Ondas

Método y recomendaciones

♦ PROBLEMAS

• Ecuación de onda

- 1. Una onda se propaga en el sentido positivo del eje X con una velocidad de 20 m s⁻¹, una amplitud de 0,02 m y una frecuencia de 10 Hz. Determina:
 - a) El periodo y la longitud de onda.
 - b) La expresión matemática de la onda si en t = 0 s la partícula situada en el origen está en la posición de máxima elongación positiva.

(A.B.A.U. extr. 23)

Rta.: a)
$$T = 0.100 \text{ s}$$
; $\lambda = 2.00 \text{ m}$; b) $y = 0.0200 \text{ sen}(20 \pi t - \pi x + \pi/2) \text{ [m]}$

- 2. La expresión matemática de una onda armónica transversal que se propaga por una cuerda tensa orientada según el eje x es: y = 0,5 sen [2π (3t x)] (unidades en el SÍ). Determina:
 - a) Los valores de la longitud de onda, velocidad de propagación, velocidad y aceleración máximas de vibración de los puntos de la cuerda.
 - b) La distancia mínima que separa dos puntos de la cuerda que en un mismo instante vibran desfasados 2π radianes.

(A.B.A.U. ord. 22)

Rta.: A)
$$\lambda = 1 \text{ m}$$
; $v_p = 3{,}00 \text{ m} \cdot \text{s}^{-1}$; $v_m = 9{,}42 \text{ m/s}$; $a_m = 177 \text{ m/s}^2$; b) $\Delta x = \lambda = 1 \text{ m}$.

- 3. Una onda armónica transversal de frecuencia 2 Hz, longitud de onda 20 cm y amplitud 4 cm, se propaga por una cuerda en el sentido positivo del eje X. En el instante t = 0, la elongación en el punto x = 0 es y = 2,83 cm.
 - a) Expresa matemáticamente la onda y representala gráficamente en (t = 0; 0 < x < 40 cm)
 - b) Calcula la velocidad de propagación de la onda y determina, en función del tiempo, la velocidad de oscilación transversal de la partícula situada en *x* = 5 cm.

(A.B.A.U. extr. 21)

Rta.: a)
$$y = 0.0400 \text{ sen}(4 \pi t - 10 \pi x + \pi / 4) \text{ [m]}$$
; b) $v_p = 0.400 \text{ m/s}$; $v = 0.503 \cos(4 \pi t - \pi / 4) \text{ [m/s]}$

- 4. Una onda armónica transversal de longitud de onda $\lambda = 60$ cm se propaga en el sentido positivo del eje x. En la gráfica se muestra la elongación (y) del punto de coordenada x = 0 en función del tiempo. Determina:
 - a) La expresión matemática que describe esta onda, indicando el desfase inicial, la frecuencia y la amplitud de la onda.
 - b) La velocidad de propagación de la onda.

Rta.: a)
$$y(x, t) = 0.80 \cdot \text{sen}(2.1 \cdot t - 10 \cdot x)$$
 [m]; $\varphi_0 = 0$; $f = 0.33 \text{ s}^{-1}$; $A = 0.80 \text{ m}$; b) $v_p = 0.20 \text{ m} \cdot \text{s}^{-1}$

- 5. En una cuerda se propaga una onda dada por la ecuación y(x, t) = 0.04 sen 2π (2 x 4 t), donde las longitudes se expresan en metros y el tiempo en segundos. Calcula:
 - a) La frecuencia, el número de onda, la longitud de onda y la velocidad de propagación de la onda.
 - b) La diferencia de fase, en un instante determinado, entre dos puntos de la cuerda separados 1 m y comprueba si dichos puntos están en fase o en oposición.
 - c) Los módulos de la velocidad y aceleración máximas de vibración de los puntos de la cuerda.

(A.B.A.U. ord. 20, extr. 19)

Rta.: a)
$$f = 4$$
 Hz; $k = 12.5$ m⁻¹; $\lambda = 0.5$ m; $v_p = 2$ m/s; b) $\Delta \varphi = 4$ π rad; c) $v = 1.01$ m/s; $a = 25.3$ m/s²

6. La ecuación de una onda transversal que se propaga en una cuerda es y(x, t) = 10 sen $\pi(x - 0.2 t)$, donde las longitudes se expresan en metros y el tiempo en segundos. Calcula:

- a) La amplitud, longitud de onda y frecuencia de la onda.
- b) La velocidad de propagación de la onda e indica en qué sentido se propaga.
- c) Los valores máximos de la velocidad y aceleración de las partículas de la cuerda.

(A.B.A.U. extr. 17)

Rta.: a) A = 10 m; $\lambda = 2{,}00$ m; $f = 0{,}100$ Hz; b) $\nu = 0{,}200$ m/s; sentido +X; c) $\nu_{\rm m} = 6{,}28$ m/s; $a_{\rm m} = 3{,}95$ m/s²

7. La función de onda de una onda armónica que se mueve en una cuerda es y(x, t) = 0.03 sen(2.2 x - 3.5 t), donde las longitudes se expresan en metros y el tiempo en segundos.

Determina:

- a) La longitud de onda y el periodo de esta onda.
- b) La velocidad de propagación.
- c) La velocidad máxima de cualquier segmento de la cuerda.

(A.B.A.U. ord. 17)

Rta.: a) $\lambda = 2.86$ m; T = 1.80 s; b) $v_p = 1.59$ m·s⁻¹; c) $v_m = 0.105$ m/s

Intensidad sonora

- 1. Un altavoz emite ondas sonoras esféricas con una potencia de 200 W. Determina:
 - a) La energía emitida en media hora.
 - b) El nivel de intensidad sonora, en dB, a 4 m del altavoz.

Dato: $I_0 = 10^{-12} W \cdot m^2$.

(A.B.A.U. extr. 22)

Rta.: a) $E = 3.6 \cdot 10^5$ J; b) S = 120 dB.

Dioptrio plano

- 1. Un rayo de luz roja se propaga por un vidrio e incide en la superficie que separa el vidrio del aire con un ángulo de 30° respecto a la dirección normal a la superficie. El índice de refracción del vidrio para la luz roja es 1,60 y el índice de refracción del aire es 1. Determina:
 - a) El ángulo que forma el rayo refractado respecto a la dirección normal a la superficie de separación de ambos medios.
 - b) El ángulo de incidencia máximo para que el rayo de luz roja pase al aire.

(A.B.A.U. extr. 24)

Rta.: a) $\theta_r = 53.1^\circ$; b) $\lambda = 38.7^\circ$.

- 2. Una lámina de vidrio de caras planas y paralelas, de índice de refracción 1,4, está en el aire, de índice de refracción 1,0. Un rayo de luz monocromática de frecuencia 4,3·10¹⁴ Hz incide en la lámina desde el aire con un ángulo de 30° respecto a la normal a la superficie de separación de los dos medios. Calcula:
 - a) La longitud de onda del rayo refractado.
 - b) El ángulo de refracción.

Dato: $c = 3.10^8 \text{ m} \cdot \text{s}^{-1}$.

(A.B.A.U. ord. 21)

Rta.: a) $\lambda_2 = 498 \text{ nm}$; b) $\theta_r = 20.9^\circ$

- Un buceador enciende una linterna dentro del agua y la enfoca hacia la superficie formando un ángulo de 30° con la normal.
 - a) ¿Con qué ángulo emergerá la luz del agua?
 - b) ¿Cuál es el ángulo de incidente a partir del cual la luz no saldrá del agua?

Datos: n(agua) = 4/3; n(aire) = 1.

(A.B.A.U. extr. 20)

Rta.: a) $\theta_r = 41.8^\circ$; b) $\lambda = 48.6^\circ$

- 4. Un haz de luz de frecuencia $4,30\cdot10^{14}$ Hz incide desde un medio 1 de índice de refracción $n_1 = 1,50$ sobre otro medio 2 de índice de refracción $n_2 = 1,30$. El ángulo de incidencia es de 50° . Determina:
 - a) La longitud de onda del haz en medio 1.
 - b) El ángulo de refracción.

c) ¿A partir de qué ángulo de incidencia se produce la reflexión total del haz incidente?

Dato: $c = 3.10^8 \text{ m} \cdot \text{s}^{-1}$ (A.B.A.U. ord. 19)

Rta.: a) $\lambda_1 = 465$ nm; b) $\theta_r = 62,1^\circ$; c) $\theta_{il} = 60,0^\circ$

♦ CUESTIONES

Características y ecuación de las ondas

- 1. La velocidad de una onda en un punto del espacio:
 - A) Varía con la fase en la que se encuentre el punto.
 - B) Varía con la distancia del punto al origen.
 - C) Varía al cambiar el medio de propagación.

(A.B.A.U. ord. 24)

- 2. Dos focos de ondas sonoras emiten sonidos de 1,7 kHz de frecuencia con la misma fase inicial. Un observador que se encuentra a 8 m de uno de los focos y a 10 m del otro percibe en esa posición:
 - A) Un mínimo de intensidad.
 - B) Un máximo de intensidad.
 - C) Una intensidad intermedia entre la máxima y la mínima.

DATO: velocidad del sonido = 340 m s^{-1} .

(A.B.A.U. ord. 23)

- 3. Cuando una onda armónica plana se propaga en el espacio, su energía es proporcional:
 - A) A 1/f(f es la frecuencia).
 - B) Al cuadrado de la amplitud A^2 .
 - C) Inversamente proporcional al cuadrado de la distancia al foco emisor.

(A.B.A.U. ord. 22)

- 4. Una onda transversal se propaga en el sentido positivo del eje X con una velocidad de 300 m·s⁻¹, siendo el período de oscilación de 2×10^{-2} s. Dos puntos que se encuentran, respectivamente, a distancias de 20 m y 38 m del centro de vibración estarán:
 - A) En fase.
 - B) En oposición de fase.
 - C) En una situación distinta de las anteriores.

(A.B.A.U. ord. 21)

- ¿Cuál debería ser la distancia entre dos puntos de un medio por el que se propaga una onda armónica, con velocidad de fase de 100 m/s y 200 Hz de frecuencia, para que estén en el mismo estado de vibración?:
 - A) 2 n.
 - B) 0,5 n.
 - C) n, siendo n = 0, 1, 2, 3... y medido en el S.I.

(A.B.A.U. ord. 19)

- 6. La luz incidente, la reflejada y la refractada en la superficie de separación de dos medios de distinto índice de refracción tiene:
 - A) Igual frecuencia, longitud de onda y velocidad.
 - B) Distinta frecuencia, longitud de onda y velocidad.
 - C) Igual frecuencia y distintas longitudes de onda y velocidad.

(A.B.A.U. ord. 19)

- 7. En un mismo medio:
 - A) La longitud de onda de un sonido grave es mayor que la de un agudo.
 - B) La longitud de onda de un sonido grave es menor que la de un agudo.
 - C) Ambos sonidos tienen la misma longitud de onda.

(A.B.A.U. extr. 18)

- 8. Una onda armónica de frecuencia 100 Hz se propaga a una velocidad de 300 m·s⁻¹. La distancia mínima entre dos puntos que se encuentran en fase es:
 - A) 1,50 m.
 - B) 3,00 m.
 - C) 1,00 m.

(A.B.A.U. extr. 18)

- 9. Para las ondas sonoras, ¿cuál de las siguientes afirmaciones es cierta?:
 - A) Se propagan en el vacío.
 - B) No se pueden polarizar.
 - C) No se pueden reflejar.

(A.B.A.U. ord. 18)

- 10. Un movimiento ondulatorio transporta:
 - A) Materia.
 - B) Energía.
 - C) Depende del tipo de onda.

(A.B.A.U. extr. 17)

- 11. La propagación en la dirección x de la onda de una explosión en un cierto medio puede describirse por la onda armónica y(x, t) = 5 sen(12 $x \pm 7680$ t), donde las longitudes se expresan en metros y el tiempo en segundos. Al cabo de un segundo de producirse la explosión, su sonido alcanza una distancia de:
 - A) 640 m
 - B) 1536 m
 - C) 38 km

(A.B.A.U. ord. 17)

• Efecto Doppler

- 1. Un ciclista se desplaza en línea recta por una carretera a velocidad constante. En esta carretera hay dos coches parados, un delante, C1, y otro detrás, C2, del ciclista. Los coches tienen bocinas idénticas pero el ciclista sentirá que la frecuencia de las bocinas es:
 - A) Mayor la de C1.
 - B) La misma.
 - C) Mayor la de C2.

(A.B.A.U. ord. 21)

- 2. El silbato de una locomotora emite un sonido de 435 Hz de frecuencia. Si la locomotora se mueve acercándose la un observador en reposo, la frecuencia percibida por el observador es:
 - A) 435 Hz.
 - B) Mayor que 435 Hz.
 - C) Menor que 435 Hz.

(A.B.A.U. extr. 20)

Intensidad sonora

- 1. Un motor produce un nivel de intensidad sonora de 80 dB. La potencia que tiene el ruido del motor, si está situado a 2 m, es:
 - A) 500 mW
 - B) 50 mW
 - C) 5 mW

DATO: $I_0 = 10^{-12} \text{ W m}^{-2}$.

(A.B.A.U. extr. 23)

Dioptrio plano

- 1. En el fondo de un recipiente lleno de agua se encuentra un tesoro. La distancia aparente entre el tesoro y la superficie es de 30 cm. ¿Cuál es la profundidad del recipiente?:
 - A) 30 cm
 - B) Mayor de 30 cm.
 - C) Menor de 30 cm.

Datos: n(aire) = 1; n(agua) = 1,33.

(A.B.A.U. extr. 21)

- 2. Una superficie plana separa dos medios de índices de refracción distintos n_1 y n_2 . Un rayo de luz incide desde el medio de índice n_1 . Razona cuál de las afirmaciones siguientes es verdadera:
 - A) El ángulo de incidencia es mayor que el ángulo de reflexión.
 - B) Los ángulos de incidencia y de refracción son siempre iguales.
 - C) Si $n_1 < n_2$ no se produce reflexión total.

(A.B.A.U. extr. 19)

- 3. Una onda incide sobre la superficie de separación de dos medios. Las velocidades de propagación de la onda en el primer y segundo medio son, respectivamente, 1750 m⋅s⁻¹ y 2300 m⋅s⁻¹. Si el ángulo de reflexión es 45°, el de refracción será:
 - A) 68°
 - B) 22°
 - C) 45°

DATO: $c = 3 \times 10^8 \text{ m} \cdot \text{s}^{-1}$

(A.B.A.U. ord. 18)

- 4. Cuando la luz pasa de un medio a otro de distinto índice de refracción, el ángulo de refracción es:
 - A) Siempre mayor que el incidente.
 - B) Siempre menor que el incidente.
 - C) Depende de los valores de los índices de refracción. Justifica la respuesta haciendo un esquema de la marcha de los rayos.

(A.B.A.U. extr. 17)

- 5. Se hace incidir desde el aire (índice de refracción n=1) un haz de luz láser sobre la superficie de una lámina de vidrio de 2 cm de espesor, cuyo índice de refracción es n=1,5, con un ángulo de incidencia de 60° . El ángulo de refracción después de atravesar la lámina es:
 - A) 35°
 - B) 90°
 - C) 60°

Haz un breve esquema de la marcha de los rayos.

(A.B.A.U. ord. 17)

♦ LABORATORIO

• Interferencia, difracción y polarización

1. Describe el procedimiento que seguirías en el laboratorio para determinar si la luz es una onda transversal o longitudinal, así como el material que debes utilizar.

(A.B.A.U. ord. 19)

2. Haz un esquema del montaje experimental necesario para medir la longitud de onda de una luz monocromática y describe el procedimiento. Explica qué sucede si cambias la red de difracción por otra con el doble número de líneas por milímetro.

(A.B.A.U. ord. 18)

• Dioptrio plano

1. a) Describe el procedimiento $\theta_1(^{\circ})$ 15,0 20,0 25,0 30,0 35,0 utilizado en el laboratorio $\theta_2(^{\circ})$ 12,0 15,8 20,1 23,6 27,5 para determinar el índice de refracción con un dispositivo como el de la figura.

b) Determine el índice de refracción a partir de los datos de la tabla. DATO: n(aire) = 1. θ_1 : ángulo de incidencia; θ_2 : ángulo de refracción

(A.B.A.U. ord. 23)

Rta.: $n_{\rm r} = 1.24$

- En el laboratorio de física se monta un experimento para determi- $\theta_1(^\circ)$ 18 24 32 40 50 nar el índice de refracción de una lámina de vidrio haciendo incidir $\theta_2(^\circ)$ 12 15 20 25 30 rayos de luz con distintos ángulos de incidencia θ_1 y midiendo en cada caso el ángulo de refracción θ_2 .
 - a) ¿En qué ley física nos basaremos para hacerlo?
 - b) Determina el índice de refracción de la lámina a partir de los datos experimentales mostrados en la tabla.

(A.B.A.U. ord. 22)

Rta.: b) $n_r = 1.53$.

- 3. Estudiando el fenómeno de la refracción en una lámina de vidrio se hace incidir un rayo de luz con distintos ángulos sobre la superficie. En la tabla al margen aparecen los ángulos de incidencia y los ángulos de refracción.
 - a) Calcula el índice de refracción del material a partir de los datos de la tabla.
- 48 27 57 31

r (°)

16

21

i (°)

27

36

b) Indica en qué condiciones se produciría reflexión total.

DATOS: n(aire) = 1; $c = 3.10^8 \text{ m} \cdot \text{s}^{-1}$.

Rta.: a) $n_r = 1.6$; b) $\varphi > 38^\circ$

(A.B.A.U. ord. 20)

4. Determina gráficamente el índice de refracción de un vidrio a partir de la N.º exp. 1 2 3 4 siguiente tabla de valores de los ángulos de incidencia, φ_i , y de refracción, φ_i /° 10,0 20,0 30,0 40,0 φ_r , de la luz. Estima su incertidumbre. φ_r /° 6,5 13,5 20,3 25,5 $(A.B.A.U.\ extr.\ 19)$

Rta.: $n_{\rm r} = 1,47$.

Actualizado: 11/07/24

Cuestiones y problemas de las <u>Pruebas de evaluación de Bachillerato para el acceso a la Universidad</u> (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.