Exam 1, STAT 450

Due: Friday, October 11

Directions:

- This exam should be completed using Quarto and submitted to Canvas as self-contained HTML or PDF file.
- Your solutions to this exam must be your own work.
- Make sure your Quarto document is well-formatted: label each exercise with a header, use separate code chunks for your answers to each exercise, and any written analysis should be formatted as plain text outside of the code chunks. Points may be deducted for poor formatting.

First, load the following R packages:

```
library(tidyverse)
library(nycflights13)
```

All questions use the flights data set.

flights

A tibble: 336,776 x 19

	year	${\tt month}$	day	dep_time	sched_dep_time	dep_delay	arr_time	<pre>sched_arr_time</pre>
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>
1	2013	1	1	517	515	2	830	819
2	2013	1	1	533	529	4	850	830
3	2013	1	1	542	540	2	923	850
4	2013	1	1	544	545	-1	1004	1022
5	2013	1	1	554	600	-6	812	837
6	2013	1	1	554	558	-4	740	728
7	2013	1	1	555	600	-5	913	854
8	2013	1	1	557	600	-3	709	723
9	2013	1	1	557	600	-3	838	846
10	2013	1	1	558	600	-2	753	745

- # i 336,766 more rows
- # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
- # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time_hour <dttm>

Type help(flights) to read the documentation on this data set in the help menu.

Question 1 (30 points)

Use filter() to find all flights that

- (a) Flew to San Francisco International Airport (SFO).
- (b) Departed during the summer months (June, July, August).
- (c) Departed from LaGuardia Airport (LGA) on October 31, 2013.
- (d) Were operated by Southwest Airlines (WN), and had departure delays that were 30 or more minutes.
- (e) Were operated by Southwest Airlines (WN), and have missing values for the departure time. What do these rows represent?

Question 2 (25 points)

Use group_by() and summarize() to create a data frame with the following columns:

- Count of the number of flights for each carrier.
- Mean departure delay for each carrier.
- Mean arrival delay for each carrier.
- Count of the number of canceled flights for each carrier.

Your code should recreate the following table:

# A tibble: 16 x			5		
	carrier	count	dep_delay_mean	arr_delay_mean	canceled
	<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>	<int></int>
1	9E	18460	16.7	7.38	1044
2	AA	32729	8.59	0.364	636
3	AS	714	5.80	-9.93	2
4	B6	54635	13.0	9.46	466
5	DL	48110	9.26	1.64	349
6	EV	54173	20.0	15.8	2817
7	F9	685	20.2	21.9	3
8	FL	3260	18.7	20.1	73
9	HA	342	4.90	-6.92	0
10	MQ	26397	10.6	10.8	1234
11	00	32	12.6	11.9	3
12	UA	58665	12.1	3.56	686
13	US	20536	3.78	2.13	663
14	VX	5162	12.9	1.76	31
15	WN	12275	17.7	9.65	192
16	YV	601	19.0	15.6	56

Question 3 (10 points)

Refer to the data frame of grouped summary statistics that you created in Question 2. Use ggplot2 to make a scatter plot that shows the relationship between the mean departure delay and arrival delay for the different airline carriers. Map either the color or size of the points to the number of canceled flights. Write 2-3 sentences providing your interpretation of this plot. Bonus points may be awarded for including the labels for the different carriers in the scatter plot (Hint: use geom_text() and adjust the position of the labels so they don't overlap with the points).

Question 4 (10 points)

- (a) Which carriers had the greatest number of flights departing from New York City?
- (b) Which carriers had the longest average arrival delays?
- (c) Which carriers had the shortest average arrival delays? What do negative values represent?
- (d) Which carriers had the greatest number of canceled flights?

Hint: Use the pipe with arrange()

Question 5 (25 points)

Recreate the R code necessary to make the following graphs. In your submission, show both the R code and the graphs.

a

Bar plot of number of flights departing each hour of the day.

b

For each origin airport, bar plot of the number of flights departing each hour of the day.

C

Histogram of air time (in hours).

d

Stacked bar plot of number of flights for each carrier, with fill color corresponding to origin airport.

е

Stacked bar plot that shows proportions instead of counts.

