SELECTED TOPICS IN ENGINEERING

INTR. TO PROG. FOR DATA SCIENCE ENGR 350

Tuesday-Thursday 10:00-12:45 ENG B05

Dr. Banu Yobaş

Binary classification

By definition, entry *i,j* in a confusion matrix is

- the number of observations actually in group i,
- but predicted to be in group j

In a binary classification task,

- the terms "positive" and "negative" refer to the classifier's prediction, and
- the terms "true" and "false" refer to whether that prediction corresponds to the external judgment (sometimes known as the "observation").

PREDICTED	ACTUAL		
0.00	YES	NO	
YES	61	16	
NO	19	64	

- Total # of cases
- Predictions
- The real cases

PREDICTED	ACTUAL		
	YES	NO	
YES	61	16	
NO	19	64	

True Positive (TP)
True Negative (TN)
False Positive (FP) – aka Type I error
False Negative (FN) – aka Type II error

Statistical Significance

- Type I error occurs if H₀ is rejected when it's true
- Type II error occurs if we do not reject H₀ when it's false

	Reality			
	H ₀ : No Diff	H _a : Difference		
H ₀ : No Diff	1- α	В		
Decision		Type II error		
H _a : Diff	α	1- В		
9.5	Type I error	Power		

Statistical Significance

- We can not minimize α and β together.
 - If we minimize α , β increases
 - If we minimize β , α increases

Evaluating the Predictive Accuracy of a Binary Classifier

- Accuracy: Overall, how often is the classifier correct?
 - \circ (TP+TN)/total = (61+64)/160 = 0.78
- Misclassification Rate: Overall, how often is it wrong?
 - \circ (FP+FN)/total = (16+19)/160 = 0.22
 - = (1 Accuracy)
 - also known as "Error Rate"
- True Positive Rate: When it's actually yes, how often does it predict yes?
 - TP/actual yes = 61/80 = 0.76
 - also known as "Sensitivity" or "Recall"
- False Positive Rate: When it's actually no, how often does it predict yes?
 - FP/actual no = 16/80 = 0.2

PREDICTED	ACTU	ACTUAL	
N=160	YES	NO	
YES	61	16	77
NO	19	64	83
	80	80	7

- Specificity: When it's actually no, how often does it predict no?
 - TN/actual no = 64/80 = 0.8
 - = (1 False Positive Rate)
- Precision: When it predicts yes, how often is it correct?
 - \circ TP/predicted yes = 61/77 = 0.79
- Prevalence: How often does the yes condition actually occur in our sample?
 - actual yes/total = 80 / 160 = 0.5

PREDICTED	ACTUAL			T
N=160	YES	NO		
YES	61	16	77	-
NO	19	64	83	-
	80	80		+
	Sensitivity	Specificity		Ť

Evaluation of models

- Positive predictive value is the probability that subjects with a positive screening test truly have the disease.
- Negative predictive value is the probability that subjects with a negative screening test truly don't have the disease.

	Sensitivity	Specificity		
	80	80		
NO	19	64	83	Negative Predictive Value
YES	61	16	77	Positive Predictive Value
N=160	YES	NO		
PREDICTED	ACTUAL			

The false positive rate shows the proportion of negatives (NO responses) incorrectly identified as positive. We want this to be low.

True Positive =
$$\frac{a}{a+c}$$

The true positive rate, also called sensitivity, shows the proportion of positives (YES responses) that are correctly identified as positive. We want this to be high.

The receiver operating characteristic (ROC) curve shows the performance of a binary classifier across the full range of decision criteria or cutoffs. Perfect performance would correspond to the point (0,1), that is, a false positive rate of 0 and a true positive rate of 1. The area under the curve provides a general index of classification performance.

Multi output

		Reference Class				Total
		A	В	C	D	p_{i+}
	A	35	14	11	1	61
		0.2147	0.0859	0.0675	0.0061	0.3742
	В	4	11	3	0	18
Mapped		0.0245	0.0675	0.0184	0.0000	0.1104
Class	C	12	9	38	4	63
		0.0736	0.0552	0.2331	0.0245	0.3865
	D	2	5	12	2	21
		0.0123	0.0307	0.0736	0.0123	0.1288
Total		53	39	64	7	163
	p_{+j}	0.3252	0.2393	0.3926	0.0429	1.0000

Table 3: Example of a confusion matrix

confusion_matrix

from sklearn.metrics import confusion_matrix

confusion_matrix(actual, predicted)