РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № <u>2</u>

дисциплина: Архитектура компьютера

Студент: Коровкин Никита Михайлович

Группа: НПИбд-02-04

МОСКВА

2024 г.

Цель работы

Целью работы является изучить идеологию и применение средств контроля версий. Приобрести практические навыки по работе с системой git.

Выполнение лабораторной работы

Перед началом работы с git нам необходимо сперва установить его, а затем сделать предварительную конфигурацию (см. рис. 1):

```
[liveuser@localhost-live ~]$ dnf install git
Error: This command has to be run with superuser privileges (under the root user on most systems)
[liveuser@localhost-live ~]$ sudo dnf install git
Fedora 38 – aarch64
                                                                 1.2 MB/s | 79 MB
                                                                                       01:04
Fedora 38 openh264 (From Cisco) – aarch64
                                                                1.2 kB/s | 2.6 kB
                                                                                       00:02
                                                                532 kB/s | 2.7 MB
edora Modular 38 - aarch64
                                                                                       00:05
edora 38 - aarch64 - Updates
                                                                836 kB/s | 41 MB
                                                                                       00:49
edora Modular 38 - aarch64 - Updates
                                                                514 kB/s | 2.1 MB
                                                                                       00:04
Package git-2.40.0-1.fc38.aarch64 is already installed.
Dependencies resolved.
Nothing to do.
Complete!
[liveuser@localhost-live ~]$
```

Рисунок 1. Установка git

Откроем терминал и введём первые две команды. В них укажем имя и email владельца репозитория (см. рис. 2).

```
[liveuser@localhost-live ~]$ git config --global user.name "Nikita Korovkin"
[liveuser@localhost-live ~]$ git config --global user.email "zane41181@gmail.com"
[liveuser@localhost-live ~]$
```

Рисунок 2. Настройка имени и адреса етаі/

После того, как мы задали имя пользователя и адрес электронной почты, введём команду, чтобы настроить utf-8 в выводе сообщений git (см. рис. 3).

```
[liveuser@localhost-live ~]$ git config --global core.quotepath false
[liveuser@localhost-live ~]$

Рисунок 3. Настройка Utf-8
```

Теперь мы зададим имя начальной ветки. Она будет называться master (см. рис. 4).

```
[liveuser@localhost-live ~]$ git config --global init.defaultBranch master
```

Рисунок 4. Добавление названия начальной ветке

Затем зададим следующие два параметра: autocrlf и safecrlf (см. рис. 5).

Параметр autocrlf нужен для того, чтобы в главном репозитории все переводы строк в текстовых файлах были одинаковы. А команда safecrlf проверяет обратимость преобразования для текущей настройки.

```
[liveuser@localhost-live ~]$ git config --global core.autocrlf input [liveuser@localhost-live ~]$ git config --global core.safecrlf warn
```

Рисунок 5. Параметры autocrlf u safecrlf

Чтобы продолжить работу, нам необходимо сперва сгенерировать открытый SSH ключ. Он необходим для индентификации пользователя на сервере репозиториев. В качествем аргументов необходимо указать свое имя и электронную почту(см.рис. 6).

```
[[liveuser@localhost-live ~]$ ssh-keygen -C "Nikita Korovkin zane41181@gmail.com"
Generating public/private rsa key pair.
Enter file in which to save the key (/home/liveuser/.ssh/id_rsa):
Created directory '/home/liveuser/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/liveuser/.ssh/id rsa
Your public key has been saved in /home/liveuser/.ssh/id_rsa.pub
The key fingerprint is:
SHA256:M4zd8dwt0u1igFn6RJnnRfom4UyTnp1E/g5QZsOogxc Nikita Korovkin zane41181@gmail.com
The key's randomart image is:
+---[RSA 3072]----+
              o=..|
           E .*+= |
          ..o* Bo.
        +..+X @.Xo|
       . S.=.* %.B|
          0 0 0 B |
             . 0 0
    -[SHA256]----
[liveuser@localhost-live ~]
```

Рисунок 6. Генерация SSH ключа

Теперь вставим этот ключ в специальное поле на сайте GitHub. Оно находится в разделе settings. Перейдя в settings, найдём пункт SSH и GPS keys. Нажимаем на SSH key, вставляем ключ в нужное поле(см.рис.7-9).

Рисунок 7. Меню GitHub и раздел settings

Рисунок 8. Раздел для создания SSH ключа

Рисунок 9. SSH ключ

Сгенерированный SSH ключ мы копируем в буфер обмена при помощи команды $cat \sim /.ssh/id \ rsa.pub \ | \ xclip \ -sel \ clip \ (cm.puc.10).$

[liveuser@localhost-live ~]\$ cat ~/.ssh/id_rsa.pub | xclip -sel clip

Рисунок 10. Использование команды для копирования в буфер обмена

После того, как мы добавили ключ нам необходимо при помощи терминала создать каталог «Архитектура компьютера» (см.рис.11).

[liveuser@localhost-live ~]\$ mkdir -p ~/work/study/2024-2025/"Архитектура компьютера" Рисунок 11. Создание каталога "Архитектура компьютера"

Теперь на сайте GitHub нам нужно будет создать репозиторий курса на основе шаблона. Шаблон находится по данному адресу: https://github.com/yamadharma/cour se-directory-student-template. Перейдя по ссылке, нажимаем «use this template» и создаём свой репозиторий(см.рис.12-13).

Рисунок 12.Используем шаблон для создания своего репозитория

Рисунок 13. Созданный репозиторий

Теперь, когда репозиторий создан на сайте, нам необходимо клонировать его. Для этого воспользуемся приведенной ниже командой(см.рис.14).

[liveuser@localhost-live ~]\$ git clone --recursive git@github.com:Pancakeboy1987 /study_2024-2025_arh-pc.git

Рисунок 14. Клонирование репозитория

```
Cloning into 'study_2024-2025_arh-pc'...
remote: Enumerating objects: 33, done.
remote: Counting objects: 100% (33/33), done.
remote: Compressing objects: 100% (32/32), done.
remote: Total 33 (delta 1), reused 18 (delta 0), pack-reused 0 (from 0)
Receiving objects: 100% (33/33), 18.81 KiB | 4.70 MiB/s, done.
Resolving deltas: 100% (1/1), done.
Submodule 'template/presentation' (https://github.com/yamadharma/academic-presentation-markdown-template.git) regist
ered for path 'template/presentation'
Submodule 'template/report' (https://github.com/yamadharma/academic-laboratory-report-template.git) registered for p
ath 'template/report'
Cloning into '/home/liveuser/study_2024-2025_arh-pc/template/presentation'...
remote: Enumerating objects: 111, done.
remote: Counting objects: 100% (111/111), done.
remote: Compressing objects: 100% (77/77), done.
remote: Total 111 (delta 42), reused 100 (delta 31), pack-reused 0 (from 0)
Receiving objects: 100% (111/111), 102.17 KiB | 1.00 MiB/s, done.
Resolving deltas: 100% (42/42), done.
Cloning into '/home/liveuser/study_2024-2025_arh-pc/template/report'...
remote: Enumerating objects: 142, done.
remote: Counting objects: 100% (142/142), done.
remote: Compressing objects: 100% (97/97), done.
remote: Total 142 (delta 60), reused 121 (delta 39), pack-reused 0 (from 0)
Receiving objects: 100% (142/142), 341.09 KiB | 2.01 MiB/s, done.
Resolving deltas: 100% (60/60), done.
Submodule path 'template/presentation': checked out 'c9b271<u>2</u>b4b2d431ad5086c9c72a02<u>b</u>d2fca1d4a6'
Submodule path 'template/report': checked out 'c26e22effe7b3e0495707d82ef561ab185f5c748'
[liveuser@localhost-live ~]$
```

Рисунок 15. Весь процесс клонирования репозитория

На рисунке выше(см.рис.15) изображен весь процесс клонирования. После того, как процесс завершен, можно перейти к следующему этапу — настройке каталога курса.

Для этого сперва перейдем в нужный каталог с помощью cd ~/work/study/2024-2025/"Архитектура компьютера"/arch-pc (см.рис.16)

```
[liveuser@localhost-live ~]$ cd ~/work/study/2024-2025/"Архитектура компьютера"/arch-pc
```

Теперь удалим ненужные файлы при помощи команды rm(см.рис.17)

```
[liveuser@localhost-live study_2024-2025_arh-pc]$ rm package.json
[liveuser@localhost-live study_2024-2025_arh-pc]$
```

Рисунок 17. Удаление лишних файлов

После того, как все лишние файлы удалены, создадим новые при помощи

команд echo arch-pc > COURSE и make(см.рис.18).

```
[liveuser@localhost-live study_2024-2025_arh-pc]$ echo arch-pc > COURSE
[liveuser@localhost-live study_2024-2025_arh-pc]$ make
```

Рисунок 18. Создание новых файлов

Следующий этап — отправка файлов на сервер. Для этого мы воспользуемся командой git add . , которая предназначена для добавления на сервер сразу всех файлов и каталогов. После этого пропишем команду git commit -am 'feat(main): make course structure'. Она сохраняет внесённые изменения и добавляет комментарий (см.рис.19).

```
[liveuser@localhost-live study_2024-2025_arh-pc]$ git add .
[liveuser@localhost-live study_2024-2025_arh-pc]$ git commit -am 'feat(main): make course structure'
```

Рисунок 19. Добавление каталогов на сервер, сохранение изменений

Теперь воспользуемся командой push, чтобы загрузить все изменения на сервер(см.рис.20).

Рисунок 20. Загрузка изменений на сервер

Остаётся только сравнить файлы GitHub с файлами на компьютере (см.рис.21-22).

=	Pancakeboy1987	feat(main): make course stru	7ea45c6 · 39 minutes ago	© 2 Commits
	config	Initial commit		last week
	template	Initial commit		last week
	.gitattributes	Initial commit		last week
	.gitignore	Initial commit		last week
	.gitmodules	Initial commit		last week
	CHANGELOG.md	Initial commit		last week
	COURSE	feat(main): mak	e course structure	39 minutes ago
	LICENSE	Initial commit		last week
ß	Makefile	Initial commit		last week
ß	README.en.md	Initial commit		last week
	README.git-flow.r	nd Initial commit		last week
	README.md	Initial commit		last week

Рисунок 21. Файлы GitHub

Рисунок 22. Файлы на компьютере

Файлы совпадают, значит работа выполнена правильно.

Самостоятельная работа

Приступим к выполнению самостоятельной работы. Для этого сперва создадим файл отчёта. Для этого воспользуемся LibreOffice(см.рис.23).

Рисунок 23. Создание отчёта

Сохраним файл отчёта в нужном каталоге (см.рис.24)

Рисунок 24. Сохранение файла в нужном каталоге

Теперь, когда наш файл сохранен, скопируем отчёт о предыдущей лабораторной работе в каталог labs/lab01/report. Для этого воспользуемся командой ср(см.рис.25).

```
[liveuser@localhost-live Documents]$ ср Л01_Коровкин_отчет.pdf ~/home/study_20 24-2025_arh-pc/labs/lab1/report
```

Рисунок 25. Копируем файл в нужную директорию

Остаётся только отправить наши файлы и каталоги на сервер. Для этого проделаем те же самые действия, что и в основной части лабораторной работы. Сперва добавляем файлы и каталог, используем commit для утверждения изменений и отправляем на сервер при помощи push(см.рис.26-27).

```
[liveuser@localhost-live study_2024-2025_arh-pc]$ git add .
[liveuser@localhost-live study_2024-2025_arh-pc]$ git commit -am "feat(main): added 2 labs"
[master cace897] feat(main): added 2 labs
3 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 labs/lab1/report/Л01_Коровкин_отчет.pdf
create mode 100644 labs/lab2/report/Л02_Коровкин_отчет.docx
create mode 100644 labs/lab2/report/Л02_Коровкин_отчет.pdf
[liveuser@localhost-live study_2024-2025_arh-pc]$ git push
To github.com:Pancakeboy1987/study_2024-2025_arh-pc.git
```

Рисунок 26. Использование комманд add и commit

Рисунок 27. Загрузка файлов на сервер

Проверим, получилось ли правильно загрузить файлы на GitHub(см.рис.28). Как мы видим, нужные каталоги на месте. Работа выполнена верно.

Рисунок 28. Загруженные каталоги с файлами

Вывод

В ходе выполнения данной лабораторной работы были получены навыки работы с системой контроля версий Git, такие как: первоначальная настройка системы, создание репозитория, изменение, сохранение и загрузка файлов на сервер.