Elementos de Ecuaciones Diferenciales Ordinarias

Universidad Complutense de Madrid

FACULTAD DE CIENCIAS MATEMÁTICAS

DOBLE GRADO EN MATEMÁTICAS E INGENIERÍA INFORMÁTICA

Javier Pellejero Curso 2016-2017

Debemos dividir nuestro tiempo entre política y ecuaciones. Pero las ecuaciones son más importantes para mí, porque la política es para el momento actual y una ecuación es para la eternidad.

Albert Einstein

Prefacio

Aquí va el prefacio, evidentemente

Índice general

Capítulo 1

Sistemas lineales de primer orden

1.1. Introducción. Propiedades de estructura

Definición 1.1.1. Planteemos la formulación de un sistema lineal.

Sean $\alpha, \beta \in \mathbb{R}, \ t \in [\alpha, \beta], \ n^2$ coeficientes $a_{ij}(t)$ con $a_{ij} \in \mathcal{C}([\alpha, \beta]; \mathbb{K})$ con $\mathbb{K} = \mathbb{R}$ ó \mathbb{C} y $1 \leq i, j \leq n$.

Denotamos $A(t) = (a_{ij}(t))_{1 \le i,j \le n}$ a la matriz de coeficintes a_{ij} continuas en $[\alpha, \beta]$

Sean
$$b_j \in \mathcal{C}([\alpha, \beta]; \mathbb{K})$$
 con $1 \leq n$, denotations $B(t) = \begin{pmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{pmatrix} = (b_1(t) \dots b_n(t))^t$.

Por último, definimos nuestro sistema lineal de primer orden como u' = A(t)u + B(t)

donde
$$u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = (u_1 \dots u_n)^t$$
 es una incógnita.

Definición 1.1.2. Decimos que $u \in C^1([\alpha, \beta]; \mathbb{K}^n)$ es solución si $u_j \in C^1([\alpha, \beta]; \mathbb{K})$, $u'_j \in C([\alpha, \beta]; \mathbb{K}) \ \forall 1 \leq j \leq n$ y se cumple que:

$$u'(t) = A(t)u(t) + B(t) \ \forall t \in [\alpha, \beta]$$

Denotamos $\Sigma_B = \{ u \in \mathcal{C}^1([\alpha, \beta]; \mathbb{K}^n) \mid u \text{ es solución de } u' = Au + B \text{ en } [\alpha, \beta] \}.$

Definición 1.1.3. Sea u = A(t)u + B(t) un sistema de lineal de primer orden, definimos el **sistema homogéneo asociado** como u' = A(t)u que puede ser representado como la función f(t, u) = A(t)u. Además, $f(t, \lambda u) = A(t)\lambda u = \lambda f(t, u)$. Denotamos $\Sigma_0 = \{h \in \mathcal{C}^1([\alpha, \beta]; \mathbb{K}^n) \mid h \text{ es solución de } u' = Au \text{ en } [\alpha, \beta]\}$

Proposición 1.1.4. Propiedades de estructura.

1) Principio de superposición (o combinación lineal). Sean $h_1, h_2 \in \Sigma_0, \lambda, \mu \in \mathbb{K} \implies \lambda h_1(t) + \mu h_2(t) \in \Sigma_0$. Esto es, Σ_0 es una variedad vectorial $\mathcal{C}^1([\alpha, \beta]; \mathbb{K})$.

2) Sean $u_1, u_2 \in \Sigma_B$ entonces $u_1 - u_2 \in \Sigma_0$ y sean $h \in \Sigma_0$ y $u \in \Sigma_B$ entonces $u + h \in \Sigma_B$. Esto es, Σ_B es una variedad afín en la dirección de Σ_0 , es decir, paralela a Σ_0 .

Demostración.

- 1) $(\lambda h_1 + \mu h_2)' = \lambda h_1' + \mu h_2' = \lambda A h_1 + \mu A h_2 = A(\lambda h_1 + \mu h_2) \implies (\lambda h_1 + \mu h_2) \in \Sigma_0$
- 2) Tenemos $(u_1 u_2)' = u_1' u_2' = (Au_1 + B) (Au_2 + B) = A(u_1 u_2) \implies (u_1 u_2) \in \Sigma_0$. Para acabar, $(u + h)' = u' + h' = Au + B + Ah = A(u + h) + B \implies (u + h) \in \Sigma_B$.

1.2. Ecuaciones lineales escalares

Definición 1.2.1. Sea una ecuación escalar, es decir, si el problema se trata en n=1, o sea en \mathbb{K} , tenemos: $\begin{cases} u'=a(t)u+b(t) \text{ con } a,b \in \mathcal{C}([\alpha,\beta];\mathbb{K}) \\ u(t_0)=u_0 \in \mathbb{K}, \ t_0 \in [\alpha,\beta] \end{cases}$

A este problema lo denotamos como **problema de los valores iniciales** (P.V.I) o **problema de** *Cauchy*.

Teorema 1.2.2. Para cada $u_0 \in \mathbb{K}$ y $t_0 \in [\alpha, \beta]$, el P.V.I. $\begin{cases} u' = au + b \\ u(t_0) = u_0 \end{cases}$ tiene una única solución y viene dada por $u(t; t_0, u_0) = e^{\int_{t_0}^t a} u_0 + \int_{t_0}^t e^{\int_s^t a} b(s) ds$.

Demostración.

Sea el problema homogéneo h' = a(t)h entonces $h(t) = e^{\int_{t_0}^t a}$, luego $h(t_0) = 1$. Sea v(t) tal que u(t) := h(t)v(t), esto es $\begin{cases} h'v + hv' = ahv + b \stackrel{h'v = ahv}{\Longrightarrow} hv' = b \\ u_0 = u(t_0) = h(t_0)v(t_0) \stackrel{h(t_0) = 1}{\equiv} v(t_0) \end{cases}$ Tenemos además que $h^{-1}(t) = e^{-\int_{t_0}^t a} \text{ luego } \begin{cases} v'(s) = b(s)e^{-\int_{t_0}^t a} \\ v(t_0) = u_0 \end{cases}$ con $s \in [\alpha, \beta]$ Por tanto, $v(t) = \int_{t_0}^t e^{-\int_{t_0}^t a} b(s)ds + u_0. \text{ Por último } u(t) = h(t)v(t) = e^{\int_{t_0}^t a} \left(u_0 + \int_{t_0}^t e^{-\int_{t_0}^s a} b(s)ds\right) = e^{\int_{t_0}^t a} u_0 + \int_{t_0}^t e^{\int_{t_0}^t a - \int_{t_0}^s a} b(s)ds \end{cases}$

Definición 1.2.3. Al cambio de variable u(t) = h(t)v(t) realizado en la demostración anterior y a su posterior desarrollo se le denomina **fórmula de la variación de los coeficientes de** *Lagrange*.

Corolario 1.2.4. Entonces tenemos:

$$(P) \begin{cases} u' = a(t)u + b(t) \\ u(t_0) = u_0 \end{cases}$$
tiene solución única y es $u(t; t_0, u_0) = e^{\int_{t_0}^t a} u_0 + \int_{t_0}^t e^{\int_s^t a} b(s) ds$

$$(P_h) \begin{cases} u' = a(t)u \\ u(t_0) = u_0 \end{cases}$$
tiene solución única y es $h(t; t_0, u_0) = e^{\int_{t_0}^t a} u_0$

 \neg

Observamos además que
$$u(t;t_0,0)=\int_{t_0}^t e^{\int_s^t a}b(s)ds$$
 es única solución de
$$\left\{\begin{array}{l} u'=a(t)u+b(t)\\ u(t_0)=0 \end{array}\right.$$
 de lo que se extrae que $u(t;t_0,u_0)=h(t;t_0,u_0)+u(t;u_0,0)$

Teorema 1.2.5.

- 1) El operador solución $S_0: \mathbb{K} \longrightarrow \Sigma_0$ es isomorfismo vectorial. $x \mapsto h(t; t_0, x) = e^{\int_{t_0}^t a} x$
- 2) El operador solución $S_B \colon \mathbb{K} \longrightarrow \sum_B \text{ es isomorfismo afín.}$ $\underset{x \mapsto u(t;t_0,x)}{\longrightarrow} \Sigma_B$

En particular, dim $\Sigma_0 = \dim \Sigma_B = 1$.

Demostración.

- 1) Probemos la linealidad. Sean $x, y, \lambda, \mu \in \mathbb{K}$, $S_0(\lambda x + \mu y) = e^{\int_{t_0}^t a} (\lambda x + \mu y) = \lambda e^{\int_{t_0}^t a} x + \mu e^{\int_{t_0}^t a} y = \lambda S_0(x) + \mu S_0(y)$, luego es lineal. Tenemos además que $S_0(x) = 0 \iff e^{\int_{t_0}^t a} x = 0 \implies x = 0$ luego S_0 es inyectiva. Para acabar, si $h \in \Sigma_0$ tenemos que $h = h(t; t_0, h(t_0)) = S_0(h(t_0))$ luego es sobreyectiva, y por tanto isomorfismo vectorial.
- 2) Tenemos que $S_B(x) = u(t; t_0, u_0) = h(t; t_0, u_0) + u(t; t_0, u_0) = S_0(x) + u(t; t_0, 0) \in S_B$ es isomorfismo afín por ser un isomorfismo vectorial más un punto afín.

Observación. Podemos observar que la variedad vectorial originada por una ecuación escalar $\Sigma_0 = L\left[e^{\int_{t_0}^t a}\right]$ y por tanto la solución general o conjunto de soluciones de h' = a(t)h viene determinado por $e^{\int_{t_0}^t a} x$ con $x \in \mathbb{K}$ lo que denominamos como ecuaciones paramétricas de Σ_0 .

Por otro lado, el conjunto de soluciones de Σ_B viene determinado por las ecuaciones paramétricas $e^{\int_{t_0}^t a} x + p(t)$ con $x \in \mathbb{K}$ y p(t) cualquier solución de Σ_B , en particular podemos elegir $p(t) = u(t; t_0, 0)$.

Ejemplo 1.2.6. Sea
$$u' = au + b$$
 con $a, b \in \mathbb{C}$ ó \mathbb{R}
Tenemos como una solución particular $u = -\frac{b}{a}$ y solución de la homogénea $h' = ah$, $h = e^{at}$.
Luego la solución general es $e^{at}x - \frac{b}{a}$.

Ejemplo 1.2.7. Sea
$$\left\{\begin{array}{ll} u'=au+b \\ u(t_0)=u_0 \end{array}\right. \text{ con } a,b\in\mathbb{C} \text{ \'o } \mathbb{R}$$

Tenemos, por el ejemplo anterior, que la solución general de u es $e^{at}x - \frac{b}{a}$, luego

$$u_0 = e^{at_0} - \frac{b}{a} \implies x = e^{-at_0} \left(u_0 + \frac{b}{a} \right)$$
. Por lo que $u(t; t_0, u_0) = e^{at} e^{-at_0} \left(u_0 + \frac{b}{a} \right) - \frac{b}{a} = e^{a(t-t_0)} \left(u_0 + \frac{b}{a} \right) - \frac{b}{a}$.

Ejemplo 1.2.8. Hagamos un ejemplo más específico. Sea $u' = au + e^{wt}$, distingamos casos:

- Si $w \neq a$. Sabemos que la solución del problema tendrá esta forma $e^{at}x+p(t)$ siendo $p(t)=me^{wt}$ una solución particular. Entonces metamos p(t) en la ecuación y hallemos cuanto tiene que valer m. Luego $mwe^{wt} = ame^{wt} + e^{wt} \implies m(w-a) = 1$ y despejando $m = \frac{1}{w-a}$. Por tanto la solución general es $u(t) = e^{at}x + \frac{e^{wt}}{w - a}$.
- Si w = a. Entonces el sistema queda como $u' = au + e^{at}$. Para resolverlo en este caso variemos coeficientes. $u(t) = e^{at}v(t) \implies ae^{at}v(t) + e^{at}v'(t) = ae^{at}v(t) + e^{at} \implies e^{at}v'(t) =$ $e^{at} \implies v'(t) = 1 \implies v(t) = t + x \text{ con } x \in \mathbb{C}$. Por tanto la solución general es $u(t) = e^{at}x + te^{at}.$

Ejemplo 1.2.9. Sea
$$\begin{cases} u' = u + b(t) \\ u(t_0) = u_0 \end{cases}$$
 con $b(t) = \begin{cases} 1 \text{ si } t \ge 0 \\ 0 \text{ si } t < 0 \end{cases}$

En este caso observamos que la solución u no puede ser una función de clase \mathcal{C}^1 porque la derivada u' no es continua ya que b(t) no lo es. Veamos cual es la solución:

Aplicando la fórmula de la variación de las constantes, tenemos que

Aplicando la fórmula de la variación de las constantes, tenemos que
$$u(t) = e^t u_0 + \int_t^0 e^{t-s} b(s) ds = \begin{cases} e^t u_0 + \int_t^0 e^{t-s} ds & \text{si } t > 0 \\ e^t u_0 & \text{si } t < 0 \end{cases} \quad \text{con lo que, calculando la integral,}$$
 llegamos a que $u(t) = \begin{cases} e^t u_0 + e^t - 1 & \text{si } t > 0 \\ e^t u_0 & \text{si } t < 0 \end{cases}$. Obligamos a que la u sea al menos continua ya que $u(0) = u_0$ por izquierda y derecha.

Obligamos a que la u sea al menos continua ya que $u(0) = u_0$ por izquierda y derecha.

Observación. Observamos que si la función a(t) en u' = au + b no es \mathcal{C}^1 entonces no se puede garantizar la unicidad de la solución. Por ejemplo, sea:

$$\begin{cases} u' = \frac{u}{t} \\ u(0) = 0 \end{cases}$$
 con $t \in \mathbb{R} \setminus \{0\}$. Tenemos que tanto $u_1 = 0$ y $u_2 = t$ son soluciones del sistema.

Teorema de unicidad 1.3.

Lema 1.3.1. Sea $u \in \mathcal{C}([\alpha, \beta]; \mathbb{K}^n)$ y sea $(P) = \left\{\begin{array}{l} u' = a(t)u + b(t) \\ u(t_0) = u_0 \end{array}\right.$, entonces las siguientes afirmaciones son equivalentes.

- 1) $u \in \mathcal{C}^1([\alpha, \beta]; \mathbb{K}^n)$ y resuelve (P).
- 2) $u(t) = u_0 + \int_t^{t_0} a(s)u(s) + b(s)ds \ \forall t \in [\alpha, \beta]$. A esta ecuación se la denomina, ecuación integral asociada a (P).

Demostración.

- \bullet (1) \Longrightarrow (2) Supongamos que se cumple (1), entonces sabemos que u resuelve $(P) \implies u' =$ $= A(t)u + B(t) \implies \int_t^{t_0} u'(s)ds = \int_t^{t_0} A(s)u(s) + B(s)ds \implies u(t) - u(t_0) = \int_t^{t_0} A(s)u(s) + B(s)ds \implies u(t) - u(t) + U($ $= \int_{t}^{t_0} A(s)u(s) + B(s)ds \stackrel{u(t_0)=u_0}{\Longrightarrow} u(t) = u_0 + \int_{t}^{t_0} A(s)u(s) + B(s)ds.$
- \bullet (2) \Longrightarrow (1) Supongamos ahora que se cumple (2), tenemos que $s \mapsto A(s)u(s) + B(s)$ es una función continua, luego $\frac{d}{dt} \int_t^{t_0} A(s) u(s) + B(s) ds \stackrel{\text{T. fund. cálculo}}{=} A(t) u(t) + B(t)$. Con lo que $u(t) \in \mathcal{C}^1([\alpha, \beta]; \mathbb{K}^n)$ ya que derivando la ecuación integral observamos que $\frac{d}{dt}u = \frac{d}{dt}u_0 + \frac{d}{dt}\int_t^{t_0} A(s)u(s) + B(s)ds \implies u'(t) = A(t)u(t) + B(t).$ Esto nos da que u'(t) es una función continua porque las otras 3 lo son, además $u(t_0) = u_0$ con lo que u resulte (P).

Definición 1.3.2. Llamamos operador integral a $K: \mathcal{C}([\alpha, \beta]; \mathbb{K}^n) \longrightarrow \mathcal{C}([\alpha, \beta]; \mathbb{K}^n)$.

Podemos observar que $u(t) = u_0 + \int_t^{t_0} \left(A(s)u(s) + B(s) \right) ds \implies u = Ku \iff u$ es un punto fijo de K.

Definición 1.3.3. Sea $u \in \mathcal{C}([\alpha, \beta]]; \mathbb{K}^n)$ con norma $||\cdot||$, definimos la norma infinito $||u||_{\infty} = \max_{t \in [[\alpha, \beta]]} ||u(t)||$. Además, tenemos que $f : \mathcal{C}([[\alpha, \beta]]; \mathbb{K}^n) \longrightarrow \mathbb{R}$ es continua y que:

- 1) $||u||_{\infty} \ge 0 \ \forall u \in \mathcal{C}([\alpha, \beta]; \mathbb{K}^n)$. Además. $||u||_{\infty} = 0 \iff u = 0$.
- 2) $||\lambda u||_{\infty} = |\lambda|||u||_{\infty} \ \forall u \in \mathcal{C}([\alpha, \beta]; \mathbb{K}^n), \ \forall \lambda \in \mathbb{K}.$
- 3) $||u_1 + u_2||_{\infty} \le ||u_1||_{\infty} + ||u_2||_{\infty} \ \forall u_1, u_2 \in \mathcal{C}([\alpha, \beta]; \mathbb{K}^n).$

Definición 1.3.4. Definimos espacio de Banach al espacio vectorial normado de funciones $(\mathcal{C}([\alpha,\beta];\mathbb{K}^n),||\cdot||\infty).$

Denotaremos como $X = (\mathcal{C}([\alpha, \beta]; \mathbb{K}^n), ||\cdot||_{\infty})$ a dicho espacio de Banach.

Proposición 1.3.5. Sea X espacio de Banach, entonces es de dimensión infinita.

Demostración. Sea $e \in \mathbb{K}^n$, con $e \neq 0$ y sea $t^n e$, $n \geq 0$ y $t \in [\alpha, \beta]$. Si $c_0e + c_1te + c_2t^2e + ... + c_nt^ne = 0 \iff e\sum_{i=0}^n c_it^i = 0$ para ciertos c_i . Como $e \neq 0 \implies$

$$\implies \sum_{i=0}^{n} c_i t^i = 0 \implies \left(\sum_{i=0}^{n} c_i t^i\right)^{n)} = 0 \implies c_n n! = 0 \implies c_n = 0 \implies$$

$$\implies \sum_{i=0}^{n-1} c_i t^i = 0^{\text{por recursion}} = c_i = 0 \ \forall 1 \le i \le n \implies \{e, te, ..., t^n e\} \text{ son linealmente independientes.}$$

Proposición 1.3.6. Sea X es un espacio de Banach, entonces es completo; Es decir, cualquier sucesión de Cauchy es convergente.

Demostración.

Sea $\{u_n\}_{n\geq 1}$ de Cauchy en X entonces $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}$ tal que $||u_{n+m} - u_n||_{\infty} \leq \varepsilon \ \forall n \geq n_0$ y $m \geq 1$.

X es completo, si $\exists u \in X$ tal que $\lim_{n \to \infty} u_n = u$ en $X \iff \lim_{n \to \infty} ||u_n - u||_{\infty} = 0$. Entonces, si $||u_{n+m} - u_n||_{\infty} \le \varepsilon \implies ||u_{n+m}(t) - u_n(t)|| \le \varepsilon \ \forall n \ge n_0(\varepsilon) \ m \ge 1$, $t \in [\alpha, \beta] \implies \{u_n(t)\}_{n \ge 1}$ es de Cauchy $\forall t \in [\alpha, \beta]$. Por tanto como $\{u_n(t)\}_{n \ge 1}$ viven en \mathbb{K}^n y sabemos que \mathbb{K}^n es completo, entonces podemos asegurar que todas esas sucesiones son convergentes porque son de Cauchy en un espacio completo. Por lo que $\exists \lim_{n \to \infty} u_n(t) = u(t) \implies ||u(t) - u_n(t)||_{\infty} \le \varepsilon \ n \ge n_0 \ t \in [\alpha, \beta]$.

Veamos ahora que u es continua y así la convergencia es uniforme. Observemos que: $||u(t+h)-u(t)|| \leq ||u(t+h)-u_{n_0}(t+h)|| + ||u_{n_0}(t+h)-u_{n_0}(t)|| + ||u_{n_0}(t)-u(t)|| \leq 2\varepsilon + ||u_{n_0}(t+h)-u_{n_0}(t)|| \leq 3\varepsilon$ para un cierto $t,t+h\in [\alpha,\beta]$ y cogiendo un $|h|\leq \delta$ siendo δ de la continuidad uniforme en compactos de las funciones u_{n_0} . Entonces u es continua y además uniformemente continua ya que $[\alpha,\beta]$ es un compacto. Por tanto $||u-u_n||_{\infty}\leq \varepsilon$, con $n\geq n_0$, con lo que $\lim_{n\to\infty}u_n-u=0\iff u_n\stackrel{n\to\infty}{\longrightarrow}u$ en $X=(\mathcal{C}([\alpha,\beta];\mathbb{K}^n),||\cdot||_{\infty})$. Con lo que X es completo.

En la siguiente figura podemos ver un esquema de la aproximación de u_n a u.

Figura 1.3.7.

Definición 1.3.8. Sea $u \in X$ con X el espacio de Banach definido anteriormente. Definimos la norma Bielecky $||u||_B = \max_{t \in [\alpha,\beta]} \{ e^{-B|t-t_0|} ||u(t)|| \}$ para un B > 0 y un $t_0 \in [\alpha,\beta]$.

Observación. Las dos normas que hemos def
nido, la norma infinito $||\cdot||_{\infty}$ y la norma Bielecky $||\cdot||_B$ son equivalentes. Para verlo basta comprobar que $||\cdot||_B \le ||\cdot||_\infty \le e^{(\beta-\alpha)} ||\cdot||_B$

Teorema 1.3.9. Teorema de la aplicación contractiva.

Sea X espacio de Banach, y sea $K: X \longrightarrow X$ tal que $||Kx - Ky|| \le \theta ||x - y||$ $\forall x, y \in X, \theta \in [0, 1) \ entonces \ \exists ! x^* \in X \ tal \ que \ Kx^* = x^*.$

Además para cada $x_0 \in X$ el esquema iterativo $x_n = Kx_{n-1}$ para $n \ge 1$, converge a x^* . La prueba de este teorema fue vista en la asignatura de Cálculo diferencial.

Teorema 1.3.10. Teorema de la solución única.

Sean
$$a_{ij}, b_j \in \mathcal{C}([\alpha, \beta]; \mathbb{K})$$
 y $A = (a_{ij})_{1 \leq i,j \leq n}, B = (b_j)_{1 \leq j \leq n}, \text{ entonces } \forall t_0 \in [\alpha, \beta] \text{ y } u_0 \in \mathbb{K}^n, \text{ el problema de valores iniciales } \begin{cases} u' = A(t)u + B(t) \\ u(t_0) = u_0 \end{cases}$ tiene una única solución en $[\alpha, \beta]$.

Demostración.

Sea $K: \mathcal{C}([\alpha,\beta];\mathbb{K}^n) \longrightarrow \mathcal{C}([\alpha,\beta];\mathbb{K}^n)$, probemos que es contractiva; Es decir, probemos que

$$||Ku - Kv||_B \le \theta ||u - v||_B \text{ con } \theta \in (0, 1).$$

$$\begin{array}{c} h\mapsto u_0+\int_{t_0}^t \left(A(s)h(s)+B(s)\right)ds\\ ||Ku-Kv||_B \leq \theta ||u-v||_B \ \text{con}\ \theta \in (0,1). \end{array}$$
 Tenemos $e^{-B|t-t_0|} \left||Ku(t)-Kv(t)|\right| \stackrel{||x||\leq C_1||x||_1}{\leq} C_1 e^{-B|t-t_0|} \left||Ku(t)-Kv(t)|\right|_1 = e^{-B|t-t_0|} \left|\left|\int_{t_0}^t A(s)\left(u(s)-v(s)\right)ds\right|\right|_1 (*).$

Por otro lado,
$$\left\| \int_{t_0}^t \begin{pmatrix} x_1(s) \\ \vdots \\ x_n(s) \end{pmatrix} ds \right\|_1 = \sum_{j=1}^n \left| \int_{t_0}^t x_j(s) ds \right| \le \sum_{j=1}^n \int_{\min\{t, t_0\}}^{\max\{t, t_0\}} |x_j(s)| ds =$$

$$= \int_{\min\{t,t_0\}}^{\max\{t,t_0\}} \sum_{j=1}^{n} |x_j(s)| \, ds = \int_{\min\{t,t_0\}}^{\max\{t,t_0\}} \left\| \begin{pmatrix} x_1(s) \\ \vdots \\ x_n(s) \end{pmatrix} \right\|_1 \, ds.$$

Luego tenemos que $(*) \le C_1 e^{-B|t-t_0|} \int_{\min\{t,t_0\}}^{\max\{t,t_0\}} ||A(s)(u(s)-v(s))||_1 ds \le C_1 e^{-B|t-t_0|} ||_1 ds \le C_1 e^{-B|t-t_0|} ||A(s)(u(s)-v(s))||_1 ds \le C_1 e^{-B$

$$\stackrel{||x|| \le C_2 ||x||_1}{\le} C_1 C_2 e^{-B|t-t_0|} \int_{\min\{t,t_0\}}^{\max\{t,t_0\}} \left| \left| A(s) \left(u(s) - v(s) \right) \right| \right| ds (**).$$

Nota. Hagamos una pausa para recordar la norma de una matriz.

Sea $A \in \mathfrak{M}_n(\mathbb{K}) \sim \mathbb{K}^{n^2} \sim \mathfrak{L}(\mathbb{K}^n)$, definimos norma de A como:

$$||A|| = ||A||_{\mathfrak{L}(K^n)} = \max\{||Ax|| : ||x|| = 1\}. \text{ De aquí obtenemos que } ||Ax|| = \left|\left|||x|| A \frac{x}{||x||}\right|\right| = ||x|| \left|\left|A \frac{x}{||x||}\right|\right| \le ||A|| \, ||x|| \, \, \forall x \in \mathbb{K}^n.$$

Por esto último (**)
$$\leq C_1 C_2 e^{-B|t-t_0|} \int_{\min\{t,t_0\}}^{\max\{t,t_0\}} ||A(s)||_{\mathfrak{L}(K^n)} ||u(s)-v(s)|| ds(***)$$

Ahora tenemos que $||A(s)||_{\mathfrak{L}(K^n)} \le C_3 ||A(s)||_1 = C_3 \sum_{i,j=1}^n |a_{ij}(s)| \le C_3 \sum_{i,j=1}^n ||a_{ij}||_{\infty}$. Luego

$$(***) \leq C_1 C_2 C_3 \sum_{i,j=1}^n ||a_{ij}||_{\infty} e^{-B|t-t_0|} \int_{\min\{t,t_0\}}^{\max\{t,t_0\}} ||u(s) - v(s)|| ds = L$$

$$= L e^{-B|t-t_0|} \int_{\min\{t,t_0\}}^{\max\{t,t_0\}} e^{-B|s-t_0|} ||u(s) - v(s)|| ds = L$$

$$= Le^{-B|t-t_0|} \int_{\min\{t,t_0\}}^{\max\{t,t_0\}} e^{B|s-t_0|} e^{-B|s-t_0|} ||u(s) - v(s)|| ds \le$$

$$Le^{-B|t-t_0|} \int_{\min\{t,t_0\}}^{\max\{t,t_0\}} e^{B|s-t_0|} ds ||u-v||_B (****).$$
 Finalizando tenemos:

$$Le^{-B|t-t_0|} \int_{\min\{t,t_0\}}^{\min\{t,t_0\}} e^{B|s-t_0|} ds ||u-v||_B (****). \text{ Finalizando tenemos:}$$

$$\text{Si } t > t_0, \text{ entonces } \int_{\min\{t,t_0\}}^{\max\{t,t_0\}} e^{B|s-t_0|} ds = \int_{t_0}^{t} e^{B(s-t_0)} ds = \frac{e^{B(t-t_0)} - 1}{B} = \frac{e^{B|t-t_0|} - 1}{B}.$$

$$\text{Si } t < t_0, \text{ entonces } \int_{\min\{t,t_0\}}^{\max\{t,t_0\}} e^{B|s-t_0|} ds = \int_{t}^{t_0} e^{-B(s-t_0)} ds = \frac{e^{-B(t-t_0)} - 1}{B} = \frac{e^{B|t-t_0|} - 1}{B}.$$

De forma que
$$(****) = Le^{-B|t-t_0|} \frac{e^{B|t-t_0|} - 1}{B} ||u-v||_B \le Le^{-B|t-t_0|} \frac{e^{B|t-t_0|}}{B} ||u-v||_B = \frac{L}{B} ||u-v||_B$$
. Luego $||Ku-Kv||_B \le \theta ||u-v||_B$ con $\theta = \frac{L}{B}$ tomando $B > L$.

Corolario 1.3.11. Iteraciones de Picard-Lindelöf.

Para cualquier $h_0 \in \mathcal{C}([\alpha, \beta]; \mathbb{K}^n)$, el esquema iterativo $h_n = Kh_{n-1} = K^nh_0$ con $n \ge 1$, es decir, $(h_0, Kh_0, K^2h_0...)$ converge a una única solución de $\begin{cases} u' = A(t)u + B(t) \\ u(t_0) = u_0 \end{cases}$.

Ejemplo 1.3.12. Sea
$$\begin{cases} h' = h \\ u(t_0) = u_0 \end{cases}$$
 entonces $Kh(t) = u_0 + \int_{t_0}^t h(s) ds$.

$$h_1(t) = Kh_0(t) = u_0 + \int_{t_0}^t h_0(s)ds = u_0 + u_0(t - t_0) = u_0(1 + t - t_0). \ h_2(t) = Kh_1(t) = u_0 + \int_{t_0}^t u_0(1 + s - t_0)ds = u_0(1 + t - t_0 + \frac{(t - t_0)^2}{2}). \ h_3(t) = Kh_2(t) = u_0 + \int_{t_0}^t u_0(1 + s - t_0)ds = u_0(1 + t - t_0 + \frac{(t - t_0)^2}{2}) + \frac{(t - t_0)^3}{3!}.$$
 Entonces $h_n(t) = u_0(1 + t - t_0 + \frac{(t - t_0)^2}{2}) + \frac{(t - t_0)^3}{3!} + \dots + \frac{(t - t_0)^n}{n!}) \xrightarrow{n \to \infty} e^{(t - t_0)} u_0$ de manera uniforme en $[\alpha, \beta]$.

Corolario 1.3.13. Bajo las condiciones del teorema fundamental, el operador solución $S_0 \colon \mathbb{K}^n \longrightarrow \Sigma_0$, que determina una única solucion de $\left\{ \begin{array}{l} h' = A(t)h \\ h(t_0) = x \end{array} \right.$, es isomorfismo vecto-

Por tanto, el operador solución $S_B \colon \mathbb{K}^n \longrightarrow \Sigma_B$, que determina una única solucion de $x \mapsto S_B(x) = u(t;t_0,x)$

 $\begin{cases} u' = A(t)u + B(t) \\ u(t_0) = x \end{cases}$, es isomorfismo afín. Por ello, dim $\Sigma_0 = \dim \Sigma_B = n$. Además puesto que S_0 envía bases de \mathbb{K}^n en bases de Σ_0 , si \mathbb{K}^n está generado por $(e_1, ..., e_n) \implies \Sigma_0 = L[h(t; t_0, e_1), ..., h(t; t_0, e_n)].$

Demostración.

Comprobemos que S_0 es lineal.

Sea
$$\lambda, \mu \in \mathbb{K}$$
, $x, y \in \mathbb{K}^n$. Entonces, $S_0(\lambda x + \mu y) = h(t; t_0, \lambda x + \mu y) = \lambda h(t; t_0, x) + \mu h(t; t_0, y) = \lambda S_0(x) + \mu S_0(y)$. Veamos que es inyectiva.
 $S_0(x) = 0 \implies x = h(t; t_0, x) = 0 \implies x = 0$. Además $S_0(x) = S_0(y) \iff S_0(x-y) = 0 \iff x = y$. También es fácil comprobar que es suprayectiva. En efecto: Si $h \in \Sigma_0$, $h(t) = h(t; t_0, h(t_0))$, por el Teorema de unicidad ! $\exists h(t) = S_0(h(t_0))$. Luego S_0 es isomorfismo vectorial y dim $\mathbb{K}^n = \dim \Sigma_0 = n$.

1.4. Variación de coeficientes

Definición 1.4.1. Diremos que
$$\Phi(t) = \begin{pmatrix} h_{11}(t) & \dots & h_{1n}(t) \\ \vdots & \ddots & \vdots \\ h_{n1}(t) & \dots & h_{nn}(t) \end{pmatrix}$$
 es una matriz de soluciones

de h' = A(t)h cuando sus columnas resuelven h' = A(t)h es decir $\Phi'(t) = (h'_{ij}(t)) = (h'_1(t) \dots h'_n(t)) = (A(t)h_1(t) \dots A(t)h_n(t)) = A(t)(h_1(t) \dots h_n(t)) = A(t)\Phi(t)$ o lo que es lo mismo, $\Phi(t)$ resuelve el sistema.

Definición 1.4.2. $\Phi(t)$ es una matriz fundamental de soluciones (M.F.S.) cuando sus columnas son una base de Σ_0 .

Ejemplo 1.4.3. Sea h' = Ah entonces $\Phi(t) = e^{At} = \sum_{n=0}^{\infty} \frac{A^n t^n}{n!}$ es una matriz fundamental de soluciones.

Teorema 1.4.4. Sean $h_1, \ldots, h_n \in \Sigma_0$ y sea $\Phi = (h_1 \ldots h_n)$. Entonces las siguientes afirmaciones son equivalentes:

- 1. $\Phi(t)$ es M.F.S. $(\Sigma_0 = L[h_1, ..., h_n])$.
- 2. $\exists t_0 \in [\alpha, \beta] \ tal \ que \ det \Phi(t_0) \neq 0$.
- 3. $\det \Phi(t) \neq 0 \ \forall t \in [\alpha, \beta]$.

Demostración.

Supongamos que
$$\exists t_0 \in [\alpha, \beta]$$
 tal que det $\Phi(t_0) = 0 \implies \exists c_1, \ldots, c_n \in \mathbb{K}$ tal que $c_1h_1(t_0) + c_2h_2(t_0) + \ldots + c_nh_n(t_0) = 0$ con $(c_1, \ldots, c_n) \neq (0, \ldots, 0)$. Por tanto, sea $h(t) = c_1h_1(t_0) + c_2h_2(t_0) + \ldots + c_nh_n(t_0) = 0 \ \forall t \in [\alpha, \beta], \ h \in \Sigma_0 \ y \ h(t_0) = 0 \implies h = 0 \implies \{h_1, \ldots, h_n\}$ es linealmente dependiente (esto prueba, por contrarrecíproco, que $(1) \implies (3)$). Por lo que det $\Phi(t) = 0 \ \forall t \in [\alpha, \beta]$ $((2) \implies (1))$. Para acabar, es evidente que $((3) \implies (2))$.

Proposición 1.4.5. El determinante de una M.F.S. Φ viene también determinado por la fórmula de Jacobi-Louiville: det $\Phi(t) = \mathrm{e}^{\int_{t_0}^t tr(A(s))ds} det \Phi(t_0)$ con $t,t_0 \in [\alpha,\beta]$. Es decir, obtenemos cualquier determinante de $\Phi(t), t \in [\alpha,\beta]$ dado el valor del determinante de un punto t_0 cualquiera.

Observación. Hallemos la solución general de u' = A(t)u(t) + B(t). Sea $\Phi(t) = \begin{pmatrix} h_1 & \dots & h_n \end{pmatrix}$