

Background:

"Pulse oximetry is routinely used for monitoring patients' oxygen saturation levels with little regard to the variability of this physiological variable. There are few published studies on oxygen saturation variability (OSV), with none describing the variability and its pattern in a healthy adult population. The aim of this study was to characterize the pattern of OSV using several parameters: the regularity (sample entropy analysis), the self-similarity (detrended fluctuation analysis (DFA)), and the complexity (multiscale entropy (MSE) analysis). Secondly, to determine if there were any changes that occur with age."

Procedure:

- 1.Clean the pulse oximeter and place on finger of participants choosing
- 2.Place the pulse pressure transducer on the adjacent finger
- 3. Wrap the Respiratory band around the umbilicus of the participant
- 4.Preferably have participant sitting with the fingers relatively still
- 5. Test equipment to ensure correct readings
- 6.Once the equipment has been checked stop the test and start the official recording

Study

Parameters:

-Healthy Adult

-Gender

-Smoking Status

-BMI

-Age

Pulse Oximeter Picture
PhysioNet: Pattern Analysis of Oxygen Saturation
Variability

Participant No	Gender	Smoking Status	BMI	Age
1	Female	Non-Smoker	20.5	23
2	Female	Non-Smoker	21.7	21
3	Female	Smoker	23.8	45
4	Female	Ex-Smoker	23.2	66
5	Male	Non-Smoker	25.1	70
6	Male	Non-Smoker	22	20
7	Female	Non-Smoker	19.8	19
8	Female	Non-Smoker	24.7	22
9	Female	Non-Smoker	20.7	20
10	Male	Non-Smoker	23.6	20
11	Female	Non-Smoker	28.2	41
12	Female	Non-Smoker	24.4	20
13	Female	Non-Smoker	24.1	45
14	Male	Non-Smoker	26.8	49
15	Male	Non-Smoker	23.2	22
16	Male	Non-Smoker	20.6	20
17	Femae	Non-Smoker	23.1	21
18	Male	Non-Smoker	26.2	42

Participant No	Gender	Smoking Status	BMI	Age
19	Female	Non-Smoker	24.3	62
20	Male	Non-Smoker	19.9	48
21	Male	Ex-Smoker	24.5	60
22	Female	Ex-Smoker	18.5	56
23	Female	Non-Smoker	24.2	24
24	Male	Non-Smoker	23.9	45
25	Female	Non-Smoker	19.8	38
26	Male	Smoker	24.6	21
27	Male	Non-Smoker	26.7	23
28	Female	Non-Smoker	18.9	21
29	Male	Smoker	26.8	23
30	Female	Ex-Smoker	17.9	21
31	Female	Non-Smoker	21.3	35
32	Male	Non-Smoker	23	20
33	Male	Ex-Smoker	28.4	55
34	Female	Non-Smoker	20.3	20
35	Male	Non-Smoker	26.5	42
36	M	Non-Smoker	21.7	20

Problem Definition

Take the data collected and perform analysis to see how and what physical factors have the greatest importance on a person's blood oxygen values.

Question: What physical factor has the greatest affect on blood oxygen values leading to the decrease in a person's levels?

Hypothesis:

- -Gender will not play significant role
- -Smoking status and BMI will be significant

Process

Format blood oxygen participant data

Perform 1-way Anova tests over all the participants

Generate graphs and charts of the factors compared to each other Ex: (Male vs Female)

Multiple comparison test to see groups of significance

Perform N-way Anova tests to compare each physical factor

Format One-Way Anova

```
🗑 🗙 🌠 Variables - tbld
Editor - anova bloodoxygen.m
   anova bloodoxygen.m × anova test.m × mult compare.m ×
                                                       test.m × anova nway.m × +
       filename = "reformat osv data.xlsx";
2
3 -
       gender = xlsread(filename, "A2:A37");
       smoking = xlsread(filename, "B2:B37");
       bmi = xlsread(filename, "C2:C37");
       age = xlsread(filename, "D2:D37");
       data = xlsread(filename, "E2:E37");
8
       save("pat data.mat", 'gender', 'smoking', 'bmi', 'age', 'data');
9 -
10
```

Process:

- ♦ Format Data
 - ♦ Male 0, Female 1
 - ♦ Non-Smoker 0, Smoker/Ex-Smoker 1
- ♦ Load the data into Matlab
- ♦ Make each factor its own variable
- Perform Anova test to find significance in factors
- Perform Analysis of the data handed back

```
Editor - anova_test.m

anova_bloodoxygen.m  anova_test.m  mult_compare.m  test.m  anova_nway.m  +

load pat_data

[p_gender,tbl_gender,stats_gender] = anoval(data, gender);

[p_smoking,tbl_smoking,stats_smoking] = anoval(data, smoking);

[p_bmi,tbl_bmi,stats_bmi] = anoval(data, bmi);

[p_age,tbl_age,stats_age] = anoval(data, age);
```

Gender	Smoking	ВМІ	Age	Average
1	0	20.5	23	98.239
1	0	21.7	21	98.163
1	1	23.8	45	94.412
1	1	23.2	66	96.344
0	0	25.1	70	93.748
0	0	22	20	96.468
1	0	19.8	19	97.955
1	0	24.7	22	98.435
1	0	20.7	20	98.703
0	0	23.6	20	97.873
1	0	28.2	41	98.801
1	0	24.4	20	97.364
1	0	24.1	45	98.009
0	0	26.8	49	98.185
0	0	23.2	22	96.805
0	0	20.6	20	98.606
1	0	23.1	21	99.001
0	0	26.2	42	98.184
1	0	24.3	62	98.704
0	0	19.9	48	98.504
0	1	24.5	60	98.2
1	1	18.5	56	96.524
1	0	24.2	24	96.976
0	0	23.9	45	96.275
1	0	19.8	38	96.87
0	1	24.6	21	96.523
0	0	26.7	23	97.77
1	0	18.9	21	98.33
0	1	26.8	23	98.186
1	1	17.9	21	99.324
1	0	21.3	35	99.508
0	0	23	20	98.645
0	1	28.4	55	97.126
1	0	20.3	20	98.838
0	0	26.5	42	97.585
0	0	21.7	20	98.218

Format N-Way Anova

Gender	Smoking	BMI	Age	Average
Female	Non-Smoker	Healthy	Young	98.239
Female	Non-Smoker	Healthy	Young	98.163
Female	Smoker	Healthy	Mid	94.412
Female	Ex-Smoker	Healthy	Old	96.344
Male	Non-Smoker	Overweight	Old	93.748
Male	Non-Smoker	Healthy	Young	96.468
Female	Non-Smoker	Healthy	Young	97.955
Female	Non-Smoker	Healthy	Young	98.435
Female	Non-Smoker	Healthy	Young	98.703
Male	Non-Smoker	Healthy	Young	97.873
Female	Non-Smoker	Overweight	Mid	98.801
Female	Non-Smoker	Healthy	Young	97.364
Female	Non-Smoker	Healthy	Mid	98.009
Male	Non-Smoker	Overweight	Mid	98.185
Male	Non-Smoker	Healthy	Young	96.805
Male	Non-Smoker	Healthy	Young	98.606
Femae	Non-Smoker	Healthy	Young	99.001
Male	Non-Smoker	Overweight	Mid	98.184
Female	Non-Smoker	Healthy	Mid	98.704
Male	Non-Smoker	Healthy	Mid	98.504
Male	Ex-Smoker	Healthy	Mid	98.2
Female	Ex-Smoker	Underweight	Mid	96.524
Female	Non-Smoker	Healthy	Young	96.976
Male	Non-Smoker	Healthy	Mid	96.275
Female	Non-Smoker	Healthy	Young	96.87
Male	Smoker	Healthy	Young	96.523
Male	Non-Smoker	Overweight	Young	97.77
Female	Non-Smoker	Healthy	Young	98.33
Male	Smoker	Overweight	Young	98.186
Female	Ex-Smoker	Underweight	Young	99.324
Female	Non-Smoker	Healthy	Mid	99.508
Male	Non-Smoker	Healthy	Young	98.645
Male	Ex-Smoker	Overweight	Mid	97.126
Female	Non-Smoker	Healthy	Young	98.838
Male	Non-Smoker	Overweight	Mid	97.585
Male	Non-Smoker	Healthy	Young	98.218

Formatting:

- Gender
 - ♦ Male, Female
- Smoking Status
 - ♦ Non-Smoker, Ex-Smoker, Smoker
- ♦ BMI (Per <u>BMI CDC</u>)
 - ♦ <18.5 Underweight
 - ♦ 18.5-25 Healthy
 - ♦ 25-30 Overweight
 - ♦ >30 Obesity
- ♦ Age
 - ♦ 0-30 Young
 - ♦ 31-64 Mid
 - ♦ 65 above Old

```
Editor - anova_nway.m
   anova_bloodoxygen.m × anova_test.m × mult_compare.m × test.m × anova_nway.m × +
        %Gender vs Smoking
        varnamesGS = {'Gender';'Smoking'};
        anovan(data, {chargender charsmoking}, 2, 2, varnamesGS);
        %Gender vs BMI
        varnamesGB = {'Gender';'BMI'};
        anovan(data, {chargender charbmi}, 2, 2, varnamesGB);
        %Gender vs Age
       varnamesGA = {'Gender';'Age'};
       anovan(data, {chargender charage}, 2, 2, varnamesGA);
       varnamesSB = {'Smoking';'BMI'};
       anovan(data, {charsmoking charbmi}, 2, 2, varnamesSB);
        %Smoking vs Age
        varnamesSB = {'Smoking';'Age'};
        anovan(data, {charsmoking charage}, 2, 2, varnamesSB);
        %BMI vs Age
       varnamesBA = {'BMI';'Age'};
        anovan(data, {charbmi charage}, 2, 2, varnamesBA);
```

Process:

- ♦ Format data
- Load data as character arrays
- Perform Anova test comparing all combinations
- Perform analysis of data

Multiple Comparison

Process:

- Collect data from one-way Anova
- Preform Multiple Comparison for each factor
- Analyze data to find groups with large significance

```
Editor - mult_compare.m

anova_bloodoxygen.m × anova_test.m × mult_compare.m × test.m × anova_nway.m × +

[c_gender, m_gender, h_gender, gnames_gender] = multcompare(stats_gender);

[c_smoking, m_smoking, h_smoking, gnames_smoking] = multcompare(stats_smoking);

[c_bmi, m_bmi, h_bmi, gnames_bmi] = multcompare(stats_bmi);

[c_age, m_age, h_age, gnames_age] = multcompare(stats_age);
```

Findings One-Way Anova

Gender Factor Test Male 0, Female 1

				ANOVA Table		
Source	ss	df	MS	F	Prob>F	
Groups	1.868	1	1.868	1.21	0.2792	
Error	52.527	34	1.54491			
Total	54.3951	35				

Smoking Factor Test Non-Smoker 0, Smoker 1

				ANOVA Table			
Source	ss	df	MS	F	Prob>F		
 Groups	4.027	1	4.02697	2.72	0.1084		
Error	50.3681	34	1.48141				
Total	54.3951	35					

Findings One-Way Anova

BMI Factor Test

			ANOVA Table			
ss	df	MS	F	Prob>F		
3.6987	31	1.73222	9.95	0.0185		
0.6964	4	0.1741				
4.3951	35					
	3.6987 3.6964	3.6987 31 3.6964 4	3.6987 31 1.73222 3.6964 4 0.1741	3.6987 31 1.73222 9.95 0.6964 4 0.1741		

Age Factor Test

				ANOVA Table				
Source	ss	df	MS	F	Prob>F			
Groups	36.84	18	2.04667	1.98	0.0826			
Error	17.5551	17	1.03265					
Total	54.3951	35						

Findings Multiple Comparisons

Gender Multi Test Male 0, Female 1

Smoking Multi Test Non-Smoking 0 Smoking 1

Age Multi Test

Findings N-Way Anova

		An	alysis of	Varian	ice
Source	Sum Sq.	d.f.	Mean Sq.	F	Prob>F
Gender	2.2121	2	1.10604	0.87	0.4306
Smoking	5.5339	2	2.76694	2.17	0.1324
# Gender*Smoking	8.7859	2	4.39296	3.45	0.0454
Error	36.9762	29	1.27504		
Total	54.3951	35			

Gender vs Smoking Smoking has greater significance

				Analysis	of Var	iance
Г	Source	Sum Sq.	d.f.	Mean Sq.	F	Prob>F
	Smoking	6.5703	2	3.28516	2.35	0.113
	BMI	0.8764	2	0.43821	0.31	0.7331
#	Smoking*BMI	6.6052	2	3.30262	2.37	0.1118
	Error	40.4925	29	1.39629		
	Total	54.3951	35			

Smoking vs BMI Smoking has greater significance

		Analysis of Varia			riance	
	Source	Sum Sq.	d.f.	Mean Sq.	F	Prob>F
	Gender	2.4348	2	1.21741	0.73	0.4887
	BMI	0.0627	2	0.03136	0.02	0.9813
#	Gender*BMI	1.4288	1	1.42876	0.86	0.361
	Error	49.8045	30	1.66015		
	Total	54.3951	35			

Gender vs BMI Gender has slightly greater significance

		Analysis	of Varia	ance	
Source	Sum Sq.	d.f.	Mean Sq.	F	Prob>F
Smoking	7.6392	2	3.81961	5.54	0.0094
Age	16.7943	2	8.39713	12.17	0.0002
Smoking*Age	11.8598	3	3.95327	5.73	0.0035
Error	19.3201	28	0.69		
Total	54.3951	35			

Smoking vs Age Age has greater significance

	Sum Sq.	Analysis of Variance			
Source		d.f.	Mean Sq.	F	Prob>F
Gender	2.3269	2	1.16347	1.01	0.3765
Age	14.8038	2	7.40188	6.43	0.0049
Gender*Age	3.1022	2	1.55111	1.35	0.2758
Error	33.39	29	1.15138		
Total	54.3951	35			

Gender vs Age Age has greater significance

				Analysis of Variance		
	Source	Sum Sq.	d.f.	Mean Sq.	F	Prob>F
70.	BMI	0.0255	2	0.01274	0.01	0.9888
	Age	14.8744	2	7.4372	6.56	0.0046
#	BMI*Age	7.0695	3	2.3565	2.08	0.1255
	Error	31.7242	28	1.13301		
	Total	54.3951	35			

BMI vs Age Age has greater significance

Summary

Initial Question: What physical factor has the greatest affect on blood oxygen values leading to the decrease in a person's levels?

Hypothesis:

- ♦ -Gender will not play significant role
- ♦ -Smoking status and BMI will be significant

After Analysis:

- Age has the greater significance over all other factors
- Smoking is the next significant factor
- ♦ BMI is least significant

Final Answer in relation to Hypothesis:

My hypothesis was not proven to be correct entirely, only that smoking status plays a significant role.

Challenges:

- Small Sample Size for proper analysis
 - Possible Solution: Larger Sample Size with greater variability in factors