Critical Oxygen Pressure (P_{CRIT}) Analysis

Lloyd Trueblood and Kirt Onthank

2022-09-07

Contents

1	Loading Libraries	1
2	Sorting files for P_{CRIT} analysis	2
3	Reading in log files	2
4	Calculating P_{CRIT} from raw data	3
5	Linear mixed effect model	80
	5.1 setting pCO2 to factor class:	80
	5.2 Next I set orthogonal contrasts:	80
	5.3 Running the linear mixed effects model and ANOVA using type III sum of squares:	80
6	Summary of LME	81
7	Plotting the Critical Oxygen Pressure results	82

1 Loading Libraries

I am reading in the libraries I use for this analysis. Included among these is the "OTools" package, which was written by Kirt Onthank. This can be install from github using the command:

install_github('KirtOnthank/OTools')

library(OTools)
library(respirometry)
library(knitr)
library(nlme)
library(car)
library(emmeans)

2 Sorting files for P_{CRIT} analysis

pcrit.files=grep("pcrit|pcrti",resp.files,value=T,ignore.case=T)

[27] "All Pcrits/tbocto 1000 pcrit tank 3 and 4 8-11-21-ch1.txt"
[28] "All Pcrits/tbocto 1000 pcrit tank 3 and 4 day 7 8-19-21-ch1.txt"

[32] "Trueblood after session/gr2MUUS1800-2pcritday7.8-3-21.txt"

[29] "All Pcrits/Tbocto 1000 pcrti tank 1 and 2 8-11-21.txt"

[30] "Group 2/Pcrit/gr2muus1000 pcrit 7-21-21.txt"
[31] "Group 2/Pcrit/gr2muus1000-2 pcrit 7-26-21.txt"

files=list.files(recursive=T)

resp.files=grep(".txt",files,value=T)

```
pcrit.files=pcrit.files[!duplicated(basename(pcrit.files))]
pcrit.files.read=pcrit.files[!grep1("ch2.txt|ch3.txt|ch4.txt|\(1\).txt",pcrit.files)]
pcrit.files.read
   [1] "All Pcrits/Gr1 Muus 1000-2 pcrit 7-27-21 B.txt"
   [2] "All Pcrits/Gr1 Muus 1000-2 pcrit 7-27-21.txt"
   [3] "All Pcrits/Gr1 Muus 1800-2 pcrit 25 ml jar 7-29-21 ch2 blank.txt"
## [4] "All Pcrits/Gr1 Muus 1800-2 pcrit 7-28-21.txt"
## [5] "All Pcrits/GR1 Muus 1800-2 pcrit day7 8-3-21.txt"
## [6] "All Pcrits/GR1 Muus1000 7day-7-26-21.txt"
## [7] "All Pcrits/GR1 Muus1000 pcrit 7-21-21.txt"
## [8] "All Pcrits/GR1 Muus1800 7day-pcrit 7-20-21.txt"
## [9] "All Pcrits/GR1 Muus1800 pcrit 7-13-21.txt"
## [10] "All Pcrits/gr2muus1800 7day pcrit 7-20-21.txt"
## [11] "All Pcrits/gr2muus1800-2 pcrit 7-28-21.txt"
## [12] "All Pcrits/gr2muus1800-2 pcrit day7 8-3-21.txt"
## [13] "All Pcrits/gr2muus1800-2 pcrit in 25 ml jar 7-29-21 ch2 is blank.txt"
## [14] "All Pcrits/Gr3 Muus 1000 pcrit 7-21-21.txt"
## [15] "All Pcrits/gr3 muus 1800 7day Pcrit 7-20-21.txt"
## [16] "All Pcrits/gr3 muus 1800 pcrit 7-13-21.txt"
## [17] "All Pcrits/Gr3 Muus 1800-2 pcrit 07-28-21.txt"
## [18] "All Pcrits/Gr3 Muus 1800-2 pcrit 08-03-21.txt"
## [19] "All Pcrits/Gr3 Muus1000-2 7 day pcrit 7-27-21.txt"
## [20] "All Pcrits/GR4MUUS1000-2Pcrit-7-26-21-ch1.txt"
## [21] "All Pcrits/GR4MUUS1000Pcrit-7-21-21-ch1.txt"
## [22] "All Pcrits/GR4MUUS1800-2-7dayPcrit-8-3-21-ch1.txt"
## [23] "All Pcrits/GR4MUUS1800-2Pcrit-7-28-21-ch1.txt"
## [24] "All Pcrits/GR4MUUS1800-7dayPcrit-7-20-21-ch1.txt"
## [25] "All Pcrits/GR4MUUS1800Pcrit-7-13-21-ch1.txt"
## [26] "All Pcrits/tbocto 1000 pcrit tank 1 and 2 day 7 8-19-21.txt"
```

3 Reading in log files

Here I am reading in the log files that will provide additional information needed to analyze the raw data files.

[33] "Trueblood after session/Muus TB collected data/desktop from presense onthank/tbocto 1800 pcrit

```
pcrit.log=read.csv("pcrit_log.csv")
routine=read.csv("RMR_Results.csv")
```

4 Calculating P_{CRIT} from raw data

First I make a empty object where I can place calculated P_{CRIT} s

Next, I calculate the P_{CRIT} from each data file. Here are a couple of important points on our calculations:

- 1. We are using the alpha P_{CRIT} method (Seibel et al, 2021) to calculate P_{CRIT} as implemented by the calc_pcrit() function from the "respirometry" R package (Birk, 2021).
- 2. We used the routine metabolic rate that we measured for each individual octopus in this study, unless the maximum metabolic rate measured during the P_{CRIT} run was less than the RMR we had measured. In those cases we used the default MR used by the function, which is "the mean MO2 value from the oxyregulating portion of the curve (as defined by the broken-stick regression)".
- 3. Any run in which O_2 did not drop below 50 mmHg O_2 was dropped from the analysis. All runs, however, including those dropped, are graphed below.
- 4. Oxygen trace of each run is graphed below with the portion used to calculate P_{CRIT} plotted in red.

```
co=1
for (i in 1:length(pcrit.files.read)){
  filename=pcrit.files.read[i]
  if(length(grep("Group 4|presens|ch\\d\\.txt",basename(filename)))>0){
   pcrit.raw=read.presens(filename)
  }else{
   pcrit.raw=read.pyro(filename)
  }
guess=which.min(adist(basename(filename),pcrit.log$filename))
ch=pcrit.log$ch1[guess]
octo=pcrit.log$octo1[guess]
start=pcrit.log[guess,6+ch]
stop=max(pcrit.raw$times)-pcrit.log[guess,10+ch]
mass=mean(routine$mass[routine$octo==octo])
rmr=mean(routine$rmr[routine$octo==octo])
pcrit.working=
  pcrit.raw[
   pcrit.raw$times>start&
```

```
pcrit.raw$times<stop,</pre>
vol=pcrit.log$vol[guess]
drop.time=round((stop-start)/3600,1)
02.drop=round(diff(range(pcrit.working[,3+ch])),1)
rough.mo2=round((02.drop*vol)/mass/drop.time,1)
plot(pcrit.raw[,3+ch]~pcrit.raw$times,type="l",main=basename(filename))
points(pcrit.working[,3+ch]~pcrit.working$times,type="l",col="red")
mtext(paste("mass=",mass),side=3,adj=1,line=-1)
mtext(paste0("resp vol=",vol),side=3,adj=1,line=-2)
mtext(paste0("drop time=",drop.time," hr"),side=3,adj=1,line=-3)
mtext(paste0("02 drop=",02.drop),side=3,adj=1,line=-4)
mtext(paste0("rough mean MO2=",rough.mo2),side=3,adj=1,line=-5)
pcrit.resp=resp.closed(pcrit.working, volume=pcrit.log$vol[guess],
            weight=mass,smooth="loess",channel=ch,smooth.span = 0.2)
pcrit.bin=aggregate(pcrit.resp$resp~round(pcrit.resp$po2,1),FUN="mean")
colnames(pcrit.bin)=c("po2","resp")
if(max(pcrit.bin$resp)>rmr){
  plot_pcrit(pcrit.bin$po2,pcrit.bin$resp,
           avg_top_n = 3,MR=rmr)
}else{
  plot_pcrit(pcrit.bin$po2,pcrit.bin$resp,
           avg_top_n = 3)
}
pcrits[co,1]=basename(filename)
pcrits[co,2]=pcrit.log$filename[guess]
pcrits[co,3]=octo
pcrits[co,4]=mass
pcrits[co,5]=pcrit.log$pco2[guess]
pcrits[co,6]=pcrit.log$day[guess]
pcrits[co,7]=rmr
if (min(pcrit.working[,3+ch])<50){</pre>
  if(max(pcrit.bin$resp)>rmr){
  pcrits[co,8]=as.numeric(calc_pcrit(pcrit.bin$po2,pcrit.bin$resp,
           avg_{top_n} = 3,MR=rmr)[1]
  }else{
   pcrits[co,8]=as.numeric(calc_pcrit(pcrit.bin$po2,pcrit.bin$resp,
           avg top n = 3)[1]
 }
}else{
  pcrits[co,8]=NA
co=co+1
if(!is.na(pcrit.log$ch2[guess])){
  ch=pcrit.log$ch2[guess]
  octo=pcrit.log$octo2[guess]
```

```
start=pcrit.log[guess,6+ch]
  stop=max(pcrit.raw$times)-pcrit.log[guess,10+ch]
  mass=mean(routine$mass[routine$octo==octo])
  rmr=mean(routine$rmr[routine$octo==octo])
  pcrit.working=
   pcrit.raw[
      pcrit.raw$times>start&
      pcrit.raw$times<stop,
  plot(pcrit.raw[,3+ch]~pcrit.raw$times,type="1",main=basename(filename))
  points(pcrit.working[,3+ch]~pcrit.working$times,type="1",col="red")
  pcrit.resp=resp.closed(pcrit.working,volume=pcrit.log$vol[guess],
            weight=mass,smooth="loess",channel=ch,smooth.span = 0.2)
  pcrit.bin=aggregate(pcrit.resp$resp~round(pcrit.resp$po2,1),FUN="mean")
  colnames(pcrit.bin)=c("po2","resp")
  if(max(pcrit.bin$resp)>rmr){
   plot_pcrit(pcrit.bin$po2,pcrit.bin$resp,
           avg_top_n = 3,MR=rmr)
  }else{
   plot_pcrit(pcrit.bin$po2,pcrit.bin$resp,
           avg_top_n = 3)
  }
  pcrits[co,1]=filename
  pcrits[co,2]=pcrit.log$filename[guess]
  pcrits[co,3]=octo
  pcrits[co,4]=mass
  pcrits[co,5]=pcrits$pco2[guess]
  pcrits[co,6]=pcrits$day[guess]
  pcrits[co,7]=rmr
  if (min(pcrit.working[,3+ch])<50){</pre>
    if(max(pcrit.bin$resp)>rmr){
   pcrits[co,8]=as.numeric(calc_pcrit(pcrit.bin$po2,pcrit.bin$resp,
           avg_{top_n} = 3,MR=rmr)[1]
   }else{
      pcrits[co,8]=as.numeric(calc_pcrit(pcrit.bin$po2,pcrit.bin$resp,
           avg_{pn} = 3)[1]
   }
  }else{
   pcrits[co,8]=NA
  }
  co=co+1
}
}
```

Gr1 Muus 1000-2 pcrit 7-27-21 B.txt

Alpha @ MR of 2.22 = 2.801 Breakpoint = 5.179 LLO @ MR of 2.22 = 4.792 NLR (Michaelis-Menten) = 2.554 Sub-PI = 4.75

Gr1 Muus 1000-2 pcrit 7-27-21.txt

Alpha @ MR of 2.22 = 8.109 Breakpoint = 17.8 LLO @ MR of 2.22 = 13.235 NLR () = NA Sub-PI = 18.7

Gr1 Muus 1800-2 pcrit 25 ml jar 7-29-21 ch2 blank.txt

Alpha @ MR of 2.3 = 1.4 Breakpoint = 6.7 LLO @ MR of 2.3 = 5.143 NLR (Pareto) = 3.91 Sub-PI = 4.07

Gr1 Muus 1800-2 pcrit 7-28-21.txt

Alpha @ MR of 0.14 = 4.172

Breakpoint = 13.6

LLO @ MR of NA = NA

NLR (Michaelis-Menten) = 0.829

Sub-PI = 12.06

GR1 Muus 1800-2 pcrit day7 8-3-21.txt

Alpha @ MR of 2.3 = 4.153 Breakpoint = 16.514 LLO @ MR of 2.3 = 4.676 NLR (Hyperbola) = -0.483 Sub-PI = 16.37

GR1 Muus1000 7day-7-26-21.txt

Alpha @ MR of 0.18 = 22.147 Breakpoint = 20.6 LLO @ MR of NA = NA NLR () = NA Sub-PI =

GR1 Muus1000 pcrit 7-21-21.txt

Alpha @ MR of 2.22 = 2.128 Breakpoint = 16.161 LLO @ MR of 2.22 = 2.3 NLR (Hyperbola) = 4.298 Sub-PI = 16

GR1 Muus1800 7day-pcrit 7-20-21.txt

Alpha @ MR of 2.5 = 4.806 Breakpoint = 3.545 LLO @ MR of 2.5 = 12.106 NLR (Pareto) = 4.917 Sub-PI = 3.5

GR1 Muus1800 pcrit 7-13-21.txt

gr2muus1800 7day pcrit 7-20-21.txt

Alpha @ MR of 1.46 = 4.442
Breakpoint = 6.209
LLO @ MR of NA = NA
NLR (Pareto) = 4.796
Sub-PI = 4.78

gr2muus1800-2 pcrit 7-28-21.txt

Alpha @ MR of 1.85 = 6.361

Breakpoint = 14.7

LLO @ MR of NA = NA

NLR (Weibull with intercept) = 10.283

Sub-PI = 14.08

gr2muus1800-2 pcrit day7 8-3-21.txt

Alpha @ MR of 22.09 = 5.43 Breakpoint = 18.4 LLO @ MR of 22.09 = NA NLR () = NA Sub-PI =

gr2muus1800-2 pcrit in 25 ml jar 7-29-21 ch2 is blank.txt

Alpha @ MR of 3.66 = 4.289 Breakpoint = 9.8 LLO @ MR of NA = NA NLR (Power) = 40.873 Sub-PI = 3.21

Gr3 Muus 1000 pcrit 7-21-21.txt

Alpha @ MR of 2.17 = 1.913 Breakpoint = 3.74 LLO @ MR of 2.17 = 1.97 NLR (Power) = 67.77 Sub-PI = 3.68

gr3 muus 1800 7day Pcrit 7-20-21.txt

Alpha @ MR of 1.86 = 3.855 Breakpoint = 10.214 LLO @ MR of 1.86 = 4.921 NLR (Hyperbola) = 4.09 Sub-PI = 8.57

gr3 muus 1800 pcrit 7-13-21.txt

Alpha @ MR of 1.44 = 6.145 Breakpoint = 14.864 LLO @ MR of NA = NA NLR (Hyperbola) = 6.188 Sub-PI = 14.75

Gr3 Muus 1800-2 pcrit 07-28-21.txt

Alpha @ MR of 2.16 = 1.542 Breakpoint = 2.959 LLO @ MR of 2.16 = 1.983 NLR (Pareto) = 3.857 Sub-PI = 2.78

Gr3 Muus 1800-2 pcrit 08-03-21.txt

Alpha @ MR of 2.16 = 3.363 Breakpoint = 14.254 LLO @ MR of 2.16 = 8.734 NLR (Power) = 16.472 Sub-PI = 18.1

Gr3 Muus1000-2 7 day pcrit 7-27-21.txt

Alpha @ MR of 2.17 = 2.342

Breakpoint = 2.64

LLO @ MR of 2.17 = 2.43

NLR (Weibull with intercept) = 3.027

Sub-PI = 1.87

GR4MUUS1000-2Pcrit-7-26-21-ch1.txt

Alpha @ MR of 2.51 = 3.535 Breakpoint = 9.5 LLO @ MR of 2.51 = 4.144 NLR (Pareto) = 4.569 Sub-PI = 7.93

GR4MUUS1000Pcrit-7-21-21-ch1.txt

Alpha @ MR of 2.51 = 1.838

Breakpoint = 2.75

LLO @ MR of 2.51 = 1.843

NLR (Weibull with intercept) = 4.04

Sub-PI = 2.39

GR4MUUS1800-2-7dayPcrit-8-3-21-ch1.txt

Alpha @ MR of 2.12 = 3.44 Breakpoint = 14.1 LLO @ MR of 2.12 = 9.627 NLR (Power) = 38.75 Sub-PI = 18.5

GR4MUUS1800-2Pcrit-7-28-21-ch1.txt

Alpha @ MR of 2.12 = 2.37 Breakpoint = 3.162 LLO @ MR of 2.12 = 2.413 NLR (Pareto) = 3.535 Sub-PI = 2.41

GR4MUUS1800-7dayPcrit-7-20-21-ch1.txt

Alpha @ MR of 2.3 = 5.855 Breakpoint = 4.3 LLO @ MR of 2.3 = 14.454 NLR (Michaelis-Menten) = 6.11 Sub-PI = 3.56

GR4MUUS1800Pcrit-7-13-21-ch1.txt

Alpha @ MR of 2.3 = 4.562 Breakpoint = 13.867 LLO @ MR of 2.3 = 11.542 NLR (Power) = 37.94 Sub-PI = 16.3

tbocto 1000 pcrit tank 1 and 2 day 7 8-19-21.txt

Alpha @ MR of 1.51 = 7.818 Breakpoint = 11.2 LLO @ MR of 1.51 = 10.587 NLR (Power) = 28.052 Sub-PI = 15

tbocto 1000 pcrit tank 1 and 2 day 7 8-19-21.txt

Alpha @ MR of 2.41 = 5.635 Breakpoint = 7.572 LLO @ MR of NA = NA NLR (Hyperbola) = 5.444 Sub-PI = 6.62

tbocto 1000 pcrit tank 3 and 4 8-11-21-ch1.txt

Alpha @ MR of 3.21 = 4.642 Breakpoint = 3.601 LLO @ MR of 3.21 = 4.695 NLR (Power) = 77.005 Sub-PI = 2.7

tbocto 1000 pcrit tank 3 and 4 8-11-21-ch1.txt

Alpha @ MR of 6.15 = 6.337 Breakpoint = 15.447 LLO @ MR of 6.15 = 10.509 NLR (Hyperbola) = 24.757 Sub-PI = 15.08

tbocto 1000 pcrit tank 3 and 4 day 7 8-19-21-ch1.txt

Alpha @ MR of 3.21 = 8.306 Breakpoint = 9 LLO @ MR of 3.21 = 9.657 NLR (Pareto) = 6.088 Sub-PI = 6.81

tbocto 1000 pcrit tank 3 and 4 day 7 8-19-21-ch1.txt

Alpha @ MR of 6.15 = 4.788 Breakpoint = 13.7 LLO @ MR of 6.15 = 7.338 NLR (Hyperbola) = 11.118 Sub-PI = 13.45

Tbocto 1000 pcrti tank 1 and 2 8-11-21.txt

Alpha @ MR of 1.51 = 4.689
Breakpoint = 2.435
LLO @ MR of 1.51 = 14.954
NLR (Power) = 66.218
Sub-PI = 2.12

po2

Tbocto 1000 pcrti tank 1 and 2 8-11-21.txt

Alpha @ MR of 3.01 = 5.603 Breakpoint = 14.758 LLO @ MR of 3.01 = 8.403 NLR (Hyperbola) = 5.171 Sub-PI = 14.59

gr2muus1000 pcrit 7-21-21.txt

Alpha @ MR of 2.24 = 2.233 Breakpoint = 15.327 LLO @ MR of 2.24 = 2.337 NLR (Power) = 64.181 Sub-PI = 18

gr2muus1000-2 pcrit 7-26-21.txt

Alpha @ MR of 2.24 = 3.929 Breakpoint = 9.288 LLO @ MR of 2.24 = 15.073 NLR (Hyperbola) = 5.293 Sub-PI = 6.91

gr2MUUS1800-2pcritday7.8-3-21.txt

Alpha @ MR of 22.09 = 12.785 Breakpoint = 11.444 LLO @ MR of 22.09 = 14.387 NLR (Weibull with intercept) = 21 Sub-PI = 16

tbocto 1800 pcrit day 7 tank 10 blank ch 3 4 8-20-21-ch1.txt

Alpha @ MR of 1.68 = 2.768 Breakpoint = 2.426 LLO @ MR of 1.68 = 2.824 NLR (Weibull with intercept) = 0.384 Sub-PI = 1.91

Next, I remove the measurements for which the data was excluded (runs did not reach oxygen level of 50 mmHgO_2). Then I remove the file for which there is no initial data.

```
pcrits=pcrits[complete.cases(pcrits),]
pcrits=pcrits[pcrits$filename!="GR1 Muus1000 pcrit 7-21-21.txt",]
```

plot(pcrit~mass,data=pcrits)

5 Linear mixed effect model

5.1 setting pCO2 to factor class:

```
pcrits$pco2=as.factor(pcrits$pco2)
```

5.2 Next I set orthogonal contrasts:

```
contrasts(pcrits$pco2)=contr.poly(2)
```

5.3 Running the linear mixed effects model and ANOVA using type III sum of squares:

```
## Analysis of Deviance Table (Type III tests)
##
## Response: pcrit
##
                Chisq Df Pr(>Chisq)
## (Intercept) 13.6099 1 0.0002250 ***
              0.4546 1 0.5001372
## mass
## pco2
              0.2625 1 0.6084133
              12.0358 1 0.0005219 ***
## day
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Summary of LME 6

```
pcrit.em=data.frame(emmeans(pcrits.lme,~pco2+day+mass))
## Warning: contrasts dropped from factor pco2
pcrit.em
    pco2 day mass emmean
                            SE df lower.CL upper.CL
## 4 1800
        7 26.3 4.572696 0.5409960 10 3.367281 5.778110
pcrit.df=
data.frame(cbind(
 as.numeric(as.character(pcrit.em$pco2)),
 pcrit.em$day,
 sprintf("%.2f", signif(pcrit.em$emmean,3)),
 paste(sprintf("%.2f",signif(data.frame(pcrit.em)$lower.CL,3)),
      sprintf("%.2f", signif(data.frame(pcrit.em) $upper.CL,3)))
))
pcrit.df=pcrit.df[order(pcrit.df[,1]),]
pcrit.df
     X1 X2
            ХЗ
## 1 1000 1 3.45 2.16 - 4.73
## 3 1000 7 4.94 3.70 - 6.19
## 2 1800 1 3.08 1.90 - 4.25
## 4 1800 7 4.57 3.37 - 5.78
colnames(pcrit.df)=c("pCO~2~ ($\\mu$atm)",
               "day",
               "P~CRIT~ (kPa)",
               "P~CRIT~ 95% CI")
kable(pcrit.df,align="c",row.names = F)
```

$pCO_2 (\mu atm)$	day	P _{CRIT} (kPa)	P_{CRIT} 95% CI
1000	1	3.45	2.16 - 4.73
1000	7	4.94	3.70 - 6.19
1800	1	3.08	1.90 - 4.25
1800	7	4.57	3.37 - 5.78

7 Plotting the Critical Oxygen Pressure results

Assigning the colors for the treatments.

```
hi.co2.col="#790000ff"
lo.co2.col="#838fd5ff"
```

Next, making the figures in SVG format.

Converting the image to a png to be displayed in the RMarkdown.

```
cairosvg Figure_4.svg -o Figure_4.png -d 300
```

Converting to eps for submission.

```
inkscape Figure_4.svg -o Figure_4.eps --export-ignore-filters --export-ps-level=3
```


Figure 1: Critical oxygen pressure of Muusoctopus leioderma at differing pCO2 treatments