Aplicaciones medibles

Sésar

1. Definición

Definition 1. Sean (X, \mathcal{A}) e (Y, \mathcal{B}) espacios medibles. Decimos que $f: X \to Y$ es una aplicación medible si

$$\forall B \in \mathcal{B}, \ f^{-1}(B) \in \mathcal{A}.$$

Proposition 1. Sean (X, \mathcal{A}) , (Y, \mathcal{B}) espacios medibles y $\mathcal{B} = \sigma(\mathcal{G})$.

$$f: X \to Y$$
 medible $\Leftrightarrow \forall G \in \mathcal{G}, f^{-1}(G) \in \mathcal{A}.$

Demostración. En primer lugar, si f es medible, entonces como $G \in \mathcal{G} \subseteq \mathcal{B}$, tenemos que $f^{-1}(G) \in \mathcal{A}$.

Por otro lado, definamos $\mathcal{M} = \{B \subseteq Y \mid f^{-1}(B) \in \mathcal{A}\}$. Si demostramos que \mathcal{M} es una σ -álgebra, tenemos que como $\mathcal{G} \subseteq \mathcal{M}$, entonces $\mathcal{B} \subseteq \mathcal{M}$, demostrando así que f es medible. Luego veamos que \mathcal{M} es una σ -álgebra. En primer lugar, notemso que $f^{-1}(\emptyset) = \emptyset \in \mathcal{A}$, luego $\emptyset \in \mathcal{M}$. Por otro lado, si $\{B_i\} \subseteq \mathcal{M}$ es una familia numerable, entonces $f^{-1}(\bigcup B_i) = \bigcup f^{-1}(B_i) \in \mathcal{A}$, luego la intersección numerable está contenida en \mathcal{M} .

Definition 2. Sea (X, A) y $f: X \to Y$ una aplicación. La σ -álgebra final de f es

$$\mathcal{M}_f := \{ B \subseteq Y \mid f^{-1}(B) \in \mathcal{A} \}.$$

Corollary 1. \mathcal{M}_f es la σ -álgebra más grande de Y que hace a f medible.

Demostración. Ya hemos visto que \mathcal{M}_f es una σ -álgebra y por definición, $f: X \to Y$ es una aplicación medible. Supongamos que \mathcal{B} es una σ -álgebra de Y tal que $f: X \to Y$ es medible en \mathcal{B} . Entonces si $B \in \mathcal{B}$, $f^{-1}(B) \in \mathcal{A}$ porque f es medible en \mathcal{B} , luego por definición $B \in \mathcal{M}_f$. \square

Remark 1. Si $f: X \to Y$ es una aplicación continua entre dos espacios topológicos. Entonces tenemos que $f: (X, \mathcal{B}(X)) \to (Y, \mathcal{B}(Y))$ es una aplicación medible con los espacios de Borel.

Proposition 2. Sea $f: X \to Y$ medible. Si μ es una medida en X, entonces $\mu \circ f^{-1}$ es una medida en Y.

Demostración. En primer lugar, la aplicación está bien definida por ser f medible, por lo que $\mathcal{B} \xrightarrow{f} \mathcal{A} \xrightarrow{\mu} [0, \infty]$. Por otro lado, $\mu(f^{-1}(\varnothing)) = \mu(\varnothing) = 0$. Finalmente, si $\{B_i\} \subseteq \mathcal{B}$ numerable y disjunto, entonces $\mu(f^{-1}(\bigsqcup B_i)) = \mu(\bigsqcup f^{-1}(B_i)) = \sum \mu(f^{-1}(B_i))$.