Student Performance Analysis Project

Objective:

To analyze student data and identify key factors affecting academic performance. This analysis helps provide insights for educators and students to improve outcomes.

Dataset: Student Performance Dataset (Math Subject) **Tools Used:** Python, Pandas, Matplotlib, Seaborn

Load and View the Dataset

We load the student-mat.csv dataset using Pandas and view the first few rows.

In [19]:	<pre>import pandas as pd df = pd.read_csv("C:\\Users\\PRAKASH ROUT\\Downloads\\student\\student-mat.csv' df.head()</pre>									5V",			
Out[19]:		school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	•••	fan
	0	GP	F	18	U	GT3	А	4	4	at_home	teacher		
	1	GP	F	17	U	GT3	Т	1	1	at_home	other		
	2	GP	F	15	U	LE3	Т	1	1	at_home	other		
	3	GP	F	15	U	GT3	Т	4	2	health	services		
	4	GP	F	16	U	GT3	Т	3	3	other	other		
	5 rc	ows × 33	colur	mns									

Explore the Dataset

Let's check the dataset's shape, columns, data types, and null values.

```
In [20]: #Check Basic Info
    df.info()
    df.shape
    df.isnull().sum()
    df.describe()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 395 entries, 0 to 394
Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	school	395 non-null	object
1	sex	395 non-null	object
2	age	395 non-null	int64
3	address	395 non-null	object
4	famsize	395 non-null	object
5	Pstatus	395 non-null	object
6	Medu	395 non-null	int64
7	Fedu	395 non-null	int64
8	Mjob	395 non-null	object
9	Fjob	395 non-null	object
10	reason	395 non-null	object
11	guardian	395 non-null	object
12	traveltime	395 non-null	int64
13	studytime	395 non-null	int64
14	failures	395 non-null	int64
15	schoolsup	395 non-null	object
16	famsup	395 non-null	object
17	paid	395 non-null	object
18	activities	395 non-null	object
19	nursery	395 non-null	object
20	higher	395 non-null	object
21	internet	395 non-null	object
22	romantic	395 non-null	object
23	famrel	395 non-null	int64
24	freetime	395 non-null	int64
25	goout	395 non-null	int64
26	Dalc	395 non-null	int64
27	Walc	395 non-null	int64
28	health	395 non-null	int64
29	absences	395 non-null	int64
30	G1	395 non-null	int64
31	G2	395 non-null	int64
32	G3	395 non-null	int64

dtypes: int64(16), object(17)
memory usage: 102.0+ KB

Out[20]:

		age	Medu	Fedu	traveltime	studytime	failures	fam
col	unt	395.000000	395.000000	395.000000	395.000000	395.000000	395.000000	395.0000
me	ean	16.696203	2.749367	2.521519	1.448101	2.035443	0.334177	3.9443
	std	1.276043	1.094735	1.088201	0.697505	0.839240	0.743651	0.8966
r	nin	15.000000	0.000000	0.000000	1.000000	1.000000	0.000000	1.0000
2	5%	16.000000	2.000000	2.000000	1.000000	1.000000	0.000000	4.0000
5	0%	17.000000	3.000000	2.000000	1.000000	2.000000	0.000000	4.0000
7	5%	18.000000	4.000000	3.000000	2.000000	2.000000	0.000000	5.0000
n	nax	22.000000	4.000000	4.000000	4.000000	4.000000	3.000000	5.0000

Understand the Features

Explore categorical and numerical columns to understand their distributions.

```
In [21]: #Check data types and unique values:

    df['sex'].value_counts()
    df['studytime'].value_counts()

Out[21]: failures
    0    312
    1    50
    2    17
    3    16
    Name: count, dtype: int64

In [22]: # Understand target variable
    df['average_score'] = df[['G1', 'G2', 'G3']].mean(axis=1)
```

Data Cleaning

```
In [24]: # Handle categorical data if needed
    # Convert binary columns (yes/no) to 1/0
    df['schoolsup'] = df['schoolsup'].map({'yes': 1, 'no': 0})
In [25]: # Check and remove duplicates
    df.drop_duplicates(inplace=True)
```

Exploratory Data Analysis (EDA)

In this step, we explore the dataset visually to uncover patterns, trends, and relationships between different features and student performance.

We use **Matplotlib** and **Seaborn** libraries to create informative visualizations.

```
In [26]: import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="whitegrid")
```

1. Distribution of Average Scores

We analyze how the average scores of students are distributed across the dataset.

```
In [28]: sns.histplot(df['average_score'], kde=True)
  plt.title('Distribution of Average Student Scores')
  plt.show()
```


2. Study Time vs Average Score

We visualize how the amount of time students dedicate to studying impacts their average scores.

```
In [29]: sns.boxplot(x='studytime', y='average_score', data=df)
   plt.title('Study Time vs Average Score')
   plt.show()
```


3. Gender vs Performance

We compare average scores between male and female students to see if there's a performance gap

```
In [12]: # gender comparison
    sns.boxplot(x='sex', y='average_score', data=df)
    plt.title('Gender vs Average Score')
    plt.show()
```


4. Failures vs Average Score

We explore how the number of past class failures affects student performance.

```
In [13]: # Failure VS Performance
    sns.barplot(x='failures', y='average_score', data=df)
    plt.title('Failures vs Average Score')
    plt.show()
```


Correlation Analysis

In this step, we analyze how numeric features are correlated with each other, especially with the final grade (G3) and the average_score .

failures

A correlation matrix helps us identify:

- Strong positive or negative relationships
- Multicollinearity
- Key influencing factors for student performance

```
In [30]: # co-relations heatmap
plt.figure(figsize=(12,8))
sns.heatmap(df.corr(numeric_only=True), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```


Key Insights & Recommendations

Key Insights:

1. Previous Grades (G1, G2):

- Strongly correlated with the final grade (G3).
- Students with higher scores in G1 and G2 tend to perform well in G3.

2. Study Time:

- More study time is generally associated with better performance.
- Students who study more than 2 hours show higher average scores.

3. Failures:

- Number of past class failures negatively affects the final grade.
- Students with 0 past failures perform significantly better.

4. Parental Education:

 A slight positive impact on student performance, especially from mother's education level.

5. Gender:

• No major difference in performance between male and female students.

Recommendations:

- **Early Intervention:** Track student grades from G1 and G2 to identify those who may need extra help before final exams.
- **Encourage Study Time:** Promote study habits of more than 2 hours per week to improve overall performance.
- **Support Struggling Students:** Provide extra tutoring for students with a history of failures.
- **Continue School Support Programs:** These help improve performance and should be maintained or expanded.
- **Parental Engagement:** Educating parents about their influence can positively impact student outcomes.

XXX Conclusion:

This analysis provides a clear picture of the key factors that influence student academic performance. With the right support systems and timely interventions, educators and parents can work together to help students succeed.

In []: