HWK 01

Luis Hefang Deng (CEMFI)

Question 1

(1).

	mean(C)	mean(I)	mean(W)
Rural	921	1403	2326
Urban	1752	5291	9964
Total	1108	2535	4323

In all 3 dimensions, the Urban is higher than Rural

(2). As we can see, they are quite similar as the slides

,	var(log_C)	var(log_I)	var(log_W)
Rural	.4267483	1.728914	2.082228
Urban	.576165	2.326532	4.234638
Total	.519699	2.114658	2.733036

This is the table of variance

(3)

For total

	log_C	log_I	log_W
log_C log_I	1.0000	1.0000	
log_W	0.6366	0.4422	1.0000

For Rural

	log_C	log_I	log_W
log_C log_I log_W	1.0000 0.5319 0.5964	1.0000	1.0000

For Urban

	log_C	log_I	log_W
log_C log_I	1.0000 0.6514	1.0000	
log_W	0.6701	0.4655	1.0000

(4)

70

(5)

Question 2

(1).

Intensive Mean

Summary statistics: mean

for variables: LS LSFamily Total_LS

by categories of: urban

urban	e(LS)	e(LSFam~)	e(Total~)
Rural Urban	639.0838 1464.303	1986.935 1516.406	2591.908 2719.536
Total	854.8534	1920.351	2609.969

Intensive Variance

Summary statistics: variance

for variables: logLS logLSFamily logTotal_LS

by categories of: urban

urban	e(logLS)	e(logLS~)	e(logTo~)
Rural Urban	1.39385 1.377697	.940929 1.196387	.8735892 1.125171
Total	1.488303	.9875084	.9087133

Extensive Mean

Summary statistics: mean

for variables: LS_Extensive LSFamily_Extensive Total_LS_Extensive

by categories of: urban

urban	e(LS_Ex~)	e(LSFam~)	e(Total~)
Rural Urban	46.00348 59.7546	99.21807 97.91411	99.52215 99.6319
Total	49.59897	98.87713	99.55085

Extensive Variance

Summary statistics: variance

for variables: LS_Extensive LSFamily_Extensive Total_LS_Extensive

by categories of: urban

urban	e(LS_Ex~)	e(LSFam~)	e(Total~)
Rural Urban	2485.107 2407.802	77.61518 204.4889	47.57687 36.71937
Total	2500.641	111.0622	44.7276

Interpretation: Maybe in rural there're more Children than in Urban.

Lifecyle Labor Surply (Intensive)

The rght hand side is the total labor surply .

Lifecyle Labor Surply (Extensive)

By Women and Men

. estpost tabstat LS LSFamily Total_LS, by(sex) statistics(mean)

Summary statistics: mean

for variables: LS LSFamily Total_LS

by categories of: sex

sex	e(LS)	e(LSFam~)	e(Total~)
Male Female	891.1402 777.122	2024.738 1693.795	2746.729 2313.151
Total	854.8534	1920.351	2609.969

Summary statistics: mean

for variables: LS_Extensive LSFamily_Extensive Total_LS_Extensive

by categories of: sex

sex	e(LS_Ex~)	e(LSFam~)	e(Total~)
Male Female	51.38824 45.76613	98.91765 98.79032	99.67059 99.29435
Total	49.59897	98.87713	99.55085

Summary statistics: variance

for variables: logLS logLSFamily logTotal_LS

by categories of: sex

sex	e(logLS)	e(logLS~)	e(logTo~)
Male Female	1.510737 1.435515	.905207 1.126088	.8157396 1.068565
Total	1.488303	.9875084	.9087133

We find that the Labor Supply of Men is higher than Women on average in both intensive and extensive margin.

Intensive Margin

Extensive Margin

As we can see, the female fluctuates more than the Male and both go down when they becoming old

By Education

Summary statistics: mean

for variables: LS LSFamily Total_LS

by categories of: education

educat	ion	e(LS)	e(LSFam~)	e(Total~)
	1 2	645.2544 825.6283	2018.525 2042.342	2562.887 2708.682
	3	1076.051	1712.587	2591.363
To	tal	854.8534	1920.351	2609.969

Summary statistics: mean

for variables: LS_Extensive LSFamily_Extensive Total_LS_Extensive

by categories of: education

education	e(LS_Ex~)	e(LSFam~)	e(Total~)
1	45.42254	99.29577	99.3838
2 3	51.4393 52.36887	99.1239 98.30795	99.87484
Total	49.59897	98.87713	99.55085

Summary statistics: variance

for variables: logLS logLSFamily logTotal_LS

by categories of: education

education	e(logLS)	e(logLS~) e(logTo			
1 2 3	1.619899 1.493068 1.249805	.9515028 .9524317 1.032474	.9086623 .7911067 .9934147		
Total	1.488303	.9875084	.9087133		

As we can see, with higher education, when they are old, they also work more hours than low educated.

For the extensive margin, the higher educated, they have higher extensive margin in their overall life.

Question 3

(1). plot the level

(2). Plot the inequality

We find some interesting facts, when income is higher the variance of labor supply reduce.

We find some interesting facts, when income is higher

- 1. the correlation between labor supply and Income becomes smaller .
- 2. the correlation between Consumption and Income increase a lot .
- 3. the correlation between Consumption and wealth are quite stable and the slop is positive but smaller .
- 4. the correlation between Wealth and Income increase a lot .

(4) replicate Bick et. al (2018)

. * Regressions

. xi: reg logLS log_I_Hourly age age2, vce(cluster district_code)

(Std. Err. adjusted for 98 clusters in district_code)

logLS	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
log_I_Hourly	.0382255	.1241564	0.31	0.759	2081906 0089809	.2846416
age2	0001972	.0001385	-1.42	0.157	000472	.0000775
_cons	6.515055	.3155215	20.65	0.000	5.888832	7.141278

. xi: reg logLS Wage age age2, vce(cluster district_code)

(Std. Err. adjusted for 99 clusters in district_code)

logLS	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
Wage	.4320455	.0986551	4.38	0.000	.2362676	.6278234
age	.0132511	.0129123	1.03	0.307	012373	.0388751
age2	0001496	.000133	-1.12	0.263	0004134	.0001143
_cons	6.408197	.3382289	18.95	0.000	5.736993	7.079402

. xi: reg logLS Wage log_I_Hourly age age2, vce(cluster district_code)

(Std. Err. adjusted for 98 clusters in district_code)

logLS	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
Wage	.4337434	.1021008	4.25	0.000	.2311015	.6363853
log_I_Hourly	0295372	.0965627	-0.31	0.760	2211875	.162113
age	.0129985	.0128522	1.01	0.314	0125095	.0385066
age2	0001478	.0001328	-1.11	0.269	0004114	.0001159
_cons	6.437475	.3149621	20.44		5.812362	7.062587

Linear regression	Number of obs	=	1,542
	<u>F(2, 97)</u>	=	•
	Prob > F	=	
	R-squared	=	0.2908

R-squared = 0.2908Root MSE = 1.0629

(Std. Err. adjusted for 98 clusters in district_code)

logLS	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
Wage log_I_Hourly	.3504572	.1232288	2.84	0.005 0.001	.1058822	.5950322 .1138686

Interpretation:

What we cares is the labor surply Elasticities.

Let's look at the coefficient on Wage, we find in the last three regressions, the number is around 0.35. and they're quite stable.