Problem 2 Part 2 Part c- Shooting method solver

I implemented the following functions:

```
% Adjoints equations related to our rocket.
function zdot = Zdyn(t,z)
global g;
global b;
global uMax;
v = z(2);
m = z(3);
py = z(4);
pv = z(5);
pm = z(6);
% Compute phi
phi = pv/m - pm*b;
% Use phi to compute control action
if phi > 0
   uStar = 0;
else
  uStar = uMax;
% Rocket dynamics and adjoint equations
yDot = v;
vDot = uStar/m - g;
mDot = -b*uStar;
pyDot = 0;
pvDot = -py;
pmDot = pv*uStar/(m^2);
zdot = [yDot; vDot; mDot; pyDot; pvDot; pmDot];
```

```
% Hamiltonian related to the Goddard's problem.
function H = hamiltonianFunc(y,v,m,py,pv,pm)

global g;
global b;
global uMax;

% Compute phi
phi = pv/m - pm*b;

% Use phi to compute control action
if phi > 0
    uStar = 0;
else
    uStar = uMax;
end

% Return Hamiltonian H(y,v,m,ph,pv,pm)
H = py*(v) + pv*(uStar/m - g) + pm*(-b*uStar);
```

Results:

			Norm of	First-order	Trust-region
Iteration	Func-count	f(x)	step	optimality	radius
0	5	0.000198371		33.5	1
1	10	2.89571e-08	0.00202262	0.289	1
2	15	3.77863e-09	1.34771e-06	0.0905	1
3	16	3.77863e-09	0.00488286	0.0905	1
4	17	3.77863e-09	0.00122072	0.0905	0.00122
5	18	3.77863e-09	0.000305179	0.0905	0.000305
6	19	3.77863e-09	7.62947e-05	0.0905	7.63e-05
7	20	3.77863e-09	1.90737e-05	0.0905	1.91e-05
8	21	3.77863e-09	4.76842e-06	0.0905	4.77e-06
9	22	3.77863e-09	1.19211e-06	0.0905	1.19e-06
10	23	3.77863e-09	2.98026e-07	0.0905	2.98e-07
11	28	2.62575e-09	7.45066e-08	0.0125	7.45e-08
12	33	1.68146e-09	7.45066e-08	0.0037	7.45e-08
13	38	3.55833e-10	1.86266e-07	0.0134	1.86e-07
14	43	1.31491e-11	1.76786e-07	0.00639	4.66e-07
15	48	4.15071e-13	2.33601e-08	0.00116	4.66e-07
16	49	4.15071e-13	4.15036e-09	0.00116	4.66e-07
17	50	4.15071e-13	1.03759e-09	0.00116	1.04e-09
18	51	4.15071e-13	2.59397e-10	0.00116	2.59e-10
19	52	4.15071e-13	6.48493e-11	0.00116	6.48e-11
20	53	4.15071e-13	1.62123e-11	0.00116	1.62e-11
21	54	4.15071e-13	4.05308e-12	0.00116	4.05e-12
22	55	4.15071e-13	1.01327e-12	0.00116	1.01e-12

Equation solved, fsolve stalled.

fsolve stopped because the relative size of the current step is less than the selected value of the step size tolerance squared and the vector of function values is near zero as measured by the default value of the function tolerance.

EXITFLAG = 2

Switching time tSw = 91.6666667

Final time tf = 253.303430

Switching time tSw = 91.666667

Final time tf = 253.303430

These are the same results as from the dichotomy approach.

Problem 2 Part 2 Part d- Sensitivity of guess

tf guess	Convergence reached?	# of iterations
tf = 253.302	Yes	22
tf = 255	Yes	28
tf = 270	No	n/a

This shows that the shooting method is very sensitive to our guess of tf.