Math 209-16 Homework 1

Due Date: Sep 15, 2022

P1.(1 pt) Prove that $n^2 - n$ is divisible by 2 for every integer n; that $n^3 - n$ is divisible by 6; that $n^5 - n$ is divisible by 30.

Proof. Since $n^2 - n = (n-1)n$, and either n-1 or n is even, $2 \mid (n^2 - n)$. Similarly, $n^3 - n = (n-1)n(n+1)$, thus, we have $2 \mid (n^3 - n)$ and $3 \mid (n^3 - n)$, which imply that $6 \mid (n^3 - n)$ because (2,3) = 1. Finally, $n^5 - n = (n-1)n(n+1)(n^2+1)$, we have shown that $6 \mid (n^5 - n)$ so it suffices to show that $5 \mid (n^5 - n)$. This can be done by considering n = 5k + i for i = 0, 1, 2, 3, 4.

P2.(2 pts) Let $n \ge 2$ and k be any positive integers. Prove that $(n-1)^2 \mid (n^k-1)$ if and only if $(n-1) \mid k$.

Proof. $n^k - 1 = ((n-1)+1)^k - 1 = \sum_{i=0}^k {k \choose i} (n-1)^i - 1 = \sum_{i=1}^k {k \choose i} (n-1)^i$, since $(n-1)^2 \mid {k \choose i} (n-1)^i$ for $i \ge 2$, we see that $(n-1)^2 \mid (n^k-1)$ if and only if $(n-1)^2 \mid {k \choose i} (n-1)$, i.e., $(n-1) \mid k$.

P3.(2 pts) Evaluate (ab, p^4) and $(a + b, p^4)$ given that $(a, p^2) = p$ and $(b, p^3) = p^2$ where p is a prime.

Solution. Since $(a, p^2) = p$ and $(b, p^3 = p^2)$, we can write $a = a_1p$ and $b = b_1p^2$ for some $a_1, b_1 \in \mathbb{Z}$ with $(a_1, p) = (b_1, p) = 1$. Then we have

$$(ab, p^4) = (a_1b_1p^3, p^4) = p^3(a_1b_1, p) = p^3$$

 $(a+b, p^4) = (a_1p + b_1p^2, p^4) = p(a_1 + b_1p, p^3) = p$

The last equality in the second row follows because $p \nmid (a_1 + b_1 p)$.

P4.(2 pts) For any positive integer n > 1, prove that $\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ is not an integer.

Proof. Let 2^k be the largest power of 2 less than or equal to n. Then 2^k cannot divide $i \in \{1, ..., n\}$ except for $i = 2^k$. If not, suppose $i = 2^k i_1$ with $i_1 \ge 3$, then $2^{k+1} \le i \le n$, which is a contradiction! Then we have

$$2^{k-1}\left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) = 2^{k-1} \sum_{i \in \{2^m | m=1,\dots,k\}} \frac{1}{i} + 2^{k-1} \sum_{i \in \{2,\dots,n\} \setminus \{2^m | m=1,\dots,k\}} \frac{1}{i}$$

The first term is $2^{k-2} + \cdots + 1 + \frac{1}{2}$, and the second term is $\frac{2^{k-1}}{3} + \frac{2^{k-1}}{5} + \frac{2^{k-2}}{3} + \cdots$ whose denominator is odd after simplification. Therefore, the sum of them is not an integer, namely, $\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ is not an integer.

P5.(3 pts) Prove that if m > n then $a^{2^n} + 1$ is a divisor of $a^{2^m} - 1$. Show that if a, m, n are positive with $m \neq n$, then

$$(a^{2^m} + 1, a^{2^n} + 1) = \begin{cases} 1, & \text{if } a \text{ is even,} \\ 2, & \text{if } a \text{ is odd.} \end{cases}$$

Proof. Notice that

$$a^{2^{m}} - 1 = (a^{2^{n+1}})^{2^{m-n-1}} - 1 = (a^{2^{n+1}} - 1)((a^{2^{n+1}})^{2^{m-n-1}} + \dots + 1)$$
$$= (a^{2^{n}} + 1)(a^{2^{n}} - 1)((a^{2^{n+1}})^{2^{m-n-1}} + \dots + 1)$$

so $a^{2^n}+1$ is a divisor of $a^{2^m}-1$ if m>n. For the second part, we may assume m>n, then $(a^{2^m}+1,a^{2^n}+1)=(a^{2^m}-1+2,a^{2^n}+1)=(2,a^{2^n}+1)$. If a is even, then $a^{2^n}+1$ is odd $\Longrightarrow (2,a^{2^n}+1)=1$, otherwise, $(2,a^{2^n}+1)=2$, which completes the proof.

P6.(2 pts) Use the result in Problem 5 to show that there are infinitely many primes. **Proof.** Suppose that there are only finitely many primes. Consider the sequence $\{2^{2^n} + 1\}_{n=1}^{\infty}$, they are coprime to each other, which is impossible.

P7.(3 pts) Show that if (a,b) = 1 and p is an odd prime, then $(a+b, \frac{a^p+b^p}{a+b}) = 1$ or p. **Proof.** Let $(a+b, \frac{a^p+b^p}{a+b}) = d$, then $d \mid (a+b) \iff a \equiv -b \pmod{d}$, moreover, $d \mid \frac{a^p+b^p}{a+b} = (a^{p-1}-a^{p-2}b+\cdots+b^{p-1})$ since p is an odd prime, or equivalently,

$$a^{p-1} - a^{p-2}b + \dots + b^{p-1} \equiv 0 \pmod{d}$$

Therefore, $a^{p-1} - a^{p-2}b + \dots + b^{p-1} \equiv a^{p-1} + a^{p-1} + \dots + a^{p-1} \equiv pa^{p-1} \equiv 0 \pmod{d}$. If $d \mid a$, then $d \mid ((a+b)-a) = b \Longrightarrow d \mid (a,b) = 1 \Longrightarrow d = 1$. If $d \nmid a$, then d = p. \square

P8.(2 pts) Prove that $n^2-81n+1681$ is a prime for n=1,2,3,...,80, but not for n=81. **Proof.** By direct verification.

P9.(3 pts) Prove that no polynomial f(x) of degree > 1 with integral coefficients can represent a prime for every positive integer x.

Proof. It's equivalent to proving this for every nonnegative integer x because we can set g(x-1)=f(x). Assume that $f(x)=a_nx^n+\cdots+a_0$ with $a_i\in\mathbb{Z}$ can represent a prime for every nonnegative integer x. Then $a_n>0$ and $a_0=f(0)$ is a prime, however, $f(ma_0)=a_n(ma_0)^n+\cdots+a_0=a_0(a_nm^na_0^{n-1}+\cdots+1)$ is not a prime for sufficiently large m, which contradicts the assumption.