Категориальные признаки

Признаки, на которых нельзя ввести порядок: тэги, города, цвета и т.д.

Dummy-кодирование:

- ullet Признак x^j принимает значения из множества $U = \{u_1, \dots, u_m\}$
- Создадим m новых признаков-индикаторов x^{j1}, \dots, x^{jm} :

$$x^{jk} = [x^j = u_k]$$

Пример:

- $U = \{ \mathsf{Москва}, \mathsf{Санкт}\text{-}\mathsf{Петербург}, \mathsf{Екатеринбург} \}$
- Кодируем тремя бинарными признаками
- Москва \to (1, 0, 0)
- ullet Санкт-Петербург o (0,1,0)
- \bullet Екатеринбург \rightarrow (0,0,1)

Проблемы dummy-кодирования

Уникальные категории:

- Что, если Екатеринбург встречается в выборке лишь один раз?
- Один из кодирующих признаков примет значение 1 лишь на одном объекте
- Такой признак не имеет смысла

Решение:

- Объединить редкие категории в одну
- ullet Категория u редкая, если $\sum_{i=1}^\ell [x_i^i = u] <= r$
- r параметр

Проблемы dummy-кодирования

Задача: предсказать, кликнет ли пользователь по рекламному баннеру

Признаки:

- Идентификатор пользователя
- Идентификатор баннера
- Идентификатор сайта, на котором показан баннер
- Идентификатор категории баннера

При dummy-кодировании мы получим миллионы признаков!

Счетчики

Идея:

- Пусть на баннер u_1 в среднем кликают чаще, чем на баннер u_2
- Это важный признак!
- Заменим категории на вероятности кликов

Счетчики

Счетчики:

- ullet Задача классификации, $Y = \{0,1\}$
- Оценим вероятность первого класса при условии значения признака:

$$c(u_k) = p(y = 1 \mid x^j = u_k) = \frac{\sum_{i=1}^{\ell} [x_i^j = u_k][y_i = 1]}{\sum_{i=1}^{\ell} [x_i^j = u_k]}$$

ullet Заменяем категориальный признак x^j на числовой $ilde x^j$:

$$\tilde{x}_i^j = c(x_i^j)$$

- Для борьбы с переобучением можно вычислять счетчики с помощью кросс-валидации
 - ullet выборка разбивается на k частей
 - для *i*-й части используются оценки вероятностей, полученные по остальным частям
 - для контрольной выборки используются оценки, полученные по всей обучающей выборке

Пример:

	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>X</i> ₆	<i>X</i> 7
Город	Мск	Екб	Мск	СПб	СП6	Мск	Екб
У	1	1	0	0	0	1	1

Оценки вероятностей:

$$p(y = 1 \mid Mc\kappa) = 2/3 = 0.67$$

 $p(y = 1 \mid C\Pi6) = 0/2 = 0$
 $p(y = 1 \mid E\kappa6) = 2/2 = 1$

Новая выборка:

	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>X</i> ₆	<i>X</i> 7
Город	0.67	1	0.67	0	0	0.67	1
У	1	1	0	0	0	1	1

Текстовые признаки

Значение признака x^j — последовательность слов (w_1, w_2, \dots) .

Мешок слов:

- Выводы о тексте можно даже по перемешанным словам
- ullet Слова из текста принадлежат словарю $W = \{w_1, \dots, w_m\}$
- ullet Создадим m новых признаков-индикаторов x^{j1},\ldots,x^{jm} :

$$x^{jk}=n_{w_k},$$

 n_{w_k} — число вхождения слова w_k в документ

 Аналог dummy-кодирования, но теперь несколько признаков могут быть больше нулю

Пример:

- U = {ночь, улица, фонарь, аптека}
- Кодируем четырьмя бинарными признаками
- ullet ночь улица аптека ночь o (2,1,0,1)
- ullet улица фонарь o (0,1,1,0)

TF-IDF

Идея: вычислять не количество вхождений слов, а оценки их важности для текста

- чем чаще слово встречается в документе, тем оно важнее
- чем реже слово встречается в остальных документах, тем оно важнее

 n_{iw} (term frequency) — число вхождений слова w в текст x_i^j ; N_w (document frequency) — число текстов, содержащих w;

Важность слова w для документа x_i^J :

$$\mathsf{TF}\text{-}\mathsf{IDF}(i,w) = \underbrace{n_{dw}}_{\mathsf{TF}(i,d)} \underbrace{\log(\ell/N_w)}_{\mathsf{IDF}(w)}.$$

 $\mathsf{TF}(i,d) = n_{iw}$ — term frequency; $\mathsf{IDF}(w) = \log(\ell/N_w)$ — inverted document frequency.

N-граммы

Иногда важны не только слова, но и словосочетания:

- "рекомендую" и "не рекомендую"
- "разработчик" и "старший разработчик"

N-граммы:

- ullet Добавим в словарь W все возможные пары слов
- Добавим признаки-индикаторы для пар слов:

$$x_i^{jks} = [(w_k, w_s) \in x_i^j]$$

• Многие пары ни разу не встречаются — выбросим их

Примеры биграмм:

"ночь улица фонарь аптека" \to (ночь, улица), (улица, фонарь), (фонарь, аптека)

Заключение

- Для категориальных и текстовых признаков можно делать dummy-кодирование
- Для категориальных признаков могут быть полезны счетчики
- Для текстовых признаков можно вычислять не количество слов, а TF-IDF — меру важности