Probability Distribution

Frequency distribution

Quantitative data

Score	Number of Students Making Score	
0-20	0	
21-40	18	
41-60	36	
61 - 80	83	
81-100	110	
101-120	121	
121-140	73	
141-160	<u>16</u>	
Total	457	

Qualitative data

Major	Number of Student	
Science	429	
Arts	132	
Languages	41	
Social sciences	631	
Engineering	344	
Total	1577	

Histogram – no. of correct answers for 5 questions in an exam

Relative frequency

 Relative frequency counts the fractional part of the data that belong to a category

An exam has five possible grades: A, B, C, D, and E

Response	Frequency	Relative frequency
A	6	6/60=0.1
В	14	14/60=0.23
C	8	8/60=0.13
D	22	22/60=0.37
E	10	10/60=0.17

Total = 60

Total = 1

When dealing with continuous data...

- A smooth curve conveys the impression of continuous data better than a histogram.
- Sketch a smooth curve based on a histogram by drawing it through the midpoints at the top of the bars

Continuous data – example

61 63 65

Height in inches

Probability distributions of two coins

Example - RV

A coin is flipped 3 times 3 heads earn 3 points 2 heads earn 1 point 3 tails earn -3 points 2 tails earn -1 point

If $p =$	0.4,			
	.432			
.216		.288		
				.064
-3 -2	-1 0	1	2	3

ω	$X(\omega)$	$P\{\omega\}$
ннн	3	p^3
ННТ	1	$p^2(1-p)$
нтн	1	$p^2(1-p)$
тнн	1	$p^2(1-p)$
НТТ	-1	$p(1-p)^2$
THT	-1	$p(1-p)^2$
TTH	-1	$p(1-p)^2$
TTT	-3	$(1-p)^3$

Probability distribution function – another look

Example

- 15 cards with 5 colored red, 3 colored black, and 7 colored green
- The cards are shuffled, and 2 cards selected
 - No points if both cards different colors
 - Five points if both cards are green
 - 10 points are if both cards are red
 - 5 points are if both cards are black

Random variable

Outcome	Value of <i>X</i> (points)
Red and black	0
Red and green	0
Red and red	10
Black and black	15
Black and green	0
Green and green	5

The probability of drawing two greens is $\frac{C(7,2)}{C(15,2)} = 0.200$

of two reds
$$\frac{C(5,2)}{C(15,2)} = 0.095$$

of two blacks
$$\frac{C(3,2)}{C(15,2)} = 0.029$$

\boldsymbol{X}	P(X)	
0	0.676	1- (0.2+0.095+0.029)
5	0.200	
10	0.095	
15	0.029	

One more example

- Two people are selected from a group of five men and four women
- A random variable X is the number of women selected
- What is the range of RV?
- $X = \{0, 1, 2\}$
- Range is 0 to 2

Outcome	X
Three men	0
One man and one woman	1
Two women	2

Outcome	X	Possible ways
Two men	0	C(5,2) = 5!/(3!x2!) = 10
One man and one woman	1	C(5,1).C(4,1)=5!/(4!x1!) x 4!/(3!x1!)=20
Two women	2	C(4,2)=4!/(2!2!)=6

Two people from nine: C(9,2) = 9!/(7!x2!) = 36

Probability for {0, 1, 2}

X	P(X)	
0	$\frac{10}{36}$	
1	$\frac{20}{36}$	
2	$\frac{6}{36}$	
	I	

Average

- N numbers are given
- Add all the numbers and divide by N

Expectation

- Kind of average for random variable
- Dealing with probabilities

Difference between average and expectation - mathematically

Average of N numbers:

Weighting factor is (1/N)

Expectation of random variable with N outcomes

Weighting factor is probability

Average

Average =
$$(x_1+x_2+...x_n)/n$$

= $(1/n).x_1 + (1/n).x_2 + ...(1/n).x_n$

- All the data are weighed equally with (1/n)
- (1/n) can also be called as weighing function

Expectation

- Let X represent the outcome of a roll of an unbiased six-sided die
- Possible values for X are 1, 2, 3, 4, 5, & 6
- Each having the probability of occurrence of 1/6

Expectation

$$E(X)=(1/6)*1+(1/6)*2+(1/6)*3+(1/6)*4+(1/6)*5+(1/6)*6$$

$$E(X)=3.5$$

Average

- Suppose that in a sequence of ten rolls of the die, if the outcomes are 5, 2, 6, 2, 2, 1, 2, 3, 6, 1,
- Average (arithmetic mean) of the results is given by

$$(5+2+6+2+2+1+2+3+6+1)/10=3.0$$

Average and expectation

- Expectation: Outcome is not sure i.e. in the form of probability
- Average: Deterministic data values

Previous E.g.

- Average value is 3.0, with the distance of 0.5 from the expectation value of 3.5
- Roll the die N times, N is very large
- Then the average will converge to the expected value,

Average $(X) \rightarrow Expected(X)$

Expectation – rolling fair dice

Expectation – rolling biased dice

Expectation

- Consider a random variable
- Probability function

$$[x_1, x_2,, x_n]$$

$$[p_1, p_2,, p_n]$$

Average of X

$$\overline{X} = \sum_{k=1}^{n} p_k x_k$$

Expectation - example

$$x_i$$
 2 5 9 24 p_i 0.4 0.2 0.3 0.1

$$E(X) = 0.4 \times 2 + 0.2 \times 5 + 0.3 \times 9 + 0.1 \times 24$$
$$= 0.8 + 1.0 + 2.7 + 2.4$$
$$= 6.9$$

One more example

- •A tray of fruits contains nine good and three rotten.
- •Two fruits selected at random
- •What is the expected number of rotten?

- Let the random
 variable X be the
 number of defective
- •X can have the value 0, 1, or 2

Solution

P(0) = probability of no defective (both good)

$$=\frac{C(9,2)}{C(12,2)}=\frac{36}{66}=\frac{12}{22}$$

P(1) = probability of one good and one defective

$$= \frac{C(9,1)C(3,1)}{C(12,2)} = \frac{27}{66} = \frac{9}{22}$$

P(2) = probability of two defective

$$=\frac{C(3,2)}{C(12,2)}=\frac{3}{66}=\frac{1}{22}$$

$$E(X) = \frac{12}{22}(0) + \frac{9}{22}(1) + \frac{1}{22}(2) = \frac{11}{22} = \frac{1}{2}$$

Interpretation:

If the experiment is repeated many times

- You expect to get no defectives a little less than half the time
- Either one or two the rest of the time

Standard deviation of a RV

x_i	4	7	10	8
p_i	0.2	0.2	0.5	0.1

x_i	p_i	$p_i x_i$	$x_i - \mu$	$(x_i-\mu)^2$	$p_i(x_i-\mu)^2$
4	0.2	0.8	-4	16	3.2
7	0.2	1.4	-1	1,	0.2
10	0.5	5.0	2	4	2.0
8	0.1	0.8	0	0	_0
		$\mu = 8.0$			$\sigma^2(X) = 5.4$

The variance of $\sigma^2(X) = 5.4$. So the standard deviation is

$$\sigma(X) = \sqrt{5.4} = 2.32$$

Uniform distribution

Non-uniform distribution

Discrete random variable:

Probability distribution – Probability Mass

$$\Sigma p(i) = 1$$

Continuous random variable: Probability distribution - Probability Density function - PDF

- In PDF what should not be asked?
- What is the probability @ some value of x?
- Ask what is the probability for x=x1 to x=x2 i.e. interval?

Some more points on PDF

- PMF values cannot be greater than 1
- But PDF values can be greater than 1
- Area under PDF = 1 (only condition)
- Consider following uniform distributions

PDF - Area gives probability

$$p(x1$$

$$\int_{a}^{b} p(x) \ dx = 1$$

PMF - probability values can be directly read

Probability Density Function, f(x)

Gaussian distribution – mean and standard deviation

$$\frac{1}{\sqrt{2 \pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2 \sigma^2}}$$

Defined from -∞ to +∞

Same mean – different standard deviations

Same standard deviation – different means

Standard normal deviation

- Make, $\sigma = 1$
- •Area under the curve becomes 1
- can be used as probability measure

Area under the normal curve

$$\overline{X} = \sum_{k=1}^{n} p_k x_k$$

$$More \quad generic \quad form,$$

$$\overline{\psi(X)} = \sum_{k=1}^{n} p_k . \psi(x_k)$$

Moments

$$E(X) = \bar{X} = \text{first-order moment of } X = \sum_{k=1}^{n} p_k x_k$$

$$E(X^2) = \overline{X^2} = \text{second-order moment of } X = \sum_{k=1}^{n} p_k x_k^2$$

$$E(X^3) = \overline{X^3} = \text{third-order moment of } X = \sum_{k=1}^n p_k x_k^3$$

