U.S. Multi-Family Rental Market

Table of Contents

- 1. Business Approach
- 2. Data Engineering
- 3. General Workflow
- 4. Feature Engineering
 - a. Ratios
 - b. PCA
 - c. Clustering
- 5. Models & Results
- 6. Conclusion / Next Steps

Business Approach

About the Business:

 Markerr provides insights for real estate investors about the jobs, people, and financial trends on a location basis.

Our Objective:

 Gain insight into rent price indices by comparing pre-Covid predictions to Covid projections for multi-family homes in large cities.

Data Engineering

Data Collected:

- American Community Survey (ACS) data between 2011-2018
- Gross Domestic Product (GDP) between 2011-2018
- Effective Federal Funds Rate (EFFR) between 2011-2018
- Number of Businesses per ZIP code between 2011-2018
- Consumer Price Index (CPI) data for 'shelter' between 2011-2018
- Zillow Observed Rent Index (ZORI) data for all homes between 2019-2021
- Target: Zillow Rent Index (ZRI) data for Multi-family homes between 2012-2019

Feature Engineering

- Reduced multicollinearity by creating ratios for features based on population count. (Divided by total population)
 - Employed Ratio = Employed Population /Total Population
 - Percentage Male/Female
- Dropped features we considered overly specific
 - Example: Males between the age 45-64 with an Associates Degree was one feature
 - This data was captured in more general features such as percent of males and percent with associates degrees
- Filtered all data for zip codes in cities with populations greater than 100,000 people

PCA (Principal Component Analysis)

- Many features did not contribute to the variability of the data (noise)
- To preserve 95% of the variability, 35 features were retained.
- Two most important features were:
 - 'total_pop',
 - 'Income_per_capita'
- They alone explain 37% and 15% of the variability, respectively
- Data added by us is also important:
 - CPI (inflation)
 - GDP (Gross domestic Product)
- All models were run WITHOUT and WITH PCA (results shown later)

Clustering

- KMeans:
 - Distance of a point to cluster center.
 - Silhouette shows distance of point to cluster
- Features used for clusters:
 - Rent, income, and population
- Chose 3 clusters

Future work:

Try other clustering methods

- DBScan:
 - Uses density of a region as clusters
- Spectral clustering:
 - Reduces dimensionality

Box Plots by Cluster

Cluster 0

- Lower Total Pop
- High Median Income
- High Rent Index
- Ex. Tribeca

Cluster 1

- Lower Total Pop
- Lower Median Income
- Lower Rent Index
- Ex. Astoria, Queens

Cluster 2

- Highest Total Pop
- Lower Median Income
- Medium Rent Index
- Ex. Lower East Side

Cluster Map

Machine Learning Models

- 1. Lasso Regression
- 2. Random Forest
- 3. Gradient Boosting

ZRI Index

(2012 - 2018)

(2020 - 2021) **Considering COVID**

Projected

ZRI Index

Lasso Regression

Lasso Regression Results									
	All	All (PCA)	Cluster 1	Cluster 1 (PCA)	Cluster 2	Cluster 2 (PCA)	Cluster 3	Cluster 3 (PCA)	
Training RMSE	76.62	76.58	90.98	92.08	67.52	69.61	68.33	72.05	
Test RMSE	83.51	86.46	139.81	79.46	64.86	73.38	76.21	89.34	
Training R2	0.988	0.988	0.986	0.985	0.985	0.984	0.987	0.986	
Test R2	0.987	0.986	0.966	0.987	0.989	0.985	0.986	0.982	

Why Lasso?

- Automatic feature selection
- Easily interpretable (linear regression)
- Avoids overfitting

Results:

- Reduced number of features to below 10
- PCA did not improve results outside of Cluster 1
- Clustering improved results of linear regression

Random Forest

Random Forest Results									
	All	All (PCA)	Cluster 1	Cluster 1 (PCA)	Cluster 2	Cluster 2 (PCA)	Cluster 3	Cluster 3 (PCA)	
Training RMSE	50.46	56.81	61.09	66.83	52.07	45.83	43.79	41.27	
Test RMSE	75.36	73.57	79.84	78.55	71.92	71.22	85.37	83.82	
Training R2	0.979	0.980	0.959	0.960	0.976	0.977	0.965	0.967	
Test R2	0.989	0.990	0.986	0.986	0.987	0.986	0.984	0.985	

Why Random Forest?

- Not affected by multicollinearity
- High performance and accuracy
- No feature scaling required

Results:

- Tendency to overfit the training data
- PCA reduced overfitting on all features & cluster 1
- PCA improved results on all grouping
- Clustering did not improve overall results
- Best performing model overall

Gradient Boosting

Gradient Boosting Results								
	All	All (PCA)	Cluster 1	Cluster 1 (PCA)	Cluster 2	Cluster 2 (PCA)	Cluster 3	Cluster 3 (PCA)
Training RMSE	62.67	63.60	50.65	57.52	52.47	55.02	50.08	44.34
Test RMSE	76.32	75.96	79.89	79.23	72.38	72.57	85.52	84.24
Training R2	0.984	0.984	0.968	0.970	0.981	0.982	0.967	0.975
Test R2	0.989	0.990	0.986	0.987	0.986	0.986	0.984	0.985

Why Gradient Boosting?

- Not affected by multicollinearity
- High performance and accuracy
- No feature scaling required

Results:

- Tendency to overfit the training data
- PCA reduced overfitting on all features, cluster 1, and cluster 2
- PCA improved results on all grouping
- Clustering did not improve overall results

Top 5 Cities with Largest Over and Under Estimations from Random Forest Model (Test Data - 2018)

RMSE of \$73.57 (on average, Random Forest Model over estimated by \$18.67)

Top 5 Cities with Largest Decreases and Increases versus Pre-Covid Projections

Average Decrease of 5.5% across all ZIP codes analyzed

Percent change = (ZRI(nonCovid) - ZRI(Covid) - Model Error) / (ZRI(nonCovid))

Conclusion / Next Steps

Conclusion:

- On average, urban rental markets have seen a decreased rent when compared to pre-Covid predictions (Average Percent Change = -5.5%)
- Rental market in the north east has returned to pre-Covid predicted levels, more than the west coast
- PCA improved results on tree based models, but not linear models
- Clustering improved results on linear models, but not tree based models

Next Steps:

- Test different clustering methods and groupings
- Include more data for more accurate predictions (ex. Include housing prices)
- Incorporate Covid data directly (ex. Instead of using ZORI to predict ZRI)
- Look at single family homes in suburban areas