1.

(Canceled)

Atty. Dkt. No. 200209179-1

IN THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

RECEIVED CENTRAL FAX CENTER

JUN 1 2 2008

		JU
1	2.	(Currently Amended) A method of determining a placement of services of a
2		distributed application onto nodes of a distributed resource infrastructure comprising
3		the steps of:
4		establishing an application model of the services comprising transport
5		demands between the services;
6		establishing an infrastructure model of the nodes comprising transport
7		capacities between the nodes;
8		forming an integer program that comprises:
9		a set of placement variables for a combination of the services and the
10		nodes, each of the placement variables indicating whether a particular service
11		is located on a particular node;
12		communication constraints between node pairs which ensure that a sum of
13		the transport demands between a particular node pair does not exceed the
14		transport capacity between the particular node pair, each term of the sum
15		comprising a product of a first placement variable, a second placement
16.		variable, and the transport demand between the services associated with the
17		first and second placement variables; and
18		an objective; and
19		employing a local search solution to solve the integer program which
20		determines the placement of the services onto the nodes, wherein the services are
21		assigned to the nodes according to a previous assignment and further comprising
22		assessing reassignment penalties for placements of the services that differ from
23		the previous assignments.

- 1 3. (Canceled)
- I 4. (Original) The method of claim 2 wherein the objective comprises minimizing
- 2 communication traffic between the nodes.
- 1 5. (Original) The method of claim 2 wherein the application model further
- 2 comprises processing demands for the services.
- 1 6. (Original) The method of claim 5 wherein the infrastructure model further
- 2 comprises processing capacities for the nodes.
- 1 7. (Original) The method of claim 6 wherein the integer program further comprises
- 2 processing constraints which ensure that a sum of the processing demands for each of
- 3 the nodes does not exceed the processing capacity for the node.
- 1 8. (Original) The method of claim 7 wherein the objective comprises minimizing
- 2 communication traffic between the nodes and balancing the processing demands on
- 3 the nodes.
- 1 9. (Original) The method of claim 6 wherein the processing demands and the
- 2 processing capacities are normalized according to a processing criterion.
- 1 10. (Original) The method of claim 9 wherein the processing criterion comprises an
- 2 algorithm speed.
- 1 11. (Original) The method of claim 9 wherein the processing criterion comprises a
- 2 transaction speed.
- 1 12. (Original) The method of claim 9 wherein the processing capacities of the nodes
- 2 are found according to a look-up table in which different types of nodes have been
- 3 normalized according to the processing criterion.

- 1 13. (Original) The method of claim 2 wherein the application model further
- 2 comprises storage demands for the services.
- 1 14. (Original) The method of claim 13 wherein the infrastructure model further
- 2 comprises storage capacities for the nodes.
- 1 15. (Original) The method of claim 14 wherein the integer program further
- 2 comprises storage constraints which ensure that a sum of the storage demands for
- 3 each of the nodes does not exceed the storage capacity for the node.
- 1 16. (Original) The method of claim 2 wherein the integer program further comprises
- 2 placement constraints which ensure that each of the services is placed on one and
- 3 only one of the nodes.
- 1 17. (Canceled)
- 1 18. (Canceled)
- 1 19. (Currently Amended) The method of claim 2[[18]] wherein the integer program
- 2 further comprises a second objective that seeks to minimize the reassignment
- 3 penalties.
- 1 20. (Canceled)
- 1 21. (Canceled)
- 1 22. (Currently Amended) A computer readable memory comprising computer code
- 2 for directing a computer to make a determination of a placement of services of a
- distributed application onto nodes of a distributed resource infrastructure, the
- determination of the placement of the services onto the nodes comprising the steps of:

Fax:650-968-4383

5	establishing an application model of the services comprising transport	٠.
6	demands between the services;	
7	establishing an infrastructure model of the nodes comprising transport	
8	capacities between the nodes;	•
9	forming an integer program that comprises:	•
10	a set of placement variables for a combination of the services and the	
1	nodes, each of the placement variables indicating whether a particular service	е
12	is located on a particular node;	٠.
13	communication constraints between node pairs which ensure that a sum of	of
14	the transport demands between a particular node pair does not exceed the	•
15	transport capacity between the particular node pair, each term of the sum	:
16	comprising a product of a first placement variable, a second placement	
17	variable, and the transport demand between the services associated with the	.:
18	first and second placement variables; and	`
19	an objective; and	
20	employing a local search solution to solve the integer program which	
21	determines the placement of the services onto the nodes, wherein the services are	: <u>2</u>
22	assigned to the nodes according to a previous assignment and further comprising	<u>.</u>
23	assessing reassignment penalties for placements of the services that differ from	
24	the previous assignments.	
1	23. (Canceled)	
1	24. (Original) The computer readable memory of claim 22 wherein the objective	:
2	comprises minimizing communication traffic between the nodes.	
•		:
. 1	25. (Original) The computer readable memory of claim 22 wherein the application	· .
2	model further comprises processing demands for the services.	٠

- 1 27. (Original) The computer readable memory of claim 26 wherein the integer
- 2 program further comprises processing constraints ensure that a sum of the processing
- 3 demands for each of the nodes does not exceed the processing capacity for the node.
- 1 28. (Original) The computer readable memory of claim 27 wherein the objective
- 2 comprises balancing the processing demands on the nodes.
- 1 29. (Original) The computer readable memory of claim 26 wherein the processing
- 2 demands and the processing capacities are normalized according to a processing
- 3 criterion.
- 1 30. (Original) The computer readable memory of claim 29 wherein the processing
- 2 criterion comprises an algorithm speed.
- 1 31. (Previously Presented) The computer readable memory of claim 29 wherein the
- 2 processing criterion comprises a transaction speed.
- 1 32. (Previously Presented) The computer readable memory of claim 29 wherein the
- 2 processing capacities of the nodes are found according to a look-up table in which
- 3 different types of nodes have been normalized according to the processing criterion.
- 1 33. (Original) The computer readable memory of claim 22 wherein the application
- 2 model further comprises storage demands for the services.
- 1 34. (Original) The computer readable memory of claim 33 wherein the infrastructure
- 2 model further comprises storage capacities for the nodes.
- 1 35. (Original) The computer readable memory of claim 34 wherein the integer
- 2 program further comprises storage constraints which ensure that a sum of the storage
- demands for each of the nodes does not exceed the storage capacity for the node.

- 1 36. (Original) The computer readable memory of claim 22 wherein the integer
- 2 program further comprises placement constraints which ensure that each of the
- 3 services is placed on one and only one of the nodes.
- 1 37. (Canceled)
- 1 38. (Canceled)
- 1 39. (Currently Amended) The computer readable memory of claim 22[[38]] wherein
- 2 the integer program further comprises a second objective that seeks to minimize the
- 3 reassignment penalties.
- 1 40. (Canceled)