群

- 1. 在整数集Z中定义二元运算"*"如下:
- (1) $n*m=-m-n, m,n\in\mathbb{Z}$. 证明这个二元运算是交换的,但不是结合的.
- (2) n * m = n + m 2, $m, n \in \mathbb{Z}$. 证明($\mathbb{Z}, *$)是群.

证明 (1) 略.

- (2) 封闭性、结合律显然,单位元为2,对于任意n,其逆元为4-n.
- 2. 证明: 若G为有限集且对运算"·"封闭, 满足结合律和消去律, 则 (G, \cdot) 构成一个群.

证明 引理: 若半群G满足 $\forall a,b \in G$,方程xa = b,ax = b均有解,则G 为群. 引理的证明: $\because xa = a$ 有解,解为 e_a , $\therefore e_a a = a$. 对于 $\forall c \in G$, ax = c有解,解为d, 则ad = c, 从而有 $e_a c = e_a (ad) = e_a ad = ad = c$. \therefore G存在幺元,幺元为 e_a . 对于 $\forall f \in G$, $xf = e_a$, $fx = e_a$ 有解, $\therefore x$ 为f的逆元. 综上,G是群. $\forall a \in G$, \because 满足消去律且|G|有限, $\therefore aG = G$,从而 $\forall a,b \in G$, ax = b, xa = b有解.

3. 已知群 $(G_1, +_1)$, $(G_2, +_2)$, 构造集合 $G = G_1 \times G_2 = \{(x, y) | x \in G_1, y \in G_2\}$ 以及运算+满足

$$(x_1, y_1) + (x_2, y_2) = (x_1 +_1 x_2, y_1 +_2 y_2)$$

证明(G,+)是群.

证明: 封闭、结合律、幺元为 (e_1,e_2) 、存在逆元

4. 设群中每个非幺元的阶为2, 证明该群是Abel群.

证明: $\forall a, b \in G, a^2 = b^2 = (ab)(ab) = e$. 对 $(ab)(ab) = a^2$ 两边左乘a, 有bab = a, b(bab) = ba. 由 $b^2 = e$ 知ab = ba, G为Abel群.

- 5. 对于集合S, 定义 2^S 为S的幂集. 证明:
- (1) $(2^S, \cup)$ 与 $(2^S, \cap)$ 均为半群;
- (2) 若在S的子集上定义运算 $A\Delta B=(A\setminus B)\cup(B\setminus A)$, 则 $(2^S,\Delta)$ 是群. 证明: 略.

6*. 设M是幺半群, e是其幺元. 对于M中的元素a, 若存在元素 $a^{-1} \in M$ 满足

$$a^{-1}a = aa^{-1} = e$$

则称a是可逆的. 试证明下列命题:

(1) 若 $a \in M$, 且存在 $b, c \in M$ 使得ab = ca = e, 则a可逆且 $a^{-1} = b = c$;

- (2) 若 $a \in M$ 可逆, 则 $b = a^{-1}$ 当且仅当 $aba = a, ab^2a = e$;
- (3) M中的非空子集G为群的充要条件是G中每个元素可逆, 且 $\forall g_1, g_2 \in G$ 有 $g_1^{-1}g_2 \in G$;
- (4) M中所有可逆元素构成一群.

证明:

- (1) 只需证明b = c. 易知b = (ca)b = c(ab) = c, 故a可逆且 $a^{-1} = b = c$.
- (2)"⇒": 显然.

" \Leftarrow ": 要证明 $b = a^{-1}$, 需证ab = ba = e. $ab = abaa^{-1} = aa^{-1} = e$, $ba = a^{-1}aba = a^{-1}a = e$, ab = aba = e.

(3)"⇒": 显然.

"←": 封闭性、结合律、逆元存在是显然的. $\forall g \in G, g^{-1}g \in G, \text{ } \text{即}e \in G.$

(4) 若 g_1, g_2 可逆,则 $(g_2^{-1}g_1^{-1})(g_1g_2) = (g_1g_2)(g_2^{-1}g_1^{-1}) = e$,故 g_1g_2 可逆,满足封闭性.结合律、幺元、逆元存在是显然的.

7. 设G是一个群, H是G的一个非空有限子集, 证明H是G的子群的充要条件是: 对任意 $a,b \in H$ 有 $a \cdot b \in H$.

证明:

"⇒": 显然.

"⇐": 群满足消去律. 有限半群满足消去律是群.

注:请注意,本题条件与教材中定理6.2.2不同.

8. 设H是 \mathbb{Z} 的子群,证明必存在整数m使得 $H=m\mathbb{Z}$.

证明: 构造法.

令 $m = \min\{|n| \mid n \in H, n \neq 0\}$. : H是 \mathbb{Z} 的子群, : H中的元素都是整数. $\forall a \in H$, 由带余除法可知 $a = mq + r, 0 \leq r < m$. : $mq \in H(q \uparrow m \pitchfork m)$, : $r \in H$. 由m的定义知r = 0, 从而 $H = m\mathbb{Z}$.

9. 证明群G不能写成两个真子群的并.

证明: 设 H_1 和 H_2 是G的真子群且 $H_1 \cup H_2 = G$. 取 $a \in H_1, b \in H_2$ 且 $a \notin H_2, b \notin H_1$, 则 $ab \notin H_1$, $ab \notin H_2$, 从而 $ab \notin G$, 矛盾.

10. 证明群中元素与其逆元具有相同的阶.

证明: $(a^n)^{-1} = (a^{-1})^n$, 从而有 $a^k = 1$ 当且仅当 $(a^{-1})^k = 1$, 故a与 a^{-1} 同阶.

11. 证明有限群G中的任何元素的阶都可整除|G|.

证明: 教材(机械工业出版社)定理6.3.4, ord(a) = $|\langle a \rangle|$, 定理6.5.4(拉格朗日定理), $|\langle a \rangle|$ | |G|.

12. 证明(\mathbb{Z}_p , +)有p-1个生成元, 其中p为素数.

证明: 教材(机械工业出版社)定理6.3.2的推论.

13. 设G是群, $a \in G$, $\langle a \rangle$ 是G中唯一的二阶子群. 证明对于 $\forall x \in G$, 有ax = xa.

证明: $\langle a \rangle = \{e, a\}, \ a \neq e, \ a^2 = e, \ \underline{1}a \underline{1}e = e$ 的二阶元. $\forall x \in G$, $(x^{-1}ax)(x^{-1}ax) = e$, $x^{-1}ax = e$ 或a. $\overline{1}e$ $\overline{1}e$

14. 证明只有有限个子群的群为有限群.

证明: 假设G为无限群, 若 $\exists g \in G$, g的阶为 ∞ , 则 $\langle g \rangle \cong \mathbb{Z}$, \mathbb{Z} 有无限多个子群, 矛盾. \therefore G中每个元素的阶有限, 从而取 $a \in G$, $\exists b \in G$ 但 $b \notin \langle a \rangle$, $\exists c \in G, c \notin \langle a \rangle, c \notin \langle b \rangle, \ldots$, 依次类推, G有无限个子群, 矛盾. \therefore G必为有限群.

- 15. 设G是Abel群, H, K是其循环子群, 阶分别为r, s, 证明:
- (1) 若(r,s) = 1, 则G有阶为rs的循环子群;
- (2) G包含一个阶为[r,s]的循环子群.

证明: 设 $H = \langle a \rangle, K = \langle b \rangle, ab$ 的阶为k, 那么有 $(ab)^k = a^k b^k = e, \therefore r \mid k, s \mid k, \therefore [r, s] \mid k$. 另一方面, $(ab)^{[r,s]} = a^{[r,s]} b^{[r,s]} = e, \therefore k \mid [r, s]$. 故可以得到k = [r, s],于是 $\langle ab \rangle$ 是G 中的[r, s]阶循环子群. 由(2)可直接推出(1).

16. 证明质数阶群只有平凡子群.

证明: 拉格朗日定理.

17*. 已知群 G_1, G_2 是G的有限子群,证明:

$$|G_1G_2| = [G_1:1][G_2:1]/[G_1 \cap G_2:1].$$

证明: 即证明 $|G_1G_2| = |G_1||G_2|/|G_1 \cap G_2|$. 考虑左陪集 $aG_2, a \in G_1$, 则 $\{aG_2\}$ 是对 G_1G_2 的一个划分,于是问题变成找到陪集 aG_2 把 G_1G_2 分成了多少份. 下面考虑 aG_2, bG_2 在什么情况下是同一个陪集. $aG_2 = bG_2, a, b \in G_1 \Leftrightarrow b^{-1}a \in G_2 \Leftrightarrow b^{-1}a \in G_1 \cap G_2 \Leftrightarrow a(G_1 \cap G_2) = b(G_1 \cap G_2)$. 此推导过程表明 $aG_2 = bG_2 \Leftrightarrow a(G_1 \cap G_2) = b(G_1 \cap G_2)$, $a, b \in G_1$, 于是陪集 aG_2 把 G_1G_2 分成的份数等同于 $a(G_1 \cap G_2)$ 把 G_1 分成的份数. 得证.

18. 已知群 G_1, G_2 是G的有限子群且 $G_1 \subset G_2$, 证明

$$[G:G_1] = [G:G_2][G_2:G_1].$$

证明:
$$[G:G_1] = \frac{|G|}{|G_1|}$$
, $[G:G_2] = \frac{|G|}{|G_2|}$, $[G_2:G_1] = \frac{|G_2|}{|G_1|}$.

19. 设H是群G的正规子群,证明商群G/H是Abel群的充要条件是

$$gkg^{-1}k^{-1}\in H,\ \forall g,k\in G.$$

证明: G/H是Abel群 $\Leftrightarrow gHkH = kHgH \Leftrightarrow gkH = kgH \Leftrightarrow gk(kg)^{-1} = gkg^{-1}k^{-1} \in H$

20. 设H, K是群G的两个正规子群且 $H \cap K = \{1\}$, 证明:

 $hk = kh, \ \forall h \in H, k \in K.$

证明: 对于 $\forall h \in H, k \in K, (kh)^{-1}hk = h^{-1}k^{-1}hk.$: H是正规子群, : $k^{-1}hk \in H, : h^{-1}k^{-1}hk \in H$; 同理可得 $h^{-1}k^{-1}h \in K, : h^{-1}k^{-1}hk \in K$, 故 $h^{-1}k^{-1}hk \in H \cap K$. : $H \cap K = \{1\}, : h^{-1}k^{-1}hk = 1, : hk = kh$.

22*. 设H是群G的子群且[G:H]=2,证明 $H \triangleleft G$.

证明: $:: [G:H] = 2, :: \exists a \in G \\ \exists a \notin H,$ 使得 $G = eH \cup aH \\ \exists eH \neq aH.$ 要证明 $H \triangleleft G$, 即要证 $\forall g \in G, h \in H, ghg^{-1} \in H.$ 下面分两种情况讨论:

- 1) 当 $q \in eH = H$ 时, 显然有 $qhq^{-1} \in H$;
- 2) 当 $g \in aH$ 时, $\exists h_1 \in H$, 使得 $g = ah_1$, 那么 $ghg^{-1} = ah_1h(ah_1)^{-1}$. $\therefore ghg^{-1} \in G$, 若 $ghg^{-1} \notin H$, 则必有 $ghg^{-1} \in aH$, 从而 $\exists h_2 \in H$, 使得 $ghg^{-1} = ah_2$, 即 $ah_1hh_1^{-1}a^{-1} = ah_2$, 从而有 $h_1hh_1^{-1}a^{-1} = h_2 \Rightarrow a = h_2^{-1}h_1hh_1^{-1} \Rightarrow a \in H$, 矛盾. $\therefore ghg^{-1} \in H$.

综上, 对于 $\forall g \in G, h \in H, ghg^{-1} \in H$ 成立. $\therefore H \triangleleft G$.

23. 设H, K是两个群. 在 $H \times K = \{(h, k) | h \in H, k \in K\}$ 中定义乘法

$$(h_1, k_1)(h_2, k_2) = (h_1h_2, k_1k_2).$$

证明:

- (1) $H \times K$ 是一个群;
- (2) $H_1 = \{(h, 1_K) | h \in H\}$ 和 $K_1 = \{(1_H, k) | k \in K\}$ 是 $H \times K$ 的正规子群,其中 $1_H, 1_K$ 分别是H, K的幺元;
- (3) $H_1 \cap K_1 = \{(1_H, 1_K)\};$
- (4) $H \times K = H_1 K_1$.

证明:

- (1) 略.
- (2) $\forall (h_1, 1_K) \in H_1, (h, k) \in H \times K, (h, k)(h_1, 1_K)(h, k)^{-1} = (hh_1h^{-1}, kk^{-1}) = (hh_1h^{-1}, 1_K) \in H_1, \therefore H_1$ 是 $H \times K$ 的正规子群. 同理可证 K_1 是 $H \times K$ 的正规子群.
- (3) (()()()()<math>()
- (4) $(h, k) = (h, 1_K)(1_H, k)$. $H \times K \subseteq H_1K_1, H_1K_1 \subseteq H \times K$.
- 24. 设f为群G到群H的映射,分别判断如下的f是否为同态,如果是则给出ker f:
- (1) 加法群 $G = \mathbb{R}$, $H = \mathbb{Z}$, f(x) = [x], 其中[x]为取整函数, 即不大于x的最大整数;
- (2) 乘法群 $G = \mathbb{R}^*, H = \mathbb{R}^+, f(x) = |x|;$
- (3) $G = \mathbb{Z}_5$, $H = \mathbb{Z}_2$, $f(x) = x \mod 2$.

解:

- (1) 不是.
- (2) 是. $ker f = \{1, -1\}$.

(3) 不是.

25. 设G是群,证明其自同构集合AutG是一个群.

证明: 集合 $AutG = \{f | f : G \to G\}$, 运算为映射的复合. 封闭、结合律显然. 幺元为id. 逆元为逆映射.

26. 设G是群, 证明:

- (1) $g \mapsto g^{-1} \not\in G$ 的自同构映射当且仅当 $G \not\in Abel$ 群;
- (2) 若G是Abel群,对任意整数k, $g \mapsto g^k$ 是G的自同态映射.

证明: (1) "ሩ": $\forall g \in G, f(g) = g^{-1}, \therefore g^{-1} \in G, \therefore f \not\in G \to G$ 的映射; 显然f是满射; $f(a) = f(b) \Rightarrow a^{-1} = b^{-1} \Rightarrow a = b, \therefore f \not\in g$ 单射; $\forall a, b \in G, f(ab) = (ab)^{-1} = b^{-1}a^{-1}$, 由于G是Abel群, 可知 $f(ab) = b^{-1}a^{-1} = a^{-1}b^{-1} = f(a)f(b)$. 综上, f是自同构.

27**. 证明例6.1.7中的Klein四元群K的自同构群与 S_3 同构.

证明: 令 φ : Aut $K \to S_3$, $f \mapsto f|_X$, 其中f为K的自同构映射, $X = \{a, b, c\}$, $f|_X$ 表示将映射f限制到集合X上. 注意到Klein四元群中a, b, c都是二阶元, 自同构映射将二阶元映射为二阶元, $f|_X \in S_3$, f(e) = e, 则 φ 是满射. 若 $f|_X = g|_X$, 又f(e) = g(e) = e, 有f = g, φ 是单射. $\forall f, g \in G$

AutK, $\varphi(fg) = fg|_X = f|_X g|_X = \varphi(f)\varphi(g)$, \therefore φ 是同构映射. 综上, φ 是同构映射, 即Aut $K \cong S_3$.

28. 将置换
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 6 & 8 & 1 & 4 & 7 & 3 \end{pmatrix}$$
 分解成不相交的轮换. **解**: $\begin{pmatrix} 1 & 2 & 5 \end{pmatrix}$ (3 & 6 & 4 & 8)

29. 将置换之积
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 6 & 8 & 1 & 4 & 7 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 6 & 8 & 1 & 4 & 7 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 6 & 4 & 1 & 8 & 7 & 3 \end{pmatrix}$$
分解成不相交的轮换.

解: (1 5 2)(3 4 8 6)

30. 求出
$$S_5$$
中的元素 $\sigma\tau$, $\sigma^{-1}\tau\sigma$, σ^2 , σ^3 , 其中 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$, $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix}$. 解:

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 2 & 4 & 3 \end{pmatrix}, \quad \sigma^{-1}\tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}$$
$$\sigma^{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 4 & 5 \end{pmatrix}, \quad \sigma^{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{pmatrix}$$