Zadanie nr 1 - Generacja sygnału i szumu

Cyfrowe Przetwarzanie Sygnałów

Dawid Jakubik, ?????? Hubert Gawłowski, 224298 data oddania zadania

1 Cel zadania

Celem zadania było zapoznanie się z własnościami różnych sygnałów oraz poznanie i zastosowanie podstawowych działań na sygnałach. W wyniku zadania powstała aplikacja w technologii Java, która rysuje wykresy przebiegu oraz histogramy dla poszczególnych sygnałów oraz dla sygnałów powstałych w wyniku działań na dwóch sygnałach. Oblicz ona i pokazuje wartości da sygnałów, a także zezwala za zapis i odczyt sygnału do/z pliku.

2 Wstêp teoretyczny

Sygnały użyte w zadaniu generowane są na podstawie wzorów znajdujących się w instrukcji do zadania [1]. W instrukcji [1] znajdują się także wzory użyte w celu obliczenia parametrów funcji, czyli wartości średniejm bezwzględnej wartości średniej, wariancji, mocy średniej oraz wartości skutecznej. Aby przedstawić sygnały na wykresie, zostały one poddane próbkowaniu, czyli operacji w wyniku której powstał zbiór punktów, które po połączeniu utworzyły odpowiedni wykres.

Krótki opis wykorzystywanych metod [2]. Proszê nie umieszczaæ ogólnie znanych z literatury wzorów oraz definicji. Nalejy podaæ jaka metoda zosta³a zastosowana, dlaczego oraz podaæ wykorzystan¹ literaturê (korzystaj¹c z odwo³añ do pozycji bibliografii [?]).

Przygotowuj¹c bibliografiê należy korzystaæ z podanego szablonu BibT_FX-owego bibliografia-wzor.bib.

3 Eksperymenty i wyniki

Opis wykonywanych eksperymentów. Wymagane jest ilustrowanie przeprowadzanych dowiadczeń wykresami oraz tabelami.

3.1 Eksperyment nr 1

Eksperyment nr 1...

Identycznociowa funkcja aktywacji ma postaæ:

$$\forall s \in \mathbb{R} \quad f(s) = s \tag{1}$$

Jak widaæ z definicji (??) funkcja ta...

- 3.1.1 Za⁸o;enia
- 3.1.2 Przebieg

3.1.3 Rezultat

Rezultaty badañ eksperymentalnych przedstawione $\mathbf{s^1}$ w Tab. 1.

Tabela 1: Rezultaty eksperymentu nr 1

Przypadek	Metoda 1	Metoda 2	Metoda 3
1	50	837	970
2	47	877	230
3	31	25	415
4	35	144	2356
5	45	300	556

Jak widaæ w Tab. 1...

Graficzna interpretacja wyników z Tab. 1 przedstawiona jest na wykresie Rys. 1 gdzie można zauważyæ, że...

wykres.pdf

Rysunek 1: Wykres dla wyników eksperymentu pierwszego

Jak widaæ z wykresu Rys. 1...

3.2 Eksperyment nr 2

Eksperyment nr 2 polega³ na... Sigmoidalna funkcja aktywacji ma postaæ:

$$\forall s \in \mathbb{R} \quad f(s) = \frac{1}{1 + e^{-\beta \cdot s}}, \quad \text{gdzie } \beta \in \mathbb{R}_+$$
 (2)

Jak widaæ z równania definicyjnego (2) funkcja¹ ta ma wykres przedstawiony na rysunku Rys. 2, gdzie paramater β ...

funkcja.png

Rysunek 2: Wykres funkcji sigmoidalnej

- 3.2.1 Za⁸o enia
- 3.2.2 Przebieg
- 3.2.3 Rezultat

Rekzultidagebwd Tãbel
Sperymentalnych przedstawione s 1 w Tab. 2. Wyniki w Tab. 2 wiadc
z 1 o tym, ¿e...

3.3 Eksperyment nr n

Eksperyment nr n zak³ada³, i¿... Dla dowolnej liczby $N\in\mathbb{N}$ funkcjê $F_N:\mathbb{C}^N\to\mathbb{C}^N$ zdefiniowan¹ w nastêpuj¹cy sposób:

¹ang. sigmoidal function lub unipolar function

Tabela 2: Rezultaty eksperymentu n
r $2\,$

Przypadek	Metoda 1	Metoda 2
1	50	837
2	47	877
3	45	300

$$\forall \mathbf{x} \in \mathbb{C}^N \quad \forall k \in \{0, \dots, N-1\} \quad F_N(\mathbf{x})_k \stackrel{\Delta}{=} \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi nk/N}$$
 (3)

nazywamy N – punktowym prostym jednowymiarowym dyskretnym przekszta³ceniem Fouriera. Na Rys. 3 przedstawiono szybki algorytm obliczania dyskretnego przekszta³cenia Fouriera².

transformata.pdf

Rysunek 3: Szybkie przekszta³cenie Fouriera

²ang. Fast Fourier Transform

- 3.3.1 Za⁸o;enia
- 3.3.2 Przebieg
- 3.3.3 Rezultat

4 Wnioski

Wnioski z przeprowadzonych eksperymentów dowodz
1, $\xi \mathrm{e...}$

5 Za³¹czniki*

Opcjonalnie, w zależnoci od zadania, np. fragment kodu ród³owego.

Bibliografia

- $[1]\ \textit{Instrukcja} \ \ \textit{do} \ \ \textit{zadania} \ \ \textit{1} \ \ \textit{na} \ \ \textit{stronie} \ \ \textit{przedmiotu}. \\ \text{https://ftims.edu.p.lodz.pl/file.php/154/zadanie1}_20101011.pdf.$
- [2] Nieznany autor. Nieznany tytu³. Nieznane czasopismo, 2011.