Déduction modulo théorie

Inclusion

$$\forall a. \forall b. a \subseteq b \longrightarrow \forall x. x \in a \Rightarrow x \in b$$

Règle de réécriture

$$a \subseteq b \longrightarrow \forall x. x \in a \Rightarrow x \in b$$

Preuve en déduction modulo théorie

$$\frac{\overline{x \in A \vdash x \in A} \xrightarrow{\text{ax}} \Rightarrow_{\text{right}}}{\vdash x \in A \Rightarrow x \in A} \Rightarrow_{\text{right}} (A \subseteq A \longrightarrow \forall x.x \in A \Rightarrow x \in A)$$

Superdéduction (variante)

Inclusion

$$\forall a. \forall b. a \subseteq b \Leftrightarrow \forall x. x \in a \Rightarrow x \in b$$

Preuve en calcul des séquents

Superdéduction (variante)

Inclusion

$$\forall a. \forall b. a \subseteq b \longrightarrow \forall x. x \in a \Rightarrow x \in b$$

Calcul de la règle de superdéduction

$$\frac{\frac{\Gamma, x \in a \vdash x \in b, \Delta}{\Gamma \vdash x \in a \Rightarrow x \in b, \Delta} \Rightarrow_{\mathsf{right}}}{\frac{\Gamma \vdash \forall x \ (x \in a \Rightarrow x \in b), \Delta}{\Gamma \vdash a \subseteq b, \Delta}} \forall_{\mathsf{right}}, x \not\in \Gamma, \Delta$$

Preuve en superdéduction

Superdéduction (variante)

Inclusion

$$\forall a. \forall b. a \subseteq b \longrightarrow \forall x. x \in a \Rightarrow x \in b$$

Calcul de la règle de superdéduction

$$\frac{\Gamma, x \in a \vdash x \in b, \Delta}{\Gamma \vdash a \subseteq b, \Delta} \subseteq_{\mathsf{right}}, x \notin \Gamma, \Delta$$

Preuve en superdéduction

$$\frac{\overline{x \in A \vdash x \in A}}{\vdash A \subseteq A} \stackrel{\mathsf{ax}}{\subseteq_{\mathsf{right}}}$$

Règles de clôture et règles analytiques

$$\frac{\bot}{\odot}\odot\bot \qquad \frac{\neg\top}{\odot}\odot\neg\top \qquad \frac{P \rightarrow P}{\odot}\odot$$

$$\frac{\neg\neg P}{P}\alpha\neg\neg \qquad \frac{P \Leftrightarrow Q}{\neg P, \neg Q \mid P, Q}\beta\Leftrightarrow \qquad \frac{\neg(P \Leftrightarrow Q)}{\neg P, Q \mid P, \neg Q}\beta\neg\Leftrightarrow$$

$$\frac{P \land Q}{P, Q}\alpha\land \qquad \frac{\neg(P \lor Q)}{\neg P, \neg Q}\alpha\neg\lor \qquad \frac{\neg(P \Rightarrow Q)}{P, \neg Q}\alpha\neg\Rightarrow$$

 $\frac{\neg (P \land Q)}{\neg P \mid \neg Q} \beta_{\neg \land}$

 $\frac{P \lor Q}{P \mid Q} \beta_{\lor}$

 $\frac{P \Rightarrow Q}{\neg P \mid Q} \beta_{\Rightarrow}$

δ/γ -règles

$$\frac{\exists x. P(x)}{P(\epsilon(x).P(x))} \delta_{\exists} \qquad \frac{\neg \forall x. P(x)}{\neg P(\epsilon(x).\neg P(x))} \delta_{\neg \forall}$$

$$\frac{\forall x. P(x)}{P(X)} \gamma_{\forall M} \qquad \frac{\neg \exists x. P(x)}{\neg P(X)} \gamma_{\neg \exists M}$$

$$\frac{\forall x. P(x)}{P(t)} \gamma_{\forall inst} \qquad \frac{\neg \exists x. P(x)}{\neg P(t)} \gamma_{\neg \exists inst}$$

Calcul des règles de superdéduction

- $S \equiv$ règles de clôture, règles analytiques, règles δ , $\gamma_{\forall M}$ et $\gamma_{\neg \exists M}$;
- Axiome : $R: P \longrightarrow \varphi$;
- Une règle de superdéduction positive R (et une négative $\neg R$) :
 - ▶ Initialiser la procédure avec la formule φ ;
 - ightharpoonup Appliquer les règles de $\mathcal S$ jusqu'à ce que plus aucune ne s'applique;
 - ightharpoonup Collecter les prémisses et la conclusion, et remplacer φ par P.
- S'il y a des métavariables, ajouter une règle d'instanciation R_{inst} (ou $\neg R_{\text{inst}}$).

Exemple (inclusion)

$$\frac{\forall x.x \in a \Rightarrow x \in b}{X \in a \Rightarrow X \in b} \gamma_{\forall M}$$
$$\frac{X \notin a \mid X \in b}{X \notin a \mid X \in b} \beta_{\Rightarrow}$$

$$\frac{a\subseteq b}{X\not\in a\mid X\in b}\subseteq$$

$$\frac{\neg \forall x. x \in a \Rightarrow x \in b}{\neg (\epsilon_x \in a \Rightarrow \epsilon_x \in b)} \delta_{\neg \forall}$$

$$\frac{\epsilon_x \in a, \epsilon_x \notin b}{\epsilon_x \in a, \epsilon_x \notin b} \alpha_{\neg \Rightarrow}$$

$$\frac{\alpha_x \in a, \epsilon_x \notin b}{\alpha_x \in a, \epsilon_x \in b}$$

$$\frac{a \not\subseteq b}{\epsilon_x \in a, \epsilon_x \not\in b} \neg \subseteq$$

$$\text{avec } \epsilon_x = \epsilon(x), \neg(x \in a \Rightarrow x \in b)$$

$$- \underbrace{ \stackrel{\subseteq}{b}_{a \mid t \in b}}_{\text{cinst}} \subseteq_{\text{inst}}$$

Exemple de recherche de preuve

Avec les règles classiques des tableaux :

$$\frac{\frac{\forall a. \forall b. a \subseteq b \Leftrightarrow \forall x. x \in a \Rightarrow x \in b, A \not\subseteq A}{X \subseteq Y \Leftrightarrow \forall x. x \in X \Rightarrow x \in Y} \gamma_{\forall M} \times 2}{\frac{X \subseteq Y, \forall x. x \in X \Rightarrow x \in Y}{A \subseteq A \Leftrightarrow \forall x. x \in A \Rightarrow x \in A} \gamma_{\forall inst} \times 2}
\frac{A \subseteq A, \forall x. x \in A \Rightarrow x \in A}{\odot} \bigcirc$$

Où Π est :

$$\frac{A \not\subseteq A, \neg \forall x. x \in A \Rightarrow x \in A}{\neg (\epsilon_x \in A \Rightarrow \epsilon_x \in A)} \delta_{\neg \forall}$$

$$\frac{\neg (\epsilon_x \in A \Rightarrow \epsilon_x \in A)}{\bullet} \circ \circ$$

$$\frac{\epsilon_x \in A, \epsilon_x \not\in A}{\bullet} \circ \circ$$

$$\text{avec } \epsilon_x = \epsilon(x). \neg (x \in A \Rightarrow x \in A)$$

Exemple de recherche de preuve

• Avec les règles classiques des tableaux :

$$\frac{\forall a. \forall b. a \subseteq b \Leftrightarrow \forall x. x \in a \Rightarrow x \in b, A \not\subseteq A}{A \subseteq A \Leftrightarrow \forall x. x \in A \Rightarrow x \in A} \gamma_{\forall inst} \times 2$$

$$\frac{A \subseteq A, \forall x. x \in A \Rightarrow x \in A}{\bigcirc} \bigcirc$$

Où Π est :

$$\frac{A \not\subseteq A, \neg \forall x. x \in A \Rightarrow x \in A}{\neg (\epsilon_x \in A \Rightarrow \epsilon_x \in A)} \delta_{\neg \forall}$$

$$\frac{\neg (\epsilon_x \in A, \epsilon_x \not\in A)}{\bigcirc} \circ$$

$$\frac{\neg (\epsilon_x \in A, \epsilon_x \not\in A)}{\bigcirc} \circ$$

$$\text{avec } \epsilon_x = \epsilon(x). \neg (x \in A \Rightarrow x \in A)$$

Exemple de recherche de preuve

• Avec les règles de superdéduction :

$$\frac{A \not\subseteq A}{\underbrace{\epsilon_x \in A, \epsilon_x \not\in A}} \neg \subseteq \underbrace{\underbrace{\circ}}_{\odot} \odot$$

$$\text{avec } \epsilon_x = \epsilon(x). \neg (x \in A \Rightarrow x \in A)$$

DPLL abstrait modulo théories = DPLL(T)

Règles

$$M \parallel S, C \lor I \longrightarrow M, I \parallel S, C \lor I$$
 (unit prop) si $I \not\in M$ et $M \models \neg C$

$$M \parallel S \longrightarrow M, I^{d} \parallel S$$

(decide) si
$$l \notin M$$
, et $l \in S$ ou $\neg l \in S$

$$M \parallel S, C \longrightarrow \text{unsat}$$

(unsat) si
$$M' \models \neg C$$
 t.q. $M' \subseteq M$
et il n'existe pas $I^{d} \leq I'$ dans M
pout tout $I' \in M'$

$$M, I^{\mathrm{d}}, M' \parallel S, C \longrightarrow M, I' \parallel S, C \text{ (backjump)}$$

si
$$M, I^{d}, M' \models \neg C$$
, et il existe
une clause $C' \lor l't.q.$:
 $l' \not\in M$, et $l' \in S$ ou $\neg l' \in S$
ou $l' \in M, I^{d}, M'$ ou
 $\neg l' \in M, I^{d}, M'$,
et $S, C \models C' \lor l'$, et $M \models \neg C'$

$$M \parallel S \longrightarrow M \parallel S, S'$$

$$\models_{\mathcal{T}} S'$$
, où T est une théorie

Un exemple

Égalité avec symboles non interprétés

$$\underbrace{g(a) = c \land (\underbrace{f(g(a)) \neq f(c)}_{\bar{2}} \lor \underbrace{g(a) = d}) \land (\underbrace{c \neq d} \lor \underbrace{g(a) \neq d})}_{\bar{3}} \\ \emptyset \parallel 1, \bar{2} \lor 3, \bar{4} \lor \bar{3} \longrightarrow (\text{unit prop}) \\ 1 \parallel 1, \bar{2} \lor 3, \bar{4} \lor \bar{3} \longrightarrow (\text{decide}) \\ 1 \; \bar{2}^d \parallel 1, \bar{2} \lor 3, \bar{4} \lor \bar{3} \longrightarrow (\text{decide}) \\ 1 \; \bar{2}^d \; \bar{4}^d \parallel 1, \bar{2} \lor 3, \bar{4} \lor \bar{3} \longrightarrow (\text{learn}) \\ 1 \; \bar{2}^d \; \bar{4}^d \parallel 1, \bar{2} \lor 3, \bar{4} \lor \bar{3}, \bar{1} \lor 2 \lor 4 \longrightarrow (\text{backjump}) \\ 1 \; \bar{2}^d \; 4 \parallel 1, \bar{2} \lor 3, \bar{4} \lor \bar{3}, \bar{1} \lor 2 \lor 4 \longrightarrow (\text{learn}) \\ 1 \; \bar{2}^d \; 4 \; \bar{3} \parallel 1, \bar{2} \lor 3, \bar{4} \lor \bar{3}, \bar{1} \lor 2 \lor 4 \longrightarrow (\text{learn}) \\ 1 \; \bar{2}^d \; 4 \; \bar{3} \parallel 1, \bar{2} \lor 3, \bar{4} \lor \bar{3}, \bar{1} \lor 2 \lor 4, \bar{1} \lor 2 \lor \bar{4} \lor \bar{3} \longrightarrow (\text{backjump}) \\ 1 \; 2 \parallel 1, \bar{2} \lor 3, \bar{4} \lor \bar{3}, \bar{1} \lor 2 \lor 4, \bar{1} \lor 2 \lor \bar{4} \lor \bar{3} \longrightarrow (\text{unit prop}) \\ 1 \; 2 \; 3 \parallel 1, \bar{2} \lor 3, \bar{4} \lor \bar{3}, \bar{1} \lor 2 \lor 4, \bar{1} \lor 2 \lor \bar{4} \lor \bar{3} \longrightarrow (\text{unit prop}) \\ 1 \; 2 \; 3 \; \bar{4} \parallel 1, \bar{2} \lor 3, \bar{4} \lor \bar{3}, \bar{1} \lor 2 \lor 4, \bar{1} \lor 2 \lor \bar{4} \lor \bar{3} \longrightarrow (\text{learn}) \\ 1 \; 2 \; 3 \; \bar{4} \parallel 1, \bar{2} \lor 3, \bar{4} \lor \bar{3}, \bar{1} \lor 2 \lor 4, \bar{1} \lor 2 \lor \bar{4} \lor \bar{3} \longrightarrow (\text{learn}) \\ 1 \; 2 \; 3 \; \bar{4} \parallel 1, \bar{2} \lor 3, \bar{4} \lor \bar{3}, \bar{1} \lor 2 \lor 4, \bar{1} \lor 2 \lor \bar{4} \lor \bar{3} \longrightarrow (\text{learn}) \\ 1 \; 2 \; 3 \; \bar{4} \parallel 1, \bar{2} \lor 3, \bar{4} \lor \bar{3}, \bar{1} \lor 2 \lor 4, \bar{1} \lor 2 \lor \bar{4} \lor \bar{3} \longrightarrow (\text{learn}) \\ 1 \; 2 \; 3 \; \bar{4} \parallel 1, \bar{2} \lor 3, \bar{4} \lor \bar{3}, \bar{1} \lor 2 \lor 4, \bar{1} \lor 2 \lor \bar{4} \lor \bar{3} \longrightarrow (\text{learn}) \\ 1 \; 2 \; 3 \; \bar{4} \parallel 1, \bar{2} \lor 3, \bar{4} \lor \bar{3}, \bar{1} \lor 2 \lor 4, \bar{1} \lor 2 \lor \bar{4} \lor \bar{3}, \bar{1} \lor \bar{2} \lor \bar{3} \lor \bar{4} \longrightarrow (\text{unsat}) \\ \text{unsat}$$

Minimiser les clauses apprises

Égalité avec symboles non interprétés

$$\underbrace{g(a) = c}_{1} \land \underbrace{\left(\underbrace{f(g(a)) \neq f(c)}_{\bar{2}} \lor \underbrace{g(a) = d}\right)}_{\bar{3}} \land \underbrace{\left(\underbrace{c \neq d}_{\bar{4}} \lor \underbrace{g(a) \neq d}\right)}_{\bar{3}}$$

```
\begin{array}{c} \emptyset \parallel 1, \bar{2} \vee 3, \bar{4} \vee \bar{3} \longrightarrow \text{(unit prop)} \\ 1 \parallel 1, \bar{2} \vee 3, \bar{4} \vee \bar{3} \longrightarrow \text{(decide)} \\ 1 \; \bar{2}^{\mathrm{d}} \parallel 1, \bar{2} \vee 3, \bar{4} \vee \bar{3} \longrightarrow \text{(decide)} \\ 1 \; \bar{2}^{\mathrm{d}} \; \bar{4}^{\mathrm{d}} \parallel 1, \bar{2} \vee 3, \bar{4} \vee \bar{3} \longrightarrow \text{(learn)} \\ 1 \; \bar{2}^{\mathrm{d}} \; \bar{4}^{\mathrm{d}} \parallel 1, \bar{2} \vee 3, \bar{4} \vee \bar{3}, \bar{1} \vee 2 \longrightarrow \text{(backjump)} \\ 1 \; 2 \parallel 1, \bar{2} \vee 3, \bar{4} \vee \bar{3}, \bar{1} \vee 2 \longrightarrow \text{(unit prop)} \\ 1 \; 2 \; 3 \; \parallel 1, \bar{2} \vee 3, \bar{4} \vee \bar{3}, \bar{1} \vee 2 \longrightarrow \text{(unit prop)} \\ 1 \; 2 \; 3 \; \bar{4} \parallel 1, \bar{2} \vee 3, \bar{4} \vee \bar{3}, \bar{1} \vee 2 \longrightarrow \text{(learn)} \\ 1 \; 2 \; 3 \; \bar{4} \parallel 1, \bar{2} \vee 3, \bar{4} \vee \bar{3}, \bar{1} \vee 2, \bar{1} \vee \bar{3} \vee 4 \longrightarrow \text{(unsat)} \end{array}
```

unsat

Détecter les conflits plus tôt

Égalité avec symboles non interprétés

$$\underbrace{g(a) = c}_{1} \land \underbrace{\left(\underbrace{f(g(a)) \neq f(c)}_{\bar{2}} \lor \underbrace{g(a) = d}_{3}\right) \land \left(\underbrace{c \neq d}_{\bar{4}} \lor \underbrace{g(a) \neq d}_{\bar{3}}\right)}_{\bar{3}}$$

Faire de la propagation avec la théorie

Règle

- On rajoute une règle au système de règles de DPLL(T)
- La règle est très similaire à la propagation unitaire
- La différence est que la validation sémantique se fait avec la théorie
- La règle est la suivante :

 $M \parallel S \longrightarrow M, I \parallel S$ (theory prop) si $I \not\in M$, et $I \in S$ ou $\neg I \in S$, et $M \models_{\mathcal{T}} \neg I$

Faire de la propagation avec la théorie

Égalité avec symboles non interprétés

$$\underbrace{g(a) = c}_{1} \land \underbrace{(f(g(a)) \neq f(c)}_{\bar{2}} \lor \underbrace{g(a) = d}_{3}) \land \underbrace{(c \neq d)}_{\bar{4}} \lor \underbrace{g(a) \neq d}_{\bar{3}})$$

$$\emptyset \parallel 1, \bar{2} \vee 3, \bar{4} \vee \bar{3} \longrightarrow (\mathsf{unit\ prop})$$

$$1\parallel \mathbf{1},\bar{2}\vee 3,\bar{4}\vee\bar{3}\longrightarrow (\mathsf{theory}\;\mathsf{prop})$$

$$1 \ 2 \parallel \mathbf{1}, \overline{2} \lor 3, \overline{4} \lor \overline{3} \longrightarrow (unit prop)$$

$$1\ 2\ 3\ \|\ \mathbf{1}, \mathbf{\bar{2}} \lor \mathbf{3}, \mathbf{\bar{4}} \lor \mathbf{\bar{3}} \longrightarrow \text{(theory prop)}$$

1 2 3 4
$$\parallel$$
 1, $\bar{2} \vee 3$, $\bar{4} \vee \bar{3} \longrightarrow \text{(unsat)}$

unsat

La théorie de l'égalité avec symboles non interprétés

Quels axiomes pour cette théorie?

 La théorie est définie à partir de trois axiomes et d'un schéma d'axiomes (congruence) :

```
(réflexivité) \forall x.x = x

(symétrie) \forall x, y.x = y \Rightarrow y = x

(transitivité) \forall x, y, z.x = y \land y = z \Rightarrow x = z

(congruence) Pour tout f \in \mathcal{S}_{\mathcal{F}} d'arité n : \forall x_1, \dots, x_n, y_1, \dots, y_n.x_1 = y_1 \land \dots \land x_n = y_n \Rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)
```

Procédure de décision pour la théorie de l'égalité

Algorithme de congruence closure

Soit F une conjonction d'égalités et d'inégalités avec des symboles de fonctions non interprétés :

$$F = (\bigwedge_{i=1}^m s_i = t_i) \wedge (\bigwedge_{j=m+1}^n s_j \neq t_j)$$

Soit S l'ensemble des égalités et inégalités dans F.

Soit T l'ensemble des termes et sous-termes dans F.

Procédure de décision pour la théorie de l'égalité

Algorithme de congruence closure

On construit une partition de T de la façon suivante :

• Mettre initialement tous les termes et sous-termes dans leur propre classe de congruence :

$$\{\{t\}\} \mid t \in T\}$$

- 2 Pour tout $1 \le i \le m$:
 - Avec $s_i = t_i$, fusionner les classes de s_i et t_i .
 - Propager la nouvelle congruence avec les règles de symétrie, transitivité et congruence.

Procédure de décision pour la théorie de l'égalité

Algorithme de congruence closure

Shostak en 1978 a démontré le théorème suivant :

F est satisfiable ssi $\not\exists s_i, t_i \in T$ t.q. $s_i \sim t_i$ et $(s_i \neq t_i) \in S$.

On rappelle que :

$$F = (\bigwedge_{i=1}^m s_i = t_i) \wedge (\bigwedge_{j=m+1}^n s_j \neq t_j)$$

Soit S l'ensemble des égalités et inégalités dans F.

Soit T l'ensemble des termes et sous-termes dans F.

Exemple (1)

Formule insatisfiable

$$f(a,b) = a \wedge f(f(a,b),b) \neq a$$

- Partition initiale :
 - $\{\{a\}, \{b\}, \{f(a,b)\}, \{f(f(a,b),b)\}\}$
- Imposer f(a, b) = a: $\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$
- $a \sim f(a, b)$, donc $f(a, b) \sim f(f(a, b), b)$ (congruence) : $\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\}$

La partition donne $f(f(a,b),b) \sim a$ mais la formule initiale contient l'inégalité $f(f(a,b),b) \neq a$.

La formule est donc insatisfiable.

Exemple (2)

Formule satisfiable

$$a = b \wedge b = c \wedge g(f(a), b) = g(f(c), a) \wedge f(a) \neq b$$

- Partition initiale : $\{\{a\}, \{b\}, \{c\}, \{f(a)\}, \{f(c)\}, \{g(f(a), b)\}, \{g(f(c), a\}\}\}$
- Imposer a = b: $\{\{a, b\}, \{c\}, \{f(a)\}, \{f(c)\}, \{g(f(a), b)\}, \{g(f(c), a\}\}\}$
- Imposer b = c: $\{\{a, b, c\}, \{f(a)\}, \{f(c)\}, \{g(f(a), b)\}, \{g(f(c), a\}\}\}$
- $b \sim c$, donc $f(a) \sim f(c)$ (congruence): $\{\{a, b, c\}, \{f(a), f(c)\}, \{g(f(a), b)\}, \{g(f(c), a\}\}\}$
- $f(a) \sim f(c)$ et $b \sim a$, donc $g(f(a), b) \sim g(f(c), a)$ (congruence) : $\{\{a, b, c\}, \{f(a), f(c)\}, \{g(f(a), b), g(f(c), a\}\}$

Il n'y a aucune inégalité qui contredit la relation \sim . La formule est donc satisfiable.

Arithmétique linéaire

Syntaxe

```
formula ::= formula \land formula \mid (formula)\midatom atom ::= sum op sum op ::= = \mid \leq \mid < sum ::= term \mid sum + term term ::= identifier \mid constant \mid constant identifier
```

Domaines : \mathbb{Q} (polynomial) ou \mathbb{Z} (NP-complet).

Exemple

Trouver une solution (rationnelle ou entière) au système suivant :

$$3x_1 + 2x_2 \le 5x_3 \wedge 2x_1 - 2x_2 = 0$$

Algorithme pour se ramener à une forme générale

On considère que le système est de la forme $L \bowtie R$, où L et R sont des formules, et $\bowtie \in \{=, \leq, \geq\}$.

Soit *m* le nombre de contraintes.

Pour la i-ième contrainte t.q. $1 \le i \le m$:

- Passer tous les termes de R à gauche de manière à obtenir $L' \bowtie b$, où b est une constante.
- ② Introduire une nouvelle variable s_i et ajouter les contraintes :

$$L'-s_i=0$$
 et $s_i\bowtie b$

Si \bowtie est l'égalité, réécrire s = b en $s_i \le b$ et $s_i \ge b$.

Transformation en forme générale

- Les variables s_1, \ldots, s_m sont appelées variables additionnelles.
- Les variables x_1, \ldots, x_n dans les contraintes intitiales sont appelées les variables du problème.
- On a donc n variables du problème et m variables additionnelles.
- Une variable additionnelle est introduite seulement si L' n'est pas réduite à une variable du problème ou si elle n'a pas déjà été affectée à une variable additionnelle précédemment.

Arithmétique linéaire

Représentation sous forme de tableau

- Une partie de la matrice est diagonale de dimension $m \times m$ dont les coefficients sont -1 (conséquence directe de la forme générale).
- L'ensemble des m variables est appelé ensemble des variables basiques (ou dépendantes) et est noté \mathcal{B} .
- ullet L'ensemble des autres n variables est appelé ensemble des variables non basiques et est noté ${\mathcal N}$
- On peut représenter A sous la forme d'un tableau, qui est simplement A sans la matrice diagonale et qui est indexé par les variables basiques en ligne et par les variables non basiques en colonne.

Exemple de représentation sous forme de tableau

Pour la représentation matricielle suivante :

$$\left(\begin{array}{ccccc}
1 & 1 & -1 & 0 & 0 \\
2 & -1 & 0 & -1 & 0 \\
-1 & 2 & 0 & 0 & -1
\end{array}\right)$$

On aura le tableau suivant :

	X	у
<i>s</i> ₁	1	1
<i>s</i> ₂	2	-1
s 3	-1	2

Représentation sous forme de tableau

• Le tableau est simplement une représentation différente de A, puisque Ax = 0 peut être réécrit en :

$$\bigwedge_{x_i \in \mathcal{B}} (x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j)$$

• L'algorithme du simplexe travaillera sur cette représentation.

Affectation et initialisation de l'algorithme

- En plus de la structure de tableau, le simplexe maintient une affectation des variables $\alpha: \mathcal{B} \cup \mathcal{N} \to \mathbb{Q}$.
- L'algorithme est initialisé comme suit :
 - L'ensemble \mathcal{B} est initialisé avec les variables additionnelles.
 - lacktriangle L'ensemble ${\cal N}$ est initialisé avec les variables du problème.
 - $\alpha(x_i) = 0$, pour tout x_i avec $i \in \{1, \dots, n+m\}$.
 - On se donne un ordre fixe sur les variables x_i avec $i \in \{1, \dots, n+m\}$.
- Si l'affectation initiale de zéro à toutes les variables satisfait toutes les bornes inférieures et supérieures des variables basiques, alors la formule peut être déclarée satisfiable (les variables non basiques n'ont pas de bornes explicites).
- Sinon l'algorithme doit changer son affectation.

Algorithme

- S'il n'y a pas de variable de base qui ne respecte pas ses bornes, retourner « Satisfiable ». Sinon, x_i est la première variable basique dans l'ordre sur les variables qui ne respecte pas ses bornes.
- 2 Rechercher la première variable non basique appropriée x_j dans l'ordre sur les variables pour la faire pivoter avec x_i . S'il n'y a pas de telle variable, retourner « Insatisfiable ».
- **3** Effectuer l'opération de pivot sur x_i et x_j .
- Aller à l'étape 1.

Algorithme

- L'algorithme maintient deux invariants :
 - (Inv-1) Ax = 0
 - ▶ (Inv-2) les variables non basiques sont dans leurs bornes :

$$l_j \leq \alpha(x_j) \leq u_j$$
, pour tout $x_j \in \mathcal{N}$

• Ces deux invariants sont satisfaits initialement car toutes les variables dans x sont à 0, et les variables non basiques non pas de bornes.

Algorithme

- La boucle principale de l'algorithme vérifie s'il existe une variable basique qui ne respecte pas ses bornes.
- S'il n'y a pas de telle variable, alors les variables basiques et non basiques satisfont leurs bornes.
- En raison de l'invariant Inv-1, ceci signifie que l'assignation courante α satisfait :

$$Ax = 0$$
 et $\bigwedge_{i=1}^{m} I_i \leq s_i \leq u_i$

et l'algorithme retourne « Satisfiable ».

Algorithme

- Sinon, soit x_i la variable basique qui ne respecte pas ses bornes, et supposons, sans perte de généralité, que $\alpha(x_i) > u_i$, c'est-à-dire que la borne supérieure de x_i n'est pas respectée.
- Comment pouvons-nous modifier l'affectation de x_i pour qu'elle satisfasse ses bornes? Nous devons trouver un moyen de réduire la valeur de x_i .
- Rappelons comment cette valeur est calculée :

$$x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j$$

Algorithme

- La valeur de xi peut être réduite :
 - En diminuant la valeur d'une variable non basique x_j telle que $a_{ij} > 0$ et que son affectation actuelle est supérieure à sa borne inférieure l_j .
 - Ou en augmentant la valeur d'une variable x_j telle que $a_{ij} < 0$ et que son affectation actuelle est inférieure à sa borne supérieure u_j .
- Une variable x_j qui remplit l'une de ces conditions est dite appropriée ou acceptable. S'il n'y a pas de variables appropriées, alors le problème est insatisfiable et l'algorithme se termine.

Algorithme

• Soit θ qui dénote de combien nous devons augmenter (ou diminuer) $\alpha(x_i)$ afin de respecter la borne supérieure u_i de x_i :

$$\theta = \frac{u_i - \alpha(x_i)}{a_{ij}}$$

- Augmenter (ou diminuer) $\sqrt[n]{}$ de θ place x_i dans ses bornes. En revanche, $\sqrt[n]{}$ ne satisfait plus nécessairement ses bornes, et peut donc ne plus respecter l'invariant Inv-2.
- Il faut donc intervertir x_i et x_j dans le tableau, c'est-à-dire que nous rendons x_i non basique et x_j basique. Cela nécessite une transformation du tableau, qui se fait selon la méthode du pivot.
- L'opération de pivotement est répétée jusqu'à ce qu'une jusqu'à ce qu'une affectation satisfaisante soit trouvée, ou que le système soit déterminé comme étant insatisfiable.

Méthode du pivot

- Supposons que nous souhaitons intervertir x_i avec x_j .
- L'élément a_{ij} est appelé le pivot. La colonne de x_j est appelée la colonne pivot. La ligne i est appelée la ligne pivot.
- Une précondition pour intervertir deux variables x_i et x_j est que le pivot est non nul, à savoir $a_{ij} \neq 0$.
- L'opération de pivotement est réalisée comme suit :
 - **1** Résoudre la ligne i pour x_j .
 - 2 Pour toutes les lignes $l \neq i$, éliminer x_j en utilisant l'égalité pour x_j obtenue à partir de la ligne i.

Suite de l'exemple

- La borne inférieure de s₁ est 2 et elle n'est pas respectée.
- La variable non basique qui est la plus basse dans l'ordre est x.
- La variable x a un coefficient positif, mais pas de borne supérieure.
- La variable *x* convient donc pour l'opération de pivotement.
- On doit augmenter s_1 de 2 afin de respecter la borne inférieure, ce qui signifie que x doit également être augmentée de 2 ($\theta = 2$).

Suite de l'exemple

• La première étape est de résoudre la ligne de s_1 pour x:

$$s_1 = x + y \Leftrightarrow x = s_1 - y$$

• On utilise cette égalité pour remplacer x dans les autres lignes :

$$s_2 = 2(s_1 - y) - y \Leftrightarrow s_2 = 2s_1 - 3y$$

 $s_3 = -(s_1 - y) + 2y \Leftrightarrow s_3 = -s_1 + 3y$

Suite de l'exemple

Le résultat de l'opération de pivotement est le suivant :

- La borne inférieure de s₃ n'est pas respectée.
- La seule variable appropriée pour le pivotement est *y*.
- On doit ajouter 3 à s_3 afin de respecter la borne inférieure, d'où :

$$\theta=\frac{1-(-2)}{3}=1$$

Suite de l'exemple

Après avoir pivoté avec s_3 et y, on obtient :

- L'affectation satisfait les bornes (des variables basiques).
- Le système initial de contraintes est donc satisfiable.
- L'affectation $\{x\mapsto 1, y\mapsto 1\}$ est une solution.

TD - Arithmétique linéaire

Exercices

Question 1

$$3x_1 + 2x_2 \leq 5x_3 \wedge 2x_1 - 2x_2 = 0$$

Forme générale:

$$egin{aligned} 3x_1 + 2x_2 - 5x_3 - s_1 &= 0 \land \ 2x_1 - 2x_2 - s_2 &= 0 \land \ 0 &\geq s_1 \land \ 0 &\leq s_2 \land \ s_2 &\leq 0 \end{aligned}$$

Application du simplexe :

$$egin{aligned} \overline{N &= \{x_1, x_2, x_3\}} \ B &= \{s_1, s_2\} \ lpha(x_1) &= 0, lpha(x_2) = 0, lpha(x_3) = 0, lpha(s_1) = 0, lpha(s_2) = 0 \end{aligned}$$

Tableau:

	x_1	x_2	x_3
s_1	3	2	-5
s_2	2	-2	0

La solution est :
$$lpha(x_1)=0, lpha(x_3)=0, lpha(x_3)=0$$

Question 2

$$3x+y \leq 3 \land x+y \geq 1 \land x-y \geq -2$$

Forme générale:

 $egin{aligned} s_1 & \leq 0 \land \ 0 & \leq s_2 \land \ s_2 & \leq 0 \land \end{aligned}$

$$egin{aligned} 3x + y - s_1 &= 0 \land \ x + y - s_2 &= 0 \land \ x - y - s_3 &= 0 \land \ s_1 &\leq 3 \land \ s_2 &\geq 1 \land \ s_3 &> -2 \end{aligned}$$

Application du simplexe:

$$egin{aligned} N &= \{x,y\} \ B &= \{s_1,s_2,s_3\} \ lpha(x) &= 0, lpha(y) = 0, lpha(s_1) = 0, lpha(s_2) = 0, lpha(s_3) = 0 \end{aligned}$$

Tableau:

 s_2 n'est pas dans sa borne. s_2 doit être augmenté de 1 pour être dans sa borne (inférieure).

Pivot avec x:

$$egin{aligned} heta &= rac{(1-(0))}{1} \, ext{donc} \, 1 \ s_2 &= x+y \Rightarrow x = s_2 - y \ s_1 &= 3(s_2-y) + y = 3s_2 - 2y \ s_3 &= s_2 - 2_y \end{aligned}$$

	s_2	y
s_1	3	-2
\boldsymbol{x}	1	-1
s_3	1	-2

$$lpha(x)=1, lpha(y)=0, lpha(s_1)=3, lpha(s_2)=1, lpha(s_3)=1$$

La solution est : lpha(x)=1, lpha(y)=0

Question 3

$$3x+y \leq 3 \land x+2y \geq 2 \land x-y \geq -2$$

Forme générale :

$$egin{aligned} 3x + y - s_1 &= 0 \land \ x + 2y - s_2 &= 0 \land \ x - y - s_3 &= 0 \land \ s_1 &\leq 3 \land \ s_2 &\geq 2 \land \ s_3 &> -2 \end{aligned}$$

Application du simplexe:

$$egin{aligned} N &= \{x,y\} \ B &= \{s_1,s_2,s_3\} \ lpha(x) &= 0, lpha(y) = 0, lpha(s_1) = 0, lpha(s_2) = 0, lpha(s_3) = 0 \end{aligned}$$

Tableau:

 s_2 n'est pas dans sa borne. Il doit être augmenté de 2.

Pivot avec x:x doit être gmenté de 2.

$$egin{aligned} s_2 &= x + 2y \Leftrightarrow x = s_2 - 2_y \ s_1 &= 3(s_2 - 2y) + y = 3s_2 - 5y \ s_3 &= s_2 - 2y - y = s_2 - 3y \end{aligned}$$

Tableau:

$$lpha(x)=2, lpha(s_2)=2, lpha(y)=0, lpha(s_1)=6, lpha(s_3)=2$$

 s_1 n'est pas dans sa borne. Il doit être diminué de 3.

pivot avec y : on doit augmenter y de ? (calcul de θ)

$$egin{align*} heta &= rac{(3-6)}{-5} = rac{3}{5} \ s_1 &= 3s_2 - 5y \Leftrightarrow y = rac{3}{5}s_2 - rac{1}{5}s_1 \ x &= s_2 - 2_y \Leftrightarrow x = s_2 - 2(rac{6}{5}s_2 + rac{2}{5}s_1) = -rac{1}{5}s_2 + rac{2}{5}s_1 \ s_3 &= s_2 - 3y \Leftrightarrow s_3 = s_2 - rac{9}{5}s_2 + rac{3}{5}s_1 = -rac{4}{5}s_2 + rac{3}{5}s_1 \ \end{array}$$

<u>Tableau</u>:

	s_2	s_1
\boldsymbol{y}	3 5	$-\frac{1}{5}$
x	$-\frac{1}{5}$	$\frac{2}{5}$
s_3	$-\frac{4}{5}$	$\frac{3}{5}$

$$lpha(s_1)=3, lpha(y)=rac{3}{5}, lpha(s_2)=2, lpha(x)=rac{4}{5}, lpha(s_3)=rac{1}{5}$$

Tout le monde est dans ses bornes.

La solution est :
$$lpha(x)=rac{4}{5}, lpha(y)=rac{3}{5}$$