Early Universe: BBN physics Review questions

- 1. What is the typical energy scale associated with nuclear fusion and fission processes?
 - a) 10 keV
 - b) 10 GeV
 - c) 10 eV
 - d) 10 MeV
- 2. Based on your answer to the previous question, what would be a rough estimate of the temperature required for deuterium synthesis?
 - a) $\sim 10^4 \text{ K}$
 - b) $\sim 10^6 \text{ K}$
 - c) $\sim 10^8 \; {\rm K}$
 - d) $\sim 10^{10} \text{ K}$
- 3. Using the estimated temperature from the previous question, at what time after the Big Bang does deuterium synthesis occur?
 - a) $\sim 10^{-3} \text{ sec.}$
 - b) ~ 1 minute
 - c) $\sim 1~\rm day$
 - d) $\sim 1 \text{ year}$
- 4. Explain the reasoning behind the statement that an ideal or most stable universe would be one in which baryonic matter primarily consists of an iron-nickel alloy.

- 1. What is the theoretical maximum fraction of the baryon mass that can be converted into helium-4 (⁴He) during Big Bang Nucleosynthesis?
 - a) $\frac{1}{2}$.
 - b) $\frac{1}{3}$.
 - c) $\frac{1}{4}$.
 - d) $\frac{1}{5}$.
- 2. The nucleosynthesis temperature is defined as:
 - a) 1 MeV.
 - b) $n_D(t_{\text{nuc}}) = n_n(t_{\text{nuc}}).$
 - c) $n_p(t_{\text{nuc}}) = n_n(t_{\text{nuc}}).$
 - d) $2n_D(t_{\text{nuc}}) = n_n(t_{\text{nuc}}).$
 - e) $2n_p(t_{\text{nuc}}) = n_n(t_{\text{nuc}}).$
- 3. The deuterium bottleneck is a crucial phase in Big Bang Nucleosynthesis (BBN). What are its main consequences for the formation of light elements in the early Universe?
 - a) It accelerates the formation of heavier nuclei.
 - b) If the bottleneck were larger, more heavy elements like carbon and oxygen would have formed in the early Universe.
 - c) The efficiency of helium-4 production depends on how quickly deuterium can form and survive.
 - d) A weaker deuterium bottleneck could lead to an increased abundance of lithium-7.
- 4. The neutron half-life of approximately 900 seconds is crucial for Big Bang Nucleosynthesis (BBN). What would be the consequence for light element production if the neutron half-life were extremely short, such as a microsecond?
 - a) Almost no neutrons would survive to participate in nucleosynthesis, drastically reducing the formation of helium-4.
 - b) The Universe would be dominated by hydrogen, with very little helium and heavier elements.
 - c) The deuterium bottleneck would be significantly affected, altering the overall element abundances.
 - d) There would be no significant impact on nucleosynthesis, as protons would still fuse into heavier elements efficiently.
- 5. The "lithium problem" refers to the discrepancy between the predicted and observed abundance of lithium-7 in the Universe. What is the main cause of this problem?
 - a) Uncertainties in the nuclear reaction rates involved in Big Bang Nucleosynthesis (BBN).
 - b) The destruction of lithium-7 in stars over cosmic time.
 - c) A possible modification of standard cosmology or new physics beyond the Standard Model.
 - d) All of the above.