ANOMALY DETECTION IN ENVIRONMENTAL SENSOR NETWORKS

ENHANCING CLIMATE MONITORING & RESOURCE OPTIMIZATION

INTRODUCTION

Provide real-time data (temperature, humidity, light).

- Anomalies compromise data reliability → affect climate actions and resource management.
- Goal: Improve data accuracy to support SDG 13: Climate Action.

DATASET OVERVIEW

- O1 5-minute interval readings (Temperature, Light, Humidity).
- O2 Geolocation data (Latitude, Longitude, Elevation).
- O3 Rich time-series + spatial data for deep analysis.

PROBLEM STATEMENT

Ol How can anomaly detection improve climate monitoring reliability?

How does this optimization support sustainable management?

EXPLORATORY DATA ANALYSIS (EDA)

SEASONAL PATTERNS

- January: High variability.
- June: Coldest and most stable.

O OUTLIERS IDENTIFIED

Temperatures >45°C, Humidity >100% (Sensor faults or true anomalies).

DATA INTEGRITY

- Missing values only in elevation field.
- No duplicate records.

MODEL BUILDING

ALGORITHM SELECTED	Random Forest Classifier.
FEATURES USED	Temperature avg, Humidity avg, Light avg.
ANOMALY LABELING	Manual thresholding (>45°C or >100% humidity).

EXPERIMENTAL RESULTS

Observation: Most observations were normal, very few anomalies.

Accuracy: 99.89%

Precision: 99.79%

Recall: 99.89%

F1 Score: 99.84%

KEY CONCLUSIONS

Random Forest effectively detects environmental anomalies.

O2 High model performance with minimal false alarms.

Reliable environmental monitoring enables better climate action strategies.

THANK YOU!