Lecture 3

LAN Design

What is LAN Design

- Network or LAN design can be defined as a complete communication system level design defining user access, the transportation medium and data transport elements, and all internal and external factors, which affect, manage, or interact with the communications medium.
- LAN design encompasses the following:
 - LAN infrastructure
 - Making the business case
 - Compiling the requirements
 - Choosing the technology
 - Planning for capacity
 - Completing the vendors selection
 - Other issues

Learning Objectives

- Upon completing this course, you should be able to:
 - Describe the LAN infrastructure
 - Describe network design and components
 - Describe network design methodology
 - Understand layer 1, 2 and 3 design

LAN Infrastructure

LAN Infrastructure

- What is Network Infrastructure?
 - The term network infrastructure refers to the shared set of physical and logical components that provide the basis for connectivity, security, routing, management, access, and other features integral to a network.

Physical Infrastructure

- Topology
- Hardware components
 - Cabling
 - Routers
 - Switches
 - Bridges
 - Hubs
 - Repeaters
 - Client and Server computers
 - NIC
- May aslo refer to technologies such as Ethernet,
 802.11a/b/g, the Public Switch Telephone Network (PTSN),
 T-Service, which all depends on specific hardware and other physical requirement

Fig1: Physical Infrastructure of network

Logical Infrastructure

- Refers to the shared software elements that allow computers to communicate over the network 's physical topology
- Elements of logical infrastructure include:
 - Shared network protocols
 - An addessing scheme
 - Name resolution systems
 - Sever roles (Web server or Certificate server)
 - Network operating systems (microsoft Windows 2000 server, Unix, or Novell NetWare

Logical Infrastructure (cont'd)

Hardware Components

Repeaters

 Repeaters work at the OSI physical layer or layer 1 to regenerate or boost the network's signal and resend them to other segments

- Repeaters are Layer 1 devices that regenerate the signal, and pass it on
- · Repeaters allow a longer end-to-end distance
- Repeaters increase the collision domain size
- · Repeaters increase the broadcast domain size

Bridges

- A bridge is a Layer 2 device used to divide, or segment, a network.
- Used to isolate network traffic and computers
- Has the intelligent to examine incoming packet source and destination addresses.
- But cannot interpret higher-level information
- Hence cannot filter packet according to its protocol

How bridges work?

- Bridges work at the Media Access Control Sub-layer of the OSI model
- Routing table is built to record the segment no. of address
- If destination address is in the same segment as the source address, stop transmit
- Otherwise, forward to the other segment

Switches

- Switches operate at the Data Link layer (layer 2) of the OSI model
- Can interpret address information
- Switches resemble bridges and can be considered as multiport bridges
- By having multiports, can better use limited bandwidth and prove more cost-effective than bridge
- Switches divide a network into several isolated channels
 - Reduce the possibility of collision

How switches operate

- Initially, a switch knows nothing and simply sends on incoming messages to all ports
- When the switch accepts the first message, it learns the connection the sender of the message is located
- Thus, when machine "A" responds to the message, the switches only need to send that message out to the one connection
- In addition to sending the response through to the originator, the switch has now learned the connection machine "A" is located.

- How switches operate (cont'd)
 - That means that
 subsequent messages
 destined for machine
 "A" need only be sent
 to that one port:

A hub

- In data communications, a hub is a place of convergence where data arrives from one or more directions and is forwarded out in one or more other directions
- Star networks are based on hubs
- Broadly speaking, there are two hub varieties
 - Passive
 - Active

See USB 7-Port Hub To connect several USB devices

Passive Hub

- Passive hubs do not incorporate any power electronic components
 - As a result, the only function of a passive hub is to provide a central point for connecting cables
- Passive hubs cannot provide network management or improve the quality of network signals
- The IBM model 8228, a relay based hub that was developed by IBM's Token-Ring network is an example of passive hub

Active Hub

- Active hubs have electronic components that can process signals
- They include several interesting capabilities:
 - Amplification of weakened signals
 - Reshaping and rerieving of distorted waveforms
 - Detection of network problems
 - Sending perfomance and error reports to management
 - Remote management, enabling network administrators to control hubs that are located a considerable distance away

How hubs operate:

- Anything that comes in one port is sent out to the others.
- If a message comes in for computer "A", that message is sent out all the other ports, regardless of which one computer "A" is on
- And when computer "A" responds, its response also goes out to every other port on the hub
- Every computer connected to the hub "sees" everything that every other computer on the hub sees.
- The computers themselves decide if they are the targeted recipient of the message and when a message should be paid attention to or not.

Routers

- A router is a Layer 3 device.
- Used to "route" traffic between two or more Layer 3 networks.
- They use the "logical address" of packets and routing tables to determine the best path for data delivery

- Network interface card (NIC) or Network adapter
 - It is the jack on the back or side of a computer where you will plug in the cables or exchange wireless signals
- There are three kinds of network adapters
 - Peripheral component interconnect (or PCI) card
 - This plugs into a slot inside the PC and provides one ethernet jack for connecting a network cable
 - USB adapter
 - This plugs into the USB port on any kind of computer and parks itself on the outside of the PC
 - PC card
 - Plugs into a special slot on laptops

Design Goals and Components

LAN Design Goals

Functionality

- The network must work.
- The network must allow users to meet their job requirements.
- The network must provide user-to-user and user-to-application connectivity with reasonable speed and reliability.

Scalability

- The network must be able to grow.
- The initial design should grow without any major changes to the overall design.

Adaptability

- The network must be designed with a vision toward future technologies.
- The network should include no element that would limit implementation of new technologies as they become available.

Manageability

 The network should be designed to facilitate network monitoring and management to ensure ongoing stability of operation.

Critical Components of LAN Design

- With the emergence of high-speed technologies and complex LAN technologies, the following critical components need addressing in design
 - Function and placement of Servers
 - Contention
 - Segmentation
 - Bandwidth v. Broadcast domains
- Note: These are things an administrator has control over that will affect how efficiently network resources are to be used

Function and Placement of Servers

- Servers now perform special functions and can be categorized as either...
 - Enterprise Servers-:-supports all users on the network
 - DNS and mail servers
 - Should be placed in the MDF
 - Workgroup Servers-:-supports a specific set of users
 - File serving such as specialized databases
 - Should be place in the IDF closest to users

Placement of Servers (cont'd)

Contention on an Ethernet Network

- Contention refers to excessive collisions on Ethernet, caused by too many devices, each with a great demand, on a single network segment
- Collisions are overhead on Ethernet
 - more collisions means less data gets through
- Contention solved by segmentation

Broadcasts and Segmentation

Broadcasts and Segmentation (cont'd)

- Layer 2 devices segment collision domains
- Layer 3 devices segment broadcast domains

Bandwidth Vs Broadcast Domains

- A bandwidth domain is shared by all devices on a single switched port.
- Synonymous with collision domain
- A broadcast domain is shared by all devices on a single router interface.

LAN Design Methodology

LAN design methodology

- Critical to design is insuring a fast and stable network that will scale well as the organization grows
- Design steps are
 - Gather and establish design goals based on user requirements
 - Determine data traffic patterns now and in the future
 - Define Layer 1, 2, and 3 devices and the LAN/WAN topologies
 - Document physical and logical network implementation

Gathering and Analyzing Requirements

•Gather and analyse info firstly on organisation structure (projected growth, operating policies / management procedures, staff skill levels)

e.g. mission critical data or operations? Restrictions on network protocols? What resources to support LAN? What hardware / software currently in use and projected for future?

- Corporate structure
- Business information flow
- Applications in use
- Current topology
- Performance characteristics of current network

Network Availability

- Network design seeks to provide the greatest availability for the least cost.
- Factors that affect availability include...
- Throughput
- Response time
- Access to resources
- In the graphic, what type of server is each and where should each be placed?

Developing a LAN Topology in 3 stages

- In the CCNA curriculum, we concentrate on the star/extended star physical topology which typically uses the Ethernet 802.3 standard.
- Why? Because it is the most popular topology used in LANs.
- Within the boundaries set by that topology, we then design the network by focusing on physical layer, data link layer and network layer in turn
 - i.e. using the OSI model to guide the design.

Layer 1 Design

Ethernet Cable Runs

- The physical cabling (also called the cable plant) is the most important Layer 1 issue to consider when designing a network.
- Design issues include...
- Type of cable to use (twisted-pair, coax, fiber)
- Where to use each type (e.g. fiber on the backbone)
- How far each run must travel before being terminated (twisted-pair is limited to what distance?)
- In an existing LAN, a cable audit is performed to determine where upgrading and/or replacement of bad cables is needed.

MDF and Other 568A Acronyms

- Whether the LAN is a star or extended star, the MDF is the center of the star.
- From the workstation to the telecommunications outlet, the patch cable should be no more than 3m.
- From there to the patch panel, called the HCC, no more than 90m.
- From the patch panel (the HCC) to the switch, no more than 6m.

MDF & Other 568A Acronyms

- When distances to the MDF are more than 100m, an IDF is normally added.
- The cable run from the IDF to the MDF is called the VCC and is usually fiber.
- VCC is just another name for the backbone.
- By adding more wiring closets (more IDFs), you create multiple catchment areas

Layer 1 Logical Documentation

- Layer 1 logical documentation is concerned with...
- exact location of MDF/IDF
- type & quantity of cabling
- room locations & # of drops
- port numbers
- cable labels
- Notice Layer 1's logical documentation shows nothing about logical addressing
- The Logical Diagram and Cut Sheet are primary tools for design, but are crucial to the tech who is troubleshooting.

Service area-Room-XXX-4 drops (2 used) Room-ABC-5 drops (3 used)

Cut Sheet

IDF1 Location-Rm XXX

Connection	Cable ID	Cross Connection Paired#/Port#	Type of Cable	Status
IDF1 to Rm 203	203-1	HCC1/Port 13	Category 5 UTP	Used
IDF1 to Rm 203	203-2	HCC1/Port 14	Category 5 UTP	Not used
IDF1 to Rm 203	203-3	HCC2/Port 3	Category 5 UTP	Not used
IDF1 to MDF	IDF1-1	VCC1/Port 1	Multimode fiber	Used
IDF1 to MDF	IDF1-2	VCC1/Port 2	Multimode fiber	Used

Layer 2 Design

Switches and Layer 2 Design

Hub A:

- Collision domain = 24 hosts
- Bandwidth average = 100 Mbps/24 hosts = 4.167 Mbps per host
 Hub B:
- Collision domain = 24 hosts
- Bandwidth average = 10 Mbps/24 hosts = 0.4167 Mbps per host **Hub C**:
- Collision domain = 8 hosts
- Bandwidth average = 100 Mbps/8 hosts = 12.5 Mbps per host
 Hub D:
- · Collision domain = 8 hosts
- Bandwidth average = 10 Mbps/8 hosts = 1.25 Mbps per host
- Collisions and collision domain size are two factors that negatively affect the performance of a network.
- Microsegmentation of the network reduces the size of collision domains and reduces collisions.
- Microsegmentation is implemented through the use of bridges and switches.
- The goal is to boost performance for a workgroup or a backbone.
- Switches can be used with hubs to provide the appropriate level of performance for different users and servers.

Sizing Collision Domains

- In a switched LAN environment using hubs, the bandwidth of each switched port is shared by all the devices. Therefore, they also share the same collision domain.
- To determine the bandwidth per host, simply divide the port's bandwidth by the number of hosts (see graphic).
- In a pure switched LAN environment where each host has its own port, the size of the collision domain is 2. If running full-duplex, then the collision domain is eliminated. Why?

Collision Domain Size with Hubs

Hub A: Collision domain = 24 hosts Bandwidth average = 100 Mbps/24 host = 4.167 Mbps per host

Hub B: Collision domain = 8 hosts Bandwidth average = 100 Mbps/8 host = 12.5 Mbps per host

Hub C: Collision domain = 24 hosts Bandwidth average = 10 Mbps/24 host = .4167 Mbps per host

Hub D: Collision domain = 8 hosts Bandwidth average = 10 Mbps/8 host = 1.25 Mbps per host

Layer 3 Design

Routers and Layer 3 Design

- Routers can be used to create unique LAN segments and also allow for connectivity to wide-area networks (WANs), such as the Internet.
- Layer 3 routing determines traffic flow between unique physical network segments based on Layer 3 addressing.
- Routers provide scalability because they serve as firewalls for broadcasts.
- They can also provide scalability by dividing networks into subnetworks, or subnets, based on Layer 3 addresses.

45

Diagramming a LAN with Routers

- Notice in the graphic that the two networks are kept separate by the router.
- Each switch serves a different network regardless of the physical location of the devices.
- To create another physical network in a structured Layer 1 wiring scheme, simply patch the HCC and VCC into the correct switch.

Layer 3 Router for Segmentation

Logical & Physical Network Maps

- After determining your Layer 1, 2, and 3 design, you can create your addressing (logical) and physical maps. These are invaluable. They
- Give a snapshot of the network
- Show subnet mask info
- Help in troubleshooting

Physical Network Maps

Addressing MAPs

47

End