LT1004-1.2, LT1004-2.5 MICROPOWER INTEGRATED VOLTAGE REFERENCES

SLVS022J - JANUARY 1989 - REVISED AUGUST 2003

- Initial Accuracy
 - $-\pm4$ mV for LT1004-1.2
 - ±20 mV for LT1004-2.5
- Micropower Operation
- Operates up to 20 mA
- Very Low Reference Impedance
- Applications:
 - Portable Meter Reference
 - Portable Test Instruments
 - Battery-Operated Systems
 - Current-Loop Instrumentation

description/ordering information

The LT1004 micropower voltage reference is a two-terminal band-gap reference diode designed to provide high accuracy and excellent temperature characteristics at very low operating currents. Optimizing the key parameters in the design, processing, and testing of the device results in specifications previously attainable only with selected units.

NC – No internal connection
Terminals 6 and 8 are internally connected.

NC - No internal connection

The LT1004 is a pin-for-pin replacement for the LM285 and LM385 series of references, with improved specifications. It is an excellent device for use in systems in which accuracy previously was attained at the expense of power consumption and trimming.

The LT1004C is characterized for operation from 0°C to 70°C. The LT1004I is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLVS022J - JANUARY 1989 - REVISED AUGUST 2003

description/ordering information (continued)

ORDERING INFORMATION

TA	V _Z TYP	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	1.2 V	SOIC (D)	Tube of 75	LT1004CD-1-2	4C-12	
		30IC (D)	Reel of 2500	LT1004CDR-1-2	40-12	
		TO-226 / TO-92 (LP)	Bulk of 1000	LT1004CLP-1-2	1004C12	
		TOOOD (DIA)	Tube of 150	LT1004CPW-1-2	4C-12	
		TSSOP (PW)	Reel of 2000	LT1004CPWR-1-2	40-12	
0°C to 70°C	2.5 V	COIC (D)	Tube of 75	LT1004CD-2-5	4C-25	
		SOIC (D)	Reel of 2500	LT1004CDR-2-5	40-25	
		TO-226 / TO-92 (LP)	Bulk of 1000	LT1004CLP-2-5	1004C25	
			Reel of 2000	LT1004CLPM-2-5	1004025	
		TSSOP (PW)	Tube of 150	LT1004CPW-2-5	4C-25	
			Reel of 2000	LT1004CPWR-2-5	40-25	
−40°C to 85°C	1.2 V	SOIC (D)	Tube of 75	LT1004ID-1-2	41-12	
		30IC (D)	Reel of 2500	LT1004IDR-1-2	41-12	
		TO-226 / TO-92 (LP)	Bulk of 1000	LT1004ILP-1-2	1004l12	
		TSSOP (PW)	Tube of 150	LT1004IPW-1-2	41-12	
			Reel of 2000	LT1004IPWR-1-2	41-12	
	2.5 V	SOIC (D)	Tube of 75	LT1004ID-2-5	41-25	
		301C (D)	Reel of 2500	LT1004IDR-2-5	41-20	
		TSSOP (PW)	Tube of 150	LT1004IPW-2-5	41-25	
			Reel of 2000	LT1004IPWR-2-5	41-20	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

symbol

schematic

NOTE A: All component values shown are nominal.

LT1004-1.2, LT1004-2.5 MICROPOWER INTEGRATED VOLTAGE REFERENCES

SLVS022J - JANUARY 1989 - REVISED AUGUST 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Reverse current, I _R		30 m/
Forward current, I _F		
Package thermal impedance, θ_{JA} (see Notes 1 and 2):	: D package	97°C/W
	LP package	140°C/W
	PW package	149°C/W
Operating virtual junction temperature, T _J		150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10	seconds	260°C
Storage temperature range, T _{stg}		

recommended operating conditions

		MIN	I MAX	UNIT
Τ.		04C (70	°C
'A	Operating free-air temperature	041 –40	85	

electrical characteristics at specified free-air temperature

PARAMETER		TEST	T _A ‡		LT1004-1.2			LT1004-2.5				
		CONDITIONS			MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
		ΙΖ = 100 μΑ	25°C		1.231	1.235	1.239	2.48	2.5	2.52		
VZ	Reference voltage		Full	LT1004C	1.225		1.245	2.47		2.53	⊣ I	
			range	LT1004I	1.225		1.245	2.47		2.53		
Average		I _Z = 10 μA	25°C			20						
$\begin{array}{cc} \alpha_{\text{V}_{\text{Z}}} & \text{temperature coefficient} \\ & \text{of reference voltage} \\ \end{array}$	ΙΖ = 20 μΑ							20		ppm/°C		
		$I_7 = I_7(min)$ to 1 mA	25°C				1			1		
ΔV_{Z}	Change in reference voltage	1Z = 1Z(111111) to 1 111A	Full range				1.5			1.5	.5 mV	
ΔνΖ	with current	I _Z = 1 mA to 20 mA	25°C				10			10] ''''	
			Full	l range			20			20		
ΔV <u>Z</u> /Δt	Long-term change in reference voltage	I _Z = 100 μA	25°C			20			20		ppm/khr	
IZ(min)	Minimum reference current		Full range			8	10		12	20	μА	
z _Z	Reference impedance	I _Z = 100 μA	25°C			0.2	0.6		0.2	0.6	Ω	
			Ful	l range			1.5			1.5	1 22	
Vn	Broadband noise voltage	I _Z = 100 μA, f = 10 Hz to 10 kHz	25°C			60			120		μV	

Full range is 0°C to 70°C for the LT1004C and -40°C to 85°C for the LT1004I.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

[§] The average temperature coefficient of reference voltage is defined as the total change in reference voltage divided by the specified temperature range.

TYPICAL CHARACTERISTICS

Table of Graphs

GRAPH TITLE	FIGURE
LT1004x-1.2	
Reverse current vs Reverse voltage	1
Reference-voltage change vs Reverse current	2
Forward voltage vs Forward current	3
Reference voltage vs Free-air temperature	4
Reference impedance vs Reference current	5
Noise voltage vs Frequency	6
Filtered output noise voltage vs Cutoff frequency	7
LT1004x-2.5	
Transient response	8
Reverse current vs Reverse voltage	9
Forward voltage vs Forward current	10
Reference voltage vs Free-air temperature	11
Reference impedance vs Reference current	12
Noise voltage vs Frequency	13
Filtered output noise voltage vs Cutoff frequency	14
Transient response	15

TYPICAL CHARACTERISTICS[†]

IF - Forward Current - mA

Figure 3

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS†

LT1004x-1.2 **NOISE VOLTAGE** vs **FREQUENCY** 700 $I_Z = 100 \, \mu A$ 600 = 25°C V_n - Noise Voltage - nV/ √Hz 500 400 300 200 100 0 10 100 1 k 10 k 100 k f - Frequency - Hz

Figure 6

Figure 5

TL1004x-1.2
FILTERED OUTPUT NOISE VOLTAGE

VS

CUITOFF ERFOLISMON

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS†

LT1004x-2.5 REFERENCE VOLTAGE VS

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 11

TYPICAL CHARACTERISTICS†

LT1004x-2.5 **NOISE VOLTAGE** ٧S **FREQUENCY** 1400 $I_Z = 100 \mu A$ T_A = 25°C 1200 V_n − Noise Voltage − nV/VHz 1000 800 600 400 200 10 100 1 k 10 k 100 k f - Frequency - Hz

Figure 12

Figure 13

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

†1% metal-film resistors

Figure 16. V_{I(PP)} Generator for EPROMs (No Trim Required)

Figure 17. 0°C-to-100°C Linear-Output Thermometer

Figure 18. Micropower 5-V Reference

Figure 19. Low-Noise Reference

Figure 20. Micropower Reference From 9-V Battery

[†] Quiescent current ≅ 15 μA

NOTE A: This application compensates within ±1°C from 0°C to 60°C.

Figure 21. Micropower Cold-Junction Compensation for Thermocouples

[‡] Yellow Springs Inst. Co., Part #44007

Figure 22. 2.5-V Reference

Figure 23. High-Stability 5-V Regulator

250 k Ω

 $V_{CC+} \ge 5 V$

Output

250 kΩ

2N3904

60 $k\Omega$

† May be increased for small output currents NOTE A: R1 $\approx \frac{2 \text{ V}}{I_O + 10 \, \mu\text{A}}$, $I_O = \frac{1.235 \text{ V}}{R1}$

Input **200 k**Ω $\stackrel{>}{>}$ LT1004-1.2

Figure 25. Amplifier With Constant Gain **Over Temperature**

NOTE A: Output regulates down to 1.285 V for $I_0 = 0$.

Figure 26. 1.2-V Reference From 1.5-V Battery

Figure 27. Terminal Current Source **With Low Temperature Coefficient**

†R1 sets trip point, $60.4 \text{ k}\Omega$ per cell for 1.8 V per cell.

Figure 28. Lead-Acid Low-Battery-Voltage Detector

Figure 29. Variable-Voltage Supply

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

LP (O-PBCY-W3)

PLASTIC CYLINDRICAL PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice. $\hfill \hfill \$

C.\ Lead dimensions are not controlled within this area

D. FAlls within JEDEC TO -226 Variation AA (TO-226 replaces TO-92)

E. Shipping Method:

Straight lead option available in bulk pack only.

Formed lead option available in tape & reel or ammo pack.

LP (O-PBCY-W3)

PLASTIC CYLINDRICAL PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Tape and Reel information for the Format Lead Option package.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated