1. Pretraživanje teksta u relacijskim sustavi za upravljanje bazama podataka

Pretraživanje teksta (Full Text Search - FTS)

- Traženje dokumenata koji zadovoljavaju postavljeni uvjet i njihovo rangiranje u skladu sa sličnošću dokumenta s postavljenim uvjetom.
- Uvjet je obično niz riječi, a sličnost je brojčana vrijednost (rang) koja je u
 najjednostavnijoj implementaciji povezana s frekvencijom riječi iz uvjeta u
 pretraživanom dokumentu.
- Rang relevantnost dokumenata/znakovnog niza za postavljeni upit (pretpostavka je da je relevantniji dokument u kojem se traženi uzorak riječi pojavljuje na bliskim pozicijama), ts rank() u psql

Pristupi pri pretraživanju teksta

- Točno podudaranje
 - uvjet i tekst se u cijelosti podudaraju, identični su
 - uvjet je sadržan u dijelu teksta (djelomično podudaranje)
 - =, LIKE, NOT LIKE, SIMILAR TO, regularni izrazi
- Podudaranje temeljom morfologije, sintakse i semantike jezika
 - Koriste se tzv. gramatički algoritmi koji pronalaze podudarnost između uvjeta i teksta temeljem normaliziranog oblika riječi (korijen, leksem), temeljem sinonima i itd.
 - TSVector, TSQuery tipovi podataka, @@ operator
- Približno podudaranje (fuzzy)
 - Algoritmi temeljni na "udaljenosti" između znakovnih nizova Levenshtein funkcija, Hamming
 - Q-Gram algoritmi % operator, similarity funkcija
 - Fonetsko podudaranje Soundex, Metaphone funkcije

Nedostaci standarednog relacijskog SUBP u pretraživanju teksta

- Ne postoji efikasni indeksi pa pri procesiranju svakog upta treba "obraditi" svaki dokument – sporo
- Pronalaženje riiječi koje ne želimo **točnost**
- Ne postoji lingvistička podrška čak niti za engleski jeziknema načina da se
 - prepoznaju **izvedene** riječi, npr. podatak i podatkovni
 - nemoguće je zanemariti veznike, prijedloge i ostale riječi koje se često pojavljuju a nemaju semantičko značenje
 - nemoguće je dovesti u vezu riječi istog značenja (**sinonimi**)
- Ne postoji rangiranje rezultata što rezultat s mnogo dokumenata čini neupotrebljivim

Pretraživanje teksta temeljem **morfologije**, **sintake** i **semantike** jezika

- Tekst/dokument je (multi) skup riječi (bag of words)
- Efikasna pretraga teksta podrazumijeva prethodnu obrada teksta (dokumenta):
 - parsiranje teksta i rastavljanje na tokene (riječi, brojevi, tagovi, razmak, url,...)
 - uklanjanje riječi koje nemaju semantičko značenje u tekstu (stop riječi)
 - utvrđivanje korijena za svaki token
 - identificiranje **sinonima**
 - pohrana obrđenog teksta u oblik prikladan za pretragu

TSVector – podatkovni tip za reprezentaciju dokumenta

TSQuery – podatkovni tip za reprezentaciju tekstualnog upita

@@ - FTS operator za rad sa TSVector i TSQuery

Parser – prvi korak u FTS temeljem morfologije, sintakse i semantike

- razdvaja izvorni tekst na **tokene** i utvrđuje tip tokena
- ne modificira izvorni tekst
- tipovi tokena koje parser prepoznaje su unaprijed definirani

Riječnici – ulaz je tokeniziran tekst koji je dao parser (Simple Dictionary, Synonym Dictionary, Snowball Dictionary, ...)

- definiraju stop riječi, sinonime, stvaranje veza između fraza i pojedinih riječi
- **normaliziraju** tekst radi prepoznavanja različitih riječi jednakog značenja
- reduciraju veličinu reprezentacije dokumenta TSVector
- vraća polje leksema ako prepozna token, prazno polje ako je stop riječ i riječnik prepozna leksem, u protivnom NULL
- mogu se **ulančavati**, ako riječnik vrati NULL token se prosljeđuje sljedećem riječniku (obično se na početak liste stavlja najspecifičniji)

Brzina FTS-a temeljem morfologije, sintake i semantike (kvalitetna priprema za efikasno pretraživanje FTS)

- ubrzava se spremanjem TSVectora u bazu (caching), ujedno i reprezentacija teksta koja je manja od originalnog (uklanjanje stop riječi)
- izgradnja indeksa
 - GIN (generalized inverted index) atribut mora biti tip TSVector (brža pretraga ali dulja izgradnja, sporiji UPDATE i zauzima više mjesta od GIST-a

CREATE INDEX idxName ON tableName USING gin(attrName)

■ GIST (generalized search tree) – atribut mora biti tipa TSVector ili TSQuery

CREATE INDEX idxName ON tableName USING gist(attrName)

Približno pretraživanje teksta (**Fuzzy** text search)

- Tehnika pronalaženja dokumenta/niza znakova koji se približno podudara s traženim uzorkom
- Kvaliteta podudaranja se mjeri ovisno o vrsti primijenjenog algoritma

1. Algoritmi temeljeni na udaljenosti znakovnih nizova

- Udaljenost uređivanja (**edit distance**) znakovnih nizova s1 i s2 je minimaln broj operacija potrebnih da se jedan niz transformira u drugi. Moguće operacije su: izmjena, umetanje i brisanje znaka.
- Autor ideje Vladimir Levenshtein 1965. Levenshteinova udaljenost
- Riješenje mora biti jednoznačno

d(sreća, sretna) = 2

2. **Q-Gram** algoritmi

- Tekst/dokument je (multi) skup q-grama
- Ako je riječ A slična riječi B, one vjerojatno sadrže barem jedan podudaran (zajednički) podniz duljine Q
- Manji q znači veća senzitivnosti q-gram algoritam ne radi uvijek dobro ovisno o vrijednosti q (prevelika ili premala vrijednost q)
- Prikladan i za veća odstupanja

Primjer: q = 2 (bigrami)

happiness: ha ap pp pi in ne es ss

happily: ha ap pp pi il ly

- 4 podudarana od ukupno 10 bigrama (bez ponavljanja podudaranih)
- o mjera sličnosti bi se mogla odrediti kao kvocijent: $\frac{4}{10} = 0.4$

PostgreSQL relalizira q-gram kao trigrame (q = 3) i dodaje 2 praznine na početak
 i 1 prazninu na kraj svakog niza

Primjer:

- 5 podudarnih od ukupno 13 trigrama (bez ponavljanja podudarnih)
- Sličnost: $\frac{5}{13} = 0.384615$
- Može biti jako sporo za puno velikih dokumenata mogućnost kreiranja specijalnog (invertiranog) indeksa

CREATE INDEX title_trigram_idx ON movies USING gist(title gist_trgm_ops)

Fonetsko podudaranje – Soundex i Metaphone

- Akutalno u jezicima u kojima se izgovor riječi razlikuje od zapisa
- Ideja je dovesti u vezu riječi koje se jednako ili slično izgovaraju ali drugačije zapisuju
- Algoritam riječ predstavlja znakovnim nizom koji prezentira izgovor (zvučenje) riječi
 - Soundex je ograničen na vlastita imena u engleskom jeziku
 - Metaphone koristi ideju algoritma Soundex ali nije ograničen na vlastita imena

2. Napredni SQL

Prozor – tranzijentni skup n-torki pomoću kojeg se definiraju

- Particija (partition)
 - Definira se pomoću PARTITION BY dijela (bez PARTITION BY cijela relacija je jedna particija)
 - Ne može biti pomičan
 - Može sadržavati okvir(e)
- Okvir (frame)
 - Definira se pomoću frame i ORDER BY dijelova uvijek relativno u odnosu na tekuću n-torku
 - Pomiće se unutar particije
 - Ne može zahvatiti više particija
 - Dvije vrste okvira postoje: ROWS i RANGE okvir

ROWS okvir

- n-torka pripada okviru tekuće n-torke ako je u specificiranom rasponu navodi se broj n-torki koje prethode ili slijede tekuću (PRECEDING, FOLLOWING, ...)
- poredak ne mora biti definiran (bez ORDER BY)

RANGE okvir

- n-torka pripada okviru tekuće n-torke ako je vrijednost odgovarajučih atributa (navedenih u ORDER BY) u specificiranom rasponu vrijednosti
- važan je poredak n-torki u particiji (ORDER BY) jer on definira n-torke koje prethode/slijede tekuću

4. Temporalne baze podataka

Vrijeme se uglavnom shvaća kao jednodimenzionalni kontinuum koji se prostire od prošlosti prema budućnosti.

Vrijeme se modelirati (definira) kao:

konačno/beskonačno

Početak – početak vremenske linije (PostgreSQL – 4713 p.n.e.) Zauvijek – kraj vremenske linije (PostgreSQL – 294276 n.e.)

diskretno/kontinuirano

 Diskretni modeli izomorfni su prirodnim ili cijelim brojevima (kalendarske vrijednosti preslikavamo u cjelobrojne konstante)

- Svaki prirodan ili cijeli broj odgovara osnovnoj jedinici vremena chrononu (kvantum vremena, diskretna i nedjeljiva jedinica vremena kao dio hipoteze da vrijeme nije kontinuirano)
- ◆ **Chronone** možemo grupirati u veće jedinice vremena (sati, dani ...)
- Kontinuirani modeli izomorfni su realnim brojevima
 Svaki realan broj odgovara jednom vremenskom trenutku

• apsolutno/relativno

- 31. listopada 2015. 9:15
- Dva tjedna, 5 sati

Fenomeni iz stvarnog svijeta se

- 1. dogode u određenom trenutku (*chrononu*) i nemaju trajanje ili
- 2. traju/istinite su u nekom vremenskom intervalu ili periodu

Fenomeni iz stvarnog svijeta čija su nam vremenska svojstva zanimljiva mogu se opisati kao **stanja** ili kao **događaji**

- Stanja opisuju činjenice vezane uz neki objekt u bazi podataka koje su istinite u nekom vremenskom <u>intervalu</u> ili <u>periodu</u>. Te se činjenice ne smatraju točnima izvan pridruženog perioda.
- **Događaji** opsuju činjenice vezane uz neki object u bazi podataka koje su se dogodile u određenom trenutku (*chrononu*) i nemaju trajanje.

tekRacunLi	mit	stanje					događaj
brTekRacun	iznosLimit	vrijediOd	vrijediDo	uplatalspla	ata		
2341906787	5000	1.1.2015.	1.5.2015.	brTekRacun	iznos		datum
2341906787	8000	2.6.2015.	NULL	2341906787	5000.00		10.06.2015.
2211906783	10000	1.1.2005.	NULL	2244006707	2500.00		10.00.0015
2192345667	9000	1.1.2015.	1.7.2015.	2341906787	-3500.00		12.06.2015.
2192345667	5000	2.7.2015.	NULL	2192345667	-1000	.00	01.07.2015.
5361906785	7000	20.5.2015.	NULL	2192345667	-5000		20.05.2015.

Osnovni vremenski tipovi podataka:

instant

Određeni chronon na vremenskoj liniji diskretnog modela ili točka na vremenskoj liniji kontinuiranog modela (npr. 12. studeni 2015, 8:50:59)

interval

Neusidreni interval na vremenskoj liniji, ima samo trajanje (npr. 2 sata, 3 dana,...)

period

Usidreni (apsolutno definirani) interval na vremenskoj liniji (npr. zimski semestar 2015/16: 05.10.2015 – 29.1.2016)

periods

Skup disjunktnih usidrenih intervala, naziva se još i vremenskim elementom (engl. temporal element)

DateRange tip (uvijek) koristi oblik koji uključuje donju i isključuje gornju granicu: [) (tzv. *closed-open* notaciju)

U kontekstu temporalnih baza podataka značajne su dvije ortogonalne (međusobno nezavisne) **dimenzije** vremena:

- Vrijeme valjanosti (valid time)
 - Vrijeme u stvarnom svijetu kada se neki događaj dogodio ili period u kojem neka činjenica važeća, nezavisno od trenutka kada je informacija o tom događaju/činjenici zapisana u bazu podataka
- Transakcijsko vrijeme (transaction time ili system time)
 - Vrijeme kada je određena promjena zabilježena u bazi podataka ili vremenski interval tijekom kojeg se baza podataka nalazi u određenom stanju

S obzirom na sposobnost upravljanja vremenom valjanosti i transakcijskim vremenom, razlikujemo četiri vrste relacija:

- Trenutačne relacije (snapshot tables)
- Relacije vremena valjanosti (aplication-time period tables)
- Relacije transakcijskog vremena (system versioned tables)
- Bitemporalne relacije (system-versioned aplication-time period tables)

Prednosti relacija vremena valjanosti

- Većina poslovnih podataka je podložna promjenama tj. zahtijeva praćenje perioda u kojem je određena vrijednost valjana
- Današnji SUBP uglavnom ne pružaju potporu za:
 - Definiranje perioda valjanosti za n-torku
 - Definiranje ograničenja tipa "osoba može prebivati samo u jednom mjestu u određenom vremenskom periodu"
 - UPDATE/DELETE n-torke za dio perioda valjanosti
- Trenutno, najčešće aplikacije pružaju podršku za gornje zahtjeve
- Glavni problemi:
 - Kompleksnost programskog koda
 - Loše performance
- Relacije vremena valjanosti omogućavaju:
 - Pojednostavljenje programskog koda
 - Poboljšane performance
 - Transparentne su u odnosu na naslijeđene aplikacije

Tri osnovne vrste upita (u sustavima koji upravljaju vremenom)

- trenutni upiti gledaju kakvo je trenutno stanje tj. stanje u trenutku pokretanja upita
- **slijedni** upiti rade s podacima iz niza vremenskih trenutaka tj. iz različitih trenutaka u prošlosti, gledaju što se dogodilo i kada
- **neslijedni** upiti koriste podatke iz niza vremenskih trenutaka tj. iz različitih trenutaka u prošlosti, gledaju da li se nešto uopće dogodilo, ne zanima ih kada

5. Geoprostorne baze podataka

GIS (Geoinformacijski sustav) – formalna definicija:

Informacijski sustav za upravljanje, analizu, vizualiziranje i distribuiranje informacija o objektima i pojavama, čiji referentni sustav je definiran na površini Zemlje.

Marble & Peuquet - četiri podsustava GIS-a:

- Sustava za unos podataka skuplja i/ili procesira geoprostorne podatke prikupljene iz postojećih mapa, senzora, itd.
- Sustav za pohranjivanje i dohvat podataka organizira i pohranjuje podatke u obliku koji omogućuje brz dohvat za buduće analize, kao i brza i točna ažuriranja podataka u geoprostornoj bazi podataka
- Sustav za rukovanje i analizu podataka koji obavlja razne zadaće kao npr. Promjenu formata podataka koristeći korisnički definirana agregacijska pravila ili procjena parametara različitih geoprostornih simulacija i sl.
- Sustav za izvještavanje koji može prikazati cijelu ili dio baze podataka, ako i upravljati podatcima i ostvariti izlaz bilo u tabličnom ili kartografskom obliku.

GIS i povezne tehnologije mogu otvoriti na 5 tipova geografiskih upita:

- Što se nalazi na nekoj lokaciji?
- Gdie ie nešto?
- Što se promijenilo od...?
- Koji geoprostorni obrasci postoje?
 - Koji su odnosi između dva ili više skupa podataka koji se odnose na istu lokaciju?
 - Koje geografske varijacije postoje s obzirom na prostor?
- Što ako...? "What if?"

SUGP – programski modul:

- Implementiran proširenjem objektno-relacijskog
- Posjeduje skup geoprostornih apstraktnih tipova podataka (GeoATP) kao i upitni jezik koji podržava te tipove podataka i operacije nad njima
- Prostorno indeksiranje
- Djelotvorni algoritmi za operacije nad geoprostornim tipovima podataka
- Specifična pravila za optimiranje upita

Topologija se definira kao geoprostorni odnosi između susjednih objekata. Topologija govori gdje su objekti s obziromna jedan drugoga, te kako se odnose. Ti odnosi mogu biti jednostavni (npr. udaljenost), ali uključuju i složenije pojmove kao što su susjednost i povezanost.

Temeljna obilježja geoprostornih objekata:

- Geometrijska
 - Metrička
 - Oblik (apstrakcija geometrijske strukture: točka, linija, poligon)
 - Položaj (u odnosu na referentni koordinatni sustav)
 - ♦ Veličina (0D, 1D, 2D ili 3D)
 - Topološka
 - ♦ Relacije među objektima (susjedstvo, povezanost i sl.)
- Tematska
 - ◆ Atributi čije su domene jednostavni tipovi podataka (integer, char ...)

PostGIS tipovi podataka:

- **Geometry**: puno botagiji skup funkcija, provjerava odnosa su u pravilu brža, bolja podrška u postojećim alatima (s ovime dalje radimo)
- Geography: jednostavna mjerenja i odnosi na relativno velikom području
- Raster
- Topology

PostGIS podtipovi podataka:

GeoATP (Geoprostorni apstraktni tipovi podataka)

- Operacije: funkcije čiji su argumenti geoprostorni tipovi podataka, a rezultat je ili geoprostorni tip ili prosti tip (skalarna vrijednost)
- Radimo sa 2D prostorom mali skup operacija, izražajnost, konzistentnost, jezična I spoznajna temeljitost

GeoATP - Operacija:

- Geometrijske operacije
 - Skupovne (unija, presjek)
 - Aritmetičke (duljina krivulja, površina poligona)
 - Druge (buffer, convex hull)
- **Topološke relacije** (touches, within, disjoined ...)
- Operacije nad grafovima (traženje najkraćeg puta)

GeoATP – topološke relacije (Model 9 presjeka - 9IM)

- Binarna topološka relacija **R** između dva prostorna objekta **A** i **B** opisuje se usporedbom unutrašnjosti (A°), granice (∂A) i vanjštine (A–) dvaju objekata.
- Tih 6 komponenata moguće je kombinirati tako da oblikuju 9 temeljnih vrijednosti (presjeka) za opis topoloških relacija
- Svaki presjek može poprimiti vrijednosti Ø(prazan skup) i ¬Ø(ne prazan skup)
- Uređeni skup 9 presjeka može se prikazati matricom:

$$R(A,B) = \begin{pmatrix} A^{0} \cap B^{0} & A^{0} \cap \partial B & A^{0} \cap B^{-} \\ \partial A \cap B^{0} & \partial A \cap \partial B & \partial A \cap B^{-} \\ A^{-} \cap B^{0} & A^{-} \cap \partial B & A^{-} \cap B^{-} \end{pmatrix}$$

Osnovni tipovi podataka: točka, linija, poligon:

Unutrašnjost granica i vanjština:

- Unutrašnjost i granica poligona su jasne
- Granica linije su točke na njenim krajevima dok je unutrašnjost sve ostalo
- Točka nema granicu već samo unutrašnjost i vanjštinu

Topološke relacije između 2 poligona i između poligona i linije:

DE-9IM – Dimenzijski prošireni model 9 presjeka (9IM)

 Pored operatora unutrašnjosti (°), granice (∂) i vanjštine(–), uvodi se i operator dimenzije

$$\dim(s) = \begin{cases} -ako \ je \ S = \emptyset \\ 0 \ ako \ S \ sadrži \ barem \ točku, ali \ ne \ i \ linije \ i \ površine \\ 1 \ ako \ S \ sadrži \ barem \ liniju, ali \ ne \ površinu \\ 2 \ ako \ S \ sadrži \ barem \ površinu \end{cases}$$

*S – opći skup točaka

- Svaki element matrice proširuje se dimenzijom
 - Novu matricu moguće je zapisati ovako:

$$DE9I = \begin{pmatrix} \dim(\partial \lambda_1 \cap \partial \lambda_2) & \dim(\partial \lambda_1 \cap \lambda_2^0) & \dim(\partial \lambda_1 \cap \lambda_2^-) \\ \dim(\lambda_1^0 \cap \partial \lambda_2) & \dim(\lambda_1^0 \cap \lambda_2^0) & \dim(\lambda_1^0 \cap \lambda_2^-) \\ \dim(\lambda_1^- \cap \partial \lambda_2) & \dim(\lambda_1^- \cap \lambda_2^0) & \dim(\lambda_1^- \cap \lambda_2^-) \end{pmatrix}$$

Na temelju dimenzijski proširenog modela 9 presjeka, definiraju se topološke relacije:

 Touch – relacija dodirivanja (vrijedi za parove objekata poligon/poilgon, poligon/linija, linija/linija, točka/poligon i točka/linija – sve osim točka/točka

$$\langle \lambda_1, touch, \lambda_2 \rangle \Leftrightarrow (\lambda_1^0 \cap \lambda_2^0 = \varnothing) \land (\lambda_1 \cap \lambda_2 \neq \varnothing)$$

 Cross – relacija presijecanja (vrijedi za parove linija/linija i linija/poligon)

 $\left\langle \lambda_{1}, cross, \lambda_{2} \right\rangle \Leftrightarrow \left(\dim \left(\lambda_{1}^{0} \cap \lambda_{2}^{0} \right) = \max \left(\dim \left(\lambda_{1}^{0} \right), \dim \left(\lambda_{2}^{0} \right) \right) - 1 \right) \wedge \left(\lambda_{1} \cap \lambda_{2} \neq \lambda_{1} \right) \wedge \left(\lambda_{1} \cap \lambda_{2} \neq \lambda_{2} \right)$

• In – relacija pripiadanja (vrijedi za sve kombinacije objekata)

$$\langle \lambda_1, in, \lambda_2 \rangle \Leftrightarrow (\lambda_1 \cap \lambda_2 = \lambda_1) \wedge (\lambda_1^0 \cap \lambda_2^0 \neq \emptyset)$$

 Overlap – relacija preklapanja (vrijedi za homogene parove poligon/poligon i linija/linija)

$$\left\langle \lambda_{1}, overlap, \lambda_{2} \right\rangle \Leftrightarrow \left(\dim \left(\lambda_{1}^{0} \right) = \dim \left(\lambda_{2}^{0} \right) = \dim \left(\lambda_{1}^{0} \cap \lambda_{2}^{0} \right) \right) \wedge \left(\lambda_{1} \cap \lambda_{2} \neq \lambda_{1} \right) \wedge \left(\lambda_{1} \cap \lambda_{2} \neq \lambda_{2} \right)$$

• **Disjoint** – relacija odvojenosti (vrijedi za sve kombinacije objekata)

$$\langle \lambda_1, \text{disjoint}, \lambda_2 \rangle \Leftrightarrow \lambda_1 \cap \lambda_2 = \emptyset$$

Stablo odlučivanja - međusobna isključivost i zatvorenost skupa topoloških relacija (sve gornje relacije se daju izvesti ih ovog stabla)

Buffer

$$buffer(\delta) = \begin{cases} \delta > 0 : \{x \in \Re^2 | d(x,g) \le \delta\} \\ \delta < 0 : \{x \in \Re^2 | x \in g \land d(x,\partial g) > \delta\} \end{cases}$$

Konveksna ljuska (convex hull)

- Konveksna ljuska skupa točaka **S** jest najmanji konveksni skup točaka (poligon) za koji je svaka točka skupa **S** ili na granici ili u unutrašnjosti tog poligona
- Konveksni skup točaka (poligon) linija povučena između bilo koje dvije točke skupa u potpunosti se nalazi u tom skupu

- Voronoijev dijagram (voronoi)
- Geoprostorni upit korisnika
 - Odredi područja u Hrvatskoj koja gravitiraju pojedinim gradovima sa više od 50000 stanovnika
- Geometrijska operacija
 - Za svaku točku ravnine odrediti koja joj je od N točaka iz skupa S najbliža

 $voronoi(t_k) \Leftrightarrow \{x \in \Re^2 \mid d(t_k, x) > d(t_i, x), \forall i \neq k\}$

Indeksi prostornih podataka (R, R*, R+ i Hilbertovo R-stablo) R stablo

- Slično B stablima (svaki čvor može sadržavati više elemenata)
- Indeksira se položaj objekta u bazi (koodrinate)
- Dijeli prostor na MBR (minimal bounding box)
- Elementi unutranjeg čvora sadrži pokazivače na svoju djecu te MBR unutar kojeg se njegova djeca nalaz (listovi sadrže id objekta i MBR unutar kojeg se nalaze)

