

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : A61K 45/06, 31/505, G01N 33/50		A3	(11) International Publication Number: WO 99/01118 (43) International Publication Date: 14 January 1999 (14.01.99)
(21) International Application Number: PCT/US98/13750 (22) International Filing Date: 1 July 1998 (01.07.98)		(81) Designated States: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HU, ID, IL, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(30) Priority Data: 08/886,653 1 July 1997 (01.07.97) US 08/967,492 11 November 1997 (11.11.97) US		Published With international search report.	
(71) Applicant (<i>for all designated States except US</i>): ATHERO-GENICS, INC. [US/US]; 3065 Northwoods Circle, Norcross, GA 30071 (US).		(88) Date of publication of the international search report: 22 April 1999 (22.04.99)	
(72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>): CHINERY, Rebecca [GB/US]; 1500 21st Avenue South #212, Nashville, TN (US). BEAUCHAMP, R., Daniel [US/US]; 928 Yearling Way, Nashville, TN 37221 (US). COFFEY, Robert, J. [US/US]; 125 Ridge Road, Woodside, CA 94062 (US). MEDFORD, Russell, M. [US/US]; 7935 Fawndale Way, Atlanta, GA 30350 (US). WADSINSKI, Brian [US/US]; 8217 Londonberry Road, Nashville, TN 37221 (US).			
(74) Agent: KNOWLES, Sherry, M.; King & Spalding, 191 Peachtree Street, Atlanta, GA 30303 (US).			

(54) Title: ANTIOXIDANT ENHANCEMENT OF THERAPY FOR HYPERPROLIFERATIVE CONDITIONS

(57) Abstract

A method to enhance the cytotoxic activity of an antineoplastic drug comprising administering an effective amount of the antineoplastic drug to a host exhibiting abnormal cell proliferation in combination with an effective cytotoxicity-increasing amount of an antioxidant. The invention also includes a method to decrease the toxicity to an antineoplastic agent or increase the therapeutic index of an antineoplastic agent administered for the treatment of a solid growth of abnormally proliferating cells, comprising administering an antioxidant prior to, with, or following the antineoplastic treatment.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 98/13750

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 A61K45/06 A61K31/505 G01N33/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 A61K C07K G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE WPI Section Ch, Week 9735 Derwent Publications Ltd., London, GB; Class B04, AN 97-373441 XP002080080 & CN 1 110 139 A (INST MEDICINAL BIOLOGICAL TECHNOLOGY CHI) , 18 October 1995 see abstract</p> <p>---</p> <p>-/-</p>	1-5, 9, 10, 22, 23, 25-28

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

21 January 1999

15.02.99

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx: 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Hoekstra, S

INTERNATIONAL SEARCH REPORT

Intern. Appl. No.
PCT/US 98/13750

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	BIOLOGICAL ABSTRACTS, vol. 82, Philadelphia, PA, US; abstract no. 82084938, RIPOLL E A P ET AL: "VITAMIN E ENHANCES THE CHEMOTHERAPEUTIC EFFECTS OF ADRIAMYCIN ON HUMAN PROSTATIC CARCINOMA CELLS IN-VITRO" XP002080075 see abstract & J UROL, vol. 136, no. 2, 1986, pages 529-531, ---	1-5,22, 23,25,27
X	DATABASE CANCERLIT NATIONAL CANCER INSTITUTE, BETHESDA, MD, US YASUNAGA T ET AL: "[VITAMIN E AND CANCER THERAPY - EXPERIMENTAL STUDY IN MICE]" XP002080079 see abstract & NIPPON GAN CHIRYO GAKKAI SHI;17(8):2074-2083 1982, ---	1-5,9, 10,22, 23,25-28
X	BIOLOGICAL ABSTRACTS, vol. 85, Philadelphia, PA, US; abstract no. 85106445, SZCZEPANSKA I ET AL.: "INHIBITION OF LEUKOCYTE MIGRATION BY CANCER CHEMOTHERAPEUTIC AGENTS AND ITS PREVENTION BY FREE RADICAL SCAVENGERS AND THIOLS" XP002080076 see abstract & EUROPEAN JOURNAL OF HAEMATOLOGY, vol. 40, no. 1, 1988, pages 69-74, ---	1-3,9, 10,22, 23,25,27
X	BIOLOGICAL ABSTRACTS, vol. 70, Philadelphia, PA, US; abstract no. 70052454, PRASAD K N ET AL.: "VITAMIN E INCREASES THE GROWTH INHIBITORY AND DIFFERENTIATING EFFECTS OF TUMOR THERAPEUTIC AGENTS ON NEURO BLASTOMA AND GLIOMA CELLS IN CULTURE" XP002080077 see abstract & PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE, vol. 164, no. 2, 1980, pages 158-164, ---	1-3,9, 10,22, 23,25-28
		-/-

INTERNATIONAL SEARCH REPORT

Inten
nal Application No
PCT/US 98/13750

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	BIOLOGICAL ABSTRACTS, vol. 88, Philadelphia, PA, US; abstract no. 88006807, DRAGO J R ET AL.: "CHEMOTHERAPY AND VITAMIN E IN TREATMENT OF NB RAT PROSTATE TUMORS" XP002080078 see abstract & IN VIVO (ATHENS), vol. 2, no. 6, 1988, pages 399-402, ---	1-3,9, 10,22, 23,25-28
X	US 5 294 430 A (BORCH RICHARD F ET AL) 15 March 1994 cited in the application see claims see column 2, line 30 - line 36	1-3,9, 10,16, 17,23, 25-28
X	BIOLOGICAL ABSTRACTS, vol. 96, Philadelphia, PA, US; abstract no. 98730849, CLOOS JACQUELINE JAN: "Influence of the antioxidant N-acetylcysteine and its metabolites on damage induced by bleomycin in PM2 bacteriophage DNA." XP002089730 see abstract & CARCINOGENESIS (OXFORD), 1996,	1-3,21, 23-28
X	H.D.RIORDAN ET AL.: "Case Study: High-Dose Intravenous Vitamin C in the Treatment of a Patient with Adenocarcinoma of the Kidney" J. ORTHOMOLECULAR MED., vol. 5, no. 1, 1990, pages 5-7, XP002074538 see page 6, column 1, paragraph 5 - page 6, column 2, paragraph 1	4,5,22
X	CAMPBELL A ET AL: "RETICULUM CELL SARCOMA: TWO COMPLETE "SPONTANEOUS" REGRESSIONS, IN RESPONSE TO HIGH-DOSE ASCORBIC ACID THERAPY" ONCOLOGY, vol. 48, no. 6, 1991, pages 495-497, XP002074537 see abstract ---	4,5,22
		-/-

INTERNATIONAL SEARCH REPORT

Internat.	Application No
PCT/US 98/13750	

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE WPI Section Ch, Week 9616 Derwent Publications Ltd., London, GB; Class B05, AN 96-157002 XP002089734 & JP 08 040888 A (AJINOMOTO KK) , 13 February 1996 see abstract ---	4,5,21
X	BIOLOGICAL ABSTRACTS, vol. 95, Philadelphia, PA, US; abstract no. 98363146, BONGERS V M (A): "Antioxidant-related parameters in patients treated for cancer chemoprevention with N-acetylcysteine." XP002089731 see abstract & EUROPEAN JOURNAL OF CANCER, 1995, vol. 31a, no. 6, pages 921-923, ---	4,5,21
X	OFFERMANN MARGARET K (A) JING: "Antioxidant-sensitive regulation of inflammatory-response genes in Kaposi's sarcoma cells." JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY, 1996, vol. 13, page 1-11 XP002089729 see page 8, column 1, paragraph 2 - page 9, column 1, paragraph 3 ---	4,5,16, 17
A	BIOLOGICAL ABSTRACTS, vol. 96, Philadelphia, PA, US; abstract no. 98730849, TYAGI SURESH C (A): "Reduction-oxidation (redox) state regulation of extracellular matrix metalloproteinases and tissue inhibitors in cardiac normal and transformed fibroblast cells." XP002089732 see abstract & JOURNAL OF CELLULAR BIOCHEMISTRY, 1996, vol. 61, no. 1, pages 139-151, ---	4,5,16, 17
A	BIOLOGICAL ABSTRACTS, vol. 94, Philadelphia, PA, US; abstract no. 97193049, ROESEL FRANK (A) RAINER: "Differential regulation of the JE gene encoding the monocyte chemoattractant protein (MCP-1) in cervical carcinoma cells and derived hybrids." XP002089733 see abstract & JOURNAL OF VIROLOGY, 1994, vol. 68, no. 4, pages 2142-2150, ---	4,5,16, 17

INTERNATIONAL SEARCH REPORT

Int'l. Appl. No.
PCT/US 98/13750

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 93 20691 A (TYKOCINSKI MARK L ;ILAN JOSEPH (US)) 28 October 1993 see page 5 - page 8, line 27; claim 8 ---	6,7
A	WO 95 09365 A (UNIV NEW YORK ;SUGEN INC (US); UNIV DUKE (US); SCHLESSINGER JOSEPH) 6 April 1995 see the whole document ---	6,7
A	KOWENS-LEUTZ, E. ET AL.: "Novel mechanism of C/EPBbeta (NF-M) transcriptional control: activation through derepression." GENES AND DEVELOPMENT, vol. 8, 1994, pages 2781-2791, XP002090664 see discussion see abstract ---	6
A	FAVRE, B. ET AL.: "The catalytic subunit of protein phosphatase 2A is carboxyl-methylated in vivo" THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 269, no. 23, 1994, pages 16311-16317, XP002090665 see discussion see the whole document ---	7
A	TRAUTWIEN, C. ET AL.: "Protein kinase A and C site-specific phosphorylations of LAP (NF-IL6) modulate its binding affinity to DNA recognition elements." THE JOURNAL OF CLINICAL INVESTIGATION, vol. 93, no. 6, June 1994, pages 2554 -2561, XP002090666 see the whole document -----	6

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 98/13750

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claims 1-5, 9-10, 12-30 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-3, 9-10, partially 16-30

Use of an antioxidant to enhance the cytotoxic effects of antineoplastic drugs.

2. Claims: 4, partially 16-22

Use of an antioxidant to increase the nuclear localization of C/EBP beta in cells.

3. Claims: 5, partially 16-22

Use of an antioxidant to inhibit the carboxymethylation of the catalytic subunit of protein phosphatase 2A by the methyltransferase which acts on protein phosphatase 2A

4. Claims: 5, partially 18-23

Assessment of a compound's ability to promote phosphorylation at Ser299 of c/EBP beta for the identification of compounds that increase the cytotoxicity of antineoplastic drugs.

5. Claims: 7, partially 23

Assessment of a compound's ability to inhibit the carboxymethylation of protein phosphatase 2A for the identification of compounds that increase the cytotoxicity of antineoplastic drugs.

6. Claims: 8,11-15, partially 24-30

Use of C/EBP beta, or a protein with substantial homology to C/EBP beta to provide means for treating a condition of abnormal cell proliferation.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intern. Appl. No.	
PCT/US 98/13750	

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5294430 A	15-03-1994	US 4938949 A US 5035878 A AT 119771 T AU 623184 B AU 4335589 A DE 68921760 D DK 44791 A EP 0433393 A JP 4500676 T WO 9002550 A US 5169765 A US 5187193 A AU 6647190 A WO 9105571 A US 5463392 A	03-07-1990 30-07-1991 15-04-1995 07-05-1992 02-04-1990 20-04-1995 10-05-1991 26-06-1991 06-02-1992 22-03-1991 08-12-1992 16-02-1993 16-05-1991 02-05-1991 31-10-1995
WO 9320691 A	28-10-1993	AU 4106393 A CA 2118123 A EP 0637201 A JP 7506002 T MX 9302294 A	18-11-1993 28-10-1993 08-02-1995 06-07-1995 28-02-1994
WO 9509365 A	06-04-1995	AU 693808 B AU 7846494 A CA 2172961 A CN 1137826 A EP 0721586 A JP 9505730 T	09-07-1998 18-04-1995 06-04-1995 11-12-1996 17-07-1996 10-06-1997

promoter with a two base pair mutation at the NF_{IL6} site. All reporter constructs were transfected into HCT 116 or HCT 15 cells, and antioxidant-induced luciferase activity was measured in relative light units (RLU) after 24 hours. Luciferase activity was normalized to CAT activity, and results were reported as fold activation above basal levels.

Figure 4B shows that pyrrolidinedithiocarbamate treatment induces C/EBP β DNA binding activity. Left panel: HCT 116 and HCT 15 cells were treated with 70 μ M pyrrolidinedithiocarbamate for the indicated times, nuclear extracts were incubated with a γ -³²P-labeled p21-NF_{IL6} oligonucleotide. Right panel: Lanes 1-3, competition controls were performed on a nuclear extract derived from HCT 116 cells treated with pyrrolidinedithiocarbamate for 12 hours (lane 1), with excess unlabeled wild-type (lane 2) and mutant (lane 3) oligonucleotide. Lanes 4-6, supershift analysis were performed with C/EBP α (lane 4), β (lane 5), or δ (lane 6) polyclonal antibodies.

Figure 4C and D shows that C/EBP β can stimulate p21^{WAF1/CIP1} promoter activity. HCT 116 (Fig. C) or HCT 15 (Fig. D) cells were transfected with the indicated amounts of cytomegalovirus (CMV) expression plasmids, containing C/EBP α , β or δ cDNAs, and 3 μ g of p21^{WAF1/CIP1}-luciferase. A control plasmid was included in Figure 4A.

Figure 4E shows that C/EBP β regulates cellular sensitivity to antioxidant-induced apoptosis. Control HCT 15 cells and sense or antisense C/EBP β cell lines were grown in the presence or absence of 10 μ M muristerone A and/or pyrrolidinedithiocarbamate (70 μ M) or vitamin E (3 mM) for 24 hours. The apoptotic

indices were estimated by the percentage of TUNEL-positive cells scored under a light microscope at 200-fold magnification and values are expressed as mean \pm s.e.m. for triplicate samples. The inset shows a representative Western blot for p21^{WAF1/CIP1} protein levels in both transfected cell lines, grown in the presence or absence of 10 μ M muristerone A.

5

Figure 4F shows that elevated C/EBP β protein levels enhance chemotherapeutic agent cytotoxicity *in vitro*. Control HCT 15 cells and the sense C/EBP β cell line were induced with 10 μ M muristerone A and exposed to either 5-FU (1.5 μ M) or doxorubicin (0.1 μ M) for 24 hours. The apoptotic index was calculated as 10 described in Figure 4C.

10

Figures 5a and 5b are bar graphs of the growth of BrDU-labelled cells (percent of total cell nuclei; BrDU refers to bromodeoxyuridine) from colorectal cell xenografts derived from athymic mice treated with saline, vitamin E, PDTC, 5-FU, and the combination of vitamin E and 5-FU, as a measure of the effect of the test 15 compound on proliferation of HCT 116 and HCT 15 cells.

15

Figures 6a and 6b are bar chart graphs of TUNEL-positive cells from colorectal cell xenografts derived from athymic mice (percent of total cell nuclei; TUNEL REFERS TO TdT-mediated dUTP-nick-end-labeling) treated with saline, vitamin E, PDTC, 5-FU, and the combination of vitamin E and 5-FU, as a measure of 20 the effect of the test compound on apoptosis. Tumor tissues were fixed overnight in 4% (v/v) paraformaldehyde and embedded in paraffin according to standard histological procedures. Sections were pretreated with 10 mM citrate buffer (pH 6.0)

and incubated with PC10 monoclonal antibody against BrDU (Boehringer Mannheim). TdT labeling of fragmented DNA (TUNEL) was performed according to manufacturer's instructions. The proliferative index (percent of total BrDU cell nuclei) and the apoptotic index (TUNEL) were estimated by the percentage of cells 5 scored under a microscope at 200-fold magnification.

Figures 7A-7D illustrate that PDTC treatment induces C/EBP β DNA binding activity via a post-translational modification. (A) DKO-1 cell were treated with 70 μ M PDTC for the indicated times, nuclear extracts were prepared with a [γ - 32 P]-labeled p21-NF_IL6 oligonucleotide (Lanes 1-9). Specificity assays: Lanes 10-12, 10 competition controls were performed on a nuclear extract derived from DKO-1 cells treated with PDTC for 3 hours (lane 5), with excess unlabeled wild-type (lane 11) and mutant (lane 12) oligonucleotide. Lanes 13-15, supershift analyses were performed with C/EBP α (lane 13), β (lane 14), or δ (lane 15) polyclonal antibodies. (B) Parallel DKO-1 cell cultures were treated with PDTC (70 μ M) for the indicated times. 15 Poly(A) was isolated and treatment-related variations in C/EBP β mRNA levels were evaluated by Northern blot analysis. IB15 is shown as a control for equivalent loading and transfer. (C) Parallel DKO-1 cultures were treated with PDTC (70 μ M) in the presence of [32 P]orthophosphate. C/EBP β from cytosolic and nuclear fractions were purified by immunoprecipitation from cells before (time 0) or at the indicated times 20 after PDTC treatment. Treatment-related variations in the localization of C/EBP β were analysed by SDS-PAGE followed by autoradiography or Western blot analysis (100 μ g of total cellular protein / lane). (D) DKO-1 cells were cultured in the

presence of PDTC (70 μ M) for 1 hour and then processed for immunocytochemistry to detect treatment-related differences in the compartmentalization of C/EBP β protein. In all experiments, parallel cultures treated with preimmune sera or primary anti-C/EBP β antisera that had been preincubated with *in vitro* translated C/EBP β protein 5 demonstrated no fluorescent signal after treatment with the secondary Cy3-conjugated antibody. Representative photomicrographs show anti-C/EBP β stained cells before and after PDTC treatment.

Figures 8A-8B illustrate the effect of PDTC on endogenous cAMP levels and PKA activity. DKO-1 cells were treated with 70 μ M PDTC for the indicated times. 10 Cell lysates were prepared and assayed for (A) endogenous cAMP levels or (B) PKA activity. The values are expressed as pmol mean per μ g protein \pm s.e.m. and are representative of three experiments carried out in quadruplicate.

Figures 9A-9C illustrate that PDTC phosphorylates C/EBP β at Ser²⁹⁹. (A) Endogenous C/EBP β from [³²P]orthophosphate-labeled DKO-1 cells (2 mCi/ml. 3 h) 15 that were treated with either 0 μ M (lane 1), 70 μ M PDTC (lane 2) or 50 μ M forskolin were immunoprecipitated with anti C/EBP β antibodies. Labeled proteins were visualized by SDS-PAGE followed by autoradiography. (B) Tryptic phosphopeptide maps of *in vivo* labeled epitope-tagged C/EBP β . Wild type (WT) and mutant (Ala²⁹⁹) C/EBP β , immunoprecipitated from PDTC treated or untreated DKO-1 cells with the 20 antibody to the FLAG-epitope, were digested with trypsin and the phosphopeptides separated by electrophoresis and thin-layer chromatography and visualized by autoradiography, X_{1,2} were constitutively phosphorylated. The level of

phosphopeptide X₃ was increased after PDTC treatment in cells transfected with the wild type, but not mutant, protein. The circle indicates the origin. (C) Comparison of the *in vivo* phosphorylation of wild type and Ala substitution mutants of C/EBP β from untreated cells and cells treated with PDTC. Autoradiography (top) and C/EBP β immunoblot (bottom) are shown.

5 Figures 10A-10B illustrate that PKA phosphorylation of C/EBP β is required for nuclear translocation. (A) Parallel DKO-1 cell cultures were treated with PDTC (0 or 70 μ M) for 3 hours. Poly(A)⁺ mRNA and protein were isolated from each group and treatment-related variations in C/EBP β mRNA and protein levels were evaluated by Northern or Western blot analysis. IB15 is shown as a control for equivalent loading and transfer. (B) DKO-1 cells were treated with PDTC (0 or 70 μ M) or PDTC and mPKI (myristylated protein kinase A inhibitor; 1 μ M) for 3 hours. Cells were fixed with paraformaldehyde and C/EBP β protein visualized by immunofluorescence staining. Treatment of cells with mPKI alone failed to induce nuclear translocation of C/EBP β (data not shown).

10 Figure 11 illustrates that carboxymethylation of the catalytic subunit of protein phosphatase 2A is inhibited by PDTC. DKO-1 cells were incubated in serum-containing media containing [methyl-³H]S-adenosyl methionine and/or 70 μ M PDTC for three hours. Cytosolic or nuclear fractions were prepared and C/EBP β immunoprecipitated using standard methods. Antibody/antigen complexes were resolved by SDS-PAGE and the presence of PP2Ac was detected by fluorography.

PDTc inhibited carboxymethylation of PP2A subunit in nuclear fractions and to a lesser extent, in cytosolic fractions.

Figure 12 illustrates that PDTc inhibits methyltransferase activation of PP2Ac. PP2A (a and c dimer) was incubated in the presence of [methyl-³H]S-adenosyl methionine, increasing concentrations of PDTc and partially purified rat methyltransferase for thirty minutes at 37 degrees C. The reaction was terminated by the addition of SDS-sample buffer. Samples were resolved by SDS-PAGE and the presence of methylated PP2A catalytic subunit visualized by fluorography. As indicated, PDTc selectively inhibits the ability of methyltransferase to carboxymethylate the catalytic subunit of PP2A in a dose dependent manner.

Figure 13 is a graph of time in hours versus percent radioactivity remaining on the protein substrate. The figure indicates that PDTc inhibits PP2A, but not PP1, activity. The activity of PDTc is compared to I2 (a selective PP1 inhibitor), okadaic acid (an inhibitor of both PP2A and PP1), I2 and PDTc, and okadaic acid and PDTc. DKO-1 cells were grown in the presence of PDTc (test) or not (control). The cells were lysed, and then radioactive phosphorylated C/EBPβ was added. The test compounds were then added, and incubated with the lysate. The protein was collected and the amount of radioactive phosphate remaining in the protein measured.

Figure 14 illustrates that the transcription factor C/EBPβ is complexed with the PP2Ac protein phosphatase. Rat brain soluble extracts were fractionated by phenyl-Sepharose and analyzed for methyltransferase activity using exogenous PP2A heterodimer (a-c complex). The peak of methyltransferase activity was further

fractionated by Source Q, a strong anion exchange, and gel filtration chromatography.

The partially purified methyltransferase illustrated in Figure 14 represents the peak methyltransferase activity from the gel filtration column. This peak fraction of methyltransferase activity is taken further to DEAE, a weak anion exchange, and

- 5 MonoQ, a different strong anion exchange resin, columns. Both C/EBP β and PP2A are detectable following these additional steps. Rat brain extracts are shown as a positive control (C/EBP β and PP2Ac migrate at approximately 45 and 36 kDa on SDS-PAGE).

DETAILED DESCRIPTION OF THE INVENTION

10 It has been discovered that antioxidants induce cell cycle arrest and apoptosis in abnormally proliferating cells through a mechanism mediated by the activation of the transcription factor C/EBP β that binds to a specific site in the p21 promoter to induce p21 expression independent of p53. It has also been discovered that a site-selective phosphorylation at Ser²⁹⁹ of C/EBP β by protein kinase A following antioxidant
15 treatment is essential for the observed nuclear translocation of this protein.

It has also been discovered that antioxidants prevent the dephosphorylation of C/EBP β in the nucleus (and thus deactivation and delocalization) through the inhibition of PP2A. The inhibition of PP2A activity is caused by a decrease in methyltransferase activity, an enzyme which carboxymethylates the catalytic subunit
20 of PP2A, which is involved in maintaining PP2A in an active form. Decreased methylcarboxylation results in decreased PP2A enzymatic dephosphorylation of C/EBP β as a substrate. By simultaneously inducing the phosphorylation of C/EBP β

and inhibiting the dephosphorylation of C/EBP β , antioxidants maintain C/EBP β in an active state in the nucleus of the cell, which induces the continued expression of p21^{WAF1/CIP1} and subsequent cell cycle arrest.

The methyltransferase responsible for PP2A subunit carboxymethylation *in vivo* and *in vitro* represents a unique type of carboxyl methyltransferase. The 5 mammalian type II and type III carboxyl methyltransferases appear to have substantially different properties from the enzyme that carboxymethylates the PP2Ac subunit. Protein carboxyl methyltransferase type II modifies D-aspartyl and L-isoaspartyl residues that accumulate in proteins with aging, and, therefore methylates a 10 different protein containing these amino acids. Carboxyl methyltransferase type III modifies proteins at cysteine, proceeding to the carboxyl terminus of proteins (G-proteins), and requires isoprenylation of cysteine and proteolytic cleavage of the last three carboxyl-terminal residues. Activity of this carboxyl methyltransferase is not altered by antioxidant treatment of colorectal cancer cell line DKO-1 *in vitro*. 15 Therefore, *in vitro* data suggests that antioxidants selectively inhibit the methyltransferase responsible for PP2Ac, but not G-protein, methylation.

A novel higher order protein complex has also been identified that consists of C/EBP β , PP2A, and methyltransferase. Thus, another embodiment of this invention is this novel complex in isolated form, for example in at least 70%, and preferably 80 or 20 90% purity. A method for isolating this enzyme is provided in Example 27.

I. Embodiments of the Invention

Based on the fundamental discoveries described herein, a method for increasing the localization of the C/EBP β protein in the nucleus of a cell is presented that includes the step of administering an antioxidant to the interior of the cell. It has been 5 discovered that this method maintains the C/EBP β protein in an active, phosphorylated state, which induces cell growth arrest and apoptosis.

In one embodiment, the invention is a method to enhance the cytotoxic activity of an antineoplastic drug comprising administering an effective amount of the antineoplastic drug to a host in need of treatment in combination with an effective 10 cytotoxicity-increasing amount of an antioxidant. It has been discovered that antioxidants, including those specifically disclosed herein, induce cell cycle arrest (G1, G2, S and M type), and thus are useful to enhance the efficacy of antineoplastic drugs for the treatment of disorders associated with abnormal cell proliferation. It has been discovered that this method maintains the C/EBP β protein in an active, 15 phosphorylated state, which induces cell growth arrest and apoptosis. In an alternative embodiment, a method is presented to increase the cytotoxicity of an antineoplastic or chemotherapeutic agent against a disorder of abnormal cell hyperproliferation, that includes increasing the phosphorylation state of C/EBP β protein in a host, for example, an individual or animal in need of such treatment, comprising the step of 20 administering to said individual or animal a cytotoxicity-increasing dose of an antioxidant in combination or alternation with a pharmacologically effective dose of a chemotherapeutic agent.

In another embodiment, the invention is directed to a method of treating a host having a neoplastic condition, comprising the step of administering to the host a therapeutically effective dose of a cytotoxic chemotherapeutic therapy and an antioxidant, wherein the cytotoxic chemotherapeutic therapy is selected from the group consisting of cancer chemotherapeutic agents and radiation therapy.

5 Representative cancer chemotherapeutic agents and antioxidants are listed below.

Any radiation therapy that ameliorates a condition of abnormal cellular proliferation is appropriate for use in this method, including ionizing radiation that is particulate or electromagnetic. Suitable and effective dosages of radiation therapy for a wide variety 10 of neoplastic conditions are well known. In one nonlimiting embodiment, radiation therapy is gamma irradiation given at a dose of from about 3,000 centigrey to about 5,000 centigrey over an appropriate time frame, for example, up to six weeks.

The present invention is also directed to a method of increasing expression of the p21 protein as a means to arrest cell growth and induce apoptosis in an individual 15 in need of such treatment, comprising the step of administering to said individual a pharmacologically effective dose of an antioxidant, or a combination of an antioxidant and an antineoplastic agent.

The present invention is further directed to a method of regulating cell cycle 20 arrest (G_1 , G_2 , S or M) and apoptosis in an individual in need of such treatment, comprising the step of administering to said individual a pharmacologically effective dose of an antioxidant or a combination of an antioxidant and a antineoplastic agent.

In another embodiment, therapeutic efficacy may be achieved by administration of an effective amount of C/EBP β , or a protein with substantial homology to C/EBP β , to achieve the effects described in detail herein. The protein or protein analog can be administered alone or as an adjunct to antineoplastic therapy. A 5 protein with substantial homology to C/EBP β is defined herein as consisting of or containing a peptide sequence of the form -X1-Arg-X2-Ser-X3 wherein X2 is the C/EBP β amino acid at position 298, and X1 and X3 represent flanking peptide sequences with substantial homology to those of C/EBP β . The term substantial homology refers to a protein or peptide sequence that performs substantially the same 10 function as the parent sequence and has at least 60%, or more preferably, 75%, and most preferably, 90% or 95% or greater, sequence identity. Methods for the effective delivery of proteins are known and can be employed in conjunction with this embodiment to enhance the efficacy of this therapy.

In another embodiment, a synthetic Ser299 phosphorylated C/EBP β analog can 15 be administered that has a stabilized phosphate bond that is resistant to dephosphorylation. Such stabilized phosphates include, but are not limited to, phosphoroamidates and phosphonate analogs.

The invention also provides a method of inhibiting protein phosphatase 2A (PP2A) in a cell that includes administering to the interior of the cell a protein 20 phosphatase-inhibiting amount of an antioxidant. In an alternative embodiment of this aspect of the invention, a method of decreasing the carboxymethylation status of the

catalytic subunit of PP2A is provided that includes contacting a cell with a methyltransferase- or methylesterase-inhibiting amount of an antioxidant.

In one pathway which may not be exclusive, it has been discovered that antioxidants increase the cytotoxicity of antineoplastic drugs through a cascade of events that include: (i) increasing the level of cAMP, which causes the activation of protein kinase A, an enzyme which phosphorylates C/EBP β , which on phosphorylation is then translocated from the cytosol to the nucleus of the cell wherein it mediates the induction of p21, which causes an arrest of cell growth; and (ii) preventing the dephosphorylation of C/EBP β in the nucleus (and thus deactivation and delocalization) through the inhibition of PP2A. The inhibition of PP2A activity is caused by a decrease in methyltransferase activity, an enzyme which carboxymethylates the catalytic subunit of PP2A, which is involved in maintaining PP2A in an active form. Decreased methylcarboxylation results in decreased PP2A enzymatic dephosphorylation of C/EBP β as a substrate. By simultaneously inducing the phosphorylation of C/EBP β and inhibiting the dephosphorylation of C/EBP β , antioxidants maintain C/EBP β in an active state in the nucleus of the cell, which induces the continued expression of p21^{WAF1/CIP1} and subsequent cell cycle arrest.

Based on this discovery, a method for the identification of therapeutically effective compounds for the treatment of abnormal cell proliferation is presented that includes assessing the compound's ability to increase the localization of the C/EBP β protein in the nucleus of a cell. In an alternative embodiment, a method for the identification of therapeutically effective compounds for the treatment of abnormal

cell proliferation is presented that includes assessing the compound's ability to increase the phosphorylation at Ser²⁹⁹ of C/EBPβ. This method includes incubating a selected cell line with a test compound for a predetermined time (for example three hours) at 37 degrees C followed by immunoprecipitation of C/EBPβ from the nuclear fraction. Tryptic digestion and thin layer chromatography is then carried out to confirm phosphorylation of C/EBPβ.

Based on the discoveries described in detail herein, one of ordinary skill will understand that the invention further includes, but is not limited to the following aspects.

- 10 (i) A method for the identification of therapeutically effective compounds by assessing the ability of the compound to alter the phosphorylation status of C/EBPβ at Ser²⁹⁹. In this method, the test compound is included in a solution that contains at least phosphorylated C/EBPβ, a dimeric form of protein phosphatase 2A containing a and c subunits, methyltransferase and [methyl-³H]S-adenosyl methionine.
- 15 (ii) A method for the identification of therapeutically effective compounds by assessing the ability of the compound to inhibit protein phosphatase 2a activity, using the method described in (1) or another protocol known or obvious to those skilled in the art.
- 20 (iii) A method for the identification of therapeutically effective compounds by assessing the ability of the compound to alter the carboxymethylation status of protein phosphatase 2a.

- (iv) A method for the identification of therapeutically effective compounds by assessing the ability of the compound to alter the activity of methyltransferase.
- (v) A peptide sequence of the form -X1-Arg-X2-Ser-X3 wherein X2 is the C/EBP- β amino acid at position 298, and X1 and X3 represent flanking peptide sequences with substantial homology to C/EBP β .
- (vi) A method for the enhancement the phosphorylation status and functionality of C/EBP β induced by mediators including, but not limited to, cAMP dependent protein kinases, protein kinase C, ras-dependent MAP kinase and calcium-calmodulin dependent kinase, in an individual or animal in need of such treatment comprising the step of administering to said individual or animal a pharmacologically effective dose of an antioxidant that increases the nuclear residence time and functionality of C/EPB- β .
- (vii) A method for the enhancement of the phosphorylation status and functionality of C/EBP- β induced by, but not limited to, cAMP dependent protein kinases, protein kinase C, ras-dependent MAP kinase and calcium-calmodulin dependent kinase, in an individual or animal in need of such treatment comprising the step of administering to said individual or animal a pharmacologically effective dose of an antioxidant.
- (viii) A method for the treatment of a host, for example, an individual or animal, at risk for developing or exhibiting a neoplastic condition comprising the step of administering to said individual or animal a pharmacologically effective dose of an

antioxidant.

(ix) A method for the treatment of individuals or animals at risk for developing a neoplastic condition that includes increasing the nuclear localization of C/EBP β expression and function.

5 (x) A method for the treatment of individuals with a disorder of abnormal cell proliferation, including but not limited to benign and malignant tumors, that includes the step of administering to said individual or animal a pharmacologically effective dose of a therapeutic that increases the nuclear residence time of C/EPB β , and wherein the therapeutic is either an antioxidant alone or a combination of an antioxidant and
10 antineoplastic agent.

(xi) A method for the diagnosis and assessment of response to treatment of individuals with neoplastic and cell proliferative diseases through the measurement either alone or in combination, of C/EBP β activation, phosphorylation and nuclear residence time of C/EBP β , PP2A inhibition of carboxymethylation of the catalytic
15 subunit of PP2A, and inhibition of methyltransferase or methylesterase activity.

II. ANTIOXIDANTS

As used herein, the term antioxidant refers to a substance that prevents the oxidation of an oxidizable compound under physiological conditions. In one embodiment, a compound is considered an antioxidant for purposes of this disclosure if it reduces endogenous oxygen radicals *in vitro*. The antioxidant can be added to a cell extract under oxygenated conditions and the effect on an oxidizable compound

evaluated. As nonlimiting examples, antioxidants scavenge oxygen, superoxide anions, hydrogen peroxide, superoxide radicals, lipooxide radicals, hydroxyl radicals, or bind to reactive metals to prevent oxidation damage to lipids, proteins, nucleic acids, etc. The term antioxidant includes, but is not limited to, the following classes of compounds.

5 A) Dithiocarbamates

Dithiocarbamates have been extensively described in patents and in scientific literature. Dithiocarbamates and related compounds have been reviewed extensively for example, by G. D. Thorn et al entitled "The Dithiocarbamates and Related Compounds," Elsevier, New York, 1962. U.S. Patent Nos. 5,035,878 and 5,294,430 disclose that dithiocarbamates can reverse the damage to the blood-forming function of the bone marrow (myelosuppression) caused by treatment with antineoplastic agents. All of the pharmaceutically acceptable dithiocarbamates disclosed in these two patents which increase the nuclear localization of C/EBP β are suitable for use in 15 this invention, and are incorporated herein by reference.

Active Compounds

Dithiocarbamates are transition metal chelators clinically used for heavy metal intoxication. Baselt, R.C., F.W.J. Sunderman, et al. (1977), "Comparisons of antidotal 20 efficacy of sodium diethyldithiocarbamate, D-penicillamine and triethylenetetramine upon acute toxicity of nickel carbonyl in rats." Res Commun Chem Pathol Pharmacol 18(4): 677-88; Menne, T. and K. Kaaber (1978), "Treatment of pompholyx due to

nickel allergy with chelating agents." Contact Dermatitis 4(5): 289-90; Sunderman, F.W. (1978), "Clinical response to therapeutic agents in poisoning from mercury vapor" Ann Clin Lab Sci 8(4): 259-69; Sunderman, F.W. (1979), "Efficacy of sodium diethyldithiocarbamate (dithiocarb) in acute nickel carbonyl poisoning." Ann Clin Lab Sci 9(1): 1-10; Gale, G.R., A.B. Smith, et al. (1981), "Diethyldithiocarbamate in treatment of acute cadmium poisoning." Ann Clin Lab Sci 11(6): 476-83; Jones, M.M. and M.G. Cherian (1990), "The search for chelate antagonists for chronic cadmium intoxication." Toxicology 62(1): 1-25; Jones, S.G., M.A. Basinger, et al. (1982), "A comparison of diethyldithiocarbamate and EDTA as 10 antidotes for acute cadmium intoxication." Res Commun Chem Pathol Pharmacol 38(2): 271-8; Pages, A., J.S. Casas, et al. (1985), "Dithiocarbamates in heavy metal poisoning: complexes of N,N-di(1-hydroxyethyl)dithiocarbamate with Zn(II), Cd(II), Hg(II), CH₃Hg(II), and C₆H₅Hg(II)." J. Inorg Biochem 25(1): 35-42; Tandon, S.K., N.S. Hashmi, et al. (1990), "The lead-chelating effects of substituted 15 dithiocarbamates." Biomed Environ Sci 3(3): 299-305.

Dithiocarbamates have also been used adjunctively in cis-platinum chemotherapy to prevent renal toxicity. Hacker, M.P., W.B. Ershler, et al. (1982). "Effect of disulfiram (tetraethylthiuram disulfide) and diethyldithiocarbamate on the bladder toxicity and antitumor activity of cyclophosphamide in mice." Cancer Res 20 42(11): 4490-4. Bodenner, 1986 #733; Saran, M. and Bors, W. (1990). "Radical reactions *in vivo*--an overview." Radiat. Environ. Biophys. 29(4):249-62.

A dithiocarbamate currently used in the treatment of alcohol abuse is disulfiram, a dimer of diethyldithiocarbamate. Disulfiram inhibits hepatic aldehyde dehydrogenase. Inoue, K., and Fukunaga, et al., (1982). "Effect of disulfiram and its reduced metabolite, diethyldithiocarbamate on aldehyde dehydrogenase of human erythrocytes." Life Sci 30(5): 419-24.

5 It has been reported that dithiocarbamates inhibit HIV virus replication, and also enhance the maturation of specific T cell subpopulations. This has led to clinical trials of diethyldithiocarbamate in AIDS patient populations. Reisinger, E., et al., (1990). "Inhibition of HIV progression by dithiocarb." Lancet 335: 679.

10 Dithiocarboxylates are compounds of the structure A-SC(S)-B, which are members of the general class of compounds known as thiol antioxidants, and are alternatively referred to as carbodithiols or carbodithiolates. It appears that the -SC(S)- moiety is essential for therapeutic activity, and that A and B can be any group that does not adversely affect the efficacy or toxicity of the compound.

15 In an alternative embodiment, one or both of the sulfur atoms in the dithiocarbamate is replaced with a selenium atom. The substitution of sulfur for selenium may decrease the toxicity of the molecule in certain cases, and may thus be better tolerated by the patient.

A and B can be selected by one of ordinary skill in the art to impart desired characteristics to the compound, including size, charge, toxicity, and degree of stability, (including stability in an acidic environment such as the stomach, or basic environment such as the intestinal tract). The selection of A and B will also have an

important effect on the tissue-distribution and pharmacokinetics of the compound.

The compounds are preferably eliminated by renal excretion.

An advantage in administering a dithiocarboxylate pharmaceutically is that it does not appear to be cleaved enzymatically *in vivo* by thioesterases, and thus may exhibit a prolonged halflife *in vivo*.

In a preferred embodiment, A is hydrogen or a pharmaceutically acceptable cation, including but not limited to sodium, potassium, calcium, magnesium, aluminum, zinc, bismuth, barium, copper, cobalt, nickel, or cadmium; a salt-forming organic acid, typically a carboxylic acid, including but not limited to acetic acid, oxalic acid, tartaric acid, succinic acid, malic acid, ascorbic acid, benzoic acid, tannic acid, pamoic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid, or polygalacturonic acid; or a cation formed from ammonia or other nitrogenous base, including but not limited to a nitrogenous heterocycle, or a moiety of the formula $NR^4R^5R^6R^7$, wherein R⁴, R⁵, R⁶, and R⁷ are independently hydrogen, C₁₋₆ linear, branched, or (in the case of C₄₋₆) cyclic alkyl, hydroxy(C₁₋₆)alkyl (wherein one or more hydroxyl groups are located on any of the carbon atoms); or aryl, N,N-dibenzylethylene-diamine, D-glucosamine, choline, tetraethylammonium, or ethylenediamine.

In another embodiment, A can be a physiologically cleavable leaving group that can be cleaved *in vivo* from the molecule to which it is attached, and includes but is not limited to acyl (including acetyl, propionyl, and butyryl), alkyl, phosphate, sulfate or sulfonate.

In one embodiment, B is alkyl, alkenyl, alkynyl, alkaryl, aralkyl, haloalkyl, haloalkenyl, haloalkynyl, aryl, alkaryl, hydrogen, C₁₋₆ alkoxy-C₁₋₁₀ alkyl, C₁₋₆ alkylthio-C₁₋₁₀ alkyl, NR²R³, -(CHOH)_nCH₂OH, wherein n is 0, 1, 2, 3, 4, 5, or 6, - (CH₂)_nCO₂R¹, including alkylacetyl, alkylpropionyl, and alkylbutyryl, or hydroxy(C₁₋₆ alkyl- (wherein one or more hydroxyl groups are located on any of the carbon atoms).

In another embodiment, B is NR²R³, wherein R² and R³ are independently alkyl; -(CHOH)_n(CH₂)_nOH, wherein n is 0, 1, 2, 3, 4, 5, or 6; -(CH₂)_nCO₂R¹, -(CH₂)_nCO₂R⁴; hydroxy(C₁₋₆)alkyl-; alkenyl (including but not limited to vinyl, allyl, and CH₃CH=CH-CH₂.CH₂); alkyl(CO₂H), alkenyl(CO₂H), alkynyl(CO₂H), or aryl, wherein the aryl group can be substituted as described above, notably, for example, with a NO₂, CH₃, t-butyl, CO₂H, halo, or p-OH group; or R² and R³ can together constitute a bridge such as -(CH₂)_m- , wherein m is 3, 4, 5, 6, 7, 8, 9, or 10, and wherein R⁴ is alkyl, aryl, alkaryl, or aralkyl, including acetyl, propionyl, and butyryl.

In yet another embodiment, B can be a heterocyclic or alkylheterocyclic group. The heterocycle can be optionally partially or totally hydrogenated. Nonlimiting examples are those listed above, including phenazine, phenothiazine, pyridine and dihydropyridine.

In still another embodiment, B is the residue of a pharmaceutically-active compound or drug. The term drug, as used herein, refers to any substance used internally or externally as a medicine for the treatment, cure, or prevention of a disease

or disorder. The -C(S)SA group can be directly attached to the drug, or attached through any suitable linking moiety.

In another embodiment, the dithiocarbamate is an amino acid derivative of the structure $\text{AO}_2\text{C}-\text{R}^9-\text{NR}^{10}-\text{C}(\text{S})\text{SA}$, wherein R_9 is a divalent B moiety, a linking moiety, or the internal residue of any of the naturally occurring amino acids (for example, CH₃CH for alanine, CH₂ for glycine, CH(CH₂)₄NH₂ for lysine, etc.), and R¹⁰ is hydrogen or lower alkyl.

B can also be a polymer to which one or more dithiocarbamate groups are attached, either directly, or through any suitable linking moiety. The dithiocarbamate is preferably released from the polymer under *in vivo* conditions over a suitable time period to provide a therapeutic benefit. In a preferred embodiment, the polymer itself is also degradable *in vivo*. The term biodegradable or bioerodible, as used herein, refers to a polymer that dissolves or degrades within a period that is acceptable in the desired application (usually *in vivo* therapy), usually less than five years, and preferably less than one year, on exposure to a physiological solution of pH 6-8 having a temperature of between 25 and 37°C. In a preferred embodiment, the polymer degrades in a period of between 1 hour and several weeks, according to the application.

A number of degradable polymers are known. Nonlimiting examples are peptides, proteins, nucleoproteins, lipoproteins, glycoproteins, synthetic and natural polypeptides and polyamino acids, including but not limited to polymers and copolymers of lysine, arginine, asparagine, aspartic acid, cysteine, cystine, glutamic

acid, glutamine, hydroxylysine, serine, threonine, and tyrosine; polyorthoesters, including poly(a-hydroxy acids), for example, polylactic acid, polyglycolic acid, poly(lactide-co-glycolide), polyanhydrides, albumin or collagen, a polysaccharide containing sugar units such as lactose, and polycaprolactone. The polymer can be a
5 random or block copolymer.

B can also be a group that enhances the water solubility of the dithiocarbamate, for example, -lower alkyl-O-R⁸, wherein R⁸ is -PO₂(OH)M⁺ or PO₃(M⁺)₂ wherein M⁺ is a pharmaceutically acceptable cation; -C(O)(CH₂)₂CO₂M⁺, or -SO₃M⁺; -lower alkylcarbonyl-lower alkyl; -carboxy lower alkyl; -lower alkylamino-lower alkyl; N,N-
10 di-substituted amino lower alkyl-, wherein the substituents each independently represent lower alkyl; pyridyl-lower alkyl-; imidazolyl-lower alkyl-; imidazolyl-Y-lower alkyl wherein Y is thio or amino; morpholinyl-lower alkyl; pyrrolidinyl-lower alkyl; thiazolinyl-lower alkyl-; piperidinyl-lower alkyl; morpholinyl-lower hydroxyalkyl; N-pyrrolyl; piperazinyl-lower alkyl; N-substituted piperazinyl-lower
15 alkyl, wherein the substituent is lower alkyl; triazolyl-lower alkyl; tetrazolyl-lower alkyl; tetrazolylamino-lower alkyl; or thiazolyl-lower alkyl.

In an alternative embodiment, a dimer such as B-C(S)S-SC(S)-B can be administered.

The term "alkyl," as used herein, unless otherwise specified, refers to a
20 saturated straight, branched, or cyclic (in the case of C₅ or greater) hydrocarbon of C₁ to C₁₀ (or lower alkyl, i.e., C₁ to C₅), which specifically includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl,

isohexyl, cyclohexyl, cyclohexylmethyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3-dimethylbutyl. The alkyl group can be optionally substituted on any of the carbons with one or more moieties selected from the group consisting of hydroxyl, amino, or mono- or disubstituted amino, wherein the substituent group is independently alkyl, 5 aryl, alkaryl or aralkyl; aryl, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene, et al., "Protective Groups in Organic Synthesis," John Wiley and Sons, Second Edition, 1991.

10 The term "alkenyl," as referred to herein, and unless otherwise specified, refers to a straight, branched, or cyclic hydrocarbon of C₂ to C₁₀ with at least one double bond.

The term "alkynyl," as referred to herein, and unless otherwise specified, refers to a C₂ to C₁₀ straight or branched hydrocarbon with at least one triple bond.

15 The term "aralkyl" refers to an aryl group with at least one alkyl substituent.

The term "alkaryl" refers to an alkyl group that has at least one aryl substituent.

The term "halo (alkyl, alkenyl, or alkynyl)" refers to an alkyl, alkenyl, or alkynyl group in which at least one of the hydrogens in the group has been replaced with a halogen atom.

20 The term "aryl," as used herein, and unless otherwise specified, refers to phenyl, biphenyl, or napthyl, and preferably phenyl. The aryl group can be optionally substituted with one or more moieties selected from the group consisting of alkyl,

hydroxyl, amino, alkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, CO₂H, or its pharmaceutically acceptable salt, CO₂(alkyl, aryl, alkaryl or aralkyl), or glucamine, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught 5 in Greene, et al., "Protective Groups in Organic Synthesis," John Wiley and Sons, Second Edition, 1991.

The term "alkoxy," as used herein, and unless otherwise specified, refers to a moiety of the structure -O-alkyl.

10 The term "acyl", as used herein, refers to a group of the formula C(O)R', wherein R' is an alkyl, aryl, alkaryl or aralkyl group.

The term "heterocyclic" as used herein, refers to an aromatic moiety that includes at least one sulfur, oxygen, or nitrogen in the aromatic ring. Nonlimiting examples are phenazine, phenothiazine, furyl, pyridyl, pyrimidyl, thienyl, isothiazolyl, imidazolyl, tetrazolyl, pyrazinyl, benzofuranyl, benzothiophenyl, quinolyl, 15 isoquinolyl, benzothienyl, isobenzofuryl, pyrazolyl, indolyl, isoindolyl, benzimidazolyl, purinyl, morpholinyl, carbozolyl, oxazolyl, thiazolyl, isothiazolyl, 1,2,4-thiadiazolyl, isooxazolyl, pyrrolyl, pyrazolyl, quinazolinyl, pyridazinyl, pyrazinyl, cinnolinyl, phthalazinyl, quinoxalinyl, xanthinyl, hypoxanthinyl, pteridinyl, 20 5-azacytidinyl, 5-azauracilyl, triazolopyridinyl, imidazolopyridinyl, pyrrolopyrimidinyl, pyrazolopyrimidinyl, adenine, N⁶-alkylpurines, N⁶-benzylpurine, N⁶-halopurine, N⁶-vinylpurine, N⁶- acetylenic purine, N⁶-acyl purine, N⁶-hydroxyalkyl purine, N⁶-thioalkyl purine, thymine, cytosine, 6-azapyrimidine, 2-

mercaptopyrimidine, uracil, N⁵-alkylpyrimidines, N⁵-benzylpyrimidines, N⁵-halopyrimidines, N⁵-vinylpyrimidine, N⁵-acetylenic pyrimidine, N⁵-acyl pyrimidine, N⁵-hydroxyalkyl purine, and N⁶-thioalkyl purine, and isoxazolyl. The heterocyclic group can be optionally substituted as described above for aryl. The heterocyclic group can be partially or totally hydrogenated as desired. As a nonlimiting example, dihydropyridine can be used in place of pyridine. Functional oxygen and nitrogen groups on the heterocyclic base can be protected as necessary or desired during the reaction sequence. Suitable protecting groups are well known to those skilled in the art, and include trimethylsilyl, dimethylhexylsilyl, t-butyldimethylsilyl, and t-butylidiphenylsilyl, tritylmethyl, alkyl groups, acyl groups such as acetyl and propionyl, methylsulfonyl, and p-toluylsulfonyl.

The term "hydroxyalkyl," as used herein, refers to a C₁ to C₆ alkyl group in which at least one of the hydrogens attached to any of the carbon atoms is replaced with a hydroxy group.

The term "pharmaceutically acceptable derivative" refers to a derivative of the active compound that upon administration to the recipient, is capable of providing directly or indirectly, the parent compound, or that exhibits activity itself.

The term "pharmaceutically acceptable cation" refers to an organic or inorganic moiety that carries a positive charge and that can be administered in association with a pharmaceutical agent, for example, as a counterion in a salt. Pharmaceutically acceptable cations are known to those of skill in the art, and include but are not limited to sodium, potassium, and quaternary amine.

The term "physiologically cleavable leaving group" refers to a moiety that can be cleaved *in vivo* from the molecule to which it is attached, and includes but is not limited to an organic or inorganic anion, a pharmaceutically acceptable cation, acyl (including but not limited to (alkyl)C(O), including acetyl, propionyl, and butyryl), alkyl, phosphate, sulfate and sulfonate.

The term "enantiomerically enriched composition or compound" refers to a composition or compound that includes at least 95%, and preferably at least 97, 98, 99, or 100% by weight of a single enantiomer of the compound.

The term "amino acid" includes synthetic and naturally occurring amino acids, including but not limited to, for example, alanyl, valinyl, leucinyl, isoleucinyl, prolinyl, phenylalaninyl, tryptophanyl, methioninyl, glyciny, serinyl, threoninyl, cysteinyl, tyrosinyl, asparaginyl, glutaminyl, aspartoyl, glutaoyl, lysinyl, argininy, and histidinyl.

A "linking moiety" as used herein, is any divalent group that links two chemical residues, including but not limited to alkyl, alkenyl, alkynyl, aryl, polyalkyleneoxy (for example, $-[(CH_2)_nO-]_n-$), $-C_{1-6}alkoxy-C_{1-10}alkyl-$, $-C_{1-6}alkylthio-C_{1-10}alkyl-$, $-NR^3-$, and $-(CHOH)_nCH_2OH$, wherein n is independently 0, 1, 2, 3, 4, 5, or 6.

As explained in Chapter 2 of Thorn et al, the preparation of dithiocarbamates is very simple. The compounds of the formula R_1R_2NCSSH or R_1R_2NSSNa can be formed by reaction of carbon disulfide with a secondary amine, typically in alcoholic or aqueous solution. The usual practice is to carry out this reaction in the presence of NaOH, so that the sodium dithiocarbamate salt is formed. Thus, for example, sodium

dimethyl dithiocarbamate is formed from CS₂NaOH and dimethylamine. See Thorn et al, page 14, and the references cited therein. Other typical dithiocarbamic compounds disclosed and characterized in Thorn et al include: N-methyl, N-ethyldithiocarbamates, hexamethylenedithiocarbamic acid, sodium di(beta-5 hydroxyethyl) dithiocarbamate, sodium N-methyl, N-cyclobutylmethyl dithiocarbamate, sodium N-allyl-N-cyclopropylmethyl-dithiocarbamate, cyclohexylamylidithiocarbamates, dibenzyl-dithiocarbamates, sodium dimethylene-dithiocarbamate, various pentamethylene dithiocarbamate salts, sodium pyrrolidine-N-carbodithioate, sodium piperidine-N-carbodithioate, sodium morpholine-N-carbo-10 dithioate, alpha-furfuryl dithiocarbamates and imidazoline dithiocarbamates.

B) Probuco and its Derivatives

Probuco is chemically related to the widely used food additives 2,[3]-tert-butyl-4-hydroxyanisole (BHA) and 2,6-di-tert-butyl-4-methyl phenol (BHT). Its full 15 chemical name is 4,4'-(isopropylidenedithio) bis(2,6-di-tert-butylphenol). U.S. Patent No. 5,262,439 to Parthasarathy, incorporated herein by reference, discloses soluble analogs of probuco in which one or both of the hydroxyl groups are replaced with ester groups that impart water solubility to the compound. In one embodiment, the soluble derivative is selected from the group consisting of a mono- or di- succinic acid 20 ester, glutaric acid ester, adipic acid ester, suberic acid ester, sebacic acid ester, azelaic acid, or maleic acid ester of probuco. In another embodiment, the probuco derivative is a mono- or di- ester in which the ester contains an alkyl or alkenyl group that

contains a functionality selected from the group consisting of a carboxylic acid group.

Any of the compounds described in the '439 patent can be used in this invention.

U.S. Patent No. 5,155,250, also incorporated herein by reference, discloses that 2,6-dialkyl-4-silylphenols are antiatherosclerotic agents. The same compounds are 5 disclosed as serum cholesterol lowering agents in PCT Publication No. WO 95/15760, published on June 15, 1995. U.S. Patent No. 5,608,095, incorporated by reference, discloses that alkylated-4-silyl-phenols inhibit the peroxidation of LDL, lower plasma cholesterol, and inhibit the expression of VCAM-1, and thus are useful in the treatment of atherosclerosis. Any of these compounds can also be used in this 10 invention.

C) N-Acetyl Cysteine and its Derivatives

Cysteine is an amino acid with one chiral carbon atom. It exists as an L-enantiomer, a D-enantiomer, or a racemic mixture of the L- and D-enantiomers. The 15 L-enantiomer is the naturally occurring configuration.

N-acetylcysteine (acetamido-mercaptopropionic acid, NAC) is the N-acetylated derivative of cysteine. It also exists as an L-enantiomer, a D-enantiomer, an enantiomerically enriched composition of one of the enantiomers, or a racemic mixture of the L and D enantiomers. The term "enantiomerically enriched" 20 composition or compound" refers to a composition or compound that includes at least 95%, and preferably, at least 97% by weight of a single enantiomer of the compound. Any of these forms of NAC can be delivered as an antioxidant in the present

invention. In one embodiment, a single isomer of a thioester or thioether of NAC or its salt, and most preferably, the naturally occurring L-enantiomer, is used in the treatment process.

N-acetylcysteine exhibits antioxidant activity (Smilkstein, Knapp, Kulig and Rumack, *N. Engl. J. Med.* 1988, Vol. 319, pp. 1557-62; Knight, K.R., MacPhadyen, K., Lepore, D.A., Kuwata, N., Eadie, P.A., O'Brien, B. *Clinical Sci.*, 1991, Vol. 81, pp. 31-36; Ellis, E.F., Dodson, L.Y., Police, R.J., *J. Neurosurg.*, 1991, Vol. 75, pp. 774-779). The sulphydryl functional group is a well characterized, highly reactive free radical scavenger. N-acetylcysteine is known to promote the formation of glutathione (a tri-peptide, also known as g-glutamylcysteinylglycine), which is important in maintaining cellular constituents in the reduced state (Berggren, M., Dawson, J., Moldeus, P. *FEBS Lett.*, 1984, Vol. 176, pp. 189-192). The formation of glutathione may enhance the activity of glutathione peroxidase, an enzyme which inactivates hydrogen peroxide, a known precursor to hydroxyl radicals (Lalitha, T., Kerem, D., Yanni, S., *Pharmacology and Toxicology*, 1990, Vol. 66, pp. 56-61)

N-acetylcysteine exhibits low toxicity *in vivo*, and is significantly less toxic than deprenyl (for example, the LD₅₀ in rats has been measured at 1140 and 81 mg/kg intravenously, for N-acetylcysteine and deprenyl, respectively).

N-acetyl cysteine and derivatives thereof are described, for example, in WO/95/26719. Any of the derivatives described in this publication can be used in accordance with this invention.

- D) Scavengers of Peroxides, including but not limited to catalase and pyruvate
- E) Thiols including dithiothreitol and 2-mercaptopethanol
- F) Antioxidants which are inhibitors of lipid peroxidation, including but 5 not limited to TroloxTM, BHA, BHT, aminosteroid antioxidants, tocopherol and its analogs, and lazaroids
- G) Dietary antioxidants, including antioxidant vitamins (vitamin C or E or synthetic or natural prodrugs or analogs thereof), either alone or in combination with each other, flavanoids, phenolic compounds, caratenoids, and alpha lipoic acid
- H) Inhibitors of lipoxygenases and cyclooxygenases, including but not limited to nonsteroidal antiinflammatory drugs, COX-2 inhibitors, aspirin-based compounds, and quercetin
- I) Antioxidants manufactured by the body, including but not limited to ubiquinols and thiol antioxidants, such as, and including glutathione, Se, and lipoic acid 15
- J) Synthetic Phenolic Antioxidants: inducers of Phase I and II drug-metabolizing enzymes

III. ANTOINEOPLASTIC AGENTS

20 The term "antineoplastic agents," as used herein, refers to any substance that decreases abnormal cell proliferation. Antineoplastic agents have been described

extensively in a number of texts, including Martindale, *The Extra Pharmacopoeia*, 31st Edition, Royal Pharmaceutical Society (1996).

Antineoplastic agents include:

- (i) antifolates;
- 5 (ii) antimetabolites (including purine antimetabolites, cytarabine, fudarabine, floxuridine, 6-mercaptopurine, methotrexate, 5-fluoropyrimidine, including 5-fluorouracil, cytidine analogues such as β -L-1,3-dioxolanyl cytidine and 6-thioguanine);
- (iii) hydroxyurea;
- 10 (iv) mitotic inhibitors (including CPT-11, Etoposide(VP-21)), taxol, and vincristine,
- (v) alkylating agents (including but not limited to busulfan, chlorambucil, cyclophosphamide, ifofamide, mechlorethamine, melphalan, and thiotepa);
- 15 (vi) nonclassical alkylating agents, platinum containing compounds, bleomycin, anti-tumor antibiotics, anthracycline, anthracenedione, topoisomerase 11 inhibitors, hormonal agents (including but not limited to corticosteroids (dexamethasone, prednisone, and methylprednisone); and
- (v) androgens such as fluoxymesterone and methyltestosterone, estrogens such as diethylstilbestrol, antiestrogens such as tamoxifen, LHRH analogues such as leuprolide; antiandrogens such as flutamide, aminoglutethimide, megestrol acetate, and medroxyprogesterone), asparaginase, carmustine, lomustine, hexamethyl-

melamine, dacarbazine, mitotane, streptozocin, cisplatin, carboplatin, levamisole, and leucovorin.

A more comprehensive list of antineoplastic agents includes Aceglatone; Aclarubicin; Altretamine; Aminoglutethimide; 5-Aminolevulinic Acid; Amsacrine; 5 Anastrozole; Ancitabine Hydrochloride; 17-1A Antibody; Antilymphocyte Immunoglobulins; Antineoplaston A10; Asparaginase; Pegaspargase; Azacitidine; Azathioprine; Batimastat; Benzoporphyrin Derivative; Bicalutamide; Bisantrene Hydrochloride; Bleomycin Sulphate; Brequinar Sodium; Broxuridine; Busulphan; Campath-IH; Caracemide; Carbetimer; Carboplatin; Carboquone; Carmofur; 10 Carmustine; Chlorambucil; Chlorozotocin; Chromomycin; Cisplatin; Cladribine; Corynebacterium parvum; Cyclophosphamide; Cyclosporin; Cytarabine; Dacarbazine; Dactinomycin; Daunorubicin Hydrochloride; Decitabine; Diaziquone; Dichlorodiethylsulphide; Didemnin B.; Docetaxel; Doxifluridine; Doxorubicin Hycloride; Droloxifene; Echinomycin; Edatrexate; Elliptinium; Elmustine; 15 Enloplatin; Enocitabine; Epirubicin Hydrochloride; Estramustine Sodium Phosphate; Etanidazole; Ethoglucid; Etoposide; Fadrozele Hydrochloride; Fazarabine; Fenretinide; Flouxuridine; Fludarabine Phosphate; Fluorouracil; Flutamide; Formestane; Fotemustine; Gallium Nitrate; Gencitabine; Gusperimus; Homoharringtonine; Hydroxyurea; Idarubicin Hydrochloride; Ifosfamide; Ilmofosine; 20 Imrosulfan Tosylate; Inolimomab; Interleukin-2; Irinotecan; JM-216; Letrozole; Lithium Gamolenate; Lobaplatin; Lomustine; Lonidamine; Mafosfamide; Melphalan; Menogaril; Mercaptopurine; Methotrexate; Methotrexate Sodium; Miboplatin;

Miltefosine; Misonidazole; Mitobronitol; Mitoguazone Dihydrochloride; Mitolactol;
Mitomycin; Mitotane; Mitozantrone Hydrochloride; Mizoribine; Mopidamol;
Multialchipeptide; Muromonab-CD3; Mustine Hydrochloride; Mycophenolic Acid;
Mycophenolate Mofetil; Nedaplatin; Nilutamide; Nimustine Hydrochloride;
5 Oxaliplatin; Paclitaxel; PCNU; Penostatin; Peplomycin Sulphate; Pipobroman;
Pirarubicin; Piritrexim Isethionate; Piroxantrone Hydrochloride; Plicamycin; porfimer
Sodium; Prednimustine; Procarbazine Hydrochloride; Raltitrexed; Ranimustine;
Razoxane; Rogletimide; Roquinimex; Sebriplatin; Semustine; Sirolimus; Sizofiran;
Sobuzoxane; Sodium Bromebrate; Sparfasic Acid; Sparfosate Sodium; Sreptozocin;
10 Sulofenur; Tacrolimus; Tamoxifen; Tegafur; Teloxantrone Hydrochloride;
Temozolomide; Teniposide; Testolactone; Tetrasodium Meso-
tetraphenylporphinesulphonate; Thioguanine; Thioinosine; Thiotepa; Topotecan;
Toremifene; Treosulfan; Trimetrexate; Trofosfamide; Tumor Necrosis Factor;
Ubenimex; Uramustine; Vinblastine Sulphate; Vincristine Sulphate; Vindesine
15 Sulphate; Vinorelbine Tartrate; Vorozole; Zinostatin; Zolimomab Aritox; and
Zorubicin Hydrochloride.

IV. ABNORMAL CELL HYPERPROLIFERATIVE CONDITIONS

Antioxidants can be used to increase the cytotoxicity of antineoplastic agents to
20 disorders of abnormal cellular proliferation, including, but not limited to:
benign tumors, including, but not limited to papilloma, adenoma, firoma,
chondroma, osteoma, lipoma, hemangioma, lymphangioma, leiomyoma,

rhabdomyoma, meningioma, neuroma, ganglioneuroma, nevus, pheochromocytoma, neurilemma, fibroadenoma, teratoma, hydatidiform mole, granuosa-theca, Brenner tumor, arrhenoblastoma, hilar cell tumor, sex cord mesenchyme, interstitial cell tumor, and thyoma;

- 5 malignant tumors (cancer), including but not limited to carcinoma, including renal cell carcinoma, prostatic adenocarcinoma, bladder carcinoma, and adenocarcinoma, fibrosarcoma, chondrosarcoma, osteosarcoma, liposarcoma, hemangiosarcoma, lymphangiosarcoma, leiomyosarcoma, rhabdomyosarcoma, myelocytic leukemia, erythroleukemia, multiple myeloma, glioma, meningeal
10 sarcoma, thyoma, cystosarcoma phyllodes, nephroblastoma, teratoma choriocarcinoma, cutaneous T-cell lymphoma (CTCL), cutaneous tumors primary to the skin (for example, basal cell carcinoma, squamous cell carcinoma, melanoma, and Bowen's disease), breast and other tumors infiltrating the skin, Kaposi's sarcoma, and premalignant and malignant diseases of mucosal tissues, including oral, bladder, and
15 rectal diseases, central nervous system tumors (glioblastomas), meningiomas, and astrocytomas;
 hyperproliferative and preneoplastic lesions, including mycosis fungoides, psoriasis, dermatomyositis, rheumatoid arthritis, viruses (for example, warts, herpes simplex, and condyloma acuminata), molluscum contagiosum, remalignant and
20 malignant diseases of the female genital tract (cervix, vagina, and vulva).

Of these, particular conditions which can be treated using this method include colorectal cancer, ovarian cancer, bone cancer, renal cancer, breast cancer, gastric

cancer, pancreatic cancer, melanoma, hematopoietic tumors such as lymphoma, leukemia, plasma cell dyscrasias, and multiple myeloma and amyloidosis.

Antioxidants can also be used in combination with antineoplastic agents to treat cardiovascular proliferative disease such as post-angioplasty restenosis and
5 atherosclerosis.

V. PHARMACEUTICAL COMPOSITIONS

A host, including mammals, and specifically humans, suffering from any of the above-described conditions can be treated by the topical or systemic administration
10 to the patient of an effective amount of an antioxidant, optionally in combination with an antineoplastic agent, in the presence of a pharmaceutically acceptable carrier or diluent. The antioxidant can be administered prior to, in combination with, or following treatment with an antineoplastic agent when used to increase the cytotoxic effect of the antineoplastic agent. Methods and dosages for the administration of
15 antineoplastic agents are known to those skilled in the art, and are described in a number of texts, including the *The Physician's Desk Reference*, Martindale's *The Extra Pharmacopeia*, and Goodman & Gilman's *The Pharmacological Basis of Therapeutics*, or can be easily determined using standard methods.

The antioxidant can be administered subcutaneously, intravenously,
20 intraperitoneally, intramuscularly, parenterally, orally, submucosally, by inhalation, transdermally via a slow release patch, or topically, in an effective dosage range to treat the target condition. Typical systemic dosages for all of the herein described

conditions are those ranging from 0.01 mg/kg to 500 mg/kg of body weight per day as a single daily dose or divided daily doses. Typical dosages for topical application are those ranging from 0.001 to 100% by weight of the active compound.

The compound is administered for a sufficient time period to alleviate the
5 undesired symptoms and the clinical signs associated with the condition being treated.

The active compound is included in the pharmaceutically acceptable carrier or diluent in an amount sufficient to deliver to a patient a therapeutic amount of compound *in vivo* in the absence of serious toxic effects.

The concentration of active compound in the drug composition will depend on
10 absorption, inactivation, and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or
15 supervising the administration of the compositions, and that the dosage ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition. The active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at varying intervals of time.

20 A preferred mode of administration of the active compound for systemic delivery is oral. Oral compositions will generally include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the

purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.

- 5 The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
- 10 When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil. In addition, dosage unit forms can contain various other materials which modify the physical form of the dosage unit,
- 15 for example, coatings of sugar, shellac, or other enteric agents.

- The compound or its salts can be administered as a component of an elixir, suspension, syrup, wafer, lozenge, chewing gum or the like. A syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.

- 20 The compound can also be mixed with other active materials which do not impair the desired action, or with materials that supplement the desired action, such as

antibiotics, antifungals, antiinflammatories, antivirals, or other immunosuppressive agents.

Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as
5 water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium
10 chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

If administered intravenously, preferred carriers are physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, NJ) or phosphate
15 buffered saline (PBS).

In a preferred embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in
20 the art. The materials can also be obtained commercially from Alza Corporation and

Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) are also preferred as pharmaceutically acceptable carriers. These may be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No.

5 4,522,811 (which is incorporated herein by reference in its entirety). For example, liposome formulations may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamine; stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container. An aqueous
10 solution of the compound is then introduced into the container. The container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension.

Suitable vehicles or carriers for topical application can be prepared by conventional techniques, such as lotions, suspensions, ointments, creams, gels,
15 tinctures, sprays, powders, pastes, slow-release transdermal patches, suppositories for application to rectal, vaginal, nasal or oral mucosa. In addition to the other materials listed above for systemic administration, thickening agents, emollients, and stabilizers can be used to prepare topical compositions. Examples of thickening agents include petrolatum, beeswax, xanthan gum, or polyethylene, humectants such as sorbitol,
20 emollients such as mineral oil, lanolin and its derivatives, or squalene. A number of solutions and ointments are commercially available, especially for ophthalmic applications.

VI. ILLUSTRATIVE EXAMPLES

The following examples are provided for the purpose of illustrating various embodiments of the invention and are not intended to limit the scope of the present
5 invention.

EXAMPLE 1

HCT 116 and HCT 15 human CRC cells were obtained from the American type Culture Collection. p21^{WAF1/CIP1}-/- cancer cells generated from HCT 116 cells by T. Waldman were provided by J. Pietenpol (Vanderbilt University, TN) 10 and HPV E6-transfected HCT 116 by W. S. El-Deiry (University of Pennsylvania, PA) [W.S. El-Deiry et al., *Cell* 75, 817 (1993)]. All cancer cell lines used in these studies were grown in Dulbecco's modified Eagle's medium (DMEM) (GIBCO BRL) 15 with high glucose and supplemented with 10% heat-activated fetal bovine serum (FBS), non-essential amino acids, L-glutamine, and penicillin G Sodium (100 U/ml) and streptomycin sulfate (100 mg/ml) at 37°C in 5%CO₂ in air.

To determine the effect of pyrrolidinedithiocarbamate (Sigma Chemical Co., MA), a vitamin E analogue (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid: vit (E) (Aldrich), 5-FU (Hoffmann-LaRoche Inc. Nutley, NJ) or doxorubicin (Sigma) on anchorage-independent growth, HCT 15 and HCT 116 cells were plated at 20 10 X10³ cells/35 mm plate in DMEM supplemented with 1% FBS and 0.4% agar along with the factor to be tested. The number of colonies was quantified under 10 days using the Omnicron image analyzer. Colonies greater than 50 microns in diameter

(approximately 50 cells) were scored as positive after 10 days. Preliminary studies indicated that pyrrolidinedithiocarbamate and vitamin E had no significant effect on CRC cell plating efficiency, at concentrations between 25-200 μ M and 0.1-10 mM, respectively. Higher concentrations resulted in non-specific cytotoxicity.

5

EXAMPLE 2

DNA Content of nuclei was determined as described [I.G. Nicoletti *et al.*, *J. Immunol. Methods*. 139, 271 (1991)] by lysing plasma membranes, staining nuclear DNA with propidium iodide (50 mg/ml), and quantitating the relative DNA content of nuclei using the Becton Dickinson FACSort fluorescence-activated cell sorter. The proportion of nuclei in each phase of the cell cycle was determined using MODFIT - DNA analysis software. Detection of apoptotic cells either by fluorescence microscopy or by flow cytometry was performed using the ApopTag Plus In Situ Apoptosis Detection Kit (Oncor, Gaithersburg, MD) as described in the manufacturer's protocol. Briefly, digoxigenin-labeled nucleotides were added to free 3'OH groups of DNA produced by DNA fragmentation during apoptosis by terminal deoxynucleotidyl transferase (TdT). Digoxigenin was detected by a FITC-conjugated anti-digoxigenin antibody. Analysis was carried out using the fluorescence-activated cell sorter and FITC staining visualized using a fluorescence microscope (Zeiss).

EXAMPLE 3

Intracellular H₂O₂ levels were analyzed by flow cytometry using dihydrorhodamine 1234 (DHR) as a specific fluorescent dye probe [G. Rothe, A. Emmendorffer, A. Oser, J. Roesler, G. Valet, *J. Immun. Methods* 138, 133 (1991); J.

A. Royall, H. Ischiropoulos, *Arch. Biochem. Biophysics* 302, 348 (1993)]. CRC cells were grown in DMEM containing 1 mM DHR and pyrrolidinedithiocarbamate (70 μ M) or vit E (3 mM) for up to 24 hours. Following trypsinization, trypsin activity was quenched with 2% FBS in phosphate buffered saline and cells fixed in 1% paraformaldehyde (Sigma). Cellular rhodamine 123 fluorescence intensity of 1×10^4 cells was measured for each sample using a Becton-Dickenson FACS Vantage flow cytometer with the excitation source at 488 nm and emission wave length of 580 nm. Histograms were analyzed with the software program PC-Lysis (Becton Dickenson). Background fluorescence from blank wells was subtracted from each reading.

10

EXAMPLE 4

Male athymic Balb/c *nu/nu* mice were obtained from the Harlan Sprague-Dawley Company at 4-6 weeks of age and were quarantined for at least 2 weeks before the study. Animal experiments were carried out in accordance with both institutional and federal animal care regulations. HCT 116 and HCT 15 CRC cell lines were grown in DMEM supplemented with 10% FBS as described above. Cells were harvested through two consecutive trypsinizations, centrifuged at 300g for 5 minutes, washed twice, and resuspended in sterile phosphate buffered saline. One X 10^6 cells in 0.2 ml were injected subcutaneously between the scapula of 7- to 10-week-old male nude mice.

15
20

EXAMPLE 5

Tumor volumes were estimated weekly by measuring the maximal length, width, and height. Once tumors reached a mean size of 120 to 150 mm³, animals

received either weekly i.p. injections of pyrrolidinedithiocarbamate (70 μ M) or vitamin E (3 mM), 5-FU (40 mg/kg) or saline, or a combination of pyrrolidinedithiocarbamate or vitamin E and 5-FU or 6 weeks. In cross-over experiments, animals received the above treatments for three weeks (with the exception of vitamin E), and then were crossed-over to either the combination treatment of pyrrolidinedithiocarbamate and 5-FU (saline, pyrrolidinedithiocarbamate or 5-FU alone) or discontinued treatment pyrrolidinedithiocarbamate and 5-FU) for the remaining three weeks of the experiment. In preliminary experiments, a series of single doses of pyrrolidinedithiocarbamate, vitamin E or 5-FU were administered over 10 a 30 day period to establish LD₅₀ and effective route of administration (data not shown). Tumor volumes were recorded weekly until termination of the study.

EXAMPLE 6

Tumor tissues were fixed overnight in 4% (v/v) paraformaldehyde and embedded in paraffin according to standard histological procedures. BrDU staining 15 was performed as described [Holmgren, et al., Nature Med. 1, 149 (1955)]. TdT labeling of fragmented DNA (TUNEL) was performed as described. The proliferative index (BrDU) and the apoptotic index (TUNEL) were estimated by the percentage of cells scored under a microscope at 200-fold magnification. The proliferative indices for HCT 116 and HCT 15-derived tumors (irrespective of treatments) were 53.1 \pm 5.2 20 and 63.1 \pm 7.2, respectively.

EXAMPLE 7

For Western blot analysis, cells were lysed in 50 mM Tris-Cl, pH 7.4, 300 mM NaCl, 2 mM EDTA, 0.5% Nonidet-40, 0.5 mM phenylmethysulfonyl fluoride aprotinin (1 µg/ml), pepstatin (1 µg/ml), and leupeptin (2 µg/ml). One hundred mg of extract (as determined by Bradford analysis) was applied to 12% SD-PAGE gels and transferred to 0.2 µM pore nitrocellulose membranes (Schleicher and Schuell). Blots were probed with antibodies raised against p21 WAF1/CIP1, p53, p27 or C/EBPβ (Santa Cruz) at a final concentration of 0.1 µg/ml. After washing, blots were incubated with donkey-anti-rabbit or goat-anti-mouse IgG-horseradish peroxidase conjugates, and developed using Enhanced Chemiluminescence (Amersham, Arlington Heights, IL).

EXAMPLE 8

RNA was extracted as described [M. Schwab, K. Alitalo, H. E. Varmus, J.M. Bishop, *Nature (Lond.)* 303, 497 (1983)]. Poly (A)⁺ mRNA was separated by electrophoresis through 1% (w/v) agaroseformaldehyde gels, and northern blotting was performed as previously described (Coffey, et al., *Cancer Res.* 47, 4590 (1987)). A human p21^{WAF1/CIP1} cDNA probe was provided by B. Vogelstein (John Hopkins Oncology Center, Baltimore, MD) and labeled with [³²P]dCTP by the random primer extension method. Hybridization and posthybridization washes were carried out at 43°C. IB15 was used as a control for equivalent loading and transfer [P. E. Danielson, et al., *DNA* 7, 261 (1988)].

EXAMPLE 9

The human p21^{WAF1/CIP1} promoter construct (WWP-luc) was provided by B. Vogelstein [W. El-Deiry, *et al.*, *Cell* 75, 817 (1993)]. CRC cell lines were grown to 50% confluence prior to transfection with CELLFECTIN per manufacturer's instructions (GIBCO BRL). For all luciferase assays, total DNA transfected was kept constant with addition of pBSKII⁺ or pCMV-basic. All pCMV-C/EBP expression vectors were provided by L. Sealy (Vanderbilt University, TN). pCMV-CAT was transfected as an internal control for gene expression. At 12 hours posttransfection, selected cells were treated with 70 uM pyrrolidinedithiocarbamate. After 24 hours of 10 treatment, cell lysates were prepared and luciferase activity was assayed as described [A. Misra-Press, C. S. Rim, H. Yao, M. S. Roberson, P. J. S. Stork, *J. Biol. Chem.* 270, 14587 (1995)]. Luciferase activity was normalized to CAT activity, and results were reported as fold activation above basal levels.

EXAMPLE 10

15 The 2.4 kilobase pair genomic fragment containing the p21^{WAF1/CIP1} cDNA start site at its 3' end was subcloned into the *Hind* III site of the luciferase reporter vector, pGL2-basic (Promega). p21^{WAF1/CIP1} deletion mutants (D2198 to D1138) were generated by PCR using internal p21^{WAF1/CIP1} primers designed against the published p21^{WAF1/CIP1} promoter sequence (GenBank). In each case, PCR products were 20 subcloned into pGL2-basic and the sequences verified by double-stranded DNA sequencing. Mutagenesis of the NF-IL6 recognition site was performed using the Muta-Gene M13 *In vitro* mutagenesis kit (Bio-Rad, Hercules, CA).

The presence of the desired TT to AA base pair change was verified by DNA sequencing.

EXAMPLE 11

Complementary oligonucleotides corresponding to bases -1884 through -1904
5 in the wild type and the NF_{IL6} mutant p21^{WAF1/CIP1} promoter sequence were
synthesised (wild type, GTACTTAAGAAATATTGAAT and
ATTCAATATTCCTTAAGTAC; mutant; GTACAAAAGAAATATTGAAT and
ATCAATATTTCTTTGTAC). Two hundred ng of each oligo was end-labeled with
200 µCi γ -³²P-labeled ATP and T4 polynucleotide kinase. The resulting end-labeled
10 oligos were then annealed and gel purified. Preparation of nuclear extract from CRC
cells treated with antioxidants and the conditions for electrophoretic shift mobility
assays (EMSA) were as described [Kailoff, et al., *Science* 253, 786 (1991)]. When
antisera were added, nuclear extracts and 2 µl of C/EBP α , β , or δ polyclonal antibody
(Santa Cruz) were incubated for 10 minutes at room temperature before the addition of
15 the radiolabeled probe.

EXAMPLE 12

Two human colorectal cancer cell lines, HCT 116 (wild type p53) and HCT
15 (mutant p53), were treated with increasing amounts of either
pyrrolidinedithiocarbamate or vitamin E in a soft agar *ex vivo* model of
20 tumorigenicity. Both pyrrolidinedithiocarbamate and vitamin E caused a dose-
dependent reduction in anchorage-independent growth of HCT 116 and HCT 15 cells
(Figure 1A). This analysis was extended to a variety of tumor cell lines derived from

the colon (HCA-7, Difi, RKO, SW620), breast (MCF-7, MDA-MB231), and stomach (Hs 746T). At these concentrations, both antioxidants were effective in inhibiting anchorage-independent growth of all tumor cell lines tested, independent of their p53 status (Difi, RKO, data not shown).

5 Treatment of HCT 116 or HCT 15 CRC cells with either pyrrolidinedithiocarbamate (70 µM) or vitamin E (3 mM) for 24 hours, followed by propidium iodide staining of cells and subsequent flow cytometric analysis, revealed that both compounds induced a significant accumulation of cells in the G₁ peak, suggesting that the observed growth inhibitory effects of pyrrolidinedithiocarbamate 10 or vitamin E in soft agar were due to cell cycle arrest and/or apoptosis (Figure 1B). To determine whether these cell cycle perturbations could be correlated with the antioxidant properties of these compounds, both the intracellular redox status (by endogenous H₂O₂ levels) and the percentage of cells undergoing G₁ cell cycle arrest or apoptosis (by flow cytometric analysis) were quantified over a 24 hour period in 15 antioxidant-treated cells.

As shown in Figure 1C, both pyrrolidinedithiocarbamate and vitamin E significantly reduced endogenous H₂O₂ levels in both cell lines, with pyrrolidinedithiocarbamate being the more effective reducing agent. Furthermore, this decrease in H₂O₂ levels correlated with the induction of G₁ cell cycle arrest and the appearance of TUNEL-positive nuclei in these cells. Treatment of HCT 15 cells with 20 the membrane-permeant antioxidant N-acetyl-L-cysteine (NAC) and the dietary antioxidant, vitamin C, showed a similar reduction in H₂O₂ levels and the induction of

apoptosis (Figure 1D), supporting a role for reactive oxygen species in cell cycle progression. Since antioxidants may alter the intracellular redox milieu through reactive oxygen species other than H₂O₂, HCT 15 cells were transiently transfected with an expression plasmid encoding human catalase. Overexpression of 5 catalase markedly reduced H₂O₂ levels and induced cell cycle arrest and apoptosis in these cells, thus directly implicating H₂O₂ as an important mediator of the observed cell cycle effects in these antioxidant-treated cells.

To demonstrate further that antioxidants enhance the cytotoxic efficacy of 5-FU and doxorubicin, the IC₅₀ value of each drug was determined for HCT 116 and HCT 15 cells grown in soft agar in the presence or absence of 70 μM pyrrolidinedithiocarbamate or 3 mM vitamin E (the approximate IC₅₀ values for these compounds in both cell lines). Pyrrolidinedithiocarbamate or vitamin E decreased the IC₅₀ for both 5-FU and doxorubicin compared to cells treated with either of the individual drugs alone (Figure 1E). These effects were more pronounced with 15 pyrrolidinedithiocarbamate, perhaps reflecting its more potent reducing ability. Mechanisms of cellular uptake and metabolism of 5-FU and doxorubicin differ significantly. Thus, it is unlikely that pyrrolidinedithiocarbamate or vitamin E modulate the cytotoxicity of 5-FU or doxorubicin via alterations in these pathways.

EXAMPLE 13

20 The therapeutic efficacy of pyrrolidinedithiocarbamate or vitamin E was next examined *in vivo* by growing HCT 116 or HCT 15 cells as tumor xenografts in athymic mice. After establishment of palpable tumors (mean tumor volume 150 mm³),

- animals either received weekly i.p. injections of pyrrolidinedithiocarbamate, vitamin E, and/or 5-FU or saline as a negative control. The results with HCT 116 cells are shown in Figure 2A. After 4 weeks, tumor volumes in control mice necessitated sacrifice in accordance with institutional protocol. Individually,
- 5 pyrrolidinedithiocarbamate, vitamin E and 5-FU significantly reduced tumor volume over the 6-weeks compared to saline-treated controls. Addition of pyrrolidinedithiocarbamate or vitamin E significantly enhanced the effect of 5-FU. In all nine animals with complete abolishment of tumors, no sign of tumor regrowth has been observed following discontinuation of combined treatment for 2 months.
- 10 Similar results were seen in HCT 15-derived xenografts with the exception that the combination regimens were more effective in these mutant p53 CRC cells.
- To further explore the *in vivo* efficacy of pyrrolidinedithiocarbamate and 5-FU in established HCT 15-derived tumors, mice were crossed over to combined treatment once significant differences in single agent therapies were established (Figure 2B).
- 15 Mice which initially received no treatment developed large tumors ($2780 \pm 257 \text{ mm}^3$) by 3 weeks. Treatment of these mice with 5-FU and pyrrolidinedithiocarbamate at this time reduced the size of even these advanced lesions (week 6: $1184 \pm 96 \text{ mm}^3$). Cross-over to combined treatment (5-FU and pyrrolidinedithiocarbamate) also reduced tumor size in mice initially treated with a single agent. Tumors decreased in size from
- 20 $1864 \pm 190 \text{ mm}^3$ to $660 \pm 82 \text{ mm}^3$ and $1325 \pm 210 \text{ mm}^3$ to $637 \pm 231 \text{ mm}^3$, for animals treated initially with 5-FU and pyrrolidinedithiocarbamate alone, respectively. These

results complement the *in vitro* findings, and indicate that antioxidants can significantly enhance the efficacy of 5-FU in CRC cells.

No signs of agent-induced toxicity were observed in the mice, as judged by changes in body weight or gross anatomical and microscopic examination of major organs. At necropsy, all tumors exhibit central necrosis grossly, irrespective of tumor size or treatment regimen. Since tumors from mice treated with pyrrolidinedithiocarbamate and 5-FU were no longer present, this treatment group was omitted from these analyses. Immunohistochemical analysis of residual tumors demonstrated a high proliferative index, irrespective of the treatment regimen. However, the apoptotic index increased approximately 5-fold following vitamin E, in both xenograft models (Figure 2C). In contrast, the apoptotic index of 5-FU-treated tumors was markedly higher in cells expressing wild type p53 (HCT 116) compared to mutant p53 (HCT 15), supporting a role for p53-mediated apoptosis in 5-FU cytotoxicity. Combined vitamin E and 5-FU treatment was able to further increase the apoptotic index in these tumors, even in a mutant p53 genetic background. The apparent synergy between vitamin E and 5-FU-induced apoptosis in mutant p53 HCT 15 cells suggests that antioxidants may re-establish the apoptotic signaling pathway.

EXAMPLE 14

Regulation of G₁ cell cycle arrest and subsequent apoptosis has been attributed to a number of cellular proteins, including p53 and the cyclin-dependent kinase inhibitors, such as p21^{WAF1/CIP1} and p27. Pyrrolidinedithiocarbamate had no effect on p53 or p27 protein levels in either HCT 116 or HCT 15 cells over a 24 hour period, as

determined by Western blot analysis (Figure 3A). In contrast, p21^{WAF1/CIP1} protein and mRNA levels increased within one hour after pyrrolidinedithiocarbamate treatment and persisted for 24 hours (Figure 1B).

Induction of p21^{WAF1/CIP1} mRNA by pyrrolidinedithiocarbamate appeared to be 5 p53 independent, as the antioxidant effect was not attenuated in HCT 116 cells expressing human papillomavirus (HPV) E6, which inactivates p53 through ubiquitin-mediated protein degradation (Figure 3B) (Scheffner, et al, *Proc. Natl. Acad. Sci. U.S.A.* **88**, 5523 (1991); Crook, et al, *Oncogene* **6**, 873 (1991)). Similar increases in 10 p21^{WAF1/CIP1} expression were observed in HCT 116 and HCT 15 cells treated with vitamin E.

To confirm that the induction of p21^{WAF1/CIP1} by antioxidants was required for these cell cycle disruptions, parental HCT 116 cells or cells were treated with a targeted disruption of p21^{WAF1/CIP1} by pyrrolidinedithiocarbamate or vitamin E for 24 hours (Fig. 3C). In both cells types, there was a significant attenuation of antioxidant-mediated apoptosis, suggesting that p21^{WAF1/CIP1} plays a pivotal role in antioxidant-mediated cell death. 15

EXAMPLE 15

To confirm that induction of p21^{WAF1/CIP1} was dependent on the transcriptional activity of antioxidants, HCT 116 and HCT 15 cells were transfected with a 2.4 kilobase pair fragment of the p21^{WAF1/CIP1} promoter linked to a luciferase reporter gene. Treatment of transfected cells with pyrrolidinedithiocarbamate led to an approximate 20 five-fold induction of the p21^{WAF1/CIP1} promoter activity in both HCT 116 and HCT 15

cells, again consistent with a p53-independent induction of p21^{WAF1/CIP1} mRNA and protein (Figure 4A). Serial deletions of this promoter demonstrated that the pyrrolidinedithiocarbamate responsive element(s) of the p21^{WAF1/CIP1} promoter was located between nucleotide-2078 and -1874. Disruption of this site by site-directed mutagenesis abolished pyrrolidinedithiocarbamate induction of luciferase activity, demonstrating that the NF_IL6 site is required for pyrrolidinedithiocarbamate-induced p21^{WAF1/CIP1} transcription.

The NF_IL6 consensus sequence is recognized by members of the CCAAT/enhancer binding protein (C/EBP) family of transcription factors (S. Akira and T. Kishimoto, *Immunol Rev.* 127, 25 (1992); Landschulz *et al.*, *Genes Dev.* 2, 786 (1988); Cao, *et al.*, *ibid.* 5, 1538 (1991); Chang, *et al.*, *Mol. Cell. Biol.* 10, 6642 (1990); Williams *et al.*, *ibid.* 5, 1553 (1991); Akira *et al.*, *EMBO J.* 9, 1897 (1990); Poli, *et al.*, *Cell* 63, 25 643 (1990)). These factors contain a basic DNA-binding region adjacent to a leucine zipper (bZIP) dimerization domain facilitating the formation of homodimers or heterodimers with other bZIP proteins. Interestingly, C/EBP α has been shown to transcriptionally upregulate p21^{WAF1/CIP1} and inhibit cellular proliferation in mouse preadipocytes, although no correlation was shown with apoptosis.

DNA binding activity to the p21^{WAF1/CIP1} NF_IL6 site was increased following pyrrolidinedithiocarbamate treatment, as determined by electrophoretic mobility shift assays (EMSA) performed with a ³²P-labeled oligonucleotide containing the p21^{WAF1/CIP1} NF_IL6 *cis* element and nuclear extracts from HCT 116 and HCT 15 cells

treated over a 24 hour period (Figure 4B: left panel). Shifted complexes were competed by 50-fold molar excess of an unlabeled oligonucleotide containing a consensus NF_{IL6} sequence (right panel: lane 2), but not by an oligonucleotide containing a mutated NF_{IL6} consensus sequence (lane 3), indicating that the induced complex was specific for the NF_{IL6} *cis* element. Supershift analysis of the induced complex suggested that shifted complexes were due to the interaction of C/EPB β (lane 5) with the NF_{IL6} *cis* element and not C/EBP α (lane 4) or C/EBP δ (lane 6).

To confirm that C/EPB β could influence p21^{WAF1/CIP1} transcriptional activity, a eukaryotic expression plasmid encoding C/EBP α , β or δ was cotransfected into either 10 HCT 116 or HCT 15 cells with the full length p21^{WAF1/CIP1}- luciferase promoter construct (Figure 4C and 4D). Transfection of C/EPB β strongly activated p21^{WAF1/CIP1} promoter activity in a dose-dependent manner, and mutation of the NF_{IL6} site abolished this stimulation. In contrast, C/EBP α or C/EBP δ failed to stimulate p21 promoter activity.

Finally, the functional role of C/EPB β was examined in the apoptotic signaling pathway by generating lines of HCT 15 cells that were stably transfected with the 15 human C/EPB β cDNA, in both the sense and antisense orientation, under the control of an ecdysone inducible promoter. To avoid the possibility that constitutively expressed C/EPB β might induce cell death, and ecdysone (muristerone A)-inducible expression system (Invitrogen, Carlsbad, CA) was used. Human C/EPB β cDNA was 20 subcloned into pIND at convenient enzyme cleavage sites. Constructs, containing sense and antisense C/EPB β sequences were verified by double-stranded DNA.

sequencing. Before transfection, pIND-C/EBP β constructs were linearized with *Pme* I and purified. HCT 15 cells were transfected with 5 μ g of pVgRXR (Invitrogen) and 10 μ g of pIND-C/EBP β using CELLFECTIN according to manufacturer's instructions.

After 24 hours, cells were shifted to medium supplemented with 1 mg/ml Geneticin 5 and 10 mg/ml puromycin (GIBCO BRL) to select for transfectant clones. After 2 weeks, antibiotic-resistant cells were subcloned by limiting dilution. The expression of C/EBP β protein and the subsequent induction of p21^{WAF1/CIP1} was determined following induction with 10 μ M muristerone A for 24 hours and Western blot analysis. Three independent positive clones were used for all assays with essentially 10 the same results.

Representative data from clones derived from each of these cell lines is shown in Figure 4E and F. C/EBP β overexpression elevated p21^{WAF1/CIP1} protein levels compared to unstimulated basal levels (Figure 4E: inset). Induction of C/EBP β also led to an increase in the apoptotic index of these cells in both the presence and absence 15 of antioxidant. In addition, repression of C/EBP β expression by antisense mRNA induction nearly abolished antioxidant-induced apoptosis in these cells (Figure 4E). Further evidence that induction of C/EBP β mediates the effects of antioxidants on colorectal cancer cells was demonstrated by the increased apoptotic index in response to either 5-FU or doxorubicin in the presence of overexpressed C/EBP β (Figure 4F). 20 In the absence of C/EBP β overexpression, 5-FU increased the apoptotic index to 20% whereas doxorubicin did not induce apoptosis. When these cells were induced to overexpress C/EBP β in the presence of either 5-FU or doxorubicin, apoptosis was

increased to 70% and 80%, respectively. Taken together, these data demonstrate that the induction of apoptosis by antioxidants is, at least in part, mediated by a p53-independent induction of p21^{WAF1/CIP1} via activation of the transcription factor C/EBP β .

- Another transcription factor, NF-kB, has been shown to confer resistance to
- 5 TNF α -mediated apoptosis, although a recent report has shown that induction of NF-kB DNA binding activity in kidney epithelial cells precedes apoptosis following serum-withdrawal. NF-kB activity can be downregulated by pyrrolidinedithiocarbamate through inhibition of the phosphorylation and subsequent proteasome-mediated proteolysis of its inhibitors (IkBs). No reduction in NF-kB
- 10 DNA binding activity was detected in these CRC cells at the doses of pyrrolidinedithiocarbamate used in these studies. In addition, it has recently been demonstrated that induction of p21^{WAF1/CIP1} can increase NF-kB transcriptional activity, therefore it is unlikely that the antioxidant effect in these cells is mediated by a reduction in NF-kB activity. These studies demonstrate that induction of a
- 15 transcription factor, C/EBP β , sensitizes CRC cells to chemotherapeutic agent-mediated apoptosis.

Activation of C/EBP β , either directly or indirectly, induced p21^{WAF1/CIP1} gene expression, leading to G₁ cell cycle arrest and apoptosis in two colorectal cancer cell lines. The ability of the antioxidants pyrrolidinedithiocarbamate and vitamin E to

20 induce this transcription factor, independent of functional p53, has important biological consequences on the efficiency of DNA damaging agents. Both 5-FU and doxorubicin exert their cytotoxic effects mainly through the induction of DNA

damage. This damage, through undefined mechanism(s), signals the induction of p53, which, in turn, leads to inhibition of cellular proliferation and apoptosis. Since mutations of p53 occur in over 80% of advanced CRC tumors, these mutations may be responsible for the relatively low response rate of advanced colorectal cancer tumors 5 to DNA-damaging agents, such as 5-FU. Although 5-FU is particularly successful in the treatment of local, wild type p53, colorectal cancer tumors, the success rate falls to 15-20% in patients with advanced, frequently mutant p53-containing colorectal cancer tumors. Thus, the ability of antioxidants (used throughout these studies at doses obtainable in humans) to bypass the requirement of p53-mediated apoptosis 10 demonstrates the utility of combined antioxidants and chemotherapeutic agents for advanced colorectal cancer and other solid tumors.

Example 16

Figures 5a and 5b are bar graphs of the BrDU-labelled cells (percent of total cell nuclei) from colorectal cell xenografts derived from athymic mice treated with 15 saline, vitamin E, PDTC, 5-FU, and the combination of vitamin E and 5-FU, as a measure of the effect of the test compound on proliferation of HCT 116 and HCT 15 cells. Figures 6a and 6b are bar chart graphs of TUNEL-positive cells (percent of total cell nuclei) also from xenografts derived from athymic mice treated with saline, vitamin E, PDTC, 5-FU, and the combination of vitamin E and 5-FU, as a measure of 20 the effect of the test compound on apoptosis. Tumor tissues were fixed overnight in 4% (v/v) paraformaldehyde and embedded in paraffin according to standard histological procedures. Sections were pretreated with 10 mM citrate buffer (pH 6.0)

and incubated with PC10 monoclonal antibody against BrDU (Boehringer Mannheim). TdT labeling of fragmented DNA (TUNEL) was performed according to manufacturer's instructions. The proliferative index (BrDU) and the apoptotic index (TUNEL) were estimated by the percentage of cells scored under a microscope at 200-fold magnification.

Example 17

As indicated in Figure 7, PDTC treatment induces C/EBP β DNA binding activity via a post-translational modification. (A) DKO-1 cell were treated with 70 μ M PDTC for the indicated times, nuclear extracts were prepared with a [γ - 32 P]-labeled p21-NF_IL6 oligonucleotide (Lanes 1-9). Specificity assays: Lanes 10-12, competition controls were performed on a nuclear extract derived from DKO-1 cells treated with PDTC for 3 h (lane 5), with excess unlabeled wild-type (lane 11) and mutant (lane 12) oligonucleotide. Lanes 13-15, supershift analyses were performed with C/EBP α (lane 13), β (lane 14), or δ (lane 15) polyclonal antibodies. (B) Parallel DKO-1 cell cultures were treated with PDTC (70 μ M) for the indicated times. Poly(A) was isolated and treatment-related variations in C/EBP β mRNA levels were evaluated by Northern blot analysis. IB15 is shown as a control for equivalent loading and transfer. (C) Parallel DKO-1 cultures were treated with PDTC (70 μ M) in the presence of [32 P]orthophosphate. C/EBP β from cytosolic and nuclear fractions were purified by immunoprecipitation from cells before (time 0) or at the indicated times after PDTC treatment. Treatment-related variations in the localization of C/EBP β were analysed by SDS-PAGE followed by autoradiography or Western blot analysis

(100 μ g of total cellular protein / lane). (D) DKO-1 cells were cultured in the presence of PDTC (70 μ M) for 1 hour and then processed for immunocytochemistry to detect treatment-related differences in the compartmentalization of C/EBP β protein. In all experiments, parallel cultures treated with preimmune sera or primary 5 anti-C/EBP β antisera that had been preincubated with *in vitro* translated C/EBP β protein demonstrated no fluorescent signal after treatment with the secondary Cy3-conjugated antibody. Representative photomicrographs show anti-C/EBP β stained cells before and after PDTC treatment.

Example 18

10 Figure 8 illustrates the effect of PDTC on endogenous cAMP levels and PKA activity. DKO-1 cells were treated with 70 μ M PDTC for the indicated times. Cell lysates were prepared and assayed for (A) endogenous cAMP levels or (B) PKA activity (see Experimental Procedures). The values are expressed as pmol mean per μ g protein \pm s.e.m. and are representative of three experiments carried out in 15 quadruplicate.

Example 19

Figure 9 illustrates that PDTC phosphorylates C/EBP β at Ser²⁹⁹. (A) Endogenous C/EBP β from [³²P]orthophosphate-labeled DKO-1 cells (2 mCi/ml. 3 h) that were treated with either 0 μ M (lane 1), 70 μ M PDTC (lane 2) or 50 μ M forskolin 20 were immunoprecipitated with anti C/EBP β antibodies. Labeled proteins were visualized by SDS-PAGE followed by autoradiography. (B) Tryptic phosphopeptide maps of *in vivo* labeled epitope-tagged C/EBP β . Wild type (WT) and mutant (Ala²⁹⁹)

C/EBP β , immunoprecipitated from PDTC treated or untreated DKO-1 cells with the antibody to the FLAG-epitope, were digested with trypsin and the phosphopeptides separated by electrophoresis and thin-layer chromatography and visualized by autoradiography, X_{1,2} were constitutively phosphorylated. The level of phosphopeptide X₃ was increased after PDTC treatment in cells transfected with the wild type, but not mutant, protein. The circle indicates the origin. (C) Comparison of the *in vivo* phosphorylation of wild type and Ala substitution mutants of C/EBP β from untreated cells and cells treated with PDTC. Autoradiography (top) and C/EBP β immunoblot (bottom) are shown. (D) Phosphorylation of Ser²⁹⁹ within C/EBP β is essential for protein translocation to the nucleus. DKO-1 cells were transfected with pCMV-C/EBP β (WT) or pCMV-C/EBP β (Ala²⁹⁹), and treated with PDTC for 3 hours. C/EBP β protein was visualized by immunocytochemistry as described in Experimental Procedures.

Example 20

Figure 10 illustrates that PKA phosphorylation of C/EBP β is required for nuclear translocation. (A) Parallel DKO-1 cell cultures were treated with PDTC (0 or 70 μ M) for 3 hours. Poly(A)⁺ mRNA and protein were isolated from each group and treatment-related variations in C/EBP β mRNA and protein levels were evaluated by Northern or Western blot analysis. IB15 is shown as a control for equivalent loading and transfer. (B) DKO-1 cells were treated with PDTC (0 or 70 μ M) or PDTC and mPKI (myristylated protein kinase A inhibitor; 1 μ M) for 3 hours. Cells were fixed with paraformaldehyde and C/EBP β protein visualized by immunofluorescence

staining. Treatment of cells with mPKI alone failed to induce nuclear translocation of C/EBP β (data not shown).

Example 21

Figure 11 illustrates that carboxymethylation of the catalytic subunit of PP2Ac
5 is inhibited by PDTC. DKO-1 cells were incubated in serum-containing media
containing [methyl- 3 H]S-adenosyl methionine and/or 70 μ M PDTC for three hours.
Cytosolic or nuclear fractions were prepared and C/EBP β immunoprecipitated using
standard methods. Antibody/antigen complexes were resolved by SDS-PAGE and the
presence of PP2Ac was detected by fluorography (overnight). PDTC inhibited
10 carboxymethylation of PP2A subunit in nuclear fractions, and to a lesser extent, in
cytosolic fractions.

Example 22

Figure 12 illustrates that PDTC inhibits methyltransferase activation of PP2Ac.
PP2A (a and c dimer) was incubated in the presence of [methyl- 3 H]S-adenosyl
15 methionine, increasing concentrations of PDTC and partially purified rat
methyltransferase for thirty minutes at 37 degrees C. The reaction was terminated by
the addition of SDS-sample buffer. Samples were resolved by SDS-PAGE and the
presence of methylated PP2A catalytic subunit visualized by fluorography. PDTC
selectively inhibits the ability of methyltransferase to carboxylate the catalytic subunit
20 of PP2A in a dose dependent manner.

Example 23

To demonstrate a specific and direct inhibitory effect of PDTC on PP2A activity, DKO-1 cells were initially treated with 17 μ M PDTC for three hours. Cell lysates were prepared and treated with the following reagents in the presence of phosphorylated C/EBP β in which the phosphate is radiolabelled, for ten minutes at 37 degrees C: I2 (a selective PP1 inhibitor), okadaic acid (a selective inhibitor of PP2A and PP1), PDTC, I2 and PDTC, and okadaic acid and PDTC. As shown in Figure 13, PDTC inhibited phosphatase activity in the DKO-1 extract, resulting in maintenance of the C/EBP β in its phosphorylated state. This effect is reversible following removal of the antioxidant. This result is consistent with PDTC inhibition of the PP2A phosphatase. In contrast, a PP1 phosphatase specific inhibitor, I2, failed to protect C/EBP β from dephosphorylation under the same conditions. As expected, the nonspecific phosphatase inhibitor okadaic acid inhibited all DKO-1 phosphatase activity, thus protecting the C/EBP β from dephosphorylation. These results demonstrate that antioxidants such as PDTC are specific inhibitors of a class of phosphatases, such as PP2A, that are involved in the dephosphorylation of C/EBP β .

Example 24

The effect of PDTC on cellular proliferation or apoptosis was evaluated in a number of normal and cancer cell lines. The IC₅₀ was measured as the concentration of PDTC that inhibited cellular proliferation. The results are provided in Table 1. As indicated, PDTC did not inhibit the cell growth of normal cells, but did substantially inhibit the growth of breast carcinoma cells, gastric carcinoma cells, osteosarcoma cells, and pancreatic carcinoma cells.

TABLE 1:Effect of PDTC on Cell Proliferation
 $(IC_{50}$ required to inhibit cellular proliferation or induce apoptosis)

5	<u>Normal cells</u>	
	Keratinocytes	600uM
	Primary colonocytes	500uM
	Primary mammary epithelia	650uM
	Non-transformed rat intestinal epithelial cells	450uM
10	<u>Breast carcinoma cells</u>	
	MCF-7	13uM
	MCF-10WT	5uM
	MCF-10HRas	5uM
15	MDA-MB231	10uM
	MDA MB-468	20uM
20	<u>Gastric carcinoma cells</u>	
	Hs746T	35uM
	N-87	40uM
25	<u>Osteosarcoma</u>	
	Saos-2	10uM
	<u>Pancreatic carcinoma cells</u>	
	AsP01	70uM
	PANC-1	75uM
	BxPc3	100uM

Example 25

To evaluate whether antioxidants induce apoptosis in normal cells, normal and cancerous cells were incubated with 70 µM PDTC for 24 hours and DNA fragmentation assessed as a percentage of a control. As indicated in Tables 2 and 3, the normal cell line (primary colonocytes) did not exhibit significant DNA fragmentation after 24 hours of exposure to PDTC, whereas cancerous cells (Wild

type p53 HCA-7, HCT 116, mutant p53 HCT 15, DLD-1, and DKO-3 cells) exhibited substantial DNA fragmentation.

5

TABLE 2: PDTC Induces Apoptosis in CRC Cells but not Normal Cells *in vitro* (I)

10

Cell Type	DNA Fragmentation after PDTC Treatment (70μM) (% Control)			
	3h	6h	12h	24h
Primary Colonocytes	101±10	109±9	107±10	130±16
<i>Wild Type p53</i> HCA-7	111±13	126±17	154±19	302±35
HCT 116	108±11	131±21	198±23	367±49

bold values: significantly different from untreated cells (P<0.01), as determined by AOVA

15

TABLE 3: PDTC Induces Apoptosis in CRC Cells but not Normal Cells *in vitro* (II)

20

Cell Type	DNA Fragmentation after PDTC Treatment (70μM) (% Control)			
	101±10	109±9	107±10	130±16
<i>Mutant p53</i> HCT 15	145±12	259±18	673±34	979±34
DLD-1	213±17	296±21	712±34	876±46
DKO-3	223±11	478±16	896±23	1116±54

bold values: significantly different from untreated cells (P<0.01), as determined by AOVA

Example 26

As indicated in Tables 4 and 5, PDTC substantially reduces the toxicity of 5-FU in the murine small intestine and the murine colon. These results indicate that PDTC not only increases the cytotoxic effect of antineoplastic agents, it at the same time has a palliative effect on normal cells which are exposed to cytotoxic agents.

Example 27

Isolation of C/EBP β /PP2A methyltransferase complex

A novel multicomponent complex consisting of C/EBP β , PP2A and methyltransferase was isolated and initially characterized. This complex appears to play an important role in the regulation of PP2A and downstream transcriptional events including, but not limited to, cell division and apoptosis.

Co-immunoprecipitation techniques demonstrate for the first time that the transcriptional factor C/EBP β is complexed with the PP2Ac protein phosphatase. This novel complex appears to play an important role mechanistically in the control of the phosphorylation status of C/EBP β by PP2A.

Additionally, the C/EBP β /PP2Ac complex has also been shown to consist of the methyltransferase which carboxymethylates the catalytic subunit of C/EBP β . Rat brain soluble extracts were fractionated by phenyl-Sepharose and analyzed for methyltransferase activity using exogenous PP2A heterodimer (AC complex). The peak of methyltransferase activity was further fractionated by Source Q (strong anion exchange), and gel filtration chromatography. The partially purified methyltransferase in Figure 14 represents the peak methyltransferase activity from the gel filtration

column. This peak fraction of methylase activity is taken further to DEAE (weak anion exchange) and MonoQ (a different strong anion exchange resin) columns. Both C/EBP β and PP2A are detectable following these additional steps. Rat brain extracts are shown as a positive control (C/EBP β and PP2Ac migrate at approximately 45 and 5 36 kDa on SDS-PAGE).

Modifications and variations of the present invention will be obvious to those skilled in the art from the foregoing detailed description. Such modifications and variations are intended to come within the scope of the appended claims.

We Claim.

1. A method to enhance the cytotoxic activity of an antineoplastic drug against a disorder of abnormal cell proliferation, comprising administering an effective amount of the antineoplastic drug to a host in need of treatment in combination with 5 an effective cytotoxicity-increasing amount of an antioxidant.
2. A method to decrease the toxicity to an antineoplastic agent administered for the treatment of a solid growth of abnormally proliferating cells, comprising administering an antioxidant prior to, with, or following the antineoplastic treatment.
3. A method to increase the therapeutic index of an antineoplastic agent 10 administered for the treatment of a solid growth of abnormally proliferating cells, comprising administering an antioxidant prior to, with, or following the antineoplastic treatment.
4. A method to increase the nuclear localization of C/EBP β in a cell, comprising administering an antioxidant to the interior of the cell.
- 15 5. A method to inhibit the carboxymethylation of the catalytic subunit of protein phosphatase 2A by the methyltransferase which acts on protein phosphatase 2A, comprising contacting methyltransferase with an antioxidant in a sufficient amount to achieve inhibition.
6. A method for the identification of compounds that increase the cytotoxicity 20 of antineoplastic agents comprising assessing the compound's ability to promote phosphorylation at Ser²⁹⁹ of C/EBP β .

7. A method for the identification of compounds that increase the cytotoxicity of antineoplastic agents comprising assessing the compound's ability to inhibit the carboxymethylation of protein phosphatase 2A.

8. A peptide sequence of the form -X1-Arg-X2-Ser-X3 wherein X2 is the
5 C/EBP- β amino acid at position 298, and X1 and X3 represent flanking peptide sequences with substantial homology to C/EBP β .

9. The method of claim 1, wherein the abnormal cell proliferation is colorectal cancer.

10. The method of claim 1, wherein the abnormal cell proliferation is breast cancer.

11. A protein complex that consists of C/EBP β , PP2A, and the methyltransferase responsible for PP2A subunit carboxymethylation, in at least 70% purity.

12. A method for treating a condition of abnormal cell proliferation in a host,
15 comprising administering to the host an effective amount of C/EBP β , or a protein with substantial homology to C/EBP β , in phosphorylated or unphosphorylated form.

13. The method of claim 13, wherein the protein with substantial homology to C/EBP β consists of or contains a peptide sequence of the form -X1-Arg-X2-Ser-X3 wherein X2 is the C/EBP β amino acid at position 298, and X1 and X3 represent
20 flanking peptide sequences with substantial homology to those of C/EBP β , and wherein the term substantial homology refers to a protein or peptide sequence that

performs substantially the same function as the parent sequence and has at least 60% sequence identity.

14. A synthetic C/EBP β analog that has a stabilized phosphate bond or an analog thereof that is resistant to dephosphorylation.

5 15. The synthetic analog of claim 15 that is a phosphoroamidate or phosphonate analog.

16. The method of claim 1, 2, 3, 4, or 5, wherein the antioxidant is a dithiocarbamate.

17. The method of claim 16, wherein the dithiocarbamate is of the structure A-
10 SC(S)-B, wherein A is hydrogen or a pharmaceutically acceptable cation, and B is alkyl, alkenyl, alkynyl, alkaryl, aralkyl, haloalkyl, haloalkenyl, haloalkynyl, aryl, alkaryl, hydrogen, C₁₋₆ alkoxy-C₁₋₁₀ alkyl, C₁₋₆ alkylthio-C₁₋₁₀ alkyl, NR²R³, -(CHOH)_nCH₂OH, wherein n is 0, 1, 2, 3, 4, 5, or 6, -(CH₂)_nCO₂R¹, including alkylacetyl, alkylpropionyl, and alkylbutyryl, or hydroxy(C₁₋₆)alkyl- (wherein one or
15 more hydroxyl groups are located on any of the carbon atoms), or NR²R³, wherein R² and R³ are independently alkyl; -(CHOH)_n(CH₂)_nOH, wherein n is 0, 1, 2, 3, 4, 5, or 6; -(CH₂)_nCO₂R¹, -(CH₂)_nCO₂R⁴; hydroxy(C₁₋₆)alkyl-; alkenyl (including but not limited to vinyl, allyl, and CH₃CH=CH-CH₂CH₂); alkyl(CO₂H), alkenyl(CO₂H), alkynyl(CO₂H), or aryl, wherein the aryl group can be substituted as described above,
20 notably, for example, with a NO₂, CH₃, t-butyl, CO₂H, halo, or p-OH group; or R² and R³ can together constitute a bridge such as -(CH₂)_m- , wherein m is 3, 4, 5, 6, 7, 8, 9, or 10, and wherein R⁴ is alkyl, aryl, alkaryl, or aralkyl, including acetyl, propionyl, and

butyryl, or wherein B can be a heterocyclic or alkylheterocyclic group, which can be partially or totally hydrogenated.

18. The method of claim 1, 2, 3, 4, 5, or 6, wherein the antioxidant is probucol
or
5 a mono or diester thereof.
19. The method of claim 18, wherein one or both of the hydroxyl groups of probucol are replaced with esters of succinic acid, glutaric acid, adipic acid, suberic acid, sebamic acid, azelaic acid, or maleic acid.
20. The method of claim 1, 2, 3, 4, 5, or 6 wherein the antioxidant is a 2,6-
10 dialkyl-4-silylphenol.
21. The method of claim 1, 2, 3, 4, 5 or 6, wherein the antioxidant is N-acetyl cysteine.
22. The method of claim 1, 2, 3, 4, 5 or 6, wherein the antioxidant is selected
from the group consisting of a scavenger of peroxide, a thiol, an inhibitor of lipid
15 peroxidation, a dietary antioxidant, inhibitors of lipoxygenases and cyclooxygenases,
antioxidants manufactured by the body, and synthetic phenolic antioxidants.
23. The method of claim 1, 2, 3, 6, or 7, wherein the antineoplastic agent is
selected from the group consisting of Aceglatone; Aclarubicin; Altretamine;
Aminoglutethimide; 5-Aminolevulinic Acid; Amsacrine; Anastrozole; Ancitabine
20 Hydrochloride; 17-1A Antibody; Antilymphocyte Immunoglobulins; Antineoplaston
A10; Asparaginase; Pegaspargase; Azacitidine; Azathioprine; Batimastat;
Benzoporphyrin Derivative; Bicalutamide; Bisantrene Hydrochloride; Bleomycin

Sulphate; Brequinar Sodium; Broxuridine; Busulphan; Campath-IH; Caracemide;
Carbetimer; Carboplatin; Carboquone; Carmofur; Carmustine; Chlorambucil;
Chlorozotocin; Chromomycin; Cisplatin; Cladribine; Corynebacterium parvum;
Cyclophosphamide; Cyclosporin; Cytarabine; Dacarbazine; Dactinomycin;

5 Daunorubicin Hydrochloride; Decitabine; Diaziquone; Dichlorodiethylsulphide;
Didemnin B.; Docetaxel; Doxifluridine; Doxorubicin Hycloride; Droloxifene;
Echinomycin; Edatrexate; Elliptinium; Elmustine; Enloplatin; Enocitabine; Epirubicin
Hydrochloride; Estramustine Sodium Phosphate; Etanidazole; Ethogluclid; Etoposide;
Fadrozole Hydrochloride; Fazarabine; Fenretinide; Flouxuridine; Fludarabine

10 Phosphate; Fluorouracil; Flutamide; Formestane; Fotemustine; Gallium Nitrate;
Gencitabine; Gusperimus; Homoharringtonine; Hydroxyurea; Idarubicin
Hydrochloride; Ifosfamide; Ilmofosine; Imrosulfan Tosylate; Inolimomab;
Interleukin-2; Irinotecan; JM-216; Letrozole; Lithium Gamolenate; Lobaplatin;
Lomustine; Lonidamine; Mafosfamide; Melphalan; Menogaril; Mercaptopurine;

15 Methotrexate; Methotrexate Sodium; Miboplatin; Miltefosine; Misonidazole;
Mitobronitol; Mitoguazone Dihydrochloride; Mitolactol; Mitomycin; Mitotane;
Mitozanetrone Hydrochloride; Mizoribine; Mopidamol; Multialchipeptide;
Muromonab-CD3; Mustine Hydrochloride; Mycophenolic Acid; Mycophenolate

Mofetil; Nedaplatin; Nilutamide; Nimustine Hydrochloride; Oxaliplatin; Paclitaxel;

20 PCNU; Penostatin; Peplomycin Sulphate; Pipobroman; Pirarubicin; Piritrexim
Isethionate; Piroxantrone Hydrochloride; Plicamycin; porfimer Sodium;
Prednimustine; Procarbazine Hydrochloride; Raltitrexed; Ranimustine; Razoxane;

Rogletimide; Roquinimex; Sebriplatin; Semustine; Sirolimus; Sizofiran; Sobuzoxane;
Sodium Bromebrate; Sparfasic Acid; Sparfosate Sodium; Sreptozocin; Sulofenur;
Tacrolimus; Tamoxifen; Tegafur; Teloxantrone Hydrochloride; Temozolomide;
Teniposide; Testolactone; Tetrasodium Mesotetraphenylporphine-sulphonate;
5 Thioguanine; Thioinosine; Thiotepa; Topotecan; Toremifene; Treosulfan;
Trimetrexate; Trofosfamide; Tumor Necrosis Factor; Ubenimex; Uramustine;
Vinblastine Sulphate; Vincristine Sulphate; Vindesine Sulphate; Vinorelbine Tartrate;
Vorozole; Zinostatin; Zolimomab Aritox; and Zorubicin Hydrochloride.

24. The method of claim 1, 2, 3, or 12, wherein the abnormal cell proliferation
10 is a benign tumor.

25. The method of claim 1, 2, 3, or 12, wherein the abnormal cell proliferation
is a malignant tumor.

26. The method of claim 1, 2, 3 or 12, wherein the abnormal cell proliferation
is a hyperproliferative or preneoplastic lesion.

15 27. The method of claim 1, 2, 3 or 12, wherein the abnormal cell proliferation
is selected from the group consisting of papilloma, adenoma, firoma, chondroma,
osteoma, lipoma, hemangioma, lymphangioma, leiomyoma, rhabdomyoma,
meningioma, neuroma, ganglioneuroma, nevus, pheochromocytoma, neurilemona,
fibroadenoma, teratoma, hydatidiform mole, granuosa-theca, Brenner tumor,
20 arrhenoblastoma, hilar cell tumor, sex cord mesenchyme, interstitial cell tumor,
thyoma, renal cell carcinoma, prostatic adenocarcinoma, bladder
carcinoma, adenocarcinoma, fibrosarcoma, chondrosarcoma, osteosarcoma,

- liposarcoma, hemangiosarcoma, lymphangiosarcoma, leiomyosarcoma,
rhabdomyosarcoma, myelocytic leukemia, erythroleukemia, multiple myeloma,
glioma, meningeal sarcoma, thyoma, cystosarcoma phyllodes, nephroblastoma,
teratoma choriocarcinoma, cutaneous T-cell lymphoma (CTCL), cutaneous tumors
5 primary to the skin or infiltrating the skin, Kaposi's sarcoma, and premalignant and
malignant diseases of mucosal tissues, central nervous system tumors, mycosis
fungoides, psoriasis, dermatomyositis, rheumatoid arthritis, viruses, molluscum
contagiosum, remalignant and malignant diseases of the female genital tract.
28. The method of claim 1, 2, 3 or 12, wherein the abnormal cell proliferation
10 is selected from the group consisting of colorectal cancer, ovarian cancer, bone cancer,
renal cancer, breast cancer, gastric cancer, pancreatic cancer, melanoma, and
hematopoietic tumors.
29. The method of claim 1, 2, 3, or 12, wherein the abnormal cell proliferation
is a cardiovascular condition.
- 15 30. The method of claim 29, wherein the cardiovascular condition is post
angioplasty restenosis.

FIGURE 1A

FIGURE 1B

FIGURE 1C

Figure 1D

Figure 1E

Sensitization of HCT 116 and HCT 15 colon cancer cells to chemotherapeutic agents by PDTC (70 µM) or vitamin E (3 mM)

Cell line	Drug	IC ₅₀ (µM) ^a		
		- Antioxidant	+PDTC	+vitamin E
HCT 116	5FU	3.8 (± 0.21)	1.5 (± 0.29)	1.7 (± 0.20)
	Doxorubicin	0.32 (± 0.07)	0.09 (± 0.08)	0.13 (± 0.05)
HCT 15	5FU	11.4 (± 0.11)	1.01 (± 0.09)	1.4 (± 0.10)
	Doxorubicin	1.51 (± 0.07)	0.11 (± 0.05)	0.17 (± 0.04)

^aThe concentration of 5-FU or doxorubicin required to reduce soft agar colony formation by 50% (\pm s.e.m.). Underscored: significantly different from -antioxidant group ($P<0.01$), as determined by analysis of variance with multiple comparison adjustment.

Figure 2A

Figure 2B

Figure 3A Western blot

Figure 3B Northern blot

Figure 3C

Figure 4A

Figure 4B

Figure 4C

Figure 4D

Figure 4E

Figure 4F

Figure 5A

11/25

FIGURE 5B

FIGURE 6A

FIGURE 6B

Figure 7A

Figure 7B

Figure 7C

Figure 7D

FIGURE 8A

FIGURE 8B

Figure 9A

Figure 9B Trypsin cleavage

Figure 9C

Figure 10A

Figure 10B

FIGURE 11

Carboxylmethylation of PP2Ac is Inhibited by
Antioxidants

DKO-1 cells were incubated in serum-containing media containing [methyl-³H]S-adenosyl methionine and/or 70μM PDTC for 3 hours. Cytosolic or nuclear fractions were prepared and C/EBPβ immunoprecipitated using standard methods. Antibody/antigen complexes were resolved by SDS-PAGE and the presence of PP2Ac was detected by fluorography (overnight).

FIGURE 12

Antioxidants Inhibit Methyltransferase Activity Against PP2Ac

PP2A_{AC} was incubated in the presence of [methyl]³H]S-adenosyl methionine, increasing concentrations of PDTC and partially purified rat methyltransferase for 30 min at 37C. The reaction was terminated by the addition of SDS-sample buffer. Samples were resolved by SDS-PAGE and the presence of methylated PP2A dimers visualized by fluorography.

PDTc Inhibits PP2A, but not PP1, Activity

Count radioactivity left on C/EBP β

Figure 13

Figure 14 - C/EBP β and PP2Ac are components of isolated Methyltransferase activity

THIS PAGE BLANK (USPTO)