1231

Time: 3 Hours |

Code: 15EE34T

| Max. Marks: 100

Register				
Number		,		

III Semester Diploma Examination, Nov./Dec. 2017

DIGITAL ELECTRONICS

Note	(i) Answer any six questions from Part – A. Each question carries 5 m (ii) Answer any seven questions from Part – B. Each question carries	
	PART - A	
1.	Define IC and list the advantages of IC over discrete components.	5
2.	Explain ASCII and gray codes.	FAICONSOLE!
3.	Write rules of Boolean algebra.	Diploma - [All Branches] Beta Console Sucation 3th
4.	Explain OR & NAND gates with logic diagram, Boolean function and truth	table. 5
5.	Define multiplexer. List its applications.	Diploma Question Papers [2015-19]
6.	Explain Half adder with block diagram, truth table and logic diagram using XOR gates.	Beta Console Education gHAND & 5
7.	Explain the operation of 4 bit SISO shift register.	5
8.	Explain the working of JK flip-flop using NAND gates.	5
9.	Explain CMOS interfacing with switch and LED.	5
	PART – B	
10.	(a) List the advantages and disadvantages of CMOS.	5
	(b) (i) Add (78) ₁₀ and (98) ₁₀ in Binary.	3
	(ii) (AC6) ₁₆ & (B59) ₁₆	2
	[1 of 2]	[Turn over

15E	E34T	[2 of 2] [1] [1231
11.	(a)	Perform binary subtraction using 2's complement and justify the answer. (i) (0100), from (1010) ₂
		(ii) (111001) ₂ from (100011) ₂
	(b)	Convert the following binary numbers into decimal equivalent. (i) 10101.101 ₂ 4
		(ii) 10110101 ₂
		D. C. V. 1.4 1
12.	(a) (b)	Define parity bit and mention its importance. State De-Morgan's theorem with equations. 5 5
13.	(a)	Simplify Boolean expression using K-map and draw the logic diagram.
-		$F = \overline{A} \overline{B} \overline{C} + \overline{A}B\overline{C} + ABC + A\overline{B}C$
	(b)	Explain the commutative and associative laws of Boolean algebra. 4 BETA CONSOLE!
14.	(a)	Explain the working of 10 line to 4 line priority encoder 74147.
	(b)	Define combinational logic circuit. Diploma - [All Branch
15.	(a)	Explain the working of 1: 4 DEMUX with block diagram, truth table and logic diagram.
	(b)	Explain seven segment display with a diagram. 5
16.	(a)	Explain the working of clocked RS flip-flop using NAND gates. Write the truth table. 6
	(b)	Define level and edge triggering.
17.	(a)	Explain the working of 4 bit binary asynchronous counter using JK flip-flops with block diagram, truth table and timing diagram. 8
	(b)	List the applications of counters. 2
10	(-)	Evaluing the growthing of 2 hit growth
18.	(a) (b)	Explain the working of 3 bit synchronous up counter. Define DAC & list the types. 6 4
	(0)	Define Dive to list the types.
	(a)	Explain the operation of successive approximation ADC with block diagram. 7 List the types of memories. 3
19.		