ESTRUTURA DE DADOS

Prof.^a Priscilla Abreu

priscilla.braz@rj.senac.br

Roteiro de Aula

- Objetivo da aula
- Métodos de ordenação
 - Insertion sort
- Exercícios

Objetivo da aula

Conhecer e aplicar os métodos de ordenação de elementos em um vetor utilizando Insertion sort.

Indicador:

Elaborar sistemas implementando métodos de ordenação e pesquisa.

ORDENAÇÃO

Análise e Desenvolvimento de Sistemas 2020.1

ORDENAÇÃO

Em nosso cotidiano, nos deparamos com situações que precisam de alguma lógica para serem entendidas ou resolvidas.

Quando construímos um algoritmo, por exemplo, procuramos "ordenar" as instruções segundo

alguma lógica.

ORDENAR

É o processo de rearranjar objetos, dados, ..., de acordo com algum critério, para que posteriormente facilite recuperá-lo.

Para ordenar dados ou informações devemos determinar um ou mais campos de classificação e, em seguida, sua ordem de classificação: crescente ou decrescente.

ORDENAR

A ordenação é feita segundo um dos campos do registro da lista. Este campo é denominado chave.

Ordenar uma lista L (em ordem não decrescente) e obter uma permutação dos seus índices p1, p2, ..., pm tal que:

$$L[p1] \le L[p2] \le ... \le L[pm]$$

ORDENAÇÃO

Considere o seguinte vetor

Como você ordenaria esses elementos de modo crescente?

48 37	15	25	29
-------	----	----	----

Métodos de ordenação

- Método da Bolha (Bubble sort)
- Seleção
- Inserção Direta (Insertion sort)
- Quicksort

INSERTION SORT

Análise e Desenvolvimento de Sistemas 2020.1

INSERTION SORT

Algoritmo eficiente para ordenar uma lista com poucos elementos;

O método funciona do mesmo modo que muitas pessoas ordenam suas cartas em um jogo de cartas.

INSERTION SORT

- A cada iteração é considerado um índice i tal que os elementos a esquerda de i já se encontram ordenados.
- O item de índice i será inserido na posição correta considerando apenas os elementos à sua esquerda.
- Percorre-se, então, os itens já ordenados da direita para a esquerda comparando cada item com o item a ser inserido: enquanto o item a ser inserido for menor, o item que está sendo comparado será deslocado à direita.

INSERTION SORT

Chaves Iniciais:

i=1:

0	1	2	3	4	5
16	13	14	34	37	12

INSERTION SORT

Chaves Iniciais:

i=1:

i=2:

0	1	2	3	4	5
16	13	14	34	37	12
13	16	14	34	37	12

INSERTION SORT

Chaves Iniciais:

i=1:

i=2:

0	1	2	3	4	5
16	13	14	34	37	12
13	16	14	34	37	12

INSERTION SORT

Chaves Iniciais:

i=1:

i=2:

i=3:

0	1	2	3	4	5
16	13	14	34	37	12
13	16	14	34	37	12
13	14	16	34	37	12

INSERTION SORT

Chaves Iniciais:

i=1:

i=2:

i=3:

			↓		
0	1	2	3	4	5
16	13	14	34	37	12
13	16	14	34	37	12
13	14	16	34	37	12

INSERTION SORT

Chaves Iniciais:

i=1:

i=2:

i=3:

i=4:

			\		
0	1	2	3	4	5
16	13	14	34	37	12
13	16	14	34	37	12
13	14	16	34	37	12
13	14	16	34	37	12

INSERTION SORT

Chaves Iniciais:

i=1:

i=2:

i=3:

i=4:

				↓	
0	1	2	3	4	5
16	13	14	34	37	12
13	16	14	34	37	12
13	14	16	34	37	12
13	14	16	34	37	12

INSERTION SORT

Chaves Iniciais:

i=1:

i=2:

i=3:

i=4:

i=5:

0	1	2	3	4	5
16	13	14	34	37	12
13	16	14	34	37	12
13	14	16	34	37	12
13	14	16	34	37	12
13	14	16	34	37	12

INSERTION SORT

Chaves Iniciais:

i=1:

i=2:

i=3:

i=4:

i=5:

0	1	2	3	4	<u>5</u>
16	13	14	34	37	12
13	16	14	34	37	12
13	14	16	34	37	12
13	14	16	34	37	12
13	14	16	34	37	12

INSERTION SORT

Chaves Iniciais:

i=1:

i=2:

i=3:

i=4:

i=5:

					*
0	1	2	3	4	5
16	13	14	34	37	12
13	16	14	34	37	12
13	14	16	34	37	12
13	14	16	34	37	12
13	14	16	34	37	12
12	13	14	16	34	37

Exemplo de como cada elemento é passado para o lado ordenado do vetor.

INSERTION SORT

$$aux = 12$$
 i=5

0	1	2	3	4	5
13	14	16	34	37	12

INSERTION SORT

$$aux = 12$$
 $i=5$

i	=4

0	1	2	3	4	5
13	14	16	34	37	12
13	14	16	34	37	37

INSERTION SORT

aux = 12 i=5

			V		
0	1	2	3	4	5
13	14	16	34	37	12
13	14	16	34	37	37
13	14	16	34	34	37

INSERTION SORT

aux = 12 i=5

		\			
0	1	2	3	4	5
13	14	16	34	37	12
13	14	16	34	37	37
13	14	16	34	34	37
13	14	16	16	34	37

j=3

j=4

INSERTION SORT

aux = 12 i=5

0	1	2	3	4	5
13	14	16	34	37	12
13	14	16	34	37	37
13	14	16	34	34	37
13	14	16	16	34	37
13	14	14	16	34	37

j=1

j=2

j=4

j=3

j=4

j=3

j=2

j=1

j=0

INSERTION SORT

aux = 12 i=5

0	1	2	3	4	5
13	14	16	34	37	12
13	14	16	34	37	37
13	14	16	34	34	37
13	14	16	16	34	37
13	14	14	16	34	37
13	13	14	16	34	37

Análise e Desenvolvimento de Sistemas 2020.1

j=4

j=3

j=2

j=1

j=0

j=-1

INSERTION SORT

$$aux = 12$$
 i=5

0	1	2	3	4	5
13	14	16	34	37	12
13	14	16	34	37	37
13	14	16	34	34	37
13	14	16	16	34	37
13	14	14	16	34	37
13	13	14	16	34	37
12	13	14	16	34	37

Análise e Desenvolvimento de Sistemas 2020.1

INSERTION SORT

```
void insercaoDireta(int *vet, int n){
 int i, j, aux;
for (i=1; i<n; i++) {
         aux = vet[i];
         j = i - 1;
         while (aux< vet[j] && j>=0){
                  vet[j+1] = vet[j];
                  j = j-1;
         \text{vet}[j+1] = \text{aux};
```


INSERTION SORT - EXERCÍCIO

Para o método de ordenação de seleção, apresente a ordenação do seguinte vetor. Mostre a sequência de todas as etapas executadas (comparações e trocas).