Appendix 8

Approximate Expressions for the Dimensionless Aerodynamic Stability and Control Derivatives

 Table A8.1
 Longitudinal aerodynamic stability derivatives

C 11	perturbation	1 . ,.	C 1,		,
SMAII	noviuvnation	aorivativos	votovvoa t	o aircrat	T WHINA AYAC

Derivative	Description	Expression	Comments
X_u Equation (13.16)	Axial force due to velocity	$-2C_D - V_0 \frac{\partial C_D}{\partial V} + \frac{1}{\frac{1}{2}\rho V_0 S} \frac{\partial \tau}{\partial V}$	Drag and thrust effects due to velocity perturbation
X_w Equation (13.27)	Axial force due to "incidence"	$C_L - rac{\partial C_D}{\partial lpha}$	Lift and drag effects due to incidence perturbation
X_q Equation (13.46)	Axial force due to pitch rate	$-\overline{V}_T rac{\partial C_{D_T}}{\partial lpha_T}$	Tailplane drag effect, usually negligible
$X_{\dot{w}}$ Equation (13.68)	Axial force due to downwash lag	$-\overline{V}_T \frac{\partial C_{D_T}}{\partial \alpha_T} \frac{\mathrm{d}\varepsilon}{\mathrm{d}\alpha} \equiv X_q \frac{\mathrm{d}\varepsilon}{\mathrm{d}\alpha}$	Tailplane drag due to downwash lag effect (added mass effect)
Z_u Equation (13.21)	Normal force due to velocity	$-2C_L-V_0rac{\partial C_L}{\partial V}$	Lift effects due to velocity perturbation
Z_w Equation (13.30)	Normal force due to "incidence"	$-C_D - rac{\partial C_L}{\partial lpha}$	Lift and drag effects due to incidence perturbation
Z_q Equation (13.51)	Normal force due to pitch rate	$-\overline{V}_T a_1$	Tailplane lift effect
$Z_{\dot{w}}$ Equation (13.72)	Normal force due to downwash lag	$-\overline{V}_T a_1 \frac{\mathrm{d}\varepsilon}{\mathrm{d}\alpha} = Z_q \frac{\mathrm{d}\varepsilon}{\mathrm{d}\alpha}$	Tailplane lift due to downwash lag effect (added mass effect)
M _u Equation (13.34)	Pitching moment due to velocity	$V_0 \frac{\partial C_m}{\partial V}$	Mach dependent, small at low speed

 Table A8.1 (Continued)

Small perturbation derivatives referred to aircraft wind axes

Derivative	Description	Expression	Comments
M_w Equation (13.39)	Pitching moment due to "incidence"	$\frac{\mathrm{d}C_m}{\mathrm{d}\alpha} = -aK_n$	Pitch stiffness, dependent on static margin
M_q Equation (13.55)	Pitching moment due to pitch rate	$-\overline{V}_T a_1 \frac{l_T}{\overline{\overline{c}}} \equiv Z_q \frac{l_T}{\overline{\overline{c}}}$	Pitch damping, due mainly to tailplane
$M_{\dot{w}}$ Equation (13.76)	Pitching moment due to downwash lag	$-\overline{V}_T a_1 \frac{l_T}{\overline{c}} \frac{\mathrm{d}\varepsilon}{\mathrm{d}\alpha} \equiv M_q \frac{\mathrm{d}\varepsilon}{\mathrm{d}\alpha}$	Pitch damping due to downwash lag effect at tailplane

 Table A8.2
 Lateral aerodynamic stability derivatives

Small perturba	tion derivative	s referred to	aircraft	wind w	axes
----------------	-----------------	---------------	----------	--------	------

	D : ::	7	- ·
Derivative	Description	Expression	Comments
Y_{ν} Equation (13.82)	Side force due to sideslip	$\left(\frac{S_B}{S}y_B - \frac{S_F}{S}a_{1_F}\right)$	Always negative and hence stabilising
L_{ν} Equation (13.92) Equation (13.105) Equation (13.108)	Rolling moment due to sideslip	(i) Wing with dihedral $-\frac{1}{Ss} \int_0^s c_y a_y \Gamma y dy$ (ii) Wing with aft sweep $-\frac{2C_L \tan \Lambda_{1/4}}{Ss} \int_0^s c_y y dy$ (iii) Fin contribution $-a_{1_F} \overline{V}_F \frac{h_F}{l_F}$	Lateral static stability, determined by total dihedral effect. Many contributions most of which are difficult to estimate reliably. Most accessible approximate contributions given.
N_{ν} Equation (13.112)	Yawing moment due to sideslip	(i) Fin contribution $a_{1_F}\overline{V}_F$	Natural weathercock stability, dominated by fin effect.
Y_p Equation (13.117)	Side force due to roll rate	(i) Fin contribution $-\frac{1}{Sb} \int_0^{H_F} a_h c_h h dh$	Fin effect dominates, often negligible.
L_p Equation (13.128)	Rolling moment due to roll rate	(i) Wing contribution $-\frac{1}{2Ss^2} \int_0^s (a_y + C_{D_y}) c_y y^2 dy$	Roll damping, wing effects dominate but fin and tailplane contribute.

Table A8.2 (Continued)

Small perturbation derivatives referred to aircraft wind axes				
Derivative	Description	Expression	Comments	
$\overline{N_p}$	•	(i) Wing contribution		
Equation (13.137)	due to roll rate	$-\frac{1}{2Ss^2}\int_0^s \left(C_{L_y} - \frac{\mathrm{d}C_D}{\mathrm{d}\alpha_y}\right) c_y y^2 \mathrm{d}y$		
Y_r	Side force due	(i) Fin contribution	Many contributions,	
Equation (13.142)	to yaw rate	$\overline{V}_F a_{1_F}$	but often negligible.	
L_r	Rolling moment	(i) Wing contribution		
Equation (13.150) Equation (13.155)	due to yaw rate	$\frac{1}{Ss^2} \int_0^s C_{L_y} c_y y^2 \mathrm{d}y$		
		(ii) Fin contribution		
		$a_{1_F}\overline{V}_F\frac{h_F}{b} \equiv -L_{\nu(fin)}\frac{l_F}{b}$		
N_r	Yawing moment	(i) Wing contribution	Yaw damping, for	
Equation (13.162) Equation (13.167)	on (13.162) due to yaw rate	$-\frac{1}{Ss^2}\int_0^s C_{D_y}c_y y^2 \mathrm{d}y$	large aspect ratio rectangular wing,	
		(ii) Fin contribution	wing contribution is approximately $C_D/6$.	
		$-a_{1_F}\overline{V}_F\frac{l_F}{b} = -\frac{l_F}{b}N_{\nu(fin)}$	upproximately Cpro.	

 Table A8.3
 Longitudinal aerodynamic control derivatives

Derivative	Description	Expression	Comments
X_{η} Equation (13.174)	Axial force due to elevator	$-2\frac{S_T}{S}k_TC_{L_T}a_2$	Usually insignificantly small
Z_{η} Equation (13.178)	Normal force due to elevator	$-\frac{S_T}{S}a_2$	
M_{η} Equation (13.181)	Pitching moment due to elevator	$-\overline{V}_T a_2$	Principal measure of pitch control power

 Table A8.4
 Lateral-directional aerodynamic control derivatives

Small perturbation derivatives referred to aircraft wind axes

Derivative	Description	Expression	Comments
Y_{ξ}	Side force due to aileron		Insignificant for conventional aeroplanes
L_{ξ} Equation (13.188)	Rolling moment due to aileron	$-\frac{1}{Ss}a_{2_A}\int_{y_1}^{y_2}c_{yy}\mathrm{d}y$	Principal measure of roll control power
N_{ξ} Equation (13.193)	Yawing moment due to aileron	$\frac{1}{Ss} \int_{y_1}^{y_2} \left(\frac{\partial C_{D_y}}{\partial \xi} \right) c_y y \mathrm{d}y$	Adverse yaw due to aileron
Y_{ζ} Equation (13.197)	Side force due to rudder	$\frac{S_F}{S}a_{2_R}$	
L_{ζ} Equation (13.200)	Rolling moment due to rudder	$\overline{V}_F rac{h_F}{l_F} a_{2_R}$	Principal measure of yaw control power
N_{ζ} Equation (13.203)	Yawing moment due to rudder	$-\overline{V}_F a_{2_R}$	Adverse roll due to rudder