# Artificial Intelligence

**AGENT** 

### Intelligent Agent (IA)

- O A computational IA or program or software that gathers information about an environment and takes actions based on that Information.
  - A robot
  - Product/Service Recommendation System of an E-Commerce Portal/Site.
  - O Item Sorted in Factory
  - A Smart Traffic Signal
  - Search Engine Auto-Complete and Auto-Suggestion System

#### Structure of IA

 An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators.



### HUMAN vs ROBOT vs SOFTWARE (w.r.t IA)

|           | Human Agent                          | Robot Agent                          | Software Agent                                         |
|-----------|--------------------------------------|--------------------------------------|--------------------------------------------------------|
| Sensors   | Eye, Ear, Nose and<br>Sensory organs | Camera, LIDAR,<br>SONAR, RADAR, etc. | Text/Image/AV File/Stream, Network Packets, UI Inputs  |
| Actuators | Hand, Legs and<br>Vocal tracts, etc. | Motor, Servos, Display,<br>Buzzer,   | UI Outputs, Output<br>File/Streams, Network<br>Packets |

#### GOOD BEHAVIOR: THE CONCEPT OF RATIONALITY

- A rational agent is one that does the right thing
- O Now the age-old question, what is right?
  - O by considering the consequences of the agent's behavior. When an agent is plunked down in an environment, it generates a sequence of actions according to the percepts it receives. This sequence of actions causes the environment to go through a sequence of states. If the sequence is desirable, then the agent done the **right thing** or performed well.
- Performance of IA

### **IA Performance Measurement**

- Environment detects performance matric rather then Agents.
- Reward/Penalty based task evaluation
- O A Rational Agent always tries to maximize its performance.

### Task Environment

PEAS (Performance, Environment, Actuators, Sensors)

| Agent Type                         | Performance<br>Measure              | Environment                        | Actuators                                                                 | Sensors                                                          |
|------------------------------------|-------------------------------------|------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|
| Medical<br>diagnosis system        | Healthy patient, reduced costs      | Patient, hospital,<br>staff        | Display of<br>questions, tests,<br>diagnoses,<br>treatments,<br>referrals | Keyboard entry<br>of symptoms,<br>findings, patient's<br>answers |
| Satellite image<br>analysis system | Correct image categorization        | Downlink from orbiting satellite   | Display of scene categorization                                           | Color pixel arrays                                               |
| Part-picking<br>robot              | Percentage of parts in correct bins | Conveyor belt with parts; bins     | Jointed arm and hand                                                      | Camera, joint angle sensors                                      |
| Refinery<br>controller             | Purity, yield,<br>safety            | Refinery, operators                | Valves, pumps,<br>heaters, displays                                       | Temperature,<br>pressure,<br>chemical sensors                    |
| Interactive<br>English tutor       | Student's score<br>on test          | Set of students,<br>testing agency | Display of exercises, suggestions, corrections                            | Keyboard entry                                                   |

#### Nature of Task Environment

- O Fully observable vs. partially observable
- O Single agent vs. multiagent
- O Deterministic vs. stochastic
- O Episodic vs. sequential
- O Static vs. dynamic
- O Discrete vs. continuous
- O Known vs. unknown

### Example

| Task Environment                  | Observable             | Agents          | Deterministic            | Episodic   | Static  | Discrete                 |
|-----------------------------------|------------------------|-----------------|--------------------------|------------|---------|--------------------------|
| Crossword puzzle                  | Fully                  | Single          | Deterministic            | 1          | Static  | Discrete                 |
| Chess with a clock                | Fully                  | Multi           | Deterministic            |            | Semi    | Discrete                 |
| Poker                             | Partially              | Multi           | Stochastic               | Sequential | Static  | Discrete                 |
| Backgammon                        | Fully                  | Multi           | Stochastic               | Sequential | Static  | Discrete                 |
| Taxi driving<br>Medical diagnosis | Partially<br>Partially | Multi<br>Single | Stochastic<br>Stochastic | •          | •       | Continuous<br>Continuous |
| Image analysis Part-picking robot | Fully                  | Single          | Deterministic            | Episodic   | Semi    | Continuous               |
|                                   | Partially              | Single          | Stochastic               | Episodic   | Dynamic | Continuous               |
| Refinery controller               | Partially              | Single          | Stochastic               | Sequential | •       | Continuous               |
| Interactive English tutor         | Partially              | Multi           | Stochastic               | Sequential |         | Discrete                 |

## Simple Reflex Agent

SimRA

# Simple Reflex Agent

- Action taken based on current percept
- Implement through condition action rules



### SimRA Function

**function** SIMPLE-REFLEX-AGENT(percept) **returns** an action **persistent**: rules, a set of condition—action rules

 $state \leftarrow \text{Interpret-Input}(percept)$   $rule \leftarrow \text{Rule-Match}(state, rules)$   $action \leftarrow rule. \text{Action}$   $return \ action$ 

### Example – Floor Cleaning Robot (Roomba v0.1)



#### PEAS – Roomba v0.1

- O Performance
  - Cleanliness
  - Battery Power Conservation
- O Environment
  - O Consists of 2 tiles named A and B respectively
- O Actuator
  - Vacuum Cleaning Unit (Action = VAC)
  - Left-Right Locomotion Unit (Action = LEFT/RIGHT)
- Sensor
  - O Dirt Sensor (Percept = Dirty/Clean)

### Performance Measurement

| Clean | VAC        | -1 |
|-------|------------|----|
|       | LEFT/RIGHT | 0  |
| Dirty | VAC        | +1 |
|       | LEFT/RIGHT | -1 |

Any Invalid move to LEFT/RIGHT is -1



If (Loc = A AND Percept = Dirty) then Action = VAC



If (Loc = A AND Percept = Clean) then Action = RIGHT



#### SimRA Function

```
function getRoombaAction(Percept, Loc){
   if (Percept = "Dirty"){
        Action = VAC;
   }elseif (Loc = A){
        Action = RIGHT;
   }elseif (Loc = B){
        Action = LEFT;
   }
   return Action;
}
```