Digital Signal Processing Lab Lab Report # 04

Submitted By: AWAIS SADDIQUI

Registration No: 21PWCSE1993

Section: "A"

"On my honor, as student at University of Engineering and Technology, I have neither given nor received unauthorized.

assistance on this academic work"

Student Signature:

Submitted to:

Sir Yasir Saleem Afridi

Department of Computer Systems Engineering
University of Engineering and Technology, Peshawar.

Communication Systems

Demonstration of Concepts	Poor (Does not meet expectation (1)) The student failed to demonstrate a clear understanding of the assignment concepts	Fair (Meet Expectation (2-3)) The student demonstrated a clear understanding of some of the assignment concepts	Good (Exceeds Expectation (4-5) The student demonstrated a clear understanding of the assignment concepts	Score 30%
Accuracy	The student mis-configured enough signal processing settings that the computer couldn't function properly.	The student configured enough signal processing settings that the computer partially functioned	The student configured the signal processing settings that the computer fully functioned	30%
Following Directions	The student clearly failed to follow the verbal and written instructions to successfully complete the lab	The student failed to follow the some of the verbal and written instructions to successfully complete all requirements of the lab	The student followed the verbal and written instructions to successfully complete requirements of the lab	20%
Time Utilization	The student failed to complete even part of the lab in the allotted amount of time	The student failed to complete the entire lab in the allotted amount of time	The student completed the lab in its entirety in the allotted amount of time	20%

Code 1:

Will generate the signal of different frequencies say 10,20,30,40,50,60 Hz.

```
%Lab 04
2 -
       clc
3 -
       clear all
4
       f1 = 10;
5 -
       t = 0:0.001:1;
6 -
7 -
      yl = sin(2*pi*fl*t);
8 -
      subplot(3,2,1)
9 -
      plot(t,yl)
10 -
      xlabel('time in seconds')
11 -
      ylabel('Amplitude')
12 -
      title('Signal of 10 Hz frequency')
13 -
      grid on
14
15 -
      f2 = 20;
16 -
      subplot(3,2,2)
17 -
      y2 = sin(2*pi*f2*t);
18 -
      plot(t,y2)
19 -
       xlabel('time in seconds')
20 -
       ylabel('Amplitude')
21 -
       title('Signal of 20 Hz frequency')
22 -
       grid on
23
24 -
       f3 = 30;
25 -
      subplot (3,2,3)
26 -
      y3 = sin(2*pi*f3*t);
27 -
      plot(t,y3)
28 -
      xlabel('time in seconds')
29 -
      ylabel('Amplitude')
30 -
      title('Signal of 30 Hz frequency')
31 -
      grid on
32
33 -
      f4 = 40;
34 -
      subplot(3,2,4)
```

Output:

Code2:

Compare the time domain signal and frequency domain signal.

```
N = length(yl);
61 -
       fft_fl = fft(yl);
62 -
       freq_fl = (0:N-1)*(f1/N);
63 -
       subplot (3,2,1);
64 -
       plot(freq_fl, abs(fft_fl));
65 -
       xlabel('x axis');
66 -
       ylabel('y axis');
        title('fouier transfom f = 10 Hertz');
67 -
68
69
70
      N = length(y2);
71 -
72 -
       fft_f2 = fft(y2);
73 -
       freq_f2= (0:N-1)*(f2/N);
74
75 -
       subplot (3,2,2);
76 -
       plot(freq_f2, abs(fft_f2));
77 -
       xlabel('x axis');
78 -
       ylabel('y axis');
79 -
       title('fouier transfom f = 20 Hertz');
80
81
82
83 -
      N = length(y3);
84 -
       fft_f3 = fft(y3);
85 -
       freq_f3= (0:N-1)*(f3/N);
86
87 -
       subplot (3,2,3);
88 -
       plot(freq_f3, abs(fft_f3));
89 -
       xlabel('x axis');
90 -
       ylabel('y axis');
       title('fouier transfom f = 30 Hertz');
91 -
```

Output:

Code3:

```
130
131
         %% Addition of all Signal in time domain
132
133 -
        time domain adder = y1 + y2 + y3 + y4 + y5 + y6;
134 -
        plot(t,time_domain_adder);
135
136
137
        %% Addition of All signal in Frequency Domain
138
139 -
        freq_domanin_adder = fft_f1 + fft_f2 + fft_f3 + fft_f4 + fft_f5 + fft_f6;
140 -
        plot(abs(freq_domanin_adder));
141
142
143
144
        %% Noise Signal
145
146 -
       freq = 100;
147 -
        noise = sin(2*pi*freq*t);
148 -
        subplot(3,1,1);
149 -
       plot(t,noise);
150 -
       noise_sum = time_domain_adder+noise;
151 -
       subplot(3,1,2);
152 -
        plot(t , noise sum);
153
154
155 -
       N = length(noise);
        fft_f7 = fft(noise);
156 -
        freq_f7= (0:N-1)*(freq/N);
157 -
158 -
       sum = freq_domanin_adder+fft_f7;
159 -
       subplot(3,1,3);
160 -
       plot(freq_f7, abs(sum));
```

Output:

