Krzysztof Pszeniczny

nr albumu: 347208 str. 1/2 Seria: 2

Zadanie 1

Określmy operacje tak, aby odpowiadały one dodawaniu i mnożeniu modulo 3, przy przyjęciu, że $\alpha = 2$. Operacja dodawania:

	J		
+	0	1	а
0	0	1	а
1	1	a	0
a	а	0	1
_	•		•

Operacja mnożenia:

	0	1	a
0	0	0	0
1	0	1	a
а	0	a	1

Zauważmy teraz, że oba te działania są przemienne, istnieje element neutralny dodawania i element neutralny odejmowania, a także dla każdego elementu istnieje element przeciwny, a dla niezerowego elementu – element odwrotny.

Pozostaje sprawdzić łączność i rozdzielność, lecz jednak łatwo widać, że skoro zachodzą one w \mathbb{Z} , a branie reszty modulo 3 zachowuje te własności, to także w podanym wyżej zbiorze działania spełniają te własności.

Zadanie 2

Rozpatrzmy najpierw zbiór K wielomianów nad \mathbb{Q} , branych modulo wielomian $P(x) = x^3 - 7$. Twierdzę, że wraz z kanonicznymi operacjami mnożenia i dodawania wielomianów modulo wielomian tworzy on ciało. Oczywiście tworzy on pierścień przemienny z jedynką, gdyż dodawanie jest łączne i przemienne, istnieje zero oraz dla każdego elementu – element przeciwny. Tak samo mnożenie jest łączne i przemienne, a także rozdzielne względem dodawania oraz istnieje jedynka.

Wystarczy więc pokazać istnienie elementów odwrotnych. Najpierw zauważmy, że wielomian P jest nierozkładalny nad \mathbb{Q} , co wynika np. z kryterium Eisensteina dla p=7 albo faktu, że nie ma on pierwiastków wymiernych i jest stopnia trzeciego.

Weźmy więc jakiś niezerowy wielomian $Q(x) \in \mathbb{Q}[X]$ o stopniu mniejszym niż 3. Wtedy łatwo widać, że $\operatorname{NWD}(Q(x), P(x)) = 1$, a zatem rozszerzony algorytm Euklidesa ($\mathbb{Q}[X]$ jest pierścieniem euklidesowym) da nam wielomiany $K(x), L(x) \in \mathbb{Q}[X]$ takie, że $K(x) \cdot Q(x) + L(x) \cdot P(x) = 1$. Biorąc to modulo wielomian P(x) otrzymujemy równość w pierścieniu $K: K(x) \cdot Q(x) = 1$, a zatem K(x) jest odwrotnością wielomianu Q(x).

Stąd K jest ciałem. Pokażemy teraz, że zbiór V z zadania jest izomorficzny z K. Izomorfizm $\phi: K \to V$ zdefiniujemy jako: $\phi(Q) = Q(\sqrt[3]{7})$. Zauważmy, że istotnie jest on zgodny ze wszystkimi działaniami, trzeba jednak udowodnić, że jest bijekcją.

Dla każdego $x \in V$ z definicji V mamy, że $x = a + \sqrt[3]{7}b + (\sqrt[3]{7})^2c$, a więc istotnie $x = \phi(a + bx + cx^2)$, a więc jest to surjekcja.

Aby pokazać injektywność, załóżmy, że pewne $x = \varphi(a + bx + cx^2) = \varphi(t + ux + vx^2)$. Wtedy z liniowości φ , $0 = \varphi((a-t) + (b-u)x + (c-v)x^2)$. To zaś oznacza, że $x = \sqrt[3]{7}$ jest nad $\mathbb Q$ pierwiastkiem wielomianu $Z(x) = (a-t) + (b-u)x + (c-v)x^2 + kP(x)$. Jest on jednak także pierwiastkiem wielomianu P(x), a więc jest pierwiastkiem największego wspólnego dzielnika tych wielomianów, który jednak z nierozkładalności P(x) jest równy albo P(x) albo 1. W tym drugim przypadku mamy sprzeczność, w pierwszym zaś mamy, że P(x)|Z(x), a więc tak naprawdę, to w K mamy Z(x) = 0.

To zaś oznacza, że jednak φ jest injektywna, a więc jest izomorfizmem, a więc V jest ciałem.

Zadanie 3

Dowód. Możemy operacje dwuargumentowe na zbiorze {0,1} utożsamiać z operacjami logicznymi.

Zauważmy, że za pomocą działania | (które będę dalej nazywał NAND), można zdefiniować negację: istotnie $a|a\iff \neg a$. Za pomocą zaś negacji oraz NAND można zdefiniować koniunkcję: istotnie $\neg(a|b)\iff a\land b$. Za pomocą zaś negacji oraz koniunkcji można zdefiniować alternatywę korzystając z prawa De Morgana: $\neg(\neg a\land \neg b)\iff a\lor b$.

Krzysztof Pszeniczny nr albumu: 347208 str. 2/2 Seria: 2

Mając zaś koniunkcję oraz alternatywę możemy zdefiniować każdą funkcję wyrażoną w koniunktywnej postaci normalnej, w tym przypadku oznacza to, że: każdą funkcję $f:\{0,1\}^2 \to \{0,1\}$ możemy zapisać jako alternatywę koniunkcji. Dla każdej pary (A,B) dla której f(A,B)=1 piszemy odpowiednią koniunkcję warunków (np. jeśli f(0,1)=1, to piszemy $\neg a \land b$), a następnie łączymy wszystkie takie warunki alternatywą – takie wyrażenie będzie równoważne funkcji f.

Jest to istotnie funkcja f zapisana wyłącznie z użyciem koniunkcji, alternatywy i negacji, zaś wszystkie je można wyrazić za pomocą operacji NAND, stąd i funkcję f można tak wyrazić. Co więcej: ograniczenie f do tylko dwóch argumentów jest zbędne, takie samo rozumowanie (korzystając nadal z dwuargumentowego NAND) można przeprowadzić także dla funkcji o większej liczbie argumentów.

Zadanie 5

Dowód. Załóżmy, że dla działania \circ elementem neutralnym jest ϵ , a dla * jest to δ .

Wtedy mamy $\delta = \delta * \delta = (\epsilon \circ \delta) * (\delta \circ \epsilon) = (\epsilon * \delta) \circ (\delta * \epsilon) = \epsilon \circ \epsilon = \epsilon$, skąd możemy od tej pory pisać ϵ na wspólny obustronny element neutralny obu tych działań.

Mamy wtedy $a * b = (a \circ \epsilon) * (\epsilon \circ b) = (a * \epsilon) \circ (\epsilon * b) = a \circ b$, skąd istotnie są to takie same działania, będziemy więc na nie oba pisać *.

Mamy jednak: $a * b = (\varepsilon * a) * (b * \varepsilon) = (\varepsilon * b) * (a * \varepsilon) = b * a$, jest to więc działanie przemienne. Ponadto: $(a * b) * c = (a * b) * (\varepsilon * c) = (a * \varepsilon) * (b * c) = a * (b * c)$, jest to więc działanie łączne.

Zadanie 6

Część a

Dowód. Zauważmy, że b*a = (a*b)*(a*b) = ((b*a)*(b*a))*((b*a)*(b*a)). Jednak mamy także, że x* x = (x*x)*(x*x). Podstawiając x = b*a, otrzymujemy (b*a)*(b*a) = ((b*a)*(b*a))*((b*a)*(b*a)), ale jak już udowodniliśmy wyżej, jest to równe b*a. Stąd (b*a)*(b*a) = b*a, natomiast z założenia (b*a)*(b*a) = a*b, skąd a*b = b*a.

Część b

Dowód. Zauważmy, że skoro $b \in T$, to b = q * q dla pewnego $q \in S$. Z założenia mamy (q * q) * (q * q) = (q * q), co daje b * b = b. □

Część c

Dowód. Skoro $a, b \in T$, to z części b mamy a * a = a. Gwiazdkując prawostronnie to równanie przez b mamy (a * a) * b = a * b, ale z łączności działania mamy a * (a * b) = a * b. □

Część d

Dowód. Skoro T jest skończony, to można zapisać jego elementy w ciągu: x_1, x_2, \ldots, x_n . Wtedy oznaczmy $a = x_1 * x_2 * \ldots * x_n$ (z powodu łączności działania * jest to dobrze określone). Zauważmy teraz, że dla $b = x_k \in T$ mamy $a * b = (x_1 * \ldots * x_n) * x_k = x_1 * \ldots * x_{k-1} * x_{k+1} * \ldots * x_n * x_k * x_k$, jednak ponieważ $x_k * x_k = x_k$, to jest to równe $x_1 * \ldots * x_{k-1} * x_{k+1} * \ldots * x_n * x_k = a$.

Łatwo też widzimy, że jeśli $x, y \in T$, to x = t * t, y = u * u, a więc x * y = (t * t) * (u * u) = (t * u) * (t * u), skąd x * y też należy do T. Stąd, przez indukcję, mamy, że $a \in T$.

Część e

Dowód. Twierdzę, że szukane a jest równe temu a, które znaleźliśmy w części d. Zauważmy bowiem najpierw, że dla dowolnych $x, y \in S$: (x * y) * (x * y) = y * x = x * y, a więc $x * y \in T$.

Weźmy teraz $a \in T$ zdefiniowane jak wyżej oraz dowolne $b \in S$. Mamy wtedy a*(a*b) = a, gdyż $a*b \in T$. Z łączności mamy (a*a)*b = a, jednak z części drugiej a*a = a, skąd a*b = a.