Студент	
Группа	
Дата сдачи	

Лабораторная работа № 6

СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ

Цель работы:

Уравнение реакции:

Опыт 1. Зависимость скорости реакции от концентрации реагентов Основные понятия: закон действующих масс, порядок реакции по i—тому реагенту n_i , общий порядок реакции n

Основные расчетные формулы:
$$r=\frac{100}{\tau}$$
 (условная скорость); $n=\frac{\lg\frac{r_2}{r_1}}{\lg\frac{C_2}{C_1}}$

Таблица 1. Результаты измерений и расчетов

$\mathcal{N}_{\underline{0}}$	Объем	Объем	Объем	Концентрация	Время	Условная
опыта	раствора	воды,	раствора	C (Na ₂ S ₂ O ₃),	протекания	скорость
	Na ₂ S ₂ O ₃ , мл	МЛ	H ₂ SO ₄ , мл	моль/л	реакции τ, с	реакции <i>r</i> , c ⁻
						1
1	10	20	10	0,014		
2	20	10	10	0,028		
3	30	0	10	0,042		

Графи	ик зависимости	r	=f	(C)
-------	----------------	---	----	-----

Расчеты:

$$\uparrow r, c^{-1}$$

C (Na₂S₂O₃), моль/л

Выводы: (отмечают влияние концентрации реагента на скорость реакции, указывают порядок реакции по реагенту ($Na_2S_2O_3$), рассчитанный по результатам измерений)

Опыт 2. Зависимость скорости реакции от температуры

Основные понятия: скорость химической реакции r, температурный коэффициент скорости реакции γ , энергия активации реакции $E_{\rm a}$

Основные расчетные формулы:
$$r=\frac{100}{\tau}$$
 (условная скорость); $\gamma=\frac{r_{T+10}}{r_T}$; $E_{\rm a}=\frac{RT_1T_2}{T_2-T_1}\ln\frac{r_2}{r_1}$

Таблица 1. Результаты измерений и расчетов

$\mathcal{N}_{\underline{0}}$	Температура	Объем	Объем	Время	Условная
опыта	Т, К	раствора	раствора	протекания	скорость
		$Na_2S_2O_3$, мл	H ₂ SO ₄ , мл	реакции τ, с	реакции r , c^{-1}
1					
2		20	20		
3					

График зависимости r = f(T):

Выводы: (отмечают влияние температуры на скорость реакции, указывают рассчитанные по результатам измерений средний температурный коэффициент скорости реакции и энергию активации реакции)