UNIVERSIDADE FEDERAL DO ABC - UFABC

Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas

Dinâmica Orbital

Atividade Computacional 1: Estudo da relação entre anomalias verdadeiras, médias e excêntricas

Gabriel Moraes de Souza - RA: 11201811286

Lucas Moura de Almeida - RA: 11201811415

Professora: Cláudia Celeste Celestino de Paula Santos

São Bernardo do Campo - 14 de outubro de 2021

Sumário

1. Introdução	
2. Fundamentação Teórica	5
2.1. Órbita Elíptica	6
2.2. Órbita Hiperbólica	7
3. Descrição Numérica	8
4. Resultados e discussões	11
4.1. Primeira Parte	11
4.2. Segunda Parte	14
4.2.1. Elipse	15
4.2.2. Hipérbole	16
5. Conclusão	16
6. Referências	17

Resumo

O presente trabalho busca, por meio de rotinas computacionais, utilizando-se a linguagem de programação Octave, aliado a métodos numéricos, estudar a relação entre anomalias verdadeiras, excêntricas e médias, se propondo também a convertê-las. Assim, a priori se deu o estudo de como as anomalias se relacionam, haja visto que a anomalia média, se relaciona com o tempo, e a anomalia excêntrica é obtida através de relações geométricas, por exemplo, entre uma elipse e seu círculo equivalente.

Dessa maneira, se inicia o processo de programação, com uso do método de Newton-Raphson é possível rapidamente, com poucas iterações, encontrar as raízes de uma equação e, consequentemente, encontrar as anomalias, importante salientar que o processo conta com certos dados de entrada (ou *inputs*, em inglês), eles são a excentricidade e a anomalia média, além disso para obter o valor inicial que dará início ao método computacional é fornecido previamente através da análise de uma condição. Pode-se dizer que os resultados obtidos são condizentes e, portanto, o documento atual cumpre seu objetivo com maestria.

Palavras-chave: dinâmica, órbita, anomalias, cônicas.

Objetivos

O presente documento visa, por meio de uma rotina de conversão de anomalias médias em anomalias excêntricas e verdadeiras de órbitas elípticas e hiperbólicas, entender sua relação e sua importância para o estudo de corpos celestes, sendo estes naturais ou artificiais.

Como ferramentas, o propósito é ter baixo custo computacional e ser passível o acesso a comunidade e a quem mais interessar, por isso, a rotina se parte de um *script* realizado em Octave, com implementação numérica para resolução.

1. Introdução

O trabalho pode ser dividido em dois grandes eixos, o primeiro tem como característica, analisar graficamente, a relação entre as anomalias de uma elipse, e sua relação com a excentricidade da órbita.

Já a segunda parte, se dá por meio de um código, ou algoritmo, a qual, em suas modulações, deve transformar *inputs* de anomalias médias em anomalias excêntricas e verdadeiras, com duas possibilidades distintas de órbitas: elípticas e hiperbólicas.

2. Fundamentação Teórica

O processo de embasamento teórico se inicia ao se analisar a órbita de um corpo celeste em função do tempo. E para tanto se partirá da equação 1 relativa a posição de um cônica qualquer.

$$r = \frac{1 + e\cos(\theta)}{p} \tag{1}$$

Os valores de p e ${\bf \theta}$ se referem ao semi latus-rectum e a anomalia verdadeira, respectivamente.

$$h = r^2 \frac{\partial \theta}{\partial t} \tag{2}$$

Dado que é possível reescrever o semi latus-rectum em termos do momento angular específico (h) e do parâmetro gravitacional (μ), ao solucionar o problema de dois corpos, é possível chegar a relação mostrada abaixo ao passo que separamos as variáveis e integramos de ambos os lados:

$$\frac{\mu^2}{h^3} \left(t - t_p \right) = \int_0^\theta \frac{d\theta}{\left(1 + e \cos \theta \right)^2}$$
 (3)

em que $t_{\rm p}$ é a constante de integração.

A integral do membro da direita pode ser resolvido seguindo modelos de solução, encontrados em manuais de matemática, como pode ser mostrado pela figura abaixo:

$$\int \frac{dx}{(a+b\cos x)^2} = \frac{1}{(a^2-b^2)^{3/2}} \left[2a\tan^{-1}\left(\sqrt{\frac{a-b}{a+b}}\tan\frac{x}{2}\right) - \frac{b\sqrt{a^2-b^2\sin x}}{a+b\cos x} \right] \quad (b < a)$$

$$\int \frac{dx}{(a+b\cos x)^2} = \frac{1}{a^2} \left(\frac{1}{2}\tan\frac{x}{2} + \frac{1}{6}\tan^3\frac{x}{2} \right) \quad (b = a)$$

$$\int \frac{dx}{(a+b\cos x)^2} = \frac{1}{(b^2-a^2)^{3/2}} \left[\frac{b\sqrt{b^2-a^2\sin x}}{a+b\cos x} - a\ln\left(\frac{\sqrt{b+a}+\sqrt{b-a}\tan\left(\frac{x}{2}\right)}{\sqrt{b+a}-\sqrt{b-a}\tan\left(\frac{x}{2}\right)} \right) \right] \quad (b > a)$$

Figura 1 - Casos para solução da integral mostrada na equação 3 [1]

Dessa maneira, baseado na tabela 1 e comparando os valores a equação 1 podemos especificar cada tipo de solução ao respectivo tipo de órbita.

Energia	Excentricidade	Cônica
ε < 0	$0 \le e < 1$	Elipse
$\epsilon = 0$	e = 1	Parábola
ε > 0	e > 1	Hipérbole

Tabela 1 - Dados relativos à cônicas

2.1. Órbita Elíptica

Portanto, resolvendo a integral para o caso elíptico chegamos a seguinte relação para a anomalia média (M):

$$M = \frac{\mu^2}{h^3} \left(t - t_p \right) = \frac{1}{\left(1 - e^2 \right)^{3/2}} 2 \tan^{-1} \left(\sqrt{\frac{1 - e}{1 + e}} \tan(\theta / 2) \right) - \frac{e\sqrt{1 - e^2} \sin\theta}{1 + e \cos\theta}$$
 (4)

A partir da análise geométrica [2,3] da Figura 2 chega-se-a nas relações entre as anomalias verdadeira (θ) e excêntrica (E).

Figura 2 - Relações entre circunferência e elipse

$$tan\frac{E}{2} = \sqrt{\frac{1-e}{1+e}} tan\frac{\theta}{2}$$
 (5)

$$M = E - esinE (6)$$

2.2. Órbita Hiperbólica

Agora se tratando do caso hiperbólico, temos a seguinte solução:

$$M = \frac{\mu^2}{h^3} \left(t - t_p \right) = \frac{e \sin \theta}{e^2 - 11 + e \cos \theta} - \frac{1}{\left(e^2 - 1 \right)^{3/2}} ln \left[\frac{\sqrt{e+1} + \sqrt{e-1} \tan(\theta/2)}{\sqrt{e+1} - \sqrt{e-1} \tan(\theta/2)} \right]$$
 (7)

A partir da análise geométrica [2,3] da Figura 3 chega-se-a nas relações entre a anomalias média e as anomalias verdadeira (θ) e excêntrica (F).

Figura 3 - Relações geométrica na Hipérbole

$$tan \frac{\theta}{2} = \sqrt{\frac{e+1}{e-1}} tanh \frac{F}{2}$$
 (8)

$$M = esinhF - F (9)$$

3. Descrição Numérica

Como forma de boa prática e para facilitar o acesso à informação, além de melhorar a usabilidade, segue abaixo o fluxograma de processos a qual representa de maneira completa, o processo computacional a qual usa-se a linguagem de programação Octave pela plataforma "www.octave-online.net" [4].

Para melhor resolução, vide anexo 1.

Fluxograma 1 - Processos e modularização do Script [5]

Fluxograma 2 - Processo lógico para o cálculo das anomalias [5]

4. Resultados e discussões

4.1. Primeira Parte

Neste tópico se faz necessário analisar a relação entre as anomalias verdadeira, excêntrica e média, de maneira que foi realizada a análise para o seguintes valores de excentricidade: 0,01 ; 0,3 ; 0,6 e 0,9.

Anomalia Média vs Anomalia Excêntrica

Gráfico 1 - Relação entre as anomalias média e excêntrica

Anomalia Média vs Anomalia Verdadeira

Gráfico 2 - Relação entre as anomalias média e verdadeira

Anomalia Excêntrica vs Anomalia Verdadeira

Gráfico 3 - Relação entre as anomalias excêntrica e verdadeira

Partindo do fato que a anomalia excêntrica foi obtida a fim de aproximar uma órbita elíptica ou hiperbólica para uma circular, é possível aferir que para baixas excentricidades, bem próxima de uma órbita circular, este fato se faz presente e temos uma relação linear entre as anomalias, contudo ao passo que aumentamos a excentricidade, as anomalias perdem essa linearidade entre si e destoam com maior grau em pontos mais longínquos no eixo vertical.

Figura 4 - Relação geométrica entre a anomalia verdadeira (verde) e excêntrica (amarela)

O interessante é que ao se olhar, principalmente para uma órbita elíptica, a relação entre energia cinética e potencial é muito mais variável ao ponto que a excentricidade aumenta, correlacionando fisicamente o equacionamento geométrico pelas grandezas: velocidade, energia e anomalia.

A anomalia média, é um equacionamento a qual transforma a velocidade variável da órbita elíptica em uma velocidade angular constante, para tanto, esta anomalia possui em sua essência, algo como a distorção do percurso real, ficando para trás perto do pericentro e a frente no apocentro, sendo denominado como o fluxo que se estende ao longo da órbita com o tempo.

4.2. Segunda Parte

Neste segundo momento tomamos nosso tempo, para realizar o processo computacional, ou seja, realizar o procedimento de se obter a anomalia excêntrica e verdadeira, se utilizando do método de Newton-Raphson, tendo como dados de entrada a anomalia média e a excentricidade.

Importante ressaltar que para o método mencionado se faz preciso obter um valor inicial e para tanto foi imposta a seguinte condição:

$$se M < \pi: x_0 = M + \frac{e}{2};$$

$$caso \ contrário: x_0 = M - \frac{e}{2}$$
(10)

4.2.1. Elipse

O problema para o caso elíptico tem os seguintes dados de entrada: $M = 206,431^{\circ}$ & e = 0,37225.

Entrada	206,431	Anomalia Média [graus]
	0,37255	Excentricidade
	199,356	Anomalia Excêntrica [graus]
Saída	-166,845	Anomalia Verdadeira [graus]
	3,26e-10	Erro relativo
	4	Iterações

Tabela 2 - Dados gerais de entrada e saída do problema

Para a anomalia verdadeira, ao padronizar o dado, temos 193,155 graus. Dada a excentricidade, a anomalia média está à frente, tanto da anomalia verdadeira, quanto da excêntrica e isso se dá pela baixa energia cinética próximo do apocentro. Já as anomalias verdadeiras e excêntricas têm uma variação de 6,201 graus entre si, pois em sua relação geométrica, os dois extremos horizontais são pontos aos quais a variação chega a zero.

4.2.2. Hipérbole

O problema para o caso hiperbólico tem os seguintes dados de entrada: $M = 40,69^{\circ} \& e = 2,7696$.

Entrada	40,69	Anomalia Média [graus]
	2,7696	Excentricidade
	22,1267	Anomalia Excêntrica [graus]
Saída	31,1112	Anomalia Verdadeira [graus]
	4,31e-16	Erro relativo
	8	Iterações

Tabela 3 - Dados gerais de entrada e saída do problema

Assim como foi relatado na primeira parte, conforme aumentamos a excentricidade, mais variação teremos ao longo do eixos, entre o apocentro e pericentro, se tratando de uma hipérbole, esse fator é aumentado, assim há grandes variações entre os ângulos obtidos, conforme é exposto pelos dados adquiridos no processo computacional, em que temos variações que se aproximam de 20 graus entre a anomalia média e a excêntrica.

Um fato curioso é o valor de entrada para a anomalia média, que está dentro do primeiro quadrante pois não existem soluções no apocentro, dado que uma hipérbole não é uma órbita fechada e sim uma órbita temporária.

5. Conclusão

Com a análise gráfica na primeira parte do presente trabalho, corroborando com a saída de dados da elipse, na segunda parte, se faz satisfeito o estudo aqui empregado. Todos os resultados obtidos possuem sentido físico adequado e confirmam todas as previsões, além de possuírem baixos erros relativos, podendo ser aproximados para zero. Vale ressaltar que

para a rotina de conversão de anomalias, os dados foram previamente validados usando sites de terceiros [6], e seus resultados são satisfatórios.

6. Referências

- [1] CURTIS, Howard D.. Orbital Mechanics for Engineering Students. Quarta Edição. Daytona Beach, Florida: Elsevier Ltd., 2019.
- [2] PEET. Matthew. Spacecraft Dynamics and Control. Disponível em: http://control.asu.edu/Classes/MAE462/462Lecture05.pdf>. Acesso em 7 de outubro de 2021.
- [3] FOWLER. Michael. Mathematics for Orbits. Disponível em: https://galileoandeinstein.phys.virginia.edu/7010/CM_14_Math_for_Orbits.html >. Acesso em 7 de outubro de 2021.
- [4] Octave Online. Disponível em: https://octave-online.net/#>. Acesso em: 03 de outubro de 2021.
- [5] Diagrams. Disponível em: < https://app.diagrams.net>. Acesso em: 12 de outubro de 2021.
- [6] GIESEN, Jurgen. Solving Kepler's Equation of Ellipitical Motion. Disponivel em: http://www.jgiesen.de/kepler/kepler.html>. Acesso em 12 de outubro de 2021.