Quantitative Relational Synthesis With Semantic Preference Objectives

Presented By Sumit Lahiri¹

¹PRAISE Group, CSE Dept. IIT Kanpur

M.Tech Defense

A property that relates multiple executions of (the same or different) program(s) is referred to as a *relational property*.

A property that relates multiple executions of (the same or different) program(s) is referred to as a *relational property*.

A property that relates multiple executions of (the same or different) program(s) is referred to as a *relational property*.

A property that relates multiple executions of (the same or different) program(s) is referred to as a *relational property*.

When both programs \mathcal{P}_1 and \mathcal{P}_2 are the same programs, i.e \mathcal{P} , relational properties become hyper-properties!.

What is program sketching?

A partial program (referred to as a *sketch*), which leaves out certain $\lfloor holes \rfloor$ for the synthesizer to fill such that the completed program satisfies the required specification.

What is program sketching?

A partial program (referred to as a *sketch*), which leaves out certain $\lfloor holes \rfloor$ for the synthesizer to fill such that the completed program satisfies the required specification.

Specification as a Hoare Triple,

What is program sketching?

A partial program (referred to as a *sketch*), which leaves out certain $\lfloor holes \rfloor$ for the synthesizer to fill such that the completed program satisfies the required specification.

Specification as a **Hoare Triple**,


```
1 int P(int n){
2     // PRE:     assume(n > 1);
3     int i = 0, x = 0;
4     while(i < n){
5         i = i + 1;
6         x = .
7     }
8     // POST:     assert(x > 2 * n);
9     return x;
10 }
```

Lifting Program Sketching to Relational Sketching

Given partial programs $\mathcal{P}_1^{[\cdot]}$ and $\mathcal{P}_2^{[\cdot]}$, find completion \mathcal{E} , where $\mathcal{E}.H$ and $\mathcal{E}.G$ respective completions of $\mathcal{P}_1^{[\cdot]}$ and $\mathcal{P}_2^{[\cdot]}$ that satisfy a specification.

Lifting Program Sketching to Relational Sketching

Given partial programs $\mathcal{P}_1^{[\cdot]}$ and $\mathcal{P}_2^{[\cdot]}$, find completion \mathcal{E} , where $\mathcal{E}.H$ and $\mathcal{E}.G$ respective completions of $\mathcal{P}_1^{[\cdot]}$ and $\mathcal{P}_2^{[\cdot]}$ that satisfy a specification.

Relational Synthesis

$$\exists \mathcal{E}. \quad \frac{\{\mathsf{Pre}(\vec{x_1}, \vec{x_2})\}}{\{\mathsf{Pre}(\vec{x_1}, \vec{x_2})\}} \quad \mathcal{P}_1^{[\mathcal{E}.H]}, \mathcal{P}_2^{[\mathcal{E}.G]} \quad \{\mathsf{Post}(y_1, y_2)\}$$

Verification for Program Equivalence.

Program equivalence requires that, any two executions of a pair of programs, \mathcal{P}_1 and \mathcal{P}_2 on same the same input \vec{x} , must yield the same outputs.

Verification for Program Equivalence.

Program equivalence requires that, any two executions of a pair of programs, \mathcal{P}_1 and \mathcal{P}_2 on same the same input \vec{x} , must yield the same outputs.

A Verification Problem

$$\forall \vec{x}. \ \mathcal{P}_1(\vec{x}) = \mathcal{P}_2(\vec{x})$$

Given a reference program \mathcal{P}_1 and a partial program \mathcal{P}_2 that has a hole $\boxed{\cdot}$, we are interested in *completing* the partial program by synthesizing an expression to fill the hole such that the two programs are rendered semantically equivalent.

Given a reference program \mathcal{P}_1 and a partial program \mathcal{P}_2 that has a hole $\boxed{\cdot}$, we are interested in *completing* the partial program by synthesizing an expression to fill the hole such that the two programs are rendered semantically equivalent.

Formal Definition

$$\exists \mathcal{E} \in \mathcal{L}(\mathcal{G}). \ \forall \vec{x}. \ \mathcal{P}_1(\vec{x}) = \mathcal{P}_2^{[\mathcal{E}]}(\vec{x})$$

```
1 int P<sub>1</sub>(int n){
2    assume(n > 1);
3    int i = 0, ans = 0;
4    while(i < (n - 1)){
5        i = i + 1;
6        ans = ans + (5 * i) + 1;
7    }
8    return ans + 1;
9 }</pre>
```

(a) Program 1

(b) Program 2 (with hole ·)

```
1 int \mathcal{P}_2^{[.]} (int n){
                                             assume(n > 1);
1 int \mathcal{P}_1 (int n) {
                                            int x = 0, y = 0, z = n;
       assume(n > 1);
                                                while(z \neq 0){
   int i = 0, ans = 0;
                                                 z = z - 1;
                                                x = :;
y = y + 1;
    while(i < (n - 1)){
          i = i + 1:
          ans = ans + (5 * i) + 1;
                                                return x + y;
      return ans + 1;
                                         10 }
9 }
```

(a) Program 1

(b) Program 2 (with hole ·)

Post condition for sketching.

$$\exists \mathcal{E} \in \mathcal{L}(\mathcal{G}). \ \forall \vec{x}. \ \mathcal{P}_1(\vec{x}) = \mathcal{P}_2^{[\mathcal{E}]}(\vec{x})$$

```
1 int P<sub>1</sub>(int n){
2    assume(n > 1);
3    int i = 0, ans = 0;
4    while(i < (n - 1)){
5        i = i + 1;
6        ans = ans + (5 * i) + 1;
7    }
8    return ans + 1;
9 }</pre>
```

```
1 int \mathcal{P}_{2}^{[.]}(int n){
2    assume(n > 1);
3    int x = 0, y = 0, z = n;
4    while(z \neq 0){
5         z = z - 1;
6         x = \bigcup;
7         y = y + 1;
8    }
9    return x + y;
10 }
```

(a) Program 1

(b) Program 2 (with hole)

Post condition for sketching.

$$\exists \mathcal{E} \in \mathcal{L}(\mathcal{G}). \ \forall \vec{x}. \ \mathcal{P}_1(\vec{x}) = \mathcal{P}_2^{[\mathcal{E}]}(\vec{x})$$
$$assert(ans + 1 = x + y)$$


```
1 int P<sub>1</sub>(int n){
2    assume(n > 1);
3    int i = 0, ans = 0;
4    while(i < (n - 1)){
5         i = i + 1;
6         ans = ans + (5 * i) + 1;
7    }
8    return ans + 1;
9 }</pre>
```

(a) Program 1

```
1 int \mathcal{P}_{2}^{[.]} (int n){
2    assume(n > 1);
3    int x = 0, y = 0, z = n;
4    while(z \neq 0){
5         z = z - 1;
6         x = \begin{bmatrix} x + 6 \cdot y - n \end{bmatrix};
7         y = y + 1;
8    }
9    return x + y;
10 }
```

(b) Program 2 (with hole \(\cdot \)

Strict Equivalence

Program equivalence posed as a relational property.

Strict Equivalence

Program equivalence posed as a relational property.

Relational Synthesis for Program Equivalence

$$\exists \mathcal{E}. \ \{\vec{x_1} = \vec{x_2}\} \quad \mathcal{P}_1^{[\mathcal{E}.H]}, \mathcal{P}_2^{[\mathcal{E}.G]} \quad \{\mathcal{P}_1^{[\mathcal{E}.H]}(\vec{x_1}) = \mathcal{P}_2^{[\mathcal{E}.G]}(\vec{x_2})\}$$

Strict Non-Interference

Strict non-interference requires that program executions with the same public inputs $\vec{x_1} = \vec{x_2}$, irrespective of the secret inputs s_1 and s_2 , must have identical responses; i.e., the program does not reveal any information about the secret input.

$$\exists \mathcal{E}. \ \{\vec{x_1} = \vec{x_2}\} \ \mathcal{P}^{[\mathcal{E}]} \ \ \{\mathcal{P}^{[\mathcal{E}]}(s_1, \vec{x_1}) = \mathcal{P}^{[\mathcal{E}]}(s_2, \vec{x_2})\}$$

Weaker Versions

Weak Equivalence

$$\exists \mathcal{E}. \ \{\vec{x_1} = \vec{x_2}\} \quad \mathcal{P}_1^{[\mathcal{E}.H]}, \mathcal{P}_2^{[\mathcal{E}.G]} \ \{\mid \mathcal{P}_1^{[\mathcal{E}.H]}(\vec{x_1}) - \mathcal{P}_2^{[\mathcal{E}.G]}(\vec{x_2}) \mid \leq c\}$$

Weak Non-Interference

$$\exists \mathcal{E}. \ \{\vec{x_1} = \vec{x_2}\} \ \mathcal{P}^{[\mathcal{E}]} \ \{||\mathcal{P}^{[\mathcal{E}]}(s_1, \vec{x_1}) - \mathcal{P}^{[\mathcal{E}]}(s_2, \vec{x_2})|| \le c\}$$

Robustness

Robustness requires that small changes in the inputs must not lead to large difference in the responses of the program. In this case, if the inputs are within a distance d_1 , then the desired completion must not change the response of the program by more than a distance that is defined by a function over program inputs $\vec{x_1}$ and $\vec{x_2}$.

$$\exists \mathcal{E}. \ \{||\vec{x_1} - \vec{x_2}|| \le d_1\} \ \mathcal{P}^{[\mathcal{E}]} \ \ \{||\mathcal{P}^{[\mathcal{E}]}(\vec{x_1}) - \mathcal{P}^{[\mathcal{E}]}(\vec{x_2})|| \le f(\vec{x_1}, \vec{x_2})\}$$

Group Fairness

Group Fairness requires that for two individuals, one from a majority population $(s_1=1)$ and another from the minority population $(s_2=0)$, the decision of the program on a favorable decision (like hiring on a job) must not be disadvantageous to the individual from the minority population. That is, the program must not use the *sensitive attribute* (s) to be unfair to the minority population. The response is not necessarily Boolean; it may be a number that indicates the *suitability* of the candidate for the position (higher is better).

$$\exists \mathcal{E}. \{s_1 \leq s_2 \land \vec{x_2} \sqsubseteq \vec{x_1}\} \ \mathcal{P}^{[\mathcal{E}]} \ \{\mathcal{P}^{[\mathcal{E}]}(\vec{x_2}, s_2) \leq \mathcal{P}^{[\mathcal{E}]}(\vec{x_1}, s_1)\}$$

Monotonicity

Monotonicity is a hyper-property that requires that for any two executions of the program, if the inputs are ordered, so must be the outputs. The completion would then need to satisfy the following:

$$\exists \mathcal{E}. \ \{\vec{x_1} \sqsubseteq \vec{x_2}\} \ \mathcal{P}^{[\mathcal{E}]} \ \ \{\mathcal{P}^{[\mathcal{E}]}(\vec{x_1}) \sqsubseteq \mathcal{P}^{[\mathcal{E}]}(\vec{x_2})\}$$

Relational property with (semantic) quantitative objectives.

All Gammas!

Monotonicity, Robustness: A preference on a completion could be the one that minimizes the distance between any two responses of the program.

$$\Gamma(\mathcal{P}^{[\mathcal{E}]}(\vec{x_1}), \mathcal{P}^{[\mathcal{E}]}(\vec{x_2})) \stackrel{\Delta}{=} ||\mathcal{P}^{[\mathcal{E}]}(\vec{x_1}) - \mathcal{P}^{[\mathcal{E}]}(\vec{x_2})||$$

Weak Non-Interference, Weak Equivalence: A preference on a completion could be the one that minimizes the distance between any two responses of the program.

$$\Gamma(\mathcal{P}^{[\mathcal{E}]}(\vec{x_1}), \mathcal{P}^{[\mathcal{E}]}(\vec{x_2})) \stackrel{\Delta}{=} ||\mathcal{P}^{[\mathcal{E}]}(\vec{x_1}) - \mathcal{P}^{[\mathcal{E}]}(\vec{x_2})||$$

Group Fairness: One may design many preference metrics over completions. One metric could be to prefer completions where the deviation in responses between candidates of two populations is small for similar candidates.

$$\Gamma(\mathcal{P}^{[\mathcal{E}]}(\vec{x_1}, s_1), \mathcal{P}^{[\mathcal{E}]}(\vec{x_2}, s_2)) \stackrel{\triangle}{=} \text{if } (s_1 < s_2 \land \vec{x_1} \sim \vec{x_2})$$

then $||\mathcal{P}^{[\mathcal{E}]}(\vec{x_1}, y_1) - \mathcal{P}^{[\mathcal{E}]}(\vec{x_2}, y_2)||$ else 0

Monotonicity Example

```
1 int \mathcal{P}^{[.]} (int a, int b){
2 assume((0 < a) && (a < b));
3 while (a < b) {
4 c = c + \boxed{\cdot};
5 a = a + 1;
6 }
7 return c;
8 }
```

Figure: Program Sketch for Monotonicity

Monotonicity Example

```
1 int \widehat{\mathcal{P}}^{[\cdot]} (int a_1, int b_1, int a_2, int b_2) {
        assume((0 < a_1) && (a_1 < b_1));
 2
        assume((0 < a_2) && (a_2 < b_2));
        int c_1 = 0, c_2 = 0;
        while (a_1 < b_1) \mid (a_2 < b_2) ) {
 5
              if (a_1 < b_1) }
6
                  c_1 = c_1 + [\cdot];
 7
                   a_1 = a_1 + \overline{1};
 8
              if (a_2 < b_2) ) {
10
                 c_2 = c_2 + [\cdot];
11
                   a_1 = a_1 + \overline{1};
12
13
14
        return c_1, c_2;
15
16 }
```

Figure: Product program for Monotonicity from Fig. 3.

Run Through: Monotonicity

Run Through: Monotonicity

Run Through: Monotonicity

Tool Architecture

Experiments

 $\label{thm:mark-sources} \mbox{Machine configuration, Benchmark Sources, Domain-specific Language}.$

Instances without quantitative objectives.

Bench	Property	Time(s)
b26	Strict Equivalence	4
b10	Strict Equivalence	3
b18	Strict Equivalence	2
b16	Strict Equivalence	1
b21	Strict Equivalence	3
b27	Strict Equivalence	4
b04	Strict Equivalence	3
b34	Strict Equivalence	10
b05	Strict Equivalence	7
nonintf01	Strict Non-Interference	7
nonintf02	Strict Non-Interference	8
nonintf05	Strict Non-Interference	6

Instances with quantitative objectives

Bench	Property	Time(s)	Best?
mono01	Monotonicity	329	✓
mono02	Monotonicity	311	✓
mono02	Monotonicity	310	✓
weak01	Weak Equivalence	210	✓
weak02	Weak Equivalence	198	✓
weak03	Weak Equivalence	128	✓
weak04	Weak Equivalence	168	V
robust01	Robustness	95	✓
robust02	Robustness	102	✓
fair01	Group Fairness	82	✓
nonintf03	Weak Non-Interference	70	✓
nonintf04	Weak Non-Interference	75	✓

Conclusion & Future Directions

Thank You!