Lecture 5: Subgroups, groups of small order

Group of rotational symmetries

of regular hexagon

H = group of isometries of briangle.

Last time we saw that G and H are not isomorphic.

Here is another proof: If we take any two elements x and y of G, we have xy = yx. However, in H, there exist pairs

such that this is not true.

to show that G and H are not isomorphic.

Use the above observations

Theorem Let G and H be groups. Let $\varphi: G \longrightarrow H$ be a group isomorphism. Then, the function $\varphi'': H \longrightarrow G$ is also

a group isomorphism.

Proof: We already know that
$$\varphi^{-1}$$
 is a 1-1 correspondence. We need to verify that if x,y are in H , then $\varphi^{-1}(xy) = \varphi^{-1}(x) \cdot \varphi^{-1}(y)$. To see this, we observe that $\varphi(\varphi^{-1}(x) \cdot \varphi^{-1}(y)) = \varphi(\varphi^{-1}(x)) \cdot \varphi(\varphi^{-1}(y)) = xy$.

But, we also have $\varphi(\varphi'(xy)) = xy$. As $\varphi'(xy)$ and $\varphi'(x).\varphi'(y)$

have the same image under

9, they must be equal.

This completes the proof.

Subgroups Let (G,*) be a group. A subgroup of G is a subset H=G such that * gives a binary operation on H, which gives H the structure of a group.

More precisely, we say that the subset H is a subgroup if the following are brue:

(1) I_{G} is in H. (2) α , γ in H \Rightarrow $\chi * \gamma$ in H. (3) γ in H \Rightarrow χ^{-1} in H. Note that we do not need to check that the binary operation on H is associative as * is

This is why we did not include this condition.

known to be associative.

Example

plane. Then, if G is the

Gr is a subgroup of Perm(A).

group of isometries of A,

Let A be a subset of the

Example Let G be any group. Then Gr is a subgroup of itself. Any subgroup of G that is not equal to the whole of G is called a proper subgroup of Gr.

Example

Let G be a group and let x be any element of G.

Then, the set

 $\langle x \rangle = \{x^n \mid n \text{ is an integer}\}$ $= \{1_{\alpha}, x, x^{-1}, x^{2}, x^{-2}, \dots \}$ is a subgroup of Gr. (Check this.)

Example Let m

Let m be any integer.

We define m 7/2 to be the set of all integer multiples

Then $m\mathbb{Z}$ is a subgroup of \mathbb{Z} .

Indeed, any element x of mZ may be written as x = md for some integer d.

So, -x = m(-d) and so

-x is also in mZ.

Let x any y be in mZ

Want to show: x + y 15 in mZ/

There exist integers d, and dz such that x= md, and y= mdz So $x+y=md_1+md_2$ $= m(d+d_2)$

So x+y is in mZ <u>Question</u>: Are there any other <u>subgroups</u> of Z?

A test for subgroups Proposition Let Go be group. Let H be a non-empty

Let H be a non-empty subset of G. Then H is a subgroup of GT if and only if for any x, y in H, the element xy is in H.

Proof Suppose H is a subgroup of Gr. Let a, y be in H. Then, y' is in H. So xy' is in H. Thus the condition in the statement of the proposition holds.

Conversely, suppose we know that for any x,y in H, the element xy' is in H.

Let x be any element of

H. (Recall - H is non-empty).

Thus, $x \cdot x^{\prime} = 1_G$ is in H.

As 16 and x are in H, so is $1_{G'} \times^{-1} = \times^{-1}$ Products Let x, y be in H. Then y' is in H. So $\chi \cdot (y^{-1})^{-1}$ = χy is in H. Thus H is a subgroup.

Inverses Now, let x be any

element of H.

<u>Definition</u> Let Gi be a group. The cardinality of the set G (i.e. the number of elements in G) is called the <u>order</u> of G A finite group is a group having finite order.

Order of a group.

Finite groups Let G be a finite group. Let x be an element of G. Then, the set $\langle x \rangle = \langle x^n \rangle$ n is an integer je

Is a subgroup of G.

Thus, $\langle \varkappa \rangle$ is also a finite set.

Let | 91 = r In the sequence 1, x, x, -- x,

all elements cannot be distinct.

So, for some positive integers

m < n, we have $x^m = x^h$.

So $x^{n-m} = 1_{G}$

Also $n \le r \implies n - m \le r$.

Thus, we have proved the following.

Theorem Let G be a finite

group. Then, for any element a of G, there exists a positive integer d < 161 such that

integer $d \le |G|$ such that $x^d = 1$.

Groups of small order. Can we list all groups of order n? (List 'up to isomorphism') We will do this for some

small values of n.

n=1 \rightarrow Easy

\[\lambda 1 - \text{This is the only group of order 1.} \]

<u>n= 2.</u> Let G be a group of order 2.

Then, G contains 1g and some

other element x.

What is x2 ?

We already know x.1 = 16x = x.

If $x^2 = x$, we can cancel x from both sides to get $x = 1_{G}$.

But we assumed $x \neq 1_G$ So, $x^2 \neq x$. So, $x^2 = 1_G$.

n = 3 Let G be a group of order 3. Let us list the elements. {1, x, y} What is x2? $x^2 \neq x$ (by the same argument as before.) Suppose x=1.

So, {1, x²} is a subgroup of G.

List: 1 x

If yx = 1, $y = x^{-1}$. But as $x^2 = 1$,

we have x'=x. So x=y — contra.

So yx = 1.

What is yx?

If yx=x, we get y=1 (by cancelling x). But y≠1 - contra.

So yn # x.

If yx= y, we get x=1

by cancelling y. But x+1 - contra.

So you cannot be defined. — contra.

So x + 1.

So
$$x^2 = y$$

What is x.x 9

So, our list is {1, x, x}}

So, $x \cdot x^2 = 1$.

If $x \cdot x^2 = x$, we get $x^2 = 1$ — contra.

If $x \cdot x^2 = x^2$, we get x=1 — contro.

So, there is only one group of order 3.

		1	K	2
	l	l	X	x2
_	x	a	x²	1.
	χ²	22		x

n= 4 Let G have order 4. Let x be an element of G 1, 水, 龙, …

such that $x \neq 1$. Let us list the powers of x. We know that there exists d≤4 such that 2d=1

We know that スキ).

Suppose $\chi^2 = 1$.

We have already seen that yx cannot be equal to 1, x or y.

y, Z.

List 1, x

50 y 2= Z.

List 1
$$x$$
 y yx .

What is y^2 ?

 $y^2 \neq y$ as $y \neq 1$

If $y^2 = yx$, $y = x$ which is not true.

So we have two case: $y^2 = x$ or $y^2 = 1$.

So, the elements are 1, y, y, y (all distinct)

So y'=1.

y' is some element of this set

 $y^3 = y \Rightarrow y^3 = 1$ — contra.

 $y^4 = y^2 \implies y^2 = 1$ contra

 $y^4 = y^3 \implies y = 1 - contra.$

So, the group

Case
$$y^2 = 1$$
 List: $1 \times y \times w$ What is $2y \%$

What is
$$xy = 1$$
, $y = x^{-1}$.

But $x^2=1 \implies x=x^1$

So x=y — contra.

So, ny = 1.

If xy = x, then y = 1 - contra.If xy = y, then x = 1 - contra.

So xy = yx. Now we can calculate all products easily.

Now we are done with the case x=1. What if $x^2=1$, but $x^3=1$?

What is yx?

(This is similar to earlier calculations)

If yx=1, then $y=x^1=x^2$. — contra

If yx=x, then y=1 - contra

If $yx = x^2$, then y = x - contra.

So, yx cannot be defined. So, x³=1 is not possible.

So, we are now left with the case $x \neq 1$, $x^3 \neq 1$, $x^4 = 1$ List: 1, x, x^2 , x^3 . This gives a group isomorphic to one we already have

(in the case x=1, y=x earlier). So, there are 2 groups of order 4.