Formale Spezifikation und Verifikation

Wintersemester 2024

Prof. Dr. Gidon Ernst gidon.ernst@lmu.de

Software and Computational Systems Lab Ludwig-Maximilians-Universität München, Germany

September 30, 2024

Prof. Dr. Gidon Ernst 1/49

Modellierung/Spezifikation reativer Systeme

Modellierung/Spezifikation reativer Systeme
Beispiele zur Modellierung/Spezifikation

Ein "Webserver"

Ein "Webserver"

```
from
      socket import *
from _thread import *
addr = ('', 80)
s = socket(AF_INET,
           SOCK STREAM)
s.bind(addr)
s.listen()
while True:
    conn = s.accept()
    start_new_thread(serve, conn)
```

Gewünschte Eigenschaften

- Kein Absturz aber auch keine (selbstständige) Terminierung
- Server reagiert auf Verbindungsaufbau
- Anfragen werden irgendwann beantwortet
- Sicheres Multi-Threading
- Fairness bezgl Reihenfolge der Verbindungen

Ein "Webserver"

```
from
      socket import *
from _thread import *
addr = ('', 80)
s = socket(AF_INET,
           SOCK STREAM)
s.bind(addr)
s.listen()
while True:
    conn = s.accept()
    start_new_thread(serve, conn)
```

Gewünschte Eigenschaften

- Kein Absturz aber auch keine (selbstständige) Terminierung
- Server reagiert auf Verbindungsaufbau
- Anfragen werden irgendwann beantwortet
- Sicheres Multi-Threading
- Fairness bezgl Reihenfolge der Verbindungen

Interessantes zeitliches Verhalten!

Nebenläufigkeit, Kommunikation, ...

Traditionelle Softwaresysteme

Spezifikation durch Vor+Nachbedingung

Hoare-Logik: beschreibt diese Außensicht

Erreichbarkeitsanalyse: Menge der Zwischenzustände

► Heute Zeitliche Abfolge von Zuständen/Ereignissen

Reaktive, Eingebettete Systeme

Agenda

Ziel: Grundverständnis für reaktive Systeme entwickeln

- Modellierung: Transitionssysteme mit Ereignissen/Ein-/Ausgaben)
- Spezifikation: Lineare Temporale Logik (LTL)
- Sicherheits-/Lebendigkeitseigenschaften

Ausblick:

- Nebenläufigkeit, Parallelität, evtl verteilte Algorithmen
- Formale Semantik von LTL
- Büchi-Automaten, Verifikation (falls Zeit)

Reaktive, Eingebettete Systeme

Eingebettet: Teil einer physikalischen Umgebung

(Re)Aktiv: Ereignisse und Kommunikation

Beispiele: Kaffeemaschinen, Ampelsteuerungen, Geldautomaten, Smart-Home, Smart-Car, Software in der Avionik, medizinische Geräte, . . .

Charakteristika (in der Praxis)

- Aktionen und Ereignisse passieren gleichzeitig
- Komponenten/Systeme fallen aus, Nachrichten gehen verloren, Messdaten sind ungenau, Interaktion nicht vorhersagbar
- Konflikt: sicherer vs. reibungsloser Betrieb

Reaktive, Eingebettete Systeme

Eingebettet: Teil einer physikalischen Umgebung

(Re)Aktiv: Ereignisse und Kommunikation

Beispiele: Kaffeemaschinen, Ampelsteuerungen, Geldautomaten, Smart-Home, Smart-Car, Software in der Avionik, medizinische Geräte, . . .

Charakteristika (in der Praxis)

- Aktionen und Ereignisse passieren gleichzeitig
- Komponenten/Systeme fallen aus, Nachrichten gehen verloren, Messdaten sind ungenau, Interaktion nicht vorhersagbar
- Konflikt: sicherer vs. reibungsloser Betrieb

Herausforderung für formale Ansätze

- Präzise Beschreibung ungenauen Verhaltens
- ► Zustandsexplosion bei nebenläufigem Verhalten

Erinnerung: Modelle und Abstraktion

- lacksquare Spezifikation S heute: Temporallogik
- ▶ Modell M_1 heute: Transitionssysteme/Automaten
- Modell M_2 (z.B. UML)

:

▶ Implementierung *I* (Code, Schaltpläne)

/erfeinerung

Modellierung/Spezifikation reativer Systeme Beispiele zur Modellierung

Modellierung: Beamer mit Defekten

Modellierung: Transitionssystem

Abstraktion: es wurde nicht modelliert, wann der Beamer ein/ausgeschaltet wird, und wodurch/wann ein Defekt auftritt, und wie ein solcher repariert wird

Modellierung: Kaffeemaschine

Modellierung: *markiertes* Transitionssystem (auch endlicher Automat genannt)

Abstraktion: woher/wann kommt die Eingabe, wieviel/welcher Kaffee?

Modellierung: Geldautomat

Abstraktion: nur (manche) *Interaktionen* modelliert, z.B. Sprache, Beträge, PIN, ... nicht explizit betrachtet

Modellierung: Thermostat

Modellierung: Automat mit Variablen (\approx Kontrollflussautomat)

Variante: Modellierung als hybrides System: kontinuierliche Termperaturänderung $\Delta t>0$ und $\Delta t<0$

Nebenläufige Programme

$$x=$$
 0, $y=$ 0 $\left\{ \mathbf{while}~x<2\land y<2~\mathbf{do}~x\text{++}\right\} \parallel \left\{ \mathbf{while}~x<2\land y<2~\mathbf{do}~y\text{++}\right\}$

Nebenläufige Programme

```
 \begin{aligned} & \mathsf{x} = \mathsf{0}, \ \mathsf{y} = \mathsf{0} \\ & \left\{ \mathbf{while} \ \mathsf{x} < 2 \land \mathsf{y} < 2 \ \mathbf{do} \ \mathsf{x++} \right\} \parallel \left\{ \mathbf{while} \ \mathsf{x} < 2 \land \mathsf{y} < 2 \ \mathbf{do} \ \mathsf{y++} \right\} \end{aligned}
```

Zugehöriges Transitionssystem mit Zuständen (x,y) durch explizite Erreichbarkeitsanalyse berechnet (abstrahiert: Schleifentest + Zuweisung ein atomarer Schritt)

Nebenläufige Programme

$$\begin{aligned} & \mathsf{x} = \mathsf{0}, \ \mathsf{y} = \mathsf{0} \\ & \left\{ \mathbf{while} \ \mathsf{x} < 2 \land \mathsf{y} < 2 \ \mathbf{do} \ \mathsf{x++} \right\} \parallel \left\{ \mathbf{while} \ \mathsf{x} < 2 \land \mathsf{y} < 2 \ \mathbf{do} \ \mathsf{y++} \right\} \end{aligned}$$

Zugehöriges Transitionssystem mit Zuständen (x,y) durch explizite Erreichbarkeitsanalyse berechnet (abstrahiert: Schleifentest + Zuweisung ein atomarer Schritt)

- Exponentiell viele Kombinationen: welcher Thread (links/rechts) führt den nächsten Schritt aus?
- $\begin{tabular}{ll} \hline \textbf{Wichtig: Zusammenf\"{u}hren} \\ \hline \textbf{identischer Zust\"{a}nde, hier } (1,1) \\ \hline \end{tabular}$

Parallelkomposition von (Transitions-)Systemen

Vorlesungssaal mit Beamer und Licht

Parallelkomposition von (Transitions-)Systemen

Vorlesungssaal mit Beamer und Licht

- Zustandsräume durch karthesisches Produkt kombiniert: $\Sigma = \Sigma_1 \times \Sigma_2$ mit Zustandspaaren (s_1, s_2) sodass $s_1 \in \Sigma_1$, $s_2 \in \Sigma_2$
- Designentscheidung: sind gleichzeitige Transitionen möglich? Wie ist die Transitionsrelation \rightarrow mit \rightarrow_1 und \rightarrow_2 definiert? (Kommunikation = Synchronisation von Transitionen)

Pacman als Transitionssystem

Codierte Regel: Beide (Pacman/Geist) müssen sich in jedem Spielschritt bewegen

Zusammenfassung: Modellierung mit Transitionssystemen

Definition möglicher Zustände

- ► Teilzustände identifizieren, z.B.: Licht an/aus, Beamer an/aus, Positionen von . ## game over?)
- Festlegen der sinnvollen Kombination von Teilzuständen, z.B.: alle $\{(!B,!L),(B,!L),(!B,L),(B,L)\}$ (Kreuzprodukt), oder Auswahl: $\{(!B,!L),(!B,L),(B,L)\}$ (Beamer ist an Licht gekoppelt)

Zusammenfassung: Modellierung mit Transitionssystemen

Definition möglicher Zustände

- ► Teilzustände identifizieren, z.B.: Licht an/aus, Beamer an/aus, Positionen von . ## game over?)
- Festlegen der sinnvollen Kombination von Teilzuständen, z.B.: alle $\{(!B,!L),(B,!L),(!B,L),(B,L)\}$ (Kreuzprodukt), oder Auswahl: $\{(!B,!L),(!B,L),(B,L)\}$ (Beamer ist an Licht gekoppelt)

Definition möglicher Transitionen

Aus welchem Zustand kann in welchen gewechselt werden?

Zusammenfassung: Modellierung mit Transitionssystemen

Definition möglicher Zustände

- ► Teilzustände identifizieren, z.B.: Licht an/aus, Beamer an/aus, Positionen von . ## game over?)
- Festlegen der sinnvollen Kombination von Teilzuständen, z.B.: alle $\{(!B,!L),(B,!L),(!B,L),(B,L)\}$ (Kreuzprodukt), oder Auswahl: $\{(!B,!L),(!B,L),(B,L)\}$ (Beamer ist an Licht gekoppelt)

Definition möglicher Transitionen

▶ Aus welchem Zustand kann in welchen gewechselt werden?

Visualisierung als Graph (wie in den Folien, z.B. für die Übung)

Alternativ: Mengenschreibweise für $T=(\Sigma,\sigma^I,\rightarrow)$, z.B.

- $\Sigma = \{\text{on, off}\} \text{ mit } \sigma^I = \{\text{off}\}$
- \rightarrow = {(on, off), (off, on)} oder on \rightarrow off, off \rightarrow on

Modellierung/Spezifikation reativer Systeme Beispiele zur Spezifikation

Motivation

Vormals: explizite/symbolischen Erreichbarkeit

Analyse: Berechnung der erreichbaren Zustände σ^R

Spezifikation: Formel ϕ über Zustände

▶ Verifikation: Prüfe für alle $s \in \sigma^R$ ob $s \models \phi$ (ϕ gilt in s)

Vormals: Floyd/Hoare Logik (Vor-/Nachbedingungen)

Motivation

Vormals: explizite/symbolischen Erreichbarkeit

lacktriangle Analyse: Berechnung der erreichbaren Zustände σ^R

Spezifikation: Formel ϕ über Zustände

▶ Verifikation: Prüfe für alle $s \in \sigma^R$ ob $s \models \phi$ (ϕ gilt in s)

Vormals: Floyd/Hoare Logik (Vor-/Nachbedingungen)

Neu: Eigenschaften über zeitliche Zusammenhänge

Spezifikation: Formeln ϕ in *Temporaler Logik*

Deliver Bedeutung: $\overline{s} \models \phi$ wird über ganzen Spuren ausgewertet

ightharpoonup Allgemein: \overline{s} auch *unendliche* Abläufe

Motivation

Vormals: explizite/symbolischen Erreichbarkeit

lacktriangle Analyse: Berechnung der erreichbaren Zustände σ^R

Spezifikation: Formel ϕ über Zustände

▶ Verifikation: Prüfe für alle $s \in \sigma^R$ ob $s \models \phi$ (ϕ gilt in s)

Vormals: Floyd/Hoare Logik (Vor-/Nachbedingungen)

Neu: Eigenschaften über zeitliche Zusammenhänge

ightharpoonup Spezifikation: Formeln ϕ in Temporaler Logik

▶ Bedeutung: $\bar{s} \models \phi$ wird über ganzen Spuren ausgewertet

Allgemein: \overline{s} auch *unendliche* Abläufe

Beispiele: $\Box \phi$ ϕ gilt immer (entspricht $\forall s \in \sigma^R$. $s \models \phi$)

 $\Diamond (x=0)$ in der Zukunft gilt irgendwann einmal x=0

 $P \ \mathcal{U} \ Q$ P gilt eine Weile bis garantiert Q eintritt

Syntax der Linearen Temporale Logik (LTL)

Formeln $\phi := true \; \mid \; false \; \mid \; A$	atomare Propositionen
$\mid \neg \phi \mid \phi \wedge \psi \mid \dots$	Formeln mit Junktoren
$\mid \hspace{0.1cm} \circ \hspace{0.1cm} \phi \hspace{0.1cm} (\mathcal{N} \hspace{0.1cm} \phi)$	ϕ gilt im <i>nächsten</i> Zustand "next" ϕ
$ \diamondsuit \phi \ (\mathcal{F} \ \phi)$	ϕ gilt $irgendwann$ jetzt oder später "eventually" ϕ (auch "finally")
$ \Box \ \phi (\mathcal{G} \ \phi)$	ϕ gilt ab jetzt $immer$ "always" ϕ (auch "globally")
$\mid \hspace{1mm} \phi \hspace{1mm} \mathcal{U} \hspace{1mm} \psi$	ϕ gilt bis irgendwann ψ garantiert eintritt ϕ "until" ψ
$\mid \; \phi \; \mathcal{W} \; \psi$	ϕ gilt solange bis ψ vielleicht eintritt ϕ "weak until" ψ

Spezifikation: Beamer mit Defekten

Welche Eigenschaften gelten? Wir verfolgen Ausführungen vom Startzustand aus:

X on

✓ ♦ on

✗ □ off

 \times broken $\wedge \circ$ off

✓ \square (broken $\rightarrow \circ$ off)

 $\checkmark \circ \circ (broken \lor off)$

jetzt (im Startzustand) on

irgendwann on

immer off

jetzt broken und im nächsten Zustand off

immer: falls jetzt broken, dann danach off

im übernächsten Zustand off oder broken

Spezifikation: Thermostat

Welche Eigenschaften gelten? Wir verfolgen Ausführungen vom Startzustand aus:

- ✓ \Box $(t_{min} \le t \le t_{max})$ Temperatur bleibt *immer* in den Grenzen
- ✓ (heating $\wedge t < t_{max}$) \mathcal{U} cooling
 - es wird zunächst geheizt und die Temperatur bleibt unter dem Maximum
 - danach kommt garantiert die Kühlphase
- ✓ □\cooling
- es wird immer wieder irgendwann gekühlt
- X ♦ □ cooling irgendwann wird nur noch gekühlt
- (nicht notwendigerweise) ✗ ○ cooling
- $\checkmark \Box (t = t_{\text{max}} \Rightarrow \circ \text{ cooling})$

Klassifikation von Eigenschaften

Sicherheitseigenschaften

Ziel

- "etwas Schlechtes passiert nie"
- ► Fehler/Konflikte vermeiden
- Einhalten von Grenzwerten

Charakteristik: es reicht aus, alle endlichen Abläufe zu prüfen

Beispiele

- Hoare-Tripel
- (Schleifen/Klassen)-Invarianten
- Wechselseitiger Ausschluss

Klassifikation von Eigenschaften

Sicherheitseigenschaften

Ziel

- "etwas Schlechtes passiert nie"
- Fehler/Konflikte vermeiden
- Einhalten von Grenzwerten

Charakteristik: es reicht aus, alle endlichen Abläufe zu prüfen

Beispiele

- Hoare-Tripel
- (Schleifen/Klassen)-Invarianten
- Wechselseitiger Ausschluss

Lebendigkeitseigenschaften

Ziel

- "etwas Gutes passiert irgendwann"
- Fortschritt erzielen
- Reaktivität erzwingen

Charakteristik: kann auf endlichen Abläufen nicht widerlegt werden

Beispiele

- Terminierung von Programmen
- Anfragen werden beantwortet
- Fehlerzustände werden wieder verlassen

Typische Formelmuster

Sicherheitseigenschaften

► Invariante *P* gilt immer

- $\square P$
- ▶ Invariante *P* zumindest bis *Q*
- P W Q

Q muss aber nicht eintreten

Lebendigkeitseigenschaften

► Garantie *P* tritt ein

 $\Diamond P$

Garantie Q tritt ein

 $P \mathcal{U} Q$

Recurrence/Progress

 $\Box \Diamond P$

immer wieder P

bis da hin immer P

Response

- $\Box (P \Rightarrow \Diamond Q)$
- auf jedes P folgt garantiert Q

Stability

 $\Diamond \Box P$

irgendwann nur noch P

Klassifikation nicht immer offensichtlich

- → Kann die Eigenschaft schon nach endlich vielen Schritten widerlegt werden?
- ✓ Sicherheitseigenschaft

X Lebendigkeitseigenschaft

LTL: Äquivalenzen

Wir kommen mit \circ und \mathcal{U} aus:

- $ightharpoonup \Diamond \phi \iff \mathsf{true}\, \mathcal{U}\, \phi$
- $\triangleright \Box \phi \iff \neg \Diamond \neg \phi$

LTL: Äquivalenzen

Wir kommen mit \circ und \mathcal{U} aus:

- $\triangleright \Diamond \phi \iff \mathsf{true} \, \mathcal{U} \, \phi$
- $\triangleright \Box \phi \iff \neg \Diamond \neg \phi$
- $\triangleright \phi \mathcal{W} \psi \iff \phi \mathcal{U} \psi \vee \Box \phi$

Außerdem lassen sich alle Operatoren "einen Schritt weiterschieben"

 $\triangleright \Box \phi \iff \phi \land \circ \Box \phi$

 ϕ gilt jetzt und auch später immer

 $\triangleright \Diamond \phi \iff \phi \lor \circ \Diamond \phi$

- ϕ gilt jetzt oder später irgendwann
- \blacktriangleright $\phi \mathcal{U} \psi \iff \psi \lor \phi \land \circ (\phi \mathcal{U} \psi) \psi$ jetzt oder ϕ und wieder das selbe später

Was Sie wissen und können sollten

Von heute

- Einfache Systeme mit Transitionssystemen modellieren können
 - Beschreibung des Zustandsraumes evtl aus mehreren Teilen
 - Angabe möglicher Transitionen
- Spezifikationen in LTL formulieren
- Grundsätzliche Unterscheidung zwischen Sicherheitseigenschaften und Lebendigkeitseigenschaften kennen

Ausblick

- ► Formale Semantik von LTL + Intuition dazu Insbesondere: beispiele zu Sicherheit/Lebendigkeit
- Modellierung: Automaten mit Ein-/Ausgaben
- Verifikationstechniken für Automaten bezgl. LTL Spezifikationen

Modellierung/Spezifikation reativer Systeme Auswertung von LTL Formeln

Heute

Auswertung von LTL Formeln auf Abläufen von Modellen

- ► Intuition, grafische Repräsentation
- ► Formale Definition

Thermostat

Modell mit Variable t und (\approx Kontrollflussautomat), Nehmen wir mal an: $t_{min} = 19$, $t_{max} = 23$ konstant

Erinnerung: das zugehörige Transitionssystem beschreibt

- \blacktriangleright Zustände, z.B. $s=\{\mathrm{pc}\mapsto \mathrm{heating}, t\mapsto 23\} \text{ mit konkreten Werten } s'=\{\mathrm{pc}\mapsto \mathrm{cooling}, t\mapsto 23\}$
- ▶ Initialzustände, z.B. $s_0 = \{pc \mapsto heating, t \mapsto 20\}$
- ightharpoonup Mögliche Transitionen, z.B. $s \rightarrow s'$

Definition: Eine unendliche Folge $\overline{s}=(s_0,s_1,\ldots)$ von Zuständen $s_i\in\Sigma$ ist *Ablauf* eines Transitionssystems $T=(\Sigma,\sigma^I,\to)$ falls

- $ightharpoonup s_0 \in \sigma^I$ ist Initialzustand
- $ightharpoonup s_i
 ightharpoonup s_{i+1}$ gemäß möglicher Transitionen

Definition: Eine unendliche Folge $\overline{s}=(s_0,s_1,\ldots)$ von Zuständen $s_i\in\Sigma$ ist *Ablauf* eines Transitionssystems $T=(\Sigma,\sigma^I,\to)$ falls

- $ightharpoonup s_0 \in \sigma^I$ ist Initialzustand
- $ightharpoonup s_i
 ightharpoonup s_{i+1}$ gemäß möglicher Transitionen

Grafische Darstellung

Definition: Eine unendliche Folge $\overline{s}=(s_0,s_1,\ldots)$ von Zuständen $s_i\in\Sigma$ ist *Ablauf* eines Transitionssystems $T=(\Sigma,\sigma^I,\to)$ falls

- $ightharpoonup s_0 \in \sigma^I$ ist Initialzustand
- $ightharpoonup s_i
 ightharpoonup s_{i+1}$ gemäß möglicher Transitionen

Grafische Darstellung

Spezifikation von Eigenschaften

- ▶ über einzelne Zustände, z.B. gilt $t \ge t_{min}$ in s_0 ?
- ightharpoonup über alle erreichbaren Zustände, z.B. $\forall s \in \sigma^R$. $s \models t \geq t_{min}$?

Definition: Eine unendliche Folge $\overline{s}=(s_0,s_1,\ldots)$ von Zuständen $s_i\in\Sigma$ ist *Ablauf* eines Transitionssystems $T=(\Sigma,\sigma^I,\to)$ falls

- $ightharpoonup s_0 \in \sigma^I$ ist Initialzustand
- $ightharpoonup s_i
 ightharpoonup s_{i+1}$ gemäß möglicher Transitionen

Grafische Darstellung

Spezifikation von Eigenschaften

- ▶ über einzelne Zustände, z.B. gilt $t \ge t_{min}$ in s_0 ?
- ightharpoonup über alle erreichbaren Zustände, z.B. $\forall s \in \sigma^R$. $s \models t \geq t_{min}$?
- ▶ über gesamte Abläufe → Lineare Temproale Logik

Wiederholing: LTL Syntax

Formeln
$$\phi := P$$
 Zustandsformeln
$$| \neg \phi \mid \phi \land \psi \mid \dots$$
 Junktoren über LTL Formeln
$$| \circ \phi \mid (\mathcal{N} \phi) \qquad \phi \text{ gilt im } \textit{nächsten Zustand}$$

$$| \Diamond \phi \mid (\mathcal{F} \phi) \qquad \phi \text{ gilt } \textit{irgendwann jetzt oder später}$$

$$| \Box \phi \mid (\mathcal{G} \phi) \qquad \phi \text{ gilt ab jetzt } \textit{immer}$$

$$| \phi \mathcal{U} \psi \qquad \phi \text{ gilt bis irgendwann } \psi \text{ garantiert eintritt}$$

$$| \phi \mathcal{W} \psi \qquad \phi \text{ gilt solange bis } \psi \text{ vielleicht eintritt}$$

Auswertung von Formeln (grafisch)

Gegeben: Auswertung $s \models P$ von Zustandsformeln ("normale Formeln")

Zustandsformeln können zu *unterschiedlichen Zeitpunkten* in einem Ablauf gelten. Grafische Darstellung (Beispiel):

Auswertung von Formeln (grafisch)

Gegeben: Auswertung $s \models P$ von Zustandsformeln ("normale Formeln")

Zustandsformeln können zu *unterschiedlichen Zeitpunkten* in einem Ablauf gelten. Grafische Darstellung (Beispiel):

Ziel heute

- ► Grafische Auswertung (Bedeutung/Semantik) einfacher LTL Formeln
- Formale Definition der Auswertung $\overline{s} \models \phi$ für beliebig geschachtelte LTL

Semantik von "next" grafisch

Semantik von "next" grafisch

Semantik von "next" grafisch

Schematisch: wo muss P gelten damit die LTL Formel \circ P wahr wird?

Im letzten Beispiel ist keine Information über $s_1 \models P$ angegeben

Spezifikation: Beamer mit Defekten

Schematisch: wo muss P gelten damit die LTL Formel \square P wahr wird?

sofern für alle weiteren Zustände $s_k \models P$ gilt

Schematisch: wo muss P gelten damit die LTL Formel \square P wahr wird?

sofern für alle weiteren Zustände $s_k \models P$ gilt

Schematisch: wo muss P gelten damit die LTL Formel \square P wahr wird?

Im letzten Beispiel: für s_1 , s_2 , s_3 ist nicht angegeben ob dort P garantiert gilt

Spezifikation: Beamer mit Defekten

Schematisch: wo muss P gelten damit die LTL Formel $\Diamond P$ wahr wird?

sofern nie $s_k \models P$ gilt für ein $k \ge 0$

Spezifikation: Beamer mit Defekten

Unendliche Abläufe: Gültigkeit von "always" und "eventually"

- ▶ Um eine Formel \Box P zu *beweisen*, muss P auf dem *ganzen* Ablauf gelten
- Es müssen alle Zustände geprüft werden, also unendlich viele

- \triangleright Um eine Formel $\lozenge P$ zu zu belegen, reicht ein passender Zustand
- Sobald P wahr wird, kann man abbrechen

Unendliche Abläufe: Widerlegung von "always" und "eventually"

- ▶ Um eine Formel \Box P zu *widerlegen*, reicht ein Zustand mit $\neg P$ (hier: s_0)
- ► Sobald dieser gefunden ist, kann man abbrechen

- \triangleright Um eine Formel $\lozenge P$ zu widerlegen, muss man beweisen, dass P nie wahr wird
- ► Es müssen analog zu 🗸 unendlich viele Zustände berücksichtigt werden

Diskussion: unendliche Abläufe

Erinnerung: Reaktive Systeme

- Nichtterminierung gewünscht (z.B. Server, Ampel)
- ► Ereigisse treten *immer wieder* auf

Diskussion: unendliche Abläufe

Erinnerung: Reaktive Systeme

- Nichtterminierung gewünscht (z.B. Server, Ampel)
- Ereigisse treten immer wieder auf

Sicherheitseigenschaft, z.B. \square P

- "etwas Schlechtes passiert nie"
- Sofern die Eigenschaft nicht nach einer (beliebigen) endlichen Anzahl von Schritten verletzt werden kann, gilt sie definiv auf jedem unendlichen Ablauf

Sicherheitseigenschaft, z.B. $\Diamond P$

- "etwas Gutes passiert irgendwann"
- Sofern man nicht den ganzen Ablauf betrachtet, kann es ja sein, dass *P* doch noch wahr wird
- Nicht in endlicher Zeit definitiv widerlegbar

Semantik von "until" und "weak until" grafisch

Schematisch: wo muss/kann P,Q gelten damit $P \ \mathcal{U} \ Q$ wahr wird?

Semantik von "until" und "weak until" grafisch

Schematisch: wo muss/kann P,Q gelten damit $P \ \mathcal{U} \ Q$ wahr wird?

Semantik von "until" und "weak until" grafisch

Schematisch: wo muss/kann P,Q gelten damit $P \ \mathcal{U} \ Q$ wahr wird?

Semantik von "until" und "weak until" grafisch

Schematisch: wo muss/kann P,Q gelten damit $P \ \mathcal{U} \ Q$ wahr wird?

Semantik von "until" und "weak until" grafisch

Schematisch: wo muss/kann P,Q gelten damit $P \ \mathcal{U} \ Q$ wahr wird?

$$\checkmark PWQ$$

Semantik von "until" und "weak until" grafisch

Schematisch: wo muss/kann P,Q gelten damit $P \mathcal{U} Q$ wahr wird?

Zwischenstand

- ✓ Auswertung von einfachen LTL Formeln (ohne geschachtelte Operatoren)
- ✓ Sicherheit und Lebendigkeit auf unendlichen Abläufen
- Wie funktioniert das Schachteln von temporalen Operatoren?

Wie geht man mit geschachtelten Formeln um?

Wie geht man mit geschachtelten Formeln um?

Definition *Suffix* eines Ablaufes
$$\overline{s} = (s_0, s_1, \ldots)$$
 ab k

$$ar{s}_{|k}=(s_k,s_{k+1},s_{k+2},\ldots)$$
 (insbes. $\overline{s}_{|0}=\overline{s}$)

$$\overline{s} \models P$$
 $\operatorname{gdw} s_0 \models P$ $\overline{s} \models \neg \phi$ $\operatorname{gdw} \overline{s} \not\models \phi$

$$\begin{array}{lll} \overline{s} \models \neg \phi & \text{gdw} & \overline{s} \not\models \phi & \text{(andere Junktoren analog)} \\ \overline{s} \models \phi \Rightarrow \psi & \text{gdw} & \overline{s} \not\models \phi \text{ oder } \overline{s} \models \psi \end{array}$$

Definition Suffix eines Ablaufes
$$\overline{s} = (s_0, s_1, \ldots)$$
 ab k

$$\overline{s}_{|k} = (s_k, s_{k+1}, s_{k+2}, \ldots) \qquad \text{(insbes. } \overline{s}_{|0} = \overline{s} \text{)}$$

$$\overline{s} \models P \qquad \qquad \text{gdw} \qquad s_0 \models P$$

$$\overline{s} \models \neg \phi \qquad \qquad \text{gdw} \qquad \overline{s} \not\models \phi \qquad \text{(andere Junktoren analog)}$$

$$\overline{s} \models \phi \Rightarrow \psi \qquad \qquad \text{gdw} \qquad \overline{s} \not\models \phi \text{ oder } \overline{s} \models \psi$$

$$\overline{s} \models \Box \phi$$

$$\overline{s} \models \Diamond \phi$$

$$\mathsf{gdw} \quad \overline{s} \not\models \phi \mathsf{ oder } \overline{s} \models \psi$$

$$\mathsf{gdw} \quad \overline{s}_{|1} \models \phi$$

$$\operatorname{gdw} \quad \overline{s}_{|k} \models \phi \text{ für alle } k \geq 0$$

gdw
$$\overline{s}_{|k} \models \phi$$
 für mindestens ein $k \geq 0$

```
Definition Suffix eines Ablaufes \bar{s} = (s_0, s_1, ...) ab k
   \overline{s}_{|k} = (s_k, s_{k+1}, s_{k+2}, \ldots) (insbes. \overline{s}_{|0} = \overline{s})
\overline{s} \models P
                                                \mathsf{gdw} \quad s_0 \models P
                                                gdw \bar{s} \not\models \phi (andere Junktoren analog)
\overline{s} \models \neg \phi
\overline{s} \models \phi \Rightarrow \psi
                                                \mathsf{gdw} \quad \overline{s} \not\models \phi \text{ oder } \overline{s} \models \psi
\overline{s} \models \circ \phi
                                                gdw \overline{s}_{11} \models \phi
                                                \mathsf{gdw} \quad \overline{s}_{|k} \models \phi \text{ für alle } k \geq 0
\overline{s} \models \Box \phi
\overline{s} \models \Diamond \phi
                                                gdw \overline{s}_{|k} \models \phi für mindestens ein k > 0
\overline{s} \models \phi \mathcal{U} \psi
                                                gdw es gibt k > 0 mit \overline{s}_{|k|} \models \psi
                                                 und
                                                           für alle 0 \le j < k gilt \overline{s}_{|i|} \models \phi
```

```
Definition Suffix eines Ablaufes \bar{s} = (s_0, s_1, ...) ab k
    \overline{s}_{|k} = (s_k, s_{k+1}, s_{k+2}, \ldots) (insbes. \overline{s}_{|0} = \overline{s})
\overline{s} \models P
                                                   \mathsf{gdw} \quad s_0 \models P
                                                  gdw \bar{s} \not\models \phi (andere Junktoren analog)
\overline{s} \models \neg \phi
\overline{s} \models \phi \Rightarrow \psi
                                                   \mathsf{gdw} \quad \overline{s} \not\models \phi \text{ oder } \overline{s} \models \psi
\overline{s} \models \circ \phi
                                                   gdw \overline{s}_{11} \models \phi
                                                  \operatorname{\mathsf{gdw}} \quad \overline{s}_{|k} \models \phi \text{ für alle } k \geq 0
\overline{s} \models \Box \phi
\overline{s} \models \Diamond \phi
                                                   gdw \overline{s}_{|k} \models \phi für mindestens ein k > 0
\overline{s} \models \phi \mathcal{U} \psi
                                                              es gibt k \geq 0 mit \overline{s}_{|k} \models \psi
                                                   gdw
                                                   und für alle 0 < j < k gilt \overline{s}_{|i|} \models \phi
\overline{s} \models \phi \mathcal{W} \psi
                                                   \overline{s} \models \phi \ \mathcal{U} \ \psi \ \text{oder} \ \overline{s} \models \Box \ \phi
```

Spezifikation: Beamer mit Defekten

Zusammenfassung

Spezifikation mit LTL

- ► Eine LTL Formel "gilt" (oder nicht) auf einem unendlichen *Ablauf*, der durch ein reaktives System erzeugt wird
- ► Temporale Operatoren "verschieben" Teilformeln, sodass Sie sich auf bestimmte Teilabläufe beziehen
- Ungeschachtelte LTL über Zustandsformeln lässt sich schön grafisch darstellen
- Geschachtelte Formeln erfordern etwas Nachdenken

License

©These slides are licensed under the creative commons license: https://creativecommons.org/licenses/by-nc-nd/4.0/

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

- (i) give appropriate credit
- (a) distribute without modifications
- s do not use for commercial purposes