제6장 선형회귀모형의 변환

6.1 가변수를 이용한 회귀분석

6.1.3 회귀모형을 이용한 분산분석

[예제 6.3]

어느 4년제 대학교에서 학년 별로 영어 실력을 비교하기 위하여 각 학년에서 6명을 무작위로 추출하여 같은 영어 시험을 보게 한 결과 <표 6.1>의 자료를 얻었다(단, 3학년에서 1명, 4학년에서 2명의 결시자가 있었다고 가정한다.)이 자료에 대하여 회귀모형 (6.3)을 적합하고 *F*-검정을 하라.

<亜 6.1>

학년	영어 점수	평균
1	81 75 69 90 72 83	78.3
2	65 80 73 79 81 69	74.5
3	72 67 62 76 80	71.4
4	89 94 79 88	87.5

[풀이]

- $^{\Box}$ 범주의 수: c=4 \rightarrow 필요한 가변수의 수: c-1=4-1=3범주 당 관측치의 수: $n_1=6,\;n_2=6,\;n_3=5,\;n_4=4$
- □ 가변수에 대한 정의

$$Z_1 = \begin{cases} 1, & 1$$
학년인경우, $Z_2 = \begin{cases} 1, & 2$ 학년인경우, $Z_3 = \begin{cases} 1, & 3$ 학년인경우 $0, & o.w. \end{cases}$

4학년의 경우: $Z_1 = Z_2 = Z_3 = 0$

ㅁ 회귀모형: $Y_i=eta_0+eta_1Z_{i1}+eta_2Z_{i2}+eta_3Z_{i3}+\epsilon_i$, $i=1,\ 2,\ \cdots,\ 21$

- $^{\Box}$ 적합된 회귀식: $\hat{Y}=87.5-9.17Z_1-13Z_2-16.1Z_3$ $(3.513)\,(4.535)\,(4.535)\,(4.713)$
- 1학년 평균영어성적 추정치: $\hat{eta}_0 + \hat{eta}_1 = 87.5 9.17 = 78.33$
- 2학년 평균영어성적 추정치: $\hat{eta}_0 + \hat{eta}_2 = 87.5 13 = 74.5$
- 3학년 평균영어성적 추정치: $\hat{eta}_0 + \hat{eta}_3 = 87.5 16.1 = 71.4$
- 4학년 평균영어성적 추정치: $\hat{eta}_0 = 87.5$
- ⇒ 각 학년의 평균영어성적 추정치는 각 학년 표본들의 표본평균과 같다.

<班 6.1>

요인	제곱합	자유도	평균제곱	F
회귀	643.6	3	214.5	4.35
오차	839.0	17	49.4	
전체	1482.7	20		

 \Box 가설검정 $H_0: eta_1=eta_2=eta_3=0, H_1:$ not H_0

F=4.35, 기각치: $F_{0.05}(3,17)=3.20 \rightarrow H_0$ 기각

⇒ 이 대학교의 학년 간에는 영어 실력의 차이가 있다고 말할 수 있다.