Внешний курс. Блок 3: Криптография на практике

Основы информационной безопасности

Симонова Виктория Игоревна

Содержание

1	Цель работы		
2	Вып	олнение блока 3: Криптография на практике	6
	2.1	Введение в криптографию	6
	2.2	Цифровая подпись	8
	2.3	Электронные платежи	11
	2.4	Блокчейн	12
3	Вы	воды	15

Список иллюстраций

2.1	Вопрос 4.1.1	
2.2	Вопрос 4.1.2	
2.3	Вопрос 4.1.3	
2.4	Вопрос 4.1.4	
2.5	Вопрос 4.1.5	
2.6	Вопрос 4.2.1	
2.7	Вопрос 4.2.2	
2.8	Вопрос 4.2.3	 10
2.9	Вопрос 4.2.4	 10
2.10	Вопрос 4.2.5	
2.11	Вопрос 4.3.1	
2.12	Вопрос 4.3.2	
2.13	Вопрос 4.3.3	
2.14	Вопрос 4.4.1	 13
2.15	Вопрос 4.4.2	 13
2.16	Вопрос 4.4.3	 14

Список таблиц

1 Цель работы

Пройти третий блок курса "Основы кибербезопасности"

2 Выполнение блока 3: Криптография на практике

2.1 Введение в криптографию

Для ответа на вопрос используется определение ассмиетричного шифрования с двумя ключами (рис. 2.1).

Рис. 2.1: Вопрос 4.1.1

Отмечены основные условия для криптографической хэш-функции (рис. 2.2).

Рис. 2.2: Вопрос 4.1.2

Отмечены алгоритмы цифровой подписи (рис. 2.3).

Рис. 2.3: Вопрос 4.1.3

В информационной безопасности аутентификация сообщения или аутентификация источника данных-это свойство, которое гарантирует, что сообщение не было изменено во время передачи (целостность данных) и что принимающая сторона может проверить источник сообщения (рис. 2.4)

Рис. 2.4: Вопрос 4.1.4

Определение обмена ключами Диффи-Хэллмана. (рис. 2.5).

Рис. 2.5: Вопрос 4.1.5

2.2 Цифровая подпись

По определению цифровой подписи протокол ЭЦП относится к протоколам с публичным ключом (рис. 2.6).

Рис. 2.6: Вопрос 4.2.1

лгоритм верификации электронной подписи состоит в следующем. На первом этапе получатель сообщения строит собственный вариант хэш-функции подписанного документа. На втором этапе происходит расшифровка хэш-функции, содержащейся в сообщении с помощью открытого ключа отправителя. На третьем этапе производится сравнение двух хэш- функций. Их совпадение гарантирует одновременно подлинность содержимого документа и его авторства (рис. 2.7).

Рис. 2.7: Вопрос 4.2.2

Электронная подпись обеспечивает все указанное, кроме конфиденциальности (рис. 2.8).

Рис. 2.8: Вопрос 4.2.3

Для отправки налоговой отчетности в ФНС используется усиленная квалифицированная электронная подпись (рис. 2.9).

Рис. 2.9: Вопрос 4.2.4

Верный ответ укзаан на изображении (рис. 2.10).

Рис. 2.10: Вопрос 4.2.5

2.3 Электронные платежи

Известные платежные системы - Visa, MasterCard, МИР (рис. 2.11).

Рис. 2.11: Вопрос 4.3.1

Верный ответ на изображении (рис. 2.12).

Рис. 2.12: Вопрос 4.3.2

При онлайн платежах используется многофакторная аутентификация (рис. 2.13).

Рис. 2.13: Вопрос 4.3.3

2.4 Блокчейн

Proof-of-Work, или PoW, (доказательство выполнения работы) — это алгоритм достижения консенсуса в блокчейне; он используется для подтверждения транзакций и создания новых блоков. С помощью PoW майнеры конкурируют друг с другом за завершение транзакций в сети и за вознаграждение. Пользователи

сети отправляют друг другу цифровые токены, после чего все транзакции собираются в блоки и записываются в распределенный реестр, то есть в блокчейн. (рис. 2.14).

Рис. 2.14: Вопрос 4.4.1

Консенсус блокчейна — это процедура, в ходе которой участники сети достигают согласия о текущем состоянии данных в сети. Благодаря этому алгоритмы консенсуса устанавливают надежность и доверие к самоу сети. (рис. 2.15).

Рис. 2.15: Вопрос 4.4.2

Ответ - цифровая подпись (рис. 2.16).

Рис. 2.16: Вопрос 4.4.3

3 Выводы

Я прошла третий блок