§6. Базис и координаты вектора. Прямоугольная декартова система координат

Понятия вектора и линейных операций над векторами алгебраизируют геометрические высказывания, т.е. заменяют геометрические утверждения векторными равенствами. Используя результаты предыдущих параграфов, приведём теперь действия с векторами к действиям с числами, т.е. арифметизируем векторно-алгебраические соотношения. Для этого введём понятия базиса на данном множестве векторов.

Определение 6.1. Базисом данного множества векторов называется любой упорядоченный набор из n его линейно независимых векторов, где n равно максимально возможному числу линейно независимых векторов этого множества.

Введение базиса на множестве векторов служит основой для построения системы координат на прямой, плоскости и в пространстве.

1°. Базис множества векторов, параллельных данной прямой. Пусть дана прямая l и множество V_1 векторов, параллельных l, V_1 — это множество коллинеарных векторов. Любая пара векторов из V_1 по теореме 5.1 линейно зависима, а любой ненулевой вектор \vec{a} из V_1 линейно независим (замечание 4.1), поэтому максимально возможное число линейно независимых векторов в V_1 равно 1.

Определение 6.2. Любой вектор $\vec{a} \neq \vec{0}$ из V_1 называется *базисом* в V_1 и на данной прямой l.

Для любого вектора \vec{b} из V_1 в силу свойства коллинеарных векторов (теорема 3.1) справедливо равенство

$$\vec{b} = x\vec{a}, \quad x \in \mathbf{R},\tag{6.1}$$

которое называется разложением вектора \vec{b} по базису \vec{a} , а число x – координатой вектора \vec{b} в базисе \vec{a} . Выбор базиса в V_1 вводит взаимно однозначное соответствие между векторами из V_1 и вещественными числами.

Выбор базиса \vec{a} на прямой l задает на ней направление и превращает её в ось \vec{l} . Пусть $\vec{a} = \vec{e}$, $|\vec{e}| = 1$, вектор \vec{e} называется *ортом* данной оси. Тогда $\vec{b} = x\vec{e}$, а $x = \pm |\vec{b}|$, как это следует из определения 3.1. Знак «+» соответствует сонаправленности векторов \vec{b} и \vec{e} , а «-» – противонаправленности. Число x в этом случае называется κ оординатой вектора \vec{b} на оси \vec{l} .

2°. Базис множества векторов, параллельных данной плоскости. Пусть дана плоскость и множество V_2 векторов, ей параллельных, V_2 — множество компланарных векторов. Любая тройка векторов из V_2 линейно зависима по теореме 5.3, а любая пара неколлинеарных векторов из V_2 линейно независима по следствию из теоремы 5.1. Поэтому максимальное возможное число линейно независимых векторов в V_2 равно 2.

Определение 6.3. Любая упорядоченная пара неколлинеарных векторов \vec{e}_1 и \vec{e}_2 из множества V_2 векторов, параллельных данной плоскости, называется *базисом* в V_2 и на данной плоскости.

Любой вектор \vec{a} из V_2 по теореме 5.2 можно представить единственным образом в виде:

$$\vec{a} = x\vec{e}_1 + y\vec{e}_2, \quad x, y \in \mathbf{R}. \tag{6.2}$$

Числа x и y называются koopduhamamu вектора \vec{a} в данном базисе (\vec{e}_1 , \vec{e}_2), а равенство (6.2) называется pasnowehuem вектора \vec{a} по данному базису. Выбор базиса в V_2 устанавливает взаимно однозначное соответствие между векторами из V_2 и упорядоченными парами (x,y) вещественных чисел. Так, для вектора \vec{a} из примера 5.2 числа $\sqrt{3}$, 2/3 – его координаты в базисе (\vec{e}_1 , \vec{e}_2).

Пример 6.1. \vec{a} и \vec{b} – неколлинеарные векторы. При каких значениях параметра α векторы $\vec{a}+2\vec{b}$ и $3\,\vec{a}+\alpha\vec{b}$ образуют базис в множестве V_2 ?

▶ Найдём значения параметра α , при которых векторы $\vec{a}+2\vec{b}$ и $3\vec{a}+\alpha\vec{b}$ линейно независимы и, следовательно, неколлинеарны. Приравняем нуль-вектору линейную комбинацию данных векторов: $\lambda_1(\vec{a}+2\vec{b})+\lambda_2(3\vec{a}+\alpha\vec{b})=\vec{0}$. Перегруппируем члены в левой части этого равенства: $(\lambda_1+3\lambda_2)\vec{a}+(2\lambda_1+\alpha\lambda_2)\vec{b}=\vec{0}$. Линейная комбинация векторов \vec{a} и \vec{b} , равная нуль-вектору, может быть только тривиальной, так как эти векторы неколлинеарны и, следовательно, линейно независимы (следствие из теоремы 5.1). Поэтому для λ_1 и λ_2 получаем следующую систему уравнений: $\begin{cases} \lambda_1+3\lambda_2=0, \\ 2\lambda_1+\alpha\lambda_2=0. \end{cases}$ Теперь задача

формулируется так: найти значения параметра α , для которых нулевое решение этой системы единственно. В силу теоремы Крамера это условие выполняется только в том случае, если главный определитель Δ системы отличен от нуля. Поскольку $\Delta = \alpha - 6$, то приходим к выводу, что нужные значения параметра α определяются неравенством: $\alpha \neq 6$.

3°. Базис множества всех векторов пространства. Любые четыре вектора из V_3 линейно зависимы по теореме 5.5, а три некомпланарных вектора из V_3 линейно независимы по следствию из теоремы 5.3. Поэтому максимальное возможное число линейно независимых векторов в V_3 равно 3.

Определение 6.4. Любая упорядоченная тройка некомпланарных векторов $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ из множества V_3 всех векторов пространства называется *базисом* в V_3 и в пространстве.

Любой вектор \vec{a} из V_3 согласно теореме 5.4 можно единственным образом представить в виде:

$$\vec{a} = x\vec{e}_1 + y\vec{e}_2 + z\vec{e}_3, \quad x, y, z \in \mathbf{R}.$$
 (6.3)

Числа x, y, z называют координатами вектора \vec{a} в данном базисе $(\vec{e_1}, \vec{e_2}, \vec{e_3})$, а равенство (6.3) называется pазложением вектора \vec{a} по данному базису. Выбор базиса в V_3 устанавливает взаимно однозначное соответствие между векторами из V_3 и упорядоченными тройками (x,y,z) вещественных чисел. Для вектора \vec{a} из примера 5.3 числа 3/4, 1/4, 1/2— его координаты в базисе $(\vec{e_1}, \vec{e_2}, \vec{e_3})$.

Обобщая вышесказанное, заключаем, что на пути арифметизации векторно-алгебраических соотношений сделан важный шаг — установлено взаимно однозначное соответствие между векторами из множеств $V_1,\ V_2,\ V_3$ и упорядоченными наборами действительных чисел. Для достижения поставленной цели осталось установить правила выполнения линейных операций с векторами, заданными разложениями в некотором базисе.

Правило 6.1. При сложении векторов, заданных разложениями в некотором базисе, складываются их соответствующие координаты.

▶Пусть, для определённости, даны два вектора \vec{a} и \vec{b} из V_3 , а также $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ – базис в V_3 . Имеем

$$\vec{a} = \alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2 + \alpha_3 \vec{e}_3, \tag{6.4}$$

$$\vec{b} = \beta_1 \vec{e}_1 + \beta_2 \vec{e}_2 + \beta_3 \vec{e}_3, \tag{6.5}$$

где $\alpha_1,\alpha_2,\alpha_3$ — координаты \vec{a} , а β_1,β_2,β_3 — координаты \vec{b} в выбранном базисе. Используя свойства линейных операций с векторами (§§2 и 3), сумму $\vec{a}+\vec{b}$ можно преобразовать следующим образом:

$$\vec{a} + \vec{b} = (\alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2 + \alpha_3 \vec{e}_3) + (\beta_1 \vec{e}_1 + \beta_2 \vec{e}_2 + \beta_3 \vec{e}_3) = (\alpha_1 + \beta_1) \vec{e}_1 + (\alpha_2 + \beta_2) \vec{e}_2 + (\alpha_3 + \beta_3) \vec{e}_3$$

что и требовалось доказать. ◀

Правило 6.2. При умножении вектора, заданного разложением в некотором базисе, на действительное число λ все его координаты умножаются на это число.

▶Пусть, для определённости, дан вектор \vec{a} из V_3 , $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ — базис в V_3 . Имеем $\vec{a}=\alpha_1\vec{e}_1+\alpha_2\vec{e}_2+\alpha_3\vec{e}_3$,

где $\alpha_1, \alpha_2, \alpha_3$ координаты \vec{a} в выбранном базисе. Используя свойства линейных операций с векторами (§§2 и 3), произведение $\lambda \vec{a}$ вектора \vec{a} на число λ можно преобразовать так:

$$\lambda \vec{a} = \lambda (\alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2 + \alpha_3 \vec{e}_3) = (\lambda \alpha_1) \vec{e}_1 + (\lambda \alpha_2) \vec{e}_2 + (\lambda \alpha_3) \vec{e}_3,$$

что и требовалось доказать. ◀

Свойство координат коллинеарных векторов. Соответственные координаты коллинеарных векторов в любом базисе пропорциональны.

▶Действительно, пусть заданы векторы \vec{a} и \vec{b} из V_3 , а также $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ — базис в V_3 , причем $\vec{a}|\vec{b}$. Для этих векторов имеем разложения (6.4), (6.5). Согласно теореме 3.1 для \vec{a} и \vec{b} справедливо соотношение: $\vec{b} = \lambda \vec{a}$, где λ — некоторое действительное число. Используя правило 2 и единственность разложения вектора в данном базисе, получаем равенства $\beta_1 = \lambda \alpha_1$, $\beta_2 = \lambda \alpha_2$, $\beta_3 = \lambda \alpha_3$, что и означает пропорциональность координат. \blacktriangleleft

Поставленная в начале параграфа задача решена — линейные операции с векторами сведены к арифметическим операциям (сложению и умножению) над действительными числами.

4°. Прямоугольный базис. Прямоугольная декартова система координат. Особую роль в аналитической геометрии играет так называемый прямоугольный базис, в котором векторы попарно перпендикулярны и имеют единичную длину. В этом случае приняты обозначения: $\vec{e}_1=\vec{i}$, $\vec{e}_2=\vec{j}$, $\vec{e}_3=\vec{k}$. Векторы \vec{i} , \vec{j} , \vec{k} называются ортами прямоугольного базиса. С прямоугольным базисом связано понятие о прямоугольной декартовой системе координат.

Определение 6.5. Прямоугольной декартовой системой пространстве называется совокупность некоторой точки O и прямоугольного базиса. Точка O называется началом координат; прямые Ox, Oy, Oz, проходящие через начало в направлении ортов базиса, называются координатными осями – абсцисс, ординат и аппликат соответственно (рис. 6.1). Плоскости, проходящие через какиелибо две координатные оси, называются координатными плоскостями Оху, Оуг и Прямоугольными координатами произвольной точки пространства называются координаты её радиуса-вектора \overrightarrow{OM} в данном прямоугольном базисе (рис. 6.1). Их пишут в скобках после обозначения точки, например, M(x, y, z), при этом x называется абсииссой, y – ординатой, а z – аппликатой точки M.

Выбранное определение прямоугольных координат пространства точки устанавливает взаимно однозначное соответствие между точками пространства и

упорядоченными тройками вещественных чисел

(x, y, z).

Пример 6.2. Дана точка M(2, 3, 5). Найти координаты точек, симметричных Mа) каждой относительно: ИЗ координатных плоскостей; б) каждой из координатных осей; в) начала координат.

- ▶Выберем в пространстве прямоугольную декартову систему координат и изобразим точку M на чертеже (рис. 6.2).
- симметрична a) Точка M_1 точке относительно плоскости $x = 0, M_1(-2, 3, 5)$; точка симметрична точке Mотносительно плоскости

Рис. 6.1. Прямоугольный базис и прямоугольная декартова система

Рис. 6.2. К примеру 6.2

Рис 6.3. К формуле для координат вектора АВ в прямоугольной декартовой системе координат

y=0, $M_2(2, -3, 5)$; точка M_3 симметрична точке M относительно плоскости z=0, $M_3(2, 3, -5)$, рис. 6.2.

- б) Точка M_4 симметрична точке M относительно оси Ox, $M_4(2, -3, -5)$; точка M_5 симметрична точке M относительно оси Oy, $M_5(-2, 3, -5)$; точка M_6 симметрична точке M относительно оси Oz, $M_6(-2, -3, 5)$, рис. 6.2.
- в) Точка M_7 симметрична точке M относительно начала координат, $M_7(-2, -3, -5)$, рис. 6.2. \blacktriangleleft

Найдём зависимость между координатами вектора в прямоугольном базисе и координатами его начальной и конечной точек A и B. Пусть заданы точки $A(x_1,y_1,z_1)$ и $B(x_2,y_2,z_2)$. Очевидно, $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ (рис. 6.3). Так как $\overrightarrow{OA} = x_1 \overrightarrow{i} + y_1 \overrightarrow{j} + z_1 \overrightarrow{k}$ и $\overrightarrow{OB} = x_2 \overrightarrow{i} + y_2 \overrightarrow{j} + z_2 \overrightarrow{k}$, то в силу правила 6.1, рассмотренного выше, имеем

$$\overrightarrow{AB} = (x_2 - x_1)\vec{i} + (y_2 - y_1)\vec{j} + (z_2 - z_1)\vec{k}.$$
 (6.6)

Таким образом, приходим к выводу:

для того, чтобы получить координаты вектора в прямоугольном базисе \vec{i} , \vec{j} , \vec{k} , надо из прямоугольных координат конца этого вектора вычесть соответствующие прямоугольные координаты его начала.

Замечание 6.1. Координаты вектора в прямоугольном базисе часто пишут в скобках после обозначения вектора. Например, $\overrightarrow{AB}(x_2 - x_1, y_2 - y_1, z_2 - z_1)$.