By submitting this assignment, I agree to the following:

"Aggies do not lie, cheat, or steal, or tolerate those who do."

"I have not given or received any unauthorized aid on this assignment."

#

Name: Kai Elmore

Section: 545 # Team: N/A

Assignment: Lab 6b Program 1 pdf

Date: 10/02/2020

Slope Values of each line segment:

Slope of Young's Modulus (OA): 44/0.01

• (AC): 0, constant

• (CD): 16/0.12

• (DE): -10/0.08

Line Equations for each line segment:

- Young's Modulus (OA): stress = (44/0.01) * strain
- (AC): stress = 44
- (CD): stress = (16/0.12) * (strain 0.06) + 44
- (DE): stress = (-10/0.08) * (strain 0.18) + 60

Endpoints for each line segment:

- Young's Modulus (OA): [(0,0), (0.01,44)]
- (AC): [(0.01,44), (0.06,44)]
- (CD): [(0.06,44), (0.18,60)]
- (DE): [(0.18,60), (0.26,50)]

Set of Variables:

- **strain**: inputted strain
- **stress**: outputted stress

Sequence of Steps:

- Print what the program does.
- Set up the input and float value of strain
- Set stress to 0
- If the inputted strain falls between 0 and 0.01 (inclusive):
 - Multiply the strain by (44/0.01)
 - Set the stress to the outputted value
- Else if the inputted strain falls between 0.01 and 0.06 (inclusive):
 - Set the stress to 44
- Else if the inputted strain falls between 0.06 and 0.18 (inclusive):
 - o Subtract 0.06 from the strain
 - Multiply the difference by (16/0.12)
 - Add 44 to the product
 - Set stress to the final sum
- Else if the inputted strain falls between 0.18 and 0.26 (inclusive):

- Subtract 0.18 from the strain
- Multiply the difference by (-10/0.08)
- Add 60 to the product
- Set stress to the final sum
- If the inputted strain is outside 0 and 0.26:
 - Output an error message stating the inputted stress is out of the domain of the program
- Print final stress in units of ksi

Algorithm:

- print('This program gives the corresponding stress from an inputted strain between 0 and 0.26')
- Strain = float(input('Please enter the strain here: '))
- Stress = 0
- If 0 <= Strain <= 0.01
 - Stress = (44/0.01) * Strain
- Elif 0.01 <= Strain <= 0.06
 - Stress = 44
- Elif 0.06 <= Strain <= 0.18
 - Stress = ((16/0.12) * (Strain 0.06)) + 44
- Elif 0.18 <= Strain <= 0.26
 - Stress = ((-10/0.08) * (Strain 0.18) + 60
- Else:
 - print('Error: input for strain falls out of range of program')
- print('The given amount of stress from the given strain is: ', Stress)

Tests:

Inputted Strain	0.005	0.031	0.1425	0.18	0.01
Outputted Stress	22	44	55	60	44
Type of Test	Typical	Typical	Typical	Edge	Edge