Элементы криптографии. Однократное гаммирование

Жижченко Валерия Викторовна

Российский Университет Дружбы Народов

Цель лабораторной работы

Цель лабораторной работы

Освоить на практике применение режима однократного гаммирования

Разработали приложение, позволяющее шифровать и дешифровать данные в режиме однократного гаммирования. Приложение обладает следующим функционалом:

1. Определяет вид шифротекста при изветсном ключе и известном открытом тексте.

Message	:: С Нов	ым Годом,	Друзья!					
Encrypted Message:			20G2w/r{]22 %U2~		9F⊡4\$~			
Message	hex:							
0xd0	0xa1	0x20	0xd0	0x9d				
0xd0	0xbe	0xd0	0xb2	0xd1				
0x8b	0xd0	0xbc	0x20	0xd0				
0x93	0xd0	0xbe	0xd0	0xb4				
0xd0	0xbe	0xd0	0xbc	0x2c				
0x20	0xd0	0x94	0xd1	0x80				
0xd1	0x83	0xd0	0xb7	0xd1				
0x8c	0xd1	0x8f	0x21	0				
Encrypt	Encrypted Message hex:							
0x9	0xdb	0xbd	0x30	0x47				
0x32	0xb2	0x77	0x2f	0xa7				
0x72	0xc0	0x7b	0x5d	0x2				
0x91	0xe5	0x80	0x8a	0x25				
0x55	0x1d	0x7e	0x84	0xe4				
0x9	0x39	0xbb	0x46	0xe3				
0xa4	0xf3	0xe	0xa4	0x81				
0x34	0x24	0xd3	0x7e	0x92				

4/14

2. Определяет ключ, с помощью которого шифротекст может быть преобразованв некоторый фрагмент текста, представляющий собой один из возможных вариантов прочтения открытого тектса.

Key1:				
0xd9	0x7a	0x9d	0xe0	0xda
0xe2	0xc	0xa7	0x9d	0x76
0xf9	0x10	0xc7	0x7d	0xd2
0x2	0x35	0x3e	0x5a	0x91
0x85	0xa3	0xae	0x38	0xc8
0x29	0xe9	0x2f	0x97	0x63
0x75	0x70	0xde	0x13	0x50
0xb8	0xf5	0x5c	0x5f	0x92
Key2:				
0xd9	0x7a	0x9d	0xe0	0xda
0xe2	0xc	0xa7	0x9d	0x76
0	010	07	074	Oved 2

5/14

Ответы на контрольные вопросы

1. Поясните смысл однократного гаммирования.

Гаммирование – выполнение операции XOR между элементами гаммы и элементами подлежащего сокрытию текста. Если в методе шифрования используется однократная вероятностная гамма (однократное гаммирование) той же длины, что и подлежащий сокрытию текст, то текст нельзя раскрыть. Даже при раскрытии части последовательности гаммы нельзя получить информацию о всём скрываемом тексте.

2. Перечислите недостатки однократного гаммирования.

Абсолютная стойкость шифра доказана только для случая, когда однократно используемый ключ, длиной, равной длине исходного сообщения, является фрагментом истинно случайной двоичной последовательности с равномерным законом распределения.

3. Перечислите преимущества однократного гаммирования.

Во-первых, такой способ симметричен, т.е. двойное прибавление одной и той же величины по модулю 2 восстанавливает исходное значение. Во-вторых, шифрование и расшифрование может быть выполнено одной и той же программой. Наконец, Криптоалгоритм не даёт никакой информации об открытом тексте: при известном зашифрованном сообщении С все различные ключевые последовательности К возможны и равновероятны, а значит, возможны и любые сообщения Р.

4. Почему длина открытого текста должна совпадать с длиной ключа?

Если ключ короче текста, то операция XOR будет применена не ко всем элементам и конец сообщения будет не закодирован. Если ключ будет длиннее, то появится неоднозначность декодирования.

5. Какая операция используется в режиме однократного гаммирования, назовите её особенности?

Наложение гаммы по сути представляет собой выполнение побитовой операции сложения по модулю 2, т.е. мы должны сложить каждый элемент гаммы с соответствующим элементом ключа. Данная операция является симметричной, так как прибавление одной и той же величины по модулю 2 восстанавливает исходное значение.

6. Как по открытому тексту и ключу получить шифротекст?

В таком случае задача сводится к правилу:

$$C_i = P_i \oplus K_i$$

т.е. мы поэлементно получаем символы зашифрованного сообщения, применяя операцию исключающего или к соответствующим элементам ключа и открытого текста.

7. Как по открытому тексту и шифротексту получить ключ?

Подобная задача решается путем применения операции исключающего или к последовательностям символов зашифрованного и открытого сообщений:

$$K_i = P_i \oplus C_i$$
.

8. В чем заключаются необходимые и достаточные условия абсолютной стойкости шифра?

Необходимые и достаточные условия абсолютной стойкости шифра:

- полная случайность ключа;
- равенство длин ключа и открытого текста;
- однократное использование ключа.

Вывод

Вывод

Освоили на практике применение режима однократного гаммирования