$x = x_1 x_2 a$; where $a \notin P(r_{\alpha_i})$ i = 1,2 (because $(a,x_i)=1$ that or $_{\rm s}$ to the say $_{\rm s}$ is non co-prime to $_{\rm s}$ so that is non co-prime to r_{α_1} . Also since $x\in \operatorname{P}(r_{\alpha_2})$ one of the x_t units. Since $x \in P(r_{\alpha_i})$; one of the x_i (i = 1, 2, ...s) say x_1 $x = x_1 x_2 \dots x_s$, where x_i are mutually co-prime rigid non

which is equivalent to saying that (a,r,) = 1).

 $x_{s} \in P(r_{\alpha_{1}}) \cap P(r_{\alpha_{8}})$ that is x_{1} or x_{8} is a rigid non unit $x_i \in Q$ or $x_s \in Q$. In other words $x_i \in P(P_{\alpha_1}) \cap P(P_{\alpha_2})$ or at tand so x_1x_2 a = $x \in Q$ implies that $x_1x_2 \in Q$, that is Since we assume that Q is prime and since a & P(rai)

non co-prime to two co-prime rigid non units (since $\alpha_1 \neq \alpha_2$)

a contradiction that confirms that (3) holds for Φ .

To prove (4) for Φ let $R' = \cap R_p$, $\alpha \in I$,

of rigid non units and we are forced to conclude that v is a unit in each Rp , that is v cannot be expressed as a product we can assume that (u, v) = 1, but this implies that v is a and suppose that $x = u/v \in R'$, then since R is an HCF domain

unit and x & R which confirms that

R = N Rp ; a E I.

Arull domains. Being short of a suitable name for these of Semirigid Domains, and, gives us another generalization of The above theorem, characterization

Definition 3. An integral domain R will be called a *GKD integral domains, we call them *GAD's.

It there exists a family ψ = { P $_{lpha}$ } $_{lpha}$ $_{eta}$ I of prime ideals of

* 2- for each Pa; a e I, Rp is a valuation domain only a finite number of members of Φ . * - every non zero non unit element of R is contained in