Лекция по дискретной математике

4 сентября 2019

Исчисление высказываний

Логическая формула - выражение со значением (0, 1), переменными (x, y...) и операциями $(*, v, \Rightarrow ...)$

Арифметические выражения. Пример: (2+x)+y-10

Логические выражения. Пример: $(1+\overline{x}) \Rightarrow (xy \Leftrightarrow \overline{yz})$

Операции:

Унарная операция отрицание

X	\overline{x}
0	1
1	0

Бинарные операции

X	У	х • у	x v y	$x \Rightarrow y$	$x \Leftrightarrow y$	x+y	0	х 🛆 у	х 🗸 у
0	0	0	0	1	1	0	0	0	0
0	1	0	1	1	0	1	0	0	1
1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	1	0	0	0	0

X	у	X	у	$x \downarrow y$	\overline{y}	$y \Rightarrow x$	\overline{x}	x y	1
0	0	0	0	1	1	1	1	1	1
0	1	0	1	0	0	0	1	1	1
1	0	1	0	0	1	1	0	1	1
1	1	1	1	0	0	1	0	0	1

Свойства операций

&, • , v, \Leftrightarrow , + - коммутативны

 $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ умножение

 $\mathbf{x} \Leftrightarrow \mathbf{y} = \mathbf{y} \Leftrightarrow \mathbf{x}$ равенство

x v y = y v x

 $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$ сумма в Z_2

Универсальный способ проверить равенство двух логических выражений - это сравнить значения выражений при всех возможных значениях переменных

 $x \Rightarrow y$ не коммутативно. Проверка:

x	у	$ \begin{array}{c} \mathbf{x} \Rightarrow \mathbf{y} \\ 0 \Rightarrow 0 = 1 \end{array} $	$y \Rightarrow x$
0	0	$0 \Rightarrow 0 = 1$	$0 \Rightarrow 0 = 1$
0	1	$0 \Rightarrow 1 = 1$	$1 \Rightarrow 0 = 0$

Дальше можно не продолжать, т.к. результаты не совпали Accoциативность

$$\overline{(x v y) v z = x v} (y v z)$$

X	у	z	x v y	(x v y) v z	yvz	x v (y v z)
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	1	1	0	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

(x . y) . z = x . (y . z) умножение ассоциативно (x + y) + z = x + (y +

z) сложение по Z_2 ассоциативно

$$(x \Leftrightarrow y) \Leftrightarrow z = x \Leftrightarrow (y \Leftrightarrow z)$$

$$(x \Rightarrow y) \Rightarrow z ? x \Rightarrow (y \Rightarrow z)$$

Проверка по таблице истинности:

ſ	X	У	\mathbf{z}	$(x \Rightarrow y) \Rightarrow z$	$x \Rightarrow (y \Rightarrow z)$
	0	0	0	0	1

Несовпадение в первой же строке, дальше можно не проверять.

В записи логических выражений у ассоциативных операций () не нужны

Приоритет

$$x v yz \Rightarrow \overline{xy}$$

- 1. Отрицание
- 2. Умножение, конъюнкция
- 3. Дизъюнкция
- 4. v, +
- $5. \Rightarrow, \Leftrightarrow$

Правила де Моргана

$$\overline{xvy}=\overline{x}$$
 , \overline{y}

$$\overline{x \cdot y} = \overline{x} \vee \overline{y}$$

Проверим второе правило с помощью таблицы истинности

X	У	$\overline{x \cdot y}$	\overline{x} v \overline{y}
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

```
Дистрибутивность
```

$$\overline{\mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z})} = \mathbf{xy} \cdot \mathbf{v} \cdot \mathbf{z}$$
 $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{xy} + \mathbf{xz}$
 $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = (\mathbf{x} \cdot \mathbf{v} \cdot \mathbf{y}) \cdot (\mathbf{x} \cdot \mathbf{v} \cdot \mathbf{z})$
 $\mathbf{x} + (\mathbf{y} \cdot \mathbf{z}) \not\simeq (\mathbf{x} + \mathbf{y})(\mathbf{x} + \mathbf{z})$
Еще набор свойств:
 $\overline{\overline{x}} = x$

0x = 0

|x = x|

0 v x = x

1 v x = 1

 $x \Rightarrow y = \overline{x} v y$ (см таблицу истинности)

Дизъюнктивно-нормальная форма (ДНФ)

Нормальная форма - один из вариантов записи логического выражения

$$xy\ v\ z = (x\ v\ z)(y\ v\ z) = xy\ v\ z\ v\ 0 = xy + z + xyz$$

ху v z - ДНФ

Определение: Выражение имеет ДНФ, если оно является дизъюнкцией нескольких конъюнкций

Конъюнкт - это конъюнкция литералов

Литерал - переменная или отрицание переменной

Пример: ху v z, где - ху и z конъюнкты, а x, y, z - литералы

 $x\overline{y}z$ v $x\overline{y}\overline{z}$ v $\overline{y}z$ - 3 конъюнкта

 \overline{x} - ДНФ, 1 конъюнкт из 1 литерала

Не являются ДНФ:

- . x v 1
- $\cdot (x v y) \cdot z$
- $\mathbf{x} \times \mathbf{y} \times \mathbf{z} \times \mathbf{x} \Rightarrow \mathbf{y}$
- $\mathbf{x} + \mathbf{y}$