

FORMATO DE SYLLABUS	Código: AA-FR-003
Macroproceso: Direccionamiento Estratégico	Versión: 01

Proceso: Autoevaluación y Acreditación

Fecha de Aprobación: 27/07/2023

FACULTAD:					Tecnológica			
PROYECTO CUI	RRICULAR:	Te	ecnología en Electrónica	a Industrial (Por ciclos propedéuticos)		CÓDIGO PLAN DE ESTUDIOS:		
			I. ID	ENTIFICACIÓN DEL ESPACIO	ACADÉMICO			
NOMBRE DEL E	SPACIO ACADI	ÉMICO: Cálculo Integra	I					
Código del espacio académico:		7	Número de créditos académicos:			3		
Distribución horas de trabajo:			HTD	2	нтс	3	HTA	9
Tipo de espacio académico:			Asignatura	х	Cátedra			
			N	ATURALEZA DEL ESPACIO A	CADÉMICO:			
Obligatorio Básico	х	Obligatorio Complementario			Electivo Intrínseco		Electivo Extrínseco	
				CARÁCTER DEL ESPACIO ACA	ADÉMICO:			
Teórico	х	Práctico		Teórico-Práctico		Otros:		Cuál:
			MODAI	LIDAD DE OFERTA DEL ESPAC	CIO ACADÉMICO:			
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:
			II SUGERE	NCIAS DE SABERES Y CONO	CIMIENTOS PREVIOS			

Se sugiere que el estudiante haya cursado y aprobado satisfactoriamente la asignatura de Cálculo Diferencial. Es necesario que maneje con soltura el concepto de derivada, funciones básicas (algebraicas, exponenciales, logarítmicas, trigonométricas) y su representación gráfica. Asimismo, se espera que tenga habilidades para interpretar expresiones simbólicas, comprender notación matemática y usar herramientas digitales básicas (GeoGebra, Desmos, Python o MATLAB). Estas competencias permitirán una mejor comprensión de las integrales definidas e indefinidas, su interpretación geométrica, y su aplicación a problemas físicos y tecnológicos.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

El Cálculo Integral es una herramienta fundamental en la formación del tecnólogo en electrónica industrial, ya que proporciona métodos para el análisis y modelado de fenómenos que implican acumulación, áreas, volúmenes, energía y otros procesos físicos. Esta asignatura desarrolla competencias para interpretar la integral como suma de cantidades infinitesimales, aplicar métodos de integración y analizar la convergencia de procesos acumulativos. Su estudio fortalece el razonamiento lógico, fomenta la abstracción y facilita la transición hacia cursos como ecuaciones diferenciales, análisis de señales y modelado matemático de sistemas electrónicos. Además, se articula con necesidades actuales como el procesamiento de datos, el análisis energético y la simulación de fenómenos reales mediante herramientas computacionales.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Obietivo General

Establecer las bases conceptuales, operativas y aplicadas del cálculo integral para resolver problemas de acumulación, optimización, análisis geométrico y modelado en el campo de la electrónica, la tecnología y las ciencias aplicadas.

Objetivos Específicos

Comprender la relación entre derivación e integración a partir del teorema fundamental del cálculo. Aplicar métodos de integración en la resolución de problemas físicos, geométricos y tecnológicos. Utilizar la integral definida en contextos reales: área, volumen, trabajo, energía, longitud de arco. Estudiar series numéricas y sucesiones como base para el análisis de señales periódicas y series de Fourier. Implementar herramientas digitales para visualizar, simular y resolver problemas integrales complejos.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de Formación:

Desarrollar competencias técnicas en modelado y análisis de fenómenos físicos usando integración. Fortalecer el uso de herramientas especializadas para la simulación de sistemas acumulativos.

Promover el pensamiento lógico y la abstracción en problemas reales de ingeniería electrónica.

Resultados de Aprendizaje:

Utiliza el cálculo integral para describir fenómenos físicos asociados a energía, señales y acumulación.

Emplea conceptos de integración en la resolución de problemas interdisciplinarios y de ingeniería.

Desarrolla proyectos de modelado numérico basados en integrales definidas e impropias.

Usa software computacional (Python, MATLAB, GeoGebra, Octave) para analizar resultados de integración.

VI. CONTENIDOS TEMÁTICOS

Antiderivadas e Integral Indefinida (2 semanas)

Concepto de primitiva, notación integral, reglas básicas.

Aproximaciones lineales y significado geométrico.

Aplicaciones en procesos de inversión de derivadas.

Métodos de Integración (3 semanas)

Sustitución algebraica, cambio de variables, integración por partes.

Funciones trigonométricas y exponenciales.

Fracciones parciales y sustituciones trigonométricas.

Aplicaciones en modelado de señales y energía.

Integrales Definidas (3 semanas)

Definición a través de sumas de Riemann.

Propiedades de la integral definida, interpretación geométrica.

Teorema Fundamental del Cálculo y valor medio.

Aplicaciones de la Integral (4 semanas)

Cálculo de áreas bajo y entre curvas.

Volumen de sólidos de revolución (método de discos y cilindros).

Longitud de curvas y superficies de revolución.

Integración numérica (método del trapecio y regla de Simpson).

Problemas físicos: trabajo, energía, cargas eléctricas.

Integrales impropias y su interpretación física.

Sucesiones y Series (4 semanas)

Sucesiones convergentes y divergentes.

Series geométricas, telescópicas, de potencias.

Criterios de convergencia (cociente, raíz, integral).

Aplicaciones en análisis de señales periódicas y codificación de datos.

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

Se aplicará una metodología centrada en la resolución de problemas contextualizados en la electrónica, simulación de procesos acumulativos y trabajo cooperativo. Se realizarán clases magistrales con apoyo visual, análisis de datos reales, uso de software y modelado de situaciones con integrales. Además, se fomentará el aprendizaje por proyectos (ApP), donde los estudiantes formularán y resolverán problemas reales en los que la integración sea una herramienta clave. Se promoverá el trabajo autónomo y la interacción digital mediante foros, videos explicativos y recursos interactivos.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Se utilizarán recursos teóricos (libros, guías, videos) y herramientas tecnológicas como MATLAB, Python, GeoGebra, Desmos y plataformas como WolframAlpha. Se promoverá el uso de simuladores interactivos para visualizar áreas, volúmenes y convergencia de series. El trabajo práctico se fortalecerá en un laboratorio de cómputo matemático o mediante simuladores online. También se emplearán entornos virtuales para la entrega de actividades, retroalimentación y autoevaluación.

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se promoverán prácticas interdisciplinares de análisis de fenómenos de acumulación en contextos reales, como monitoreo de energía o flujo eléctrico. Se podrán realizar visitas a plantas o

XI. BIBLIOGRAFÍA				
Stewart, J. (2020). Cálculo de una Variable. Ed. Cenga				
Larson, R., & Edwards, B. (2021). Cálculo. Ed. McGra				
Thomas, G. B. (2021). Cálculo. Ed. Pearson.				
Leithold, L. (2014). El Cálculo con Geometría Analític	. Oxford.			
XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS				
Fecha revisión por Consejo Curricular:				
	Número de acta:			