Speeding up wave propagation modeling CheckPoint # 3

Team: GrumpyCat Ivan Gerasimov, Olha Tsymboi

Moscow Institute of Physics and Technology

November 22, 2020

Introduction & Problem statement

Aim:

• To speed up acoustic equation solution using using neural networks.

Input:

- time and space discretizations Δt , $\Delta x = \Delta z$
- time and space pints amout n_t , n_x , n_z
- impulse source time-series $q(t_i)$ and location x_s , z_s .
- special velocities vp(x, z) at data points
- absorbing boundary conditions

Output:

• The solution of acoustic equation u(x, z, t) at some point of time t.

Quality:

- RMSE error between normalized wavefields $\frac{u(x,z,t)}{\sigma(u)}$.
- Correlation coefficient between normalized wavefields.
- Execution time.

Data generation: velocity modeling

- Geo-realistic Marmousi-II model [1].
- Texture transferring using Random Gaussian field context [1].

Figure: NST - style: Marmousi model, content: Gaussian field

Data generation: velocity modeling

Geo-realistic scaling.

1)
$$vp = vp - vp. min()$$

2) $vp = \frac{vp}{vp. max()}$ transform to scale [0, 1]

$$\begin{array}{l} [low,\ high] \in [500,10000] \\ 3)\ vp = vp*(high-low) + low \end{array} \right\} transform\ to\ scale\ [low,\ high]$$

Data generation

Generation:

- Velocity models generation vp(x, z):
- Nyquist frequency varying N_{λ}
- Space discretization varying Δd , $\Delta z = \Delta x = \Delta d$
- Ricker source with varying frequency f_0 under the condition

$$\begin{cases} f_0 & \in [6, 256] \\ \Delta x \cdot & \leq \frac{\text{vp.min}()}{N_{\lambda} f_{\text{max}}} \end{cases}$$

Discretizations to fulfill CFL condition:

$$\Delta t \le \frac{\Delta x}{\sqrt{2} |vp(x,z)|. \max()}$$

Random source locations

In the previous series

- Convolutional Auto-Encoder + L1Loss/MSE
- Convolutional Auto-Encoder + GRU Cell at the bottleneck + L1Loss/MSE
- UNet (UNet++)[8] + L1Loss/MSE
- Fully-Connected + Physic's Informed Loss [5]
- Convolutional + Physic's Informed Loss

- Avoid skip connections to reduce convolutions on large images
- Avoid point-wise prediction using FC layers
- Avoid extra encoder-decoder passes to predict full sequence

In the previous series

- Convolutional Auto-Encoder + L1Loss/MSE
- Convolutional Auto-Encoder + GRU Cell at the bottleneck + L1Loss/MSE
- UNet (UNet++)[8] + L1Loss/MSE
- Fully-Connected + Physic's Informed Loss [5]
- Convolutional + Physic's Informed Loss

- Avoid skip connections to reduce convolutions on large images
- Avoid point-wise prediction using FC layers
- Avoid extra encoder-decoder passes to predict full sequence

In the previous series

- Convolutional Auto-Encoder + L1Loss/MSE
- Convolutional Auto-Encoder + GRU Cell at the bottleneck + L1Loss/MSE
- UNet (UNet++)[8] + L1Loss/MSE
- Fully-Connected + Physic's Informed Loss [5]
- Convolutional + Physic's Informed Loss

- Avoid skip connections to reduce convolutions on large images
- Avoid point-wise prediction using FC layers
- Avoid extra encoder-decoder passes to predict full sequence

In the previous series

- Convolutional Auto-Encoder + L1Loss/MSF
- Convolutional Auto-Encoder + GRU Cell at the bottleneck + L1Loss/MSE
- UNet (UNet++)[8] + L1Loss/MSE
- Fully-Connected + Physic's Informed Loss [5]
- Convolutional + Physic's Informed Loss

- Avoid skip connections to reduce convolutions on large images
- Avoid point-wise prediction using FC layers
- Avoid extra encoder-decoder passes to predict full sequence

But still let us use Auto-Encoder as base-line

Convolutional Auto-Encoder + L1Loss/MSE

Figure: Convolutional Auto-Encoder

Input image:
$$u(x, z, t_i) + \frac{q(t_i)\Delta x^2}{\Delta t^2} \cdot \delta(x - x_s, z - z_s), vp(x, z)$$

Convolutional Auto-Encoder + GRU Cell at the bottleneck + L1Loss/MSE

Figure: Convolutional GRU Cell [7]

Input image:
$$u(x, z, t_i) + \frac{q(t_i)\Delta x^2}{\Delta t^2} \cdot \delta(x - x_s, z - z_s)$$

Hidden initial image: $vp(x, z)$

Model: Can we do faster?

In the sequential convolutions some weights could be too small to provide some influence on predictions

Thought-full weights thresholding

$$\widehat{W} = \text{ReLU}(W - f(s))$$

where s is a new trainable parameter and $f(\cdot)$ some nonlinearity [2]

Model: Can we do faster?

In the sequential convolutions some weights could be too small to provide some influence on predictions

Thought-full weights thresholding

$$\widehat{W} = \text{ReLU}(W - f(s))$$

where *s* is a new trainable parameter and $f(\cdot)$ some nonlinearity [2]

Model: Can we do faster?

Reduce GRU inner complexity

$$\begin{aligned} \mathbf{z}_t &= \sigma(\mathbf{W}\mathbf{x}_t + \mathbf{U}\mathbf{h}_{t-1} + \mathbf{b}_z), \\ \tilde{\mathbf{h}}_t &= \tanh(\mathbf{W}\mathbf{x}_t + \mathbf{U}\mathbf{h}_{t-1} + \mathbf{b}_h), \\ \mathbf{h}_t &= (\zeta(\mathbf{1} - \mathbf{z}_t) + \nu) \odot \tilde{\mathbf{h}}_t + \mathbf{z}_t \odot \mathbf{h}_{t-1}, \end{aligned}$$

Figure: FastGRNN Cell [3]

Results: CNN-AE + L1Loss

Figure: Tanh activations, MaxPool2d

Results: CNN-AE + L1Loss

Results: RNN-GRU + L1Loss

Figure: ELU activations, MaxPool2d

Results: RNN-GRU + L1Loss

Results: RNN-GRU + L1Loss

Figure: SoftPlus activations, AvgPool2d, Fast, pruning

Results: CNN-AE + L1Loss

Results

	Val Loss	Correlation	RMSE
/AE/pruning_MaxPool2d_ELU_	0.047378	0.997431	0.071163
/AE/no_pruning_MaxPool2d_ELU_	0.040036	0.997193	0.078025
/AE/pruning_MaxPool2d_ReLU_	0.057838	0.996861	0.083887
/AE/pruning_AvgPool2d_ReLU_	0.051993	0.996960	0.083823
/AE/no_pruning_AvgPool2d	0.044700	0.996708	0.081910
/AE/no_pruning_AvgPool2d_Softplus_	0.055266	0.998026	0.076379
/AE/no_pruning_MaxPool2d_Soft	0.073278	0.997290	0.075836
/AE/no_pruning_MaxPool2d_ReLU_	0.067359	0.990594	0.132688
/AE/no_pruning_AvgPool2d_ReLU_	0.054532	0.997037	0.081428
/AE/no_pruning_AvgPool2d_Tanh_	0.108479	0.993235	0.116443
/AE/no_pruning_MaxPool2d_Tanh_	0.084698	0.992608	0.117035

Results

	Val Loss	Correlation	RMSE
/RNN/pruning_MaxPool2d_ELU_	0.054459	0.996234	0.084615
/RNN/pruning_AvgPool2d_ELU_	0.061728	0.997185	0.072924
/RNN/pruning_AvgPool2d_ELU_fooo	0.056141	0.997540	0.068849
/RNN/pruning_AvgPool2d_Softplus_fast	0.028346	0.999053	0.041984
/RNN/no_pruning_MaxPool2d_ELU_fooo	0.048708	0.998025	0.056068
/RNN/pruning_MaxPool2d_ReLU_fooo	0.044532	0.997466	0.068267
/RNN/pruning_AvgPool2d_ReLU_fast_	0.040655	0.998074	0.057065
/RNN/no_pruning_AvgPool2d_ELU_fooo	0.029321	0.999008	0.043311
/RNN/pruning_MaxPool2d_Tanh_fast_	0.101255	0.991704	0.141311
/RNN/no_pruning_AvgPool2d_Tanh_fast	0.058024	0.995073	0.082453
/RNN/pruning_MaxPool2d_ReLU_fast_	0.064585	0.995742	0.091423
/RNN/no_pruning_AvgPool2d_Tanh_fooo	0.051936	0.998001	0.057703
/RNN/no_pruning_MaxPool2d_Tanh_fast_	0.097993	0.989757	0.120297
/RNN/no_pruning_AvgPool2d_ELU_fast	0.075362	0.993769	0.107612
/RNN/no_pruning_MaxPool2d_Softplus_fast_	0.055147	0.996729	0.085772
/RNN/no_pruning_AvgPool2d_Softplus_fast	0.072308	0.992906	0.116746
/RNN/no_pruning_MaxPool2d_ELU_fast_	0.094881	0.991725	0.136576
/RNN/no_pruning_AvgPool2d_ReLU_fast_	0.084444	0.986034	0.149476
/RNN/no_pruning_MaxPool2d_Tanh_fooo	0.064734	0.995489	0.093585
/RNN/pruning_AvgPool2d_Softplus_fooo	0.056134	0.998492	0.059784
/RNN/no_pruning_MaxPool2d_Softplus_fooo	0.056357	0.997816	0.064815

Further work

Additional restriction on hiddens in GRU model

$$L_{total} = L(u_{t+1}, NN(u_t)) + \lambda L_{hidden}(h_{t+1}(u_t), encoder(u_{t+1}))$$

FC pruning for Physic's Informed Loss net

$$W = U\Sigma V^{\top}$$

$$\hat{\Sigma} = \text{ReLU}(\Sigma - f(s))$$

$$\widehat{W} = U\hat{\Sigma}V^{\top}$$

References I

D. Bevc and O. Nedorub.

SEG Technical Program Expanded Abstracts 2019. Society of Exploration Geophysicists, 2019.

A. Kusupati, V. Ramanujan, R. Somani, M. Wortsman, P. Jain, S. Kakade, and A. Farhadi.

Soft threshold weight reparameterization for learnable sparsity, 2020.

A. Kusupati, M. Singh, K. Bhatia, A. Kumar, P. Jain, and M. Varma. Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural

Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated recurrent neuranetwork, 2019.

M. Louboutin, M. Lange, F. Luporini, N. Kukreja, P. A. Witte, F. J. Herrmann, P. Velesko, and G. J. Gorman.

Devito (v3.1.0): an embedded domain-specific language for finite differences and geophysical exploration.

Geoscientific Model Development, 12(3):1165–1187, 2019.

B. Moseley, A. Markham, and T. Nissen-Meyer.

Solving the wave equation with physics-informed deep learning, 06 2020.

References II

A. Siahkoohi, M. Louboutin, and F. Herrmann.

Neural network augmented wave-equation simulation, 09 2019.

M. Siam, S. Valipour, M. Jagersand, and N. Ray.

Convolutional gated recurrent networks for video segmentation, 2016.

Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang.

Unet++: Redesigning skip connections to exploit multiscale features in image segmentation, 2020.

Thank you! Questions?

