Title	Author1	Author email	Author University	Author country
PILeT: An interactive learning tool to teach	Alshaigy, B.	12012361@brookes.ac.	Oxford Brookes Univer	United Kingdom
	Alshaigy, B.			
	Ben-Ari, M.	moti.ben-ari@weizmann	Weizmann Institute of §	Israel
A decade of research and development on	Ben-Ari, M.			
Exploring students' computational practice,	Chao, P.	poyaochao@saturn.yzu	Yuan Ze University	Taiwan
Improving teaching and learning of compute	Esteves, M.		Polytechnic Institute of	<u> </u>
	Feng, A.	afeng@vt.edu	Virginia Tech	United State
Parallel programming with pictures is a Snar				
The effects of goal specificity and scaffoldin		mpchen@ntnu.edu.tw	Taiwan Normal Univers	
New Teaching Model for Java Programming		raubirius@gmail.com	Trnava University	Slovakia
	Huch, F.	fhu@informatik.uni-kiel.c	<u>-</u>	Germany
Hi-Lo Tech Games: Crafting, Coding and Co	Kafai, Y.	kafai@upenn.edu	University of Pennsylv	Philadelphia
A drawing and multi-representational compu	Kordaki, M.	kordaki@cti.gr	Patras University	Greece
Comparing the Effectiveness of Online Lear	Lee, M.	mjslee@uw.edu	University of Washingt	United State
Introducing Computer Programming to Child	Merkouris, A.	c14merk@ionio.gr	Ionian University	Greece
	Navarrete, C.	ccnavarrete@utexas.ed	University of Texas	United State
Creative thinking in digital game design and				
Transition in Student Motivation during a Sc		stavrosnikou@sch.g	University of Macedoni	
Smartphones, Studio-Based Learning, and		susan.reardon@iadt.ie	Institute of Art, Design	
PiktoMir: teaching programming concepts to		snleo@mail.ru	Moscow State Universi	
	Sáez-López, J.	<u>imsaezlopez@edu.uned</u>	Spanish National Unive	Spain
Visual programming languages integrated a	• •			
	Sáez-López, J.			
The users who touched the ceiling of scratc		elifcik@tzi.de	University of Bremen	
Teaching sorting and searching algorithms t		ddureva@swu.bg	South-Western Univer	_
During Automatic Program Animation, Expla		pwang@student.uef.fi	University of Eastern F	
Troubleshooting assessment: an authentic	·	dcwebb@colorado.edu	University of Colorado	
Learning programming using objects-first ap		swling@mmu.edu.my	•	Malaysia
The analysis and application of an educatio		ilkyu.yoon@inc.korea.ac	•	Korea
An investigation of the effects of programmi	rukseiturk, E.	eyukselturk@gmail.com	MITIKKATE UNIVERSITY	Turkey

The Combined Use of Lego Mindstorms NX Papadakis, S. Leveraging Visual Programming Language Rahman, F.	<u>stpapadakis@gmail.corr</u> University of Crete Greece <u>farahman@fiu.edu</u> Florida International Uni United State
Rahman, F. Code Puzzle: ActionScript 2.0 Learning Apr Rozali, N.	nfaizah38@live.utm.my Universiti Teknologi Mak Malaysia
Rozali, N. Teaching Programming in Secondary Educa Merkouris, A.	c14merk@ionio.gr Ionian University Greece
Using App Inventor for creating apps to sup Ortega, A.	antonio.ortega@um.es University of Murcia Spain

Organization	Туре	Publication		Pages	Number o
ACM International Conference Proceeding Series	Conference of Proceedings	WiPSCE'15	2015	76-79	4
	Journal Article	Journal of Visual Languages &	2011	375-384	10
	Journal Article	Computers and Education	2016	202-215	14
	Journal Article	British Journal of Educational	2011	624-637	14
	Journal Article	Journal of Parallel and Distribu	2017	150-162	13
	Journal Article	British Journal of Educational	2014	285-302	18
5th World Conference on Educational Sciences - W	Journal Article	Procedia - Social and Behavio	2014	5188-5193	6
International Conference on Functional Programmir	Conference Proceedings	Proceedings of the 2007 SIGF	2007	93-99	7
ACM	Conference Proceedings	Proceedings of the 14th Intern	2015	130-139	10
ELSEVIER	Journal Article	Computers & Education	2010	69-87	19
ACM	Conference Proceedings	Proceedings of the eleventh a	2015	237-246	10
Proceedings of the Workshop in Primary and Secon	Conference of Proceedings	WiPSCE'15	2015	69-72	4
	Journal Article	Computers & Education	2013	320-331	12
2014 IEEE Global Engineering Education Conferer	Conference of Proceedings	2014 IEEE Global Engineering	2014	1042-1045	4
	Journal Article	ACM Transactions on Comput	2014	23:1-23:15	15
World Conference on Educational Technology Reserved	Journal Article	Procedia - Social and Behavio	2011	601-605	5
	Journal Article	Computers and Education	2016	129-141	13
World Conference on Educational Technology Rese	Journal Article	Procedia - Social and Behavio	2011	764-769	6
5th World Conference on Educational Sciences - W	Journal Article	Procedia - Social and Behavio	2014	2962-2966	5
12th Koli Calling International Conference on Comp	Conference of Proceedings	Proceedings of the 12th Koli C	2012	100-109	10
The World Conference on Learning, Teaching and	Journal Article	Procedia - Social and Behavio	2010	903-907	5
	Journal Article	Jurnal Teknologi	2015	47-53	8
	Journal Article	Cluster Computing		529-546	18
	Journal Article	British Journal of Educational	2016	789-801	13

	Journal Article	LAdvances in Intelligent Syste	2017 🗆 193-204	12
LISIGITE 2018 - Proceedings of the 19th Annual SI	Conference of Proceedings		2018 🗆 172-177	6
Ц6th ICT International Student Project Conference:	Conference of Proceedings		2017 🗆 1-4	4
	Journal Article	ACM Transactions on Computi	2017 □9:19:22	22
	Journal Article	Computer Applications in Engir	2018	18

DOI Abstract Country http://dx.doi.org/10.1145/2 In Alshaigy the objective of United Kingdom

http://dx.doi.org/10.1016/j.i Ben-Ari in this paper preser Israel-Finland http://dx.doi.org/10.1016/j.c Chao in this study aims to a Taiwan http://dx.doi.org/10.1111/j.1 In Esteves conducted an a Portugal

http://dx.doi.org/10.1016/j.j In Feng, presents an appro USA http://dx.doi.org/10.1111/bj In Feng study was to invest Taiwan http://dx.doi.org/10.1016/j.s Horváth research a problem Slovak Republic http://dx.doi.org/10.1145/12 In Huch decided to install a Germany http://dx.doi.org/10.1145/22 In this paper, Kafai we exar USA http://dx.doi.org/10.1016/j.c This In this paper, Kordaki r Greece http://dx.doi.org/10.1145/22 Using a pretest-posttest stu USA http://dx.doi.org/10.1145/28 In this work, Merkouris explc Greece; Norway

http://dx.doi.org/10.1016/j.c Navarrete propose a case s USA http://dx.doi.org/10.1109/El Nikou in this study innovative Greece http://dx.doi.org/10.1145/2@Reardon used exploratory c Ireland http://dx.doi.org/10.1016/j.s In Rogozhkina the goal of r Russia

http://dx.doi.org/10.1016/j.c The aim of this study is to a Spain

http://dx.doi.org/10.1016/j.s In this paper Tanrikulu look: Germany http://dx.doi.org/10.1016/j.s In Tuparov presents the ex| Bulgaria http://dx.doi.org/10.1145/24 In this paper, Wang inspect Finland http://dx.doi.org/10.1016/j.s Webb designed an authent USA http://dx.doi.org/10.11113/j In this paper Woei shares a Malaysia http://dx.doi.org/10.1007/s1 Yoon in this study the objec Korea http://dx.doi.org/10.1111/bj In Yukselturk, The purpose Turkey

Institution Level
Oxford Brookes University first year

Weizmann Institute of Scier Research
Yuan Ze University First level

University of Trás-os-Monte: second semester

Virginia Tech. Seventh- grade girls middle elementary school in northe sixth grade - elementary school Trnava University

First year of undergraduate
University Kiel the last three years at high

high school school freshman
Patras University 12th-grade students

University of Washington

secondary education school first grade class of a secon

Middle school in a souther Middle school / grade levels
Senior-high school Introductory programming c

Institute of Art, Design and First level
Moscow kindergarten preschoolers

UNED/ 5 different schools 5th to 6th grade primary sch

University of Bremen

South-West University "Neo Introductory course of prog

Finnish university Postgraduate

North Middle School, Cent Middle school / ages 12-14

private university postgraduate

Korea University

Kırıkkale University, Kırıkkal Elective course

∐10.1007/978-3-319-5555	In this paper Papadakis pre Greece	General Lyceum	Secondary School	
□10.1145/3241815.32425 Our goal, in this paper, is to report our experiences on designing and delivering a curriculum that teaches progra				
∐10.1109/ICT-ISPC.2017.8	3 The purpose of this researc Malaysia	Universiti Teknologi Mala	ysi postgraduate students	
∐10.1145/3025013	In this work, we explore the benefits of learning to cod	e for tangible computers, s	such as robots and wearable co	
□10.1002/cae.21895	We present a case study th Spain, Murcia	center IES Ingeniero de	la Cierva	

Method	Participants	Quantity	Time	Educational program
Experiment (preliminary stu	u first year undergraduate students		1 semester, 8 weeks	PILet
Experiment	high-school students		the year	Jeliot
·	· ·	. 150	8 weeks	Visual problem-solving envir
Exploration	College students majoring in inform			
Experiment	3 group: 14 students beginner (A);	34	Tpre+4 cycles (15 months)	Linden Scripting Language
Activity	Seventh- grade girls from 5 to 6 loc	100	Four parallel 50-min activity	Snap
Cuasi-Experiment	Students between 11 and 12 years	232	40 min per week for 8 week	Scratch
Interviews	first year of undergraduate study			Logo
Experiment	Female students / age of 15 to 18	60 / 20 each time	One week each year (3)	Erlang
Workshop	4 girls, 13 boys, ages 13-15	17		Scratch
Pilot study	nine 12th grade (18-year-old)	9	3 months	C; LECGO
Study design	learners aged 18	60		Python; Gidget
Experiment	Students between twelve and to the	i 36	Part of one course	Scratch
Case study	Students / 6, 7, 8 grade level	12	In the second half of the ve	Action Script; Flash software
Questionnaire	Average age: 16.4 years old	38	,	Scratch; App Inventor
Case study	First-year undergraduate students	53	Three full academic years	Scratch; Java
Experiment	preschoolers		8 weeks	PiktoMir
Case study	primary school students	107	two academic years	Scratch
Odde study	plinary school students	107	two academic years	Ociatori
Workshop	five teams of computer science and	20		Scratch
Pilot study; Survey	Freshman students	80 / <mark>32 survey</mark>		C; Learning Objects
Experiment	computing postgraduate and Maste	18		Jeliot 3; Java
Evaluation study	Students / ages 12-14	24	Five weekly two-hour session	AgentCubes
Pilot study	postgraduates students		2-5 times a week	Alice; Unity
Case study	20-expert panels; freshmen majorin	20/26	3 days	RUR-PLE
Cuasi-Experiment	preservice IT teachers	151	one semester	Scratch

Case study Experiment	first-year students / 15 and 16 year 24 students (11 boy 2014-2015 from grade 7 and 8 34 middle school sti 7 days (7 Saturdays)		App Inventor/Lego Mindsto App Inventor	
Survey	postgraduate students	10 postgraduate	Adobe Flash CS6	
Pilot study	first level of a middle school class	36 students (betwee 2 month	Scratch	
Case study		23 students and 2 t 10 hr, distributed in 2 clas	sse App Inventor	

Results Objective

The study results will establish whether a relationship does exist between the teaching process and the prefe Improve to learning of programming

Increases students' condence
Improve attention in the classroom

This article describe the history of the development of the Jeliot programan imation system, as well as the exi Improve to learning of programming

The results of this study show that visual problem solving through programming constitutes an effective appreciation appreciation of programming Results support the notion that it is possible to use this environment for better effectiveness in the learning of Improve to learning of programming

Computational thinking across the curriculum

this paper presents an approach that reduces the learning curve to parallel programming by introducing such Increase the learning of the parallel programmin This study obtained three significant findings related to programming performance: (1) students with nonspec Improve to learning of programming The new model of introductory programming course teaching was designed; after first run, there were severa Implementation of a programme of study for programming course teaching was designed; after first run, there were severa Implementation of a programme of study for programming course teaching was designed; after first run, there were severa Implementation of a programme of study for programming course teaching was designed; after first run, there were severa Implementation of a programming course teaching was designed; after first run, there were several programming course teaching was designed; after first run, there were several programming course teaching was designed; after first run, there were several programming course teaching was designed; after first run, there were several programming course teaching was designed; after first run, there were several programming course teaching was designed; after first run, there were several programming course teaching was designed; after first run, there were several programming course teaching was designed; after first run, there were several programming course teaching was designed; after first run, there were several programming course teaching was designed.

The framework was successfully utilized in a programming course for pupils in their last three school years Improve to learning of programming revealed that it is a feasible, yet complex activity that engaged youth in crafting and coding. ... proposed to € Improve to learning of programming

The data emerging from this field evaluation study indicates that students gain better results within LECGO tl Improve to learning of programming

These findings suggest that discretionary online educational technologies can successfully teach novices into Assessment the learning effectiveness

The results of the experiment have confirmed that learning computer programing with ubiquitous target platfc Learn to code ubiquitous computers

Improve computacional thinking

Findings suggest that the creative thinking process in student-centered game creation learning approach ma Improve to learning of programming

The current study contributes to understanding the transition in motivation to learn programming using Scratc Increase student motivation for learning to program

The students were motivated and engaged by the learning experience and were able to develop sophisticat Improve to learning of programming

The obtained results allow us to assume that PiktoMir provides a working example of a natural textless envirc Evaluate or compare an educational program

Computational thinking across the curriculum

Due to the afore mentioned benefits and positive results obtained in this research, it is recommended to impl Evaluate or compare an educational program

Improve computacional thinking

The experiences of this particular user group suggest adding some standard integrated development enviror Evaluate or compare an educational program. The results from the pilot study, discussed in the paper, demonstrate an increase of student interest and a le Learn use of simulation-based Learning Objects. The results indicate that animation- first approach is significantly more effective. On the grounds of these find Assessment the learning effectiveness. These results suggest that troubleshooting scenarios can be used to assess student fluency in computer prc Assessment the learning effectiveness. However, upon the completion of study, majority of the participants (83.3%) acknowledged that they have be Increase student motivation for learning to program In this study, we suggested that an EPL for novice programmers and primary students is not appropriate for Analyze the EPL selection criteria. The results also showed that the preservice IT teachers' negative attitudes towards programming decreased Assessment the learning effectiveness.

The results of the intervention produced positive outcomes, students through their involvement seem to have Improve to learning of programming The results shows female and male students' attitudes toward computing increased statistically significantly, t Improve to learning of programming

Increase student motivation for learning to progr

This study found that through the implementation of PBL in the mobile game, students agreed that mobile game improve to learning of programming

Increase student motivation for learning to progr

Our findings suggest that computer programming should be introduced through multiple target platforms (e.g Improve to learning of programming The experience has been performed successfully and the students have expressed their satisfaction with the Develop customized m-learning apps

University Educatic Site web

Type language Educational tool

University of Easte https://cs.joensuu.fi/je Program animation system

Block Language

Linden Lab http://go.secondlife.cc Programming language

University of Califo http://snap.berkeley.e Block Language

Massachusetts Ins https://scratch.mit.edu Block Language

UCBLogo http://el.media.mit.edu Programming language

University of Zurich https://www.swissedu Block Language

Massachusetts Ins https://scratch.mit.edu Block Language

Laboratorios Bell Programming language

Python Software F https://www.python.or Programming language

Massachusetts Ins https://scratch.mit.edu Block Language

Adobe: ActionScrij http://www.adobe.con Programming language

Massachusetts Ins https://scratch.mit.edu Block Language

Massachusetts Ins https://scratch.mit.edu Block Language

Foreign Service In http://www.piktomir.ru/ Block Language

Massachusetts Ins https://scratch.mit.edu Block Language

Massachusetts Ins https://scratch.mit.edu Block Language

Laboratorios Bell Programming language

University of Easte https://cs.joensuu.fi/je Program animation system

University of Color https://www.agentcub Block Language

Carnegie Mellon U https://www.alice.org/; Block Language

GitHub https://github.com/arc Educational tool to help learn

Massachusetts Ins https://scratch.mit.edu Block Language

am

am