Rime[®] LoRaWAN

中国部署 LoRaWAN 最佳频段

摘要:

探讨中国建设 LoRaWAN 的频谱分配,分析得出: CN470-510 的 80-87 和 88-95 是最佳频段。

LoRaWAN 以其明显的优势:大容量、全球统一的标准、免费频段、低成本与灵活性,和 WiFi 一样,成为"私有物联网"的首要选择(NB-IoT,和 GPRS 一样,是"公有物联网"的方案)。

现在,国内很多企业和高校,掀起建设 LoRaWAN 的高潮。如何选择"最佳频段",就是面临的第一个技术因素。为此,我们一起探讨。

1 CN490 频段分配

按《LoRaWAN Regional Parameters V1.0》标准,中国地区有 2 个 ISM(免费) 频段:

CN779-787: 最大发射功率仅 10dBm(10mW), 没多大"实用"价值;

CN470-510: 最大发射功率可达 17dBm(50mW), 发射时长小于 5000ms 即可。

毫无疑问, CN470-510, 是部署 LoRaWAN 的最佳频段范围。

Figure 3: CN470-510 channel frequencies

然而,故事没有如此简单。

The 470 MHz ISM Band shall be divided into the following channel plans:

 Upstream – 96 channels numbered 0 to 95 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 470.3 MHz and incrementing linearly by 200 kHz to 489.3 MHz.

Channel Index 6 to 38 and 45 to 77 are mainly used by China Electric Power. In the areas where these channels are used by China Electric Power, they should be disabled.

 Downstream – 48 channels numbered 0 to 47 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 500.3 MHz and incrementing linearly by 200 kHz to 509.7 MHz

中国无线电委员会,分配 CN470-510 是用于居民抄表应用。在"上行通信"的 96 个通道中(下标从 0 开始): 6 到 38,45 到 77,由"国家电网"保留使用。换一句话说,这 2 个频段不能被"自由使用"(某些地区,就算"国家电网"没有使用这 2 个频段,也不能保证将来不被使用,到时还得"让道")。

通道		1	2	3	4	5	6	7	8
CN470_0_7	uplink	470.3	470.5	470.7	470.9	471.1	471.3	471.5	471.7
	downlink	500.3	500.5	500.7	500.9	501.1	501.3	501.5	501.7
CN470_8_15	uplink	471.9	472. 1	472.3	472.5	472.7	472.9	473. 1	473.3
	downlink	501.9	502. 1	502.3	502.5	502.7	502.9	503. 1	503.3
CN470_16_23	uplink	473.5	473.7	473.9	474.1	474.3	474.5	474. 7	474. 9
	downlink	503.5	503.7	503.9	504.1	504.3	504.5	504.7	504.9
CN470_24_31	uplink	475. 1	475.3	475.5	475.7	475.9	476. 1	476. 3	476.5
	downlink	505. 1	505. 3	505.5	505.7	505.9	506.1	506.3	506.5
CN470_32_39	uplink	476. 7	476.9	477.1	477.3	477.5	477.7	477. 9	478. 1
	downlink	506.7	506. 9	507.1	507.3	507.5	507.7	507. 9	508. 1
CN470_40_47	uplink	478.3	478.5	478.7	478.9	479. 1	479.3	479.5	479.7
	downlink	508.3	508.5	508.7	508.9	509.1	509.3	509.5	509.7
CN470_48_55	uplink	479.9	480. 1	480.3	480.5	480.7	480.9	481.1	481.3
	downlink	500.3	500.5	500.7	500.9	501.1	501.3	501.5	501.7
CN470_56_63	uplink	481.5	481.7	481.9	482.1	482.3	482.5	482.7	482.9
	downlink	501.9	502.1	502.3	502.5	502.7	502.9	503.1	503.3
CN470_64_71	uplink	483.1	483.3	483.5	483.7	483.9	484.1	484.3	484. 5
	downlink	503.5	503.7	503.9	504.1	504.3	504.5	504. 7	504.9
CN470_72_79	uplink	484. 7	484. 9	485. 1	485. 3	485.5	485. 7	485. 9	486. 1
	downlink	505. 1	505.3	505.5	505.7	505.9	506.1	506.3	506.5
CN470_80_87	uplink	486. 3	486. 5	486.7	486.9	487. 1	487. 3	487.5	487.7
	downlink	506. 7	506. 9	507. 1	507.3	507.5	507. 7	507. 9	508. 1
CN470_88_95	uplink	487. 9	488. 1	488.3	488.5	488.7	488.9	489.1	489.3
	downlink	508.3	508. 5	508.7	508.9	509.1	509.3	509.5	509.7

2 最佳做法

上图,可以更直观地查看这96个通道的使用。

0-5 和 39-44, 这 2 个频段是空闲的;可惜的是,它们都只有 6 通道,如果使用它们,那意味着将浪费 SX1301 (8 通道)的 25%带宽。

78-79, 这个频段, 未能对齐 8; 如果使用, 将会给实现带来麻烦(LoRaWAN 协议栈, 很多算法是基于 8 通道)。

幸好,80-87 和88-95,这2个"宝贵"的频段,受上帝的青睐,即能对齐8,又是连续的。

题外话:

因为现代计算机基于二进制,因此,在 IT 世界里,如果一个数字是 2 的整幂次,它就天生"基因"良好! 这对于制定协议和设计程序,都是一条"黄金法则"。以上例,因为 6 / 45 / 77 这 3 个数字,都不是 2 的整幂次,导致浪费了宝贵的频谱。要知道,1MHz 的频谱价值超过 5 亿美金啊!

3 频段分配表

经过上面的描述和讨论,在中国部署 LoRaWAN 理想的频段,即为下面 2 个表。

表 1 CN470-510 80-87 频段

CN490_80_87_Bands									
信道	1	2	3	4	5	6	7	8	
上行信道	486.3	486.5	486.7	486.9	487.1	487.3	487.5	487.7	
下行信道	506.7	506.9	507.1	507.3	507.5	507.7	507.9	508.1	

表 2 CN470-510 88-95 频段

CN490_88_95_Bands									
信道	1	2	3	4	5	6	7	8	
上行信道	487.9	488.1	488.3	488.5	488.7	488.9	489.1	489.3	
下行信道	508.3	508.5	508.7	508.9	509.1	509.3	509.5	509.7	