Maschinenzahlen

4.4 Maschinenzahlen

Definition 4.1. Es sei $b \in \mathbb{N}_{\geq 2}$. Für $\mathcal{E} \in \mathbb{Z}$ und $\sigma \in \{\pm 1\}$ ist eine Zahl $x \in \mathbb{R}$ der Form

$$x = \sigma \cdot \left(\sum_{i=0}^{m-1} z_i \cdot b^{-i}\right) \cdot b^{\mathcal{E}}$$

mit $z_i \in \{0, \dots, b-1\}$ und $z_0 \neq 0$ eine m-stellige b-adische normalisierte Gleitkommazahl mit Mantisse $\sum_{i=0}^{m-1} z_i b^{-i}$ und Exponent \mathcal{E} .

Beispiel. b = 10, m = 4

$$x = 3,141 = (+1)(3 \cdot 10^{0} + 1 \cdot 10^{-1} + 4 \cdot 10^{-2} + 1 \cdot 10^{-3}) \cdot 10^{0}$$

$$x = -87,3 = (-1)(8 \cdot 10^{0} + 7 \cdot 10^{-1} + 3 \cdot 10^{-2}) \cdot 10^{1}$$

 $x=\frac{1}{3}$ besitzt für $b\in\{2,10\}$ und beliebiges m keine Darstellung als m-stellige normalisierte Gleitkommazahl.

Definition 4.2. Für $b \in \mathbb{N}_{\geq 2}$, $m \in \mathbb{N}_{\geq 1}$ bildet die Menge der b-adischen m-stelligen normalisierten Gleitkommazahlen mit Exponenten $\mathcal{E} \in \{\mathcal{E}_{min}, \dots, \mathcal{E}_{max}\}$ zuzüglich der Zahl 0 den Maschinenzahlbereich $\mathcal{F}(b, m, \mathcal{E}_{min}, \mathcal{E}_{max})$

Beispiel. IEEE-Standard 754

- b = 2
- m = 53
- $\mathcal{E} \in \{-1022, -1021, \dots, 1023\}$
- Exponentenwerte $E + 1023 \in \{0, 2047\}$ reserviert für ± 0 und $\pm \infty$.

4.5 Maschinengenauigkeit

Es sei $\mathcal{F} = F(b, m, \mathcal{E}_{min}, \mathcal{E}_{max})$ ein Maschinenzahlbereich. Eine Abbildung $rd : \mathbb{R} \to \mathcal{F}$ heißt Rundung zu F, wenn für alle $x \in \mathbb{R}$ gilt: $|x - rd(x)| = \min_{a \in \mathcal{F}} |x - a|$.

Beispiel. • Kaufmännische Rundung

• IEEE 754: Runde im Zweifel so, dass letzte Stelle gerade wird.

Definition 4.3. Es sei \tilde{x} eine Näherung von $x \in \mathbb{R}$.

- (i) $|x \tilde{x}|$ wird absoluter Fehler genannt.
- (ii) $\frac{|x-\tilde{x}|}{x}$ wird relativer Fehler genannt.

Definition 4.4. Es sei \mathcal{F} Maschinenzahlbereich mit Rundung rd. Die Maschinengenauigkeit von \mathcal{F} ist

$$eps(F) := \sup \left\{ \left| \frac{x - rd(x)}{x} \right| \mid x \in \mathbb{R} \text{ und } |x| \in \text{range}(\mathcal{F}) \right\},$$

mit range $(\mathcal{F} := [\mathcal{F}_{min}, \mathcal{F}_{max}])$ und $\mathcal{F}_{min}(\mathcal{F}_{max})$ kleinste (größte) darstellbare positive Zahl in \mathcal{F}

Maschinenzahlen

Satz 4.5. Für jeden Maschinenzahlbereich $\mathcal{F}(b, m, \mathcal{E}_{min}, \mathcal{E}_{max})$ mit $\mathcal{E}_{min} < \mathcal{E}_{max}$ gilt:

$$eps(\mathcal{F}) = \frac{1}{1 + 2b^{m-1}}$$

Definition 4.6. Es sei \mathcal{F} Maschinenzahlbereich und $s \in \mathbb{N}$. Dann hat $f \in \mathcal{F}$ (mindestens) s sogmofolamte Stellen in der b-adischen Gleitkommadarstellung, falls $f \neq 0$ und für jede Rundung rd und jede Zahl $x \in \mathbb{R}$ mit rd(x) = f gilt:

$$|x - f| \le \frac{1}{2} \cdot b^{\lfloor \log_b |f| \rfloor + 1 - s}$$

4.6 Maschinenbauarithmetik

Es sei \mathcal{F} ein Maschinenzahlbereich und $\circ \in \{+, -, \cdot, /\}$ sei eine Operation. Problem: Für $x, y \in \mathcal{F}$ gilt im Allgemeinen nicht $x \circ y \in \mathcal{F}$.

Pragmatische Lösung: Ersatzoperation $\odot \in \{\oplus, \ominus, \odot, \oslash\}$ mit $x \odot y = rd(x \circ y)$ für Rundung rd zu \mathcal{F} .

Beispiel. Es sei $\mathcal{F} = (10, 2, -5, 5), x = 4, 5 \cdot 10^1 = 45 \text{ und } y = 1, 1 - 10^0 = 1, 1$

$$x \oplus y = rd(x+y) = rd(46,1) = rd(4,61 \cdot 10^{1}) = 4,6 \cdot 10^{1}$$

Bemerkung. • Zur Berechnung von $x \odot y$ muss man $x \circ y$ nicht berechnen.

- Grundrechenarten für natürliche Zahlen reichen.
- Ist $|x \circ y| \in \text{range}(\mathcal{F})$, so gilt für den relativen Fehler

$$\left| \frac{x \circ y - x \odot y}{x \circ y} \right| = \left| \frac{x \circ y - rd(x \circ y)}{x \circ y} \right| \le eps(\mathcal{F})$$

• Kommutativgesetz gilt für ⊕, ⊙, nicht jedoch Assoziativ- und Distributivgesetz.