基礎から学ぶ量子計算 アルゴリズムと 計算量理論

6.2 NPの量子版: QMA(後半: pp.194-pp.199)

松本侑真

2023/12/5

QMA問題の例

NP 完全問題に対応する QMA 完全問題¹としては、局所ハミルトニアンに関する次の問題²が代表的である:

問題 6.3 (k-LH (k-local Hamiltonian))

• **入力**:*n*量子ビット上の*k*局所ハミルトニアン

$$H = \sum_{j=1}^{r} H_j$$
 (ただし、 $0 \le H_j \le 1$) (1)

および、 $\beta - \alpha \ge 1/\mathsf{poly}(n)$ を満たす実数 α, β

• 出力:Hの最小固有値が α 以下ならばYES、 β 以上ならばNO

1任意の QMA 問題が多項式時間帰着可能であるような QMA 問題

 $^{^2}$ NP 問題 k-SAT の量子版と考えられる

問6.9

問題:問題 6.3 の出力は、「ある $|\psi\rangle$ が存在して、 $\langle\psi|H|\psi\rangle\leq\alpha$ ならば YES、どんな $|\psi\rangle$ についても $\langle\psi|H|\psi\rangle\geq\beta$ ならば NO」(\bigstar) と書き換えられることを示せ。

問 6.9 の解答

H の最小固有値と固有ベクトルの組を $(E_0,|\psi_0\rangle)$ とする。任意の $|\psi\rangle$ について、変分原理より

$$\langle \psi | H | \psi \rangle \ge \langle \psi_0 | H | \psi_0 \rangle = E_0$$
 (2)

が成立する。 $E_0 \leq \alpha$ ならば $|\psi_0\rangle$ に対して YES を返せば良い。また、 $orall |\psi\rangle[\,\langle\psi|H|\psi\rangle\geq\beta] \Leftrightarrow E_0\geq\beta$ であるため、(igstar) と書き換えられることが示された。

例 6.1

2-LH と 2-SAT の対応

2-SAT 式

$$F(x_1, x_2, x_3) = (\neg x_1 \lor x_2) \land (x_1 \lor x_3) \land (\neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_3)$$
は、次のハミルトニアンの集合に対応させれば自然に 2-LH の入力となる:

 $\begin{cases} H_1 = |10\rangle\langle 10|_{12} \coloneqq |10\rangle\langle 10| \otimes I \quad (テキストに誤植あり) \\ H_2 = |00\rangle\langle 00|_{13} \coloneqq |0\rangle\langle 0| \otimes I \otimes |0\rangle\langle 0| \\ H_3 = |11\rangle\langle 11|_{23} \coloneqq I \otimes |11\rangle\langle 11| \\ H_4 = |11\rangle\langle 11|_{13} \coloneqq |1\rangle\langle 1| \otimes I \otimes |1\rangle\langle 1| \end{cases}$

(3)

$$F(x_1, x_2, x_3) = (\neg x_1, x_2, x_3)$$
は、次のハミルトニ

2-LHと2-SATの対応の意味

局所ハミルトニアンHは $H = \sum_{i=1}^4 H_i$ である。

- 例えば $x_1 = 1$, $x_2 = 0$ の場合、 $\neg x_1 \lor x_2 = 0$ となるため $F(1,0,x_3) = 0$ である。
- これに対応して、 $|\psi
 angle=|1
 angle\otimes|0
 angle\otimes|b
 angle$ では $\langle\psi|H|\psi
 angle>0$ となる。

 $F(x_1,\,x_2,\,x_3)=f_1\wedge f_2\wedge f_3\wedge f_4$ と見たときに、 $f_i=1$ に対応する状態 $|\psi_i\rangle$ に対して、 $\langle\psi_i|H_i|\psi_i\rangle=0$ になるように H_i を設計する。 例えば $\alpha=0,\,\beta=1$ とすると、この 2-SAT は 2-LH に対応する。 3

 $^{^3}$ 一般にこのような H_i が存在しなくても、F=0 になる状態に対してハミルトニアンの期待値を大きくし、 α , β を適切に設定すれば k-LH に対応させられると思う。

k-LHがQMAに属することの保障

k-LH に対する QMA プロトコル

レジスタ R上に証拠の候補が $|\psi\rangle_{R}$ と与えられたとする。

● レジスタAに一様重ね合わせ状態

$$\frac{1}{\sqrt{r}}\sum_{j=1}^{r}|j\rangle_{\mathsf{A}}$$

を準備する。

② レジスタAの値がjのとき、レジスタR上で $POVM\{H_j,I-H_j\}$ を実行する。そして、POVMの要素 H_j に対応する測定値を得たときに $I-H_j$ に対応する測定値を得たときにI

k-LHがQMAに属することの保障

検証者が reject を出力する確率は

$$\Pr\left[ext{reject}
ight](|\psi
angle) = rac{1}{r}\sum_{i=1}^r \left<\psi|H_j|\psi
ight> = rac{1}{r}\left<\psi|H|\psi
angle$$

となる。YES の場合は、ある状態 |arphi
angle が存在して

$$\Pr\left[\operatorname{reject}\right](|\varphi\rangle) = \frac{1}{r} \left\langle \varphi | H | \varphi \right\rangle \leq \frac{\alpha}{r} \quad \left(\Pr\left[\operatorname{accept}\right](|\varphi\rangle) \geq 1 - \frac{\alpha}{r}\right)$$

となる。NO の場合は、全ての状態 $|\psi
angle$ に対して

$$\Pr\left[\text{reject} \right] (|\psi\rangle) = \frac{1}{r} \left< \psi | H | \psi \right> \geq \frac{\beta}{r} \quad \left(\Pr\left[\text{accept} \right] (|\psi\rangle) \leq 1 - \frac{\beta}{r} \right)$$

となる。