Слайд 3. (Схема управления по прогнозирующей модели 1)

В результате постоянно меняющейся экономики процесса (например, переменное сырье, изменение цен на энергоносители и т. д.), цели и стратегии технологических процессов необходимо часто обновлять, чтобы учитывать эти изменения. В силу вышесказанного при управлении химическими процессами принято разделять экономические цели и процесс управления на 2 этапа.

На первом этапе, который называется оптимизация в реальном времени выбирается экономическая целевая функция и формулируется задача оптимизации при ограничениях, задающихся существенными условиями (ценами на рынке, объемами запасов и так далее). Результатом этапа оптимизации в реальном времени является положение равновесия системы (steady-state).

На втором этапе применяются методы теории управления, в частности, в последние годы большую популярность преобретают методы управления по прогнозирующей модели (МРС), для стабилизации и слежения за полученными равновесиями траектории. МРС использует динамическую модель процесса в задаче оптимизации, чтобы предсказать будущее развитие процесса в течение конечного периода времени, чтобы определить оптимальную входную траекторию относительно заданного индекса производительности. Кроме того, МРС может учитывать ограничения процесса и взаимодействия с несколькими переменными в задаче оптимизации. Таким образом, он обладает способностью оптимально управлять ограниченными нелинейными системами с несколькими входами и несколькими выходами. Традиционные формулировки МРС используют квадратичную целевую функцию, которая по существу является мерой прогнозируемого отклонения ошибки состояний и входных данных от их соответствующих стационарных значений, чтобы принудительно довести процесс до (экономически) оптимального состояния.

Слайд 4. (Схема управления по прогнозирующей модели 2)

Приведенная схема реализуется в системе управления с обратной связью. Можно выделить некоторые особенности схемы управления по прогнозирующей модели:

- Можно использовать нелинейные системы обыкновенных дифференциальных уравнений в качестве прогнозирующей модели.
- Управление по прогнозирующей модели позволяет учитывать ограничения, которые наложены на управляющие переменные, и на вектора состояния.
- Подход предусматривает минимизацию функционала, который характеризует качество управления, в режиме реального времени.
- Предсказанное поведение динамического объекта, отличается от его реального движения.
- Управлению по прогнозирующей модели необходимо, чтобы текущее состояние объекта измерялось или оценивалось.

Слайд 5. (Задача оптимизации неоклассической модели экономического роста 1)

Теперь рассмотрим один из примеров описанных в работе, а именно, задачу оптимизации неоклассической модели экономического роста.

Неоклассическая модель оптимального экономического роста описывает замкнутую агрегированную экономику. В замкнутой экономике произведенный продукт либо инвестируется в основные производственные фонды (капитал), либо потребляется.

В данной модели амортизации капитала не предполагается.

Неоклассическая модель оптимального экономического роста (с логарифмической функцией мгновенной полезности) формулируется в виде следующей задачи оптимального управления.

Где 1 - u(t) – описывает величину мгновенного потребления на единицу трудовых ресурсов. x(t) – величина капитала, приходящегося на единицу рабочей силы. x(t) – отражает динамику изменения капитала на единицу рабочей силы.

Слайд 6. (Задача оптимизации неоклассической модели экономического роста 2)

На данном слайде составлена прогнозирующая задача оптимального управления для управления по прогнозирующей модели. Как говорилось ранее, в схеме управления по прогнозирующей модели: критерий качества использует квадратичную целевую функцию, которая по существу является мерой прогнозируемого отклонения ошибки состояний и входных данных от их соответствующих стационарных значений, чтобы принудительно довести процесс до (экономически) оптимального состояния.

Уравнение (6) обеспечивает, что траектория предсказанного состояния x(t) сходится к допустимому промежуточному состоянию. Остальные ограничения и обозначения аналогичны задаче (1) - (3).

Так как применяемый метод MPC разработан для моделей с дискретным временем, то для решения задачи (4)-(7) необходимо произвести дискретизацию. В данном случае использовался метод Рунге-Кутты 4-го порядка.

Далее будут представлены рисунки построенные с помощью схемы МРС реализации обратной связи (оптимальное управление) и соответствующие траектории при различных значениях параметров.

Слайд 7. (Решение: изменение начального состояния)

По графикам можно сделать вывод:

- $x_0 < x^*$: фирма инвестирует в основные производственные фонды, таким образом величина капитала на единицу рабочей силы уменьшается. Это происходит до тех пор, пока качество потребления и инвестиций не примут наибольшее значение.
- $x_0 > x^*$: объем производства потребляется до тех пор, пока траектории не выйдут на магитраль. В этом случае объем производства соответствует потреблению.

Слайд 8. (Решение: изменение длины горизонта)

Чем больше длина горизонта, тем быстрее траектории выходят на магистраль, то есть сложнее анализировать развитие экономики.

Слайд 9. (Решение: изменение весового коэффициента)

Заметим, что решение, изображенное на рис. где w=10 сильнее штрафует отклонения состояния от магистрали, чем отклонения управления от магистрального значения. Это решение хорошо приближает оптимальное решение исходной задачи с бесконечным горизонтом.

В магистерской диссертации, аналогичным образом, построены и проанализированы магистрали для задачи, которая решалась в дипломной работе, а именно, модель открытой экономики, которая имеет возможность использовать внешний кредит.