计算机组成原理 - 数据通路设计

计 14 涂珂 2011011273, 计 14 傅左右 2011011264

November 15, 2013

数据通路图如下:

Figure 1: 初步、简单的设计图

方案选择

我们选择的实验为流水线实验。(在此图中没有加入对冲突的处理)根据 4 个流水线寄存器(图中最大的矩形)将流水线分为 5 个部分:

- 1. IF: 取指令
- 2. ID: 指令译码, 读寄存器堆
- 3. Ex: 指令执行, 地址计算
- 4. MEM:数据内存访问
- 5. WB: 写回

指令和数据随执行过程从左到右依次从五个过程走过。每个时钟周期 5 个部分并行处理不同指令的对应部分。

每条指令对数据通路的操作

1. IF 取指令,PC 从内存中取指令,并将数据放入 IF/ID 寄存器。将 PC 中地址 +4 取下一条指令,但也可能会有跳转指令,所以有一个数据选择器选择。

- 2. ID 指令译码, 其将数据存入 2 个读寄存器 (可能只用一个, 由指令决定), 有的指令有立即数的输入, 这里提供了一个符号扩展单元。将扩展后的数 以及 2 个寄存器中数据, 还有增加后的 PC 值写入 ID/EX 寄存器。
- 3. EX 将立即数左移两位进行加法运算,根据指令类型进行不同的 ALU 运算,结果放入 EX/MEM 寄存器。
- 4. MEM 根据得到的结果读取数据内存。写入 MEM/WB 寄存器。
- 5. WB 将得到的写入寄存器堆中。

指令设计

指令设计:

- 用前 5 位表示 op。 共 30 条。
- 加*为扩展指令。
- XXX, YYY, ZZZ 为寄存器标号。
- III 为立即数。

把类型相近的 op 连续起来,这样写代码就可以用大于小于判断了。

R 型指令

R	指令结构
MFIH	00001XXX00000000
MFPC	00010XXX00000000
MTIH	00011XXX00000000
MTSP	00100XXX00000000
AND	00101XXXYYY00000
OR	00110XXXYYY00000
*NOT	00111XXXYYY00000
*SLT	01000XXXYYY00000
CMP	01001XXXYYY00000
SLL	01010XXXYYYIII00
SRA	01011XXXYYYIII00
ADDU	01100XXXYYYZZZ00
SUBU	01101XXXYYYZZZ00

I 型指令

I	指令结构
ADDSP	01110IIIIIIII000
LW_SP	01111XXX00000000
ADDIU	10000XXXIIIIIIII
*SLTI	10001XXXIIIIIIII
*ADDSP3	10010XXXIIIIIIII
LI	10011XXXIIIIIIII
ADDIU3	10100XXXYYY0IIII
LW	10101XXXYYYIIIII
SW	10110XXXYYYIIIII
SW_SP	10111XXXYYYIIIII

В 型指令

В	指令结构
В	11000IIIIIIIIII
BTEQZ	11001111111111000
BEQZ	11010XXXIIIIIIII
BNEZ	11011XXXIIIIIIII

J 型指令

J	指令结构
*JRRA	11100000000000000
JR	11101XXX00000000

NOP 指令

NOP	000000000000000000