Chemistry 3A

Introductory General Chemistry

This Slide Set: Book Chapter 4

- Matter: Properties and Changes Affecting It
- Compounds
- Molecules As Polyatomic Forms of The Elements
- Ionic Compounds
- Chemistry Nomenclature: Naming of Compounds

Matter: Properties and Changes Affecting It

Physical Property

a characteristic of a substance that can be observed or measured without changing the identity of the substance

Color	Electrical conductivity
Hardness	Density
Malleability (ability to be hammered)	Melting point
Solubility	Boiling point

Matter: Properties and Changes Affecting It

Chemical Property

potential to undergo some chemical change or reaction by virtue of its composition

- Metals like Zn (zinc) reacting with acid
- Forming oxides in reacting with oxygen
- This involves substance changing into another substance

Physical (State) Changes

States of matter are solid, liquid, gas Changes in the states of matters are:

- Vaporization Liquid to gas
- FreezingLiquid to solid
- CondensationGas to liquid

Chemical Changes

Figure 4.1.2.2: Burning of wax to generate water and carbon dioxide is a chemical reaction. (CC-SA-BY-3.0; Andrikkos)

Making Use of Physical Properties

Distillation

Separating/purifying compounds based on boiling point

Precipitation

Separating/purifying compounds based on solubility

Some stay in solution, Others come out of solution

Filtration

Separating compounds

Figure 4.1.2.3: The Distillation of a Solution of Table Salt in Water. The solution of salt in water is heated in the distilling flask until it boils. The resulting vapor is enriched in the more volatile component (water), which condenses to a liquid in the cold condenser and is then collected in the receiving flask.

Parts of a distillation setup: Bunsen burner, salt water in distilling flask, condenser with cool water in and warm water out, pure water in receiving flask

Making Use of Physical Properties

Solvent Extraction

Separating/purifying compounds based on preference ("partition") for organic vs aqueous solvents

Chromatography

Separating/purifying compounds based on same principle as solvent extraction but with flowing (mobile) vs non-flowing (stationary) phases

LAW of Conservation of Mass

- 1789 French chemist Lavoisier
- Matter cannot be created or destroyed
- Chemical reaction: mass of reactants and mass of products identical

https://www.youtube.com/watch?v=Wwmsy4huZQ0

u can often see or separate the parts

Mixtures

Homogeneous

- one in which the composition is uniform throughout. You can't see the individual components, and every sample taken from the mixture will have the same properties
- Appears as a single phase (solid, liquid, or gas)
- Evenly distributed particles
- Cannot distinguish components by eye

Heterogeneous

- has a non-uniform composition
- The different parts of the mixture are visibly distinct, and samples taken from different areas may have different properties
- Multiple phases may be present
- Components are not evenly distributed
- You can often see or separate the parts

Compounds

A **compound** is a substance that contains two or more elements chemically combined in a fixed proportion

- CH₄ (methane)
- One carbon atom
- Four hydrogen atoms
- Unlike mixtures, cannot be separated by physical means
- Can be "decomposed" by chemical changes $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$

Compounds: Chemical Formula

A chemical formula is a way of presenting information about the relative chemical proportions of atoms that constitute a particular compound or molecule

- H₂O
- H₂SO₄
- Ca₃(PO₄)₂

Compounds: Molecular Formula

A molecular formula is a chemical formula gives number of atoms of each of the elements present in one molecule of a specific compound

• It is composed of element symbols for the atoms and subscripts to indicate count of the atoms. If there is only one atom in the compound, a subscripted "1" is omitted

Compounds: Empirical Formula

An empirical formula is a chemical formula that shows the elements in a compound in their lowest whole-number ratio

Glucose has a molecular formula of $C_6H_{12}O_6$

But glucose has an empirical formula of CH₂O

Why? Because when chemists first start to analyze & characterize an unknown compound, they find glucose has 1 part carbon, 1 part oxygen, 2 parts hydrogen

NOTE THIS: in some cases the empirical formula and molecular formula are the same!!

Atomic Elements, Molecular Elements

- Elements that exist as their individual atoms in nature are called atomic elements
- Some elements do not exist in nature as individual atoms, but bonded with each other. These are molecular elements

Molecular elements can form often diatomic molecules or

polyatomic molecules

Figure 4.4.1: Molecular Art of S_8 and P_4 Molecules. If each green ball represents a sulfur atom, then the diagram on the left represents an S_8 molecule. The molecule on the right shows that one form of elemental phosphorus exists, as a four-atom molecule.

Formula Unit

- "The formula unit is the basic unit of ionic compounds"
- Also: "in chemistry, a formula unit is the smallest unit of a non-molecular substance, such as an ionic compound, covalent network solid, or metal
- Something that does form a discrete molecule, something not forming a molecular compound
- NaCl, CaF₂, ZnBr₂ are the three formula units of these ionic compounds

Ionic Compounds

Ionic compounds form when atoms BOND with each other based on one atom have a positive charge and the other having a negative charge

A sodium (Na) atom easily gives up the ONE electron (all for energetic stability) which is its ONE valence shell electron to a chlorine (Cl) atom which has SEVEN valence shell electrons and wants a more stable complete valence shell of EIGHT electrons. The electron transfer creates an IONIC bond and Na and Cl will form an ionic compound as a result

Ionic Compounds

Generally metal elements will form ionic compounds with nonmetal elements in the correct ratios

Metals will give up electrons and nonmetals as a rule to form these ionic compounds (with lots of exceptions to the rule)

Ionic Compounds

- Ionic compounds will dissolve in water to form individual ions that move about
- When they form crystal solids, they exist in a lattice with an ordered structure in the correct ratio of atoms of the formula unit in the solid state
- The ratio of atoms in the formula unit should have a zero net charge

Aluminum nitride

```
aluminum ion has 3+ charge: Al<sup>3+</sup> nitride ion has a 3- charge: N<sup>3-</sup>
```

One Al³⁺ combines with one N³⁻ \rightarrow Al₁N₁

Final formula: AIN (leave out 1s if in subscript)

Cations and Anions

- We talked about this is a previous lecture
- cations "move to" the cathode
- anions "move to" the anode
- Cations are positively charged ions

Anions are negatively charged ions

- Cathode is negatively charged pole
- Anode is positively charged pole

$$e^- + Cl \longrightarrow Cl^-$$

Stock System

Part of the naming system for compounds

Formula	Old naming	Stock System	Ion
CuCl	cuprous chloride	copper(I) chloride	Cu+
CuCl ₂	cupric chloride	copper(II) chloride	Cu ²⁺
FeCl ₂	ferrous chloride	iron(II) chloride	Fe ²⁺
FeCl ₃	ferric chloride	iron(III) chloride	Fe ³⁺

Criss-Cross Method

- If you are trying to figure out number of atoms in a formula unit or molecule where the cations and anions have different charge magnitudes, this method helps
- Formulas for ionic compounds regarded as empirical formulas: use lowest ratio

lead (IV) oxide

What is cation and anion?	Pb ⁴⁺ , O ²⁻
Exchange charge magnitudes to be subscripts on other atoms	Pb ₂ O ₄
Find "greatest common divisor" → 2	PbO ₂

Criss-Cross Method (more)

calcium oxide

What is cation and anion?	Ca ²⁺ , O ²⁻
Exchange charge magnitudes to be subscripts on other atoms	Ca ₂ O ₂
Find "greatest common divisor" → 2	CaO

copper(I) sulfide

What is cation and anion?	Cu+, S ²⁻
Exchange charge magnitudes to be subscripts on other atoms	Cu ₂ S ₁
Nothing to divide	Cu ₂ S

Polyatomic Ions

- In previous slides, we saw cations/anions as single elements
- Here the anion is polyatomic. The method still applies. Note how parentheses are placed around the polyatomic (an)ion to treat it as an ionic group

calcium nitrate

What is cation and anion?	Ca ²⁺ , NO ₃ ⁻
Exchange charge magnitudes to be subscripts on other atoms	Ca ₁ (NO ₃) ₂
Nothing to divide	Ca(NO ₃) ₂

Polyatomic Ions

potassium sulfate

What is cation and anion?	K+, SO ₄ ²⁻
Exchange charge magnitudes to be subscripts on other atoms	K ₂ (SO ₄) ₁
Nothing to divide	K ₂ SO ₄

- In the calcium nitrate, we have TWO nitrates, so we had to use parentheses in final formula to show the group and add the subscript 2
- If there is only 1 polyatomic ion group, we don't need parentheses

Predicting Cation or Anion

- Table group and number of electrons in valence shell are connected: Group 1 – 1 valence electron, Group 2 – 2 valence electrons, and so on
- This helps you predict whether an atom wants to get rid of acquire electrons!

1	1											18
Н⁺	2	Gi	oups 3-12 hav	ups 3-12 have variable charge, 13 14 15 16 17								
Li⁺	Be ²⁺		except those	e shown	below		B ³⁺		N ³⁻	O ²⁻	F ⁻	
Na⁺	Mg ²⁺						Al ³⁺		P ³⁻	S ²⁻	Cl	
K⁺	Ca ²⁺					Zn ²⁺	Ga³+		As ³⁻	Se ²⁻	Br ⁻	
Rb⁺	Sr ²⁺				Ag⁺	Cd ²⁺	In ³⁺			Te ²⁻	ľ	

Figure 4.5.1.3: Predicting Ionic Charges. The charge that an atom acquires when it becomes an ion is related to the structure of the periodic table. Within a group (family) of elements, atoms form ions of a certain charge.

Ionic or Not Ionic?

- Is the cation a metal and anion a nonmetal?
 - Likely ionic
- Are all the atoms in the molecule/compound nonmetallic elements?
 - Likely not ionic
- Is there a polyatomic group that you recognize as ionic?
 - Ammonium (NH₄+) cation
 - Nitrate (NO₃-) anion
 - This automatically makes this type of compound ionic

Ionic or Not Ionic?

Identify each compound as ionic or not ionic.

- a. N_2O
- b. FeCl₃
- c. $(NH_4)_3PO_4$
- d. SOCl₂

- A) nitrogen (N) and oxygen (O) atoms nonmetals: not ionic
 - B) iron (Fe) = metal, chlorine (Cl) = nonmetal: ionic
- C) ammonium (NH₄) = recognized polyatomic cation, phosphate = recognized polyatomic anion ionic
- D) S, O, and Cl are all non-metals, and no recognized polyatomic ions seen not ionic

Thionyl chloride (structure above) is used in organic chemistry to chlorinate compounds

Polyatomic vs Molecular Ion

Extra stuff: no need to memorize

- When atoms are bonded together, that looks like a molecule, right?
- But chemists have a certain terminology here when it comes to polyatomic vs molecular ions
- Methane (CH₄) is normally not an ionized molecule. But it can be if one uses high energy to knock an electron out. This is an unstable ion formation
- In polyatomic ions, these are ionized as part of a stable state, and they remained ionized

Naming Tips/Mnemonics

Mnemonic Tip for Naming

Think of it like a ladder of oxygen content:

- Hypo- = lowest
- -ite = low
- -ate = high
- Per- = highest

And for acids:

- -ous acid = from -ite
- -ic acid = from -ate

T43 Method

- T: B, C, N, Si
- 4: P, S, As, Se, Te
- 3: Cl, Br, I

Oxygens:

- 4: PO₄, SO₄, AsO₄, SeO₄, TeO₄
- 3: ClO₃, BrO₃, IO₃
- T: BO₃, CO₃, NO₃, SiO₃

Charged:

- 3 (-1): ClO_3^- , BrO_3^- , IO_3^-
- 4-> (-2): PO_4^{2-} , SO_4^{2-} , AsO_4^{2-} , SeO_4^{2-} , TeO_4^{2-}
- T: BO_3^{3-} , CO_3^{2-} , SiO_3^{2-} , NO_3^{1-} (start from N [1-], then C and Si [both 2-], then B [3-])

- Some history Lavoisier (1787) publishes "New Chemical Nomenclature"
- Now done by IUPAC International Union of Pure and Applied Chemists The Red Book
- https://iupac.org/what-we-do/books/redbook/

Ionic compounds

 Type I cations: charge does not vary directly use element name

```
Na<sup>+</sup> → "sodium"
```

Al³+ → "aluminum"

Binary ionic compounds

Combine Type I monoatomic cation name with monoatomic anion

Ionic compounds

Type II cations: charge of element will vary use the Stock system

Element	Charge	Name			
iron	2+	iron(II) ion			
11011	3+	iron(III) ion			
coppor	1+	copper(I) ion			
copper	2+	copper(II) ion			
tin	2+	tin(II) ion			
CIT	4+	tin(IV) ion			
lead	2+	lead(II) ion			
leau	4+	lead(IV) ion			
chromium	2+	chromium(II) ion			
Cironilani	3+	chromium(III) ion			
gold	1+	gold(I) ion			
gold	3+	gold(III) ion			

 Combine Type II cation name using Stock roman numerals with the anion name

Ionic compounds

Monoatomic Anions

Table 4.6.1.2: Some Monatomic Anions			
Ion	Name		
F ⁻	fluoride ion		
CI ⁻	chloride ion		
Br ⁻	bromide ion		
I-	iodide ion		
O ²⁻	oxide ion		
S ²⁻	sulfide ion		
b 3-	phosphide ion		
N ³⁻	nitride ion		

Combine polyatomic cation names with polyatomic anion names

Flowchart

- Zn = zinc, $Br = bromine \rightarrow bromide$
 - Zn has only one ion (Zn²⁺)
 - "zinc bromide"
- Al = aluminum, $O = oxygen \rightarrow oxide$
 - Al has only one ion (Al³⁺)
 - "aluminum oxide"
- $NH_4^+ = ammonium, PO_4 = phosphate$
 - Only one charge state for each
 - "ammonium phosphate" (not "triammonium phosphate")
- Au = gold, F = fluorine → fluoride
 - Gold has multiple charge states
 - "gold(III) fluoride"
- Ag = silver, F = fluorine → fluoride
 - Ag has only one ion (Ag+)
 - "silver fluoride"

- a. ZnBr₂
- b. Al₂O₃
- c. $(NH_4)_3PO_4$
- d. AuF₃
- e. AgF

Polyatomic Ions

- Ions not necessarily a charge on a single atom of an element
- They can be a group of atoms bonded together that form natural (stable) ions

Selected Common Polyatomic Ions					
Formula	Name	Formula	Name	Formula	Name
H ₃ O ⁺	hydronium	$\mathrm{NH_{4}^{+}}$	ammonium	Hg_2^{2+}	mercury(I)
OH-	hydroxide	CN-	cyanide	O ₂ ² -	peroxide
MnO ₄ -	permanganate	CrO ₄ ² -	chromate	Cr ₂ O ₇ ² -	dichromate
C ₂ O ₄ ² -	oxalate	C ₂ H ₃ O ₂ - or CH ₃ COO-		ace	tate

Polyatomic Ions

Oxy	yanions Ending in "	-ate"		
borate, BO ₃ 3-	carbonate, CO ₃ ² -	nitrate, NO3-		
	silicate, SiO ₃ ² -	phosphate, PO ₄ 3-	sulfate, SO ₄ ² -	chlorate, ClO3
		arsenate, AsO43-	selenate, SeO ₄ ² -	bromate, BrO3 ⁻
			tellurate, TeO42-	iodate, IO3-

Naming Oxyanions

Without the H+ (H+ makes an acid an acid)

Oxyanions (without H⁺)

The naming pattern depends on the number of oxygen atoms:

Oxygen Count	Prefix/Suffix	Example (CI-based)
1 fewer than -ite	hypoite	hypochlorite (CIO ⁻)
Base level	-ite	chlorite (ClO₂¯)
1 more than -ite	-ate	chlorate (CIO₃⁻)
1 more than -ate	perate	perchlorate (CIO ₄ ⁻)

Naming Rules for Oxyanions (keep charges the same as -ate):		Examples
per-	one more oxygen (than -ate)	perchlorate, ClO ₄ -
-ite	one less oxygen (than -ate)	chlorite, ClO2
hypo-	one less oxygen (than -ite)	hypochlorite, ClO
thio-	replace one oxygen with one sulfur	thiosulfate, S2O32-

Acid Naming

 We will learn more about acids later and the importance of the proton (the hydrogen atom without its electron) in making acids

Example: HCl_(aq)

Cl⁻, chloride ion

hydrochloric acid

Formula for naming acids: Hydro- and Base name of nonmetal and -ic + acid. Example: HCl is hydrochloric acid.

But learn the names NOW. Testing will be later

Acid Naming

We will come back to this in learning about acids and bases, and you being tested on this.

Naming Oxyacids

Oxyacids (with H⁺)

When hydrogen is added to form the acid, the name changes:

Oxyanion	Acid Name
hypochlorite (CIO ⁻)	hypochlorous acid
chlorite (ClO₂⁻)	chlorous acid
chlorate (ClO₃⁻)	chloric acid
perchlorate (CIO₄¯)	perchloric acid

The suffix **-ous** corresponds to **-ite**, and **-ic** corresponds to **-ate**.

Naming Rules for Adding Hydrogens to Oxyanion (the charges change):		Examples
0 H+	Normal anion name	phosphate, PO ₄ 3-
1 H ⁺	Add hydrogen as prefix (charge reduced by 1)	hydrogenphosphate, HPO ₄ ²⁻
2 H+	Add dihydrogen as prefix (charge reduced by 1)	dihydrogenphosphate, H ₂ PO ₄

Molecular Compound Naming

- Molecular compounds are inorganic compounds that take form of discrete molecules
 - The bonds are shared between atoms (not ionic)
 - Shared bonds are covalent bonds
 - In carbon dioxide, the bond between the central carbon and two oxygen atoms on either side are shared (no "ionic character")

Figure 4.6.2.1: Carbon dioxide molecules consist of a central carbon atom bonded to 2 oxygen atoms.

Molecular Compound Naming

- Binary Molecular Compounds
- 1st element: name of element
- 2nd element: stem of element name + -ide
- Prefixes: apply numerical prefixes to both elements

Table 4.6.2.1: Numerical Prefixes for Naming Binary Covalent Compounds		
Number of Atoms in Compound	Prefix on the Name of the Element	
1	mono-*	
2	di-	
3	tri-	
4	tetra-	
5	penta-	
6	hexa-	
7	hepta-	
8	octa-	
9	nona-	
10	deca-	
*May be omitted for the first element's name		

Molecular Compound Naming

Common Name Compounds

A systematic name not really used

H₂O: water

NH₃: ammonia

CH₄: methane

H₂O₂: hydrogen peroxide

Tying It Together

