Robotics [IIT-Jodhpur]

Practical 3: Forward kinematics of *n* Link Robot

Write a program for forward kinematics of an *n*-link serial robotic system. Sketch the robot configuration.

Note:

a) Input to the program would be

DH parameters and a_{nE}^n b) Output of the program would be

$$\boldsymbol{T}_n^0$$
 (\boldsymbol{R}_n^0 , \boldsymbol{o}_n^0) and \boldsymbol{p}_E^0

Hint:

$$\boldsymbol{T}_{i}^{i-1} = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & a_{i-1} \\ s_{\theta_{i}}c_{\alpha_{i-1}} & c_{\theta_{i}}c_{\alpha_{i-1}} & -s_{\alpha_{i-1}} & -d_{i}s_{\alpha_{i-1}} \\ s_{\theta_{i}}s_{\alpha_{i-1}} & c_{\theta_{i}}s_{\alpha_{i-1}} & c_{\alpha_{i}} & d_{i}c_{\alpha_{i-1}} \end{bmatrix} \text{ and } \begin{bmatrix} \boldsymbol{p}_{E}^{0} \\ 1 \end{bmatrix} = \boldsymbol{T}_{n}^{0} \begin{bmatrix} \boldsymbol{a}_{nE}^{n} \\ 1 \end{bmatrix}$$

c) Generate results for 2-link robot shown below. Note: a_1 = a_2 =1 m and DH parameters are given below:

link	α_i	a_i	d_i	θ_i
1	0	0	0	θ_1
2	0	a_1	0	θ_2

Using the above code solve forward kinematics of the robot shown in Fig. 1, for the given configuration. Find end effector position p_E^0 and orientation R_n^0 . Sketch configuration of the robot. Note: a_2 = d_2 =0.5 m; d_4 = d_6 =1 m

link	α_{i-1}	a_{i-1}	d_i	θ_{i}
1	0	0	0	$\theta_1(0)$
2	90	0	- d ₂	$\theta_2(90)$
3	0	a_2	0	$\theta_{3}(-90)$
4	-90	0	d_4	$\theta_4(0)$
5	90	0	0	$\theta_5(0)$
6	- 90	0	0	$\theta_6(0)$

$$T_6^0 = \begin{bmatrix} R_6^0 & o_6^0 \\ o^T & 1 \end{bmatrix} = T_1^0 T_2^1 T_3^2 T_4^3 T_5^4 T_6^5$$

$$\begin{bmatrix} \boldsymbol{p}_E^0 \\ 1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{R}_6^0 & \boldsymbol{o}_6^0 \\ \boldsymbol{o}^T & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{a}_{6E}^6 \\ 1 \end{bmatrix}$$

Additional Task (Not to be graded)

m Find ZYZ Euler angles corresponding to orientation (\mathbb{R}_n^0) of the end effector.

If
$$\mathbf{R}_n^0 = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$r_{33} \neq \pm 1 \qquad c\theta = r_{33}, \quad s\theta = \pm \sqrt{1 - r_{33}^2}$$

$$\theta = atan2 \left(\pm \sqrt{1 - r_{33}^2}, r_{33} \right)$$

$$s\theta > 0 \qquad \phi = atan2(r_{23}, r_{13})$$

$$\psi = atan2(r_{32}, -r_{31})$$

$$s\theta < 0 \qquad \phi = atan2(-r_{23}, -r_{13})$$

$$\psi = atan2(-r_{23}, r_{31})$$