## Meccano hexagons gallery

https://github.com/heptagons/meccano/hexa/gallery

2023/12/27

## Abstract

We build meccano <sup>1</sup> rigid regular heptagons.

## 1 Heptagon internals



Figure 1: Cluster of four strips with fixed vertices A at (-1,0), B at (+1,0) and X at  $(0,\sqrt{7})$ .

Figure 1 show a cluster to make a triangle  $\triangle ABX$  useful to make a regular heptagon. With the law of cosines we calculate first the angle  $\theta \equiv \angle PQX$  and then the distance  $\overline{BX}$ :

$$\cos \theta = \frac{(\overline{PQ})^2 + (\overline{QX})^2 - (\overline{XP})^2}{2(\overline{PQ})(\overline{QX})} = \frac{3^2 + 2^2 - 2^2}{2(3)(2)} = \frac{3}{4}$$
 (1)

$$\overline{BX} = \sqrt{(\overline{BQ})^2 + (\overline{QX})^2 - 2(\overline{BQ})(\overline{PQ})\cos\theta} = \sqrt{4^2 + 2^2 - 2(4)(2)\left(\frac{3}{4}\right)} = 2\sqrt{2}$$
 (2)

Since  $\overline{AX} = \overline{BX}$  then triangle  $\triangle ABX$  is isoscelles and we calculate  $\overline{OX}$  as simple as:

$$\overline{OX} = \sqrt{(\overline{BX})^2 - (\overline{OB})^2} = \sqrt{(2\sqrt{2})^2 - 1^2} = \sqrt{7}$$
 (3)

Also with the law of cosines we calculate angles  $\phi = \angle QBX$  and  $\psi = \angle OBX$ :

$$\cos \phi = \frac{(\overline{BP})^2 + (\overline{BX})^2 - (\overline{PX})^2}{2(\overline{BP})(\overline{BX})} = \frac{1^2 + 8 - 2^2}{2(2\sqrt{2})(1)} = \frac{5\sqrt{2}}{8}$$
(4)

$$\cos \psi = \frac{\overline{BX}}{\overline{OB}} = \frac{2\sqrt{2}}{1} = 2\sqrt{2} \tag{5}$$



Figure 2: Equilateral heptagons connected to rigid triangle  $\triangle ABX$  in four positions. In red we have the perimeter  $\overline{ABCDEF}$  in green two strips  $\overline{DXF}$ . In (a) we have the heptagon as the tallest degenerated pentagon, in (b) we have the regular heptagon, in c we have a degenerated hexagon and in (d) the shortest degenerated pentagon.

Figure 2 show equilateral heptagons ABCDEFG connected to the cluster of figure 1. Vertices A and B are fixed while vertices C, D, E and F move. Is important to note that vertice C positions  $C_0, C_1, C_2, C_3$  follow the circular curve C and vertice D positions  $D_0, D_1, D_2, D_3$  follow the circular curve D.

The heptagon has two internal strips  $\overline{DX}$  and  $\overline{FX}$  connected to vertices D and F and to fixed vertex X.

We move the strips symmetrically. In figure (a) we have the maximum extension to the top limited by fact that vertices B and  $D_0$  cannot be separated more since both are collinear with vertice  $C_0$ , being the angle  $\beta_0 = \pi/2$ .

From (a) we reach state (b) reducing  $\beta$  until  $\alpha_1 = \beta_1 = \delta_1 = 5\pi/7$  forming the regular heptagon.

From (b) we reach state (c) reducing  $\beta$  until  $\beta = \pi/2$ .

In figure (d) we reach the maximum extension to the bottom limited by the fact that vertices X and  $C_3$  cannot be separated more since both are collinear with vertice  $D_3$ , being the angle  $\beta_3 = \arccos(3/4)$ .

Table 1 show the values of angles  $\alpha, \beta, \gamma, \delta$  for the positions 0, 1, 2, 3 corresponding to figures (a), (b), (c), (d).

<sup>&</sup>lt;sup>1</sup> Meccano mathematics by 't Hooft

| Position | $\alpha$                     | β                | $\gamma$               | δ                               |
|----------|------------------------------|------------------|------------------------|---------------------------------|
| 0        | $\phi + \psi$                | $\pi$            | $\theta$               | $2(\pi - \phi - \psi) - \theta$ |
| 1        | $\frac{5\pi}{7}$             | $\frac{5\pi}{7}$ | $\frac{3\pi}{7}$       | $\frac{5\pi}{7}$                |
| 2        | $\pi - \psi - \frac{\pi}{4}$ | $\pi/2$          | $\frac{\pi}{4} - \psi$ | $rac{\pi}{4}-\psi$             |
| 3        | $\pi$                        | θ                | $\pi$                  | $\phi + \psi$                   |

Table 1: Heptagon internal angles of positions 0-4 shown in figure 2. Where  $\theta$ ,  $\phi$  and  $\psi$  were defined in equations 1, 4 and 5 and shown in figure 1.