Problem C. SYPUCPC Problemsetting

Time limit 1000 ms **Mem limit** 262144 kB **OS** Windows

It's no secret that coming up with a balanced problemset for the SYPUCPC is really hard so the problemsetters needs your help!!

The current problemset has N problems, Problem with index i has difficulty of A_i .

We define the overall difficulty of the problemset by the average difficulty of all problems in that problemset, more formally the overall difficulty can be calculated as: $\frac{\sum_{i=1}^{i=M} B_i}{M}$ where M is the number of problems in the problemset and B_i is the difficulty of the i_{th} problem.

Your task is to remove some (possibly none) problems from the given problemset to acheive the minimum possible overall difficulty.

<u>Note</u>: A problemset must at least have one problem, which means you can't just remove every single problem and call it a day.

Input

The first line of input contains one integer T ($1 \le T \le 10^5$) denoting the number of testcases.

The first line of each testcase contains one integer N ($1 \leq N \leq 10^5$)

The second line of each testcase contains N space–seperated integers $A_1,A_2,...,A_N$ (800 \leq $A_i \leq 4000$)

Its guaranteed that the sum of N over all testcases is less than or equal to 10^5 .

Output

Print the minimum overall difficulty you can obtain after removing some problems

Sample 1

Input	Output
2 2 4000 800 3 969 969 969	800 969