淇江一中 2023 届高三卓越班 NLXF2023-17

高三数学限时训练 42——数列的通项(构造等差、等比数列)2

一、单选题

1. 已知数列 $\{a_n\}$ 满足: $a_1 = a_2 = 2$, $a_n = 3a_{n-1} + 4a_{n-2}(n \ge 3)$, 则 $a_9 + a_{10} = ($)

B. 4⁸

2. 已知数列 $\{a_n\}$ 满足递推关系, $a_{n+1} \cdot a_n = a_n - a_{n+1}, a_1 = \frac{1}{2}$,则 $a_{2020} = ($)

A. $\frac{1}{2018}$ **B.** $\frac{1}{2019}$

c. $\frac{1}{2020}$ D. $\frac{1}{2021}$

3. 已知数列 $\left\{a_{n}\right\}$ 满足: $a_{1}=1$, $a_{n+1}=\frac{a_{n}}{a_{n}+2}$, $\left(n\in N^{*}\right)$,则数列 $\left\{a_{n}\right\}$ 的通项公式为()

A. $a_n = \frac{1}{2^{n-1}}$ **B.** $a_n = \frac{1}{2^n - 1}$ **C.** $a_n = 2n - 1$ **D.** $a_n = \frac{1}{2^n} - 1$

4. 已知数列 $\{a_n\}$ 满足 $a_1 = -1, a_2 = \frac{1}{2}, 2^{a_n} - 2^{a_{n+1}} = (2^{a_n} - 1)(2^{a_{n+1}} - 1), n \ge 2, n \in \mathbb{N}^*$,记数列 $\{a_n\}$ 前 n 项和为 S_n ,则(

A. $7 < S_{2021} < 8$ **B.** $8 < S_{2021} < 9$ **C.** $9 < S_{2021} < 10$ **D.** $10 < S_{2021} < 11$

5. 已知数列 $\{a_n\}$ 满足 $(a_{n+1}-1)(a_n-1)=3(a_n-a_{n+1})$, $a_1=\frac{5}{2}$, 设 $c_n=2^n\left(\frac{2a_n}{n+4}-\lambda\right)$, 若数列 $\{c_n\}$ 是单调递减数列,

则实数 λ 的取值范围是 (

A. $\left(\frac{1}{6}, +\infty\right)$ B. $\left(\frac{1}{3}, +\infty\right)$ C. $\left(\frac{1}{2}, +\infty\right)$ D. $(1, +\infty)$

6. 已知在数列 $\{a_n\}$ 中, $a_1 = \frac{5}{6}$, $a_{n+1} = \frac{1}{3}a_n + \left(\frac{1}{2}\right)^{n+1}$,则 $a_n = ($

A. $\frac{3}{2^n} - \frac{2}{3^n}$ **B.** $\frac{2}{3^n} - \frac{3}{2^n}$ **C.** $\frac{1}{2^n} - \frac{2}{3^n}$ **D.** $\frac{2}{3^n} - \frac{1}{2^n}$

7. 设数列 $\{a_n\}$ 满足 $a_1=3, a_{n+1}=3a_n-4n$,若 $b_n=\frac{4n^2+8n+5}{a_1a_2}$,且数列 $\{b_n\}$ 的前 n 项和为 S_n ,则 $S_n=$ ()

A. $n\left(1+\frac{2}{6n+9}\right)$ **B.** $\frac{4}{3}+\frac{2n}{6n+9}$ **C.** $n\left(1+\frac{1}{6n+9}\right)$ **D.** $n\left(1+\frac{2}{6n+9}\right)$

8. 数列 $\{a_n\}$ 满足 $a_1=1$, $na_{n+1}=(n+1)a_n+n(n+1)$,若 $b_n=a_n\cos\frac{2n\pi}{3}$,且数列 $\{b_n\}$ 的前 n 项和为 S_n ,则 $S_{11}=(n+1)a_n+n(n+1)$,若 $b_n=a_n\cos\frac{2n\pi}{3}$,

9. 已知数列 $\{a_n\}$ 满足 $3a_n-2a_{n-1}=a_{n+1} (n\geq 2, n\in {\bf N}^*)$,且 $a_1=0$, $a_6=2021$,则 $a_2=$ ()

A. $\frac{2021}{31}$

B. $\frac{2021}{33}$ C. $\frac{2021}{63}$ D. $\frac{2021}{65}$

二、填空题

- **10.** 已知数列 $\{a_n\}$ 的各项均为正数,且 $a_n^2 a_n n^2 n = 0$,则数列 $\{a_n\}$ 的通项公式 $a_n =$ ______.
- **11.**已知数列 $\{a_n\}$ 满足 $a_1=1$,且 $a_n=\frac{1}{3}a_{n-1}+\left(\frac{1}{3}\right)^n(n\geq 2)$,则数列 $\{a_n\}$ 的通项公式 $a_n=$ _____.
- **12**. 若正项数列 $\{a_n\}$ 满足 $a_1=2,a_{n+1}^2=4a_n^2+4a_n+1$,则数列 $\{a_n\}$ 的通项公式是_____.
- **14.** 数列 $\{a_n\}$ 满足 $a_1=1$, $a_n(2S_n-1)=2S_n^2$ ($n \ge 2$, $n \in N^*$), 则 $a_n=$ _____.
- **15**. 已知数列 $\{a_n\}$ 满足 $a_1=1$, $a_n=\frac{a_{n-1}}{2a_{n-1}+3}(n\geq 2)$, 则通项公式 $a_n=$ _____.
- **16.** 数列 $\{a_n\}$ 满足: $na_{n+2}+(n+1)a_n=(2n+1)a_{n+1}-1$, $a_1=1$, $a_2=6$, 令 $c_n=a_n\cos\frac{n\pi}{2}$, 数列 $\{c_n\}$ 的前 n 项和为 S_n , 则 $S_{4n}=$ _______.
- **17**. 设数列 $\{a_n\}$ 满足 $a_1=2$, $a_2=6$, $a_3=12$, 数列 $\{a_n\}$ 前 n 项和为 S_n , 且 $\frac{S_{n+2}-S_{n-1}+1}{S_{n+1}-S_n+1}=3$ ($n\in N^g$ 且