Kinematics and dynamics of the double pendulum

Legged Robots Course

Kinematics

Kinematics

- Direct Kinematics:
 - Input: joints' angles
 - Output: position and orientation of the end effector

Kinematics

Direct Kinematics:

- Input: joints' angles
- Output: position and orientation of the end effector

Inverse Kinematics:

- Input: position and orientation of the end effector
- Output: all the possible joints' angles combinations

Direct kinematics

Invert these relationships to obtain the inverse kinematics model (unique?)

 Dynamics studies the relation between the joint actuator torques and the resulting motion

- Dynamics studies the relation between the joint actuator torques and the resulting motion
- Inverse Dynamics (used for designing controllers):

$$f = m\ddot{x}$$

$$\tau = M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) + F(q,\dot{q})$$

Direct (Forward) Dynamics (use for simulation)

$$\ddot{x} = \frac{f}{m}$$
 $\ddot{q} = M^{-1}(q)(\tau - C(q, \dot{q})\dot{q} + G(q) + F(q, \dot{q}))$

Equations of motion

Lagrangian method:

Variational method based on kinetics and potential energy

$$L(q,\dot{q}) = T(q,\dot{q}) - V(q)$$

$$\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_i}) - \frac{\partial L}{\partial q_i} = 0$$

- Newton-Euler recursive method
 - Relies on F = ma applied to each individual link of the robot

Potential Energy

$$q = (q_1, q_2)$$
 $V(q) = V_1(q) + V_2(q)$

$$V_1(q) = m_1 g y_1 = -m_1 g l_1 cos(q_1)$$

 $V_2(q) = m_2 g y_2 = \cdots$

Potential energy is always a function of q and not \dot{q} !

Kinetic Energy

$$T(q,\dot{q}) = T_1(q,\dot{q}) + T_2(q,\dot{q})$$

$$T_1(q, \dot{q}) = \frac{1}{2}m_1(\dot{x}_1^2 + \dot{y}_1^2) = \frac{1}{2}m_1l_1^2\dot{q}_1^2$$

$$T_2(q, \dot{q}) = \frac{1}{2}m_2(\dot{x}_2^2 + \dot{y}_2^2) = \cdots$$

Kinetic energy is always a function of q and \dot{q} !

Equation of Motion

$$\frac{d}{dt} \left(\frac{\partial L(q, \dot{q})}{\partial \dot{q}_1} \right) - \frac{\partial L(q, \dot{q})}{\partial q_1} = 0$$

$$\frac{d}{dt} \left(\frac{\partial L(q, \dot{q})}{\partial \dot{q}_2} \right) - \frac{\partial L(q, \dot{q})}{\partial q_2} = 0$$

$$\frac{d}{dt}\left(\frac{\partial T(q,\dot{q})}{\partial \dot{q}_1}\right) - \frac{\partial T(q,\dot{q})}{\partial q_1} + \frac{\partial V(q)}{\partial q_1} = 0$$

$$\frac{d}{dt}\left(\frac{\partial T(q,\dot{q})}{\partial \dot{q}_2}\right) - \frac{\partial T(q,\dot{q})}{\partial q_2} + \frac{\partial V(q)}{\partial q_2} = 0$$

$$egin{aligned} rac{d}{dt}(rac{\partial T}{\partial \dot{ heta}_1}) - rac{\partial T}{\partial heta_1} + rac{\partial V}{\partial heta_1} = 0 \ rac{d}{dt}(rac{\partial T}{\partial \dot{ heta}_2}) - rac{\partial T}{\partial heta_2} + rac{\partial V}{\partial heta_2} = 0 \end{aligned}$$

$\frac{d}{dt}(\frac{\partial T}{\partial \dot{\theta}_2}) - \frac{\partial T}{\partial \theta_2} + \frac{\partial V}{\partial \theta_2} = 0$ Dynamics

 $q = (\theta_1, \theta_2)$

$$egin{aligned} rac{\partial T_1}{\partial \dot{ heta}_1} &= m_1 l_1^2 \dot{ heta}_1 \ rac{\partial T_2}{\partial \dot{ heta}_1} &= m_2 l_1^2 \dot{ heta}_1 + m_2 l_1 l_2 \dot{ heta}_2 \cos(heta_1 - heta_2) \ rac{\partial T_1}{\partial heta_1} &= 0 \ rac{\partial T_2}{\partial heta_1} &= -m_2 l_1 l_2 \dot{ heta}_1 \dot{ heta}_2 \sin(heta_1 - heta_2) \ rac{\partial V_1}{\partial heta_1} &= m_1 g l_1 \sin(heta_1) \ rac{\partial V_2}{\partial heta_1} &= m_2 g l_1 \sin(heta_1) \end{aligned}$$

$$egin{aligned} & rac{d}{dt}(rac{\partial T}{\partial \dot{ heta}_1}) - rac{\partial T}{\partial heta_1} + rac{\partial V}{\partial heta_1} = 0 \ & rac{d}{dt}(rac{\partial T}{\partial \dot{ heta}_2}) - rac{\partial T}{\partial heta_2} + rac{\partial V}{\partial heta_2} = 0 \end{aligned}$$

$\frac{d}{dt}(\frac{\partial T}{\partial \dot{\theta}_2}) - \frac{\partial T}{\partial \theta_2} + \frac{\partial V}{\partial \theta_2} = 0$ **Dynamics**

$$egin{aligned} rac{\partial T_1}{\partial \dot{ heta}_2} &= 0 \ rac{\partial T_2}{\partial \dot{ heta}_2} &= m_2 l_2^2 \dot{ heta}_2 + m_2 l_1 l_2 \dot{ heta}_1 \cos(heta_1 - heta_2) \ rac{\partial T_1}{\partial heta_2} &= 0 \ rac{\partial T_2}{\partial heta_2} &= m_2 l_1 l_2 \dot{ heta}_1 \dot{ heta}_2 \sin(heta_1 - heta_2) \ rac{\partial V_1}{\partial heta_2} &= 0 \ rac{\partial V_2}{\partial heta_2} &= m_2 g l_2 \sin(heta_1) \end{aligned}$$

$$m_1 l_1^2 \ddot{ heta}_1 + m_2 l_1^2 \ddot{ heta}_1 + m_2 l_1 l_2 \cos(heta_1 - heta_2) \ddot{ heta}_2 - m_2 l_1 l_2 \dot{ heta}_2 (\dot{ heta}_1 - \dot{ heta}_2) \sin(heta_1 - heta_2) \ + m_2 l_1 l_2 \dot{ heta}_1 \dot{ heta}_2 \sin(heta_1 - heta_2) + m_1 g l_1 \sin(heta_1) + m_2 g l_1 \sin(heta_1) = 0$$

$$egin{aligned} m_2 l_2^2 \ddot{ heta}_2 + m_2 l_1 l_2 \cos(heta_1 - heta_2) \ddot{ heta}_1 - m_2 l_1 l_2 \dot{ heta}_1 (\dot{ heta}_1 - \dot{ heta}_2) \sin(heta_1 - heta_2) \ - m_2 l_1 l_2 \dot{ heta}_1 \dot{ heta}_2 \sin(heta_1 - heta_2) + m_2 g l_2 \sin(heta_2) = 0 \end{aligned}$$

$$m_1 l_1^2 \ddot{ heta}_1 + m_2 l_1^2 \ddot{ heta}_1 + m_2 l_1 l_2 \cos(heta_1 - heta_2) \ddot{ heta}_2 - m_2 l_1 l_2 \dot{ heta}_2 (\dot{ heta}_1 - \dot{ heta}_2) \sin(heta_1 - heta_2) \ + m_2 l_1 l_2 \dot{ heta}_1 \dot{ heta}_2 \sin(heta_1 - heta_2) + m_1 g l_1 \sin(heta_1) + m_2 g l_1 \sin(heta_1) = 0$$

$$m_2 l_2^2 \ddot{ heta}_2 + m_2 l_1 l_2 \cos(heta_1 - heta_2) \ddot{ heta}_1 - m_2 l_1 l_2 \dot{ heta}_1 (\dot{ heta}_1 - \dot{ heta}_2) \sin(heta_1 - heta_2) \ - m_2 l_1 l_2 \dot{ heta}_1 \dot{ heta}_2 \sin(heta_1 - heta_2) + m_2 g l_2 \sin(heta_2) = 0$$

$$\tau = B(q)\ddot{q} + C(q, \dot{q}) + g(q)$$

$$egin{split} & m_1 l_1^2 \ddot{ heta}_1 + m_2 l_1^2 \ddot{ heta}_1 + m_2 l_1 l_2 \cos(heta_1 - heta_2) \ddot{ heta}_2 - m_2 l_1 l_2 \dot{ heta}_2 (\dot{ heta}_1 - \dot{ heta}_2) \sin(heta_1 - heta_2) \ & + m_2 l_1 l_2 \dot{ heta}_1 \dot{ heta}_2 \sin(heta_1 - heta_2) + m_1 g l_1 \sin(heta_1) + m_2 g l_1 \sin(heta_1) = 0 \end{split}$$

$$egin{split} rac{m_2 l_2^2 \ddot{ heta}_2 + m_2 l_1 l_2 \cos(heta_1 - heta_2) \ddot{ heta}_1}{-m_2 l_1 l_2 \dot{ heta}_1 \dot{ heta}_2 \sin(heta_1 - heta_2) + m_2 g l_2 \sin(heta_2) = 0} \ -m_2 l_1 l_2 \dot{ heta}_1 \dot{ heta}_2 \sin(heta_1 - heta_2) + m_2 g l_2 \sin(heta_2) = 0 \end{split}$$

$$\tau = B(q)\ddot{q} + C(q, \dot{q}) + g(q)$$

$$egin{split} rac{m_1 l_1^2 \ddot{ heta}_1 + m_2 l_1^2 \ddot{ heta}_1 + m_2 l_1 l_2 \cos(heta_1 - heta_2) \ddot{ heta}_2}{m_2 l_1 l_2 \dot{ heta}_1 \dot{ heta}_2 \sin(heta_1 - heta_2)} + m_2 g l_1 \sin(heta_1) + m_2 g l_1 \sin(heta_1) = 0 \end{split}$$

$$egin{split} rac{m_2 l_2^2 \ddot{ heta}_2 + m_2 l_1 l_2 \cos(heta_1 - heta_2) \ddot{ heta}_1}{-m_2 l_1 l_2 \dot{ heta}_1 \dot{ heta}_2 \sin(heta_1 - heta_2)} - m_2 l_1 l_2 \dot{ heta}_1 (\dot{ heta}_1 - \dot{ heta}_2) \sin(heta_1 - heta_2) \ -m_2 l_1 l_2 \dot{ heta}_1 \dot{ heta}_2 \sin(heta_1 - heta_2) + m_2 g l_2 \sin(heta_2) = 0 \end{split}$$

$$\mathcal{C}(q, \dot{q}) \, \dot{q}$$

$$\tau = B(q) \ddot{q} + C(q, \dot{q}) + g(q)$$

$$m_1 l_1^2 \ddot{ heta}_1 + m_2 l_1^2 \ddot{ heta}_1 + m_2 l_1 l_2 \cos(heta_1 - heta_2) \ddot{ heta}_2 - m_2 l_1 l_2 \dot{ heta}_2 (\dot{ heta}_1 - \dot{ heta}_2) \sin(heta_1 - heta_2) \ + m_2 l_1 l_2 \dot{ heta}_1 \dot{ heta}_2 \sin(heta_1 - heta_2) + m_1 g l_1 \sin(heta_1) + m_2 g l_1 \sin(heta_1) = 0$$

$$egin{aligned} rac{m_2 l_2^2 \ddot{ heta}_2 + m_2 l_1 l_2 \cos(heta_1 - heta_2) \ddot{ heta}_1}{-m_2 l_1 l_2 \dot{ heta}_1 \dot{ heta}_2 \sin(heta_1 - heta_2)} + m_2 g l_2 \sin(heta_2) = 0 \end{aligned}$$

$$\mathcal{C}(q, \dot{q}) \, \dot{q}$$

$$\tau = B(q) \ddot{q} + C(q, \dot{q}) + g(q)$$