- 1. Niech |A| = n. Ile relacji binarnych można zdefiniować w zbiorze A?
- 2. Niech $A=\{1,2,3,4\}$. Która z poniższych relacji binarnych w zbiorze A jest (i) zwrotna, (ii) przeciwzwrotna, (iii) symetryczna, (iv) antysymetryczna, (v) przechodnia?
 - a) $R_1 = \{(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}$
 - b) $R_2 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$
 - c) $R_3 = \{(2,4), (4,2)\}$
 - d) $R_4 = \{(1,2), (2,3), (3,4)\}$ (praca domowa)
 - e) $R_5 = \{(1,1),(2,2),(3,3),(4,4)\}$ (praca domowa)
 - f) $R_6 = \{(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)\}$ (praca domowa)
- 3. Która z poniższych relacji binarnych w zbiorze liczb rzeczywistych jest (i) zwrotna, (ii) przeciwzwrotna, (iii) symetryczna, (iv) antysymetryczna, (v) przechodnia?
 - a) $R_1 = \{(x, y) \in \mathbb{R}^2 : xy \ge 1\}$

d) $R_4 = \{(x,y) \in \mathbb{R}^2 \colon x = y\}$ (praca domowa)

b) $R_2 = \{(x, y) \in \mathbb{R}^2 : x > y\}$

e) $R_5=\{(x,y)\in\mathbb{R}^2\colon x=y+1\}$ (praca domowa)

c) $R_3 = \{(x, y) \in \mathbb{R}^2 : x = \pm y\}$

- f) $R_6 = \{(x,y) \in \mathbb{R}^2 \colon x+y \le 3\}$ (praca domowa)
- 4. Pokazać, że relacja binarna $R=\emptyset$ w niepustym zbiorze A nie jest zwrotna, ale jest symetryczna i przechodnia.
- 5. Pokazać, że relacja binarna $R=\emptyset$ w pustym zbiorze A jest zwrotna, symetryczna i przechodnia.
- **6.** Niech $R_1 = \{(1,1),(2,2),(3,3)\}$ i $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ będą relacjami binarnymi na zbiorze $\{1,2,3\} \times \{1,2,3,4\}$. Wyznaczyć relację $R_1 \oplus R_2$. (praca domowa)
- 7. Niech $R_1 = \{(x,y) \in \mathbb{R}^2 \colon x < y\}$ i $R_2 = \{(x,y) \in \mathbb{R}^2 \colon x > y\}$. Wyznaczyć relację $R_1 \oplus R_2$.

- **8.** Niech $R = \{(1,1),(1,4),(2,3),(3,1),(3,4)\}$ i $S = \{(1,0),(2,0),(3,1),(3,2),(4,1)\}$ będą odpowiednio relacjami binarnymi na zbiorach $\{1,2,3\} \times \{1,2,3,4\}$ i $\{1,2,3,4\} \times \{0,1,2\}$. Wyznaczyć relację binarną $S \circ R$ na zbiorze $\{1,2,3\} \times \{0,1,2\}$.
- 9. Niech $R = \{(1,1),(2,1),(3,2),(4,3)\}$ będzie relacją binarną w zbiorze $A = \{1,2,3,4\}$. Wyznaczyć
 - a) $R^2 = R \circ R$

c) $R^4 = R^3 \circ R$ (praca domowa)

b) $R^3 = R^2 \circ R$ (praca domowa)

- d) $R^5 = R^4 \circ R$ (praca domowa)
- **10.** Niech $R_1 = \{(x,y) \in \mathbb{R}^2 : x > y\}, R_2 = \{(x,y) \in \mathbb{R}^2 : x \ge y\}, R_3 = \{(x,y) \in \mathbb{R}^2 : x < y\}$ i $R_4 = \{(x,y) \in \mathbb{R}^2 : x \le y\}$. Wyznaczyć
 - a) $R_1 \circ R_1$

c) $R_1 \circ R_3$ (praca domowa)

b) $R_1 \circ R_2$

d) $R_1 \circ R_4$ (praca domowa)

DEFINICJE

- 1. Relacją binarną R w zbiorze A nazywamy dowolny podzbiór R iloczynu kartezjańskiego $A \times A$.
- 2. Relacja binarna R w zbiorze A
 - a) jest zwrotna $\iff \forall x \in A \quad (x, x) \in R$,
 - b) nie jest zwrotna $\iff \exists x \in A \ (x, x) \notin R$,
 - c) jest przeciwzwrotna $\iff \forall x \in A \quad (x, x) \notin R$,
 - d) nie jest przeciwzwrotna $\iff \exists x \in A \ (x, x) \in R$,
 - e) jest symetryczna $\iff \forall x, y \in A \quad (x, y) \in R \implies (y, x) \in R$,
 - f) nie jest symetryczna $\iff \exists x, y \in A \ (x, y) \in R \land (y, x) \notin R$,
 - g) jest antysymetryczna $\iff \forall x, y \in A \quad (x, y) \in R \land (y, x) \in R \implies x = y,$
 - h) nie jest antysymetryczna $\iff \exists x, y \in A \quad (x, y) \in R \land (y, x) \in R \land x \neq y,$
 - i) jest przechodnia $\iff \forall x, y, z \in A \quad (x, y) \in R \land (y, z) \in R \implies (x, z) \in R$,
 - j) nie jest przechodnia $\iff \exists x, y, z \in A \quad (x, y) \in R \land (y, z) \in R \land (x, z) \notin R.$
- 3. Niech $R \subseteq A \times B$ i $S \subseteq B \times C$. Złożeniem relacji R z relacją S nazywamy relację $S \circ R \subseteq A \times C$ taką, że $S \circ R = \{(x, z) \in A \times C : \exists y \in B \mid (x, y) \in R \land (y, z) \in S\}$.