DS 116 Data Visualization

Univariate numeric variable

Habet Madoyan

American University of Armenia

Section 1

Histogram

Movies data set

```
movies <- read.csv('Data/movies.csv', stringsAsFactors = F)</pre>
str(movies)
## 'data.frame': 2911 obs. of 32 variables:
##
    $ title
                         : chr "Zoom" "Zoolander 2" "Zombieland" "Zodiac"
##
    $ genre_first
                         : chr "Action" "Comedy" "Adventure" "Crime" ...
    $ year
                                2006 2016 2009 2007 1998 2012 2005 2008 199
##
                         : int
##
    $ duration
                         : int
                                83 102 88 162 116 157 101 101 119 90 ...
                                14142117 29451448 86365946 39077724 2978040
##
    $ gross_adjusted
                         : num
                                42555556 51065177 26964263 76858659 7519018
##
    $ budget_adjusted
                         : int
##
    $ gross
                         : int
                                11631245 28837115 75590286 33048353 1980338
                                35000000 50000000 23600000 65000000 5000000
##
    $ budget
                         : int
##
    $ cast_facebook_likes: int
                                5022 24107 28011 36928 1209 2759 32232 638
                                176 376 998 966 232 1198 338 490 709 297 ...
##
    $ reviews
                         : int
##
    $ index
                         : num
                                1.22 1.02 1.14 1.18 1.5 ...
##
    $ Rated
                         : chr
                                "PG" "PG-13" "R" "R" ...
##
    $ Genre
                         : chr
                                "Action, Adventure, Comedy" "Comedy" "Adven
##
    $ Writer
                         : chr
                                "Adam Rifkin (screenplay), David Berenbaum
##
    $ Actors
                         : chr
                                "Tim Allen, Courteney Cox, Chevy Chase, Spe
```

\$ Plot

##

: chr

: chr

"Former superhero Jack is called back to wo

"English" "English, Italian, Spanish" "Engl

Histogram

- A histogram displays the frequency and distribution for a range of quantitative groups.
- Bar charts compare quantities for different categories, a histogram technically compares the number of observations across a range of value 'bins' using the size of lines/bars to represent the quantitative counts.
- Histogram allows to understand the shape of the distribution of the data

- You need to specify only one aesthetics: x
- Use geom_histogram as a geometric object

```
ggplot(data = movies, aes(x = imdbRating)) +
geom_histogram() + ggtitle('Histogram for iMDB rating')
```


- in ggplot you can either specify the number of bins (bins) or bin width (binwidth). One can be derived from another.
- The default value for number of bins is 30.
- There is no one golden rule on choosing number of bins, however in general
 - More bins (smaller binwidth) will result in higher detalization
 - Less bins (larger binwidth) will result in lower detalization

Number of bins = 50

```
ggplot(data = movies, aes(x = imdbRating)) + geom_histogram(bins = 50) +
ggtitle('Histogram for iMDB rating')
```


Number of bins = 70

```
ggplot(data = movies, aes(x = imdbRating)) +
geom_histogram(bins = 70) + ggtitle('Histogram for iMDB rating')
```


Alternatively you can set up the binwidth: binwidth = 0.5

```
ggplot(data = movies, aes(x = imdbRating)) +
  geom_histogram(binwidth = 0.5) + ggtitle('Histogram for iMDB rating')
```


Binwidth = 0.3

```
ggplot(data = movies, aes(x = imdbRating)) + geom_histogram(binwidth = 0.3)
ggtitle('Histogram for iMDB rating')
```


Choosing the number of bins

- There is no one golden rule on how many bins need to be there
- Do try and error until you get histogram that can be interpreted
- However, there are few approaches for the calculation of optimal number of bins

Methods for choosing the number of bins

Square root choice

$$k = \lceil \sqrt{n} \rceil$$

Rice rule

$$k = \lceil 2\sqrt[3]{n} \rceil$$

Sturges' formula

$$k = \lceil \log_2 n \rceil + 1$$

Methods for choosing the binwidth

Scott's normal reference rule (when data is approximately normal)

$$h = \frac{3.49\hat{\sigma}}{\sqrt[3]{n}}$$

 Freedman-Diaconis' rule - a variation of Scott's rule but less sensitive to outliers

$$h = 2 \frac{\mathsf{IQR}(x)}{\sqrt[3]{n}}$$

Doing in R

Basic R functionality for histogram allows to directly state the method for bin calculations

```
par(mfrow = c(2,2))
hist(movies$imdbVotes, breaks = 'sturges', main = 'Sturges', )
hist(movies$imdbVotes, breaks = 'fd', main = 'Freedman-Diaconis')
hist(movies$imdbVotes, breaks = 'scott', main = 'Scott')
```

Doing in R

Doing in ggplot2

In ggplot2 you need to calculate the number of the bins/binwidth then provide the result as an argument Example: Rice rule

```
n <- length(movies$Metascore[!is.na(movies$Metascore)])
k <- ceiling(2*(n^(1/3)))
ggplot(movies, aes(x = Metascore)) + geom_histogram(bins = k)</pre>
```

Doing in ggplot2

Bumpy distribution

```
data("diamonds")
ggplot(diamonds, aes(price)) + geom_histogram()
 10000 -
                                  10000
                                                 15000
                                                                20000
                                  price
```

Bumpy distribution

Increase the number of bins, the bump becomes more apparent

Bumpy distribution

How can you detect it ?

Density plots

- To visualize the distribution of the continuous variable, you can also use kernel density estimate - smoothed version of the histogram.
- In ggplot it is done with the geom_density()

Density plots

Density plots: exponential distribution

```
set.seed(1)
x \leftarrow rexp(1000, rate = 10)
ggplot() + geom_density(aes(x))
```

0.4

Density plots

Scale the y axis

0.25

0.00

Density plot over the histogram

```
ggplot(mapping = aes(x = x)) + geom_histogram(aes(y = ..density..)) +
geom_density(color = 'red')
```


Cumulative distribution function

- The cumulative distribution function (CDF) of a random variable X, or just distribution function of X, evaluated at x is the P(X < x).
- When we have the data, we have the empirical distribution, we can construct Empirical Cumulative Distribution Function:

$$\widehat{F}_n(x) = \frac{\text{number of elements in the sample} \le x}{n} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{I}(X_i \le x)$$

plot(ecdf(movies\$imdbRating))

0.25

imdbRating

To make eCDF more informative we can add quartiles to the plot

```
quant <- quantile(movies$imdbRating, probs = c(0.25,0.5,0.75), na.rm = T)
ggplot(movies, aes(x = imdbRating)) + stat_ecdf(geom = 'point') +
  geom_vline(xintercept = quant, color = c('red', 'green', 'blue'))</pre>
```


Other distribution

```
med <- median(movies$gross_adjusted)
avg <- mean(movies$gross_adjusted)
ggplot(movies, aes(x = gross_adjusted)) + stat_ecdf(geom = 'point') +
  geom_vline(xintercept = c(med, avg), color = c('red', 'green'))</pre>
```


Another skewed distribution

```
med <- median(diamonds$price)
avg <- mean(diamonds$price)
ggplot(diamonds, aes(x = price)) + stat_ecdf(geom = 'point') +
geom_vline(xintercept = c(med, avg), col = c("red", "green"))</pre>
```

Another skewed distribution

Section 2

Boxplots

Boxplot

- Boxplot or box-whisker plot, is another way to display the distribution of the continuous variable
- Boxplots are usually used to visualize the distribution of some continuous variable by categories of a categorical variable
- They are also used to detect outliers (non-parametric way)

The structure of the boxplot

Vertical Boxplot

Horizontal boxplot

```
ggplot(data = movies, aes(x = Metascore)) + geom_boxplot()
0.4 -
0.2 -
0.0 -
-0.2
                                Metascore
```

Reading the boxplot

- The width of the box IQR, is an indicator of the variance
- If the median is in the center and the whiskers have the same length with small to none outliers, then the variable has a bell shape

Boxplot of skewed distribution

- Top whisker is longer
- Outliers on the top
- Initial conclusion: We have right skewed distribution

ggplot(data = diamonds, aes(y = price)) + geom_boxplot()

- You can also add mean to the graph (added empty x in aesthetics)
- Mean greater than median right skewed distribution

```
ggplot(data = diamonds, aes(x = "", y = price)) + geom_boxplot() +
    stat_summary(fun = mean, geom = 'point', color = 'red') + xlab("") +
    theme(axis.ticks.x = element_blank())
```


Sometimes will need to compare the distribution of one continuous variable by different categories of a categorical variable

- The height of males and females
- Distribution of waiting time by weekdays
- Number of goals per position in football, etc

We can do this with histograms, boxplots and eCDF

- We will use Galton's hereditary data
- for the full analysis refer to Regression Towards Mediocrity in Hereditary Stature

```
data("GaltonFamilies")
str(GaltonFamilies)
  'data.frame': 934 obs. of 8 variables:
   $ family : Factor w/ 205 levels "001", "002", "003", ...: 1 1 1 1 2
##
##
   $ father
                  : num 67 67 67 67 66.5 66.5 66.5 66.5 64 64 ...
##
   $ mother
##
   $ midparentHeight: num 75.4 75.4 75.4 75.4 73.7 ...
##
   $ children : int 4 4 4 4 4 4 4 2 2 ...
##
   $ childNum
                  : int 1234123412 ...
##
   $ gender : Factor w/ 2 levels "female", "male": 2 1 1 1 2 2 1 1
   $ childHeight : num
                       73.2 69.2 69 69 73.5 72.5 65.5 65.5 71 68 ...
##
```

Histogram of height

ggplot(data=GaltonFamilies, aes(x = childHeight)) + geom_histogram()

Density estimate

```
ggplot(data = GaltonFamilies, aes(x = childHeight)) + geom_density()
```


eCDF

```
ggplot(data = GaltonFamilies, aes(childHeight)) + stat_ecdf(geom = 'point')
 1.00 -
 0.75
0.50
 0.25
```

childHeight

Compare height for male and female children There are two distinct distributions

```
ggplot(data = GaltonFamilies, aes(x = childHeight, color = gender)) +
  geom_density()
```


Create the eCDF

```
ggplot(data = GaltonFamilies, aes(x = childHeight, color = gender)) +
   stat_ecdf()
```


Boxplot

```
ggplot(data = GaltonFamilies, aes(x = gender, y = childHeight)) +
  geom_boxplot() +
  stat_summary(fun.y = mean, geom = 'point', color = 'red')
 75 -
 70 -
childHeight
 60
 55 -
```

gender

```
ggplot(movies, aes(x = genre_first, y = imdbRating)) + geom_boxplot() +
    theme(axis.text.x = element_text(angle = 90))
```


Section 3

Testing for distribution

Probability plots

- The probability plot is a graphical technique for assessing whether or not a variable follows a given distribution.
- The data is plotted against a theoretical distribution in such a way that the points should form approximately a straight line.
- Departures from this straight line indicate departures from the specified distribution.

- Q-Q Plots (Quantile-Quantile plots) are plots of quantiles of two variables plotted against each other.
- A quantile is a fraction where certain values fall below that value.
- The purpose of q-q plots is to find out if two sets of data come from the same distribution.
- If we have standard normal distribution then 45° angle is plotted on the QQ plot; if the two data sets come from the same distribution, the points will fall on that reference line, thus quantiles of theoretical and sample distributions are the same.
- The greater the departure from the reference line, the greater the evidence for the conclusion that the two data sets have come from populations with different distributions.
- If the data does not follow standard normal distribution, then the reference line is formed with intercept = mean and slope = standard deviation

We have 45° line

```
x <- rnorm(1000)
ggplot(mapping = aes(sample = x)) + geom_qq() +
geom_qq_line(color = 'red')</pre>
```



```
q-q plot for Metascore
```

```
ggplot(movies, aes(sample = Metascore)) + geom_qq() +
  geom_qq_line(color = 'red')
```


Pay Attention

- ullet We have corresponding Z scores for theoretical values on x axis
- The quantiles from the sample in the original scale
- Line is not 45° any more, but is rather estimated

Lets see what happens when you define the distribution parameters

```
x <- rnorm(1000, mean=10, sd = 2)
p1 <- ggplot(mapping = aes(sample = x)) + geom_qq() +
geom_qq_line(color = 'red')</pre>
```


Get the data used to draw the plot

Calculate the slope

```
slope <- diff(df1$y)/diff(df1$x)
slope
## [1] 2.01425</pre>
```

Intercept

```
df1$y[1] - slope*df1$x[1]
## [1] 10.1547
```

Define the right scale for theoretical distribution

```
p1 <- ggplot(mapping = aes(sample = x)) +
  geom_qq(dparams = list(mean = 10, sd = 2)) +
  geom_qq_line(color = 'red', dparams = list(mean = 10, sd = 2))</pre>
```


Calculate the slope

```
df1 <- ggplot_build(p1)$data[[2]]
slope <- diff(df1$y)/diff(df1$x)
slope
## [1] 1.007125
Intercept
df1$y[1] - slope*df1$x[1]</pre>
```

[1] 0.08345323

eCDF for Right skewed and Theoretical distributions $_{\text{eCDF}}$ for Theoretical and Right skewed distribution

Left skewed distribution $L_{\text{Left skewed distribution}}$

eCDF for left skewed distribution

- Right skewed distribution: The points' upward trend shows that the sample quantiles are much greater than the theoretical quantiles.
- Left skewed distribution: The sample quantiles are going to be much lower than the theoretical quantiles.

Heavy tail (Fat tail)

- Fat tail means that compared to the normal distribution there is more data located at the extremes of the distribution and less data in the center of the distribution.
- In terms of quantiles this means that the first quantile is much less than the first theoretical quantile and the last quantile is greater than the last theoretical quantile

Thin tails distribution

With thin tails distribution you have less data in the tails than it should be compared to the normal distribution

Setting the scale for X axis the same for all plots $_{\text{Thin tail}}$

- By default the Q-Q plot is constructed with normal distribution as a theoretical distribution
- However you can use any distribution that is available in R
- Or provide your own distribution with parameters

q-q plot for exponential distribution

```
x_exp <- rexp(10000)
ggplot(mapping = aes(sample = x_exp)) + geom_qq(distribution = stats::qexp)
geom_qq_line(color = 'red', distribution = stats::qexp)</pre>
```


Budget

```
ggplot(movies, aes(sample = budget_adjusted)) +
  geom_qq(distribution = stats::qexp) +
  geom_qq_line(color = 'red', distribution = stats::qexp)
400000000 -
3000000000
200000000 -
100000000 -
```