Задача 1: Автономно возило

a)

#	Податоци	Вредност на тежините(ажурирање) по добивање на податоците
0		1, 0, 0, 0
1	Почетна состојба на сензорите: D=0, S=2 Акција: А Награда: -2 Крајна состојба на сензорите: D=1, S=0	1, -1, 0, 0
2	Почетна состојба на сензорите: D=1, S=0 Акција: В Награда: 0 Крајна состојба на сензорите: D=1, S=0	1, -1, 0.5, 0

Ќе користам линеарна Q-фукција.

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + ... + w_n f_n(s,a)$$
 $difference = [r + \gamma max Q(s',a')] - Q(s,a)$ Иницијални тежини се $w_{AD} = 1$, $W_{AS} = W_{BD} = W_{BS} = 0$

$$\gamma = 1$$
, $\alpha = 0.5$

Епизода 1:

$$s = (D = 0, S = 2)$$

Action: A

$$R = -2$$

$$s' = (D = 1, S = 0)$$

Пресметка на карактеристиките:

$$f_{_{BD}} \ = \ f_{_{BS}} \ = \ 0$$
 бидејќи акцијата е А

$$f_{AD} = 0, f_{AS} = 2$$

Пресметка на Q вредности:

$$Q(s,A) = w_{AD} * f_{AD} + w_{AS} * f_{AS} = 1 * 0 + 0 * 2 = 0$$

Q-вредности за новата состојба:

$$f_{AD} = 1$$
, $f_{AS} = 0$

$$Q(s',A) = w_{AD} * f_{AD} + w_{AS} * f_{AS} = 1 * 1 + 0 * 0 = 1$$

$$f_{RD} = 1, f_{RS} = 0$$

$$Q(s',B) = w_{BD} * f_{BD} + w_{BS} * f_{BS} = 0 * 1 + 0 * 0 = 0$$

$$Q_{new}(s, A) = R(s, A, s') + \gamma * max_{a'}Q(s', a') =$$

$$= -2 + \gamma * max{Q(s', A), Q(s', B)} = -2 + 1 * 1 = -1$$

$$difference = Q_{new}(s, A) - Q(s, A) = -1 - 0 = -1$$

Ажурирање тежини:

$$w_i = w_i + \alpha * (difference) * (f_i)$$

$$w_{AD} = w_{AD} + \alpha * (difference) * (f_{AD})$$

$$W_{4D} = 1 + 0.5 * (-1) * 0 = 1$$

$$w_{AS} = w_{AS} + \alpha * (difference) * (f_{AS})$$

$$w_{_{4S}} = 0 + 0.5 * (-1) * 2 = -1$$

Епизода 2:

$$s = (D = 1, S = 0)$$

Action: B

$$R = 0$$

$$s' = (D = 1, S = 0)$$

Пресметка на карактеристиките:

$$f_{AD} = f_{AS} = 0$$
 бидејќи акцијата е B

$$f_{BD} = 1$$
, $f_{BS} = 0$

Пресметка на Q вредности:

$$Q(s,B) = w_{BD} * f_{BD} + w_{BS} * f_{BS} = 0 * 1 + 0 * 0 = 0$$

Q-вредности за новата состојба:

$$f_{AD} = 1, f_{AS} = 0$$

$$Q(s', A) = w_{AD} * f_{AD} + w_{AS} * f_{AS} = 1 * 1 - 1 * 0 = 1$$

$$f_{BD} = 1, f_{BS} = 0$$

$$Q(s',B) = w_{BD} * f_{BD} + w_{BS} * f_{BS} = 0 * 1 + 0 * 0 = 0$$

$$Q_{new}(s, B) = R(s, B, s') + \gamma * max_{a'}Q(s', a') =$$

$$= 0 + \gamma * max{Q(s', A), Q(s', B)} = 0 + 1 * 1 = 1$$

$$difference = Q_{new}(s, B) - Q(s, B) = 1 - 0 = 1$$

Ажурирање тежини:

$$w_{_{BD}} = w_{_{BD}} + ~\alpha ~*~ (difference) ~*~ (f_{_{BD}})$$

$$W_{BD} = 0 + 0.5 * 1 * 1 = 0.5$$

$$w_{BS} = w_{BS} + \alpha * (difference) * (f_{BS})$$

$$W_{BS} = 0 + 0.5 * 1 * 0 = 0$$

б) Акцијата која ќе ја преземе агентот во оваа состојба е B(закочи). Образложение: $s=(D=1,\,S=1)$

$$\begin{split} w_{AD} &= 1, \ w_{AS} = -1, \ w_{BD} = 0.5, w_{BS} = 0 \\ Q(s,A) &= w_{AD} * f_{AD} + w_{AS} * f_{AS} = 1 * 1 - 1 * 1 = 0 \\ Q(s,B) &= w_{BD} * f_{BD} + w_{BS} * f_{BS} = 0.5 * 1 + 0 * 1 = 0.5 \end{split}$$

Акцијата е В бидејќи се добива поголема Q-вредност.

Задача 2: Ајде да играме "Мунти 21"

а)
$$V_k(13) = 2$$

$$V_k(s) = 10, \ \text{за} \ s = \{14, 15, \dots 21\}$$

$$V_k(\text{Изгоре}) = -10$$

$$V_k(\text{Доста}) = 0$$

$$V_{k+1}(12) = ?$$

Од белмановата равенка:

 $V_{k+1}(s) = max \left[\sum\limits_{s'} T(s,a,s') * (R(s,a,s') + \gamma V_k(s'))\right]$ (бидејќи гама е 1, не го пишувам во понатамошните пресметки)

$$\begin{split} &V_{k+1}(12) = \max[\sum_{s'} T(s,a,s') \ ^* \ (R(s,a,s') \ + \ \gamma V_k(s')); s = \{14,\dots 21,J,K,Q,A\}, V_k \text{(изгоре)}, V_k \text{(доста)}] \\ &V_{k+1}(12) = \max[\frac{1}{13} \ ^* \ ((8\ ^*\ 10) \ + \ 5\ ^* \ (-\ 10)), -\ 10] = \max[\frac{1}{13} \ (80\ -\ 50), -\ 10,0] \\ &V_{k+1}(12) = \max[\frac{30}{13}, -\ 10,0] = 2.31 \end{split}$$

Образложение:

Бидејќи има 13 карти кои може да се извлечат, а претпоставуваме дека тие имаат рамномерна распределба, секоја карта има веројатност од $\frac{1}{13}$ за да биде извлечена. Од тука доаѓа таа бројка во пресметките.

б) Иницијални вредности

s	а	Q(s,a)
19	Влечи	-2
19	Доста	5
20	Влечи	-4
20	Доста	7
21	Влечи	-6
21	Доста	8
Изгоре	Доста	-8

Епизода

s	а	r	S	а	r	s	а	r
19	Влечи	0	21	Влечи	0	Изгоре	Доста	-10

Формула која е потребна за решението:

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha[r + \gamma max_{a'}Q(s',a')]$, ќе ја користам без пишување на гама бидејќи факторот на намалување $\gamma=1$.

$$\gamma = 1$$
 $\alpha = 0.5$

Чекор 1:

 $s=19,\ a=$ Влечи, $r=0,\ s'=21$ $max_{a'}Q(21,a')=max(-6,8)=8$ Вредностите -6 и 8 се прочитани од табелата со иницјални вредности, кај состојба 21. (соодветно и за последователните чекори). Q(19, Влечи) =- 2

Ажурирање на вредноста:

$$Q(19, \mathsf{Bлечи}) \leftarrow 0.5 * (-2) + 0.5 * (0 + 8)$$

 $Q(19, \mathsf{Bлечи}) \leftarrow -1 + 4$
 $Q(19, \mathsf{Bлечи}) \leftarrow 3$

Чекор 2:

$$s=21$$
, $a=$ Влечи, $r=0$, $s'=$ Изгоре $\max_{a'}Q$ (Изгоре, a') $=\max(-8)=-8$ $Q(21,$ Влечи) $=-6$

Ажурирање на вредноста:

$$Q(21, \mathsf{B}\mathsf{лечи}) \leftarrow 0.5 * (-6) + 0.5 * (0-8)$$
 $Q(21, \mathsf{B}\mathsf{лечи}) \leftarrow -3-4$ $Q(21, \mathsf{B}\mathsf{лечи}) \leftarrow -7$

Чекор 2:

$$s=$$
 Изгре, $a=$ Доста, $r=$ 10, $s'=$ Крај Бидејќи е крај на играта $max_{a'}Q$ (Изгоре) $=0$ Q (Изгоре, Доста) $=$ 8

Ажурирање на вредноста:

$$Q$$
(Изгоре, Доста) \leftarrow 0.5 * (- 8) + 0.5 * (- 10 + 0)

$$Q$$
(Изгоре, Доста) $\leftarrow -4-5$

$$Q$$
(Изгоре, Доста) $\leftarrow -9$

Бидејќи во епизодата немаме повеќе акции, останатите Q-вредности нема да се променат, дополнително ги означувам како непроменети и во табелата.. Конечната табела со вредности (Односно табела 2 од описот на домашната) е:

s	а	Q(s,a)
19	Влечи	3
19	Доста	5 (непроменето)
20	Влечи	–4 (непроменето)
20	Доста	7 (непроменето)
21	Влечи	-7
21	Доста	8 (непроменето)
Изгоре	Доста	-9

в)

Политика 1:

S	$\pi(s)$
14	Влечи
15	Влечи
16	Влечи
17	Влечи
18	Влечи
19	Доста

$$\begin{array}{lll} Q(14, \mathsf{B}\mathsf{лечи}) &=& w_1(-1) + w_2(-1) = -w_1 - w_2 \\ Q(15, \mathsf{B}\mathsf{лечи}) &=& w_1(1) + w_2(-1) = w_1 - w_2 \\ Q(16, \mathsf{B}\mathsf{лечи}) &=& w_1(1) + w_2(-1) = w_1 - w_2 \\ Q(17, \mathsf{B}\mathsf{лечи}) &=& w_1(1) + w_2(-1) = w_1 - w_2 \\ Q(18, \mathsf{B}\mathsf{лечи}) &=& w_1(1) + w_2(1) = w_1 + w_2 \\ Q(19, \mathsf{Доста}) &=& 0 \end{array}$$

Бидејќи секогаш за акција Доста, Q-вредноста е 0, треба тежините да се такви што агентот ќе ја преферира Влечи акцијата.

Па така, $\mathit{Q}(14, \mathsf{B}\mathsf{лечи}) = - \ w_1 - w_2$ треба да е поголемо од $\mathit{Q}(14, \mathsf{Д}\mathsf{остa}) = 0$, односно:

$$-w_1 - w_2 > 0$$

Од друга страна, за $Q(18, \mathrm{Влечи}) = w_1 + w_2$ да биде подобро од $Q(18, \mathrm{Доста})$ =0, треба: $w_1 + w_2 > 0$. Тука се јавува контрадикција, бидејќи $w_1 + w_2 = -(-w_1 - w_2)$, односно е невозможно двата изрази да се поголеми од 0.

Политика 2:

S	$\pi(s)$
14	Влечи
15	Влечи
16	Влечи
17	Влечи
18	Доста
19	Доста

$$\begin{array}{lll} Q(14, \mathsf{B}\mathsf{лечи}) &=& w_1(-\ 1) \ + w_2(-\ 1) \ = -w_1 - w_2 \\ Q(15, \mathsf{B}\mathsf{лечи}) &=& w_1(1) \ + w_2(-\ 1) \ = w_1 - w_2 \\ Q(16, \mathsf{B}\mathsf{лечи}) &=& w_1(1) \ + w_2(-\ 1) \ = w_1 - w_2 \\ Q(17, \mathsf{B}\mathsf{лечи}) &=& w_1(1) \ + w_2(-\ 1) \ = w_1 - w_2 \\ Q(18, \mathsf{Доста}) &=& w_1(0) \ + w_2(0) \ = \ 0 \end{array}$$

За $\mathit{Q}(14, \mathsf{B}$ лечи) го имаме истиот израз како и претходно, односно $-w_1^{}-w_2^{}>0$

Тука треба да се провери дали има некакви контрадикции со

$$Q(15, \text{Влечи}) > 0$$
, односно $w_1 - w_2 > 0$

Доколку ги средиме изразите:

$$-w_1 - w_2 > 0 \to w_1 + w_2 \le 0$$

$$w_1 > w_2$$

Тука немаме контрадикција, бидејќи може да се најде состојба на тежините за кои двете неравенства се задоволени: $w_1=-2,\ w_2=-3$, односно неравенствата се задоволени кога $(w_1<0\ \land\ w_2<0)\ \land\ (|w_1|<|w_2|).$

Со горенаведеното се покриваат и врските помеѓу Q(14, Bлечи) и Q(16, Bлечи) и Q(14, Bлечи) и Q(17, Bлечи).

Од друга страна, Q(14, Влечи) и Q(18, Влечи) Немаат никаква контрадикција бидејќи Q(18, Доста) е 0 независно од тежините, истото важи и за Q(19, Доста)

Политика 3:

s	$\pi(s)$
14	Доста
15	Влечи
16	Влечи
17	Влечи
18	Доста
19	Доста

$$\begin{array}{lll} Q(14, \mathsf{B}\mathsf{лечи}) &=& w_1(0) \,+\, w_2(0) = 0 \\ Q(15, \mathsf{B}\mathsf{лечи}) &=& w_1(1) \,+\, w_2(-1) = w_1 - w_2 \\ Q(16, \mathsf{B}\mathsf{лечи}) &=& w_1(1) \,+\, w_2(-1) = w_1 - w_2 \\ Q(17, \mathsf{B}\mathsf{лечи}) &=& w_1(1) \,+\, w_2(-1) = w_1 - w_2 \\ Q(18, \mathsf{Достa}) &=& w_1(0) \,+\, w_2(0) = 0 \\ Q(19, \mathsf{Достa}) &=& 0 \end{array}$$

Согласно напишаното за претходната политика, нема никакви контрадицкии бидејќи Q-вредностите кои се 0, се 0 независно од тежините.