Nome	Utech
Name:	
Roll No.:	
Invigilator's Signature :	

CS/B.Tech (CSE, EE(O), EEE)/SEM-5/EE-503/2010-11 2010-11 CONTROL SYSTEM

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) The characteristic equation of a system is $s^2 + 2s + 2 = 0$. The system is
 - a) critically damped
- b) underdamped
- c) overdamped
- d) unstable.
- ii) Addition of a pole to the closed loop transfer function
 - a) increases size time
 - b) decreases size time
 - c) increases overshoot
 - d) has no effect.

5101 [Turn over

CS/B.Tech (CSE, EE(O), EEE)/SEM-5/EE-503/2010-10

- a) constant
- b) ramp
- decaying exponentially d) oscillatory. c)
- Signal flow graph is iv)
 - a) topological representation of a set of differential equations
 - gain versus frequency b)
 - c) phase versus frequency
 - d) transient response.
- The disadvantage(s) of polar plot is (are) v)
 - a) the calculations are time consuming for exact plot
 - it is very difficult to calculate gain & phase margins b)
 - plot is damped at high frequencies c)
 - d) all of these.
- The function $\frac{1}{1+ST}$ has a slope of vi)
 - 6 dB/decade a)
- 6 dB/decade b)
- 20 dB/decade c)
- d) - 20 dB/decade.
- vii) The transfer function of a basic PD controller is given by (all k's are real constant)
 - a) $k_0 + \frac{k_1}{s} + k_2 s$
- c) $k_0 + k_2 s$
- b) $k_2 s + k_3 s$ d) $k_0 + \frac{k_1}{s}$.

viii)	If the system gain k is increased then the roots of			d then the roots of the	
	system moves to				
	a)	low frequency	b)	higher frequency	
	c)	origin	d)	none of these.	
ix)	In n	nechanical systems, the	spri	ng force is proportional	
	a)	motion	b)	displacement	
	ŕ			-	
	c)	acceleration	d)	mass.	
x)	Phase margin of a system is used to specify				
	a)	time response	b)	frequency response	
	c)	absolute stability	d)	relative stability.	
xi)	If a	system is critically dam	ped (& the gain is increased,	
	the system				
	a)	becomes overdamped			
	b) becomes underdamped				
	c) becomes oscillatory				
	d)	remains critically dam	ped.		
xii)	The type of a transfer function denotes the number			enotes the number of	
	a)	zeros at origin			
	b)	poles at infinity			
	c)	poles at origin			
	d)	zeros at infinity.			

3

[Turn over

5101

CS/B.Tech (CSE, EE(O), EEE)/SEM-5/EE-503/2010-11

CS/B.Tech (CSE, EE(O), EEE)/SEM-5/EE-503/2010

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- 2. The closed loop response of a system subjected to a unit step input is $c(t)=1+0\cdot 2\,e^{-60t}-1\cdot 2\,e^{-10t}$. Obtain the expression for the closed loop transfer function. Also determine the undamped natural frequency and damping ratio of the system.
- Using Routh-Hurwitz criterion, determine the stability of the closed loop system that have the following characteristic equation.

$$s^6 + 2s^5 + 8s^4 + 15s^2 + 20s^2 + 16s + 16 = 0$$
.

4. Using block diagram reduction technique find $\frac{C}{R}$.

5101 4

5. Obtain the rise time, peak time, maximum peak overshoot &

settling time of the unit step response of a closed loop system

given by
$$\frac{c(s)}{k(s)} = \frac{16}{s^2 + 2s + 16}$$
.

6. For a closed loop system with $G(s) = \frac{1}{s+5}$ & H(s) = 5,

calculate the generalised error coefficient & fluid error series.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. Draw the Bode plot for a unity feedback system with

$$G(s) = \frac{k(s+0\cdot3)}{(s+4)(s^2+30s+20)}$$
 where $k = 2000$. Determine the

gain margin & phase margin. Comment on stability.

Determine the value of k to obtain phase margin of 30° .

$$G(s) = \frac{1}{s(s+4)(s^2+2s+2)}$$

Show all the relevant steps of plot.

- 9. a) What is the difference between type & order of a system?
 - b) Sketch a typical step response of a second order under damped system.
 - c) Draw the response characteristic curves of the following controlling actions :

Discuss salient features.

3 + 3 + 9

10. For the system shown below, find the phase margin & gain margin using Nyquist plot for k = 10. Find also range of k for stability.

5101

CS/B.Tech (CSE, EE(O), EEE)/SEM-5/EE-503/2010-11

- 11. a) Explain with the help of an example how improvement of system performance is achieved through compensation.
 - b) Write a note on servo motors.

10 + 5