

MATEMÁTICAS

Fundamentos Matemáticos

Bono 2

Alexander Mendoza June 12, 2023

Contents

1. Una sucesión en un conjunto A es una función $f: \mathbb{N}arrow A$, usualmente la imagen de n a través de f es denotada como a_n y la sucesión como $(a_n)_{n\in\mathbb{N}}$. Una sucesión $(a_n)_{n\in\mathbb{N}}$ en un conjunto ordenado (A, \preceq) se dice creciente si n < m entonces $a_n \preceq a_m$, para cualquier par de números naturales ny m. Una sucesión $(a_n)_{n\in\mathbb{N}}$ en un conjunto ordenado (A, \preceq) se dice decreciente si n < m entonces $a_m \preceq a_n$, para cualquier par de números naturales ny m. Sea \mathcal{A} una familia de conjuntos y $(A_n)_{n\in\mathbb{N}}$ una sucesión de elementos en \mathcal{A} . Se definen el límite superior limite sup A_n y limite inf A_n como sigue:

$$\limsup A_n = \bigcap_{n \in \mathbb{N}} (\bigcup_{m=n}^{\infty} A_m) \quad \liminf A_n = \bigcup_{n \in \mathbb{N}} (\bigcap_{m=n}^{\infty} A_m).$$

- a. Demuestre que la sucesión $(B_n)_{n\in\mathbb{N}}$ dada por $B_n=\bigcup_{m=n}^\infty A_m$ es decreciente respecto a la inclusión de conjuntos.
- b. Demuestre que la sucesión $(C_n)_{n\in\mathbb{N}}$ dada por $C_n=\bigcap_{m=n}^\infty A_m$ es creciente respecto a la inclusión de conjuntos.
- c. Demuestre que lím inf $A_n \subseteq \limsup A_n$.
- a. Para demostrar que la sucesión $(B_n)n \in \mathbb{N}$ es decreciente, debemos mostrar que $B_{n+1} \subseteq B_n$ para todo $n \in \mathbb{N}$. Observemos que:

$$B_{n+1} = \bigcup_{m=n+1}^{\infty} A_m$$
 $= \bigcup_{m=n}^{\infty} A_m \cup A_{n+1} = B_n \cup A_{n+1}.$

Por lo tanto, $B_{n+1} \subseteq B_n$ ya que la unión de dos conjuntos contiene a cada uno de ellos. Concluimos que $(B_n)_{n\in\mathbb{N}}$ es decreciente respecto a la inclusión de conjuntos.

b. Para demostrar que la sucesión $(C_n)n \in \mathbb{N}$ es creciente, debemos mostrar que $C_n \subseteq Cn+1$ para todo $n \in \mathbb{N}$. Observemos que:

$$C_n = \bigcap_{m=n}^{\infty} A_m \ C_{n+1} = \bigcap_{m=n+1}^{\infty} A_m = \bigcap_{m=n}^{\infty} A_m \cap A_{n+1} = C_n \cap A_{n+1}.$$

Por lo tanto, $C_n \subseteq C_{n+1}$ ya que la intersección de dos conjuntos es un subconjunto de cada uno de ellos. Concluimos que $(C_n)_{n\in\mathbb{N}}$ es creciente respecto a la inclusión de conjuntos.

c. $\limsup A_n$. Observemos que:

$$\lim \sup A_n = \bigcap_{n \in \mathbb{N}} \left(\bigcup_{m=n}^{\infty} A_m \right) = \bigcap_{n \in \mathbb{N}} B_n,$$

donde $B_n = \bigcup_{m=n}^{\infty} A_m$. Por lo tanto, para todo $n \in \mathbb{N}$ se tiene que $\limsup A_n \subseteq B_n$. En particular, $\limsup A_n \subseteq B_1$. Por otro lado, observemos que:

$$\liminf A_n = \bigcup_{n \in \mathbb{N}} \left(\bigcap_{m=n}^{\infty} A_m \right) = \bigcup_{n \in \mathbb{N}} C_n,$$

donde $C_n = \bigcap_{m=n}^{\infty} A_m$. Por lo tanto, existe $n_0 \in \mathbb{N}$ tal que $\liminf A_n \subseteq C_{n_0}$. Como $(C_n)n \in \mathbb{N}$ es creciente, se tiene que $Cn_0 \subseteq C_n$ para todo n Por la definición de $\limsup A_n$, tenemos que para todo $n \in \mathbb{N}$:

$$\bigcup_{m=n}^{\infty} A_m \supseteq \limsup A_n$$

y por la definición de lim inf A_n , tenemos que para todo $n \in \mathbb{N}$:

$$\bigcap_{m=n}^{\infty} A_m \subseteq \liminf A_n$$

Tomando la intersección sobre todos los $n \in \mathbb{N}$ en la primera desigualdad y la unión sobre todos los $n \in \mathbb{N}$ en la segunda, obtenemos:

$$\bigcap_{n\in\mathbb{N}} (\bigcup_{m=n}^{\infty} A_m) \subseteq \limsup A_n$$

$$\liminf A_n \subseteq \bigcup_{n\in\mathbb{N}} (\bigcap_{m=n}^{\infty} A_m)$$

$$\liminf A_n \subseteq \bigcup_{n \in \mathbb{N}} (\bigcap_{m=n}^{\infty} A_m)$$

Por lo tanto, lim inf $A_n\subseteq \limsup A_n,$ como queríamos demostrar.