Suppose you have one machine and a set of n jobs a_{j} , a_{2} , ..., a_{n} to process on that machine. Each job a_{j} has a processing time t_{j} , a profit p_{j} and a deadline d_{j} . The machine can only one job at a time, and job a_{j} must run uninterruptedly for t_{j} consecutive time units. If job a_{j} is completed by its deadline d_{j} , you receive a profit p_{j} , but if it's completed after its deadline, you receive a profit of 0. Give a dynamic programming algorithm to find the schedule that obtains the maximum amount of profit, assuming that all processing times are integers between 1 and n.

STEP 1 Characterize the structure of the optimal solution

We obtain the profit when adding a job into the sequence, using the following equations:

$$h_{k} \left(\sum_{i \in S} t_{i} + t_{k} \right) = \sum_{i \in S} p_{i} + p_{k}$$

where $h_{_{k}}$ defines if:

$$p_{k} = p_{k} \qquad \qquad if \sum_{i \in S} t_{i} + t_{k} \le d_{k}$$

$$p_k = 0 if \sum_{i \in S} t_i + t_k > d_k$$

Where k is the job that is currently being added to the schedule, and elements in S refers to each combination of jobs that have been already processed. t_i is the processing time of each job, and h_k is the function that determines if profit p_k is added or not. In other words, h_k defines if profit p_k remains with its original value (considering that the total processing times are completed by the deadline d_k), or if it turns to 0, (considering that the sum of all processing times is higher than the deadline d_k).

STEP 2 Recursively define the value of an optimal solution

Next, we obtained the recurrence relation, where if the size of the problem n is equal to 1, we would only have one way of scheduling the jobs e.g. $\binom{p}{1}$. However, if we have a size problem of $n \geq 2$ the recursive solution would be:

$$f[S] = \max \left\{ f[i] + h_k \left(\sum_{i \in S} t_i \right) \right\}$$

$$\forall i \in C \text{ if } k \neq C \text{ if } n \geq 2$$

$$f[S] = p_k$$

$$if n = 1$$

Where C are the possible combinations, considering that length(S)-1 elements have been scheduled and k is currently being added. For instance, if $S=[a_1,a_2,a_3]$ then $C=[a_1,a_2]$, $[a_1,a_3]$, $[a_2,a_3]$; if we want to add a_1 , then k=1, and f[C] would be equal to $f[a_2,a_3]$. This happens because, we would add the profit of scheduling a_1 to the already obtained profit of scheduling a_2 and a_3 . Thus, the number of

possible combinations C is equal to $\binom{S}{d}$ (where d is the length(s)-1).

In addition, the maximum number of combinations is equal to $\binom{n}{l}$, where l is the current iteration number. For example, if we have a size problem n=4 and we are developing the first iteration (l=1),

then the number of combinations would be which is equal to 4 (S: { s_1 , s_2 , s_3 , s_4 }). Where $s_1 = a_1$, $s_2 = a_2$, $s_3 = a_3$, $s_4 = a_4$, thus the evaluations done are for: $f[a_1]$, $f[a_2]$, $f[a_3]$, and $f[a_4]$.

To illustrate this better we will follow up in the case where we have developed the second iteration; thus,

l=2 and so the number of evaluations is $\binom{4}{2}$. This would result in 6 evaluations which would have the following form: $f\left[a_1,a_2\right]$, $f\left[a_1,a_3\right]$, $f\left[a_1,a_4\right]$, $f\left[a_2,a_3\right]$, $f\left[a_2,a_4\right]$ and $f\left[a_3,a_4\right]$.

STEP 3 Calculate the value of the optimal solution in a bottom-up way

Now we provide the solution for the problem, considering that we have the following data:

j	$t_{j}^{}$	$d_{_{j}}$	$p_{_{j}}$
1	4	10	2
2	4	15	5
3	5	5	3
4	6	10	4

FIRST ITERATION

$$f_1[a_1] = 2$$
 $k[1] = 1$
 $f_1[a_2] = 5$ $k[2] = 2$
 $f_1[a_3] = 3$ $k[3] = 3$
 $f_1[a_4] = 4$ $k[4] = 4$

SECOND ITERATION

$$\begin{split} f_2\big[a_1,a_2\big] &= \max\{\big(f_1\big[a_1\big] + h_2\big(t_1 + t_2\big)\big); \big(f_1\big[a_2\big] + h_1\big(t_1 + t_2\big)\big)\} \\ &= \max\{(2+5); (5+2)\} \\ &= 7 \\ k[1,2] &= 1,2 \\ f_2\big[a_1,a_3\big] &= \max\{\big(f_1\big[a_1\big] + h_3\big(t_1 + t_3\big)\big); \big(f_1\big[a_3\big] + h_1\big(t_1 + t_3\big)\big)\} \\ &= \max\{(2+0); (3+2)\} \\ &= \max\{2; 5\} \\ &= 5 \\ k[1,3] &= 1 \\ f_2\big[a_1,a_4\big] &= \max\{\big(f_1\big[a_1\big] + h_4\big(t_1 + t_4\big)\big); \big(f_1\big[a_4\big] + h_1\big(t_1 + t_4\big)\big)\} \\ &= \max\{(2+4); (4+2)\} \\ &= \max\{6; 6\} \end{split}$$

$$\begin{array}{l} = 6 & k[1,4] = 1,4 \\ f_2[a_2,a_3] = \max\{\left(f_1[a_2] + h_3(t_2+t_3)\right); \left(f_1[a_3] + h_2(t_2+t_3)\right)\} \\ = \max\{(5+0); (3+5)\} \\ = \max\{5;8\} \\ = 8 & k[2,3] = 2 \\ f_2[a_2,a_4] = \max\{\left(f_1[a_2] + h_4(t_2+t_4)\right); \left(f_1[a_4] + h_2(t_2+t_4)\right)\} \\ = \max\{(5+4); (4+5)\} \\ = \max\{9;9\} \\ = 9 & k[2,4] = 2,4 \\ f_2[a_3,a_4] = \max\{\left(f_1[a_3] + h_4(t_3+t_4)\right); \left(f_1[a_4] + h_3(t_3+t_4)\right)\} \\ = \max\{(3+0); (4+0)\} \\ = \max\{3;4\} \\ = 4 & k[3,4] = 3 \end{array}$$

THIRD ITERATION

$$\begin{split} f_{3}\big[a_{1},a_{2},a_{3}\big] &= \max\{\left(f_{2}\big[a_{1},a_{2}\big] + h_{3}\big(t_{1} + t_{2} + t_{3}\big)\right); \left(f_{2}\big[a_{1},a_{3}\big] + h_{2}\big(t_{1} + t_{2} + t_{3}\big)\right); \left(f_{2}\big[a_{2},a_{3}\big] + h_{1}\big(t_{1} + t_{2} + t_{3}\big)\right)\} \\ &= \max\{(7+0); (5+5); (8+0)\} \\ &= \max\{7; 10; 8\} \\ &= 10 \\ f_{3}\big[a_{1},a_{2},a_{4}\big] &= \max\{\left(f_{2}\big[a_{1},a_{2}\big] + h_{4}\big(t_{1} + t_{2} + t_{4}\big)\right); \left(f_{2}\big[a_{1},a_{4}\big] + h_{2}\big(t_{1} + t_{2} + t_{4}\big)\right); \left(f_{2}\big[a_{2},a_{4}\big] + h_{1}\big(t_{1} + t_{2} + t_{4}\big)\right)\} \\ &= \max\{(7+0); (6+5); (9+0)\} \\ &= \max\{(7+0); (6+5); (9+0)\} \\ &= \max\{7; 11; 9\} \\ &= 11 \\ f_{3}\big[a_{1},a_{3},a_{4}\big] &= \max\{\left(f_{2}\big[a_{1},a_{3}\big] + h_{4}\big(t_{1} + t_{3} + t_{4}\big)\right); \left(f_{2}\big[a_{1},a_{4}\big] + h_{3}\big(t_{1} + t_{3} + t_{4}\big)\right); \left(f_{2}\big[a_{3},a_{4}\big] + h_{2}\big(t_{1} + t_{3} + t_{4}\big)\right)\} \\ &= \max\{(5+0); (6+0); (4+0)\} \\ &= \max\{(5+0); (6+0); (4+0)\} \\ &= \max\{(8+0); (9+0); (4+5)\} \\ &= \max\{(8+0); (9+0); (4+5)\} \\ &= \max\{(8+0); (9+0); (4+5)\} \\ &= \max\{(8,3,4] = 2,3\} \end{split}$$

FOURTH ITFRATION

$$\begin{split} f_{4}\big[a_{1},a_{2},a_{3},a_{4}\big] &= \max\{\big(f_{3}\big[a_{1},a_{2},a_{3}\big] + h_{4}\big(t_{1} + t_{2} + t_{3} + t_{4}\big)\big); \big(f_{3}\big[a_{1},a_{3},a_{4}\big] + h_{2}\big(t_{1} + t_{2} + t_{3} + t_{4}\big)\big); \\ & \big(f_{3}\big[a_{1},a_{2},a_{4}\big] + h_{3}\big(t_{1} + t_{2} + t_{3} + t_{4}\big)\big); \big(f_{3}\big[a_{2},a_{3},a_{4}\big] + h_{1}\big(t_{1} + t_{2} + t_{3} + t_{4}\big)\big) \\ &= \max\{(10 + 0); (6 + 0); (11 + 0); (9 + 0)\} \\ &= \max\{10; 6; 11; 9\} \\ &= 11 \end{split}$$

STEP 4 Construct the optimal solution with the information gathered.

