Network Layer: Address Mapping, Error Reporting

By, Ms. Thanmayee, Adhoc Faculty, Department of IT, NITK, Surathkal

ADDRESS MAPPING

Types of Addresses in Internet

- Media Access Control (MAC) addresses in the network access layer
 - Associated with network interface card (NIC)
 - 48 bits
- **IP addresses** for the network layer
 - 32 bits for IPv4, and 128 bits for IPv6
 - o E.g. 192.168.10.10
- **IP addresses + ports** for the transport layer
 - o E.g: 192.168.10.10:80
- Domain names for the application layer
 - E.g: www.google.com

Logical Address and Physical Address

ARP: Address Resolution Protocol (logical to physical address)

- Logical address for a given URL(Uniform Resource Locator) can be obtained by DNS (Domain Name System)
- The MAC layer needs physical address.
- ARP helps to obtain physical address.

What is the use of MAC address?

Computers need MAC addresses!

Physical layer needs physical address to know where the IP packet physically be sent.

Two types of mapping from IP to MAC address:

Static Mapping

 A table with logical to physical address mapping is stored in every machine in the network.

Dynamic Mapping

 If a host knows logical or physical address it can find the mapping using ARP or RARP protocols.

OSI Model	TCP/IP Model	TCP/IP Protocol Suite
Application Layer		H S T F D R S T M e T N I N T T I P S P M P
Presentation Layer	Application Layer	T T I P S P M P P n e t
Session Layer		
Transport Layer	Transport Layer	TCP UDP
Network Layer	Internet Layer	ARP IP IGMP ICMP
Data Link Layer	Network Access	Ethernet Token ATM Frame
Physical Layer	Layer	Ethernet Token ATM Frame Relay

ARP is a Network Layer Protocol

ARP Operation

a. ARP request is broadcast

ARP Packet:

Actual Packet Format:

BI	Ö	8	16	24	31	
0	HARDWA	HARDWARE TYPE		PROTOCOL TYPE		
	HARDWARE ADDRESS LENGTH	PROTOCOL ADDRESS LENGTH		OPERATION	PERATION	
3		SENDER HARDWARE ADDRESS (Bytes 0-3)				
		SENDER HARDWARE ADDRESS (Bytes 4-5)		SENDER IP ADDRESS (Bytes 0-1)		
		SENDER IP-ADDRESS (Bytes 2-3)		TARGET HARDWARE ADDRESS (Bytes 0-1)		
		TARGET HARD	WARE ADDR	ESS (Bytes 2-5)		
		TARGET IP ADDRESS				

Example:

Encapsulation of ARP Packet

The ARP Process – Communicating Locally

Forwarding Data with MAC Address Information

Case 1. A host has a packet to send to another host on the same network.

Case 3. A router receives a packet to be sent to a host on another network. It must first

Case 2. A host wants to send a packet to another host on another network. It must first be delivered to a router.

Case 4. A router receives a packet to be sent to a host on the same network.

Problem:

A host with IP address 130.23.43.20 and physical address B2:34:55:10:22:10 has a packet to send to another host with IP address 130.23.43.25 and physical address A4:6E:F4:59:83:AB. The two hosts are on the same Ethernet network. Show the ARP request and reply packets encapsulated in Ethernet frames.

Solution:

Figure 1 shows the ARP request and reply packets. Note that the ARP data field in this case is 28 bytes, and that the individual addresses do not fit in the 4-byte boundary. That is why we do not show the regular 4-byte boundaries for these addresses.

Figure 1:

Proxy ARP

141.23.56.21 141.23.56.22 141.23.56.23 The proxy ARP router replies to any ARP request received for destinations 141.23.56.21, Added subnetwork 141.23.56.22, and 141.23.56.23. **Proxy ARP** router Request Router or host

Mapping of Physical Address to Logical Address:

- Consider two scenarios:
 - Diskless Workstation or Unavailability of memory to store IP and MAC address at a host.
 - Shortage of IP addresses
- Protocols to Map Physical address to IP address:
 - RARP : Reverse Address Resolution Protocol
 - BOOTP : Bootstrap Protocol
 - DHCP : Dynamic Host Configuration Protocol

RARP: Reverse Address Resolution Protocol

a. RARP request is broadcast

b. RARP reply is unicast

RARP:

- Network Layer Protocol
- Drawback:
 - Each RARP servers need to maintain a large database of static mappings of MAC to IP addresses.
 - RARP servers provide IP addresses but not Gateway, DNS addresses and subnet masks.
- Thus it is made obsolete by BOOTP and DHCP protocols.

RARP Packet Format:

Hardware type		Protocol type	
Hardware length	Protocol length	Operation Request 3, Reply 4	
	Sender hardwa (For example, 6 byte		
	Sender protoco (For example, 4 (It is not filled f	bytes for IP)	
	Target hardwar (For example, 6 byte (It is not filled fo	es for Ethernet)	
	Target protoco (For example, 4 (It is not filled f	bytes for IP)	

BOOTP: Bootstrap Protocol

- Application Layer Protocol
- BOOTP messages are encapsulated in a UDP packet.
- UDP packet is encapsulated in IP Packet.
- What about the Source and Destination IP addresses?
 - Source address all 0's
 - Destination address all 1's
- Advantage over RARP:
 - BOOTP client and server can be in different networks.

BOOTP

- Problem:
 - The BOOTP request is broadcast. It cannot pass through routers.
- Solution:
 - Make use of Relay Agents.

Example:

a. Client and server on the same network

DHCP: Dynamic Host Configuration Protocol

- Static address allocation: Similar to BOOTP
- Dynamic address allocation:
 - DHCP client request for the address
 - DHCP server checks static database. If an entry is present, return static address.
 - If no entry in static database, then selects address from a pool and returns it.
 - The DHCP assigns the address on basis of lease for specific interval of time.

DHCP:

• DHCP provides static and dynamic address allocation that can be manual or automatic.

DHCP: DORA Process

Example:

Client: Hi, will you please give me IP address?

Server: Sure, I have x.y.z.w IP for you. Will you accept it?

3 Client: Yes, I accept. Kindly issue x.y.z.w IP to me and send the remaining configuration

4 Server: Ok. x.y.z.w IP is assigned to you.

ERROR REPORTING

ICMP: Internet Control Message Protocol

ICMP:

- The IP protocol has no **error-reporting or error-correcting mechanism**.
- The IP protocol also lacks a mechanism for host and management queries.
- The Internet Control Message Protocol (ICMP) has been designed to compensate for the above two deficiencies.
- It is a companion to the IP protocol.

Two types of ICMP Messages:

- Error Reporting
- Query

NOTE:

ICMP always reports error messages to the original source.

Error-Reporting Messages:

