Proposed guide UACIE Applied Mathematics 2022

Qms	Answers						
	SECTION A. (40 marks)						
1.	$mgsin\theta$ μR mg $mgcos\theta$						
	From Newton's second law, $F = ma$ But $F = F_D - (mgsin\theta + \mu R)$						
	$ma = F_D - (1500x9.8xsin\theta + \frac{1}{4}x1500x9.8xcos\theta)$						
	But, $sin\theta = \frac{3}{5}$, $cos\theta = \frac{4}{5}$						
	At steady speed, acceleration, $a = 0ms^{-1}$						
	$F_D = 1500x9.8x \frac{3}{5} + \frac{1}{4}x1500x9.8x \frac{4}{5}$						
	$F_D = 11760N$						
	Therefore the driving force is 11760N	5 marks					
2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
(a)	From mean, $\bar{x} = \frac{\sum fx}{\sum f}$						
	$\bar{x} = \frac{195}{100}$ $\bar{x} = 1.95 \approx 2 \text{ people}$						
(b)	From variance, $var(x) = \frac{\sum fx^2}{\sum f} - (\bar{x})^2$						
	$var(x) = \frac{481}{100} - (1.95)^{2}$ $var(x) = 1.0075$ 5 marks						
3	Since given is the number of ordinates, to get the number of sub- intervals we subtract a one. $h = \frac{2-0}{6} = \frac{1}{3}, \text{ and } f(x) = \frac{1}{3+4x^2}$						

					<u> </u>
		$f(x) = \frac{1}{3 + 4x^2}$ 0.3333	$f(x) = \frac{1}{3+4x^2}$		
	1	0.3333	0.2903		
	$\frac{\overline{3}}{\frac{2}{3}}$		0.2093		
	1		0.1429		
	$\frac{4}{3}$		0.0989		
	$\begin{array}{c c} \hline 3 \\ \hline 5 \\ \hline 3 \\ \hline 2 \\ \end{array}$		0.0707		
	2	0.0526			
	sum	0.3859	0.8121		
	From \int_0^2	$\frac{1}{1+4x^2}dx \approx \frac{1}{2}h[(f(x))]$	$\left(\frac{1}{x}\right) + 2(f(x))$		
	$\int_{0}^{2} \frac{1}{2 \cdot 4 \cdot 2} dx$	$4x \approx \frac{1}{2}x \frac{1}{3}[(0.3859)]$	+ 2(0.8121)]		
	$\int_0^2 \frac{3+4x^2}{3+4x^2} dx$	$dx \approx 0.335 (3dps)$			5 marks
	T = 3gsi But, $R = T = 3gsi$ 29.4 = 32 $\mu = -0.3$	30° 3	x9.8 <i>xcos</i> 30 ⁰	wo surfaces in	
	contact is	-0.3464		wo surfaces in	5 marks
5	$P(\bar{B}nA) = But, P(\bar{A}nA)$	$P(B) = \frac{7}{12}, P(\bar{A}nB)$ $= P(A) - P(AnB)$ $P(A) = P(B) - P(AnB)$	L		
	$\frac{1}{2} = \frac{7}{12} - 1$	P(ANB)			

	$P(AnB) = \frac{1}{2} - \frac{7}{12} = \frac{1}{12}$	
	$\Rightarrow \text{ Therefore, } P(\overline{B}nA) = \frac{1}{2} - \frac{1}{12} = \frac{5}{12}$	5 marks
6	Extract,	
	$ \frac{64}{y} = \frac{y}{78} $ $ \frac{y-64}{85-79} = \frac{78-64}{97-79} $ $ y = 68.667 $ Therefore 69 Euros are equivalent to 85 dollars	5 marks
7	Therefore of Europ are equivalent to ob domain	
	$v_r = 3ms^{-1}$ $v_b = ??$	
(a	Velocity of the boat relative to the river,	
(b)		5 marks
8 (a)	$P(R \ removed \ from \ B) = P(R_1 n R_2) + P(B_1 n R_2)$ $= \frac{7}{11} x \frac{6}{14} + \frac{4}{11} x \frac{5}{14}$	
(b)	$P(R \ removed \ from \ B) = \frac{31}{77}$ $P(\frac{B_1}{R}) = \frac{\frac{P(B_1 nR)}{P(R)}}{\frac{31}{77}} = \frac{\frac{4}{11}x^{\frac{5}{14}}}{\frac{31}{77}} = \frac{10}{31}$	
(0)	$P(R) = P(R) = \frac{31}{77} = 31$	5 marks

10 (a)
$$r_0 = (2i - 2j + 8k)m$$
 $F = (4ti + t^2j + 5k)$ From, $F = ma$ $(4ti + t^2j + 5k) = 4a$ $a = \frac{1}{4}(4ti + t^2j + 5k) = 4a$ $a = \frac{1}{4}(4ti + t^2j + 5k)$ $a = (ti + \frac{t^2}{4}j + \frac{5}{4}k) ms^{-2}$

(b) From, $a = \frac{dv}{dt}$ $\int dv = \int adt$ $v = \int_0^3 adt$ $v = \int_0^3 (ti + \frac{t^2}{4}j + \frac{5}{4}k) \Big|_0^3$ $v = (\frac{t^2}{2}i + \frac{t^2}{12}j + \frac{5}{4}k)\Big|_0^3$ $v = (\frac{3^2}{2}i + \frac{3^2}{2}j + \frac{5(3)}{4}k) - (\frac{0^2}{2}i + \frac{0^3}{12}j + \frac{5(0)}{4}k)$ $v = (\frac{t^2}{2}i + \frac{t^2}{12}j + \frac{5}{4}k)ms^{-1}$ $|v| = \sqrt{(\frac{9}{2})^2 + (\frac{27}{12})^2 + (\frac{15}{4})^2} = 6.27495ms^{-1}$

(c) From, $v = \frac{dv}{dt}$ $r = \int vdt$ $r_{(t)} = \int (\frac{t^2}{2}i + \frac{t^3}{4}j + \frac{5t^2}{8}k) dt$ $r_{(t)} = \int (\frac{t^2}{6}i + \frac{t^3}{48}j + \frac{5t^2}{8}k) + c$ where c is a constant of integration But; at $t = 0$, $r_0 = 2i - 2j + 3k$, $r_{(t)} = (\frac{t^2}{6}i + \frac{t^3}{48}j + \frac{5t^2}{8}k) + (2i - 2j + 3k)$ $r_{(t)} = (\frac{t^2}{6}i + \frac{t^3}{48}j + \frac{5t^2}{8}k) + (2i - 2j + 3k)$ $r_{(t)} = (\frac{t^2}{6}i + \frac{t^3}{48}j + \frac{5t^2}{8}k) + (2i - 2j + 3k)$ $r_{(t)} = (\frac{t^3}{6}i + \frac{3t^3}{48}j + \frac{5t^2}{8}k) + (2i - 2j + 3k)$ $r_{(t)} = (\frac{t^3}{6}i + \frac{3t^3}{48}j + \frac{5t^3}{8}k) + (2i - 2j + 3k)$ $r_{(t)} = (\frac{t^3}{6}i + \frac{3t^3}{48}j + \frac{5t^3}{8}k) + (2i - 2j + 3k)$ $r_{(t)} = (\frac{t^3}{6}i + \frac{3t^3}{48}j + \frac{5t^3}{8}k) + (2i - 2j + 3k)$ $r_{(t)} = (\frac{t^3}{6}i + \frac{3t^3}{48}j + \frac{5t^3}{8}k) + (2i - 2j + 3k)$ $r_{(t)} = (\frac{t^3}{6}i + \frac{3t^3}{48}j + \frac{5t^3}{8}k) + (2i - 2j + 3k)$ $r_{(t)} = (\frac{t^3}{6}i + \frac{3t^3}{48}j + \frac{5t^3}{8}k) + (2i - 2j + 3k)$ $r_{(t)} = (\frac{t^3}{6}i + \frac{3t^3}{48}j + \frac{5t^3}{8}k) + (2i - 2j + 3k)$ $r_{(t)} = (\frac{t^3}{6}i + \frac{3t^3}{48}j + \frac{5t^3}{8}k) + (2i - 2j + 3k)$ $r_{(t)} = (\frac{t^3}{6}i + \frac{3t^3}{48}j + \frac{5t^3}{8}k)$ $r_{(t)} = (\frac{t^3}{6}i + \frac{3t^3}{48}j + \frac{5t^3}{8}k) + (2i - 2j + 3k)$ $r_{(t)} = (\frac{t^3}{6}i + \frac{3t^3}{48}j + \frac{5t^3}{8}k) + (2i - 2j + 3k)$ $r_{(t)} = (\frac{t^3}{6}i + \frac{3t^3}{48}j + \frac{5t^3}{8}k) + (2i - 2j + 3k)$ $r_{(t)} = (\frac{t^3}{6}i + \frac{3t^3}{48}j + \frac{5t^3}{8}k) + (2i - 2j + 3k)$ $r_{(t)} = (\frac{t^3}{6}i + \frac{3t^3}{48}j + \frac{5t^3}{8}k)$

$$\Delta m = \frac{Y(X + \Delta x) - X(Y + \Delta y)}{Y(Y + \Delta y)}$$

$$\Delta m = \frac{Y \Delta x - X \Delta y}{Y^2 (1 + \frac{\Delta y}{Y})}$$
Since, $\Delta y \ll y$ then, $\frac{\Delta y}{Y} \approx 0$

$$\Delta m = \frac{Y \Delta x - X \Delta y}{Y^2}$$

$$\frac{\Delta m}{M} = \frac{\left[\frac{Y \Delta x - X \Delta y}{Y^2}\right]}{\frac{X}{Y}}$$

$$\frac{\Delta m}{M} = \frac{Y \Delta x - X \Delta y}{\frac{X}{Y}}$$

$$\frac{\Delta m}{M} = \frac{Y \Delta x - X \Delta y}{\frac{X}{Y}}$$

$$\frac{\Delta m}{M} = \frac{\Delta x}{X} - \frac{\Delta y}{Y}$$

$$\left|\frac{\Delta m}{M}\right| = \left|\frac{\Delta x}{X} - \frac{\Delta y}{Y}\right|$$

$$\left|\frac{\Delta m}{M}\right| \leq \left|\frac{\Delta x}{X}\right| + \left|\frac{\Delta y}{Y}\right|$$
Therefore the relative error

Therefore the relative error in approximating $\frac{x}{y}$ is $\left|\frac{\Delta x}{x}\right| + \left|\frac{\Delta y}{y}\right|$

From,
$$T = \frac{673.16}{40.345}$$

Let $x = 673.16$, $y = 40.345$
then,
 $\Delta x = 0.5x10^{-2} = 0.005$, $\Delta y = 0.5x10^{-3} = 0.0005$
 $upper\ limit = \frac{673.16 + 0.005}{40.345 - 0.0005} = 16.6854$
 $lower\ limit = \frac{673 - 0.005}{40.345 + 0.0005} = 16.6848$

Therefore the interval within which the exact value of T can be expected to lie is [16.6848, 16.6854]

Total

12 Marks

12 (a) From
$$f(x) = \begin{cases} kx^2; & x = 1,2,3 \\ k(7-x)^2; & x = 4,5,6 \\ 0; & else where \end{cases}$$

(i)

(b)

	(,		0100	******		
x	1	2	3	4	5	6
P(X = x)	k	4 <i>k</i>	9 <i>k</i>	9 <i>k</i>	4 <i>k</i>	k

From,
$$\sum_{all \ x} P(X = x) = 1$$

 $(k + 4k + 9k) + (9k + 4k + k) = 1$
 $28k = 1$
 $k = \frac{1}{28}$

х	1	2	3	4	5	6
P(X = x)	1	4	9	9	4	1
	28	28	28	28	28	28

	From, $E(x) = \sum_{all \ x} xP(X = x)$	
	$E(x) = 1\left(\frac{1}{28}\right) + 2\left(\frac{4}{28}\right) + 3\left(\frac{9}{28}\right) + 4\left(\frac{9}{28}\right) + 5\left(\frac{4}{28}\right) + 6\left(\frac{1}{28}\right) = 3.5$	
	(20) (20) (20) (20)	
(iii)	From, $var(x) = E(x^2) - ((E(x)^2))$	
	But, $E(x^2) = \sum_{all \ x} x^2 P(X = x)$	
	$E(x^2) = 1\left(\frac{1}{28}\right) + 4\left(\frac{4}{28}\right) + 9\left(\frac{9}{28}\right) + 16\left(\frac{9}{28}\right) + 25\left(\frac{4}{28}\right) + 36\left(\frac{1}{28}\right)$	
	$E(x^2) = 13.5$	
	$var(x) = 13.5 - ((3.5^2))$	
	var(x) = 1.25	
	x 1 2 3 4 5 6	
(b)	P(X = x) 1 4 9 9 4 1	
	$F(x) = P(X \le x)$ 1 5 14 23 27 1	
	$ \overline{28} \overline{28} \overline{28} \overline{28} \overline{28} $	
	F(x)	
	$ \ ^{1}T \longrightarrow $	
	27	
	$\frac{1}{28}$	
	23	
	$\frac{25}{28}$ $+$ $-$	
	$\frac{14}{20}$	
		
	5	
	28	
	1	
	$\overline{28}$	
	0 1 2 3 4 5 6	
Total		12 Marks
13 (a)	DC	
	$\frac{3N}{\sqrt{2}N}$	
	4N	
	$2\sqrt{2}N$	
	$A \xrightarrow{2N} B$	
	$\stackrel{\text{2N}}{\longleftrightarrow}$	
	LIIL	

Resolving normality,

$$F_x = 2 + 3 + 2\sqrt{2}\cos 45^0 + \sqrt{2}\cos 45^0 = 8N$$
Resolving vertically,

$$F_{v} = 4 + 2 + 2\sqrt{2}\sin 45^{0} - \sqrt{2}\sin 45^{0} = 7N$$

$$\vec{F}_R = \begin{bmatrix} 8 \\ 7 \end{bmatrix}$$

$$\left|\overrightarrow{F_R}\right| = \sqrt{(F_x)^2 + (F_y)^2}$$

$$|\overrightarrow{F_R}| = \sqrt{(8)^2 + (7)^2} = 10.6301N$$

$$|\overrightarrow{F_R}| = \sqrt{(8)^2 + (7)^2} = 10.6301N$$

From, $\theta = tan^{-1} \left(\frac{F_y}{F_x}\right) = tan^{-1} \left(\frac{7}{8}\right) = 36.9^0$

Therefore the resultant force is 10N and acts at 41.20 above the positive x-axis.

(b) From,
$$\begin{vmatrix} F_x & F_y \\ x & y \end{vmatrix} = G$$
 $\begin{vmatrix} 8 & 7 \\ x & y \end{vmatrix} = G$

Taking clockwise moments about A;

$$\mathbf{C} = 3x^2 - 2x^2 + (\sqrt{2})x^{\frac{\sqrt{8}}{2}} = 4Nm$$

$$\begin{vmatrix} 8 & 7 \\ x & y \end{vmatrix} = 4$$

$$8y - 7x = 4$$

Therefore the equation of line of action of the resultant force is;

$$8y - 7x = 4$$

Total 12 Marks

- To calculate the tax paid (T) in dollars based on the amount (A) (a) (ii) earned by 200 employees,
 - T N A 1500 0 1 70 3500 3 9000 260

(b)

 $\mu = 600g, \sigma = 20g$ 15

$$P(X > x) = \frac{7}{100}$$

$$P\left(Z > \frac{x - \mu}{\sigma}\right) = 0.07$$

$$\frac{x-600}{20} = 1.476$$

$$x = 20x(1.476) + 600$$

$$x = 629.52g$$

n = 1000(b)

$$P\left(Z < \frac{545 - 600}{20}\right)$$

$$P(Z < -2.75) = 2.98 \times 10^{-3}$$

Number of packets that weighed less than 545g is;

$$2.98x10^{-3}x1000 = 2.98 \approx 3$$
packets

Total

16 (a) 12 Marks

For P, $s = (49sin30^{\circ})(t) - \frac{1}{2}x9.8xt^{2}$

For Q,
$$s = (49sin30^{\circ})(t-2) - \frac{1}{2}x9.8x(t-2)^{2}$$

At the point they met, they had travelled the same distance, therefore;

$$(49sin30^{0})(t) - \frac{1}{2}x9.8xt^{2} = (49sin30^{0})(t-2) - \frac{1}{2}x9.8x(t-2)^{2}$$

$$68.6 = 19.6t$$

t = 3.5seconds

$$h = (49\sin 30^{0})(3.5) - \frac{1}{2}x9.8x3.5^{2} = 25.725m$$

Therefore the two met at 25.725m from the start.

(b)	Distance between A and B is $d = d_1 + d_2$ From, $s = ut + \frac{1}{2}at^2$ Horizontally there is no acceleration.	
	$d_1 = (49\cos 30^0)(3.5) = 148.5234m$ $d_2 = (49\cos 30^0)(3.5 - 2) = 63.6529m$	
	d = 148.5234 + 63.6529 = m Therefore the distance between A and B is 212.1763m	
Total		12 Marks