Sections 8.4 and 8.5: Greatest common divisors and the Fundamental Theorem of Arithmetic

CS1231S Discrete Structures

Wong Tin Lok

National University of Singapore

8 October 2020

Question

A rectangle of length 36 units and width 48 units is tiled using squares of length d units, where $d \in \mathbb{Z}$. What is the largest possible value of d?

Tell me your answer at https://pollev.com/wtl/.

Answer

gcd(36, 48) = 12.

Introduction

What we saw

- ▶ base-*b* representation
- ➤ an algorithm for finding it, together with a proof that it always stops and gives the correct result
- uniqueness of base-b representation

Theorem 8.3.13 (main theorem of last lecture)

For any $b \in \mathbb{Z}_{\geqslant 2}$ and any $n \in \mathbb{Z}^+$, there exist unique $\ell \in \mathbb{Z}_{\geqslant 0}$ and $a_0, a_1, \ldots, a_\ell \in \{0, 1, \ldots, b-1\}$ such that

$$n=a_\ell b^\ell+a_{\ell-1}b^{\ell-1}+\cdots+a_0b^0$$
 and $a_\ell
eq 0.$

Now

- greatest common divisor
- ▶ the Euclidean Algorithm
- ► Fundamental Theorem of Arithmetic

A mathematical understanding of this concept of correctness is useful beyond the field of program verification. It provides a way of thinking that can improve all aspects of writing programs and building systems.

Leslie Lamport 2018

Greatest common divisor

Definition 8.4.1

- Let $m, n \in \mathbb{Z}$.
- (1) A common divisor of m and n is divisor of both m and n. (2) The greatest common divisor of m and n is denoted gcd(m, n).
- Example 8.4.2
- The positive divisors of 72 are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72.
- (2) The positive divisors of 63 are 1.3.7.9.21.63.
- (3) So the positive common divisors of 72 and 63 are 1, 3, 9. (4) So gcd(72, 63) = 9.

Exercise 8.4.3

Let $m, n \in \mathbb{Z}^+$. Show that $m \mod n = 0$ if and only if $\gcd(m, n) = n$.

Exercise 8.4.6 Let $m, p \in \mathbb{Z}^+$. Show that if p is prime, then either gcd(m, p) = 1 or $p \mid m$.

(If gcd(m, p) = p, then $m \mod p = 0$ by Exercise 8.4.3, and so $p \mid m$.)

d is a divisor of $n \Leftrightarrow d \mid n$

 \Leftrightarrow n = dk for some $k \in \mathbb{Z}$.

Greatest common divisors — general properties

d is a divisor of $n \Leftrightarrow d \mid n$ $\Leftrightarrow n = dk$ for some $k \in \mathbb{Z}$.

- Definition 8.4.1 Let $m, n \in \mathbb{Z}$.
- (1) A common divisor of m and n is divisor of both m and n.
- (2) The greatest common divisor of m and n is denoted gcd(m, n).

Lemma 8.1.9 Let $d, n \in \mathbb{Z}$. If $d \mid n$, then $-d \mid n$ and $d \mid -n$ and $-d \mid -n$. Proposition 8.1.10 Let $d, n \in \mathbb{Z}$. If $d \mid n$ and $n \neq 0$, then $|d| \leq |n|$.

Remark 8.4.4

In view of Proposition 8.1.10, for all $m, n \in \mathbb{Z}$, if $m \neq 0$ or $n \neq 0$, then gcd(m, n) exists and is positive.

Question 8.4.5 gcd(0,0) does not exist. Why? (What are the divisors of 0?)

Exercise 8.4.7

Let $m, n \in \mathbb{Z}$. Show that the common divisors of m and n are exactly the common divisors of |m| and |n|, and hence $\gcd(m, n) = \gcd(|m|, |n|)$.

The Euclidean Algorithm

Algorithm 8.4.8

- 1. **input** $m, n \in \mathbb{Z}^+$ with $m \ge n > 0$
- 2. x := m3. y := n
- 4. while $y \neq 0$ do
- 5. $r \coloneqq x \bmod y$
- 6. x := y
- 7. y := r
- 8. end do
- 9. output *x*

Definitions 8.1.16 and 8.1.17. $\times \mod y$ is the remainder when x is divided by y, and $0 \le x \mod y < y$.

To find gcd(m, n), where $m \ge n > 0$:

x y r \downarrow \downarrow \downarrow $m \mod n = r_1$

 $\begin{array}{ccc}
m & \underline{\text{mod}} & n & = r_1 \\
n & \underline{\text{mod}} & r_1 & = r_2
\end{array}$

 $r_1 \mod r_2 = r_3$

 $\underline{\text{mod}} \quad r_3 = r_4$

 $r_1 = r_k$

 $r_{k-2} \bmod r_{k-1} = r_k$ $r_{k-1} \bmod r_k = 0$

 \therefore gcd $(m, n) = r_k$

Example 8.4.9. To find gcd(1076, 414):

 $\begin{array}{ccc} x & y & r \\ \downarrow & \downarrow & \downarrow \\ 1076 \mod 414 = 248 \end{array}$

 $414 \mod 248 = 166$ $248 \mod 166 = 82$

 $\therefore \gcd(1076, 414) = 2$

Why does the Euclidean Algorithm stop?

Algorithm 8.4.8

1. **input** $m, n \in \mathbb{Z}^+$ with $m \ge n > 0$ 2. x := m

3. y := n

4. while $y \neq 0$ do 5. $r := x \mod y$

6. x := yv := r

8. end do 9. output x

Definitions 8.1.16 and 8.1.17.

 $x \mod y$ is the remainder when x is divided by y, and $0 \le x \mod y < y$. To find gcd(m, n),

where $m \ge n > 0$:

X $\mod n = r_1$

 $\mod r_1 = r_2$ $mod r_2 = r_3$ $mod r_3 = r_4$

 $r_{k-2} \mod r_{k-1} = r_k$ $r_{k-1} \mod r_k = 0$

 $gcd(m, n) = r_k$

Note that each $r_i \ge 0$. So

 $= r_2 > r_1 \mod r_2$

 $n > m \mod n$ $= r_1 > n \mod r_1$

 $= r_3 > r_2 \mod r_3$

Thus the **while** loop is executed at most n times.

In particular, the algorithm stops.

Note 8.4.10. We used the Well-Ordering Principle here to deduce that, since $\{n, r_1, r_2, r_3, \dots\}$ is nonempty, it must have a smallest element.

similar to base-b representation

Why is the Euclidean Algorithm correct?

Algorithm 8.4.8

1. **input** $m, n \in \mathbb{Z}^+$ with $m \ge n > 0$ 2. x := m

3. y := n4. while $y \neq 0$ do

5. $r := x \mod y$ 6. x := y

 $v \coloneqq r$

8. end do 9. output x

Definitions 8.1.16 and 8.1.17. $x \mod v$ is the remainder when x is divided by y, and $0 \le x \mod y < y$.

Exercise 8.4.3. If $x \mod v = 0$, then gcd(x, y) = y.

To find gcd(m, n), where $m \ge n > 0$:

X $\mod n = r_1$ r_1 mod $= r_2$

mod r_2 $= r_3$ $mod r_3 = r_4$ Same

 $r_{k-2} \mod r_{k-1} = r_k$ $r_{k-1} \mod r_k = 0$

 $gcd(m, n) = r_k$

▶ If $m \mod n = 0$, then gcd(m, n) = n. ightharpoonup Suppose $m \mod n \neq 0$. Let r_1, r_2, \ldots, r_k be as generated on the left.

where $k \in \mathbb{Z}^+$. Then Lemma 8.4.11 implies $gcd(m, n) = gcd(n, r_1)$

 $= \gcd(r_1, r_2)$

 $= \gcd(r_2, r_3)$ $= \gcd(r_{k-1}, r_k)$

 $= r_k$ because $r_{k-1} \mod r_k = 0$. Lemma 8.4.11. If $x, y, r \in \mathbb{Z}$ such that $x \bmod y = r$, then gcd(x, y) = gcd(y, r).

The correctness of the Euclidean Algorithm

Lemma 8.1.14 (Closure Lemma)

Let $a, b, d, m, n \in \mathbb{Z}$. If $d \mid m$ and $d \mid n$, then $d \mid am + bn$.

Proof of Lemma 8.4.11 below

- 1. Let $q = x \operatorname{\underline{div}} y$.
- 2. Then x = yq + r by the definition of <u>div</u> and <u>mod</u>.
- 3. If d is a common divisor of x and y, then d is a divisor of r by the Closure Lemma as $r = x yq = 1 \cdot x + (-q)y \in dx$ and dy
- 4. If d is a common divisor of y and r, then d is a divisor of x by the Closure Lemma as $x = yq + r = qy + 1 \cdot r$.
 - 5. So the common divisors of x and y are the exactly the common divisors of y and r.

 6. Hence gcd(x, y) = gcd(y, r).

The Extended Euclidean Algorithm

Theorem 8.5.2 (Bézout's Lemma)

For all $m, n \in \mathbb{Z}$ with $n \neq 0$, there exist $s, t \in \mathbb{Z}$ such that gcd(m, n) = ms + nt.

Example 8.5.3

From the Euclidean Algorithm, we know
$$gcd(1076, 414) = 2$$
 because

Hence

 $1076 \mod 414 = 248 \quad \longleftarrow \quad 248 = 1076 - 414 \times 2$

414 mod 248 = 166 \leftarrow -- 166 = 414 - 248 \times 1

 $166 \mod 82 = 2 \leftarrow -- 2 = 166 - 82 \times 2$

 $82 \mod 2 = 0$

 $= 166 - 82 \times 2$

gcd(1076, 414) = 2

 $= 248 \times (-2) + (414 - 248 \times 1) \times 3 = 414 \times 3 + 248 \times (-5)$

 $= 414 \times 3 - (1076 - 414 \times 2) \times 5 = 1076 \times (-5) + 414 \times 13$

 $= 166 - (248 - 166 \times 1) \times 2 = 248 \times (-2) + 166 \times 3$

by (4);

by (3);

by (2):

by (1).

integer linear

combination of m and n

(1)

(3)

(4)

integer linear The Extended Euclidean Algorithm — negative numbers combination

of m and nTheorem 8.5.2 (Bézout's Lemma)

For all
$$m, n \in \mathbb{Z}$$
 with $n \neq 0$, there exist $s, t \in \mathbb{Z}$ such that $gcd(m, n) = ms + nt$.

Exercise 8.4.7 Let $m, n \in \mathbb{Z}$. Then gcd(m, n) = gcd(|m|, |n|).

Remark 8.5.4

Let $m, n \in \mathbb{Z}^+$. If $s, t \in \mathbb{Z}$ such that gcd(m, n) = ms + nt, then by Exercise 8.4.7,

 $ightharpoonup \gcd(m, n) = ms + nt = (-m)(-s) + nt;$

 $ightharpoonup \gcd(m, n) = ms + nt = ms + (-n)(-t);$ and

 $ightharpoonup \gcd(m,n) = ms + nt = (-m)(-s) + (-n)(-t).$

- Proof 1. Suppose p is prime and $p \mid mn$.
- 2. Suppose $p \nmid m$.
- 3. Then gcd(m, p) = 1 by Exercise 8.4.6.
- 4. Apply Bézout's Lemma to find $s, t \in \mathbb{Z}$ such that $1 = \gcd(m, p) = ms + pt$.
- 5. Multiplying through by *n* gives n = nms + npt = s(mn) + (nt)p.
- 6. Since $p \mid mn$ by assumption and $p \mid p$, the Closure Lemma implies $p \mid n$. Corollary 8.5.6

Let $n, m_0, m_1, \ldots, m_n, p \in \mathbb{Z}^+$. If p is prime and $p \mid m_0 m_1 \dots m_n$, then $p \mid m_i$ for some $i \in \{0, 1, \dots, n\}$. Lemma 8.1.14. Let $a, b, d, m, n \in \mathbb{Z}$. If $d \mid m$ and $d \mid n$, then $d \mid am + bn$.

integer linear

combination of m and n

Let $m, p \in \mathbb{Z}^+$. If p is prime, then

either gcd(m, p) = 1 or $p \mid m$.

Prime factorization

Definition 8.5.7

A prime factorization of an integer n is a way of writing n as a product of primes.

Example 8.5.8

- (1) A prime factorization of 100 is $2 \times 2 \times 5 \times 5 = 2^25^2$.
- (2) A prime factorization of 641 is 641.

Theorem 8.5.9 (Fundamental Theorem of Arithmetic; Prime Factorization Theorem)

Every integer $n \ge 2$ has a unique prime factorization in which the prime factors are arranged in nondecreasing order.

Remark 8.5.10

- (1) The uniqueness part of the theorem above becomes false if we omit the "nondecreasing order" requirement, because 2×5 and 5×2 are different prime factorizations of 10.
- (2) The uniqueness part of the theorem above becomes false if we allowed 1 to be "prime", because then 2×5 and $1 \times 2 \times 5$ would be different "prime factorizations" of 10 in which the "prime factors" are arranged in nondecreasing order.

The existence of prime factorizations
Definition 8.5.7

Lemma 8.2.4. An integer n is composite iff n has a divisor such that 1 < d < n.

A prime factorization of an integer n is a way of writing n as a product of primes.

Proof of the existence part of the Fundamental Theorem of Arithmetic

- 1.1. For each $n \in \mathbb{Z}_{\geq 2}$, let P(n) be the proposition "n has a prime factorization".
- 1.2. (Base step) 2 is a prime factorization of 2 because 2 is prime. So P(2) is true.
- 1.3. (Induction step) 1.3.1. Let $k \in \mathbb{Z}_{\geq 2}$ such that $P(2), P(3), \ldots, P(k)$ are true.
- 1.3.2. If k+1 is prime, then k+1 is a prime factorization of k+1.
 - 1.3.3. So suppose k + 1 is not prime. Then k + 1 is composite. 1.3.4. Use Lemma 8.2.4 to find $d \mid k + 1$ such that 1 < d < k + 1.
 - 1.3.5. Use the definition of divisibility to find $e \in \mathbb{Z}$ such that k+1=de.
 - 1.3.6. Since d < k + 1 = de, dividing through by d gives 1 < e.
 - 1.3.7. Since 1 < d, multiplying through by e gives e < de = k + 1.
 - 1.3.8. Combining lines 1.3.6 and 1.3.7 gives 1 < e < k+1. trying to make e in the correct range
 - 1.3.9. So both d and e have prime factorizations by the induction hypothesis.
 - 1.3.10. This implies k + 1 has a prime factorization, because k + 1 = de.
- 1.3.11. So P(k+1) is true. 1.4. Thus $\forall n \in \mathbb{Z}_{>2}$ P(n) is true by Strong MI.

The uniqueness of prime factorizations

2.1. Suppose $n \in \mathbb{Z}_{\geq 2}$ with two different prime factorizations:

$$p_0p_1\ldots p_k=n=q_0q_1\ldots q_\ell. \tag{*}$$

- 2.2. Now we cancel all the primes that are common to both sides of (*).
- 2.3. We know that some primes are left on both sides because otherwise the two prime factorizations in (*) are the same when arranged in nondecreasing order.
- 2.4. Let the result of the cancellation in line 2.2 be

$$p'_0 p'_1 \dots p'_{k'} = q'_0 q'_1 \dots q'_{\ell'}.$$
 (†)

- 2.5. No prime appears on both sides of (†) since we cancelled out all of them.
- 2.6. We see from (†) that $p'_0 \mid q'_0 q'_1 \dots q'_{\ell'}$.
- 2.7. Use Corollary 8.5.6 to find $i \in \{0, 1, \dots, \ell'\}$ such that $p'_0 \mid q'_i$.
- 2.8. Since q_i' is prime, its only positive divisors are 1 and q_i' . So $p_0' = q_i'$ as $p_0' \neq 1$.
- 2.9. Line 2.5 and line 2.8 contradict each other.

Corollary 8.5.6. Let
$$n, m_0, m_1, \ldots, m_n, p \in \mathbb{Z}^+$$
. If p is prime and $p \mid m_0 m_1 \ldots m_n$, then $p \mid m_i$ for some $i \in \{0, 1, \ldots, n\}$.

Summary

Algorithm 8.4.8 (Euclidean Algorithm)

- 1. **input** $m, n \in \mathbb{Z}^+$ with $m \geqslant n > 0$
- 2. x := m
- 3. y := n
- 4. while $y \neq 0$ do
- 5. $r := x \mod y$
- 6. x := y
- 7. y := r
- 8. end do
- 9. output x

[T]he proof, although not 'difficult', requires a certain amount of preface and might be found tedious by an unmathematical reader. G.H. Hardy

Theorem 8.5.2 (Bézout's Lemma)

For all $m, n \in \mathbb{Z}$ with $n \neq 0$, there exist $s, t \in \mathbb{Z}$ such that gcd(m, n) = ms + nt.

Theorem 8.5.5 (Euclid's Lemma)

Let $m, n, p \in \mathbb{Z}^+$. If p is prime and $p \mid mn$, then $p \mid m$ or $p \mid n$.

Theorem 8.5.9 (Fundamental Theorem of Arithmetic; Prime Factorization Theorem)

Every integer $n \ge 2$ has a unique prime factorization in which the prime factors are arranged in nondecreasing order.

Next

modular arithmetic