Finals Revision Guide

30.003 Probability and Statistics, Term 4 $2019\,$

Wei Min Cher

05 Jan 2020

Contents

1	W8	: Statistics and Their Distributions	3
	1.1	Definitions	3
	1.2	Order statistic	3
	1.3	Sample range	3
	1.4	Distribution of a statistic	3
	1.5	Distribution of \overline{X}	3
	1.6	Distribution of smallest order statistic $X_{(1)}$	4
	1.7	Distribution of largest order statistic $X_{(n)}$	4
	1.8	Distribution of k -th order statistic $X_{(k)}$	4
2	W 9	: Point Estimation	5
	2.1	Point estimate	5
	2.2	Principle of Unbiased Estimator	5
	2.3	Principle of Minimum Variance Unbiased Estimation	5
3	W9: Method of Moments Estimator (MME)		
	3.1	Moments	6
	3.2	Method of Moments	6
	3.3	Method of Moments Estimator (MME)	6
4	$\mathbf{W1}$	0: Maximum Likelihood Estimator (MLE)	7
	4.1	Likelihood function	7
	4.2	Maximizing the likelihood	7
	4.3	Maximum Likelihood Estimator (MLE)	7
5	$\mathbf{W1}$	0: Confidence Interval	8
	5.1	Equivalent expressions for Confidence Interval	8
	5.2	Interpretation of Confidence Interval	8

6	W1	1: Hypothesis Testing 1	10
	6.1	Statistical hypothesis	10
	6.2	Null and Alternative Hypotheses	10
	6.3	Hypothesis Testing	10
	6.4	Errors in Hypothesis Testing	10
	6.5	Hypothesis Testing using Rejection Region	11
7	W1	1: Hypothesis Testing 2	12
	7.1	Hypothesis Testing of Difference between 2 Populations	12
	7.2	P-value	12
	7.3	Hypothesis Testing using P-value	13
	7.4	Comparison between Hypothesis Testing Methods	13
8	W1	2: Linear Regression	14
	8.1	Least-squares method	14
	8.2	Estimating β_0 and β_1	14
	8.3	Least-squares estimates for β_0 and β_1	14
	8.4	Residuals and fitted values	15
	8.5	The simple linear regression model	15
	8.6	Sum of squared error (SSE)	16
	8.7	Estimating σ^2 of regression model	16

1 W8: Statistics and Their Distributions

1.1 Definitions

• Population: all observations

• Sample: subset of population

• Random sample: made up of random variables that are independently and identically distributed

• Statistic: quantity whose value can be calculated from sample data

• A random variable

1.2 Order statistic

For iid RVs X_1, X_2, \dots, X_n of unknown distribution, they can be rearranged in an increasing order:

$$X_{(1)} \le X_{(2)} \le \dots X_{(k)} \dots \le X_{(n)}$$

where

• $X_{(1)} = \min\{X_1, \dots, X_n\}$ is the smallest order statistic;

• $X_{(k)}$ is the k-th order statistic; and

• $X_{(n)} = \max\{X_1, \dots, X_n\}$ is the largest order statistic.

1.3 Sample range

The sample range R is the distance between the largest and smallest order statistic.

It is also a random variable, and can be calculated by:

$$R = X_{(n)} - X_{(1)}$$

1.4 Distribution of a statistic

The distribution of a statistic can be obtained by either 1 of the 2 methods:

1. Derive the probability distribution analytically via order statistics

2. Simulate the probability distribution using Monte Carlo simulation

1.5 Distribution of \overline{X}

For a sufficiently large n, i.e. $\mathbf{n} \leq \mathbf{30}$, \overline{X} has approximately a normal distribution with mean $E(\overline{X})$ and variance $V(\overline{X})$ as follows:

3

• Mean, $E(\overline{X}) = \mu$

• Variance, $V(\overline{X}) = \frac{\sigma^2}{n}$

1.6 Distribution of smallest order statistic $X_{(1)}$

• pdf:

$$f_{(1)}(x) = n [1 - F_X(x)]^{n-1} f_X(x)$$

• cdf:

$$\begin{split} F_{(1)}(x) &= P(X_{(1)} \leq x) \\ &= 1 - P(X_i > x, \forall i) \\ &= 1 - \prod_{i=1}^n P(X_i > x) \quad \text{(independent)} \\ &= 1 - [P(X_i > x)]^n \quad \text{(identically distributed)} \\ &= 1 - [1 - P(X_i \leq x)]^n \\ &= 1 - [1 - F_X(x)]^n \end{split}$$

1.7 Distribution of largest order statistic $X_{(n)}$

 $\bullet~\mathrm{pdf}:$

$$f_{(n)}(x) = n \left[F_X(x) \right]^{n-1} f_X(x)$$

• cdf:

$$\begin{split} F_{(n)}(x) &= P(X_{(n)} \leq x) \\ &= P(X_i \leq x, \forall i) \\ &= \prod_{i=1}^n P(X_i \leq x) \quad \text{(independent)} \\ &= [P(X_i \leq x)]^n \quad \text{(identically distributed)} \\ &= [F_X(x)]^n \end{split}$$

1.8 Distribution of k-th order statistic $X_{(k)}$

 $\bullet~\mathrm{pdf}:$

$$f_{(k)}(x) = \frac{n! \left[F_X(x) \right]^{k-1} \left[1 - F_X(x) \right]^{n-k} f_X(x)}{(k-1)! (n-k)!}$$

2 W9: Point Estimation

2.1 Point estimate

- Statistic, function of data to infer value of unknown parameter
- A random variable
 - \circ e.g. point estimate of θ is $\hat{\theta}$

2.2 Principle of Unbiased Estimator

- Choose an unbiased estimator among several candidates
- Point estimate $\hat{\theta}$ is an unbiased estimator if $E(\hat{\theta}) = \theta$ for every possible value of θ
- Can be obtained from biased estimator by using making $E(\hat{\theta}) = \theta$

2.3 Principle of Minimum Variance Unbiased Estimation

- Among all the unbiased estimators of θ , choose the estimator with the minimum variance.
- Estimator with the minimum variance is the minimum variance unbiased estimator (MVUE) of θ .

3 W9: Method of Moments Estimator (MME)

3.1 Moments

- k-th population moment, $\mu_k = E(X^k)$
 - o Depends on unknown parameters
- k-th sample moment, $M_k = \frac{1}{n} \sum_{i=1}^n X_i^k$
 - \circ Function of random sample

3.2 Method of Moments

• Assumes that sample moments provide good estimates of the corresponding population moments

3.3 Method of Moments Estimator (MME)

To calculate the MME(s) of θ :

- 1. Find m population moments, where m is the number of unknown parameters.
- 2. Find m sample moments.
- 3. Equate each population moment to its corresponding sample moments
- 4. Solve for $\theta = (\theta_1, \dots, \theta_m)$ to obtain the MMEs for θ .

4 W10: Maximum Likelihood Estimator (MLE)

4.1 Likelihood function

Let X_1, X_2, \ldots, X_n have a joint pdf or pmf:

$$L(\theta_1, \dots, \theta_m) = f(x_1, \dots, x_n; \theta_1, \dots, \theta_m)$$

The likelihood function is given by

$$L(\theta) = P(X_1 = x, \dots, X_n = x_n) = \begin{cases} & \prod_{i=1}^n p(x_i, \theta) & \text{for discrete RVs} \\ & \prod_{i=1}^n f(x_i, \theta) & \text{for continuous RVs} \end{cases}$$

4.2 Maximizing the likelihood

• The maximum likelihood estimator (MLE) $\hat{\theta}_1, \dots, \hat{\theta}_m$ are values that maximize the likelihood function such that

$$L(\hat{\theta}_1, \dots, \hat{\theta}_m) \le L(\theta_1, \dots, \theta_m)$$

4.3 Maximum Likelihood Estimator (MLE)

To calculate the MLE of θ :

- 1. Find the likelihood function $L(\theta)$ based on the distribution.
- 2. Differentiate $L(\theta)$ with respect to θ , and equate the derivative to 0.
 - The natural logarithm of $L(\theta)$ could simplify calculations.
- 3. Solve for the MLE of θ .
- 4. Check if the value is maximum by taking the second derivative of $L(\theta)$.

Notes:

- In some cases, calculus-based techniques are not applicable to maximize likelihood function.
- MLE does not guarantee to produce an unbiased estimator.

5 W10: Confidence Interval

• Quantifies the confidence interval of a point estimate $\hat{\theta}$

$$l(X_1, \ldots, X_n) < \hat{\theta}(X_1, \ldots, X_n) < u(X_1, \ldots, X_n)$$

- \circ where $l(\ldots)$ is the lower bound and $u(\ldots)$ is the upper bound respectively.
- The interval contains θ with a confidence interval p:

$$P\{\theta \in [l(X_1, \dots, X_n), u(X_1, \dots, X_n)]\} = p$$

• The confidence interval p is often set to a high value e.g. 0.95, 0.99 in practice

5.1 Equivalent expressions for Confidence Interval

The following expressions are equivalent in describing a 90% confidence interval (CI) for μ .

$$\begin{split} P\left(|\overline{X} - \mu| < \frac{1.65\sigma}{\sqrt{n}}\right) &= 0.90 \\ P\left(\overline{X} - \frac{1.65\sigma}{\sqrt{n}} < \mu < \overline{X} + \frac{1.65\sigma}{\sqrt{n}}\right) &= 0.90 \\ P\left[\mu \in \left(\overline{X} - \frac{1.65\sigma}{\sqrt{n}}, \overline{X} + \frac{1.65\sigma}{\sqrt{n}}\right)\right] &= 0.90 \end{split}$$

- Replace 1.65 with:
 - \circ 1.96 if CI is 95%
 - Closest Z-score of area 0.97500 in standard normal table
 - o 2.58 if CI is 99%
 - Closest Z-score of area 0.99500 in standard normal table
 - Rule of thumb:
 - Search for Z score of area $p + \frac{1-p}{2}$ in the standard normal table, where p is the CI.

5.2 Interpretation of Confidence Interval

- e.g. 95% CI for μ
 - \circ As the number of samples collected tend to infinity, 95% of the samples will contain μ .

5.3 Properties of Confidence Interval

- \bullet As population variance σ increases, the width of CI increases.
- ullet As sample size n increases, the width of CI decreases.
- \bullet As the confidence interval p increases, the width of CI increases.
- At a fixed confidence interval,
 - \circ Large width of CI \rightarrow low precision
 - $\circ\,$ Small width of CI $\to\,$ high precision

6 W11: Hypothesis Testing 1

6.1 Statistical hypothesis

• A claim about values of parameters/form of probability distribution

6.2 Null and Alternative Hypotheses

- Null hypothesis, H_0
 - o Claim that is initially assumed to be true
 - o H_0 is always $H_0: \theta = \theta_0$
- Alternative hypothesis, H_a
 - \circ Claim that contradicts the null hypothesis H_0
 - \circ H_a has 3 forms with implicit hypothesis
 - $H_a: \theta > \theta_0$ (implicit hypothesis: $\theta \leq \theta_0$)
 - $H_a: \theta < \theta_0$ (implicit hypothesis: $\theta \leq \theta_0$)
 - $H_a: \theta \neq \theta_0$ (implicit hypothesis: $\theta = \theta_0$)

6.3 Hypothesis Testing

- Method to decide whether to accept or reject the null hypothesis, H_0
- Comprises 2 components:
 - Test statistic
 - Function of sample data to make a decision
 - Rejection region
 - \circ Set of values for which the null hypothesis H_0 will be rejected
 - \circ If test statistic falls in rejection region, H_0 will be rejected

6.4 Errors in Hypothesis Testing

• Type I error (α): Rejecting the null hypothesis H_0 when H_0 is true

$$\alpha = P(\text{reject } H_0 \mid H_0 \text{ is true})$$

• Type II error (β): Accepting the null hypothesis H_0 when H_a is true

$$\beta = P(\text{accept } H_0 \mid H_a \text{ is true})$$

- Good rejection region yields small α and β
 - \circ Typical approach: specify largest value of α that can be tolerated, then back-calculate for the rejection region

6.5 Hypothesis Testing using Rejection Region

- 1. Figure out appropriate H_0 and H_a .
- 2. Figure out appropriate test statistic.

$$\overline{X} = \frac{1}{n} \sum X_i \quad \Longrightarrow \quad Z = \left\{ \begin{array}{cc} \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} & \text{population standard deviation } \sigma \text{ known} \\ \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} & \text{population standard deviation } \sigma \text{ unknown} \end{array} \right.$$

3. Calculate the rejection region based on type I error/significance level α :

$$\alpha = P(\text{reject } H_0 \mid H_0 \text{ is true})$$

4. Calculate the normalized sample mean z using sample mean \overline{x} .

$$z = \begin{cases} & \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} & \text{population standard deviation } \sigma \text{ known} \\ & \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}} & \text{population standard deviation } \sigma \text{ unknown} \end{cases}$$

5. Compare the normalized sample mean z with the rejection region.

Reject H_0 if z falls in the rejection region.

- $H_a: \mu < \mu_0$ (lower-tailed test)
 - Rejection region: $Z < -z_{\alpha}$
- $H_a: \mu > \mu_0$ (upper-tailed test)
 - Rejection region: $Z > -z_{\alpha}$
- $H_a: \mu \neq \mu_0$ (two-tailed test)
 - Rejection region: $Z < -z_{\alpha/2} \cup Z > z_{\alpha/2}$

7 W11: Hypothesis Testing 2

7.1 Hypothesis Testing of Difference between 2 Populations

1. Figure out appropriate H_0 and H_a .

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_a: \mu_1 - \mu_2 \neq 0$$

2. Figure out appropriate test statistic.

$$\overline{X_1} - \overline{X_2} = \frac{1}{n} \sum (X_{1i} - X_{2i})$$

$$\implies \quad Z = \left\{ \begin{array}{cc} \frac{\overline{X_1} - \overline{X_2}}{\frac{\sigma}{\sqrt{n}}} & \text{population standard deviation } \sigma \text{ known} \\ \frac{\overline{X_1} - \overline{X_2}}{\frac{s}{\sqrt{n}}} & \text{population standard deviation } \sigma \text{ unknown} \end{array} \right.$$

3. Calculate the rejection region based on type I error/significance level α :

$$\alpha = P(\text{reject } H_0 \mid H_0 \text{ is true})$$

4. Calculate the normalized sample mean z using sample mean $\overline{x_1} - \overline{x_2}$.

$$z = \begin{cases} & \frac{\overline{x_1} - \overline{x_2}}{\frac{\sigma}{\sqrt{n}}} & \text{population standard deviation } \sigma \text{ known} \\ & \frac{\overline{x_1} - \overline{x_2}}{\frac{s}{\sqrt{n}}} & \text{population standard deviation } \sigma \text{ unknown} \end{cases}$$

5. Compare the normalized sample mean z with the rejection region.

Reject H_0 if z falls in the rejection region.

- $H_a: \mu < \mu_0$ (lower-tailed test)
 - Rejection region: $Z < -z_{\alpha}$
- $H_a: \mu > \mu_0$ (upper-tailed test)
 - Rejection region: $Z > -z_{\alpha}$
- $H_a: \mu \neq \mu_0$ (two-tailed test)

7.2 P-value

• A probability, calculated assuming that H_0 is true, of obtaining a value of the test statistic at least as contradictory to H_0 as the value calculated from the available sample.

7.3 Hypothesis Testing using P-value

- 1. Figure out appropriate H_0 and H_a .
- 2. Calculate the test statistic value of sample z.

$$z = \begin{cases} & \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} & \text{population standard deviation } \sigma \text{ known} \\ & \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}} & \text{population standard deviation } \sigma \text{ unknown} \end{cases}$$

- 3. Determine range of test statistic values as contradictory to H_0 as the above value of z.
 - $H_a: \mu < \mu_0$ (lower-tailed test)
 - \circ Range: Z < z
 - $H_a: \mu > \mu_0$ (upper-tailed test)
 - \circ Range: Z > z
 - $H_a: \mu \neq \mu_0$ (two-tailed test)
 - \circ Range: $Z > z \cup Z < -z$
- 4. Calculate probability of getting that range, assuming H_0 is true:
 - $H_a: \mu < \mu_0$ (lower-tailed test)
 - \circ P-value = $P(Z < z \mid H_0 \text{ is true})$
 - $H_a: \mu > \mu_0$ (upper-tailed test)
 - \circ P-value = $P(Z > z \mid H_0 \text{ is true})$
 - $H_a: \mu \neq \mu_0$ (two-tailed test)
 - \circ P-value = $P(Z > z \cup Z < -z \mid H_0 \text{ is true})$
- 5. Compare the P-value against the significance level α .
 - Reject H_0 : P-value $\leq \alpha$
 - Accept H_0 : P-value $> \alpha$

7.4 Comparison between Hypothesis Testing Methods

- The two procedures the rejection region method and P-value method are equivalent.
 - The same conclusion will be reached via either of the two procedures.

8 W12: Linear Regression

8.1 Least-squares method

• Estimates unknown parameters of a function based on known data

8.2 Estimating β_0 and β_1

1. Define an error function to minimize.

$$f(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^n (y_i - \hat{\beta}_1 x_i - \hat{\beta}_0)^2$$

2. Take the partial derivative of the error function with respect to $\hat{\beta_0}$ and $\hat{\beta_1}$ and solve for the unknowns.

$$\frac{\partial f}{\partial \hat{\beta}_1} = 0 : -2\sum (y_i - \hat{\beta}_1 x_i - \hat{\beta}_0)(-x_i) = 0$$
$$\sum x_i (y_i - \hat{\beta}_1 x_i - \hat{\beta}_0) = 0$$
$$\Rightarrow \sum (\hat{\beta}_1 x_i^2 + \hat{\beta}_0 x_i) = \sum (x_i y_i)$$

$$\frac{\partial f}{\partial \hat{\beta}_0} = 0 : -2\sum (y_i - \hat{\beta}_1 x_i - \hat{\beta}_0)(-1) = 0$$
$$\sum (y_i - \hat{\beta}_1 x_i - \hat{\beta}_0) = 0$$
$$\Rightarrow \sum (\hat{\beta}_1 x_i + \hat{\beta}_0) = \sum y_i$$

Design matrix of error function:
$$\sum_{i=1}^{n} \begin{bmatrix} x_i^2 & x_i \\ x_i & 1 \end{bmatrix} \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_0 \end{bmatrix} = \sum_{i=1}^{n} \begin{bmatrix} x_i y_i \\ y_i \end{bmatrix}$$

3. Examine the Hessian matrix to determine if the solutions are at a minimum, i.e.

$$\begin{bmatrix} \frac{\partial f}{\partial \hat{\beta}_0^2} & \frac{\partial^2 f}{\partial \hat{\beta}_0 \hat{\beta}_1} \\ \frac{\partial^2 f}{\partial \hat{\beta}_0 \hat{\beta}_1} & \frac{\partial f}{\partial \hat{\beta}_1^2} \end{bmatrix}$$
 is positive definite.

8.3 Least-squares estimates for β_0 and β_1

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{\sum x_i y_i - n \overline{x} \overline{y}}{\sum x_i^2 - n \overline{x}^2}$$

14

• $y = \hat{\beta}_0 + \hat{\beta}_1 x$ is called the estimated regression line or least-squares line

8.4 Residuals and fitted values

- Residual, $y_i \hat{y_i}$
 - The difference between the observed value y_i and the fitted value $\hat{y_i}$
 - $\circ\,$ Positive residual $\to\,$ observed point lies above the least-squares line
 - \circ Negative residual \rightarrow observed point lies below the least-squares line
- Sum of residuals, $y_i \hat{y}_i$
 - For an estimated regression line obtained by the least-squares method, the sum of residuals is zero:

$$\sum_{i=1}^{n} y_i - \hat{y_i} = 0$$

- Fitted values $\hat{y_i}$
 - \circ Obtained by substituting x_i into the regression line equation:

$$\hat{y_i} = \hat{\beta_0} + \hat{\beta_1} x_i$$

8.5 The simple linear regression model

ullet The simple linear regression model can be described by the model equation

$$Y = \beta_0 + \beta_1 x + \varepsilon$$

where ε represents uncertainty of the model and is a normal N(0, σ^2) RV.

- The line $y = \beta_0 + \beta_1 x$ is called the true/population regression line.
- Mean of Y, E(Y)

$$E(Y) = E(\beta_0 + \beta_1 x + \varepsilon)$$
$$= \beta_0 + \beta_1 x + E(\varepsilon)$$
$$= \beta_0 + \beta_1 x$$

• Variance of Y, V(Y)

$$V(Y) = V(\beta_0 + \beta_1 x + \varepsilon)$$
$$= 0 + V(\varepsilon)$$
$$= \sigma^2$$

8.6 Sum of squared error (SSE)

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \left[y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i) \right]^2$$

- \bullet Measures discrepancy between the data and the estimation model
- \bullet Small SSE \to tight fit of estimation model to data

8.7 Estimating σ^2 of regression model

• An unbiased estimate for σ^2 in the regression model is s^2 :

$$s^{2} = \frac{SSE}{n-2} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n-2}$$

- \bullet Estimating β_0 and β_1 results in the loss of 2 degrees of freedom
 - \circ Thus the denominator for s^2 is n-2