HW1

Q1

- 1.1 Harris corner detector is invariant to translation. Since a corner is a point whose local neighbourhood stands in two dominant and different edge directions. In other words, a corner can be interpreted as the junction of two edges, where an edge is a sudden change in image brightness. And since the corners describe 3D objects corners then the corners will remain the same even if we move our camera (translation)
- 1.2. Harris corner detector is invariant to rotation. Since a corner is a point whose local neighbourhood stands in two dominant and different edge directions. In other words, a corner can be interpreted as the junction of two edges, where an edge is a sudden change in image brightness. And since the corners describe 3D objects corners then the corners will remain the same even if we rotate our camera
- 1.3. Harris corner detector is not invariant to illumination. For image I with the derivatives I_{x} , I_{y}

And second derivatives matrix M . we know that for a change in the illumination we get that

$$I_{new} = a * I_{in} + b$$

>>

$$I_{x_new} = a * I_x$$
 $I_{y_{new}} = a * I_y \gg M_{new} = a^2 * M$

Hence, we get that the eigen values of M_{new} and response image R_{new} are also scaled by a factor of:

$$\lambda_{i_new} = a^2 * \lambda_i$$
 $R_{new} = a^4 * R$

And since the threshold remains the same then the response image we get after the change in illumination will not remain the same. Only for a=1 we will get that the Harris corner detector is invariant to illumination.

Q3

3.3 A Sobel operator calculates the partial gradients in the X and Y directions. The gradients would get high values on edges because they represent a shift in the frame colors (observed objects), for that the X and Y gradients would find the edges in the X and Y directions accordingly. The sobel operator uses a 3X3 kernel of the sort:

-1	0	1
-2	0	2
-1	0	1

For x. and:

1	2	1
0	0	0
-1	-2	-1

For y

Which are convolved with the original image to calculate approximations of the derivatives