Rod cutting problem

João, Leonardo, Paulo

Problemas sobre programas recursivos

- Podem existir muitas chamadas repetidas
- Podem estourar a pilha com uma recursão muito grande
- Trocam a performance do programa pela facilidade de o programar

Fonte: BAS | Recursion

Programação dinâmica - O que é?

- Método para resolver problemas recursivos
- Aplicável em problemas onde a solução pode ser descrita por uma equação
- Usa de soluções menores para construir a próxima solução

Programação dinâmica - Técnicas e termos

- Equação de recorrência
 - Dá a definição do problema
 - Define que tipo de chamada será feita
 - Identifica de que maneira a chamada recursiva será feita

$$F_n = \begin{cases} 0 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n > 1. \end{cases}$$

Fonte: Token Rock | Fibonacci Numbers

Memoização

- Técnica para memorizar cálculos anteriormente realizados
- Evita a repetição de chamadas
- Contribui para a diminuição no uso da pilha de recursão
- Geralmente mais intuitivo
- Resolve o problema de maneira top-down
 - "Para dominar o mundo, dominarei primeiro meu continente. Para dominar meu continente dominarei primeiro meu país. Para dominar meu país dominarei primeiro minha cidade"

Tabulação

- Técnica para memorizar cálculos anteriormente realizados
- Evita a repetição de chamadas
- Elimina o uso de pilha e de recursão
- Pode ser menos intuitivo
- Resolve o problema de maneira bottom-up
 - "Vou dominar minha minha cidade, após isso isso meu país, após isso dominarei meu continente e então dominarei o mundo"

Rod cutting problem

- Entrada do problema
 - Barra de tamanho N
 - Conjunto de tamanhos p
 - Conjunto de preços r

(e)

 Qual a melhor maneira de cortar a barra de modos que você maximize seu lucro?

Fonte: Token Rock | Fibonacci Numbers

(f)

Rod cutting problem

- Entrada do problema
 - Barra de tamanho N
 - Conjunto de tamanhos p
 - Conjunto de preços r

9 1 8 (b)

(a) (b)

1 1 5 1 (e) (f)

 Qual a melhor maneira de cortar a barra de modos que você maximize seu lucro?

Fonte: Token Rock | Fibonacci Numbers

Solução ótima

$$r_k = \max(p_i + r_{k-i})$$
 over all $1 \le i \le k$

Fonte: Radford | Dynamic Programming - Rod Cutting

r_k: Maior lucro para barra ou corte de tamanho k

p_i : Preço por corte de tamanho i

Exemplo de solução recursiva

```
CutRod(array p, int n):

if n = 0

then return 0

q := -Inf

for i in 1 .. n loop:

q := max(q, p(i) + CutRod(p, n-i)

return q
```


Fonte: Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Combinações possíveis

Tamanho de corte	Valor
4	9
1, 3	1 + 8 = 9
2, 2	5 + 5 = 10
3, 1	8 + 1 = 9
1, 1, 2	1 + 1 + 5 = 7
1, 2, 1	1 + 5 + 1 = 7
2, 1, 1	5 + 1 + 1 = 7
1, 1, 1, 1	1 + 1 + 1 + 1 = 4

Exemplo de solução usando PD - Memoization

```
set = [0]
CutRodMemo(array p, int n):
     if n = 0
           then return 0
     if n < length set
           then return set(n)
     q := -Inf
     for i in 1 .. n loop:
           q := max(q, p(i) + CutRodMemo(p, n-i)
     set(n) = q
```

return q

Fonte: Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Exemplo de solução usando PD - Tabulação

CutRodTabulation(array p , int n): # Bottom Up Solution

```
r: array(0..n) # Lucros ótimos por barra de tamanho 0..n
r(0) := 0

for j in 1..n loop:
    q := -Inf
    for i in 1..j loop:
        q := max( q , p(i) + r(j-i) )
    end loop
    r(j) := q
end loop

return r(n)
```

Exemplo de solução usando PD

i	r _i	Máximo valor
0	r _o	0
1	r ₁	$p_1 + r_0$
2	r ₂	$p_1 + r_1, p_2 + r_0$
3	r ₃	$p_1 + r_2, p_2 + r_1, p_3 + r_0$
4	r ₄	$p_1 + r_3, p_2 + r_2, p_3 + r_1, p_4 + r_0$

Exemplo

```
N = 4
```

Encontrar o maior lucro ao cortar uma barra de tamanho 4.

```
- r_0 = 0

- Encontrar os valores para r_i, i < 4.

- r_4 = \max (p_1 + r_3, p_2 + r_2, p_3 + r_1, p_4 + r_0)

= \max (1 + 8, 5 + 5, 8 + 1, 9 + 0)

= \max (9, 10, 9, 9)

= 10
```

Complexidade computacional

- Solução recursiva: O(2^N)
 - solução ótima
- Solução DP: O(N^2)
 - solução ótima

Solução recursiva - Complexidade

- Sendo T(n) o número de chamadas a função CutRod
- T(0) = 1

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j) = 2^n$$

```
Recursive Solution
(10, [2, 2])
Total Calls: 16
Calls: [8, 4, 2, 1, 1]
```


Fonte: Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Solução usando PD - Complexidade

```
Dynamic Solution
(10, [2, 2])
Total Calls: 11
Calls: [4, 3, 2, 1, 1]
```

$$1+2+3+4+\cdots+n=\sum_{k=1}^n k=\frac{n(n+1)}{2}=\frac{n^2+n}{2}$$

Comparação da Complexidade

Exposição do código

Referências

- Radford | Dynamic Programming Rod Cutting
- Geeks for Geeks | Cutting a Rod
- educative.io | The rod cutting problem
- superwits | Dynamic Programming Technique
- BAS | Recursion
- OpenGenus | Rod cutting problem
- Geeks for Geeks | Tabulation Vs. Memoization