\text{VMV}} \text{\text{\text{\text{VMTWP}}} \tag{358}, 362 \text{\text{VMV}} \text{\text{\text{\text{\text{VMV}}}} \tag{356}, 357 \text{\text{\text{VMV}} \text{\text
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \tag{390} \text{\text{VM}} \tag{314}, 368 \text{\text{VMM}} \tag{314}, 368 \text{\text{VMPE}} \tag{314} \text{\text{VMPE}} \tag{314} \text{\text{VMPE}} \tag{314} \text{\text{VMT}} \tag{320}, 358 \text{\text{VMTP}} \tag{320}, 360 \text{\text{VMTP}} \tag{320}, 359 \text{\text{VMTV}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{358}, 361 \text{\text{VMTWP}} \tag{358}, 361 \text{\text{VMTWP}} \tag{358}, 363 \text{\text{VMTWP}} \tag{358}, 362 \text{\text{VMV}} \text{\text{\text{\text{VMV}}} \tag{356}, 357 \text{\text{VMW}} \tag{356}, 357 \text{\text{VPer}} \tag{470}, 491-493 \text{\text{VVA}} \tag{456}, 470, 491-493, 498, 499, 501 \text{\text{W}} \text{\text{widebar}} \tag{388}, 389, 396-398 \text{\text{widebar}} \tag{2} \text{\text{Widebar}} \tag{388}, 389, 396-398 \text{\text{\text{VM}}} \tag{2} \text{\text{VM}} \tag{356} \text{\text{\text{\text{\text{\text{VM}}}}} \text{\te
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \tag{390} \text{\text{VM}} \tag{314}, 368 \text{\text{VMM}} \tag{314}, 368 \text{\text{VMPE}} \tag{314} \text{\text{VMPE}} \tag{314} \text{\text{VMPE}} \tag{314} \text{\text{VMT}} \tag{320}, 358 \text{\text{VMTP}} \tag{320}, 360 \text{\text{VMTP}} \tag{320}, 359 \text{\text{VMTV}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{358}, 361 \text{\text{VMTWP}} \tag{358}, 363 \text{\text{VMTWP}} \tag{358}, 363 \text{\text{VMTWP}} \tag{358}, 362 \text{\text{VMV}} \text{\tex
\su \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\text{VEstmd} \tag{390} \text{\text{VM}} \tag{314}, 368 \text{\text{VMM}} \tag{314}, 368 \text{\text{VMPE}} \tag{314} \text{\text{VMPE}} \tag{314} \text{\text{VMPE}} \tag{314} \text{\text{VMT}} \tag{320}, 358 \text{\text{VMTP}} \tag{320}, 360 \text{\text{VMTP}} \tag{320}, 359 \text{\text{VMTV}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{361} \text{\text{VMTVP}} \tag{358}, 361 \text{\text{VMTWP}} \tag{358}, 361 \text{\text{VMTWP}} \tag{358}, 363 \text{\text{VMTWP}} \tag{358}, 362 \text{\text{VMV}} \text{\text{\text{\text{VMV}}} \tag{356}, 357 \text{\text{VMW}} \tag{356}, 357 \text{\text{VPer}} \tag{470}, 491-493 \text{\text{VVA}} \tag{456}, 470, 491-493, 498, 499, 501 \text{\text{W}} \text{\text{widebar}} \tag{388}, 389, 396-398 \text{\text{widebar}} \tag{2} \text{\text{Widebar}} \tag{388}, 389, 396-398 \text{\text{\text{VM}}} \tag{2} \text{\text{VM}} \tag{356} \text{\text{\text{\text{\text{\text{VM}}}}} \text{\te