

Fundamentals of Cybersecurity

Chapter Three: Cryptography

Senait Desalegn

School of Information Technology and Engineering
Addis Ababa Institute of Technology
Addis Ababa University
March 2024

Contents

Basics of Cryptography

Encryption Techniques

Symmetric cryptography

Asymmetric cryptography (public key cryptography)

Key management and exchange

Cryptographic hash functions and certificates

Overview of cryptanalysis

SITE - AAIT - AAU

CHAPTER 3

Application and OS security

A Computer Model

An operating system has to deal with the fact that a computer is made up of a **CPU**, **random access memory** (RAM), **input/output** (I/O) devices, and long-term **storage**.

OS Concepts

An **operating system (OS)** provides the **interface between** the **users** of a computer and that computer's **hardware**.

An operating system <u>manages</u> the ways <u>applications access</u> the resources in a computer, including its disk drives, CPU, main memory, input devices, output devices, and network interfaces.

- —An operating system **manages multiple users**.
 - Unique **needs** and **rights** of **users/groups** should be **respected /malicious** activities **avoided**
- —An operating system **manages multiple programs**.
 - •Protecting each **running** app from **interfering** with **each other**/ avoid damaging of **resources** by **malicious** apps

Basic Terminologies

- Cryptanalysis deals with finding the encryption key without the knowledge of the encryptor
- Cryptology deals with cryptography and cryptanalysis
- Cryptanalysis deals with breaking (cracking) encryption
- Cryptosystems are computer systems used to encrypt data for secure transmission and storage
- **Cipher -** is a method for encrypting messages
- Plaintext is text that is in readable form
- Ciphertext results from plaintext by applying the encryption key

SiTE - AAIT - AAU

Basic Terminologies...

- Keys are rules used in algorithms to convert a document into a secret document
- Keys are of two types:
 - Symmetric
 - the same key is used both for encryption and decryption
 - E.g. DES (Data Encryption Standard), AES (Advanced En. St.)
 - Asymmetric
 - different keys are used for encryption and decryption
 - E.g. RSA (Rivest-Shamir-Adleman)

7

Basic Terminologies...

Basic Notations

- -M message,
- -P plaintext
- –C ciphertext,
- -E encryption,
- D decryption,
- -k key

$$\Leftrightarrow C = E(M)$$

$$*C = E(M, k)$$

$$\phi M = D(C)$$

$$Arr M = D(C, k)$$

Encryption Techniques

Kerckhoffs's Principle

- An encryption scheme should be secure even if enemy knows everything about it except the key
 - Attacker knows all algorithms
 - Attacker does not know random numbers
 - use a good random number generator!
- Secret algorithm creates additional hurdle
 - Hard to keep secret if used widely
- Do not rely on secrecy of the algorithms
 - "security by obscurity"

Encryption

- Encryption algorithms are standardized & published
- The key which is an input to the algorithm is secret

Types of cryptographic algorithms

- Encryption and decryption are conducted using algorithms
- * Cryptographic algorithms can be classified based on the number of keys that are employed for encryption and decryption.
- The three types of algorithms:
 - -Secret Key Cryptography (SKC): Uses a single key (symmetric key) for both encryption and decryption
 - -Public Key Cryptography (PKC): Uses one key for encryption and another for decryption (asymmetric key)
 - Hash Functions: Uses a mathematical transformation to irreversibly "encrypt" information

SITE - AAIT - AAU

Types of cryptographic algorithms...

13

Secret Key Cryptography (Symmetric)

- * A single key is used for both encryption and decryption.
- The sender uses the key (or some set of rules) to encrypt the plaintext and sends the ciphertext to the receiver.
- The receiver applies the same key (or ruleset) to decrypt the message and recover the plaintext.
- Because a single key is used for both functions, secret key cryptography is also called symmetric encryption.
- With this form of cryptography, it is obvious that the key must be known to both the sender and the receiver; that, in fact, is the secret.

Public-Key Cryptography (Asymmetric)

- Generic Public-Key Cryptography (PKC(employs two keys)
 - —One key to encrypt the plaintext and the other key to decrypt the ciphertext.
- The two keys are mathematically related
- * Knowledge of one key does not allow to easily determine the other key.
- Because a pair of keys are required for the process to work, this approach is also called **asymmetric cryptography**.
- One of the keys is designated the public key and may be advertised as widely as the owner wants.
- The other key is designated the private key and is never revealed to

AND SERVICE AND ASSESSED ASSES

15

Hash functions

- Hash functions, also called message digests and one-way encryption, are algorithms that use no key
 - -Instead, a fixed-length hash value is computed based upon the plaintext
 - —impossible for either the contents or length of the plaintext to be recovered.
- Hash algorithms are typically used to provide a digital fingerprint of a file's contents,
 - -often used to ensure that the file has not been altered by an intruder or virus (provide a measure of the integrity of a file)
 - -commonly employed by many operating systems to encrypt passwords.
- E.g. Message Digest (MD) algorithms

16

Symmetric Cryptography

Classical Symmetric cryptography

Classical Ciphers

- Classical crypto techniques have been around since the early ages.
 - Two major techniques
 - Substitution replace one letter with another
 - Transposition change the position of letters in predefined way
- Current crypto techniques use a product cipher
 - -combination of the two

Caesar Cipher

- * Earliest known substitution cipher
 - —Substitution replaces one basic unit (letter/byte) with another
 - —Substitution is one of the fundamentals of modern crypto systems
 - Julius Caesar replaced each letter by 3rd letter for military communication

DEFGHIJKLMNOPQRSTUVWXYZABC

Example:

meet me after the class

Caesar Cipher

❖ Define transformation as:

```
abcdefghijklmnopqrstuvwxyz
DEFGHIJKLMNOPQRSTUVWXYZABC
```

Mathematically give each letter a number

```
abcdefghijk l m
0 1 2 3 4 5 6 7 8 9 10 11 12
n o p q r s t u v w x y Z
13 14 15 16 17 18 19 20 21 22 23 24 25
```

Then have Caesar cipher as:

$$C = E(p) = (p + k) \mod (26)$$

 $p = D(C) = ((C - k) + 26) \mod (26)$

Caesar Cipher...

- Violates "no security through obscurity"
- Only have 25 possible ciphers
 - -A maps to B,..Z
- How will you attack this crypto system?
 - –E.g., break ciphertext "GCUA VQ DTGCM"
 - Given ciphertext, just try all shifts of letters (There can only be 26? (25) possible keys)
- Do need to recognize when have plaintext and stop there
 - Easy for humans hard and for computers

- * Key size of Caesars cipher was small
 - Allowed brute-force attack
- Rather than shifting the alphabet we could *shuffle* (jumble) the letters arbitrarily
 - Each plaintext letter maps to a different random ciphertext letter

```
Plain: abcdefqhijklmnopqrstuvwxyz
```

Key: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: ifwewishtoreplaceletters

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

- Key is 26 letters long
 - -Now have a total of 26! = 4×10^{26} keys

- Problem with this crypto is language characteristics
 - -Human languages are **redundant**
 - Letters are not equally commonly used

```
12.31% L 4.03% B 1.62%
                G 1.61
   9.59
        D 3.65
  8.05 C 3.20 V 0.93
  7.94 U 3.10 K 0.52
N
  7.19 P 2.29
                0.20
  7.18 F 2.28
                x 0.20
       M 2.25
  6.59
                J 0.10
   6.03
        W 2.03
                Z 0.09
  5.14 Y 1.88
```


SITE - AAIT - AAU

Given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBME
TSXAIZVUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMX
UZUHSXEPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHM
Q

P 13.33	H 5.83	F 3.33	B 1.67	C 0.00
Z 11.67	D 5.00	W 3.33	G 1.67	K 0.00
S 8.33	E 5.00	Q 2.50	Y 1.67	L 0.00
U 8.33	V 4.17	T 2.50	1 0.83	N 0.00
O 7.50	X 4.17	A 1.67	J 0.83	R 0.00
M 6.67				

```
12.31% L 4.03% B 1.62%
  9.59
        D 3.65 G 1.61
  8.05
        C 3.20
               V 0.93
  7.94 U 3.10 K 0.52
  7.19
        P 2.29
               Q 0.20
N
  7.18 F 2.28
               X 0.20
  6.59 M 2.25
                J 0.10
  6.03 W 2.03
                z 0.09
  5.14
        Y 1.88
```

- Count relative letter frequencies (see text)
 - -Guess P & Z are e and t
 - -Guess ZW is th and hence ZWP is the -th (using two and three latter frequency distribution tables)
- Proceeding with trial and error finally get:

it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

- Problems with monoalphabetic ciphers
 - -Frequency of letters in ciphertext reflects frequency of plaintext
- Want a single plaintext letter to map to multiple ciphertext letters

Ideally, ciphertext frequencies should be flat

Polyalphabetic Substitutions

- Pick k substitution ciphers
 - $-\pi_1\pi_2\pi_3\dots\pi_k$
 - Encrypt the message by rotating through the k substitutions

$$\pi_1^{m}$$
 π_2^{e} π_3^{g} π_3^{g} π_4^{g} π_1^{g} π_2^{g} π_3^{g} $\pi_3^$

- Same letter can be mapped to multiple different ciphertexts
 - -Helps smooth out the frequency distributions

Vigenère Tableau

Multiple substitutions

- Can choose "complimentary" ciphers so that the frequency distribution flattens out
- More generally: more substitutions means flatter distribution

Vigenère Tableau

- Collection of 26 permutations
 - 26 possible substitutions
- Usually thought of as a 26 x 26 grid
- Key is a word

Vigenère Tableau

```
abcdefg...
Aabcdefg...
                Plaintext: a bad deed
 bcdefgh...
                Key "bed": B EDB EDBE
 cdefghi...
                Ciphertext: b fde hgfh
D defghij...
 efghijk...
```


One-Time Pad (Ideal Cipher)

- Cipher achieves perfect secrecy if and only if there are as many possible keys as possible plaintexts, and every key is equally likely
 - E.g., a random sequence of 0's and 1's XORed to plaintext, no repetition of keys

One-Time Pad (ideal cipher)

- Unbreakable since ciphertext bears no statistical relationship to the plaintext
 - For any plaintext, it needs a random key of the same length
 Hard to generate large amount of keys
- Have problem of safe distribution of key
- Current systems have adopted the XOR operation but not the key length

Advantages of One-Time Pad

- Easy to compute
 - Encryption and decryption are the same operation
 - -Bitwise XOR is very cheap to compute
- As secure as theoretically possible
 - Given a ciphertext, all plaintexts are equally likely, regardless of attacker's computational resources
 - -...if and only if the key sequence is truly random
 - True randomness is expensive to obtain in large quantities
 - -...if and only if each key is as long as the plaintext
 - But how do the sender and the receiver communicate the key to each other? Where do they store the key?

Problems with One-Time Pad

- Key must be as long as the plaintext
 - Impractical in most realistic scenarios
 - -Still used for diplomatic and intelligence traffic
- Does not guarantee integrity
 - One-time pad only guarantees confidentiality
 - Attacker cannot recover plaintext, but can easily change it to something else
- Insecure if keys are reused
 - Attacker can obtain XOR of plaintexts

Symmetric Cryptography

Modern Symmetric cryptography

Thank you!

