Software Architecture Theory

P10. Quality Attribute Design Strategies

2014 Sungwon Kang

10. 품질속성 설계전략

10.1 성능 설계 전략

10.2 변경용이성 설계 전략

10.3 품질속성 설계 전략의 정의 절차

10. 품질속성 설계전략

- 패턴(pattern): 반복적으로 발생하는 문제에 대한 미리 만들어놓은 솔루션으로 보통 여러 개의 힘의 충돌을 해결
- 패턴이 문제를 해결해 주지 못하면 어떻게 할 것인가?
 - ☞ 품질속성 설계전략을 이용할 수 있다.
 - 품질속성 설계전략은 광범위하게 다룰 수 있는 해결의 틀을 제시한다.
- **품질속성 설계전략:** 단일 품질속성응답을 제어하는데 영향력 있는 설계결정

10. 품질속성 설계전략

[Bass 13] provided quality design tactics for the following quality attributes:

- (1) availability
- (2) interoperability
- (3) modifiability
- (4) performance
- (5) security
- (6) testability
- (7) usability

10.1 성능 설계 전략

그림 10-1. 성능 설계 전략의 역할 (출처: [Bass 13]p. 136)

표 10−1. 성능 설계전략¹¹² (출처: [Bass 13]p. 141)

표 10 1. 8 6 글세한다 (글씨·[Dass 10]p. 141)			
자원 수요의 제어	자원의 관리		
- 샘플링 빈도 조절	- 가용 자원의 증대		
- 이벤트 응답 속도 관리	- 병행성(concurrency) 도입		
- 이벤트의 우선순위 부여	- 복수의 컴포넌트 복제본(copy) 유지		
- 처리 오버헤드(overhead) 감소	- 복수의 데이터 복제본 유지		
- 실행시간 상한선 설정	- 큐 크기의 상한선 설정		
- 자원 효율성의 증대	- 자원의 스케줄링		

10.2 변경용이성 설계 전략

그림 10-2. 변경용이성 설계 전략의 역할 (출처: [Bass 13]p. 106)

표 10-2. 변경용이성 설계전략 (출처: [Bass 13]p. 122)

A) 모듈크기 축소	B) 응집도 증대	C) 결합도 축소	D) 바인딩의 지연
- 모듈의 분리	- 의미적 정합성(coherence)의 증대	- 캡슐화 - 중개자(intermediary)의 사용 - 의존관계의 제한 - 리팩토링 - 공통서비스의 추상화	

10.3 품질속성 설계 전략의 정의 절차

- 구체적인 품질속성 설계 전략의 정의 절차 [Bass 13]:
 - 1. 관련 품질속성을 위한 분석모델로 시작한다.
 - 2. 그 모델의 파라미터를 식별한다.
 - 3. 그 모델의 파라미터를 조정하기 위한 아키텍처적 기법을 식별한다.

See Ch. 11 for an example

10.3 품질속성 설계 전략의 정의 절차

- 품질속성의 일반화 <-> 검증가능한 시나리오?
 - 검증 가능한 QA 시나리오를 도출하는 이유:
 - 일반적인 품질속성의 요구가 불명확
 - 일반적인 품질속성의 세분화 분류를 통하여 요구를 규정짓는 것이 성공적이지 못하였기 때문
 - 이런 상황에서 품질속성에 대한 일반적인 설계전략을 제시하는 것이 타당한가?
 - ◆ 품질속성의 설계전략은 일반적인 가이드라인을 주어, 특정시나리오들을 충족시키는 설계를 지원하고자 함
 - 품질속성설계전략이 설계를 지원할 수 있는지에 대한 궁극적인 판단은 설계자의 몫.

Lab 3. 아키텍처 설계

- 아키텍처 문서의 D와 E를 작성
- "E. 아키텍처 설계 결과"는 "D.3 아키텍처 설계절차의 정의"에서 정의된 설계절차를 준수
- 뷰의 표현 언어는 적절히 만들어 사용
 - 프로젝트가 완료된 후 UML을 사용한 아키텍처 뷰의 기술 학습

아키텍처 설계 결정표

설계결정	해결조건/방법	적용점
ADS1	중앙의 데이터를 많은 사용자가	E.1절의 개념뷰
(클라이언트-	공유해야 한다.	
서버 아키텍처		
스타일의 적용)		
ADS1	J2EE는 서버의 수를 늘리고 서버들	config7.xml 의 변수
(load balancing)	사이에 부하를 균형 있게 만들 수	_noservers
	있는 메커니즘을 갖고 있다.	.; !

Questions?

