Implementation of an Iterative Linear Quadratic Regulator (iLQR)

Gabriel Desfrene Antoine Groudiev

January 14, 2025

Problem statement

The iLQR algorithm

Our implementation

Demonstration time

Problem statement

The iLQR algorithm

Our implementation

Demonstration time

General formulation

Dynamics function:

$$x_{t+1} = f(x_t, u_t)$$

- Goal: minimize a quadratic cost function
- Cost function:

$$J(u) = \sum_{t=0}^{T-1} \left(x_t^{\top} Q x_t + u_t^{\top} R u_t \right) + \frac{1}{2} (x_T - x^*)^{\top} Q_f(x_T - x^*)$$

- Q: state cost matrix
- Q_f : final state cost matrix
- R: control cost matrix

Example: Simple Pendulum

- State: $x = [\theta \ \dot{\theta}]$
- Control: u, torque applied to the pendulum
- Dynamics: physical laws (simulator)
- Target: $x = [0 \ 0]$
- Cost function:

$$J(u) = \frac{1}{2} \left(\theta_f^2 + \dot{\theta}_f^2 \right) + \frac{1}{2} \int_0^T r u^2(t) dt$$

corresponding to $Q_f = I_2$, $Q = 0_2$, $R = rI_1$

Example: Cartpole

- State: $x = [y \ \theta \ \dot{y} \ \dot{\theta}]$
- Control: u, force applied to the cart
- Dynamics: physical laws (simulator)
- Target: $x = [0 \ 0 \ 0 \ 0]$
- Cost function:

$$J(u) = \frac{1}{2} \left(\theta_f^2 + \dot{\theta}_f^2 + y_f^2 + \dot{y}_f^2 \right) + \frac{1}{2} \int_0^T r u^2(t) dt$$

corresponding to $Q_f = I_4$, $Q = 0_4$, $R = rI_1$

Problem statement

The iLQR algorithm

Our implementation

Demonstration time

General idea

- iLQR is an iterative algorithm
- Start with an initial trajectory
- Iteratively improve it using a local linear approximation
- Stop when the trajectory converges

Linearizing the dynamics

The equation $x_{t+1} = f(x_t, u_t)$ is linearized (at each step) as:

$$\delta x_{t+1} = A_t \delta x_t + B_t \delta u_t$$

with:

- A_t : Jacobian of f with respect to x evaluated at (x_t, u_t)
- B_t : Jacobian of f with respect to u evaluated at (x_t, u_t)

We are in LQR (Linear Quadratic Regulator, cf. TP5) setup!

Trajectory refinement using LQR

- 1. Forward pass: compute the successive states (x_t) for the current controls (u_t) , and the corresponding cost J
- 2. **Backward pass**: compute the gains, i.e. how much we should change the controls in each direction to minimize the cost
- 3. Forward rollout: apply the gains to the controls to obtain a new trajectory
- 4. Repeat until convergence

Computing the Jacobians

Finite differences method

We want to compute:

- $A_t=rac{\partial f}{\partial x}(x_t,u_t)$, i.e. how much the state at time t+1 changes when we slightly change the state at time t
- $B_t=rac{\partial f}{\partial u}(x_t,u_t)$, i.e. how much the state at time t+1 changes when we slightly change the control at time t

In a black box setting, we can use finite differences:

$$[A_t]_i \approx \frac{f(x_t + \varepsilon e_i, u_t) - f(x_t - \varepsilon e_i, u_t)}{2\varepsilon}$$
$$[B_t]_i \approx \frac{f(x_t, u_t + \varepsilon e_i) - f(x_t, u_t - \varepsilon e_i)}{2\varepsilon}$$

for some small ε and the canonical basis (e_i)

Tricks for practical convergence

• Gradient clipping: limit the size of the control updates norm to α to avoid divergence

$$\delta u_t = \frac{\delta u_i}{\max\left(1, \frac{\|\delta u_i\|}{\alpha}\right)}$$

 Gaussian initialization: start with a small random control sequence instead of a zero sequence

$$u_t \sim \mathcal{N}(0, \Sigma)$$

Problem statement

The iLQR algorithm

Our implementation

Demonstration time

What language to use?

Python
 Easy to use
 Fast
 Support for many libraries
 Not very funny
 Embarrassingly slow

Therefore, we chose to have a Rust core with Python bindings

From Rust to Python, and the other way around

- Instantiate the solver in Python
- Use Python libraries to define the dynamics
- The Rust solver does the computations, and calls the Python dynamics function

API Basic usage

000

```
def dynamics(x, u):
    return ... # simulator
Q = np.zeros((state_dim, state_dim)) # state cost
Qf = np.eye(state dim) # final state cost
R = 1e-5 * np.eve(control_dim) # control cost (minimize the energy)
s = ilgr.ILQRSolver(state dim, control dim, Q, Qf, R)
target = np.zeros(state dim) # upright pendulum with no velocity
output = s.solve(np.concatenate((q0, v0)), target, dynamics, time steps=N,
                 gradient_clip=10.0, # max norm of the gradient
                 initialization=0.5) # std of the Gaussian initialization
```

Problem statement

The iLQR algorithm

Our implementation

Demonstration time

Demonstration time!

Problem statement

The iLQR algorithm

Our implementation

Demonstration time