Intégrales impropres

On a défini en première année l'intégrale d'une fonction continue par morceaux sur un segment. Il s'agit maintenant de donner un sens si possible à l'intégrale d'une fonction continue par morceaux sur un intervalle autre qu'un segment. On parle alors d'intégrales impropres ou généralisées.

Exemple 0.1

 $\int_{1}^{+\infty} \frac{dx}{x^{2}}$ est une intégrale impropre puisque $x \mapsto \frac{1}{x}$ est continue sur $[1, +\infty[$ mais $[1, +\infty[$ n'est pas un segment.

Exemple 0.2

 $\int_0^{\frac{\pi}{2}} \tan x \, dx \text{ est une intégrale impropre car tan est continue sur } \left[0, \frac{\pi}{2}\right] \text{ mais } \left[0, \frac{\pi}{2}\right] \text{ n'est pas un segment.}$

Dans la suite \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1 Convergence d'intégrales

1.1 Continuité par morceaux

On a vu en premier la définition d'une fonction continue par morceaux sur un **segment**. On peut étendre cette notion à un intervalle quelconque.

Définition 1.1 Fonction continue par morceaux sur un intervalle

Soit f une fonction définie sur un intervalle I à valeurs dans \mathbb{K} . On dit que f est continue par morceaux si la restriction de f à tout segment inclus dans I est continue par morceaux.

1.2 Intégrales impropres

Définition 1.2 Intégrale convergente sur un intervalle semi-ouvert

- Soient $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$ tels que $a \leq b$. Soit f une fonction continue par morceaux sur [a, b[à valeurs dans \mathbb{K} . On dit que l'intégrale de f sur [a, b[**converge** si $x \mapsto \int_a^x f(t) \, dt$ admet une limite en b^- . Cette limite est alors notée $\int_a^b f(t) \, dt$. Dans le cas contraire, on dit que l'intégrale **diverge**.
- Soient a ∈ R ∪ {-∞} et b ∈ R tels que a ≤ b. Soit f une fonction continue par morceaux sur]a, b] à valeurs dans
 M. On dit que l'intégrale de f sur]a, b] converge si x → ∫_x^b f(t) dt admet une limite en a⁺. Cette limite est alors
 notée ∫_a^b f(t) dt. Dans le cas contraire, on dit que l'intégrale diverge.

REMARQUE.

- Si l'intégrale de f sur [a,b[converge, alors pour tout $c \in [a,b[$ l'intégrale de f converge.
- Si l'intégrale de f sur [a, b] converge, alors pour tout $c \in [a, b]$ l'intégrale de f converge.

Analogie avec les séries

Par analogie avec les séries, on peut définir le concept d'«intégrale partielle» et de «reste».

- Dans le cas d'une intégrale sur [a, b[, l'«intégrale partielle» sera $x \mapsto \int_a^x f(t) dt$ pour $x \in [a, b[$. On peut alors dire que l'intégrale converge si l'«intégrale partielle» admet une limite finie en b^- . Dans ce cas, le «reste» sera $x \mapsto \int_x^b f(t) dt$ et il est de limite nulle en b^- .
- Dans le cas d'une intégrale sur]a,b], l'«intégrale partielle» sera $x\mapsto \int_x^b f(t)\,\mathrm{d}t$ pour $x\in]a,b]$. On peut alors dire que l'intégrale converge si l'«intégrale partielle» admet une limite finie en a^+ . Dans ce cas, le «reste» sera $x\mapsto \int_x^b f(t)\,\mathrm{d}t$ et il est de limite nulle en a^+ .

Exemple 1.1

Soient $a \in \mathbb{R}_+^*$ et $\alpha \in \mathbb{R}$. L'intégrale $\int_a^{+\infty} \frac{dt}{t^{\alpha}}$ est convergente si et seulement si $\alpha > 1$.

Soient $a \in \mathbb{R}_+^*$ et $\alpha \in \mathbb{R}$. L'intégrale $\int_0^u \frac{dt}{t^{\alpha}}$ est convergente si et seulement si $\alpha < 1$.

Définition 1.3 Intégrale sur un intervalle ouvert

Soient $(a,b) \in \mathbb{R}^2$ tel que $a \le b$ et f continue par morceaux sur]a,b[à valeurs dans \mathbb{K} . Les convergences des intégrales de f sur [c,b[et sur]a,c] ne dépendent pas de $c \in]a,b[$. Dans le cas où ces deux intégrales convergent, on dit que l'intégrale de f sur]a,b[converge et on pose

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt$$

Cette quantité ne dépend pas de $c \in]a, b[$.

Exemple 1.2

Pour tout $\alpha \in \mathbb{R}$, l'intégrale $\int_0^{+\infty} \frac{dt}{t^{\alpha}}$ diverge.

Remarque. Si I =]a, b[est un intervalle **borné** et si f est continue par morceaux sur I et admet des limites finies en a^+ et b^- , alors l'intégrale de f sur I converge.

Exercice 1.1

Montrer que l'intégrale $\int_0^{+\infty} \frac{\sin t}{t}$ converge.

1.3 Propriétés

Proposition 1.1

Soit f une fonction continue par morceaux sur un intervalle I à valeurs dans K. On pose $a = \inf I$ et $b = \sup I$.

Linéarité Si les intégrales de f et g sur I convergent, alors pour tout $(\lambda, \mu) \in \mathbb{K}^2$, l'intégrale de $\lambda f + \mu g$ sur I converge et

$$\int_{a}^{b} (\lambda f(t) + \mu g(t)) dt = \lambda \int_{a}^{b} f(t) dt + \mu \int_{a}^{b} g(t) dt$$

Positivité Si f est positive sur I et si l'intégrale de f sur I converge, alors $\int_a^b f(t) dt \ge 0$.

Stricte positivité On suppose a < b. Si f est positive et continue sur I et si $\int_a^b f(t) dt = 0$, alors f est nulle sur I.

Relation de Chasles Si l'intégrale de f sur I converge, alors pour tout $c \in]a, b|$,

$$\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$$

Proposition 1.2 Dérivation

- Soient $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$ tels que $a \le b$. Soit f une fonction continue sur [a, b[à valeurs dans \mathbb{K} . Si l'intégrale de f sur [a, b[**converge**, alors $x \mapsto \int_x^b f(t) \, dt$ est dérivable sur [a, b[, de dérivée -f.
- Soient $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R}$ tels que $a \le b$. Soit f une fonction continue sur]a,b] à valeurs dans \mathbb{K} . Si l'intégrale de f sur]a,b] **converge**, alors $x \mapsto \int_{\mathbb{R}}^{x} f(t) dt$ est dérivable sur]a,b] de dérivée f.

2 Intégrabilité

2.1 Définition

Définition 2.1 Intégrabilité

Soit f une fonction continue par morceaux sur un intervalle I. On dit que f est **intégrable** sur I si l'intégrale de |f| sur I converge.

Remarque. On dit également que l'intégrale **converge absolument**. L'intégrabilité pour les fonctions est donc l'analogue de l'absolue convergence pour les séries.

REMARQUE. Pour une fonction à valeurs positives, l'intégrabilité équivaut à la convergence de l'intégrale.

Remarque. Si I =]a, b[est un intervalle **borné** et si f est continue par morceaux sur I et admet des limites finies en a^+ et b^- , f est intégrble sur I.

Proposition 2.1 Intégrales de Riemann

Soient $a \in \mathbb{R}_+^*$ et $\alpha \in \mathbb{R}$.

- $x \mapsto \frac{1}{x^{\alpha}}$ est intégrable sur $[a, +\infty[$ si et seulement si $\alpha > 1$.
- $x \mapsto \frac{1}{r^{\alpha}}$ est intégrable sur]0, a[si et seulement si $\alpha < 1$.

Proposition 2.2 Inégalité triangulaire

Soit f une fonction continue par morceaux sur un intervalle I à valeurs dans \mathbb{K} . Si f est intégrable sur I, alors l'intégrale de f sur I converge. De plus,

$$\left| \int_{a}^{b} f(t) \, dt \right| \leq \int_{a}^{b} |f(t)| \, dt$$

où $a = \inf I$ et $b = \sup I$.

Remarque. Ce résultat est à mettre en parallèle avec le fait que la convergence absolue implique la convergence pour les séries.

ATTENTION! L'intégrale d'une fonction peut très bien converger sans que la fonction soit intégrable. On parle alors d'intégrale **semi-convergente**.

Exemple 2.1

L'intégrale de $x \mapsto \frac{\sin x}{x}$ sur $]0, +\infty[$ converge mais cette fonction n'est pas intégrable sur $]0, +\infty[$.

2.2 Intégrabilité et comparaison

Proposition 2.3

- Soient a ∈ R et b ∈ R ∪ {+∞} tels que a ≤ b. Soit f une fonction continue par morceaux sur un intervalle [a, b[à valeurs positives. L'intégrale de f sur [a, b[converge si et seulement si x → ∫_a^x f(t) dt est majorée sur [a, b[.
- Soient $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R}$ tels que $a \le b$. Soit f une fonction continue par morceaux sur un intervalle]a,b] à valeurs positives. L'intégrale de f sur]a,b] converge si et seulement si $x \mapsto \int_x^b f(t) \, dt$ est majorée sur]a,b].

Proposition 2.4 Majoration

Soient f et g deux fonctions continues par morceaux sur un intervalle I, f à valeurs dans K et g à valeurs positives. Si $|f| \le g$ sur I et si g est intégrable sur I, alors f est intégrable sur I.

Exemple 2.2

 $f:\,t\mapsto \tfrac{\sin t}{t^2+1} \text{ est intégrable sur } [1,+\infty[\text{ puisque pour tout } t\in[1,+\infty[,|f(t)|\le \tfrac{1}{t^2} \text{ et } t\mapsto \tfrac{1}{t^2} \text{ est intégrable sur } [1,+\infty[.$

Proposition 2.5 Domination

- Soient a ∈ R et b ∈ R ∪ {+∞} tels que a ≤ b. Soient f et g deux fonctions continues par morceaux sur [a, b[, f à valeurs dans K et g à valeurs positives. Si f = O(g) et si g est intégrable sur [a, b[, alors f est intégrable sur [a, b[.
- Soient a ∈ R ∪ {-∞} et b ∈ R tels que a ≤ b. Soient f et g deux fonctions continues par morceaux sur]a, b], f à valeurs dans K et g à valeurs positives. Si f = O(g) et si g est intégrable sur]a, b], alors f est intégrable sur]a, b].

Proposition 2.6 Négligeabilité

- Soient $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$ tels que $a \le b$. Soient f et g deux fonctions continues par morceaux sur $[a, b[, f \ a]]$ valeurs dans \mathbb{K} et g **à valeurs positives**. Si f = o(g) et si g est intégrable sur [a, b[, a]] est intégrable sur [a, b] est in
- Soient $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R}$ tels que $a \le b$. Soient f et g deux fonctions continues par morceaux sur]a, b], f à valeurs dans \mathbb{K} et g à valeurs positives. Si f = o(g) et si g est intégrable sur]a, b], alors f est intégrable sur]a, b].

Proposition 2.7 Equivalence

- Soient $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$ tels que $a \le b$. Soient f et g deux fonctions continues par morceaux sur [a, b[, f à valeurs dans \mathbb{K} et g à valeurs positives. Si $f \sim g$, alors f est intégrable sur [a, b[si et seulement si g l'est.
- Soient $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R}$ tels que $a \le b$. Soient f et g deux fonctions continues par morceaux sur]a,b], f à valeurs dans \mathbb{K} et g à valeurs positives. Si $f \underset{a^+}{\sim} g$, alors f est intégrable sur]a,b] si et seulement si g l'est.

Exemple 2.3 Fonction Γ d'Euler

La fonction Γ : $x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$ est définie sur \mathbb{R}_+^* .

- Tout d'abord, la fonction $t \mapsto t^{x-1}e^{-t}$ est continue sur \mathbb{R}_+^* .
- De plus, $t^{x-1}e^{-t} \sim_{t \to 0^+} t^{x-1}$ et la fonction positive $t \mapsto t^{x-1}$ est intégrable au voisinage de 0^+ si et seulement si x > 0.
- Enfin, $t^{x-1}e^{-t} = o(1/t^2)$ et la fonction positive $t \mapsto 1/t^2$ est intégrable au voisinage de $+\infty$.

Ainsi $t \mapsto t^{x-1}e^{-t}$ est intégrable sur \mathbb{R}_+^* si et seulement si x > 0. Comme cette fonction est positive, l'intégrale $\int_0^{+\infty} t^{x-1}e^{-t} \, dt$ converge si et seulement si x > 0.

Exemple 2.4 Fonction B d'Euler

La fonction B: $(x,y) \mapsto \int_0^1 t^{x-1} (1-t)^{y-1}$ est définie sur $(\mathbb{R}_+^*)^2$.

- Tout d'abord, la fonction $t \mapsto t^{x-1}(1-t)^{y-1}$ est continue sur]0,1[.
- De plus, $t^{x-1}(1-t)^{y-1} \sim_{t\to 0^+} t^{x-1}$ et la fonction positive $t\mapsto t^{x-1}$ est intégrable au voisinage de 0^+ si et seulement si x>0.
- Enfin, $t^{x-1}(1-t)^{y-1} \sim (1-t)^{y-1}$ et la fonction positive $t \mapsto (1-t)^{y-1}$ est intégrable au voisinage de 1- si et seulement si y > 0.

Ainsi $t \mapsto t^{x-1}(1-t)^{y-1}$ est intégrable sur]0,1[si et seulement si x>0 et y>0. Comme cette fonction est positive, l'intégrale $\int_0^1 t^{x-1}(1-t)^{y-1}$ converge si et seulement si x>0 et y>0.

3 Calcul d'intégrales

3.1 Changement de variables

Proposition 3.1 Changement de variables

Soient $(a, b, \alpha, \beta) \in \mathbb{R}^4$ tel que $a \leq b$ et $\alpha \leq \beta$, f une fonction continue par morceaux sur]a, b[à valeurs dans \mathbb{K} et φ une bijection croissante de $]\alpha, \beta[$ sur]a, b[de classe \mathcal{C}^1 . Alors les intégrales

$$\int_{a}^{b} f(t) dt \qquad \text{et} \qquad \int_{\alpha}^{\beta} f(\varphi(u))\varphi'(u) du$$

sont de même nature et, en cas de convergence, sont égales.

Remarque. Si φ est décroissante, on a

$$\int_{\alpha}^{\beta} f(\varphi(u))\varphi'(u) \, du = \int_{b}^{a} f(t) \, dt$$

Méthode | Changement de variable

On dit qu'on effectue le changement de variable $t = \varphi(u)$. Comment alors se souvenir de la formule?

- On remplace t par $\varphi(u)$ dans la fonction à intégrer.
- $\frac{dt}{du} = \varphi'(u)$ donc $dt = \varphi'(u)du$ et on remplace dans l'intégrale.
- t doit varier entre $\varphi(a)$ et $\varphi(b)$ lorsque u varie entre a et b, ce qui nous donne les bornes de l'intégrale en u.

Exemple 3.1

Montrons que l'intégrale I = $\int_1^{+\infty} \frac{dt}{t\sqrt{1+t^2}}$ converge et déterminons sa valeur. On va effectuer le changement de variable $u=\sqrt{1+t^2}$ i.e. $t=\sqrt{u^2-1}$. L'application $u\mapsto \sqrt{u^2-1}$ est une bijection croissante de classe \mathcal{C}^1 de $[\sqrt{2},+\infty[$ sur $[1,+\infty[$. On en déduit que les intégrales $\int_1^{+\infty} \frac{dt}{t\sqrt{1+t^2}}$ et $\int_{\sqrt{2}}^{+\infty} \frac{du}{u^2-1}$ puisque $dt=\frac{u\ du}{\sqrt{u^2-1}}$. Une décomposition en éléments simples montre alors qu

$$\forall u \in \left[\sqrt{2}, +\infty\right[, \frac{1}{u^2 - 1} = \frac{1}{2}\left(\frac{1}{u - 1} - \frac{1}{u + 1}\right)\right]$$

On en déduit que

$$I = \frac{1}{2} \left[\ln \left(\frac{u-1}{u+1} \right) \right]_{\sqrt{2}}^{+\infty} = \frac{1}{2} \ln \left(\frac{\sqrt{2}+1}{\sqrt{2}-1} \right) = \ln \left(\sqrt{2}+1 \right)$$

Exemple 3.2 Symétrie de la fonction B

On rappelle que B: $(x,y) \mapsto \int_0^1 t^{x-1} (1-t)^{y-1} dt$ est définie sur $(\mathbb{R}_+^*)^2$. A l'aide du changement de variable affine $t \mapsto 1-t$, on montre que

$$\forall (x, y) \in (\mathbb{R}_+^*)^2, \ B(x, y) = B(y, x)$$

Exercice 3.1 Expressions alternatives de la fonction B

On rappelle que B: $(x, y) \mapsto \int_0^1 t^{x-1} (1-t)^{y-1} dt$ est définie sur $(\mathbb{R}_+^*)^2$.

1. A l'aide du changement de variable $t = \sin^2 \theta$, montrer que

$$\forall (x,y) \in (\mathbb{R}_+^*)^2, \ B(x,y) = 2 \int_0^{\frac{\pi}{2}} \sin^{2x-1}(\theta) \cos^{2y-1}(\theta) \ d\theta$$

2. A l'aide du changement de variable $t = \frac{u}{1+u}$, montrer que

$$\forall (x,y) \in (\mathbb{R}_+^*)^2, \ B(x,y) = \int_0^{+\infty} \frac{u^{x-1}}{(1+u)^{x+y}} \ du$$

3.2 Intégration par parties

Proposition 3.2 Intégration par parties

Soit f et g deux fonctions de classe C^1 sur un intervalle]a,b[à valeurs dans \mathbb{K} . Si fg admet des limites finies en a^+ et b^- , alors les intégrales de f'g et fg' sur]a,b[sont de même nature. De plus, en cas de convergence

$$\int_{a}^{b} f(t)g'(t) dt = [fg]_{a}^{b} - \int_{a}^{b} f'(t)g(t) dt$$

où
$$[fg]_a^b = \lim_{t \to b^-} f(t)g(t) - \lim_{t \to a^+} f(t)g(t)$$
.

Remarque. Le résultat reste valable si $b \le a$.

Exemple 3.3

Montrons la convergence et calculons l'intégrale $\int_0^{+\infty} te^{-t} dt$. Posons f(t) = t et $g(t) = -e^{-t}$ pour tout $t \in \mathbb{R}_+$ de sorte que $\int_0^{+\infty} te^{-t} dt = \int_0^{+\infty} f(t)g'(t) dt$. Puisque fg admet des limites finies en 0 et $+\infty$, les intégrales $\int_0^{+\infty} te^{-t} dt$ et $\int_0^{+\infty} f'(t)g(t) dt = -\int_0^{+\infty} e^{-t} dt$ sont de même nature.

Puisque $\int_0^{+\infty} e^{-t} dt$ converge, il en est donc de même pour $\int_0^{+\infty} te^{-t} dt$, ce que l'on aurait pu prouver directement. De plus,

$$\int_0^{+\infty} t e^{-t} \, dt = \lim_{+\infty} f g - \lim_0 f g + \int_0^{+\infty} e^{-t} \, dt = \int_0^{+\infty} e^{-t} \, dt = 1$$

Exemple 3.4 Relation fonctionelle de la fonction Γ

On rappelle que $\Gamma: x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$ est définie sur \mathbb{R}_+^* . Montrons que

$$\forall x \in \mathbb{R}_+^*, \ \Gamma(x+1) = x\Gamma(x)$$

Soit $x \in]1, +\infty[$. La fonction $t \mapsto t^x$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* de dérivée $t \mapsto xt^{x-1}$. La fonction $t \mapsto -e^{-t}$ est également de classe \mathcal{C}^1 sur \mathbb{R}_+^* de dérivée $t \mapsto e^{-t}$. Par intégration par parties,

$$\int_0^{+\infty} t^x e^{-t} dt = \left[-t^x e^{-t} \right]_0^{+\infty} + \int_0^{+\infty} x t^{x-1} e^{-t} dt$$

L'égalité est assurée par la convergence des deux intégrales. De plus, comme x > 0

$$\lim_{t \to 0^+} t^x e^{-t} = 0$$

et, par croissances comparées,

$$\lim_{t \to +\infty} t^x e^{-t} = 0$$

On en déduit que

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt = x \int_0^{+\infty} t^{x-1} e^{-t} dt = x \Gamma(x)$$

Exercice 3.2

Calculer $\Gamma(n+1) = \int_0^{+\infty} t^n e^{-t} dt$ pour tout $n \in \mathbb{N}$.

Exemple 3.5 Relation fonctionnelle de la fonction B

On rappelle que B: $(x,y) \mapsto \int_0^1 t^{x-1} (1-t)^{y-1} dt$ est définie sur $(\mathbb{R}_+^*)^2$. Montrons que

$$\forall (x, y) \in (\mathbb{R}_+^*)^2, \ B(x+1, y) = \frac{x}{x+y} B(x, y)$$

Les fonctions $t \mapsto t^x$ et $t \mapsto (1-t)^y$ sont de classe \mathcal{C}^1 sur]0, 1[de dérivées respectives $t \mapsto xt^{x-1}$ et $t \mapsto -y(1-t)^{y-1}$. Par intégrations par parties,

$$\int_0^1 y t^x (1-t)^{y-1} dt = -\left[t^x (1-t)^y\right]_0^1 + \int_0^1 x t^{x-1} (1-t)^y dt$$

L'égalité est assurée par la convergence des deux intégrales. Puisque x > 0 et y > 0,

$$\lim_{t \to 0^+} t^x (1-t)^y = \lim_{t \to 1^-} t^x (1-t)^y = 0$$

Ainsi

$$yB(x+1,y) = \int_0^1 xt^{x-1}(1-t)^y dt$$

$$= x \int_0^1 t^{x-1}(1-t)^{y-1}(1-t) dt$$

$$= x \int_0^1 t^{x-1}(1-t)^{y-1} dt - x \int_0^1 t^x(1-t)^{y-1} dt \qquad \text{car ces deux intégrales convergent}$$

$$= xB(x,y) - xB(x+1,y)$$

ou encore

$$B(x+1,y) = \frac{x}{x+y}B(x,y)$$

Exercice 3.3

Calculer B $(n+1, p+1) = \int_0^1 t^n (1-t)^p dt$ pour tout $(n, p) \in \mathbb{N}^2$.

4 Intégration des relations de comparaison

Proposition 4.1

Soient f et g deux fonctions continues par morceaux sur [a, b[. On suppose de plus que g est **positive** au voisinage de b^- .

Domination On suppose que $f = \mathcal{O}(g)$.

• Si
$$\int_a^b g(t) dt$$
 converge, alors $\int_a^b f(t) dt$ converge et $\int_x^b f(t) dt = \mathcal{O}\left(\int_x^b g(t) dt\right)$.

• Si
$$\int_a^b g(t) dt$$
 diverge, alors $\int_a^x f(t) dt = \mathcal{O}\left(\int_a^x g(t) dt\right)$.

Négligeabilité On suppose que f = o(g).

• Si
$$\int_a^b g(t) dt$$
 converge, alors $\int_a^b f(t) dt$ converge et $\int_x^b f(t) dt = o\left(\int_x^b g(t) dt\right)$.

• Si
$$\int_a^b g(t) dt$$
 diverge, alors $\int_a^x f(t) dt = o\left(\int_a^x g(t) dt\right)$.

Equivalence On suppose que $f \sim g$

• Si
$$\int_a^b g(t) dt$$
 converge, alors $\int_a^b f(t) dt$ converge et $\int_x^b f(t) dt \underset{x \to b^-}{\sim} \int_x^b g(t) dt$.

• Si
$$\int_a^b g(t) dt$$
 diverge, alors $\int_a^b f(t) dt$ diverge et $\int_a^x f(t) dt \sim \int_a^x g(t) dt$.

Remarque. On a des résultats analogues pour des fonctions continues par morceaux sur]a,b] quitte à utiliser des relations de comparaison en a^+ et non b^- .

Remarque. Ces résultats sont l'exact pendant des résultats sur les sommations de relations de comparaison dans le cadre des séries. Il vaut voir $x \mapsto \int_x^b f(t) dt$ comme un «reste» et $x \mapsto \int_a^x f(t) dt$ comme une «somme partielle».

Exemple 4.1

- On sait que $\frac{1}{t+\sqrt{t}} \sim \frac{1}{t}$, que $t \mapsto \frac{1}{t}$ est positive au voisinage de $+\infty$ et que $\int_{1}^{+\infty} \frac{dt}{t}$ diverge donc $\int_{1}^{+\infty} \frac{dt}{t+\sqrt{t}}$ diverge et $\int_{1}^{x} \frac{dt}{t+\sqrt{t}} \sim \int_{1}^{x} \frac{dt}{t} = \ln x$.
- On sait que $\frac{\sin t}{\sqrt{t}} = \mathcal{O}\left(\frac{1}{\sqrt{t}}\right)$, que $t \mapsto \frac{1}{\sqrt{t}}$ est positive au voisinage de 0^+ et que $\int_0^{\pi} \frac{dt}{\sqrt{t}}$ converge donc $\int_0^{\pi} \frac{\sin t \, dt}{\sqrt{t}} \text{ converge et } \int_0^{x} \frac{\sin t \, dt}{\sqrt{t}} = \mathcal{O}\left(\int_0^{x} \frac{\sin t \, dt}{t}\right) \text{ ou encore } \int_0^{x} \frac{\sin t \, dt}{\sqrt{t}} = \mathcal{O}\left(\sqrt{x}\right).$

ATTENTION! Il est essentiel que la fonction de référence soit positive au voisinage du point considéré. Par exemple $\frac{\cos t}{\sqrt{t}} + \frac{1}{t} \underset{t \to +\infty}{\sim} \frac{\cos t}{\sqrt{t}}.$ On montre que l'intégrale $\int_{\pi}^{+\infty} \frac{\cos t}{\sqrt{t}} \text{ converge par intégration par parties. Par contre, l'intégrale } \int_{\pi}^{+\infty} \left(\frac{\cos t}{\sqrt{t}} + \frac{1}{t}\right) dt \text{ diverge puisque l'intégrale } \int_{\pi}^{+\infty} \frac{dt}{t} \text{ diverge.}$