Отчет о выполнении лабораторной работы 3.2.5 Вынужденные колебания в электрическом контуре

Комкин Михаил, группа Б01-303 9 ноября 2024 г.

Цель работы: : исследование вынужденных колебаний и процессов их установления в колебательном контуре.

В работе используются: генератор звуковых частот, вольтметр, частотомер, конденсатор, катушка индуктивности, магазин сопротивлений, осциллограф, универсальный измеритель импеданса. В работе исследуются колебания, возникающие в параллельном электрическом контуре под действием внешней ЭДС, гармонически меняющейся во времени.

1 Теория

Рис. 1: Схема установки

При подключении к контуру внешнего синусоидального источника в нём возникают колебания, которые можно представить как суперпозицию двух синусоид (2.87): первая — с частотой собственных колебаний контура и амплитудой, экспоненциально убывающей со временем; вторая — с частотой внешнего источника и постоянной амплитудой. Со временем собственные колебания затухают, и в контуре устанавливаются вынужденные колебания. Амплитуда этих колебаний максимальна при резонансе: совпадении или

достаточной близости частоты внешнего сигнала и собственной частоты контура. Зависимость амплитуды установившихся колебаний от частоты внешнего сигнала называется резонансной кривой.

Резонансная кривая колебательного контура Для экспериментального исследования резонансной кривой тока в параллельном колебательном контуре используется схема, представленная на рис. 1.

1. Синусоидальный сигнал с генератора подаётся на параллельный колебательный контур через небольшую разделительную ёмкость C_1 . Напряжение с конденсатора контура C поступает на вертикальный вход электронного осциллографа (ЭО). Для регистрации резонансной кривой необходимо, чтобы модули импедансов возбуждающей $Z_{\rm вx}$ и измеряющей $Z_{\rm нзм}$ цепей намного превосходили модуль импеданса самого контура вблизи резонанса $Z_{\rm pe3} = L/RC$. С этой целью разделительная ёмкость C_1 выбирается настолько малой, что в рабочем диапазоне частот модуль её импеданса $|Z_{C_1}| = 1/(\omega C_1)$ намного больше модуля импеданса контура на частоте ω .

Таким образом, амплитуда тока в цепи генератора определяется импедансом $|Z_{C_1}|$. Эта амплитуда относительно мало меняется в пределах резонансной кривой колебательного контура, что, однако, приводит к некоторому искажению последней по сравнению со случаем, рассмотренным в п. 3.2, где в качестве генератора предполагается источник тока, обладающий большим и постоянным внутренним сопротивлением во всём исследуемом частотном диапазоне. Входное сопротивление осциллографа (измерительной цепи) достаточно велико: $Z_{\text{изм}} \approx 1$ МОм, поэтому его влиянием можно пренебречь.

Указанные ограничения представляются в виде следующих соотношений:

$$|Z_{C_1}| = \frac{1}{\omega C_1} \gg |Z|_{\text{pes}} = \frac{Q}{\omega_0 C}, \quad R_\omega \ll \frac{\omega L}{Q},$$

где $\omega_0=1/\sqrt{LC}$ — собственная частота контура, а его добротность $Q=Q_m=\frac{1}{R}\sqrt{\frac{L}{C}}$.

По полученной в эксперименте резонансной кривой $I_C(\omega)$, представляющей отклик системы — параллельного колебательного контура — на внешнее воздействие, которым является ток генератора I_{ω} , можно определить его резонансную частоту $\omega_m \approx \omega_0$ и его добротность Q. При высокой добротности контура частота ω_0 будет шириной кривой с максимумом резонансной кривой, а добротность будет определяться её относительной шириной: $Q \approx \omega_0/\delta\omega$ (см. (2.77)).

Для установления более точной аналитической связи воспользуемся методом комплексных амплитуд. С учётом условий (1) исследуемая в работе схема эквивалента рассмотренному в п. 3.2 случаю резонанса в *параллельном* контуре. Вычислив модуль из первой формулы (2.78), можно получить следующее выражение для резонансной кривой:

$$I_C(\omega) = I(\omega) \sqrt{\frac{1 + Q_m^2(\omega/\omega_0 - \omega_0/\omega)^2}{1 + Q_m^2(\omega/\omega_0 - \omega_0/\omega)^2}}.$$
 (2)

Из соотношения (2) следует, что на собственной частоте ω_0 ток в высокодобротном контуре почти в $Q \gg 1$ раз превосходит ток во внешней цепи. Именно по этой причине резонанс в параллельном контуре называется резонансом токов.

Как уже отмечалось, резонанс, то есть максимальный отклик на внешнее воздействие, достигается в данной схеме на частоте ω_m , несколько отличной от собственной ω_0 , в чём можно убедиться при более детальном анализе подкоренного выражения в (2) (см. подробнее п. 3.2 Введения). Дополнительное смещение резонансной частоты и уменьшение добротности контура связаны с шунтирующим действием генератора, приводящим к зависимости амплитуды тока I от частоты ω , если его внутреннее сопротивление не достаточно велико. Указанные изменения частоты и гибели добротности контура легко регистрируется в эксперименте.

В. Процессы установления и затухания колебаний в контуре

Добротность контура может быть определена разными способами, например, по скорости нарастания амплитуды вынужденных колебаний при резонансе или по скорости затухания свободных колебаний.

Рис. 2: Нарастание и затухание вынужденных колебаний

Нарастание и затухание колебаний (рис. 2) можно наблюдать на экране осциллографа, если подать на контур периодический сигнал с паузами, разделёнными интервалами, в течение которых сигнал отсутствует. Чем выше добротность Q, тем медленнее нарастают и медленнее затухают колебания в контуре. Получить значение Q можно, измерив логарифмический декремент затухания по скорости нарастания или затухания колебаний. В условиях резонанса огибающая затухающих колебаний — это «перевёрнутая» огибающая нарастающего участка. Она может быть использована для расчёта логарифмического декремента затухания по формуле.

Экспериментальная установка Схема установки для исследования вынужденных колебаний приведена на рис. 3. Колебательный контур состоит из конденсатора с ёмкостью С, катушки с индуктивностью L и магазина сопротивлений R. Синусоидальный сигнал генерируется звуковым генератором (ЗГ), а сигнал, состоящий из отрезков синусоиды (цугов), формируется цифровым генератором электрических сигналов произвольной формы или комбинацией генератора синусоидального сигнала звукового диапазона и электронного реле, прерывающего сигнал с заданной периодичностью. Результирующие сигналы — цуги или непрерывная синусоида — поступают по отдельным каналам через одинаковые небольшие ёмкости С1 соответственно на клеммы «цуги» и «непр.

Эффективное значение тока $I(\omega)$, текущего к контуру от генератора в режиме непрерывного сигнала, измеряется амперметром A, а соответствующее значение тока в контуре определяется по формуле $I_C(\omega) = \omega C U_C(\omega)$, где $U_C(\omega) - \Im$ ффективное напряжение на

Рис. 3: Схема установки

конденсаторе, измеряемое вольтметром V.

Для визуального наблюдения за процессом колебаний напряжение с ёмкости контура C подаётся на вход электронного осциллографа. Чтобы картина на экране была устойчивой, частота развёртки осциллографа принудительно синхронизируется с частотой повторения щупов. Для этого на генератор развёртки Θ 0 подаются следящие с частотой повторения щупов управляющие импульсы, формируемые в блоке электронного реле, клемма «синхр.» которого смонтирована на панели « Π ».

Используя представленную схему в режиме непрерывного синусоидального сигнала, можно по показаниям приборов и известным параметрам элементов цепи измерить амплитудночастотную характеристику (резонансную кривую) $I_C(\omega)$ в необходимом диапазоне частот. Сравнивая результат измерения с теоретической кривой (2), можно определить характеристики колебательного контура $\omega_m \approx \omega_0$ и Q.