19日本国特許庁(JP)

⑩特許出願公開

® 公 開 特 許 公 報 (A)

昭64-31200

⑤Int Cl.⁴

4 .

識別記号

庁内整理番号

母公開 昭和64年(1989)2月1日

G 10 K 9/12 H 04 R 17/10 101

6789-5D G-6824-5D

審査請求 未請求 発明の数 1 (全4頁)

9発明の名称 圧電型発音体

②特 顋 昭62-188194

②出 願 昭62(1987)7月27日

70発明者 池田

輝 幸

東京都港区芝5丁目33番1号 日本電気株式会社内

⑪出 願 人 日本電気株式会社

東京都港区芝5丁目33番1号

砂代 理 人 弁理士 内 原 晋

明細書

発明の名称

圧電型発音体

特許請求の範囲

(1) 両面に電極を形成した圧電材をこの圧電材 より直径の大きな金属板の少なくとも1つの面に 張り付け、前記金属板の周辺固定部を固定し、前 記金属板の前記周辺固定部と前記圧電材が貼り付 けられた個所との間でかつ前記周辺固定部に近い 位置に前記周辺固定部と同心円となるリング状の 講を両面にそれぞれ少なくとも1つ設けたことを 特徴とする圧電型発音体。

(2)前記金属板の前記周辺固定部と同心円となる前記リング状の溝を両面で互いに異なる位置となるように交互に設けたことを特徴とする特許額求の範囲第1項記載の圧電型発音体。

発明の詳細な説明

〔産業上の利用分野〕

本発明は圧電発音体に関し、特に圧電ブザー及び圧電スピーカーとして利用される圧電型発音体に関する。

〔従来の技術〕

逆方向となるように交番電圧を加えると、両面に 貼り付けられた圧電体は互いに逆の伸縮を繰り返 す。この結果、全体に反りが生じ、外周部を固定 することで発音体となり、いわゆるバイモルフ型 の発音体が得られる。

(発明が解決しようとする問題点)

例えば、第4図は50μmとした薄い金属板の両面に圧電材を貼り付けバイモルフ接続で駆動電圧を5Vとしたときの音圧の周波数特性を示す。 同図中の実線は主モードの特性であり、他の線で

〔問題点を解決するための手段〕

も1つ設けた構成である。また、前記金属板の前記周辺固定部と同心円となる前記リング状の溝を両面で互いに異なる位置となるように交互に設ける構成である。

(作用)

3

で金属板の反りが自由状態となり振動板としての中心部の変位は大きくなる。このように金属板に講が形成されていることにより、金属板の反りを自由状態とするための薄型化は必要なくなり、 0.1 mm~0.2 mmの厚さであっても良い。この結果、主モード以外の不要な振動は生じにくくなり、歪の少ない音を発生できる圧電型発音体が得られる。

(実施例)

次に、本発明の実施例について図面を参照して 説明する。

第1図は本発明の一実施例の圧電型発音体のの断面構造図である。振動板は両面に電極111が形成された圧電体12を円形の金属板13の中しに配助り付け、かつ周辺部を固定体14で固定はいる。金属板13の間には配置をか形成されている。ここで、電極115が形成されている。ここの風板13の厚さはt1、金属板13の厚さはt1、金属板13の

は t 2 及び溝形成部分の残りの厚さは t 3 である。又、圧電材 1 2 の直径 d 1 に対して固定体 1 4 の内周部直径 d 3 の方から両面に直径 d 2 を変化させて編 g 1 の溝を形成する。このとき、金属板 1 3 の同一面の隣り合う溝 1 5 の相互間隔 g 2 はこの間に丁度反対面の溝 1 5 が位置するようにする。

7 .

で高音圧レベルを得る発音体となる。又、圧電材 12の貼り付け部材であるステンレス製円板は溝 の部分だけで薄くなっており、圧電材12が貼ら れている部分及び提動板を形成する90%以上の 部分で板厚0.1mmが確保されているため、不 要なモードの提動は生じにくくなる。

第3図は上記構成によって得た圧電型発音体の音圧の周波数特性を示す図であり、主モードに対して高調波はずっと小さくなっており、特に受話器として重要な音声帯域である数百H2から2KHz程度に問題となる高調波が生じなくなっている。

なお、上記実施例での発音体は金属板13の両に圧電材12を貼り付けたイモル村12を貼り付けたがイモル村12を開板13の一方の面だけ圧電材12で間でも固定体14で固定体14での方向に上記を開びまた。 では、本実施例の構成での各寸法のの設定はない。 で、本実施例の構成でのさらに、低周波域には、ない。 に限定されることはない。 では、に、低間波域

〔発明の効果〕

この結果、圧電材に加えた交番電圧によって生

じる圧電材の変形は溝の部分を自由状態として振動するため、不要モードの振動を生じにくい。又、不要モードも音声帯域ではそのレベルは小さく、音声に影響の少ない高周波域で少し見られるだけとなる。

図面の簡単な説明

第1図は本発明の一実施例を示す断面図、第2図は同実施例における溝形成部分の変形状態を示す断面図、第3図は同実施例の圧電型発音体の音圧の周波数特性を示す図、第4図は従来の圧電型発音体の音圧の周波数特性を示す図である。

1 1 ··· 電極、1 2 ··· 圧電材、1 3 ··· 金属板、1 4 ··· 固定体、1 5 ··· 清。

代理人 弁理士 内 原

-800-

PAT-NO: JP401031200A

DOCUMENT-IDENTIFIER: JP 01031200 A

TITLE: PIEZOELECTRIC SOUND PRODUCER

PUBN-DATE: February 1, 1989

INVENTOR-INFORMATION:

NAME COUNTRY

IKEDA, TERUYUKI

ASSIGNEE-INFORMATION:

NAME COUNTRY

NEC CORP N/A

APPL-NO: JP62188194 **APPL-DATE:** July 27, 1987

INT-CL (IPC): G10K009/12 , H04R017/10

ABSTRACT:

PURPOSE: To emit sounds little in distortion by providing at least one annular groove concentric with a peripheral fixing part in a position, which is between the peripheral fixing part of a metallic **plate and the sticking position of a piezoelectric** material and is close to the peripheral fixing part, in both faces.

CONSTITUTION: A piezoelectric materials 12 whose both faces electrodes 11 are formed on is stuck to at least one face of a metallic plate 13 having a diameter larger than that of the piezoelectric material 12, and the peripheral fixing part of the metallic plate 13 is fixed. At least one annular groove 15 concentric with the peripheral fixing part is provided in a position, which is between the peripheral fixing part of the metallic plate 13 and the sticking position of the piezoelectric material 12 and is close to the peripheral fixing part, in both faces. Annular grooves 19 concentric with the peripheral fixing part of the metallic plate 13 are so provided that their positions are different between both faces. Thus, support in an approximately free state is realized in groove formation parts, and a sound producer which has a satisfactory sound emission characteristic even in a low frequency range is obtained.

COPYRIGHT: (C) 1989, JPO