

Irradiance Importance Sampling

Bachelorarbeit Alisa Jung

Institut für Visualisierung und Datenanalyse, Lehrstuhl für Computergrafik

Goal

- Photorealistic Images
- Improve Path Tracing

Rendering Equation:

$$L_o(x,\omega_o) = L_e(x,\omega_o) + \int_{\mathcal{S}^2} L_i(x,\omega_i) \cdot f_s(\omega_i, x, \omega_o) \cdot \cos(\omega_i) d\sigma(\omega_i)$$

→ Monte-Carlo Integration:

$$\int_{\mathcal{S}^2} L_i(x,\omega_i) \cdot f_s(\omega_i, x, \omega_o) \cdot cos(\omega_i) d\sigma(\omega_i) \approx \frac{1}{N} \sum_{k=1}^N \frac{L_i(x,\omega_k) \cdot f_s(\omega_k, x, \omega_o) \cdot cos(\omega_k)}{p(\omega_k)}$$

$$\int_{\mathcal{S}^2} L_i(x,\omega_i) \cdot f_s(\omega_i, x, \omega_o) \cdot \cos(\omega_i) d\sigma(\omega_i)$$

■ The cosine: $p \propto cos$

$$\int_{\mathcal{S}^2} L_i(x,\omega_i) \cdot f_s(\omega_i, x, \omega_o) \cdot \cos(\omega_i) d\sigma(\omega_i)$$

■ The cosine: $p \propto cos$

lacksquare The BSDF: $\,p \propto f_s$

$$\int_{\mathcal{S}^2} L_i(x,\omega_i) \cdot f_s(\omega_i, x, \omega_o) \cdot \cos(\omega_i) d\sigma(\omega_i)$$

- The cosine: $p \propto cos$
- lacksquare The BSDF: $p \propto f_s$
- Incident Radiance (L_i):
 - Next event estimation (connection to light source)

$$\int_{S^2} L_i(x,\omega_i) \cdot f_s(\omega_i, x, \omega_o) \cdot \cos(\omega_i) d\sigma(\omega_i)$$

- The cosine: $p \propto cos$
- lacksquare The BSDF: $\,p \propto f_s$
- Incident Radiance (L_i):
 - Next event estimation (connection to light source)
 - Caches for incident radiance

Steps

- Preprocessing → Create Caches
- Rendering
 - → Create paths using...
 - Caches
 - BSDF
 - NEE
 - → Combine with Multiple Importance Sampling

Preprocessing: Photon Mapping

- Photon:
 - Position
 - Incident direction
 - Energy

Preprocessing: Photon Mapping

- Photon:
 - Position
 - Incident direction
 - Energy
- Cancel Paths
 - Russian Roulette
 - Energy contribution too small
- k-d tree for fast nearest-neighbour search

Cache Parameterization: Octahedron

Cache Parameterization: Octahedron

- Simple extension to both hemispheres
- Simple conversion direction ⇔ texel
- Texels cover similar solid angles

Preprocessing: Placing Caches

- From Camera rays:
 - One Cache per every 8x8 pixel block
- From Photons:

Place Caches at positions of first n photons

For every cache: Start with empty environment map (right)

For every cache:

For closest k photons: (Example: k=4)

- For closest *k* photons:
 - Direction of photon

- For closest k photons:
 - Direction of photon → texel coordinate

- For closest k photons:
 - Direction of photon → texel coordinate
 - Add energy of photon to texel

For every cache:

- For closest k photons:
 - Direction of photon → texel coordinate
 - Add energy of photon to texel

Resulting Environment Map:

- For closest k photons:
 - Direction of photon → texel coordinate
 - Add energy of photon to texel
- Bilinear + Gaussian Filter

For every cache:

- For closest k photons:
 - Direction of photon → texel coordinate
 - Add energy of photon to texel
- Bilinear + Gaussian Filter

Result:

Map filled with relative energy per incident direction

Preprocessing: Relative Energy → PDF

- Normalize sum of all texels to 1
- Monte Carlo Integration → Set all 0 texels to small value
- Normalize again

Result:

Map filled with PDF for incident radiance, measured over texel space

- Problem: Texels cover different amount of solid angle
 - More solid angle near the center
 - Less solid angle near the edges

Wrong: convert with Factor $\frac{number\ of\ texels}{2\pi}$

Correct conversion to solid angle

Difference

25

Final Cache

- Octahedron map with PDF over solid angle
- Octahedron map with CDF for sampling
- k-d tree for faster lookup

Rendering

Sample paths using...

- Caches
- BSDF
- NEE

- → Combine with Multiple Importance Sampling
- → No Cache available? → switch to BSDF sampling

256 samples per pixel1 Mio. photons20,000 caches2000 photons per cache16x16 texels per cache42MB memory consumption

128 samples per pixel
800k photons
20k caches
1k photons per cache
16x16 texels per cache
42MB memory consumption

4096 samples per pixel
1.5 Mio. photons
30k caches
2k photons per cache
16x16 texels per cache
Xxx memory consumption
3300 triangles

NEE + BSDF

64 samples per pixel1 Mio. photons20k caches2k photons per cache16x16 cache resolution

Caches + BSDF

Caches + NEE

Different Cache Configurations: #photons

few photons in scene (~ 10 000)

Render Times: Glass Sphere

Render Times: Glass Egg

Equal Time Comparison

NEE + Caches

NEE + Caches 128spp 8.4 min

NEE + BSDF 512spp 8.2 min

Equal Time Comparison

NEE + BSDF

NEE + Caches 128spp 8.4 min

NEE + BSDF 512spp 8.2 min

Conclusion

- Equally good image in similar time
- Better image with same sample-per-pixel count

Conclusion

On-line Learning of Parametric Mixture Models for Light Transport Simulation

Jiří Vorba¹*

Ondřej Karlík1*

Martin Šik1*

Tobias Ritschel^{2†}

Jaroslav Křivánek^{1‡}

¹Charles University in Prague

²MPI Informatik, Saarbrücken

Figure 2: The training phase preceding the rendering phase.

Source: "On-line Learning of Parametric Mixture Models for Light Transport Simulation" (previous slide) http://cgg.mff.cuni.cz/~jaroslav/papers/2014-onlineis/

https://github.com/Baconkeks/Irradiance-Importance-Sampling