INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

7 - ESTRUTURAS ALGÉBRICAS

- 7.1) Operações Binárias
- 7.2) Semigrupos
- 7.3) Produtos e Quocientes de Semigrupos
- 7.4) Grupos
- 7.5) Produtos e Quocientes de Grupos

PRODUTOS E QUOCIENTES DE SEMIGRUPOS

Modos de obter novos semigrupos a partir de outros existentes.

- **▶ Teorema:** Se (S,*) e (T,*') são semigrupos, então:
 - \bullet ($S \times T$, *") é um semigrupo
 - com *" dado por: (s_1, t_1) *" $(s_2, t_2) = (s_1 * s_2, t_1 *' t_2)$
- Prova: ??

PRODUTOS E QUOCIENTES DE SEMIGRUPOS

Modos de obter novos semigrupos a partir de outros existentes.

- **▶ Teorema:** Se (S,*) e (T,*') são semigrupos, então:
 - $(S \times T, *'')$ é um semigrupo
 - com *" dado por: (s_1, t_1) *" $(s_2, t_2) = (s_1 * s_2, t_1 *' t_2)$
- Prova: ??

- **© Corolário:** se S e T são monóides com identidades e_S e e_T :
 - $S \times T$ é um monóide com identidade (e_S, e_T)

- Como um semigrupo não é simplesmente um conjunto:
 - certas relações de equivalência sobre um semigrupo ajudam a conhecer a sua estrutura.

- Como um semigrupo não é simplesmente um conjunto:
 - certas relações de equivalência sobre um semigrupo ajudam a conhecer a sua estrutura.

• Uma relação de equivalência R sobre um semigrupo (S,*) é chamada de Relação de congruência se:

$$a R a' \quad e \quad b R b' \quad \Longrightarrow \quad (a * b) R (a' * b')$$

- **Exemplo 1/3 (1/2):** Seja o semigrupo $(\mathbb{Z}, +)$,
 - ullet e seja a relação de equivalência R sobre \mathbb{Z} :
 - $m{m{\wp}} \quad a \; R \; b \quad ext{ se e somente se} \quad {m{2}} \quad ext{divide} \quad a b$
 - ou: $a \equiv b \pmod{2}$

- **Exemplo 1/3 (1/2)**: Seja o semigrupo $(\mathbb{Z}, +)$,
 - ullet e seja a relação de equivalência R sobre \mathbb{Z} :
 - $a\ R\ b$ se e somente se 2 divide a-b ou: $a\equiv b\ (mod\ 2)$
 - sejam: $a \equiv b \pmod{2}$ e $c \equiv d \pmod{2}$
 - $m{ ilde p}$ então 2 divide tanto a-b como c-d, de modo que:

$$a-b=2m$$
 e $c-d=2n$

- **Exemplo 1/3 (1/2):** Seja o semigrupo $(\mathbb{Z}, +)$,
 - ullet e seja a relação de equivalência $oldsymbol{R}$ sobre \mathbb{Z} :
 - $a\ R\ b$ se e somente se 2 divide a-b ou: $a\equiv b\ (mod\ 2)$
 - sejam: $a \equiv b \pmod{2}$ e $c \equiv d \pmod{2}$
 - ullet então 2 divide tanto a-b como c-d, de modo que:

$$a-b=2m$$
 e $c-d=2n$

$$\Rightarrow (a-b) + (c-d) = 2m + 2n$$

$$\Rightarrow (a+c) - (b+d) = 2(m+n)$$

$$\Rightarrow a + c \equiv b + d \pmod{2}$$

logo: R é uma relação de congruência.

- **Exemplo 2/3 (1/2):** Seja $A = \{0, 1\}$,
 - ullet considere o semigrupo livre (A^*, \cdot) gerado por A
 - e seja a seguinte relação sobre A*:
 - $\alpha R \beta$ sse α e β possuem o mesmo nro de 1s

- **Exemplo 2/3 (1/2):** Seja $A = \{0, 1\}$,
 - ullet considere o semigrupo livre $(A^*\,,\,\,\cdot\,\,)$ gerado por A
 - e seja a seguinte relação sobre A*:
 - $m{\omega}$ α R β sse α e β possuem o mesmo nro de 1s
 - R é uma relação de equivalência:
 - 1. $\alpha R \alpha$, $\forall \alpha \in A^*$
 - 2. se $\alpha R \beta$, $\alpha e \beta$ têm o mesmo nro de 1s, logo: $\beta R \alpha$
 - 3. se $\alpha R \beta$ e $\beta R \gamma$, tanto α e β como β e γ têm mesmo nro de 1s, logo: α e γ têm mesmo nro de 1s e $\alpha R \gamma$

- **Exemplo 2/3 (1/2):** Seja $A = \{0, 1\}$,
 - ullet considere o semigrupo livre $(A^*\,,\,\,\cdot\,\,)$ gerado por A
 - ullet e a relação: $\alpha R \beta$ sse α e β possuem o mesmo nro de 1s

- **Exemplo 2/3 (1/2)**: Seja $A = \{0, 1\}$,
 - ullet considere o semigrupo livre $(A^*\,,\,\,\cdot\,\,)$ gerado por A
 - ullet e a relação: $\alpha R \beta$ sse α e β possuem o mesmo nro de 1s
 - R também é uma relação de congruência:
 - suponha que temos: $\alpha R \alpha'$ e $\beta R \beta'$
 - $m{\wp}$ então α e α' E β e β' possuem mesmo nro de 1s
 - "nro de 1s em $\alpha \cdot \beta$ " = "nro de 1s em α " + "nro de 1s em β "
 - \Rightarrow "nro de 1s em $\alpha \cdot \beta$ " = "número de 1s em $\alpha' \cdot \beta'$ "
 - ullet logo: $(\alpha \cdot \beta) R (\alpha' \cdot \beta')$

- **Exemplo 3/3 (1/2):** Seja o semigrupo $(\mathbb{Z},+)$,
 - seja: $f(x) = x^2 x 2$
 - e seja a relação sobre Z:
 - $m{\square} \ a \ R \ b$ se e somente se f(a) = f(b)
 - fácil notar que $m{R}$ é uma relação de equivalência sobre $\mathbb Z$

- **Exemplo 3/3 (1/2):** Seja o semigrupo $(\mathbb{Z}, +)$,
 - seja: $f(x) = x^2 x 2$
 - e seja a relação sobre Z:
 - $m{a} \ a \ R \ b$ se e somente se f(a) = f(b)
 - ullet fácil notar que $oldsymbol{R}$ é uma relação de equivalência sobre $\mathbb Z$
 - no entanto, R não é uma relação de congruência sobre \mathbb{Z} , pois:

$$-1 R 2 \quad (f(-1) = f(2) = 0)$$

$$-2R3$$
 $(f(-2) = f(3) = 4)$

ullet mas: $-3 \ R \ 5$

• pois:
$$f(-3) = 10$$
 e $f(5) = 18$

Relembrando:

- ullet a relação de equivalência R sobre o semigrupo (S,*) determina uma partição de S
- [a] = R(a) é a classe de equivalência que contém a
- $oldsymbol{s}$ S/R denota o conjunto de todas as classes de equivalência

Teorema:

- Seja R uma relação de congruência sobre o semigrupo (S,*).
- ullet E seja a relação ullet , de S/R imes S/R para S/R, dada por: $([a]\ ,\ [b])$ está relacionado com [a*b] $(a,b\in S)$
- Então:

Teorema:

- Seja R uma relação de congruência sobre o semigrupo (S,*).
- ullet E seja a relação ullet , de S/R imes S/R para S/R, dada por: $([a]\ ,\ [b])$ está relacionado com [a*b] $(a,b\in S)$

Então:

- lacksquare é uma função de S/R imes S/R para S/R
 - · usual: " \circledast ([a], [b])" denotado por "[a] \circledast [b]"
 - · ou seja: $[a] \circledast [b] = [a * b]$

Teorema:

- Seja R uma relação de congruência sobre o semigrupo (S,*).
- ullet E seja a relação ullet , de S/R imes S/R para S/R, dada por: $([a]\ ,\ [b])$ está relacionado com [a*b] $(a,b\in S)$

Então:

- lacksquare é uma função de S/R imes S/R para S/R
 - · usual: " \circledast ([a], [b])" denotado por "[a] \circledast [b]"
 - · ou seja: $[a] \circledast [b] = [a * b]$
- ullet $(S/R\,,\,\,\circledast)$ é um semigrupo.

▶ Prova: ⇒

Prova (1/2):

- suponha que ([a], [b]) = ([a'], [b'])
- então $a\ R\ a'$ e $b\ R\ b'$, de modo que: $a*b\ R\ a'*b' \quad \text{(pois } R\ \text{\'e relação de congruência)}$
- portanto [a*b] = [a'*b']
 - ou seja, ※ é uma função
 - ullet ou seja, ullet é uma operação binária sobre S/R

Prova (2/2):

além disto, * é associativa:

$$[a] \circledast ([b] \circledast [c]) = [a] \circledast [b * c]$$

$$= [a * (b * c)]$$

$$= [(a * b) * c)] \qquad \text{(associatividade de * em S)}$$

Prova (2/2):

além disto, * é associativa:

$$[a] \circledast ([b] \circledast [c]) = [a] \circledast [b * c]$$

$$= [a * (b * c)]$$

$$= [(a * b) * c)] \qquad \text{(associatividade de * em S)}$$

$$= [a * b] \circledast [c]$$

$$= ([a] \circledast [b]) \circledast [c]$$

ullet portanto, S/R é um semigrupo

- $oldsymbol{\mathcal{P}}$ S/R: Semigrupo Quociente ou Semigrupo Fator.
- Note que \circledast é uma espécie de "relação binária quociente" sobre S/R
 - ullet construída a partir da relação binária original * sobre S
 - pela relação de congruência R

- $oldsymbol{\mathscr{D}}$ S/R: Semigrupo Quociente ou Semigrupo Fator.
- Note que \circledast é uma espécie de "relação binária quociente" sobre S/R
 - ullet construída a partir da relação binária original * sobre S
 - pela relação de congruência R

Corolário:

- ullet Seja R uma relação de congruência sobre o monóide (S,*).
- Então $(S/R, \circledast)$ é um monóide.
- **Prova:** Se e é a identidade em (S, *):
 - [e] é a identidade em $(S/R, \circledast)$.

Exemplo:

- Considere o exemplo já visto:
 - ullet monóide (A^*,\cdot) gerado por $A=\{0,1\}$
 - R sobre A^* : $\alpha R \beta$ sse α e β com mesmo # 1s

Exemplo:

- Considere o exemplo já visto:
 - ullet monóide (A^*,\cdot) gerado por $A=\{0,1\}$
 - R sobre A^* : $\alpha R \beta$ sse α e β com mesmo # 1s

- Como R é de congruência sobre $S=(A^*,\cdot)$:
 - concluímos que $(S/R, \odot)$ é um monóide, aonde:

$$[lpha]\odot[eta]=[lpha\cdoteta]$$

Exemplo(1/2):

■ Relação s/ o semigrupo $(\mathbb{Z},+)$: a R b sse $n \mid (a-b)$

Exemplo(1/2):

- Relação s/ o semigrupo $(\mathbb{Z},+)$: a R b sse $n \mid (a-b)$
- R é de equivalência e é escrita como " $\equiv (mod n)$ ":

$$2 \equiv 6 \; (mod \; 4)$$
, pois: $4 \mid (2-6)$

Exemplo(1/2):

- Relação s/ o semigrupo (\mathbb{Z} , +): a R b sse $n \mid (a b)$
- R é de equivalência e é escrita como " $\equiv (mod n)$ ":

$$2 \equiv 6 \; (mod \; 4)$$
, pois: $4 \mid (2-6)$

• Classes de equiv. determinadas por " $\equiv (mod \ 4)$ " sobre \mathbb{Z} :

$$[0] = \{\dots, -8, -4, 0, 4, 8, 12, \dots\} = [4] = [8] = \dots$$

$$[1] = \{\ldots, -7, -3, 1, 5, 9, 13, \ldots\} = [5] = [9] = \cdots$$

$$[2] = \{\ldots, -6, -2, 2, 6, 10, 14, \ldots\} = [6] = [10] = \cdots$$

$$[3] = \{\ldots, -5, -1, 3, 7, 11, 15, \ldots\} = [7] = [11] = \cdots$$

Exemplo(1/2):

- Relação s/ o semigrupo $(\mathbb{Z},+)$: a R b sse $n \mid (a-b)$
- R é de equivalência e é escrita como " $\equiv (mod n)$ ":

$$2 \equiv 6 \; (mod \; 4)$$
, pois: $4 \mid (2-6)$

• Classes de equiv. determinadas por " $\equiv (mod \ 4)$ " sobre \mathbb{Z} :

$$[0] = \{\dots, -8, -4, 0, 4, 8, 12, \dots\} = [4] = [8] = \dots$$

$$[1] = \{\dots, -7, -3, 1, 5, 9, 13, \dots\} = [5] = [9] = \dots$$

$$[2] = \{\dots, -6, -2, 2, 6, 10, 14, \dots\} = [6] = [10] = \dots$$

$$[3] = \{\ldots, -5, -1, 3, 7, 11, 15, \ldots\} = [7] = [11] = \cdots$$

- Estas são todas as classes do "conj. quociente" $\mathbb{Z}/\equiv (mod\ 4)$.
 - $\mathbb{Z}/\equiv (mod\ n)$ é denotado por \mathbb{Z}_n
 - $m Z_n$ é um monóide com operação igoplus e identidade [0]

Exemplo(2/2):

■ Tabela de adição para o semigrupo \mathbb{Z}_4 com operação \bigoplus :

\oplus	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

Exemplo(2/2):

■ Tabela de adição para o semigrupo \mathbb{Z}_4 com operação \bigoplus :

\oplus	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

- Elementos da tabela obtidos de: $[a] \oplus [b] = [a+b]$
 - exemplo: $[2] \oplus [3] = [2+3] = [5] = [1]$

Exemplo(2/2):

■ Tabela de adição para o semigrupo \mathbb{Z}_4 com operação \bigoplus :

\oplus	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[O]	[1]	[2]

- Elementos da tabela obtidos de: $[a] \oplus [b] = [a+b]$
 - exemplo: $[2] \oplus [3] = [2+3] = [5] = [1]$
- Em geral:
 - $m{\square}_n$ tem n classes de equivalência: $[0],[1],[2],\ldots,[n-1]$

SEMIGRUPOS QUOCIENTES & HOMOMORFISMOS

■ Há uma conexão entre as estruturas do semigrupo (S, *) e do semigrupo quociente (S/R, *).

SEMIGRUPOS QUOCIENTES & HOMOMORFISMOS

■ Há uma conexão entre as estruturas do semigrupo (S, *) e do semigrupo quociente (S/R, *).

Teorema:

- Sejam:
 - R uma relação de congruência sobre um semigrupo (S,*)
 - ullet $(S/R, \circledast)$ o semigrupo quociente correspondente

SEMIGRUPOS QUOCIENTES & HOMOMORFISMOS

■ Há uma conexão entre as estruturas do semigrupo (S, *) e do semigrupo quociente (S/R, *).

Teorema:

- Sejam:
 - 🗩 R uma relação de congruência sobre um semigrupo (S,*)
 - ullet $(S/R, \circledast)$ o semigrupo quociente correspondente
- Então:
 - $f_R: S \to S/R$, definida por $f_R(a) = [a]$, é um homomorfismo sobrejetivo
 - chamado de homomorfismo natural
- ▶ Prova: ⇒

Prova:

- f_R é uma função sobrejetiva:
 - ullet se $[a]\in S/R$, então $f_R(a)=[a]$

Prova:

- f_R é uma função sobrejetiva:
 - ullet se $[a]\in S/R$, então $f_R(a)=[a]$
- f_R é um homomorfismo:
 - $m{\square}$ se a e b são elementos de S, então:

$$egin{aligned} f_R(a*b) &= [a*b] \ &= [a] \circledast [b] \ &= f_R(a) \circledast f_R(b) \end{aligned}$$

- Teorema (Fundamental do Homomorfismo):
 - Sejam:
 - $m{m{\mathscr I}}:S o T$ um homomorfismo do semigrupo (S,*) sobre o semigrupo (T,*')
 - R a relação sobre S definida por a R b sse f(a) = f(b)
 - · (R definida com base no homomorfismo)

Teorema (Fundamental do Homomorfismo):

- Sejam:
 - $f:S \to T$ um homomorfismo do semigrupo (S,*) sobre o semigrupo (T,*')
 - R a relação sobre S definida por a R b sse f(a) = f(b)• (R definida com base no homomorfismo)
- Então:
 - (a) R é uma relação de congruência
 - (b) (T, *') e o semigrupo quociente (S/R, *) são isomórficos

▶ Prova: ⇒

Prova da parte (a):

- (i) R é uma relação de equivalência:
 - $m{\square}$ $a \mathrel{R} a, \; \forall a \in S$, pois f(a) = f(a)
 - $m{ ilde s}$ se $a\ R\ b$, então f(a)=f(b), de modo que $b\ R\ a$
 - ullet se a R b e b R c:
 - \cdot então: f(a)=f(b) e f(b)=f(c)
 - · de modo que: f(a) = f(c) e, portanto: $a \ R \ c$

Prova da parte (a):

- (i) R é uma relação de equivalência:
 - $m{\square}$ $a \ R \ a, \ \forall a \in S$, pois f(a) = f(a)
 - $m{\square}$ se $a\ R\ b$, então f(a)=f(b), de modo que $b\ R\ a$
 - ullet se a R b e b R c:
 - \cdot então: f(a)=f(b) e f(b)=f(c)
 - · de modo que: f(a) = f(c) e, portanto: $a \ R \ c$
- (ii) R é uma relação de congruência:
 - ullet suponha que $m{a} \ m{R} \ m{a_1}$ e $m{b} \ m{R} \ m{b_1}$
 - então: $f(a)=f(a_1)$ e $f(b)=f(b_1)$ $\Rightarrow f(a)*'f(b)=f(a_1)*'f(b_1)$ $\Rightarrow f(a*b)=f(a_1*b_1)$ (pois f é um homomorfismo)
 - ullet logo: $(a*b) R (a_1*b_1)$

$$\overline{f} = \{\,([a], f(a)) \ \mid \ [a] \in S/R\}$$

$$\overline{f} = \{ \, ([a], f(a)) \mid [a] \in S/R \}$$

- $m{j}$ é uma função: suponha que [a] = [a']:
 - ullet então: $a \mathrel{R} a'$ e f(a) = f(a')
 - ullet logo, \overline{f} é a função $\overline{f}:S/R \to T$, aonde: $\overline{f}([a])=f(a)$

$$\overline{f} = \{ ([a], f(a)) \mid [a] \in S/R \}$$

- \overline{f} é uma função: suponha que [a] = [a']:
 - ullet então: $a \mathrel{R} a'$ e f(a) = f(a')
 - ullet logo, \overline{f} é a função $\overline{f}:S/R \to T$, aonde: $\overline{f}([a])=f(a)$
- $oldsymbol{f}$ é injetiva: suponha que $\overline{f}([a]) = \overline{f}([a'])$:
 - ullet então: f(a)=f(a')

$$\Rightarrow a R a' \Rightarrow [a] = [a']$$

$$\overline{f} = \{ \ ([a], f(a)) \mid \ [a] \in S/R \}$$

- \overline{f} é uma função: suponha que [a] = [a']:
 - ullet então: $a \mathrel{R} a'$ e f(a) = f(a')
 - ullet logo, \overline{f} é a função $\overline{f}:S/R \to T$, aonde: $\overline{f}([a])=f(a)$
- $oldsymbol{f}$ é injetiva: suponha que $\overline{f}([a]) = \overline{f}([a'])$:
 - $m{ ilde{ ilde{m{9}}}}$ então: f(a)=f(a') $\Rightarrow \ a \ R \ a' \ \Rightarrow \ [m{a}]=[m{a'}]$
- lacksquare \overline{f} é sobrejetiva: suponha que $b \in T$:

 - ullet então: $\overline{f}([a]) = f(a) = b$

$$\overline{f} = \{ \, ([a], f(a)) \mid [a] \in S/R \}$$

- \overline{f} é uma função: suponha que [a] = [a']:
 - ullet então: $a \mathrel{R} a'$ e f(a) = f(a')
 - ullet logo, \overline{f} é a função $\overline{f}:S/R \to T$, aonde: $\overline{f}([a])=f(a)$
- $oldsymbol{ar{f}}$ é injetiva: suponha que $\overline{f}([a])=\overline{f}([a'])$:
- $m{f}$ é sobrejetiva: suponha que $m{b} \in m{T}$:

 - $m{\wp}$ então: $m{\overline{f}}([a]) = f(a) = b$

$$\overline{f}([a] \circledast [b]) = \overline{f}([a*b]) = f(a*b) = f(a)*'f(b) = \overline{f}([a])*'\overline{f}([b])$$

Prova da parte (b): Seja a relação de S/R para T:

$$\overline{f} = \{\,([a], f(a)) \mid [a] \in S/R\}$$

- \overline{f} é uma função: suponha que [a] = [a']:
 - ullet então: $a \mathrel{R} a'$ e f(a) = f(a')
 - ullet logo, \overline{f} é a função $\overline{f}:S/R o T$, aonde: $\overline{f}([a])=f(a)$
- $m{f}$ é injetiva: suponha que $m{\overline{f}}([a]) = m{\overline{f}}([a'])$:
 - $m{ ilde{ ilde{m{9}}}}$ então: f(a)=f(a') $\Rightarrow \ a \ R \ a' \ \Rightarrow \ [m{a}]=[m{a'}]$
- $m{f}$ é sobrejetiva: suponha que $m{b} \in m{T}$:
 - f(a) = b para algum elemento a em S (pois f é sobrejetiva)
 - $m{\wp}$ então: $m{\overline{f}}([a]) = f(a) = b$
- \overline{f} preserva a estrutura das operações \circledast e *':

$$\overline{f}([a] \circledast [b]) = \overline{f}([a*b]) = f(a*b) = f(a)*'f(b) = \overline{f}([a])*'\overline{f}([b])$$

Solution Logo: \overline{f} é um isomorfismo.

Exemplo:

- ullet Considere o semigrupo livre A^* gerado por $A=\{0,1\}$ sob concatenação
 - $oldsymbol{\wp}$ note que $oldsymbol{A}^*$ é um monóide, aonde a identidade é $oldsymbol{\Lambda}$

Exemplo:

- ullet Considere o semigrupo livre A^* gerado por $A=\{0,1\}$ sob concatenação
 - $oldsymbol{\wp}$ note que $oldsymbol{A}^*$ é um monóide, aonde a identidade é $oldsymbol{\Lambda}$
- Seja N o conjunto dos inteiros não-negativos
 - ightharpoonup então (N, +) é um semigrupo

Exemplo:

- ullet Considere o semigrupo livre A^* gerado por $A=\{0,1\}$ sob concatenação
 - $m{\square}$ note que $m{A}^*$ é um monóide, aonde a identidade é $m{\Lambda}$
- Seja N o conjunto dos inteiros não-negativos
 - ightharpoonup então (N, +) é um semigrupo
- $m{ ilde A}$ A seguinte função $f:A^* o N$ é um homomorfismo: f(lpha)= número de 1s em lpha
- Seja R a seguinte relação sobre A^* :

$$\alpha R \beta$$
 sse $f(\alpha) = f(\beta)$

Exemplo:

- ullet Considere o semigrupo livre A^* gerado por $A=\{0,1\}$ sob concatenação
 - $oldsymbol{\mathcal{I}}$ note que $oldsymbol{A}^*$ é um monóide, aonde a identidade é $oldsymbol{\Lambda}$
- Seja N o conjunto dos inteiros não-negativos
 - ightharpoonup então (N, +) é um semigrupo
- $m{\square}$ A seguinte função $f:A^* o N$ é um homomorfismo: f(lpha)= número de 1s em lpha
- Seja R a seguinte relação sobre A*:

$$lpha\,R\,eta$$
 sse $f(lpha)=f(eta)$

- Segundo o Teorema: $A^*/R \simeq N$
 - $m{ ilde{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm}$

$$\overline{f}([lpha]) = f(lpha) =$$
 número de 1s em $lpha$

- Teorema (Fundamental do Homomorfismo): (relembrando)
 - Sejam:
 - $f: S \to T$ um homomorfismo de (S, *) sobre (T, *')
 - $m{\wp}$ R a relação sobre S definida por $a\ R\ b$ sse f(a)=f(b)
 - Então:
 - (a) R é uma relação de congruência
 - (b) (T, *') e o semigrupo quociente (S/R, *) são isomórficos

- **▶ Teorema (Fundamental do Homomorfismo):** (relembrando)
 - Sejam:
 - $f: S \to T$ um homomorfismo de (S, *) sobre (T, *')
 - m P a relação sobre m S definida por $a\ R\ b$ sse f(a)=f(b)
 - Então:
 - (a) R é uma relação de congruência
 - (b) (T, *') e o semigrupo quociente (S/R, *) são isomórficos

A parte (b) pode ser descrita pelo diagrama a seguir (⇒)

- $m{ ilde P} f_R$ é o homomorfismo natural
- ullet $\overline{f}\circ f_R=f$ pois:

$$(\overline{f} \circ f_R)(a) = \overline{f}(f_R(a))$$

$$= \overline{f}([a]) = f(a)$$

PRODUTOS E QUOCIENTES DE SEMIGRUPOS

Final deste item.

Dica: fazer exercícios sobre Produtos e Quocientes de Semigrupos...