Алгоритмы и структуры данных

Кратчайшие пути при наличии рёбер отрицательного веса

Александр Куликов

Алгоритм Беллмана-Форда

```
процедура BELLMANFORD(G, s)
\{ \mathsf{B} \ \mathsf{G} \ \mathsf{нет} \ \mathsf{циклов} \ \mathsf{отрицательного} \ \mathsf{веса} \}
для всех вершин u \in V:
   dist[u] \leftarrow \infty
   prev[u] \leftarrow nil
dist[s] \leftarrow 0
повторить |V|-1 раз:
   для всех рёбер (u, v) \in E:
      Relax(u, v)
```

Пример

(S,A)	(S,A)	(S,A)	(S,A)
(S,B)	(S,B)	(S,B)	(S,B)
(C,D)	(C,D)	(C,D)	(C,D)
(A,B)	(A,B)	(A,B)	(A,B)
(A,C)	(A,C)	(A,C)	(A,C)
(B,C)	(B,C)	(B,C)	(B,C)
(B,D)	(B,D)	(B,D)	(B,D)

Циклы отрицательного веса

Лемма

Цикл отрицательного веса есть тогда и только тогда, когда на |V|-й итерации алгоритма Беллмана—Форда изменяется значение dist хотя бы для одной вершины.

Кратчайшие пути в ациклических графах

```
процедура DagShortestPaths(G, s)
для всех вершин u \in V:
  dist[u] \leftarrow \infty
  prev[u] \leftarrow nil
dist[s] \leftarrow 0
топологически упорядочить G
для всех u \in V в найденном порядке:
  для всех рёбер (u,v) \in E:
     Relax(u, v)
```