OLYMPIADES FRANÇAISES DE MATHÉMATIQUES

TEST D'ENTRAINEMENT (envoi 6) Corrigé

Exercice 1. Calculer

$$\sqrt{1 + \frac{1}{1^2} + \frac{1}{2^2}} + \sqrt{1 + \frac{1}{2^2} + \frac{1}{3^2}} + \dots + \sqrt{1 + \frac{1}{2014^2} + \frac{1}{2015^2}}.$$

Solution de l'exercice 1 On réduit au même dénominateur

$$1 + \frac{1}{n^2} + \frac{1}{(n+1)^2} = \frac{n^2(n+1)^2 + (n+1)^2 + n^2}{n^2(n+1)^2}$$

$$= \frac{n^4 + n^2(2n+1) + n^2 + (n+1)^2}{n^2(n+1)^2}$$

$$= \frac{n^4 + 2n^2(n+1) + (n+1)^2}{n^2(n+1)^2}$$

$$= \frac{(n^2 + (n+1))^2}{n^2(n+1)^2}$$

On en déduit que la somme recherchée vaut

$$\sum_{n=1}^{2014} \frac{n^2 + n + 1}{n(n+1)} = \sum_{n=1}^{2014} 1 + \frac{1}{n(n+1)}$$

$$= 2014 + \sum_{n=1}^{2014} \frac{1}{n(n+1)}$$

$$= 2014 + \sum_{n=1}^{2014} \frac{1}{n} - \frac{1}{n+1}$$

$$= 2014 + \left(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{2014} - \frac{1}{2015}\right).$$

On reconnaît une somme télescopique. Les termes se simplifient deux à deux, sauf 1 et $\frac{1}{2015}$, donc la somme vaut

$$2014 + 1 - \frac{1}{2015} = 2015 - \frac{1}{2015}.$$

Exercice 2. Soient p et q deux nombres premiers supérieurs ou égaux à 7. Soit $x = \frac{p^{2012} + q^{2016}}{120}$. Calculer x - [x], où [x] désigne la partie entière de x, c'est-à-dire le plus grand entier inférieur ou égal à x.

<u>Solution de l'exercice 2</u> Si a est un entier non divisible par 2, 3 et 5, on vérifie facilement que a^4 est congru à 1 modulo 3, 5 et 8. Autrement dit, a^4-1 est divisible par 3, 5 et 8, donc par $3 \times 5 \times 8 = 120$. On en déduit que p^4 et q^4 sont congrus à 1 modulo 120, donc $p^{2012} + q^{2016} \equiv 1 + 1 \equiv 2 \pmod{120}$.

On en déduit que $x - [x] = \frac{2}{120} = \frac{1}{60}$.

Exercice 3. Soit ABC un triangle. On dessine des triangles équilatéraux ABE et ACF à l'extérieur de ABC. Soit G le centre de gravité de ABE et K le milieu de [EF]. Déterminer les angles du triangle KCG.

Solution de l'exercice 3

Montrons que GKC est rectangle en K avec $\widehat{\text{CGK}} = 60^{\circ}$. Pour cela, considérons le symétrique G' de G par rapport à K : il suffit de montrer que GCG' est équilatéral.

Comme EGFG' est un parallélogramme, on a G'F = EG, et comme G est le centre du cercle circonscrit à ABE, on a GA = GE, donc GA = G'F.

D'autre part, AC = FC car AFC est équilatéral.

Enfin, $\overrightarrow{GAC} = 30^{\circ} + \overrightarrow{BAC}$ et $(\overrightarrow{FG'}, \overrightarrow{FC}) = (\overrightarrow{GE}, \overrightarrow{FC}) = (\overrightarrow{GE}, \overrightarrow{AG}) + (\overrightarrow{AG}, \overrightarrow{AC}) + (\overrightarrow{AC}, \overrightarrow{FC}) = 60^{\circ} + (\overrightarrow{AG}, \overrightarrow{AC}) - 60^{\circ} = (\overrightarrow{AG}, \overrightarrow{AC})$, donc GAC et G'FC sont isométriques.

Or, F est obtenu à partir de A en effectuant une rotation de 60° sutour de C, donc cette rotation envoie le triangle GAC sur G'FC. En particulier, GC = G'C et $\widehat{\text{GCG}'} = 60^{\circ}$, ce qui conclut.

<u>Autre méthode</u>. Si on connaît les nombres complexes, il est facile de résoudre l'exercice par une méthode analytique systématique.

On prend un repère tel que A soit l'origine. On nomme b, c, e, f, g, k les affixes de B, C, E, F, G, K. On a alors $e=e^{-i\pi/3}$ b, $f=e^{i\pi/3}$ c, k=(e+f)/2, g=(b+e)/3. Il est alors facile de vérifier que $c-k=i\sqrt{3}(g-k)$, ce qui montre que $(CK)\perp (GK)$ et que $CK=GK\times\sqrt{3}$, ce qui conclut.

Exercice 4. Soit $n \ge 1$ un entier.

On considère un ensemble de 4n + 5 points du plan, trois jamais alignés, et chacun coloré soit en rouge soit en bleu.

Prouver qu'il existe n triangles dont les sommets sont tous d'une même couleur (la même pour tous les triangles), et dont les intérieurs respectifs sont deux à deux disjoints et ne contiennent aucun point coloré.

Solution de l'exercice 4

<u>Lemme.</u> Soit $n \ge 3$ et $m \ge 1$ des entiers.

On considère un \mathfrak{n} -gone convexe P et \mathfrak{m} de ses points intérieurs, trois des $\mathfrak{n}+\mathfrak{m}$ points jamais alignés. Alors, on peut trianguler P en $\mathfrak{n}+2\mathfrak{m}-2$ triangles dont les somments sont tous parmi les $\mathfrak{n}+\mathfrak{m}$ points, aucun de ces triangles ne contenant un des \mathfrak{m} points en son intérieur.

<u>Preuve du lemme.</u> On procède par récurrence sur m.

Pour m = 1, il suffit de joindre le point intérieur à chacun des sommets, ce qui donne une triangulation adéquate de P en k triangles.

Supposons que l'affirmation soit vraie pour la valeur m et donnons-nous m+1 points intérieurs à P. Soit I un de ces points intérieurs. A l'aide des m autres points intérieurs, d'après l'hypothèse de récurrence, on peut trianguler P de la façon souhaitée en k+2m-2 triangles. Comme I est intérieur à P, il est donc intérieur à l'un de ces triangles. En joignant I à chacun des trois sommets de ce triangle, on obtient ainsi une triangulation adéquate en k+2m-2+2=k+2(m+1)-2 triangles, ce qui achève la preuve.

Revenons à l'exercice. Notons r (resp. b) le nombre de points rouges (resp. bleus). On a donc r + b = 4n + 5.

Sans perte de généralité, on peut supposer que $r \ge b$ et donc $r \ge 2n + 3$.

Soit P l'enveloppe convexe des points rouges, et on suppose que P est un k-gone. En particulier, il n'existe aucun point rouge en dehors de P, donc il y a m points rouges intérieurs à P, avec $k + m = r \ge 2n + 3$. (1)

On note w le nombre points bleus intérieurs à P.

D'après le lemme, en ne considérant que les points rouges, on peut obtenir une triangulation de P en k+2m-2 triangles à sommets rouges et ne contenant intérieurement aucun point rouge. Si au moins n de ces triangles ne contiennent aucun point bleu, c'est fini.

Sans quoi, au plus n-1 des triangles à sommets rouges ne contiennent pas de point bleu. Cela assure qu'au moins k+2m-2-(n-1)=k+2m-(n+1) triangles à sommets rouges contiennent chacun au moins un point bleu et, ces triangles étant d'intérieurs deux à deux disjoints, on a donc $w \ge k + 2m - (n+1)$.

Soit Q l'enveloppe convexe de ces w points bleus intérieurs à P. Comme ci-dessus, on peut trianguler Q en au moins w-2 triangles ne contenant aucun point bleu en leurs intérieurs.

Par l'absurde : supposons qu'au plus n-1 de ces triangles bleus ne contiennent pas de point rouge.

Alors, au moins w-2-(n-1) triangles bleus contiennent au moins un point rouge et on a $m \ge w-(n+1)$. Par suite, on a $m \ge k+2m-(n+1)-(n+1)$, d'où $k+m \le 2n+2$, en contradiction avec (1).

Ainsi, au moins n de ces triangles à sommets bleus ne contiennent aucun point rouge, ce qui conclut.

Exercice 5. Soit ABC un triangle non isocèle inscrit dans un cercle Γ de rayon R. Le cercle passant par A et tangent en C à [BC] recoupe le cercle passant par B et tangent en C à [AC] au point D.

- a) Montrer que $CD \leq R$.
- b) Montrer que lorsque C se déplace sur Γ , la droite (CD) passe par un point fixe.

Solution de l'exercice 5

a) On observe d'abord que (AD, AC) = (CD, CB) et (BC, BD) = (CA, CD), donc DAC et DCB sont directement semblables. On en déduit que $DC^2 = DA \cdot DB$.

De plus, en notant $\gamma = (\overrightarrow{CA}, \overrightarrow{CB})$, on a $(\overrightarrow{DC}, \overrightarrow{DA}) = \pi - \gamma$ et de même $(\overrightarrow{DB}, \overrightarrow{DC}) = \pi - \gamma$, donc $(\overrightarrow{DA}, \overrightarrow{DB}) = 2\gamma$. Il vient

$$AB^{2} = DA^{2} + DB^{2} - 2DA \cdot DB \cos 2\gamma = DA^{2} + DB^{2} - 2DA \cdot DB(1 - 2\sin^{2}\gamma)$$
$$= (DA - DB)^{2} + 4DA \cdot DB \sin^{2}\gamma \geqslant 4DA \cdot DB \sin^{2}\gamma = (2DC \sin\gamma)^{2}.$$

Or,
$$2R = \frac{AB}{\sin \gamma}$$
, donc $R \geqslant CD$.

b) On va montrer que (CD) passe par le point de rencontre des tangentes en A et B au cercle circonscrit, que nous appellerons S. Il est connu que (CS) est la symédiane du triangle passant par C, donc il suffit de montrer que (CD) est une symédiane.

Notons M le milieu de [AB]. Comme les aires de ACM et BCM sont égales, on a $\frac{1}{2}$ CA × CM × $\sin \widehat{ACM} = \frac{1}{2}$ CB × CM × $\sin \widehat{MCB}$, donc CA $\sin \widehat{ACM} = CB \sin \widehat{MCB}$.

On en déduit que si Δ est la symédiane et θ est l'angle entre (CA) et Δ , alors $\frac{\sin \theta}{\sin(\gamma - \theta)} =$

 $\frac{\sin \widehat{MCB}}{\sin \widehat{ACM}} = \frac{CA}{CB}. \text{ Il suffit donc de montrer que } \frac{\sin \widehat{ACD}}{\sin \widehat{DCB}} = \frac{CA}{CB}.$

$$\frac{\sin \widehat{ACD}}{\sin \widehat{DCB}} = \frac{\sin \widehat{ACD}}{AD} \times \frac{DB}{\sin \widehat{DCB}} \times \frac{DA}{DB}$$
$$= \frac{\sin \widehat{CDA}}{AC} \times \frac{BC}{\sin \widehat{BDC}} \times \frac{DA}{DB}.$$

Or,
$$\widehat{CDA} = \widehat{BDC} = \pi - \gamma$$
 et $\frac{BC}{AC} = \frac{DC}{DA} = \frac{DB}{DC}$, donc
$$\frac{\sin \widehat{ACD}}{\sin \widehat{DCB}} = \frac{BC}{AC} \times \frac{DA}{DC} \times \frac{DC}{DB} = \frac{DC}{DB} = \frac{CA}{CB}.$$

Exercice 6. Existe-t-il des entiers strictement positifs a et b tels que $a^n + n^b$ et $b^n + n^a$ soient premiers entre eux pour tout entier $n \ge 0$?

Solution de l'exercice 6

Par l'absurde : supposons qu'il existe de tels entiers a et b.

Par symétrie, on peut supposer que $a \ge b$.

Si d = pgcd(a, b) alors, pour n = d, il est clair que d divise $a^d + d^b$ et $b^d + d^a$. Or ces deux nombres étant censés être premiers entre eux, c'est que d = 1.

Soit $N = a^a + b^b$. On a N > 1 donc il existe un nombre premier p qui divise N. De plus, p ne peut diviser a sans quoi il devrait diviser également b, en contradiction avec d = 1. Ainsi, a est inversible modulo p et il existe un entier $k \in \{0, \dots, p-1\}$ tel que $ka = b \mod [p]$.

On choisit alors n = k + p(a - b - k + p - 1). D'après le petit théorème de Fermat, il vient :

$$\alpha^n + n^b \equiv \alpha^k \cdot \alpha^{\alpha - b - k + p - 1} + k^b \equiv \alpha^{\alpha - b} + k^b \bmod [p]$$

d'où $a^b(a^n + n^b) \equiv a^a + b^b \equiv 0 \mod [p]$,

et, puisque p ne divise par a, on a alors $a^n + n^b \equiv 0 \mod [p]$.

On prouve de même, on a $b^n + n^a \equiv 0 \mod [p]$.

Mais, alors p divise à la fois $a^n + n^b$ et $b^n + n^a$, ce qui contredit qu'ils soient premiers entre eux.

Finalement, il n'existe pas de tels entiers.

Exercice 7. Les Xantiens sont les habitants, en nombre éventuellement infini, de la planète Xanta. Vis-à-vis d'eux-mêmes et de leurs semblables, les Xantiens sont capables de ressentir deux types d'émotions, qu'ils appellent *amour* et *respect*. Il a été observé que :

- Chaque Xantien aime un et un seul Xantien, et respecte un et un seul Xantien.
- Si A aime B, alors tout Xantien qui respecte A aime également B.
- Si A respecte B, alors tout Xantien qui aime A respecte également B.
- Chaque Xantien est aimé d'au moins un Xantien.

Est-il vrai que chaque Xantien respecte le Xantien qu'il aime?

Solution de l'exercice 7

Pour chaque Xantien x, désignons respectivement par f(x) et g(x) les Xantiens aimés et respectés par x.

La première condition assure que l'on a bien défini des fonctions f et g de l'ensemble X des Xantiens sur lui-même.

Il s'agit de savoir si, pour tout x, on a f(x) = g(x).

En fait, nous allons même prouver que, pour tout x, on a f(x) = g(x) = x.

Soit x un Xantien.

Il respecte g(x) qui, de son côté, aime f(g(x)).

La seconde condition assure donc que f(g(x)) = f(x) pour tout x. (1)

De même, la troisième condition conduit à g(f(x)) = g(x) pour tout x. (2)

Enfin, la quatrième condition signifie que f est surjective.

Soit x un Xantien. Il existe donc un Xantien y tel que f(y) = x.

Or, on a f(g(f(y))) = f(g(y)) d'après (2)

et ainsi, d'après (1), il vient f(f(y)) = f(y), ou encore f(x) = x. De (1), on déduit alors immédiatement que g(x) = x.

Finalement, pour tout x, on a bien f(x) = g(x) = x.

Exercice 8. Déterminer tous les entiers strictement positifs a et b tels que 4a+1 et 4b-1 soient premiers entre eux, et tels que a+b divise 16ab+1.

<u>Solution de l'exercice 8</u> Notons (C) la condition de l'énoncé. Les entiers 4a + 1 et 4b - 1 sont premiers entre eux si et seulement si 4a + 1 est premier avec (4a + 1) + (4b - 1) = 4(a + b). Or, 4a + 1 est impair donc il est automatiquement premier avec 4. On en déduit que 4a + 1 et 4b - 1 sont premiers entre eux si et seulement si 4a + 1 est premier avec a + b.

D'autre part, $16ab + 1 = 16a(a + b) + (1 - 16a^2) = 16a(a + b) - (4a - 1)(1 + 4a)$, donc a + b divise 16ab + 1 si et seulement si a + b divise (4a - 1)(1 + 4a). Or, si a + b est premier avec 1 + 4a alors ceci équivaut à $a + b \mid 4a - 1$.

On en déduit que (C) équivaut à ce que pgcd(a + b, 4a + 1) = 1 et $a + b \mid 4a - 1$.

D'autre part, montrons que si $a+b \mid 4a-1$ alors on a automatiquement pgcd(a+b, 4a+1) = 1. En effet, si un nombre premier p divise a+b et 4a+1, alors il divise 4a-1 et 4a+1, donc il divise (4a+1)-(4a-1)=2. Il vient p=2, puis $2\mid 4a-1$. Impossible.

Finalement, (C) équivaut à $a + b \mid 4a - 1$.

Or, $a + b > a > \frac{4a - 1}{4}$, donc $a + b \mid 4a - 1$ ne peut se produire que si a + b = 4a - 1 ou $a + b = \frac{4a - 1}{2}$ ou $a + b = \frac{4a - 1}{3}$.

Le deuxième cas ne peut pas se produire car 4a - 1 est impair.

(C) équivaut donc à a + b = 4a - 1 ou $a + b = \frac{4a - 1}{3}$, c'est-à-dire b = 3a - 1 ou a = 3b + 1.

Exercice 9. Soit ABC un triangle tel que $\widehat{A} = 40^{\circ}$ et $\widehat{B} = 60^{\circ}$. Soient D et E des points de [AC] et [AB] tels que $\widehat{CBD} = 40^{\circ}$ et $\widehat{ECB} = 70^{\circ}$. On note F l'intersection de (BD) et (CE). Monter que (AF) \perp (BC).

Solution de l'exercice 9

On a $\widehat{\mathsf{BFC}} = 180^\circ - \widehat{\mathsf{CBF}} - \widehat{\mathsf{FCB}} = 180^\circ - 40^\circ - 70^\circ = 70^\circ = \widehat{\mathsf{FCB}}$ donc BCF est isocèle en B. Il vient BC = BF.

Soit M le point d'intersection entre la bissectrice de $\widehat{\text{CBF}}$ et (AC). On a $\widehat{\text{BMA}}=40^\circ=\widehat{\text{BAM}}$ donc MA = MB.

D'autre part, $\widehat{BMC} = 180^\circ - \widehat{CBM} - \widehat{MCB} = 180^\circ - 20^\circ - 80^\circ = 80^\circ = \widehat{MCB}$ donc BC = BM. On déduit de ce qui précède que MA = BF.

Soit $B' \in (BC)$ tel que ABB' est équilatéral. Soit Δ la bissectrice de $\widehat{B'BA}$. Comme BF = BM et $\widehat{FBA} = \widehat{CBM}$, les points M et F sont symétriques par rapport à Δ . Or, A et B' sont aussi symétriques par rapport à Δ , donc MA = FB'.

Finalement, FB' = FB, donc F appartient à la médiatrice de [BB'], qui est aussi la hauteur (AF) du triangle ABB'.

<u>Autre solution.</u> Notons H le projeté de F sur [BC] et H' le projeté de A sur [BC]. Il s'agit de montrer que H = H'. Pour cela, il suffit de voir que BH = BH'.

On a BH' = AB cos 60 et BH = BF cos 40 = BC cos 40. Comme $\frac{AB}{BC} = \frac{\sin 80}{\sin 40}$, il suffit de montrer que $\sin 80 \cos 60 = \sin 40 \cos 40$, c'est-à-dire (compte tenu de $\cos 60 = \frac{1}{2}$) que $\sin 80 = 2 \sin 40 \cos 40$, ce qui est vrai d'après la formule générale $\sin 2x = 2 \sin x \cos x$.

Exercice 10. Pour tout entier strictement positif x, on note S(x) la somme des chiffres de son écriture décimale.

Soit k > 0 un entier. On définit la suite (x_n) par $x_1 = 1$ et $x_{n+1} = S(kx_n)$ pour tout n > 0. Prouver que $x_n < 27\sqrt{k}$, pour tout n > 0.

Solution de l'exercice 10

Lemme. Pour tout entier $s \ge 0$, on a $10^s \ge (s+1)^3$.

Preuve du lemme. On raisonne par récurrence sur s.

Pour s = 0, on a $10^0 = 1 = (0+1)^3$.

Supposons l'inégalité vraie pour la valeur s. Alors :

 $10^{s+1} \ge 10(s+1)^3$ d'après l'hypothèse de récurrence

 $= 10s^3 + 30s^2 + 30s + 10$

 $\geqslant s^3 + 6s^2 + 12s + 8$

 $= (s+2)^3$, ce qui achève la preuve.

Si x>0 est un entier dont l'écriture décimale utilise s+1 chiffres, on a $S(x)\leqslant 9(s+1)$ et $10^s\leqslant x<10^{s+1}$. Or, d'après le lemme, on a $s+1\leqslant 10^{\frac{s}{3}}$, donc $s+1\leqslant x^{\frac{1}{3}}$ et ainsi $S(x)\leqslant 9x^{\frac{1}{3}}$. Montrons maintenant par récurrence que $x_n<27\sqrt{k}$ pour tout n. L'assertion est claire pour n=1. Supposons $x_n<27\sqrt{k}$, alors $x_{n+1}=S(kx_n)\leqslant 9(kx_n)^{\frac{1}{3}}<9(27k\sqrt{k})^{\frac{1}{3}}=9\times 3\times \sqrt{k}=1$

 $27\sqrt{k}$, d'où le résultat.

Exercice 11. Soient a, b, c trois nombres réels strictement positifs tels que a+b+c=9. Montrer que

$$\frac{a^3 + b^3}{ab + 9} + \frac{b^3 + c^3}{bc + 9} + \frac{c^3 + a^3}{ca + 9} \geqslant 9.$$

Solution de l'exercice 11 On cherche une minoration de la forme $\frac{a^3 + b^3}{ab + 9} \ge u(a + b) + v$, c'est-à-

dire $f(a) \ge 0$ où $f(a) = a^3 + b^3 - (u(a+b) + v)(ab+9)$. En sommant les trois inégalités, on en déduirait $\frac{a^3+b^3}{ab+9} + \frac{b^3+c^3}{bc+9} + \frac{c^3+a^3}{ca+9} \ge 2u(a+b+c) + 3v = 3(6u+v)$, donc il suffit que 6u+v=3.

D'autre part, si une telle minoration existe, comme l'inégalité devient une égalité lorsque $\mathfrak{a} = \mathfrak{b} = \mathfrak{c} = 3$, on doit avoir $\mathfrak{f}(3) = 0$ si $\mathfrak{b} = 3$. Comme de plus $\mathfrak{f}(\mathfrak{a}) \geqslant 0$ pour tout \mathfrak{a} , on doit nécessairement avoir $\mathfrak{f}'(3) = 0$ pour $\mathfrak{b} = 3$.

Ceci impose la condition $0 = f'(3) = 27 - 18u - (6u + v) \times 3 = 18(1 - u)$, donc u = 1 et v = -3.

Montrons donc $\frac{a^3+b^3}{ab+9}\geqslant (a+b)-3$. Comme $a^3+b^3\geqslant \frac{(a+b)^3}{4}$ et $ab+9\leqslant (\frac{a+b}{2})^2+9$, il suffit de montrer que

$$\frac{s^3}{s^2 + 36} \geqslant s - 3$$

où s = a + b. On réduit au même dénominateur ; l'inégalité se simplifie en $3s^2 - 36s + 108 \ge 0$, ou encore en $3(s - 6)^2 \ge 0$, ce qui est vrai.

Exercice 12. Déterminer tous les entiers n > 0 ayant la propriété suivante : "tout nombre strictement positif qui s'écrit comme la somme des carrés de n entiers multiples de n peut également s'écrire comme la somme des carrés de n entiers dont aucun n'est un multiple de n".

Solution de l'exercice 12

Un entier n ayant la propriété désirée sera dit bon.

Soit $n \ge 2$ un entier bon. Alors 2n est également bon : en effet, soit m = 2n et soit x_1, \dots, x_m des entiers divisibles par m. Si deux de ces entiers sont non nuls, on peut supposer sans perte de généralité qu'il s'agit de x_1 et x_m . Puisque n est bon, il existe alors des entiers y_i non divi-

sibles par n (donc non divisibles par m) tels que $\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i^2$ et $\sum_{i=n+1}^{2n} x_i^2 = \sum_{i=n+1}^{2n} y_i^2$. Ainsi,

$$\sum_{i=1}^{m} x_i^2 = \sum_{i=1}^{m} y_i^2 \text{ avec chaque } y_i \text{ non divisible par m.}$$

Si un et un seul des x_i est non nul, alors $\sum_{i=1}^m x_i^2$ est de la forme $(2a)^2 = a^2 + a^2 + a^2 + a^2 + a^2$ où a > 0 est divisible par n et on raisonne de la même manière.

<u>Lemme.</u> Soit n > 0 un entier impair et x_1, \dots, x_n des entiers dont au moins un n'est pas divisible par n. Alors il existe des entiers y_1, \dots, y_n non divisibles par n tels que $\sum_{i=1}^n (nx_i)^2 = \sum_{i=1}^n y_i^2$.

<u>Preuve du lemme.</u> Sans perte de généralité, on peut supposer que x_1 n'est pas divisible par n. On pose $X=2\sum_{i=1}^n x_i$.

Si n divise X, on remplace x_1 par $-x_1$. La nouvelle valeur X' vérifie $X' = X - 4x_1$. Comme n divise X mais pas $4x_1$ (rappelons que n est supposé impair), il ne divise pas X'. Ainsi, sans perte de généralité, on peut supposer que n ne divise pas X.

Il est facile de vérifier que $\sum_{i=1}^{n} (nx_i)^2 = \sum_{i=1}^{n} (X - nx_i)^2$. En posant $y_i = X - nx_i$ pour tout i, la conclusion souhaitée en découle.

On peut maintenant prouver que tout $n \geqslant 3$ impair est bon. En effet, si a > 0 est un entier qui peut s'écrire comme la somme de n carrés d'entiers tous divisibles par n alors, en considérant la plus grande puissance de n qui divise ces entiers, il existe donc un entier r > 0 et des entiers

 x_1, \dots, x_n dont au moins un n'est pas divisible par n tels que $\mathfrak{a} = \sum_{i=1}^n (\mathfrak{n}^r x_i)^2$.

D'après le lemme, il existe des entiers y_1, \cdots, y_n non divisibles par n tels que $\sum_{i=1}^n (nx_i)^2 = \sum_{i=1}^n y_i^2$,

et donc $\sum_{i=1}^{n} (n^r x_i)^2 = \sum_{i=1}^{n} (n^{r-1} y_i)^2$. Ainsi, en appliquant le lemme r fois de suite, on est assuré

de l'existence d'entiers z_1, \cdots, z_n non divisibles par n tels que $\mathfrak{a} = \sum_{i=1}^n z_i^2$. Cela prouve que n est bon.

Puisque le double de tout entier bon est bon, tout entier qui n'est pas une puissance de 2 est bon.

On prouve maintenant que 8 est bon : En effet, si α est la somme de 8 carrés d'entiers divisibles par 8 alors α est divisible par 64. En particulier $\alpha \geqslant 64$ et, d'après le théorème des quatre carrés de Lagrange, il existe des entiers x_1, x_2, x_3, x_4 tels que $\alpha = 1^2 + 4^2 + 4^2 + 4^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2$. Notons que, puisque $\alpha \equiv 0 \mod [8]$, on a $x_1^2 + x_2^2 + x_3^2 + x_4^2 \equiv 7 \mod [8]$. Or, un carré étant congru à 0, 1 ou 4 modulo 8, la seule façon d'obtenir une somme de quatre carrés congrue à 7 modulo 8 est d'avoir 1, 1, 1, 4 à l'ordre près. Ainsi, aucun des x_i n'est divisible par 8, ce qui conclut.

Enfin, on prouve que 4 n'est pas bon. Pour cela, il suffit de constater que $32 = 4^2 + 4^2 + 0^2 + 0^2$. D'autre part, pour obtenir $32 = x_1^2 + x_2^2 + x_3^2 + x_4^2$, on doit avoir $|x_i| \le 5$ pour tout i. De plus, si l'on veut éviter les multiples de 4, il ne reste plus que $|x_i| = 1, 2, 3$ ou 5. Or, comme ci-dessus en raisonnant modulo 8, la seule possibilités est d'avoir $|x_i| = 2$ pour tout i. Mais, on a $32 \ne 2^2 + 2^2 + 2^2 + 2^2$, ce qui assure que 4 n'est pas bon. Ainsi, tout diviseur de 4 ne peut être bon.

Finalement, tous les entiers n > 0 sont bons sauf 1, 2 et 4.