Sikkim Manipal Institute of Technology Department of Mathematics B.Tech Mechanical Engineering (IV Sem) Subject: Numerical Methods (MA 1405) Second Sessional Examination

Dur: 1 hr 30 mins 03.04.2019 Max: 50 marks

Instructions

- (i) Answer all the questions.
- (ii) Any missing or misprinted data may be assumed suitably.
- 1. Using Picard's Method find the solution up to third approximation for $\frac{dy}{dx} = y + x$, y(0) = 1. (10) Hence find y(0.1) correct to 3 decimal places.
- 2. Using Taylor's series method find y(0.1) correct to 3 decimal places for $\frac{dy}{dx} = 1 + 3xy$, (10) y(0) = 1
- 3. Using LU decompostion method solve the following system of linear equations:

$$2x + y + z = 3$$
$$x + 3y + z = -2$$
$$x + y + 4z = -6$$

4. Using Gauss-seidal method find the solution correct to 3 decimal places of the following system of equations:

$$8x + 2y - 2z = 8$$
$$x - 8y + 3z = -4$$
$$2x + y + 9z = 12$$

5. Using Power method with at least six iterations, find numerically largest eigenvalue and the corresponding eigenvector of the following matrix:

$$\begin{pmatrix}
10 & -2 & 1 \\
-2 & 10 & -2 \\
1 & -2 & 10
\end{pmatrix}$$

1

Sikkim Manipal Institute of Technology Department of Mathematics B.Tech Mechanical Engineering (IV Sem) Subject: Numerical Methods (MA 1405) Second Sessional Examination Solutions

1. The approximations are,

$$y^{(1)}(x) = \frac{1}{2}x^2 + x + 1$$

$$y^{(2)}(x) = \frac{1}{6}x^3 + x^2 + x + 1$$

$$y^{(3)}(x) = \frac{1}{24}x^4 + \frac{1}{3}x^3 + x^2 + x + 1$$

Therefore, y(0.1) = 1.110

2. Taylor series expansion of y(x) around x = 0 is

$$y(x) = y(0) + \frac{x}{1!}y'(0) + \frac{x^2}{2!}y''(0) + \frac{x^3}{3!}y'''(0) + \frac{x^4}{4!}y^{iv}(0) + \dots$$

and

$$y'(x) = 1 + 3xy \implies y'(0) = 1$$
$$y''(x) = 3xy' + 3y \implies y''(0) = 3$$
$$y'''(x) = 3xy' + 3y \implies y'''(0) = 6$$

Therefore,

$$y(x) = 1 + x + 3\frac{x^2}{2} + 6\frac{x^3}{3!} + \dots$$
$$= 1 + x + \frac{3x^2}{2} + x^3 + \dots$$

Note that, $0.1^4 = 0.0001 \approx 0$ (correct to 3 decimal places) implies that it is enough to consider until 3rd order term to compute y(0.1), correct to three decimal places. Hence,

$$y(0.1) = 1 + (0.1) + \frac{3(0.1)^2}{2} + (0.1)^3 = 1.116$$

3. The given system is

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ -6 \end{pmatrix}$$
$$AX = b$$

Note that, A is diagonally dominant and hence

$$A = LU$$

where $L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & \frac{1}{5} & 1 \end{pmatrix}$ and $U = \begin{pmatrix} 2 & 1 & 1 \\ 0 & \frac{5}{2} & \frac{1}{2} \\ 0 & 0 & \frac{17}{5} \end{pmatrix}$. Therefore, AX = b can be written as LUX = b and we solve

$$UX = q$$
, $Lq = b$.

Solving Lq = b:

$$\begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & \frac{1}{5} & 1 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \\ q_3 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ -6 \end{pmatrix} \implies q = \begin{pmatrix} 3 \\ -\frac{7}{2} \\ -\frac{34}{5} \end{pmatrix} = \begin{pmatrix} 3 \\ -3.5 \\ -6.8 \end{pmatrix}$$

Solving UX = q:

$$\begin{pmatrix} 2 & 1 & 1 \\ 0 & \frac{5}{2} & \frac{1}{2} \\ 0 & 0 & \frac{17}{5} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -3.5 \\ -6.8 \end{pmatrix} \Longrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix}$$

Hence, x = 3, y = -1 and z = -2.

4. The iteration table is

Iter	$x^{(n)}$	$y^{(n)}$	$z^{(n)}$	_	Iter	$x^{(n)}$	$v^{(n)}$	$z^{(n)}$
0	0	0	0	_			<i>J</i>	
1	1.00	0.625	1.042		0	1	0.5	1.333
_					1	1.208	1.151	0.9370
2	1.104	1.029	0.974		0			
3	0.986	0.988	1.004	(OR)	2	0.947	0.970	1.015
					3	1.011	1.007	0.997
4	1.004	1.002	0.999		4	0.998	0.999	1.001
5	0.999	1.00	1.00		_			1.001
C	1.00	1.00	1.00		5	1	1	1
6	1.00	1.00	1.00		6	1	1	1
7	1.00	1.00	1.00	_				

5. The table gives the approximate eigenvalue at each iteration and the corresponding eigenvector.

Iter	EigenValue	(x,y,z)
0	1	(1,1,1)
1	9.666	(1, 0.667, 1)
2	10.448	(1, 0.276, 1)
3	11.238	(1, -0.119, 1)
4	11.924	(1, -0.462, 1)
5	12.446	(1, -0.723, 1)
6	12.804	(1, -0.902, 1)
7	13.033	(1, -1.017, 1)
8	13.174	(1, -1.087, 1)
9	13.258	(1, -1.129, 1)
10	13.306	(1, -1.153, 1)
11	13.334	(1, -1.167, 1)
12	13.35	(1, -1.175, 1)
13	13.36	(1, -1.18, 1)
14	13.366	(1, -1.183, 1)
15	13.368	(1, -1.184, 1)
16	13.370	(1, -1.185, 1)
17	13.370	(1, -1.185, 1)