

Sommatore

 Dati due numeri naturali rappresentati su un solo bit, e il riporto della somma precedente, il circuito sommatore ne calcola la somma (compreso il riporto). Cioè in pratica somma i tre bit.

Tavola delle verità

Α	В	Cin	S	Cout	Cout =
0	0	0	0	0	/ABCin + A/BCin + AB/Cin + ABCin =
0	0	1	1	0	/ABCin + A/BCin + AB(/Cin + Cin) = /ABCin + A/Bcin + AB = AB + Cin (/AB+A/B) = AB + Cin (A⊕B)
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	S= A ⊕ B ⊕ Cin
1	1	0	0	1	\ \ \ \ \
1	1	1	1	1	Xor

Sommatore

- Cout = AB + /ABCin + A/BCin =
 AB + Cin (/AB+A/B) =
 AB + Cin (A⊕B)
- S= A ⊕B ⊕Cin

Sommatore

Sommatore binario naturale a n bit (n-bit adder)

- È la generalizzazione del sommatore completo: addizione di numeri naturali binari a n bit
- Ha in ingresso due numeri naturali A e B da n ≥ 1 bit ciascuno
- In uscita presenta la somma a n bit dei due numeri interi A e B
- Tipicamente: ha un riporto in ingresso e un riporto in uscita
 - ▶ In uscita presenta A + B + (Riporto in ingresso)

Come possiamo realizzarlo?

Sommatore a 3 bit: realizzazione

Ritardo?

Sommatore intero binario naturale a 3 bit

Lo <u>stesso</u> circuito, ma interpretato come sommatore di **interi** a 3 bit in **CP2**

Sommatore: Overflow

Coi numeri naturali (senza segno):

l'uscita finale Cout (l'ultimo riporto) è un bit che segnala l'overflow

Con i numeri in complemento a 2:

- L'uscita finale Cout non segnala overflow
 - (va semplicemente ignorata)
- L'overflow è segnalato invece da una funzione dei bit più significativi di A, B e S
 - (cioè quelli che rappresentano i segni dei tre numeri A B e S)
 - Regola, per 8 bit: se A7 == B7 ma =/= S7 allora overflow
 - Esercizio (facile): costruire un circuito che restituisce 1 se c'è stato overflow

Semplice esempio di progetto con blocchi funzionali

- Si chiede di progettare un circuito digitale combinatorio, che abbia:
 - ▶ in ingresso due numeri binari naturali A e B da *n* bit ciascuno
 - in ingresso un segnale di comando C da un bit
 - ▶ in uscita un numero binario naturale Z da n bit tale che
 - \bullet Z = A + B , quando C = 0
 - Z = A B , quando C = 1
- Si trascurano i riporti
- In pratica:
 - C rappresenta il comando (ed A e B i suoi operatori), in un ipotetico, minuscolo Instruction Set di una ALU composto da due sole istruzioni: { somma , sottrazione }
 - ▶ il circuito è una specie di una minuscola ALU capace di due sole op.
 - è il nostro primo passo da una calcolatrice verso un calcolatore

Soluzione 1

■ Idea: usare un sommatore anche per la sottrazione... A – B = A + (– B)

Altre possibilità?

Soluzione 2

Meno costosa della precedente: abbiamo risparmiato un sommatore!

Flip del segno (complemento a due)

- Sottoproblema: circuito che cambia segno (in complemento a due)
 - Ricorda: cambiare segno = flip dei bit, e aggiungere 1

Soluzione 2 (raffinamento)

abbiamo finito secondo voi?

Soluzione 2 (ottimizzata)

Estensione di un numero: aggiungere cifre a sinistra

- A volte, vogliamo passare da una rappresentazione di un numero a n bit ad una rappresentazione a m bit, con m > n
- Come si sa, aggiungere zeri a sinistra non modifica un numero:

$$|11011|_2 = 27$$

 $|00011011|_2 = ancora 27$

- Questa operazione si chiama estensione (con zero)
- Ma attenzione: per estendere un numero in CP2 senza cambiarlo occorre aggiungere a sinistra: 0 se il MSB è 0, ma 1 se il MSB è 1:

$$|01101|_2 = +13$$

 $|00001101|_2 = ancora +13$
 $|11001|_2 = -7$
 $|11111001|_2 = ancora -7$

- Questa operazione si chiama estensione in segno
- Quali circuiti implementano queste due operazioni?

Blocchi funzionali per estensione

Estensione con zero

Estensione in segno

(con m>n)

Estensione a scelta

se 0: con zero

se 1: in segno

Blocchi funzionali per estensione (qui, da 16 a 32 bit): implementazione

Estensione con zero Estensione in segno Estensione a scelta 0: con zero 1: in segno

Esempio

- Come sommare un numero A a 16 bit con un numero B a 8 bit? (senza segno)
- Risposta:

Esempio

- Come sommare un numero A a 16 bit con un numero B a 8 bit? (senza sengo)
- Risposta:

Left Shift (moltiplicazione per 2, 4, 8 ...)

```
analogo in base 10:
```

$$1320 = 132 \times 10$$

 $13200 = 132 \times 100$

- Left-shift (di n): spostare le cifre binarie n posti a sinistra
 - ▶ le *n* cifre più a sinistra scompaiono, e da destra compaiono *n* zeri
- Ricorda:

uno *shift* a sinistra in base 2 di 1 = raddoppio del numero uno *shift* a sinistra in base 2 di n cifre = moltiplicazione per 2^n

- Notazione: <<</p>
- Esempio:

```
|00011011|_2 = 27

|00011011|_2 << 1 = |00110110|_2 = 54 (= 27x2)

|00011011|_2 << 2 = |01101100|_2 = 108 (= 27x4)

|00011011|_2 << 3 = |11011000|_2 = 216 (= 27x8)
```

Vale anche in CP2?

Left Shift (moltiplicazione per 2, 4, 8 ...)

analogo in base 10:

 $1320 = 132 \times 10$ $13200 = 132 \times 100$

- Left-shift (di n): spostare le cifre binarie n posti a sinistra
 - ▶ le *n* cifre più a sinistra scompaiono, e da destra compaiono *n* zeri
- Ricorda:

uno *shift* a sinistra in base 2 di 1 = raddoppio del numero uno *shift* a sinistra in base 2 di n cifre = moltiplicazione per 2^n

- Notazione: <<</p>
- Esempio:

$$|00011011|_2 = 27$$

 $|00011011|_2 << 1 = |00110110|_2 = 54 (= 27x2)$
 $|00011011|_2 << 2 = |01101100|_2 = 108 (= 27x4)$
 $|00011011|_2 << 3 = |11011000|_2 = 216 (= 27x8)$

SI! Vale anche in CP2!

$$|111111011|_2 = -5$$

 $|111111011|_2 << 1 = |111110110|_2 = -10$
 $|11111011|_2 << 2 = |11101100|_2 = -20$