Generative Models II

Dr. Parlett-Pelleriti

Outline

- Generative Adversarial Networks Overview
- Training GANs
- Issues with Training GANs
- Conditional GANs

Generative Adversarial Networks

Generative Adversarial Networks

Generator

From: https://www.you tube.com/watch ?v=JBIm4wnjN

Discriminator

From: https://www.you tube.com/watch ?v=JBlm4wnjN

Adversarial Training

From: https://www.you tube.com/watch ?v=JBIm4wnjN

Adversarial Training

 $+.007 \times$

 $\operatorname{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

"nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence

"panda"
57.7% confidence

Adversarial Training

The Discriminator

The Generator

Training GANs

- 1. Train the **discriminator** holding **generator** constant
- 2. Train the **generator** holding the **discriminator** constant
- 3. Repeat until convergence

$$E_x[log(D(x))] + E_z[log(1-D(G(z)))]$$

Discriminator's estimate that real sample is real

$$E_x[log(D(x))] + E_z[log(1-D(G(z)))]$$

Discriminator's estimate that fake sample is real

Discriminator wants to maximize

$$E_x[log(D(x))] + E_z[log(1-D(G(z)))]$$

Discriminator's estimate that real sample is real

Discriminator's estimate that fake sample is real

Generator wants to minimize

$$E_x[log(D(x))] + E_z[log(1-D(G(z)))]$$

Discriminator's estimate that real sample is real

Discriminator's estimate that fake sample is real

Training Loop

```
for i in range(training_iteration):
    # hold generator constant
   for k in range(discrim steps):
        x = sample_real_inputs(num = m)
       qz1 = generate_fake_inputs(num = m)
        discrim params = qradient ascent(x, qz)
    # hold discriminator constant
   qz2 = generate_fake_inputs(num = m)
   gener_params = gradient_descent(gz2)
```

Training Loop

```
for i in range(training_iteration):
   # hold generator constant
   for k in range(discrim_steps):
       x = sample_real_inputs(num = m)
       qz1 = generate_fake_inputs(num = m)
       discrim_params = gradient_ascent(x, gz)
    # hold discriminator constant
   qz2 = generate_fake_inputs(num = m)
    gener_params = gradient_descent(gz2)
```

Training Loop

```
for i in range(training_iteration):
   # hold generator constant
   for k in range(discrim_steps):
       x = sample_real_inputs(num = m)
       qz1 = generate_fake_inputs(num = m)
       discrim_params = gradient_ascent(x, gz)
  # hold discriminator constant
   gz2 = generate_fake_inputs(num = m)
  gener_params = gradient_descent(gz2)
```

Training GANs

- Train the **discriminator** holding **gens** Train the **generator** holding the
- Repeat until convergence 3.

In the minimax game, the discriminator minimizes a cross-entropy, but the generator maximizes the same cross-entropy. This is unfortunate for the generator, because when the discriminator successfully rejects generator samples with high confidence, the generator's gradient vanishes.

-lan Goodfellow (https://arxiv.org/pdf/1701.00160.pdf)

Non-Saturating GAN Loss

Generator wants to maximize

$$-log(D(G(z)))$$

instead of minimizing

$$log(1 - D(G(z)))$$

Mode Collapse

Image from: https://neptune.ai/blog/gan-loss-functions

Mode Collapse

10k steps 20k steps 50K steps 100k steps

Convergence

Sometimes the two players eventually reach an equilibrium, but in other scenarios they repeatedly undo each others' progress without arriving anywhere useful.

-lan Goodfellow
(https://arxiv.org/pdf/1701.00160.pdf)

Image from: https://neptune.ai/blog/gan-loss-functions

Wasserstein GANs

Discriminator Maximizes: Generator Maximizes:

$$D(x) - D(G(z))$$
 $D(G(z))$

Wasserstein GANs

"The Critic" Maximizes: Genera

D(x) - D(G(z)) D(G(z))

Generator Maximizes:

Conditional GANs

Image from: (Mirza and Osindero, 2014)

Figure 1: Conditional adversarial net

Conditional GAN

