- -> 2 families of groups
 - () Group of symmetries for regular n-gon (Dihedral group D_n , $|D_n| = 2n$)
 - G Free groups generated by n symbols F(S), where $S = \{a_1, a_2, ..., a_n\}$
- 7 Z, S_n , Z_n y-n=7, today = T_{hu} , 10^{th} Aug 2023 What is 10 Aug 2025? No. of days = $365 \times 2 + 1 = 731$ 731 % 7 = 3, so day = $t_{hu} + 3 = S_{unday}$
- → Suppose H is a subset of group Gr.

 y for x,y ∈ H we have my ∈ H, then H is closed under multiplication (or multiplicative subset of Gr)
 - Eg: 2Z (even integers) is closed under addition 2Z+1 (odd integers) is not closed under addition.
- \rightarrow If $H \subset G$ is closed under the operation, and forms a group, then H is called a subgroup of G and we write $H \subset G$.
- Eg: 2Z < Z, but not 2ZH < Z

So if n is odd, then $2\mathbb{Z}_n = \mathbb{Z}_n$ if n is even, $2\mathbb{Z}_n < \mathbb{Z}_n$

 $\{1, reflection about AD\} < D_3$

· Le) < Gr (trivial subgroup), and G < G

-) Subgroups of Z

- · Let $m \in \mathbb{Z}$, then $m \mathbb{Z} = \{mj \mid j \in \mathbb{Z}\}$ is a subgroup of \mathbb{Z}
 - Let H < Z. Either $H = \{0\}$ or H = mZ for some $m \in Z$. Let $X = \{x \in H : x > 0\}$ $\neq \emptyset$, then m con be found as m = min(x). We know min(x) exists coz of WDP. By def of m, $mZ \subset H$.

We just need to prove $H cm \mathbb{Z}$ Suppose $\pi \in H$. By EDA, $\pi = qm + \pi$, $o \leq \pi < m$ then $\pi \in H$ but m is smallest positive number of H, so π has to be O. So $m|_{\pi}$. So H cm \mathbb{Z} So finally, H = m \mathbb{Z}

→ Subgroups of Zn

* Every subgroup of \mathbb{Z}_n in of the form $n \mathbb{Z}_n$ for some $n \in \mathbb{Z}$ (Proof of exercise)

Take HCF

· n Zn = Zn if gcd (n, n) = 1

Proof: take [in] = [jn] for some $0 \le i \le j \le n$ then $n \mid r(j-i)$ but $g \le d(n,n) = 1$ then $n \mid l \mid -i \mid s$ but $0 \le i \le j \le n$ So j-i=0So each subgroup in $\{[0], [n], ..., [m-inn]\}$ is distinct So, $n \mid Z_n = Z_n$

Proposition: Let H CG, H = P, If "x,y EH = "y" EH",
then H < G

 $\frac{Proof:}{Suppose}$ a, b $\in H$ (since $H \neq \phi$)

 \rightarrow take x=a, y=a, then $xy^{-1}=aa^{-1}=e$ \in H

-s take n=e, y=a, then a-1 E.H (closed under inverse)

 \rightarrow take x=a, $y=b^{-1}$, then $a(b^{-1})^{-1}=ab\in H$

(closed under mult)

So H < G.

```
\rightarrow Let H < G. Define a relation \sim on G as:
For \pi_{i,y} \in G, \pi_{\sim y} if \pi_{y^{-1}} \in H
```

- · Reflexive (coz xx-1=e EH)
- · Symmetric (coz if xy-1 EH, then (xy-1)-1 EH i.e., yx-1 EH)
- · Transitive ((oz if my-1 EH, and yz-1 EH, then my-1 yz-1 EH. i.e., nz-1 EH)

So ~ is an equivalence relation.

- What is the class of x E G under ~ ?

$$y \in [x]_H$$
 if $y \sim_H x$
i.e., $y x^{-1} \in H$
let $y x^{-1} = h$, $h \in H$
or $y = hx$

Notation Hn = {hn | hen} = [n]H

Hr is called a right coset that contains n.

- since ~ is equivalence, then

disjoint cosets

G is a disjoint union of certain right cosets

→ Consider a finite group G, then |G| is called the order of the group, and is the number of elements in G.

· Suppose IHI=m, IGI=n

Take the map H my Hn
h m

by def of Hn, Whis onto

Also if hn = h'n, then h = h' so m_i is one-one, So m_i is bljection

So m = |Hn|

 $So n = |G| = |O| Hx; = \sum_{i \in I} |Hx;| = |I| m$

So m/n, i.e., /H/16/1
morever, # of right cosets is a factor of 16/1
this number is called index of H in a

→ Define ~ as:

for x,y EG, n = y => n-'y EH

Just like before, define left cosets H(x) = nH then index of left and right cosets is some, number of left and right cosets is some.

Lagrange's Theorem of Group theory
Theorem: The order of Subgroup divides the order
of the group, if the group is finite.