MÉTHODE 1

Si l'équation est du type $\ln\left(u\left(x\right)\right) = \ln\left(v\left(x\right)\right)$

SITUATION

Une équation du type $\ln\left(u\left(x\right)\right) = \ln\left(v\left(x\right)\right)$ est résolue en faisant disparaître les logarithmes.

ÉNONCÉ

Résoudre sur ${\mathbb R}$ l'équation suivante :

$$\ln\left(2x-1\right) = \ln\left(1-x\right)$$

ETAPE 1

Déterminer le domaine de définition de l'équation

On détermine le domaine de définition de chaque logarithme pour obtenir le domaine de définition de l'équation.

APPLICATION

L'équation existe si et seulement si les deux conditions suivantes sont vérifiées :

$$\begin{cases} 2x - 1 > 0 \\ 1 - x > 0 \end{cases}$$

Soit:

$$\begin{cases} x > \frac{1}{2} \\ x < 1 \end{cases}$$

Le domaine de définition de l'équation est donc : $\left] rac{1}{2}; 1 \right[$.

ETAPE 2

Faire disparaître les logarithmes

On sait que:

$$\ln(u(x)) = \ln(v(x)) \Leftrightarrow u(x) = v(x)$$

APPLICATION

On a:

$$orall x \in \left] rac{1}{2}; 1
ight[$$
 , $\ln{(2x-1)} = \ln{(1-x)} \Leftrightarrow 2x-1 = 1-x$

ETAPE 3

Résoudre la nouvelle équation

On résout l'équation obtenue.

APPLICATION

Or, on a, pour tout réel x:

$$2x - 1 = 1 - x$$

$$\Leftrightarrow 3x = 2$$

$$\Leftrightarrow x = rac{2}{3}$$

ETAPE 4

Sélectionner les solutions incluses dans le domaine de définition

On ne sélectionne enfin que les solutions incluses dans le domaine de définition.

APPLICATION

On a bien $rac{2}{3} \in \left]rac{1}{2};1
ight[$. Finalement, l'ensemble des solutions de l'équation est :

$$S = \left\{ \frac{2}{3} \right\}$$

MÉTHODE 2

Si l'équation est du type $\ln (u(x)) = k$

SITUATION

Afin de résoudre une équation du type $\ln\left(u\left(x
ight)
ight)=k$, on utilise la fonction exponentielle.

ÉNONCÉ

Résoudre sur $\mathbb R$ l'équation suivante :

$$\ln\left(3x - 4\right) = 3$$

ETAPE 1

Déterminer le domaine de définition de l'équation

On détermine le domaine de définition de chaque logarithme pour obtenir le domaine de définition de l'équation.

APPLICATION

L'équation existe si et seulement si :

$$3x-4>0 \Leftrightarrow x>rac{4}{3}$$

Le domaine de définition de l'équation est donc : $\left]rac{4}{3};+\infty
ight[$.

ETAPE 2

Utiliser la fonction exponentielle pour faire disparaître le logarithme.

On sait que:

$$\ln\left(u\left(x
ight)
ight) = k \Leftrightarrow u\left(x
ight) = e^{k}$$

APPLICATION

On sait que:

$$orall x \in \left]rac{4}{3}; +\infty
ight [$$
 , $\ln{(3x-4)}=3 \Leftrightarrow 3x-4=e^3$

ETAPE 3

Résoudre la nouvelle équation

On résout l'équation obtenue.

APPLICATION

Or, on a, pour tout réel x:

$$3x - 4 = e^3$$

$$\Leftrightarrow 3x = e^3 + 4$$

$$\Leftrightarrow x = rac{e^3 + 4}{3}$$

ETAPE 4

Sélectionner les solutions incluses dans le domaine de définition

On ne sélectionne enfin que les solutions incluses dans le domaine de définition.

APPLICATION

On a bien
$$rac{e^3+4}{3}\in\left]rac{4}{3};+\infty
ight[$$
 . Finalement, l'ensemble des solutions de l'équation est :

$$S = \left\{rac{e^3+4}{3}
ight\}$$

MÉTHODE 3

Si l'équation est du type $a\left(\ln\left(x
ight)\right)^{2}+bln\left(x
ight)+c=0$

SITUATION

Afin de résoudre une équation du type $a\left(\ln\left(x\right)\right)^2+bln\left(x\right)+c=0$, on introduit le changement de variable $X=\ln\left(x\right)$ pour se ramener à une équation du second degré.

ÉNONCÉ

Résoudre sur ${\mathbb R}$ l'équation suivante :

$$(\ln(x))^2 + 2\ln(x) - 8 = 0$$

ETAPE 1

Poser
$$X = \ln{(x)}$$

On pose la nouvelle variable $X=\ln{(x)}$.

APPLICATION

On pose $X=\ln\left(x
ight)$.

ETAPE 2

Résoudre la nouvelle équation

On obtient une nouvelle équation de la forme $\,aX^2+bX+c=0\,.$ On résout cette équation.

APPLICATION

L'équation devient :

$$X^2 + 2X - 8 = 0$$

On reconnaît la forme d'une équation du second degré, dont on peut déterminer les racines à l'aide du discriminant :

$$\Delta = b^2 - 4ac$$

$$\Delta=2^2-4 imes1 imes(-8)$$

$$\Delta = 36$$

 $\Delta>0$, donc l'équation $X^2+2X-8=0$ admet deux solutions :

•
$$X_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-2 - \sqrt{36}}{2 imes 1} = -4$$

•
$$X_2=rac{-b+\sqrt{\Delta}}{2a}=rac{-2+\sqrt{36}}{2 imes 1}=2$$

Il arrive parfois que l'équation ne soit pas de la forme $\,aX^2+bX+C=0\,.$

ASTUCE

Quand c'est le cas, il faut se ramener à cette forme.

EXEMPLE

L'équation $aX+b+\frac{c}{X}=0$ n'est pas un trinôme du second degré. Pour tout réel X non nul .

$$aX + b + \frac{c}{X} = 0 \Leftrightarrow X\left(aX + b + \frac{c}{X}\right) = 0 \Leftrightarrow aX^2 + bX + c = 0$$

ETAPE 3

Appliquer l'exponentielle aux solutions pour revenir à la variable initiale

On exprime la variable initiale en fonction de la nouvelle variable : $x=e^{X}$.

Ainsi, pour chaque solution X_i , liée à la nouvelle variable, on détermine la solution correspondante liée à la variable initiale : $x_i=e^{X_i}$.

APPLICATION

On a
$$X_1=-4\,\,\mathrm{et}\,\,X_2=2\,.$$

On procède au changement de variable inverse en posant $\,x=e^X\,.\,$

On en déduit que :

•
$$x_1 = e^{-4}$$

•
$$x_2 = e^2$$

Finalement, l'ensemble des solutions de l'équation est :

$$S=\left\{ e^{-4};e^{2}
ight\}$$