Cours 1F

Questionnaire à choix multiples de traitement numérique du signal

Durée: 7 minutes et 30 secondes

Les documents et les calculatrices ne sont pas autorisés. Pour chaque question il y a une ou plusieurs affirmations vraies, il faut indiquer TOUTES les affirmations vraies. Chaque question compte pour 4 points.

Date : NOM : Prénom :

Question 1 Soit \mathcal{H} un filtre analogique linéaire temps invariant et causal.

- A. Si l'entrée est retardée alors la sortie est retardée.
- B. Un tel filtre est nécessairement stable.
- C. Un tel filtre s'applique à des signaux à temps discret.
- D. La réponse impulsionnelle d'un tel filtre peut être périodique.

Question 2 Soit \mathcal{H} un filtre analogique de réponse impulsionnelle h(t)

- A. La relation entrée-sortie du filtre s'écrit y(t) = h(t)x(t).
- B. La réponse fréquentielle du filtre est la transformée de Fourier de la réponse impulsionnelle.
- C. Le fait que le filtre est causal est équivalent à ce que h(t) = 0 pour t > 0.
- D. Le fait que le filtre est causal est équivalent à ce qu'une modification de l'entrée à l'instant t₀ ne peut pas provoquer de conséquence pour t < t₀.

Question 3 Soit \mathcal{H} un filtre analogique linéaire temps invariant causal et \mathcal{H} sa fonction de transfert rationnelle.

- A. Ce filtre est stable si les zéros de H sont tous dans le domaine $\{p | \Re e(p) < 0\}$.
- B. Ce filtre est stable si les pôles de H sont tous dans le domaine $\{p | \Re e(p) < 0\}$.
- C. Ce filtre est stable si les zéros de H sont tous dans le domaine $\{p \mid |p| < 1\}$.
- D. Ce filtre est stable si les pôles de H sont tous dans le domaine $\{p||p|>1\}$.

Question 4 On considère un signal temps continu $s_1(t) = e^{-t/2} \cos(2\pi t) \mathbf{1}_{\Re_+}(t)$ et $s_2[n] = e^{-n/2} \cos(2\pi n) \mathbf{1}_{\mathbb{N}}[n]$

- A. s₁ n'est pas périodique.
- $B. s_2$ est l'échantillonnage de s_1 .
- C. Pour calculer la transformée de Fourier de s_2 on applique la Transformée de Fourier Discrète.
- D. Cela aurait un sens mathématique d'appliquer la transformée de Laplace à s_1 .

Question 5 On considère un filtre analogique de fonction de transfert $H(p) = \frac{1}{p+2}$

- A. -2 est un zéro de ce filtre.
- B. -2 est un pôle de ce filtre.
- C. Ce filtre est stable.
- D. Ce filtre est instable.

Mettre des croix dans les cases qui vous semblent vraies.

		1	2	3	4	5	
	A						Γ
٦	В						Γ
	С						Γ
	D						Г