Game of Stones

Two players (numbered $\mathbf{1}$ and $\mathbf{2}$) are playing a game with \mathbf{n} stones. Player $\mathbf{1}$ always plays first, and the two players move in alternating turns. The game's rules are as follows:

- In a single move, a player can remove either 2, 3, or 5 stones from the game board.
- If a player is unable to make a move, that player loses the game.

Given the number of stones, find and print the name of the winner (i.e., **First** or **Second**) on a new line. Each player plays optimally, meaning they will not make a move that causes them to lose the game if some better, winning move exists.

Input Format

The first line contains an integer, T, denoting the number of test cases.

Each of the T subsequent lines contains a single integer, n_c denoting the number of stones in a test case.

Constraints

- $1 \le T \le 100$
- $1 \le n \le 100$

Output Format

On a new line for each test case, print First if the first player is the winner; otherwise, print Second.

Sample Input

- 8
- 1
- 3
- 4
- 5
- 6
- 10

Sample Output

Second

First

First

First

First

First Second

First

Explanation

In the sample, we have T=8 testcases.

We'll refer to our two players as P_1 and P_2 .

If n=1, P_1 can't make any moves and loses the game (i.e., the P_2 wins and we print **Second** on a new line).

If n=2, P_1 removes 2 stones in their first move and wins the game, so we print **First** on a new line.

If n = 3, P_1 removes 2 stones in their first move, leaving 1 stone on the board. Because P_2 is left with no available moves, P_1 wins and we print **First** on a new line.

If n = 4, P_1 removes 3 stones in their first move, leaving 1 stone on the board. Because P_2 has no available moves, P_1 wins and we print **First** on a new line.

If n=5, P_1 removes all 5 stones from the game board. Because P_2 is left with no available moves, P_1 wins and we print **First** on a new line

If n=6, P_1 removes 5 stones in their first move, leaving 1 stone on the board. Because P_2 has no available moves, P_1 wins and we print **First** on a new line.

If n = 7, P_1 can make any of the following three moves:

- 1. Remove ${f 2}$ stones, leaving ${f 5}$ stones on the board. ${m P_2}$ then removes ${f 5}$ stones. Because ${m P_1}$ has no available moves, ${m P_2}$ wins.
- 2. Remove $\bf 3$ stones, leaving $\bf 4$ stones on the board. $P_{\bf 2}$ then removes $\bf 3$ stones, leaving $\bf 1$ stone left on the board. Because $P_{\bf 1}$ has no available moves, $P_{\bf 2}$ wins.
- 3. Remove ${f 5}$ stones, leaving ${f 2}$ stones on the board. ${m P_2}$ then removes the ${f 2}$ remaining stones. Because ${m P_1}$ has no available moves, ${m P_2}$ wins.

Because all possible moves result in P_2 winning, we print **Second** on a new line.

If n = 10, P_1 can remove either 2 or 3 stones to win the game, so we print **First** on a new line. Recall that each player moves optimally, so P_1 will not remove 5 stones because doing so would cause P_1 to lose the game.