

Physics-Constrained Deep Learning for Climate Downscaling

Paula Harder, Alex Hernandez-Garcia, Venkatesh Ramesh, Qidong Yang, Prasanna Sattigeri, Campbell Watson, Daniela Szwarcman, David Rolnick

Goal

Increasing climate data's resolution

Low-resolution (LR) input

Goal

Increasing climate data's resolution

Low-resolution (LR) input

High-resolution (HR) target

Goal

Increasing climate data's resolution ...

while obeying laws of physics

Terminology

Machine Learning
super-resolution
upsampling/downsampling
standard images

VS

Climate Science
statistical downscaling
downscaling/upscaling
physical quantities

Motivation

High-resolution climate data - useful, but hard to obtain

Useful

Motivate action to combat climate change

Inform climate adaption locally

Impact on agriculture, transportation etc.

Hard to obtain

Computationally intensive

Long runtimes

High energy consumption

Observation not available in some areas

Two main data sets

ERA5

Synthetic

WRF

Two different simulations

Data

Climate data

ERA5 reanalysis data

Total column water Global, hourly ~25 km resolution

Data

Climate data

ERA5 reanalysis data

Total column water Global, hourly ~25 km resolution ML ready data set

Pytorch data set

LR, HR pairs
HR is 128x128 pixels
LR is created by average
pooling
Different downscaling
factors (2, 4, 8, 16)
40k train/10k val/10k test

Data - WRF

- Operational weather forecast
- Lake George in New York
- Hourly
- 2017-2020
- LR not created by downsampling HR, but different simulation!
- HR: 3 km resolution, LR 9 km resolution

Methodology

Physics constraints

Predicted quantity is water mass

Want to enforce conservation of mass between low-res input and super-res prediction

Physics constraints

Want to enforce mass conservation between low-res input and super-res prediction

$$\frac{1}{n} \sum_{i=1}^{n} y_i = x$$

Super-res water mass

Soft constraining

First idea: Add regularization term to the loss function

Loss =
$$(1 - \alpha) \cdot MSE + \alpha \cdot Constraint violation$$

Constraint violation = MSE
$$\left(\frac{1}{n}\sum_{i=1}^{n}y_{i}, x\right)$$

Problems:

- No guarantee
- Need to optimize alpha
- Can have accuracy-constraints trade-off

Hard constraining

Want to enforce mass conservation between low-res input and super-res prediction

$$\frac{1}{n}\sum_{i=1}^{n}y_i = x.$$

Hard constraining

Want to enforce mass conservation between low-res input and super-res prediction

$$\frac{1}{n}\sum_{i=1}^{n}y_i = x.$$

Renormalizing layer - Additive constraint layer

The additive constraint layer (AddCL) adds a term to the intermediate output and with that guarantees conservation of mass

Renormalizing layer - Multiplicative constraint layer

The multiplicative constraint layer (MultCL) multiplies a factor to the intermediate output and with that guarantees conservation of mass

Renormalizing layer - Softmax constraint layer

The softmax constraint layer (SmCL) applies a scaled softmax and guarantees conservation of mass and positivity

Enforcing constraints - architecture

Results - CNN water content 4x

Results - Spatial-temporal super-resolution

Results - Spatial-temporal super-resolution

Model	unconstrained	Hard-constr ained (SmCL)
RMSE	0.673	0.514
MAE	0.352	0.276
SSIM	99.40	99.62

Results different upsampling factors

Results different upsampling factors

Results - different upsampling factors

Factor	unconstrai ned	Hard-cons trained (SmCL)
2 x	0.251	0.215
4 x	0.657	0.582
8 x	1.358	1.268
16 x	2.450	2.368

Results - WRF data

Summary

Applying a hard constraint layer (e.g. SmCL) to deep learning downscaling architectures (CNNs, GANs, RNNs)

enforces physical laws in neural networks

increases predictive accuracy for downscaling

Ongoing & future work

Explore different setups, data sets & constraints

- Include elevation
- Constraints between variables

Ongoing & future work

Explore different setups, data sets & constraints

- Include elevation
- Constraints between variables

Apply to different architectures:
E.g. Fourier Neural
Operator

Ongoing & future work

Explore different setups, data sets & constraints

- Include elevation
- Constraints between variables

Apply to different architectures: E.g. Fourier Neural Operator

Apply outside of downscaling: E.g. for climate emulation

Thanks for your attention!

Preprint available

