

Vorlesung Grundlagen adaptiver Wissenssysteme

Prof. Dr. Thomas Gabel Frankfurt University of Applied Sciences Faculty of Computer Science and Engineering tgabel@fb2.fra-uas.de

Vorlesungseinheit 10

Repräsentation der Wertfunktion im Reinforcement Learning

Repräsentation der Wertfunktion im Reinforcement Learning

Lernziele

- Repräsentation der Pfadkosten bei sehr großen / kontinuierlichen Zustandsräumen
- typische Formen der Funktionsapproximation beim Reinforcement Lernen

Schwerpunkte

- Diskretisierung
- Bäume
- Lineare Modelle
- Neuronale Netze

Repräsentation der Wertfunktion im Reinforcement Learning

Überblick

Repräsentation der Wertfunktion im Reinforcement Learning

Überblick

- 1. Motivation
- 2. Diskretisierung
- 3. Regression
- 4. Bäume
- 5. Lineare Modelle
- 6. Basisfunktionen
- Instanzen- und fallbasierte Methoden
- 8. Neuronale Netze

Repräsentation der Pfadkosten $V(\cdot)$

Bis jetzt: Endliche Zustandsmengen $S = \{0, 1, ..., n\}$

 \Rightarrow V: eindimensionales Array der Länge n

 \Rightarrow *Q*: $n \times m$ -dimensionale Tabelle mit m = Anzahl der Aktionen

Repräsentation der Pfadkosten $V(\cdot)$

Bis jetzt: Endliche Zustandsmengen $S = \{0, 1, ..., n\}$

⇒ V: eindimensionales Array der Länge n

 \Rightarrow *Q*: $n \times m$ -dimensionale Tabelle mit m = Anzahl der Aktionen

Aber: Was, wenn n sehr gross (z.B. Backgammon: 10^{15}) oder S

einen kontinuierliche Wertebereich (Robotik, Regelungstechnik) hat?

- ⇒ Approximation der Wertfunktion
 - Diskretisierung
 - Funktionsapproximation durch Regression

Repräsentation der Wertfunktion im Reinforcement Learning

Überblick

- 1. Motivation
- 2. Diskretisierung
- 3. Regression
- 4. Bäume
- 5. Lineare Modelle
- 6. Basisfunktionen
- Instanzen- und fallbasierte Methoden
- 8. Neuronale Netze

Regelmäßige Diskretisierung

MountainCar

Eingaberaum ist zweidimensional:

x: Position

 \dot{x} : Geschwindigkeit

Ausgabe: V (Kostenfunktion,

Wertfunktion)

Zustandsraum wird regelmässig diskretisiert mit Auflösung (*m*, *n*) ⇒ Pfadkosten sind stückweise konstant

Unregelmäßige Diskretisierung

MountainCar

Tabelle

χ̈́					
	V(3)	V(4) V(5)	V(6)		
	V(2)	V(7)			
	V(1)	V(9)	V(10)		
	\/(o)	V(11)	V(13)	V(14)	
	V(0)	V(12)			
					x

Eingaberaum ist zweidimensional:

x : Position

 \dot{x} : Geschwindigkeit

Ausgabe: V (Kostenfunktion, Wertfunktion)

Individuelle Auflösung einzelner Bereiche des Zustandsraumes

⇒ Pfadkosten sind stückweise konstant

Diskussion (Diskretisierung)

Vorteile

- effiziente Datenstruktur (keine aufwendigen Berechnungen nötig)
- transparent (Inspektion der Tabelle möglich)
- theoretisch gut analysierbar

Diskussion (Diskretisierung)

Vorteile

- effiziente Datenstruktur (keine aufwendigen Berechnungen nötig)
- transparent (Inspektion der Tabelle möglich)
- theoretisch gut analysierbar

Nachteile

- hoher Speicherplatzbedarf ("Fluch der Dimensionen", "Curse of Dimensionality")
- geringe Generalisierungsleistung
- für praktische Probleme kaum einsetzbar

Adaptive Diskretisierungen (1)

MountainCar

Eingaberaum ist zweidimensional:

x: Position

 \dot{x} : Geschwindigkeit

Ausgabe: V (Kostenfunktion,

Wertfunktion)

Tabelle

Beginn mit sehr grober Diskretisierung ...

Adaptive Diskretisierungen (2)

MountainCar

Eingaberaum ist zweidimensional:

x : Position

 \dot{x} : Geschwindigkeit

Ausgabe: V (Kostenfunktion,

Wertfunktion)

Tabelle

... Verfeinerung nur in wichtigen Bereichen des Zustandsraumes

Adaptive Diskretisierungen (3)

MountainCar

Eingaberaum ist zweidimensional:

x : Position

 \dot{x} : Geschwindigkeit

Ausgabe: V (Kostenfunktion,

Wertfunktion)

Tabelle

Problem: Wann ist ein Zustandsbereich wichtig?

Repräsentation der Wertfunktion im Reinforcement Learning

Überblick

- 1. Motivation
- 2. Diskretisierung
- 3. Regression
- 4. Bäume
- 5. Lineare Modelle
- 6. Basisfunktionen
- 7. Instanzen- und fallbasierte Methoder
- 8. Neuronale Netze

Idee: Approximation von Datenpunkten durch Schätzen eines funktionalen Zusammenhangs

Idee: Approximation von Datenpunkten durch Schätzen eines funktionalen Zusammenhangs

Gegeben: Mustermenge

$$\textit{D} = \{(\bm{x}^1, \bm{t}^1), (\bm{x}^2, \bm{t}^2), \dots, (\bm{x}^P, \bm{t}^P)\}$$

mit

$$\mathbf{x} \in \mathbb{R}^n, \mathbf{t} \in \mathbb{R}^m$$

Idee: Approximation von Datenpunkten durch Schätzen eines funktionalen Zusammenhangs

Gegeben: Mustermenge

$$D = \{(\mathbf{x}^1, \mathbf{t}^1), (\mathbf{x}^2, \mathbf{t}^2), \dots, (\mathbf{x}^P, \mathbf{t}^P)\}\$$

mit

$$\mathbf{x} \in \mathbb{R}^n, \mathbf{t} \in \mathbb{R}^m$$

Annahme: $\mathbf{t}^i = f(\mathbf{x}^i) + \eta$, mit η Zufallsvariable, "Rauschen"

Gesucht: "Modell", d.h. eine Funktion $\mathbf{y}(\mathbf{x}, \mathbf{w})$, die f(.) möglichst genau approximiert. Dabei ist \mathbf{w} der Vektor der Parameter des Modells.

Beispiel:

Eingaberaum eindimensional, gesuchtes Modell sei eine Gerade

$$\mathbf{x} = x_1; \mathbf{w} = (a, b)$$

$$y(\mathbf{x}, \mathbf{w}) = ax_1 + b$$

Allgemein:

$$y(\mathbf{X}, \mathbf{W}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Repräsentation der Wertfunktion im Reinforcement Learning

Überblick

- 1. Motivation
- 2. Diskretisierung
- 3. Regression
- 4. Bäume
- 5. Lineare Modelle
- Basisfunktionen
- Instanzen- und fallbasierte Methoden
- 8. Neuronale Netze

Regressionsbäume

kd-Baum

Blätter werden mit Zielwerten verknüpft

⇒ Diskretisierung mit

Regressionsbäume

kd-Baum

Blätter werden mit Zielwerten verknüpft

⇒ Diskretisierung mit Baumstruktur

Lernen eines kd-Baumes

- Start mit Wurzelknoten
- Sukzessives Aufspalten der Blätter entlang von Dimensionen des Eingaberaumes
- Wann wird ein Blatt aufgespalten? (z.B. Varianz)

Diskussion (Regressionsbäume)

Vorteile

- adaptiert auf Komplexität des Problems
- informativ (Baumstruktur interpretierbar)
- funktioniert gut mit Ensemble-Techniken
- leistungsfähig auch für schwierige Probleme

Diskussion (Regressionsbäume)

Vorteile

- adaptiert auf Komplexität des Problems
- informativ (Baumstruktur interpretierbar)
- funktioniert gut mit Ensemble-Techniken
- leistungsfähig auch für schwierige Probleme

Nachteile

- gute Splitting-Kriterien schwer zu finden
- tiefe der Bäume ist unbeschränkt
- Ist auch nur eine Form der Diskretisierung ...

Repräsentation der Wertfunktion im Reinforcement Learning

Überblick

- 1. Motivation
- 2. Diskretisierung
- 3. Regression
- 4. Bäume
- 5. Lineare Modelle
- 6. Basisfunktionen
- 7. Instanzen- und fallbasierte Methoder
- 8. Neuronale Netze

Lineares Modell

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^n w_i x_i$$
$$= \mathbf{w}^T \mathbf{x}$$
$$\text{mit } \mathbf{x} = (1, x_1, x_2, \dots, x_n)^T, \mathbf{w} = (w_0, w_1, w_2, \dots, w_n)^T$$

Lineares Modell

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{n} w_i x_i$$
$$= \mathbf{w}^T \mathbf{x}$$
$$\text{mit } \mathbf{x} = (1, x_1, x_2, \dots, x_n)^T, \mathbf{w} = (w_0, w_1, w_2, \dots, w_n)^T$$

"Lernen": Suche "möglichst guten" Parametervektor, um die Daten zu beschreiben

Lineares Modell

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^n w_i x_i$$

= $\mathbf{w}^T \mathbf{x}$

mit
$$\mathbf{x} = (1, x_1, x_2, \dots, x_n)^T, \mathbf{w} = (w_0, w_1, w_2, \dots, w_n)^T$$

"Lernen": Suche "möglichst guten" Parametervektor, um die Daten zu beschreiben

Modell:

⇒ Methode der kleinsten Quadrate – Least-Squares-Methode

Lernen mit Least Squares

Fehler pro Muster: $e^{p}(\mathbf{w}) = (y(\mathbf{x}^{p}, \mathbf{w}) - t^{p})^{2}$

Gesamtfehler über alle Muster (Summenbildung):

$$E(\mathbf{w}) := \frac{1}{2} \sum_{p=1}^{P} e^{p}(\mathbf{w}) = \frac{1}{2} \sum_{p=1}^{P} (y(\mathbf{x}^{p}, \mathbf{w}) - t^{p})^{2}$$

Lernen mit Least Squares

Fehler pro Muster: $e^{\rho}(\mathbf{w}) = (y(\mathbf{x}^{\rho}, \mathbf{w}) - t^{\rho})^2$

Gesamtfehler über alle Muster (Summenbildung):

$$E(\mathbf{w}) := \frac{1}{2} \sum_{p=1}^{P} e^{p}(\mathbf{w}) = \frac{1}{2} \sum_{p=1}^{P} (y(\mathbf{x}^{p}, \mathbf{w}) - t^{p})^{2}$$

Gesucht ist w* mit

$$\mathbf{w}^* = \operatorname{arg\,min}_{\mathbf{w}} E(\mathbf{w}) = \operatorname{arg\,min}_{\mathbf{w}} \frac{1}{2} \sum_{p=1}^{P} (y(\mathbf{x}^p, \mathbf{w}) - t^p)^2$$

Informell: Suche denjenigen Vektor w, der den Abstand der Ausgabe zu den Zielwerten minimiert.

Lernen mit Least Square

Bestimmung von w:

Für das lineare Modell gibt es eine eindeutige Lösung, die man direkt berechnen kann.

Ansatz: Nullsetzen der Ableitung (notwendige Bedingung für ein Minimum (in diesem Fall auch hinreichend)), ergibt schließlich:

$$\mathbf{w}^* := (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{t}$$

mit

$$\mathbf{X} = \begin{pmatrix} (\mathbf{x}^1)^T \\ \vdots \\ (\mathbf{x}^p)^T \end{pmatrix} \tag{1}$$

und
$$\vec{t} = (t^{(1)}, \dots, t^{(p)})^T$$

Repräsentation der Wertfunktion im Reinforcement Learning

Überblick

- 1. Motivation
- 2. Diskretisierung
- 3. Regression
- 4. Bäume
- 5. Lineare Modelle
- 6. Basisfunktionen
- 7. Instanzen- und fallbasierte Methoden
- 8. Neuronale Netze

Basisfunktionen (Features)

Transformation der Eingabedaten

- Eingaben: $\mathbf{x} \in \mathbb{R}^n$
- m nichtlineare Basisfunktionen: $\phi_i : \mathbb{R}^n \to \mathbb{R}$
- Merkmalsvektor (Feature-Vektor): $\Phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), ..., \phi_m(\mathbf{x}))$
- Lineares Modell: $y(\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{m} \phi_i(\mathbf{x}) \mathbf{w}_i = \mathbf{w}^T \Phi(\mathbf{x})$

Basisfunktionen (Features)

Transformation der Eingabedaten

- Eingaben: $\mathbf{x} \in \mathbb{R}^n$
- *m* nichtlineare Basisfunktionen: $\phi_i : \mathbb{R}^n \to \mathbb{R}$
- Merkmalsvektor (Feature-Vektor): $\Phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), ..., \phi_m(\mathbf{x}))$
- Lineares Modell: $y(\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{m} \phi_i(\mathbf{x}) \mathbf{w}_i = \mathbf{w}^T \Phi(\mathbf{x})$

Vorteile

- Darstellung von nichtlinearen Zusammenhängen durch lineares Modell
- Extraktion von Zusammenhängen in Eingabedaten
- Einbringung von Vorwissen

Cerebellar Model Articulation Controller (CMAC, 1)

auch bekannt unter "Tile Coding"

Eigenschaften

- stark vereinfachtes Modell eines neuronalen Netzes inspiriert durch ein Modell des Kleinhirns bei Säugetieren
- als Funktionsapproximator erstmalig vorgeschlagen durch James Albus (1975)
- berechnet eine Funktion $f(x_1, ..., x_n)$ mit n als Anzahl der Dimensionen
- der n-dimensionale Eingaberaum wird in Hyper-Rechtecke zerlegt (in 2D: Rechtecke), jedes davon wird mit einer Speicherzelle assoziiert
- Inhalte dieser Speicherzellen = Gewichte (also das, was gelernt bzw. angepasst werden soll)

Cerebellar Model Articulation Controller (CMAC, 2)

Besonderheiten

- mehr als eine Diskretisierung des Eingaberaumes wird verwendet
- typisch: mehrere (*m*), leicht zueinander versetzte Gitter
- Ergebnis: jeder Punkt wird mit *m* Hyper-Rechtecke / Speicherzellen assoiziiert
- Ausgabe des CMAC ist die arithmetische Summe der Gewichte der Speicherzellen, die durch einen Punkt des Eingaberaumes aktiviert wurden.
- typischerweise: Gewichtsvektor w bezeichnet die Gesamtheit aller Gewichte (sämtliche Gitter)

Cerebellar Model Articulation Controller (CMAC, 3)

Jede Zelle z_i wird repräsentiert durch ein binäres Feature ϕ_i :

$$\mathbf{x} \in z_i \Leftrightarrow \phi_i(\mathbf{x}) = 1$$

$$\mathbf{x} \notin z_i \Leftrightarrow \phi_i(\mathbf{x}) = 0$$

 \Rightarrow Feature ϕ_i zeigt an, ob Eingabe **x** in Zelle z_i fällt

Darauf aufbauend: Lineares Modell

$$y(\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{m} \phi_i(\mathbf{x}) \mathbf{w}_i$$

Cerebellar Model Articulation Controller (CMAC, 4)

Wie entsteht Generalisierung?

- Wert für jeden Punkt des Eingaberaums wird in verteilter Art und Weise gespeichert
- Wert für jeden Punkt des Eingaberaums wird durch mehrere Speicherzellen beeinflusst

Cerebellar Model Articulation Controller (CMAC, 5)

Lernen der Werte der Speicherzellen:

Für ein einzelnes Trainingsdatum (\mathbf{x} , \mathbf{t}) mit $\mathbf{x} = (x_1, \dots, x_n)$ erfolgt eine Aktualisierung für sämtliche Gewichte (Einträge in den Gitterzellen) wie folgt:

$$w_i' = \begin{cases} w_i + \frac{\alpha}{m} (\mathbf{t} - y(\mathbf{x}, \mathbf{w})) & \text{if } \phi_i(\mathbf{x}) = 1 \\ w_i & \text{if } \phi_i(\mathbf{x}) = 0 \end{cases}$$

wobei α die Lernrate repräsentiert und m für die Anzahl aktivierter Zellen (Anzahl der Gitter, $\sum_{i} \phi_{i}(\mathbf{x})$) steht.

Radiale Basisfunktionen

RBF-Netzwerke: Wahl von speziellen Basisfunktionen:

Gaussfunktion

$$\phi_i(\mathbf{x}) = \exp(\frac{||\mathbf{x} - \mu_i||^2}{2\sigma_i^2})$$

Erwartungswert (Mittel) : μ_i

Varianz (Streuung) : σ_i

- \Rightarrow Basisfunktionen repräsentieren Bereiche (Cluster) im Eingaberaum
- ⇒ Überlegung: Überlappung der Verteilungen bewirkt gute Generalisierung
- \Rightarrow Lineares Modell: $y(\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{m} \phi_i(\mathbf{x}) \mathbf{w}_i$

Repräsentation der Wertfunktion im Reinforcement Learning

Überblick

- 1. Motivation
- 2. Diskretisierung
- 3. Regression
- 4. Bäume
- 5. Lineare Modelle
- 6. Basisfunktionen
- 7. Instanzen- und fallbasierte Methoden
- 8. Neuronale Netze

Instanzen- und fallbasierte Methoden

Kernideen:

- Abspeichern von
 Datenpunkten über den gesamten Zustandsraum verteilt
- Suche nach nächsten Nachbarn

- \Rightarrow Thema wird in der Vorlesung "Fortgeschrittene Aspekte adaptiver Wissenssysteme" vertieft
- ⇒ Schwerpunktgebiet "Fallbasiertes Schließen" (Case-Based Reasoning, CBR)

Repräsentation der Wertfunktion im Reinforcement Learning

Überblick

- 1. Motivation
- 2. Diskretisierung
- 3. Regression
- 4. Bäume
- 5. Lineare Modelle
- Basisfunktionen
- 7. Instanzen- und fallbasierte Methoden
- 8. Neuronale Netze

Neuronale Netze: Das Multi-layer Perzeptron (MLP)

Einfaches Perzeptron:

Idee: Hintereinanderschaltung vieler Neuronen

Überwachtes Lernen im MLP

Aufgabenstellung:

- \blacksquare gegeben: Trainingsmenge D aus Musterpaaren ($\mathbf{x}^i, \mathbf{t}^i$)
- gesucht: Geeignete Gewichte wij

Überwachtes Lernen im MLP

Aufgabenstellung:

- gegeben: Trainingsmenge *D* aus Musterpaaren ($\mathbf{x}^i, \mathbf{t}^i$)
- gesucht: Geeignete Gewichte wij

Lösung:

Minimierung einer Fehlerfunktion *E* durch Gradientenabstieg:

Gesamtfehlerfunktion

$$E(\mathbf{w}) := \frac{1}{2} \sum_{p=1}^{P} (y(\mathbf{x}^{p}, \mathbf{w}) - t^{p})^{2}$$

Gewichtsanpassung

$$w_{ij}^{neu} := w_{ij}^{alt} - \alpha \frac{\partial E(\mathbf{w})}{\partial w_{ii}}$$

■ Berechnung $\frac{\partial E}{\partial w_n}$: Backpropagation \Rightarrow VL ML

Aufbau eines Neurons

Bezeichnungen

- Neuron, Unit i
- k ankommende Gewichte von Neuron j zu Neuron $i: w_{i1}, \ldots, w_{ij}, \ldots, w_{ik}$

Aufbau eines Neurons

Bezeichnungen

- Neuron, Unit i
- k ankommende Gewichte von Neuron j zu Neuron i: $w_{i1}, \ldots, w_{ij}, \ldots, w_{ik}$
- Netzeingabe (interne Aktivierung):

$$net_i := \sum_{j=0}^n w_{ij} s_j$$

Modell:

Aufbau eines Neurons

Bezeichnungen

- Neuron, Unit i
- k ankommende Gewichte von Neuron j zu Neuron i: w_{i1},..., w_{ij},..., w_{ik}
- Netzeingabe (interne Aktivierung):

$$net_i := \sum_{j=0}^n w_{ij} s_j$$

Modell:

Aktivierung bzw. Ausgabewert von Neuron $i s_i := f_{sig}(net_i)$ mit f_{sig} : Aktivierungsfunktion

Die Aktivierungsfunktion (1)

Motivation: Die Schwellwertfunktion f_{step} wird angenähert durch eine differenzierbare, monton wachsende Funktion. Hier haben sich die sogenannten Sigmoidfunktionen durchgesetzt.

$$f_{sig}(z) = \frac{1}{1 + e^{-az}}$$

Die Aktivierungsfunktion (2)

Eigenschaften

- differenzierbar, streng monoton wachsend, Wertebereich zwischen 0 und 1 (manchmal auch durch einfache Transformation zwischen -1 und 1)
- für kleines a einen fast linearen mittleren Bereich

Die Aktivierungsfunktion (2)

Eigenschaften

- differenzierbar, streng monoton wachsend, Wertebereich zwischen 0 und 1 (manchmal auch durch einfache Transformation zwischen -1 und 1)
- für kleines a einen fast linearen mittleren Bereich
- für grosses a nähert sich f_{sig} einer Schwellwertfunktion an
- In der Praxis wird der Parameter a nicht explizit verwendet; man kann zeigen, dass dieser sich durch entsprechende Wahl des Gewichtsvektors (Parametervektors) w ausdrücken lässt
- tanh und ReLU als weitere populäre Aktivierungsfunktionen

Lernen im MLP (1)

Probleme / Herausforderungen:

- Es gibt viele Parameter / Gewichte, um die Gesamtfunktion zu ändern, d.h. viele Freiheitsgrade.
- Wo muss wieviel gedreht werden, um alle Muster gleich gut zu lernen?
 - Leider: Es existiert keine eindeutige analytische Lösung wie im linearen Fall.

Lösung: Funktionsminimierung durch Gradientenabstieg

Lernen im MLP (2)

Lösung: Funktionsminimierung durch Gradientenabstieg

$$\begin{cases} \text{ wenn } E'(x) > 0 &, \text{ verkleinere } x \\ \text{wenn } E'(x) < 0 &, \text{ vergrössere } x \\ \text{wenn } E'(x) = 0 &, \text{ lokales Minimum gefunden} \end{cases}$$

oder

$$x_{neu} := x_{alt} - \alpha E'(x_{alt})$$

mit $\alpha > 0$ 'Lernrate'

Lernen der Netzgewichte

Gesamtfehlerfunktion

$$E(\mathbf{w}) := \frac{1}{2} \sum_{p=1}^{P} (y(\mathbf{x}^{p}, \mathbf{w}) - t^{p})^{2}$$

Gewichtsanpassung

$$w_{ij}^{neu} := w_{ij}^{alt} - \alpha \frac{\partial E(\mathbf{w})}{\partial w_{ij}}$$

vektorielle Schreibweise

$$\mathbf{w}^{neu} := \mathbf{w}^{alt} - \alpha \nabla E(\mathbf{w})$$

Lernen der Netzgewichte

mit

$$\nabla E(\mathbf{w}) = (\frac{\partial E(\mathbf{w})}{\partial w_1}, \frac{\partial E(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial E(\mathbf{w})}{\partial w_n})^T$$

Gradient von E(.) an der Stelle w_{alt}

Vorteil: Berechnung des Gradienten ist möglich: Backpropagation

⇒ Lernen im MLP = Gradientenabstieg

MLPs zur Repräsentation der Q-Funktion

Parameter des MLPs

- Codierung der Eingangsvariablen (Zustand)
 - Merkmale (Features)
- Skalierung der Eingangsvariablen
- Anzahl der verborgenen Neuronen
- Lernrate(n)

Zusammenfassung

- Funktionsapproximatoren zur Repräsentation von Pfadkosten bei sehr grossen/ in kontinuierlichen Zustandsräumen
- Idee: Beschreibung einer möglicherweise sehr großen Menge möglicher Eingaben durch eine begrenzte Anzahl von Parametern einer Funktion
- Diskretisierungen, Regressionsbäume
- Lineare Modelle mit Erweiterung durch Basisfunktionen
- instanzenbasierte (fallbasierte) Techniken
- neuronale Netze, Typ Multi-Layer-Perzeptron als nichtlineare Funktionsapproximatoren: Gradientenabstiegsverfahren zur Einstellung der Gewichte
- V-Funktion: Eingabe: Zustand
- Q-Funktion: Eingabe: Zustand + Aktion
- Wichtig: Codierung + Merkmale (Features)