CASE STUDY ON TELECOM CHURN PREDICTION AND UNDERSTANDING IMPORTANT **FACTORS**

TELECOM CHURN PROBLEM STATEMENT

We have received customer-level information for a span of four consecutive months - June, July, August and September. For understanding customer churn pattern we have segregated the months as 'Good Phase', 'Action phase' and 'Churn phase'.

Business Objective: To predict the churn in the last month (September) using the data from the first three months (June, July & August). To do this task well, understanding the typical customer behavior during churn will be helpful.

PROBLEM SOLVING STRATEGY

Data importing

Data Inspection

Data Cleaning

Missing Value Treatment

Outlier Treatment

EDA

Understanding the

features and

relationships

among them and

Target feature.

Scaling Features

Data Preparation

Building different ML models to predict churn

Identify Important features

Test The model on Train Set

Evaluate Model using different metrics

Test The model on Test Set

Evaluate Model using different metrics

Suggestions and Recommendations

ANALYSING THE PROBLEM STATEMENT AND APPROACH TOWARDS SOLUTION

THE DATASET CONTAINS CUSTOMER LEVEL INFORMATION FOR JUNE, JULY, AUGUST AND SEPTEMBER.

AS THE PROBLEM IS CONCERNING IDENTIFYING POTENTIAL CHURNED CUSTOMERS AND IMPORTANT FACTORS

INFLUENCING THEIR BEHAVIOURS, WE NEED TO BUILD A SUITABLE CLASSIFICATION MODEL MACHINE LEARNING

TECHNIQUES.

AS THE DATASET DOESNOT CONTAIN THE CHURN OR NON-CHURN LABELS, WE HAVE TO DERIVE A FEATURE (LABEL) TO TRAIN THE MODEL WHICH CAN SUBSEQUENTLY IDENTIFY POTENTIAL CHURNED CUSTOMERS.

WE WILL ALSO NEED TO IDENTIFY IMPORTANT FACTORS INFLUENCING CHURN SO ONE OF THE REQUIREMENTS IS **TO BUILD A SIMPLE AND INTERPRETABLE MODEL THROUGH WHICH IMPORTANT FACTORS CAN BE CORRELATED WITH FINAL BUSINESS OBJECTIVE**.

HIGH VALUE CUSTOMERS

IN THE INDIAN AND SOUTH-ASIAN MARKETS, **APPROXIMATELY 80% OF REVENUE COMSS FROM THE TOP 20% OF CUSTOMERS** (CALLED HIGH VALUE CUSTOMERS). FOCUSING ON THEM, WE CAN REDUCE SIGNIFICANT REVENUE LEAKAGE. THUS WE HAVE SELECTED HIGH VALUE CUSTOMERS (IN TERMS OF RECHARGE AMOUNT IN JUNE AND JULY) AND FOCUSED OUR ANALYSIS ON THEM.

ALSO AS THE DATASET DOESNOT CONTAIN THE CHURN OR NON-CHURN LABELS, WE HAVE TAGGED THE HIGH VALUE CUSTOMERS AS CHURN OR NON-CHURN BASED ON FOLLOWING FOUR DISTINCT FEATURES.

- 1. TOTAL MINUTES OF USAGE OF INCOMING CALLS FOR MONTH OF SEPTEMBER.
- 2. TOTAL MINUTES OF USAGE OF OUTGOING CALLS FOR MONTH OF SEPTEMBER.
 - 3. TOTAL VOLUME OF USAGE OF 2G INTERNET FOR MONTH OF SEPTEMBER.
 - 4. TOTAL VOLUME OF USAGE OF 3G INTERNET FOR MONTH OF SEPTEMBER.

WE HAVE SUBSEQUENTLY REMOVED ALL THE RECORDS FOR MONTH OF SEPTEMBER FROM OUR ANALYSIS.

ANALYSING CHURN WITH TENURE

WE HAVE ANALYSED THE CHURN PATTERN WITH DERIVED VARIABLE 'TENURE' BY BUCKETING CUSTOMERS IN THE FOLLOWING BINS.

'0-6 Months', '6-12 Months', '1-2 Yrs', '2-5 Yrs', '5 Yrs and above'
ITS EVIDENT THAT CHURN PERCENTAGE WITH RESPECT TO NON CHURN IN A PARTICULAR PERIOD IS COMPARATIVEL
HIGHER AT THE BEGINNING i.e 0 - 6 MONTHS WINDOW.

UNDERSTANDING CHURN WITH AVE. MINUTES OF USAGE AND AVE. VOLUME OF INTERNET USAGE

WE HAVE DEFINED FEW DERIVED VARIABLES TO BETTER UNDERSTAND THE CHURN PREDICTORS.

WE HAVE USED METRICS LIKE **AVERAGE MINUTES OF USAGE OF INCOMING AND OUTGOING CALLS** AND **VOLUMES OF USAGE OF 2G AND 3G INTERNET** TO UNDERSATND CHURN AND NON CHURN PATTERN.

UNDERSTANDING CHURN WITH AVE. MINUTES OF USAGE AND AVE. VOLUME OF INTERNET USAGE (CONT'D)

FOR ALL THE METRICS ITS PRETTY EVIDENT CHURNED CUSTOMERS TEND TO HAVE A DECREASING PATTERN IN TERMS OF USAGE OF TELECOM SERVICES. THE DROP IS SIGNIFICANT SPECIALLY IN THE MONTH OF AUGUST .

UNDERSTANDING CUSTOMER BEHAVIOUR WITH AVE. CALL TO CALL CENTRE METRIC

AS CAN BE SEEN, FOR CHURNED CUSTOMERS CALL TO CALL CENTRES PEAKED IN JULY AND DROPPED ABRUPTLY IN AUGUST PROBABLY INDICATING THEIR DISSATISFACTION WITH THE SERVICE FROM OPERATOR.

DATA IMBALANCE PRESENT IN CHURN RATE

IN THE DATASET, WE SEE HIGH IMBALANCE IN CHURN CASES AS EXPECTED. CHURN CASES REPRESENT ONLY AROUND 9% OF THE TOTAL CUSTOMERS. WE HAVE USED OVERSAMPLING TECHNIQUE (SMOTE) TO TACKLE THIS ISSUE AND REMOVE BIAS FROM OUR ANALYSIS.

BUILDING MACHINE LEARNING MODEL

AS WE WANT TO UNDERSTAND IMPORATNT FACTORS INFLUENCING CUSTOMER CHURN BEHAVIOUR, WE BUILT A CLASSIC LOGISTIC REGRESSION MODEL WHICH HAS HIGH INTERPRETABILITY AND THUS PROVIDES USEFUL INSIGHTS INTO THE SOLUTION.

IN GENERAL, IN THE LOGISTIC REGRESSION MODELS THERE IS TRADE OFF BETWEEN INTERPRETABILITY AND PERFORMANCE, SO WE HAVE BUILT MULTIPLE HIGH PERFORMANCE MODELS TO INCREASE CLASSIFYING CAPABILITY OF OUR ANALYSIS.

FIRSTLY, WE USED PRINCIPAL COMPONENT ANALYSIS TECHNIQUES TO REDUCE THE NUMBER OF FEATURES AND BUILT LOGISTIC REGRESSION, DECISION TREE AND RANDOM FOREST CLASSIFIER MODELS USING REDUCED NUMBER OF FEATURES AND HYPERTUNING THE PARAMETERS TO COMPARE PERFORMANCE OF THE MODELS.

MODEL EVALUATION

THERE ARE MULTIPLE MODEL EVALUATION METRICS AVAILABLE SUCH AS **ACCUARCY, SENSITIVITY, SPECIFICITY, PRECISION, F1 SCORE** ETC. WHICH WE HAVE USED TO EVALUATE OUR MODEL'S OVERALL PERFORMANCE.

GIVEN OUR OBJECTIVE IS TO IDENTIFY POTENTIAL CHURN CUSTOMERS AND RETAIN THEM, OVERALL ACCURACY WILL NOT HELP US ASSESS THE PERFORMANCE WELL.

HERE, WE ARE MORE INTERESTED TO CORRECTLY IDENTIFY CHURNED CUSTOMERS THAN NON-CHURN CUSTOMERS.

AS MISCLASSIFYING NON-CHURN CUSTOMERS AS CHURN CUSTOMERS TO A CERTAIN EXTENT WILL RESULT IN FOCUSING MORE ON FEW NON-CHURN CUSTOMERS, BUT MISCLASSIFICATION OF CHURN CUSTOMERS AS NON-CHURN WILL DIRECTLY RESULT TO LOSS OF HIGH VALUE CUSTOMERS.

THUS, PROPER METRIC TO BE USED IN THE ANALYSIS IS **SENSITIVITY OR RECALL** WHICH REPRESNETS CORRECT CLASSIFICATION OF CHURN CASES AMONG ALL THE ACTUAL CHURNS.

MODEL EVALUATION (METRICS)

THE EVALUATION METRICS (ACCURACY AND SENSITIVITY) HAVE BEEN SUMMARLISED BELOW FOR TRAIN AND TEST DATA (UNSEEN DATA) WITH DIFFERENT ML MODELS.

	TRAIN DATA				
	LOGREG WITHOUT PCA	LOGREG WITH PCA	DECISION TREE WITH PCA	RANDOM FOREST WITH PCA	
ACCURACY	0.8	0.85	0.85	0.87	
SENSITIVITY	0.86	0.92	0.87	0.86	

	TEST DATA				
	LOGREG WITHOUT PCA	LOGREG WITH PCA	DECISION TREE WITH PCA	RANDOM FOREST WITH PCA	
ACCURACY	0.55	0.8	0.8	0.87	
SENSITIVITY	0.87	0.85	0.69	0.69	

AS CAN BE SEEN, LOGISTIC REGRESSION (LOGREG) WITH PCA PROVIDES BETTER ACCURACY AND SENSITIVITY ON UNSEEN DATA. SO WE HAVE PERFORMED FINAL CLASSIFICATION WITH THIS MODEL.

IMPORTANT FACTORS INFLUENCING CHURN BEHAVIOUR

MOST IMPOTANT FACTORS HAVE BEEN LISTED BELOW.

THE NEGATIVE (-VE) SIGN INDICATES INVERSE RELATION WITH CHURN BEHAVIOUR AND VICE VERSA.

IMPORATANT FACTORS	COEFFICIENTS FROM INTERPRETABLE MODEL
total_ic_mou_8	-2.76
monthly_2g_8	-1.01
total_ic_mou_7	0.92
monthly_3g_8	-0.62
sachet_2g_8	-0.5
std_og_t2t_mou_8	-0.5
spl_ic_mou_8	-0.47
std_og_t2m_mou_8	-0.42
std_og_t2m_mou_6	0.34
std_og_t2t_mou_7	0.22
std_og_t2t_mou_6	0.16
offnet_mou_7	0.07

IMPORTANT FACTORS INFLUENCING CHURN BEHAVIOUR

PLOTS OF IMPORTANT FEATURES FOR CHURN AND NON-CHURN CUSTOMERS

- IN LEFT PLOT, WE SEE, FOR CHURN CUSTOMERS THE MINUTES OF USAGE OF INCOMING CALLS FOR THE MONTH OF
 AUGUST IS MOSTLY POPULATED ON THE LOWER SIDE OF NON CHURN CUSTOMERS.
- IN RIGHT PLOT, WE SEE, FOR CHURN CUSTOMERS THE VOLUME OF USAGE OF 2G INTERNET FOR THE MONTH OF AUGUST IS MOSTLY DENSED ON ZERO AND TAIL DIMINISHES QUICKLY THAN NON CHURN CUSTOMERS.

SUGGESTIONS AND RECOMMENDATIONS

AS SEEN EARLIER, MOST OF THE COEFFICIENTS HAVE ARE NEGATIVE INDICATING INVERSE RELATION WITH CHURN BEHAVIOUR.

- THE CUSTOMERS WHOSE TOTAL MINUTES OF USAGE FOR INCOMING CALLS IS LESS IN THE MONTH OF AUGUST (8TH MONTH) HAVE HIGH CHANCE OF CHURNING.
- CUSTOMERS WHO HAVE A DIMINISHING MONTHLY USAGE OF 2G INTERNET FOR AUGUST AS COMAPRED TO JUNE AND JULY, ARE LIKELY TO CHURN.
- THERE IS SIGNIFICANT DECREASE IN MONTHLY 3G INTERNET USAGE IN AUGUST FOR THE CUSTOMERS WITH CHURN BEHAVIOUR.
- CUSTOMERS HAVING DECREASING OUTGOING MINUTES OF USAGE WITHINH SAME AND OTHER OPERATOR ARE LIKELY TO CHURN
- CUSTOMERS HAVING REDUCED SPECIAL INCOMING CALLS ARE LIKELY TO CHURN AS WELL.
- THE COMPANY SHOULD ALSO TARGET THE CUSTOMERS FOR WHICH THE TOTAL OUTGOING CALLS HAS REDUCED SIGNIFICANTLY IN THE MONTH OF AUSUST AS FOUND IN EXPLORATORY DATA ANALYSIS.

THANK YOU

