Calina - Prova Técnica

Daniel David de Oliveira

25 de Dezembro de 2020

CASE

Em uma agência de *Marketing Digital* uma das épocas mais importante para o ramo de *ecommerce* é a "*Black Friday*", período sazonal em que muitos dos clientes se planejam com promoções e ações através das mídias pagas para chamar a atenção dos usuários. Pensando nessa data muito especial , um cliente da Calina solicitou uma análise para prevermos qual será a receita da *Black Friday* de 2020.

O banco de dados enviado contém dados de 3 mídias em que o cliente investe (Mídia A, B e C) e o total da receita gerada no site por semana, desde a primeira semana de 2018 até a última semana de outubro de 2020.

Para responder ao cliente análise o banco de dados, crie um modelo teste e um modelo final que deve prever as próximas 4 semanas, respectivas ao mês de novembro de 2020 (a última semana é a semana da *Black Friday*).

Resposta: Para a solução do problema, focarei na variável Total da receita gerada por semana, chamando-a de Receita Total ou Receita e usarei linguagem de cunho técnica/acadêmica para expor meus raciocínios.

Lendo o Banco de dados:

Criando Séries usando o banco de dados

Análise Descritiva Simples das Séries

Plot das Séries Temporais das Receitas A, B e C lado a lado

Receitas das Séries lado a lado

Mostra-se preditores adicionais possívelmente úteis. Importantes para previsão da Receita Total na qual o cliente irá investir nas mídias semanalmente.

Construindo um modelo de regressão linear múltipla pode-se gerar previsões mais precisas utilizando as variáveis de receita das mídias A, B e C. Espera-se que uma, duas ou todas sejam dependentes da variável Receita Total.

Correlação entre as variáveis de Receita e seus gráficos de dispersão

```
ts %>%
as.data.frame() %>%
ggpairs()
```


A última linha mostra a relação entre a variável de previsão e cada um dos preditores (Receitas A, B e C). Os gráficos de dispersão mostram relações positivas entre as variáveis Receita e Mídia A, e Receita e Mídia B. A força dessas correlações são mostradas pela correlação dos coeficientes através da última coluna.

Verificando o Comportamento da Série Temporal (ST) Receita

Série Temporal da Variável Receita Total

Perecebe-se alguns picos nos últimos trimestres dos anos de 2018 e 2019. Podemos ver com mais clareza o comportamento da Série temporal Receita Total separada por Ano

Receita Total Separada por ano

De fato, percebemos um pico de investimento na semana 47 do ano de 2018, outro na semana 48 em 2019, correspondentes aos dias 19/11/2018 e 25/11/2020, datas próximas a *Black Friday* (BF) de cada ano, esse fato pode ser de suma importância futuramente, visto que nossa última semana de previsão terá o evento BF.

Comentário: No eixo x o número das semanas estão sobrepostos, no código R podemos ver um pouco mais com clareza qual semana é qual.

Decomposição da ST Receita Total

```
#Decomposição
R.ts %>% decompose(type="multiplicative") %>%
  autoplot() + xlab("Ano") +
  ggtitle("Decomposição da Variável Receita Total")
```

Decomposição da Variável Receita Total

O primeiro gráfico nos mostra o comportamento da Série Temporal da variável Receita. O segundo, mostra-nos a tendencia que a séria possui. O terceiro mostra a sazonalidade e percebemos que no último trimestre há um pico na Receita Total, creio que seja altos investimentos na semana da *Black Friday*.

Escolha do Modelo

Munido dos gráficos de correlação e decomposição, podemos supor alguns modelos.

Das correlações, imagina-se dois modelos:

A primeira suposição, um modelo de Regressão linear com todas as mídias:

A Segunda retirando do modelo o investimento da mídia B:

```
#Não contando com a mídia B

#Receita ~ A + C

fit2 <- tslm(Receita ~ A + C, data = ts)
```

Terceira ajustando o modelo contando com a sazonalidade e tendência da série temporal. Pode ser um ótimo modelo pela sazonalidade, por outro lado, a tedência pode nos atrapalhar nas previsões das próximas semanas. Apoiando-me no gráfico de Trend mostrado no *plot* de Decomposição:

Por fim o modelo usando somente a sazonalidade:

##

0.1099079

Iremos calcular a estatística de validação cruzada e verificar qual terá o BIC maior.

```
CV(fit)
##
                     CV
                                          AIC
                                                               AICc
                                                                                     BIC
## 13882909433.7199230
                                3454.6748382
                                                      3455.0973734
                                                                            3469.6608995
##
                  AdjR2
##
              0.4502268
CV(fit2)
##
                     CV
                                          AIC
                                                               AICc
                                                                                     BIC
## 13808837242.2737045
                                3452.6771602
                                                      3452.9568805
                                                                            3464.6660093
##
                  AdjR2
##
              0.4540098
CV(fit3)
                    CV
##
                                        AIC
                                                           AICc
                                                                                 BIC
                               3519.774890
                                                    3583.645858
## 28219113293.228031
                                                                        3681.624353
                 AdjR2
##
##
              0.332763
CV(fit4)
##
                     CV
                                          AIC
                                                               AICc
                                                                                     BIC
## 35824767315.8067093
                                3561.9752317
                                                      3622.8688487
                                                                            3720.8274822
##
                  AdjR2
```

Seguimos em frente com o modelo 'fit4' por possuir o maior BIC, e atento ao enunciado, faz sentido que o modelo adote sazonalidade.

Modelo de Teste

A principal pergunta do modelo é: "Quanto o modelo erra em suas previsões?"

A lógica do Modelo de Teste é: Terá 4 etapas, onde teremos 4 modelos de treinos, onde o primeiro contará com as semanas de 1 a 147 e vamos prever a semana 148, comparar os valores da semana prevista com a semana de dado bruto usando a função MAPE() - Perda média de regressão de erro percentual absoluto.

O segundo modelo contará com as semanas de 1 a 146, vamos prever as semanas 147 e 148, comparar os valores das semanas previstas com as semanas com os dados brutos correspondentes usando a função MAPE().

Seguimos essa lógica ate o quarto e último modelo de treino comparando as semanas 145 a 148 e calcularemos seus MAPEs.

O erro percentual absoluto médio (MAPE) é uma medida estatística de quão preciso é um sistema de previsão. Ele mede essa precisão como uma porcentagem, e pode ser calculado como o erro percentual absoluto médio para cada período de tempo menos valores reais divididos por valores reais.

Etapa 1 - Prevendo a semana 148 e comparando com o valor real do banco de dados

```
#Prevendo a Última Semana
ts.train <-ts(dados[1:147,],
              start=c(2018,1,1),
              frequency = 52)
train <- tslm(Receita ~ season,
              data = ts.train)
forecast(train, h=1)
##
            Point Forecast
                              Lo 80
                                        Hi 80
                                                 Lo 95
                                                          Hi 95
## 2020.827
                  526964.7 294837.8 759091.6 169877.7 884051.7
e1 = MAPE(526964.7, 531238.9) # Semana 4 - 26/10/2020
```

Etapa 2 - Prevendo as semanas 147 e 148 e comparando com o valores reais do banco de dados

```
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 2020.808 526478.3 293104.6 759852.0 167450.8 885505.8
## 2020.827 526964.7 293591.0 760338.4 167937.2 885992.2
```

```
e2 = MAPE(526478.3, 519165.6) #Semana 3 -19/10/2020
e3 = MAPE(526964.7, 531238.9) #Semana 4 - 26/10/2020
```

Etapa 3 - Prevendo as semanas 146 a 148 e comparando com os valores reais do banco de dados

```
#Prevendo as 3 últimas Semanas
ts.train < -ts(dados[1:145,],
              start=c(2018,1,1),
              frequency = 52)
train <- tslm(Receita ~ season,
              data = ts.train)
forecast(train, h=3)
            Point Forecast
                              Lo 80
                                       Hi 80
                                                Lo 95
##
                                                         Hi 95
## 2020.788
                 542231.8 307614.1 776849.5 181267.5 903196.1
## 2020.808
                 526478.3 291860.6 761096.0 165514.0 887442.6
                 526964.7 292347.0 761582.4 166000.4 887929.0
## 2020.827
e4 = MAPE(542231.8, 516503.7) #Semana 2 - 12/10/2020
e5 = MAPE(526478.3, 519165.6) #Semana 3 - 19/10/2020
e6 = MAPE(526964.7, 531238.9) #Semana 4 - 26/10/2020
```

Etapa 4 - Prevendo as semanas 145 a 148 e comparando com os valores reais do banco de dados

```
#Prevendo as 4 últimas Semanas
ts.train <-ts(dados[1:144,],
              start=c(2018,1,1),
              frequency = 52)
train <- tslm(Receita ~ season,
              data = ts.train)
forecast(train, h=4)
##
            Point Forecast
                              Lo 80
                                       Hi 80
                                                Lo 95
                                                         Hi 95
                  479803.6 243947.9 715659.4 116910.8 842696.5
## 2020.769
## 2020.788
                  542231.8 306376.1 778087.5 179338.9 905124.7
## 2020.808
                 526478.3 290622.6 762334.0 163585.4 889371.2
## 2020.827
                  526964.7 291109.0 762820.4 164071.8 889857.6
e7 = MAPE(479803.6 , 443026.8) #Semana 1 - 05/10/2020
e8 = MAPE(542231.8, 516503.7) #Semana 2 - 12/10/2020
```

```
e9 = MAPE(526478.3, 519165.6) #Semana 3 - 19/10/2020
e10 = MAPE(526964.7, 531238.9) #Semana 4 - 26/10/2020
```

E por fim, quanto o modelo erra, em média, nas suas previsões?

```
mape <- c(e1,e2,e3,e4,e5,e6,e7,e8,e9,e10)

#Erro médio das minhas previsões é de 2.6%

mean(mape)
```

```
## [1] 0.0257076
```

O modelo erra em média 2.6% em suas previsões.

Modelo Final

Vamos ver, graficamente, a previsão do modelo para as 4 próximas semanas

Regressão do Modelo

Verificando o valor que está plotado no gráfico acima

fcst.R

##		Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
##	2020.846	530440.6	299542.0	761339.2	175265.0	885616.2
##	2020.865	518608.5	287709.9	749507.1	163432.9	873784.1
##	2020.885	943263.7	712365.1	1174162.3	588088.1	1298439.3
##	2020.904	1008080.4	777181.8	1238979.0	652904.8	1363256.0

Só temos um problema com a sazonalidade, pois a série ta prevendo dois dias de alto investimento de mídia correspondentes as duas últimas semanas do mês de novembro, e sabemos que o cliente fará alto investimento na semana da *Black Friday*.

Desejo continuar com o modelo fit4, mas precisamos fazer algum ajuste.

Há duas possibilidades, a primeira fazer uma variável dummy indicando quais dias são Black Friday - alternativa sofisticada - podendo criar dummy para cada tipo de feriado, como Natal, Páscoa, Dia das Mães.

E outra, apoiando-me no gráfico de Receita Total Separada por Ano, trocar os valores de investimento da semana 47 com a semana 48 do ano de 2018 - visto que para responder nosso Case é uma alternativa viável.

Usarei a segunda opção pois é a ferramenta que estou mais confortável de aplicar. Com isso, o nosso modelo ajustado de Teste manterá o erro médio próximo de 2.6% para cada previsão.

Modelo Final Ajustado

Perceba que agora possuímos picos de investimento nas semanas 48 dos anos 2018 e 2019.

Receita Total Separada por ano

Vamos ver graficamente a previsão do modelo para as 4 próximas semanas

```
autoplot(fcst.R, xlab="Ano",
    ylab="Receita Total(R$)",
    main="Regressão do Modelo")
```

Regressão do Modelo

Verificando o valor que está plotado no gráfico acima

fcst.R

##		Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
##	2020.846	530440.6	317217.8	743663.3	202454.5	858426.6
##	2020.865	518608.5	305385.8	731831.3	190622.5	846594.6
##	2020.885	699125.4	485902.6	912348.1	371139.3	1027111.4
##	2020.904	1252218.8	1038996.0	1465441.5	924232.7	1580204.8

#plot(fcst.R)

Com isso conseguimos prever os investimentos semanal da Receita Total do cliente referente ao mês de novembro de 2020.

Na semana 1 referente ao dia 02/11/2020 teremos o investimento médio de R\$ 530 440,60.

Na semana 2 referente ao dia 09/11/2020 teremos o investimento médio de R\$ 518 608,50.

Na semana 3 referente ao dia 16/11/2020 teremos o investimento médio de R\$ 699 125,40.

Na **semana 4** referente ao dia 23/11/2020 - na semana da *Black Friday* - teremos o investimento médio de R\$ 1 252 218,80.

Para o Cliente essa seria a minha resposta final, e apontaria gráficos semelhantes a Receita Total Separada por Ano para mostrar de onde tirei essas estimativas

Adendo

Houve a tentativa de utilizar uma variável dummy indicando os dias das Black Friday. Creio que não é viável fazer o método acima frequentemente. (E.g. o cliente investe fortemente na Black Friday, Natal e Dia dos Pais, o ajuste que fiz anteriormente não é sofisticado. O caminho certo é fazer variáveis dummys para cada feriado).

Acho válido expôr minhas tentativas com a variável *dummy* para que, futuramente, podemos discutir caminhos viáveis e comentar possíveis equívocos.

Variável Black Friday - BF

Crio mais um data.frame e adiciono a variável BF com colunas de 0 (zeros) e depois indico quais semanas ocorreram o investimento do cliente com o valor 1 - já indico que esses valores são categóricos.

```
dados2<- dados
dados2["BF"] <- rep('0', 148)
dados2[47,5] <- '1'
dados2[100,5]<- '1'</pre>
```

Adicionando as 4 semanas seguintes, o foco é tentar usar a variável BF de alguma forma e dizer pro modelo de predição que a última semana de Novembro de 2020 é *Black Friday*.

```
linha <- data.frame(A=c(0, 0, 0, 0),
B=c(0, 0, 0, 0),
C=c(0, 0, 0, 0),
Receita=c(0, 0, 0, 0),
BF=c('0','0','0','1'))

dados2 <- rbind(dados2, linha)</pre>
```

Série Temporal com as variável Receita e BF

Nesse passo paira a seguinte pergunta: "Como que digo pro modelo que a previsão da Quarta semana é a Semana do *Black Friday*?" Usando o código abaixo digo que quero usar os dados das semanas 1 a 148. Mas como digo para manter as informações da variável BF?

Como em dados2 temos 152 semanas, digo para ir ate a semana 148, sendo a semana 44 de 2020. É por aqui que meu racicíciono para, pois eu quero usar a informação da variável BF de algum jeito e não vejo como.

```
#janela de dados da semana 1 a semana 148
ts.w <- window(ts, end = c(2020,44))</pre>
```

Quero ver o comportamento das previsões somente com a variável Receita e BF

```
#Vamos ver o comportamento da ST para as 4 semanas
fcst<-forecast(ts.w, h=4)
fcst
## Receita
##
            Point Forecast
                               Lo 80
                                         Hi 80
                                                  Lo 95
                                                             Hi 95
## 2020.846
                  570941.8 448815.7
                                      693068.0 384166.0
                                                          757717.7
## 2020.865
                  557225.8 430745.4
                                      683706.2 363790.8
                                                         750660.9
## 2020.885
                  976735.7 846038.2 1107433.2 776851.1 1176620.3
## 2020.904
                 1043335.4 908545.0 1178125.8 837191.3 1249479.5
##
## BF
##
            Point Forecast
                                Lo 80
                                         Hi 80
                                                  Lo 95
                  1.000010 0.8946808 1.105339 0.838923 1.161097
## 2020.846
                  1.000010 0.8946808 1.105339 0.838923 1.161097
## 2020.865
## 2020.885
                  1.496529 1.3911996 1.601858 1.335442 1.657616
## 2020.904
                  1.503488 1.3981592 1.608817 1.342401 1.664575
```

E depois visualisar o comportamento em fit4

```
#Usando o Modelo fit 4
fit4 <- tslm(Receita ~ season, data = ts.w)
CV(fit4)
##
                     CV
                                         AIC
                                                             AICc
                                                                                    BIC
                               3561.9752317
                                                     3622.8688487
                                                                          3720.8274822
## 35824767315.8067093
##
                  AdjR2
##
             0.1099079
fcst<-forecast(fit4, h=4)</pre>
fcst
            Point Forecast
                                                              Hi 95
##
                               Lo 80
                                          Hi 80
                                                    Lo 95
## 2020.846
                   530440.6 299542.0
                                       761339.2 175265.0
                                                           885616.2
## 2020.865
                   518608.5 287709.9
                                       749507.1 163432.9
                                                           873784.1
                   943263.7 712365.1 1174162.3 588088.1 1298439.3
## 2020.885
## 2020.904
                  1008080.4 777181.8 1238979.0 652904.8 1363256.0
```

Perceba que o problema com a sazonalidade parecida com o Modelo Final "Normal" - para os dois últimos modelos - permanece, ou seja, a série ta prevendo dois dias de alto investimento de mídia correspondentes as duas últimas semanas do mês de novembro. E esse quadro não é o ideal.