SYAM KRISHNA REDDY PULAGAM

REG NO: 21BAI1725 VIT CHENNAI CAMPUS

AI&ML ASSIGNMENT-4

1. LOADING ALL THE NECCESARY LIBRARIES

In [2]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [3]:

```
df=pd.read_csv("winequality-red.csv")
df
```

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66

1599 rows × 12 columns

```
In [4]:
```

```
df.head()
```

Out[4]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alco
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
4											•

2. DATA PREPROCESSING INCLUDING VISUALIZATION

In [7]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64
	· ·		

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [8]:

df.describe()

Out[8]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total d
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.0
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.4
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.8
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.0
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.0
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.0
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.0
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.0
4							•

In [9]:

```
df.isnull().any() #no null values
```

Out[9]:

fixed acidity False volatile acidity False citric acid False residual sugar False chlorides False free sulfur dioxide False total sulfur dioxide False density False False рΗ sulphates False False alcohol quality False dtype: bool

In [10]:

```
plt.figure(figsize=(10,6))
a=['fixed acidity','alcohol']
plt.plot(df['fixed acidity'],"o-")
plt.plot(df['alcohol'],"o-")
plt.xlabel("index of each value of fixed acidity and alcohol in dataset")
plt.ylabel("value of fixed acidity, alcohol for each index")
plt.title("visualizing fixed acidity and alcohol column from dataset")
plt.legend(labels=a)
plt.show()
```


In [11]:

```
df.quality.value_counts()
```

Out[11]:

5 681 6 638 7 199 4 53 8 18 3 10

Name: quality, dtype: int64

In [12]:

```
plt.figure(figsize=(10,6))
df.quality.value_counts(normalize=True).plot.pie()
plt.show()
```


In [13]:

df.hist(bins=20, figsize=(10, 10))
plt.show()

In [14]:

```
plt.bar(df['quality'], df['alcohol'])
plt.xlabel('quality')
plt.ylabel('alcohol')
plt.show()
```


In [45]:

```
plt.subplots(figsize=(20,15))
sns.heatmap(df.corr(), annot=True, cmap = 'RdYlGn', center=0.117)
```

Out[45]:

<AxesSubplot:>

In [16]:

```
x = df.columns
fig, ax = plt.subplots(6, 2, figsize=(15, 25))

for i in range(0, len(x), 2):
    ax[(i // 2)][0].boxplot(df[x[i]])
    ax[(i // 2)][0].set_title(x[i])

    ax[(i // 2)][1].boxplot(df[x[i + 1]])
    ax[(i // 2)][1].set_title(x[i + 1])

#every column had outliers in them
```


In [68]:

In [73]:

```
def boxplot all columns(cleaned df):
    sns.set(style="whitegrid")
   sns.set_context("notebook", font_scale=1.2)
   num_columns = cleaned_df.shape[1]
   num_rows = (num_columns + 2) // 3 # Adjust the number of columns per row as needed
   fig, axes = plt.subplots(num_rows, 3, figsize=(15, 5 * num_rows))
   axes = axes.flatten()
   for i, column in enumerate(cleaned_df.columns):
        sns.boxplot(x=cleaned_df[column], ax=axes[i])
        axes[i].set_title(f'Box Plot for {column}')
        axes[i].set_xlabel(column)
   for j in range(i + 1, len(axes)):
        fig.delaxes(axes[j])
   plt.tight_layout()
   plt.show()
boxplot_all_columns(cleaned_df)
```


In [70]:

cleaned_df.head()

Out[70]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcı
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
4											•

In [17]:

X=df.drop(columns=['quality'],axis=1)

In [18]:

from sklearn.preprocessing import MinMaxScaler
scale =MinMaxScaler()

In [19]:

x = pd.DataFrame(scale.fit_transform(X),columns =X.columns)
x.head()

Out[19]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	su
0	0.247788	0.397260	0.00	0.068493	0.106845	0.140845	0.098940	0.567548	0.606299	0
1	0.283186	0.520548	0.00	0.116438	0.143573	0.338028	0.215548	0.494126	0.362205	0
2	0.283186	0.438356	0.04	0.095890	0.133556	0.197183	0.169611	0.508811	0.409449	0
3	0.584071	0.109589	0.56	0.068493	0.105175	0.225352	0.190813	0.582232	0.330709	0
4	0.247788	0.397260	0.00	0.068493	0.106845	0.140845	0.098940	0.567548	0.606299	0
4										•

In [20]:

Х

Out[20]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН
0	0.247788	0.397260	0.00	0.068493	0.106845	0.140845	0.098940	0.567548	0.606299
1	0.283186	0.520548	0.00	0.116438	0.143573	0.338028	0.215548	0.494126	0.362205
2	0.283186	0.438356	0.04	0.095890	0.133556	0.197183	0.169611	0.508811	0.409449
3	0.584071	0.109589	0.56	0.068493	0.105175	0.225352	0.190813	0.582232	0.330709
4	0.247788	0.397260	0.00	0.068493	0.106845	0.140845	0.098940	0.567548	0.606299
1594	0.141593	0.328767	0.08	0.075342	0.130217	0.436620	0.134276	0.354626	0.559055
1595	0.115044	0.294521	0.10	0.089041	0.083472	0.535211	0.159011	0.370778	0.614173
1596	0.150442	0.267123	0.13	0.095890	0.106845	0.394366	0.120141	0.416300	0.535433
1597	0.115044	0.359589	0.12	0.075342	0.105175	0.436620	0.134276	0.396476	0.653543
1598	0.123894	0.130137	0.47	0.184932	0.091820	0.239437	0.127208	0.397944	0.511811
1599 r	rows × 11	columns							
4									

In [22]:

mean=df.quality.mean()
mean=int(mean)
mean

Out[22]:

5

In [23]:

df['best quality'] = [1 if x > mean else 0 for x in df.quality]

```
In [24]:
```

df.head()

Out[24]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alco
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
4											•

In [25]:

y=df['best quality']

3.MACHINE LEARNING MODEL BUILDING

USING DATA WITHOUT REMOVING OUTLIERS

```
In [26]:
```

from sklearn.model_selection import train_test_split
xtrain, xtest, ytrain, ytest = train_test_split(X,y, test_size=0.2, random_state=42)

In [27]:

xtrain.shape

Out[27]:

(1279, 11)

In [28]:

ytrain.shape

Out[28]:

(1279,)

MODEL-1 LOGISTIC REGRESSION

```
In [29]:
```

```
from sklearn.linear_model import LogisticRegression
model=LogisticRegression()
```

```
In [30]:
```

```
model.fit(xtrain,ytrain)
```

```
C:\Users\HP\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:
763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
```

Increase the number of iterations (max_iter) or scale the data as shown i
n:

https://scikit-learn.org/stable/modules/preprocessing.html (https://sc
ikit-learn.org/stable/modules/preprocessing.html)

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic-reg
ression (https://scikit-learn.org/stable/modules/linear_model.html#logisti
c-regression)

n_iter_i = _check_optimize_result(

Out[30]:

LogisticRegression()

In [32]:

```
from sklearn.metrics import accuracy_score
prediction_train=model.predict(xtrain)
accuracy_train= accuracy_score(ytrain, prediction_train)
accuracy_train
```

Out[32]:

0.7482408131352619

In [33]:

```
prediction_test=model.predict(xtest)
accuracy_test= accuracy_score(ytest, prediction_test)
accuracy_test
```

Out[33]:

0.74375

In [34]:

```
from sklearn import metrics
from sklearn.metrics import confusion_matrix
print(confusion_matrix(prediction_test, ytest))
```

```
[[104 45]
[ 37 134]]
```

MODEL-2 DECISION TREE

```
In [35]:
from sklearn.tree import DecisionTreeClassifier
model_2 = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
model_2.fit(xtrain, ytrain)
Out[35]:
DecisionTreeClassifier(criterion='entropy', random_state=0)
In [36]:
y_pred_d=model_2.predict(xtest)
accuracy_d=accuracy_score(ytest,y_pred_d)
accuracy_d
Out[36]:
0.746875
In [37]:
confusion_matrix(y_pred_d,ytest)
Out[37]:
array([[101, 41],
       [ 40, 138]], dtype=int64)
MODEL-3 RANDOM FOREST CLASSIFIER
In [38]:
from sklearn.ensemble import RandomForestClassifier
model_3 = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state
model_3.fit(xtrain, ytrain)
Out[38]:
RandomForestClassifier(criterion='entropy', n_estimators=10, random_state=
42)
In [39]:
y_pred_r=model_3.predict(xtest)
accuracy_r=accuracy_score(ytest,y_pred_r)
accuracy r
Out[39]:
0.796875
In [41]:
confusion_matrix(y_pred_r,ytest)
Out[41]:
```

array([[113, 37],

[28, 142]], dtype=int64)

MODEL-4 SUPPORT VECTOR MACHINE

```
In [43]:
```

```
from sklearn import svm
model_4= svm.SVC(kernel='linear')
model_4.fit(xtrain, ytrain)

Out[43]:
SVC(kernel='linear')

In [44]:

y_pred_s=model_4.predict(xtest)
accuracy_s=accuracy_score(y_pred_s,ytest)
accuracy_s

Out[44]:
0.73125
```

4. MODEL ACCURACY COMPARISION

In [49]:

```
a={'logistic regression':accuracy_test,'decision tree':accuracy_d,'Random Forest':accura
x=0
for i in a:
    x=max(x,a[i])
for i in a:
    if a[i]==x:
        print(i,"has best accuracy of",x)
```

Random Forest has best accuracy of 0.796875

In [47]:

Out[47]:

	Accuracy Score	Model_Name
0	0.796875	Random Forest
1	0.746875	Decision Tree
2	0.743750	Logistic Regression
3	0.731250	Support Vector Machine

5. Test with random observation

```
In [61]:
```

```
input_data = (6.4, 0.67, 0.08, 2.1, 0.045, 19, 48, 0.9949, 3.49, 0.49, 11.4)
# changing the input_data to numpy array
input_data_as_numpy_array = np.asarray(input_data)
# reshape the array as we are predicting for one instance
input data reshaped = input data as numpy array.reshape(1,-1)
# standardize the input data
std_data = scale.transform(input_data_reshaped)
print("data after applying scaler is: ")
print(std_data)
print("\n")
prediction = model_4.predict(std_data)
print(f"predicted value of wine is {prediction}")
if (prediction[0] == 0):
    print('Wine Quality is good')
else:
    print('Wine Quality is not good')
data after applying scaler is:
[[0.15929204 0.37671233 0.08
                                   0.08219178 0.05509182 0.25352113
  0.14840989 0.35462555 0.59055118 0.09580838 0.46153846]]
predicted value of wine is [0]
Wine Quality is good
```

USING THE DATA AFTER REMOVING THE OUTLIERS

```
In [95]:
```

```
X=cleaned_df.drop(columns=['quality','best quality'],axis=1)
y=cleaned_df['best quality']
```

In [96]:

```
x = pd.DataFrame(scale.fit_transform(X),columns =X.columns)
x.head()
```

Out[96]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН
0	0.319444	0.655367	0.000000	0.291667	0.448718	0.243902	0.241379	0.630058	0.770270
1	0.375000	0.858757	0.000000	0.583333	0.730769	0.585366	0.525862	0.514451	0.351351
2	0.375000	0.723164	0.054795	0.458333	0.653846	0.341463	0.413793	0.537572	0.432432
3	0.847222	0.180791	0.767123	0.291667	0.435897	0.390244	0.465517	0.653179	0.297297
4	0.319444	0.655367	0.000000	0.291667	0.448718	0.243902	0.241379	0.630058	0.770270
4									•

In [97]:

```
from sklearn.model_selection import train_test_split
xtrain, xtest, ytrain, ytest = train_test_split(X,y, test_size=0.2, random_state=42)
```

```
In [98]:
```

```
model.fit(xtrain,ytrain)
prediction_test=model.predict(xtest)
accuracy_test= accuracy_score(ytest, prediction_test)
model_2.fit(xtrain, ytrain)
y_pred_d=model_2.predict(xtest)
accuracy_d=accuracy_score(ytest,y_pred_d)
model_3.fit(xtrain, ytrain)
y_pred_r=model_3.predict(xtest)
accuracy_r=accuracy_score(ytest,y_pred_r)
model 4.fit(xtrain, ytrain)
y_pred_s=model_4.predict(xtest)
accuracy_s=accuracy_score(y_pred_s,ytest)
C:\Users\HP\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:
763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown i
n:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://sc
ikit-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-reg
ression (https://scikit-learn.org/stable/modules/linear_model.html#logisti
c-regression)
  n_iter_i = _check_optimize_result(
In [99]:
accuracy_test
Out[99]:
0.7949790794979079
In [100]:
accuracy d
Out[100]:
0.7280334728033473
In [101]:
accuracy r
Out[101]:
0.8158995815899581
```

```
In [102]:
accuracy_s
Out[102]:
0.7740585774058577

In [103]:

model_comparison = pd.DataFrame ({
    'Accuracy Score': [accuracy_test,accuracy_d,accuracy_r,accuracy_s],
    'Model_Name': ['Logistic Regression','Decision Tree','Random Forest','Support Vecto
})
model_comparison_df = model_comparison.sort_values(by='Accuracy Score',ascending=False)
model_comparison_df = model_comparison_df.set_index('Accuracy Score')
model_comparison_df.reset_index()
```

Out[103]:

	Accuracy Score	Model_Name
0	0.815900	Random Forest
1	0.794979	Logistic Regression
2	0.774059	Support Vector Machine
3	0.728033	Decision Tree

5. Test with random observation

In [105]:

predicted value of wine is [0]

Wine Quality is good

```
input data = (5.6,0.615,0,1.6,0.089,16,59,0.9943,3.58,0.52,9.9)
# changing the input_data to numpy array
input_data_as_numpy_array = np.asarray(input_data)
# reshape the array as we are predicting for one instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
# standardize the input data
std data = scale.transform(input data reshaped)
print("data after applying scaler is: ")
print(std_data)
print("\n")
prediction = model_4.predict(std_data)
print(f"predicted value of wine is {prediction}")
if (prediction[0] == 0):
   print('Wine Quality is good')
else:
   print('Wine Quality is not good')
data after applying scaler is:
[[0.06944444 0.55932203 0.
                                   0.16666667 0.61538462 0.36585366
  0.45689655 0.22543353 0.86486486 0.29230769 0.25531915]]
```