Data Communication & Computer Networks

7. Network Layer: Logical Addressing

Switching

Switched Network

Circuit Switching

- uses a dedicated path between two stations
- once connected, transfer is transparent

- set up (connection) takes time
- inefficient
 - channel capacity dedicated for duration of connection
 - if no data, capacity wasted

Public Circuit Switched Network

Packet Switching

- circuit switching was designed for voice
- packet switching was designed for data transmitted in small packets
- packets contains user data and control info
 - user data may be part of a larger message
 - control info includes routing (addressing) info
- Advantage: line efficiency
 - single link shared by many packets over time

Packet Switching

Switching Techniques

- station breaks long message into packets
- packets sent one at a time to the network
- packets can be handled in two ways
 - virtual circuit
 - datagram

Virtual Circuit Approach

Datagram Approach (c)

Virtual Circuits vs. Datagram

virtual circuits

- network can provide sequencing and error control
- packets are forwarded more quickly
- less reliable

datagram

- no call setup phase
- more flexible
- more reliable

Links

The physical and data link layers deliver data within a network.

Network Layer

 Network layer is responsible for host-to-host delivery of data across networks

Network Layer

Network layer addressing

- An Internet address or IP address
 uniquely identifies a device connected
 to the Internet at the network layer
- IP = Internet Protocol
- IP is the base protocol at network layer in the Internet model or the TCP/IP protocol suit

IPv4 address

- An IPv4 address is a 32-bit address
- The address space of IPv4 is 2³² or 4,294,967,296.
- Represented in 4 blocks of 1 byte each

Example

Change the following IPv4 addresses from binary notation to dotted-decimal notation.

- a. 10000001 00001011 00001011 11101111
- **b.** 11000001 10000011 00011011 11111111

Solution

We replace each group of 8 bits with its equivalent decimal number and add dots for separation.

- a. 129.11.11.239
- **b.** 193.131.27.255

Example

Change the following IPv4 addresses from dotted-decimal notation to binary notation.

- a. 111.56.45.78
- **b.** 221.34.7.82

Solution

We replace each decimal number with its binary equivalent.

- a. 01101111 00111000 00101101 01001110
- b. 11011101 00100010 00000111 01010010

Classful Addressing

In classful addressing, the address space is divided into five classes:

Finding the class in binary notation

	First byte	Second byte	Third byte	Fourth byte
Class A	0			
Class B	10			
Class C	110			
Class D	1110			
Class E	1111			

Finding the class in dotteddecimal notation

a. Binary notation

b. Dotted-decimal notation

Network ID and Host ID

Network Address

- Network address is an address that defines the network itself; it cannot be assigned to a host.
- A network address is different from a netid. A network address has both netid and hostid, with 0s for the hostid.

Mask

- Although the length of the netid and hostid (in bits) is predetermined in classful addressing, we can also use a mask
- The mask can help us to find the netid and the hostid

Class	Binary	Dotted-Decimal	CIDR
А	1111111 00000000 00000000 00000000	255 .0.0.0	/8
В	1111111 11111111 00000000 00000000	255.255. 0.0	/16
С	1111111 11111111 11111111 00000000	255.255.255.0	/24

Sample Internet

Subnetwork

- Q. What if an organisation wants to
 - arrange its hosts into groups?
 - break its large network into smaller networks?

 A. Divide its network into smaller subnetworks or subnets.

Subnets and Subnet Masks

- host portion of address partitioned into subnet number and host number
- local routers route within subnetted network
- subnet mask indicates which bits are subnet number and which are host number

Subnet Masks

- Routers outside a subnetted organisation use default masks
- Routers inside the organisation use subnet masks

Subnetworks

To the rest of the Internet

Supernetting

- In supernetting several blocks of addresses (networks) are combined to create a supernetwork of large address range
 - e.g. an organisation with 1000 computers can be allocates four class C network addresses to satisfy its needs
 - 254 x 4 >1000

Classless Addressing

- Problem with classful addresses
 - wastage due fix blocks of addresses
- Solution: Classless addressing
 - Variable length address blocks
 - No classes
 - CIDR = Classless Inter-Domain Routing
- Classful addressing is almost obsolete and replaced with classless addressing.

Classless address blocks

- An entity is granted a block (range) of addresses
- The size of the block (the number of addresses) varies based on the nature and size of the entity

Restrictions:

- 1. The addresses in a block must be contiguous, one after another.
- 2. The number of addresses in a block must be a power of 2 (1, 2, 4, 8, ...).
- 3. The first address must be evenly divisible by the number of addresses.

Mask in Classless Addressing

- In IPv4 addressing, a block of addresses can be defined as x.y.z.t/n in which x.y.z.t defines one of the addresses and the /n defines the mask.
- The address and the /n notation completely define the whole block (the first address, the last address, and the number of addresses).
- The first address in the block can be found by setting the rightmost 32-n bits to 0s.

Subnetted Network

Subnet 1

Subnets 2 and 3

36

Example 1

A block of addresses is granted to a small organization. We know that one of the addresses is 205.16.37.39/28. What is the first address in the block?

Solution

The binary representation of the given address is

11001101 00010000 00100101 00100111

If we set 32–28 rightmost bits to 0, we get

11001101 00010000 00100101 0010000

or

205.16.37.32.

Example 2

- An ISP is granted a block of addresses starting with 190.100.0.0/16 The ISP needs to distribute these addresses to three groups of customers as follows:
- a) 1st group has 64 customers; each needs 256 addresses.
- b) 2nd group has 128 customers; each needs 128 addrs.
- c) 3rd group has 128 customers; each needs 64 addresses.
- Design the subblocks and find out how many addresses are still available after these allocations.

Example 2

Network Address Translation

- IP addresses are scarce.
- The long-term solution is for the whole Internet to migrate to IPv6
 - 128-bit addresses
- The quick fix is NAT (Network Address Translation)
 - described in RFC 3022

NAT – basic idea

- Assign each company a single IP address (or at most, a small number of them) for Internet traffic.
- Within the company, every computer gets a unique IP address (private)
- When a packet exits the company and goes to the Internet, an address translation takes place.
 - (private -> global)

Private addresses

Class	RFC 1918 Internal Address Range	CIDR Prefix
Α	10.0.0.0 - 10.255.255.255	10.0.0.0/8
В	172.16.0.0 - 172.31.255.255	172.16.0.0/12
С	192.168.0.0 - 192.168.255.255	192.168.0.0/16

- **172.16.0.0** 172.31.255.255: 172.16.0.0/12
 - Where does the /12 come from?

12 bits in common

```
10101100 . 0001<mark>0000 . 00000000 . 00000000 — 172.16.0.0</mark>
10101100 . 0001<mark>1111 . 11111111 . 11111111 — 172.31.255.255</mark>
```

<u>10101100</u> . <u>0001</u>0000 . <u>00000000</u> . <u>00000000</u> — <u>172.16.0.0/12</u>

NAT

- Private network uses private addresses
- NAT router translates private addresses to global address
- The private network is transparent to the rest of the Internet

Site using private addresses

172.18.3.1 172.18.3.2 172.18.3.20

NAT router

172.18.3.30 200.24.5.8 Internet

Address Translation

Translation table

NAT

- Using one IP address
 - 1 private host can access an external host at a time
- Using a pool of IP addresses
 - N global addresses = N private hosts can access same external host at a time
- Using both IP addresses and port numbers
 - many private hosts can access many external host at a time

PAT – Port Address Translation

- PAT (Port Address Translation) allows you to use a single Public IP address and assign it up to 65,536 inside hosts (4,000 is more realistic).
- PAT translates and records the TCP/UDP source port address to track inside Host addresses.
- Also known as Network Address and Port Translation (NAPT)

PAT Example Inside Outside 10.0.0.3 128.23.2.2 Internet **NAT/PAT table** maintains translation of: 202.6.3.2 10.0.0.2 DA, SA, SP DA SP SA DP DA DP SP SA 128.23.2.2 10.0.0.3 80 1331 Data 128.23.2.2 (179.9.8.80 80 3333 Data TCP/UDP TCP/UDP **IP Header IP Header** 2 Header Header DA DP SP SA DA DP SP SA 128.23.2.2 10.0.0.2 80 1555 Data 128.23.2.2 (179.9.8.80 80 2222 Data IP Header TCP/UDP TCP/UDP **IP Header** 2 1 48 Header Header

PAT – Port Address Translation

- With PAT multiple private IP addresses can be translated by a single public address (many-to-one translation).
- This solves the limitation of NAT which is one-to-one translation.

IPv6 Addresses

- Despite all short-term solutions (e.g. NAT/PAT), address depletion is still a problem for the Internet.
- This and other problems in the IP protocol itself have been the motivation for designing IPv6.

IPv6 Addresses

- 128 bits long
- assigned to interface
- single interface may have multiple unicast addresses
- three types of addresses:
 - unicast single interface address
 - anycast one of a set of interface addresses
 - multicast all of a set of interfaces

IPv6 address structure

- An IPv6 address is 128 bits long
- It is usually presented in hexadecimal colon notation

Abbreviated IPv6 addresses

Type prefixes for IPv6 addresses

Type Prefix	Туре	Fraction
011	Unassigned	1/8
100	Geographic-based unicast addresses	1/8
101	Unassigned	1/8
110	Unassigned	1/8
1110	Unassigned	1/16
1111 0	Unassigned	1/32
1111 10	Unassigned	1/64
1111 110	Unassigned	1/128
1111 1110 0	Unassigned	1/512
1111 1110 10	Link local addresses	1/1024
1111 1110 11	Site local addresses	1/1024
1111 1111	Multicast addresses	1/256

Multicast address in IPv6

Reserved addresses in IPv6

Local addresses in IPv6

