Пермский филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский университет «Высшая школа экономики»

Факультет экономики, менеджмента и бизнес-информатики

Виноградов Никита Андреевич

ОЦЕНКА АРХИТЕКТУРЫ ПРОГРАММНОЙ СИСТЕМЫ ДЛЯ ЗАДАННОЙ ПРЕДМЕТНОЙ ОБЛАСТИ

Лабораторная работа

студента образовательной программы «Программная инженерия» по направлению подготовки 09.03.04 Программная инженерия

Руководитель к.т.н., доцент кафедры Информационных технологий в бизнесе НИУ ВШЭ-Пермь

А.В. Кычкин

Оглавление

Глава 1. Оценка архитектуры программной системы для задан-	
ной предметной области	3
1.1 Описание проекта	3
1.2 Компоненты системы	4
1.3 Архитектурный стиль	5
Глава 2. Диаграмма вариантов использования проектируемой	
системы в соответствии с нотацией UML	7
Глава 3. Архитектура информационной системы для заданной	
предметной области с использованием выбранного архитектур-	
ного решения	8
3.1 Диаграммы активности и последовательности	8

Глава 1. Оценка архитектуры программной системы для заданной предметной области.

1.1. Описание проекта

Описание проекта - Автоматизированная система нагрузочного тестирования для веб-серверов (облачных систем).

Цель проекта - Автоматизировать и упростить процесс тестирования нагрузки и последующего исследования показателей для принятия решений.

Задачи проекта -

Области применения - Облачные распределенныме системы, ETL и MapReduce системы.

Составные части:

- 1. Сервер системы выполняет роль единой точки обращения к системе, позволяет назначать работы для воркеров и управленяет работой Воркеров.
- 2. Воркеры рабочие элементы системы выполняющие роль тестировщиков, в данной системе они могут выполнять 2 вида работ:
 - a) Hit-Based тестирование.
 - b) Сценарное тестирование.
- 3. Мониторинг используется для просмотра информации о проведенных нагрузочных тестах, составлении графиков зависимостей.
- 4. Сборщик логов используется для сбора информации со всех элементов системы и записи процесса выполнения на диск, для последующей отладки или просмотра.
- 5. Агенты помощники основной системы, в основной части выполняются на target машине для которой выполняется тестирование чтобы отследить данные по процессору, памяти, дисковой нагрузке, также агенты используется для предотвращения падения системы в случае высокой нагрузки сервера нагрузочного тестирования.

- 6. Планировщик используется для организации работ, которые выполняют воркеры.В текущей системе распределяет потоки выполнения для увеличения общей вычислительной мощности.
- 7. Веб-Сервер используется для загрузки конфигурации нагрузочных тестов и просмотра информации по возможностям системы и свободным воркерам.
- 8. CLI-клиент клиент системы выполняющий функции веб-сервера, только в режиме терминала.

1.2. Компоненты системы

- 1. Генератор запросов используется самописный генератор Http/Https запросов на Golang и C++ со вставки на NASM, данное решение было принято после тестирования существующих генераторов и определения узких мест.
- 2. СУБД для данной системы была выбрана колоночная Time-Series База данных ClickHouse. Данное решение обусловлено возможностями системы по предоставлению нагрузки и генерации метрик в ходе тестирования, (Было проведено тестирование возможностей системы и при режиме тестирования максимальной производительности, система может выдавать 1.8 Млн RPS) в ходе этого необходимо эффективно доставлять метрики в базу данных а не копить в памяти сервера.
- 3. Jenkins X Api Client инструмент для подключения к системе сборки и доставки приложений.
- 4. Gitlab CI/CD Api Client инструмент для подключения к системе сборки и доставки приложений.
- 5. Kubernetes Api Client инструмент для подключения к системе оркестрации контейнеров, будет использовать для проверки масштабирования компонентов облачных систем.
- 6. Webhooks -инструменты создания конечных точек в системе на сервере, для выполнения определенных команд.

- 7. gRPC инструмент эффективного подключения сервисов внутри и между дата-центрами с помощью подключаемой поддержки для балансировки нагрузки, трассировки, проверки работоспособности и аутентификации
- 8. TabiX инструмент для анализа данных из ClickHouse и построения графиков и диаграмм по тестируемым системам

1.3. Архитектурный стиль

- 1. Клиент-Сервер используется для взязи CLI CLient и Воркеров в сервером системы.
- 2. Master-Slave используется для масштабирования воркеров, в задачах тестирования серверов с большими возможностями.
- 3. Observer используется для сбора логов и метрик в компонентах системы.

Рис. 1.1. Диаграмма компонентов системы

Глава 2. Диаграмма вариантов использования проектируемой системы в соответствии с нотацией UML

Рис. 2.1. Диаграмма прецедентов системы

Глава 3. Архитектура информационной системы для заданной предметной области с использованием выбранного архитектурного решения

3.1. Диаграммы активности и последовательности

Диаграммы активносности и последовательности описаны ниже

Наименование: Добавление рабочих нод.

Обязанности: Добавить рабочие ноды

Ссылки: прецедент «Добавление рабочих нод».

Предусловия: Администратор зашел в систему и выбрал «Добавление

рабочих нод».

Рис. 3.1. Диаграмма последовательности