Exponential & Logarithmic Functions

Logarithmic Properties	Exponential Rules
Product: In(ab) = In(a)+In(b)	Product: $a^n \cdot a^m = a^{n+m}$
Quotient: $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$	Quotient: an = an-m
Power: $ln(a^n) = n \cdot ln(a)$	Power: $a^n \cdot b^n = (ab)^n$
In of 1: In(1)=0	$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$
In of e: In(e)=1	e to In: eln(x) = X
others: In(ex) = x-In(e) = x	
$\ln(ax^b) = \ln(a) + b \cdot \ln(x)$	
Derivatives	Anti-derivative
Exponential: dx (bx) = bx. In(b)	Exponential: Sbxdx=In(b):bx+c
$\frac{d}{dx}(e^x) = e^x \cdot \ln(e) = e^x$	Sexdx=ex +c
Logarithmic dx (logb(x))= xln(b)	Logarithmic: SxIn(b) dx = logb X +c
$\frac{d}{dx}(\ln(x)) = \frac{1}{x \ln(e)} = \frac{1}{x}$	S = dx = Inlx1+C
(Re-) Defining natural log:	

1. Consider the area function $f(x) = \int_1^x \frac{1}{t} dt$ for x > 0. We call f(x) the logarithm function and denote it by $f(x) = \ln x$.

a.
$$f'(x) = \frac{d}{dx}[\ln x] = \frac{d}{dx} \left[\int_1^x \frac{1}{t} dt \right] \stackrel{?}{=} \frac{1}{X}$$
 $(x > 0)$

b.
$$\frac{d}{dx}[\ln|x|] \stackrel{?}{=} \underline{\qquad} (x \neq 0)$$

c. What can you say about ln(1)? Define the value of e using the definition of the natural logarithm.

$$\ln(1) = f(1) = \int_{1}^{1} \frac{1}{t} dt = 0$$
 Define e to be the number such that $\ln(e) = 1$.

d. Using the Fundamental Theorem of Calculus, show that $\ln(ax) = \ln(a) + \ln(x)$. Prove further that (ii) $\ln(e^n) = n$ where n is an integer and (iii) $\ln(e^r) = r$ where r us any rational number.

i. Inlo	x)=	J.	+ a	lt								ii.	$\frac{\mathbf{d}}{\mathbf{d}\mathbf{x}}$	lIn	(x))=	Xn.	n-;	√n-1:	ņ					
i. In(o	=	Sa t	dt	+ 5	ax I	dt							d dx	ln·I	nlx)) =	n·:	<u> </u> =	nx						
	=	5° ±	dt t	- Ja	x a	dt	u=	410	=>	1 2 d	1														
	3	Sa t	1t +	J.×	u d		du:						∫X	dx	= r	ո(x՛	1)+	c,							
					x)		a'=	<u>9</u> =	1				∫¤	dx	= n	·In	(x) t	C ₂	-ca	ın't	reu	se	С		
							b'=	ox a	= X																
													ln(xn)+c	,= Y	1 · lr	(x)	+ C						
iii. Inle	er)	= r	·In	le)									m	x ⁿ)	= r	ı · lr	(x)	t lc	2-C1)	4	— c	2-C	is	just	٠ (
		= 7	1												=n	·In	(x)	tc				con	sta	nt	
		= ~																							
													m	1")	= n	·In	(1)	+C							
														0	= n	0 1	C								
														0	= C										
													Inl	Xn.) = Y	n - Iv	าไม่)+(3						

Example A. Find the area under the graph of $y = \frac{-2}{4x-3}$ for $0 \le x \le 1/2$.

Are	a ı	mc	ler	fur	ncti	ion	f	x)	fro	m	Q	k≤b	is	eq	ual	to	Ja Ja	f	x)o	x				
J.//2	-: 4x	<u>2</u> -3	dx										In	ge	ner	al,	Sa	<u>1</u> X+	5 d	(
	u= L	łx-	3		a'=	410)-3	<u>-</u> -3									u=	ax	tb					
	du=	40	1x		b'=	4(4	z)-,	3									du	= 0	dx					
	12 d	u = 2	2dx		=	2-3	3=-	1									à	du:	∍dx					
C-1	-1																C 1	L 1						
J-3	ū.	Ž (lu																idu					
= - 1																	ā	1	<u>L</u> du					
=-	<u>[[n</u>	-11	- Inl	-31]													= 0	h	<u>ılul</u>	tC				
			-In														= 0	ī ly	nlax	tbl	tC			
= -	2[0	- 1	n(3)]																				
= 1/2																								
Ī																								
																				-				

- **e.** Give a sketch of the graph of $y = \ln x$. State clearly the domain and range of $\ln x$. What are the values of $\lim_{x\to 0^+} \ln x$ and $\lim_{x\to \infty} \ln x$?
- **f.** The inverse g(x) of $f(x) = \ln x$ exists. Why? Sketch the graph of $g(x) = \exp(x)$. Infer from (d) that we may write $\exp(x) = e^x$ for all real value x.

h. Using the fact that $\frac{d}{dx}(e^x) = e^x$, the chain rule and the fact that $e^{\ln b} = b$ (b > 0), show that $\frac{d}{dx}(b^x) = b^x \ln b$.

$$\frac{d}{dx}(b^{x}) = \frac{d}{dx}(e^{\ln(b^{x})}) = \frac{d}{dx}(e^{x \ln(b)}) = e^{x \cdot \ln(b)} \cdot \ln(b)$$

i. Using the change of base formula $\log_b x = \frac{\ln x}{\ln b}$, show that $\frac{d}{dx}(\log_b x) = \frac{1}{x \ln b}$.

$$\frac{d}{dx}(\log_b x) = \frac{d}{dx}(\frac{\ln(x)}{\ln(b)}) = \frac{d}{dx}(\frac{1}{\ln(b)} \cdot \ln(x)) = \frac{1}{\ln(b)} \cdot \frac{1}{x} = \frac{1}{x \ln(b)}$$

Example B. Find the equation of the tangent line to the curve $y = 4 - 2e^x + \ln\left(\frac{1 - x^2}{1 + x^2}\right)$ at x = 0.

Exit Ticket Derivative and Integral Review

Fill in the derivatives and integrals:

1.
$$\frac{d}{dx}[k] = 0$$

3.
$$\frac{d}{dx}[kx^n] = \mathbf{K} \cdot \mathbf{n} \cdot \mathbf{X}^{\mathbf{n-1}}$$

5.
$$\frac{d}{dx}[\ln(x)] = \frac{1}{x}$$

7.
$$\frac{d}{dx} [\log_a(x)] = \frac{1}{\mathbf{x} \cdot \ln(\mathbf{a})}$$

9.
$$\frac{d}{dx}[e^x] = e^x$$

$$\mathbf{11.} \frac{d}{dx} \left[a^x \right] = \mathbf{a}^{\mathbf{X}} \cdot \mathbf{h}(\mathbf{a})$$

$$\mathbf{13.} \frac{d}{dx} \left[\sin(x) \right] = \mathbf{cos(x)}$$

$$\mathbf{15.} \frac{d}{dx} \left[\cos(x) \right] = -\sin(x)$$

$$17.\frac{d}{dx}\left[\tan(x)\right] = \sec^2(x)$$

19.
$$\frac{d}{dx}[\sec(x)] = \sec(x)\tan(x)$$

2.
$$\int kdx = \mathbf{K} \mathbf{x} + \mathbf{C}$$

4.
$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c$$

6.
$$\int \frac{1}{x} dx = |\mathbf{n}| \mathbf{x} | + \mathbf{c}$$

8.
$$\int \frac{1}{x \cdot \ln(a)} dx = \log_a(x) + C$$

$$10. \int e^x dx = \mathbf{e}^{\mathbf{X}} + \mathbf{C}$$

12.
$$\int a^x dx = \frac{1}{\ln(\Delta)} \ \Delta^X \ + C$$

14.
$$\int \cos(x)dx = \sin(x) + C$$

16.
$$\int \sin(x)dx = -\cos(x) + C$$

18.
$$\int \sec^2(x) dx = \tan(x) + C$$

20.
$$\int \sec(x) \tan(x) dx = \sec(x) + \cos(x) +$$

Use the rules above to find the integrals below and check your answer:

1.
$$\int \cot(x)\sin(x)dx$$

$$= \int \frac{\cos(x)}{\sin(x)} \cdot \sin(x) dx$$

$$=\int \cos(x)dx$$

$$= \sin(x) + C$$

3.
$$\int \frac{2u^2 - 5u + \sqrt[3]{u}}{u^2} du$$

$$= \int \frac{2u^2}{u^2} - \frac{5u}{u^2} + \frac{u^{1/3}}{u^2} du$$

$$=\int 2-5\frac{1}{4}+u^{-5/3}du$$

$$=2u-5\ln|u|-\frac{3}{2}u^{-2/3}+c$$

2.
$$\int \frac{1 + \cos^2(\theta)}{\cos^2(\theta)} d\theta$$

$$= \left(\frac{1}{\cos^2(\Theta)} + \frac{\cos^2(\Theta)}{\cos^2(\Theta)}\right) d\Theta$$

$$= \int \sec^2(\theta) + 1 d\theta$$

4.
$$\int 6x(x^2+1)^2 dx$$

$$= 3u^2 du$$

$$=(x^2+1)^3+6$$