Please check the examination details k	oelow before ente	ring your candidate infor	mation
Candidate surname		Other names	
Centre Number Candidate	Number		
Pearson Edexcel Leve	el 3 GCE		
Time 1 hour 30 minutes	Paper reference	9FM0	/3C
Further Mathem	atics		
Advanced			
7101701110001	h ! 1		
PAPER 3C: Further Mec	nanics i		
			J
You must have: Mathematical Formulae and Statist	ical Tables (Gr	een), calculator	Total Marks

Candidates may use any calculator permitted by Pearson regulations.

Calculators must not have the facility for symbolic algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Unless otherwise indicated, whenever a numerical value of g is required, take $g = 9.8 \,\mathrm{m \, s^{-2}}$ and give your answer to either 2 significant figures or 3 significant figures.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 8 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

1.	A particle A of mass $3m$ and a particle B of mass m are moving along the same straight line on a smooth horizontal surface. The particles are moving in opposite directions towards each other when they collide directly.	
	Immediately before the collision, the speed of A is ku and the speed of B is u . Immediately after the collision, the speed of A is v and the speed of B is $2v$.	
	The magnitude of the impulse received by B in the collision is $\frac{3}{2}$ mu.	
	(a) Find v in terms of u only.	(3)
	(b) Find the two possible values of <i>k</i> .	(5)

Question 1 continued	

Question 1 continued

Question 1 continued	
	(Total for Question 1 is 8 marks)

(8)

Figure 1

A van of mass 600 kg is moving up a straight road which is inclined at an angle α to the horizontal, where $\sin \alpha = \frac{1}{15}$. The van is towing a trailer of mass 150 kg. The van is attached to the trailer by a towbar which is parallel to the direction of motion of the van and the trailer, as shown in Figure 1.

The resistance to the motion of the van from non-gravitational forces is modelled as a constant force of magnitude 200 N.

The resistance to the motion of the trailer from non-gravitational forces is modelled as a constant force of magnitude 100 N.

The towbar is modelled as a light rod.

The engine of the van is working at a constant rate of 12 kW.

Find the tension in the towbar at the instant when the speed of the van is 9 m s⁻¹

Question 2 continued

Question 2 continued

Question 2 continued	
	(Total for Question 2 is 8 marks)

3.

Figure 2

A particle P of mass 0.5 kg is moving in a straight line with speed $2.8\,\mathrm{m\,s^{-1}}$ when it receives an impulse of magnitude $3\,\mathrm{N\,s}$.

The angle between the direction of motion of P immediately before receiving the impulse and the line of action of the impulse is α , where $\tan \alpha = \frac{4}{3}$, as shown in Figure 2.

T: 1	41	1	-C D	:	1:-4-1			41	:
rina	ine	speed	αP	ımme	maierv	aner	receiving	ine	impilise
1 1110	uii	speca	011	11111111	aracery	arter	receiving	UIIC	mpaise.

(5)	
(2)	

10

Question 3 continued	
(Total for Question 3 is 5 m	narks)

A B 60° 3m 4m 30°

Figure 3

2u

Two smooth uniform spheres, A and B, have equal radii. The mass of A is 3m and the mass of B is 4m. The spheres are moving on a smooth horizontal plane when they collide obliquely. Immediately before they collide, A is moving with speed 3u at 30° to the line of centres of the spheres and B is moving with speed 2u at 30° to the line of centres of the spheres. The direction of motion of B is turned through an angle of 90° by the collision, as shown in Figure 3.

- (i) Find the size of the angle through which the direction of motion of A is turned as a result of the collision.
- (ii) Find, in terms of m and u, the magnitude of the impulse received by B in the collision.

Question 4 continued

Question 4 continued

Question 4 continued	
(Tot	ral for Question 4 is 9 marks)

5. Two particles, P and Q, are moving in opposite directions along the same straight line on a smooth horizontal surface when they collide directly.

The mass of P is 3m and the mass of Q is 4m.

Immediately before the collision the speed of P is 2u and the speed of Q is u.

The coefficient of restitution between P and Q is e.

(a) Show that the speed of Q immediately after the collision is $\frac{u}{7}(9e+2)$

(6)

After the collision with P, particle Q collides directly with a fixed vertical wall and rebounds. The wall is perpendicular to the direction of motion of Q.

The coefficient of restitution between Q and the wall is $\frac{1}{2}$

(b) Find the complete range of possible values of e for which there is a second collision between P and Q.

(4)

		_

Question 5 continued

Question 5 continued

Question 5 continued	
	Total for Question 5 is 10 marks)

6.

Figure 4

Two blocks, A and B, of masses 2kg and 4kg respectively are attached to the ends of a light inextensible string.

Initially A is held on a fixed rough plane. The plane is inclined to horizontal ground at an angle θ , where $\tan \theta = \frac{3}{4}$

The string passes over a small smooth light pulley P that is fixed at the top of the plane. The part of the string from A to P is parallel to a line of greatest slope of the plane.

Block A is held on the plane with the distance AP greater than $3 \, \text{m}$.

Block B hangs freely below P at a distance of 3 m above the ground, as shown in Figure 4.

The coefficient of friction between A and the plane is μ

Block A is released from rest with the string taut.

By modelling the blocks as particles,

(a) find the potential energy lost by the whole system as a result of B falling $3 \, \text{m}$.

(3)

Given that the speed of B at the instant it hits the ground is $4.5 \,\mathrm{m\,s^{-1}}$ and ignoring air resistance,

(b) use the work-energy principle to find the value of μ

(6)

After B hits the ground, A continues to move up the plane but does not reach the pulley in the subsequent motion.

Block A comes to instantaneous rest after moving a total distance of (3 + d) m from its point of release.

Ignoring air resistance,

(c) use the work-energy principle to find the value of d

(4)

Question 6 continued

Question 6 continued

Question 6 continued	
	(Total for Question 6 is 13 marks)

7.	A spring of natural length a has one end attached to a fixed point A . The other end of
	the spring is attached to a package P of mass m .

The package P is held at rest at the point B, which is vertically below A such that AB = 3a.

After being released from rest at B, the package P first comes to instantaneous rest at A. Air resistance is modelled as being negligible.

By modelling the spring as being light and modelling P as a particle,

(a) show that the modulus of elasticity of the spring is 2mg

(5)

- (b) (i) Show that P attains its maximum speed when the extension of the spring is $\frac{1}{2}a$
 - (ii) Use the principle of conservation of mechanical energy to find the maximum speed, giving your answer in terms of a and g.

(6)

In reality, the spring is not light.

(c) State one way in which this would affect your energy equation in part (b).

(1)

ı			
ı			
ı			
ı			
ı			
ı			
-1			

Question 7 continued

Question 7 continued			

Question 7 continued	
	(Total for Question 7 is 12 marks)
	(10tal lot Vacation / 15 12 mai ka)

8.

Figure 5

Figure 5 represents the plan view of part of a smooth horizontal floor, where RS and ST are smooth fixed vertical walls. The vector \overrightarrow{RS} is in the direction of \mathbf{i} and the vector \overrightarrow{ST} is in the direction of $(2\mathbf{i} + \mathbf{j})$.

A small ball B is projected across the floor towards RS. Immediately before the impact with RS, the velocity of B is $(6\mathbf{i} - 8\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$. The ball bounces off RS and then hits ST.

The ball is modelled as a particle.

Given that the coefficient of restitution between B and RS is e,

(a) find the full range of possible values of e.

(3)

It is now given that $e = \frac{1}{4}$ and that the coefficient of restitution between B and ST is $\frac{1}{2}$

(b) Find, in terms of i and j, the velocity of B immediately after its impact with ST.

(7)

Question 8 continued

Question 8 continued

Question 8 continued

Question 8 continued				
(Total for Question 8 is 10 marks)				
TOTAL FOR PAPER IS 75 MARKS				

