432 Class 2 Slides

github.com/THOMASELOVE/2019-432

2019-01-24

BRFSS and SMART

The Centers for Disease Control analyzes Behavioral Risk Factor Surveillance System (BRFSS) survey data for specific metropolitan and micropolitan statistical areas (MMSAs) in a program called the Selected Metropolitan/Micropolitan Area Risk Trends of BRFSS (SMART BRFSS.)

In this work, we will focus on data from the 2017 SMART, and in particular on data from the Cleveland-Elyria, OH, Metropolitan Statistical Area.

Note that the Course Notes concentrate instead on an earlier data set from the 2016 SMART BRFSS.

Setup

```
library(skimr); library(broom); library(janitor)
library(simputation); library(tidyverse)

smart_cle_2017 <- readRDS("data/smart_2017_cle.rds")
smart_oh_2017 <- readRDS("data/smart_2017_oh.rds")</pre>
```

How Did I Build the Data?

```
\label{local_visit_visit} Visit \ https://github.com/THOMASELOVE/2019-432/tree/master/data-and-code/smart\_2017 \\ on our \ Data \ and \ Code \ pages \ (smart\_2017 \ folder) \ for \ all \ of \ the \ details.
```

Today's Variables

20

[1] 6277

Variables by Type

head(smart_a_raw)

```
# A tibble: 6 x 20
  subject genhealth physhealth menthealth bmi bmigroup
 <chr> <fct>
                        <dbl>
                                   <dbl> <dbl> <fct>
                                       1 26.6 [25.0,3~
1 171402~ 2 VeryGo~
2 171402~ 2 VeryGo~
                                      16 29.6 [25.0,3~
                                       0 29.4 [25.0,3~
3 171402~ 2 VeryGo~
                            0
                                       0 27.5 [25.0,3~
4 171402~ 3 Good
                            2
5 171402~ 2 VeryGo~
                            0
                                       0 20.0 [18.5,2~
                                       0 20.4 [18.5,2~
6 171402~ 4 Fair
# ... with 14 more variables: weight_kg <dbl>,
#
   height_m <dbl>, exerany <dbl>, numdocs2 <fct>,
#
   flushot <dbl>, smoke_100 <dbl>, educgroup <fct>,
#
   diagnoses <dbl>, seatbelt_always <fct>,
#
   hx diabetes <dbl>, female <dbl>, internet30 <dbl>,
#
    agegroup <fct>, mmsaname <chr>
```

Structure of the data frame with str

: num

```
str(smart_a_raw)
```

```
Classes 'tbl_df', 'tbl' and 'data.frame': 6277 obs. of 20 v
 $ subject
                  : chr "171402017000002" "171402017000003" "
 $ genhealth
                  : Factor w/ 5 levels "1 Excellent",..: 2 2 2
 $ physhealth
                         0 2 0 2 0 0 30 2 0 0 ...
                  : num
 $ menthealth
                         1 16 0 0 0 0 15 15 2 0 ...
                  : num
                  : num 26.6 29.6 29.4 27.5 20 ...
 $ bmi
                  : Factor w/ 4 levels "[13.3,18.5)",..: 3 3 3
 $ bmigroup
 $ weight_kg
                         68 90.7 95.2 79.4 63.5 ...
                  : num
                         1.6 1.75 1.8 1.7 1.78 1.52 1.75 1.73
 $ height_m
                  : num
 $ exerany
                         1 1 1 0 1 1 0 1 1 0 ...
                  : num
 $ numdocs2
                  : Factor w/ 3 levels "1_One", "2_MoreThanOne"
 $ flushot
                         1 NA 0 1 0 0 0 1 1 1 ...
                  : num
 $ smoke_100
                         0 0 0 1 1 0 1 1 1 1 ...
                  : num
 $ educgroup
                  : Factor w/ 6 levels "Kindergarten",..: 4 4
```

\$ diagnoses

0 1 0 2 2 0 3 3 ...


```
bmi
              diagnoses exerany
Min. :13.30 Min. :0.000 Min.
                                :0.0000
1st Qu.:24.25    1st Qu.:0.000    1st Qu.:0.0000
             Median :1.000 Median :1.0000
Median :27.48
Mean :28.74
             Mean :1.279 Mean :0.6893
3rd Qu.:31.92
             3rd Qu.:2.000 3rd Qu.:1.0000
Max. :75.52
             Max. :8.000 Max. :1.0000
             NA's :238 NA's :13
NA's :323
   female
                   genhealth seatbelt_always
Min. :0.0000 1 Excellent: 872 Yes :5512
1st Qu.:0.0000 2_VeryGood :2046 No : 739
Median :1.0000 3_Good :1987 NA's: 26
Mean :0.5831 4 Fair : 991
3rd Qu.:1.0000 5 Poor : 370
Max. :1.0000 NA's : 11
```

More Detailed Summaries

mosaic::favstats(~ bmi, data = smart_a_raw)

exerany min Q1 median Q3

```
min Q1 median Q3 max mean sd n
13.3 24.25 27.48 31.92 75.52 28.74082 6.642863 5954
missing
323
mosaic::favstats(bmi ~ exerany, data = smart_a_raw)
```

```
n missing
1 1831 115
2 4111 207
```

0 13.64 24.99 28.93 34.125 75.52 30.19068 7.681224 1 13.30 23.95 27.09 31.070 64.67 28.09344 6.011350

max mean

sd

Counting is Wonderful!

```
smart_a_raw %>% count(mmsaname)
```

```
# A tibble: 6 x 2
  mmsaname
                                                            n
  <chr>>
                                                        <int>
1 Cincinnati, OH-KY-IN, Metropolitan Statistical Area
                                                          1460
2 Cleveland-Elyria, OH, Metropolitan Statistical Area
                                                          966
3 Columbus, OH, Metropolitan Statistical Area
                                                          1681
                                                          497
 Dayton, OH, Metropolitan Statistical Area
 Huntington-Ashland, WV-KY-OH, Metropolitan Statisti~
                                                         1020
 Toledo, OH, Metropolitan Statistical Area
                                                          653
```

Counting is Marvelous!

```
smart_a_raw %>% count(educgroup)
```

```
# A tibble: 7 x 2
educgroup n
<fct> <int>
1 Kindergarten 3
2 Elementary 95
3 Some_HS 265
4 HS_Grad 1873
5 Some_College 1800
6 College_Grad 2226
7 <NA> 15
```

Tabyls (from janitor) are great, too...

```
smart_a_raw %>% tabyl(genhealth)
```

```
genhealth n percent valid_percent
1_Excellent 872 0.13891987 0.13916374
2_VeryGood 2046 0.32595189 0.32652410
3_Good 1987 0.31655249 0.31710820
4_Fair 991 0.15787797 0.15815512
5_Poor 370 0.05894536 0.05904883
<NA> 11 0.00175243 NA
```

Counting: The Best Thing to Do

```
smart_a_raw %>% count(female, seatbelt_always)
```

```
# A tibble: 6 x 3
  female seatbelt_always
                              n
   <dbl> <fct>
                           <int>
       0 Yes
                            2205
       0 No
                             399
3
       O < NA >
                              13
4
       1 Yes
                            3307
5
       1 No
                             340
6
       1 <NA>
                              13
```

tabyl for Quick Cross-Tabs

```
smart_a_raw %>% tabyl(genhealth, numdocs2)
```

```
genhealth 1 One 2 MoreThanOne 3 Zero NA
            668
                         59
                                    3
1 Excellent
                              142
2 VeryGood 1664
                        120
                              260 2
    3 Good 1599
                        160 224 4
    4 Fair 786
                        124 79
    5 Poor 274
                         69
                               25 2
      <NA>
                                    0
```

Or for fancier cross-tabulations...

```
smart_a_raw %>%
  tabyl(smoke_100, seatbelt_always) %>%
  adorn_totals() %>%
  adorn_percentages("row") %>%
  adorn_pct_formatting(digits = 1) %>%
  adorn_ns(position = "front") %>%
  adorn_title()
```

seatbelt_always smoke_100 Yes No NA_ 0 2984 (89.3%) 350 (10.5%) 9 (0.3%) 1 2505 (86.1%) 388 (13.3%) 17 (0.6%) <NA> 23 (95.8%) 1 (4.2%) 0 (0.0%) Total 5512 (87.8%) 739 (11.8%) 26 (0.4%)

Using describe from Hmisc

```
Hmisc::describe(smart_a_raw %>% select(bmi))
```

smart_a_raw %>% select(bmi)

1 Variables 6277 Observations

bmi

n	missing	distinct	Info	Mean	${\tt Gmd}$
5954	323	1283	1	28.74	7.094
.05	.10	.25	.50	.75	.90
20.32	21.66	24.25	27.48	31.92	37.41
.95					
41.47					

lowest: 13.30 13.64 14.18 14.72 14.81 highest: 64.67 69.14 69.29 74.98 75.52

```
Hmisc::describe(smart_a_raw %>% select(genhealth))
smart_a_raw %>% select(genhealth)
    Variables
                 6277
                         Observations
genhealth
          missing distinct
    6266
               11
                         5
Value
           1 Excellent 2 VeryGood
                                        3 Good
                                                     4 Fair
Frequency
                   872
                              2046
                                           1987
                                                        991
                 0.139
                             0.327
                                         0.317
                                                      0.158
Proportion
Value
                5 Poor
                   370
Frequency
Proportion
                 0.059
```

```
Hmisc::describe(smart a raw %>% select(female))
smart_a_raw %>% select(female)
   Variables 6277 Observations
female
         missing distinct
                         Info
                                              Mean
                                      Sum
      n
                            0.729
                                     3660
                                            0.5831
   6277
    Gmd
 0.4863
```

Using skim to summarize the smart_a_raw data

skim(smart_a_raw)

```
Skim summary statistics
n obs: 6277
 n variables: 20
-- Variable type:character -----
 variable missing complete n min max empty n_unique
 mmsaname
                    6277 6277 41 59
 subject
                    6277 6277 15 15
                                              6277
-- Variable type:factor
       variable missing complete n n_unique
                                                                          top counts
                           6234 6277
                                               60-: 743. 65-: 731. 55-: 694. 70-: 612
       agegroup
                    43
       bmigroup
                           5954 6277
                                          4 [25: 2104, [30: 2046, [18: 1701, NA: 323
                                           6 Col: 2226, HS_: 1873, Som: 1800, Som: 265
      educgroup 15
                           6262 6277
      genhealth
                    11
                           6266 6277
                                             2_V: 2046, 3_G: 1987, 4_F: 991, 1_E: 872
       numdocs2
                                                1_o: 4998, 3_z: 732, 2_M: 534, NA: 13
                    13
                           6264 6277
 seatbelt always
                    26
                           6251 6277
                                                           Yes: 5512. No: 739. NA: 26
```

Using skim to summarize the smart_a_raw data

Variable type:numeric											
variable mis	sing c	omplete	n	mean	sd	p0	p25	p50	p75	p100	hist
bmi	323	5954	6277	28.74	6.64	13.3	24.25	27.48	31.92	75.52	
diagnoses	238	6039	6277	1.28	1.37	0	0	1	2	8	
exerany	13	6264	6277	0.69	0.46	0	0	1	1	1	
female	0	6277	6277	0.58	0.49	0	0	1	1	1	
flushot	28	6249	6277	0.51	0.5	0	0	1	1	1	
height_m	84	6193	6277	1.69	0.1	1.35	1.63	1.68	1.78	2.06	
hx_diabetes	13	6264	6277	0.16	0.36	0	0	0	0	1	
internet30	14	6263	6277	0.82	0.39	0	1	1	1	1	
menthealth	96	6181	6277	4.04	8.4	0	0	0	3	30	
physhealth	118	6159	6277	5.07	9.48	0	0	0	5	30	
smoke_100	24	6253	6277	0.47	0.5	0	0	0	1	1	
weight_kg	296	5981	6277	82.96	21.72	31.75	68.04	79.38	95.25	208.65	

Counts of Missing Data

```
smart_a_raw %>% summarise_all(funs(sum(is.na(.))))
```

```
# A tibble: 1 \times 20
  subject genhealth physhealth menthealth bmi bmigroup
   <int> <int> <int> <int> <int> <int>
1
                11
                          118
                                      96 323
                                                   323
  ... with 14 more variables: weight_kg <int>,
#
   height_m <int>, exerany <int>, numdocs2 <int>,
#
   flushot <int>, smoke_100 <int>, educgroup <int>,
#
   diagnoses <int>, seatbelt_always <int>,
#
   hx diabetes <int>, female <int>, internet30 <int>,
#
   agegroup <int>, mmsaname <int>
```

I need to override the usual tibble printing behavior.

Use print.data.frame?

```
smart_a_raw %>% summarise_all(funs(sum(is.na(.)))) %>%
print.data.frame
```

```
subject genhealth physhealth menthealth bmi bmigroup
                 11
                            118
                                        96 323
                                                     323
 weight_kg height_m exerany numdocs2 flushot smoke_100
        296
                  84
                           1.3
                                    1.3
                                             28
                                                       24
 educgroup diagnoses seatbelt_always hx_diabetes female
         15
                  238
                                    26
                                                 13
  internet30 agegroup mmsaname
1
          14
                   43
```

- Which variables have the most missing data? The least?
- How many rows have at least one missing element?

What does this code tell us?

```
smart_a_raw %>% dim
[1] 6277
          20
smart a raw %>% filter(!complete.cases(.)) %>% nrow
[1] 815
smart a raw %>% filter(complete.cases(.))
# A tibble: 5,462 x 20
  subject genhealth physhealth menthealth bmi bmigroup
  <chr> <fct>
                   <dbl> <dbl> <dbl> <fct>
 1 171402~ 2_VeryGo~
                                        1 26.6 [25.0,3~
2 171402~ 2 VeryGo~
                             0
                                        0 29.4 [25.0,3~
3 171402~ 3_Good
                                        0 27.5 [25.0,3~
4 171402~ 2 VeryGo~
                                        0 20.0 [18.5.2~
                             0
```

Simple Imputation

- I'll use impute_pmm on most numeric variables to predict them using the MSA (and maybe some other things.)
- I'll use impute_cart similarly on most of the character/factor variables.
- I'll use robust linear models to impute a few things via impute_rlm,
 and
- I won't impute bmi or bmigroup directly, but instead recalculate them using imputed weight_kg and height_m values.

All of these (but the last) are essentially arbitrary decisions here.

set.seed(20190124)

```
smart_a_imp <- smart_a_raw %>%
    impute_pmm(smoke_100 ~ mmsaname) %>%
    impute_pmm(exerany ~ mmsaname) %>%
    impute_pmm(flushot ~ mmsaname) %>%
    impute_pmm(internet30 ~ mmsaname) %>%
    impute cart(numdocs2 ~ mmsaname + flushot) %>%
    impute cart(genhealth ~ mmsaname + smoke 100) %>%
    impute cart(educgroup ~ mmsaname) %>%
    impute cart(agegroup ~ mmsaname) %>%
    impute cart(seatbelt always ~ mmsaname) %>%
    impute pmm(physhealth ~ mmsaname) %>%
    impute_pmm(menthealth ~ mmsaname) %>%
    impute_rlm(diagnoses ~ numdocs2) %>%
    impute_rlm(weight_kg ~ physhealth + exerany) %>%
    impute_rlm(height_m ~ physhealth + female) %>%
    impute_pmm(hx_diabetes ~ weight_kg + exerany)
```

Sanity Check on exerany imputation

```
smart a raw %>% count(exerany) %>% mutate(prop = n / sum(n))
# A tibble: 3 x 3
 exerany n prop
   <dbl> <int> <dbl>
       0 1946 0.310
2 1 4318 0.688
3
      NA 13 0.00207
smart a imp %>% count(exerany) %>% mutate(prop = n / sum(n))
# A tibble: 2 x 3
 exerany n prop
   <dbl> <int> <dbl>
       0 1946 0.310
       1 4331 0.690
```

Sanity Check on genhealth imputation

The original, unimputed data:

```
smart_a_raw %>% count(genhealth) %>%
mutate(pct = round(100*n / sum(n), 1))
```

```
# A tibble: 6 x 3
genhealth n pct
<fct> <int> <dbl>
1 1_Excellent 872 13.9
2 2_VeryGood 2046 32.6
3 3_Good 1987 31.7
4 4_Fair 991 15.8
5 5_Poor 370 5.9
6 <NA> 11 0.2
```

Sanity Check on genhealth imputation

The data after simple imputation:

```
smart_a_imp %>% count(genhealth) %>%
  mutate(pct = round(100*n / sum(n), 1))
```

```
# A tibble: 5 x 3
genhealth n pct
<fct> <int> <dbl>
1 1_Excellent 872 13.9
2 2_VeryGood 2052 32.7
3 3_Good 1992 31.7
4 4_Fair 991 15.8
5 5_Poor 370 5.9
```

Calculating BMI and BMI group

Sanity Check on BMI imputations/calculations

```
mosaic::favstats(~ bmi, data = smart_a_raw) %>%
    round(digits = 1)
```

min Q1 median Q3 max mean sd n missing 13.3 24.2 27.5 31.9 75.5 28.7 6.6 5954 323

```
mosaic::favstats(~ bmi, data = smart_a_imp) %>%
    round(digits = 1)
```

min Q1 median Q3 max mean sd n missing 12.1 24.3 27.6 31.9 75.5 28.8 6.5 6277 0

Did I impute away all missing values?

```
smart_a_imp %>% summarise_all(funs(sum(is.na(.)))) %>%
print.data.frame
```

```
subject genhealth physhealth menthealth bmi bmigroup

1 0 0 0 0 0 0 0

weight_kg height_m exerany numdocs2 flushot smoke_100

1 0 0 0 0 0 0 0

educgroup diagnoses seatbelt_always hx_diabetes female

1 0 0 0 0 0 0

internet30 agegroup mmsaname

1 0 0 0 0
```

```
smart_a_imp %>% filter(!complete.cases(.)) %>% nrow
```

[1] 0

BMI Groups - do they make sense?

```
mosaic::favstats(bmi ~ bmigroup, data = smart_a_imp)
```

```
bmigroup min
                         Q1 median
                                            QЗ
                                                     max
1 [12.1,18.5) 12.11097 16.79763 17.67999 18.18637 18.48073
2 [18.5,25.0) 18.51429 21.26172 22.82099 23.92389 24.99174
3 [25.0,30.0) 25.00585 26.00555 27.32072 28.63275 29.99716
4 [30.0,75.5] 30.00768 31.65473 33.86187 37.91403 75.52133
                sd
                      n missing
     mean
1 17.28723 1.202602 108
2 22.57005 1.649085 1723
                             0
3 27.37454 1.464309 2248
4 35.64552 5.609182 2198
```

Wouldn't a Picture help?

```
ggplot(smart_a_imp, aes(x = bmigroup, y = bmi)) +
    geom_boxplot() + coord_flip() + theme_bw()
```


OK. Let's ask a question...

- Did people with a history of diabetes show meaningfully different BMI values than people without such a history?
- ② Does the answer to the question change if you take into account the subject's sex?
- **3** Does the answer to question 2 change if you also take into account the number of chronic diagnoses the person has?

Is hx_diabetes associated with bmi?

```
ggplot(smart_a_imp, aes(x = hx_diabetes, y = bmi)) +
   geom_violin() +
   geom_boxplot(width = 0.2) +
   coord_flip() + theme_bw()
```

Warning: Continuous x aesthetic -- did you forget aes(group=...)?

Is hx_diabetes associated with bmi? (Redone)

```
ggplot(smart_a_imp, aes(x = factor(hx_diabetes), y = bmi)) +
    geom_violin() +
    geom_boxplot(width = 0.2) +
    coord_flip() + theme_bw()
```


Numerical Summary?

```
mosaic::favstats(bmi ~ hx_diabetes, data = smart_a_imp)
```

Can we model this?

```
model_01 <- lm(bmi ~ hx_diabetes, data = smart_a_imp)
tidy(model_01)</pre>
```

Is this what we want?

Effect Sizes and 95% Confidence Intervals

```
tidy(model_01, conf.int = TRUE, conf.level = 0.95) %>%
select(term, estimate, conf.low, conf.high, std.error)
```

And this is just a two-sample t test

28.15276 32.16417

Two Sample t-test

```
data: bmi by hx_diabetes
t = -18.116, df = 6275, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal
95 percent confidence interval:
  -4.445491 -3.577324
sample estimates:
mean in group 0 mean in group 1</pre>
```

Does the bmi to hx_diabetes relationship depend on sex?

Does the bmi to hx_diabetes relationship depend on sex?

```
hx_diabetes.female min
                                 Q1 median
                                                     Q3
                0.0 14.81143 24.50139 27.46713 31.14390
                 1.0 12.11097 27.08157 30.50893 35.21455
3
                0.1 13.29938 23.38816 26.80957 31.17103
4
                 1.1 17.89453 27.32072 31.28322 36.65381
      max
              mean
                         sd
                               n missing
1 75.52133 28.35483 5.623548 2197
2 64.34948 31.68363 6.833382 420
3 74.97521 28.00960 6.558775 3101
4 69.29032 32.52522 7.519096 559
```

Model bmi with hx_diabetes and female?

First, with no interaction term

Analysis of Variance Table

Model with Interaction Term

Analysis of Variance Table

```
Response: bmi
```

Two-Factor Analysis of Variance

- Check interaction first.
 - Is there evidence of substantial interaction in a plot?
 - Is the interaction effect a large part of the model?
 - Is the interaction term statistically significant?
- If interaction is deemed to be meaningful, then "it depends" is the right conclusion, and we cannot easily separate the effect of one factor from another.
- If interaction is not deemed to be meaningful, we might consider fitting the model without the interaction (the "main effects" model) and separately interpreting the impact of each of the factors.

Interaction Plot for BMI Means

Code for Previous Slide

Alternative Coding for Visualizing Interaction

What Should We Conclude Here?

```
anova(model 02 yes)
```

Analysis of Variance Table

```
Response: bmi
```

```
Df Sum Sq Mean Sq F value Pr(>F)
                     13296 13296.5 328.4918 < 2e-16 ***
hx diabetes
female
                        38 38.4 0.9492 0.32997
hx_diabetes:female 1 285 284.7 7.0335 0.00802 **
Residuals 6273 253914 40.5
```

Signif. codes:

```
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Making Predictions ...

```
coef(model_02_yes) %>% round(digits = 2)
       (Intercept)
                          hx_diabetes
                                                   female
             28.35
                                  3.33
                                                     -0.35
hx_diabetes:female
              1.19
coef(model 02 no) %>% round(digits = 2)
(Intercept) hx diabetes
                              female
      28.25
                   4.01
                              -0.16
```

How well do these models work?

```
glance(model_02_yes) %>% round(digits = 2) %>%
    print.data.frame
```

```
r.squared adj.r.squared sigma statistic p.value df
1 0.05 0.05 6.36 112.16 0 4
logLik AIC BIC deviance df.residual
1 -20519.45 41048.91 41082.63 253914.1 6273
```

```
glance(model_02_no) %>% round(digits = 2) %>%
    print.data.frame
```

```
r.squared adj.r.squared sigma statistic p.value df
1 0.05 0.05 6.37 164.56 0 3
logLik AIC BIC deviance df.residual
1 -20522.97 41053.94 41080.92 254198.8 6274
```