Abstract Algebra

Homework 8: 1, 12.1, 12.4, 12.13

Kenny Roffo

Due April 27

1) Prove $Q_8 \ncong D_8$.

Assume for the sake of contradiction $Q_8 \cong D_8$. Then there exists a function, call it f, such that $f: Q_8 \to D_8$ is one-to-one and onto.

 Q_8 contains one element of order 2 (-1), while D_8 contains 3 elements of order 2 (r^2 , s and sr^2). Since an isomorphism must be one-to-one, f(-1) can only be one of these three, and thus some element of Q_8 of order not equal to 2 must map to r^2 . But since these two elements have different order, this implies by our theorems that f is not an isomorphism, thus Q_8 and D_8 are not isomorphic to each other.

12.1) Which of the following mappings are homomorphisms? Monomorphisms? Epimorphisms? Isomorphisms?

a)
$$G = (\mathbb{R} - \{0\}, \cdot), H = (\mathbb{R}^+, \cdot); \varphi : G \to H$$
 is given by $\varphi(x) = |x|$

Let $x,y \in G$. We see $\varphi(xy) = |xy| = |x||y| = \varphi(x)\varphi(y)$, so φ is a homomorphism. Now let a=2, b=-2. We see $a,b \in G$ and $\varphi(a)=|z|=2=|-2|\varphi(b)$, so φ is not one-to-one. Now let $z \in H$. Then z is positive, thus z=|z| by definition of absolute value. Also, since $z \in \mathbb{R}^+$, then $z \in \mathbb{R}$, and $\varphi(z)=|z|=z$, so φ is onto. Therefore φ is an epimorphism.

b)
$$G = (\mathbb{R}^+, \cdot); \varphi : G \to G$$
 is given by $\varphi(x) = \sqrt{x}$.

Let $x,y\in G$. Then $\varphi(xy)=\sqrt{xy}=\sqrt{x}\sqrt{y}=\varphi(x)\varphi(y)$, so φ is a homomorphism. Now let $a,b\in G$ such that $\varphi(a)=\varphi(b)$. Then $\sqrt{a}=\sqrt{b}$, and squaring both sides we see a=b, thus φ is one-to-one. Now let $z\in G$. Then $z^2\in G$, since \mathbb{R}^+ is closed under multiplication, and we see $\sqrt{z^2}=z$. Thus φ is onto, so φ is an isomorphism. (Actually, since φ is an isomorphism from G onto itself, φ is an automorphism)

c) G = group of polynomials p(x) with real coefficients, under addition of polynomials; $\varphi: G \to G$ is given by $\varphi[p(x)] = p(1)$.

Let $f,g \in G$. Then $\varphi(f+g)=(f+g)(1)=f(1)+g(1)=\varphi(f)\varphi(g)$, thus φ is a homomorphism. Now let $A=x^3$ and $B=x^7$. Then $\varphi(A)=1=\varphi(B)$, so φ is not one-to-one. Now let $z \in \mathbb{R}^+$, and consider the function Y(x)=z, which is in G. Then $\varphi(Y)=z$, thus φ is onto, so φ is an epimorphism.

d) G is as in \mathbf{c} ; $\varphi: G \to G$ is given by $\varphi[p(x)] = p'(x)$.

Let $f,g \in G$. Then $\varphi(f+g) = \frac{\mathrm{d}}{\mathrm{d}x}(f+g) = \frac{\mathrm{d}f}{\mathrm{d}x} + \frac{\mathrm{d}g}{\mathrm{d}x} = \varphi(f) + \varphi(g)$, so φ is a homomorphism. Now let $A = x^2$ and $B = x^2 + 2$. Then $\varphi(A) = 2x = \varphi(B)$, but $A \neq B$, so φ is not one-to-one. Now let $Y \in G$. Then Y can be written in the form:

$$Y = a_1 x^n + a_2 x^{n-1} + \dots + a_{n-1} x + a_n$$

Here, n is the degree of Y. Consider the function Z as defined by:

$$Z = \frac{a_1}{n}x^n + \frac{a_2}{n-1}x^{n-1} + \dots + \frac{a_{n-1}}{2}x^2 + a_nx$$

Note that $Z \in G$, and $\varphi(Z) = Y$. This implies that φ is onto. Therefore φ is an epimorphism.

e) G = the group of subsets of $\{1, 2, 3, 4, 5\}$ under symmetric difference; $A = \{1, 3, 4\}$ and $\varphi : G \to G$ is given by $\varphi(B) = A \triangle B$, for all $B \subset \{1, 2, 3, 4, 5\}$.

(I still have to work this one out)

12.4) In each case, determine whether or not the two given groups are isomorphic:

a)
$$(\mathbb{Z}_{12}, \bigoplus)$$
 and (\mathbb{Q}^+, \cdot)

Since $|\mathbb{Z}_{12}| = 12 \neq \infty = |\mathbb{Q}^+|$, there cannot exist a bijection between these two sets, thus there cannot be an isomorphism between these two groups.

b)
$$(2\mathbb{Z}, +)$$
 and $(3\mathbb{Z}, +)$

These two groups are isomorphic by the function $\varphi: 2\mathbb{Z} \to 3\mathbb{Z}$ as defined by $\varphi(x) = \frac{3}{2}x$. Let $x, y \in 2\mathbb{Z}$. We see

$$\varphi(x+y) = \frac{3}{2}(x+y)$$
$$= \frac{3}{2}x + \frac{3}{2}y$$
$$= \varphi(x) + \varphi(y)$$

Thus φ is a homomorphism. Now assume $\varphi(x) = \varphi(y)$. Then $\frac{3}{2}x = \frac{3}{2}y$, and this implies x = y, so φ is a monomorphism. Now let $z \in 3\mathbb{Z}$. Then z = 3a for some $a \in \mathbb{Z}$. Note that

 $2a \in 2\mathbb{Z}$, and $\varphi(2a) = 3a = z$. So φ is an epimorphism. Therefore φ is an isomorphism.

c)
$$(\mathbb{R} - \{0\}, \cdot)$$
 and $(\mathbb{R}, +)$

No isomorphism exists between these two groups since $-1 \in \mathbb{R} - \{0\}$ and o(-1) = 2, but no element of $(\mathbb{R}, +)$ has order 2.

d) V and $\mathbb{Z}_2 \times \mathbb{Z}_2$

These two groups are isomorphic by the function $\varphi: V \to \mathbb{Z}_2$ as defined by

$$\varphi(e) = e$$

$$\varphi(a) = (1,0)$$

$$\varphi(b) = (0,1)$$

$$\varphi(c) = (1,1)$$

One can check that this is a homomorphism by going through each case, and I have done so. Due to the extensiveness of writing this out, I will not be doing so here. Once you are convinced that it is a homomorphism, note that this definition is obviously one-to-one and onto, so it is an isomorphism.

e) $\mathbb{Z}_3 \times \mathbb{Z}_3$ and \mathbb{Z}_9

No isomorphism exists between these two groups. Recall $o(x) = o(\varphi(x))$ for an isomorphism φ . $5 \in \mathbb{Z}_9$ has o(5) = 9, but no element of $\mathbb{Z}_3 \times \mathbb{Z}_3$ has order 9 (in fact all of them except the identity have order 3). Therefore no isomorphism can exist between these two groups.

f)
$$(\mathbb{R} - \{0\}, \cdot)$$
 and $(\mathbb{R}^+, \cdot) \times (\mathbb{Z}_2, \bigoplus)$

These groups are isomorphic under the function $\varphi: \mathbb{R} - \{0\} \to (\mathbb{R}^+, \cdot) \times (\mathbb{Z}_2, \bigoplus)$ as defined by $\varphi(x) = \begin{cases} (|x|, 1) & x < 0 \\ (|x|, 0) & x > 0 \end{cases}$ Let $x, y \in \mathbb{R} - \{0\}$. Either x and y are both negative or positive together, or they have different signs. Consider when both x and y are positive:

$$\varphi(xy) = (|xy|, 0)$$

$$= (|x||y|, 0)$$

$$= (|x|, 0)(|y|, 0)$$

$$= \varphi(x)\varphi(y)$$

so this case satisfies the definition of a homomorphism. Now consider when x and y are

negative (remember, the product of two negatives is positive):

$$\varphi(xy) = (|xy|, 0)$$

$$= (|x||y|, 0)$$

$$= (|x|, 1)(|y|, 1)$$

$$= \varphi(x)\varphi(y)$$

so this case also satisfies the definition of a homomorphism. Now consider the case where one is positive, and one is negative. Without loss of generality we will consider x to be the positive one:

$$\varphi(xy) = (|xy|, 1)$$

$$= (|x||y|, 1)$$

$$= (|x|, 0)(|y|, 1)$$

$$= \varphi(x)\varphi(y)$$

so every case satisfies the definition of a homomorphism, so φ is a homomorphism. Now assume $\varphi(x) = \varphi(y)$. Then (with $a, b \in \{0, 1\}$):

$$(|x|, a) = (|y|, b)$$

 $\implies |x| = |y|a = b$

This is true if either x=y or x=-y. But since a=b, we know x and y have the same sign, so x=y. Therefore φ is one-to-one. Now consider $(z,c)\in(\mathbb{R}^+,\cdot)\times(\mathbb{Z}_2,\bigoplus)$. If c=0, then $z\in\mathbb{R}-\{0\}$ and $\varphi(z)=(z,0)$. If, however, z=1, then $-z\in\mathbb{R}-\{0\}$ and $\varphi(-z)=(z,1)$. Therefore φ is onto. Therefore we have shown that φ is an isomorphism.

g) $(\mathbb{Z}, +)$ and $(\mathbb{Z}, *)$ where a * b = a + b - 1These two groups are isomorphic by the function $\varphi : (\mathbb{Z}, +) \to (\mathbb{Z}, *)$ as defined by $\varphi(x) = x + 1$. Let $x, y \in \mathbb{Z}$. We see:

$$\varphi(x+y) = x+y+1$$

$$= (x+1) + (y+1) - 1$$

$$= \varphi(x)\varphi(y)$$

so φ is a homomorphism. Now assume $\varphi(x)=\varphi(y)$. Then $x+1=y+1\Longrightarrow x=y$, so φ is one-to-one. Now let $z\in\mathbb{Z}$. Then $z-1\in\mathbb{Z}$ and $\varphi(z-1)=z-1+1=z$. Therefore φ is onto, so φ is an isomorphism.

h) G and $G \times G$ where $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times ...$ Note that all elements of G have the form $(a_1, a_2, a_3, ...)$. These two groups are isomorphic by the function $\varphi : G \to G \times G$ as defined by $\varphi[(a_1, a_2, a_3, ...)] = ((a_1, a_3, a_5, ...), (a_2, a_4, a_6, ...))$. Let $(a_1, a_2, a_3, ...), (b_1, b_2, b_3, ...) \in G$. We see:

$$\varphi[(a_1, a_2, a_3, \ldots)(b_1, b_2, b_3, \ldots)] = \varphi(a_1 + b_1, a_2 + b_2, a_3 + b_3, \ldots)$$

$$= ((a_1 + b_1, a_3 + b_3, \ldots), (a_2 + b_2, a_4 + b_4, \ldots))$$

$$= ((a_1, a_3, \ldots), (a_2, a_4, \ldots)) ((b_1, b_3, \ldots), (b_2, b_4, \ldots))$$

$$= \varphi[(a_1, a_2, a_3, \ldots)] \varphi[(b_1, b_2, b_3, \ldots)]$$

so φ is a homomorphism. Now assume $\varphi[(a_1, a_2, a_3, ...)] = \varphi[(b_1, b_2, b_3, ...)]$. Then $((a_1, a_3, ...), (a_2, a_4, ...)) = ((b_1, b_3, ...), (b_2, b_4, ...))$, which means that $a_1 = b_1, a_2 = b_2, a_3 = b_3, ...$ so $(a_1, a_2, a_3, ...) = (b_1, b_2, b_3, ...)$ and φ is one-to-one. Now let $((z_1, z_3, z_5, ...), (z_2, z_4, z_5, ...)) \in G \times G$. Then $(z_1, z_2, z_3, ...) \in G$ and $\varphi[(z_1, z_2, z_3, ...)] = ((z_1, z_3, z_5, ...), (z_2, z_4, z_5, ...))$ Thus φ is onto, therefore φ is an isomorphism.

i) $(\mathbb{R} - \{0\}, \cdot)$ and $(\mathbb{R} - \{1\}, *)$ where a * b = a + b - abThese two groups are isomorphic by the function $\varphi : \mathbb{R} - \{0\} \to (\mathbb{R} - \{1\}, *)$ as defined by $\varphi(x) = 1 - x$. Let $x, y \in (\mathbb{R} - \{0\}, \cdot)$. We see:

$$\varphi(xy) = 1 - xy$$

$$= (1 - x) + x + (1 - y) + y - 1 - xy$$

$$= (1 - x) + (1 - y) - (1 - x - y + xy)$$

$$= (1 - x) + (1 - y) - (1 - x)(1 - y)$$

$$= \varphi(x)\varphi(y)$$

so φ is a homomorphism. Now assume $\varphi(x)=\varphi(y)$. Then $1-x=1-y \Longrightarrow x=y$, so φ is one-to-one. Now let $z\in\mathbb{R}-\{1\}$. Then $1-z\in\mathbb{R}-\{0\}$ and $\varphi(1-z)=1-(1-z)=z$, so φ is onto. Therefore, φ is an isomorphism.

- **12.13)** Let $\varphi: G \to H$ be a homomorphism.
 - a) Show that if H is abelian and φ is one-to-one, then G is abelian.

Assume H is abelian and φ is one-to-one. Let $g_1, g_2 \in G$. Then $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2) = \varphi(g_2)\varphi(g_1) = \varphi(g_2g_1)$. That is, $\varphi(g_1g_2) = \varphi(g_2g_1)$. But since φ is one-to-one, this means that $g_1g_2 = g_2g_1$, so G is abelian.

b) Show that if G is abelian and φ is onto, then H is abelian.

Assume G is abelian and φ is onto. Since φ is onto, every element of H can be written as $\varphi(g)$ for some $g \in G$. Thus for all $h_1 = \varphi(g_1), h_2 = \varphi(g_2) \in H$ we have

$$h_1h_2 = \varphi(g_1)\varphi(g_2)$$

$$= \varphi(g_1g_2)$$

$$= \varphi(g_2g_1)$$

$$= \varphi(g_2)\varphi(g_1)$$

$$= h_2h_1$$

That is, $h_1h_2 = h_2h_1$, so H is abelian.

c) Show that if φ is an isomorphism, then G is abelian if and only if H is abelian. Assume φ is an isomorphism. Then φ is one-to-one and by \mathbf{a} H abelian $\Longrightarrow G$ abelian. Also, φ is onto, and by \mathbf{b} G abelian $\Longrightarrow H$ abelian. Thus when φ is an isomorphism H and G must be abelian together, thus G is abelian if and only if H is abelian.