Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 3: lista M 11 4 stycznia 2017 r.

M11.1. [1,5 punktu] Obliczamy wartość całki $I(f) = \int_a^b f(x) \, dx$ stosując kwadraturę Newtona-Cotesa, czyli kwadraturę interpolacyjną z węzłami równoodległymi $x_k := a + kh \ (k = 0, 1, \dots, n)$, gdzie h := (b-a)/n:

$$Q_n^{NC}(f) := \sum_{k=0}^n A_k f(x_k).$$

Wykazać, że

(1)
$$A_k = h(-1)^{n-k} \frac{1}{k!(n-k)!} \int_0^n \prod_{j=0, j\neq k}^n (t-j) dt \qquad (k=0,1,\ldots,n).$$

Niech będzie $B_k := A_k/(b-a) \ (k=0,\,1,\ldots,n)$. Sprawdzić, że

- a) wielkości B_k są liczbami wymiernymi;
- b) $B_k = B_{n-k} \ (k = 0, 1, ..., n)$
- **M11.2.** I punkt Obliczyć $Q_n^{NC}(f)$ dla n=2,4,6,8,10 dla całki

$$\int_{-4}^{4} \frac{\mathrm{d}x}{1+x^2} = 2 \arctan 4.$$

Który wynik jest najdokładniejszy? Jak to skomentować?

M11.3. 1,5 punktu Niech $f \in C^4[a,b]$. Obliczamy wartość całki $I(f) = \int_a^b f(x) dx$ za pomocą kwadratury Newtona-Cotesa dla n = 3. Udowodnić, że istnieje taka liczba $\xi \in [a,b]$, dla której

$$I(f) - Q_3^{NC}(f) = -\frac{3f^{(4)}(\xi)}{80}h^5 \qquad (h \coloneqq (b-a)/3).$$

- **M11.4.** I punkt Wykazać, że dla dowolnej funkcji f ciągłej w przedziale [a, b] ciąg złożonych wzorów trapezów $\{T_n(f)\}$ jest zbieżny do wartości całki $\int_a^b f(x) dx$, gdy $n \to \infty$.
- M11.5. 1 punkt
 - a) Stosując złożony wzór Simpsona S_n z odpowiednio dobranym n obliczyć przybliżoną wartość całki $\int_0^\pi \sin x \, dx$ z błędem $\leq 2 \cdot 10^{-5}$.
 - b) Jaka wartość n gwarantuje uzyskanie tak dokładnego wyniku, jeśli zamiast wzoru S_n użyjemy złożonego wzoru trapezów T_n ?
- M11.6. 1 punkt Sprawdzić, że

$$S_n(f) = \frac{1}{3} [4T_n(f) - T_{n/2}(f)] \quad (n = 2, 4, ...),$$

gdzie $S_n(f)$ jest złożonym wzorem Simpsona, a $T_n(f)$ – złożonym wzorem trapezów. Jaki jest związek tej obserwacji z metodą Romberga?

- **M11.7.** 1 punktu Wykazać, że dla każdej funkcji $f\in C[a,b]$ ciąg kwadratur Gaussa $\{G_n(f)\}$ jest przy $n\to\infty$ zbieżny do całki $\int_a^b p(x)f(x)\,dx$.
- **M11.8.** I punkt Niech będzie $w_n(x) = \sum_{k=0}^{n} a_k T_k(x)$, gdzie T_k jest k-tym wielomianem Czebyszewa. Wykazać, że

$$\int_{-1}^{1} w_n(x) \, \mathrm{d}x = 2 \sum_{i=0}^{\lfloor n/2 \rfloor} {}' \frac{a_{2i}}{1 - 4i^2}.$$

- **M11.9.** I punkt Znaleźć, o ile to możliwe, takie węzły x_0, x_1 i współczynniki A_0, A_1 , żeby dla każdego wielomianu f stopnia ≤ 3 zachodziła równość $\int_0^1 (1+x^2)f(x)\,dx = A_0f(x_0) + A_1f(x_1)$.
- **M11.10.** 2 punkty Uzasadnić poprawność poniższej procedury, zapisanej w języku Julia, do obliczania całki $\int_{-1}^{1} f(x) dx$ za pomocą kwadratury Clenshawa-Curtisa.

```
function ClenshawCurtis3(f,n)
  # Chebyshev extreme points
  x = cos(pi*(0:n)/n)
  fx = f(x)/(2n)
  # Fast Fourier transform
  g = real(fft(vcat(fx,fx[n:-1:2])))
  # Chebyshev coefficients
  a = vcat( g[1], g[2:n]+g[2*n:-1:n+2], g[n+1] )
  w = zeros(a)
  w[1:2:end] = 2./(1-(0:2:n).^2)
  dot(w,a)
end
```

Jaka jest złożoność tej procedury?

Wesołych Świąt!!!

