2002年9月

$$oxed{1}$$
 行列 $A=\begin{pmatrix} 5 & 1 & -2 \\ 4 & 6 & -5 \\ 4 & 3 & -2 \end{pmatrix}$ について、次の問に答えよ。

- (1) A の固有値と固有ベクトルを求めよ。
- (2) A は対角化不可能であることを示せ。
- (3) A を正則行列によって三角化せよ。
- 2 (1) 関数

$$f(x) = \begin{cases} x^4 \sin \frac{1}{x} & (x \neq 0), \\ 0 & (x = 0) \end{cases}$$

の2次導関数 f''(x) を求め、f''(x) の x=0 における連続性を調べよ。

(2) 正の定数 a,b に対して、 \mathbf{R}^2 の閉領域を $A = \left\{ (x,y) \left| \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1, \ x \ge 0, \ y \ge 0 \right. \right\}$ とするとき、積分

$$\iint_A (x^2 + y^2) dx dy$$

を求めよ。

3 実 n 次元空間 \mathbb{R}^n の部分集合

$$B = \{(x_1, x_2, ..., x_n) | x_1^2 + x_2^2 + \dots + x_n^2 \le 1\}$$

に含まれる m 個の点 $A_1,A_2,...,A_m$ は、どの 2 点も距離が $\sqrt{2}$ 以上離れている。次の問に答えよ。

- (1) $A_1=(a_1,0,...,0),\ a_1<0$ ならば、 $A_2,...,A_m$ の x_1 座標は 0 以上であることを証明せよ。
- (2) m>n とし、 $A_1=(a_1,0,...,0), A_2=(b_{21},a_2,0,...,0),\cdots, A_n=(b_{n1},b_{n2},...,b_{n,n-1},a_n)$ とする。ここで A_i の i+1 番目以上の座標はすべて 0 で、i 番目の座標 $a_i<0$ である。このとき、j< i に対して $b_{ij}\geq 0$ であること、および $A_{n+1},...,A_m$ のすべての座標が 0 以上であることを証明せよ。
- (3) (2) の条件の下で、 $m \leq 2n$ であることを証明せよ。また、m=2n のときには $A_1,...,A_{2n}$ はどのような点か示せ。

 $oxed{4}$ n 次正方行列全体の作る環を M とする。M から M への環準同型写像

$$f: M \to M$$

に対して、

$$f(aE) = aE$$
, (a は任意のスカラー, E は単位行列)

であるとき、次の問に答えよ。

(1) (i,j) 成分が 1 で、他のすべての成分が 0 である行列を e_{ij} と表し、 $E_{ij}=f(e_{ij})$ とする。任意の $A=(a_{ij})\in M$ に対して、

$$f(A) = \sum_{i,j} a_{ij} E_{ij}$$

であることを示せ。

- (2) f は同型写像であることを示せ。
- (3) 任意の $A \in M$ に対して、A の固有値は f(A) の固有値であることを示せ。
- $oxed{5}$ (1) 多項式 x^4+1 を、 次の体を係数として、 それぞれ素因数分解せよ。
- (a) 実数体 R
- (b) 複素数体 C
- (c) 有理数体 Q
- (d) 以下の素数 p に対して、 p 個の元からなる有限体 \mathbf{F}_p $p=2, \quad p=5, \quad p=17$
- (2) (1) の体を (-般に) K とするとき、 K[x] は K 係数の多項式環を表す。剰余環 $R=K[x]/(x^4+1)$ の構造を、(1) のそれぞれの体に対し決定せよ。

$$oxed{6}$$
 $S^2 = \left\{ egin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbf{R}^3 | x_1^2 + x_2^2 + x_3^2 = 1 \right\}$ を 2 次元球面とする。写像 $\varphi: \mathbf{R} \times S^2 \to \mathbf{R}$

 \mathbb{R}^3

$$\varphi(t, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}) = \left(\frac{2x_1e^t}{(1+x_3)e^{2t} + (1-x_3)}, \frac{2x_2e^t}{(1+x_3)e^{2t} + (1-x_3)}, 1 - \frac{2(1-x_3)}{(1+x_3)e^{2t} + (1-x_3)}\right)$$

に対して、次の各問に答えよ。

- (1) φ は $\mathbf{R} \times S^2$ から S^2 への微分可能な写像であることを示せ。
- (2) $\varphi(0,x)=x, \varphi(t,\varphi(s,x))=\varphi(t+s,x)$ $(t,s\in\mathbf{R},\,x\in S^2)$ をみたすことを示せ。
- (3) $a\in S^2$ に対して、 $\varphi_a(t)=\varphi(t,a)$ $(t\in\mathbf{R})$ とおく。曲線 $\varphi_a(t)$ $(t\in\mathbf{R})$ の t=0 における速度ベクトル X_a を求めよ。
 - (4) $a = (1,0,0) \in S^2$ に対して、 $\{\varphi(t,a) \mid t \in \mathbf{R}\}$ を図示せよ。
 - $oxed{7}$ \mathbf{R}^3 の部分集合 $S=\{(x,y,z)\in\mathbf{R}^3\,|\,x^2+y^2=1,\,z=0\}$ を考える。次の問に答えよ。
- (1) 空間 $X \subset \mathbf{R}^3$ を $X = \{(s,t,u) \in \mathbf{R}^3 \mid s^2 + t^2 + u^2 = 1, u \neq 0\} \cup \{(1,0,0), (-1,0,0)\}$ で与える。集合 S と 1 点のみで交わる \mathbf{R}^3 内の向きを考えた直線全体のなす空間は, $X \times S^1$ となることを示せ。またその基本群を求めよ。
 - (2) 閉区間 [0,1] の直積空間 $[0,1] \times [0,1]$ の点 (φ,ψ) に対し、同一視

$$(\varphi,0) \sim (\varphi,1), (0,\psi) \sim (1,\psi), (0,\psi) \sim (0,\psi + \frac{1}{2})$$

を考えたものを Y とおく。このとき、S に直交する \mathbf{R}^3 内の向きを考えない直線全体の成す空間は、Y となることを示せ。またその基本群を求めよ。

8

 $N \times N$ 複素行列 $A = (a_{ij})$ に対し

$$\gamma(A) = \max\{|a_{ij}| : i, j = 1, 2, \dots, N\}$$

と定める。また、
$$x=\begin{pmatrix}x_1\\ \vdots\\ x_N\end{pmatrix}\in\mathbf{C}^N$$
 に対し $\|x\|=\left(\sum_{i=1}^N|x_i|^2\right)^{\frac{1}{2}}$ として

$$||A|| = \sup \left\{ \frac{||Ax||}{||x||} : x \in \mathbf{C}^N, x \neq 0 \right\}$$

と定める。(つまり、||A|| は A の作用素ノルム)

(1) $\gamma(A) \leq ||A|| \leq N\gamma(A)$ を示せ。

$$(2) \quad A = \begin{pmatrix} \lambda & 1 & & & 0 \\ & \lambda & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & 1 \\ 0 & & & \lambda \end{pmatrix} に対して、 \lim_{n \to \infty} (\gamma(A^n))^{\frac{1}{n}} = |\lambda|$$
を示せ。

- (3) (2) と同じ A について、 $\lim_{n\to\infty}\|A^n\|^{\frac{1}{n}}=|\lambda|$ を示せ。
- (4) 任意の $N \times N$ 複素行列 A に対して

$$\lim_{n \to \infty} \|A^n\|^{\frac{1}{n}} = \inf_{n \ge 1} \|A^n\|^{\frac{1}{n}} = \max\{|\lambda| \, : \, \lambda$$
は A の固有値 $\}$

を示せ。

- $oxed{9}$ 3頂点 A,B,C 上を離散時間 $n=0,1,2,\ldots$ の経過とともに移動する動点がある。時刻 n におけるその動点の位置を X_n で記す。この動点は次の規則で動く。
 - (i) $X_0 = A$
- (ii) 時刻 n である頂点にいるとき、つぎの時刻 n+1 では、残り 2 つの頂点のいずれかに等確率で移動する。

次の問に答えよ。

- (1) 初めて C に到達したときの時刻 T の平均 $\mathbf{E}(T)$ と分散 $\mathbf{V}(T)$ を求めよ。
- (2) $a_n = P(X_n = A), b_n = P(X_n = B), c_n = P(X_n = C)$ とおくとき

$$\begin{pmatrix} a_{n+1} \\ b_{n+1} \\ c_{n+1} \end{pmatrix} = F \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} \quad (n = 0, 1, 2, \ldots)$$

をみたす3 imes 3 行列F を求めよ。これを利用して $\lim_{n o\infty}a_n,\,\lim_{n o\infty}b_n,\,\lim_{n o\infty}c_n$ を求めよ。

 $oxed{10}$ 数直線 $oxed{R}$ 上の関数 g は下に有界な連続関数とし、これを用いて各 $(x,t)\in oxed{R} imes (0\,,\,+\infty)$ に対して u(x,t) を

$$u(x,t) = \min_{y \in \mathbf{R}} \left\{ \frac{(x-y)^2}{2t} + g(y) \right\}$$

で定義する。次の問に答えよ。

- (1) 関数 g が $g(x)=\frac{x^2}{2s},\ s>0,$ で与えられるとき、上の u(x,t) を求めよ。
- (2) ある定数 C が存在して

$$g(x+z) - 2g(x) + g(x-z) \le Cz^2$$
 $(x, z \in \mathbf{R})$

が成立するとき、 u は

$$u(x+z,t) - 2u(x,t) + u(x-z,t) \le Cz^2$$
 $(x,z \in \mathbf{R}, 0 < t < +\infty)$

を満たすことを示せ。

(3) R× $(0,+\infty)$ 上の関数 η を用いて

$$u(x,t) = \frac{\{x - \eta(x,t)\}^2}{2t} + g(\eta(x,t)) \qquad ((x,t) \in \mathbf{R} \times (0, +\infty))$$

と書けるとき、各 $x \in \mathbf{R}$ において

$$\lim_{t \to +0} \eta(x,t) = x \ , \quad \lim_{t \to +0} u(x,t) = g(x)$$

であることを示せ。

(4) $g \in C^1(\mathbf{R})$ とし、 $\eta \in C^1(\mathbf{R} \times (0, +\infty))$ を仮定して

$$\frac{\partial u}{\partial t}(x,t) + \frac{1}{2} \left\{ \frac{\partial u}{\partial x}(x,t) \right\}^2 = 0$$

を証明せよ。

 $|\mathbf{11}|$ (1) N 個の数 $a_0, a_1, \ldots, a_{N-1}$ に対して

$$A_m = \sum_{i=0}^{N-1} a_j e^{i2\pi \frac{m}{N}j} \quad (m = 0, 1, \dots, N-1)$$

とおくとき、各 n = 0, 1, ..., N-1 に対して

$$\frac{1}{N} \sum_{m=0}^{N-1} A_m e^{-i2\pi \frac{n}{N}m} = a_n$$

が成立することを示せ。ここで、i は虚数単位 $\sqrt{-1}$ を表し、 $e^{i\theta}$ は単位円周上の複素数 $\cos\theta+i\sin\theta$ である。

(2) 周期 2π の滑らかな周期関数 f のフーリエ級数展開を

$$f(x) = \sum_{k=-\infty}^{+\infty} c_k e^{ixk}$$

とする。自然数 N を固定しておき、各 $j=0,1,\ldots,N-1$ に対して

$$C_j = \sum_{k=-\infty}^{+\infty} c_{j+Nk}$$

とおく。このとき m = 0, 1, ..., N-1 に対して

$$f\left(2\pi\frac{m}{N}\right) = \sum_{i=0}^{N-1} C_i e^{i2\pi\frac{m}{N}j}$$

が成立することを示せ。

(3) 各 N に対して (2) で定義された C_0,C_1,\ldots,C_{N-1} を $C_0^{(N)},C_1^{(N)},\ldots,C_{N-1}^{(N)}$ と書くとき、極限値

$$\lim_{N \to \infty} C_n^{(N)} \quad (n = 0, 1, \ldots)$$

は何を表すか答えよ。