2019 AIME I #6

Tristan Shin

 $13~\mathrm{Mar}~2019$

In convex quadrilateral KLMN side \overline{MN} is perpendicular to diagonal \overline{KM} , side \overline{KL} is perpendicular to diagonal \overline{LN} , MN=65, and KL=28. The line through L perpendicular to side \overline{KN} intersects diagonal \overline{KM} at O with KO=8. Find MO.

Let $P=LO\cap KN$. From $\triangle KPL\sim\triangle KLN$ we have $\frac{KP}{KL}=\frac{KL}{KN}$. From $\triangle KPO\sim\triangle KMN$ we have $\frac{KP}{KO}=\frac{KM}{KN}$. So

$$KO(KO + MO) = KO \cdot KM = KP \cdot KN = KL^{2}$$

from which
$$MO = \frac{KL^2}{KO} - KO = \frac{28^2}{8} - 8 = \boxed{090}$$
 as desired.