Math 521: Assignment 2 (due 5 PM, February 21)

- 1. Find an example of two sequences (a_n) and (b_n) such that (a_n) and (a_nb_n) both converge, but (b_n) does not.
- 2. For each of the following statements about a sequence (a_n) and a real number a, either prove the result or find a counterexample:
 - (a) If $\lim a_n = a$ then $\lim |a_n| = |a|$.
 - (b) If $\lim |a_n| = 0$ then $\lim a_n = 0$.
 - (c) If $\lim |a_n| = |a|$ then $\lim a_n = a$.
- 3. Prove that if $\lim a_n = 0$ and $|b_n b| \le a_n$ for all $n \in \mathbb{N}$, then $\lim b_n = b$.
- 4. Prove that if $\lim a_n = \infty$ and (b_n) is bounded below, then $\lim (a_n + b_n) = \infty$.
- 5. Let $x_1 = 2$ and define

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right). {1}$$

- (a) Show that x_n^2 is always greater than or equal to 2, and use this to show that x_n is a non-increasing sequence. Use this to show that (x_n) converges, and deduce that $\lim x_n = \sqrt{2}$.
- (b) Each x_n is a rational number, and thus Eq. (1) provides a method to generate accurate rational approximations to $\sqrt{2}$, similar to question 2 about the Pell numbers P_n on Assignment 1. Show that $x_5 = (P_{15} + P_{16})/P_{16}$.
- (c) **Optional.** Is there a general relationship between x_n and the Pell numbers?
- 6. Consider the sequence (x_n) where $x_1 = \frac{1}{4}$ and

$$x_{n+1} = rx_n(1 - x_n) (2)$$

for $n \in \mathbb{N}$, where r > 0.

- (a) For the case when $r = \frac{3}{4}$, prove that $\lim x_n = 0$.
- (b) Consider the case when $r = \frac{5}{2}$, and introduce the sequence (z_n) such that $x_n = \frac{3}{5} + z_n$. Derive a recurrence relation giving z_{n+1} in terms of z_n . Prove that if $z_n \in (-\frac{1}{10}, \frac{1}{10})$ then

$$|z_{n+1}| \le \frac{3}{4}|z_n|. \tag{3}$$

- (c) Using the result from part (b), or otherwise, prove that (x_n) converges to $\frac{3}{5}$.
- (d) **Optional.** Does (x_n) converge when r = 3.82?
- (e) **Optional.** Does (x_n) converge when r = 3.83? Suppose the sequence (y_n) satisfies $y_n = x_{3n}$. Does (y_n) converge?

7. (a) Suppose that (x_n) is a convergent sequence. Prove that the sequence (y_n) given by the averages,

$$y_n = \frac{1}{n} \sum_{i=1}^n x_i \tag{4}$$

also converges to the same limit.

- (b) Find an example where (y_n) converges but (x_n) does not.
- (c) **Optional.** Suppose (z_n) diverges to ∞ and define $x_n = (-1)^n z_n$ for all $n \in \mathbb{N}$. Is it possible to find an example where (y_n) converges?
- 8. Let (a_n) be a sequence such that for $n \in \mathbb{N}$,

$$a_n = \begin{cases} 1 & \text{for } n \text{ odd,} \\ -1 - 2^{-n} & \text{for } n \text{ even.} \end{cases}$$
 (5)

Calculate the monotonic sequences

$$u_N = \inf\{a_n : n > N\}, \qquad v_N = \sup\{a_n : n > N\}$$
 (6)

for each $N \in \mathbb{N}$. Determine $\liminf a_n$ and $\limsup a_n$.

- 9. Define the function $f : \mathbb{N} \to \mathbb{N}$ so that f(n) equals the largest power of 2 that divides n. Table 1 shows examples of evaluating f. Let (s_n) be a sequence.
 - (a) Find the set of subsequential limits when $s_n = \frac{1}{f(n)}$.
 - (b) Find the set of subsequential limits when $s_n = f(3n)$.
 - (c) **Optional.** Find the set of subsequential limits when $s_n = f(n+1) + \frac{1}{f(n)}$.
- 10. Let (a_n) be a sequence such that $\liminf |a_n| = 0$. Prove that there is a subsequence (a_{n_k}) such that $\sum_{k=1}^{\infty} a_{n_k}$ converges.
- 11. Determine the convergence or divergence of each of the following series defined for $n \in \mathbb{N}$:

(a)
$$\sum_{n} \frac{1}{2^n + n^2}$$
, (b) $\sum_{n} \frac{\cos n}{n^2}$, (c) $\sum_{n} \frac{1}{\sqrt{n!}}$,

(d)
$$\sum_{n} \exp\left(-n + 2\cos\frac{\pi n}{2}\right)$$
, (e) $\sum_{n} \frac{n!}{n^n}$.

	n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
f	(n)	1	2	1	4	1	2	1	8	1	2	1	4	1	2	1	16

Table 1: The first sixteen values of the function f defined in question 9.

- 12. **Optional iterated limits.**¹ Let a_{mn} be a doubly-indexed array where $m, n \in \mathbb{N}$. What should $\lim_{m,n\to\infty} a_{mn}$ represent?
 - (a) Let $a_{mn} = m/(m+n)$ and compute the iterated limits

$$\lim_{n\to\infty} \left(\lim_{m\to\infty} a_{mn} \right), \qquad \lim_{m\to\infty} \left(\lim_{n\to\infty} a_{mn} \right). \tag{7}$$

Define $\lim_{m,n\to\infty} a_{mn} = a$ to mean that for all $\epsilon > 0$, there exists N such that for all m, n > N, $|a_{mn} - a| < \epsilon$.

(b) Consider the two different definitions,

$$a_{mn} = \frac{1}{m+n}, \qquad a_{mn} = \frac{mn}{m^2 + n^2}.$$
 (8)

For each definition, determine whether $\lim_{m,n} a_{mn}$ exists, and whether the iterated limits in Eq. (7) exist. How do these three values compare?

- (c) Find an example where $\lim_{m,n} a_{mn}$ exists but neither iterated limit can be computed.
- (d) Assume $\lim_{m,n} a_{mn} = a$, and assume that for each fixed $m \in \mathbb{N}$, $\lim_{n\to\infty} (a_{mn}) \to b_m$. Show $\lim_{m\to\infty} b_m = a$.
- (e) Prove that if $\lim_{m,n} a_{mn}$ exists and the iterated limits both exist, then all three limits must be equal.

¹This is adapted from *Understanding Analysis* by S. Abbot, exercise 2.3.13.