MA2202: PROBABILITY I

Introduction to probability

Spring 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Definition 1.1 (Experiment). An experiment is an act which can be repeated under similar conditions.

Example. Tossing a fair coin constitutes an experiment. Here, the possible outcomes of the experiment are 'heads' or 'tails'.

Definition 1.2 (Random experiment). A random experiment is one where there is more than one possible outcome, and the outcome of the experiment cannot be determined beforehand.

Example. A coin toss, or the roll of a die is typically regarded as a random experiment.

Definition 1.3 (Sample space). A sample space Ω is the set of all outcomes of an experiment.

Example. The sample space of rolls of a single die is $\Omega = \{1, 2, 3, 4, 5, 6\}$. Note that this is a finite, discrete sample space.

Example. In a game of guessing a particular natural number, the sample space is the set of all natural numbers \mathbb{N} . Note that this is an infinite, discrete sample space.

Example. The temperature in a room may vary continuously. Thus, the sample space of temperatures is a continuous sample space.

Definition 1.4 (Events). A set of events \mathcal{E} is a collection of measurable subsets of a sample space such that $\Omega \in \mathcal{E}$, it is closed under complementing, and it is closed under countable unions.

Remark. Formally, the event space $\mathcal{E} \subseteq \mathcal{P}(\Omega)$ forms a σ -algebra. The pair (Ω, \mathcal{E}) is called a measurable space.

Example. We may have $\mathcal{E} = \{\emptyset, \{2, 4, 6\}, \{1, 3, 5\}, \Omega\}$ as our set of events in the case of rolling a die. Obtaining an even number is an event.

Note that the set of events is also closed under countable intersections, because for a countable set of events $\{E_n\}_n$, we have

$$\bigcap_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} E_n^c$$

by De Morgan's Law, and $E_n^c \in \mathcal{E}$.

Definition 1.5 (Probability). A probability measure is a function $P: \mathcal{E} \to [0, 1]$ such that $P(\emptyset) = 0$, $P(\Omega) = 1$, and for any countable collection of pairwise disjoint events $\{E_n\}_n$, we have

$$P(E) = \sum_{n=1}^{\infty} P(E_n), \qquad E = \bigcup_{n=1}^{\infty} E_n.$$

Note that we obtain the relation

$$P(A^c) = 1 - P(A)$$

directly by noting that $A \cup A^c = \Omega$ and $P(\Omega) = 1$.

Definition 1.6 (Probability space). A probability space (Ω, \mathcal{E}, P) consists of a sample space Ω together with a set of events \mathcal{E} and a probability measure P.

Example. In the context of a coin toss, set $\Omega = \{H, T\}$, $\mathcal{E} = \{\emptyset, \{H\}, \{T\}, \{H, T\}\}$ and define $P \colon \mathcal{E} \to [0, 1]$ such that P(H) = P(T) = 1/2. It can be verified that \mathcal{E} is a σ -algebra and that P is a probability measure, so the triple (Ω, \mathcal{E}, P) is indeed a probability space.

Definition 1.7 (Equally likely events). Two events $A, B \in \mathcal{E}$ are said to be equally likely if P(A) = P(B).

The classical definition of probability states that if the sample space Ω consists of N equally likely events, then the probability of an event $E \in \mathcal{E}$ is given by

$$P(E) = \frac{|E|}{N}.$$

Note that this assumes that the notion of equally likely events is known beforehand.

The frequency definition of probability involves performing an experiment n times, denoting $f_n(E)$ as the frequency of the event E over these iterations, and defining

$$P(E) = \lim_{n \to \infty} \frac{f_n(E)}{n}.$$

Note that such a limit may not always be well defined.

Definition 1.8 (Mutually exclusive events). Two events $A, B \in \mathcal{E}$ are called mutually exclusive if $A \cap B = \emptyset$.

Definition 1.9 (Exhaustive events). A set of events $S \subseteq \mathcal{E}$ is called exhaustive if

$$\Omega = \bigcup_{E \in S} E.$$

Example. For any event $A \in \mathcal{E}$, we see that A and A^c are mutually exclusive and exhaustive.

Theorem 1.1 (Principle of Inclusion and Exclusion). For events $A_1, A_2, \ldots, A_n \in \mathcal{E}$, we have

$$P(A_1 \cup \dots \cup A_n) = \sum_{i < j} P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{n-1} P(A_1 \cap \dots A_n).$$

Proof. This follows by induction. The base case of n=2 states

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2),$$

which follows form the fact that the sets $A_1 \setminus A_2$, $A_1 \cap A_2$ and $A_2 \setminus A_1$ are pairwise disjoint. For the induction step, assume that the expansion holds for $n = m \ge 2$ and note that

$$P\left(A_{m+1}\cap\bigcup_{i=1}^{m}A_{i}\right)=P\left(\bigcup_{i=1}^{m}A_{i}\cap A_{m+1}\right).$$

Putting the n=m+1 case into the n=2 case and expanding the above n=m case, the full expansion will follow.

Theorem 1.2 (Boole's inequality). For events $A_1, A_2, \ldots, A_n \in \mathcal{E}$, we have

$$P(A_1 \cup \dots A_n) \le \sum P(A_i).$$

Proof. This is clearly true for n = 2, since

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2) \le P(A_1) + P(A_2).$$

Define

$$B_i = A_i \setminus \bigcup_{j=1}^{i-1} A_j.$$

Note that $\cup B_i = \cup A_i$, and all B_i are pairwise disjoint. In addition, $B_i \subseteq A_i$, so $P(B_i) \leq P(A_i)$. Thus,

$$P(A_1 \cup \dots \cup A_2) = \sum P(B_i) \le \sum P(A_i).$$

Theorem 1.3 (Bonferroni's inequality). For events $A_1, A_2, \ldots, A_n \in \mathcal{E}$, we have

$$P(A_1 \cap \cdots \cap A_n) \ge \sum P(A_i) - (n-1).$$

Proof. This holds for n = 2, since

$$P(A_1 \cap A_2) = P(A_1) + P(A_2) - P(A_1 \cup A_2) \ge P(A_1) + P(A_2) - 1.$$

For the induction step, suppose this holds for $n = m \ge 2$. Thus,

$$P(A_1 \cap \dots \cap A_m \cap A_{m+1}) \ge P(A_1 \cap \dots \cap A_m) + P(A_m) - 1 \ge \sum P(A_i) - m.$$