Laplace functions	Transfor	rm Properties	Transfer for	unction	General Secor	General Second-Order system		Underdamped Second-Order Systems		
$ \begin{array}{c cccc} & f(t) & F(s) \\ \hline \text{Impulse} & \delta(t) & 1 \\ \hline \text{Step (=1)} & u(t) & \frac{1}{-} \end{array} $	$\mathcal{L}[kf(t)] = kF(s)$ $\mathcal{L}[f_1(t) + f_2(t)] = F_1(s) + F_2(s)$ $\mathcal{L}[e^{-at}f(t)] = F(s+a)$		G(s) = Outp = C(s)/		$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \qquad T_s = \frac{4}{\zeta\omega}$		$T_s = \frac{4}{\zeta \omega_n}$	Settling time		
Step (=1) $u(t)$ $\frac{s}{s}$ Ramp (= t) $tu(t)$ $\frac{1}{s^2}$	$\mathcal{L}[e^{-at}f(t)] = F(s+a)$ $\mathcal{L}[f(t-T)] = e^{-sT}F(s)$ $\mathcal{L}[f(at)] = \frac{1}{a}F\left(\frac{s}{a}\right)$		Poles/Z		Steady state error for negative unity feedback		Overshoot $100e^{-\zeta\pi/\sqrt{1-\zeta^2}}$			
$t^n u(t)$ $\frac{n!}{s^{n+1}}$			F(s) =	$\frac{N(s)}{D(s)}$	Step Ramp Parab. $\%OS = 1$					
$a^{-at}v(t)$ $\frac{1}{t}$	$_{\mathscr{L}} \left[rac{df}{-} ight]$	= sF(s) - f(0-)		D(s)	N=0 A/(1+k _p)				-ln(%OS/100)	
$ \begin{array}{ccc} e & u(t) & s+a \\ \sin \omega t u(t) & \frac{\omega}{s^2 + \omega^2} \end{array} $					N=1 0 A/k _v ∞		$\zeta = \frac{-ln(\%OS/100)}{\sqrt{\pi^2 + ln^2(\%OS/100)}}$			
$\cos \omega t u(t) \begin{vmatrix} s^2 + \omega^2 \\ \frac{s}{s^2 + \omega^2} \end{vmatrix}$	$S = \mathcal{L} \left[\frac{1}{12} \right] = S \Gamma(S) - S J(O-) - J(O-)$			ation	$N=2$ 0 0 A/k_a $T_n = -$		$\frac{\pi}{\sqrt{1-\xi^2}}$ Time to peak			
A A/s	$f(\infty) = \lim_{s \to 0} sF(s)$		$\Delta x = x$	-Xn	$ \begin{vmatrix} \mathbf{N=2} & 0 & 0 & \mathbf{A/k_a} \\ k_p = \lim_{s \to 0} G_l(s) & k_v = \lim_{s \to 0} sG_l(s) \end{vmatrix} T_p = \frac{1}{\omega_n} $		$\sqrt{1-\zeta^2}$			
$\frac{d\delta(t)}{dt}$ s	$f(0+) = \lim_{s \to \infty} sF(s)$		$\dot{\mathbf{x}} = \Lambda \dot{\mathbf{x}}$		$k = \lim_{s \to \infty} e^2 C_1(s) + E(s) - R(s) - V(s)$					
$e^{-at}sin(\omega t) \frac{\omega}{(s+a)^2 + \omega^2}$				ιX	$e_{ss}(t) = \lim_{s \to 0} sE(s) \begin{array}{c} E(s) = R(s) & T(s) \\ \text{Conversion to} \\ \text{Open loop} \end{array} \qquad T_r = \frac{\pi - \sigma_r}{\omega_n}.$		$\frac{\cos^{-\zeta}}{\sqrt{1-\zeta^2}}$ Time to rise			
-at (s) $s+a$			- f/v \ . f!/v	١٨	l $\alpha \in \mathcal{A}$ negative unity l					
$T(\mathbf{x}) = T(\mathbf{x})$			= f(x ₀) + f'(x ₀	JΔX			ζ = co			
First order sys		Steady sta	te error	ror Matrix Recap				Matrix inverse		
G(s) = a/(s+a) or $1/(s+a)$ lim $sE(s)$, $s ->Time constant: T_c = 1/a$			·> 0	$A = \begin{bmatrix} a & e & f \\ a & b & i \end{bmatrix} \qquad \begin{bmatrix} h & il & g & il & g & h \\ h & cl & a & cl & a & h \end{bmatrix}$				$A^{-1} = \frac{1}{\det(A)}(Cofactor(A))^{T}$		
Time to rise: $T_r = 2.2/a$			C(s)][a	$\begin{bmatrix} i & i \\ i & d \end{bmatrix} \begin{bmatrix} cojactor(A) = \begin{bmatrix} - h & i \\ b & c \\ - a & c & a & b \end{bmatrix}$			Derivative recap		
Settling Time: T _s = 4/a matrix produ			oduct	$A^{T} = \begin{vmatrix} b & c & h \\ c & f & i \end{vmatrix} \qquad \qquad$				$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$		
Step response: $\check{\mathbf{C}}(\mathbf{s}) = \mathbf{R}(\mathbf{s}) \; \mathbf{G}(\mathbf{s}) \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg \\ ce + dg \end{bmatrix}$			$\begin{bmatrix} +bg & af+bh \\ +dq & cf+dh \end{bmatrix}$	$\begin{pmatrix} g & af + bh \\ g & cf + dh \end{pmatrix}$ Eigenvalues:det(A - λ I) = 0						
Closed loop transfer function neg feedback			2 ,]	Electricity, translation + rotation				$\frac{d}{dx} \left \frac{f(x)}{g(x)} \right = \frac{g(x)}{g(x)}$	$\frac{(x) f'(x) - f(x)g'(x)}{[g(x)]^2}$	
-							I(s) = 0	Derivative	Integral (Antiderivative)	
$TF = \frac{G(s)}{1 + G(s)H(s)}$				Electrical Network Transfer Functions $V(s) - () I(s) = 0$ Impedance: $Z(s) = V(s)/I(s)$ Admittance: $Y(s) = 1/Z(s)$					$\int 0 dx = C$	
Transfer function -> State-Space				Impedance equations: Resistor: R, Capacitor: 1/(Cs), Inductor: Ls				$\frac{d}{dx}x = 1$	$\int 1 dx = x + C$	
$\dot{x} = Ax + Bu$ and $y = Cx + Du$ $d^{n}u$ $d^{n-1}u$ du du $s^{2}Y(s) = \ddot{y}$				Translational Mechanical System Transfer Functions				$\frac{d}{dx}x^n = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C$	
$\frac{d^{2}y}{dt^{n}} + a_{n-1}\frac{d^{2}y}{dt^{n-1}} + \dots + a_{1}\frac{dy}{dt} + a_{0}t = b_{0}u$ $\mathbf{sY(s)} = \dot{\mathbf{y}}$				Element Law equations:				$\frac{d}{dx}e^{x} = e^{x}$	$\int e^{x} dx = e^{x} + C$	
$x_1 = y, x_2 = \dot{y}, x_3 = \ddot{y}$ $Y(s) = y$ $\dot{x}_1 = x_2, \dot{x}_2 = x_3, \dot{x}_3 = y$				Spring: F=kx, Viscous Damper: F=Cx, Mass: mx				$\frac{d}{dx} \ln x = \frac{1}{x}$	$\int \frac{1}{y} dx = \ln x + C$	
$\begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} u \end{bmatrix} \qquad \begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$			Admit Spring	Admittance equations: Spring: K, Viscous Damper: Cs, Mass: Ms ²					^	
$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ \dot{u} \\ \ddot{u} \end{bmatrix} \qquad \dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ b_0 \end{bmatrix} r$				Y(s)X(s) = F(s)				$\frac{d}{dx}n^{x} = n^{x} \ln x$	$\int n^{x} dx = \frac{n^{x}}{\ln n} + C$	
Pouth Humuitz Critorian of characteristic on				Rotational Systems Transfer Functions				$\frac{d}{dx}\sin x = \cos x$	$\int \cos x \ dx = \sin x + C$	
$S^n \ a_1 \dots a_3 \dots \qquad \qquad a_2 a_3 - a_4 a_1$				Me = J Spring: K, Viscous Damper: Cs, Inertia: $\mathrm{Js^2}$ $(\sum Z_1(s))X_1(s) - (\sum Z_{1,2}(s))X_2(s) = F_1(s)$				$\frac{d}{dx}\cos x = -\sin x$ $\frac{d}{dx}\tan x = \sec^2 x$	$\int \sin x \ dx = -\cos x + C$	
$u_1 = \frac{1}{a_2}$ $\vdots a_2 \dots$			Spring	Spring: K, Viscous Damper: Cs, Inertia: Js ²					$\int \sec^2 x \ dx = \tan x + C$	
S ⁰ $u_3 = \frac{a_2 a_5 - a_6 a_1}{a_3}$			$\frac{1}{2}$	$(\sum Z_1(s))X_1(s) - (\sum Z_{1,2}(s))X_2(s) = F_1(s)$					$\int \csc^2 x \ dx = -\cot x + C$	
a_2									$\int \tan x \sec x \ dx = \sec x + C$	
Root locus characteristic equation $1 + KC_2(e) = 0$				State-space -> Transfer function				$\frac{d}{dx}\csc x = -\csc x \cot x$	$\int \cot x \csc x \ dx = -\csc x + C$	
$1 + KG_l(s) = 0$				$\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D$						
Root locus Poles and Zeros				Partial fraction expansion						
$G_l(s) = \frac{N(s)}{D(s)}$				•						
Root locus asymptote location				$F(S) = \frac{a}{(s+b)(s+c)^2} = \frac{K_1}{s+b} + \frac{K_2}{(s+c)^2} + \frac{K_3}{s+c}$						
$\sigma_a = \frac{\sum poles - \sum zeros}{n - m}$						K, 6K, 1	 Ko			
n-m				$F(s) = \frac{a}{s(s^2 + bs + c)} = \frac{K_1}{s} + \frac{sK_2 + K_3}{s^2 + bs + c}$						
Root locus asymptote angle				5(5 100 10) 0 0 100 10						
$\varphi_{ap} = \frac{2p+1}{n-m} 180^{\circ}, p = 0, 1, 2,(n-m-1)$				Proportional plus Derivative (PD) Compensator Phase Lead Compensator			pensator			
Root locus break-away/break-in points				$C(\cdot)$ $V(\cdot)$			$+z_{0})$			
K = dK/ds = 0			Pha	se Lag Co	ompensator	$G_c(s) = \frac{K(s+z_0)}{s+p_0}$				
Root locus determine departure/arrival angle				$0 < p_0 < z_0$ $0 < z_0 < p_0$						
	$-\sum \theta_p = -$			PID Compensator						
				$G_c(s) = K_P + \frac{K_I}{s} + K_D s$						
Proportional plus Integral (PI) Compensator					<u>s</u>					
$G_c(s) = K_P + \frac{K_I}{s}$										