Devoir à la maison n° 03

À rendre le 29 septembre

Dans le triangle ci-dessous, comportant n niveaux, on veut calculer le nombre de triangles, petits ET grands, qui apparaissent dans la figure. On note u_n ce nombre.

Les triangles sont dits de type Δ ou de type ∇ selon qu'ils pointent vers le haut ou vers le bas. Pour $n \geq 1$, on note x_n le nombre de triangles de type Δ et y_n le nombre de triangles de type ∇ .

- 1) Donner une relation simple entre u_n , x_n et y_n .
- 2) Faire une figure dans les cas n = 1, n = 2, n = 3 et n = 4. Pour chacun de ces cas, calculer x_n et y_n .
- 3) On va calculer x_n . Soit n un entier fixé.
 - Combien y a-t-il de triangles de type Δ de taille 1? de taille 2? de taille 3?
 - Combien y a-t-il de triangles de type Δ de taille n?
 - En déduire un calcul de x_n et l'exprimer sans sommation. Vérifier la formule obtenue pour $n \leq 4$.
- 4) On va maintenant calculer y_n . Soit n un entier fixé.
 - a) Combient y a-t-il de triangle de type ∇ de taille 1? de taille 2?

On suppose dans un premier temps que n est impair, et on pose n = 2p + 1.

- b) Déterminer la taille T des plus grands triangles de type ∇ . Déterminer le nombre de triangles de type ∇ de taille T.
- c) Exprimer y_n en fonction de p, et montrer que $y_n = \frac{(n-1)(n+1)(2n+3)}{24}$.

On suppose maintenant que n est pair, et on pose n = 2p.

- d) Déterminer la taille T des plus grands triangles de type ∇ . Déterminer le nombre de triangles de type ∇ de taille T.
- e) Exprimer y_n en fonction de p, puis en fonction de n, sans signe de sommation.
- 5) Donner, selon la parité de n, u_n en fonction de n.
- **6)** Montrer que $u_n = \left\lfloor \frac{n(n+2)(2n+1)}{8} \right\rfloor$, où $\lfloor \cdot \rfloor$ désigne la fonction « partie entière ».

— FIN —