

Teste Funcional (parte 2)

Prof. Otávio Lemos (UNIFESP) Prof. Fabiano Ferrari (UFSCar)

Motivação

- Myers experiência → casos de teste que exploram condições limites têm maior probabilidade de encontrar defeitos
- Valores imediatamente acima ou abaixo dos limitantes das classes de equivalência
- Análise de Valor Limite: usado em conjunto com Particionamento de Equivalência – não escolher dados de teste aleatoriamente – selecionar de forma a explorar limites
- Não existem diretrizes bem definidas, somente recomendações

UNIFESP DHIVERSON OF FEDERAL DE SÃO TRUMO

Recomendações

- se a CE especifica um intervalo de valores dados de teste para os limites do intervalo e dados de teste imediatamente subsequentes → explorando classes inválidas vizinhas
 - Exemplo: classe válida estiver no intervalo -1,0 e +1,0 dados de teste: -1,0; +1,0; -1,001 e +1,001
- 2 se a CE especifica uma quantidade de valores, por exemplo, de 1 a 255 valores − dados de teste: ∅; somente um valor; 255 valores; e 256 valores
- 3 usar a diretriz (i) para as condições de saída
- 4 usar a diretriz (ii) para as condições de saída
- se a entrada ou saída for um conjunto ordenado, maior atenção ao primeiro e último elemento
- 6 usar a intuição para definir outras condições limite

Exemplo

■ Para o programa de busca de caracter (Programa "Cadeia de Caracteres"), adicionar os seguintes CTs:

	Variáveis de Entrada			Saída Esperada
Т	CC	С	0	
21				<aguarda entrada="" nova=""></aguarda>
0				<aguarda entrada="" nova=""></aguarda>
1	а	а	S	Caracter aparece na posição 1 da cadeia
1	а	X	n	Caracter não pertence à cadeia
20	abcdefghijklmnopqrst	а	S	Caracter aparece na posição 1 da cadeia
20	abcdefghijklmnopqrst	t	n	Caracter aparece na posição 20 da cadeia

UNIFESP UNIVERSE DO FINE DE SAD TRAINED

Análise do critério

 Similar ao Particionamento de Equivalência, porém considera recomendações para dados de teste – provavelmente mais efetivo

OC Uffeten

- Combina Particionamento e Análise de Valor Limite
- Requer ao menos dois CTs de cada partição, para minimizar problema de defeitos coincidentes
 - Exemplo: programa que calcula o quadrado de um número; dado de teste − 2; resultado 4 é correto, mas pode ter vindo de uma soma 2 + 2.
- Várias diretrizes...

UNIFESP UNIVERSIDADE FEDERAL DE SÃO FAULO

Valores numéricos

- Para domínio de entrada, selecionar valores de entrada da seguinte forma:
 - 1 Valores discretos: testar todos os valores
 - 2 Intervalo de valores: testar os extremos e um valor no interior do intervalo
- Para domínio de saída, selecionar valores de entrada que resultem nos valores de saída (tipo da entrada pode ser ≠ tipo de saída; Ex.: entrada numérica, saída booleana); escolher como entrada valores que explorem os valores de saída da seguinte forma:
 - 1 Valores discretos: gerar cada um deles
 - 2 Intervalo de valores: gerar cada um dos extremos e ao menos um valor no interior do intervalo

UNIFESP UNIFESP UNIVERSIDADO FEDERAL DI SÃO PAULO

Valores especiais

- Casos especiais (por ex., valor zero): sempre selecionados individualmente, mesmo que esteja dentro de um intervalo
- O mesmo para valores nos limites da representação binária dos dados; Ex.: para campos inteiros de 16 bits, selecionar valores -32768 e +32767

UNIFESP UNIVERSIDADO FEDERAL DE SÃO PALACO

Valores inválidos

- Tentar gerar valores inválidos, os quais não devem ser bem sucedidos.
- Importante limites dos intervalos numéricos (tanto inferior como superior); valores imediatamente fora dos limites desses intervalos e também os valores imediatamente subsequentes aos limites do intervalo e pertencentes ao mesmo

UNIFESP

Números reais

- Checar o limite para números reais pode não ser exato ainda assim, incluir verificação como caso de teste
- Definir margem de erro de tal forma que, se ultrapassada, o valor pode ser considerado distinto
- Além disso, selecionar números reais pequenos e também zero

UNIFESP PRIVITESSENCE FEDERAL OF SÃO PAGES

Arranjos

- Quando se usa arranjo, tanto como entrada como saída considerar o fato do tamanho do arranjo ser variável, bem como dos dados serem variáveis.
- Elementos do arranjo devem ser testados como se fossem variáveis comuns
- Além disso tamanho do arranjo deve ser testado com valores intermediários, mínimo e máximo
- Para simplificar o teste considerar linhas e colunas de um arranjo como se fossem subestruturas a serem testadas separadamente. Assim testar arranjo em isolamento; como uma coleção de subestruturas, e testar cada subestrutura independentemente

UNIFESP UNIVERSIDADE FEDERAL DE SÃO PALLO

Texto ou string

 Observem que várias dessas diretrizes são também aplicáveis a Particionamento de Equivalência e Análise de Valor Limite

UNIFESP DHIVERSON OF FEDERAL DE SÃO TRUMO

Para o programa de busca de caracter, adicionar os seguintes CTs:

	Entrada	Saída esperada		
Т	CC	C	0	
а				<aguarda entrada="" nova=""></aguarda>
1.0				<aguarda entrada="" nova=""></aguarda>
1	!	, ,	n	Caracter não pertence à cadeia
1	}	~	n	Caracter não pertence à cadeia
20	!"#\$%&()*+"/01234567	ļ ļ	S	Caracter aparece na posição 1 da cadeia
		"	S	Caracter aparece na posição 2 da cadeia
		+	S	Caracter aparece na posição 10 da cadeia
		6	S	Caracter aparece na posição 19 da cadeia
		7	n	Caracter aparece na posição 20 da cadeia
2	ab	Ь	nao	Caracter aparece na posição 2 da cadeia
3	a2b	2	0	Caracter aparece na posição 2 da cadeia

Exercício

 Evolua o conjunto de casos de teste do programa do pequeno mercado (Aula 4) de acordo com o critério Teste Funcional Sistemático.