

Задача Решетка

Симона мечтае за безчетни богатства. Предложили са ѝ да играе игра за голяма награда.

Симона ще бъде сложена в клетката (0,0) на решетка A с размери $N \times M$, запълнена с цели положителни числа. Тя трябва да достигне клетката (N-1, M-1). За да го постигне, тя може многократно да се придвижва от текущата си клетка (x,y) до всяка друга клетка (x+d,y) или (x,y+d) такава, че d>0. За всяко такова придвижване, Симона ще получи награда $|A_{x,y} - A_{x',y'}| - C$ монети, където x',y' са нейните нови координати и C е константна цена, определена преди началото на играта. Ако стойността на $|A_{x,y} - A_{x',y'}| - C$ е отрицателно число, Симона ще изгуби този брой монети. Забележете, че е възможно да се завърши играта с отрицателен брой монети.

Помогнете на Симона да определи максималния брой монети, с които може да завърши играта.

Забележете, че |a| = a ако $a \ge 0$ и |a| = -a, в противен случай.

🕙 Детайли по имплементацията

Трябва да напишете функция max profit:

long long max_profit(int N, int M, int C, std::vector<std::vector<int>> A)

- *N, M*: размерите на решетката;
- С: фиксираната цена-константа за теста;
- A: вектор от вектори, от цели числа, с големина $N \times M$, представляващ двумерната решетка (индексирана по ред, а след това по колона).

Тази функция ще бъде извикана веднъж за всеки тест и трябва да върне като резултат максималната печалба, с която тя може да завърши играта.

🕙 Ограничения

- 1 ≤ N, M
- $N \cdot M \le 500000$
- $1 \le A_{i,j} \le 1000000$ за $0 \le i < N$ и $0 \le j < M$
- $0 \le C \le 1000000$

Подзадача	Точки	Необходими подзадачи	Допълнителни ограничения
0	0	_	Примерът.
1	9	_	$N = 1, M \le 200$
2	5	_	$N=1, A_{i,j} \leq A_{i,j+1}$
3	8	_	N=1, C=0
4	10	1	$N = 1, M \le 5 \times 10^4$
5	7	1 - 4	N = 1
6	15	1	$N, M \le 200$
7	9	2	$A_{i,j} \le A_{i+1,j}, A_{i,j+1}$
8	12	3	C = 0
9	12	0-1, 4, 6	$NM \le 5 \times 10^4$
10	13	0 - 9	_

Пример

Нека разгледаме следното извикване на функцията:

```
max_profit(5, 6, 4, {{20, 24, 31, 33, 36, 40},

{25, 23, 25, 31, 32, 39},

{31, 26, 21, 24, 31, 35},

{32, 28, 25, 21, 26, 28},

{36, 35, 28, 24, 21, 27}})
```

Оптималният път е $(0,0)\stackrel{7}{\to}(0,2)\stackrel{2}{\to}(1,2)\stackrel{10}{\to}(1,5)\stackrel{8}{\to}(4,5)$ и печалбата, получена при следването му е 7+2+10+8=27. Вашата функция трябва да върне 27.

```
max_profit(2, 2, 100, {{1, 2}, {3, 4}})
```

Тук вашата функция трябва да върне: -197. Забележете, че отговора може да бъде отрицателно число.

Примерен грейдър

Формата на входа е следния:

- ред 1: три цели числа стойностите на N, M и C.
- редове 2-(N+1): M цели числа стойностите на $A_{i,j}$.

Формата на изхода е следния:

• ред 1: едно цяло число - стойността, която функцията връща.