Alternating Direction Method of Multipliers

a talk by

Vinícius and Prof. Daniel Palomar

The Hong Kong University of Science and Technology

ELEC5470/IEDA6100A - Convex Optimization

Contents

1. Introduction

Optimization algorithms, motivation

2. Alternating Direction Method of Multipliers

The basics

3. Practical Examples

Robust PCA and Graphical Lasso

Why use optimization algorithms?

Motivations

- large-scale optimization
 - machine learning/statistics with huge datasets
 - computer vision
- descentralized optimization
 - entities/agents/threads coordinate to solve a large problem by passing small messages

Optimization Algorithms

- Gradient Descent
- Newton
- Interior Point Methods (IPM)
- Block Coordinate Descent (BCD)
- Majorization-Minimization (MM)
- Block Majorization-Minimization (BMM)
- Successive Convex Approximation (SCA)

Optimization Algorithms

- Gradient Descent
- Newton
- Interior Point Methods (IPM)
- Block Coordinate Descent (BCD)
- Majorization-Minimization (MM)
- Block Majorization-Minimization (BMM)
- Successive Convex Approximation (SCA)
- · ...

Optimization Algorithms

- Gradient Descent
- Newton
- Interior Point Methods (IPM)
- Block Coordinate Descent (BCD)
- Majorization-Minimization (MM)
- Block Majorization-Minimization (BMM)
- Successive Convex Approximation (SCA)
- **.**..
- Alternating Direction Method of Multipliers (ADMM)

Reference

- **■** Boyd *et al.* **Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers.** *Foundations and Trends in Machine Learning.* 2010.
- available online for free: https://web.stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf
- citations: 13519¹
- Boyd's presentation: https://web.stanford.edu/class/ee364b/lectures/admm_slides.pdf
- Yuxin Chen's Princeton lecture notes ELE 522: Large-Scale Optimization for Data Science

¹as of Nov. 24th 2020

Dual Problem

convex equality constrained optimization problem

$$\begin{array}{ll}
\text{minimize} & f(\mathbf{x}) \\
\text{subject to} & \mathbf{A}\mathbf{x} = \mathbf{b}
\end{array}$$

- Lagrangian: $L(\boldsymbol{x}, \boldsymbol{y}) = f(\boldsymbol{x}) + \boldsymbol{y}^{\top} (\boldsymbol{A} \boldsymbol{x} \boldsymbol{b})$
- dual function: $g(\mathbf{y}) = \inf_{\mathbf{x}} L(\mathbf{x}, \mathbf{y})$
- dual problem: maximize $g(\mathbf{y})$
- recover: $\boldsymbol{x}^{\star} = \underset{\boldsymbol{x}}{\operatorname{argmin}} L(\boldsymbol{x}, \boldsymbol{y}^{\star})$

Dual Ascent

Dual Ascent

- lacktriangle gradient method for dual problem: $m{y}^{k+1} = m{y}^k +
 ho^k
 abla g(m{y}^k)$
- dual ascent method is

$$egin{aligned} oldsymbol{x}^{k+1} &:= rg\min_{oldsymbol{x}} \ L(oldsymbol{x}, oldsymbol{y}^k) \ oldsymbol{y}^{k+1} &:= oldsymbol{y}^k +
ho^k \left(oldsymbol{A} oldsymbol{x}^{k+1} - oldsymbol{b}
ight) \end{aligned}$$

Dual Ascent

- lacktriangle gradient method for dual problem: $m{y}^{k+1} = m{y}^k +
 ho^k
 abla g(m{y}^k)$
- dual ascent method is

$$oldsymbol{x}^{k+1} := rg \min_{oldsymbol{x}} \ L(oldsymbol{x}, oldsymbol{y}^k) \ oldsymbol{y}^{k+1} := oldsymbol{y}^k +
ho^k \left(oldsymbol{A} oldsymbol{x}^{k+1} - oldsymbol{b}
ight)$$

why?

Dual Decomposition

Dual Decomposition

suppose f is separable:

$$f(\mathbf{x}) = f_1(x_1) + \cdots + f_n(x_n), \mathbf{x} = (x_1, \dots, x_n)$$

then the Lagrangian is separable in x:

$$L_i(x_i, \boldsymbol{y}) = f_i(x_i) + \boldsymbol{y}^{\top} \boldsymbol{a}_{*,i} x_i$$

 $m{x}$ -minimization splits into n separate minimizations

$$x_i^{k+1} := rg\min_{x_i} L_i(x_i, oldsymbol{y}^k), i = 1, ..., n$$

which can be done in parallel and $\mathbf{y}^{k+1} = \mathbf{y}^k + \alpha^k \left(\sum_{i=1}^n \mathbf{a}_{*,i} x_i^{k+1} - \mathbf{b}\right)$

Optimization Problem

minimize
$$f(\boldsymbol{x}) + g(\boldsymbol{z})$$
 subject to $A\boldsymbol{x} + B\boldsymbol{z} = \boldsymbol{c}$ (1)

- $m{z}$ variables: $m{x} \in \mathbb{R}^n$ and $m{z} \in \mathbb{R}^m$
- $m{r}$ parameters: $m{A} \in \mathbb{R}^{p imes n}$, $m{B} \in \mathbb{R}^{p imes m}$, and $m{c} \in \mathbb{R}^p$
- optimal value: $p^* = \inf_{x,z} \{ f(x) + g(z) : Ax + Bz = c \}$

Augmented Lagrangian Method

Augmented Lagrangian Method

Augmented Lagrangian:

$$L_{
ho}(oldsymbol{x},oldsymbol{z},oldsymbol{y}) = \underbrace{f(oldsymbol{x}) + g(oldsymbol{z}) + \langle oldsymbol{y}, oldsymbol{A}oldsymbol{x} + oldsymbol{B}oldsymbol{z} - oldsymbol{c}ig\|_{ ext{F}}^2 \left\|oldsymbol{A}oldsymbol{x} + oldsymbol{B}oldsymbol{z} - oldsymbol{c}ig\|_{ ext{F}}^2$$

ALM consists of the iterations:

$$m{x}^{k+1}, m{z}^{k+1} := rg\min_{m{x},m{z}} \ L_{
ho}(m{x},m{z},m{y}^k) \ /\!/ \ ext{primal update}$$
 $m{y}^{k+1} := m{y}^k +
ho \left(m{A}m{x}^{k+1} + m{B}m{z}^{k+1} - m{c}
ight) \ /\!/ \ ext{dual update}$

ho > 0 is a penalty hyperparameter

Issues with Augmented Lagrangian Method

- the primal step is often expensive to solve as expensive as solving the original problem
- ightharpoonup minimization of x and z has to be done jointly

Alternating Direction Method of Multipliers

Alternating Direction Method of Multipliers

Augmented Lagrangian:

$$L_{\rho}(\boldsymbol{x},\boldsymbol{z},\boldsymbol{y}) = \underbrace{f(\boldsymbol{x}) + g(\boldsymbol{z}) + \langle \boldsymbol{y}, \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{z} - \boldsymbol{c} \rangle}_{\text{Lagrangian}} + \frac{\rho}{2} \left\| \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{z} - \boldsymbol{c} \right\|_{\text{F}}^{2}$$

ADMM consists of the iterations:

$$egin{aligned} oldsymbol{x}^{k+1} &:= rg\min_{oldsymbol{x}} \ L_{
ho}(oldsymbol{x}, oldsymbol{z}^k, oldsymbol{y}^k) \ oldsymbol{z}^{k+1} &:= rg\min_{oldsymbol{z}} \ L_{
ho}(oldsymbol{x}^{k+1}, oldsymbol{z}, oldsymbol{y}^k) \ oldsymbol{y}^{k+1} &:= oldsymbol{y}^k +
ho\left(oldsymbol{A}oldsymbol{x}^{k+1} + oldsymbol{B}oldsymbol{z}^{k+1} - oldsymbol{c}
ight) \end{aligned}$$

ho > 0 is a penalty hyperparameter

Convergence and Stopping Criteria

- assume (very little!)
 - f, g are convex, closed, proper
 - ▶ L₀ has a saddle point
- then ADMM converges:
 - iterates approach feasibility: $Ax^k + Bz^k c \rightarrow 0$
 - lacktriangledown objective approaches optimal value: $f({m x}^k) + g({m z}^k) o p^\star$
- false (in general) statements: x converges, z converges
- true statement: y converges
- what matters: residual is small and near optimality in objective value

Convergence of ADMM in Practice

- ADMM is often slow to converge to high accuracy
- ADMM often converges to moderate accuracy within a few dozens of iterations, which is often sufficient for most practical purposes

Practical Examples

Robust PCA (Candes et al. '08)

We would like to model a data matrix M as low-rank plus sparse components:

- lacktriangle where $\|oldsymbol{L}\|_* := \sum_{i=1}^n \sigma_i(oldsymbol{L})$ is the nuclear norm
- aises and $\left\| m{S}
 ight\|_1 := \sum_{i,j} \left| S_{ij} \right|$ is the entrywise ℓ_1 -norm

Robust PCA via ADMM

ADMM for solving robust PCA:

$$\begin{split} & \boldsymbol{L}^{k+1} = \underset{\boldsymbol{L}}{\text{arg min}} & \left\| \boldsymbol{L} \right\|_* + \text{tr} \left(\boldsymbol{Y}^{k\top} \boldsymbol{L} \right) + \frac{\rho}{2} \left\| \boldsymbol{L} + \boldsymbol{S}^k - \boldsymbol{M} \right\|_{\text{F}}^2 \\ & \boldsymbol{S}^{k+1} = \underset{\boldsymbol{S}}{\text{arg min}} & \lambda \left\| \boldsymbol{S} \right\|_1 + \text{tr} \left(\boldsymbol{Y}^{k\top} \boldsymbol{S} \right) + \frac{\rho}{2} \left\| \boldsymbol{L}^{k+1} + \boldsymbol{S} - \boldsymbol{M} \right\|_{\text{F}}^2 \\ & \boldsymbol{Y}^{k+1} = \boldsymbol{Y}^k + \rho \left(\boldsymbol{L}^{k+1} + \boldsymbol{S}^{k+1} - \boldsymbol{M} \right) \end{split}$$

Robust PCA via ADMM

$$egin{align} & oldsymbol{L}^{k+1} = \mathsf{SVT}_{
ho^{-1}} \left(oldsymbol{M} - oldsymbol{S}^k - rac{1}{
ho} oldsymbol{Y}^k
ight) \ & oldsymbol{S}^{k+1} = \mathsf{ST}_{\lambda
ho^{-1}} \left(oldsymbol{M} - oldsymbol{L}^{k+1} - rac{1}{
ho} oldsymbol{Y}^k
ight) \ & oldsymbol{Y}^{k+1} = oldsymbol{Y}^k +
ho \left(oldsymbol{L}^{k+1} + oldsymbol{S}^{k+1} - oldsymbol{M}
ight), \end{split}$$

where for any ${\pmb X}$ with SVD ${\pmb X} = {\pmb U} {\pmb \Sigma} {\pmb V}^{ op}$, ${\pmb \Sigma} = {\sf diag}\left(\{\sigma_i\}\right)$, we have

$$\mathsf{SVT}_{ au}\left(oldsymbol{X}
ight) = oldsymbol{U}\mathsf{diag}\left(\left\{(\sigma_i - au)^+
ight\}
ight)oldsymbol{V}^ op$$

and

$$\left(\mathsf{ST}_{ au}\left(oldsymbol{X}
ight)
ight)_{ij} = egin{cases} X_{ij} - au, & \mathsf{if}\ X_{ij} > au, \ 0, & \mathsf{if}\ |X_{ij}| \leq au, \ X_{ij} + au, & \mathsf{if}\ X_{ij} < - au \end{cases}$$

Graphical Lasso

Precision matrix estimation from Gaussian samples:

$$\begin{array}{ll} \underset{\boldsymbol{\Theta}}{\text{minimize}} & \underbrace{-\log\det\boldsymbol{\Theta} + \langle\boldsymbol{\Theta}, \boldsymbol{S}\rangle}_{\text{neg. log likelihood}} + \lambda \, \|\boldsymbol{\Theta}\|_{1} \\ \text{subject to} & \boldsymbol{\Theta} \succ \boldsymbol{0} \end{array}$$

Or equivalently, using a slack variable $\Psi = \mathbf{\Theta}$

$$\begin{array}{ll} \underset{\boldsymbol{\Theta},\boldsymbol{\Psi}}{\text{minimize}} & \underbrace{-\log\det\boldsymbol{\Theta} + \langle\boldsymbol{\Theta},\boldsymbol{S}\rangle}_{\text{neg. log likelihood}} + \lambda \left\|\boldsymbol{\Psi}\right\|_{1} \\ \text{subject to} & \boldsymbol{\Theta} \succ \boldsymbol{0}, \boldsymbol{\Theta} = \boldsymbol{\Psi} \end{array}$$

Graphical Lasso via ADMM

$$\begin{split} & \boldsymbol{\Theta}^{k+1} = \underset{\boldsymbol{\Theta} \succ \mathbf{0}}{\text{arg min}} \ -\log \det \boldsymbol{\Theta} + \langle \boldsymbol{\Theta}, \boldsymbol{S} + \boldsymbol{Y}^k \rangle + \frac{\rho}{2} \left\| \boldsymbol{\Theta} - \boldsymbol{\Psi}^k \right\|_{\text{F}}^2 \\ & \boldsymbol{\Psi}^{k+1} = \underset{\boldsymbol{\Psi}}{\text{arg min}} \ \lambda \left\| \boldsymbol{\Psi} \right\|_1 - \langle \boldsymbol{\Psi}, \boldsymbol{Y}^k \rangle + \frac{\rho}{2} \left\| \boldsymbol{\Theta}^k - \boldsymbol{\Psi} \right\|_{\text{F}}^2 \\ & \boldsymbol{Y}^{k+1} = \boldsymbol{Y}^k + \rho \left(\boldsymbol{\Theta}^{k+1} - \boldsymbol{\Psi}^{k+1} \right) \end{split}$$

Graphical Lasso via ADMM

$$egin{align} oldsymbol{\Theta}^{k+1} &= \mathcal{F}_{
ho} \left(oldsymbol{\Psi}^k - rac{1}{
ho} \left(oldsymbol{Y}^k + oldsymbol{S}
ight) \ oldsymbol{\Psi}^{k+1} &= oldsymbol{\mathsf{ST}}_{\lambda
ho^{-1}} \left(oldsymbol{\Theta}^{k+1} + rac{1}{
ho} oldsymbol{Y}^k
ight) \ oldsymbol{Y}^{k+1} &= oldsymbol{Y}^k +
ho \left(oldsymbol{\Theta}^{k+1} - oldsymbol{\Psi}^{k+1}
ight) \end{aligned}$$

$$\qquad \qquad \textbf{ where } \mathcal{F}_{\rho}(\textbf{\textit{X}}) := \tfrac{1}{2} \textbf{\textit{U}} \mathsf{diag} \left(\left\{ \lambda_i + \sqrt{\lambda_i^2 + \tfrac{4}{\rho}} \right\} \right) \textbf{\textit{U}}^\top \text{, for } \textbf{\textit{X}} = \textbf{\textit{U}} \boldsymbol{\Lambda} \textbf{\textit{U}}^\top.$$

Network of stocks via Graphical Lasso

Network of stocks via Graphical Lasso

Conclusion

- ADMM is a versatile/flexible optimization framework
- may not be the best for a specific case, but often performs well in practice
- convergence often needs to be proved in a case-by-case scenario

Questions?