Lecture 12: Two-Period Consumer Problem

Hui-Jun Chen

The Ohio State University

May 4, 2022

Variables and Notation

Assume that consumer do NOT make consumption-leisure decision, but receive endowment of non-labor income y and subject to lump-sum tax t.

- \blacksquare y & t: today (date 0), and y' & t': tomorrow (date 1)
- in general, having a prime "/" represents tomorrow

If there's a saving technology exists (may not be available!), then consumer saves s today for tomorrow consumption, i.e.,

$$c + s \le y - t$$
,

where s > 0 represents "saver", and s < 0 represents "borrower".

Lecture 12 May 4, 2022 2/16

Savings and the Credit Market

Buying/selling Bonds are the way to achieve saving s.

■ lenders/savers buy bonds; borrowers sell bonds.

Consumer will get 1+r unit of consumption goods tomorrow if he/she buys 1 unit of bond today, and thus tomorrow's budget constraint is

$$c' = y' - t' + (1+r)s,$$

where r is the (net) real interest rate, and "=" since no date 2.

- relative price of consumption between today and tmw: $\frac{1}{1+r}$
- no default on bonds
- no middle man: bonds are trade directly between savers and borrowers

Lecture 12 May 4, 2022 3/16

The Lifetime Budget Constraint

Date 1:
$$c'=y'-t'+(1+r)s$$

Saving: $\Rightarrow s=\frac{c'-y'+t'}{1+r}$

Date 0: c + s = y - t

Plug saving back to Date 0:
$$c + \frac{c' - y' + t'}{1 + r} = y - t$$

Rearrange:
$$\underbrace{c + \frac{c'}{1+r}}_{\text{(1)}} = \underbrace{y - t + \frac{y' - t'}{1+r}}_{\text{(2)}};$$

- (1): present value of total lifetime consumption (choice by consumer)
- \blacksquare (2): present value of total lifetime net worth, also called we (fixed).

Hui-Jun Chen (OSU) Lecture 12 May 4, 2022 4/16

Numerical Example of Present Value

Suppose we have data:

y	y'	t	t'	r
110	120	20	10	0.1

The face value of the net worth is

$$y - t + y' - t' = 110 - 20 + 120 - 10 = 200$$

The present value of lifetime the net worth is

$$y - t + \frac{y' - t'}{1 + r} = 110 - 20 + \frac{120 - 10}{1.1} = 190$$

Future part has discounted 10% to be evaluated in consumption goods today.

Lecture 12 May 4, 2022 5/16

Visualization: Lifetime Budget Constraint

Figure 9.1 Consumer's Lifetime Budget Constraint

On (C,C') plane, \because substitution between current and future consumption.

$$c' = \underbrace{we(1+r)}_{\text{y-intercept}} \underbrace{-(1+r)}_{\text{slope}} c$$

- E: endowment point, where c = y t, and c' = y' t'.
- $lacktriangledown \overline{BE}$: lending, give up c for c'
- \blacksquare \overline{AE} : borrowing, the opposite

Hui-Jun Chen (OSU) Lecture 12 May 4, 2022 6/16

Consumer Preference in Two-Period Model

Since it is substitution between (c, c'), utility is U(c, c'), so

Figure 9.2 A Consumer's Indifference Curves

- 1 monotonicity: more is preferred
 - slope = $-MRS_{c,c'}$ (substitution)
 - $U(I_3) > U(I_2) > U(I_1)$
- 2 convexity: diversity is preferred
 - Is bow in towards the origin
 - ullet consumption smoothing: preferred equal amount of (c,c^\prime)
- **§ normality**: if lifetime wealth \uparrow , both c and $c' \uparrow$

ui-Jun Chen (OSU) Lecture 12 May 4, 2022 7/16

Consumer's Problem: Two-Period Model

$$\max_{c,c'} U(c,c') \quad \text{subject to} \quad c' = we(1+r) - c(1+r)$$

Figure 9.3 A Consumer Who Is a Lender

■ substitute c':

$$\max_{c} U(c, we(1+r) - c(1+r))$$

■ FCC:

$$D_c U(c, c') + D_{c'} U(c, c')(-(1+r)) = 0$$

rearrange:

$$\frac{D_c U(c, c')}{D_{c'} U(c, c')} = MRS_{c,c'} = 1 + r$$

■ Net worth at pt E: excess endowment at date 0, so saving $s = y - t - c^* > 0!$

8/16

$$c^* < y - t; c'^* > y' - t'$$
Lecture 12

i-Jun Chen (OSU) May 4, 2022 May 4, 2022

Numerical Example

Figure 9.3 A Consumer Who Is a Borrower

Let
$$U(c,c')=\ln c+\ln c'$$
 and $r=0$,
$$MRS_{c,c'}=\frac{1/c}{1/c'}=\frac{c'}{c}=1+r=1$$
 optimal bundle: $c^*=c'^*$

- if $we = 1 \Rightarrow c + c' = 1 \Rightarrow c^* = c'^* = \frac{1}{2}$
- if E = (3/4, 1/4): consumer saves (last slide)
- if E = (1/4, 3/4): consumer borrows

ui-Jun Chen (OSU) Lecture 12 May 4, 2022 9/16

Increase in Current income

Let consumer's current income increases from y_1 to y_2 , $y_2 > y_1$

Figure 9.5 The Effects of an Increase in Current Income for a Lender

- parallel shift in budget line: r the same
- \blacksquare endowment: E_1 to E_2
- \blacksquare optimal bundle: A to B
- consumption smoothing: $c_1 = c_1', c_2 = c_2'$
- \blacksquare normality: $c_2>c_1$, and $c_2'>c_1'$
- lacktriangle To support normality, $s_2>s_1$

Hui-Jun Chen (OSU) Lecture 12 May 4, 2022 10 / 16

Increase in Future income

Let consumer's future income increases from y'_1 to y'_2 , $y'_2 > y'_1$

Figure 9.8 The Effects of an Increase in Future Income

- shift in lifetime wealth: $\Delta we = we_2 we_1 = \frac{y_2' y_1'}{1 \perp r}$
- \blacksquare optimal bundle: A to B
- consumption smoothing: $c_1 = c'_1$, $c_2 = c'_2$
- lacksquare normality: $c_2>c_1$, and $c_2'>c_1'$
- To support normality, $s_2 < s_1$, shift income from date 1 to date 0!

Hui-Jun Chen (OSU) Lecture 12 May 4, 2022 11 / 16

Intuition: Temporary vs Permanent Change in Income

Permanent Income Hypothesis (PIH): changes in income that are permanent have large effects on permanent income (lifetime wealth) and current consumption.

- temporary change in income: $y_1 \rightarrow y_2$ or $y_1' \rightarrow y_2'$
- **permanent** change in income: $y_1 \rightarrow y_2$ and $y_1' \rightarrow y_2'$
- intuition: permanent change compounds through lifetime
- most of temporary increase saved (e.g. COVID stimulus), yet more permanent increase is consumed (e.g. Rich ppl buys houses)

Lecture 12 May 4, 2022 12 / 16

Visualization: Permanent Income Hypothesis

Figure 9.9 Temporary Versus Permanent Increases in Income

Temporary:

- budget line: $\overline{AB} o \overline{DE}$
- lacksquare optimal bundle: H o J

Permanent:

- budget line: $\overline{AB} \to \overline{GF}$
- lacksquare optimal bundle: H o K In conclusion,
 - larger effect on current consumption when change is permanent
 - temporary ⇒ saving; not necessary for permanent

Consumption Smoothing in Data

If all consumers act to smooth their consumption relative to their income, then aggregate consumption should likewise be smooth relative to aggregate income.

■ recall relative volatility: expect $\sigma_C/\sigma_Y < 1$

There are three main components of aggregate consumption:

- 1 non-durables: e.g. food, dishes...
- **Q** durables: e.g. cars, computers...
- **3** services: haircuts, repairing...

Does our prediction match the data in aggregate consumption? How about prediction with each component?

Durables Behaves Similar to Investment

Figure 9.6 Percentage Deviations from Trend in Consumption of Durables and Real GDP, blue: Durables, black: GDP

Figure 3.10 Percentage Deviations from Trend in Real Investment and Real GDP, blue: GDP, black: investment

Hui-Jun Chen (OSU) Lecture 12 May 4, 2022 15 / 16

Non-Durables & Services Similar to Agg. Consumption

Figure 9.7 Percentage Deviations from Trend in Consumption of Nondurables and Services and Real GDP, blue: GDP, lightblue: Nondurables + Service

Figure 3.9 Percentage Deviations from Trend in Real Consumption and Real GDP, blue: GDP, black: consumption

Hui-Jun Chen (OSU) Lecture 12 May 4, 2022 16 / 16