MANIPAL UNIVERSITY JAIPUR

School of Computing and IT

Department of Computer and Communication Engg.

Course Hand-out

Data Structures | CS1303 | 4 Credits | 3 1 0 4

Session: July 19 – Nov 19 | Faculty: Manoj K Bohra | Class: III CCE

- A. Introduction: This course is offered by Computer Science and Engg. Dept., targeting students who wish to pursue development and research in industries or higher studies in field of Computer Science, IT and Communication Engineering. This course will form the base of computer science and engineering and hence this course is introduced at this level to make the students understand various ways of organizing data and storing it into memory and use the type depending upon the application.
- **B. Course Outcomes:** At the end of the course, students will be able to
 - [CS1303.1] explain basic concepts of various data structures
 - [CS1303.2] describe how arrays, linked lists, stacks, queues, trees and graphs are represented in memory and their operations
 - [CS1303.3] select and/or apply appropriate data structures to solve problems and assess the trade-offs involved in the design choices.
 - [CS1303.4] describe and analyze various sorting algorithms like bubble, selection ,insertion, merge sort, heap sort and quick sort

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1] Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- [PO.2] Problem analysis: <u>Identify, formulate</u>, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3] Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified

needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

- [PO.4] Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.5] Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- [PO.6] The engineer and society: Apply reasoning informed by the <u>contextual</u> <u>knowledge to assess societal, health, safety, legal, and cultural issues</u> and the consequent responsibilities relevant to the professional engineering practice
- [PO.7] Environment and sustainability: Understand the <u>impact of the professional</u> engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8] Ethics: Apply ethical principles and commit to <u>professional ethics</u> and responsibilities and norms of the engineering practices
- [PO.9] Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- [PO.10] Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11] Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12] Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and <u>life-long learning</u> in the broadest context of technological change
 - [PSO.1] Should be able to clearly understand the basic principles, concepts and applications in the field of computer based Communication/networking, information

sharing, signal processing, web based systems, smart devices and communication technology.

[PSO.2] Should be able to nail down the issues prevalent in the field of Computer and Communication Engineering.

[PSO.3] Should be able to identify the existing open problems in the field of computing and propose the best possible solutions.

[PSO.4] Should be able to apply the contextual knowledge in the field of computing and communication to assess social, health, safety and cultural issues and endure the consequent responsibilities relevant to the professional engineering practice.

D. Assessment Plan:

Criteria	Description	Maximum Marks								
	Sessional Exam I (Closed Book)	15								
Internal Assessment	Sessional Exam II (Closed Book)	15								
(Summative)	In class Quizzes and Assignments,	30								
	Activity feedbacks (Accumulated and									
	Averaged)									
End Term Exam	End Term Exam (Closed Book)	40								
(Summative)										
	Total	100								
Attendance	A minimum of 75% Attendance is required	ninimum of 75% Attendance is required to be maintained by a								
(Formative)	student to be qualified for taking u	dent to be qualified for taking up the End Semester								
	examination. The allowance of 25% inclu	mination. The allowance of 25% includes all types of leaves								
	including medical leaves.									
Make up Assignments	Students who misses a class will have to rep	oort to the teacher about								
(Formative)	the absence. A makeup assignment on the	topic taught on the day								
	of absence will be given which has to be su	ubmitted within a week								
	from the date of absence. No extensions w	ill be given on this. The								
	attendance for that particular day of absence	e will be marked blank,								
	so that the student is not accounted for abse	ence. These assignments								
	are limited to a maximum of 5 throughout t	the entire semester.								
Homework/ Home	There are situations where a student may	have to work in home,								
Assignment/ Activity	especially before a flipped classroom. Alt	hough these works are								
Assignment	not graded with marks. However, a s	tudent is expected to								
(Formative)	participate and perform these assignments	with full zeal since the								
	activity/ flipped classroom participation	by a student will be								
	assessed and marks will be awarded.									

E. SYLLABUS

Introduction: Algorithm specification; Performance Analysis: Time and Space Complexity, Asymptotic notation; pointer declaration and definition, memory allocation functions, array of pointers; The type definition, enumerated types, accessing structures, complex structures, arrays of structures, structures and functions; Recursive definition & processes, Recursion in C, writing recursive programs efficiency of recursion, Examples: Tower of Hanoi, GCD, Fibonacci Definition and examples, Representing Stacks in C, Evaluation of expressions, multiple stacks and queues; Applications: infix, postfix and prefix and their conversions. Linked lists representations, Singly, doubly, header node, circular, Applications: linked stacks and queues, polynomial and long integer arithmetic, union, intersection, Basic terminologies, binary tree representation, recursive/ non recursive, Binary search tree, AVL trees; Applications: Expression Trees, inserting, deleting, searching, height of BST Terminology and representations, Graph operations, spanning trees, minimum cost spanning tree, shortest path and transitive closure, Binary and linear search, insertion, quick, merge, heap, radix sort Static Hashing.

F. TEXT BOOKS

T1. Aaron M. Tenenbaum, Yedidyah Langsam, Moshe J. Augenstein, "Data Structures using C", Pearson Education, 2013.

G. REFERENCE BOOKS

- R1. Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed, "Fundamentals of Data Structures in C", University Press (India) Pvt. Ltd., 2014.
- R2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, 2012
- R3. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, " *Introduction to algorithms*", PHI, Third Edition, 2009
- R4. Seymour Lipschutz, "Data Structures with C (Schaum's Outline Series)", McGraw Hill Education Private Limited, 2011.
- R5. Mark Allen Weiss, "Data structures and Algorithm Analysis in C", Pearson, Second edition, 2014.

H. LECTURE PLAN

Le c N	Major Topics	Topics	Session Outcome	Mode of Deliver y	Correspo nding CO	Mode Of Assessing CO
1.	Introduction	Introduction to data structures, Algorithm Specifications, How to Write Algorithms	define data structure and list various data structure.	Lecture	CS1303.1	Class Quiz End Term
2.		Performance Analysis- Time and Space Complexity, Asymptotic Analysis, Example , Functions in 'C', Example Programs on Functions	analyze time complexity of simple algorithms.	Lecture	CS1303.1 CS1303.1	Class Quiz Home Assignments I Sessional End Term
3.	Arrays	Example Programs on Functions, Arrays: Introduction, Single Dimensional Arrays: Declaration, Initialization, Operations (Insertion and Deletion of Element)	define arrays and apply knowledge on single dimensional arrays in writing programs.	Lecture	CS1303.1 CS1303.2	Class Quiz Home Assignments I Sessional End Term
4.		Searching in Single Dimensional Arrays – Selection Sort, Linear and Binary Search	construct searching and sorting algorithms and write programs using single dimensional arrays.	Lecture	CS1303.2	Class Quiz Home Assignments I Sessional End Term
5.		Multidimensional Arrays, Two	explain row major and column major	Lecture	CS1303.1	Class Quiz

	Dimensional Arrays: Declaration,	memory allocation in 2-D arrays, Apply		CS1303.2	Home
	Initialization, Addition of Two	knowledge on two dimensional arrays in			Assignments
	Matrices, Row Major and Column	writing programs			I Sessional
	Major Representation				End Term
6.	Example Programs on Two	apply knowledge on two dimensional arrays	Lecture	CS1303.2	Class Quiz
	Dimensional Arrays, Row Major and	in writing programs.		CS1303.3	Home
	Column Major Representation				Assignments
					I Sessional
					End Term
7.	Pointers : Introduction, Example	illustrate dynamic memory allocation using	Lecture	CS1303.1	Class Quiz
	Programs on Pointers, Pointers and	pointers in solving problems requiring list of		CS1303.2	Home
	Arrays, Dynamic Memory Allocation	values.			Assignments
					I Sessional
					End Term
8.	Dynamic Memory Allocation: Dynamic	apply knowledge on pointers in writing	Lecture	CS1303.1	Class Quiz
	Array creation, Dynamic structure	programs.		CS1303.2	Home
	creation.				Assignments
					I Sessional
					End Term
9.	Problems solving by students on array	analyze the applicability of array as	Tutorial	CS1303.3	Class Quiz
		appropriate Data Structure to solve the			Home
		problem and develop an algorithm/program			Assignments
		to provide the solution to a given problem			I Sessional
		through it.			End Term
10.	Problems solving by students on array	structure mapping and model a given real	Tutorial	CS1303.3	Class Quiz
		world problem into array.			Home
					Assignments
					I Sessional
					End Term

11.	Linked List	Linked List: Introduction, Basic	describe linked list data structure,	Lecture	CS1303.1	Class Quiz
		Terminologies, Advantages over	disadvantages of array based storage and		CS1303.2	Home
		Arrays, Applications, Structures in 'C',	need of linked list data structure, develop			Assignments
		Example Programs on Structures and	structures in 'C' and dealing it with pointers.			I Sessional
		pointer to Structure				End Term
12.		Passing Structures to Functions, Singly	pass structures to functions, to explain self-	Lecture	CS1303.1	Class Quiz
		Linked List: Introduction, Operations	referential structures and functions, describe		CS1303.2	Home
			linked list storage structure and basic			Assignments
			operations.			I Sessional
			1			End Term
13.		Singly Linked List : Operations	implement singly linked list storage structure	Lecture	CS1303.1	Class Quiz
		(Continued)	and basic operations (insertion, deletion and		CS1303.2	Home
			searching) defined over it.			Assignments
						I Sessional
						End Term
14.		Circular Linked List: Introduction,	understand and implement circular linked	Lecture	CS1303.1	Class Quiz
		Operations	list storage structure and basic operations		CS1303.2	Home
			(insertion, deletion and searching) defined			Assignments
			over it.			I Sessional
				_		End Term
15.		Doubly Linked List : Introduction,	understand and implement circular linked	Lecture	CS1303.1	Class Quiz
		Operations	list storage structure and basic operations		CS1303.2	Home
			(insertion, deletion and searching) defined			Assignments
			over it.			I Sessional
1.6				т.	661202.2	End Term
16.		Some Example Programs on Linked	implement linked list operations like	Lecture	CS1303.3	Class Quiz
		List	reversing a linked list, finding middle of the			Home
			list, sorting a list etc.			Assignments
						I Sessional

						End Term
17.		Problems solving by students on linked	analyze the applicability of linked list as	Tutorial	CS1303.3	Class Quiz
		list	appropriate Data Structure to solve the			Home
			problem and develop an algorithm/program			Assignments
			to provide the solution to a given problem			I Sessional
			through it.			End Term
18.		Problems solving by students on	structuring, mapping and model a given real	Tutorial	CS1303.3	Class Quiz
		linked list	world problem into linked list.			Home
						Assignments
						I Sessional
						End Term
19.	Stacks	Recursive Functions, Example	explain the working philosophy of stack and	Lecture	CS1303.1	Class Quiz
		Programs on Recursive Functions,	how the system stack stores local function	/Expert	CS1303.3	Home
		Stack : About, Applications	calls.	-Lecture		Assignments
						II Sessional
						End Term
20.		Stack : Operations, Implementation of	develop a stack based application and realize	Lecture	CS1303.1	Class Quiz
		Stack using Array and Linked List	the stack functioning using arrays as well as	/Expert	CS1303.2	Home
			linked list and compare their	-Lecture		Assignments
			implementations.			II Sessional
			-			End Term
21.		Expression Notations : Polish Notation,	explain various forms of mathematical	Lecture	CS1303.3	Class Quiz
		Reverse Polish Notation, Infix Notation,	notations to express an expression and their			Home
		Evaluation of Expression written in	evaluation			Assignments
		Polish Notation				II Sessional
						End Term
22.		Evaluation of Expression written in	evaluate the postfix(infix) expression using	Lecture	CS1303.3	Class Quiz
		Reverse Polish Notation	stacks			Home
		Evaluation of Expression written in				Assignments

		Infix Notation				II Sessional
						End Term
23.		Conversion of Expression from one	explain how to realize a mathematical	Lecture	CS1303.3	Class Quiz
		Notation to Another	expression using stacks and to convert an			Home
			infix expression to postfix notation using			Assignments
			stack.			II Sessional
						End Term
24.		Conversion of Expression from one	convert an infix expression to prefix notation	Lecture	CS1303.3	Class Quiz
		Notation to Another	using stack			Home
						Assignments
						II Sessional
						End Term
25.		Problems solving by students on stack	develop recursive code, to handle the	Tutorial	CS1303.3	Class Quiz
		applications	problem using stacks, to analyze the			Home
			applicability of stack with respect to a given			Assignments
			problem			II Sessional
						End Term
26.	Queues	Linear Queue : Introduction,	explain Queue Data structure, its application	Lecture	CS1303.1	Class Quiz
		Applications, Operations,	in real world and its operations enqueue and		CS1303.2	Home
		Implementation using Array and	dequeue, to implement queue data structure			Assignments
		Linked List	using array and linked list.			II Sessional
						End Term
27.		Circular Queue : About, Applications,	explain Circular Queue Data structure, its	Lecture	CS1303.1	Class Quiz
		Operations, Implementation using	application in real world and its operations		CS1303.2	Home
		Array and Linked List	enqueue and dequeue			Assignments
						II Sessional
						End Term
28.		Priority Queue and Deques : About,	explain Priority Queue Data structure and	Lecture	CS1303.1	Class Quiz
		Applications, Operations,	Deques, its application in real world and its		CS1303.2	Home

		Implementation using Array and	operations enqueue and dequeue.			Assignments
		Linked List				II Sessional
						End Term
29.		Problems solving by students on queue	analyze the applicability of queue as	Tutorial	CS1303.3	Class Quiz
		applications	appropriate Data Structure to solve the			Home
			problem, to develop an algorithm/program			Assignments
			to provide the solution to a given problem			II Sessional
			through it.			End Term
30.	Trees	Trees : Introduction , Basic	describe about binary tree (BT), tree-	Lecture	CS1303.1	Class Quiz
		Terminology, Types of Trees, Binary	terminology, types of BT, creation of Binary		CS1303.2	Home
		Search Tree : Creation, : Searching an	Search Tree, search operations			Assignments
		Element , Insertion of Node	1			II Sessional
		,				End Term
31.		Binary Search Tree : Deletion of Node,	describe about deletion of a node in BST and	Lecture	CS1303.2	Class Quiz
		Determining Height	computing height			Home
						Assignments
						II Sessional
						End Term
32.		Binary Search Tree : Traversal (In-order,	explain different traversal in BST	Lecture	CS1303.2	Class Quiz
		Pre-order and Post- order)				Home
						Assignments
						II Sessional
						End Term
33.		Threaded Binary tree: Introduction,	describe about Threaded Binary tree, its	Lecture	CS1303.1	Class Quiz
		Creation , Insertion of Node, Deletion	applications and operations		CS1303.2	Home
		of Node and Traversal of Tree				Assignments
						End Term
34.		AVL Tree : Introduction , Applications	describe drawbacks of BST, Use of AVL tree,	Lecture	CS1303.1	Class Quiz

		Creation, Searching an Element,	how to insert a value in AVL and then		CS1303.2	Home
		Insertion of Node	required rotations (LL, RR, LR and RL)			Assignments
						End Term
35.		AVL Tree : Deletion of Node	describe how to delete a node from AVL tree	Lecture	CS1303.2	Class Quiz
			and then required rotations			Home
						Assignments
						End Term
36.		Heaps: Insertion of Node, Binary	describe what is heap, types, creations of max	Lecture	CS1303.1	Class Quiz
		Heap: Creation, Insertion of Element,	and min heaps, heap sort, use of heap in		CS1303.2	Home
		Deletion of Element	priority queue implementation			Assignments
						End Term
37.		Problems solving by students on tree	construct BST and AVL tree from given	Tutorial	CS1303.3	Class Quiz
		and its use	sequence of values			Home
						Assignments
						End Term
38.		Problems solving by students on tree	construct heap from given sequence of values	Tutorial	CS1303.3	Class Quiz
		and its use	and implement priority queue			Home
						Assignments
						End Term
39.	Graphs	Graphs: Introduction, Basic	describe representation of graph in term of	Lecture	CS1303.1	Class Quiz
		Terminology, Applications,	adjacency matrix with their complexity		CS1303.2	Home
		Representation of Graphs : Adjacency				Assignments
		Matrix Representation				End Term
40.		Representation of Graphs : Adjacency	describe representation of graph in term of	Lecture	CS1303.1	Class Quiz
		List Representation	adjacency list with their complexity		CS1303.2	Home
						Assignments
						End Term
41.		Graph Traversal : Breadth First	conceptualize on the various methods of	Lecture	CS1303.2	Class Quiz
		Traversal, Depth First Traversal	graph traversal and understand the concept			Home

			of Queue and Stack data structure			Assignments
						End Term
42.		Minimum Spanning Tree, Prims	understand the application of graph such as	Lecture	CS1303.2	Class Quiz
		Algorithm, Kruskal's Algorithm	TSP problem			Home
						Assignments
						End Term
43.		Shortest Path Algorithms: Dijkstra's	understand the application of graph such as	Lecture	CS1303.2	Class Quiz
		Algorithm, Floyd's Algorithm	computer networking(Routing System)			Home
						Assignments
						End Term
44.		Problems solving by students on graph	find shortest path using Dijkstra's Algorithm	Tutorial	CS1303.3	Class Quiz
		algorithms	and Floyd's Algorithm for a given graph			Home
						Assignments
						End Term
45.		Problems solving by students on graph	find MST using Prims Algorithm and	Tutorial	CS1303.3	Class Quiz
		algorithms	Kruskal's Algorithm for a given graph			Home
						Assignments
						End Term
46.	Searching &	Sorting: Introduction, Bubble Sort,	describe the concept of sorting with various	Lecture	CS1303.1	Class Quiz
	Sorting	Insertion Sort	sorting algorithm			Home
						Assignments
						End Term
47.		Sorting (Continued) : Quick Sort,	describe the application of sorting such as	Lecture	CS1303.1	Class Quiz
		Merge Sort	medical monitoring		CS1303.4	Home
						Assignments
						End Term
48.		Sorting (Continued): Radix Sort, Heap	describe the concept of priority queue with	Lecture	CS1303.1	Class Quiz
		Sort	the help of heap sort		CS1303.4	Home
						Assignments

					End Term
49.	Hashing : Introduction, Applications,	describe different hashing	Lecture	CS1303.1	Class Quiz
	Hash Functions	techniques/functions		CS1303.2	Home
				CS1303.4	Assignments
					End Term
50.	Hash Collisions, Collision Resolution :	describe different collision resolving	Lecture	CS1303.1	Class Quiz
	Open Addressing, Chaining	techniques with examples		CS1303.2	Home
					Assignments
					End Term
51.	Problems solving by students on soring	develop program for searching and sorting	Tutorial	CS1303.3	Home
	and its application				Assignments
					End Term
52.	Problems solving by students on	develop program for hashing	Tutorial	CS1303.3	Home
	hashing and its application				Assignments
					End Term

A. Course Articulation Matrix: (Mapping of COs with POs)

СО	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES									CORRELATION WITH PROGRAM SPECIFIC OUTCOMES					
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CS 1303.1	explain basic concepts of various data structures	3	2										2	3			1
CS 1303.2	describe how arrays, linked lists, stacks, queues, trees and graphs are represented in memory and their operations		1	2									2		2	2	
CS 1303.3	select and/or apply appropriate data structures to solve problems and assess the trade-offs involved in the design choices.		1	2									2		2	2	
CS 1303.4	describe and analyze various sorting algorithms like bubble, selection ,insertion, merge sort, heap sort and quick sort		1	2									2	2		1	

¹⁻ Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation