QUESTÃO 1 ALTERNATIVA C

Ao efetuarmos a operação 111 x 111 obtemos:

$$\begin{array}{r}
111 \\
\times 111 \\
\hline
111 \\
111 \\
+ 111 \\
\hline
12321
\end{array}$$

Logo a soma dos algarismos do resultado é 1+2+3+2+1=9. A conta acima também pode ser feita da seguinte maneira: $111\times111=111\times(100+10+1)=11100+1110+111=11100+1221=12321$.

Observe o que ocorre com as multiplicações com parcelas iguais cujos algarismos são todos iguais a 1:

```
1×1=1

11×11=121

111×111=12321

1111×1111=1234321, ...

111111111×11111111=12345678987654321.
```

Este padrão é alterado nas próximas multiplicações, iniciando então uma nova regularidade:

```
1111111111\times 11111111111 = 123456789 \textbf{00}987654321, \\ 11111111111\times 111111111111 = 123456789 \textbf{0120}987654321, \\ 111111111111\times 11111111111111 = 123456789 \textbf{012320}987654321, \\ 1111111111111\times 11111111111111 = 123456789 \textbf{01234320}987654321
```

e assim por diante, de dez em dez, um novo padrão aparece. Isto é uma característica de nosso sistema de numeração posicional decimal.

QUESTÃO 2 ALTERNATIVA E

Se as oito pizzas fossem divididas ao meio, teríamos meio pedaço para 16 pessoas; dividindo sete pizzas, teríamos uma pizza inteira para um menino e 14 metades para as meninas, ou seja, 15 amigos; deixando mais uma pizza inteira, teremos a distribuição das 8 pizzas para 2 meninos e 12 meninas, portanto, para os 14 amigos.

Outra solução, via equações: Vamos representar o número de meninas por x e o número de meninos por y. Segue das condições do enunciado que

$$\begin{cases} x + y = 14 \text{ (número total de amigos) e} \\ \frac{x}{2} + y = 8 \text{ (número total de pizzas).} \end{cases}$$

Resolvendo esse sistema, obtemos: x = 12 e y = 2. Logo, havia 12 meninas no grupo.

QUESTÃO 3 ALTERNATIVA D

O comprimento do contorno em vermelho é a soma dos comprimentos dos segmentos que formam o contorno. Com exceção dos segmentos mais grossos, destacados em azul, os comprimentos de todos os outros são fornecidos pelo enunciado. Para encontrarmos o comprimento dos segmentos destacados em azul observamos que

(comprimento de um segmento de traço azul) +10 + 20 = 45. Logo o comprimento de um traço azul é 15 cm e assim o contorno da figura mede $4 \cdot (45) + 4 \cdot (15) + 4 \cdot (10) = 180 + 60 + 40 = 280$ cm.

QUESTÃO 4 ALTERNATIVA C

Os horários com os algarismos 0, 1, 2 e 4, a partir de 20:14 e anteriores à meia noite, em ordem cronológica, são: 20:14, 20:41, 21:04 e 21:40. Portanto, ela estudou das 20:14 às 21:40. Das 20:14 às 21:14 há 1 hora e das 21:14 às 21:40 há 40-14=26 minutos. Logo, Milena estudou 86 minutos, ou seja, 1 hora e 26 minutos.

QUESTÃO 5 ALTERNATIVA E

Observando que o 7 está na horizontal e também na vertical, a soma pedida é igual à metade da soma 1+2+3+4+5+6+8+9+7+7=52. Logo, o resultado é $52 \div 2=26$. Portanto, devemos separar os números 1, 2, 3, 4, 5, 6, 8, 9 em dois grupos que somam 19=26-7 cada um. É possível preencher as casas de muitos modos diferentes, aqui estão dois deles:

QUESTÃO 6 ALTERNATIVA B

A menor quantidade possível de bombons escuros recheados ocorre quando todos os bombons brancos forem recheados. Como há 7 bombons recheados, se, destes 5 forem brancos, então apenas 2 serão escuros (e, é claro, também recheados).

Portanto, a menor quantidade possível de bombons recheados escuros é 2.

QUESTÃO 7 ALTERNATIVA A

Se juntarmos à região cinza o retângulo cujos lados medem 6 cm e 2 cm, como na figura abaixo, teremos um novo retângulo com lados medindo 14 cm e 8 cm cuja área é 112 cm².

A área da região cinza será igual à diferença entre a área da metade desse último retângulo e a área do retângulo 2×6 que foi acrescentado, isto é, 56 - 12 = 44 cm².

QUESTÃO 8 ALTERNATIVA D

Observe que $2014 = 19 \times 106 = 2 \times 19 \times 53$. Assim, a menos da ordem dos fatores, existem somente quatro formas possíveis de se fazer aparecer 2014 na calculadora como <u>uma</u> multiplicação de dois números naturais:

Apertando sete teclas: 1×2014 =
 Apertando sete teclas: 2×1007 =

Apertando sete teclas: 19×106 =

• Apertando seis teclas: $38 \times 53 =$

(Este fato se deve à decomposição única de um número inteiro positivo em fatores primos, a menos da ordem dos fatores. Os fatores primos de 2014 são 2, 19 e 53).

Dentre as quatro possibilidades, em só uma delas seis teclas são pressionadas; concluímos então que as seis teclas que Ana Maria apertou foram 3, 8, x, 5, 3 e =. Portanto, o maior algarismo cuja tecla ela apertou foi 8.

QUESTÃO 9 ALTERNATIVA B

Como Isabel tem um total de 3+4+7+9+11+12+13+16=75 balas, cada criança deve receber 25 balas. A que receber o saco com 16 balas, necessariamente deverá receber o saco com 9, já que não há outra possibilidade de se obter 9 balas combinando sacos com menor quantidade. Por outro lado, a que receber o saco com 13 balas deverá receber o saco com 12 balas (a única outra forma de reunir as 12 balas restantes seria combinando sacos de 9 e 3 balas, mas o saco de 9 balas deve ser dado à criança que receber o saquinho com 16 balas). Portanto, a última criança receberá os sacos restantes, com 3, 4, 7 e 11 balas. Logo, o saco com mais balas recebido pela criança que recebe o saco com 4 balas tem 11 balas.

QUESTÃO 10 ALTERNATIVA A

Somando as metragens dos muros de Luiz e de Lúcio, obtemos 240 + 260 = 500 m. Neste total estão computados o comprimento do muro original (de 340 m) mais duas vezes o comprimento do muro interno. Logo, o comprimento do muro interno é igual a [500 - 340]/2 = 80 metros.

Podemos também resolver algebricamente: como o muro interno pertence ao cercado dos terrenos de Luiz e de Lúcio, se *x* é a medida do muro interno, temos:

QUESTÃO 11 ALTERNATIVA E

Cada face tem quatro vértices que serão tocados. A cada toque de um vértice, muda a cor e a cada dois toques, volta à cor original. Logo, com quatro toques, a cor de uma face não muda. Como todas as faces terão seus quatro vértices tocados, nenhuma delas irá mudar de cor. Logo, o cubo voltará a ter todas as suas faces na cor branca.

QUESTÃO 12 ALTERNATIVA B

Como Antônio venceu 3 partidas e não houve nenhum empate, sabemos que Lúcia perdeu exatamente 3 partidas. Consequentemente, ela perdeu 3 pontos dos 5 iniciais. Assim, considerando apenas as derrotas de Lúcia, ela teria 5-3=2 pontos. Como, ao final, ela ficou com 10 pontos, podemos concluir que ela ganhou 10-2=8 pontos, isto é, ela venceu $8 \div 2 = 4$ partidas. Logo, o número de partidas disputadas é igual a 3+4, ou seja 7.

Outra solução, com o uso de equação: Segue diretamente do enunciado que Lúcia teve 3 derrotas e, portanto, resta calcular o número de vitórias de Lúcia. Vamos representar o número de vitórias de Lúcia por x. Assim, o número de pontos de Lúcia é 10 = 5 - 3 + 2x. Logo, x = 4. Consequentemente, o número total de partidas disputadas é 3 + 4 = 7.

QUESTÃO 13 ALTERNATIVA B

Fatorando o número 2944 temos: $2944 = 2^7 \times 23 = 128 \times 23 = 64 \times 2 \times 23 = 64 \times 46$. Como este último produto satisfaz as condições do enunciado, e também é o único nas condições descritas, temos que a soma desses dois números é 64 + 46 = 110.

QUESTÃO 14 ALTERNATIVA D

Podemos organizar as informações numa tabela:

	mês	dia do mês	dia da semana
Andrea	agosto	16	segunda
Daniela	agosto	16	terça
Fernanda	setembro	17	terça
Patrícia	agosto	17	segunda
Tatiane	setembro	17	segunda

Se Andrea estivesse certa, então Fernanda não acertaria nenhuma das informações. Logo, não é ela que está certa, nem Fernanda (pelo mesmo motivo). Se Daniela estivesse certa, então Tatiane também nada acertaria. Logo Daniele e Tatiane não estão certas. Se Patrícia acertar tudo, as demais também acertarão alguma informação e, portanto, Patrícia é a única que está certa.

QUESTÃO 15 ALTERNATIVA E

Devemos ficar atentos ao quociente e ao resto da divisão de um número natural por 9, pois em cada triângulo são escritos 9 números. Observamos que no Triângulo 1 estão o 9 e os números que têm quociente 0 na divisão por 9; no Triângulo 2 estão o $18 = 2 \times 9$ e os números que têm quociente 1 na divisão por 9; no Triângulo 3 estão o $27 = 3 \times 9$ e os números que têm quociente 2 na divisão por 9, e assim por diante.

A posição do número em cada triângulo, descrita por uma letra de A até I, corresponde ao <u>resto</u> da divisão do número por 9, ou seja, resto 1 a posição é A, resto 2 é B, resto 3 é C, resto 4 é D, resto 5 é E, resto 6 é F, resto 7 é G, resto 8 a posição é H e, finalmente, se o resto for 0 a posição é I.

Ora.

Portanto, 2014 está no Triângulo 223+1=224, na posição equivalente ao resto 7, ou seja, G. Logo, Guilherme codifica 2014 como 224G.

QUESTÃO 16 ALTERNATIVA C

Como em cada face aparecem quatro números consecutivos, então na face onde estiver o número 1, obrigatoriamente estarão os números 1, 2, 3 e 4. Logo, na face onde estiver o número 5 estarão os números 5, 6, 7 e 8, e assim, sucessivamente, até chegarmos à face com os números 21, 22, 23 e 24.

Sendo assim, no cubo apresentado a face com o número 23 também apresenta os números 21, 22 e 24. Como o enunciado diz que a soma do maior número de uma face com o menor da face oposta é igual a 25, podemos concluir que na face oposta à que contém o 23 estão os números 1, 2, 3 e 4. Na face em que aparece o número

7 aparecem os números 5, 6 e 8, e na face oposta a esta estão os números 17, 18, 19 e 20. Logo, na face destacada (em cinza) pode estar qualquer número de 9 até 16.

Como a pergunta é qual é o menor número que pode aparecer na face cinza, a resposta é 9.

QUESTÃO 17 ALTERNATIVA A

Vamos ampliar a tabela do enunciado, acrescentando mais dados:

	Número de vitórias	Pontos	Número de empates	Número de derrotas
Alemanha	3	10	1	1
Bolívia	2	8	2	1
Camarões	2	7	1	2
Dinamarca	1	6	3	1
Espanha	1	4	1	3
França	0	4	4	1

A França não ganhou de ninguém e jogou 5 jogos. Para ter 4 pontos, ela deve ter empatado 4 jogos e perdido 1. Como a Alemanha ganhou da França, a França empatou com a Bolívia, com Camarões, com a Dinamarca e com a Espanha. A Espanha empatou só uma vez e este empate foi com a França. Camarões empatou só uma vez, portanto, este empate também só pode ter acontecido com a França. A Dinamarca empatou 3 vezes e, como acabamos de ver, estes empates não podem ter acontecido contra a Espanha ou contra Camarões. Logo, a Dinamarca empatou com a Alemanha, com a Bolívia e com a França. Assim, a Alemanha empatou com a Dinamarca.

QUESTÃO 18 ALTERNATIVA C

Para fixar o trio de hexágonos 1-2-3, Gustavo usou três adesivos. O mesmo ocorreu para fixar os demais noventa e nove trios de hexágonos: 4-5-6, 7-8-9, 10-11-12, ..., 298-299-300. Como são 100 trios e 3 adesivos para cada trio, Gustavo usou $100 \times 3 = 300$ adesivos nessa montagem de trios.

Agora, para fixar um trio no outro, Gustavo usou dois adesivos. Como o primeiro trio não precisou ser fixado a ninguém, Gustavo usou então $99 \times 2 = 198$ adesivos. No total, ele usou 300 + 198 = 498 adesivos.

Uma outra solução é a seguinte: cada trio de cartões consome 5 adesivos, a não ser no último, em que são usados 2 cartões a menos. Como são 300 cartões, temos 100 trios, lembrando que no último somente 3 adesivos são usados. Portanto, foram usados $100 \times 5 - 2 = 498$ adesivos (ou $99 \times 5 + 3 = 498$).

QUESTÃO 19 ALTERNATIVA D

Cada figura é formada por 3 cópias da figura anterior, posicionadas de modo a colocar em contato apenas dois pares de quadradinhos das cópias das figuras. Em consequência, o comprimento do contorno da nova figura é igual a 3 vezes o comprimento do contorno da anterior, menos 4 cm (correspondentes aos lados em contato).

A tabela abaixo dá o comprimento do contorno das sucessivas figuras.

Figura	Contorno (cm)
1	4
2	$3\times 4-4=8$
3	$3 \times 8 - 4 = 20$
4	$3 \times 20 - 4 = 56$
5	$3 \times 56 - 4 = 164$
6	$3 \times 164 - 4 = 488$

Portanto, o contorno da Figura 6 mede 488 cm.

QUESTÃO 20 ALTERNATIVA D

Como os números devem ser ímpares e como a soma dos algarismos das unidades e das dezenas deve ser igual a 16, os números devem terminar em 79 ou 97 (2 possibilidades). Na casa das dezenas de milhar temos 9 possibilidades, pois os números, tendo cinco algarismos, não podem ter 0 nesta casa. Para a casa das unidades de milhar temos 10 possibilidades (todos os algarismos de 0 a 9) e, para cada uma das escolhas anteriores, podemos escolher o algarismo das centenas de duas maneiras distintas, a fim de que a soma de todos os algarismos do número seja um múltiplo de 5. Logo, há $2 \times 9 \times 10 \times 2 = 360$ possibilidades. Para ilustrar porque há duas e só duas maneiras de preencher a casa das centenas de modo que a soma dos algarismos seja um múltiplo de 5, vamos pensar com base na seguinte exemplo:

em que o traço indica um algarismo que está faltando para que a soma dos cinco algarismos seja um múltiplo de 5. Nessas condições, há duas possibilidades para preencher a casa vazia de 11_79 , que são as seguintes: 11279 (observe que 1+1+2+7+9=20 é múltiplo de 5) e 11779 (neste caso 1+1+7+7+9=25 também é múltiplo de 5).

Este fenômeno é, de fato, geral, já que o resto da divisão de um número por 5 tem que ser igual a 0, 1, 2, 3, ou 4. Assim, dado qualquer número natural, somando a ele 0, ou 1, ou 2, ou 3 ou 4 sempre encontraremos um (e só um) múltiplo de 5. Uma vez determinado qual dos algarismos 0, 1, 2, 3 ou 4 é o que produz o múltiplo de 5, basta somar 5 a ele para obter um novo algarismo (5, 6, 7, 8 ou 9) para que um novo número de cinco algarismos seja produzido, também com a propriedade de que a soma de seus algarismos seja múltiplo de 5.