Símbolo

- Não definido formalmente, geralmente letras, dígitos
- Um símbolo pode envolver mais de um caracter
- Ex.:

bc

Alfabeto

- Conjunto finito e não vazio de <u>símbolos</u>
- Denotado Σ (sigma)
- (obs: alguns autores consideram também o conjunto vazio)
- Ex.:

$$\Sigma = \{a,b\}$$

$$\Sigma = \{a,bc\}$$

$$\Sigma = \{0, ..., 9\}$$

Quantos símbolos tem cada Alfabeto?

ASCII também pode ser exemplo de Alfabeto!

- Palavra, Cadeia de caracteres ou Sentença
 - Dado um Alfabeto Σ , a seqüência de símbolos $a_1 a_2 ... a_n$ é uma palavra sobre Σ se e somente se, para cada i=1, 2, ..., n, $a_i \in \Sigma$.
 - (Seqüência finita de 0 ou mais símbolos de um Alfabeto justapostos)
 - Denotada x (alguns autores denotam w)
 - Há autores que distinguem Palavra e Cadeia
 - Palavra Vazia: Palavra sem símbolos
 - Denotada & (epsilon)
 - Alguns autores denotam λ (lambda)

- Exercício proposto
 - Formar três Palavras sobre cada um dos Alfabetos abaixo:

$$\Sigma = \{a,b\}$$

 $\Sigma = \{GU,BA,CA\}$

- Comprimento ou Tamanho de Palavra
 - Quantidade de símbolos de uma Palavra
 - Denotado |x|
 - Qual o Comprimento da Palavra x= abc ? |abc| = ?
 - Qual o Tamanho de ε ? $|\varepsilon|$ = ?
 - Dado um Alfabeto Σ e uma Palavra $x = a_1 a_2 ... a_n$ sobre Σ , |x| denota o comprimento de x, isto é, $|a_1 a_2 ... a_n| = n$

- Prefixo, Sufixo, Sub-palavra
 - Um <u>Prefixo</u> (resp. <u>Sufixo</u>) de uma Palavra é qualquer seqüência de símbolos <u>inicial</u> (resp. <u>final</u>) da Palavra.
 - Uma Sub-palavra de uma Palavra é qualquer seqüência de símbolos (contígua) da Palavra
- Seja x=abcc uma Palavra sobre o Alfabeto $\Sigma = \{a,b,c\}$.
 - "a" é Prefixo de x? É Sub-palavra?
 - "abcc" é Prefixo de x? É Sub-palavra?
 - "bc" é Prefixo de x? É Sub-palavra?

Obs.:

- Todo Prefixo e todo sufixo de uma Palavra são Sub-palavras desta (mas nem toda Sub-palavra é Prefixo ou Sufixo)
- ε e a própria Palavra x são Prefixos, Sufixos e Sub-palavras de x

- Dado um Alfabeto ∑ e um inteiro não negativo k, define-se:
 ∑^K = {x| x é uma Palavra sobre ∑ e |x|=k},
 O conjunto de todas as Palavras sobre ∑ com comprimento k.
- Exercício proposto
 - Dado o Alfabeto $\Sigma = \{ \Psi, \bullet \}$, construir os seguintes conjuntos:

 Σ^1

 $\sum_{}^{2}$

 $\sum_{i=1}^{n}$

- Podemos construir a partir de \sum^{k} ?
- Finito ou infinito?
- Dado um Alfabeto Σ , define-se:

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup ...,$$

O conjunto das Palavras possíveis sobre Σ

▶ Dado um Alfabeto Σ , define-se:

$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \dots$$

O conjunto das Palavras possíveis <u>não vazias</u> sobre Σ

- Concatenação de Palavras
 - Operação binária definida sobre um conjunto de Palavras
 - Associa a duas Palavras x1 e x2 dadas uma Palavra y formada pela justaposição de x1 com x2.
 - Operação verifica as propriedades (para x, y e z Palavras quaisquer de um conjunto de Palavras):
 - Associatividade

$$x(yz) = (xy)z$$

- Elemento Neutro à esquerda e à direita

$$x = x = x = x$$

Obs.:

$$|x| + |y| = |xy|$$

xy nem sempre igual a yx

Exercício proposto. Sejam x = ♥• e y= • Palavras sobre ∑ =
 Tradut{i♥ș•}, determinar xyy

- Concatenação Sucessiva
 - A concatenação sucessiva de uma Palavra (com ela mesma), denotada xⁿ, onde n é o número de concatenações sucessivas definese, a partir da operação de concatenação:

$$x^{0} = \varepsilon$$

 $x^{n} = xx^{n-1}, p/n > 0$

- Exercício proposto
 - Seja x = ♥• uma Palavra sobre o Alfabeto ∑ = {♥,•}, determinar x³

- Linguagem Formal
 - Uma Linguagem Formal L, ou simplesmente Linguagem, é um conjunto de Palavras sobre um Alfabeto.
 - Ex.:
 L = {aa, ab}, definida sobre Σ= {a,b,c}
 L = {x|x é um palíndromo sobre Σ}, Σ= {a,b}
 L = {}
 L = {ε}
 - Seja ∑ um Alfabeto e L uma Linguagem sobre ∑
 - Relação entre L e ∑*?
 - $L \subseteq \Sigma^*$

Visita à Hierarquia de Chomsky

Linguagens Tipo 0

Linguagens Tipo 1

Linguagens Tipo 2

Linguagens Tipo 3

Autômatos Finitos

Expressões Regulares

Gramáticas Regulares

Gramáticas Livre de Contexto

Autômatos de Pilha

Máquinas de Turing