Date: 07/08/2024

Experiment 2.3

AIM

To write a YACC program to identify valid variable names

ALGORITHM

- 1. Start
- 2. Create a lex file with following lexical rules:
 - 1. Include y.tab.h generated by YACC program.
 - 2. If input starts with a letter followed by a combination of letters and digits:
 - 1. Copy value to yylval.
 - 2. Return token IDENTIFIER.
 - 3. If input is a newline character, return newline character.
 - 4. For any other string:
 - 1. Copy string to yylval.
 - 2. Return token INVALID.
- 3. Create YACC to parse input as follows:
 - 1. The input consists of multiple lines.
 - 2. Each line can be either:
 - 3. An identifier followed by a newline character. In this case, display "Valid".
 - 4. An invalid token followed by a newline character. In this case, display "Invalid".
 - 5. In user code section:
 - 6. Define error handling.
 - 7. Define main function to call yyparse().
- 4. Use lex command to generate C program.
- 5. Use yacc to create y.tab,h and y.tab.c
- 6. Compile and run y.tab.c along with lex program
- 7. Stop

RESULT	
Successfully compiled and ran the YACC and LEX program.	