Coin Change Problem

<u>Problem</u>

Given a set of coins and a value V. Find the number of ways in which we can make change of V.

Example

Possible ways to make change are {3}, {2,1}, {1,1,1}.

Note: {1,2} is not counted as a separate way as it is same as {2,1}.

To make ways with every coin, we have 2 options

- A. Take it
- B. Do not take it

Recurrence relation

$$cnt(S[], m, V) = cnt(S[], m, V-Sm) + cnt(S[], m-1, V)$$

Since it can be represented as a Recurrence relation, hence it has <u>Optimal</u> <u>Substructure Property</u>.

To see overlapping subproblem property, Let us take an example

Making recursion tree

We can see ({1},1,4) has repeated. Hence it also has <u>Overlapping Subproblem Property</u>.

Since it follows both optimal substructure property and overlapping subproblem property, hence it can be solved using Dynamic Programming.

Approach 1 (Using Memoization)

- 1. Write the recursive solution.
- 2. Memoize it.

Approach 2 (Tabulation - Bottom Up)

1. Take each coin one by one and fill the dp table till that coin, for all the values from 0 to V.

Example

s 1 2 3 _{V=6}

Coin/Value	0	1	2	3	4	5	6
#	1	0	0	0	0	0	0
1	1	1	1	1	1	1	1
2	1	1	2	2	3	3	4
3	1	1	2	3	4	5	7

- 2. For every cell, we have 2 options
 - a. Take that coin (dp[i][j-s[i-1])
 - b. Do not take that coin (dp[i-1][j])

Time Complexity: O(V*n)

Space Complexity: O(V*n).

Approach 3 (Tabulation with space efficiency)

- 1. Just a minor change in approach 2.
- 2. We knew for every cell, we have 2 options
 - a. Take that coin
 - b. Do not take that coin. (We do not take extra row. Update on the same cell).

Time Complexity: O(V*m)

Space Complexity: O(n).

<u>Dry Run</u>

When no coin was taken

When {1} was taken

1	1	1	1	1	1	1
0	1	2	3	4	5	6

When {1,2} was taken

1	1	2	2	3	3	4	
0	1	2	3	4	5	6	_

When {1,2,3} was taken

1	1	2	3	4	5	7
0	1	2	3	4	5	6

Code (Memoization)

Code (Iterative)

```
void solve()
    int m;
    cin >> m;
    vi s(m);
    rep(i,0,m)
        cin >> s[i];
    int x;
    cin >> x;
    vvi dp(m+1, vector<int>(x+1,0));
    dp[0][0] = 1;
    rep(i,1,m+1)
        rep(j,0,x+1)
            if(j-s[i-1]>=0)
                dp[i][j] += dp[i][j-s[i-1]];
            dp[i][j] += dp[i-1][j];
        }
    cout << dp[m][x] << endl;</pre>
```

Code (Space optimization)

```
void solve()
{
    int m;
    cin >> m;
    vi s(m);
    rep(i,0,m)
        cin >> s[i];
    int x;
    cin >> x;
    vi dp(x+1, 0);
    dp[0] = 1;
    rep(i,0,m)
        rep(j,0,x+1)
            if(j-s[i] >= 0)
                 dp[j] += dp[j-s[i]];
    cout << dp[x] << endl;</pre>
```