Practical 1 Configure Routers

- a. OSPF MD5 authentication.
- b. NTP.
- c. To log messages to the syslog server.
- d. To support SSH connections.

- a. OSPF MD5 authentication.
 - ☐ OSPF FINDING THE SHORTEST PATH
 - ☐ ALGO DIJKSTRA
 - ☐ TOPOLOGY & DEVICE CONFIGURE

TO CONFIGURE OSPF

ON BOTH ROUTER -> CLI

- 1) exit
- 2) enable
- 3) conf t (Configure Terminal)
- 4) router ospf 1
- 5) network 192.168.1.0 0.255.255.255 area 1
- 6) network 192.168.2.0 0.255.255.255 area 1
- 7) exit
- 8) exit

ON PC -> CMD

> ping server ip address


```
Physical Config Desktop Programming Attributes

Command Prompt

X

Packet Tracer PC Command Line 1.0

C:\>ping 192.168.1.2

Pinging 192.168.1.2 with 32 bytes of data:

Request timed out.

Reply from 192.168.1.2: bytes=32 time=10ms TTL=126

Reply from 192.168.1.2: bytes=32 time<1ms TTL=126

Reply from 192.168.1.2: bytes=32 time<1ms TTL=126

Ping statistics for 192.168.1.2:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 10ms, Average = 3ms

C:\>ping 192.168.1.3

Pinging 192.168.1.3 with 32 bytes of data:

Reply from 192.168.1.3: bytes=32 time<1ms TTL=126

Reply from 192.168.1.3: bytes=32 time<1ms TTL=126

Reply from 192.168.1.3: bytes=32 time=3ms TTL=126

Reply from 192.168.1.3: byt
```

MD5 (For both the routers)

ROUTER -> CLI

- 1) enable
- 2) conft
- 3) interface GigabitEthernet0/1
- 4) ip ospf authentication message-digest
- 5) ip ospf message-digest-key 1 md5 smile
- 6) exit
- 7) show ip ospf interface GigabitEthernet0/1

b. NTP.

□ NTP -: Synchronization

NTP (For both the routers)

- 1) enable
- 2) conft
- 3) ntp server 192.168.1.3

- 4) ntp up (Services up)
- 5) ntp update-calendar
- 6) exit
- 7) show clock

- c. To log messages to the syslog server.
 - \square Syslog -: Service which provides logging server. Place the log files
 - ☐ Maintain the log of data transfer

Syslog(For both the routers)

- 1) enable
- 2) conft
- 3) logging 192.168.1.2
- 4) exit

Server -> Check

d. To support SSH connections.

SSH -: Secure Shell

Login ID & Password

SSH(For both the routers)

- 1) enable
- 2) conft
- 3) ip domain -name Tyit.com
- 4) hostname R0
- 5) crypto key generate rsa (rsa algo) Enter key size: 512 (minimum)
- 6) line vty 0 4
- 7) transport input ssh
- 8) login local
- 9) exit
- 10) username Tyit privilege 15 password Cisco

On PC -> CMD

> ssh -l Tyit 192.168.3.1

Enter password: Cisco

Practical 2 Configure AAA Authentication

- a. Configure a local user account on Router and configure authenticate on the console and vty lines using local AAA
- b. Verify local AAA authentication from the Router console and the PC-A client
 - ☐ AAA AUTHENTICATION, AUTHORIZATION, ACCOUNTING
 - ☐ TERMINAL ACCESS CONTROL ACCESS CONTROL SERVICES (TACACS) PROPRIETARY PROTOCOL, USES TCP, 49 PORT NO, AAA
 - ☐ RADIUS OPEN, USES UDP, AA

On Router -> cmd

- 1) enable
- 2) conft
- 3) aaa new-model
- 4) tacacs-server host 192.168.2.3 key CISCO
- 5) radius-server host 192.168.2.2 key CISCO
- 6) aaa authentication login tyit group tacacs+ group radius local
- 7) line vty 0 4
- 8) login authentication tyit
- 9) exit

Check authentication -> PC -> cmd

> telnet 192.168.2.1 Ask for a username & password

PCO - Tacacs (Tacacs ON, Radius OFF) PC1 - Radius (Tacacs OFF, Radius ON)

Practical 3 Configuring Extended ACLs

- a. Configure, Apply and Verify an Extended Numbered ACL
 - ☐ ACL ACCESS CONTROL LIST
 - ☐ FILTRATION FILTER THE TRAFFIC ON ROUTER / SWITCH
 - ☐ STANDARD ACLS & EXTENDED ACLS
 - ☐ BASIC FILTRATION (STANDARD) RANGE FROM 1-99, PERMIT OR DENY THE TRAFFIC FROM SPECIFIC ADDRESS
 - ☐ EXHAUSTIVE FILTRATION (ADVANCED / EXTENDED) RANGE FROM 100 ONWARDS, FROM & TO SPECIFIC ADDRESS PERMIT & DENY


```
PC0
   Physical Config Desktop Programming Attributes
     ommand Prompt
    Packet Tracer PC Command Line 1.0 C:\>ping 192.168.1.2
    Pinging 192.168.1.2 with 32 bytes of data:
    Request timed out.
    Reply from 192.168.1.2: bytes=32 time=1ms TTL=126
Reply from 192.168.1.2: bytes=32 time<1ms TTL=126
Reply from 192.168.1.2: bytes=32 time<1ms TTL=126
   Ping statistics for 192.168.1.2:
Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 1ms, Average = 0ms
    C:\>ping 192.168.1.3
    Pinging 192.168.1.3 with 32 bytes of data:
    Request timed out
    Reply from 192.168.1.3: bytes=32 time=lms TTL=126
Reply from 192.168.1.3: bytes=32 time=l2ms TTL=126
Reply from 192.168.1.3: bytes=32 time<lms TTL=126
    Ping statistics for 192.168.1.3:
   Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 12ms, Average = 4ms
    C:\>192.168.3.3
Invalid Command.
    C:\>ping 192.168.3.3
    Pinging 192.168.3.3 with 32 bytes of data:
   Reply from 192.168.3.3: bytes=32 time<1ms TTL=128
    Ping statistics for 192.168.3.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
           Minimum = Oms, Maximum = Oms, Average = Oms
    C:\>ping 192.168.3.2
    Pinging 192.168.3.2 with 32 bytes of data:
   Reply from 192.168.3.2: bytes=32 time<1ms TTL=128
Reply from 192.168.3.2: bytes=32 time=1ms TTL=128
Reply from 192.168.3.2: bytes=32 time=4ms TTL=128
Reply from 192.168.3.2: bytes=32 time=1ms TTL=128
    Ping statistics for 192.168.3.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
            Minimum = 0ms, Maximum = 4ms, Average = 1ms
```

```
Config Desktop Programming Attributes
Physical
  ommand Prompt
Packet Tracer PC Command Line 1.0
C:\>ping 192.168.1.3
 Pinging 192.168.1.3 with 32 bytes of data:
 Reply from 192.168.1.3: bytes=32 time<1ms TTL=126
 Reply from 192.168.1.3: bytes=32 time=lms TTL=126 Reply from 192.168.1.3: bytes=32 time<lms TTL=126
 Reply from 192.168.1.3: bytes=32 time<1ms TTL=126
 Ping statistics for 192.168.1.3:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
       Minimum = 0ms, Maximum = 1ms, Average = 0ms
 C:\>ping 192.168.1.2
 Pinging 192.168.1.2 with 32 bytes of data:
Reply from 192.168.1.2: bytes=32 time=lms TTL=126 Reply from 192.168.1.2: bytes=32 time<lms TTL=126 Reply from 192.168.1.2: bytes=32 time<lms TTL=126
 Reply from 192.168.1.2: bytes=32 time=1ms TTL=126
 Ping statistics for 192.168.1.2:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 1ms, Average = 0ms
 C:\>ping 192.168.3.2
 Pinging 192.168.3.2 with 32 bytes of data:
Reply from 192.168.3.2: bytes=32 time<lms TTL=128
Reply from 192.168.3.2: bytes=32 time=lms TTL=128
Reply from 192.168.3.2: bytes=32 time<lms TTL=128
Reply from 192.168.3.2: bytes=32 time<lms TTL=128
 Ping statistics for 192.168.3.2:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
       Minimum = 0ms, Maximum = 1ms, Average = 0ms
 C:\>ping 192.168.3.3
 Pinging 192.168.3.3 with 32 bytes of data:
Reply from 192.168.3.3: bytes=32 time=5ms TTL=128
Reply from 192.168.3.3: bytes=32 time=4ms TTL=128
Reply from 192.168.3.3: bytes=32 time=2ms TTL=128
Reply from 192.168.3.3: bytes=32 time<1ms TTL=128
 Ping statistics for 192.168.3.3:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
       Minimum = 0ms, Maximum = 5ms, Average = 2ms
```

Apply and verify extended ACL

Router -> cli

- 1) enable
- 2) conft
- 3) access-list 100 permit tcp host 192.168.3.2 host 192.168.1.2 eq ftp (eq What services?)
- 4) interface GigabitEthernet0/1
- 5) ip access-group 100 out
- 6) exit

Verify

On PCO -> cmd

1) ftp 192.168.1.2

Practical 4 Configure IP ACLs to Mitigate Attacks and IPV6 ACLs

- a. Verify connectivity among devices before firewall configuration.
- b. Use ACLs to ensure remote access to the routers is available only from management station PC-C.
- c. Configure ACLs on to mitigate attacks.
- d. Configuring IPv6 ACLs
- c. Configure ACLs on to mitigate attacks.

Server

PC

3 Routers Config

RIP

On PC -> Verify the connectivity

Routers -> Cli

- I. SSH Enable
- 1) enable
- 2) conft
- 3) ip domain-name tyit.com
- 4) hostname R0
- 5) crypto key generate rsa 512
- 6) line vty 0 4
- 7) transport input ssh
- 8) login local
- 9) exit
- 10) username ssh_admin privilege 15 password ty
- 11) exit
- **II. Access List Define**
- 1) enable
- 2) conft
- 3) access-list 10 permit host 192.168.4.2
- 4) line vty 0 4
- 5) access-class 10 in

On PC -> Verify on CMD

> ssh -l ssh_admin 192.168.3.2

Password: ty

On Server -> Verify on CMD

> ssh -l ssh_admin 192.168.2.1

d. Configuring IPv6 ACLs

Router 0:

Router>enable

Router#

Router#configure terminal

Router(config)#ipv6 unicast-routing

Router(config)#interface GigabitEthernet0/0

Router(config-if)#ipv6 address 2002::1/64

Router(config-if)#ipv6 rip a enable

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#

Router(config)#interface GigabitEthernet0/1

Router(config-if)#ipv6 address 2001::1/64

Router(config-if)#ipv6 rip a enable

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#

Router(config)#interface Serial0/1/0

Router(config-if)#ipv6 address 2003::1/64

Router(config-if)#ipv6 rip a enable

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#

Router 1:

Router>enable

Router#configure terminal

Router(config)#ipv6 unicast-routing

Router(config)#

Router(config)#interface Serial0/1/0

Router(config-if)#ipv6 address 2003::1/64

Router(config-if)#ipv6 rip a enable

Router(config-if)#no shutdown

Router(config-if)#

Router(config-if)#exit

Router(config)#

Router(config)#interface Serial0/1/1

Router(config-if)#ipv6 address 2004::1/64

Router(config-if)#ipv6 rip a enable

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#

Router2:

Router>enable

Router#configure terminal

Router(config)#ipv6 unicast-routing

Router(config)#

Router(config)#interface Serial0/1/1

Router(config-if)#ipv6 address 2004::2/64

Router(config-if)#ipv6 rip a enable

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#interface GigabitEthernet0/0

Router(config-if)#ipv6 address 2005::1/64

Router(config-if)#ipv6 rip a enable

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#

Check the connectivity by pinging from PCs to Server

Enter the following commands in the CLI mode of the Router1 and apply it at the proper interface:-

Router>enable

Router#configure terminal

Router(config)#ipv6 access-list smile

Router(config-ipv6-acl)#deny tcp any host 2005::2 eq www

Router(config-ipv6-acl)#deny tcp any host 2005::2 eq 443

Router(config-ipv6-acl)#permit ipv6 any any

Router(config-ipv6-acl)#

Router(config-ipv6-acl)#exit
Router(config)#
Router(config)#interface Serial0/1/1
Router(config-if)#ipv6 tra c-filter smile in
Router(config-if)#exit

Practical 5 Configuring a Zone-Based Policy Firewall

Configuring PCO

Configuring server0

$Se rial\ interface\ must\ be\ added\ in\ each\ Router\ before\ configuring\ it$ $Configuring\ Router\ 1$

Configuring Router0

Configuring Router2

Part1: Static Routing

Static Routing is done using the following procedure for each Router

Router 1:

Router 0:

Router 2:

Check the connectivity by pinging the server from the PC

```
PC0
                                                                                                     ×
                       Desktop
 Physical
              Config
                                   Programming
                                                    Attributes
  Command Prompt
                                                                                                       Χ
  Cisco Packet Tracer PC Command Line 1.0
  C:\>ping 192.168.1.2
  Pinging 192.168.1.2 with 32 bytes of data:
  Request timed out.
  Reply from 192.168.1.2: bytes=32 time=24ms TTL=125
  Reply from 192.168.1.2: bytes=32 time=2ms TTL=125
  Reply from 192.168.1.2: bytes=32 time=2ms TTL=125
  Ping statistics for 192.168.1.2:
  Packets: Sent = 4, Received = 3, Lost = 1 (25% loss), Approximate round trip times in milli-seconds:
       Minimum = 2ms, Maximum = 24ms, Average = 9ms
  C:\>ping 192.168.1.2
  Pinging 192.168.1.2 with 32 bytes of data:
  Reply from 192.168.1.2: bytes=32 time=10ms TTL=125
  Reply from 192.168.1.2: bytes=32 time=2ms TTL=125
Reply from 192.168.1.2: bytes=32 time=28ms TTL=125
  Reply from 192.168.1.2: bytes=32 time=2ms TTL=125
   Ping statistics for 192.168.1.2:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
       Minimum = 2ms, Maximum = 28ms, Average = 10ms
```

Part 2: Configuring SSH on Router 0

Router 0→ CLI

Router#enable

Router#conf t

Router(config)#ip domain-name tyit.com

Router(config)#hostname R0

R2(config)#crypto key generate rsa

R2(config)#line vty 0 4

R2(config-line)#transport input ssh

R2(config-line)#login local

R2(config-line)#exit

R2(config)#username tyit privilege 15 password pass

Now we verify the SSH using PC as follows

```
Approximate round trip times in milli-seconds:
Minimum = 2ms, Maximum = 28ms, Average = 10ms

C:\>ssh -1 tyit 192.168.3.1

Password:

R0#
```

Next we access the web services of the Server using the web browser of PC using the following

Check whether the securityk9 package exist on Router2 or not by writing the following command on CLI \rightarrow

show version

If not type the below command in CLI

enable

conf t

license boot module c1900 technology-package securityk9

Accept→ yes

Click enter

exit

copy run start

reload

Now check whether the securityk9 package has been installed or not.

Part 3: Create the Firewall Zones on Router2 Type the following commands in the CLI mode of Router2

Router#

Router#configure terminal

Router(config)#zone security in-zone

Router(config-sec-zone)#exit

Router(config)#zone security out-zone

Router(config-sec-zone)#exit

Router (config) # access-list~101~permit~ip~192.168.4.0~0.0.0.255~any

Router(config)#class-map type inspect match-all in-map

Router(config-cmap)#match access-group 101

Router(config-cmap)#exit

Router(config)#policy-map type inspect in-out

Router(config-pmap)#class type inspect in-map

Router(config-pmap-c)#inspect

Router(config-pmap-c)#exit

Router(config-pmap)#exit

Router(config)#zone-pair security in-out-zone source in-zone destination out-zone

Router(config-sec-zone-pair)#service-policy type inspect in-out

Router(config-sec-zone-pair)#exit

Router(config)#

Router(config)#interface GigabitEthernet0/0

Router(config-if)#zone-member security in-

zone Router(config-if)#exit

Router(config)#

Router(config)#interface Serial0/1/1

Router(config-if)#zone-member security out-zone

Router(config-if)#exit

Router(config)#exit

Router#copy running-config startup-config

Part 4: Testing the Firewall Functionality (from in-zone to out-zone) by the following steps

Step 1: Pinging SERVER from the PC (it will succeed)

```
Password:

RO#exit

[Connection to 192.168.3.1 closed by foreign host]
C:\>ping 192.168.1.2

Pinging 192.168.1.2 with 32 bytes of data:

Reply from 192.168.1.2: bytes=32 time=30ms TTL=125

Reply from 192.168.1.2: bytes=32 time=2ms TTL=125

Reply from 192.168.1.2: bytes=32 time=2ms TTL=125

Reply from 192.168.1.2: bytes=32 time=2ms TTL=125

Paper from 192.168.1.2: bytes=32 time=2ms TTL=125

Ping statistics for 192.168.1.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 2ms, Maximum = 30ms, Average = 22ms

C:\>
```

Step 2: Start an SSH session from PC to Router 0(ip 192.168.1.2)

Step 3: Type the following command in the CLI mode of Router1

Router#show policy-map type inspect zone-pair sessions We will get the following output

Step 4: We close the SSH connection and open the web browser and access the server

address (192.168.1.2) and get the following

Part 5: Testing the Firewall Functionality (from out-zone to in-zone) by the following steps

Step 1: Ping PC0 from the SERVER (it will result in Failure)

Practical 6 <u>Configure IOS Intrusion Prevention System (IPS) Using the CLI</u>


```
PC1
  Physical Config
                    Desktop Programming Attributes
   Command Prompt
   Cisco Packet Tracer PC Command Line 1.0
   C:\>ping 192.168.1.2
   Pinging 192.168.1.2 with 32 bytes of data:
   Request timed out.
   Reply from 192.168.1.2: bytes=32 time=2ms TTL=125
   Reply from 192.168.1.2: bytes=32 time=18ms TTL=125
   Reply from 192.168.1.2: bytes=32 time=3ms TTL=125
   Ping statistics for 192.168.1.2:
   Packets: Sent = 4, Received = 3, Lost = 1 (25% loss), Approximate round trip times in milli-seconds:
       Minimum = 2ms, Maximum = 18ms, Average = 7ms
   C:\>ping 192.168.1.2
   Pinging 192.168.1.2 with 32 bytes of data:
   Reply from 192.168.1.2: bytes=32 time=10ms TTL=125
   Reply from 192.168.1.2: bytes=32 time=2ms TTL=125
   Reply from 192.168.1.2: bytes=32 time=2ms TTL=125
   Reply from 192.168.1.2: bytes=32 time=2ms TTL=125
   Ping statistics for 192.168.1.2:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
       Minimum = 2ms, Maximum = 10ms, Average = 4ms
   C:\>ping 192.168.1.3
   Pinging 192.168.1.3 with 32 bytes of data:
   Request timed out.
   Reply from 192.168.1.3: bytes=32 time=2ms TTL=125
   Reply from 192.168.1.3: bytes=32 time=2ms TTL=125
   Reply from 192.168.1.3: bytes=32 time=3ms TTL=125
   Ping statistics for 192.168.1.3:
   Packets: Sent = 4, Received = 3, Lost = 1 (25% loss), Approximate round trip times in milli-seconds:
       Minimum = 2ms, Maximum = 3ms, Average = 2ms
   C:\>ping 192.168.1.3
   Pinging 192.168.1.3 with 32 bytes of data:
   Reply from 192.168.1.3: bytes=32 time=8ms TTL=125
Reply from 192.168.1.3: bytes=32 time=13ms TTL=125
   Reply from 192.168.1.3: bytes=32 time=5ms TTL=125
   Reply from 192.168.1.3: bytes=32 time=2ms TTL=125
   Ping statistics for 192.168.1.3:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
       Minimum = 2ms, Maximum = 13ms, Average = 7ms
```

```
Command Prompt

Cisco Packet Tracer PC Command Line 1.0
C:\ping 192.168.4.2 with 32 bytes of data:

Reply from 192.168.4.2: bytes=32 time=7ms TTL=128
Reply from 192.168.4.2: bytes=32 time=7ms TTL=
```

PC0

Router>enable

Router#show version

Router#conf t

Router(config)#license boot module c1900 technology-package securityk9

Router(config)#exit

Router#reload

Router>enable

Router#

Router#show version

2 securityk9 installed successfully?

Router#

Router#clock set 15:40:56 MARCH 5 2024

Router#mkdir smile

Router#configure terminal

Router(config)#ip ips config location flash:smile

Router(config)#ip ips name tyit

Router(config)#ip ips notify log

Router(config)#ip ips signature-category

Router(config-ips-category)#category all

Router(config-ips-category-action)#retired true

Router(config-ips-category-action)#exit

Router(config-ips-category)#category ios_ips basic

Router(config-ips-category-action)#retired false

Router(config-ips-category-action)#exit

Router(config-ips-category)#exit

Router(config)#interface Serial0/1/0

Router(config-if)#ip ips tyit out

Router(config-if)#exit

Router(config)#

Router(config)#ip ips signature-definition

Router(config-sigdef)#signature 2004 0

Router(config-sigdef-sig)#status

Router(config-sigdef-sig-status)#retired false

Router(config-sigdef-sig-status)#enabled true

Router(config-sigdef-sig)#engine
Router(config-sigdef-sig)#engine
Router(config-sigdef-sig-engine)#event-action produce-alert
Router(config-sigdef-sig-engine)#event-action deny-packet-inline
Router(config-sigdef-sig-engine)#exit
Router(config-sigdef-sig)#exit
Router(config-sigdef)#exit
Router(config)#exit

Practical 7 Layer 2 Security

- a) Assign the Central switch as the root bridge.
- b) Secure spanning-tree parameters to prevent STP manipulation attacks.
- c) Enable port security to prevent CAM table overflow attacks.
- a) Assign the Central switch as the root bridge.

Add serial interface to cloud and router both ports.. Once the topology is ready Rename your first switch to switch A

Part 1: Root Bridge is set up

Part 2-Protect Against STP Attack

Redundant links are always welcome in switch topology as they are increasing the

network's availability and robustness.

Redundant links, if we look at them from layer 2 perspective, can cause Layer 2 loops.

Switch A Configuration

Switch B Configuration

Switch 1 and Switch 2 Same command Switch 1 and Switch 2 Configuration

MultiLayer Switch

c) Enable port security to prevent CAM table overflow attacks.

Part 3 -Port Security and Disable Unused ports

Switch A Configuration

Switch B Configuration

Checking whether the port security has been enabled or not on both the Switches

Shutting down all the unused ports

Practical

Configure and Verify a Site-to-Site IPsec VPN Using CLI

Configuring PC0 and PC1

Configuring PC2

Configuring Router 0

Configuring Router1

Configuring Router2

Part 1: Configuring RIP on each Router

Router 0: Add the following networks

Router 1: Add the following networks

Router 2: Add the following networks

Now check the connectivity by ping command

PCO to PC1 (it should be successful)

```
Physical Config Desktop Custom Interface

Command Prompt

Packet Tracer PC Command Line 1.0
PC>ping 192.168.4.2

Pinging 192.168.4.2 with 32 bytes of data:

Request timed out.

Reply from 192.168.4.2: bytes=32 time=3ms TIL=125

Reply from 192.168.4.2: bytes=32 time=2ms TIL=125

Reply from 192.168.4.2: bytes=32 time=3ms TIL=125

Ping statistics for 192.168.4.2:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:

Minimum = 2ms, Maximum = 3ms, Average = 2ms

PC>
```

PC2 to PC0 (it should be successful)

Part 2: Configure IPSec Parameters on Router0

In order to configure the IPSec parameters on Router0 we go by the following steps

Step 1: Enable the security package on Router0 through the following commands in CLI mode

Router>enable

Router#configure terminal

Router(config)#license boot module c1900 technology-package securityk9

Router(config)#do write

Router(config)#exit

Router#reload

Router>

Router>enable

Now we need to check if the security package is enabled, so we type the following command

Router#show version

Step 2: Configuring IKA phase 1 ISAKMP policy on Router0

Type the following commands in the CLI mode of Router0

Router#configure terminal

Router(config)#access-list 110 permit ip 92.168.1.0 0.0.0.255 192.168.4.0 0.0.0.255

Router(config)#crypto isakmp policy 10

Router(config-isakmp)#encryption aes 256

Router(config-isakmp)#authentication pre-share

Router(config-isakmp)#group 5

Router(config-isakmp)#exit

Router(config)#crypto isakmp key smile1234 address 192.168.3.2

Router(config)#crypto ipsec transform-set vpn-set esp-aes esp-sha-hmac

Router(config)#crypto map vpn-map 10 ipsec-isakmp

Router(config-crypto-map)#set peer 192.168.3.2

Router(config-crypto-map)#set transform-set vpn-set

Router(config-crypto-map)#match address 110

Router(config-crypto-map)#exit

Router(config)#

Router(config)#interface Serial0/1/0

Router(config-if)#crypto map vpn-map Router(config-if)#exit Router(config)#

Part 3: Configure IPSec Parameters on Router1

In order to configure the IPSec parameters on Router1 we go by the following steps

Step 1: Enable the security package on Router1 through the following commands in CLI mode

Router>enable

Router#configure terminal

Router(config)#license boot module c1900 technology-package securityk9

Router(config)#do write

Router(config)#exit

Router#reload

Router>

Router>enable

Now we need to check if the security package is enabled, so we type the following command

Router#show version

Step 2: Configuring IKA phase 1 ISAKMP policy on Router1

In order to configure the IPSec parameters on Router1 we go by the following steps

Router#

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#access-list 110 permit ip 192.168.4.0 0.0.0.255 192.168.1.0 0.0.0.255

Router(config)#crypto isakmp policy 10

Router(config-isakmp)#encryption aes 256

Router(config-isakmp)#authentication pre-share

Router(config-isakmp)#group 5

Router(config-isakmp)#exit

Router(config)#crypto isakmp key smile1234 address 192.168.2.1

Router(config)#crypto ipsec transform-set vpn-set esp-aes esp-sha-hmac

Router(config)#crypto map vpn-set 10 ipsec-isakmp

Router(config-crypto-map)#description vpn

Router(config-crypto-map)#set peer 192.168.2.1

Router(config-crypto-map)#set transform-set vpn-set

Router(config-crypto-map)#match address 110

Router(config-crypto-map)#exit

Router(config)#

Router(config)#interface Serial0/1/1

Router(config-if)#crypto map vpn-set

Router(config-if)#

Part 4: Verify the IPSec VPN

Step 1: Type the following command in the CLI mode of Router0

Router>

Router>EN

Router>enable

Router#show crypto ipsec sa

Step 2: Ping PC1 from PC0 (Creating interesting tra c)

We ping PC1 from PC0 (which is the interesting tra c)

```
Prophysical Config Desktop Custom Interface

Command Prompt

Dryping 192.168.4.2

Pinging 192.168.4.2 with 32 bytes of data:

Request timed out.

Request timed out.

Reply from 192.168.4.2: bytes=32 time=2ms TTI=126

Reply from 192.168.4.2: bytes=32 time=2ms TTI=126

Ping statistics for 192.168.4.2:

Ping statistics for 192.168.4.2:

Ping statistics for 192.168.4.2:

Pinging 192.168.4.2 with 32 bytes of data:

Reply from 192.168.4.2: bytes=32 time=2ms TTI=126

Reply from 192.168.4.3: bytes=32 time=2ms TTI=126
```

And now we check the Router0 by typing the following Command

Router#show crypto ipsec sa

```
Router@nbow crypto lpsec sa
interface: SerialO/1/0

Router@nbow crypto lpsec sa
interface: SerialO/1/0

Interface: SerialO/1/0

prosected wrf; (nors)
local ident (eddr/mask/prot/port): (192.168.1.0/255.255.255.0/0/0)
remote ident (eddr/mask/prot/port): (192.168.1.0/255.255.255.0/0/0)
remote ident (eddr/mask/prot/port): (192.168.1.0/255.255.255.0/0/0)
current_perielo.168.3.2 port 500

#pkts encaps: 7, #pkts encrypt: 7, #pkts digest: 0
#pkts encaps: 7, #pkts encrypt: 7, #pkts digest: 0
#pkts encaps: 7, #pkts encrypt: 7, #pkts digest: 0
#pkts not compressed: 0, #pkts decaps: 6, #led: 0
#pkts not decompressed: 0, #pkts decaps: 6, #led: 0
#pkts not decompressed: 0, #pkts decaps: 6, #led: 0
#pkts not decompressed: 0, #pkts decaps: 6, #led: 0
#pkts not decompressed: 0, #pkts decaps: 6, #led: 0
#pkts not decompressed: 0, #pkts decaps: 6, #led: 0
#pkts not compressed: 0, #pkts decaps: 6, #led: 0
#pkts not compressed: 0, #pkts decaps: 6, #led: 0
#pkts not compressed: 0, #pkts decaps: 6, #led: 0
#pkts not compressed: 0, #pkts decaps: 6, #led: 0
#pkts not compressed: 0, #pkts decaps: 6, #led: 0
#pkts not compressed: 0, #pkts decaps: 6, #led: 0
#pkts not compressed: 0, #pkts decaps: 6, #led: 0
#pkts not compressed: 0, #pkts decaps: 6, #led: 0
#pkts not compressed: 0, #pkts decaps: 6, #led: 0
#pkts not compressed: 0, #pkts decaps: 10/1/0

current outbound aps: 0, #led: 1, #led: 1,
```

Step 3: Ping PC1 from PC0 (Creating another interesting tra c)Now we ping PC0 from PC0 (which is interesting tra c)

And now we check the Router0 by typing the following Command Router#show crypto ipsec sa

Step 4: Ping PC2 from PC0 (Creating NON interesting tra c)

Now we ping PC2 from PC0 (Not interesting tra c)

And now we check the Router0 by typing the following Command

Router#show crypto ipsec sa

```
Physical Config CLI Attributes

**NOS Command Line Interface

**NO
```