Notes on Sheaves on Manifolds

大柴寿浩

はじめに

2023 年度から始めた [KS90] のセミナーのノート.

記号

次の記号は断りなく使う.

• 添字: なんらかの族 $(a_i)_{i\in I}$ を $(a_i)_i$ とか (a_i) と略記することがある.

1 ホモロジー代数

1.3 複体の圏

℃を加法圏とする.

注意. 加法圏とは次の3つの条件(1)-(3)をみたす圏のことである.

- (1) どの対象 $X,Y \in \mathcal{C}$ に対しても $\operatorname{Hom}_{\mathscr{C}}(X,Y)$ が加法群になり、どの対象 $X,Y,Z \in \mathcal{C}$ に対しても合成 \circ : $\operatorname{Hom}_{\mathscr{C}}(Y,Z) \times \operatorname{Hom}_{\mathscr{C}}(X,Y) \to \operatorname{Hom}_{\mathscr{C}}(X,Z)$ が双線型である.
- (2) 零対象 $0 \in \mathcal{C}$ が存在する. さらに $\operatorname{Hom}_{\mathcal{C}}(0,0) = 0$ が成り立つ.
- (3) 任意の対象 $X,Y \in \mathcal{C}$ に対して積と余積が存在し、さらにそれらは同型になる. (それらを複積といい $X \oplus Y$ とかく.)

圏 $\mathscr C$ から、 $\mathscr C$ の対象の複体の圏 $\mathbb C$ $\mathbb C$ $\mathbb C$ を作ることができる.まず複体の定義をする.圏 $\mathscr C$ の対象のと射の列

$$(1.3.1) \cdot s \longrightarrow X^{n-1} \xrightarrow{d_X^{n-1}} X^n \xrightarrow{d_X^n} X^{n+1} \longrightarrow \cdot s$$

を考える. この列 $X=((X^n)_{n\in \mathbf{Z}},(d_X^n)_{n\in \mathbf{Z}})$ が複体 (complex) であるとは、任意の $n\in \mathbf{Z}$ に対し

$$(1.3.2) d_X^{n+1} \circ d_X^n = 0$$

が成り立つことをいう.

圏 $\mathscr C$ の対象の複体 $X=((X^n),(d_X^n)),\,Y=((Y^n),(d_Y^n))$ の間の射を, $\mathscr C$ の射の族 $(f^n\colon X^n\to Y^n)_{n\in \mathbf Z}$ で,図式

$$s \longrightarrow X^n \xrightarrow{d_X^n} X^{n+1} \longrightarrow s$$

$$\downarrow^{f^n} \qquad \downarrow^{f^{n+1}}$$

$$s \longrightarrow Y^n \xrightarrow{d_Y^n} Y^{n+1} \longrightarrow s$$

を可換にする, すなわちどの番号 $n \in \mathbf{Z}$ に対しても

が成り立つものとして定める.

以上の準備のもとで、 $\mathscr C$ の複体の圏 $\mathrm{C}(\mathscr C)$ を次のように定める.

- 対象: Ob(C(ℰ)) = {ℰの複体 }
- 射: $\operatorname{Hom}_{\mathbf{C}(\mathscr{C})}(X,Y) = \{\mathscr{C} \ の複体の射 \}$

このとき、 $C(\mathscr{C})$ は加法圏になる.

圏になることの証明. $f\colon X\to Y$ と $g\colon Y\to Z$ を $\mathrm{C}(\mathscr{C})$ の射とする. f と g の合成 $g\circ f$ は $(g^n\circ f^n)_n$ で与えられる. これがうまくいくことは

が可換になることからわかる.

X の恒等射は $(\mathrm{id}_{X^n})_n$ で与えられる.

加法圏になることの証明. X と Y を $\mathscr C$ の複体とする.

(1) 射の集合のアーベル群構造 $f,g \in \operatorname{Hom}_{\mathbf{C}(\mathscr{C})}(X,Y)$ に対し、f+g が $(f^n+g^n)_n$ で定まる.

(2) 零対象の存在 $C(\mathscr{C})$ の零対象 0 は

$$\cdot s \to 0 \xrightarrow{0} 0 \xrightarrow{0} 0 \to \cdot s$$

で与えられる.

(3) 複積の存在 X と Y の複積 $X \oplus Y$ は

$$\cdot s \longrightarrow X^{n-1} \oplus Y^{n-1} \xrightarrow{d_X^{n-1} \oplus d_Y^{n-1}} X^n \oplus Y^n \xrightarrow{d_X^n \oplus d_Y^n} X^{n+1} \oplus Y^{n+1} \longrightarrow \cdot s$$
 で与えられる.

さらに \mathscr{C} がアーベル圏ならば、 $C(\mathscr{C})$ もアーベル圏になる.

注意. 加法圏 \mathscr{C} がアーベル圏であるとは次の条件 (4), (5) をみたすことをいう.

- (4) 任意の \mathscr{C} の射 $f: X \to Y$ に対し、f の核 $\operatorname{Ker} f$ と余核 $\operatorname{Coker} f$ が存在する.
- (5) 任意の $\mathscr C$ の射 $f: X \to Y$ に対し、自然に定まる射 $\operatorname{Coim} f \to \operatorname{Im} f$ は同型である.

証明. X と Y を C の複体とする.

- (4) 核と余核の存在 複体の射 $f\colon X\to Y$ に対し、核 $\operatorname{Ker} f$ は $(\operatorname{Ker} f^n)_n$ で、余核 $\operatorname{Coker} f$ は $(\operatorname{Coker} f^n)_n$ で与えられる.
- コメント (4/24). 「Ker f の differential の構成はどうなっていますか?」 次の図式を考える.

ここで、 ι^n は $\mathrm{Ker}\, f^n$ の普遍性から自然に定まる射である。 $\overline{d}_X^n\colon \mathrm{Ker}\, f^n \to \mathrm{Ker}\, f^{n+1}$ が $d_X^n\circ\iota^n$ によって定められることを示せば良い.

$$f^{n+1}\circ d_X^n\circ\iota^n=d_Y^n\circ f^{n+1}\circ\iota^n=d_Y^n\circ 0=0$$

より, $d_X^n \circ \iota^n$ は $\operatorname{Ker} f^{n+1}$ に値を取る. したがって, \overline{d}_X^n : $\operatorname{Ker} f^n \to \operatorname{Ker} f^{n+1}$ が定まる.

(5) 余像と像が同型になること 各次数 n ごとに $\operatorname{Coim} f^n \cong \operatorname{Im} f^n$ が成り立つことから従う. \square 圏 $\operatorname{C}(\mathscr{C})$ の充満部分圏 $\operatorname{C}^+(\mathscr{C})$, $\operatorname{C}^-(\mathscr{C})$, $\operatorname{C}^\mathrm{b}(\mathscr{C})$ を

$$Ob(C^{+}(\mathscr{C})) = \left\{ 0 \to X^{n} \xrightarrow{d_{X}^{n}} X^{n+1} \to \cdot s \quad (n \ll 0) \right\},$$

$$Ob(C^{-}(\mathscr{C})) = \left\{ \cdot s \to X^{n-1} \xrightarrow{d_{X}^{n-1}} X^{n} \to 0 \quad (n \gg 0) \right\},$$

$$Ob(C^{b}(\mathscr{C})) = \left\{ 0 \to X^{n} \to \cdot s \to X^{m} \to 0 \quad (n \ll 0, m \gg 0) \right\}$$

で定める.

 \mathscr{C} の対象 X に対し $C(\mathscr{C})$ の対象

$$\cdot s \to 0 \to X \to 0 \to \cdot s$$

を対応させることによって、忠実充満な関手 $\mathscr{C} \hookrightarrow \mathrm{C}(\mathscr{C})$ が定まる.

kを整数とする. \mathscr{C} の複体

$$X: \cdot s \longrightarrow X^{n-1} \xrightarrow{d_X^{n-1}} X^n \xrightarrow{d_X^n} X^{n+1} \longrightarrow \cdot s$$

に対し、X[k] を $X[k]^n = X^{n+k}$, $d^n_{X[k]} = (-1)^k d^{n+k}_X$ で定める。図式でかくと

$$X[k]\colon \boldsymbol{\cdot} s \to X^{n+k-1} \xrightarrow{(-1)^k d_X^{n+k-1}} X^{n+k} \xrightarrow{(-1)^k d_X^{n+k}} X^{n+k+1} \to \boldsymbol{\cdot} s$$

のようになる. X から Y への射 $f\colon X\to Y$ に対し, $f[k]\colon X[k]\to Y[k]$ を $f[k]^n=f^{n+k}$ で定める. X を X[k] に対応させることで関手 $[k]\colon \mathrm{C}(\mathscr{C})\to\mathrm{C}(\mathscr{C})$ が定まる.この関手を次数 k のシフト関手と呼ぶ.

[k] が関手になることの証明. X[k] が複体になること:

$$(-1)^k d_X^{n+k} \circ (-1)^k d_X^{n+k-1} = (-1)^{2k} d_X^{n+k} \circ d_X^{n+k-1} = 0.$$

f[k] が複体の射になること:

$$\cdot s \longrightarrow X^{n+k} \xrightarrow{(-1)^k d_X^{n+k}} X^{n+k+1} \longrightarrow \cdot s$$

$$\downarrow f^{n+k} \qquad \downarrow f^{n+k+1}$$

$$\cdot s \longrightarrow Y^{n+k} \xrightarrow{(-1)^k d_Y^{n+k}} Y^{n+k+1} \longrightarrow \cdot s$$

が可換になることを示せばよい.

$$f^{n+k+1} \circ (-1)^k d_X^{n+k+1} = (-1)^k f^{n+k+1} \circ d_X^{n+k+1} = (-1)^k d_Y^{n+k+1} \circ f^{n+k}.$$

[k] が合成を保つこと: $f\colon X o Y,\,g\colon Y o Z$ を複体の射とする.このとき

$$(g[k] \circ f[k])^n = g[k]^n \circ f[k]^n = g^{n+k} \circ f^{n+k} = (g \circ f)^{n+k} = (g \circ f)[k]^n$$

が成り立つ.

$$[k]$$
 が恒等射を保つこと: $\mathrm{id}_X[k]^n=\mathrm{id}_X^{n+k}=\mathrm{id}_{X[k]}^n$.

■ホモトピー $\mathscr C$ の複体の圏 $\mathrm C(\mathscr C)$ から、ホモトピックな射を同一視することによって、新たな圏 $\mathrm K(\mathscr C)$ が得られる.まず準備.

 $C(\mathscr{C})$ を圏 \mathscr{C} の複体の圏とする. $X,Y \in C(\mathscr{C})$ とする. $f: X \to Y$ が 0 にホモトピックであるとは、 \mathscr{C} の射の族 $(s^n: X^n \to Y^{n-1})$ で、

(1.3.4)
$$f^n = d_Y^{n-1} \circ s^n + s^{n+1} \circ d_X^n \quad (n \in \mathbf{Z})$$

となるものが存在することをいう.

 $f,g: X \to Y$ に対し、f-g が 0 にホモトピックであるとき、f と g はホモトピックであるといい、 $f \simeq g$ とかく、f が 0 とホモトピックであることを $f \simeq 0$ で表す。このとき $s=(s^n)$ を f と g の間のホモトピーという。 \simeq は同値関係である。

証明. f, q, h を X から Y への \mathscr{C} の複体の射とする.

反射律 $(s^n = 0)$ が f と f の間のホモトピーを与える.

対称律 $f \ge g$ の間のホモトピーを s とするとき, -s が $g \ge f$ の間のホモトピーを与える.

推移律 f と g の間のホモトピーを s, g と h の間のホモトピーを t とする. このとき, s+t が f と h の間のホモトピーを与える.

命題 1.1. $X,Y \in C(\mathscr{C})$ に対し、 $\operatorname{Hom}_{C(\mathscr{C})}(X,Y)$ の加法部分群 $\operatorname{Ht}(X,Y)$ を

で定める. 複体の射 $f\colon X\to Y$ と $g\colon Y\to Z$ のどちらかが 0 にホモトピックならば、合成 $g\circ f$ は 0 にホモトピックになる. したがって、射の合成は次の写像をひきおこす.

$$\operatorname{Hom}_{\operatorname{C}(\mathscr{C})}(Y,Z) \times \operatorname{Ht}(X,Y) \to \operatorname{Ht}(X,Z),$$

 $\operatorname{Ht}(Y,Z) \times \operatorname{Hom}_{\operatorname{C}(\mathscr{C})}(X,Y) \to \operatorname{Ht}(X,Z).$

証明. $f \in \operatorname{Hom}_{\mathbf{C}(\mathscr{C})}(X,Y), g \in \operatorname{Hom}_{\mathbf{C}(\mathscr{C})}(Y,Z)$ とする.

 $f \simeq 0$ のとき, $s \geq 0$ とのホモトピーとすると, $g \circ f \geq 0$ との間のホモトピーは

$$(q^{n-1} \circ s^n \colon X^n \to Y^{n-1} \to Z^{n-1})_n$$

で与えられる.

 $g \simeq 0$ のとき, $t \geq 0$ とのホモトピーとすると, $g \circ f \geq 0$ との間のホモトピーは

$$(t^n \circ f^n \colon X^n \to Y^n \to Z^{n-1})_n$$

で与えられる.

以上の準備のもとで、圏 $\mathscr C$ のホモトピー圏 $\mathrm K(\mathscr C)$ を次のように定める.

- 対象: $Ob(K(\mathscr{C})) = Ob(C(\mathscr{C}))$
- $\mathfrak{h}: \operatorname{Hom}_{\mathcal{K}(\mathscr{C})}(X,Y) = \operatorname{Hom}_{\mathcal{C}(\mathscr{C})}(X,Y) / \operatorname{Ht}(X,Y)$

 $K(\mathscr{C})$ は加法圏になる.

 $K(\mathscr{C})$ が加法圏になることの証明. 命題 1.1 より、射の合成がきちんと定まる.

各 $X,Y \in K(\mathcal{C})$ に対する $\operatorname{Hom}_{K(\mathcal{C})}(X,Y)$ のアーベル群構造は $\operatorname{Ht}(X,Y)$ による剰余群の構造 として得られ、さらに命題 1.1 より、合成の双線型性が得られる.

零対象と複積は $\mathrm{C}(\mathscr{C})$ と同様である.

圏 $K(\mathscr{C})$ の充満部分圏 $K^+(\mathscr{C})$, $K^-(\mathscr{C})$, $K^b(\mathscr{C})$ を,それぞれ $C^+(\mathscr{C})$, $C^-(\mathscr{C})$, $C^b(\mathscr{C})$ と同じ対象をとって定める.

■コホモロジー \mathscr{C} をアーベル圏とする. $X \in C(\mathscr{C})$ に対し,

$$\begin{split} Z^k(X) &\coloneqq \operatorname{Ker} d_X^k, \\ B^k(X) &\coloneqq \operatorname{Im} d_X^{k-1}, \\ H^k(X) &\coloneqq \operatorname{Ker} d_X^k / \operatorname{Im} d_X^{k-1} \end{split}$$

とおく. $H^k(X)$ を複体 X の k 次のコホモロジーという.

注意. 完全列 $0 \to X \to Y \to Z \to 0$ に対し,Z を Y の商対象といい,Y/X とかく.一般に単射 $i\colon X \hookrightarrow Y$ の余核 $\mathrm{Coker}\,i$ を Y/X とかける.

任意の k に対し H^k は $C(\mathscr{C})$ から \mathscr{C} への加法関手を定める.

$$(1.3.6) H^k(X) = H^0(X[k])$$

 $f\colon X\to Y$ が 0 とホモトピックならば, $H^k(f)\colon H^k(X)\to H^k(Y)$ は 0. よって H^k は $\mathrm{K}(\mathscr{C})$ から \mathscr{C} への関手を定める.

完全列たち

$$\begin{split} X^{k-1} &\to Z^k(X) \to H^k(X) \to 0, \\ 0 &\to H^k(X) \to \operatorname{Coker} d_X^{k-1} \to X^{k+1}, \\ 0 &\to Z^{k-1}(X) \to X^{k-1} \to B^k(X) \to 0, \\ 0 &\to B^k(X) \to X^k \to \operatorname{Coker} d_X^{k-1} \to 0, \\ 0 &\to H^k(X) \to \operatorname{Coker} d_X^{k-1} \xrightarrow{d_X^k} Z^{k+1}(X) \to H^{k+1}(X) \to 0. \end{split}$$

命題 1.2. $0 \to X \to Y \to Z \to 0$ を $\mathbf{C}(\mathscr{C})$ の完全列とする. このとき, \mathscr{C} における次の長完全列が存在する.

$$\cdot s \to H^n(X) \to H^n(Y) \to H^n(Z) \xrightarrow{\delta} H^{n+1}(X) \to \cdot s.$$

■切り落とし $X \in \mathcal{C}(\mathscr{C})$ と整数 n に対し、 $\tau^{\leq n}(X), \tau^{\geq n}(X) \in \mathcal{C}(\mathscr{C})$ を

(1.3.7)
$$\tau^{\leq n}(X) \colon \cdot s \to X^{n-2} \to X^{n-1} \to \operatorname{Ker} d^n \to 0 \to \cdot s,$$

(1.3.8)
$$\tau^{\geq n}(X) \colon \cdot s0 \to \operatorname{Coker} d^{n-1} \to X^{n+1} \to X^{n+2} \to \cdot s$$

で定める. このとき, $C(\mathscr{C})$ における次の射が得られる.

$$\tau^{\leqq n}(X) \to X, \quad X \to \tau^{\geqq n}(X),$$

また, $n' \le n$ ならば

$$\tau^{\leq n'}(X) \to \tau^{\leq n}(X), \quad \tau^{\geq n'}(X) \to \tau^{\geq n}(X).$$

- - 2. 自然な射 $H^k(X) \to H^k(\tau^{\geq n}(X))$ は $k \geq n$ ならば同型であり,k < n では $H^k(X) = 0$ である.

注意 1.4. ホモトピー同値

1.4 写像錐

 \mathscr{C} を加法圏とし $f: X \to Y$ を $C(\mathscr{C})$ の射とする.

定義 1.5. f の写像錐 M(f) とは次で定まる $C(\mathscr{C})$ の対象である.

$$\begin{cases} M(f)^n = X^{n+1} \oplus Y^n, \\ d_{M(f)}^n = \begin{bmatrix} d_{X[1]}^n & 0 \\ f^{n+1} & d_Y^n \end{bmatrix} \end{cases}$$

射 $\alpha(f)$: $Y \to M(f)$ と $\beta(f)$: $M(f) \to X[1]$ を次で定める.

(1.4.1)
$$\alpha(f)^n = \begin{bmatrix} 0 \\ \mathrm{id}_{Y^n} \end{bmatrix},$$

$$\beta(f)^n = \begin{bmatrix} \mathrm{id}_{X^{n+1}} & 0 \end{bmatrix}.$$

コメント (4/24). 「どうして逆に $X \to M(f)$ や $M(f) \to Y$ じゃないんですか?」 例えば,逆に $\gamma^n \colon M(f)^n \to Y^n$ を $\begin{bmatrix} 0 & \mathrm{id}_{Y^n} \end{bmatrix}$ で定めようとしても,

$$\gamma^{n+1} \circ d_{M(f)}^n = \begin{bmatrix} 0 & \mathrm{id}_{Y^n} \end{bmatrix} \begin{bmatrix} d_{X[1]}^n & 0 \\ f^{n+1} & d_Y^n \end{bmatrix} = \begin{bmatrix} f^{n+1} & d_Y^n \end{bmatrix},$$
$$d_Y^n \circ \gamma^n = d_Y^n \circ \begin{bmatrix} 0 & \mathrm{id}_{Y^n} \end{bmatrix} = \begin{bmatrix} 0 & d_Y^n \end{bmatrix}$$

となり、両者は一致しない.したがって、 γ は複体の射にならない. $X \to M(f)$ も同様である. したがって、M(f) に対して定まる自然な射は α,β のようにせざるを得ない.

補題 1.6. 任意の $\mathbf{C}(\mathscr{C})$ の射 $f\colon N\to Y$ に対し、 $\phi\colon X[1]\to M(\alpha(f))$ で次の条件をみたすものが存在する.

- $1. \phi$ は $K(\mathscr{C})$ で同型である,
- 2. 次の図式は $K(\mathscr{C})$ で可換になる:

$$Y \xrightarrow{\alpha(f)} M(f) \xrightarrow{\beta(f)} X[1] \xrightarrow{-f[1]} Y[1]$$

$$\downarrow \operatorname{id}_{Y} \qquad \downarrow \operatorname{id}_{M(f)} \qquad \downarrow \phi \qquad \downarrow \operatorname{id}_{Y[1]}$$

$$Y \xrightarrow{\alpha(f)} M(f) \xrightarrow{\alpha(\alpha(f))} M(\alpha(f)) \xrightarrow{\beta(\alpha(f))} Y[1].$$

2023/05/01

1.5 三角圏

 \mathscr{C} を加法圏とし、 $T:\mathscr{C}\to\mathscr{C}$ を自己関手とする。 \mathscr{C} の三角とは射の列

$$X \to Y \to Z \to T(X)$$

のことである.

定義 1.7. 三角圏 $\mathscr C$ は次のデータ (1.5.1), (1.5.2) と規則 (TR0)–(TR5) からなる. 1.7 データ

- 加法圏 \mathscr{C} と自己関手 $T:\mathscr{C} \to \mathscr{C}$ の組,
- (1.5.2) 特三角 (distinguished triangle) の族.

規則 (TR0) 特三角に同形な三角は特三角である.

(TR1) 任意の対象 $X \in \mathscr{C}$ に対し, $X \xrightarrow{\mathrm{id}_X} X \longrightarrow 0 \longrightarrow T(X)$ は特三角である.

(TR2) $\mathscr C$ の任意の射 $f\colon X\to Y$ は特三角 $X\stackrel{f}{\to} Y\to Z\to T(X)$ に埋め込める. つまり $Z\in\mathscr C$ で $X\stackrel{f}{\to} Y\to Z\to T(X)$ が特三角となるものが存在する.

(TR3) $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} T(X)$ が特三角であることと $Y \xrightarrow{g} Z \xrightarrow{h} T(X) \xrightarrow{-T(f)} T(Y)$ が特三角であることは同値である.

(TR4) 2つの特三角 $X \xrightarrow{f} Y \to Z \to T(X), X' \xrightarrow{f'} Y' \to Z' \to T(X')$ に対し、可換図式

$$X \xrightarrow{f} Y$$

$$\downarrow u \qquad \qquad \downarrow v$$

$$X' \xrightarrow{f'} Y'$$

は特三角の射に埋め込める.

(TR5) (八面体公理). 3つの特三角

$$X \xrightarrow{f} Y \to Z' \to T(X),$$

 $Y \xrightarrow{g} Z \to X' \to T(Y),$
 $X \xrightarrow{g \circ f} Z \to Y' \to T(X)$

に対し,

1.6 圏の局所化

2 層コホモロジー

アーベル層の圏はアーベル圏になる. したがって層の導来圏が考えられる.

・⊗・の導来関手を考えたいが、テンソルに関する複体が有界になるとは限らないので、平坦分解 の長さが有限になるという仮定をおく.

2.1 弱大域次元

命題 **2.1.** *A* を環とする.

- 1. 自由加群は射影加群である.
- 2. 射影加群は自由加群の自由加群の直和因子である.
- 3. 射影加群は平坦加群である.
- 4. $n \ge 0$ を整数とする. 次の条件 (a)–(b)^{op} は同値である.
 - (a) 任意の j > n, $N \in \text{Mod}(A^{\text{op}})$, $M \in \text{Mod}(A)$ に対し、 $\text{Tor}_{i}^{A}(N, M) = 0$
 - (b) 任意の $M \in \text{Mod}(A)$ に対し、分解

$$0 \to P^n \to \cdots \to P^0 \to M \to 0$$
 $(P^j$ は平坦)

が存在する.

 $(b)^{op}$ 任意の $M \in \operatorname{Mod}(A^{op})$ に対し、分解

$$0 \to P^n \to \cdots \to P^0 \to M \to 0$$
 (P^j は平坦)

が存在する.

証明. 1. M を自由加群とする. 左 A 加群の全射 $q: N \rightarrow N'$ に対し,

$$q_* : \operatorname{Hom}_A(M, N) \to \operatorname{Hom}_A(M, N')$$
 in $\operatorname{Mod}(\mathbf{Z})$

が全射であることを示す. $\psi\colon M\to N'$ を A 加群の射とする. I を $M\cong A^{\oplus I}$ となる添字集合とすると任意の $m\in M$ は,M の生成系 (m_i) と $(a_i)_i\in A^{\oplus I}$ を用いて, $m=\sum_{i\in I}a_im_i$ とかける. このとき,

$$\psi(m) = \sum_{i} a_i \psi(m_i) \in N'$$

であり、g が全射なので、 $n \in N$ で

$$g(n) = \psi(m) = \sum_{i} a_i \psi(m_i), \quad \psi(m_i) = g(n_i)$$

となるものがある. この $(n_i)_i$ に対して, $\phi: M \to N$ を

$$\phi(m_i) = n_i$$

で定めると,

$$(g_*(\phi))(m_i) = g \circ \phi(m_i) = g(n_i) = \psi(m_i)$$

となる.

2. P を射影加群とする. 自由加群 $A^{\oplus I}$ と全射 p: $A^{\oplus I}$ \rightarrow P が存在する. 実際, I=P として, p を $p((a_x)_{x\in P})=\sum_{x\in P}a_xx$ と定めればよい. $Q=\operatorname{Ker} p$ とすると,

$$0 \to Q \hookrightarrow A^{\oplus I} \twoheadrightarrow P \to 0$$

は完全列である。このとき,P が射影加群であることから, id_P に対して, $u\colon P\to A^{\oplus I}$ で

$$p_*(u) = p \circ u = \mathrm{id}_P$$

となる者が存在する. したがって、上の完全列は分裂し、 $A^{\oplus I} \cong P \oplus Q$ となる.

3.

参考文献

[KS90] Masaki Kashiwara, Pierre Schapira, *Sheaves on Manifolds*, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990.

[KS06] Masaki Kashiwara, Pierre Schapira, *Categories and Sheaves*, Grundlehren der Mathematischen Wissenschaften, 332, Springer, 2006.

[Sh16] 志甫淳, 層とホモロジー代数, 共立出版, 2016.