STANISLAS Thème

Résolutions numériques de f(x) = 0

PSI

2020-2021

Soit I un segment. Dans tout ce problème, φ désigne une fonction définie sur I et à valeurs dans I. Pour tout réel x_0 , on note (x_p) la suite définie pour tout entier naturel p par $x_{p+1} = \varphi(x_p)$. Si (x_p) converge vers un réel ℓ , la convergence est

* au moins linéaire s'il existe $k \in]0,1[$ tel que

$$|x_p - \ell| = O(k^p).$$

* au moins quadratique s'il existe $k \in]0,1[$ tel que

$$|x_p - \ell| = O\left(k^{2^p}\right).$$

Partie I : L'égalité de TAYLOR-LAGRANGE

On suppose que φ est de classe \mathscr{C}^{n-1} et admet une dérivée d'ordre n sur I. Soit $(\alpha, \beta) \in I^2$ tel que $\alpha < \beta$. Pour tout réel $t \in I$, on note

$$P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t - \alpha)^k.$$

Soit M tel que $f(\beta) = P(\beta) + M(\beta - \alpha)^n$ et $g: t \mapsto f(t) - P(t) - M(t - \alpha)^n$ $\alpha)^n$.

1. Montrer que pour tout entier $k \in [0, n-1]$,

$$g^{(k)}(\alpha) = 0.$$

- **2.** Montrer qu'il existe un réel $\gamma \in]\alpha, \beta[$ tel que $g^{(n)}(\gamma) = 0$.
- 3. En déduire que

$$f(\beta) = P(\beta) + \frac{f^{(n)}(\gamma)}{n!} (\beta - \alpha)^n.$$

Partie II : Un théorème de point fixe

On suppose dans cette partie que φ est contractante, i.e. il existe $k \in]0,1[$ telle que φ soit k-lipschitzienne.

- **4.** Montrer que φ admet un unique point fixe, noté ℓ .
- **5.** Montrer que pour tout entier naturel p,

$$|x_p - \ell| \leqslant k^p |x_0 - \ell|.$$

- **6.** En déduire que (x_p) converge vers ℓ .
- 7. Montrer que pour tout $(p,q) \in \mathbb{N}^2$ tel que p < q,

$$|x_q - x_p| \le \frac{k^p}{1-k} |x_1 - x_0| \text{ et } |\ell - x_p| \le \frac{k^p}{1-k} |x_1 - x_0|.$$

Partie III: Points fixes attractifs & répulsifs

On suppose dans cette partie que φ est de classe \mathscr{C}^1 sur I et possède un point fixe ℓ .

- **8. Point fixe attractif.** On suppose dans cette question que $|\varphi'(\ell)| < 1$.
- a) Montrer qu'il existe un réel $k \in]0,1[$ et un intervalle J = [a-h,a+h]tel que φ soit k-lipschitzienne sur J.
 - **b)** En déduire que $\varphi(J) \subset J$.
 - c) Montrer que, pour tout $x_0 \in J$, la suite (x_n) converge vers ℓ .
- **9. Point fixe super attractif.** On suppose dans cette question que $\varphi'(\ell) = 0$ et que φ est de classe \mathscr{C}^2 et on note $M_2 = \sup |\varphi''|$.
- a) Montrer que, pour tout $x \in I$ tel que $x > \ell$, il existe $c_x \in]\ell, x[$ tel que

$$\varphi(x) = \ell + \frac{\varphi''(c_x)}{2}(x - \ell)^2.$$

b) En déduire que, pour tout entier naturel p,

$$|x_p - \ell| \leqslant \frac{2}{M} \left[\frac{M_2 |x_0 - \ell|}{2} \right]^{2^p}.$$

Thème I PSI

c) En déduire que, si x_0 est suffisamment proche de ℓ , alors (x_p) converge vers ℓ .

- **10. Point fixe répulsif.** On suppose dans cette question que $|\varphi'(\ell)| > 1$.
 - a) Montrer qu'il existe un intervalle J = [a h, a + h] tel que

$$\forall x \in [a-h, a+h] \setminus \{a\}, |\varphi(x) - \ell| > |x - \ell|.$$

- **b)** En déduire que, pour tout $x_0 \in J$, la suite (x_p) ne converge pas vers ℓ .
- c) Montrer que la restriction de φ à J est bijective. En notant φ^{-1} sa bijection réciproque, montrer que ℓ est un point fixe attractif pour φ^{-1} .
- **11. a)** Étudier la suite définie par $x_0 \in \left[0, \frac{\pi}{2}\right]$ et $\varphi = \sin$.
 - **b)** Étudier la suite définie par $x_0 > 0$ et $\varphi = \sinh$.
 - c) Que peut-on conclure lorsque $\varphi'(\ell) = 1$?
- **12.** Résoudre numériquement l'équation $x^3 + x 1 = 0$, en utilisant (lorsque c'est possible), la méthode du point fixe avec

a)
$$\varphi_1(x) = -x^3 + 1$$
.

d)
$$\varphi_4(x) = \frac{1}{x^2+1}$$
.

b)
$$\varphi_2(x) = \sqrt[3]{-x+1}$$
.

e)
$$\varphi_5(x) = \frac{2x^3+1}{3x^2+1}$$
.

c)
$$\varphi_3(x) = x^3 + 2x - 1$$
.

Partie IV : Méthode de **NEWTON**

Soit f une fonction de classe \mathscr{C}^2 sur I telle que $f(\ell) = 0$ et $f'(\ell) \neq 0$. Sur un voisinage de ℓ , on définit $\varphi : x \mapsto x - \frac{f(x)}{f'(x)}$.

- 13. Interpréter géométriquement la construction de la suite (x_p) .
- **14.** Montrer que, pour x_0 suffisamment proche de ℓ , la suite (x_p) converge vers ℓ .
- 15. Déterminer une estimation de la rapidité de convergence.

Partie V : Méthode de la sécante

Soit f une fonction de classe \mathscr{C}^2 sur I telle que $f(\ell) = 0$ et $f'(\ell) \neq 0$. Soient x_0 et x_1 tels que $x_0 < \ell < x_1$. Pour tout entier naturel p non nul, on pose

$$\tau(x_p, x_{p-1}) = \frac{f(x_p) - f(x_{p-1})}{x_p - x_{p-1}} \text{ et } x_{p+1} = x_p - \frac{f(x_p)}{\tau(x_p, x_{p-1})}.$$

On notera $\rho = \frac{1+\sqrt{5}}{2}$.

- 16. Interpréter géométriquement la construction de cette suite.
- 17. Soit (r_n) une suite de réels positifs tels que $r_{n+1} \leqslant r_n r_{n-1}$. On suppose que $0 < r_0 < 1$ et $0 < r_1 < 1$.
 - a) Montrer par récurrence que (r_n) est bornée par 1.

On pose $s_0 = r_0$, $s_1 = r_1$ et $s_{n+1} = s_n s_{n-1}$.

- **b)** Montrer que pour tout entier naturel $n, r_n \leq s_n$.
- **c)** Montrer qu'il existe deux réels α , β tels que pour tout entier naturel n,

$$\ln(s_n) = \alpha \rho^n + \beta(-\rho)^{-n}.$$

d) En déduire que $\alpha > 0$, puis que pour tout entier naturel n,

$$\ln(s_n) \geqslant \alpha \rho^n - |\beta|.$$

e) Montrer qu'il existe deux constantes strictement positives r et C telles que r < 1 et pour tout entier naturel n,

$$r_n \leqslant Cr^{\rho^n}$$
.

18. Montrer que pour tout entier naturel p,

$$x_{p+1} - \ell = (x_p - \ell) \frac{\tau(x_p, x_{p-1}) - f(x_p, \ell)}{\tau(x_p, x_{p-1})}.$$

19. Soit $M \in \mathbb{R}_+^*$. Montrer qu'il existe un intervalle $J = [\ell - h, \ell + h]$ tel que

$$\forall x \in J, |f'(x)| \geqslant M.$$

20. En déduire que dès que x_p, x_{p-1} sont dans J,

$$|\tau(x_p, x_{p-1})| \geqslant M.$$

On note $M_2 = \sup |f''|$.

- **21.** Montrer que L est bien définie.
- **22.** En déduire que si x_p et x_{p-1} sont dans J, alors

$$\left| \frac{\tau(x_p, x_{p-1}) - \tau(x_{p-1}, \ell)}{\ell - x_p} \right| \leqslant \frac{M_2}{2}.$$

23. En posant $r_p = \frac{M_2}{2M}|x_p - x|$ et $\varepsilon < \min\{\alpha, 2M/M_2\}$, montrer que pour tout $(x_0, x_1) \in J^2$, (x_p) converge vers ℓ et déterminer une majoration de la rapidité de convergence.

Thème I PSI

Mathématiciens

NEWTON Isaac (4 jan. 1643 à Woolsthorpe-31 mar. 1727 à Londres). TAYLOR Brook (18 août 1685 à Edmonton-29 déc. 1731 à Londres). LAGRANGE Joseph-Louis (25 jan. 1736 à Turin-10 avr. 1813 à Paris).