Expectations and Variances

Eli Gurarie

StatR 101 - Lecture 6b November 5, 2012

November 5, 2012

Some sample spaces are not "numerical"

Example: Sequence of three free throws

• $S = \{MMM, MMH, MHM, MHH, HMM, HMH, HHM, HHH\}$ There's no natural way to order this state space.

Some sample spaces are numerical

Example: Sum of points after three free throws.

• Question II: How many baskets will the basketball player make total?

- \bullet S = {0, 1, 2, 3}
- This is a naturally "numerical" sample space.
- Every outcome can be assigned a value

Definition

A Random Variable ...

... is a variable whose value is a numerical outcome of a random phenomenon.

Or (more technically) a **random variable** X is a function that takes each element of a sample space S and assigns it to a real number.

Discrete random variable

- Every value that a random variable can take is associated with a probability
- The probabilities sum to 1

Value of X	Probability	
<i>x</i> ₁	p_1	
<i>x</i> ₂	p_2	
<i>X</i> ₃	p_3	
x_k	p_k	

Example: Number of heads after 5 coin flips

- X is the total number of heads after 5 coin flips
- Possible values of X are: $\{0,1,2,3,4,5\}$
- Probability distribution of X is: P(X = k) = Binomial(k|n = 5, p = 1/2)

X	P(X = x)
0	0.03125
1	0.15625
2	0.31250
3	0.31250
4	0.15625
5	0.03125

 One way to think of this problem is that if we repeated the experiment many many times - what would the average score be?

R code

> rbinom(100000,5,.5)

0 1 2 3 4 5

3200 15651 31116 31223 15664 3146

The mean of these realizations is:

X	P(X = x)	$E(N_i)$	N_i
0	0.03125	3,125	3,200
1	0.15625	15,625	15,651
2	0.31250	31,250	31,116
3	0.31250	31,250	32,223
4	0.15625	15,625	15,664
5	0.03125	3,125	3,146
Sum	1	100,000	100,000

$$\overline{X} = (3,200 \times 0 + 15,651 \times 1 + ...$$

$$... + 3,146 \times 5)/100000 = 2.499$$

$$\approx \sum_{i=1}^{6} \frac{x_i(100000P(X = x_i))}{100000}$$

$$= \sum_{i=1}^{6} x_i P(X = x_i)$$

Definition

Expectation

The **expected value** or **expectation** of a discrete random variable X with probability function f(x) is

$$\mathsf{E}(X) = \sum_{i=1}^n x_i \, f(x_i)$$

where $\{x_1, x_2, ... x_n\}$ is the set of all values that X can take. It is essentially the mean of *possible values* weighted by their *probability*. In statistics, E(X) it is often denoted μ or μ_X .

$$\mathsf{E}(X) = \sum_{i=1}^n x_i \, p(x_i)$$

X	f(x)	xf(x)
0	0.03125	
1	0.15625	
2	0.31250	
3	0.31250	
4	0.15625	
5	0.03125	
Sum		

$$\mathsf{E}(X) = \sum_{i=1}^n x_i \, p(x_i)$$

X	f(x)	xf(x)
0	0.03125	0
1	0.15625	0.15625
2	0.31250	0.6250
3	0.31250	0.9375
4	0.15625	0.6250
5	0.03125	0.15625
Sum		

$$\mathsf{E}(X) = \sum_{i=1}^n x_i \, p(x_i)$$

X	f(x)	xf(x)
0	0.03125	0
1	0.15625	0.15625
2	0.31250	0.6250
3	0.31250	0.9375
4	0.15625	0.6250
5	0.03125	0.15625
Sum	1	2.5

$$\mathsf{E}(X) = \sum_{i=1}^n x_i \, p(x_i)$$

X	f(x)	xf(x)
0	0.03125	0
1	0.15625	0.15625
2	0.31250	0.6250
3	0.31250	0.9375
4	0.15625	0.6250
5	0.03125	0.15625
Sum	1	2.5

So, the **expected value** of X is **2.5**.

Expectation of the binomial distribution

Binomial distribution:

$$f(x|n,p) = \Pr(X = x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

Solving for the expectation of the binomial distribution:

$$E(X) = \sum_{i=0}^{n} f(x|n, p)$$

$$= \sum_{i=0}^{n} x \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

$$= \sum_{i=0}^{n} \frac{n!}{(x-1)!(n-x)!} p^{x} (1-p)^{n-x}$$

$$= np \sum_{i=0}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1} (1-p)^{n-x}$$

$$= np \sum_{i=0}^{n} \text{Binomial}(x-1|n-1, p) = np$$

Expectation of the binomial distribution

Binomial distribution:

$$f(x|n,p) = \Pr(X = x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

Solving for the expectation of the binomial distribution:

$$E(X) = \sum_{i=0}^{n} f(x|n,p)$$

$$= \sum_{i=0}^{n} x \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

$$= \sum_{i=0}^{n} \frac{n!}{(x-1)!(n-x)!} p^{x} (1-p)^{n-x}$$

$$= np \sum_{i=0}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1} (1-p)^{n-x}$$

$$= np \sum_{i=0}^{n} \text{Binomial}(x-1|n-1,p) = np$$

Example of the binomial expectation

 How many heads to we expect after 8 tosses?

•
$$p = 0.5$$
, $n = 8$, $E(X) = np = 4$

 How many baskets do we expect Shaq to make in 10 attempts?

•
$$p = 0.37$$
, $n = 10$, $E(X) = 3.7$

 How many baskets do we expect Ray Allen to make in 20 attempts?

•
$$p = 0.96$$
, $n = 20$, $E(X) = 19.2$

Example of the binomial expectation

 How many heads to we expect after 8 tosses?

•
$$p = 0.5$$
, $n = 8$, $E(X) = np = 4$

 How many baskets do we expect Shaq to make in 10 attempts?

•
$$p = 0.37$$
, $n = 10$, $E(X) = 3.7$

 How many baskets do we expect Ray Allen to make in 20 attempts?

•
$$p = 0.96$$
, $n = 20$, $E(X) = 19.2$

Example of the binomial expectation

 How many heads to we expect after 8 tosses?

•
$$p = 0.5$$
, $n = 8$, $E(X) = np = 4$

 How many baskets do we expect Shaq to make in 10 attempts?

•
$$p = 0.37$$
, $n = 10$, $E(X) = 3.7$

 How many baskets do we expect Ray Allen to make in 20 attempts?

•
$$p = 0.96$$
, $n = 20$, $E(X) = 19.2$

The **Expectation**

is often denoted μ and called the **mean** of a distribution.

- The expectation tells you the true mean of any known, theoretical, distribution
- It is not quite the same as the sample mean which we obtain empirically for data.

Some basic arithmetical property of expectations

$$E(A + B) = E(A) + E(B)$$

 $E(kA) = kE(A)$; where k is a constant
 $E(AB) = E(A)E(B)$; only if A and B are independent

Variance

- Another very important quantity is the **variance** of a distribution.
- It is the Expected Squared Deviation from the Mean
 - Convert that to math notation:

$$Var(X) = E\left(\left(X - E(X)\right)^{2}\right)$$

Use the properties of expectation to simplify:

$$Var(X) = E(X^{2} - 2XE(X) + E(X)^{2})$$

$$= E(X^{2}) - 2E(XE(X)) + E(X)^{2}$$

$$= E(X^{2}) - 2E(X)E(X) + E(X)^{2}$$

$$= E(X^{2}) - E(X)^{2}$$

Variance

- Another very important quantity is the **variance** of a distribution.
- It is the Expected Squared Deviation from the Mean
 - Convert that to math notation:

$$Var(X) = E\left(\left(X - E(X)\right)^{2}\right)$$

Use the properties of expectation to simplify:

$$Var(X) = E(X^{2} - 2XE(X) + E(X)^{2})$$

$$= E(X^{2}) - 2E(XE(X)) + E(X)^{2}$$

$$= E(X^{2}) - 2E(X)E(X) + E(X)^{2}$$

$$= E(X^{2}) - E(X)^{2}$$

Example: Variance of 4 coin flips

- X is the total number of heads after 4 coin flips
- Possible values of X are: $x = \{0,1,2,3,4\}$
- Probability distribution of X is: P(X = x) = Binomial(k|n = 4, p = 1/2)
- Expected value of X is: $E(X) = \mu = np = 2$

X	P(X = x)	$x - \mu$	$(x-\mu)^2$	$(x-\mu)^2 P(x)$
1	1/4	-1	1	1/4
	1/4	1	1	1/4
Σ	1			1

$$Var(X) = 1$$

Example: Variance of 4 coin flips

- X is the total number of heads after 4 coin flips
- Possible values of X are: $x = \{0,1,2,3,4\}$
- Probability distribution of X is: P(X = x) = Binomial(k|n = 4, p = 1/2)
- Expected value of X is: $E(X) = \mu = np = 2$

X	P(X = x)	$x - \mu$	$(x - \mu)^2$	$(x-\mu)^2 P(x)$
0	1/16	-2	4	1/4
1	1/4	-1	1	1/4
2	3/8	0	0	0
3	1/4	1	1	1/4
4	1/16	2	4	1/4
Σ	1			1

$$Var(X) = 1$$

The Variance

• The **variance** of a random variable *X* is defined by the following expressions:

$$Var(X) = E((X - E(X))^2)$$

 $Var(X) = E(X^2) - E(X)^2$

• For **discrete random variables**, $X \in \{x_1, x_2, x_3...x_n\}$, with known probability function P(X = x) = f(x):

$$Var(X) = \sum_{i=1}^{n} \left((x_i - \sum_{i=1}^{n} x_i f(x_i))^2 f(x_i) \right)$$
$$= \sum_{i=1}^{n} x_i^2 f(x_i) - \left(\sum_{i=1}^{n} x_i f(x_i) \right)^2$$

Variance of the binomial distribution

Binomial distribution:

$$f(x|n,p) = \Pr(X = x) = \frac{n!}{x!(n-x)!}p^{x}(1-p)^{n-x}$$

Solving for the variance of the binomial distribution:

$$Var(X^{2}) = \sum_{i=0}^{n} x^{2} f(x|n, p) - E(X)^{2}$$

$$= \dots$$

$$= \text{lots of algebra similar to last time}$$

$$= \dots$$

$$= np(1-p)$$

Variance of the binomial distribution

Binomial distribution:

$$f(x|n,p) = \Pr(X = x) = \frac{n!}{x!(n-x)!}p^{x}(1-p)^{n-x}$$

Solving for the variance of the binomial distribution:

$$Var(X^{2}) = \sum_{i=0}^{n} x^{2} f(x|n,p) - E(X)^{2}$$

$$= \dots$$

$$= \text{lots of algebra similar to last time}$$

$$= \dots$$

$$= np(1-p)$$

The Variance

...is often denoted σ^2 .

- It tells you something quantitative about the amount of spread in a distribution from the mean.
- The square root of the variance, σ is the standard deviation - which is the units of the random variable X.
- This quantity is the true variance of any known, theoretical, distribution
- It is not exactly the same as the sample variance which we obtain empirically for data.

Example of the binomial variance

What's the variance of heads after 8 coin tosses?

•
$$p = 0.5$$
, $n = 8$, $E(X) = 4$, $Var(X) = np(1 - p) = 2$

• What's the variance of Shaq's 10 FT attempts?

•
$$p = 0.37$$
, $n = 10$, $E(X) = 3.7$, $Var(X) = 2.331$

What's the variance of Ray Allen's 20 FT attempts?

•
$$p = 0.96$$
, $n = 20$, $E(X) = 19.2$, $Var(X) = 0.768$

Example of the binomial variance

What's the variance of heads after 8 coin tosses?

•
$$p = 0.5$$
, $n = 8$, $E(X) = 4$, $Var(X) = np(1 - p) = 2$

What's the variance of Shaq's 10 FT attempts?

•
$$p = 0.37$$
, $n = 10$, $E(X) = 3.7$, $Var(X) = 2.331$

What's the variance of Ray Allen's 20 FT attempts?

•
$$p = 0.96$$
, $n = 20$, $E(X) = 19.2$, $Var(X) = 0.768$

Example of the binomial variance

 What's the variance of heads after 8 coin tosses?

•
$$p = 0.5$$
, $n = 8$, $E(X) = 4$, $Var(X) = np(1 - p) = 2$

- What's the variance of Shaq's 10 FT attempts?
 - p = 0.37, n = 10, E(X) = 3.7, Var(X) = 2.331
- What's the variance of Ray Allen's 20 FT attempts?
 - p = 0.96, n = 20, E(X) = 19.2, Var(X) = 0.768

Basic arithmetical property of variances

- $Var(kA) = k^2 Var(A)$
- If A and B are independent,

$$\mathsf{Var}(A+B) = \mathsf{Var}(A) + \mathsf{Var}(B)$$

Components of a probability distribution

- X: The random variable (r.v.)
- x: The possible values (or **support**) of X
 - $X \in \{x_1, x_2, x_3...x_n\}$
- $P(X = x | \theta) = f(x, \theta)$: The probability mass functions
 - Often contracted to "p.m.f." of "pmf"
 - for continuous r.v.'s, called "probability density function" (p.d.f.)
- θ : The **parameters** of the pdf.
- $E(X) = \mu$: The theoretical **mean** of the pdf.
- $Var(X) = \sigma^2$: The theoretical **variance** of the pdf.

$X \sim \text{Binomial}(n, p)$

Name:	Binomial Distribution	Total number of successes
		with probability p after n tries.

Support:
$$\times$$
 0,1,2,3,..., n

Parameters: $n \in \mathbb{N}$ (positive integers) number of trials (positive integer

eters:
$$n \in \mathbf{N}$$
 (positive integers) number of trials (positive integer) $p \in [0,1]$ probability of success

$$p \in [0,1]$$
 probability of success
$$pmf \qquad P(X=x|n,p) \qquad f(x) = \frac{n!}{x!(n-x)!}p^x(1-p)^{n-x}$$
 mean $E(X)$

pmf
$$P(X=x|n,p)$$
 $f(x)=rac{n!}{x!(n-x)!}p^x(1-p)^{n-x}$ mean $E(X)$ np variance $Var(X)$ $np(1-p)$

Bernoulli distribution

- The Bernoulli distribution is the distribution of a **single** event with probability *p*.
- $P(X = x) = \begin{cases} 1 p & \text{for } x = 0\\ p & \text{for } x = 1 \end{cases}$
- Examples: a single coin flip, a single FT.

Question: What is the expected value and variance of the Bernoulli distribution?

V		_		. ,	
Х	2	Bernou	П	1(n

Parameters:

Vame:	Bernoulli Distribution	Models number of successes
		after one trial

Support: 0,1 Х

> $p \in [0, 1]$ probability of success

pmf
$$P(X = x|p) \begin{cases} 1-p & \text{for } x = 0 \\ p & \text{for } x = 1 \end{cases}$$

E(X)р mean

variance
$$Var(X)$$
 $p(1-p)$

Relationship between Binomial and Bernoulli distribution

- A Binomial(n, p) is the sum of n Bernoulli(p) trials
- Formally, if X_1 , X_2 , X_3 ... X_n are each independent variables with:

$$X_i \sim \text{Bernoulli}(p)$$

then

$$Y = \sum_{i=1}^{n} X_i \sim \mathsf{Binomial}(n, p)$$

Using arithemetic properties of Expectation and Variance

Question: What is the expectation and variance of $Y = \sum_{i=1}^{n} X_i$ where X_i are Bernoulli(p) trials?

Recall

$$\mathsf{E}(A+B)=\mathsf{E}(A)+\mathsf{E}(B)$$

And (if A and B are independent)

$$Var(A + B) = Var(A) + Var(B)$$

Then:

$$E(Y) = E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} p = np$$

And (very similarly):

$$Var(Y) = Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i) = \sum_{i=1}^{n} p(1-p) = np(1-p)$$

 These are much easier ways to calculate the mean and variance of the Binomial distribution!

Rules of Washington State Powerball

- Buy a ticket for \$1
- Pick 6 numbers from 1, ..., 53
- Win \$1,000,000 if your numbers are identical to winning numbers (in any order).
- Q1: What is the probability of winning the jackpot?
 - Uniform sample space: Choose 6 from 53
 - \bullet $\binom{53}{6} = 22,957,480$
 - P(Winning) = 1/22957480

Rules of Washington State Powerball

- Buy a ticket for \$1
- Pick 6 numbers from 1, ..., 53
- Win \$1,000,000 if your numbers are identical to winning numbers (in any order).
- Q1: What is the probability of winning the jackpot?
 - Uniform sample space: Choose 6 from 53
 - $\binom{53}{6} = 22,957,480$
 - P(Winning) = 1/22957480

$$P(Winning) = 1/22957480$$

- Q2: What are your expected winnings?
- Call X the dollar amount of your winnings
 - $X \in \{-1,999999\}$ • P(X = x) $\begin{cases} 22957479/22957480 & \text{for } x = 0 \\ 1/22957480 & \text{for } x = 10000000 \end{cases}$ • $E(X) = -1 \times \frac{22957479}{22957480} + 999,999 \times \frac{1}{22957480} \approx -0.956$
- So: You will lose 0.96 cents, on average, every time you play.
- Good luck!

```
R code: Generic Powerball
> p <- 1/choose(53, 6)
> cost <- 1
> reward <- 1e6
> X <- c(0,reward)-cost
> pmf <- c(1-p,p)
> sum(pmf * X)
[1] -0.9564412
```

$$P(Winning) = 1/22957480$$

- Q2: What are your expected winnings?
- Call X the dollar amount of your winnings
 - $X \in \{-1,999999\}$

•
$$P(X = x)$$
 $\begin{cases} 22957479/22957480 & \text{for } x = 0 \\ 1/22957480 & \text{for } x = 10000000 \end{cases}$
• $E(X) = -1 \times \frac{22957490}{279657480} + 999,999 \times \frac{1}{220657480} \approx -0.956$

- So: You will lose 0.96 cents, on average, every time you play.
- Good luck!

> p <- 1/choose(53, 6) > cost <- 1

```
> X <- c(0,reward)-cost
```

$$P(Winning) = 1/22957480$$

- Q2: What are your expected winnings?
- Call X the dollar amount of your winnings
 - $X \in \{-1,999999\}$

•
$$P(X = x)$$

$$\begin{cases} 22957479/22957480 & \text{for } x = 0 \\ 1/22957480 & \text{for } x = 10000000 \end{cases}$$

•
$$E(X) = -1 \times \frac{22957479}{22957480} + 999,999 \times \frac{1}{22957480} \approx -0.956$$

- So: You will lose 0.96 cents, on average, every time you play.
- Good luck!

R code: Generic Powerball

```
> p <- 1/choose(53, 6)
> cost <- 1
> reward <- 1e6
> X <- c(0,reward)-cost
> pmf <- c(1-p,p)
> sum(pmf * X)
[1] -0.9564412
```

Questions:

- How long (how many rolls) will it take me to roll a 6 on average?
- How long will it take Shaq to make a free throw?
- If I bought a lottery ticket every day, how long would it take me to win?

The Geometric Distribution

- The geometric distribution described the number of Bernoulli trials with probability p before a success - the waiting time of a distribution.
- $P(X = k) = p(1 p)^k$ where $k = \{0, 1, 2, 3, ...\}$
- Note: one p is for success, k(1-p)'s for failure.

Questions:

- How long (how many rolls) will it take me to roll a 6 on average?
- How long will it take Shaq to make a free throw?
- If I bought a lottery ticket every day, how long would it take me to win?

The Geometric Distribution

- The geometric distribution described the number of Bernoulli trials with probability p before a success - the waiting time of a distribution.
- $P(X = k) = p(1 p)^k$ where $k = \{0, 1, 2, 3, ...\}$
- Note: one p is for success, k(1-p)'s for failure.

Geometric distribution: examples

Geometric distribution: examples

• What is the probability that Shaq (p=0.3) will miss exactly three times before making it?

$$p(1-p)^3 = dgeom(3, 0.3) = 10.3\%$$

• What is the probability that Shaq (p=0.3) will miss less than three times in a row?

$$\sum_{i=0}^{2} p(1-p)^{i} = pgeom(2, 0.3) = 65\%$$

• What is the probability that Shaq (p=0.3) will miss more than three times in a row?

$$\sum_{i=4}^{\infty} p(1-p)^{i} = 1 - pgeom(4, 0.3) = 17\%$$

• What is the probability that you will have won SuperLotto at least once after 20 years of playing daily?

$$\sum_{i=0}^{356*20} p(1-p)^i = pgeom(365*20, p = 1/22e6) = 0.03\%$$

Geometric distribution: examples

• What is the probability that Shaq (p=0.3) will miss exactly three times before making it?

$$p(1-p)^3 = dgeom(3, 0.3) = 10.3\%$$

• What is the probability that Shaq (p=0.3) will miss less than three times in a row?

$$\sum_{i=0}^{2} p(1-p)^{i} = pgeom(2, 0.3) = 65\%$$

• What is the probability that Shaq (p=0.3) will miss more than three times in a row?

$$\sum_{i=4}^{\infty} p(1-p)^{i} = 1 - pgeom(4, 0.3) = 17\%$$

• What is the probability that you will have won SuperLotto at least once after 20 years of playing daily?

$$\sum_{i=0}^{356*20} p(1-p)^i = pgeom(365*20, p = 1/22e6) = 0.03\%$$

Geometric distribution: Memorylessness

- After 3 misses, what is the probability Shaq will miss 3 more times?
 ALSO 10.3%!
- After 20 years of trying, what is the probability you might win after another 20 years?
 ALSO 0.03%!
- It does not matter how long you have been trying to get a success, the waiting time will always have the same distribution.
- This is called "memorylessness" and is very special.

$$P(X > m + n | X > m) = P(X > n)$$

$$E(X) = \sum_{i=0}^{\infty} k \, p \, (1-p)^k = \frac{1-p}{p}$$

$$Var(X) = \sum_{i=0}^{\infty} k^2 \, p \, (1-p)^k - E(X)^2 = \frac{1-p}{p^2}$$

• How long (how many flips) will it take me before I get a head from a fair coin on average?

Answer:
$$\mu_{\scriptscriptstyle X} = (1-1/2)/1/2 = 1$$
 flip, $\sigma_{\scriptscriptstyle X} = \sqrt{2}$

• How long will it take me to roll a 6 on average?

Answer:
$$\mu_x = (1 - 1/6)/1/6 = 5$$
 rolls, $sigma_x = \sqrt{30}$

- How long will it take Shaq to make a free throw? Answer: $\mu_x = (1-0.3)/0.3 = 2.333$ attempts, $\sigma_x = 2.789$
- How long would it take me to win Powerball? Answer: $\mu_x=(1-1/23e6)/23e6=22e6$ days = 63,013 years $\sigma_x=22e6$ days

$$E(X) = \sum_{i=0}^{\infty} k \, p \, (1-p)^k = \frac{1-p}{p}$$

$$Var(X) = \sum_{i=0}^{\infty} k^2 \, p \, (1-p)^k - E(X)^2 = \frac{1-p}{p^2}$$

• How long (how many flips) will it take me before I get a head from a fair coin on average?

Answer:
$$\mu_x = (1 - 1/2)/1/2 = 1$$
 flip, $\sigma_x = \sqrt{2}$

• How long will it take me to roll a 6 on average?

Answer:
$$\mu_x = (1 - 1/6)/1/6 = 5$$
 rolls, $sigma_x = \sqrt{30}$

- How long will it take Shaq to make a free throw? Answer: $\mu_x = (1 - 0.3)/0.3 = 2.333$ attempts, $\sigma_x = 2.789$
- How long would it take me to win Powerball? Answer: $\mu_x=(1-1/23e6)/23e6=22e6$ days = 63,013 years, $\sigma_x=22e6$ days

11		_		, .
X	2	Geomet	tric	(p

Name: Geometric Distribution Waiting time of success for Bernoulli trials

Support: x 0,1,2,3 ...

Parameters: $p \in [0,1]$ probability of success

pmf P(X = x|p) $p(1-p)^x$

mean E(X) $\frac{1-\rho}{\rho}$

variance Var(X) $\frac{1-p}{p^2}$

Special Feature: Memorylessness!