# UNI

# Informatik I: Einführung in die Programmierung

3. Werte, Typen, Variablen und Ausdrücke

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Peter Thiemann

21. Oktober 2025

# Exkursion: Datenrepräsentation

UNI

- Der Computer repräsentiert Daten als Folgen von Bits.
- Ein Bit (binary digit) ist die kleinste Informationseinheit.
- Zwei mögliche Werte: 0 oder 1
- Technische Realisierung: Schalter ein / Schalter aus bzw. geladen / entladen.
- Logische Interpretation: Wahrheitswerte 0 = falsch, 1 = wahr

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

Ergebnis ist 1, falls  $b_1 = 1$  und  $b_2 = 1$ , sonst 0.

$$1 \wedge 1 = 1$$
,  $1 \wedge 0 = 0$ ,  $0 \wedge 1 = 0$ ,  $0 \wedge 0 = 0$ 

■ Logisches Oder:  $b_1 \lor b_2$ 

Ergebnis ist 1, falls  $b_1 = 1$  **oder**  $b_2 = 1$ , sonst 0.

$$1 \lor 1 = 1$$
,  $1 \lor 0 = 1$ ,  $0 \lor 1 = 1$ ,  $0 \lor 0 = 0$ 

■ Logisches Nicht, Negation, Komplement: ¬b

Ergebnis ist 1, falls b = 0. Ergebnis ist 0, falls b = 1.

$$\neg 1 = 0$$
,  $\neg 0 = 1$ 

- Mit diesen drei Grundfunktionen k\u00f6nnen alle m\u00f6glichen Funktionen auf Bits definiert werden.
- Die Variablen b,  $b_1$ ,  $b_2$  stehen für Bits.

Werte und Typen

Variablen



Jede Funktion auf zwei Bits ist durch ihre Wertetabelle bestimmt.

- ⇒ Wertetabelle umfasst vier Bits.
- ⇒ 16 verschiedene Wertetabellen

|   | $b_1$ | $b_2$ | $f(b_1,b_2)$ | $f_8$ | f <sub>11</sub> |
|---|-------|-------|--------------|-------|-----------------|
| Ī | 0     | 0     |              | 0     | 1               |
|   | 0     | 1     |              | 0     | 1               |
|   | 1     | 0     |              | 0     | 0               |
|   | 1     | 1     |              | 1     | 1               |

Exkursion: Datenrepräsentation

Werte und Typen

Variablen



# Jede Funktion auf zwei Bits ist durch ihre Wertetabelle bestimmt.

- ⇒ Wertetabelle umfasst vier Bits.
- ⇒ 16 verschiedene Wertetabellen

| ı | b <sub>1</sub> | b <sub>2</sub> | $f(b_1,b_2)$ | $f_8$ | f <sub>11</sub> |
|---|----------------|----------------|--------------|-------|-----------------|
|   | 0              | 0              |              | 0     | 1               |
|   | 0              | 1              |              | 0     | 1               |
|   | 1              | 0              |              | 0     | 0               |
|   | 1              | 1              |              | 1     | 1               |

# Aufgabe

Schreibe f<sub>8</sub> mit Und, Oder, Nicht.

Exkursion: Datenrepräsentation

Werte und Typen

Variablen



Jede Funktion auf zwei Bits ist durch ihre Wertetabelle bestimmt.

- ⇒ Wertetabelle umfasst vier Bits.
- ⇒ 16 verschiedene Wertetabellen

| $b_1$ | <i>b</i> <sub>2</sub> | $f(b_1,b_2)$ | $f_8$ | f <sub>11</sub> |
|-------|-----------------------|--------------|-------|-----------------|
| 0     | 0                     |              | 0     | 1               |
| 0     | 1                     |              | 0     | 1               |
| 1     | 0                     |              | 0     | 0               |
| 1     | 1                     |              | 1     | 1               |

# Aufgabe

Schreibe f<sub>8</sub> mit Und, Oder, Nicht.

#### Auflösung

$$f_8(b_1,b_2) = b_1 \wedge b_2$$

FREIBUR

Exkursion: Datenrepräsentation

Werte und Typen

Variablen



6/41

Jede Funktion auf zwei Bits ist durch ihre Wertetabelle bestimmt.

- ⇒ Wertetabelle umfasst vier Bits.
- ⇒ 16 verschiedene Wertetabellen

| $b_1$ | <i>b</i> <sub>2</sub> | $f(b_1,b_2)$ | $f_8$ | f <sub>11</sub> |
|-------|-----------------------|--------------|-------|-----------------|
| 0     | 0                     |              | 0     | 1               |
| 0     | 1                     |              | 0     | 1               |
| 1     | 0                     |              | 0     | 0               |
| 1     | 1                     |              | 1     | 1               |

## Aufgabe

Schreibe f<sub>8</sub> mit Und, Oder, Nicht.

### Auflösung

 $f_8(b_1,b_2) = b_1 \wedge b_2$ 

## Aufgabe

Schreibe  $f_{11}$  mit Und, Oder, Nicht.

Exkursion: Datenrepräsentation

Werte und Typen

Variablen



# Jede Funktion auf zwei Bits ist durch ihre Wertetabelle bestimmt.

- ⇒ Wertetabelle umfasst vier Bits.
- ⇒ 16 verschiedene Wertetabellen

| b. | $b_2$ | $f(b_1,b_2)$ | $f_8$ | f <sub>11</sub> |
|----|-------|--------------|-------|-----------------|
| 0  |       |              | 0     | 1               |
| 0  | 1     |              | 0     | 1               |
| 1  | 0     |              | 0     | 0               |
| 1  | 1     |              | 1     | 1               |

## Aufgabe

Schreibe f<sub>8</sub> mit Und, Oder, Nicht.

## <u>Auflösung</u>

$$f_8(b_1, b_2) = b_1 \wedge b_2$$

## Aufgabe

Schreibe  $f_{11}$  mit Und, Oder, Nicht.

#### Auflösung

$$f_{11}(b_1,b_2) = (b_1 \wedge b_2) \vee \neg b_1 = \neg b_1 \vee b_2$$

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

UNI

- Bechnen mit einem Bit ist zu ineffizient.
- Die meisten klassischen Computer rechnen mit Bitvektoren der Breite 8 (ein Byte auch Octet), 16, 32 oder 64.
- Letztere heißen auch 16-Bit (bzw. 32-Bit, 64-Bit) Worte (bzw. Doppelworte, Quadworte). Daher auch Wortbreite.
- Der Aufbau des Computers (genauer gesagt, des Prozessors) ist auf eine Wortbreite ausgerichtet, die durch Bezeichnungen wie 32-Bit-Architektur bzw. 64-Bit-Architektur zum Ausdruck kommt.

Exkursion: Datenrepräsentation

Werte und Typen

variablen

#### Grundfunktionen auf Worten

Bitweise logische Funktionen

UNI FREIBURG

- Definiert auf Worten gleicher Breite.
- Wendet die logischen Bit-Funktionen auf die entsprechenden Positionen der Argumente an.

■ Und:  $w_1 \wedge w_2$ 

Beispiel:  $1100 \land 1010 = (1 \land 1)(1 \land 0)(0 \land 1)(0 \land 0) = 1000$ 

■ Oder:  $w_1 \vee w_2$ 

Beispiel:  $1100 \lor 1010 = (1 \lor 1)(1 \lor 0)(0 \lor 1)(0 \lor 0) = 1110$ 

■ Negation: ¬w

Beispiel:  $\neg 10 = (\neg 1)(\neg 0) = 01$ 

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

- Alle Daten werden im Computer durch Bitvektoren dargestellt
- Die Interpretation des Bitvektors hängt vom angenommenen Typ ab

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

#### Mensch: Dezimalsystem

- Stellenwertsystem mit Basis 10: Zehn Ziffern— 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Dezimaldarstellung einer Zahl ist Vektor von Ziffern
- Jede Stelle in der Dezimaldarstellung einer Zahl entspricht einer 10er-Potenz
- Beginnend von rechts mit 10<sup>0</sup>

## Beispiel

$$\frac{4711}{10} = \mathbf{4} * 10^3 + \mathbf{7} * 10^2 + \mathbf{1} * 10^1 + \mathbf{1} * 10^0$$
$$= 4000 + 700 + 10 + 1$$
$$= 4711$$

- Stellenwertsystem mit Basis 2: Zwei Ziffern— 0, 1 eine Ziffer = ein Bit!
- Binärdarstellung einer Zahl ist Vektor von Bits
- Jede Stelle in der Binärdarstellung einer Zahl entspricht einer 2er-Potenz
- Beginnend von rechts mit 20

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

- Stellenwertsystem mit Basis 16 (4 Bit pro Stelle) 16 Ziffern— 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. a. b. c. d. e. f
- Die Hexadezimaldarstellung ist ein Vektor von Hexadezimalziffern
- Jede Stelle in der Hexdarstellung einer Zahl entspricht einer 16er-Potenz
- Beginnend von rechts mit 160

$$\underline{beef}_{16} = \mathbf{11} * 16^{3} + \mathbf{14} * 16^{2} + \mathbf{14} * 16^{1} + \mathbf{15} * 16^{0}$$
$$= 11 * 4096 + 14 * 256 + 14 * 16 + 15$$
$$= 48879$$

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

#### Wertebereiche

N

Welche natürlichen Zahlen lassen sich mit gegebener Wortbreite darstellen?

| Wortbreite | Wertebereich                |
|------------|-----------------------------|
| 1          | 0 1                         |
| 2          | 0 3                         |
| 4          | 0 15                        |
| 8          | 0 255                       |
| 16         | 0 65.535                    |
| 32         | 0 4.294.967.295             |
| 64         | 018.446.744.073.709.551.615 |
| n          | $0$ $2^{n}-1$               |

■ Typischerweise wird die Hälfte des Bereichs für negative Zahlen verwendet

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

- Eingabe: natürliche Zahl n
- Ausgabe: Darstellung von n im Stellenwertsystem mit Basis  $B \ge 2$
- Verwende als Ziffern 0, 1, ..., B-1
- Schreibe von rechts nach links in die Ausgabe

#### Algorithmus

- Berechne  $q \leftarrow n//B$  und  $r \leftarrow n\%B$  (Quotient und Divisionsrest von n/B).
- Schreibe den Rest r links an die Ausgabe.
- 3 Falls  $q \neq 0$ , weiter bei Punkt 1 mit  $n \leftarrow q$ .
- Sonst fertig.

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

# Beispiel: Darstellung in Basis B



#### Bestimme die Binärdarstellung (B = 2) von n = 42.

- 42//2 = 21 Rest 0
- 21//2 = 10 Rest **1**
- $10//2 = 5 \text{ Rest } \mathbf{0}$
- 5//2 = 2 Rest **1**
- 2//2 = 1 Rest 0
- 1//2 = 0 Rest 1
- Fertig, weil q = 0.
- Ergebnis <u>101010</u><sub>2</sub>
- von unten nach oben abgelesen

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

#### Exkursion: Datenrepräsentation

Werte und Typen

Variablen

UNI FREIBURG

- Wortbreite 1: 0+0=0; 0+1=1; 1+0=1; 1+1=?
- 1+1=0 mit Übertrag 1

Exkursion: Datenrepräsentation

Werte und Typen

Variabler

UNI

- Wortbreite 1: 0+0=0; 0+1=1; 1+0=1; 1+1=?
- 1+1=0 mit Übertrag 1
- Damit weiter wie schriftliche Addition

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

UNI

- Wortbreite 1: 0+0=0; 0+1=1; 1+0=1; 1+1=?
- 1+1=0 mit Übertrag 1
- Damit weiter wie schriftliche Addition
- Beispiel: 42 + 6 (in Binärdarstellung:  $101010_2$  und  $110_2$ )

Exkursion: Datenrepräsentation

Werte und Typen

Variabler



#### Exkursion: Datenrepräsentation

Werte und Typen

Variablen

#### Rechnerarithmetik

- Darstellung negativer Zahlen
- Subtraktion
- Multiplikation
- Division
- und Schaltungen dafür



#### Rechnerarithmetik

- Darstellung negativer Zahlen
- Subtraktion
- Multiplikation
- Division
- und Schaltungen dafür

#### Zum Nachdenken

Definiere Ergebnis und Übertrag der 1-Bit Addition mit Hilfe der Grundfunktionen (und, oder, nicht).

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

# Datentypen — Syntax und Semantik

Jede Programmiersprache unterstützt verschiedene Datentypen

- Datentyp: Menge von Werten und Operationen auf diesen Werten.
- In einem Programmtext müssen wir diese Werte und Operationen als **Zeichenketten** aufschreiben können.
- Syntax
  - Ein Literal ist die Darstellung eines Wertes.
  - Ein Operationssymbol ist die Darstellung einer Operation.
- Semantik
  - mathematischer Wert eines Literals bzw eines Ausdrucks
  - Abbildung von Syntax auf Wertemenge eines Datentyps
- Pragmatik
  - Syntax und Semantik entsprechen den üblichen Konventionen bzw. mathematischen Definitionen
  - Konsistenz

UNI FREIBURG

> Exkursion: Datenreprä sentation

Werte und Typen

variablen

- UNI FREBURG
- Die ganze Zahl 16 als Wert wird z.B. durch das Literal 16 dargestellt, aber auch durch 0x10 (hexadezimale Darstellung) und 0b10000 (binäre Darstellung).
- Die Zeichenkette (der String) *nuqneH* als Wert wird durch die Literale 'nugneH', "nugneH" und '''nugneH''' dargestellt.
- Die Zahl 0.2 wird durch 0.2 dargestellt, aber auch durch 2.0e-1, 0.02e1, 2000e-4 usw (Exponentialschreibweise 2.0 \* 10<sup>-1</sup>).

Exkursion: Datenrepräsentation

Werte und Typen

Variablen





Exkursion: Datenrepräsentation

Werte und Typen

Variablen

#### Darstellung (Syntax) Wertemenge (Semantik)



Exkursion: Datenrepräsentation

Werte und Typen

Variablen

# Werte und Typen

In Python besteht jeder Wert aus zwei Teilen:

Typ Interne Repräsentation des Wertes

Die interne Repräsentation ist ein Bitvektor, der entsprechend des (Bitvektors des) Typs interpretiert wird.

Beispiele

| 16         | $\leftrightarrow$ | int    | 0x10           |
|------------|-------------------|--------|----------------|
| 2.24E44    | $\leftrightarrow$ | float  | 0x10           |
| 3.14159    | $\leftrightarrow$ | float  | 0x40490fd0     |
| 1078530000 | $\leftrightarrow$ | int    | 0x40490fd0     |
| "hello"    | $\leftrightarrow$ | string | 0x68656c6c6f00 |

Exkursion: Datenreprasentation

Werte und Typen

variablen

# Variablen

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

# UNI

#### spam.py

```
spam = 111
print(spam)
```

Eine Zuweisung versieht einen Wert mit einem Namen (Variablennamen, Bezeichner, Identifier).

Exkursion: Datenreprä sentation

Werte und Typen

Variablen

# UNI FREIBURG

#### spam.py

```
spam = 111
print(spam)
```

- Eine Zuweisung versieht einen Wert mit einem Namen (Variablennamen, Bezeichner, Identifier).
- Eine Zuweisung ist eine Anweisung

Exkursion: Datenreprä sentation

Werte und Typen

Variablen

# UNI

#### spam.py

```
spam = 111
print(spam)
```

- Eine Zuweisung versieht einen Wert mit einem Namen (Variablennamen, Bezeichner, Identifier).
- Eine Zuweisung ist eine Anweisung
- Formale Syntax der Zuweisung: Anweisung ::= Variable = Ausdruck

Exkursion: Datenreprä sentation

Werte und Typen

Variablen

# NO

#### spam.py

```
spam = 111
print(spam)
```

- Eine Zuweisung versieht einen Wert mit einem Namen (Variablennamen, Bezeichner, Identifier).
- Eine Zuweisung ist eine Anweisung
- Formale Syntax der Zuweisung: Anweisung ::= Variable = Ausdruck
- Im Beispiel: "Die *Variable* spam erhält den *Wert* von 111."

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

Ausdrücke

21. Oktober 2025 P. Thiemann – Info I 28 / 41

#### Variable und Speicher





Exkursion: Datenrepräsentation

Werte und Typen

Variablen

Ausdrücke

Image by https://pixabay.com/users/annaer-35513/?utm\_source=link-attribution&utm\_medium=referral&utm\_campaign=image&utm\_content=187777Anna from https://pixabay.com//?utm\_source=link-attribution&utm\_medium=referral&utm\_campaign=image&utm\_campaign=image&utm\_campaign=image&utm\_campaign=image&utm\_campaign=image&utm\_campaign=image&utm\_campaign=image&utm\_campaign=image&utm\_campaign=image&utm\_campaign=image&utm\_campaign=image&utm\_campaign=image&utm\_campaign=image&utm\_campaign=image&utm\_campaign=image&utm\_content=187777Pixabay.

## Belegung



 Der Zustand eines Programms wird vollständig durch die Belegung der Variablen mit Werten und den aktuellen Ausführungspunkt beschrieben.

#### spam-egg.py

```
spam = 123
egg = 'spam'
```

Variablenbelegung nach der Ausführung:

```
Global frame
spam 123
egg "spam"
```

Exkursion: Datenreprä sentation

Werte und Typen

Variablen

No

 Ein Bezeichner besteht aus Buchstaben, Unterstrichen und Ziffern. Das erste Zeichen darf keine Ziffer sein.

Brägele = 1

Exkursion: Datenreprä sentation

> Werte und Typen

Variablen

Ok

Exkursion: Datenreprasentation

> Werte und Typen

Variablen

#### Syntax von Bezeichnern

■ Ein Bezeichner besteht aus Buchstaben, Unterstrichen und Ziffern. Das erste Zeichen darf keine Ziffer sein.

Ok

Exkursion: Datenreprä sentation

Werte und Typen

Variablen

#### Syntax von Bezeichnern

N

 Ein Bezeichner besteht aus Buchstaben, Unterstrichen und Ziffern. Das erste Zeichen darf keine Ziffer sein.

Ok

^^^^

SyntaxError: invalid syntax. Perhaps you forgot a comma?

$$2you = 3$$

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

#### Syntax von Bezeichnern

■ Ein Bezeichner besteht aus Buchstaben, Unterstrichen und Ziffern. Das erste Zeichen darf keine Ziffer sein.

Ok

^^^^

SyntaxError: invalid syntax. Perhaps you forgot a comma?

$$2you = 3$$

^

SyntaxError: invalid decimal literal

Exkursion: Datenreprasentation

Werte und Typen

Variablen

. . . . . .

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

```
class = 'Theory'
```

SyntaxError: invalid syntax

Schlüsselwörter können nicht als Bezeichner benutzt werden:

| False  | class    | finally | is       | return |
|--------|----------|---------|----------|--------|
| None   | continue | for     | lambda   | try    |
| True   | def      | from    | nonlocal | while  |
| and    | del      | global  | not      | with   |
| as     | elif     | if      | or       | yield  |
| assert | else     | import  | pass     |        |
| break  | except   | in      | raise    |        |

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

- Variablen sind erst verwendbar, nachdem ihnen ein Wert zugewiesen wurde.
- Groß-/Kleinschreibung macht einen Unterschied

```
spam = 3
print(spam)
```

Exkursion: Datenreprasentation

> Werte und Typen

Variablen

- Variablen sind erst verwendbar, nachdem ihnen ein Wert zugewiesen wurde.
- Groß-/Kleinschreibung macht einen Unterschied

```
spam = 3
print(spam)
```

Exkursion: Datenreprasentation

Werte und Typen

Variablen

- Variablen sind erst verwendbar, nachdem ihnen ein Wert zugewiesen wurde.
- Groß-/Kleinschreibung macht einen Unterschied

```
spam = 3
print(spam)
```

egg

Exkursion: Datenreprasentation

Werte und Typen

Variablen

- Variablen sind erst verwendbar, nachdem ihnen ein Wert zugewiesen wurde.
- Groß-/Kleinschreibung macht einen Unterschied

```
spam = 3
print(spam)
```

```
egg
```

NameError: name 'egg' is not defined

Exkursion: Datenreprasentation

Werte und Typen

Variablen

- Variablen sind erst verwendbar, nachdem ihnen ein Wert zugewiesen wurde.
- Groß-/Kleinschreibung macht einen Unterschied

```
spam = 3
print(spam)
```

```
egg
```

NameError: name 'egg' is not defined

```
Spam
```

Exkursion: Datenreprä sentation

Werte und Typen

Variablen

## Variablennutzung vor Zuweisung



- Variablen sind erst verwendbar, nachdem ihnen ein Wert zugewiesen wurde.
- Groß-/Kleinschreibung macht einen Unterschied

```
spam = 3
print(spam)
```

Ok. Druckt 3.

```
egg
```

NameError: name 'egg' is not defined

#### Spam

NameError: name 'Spam' is not defined. Did you mean: 'spam'?

Exkursion: Datenreprä sentation

Werte und Typen

Variablen

# Ausdrücke

Exkursion: Datenrepräsentation

Werte und Typen

Variablen

# FREIBUR

- Wir kennen Operatoren auf Zahlen (+, -, \*, ...) und auf Strings (+, \*, ...)
- Ausdrücke werden aus Operatoren, Literalen und Variablen zusammengesetzt.

```
Ausdruck ::= Literal \mid Variable \mid Ausdruck \mid Binop \mid Ausdruck \mid \dots  Binop ::= + \mid - \mid * \mid / \mid \dots
```

Exkursion: Datenreprä sentation

Variablen

UNI

- Die Auswertung eines Ausdrucks liefert einen Wert oder bricht mit einer Fehlermeldung ab.
- Sie beginnt bei den Literalen und Variablen.
  - Fehler, falls eine Variable nicht definiert
- Wenn die Werte der Teilausdrücke vorliegen, wird die durch den Operator bezeichnete Operation auf sie angewendet.
- Bei arithmetischen Ausdrücken gelten die üblichen Präzedenzregeln:
  - zuerst die Klammerung,

Exkursion: Datenreprä sentation

Werte und Typen

Variablen

- Die Auswertung eines Ausdrucks liefert einen Wert oder bricht mit einer Fehlermeldung ab.
- Sie beginnt bei den Literalen und Variablen.
  - Fehler, falls eine Variable nicht definiert
- Wenn die Werte der Teilausdrücke vorliegen, wird die durch den Operator bezeichnete Operation auf sie angewendet.
- Bei arithmetischen Ausdrücken gelten die üblichen Präzedenzregeln:
  - zuerst die Klammerung,
  - dann die Exponentiation (rechtsassoziativ!),

Exkurs

Exkursion: Datenreprä sentation

Werte und Typen

variablen

- Die Auswertung eines Ausdrucks liefert einen Wert oder bricht mit einer Fehlermeldung ab.
- Sie beginnt bei den Literalen und Variablen.
  - Fehler, falls eine Variable nicht definiert
- Wenn die Werte der Teilausdrücke vorliegen, wird die durch den Operator bezeichnete Operation auf sie angewendet.
- Bei arithmetischen Ausdrücken gelten die üblichen Präzedenzregeln:
  - zuerst die Klammerung,
  - dann die Exponentiation (rechtsassoziativ!),
  - dann Multiplikation und Division,

Exkursion: Datenreprä sentation

Werte und Typen

Variablen

- Die Auswertung eines Ausdrucks liefert einen Wert oder bricht mit einer Fehlermeldung ab.
- Sie beginnt bei den Literalen und Variablen.
  - Fehler, falls eine Variable nicht definiert
- Wenn die Werte der Teilausdrücke vorliegen, wird die durch den Operator bezeichnete Operation auf sie angewendet.
- Bei arithmetischen Ausdrücken gelten die üblichen Präzedenzregeln:
  - zuerst die Klammerung,
  - dann die Exponentiation (rechtsassoziativ!),
  - dann Multiplikation und Division,
  - dann Addition und Subtraktion,

UNI FREIBURG

> Exkursion: Datenreprä sentation

Werte und Typen

variablen

- Die Auswertung eines Ausdrucks liefert einen Wert oder bricht mit einer Fehlermeldung ab.
- Sie beginnt bei den Literalen und Variablen.
  - Fehler, falls eine Variable nicht definiert
- Wenn die Werte der Teilausdrücke vorliegen, wird die durch den Operator bezeichnete Operation auf sie angewendet.
- Bei arithmetischen Ausdrücken gelten die üblichen Präzedenzregeln:
  - zuerst die Klammerung,
  - dann die Exponentiation (rechtsassoziativ!),
  - ann Multiplikation und Division,
  - dann Addition und Subtraktion,
  - bei gleicher Präzedenz wird von links nach rechts geklammert (linksassoziativ), außer bei Exponentiation
- Fehler, falls Operator auf den Argumentwerten nicht definiert ist: z.B. 1/0

Exkursion:

Werte und Typen

Variabler

```
Exkur
```

```
Exkursion:
Datenreprä-
sentation
```

Werte und Typen

Variablen

```
spam = 3
print (3 * 1 ** spam)
# 3
print ((3 * 1) ** spam)
# 27
print (2 * spam - 1 // 2)
# 6
print (spam ** spam ** spam)
# 7625597484987
print ((spam ** spam) ** spam)
# 19683
```

sentation

Strings verketten mit dem Operator '+' (Konkatenation)

```
print ('spam' + 'egg')
# spamegg
assert 'spam' + 'egg' == 'spamegg'
```

Strings mit ganzen Zahlen multiplizieren (Python spezifisch)

```
print (3 * 'spam')
# spamspamspam
assert 3 * 'spam' == 'spamspamspam'
print (0 * 'spam')
#
assert 0 * 'spam' == ''
print (-2 * 'spam')
#
assert -2 * 'spam' == ''
```

= 42

print (egg)

egg = spam // 7

spam

# 6

■ Auf der rechten Seite einer Zuweisung dürfen Ausdrücke auftreten:

```
spam
     = 42
spam = spam * 2
print (spam)
  84
```

Werte und

- Ein Datentyp ist bestimmt durch eine Menge von Werten und Operationen auf diesen Werten (Semantik).
- Literale sind die Darstellung von Werten eines Datentyps als Zeichenkette (Syntax).
- Jeder Wert hat einen bestimmten Typ.
- Werte erhalten durch Zuweisung einen Namen (Variable).
- Der Wert einer Variablen kann sich ändern.
- Ausdrücke werden aus Operatoren, Literalen und Variablen gebildet.
- Sie haben einen Wert!
- Eine Zuweisung wertet erst die rechte Seite aus und weist dann den Wert zu!

Exkursion: Datenrepräsentation

Werte und Typen

variablen