

## Implementing PID Controller for 2-wheel drive robots

presented by

Suresh Sundaram
Assistant Professor

School of Computer Engineering

August 2015





# Overview of Speed Control System



Open Loop Control

PID Control

2 WD Speed Control

Issues





Open Loop Control

PID Control

2 WD Speed Control

Iccup

# **Understanding of Actuator**

- Microcontroller board drives the motor through PWM.
- In the board library, required Motor <u>Speed</u> is specified by (u) and is in the range of -400 to +400.
- Driver sends corresponding <u>current</u> to motor to drive it

  Table - Input Speed vs Measured RPM
- Overall relationship -

\*subject to battery charge, surface friction, etc

| Speed | RPM      |
|-------|----------|
| 400   | 131.863  |
| 350   | 122.2386 |
| 300   | 103.6323 |
| 250   | 84.4372  |
| 200   | 65.01241 |
| 150   | 46.05117 |
| 100   | 27.73403 |
| 50    | 9.67545  |
| 0     | 0        |





Open Loop Control

PID Control

2 WD Speed Control

Iccup

# **Understanding the Sensor**

- Encoder is used to measure the speed of motor
- Need to convert square wave from motor encoder to a meaningful speed!!
- Using time-width of pulse is one way -> faster the wheel speed, longer the time-width :





Suresh Sundaram and Venugopalan TK, School of Computer Engineering, Nanyang Technological University, Singapore (2015).





Open Loop Control

PID Control

2 WD Speed Control

Issued

# **Understanding the Sensor**

 Convert time-width to rpm of wheel -> (note 562.25 square waves for every revolution of wheel)







**Open Loop Control** 

PID Control

2 WD Speed Control

Issues

# **Open Loop Control**

- Assume: perfect system. We can achieve straight line motion using table look-up!
- Setting equal speed on both wheel (100 rpm)!!!



**Open Loop Control** 

PID Control

2 WD Speed Control

Iccupa

# **Open Loop Control**



- Open loop control system will not work due to various reasons!
- Motor characteristics are different
- 2. Friction of surface
- 3. Uncertainties
- 4. PWM calculation errors





Open Loop Control

**PID Control** 

2 WD Speed Control

Issue

# **Closed-Loop Control**

## Basic PID Control System



- Physical System Motor
- Input u(t) Motor current (o-12 A)
- Output Motor speed (o-130 rpm)
- Set point Required rpm
- Error e(t) = (Set point Feedback)
- PID Controller tries to minimize the error and handle uncertainties.

Suresh Sundaram and Venugopalan TK, School of Computer Engineering, Nanyang Technological University, Singapore (2015).



Open Loop Control

**PID Control** 

2 WD Speed Control

Issues

## PID Control

#### PID - Proportional, Integral, Derivative Control

- PID is one type of control law!
- Analog PID Implementation:



Seborg, et al, Process Dynamics and Control, Second Edition



Open Loop Control

**PID Control** 

2 WD Speed Control

Issues

# **Digital PID**

Analog Control Law

**Z-Transform** 

Digital-PID

Digital PID Implementation\*:

$$u[k] = u[k-1] + K_1 * e[k] + K_2 * e[k-1] + K_3 * e[k-2]$$

Where

 $K_1 = K_p + K_i + K_d$ 

 $K_2 = -K_p - 2K_d$ 

 $K_3 = K_d$ 

\*K.J. Astrom and T. Hagglund. PID Controllers, 2nd ed., Instrument Society of America, 1995.

- Difference equation -> No need to integrate/differentiate in the code!
- The method to find K1,K2,K3 will be discussed later!!



Open Loop Control

**PID Control** 

2 WD Speed Control

Issue

# Digital vs Analog

#### **Comparing Digital and Analog Controllers**

| Digital PID in micro controller                                             | Analog PID                                                               |  |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| More economical because of cheap components and the simple design algorithm | Comparatively expensive due to the complexity of the design algorithm    |  |
| Fully integrated and compact                                                | A large number of operational amplifiers and other components are needed |  |
| High noise immunity                                                         | Noise susceptibility is high                                             |  |
| More flexibility because of the ability to program and reprogram the chip   | Redesigning is required for any change in the system parameters          |  |
| High accuracy with faster processing and low power consumption              | Less accurate with more processing time and power consumption is higher  |  |

Abdul Rasool et al (2009), Sudan Engineering Society Journal



# Pseudo code for Digital PID

Algorithm to implement PID control in any micro processor

Overview

Open Loop Control

**PID Control** 

2 WD Speed Control

Iccup

- Fix required set point
- 2. Calculate k1,k2,k3
- 3. Read feedback signal into 'y' (Data Acquisition)
- 4. Calculate error between set point and feedback
- 5. Compute 'u' using digital PID control law
- 6. Send 'u' to output for control
- Wait for 'xx' msec (sampling time) before continuing
- 8. Repeat 3-7

Other considerations – (a) Need to know kp,ki,kd

- (b) Sampling Time
- (c) Input/output saturation, etc.

-> Will be covered in the slides to come



Open Loop Control

PID Control

2 WD Speed Control

Issue

## 2-wheel drive PID control

## 2-wheel drive car



- 2 independent control loops
  - Micro-controller implements the two above control loops



**Open Loop Control** 

PID Control

2 WD Speed Control

Iccup

## 2-wheel drive PID control

## Control Loop:

- Set point Determined by scenario, eg:
  - Go-forward => left and right wheel SP = 'xx' rpm)
  - Turn-left -> left wheel SP = '-xx' rpm, right = 'xx' rpm for a particular duration
- Controller
  - Need to determine tuning parameters to achieve the set point
- Output
  - Need to convert the controller output to PWM –
     Motor driver library can be used
- Feedback
  - Need to convert the encoder feedback to speed needs understanding of the encoder specification



**Open Loop Control** 

PID Control

2 WD Speed Control

Iccup

# **Tuning Parameters**

# Next logical question – How to choose the $K_p$ , $K_i$ , and $K_d$ ?

- Various Methods :
  - Ziegler-Nichol's Open Loop Tuning Method –

| Controller | Parameters                  |                      |             |
|------------|-----------------------------|----------------------|-------------|
|            | K <sub>c</sub>              | Ti                   | $T_d$       |
| Р          | $\frac{\tau_s}{K\tau_d}$    |                      |             |
| PI         | $\frac{0.9\tau_s}{K\tau_d}$ | $\frac{\tau_d}{0.3}$ |             |
| PID        | $\frac{1.2\tau_s}{K\tau_d}$ | $2\tau_d$            | $0.5\tau_d$ |

Seborg, et al, Process Dynamics and Control, Second Edition..



Open Loop Control

PID Control

2 WD Speed Control

Issues

# **Tuning Parameters**

• Step Test to determine K,  $\tau_d$  and  $\tau_s$ 





**Ideal Process** 

**Real Process** 

Response of output to an input change of 'M' ( $u_2-u_1$ ) at t = o sec

http://www.see.ed.ac.uk/~jwp/controlo6/controlcourse/course/map/ZN/opennotes.html

- Determine  $\tau_d$  and  $\tau_s$
- Determine K = (y2-y1)/(u2-u1)

Suresh Sundaram and Venugopalan TK, School of Computer Engineering, Nanyang Technological University, Singapore (2015).



Open Loop Control

PID Control

2 WD Speed Control

Iccuo

# **Tuning Parameters**

Actual Test data from motor step test –





# Closed-loop control

Overview

Open Loop Control

PID Control

2 WD Speed Control

Issues



Open Loop Control

PID Control

2 WD Speed Control

Issues

# Implementation Issues

- Excessive noise in input signals
  - Consider filtering
- Slow processor sluggish control
  - Ensure all computations are complete within sampling period
- Saturation breaching limits
  - Impose validity limits for inputs, calculations, outputs.
- Slipping during frequent start/stop
  - Avoid jerky control



Open Loop Control

PID Control

2 WD Speed Control

Issues

# Sampling Rate

Rate of data acquisition from feedback

-> Important!



- Too slow
  - Controller acts slowly, feedback sampling violates nyquist criterion
- Too fast
  - Excess noise in differentiator, overflow in integrator
- Ideal
  - Rule of thumb -> Sampling Rate =
     (0.01 to 0.1)\*Settling time of system
     Suresh Sundaram and Venugopalan TK, School of Computer Engineering, Nanyang Technological University, Singapore (2015).



**Open Loop Control** 

PID Control

2 WD Speed Control

Issues

# Beyond this ...

- We have discussed speed control of 2 wheel drive robot
- Other tasks in navigating maze -> obstacle avoidance, exploration will be taken care by top-level mission control

## **Good Luck!**