ANNEXE 2 : Bibliothèque de symboles

1. Le symbole ARCSINUS (ASIN)

Représentation graphique

Fonction

Arcsinus de l'entrée.

Entrées

E1:

 $\underline{D\acute{e}finition:} \quad Valeur \ dont \ on \ veut \ connaître \ l'arcsinus.$

<u>Type</u>: real

Sortie

S1:

<u>Définition</u>: Arcsinus de l'entrée.

<u>Type</u>: real.

Description du traitement

S1 = arcsinus(E1).

Cas d'erreur

E1 > 1.0 ou E1 < -1.0

2. Le symbole CONFIRMATION du passage à 1 [CONF1()]

Représentation graphique

Fonction

Confirmation du passage à *true* d'une entrée booléenne sur un temps *Nb_cycles* * ∆t

Entrée

E1:

<u>Définition</u>: Valeur d'entrée du confirmateur.

Type: bool

Constante

Entrées cachées

Nb_cycles:

<u>Définition</u>: Valeur du temps de confirmation ramenée en nombre de cycles.

Type: int

Constante

Init:

<u>Définition</u>: Durée initiale du confirmateur ramenée en nombre de cycles.

<u>Type:</u> int

Constante ou Variable

B_Init:

<u>Définition</u>: Booléen d'initialisation du confirmateur.

Type: bool

Constante ou Variable

Sortie

S1:

<u>Définition</u>: Valeur de sortie du confirmateur.

Type: bool

Description du traitement

Calcul:

SI E1(k)= E1(k-1)=... = E1(k- Nb_cycles)=
$$true$$
 ALORS S1(k) = $true$ SINON S1(k) = $false$

Initialisation:

SI B_Init(k) = true ALORS SI Init(k) \geq Nb_cycles prendre Init(k) = Nb_cycles

E1(k-i)=E1(k) pour i=1 à Init(k)

E1(k-Init(k) -1)=false

puis Calcul

Chronogramme d'exemple:

La sortie S1 n'est à *true* que si l'entrée est à *true* depuis au moins le temps Nb_cycles * Δt (cycle du nœud). Nb_cycles = 3, Init = 2,

 $E1(k)=[1\ 1\ 0\ 1\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 1\ 0]$

 $S1(k)=[0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0]$

3. Le symbole DERIVEE (DERIV)

Représentation graphique

Fonction

Dérivée de l'entrée.

Entrées

E1:

<u>Définition</u>: Valeur dont on doit calculer la dérivée.

<u>Type</u>: real

Entrées cachées

Init:

<u>Définition</u>: Valeur d'initialisation de la dérivée.

<u>Type</u>: real

B_Init:

<u>Définition</u>: Booléen d'initialisation de la dérivée.

Type: bool

Sortie

S1:

<u>Définition</u>: Valeur de sortie.

<u>Type:</u> real

Description du traitement

Calcul:

 $S1_{(k)} = (E1_{(k)} - E1_{(k-1)}) / (Time_{(k)} - Time_{(k-1)})$

Initialisation:

SI B_Init ALORS $S1_{(k)} = Init$

SINON calcul

Initialisation par défaut :

 $E1_{(k-1)} = E1_{(k)}$

4. Le symbole INITIALISATION

Représentation graphique

Fonction

Initialisation.

Sortie

S1:

<u>Définition</u>: Booléen d'initialisation.

Type: bool

Description du traitement

Au premier cycle, S1=true Puis, S1=false

5. Le symbole LIMITEUR d'AMPLITUDE (LIM)

Représentation graphique

Fonction

Limiteur d'amplitude.

Entrée

E1:

<u>Définition</u>: Valeur d'entrée

<u>Type</u>: real

Entrées cachées

Min:

<u>Définition</u>: Limite min. <u>Type</u>: real

Max:

<u>Définition</u>: Limite max.

Type: real

Sortie

S1:

<u>Définition</u>: Valeur de sortie du limiteur.

<u>Type</u>: real

Description du traitement

Calcul:

SI MIN<MAX ALORS

SI E1 > MAX ALORS S1 = MAX

SINON SI E1 < MIN ALORS S1 = MIN

SINON S1 = E1

SINON

SIE1 > MIN ALORS S1 = MIN

SINON SI E1 < MAX ALORS S1 = MAX

SINON S1 = E1

Chronogramme:

6. Le symbole LIMITATION de VITESSE de VARIATION (RLIM)

Représentation graphique

Fonction

Limitation de la vitesse de variation de l'entrée E1

Entrée

E1:

<u>Définition</u>: Valeur d'entrée

<u>Type</u>: real

Entrées cachées

Lim:

<u>Définition</u>: Vitesse de variation maximale

<u>Type</u>: real

Constante

Init:

<u>Définition</u>: Valeur initiale de la sortie.

<u>Type:</u> real

B_Init:

<u>Définition</u>: Condition d'initialisation

Type: bool

Sortie

S1:

<u>Définition</u>: Valeur de sortie

Type: real

Description du traitement

Calcul:

 $Dt = Time_{(k)} - Time_{(k-1)}$

 $\begin{array}{ll} SI\ E1_{(k)} - S1_{(k-1)} < -Lim\ *\ Dt \\ SI\ E1_{(k)} - S1_{(k-1)} > Lim\ *\ Dt \\ \end{array} \qquad \begin{array}{ll} ALORS\ S1_{(k)} = S1_{(k-1)} - Lim\ *\ Dt \\ ALORS\ S1_{(k)} = S1_{(k-1)} + Lim\ *\ Dt \\ \end{array}$

SINON $S1_{(k)} = E1_{(k)}$

Initialisation:

 $SI B_Init$ ALORS $S1_{(k)} = Init$

SINON calcul

Initialisation par défaut :

 $S1_{(k-1)} = E1_{(k)}$ Chronogramme :

Les variations de la sortie sont limitées à une pente \pm Lim.

7. Le symbole RACINE CARREE (SQRT)

Représentation graphique

Fonction

Racine carrée.

Entrées

E1:

<u>Définition</u>: Valeur dont on veut connaître la racine carrée.

<u>Type</u>: real

Sortie

S1:

<u>Définition</u>: Racine carrée de l'entrée.

<u>Type:</u> real

Description du traitement

 $S1 = \sqrt{E1}$

Cas d'erreur

E1 < 0