sabinaHSBM: An R package for link prediction and network reconstruction using Hierarchical Stochastic Block Models Supplemetary material

Herlander Lima, Jennifer Morales-Barbero, Ruben G. Mateo, Ignacio Morales-Castilla, Miguel A. Rodríguez

Table S1. Results of reconstruction for each fold on the Carnivora dataset

Fold	AUC	Threshold	Nr. Held-out	Pred. held-out ones	Total pred. ones
1	0.99	0.0015	178	0.47	3267
2	0.98	0.0016	178	0.37	2775
3	0.99	0.0022	178	0.35	2542
4	0.99	0.002	178	0.42	3084
5	0.99	0.0016	178	0.45	3119
6	0.99	0.0024	179	0.3	2698
7	0.99	0.0019	178	0.33	2533
8	0.99	0.0019	178	0.46	3185
9	0.99	0.0015	179	0.37	2696
10	0.99	0.001	179	0.42	3214
Average	0.99	0.0018		0.39	2911.3

Table S2. Literature search for most probable interactions

Host	Parasite	Prob	SD	Evidence	Ref
Neovison vison	Mesocestoides lineatus	0.19	0.27	Confirmed	[1]
Lynx rufus	Carnivore protoparvovirus 1	0.12	0.31	Confirmed	[2]
Procyon lotor	Yersinia pestis	0.08	0.08	Confirmed	[3]
Meles meles	Eucoleus aerophilus	0.06	0.06	Confirmed	[4]
Lynx rufus	Felid alphaherpesvirus 1	0.06	0.04	Plausible. Artificial innoculation resulted in asymptomatic infection.	[5]
Procyon lotor	Ctenocephalides felis	0.04	0.07	Confirmed	[6]
Nyctereutes procyonoides	Capillaria aerophila	0.03	0.03	Confirmed for parasite synonym name Eucoleus aerophilus	[7]
Lutra lutra	Molineus patens	0.03	0.03	Confirmed	[8]
Nyctereutes procyonoides	Toxoplasma gondii	0.03	0.02	Confirmed	[9]
Neovison vison	Macracanthorhynchus catulinus	0.03	0.02	No evidence found. Infection of other members of Mustela genus.	[10]

Table S3. Mean phylogenetic distance for grouping levels found for hosts during Hierarchical Stochastic Block Model inference for fold 6 on the Carnivora dataset. Results shown for groups with at least 10 hosts.

Level	Nr hosts	Obs.	Null mean	Null sd	p	p<0.05
Level 1 (nr groups: 12))					
	32	102.419	101.427	2.051	0.658	
	19	61.710	101.105	3.233	0.001	*
	22	103.088	101.117	3.093	0.722	
	10	82.213	101.315	5.834	0.012	*
	15	88.617	101.086	4.256	0.017	*
Level 2 (nr groups: 4)						
	69	99.232	101.237	1.051	0.048	*
	27	61.427	101.399	2.535	0.001	*
	39	83.234	101.239	1.899	0.001	*
Level 3 (nr groups: 2)						
	135	100.806	101.270	0.188	0.019	*
	135	100.806	101.265	0.193	0.022	*

Table S4. Mean nearest taxon distance for grouping levels found for hosts during Hierarchical Stochastic Block Model inference for fold 6 on the Carnivora dataset. Results shown for groups with at least 10 hosts.

Level	Nr hosts	Obs	Null mean	Null sd	p	p<0.05
Level 1 (nr groups: 12)						
	32	26.387	25.398	3.174	0.620	
	19	23.968	31.780	5.432	0.071	
	22	28.264	29.522	4.532	0.400	
	10	22.180	44.478	9.931	0.010	*
	15	25.960	35.653	6.930	0.074	
Level 2 (nr groups: 4)						
	69	19.928	18.861	1.454	0.770	
	27	22.459	26.962	3.708	0.114	
	39	15.087	23.512	2.592	0.001	*
Level 3 (nr groups: 2)						
	135	15.216	15.341	0.266	0.303	
	135	15.216	15.357	0.242	0.263	

Table S5. Mean phylogenetic distance of inferred groupings compared to null model. G1, G2, G3, G4 are the grouping levels. In each level the numbers refer to how many inferred grouping were found to be significant (p < 0.05) compared to a null model, over all groupings with more than 10 taxa. So 2/4 means that two inferred groupings were found to be significantly clustered on a total of 4 inferred groupings with more than 10 taxa.

Fold	G1	G2	G3	G4
1	3/6	2/3	1/1	1/1
2	2/5	2/3	0/1	NA
3	2/4	3/4	0/1	0/1
4	2/4	1/3	0/1	NA
5	2/4	4/4	1/1	NA
6	3/5	3/3	1/1	1/1
7	5/6	2/3	0/1	NA
8	2/5	3/3	0/1	NA
9	2/4	2/3	0/1	NA
10	3/5	4/4	0/1	NA
Average	0.53	0.78	0.3	0.67

Table S6. Mean nearest taxon distance of inferred groupings compared to null model. G1, G2, G3, G4 are the grouping levels. In each level the numbers refer to how many inferred grouping were found to be significant (p < 0.05) compared to a null model, over all groupings with more than 10 taxa. So 2/4 means that two inferred groupings were found to be significantly clustered on a total of 4 inferred groupings with more than 10 taxa.

Fold	$\mathbf{G1}$	G2	$\mathbf{G3}$	G4
1	0/6	1/3	0/1	0/1
2	0/5	0/3	0/1	NA
3	0/4	1/4	0/1	0/1
4	0/4	0/3	1/1	NA
5	1/4	0/4	0/1	NA
6	1/5	1/3	0/1	0/1
7	2/6	1/3	0/1	NA
8	1/5	2/3	1/1	NA
9	0/4	0/3	0/1	NA
10	0/5	1/4	0/1	NA
Average	0.1	0.22	0.2	0

References

- [1] Jana Zschille, Dietrich Heidecke, and Michael Stubbe. "Verbreitung und Ökologie des Minks-Mustela vison Schreber, 1777 (Carnivora, Mustelidae)-in Sachsen-Anhalt". In: *Hercynia-Ökologie und Umwelt in Mitteleuropa* 37.1 (2004), pp. 103–126.
- [2] Andrew B Allison et al. "Frequent cross-species transmission of parvoviruses among diverse carnivore hosts". In: *Journal of virology* 87.4 (2013), pp. 2342–2347.
- [3] JR Clover et al. "Serologic evidence of Yersinia pestis infection in small mammals and bears from a temperate rainforest of north coastal California". In: *Journal of Wildlife Diseases* 25.1 (1989), pp. 52–60.
- [4] RL Byrne et al. "The helminth parasite community of European badgers (Meles meles) in Ireland". In: *Journal of Helminthology* 94 (2020), e37.
- [5] Richard Eberle et al. "Feline herpesvirus infections in bobcats (Lynx rufus): disease in experimentally inoculated animals". In: *Journal of Zoo and Wildlife Medicine* (1991), pp. 175–183.
- [6] Meysam Sharifdini et al. "The first record of ectoparasites of raccoons (Procyon lotor) (Carnivora, Procyonidae) in Iran". In: Persian Journal of Acarology 10.1 (2021), pp. 41–54.

- [7] Leidi Laurimaa et al. "Alien species and their zoonotic parasites in native and introduced ranges: the raccoon dog example". In: Veterinary Parasitology 219 (2016), pp. 24–33.
- [8] N Takeuchi-Storm et al. "Systematic examination of the cardiopulmonary, urogenital, muscular and gastrointestinal parasites of the Eurasian otters (Lutra lutra) in Denmark, a protected species recovering from a dramatic decline". In: *Parasitology International* 84 (2021), p. 102418.
- [9] Natalia Osten-Sacken et al. "Prevalence of Toxoplasma gondii Antibodies and Risk Factors in Two Sympatric Invasive Carnivores (Procyon lotor and Nyctereutes procyonoides) from Zgorzelec County, Poland". In: *Pathogens* 13.3 (2024), p. 210.
- [10] VV Shimalov and VT Shimalov. "Helminth fauna of the European polecat (Mustela putorius Linnaeus, 1758) in Belorussian Polesie". In: *Parasitology research* (1987) 88.3 (2002), pp. 259–260.