Q-learning with Nearest Neighbors

Chun-Heang Tay
Institute of Computer Science and Engineering
National Chiao Tung University
Hsinchu Taiwan
petertay1996@gmail.com

1. Introduction

Q-learning is an Reinforcement Learning algorithm method that directly get the optimal Q value by learning the optimal action-value function (Q function) from the observation of system trajectories.

Nearest Neighbor Q-Learning (NNQL) is an algorithm that its purpose is to learn the optimal Q function using nearest neighbor regression method.

2. Assumption

2.1 Assumption 1

We need to analysis a continuous state space problem, so we need to apply some assumption: MDP Regularity.

Assume that

- (i) Continuous state space X is a compact subset of R_d;
- (ii) A is a finite set of cardinality |A|
- (iii) One-stage Rt is non-negative and uniformly bounded by Rmax
- (iv) $a \in A, r(. | a) \in Lip(X, Mr), Mr > 0$ which

$$\operatorname{Lip}(E,M) = \left\{ f \in C(E) \mid |f(x) - f(y)| \le M \rho(x,y), \ \forall x,y \in E \right\}.$$

Since it's a continuous state space, we can define transition prob. :

$$\Pr(x_{t+1} \in B | x_t = x, a_t = a) = \int_B p(y|x, a)\lambda(dy)$$

satisfies

$$|p(y|x,a) - p(y|x',a)| \le W_p(y)\rho(x,x'), \quad \forall a \in \mathcal{A}, \forall x, x', y \in \mathcal{X},$$

Under the condition of continuous state space, Bellman optimality operator can be written as

$$(FQ)(x,a) = r(x,a) + \gamma \mathbb{E}\left[\max_{b \in \mathcal{A}} Q(x',b) \mid x,a\right] = r(x,a) + \gamma \int_{\mathcal{X}} p(y|x,a) \max_{b \in \mathcal{A}} Q(y,b) \lambda(dy)$$

The smoother the MDP will lead to a smoother optimal Q function.

2.2 Assumption 2

Since handling continuous state space problem, we need to find a series of point on this state space X, then use these point describe Q-function.

After knowing all the point on this state space:

$$q = \{q(c_i, a), c_i \in \mathcal{X}, a \in \mathcal{A}\}$$

we represent any state using q.

$$(\Gamma_{\text{NN}}q)(x, a) = \sum_{i=1}^{n} K(x, c_i) q(c_i, a), \quad \forall x \in \mathcal{X}, a \in \mathcal{A},$$

The function above project a value on X_hxA function to a XxA function. The K is a kernel function that satiesfies:

$$K(x,c_i)\geq 0, \sum_{i=1}^n K(x,c_i)=1$$

$$K(x,y) = 0 \text{ if } \rho(x,y) \ge h, \qquad \forall x \in \mathcal{X}, y \in \mathcal{X}_h$$

From given set: $\mathcal{Z}_{k} := \mathcal{X}_{k} \times \mathcal{A}$

we can get value: $q = \{q(c_i, a), c_i \in \mathcal{X}, a \in \mathcal{A}\}$

then we can have the Q function:

$$\tilde{Q}(x, a) = (\Gamma_{NN}q)(x, a), \quad \forall (x, a) \in \mathcal{Z}.$$

The Objective of Q-learning is to learn to find the optimal Q function:

$$(Gq)(c_i, a) \triangleq (F\Gamma_{NN}q)(c_i, a) = (F\tilde{Q})(c_i, a) = r(c_i, a) + \gamma \mathbb{E} \left[\max_{b \in \mathcal{A}} (\Gamma_{NN}q)(x', b) \mid c_i, a \right]$$

Assume the covering time in finite($L_h < \infty$) such that $E[\tau_{\pi,h}(x,t)] \le L_h, \forall x \in X, t > 0$

3. Proposition

3.1 Proposition1

Proposition 1: Start at a random state, by using any policy after some step it must can arrived at every Bi, expected upper bound covering time should be stricter.

Proposition 1. Suppose that the MDP satisfies the following: there exists a probability measure ν on \mathcal{X} , a number $\varphi > 0$ and an integer $m \geq 1$ such that for all $x \in \mathcal{X}$, all $t \geq 0$ and all policies μ ,

$$\Pr_{\mu}(x_{m+t} \in \cdot | x_t = x) \ge \varphi \nu(\cdot).$$
 (6)

Let $\nu_{\min} \triangleq \min_{i \in [n]} \nu(\mathcal{B}_i)$, where we recall that $n \equiv N_h = |\mathcal{X}_h|$ is the cardinality of the discretized state space. Then the expected covering time of ε -greedy is upper bounded by $L_h = O\left(\frac{\varepsilon M|\mathcal{A}|}{\varepsilon m_{\min}}\log(n|\mathcal{A}|)\right)$.

3.2 Proposition2

Proposition 2: Begin at any state, there should be existing an action series, after some steps must have a probability for reaching every single Bi, upper bound for covering time should be looser.

Proposition 2. Suppose that the MDP satisfies the following: there exists a probability measure ν on \mathcal{X} , a number $\varphi > 0$ and an integer $m \geq 1$ such that for all $x \in \mathcal{X}$, all $t \geq 0$, there exists a sequence of actions $\hat{\mathbf{a}}(x) = (\hat{a}_1, \dots, \hat{a}_m) \in \mathcal{A}^m$,

$$\Pr(x_{m+t} \in | x_t = x, a_t = \hat{a}_1, \dots, a_{t+m-1} = \hat{a}_m) \ge \varphi \nu(\cdot).$$
 (7)

Let $\nu_{\min} \triangleq \min_{i \in [n]} \nu(\mathcal{B}_i)$, where we recall that $n \equiv N_h = |\mathcal{X}_h|$ is the cardinality of the discretized state space. Then the expected covering time of ε -greedy is upper bounded by $L_h = O\Big(\frac{m|\mathcal{A}|^{m+1}}{\pi^{m+1}\varphi \omega_{\min}}\log(n|\mathcal{A}|)\Big)$.

4. Proposed approaches

After obtaining every single sample point, the information is update and store in the Bellman backup $G_q(c_i, a)$. After every element in Z_h has been visited, $q(c_i, a)$ will be softly update closer toward $G_q(c_i, a)$.

```
Policy 1 Nearest-Neighbor Q-learning
Input: Exploration policy \pi, discount factor \gamma, number of steps T, bandwidth parameter h, and
initial state Y_0.
Construct discretized state space \mathcal{X}_h; initialize t=k=0, \ \alpha_0=1, \ q^0\equiv 0; Foreach (c_i,a)\in\mathcal{Z}_h, set N_0(c_i,a)=0; end
       Draw action a_t \sim \pi(\cdot|Y_t) and observe reward R_t; generate the next state Y_{t+1} \sim p(\cdot|Y_t, a_t); Foreach i such that Y_t \in \mathcal{B}_i do
                \eta_N = \frac{1}{N_k(c_i, a_t) + 1}
               \begin{array}{l} N_k(c_i,a_i)+1\\ N_k(c_i,a_i)+1\\ \text{ if }N_k(c_i,a_t) > 0 \text{ then }\\ (G^kq^k)(c_i,a_t) = (1-\eta_N)(G^kq^k)(c_i,a_t) + \eta_N\left(R_t + \gamma \max_{b\in\mathcal{A}}(\Gamma_{\text{NN}}q^k)(Y_{t+1},b)\right); \end{array}
                else (G^k q^k)(c_i, a_t) = R_t + \gamma \max_{b \in \mathcal{A}} (\Gamma_{NN} q^k)(Y_{t+1}, b);
                 N_k(c_i, a_t) = N_k(c_i, a_t) + 1
       end if \min_{(c_i,a)\in\mathcal{Z}_h}N_k(c_i,a)>0 then
               Foreach (c_i, a) \in \mathcal{Z}_h do
                      q^{k+1}(c_i, a) = (1 - \alpha_k)q^k(c_i, a) + \alpha_k(G^kq^k)(c_i, a);
               For each (c_i,a)\in\mathcal{Z}_h do N_k(c_i,a)=0; end
       end
until t \geq T
return \hat{q} = q
```

5. Experiment Result

We reproduce the work using [1] repository then we tried to modify it to suit the NNQL algorithm. From the figure shown below, the y-axis is the reward and the x-axis is the epoch. From the beginning we can see that the flappy bird keeps on failing causing the reward keep on dropping at the training stage, then after a few epochs later we can see that the frequency of failing has decrease a lot, this show that NNQL algorithm work pretty well even at a limited time.

Code Link:

 $https://github.com/petertay1996/RL_TheoryProject$

Figure 1: Relationship between reward and epoch of the Flappy Bird

REFERENCES

[1] yenchenlin. Using Deep Q-Network to Learn How To Play Flappy Bird

https://github.com/yenchenlin/DeepLearningFlappyBird

[2] Shah, Devavrat, and Qiaomin Xie. Q-learning with nearest neighbors. Advances in Neural Information Processing Systems. 2018.