Variables

$$V = \{A,C,S,L,R,Z\}$$

Dominio

$$\mathbf{D} = \{1, 2, 3, 4, 5, 6\}$$

Restricciones

A = C
S
$$\in$$
 {2, 4, 6}
L \in {4, 5, 6}
A \neq R
Z \in {1, 2}
C > L
L \neq A, L \neq C, L \neq S, L \neq R, L \neq Z

Pregunta 1 (20 Puntos):

Pregunta 2 – Ajustar Dominios:

Estudiante	Equipos Permitidos
ALVIN (A)	[5, 6]
Carla (C)	[5, 6]
Sandy (S)	[2, 4, 6]
Lisa (L)	[4, 5]
Robin (R)	[1, 2, 3, 4, 5, 6]
Zoe (Z)	[1, 2]

Pregunta 3

Con el criterio MRV (Minimum Remaining Values), La idea principal es seleccionar primero la variable que tiene el menor número de valores permitidos restantes en su dominio.

Sandy (S) tiene 3 opciones: [2, 4, 6]
Lisa (L) tiene 2 opciones: [4, 5]
Carla (C) tiene 2 opciones: [5, 6]
Alvin (A) tiene 2 opciones: [5, 6]
Zoe (Z) tiene 2 opciones: [1, 2]

Robin (R) tiene 6 opciones: [1, 2, 3, 4, 5, 6]

L, C, A y Z tienen menos opciones en sus dominios (hay empate) y cualquiera de esas variables podrían ser tomadas para evaluar backtracking.

Para desempatarlos podríamos:

- Empezar por el estudiante que tiene más restricciones
- Elegir por orden alfanumérico

En este caso, Lisa (L) será el primer estudiante para considerar usando MRV, ya que tiene el dominio más restringido.

Pregunta 4

Variable	Dominio actualizado
A	{1, 4}
\mathbf{C}	$\{1,4\}$
S	{4}
${f L}$	Sin solución: conflicto de restricciones
R	{1, 2, 3, 4, 5, 6}
${f Z}$	{1, 2}

El conflicto ocurre con Lisa (L) porque:

- L debe estar en {4,5,6}
- C debe ser mayor que L, pero C solo tiene valores en $\{1,4\}$, lo que no permite cumplir la restricción C > L