Inférence et décision

Probabilités et statistiques

hiver 2021

Théorèmes limites

Des vecteurs aux suites aléatoires

La dernière fois: cas des vecteurs aléatoires (X,Y) de dimension 2.

Toute cette discussion s'étend « sans trop de mal » au cas général

$$\mathbf{X} = (X_1, \ldots, X_n)$$

de la dimension n.

Aujourd'hui: suites aléatoires

$$\mathbf{X} = (X_n)_{n=1}^{\infty} = (X_1, \ldots, X_n, \ldots)$$

et notamment notion de limite

$$\lim_{n o \infty} X_n$$
 .

Limites de variables aléatoires

On s'intéresse donc à une suite de variables aléatoires

$$X_1, X_2, \ldots, X_n, \ldots$$

indépendantes, identiquement distribuées (i.i.d.)

Disons: espérance μ , écart-type σ

$S_n = \sum_{i=1}^n X_i$ avec $X_i \sim \mathcal{N}(rac{1}{2},1)$

En général

$$\mathbb{E}[S_n] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n] = n\mu$$
 $\operatorname{Var}(S_n) \stackrel{\operatorname{ind}}{=} \operatorname{Var}(X_1) + \cdots + \operatorname{Var}(X_n) = n\,\sigma^2$
 $\Longrightarrow \sigma_{S_n} = \sqrt{n}\,\sigma$

Moyenne échantillonnale

Divisons par n et formons

$$\overline{X}_n := rac{1}{n} \sum_{i=1}^n X_i = rac{X_1 + \cdots + X_n}{n}.$$

Alors:

$$\mathbb{E}[\overline{X}_n] = \mu, \qquad \sigma_{\overline{X}_n} = rac{\sigma}{\sqrt{n}}.$$

\overline{X}_n avec $X_i \sim \mathcal{N}(rac{1}{2},1)$

Help | Powered by SageMath

Loi (faible) des grands nombres

Théorème

Pour tout $\varepsilon > 0$,

$$\lim_{n o\infty}\mathbb{P}\Big[|\overline{X}_n-\mu|\geqarepsilon\Big]=0.$$

i.e. X_n converge en probabilité vers μ

Preuve: Inégalité de Bienaymé-Tchebychev appliquée à X_n

Théorèmes limites Estimation Test d'hypothèse

On peut dire plus!

Écrivons

$$\overline{X}_n - \mu = rac{1}{n} \sum_{i=1}^n X_i - \mu = \sum_{i=1}^n \underbrace{rac{X_i - \mu}{n}}_{ ext{esp. 0, var. } rac{\sigma^2}{n^2}}
onumber$$
 $\Rightarrow g_{\overline{X}_n - \mu}(t) = \left(1 + rac{\sigma^2}{2n^2}t^2 + \dots
ight)^n$

$$egin{align} \Longrightarrow & g_{\overline{X}_n-\mu}(t) = \left(1+rac{\sigma}{2n^2}t^2+\dots
ight) \ &= 1+rac{\sigma^2}{2n}t^2+\dots \ &\longrightarrow 1 \qquad ext{quand} \quad n o\infty \end{array}$$

Loi (forte) des grands nombres

D'où:

$$\lim_{n o\infty}g_{\overline{X}_n}=e^{\mu t}$$

Théorème

$$\lim_{n o\infty}\overline{X}_n=\mu$$
 presque sûrement

Ou encore: X_n converge en loi vers une

variable aléatoire *presque constante* (densité $\delta(x-\mu)$).

\overline{X}_n pour $X_i \sim \mathcal{E}(1)$

Help | Powered by SageMath

On peut dire plus!²

Théorème (théorème central limite, Laplace 1809)

$$rac{\overline{X}_n - \mu}{\sigma/\sqrt{n}}$$
 converge en loi vers une $\mathcal{N}(0,1)$ quand $n o \infty$

En d'autres termes, pour n grand, X_n suit approximativement une

$$\mathcal{N}igg(\mu, rac{\sigma^2}{n}igg).$$

Preuve: Si on pose $Z_n=rac{\overline{X}_n-\mu}{\sigma/\sqrt{n}}$, on peut écrire $Z_n=\sum_{i=1}^n Y_i$ avec

$$Y_i = \frac{1}{\sqrt{n}} \frac{X_i - \mu}{\sigma}$$
 espérance 0, variance $\frac{1}{n}$

$$\implies g_{Y_i}(t) = 1 + rac{t^2}{2n} + \ldots$$

$$\implies g_{Z_n}(t) = \left(1 + rac{t^2}{2n} + \dots
ight)^n \longrightarrow e^{rac{t^2}{2}} = g_Z(t)$$

la fonction génératrice des moments d'une $Z \sim \mathcal{N}(0,1)$!

Exemple: approximation normale de la binomiale

Pour les $X_i \overset{\mathrm{iid}}{\sim} \mathcal{B}(p)$:

$$\overline{X}_n \rightsquigarrow \mathcal{N}igg(p, rac{p(1-p)}{n}igg).$$

Donc $\sum X_i = n \overline{X}_n$, de loi $\mathcal{B}(n,p)$, est approximativement

$$\mathcal{N}igg(np, np(1-p)igg)$$

En pratique, approximation satisfaisante dès que $np \geq 10$ et $n(1-p) \geq 10$.

$\mathcal{B}(n,p)$ vs $\mathcal{N}ig(np,np(1-p)ig)$

Exercice

On considère lors de la tranmission de paquets IP par Wi-Fi un taux de perte de 1 % acceptable.

Quelle est la probabilité, lors de la transmission d'un fichier vidéo de 120 Mo, que 20 paquets ou moins soient perdus ?

(NB: taille maximale d'un paquet IPv4 = 65 535 octets)

Estimation paramétrique

Estimation paramétrique

Une fois (sup)posé le type de modèle (loi) pour une variable qui nous intéresse, reste à déterminer « expérimentalement » les valeurs des paramètres qui y figurent

Exemples:

- p pour une $\mathcal{B}(p)$
- μ et σ pour une $\mathcal{N}(\mu, \sigma)$
- λ pour une $\mathcal{E}(\lambda)$

Dé croche

Soit p la probabilité d'obtenir un 6 sur mon dé croche.

Pour l'*estimer*, les ISEN62 ont gracieusement tiré un n-échantillon

$$(X_1, X_2, \ldots, X_n)$$

avec n pprox 200 et $X_i \sim \mathcal{B}(p)$ i.i.d.

La loi des grands nombres nous dit que la valeur observée de

$$\overline{X}_n = rac{1}{n}igg(X_1 + X_2 + \cdots + X_nigg)$$

devrait être raisonnablement proche de p.

Résultats expérimentaux


```
data = [17 40 44 47 29 42];
                                                    N.
  n = sum(data)
5 xbar = data(6)/n
Évaluer
```


Et alors?

Si on recommençait aujourd'hui, on aurait une valeur différente.

Comment conclure quoi que ce soit en présence de hasard ?

Reste que pour l'instant, c'est notre meilleure estimation de p.

Ceci dit...

Si
$$X_i \sim \mathcal{B}(p)$$
, alors $\sum X_i \sim \mathcal{B}(n,p)$

espérance np, variance np(1-p)

$$\implies \overline{X}_n = \frac{1}{n} \sum X_i$$

espérance p, variance $\frac{p(1-p)}{n}$

approximativement
$$\mathcal{N}igg(p, \dfrac{p(1-p)}{n}igg)$$
 par TCL

Par exemple, on sait que \overline{X}_n a 95 % de chances de tomber dans l'intervalle

$$[p-2\,\sigma_n,\,p+2\,\sigma_n].$$

En d'autres termes,

$$egin{aligned} 0,95 &= \mathbb{P}[p-2\,\sigma_n \leq \overline{X}_n \leq p+2\,\sigma_n] \ &= \mathbb{P}[\overline{X}_n-2\,\sigma_n \leq p \leq \overline{X}_n+2\,\sigma_n] \end{aligned}$$

En d'autres termes, l'intervalle aléatoire

$$\left[\overline{X}_n-2\,\sigma_n,\,\overline{X}_n+2\,\sigma_n
ight]$$

a 95 % de chances de contenir p !

Formalisons

Définition

Un **estimateur** est une variable aléatoire Θ_n dérivée d'un échantillon i.i.d. (X_1,X_2,\ldots,X_n) servant à estimer un paramètre heta de la loi des X_i .

Cet estimateur est dit convergent si

$$\lim_{n \to \infty} \Theta_n = \theta$$
 (presque sûrement).

Il est **sans biais** si

$$\mathbb{E}[\Theta_n] = \theta$$
 pour tout n .

Exemple vu et revu

$$\overline{X}_n = rac{1}{n}ig(X_1 + X_2 + \cdots + X_nig)$$

est un estimateur de μ

- sans biais (propriétés de E)
- convergent (loi des grands nombres).

Pour n assez grand, on peut considérer que $\overline{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$.

Si z_{α} désigne un nombre pour lequel

$$\mathbb{P}[-z_{lpha} \leq Z \leq z_{lpha}] = 1 - lpha \quad ext{pour } Z \sim \mathcal{N}(0,1)$$

alors

$$oxed{I_lpha = \left[\overline{X}_n - z_lpha \, rac{\sigma}{\sqrt{n}}, \, \overline{X}_n + z_lpha \, rac{\sigma}{\sqrt{n}}
ight]}$$

est un **intervalle de confiance de niveau** 1-lpha pour μ

Exercice

Donner un intervalle de confiance au seuil 1-lpha=95% pour la probabilité p d'obtenir un 6 sur le dé croche.

Avec nos données

```
data = [17 40 44 47 29 42];
    n = sum(data);
    xbar = data(6)/n;
    s = sqrt(xbar*(1-xbar)/n);
 9 [xbar - 2*s, xbar + 2*s]
 Évaluer
ans =
0.138573 0.244989
```

Help | Powered by SageMath

Intervalle contenant la vraie valeur p « 19 fois sur 20 »

Et la variance ?

$$S_n^2 := rac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X}_n
ight)^2$$

Semble une bonne idée.

Il est bien convergent vers σ^2 .

Petit problème: les n termes ne sont pas indépendants...

Proposition

$$\mathbb{E}[S_n^2] = rac{n-1}{n}\sigma^2$$

Estimateur non biaisé de la variance

Vaut mieux donc préférer à S_n^2 la variation suivante:

$$\widetilde{S_n^2} := rac{n}{n-1} S_n^2 = rac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}_n
ight)^2$$

qui a
$$\mathbb{E}[\widetilde{S_n^2}] = \sigma^2$$
 .

Fait: si
$$X_i \sim \mathcal{N}(\mu, \sigma^2)$$
,

$$rac{\widetilde{S_n^2}}{\sigma^2/(n-1)} \sim \chi_{n-1}^2 \quad ext{loi du } \chi^2 ext{ (voir TD)}$$

En pratique

Notre intervalle de confiance pour μ

$$I_{lpha} = \left[\overline{X}_n - z_{lpha} \, \sigma, \, \overline{X}_n + z_{lpha} \, \sigma
ight]$$

supposait σ connu, dans les faits on doit l'estimer...

Pour un « grand » échantillon (n > 30):

ça ne pose pas de problème de remplacer σ par $\widetilde{S_n}$.

(Pour un petit, on doit utiliser plutôt les quantiles d'une loi de Student)

Test d'hypothèse

Dans la vraie vie

On se pose des questions sur un modèle probabiliste pour prendre des décisions:

- ce dé est-il équilibré ?
- ce courriel est-il indésirable ?
- ce médicament est-il efficace ?
- cette machine est-elle déréglée ?

- ce candidat sera-t-il élu ?
- que faire face à ce risque ?
- combien rapportera ce placement ?
- cette mesure a-t-elle été efficace ?

Test d'hypothèse

Principe général: on tente d'invalider un modèle grâce à des observations.

- H_0 : hypothèse nulle décrivant un modèle probabiliste prédictif
- H_1 : hypothèse alternative

Si les observations effectuées sont *trop* improbables sous l'hypothèse H_0 ,

on rejette cette hypothèse en faveur de H_1 .

La déviation observée à H_0 est alors dite statistiquement significative.

Exemple: lancer de pièce

- H_0 : la pièce est équilibrée
- H_1 : pile est favorisé

Soit X le nombre de P en 10 lancers.

On juge qu'une observation avec $\mathbb{P} \leq 5\,\%$ remettrait en cause H_0 .

Or, sous H_0 , $X \sim \mathcal{B}(10, \frac{1}{2})$ et

$$\mathbb{P}[X \geq 9 \,|\, H_0] = rac{10+1}{2^{10}} pprox 1,07\,\%$$

Si on observe $X \geq 9$, on pourra donc rejeter H_0 au seuil de signification $lpha = 5\,\%$

Fonctionnement

- On choisit un seuil de signification α (souvent 5 % ou 1 %)
- ullet On sélectionne une statistique T dont on connait la loi $sous\ H_0$
- On calcule la probabilité p que T prenne, sous H_0 , une valeur aussi extrême que celle observée
- Si $p < \alpha$, on rejette H_0 en faveur de H_1 : la différence observée est **statistiquement significative**
- Si $p \geq \alpha$, on juge que les données ne sont pas suffisantes pour remettre en cause H_0 (status quo)

Attention

Il faut choisir le seuil de signification α avant de voir les données !

Et se méfier de la prolifération de tests...

Deux sortes d'erreurs possibles:

- ullet rejeter H_0 alors qu'elle est vraie: se produit avec probabilité lpha prescrite
- ullet accepter H_0 alors que H_1 est vraie: se produit avec une probabilité eta

On appelle aussi $1-\beta$ la **puissance** du test