Using Position-Time graphs to find Acceleration.

<u>Problem</u>: Jennifer sprints and accelerates from rest to her top speed in 8.0 seconds with a displacement of 20 m [E]. Table 2 contains the position-time data from the starting position. Graph Jennifer's position-time data

Table:

t (s)	<i>d</i> (m [E])
0.0	0.00
2.0	1.25
4.0	5.00
6.0	11.25
8.0	20.00

What can you conclude about position-time graphs of objects that accelerate uniformly? What is their shape? Write a concluding sentence below.

When an object accelerates uniformly the position-time graph...

Recall: The slope of a position time graph yields velocity. If the slope of the line on the position-time graph is gradually increasing, the velocity is also gradually increasing hence undergoing acceleration. To find the slope of a curved line at a particular instant we draw the tangent at that instant. The slope of the tangent at that instant gives the instantaneous velocity at that instant.

Show your calculationshere:

Write a concluding sentence about velocity-time graphs that undergo uniform acceleration.

When an object accelerates uniformly the velocity-time graph...

The acceleration of Jennifer can be determined from the slope of the velocity-time graph.

$$slope = \frac{rise}{run} = \frac{\overrightarrow{\Delta v}}{\Delta t} = acceleration$$

Graph Jennifer's acceleration-time graph below.

Show your calculation here:

What additional information can we determine from the velocity and acceleration-time graphs?

Find the area under the velocity-time graph.

Find the area under the acceleration-time graph.

Write a concluding sentence about the relationship between all graphs below.

Graphs for Uniform Acceleration- Graphing Package #2

Sample Problem: Analyzing a Position-Time Graph for Uniform Acceleration

The following position-time graph shows the motion of a car accelerating from rest.

- i) Determine the instantaneous velocities at t= 4.0s, 8.0s and 12.0 s.
- ii) Plot these velocities on the velocity-time graph and draw a best-fit line.
- iii) Find the slope of the best-fit line on the velocity-time graph and draw the corresponding acceleration-time graph.

Graphs for Uniform Acceleration- Graphing Package #2

SPH3U0

Analyzing a V-T Graph for Non-Uniform Motion

The graph below shows the motion of a soccer player running east and west on a field during a play. Use the graph to answer the questions below.

1) What is the velocity at:

4.0 s?	7.0 s?	10.0 s?	14.0 -2	20.0.2
4.0 3.	7.0 5:	10.035	14.0 s?	20.0 s?

- 2) a) Over what time intervals is the player running at a constant velocity?
- b) Over what time intervals is the player running east?
- c) Over what time intervals is the player running west?

3) To find acceleration you take the	of the v-t graph!
Determine the acceleration over th	o following intervals.

0 6 0 6	6000			
0-6.0 s:	6.0-9.0 s:	9.0s -12.0 s:	12.0s - 17.0 s:	17.0s -22.0s:
				17.03 22.03.
				!
2.5				
		1		

4) To find the displacement over each time interval, you find the _______ between the graph and the x-axis!

ritiu the displaceme	nt over each time	interval:			
0-6.0 s:	6.0-9.0 s:	9.0s -11.0 s:	11.0s -12.0 s:	12.0s – 17.0 s:	17.0s -22.0s:

⁵⁾a) Find the player's resultant displacement. (Hint: Add up all of the displacements!)