

Rafbók

REIT rafeindatækni 12. kafli

Transistor, ac-magnari common - bace Flemming Madsen

Þetta hefti er án endurgjalds á rafbókinni.

www.rafbok.is

Allir rafiðnaðarmenn og rafiðnaðarnemar geta fengið aðgang án endurgjalds að rafbókinni.

Heimilt er að afrita textann til fræðslu í skólum sem reknir eru fyrir opinbert fé án leyfis höfundar eða Rafmenntar, fræðsluseturs rafiðnaðarins. Hvers konar sala á textanum í heild eða að hluta til er óheimil nema að fengnu leyfi höfundar og Rafmenntar.

Höfundur er Flemming Madsen.

Umbrot í rafbók Bára Laxdal Halldórsdóttir.

Vinsamlegast sendið leiðréttingar og athugasemdir til höfundar Flemmings Madsen <u>flemmma@icloud.com</u> eða til Báru Laxdal Halldórsdóttur á netfangið <u>bara@rafmennt.is</u>

Efnisyfirlit

12. kafli Formúlur og útskýringar fyrir common base-dæmin	3
12. kafli Transistorar, ac-magnari common base	5
Dæmi 12.1	5
Dæmi 12.2	6
Dæmi 12.3	7
Dæmi 12.4	8
Dæmi 12.5	10

12. kafli Formúlur og útskýringar fyrir common base-dæmin

Svörin við öllum útreikningum eru miðuð við þetta formúlublað. Leitast er við að nota þá formúlu sem gefur sem nákvæmasta útkomu miðað við þær upplýsingar sem gefnar eru upp í dæminu. Það þýðir að fleiri upplýsingar gefa nákvæmari útkomu. Munur er á útreikningum með mismunandi formúlum. Ath. RL = Rá || Rc

Tengimyndirnar sýna skammstafanir og heiti sem notuð eru í formúlunum.

Venjulegur teikniháttur.

Stundum teiknað svona.

	Venjuleg notkun:	Nákvæmari, fleiri upplýsingar:
	$h_{fe} = \beta$ er eina þekkta upplýsingin (parameter)	hfe, hie, hre, hoe eru þekkt
r'e = jafngildisriðstraums- viðnám á milli base og emitter.	$r'e = \frac{1}{40 \cdot I_e} = \frac{25m}{I_e}$	$r'e = \frac{hie}{hfe}$
Spennumögnun Av [sinnum]	$Av = \frac{R_L}{r'e}$	$Av = \frac{(R_L \cdot hfe)}{hie}$
Spennumögnun, nákvæmari formúla		$AV = \frac{h \text{fe} \cdot R_{L}}{(hie + R_{s})(1 + (hoe \cdot R_{L}))}$
Gain = Av í dB	$G = 20 \log Av$	$G = 20 \log Av$
Inngangs-impedans Z _{inn}	$Z_{inn} = r'e R_e$	$Z_{inn} = \left(\frac{hie}{1 + hfe}\right) Re$
Útgangs-impedans $Z_{ ext{út}}$	$Z_o = R_c$	$Z_o = R_c \left \frac{1}{\left(hoe + \frac{hfe \cdot hre}{hie + R_s}\right)} \right $
Inngangsþéttir fn -3dB Ef R_s er óþekkt er það reiknað sem fullkomið, þ.e.a.s. $R_s = 0\Omega$	$C_{inn} = \frac{1}{2 \cdot \pi \cdot fn \cdot (Z_{inn} + R_s)}$	$C_{inn} = \frac{1}{2 \cdot \pi \cdot fn \cdot (Z_{inn} + R_s)}$
Útgangsþéttir C _{út}	$C_{\acute{\mathbf{u}}t} = \frac{1}{2 \cdot \pi \cdot fn \cdot (R_{\acute{\mathbf{a}}} + R_c)}$	$C_{\acute{\mathrm{u}}t} = \frac{1}{2 \cdot \pi \cdot fn \cdot (R_{\acute{\mathrm{a}}} + R_{c})}$
Afkúplingsþéttir C _b	$C_b = \frac{1}{2 \cdot \pi \cdot 0, 1 \cdot fn \cdot R_{bb}}$	$C_b = \frac{1}{2 \cdot \pi \cdot 0, 1 \cdot fn \cdot R_{bb}}$

12. kafli Transistorar, ac-magnari common base

Dæmi 12.1

Rásirnar á tengimyndunum eru nákvæmlega eins tengdar. Fylltu rétt heiti íhlutanna í skrána hér fyrir neðan.

R _{bt}	R_{bb}	R _e	R_{c}	C_{inn}	$C_{ ext{út}}$	Cb

04.03.2020 5 www.rafbok.is

Dæmi 12.2

- A. Reiknaðu út collector-viðnámið R1.
- B. Reiknaðu út emitter-viðnámið R4.
- C. Reiknaðu út base-toppviðnámið R2.
- D. Reiknaðu út base-botnviðnámið R3.
- E. Merktu ac, inn- og útgangsspennu rásarinnar inn á tengimyndina.
- F. Hve margir gráður er fasamismunurinn á milli inn- og útgangs.

Dæmi 12.3

- A. Reiknaðu út base-spennuna U_b. Gengið er út frá að I_b ekki hafa áhrif.
- B. Reiknaðu út collector-spennuna Uc.
- C. Reiknaðu út jafngildisriðstraumsviðnámið r'e.
- D. Reiknaðu út spennumögnun rásarinnar Av.
- E. Reiknaðu út inngangs-impedans rásarinnar Zi.
- $F. \ \ Reiknaðu \ \text{út útgangs-impedans rásarinnar} \ Z_o.$
- G. Reiknaðu út inngangsþéttinn C_1 . Miðað er við fn = 15 Hz.
- H. Reiknaðu út útgangsþéttinn C₂. Miðað er við að útgangsþéttirinn hafi ekki áhrif á tíðnisvar rásarinnar.

Þumalfingursregla: Tíðnin, sem miðað er við, er 10 sinnum lægri en fn-rás.

I. Reiknaðu út afkúplingsþéttinn C₃.

Dæmi 12.4

- A. Reiknaðu spennumögnun Av-rásarinnar.
- B. Reiknaðu gain G-rásarinnar.
- C. Reiknaðu inngangs-impedans Z_i-rásarinnar.
- D. Reiknaðu neðri tíðnimörk rásarinnar. Ath. C_{inn} og Z_{inn} mynda HP-síu.
- E. Efri tíðnimörkum (-3dB) rásarinnar er stjórnað af rýmdinni C_{be} á milli base- og emitter-transistorsins. Teiknaðu C_{be} og C_{cb} inn á tengimyndina. C_{be} myndar LP-síu með $R_s || R_e$. Reiknaðu út marktíðnina.
- F. Rýmdin C_{cb} á milli base og collector mynda aðra LP-síu með Z_o. Reiknaðu út marktíðnina.
- G. Er það LP-sían í lið E eða lið F sem ræður fe rásarinnar?
- H. Teiknaðu tíðnisvar rásarinnar inn í log lin-línuritið. Línuritinu er skipt í tvennt svo að hægt sé að koma tíðnisvarslínunni fyrir.

I. Berðu saman bandbreidd common gate-magnarans með sama vinnupunkti og C_{e} magnarans í dæmi 10.7.

Hvers vegna er fe mun hærri?

Hvers vegna er fn mun hærri?

Dæmi 12.5

- A. Reiknaðu emitter-strauminn I_e og spennumögnun í CB-inngangsmagnaranum einum sér án álags á útganginn.
- B. Reiknaðu út inn- og útgangs-impedans fyrir CB-inngangsmagnarann einan sér.
- C. Reiknaðu emitter-strauminn Ie, spennumögnun, inn- og útgangs-impedans í CC-útgangsmagnaranum einum sér án álags á útganginn.
- D. Reiknaðu út hve mörg V útgangsspenna rásarinnar er ef inngangsspennan er 10 mV.
 - Notaðu thevinin-líkönin fyrir inngang- og útgangsmagnara til þess að halda utan um útreikninga.
- E. Reiknaðu út hve mörg dB gain rásarinnar er.
- F. Hve margar gráður er fasamunurinn á milli inn- og útgangs rásarinnar við 1 kHz?
- G. Hver er aðalmunurinn á rásinni hér og rásunum í dæmi 10.10 og 11.6.