```
soit la grammaire
```

 $E \rightarrow E + E$

 $E \rightarrow E * E$ $E \rightarrow int$

on augmente la grammaire

 $E' \rightarrow E\$$

 $E \rightarrow E + E$

 $E \rightarrow E * E$

 $\mathsf{E} \to \mathsf{int}$

on construire un automate à pile fini non déterministe

on calcul les états de l'automate

-état I0 = fermeture(E' →.E)

I0
$$E' \rightarrow .E$$

$$E \rightarrow .E+E \mid .E*E \mid int$$

-état I1 = go_to(I0, E) = fermeture(E' \rightarrow E.)

-état I2 = $go_to(I0, int) = fermeture(E \rightarrow int.)$

-état I3 = $go_to(I1, +) = fermeture(E \rightarrow E+.E)$

-état I4 = go_to(I1, *) = fermeture(E \rightarrow E*.E)

Construction de la table LR(0)

 $2-E \rightarrow E+E$

3- $E \rightarrow E * E$ 5- $E \rightarrow int$

	ACTION				GO_TO
	Terminaux				Non terminaux
	+	*	int	\$	E
0(10)	Erreur		S2	Erreur	1
1(I1)	S3	S4	Erreur	accepté	Erreur
2(12)	r5	r5	r5	Erreur	Erreur
3(13)	Erreur	Erreur	S2	Erreur	5
4(14)	Erreur	Erreur	S2	Erreur	6
5(15)	S3 r2	S4 r2	r2	Erreur	Erreur
6(16)	S3 r3	S4 r3	r3	Erreur	Erreur