<u>Notes</u>

<u>Course</u>

<u>Dates</u>

<u>Help</u>

sandipan_dey ~

Next >

☆ Course / Unit 2: Geometry of Derivatives / Recitation 5: Scaffolded worked example

Discussion

()

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

<u>Calendar</u>

End My Exam

< Previous

Progress

44:04:12

□ Bookmark this page

Recitation due Aug 18, 2021 20:30 IST Completed

Apply

Shortest distance

1.0/1.0 point (graded)

Food for thought.

Let L be the line 2x-y=1, just like in previous problems. Find the point of L which is closest to (1,0).

Hint: Sketch L, and draw the shortest line segment going from (1,0) to L. This line segment is perpendicular to L.

(Enter a point as two numbers surrounded by round parentheses: e.g. type (1,0) for (1,0).)

✓ Answer: (3/5,1/5)

Solution:

We know that the distance will be perpendicular to the graph of 2x-y=1. Therefore, this distance will be parallel to the vector $\langle 2,-1 \rangle$. So to reach the desired point, we need to add some some unknown multiple of $\langle 2,-1 \rangle$ to the point (1,0) until reaching the line. So we need to answer the question: for what value of λ is the point $P=\langle 1,0 \rangle + \lambda \langle 2,-1 \rangle$ in the line 2x-y=1?

The point P is given by:

$$P = (1 + 2\lambda, -\lambda) \tag{3.79}$$

Plugging these values in for x and y in the equation for the line leads to the equation:

$$2(1+2\lambda) - (-\lambda) = 1 \tag{3.80}$$

The solution is $\lambda=-1/5$. Therefore, the desired point P is given by (1-2/5,1/5)=(3/5,1/5).

Submit

You have used 2 of 10 attempts

Answers are displayed within the problem

Area of a parallelogram

1.0/1.0 point (graded)

Consider the parallelogram with vertices at (0,0), (4,2), (1,3), and (-3,1).

Let's call the side from (0,0) to (4,2) the base of the parallelogram. The unit normal vector to the base is $\langle -2/\sqrt{20}, 4/\sqrt{20} \rangle$, which is drawn in the picture. The length of the base is $\sqrt{20}$. Find the area of the parallelogram.

Hint: The area is the base times the height. You can find the height by using dot products.

10 **✓ Answer:** 10

Solution:

The length of the base is $\sqrt{20}$ by the Pythagorean Theorem. What about the length of the height?

Let the drawn normal vector be \vec{n} , and let \vec{v} be the vector pointing from (0,0) to (-3,1). By trigonometry, the length of the height is given by $|\vec{v}|\cos\theta$ where θ is the angle between \vec{v} and \vec{n} . The only unknown is $\cos\theta$, which we can find using dot products:

$$\cos \theta = \frac{\vec{n} \cdot \vec{v}}{|\vec{n}||\vec{v}|} \tag{3.81}$$

Therefore, we have

$$area = \sqrt{20} \cdot (height) \tag{3.82}$$

$$= \sqrt{20} \cdot \left(|\vec{v}| \cdot \frac{\vec{n} \cdot \vec{v}}{|\vec{n}||\vec{v}|} \right) \tag{3.83}$$

$$=\sqrt{20}\cdot(\vec{n}\cdot\vec{v})\tag{3.84}$$

The last step results from cancelling the common $|\vec{v}|$ and using $|\vec{n}|=1$.

Since $ec{v}=\langle -3,1
angle$, we have $ec{n}\cdotec{v}=6/\sqrt{20}+4/\sqrt{20}=10/\sqrt{20}$. Thus,

$$area = \sqrt{20} \cdot \frac{10}{\sqrt{20}} = 10 \tag{3.85}$$

Submit

You have used 1 of 10 attempts

1 Answers are displayed within the problem

Discuss

Food for thought. Consider the parallelogram with vertices at (0,0), (4,2), (1,3), and (-3,1). The parallelogram is shown in the picture below.

■ Calculator

How can we use vectors and dot products to check that these points are in fact the corners of a perfect parallelogram? (Hint: How is a parallelogram defined?)

4. Application to geometry

Topic: Unit 2: Geometry of Derivatives / 4. Application to geometry

Hide Discussion

Add a Post

Show all posts 🗸 by	recent activity 🗸
SHORTEST DISTANCE. USING THE DOT PRODUCT[removed by staff] I FOUND [removed by staff] WHICH ARE EQUAL TPO 3,5 AND 1/5 BUT THE SY	4 <u>(STEM</u>
Alternative Method for Shortest Distance Lam afraid that my algebra knowledge is keeping me from learning/applying the vector ideas covered thus far in this class. In	2 found th
I typed an answer for question 1 and it says partially corrsect. its the right answer i only got half credit	2
Shortest distance Hey. I think I'm doing something wrong because I'm never sure how to solve the problems, and some problems takes me hou	z urs to sol
Alternative Method for Area of a Parallelogram: Scalar Multiplication The unit normal vector given is in the same line as the point $(-1,2)$, therefore the vector $(-1,2) = \lambda*(-2/\text{sqrt}(20),4/\text{sqrt}(20))$. The	1 ne dista
? [staff] Shortest distance Two different approaches to this question have been used and both gave the same answer. However, this answer has been references.	7 marked
What is a perfect parallelogram? Is it the one whose opposite sides are equal ore something different?	6
Easier Area Calculation?	5
Is it coincidence? I used dot product between two sides without using normal vector to find the area which turned out to be correct. Is it mere	coinced
■ Food for thought	4
[Staff] Typo in Area of parallelogram solution In the *Area of parallelogram* solution, line (3.85), the equal sign is placed incorrectly.	2

Previous

Next Up: Lecture 6: Gradients >

© All Rights Reserved

eax

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>