

Zakład Geomorfologii i Geologii Czwartorzędu — PROCEDURA

Pomiar pigmentów z osadów jeziornych: metoda spektrofotometryczna

Materiały eksploatacyjne i urządzenia

Odczynniki chemiczne

- Aceton 100% (klasa czystości HPLC): rozpuszczalnik.
- Aceton techniczny: czyszczenie naczyń i urządzeń.
- Woda redestylowana (MilliQ).
- Azot techniczny.
- Neodisher Laboclean.

Neodisher LaboClean FLA: płynny, wysoko-alkaliczny środek o wysokim działaniu dyspergującym.

Urządzenia

• Wyciąg laboratoryjny.

Stężony aceton (C_3H_6O) to rozpuszczalnik organiczny, który wymaga pracy pod włączonym wyciągiem laboratoryjnym. Aceton jest wysoce łatwopalny. Aceton ma silne działanie drażniące.

- Myjka ultradźwiękowa.
- Wirówka laboratoryjna.
- Wytrzasarka typu Vortex.
- Piec laboratoryjny do wypiekania szkła laboratoryjnego.
- Suszarka laboratoryjna.
- Szklane zlewki do pipetowania acetonu.
- Pipeta do acetonu 100–1000 μl i końcówki (odpowiednie do acetonu).
- Pipeta do acetonu 50–250 μl i końcówki (odpowiednie do acetonu).
- Statywy na próbki.
- Kolby wolumetryczne (cechowane).

1 ml, 5 ml, 10 ml, 25 ml, 50 ml, 100 ml.

Pozostałe

- Mikrokuwety 400 µl z zatyczkami.
 - Kuwety łapać tylko za rogi. Upewnić się, że kuweta nie jest zanieczyszczona.
- Długie, szklane pipety Pasteura.
 - Jednorazowe.
- Smoczek silikonowy do pipet.

Czyszczenie

- Wymyć ręcznie szkło laboratoryjne szczotką.
- Umyć w zmywarce laboratoryjnej.
- Program do mycia szkła i Neodisher Laboclean.
- Wypłukać wodą redestylowaną (MilliQ) i Nanowater 3 razy.
- Wyczyścić acetonem technicznym.
- Zamknąć folią aluminiową, która uprzednio została wyczyszczona acetonem
- Wypiec w piecu w temperaturze 292 °C.

Minimum 12 h.

Utylizacja

- Aceton zgodnie z wymogami.
- Falkony i szklane pipety Pasteura muszą zostać dokładnie umyte i wyrzucone do recyclingu.

Przygotowanie urządzenia

Spektrofotometr

- Włączyć spektrofotometr i komputer.
- Odczekać minimum 1 h przed pomiarami.
- Włączyć oprogramowanie **UVProbe**.
- Wcisnąć F4 i kliknąć Connect.
- Ustawić parametry:
 - Zakres: **350** do **900** nm.
 - Żółty guzik ??.
 - Method: spectrum.
 - Scan speed: fast.

- Sampling interval: 0.1 nm.

- Scan mode: Single

- 0k.

Próbki ślepe i linia bazowa

Próbka ślepa (Blank)

Dodać za pomocą pipety 400 μl acetonu (100%, HPLC) do kuwety.

Sprawdzić czy próbka nie jest zanieczyszczona.

Upewnić się, że w końcówce pipety nie ma pęcherzyków powietrza.

• Zamknąć kuwetę zatyczką

Utrudnia odparowanie próbki oraz korozję urządzenia.

• Umieścić kuwetę w przedniej celi (cela pomiarowa).

Oznaczenie V na kuwecie powinno znajdować się z boku.

Autozero (próbka referencyjna)

• Dodać za pomocą pipety 400 µl acetonu (100%, HPLC) do kuwety.

Sprawdzić czy próbka nie jest zanieczyszczona.

Upewnić się, że w końcówce pipety nie ma pęcherzyków powietrza.

Zamknąć kuwetę zatyczką

Utrudnia odparowanie próbki oraz korozję urządzenia.

• Umieścić kuwetę w tylnej celi (cela referencyjna).

Oznaczenie V na kuwecie powinno znajdować się z boku.

• Kliknąć Baseline

Po tym etapie wartość absorpcji powinna wskazywać zero.

Próbka referencyjna pozostaje w celi na czas wszystkich pomiarów.

• Wykonywać procedurę autozero przed pomiarem nowego ekstraktu.

Pomiar próbek

• Ekstrakty są rozcieńczone tak, aby ogólna absorpcja mieściła się między 0.2 i 1.0 abs.

W tym zakresie oznaczenie koncentracji ma charakter liniowy i nie wymaga wykorzystania krzywych kalibracyjnych.

Rozcieńczanie

Do rozcieńczania ekstraktów można wykorzystać małą kolbę miarową lub probówki Eppendorfa. Pozwala to na ponowy pomiar próbki przy wyższym rozcieńczeniu po pipetowaniu bezpośrednio z kolby lub probówki.

Przykład 1:10

- Wymieszać brązową fiolkę z ekstraktem na vortexie.
- Za pomocą pipety przenieść $2 \times 250 \mu l$ ekstraktu do kolby 5 ml.
- Dodać aceton za pomocą szklanej pipety Pasteura do osiągnięcia 5 ml.
 - Uwaga: menisk jest wklęsły.
- Wymieszać roztwór szklaną pipetą.

Pomiar

- Za pomocą pipety przenieść 400 µl roztworu do kuwety.
- Zamknąć kuwetę zatyczką.
- Umieścić kuwetę w przedniej celi (cela pomiarowa).
 - Oznaczenie V na kuwecie powinno znajdować się z boku.
- Kliknąć Start.

Zapis i eksport danych

Przy rozpoczęciu analizy pojawi się okno, w którym można wprowadzić nazwę pliku. Jednak po zakończeniu analizy każdej z próbek **trzeba zapisać plik ręcznie**. Inaczej dane zostaną utracone.

Zapis danych

File > Save as > nazwa_pliku

Eksport danych

Data Print

Pojawi się tabela z danymi, które należy skopiować i wkleić do arkusza kalkulacyjnego.

Należy **ręcznie rozszerzyć kolumny**, tak aby widoczne były pełne nazwy. W innym wypadku dane nie skopiują się odpowiednio.

Ewaluacja danych

Naturalne pigmenty to mieszanina barwników chlorofilowych i karotenoidów, jednak spektrum uzyskane z próbki pozwala na ocenę tego, jakie pigmenty są obecne w próbce.

Możliwe jest porównanie spektrum standardów z otrzymanymi w trakcie analizy.

Przykłady

- Chl-a (absorption max. 430 and 663 nm)
- Chl-b (absorption max. 463 and 648 nm)
- Pheophytin-a (absorption max. 408 and 664nm)
- Carotenoids (420–450 nm)
- Bacteriochlorophyll-a (absorption max. 364 and 770 nm)
 - Bacteriopheophytin-a (absorption max. 357 and 746 nm)
- Bacteriochlorophyll-b (absorption max. 373 and 795 nm)
 - Bacteriopheophytin-b (absorption max. 367 and 776 nm)
- Bacteriochlorophyll-c, -d, -e (absorption max. 434, 427, 469 and 666, 655, 654 nm)
 - Bacteriopheophytin-c, -d, -e (absorption max. 412, 406, 435 and 666, 657, 665 nm)

Obliczenia fotometryczne

Obliczenia na potrzeby kalibracji typu proxy-proxy dla danych hiperspektralnych.

Korekta wartości absorpcji

Należy dokonać korekty wartości absorbcji jeśli absorbcja wynosi więcej lub mniej niż $\bf 0$ pomiędzy $\bf 720$ nm i $\bf 900$ nm. Wartości przeskalować tak aby uzyskać $\bf 0$ w zakresie $\bf 720$ nm i $\bf 900$ nm.

- Do określenia zawartości całkowitych karotenoidów i chloropigmentów, przy absencji bakteriochloropigmentów
 w próbce, można wykorzystać wartości absorbcji odpowiadające długości fali 750 nm.
- W przypadku obecności bakteriochloropigmentów w próbce, należy znaleźć odpowiednią wartość dla wybranej długości fali powyżej 750 nm i wykorzystać do przeskalowania wyników.

Procedura opisana w artykule Sanchini i Grosjean (2020).

Obliczenia całkowitych chloropigmentów-a oraz bakteriofeofityny-a ze spektrów absorpcji

Koncentracje oblicza się z wykorzystaniem wzoru

$$c = A_{\lambda}/(\alpha_{\lambda} \times l)$$

gdzie:

l: szerokość kuwety (cm);

A: zmierzona absorbcja odpowiadająca wybranej długości fali;

: molowy współczynnik ekstynkcji wynoszący $88.77 \times 10^{-3} \times L \times cm^{-1} \times mg^{-1}$ dla chloropigmentówa przy długości fali 666 nm (Jeffrey and Humphrey, 1975) oraz $52.855 \times 10^{-3} \times L \times cm^{-1} \times mg^{-1}$ dla bakteriofeofityny-a przy długości fali 750 nm (Fiedor et al., 2002).

Wynik to koncentracja zmierzona w kuwecie $(\mathbf{mg/l})$, który należy skorygować odpowiednio do rozcieńczenia oraz wagi próbki.

Przykładowe obliczenia zebrane zostały w arkuszu Spectrophotometer_calculator.xlsx

$$(absorbcjapiku)/k \times (wspczynnikrozcieczenia) \times (wagaprbki)/(obejtoektraktu)$$

gdzie:

k: stała, **0.080770** dla chloropigmentów przy piku o długości fali **666 nm** (Jeffrey and Humphrey, 1975) i **0.052855** dla bakteriofeofityny przy piku dla długości fali **750 nm** (Fiedor et al., 2002).

Obliczenia choloroflu a, b i c ze spektrów absorpcji

Obliczenia całkowitych karotenoidów ze spektrów absorpcji

Za Lichtenthaler and Buschmann (2001)

W ekstrakcie materiału roślinnego zawierającym karotenoidy ($\mathbf{x} + \mathbf{c} = \mathbf{xanatofile}$ i karoteny) w dodatku do chlorofili, $\mathbf{A_{470}}$ (region karotenoidów) oznacza się jako sumę absorbcji dla chlorofilu-a, chlorofilu-b oraz karotenoidów:

• Aceton (czysty, 100%):

$$c_{(x+c)} = (1000 \times A_{470} - 1.90_{C_a} - 63.14_{C_b})/214$$

Aceton (20% wody):

$$c_{(x+c)} = (1000 \times A_{470} - 1.82_{C_a} - 85.02_{C_b})/198$$

gdzie:

 A_{470} : absorbcja dla długości fali 470 nm;

 C_a : xxx

 C_b : xxx

Za Guilizzoni et al. (2011); na podstawie Züllig et al. (1981)

Całkowite karotenoidy wyrażone są jako \mathbf{mg} \mathbf{TC} (total carotenoids) na gram suchej materii organicznej ($\mathbf{g}_{\mathbf{LOI}}$).

$$TC = ((E_{450} - 0.8 \times E_{665}) \times V \times 10) / E_{1cm}^{1\%} \times g_{LOI}$$

gdzie:

 $\mathbf{E_{xxx}}$: gęstość optyczna w kuwecie o ścieżce optycznej **1 cm** (szerokość) dla długości fali **450 nm** i **665 nm**, skorygowanych o gęstość optyczną dla długości fali **750 nm**;

V: objętość ekstraktu;

 $\mathbf{E^{1\%}_{1cm}}$: średni współczynnik ekstynkcji dla $\mathbf{1\%}$ roztworu ekstraktu z osadów (wagowo) dla karotenoidów przy ścieżce optycznej (szerokość) $\mathbf{1}$ cm. Równe $\mathbf{2.250}$ (Züllig 1981; Leavitt and Hodgson 2001);

 \mathbf{E}_{450} : główne pasmo absorbcji dla karotenoidów w zakresie widzialnym;

 $\mathbf{E_{665}}$: korekta na przybliżone pasmo absorbcji chlorofili i pochodnych chlorofili odpowiadające długości fali $\mathbf{665}$ nm;

 $\mathbf{g}_{\mathbf{LOI}}$: równoważnik strat na prażeniu dla mokrego osadu, obliczony na podstawie zawartości osadów i suchej masy po LOI.

Funkcja transferu dla fosforu całkowitego

Rejestr zmian

09.12.2022, MZ – wersja inicjalna Quarto, procedura za: Paul Zander, Andrea Sanchini i Giulia Wienhues (Uniwersytet w Bernie).

09.02.2023, MZ – pełna wersja.

Maurycy Żarczyński r Sys.Date()