МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ІВАНА ФРАНКА

Факультет прикладної математики та інформатики

3BIT

до індивідуального завдання №5 з дисципліни «Моделі статистичного навчання»

> Виконав студент групи ПМіМ-12: Бордун Михайло

> > Перевірив:

Проф. Заболоцький Т. М.

Хід виконання

- 1. На основі згенерованих даних застосуємо вибір найкращої підмножини.
- **1.1** Використовуючи функцію rnorm() згенеруйте предиктор X довжиною n = 100, та вектор залишків ε такої ж довжини n = 100.

```
set.seed(1)
x = rnorm(100)
eps = rnorm(100)
```

1.2 Згенеруйте вектор залежних змінних *Y* довжини n=100 відповідно до моделі $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \varepsilon$,

де β_0 , β_1 , β_2 і β_3 константи на ваш вибір.

```
betas = runif(5, min=-5, max=5)
print("Beta-values list:")
print(betas)

y = betas[1] + betas[2] * x +
  betas[3] * x^2 + betas[4] * x^3 + eps
```

```
[1] "Beta-values list:"
[1] 1.588776 -3.149300 4.543781 3.978485 4.436971
```

Визначення значень β_i відбувається випадково (в минулому пункті визначено seed як 1), в межах від -5 до 5 будь-які дробові числа. Останнє значення – це значення $\beta_{7,}$ яке нам буде необхідне в наступних пунктах.

1.3 Використовуючи функцію regsubsets() виберіть найкращу модель методом вибору найкращої підмножини з множини предикторів X, X^2, \ldots, X^{10} . Яка модель найкраща за показниками C_p , BIC і скорегований R^2 ? Наведіть декілька графіків

на підтвердження своєї відповіді та вкажіть оцінки коефіцієнтів найкращої моделі.

```
data.frame = data.frame(y = y, x = x)
BestModelSelection = function(method_, mtext_) {
    cat("\n")
    reg.fit = regsubsets(y \sim x + I(x^2) + I(x^3) + I(x^4)
    + I(x^5) + I(x^6) + I(x^7) + I(x^8) + I(x^9) + I(x^10), data = data.frame,
    nvmax = 10, method = method_)
    reg.summary = summary(reg.fit)
    print(reg.summary)
    par(mfrow = c(2, 2))
    plot(reg.summary$cp, xlab = "Кількість змінних", ylab = "Ср", type = "l")
    points(which.min(reg.summary$cp), reg.summary$cp[which.min(reg.summary$cp)],
    col = "blue", cex = 2, pch = 20)
    plot(reg.summary$bic, xlab = "Кількість змінних", ylab = "BIC", type = "l")
    points(which.min(reg.summary$bic), reg.summary$bic[which.min(reg.summary$bic)],
    col = "blue", cex = 2, pch = 20)
    plot(reg.summary$adjr2, xlab = "Кількість змінних", ylab = "Скорегований R^2", type
= "1")
    points(which.max(reg.summary$adjr2),
reg.summary$adjr2[which.max(reg.summary$adjr2)],
    col = "blue", cex = 2, pch = 20)
    mtext(mtext_, side = 3, line = -2, outer = TRUE)
    cat("\n")
    point.a = which.min(reg.summary$cp)
    point.b = which.min(reg.summary$bic)
    point.c = which.max(reg.summary$adjr2)
```

```
if (point.a == point.b && point.a == point.c) {
      print(coef(reg.fit, point.a))
    } else if (point.a == point.b && point.a != point.c) {
      print(coef(reg.fit, point.b))
     print(coef(reg.fit, point.c))
    } else if (point.a != point.b && point.a == point.c ||
              point.a != point.b && point.b == point.c) {
      print(coef(reg.fit, point.a))
      print(coef(reg.fit, point.b))
    } else if (point.a != point.b && point.b == point.c) {
    } else {
     print(coef(reg.fit, point.a))
      print(coef(reg.fit, point.b))
     print(coef(reg.fit, point.c))
BestModelSelection("exhaustive",
 "Графіки С_р, ВІС та скорегованого R^2")
```

```
Subset selection object
Call: BestModelSelection("exhaustive",
"Графіки С.р, ВІС та скорегованого R^2")
10 Variables (and intercept)
       Forced in Forced out
           FALSE
                      FALSE
I(x^2)
           FALSE
                      FALSE
I(x^3)
           FALSE
                      FALSE
I(x^4)
           FALSE
                      FALSE
I(x^5)
          FALSE
                     FALSE
I(x^6)
          FALSE
                     FALSE
I(x^7)
          FALSE
                    FALSE
I(x^8)
          FALSE
                    FALSE
I(x^9)
           FALSE
                     FALSE
I(x^10)
          FALSE
                     FALSE
1 subsets of each size up to 10
Selection Algorithm: exhaustive
         x I(x^2) I(x^3) I(x^4) I(x^5) I(x^6) I(x^7) I(x^8) I(x^9) I(x^10)
  (1)
         2
                    пжп
    1
         *** ***
                    п*п
    1)
         *** ***
                                 ***
                                        п*п
                    п*п пп пп
                                              11 *11
6
    1
    1
                   "*" "*" " "
                                        пжп
                                                    п*п
                                                            пжп
                                                                   пжп
8
    1
                    "*" "*"
                                                     11 * 11
                                                            п*п
10 (1) "*" "*"
                          "*"
                                 п*п
                                                     "*"
                                                            "*"
                                                                   "*"
```

Як бачимо тут подано найкращий набір змінних для кожної розмірності моделі. Зірочки тут означають, що дана змінна включена у відповідну модель.

```
(Intercept) x I(x^2) I(x^3) I(x^5)
1.66078384 -2.76184440 4.38953778 3.53645918 0.08072292
(Intercept) x I(x^2) I(x^3)
1.650283 -3.174020 4.419990 3.996123
```

Графіки С_p, BIC та скорегованого R^2

3 огляду на наведені вище результати, бачимо, що найкраща модель за показниками C_p та скорегованим R^2 – це модель з 4 змінними (x, x^2, x^3, x^5) . Для показника ВІС бачимо, що вже найкращою буде модель зі змінними x, x^2 та x^3 .

1.4 Повторіть 1.3, використовуючи методи покрокового вибору вперед та назад. Порівняйте отримані результати з 1.3.

```
(Intercept) x I(x^2) I(x^3) I(x^5)
1.6602897552 -2.7530199571 4.3904564519 3.5177817906 0.0891021995
I(x^7)
-0.0009812316
```

Графіки С_р, BIC та скорегованого R^2 для покрокового вибору вперед

(Intercept) x I(x^2) I(x^3) I(x^9) 1.668012452 -2.917394527 4.377275549 3.798040727 0.001290827 (Intercept) x I(x^2) I(x^3) 1.650283 -3.174020 4.419990 3.996123

Графіки С_p, BIC та скорегованого R^2 для покрокового вибору назад

Аналізуючи наведені результати, можна сказати, що кожен метод дає інший результат, і тільки для методу покрокового вибору вперед для всіх показників найкращою буде модель з 5-ма змінними (x, x^2, x^3, x^5, x^7) .

Для методу покрокового вибору назад результат дуже подібних до методу вибору найкращої підмножини, оскільки для кожного показника найкраща модель має таку ж кількість змінних, але вони відрізняються: для покрокового вибору назад найкраща модель за показниками C_p та скорегованим R^2 є зі змінними x, x^2, x^3, x^9 . Для показника ВІС бачимо, що вже найкращою буде модель зі змінними x, x^2 та x^3 .

1.5 Пристосуйте ласо модель до згенерованих даних, використовуючи X, X^2, \ldots, X^{10} як предиктори . Використайте перехресну перевірку для вибору значення λ . Побудуйте графіки помилки перехресної перевірки як функції від λ . Наведіть отримані оцінки коефіцієнтів моделі та обгрунтуйте отримані результати.

```
[1] "Min lambda: 0.0129972236622867"
(Intercept) x I(x^2) I(x^3) I(x^4) I(x^5)
1.70350206 -2.55037422 4.25913284 3.38384904 0.02866323 0.10039894
```


3 рисунка видно, що при додатних значеннях логарифма лямбли помилка стрімко зростає. В результаті бачимо, що методом лассо ми знайшли мінімальну в сенсі помилки лямбду, яка дорівнює 0.013 і з допомогою неї знайшли найкращу модель, яка включає в себе 5 змінних (x, x^2, x^3, x^4, x^5) .

1.6 Згенеруйте вектор залежних змінних У відповідно до моделі

$$Y = \beta_0 + \beta_7 X^7 + \varepsilon,$$

і застосуйте метод найкращого вибору підмножини і ласо. Обгрунтуйте отримані результати.

```
data.frame = data.frame(y = y, x = x)

BestModelSelection("exhaustive",

"Графіки С.р, ВІС та скорегованого R^2")

Lasso()
```

```
(Intercept)
                 I(x^2)
                              I(x^7)
 1.6592665
                          4.4385257
             -0.1417084
(Intercept)
                 I(x^7)
   1.547716
               4.437741
(Intercept)
                              I(x^2)
                                          I(x^3)
                                                       I(x^7)
                      х
  1.6650285
              0.2914016
                         -0.1617671
                                      -0.2526527
                                                   4.4461043
[1] "Min lambda: 7.84052238330809"
(Intercept)
                 I(x^7)
   2.093672
               4.308379
```

Графіки С.р, ВІС та скорегованого R^2

Враховуючи наведені вище результати, бачимо, що найкраща модель для всіх показників має різну кількість змінних, так: за показниками C_p — це модель з 2 змінними (x^2, x^7) . скорегованим R^2 модель з 4 змінними (x, x^2, x^3, x^7) . Для показника ВІС бачимо, що вже найкращою буде модель зі змінною x^7 .

Оскільки $\beta_7 = 4.437$, то можемо з впевненістю сказати, що метод найкращого вибору підмножини з використанням ВІС визначає найбільш точну модель з однією змінною.

Щодо методу лассо, то ми знайшли мінімальну в сенсі помилки лямбду, яка дорівнює 7.84 і з допомогою неї знайшли найкращу модель, яка включає одну змінну x^7 . Проте точність моделі є гіршою у порівнянні з методом найкращого вибору підмножини з використанням показника ВІС.

2. На основі даних College передбачимо кількість отриманих заяв.

```
No :212 Min. : 81 Min. : 72 Min. : 35 Min. : 1.00
Yes:565 1st Qu.: 776 1st Qu.: 604 1st Qu.: 242 1st Qu.:15.00
               Median: 1558 Median: 1110 Median: 434 Median: 23.00
  Mean : 3002 Mean : 2019 Mean : 780 Mean :27.56
3rd Qu.: 3624 3rd Qu.: 2424 3rd Qu.: 902 3rd Qu.:35.00
Max. :48094 Max. :26330 Max. :6392 Max. :96.00
Top25perc F.Undergrad P.Undergrad Outstate
Min. : 9.0 Min. : 139 Min. : 1.0 Min. : 2340
1st Qu.: 41.0 1st Qu.: 992 1st Qu.: 95.0 1st Qu.: 7320
Median : 54.0 Median : 1707 Median : 353.0 Median : 9990
Mean : 55.8 Mean : 3700 Mean : 855.3 Mean :10441
3rd Qu.: 69.0 3rd Qu.: 4005 3rd Qu.: 967.0 3rd Qu.:12925
Max. :100.0 Max. :31643 Max. :21836.0 Max. :21700
Room.Board Books Personal PhD
Min. :1780 Min. : 96.0 Min. : 250 Min. : 8.00
1st Qu.:3597 1st Qu.: 470.0 1st Qu.: 850 1st Qu.: 62.00
Median :4200 Median : 500.0 Median :1200 Median : 75.00
Mean :4358 Mean : 549.4 Mean :1341 Mean : 72.66
3rd Qu.:5050 3rd Qu.: 600.0 3rd Qu.:1700 3rd Qu.: 85.00
Max. :8124 Max. :2340.0 Max. :6800 Max. :103.00
    Terminal S.F.Ratio perc.alumni Expend
n. : 24.0 Min. : 2.50 Min. : 0.00 Min. : 3186
Min. : 24.0
1st Qu.: 71.0 1st Qu.:11.50 1st Qu.:13.00 1st Qu.: 6751 Median : 82.0 Median :13.60 Median :21.00 Median : 8377
Mean : 79.7 Mean :14.09 Mean :22.74 Mean : 9660
3rd Qu.: 92.0 3rd Qu.:16.50 3rd Qu.:31.00 3rd Qu.:10830 Max. :100.0 Max. :39.80 Max. :64.00 Max. :56233
  Grad.Rate
Min. : 10.00
1st Ou.: 53.00
Median: 65.00
Mean : 65.46
3rd Qu.: 78.00
Max.
         :118.00
```

Загальна характеристика даних College

2.1 Розбийте набір даних на навчальний та тестовий набори.

```
set.seed(1)
train = sample(1:length(Apps), 0.5 * length(Apps))
College.train = College[train, ]
College.test = College[-train, ]
```

2.2 Оцініть лінійну модель, використовуючи метод найменших квадратів на навчальному наборі, та обчисліть тестову помилку.

```
fit.lm = lm(Apps ~ ., data = College.train)
pred.lm = predict(fit.lm, College.test)
```

```
cat("\n")
print(paste("Test error: ", round(mean((pred.lm - College.test$Apps)^2), 2)))
```

```
[1] "Test error: 1135758.32"
```

2.3 Пристосуйте модель гребеневої регресії до тренувального набору, вибравши λ шляхом перехресної перевірки. Обчисліть тестову помилку.

```
train.mat = model.matrix(Apps ~ ., data = College.train)
test.mat = model.matrix(Apps ~ ., data = College.test)

grid = 10 ^ seq(10, -2, length = 100)
fit.ridge = glmnet(train.mat, College.train$Apps, alpha = 0,
    lambda = grid)
cv.ridge = cv.glmnet(train.mat, College.train$Apps, alpha = 0,
    lambda = grid)
cat("\n")
print(dim(coef(fit.ridge)))

bestlam = cv.ridge$lambda.min
print(paste('Min lambda: ', bestlam))
pred.ridge = predict(fit.ridge, s = bestlam, newx = test.mat)
print(paste('Test error: ", round(mean((pred.ridge - College.test$Apps)^2), 2)))
```

```
19 100
"Min lambda: 0.01"
"Test error: 1134676.8"
```

3 кожним вектором лямбда пов'язаний вектор коефіцієнтів гребеневої регресії, які зберігаються в матриці, до якої можна отримати доступ через coef(). У цьому випадку це 19x100 матриця (лямбди з огляду на grid() є в межах від 10^{-2} до 10^{10}).

Мінімальна в сенсі помилки лямбда дорівнює 0.01 і з допомогою неї знайшли найкращу тестову помилку, що дорівнює 1134676.8, що є кращим результатом в порівнянні з обчисленою методом найменших квадратів.

2.4 Пристосуйте модель ласо до тренувального набору, вибравши λ шляхом перехресної перевірки. Обчисліть тестову помилку. Яка кількість ненульових оцінок коефіцієнтів.

```
fit.lasso = glmnet(train.mat, College.train$Apps, alpha = 1,
    lambda = grid)

cv.lasso = cv.glmnet(train.mat, College.train$Apps, alpha = 1,
    lambda = grid)

cat("\n")

bestlam = cv.lasso$lambda.min
print(paste('Min lambda: ', bestlam))
pred.lasso = predict(fit.lasso, s = bestlam, newx = test.mat)
print(paste("Test error: ", round(mean((pred.lasso - College.test$Apps)^2), 2)))

cat("\n")
lasso.coefs = predict(fit.lasso, s = bestlam, type = "coefficients")
print(lasso.coefs)
```

"Min lambda: 0.01"
"Test error: 1133422.13"

Мінімальна в сенсі помилки лямбда дорівнює 0.01 і з допомогою неї знайшли найкращу тестову помилку, що дорівнює 1133422.1, що є кращим результатом в порівнянні з обчисленою методом найменших квадратів та гребеневої регресії.

```
19 x 1 sparse Matrix of class "dgCMatrix"
(Intercept) -7.931498e+02
(Intercept) .
PrivateYes -3.078903e+02
Accept 1.777242e+00
Enroll -1.450532e+00
Top10perc 6.659456e+01
Top25perc -2.221506e+01
F.Undergrad 8.983869e-02
P.Undergrad 1.005260e-02
Outstate -1.082871e-01
Room.Board 2.118762e-01
Books 2.922508e-01
Personal 6.234085e-03
PhD -1.542914e+01
Terminal
          6.364841e+00
S.F.Ratio
           2.284667e+01
perc.alumni 1.114025e+00
Expend 4.861825e-02
Grad.Rate 7.466015e+00
```

Також бачимо, що жоден з коефіцієнтів не дорівнює нулю.

2.5 Пристосуйте модель PCR до тренувального набору, причому М виберіть шляхом перехресної перевірки. Яке отримане значення М? Обчисліть отриману помилку тесту.

```
fit.pcr = pcr(Apps ~ ., data = College.train, scale = TRUE, validation = "CV")
validationplot(fit.pcr, val.type = "MSEP", xlab = "Кількість змінних")

cat("\n")
print(paste('Min M: ', which.min(fit.pcr$validation$adj)))
pred.pcr = predict(fit.pcr, College.test, ncomp = which.min(fit.pcr$validation$adj))
print(paste("Test error: ", round(mean((pred.pcr - College.test$Apps)^2), 2)))
```

"Min M: 17" "Test error: 1135758.32"

Мінімальна в сенсі помилки модель має M=17 з тестовою помилкою, що дорівнює 1135758.3, що є ідентичним результатом в порівнянні з обчисленою методом найменших квадратів.

2.6 Пристосуйте модель PLS до тренувального набору, причому М виберіть шляхом перехресної перевірки. Яке отримане значення М? Обчисліть отриману помилку тесту.

```
fit.pls = plsr(Apps ~ ., data = College.train, scale = TRUE, validation = "CV")
validationplot(fit.pls, val.type = "MSEP", xlab = "Кількість змінних")

cat("\n")
print(paste('Min M: ', which.min(fit.pls$validation$adj)))
pred.pls = predict(fit.pls, College.test, ncomp = which.min(fit.pls$validation$adj))
print(paste("Test error: ", round(mean((pred.pls - College.test$Apps)^2), 2)))
```

"Min M: 17" "Test error: 1135758.32"

Мінімальна в сенсі помилки модель має M=17 з тестовою помилкою, що дорівнює 1135758.3, що є ідентичним результатом в порівнянні з обчисленою методом найменших квадратів та помилкою у моделі PCR.

2.7 Прокоментуйте отримані результати. Наскільки точно ми можемо передбачити кількість отриманих заявок на коледж? Чи велика різниця між тестовими помилками, що виникають внаслідок розглянутих п'яти підходів?

```
test.mean = mean(College.test$Apps)
methods.list = c(pred.lm, pred.ridge, pred.lasso, pred.pcr, pred.pls)
```

```
GetRSqr = function(m) {
    r_result = 1 - mean((m - College.test$Apps)^2) / mean((test.mean -
College.test$Apps)^2)
    return(round(r_result, 7)*100)
}

cat("\n")
print(paste("lm prediction R^2: ", GetRSqr(pred.lm), " %"))
print(paste("ridge prediction R^2: ", GetRSqr(pred.ridge), " %"))
print(paste("lasso prediction R^2: ", GetRSqr(pred.lasso), " %"))
print(paste("pcr prediction R^2: ", GetRSqr(pred.pcr), " %"))
print(paste("pls prediction R^2: ", GetRSqr(pred.pls), " %"))
```

```
"lm prediction R^2: 90.15413 %"
"ridge prediction R^2: 90.16351 %"
"lasso prediction R^2: 90.17438 %"
"pcr prediction R^2: 90.15413 %"
"pls prediction R^2: 90.15413 %"
```

Для перевірки точності передбаченя кількості отриманих заявок на коледж було виконано обчислення коефіцієнту детермінації, який і показує наскільки отримані спостереження підтверджують модель.

Як бачимо R^2 є найближчим до ідеального (90.1744 %) для моделі лассо і найнижчий для моделей PCR, PLS та лінійної (90.1541 %).

Щодо різниця між тестовими помилками, то вона ϵ досить мала у розглянутих 5-ти підходах, а саме різниця між найбільшою помилкою та найменшою склада ϵ близько 0.2%.

3. Ми бачили, що зі збільшенням кількості предикторів, що використовуються в моделі, навчальна помилка обов'язково зменшиться, але тестова - не обов'язково. Дослідимо це на згенерованих даних.

3.1 Сформуйте набір даних з p=20 ознаками, n=1000 спостереженнями, і пов'язаний з ним вектор залежних змінних відповідно до моделі

$$Y = X\beta + \varepsilon$$
,

де вектор β має деякі елементи, які точно дорівнюють нулю.

```
set.seed(1)
x = matrix(rnorm(1000 * 20), 1000, 20)
eps = rnorm(1000)

cat("\n")
betas = runif(20, min=-5, max=5)
print("Beta-values list:")

zero_vals_num = sample(3:10, 1)
for (i in sample(1:length(betas), zero_vals_num)) {
  betas[i] = 0
}
print(betas)

v = x %*% betas + eps
```

```
[1] "Beta-values list:"
[1] 2.26110490 0.00000000 -4.97172271 4.41650527 0.72021482 3.83971442
[7] 0.000000000 -2.92841800 0.000000000 0.00000000 3.76419525 2.40631339
[13] 0.99081832 -3.94591790 -3.64146732 -1.71236717 1.45211214 -0.01610153
[19] -4.62816600 0.00000000
```

Визначення значень β_i відбувається випадково (seed дорівнює 1), в межах від -5 до 5 будь-які дробові числа. Далі також випадково береться число від 3 до 10, що позначає кількість значень вектора β , які точно дорівнюють нулю, і визначається також випадково які конкретно значення будуть занулюватись. Результат виводу вектора можна бачити вище.

3.2 Розділіть свій набір даних на навчальний набір, що містить 100 спостережень та тестовий набір, що містить 900 спостережень.

```
train = sample(1:length(eps), 100)

x.train = x[train, ]

y.train = y[train]

x.test = x[-train, ]

y.test = y[-train]
```

3.3 Використайте метод вибору найкращої підмножини на навчальному наборі та побудуйте графік навчального MSE, який відповідає найкращій моделі кожного розміру.

3 графіка навчального MSE бачимо, що справді зі збільшенням кількості предикторів, що використовуються в моделі, навчальна помилка зменшується.

3.4 Побудуйте графік тестового MSE, який відповідає найкращій моделі кожного розміру.

3.5 Для якого розміру моделі тестовий MSE приймає мінімальне значення? Прокоментуйте отримані результати.

```
print(paste('Model size for min MSE: ', which.min(test_mse),
   ', min MSE: ', min(test_mse)))

"Model size for min MSE: 14 , min MSE: 1.16165441775166"
```

Хоч і з графіка досить складно визначити розмір моделі, де тестовий MSE приймає мінімальне значення, але це модель з 14-ма змінними, тобто модель не містить всі предиктори як, наприклад, це було з навчальною помилкою. Сам MSE в даному випадку дорівнює 1.1617.

3.6 Як співвідносяться модель, що мінімізує тестовий MSE та справжня модель, яка використовувалася для генерації даних? Прокоментуйте значення оцінок коефіцієнтів.

print(coef(reg.fit, which.min(test_mse)))

```
(Intercept) x.1 x.3 x.4 x.5 x.6

0.03101094 2.35530383 -4.91704171 4.41344481 0.90054367 3.87351200

x.8 x.11 x.12 x.13 x.14 x.15

-3.02513407 3.65081989 2.43486098 0.79481451 -3.96716140 -3.53509069

x.16 x.17 x.19

-1.63817806 1.62429959 -4.72088944
```

Наведу ще раз список коефіцієнтів для справжньої моделі, яка використовувалася для генерації даних.

```
[1] "Beta-values list:"
[1] 2.26110490 0.00000000 -4.97172271 4.41650527 0.72021482 3.83971442
[7] 0.000000000 -2.92841800 0.000000000 0.00000000 3.76419525 2.40631339
[13] 0.99081832 -3.94591790 -3.64146732 -1.71236717 1.45211214 -0.01610153
[19] -4.62816600 0.00000000
```

Загалом бачимо, що модель, яка мінімізує тестовий MSE правильно визначила всі 5 нульових коефіцієнтів з списку бет і виключила їх з моделі. Щодо решти коефіцієнтів, то значень оцінок є точними до десятих.

3.7 Побудуйте графік для відображення величини

$$\sqrt{\sum_{j=1}^{p} \left(\beta_{j} - \hat{\beta}_{j}^{r}\right)^{2}}$$

для всіх значень r, де $\hat{\beta}_{j}^{r}$ - оцінка j-ого коефіцієнта для найкращої моделі, що містить r коефіцієнтів. Прокоментуйте результати. Порівняйте отриманий графік з графіком тестового MSE з 3.4?

```
val.errors = rep(0, 20)
x_cols = colnames(x, do.NULL = FALSE, prefix = "x.")
```


В результаті бачимо, що модель з 11-ма предикторами мінімізує помилку між оціночними та справжніми значеннями коефіцієнтів. Як було сказано раніше модель з 14-ма змінними ϵ найкращою для тестового MSE. Проте варто сказати, що модель з 14-ма змінними ϵ найкращою після моделі з 11-ма для помилки між

оціночними та справжніми значеннями коефіцієнтів, але якоїсь явної кореляції між двома методами немає.

4. Спробуємо передбачити рівень злочинності на основі набору даних Boston.

```
Min. : 0.00632
                Min.
                     : 0.00
                              Min. : 0.46
                                            Min.
                                                  :0.00000
               1st Qu.: 0.00
1st Qu.: 0.08205
                              1st Qu.: 5.19
                                            1st Qu.:0.00000
               Median : 0.00
Median : 0.25651
                              Median: 9.69
                                            Median :0.00000
Mean : 3.61352 Mean : 11.36 Mean :11.14
                                            Mean :0.06917
3rd Qu.: 3.67708 3rd Qu.: 12.50
                              3rd Qu.:18.10
                                           3rd Qu.:0.00000
Max. :88.97620 Max. :100.00 Max. :27.74
                                           Max. :1.00000
                                              dis
   nox
                  rm
                                age
Min. :0.3850 Min. :3.561 Min. : 2.90 Min. : 1.130
1st Qu.:0.4490 1st Qu.:5.886 1st Qu.: 45.02 1st Qu.: 2.100
Median :0.5380 Median :6.208 Median : 77.50 Median : 3.207
Mean :0.5547 Mean :6.285 Mean : 68.57 Mean : 3.795
             3rd Qu.:6.623 3rd Qu.: 94.08 3rd Qu.: 5.188
3rd Qu.:0.6240
Max. :0.8710 Max. :8.780 Max. :100.00 Max. :12.127
                            ptratio
                                             black
    rad
                  tax
Min. : 1.000 Min. :187.0 Min. :12.60 Min. : 0.32
1st Qu.: 4.000
             1st Qu.:279.0 1st Qu.:17.40 1st Qu.:375.38
Median: 5.000 Median: 330.0 Median: 19.05 Median: 391.44
Mean : 9.549 Mean :408.2
                           Mean :18.46 Mean :356.67
3rd Qu.:24.000 3rd Qu.:666.0 3rd Qu.:20.20 3rd Qu.:396.23
Max. :24.000 Max. :711.0 Max. :22.00 Max. :396.90
   lstat
                 medv
Min. : 1.73 Min. : 5.00
1st Qu.: 6.95 1st Qu.:17.02
             Median :21.20
Median :11.36
Mean :12.65
             Mean :22.53
3rd Qu.:16.95
             3rd Qu.:25.00
Max.
     :37.97
             Max.
                   :50.00
```

Загальна характеристика даних Boston

4.1-4.3 Застосуйте методи вибору моделі регресії, розглянуті раніше, такі як вибір найкращої підмножини, ласо, гребенева регресія та PCR. Представте та обговоріть результати щодо підходів, які ви використовуєте.

Запропонуйте модель, яка мала б добре працювати і обґрунтуйте свою відповідь. Для оцінки якості моделі використайте помилки валідаційної множини.

Чи включає обрана модель всі предиктори? Чому?

```
predict.regsubsets = function(object, newdata, id, ...) {
    form = as.formula(object$call[[2]])
    mat = model.matrix(form, newdata)
    coef_i = coef(object, id = id)
    xvars = names(coef_i)
    mat[, xvars] %*% coef_i
k = 10
folds = sample(1:k, nrow(Boston), replace = TRUE)
cv.errors = matrix(0, k, 13)
for (j in 1:k) {
    best.fit = regsubsets(crim ~ ., data = Boston[folds != j, ], nvmax = 13)
    for (i in 1:13) {
        pred = predict.regsubsets(best.fit, Boston[folds == j, ], id = i)
        cv.errors[j, i] = mean((Boston$crim[folds == j] - pred)^2)
mean.cv.errors = rep(0, 13)
for (i in 1:13) {
 mean.cv.errors[i] = mean(cv.errors[, i])
cat("\n")
print(paste('Model size for min CV: ', which.min(mean.cv.errors),
', min CV error: ', min(mean.cv.errors)))
plot(mean.cv.errors, xlab = "Кількість змінних", ylab = "Помилка кросвалідації",
    col = "red", type = "b")
```

[1] "Model size for min CV: 12, min CV error: 39.5171680324248"


```
# lasso
cat("\n")
library(glmnet)
x = model.matrix(crim ~ ., Boston)[, -1]
y = Boston$crim

cv.lasso = cv.glmnet(x, y, alpha = 1, type.measure = "mse")
cat("\n")
print(paste('Lasso: Min lambda: ', cv.lasso$lambda.min,
    ', min CV error: ', min(cv.lasso$cvm)))
plot(cv.lasso)
```

[1] "Lasso: Min lambda: 0.0202364983610201, min CV error: 42.3153137590084"

```
# ridge
cv.ridge = cv.glmnet(x, y, alpha = 0, type.measure = "mse")
cat("\n")
print(paste('Ridge: Min lambda: ', cv.ridge$lambda.min,
   ', min CV error: ', min(cv.ridge$cvm)))
plot(cv.ridge)
```

[1] "Ridge: Min lambda: 0.537499162479542 , min CV error: 42.8757612675674"


```
# PCR
cat("\n")
library(pls)

fit.pcr = pcr(crim ~ ., data = Boston, scale = TRUE, validation = "CV")
print(summary(fit.pcr))

cat("\n")
print(paste('Min M: ', which.min(fit.pcr$validation$adj),
   ', min CV error: ', min(fit.pcr$validation$adj)))

validationplot(fit.pcr, val.type = "MSEP", xlab = "Кількість змінних")
```

```
Data:
        X dimension: 506 13
        Y dimension: 506 1
Fit method: svdpc
Number of components considered: 13
VALIDATION: RMSEP
Cross-validated using 10 random segments.
       (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps
C۷
                                                                  6.814
             8.61
                     7.227
                              7.227
                                       6.786
                                                6.771
                                                         6.787
adjCV
              8.61
                     7.223
                              7.223
                                       6.781
                                                6.764
                                                         6.781
                                                                  6.806
       7 comps 8 comps 9 comps 10 comps 11 comps 12 comps 13 comps
                          6.702
                                    6.697
                                              6.688
                                                        6.691
                                                                  6.624
CV
         6.804
                 6.686
adjCV
        6.796
                 6.677
                           6.693
                                    6.687
                                              6.678
                                                        6.677
                                                                  6.609
TRAINING: % variance explained
     1 comps 2 comps 3 comps 4 comps 5 comps 6 comps
                                                           7 comps 8 comps
       47.70
                 60.36
                         69.67
                                  76.45
                                           82.99
                                                    88.00
                                                             91.14
                                                                      93.45
crim
        30.69
                 30.87
                          39.27
                                  39.61
                                           39.61
                                                    39.86
                                                             40.14
                                                                      42.47
     9 comps
              10 comps
                       11 comps
                                  12 comps 13 comps
Х
        95.40
                 97.04
                           98.46
                                     99.52
                                               100.0
crim
        42.55
                 42.78
                           43.04
                                     44.13
                                                45.4
NULL
[1] "Min M: 13, min CV error: 40.5066541826557"
```

crim

Оцінюючи результати помилки кросвалідації серед наведених вище методів можна сказати, що найнижчу помилку має метод найкращого вибору підмножини, а саме 39.7152, найвищу помилку має модель гребеневої регресії - 42.8758. При чому, варто наголосити, що модель з найнижчою помилкою для методу найкращого вибору підмножини має 12 предикторів.