

Claims

1. A compound of formula (I)

5

a stereochemically isomeric form thereof, an *N*-oxide form thereof, or a pharmaceutically acceptable acid or base addition salt thereof, wherein -R¹-R²- is a bivalent radical of formula

- O-CH₂-O- (a-1),
- 10 -O-CH₂-CH₂- (a-2),
- O-CH₂-CH₂-O- (a-3),
- O-CH₂-CH₂-CH₂- (a-4),
- O-CH₂-CH₂-CH₂-O- (a-5),
- O-CH₂-CH₂-CH₂-CH₂- (a-6),
- 15 -O-CH₂-CH₂-CH₂-CH₂-O- (a-7),
- O-CH₂-CH₂-CH₂-CH₂-CH₂- (a-8),

wherein in said bivalent radicals optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by C₁-alkyl or hydroxy,

R³ is hydrogen, halo, C₁-alkyl or C₁-alkyloxy;

20 R⁴ is hydrogen, halo, C₁-alkyl; C₁-alkyl substituted with cyano, or C₁-alkyloxy; C₁-alkyloxy; cyano; amino or mono or di(C₁-alkyl)amino;

R⁵ is hydrogen or C₁-alkyl, and the -OR⁵ radical is situated at the 3- or 4-position of the piperidine moiety;

L is a radical of formula

- 25 -Alk-R⁶ (b-1),
- Alk-X-R⁷ (b-2),
- Alk-Y-C(=O)-R⁹ (b-3),
- Alk-C(=O)-NH-C(=O)-R¹¹ (b-4),
- Alk-C(=O)-NH-SO₂-R¹¹ (b-5),
- 30 -Alk-SO₂-NH-C(=O)-R¹¹ (b-6),
- Alk-SO₂-NH-SO₂-R¹¹ (b-7),

wherein each Alk is C₁-12 alkanediyl; and

R⁶ is aminosulfonyl optionally substituted with C₁-4 alkyl, C₃-6 cycloalkyl or phenyl;

R⁷ is C₁-6 alkylsulfonyl;

X is NR⁸; said R⁸ being C₁₋₆alkyl;
R⁹ is C₁₋₆alkylsulfonylamino;
Y is a O, S, or NR¹⁰ wherein R¹⁰ is hydrogen or C₁₋₆alkyl; and
R¹¹ is C₁₋₆alkyl or phenyl.

5

2. A compound as claimed in claim 1 wherein the -OR⁵ radical is situated at the
3-position of the piperidine moiety having the trans configuration.

10

3. A compound as claimed in claim 2 wherein the absolute configuration of said
piperidine moiety is (3S, 4S).

15

4. A compound as claimed in any of claims 1 to 3 wherein L is a radical of formula
(b-1) wherein Alk is C₁₋₄alkanediyl, and R⁶ aminosulfonyl or aminosulfonyl
substituted with C₁₋₄alkyl or phenyl.

20

5. A compound as claimed in any of claims 1 to 3 wherein L is a radical (b-5) wherein
Alk is C₁₋₄alkanediyl, and R¹¹ is C₁₋₄alkyl.

25

6. A compound as claimed in any of claims 1 to 3 wherein L is a radical (b-7) wherein
Alk is C₁₋₄alkanediyl, and R¹¹ is C₁₋₄alkyl.

7. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and
a therapeutically active amount of a compound according to any of claims 1 to 6.

30

8. A process for preparing a pharmaceutical composition according to claim 7 wherein
a therapeutically active amount of a compound according to any of claims 1 to 6 is
intimately mixed with a pharmaceutically acceptable carrier.

9. A compound according to any of claims 1 to 6 for use as a medicine.

10. A process for preparing a compound of formula (I) wherein
a) an intermediate of formula (II) is reacted with an carboxylic acid derivative of
formula (III) or a reactive functional derivative thereof;

b) an intermediate of formula (IV) is *N*-alkylated with an intermediate of formula (V), in a reaction-inert solvent and, optionally in the presence of a suitable base;

5

wherein in the above reaction schemes the radicals -R¹-R²-, R³, R⁴, R⁵, and L are as defined in claim 1 and W is an appropriate leaving group;

10 c) or, compounds of formula (I) are converted into each other following art-known transformation reactions; or if desired; a compound of formula (I) is converted into a pharmaceutically acceptable acid addition salt, or conversely, an acid addition salt of a compound of formula (I) is converted into a free base form with alkali; and, if desired, preparing stereochemically isomeric forms thereof.

15