

PERTEMUAN-13

DUNIA 3 DIMENSI

2 Dimensi dan 3 DIMENSI

- Apa yang membedakan 2 dimensi dengan 3 dimensi ?
 - 2 Dimensi : Tinggi dan Lebar
 - 3 Dimensi : Tinggi, Lebar dan Kedalaman
- Kedalaman adalah jarak antara pemirsa (viewer) terhadap benda yang dia lihat

2 Dimensi dan 3 Dimensi

2 Dimensi

3 Dimensi

- Bagaimana manusia memperoleh kesan kedalaman ?
 - Manusia mempunyai dua mata.
 - Kedua mata manusia mempunyai selisih sudut pandang 120°
 - Perbedaan sudut pandang tersebut membuat masing-masing mata memperoleh gambar yang berbeda untuk objek yang sama.
 - Perbedaan gambar diproses oleh otak sehingga kita memperoleh kesan 'kedalaman' atau jarak terhadap benda.
- Percobaan : Tutup salah satu mata anda selama kurang lebih 2 hari dan anda akan mengetahui bahwa anda tidak dapat menentukan dengan mudah jarak antara anda dengan benda yang anda lihat

3 Dimensi

Sifat-sifat 3 dimensi

- Setiap titik dalam 3 dimensi ditentukan oleh tiga posisi :
 - x : jarak titik tersebut terhadap sumbu x
 - y: jarak titik tersebut terhadap sumbu y
 - z: jarak titik tersebut terhadap sumbu z
- Posisi sebuah titik dalam 3 dimensi dituliskan dalam bentuk (x,y,z)

Sifat-sifat 3 dimensi

Bagaimana menggambarkan sumbu 3 dimensi ?

Benda 3 Dimensi dan komputer

- Komputer dapat digunakan untuk mengolah benda tiga dimensi.
- Ada tiga persoalan dalam mengolah benda tiga dimensi menggunakan komputer :
 - Pembuatan lokasi titik 3D
 - Manipulasi titik 3D
 - Transformasi titik 3D menjadi 2D

Pembuatan lokasi titik 3D

- Proses yang digunakan untuk menghasilkan lokasi titik-titik 3D yang menunjukkan bentuk dari benda 3D
- Ada 3 macam proses untuk menghasilkan lokasi titik 3D :
 - Penentuan langsung menggunakan peralatan seperti mouse3D, scanner3D berbagai peralatan lain
 - Menggunakan parametric surface
 - Menggunakan prosedur khusus seperti extrude dan surface of revolution.

Scanner 3D

- Scanner 3D merupakan peralatan yang digunakan untuk menghasilkan lokasi titik-titik 3D secara langsung dengan menunjuk lokasi titik tersebut.
- Contoh peralatan : mouse, trackball, laser scanner dan sebagainya.

Parametric Surface

 Digunakan untuk menghasilkan benda-benda yang dapat direpresentasikan dalam rumus matematika seperti : bola, donut, tabung, cone dan sebagainya

(c)edhinug@unisbank.ac.id

Parametric Surface

Extrude

 Merupakan prosedur menghasilkan lokasi titik 3D dengan menarik titik-titik 2 dimensi ke satu arah tertentu.

Surface of Revolution

 Prosedur untuk menghasilkan lokasi titik 3D dengan cara memutar profile pada sumbu putar

Reprsentasi Struktur data titik 3D

- Titik 3D dapat disimpan sebagai :
 - Mesh
 - Rumus matematika
 - Titik profile

- Mesh merupakan kumpulan titik 3D yang saling dihubungkan.
- Model yang dihasilkan disebut sebagai wireframe model
- Permukaan benda (surface) diperoleh dengan menghubungkan titik-titik vertex baik dalam bentuk segiempat atau segitia.
- Umumnya digunakan surface dalam bentuk segitiga karena bentuk segitiga akan selalu berada dalam keadaan planar (datar).

surface 1 surface 2 v1-v2-v4 v4-v2-v3

Mesh dengan surface segi-empat disimpan sebagai record :

```
Point3D = record

x,y,z:real;

end;

Mesh = record

jumvertex,jumedge:integer;

vertex : array [1..1000] of Point3D;

edge : array[1..1000,1..2] of integer;

end;
```


Daftar Vertex				
Vertex	x	у	z	
1	0	0	0	
2	0	1	0	
3	0	1	1	
4	0	0.5	1.5	
5	0	0	1	
6	1	0	0	
7	1	1	0	
8	1	1	1	
9	1	0.5	1.5	
10	1	0	1	

edge	v ₁	V ₂
1	1	2
2	2	3
3	3	4
4	4	5
5	5	1

edge	v ₁	V ₂
6	6	7
7	7	8
8	8	9
9	9	10
10	10	6

edge	v ₁	V ₂
11	1	6
12	2	7
13	3	8
14	4	9
15	5	10

edge	v ₁	V ₂
16	2	5
17	1	3

Proses Komputer 3D

