数字信号处理

周治国

2023.10

第四章 快速傅里叶变换

§ 4-8 线性调频 Z 变换

(Chirp-Z Transform)

一、问题的提出

$$\forall x(n), n = 0, 1, ..., N-1 \longleftrightarrow X(k) \stackrel{\Delta}{=} DFT[x(n)] = \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi}{N}kn} = X(z_k) \Big|_{z_k = e^{j\frac{2\pi}{N}k}}$$

i) N=ML, 2^v → FFT算法 (基-2, 统一, 分裂基)

$$k = 0,1,...,N-1$$

ii)
$$FFT \to X(z_k)|_{z_k=e^{j\frac{2\pi}{N}k}}, \qquad k=0,1,...,N-1$$

(X(z)在 |z|=1 上等间隔取样值)

问题:

1)
$$\exists X(z_k)|_{|z_k|\neq 1}$$
, $k = 0,1,...,M-1$?

2)
$$\exists X(k)$$
, $k = 0,1,...,M-1,M < N$?

3)
$$N \neq ML$$
 (质数), $\exists X(k)$, $k = 0,1,...,M-1$?

Chirp-Z 变换

§ 4-8 线性调频 Z 变换 (Chirp-Z Transform)

二、算法原理

$$\forall x(n), \quad 0 \le n \le N-1 \leftrightarrow$$

$$X(z) = \sum_{n=0}^{N-1} x(n)z^{-n}$$

令

$$z_{k} \stackrel{\Delta}{=} AW^{-k}, \qquad k = 0,1,...,M-1$$

$$A \stackrel{\Delta}{=} A_{0}e^{j\theta_{0}}$$

$$W = W_0 e^{-j\phi_0}, \qquad k = 0,1,...,M-1$$

$$z_k = A_0 e^{j\theta_0} \cdot W_0^{-k} \cdot e^{jk\phi_0} = 0,1,...,M-1$$

图4-26(P.152)

图4-26(P.152)

参数几何意义

- 1) A_0 : $|z_0|$, $(A \le 1)$, 取样起始点的矢量长度
- 2) θ_0 : $\arg\{z_0\}$, (>0/<0), 取样起始点的相角(角频率)
- 3) ϕ_0 : 取样点 z_k , z_{k+1} 间的角频率差 $\phi_0 > 0$, z_k 的路径为逆时针旋转 $\phi_0 < 0$, z_k 的路径为顺时针旋转
- 4) W_0 : 取值决定 z_k 的路径是向内/外盘旋 $W_0 < 1$, z_k 的路径是向外弯曲 $W_0 > 1$, z_k 的路径是向内弯曲 $W_0 = 1$, z_k 的路径是半径为 A_0 的一段圆弧

 $A_0 = 1$ 时,即单位圆上的一部分

1)
$$A_0 = 1$$
, $\theta_0 = 0$

2)
$$W_0 = 1$$
, $\phi_0 = \frac{2\pi}{N} \longrightarrow X(z_k) = X(k) = DFT[x(n)]$

3)
$$M = N$$

$$k = 0,1,...,N-1$$

:.DFT也可视为CZT的一种特例

一般情况:

$$X(z_k) = \sum_{n=0}^{N-1} x(n) A^{-n} W^{nk} \qquad 0 \le k \le M-1$$
 (4-62)

利用公式:

$$nk = \frac{1}{2} [n^2 + k^2 - (k - n)^2]$$

要为:

$$X(z_k) = \sum_{n=0}^{N-1} x(n) A^{-n} W^{nk}$$

$$= \sum_{n=0}^{N-1} x(n) A^{-n} W^{\frac{n^2}{2}} W^{-\frac{1}{2}(k-n)^2} W^{\frac{k^2}{2}}$$

$$= W^{\frac{k^2}{2}} \sum_{n=0}^{N-1} [x(n) A^{-n} W^{\frac{n^2}{2}}] W^{-\frac{1}{2}(k-n)^2}$$

$$= W^{\frac{k^2}{2}} \sum_{n=0}^{N-1} f(n) h(k-n)$$

$$k = 0,1,..., M-1$$

式中:

$$f(n) = x(n)A^{-n}W^{\frac{n^2}{2}}$$
 $n = 0,1,...,N-1$ $n = 0,1,...,M-1$ $n = 0,1,...,$

k = 0,1,...,M-1

$$n = 0,1,...,N-1$$

 $k = 0,1,...,M-1$
 $-N+1 \le -n \le 0$
 $-N+1 \le k-n \le M-1$

$$X(z_k) = \sum_{n=0}^{N-1} x(n) A^{-n} W^{nk}$$

$$= W^{\frac{k^2}{2}} \sum_{n=0}^{N-1} f(n) h(k-n)$$

$$k = 0, 1, ..., M-1$$

$$f(n) = x(n)A^{-n}W^{\frac{n^2}{2}}$$

$$h(n) = W^{-\frac{n^2}{2}} = \left(e^{j\Phi_0}\right)^{\frac{n^2}{2}}$$

图4-27 CZT的运算流程图

注意这里的g(k),是因为定义是X(z_k),是频域序列 按常规卷积定义是x(n)*h(n)=y(n),是时域序列

三、运算/实现 步骤:

$$n=0,1,...,N-1$$

$$A^{-n}W^{\frac{n^2}{2}}$$

$$h(n)$$

$$g(k)$$

$$k=0,1,...,M-1$$

$$W^{\frac{k^2}{2}}$$

(1)要求 $[X(z_k)]$

(2)计算 f(n)*h(n),

$$n=0,1,...,M-1$$

$$f(n), 0 \le n \le N-1$$
 补零至 L 点 $h(n), -(N-1) \le n \le M-1$ $L > N+M-1$ $L = 2^{\nu}$

$$L > N + M - 1$$

$$L = 2^{\nu}$$

$$h'(n)$$

f'(n)

$$f(n)*h(n)$$

$$\times -3 \frac{L}{2} \log_{2}^{l} + L$$

$$\times -3\frac{L}{2}\log_2^l + L$$

 $\times -N$

图 4-28 CZT 的波形图

四、运算量估算

*:
$$\frac{3}{2}L\log_2^L + N + L + M$$

(M,N>50→CZT优于直接计算)

五、CZT算法的特点

1) $\forall x(n)$, $0 \le n \le N-1$ $\exists X(z_k)$, $0 \le k \le M-1$

$$M \neq N, |z_k| \neq 1$$

- 2) N,M均可为质数 → 任意情况
- 3) 取样起始点 z_0 任选: $X(z_k), \quad k = 0,1,...,M-1$

 $z_0 \neq A_0 \longrightarrow \theta_0 \neq 0$

进行窄带高

 $M \neq pq$

4) ϕ_0 可任意取值 z_k, z_{k+1} 的角间隔(频率)任意 频率分辨率可变

分辨分析
$$\phi_0 = \frac{2\pi}{M}, \theta_0 \neq 0$$

$$M > N, A_0 = 1, W_0 = 1$$

5)
$$A = 1, W = e^{j\frac{2\pi}{N}}, \forall N$$

$$CZT \to X(z_k) = DFT[x(n)], \ \forall M$$

$$| \qquad \qquad (N \neq pl) \quad k = 0, 1, ..., M-1$$

§ 4-10 FFT的应用

一、利用FFT求卷积——快速卷积

$$\forall x(n) \qquad 0 \le n \le N_1 - 1$$
$$h(n) \qquad 0 \le n \le N_2 - 1$$

结合CZT

注意观察卷积对移位的定义

$$\exists x(n) * h(n) = \sum_{l=0}^{N_1-1} x(l)h(n-l) = \sum_{l=0}^{N_2-1} h(l)x(n-l)$$

$$x(n) \xrightarrow{k \gg} x'(n) \xrightarrow{FFT} X'(k)H'(k) \xrightarrow{IFFT}$$

- 1. $N_1 \approx N_2$
- 2. $N_1 >> N_2$ 分段卷积
- 3. $x(n) = x^*(n)$, $h(n) = h^*(n)$

运算量比较:

- 1.直接卷积: N²
- 2.快速卷积: 3Nlog₂N

思考: 补零会造成卷积计算误差吗?

一、利用FFT求卷积——快速卷积计算步骤

$$(1)x(n) N_1 h(n) N_2$$

$$y(n) = x(n) * h(n)$$

(2)补零
$$N \ge N_1 + N_2 - 1$$
 $N = 2^{\nu}$

$$y'(n) = x'(n) \otimes h'(n) = \sum_{k=0}^{N-1} x'(k)h'((n-k))_N R_N(n)$$

$$(3)FFT: x'(n) \rightarrow X'(k) \quad h'(n) \rightarrow H'(k)$$

$$(4)Y'(k) = X'(k)H'(k)$$

$$(5)IFFT: y'(n) = \sum_{k=0}^{N-1} \left[\frac{1}{N}Y'(k)\right]W_N^{-nk} = \left[\sum_{k=0}^{N-1} \left[\frac{1}{N}Y'^*(k)\right]W_N^{nk}\right]^*$$

$$(6) y(n)$$

一、利用FFT求卷积——高效的FFT卷积

マ实序列
$$g(n)$$
, $s(n)$, $h(n)$ $0 \le n \le N-1$ $G(k)$, $S(k)$, $H(k)$ $0 \le k \le N-1$ 用一次FFT实现两个卷积运算
$$\begin{cases} y_1(n) = g(n) \otimes h(n) \\ y_2(n) = s(n) \otimes h(n) \end{cases}$$
 合成: $p(n) = g(n) + js(n)$ $\Rightarrow DFT[p(n)] = P(k) = G(k) + jS(k)$ $\Rightarrow Y(k) = H(k)P(k)$ $\Rightarrow y(n) = IFFT[Y(k)] = p(n) \otimes h(n) = [g(n) + js(n)] \otimes h(n) = g(n) \otimes h(n) + js(n) \otimes h(n)$ 因此:
$$\begin{cases} y_1(n) = g(n) \otimes h(n) = \text{Re}[y(n)] \\ y_2(n) = s(n) \otimes h(n) = \text{Im}[y(n)] \end{cases}$$

§ 4-10 FFT的应用

一、利用FFT求卷积——高效的FFT卷积

应用:

- (1)一个系统同时通过两种输入信号
- (2)一个系统同时处理长序列分段过滤中的两个片段
- (3)一个信号同时通过两个系统

二、利用FFT求相关——快速相关

$$\forall x(n) \quad 0 \le n \le N_1 - 1$$

$$y(n) \quad 0 \le n \le N_2 - 1$$

$$\exists z(n) = \sum_{l=0}^{N_1 - 1} x^*(l) y(n+l) = \sum_{l=0}^{N_2 - 1} y^*(l) x(n+l)$$

$$x(n) \xrightarrow{\text{k}} x'(n) \xrightarrow{\text{FFT}} X'^*(k) Y'(k) \xrightarrow{\text{$IFFT$}} z(n)$$

1.
$$N_1 \approx N_2$$

2. $N_1 >> N_2$
3. $x(n) = x^*(n)$, $y(n) = y^*(n)$

$$\begin{cases} 1. & N_1 \approx N_2 \\ x(n) = y(n) \to 2. & N_1 >> N_2 \\ & \exists \text{ if } \exists \text{ if }$$

二、利用FFT求相关——快速相关计算步骤

$$(1)x(n) N_1 y(n) N_2$$

$$z(n) = \sum_{k=0}^{N_1} x^*(k)y(n+k)$$

(2)补零
$$N \ge N_1 + N_2 - 1$$
 $N = 2^{\nu}$ $x'(n)$ $y'(n)$

$$(3)FFT: x'(n) \to X'(k) \quad y'(n) \to Y'(k)$$

$$(4)Z(k) = X'^*(k)Y'(k)$$

(5) IFFT:
$$z'(n) = \sum_{k=0}^{N-1} \left[\frac{1}{N}Z(k)\right]W_N^{-nk} = \left[\sum_{k=0}^{N-1} \left[\frac{1}{N}Z^*(k)\right]W_N^{nk}\right]^*$$

往年真题:

4、设有两个有限长实序列, 试给出用基-2 FFT计算其线 性卷积的方法步骤(要求尽 量减少乘法运算次数),并 与用线性卷积定义直接计算 时的运算量做以比较。

往年真题:

5、已知实序列x(n)和y(n), 长度分别为N和M,试给出 仅用基-2 FFT正变换快速计 算其线性卷积的方法步骤, 要求尽量减少乘法运算次数。

§ 4-11 2-D DFT/FFT 算法

一、2-D DFT

$$\forall x(m,n) 0 \le m \le M-1 0 \le n \le N-1 M = 2^{v_1} X(k,l) = DFT[x(m,n)] = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} x(m,n) W_M^{km} W_N^{ln} 0 \le l \le N-1 0 \le l \le N-1$$

$$x(m,n) = \frac{1}{MN} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} X(k,l) W_M^{-km} W_N^{-ln} \qquad 0 \le m \le M-1$$

$$0 \le m \le M-1$$

二、2-D FFT

 $*-M \times \frac{N}{2} \log_2^N$

三、运算量估算

1、2-D FFT

$$M \times \frac{N}{2} \log_2^N + N \times \frac{M}{2} \log_2^M = \frac{MN}{2} (\log_2^N + \log_2^M) = \frac{MN}{2} \log_2^{MN}$$

2、2-D DFT

$$N^2M^2 = (MN)^2$$

§ 4-12 FFT的其它形式

Winograd Fourier Transform Algorithm (WFTA):

算法步骤:

- 1.利用下标映射,把大N点的DFT化成互素的小N点的DFT;
- 2.把小N点的DFT化成循环卷积;
- 3.找出计算小N点卷积的快速算法,从而得到小N点的DFT的快速算法;
- 4.由小N点的DFT求出大N点的DFT。

$$x(n)=\{x(0), x(1), x(2)...x(14)\} = \{0,1,2,...,14\}$$

$$X(k)=\{$$

FFT

1.0e+002 *

1.0500	-0.0750 + 0.3528i	-0.0750 + 0.1685i	-0.0750 + 0.1032i	-0.0750 + 0.0675i
-0.0750 + 0.0433i	-0.0750 + 0.0244i	-0.0750 + 0.0079i	-0.0750 - 0.0079i	-0.0750 - 0.0244i
-0.0750 - 0.0433i	-0.0750 - 0.0675i	-0.0750 - 0.1032i	-0.0750 - 0.1685i	-0.0750 - 0.3528i
}				

```
x(n)= { 0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
}
```

2D-FFT

$$X(k) = {$$

1.0e+002 *

1.0500	-0.0750 + 0.1032i	-0.0750 + 0.0244i	-0.0750 - 0.0244i	-0.0750 - 0.1032i
-0.3750 + 0.2165i	0	0	0	0
-0.3750 - 0.2165i	0	0	0	0

$$x(n)= \{x(0), x(1), x(2)...x(14)\} = \{0,1,2,...,14\}$$

 $X(k)= \{$
1.0e+002 *

FFT

1.0500	-0.0750 + 0.3528i	-0.0750 + 0.1685i	-0.0750 + 0.1032i	-0.0750 + 0.0675i
-0.0750 + 0.0433i	-0.0750 + 0.02441	-0.0750 + 0.0079i	-0.0750 - 0.0079i	<u>(0.0750 - 0.0244i)</u>
-0.0750 - 0.0433i	-0.0750 - 0.0675i	-0.0750 - 0.1032i	-0.0750 - 0.1685i	-0.0750 - 0.3528i
}				

x(n)= {	[
	x(0)	x(3)	x(6)	x(9)	x(12)
	x(5)	x(8)	x(11)	x(14)	x(2)
	x(10)	x(13)	x(1)	x(4)	x(7)
	}				

$X(k) = {$	•				
	X(0)	X(6)	X(12)	X(3)	X(9)
	X(10)	X(1)	X(7)	X(13)	X(4)
1	X(5)	X(11)	X(2)	X(8)	X(14)
}					

 $X(k)=\{$

2D-FFT

1.0e+002 *

1.0500	-0.0750 + 0.02441	-0.0750 - 0.1032i	-0.0750 + 0.1032i	<u>-0.0750 - 0.0244i</u>
-0.0750 - 0.0433i	-0.0750 + 0.3528i	-0.0750 + 0.0079i	-0.0750 - 0.1685i	-0.0750 + 0.0675i
-0.0750 + 0.0433i	-0.0750 - 0.0675i	-0.0750 + 0.1685i	-0.0750 - 0.0079i	-0.0750 - 0.3528i

本章回顾:

- 1.基-2 DIT
- 2.基-2 DIF
- 3.统一复合数
- 4.基-4 DIF/DIT
- 5.分裂基
- 6.实序列FFT
- 7.Chirp Z变换

算法原理 时抽频抽 蝶形流图 复乘复加 算法特点 变换卷积

FFT理解:逻辑

□途径:

- 利用旋转因子Wn的对称性+周期性
- 将长序列分为短序列

□逻辑:

- 合并同类项,可以减少x(n)与旋转因子W_N乘法
- 希望计算量N²变N²/2,但需要保持短序列仍然符合
 合DFT表达,所以通过奇偶抽来"凑"

FFT理解: 因果

• 算法: DIT, DIF 时抽、频抽

通过将x(n)按时间轴分为r段短序列,然后按"r点蝶形合成的"短序列进行DFT,那么X(k)必然要随着合成的短序列来"奇偶抽取"保持"表达式"改变序号,结果导致了X(k)逆序输出。

• 分 break **分则乱** ---序号

• 抽 decimatiom **奇偶抽** ---序号

• 合 combine 前后合 ---(0~N/2-1) (N/2~N-1)

• 蝶 butterfly 旋转乘 ---(twiddle factors)

FFT理解: 艺术

• 算法: DIT, DIF, 复合数, 分裂基

• 分、抽、合、蝶 → 算法推导, 破蛹(茧)成蝶

- 蛹→**DFT**: 信息不损失
- 蝶→FFT: 我想飞得更快