Guidelines

From 00.00 to 23.59, each 30 seconds:

- Compute clock offsets and plot it
- Compute satellite positions in ORS (Orbital Reference System) and ITRF (X, Y, Z)
- Convert X(t), Y(t), Z(t) to phi(t), lambda(t), r(t)
- Plot the groundtrack
- Print on a text file the results

WORKFLOW

- A) Create vector of time epochs from t_0 = 0 to t_{end} = 23.59 (converted in sec) with Δt = 30 sec
- B) Compute clocks offset and plot it
- C) Compute satellite positions in ITRF (X, Y, Z)
 - 1. Compute mean motion
 - 2. Initialize to zero matrices of sat_coord_ORS and sat_coord_ITRF with dimensions 3-by-n_epochs
 - 3. For each epoch (use a 'for' cycle) estimate:
 - i. Mean anomaly
 - ii. Eccentric anomaly (NOTE: create a function to estimate this parameter)NOTE: look at 'ecc_anomaly.m' guidelines
 - iii. True anomaly
 - iv. Satellite coordinates with respect to the focus
 - v. Satellite coordinates in the ORS (Orbital Reference System)
 - vi. Compute angle $\boldsymbol{\omega}$ at epoch
 - vii. ...angle i
 - viii. ...angle Ω
 - ix. Rotation matrices R_3 Ω , R_1 i, R_3 ω
 - x. Satellite coordinates in ITRF
- D) Convert ITRF satellite coordinates (X(t), Y(t), Z(t)) in geodetic coordinates (phi(t), la(t), h_ell(t)) using function 'cart2geo'
- E) Plot the groundtrack
- F) Print on a text file the results: Coordinates ORS Coordinates ITRF Coordinates phi, lambda, h