# Probability

Isaac Akpor Adjei

October 1, 2020

#### Learning Objectives

After careful study of this chapter, you should be able to do the following:

- Understand and describe sample spaces and events
- Interpret probabilities and calculate probabilities of events
- Use permutations and combinations to count outcomes
- Calculate the probabilities of joint events
- Interpret and calculate conditional probabilities
- Determine independence and use independence to calculate probabilities
- Understand Bayes' theorem and when to use it
- Understand random variables

#### Random Experiment

- An experiment is a procedure that is
  - carried out under controlled conditions, and
  - executed to discover an unknown result.
- An experiment that results in different outcomes even when repeated in the same manner every time is a random experiment.

#### Sample Spaces

- The set of all possible outcomes of a random experiment is called the sample space, S.
- S is discrete if it consists of a finite or countable infinite set of outcomes.
- S is continuous if it contains an interval of real numbers.

## Example 2-1: Defining Sample Spaces

 Randomly select a camera and record the recycle time of a flash.

 $S = R^+ = \{x | x > 0\}$ , the positive real numbers.

 Suppose it is known that all recycle times are between 1.5 and 5 seconds. Then

$$S = \{x | 1.5 < x < 5\}$$
 is continuous.

 It is known that the recycle time has only three values(low, medium or high).

Then  $S = \{low, medium, high\}$  is discrete.

 Does the camera conform to minimum recycle time specifications?

$$S = \{yes, no\}$$
 is discrete.

#### Sample Space Defined By A Tree Diagram

Example 2-2: Messages are classified as on-time(o) or late(l). Classify the next 3 messages.

 $S = \{ooo, ool, olo, oll, loo, lol, llo, lll\}$ 



Figure 1

#### **Events are Sets of Outcomes**

- An event (E) is a subset of the sample space of a random experiment.
- Event combinations
  - The Union of two events consists of all outcomes that are contained in one event or the other, denoted as E₁ ∪ E₂.
  - The Intersection of two events consists of all outcomes that are contained in one event <u>and</u> the other, denoted as  $E_1 \cap E_2$ .
  - The Complement of an event is the set of outcomes in the sample space that are <u>not</u> contained in the event, denoted as E'.

#### Example 2-3 Discrete Events

Suppose that the recycle times of two cameras are recorded. Consider only whether or not the cameras conform to the manufacturing specifications. We abbreviate yes and no as y and no. The sample space is  $S = \{yy, yn, ny, nn\}$ .

Suppose,  $E_1$  denotes an event that at least one camera conforms to specifications, then  $E_1 = \{yy, yn, ny\}$ 

Suppose,  $E_2$  denotes an event that no camera conforms to specifications, then  $E_2 = \{nn\}$ 

Suppose,  $E_3$  denotes an event that at least one camera does not conform.

then  $E_3 = \{yn, ny, nn\},\$ 

- Then  $E_1 \cup E_3 = S$
- Then  $E_1 \cap E_3 = \{yn, ny\}$
- Then  $E_1' = \{nn\}$

#### **Example 2-4 Continuous Events**

Measurements of the thickness of a part are modeled with the sample space:  $S = R^+$ .

Let 
$$E_1 = \{x | 10 \le x < 12\}$$
,  
Let  $E_2 = \{x | 11 < x < 15\}$ 

- Then  $E_1 \cup E_2 = \{x | 10 \le x < 15\}$
- Then  $E_1 \cap E_2 = \{x | 11 < x < 12\}$
- Then  $E_1' = \{x | 0 < x < 10 \text{ or } x \ge 12\}$
- Then  $E_1' \cap E_2 = \{x | 12 \le x < 15\}$

#### Venn Diagrams

Events A & B contain their respective outcomes. The shaded regions indicate the event relation of each diagram.



Figure 2

## Mutually Exclusive Events

- Events A and B are mutually exclusive because they share no common outcomes.
- The occurrence of one event precludes the occurrence of the other.
- Symbolically,  $A \cap B = \phi$



Figure 3

#### Mutually Exclusive Events - Laws

Commutative law (event order is unimportant):

- 
$$A \cap B = B \cap A$$
 and  $A \cup B = B \cup A$ 

Distributive law (like in algebra):

- 
$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

- 
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

Associative law (like in algebra):

- 
$$(A \cup B) \cup C = A \cup (B \cup C)$$

- 
$$(A \cap B) \cap C = A \cap (B \cap C)$$

# Mutually Exclusive Events - Laws

- DeMorgan's law:
  - $(A \cup B)' = A' \cap B'$  The complement of the union is the intersection of the complements.
  - $(A \cap B)' = A' \cup B'$  The complement of the intersection is the union of the complements.
- Complement law:
  - (A')' = A.

## **Counting Techniques**

- There are three special rules, or counting techniques, used to determine the number of outcomes in events.
- They are :
  - Multiplication rule
  - Permutation rule
  - Combination rule
- Each has its special purpose that must be applied properly

   the right tool for the right job.

# Counting - Multiplication Rule

- Multiplication rule:
  - Let an operation consist of k steps and there are
    - n<sub>1</sub> ways of completing step 1,
    - n<sub>2</sub> ways of completing step 2, ... and
    - n<sub>k</sub> ways of completing step k.
  - Then, the total number of ways to perform k steps is:
    - $\bullet$   $n_1 \cdot n_2 \cdot \ldots \cdot n_k$

# Example 2-5 - Web Site Design

- In the design for a website, we can choose to use among:
  - 4 colors,
  - 3 fonts, and
  - 3 positions for an image.

How many designs are possible?

• Answer via the multiplication rule:  $4 \cdot 3 \cdot 3 = 36$ 

# Counting – Permutation Rule

- A permutation is a unique sequence of distinct items.
- If  $S = \{a, b, c\}$ , then there are 6 permutations
  - Namely: abc, acb, bac, bca, cab, cba (order matters)
- Number of permutations for a set of n items is n!
- $n! = n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 2 \cdot 1$
- $7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5,040 = FACT(7)$  in Excel
- By definition: 0! = 1

## Counting-Subset Permutations and an example

For a sequence of r items from a set of n items:

$${}^{n}P_{r} = n(n-1)(n-2)...(n-r+1) = \frac{n!}{(n-r)!}$$

- Example 2-6: Printed Circuit Board
- A printed circuit board has eight different locations in which a component can be placed. If four different components are to be placed on the board, how many designs are possible?
- Answer: Order is important, so use the permutation formula with n = 8, r = 4.

$${}^{8}P_{4} = \frac{8!}{(8-4)!} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4}{4!} = 8 \cdot 7 \cdot 6 \cdot 5 = 1,680$$

## Counting - Similar Item Permutations

- Used for counting the sequences when some items are identical.
- The number of permutations of:

$$n = n_1 + n_2 + \ldots + n_r$$
 items of which

 $n_1, n_2, ..., n_r$  are identical.

is calculated as:

$$\frac{n!}{n_1!n_2!...n_r!}$$

#### Example 2-7: Hospital Schedule

- In a hospital, an operating room needs to schedule three knee surgeries and two hip surgeries in a day. The knee surgery is denoted as k and the hip as h.
  - How many sequences are there?
     Since there are 2 identical hip surgeries and 3 identical knee surgeries, then

$$\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2 \cdot 1 \cdot 3!} = 10$$

- What is the set of sequences?

{ kkkhh, kkhkh, kkhhk, khkkh, khkkk, hkkkh, hkkhk, hkkkk, hhkkk }

## Counting - Combination Rule

- A combination is a selection of r items from a set of n where order does not matter.
- If  $S = \{a, b, c\}, n = 3$ , then
  - If r = 3, there is 1 combination, namely: abc
  - If r = 2, there are 3 combinations, namely ab, ac, and bc
- # of permutations ≥ # of combinations
- Since order does not matter with combinations, we are dividing the # of permutations by r!, where r! is the # of arrangements of r elements.

$${}^{n}C_{r}=\left(\begin{array}{c} n\\ r\end{array}\right)=\frac{n!}{r!(n-r)!}$$

## Example 2-8: Sampling w/o Replacement-1

- A bin of 50 parts contains 3 defectives and 47 non-defective parts. A sample of 6 parts is selected from the 50 without replacement. How many samples of size 6 contain 2 defective parts?
- First, how many ways are there for selecting 2 parts from the 3 defective parts?

$${}^3C_2=\frac{3!}{2!\cdot 1!}=3$$
 different ways

• In Excel: 3 = *COMBIN*(3, 2)

#### Example 2-8: Sampling w/o Replacement-2

 Now, how many ways are there for selecting 4 parts from the 47 non-defective parts?

$$^{47}C_4 = \frac{47!}{4! \cdot 43!} = \frac{47 \cdot 46 \cdot 45 \cdot 44 \cdot 43!}{4 \cdot 3 \cdot 2 \cdot 1 \cdot 43!} = 178,365$$
 different ways

• In Excel: 178,365 = COMBIN(47,4)

#### Example 2-8: Sampling w/o Replacement-3

- Now, how many ways are there to obtain:
  - 2 from 3 defectives, and
  - 4 from 47 non-defectives?

$${}^{3}C_{2}{}^{47}C_{4} = 3 \cdot 178,365 = 535095$$
 different ways.

- In Excel: 535,095 = COMBIN(3,2) \* COMBIN(47,4)

## Probability

- Probability is the likelihood or chance that a particular outcome or event from a random experiment will occur.
- In this chapter, we consider only discrete (finite or countably infinite) sample spaces.
- Probability is a number in the [0,1] interval.
- A probability of:
  - 1 means certainty
  - 0 means impossibility

#### Types of Probability

- Subjective probability is a "degree of belief."
  - Example: "There is a 50% chance that I'll study tonight."
- Relative frequency probability is based on how often an event occurs over a very large sample space.

Example: 
$$\lim_{n\to\infty} \frac{n(A)}{n}$$

# Probability Based on Equally-Likely Outcomes

- Whenever a sample space consists of N possible outcomes that are equally likely, the probability of each outcome is 1/N.
- Example: In a batch of 100 diodes, 1 is laser diode. A
  diode is randomly selected from the batch. Random
  means each diode has an equal chance of being selected.
  The probability of choosing the laser diode is 1/100 or
  0.01, because each outcome in the sample space is
  equally likely.

## Probability of an Event

- For a discrete sample space, the probability of an event E, denoted by P(E), equals the sum of the probabilities of the outcomes in E.
- The discrete sample space may be:
  - A finite set of outcomes
  - A countably infinite set of outcomes.

# Example 2-9: Probabilities of Events

- A random experiment has a sample space {a,b,c,d}.
   These outcomes are not equally-likely; their probabilities are: 0.1, 0.3, 0.5, 0.1.
- Let Event A = {a,b}, B = {b,c,d}, and C = {d}

- 
$$P(A) = 0.1 + 0.3 = 0.4$$

- 
$$P(B) = 0.3 + 0.5 + 0.1 = 0.9$$

$$-P(C)=0.1$$

- 
$$P(A') = 0.6$$
 and  $P(B') = 0.1$  and  $P(C') = 0.9$ 

- Since event 
$$A \cap B = \{b\}$$
, then  $P(A \cap B) = 0.3$ 

- Since event 
$$A \cup B = \{a, b, c, d\}$$
, then  $P(A \cup B) = 1.0$ 

- Since event 
$$A \cap C = \{null\}$$
, then  $P(A) = 0$ 

# **Axioms of Probability**

 Probability is a number that is assigned to each member of a collection of events from a random experiment that satisfies the following properties:

If S is the sample space and E is any event in the random experiment,

- P(S) = 1
- **2**  $0 \le P(E) \le 1$
- o For any two events  $E_1$  and  $E_2$  with  $E_1 \cap E_2 = \phi$ ,

$$P(E_1 \cup E_2) = P(E_1) + P(E_2)$$

- The axioms imply that:
  - $P(\phi) = 0$  and P(E') = 1 P(E)
  - If  $E_1$  is contained in  $E_2$ , then  $P(E_1) \leq P(E_2)$ .

#### Addition Rules

- Joint events are generated by applying basic set operations to individual events, specifically:
  - Unions of events,  $A \cup B$
  - Intersections of events, *A* ∩ *B*
  - Complements of events, A'
- Probabilities of joint events can often be determined from the probabilities of the individual events that comprise them.

## Example 2-10: Semiconductor Wafers

A wafer is randomly selected from a batch that is classified by contamination and location.

- Let H be the event of high concentrations of contaminants. Then P(H) = 358/940.
- Let C be the event of the wafer being located at the center of a sputtering tool. Then P(C) = 626/940.

- 
$$P(H \cap C) = 112/940$$

| Contamination | Location of Tool |      | Total |
|---------------|------------------|------|-------|
|               | Center           | Edge | IUlai |
| Low           | 514              | 68   | 582   |
| High          | 112              | 246  | 358   |
| Total         | 626              | 314  | 940   |

$$P(H \cup C) = P(H) + P(C) - P(H \cap C)$$
  
=  $(358 + 626 - 112)/940$ 

This is the addition rule.

#### Probability of a Union

For any two events A and B, the probability of union is given by:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

If events A and B are mutually exclusive, then

$$P(A \cap B) = \phi$$

and therefore:

$$P(A \cup B) = P(A) + P(B)$$

#### Addition Rule: 3 or More Events

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B)$$
$$-P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Note the alternating signs.

If a collection of events  $E_i$  are pairwise mutually exclusive; that is  $E_i \cap E_j = \phi$ , for all i, j

Then: 
$$P(E_1 \cup E_2 \cup ... \cup E_k) = \sum_{i=1}^k P(E_i)$$

# **Conditional Probability**

- P(B|A) is the probability of event B occurring, given that event A has already occurred.
- A communications channel has an error rate of 1 per 1000 bits transmitted. Errors are rare but do tend to occur in bursts. If a bit is in error, the probability that the next bit is also in error is greater than 1/1000.

#### Conditional Probability Rule

The conditional probability of an event B given an event A, denoted as P(B|A), is:
 P(B|A) = P(A ∩ B)/P(A) for P(A) >0.

- From a relative frequency perspective of n equally likely outcomes:
  - P(A) = (number of outcomes in A) / n
  - $P(A \cap B)$  = (number of outcomes in  $A \cap B$ ) / n
  - P(B|A) = number of outcomes in A ∩ B / number of outcomes in A

#### Example 2-11

There are 4 probabilities conditioned on flaws in the below table.

| Parts Classified |         |         |       |
|------------------|---------|---------|-------|
| Defective        | Surfac  | Total   |       |
| Delective        | Yes (F) | No (F') | Iolai |
| Yes (D)          | 10      | 18      | 28    |
| No (D')          | 30      | 342     | 372   |
| Total            | 40      | 360     | 400   |

$$P(F) = 40/400 \text{ and } P(D) = 28/400$$
  
 $P(D|F) = P(D \cap F)/P(F) = \frac{10}{400} / \frac{40}{400} = \frac{10}{40}$   
 $P(D'|F) = P(D' \cap F)/P(F) = \frac{30}{400} / \frac{40}{400} = \frac{30}{40}$   
 $P(D|F') = P(D \cap F')/P(F') = \frac{18}{400} / \frac{360}{400} = \frac{18}{360}$   
 $P(D'|F') = P(D' \cap F')/P(F') = \frac{342}{400} / \frac{360}{400} = \frac{342}{360}$ 

## Random Samples

- Random means each item is equally likely to be chosen. If more than one item is sampled, random means that every sampling outcome is equally likely.
  - 2 items are taken from  $S = \{a, b, c\}$  without replacement.
  - Ordered sample space:  $S = \{ab, ac, bc, ba, ca, cb\}$
  - Unordered sample space:  $S = \{ab, ac, bc\}$

#### Example 2-12: Sampling Without Enumeration

- A batch of 50 parts contains 10 made by Tool 1 and 40 made by Tool 2. If 2 parts are selected randomly\*,
  - a) What is the probability that the 2nd part came from Tool 2, given that the 1st part came from Tool 1?
    - $P(E_1)$ = P(1st part came from Tool 1) = 10/50
    - $P(E_2|E_1)$  = P(2nd part came from Tool 2 given that 1st part came from Tool 1) = 40/49
  - b) What is the probability that the 1st part came from Tool 1 and the 2nd part came from Tool 2?
    - $P(E_1 \cap E_2)$  = P(1st part came from Tool 1 and 2nd part came from Tool 2)=  $(10/50) \cdot (40/49) = 8/49$

\*Selected randomly implies that at each step of the sample, the items remain in the batch are equally likely to be selected.

## Multiplication Rule

 The conditional probability can be rewritten to generalize a multiplication rule.

$$P(A \cap B) = P(B|A) \cdot P(A) = P(A|B) \cdot P(B)$$

 The last expression is obtained by exchanging the roles of A and B.

# Example 2-13: Machining Stages

- The probability that a part made in the 1st stage of a machining operation meets specifications is 0.90. The probability that it meets specifications in the 2nd stage, given that met specifications in the first stage is 0.95.
  - What is the probability that both stages meet specifications?
- Let A and B denote the events that the part has met1st and 2nd stage specifications, respectively.
- $P(A \cap B) = P(B|A) \cdot P(A) = 0.95 \cdot 0.90 = 0.855$

#### Two Mutually Exclusive Subsets

- A and A' are mutually exclusive.
- $A \cap B$  and  $A' \cap B$  are mutually exclusive
- $\bullet B = (A \cap B) \cup (A' \cap B)$



Figure 4

#### **Total Probability Rule**

For any two events A and B  $P(B) = P(B \cap A) + P(B \cap A')$   $P(B|A) \bullet P(A) + P(B|A') \bullet P(A')$ 

#### Example 2-14: Semiconductor Contamination

Information about product failure based on chip manufacturing process contamination is given below. Find the probability of failure.

| Probability<br>of Failure | Level of<br>Contamination | Probability<br>of Level |  |
|---------------------------|---------------------------|-------------------------|--|
| 0.1                       | High                      | 0.2                     |  |
| 0.005                     | Not High                  | 0.8                     |  |

Figure 5

Let F denote the event that the product fails.

Let H denote the event that the chip is exposed to high contamination during manufacture. Then

- P(F|H) = 0.100 and P(H) = 0.2, so  $P(F \cap H) = 0.02$  P(F|H') = 0.005 and P(H') = 0.8, so  $P(F \cap H') = 0.004$
- $P(F) = P(F \cap H) + P(F \cap H')$  (Using Total Probability rule) = 0.020 + 0.004 = 0.024

#### Total Probability Rule (Multiple Events)

- A collection of sets  $E_1, E_{[2]}, ... E_k$  such that  $E_1 \cup E_2 \cup ... \cup Ek = S$  is said to be **exhaustive**.
- Assume E<sub>1</sub>, E<sub>2</sub>, ... E<sub>k</sub> are k mutually exclusive and exhaustive.

Then

$$\begin{split} P(B) &= P(B \cap E_1) + P(B \cap E_2 + ... + P(B \cap E_k \\ &= P(B|E_1) \cdot P(E_1) + P(B|E_2) \cdot P(E_2) + ... + P(B|E_k) \cdot P(E_k) \end{split}$$



Figure 6:  $B = (B \cap E_1) \cup (B \cap E_2) \cup (B \cap E_3) \cup (B \cap E_4)$ 

#### Example 2-15: Semiconductor Failures-1

Continuing the discussion of contamination during chip manufacture, find the probability of failure.

| Probability | Level of      | Probability |
|-------------|---------------|-------------|
| of Failure  | Contamination | of Level    |
| 0.100       | High          | 0.2         |
| 0.010       | Medium        | 0.3         |
| 0.001       | Low           | 0.5         |

Figure 7



P(Fail) = 0.02 + 0.003 + 0.0005 = 0.0235

Figure 8

#### Example 2-15: Semiconductor Failures-2

- Let F denote the event that a chip fails
- Let H denote the event that a chip is exposed to high levels of contamination
- Let M denote the event that a chip is exposed to medium levels of contamination
- Let L denote the event that a chip is exposed to low levels of contamination.

Using Total Probability Rule,

$$P(F) = P(F|H)P(H) + P(F|M)P(M) + P(F|L)P(L)$$

$$= (0.1)(0.2) + (0.01)(0.3) + (0.001)(0.5)$$

$$= 0.0235$$

## **Event Independence**

- Two events are independent if any one of the following equivalent statements is true:

  - ② P(B|A) = P(B)
- This means that occurrence of one event has no impact on the probability of occurrence of the other event.

#### Example 2-16: Flaws and Functions

Table 1 provides an example of 400 parts classified by surface flaws and as (functionally) defective. Suppose that the situation is different and follows Table 2. Let *F* denote the event that the part has surface flaws. Let *D* denote the event that the part is defective.

The data shows whether the events are independent.

| TABLE 1 Parts Classified |                                      | TABLE 2 Parts Classified (data chg'd) |          |               |            |                  |              |
|--------------------------|--------------------------------------|---------------------------------------|----------|---------------|------------|------------------|--------------|
|                          | Surface Flaws                        |                                       |          | Surface Flaws |            |                  |              |
| Defective                | Yes (F)                              | No(F')                                | Total    | Defective     | Yes(F)     | No (F')          | Total        |
| Yes (D)                  | 10                                   | 18                                    | 28       | Yes (D)       | 2          | 18               | 20           |
| No(D')                   | 30                                   | 342                                   | 372      | No(D')        | 38         | 342              | 380          |
| Total                    | 40                                   | 360                                   | 400      | Total         | 40         | 360              | 400          |
|                          |                                      |                                       |          |               |            |                  |              |
|                          | P(D F) =                             | 10/40 =                               | 0.25     |               | P(D F) =   | 2/40 =           | 0.05         |
|                          | P(D) =                               | 28/400 =                              | 0.10     |               | P(D) =     | 20/400 =         | 0.05         |
|                          |                                      |                                       | not same |               |            |                  | same         |
|                          | Events $D \& F$ are <b>dependent</b> |                                       |          | F             | events D & | F are <b>ind</b> | le pe nde nt |

#### Independence with Multiple Events

The events  $E_1, E_2, ..., E_k$  are independent if and only if, for any subset of these events:

$$P(E_{i1} \cap E_{i2} \cap ..., \cap E_{ik}) = P(E_{i1}) \cdot P(E_{i2}) \cdot ...(E_{ik})$$

## Example 2-17: Semiconductor Wafers

Assume the probability that a wafer contains a large particle of contamination is 0.01 and that the wafers are independent; that is, the probability that a wafer contains a large particle does not depend on the characteristics of any of the other wafers. If 15 wafers are analyzed, what is the probability that no large particles are found?

#### Solution:

Let  $E_i$  denote the event that the ith wafer contains no large particles,

$$i = 1, 2, ..., 15.$$

Then , 
$$P(E_i) = 0.99$$
.

The required probability is  $P(E_1 \cap E_2 \cap ... \cap E1_{15})$ .

From the assumption of independence,

$$P(E_1 \cap E_2 \cap ... \cap E_{15}) = P(E_1) \cdot P(E_2) \cdot ... \cdot P(E_{15})$$

$$= (0.99)^{15}$$

$$= 0.86.$$

# Bayes' Theorem

- Thomas Bayes (1702-1761) was an English mathematician and Presbyterian minister.
- His idea was that we observe conditional probabilities through prior information.
- Bayes' theorem states that,

$$P(A|B) = \frac{P(B|A) \bullet P(A)}{P(B)}$$
 for  $P(B) > 0$ 

#### Example 2-18

The conditional probability that a high level of contamination was present when a failure occurred is to be determined. The information from Example 2-14 is summarized here.

| Probability<br>of Failure | Level of<br>Contamination | Probability<br>of Level |  |
|---------------------------|---------------------------|-------------------------|--|
| 0.1                       | High                      | 0.2                     |  |
| 0.005                     | Not High                  | 0.8                     |  |

Figure 10

#### Solution:

Let F denote the event that the product fails, and let H denote the event that the chip is exposed to high levels of contamination. The requested probability is P(F).

$$P(H|F) = \frac{P(F|H) \cdot P(H)}{P(F)} = \frac{0.10 \cdot 0.20}{0.024} = 0.83$$

$$P(F) = P(F|H) \cdot P(H) + P(F|H') \cdot P(H')$$

$$0.1 \cdot 0.2 + 0.005 \cdot 0.8 = 0.024$$

#### Bayes Theorem with Total Probability

If  $E_1, E_2, ...Ek$  are k mutually exclusive and exhaustive events and B is any event,

$$\frac{P(E_1|B) = \frac{P(B|E_1)P(E_1)}{P(B|E_1)P(E_1) + P(B|E_2)P(E_2) + \dots + P(B|E_k)P(E_k)}$$

where 
$$P(B)>0$$

Note: Numerator expression is always one of the terms in the sum of the denominator.

# Example 2-19: Bayesian Network

A printer manufacturer obtained the following three types of printer failure probabilities. Hardware P(H) = 0.3, software P(S) = 0.6, and other P(O) = 0.1. Also, P(F|H) = 0.9, P(F|S) = 0.2, and P(F|O) = 0.5.

If a failure occurs, determine if it's most likely due to hardware, software, or other.

$$P(F) = P(F|H)P(H) + P(F|S)P(S) + P(F|O)P(O)$$

$$= 0.9(0.1) + 0.2(0.6) + 0.5(0.3) = 0.36$$

$$P(H|F) = \frac{P(F|H) \cdot P(H)}{P(F)} = \frac{0.9 \cdot 0.1}{0.36} = 0.250$$

$$P(S|F) = \frac{P(F|S) \cdot P(S)}{P(F)} = \frac{0.2 \cdot 0.6}{0.36} = 0.333$$

$$P(O|F) = \frac{P(F|O) \cdot P(O)}{P(F)} = \frac{0.5 \cdot 0.3}{0.36} = 0.417$$

Note that the conditionals given failure add to 1. Because P(O|F) is largest, the most likely cause of the problem is in the other category.

54/59

#### Random Variable and its Notation

- A variable that associates a number with the outcome of a random experiment is called a random variable.
- A random variable is a function that assigns a real number to each outcome in the sample space of a random experiment.
- A random variable is denoted by an uppercase letter such as X. After the experiment is conducted, the measured value of the random variable is denoted by a lowercase letter such as

x = 70 milliamperes. X and x are shown in italics, e.g., P(X = x).

#### Discrete Continuous Random Variables

- A discrete random variable is a random variable with a finite or countably infinite range. Its values are obtained by counting.
- A continuous random variable is a random variable with an interval (either finite or infinite) of real numbers for its range. Its values are obtained by measuring.

#### Examples of Discrete Continuous Random Variables

- Discrete random variables:
  - Number of scratches on a surface.
  - Proportion of defective parts among 100 tested.
  - Number of transmitted bits received in error.
  - Number of common stock shares traded per day.
- Continuous random variables:
  - Electrical current and voltage.
  - Physical measurements, e.g., length, weight, time, temperature, pressure.

# Important Terms Concepts of Chapter 2

- Addition rule
- Axioms of probability
- Bayes' theorem
- Combination
- Conditional probability
- Equally likely outcomes
- Event
- Independence
- Multiplication rule
- Mutually exclusive events
- Outcome
- Permutation

- Probability
- Random experiment
- Random variable
  - Discrete
  - Continuous
- Sample space
  - Discrete
  - Continuous
- Total probability rule
- Tree diagram
- Venn diagram
- With replacement
- Without replacement

# Thank you