## **Tutorial 1**

Spring 2022

## Answer the following questions:

**1.** Show that the following conditional statements  $(\neg p \land (p \lor q)) \rightarrow q$  is a tautology by using:

**a)** Truth tables.

**b)** Applying a chain of logical equivalences.



2. Determine the truth value of the following propositions for the given universe of discourse.

|                                                                 | Universe of discourse | Truth value |
|-----------------------------------------------------------------|-----------------------|-------------|
| ∃x (x+1>2x)                                                     | $\mathbb{Z}$          | +           |
| ∀x (x+1>2x)                                                     | $\mathbb{Z}$          | F           |
| $\exists x (x^2 = 2)$                                           | $\mathbb{R}$          | T           |
| $\exists x \exists y (x + y = x - y)$                           | $\mathbb{Z}$          | , +         |
| $\forall x \exists y (x + y = x - y)$                           | $\mathbb{Z}$          | +           |
| $\forall y \exists x (x + y = x - y)$                           | $\mathbb{Z}$          | #           |
| $\forall x \exists y (x - 2y = 0)$                              | $\mathbb{R}$          | <u></u>     |
| $\forall x (x<10) \rightarrow \forall y (y< x) \rightarrow y<9$ | $\mathbb{Z}$          | T           |
| $\forall x (x<10) \rightarrow \forall y (y< x) \rightarrow y<9$ | $\mathbb{R}$          | F           |

9.5 mes Soo C

3. For the following statements, write "True" or "False":

a.  $\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x) \rightarrow$ 

b.  $\forall x (P(x) \lor Q(x)) \equiv \forall x P(x) \lor \forall x Q(x)$ 

c.  $\exists x (P(x) \land Q(x)) \equiv \exists x P(x) \land \exists x Q(x) \models$ 

d.  $\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x) \uparrow$ 

**4.** Let L(x,y)="x likes y". Express the following statements using predicates and quantifiers:

a. Everyone likes Khaled.  $\forall x \mid (x \mid k \mid haled) \rightarrow 0$ 

b. There is someone who Fahad doesn't like.  $\exists y$ ,  $\exists \lambda \in A$ 

d. There is someone whom everyone likes.  $\exists y \forall x \mid (x, y) \rightarrow b$ 

e. There is someone whom no one likes.

3 x 4x 7 (x, r) -> e