

A New Image Quality Metric for Image Auto-Denoising

K. Xiangfei, L. Kuan and Y. Qingxion, "A New Image Quality Metric for Image Auto-Denoising" ICCV, 2013, pp. 2888-2895.

DongYeon Kim
Department of Multimedia Engineering
Dongguk University

Contents

Introduction

Related Works

Proposed Metric

- Experimental Results
- Conclusion

Image Denoising

Image Degradation & Restore Model

Image Denoising

- > Purpose: recovering the original image signal as much as possible from noise-corrupted version
- ightharpoonup g(x,y): noise-corrupted image, Filter: denoising algorithm $f^{(x,y)}$: denoised image, e(): Image Quality Assessment (IQA) metrics
- ➤ In this paper, focus on IQA metrics

Motivation

- Typical image quality assessment (IQA) metrics cannot be used
 - ➤ Mean squared error (MSE)
 - ➤ Peak signal to noise ratio (PSNR)
- No-reference IQA metrics are emerging
 - > Existing metrics are computationally expensive
 - > Require different mean opinion scores collected from humans

proposed metric

- The authors propose to use method noise image (MNI)
 - > Only contains a noise
 - > Can make MNI by calculating the difference between noisy image and denoised image.
 - ➤ Can get useful information

Denoised image

Method noise image(MNI)

Goal of proposed metric

- Maximize the structure similarity between noisy image & MNI
 - > Maximize the noise reduction
 - > Homogeneous region

Homogeneous region

- Maximize the structure similarity between noisy image & denoised image
 - Maximize the structure preservation
 - ➤ Highly-structured region

Highly-structured region

A value that can consider two measurements is used as the IQR method.

- IQA metrics (cont'd)
 - Category of IQA metrics

- > The IQA metrics are categorized based on the existence of reference image
- ➤ Proposed metric is based on SSIM
- > The performance of proposed metric is compared with the performance of Q-metric

Full-reference IQA metrics

- Compare the processed image with the original(reference) image
- Mean Squared Error (MSE)

 $\triangleright y$: noise-free image, y: denoised image

Peak Signal Noise Ratio (PSNR)

$$\geq e = 10 \log_{10} \frac{MAX_I^2}{MSE}$$

 $\rightarrow MAX_I$: maximum value of pixel

- Not correlated well with the visual perception of human vision system (HVS)
 - > Do not consider structural or spatial information
 - ➤ Visual evaluation may differ from the result of equation

Full-reference IQA metrics (cont'd)

- Structure Similarity Index Measure (SSIM)
 - > Separate the task of similarity measurement into luminance, contrast, structure
 - > Assume that HVS is highly adapted for structures and less sensitive to the variance of the luminance and contrast
 - > The proposed metric also exploits image structure term in SSIM for image quality assessment

Components of Structure Similarity Index Measure (SSIM)

- Step 1 : calculate luminance of input image x, y
- Step 2 : calculate contrast of input image x, y
- Step 3 : define luminance & contrast comparison
- Step 4 : define structure comparison
- Step 5 : combination three terms

Full-reference IQA metrics (cont'd)

- Definition of Structure Similarity Index Measure (SSIM)
 - ➤ Step 1 : calculate luminance
 - ✓ The luminance is estimated as the mean intensity

$$\checkmark \mu_{x} = \frac{1}{N} \sum_{i=1}^{N} x_{i}$$

- ➤ Step 2 : calculate contrast
 - ✓ The contrast is estimated as the standard deviation

$$\checkmark \sigma_x = (\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x)^2)^{\frac{1}{2}}$$

> step 3 : define luminance & contrast comparison

$$\checkmark l(x,y) = \frac{2\mu_x\mu_y + C_1}{\mu_x^2 + \mu_y^2 + C_1}$$

$$\checkmark c(x,y) = \frac{2\sigma_x\sigma_y + C_2}{\sigma_x^2 + \sigma_y^2 + C_2}$$
 (C_1 , C_2 are the constant for stability)

 \checkmark l(x,y) = 1 or c(x,y) = 1, when the comparison of luminance or contrast of image x, y are same

- Full-reference IQA metrics (cont'd)
 - Definition of Structure Similarity Index Measure (SSIM)
 - > Step 4 : define structure comparison
 - ✓ The structure is normalized by its own standard deviation $\rightarrow (x \mu_x)/\sigma_x$, $(y \mu_y)/\sigma_y$
 - \checkmark Correlation coefficient between x and y is equivalent to the correlation between $(x \mu_x)/\sigma_x$, $(y \mu_y)/\sigma_y$

$$\checkmark S(x,y) = \frac{\sigma_{xy} + C_3}{\sigma_x \sigma_y + C_3}$$

➤ Step 5 : Combine three terms

$$\checkmark SSIM(x,y) = l(x,y) \times c(x,y) \times s(x,y)$$

$$= \frac{(2\mu_x \mu_y + C_1) \times (\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)} \quad (C_3 = C_2/2)$$

✓ Now we can evaluate image using luminance, contrast, structure

Reduced-reference IQA metrics

- Utilize only partial information of the reference image
 - > Features are extracted using certain models
 - > compared to extracted features from some representations of noisy images

❖ No-reference IQA metrics

- Q-metric [3]
 - ➤ Compared with proposed metric
 - > Step 1: Select sparse patches that have strong structure from the noisy image
 - > Step 2 : compute the score at extracted patches
 - > Step 3: the average of extracted patches' is the IQR value

Selected patches

Introduction

- Parameter setting
 - ➤ Good parameter setting is important to make proper balance between preserving structure and reduction of the noise
 - ✓ preserve too many structural details → denoising effect is insufficient
 - ✓ Remove too much noise → structural details loss

Measurements for evaluating

- ➤ Noise reduction Map N & Structure preservation Map P
- > computed by using the similarity comparison from the SSIM
- > Unlike SSIM, proposed metric don't use reference image

Overview

proposed algorithm

Algorithm 1 A Non-reference Metric for Image Denoising

Input: the noisy image I and the denoised image \hat{I}_h . **Output**: the image quality score e.

- 1. Compute the MNI which is the difference of the input noisy image I and the denoised image \hat{I}_h : $M_h = I \hat{I}_h$;
- 2. Compute structure similarity map N between the input noisy image I and the MNI M_h via SSIM metric (Eq. 3);
- 3. Compute structure similarity map P between the input noisy image I and the denoised image \hat{I}_h via SSIM metric (Eq. 4);
- 4. Compute image quality score e as the linear correlation coefficient of the two structure similarity maps N and P.

- *I*: input noisy image
- o I_h : denoised image obtained from a denoising algorithm
- *h*: parameter configuration
- M_h: MNI obtained with parameter configuration h
 (estimated image noise)
- o map N: local structure similarity between I and M_h
- o map P: local structure similarity between I and I_h

Overview (cont'd)

- proposed algorithm
 - ➤ Step 1 : compute the MNI
 - ✓ We can get "Method Noise Image" through equation $M_h = I I_h^{\hat{}}$

denoised image

- ➤ Step 2 ~ 3 : compute structure similarity map N and P
 - ✓ Using SSIM metric

$$\checkmark N_p = S(I^p, M_h^p), P_p = S(I^p, I_h^{^p})$$

- ➤ Step 4 : compute image quality score e
 - \checkmark use linear correlation coefficient of maps N and P as image quality score e

Algorithm 1 A Non-reference Metric for Image Denoising

Input: the noisy image I and the denoised image \hat{I}_h . **Output**: the image quality score e.

- 1. Compute the MNI which is the difference of the input noisy image I and the denoised image \hat{I}_h : $M_h = I \hat{I}_h$;
- 2. Compute structure similarity map N between the input noisy image I and the MNI M_h via SSIM metric (Eq. 3);
- 3. Compute structure similarity map P between the input noisy image I and the denoised image \hat{I}_h via SSIM metric (Eq. 4);
- 4. Compute image quality score e as the linear correlation coefficient of the two structure similarity maps N and P.
- I: input noisy image
- \circ $I_h^{\hat{}}$: denoised image
- o h: parameter configuration
- \circ M_h : MNI obtained with parameter configuration h
- \circ map N: local structure similarity between I and M_h
- p map P: local structure similarity between I and I_h

Structure Comparison

Assumption

- > Denoising algorithm does not change the luminance nor the contrast of a noisy image
 - ✓ Luminance & contrast are same in noisy & denoised image
 - $\checkmark \ln SSIM$, l(A,B) = c(A,B) = 1
 - $\checkmark SSIM(A,B) = l(A,B) \times c(A,B) \times s(A,B) = s(A,B)$
- > estimate the visual quality of a denoised image only with the structure comparison term

Structure Comparison Function

> Same process with SSIM

$$\checkmark$$
 Luminance : $\mu_A = \frac{1}{N} \sum_{i=1}^{N} A_i$, $\mu_B = \frac{1}{N} \sum_{i=1}^{N} B_i$

✓ Contrast :
$$\sigma_A = (\frac{1}{N-1} \sum_{i=1}^{N} (A_i - \mu_A)^2)^{\frac{1}{2}}, \ \sigma_B = (\frac{1}{N-1} \sum_{i=1}^{N} (B_i - \mu_B)^2)^{\frac{1}{2}}$$

✓ Normalization :
$$(A - \mu_A)/\sigma_A$$
, $(B - \mu_B)/\sigma_B$

$$\checkmark$$
 $s(A,B) = \frac{\sigma_{AB} + C}{\sigma_A \sigma_B + C}$

Noise and Structure Measurement

- Define structure similarity map N
 - $> I^p$, M_h^p : local image patch of image $I \& M_h$ at pixel p
 - $\triangleright N_p$: The noise reduction measurement at p
 - ✓ Structure similarity with I^p , M_h^p
 - $\checkmark N_p = S(I^p, M_h^p)$
 - > N is a map composed of N_p

Noisy image (I)

MNI (M_h)

Homogeneous region

- Most of the noise has been removed
- ② Removed noise should present in the MNI at the same location
- ③ The structure of the noisy image I and the MNI M_h should be locally similar
- 4 Correlation coefficient relatively high (white)

Maps for noise reduction (N)

Noise and Structure Measurement

- Define structure similarity map N
 - $> I^p$, M_h^p : local image patch of image $I \& M_h$ at pixel p
 - $> N_p$: The noise reduction measurement at p
 - ✓ Structure similarity with I^p , M_h^p
 - $\checkmark N_p = S(I^p, M_h^p)$
 - $\triangleright N$ is a map composed of N_p

Noisy image (I)

MNI (M_h)

Highly textured region

- ① Most of the structure preserved
- 2 No value in the MNI at the same location
- ③ The structure of the noisy image I and the MNI M_h should be locally dissimilar
- 4 Correlation coefficient relatively low (black)

Maps for noise reduction (N)

Noise and Structure Measurement (cont'd)

- Define structure similarity map P
 - $> I^p, I_h^{\hat{p}}$: local image patch of image $I \& I_h^{\hat{n}}$ at pixel p
 - $ightharpoonup p_p$: The structure preservation measurement at p
 - ✓ Structure similarity with I^p , $I_h^{^p}$
 - $\checkmark p_p = S(I^p, I_h^{^p})$
 - $\triangleright P$ is a map composed of p_p

Noisy image (I)

denoised image $(I_h^{\hat{}})$

Highly textured region

- ① Structure is well preserved
- ② The structure of the edge component of image I and the denoised image $I_h^{\hat{}}$ should be locally similar
- ③ Correlation coefficient relatively high (white)

Maps for structure Preservation (P)

Noise and Structure Measurement (cont'd)

- Define structure similarity map P
 - $> I^p, I_h^{\hat{p}}$: local image patch of image $I \& I_h^{\hat{n}}$ at pixel p
 - $\triangleright p_p$: The structure preservation measurement at p
 - ✓ Structure similarity with I^p , $I_h^{\hat{p}}$
 - $\checkmark p_p = S(I^p, I_h^{^p})$
 - $\triangleright P$ is a map composed of p_p

Noisy image (I)

denoised image $(I_h^{\hat{}})$

Homogeneous region

- Most of the noise has been removed
- 2 The structure of the image I and the denoised image $I_h^{\hat{}}$ should be locally dissimilar
- ③ Correlation coefficient relatively low (black)

Maps for structure Preservation (P)

Integration of Measurements

- Balance between N & P
 - Good denoising algorithm should maintain a good balance and maximize both map N & P
 - ✓ In region with large N values (homogenous region) \rightarrow P value should be small
 - ✓ In region with large P values (highly-textured region) $\rightarrow N$ value should be small

- \triangleright By using correlation coefficient, we can compute the dependency relation between N & P
 - ✓ Consider N & P as random variables
 - ✓ They have linear correlation

Integration of Measurements (cont'd)

Pearson correlation coefficient

$$\triangleright \rho(X,Y) = \frac{COV(X,Y)}{\sigma_X \sigma_Y}$$

➤ Pearson correlation coefficient between N & P are image quality score e

- Spearman correlation coefficient
 - > Rank order correlation
 - > The order of the elements are changed, therefore the spatial distribution of the measurements is changed
- Therefore, the proposed method utilize the Pearson correlation coefficient

Auto denoising formulation

- Proposed IQA metric can be employed by a parametric denoising algorithm
- Auto-denoising is formulated as a parameter selection problem
 - ➤ Select the optimal parameter configuration h
 - $\succ h_i \in (h_1, h_2, ..., h_K)$, K-possible parameter configurations for denoising algorithm
 - $>I_h^{\hat{}}=argmax\ e(I^{\hat{}}^{h_i},I)$
 - $\geq e() :$ Pearson correlation coefficient between map N & P

Denoising with Real Noisy Images

- Images are captured with digital camera
 - Low ISO (a) little noise \approx noise free image
 - High ISO (b) much noise \approx noisy image

- Use BM3D denoising algorithm
- Optimize parameter σ

Denoising with Synthetic Noisy Images

- The quantitative evaluation is conducted
 - > Two image benchmark datasets TID 2008 (25 images), LIVE (29 images)
 - \triangleright Use BM3D (parameter σ) & SKR denoising algorithm (parameter i)
 - ➤ White Gaussian Noise(WGN) is added to the test image
 - \checkmark Deviation σ from 5 to 20

Measurement method

- > Use PSNR metric, because we have reference(original) image
- > Set optimized parameter using PSNR & compute optimal PSNR value by using original image
- ➤ Compare PSNR error

- Denoising with Synthetic Noisy Images (cont'd)
 - When noise level(σ) is low (σ < 10)
 - \triangleright Proposed metric has lower PSNR error than Q-metric, when using BM3D algorithm (a), (b)

- Denoising with Synthetic Noisy Images (cont'd)
 - When noise level(σ) is high ($\sigma > 15$)
 - \triangleright Proposed metric has higher PSNR error than Q-metric, when using SKR algorithm (c), (d)

- \triangleright Average PSNR errors in (c), (d) are both lower than 1 when $\sigma > 15$
- > The performance of the proposed & Q-metric is very close to optimal PSNR metric

Video Denoising

- Constant noise level
 - First 100 frames of the video are used
 - \triangleright All Images are corrupted with WGN (σ =15)
 - ➤ BM3D denoising algorithm is used

PSNR error at optimized parameter

Video Denoising

- Dynamic noise level
 - > First 100 frames of the video are used
 - > The noise level is changed dynamically with respect to the time domain
 - ➤ BM3D denoising algorithm is used

Human Subject Study

- Evaluates the perceptual performance of the metrics
- The tested images are corrupted by WGN with 4 levels in {5, 10, 15, 20}

Compare Q-metric & proposed metric

Conclusions

- Conclusions about this Paper
 - Propose a new metric for automatizing existing image/video denoising algorithms
 - Proposed metric is very simple, robust and efficient
 - Experimental results demonstrate that the proposed metric outperforms the Q-metric

Thank You!

