UE MIA0502V - Partie Pratique de l'Analyse Factorielle

Sujet d'examen - Janvier 2020 - Durée 1h30

1 ACP

Les deux schémas ci-dessous détaillent les 18 mesures (i.e. variables) définissant la morphologie d'une molaire des premiers mammifères vivant entre -200 millions et -150 millions d'années :

Ces 18 mesures sont observées sur 22 animaux (i.e. individus) dont les restes ont été mis à jour. On dispose d'une variable supplémentaire qualitative fournissant l'espèce d'appartenance pour chaque mammifère et dont les modalités sont *Kuehneotherium* d'une part et *Morganucodon* d'autre part.

Questions. À partir des résultats de l'ACP fournis en Annexe 1, répondez aux questions suivantes en justifiant vos réponses :

- 1. Combien de dimensions retiendriez-vous pour analyser ces données? Quel pourcentage d'inertie est associé au plan factoriel (1, 2)?
- 2. Quelle est la variable la mieux représentée sur l'axe 1? Quel est l'individu le moins bien représenté sur l'axe 2?
- 3. Quelle est la corrélation entre la variable **HeightB** et l'axe factoriel 1? Quelle est la variable la plus corrélée avec l'axe factoriel 2 en valeur absolue?
- 4. Un commentaire indique que les molaires des 11 individus représentés à droite sur l'axe 1 possèdent en moyenne un angle AB (numéroté 10 sur le schéma présentant les 18 mesures) plus petit que celui des 11 individus représentés à gauche de l'axe 1. Êtes-vous d'accord avec cette affirmation?
- 5. Préciser la méthode permettant de représenter les deux modalités *Kuehneo-therium* et *Morganucodon*.
- 6. Que représente la figure 2?
- 7. Quelle est la variable qui contribue le plus à la construction de l'axe 1? Quelle est la variable qui contribue le plus à la construction de l'axe 2?
- 8. Quel axe sépare le mieux les deux espèces de mammifères? Quelle propriété doivent vérifier les variables qui distinguent le mieux les deux espèces de mammifères?
- 9. Écrire un bref commentaire résumant les principales différences entre ces deux espèces de mammifères.
- 10. Quel axe sépare le mieux les deux mammifères 4 et 12? Écrire un bref commentaire résumant les principales différences entre ces deux mammifères.

2 AFC et AFCM

On s'intéresse à l'opinion public des européens vis à vis du revenu universel. Selon la définition sur Wikipédia, le revenu universel (encore appelé revenu de base) est une somme d'argent versée par une communauté politique à tous ses membres, sur une base individuelle, sans conditions de ressources ni obligation ou absence de

travail. Les données auxquelles on s'intéresse ont été extraites d'une enquête menée en 2016; elles concernent 9649 européens pour lesquels on a observé les variables suivantes :

country = pays d'appartenance; les modalités correspondent aux abbréviations officielles suivantes :
 Union européenne (UE)

Belgique	(BE)	Grèce	(EL)	Lituanie	(LT)	Portugal	(PT)
Bulgarie	(BG)	Espagne	(ES)	Luxembourg	(LU)	Roumanie	(RO)
Tchéquie	(CZ)	France	(FR)	Hongrie	(HU)	Slovénie	(SI)
Danemark	(DK)	Croatie	(HR)	Malte	(MT)	Slovaquie	(SK)
Allemagne	(DE)	Italie	(IT)	Pays-Bas	(NL)	Finlande	(FI)
Estonie	(EE)	Chypre	(CY)	Autriche	(AT)	Suède	(SE)
Irlande	(IE)	Lettonie	(LV)	Pologne	(PL)	Royaume-Uni	(UK)

- gender = sexe (2 modalités : female / male),
- rural_or_urban = environnement du lieu d'habitation (2 modalités : rural / urban),
- education = niveau d'étude (4 modalités : educ_high / educ_medium /
 educ_low / educ_no),
- job = l'enquêté est-il en activité professionnelle à plein temps? (2 modalités : job_no / job_yes),
- **children** = l'enquêté a-t-il à sa charge un ou plusieurs enfants? (2 modalités : child_no / child_yes),
- awareness = niveau de connaissance du concept de revenu universel (4 modalités : know_nothing / know_little / know_some / know_well),
- vote = vote vis à vis du revenu universel si un référendum était organisé (3 modalités : ABS / CONTRE / POUR),
- $\mathbf{age_group} = \mathbf{class} \ \mathbf{d'\hat{a}ge} \ (3 \ \mathbf{modalit\acute{e}s} : 14_25 \ / \ 26_39 \ / \ 40_65).$

2.1 Analyse Factorielle des Correspondances

On étudie ici la relation entre la variable **awareness** "niveau de connaissance du concept de revenu universel" et la variable **vote** "positionnement vis à vis du revenu universel". En croisant ces deux variables, on obtient la table de contingence suivante :

Les résultats de l'AFC de cette table de contingence sont fournis dans l'Annexe 2.

	ABS	CONTRE	POUR
$know_little$	250	651	1256
know_nothing	460	321	601
know_some	198	840	2153
$know_well$	80	458	1728

Table 1 – Table de contingence

- 1. Combien d'axes sont nécessaires pour représenter la totalité de la relation entre ces deux variables?
- 2. Sans faire de calculs, ordonner de la plus petite à la plus grande, les 3 quantités suivantes : $d_{\chi^2}(\texttt{know_well}, \texttt{POUR}), d_{\chi^2}(\texttt{know_well}, \texttt{CONTRE}), d_{\chi^2}(\texttt{know_well}, \texttt{ABS}).$ Que pouvez-vous en déduire sur les européens favorables au revenu universel?
- 3. À partir des résultats de l'AFC :
 - l'axe 1 est-il le lieu d'une association exclusive?
 - quelle est l'intensité de la liaison entre ces 2 variables?
 - quelle est la modalité de la variable **vote** qui contribue le plus à l'axe 1?
 - quelle est la modalité de la variable **awareness** qui contribue le plus à l'axe 1?
- 4. À partir de la représentation simultanée des modalités, commentez brièvement la relation entre ces 2 variables catégorielles.

2.2 Analyse Factorielle des Correspondances Multiples

On enlève les individus ayant répondu ABS pour se concentrer uniquement sur ceux qui sont soit POUR, soit CONTRE. Vous trouverez dans l'Annexe 3 des résultats partiels de l'AFCM.

- 1. Est-ce que toutes les variables ont participé à la contruction des axes factoriels?
- 2. Que vaut l'inertie moyenne?
- 3. Dans la représentation des variables catégorielles, quelle est l'abscisse de la variable job? Que représente cette quantité?

- 4. Donner deux pays pour lesquels on observe une différence marquée relativement à la variable job.
- 5. Donner deux pays pour lesquels on observe une différence marquée relativement à la variable vote.
- 6. À partir des représentations graphiques, qu'est-ce qui caractérise principalement les individus qui voteraient en faveur (i.e. POUR) du revenu universel de ceux qui y sont opposés (i.e vote CONTRE)?

Annexes

Annexe 1: ACP

Variables factor map (PCA)

Individuals factor map (PCA)

Figure 1 –

Individuals factor map (PCA)

Figure 2-

Eigenvalues Variance % of var. Cumulative % of var. Variance % of var. Cumulative % of var.	Dim.1 Dim.2 10.757 4.473 59.763 24.852 59.763 84.615 Dim.11 Dim.12 0.039 0.021 0.216 0.119 99.729 99.848	Dim.3 Dim.4 1.199 0.559 6.662 3.106 91.277 94.383 Dim.13 Dim.14 0.013 0.009 0.071 0.048 99.919 99.967	0 0.277 0.231 5 1.541 1.286 8 95.924 97.209 6 Dim.15 Dim.16 9 0.003 0.002 8 0.016 0.010	0.156 0.1 0.869 0.7 98.078 98.7 Dim.17 Dim. 0.001 0.0 0.007 0.0	30 0.078 0.050 720 0.436 0.278 798 99.234 99.512 18 18 18 190
Individuals D 1	ist Dim.1 557 -2.677 761 -3.125 250 -3.630 201 -1.842 848 -3.473 367 -3.891 890 -4.087 959 -2.953 004 -3.652 306 -2.616 790 -3.370 973 2.702 857 2.280 464 3.603 838 3.883 522 3.099 548 3.080 918 1.977 222 3.597	ctr cos2 3.027 0.566 4.125 0.294 5.566 0.729 1.434 0.125 5.097 0.815 6.397 0.794 7.057 0.698 3.684 0.556 5.635 0.832 2.891 0.626 4.798 0.791 3.084 0.295 2.196 0.637 5.486 0.652 6.370 0.644 4.057 0.774 4.008 0.754 1.651 0.459 5.468 0.726 6.028 0.842	Dim.2 ctr -1.097 1.223 4.761 23.035 -2.065 4.333 4.622 21.703 0.539 0.295 0.846 0.726 -2.554 6.630 -1.745 3.095 -0.021 0.000 -1.720 3.007 0.661 0.445 -3.800 14.670 -1.162 1.373 -2.081 4.401 1.595 2.586 -0.996 1.008 1.131 1.301 -1.352 1.857 1.051 1.123	cos2 Dim. 0.095 1.23 0.683 -0.25 0.236 0.19 0.790 1.25 0.020 -0.72 0.037 -0.70 0.273 -0.35 0.194 -1.08 0.000 1.09 0.271 -0.30 0.030 0.81 0.584 1.29 0.166 -0.75 0.217 0.65	3 ctr cos2 5 5.784 0.121 0 0.237 0.002 7 0.147 0.002 2 5.942 0.058 9 2.017 0.036 5 1.882 0.026 4 0.475 0.005 5 4.463 0.075 2 4.521 0.074 3 0.349 0.008 9 2.545 0.047 6 6.362 0.068 9 2.545 0.047 16 6.362 0.068 17 15.121 0.170 18 0.267 0.006 19 1.644 0.022 17 15.121 0.170 18 0.267 0.006 19 1.681 0.035 10 0.475 0.007
		8.639 0.793 3.299 0.391		0.180 0.22 0.117 -2.97	2 0.187 0.002 5 33.543 0.443

Variables									
	Dim.1	ctr	cos2	Dim.2	ctr	cos2	Dim.3	ctr	cos2
HeightA	-0.153	0.217	0.023	0.945 19	.956	0.893	0.129	1.380	0.017
HeightB	1 -0.684	4.349	0.468	0.676 10	. 208	0.457	0.202	3.400	0.041
HeightC	-0.077	0.055	0.006	0.925 19	. 141	0.856	-0.331	9.159	0.110
ValleyAB	1 -0.609	3.443	0.370	0.755 12	.744	0.570	0.100	0.841	0.010
ValleyAC	1 -0.560	2.916	0.314	0.769 13	. 203	0.591	-0.013	0.014	0.000
LengthA	0.902	7.556	0.813	0.340 2	. 585	0.116	-0.109	0.990	0.012
LengthB	0.708	4.666	0.502	0.638 9	. 106	0.407	-0.105	0.915	0.011
LengthC	0.907	7.646	0.823	0.271 1	. 642	0.073	0.197	3.226	0.039
TotalLength	0.945	8.305	0.893	0.184 0	.760	0.034	-0.136	1.539	0.018
AngleAB	0.937	8.170	0.879	0.055 0	.067	0.003	-0.160	2.129	0.026
AngleAC	0.913	7.744	0.833	-0.195 0	. 853	0.038	0.253	5.350	0.064
Boffset	0.903	7.578	0.815	-0.051 0	. 058	0.003	-0.137	1.571	0.019
Coffset	0.684	4.353	0.468	-0.091 0	. 186	0.008	0.661	36.477	0.437
TotalWidth	0.647	3.891	0.419	0.518 6	.003	0.269	0.031	0.080	0.001
InterAB	0.686	4.377	0.471	0.310 2	. 151	0.096	0.527	23.127	0.277
InterAC	0.913	7.749	0.834	0.124 0	. 346	0.015	-0.281	6.608	0.079
InterBC	0.983	8.979	0.966	0.123 0	. 339	0.015	-0.052	0.222	0.003
CuspAngle	0.928	8.006	0.861	-0.171 0	.651	0.029	-0.189	2.972	0.036

Supplementary categories							
	Dist	Dim.1 cos2	v.test	Dim.2	cos2 v.test	Dim.3	cos2 v.test
Keuhneotherium	3.219 -	-3.210 0.995	-4.485	0.202	0.004 0.438	0.106	0.001 0.445
Morganucodon l	3.219	3.210 0.995	4.485	-0.202	0.004 -0.438	-0.106	0.001 -0.445

Annexe 2: AFC

Eigenvalues							
	Dim.1 Dim.2						
Variance	0.106 0.007						
% of var.	93.928 6.072						
Cumulative %	of var. 93.928 100.000						
Rows							
	Iner*1000 Dim.1 ctr	cos2 Dim.2 ctr	cos2				
know_little	1 3.522 0.046 0.474	0.143 0.112 44.136	0.857				
know_nothing	79.650 0.717 74.656	0.992 -0.064 9.144	0.008				
know_some	8.343 -0.151 7.618	0.967 0.028 4.076	0.033				
know_well	21.179 -0.270 17.251	0.862 -0.108 42.645	0.138				
Columns							
	Iner*1000 Dim.1 ctr	cos2 Dim.2 ctr	cos2				
ABS	89.656 0.901 84.402	0.996 -0.054 4.603	0.004				
CONTRE	5.155 0.013 0.042	0.009 0.142 74.697	0.991				
POUR	17.883 -0.161 15.556	0.921 -0.047 20.700	0.079				

CA factor map

Annexe 3: AFCM

FIGURE 3 – Représentation des variables

MCA factor map

FIGURE 4 – Représentation des modalités

country DE :1206 IT :1009 FR : 982 GB : 951	gender female:3720 male:4278	rural_or_ rural:221 urban:578	L6 educ 32 educ	education :_high :3020 :_low :1523 :_medium:3216 :_no : 239	job job_no :3033 job_yes:4965
ES: 890 PL: 681 (Other):2279 children	awar	eness	vote	age_group	
child_no :3676 child_yes:4322	know_little	:1907 (g: 922 F :2993	CONTRE:2270 POUR :5728	14_25:1455	

Eigenvalues						
	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5	Dim.6
Variance	0.212	0.163	0.154	0.149	0.145	0.144
% of var.	13.497	10.360	9.780	9.484	9.243	9.174
Cumulative % of var.	13.497	23.857	33.637	43.121	52.364	61.538
	Dim.7	Dim.8	Dim.9	Dim.10	Dim.11	
Variance	0.140	0.136	0.126	0.112	0.091	
% of var.	8.933	8.659	8.001	7.106	5.763	
Cumulative % of var.	70.471	79.130	87.130	94.237	100.000	

Categorical variables (eta2)							
		Dim.1	Dim.2	Dim.3			
gender	1	0.147	0.034	0.385	1		
rural_or_urban	1	0.109	0.062	0.002	1		
education	Ι	0.395	0.096	0.178	1		
job				0.013			
children	Ι	0.092	0.133	0.268	1		
awareness	Ι	0.186	0.317	0.105	1		
vote	1	0.008	0.454	0.123	1		

```
Supplementary categorical variables (eta2)
Dim.1 Dim.2 Dim.3
country | 0.039 0.047 0.029 |
age_group | 0.096 0.038 0.031 |
```