Session 25: Partial Ordering

- Partial Orderings and Partially-ordered Sets
- Total Orderings
- Visualization of Orderings

Partial Orderings

Definition 1: A relation R on a set S is called a **partial ordering**, or **partial order**, if it is reflexive, antisymmetric, and transitive.

A set together with a partial ordering *R* is called a **partially ordered set**, or **poset**, and is denoted by (*S*, *R*).

Comparability

The symbol ≤ is used to denote the relation in any poset

Definition 2: The elements a and b of a poset (S, \le) are **comparable** if either $a \le b$ or $b \le a$. When a and b are elements of S so that neither $a \le b$ nor $b \le a$, then a and b are called **incomparable**.

(Z, \ge) is a poset

Show that the "greater than or equal" relation (≥) is a partial ordering on the set of integers.

(**Z**+, ∣) is a poset

The divisibility relation (1) is a partial ordering on the set of integers.

$(\mathcal{P}(S), \subseteq)$ is a poset

The inclusion relation (\subseteq) is a partial ordering on the power set of a set S.

Hasse Diagrams

If a relation is reflexive and transitive, the representation as directed graph can be simplified

• If R is a partial order then we can (a) omit self-loops, (b) omit transitive edges and (c) assume that arrows point upwards

Hasse Diagram of $(P(\{a, b, c\}), \subseteq)$

Total ordered and well-ordered sets

Definition 3: If (S, \le) is a poset and every two elements of S are comparable, S is called a **totally ordered** or **linearly ordered set**, and \le is called a **total order** or a **linear order**.

Definition 4: (S, \leq) is a **well-ordered set** if it is a poset such that \leq is a total ordering and every nonempty subset of S has a least element.

The poset (**Z**, ≤) is totally ordered

The poset (Z^+, I) is not totally ordered

The poset $(\mathcal{P}(S), \subseteq)$ is not totally ordered if |S| > 1

Upper and Lower Bounds

Upper and Lower Bounds

Definition 5: Let (S, \leq) be a partially ordered set.

An **upper bound** u of a subset A of S, is an element of S such that $a \le u$ for all $a \in A$.

A **lower bound** u of a subset A of S, is an element of S such that $u \le a$ for all $a \in A$.

Note: *u* is not necessarily element of *A*.

Least Upper and Greatest Lower Bounds

Definition 6: Let (S, \leq) be a partially ordered set.

A **least upper bound** *u* of a subset *A* of *S*, is an upper bound of *A* that is less than every other upper bound of *A*.

A greatest lower bound u of a subset A of S, is a lower bound of A that is greater than every other lower bound of A.

Note: the least upper bound and greatest lower bound of a subset A is unique, if it exists. This follows directly from anti-symmetry.

- h is upper bound for {a, e, d}
- f is least upper bound for {a, e, d}
- {j, h} has no upper bound

Lattices

Definition 7: A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a **lattice**.

Example: $(\mathcal{P}(S), \subseteq)$ is a lattice.

Proof: The least upper bound of two subsets A and B is $A \cup B$, the greatest lower bound is $A \cap B$

Partial Order on Cartesian Product

Definition 8: Given two posets (A_1, \leq_1) and (A_2, \leq_2) , the **lexicographic ordering** on $A_1 \times A_2$ is defined by specifying that (a_1, a_2) is less than (b_1, b_2) , that is, $(a_1, a_2) < (b_1, b_2)$, either if $a_1 <_1 b_1$ or if $a_1 = b_1$ and $a_2 <_2 b_2$.

This definition can be easily extended to a lexicographic ordering on n-ary Cartesian products

 $(Z \times Z, <)$

All ordered pairs less than (3, 4)

Summary

- Partial Orderings and Partially-ordered Sets
 - Total Ordering, Well-ordered sets
 - Lattices
 - Lexicographic Orderings
- Visualization: Hasse Diagrams