zero-base/

Chapter 16. Precision and Recall

다시 와인데이터

데이터 분리

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state = 13)
```

간단한 로지스틱 회귀 적용

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
lr = LogisticRegression(solver='liblinear', random_state=13)
lr.fit(X_train, y_train)
y_pred_tr = lr.predict(X_train)
y_pred_test = lr.predict(X_test)
print('Train Acc : ', accuracy_score(y_train, y_pred_tr))
print('Test Acc : ', accuracy_score(y_test, y_pred_test))
 Train Acc : 0.7425437752549547
 Test Acc: 0.7438461538461538
```

classification_report

```
from sklearn.metrics import classification_report
print(classification_report(y_test, lr.predict(X_test)))
                            recall f1-score
               precision
                                                support
          0.0
                    0.68
                              0.58
                                         0.62
                                                    477
          1.0
                    0.77
                               0.84
                                         0.81
                                                    823
                                         0.74
                                                   1300
     accuracy
                              0.71
                                         0.71
                                                   1300
    macro avg
                    0.73
 weighted avg
                               0.74
                                                   1300
                    0.74
                                         0.74
```

confusion matrix

precision_recall curve

```
import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_curve
%matplotlib inline

plt.figure(figsize=(10,8))
pred = lr.predict_proba(X_test)[:, 1]
precisions, recalls, thresholds = precision_recall_curve(y_test, pred)
plt.plot(thresholds, precisions[:len(thresholds)], label="precision")
plt.plot(thresholds, recalls[:len(thresholds)], label="recall")
plt.grid(); plt.legend(); plt.show()
```


threshlod = 0.5

간단히 확인해보기

threshold 바꿔 보기 - Binarizer

```
from sklearn.preprocessing import Binarizer

binarizer = Binarizer(threshold=0.6).fit(pred_proba)
pred_bin = binarizer.transform(pred_proba)[:, 1]
pred_bin

array([0., 0., 1., ..., 1., 0., 1.])
```

다시 classification report

print(classifi	cation_report	(y_test,	pred_bin))		
	precision	recall	f1-score	support	
0.0	0.62	0.73	0.67	477	
1.0	0.82	0.74	0.78	823	
accuracy			0.73	1300	
macro avg	0.72	0.73	0.72	1300	
weighted avg	0.75	0.73	0.74	1300	

그리고 confusion matrix