

HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU API CALENDAR HELP

PROBLEMS SUBMIT CODE MY SUBMISSIONS STATUS STANDINGS CUSTOM INVOCATION

A. Assembling Pokemon Team

time limit per test: 2 s. memory limit per test: 256 MB

Ah, you must be the new trainer! Welcome to Professor Oak's Lab, where we study the how to form Pokémon teams. I have an important task for you—one that only the sharpest minds can solve.

I have a list of Pokémon levels, and your mission is to extract the longest possible subsequence that forms an increasing chain of consecutive levels. Think of it like assembling a perfect battle-ready team!

In more precise terms, you must find the longest "subsequence" that follows this value:

$$[x, x + 1, ..., x + k - 1]$$

for some starting level (x) and length (k).

But remember—just like Pokémon battles, order matters! You can remove pokenmons, but you must keep the original order of the remaining ones.

Input

The first line of the input contains an integer n $(1 \le n \le 2 \cdot 10^5)$ — the number of Pokémon levels. The second line contains n integers $x_1, x_2, \ldots, x_n (1 \le x_i \le 10^9)$ — the Pokémon levels.

Output

On the first line, print (k) — the maximum length of the subsequence of the given array that forms an increasing sequence of consecutive levels.

On the second line, print the sequence of the indices of the **any** maximum length subsequence of the given array that forms an increasing sequence of consecutive levels.

Examples

output

input	Сору
7 3 3 4 7 5 6 8	
output	Сору
4 2 3 5 6	
input	Сору
6 1 3 5 2 4 6	
output	Сору
2 1 4	
input	Сору
4 10 9 8 7	

UIUC CS 491 Spring 2025

Private

Participant

→ About Group

Group website

→ Group Contests

- Line Sweep Homework (Extra Credit)
- · Convex Hull Preclass
- Number Theory I Homework
- · Line Sweep Preclass
- Number Theory II Homework
- · Combinatorics Homework
- · Geometry Preclass
- Geometry Homework
- Convex Hull Homework (Extra Credit)
- Rabin Karp Homework
- Number Theory II Preclass
- · Combinatorics Preclass
- DP TSP Homework
- KMP Homework
- DP Tree Homework
- Number Theory I Preclass
- KMP Preclass
- DP Palindromes Homework
- Rabin Karp Preclass
- DP Edit Distance Homework
- DP Knapsack Homework
- DP TSP Preclass
- DP Longest Increasing Subsequence -Homework
- DP Intro Homework
- DP Tree Preclass
- Greedy Homework
- Fenwick Tree Homework

input	Сору
9 6 7 8 3 4 5 9 10 11	
output	Сору
6 1 2 3 7 8 9	

Note

All valid answers for the first example (as sequences of indices):

- [1, 3, 5, 6]
- [2, 3, 5, 6]

All valid answers for the second example:

- [1,4]
- [2, 5]
- [3, 6]

All valid answers for the third example:

- [1]
- [2]
- [3]
- [4]

All valid answers for the fourth example:

• [1, 2, 3, 7, 8, 9]

- DP Knapsack Preclass
- DP Edit Distance Preclass
- Segment Tree Homework
- DP Palindromes Preclass
- Lazy Segment Tree Homework
- LCA and Binary Lifting Homework
- DP intro Preclass
- Square Root Decomposition Homework
- DP Longest Increasing Subsequence -Preclass
- Greedy Preclass
- Fenwick Tree Preclass
- Bit Manipulation Homework
- Square Root Decomposition Preclass
- Fast Exponentiation Homework
- · MST Homework
- Lazy Segment Tree Preclass
- · LCA and Binary Lifting Preclass
- Segment Tree Preclass
- Bit Manipulation Preclass
- Fast Exponentiation Preclass
- MST Preclass
- Graph Traversal 2 Homework
- Graph Traversal 2 In Class
- All Pairs Shortest Path Homework
- All Pairs Shortest Path In Class
- Single Source Shortest Path Homework
- Single Source Shortest Path In Class
- Graph Traversal 1 Homework
- Graph Traversal 1 In Class
- Binary Search Tree Homework
- Binary Search Tree In Class
- Disjoint Sets Homework
- Disjoint Sets In Class
- Divide and Conquer Homework
- Divide and Conquer In Class
- Complete Search Homework
- Complete Search In Class
- STL Homework
- STL In Class
- IO Problems Preclass
- Test Contest