Formelark MAT201, MAT202, MAT203

1. Potensregning

$$1. \ a^n \cdot a^m = a^{n+m}$$

2.
$$(a^n)^m = a^{n \cdot m}$$

3.
$$(ab)^n = a^n \cdot b^n$$

4.
$$a^{-n} = 1/a^n$$

5.
$$a^{1/n} = \sqrt[n]{a}, \quad \sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

2. Derivasjon og integrasjon

Definisjon deriverte:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Regler:

- 1. (cf(x))' = cf'(x)
- 2. (f(x) + g(x))' = f'(x) + g'(x)
- 3. (f(x) g(x))' = f'(x) g'(x)
- 4. Produktregelen: $(f(x)g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
- (eller (uv)' = u'v + uv')

 5. Brøksregelen: $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) f(x) \cdot g'(x)}{g^2(x)}$ (eller $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$)

 6. Kjerneregel: Hvis f(x) = g(h(x)) = g(u), der u = h(x), da er

$$f'(x) = g'(u) \cdot u'$$

- 7. Delvis integrasjon: $\int uv' = uv \int u'v$
- 8. Integrasjon ved substitusjon: $\int g(u)u' dx = \int g(u)du$, der du = u'dx

Kjente deriverte og integraler:

f(x)	f'(x)	$\int f(x) \mathrm{d}x$	Kommentarer
$\sin x$	$\cos x$	$-\cos x + C$	
$\cos x$	$-\sin x$	$\sin x + C$	
$\tan x$	$\frac{1}{\cos^2(x)} = 1 + \tan^2 x$	$-\ln(\cos x) + C$	integrasjon bare for $\cos x > 0$
$\frac{1}{\sin^2 x}$		$-\frac{1}{\tan x} + C$	$x \neq k\pi, k = 0, \pm 1, \pm 2, \dots$
x^n	nx^{n-1}	$\frac{1}{n+1}x^{n+1} + C$	integrasjon bare for $n \neq -1$
$\frac{1}{x}$		$\ln x + C$	$x \neq 0$
$\frac{x}{e^x}$	e^x	$e^x + C$	
$\ln x$	$\frac{1}{x}$	$x \ln x - x + C$	x > 0
$\frac{1}{\sqrt{1-x^2}}$		$\sin^{-1} x + C$	-1 < x < 1
$\frac{-1}{\sqrt{1-x^2}}$		$\cos^{-1}x + C$	-1 < x < 1
$\frac{1}{1+x^2}$		$\tan^{-1} x + C$	

3. Rekker

Taylorrekker/maclaurinrekker. La f være en funksjon i en variabel som kan deriveres n ganger i punktet x = a. Da er $taylorrekken\ P$ om x = a for f gitt ved $P(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$. I tilfellet a = 0 kalles dette ofte en maclaurinrekke.

Kjente maclaurinrekker.

i)
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 for alle x .

ii)
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
 for alle x .

iii)
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
 for alle x .

iv)
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$
 for $-1 < x \le 1$.

4. Fourierrekker

La f(t) være en periodisk funksjon med periode T, og la $\omega = \frac{2\pi}{T}$. Da er fourierrekken til f(t):

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \left(n\omega t \right) + b_n \sin \left(n\omega t \right) \right).$$

der

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega t) dt$$
, for $n = 0, 1, 2, ...$
 $b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega t) dt$, for $n = 1, 2, ...$

5. Kjente integraler

i)
$$\int t \cos(at) dt = \frac{\cos(at)}{a^2} + \frac{t \sin(at)}{a} + C.$$

ii)
$$\int t^2 \cos(at) dt = -2 \frac{\sin(at)}{a^3} + 2 \frac{t \cos(at)}{a^2} + \frac{t^2 \sin(at)}{a} + C.$$

iii)
$$\int t \sin(at) dt = \frac{\sin(at)}{a^2} - \frac{t \cos(at)}{a} + C.$$

iv)
$$\int t^2 \sin(at) dt = 2 \frac{\cos(at)}{a^3} + 2 \frac{t \sin(at)}{a^2} - \frac{t^2 \cos(at)}{a} + C.$$

5.1. Kjente verdier til cosinus og sinus.

- i) $\sin(0) = 0$
- ii) $\sin(-n\pi) = 0 = \sin(n\pi) = 0$, for n heltall.
- iii) $\cos(0) = 1$
- iv) $\cos(-n\pi) = \cos(n\pi) = (-1)^n$ for n heltall.

6. Lineære differensialligninger med konstante koeffisienter

6.1. Homogen.

- For en homogen 1. ordens differensialligning ay' + by = 0 har generell løsning som avhenger av røttene til den karakteristiske likningen ar + b = 0. Dersom r er en løsning, så er den generelle løsningen $y = Ae^{rx}$.
- For en homogen 2. ordens differensialligning ay'' + by' + cy = 0 har generell løsning som avhenger av roten til den karakteristiske likningen $ar^2 + br + c = 0$.
 - i) to forskjellige reelle røtter r_1, r_2 er den generelle løsningen: $y = Ae^{r_1x} + Be^{r_2x}$,

ii) to like røtter r_1 er den generelle løsningen: $y = (Ax + B)e^{r_1x}$,

iii) to komplekskonjugerte røtter $r = \alpha \pm \beta i$ er den generelle løsningen: $y = e^{\alpha x} (A \cos(\beta x) + B \sin(\beta x)).$

6.2. Inhomogen. Tabell med forslag til partikulære løsninger:

- Innomogen Tasen med totales in partimeter issuinger.			
f(x)	y_p		
c (konstant)	$A \text{ (konstant)}, \text{ hvis } c \neq 0$		
ax + b	$Ax + B$ hvis $c \neq 0$		
$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$	$K_n x^n + K_{n-1} x^{n-1} + \cdots + K_0, \text{hvis } c \neq 0$		
$ce^{\alpha x}$	$Ae^{\alpha x}$ (hvis α ikke er en rote til den karakteristiske likningen)		
$ce^{\alpha x}$	$Axe^{\alpha x}$ (hvis α er en rote til den karakteristiske likningen)		
$ce^{\alpha x}$	$Ax^2e^{\alpha x}$		
	(hvis α er dobbelt røtter til den karakteristiske likningen)		
$c\cos(\beta x)$ eller $c\sin(\beta x)$	$A\cos(\beta x) + B\sin(\beta x)$		
	(hvis $\pm i\beta$ ikke er røttene til den karakteristiske likningen)		
$c\cos(\beta x)$ eller $c\sin(\beta x)$	$x(A\cos(\beta x) + B\sin(\beta x))$		
	(hvis $\pm i\beta$ er røttene til den karakteristiske likningen)		

7. Interpolasjon

Ved lineær interpolasjon, der man antar det er lineær sammenheng mellom de to kjente målepunktene, kan man bestemme y_i i datapunktet (x_i, y_i) som ligger mellom datapunktene (x_k, y_k) , (x_{k+1}, y_{k+1}) for en gitt x_i :

$$y_i = y(x_i) = y_k + \frac{y_{k+1} - y_k}{x_{k+1} - x_k} (x_i - x_k)$$

8. Lineær algebra

Egenverdi og egenvektor. La A være en kvadratisk matrise (altså $n \times n$). En vektor $\vec{v} \in \mathbf{R}^{\mathbf{n}}$ kalles en *egenvektor* for A dersom:

$$A\vec{v} = \lambda \vec{v}$$
 for et tall λ , der $\vec{v} \neq \vec{0}$

For hver løsning λ_i til denne ligningen finnes de tilhørende egenvektorene som løsninger til ligningssystemet

$$(A - \lambda_i I) \cdot \vec{v} = \vec{0}.$$

Ligningen

$$\det\left(A - \lambda I\right) = 0$$

Diagonalisering. La P være matrisen med egenvektorene som søyler:

$$P = (\vec{v}_1 | \vec{v}_2 | \cdots | \vec{v}_n)$$

Da er P inverterbar, og

$$A = PDP^{-1},$$

 $\operatorname{der} D$ er diagonalmatrisen

9. Systemer av differensialligninger

For et homogent lineært differensialligningssystem, $\vec{y}' = A\vec{y}$, med diagonaliserbar konstant koeffisientmatrise A, er den generelle løsningen:

$$\vec{y}(t) = C_1 e^{\lambda_1 t} \vec{v}_1 + \dots + C_n e^{\lambda_n t} \vec{v}_n,$$

der $\vec{v_i}$ er egenvektor med egenverdi λ_i .

10. Funksjoner av flere variable

i) f er en funksjon definert på \mathbb{R}^2 . Dersom f er deriverbar i (a,b), så har grafen til f et tangentplan i (a,b,c) med c=f(a,b). Likningen for tangentplanet kan skrives slik:

$$z = c + L(x - a) + M(y - b) ,$$
 der $L = f_x(a, b)$ og $M = f_y(a, b)$.

ii) Hessematrisen til f i et punkt (a, b) er gitt ved

$$H(a,b) = \begin{pmatrix} f_{xx}(a,b) & f_{yx}(a,b) \\ f_{xy}(a,b) & f_{yy}(a,b) \end{pmatrix}$$

Dersom $f_x(a,b) = f_y(a,b) = 0$ og $\det H(a,b) < 0$ så er (a,b) et sadelpunkt. $\det H(a,b) > 0$ og $f_{xx}(a,b) > 0$ så er (a,b) et lokalt minimum. $\det H(a,b) > 0$ og $f_{xx}(a,b) < 0$ så er (a,b) et lokalt maksimum. $\det H(a,b) = 0$ så har vi ingen informasjon.

11. Diffusjonsligninger for MAT201

Gitt varmeledningsligningen, også kalt diffusjonsligning, med initial- og randkrav:

(1)
$$u_t = c^2 u_{xx}, \qquad 0 < x < L, \ t > 0$$
 (2)
$${\rm randkrav} \ u(t,0) = 0, \ u(t,L) = 0, \qquad t > 0$$

(2) randkrav
$$u(t,0) = 0, u(t,L) = 0, t > 0$$

(3) initialkrav
$$u(0, x) = f(x), \qquad 0 < x < L$$

der f(x) er stykkevis kontinuerlig over intervallet $0 \le x \le L$. For $n = 1, 2, 3, \dots, \infty$,

$$u_n(t,x) = \sin\left(\frac{n\pi}{L}x\right)e^{-c^2\alpha_n^2t}, \quad \alpha_n = \frac{n\pi}{L},$$

løser problemet (1)-(3). Den generelle løsningen til problemet er gitt ved:

$$u(t,x) = \sum_{n=1}^{\infty} B_n u_n(t,x) = \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi}{L}x\right) e^{-c^2 \alpha_n^2 t}, \quad \alpha_n = \frac{n\pi}{L},$$

der B_n , $n=1,2,\cdots$, er koeffisientene (også kalt Fourier-koeffisienter):

$$B_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi}{L}x\right) dx,$$

i den Fourier sinus-rekken til f(x):

$$f(x) = \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi}{L}x\right).$$

12. Kjente resultater om laplacetransformer (MAT201 og MAT202)

1)
$$\mathcal{L}(1) = \frac{1}{s}$$

2)
$$\mathcal{L}(t^n) = \frac{n!}{s^{n+1}}$$

3)
$$\mathcal{L}(e^{at}) = \frac{1}{s-a}$$

4)
$$\mathcal{L}(t^n e^{at}) = \frac{n!}{(s-a)^{n+1}}$$

5)
$$\mathcal{L}(\sin(\omega t)) = \frac{\omega}{s^2 + \omega^2}$$

6)
$$\mathcal{L}(\cos(\omega t)) = \frac{s}{s^2 + \omega^2}$$

7)
$$\mathcal{L}(e^{at}\sin(\omega t)) = \frac{\omega}{(s-a)^2 + \omega^2}$$

8)
$$\mathcal{L}(e^{at}\cos(\omega t)) = \frac{s-a}{(s-a)^2 + \omega^2}$$

9)
$$\mathcal{L}(af + bg) = a\mathcal{L}(f) + b\mathcal{L}(g)$$

10)
$$\mathcal{L}(f') = s\mathcal{L}(f) - f(0)$$

11)
$$\mathcal{L}(f'') = s^2 \mathcal{L}(f) - sf(0) - f'(0)$$

12)
$$\mathcal{L}(f^{(n)}) = s^n \mathcal{L}(f) - s^{n-1} f(0) - s^{n-2} f'(0) - s^{n-3} f''(0) - \dots - f^{(n-1)}(0)$$

13)
$$\mathcal{L}\left(\int_0^t f(u) du\right) = \frac{1}{s}\mathcal{L}(f(t))$$

14) Kun MAT202:
$$\mathcal{L}(\delta(t-c)) = e^{-cs}$$
, der $\delta(t)$ er impulsfunksjonen

15) Kun MAT202:
$$\mathcal{L}(f(t-a) \cdot u(t-a)) = e^{-as}F(s) = e^{-as}\mathcal{L}(f(t))$$
, der $u(t)$ er Heaviside-funksjonen (enhetsstegs-funksjonen).

13. Mer differensialligninger med fokus på stabilitet (MAT203)

• Gitt Differensialligningen

$$\frac{dy}{dt} = f(y)$$

- a) En hver konstant løsning til f(y) = 0, y = k, tilfredsstiller y' = f(y).
- b) Likevektløsningen(e) finner man ved å løse: f(y) = 0.
- c) Likevektsløsningen y = k er
 - i) ustabil dersom f'(k) > 0
 - ii) asymptotisk stabil dersom f'(k) < 0 og
 - iii) kan være både stabil, asymptotisk stabil og ustabil dersom f'(k) = 0: Bruk faselinje med likevektsløsningen(e) (de(t) stasjonære punkte(t/ne) markert(e). Lag fortegnslinje for f(y) langs faselinjen. Der f(y) > 0 tegn en pil i positiv retning langs faselinjen. Der f(y) < 0 tegn en pil i negativ retning langs faselinjen. Det nærmeste stasjonære punktet pilen peker mot er stabilt/asymptotisk stabilt fra den siden hvor pilen befinner seg. Det nærmeste stasjonære punktet pilen peker vekk fra er ustabilt fra den siden hvor pilen befinner seg.
- Løsningen til

$$\frac{dy}{dt} = a(y - A)(y - B)$$

der $a \neq 0$ og $A \neq B$ er:

$$y(t) = A + \frac{B - A}{1 + Ce^{a(B-A)t}}$$