Experimental CORN HYBRIDS 1950 TESTS

By L. F. Bauman
R. W. Jugenheimer
C. M. Woodworth
D. E. Alexander
Benjamin Koehler

Bulletin 543 · UNIVERSITY OF ILLINOIS AGRICULTURAL EXPERIMENT STATION

DEKALB (N)

GENESEO
(NC)

URBANA

BLUFFS
(SC)

BROWNSTOWN
(S)

Location of regular experimental-hybrid test fields (Lebanon, used for the first time in 1950, is not shown)

CONTENTS

PAGE
MEASURING PERFORMANCE
MATERIAL TESTED
RESULTS OF THE TESTS79
HYBRID NUMBERS, PEDIGREES, AND INDEX (Table 2)81
NORTHERN ILLINOIS (Tables 3 and 4)84
NORTHERN AND NORTH-CENTRAL ILLINOIS (Tables 5, 6, and 7)86
NORTH-CENTRAL, CENTRAL, AND SOUTH-CENTRAL ILLINOIS (Tables 8, 9, 10, and 11)90
SOUTH-CENTRAL AND SOUTHERN ILLINOIS (Tables 12 and 13)95
PERFORMANCE OF LINES IN SINGLE CROSSES98

Acknowledgment is due C. D. Ford, Geneseo, and Royal Oakes, Bluffs, for providing land for some of the tests; and the division of Soil Experiment Fields for the data from the Lebanon field.

Urbana, Illinois

February, 1951

EXPERIMENTAL CORN HYBRIDS 1950 TESTS

By L. F. Bauman, R. W. Jugenheimer, C. M. Woodworth, D. E. Alexander, and Benjamin Koehler¹

THIS REPORT summarizes the results of tests of experimental corn hybrids conducted in 1950 by this Station. Trials were made at six locations: in DeKalb county in northern Illinois, in Henry county in northcentral Illinois, in Champaign county in central Illinois, in Scott county in south-central Illinois, and in Fayette and St. Clair counties in southern Illinois. These six locations are representative of the soil, rainfall, and length of growing season found in different sections of the state.

In these tests 428 hybrids were compared for yield, maturity, resistance to lodging, and other agronomic characters. Only hybrids of similar maturity were tested on the same field. A familiar hybrid whose maturity was considered the standard for the group is included in each table heading.

Since most of the hybrids whose performance is recorded here are not yet in commercial use, the information about them is of most value to those producers of hybrid seed who are on the alert for new, improved hybrids for their customers.

The 1950 performance of hybrids available in commercial quantities to Illinois farmers is reported in Bulletin 544 of this Station.

MEASURING PERFORMANCE

All plots in these tests were planted and thinned by hand in fields prepared in the usual way for corn. Six kernels were planted in hills spaced 40 inches apart. Three plants per hill were left at Urbana, Brownstown, Lebanon, and DeKalb; four plants per hill were left in all other tests. Plots at most locations were 2×5 hills, with the exceptions noted in Table 1. All entries were replicated and arranged in a randomized block design.

General information concerning the tests is given in Table 1, including dates of planting and harvesting, and other general data.

¹ L. F. BAUMAN, First Assistant in Plant Genetics; R. W. JUGENHEIMER and C. M. WOODWORTH, Professors of Plant Genetics; D. E. ALEXANDER, formerly Special Research Assistant in Plant Genetics; and BENJAMIN KOEHLER, Professor of Crop Pathology.

Data from all plots are included in the results. The only correction for imperfect stands was the following adjustment for missing hills:

$$\frac{\text{Corrected}}{\text{weight}} = \frac{\text{Field}}{\text{weight}} \times \frac{\left(\begin{array}{c} \text{Number of hills} \\ \text{per plot} \end{array} \right) - \left(\begin{array}{c} 0.3 \times \text{Number of missing} \\ \text{hills per plot} \end{array} \right)}{\left(\begin{array}{c} \text{Number of hills} \\ \text{per plot} \end{array} \right) - \left(\begin{array}{c} \text{Number of missing} \\ \text{hills per plot} \end{array} \right)}$$

This adjustment adds 0.7 of the average hill yield for each missing hill, and assumes that 0.3 is made up by the increased yield of surrounding hills.

Table 1.—GENERAL INFORMATION: Tests of Illinois
Experimental Corn Hybrids, 1950

Country	Continuos at atata	Number	Plants	D	ate of—
County ^a	Section of state	of hills per plot ^b	per hill	Planting	Harvesting
DeKalb	Northern	10	3	May 23	November 17
Henry		10	4	May 15	October 27
Champaign		16	3	May 18	November 24
Scott	South-Central	10	4	May 12	October 12
Fayette	Southern	10	3	May 26	November 10
St. Clair		20	3	May 23	December 6

^a The fields are located near the following cities and towns: in DeKalb county near DeKalb, in Henry county near Geneseo, in Champaign county near Urbana, in Scott county near Bluffs, in Fayette county near Brownstown, and in St. Clair county near Lebanon.

^b Exceptions: northern Illinois data in Table 6 and north-central data in Table 10 were from

single-hill plots.

Double-cross hybrids are listed in the tables in the order of their yield. Acre-yields are reported as shelled grain containing 15.5 percent moisture, the maximum allowable for No. 2 corn. To determine the shelling percentage and moisture percentage, the corn from one replication of each entry at each location was shelled. Percentage of moisture in the shelled grain was obtained with a Steinlite moisture meter.

Erect plants at harvest and stand were determined from actual counts on all replications of each test for which such data are presented. Plant and ear heights are recorded in feet and inches respectively.

MATERIAL TESTED

One hundred forty-three different double crosses and 270 single crosses were grown on the six test fields. The Illinois hybrids were developed by members of the Plant Breeding division of the University of Illinois Agronomy Department. The seed was produced by controlled hand-pollination.

The University does not produce hybrid seed corn in commercial quantities. If a hybrid gives satisfactory performance, the parental lines are released for use by seedsmen. Hybrids that include new inbred lines are produced under the "delayed release" program adopted by most of the states in the corn belt. Delayed release enables the Experiment Station to control the use of the new line during the early years of its commercial utilization. Multiplication of a new line is handled by the Station and the production of single crosses in quantity is handled by the Illinois Seed Producers Association. After a satisfactory probationary period of two to five years, a new line is released to the public.

Table 2 lists the hybrids whose performance is shown in this report and the tables in which each appears. It also contains the pedigrees of the Illinois Agricultural Experiment Station and U. S. hybrids tested. In the pedigrees the order of the single crosses and of the lines in the single crosses has no significance; it does not indicate which should be used as seed or pollen parent in the production of a hybrid.

Illinois yellow hybrids are numbered consecutively below 2000, while white hybrids are numbered in the 2000 series. Illinois white hybrid numbers usually are followed by the letter "W."

The letter "A" or "B" following an Illinois hybrid number indicates that the combination of inbred lines making up the hybrid has been rearranged or "permuted." For example, if the original pedigree of an Illinois hybrid is (1×2) (3×4) , the letter "A" following the number means that the hybrid was put together (1×3) (2×4) , the letter "B," (1×4) (2×3) . A difference in reciprocals is not recognized in this method. When a short dash (-) followed by a number occurs as a part of an Illinois hybrid number, it means that a tested related line has been substituted for one of the inbred lines included in the original hybrid.

Six sets of single crosses differing in maturity were tested in 1950. Three of these sets are a part of the "Uniform" tests conducted cooperatively by corn belt states, including Illinois, and the U. S. Department of Agriculture. Seed of the unreleased inbred lines involved in these crosses was contributed by the state or federal corn breeder who developed them. The following individuals formed the committees for collecting inbred seed, making the crosses, and distributing seed of the single crosses reported in Table 3: E. C. Rossman (Michigan), E. L. Pinnell (Minnesota), and N. P. Neal (Wisconsin); and for those in Tables 7, 8, and 10, J. H. Lonnquist (Nebraska), G. F. Sprague (Iowa), and G. H. Stringfield (Ohio). M. T. Jenkins (U. S. Department of Agriculture) and M. S. Zuber (Missouri) are responsible for summarizing the data from the individual workers, making predictions, and mimeographing a report.

The other three single-cross sets were made up by the Illinois Station and tested only in Illinois. Data from these three sets are reported in Tables 6, 11, and 13.

Performance of single-cross hybrids is of interest to corn breeders, producers of hybrid seed corn, and to farmers. Characteristics of single crosses, such as yield, standability, seed size, shape, and quality, definitely affect the practical production of hybrid seed corn. Some farmers are interested in growing single-cross hybrids commercially because of their attractive appearance and extreme uniformity. Use of single-cross data for the prediction of desirable double crosses creates additional interest in the performance of single crosses.

Making and testing all possible hybrid combinations among available lines is a tremendous task. For example, 1,225 single crosses and 690,900 double crosses are possible with 50 inbred lines. But by using single-cross performance data the corn breeder can predict which of the many possible double-cross combinations are likely to be most desirable. The usual procedure in making predictions is method "B" proposed by Dr. M. T. Jenkins. The following six single crosses can be made with four inbred lines: $A \times B$, $A \times C$, $A \times D$, $B \times C$, $B \times D$, and $C \times D$. In method B, the average performance of the four non-parental single crosses gives the predicted performance of a specific double-cross hybrid. For instance, the average yields of the four single crosses, $A \times C$, $A \times D$, $B \times C$, and $B \times D$, give the predicted yield of double cross, $(A \times B)$ $(C \times D)$.

The procedure in predicting "acre yields" of two hybrids is shown below. Single-cross data are taken from Table 8.

$(M14 \times WF9) (K159 \times Oh45)$	$(M14 \times WF9) (I.205 \times CI.187-2)$
M14 × K159	M14 × I.205
WF9 \times K15988	WF9 \times I.20596
WF9 \times Oh45	WF9 \times CI.187-2
102.5	96.75

Similar predictions can be made for other characteristics.

Prediction studies are an extremely valuable part of a research program. By this method, corn breeders are able to obtain the better combinations without making and testing thousands of undesirable crosses. Predicted hybrid combinations, however, should always be thoroughly tested under field conditions before being put into commercial production.

¹ Jenkins, M. T. Methods of estimating performance of double crosses of corn. Jour. Amer. Soc. Agron. **26**, 199-204. 1934.

RESULTS OF THE TESTS

Data obtained from the tests are summarized in Tables 3 to 14. Two-, three-, and four-year averages are more reliable indexes of the performance of hybrids than a single year's result. Therefore the parts of the tables summarizing the results of two or more years deserve the most weight when the results are studied.

Relative performance cannot be determined with absolute accuracy by any method of testing. Small differences between entries are seldom of any significance. In fact, small differences are to be expected among plots planted even with the same lot of seed. Variations in growing conditions, such as soil fertility, are only reduced, not completely eliminated, by replicating the same hybrid several times in the same test. Unavoidable variation may be determined by a mathematical procedure known as "analysis of variance." From this procedure a figure is obtained that represents the number of bushels by which two entries must differ in yielding ability before they can be considered significantly different. Note, for example, in Table 4A that unless any two entries differ by at least 5 bushels per acre there is no statistical difference between them in yielding ability. Thus Ill. 1280 can be considered higher yielding than Ill. 101 and Ill. 751, but not higher than Ill. 1277 or Ill. 1281.

Double crosses. The following double crosses were average or better in yield, maturity (as measured by the percent of moisture in the grain), and standability:

Northern Illinois

Table 3B — Ill. 1585, Ill. 1584, Ohio W64, Ill. 1579

Table 4A — Ill. 1277, Ill. 1281

Table 4B — Ill. 1493, Ill. 1277

Table 4C — Ill. 1585, Ill. 1586, Ill. 1279, Ill. 1281, Ill. 1584

Northern and North-Central Illinois

Table 5A — Ill. 1277, Ill. 1289

Table 5B — Ill. 1277, Ill. 1289

Table 5C — Ill. 1277, Ill. 1289, Ill. 1559B, Ill. 1560A, Ill. 1555A, Ill. 1557

Table 5D — Ill. 1575

 ${\bf Table\ 5E-Ill.\ 1559B,\ Ill.\ 1289,\ Ill.\ 1560A,\ Ill.\ 1557,\ Ill.\ 1290,\ Ill.\ 1375,}$

Ill. 1609, Ill. 1277, Ill. 1555A, Ill. 1280, Ill. 1279, Ill. 1595, Ill. 1597,

Ill. 1611, Ill. 101

Table 6B — Ill. 1091A, Ill. 1593

[February,

North-Central, Central, and South-Central Illinois

Table 9A — Ill. 1511, Ill. 1514, Ill. 972A-1, Ill. 274-1

Table 9B — Ill. 274-1, Ill. 972A-1, Ill. 1511

Table 9C — Ill. 1617, Ill. 274-1, Ill. 21, Ill. 1511

Table 10B — Ill. 1515, Ill. 1421

South-Central and Southern Illinois

Table 12A — U.S. 13

80

Table 12B — Ill. 1349, Ill. 1540, U.S. 13

Table 12C — Ill. 2239W, Ill. 2235W, Ill. 2243W, Ill. 2159AW, Ill. 1332

 $\begin{array}{l} {\rm Table~12D-Ill.~1664,~Ill.~2231W,~Ill.~2239W,~Ill.~1539A,~Ill.~2226W,~Ill.~2235W} \end{array}$

Inbred lines. Six systematic sets of single crosses were tested in 1950. The data can be used to predict the performance of 3,780 double-cross hybrids. In all possible single-cross combinations within each set, the following inbred lines were average or better in yield, maturity, and standability:

Northern Illinois

Tables 3A and 14A — B8, Oh51A, A277

Northern and North-Central Illinois

Tables 6A and 14B - W22, R61, Oh43, WF9, I.205, R2, 187-2, R66 Tables 7A and 14C - I.205, Oh5

North-Central, Central, and South-Central Illinois

Tables 8A and 14D — M14, WF9, K237, K159

Tables 10A and 14E — Hy2, Oh29, 38-11

Tables 11A and 14F — H10

South-Central and Southern Illinois

Tables 13A and 14G — C103, Oh7

Table 2. — HYBRID NUMBERS, PEDIGREES AND INDEX TO TABLES

Hybrid	Pedigree	Performance given in Table No.
Illinois hybrids		
21	(Hy2 \times 187-2) (WF9 \times 38-11)	5BCDE, 6B, 7B, 9ABC
	$\dots \dots (M14 \times WF9) (187-2 \times W26) \dots$	
	$(WF9 \times 38-11) (L317 \times K4) \dots$	
201	$$ (WF9 \times 38-11) (L317 \times 187-2)	12D
	$(\text{Hy2} \times \text{WF9}) (\text{Oh7} \times 187-2) \dots$	
	$(A \times 90) (Hy2 \times WF9) \dots$	
	$(Hy2 \times L317) (WF9 \times Oh7) \dots$	
	$(Hy2 \times LS17) (WF9 \times OH7) \dots$ $(Hy2 \times 187-2) (M14 \times WF9) \dots$	
1976	\dots (M14 × WF9) (W8 × W32)	4C
1276	$(M14 \times WF9) (R61 \times 187-2)$ $(M14 \times WF9) (I.205 \times 187-2)$	D. ALDO TARGE OF TR
	$(M14 \times WF9) (A375 \times 187-2)$	
	$\dots \dots (M14 \times WF9) (Os420 \times 187-2) \dots$	
1281	$\dots \dots (M14 \times WF9) (A374 \times A375) \dots$	4ABC
	$\dots \dots (M14 \times W22) (WF9 \times I.205) \dots$	
	$(M14 \times 187-2) (WF9 \times I.205)$	
	\dots (Hy2 × Oh7) (WF9 × 38-11) \dots	
	\dots (Hy2 × R61) (WF9 × 38-11) \dots	
	$(38-11 \times Mo940) (K155 \times K201)$	
1375	$\dots \dots (M14 \times WF9) (N6 \times Oh51A)\dots$	
1421	$\dots (Hy2 \times WF9) (P8 \times Oh7) \dots$	10B
	\dots (38-11 × K4) (CI.7 × CI.21E) \dots	
1459	$(38-11 \times K4) (K201 \times CI.21E)$	12ABCD, 13B
1493	(WF9 \times I.205) (Oh28 \times W22)	4BC
1508	\dots (L7 × L17) (L12 × Oh28) \dots	4BC
1509	\dots (Hy2 × WF9) (P8 × L304A) \dots	9ABC
	(Hy2 \times WF9) (38-11 \times L304A)	
	(Hy2 \times 38-11) (L304A \times N6)	
	(Hy2 \times B10) (WF9 \times 38-11)	
	\dots (38-11 × CI.21E) (K201 × T8)	
1539A	$\dots (38-11 \times CI.7) (K201 \times CI.21E)$.	12BCD
	$(38-11 \times CI.21E)$ (K155 × K201)	
	$(38-11 \times CI.7)$ (K155 \times CI.21E).	
	$(Hv2 \times R59) (WF9 \times 38-11) \dots$	
	$(WF9 \times Oh51A) (I.224 \times Oh28)$.	
1557	$(M14 \times Oh28)$ (I.205 \times Oh51A)	5CF
	$(M14 \times OH28)$ $(1.205 \times OH31A)$ $(1.205 \times Oh28)$	
	$(M14 \times WF9) (1.203 \times Oh28) \dots$ $(M14 \times Oh28) (WF9 \times Oh51A) \dots$	
	$(WF9 \times Oh51A) (I.205 \times Oh28)$.	
150/B	$\dots (38-11 \times \text{Ky}36-11) (\text{K2}01 \times \text{T8}).$	12UD
	$(\text{Hy2} \times \text{Oh41}) \text{ (WF9} \times 38\text{-}11) \dots$	
	$\dots (R61 \times I.205) (L7 \times L17) \dots \dots$	
	$(R2 \times M14) (L7 \times L17) \dots$	
	$\dots (WF9 \times 38-11) (L12 \times Oh28) \dots$	
	$\dots \dots (M14 \times WF9) (L12 \times Oh28) \dots$	
	$\dots \dots (M14 \times Oh43) (L289 \times Oh5) \dots$	
	$\dots \dots (M14 \times Oh43) (A73 \times Oh5) \dots$	
1580	$\dots (M14 \times A73) (Oh43 \times Oh51A) \dots$	3B, 4C

(Table is continued on next page)

Table 2. — Continued

Hybrid	Pedigree	Performance given in Table No.
Illinois hybrids (continued)	
1581	$\dots \dots (M14 \times W22) (Oh5 \times Oh43) \dots$	3B, 40
	\dots (M14 × Oh5) (L289 × Oh43) \dots	
	\dots $(M14 \times Oh5)$ $(L289 \times Oh51A)$ \dots	
	\dots $(M14 \times L289)$ $(Oh5 \times Oh51A)$ \dots	
	$(M14 \times L289) (Oh5 \times Oh43) \dots$	
	\dots $(M14 \times Oh43) (A334 \times Oh5) \dots$	
	$(M14 \times W22)$ (L289 × Oh5)	
	$(R61 \times WF9) (187-2 \times W22) \dots$	
	$(R2 \times 187-2) (R61 \times WF9) \dots$	
	$ (R2 \times 187-2) (R61 \times I.205) $	
	$(M14 \times 187-2) (R61 \times R59)$	
	$(R61 \times 187-2) (R61 \times WF9) \dots (R61 \times 187-2) (WF9 \times I.205) \dots$	
	$(\text{K01} \times 187-2) \text{ (WF9} \times 1.203) \dots$ $(\text{M14} \times \text{R61}) \text{ (WF9} \times 187-2) \dots$	
	$(R2 \times WF9) (R61 \times 187-2) \dots$	
	(WF9 \times I.205) (187-2 \times W22)	
	$\dots \dots (R2 \times 187-2) \text{ (WF9} \times I.205) \dots$	
	$\dots \dots (R61 \times WF9) (187-2 \times W24) \dots$	
	$\dots \dots (R2 \times 187-2) (M14 \times R61) \dots$	
	(R61 \times I.205) (187-2 \times W22)	
	$\dots \dots (R2 \times W22) (R61 \times WF9) \dots$	
	(R61 × WF9) (I.205 × 187-2)	
	$(R2 \times I.205) (R61 \times 187-2)$	
	$(R2 \times R61) (I.205 \times 187-2)$	
	$\dots \dots (R2 \times W24) (L289 \times Oh51A) \dots$	
	$\dots \dots (R2 \times W24) (WF9 \times L289) \dots$	
	$\dots \dots (R2 \times W24) (L289 \times W22) \dots$	
	$\dots \dots (R2 \times R61) (I.205 \times W22) \dots$	
1608	(R61 \times 187-2) (I.205 \times W22)	
1609	\dots (WF9 × H10) (I.205 × W22)	
1610	\dots (R61 × WF9) (I.205 × W22)	
1611	\dots (Hy2 × WF9) (I.205 × W22)	
1612	$\dots \dots (M14 \times WF9) (R61 \times R67) \dots$	4C, 5E
	\dots (M14 × WF9) (R66 × R67)	
1614	\dots (M14 × WF9) (R61 × R68)	5F
	\dots $(M14 \times WF9)$ $(R66 \times R68)$ \dots	
	$(WF9 \times B10) (Oh7 \times Oh41) \dots$	
	(WF9 \times 38-11) (Oh41 \times 187-2)	
	$(WF9 \times B10) (Oh41 \times 187-2) \dots$	
	$(\text{Hy2} \times \text{B10}) (\text{Oh7} \times \text{187-2}) \dots$	
	$(C102 \times Oh7A) (C103 \times 38-11) \dots$	
	$(C102 \times Oh7A) (C103 \times 36-11)$ $(C102 \times Oh7A) (C103 \times K155)$	
	$(C102 \times Oh7A) (C103 \times K133) \dots$ $(C103 \times 38-11) (K155 \times Oh7A) \dots$	
	$(C103 \times 38-11) (K155 \times Oh7A)$ $(C102 \times C103) (WF9 \times Oh7A)$	
	$(C102 \times C103) \text{ (WF9} \times C017A) \dots$ $(C102 \times C103) \text{ (38-11} \times K155) \dots$	
	\dots (Hy2 × K148) (WF9 × 38-11)	
	\dots (Hy2 × H12) (38-11 × B11) \dots	
1648	$\dots \dots (Hy2 \times H12) (WF9 \times B11) \dots$	

(Table is concluded on next page)

Table 2. — Concluded

Hybrid	Pedigree	Performance given in Table No.
Illinois hybrids (conc	luded)	
1653	(R61 \times R69) (WF9 \times 38-11)	9C
	\dots (Hy2 × R66) (WF9 × 38-11)	
	\dots (Hy2 × R61) (R66 × WF9)	
	$(C103 \times Hy2)$ $(WF9 \times 38-11)$	
	\dots (K4 × Oh7) (K201 × CI.21E) \dots	
	\dots (K4 × CI.21E) (K201 × Oh7)	
	\dots (K4 × CI.21E) (K201 × T8)	
	\dots (K4 × Oh7) (K155 × K201)	
	\dots (38-11 × CI.21E) (K4 × Oh7)	
	\dots (Kys × CI.21E) (K201 × Oh7)	
	\dots (WF9 \times 38-11) (K155 \times Oh41)	
	\dots (WF9 \times 38-11) (K155 \times Oh7)	
	\dots (WF9 \times 38-11) (K155 \times CI.21E).	
	\dots (WF9 \times 38-11) (K155 \times CI.7)	
	(P8 \times L304A) (38-11 \times CI.21E)	
	\dots (K4 × Oh7) (K155 × Ok.12)	
	\dots (K4 × Ok.12) (K155 × Oh7)	
	\dots (K4 × K155) (Ch7 × Ok.12) \dots	
	\dots (Hy2 × B10) (WF9 × H10) \dots	
	\dots (1872 × B10) (WF9 × H10) \dots (38-11 × Ky36-11) (B18 × T8) \dots	
	\dots (38-11 × K155) (K201 × T8)	
	\dots (H21 × Ky27) (K64 × CI.61)	
	\dots (R30 × Ky27) (H21 × K64) \dots (H21 × GL 61) (K64 × K 27)	
	\dots (H21 × CI.61) (K64 × Ky27) \dots	
	\dots (R30 × K64) (Ky49 × CI.61)	
	\dots (R30 × K64) (H21 × Ky49) \dots	
	\dots (R30 × K64) (H21 × CI.61) \dots	
	\dots (R30 × H21) (K64 × Ky49) \dots	
	\dots (R30 × Ky49) (H21 × K64) \dots	
	\dots (R30 × Ky49) (K64 × CI.61) \dots	
	$\dots (H21 \times Ky49) (K64 \times Mo2RF).$	
	$\ldots (H21 \times K64) \ (33\text{-}16 \times Mo2RF) \ldots$	
	\dots (H21 × Ky27) (K64 × Mo2RF)	
2243W	\dots (R30 × K64) (33-16 × Mo2RF).	12CD
Miscellaneous hybrids	3	
Ind. 4601		5E
	(Hy \times L317) (WF9 \times 38-11)	
U.S. 505	(WF9 \times 38-11) (K155 \times T8)	12CD

TABLE 3. — SINGLE AND DOUBLE CROSSES OF OHIO M15 MATURITY

Tested in Northern Illinois, 1950 (2 replications)

Code	e Entry	Acre	Mois-	Shelling	Erect	Stand	Height	
	e Entity	yield	grain	Silening	plants	bung	Plant	Ear
	A	— Sin	gle cro	osses				
1 2 3 4 5	M14 × R53. M14 × B8. M14 × MS24A. R53 × B8. R53 × MS24A.	bu. 61 57 61 59 50	perct. 18 17 20 16 21	perct. 80 83 80 81 82	96 100 95 100 86	92 92 98 100 93	ft. 7.0 7.8 6.5 6.5 6.5	in. 24 33 24 27 22
6 7 8 9	B8 × M824A M14 × A73 R53 × A73 B8 × A73 M824A × A73	73 55 64 63 60	17 21 16 18 18	85 80 82 82 82	95 100 100 100 96	102 95 93 98 92	7.0 7.0 6.8 7.8 6.2	32 28 30 38 26
11 12 13 14	M14 × A277. R53 × A277. B8 × A277. M824A × A277. A73 × A277.	58 58 68 63 59	21 19 18 23 19	77 81 82 79 78	100 96 98 93 98	102 95 98 97 102	7.8 7.0 7.8 7.0 8.0	34 27 36 26 34
16 17 18 19 20	M14 × A295. R53 × A295. B8 × A295. M824A × A295. A73 × A295.	65 57 65 73 52	19 16 18 17 21	78 78 80 82 77	98 94 98 79 100	102 88 95 97 97	7.8 7.0 7.5 7.0 7.2	37 30 36 34 34
21 22 23 24 25	$\begin{array}{l} {\rm A277 \times A295.} \\ {\rm M14 \times Oh51A.} \\ {\rm R53 \times Oh51A.} \\ {\rm B8 \times Oh51A.} \\ {\rm B8 \times Oh51A.} \\ {\rm MS24A \times Oh51A.} \\ \end{array}$	63 57 45 58 67	18 22 18 17 17	75 78 82 83 84	95 92 98 98 98	100 100 93 98 93	8.0 7.8 6.2 7.2 7.0	36 32 24 33 26
27 28 29	A73 × Oh51 A A277 × Oh51 A A295 × Oh51 A M14 × W70 R53 × W70.	71 67 61 58 68	20 17 18 26 21	81 81 78 78 82	100 95 93 88 88	97 98 97 98 100	7.2 7.5 8.0 8.5 7.8	32 32 36 37 30
31 32 33 34 35	$\begin{array}{l} {\rm B8 \times W70} \\ {\rm M824A \times W70} \\ {\rm A73 \times W70} \\ {\rm A277 \times W70} \\ {\rm A295 \times W70}. \\ \end{array}$	67 71 51 56 62	20 22 22 20 19	81 84 81 78 79	98 64 98 85 97	95 97 95 88 97	8.0 7.8 7.8 8.2 8.0	36 32 32 36 38
36	Oh51A × W70 Average Significant difference	66 61 11	18 19	80 80	95 94	97 96	8.8 7.4	38 32
	В –	– Doi	ible cro	osses				
38 39 40	III. 1585. III. 1584. Ohio W64. III. 1583. III. 1587.	82 81 78 72 72	21 20 20 20 20 20	80 80 81 79 79	97 97 98 84 92	100 100 98 103 98	8.5 9.0 8.2 9.2 9.0	33 38 28 41 44
13 14 15	III. 1578. III. 1582. III. 1579. III. 1580. III. 1586.	71 71 70 68 67	22 21 21 21 21 22	78 78 80 80 78	100 95 100 97 98	98 100 98 98 98	9.0 8.8 8.2 7.5 8.2	37 35 31 29 34
7 8 9 0	III. 1279. III. 1277. III. 1280. III. 1581. Average. Significant difference.	66 63 61 61 70	20 24 25 22 21	77 78 79 76 79	98 95 95 96 96	97 100 95 95 95	8.0 9.0 8.2 8.0 8.5	34 38 32 30 35

Table 4. — DOUBLE CROSSES OF ILL. 1277 OR OHIO K24 MATURITY

Tested in Northern Illinois, 1946-1950

	k	Acre	Mois-	G1 11:	Erect	Cir. 1	Hei	ght
in yield	Entry	yield	ture in grain	Shelling	plants	Stand	Plant	Ear
	A — Five-	year	averag	es, 1946	-1950			
		bu.	perct.	perct.	perct.	perct.	ft.	in.
1	Ill. 1280	89	21	80	86	98		
2	III. 1279	87	21	80	86	96		
3	III. 1277	86	20	79	89	97		
5	181. 1281	86	$\frac{20}{22}$	79	91	98		
9	Ill. 101	83	24	79	90	97		
6	Ill. 751	82	22	77	80	98		
	Average	86	21	79	87	97		
	Significant difference	5						
	B — Two-	-year	averag	es, 1949-	1950			
1	Ill. 1280.	90	18	80	83	98	8.6	34
2	Ohio K62	88	20	81	94	100	8.6	36
3	III. 1495, ,	86	18	76	92	98	9.0	40
5	Ill. 1508. Ill. 1277.	86 84	20 19	76 79	87 90	99 98	8.8 8.8	40
6	III 1970	84	20	80	85	98	8.6	34
7	Ill. 1279. Ohio W64.	84	20	82	96	99	8.5	30
8	Ill. 1281.	83	18	78	90	99	8.4	36
9	III. 101	82	18	78	91	98	8.9	40
10	Ohio K24	80	18	80	86	100	9.2	38
11	Ill. 751	78	22	77	86	100	8.6	38
	Average Significant difference	84 10	19	79	89	99	8.7	37
	6 1050	recui	14 (2	1: 4: -				
	C — 1950	1 CSu.	its (5 r	epiicatio)ns)			
1	Ill. 1583	80	17	79	94	99	9.2	
2	Ill. 1583 Ill. 1280.	80 75	17 18	79 78	94 95	98	8.2	31
2 3	Ill. 1583. Ill. 1280. Ill. 1579.	80 75 74	17 18 22	79 78 79	94 95 98	98 99	$\frac{8.2}{8.2}$	31 32
2	Ill. 1583. Ill. 1280. Ill. 1579. Ill. 1581.	80 75	17 18	79 78 79 78	94 95	98	8.2	31 32 34
2 3 4 5	III. 1583. III. 1280. III. 1579. III. 1581. III. 1578.	80 75 74 73 73	17 18 22 18 19	79 78 79 78 78	94 95 98 95 93	98 99 97 100	8.2 8.2 8.5 9.0	31 32 34 39
2 3 4 5 6	III. 1583. III. 1280. III. 1579. III. 1581. III. 1578.	80 75 74 73 73	17 18 22 18 19	79 78 79 78 78 78	94 95 98 95 93	98 99 97 100	8.2 8.2 8.5 9.0	31 32 34 39 37
2 3 4 5 6 7	III. 1583. III. 1280. III. 1579. III. 1581. III. 1578.	80 75 74 73 73 72 72	17 18 22 18 19 18	79 78 79 78 78 78 77	94 95 98 95 93 97 99	98 99 97 100 98 99	8.2 8.2 8.5 9.0 9.2 8.2	31 32 34 39 37 33
2 3 4 5 6 7 8	III. 1583. III. 1280. III. 1579. III. 1581. III. 1578. III. 1585. III. 1586. III. 1277.	80 75 74 73 73 73 72 72 72 71	17 18 22 18 19 18 18 21	79 78 79 78 78 78 77 79	94 95 98 95 93 97 99	98 99 97 100 98 99	8.2 8.2 8.5 9.0 9.2 8.2 8.3	31 32 34 39 37 33 36
2 3 4 5 6 7	III. 1583. III. 1280. III. 1579. III. 1581. III. 1578.	80 75 74 73 73 72 72	17 18 22 18 19 18	79 78 79 78 78 78 77	94 95 98 95 93 97 99	98 99 97 100 98 99	8.2 8.2 8.5 9.0 9.2 8.2	31 32 34 39 37 33 36 37
2 3 4 5 6 7 8 9 10	Ill. 1583. Ill. 1280. Ill. 1579. Ill. 1581. Ill. 1578. Ill. 1585. Ill. 1586. Ill. 1586. Ill. 1277. Ill. 1277. Ill. 1279. Ohio K62.	80 75 74 73 73 72 72 71 71	17 18 22 18 19 18 18 21 20 22	79 78 78 78 78 77 77 79 77 78	94 95 98 95 93 97 99 97 99	98 99 97 100 98 99 100 98	8.2 8.5 9.0 9.2 8.2 8.3 8.5 9.0	31 32 34 39 37 33 36 37 38
2 3 4 5 6 7 8 9 10 11 12	III. 1583. III. 1280. III. 1579. III. 1581. III. 1585. III. 1586. III. 1586. III. 1277. III. 1279. Ohio K62. III. 101. III. 101.	80 75 74 73 73 72 72 71 71 70	17 18 22 18 19 18 18 21 20 22 20 21	79 78 79 78 78 78 77 79 77 78 80	94 95 98 95 93 97 99 99 97 99	98 99 97 100 98 99 100 98 100	8.2 8.5 9.0 9.2 8.2 8.3 8.5 8.5	31 32 34 39 37 33 36 37 38 38
2 3 4 5 6 7 8 9 10 11 12 13	Ill. 1583. Ill. 1280. Ill. 1579. Ill. 1581. Ill. 1585. Ill. 1586. Ill. 1277. Ill. 1279. Ohio K62. Ill. 101. Ill. 1582. Ill. 1582.	80 75 74 73 73 72 72 71 71 70 70 70	17 18 22 18 19 18 18 21 20 22 20 21 20	79 78 79 78 78 78 77 79 77 78 80 76 78	94 95 98 95 93 97 99 99 97 99	98 99 97 100 98 99 100 98 100 97 97	8.2 8.2 8.5 9.0 9.2 8.3 8.5 8.5 9.0 9.2	$\begin{array}{c} 31\\ 32\\ 34\\ 39\\ 37\\ 33\\ 36\\ 37\\ 35\\ \end{array}$
2 3 4 5 6 7 8 9 10 11 12 13 14	III. 1583. III. 1280. III. 1579. III. 1581. III. 1578. III. 1585. III. 1586. III. 1277. III. 1279. Ohio K62. III. 101. III. 1582. III. 1587. III. 1587. III. 1587. III. 191A.	80 75 74 73 73 72 72 71 71 70 70 70 69	17 18 22 18 19 18 18 121 20 22 20 21 20 20	79 78 79 78 78 78 77 77 77 78 80 76 78 78	94 95 98 95 93 97 99 99 97 99 94 100 92 93	98 99 97 100 98 99 100 98 100 97 97 97 99	8.2 8.2 8.5 9.0 9.2 8.3 8.5 8.5 9.0 9.2 9.2 9.3	31 32 34 39 37 33 36 37 35 38 36 40
2 3 4 5 6 7 8 9 10 11 12 13 14 15	Ill. 1583. Ill. 1280. Ill. 1579. Ill. 1581. Ill. 1581. Ill. 1585. Ill. 1586. Ill. 1277. Ill. 1279. Ohio K62. Ill. 101. Ill. 1582. Ill. 1587. Ill. 1091A. Ill. 1558.	80 75 74 73 73 72 72 71 71 70 70 70 69 69	17 18 22 18 19 18 18 21 20 22 20 21 20 22 20 22	79 78 79 78 78 77 79 77 78 80 76 78 76	94 95 98 95 93 97 99 97 99 94 100 92 93 98	98 99 97 100 98 99 100 98 100 97 97 99 98 102	8.2 8.2 8.5 9.0 9.2 8.3 8.5 8.5 9.0 9.2 9.0 8.5 8.5	31 32 34 36 37 33 36 37 35 36 40 36 34
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	III. 1583. III. 1280. III. 1579. III. 1581. III. 1585. III. 1586. III. 1586. III. 1277. III. 1277. III. 1279. Ohio K62. III. 101. III. 1582. III. 1587. III. 1587. III. 1588. III. 1587. III. 1588. III. 1588. III. 1588. III. 1588. III. 1588.	80 75 74 73 73 73 72 72 71 71 70 70 69 69	17 18 22 18 19 18 18 21 20 22 22 20 21 20 22 18	79 78 79 78 78 78 77 79 77 78 80 76 78 78 76 76	94 95 98 95 93 97 99 99 99 97 99 99 94 100 92 93 98	98 99 97 100 98 99 100 98 100 97 97 99 98 102	8.2 8.5 9.0 9.2 8.3 8.5 8.5 9.0 9.2 9.0 8.5 8.3	31 32 34 39 37 33 36 37 35 38 36 40 36 34
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Ill. 1583. Ill. 1280. Ill. 1579. Ill. 1581. Ill. 1581. Ill. 1585. Ill. 1586. Ill. 1277. Ill. 1279. Ohio K62. Ill. 101. Ill. 1582. Ill. 1582. Ill. 1587. Ill. 1091A. Ill. 1558. Ill. 1281. Ill. 1281. Ill. 1281. Ill. 1584.	80 75 74 73 73 72 72 71 71 70 70 69 69 69	17 18 22 18 19 18 18 21 20 22 20 21 20 20 22 20 21 18	79 78 79 78 78 77 79 77 78 80 76 78 76 76	94 95 98 98 93 97 99 97 99 94 100 92 93 98 99 97	98 99 97 100 98 99 100 98 100 97 97 99 98 102	8.2 8.2 8.5 9.0 9.2 8.3 8.5 8.5 9.0 9.2 9.0 8.5 8.3	31 32 34 39 37 33 36 37 35 36 40 34 34
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	III. 1583. III. 1280. III. 1579. III. 1581. III. 1585. III. 1586. III. 1277. III. 1277. III. 1279. Ohio K62. III. 101. III. 1582. III. 1587. III. 1588. III. 1587. III. 1588. III. 1588. III. 1588. III. 1588. III. 1588. III. 1588. III. 1584.	80 75 74 73 73 73 72 72 71 71 70 70 69 69	17 18 22 18 19 18 18 21 20 22 22 20 21 20 22 18	79 78 79 78 78 78 77 79 77 78 80 76 78 78 76 76	94 95 98 95 93 97 99 99 99 97 99 99 94 100 92 93 98	98 99 97 100 98 99 100 98 100 97 97 99 98 102	8.2 8.5 9.0 9.2 8.3 8.5 8.5 9.0 9.2 9.0 8.5 8.3	31 32 34 39 37 35 36 36 36 36 34 38 38 38 38 38 38 38
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Ill. 1583. Ill. 1280. Ill. 1579. Ill. 1581. Ill. 1581. Ill. 1585. Ill. 1586. Ill. 1277. Ill. 1279. Ohio K62. Ill. 101. Ill. 1582. Ill. 1582. Ill. 1587. Ill. 1091A. Ill. 1558. Ill. 1281. Ill. 1281. Ill. 1281. Ill. 1584.	80 75 74 73 73 73 72 72 71 71 70 70 70 69 69 69	17 18 22 18 19 18 18 21 20 22 20 22 20 22 20 22 20 22 20 22 20 21 20 22 21 20 21 21 21 21 21 21 21 21 21 21 21 21 21	79 78 79 78 78 78 77 77 77 78 80 76 78 76 76	94 95 98 95 93 97 99 97 99 94 100 92 93 98 99	98 99 97 100 98 99 100 98 100 97 97 99 98 102	8.2 8.2 8.5 9.0 9.2 8.3 8.5 9.0 9.2 9.0 9.2 9.5 8.3 8.5 8.3	31 32 34 39 37 35 36 36 40 34 38 38 38 38
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Ill. 1583. Ill. 1280. Ill. 1579. Ill. 1581. Ill. 1581. Ill. 1585. Ill. 1586. Ill. 1277. Ill. 1279. Ohio K62. Ill. 1582. Ill. 1582. Ill. 1587. Ill. 1587. Ill. 1558. Ill. 1584. Ill. 1612. Ohio K24. Ill. 1508. Ohio W64	80 75 74 73 73 73 72 72 71 70 70 70 69 69 69 68 68 68 68	17 18 22 18 19 18 18 18 20 22 20 22 20 21 18 19 18 19 22 22 24 20 22 24 20 22 24 20 22 24 24 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	79 78 79 78 78 77 79 77 78 80 76 78 76 78 78 78 79 74 80	94 95 98 98 93 97 99 97 99 94 100 92 93 98 99 97 100 94	98 99 97 100 98 99 100 98 100 97 97 99 98 102 99 96 98 97 98	8.2 8.5 9.0 9.2 8.3 8.5 8.5 9.0 9.2 9.2 8.5 8.5 8.5 8.5 8.5 8.5	31 32 34 39 37 35 36 36 36 36 36 36 36 36 36 36 36 36 36
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22	III. 1583. III. 1280. III. 1579. III. 1581. III. 1585. III. 1586. III. 1586. III. 1277. III. 1277. III. 1279. Ohio K62. III. 101. III. 1582. III. 1587. III. 1588. III. 1588. III. 1588. III. 1588. III. 1584.	80 75 74 73 73 73 72 72 72 71 70 70 69 69 69 68 68 68 68 66 65	17 18 22 18 19 18 18 18 21 20 22 20 22 21 20 22 22 18 19 18 19	79 78 79 78 79 78 77 77 77 77 78 80 76 78 78 78 78 78 78 78 78 78 78 78 78 78	94 95 98 98 95 93 97 99 97 99 97 99 94 100 92 93 93 98	98 99 97 100 98 99 100 98 100 97 97 99 98 102 99 96 98 97 98	8.2 8.5 9.0 9.2 8.3 8.5 8.5 9.0 9.2 9.0 8.5 8.3 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	400 311 322 333 360 377 355 388 364 400 363 363 363 363 363 364 363 364 363 364 364
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	Ill. 1583. Ill. 1280. Ill. 1579. Ill. 1581. Ill. 1585. Ill. 1585. Ill. 1586. Ill. 1577. Ill. 1277. Ill. 1277. Ill. 1279. Ohio K62. Ill. 1582. Ill. 1582. Ill. 1587. Ill. 1588. Ill. 1558. Ill. 1588. Ill. 1588. Ill. 1584. Ill. 1612. Ohio K24. Ill. 1508. Ohio W64. Ill. 1493. Ill. 1493. Ill. 1180.	80 75 74 73 73 72 72 71 70 70 70 70 69 69 69 68 68 68 68 68 68 66 65 63	17 18 22 18 19 18 18 18 21 20 22 20 21 20 20 21 20 22 22 24 24 22 24 24 22 22 22 22 22 22	79 78 79 78 78 77 79 77 78 80 76 78 78 78 78 76 76 78 78 78 78 78 78 78 78 78 78 78 78 78	94 95 98 98 95 93 97 99 97 99 94 100 92 93 98 99 97 100	98 99 97 100 98 99 100 98 100 97 97 99 98 102 99 96 98 97 98	8.2 8.5 9.0 9.2 8.3 8.5 8.5 9.0 8.5 8.3 8.0 8.8 8.0 8.8 8.0	311 322 344 39 377 333 366 37 355 388 366 344 363 388 353 368 373 388 388 388 388 388 388 388 388 38
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Ill. 1583. Ill. 1280. Ill. 1579. Ill. 1581. Ill. 1581. Ill. 1585. Ill. 1586. Ill. 1586. Ill. 1277. Ill. 1277. Ill. 1279. Ohio K62. Ill. 1682. Ill. 1582. Ill. 1582. Ill. 1587. Ill. 1584. Ill. 1588. Ohio K24. Ill. 1508. Ohio W64. Ill. 1493. Ill. 1180. Ill. 1580.	80 75 74 73 73 72 72 71 70 70 69 69 69 68 68 68 68 68 65 63 59	17 18 22 18 19 18 18 21 20 22 20 21 20 22 21 20 22 21 20 22 21 20 22 21 20 22 22 21 21 20 22 22 22 22 22 22 22 22 22 22 22 22	79 78 79 78 78 77 77 77 78 80 76 76 78 78 78 78 78 78 78 78 79 74 80 80 74 78	94 95 98 98 95 93 97 99 97 99 94 100 92 93 93 98 99 97 100 94 100 94 100	98 99 97 100 98 99 100 98 100 97 97 99 98 102 99 96 98 97 98	8.2 8.5 9.0 9.2 8.3 8.5 8.5 9.0 9.2 9.0 8.5 8.0 8.0 9.0 8.5	31, 32, 34, 39, 37, 35, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	Ill. 1583. Ill. 1280. Ill. 1579. Ill. 1581. Ill. 1585. Ill. 1585. Ill. 1586. Ill. 1577. Ill. 1277. Ill. 1277. Ill. 1279. Ohio K62. Ill. 1582. Ill. 1582. Ill. 1587. Ill. 1588. Ill. 1558. Ill. 1588. Ill. 1588. Ill. 1584. Ill. 1612. Ohio K24. Ill. 1508. Ohio W64. Ill. 1493. Ill. 1493. Ill. 1180.	80 75 74 73 73 72 72 71 70 70 70 70 69 69 69 68 68 68 68 68 68 66 65 63	17 18 22 18 19 18 18 18 21 20 22 20 21 20 20 21 20 22 22 24 24 22 24 24 22 22 22 22 22 22	79 78 79 78 78 77 79 77 78 80 76 78 78 78 78 76 76 78 78 78 78 78 78 78 78 78 78 78 78 78	94 95 98 98 95 93 97 99 97 99 94 100 92 93 98 99 97 100	98 99 97 100 98 99 100 98 100 97 97 99 98 102 99 96 98 97 98	8.2 8.5 9.0 9.2 8.3 8.5 8.5 9.0 8.5 8.3 8.0 8.8 8.0 8.8 8.0	311 322 344 39 377 333 366 37 355 388 366 344 383 388 353 368 373 388 388 388 388 388 388 388 388 38

^a Yield differences were not statistically significant in 4C.

Table 5. — DOUBLE CROSSES OF ILL. 21 OR IOWA 4059 MATURITY

Tested in Northern and North-Central Illinois, 1947-1950

Ranl		Acre	Mois-	Challing	Erect	Stand	Height	
in yield	Entry	yield ture in S		Sheiting	plants	Stand	Plant	Ea
	A — Four	-year	averag	es, 1947	-1950			
		bu.	perct.	perct.	perct.	perct.	ft.	in
1	III. 1277	93	21	80	86	97	9.0	3
2	Ill. 1289	93	21	78	87	96	8.6	3
3	III. 1375	91	21	80	88	95	8.6	3
4	Ill. 1280	90	21	80	82	98	8.7	3
	AverageSignificant difference	92 6	21	80	86	96	8.7	3
	B — Three	-year	avera	ges, 1948	3-1950			
1	Ill. 1277	94	21	79	90	97	9.0	3
2	Ill. 1289	94	20	78	92	95	8.6	3
3	Ill. 21	92	23	77	80	99	9.4	4
4.	Ill. 1375	91	20	79	92	93	8.5	3
5	Ill. 1280	91	21	79	86	97	8.7	3
6	U.S. 13	88	25	76	79	98	9.5	4
	AverageSignificant difference	92 7	22	78	86	96	9.0	4
	C — Two-		arera a	20. 1040	1050a			
	C — 1 wo-	yeai	average		1930			
1	III. 1277	90	20	79	86	96	8.8	3
2	Ill. 1289	90 90	19 18	78 80	89 90	92 90	8.4 8.6	3
3	Ill. 1559B	90	18	80 80	90	100	9.0	ა 3
5	Ill. 1555A	88	18	82	88	96	9.0	3
6	Ill. 1557	88	20	78	90	96	8.3	3
7	Ill. 1558	87	22	78	90	96	8.4	3
8	Ill. 1375	83	19	80	89	90	8.4	3
9	Ill. 1280	82	20	79	80	96	8.6	3
10	Ill. 21	78	24	76	70	98	9.2	4
11	U.S. 13	76	24	76	70	97	9.2	4
	Average	86	20	79	85	95	8.7	3
	Significant difference	10						
	D — Two-	year	average	es, 1949-	1950ª			
1	Ill. 1574	84	24	77	84	98	9.0	3
2	Ill. 21	80	24	76	80	96	9.0	4
3	Ill. 1575	80	21	78	88	100	8.6	3
5	Ill. 1571. Ill. 1573.	$\frac{77}{76}$	$\frac{24}{22}$.74 74	84 90	98 98	$\frac{8.3}{8.4}$	3
6		74	19	78	83	96	8.2	3
U	Ill. 101.	78	22	76	85	98	8.6	3
	Average Significant difference	12	22	10	00	90	8.0	0
	E — 1950	resu	lts (2 r	eplicatio	ns)			
1	<u>Ill. 1559B</u>	71	20	78	100	95	8.2	2
$\hat{2}$	Ill. 1289	71	20	78	97	100	8.2	3
3	Ill. 1560A	70	20	80	100	100	8.5	3
4 5	Ill. 1557	69 68	$\frac{21}{21}$	77 77	100 98	93 100	8.0 8.5	2 3
	111. 1490							

^a The two-year averages in C and D are separate because the 1949 data were obtained from 2 different experiments.

(Table is continued on next page)

Table 5. — DOUBLE CROSSES OF ILL. 21 OR IOWA 4059 MATURITY — concluded

Rank in		Entry		Acre	Mois- ture in	Shelling	Erect	Stand	Height		
rield		LIIUI y			yield	grain	Menning	plants	sound	Plant	Ea
		E –	- 1950	results	s (2	replicat	ions) —	conclu	ded		
					bu.	perct.	perct.	perct.	perct.	ft.	in
6	Ill. 1375				68	20	78	93	100	8.0	34
7	Ill. 1091A				68	24	76	100	100	8.2	36
8 9	III. 1609				67 66	20 22	75 78	93 93	100 100	8.8 8.5	33
10	Ill. 1277 Ill. 1555A				66	19	80	96	95	8.5	3
1	Ill. 1280				65	23	78	93	98	8.5	3:
2	Ill. 1606				65	20	77	80	100	9.0	4
13	III. 1279				65 64	20 21	78 78	97 90	98 100	$\frac{8.5}{8.5}$	3
5	Ill. 1591 Ill. 1602				63	20	77	91	95	8.8	4.
6	Ill. 1588				62	19	77	91	90	8.8	4
7	Ill. 1592				62	21	75	89	93	8.5	3
.8	Ill. 1595				62 61	20 20	75 77	95 95	100 97	$\frac{8.5}{8.5}$	3
9	Ill. 1597 Ill. 1604				60	20	79	87	100	8.8	3
21	Ill. 1574				60	28	75	95	98	8.5	3
2	Ill. 1593				60	23	75	90	100	8.5	3
23 24	Ill. 1605				59 58	24 21	73 74	95 97	100 100	$\frac{8.8}{8.5}$	4 3
25	Ill. 1611 Ill. 1276				58	23	77	86	95	8.2	3
6	Ill. 101				58	19	76	98	95	8.2	3
27 28	Ill. 1599				57 57	21 23	73 77	93 98	97	$\frac{8.5}{8.5}$	3
9	Ill. 1575				56	24	75	98	100 95	8.2	3 2
80	Ill. 1589				56	20	75	86	92	8.8	4
31	Ill. 1614				56	24	75	98	98	8.2	3
32 33	Ill. 1615 Ill. 1607				55 55	26 23	$\frac{71}{74}$	98 95	98 95	8.0 8.8	3
34	Ill. 1596				55	23	74	100	100	8.2	3
5	Ill. 1594				54	21	76	92	100	8.8	4
6	Ill. 1601				54	23	75	95	100	8.5	4
7 88	Ill. 1612 Ill. 1573				52 52	$\frac{21}{25}$	76 70	93 97	98 98	$\frac{7.8}{8.2}$	3
9	Ind. 4601				52	24	76	87	100	8.0	3
0	Ill. 1571				52	28	70	92	98	8.5	3
1	Ill. 1608				50	21	73	90	100	8.5	4
3	Ill. 1603 Ill. 1610				49 49	22 21	72 72	95 93	97 98	$\frac{8.5}{8.5}$	4 3
4	Ill. 1337				49	26	75	60	100	8.8	4
5	Ill. 1598				47	21	75	82	93	8.5	4
16 17	Ill. 1590				44 43	32 30	70 73	95 87	98 100	8.5 8.5	4
8	Ill. 21				43	30 27	73	91	98	8.5	3
19	U.S. 13				41	30	72	70	100	8.5	4:
60	Ill. 1600				40	26	71	93	95	8.2	3
	Average				58	23	75	92	98	8.4	3
	Significant diff	erence			15						

Table 6.—SINGLE AND DOUBLE CROSSES OF ILL. 21 OR IOWA 4059 MATURITY

Tested in Northern Illinois, 1950 (4 replications, single-hill plots)

Code	Entry	Acre	Erect	Stand	Hei	ght
		yield	plants		Plant	Ea
	A — Single cros	sses				
1 2 3 4 5	R2 × M14. R2 × R61. R2 × R66. M14 × R61. M14 × R66.	bu. 59 92 71 71 73	perct. 100 100 92 100 92	83 100 100 100 100	ft. 7.5 8.4 7.8 7.8 7.6	in 28 30 34 30 32
6 7 8 9 10	$\begin{array}{l} {\rm R61} \times {\rm R66}. \\ {\rm R2} \times {\rm R67}. \\ {\rm M14} \times {\rm R67}. \\ {\rm R61} \times {\rm R67}. \\ {\rm R66} \times {\rm R67}. \\ \end{array}$	71 58 58 60 51	100 100 100 100 100	100 100 100 100 100 75	7.4 7.5 6.8 7.0 7.1	30 31 24 31 33
11 12 13 14 15	$\begin{array}{c} {\rm R2 \times WF9.} \\ {\rm M14 \times WF9.} \\ {\rm R61 \times WF9.} \\ {\rm R66 \times WF9.} \\ {\rm R67 \times WF9.} \end{array}$	81 71 78 84 64	100 100 100 100 100	92 100 100 100 100	8.1 7.8 8.0 7.8 7.2	32 26 32 36 28
16 17 18 19 20	$\begin{array}{l} \text{R2} \times \text{I.205}. \\ \text{M14} \times \text{I.205}. \\ \text{R61} \times \text{I.205}. \\ \text{R66} \times \text{I.205}. \\ \text{R67} \times \text{I.205}. \\ \end{array}$	74 81 82 88 62	100 100 100 92 100	100 100 100 100 100	7.8 7.2 7.5 7.4 7.1	32 28 34 33 31
21 22 23 24 25	$\begin{array}{l} \text{WF9} \times \text{I.205} . \\ \text{R2} \times \text{Oh43} . \\ \text{M14} \times \text{Oh43} . \\ \text{R61} \times \text{Oh43} . \\ \text{R66} \times \text{Oh43} . \end{array}$	76 91 66 79 77	100 100 100 100 100	100 100 100 92 100	7.5 8.1 7.0 7.2 7.5	32 28 21 20 21
26 27 28 29 30	$\begin{array}{l} {\rm R67 \times 0h43.} \\ {\rm WF9 \times 0h43.} \\ {\rm I.205 \times 0h43.} \\ {\rm R2 \times 187-2.} \\ {\rm M14 \times 187-2.} \end{array}$	72 84 87 84 69	100 100 100 100 100	100 100 100 100 100	7.0 7.4 7.4 8.2 8.0	25 26 26 38 38
31 32 33 34 35	$\begin{array}{c} R61 \times 187\text{-}2. \\ R66 \times 187\text{-}2. \\ R67 \times 187\text{-}2. \\ WF9 \times 187\text{-}2. \\ I.205 \times 187\text{-}2. \\ \end{array}$	86 74 55 80 79	100 75 100 100 100	100 100 100 92 100	8.0 8.0 7.2 8.4 8.0	38 38 38 38
36 37 38 39 40	$\begin{array}{l} \text{Oh43} \times 187\text{-2} \\ \text{R2} \times \text{W22} \\ \text{M14} \times \text{W22} \\ \text{R61} \times \text{W22} \\ \text{R66} \times \text{W22} \\ \end{array}$	77 85 86 88 90	100 100 100 100 92	100 100 100 100 100	7.5 8.0 7.5 8.0 7.8	28 31 27 32 32
44	R67 × W22 WF9 × W22 L 205 × W22 Oh43 × W22 187-2 × W22 Average Significant difference	77 82 71 73 90 76 20	100 100 100 100 100 100	108 100 100 100 100 100 99	7.2 7.8 7.2 7.0 8.0 7.6	29 28 28 25 33 31
	B — Double cros	sses				
49	III. 21 III. 1091A III. 1277 III. 1558 III. 1593 Average	68 90 81 47 73 72	92 100 92 100 100	100 100 100 92 100 98	8.1 8.1 7.8 8.2 7.9 8.0	36 34 30 46 33
	Significant difference.	20				

Table 7.—SINGLE AND DOUBLE CROSSES OF ILL. 21 OR IOWA 4059 MATURITY

Tested in Northern Illinois, 1950 (2 replications)

Code	Patric	Acre	Mois-	Shallin.	Erect	C+1	Hei	ght
	Entry	yield	grain	Shelling	plants	Stand	Plant	Ear
	A	— Sir	igle cro	sses				
1 2 3 4 5	M14 × WF9. M14 × B35. M14 × I.205. WF9 × B35. WF9 × I.205.	bu. 57 53 51 38 56	perct. 26 28 34 37 26	perct. 73 74 78 71 79	98 97 100 100 100	98 100 98 98 98 93	ft. 7.8 7.8 7.2 7.8 7.8	in. 28 30 27 30 29
6 7 8 9	B35 × L205 M14 × K159. WF9 × K159. B35 × K159. L205 × K159.	55 37 36 42 50	29 48 44 46 36	77 70 69 73 76	100 98 100 100 100	97 100 100 97 98	7.8 8.0 8.2 8.2 8.2	30 36 37 39 36
11 12 13 14 15	$\begin{array}{l} \text{M14} \times \text{K237}. \\ \text{WF9} \times \text{K237}. \\ \text{B35} \times \text{K237}. \\ \text{I.205} \times \text{K237}. \\ \text{K159} \times \text{K237}. \\ \end{array}$	48 53 40 47 31	24 32 36 32 36	75 75 70 73 69	100 100 100 100 100	100 98 97 95 98	7.8 7.8 7.5 7.8 7.8	31 33 32 28 38
16 17 18 19 20	$\begin{array}{l} M14 \times Oh5 \\ WF9 \times Oh5 \\ B35 \times Oh5 \\ I.205 \times Oh5 \\ K159 \times Oh5 \\ \end{array}$	52 55 51 64 51	22 26 30 24 30	74 72 75 76 72	100 100 100 100 98	102 102 98 98 100	8.0 7.8 8.2 8.2 8.5	32 28 33 34 41
21 22 23 24 25	$\begin{array}{l} {\rm K237 \times Oh5.} \\ {\rm M14 \times Oh45.} \\ {\rm WF9 \times Oh45.} \\ {\rm B35 \times Oh45.} \\ {\rm I.205 \times Oh45.} \end{array}$	49 56 52 53 54	30 35 43 42 35	73 75 73 74 75	100 100 100 100 100	98 102 100 102 100	8.2 8.0 8.0 8.0 8.0	34 25 28 28 29
26 27 28 29 30	$\begin{array}{l} \text{K159} \times \text{Oh45}. \\ \text{K237} \times \text{Oh45}. \\ \text{Oh5} \times \text{Oh45}. \\ \text{M14} \times 187\text{-}2. \\ \text{WF9} \times 187\text{-}2. \end{array}$	38 39 50 50 48	46 37 38 23 28	66 71 73 76 72	100 100 100 100 95	98 100 100 100 100	8.2 7.8 8.2 8.0 8.2	34 26 27 32 36
31 32 33 34 35	$\begin{array}{c} \text{B35} \times \text{187-2}. \\ \text{I.205} \times \text{187-2}. \\ \text{K159} \times \text{187-2}. \\ \text{K237} \times \text{187-2}. \\ \text{Oh5} \times \text{187-2}. \\ \end{array}$	31 55 29 50 56	42 27 42 24 23	66 78 70 73 74	98 98 100 100 100	102 100 98 98 98	$8.0 \\ 8.5 \\ 7.8 \\ 8.2 \\ 8.2$	39 38 40 40 36
36 37 38 39 40	$\begin{array}{l} \text{Oh45} \times 187\text{-2} \\ \text{M14} \times \text{W146} \\ \text{WF9} \times \text{W146} \\ \text{B35} \times \text{W146} \\ \text{I.205} \times \text{W146} \\ \end{array}$	53 56 48 62 54	33 22 32 21 31	72 74 71 75 76	100 100 100 100 98	100 100 100 98 95	8.2 7.2 7.8 8.0 7.8	34 28 30 32 31
41 42 43 44 45	K159 × W146 K237 × W146 Oh5 × W146 Oh45 × W146 187-2 × W146 Average. Significant difference.	34 42 56 42 28 48 10	46 29 22 39 42 33	66 71 73 69 69 73	100 98 100 98 97 99	100 100 100 98 97 99	7.8 7.2 8.0 7.8 7.0 7.9	36 28 30 26 27 32
	В-	– Doı	ıble cr	osses				
46 47 48 49 50	III. 1091A. III. 1558. III. 1593. III. 1277. III. 21 Average. Significant difference.	54 54 52 48 46 51	31 31 28 28 30 30	74 73 74 74 73 74	100 100 97 100 95 98	100 100 100 98 98 99	8.5 7.8 8.0 8.0 7.6 8.0	32 28 34 32 34 32

Table 8.—SINGLE CROSSES OF ILL. 21 OR IOWA 4059 MATURITY
Tested in Central Illinois, 1950 (3 replications)

Code	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Prematurely dead plants
1 2 3 4 5	M14 × WF9. M14 × B35. M14 × I.205. WF9 × B35. WF9 × I.205.	bu. 105 96 104 79 96	perct. 18 17 20 16 19	perct. 81 83 85 83 84	perct. 91 48 92 61 88	96 94 93 87 90	perct. 2.9 22.1 7.9 5.7 0
6 7 8 9	$\begin{array}{c} \text{B35} \times \text{I.205}. \\ \text{M14} \times \text{K159}. \\ \text{WF9} \times \text{K159}. \\ \text{B35} \times \text{K159}. \\ \text{I.205} \times \text{K159}. \\ \end{array}$	102 99 88 98 99	17 18 17 18 20	83 83 83 84 82	64 85 85 47 83	90 96 89 97 97	$ \begin{array}{c} 1.4 \\ 5.0 \\ 0 \\ 4.3 \\ 0 \end{array} $
11 12 13 14 15	$\begin{array}{l} M14 \times K237. \\ WF9 \times K237. \\ B35 \times K237. \\ L205 \times K237. \\ K159 \times K237. \end{array}$	94 104 93 89 97	18 18 17 20 18	81 81 82 78 81	97 91 74 95 95	90 93 90 81 92	.7 0 0 0
16 17 18 19 20	$\begin{array}{l} M14 \times Oh5. \\ WF9 \times Oh5. \\ B35 \times Oh5. \\ I.205 \times Oh5. \\ K159 \times Oh5. \\ \end{array}$	92 99 94 90 100	16 17 16 17 17	83 81 82 81 84	81 83 44 67 92	94 92 86 86 96	55.7 22.1 30.7 57.1 3.6
21 22 23 24 25	$\begin{array}{l} \text{K237} \times \text{Oh5.} \\ \text{M14} \times \text{Oh45.} \\ \text{WF9} \times \text{Oh45.} \\ \text{B35} \times \text{Oh45.} \\ \text{I.205} \times \text{Oh45.} \\ \end{array}$	92 104 118 115 102	17 19 22 19 22	82 83 83 84 81	74 94 79 83 98	90 95 96 97 84	2.1 0 0 0
26 27 28 29 30	$\begin{array}{l} \text{K159} \times \text{Oh45}. \\ \text{K237} \times \text{Oh45}. \\ \text{Oh5} \times \text{Oh45}. \\ \text{M14} \times 187\text{-}2. \\ \text{WF9} \times 187\text{-}2. \end{array}$	108 106 108 102 98	18 20 19 17 16	83 79 83 84 84	93 91 80 78 64	93 96 94 93 85	$\begin{array}{c} 0 \\ 0 \\ 8.6 \\ 7.9 \\ .7 \end{array}$
31 32 33 34 35	$\begin{array}{c} \text{B35} \times \text{187-2} \\ \text{I.205} \times \text{187-2} \\ \text{K159} \times \text{187-2} \\ \text{K237} \times \text{187-2} \\ \text{Oh5} \times \text{187-2} \\ \end{array}$	104 101 104 107 96	17 17 17 18 17	86 84 84 80 84	6 36 61 92 54	97 92 94 92 89	12.1 15.0 .7 0 41.4
36 37 38 39 40	$\begin{array}{l} \text{Oh45} \times 187\text{-}2. \\ \text{M14} \times \text{W146}. \\ \text{WF9} \times \text{W146}. \\ \text{B35} \times \text{W146}. \\ \text{I.205} \times \text{W146}. \\ \end{array}$	113 104 102 97 94	20 17 16 16 18	83 83 82 84 82	76 90 84 24 95	94 94 92 93 82	$ \begin{array}{c} 1.4 \\ 27.9 \\ 1.4 \\ 37.1 \\ 2.9 \end{array} $
41 42 43 44 45	$\begin{array}{c} \text{K159} \times \text{W146}. \\ \text{K237} \times \text{W146}. \\ \text{Ob5} \times \text{W146}. \\ \text{Oh45} \times \text{W146}. \\ \text{I87-2} \times \text{W146}. \\ \text{Average}. \end{array}$	102 105 104 113 63 100	16 17 17 18 19	86 81 82 83 82 83	88 98 94 91 66 77	96 90 95 97 91 92	10.0 .7 30.0 1.4 12.9 9.6

Table 9. — DOUBLE CROSSES OF U.S. 13 MATURITY
Tested in North-Central and South-Central Illinois, 1948-1950

Ran		Acre	Mois-	Challing	Erect	C14 1	Height		
in vielo		yield	ture in grain	Shelling	plants	Stand	Plant	Ear	
	A — Three-	year a	verage	s, 1948-1	950				
1 2 3 4 5	III. 1509. III. 1511. III. 1514. III. 972A-1 III. 274-1	bu. 120 116 116 114 113	perct. 21 20 20 20 20 20	perct. 82 82 82 82 81 82	perct. 83 88 87 85 90	perct, 96 92 96 88 98	ft	in. 50 50 49 47 45	
6 7 8 9	III. 1554. U.S. 13. III. 21. III. 1337. III. 1515. Average. Significant difference.	112 111 111 111 107 113 7	22 20 20 20 20 22 22	80 80 81 81 78 81	82 81 82 82 85 84	96 97 95 97 98 95		50 50 50 49 49	
	B — Two-y	ear a	verages	, 1949-1	950				
1 2 3 4 5	Ill. 1509. Ill. 274-1 Ill. 972A-1 Ill. 1570. Ill. 1511.	112 110 109 109 107	20 18 20 20 19	82 82 81 80 82	75 86 80 74 84	95 98 94 96 90	10.0 9.6 9.8 9.5 9.9	48 46 48 48 48	
6 7 8 9 0	Ill. 1676. Ill. 21. Ill. 1554 U.S. 13. Ill. 1332.	$ \begin{array}{c} 106 \\ 105 \\ 105 \\ 105 \\ 104 \end{array} $	21 19 22 20 19	80 82 80 80 81	80 74 76 72 84	96 94 96 95 95	$ \begin{array}{c} 10.0 \\ 9.8 \\ 9.7 \\ 10.0 \\ 10.0 \end{array} $	50 49 49 50 48	
1 2	Ill. 1514. Ill. 1337. Average. Significant difference.	104 102 106 9	19 20 20	82 80 81	81 77 79	95 96 95	9.7 9.6 9.8	48 46 48	
	C — 1950 r	esults	(4 rep	lication	s)				
1 2 3 4 5	Ill. 1633. Ill. 1509. Ill. 1617. Ill. 1570. Ill. 274-1	116 116 114 113 112	21 21 19 21 19	80 82 79 79 82	85 75 90 83 94	99 92 78 92 97	10.2 10.2 9.6 9.5 9.4	54 50 46 47 46	
6 7 8 9	Ind. 8663. Ill. 1624. Ill. 21 Ill. 1653. Ill. 1511.	112 111 111 110 109	21 19 20 22 20	81 79 80 80 81	84 85 89 79 89	88 89 92 97 89	10.0 10.1 10.1 9.5 10.0	46 51 50 48 50	
1 2 3 4 5	III. 1554. III. 1337. III. 972A-1 U.S. 13 III. 1636.	109 108 107 106 105	23 21 21 21 21 20	79 79 80 79 79	91 87 86 84 85	93 96 92 92 98	9.6 9.8 10.0 10.2 10.4	49 49 50 51 51	
6 7 8 9 0	III. 1332. III. 1642. III. 1676. III. 1625. III. 1654.	105 105 105 103 103	20 21 22 21 21 22	80 78 78 80 79	94 86 87 81 87	94 97 93 97 92	10.1 10.1 10.1 9.6 9.9	51 52 50 48 51	
1 2 3 4 5	Ill. 1631	103 103 102 100 100	18 24 21 21 22	81 78 80 79 78	93 97 95 91 86	96 91 95 95 94	9.8 9.8 9.6 9.8 10.0	48 48 45 49	

(Table is concluded on next page)

Table 9. — DOUBLE CROSSES OF U.S. 13 MATURITY — concluded

Rank	Entry	Acre	Mois- ture in grain	Shelling	Erect plants	Stand	Height	
in yield	Entry	yield					Plant	Ear
	C — 1950 resul	ts (4 re	plicatio	ns) — c	onclud	ed		
		bu.	perct.	perct.	perct.	perct.	ft.	in.
			21	78	92	98	9.6	47
			19	82	85	91	9.6	52
			24	81	94	98	9.6	50
			23	77	89	99	9.2	45
30 Ill. 1626.	• • • • • • • • • • • • • • • • • • • •	96	21	78	85	95	9.8	48
31 Ill. 1637.		95	21	78	86	92	10.4	53
32 Ill. 1640.		95	22	75	86	91	10.1	54
33 Ill. 1646.		93	20	78	93	94	9.2	45
Averag	eant difference	. 105	21	79	88	94	9.8	49

Table 10. — SINGLE AND DOUBLE CROSSES OF U.S. 13 MATURITY
Tested in Central Illinois, 1950 (6 replications, single-hill plots)

Code	e En	try	Acre	Mois- ture in	Shelling	Erect	Stand -	Heig	ht
Cou	e En	try	yield	grain	Snening	plants	stand .	Plant	Ea
			A — Sing	le cros	ses				
1 2 3 4 5	Hy2 × R64 Hy2 × R65 Hy2 × WF9 R64 × R65 R64 × WF9		106 96 120	perct. 19 19 18 21 20	perct. 82 81 82 81 82 81	perct. 65 46 83 50 91	perct. 96 100 96 100 96	ft. 9.6 9.4 8.2 10.4 8.7	in. 51 44 33 52 35
6 7 8 9 10	R65 × WF9. Hy2 × 38-11. R64 × 38-11. R65 × 38-11. WF9 × 38-11.		113	17 18 19 18 19	84 83 83 80 83	67 67 58 50 100	88 100 100 100 96	9.0 9.4 9.4 9.9 8.9	34 47 42 52 39
11 12 13 14 15	$\begin{array}{l} {\rm Hy2} \times {\rm L317}. \\ {\rm R64} \times {\rm L317}. \\ {\rm R65} \times {\rm L317}. \\ {\rm WF9} \times {\rm L317}. \\ {\rm 38-11} \times {\rm L317}. \end{array}$		122 104	19 21 21 17 19	81 82 80 82 80	88 46 29 88 61	100 100 100 100 100 96	9.5 10.2 9.8 8.9 9.9	51 56 51 40 53
16 17 18 19 20	$\begin{array}{l} {\rm Hy2} \times {\rm K171}. \\ {\rm R64} \times {\rm K171}. \\ {\rm R65} \times {\rm K171}. \\ {\rm WF9} \times {\rm K171}. \\ {\rm 38-11} \times {\rm K171}. \end{array}$		89 85 92	18 20 18 18 18	80 80 79 81 79	79 83 52 86 71	100 96 88 88 100	9.8 9.6 9.8 9.0 9.9	54 48 55 40 58
21 22 23 24 25	$\begin{array}{c} \text{L317} \times \text{K171} \\ \text{Hy2} \times \text{K214} \\ \text{R64} \times \text{K214} \\ \text{R65} \times \text{K214} \\ \text{WF9} \times \text{K214} \\ \end{array}$		112 120 88	20 15 16 17 18	78 83 84 82 81	50 83 70 47 83	100 96 96 79 96	10.4 9.8 10.2 9.8 8.6	65 58 58 54 37
26 27 28 29 30	$38-11 \times K214$. $L317 \times K214$. $K171 \times K214$. $Hy2 \times Oh29$. $R64 \times Oh29$.		102	16 17 16 19	81 82 80 80 81	61 13 76 96 92	96 96 88 100 100	10.2 10.2 10.4 9.6 9.8	59 60 66 42 44
31 32 33 34 35	$\begin{array}{l} {\rm R65 \times Oh29.} \\ {\rm WF9 \times Oh29.} \\ {\rm 38-11 \times Oh29.} \\ {\rm L317 \times Oh29.} \\ {\rm K171 \times Oh29.} \\ \end{array}$		$\begin{array}{ccc} & 91 \\ & 22 \\ & 120 \end{array}$	19 18 18 18 19	77 80 78 82 76	44 83 100 88 54	96 100 88 100 100	9.9 8.7 9.9 9.8 9.8	48 31 46 48 52
36 37 38 39 40	$\begin{array}{l} \text{K214} \times \text{Oh29}. \\ \text{Hy2} \times \text{W102}. \\ \text{R64} \times \text{W102}. \\ \text{R65} \times \text{W102}. \\ \text{WF9} \times \text{W102}. \\ \end{array}$		96 89 100	16 18 20 19 17	82 84 83 83 83	46 79 58 12 92	100 100 100 100 100	10.2 8.5 8.7 8.9 8.3	56 38 38 40 35
41 42 43 44 45	$\begin{array}{c} 38\text{-}11 \times W102 \\ \text{L}317 \times W102 \\ \text{K}171 \times W102 \\ \text{K}214 \times W102 \\ \text{Oh}29 \times W102 \\ \text{Average} \\ \text{Significant differen} \end{array}$		99 88 70 104	17 20 18 16 19 18	83 80 81 82 81	92 23 76 53 78 67	100 92 88 71 96 96	8.9 9.2 9.2 9.6 8.9 9.5	38 47 45 50 34 47
		1	B — Doub	ole cros	ses				
46 47 48 49 50	Ill. 1515. Ill. 1570. Ill. 1421 U.S. 13 Ill. 1337. Average. Significant differen		108 108 105 105 107	18 20 18 18 19	81 84 83 83 82 83	75 79 83 57 83 75	100 96 96 96 100 98	9.2 8.8 8.9 9.3 9.0	44 40 38 44 42 42

Table 11. — SINGLE CROSSES OF U.S. 13 MATURITY Tested in Central Illinois, 1950 (4 replications)

Code	Entry	Acre yield	Mois- ture in grain	Shelling	Code	e Entry	Acre yield	Mois- ture in grain	Shelling
		bu.	perct.	perct.			bu.	perct.	perct.
1	C103 × Hy2	127	19	82	31	R64 × B10		21	80
	$C103 \times R61$	122	20	79	32	R65 × B10	112	19	78
	$C103 \times R64$	94	21	79	33	$WF9 \times B10$		18	78
	$R61 \times Hy2$	114	18	82	34	$H10 \times B10$		17	80
5	$R64 \times Hy2$	127	19	83	35	38-11 × B10	116	19	79
	R61 × R64	127	22	83	36	C103 × Oh29		19	76
	$C103 \times R65$	138	19	80	37	$Hy2 \times Oh29$		19	79
	$Hy2 \times R65$	129	18	84	38	$R61 \times Oh29$		18	80
	$R61 \times R65$	112	18	82	39 40	$R64 \times Oh29$		18	80
10	$R64 \times R65$	129	21	81	40	$R65 \times Oh29$	123	18	79
11	$C103 \times WF9$	111	19	80	41	$WF9 \times Oh29$	119	16	80
12	$H_{V2} \times WF9$	113	19	83	42	H10 × Oh29	136	20	82
	$R61 \times WF9$	124	18	83	43	$38-11 \times Oh29$		18	80
14	$R64 \times WF9$	125	19	84	44	$B10 \times Oh29$		18	74
15	$R65 \times WF9$	114	18	84	45	$C103 \times Oh41$	118	24	77
16	C103 × H10	139	19	83	46	$Hy2 \times Oh41$	114	20	79
	R61 × H10	115	18	84	47	$R62 \times Oh41$	95	20	80
18	$R64 \times H10$	131	18	84	48	$R64 \times Oh41$		20	80
19	$R65 \times H10$	129	17	84	49	$R65 \times Oh41$		19	81
20	$WF9 \times H10$	128	16	84	50	$WF9 \times Oh41$	127	19	82
21	C103 × 38-11	125	18	84	51	H10 × Oh41	126	20	82
	$Hy2 \times 38-11$	133	19	84	52	$38-11 \times \text{Oh}41$		20	83
	$R\acute{e}1 \times 38-11$	135	20	82	53	$B10 \times Oh41$		19	76
24	$R64 \times 38-11$	121	19	84	54	$Oh29 \times Oh41$	135	20	79
25	$R65 \times 38-11$	119	19	82		Average	121	19	81
26	WF9 × 38-11	124	20	84		Significant	10		
	H10 × 38-11	121	17	84		difference	13		
	C103 × B10	132	18	75					
	Hy2 × B10	116	18	78					
	R61 × B10	123	17	79					

Table 12.—SINGLE AND DOUBLE CROSSES OF ILLINOIS 448 MATURITY

Tested in South-Central and Southern Illinois, 1950 (4 replications)

Code	- E-4	Acre	Mois-	Ch allie	Erect	C14	Heig	ght
_ oae	e Entry	yield	grain	Shelling	plants	Stand	Plant	Ear
	Α-	- Sin	gle cros	sses				
1 2 3 4 5	C103 × Hy2. C103 × H10. C103 × 38-11. Hy2 × H10. Hy2 × 38-11.	bu. 119 115 126 100 113	perct. 22 20 21 20 20 20	perct. 80 82 79 84 81	perct. 88 100 95 96 79	perct. 93 94 97 94 94	ft. 9.6 9.9 10.1 9.8 9.5	in. 49 47 48 45 50
6 7 8 9	$\begin{array}{l} \text{H10} \times 38\text{-}11. \\ \text{C103} \times \text{B10}. \\ \text{Hy2} \times \text{B10}. \\ \text{Hi0} \times \text{B10}. \\ 38\text{-}11 \times \text{B10}. \\ \end{array}$	114 119 89 108 98	20 20 22 20 20 20	81 72 78 79 73	94 88 68 75 76	98 100 91 96 96	10.0 10.1 9.0 10.4 9.4	52 45 43 51 46
11 12 13 14 15	$\begin{array}{l} \text{C103} \times \text{K155}, \\ \text{Hy2} \times \text{K155}, \\ \text{H10} \times \text{K155}, \\ \text{38-11} \times \text{K155}, \\ \text{B10} \times \text{K155}, \\ \end{array}$	118 108 114 116 109	21 21 21 22 24	76 80 81 79 76	94 82 96 93 92	91 92 96 97 85	$9.9 \\ 9.5 \\ 10.2 \\ 9.6 \\ 10.0$	49 50 51 49 52
16 17 18 19	$\begin{array}{c} \text{C103} \times \text{K201} \\ \text{U.S. 523W} \\ \text{H10} \times \text{K201} \\ \text{38-11} \times \text{K201} \\ \text{B10} \times \text{K201} \end{array}$	121 108 116 121 130	25 25 25 23 25	76 81 81 77 76	86 79 91 87 76	87 93 92 96 99	$9.8 \\ 9.9 \\ 10.6 \\ 9.8 \\ 9.4$	48 47 56 52 46
21 22 23 24 25	$\begin{array}{l} \text{K155} \times \text{K201} \\ \text{C103} \times \text{Oh7} \\ \text{Hy2} \times \text{Oh7} \\ \text{Hi0} \times \text{Oh7} \\ \text{38-11} \times \text{Oh7} \end{array}$	111 124 112 93 122	25 21 20 20 20	78 79 83 84 80	74 98 94 99 93	97 96 96 89 96	$9.9 \\ 10.0 \\ 9.1 \\ 9.9 \\ 10.0$	53 46 46 45 49
26 27 28 29 30	$\begin{array}{c} B10 \times Oh7. \\ K155 \times Oh7. \\ K201 \times Oh7. \\ C103 \times Oh41. \\ Hy2 \times Oh41. \end{array}$	113 109 112 104 108	18 22 27 24 22	81 81 81 77 79	90 88 77 98 92	93 92 87 96 92	9.5 9.2 10.1 9.1 8.6	43 44 48 43 46
31 32 33 34 35	$\begin{array}{lll} \text{H10} \times \text{Oh41} \\ 38\text{-}11 \times \text{Oh41} \\ \text{B10} \times \text{Oh41} \\ \text{K155} \times \text{Oh41} \\ \text{K201} \times \text{Oh41} \\ \end{array}$	113 120 114 100 125	22 23 27 24 27	81 80 77 75 78	96 92 60 67 84	94 98 96 96 99	9.6 9.2 9.4 9.9 9.0	48 49 47 52 48
36 37 38 39 40	$\begin{array}{l} \text{Oh7} \times \text{Oh41} \\ \text{C103} \times \text{CI.21E} \\ \text{Hy2} \times \text{CI.21E} \\ \text{Hi0} \times \text{CI.21E} \\ \text{38-11} \times \text{CI.21E} \\ \end{array}$	115 122 72 124 143	22 26 24 26 23	79 75 79 83 78	94 97 91 99 67	99 93 79 101 96	$9.5 \\ 10.5 \\ 8.6 \\ 10.8 \\ 10.6$	47 48 42 49 55
41 42 43 44 45	$\begin{array}{l} {\rm B10 \times CI.21E.} \\ {\rm K155 \times CI.21E.} \\ {\rm K201 \times CI.21E.} \\ {\rm Oh7 \times CI.21E.} \\ {\rm Oh41 \times CI.21E.} \\ {\rm Average.} \\ {\rm Significant \ difference.} \\ \end{array}$	118 126 119 125 119 114 11	23 26 31 23 26 23	76 78 79 82 77 79	56 94 92 90 78 87	94 85 97 96 99 94	10.1 10.6 9.8 10.2 9.6 9.8	45 51 50 49 47 48
	В-	– Dou	ible cro	sses				
46 47 48 49 50	Ill. 2214W Ill. 1459. Ill. 1656. Ill. 1570. U.S. 13 Average.	128 119 109 105 99 112	24 24 21 21 19 22	83 79 80 80 80	91 84 96 86 88 89	95 92 98 99 99	9.8 10.1 9.1 8.9 9.8 9.5	50 51 46 41 48 47

Table 13. — DOUBLE CROSSES OF ILLINOIS 448 MATURITY
Tested in South-Central and Southern Illinois, 1947-1950

Rank		Acre	Mois-	C111!	Erect	Cu J	Heig	ht
in yield	Entry	yield	ture in grain	Shelling	plants	Stand	Plant	Ear
	A — Fou	ır-year	averag	es, 1947	-1950			
1 2 3 4	U.S. 13	96 95 92	perct. 19 23 23 18 21	92 80 80 80 82 81	perct. 74 68 65 68 69	perct. 99 95 91 94 95	ft. 9.6 10.0 10.0 9.8 9.8	in 48 55 56 52 53
	B — Thr	ee-year	averag	ges, 1948	3-1950			
1 2 3 4 5	Ill. 1541A Ill. 1349 Ill. 1540 U.S. 13 Ill. 1521B	102 102 101	24 21 22 19 24	79 81 80 81 78	77 74 77 74 76	95 96 90 100 93	10.3 9.9 10.1 9.7 10.1	58 52 55 46 56
6 7 8 9	Ill. 1459. Ill. 1445A. Ill. 200. Ill. 1539A. Average. Significant difference.	98 98 100	25 24 19 24 22	79 80 82 80 80	63 67 68 73 72	88 94 93 86 93	10.3 10.1 10.2 10.0 10.1	57 58 58 58 54
	C-Tw	o-year	averag	es, 1949	-1950			
1 2 3 4 5	Ill. 2239W Ill. 2235W Ill. 1459 Ill. 1721 Ill. 2243W	100 100 98	22 22 24 23 22	83 82 78 80 82	75 78 62 82 71	96 98 92 92 99	10.0 9.7 10.0 9.8 9.6	56 56 55 54 56
6 7 8 9 10	Ill. 1712	96 95	25 23 24 22 24	80 81 80 80 78	66 72 81 84 74	94 96 94 95 94	10.0 10.0 9.6 9.8 9.7	54 53 52 52 52
11 12 13 14 15	III. 200 . III. 1349 . III. 1332 . U.S. 13 . U.S. 505 .	93	20 22 18 20 22	81 81 82 81 78	64 64 80 65 78	95 96 96 100 94	10.0 9.7 9.4 9.6 9.4	52 50 48 50 48
16 17 18 19 20	Ill. 1445A Ill. 1541A Ill. 1540. Ill. 1539A Ill. 1337.	89 88	25 24 26 26 20	80 79 79 80 82	55 68 68 64 70	96 96 94 86 99	10.0 10.1 9.8 10.0 9.0	54 53 52 52 44
21 22 23	Ill. 1570. Ill. 1515. Ill. 2216W Average. Significant difference.	82 82 92	20 20 22 22	80 80 78 80	72 76 58 71	97 96 94 95	9.3 9.1 9.8 9.7	47 46 52 51
	D — 19	50 resu	lts (6 r	eplication	ons)			
1 2 3 4 5	Ill. 1657. Ill. 1673. Ill. 1671. Ill. 1663. Ill. 1664.	115 113 113	24 23 25 22 23	81 81 81 81 80	75 77 76 76 78	99 98 94 94 94	10.2 10.0 10.0 10.3 9.8	54 54 52 54 54

(Table is concluded on next page)

Table 13. — DOUBLE CROSSES OF ILLINOIS 448 MATURITY — concluded

Rank	Entry	Acre	Mois- ture in	Shelling	Erect	Stand	Heig	ght
vield		yield	grain	Sheming	plants	Stand	Plant	Ear
	D — 1950 result	s (б r	eplication	ons) — (conclud	led		
		bu.	perct.	perct.	perct.	perct.	ft.	in.
6	Ill. 1661	113	27	79	82	97	10.1	56
7 8	Ill. 2234W	113 112	24 21	81 80	73 78	95 96	$\frac{10.0}{10.0}$	53 54
9	Ill. 2231W	112	23	83	82	96	9.9	54
10	Ill. 1662	111	24	81	64	96	10.0	53
11	Ill. 2243W	111	23	82	77	99	9.6	50
12 13	Ill. 1539A	111 110	23 24	79 83	83 76	95 97	10.0	50 52
14	Ill. 2214W	110	23	81	87	99	10.0	53
15	Ill. 1459.	110	26	78	58	93	10.1	54
16	Ill. 2235W	109	23	82	92	98	9.8	51
17	Ill. 1567B	109	$\frac{25}{26}$	79 79	88 68	93 95	9.7	52
18 19	Ill. 1712	109 109	26	79	80	98	9.6	56 50
20	Ill. 1672.	108	24	80	78	94	10.0	52
21	Ill. 1521B	108	24	78	83	96	9.8	51
22	Ill. 2230W	108	25 26	81	77 79	96	10.0 10.0	52
24	Ill. 1659	$\frac{106}{105}$	$\frac{20}{25}$	80 79	72	95 94	9.9	51 52
25	Mo. 840.	104	20	81	90	101	9.5	46
26	Ill. 1670	104	21	80	80	101	10.0	46
27 28	Ill. 2229W. Ill. 2159AW.	104 104	25 24	80 80	83 92	96 93	10.0 9.6	51 52
29	Ill. 1445A	104	24	80	72	95	9.9	54
30	III. 1668	104	21	79	74	99	9.9	48
31	Ill. 201.	104	19	82	70	93	9.7	48
32 33	U.S. 505	103 103	22 24	78 80	85 61	94 96	9.6	51 52
34	Ill. 1641	103	19	80	90	87	9.4	43
35	III. 200	103	20	81	73	96	10.2	54
36	Mo. 804	103	24	78	73	93	10.0	55
37 38	Ill. 1541A	101 101	22 23	78 79	83 88	94 93	10.0	50 54
39	Ill. 1721	100	20	81	95	93	9.6	44
10	Ill. 1667 Ill. 2225W	100	25	78	73	89	10.0	55
41	U.S. 13	100	21	80	70	101	9.5	50
42 43	Ill. 1666	98 98	$\frac{21}{23}$	80 78	81 74	96 86	$\frac{9.2}{10.3}$	44 55
44	Ill. 1332.	96	19	82	83	93	9.6	46
15	Til. 1337	95	21	80	79	100	9.2	45
46	III. 1515	92	20	80	87	95	9.1	43
47 48	Ill. 972A-1	92 92	19 24	80 80	93 51	92 95	$\frac{9.6}{10.0}$	46 54
48 49	Ill. 2216W	92	24	80	80	96	9.4	45
50	Ill. 1669	91	19	80	90	,99	9.2	46
	Average	105	23	80	78	95	9.8	51
	Significant difference	10						

Table 14.—AVERAGE PERFORMANCE OF INBRED LINES AS MEASURED IN SINGLE CROSSES^a

(Comparisons can be made only within each section)

	k Inbred line	Acre		Shelling	Erect	Stand	H	eight	Premature dead
in		yield	grain	Shening	plants	Stand	Plant	Ear	plants
	A — Ohio	M15	maturity	(sumn	narized	from	Table	3A)	
		bu.	perct.	perct.	perct.	perct.	ft.	in.	perct.
1	MS24A	65	19	82	88	96	6.9	28	
2	В8	64	18	82	98	97	7.4	34	
3	W70	63	21	81	89	96	8.1	35	
4	Oh51A	62	18	81	96	97	7.5	32	
5	A295	62	18	79	94	97	7.6	35	
6	A277	62	19	79	95	98	7.7	33	
7	M14	59	20	79	96	97	7.5	31	
8	A73	59	19	80	99	96	7.2	32	
9	R53		18	81	95	94	6.8	27	
	Average	62	19	80	95	96	7.4	32	
	B — Ill. 21 or I		4059 mat	urity (s	summai	rized f	rom T	able 6A	A)
1	W99	. 82				101	7.6	30	
2	W22			* *		99	7.6 7.7	33	
3	Oh43			* *		99	7.3	26	
4	WF9					98	7.3 7.8	31	
5	I.205	78				100	7.5	31	
6						97	PT 0	32	
7	R2	77				99	7.9	34	
8	187-2	76				97	7.9 7.6	33	
9	R66					98	7.5	28	
10	R67	62				98	7.1	29	
	Average					99	7.6	31	
	Significant difference					00			
	Significant difference C — Ill. 21 or I	3						able 7A	
1	Significant difference C — Ill. 21 or I	owa	4059 mat				rom T	able 7A	A)
1 2	C — Ill. 21 or I	3 owa 54 54	4059 mat	76 74	summai	rized f			A)
3	Significant difference	3 owa 54 54 51	4059 mat	76 74 74	100 100 100 99	rized f	7.9 8.1 7.8	31 33 30	A)
3 4	Significant difference C — Ill. 21 or I 1.205 0h5 M14 WF9	3 owa 54 54 51 49	4059 mat 30 27 29 33	76 74 74 73	100 100 100 99 99	97 100 100 99	7.9 8.1 7.8 7.9	31 33 30 31	A)
3	C — Ill. 21 or I	3 owa 54 54 51 49	4059 mat	76 74 74	100 100 100 99	97 100 100	7.9 8.1 7.8	31 33 30	A)
3 4 5	Significant difference C — Ill. 21 or I 1.205 Oh5 M14 WF9 Oh45	3 owa 54 54 51 49 49	4059 mat 30 27 29 33 39	76 74 74 73 72	100 100 99 99 100	97 100 100 99 100	7.9 8.1 7.8 7.9 8.0	31 33 30 31 29	A)
3 4 5 6	Significant difference C — Ill. 21 or I 1.205 Oh5 M14 WF9 Oh45 B35	3 owa 54 54 51 49 49	30 27 29 33 39 35	76 74 74 73 72 73	100 100 99 99 100	97 100 100 99 100	7.9 8.1 7.8 7.9 8.0 7.9	31 33 30 31 29	A)
3 4 5 6 7	Significant difference. C — Ill. 21 or I 1.205. Oh5. M14. WF9. Oh45. B35. W146.	3 owa 54 54 51 49 49 47 47	30 27 29 33 39 35 32	76 74 74 73 72 73 71 72	100 100 99 99 100	97 100 100 99 100	7.9 8.1 7.8 7.9 8.0 7.9	31 33 30 31 29 33 30	A)
3 4 5 6 7 8 9	Significant difference. C — Ill. 21 or I 1.205 Oh5 M14 WF9 Oh45 B35 W146 187-2 K237	3 owa 54 54 51 49 49 47 47 44 44 44	30 27 29 33 39 35	76 74 74 73 72 73 71 72	100 100 99 99 100	97 100 100 99 100	7.9 8.1 7.8 7.9 8.0 7.9	31 33 30 31 29	A)
3 4 5 6 7 8 9	Significant difference. C — Ill. 21 or I 1.205 Oh5 M14 WF9 Oh45 B35 W146 187-2 K237	3 owa 54 54 51 49 49 47 47 44 44 44	30 27 29 33 39 35 32 32	76 74 74 73 72 73 71	100 100 99 99 100 99	97 100 100 99 100 99 99	7.9 8.1 7.8 7.9 8.0 7.9 7.6 8.0	31 33 30 31 29 33 30 36	A)
3 4 5 6 7 8 9	Significant difference. C — Ill. 21 or I I.205. Oh5. M14. WF9. Oh45. B35. W146. 187-2. K237. K159. Average.	3 owa 54 54 51 49 47 47 47 44 44 44 44 44 48 48 48	4059 mat 30 27 29 33 39 35 32 32 31	76 74 74 73 72 73 71 72 72	100 100 99 99 100 99 99 100	97 100 100 99 100 99 99 99 99	7.9 8.1 7.8 7.9 8.0 7.9 7.6 8.0 7.8	31 33 30 31 29 33 30 36 32	A)
3 4 5 6 7 8 9	Significant difference. C — Ill. 21 or I 1.205. Oh5. M14. WF9. Oh45. B35. W146. 187-2. K237. K159. Average. Significant difference.	3 OWa 544 511 499 477 477 444 444 444 448 29	30 27 29 33 39 35 32 32 31 42 33	76 74 74 73 72 73 71 72 72 72 70 73	100 100 100 99 99 100 99 99 100 100 100	97 100 100 99 100 99 99 99 99 99 99 99	7.9 8.1 7.8 7.9 8.0 7.6 8.0 7.6 8.1 7.9	31 33 30 31 29 33 30 36 36 32 37 32	A)
3 4 5 6 7 8 9 10	Significant difference. C — Ill. 21 or I 1.205. Oh5. M14. WF9. Oh45. B35. W146. 187-2. K237. K159. Average. Significant difference. D — Ill. 21 or	3 owa 54 54 51 49 49 47 47 44 43 48 2	30 27 29 33 39 35 32 32 31 42 33	rity (s	100 100 99 99 100 99 100 100 100 (summa	97 100 100 99 99 100 99 99 99 98 99 99	7.9 8.1 7.8 7.9 8.0 7.9 7.6 8.0 7.8 8.1 7.9	31 33 30 31 29 33 30 36 36 32 37 32	A)
3 4 5 6 7 8 9 10	Significant difference. C — Ill. 21 or I I.205. Oh5. M14. WF9. Oh45. B35. W146. 187-2. K237. K159. Average. Significant difference. D — Ill. 21 or Oh45.	3 owa 54 54 51 49 49 47 47 47 44 44 44 39 48 2	30 27 29 33 39 35 32 32 31 42 33 44 4059 ma	76 74 74 73 72 73 71 72 72 70 73	100 100 99 99 100 99 100 100 100 100	97 100 100 99 100 99 99 99 98 99 99 99	7.9 8.1 7.9 8.0 7.9 7.6 8.0 7.8 8.1 7.9	31 33 30 31 29 33 30 36 32 37 32	A)
3 4 5 6 7 8 9 10	Significant difference. C — Ill. 21 or I 1.205. Oh5. M14. WF9. Oh45. B35. W146. 187-2. K237. K159. Average. Significant difference. D — Ill. 21 or Oh45. M14.	3 owa 54 54 54 49 47 47 44 44 44 39 48 2	30 27 29 33 39 35 32 32 32 31 42 33	rity (s	100 100 99 99 100 99 100 100 100 (summa	97 100 100 99 100 99 99 99 99 99 99 99	7.9 8.1 7.8 7.9 8.0 7.9 7.6 8.0 7.8 8.1 7.9	31 33 30 31 29 33 30 36 36 32 37 32	1.5 14.7
3 4 5 6 7 8 9 10	Significant difference. C — Ill. 21 or I I.205. Oh5. M14. WF9. Oh45. B35. W146. 187-2. K237. K159. Average. Significant difference. D — Ill. 21 or Oh45. M14. WF9.	3 Owa 544 544 511 499 477 444 444 398 48 2 Iowa 1100 99	30 27 29 33 39 35 32 32 31 42 33 44 4059 ma	76 74 74 73 72 73 71 72 72 70 73	100 100 99 99 100 99 100 100 100 100	97 100 100 99 100 99 99 99 98 99 99 99	7.9 8.1 7.8 8.0 7.9 8.0 7.9 8.0 7.8 8.0 7.8 8.1 7.9	31 33 30 31 29 33 30 36 36 32 37 32	1.5 14.7 3.6
3 4 5 6 7 8 9 10	Significant difference. C — Ill. 21 or I 1.205 Oh5 M14 WF9 Oh45 B35 W146 187-2 K237 K159 Average Significant difference D — Ill. 21 or Oh45 M14 WF9 K237	3 owa 544 544 511 497 444 399 488 2 Iowa 1100 999 99	30 27 29 33 39 35 32 32 32 31 42 33	76 74 74 73 72 73 71 72 72 70 73	100 100 99 99 100 99 100 99 100 100 100	97 100 100 99 100 99 99 99 99 98 99 99 99	7.9 8.1 7.8 7.9 8.0 7.9 7.6 8.0 7.8 8.1 7.9	31 33 30 31 29 33 30 36 36 32 37 32	1.5 14.7
3 4 5 6 7 8 9 10	Significant difference. C — Ill. 21 or I I.205. Oh5. M14. WF9. Oh45. B35. W146. 187-2. K237. K159. Average. Significant difference. D — Ill. 21 or Oh45. M14. WF9. K237. K159.	3 owa 544 511 499 47 47 444 439 488 2 IIowa 1100 199 99 99	30 27 29 33 39 35 32 32 31 42 33 42 43 18 18	rity (s	100 100 99 99 100 99 100 100 100 100 (summa 87 84 81 90 81	97 100 100 99 100 99 99 99 98 99 99 99 99 99	7.9 8.1 7.9 8.0 7.9 7.6 8.0 7.8 8.1 7.9 7.6 8.0 7.9 7.6 8.0 7.8	31 33 30 30 31 29 33 30 36 36 32 37 32	1.5 14.7 3.6 2.6
3 4 5 6 7 8 9 10 10 12 3 4	Significant difference. C — Ill. 21 or I 1.205. Oh5. M14. WF9. Oh45. B35. W146. 187-2. K237. K159. Average. Significant difference. D — Ill. 21 or Oh45. M14. WF9. K237. K159. B35.	3 OWa 544 544 494 474 474 444 444 399 488 2 Iowa 1100 199 999 998	4059 mat 30 27 29 33 39 35 32 32 31 42 33 41 42 33 41 41 41 4059 mat	rity (s	100 100 99 99 100 99 100 100 100 (summa 87 84 81 90 81	97 100 100 99 100 99 99 99 99 99 99 99 99 4rized 94 94 94 92	7.9 8.1 7.8 7.9 8.0 7.9 7.6 8.0 7.9 7.6 8.1 7.9 from 7	31 33 30 31 29 33 30 36 36 32 37 32	1.5 14.7 3.6 6.2 2.6 12.6
3 4 5 6 7 8 9 10 10 12 3 4 5 6	Significant difference. C — Ill. 21 or I I.205. Oh5. M14. WF9. Oh45. B35. W146. 187-2. K237. K159. Average. Significant difference. D — Ill. 21 or Oh45. M14. WF9. K237. K159. B35. W146.	3 Owa 544 544, 511 49 47 47 47 44 44 44 49 100 100 99 99 99 99 99 99 99 98	30 27 29 33 39 35 32 32 31 42 33 42 43 18 18	rity (s	100 100 99 99 100 99 100 100 100 100 (summa 87 84 81 90 81	97 100 100 99 100 99 99 99 98 99 99 99 99 99	7.9 8.1 7.8 8.0 7.9 8.0 7.9 7.6 8.0 7.8 8.1 7.9	31 33 30 31 29 33 30 36 36 32 37 32	1.5 14.7 3.6 2.2 12.6 13.8
3 4 5 6 7 8 9 10 10 12 3 4 5 6 7	Significant difference. C — Ill. 21 or I I.205. Oh5. M14. WF9. Oh45. B35. W146. 187-2. K237. K159. Average. Significant difference. D — Ill. 21 or Oh45. M14. WF9. K237. K159. B35. W146. B35. W146. B35. W146. B35. W146.	3 OWa 54 54 51 49 47 47 44 44 43 39 48 2 Iowa 110 100 99 99 99 98 98 98 98	30 27 29 33 39 35 32 32 32 31 42 33 42 33 18 18 18	rity (s	100 100 99 99 100 99 100 99 99 100 100 1	97 100 100 99 100 99 99 99 98 99 99 99 urized 94 94 94 91 90 94	7.9 8.1 7.8 7.9 8.0 7.9 7.6 8.0 7.9 7.6 8.1 7.9 from 7	31 33 30 31 29 33 30 36 36 32 37 32	1.5 14.7 3.6 12.6 13.88 10.2
3 4 5 6 7 8 9 10 10 12 3 4 5 6 7 8	Significant difference. C — Ill. 21 or I 1.205. Oh5. M14. WF9. Oh45. B35. W146. 187-2. K237. K159. Average. Significant difference. D — Ill. 21 or Oh45. M14. WF9. K237. K159. B35. W146. B35. W146. B35. W146.	3 OWa 544 544 545 47 47 47 444 448 2 2 Iowa 1100 99 99 99 99 98 89 89 89 97 97	30 27 29 33 39 35 32 32 32 31 42 33 42 33 18 18 18 18 18	rity (s	100 100 99 99 100 99 99 100 100 100 100	97 100 100 99 100 99 99 99 98 99 99 99 4rized 94 91 92 92	7.9 8.1 7.8 8.0 7.9 8.0 7.9 7.6 8.0 7.8 8.1 7.9	31 33 30 31 29 33 30 36 36 32 37 32	1.5 14.7 3.6 2.2 12.6 13.8
3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9	Significant difference. C — Ill. 21 or I I.205. Oh5. M14. WF9. Oh45. B35. W146. 187-2. K237. K159. Average. Significant difference. D — Ill. 21 or Oh45. M14. WF9. K237. K159. B35. W146. B35. W146. B35. W146. B35. W146.	3 OWa 544 544 541 511 49 47 47 47 44 44 44 48 2 2 Iowa 1100 99 99 99 99 99 99 99 99 97 97 97	30 27 29 33 39 35 32 32 32 31 42 33 42 33 18 18 18 18 18 18	rity (s 76 74 74 74 73 72 73 71 72 70 73 82 81 82 81 83 83 83 83 83 83 83	100 100 100 99 99 100 99 100 100 100 100	97 100 100 99 100 99 99 99 99 99 99 99 99 99 4rized 94 94 91 90 94 92 92 92	7.9 8.1 7.8 7.8 7.8 7.6 8.0 7.6 8.0 7.9 8.1 7.9	31 33 30 31 29 33 30 36 36 32 37 32	1.55 14.77 3.66 2.26 12.66 13.88 10.22 27.8

(Table is concluded on next page)

Table 14.—AVERAGE PERFORMANCE OF INBRED LINES AS MEASURED IN SINGLE CROSSES*—concluded

Ranl	Inbred line	Acre	Mois-	Shalling	Erect	Stand -	Heig	ght	Prematurely dead
in		yield	ture in grain	Shelling	plants	Stand .	Plant	Ear	plants
	E-U.S.	13 ma	turity (summa	rized f	rom Ta	able 10A	.)	
		bu.	perct.	perct.	perct.	perct.	ft.	in.	perct.
1	Hy2	110	18	82	76	99	9.3	46	
2	L317	107	19	81	54	98	9.8	52	
3	R64	103	20	82	68	98	9.6	47	
4	Oh29	103	18	80	76	98	9.6	45	
5	38-11	101	18	81	73	97	9.6	48	* * * *
6	K214	101	16	82	59	91	9.9	55	
7	R65	98	19	81	44	95	9.7	48	
8	K171	94	18	79	70	94	9.8	53	
9	W102	93	18	82	63	94	8.9	41	
0	WF9	93	18	82	86	96	8.7	36	
	Average	100	18	81	67	96	9.5	47	
	F — U.S.	13 ma	iturity	(summa	rized	from T	able 11)	
1	IIIO	197	10	00					
1 2	H10	127 126	18 20	83 80					
3	Oh41	126	19	83					
4	R65		19	82					
5	C103	122	20	80					
6	R61	122	19	82					
7	Hy2	120	19	82				- ' '	
8	WF9		18	82					
9	R64	119	20	82					
0	Oh29		18	79					
1	B10	118	18	78					
- 1		122	19	81					
	Average Significant difference	3	19	01			***	* *	****
	G — Ill. 4	48 mat	turity (summaı	rized fi	rom Ta	ble 12A	.)	
1	CI.21E	124	26	78	84	94	10.1	48	
2	C103		22	77	94	94	9.9	47	
3	38-11		21	79	86	96	9.8	50	
4	K201	119	26	78	84	. 94	9.7	50	
5	Oh7	114	21	81	91	94	9.7	46	
6	Oh41	113	24	78	85	97	9.3	47	
7	K155	112	23	78	87	92	9.9	50	
8	H10	111	21	82	94	95	10.1	49	
9	B10	111	22	77	75	94	9.8	46	
0	Hy2	107	21	81	86	91	9.2	46	
U,									
.0	Average	$\frac{115}{2}$	23	79	87	94	9.8	48	

^a Calculated for each inbred by averaging the performance of single crosses in which it was one of the parents.

