

Profissão: Cientista de Dados

BOAS PRÁTICAS

Regressão I

- Interprete os parâmetros
- 💿 Utilize o statsmodels para Regressão
- Estime mínimos quadrados
- Avalie a qualidade do modelo
- Analise os resíduos

Regressão I

- Transforme as variáveis preditoras (x)
- Transforme a variável resposta (y)
- Multiplique matrizes
- Aplique álgebra matricial em modelos de regressão
- Onheça statsmodels e Patsy

Interprete os parâmetros

- Cada parâmetro em um modelo de regressão tem um significado específico. Por exemplo, o parâmetro alfa é o valor esperado de Y quando X é zero, enquanto beta é o aumento esperado para Y para cada unidade que X aumenta. Certifique-se de entender o que cada parâmetro representa.
- A modelagem é um processo iterativo. Esteja disposto a ajustar e melhorar o modelo com base nos resultados e nas limitações observadas.

Lembre-se de que há sempre um erro aleatório ao prever o valor de Y com o modelo. Este erro pode ser para cima ou para baixo.

Cada modelo tem suas limitações. Por exemplo, o modelo de regressão discutido presume que a variação é a mesma para todos os valores de X, o que nem sempre é verdade. No entanto, apesar de suas limitações, o modelo ainda pode ser útil.

Utilize statsmodels para Regressão

- Lembre-se de que o statsmodels pode ser usado para fazer previsões para novas observações. Use o método 'predict' para isso.
- Não se esqueça de verificar os resíduos e o erro quadrado médio. Estes são indicadores importantes da qualidade do seu modelo.

- Depois de rodar a regressão, sempre verifique o resumo dos resultados. Preste atenção especial ao tamanho da amostra e aos parâmetros estimados para o intercepto e a inclinação.
- Você pode acessar os parâmetros do modelo diretamente do objeto de regressão. Use a tabulação para listar todos os atributos e métodos disponíveis.

Estime mínimos quadrados

- O objetivo do método de mínimos quadrados é encontrar os valores que minimizam a soma dos quadrados dos resíduos. Isso pode ser feito derivando a soma dos quadrados dos resíduos em relação aos parâmetros do modelo, igualando a zero e resolvendo para os parâmetros.
- A distribuição dos estimadores é conhecida, o que permite fazer inferências sobre eles. Isso é útil para estimar intervalos de confiança e realizar testes de hipóteses.

As estimativas obtidas por meio do método de mínimos quadrados têm algumas propriedades importantes. Por exemplo, a soma dos resíduos é sempre zero, e os resíduos não têm correlação linear com as variáveis preditoras.

Avalie a qualidade do modelo

- Lembre-se de que a soma de quadrados total é igual à soma de quadrados do modelo mais a soma de quadrados do erro. Um modelo de alta qualidade terá uma soma de quadrados do modelo alta e uma soma de quadrados do resíduo baixa.
- Embora um R quadrado alto seja desejável, também é importante considerar possíveis influências e fragilidades no modelo. Não se baseie apenas em uma única métrica para avaliar a qualidade do seu modelo.
- Use o coeficiente de determinação, ou R quadrado, para avaliar a qualidade do seu modelo. O R quadrado é interpretado como a proporção da variância explicada pelo modelo. Quanto maior o R quadrado, melhor o modelo.
- Além do R quadrado, considere também o coeficiente de correlação, que é a raiz quadrada do R quadrado.

Analise os resíduos

- Em um modelo bem ajustado, espera-se que os resíduos não exibam um padrão uniforme nem apresentem qualquer relação evidente com a variável independente (X). A detecção de um padrão nos resíduos pode sugerir a necessidade de ajustes no modelo.
- Utilize programas de planilha eletrônica para ajudar a linearizar a relação entre as variáveis, usando uma função G de X. A ideia é fazer com que a variável dependente (Y) seja linear em relação ao G de X, melhorando assim o ajuste do modelo.
- Esteja atento aos padrões típicos de resíduos que indicam problemas no modelo. Por exemplo, se os resíduos aumentam à medida que a variável X aumenta, isso sugere que os dados têm um formato de cone. Se os resíduos são negativos em um trecho e positivos em outro, isso indica uma relação não linear que precisa ser linearizada.

Analise os resíduos

- Em um modelo bem ajustado, espera-se que os resíduos não exibam um padrão uniforme nem apresentem qualquer relação evidente com a variável independente (X). A detecção de um padrão nos resíduos pode sugerir a necessidade de ajustes no modelo.
- Utilize programas de planilha eletrônica para ajudar a linearizar a relação entre as variáveis, usando uma função G de X. A ideia é fazer com que a variável dependente (Y) seja linear em relação ao G de X, melhorando assim o ajuste do modelo.
- Esteja atento aos padrões típicos de resíduos que indicam problemas no modelo. Por exemplo, se os resíduos aumentam à medida que a variável X aumenta, isso sugere que os dados têm um formato de cone. Se os resíduos são negativos em um trecho e positivos em outro, isso indica uma relação não linear que precisa ser linearizada.

Transforme as variáveis preditoras (x)

- Ao ajustar um modelo de regressão, não se baseie apenas no valor de R quadrado para avaliar o desempenho do modelo.
 Verifique também os resíduos para identificar qualquer padrão que possa indicar que o modelo pode ser melhorado.
- Experimente diferentes tipos de transformações nas variáveis preditoras para melhorar o ajuste do modelo. Isso pode incluir ajustar um polinômio de segundo grau, uma função exponencial ou uma função logarítmica.

A transformação de variáveis é uma ferramenta poderosa, mas deve ser usada com cautela. Sempre verifique os resíduos após a transformação para garantir que a relação entre as variáveis preditoras e a variável resposta tenha sido adequadamente capturada.

Transforme a variável resposta (y)

Diferentes pessoas podem resolver o mesmo problema de maneiras diferentes. Não há uma única "melhor" maneira de fazer as coisas, então seja criativo e pense fora da caixa.

Multiplique matrizes

A multiplicação de matrizes pode parecer complexa no início, mas é uma sequência de passos que o computador pode resolver. O objetivo é entender o conceito, não necessariamente fazer os cálculos manualmente.

Aplique álgebra matricial em modelos de regressão

A matriz de design é uma matriz de dados usada na regressão. A primeira coluna desta matriz é sempre composta por uns, pois está associada ao intercepto. As colunas subsequentes representam as variáveis do modelo.

cada linha da matriz representa uma observação e as colunas representam as variáveis. A multiplicação da matriz de design pelo vetor de parâmetros resulta nas previsões para cada observação.

Aplique álgebra matricial em modelos de regressão

Variáveis qualitativas devem ser codificadas como variáveis dummy para que possam ser usadas em modelos de regressão. A multiplicação da matriz de design expandida pelo vetor de parâmetros expandido resulta nas previsões para uma regressão múltipla.

Conheça statsmodels e Patsy

- O Patsy também permite aplicar funções às variáveis, como padronização ou centralização. Isso pode ser útil para preparar seus dados para análise.
- Ao usar o statsmodels, você pode ajustar seu modelo e obter um resumo das estatísticas do modelo. Isso pode fornecer informações valiosas sobre o desempenho do seu modelo.
- O statsmodels oferece duas APIs: a API padrão e a API de fórmula. A API padrão requer a definição separada da matriz de design e do modelo, enquanto a API de fórmula permite definir tudo em uma única linha de comando. Escolha a que melhor se adapta às suas necessidades e preferências.

Conheça statsmodels e Patsy

- O Patsy também permite aplicar funções às variáveis, como padronização ou centralização. Isso pode ser útil para preparar seus dados para análise.
- Ao usar o statsmodels, você pode ajustar seu modelo e obter um resumo das estatísticas do modelo. Isso pode fornecer informações valiosas sobre o desempenho do seu modelo.
- O statsmodels oferece duas APIs: a API padrão e a API de fórmula. A API padrão requer a definição separada da matriz de design e do modelo, enquanto a API de fórmula permite definir tudo em uma única linha de comando. Escolha a que melhor se adapta às suas necessidades e preferências.

Bons estudos!

