Machine Learning > Week 5 > Backpropagation Intuition

Backpropagation Intuition

Note: [4:39, the last term for the calculation for z_1^3 (three-color handwritten formula) should be a_2^2 instead of a_1^2 . 6:08 - the equation for cost(i) is incorrect. The first term is missing parentheses for the log() function, and the second term should be $(1-y^{(i)})\log(1-h_{ heta}(x^{(i)}))$. 8:50 - $\delta^{(4)}=y-a^{(4)}$ is incorrect and should be $\delta^{(4)}=a^{(4)}-y$.]

Recall that the cost function for a neural network is:

If we consider simple non-multiclass classification (k = 1) and disregard regularization, the cost is computed with:

$$cost(t) = y^{(t)} \, \log(h_{\Theta}(x^{(t)})) + (1 - y^{(t)}) \, \log(1 - h_{\Theta}(x^{(t)}))$$

Intuitively, $\delta_i^{(l)}$ is the "error" for $a_i^{(l)}$ (unit j in layer l). More formally, the delta values are actually the derivative of the cost function:

$$\delta_{j}^{(l)} = rac{\partial}{\partial z_{j}^{(l)}} cost(t)$$

$$cost(i) = y^{(i)} \log(h_{\Theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - (h_{\Theta}(x^{(i)})))$$
 And rew Ng

In the image above, to calculate $\delta_2^{(2)}$, we multiply the weights $\Theta_{12}^{(2)}$ and $\Theta_{22}^{(2)}$ by their respective δ values found to the right of each edge. So we get $\delta_2^{(2)}$ = $\Theta_{12}^{(2)}$ * $\delta_1^{(3)}$ + $\Theta_{22}^{(2)}$ * $\delta_2^{(3)}$. To calculate every single possible $\delta_j^{(l)}$, we could start from the right of our diagram. We can think of our edges as our Θ_{ij} . Going from right to left, to calculate the value of $\delta_j^{(l)}$, you can just take the over all sum of each weight times the δ it is coming from. Hence, another example would be $\delta_2^{(3)}$ = $\Theta_{12}^{(3)}$ * $\delta_1^{(4)}$.