게임프로그래밍입문 00분반

Project#3 Design & Develop Your Own Game 2021105644 컴퓨터공학과 조영호

게임설명

1) 게임 종류 : 슈팅게임(missile)

2) 게임 제목 : 트랜스지방 푸드 피하기.

3) 게임 설명 : 플레이어에게 끊임없이 달려드는 살찌는 음식들을 처치하며 피하는것입니다.

4) 게임 진행 :

1. 음식들이 랜덤으로 플레이어에게 달려온다.

2. 플레이어를 상,하,좌,우로 움직이며 총알을 싸서 처치한다.

3. 처치한 음식들을 스코어에 반영 / 5점당 코인1개.

4. 코인으로 플레이어의 무기를 업그레이드 한다. (총알 속도, 총발 방향, 총알 크기, 플레이어 속도)

5. 음식과 닿아서 체력이 0이 되면 게임오버

5) 게임 화면

프로세스 플로우 차트

게임 전체적인 진행방향을 다이어그램으로 나타냈습니다.

게임리소스

플레이어, 9종 배드푸드, 뱃살 배경, bgm 등

코드설명

```
import pygame
import sys
import random
import math
from time import sleep
import os
pygame.init() #초기화
bullet_dir_add = ["UP","DOWN","LEFT","RIGHT"]
options = ["1","2","3"]
black = (0, 0, 0)
font = pygame.font.Font(None, 36)
map\_width, map\_height = 1200, 800
width, height = 1200, 800
screen = pygame.display.set_mode((width, height))
pygame.display.set_caption("Avoid trans fat foods!")
selected_option = ""
coin = 5
bullet_fast = 1000
bullet_dir = ["UP"]
white = (255, 255, 255)
```

```
red = (255, 0, 0)
blue = (0, 0, 255)
green = (0, 255, 0)
hp = 100
monster_respone = 0.005
player_speed = 5
give_coin = True
bullet_size = 10
bullet_speed = 8
bullets = []
monster_size = 50
monster_speed = 1.7
monsters = []
score = 0
clock = pygame.time.Clock()
pygame.mixer.music.load('bgm.mp3')
pygame.mixer.music.play(-1)
def distance(p1, p2):
   return math.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)
def display_choices(color): #업그레이드 기능 화면에 띄우기
   choice0 = font.render("< Upgrade >", True, red)
   choice1 = font.render("1. Bullet Speed + ", True, color)
   choice2 = font.render("2. Bullet Direction +", True, color)
   choice3 = font.render("3. Bullet Size + ", True, color)
   choice4 = font.render("4. Player Speed + ", True, color)
   screen.blit(choice0, (map_width // 2 - choice0.get_width() // 2, 150))
   screen.blit(choice1, (map_width // 2 - choice1.get_width() // 2, 200))
   screen.blit(choice2, (map_width // 2 - choice2.get_width() // 2, 250))
   screen.blit(choice3, (map_width // 2 - choice3.get_width() // 2, 300))
   screen.blit(choice4, (map_width // 2 - choice4.get_width() // 2, 350))
def display_score(): #스코어 코인 체력 띄우기
   score_text = font.render(f"Score: {score}", True, red)
   hp_text = font.render(f"HP : {hp}", True, red)
   coin_text = font.render(f"COIN : {coin}", True, red)
   screen.blit(score_text, (10, 10))
   screen.blit(hp_text, (700, 10))
   screen.blit(coin_text, (350, 10))
last_shot_time = pygame.time.get_ticks()
player_image = pygame.image.load('./player.png') #플레이어 이미지 로드
bg_image = pygame.image.load('./bgbg.png') #배경 가져옴
playerSize = player_image.get_rect().size # 이미지의 크기를 구해옴
playerWidth = playerSize[0] # 플레이어의 가로 크기
playerHeight = playerSize[1] # 플레이어의 세로 크기
```

```
player_x = (map_width - playerWidth) // 2
player_y = (map_height - playerHeight) // 2
bg_image = pygame.transform.scale(bg_image, (1200, 800))
monster_images = [] #몬스터 이미지 로드
for i in range(1,10):
   monster_image = pygame.image.load(f'./f{i}.png')
   monster_image = pygame.transform.scale(monster_image, (monster_size,
monster_size))
   monster_images.append(monster_image)
monster_image = random.choice(monster_images)
while True:
   screen.blit(bg_image,(0,0))
   for event in pygame.event.get():
      if event.type == pygame.QUIT:
          pygame.quit()
          sys.exit()
      elif event.type == pygame.KEYDOWN:
          if event.key == pygame.K_1:
             if coin > 0:
                coin -= 1
                bullet_fast -= 50
          elif event.key == pygame.K_2:
             if coin > 0 and len(bullet_dir) < 4:</pre>
                 coin -= 1
                bullet_dir.append(bullet_dir_add[len(bullet_dir)%4])
          elif event.key == pygame.K_3:
             if coin > 0:
                 coin -= 1
                bullet_size += 2
          elif event.key == pygame.K_4:
             if coin > 0:
                 coin -= 1
                player_speed += 1
   keys = pygame.key.get_pressed()
   player_x += (keys[pygame.K_RIGHT] - keys[pygame.K_LEFT]) * player_speed
   player_y += (keys[pygame.K_DOWN] - keys[pygame.K_UP]) * player_speed
   if player_x < 0:</pre>
      player_x = 0
   elif player_x > map_width - playerWidth:
      player x = map width - playerWidth
```

```
if player_y < 0:</pre>
   player_y = 0
elif player_y > map_height - playerHeight:
   player_y = map_height - playerHeight
if random.random() < monster_respone:</pre>
   monster_x = random.randint(0, map_width - monster_size)
   monster_y = random.randint(0, map_height - monster_size)
   monsters.append((monster_x, monster_y))
for i in range(len(monsters)):
   monster_x, monster_y = monsters[i]
   if monster_x < player_x:</pre>
      monster_x += monster_speed
   elif monster_x > player_x:
      monster_x -= monster_speed
   if monster_y < player_y:</pre>
      monster_y += monster_speed
   elif monster_y > player_y:
      monster_y -= monster_speed
   monsters[i] = (monster_x, monster_y)
for i in range(len(bullets)):
   bullet_x, bullet_y, direction = bullets[i]
   if direction == 'UP':
      bullet_y -= bullet_speed
   elif direction == 'DOWN':
      bullet_y += bullet_speed
   elif direction == 'LEFT':
      bullet_x -= bullet_speed
   elif direction == 'RIGHT':
      bullet_x += bullet_speed
   bullets[i] = (bullet_x, bullet_y, direction)
bullets = [
   (bx, by, direction) for bx, by, direction in bullets
   if 0 \le bx \le map\_width and 0 \le by \le map\_height
current time = pygame.time.get ticks()
if current_time - last_shot_time >= bullet_fast:
   for direction in bullet_dir:
      bullet_x = player_x + playerWidth // 2 - bullet_size // 2
      bullet_y = player_y + playerHeight // 2 - bullet_size // 2
      bullets.append((bullet_x, bullet_y, direction))
   last shot time = current time
```

```
for monster_x, monster_y in monsters:
      if distance((player_x, player_y), (monster_x, monster_y)) < playerWidth:</pre>
          hp -= 1
   for bullet_x, bullet_y, _ in bullets:
       for monster_x, monster_y in monsters:
             monster_x < bullet_x < monster_x + monster_size</pre>
             and monster_y < bullet_y < monster_y + monster_size</pre>
             bullets.remove((bullet_x, bullet_y, _))
             monsters.remove((monster_x, monster_y))
             score += 1
             break
   if hp < 0 :
      pygame.quit()
      sys.exit()
   if score % 5 == 0 and not give_coin:
      coin += 1
      give_coin = True
      monster_respone += 0.01
      monster_image = random.choice(monster_images)
   elif score % 5 != 0:
      give_coin = False
   if coin > 0:
      display_choices(blue)
      display_choices(white)
   screen.blit(player_image,(player_x,player_y))
   for monster_x, monster_y in monsters:
      screen.blit(monster_image, (monster_x, monster_y))
   for monster_x, monster_y in monsters:
      screen.blit(monster_image, (monster_x, monster_y))
   for bullet_x, bullet_y, _ in bullets:
      pygame.draw.rect(screen, green, (bullet_x, bullet_y, bullet_size,
bullet size))
  screen.blit(player_image, (player_x,player_y))
```

display_score()

pygame.display.flip()

clock.tick(60)

코드 옆에 주석으로 코드에 대한 설명을 달아두었습니다.

실행환경

Python: 시스템에 Python이 설치되어 있어야 합니다. Python을 공식 웹사이트 (https://www.python.org/)에서 다운로드하고 해당 플랫폼에 맞는 설치 지침을 따르면 됩니다.

Pygame: Pygame은 2D 게임 및 멀티미디어 애플리케이션을 만들기 위한 Python 라이브러리입니다. Python 환경에 Pygame이 설치되어 있어야 합니다.

게임 리소스: 코드는 게임 자산에 대한 여러 이미지 파일을 필요로 합니다. 배경 이미지, 캐릭터 이미지 (누렁이), 미사일 이미지, 폭발 이미지 및 다양한 몬스터 이미지 (monster1.png, monster2.png 등)가 필요합니다. Python 스크립트와 동일한 디렉토리에 이러한 이미지가 있어야합니다. 이러한 이미지는 PNG 형식이어야합니다.

글꼴 파일: 코드는 게임 화면에 텍스트를 표시하기 위해 'NanumGothic.ttf' 글꼴 파일을 사용합니다. 실행 환경에 이 글꼴 파일을 사용할 수 있어야 합니다. 스크립트와 동일한 디렉토리에 있거나, 다른 위치에 있다면 글꼴 파일의 올바른 경로를 지정해야 합니다.

운영 체제: 코드는 Python과 Pygame이 설치된다면 여러 운영 체제(Windows, macOS, Linux)에서 호환될 것 입니다.

하드웨어 요구 사항: 게임은 비교적 간단하며 특별한 하드웨어 요구 사항은 없을 것입니다.

Python 환경을 설정하고 Pygame을 설치하고 필요한 게임 자산을 Python 스크립트와 동일한 디렉토리에 배치한 후 스크립트를 실행할 수 있습니다. 게임 창이 열리고 키보드 입력(화살표 키와스페이스바)을 사용하여 게임을 플레이할 수 있습니다.