Exercise Week 04

GianAndrea Müller mailto:muellegi@student.ethz

March 21, 2018

-Time Schedule

Time Schedule

- 3' Nachbesprechung
- 10' Dezimalzahlen im Binärsystem mit Übung
- a 10' Fliesskommassustem F*(2.24 −126.127)
- 10' Funktioner
- 10' Funktionsdefinition- und deklaration
- 10" Pre- and post-conditions
- 10' Übung zu Funktionen

Time Schedule

- 3' Nachbesprechung
- 10' Dezimalzahlen im Binärsystem mit Übung
- 10' Fliesskommasystem $\mathcal{F}^*(2, 24, -126, 127)$
- 10' Tips zu Fliesskommazahlen
- 10' Funktionen
- 15' Pause
- 10' Funktionsdefinition- und deklaration
- 10' Pre- and post-conditions
- 10' Übung zu Funktionen

Learning Objectives

Learning Objectives

Learning Objectives

Verständnis des Fliesskommasystems
 Nutzung von Funktionen

- Verständnis des Fliesskommasystems
- Nutzung von Funktionen

\square Nachbesprechung

- Ein Kommentar übermittelt Verständnis der Semantik und nicht der Syntax. Wieso nicht Was.
- Man sollte versuchen, den Zweck des Snippets zu verstehen. Wichtig für die Prüfung!

Nachbesprechung

Nachbesprechung

- Kommentieren heisst nicht: Dasselbe in grün.
- Snippets: Verständnis zeigen!

Dezimalzahlen im Binärsystem

Dezimalzahlen im Binärsystem

binăr: 1 1 1 1 1 1 1 1 1 1 dezimal: 8 4 2 1 1 1 1 1

binär:	1	1	1	1	1	1	1
dezimal:	8	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$

Dezimalzahlen im Binärsystem

	E 1.12		D	
•	Erklärung	ım	Dezima	isysten

- 1. Stelle abziehen.
- 2. Verschiebung mit mal 10.
- Erklärung im Binärsystem
 - 1. Stelle abziehen.
 - 2. Verschiebung mit mal 2.
- Zusatzinfo: Es git also Zahlen, die in bestimmten Zahlensystemen keine **finite Darstellung** haben!

X	d_i	$x - d_i$
1.934	1	0.934
9.34	9	0.34
3.4	3	0.4
4	4	0

X	bi	$x - b_i$
1.9	1	0.9
1.8	1	0.8
1.6	1	0.6
1.2	1	0.2
0.4	0	0.8
1.6	1	0.6
	:	

$$1.1\overline{1100}$$

Exercise $4_{-1} \sim 2'$

Exercise $4_{-}1 \sim 2'$

Berechne die binäre Darstellung folgender Dezimalzahlen:

0.25

Exercise $4.1 \sim 2'$

Berechne die binäre Darstellung folgender Dezimatzahlen:

2 11.1

Solution 4_1

Solution 4_1

X	b _i	$x-b_i$
0.25	0	0.25
0.5	0	0.5
1	1	0

Lösung 2.

X	bi	$x-b_i$
0.1	0	0.1
0.2	0	0.2
0.4	0	0.4
0.8	0	0.8
1.6	1	0.6
1.2	1	0.2
	:	

Unser kleines 10bit Fliesskommasystem

Unser kleines 10bit Fliesskommasystem

Beschreibung von Fliesskommasystemen Anzahl Stellen ≥ 1 $\mathcal{F}(\underbrace{\beta}, \underbrace{p}, \underbrace{e_{min}, e_{max}})$ Basis ≥ 2 Kleinster und Grösster Exponent

- Erste Idee: 2.73 · 10¹²
- Genau ein Stelle, also 1 bit vor dem Komma
- 5 bits für Nachkommastellen
- 4 bits für den Exponenten
- Anwenden des Bezeichnungsschemas

000000000

- Vorkommastelle
- Nachkommastellen
- Exponent

Unser kleines 10bit Fliesskommasystem

0000000000

 $-\mathcal{F}(2,6,0,15)$

- Wir möchten auch negative Exponenten.
- Interpretation als unsigned int mit Verschiebung ins negative (IEEE 754 Standard), schnellere Rechnungen möglich)

•

 $\mathcal{F}(2,6,0,15)$

000000000

- Vorkommastelle
- Nachkommastellen
- Exponent

```
Beispiele

\underbrace{1.11111 \cdot 2^{15}}_{\text{Grösste Zahl}} \underbrace{0.00001 \cdot 2^{0}}_{\text{Kleinste Zahl}}
```

$$\mathcal{F}(2,6,-8,7)$$

- Wir brauchen negative Zahlen!
- Wir brauchen das erste Bit nicht zwingend wenn wir annehmen, dass es immer 1 ist.

$$\mathcal{F}(2,6,-8,7)$$

000000000

- Vorkommastelle
- Nachkommastellen
- Exponent

Beispiele $\begin{array}{ccc} \underline{\mathbf{1.11111 \cdot 2^7}} & \underline{\mathbf{0.00001 \cdot 2^{-8}}} \\ \mathbf{Gr\"{o}sste\ Zahl} & \mathbf{Kleinste\ Zahl} \end{array}$

$$\mathcal{F}^*(2,6,-8,7)$$

- Wir können 0 nicht mehr darstellen
- Ein Exponent für spezielle Zahlen: -8 = 0000
- Und die Nachkommastellen als Codierung für diese Zahlen

$\mathcal{F}^*(2,6,-8,7)$

000000000

- Vorzeichenstelle
- Nachkommastellen
- Exponent

$$-\mathcal{F}^*(2,6,-7,7)$$

$$\mathcal{F}^*(2,6,-7,7)$$

- Wir können 0 nicht mehr darstellen
- Ein Exponent für spezielle Zahlen: -8 = 0000
- Und die Nachkommastellen als Codierung für diese Zahlen
- Jetzt verstehen wir auch 32bit float und 64bit double

000000000

- Vorzeichenstelle
- Nachkommastellen
- Exponent

Exercise $4_2 \sim 5'$

Exercise $4_2 \sim 5'$

Exercise $4.2 \sim 5'$

Floating point systems following IEEE 754

What is the largest possible normalized single and double precision

Floating point systems following IEEE 754

- float (IEEE 745): $\mathcal{F}^*(2,24,-126,127)$
- double (IEEE 745): $\mathcal{F}^*(2,53,-1022,1023)$
- What is the largest possible normalized single and double precision floating point number?
- What is the smallest possible normalized single and double precision floatig point number?

Solution 4_2

Solution 4_2

Solution 4.2

 Smallest normalized number: 2⁶min
 Largest normalized number, float: +1.11111111111111111111111111111. 2²²⁷

 $\left(1 - \left(\frac{1}{\beta}\right)^{\theta}\right) \beta^{\theta_{\max}+1}$

Floating point systems following IEEE 754

- Smallest normalized number: $2^{e_{min}}$

$$\left(1-\left(\frac{1}{\beta}\right)^p\right)\beta^{e_{max}+}$$

Solution 4_2

```
Solution 4.2 \begin{split} \mathcal{P}(2,4,-1) & \text{ of Gristan positive Zabl:} \\ & \text{ of Gristan positive Zabl:} \\ & \text{ IIIIIII. } 2^2 \\ & \text{ O Das enterprichts:} \\ & \text{ IIIIIIII0} \\ & \text{ of Gristan positive Zabl mit Bilts:} 2^k-1 \\ & \text{ of Gristan positive Zabl mit Bilts:} 2^k-1 \\ & \text{ of Gristan positive Zabl mit Zabl:} 2^k-1 \\ & \text{ of Mit variables:} \\ & (\beta^{m-1}-1)-(\beta^{m-1+p}-1)=(\beta^{m-1-1}-\beta^{m-1+p})^{-1} \\ & - \left(1-\left(\frac{1}{2}\right)^{p}\right)^{p_{m-1}} \end{split}
```

Solution 4_2

$$\mathcal{F}^*(2,6,-7,7)$$

Grösste positive Zahl:

$$1.111111 \cdot 2^7$$

② Das entspricht:

- 3 Grösste positive Zahl mit 8bit: $2^8 1$
- **4** Grösste positive Zahl mit 2bit: $2^2 1$
- Mit variablen:

$$(\beta^{e_{max}+1} - 1) - (\beta^{e_{max}+1-p} - 1) = (\beta^{e_{max}+1} - \beta^{e_{max}+1-p})$$

$$= \left(1 - \left(\frac{1}{2}\right)^{p}\right) \beta^{e_{max}+1}$$

Tipps zu Fliesskommazahlen

Tipps zu Fliesskommazahlen

```
1 //Kein Vergleich gerundeter Zahlen
double a = 1.1;
3 if (100*a == 110) cout << true << endl;</pre>
5 //Keine Add. versch. grosser Zahlen
float a = 67108864.0f + 1.0f
  //output: 67108864
  //Keine Subtr. aehnlich grosser Zahlen
10 float x_0 = 0.2;
 //represented as: 0.20000000298
float x_1 = 6*x_0 - 1; //is not 0.2
```

Funktionsdefinition und -deklaration

Funktionsdefinition und -deklaration

Funktionsdefinition und -deklaration

```
void g (...); //declaration of g
3 void f (...)
   g(...);
void g (...) // definition of g
   f(...);
```

PRE- und POST-Bedingungen

PRE- und POST-Bedingungen

```
# #include <cmath>
  int main(){
    // PRE: Value representing angle
       expressed in radians
    // POST: Cosine of x
    // double cos(double x);
    double x = M_PI;
    double result = cos(M_PI);
10
```