

Machine Learning para previsão de Séries Temporais

Prof. Eraylson Galdino

Agenda

- Motivação
- Técnicas de ML
- Etapas
 - Pré-processamento
 - Treinamento
 - Avaliação
- Sistemas Híbridos
- Ensemble

- Pontos positivos:
 - Modelos Não lineares;
 - Aproximadores universal de funções;
 - Não paramétricos;
- Pontos negativos:
 - Overfitting
 - Underfitting
 - Seleção de Hiperparâmetros

- Principais técnicas:
 - Redes Neurais MLP
 - Extreme Learning Machine
 - Rede de Base Radial
 - Máquina de Vetor de Suporte
 - Long Short-Term Memory

Redes Neurais MLP

Redes Neurais MLP (funções de ativação)

• Extreme Learning Machine

Rede de base Radial

RBF Neural Network

Máquina de Vetor de Suporte

• Máquina de Vetor de Suporte

Long Short-Term Memory

Long Short-Term Memory

ML aplicado para previsão

Pré-processamento

- Diferenciação
- Normalização
- Transformação
- Janelamento
- Particionamento

Treinamento

- Gridsearch
- algoritmo de otimização

Avaliação

- MAPE
- MSE
- POCID

Aplicação

Deploy

- Diferenciação:
 - Aplicado para tornar a série estacionária;
 - Indicado aplicar antes de treinar modelos com problemas de desempenho em séries com tendência e sazonalidade;

Normalização:

Transformar os dados para uma escala adequada para os

modelos;

$$Z'(t) = \frac{Z(t) - \min(Z)}{\max(Z) - \min(Z)} \qquad \Longrightarrow [0, 1]$$

$$Z'(t) = \frac{Z(t) - \max(Z) - \min(Z)}{\max(Z) - \min(Z)} \qquad \Longrightarrow [-1, 1]$$

$$Z'(t) = \frac{Z(t) - \min(Z)}{\deg vio(Z)} \qquad \Longrightarrow N(0, 1)$$

- Transformação em log:
 - Aplicado em séries com heteroscedasticidade
 - Z' = log(Z)

- Janelamento:
 - Organiza a série para ser utilizada em modelos de aprendizagem supervisionada

X1	X2	X3	Υ
1	2	3	4
2	3	4	5
3	4	5	6

• Janelamento:

Particionamento: (Hold-out)

• Particionamento: (Cross-validation)

Treinamento

Gridsearch

Grid Search

Pseudocode
Hyperparameter_One = [a, b, c]
Hyperparameter_Two = [x, y, z]

Random Search

Pseudocode

Hyperparameter_One = random.num(range)
Hyperparameter Two = random.num(range)

Hyperparameter 1

Treinamento

- Algoritmos de otimização bio-inspirados
 - Algoritmos Evolucionários:
 - Algoritmo Genético

```
cromossomo = [hp_1, hp_2, ..., hp_n]
```

- Inteligência de Enxames:
 - PSO

```
partícula = [ hp_1, hp_2, ..., hp_n]
```


Aviação

Medidas de desempenho

$$MAPE = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{desejado(i) - previsto(i)}{desejado(i)} \right|,$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} \left(desejado(i) - predito(i) \right)^{2}$$

$$POCID = \frac{100}{N} \sum_{i=1}^{N} X_i,$$

$$X_i = \begin{cases} 1, & \text{se}(desejado(t) - desejado(t-1))(previsto(i) - previsto(t-1)) > 0 \\ 0, & \text{caso contrário} \end{cases}$$

Aplicação

Sistemas Híbridos

- Modelos estatísticos são bons para séries lineares;
- Modelos de AM são bons para séries não lineares;
- Séries do mundo real tem comportamento linear e não linear;
- Composição de modelos estatísticos com modelos de AM.

Sistemas Híbridos

- Motivação:
 - Teorema do NFL;
 - Não existe um conjunto de regras para a escolha do melhor preditor;
 - O melhor preditor para o conjunto de dados atual pode ser o pior para dados futuros;

Definição:

- Pode ser definido como um conjunto de modelos diferentes com o objetivo de prever a mesma variável
- A previsão final de um SMP é realizada com base na combinação de todas as previsões obtidas ou através da seleção de uma previsão;

Etapas

- Geração:
 - Consiste em criar o conjunto de modelos (Pool);
 - É necessário que exista diversidade entre os modelos:
 - Modelos treinados através de diferentes amostras;
 - Bagging, Split, AdaBoost, EMD, Crogging;
 - Modelos utilizando diferentes parâmetros;
 - Diferentes Modelos;

- Geração
 - Bagging
 - T <- Conjunto de treinamento
 - **■** Pool <- []
 - **De** 1 **até** Qtd_de_preditores **Faça**:
 - S <- reamostragem(T)
 - P <- treina_preditor(S)
 - Pool <- Pool + P
 - Retorna Pool

Split

- Seleção
 - Estática: Consiste em selecionar um ou mais preditores do pool para realizar a previsão para todos os novos dados;
 - Geralmente os preditores são selecionados com base no desempenho obtido no conjunto de validação;

- Seleção
 - preditores do pool para cada novo dado;
 - Preditores são selecionados de acordo com o novo padrão.
 Geralmente é utilizado a similaridade entre o novo padrão e os padrões anteriores, ou é utilizado de Metalearning;
 - Oracle: Desempenho do melhor Preditor para o ponto (t);

Seleção

Seleção estática de Ensemble

Seleção

Seleção estática de Preditor

Seleção dinâmica de Ensemble

Seleção dinâmica de Preditor

- Integração:
 - Consiste em integrar as previsões dos modelos em apenas uma previsão final;
 - A seleção dinâmica/estática de um preditor pode ser considerada uma forma de integração;
 - Nessa etapa é realizado a combinação das previsões do Ensemble;

- Integração:
 - Possíveis técnicas:
 - Linear Ponderada;
 - Linear por Regressão;
 - Média;
 - Mediana;
 - Não linear;

- Pesquisa atual do Doutorado:
 - Motivação:
 - Através de combinação os modelos ruins do Ensemble podem atrapalhar a previsão final;
 - O oracle apresenta desempenho melhor que o single best;
 - Proposta:
 - Criar uma técnica de seleção dinâmica com base no comportamento do oracle;

- Pesquisa atual do Doutorado:
 - Motivação:
 - Através de combinação os modelos ruins do Ensemble podem atrapalhar a previsão final;
 - O oracle apresenta desempenho melhor que o single best;
 - Proposta:
 - Criar uma técnica de seleção dinâmica com base no comportamento do oracle;

Pesquisa atual do Doutorado:

Machine Learning para previsão de Séries Temporais

Prof. Eraylson Galdino