| Please check the examination details below before entering your candidate information |                               |  |  |
|---------------------------------------------------------------------------------------|-------------------------------|--|--|
| Candidate surname                                                                     | Other names                   |  |  |
| Pearson Edexcel International Advanced Level                                          | entre Number Candidate Number |  |  |
| <b>Thursday 25 October 2018</b>                                                       |                               |  |  |
| Morning (Time: 1 hour 20 minutes) Paper Reference <b>WPH03/01</b>                     |                               |  |  |
| Physics Advanced Subsidiary Unit 3: Exploring Physics                                 |                               |  |  |
| You must have:<br>Ruler                                                               | Total Marks                   |  |  |

# **Instructions**

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
  - there may be more space than you need.

## Information

- The total mark for this paper is 40.
- The marks for **each** question are shown in brackets
  - use this as a guide as to how much time to spend on each question.
- The list of data, formulae and relationships is printed at the end of this booklet.
- Candidates may use a scientific calculator.

## **Advice**

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶





## **SECTION A**

# **Answer ALL questions.**

For questions 1–5, in Section A, select one answer from A to D and put a cross in the box ⊠. If you change your mind put a line through the box ₩ and then mark your new answer with a cross ⋈.

- 1 Which of the following is **not** an SI base unit?
  - A ampere
  - **B** kelvin
  - C second
  - **D** watt

(Total for Question 1 = 1 mark)

2 The diagram shows a Vernier scale.



Which of the following is the reading on the scale?

- **■ A** 10.9 mm
- **B** 19.5 mm
- **C** 19.6 mm
- **■ D** 20.1 mm

(Total for Question 2 = 1 mark)

# Questions 3, 4, and 5 refer to an experiment to determine the viscosity of a liquid.

A student dropped a sphere into a measuring cylinder containing the liquid. She measured the time taken for the sphere to fall through a given distance in the liquid and repeated this several times.

3 She recorded the times as

2.4s 2.5s 1.9s 2.5s

Which of the following is the best statement of the time the sphere took to fall?

- **■ B** 2.4 s
- **C** 2.47 s
- $\square$  D 2.5 s

(Total for Question 3 = 1 mark)

- 4 Which of the following quantities is required in the calculation of viscosity?
  - **A** density of the liquid
  - **B** mass of the liquid
  - C temperature of the liquid
  - **D** temperature of the room

(Total for Question 4 = 1 mark)

- 5 Which of the following should the student **not** do?
  - A Keep the temperature of the liquid constant.
  - B Drop the sphere close to the side of the cylinder.
  - ☐ C Allow the sphere to reach terminal velocity before timing starts.
  - **D** Check for a zero error on the micrometer used to measure the diameter of the sphere.

(Total for Question 5 = 1 mark)

**TOTAL FOR SECTION A = 5 MARKS** 



# **SECTION B**

# Answer ALL questions in the spaces provided.

| 6 | A student determined the acceleration of free fall by dropping a cricket ball from an upstairs window. The student timed the fall using a stopwatch. |      |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
|   | (a) Explain why dropping the ball from an upstairs window, rather than from one closer to the ground, improved the accuracy of the experiment.       | (2)  |  |  |
|   |                                                                                                                                                      | (2)  |  |  |
|   |                                                                                                                                                      |      |  |  |
|   |                                                                                                                                                      |      |  |  |
|   |                                                                                                                                                      |      |  |  |
|   |                                                                                                                                                      |      |  |  |
|   |                                                                                                                                                      |      |  |  |
|   |                                                                                                                                                      |      |  |  |
|   | (b) A second student stood outside and recorded the motion of the ball using the video camera on a smartphone.                                       |      |  |  |
|   | Explain why this method would produce a more accurate result for the time than using a stopwatch.                                                    |      |  |  |
|   | using a stop water.                                                                                                                                  | (2)  |  |  |
|   |                                                                                                                                                      |      |  |  |
|   |                                                                                                                                                      |      |  |  |
|   |                                                                                                                                                      |      |  |  |
|   |                                                                                                                                                      |      |  |  |
|   |                                                                                                                                                      |      |  |  |
|   |                                                                                                                                                      |      |  |  |
|   | (Total for Question 6 = 4 ma                                                                                                                         | rks) |  |  |
|   | , , ,                                                                                                                                                | ,    |  |  |



A student is asked to determine the Young modulus of a metal in the form of a wire, using a graphical method. Standard laboratory apparatus is available.

Write a plan for the experiment.

You should:

(a) draw and label a diagram for the experiment,

**(2)** 

(b) list any additional apparatus required that is not shown in your diagram,

**(1)** 

(c) state the quantities to be measured,

(1)

(d) state which is the independent variable and which is the dependent variable,

**(2)** 

(e) for one of the quantities listed in (c) explain your choice of measuring instrument,

**(2)** 

(f) comment on whether repeat readings are appropriate,

(1)

(g) explain how the data collected will be used, including a sketch of the expected graph, **(4)** 

(h) explain the main source of uncertainty and/or systematic error,

**(2)** 

(i) comment on safety.

(1)



| <br>                              |
|-----------------------------------|
|                                   |
| <br>                              |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
| (Total for Question 7 = 16 marks) |



8 In an experiment to determine the resistivity  $\rho$  of a metal in the form of a wire the following results were recorded.

| Length l/m | Current I/A | Potential difference V/V | Resistance $R/\Omega$ |
|------------|-------------|--------------------------|-----------------------|
| 1.00       | 6.8         | 2.00                     | 0.294                 |
| 1.50       | 4.5         | 2.00                     | 0.444                 |
| 2.00       | 3.4         | 2.00                     | 0.59                  |
| 2.50       | 2.7         | 2.00                     | 0.74                  |
| 3.00       | 2.3         | 2.00                     |                       |

| (a) Criticise these result | s. |
|----------------------------|----|
|----------------------------|----|

**(2)** 

| (h) | Complete the | last row | of the | table |
|-----|--------------|----------|--------|-------|

(1)

(c) Explain why a graph of R on the y-axis against l on the x-axis should be a straight line through the origin.

(2)

- (d) (i) Plot the graph on the grid provided and draw a line of best fit.

(4)







| (ii) The wire has a diameter of 0.27 mm.                                        |     |
|---------------------------------------------------------------------------------|-----|
| Use your graph to determine the resistivity of the metal.                       | (4) |
|                                                                                 | (1) |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
| Resistivity =                                                                   |     |
| ) Suggest two techniques which would ensure that accurate results are obtained. |     |
|                                                                                 | (2) |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |

TOTAL FOR SECTION B = 35 MARKS TOTAL FOR PAPER = 40 MARKS



# List of data, formulae and relationships

| Acceleration of free fall | $g = 9.81 \text{ m s}^{-2}$ | (close to Earth's surface) |
|---------------------------|-----------------------------|----------------------------|
|---------------------------|-----------------------------|----------------------------|

Electron charge 
$$e = -1.60 \times 10^{-19} \,\mathrm{C}$$

Electron mass 
$$m_e = 9.11 \times 10^{-31} \text{kg}$$

Electronvolt 
$$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$$

Gravitational field strength 
$$g = 9.81 \text{ N kg}^{-1}$$
 (close to Earth's surface)

Planck constant 
$$h = 6.63 \times 10^{-34} \,\mathrm{J s}$$

Speed of light in a vacuum 
$$c = 3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$$

# Unit 1

#### **Mechanics**

Kinematic equations of motion 
$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

Forces 
$$\Sigma F = ma$$

$$g = F/m$$
$$W = mg$$

Work and energy 
$$\Delta W = F \Delta s$$

$$E_{\rm k} = \frac{1}{2}mv^2$$

$$\Delta E_{\rm grav} = mg\Delta h$$

#### Materials

Stokes' law 
$$F = 6\pi \eta r v$$

Hooke's law 
$$F = k\Delta x$$

Density 
$$\rho = m/V$$

Pressure 
$$p = F/A$$

Young modulus 
$$E = \sigma/\varepsilon$$
 where

Stress 
$$\sigma = F/A$$

Strain 
$$\varepsilon = \Delta x/x$$

Elastic strain energy 
$$E_{\rm el} = \frac{1}{2}F\Delta x$$



# Unit 2

## Waves

Wave speed  $v = f\lambda$ 

Refractive index  $\mu_2 = \sin i / \sin r = v_1 / v_2$ 

# **Electricity**

Potential difference V = W/Q

Resistance R = V/I

Electrical power, energy and P = VIefficiency  $P = I^2 R$ 

 $P = I^{2}R$   $P = V^{2}/R$  W = VIt

% efficiency =  $\frac{\text{useful energy output}}{\text{total energy input}} \times 100$ 

% efficiency =  $\frac{\text{useful power output}}{\text{total power input}} \times 100$ 

Resistivity  $R = \rho l/A$ 

Current  $I = \Delta Q/\Delta t$ 

I = nqvA

Resistors in series  $R = R_1 + R_2 + R_3$ 

Resistors in parallel  $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ 

Quantum physics

Photon model E = hf

Einstein's photoelectric  $hf = \emptyset + \frac{1}{2}mv_{\text{max}}^2$ 

equation

