BCD & ADMM 算法收敛理论

Lecture 2: 凸分析基础

罗自炎

北京交通大学数统学院

E-mail: zyluo@bjtu.edu.cn

参考资料

- 教材与参考文献:
 - 最优化: 建模、算法与理论
 - Bolte et al., MP 2014
 - Fazel et al., SIMAX 2013
 - Rockafellar & Wets, Variational Analysis
- 致谢: 北京大学文再文教授;清华大学张立平教授

目录

- 向量范数和矩阵范数
- 凸集
- 凸函数
- 共轭函数
- 次梯度

向量范数

• 最常用的向量范数 ℓ_p 范数 $(p \ge 1)$: 令 $v \in \mathbb{R}^n$,

$$||v||_p = \left(\sum_{i=1}^n |v_i|^p\right)^{\frac{1}{p}}.$$

- ℓ_{∞} 范数: $||v||_{\infty} = \max_{1 \le j \le n} |v_{(j)}|$.
- 由正定矩阵A诱导的向量范数: $||v||_A = \sqrt{v^T A v}$.
- Cauchy-Schwarz不等式: 设 $a, b \in \mathbb{R}^n$, 则 $|a^Tb| \le ||a||_2 ||b||_2$,且等号成立的条件是a与b线性相关.

Figure 1: ℓ_1 范数, ℓ_2 范数和 ℓ_∞ 范数

矩阵范数、核范数

Definition 1. 如果函数 $\|\cdot\|: \mathbb{R}^{m \times n} \to \mathbb{R}^+$ 满足:

- 正定性: 对 $\forall A \in \mathbb{R}^{m \times n}$, 有 $\|A\| \ge 0$ 且 $\|A\| = 0 \Leftrightarrow A = 0_{m \times n}$;
- 正齐次性: 对任意 $A \in \mathbb{R}^{m \times n}$ 和 $\alpha \in \mathbb{R}$, $|\alpha A| = |\alpha| |A|$;
- 三角不等式: 对于任意 $A, B \in \mathbb{R}^{m \times n}$, $有 ||A + B|| \le ||A|| + ||B||$.

则称 $\|\cdot\|$ 是定义在向量空间 $\mathbb{R}^{m\times n}$ 上的矩阵范数.

矩阵ℓ_p范数

类似于向量 ℓ_p 范数,矩阵的 ℓ_p 范数: ℓ_1 -范数, F-范数. $\diamondsuit A \in \mathbb{R}^{m \times n}$,

- ℓ_1 -范数: $||A||_1 = \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|$.
- ullet Frobenius范数(F-范数): $\|A\|_F = \sqrt{{
 m Tr}\,(AA^{
 m T})} = \sqrt{\sum\limits_{i=1}^m\sum\limits_{j=1}^n a_{ij}^2}.$
- F-范数具有正交不变性: 对于任意的正交矩阵 $\mathcal{U} \in \mathbb{R}^{m \times m}$ 和 $\mathcal{V} \in \mathbb{R}^{n \times n}$, 有

$$\|\mathcal{U}A\mathcal{V}\|_F^2 = \|A\|_F^2$$
.

• 矩阵迹的性质: $\mathbf{Tr}(AB) = \mathbf{Tr}(BA)$.

● 矩阵的内积: 设 $A, B \in \mathbb{R}^{m \times n}$, 矩阵A, B的内积定义为

$$\langle A, B \rangle = \operatorname{Tr} \left(A B^{\mathrm{T}} \right) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ij}.$$

• F-范数的Cauchy不等式: 设 $A, B \in \mathbb{R}^{m \times n}$, 则

$$|\langle A, B \rangle| \leqslant ||A||_F ||B||_F,$$

等号成立当且仅当A和B线性相关.

Definition 2. 给定矩阵 $A \in \mathbb{R}^{m \times n}$, 其核范数定义为

$$||A||_* = \sum_{i=1}^r \sigma_i,$$

其中 $r = \operatorname{rank}(A)$, $\sigma_i(i = 1, \dots, r)$ 为A的所有非零奇异值.

Question: 核范数是矩阵范数吗?

矩阵的算子范数

Definition 3. 给定矩阵 $A \in \mathbb{R}^{m \times n}$, \mathbb{R}^m 中的向量范数 $\|\cdot\|_{(m)}$ 和 \mathbb{R}^n 中的向量范数 $\|\cdot\|_{(n)}$, 其诱导的矩阵范数为

$$||A||_{(m,n)} = \max_{x \in \mathbb{R}^n, ||x||_{(n)} = 1} ||Ax||_{(m)}.$$

将 $\|\cdot\|_{(m)}$ 和 $\|\cdot\|_{(n)}$ 取向量的 ℓ_p 范数,可诱导下面的矩阵的p范数.

- A的1-范数: $||A||_1 = \max_{\|x\|_1=1} ||Ax||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$
- A的谱范数: $||A||_2 = \max_{||x||_2=1} ||Ax||_2 = \sqrt{\lambda_{\max}(A^{\mathrm{T}}A)}$.
- A的 ∞ 范数: $||A||_{\infty} = \max_{\|x\|_{\infty}=1} ||Ax||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.$

矩阵算子范数的性质

矩阵算子范数的相容性: $||Ax||_{(m)} \le ||A||_{(m,n)} ||x||_{(n)}$. 具体地说,

$$||Ax||_2 \le ||A||_2 ||x||_2$$
.

Theorem 1. 设 $A \in \mathbb{R}^{n \times n}$, 则对A的谱范数 $\|A\|_2 = \sqrt{\lambda_{\max}(A^{\mathrm{T}}A)}$,

- $||A||_2^2 = ||A^{\mathrm{T}}||_2^2 = ||A^{\mathrm{T}}A||_2 = ||AA^{\mathrm{T}}||_2$.
- 对于任意n阶正交矩阵C,D有

$$||CA||_2 = ||AD||_2 = ||CAD||_2 = ||A||_2$$
.

凸集

- 仿射集: $x_1, x_2 \in \mathcal{C} \Rightarrow \theta x_1 + (1 \theta) x_2 \in \mathcal{C}, \forall \theta \in \mathbb{R}.$
- \Box **‡**: $x_1, x_2 \in \mathcal{C} \Rightarrow \theta x_1 + (1 \theta) x_2 \in \mathcal{C}, \forall 0 \leqslant \theta \leqslant 1.$
- 仿射集当然都是凸集.
- 若 \mathcal{S} 是凸集, 则 $k\mathcal{S} = \{ks | k \in \mathbb{R}, s \in \mathcal{S}\}$ 是凸集.
- 若 \mathcal{S} 和 \mathcal{T} 均是凸集,则 $\mathcal{S} + \mathcal{T} = \{s + t | s \in \mathcal{S}, t \in \mathcal{T}\}$ 是凸集.
- 若S和T均是凸集,则 $S \cap T$ 是凸集.
- 设 \mathcal{S} 是凸集,则int \mathcal{S} ,cl(\mathcal{S})均是凸集.

Definition 4 (梯度). 给定函数 $f: \mathbb{R}^n \to \mathbb{R}$,且f在点x的一个邻域内有意义,若存在向量 $g \in \mathbb{R}^n$ 满足

$$\lim_{p \to 0} \frac{f(x+p) - f(x) - g^{\mathrm{T}}p}{\|p\|} = 0,$$

其中 $\|\cdot\|$ 是任意的向量范数,就称f 在点x 处可微(或Fréchet 可微). 此时g 称为f 在点x 处的梯度,记作 $\nabla f(x)$. 如果对区域D 上的每一个点x 都有 $\nabla f(x)$ 存在,则称f 在D 上可微. 若 $\nabla f(x)$ 均存在且连续,则称f 为连续可微函数. (记号: $f \in C^1$)

• $\Diamond p = \varepsilon e_i$, e_i 是第i个分量为1的单位向量,

$$\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \cdots, \frac{\partial f(x)}{\partial x_n}\right]^{\mathrm{T}}.$$

习题1: 计算二元函数 $f(x) = (\max\{0, x_1\})^2 + (\max\{0, x_2\})^2$ 的梯度.

Definition 5 (海瑟矩阵(Hessian)). 如果函数 $f: \mathbb{R}^n \to \mathbb{R}$ 在点x 处的二阶偏导数 $\frac{\partial^2 f(x)}{\partial x_i \partial x_j}$ $i,j=1,2,\cdots,n$ 都存在,则

$$\nabla^{2} f(x) = \begin{bmatrix} \frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

称为f 在点x 处的海瑟矩阵.

• 当 $\nabla^2 f(x)$ 在区域D 上的每个点x 处都存在时,称f 在D 上二阶可微. 若 $\nabla^2 f(x)$ 在D 上还连续,则称f 在D 上二阶连续可微,可以证明此时海瑟矩阵是一个对称矩阵. (记号: $f \in C^2$)

Definition 6 (雅克比(Jacobi)矩阵). 设向量值函数 $F: \mathbb{R}^n \to \mathbb{R}^m$ 为 $F(x) = (f_1(x), f_2(x), \dots, f_m(x))^{\top}$. 若F 在点x 处的偏导数 $\frac{\partial f_i(x)}{\partial x_j}$, $i = 1, 2, \dots, m, j = 1, 2, \dots, n$ 都存在,则

$$JF(x) = \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_2} & \cdots & \frac{\partial f_1(x)}{\partial x_n} \\ \frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_2} & \cdots & \frac{\partial f(x)}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m(x)}{\partial x_1} & \frac{\partial f_m(x)}{\partial x_2} & \cdots & \frac{\partial f_m(x)}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

称为F 在点x 处的**雅克比矩阵**. (引入记号: $\nabla F(x) = (JF(x))^{\top}$)

- Hessian & Jacobian: $\nabla^2 f(x) = J(\nabla f(x))$
- Chain Rule: 若 $F: \mathbb{R}^n \to \mathbb{R}^m$, $G: \mathbb{R}^m \to \mathbb{R}^q$ 均为连续可微函数,定义 $H: \mathbb{R}^n \to \mathbb{R}^q$ 为H(x) = G(F(x)). 则

$$JH(x) = JG(F(x))JF(x), \ \nabla H(x) = \nabla F(x)\nabla G(F(x))$$

习题2: 计算最小二乘损失函数 $f(x) = \frac{1}{2} ||Ax - b||^2$ 的梯度与海瑟矩阵,其中 $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$.

Theorem 2 (泰勒展开). 设 $f: \mathbb{R}^n \to \mathbb{R}$ 连续可微, 则f 在 $\bar{x} \in \mathbb{R}^n$ 处的一阶泰勒展开式(Taylor's Expansion) 为:

$$f(x) = f(\bar{x}) + \nabla f(\bar{x})^{\top} (x - \bar{x}) + o(\|x - \bar{x}\|)$$

 $\overline{x}_f = \mathbb{R}^n$ 处的二阶泰勒展开式为:

$$f(x) = f(\bar{x}) + \nabla f(\bar{x})^{\top} (x - \bar{x}) + \frac{1}{2} (x - \bar{x})^{\top} \nabla^2 f(\bar{x}) (x - \bar{x}) + o(\|x - \bar{x}\|^2)$$

其中 $o(||x-\bar{x}||)$ 表示 $||x-\bar{x}||$ 的高阶无穷小量.

▷中值定理的形式:

- $\exists t \in (0,1), f(x+p) = f(x) + \nabla f(x+tp)^T p.$
- $\bullet \ \exists t \in (0,1), \nabla f(x+p) = \nabla f(x) + \int_0^1 \nabla^2 f(x+tp) p \, \mathrm{d}t,$

$$f(x+p) = f(x) + \nabla f(x)^T p + \frac{1}{2} p^T \nabla^2 f(x+tp) p$$

L-光滑函数

Definition 7 (梯度Lipschitz连续). 设f连续可微, 若存在常数L > 0, $\forall x, y \in \text{dom } f := \{x \in \mathbb{R}^n : f(x) < +\infty\}$ 有

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|,$$

则称f是L-光滑函数. (记号: $f \in C^{1,1}$)

习题3: 判断如下函数是否为L-光滑函数:

- (1) $f(x) = ||x_+||^2$, $\not = (\max\{0, x_1\}, \dots, \max\{0, x_n\})^\top$;
- (2) $f(x) = \frac{1}{2} ||Ax b||^2$, $\sharp + A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

L-光滑函数

▷重要性质:

• 二次上界: 设f是L-光滑函数且dom f 为凸集, 则f有二次上界:

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2 \quad \forall x, y \in \text{dom } f.$$

Hint: 构造辅助函数 $g(t) = f(x + t(y - x)), t \in [0, 1]$

• 设f可微, dom $f = \mathbb{R}^n$, 且存在一个全局极小点 x^* . 若f是L-光 滑的,则对 $\forall x \in \mathbb{R}^n$ 有

$$\frac{1}{2L} \|\nabla f(x)\|^2 \le f(x) - f(x^*).$$

Hint: $f(x^*) \leq \inf_{y \in \mathbb{R}^n} f(x) + \nabla f(x)^{\top} (y - x) + \frac{L}{2} ||y - x||^2$ & 无约束凸优化一阶最优性条件

广义实值函数与适当函数

Definition 8 (广义实值函数(extended real-valued function)).

令 $\mathbb{R} \stackrel{\text{def}}{=\!=\!=} \mathbb{R} \cup \{\pm \infty\}$ 为广义实数空间,称映射 $f: \mathbb{R}^n \to \mathbb{R}$ 为广义实值函数.

习题4: 给定非空集合 $C \subseteq \mathbb{R}^n$,定义C的示性函数(indicator function)

为:
$$I_C(x) := \begin{cases} 0, & x \in C; \\ +\infty, & x \notin C. \end{cases}$$
 判断 I_C 是否有适当函数.

凸函数

Definition 10. 设f 为适当函数,若dom f 是凸集,

• f 是凸函数: 若对所有 $x, y \in \text{dom } f$ 和 $0 \le \theta \le 1$ 有

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$$

• f 是严格凸函数: 若对所有 $x, y \in \text{dom } f \mathcal{D} x \neq y, 0 < \theta < 1$,有

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y).$$

下水平集和上方图

Definition 11. 设广义实值函数 $f: \mathbb{R}^n \to \overline{\mathbb{R}}$.

- f 的 α -下水平集: $C_{\alpha} = \{x \mid f(x) \leq \alpha\}$.
- f 的上方图: epi $f = \{ (x, t) \in \mathbb{R}^{n+1} | f(x) \le t \}$.
- f为闭函数: epi f为闭集.
- f为下半连续函数: 对任意的 $x \in \mathbb{R}^n$,有 $\liminf_{y \to x} f(y) \ge f(x)$.

(a) 上方图epif

(b) 下半连续函数f(x)

闭函数与下半连续函数

Theorem 3. 设广义实值函数 $f: \mathbb{R}^n \to \overline{\mathbb{R}}$,则下列命题等价:

- ① f(x)的任意 α -下水平集都是闭集;
- 2 f(x)是下半连续的;
- 3 f(x)是闭函数.

下半连续函数的性质:

- 加法: 若f 与g 均为适当的下半连续函数,且 $dom f \cap dom g \neq \emptyset$,则f + g 也是下半连续函数.
- 仿射函数的复合: 若f 为下半连续函数,则f(Ax + b) 也为下半连续函数;
- 上确界: 若 f_{λ} , $\lambda \in \Lambda$ 均为下半连续函数,则 $\sup_{\lambda \in \Lambda} f_{\lambda}(x)$ 也为下半连续函数.

凸函数的性质

- 设f为凸函数,则f的所有 α -下水平集都是凸集.
- Jensen不等式: 设f 是凸函数,则对于 $1 \le i \le m, x_i \in \text{dom} f$, $0 \le \theta_i \le 1$ 且 $\sum_{i=1}^m \theta_i = 1$, 有

$$f(\sum_{i=1}^{m} \theta_i x_i) \le \sum_{i=1}^{m} \theta_i f(x_i).$$

• 概率Jensen 不等式: 设f 是凸函数,则对任意随机变量z,

$$f(\mathbf{E}z) \le \mathbf{E}f(z).$$

• 设 $f: \mathbb{R}^n \to (-\infty, +\infty]$ 为凸函数,则f在int domf连续.

凸函数的判定

- 函数f(x)为凸函数当且仅当其上方图epif是凸集.
- 设f为可微函数且dom f是凸集,则f是凸函数当且仅当

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x) \quad \forall x, y \in \text{dom} f.$$
 (1)

$$(\nabla f(x) - \nabla f(y))^{\top}(x - y) \ge 0, \quad \forall \, x, y \in \text{dom} f. \tag{2}$$

f 是严格凸函数当且仅当(1)或(2)对所有 $x,y \in \text{dom} f$ 且 $x \neq y$ 严格成立.

 \bullet 设f 为定义在凸集上的二阶连续可微函数,则f 是凸函数当且仅当

$$\nabla^2 f(x) \succeq 0 \quad \forall x \in \text{dom } f.$$

如果 $\nabla^2 f(x) > 0 \, \forall x \in \text{dom } f$,则f 是严格凸函数.

强凸函数

- 强凸函数: 若存在常数m > 0, 使得 $g(x) = f(x) \frac{m}{2} ||x||^2$ 为凸函数.
- 强凸函数: 若存在常数m > 0,使得对 $\forall x, y \in \text{dom} f, \theta \in (0, 1)$ 有 $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y) \frac{m}{2}\theta(1 \theta)\|x y\|^2.$
- 设f为可微函数且 $\mathrm{dom} f$ 是凸集,则f是m-强凸函数当且仅当 $(\nabla f(x) \nabla f(y))^{\mathrm{T}}(x-y) \geq m\|x-y\|^2, \quad \forall \, x,y \in \mathrm{dom} f.$
- 二次下界: 设f为可微m-强凸函数,则f的所有 α -下水平集有界, $f(y) \geq f(x) + \nabla f(x)^T (y-x) + \frac{m}{2} \|x-y\|^2 \quad \forall x,y \in \mathrm{dom} f.$

Hint: $g(x) = f(x) - \frac{m}{2} ||x||_2^2$ 凸 & 一阶判别条件

保凸函数运算

- 非负加权和: 若 f_1, f_2 是凸函数且 $\alpha_1, \alpha_2 \ge 0$, 则 $\alpha_1 f_1 + \alpha_2 f_2$ 是凸函数.
- 与仿射函数的复合: 若f 是凸函数,则f(Ax + b)是凸函数. 【例】 f(x) = ||Ax + b||.
- 逐点取最大值: 若 f_1, \ldots, f_m 是凸函数,则 $\max\{f_1(x), \ldots, f_m(x)\}$ 是凸函数. 【例】 $f(x) = \max_{i=1,\ldots,m} (a_i^T x + b_i)$.
- 取下确界: 若f(x,y) 关于(x,y)整体是凸函数, C 是凸集, 则

$$g(x) = \inf_{y \in C} f(x, y)$$

是凸函数.

【例】 点x到凸集S的距离 $\mathrm{dist}(x,S) = \inf_{y \in S} ||x - y||$ 是凸函数.

• 取上确界: 若对每个 $y \in A$, f(x,y)是关于x 的凸函数,则

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

是凸函数.

【例】

- 1. 集合C的支撑函数: $S_C(x) = \sup_{y \in C} y^T x$ 是凸函数.
- 2. 点x到集合C的最远距离: $f(x) = \sup_{y \in C} ||x y||$ 是凸函数.
- 3. 对称矩阵 $X \in \mathbb{S}^n$ 的最大特征值

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$$

是凸函数.

• 与标量函数的复合: 给定函数 $g: \mathbb{R}^n \to \mathbb{R}, h: \mathbb{R} \to \mathbb{R},$ 令f(x) = h(g(x)). 若g是凸函数且h是单调增凸函数,则f是凸函数:数; 若g是凹函数且h是单调减凸函数,则f是凸函数.

【例】 若g是凸函数,则 $\exp g(x)$ 是凸函数; 若g是正值凹函数,则1/g(x) 是凸函数.

• 与向量函数的复合: 给定函数 $g: \mathbb{R}^n \to \mathbb{R}^k$, $h: \mathbb{R}^k \to \mathbb{R}$, 令

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x)).$$

若 g_i 是凸函数, h是凸函数且关于每个分量单调增,则f是凸函数; 若 g_i 是凹函数, h是凸函数且关于每个分量单调减,则f是凸函数.

【例】 若 g_i 是正值凹函数,则 $\sum_{i=1}^m \ln g_i(x)$ 是凹函数; 若 g_i 是凸函数,则 $\ln \sum_{i=1}^m \exp g_i(x)$ 是凸函数.

• 透视函数: 定义 $f: \mathbb{R}^n \to \mathbb{R}$ 的透视函数 $g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ 如下:

$$g(x,t) = tf\left(\frac{x}{t}\right), \quad \text{dom } g = \{(x,t) | \frac{x}{t} \in \text{dom } f, t > 0\}.$$

若f 是凸函数,则g 是凸函数.

【例】

- 1. 相对熵函数 $g(x,t) = t \log t t \log x$ 是 \mathbb{R}^2_{++} 上的凸函数.
- 2. 若f 是凸函数,则

$$g(x) = (c^T x + d) f\left(\frac{Ax + b}{c^T x + d}\right)$$

是区域
$$\left\{x|c^Tx+d>0, \frac{Ax+b}{c^Tx+d}\in \mathrm{dom}\,f\right\}$$
上的凸函数.

共轭函数

Definition 12. 适当函数f的共轭函数为:

$$f^*(y) = \sup_{x \in \text{dom } f} \{ y^T x - f(x) \}.$$

- f^* 恒为凸函数,无论f 是否是凸函数.
- Fenchel不等式: $f(x) + f^*(y) \ge x^T y$.

常见函数的共轭函数

• 强凸二次函数 $f(x) = \frac{1}{2}x^TQx, Q \in \mathbb{S}_{++}^n$ 的共轭函数:

$$f^*(y) = \sup_{x} \{ y^T x - \frac{1}{2} x^T Q x \} = \frac{1}{2} y^T Q^{-1} y.$$

• 给定非空凸集C,示性函数 $I_C(x)$ 的共轭函数为支撑函数 $I_C^*(y)$

$$I_C(x) = \begin{cases} 0 & x \in C, \\ +\infty & x \notin C. \end{cases}$$

$$I_C^*(y) = \sup_x \{ y^T x - I_C(x) \} = \sup_{x \in C} y^T x.$$

• 范数f(x) = ||x||的共轭函数:

$$f^*(y) = \sup_{x} \{ y^T x - ||x|| \} = \begin{cases} 0 & ||y||_* \le 1, \\ +\infty & ||y||_* > 1. \end{cases}$$

对偶范数: $||y||_* = \sup_{||x|| < 1} y^T x$.

范数与对偶范数的关系: $x^T y \leq ||x|| ||y||_*, \forall x, y \in \mathbb{R}^n$.

Proof. 若 $\|y\|_* \le 1$, 则对 $\forall x \in \mathbb{R}^n$ 有 $x^T y \le \|x\|$, 且当x = 0时等号成立, 从而 $f^*(y) = \sup_x \{y^T x - \|x\|\} = 0$.

$$f^*(y) = \sup_{x} \{ y^T x - ||x|| \} \ge y^T(tx) - ||tx|| = t(y^T x - ||x||), \quad (3)$$

当
$$t \to +\infty$$
时,(3)的右端趋于 $+\infty$.

双共轭函数

Definition 13. 函数f的双共轭函数为:

$$f^{**}(x) = \sup_{y \in \text{dom } f^*} \{x^T y - f^*(y)\}.$$

注:

(i) f^{**} 恒为闭凸函数,且由Fenchel不等式知

$$f^{**}(x) \leq f(x) \ \forall x;$$
 或等价地, $\operatorname{epi} f \subseteq \operatorname{epi} f^{**}$.

(ii) 若f为闭凸函数,则

$$f^{**}(x) = f(x) \ \forall x;$$
 或等价地, $\operatorname{epi} f = \operatorname{epi} f^{**}$.

Proof. 用反证法. 若 $(x, f^{**}(x)) \not\in \operatorname{epi} f$, 则∃ $a \in \mathbb{R}^n, b, c \in \mathbb{R}$, $(a, b) \neq 0$ 且 $b \leq 0$ (若b > 0, 令 $s \to +\infty$, 可推出矛盾), 使得

$$\begin{bmatrix} a \\ b \end{bmatrix}^T \begin{bmatrix} z - x \\ s - f^{**}(x) \end{bmatrix} \le c < 0 \quad \forall (z, s) \in \text{epi} f. \tag{4}$$

若b < 0, 在(4)中取s = f(z), 则

$$a^{T}z + bf(z) - a^{T}x - bf^{**}(x) \le c.$$
 (5)

若b = 0, 取 $\hat{y} \in \text{dom } f^*$, 则对 $\forall \varepsilon > 0$, $\forall (z, s) \in \text{epi} f$, 由Fenchel不等式知, $\hat{y}^T z - s \leq \hat{y}^T z - f(z) \leq f^*(\hat{y})$, 从而有

$$\begin{bmatrix} a + \varepsilon \hat{y} \\ -\varepsilon \end{bmatrix}^T \begin{bmatrix} z - x \\ s - f^{**}(x) \end{bmatrix} \le c + \varepsilon (f^*(\hat{y}) - x^T \hat{y} + f^{**}(x)) < 0,$$

次梯度

Definition 14. 设f 为适当凸函数, $x \in \text{dom } f$.

• 若向量 $g \in \mathbb{R}^n$ 满足

$$f(y) \ge f(x) + g^{\mathrm{T}}(y - x) \quad \forall y \in \mathrm{dom}\, f,$$

则称g 为函数f 在点x 处的一个次梯度.

$$\partial f(x) = \{ g \in \mathbb{R}^n \mid f(y) \ge f(x) + g^{\mathrm{T}}(y - x), \forall y \in \mathrm{dom} \ f \}.$$

- 若f 是可微凸函数, 则 $\nabla f(x)$ 是f 在点x 处的一个次梯度.
- 次梯度g可提供f(y) 的一个全局下界: $f(x) + g^{\mathrm{T}}(y x)$.
- 次梯度g可诱导出上方图**epi** f 在点(x, f(x)) 处的一个支撑超平面:

$$\begin{bmatrix} g \\ -1 \end{bmatrix}^T \left(\begin{bmatrix} y \\ t \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \le 0 \quad \forall (y, t) \in \mathbf{epi} f.$$

- 次梯度存在性: 设f 是凸函数, 若 $x \in \mathbf{intdom} f$, 则 $\partial f(x) \neq \emptyset$.
- ℓ_2 范数 $f(x) = ||x||_2$ 的次微分:

$$\partial \|x\|_2 = \begin{cases} \left\{ \frac{x}{\|x\|_2} \right\} & \text{if } x \neq 0, \\ \{g : \|g\|_2 \leq 1\} & \text{if } x = 0. \end{cases}$$

• 绝对值函数f(x) = |x|在点x = 0处的次微分: $\partial f(0) = [-1, 1]$.

【例】 $f(x) = \max\{f_1(x), f_2(x)\}$ f_1, f_2 是可微凸函数.

- f(x)在点 x_0 处的次梯度可取范围[$\nabla f_1(x_0), \nabla f_2(x_0)$].
- 若 $f_1(\hat{x}) < f_2(\hat{x})$,则f 在点 \hat{x} 处的次梯度等于 $\nabla f_2(\hat{x})$.

次梯度的性质

- 设f 是凸函数,则对 $\forall x \in \mathbf{dom} f$, $\partial f(x)$ 是闭凸集(可能为空集).
- 设f 是凸函数,则对 $\forall x \in \mathbf{intdom} f, \partial f(x)$ 是非空有界集.
- 设凸函数f(x)在 $x_0 \in \mathbf{intdom} f$ 处可微, 则 $\partial f(x_0) = {\nabla f(x_0)}.$
- 次梯度的单调性 设 $f: \mathbb{R}^n \to \mathbb{R}$ 是凸函数, $x, y \in \text{dom } f$, 则

$$(u-v)^T(x-y) \ge 0, \quad \forall u \in \partial f(x), \forall v \in \partial f(y).$$

● 次梯度的连续性 设f(x) 是闭凸函数且 $\partial f(\bar{x}) \neq \emptyset$. 若

$$\lim_{k \to \infty} x^k = \bar{x}, \quad g^k \in \partial f(x^k) \coprod \lim_{k \to \infty} g^k = \bar{g},$$

则 $\bar{g} \in \partial f(\bar{x})$.

凸函数的方向导数

Definition 15. 对于凸函数f,给定点 $x_0 \in \text{dom } f$ 以及方向 $d \in \mathbb{R}^n$,其方向导数定义为

$$\partial f(x_0; d) = \inf_{t>0} \frac{f(x_0 + td) - f(x_0)}{t}.$$

注: 对于可微函数, $\partial f(x_0; d) = \nabla f(x_0)^{\mathrm{T}} d$.

- 方向导数有限: 设f(x)为凸函数, $x_0 \in \text{int dom } f$, 则对 $\forall d \in \mathbb{R}^n$, $\partial f(x_0; d)$ 有限.
- 方向导数和次梯度: 设 $f: \mathbb{R}^n \to (-\infty, +\infty]$ 为凸函数, $x_0 \in \mathbf{int} \operatorname{dom} f$, 则对 $\forall d \in \mathbb{R}^n$, 有

$$\partial f(x_0; d) = \max_{g \in \partial f(x_0)} g^{\mathrm{T}} d.$$

次梯度的计算

• 凸函数的非负线性组合: 设 $\alpha_1, \alpha_2 \geq 0$, 凸函数 f_1, f_2 满足int dom $f_1 \cap$ dom $f_2 \neq \emptyset$, 若

$$f(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x), \quad x \in \mathbf{dom} \ f_1 \cap \mathbf{dom} \ f_2$$

则 $f(x)$ 的次微分

$$\partial f(x) = \alpha_1 \partial f_1(x) + \alpha_2 \partial f_2(x).$$

• 线性变量替换: 设h 为适当凸函数, f(x) = h(Ax + b). 若存在 $x^{\sharp} \in \mathbb{R}^m$ 使得 $Ax^{\sharp} + b \in \mathbf{int} \operatorname{dom} h$,则

$$\partial f(x) = A^{\mathrm{T}} \partial h(Ax + b), \quad \forall x \in \mathbf{int} \mathbf{dom} f.$$

▶两个函数之和的次梯度

Theorem 4 (Moreau-Rockafellar定理). $\partial f_1, f_2 : \mathbb{R}^n \to (-\infty, +\infty]$ 是凸函数,则 对任意的 $x_0 \in \mathbb{R}^n$,

$$\partial f_1(x_0) + \partial f_2(x_0) \subseteq \partial (f_1 + f_2)(x_0).$$

$$\partial (f_1 + f_2)(x_0) = \partial f_1(x_0) + \partial f_2(x_0).$$

▶凸函数族最大值的次梯度

Theorem 5. $\ \mathcal{U}f_1, \ldots, f_m : \mathbb{R}^n \to (-\infty, +\infty] \ \mathcal{D}$ 函数, 令

$$f(x) = \max\{f_1(x), f_2(x), \dots, f_m(x)\}, x \in \mathbb{R}^n.$$

对 $x_0 \in \bigcap_{i=1}^m \mathbf{intdom} \ f_i,$ 定义 $I(x_0) = \{i \mid f_i(x_0) = f(x_0)\},$ 则

$$\partial f(x_0) = \mathbf{conv} \bigcup_{i \in I(x_0)} \partial f_i(x_0).$$

【例】 $f(x) = \max_{i=1,2,\dots,m} \{a_i^{\mathrm{T}} x + b_i\}$ 的次梯度.

▶逐点上确界函数的次梯度

Theorem 6. $\mathop{\mathcal{U}}\{f_{\alpha} \mid \mathbb{R}^n \to (-\infty, +\infty]\}_{\alpha \in \mathcal{A}}$ 是一族凸函数,令

$$f(x) = \sup_{\alpha \in \mathcal{A}} f_{\alpha}(x).$$

对 $x_0 \in \cap_{\alpha \in \mathcal{A}}$ int dom f_α , 定义 $I(x_0) = \{\alpha \in \mathcal{A} \mid f_\alpha(x_0) = f(x_0)\}$, 则

$$\mathbf{conv} \bigcup_{\alpha \in I(x_0)} \partial f_{\alpha}(x_0) \subseteq \partial f(x_0).$$

若A 是紧集且 f_{α} 关于 α 连续, 则

$$\mathbf{conv} \bigcup_{\alpha \in I(x_0)} \partial f_{\alpha}(x_0) = \partial f(x_0).$$

▶固定分量的函数极小值的次梯度

Theorem 7. 设 $h: \mathbb{R}^n \times \mathbb{R}^m \to (-\infty, +\infty]$ 是关于(x, y)的凸函数, $f(x) = \inf_y h(x, y)$. 对 $\hat{x} \in \mathbb{R}^n$, 设 $\hat{y} \in \mathbb{R}^m$ 满足 $h(\hat{x}, \hat{y}) = f(\hat{x})$, 且存在 $g \in \mathbb{R}^n$ 使得 $(g, 0) \in \partial h(\hat{x}, \hat{y})$, 则 $g \in \partial f(\hat{x})$.

▶复合函数的次梯度

Theorem 8. 设 $f_1, f_2, \dots, f_m : \mathbb{R}^n \to (-\infty, +\infty]$ 为m 个凸函数, $h : \mathbb{R}^m \to (-\infty, +\infty]$ 为关于各分量单调递增的凸函数,令 $f(x) = h(f_1(x), f_2(x), \dots, f_m(x)).$ 设 $z = (z_1, \dots, z_m) \in \partial h(f_1(\hat{x}), \dots, f_m(\hat{x})), \ g_i \in \partial f_i(\hat{x}), \ \mathcal{M}$ $q \stackrel{\text{def}}{=} z_1 g_1 + z_2 g_2 + \dots + z_m g_m \in \partial f(\hat{x}).$

强凸函数共轭函数的性质

Theorem 9. 设f(x)是适当且闭的强凸函数,强凸参数为 $\mu > 0$,则 $f^*(y)$ 在全空间 \mathbb{R}^n 上有定义,且是 $\frac{1}{\mu}$ -光滑函数.

Proof. 对任意的 $y \in \mathbb{R}^n$, $f(x) - x^{\mathrm{T}}y$ 是强凸函数,因此对任意的 $y \in \mathbb{R}^n$,存在唯一的 $x \in \operatorname{dom} f$,使得 $f^*(y) = x^{\mathrm{T}}y - f(x)$.根据最优性条件

$$y \in \partial f(x) \Leftrightarrow f^*(y) = x^{\mathrm{T}}y - f(x).$$

由于f(x)是闭凸函数,二次共轭为其本身,于是对同一组x,y有

$$x^{\mathrm{T}}y - f^{*}(y) = f(x) = f^{**}(x) = \sup_{y} \left\{ x^{\mathrm{T}}y - f^{*}(y) \right\}.$$

这说明y也使得 $x^{\mathrm{T}}y - f^{*}(y)$ 取到最大值。根据一阶最优性条件,

$$x \in \partial f^*(y).$$

再根据x的唯一性容易推出 $\partial f^*(y)$ 中只含一个元素,故 $f^*(y)$ 可微 且 $\nabla f^*(y) = x$.

下证 $f^*(y)$ 为梯度 $\frac{1}{\mu}$ -Lipschitz连续的. 对任意的 y_1, y_2 ,存在唯一的 $x_1, x_2 \in \operatorname{dom} f$ 使得

$$y_1 \in \partial f(x_1), \quad y_2 \in \partial f(x_2).$$

根据次梯度性质以及 $f(x) - \frac{\mu}{2} ||x||^2$ 是凸函数,

$$f(x_2) \ge f(x_1) + (y_1 - \mu x_1)^{\mathrm{T}} (x_2 - x_1),$$

 $f(x_1) \ge f(x_2) + (y_2 - \mu x_2)^{\mathrm{T}} (x_1 - x_2).$

两式相加得

$$(y_1 - y_2)^{\mathrm{T}} (x_1 - x_2) \ge \mu ||x_1 - x_2||^2.$$

因 $x_1 = \nabla f^*(y_1), \quad x_2 = \nabla f^*(y_2),$ 故有

$$(y_1 - y_2)^{\mathrm{T}} (\nabla f^*(y_1) - \nabla f^*(y_2)) \ge \mu \|\nabla f^*(y_1) - \nabla f^*(y_2)\|^2.$$

因此, $\nabla f^*(y)$ 是 $\frac{1}{\mu}$ -利普希茨连续的.

非凸函数的次微分

Definition 16. 设 $f: \mathbb{R}^n \to (-\infty, +\infty]$ 为适当、下半连续函数.

$$\liminf_{y \to x, y \neq x} \frac{f(y) - f(x) - u^{\top}(y - x)}{\|y - x\|},$$

记为 $\hat{\partial} f(x)$; 若 $x \notin \text{dom } f$, 定义 $\hat{\partial} f(x) = \emptyset$.

• f 在点x 处的极限次微分(或Mordukhovich次微分,或简称为次微分):

$$\partial f(x) = \left\{ u \in \mathbb{R}^n \mid \exists x^k \to x, f(x^k) \to f(x), u^k \in \hat{\partial} f(x^k), u^k \to u \right\}.$$

$$i.e., \partial f(x) = \limsup_{y \to f^x} \hat{\partial} f(y).$$

Thank you!