[30240604 面向计算机科学的离散数学-图论 2023]

面向计算机科学的离散数学

图论—平面图与色数

苏航

suhangss@mail.tsinghua.edu.cn 清华大学 计算机系

第五章 匹配与网络流

- ◆ 二分图的最大匹配
- ◆完全匹配
- ◆ 最佳匹配及其算法
- ◆ 最大基数匹配
- ◆ 网络流图
- ◆ Ford-Fulkerson最大流标号算法
- ◆最大流的Edmonds-Karp算法
- ◆最小费用流

首尾相接:道路、回路 非首尾相接:树,割集 继续寻找特殊情况?

两人一组:两两配对?

三三配对?

相异代表系

◈ 课程分配问题:每门课程都有几位教师可以讲授

课程	教师
1	ACF
2	CDEG
3	AC
4	AF
5	BEG
6	CF

◆ 不考虑一个教授讲一门课程的限制,所有可能性笛卡尔积=288种可能

相异代表系

设 S_1, S_2, \cdots, S_n 是集合的有限序列,如果有 $x_i \in S_i, i=1,2,\cdots,n$,并且各个元素 x_i 都不相同,则称该序列是一个相异代表系。

$$S_1 = \{1, 2, 3\}$$
 $S_2 = \{1, 3\}$ $S_3 = \{1, 3\}$ 2, 1, 3, 4

 $S_4 = \{3, 4, 5\}$

相异代表系

◈ 课程分配问题:每门课程都有几位教师可以讲授

课程	教师	分配
1	ACF	Α
2	CDEG	D
3	AC	С
4	AF	F
5	BEG	В
6	CF	?

有相异代表系么?

$$P_1 \cup P_3 \cup P_4 \cup P_6 = \{A, C, F\}$$

霍尔定理

- ◆ 英国数学家
- ◆ 对近世代数的发展做出了重要贡献
- ◆ 英国布雷奇莱庄园密码小组工作

霍尔定理

◆ 有限集合序列 S_1, S_2, \dots, S_n 有相异代表系当且仅 当对 $\{1, 2, \dots, n\}$ 的任意子集 I, $S_i (i \in I)$ 的并集 所包含的元素个数不少于集合I 所包含的元素的个数。

$$S_1 = \{A, C, E\}, S_2 = \{A, B\}, S_3 = \{B, E\}$$

I	S_i 并集	I	S_i 并集
Φ	Φ	1, 2	A, B, C, E
1	A, C, E	1, 3	A, B, C, E
2	A, B	2, 3	A, B, E
3	B, E	1, 2, 3	A, B, C, E

霍尔定理

- \bullet 如果对于n个集合,需要检查 2^n 个子集
- ◆ 指数复杂度

课程	教师
1	ACF
2	CDEG
3	AC
4	AF
5	BEG
6	CF

二分图的匹配

- ◆ 分配n个人来做m项工作
- ◆ 图论建模, G=(V, E)
 - □ 边(x_i, y_j)表示x_i可以从事y_j
- ◆ 约束条件
 - 每个人最多从事其中一项
 - □每项工作只能由其中一个人来承担
- ◆ 问怎样才能让更多的人安排上工作?
 - □ 该问题的图论建模?
- ◆ 资源分配问题

二分图的匹配

- ◆二分图(偶图):如果顶级集V可以写成两个不相交的集合V₁和V₂的并集,使得边集E中的每条边都连接V₁中的一个元素和V₂中的一个元素
- ◆ 定义5.1.1: 匹配
 - 。令M是图G的边集,若M中任意两条 边都没有共同顶点,则称M为G的 一个匹配
- ◆ 最大匹配:包含边最多的匹配

二分图的匹配(2)

- ◆ 按照要求,如果x;从事了y;,就不允许再 从事y_k,同时y;也不再允许其它人承担
- ◆ 如何描述呢?
 - 。因此它相当于用一种颜色比如红色对G的边进 行着色,保证每个结点最多只与一条红色边 相关联
 - 。这种红色边的集合记为M,它就称为匹配
- ◆ 原问题就是计算G中包含边数最多的一个匹配M

二分图的最大匹配(3)

- ◈ 例5.1.2
 - 二战期间,盟军派飞行员到英国参加对德的空袭,每架飞机需要领航员和飞行员各1人
 - 。有些人只会领航,一些人只会驾驶,也有两者 均会的
 - 。要求二人语言相通
 - □ 图论建模
 - 以点表示人
 - 边表示二人语言相通并且一人可领航一人可驾驶
 - □ 那么最多的编队方案就是计算G的一个最大匹配

二分图的最大匹配(4)

- ◆ 关键术语定义
 - 。图中与M边相关联的结点称为饱和点, 否则称为非饱和点
 - □ 饱和点: x₁, x₂, x₃, x₄, y₁, y₃, y₄, y₅
 - □ 非饱和点: x₅, y₂
- ◆最多的任务分配是什么?

二分图的矩阵表示

- ◆ 二分图邻接矩阵
 - 。简化为|X|×|Y|二值矩阵
- ◆ 最大匹配是多少?
 - 。A中不同行同列的非零元 的最大数目
 - 。如果矩阵A是p×q矩阵, 则最大匹配数≤min(p, q)

如果没有两个元素在同一行/列,该集合是一个独立集

二分图的最大匹配(4)

- ◆ 定义5.1.2
 - 设M是G=(V, E)中的一个匹配,如果对G的任意匹配M',都有|M|≥|M'|, 则称M为一个最大匹配

定义5. 1. 3: 给定了G的一个匹配M,G中属于M与不属于M的边交替出现的道路称为交互道路($x_1 - y_1 - x_3 - y_3$)

二分图的最大匹配(5)

- ◆ 定义5.1.4
 - 。设P是G中关于匹配M的一条交互道路
 - 。如果P的两个端点是关于M的非饱和点,那么它就 称为可增广道路
 - $x_1 y_1 x_3 y_3$ (黑-红-黑)
- ◆ 可增广道路的基本特点
 - 。可增广道路P一定包含奇数条边,且其中不属于 匹配M的边比M中的边多一条
 - 。M'=P ⊕ M仍然是一个匹配
 - 。M'使P的两个端点变成了饱和点
 - 。 |M'|=|M|+1, 即M'是比M更大的匹配

二分图的最大匹配(6)

◆ 例

- □蓝色的边构成图的匹配M
- 关于该匹配的饱和点是{x₃, y₁, x₂, y₄, x₄, y₅, x₅, y₃}
- □ 非饱和点是 {x₁, y₂}
- □ 道路 (x1, y1, x3, y3, x5)是一条交 互道路,但不是可增广道路
- 。判定: M是否为最大匹配?

呼唤定理?

可增广道路存在性与最大匹配的关系?

二分图的最大匹配(7)

- •定理5.1.1(Berge 1957)
 - M是G的最大匹配当且仅当G中不存在关于M的可增广道路

•证明

- 必要性(反证法)
 - 若存在M的可增广道路P,则M⊕P=M'是G的一个新匹配,且|M'|>|M|, 与M是最大匹配矛盾
- 充分性(反证法)
 - 如果匹配M不是G的最大匹配,则存在一个最大匹配M',做G'=M'⊕M, 我们逐一分析G'中三种可能的连通支

二分图的最大匹配(8)

- ◆要证: M不是最大匹配则存在可增广道路; 已有G'= M'⊕M, 且M'是最大匹配
- ◈ 孤立结点v;(M'和M均为不连通的边集)
 - 。 关联 v_i 的边 (v_i, v_j) ∈ M' \cap M, 对M' 和M的贡献 相同
- ◆ 交互回路(例如x₁-y₁-x₃-y₃)
 - 。该回路必为偶回路,其中属于M'和M的边数相同
- ◆ 交互道路
 - 。若不存在增广道路,则|M' |=|M|,与假设矛盾
 - 。若只存在M关于M'的增广路/红蓝红,与M'是最大匹配矛盾
 - 。由于 | M' | > | M | , 故必定存在 M' 关于 M 的可增广 交互道路

 $x_4-y_4-x_2-y_2$,即G中存在关于M的可增广道路

二分图的最大匹配(9)

◈ 例

- 。蓝色边构成的匹配
 - 不存在可增广道路
 - 是最大匹配
- 。 红色边构成的匹配
 - 不是最大匹配
 - 存在可增广道路

从判定到求解:最大匹配?

考虑红色图三种可能性: x_2^- ; x_1y_3 ; $x_1y_1x_3y_3$

二分图的最大匹配(10)

- ◆ 计算二分图的最大匹配算法匈牙利算法
 - □ 输入为二分图G=(X, Y, E);
 - . 结点标记
 - 0: 表示尚未搜索
 - 1: 表示饱和点
 - 2: 表示无法扩大匹配的点 (仅对X中的结点)
 - □ 1、任给初始匹配M. 给饱和点"1"标记
 - 。2、判断X各结点是否都已有非零标记
 - 2.1 是,M是最大匹配,结束
 - 2.2 否,找一个"0"标记点x₀∈X,开始本次搜索

令U← $\{x_0\}$, 为本次搜索的X结点集

 $X_1 Y_1 X_3 Y_3$ $\Diamond V \leftarrow \Phi$, 为本次已检查过的Y结点集

二分图的最大匹配(11)

- ◆ 3、判断集合U的邻接点集 Γ (U)=V?
 - □ 3.1 是, x₀无扩大匹配, 标x₀ "2", 转2
 - 3.2 否, 在Γ(U)-V中找一点y_i,
 判断y_i是否标记"1"(即饱和点)
 - (1) 非饱和点(如y₃):
 存在从x₀到y_j的可增广路P
 令M ← M ⊕ P, 给x₀, y_i标记1
 转2
 - (2)饱和点(如y₁):
 则存在xᵢ使得边(xᵢ, yᵢ) ∈ M
 令 U ← U + {xᵢ}, V ← V + {yᵢ}, 转3

向右非匹配边 向左匹配边

二分图的最大匹配(12)

- 例5. 1. 3 设初始匹配:M={(x₁, y₁), (x₃, y₄), (x₄, y₅)}
- ◆ 用匈牙利算法求最大匹配
 - 。进行节点标记
 - □ U= $\{x_2\}$, V= Φ (为本次已访问过的Y结点集) $\Gamma(U) = \{y_4, y_6\}$, $y_6 \in \Gamma(U) - V$, 且无标记
 - 。得到增广路P=(x₂, y₆)
 - □更改节点标记

二分图的最大匹配(13)

- □ U= $\{x_5\}$, 访问过的y节点集V= Φ Γ(U) = $\{y_5, y_6\}$, $y_5 \in \Gamma(U) - V$, 不可增广
- □ $U = \{x_5, x_4\}, V = \{y_5\}$ $\Gamma(U) = \{y_5, y_6\}, y_6 \in \Gamma(U) - V$
- $U = \{x_5, x_4, x_2\}, V = \{y_5, y_6\}$ $\Gamma(U) = \{y_5, y_6, y_4\}, y_4 \in \Gamma(U) V$
- □ U= $\{x_5, x_4, x_2, x_3\}$, V= $\{y_5, y_6, y_4\}$ Γ (U) = $\{y_5, y_6, y_4, y_2\}$, $y_2 \in \Gamma$ (U) -V 且无标记
- □ . . . 增广路P= $(x_5, y_6, x_2, y_4, x_3, y_2)$ $M=M\oplus P=\{(x_1, y_1), (x_4, y_5), (x_5, y_6), (x_2, y_4), (x_2, y_3)\}$

二分图的最大匹配(14)

□ (3)
$$U = \{x_6\}$$
, $V = \Phi$
 $\Gamma(U) = \{y_6\}$, $y_6 \in \Gamma(U) - V$

$$U = \{x_6, x_5\}, V = \{y_6\}$$

$$\Gamma(U) = \{y_6, y_5\}, y_5 \in \Gamma(U) - V$$

$$U = \{x_6, x_5, x_4\}, V = \{y_6, y_5\}$$

$$\Gamma(U) = \{y_6, y_5\}, \Gamma(U) = V$$

- □给x₅标记2。结束。
- □ 因此其最大匹配是

$$M = \{ (x_1, y_1), (x_4, y_5), (x_5, y_6), (x_2, y_4), (x_3, y_2) \}$$

二分图的最大匹配(15)

- ◆ 定理5.1.2
 - 。最大匹配的匈牙利算法,计算复杂度为0(mn), 其中n是二分图G中X的结点数
- ◆ 证明
 - □初始匹配可以是空匹配
 - 。算法最多找n条增广路
 - 。每找一条增广路时,最多判断m条边
 - 。因此其计算复杂性是0(mn)

- 通过简单穷举办法得到最大匹配的方法复杂度过高
- ◈ 转化为在0-1矩阵种求解1的最大独立集合
 - □ 从某个1的独立集开始得到新的独立集
 - □ 最大独立集或者比原独立集所包含的1多一个

	A	B	C	D
1	$\int 1^*$	0	1	1
2	0	1*	0	0
3	1	1	0	0
4	0	1	0	0 _

◆ 标记和扫描法

- □ 某行/列被标记,在同一次循环中不会被再次标记
- □ 某行/列被扫描,在同一次循环中不会被再次扫描
- □某行/列被扫描之前,必须被标记
- ◆ 从标记所有不带*的1的列开始,并用"#"标记

- ◆扫描每个被标记的列,寻找不带*的1
- ◆ 在C列第一行中不带*的1
- ◆ 用C标记这个行指示不带*的1是在C列发现的
- ◆ 在C列下面做已验讫的标记 √

- ◆扫描D列,在第一行发现不带*的1,但该行已经被标记,在D列下面做一个已验讫的标记
- ◆ 所有标记的列都已经扫描, 开始行的扫描
- ◆ 只有第一行被标记,寻找带*的1
- ◆标记第一列,并在该行后面标记已验讫

- ◈ 所有标记的行都已经扫描,进行列扫描
- ◆ A列做了标记但是没有被扫描,扫描找到不带*的1
- ◆ 在第三行中用A列标记

	A	B	C	D		
1	$\int 1^*$	0	1	1	7	$C\checkmark$
2	0	1*	0	0		
3	1	1	0	0		A
4	0	1	0	0		
	- 1√	•	#	\checkmark	- #	

- ◆ 关键转折步骤!
- ◆扫描标记的第3行,没有发现带*的1
- ◆ 节点3是一个非饱和点!用"!"标记,表明是可以改进初始1的独立集

- ◈ 第三行被标记为A, 所以在A列3行的1画圆圈
- ◆由于该列被被标记为1,在1行A列带*的1外面画一个圆圈
- ◆ 第一行被标记为C,在1行C列画一个圆圈
- ◆ C列被#标记, 停止(找到非饱和点!)

- ◈ 反转所有带圆圈的1上的*, 找到一个更大的独立集
- ◈ 从2个元素增加到3个元素

◆ 从图的角度理解

二分图的最大匹配(16)

◈ 最大匹配之后呢?

特例情况?

X是否能全都匹配?

Y是否能全都匹配?

第五章 匹配与网络流

- ◆ 二分图的最大匹配
- ◆完全匹配
- ◆ 最佳匹配及其算法
- ◆ 最大基数匹配
- ◆ 网络流图
- ◆ Ford-Fulkerson最大流标号算法
- ◆最大流的Edmonds-Karp算法
- ◆最小费用流

完全匹配

- •完全匹配
 - •二分图G=(X, Y, E)的最大匹配M包含的边数不会超过|X|,若|M|=|X|,则称M是完全匹配
- •完美匹配
 - ●如果 | M | = | X | = | Y | ,则称M是完美匹配
- •完全匹配的存在性?
- •定理5. 2. 1 (Hall定理)
 - •在二分图G=(X, Y, E)中, X到Y 存在完全匹配的充要条件为:
 - ●对于X的任意子集A, 恒有 | Γ (A) | ≥ | A |

完全匹配(2)

- 证明(存在完全匹配的充要条件:
 任意子集A有|Γ(A)|≥|A|)
 - 必要性(反证法)
 - 若存在子集A ⊆ X, 使 | A | > | Γ (A) |
 - 则A中的结点无法全部匹配
 - 因此X到Y不可能有完全匹配
 - 充分性

(反证法,构造A)

- 要证: 不存在完全匹配,则存在A满足|Γ(A)|<|A|)
- 假定G的一个最大匹配M不是完全匹配
- 一定存在结点 x_0 ∈ X是关于M的非饱和点(μx_0)
- 如果Γ(x₀)=Φ,则令A={x₀},于是|Γ(A)|< |A|,不满足条件

完全匹配(3)

- ◆ 证(续) (要证存在子集|A|>|Γ(A)|)
 - □ 若 $\Gamma(x_0) \neq \Phi$,对某 $y_i \in \Gamma(x_0)$ y_6 饱和吗?
 - 。若 y_i 关于M为非饱和点,则存在增广路 (x_0, y_i) ,与M是最大匹配矛盾
 - 。因此 y_i ∈ $\Gamma(x_0)$ 都是关于M的饱和点,但是 x_0y_i 为非匹配边
 - 。这样可以寻找以xo为端点的相对于M的一切交互道路
 - 。记交互道路中结点 y_i 的集合为 Y_1 ,结点 x_i 的集合为 X_1 (新增的x与y——对应)
 - 根据匹配的性质, Y₁结点与X₁-x₀的结点之间存在一一对应, 于是|X₁|>|Y₁|,
 即|X₁|>| Γ(X₁) |

对非完全匹配, 构造子集 A , 满足 | A | > | Γ (A) | 。 证毕充分性

完全匹配(4)

- •推论5.2.1
 - 若二分图G=(X, Y, E)的每个结点x_i∈X, 都有d(x_i) ≥k, 每个结点y_j∈Y, 都有d(y_j) ≤k,
 则X到Y存在完全匹配

•证明

- 对任意子集A ⊆ X
- 设A共与m条边相关联,由d(x_i) ≥k
 且边不重复,于是m ≥ k |A|
- 这m条边又与Y中的 | Γ (A) | 个结点相
 关联,由d(y_i) ≤k,又有m ≤ k | Γ (A) |
- 因此 「(A) ≥ A , 由定理5.2.1即得

稳定匹配理论和市场设计实践

◆ 2012年诺贝尔经济学奖

- 美国经济学家阿尔文·罗思和劳埃德·沙普利
- 」如何尽可能适当地匹配不同市场主体。
- 。这样的匹配如何尽可能有效地完成?什么样的方法对 什么样的人群有益?

劳埃德·沙普利: 著名的飞虎队的队员

完全匹配(5)

- •例5.2.1
 - 在一个舞会上男女各占一半,假定每位男士都认识k位女士,每位女士都认识k位男士,那么一定可以安排得当,使每位都有认识的人作为舞伴
- •证明(图论建模)
 - 图论建模:用结点x_i表示每位男士,结点y_j表示每位女士,互相认识者用 边连之,则存在完美匹配
 - 于是得到二分图G=(X, Y, E), 图中每个x; 结点有 d(x;) =k, 每个y; 结点有 d(y;) =k
 - 满足d(x;) ≥k, d(y;) ≤k
 - 由推论5.2.1, X到Y有完全匹配M(即完美匹配)
 - M就是一种安排方案

二部图的矩阵表示

- ◆ 二分图邻接矩阵
 - 。简化为|X|×|Y|二值矩阵
- ◈ 最大匹配是多少?
 - · A中不同行同列的非零元
 - 的最大数目
 - 。如果矩阵A是p×q矩阵, 则最大匹配数≤min(p, q)

二分图 邻接矩阵

最大匹配是多少? 考虑x₂和x₃、x₁和x₅

计算机可否 有快速算法?

覆盖

◆ 覆盖

- □ 适当地选取A的某些行和列,使这些行和列能盖住A的 全部非零元,称为A的覆盖
- 。覆盖数为所选取的行和列的个数
- 。矩阵A中如果盖住第4、6行,第2、4列,就可以覆盖其 全部非零元,覆盖数为4 A=

◆ 最小覆盖

- □ 如果选取最少的行与列就能覆盖A的全部非零元,则称 这样的覆盖为最小覆盖
- 。在矩阵A的各种覆盖中,一定存在最小覆盖,其覆盖数为s,显然s<=min(p,q)
- 。二分图的最大匹配数r,与其邻接矩阵的最小覆盖数s 相等

覆盖

◆ 某公司希望在市区的若干十字路口设置广告摊位, 使得市区中所有人距离最近摊位的距离不超过1个 街区,该公司希望设置尽可能少摊位达到这个要求

最小覆盖

砂一个图有匹配M和一个覆盖C,那么 ||M|| ≤ ||C||, 如果 ||M|| = ||C||,那么M是一个最大匹配,C是一个最小覆盖

◈ 证明:

- 根据覆盖的定义,图中的每条边,特别是M中的每条 边与C中的某个顶点关联。
- □如果e在M中,设v(e)是C中关联e的顶点。
- 。根据匹配的定义,匹配中的两条边 e_1 和 e_2 不能共享项点
- 。则C中的顶点至少和M中的边一样多,因此 $\|M\| \leq \|C\|$

最小覆盖

◈ 证明续

- 。假设 $\|M\| = \|C\|$,如果M不是一个最大的匹配,那么存在匹配M'使得 $\|M'\| > \|M\| = \|C\|$ 矛盾!
- 。同理,如果C不是一个最小的覆盖,则存在一个顶点 少于M的覆盖,||M|| = ||C|| > ||C'|| 矛盾!

第五章 匹配与网络流

- ◆ 二分图的最大匹配
- ◆完全匹配
- ◆ 最佳匹配及其算法
- ◆ 最大基数匹配
- ◆ 网络流图
- ◆ Ford-Fulkerson最大流标号算法
- ◆最大流的Edmonds-Karp算法
- ◆最小费用流

完全匹配存在性,

唯一性? 然后呢?

H道路,旅行商?

最佳匹配及其算法

- ◆ 从旅行商问题想到了什么?
 - 前两节讨论了最简单的匹配(边权为1),边权不等于1的一般情况如何呢?

◆ 最佳匹配

。如果边权是非负实数,而且存在多个完全匹配,那么其中权和最大或最 小的匹配就叫最佳匹配

- ◈ 例5.3.1
 - 。5项工作由5个人完成
 - 。i从事工作j的 利润或成本矩阵
 - □ 某人不能做某事?

权值为0或无穷大

玩命简化

◆ 工时分配

	工人1	工人2	工人3	工人4
工作A	3	6	3	5
工作B	7	3	5	8
工作C	5	2	8	6
工作D	8	3	6	4

◆ 设计独立集的元素之和尽量小

	1	2	3	4			1	2	3	4
A	3 *	6	3	5		A	$\lceil 3 \rceil$	6	3	5^*
B	7	3*	5	8		B	7	3^*	5	8
C	5	2	8*	6		C	5^*	2	8	6
D	8	3	6	4* .]	D	8	3	6*	$\begin{bmatrix} 5^* \\ 8 \\ 6 \\ 4 \end{bmatrix}$
		$\sum x^*$	= 18					$\sum x^{*}$	* = 19)

- ◆ 设计独立集的元素之和尽量小
- ◆第一行每个元素减去该行的最小值
- ◈ 不会改变相对大小关系!

	1	2	3	4		1	2	3	4
A	$\int 0^*$	3	0	2	A	$\begin{bmatrix} 0 \end{bmatrix}$	3	0	2^*
B	7	3^*	5	8	B	7	3^*	5	8
C	5	2	8*	6	C	5^*	2	8	6
D	8	3	6	4*	D	8	3	6*	$\begin{bmatrix} 2^* \\ 8 \\ 6 \\ 4 \end{bmatrix}$
	_			_	•	_			

$$\sum x^* = 15$$

$$\sum x^* = 16$$

- ◆ 对于所有的行和列都先后执行同样的操作
- ◆ 减去该行和该列的最小值

	1	2	3	4					4
A	$\int_{0}^{\infty} 0$	3	0	$2 \ \rceil$	$A \\ B \\ C$	$\begin{bmatrix} 0 \end{bmatrix}$	3	0	$1 \rceil$
B	4	0	2	5	B	4	0	2	4
C	3	0	6	4	C	3	0	6	3
D	5	0	3	1	D	5	0	3	0

应用独立集算法,寻找0的独立集

◈ 0的最大独立集含有3个元素,存在最小覆盖

	1	2	3	4		
A	0^*	3	0			$C \checkmark$
B	4	0*	2	4		
C	3	0	6	3		
D	5	0	3	0*		
	$1\checkmark$		#√		_	

- ◈ 不在覆盖中的最小元素是2
- ◈ 不在覆盖中的元素减2
- ◆ 既在行覆盖又在列覆盖中元素加2
- ◆ 只在一个覆盖中的元素保持不变

◈ 找出含有4个0的独立集,并在原矩阵找出对应元素

- ◈ 步骤1 减小矩阵
 - □将每行中的各元素减去该行的最小元
 - 。将每列中的各元素减去该列的最小元
- ◆ 步骤2 确定一个0的最大独立集
 - □ 在矩阵中找出一个0的最大独立集
- \bullet 步骤3 如果|S| < n , 扩大独立集

- ◆循环 |S| < n</p>
 - □找出矩阵的一个0的最小覆盖
 - □ 设 k 是不在这个覆盖的行(列)上的最小矩阵元素
 - \blacksquare 将不在覆盖的行(列)上的每个元素减去 k
 - 。将既在这个覆盖的行中又在这个覆盖列中的每个元素 加上 k
 - 。用一个新的0的最大独立集替代|S|
- ◆步骤四 输出集合 S

最佳匹配及KM算法(2)

- 若C_{ij}表示i从事工作j的利润
 - 如果每个人只从事一项工作
 - 那么最大利润就应该是

$$\max \sum C_{ij}$$

- C_{ii}不在相同的行与列
- 若Cii表示i从事工作j成本
 - 那么最小的成本应该是

$$\min \sum C_{ii}$$

- C_{ij}不在相同的行与列
- 这种最佳匹配就是二分图的 最大权或是最小权匹配
- 在讨论最佳匹配时,二分图G=(X,Y,E)满足条件|X|=|Y|

最佳匹配及KM算法(3)

- ◆ 最大权匹配算法(已知利润矩阵C)
 - 。1. 在C的每行中选一最大值作为本行的 界值 $I(x_i)$,每列的界值 $I(y_j)=0$. 构造矩阵 $B=(b_{ij})_{n\times n}$,其中 $b_{ij}=I(x_i)+I(y_j)-c_{ij}$
 - 。2. 在B中对0元素进行最小覆盖,覆盖数为r
 - 2.1 若r=n, 转4
 - 2.2 在未覆盖的元素中选最小非零元δ 计算B矩阵

若x_i行、y_j列均已覆盖,则b_{ij}←b_{ij}+δ 若x_i行、y_j列均未覆盖,则b_{ij}←b_{ij}−δ

最佳匹配及KM算法(4)

◆最大匹配算法(续)

。3. 修改界值

若
$$x_i$$
行没覆盖,则 $I(x_i)$ ← $I(x_i)$ – δ 若 y_j 列已覆盖,则 $I(y_j)$ ← $I(y_j)$ + δ 删除覆盖标⁻ 转2

□ 4. $\sum (l(x_i) + l(y_j)) = 29$ 即为最大权,结束

最佳匹配及KM算法(5)

- 例5.3.2
 - 已知利润矩阵,求二分图的最佳匹配(最大利润)

解

- 计算界值(表的两旁标出)
- 计算矩阵B
- 求最小覆盖
 - 如1、5两列
- 在未覆盖的元素中选最小非零元, 即 δ =2

最佳匹配及KM算法(6)

- •解(续)
 - 覆盖数r=2<n, δ=2
 - 产生新B:未覆盖的元素均减δ(最小值)
 - 修改界值
 - 若x_i行没覆盖,则I(x_i) ← I(x_i)-δ
 - 若y_i列已覆盖,则l(y_i) ←l(y_i)+δ
 - 重新求最小覆盖
 - 如第1、5两列和第3行
 - 在未覆盖的元素中选最小非零元,即
 δ=1

最佳匹配及KM算法(7)

- •解(续)
 - 覆盖数r<n , δ=1
 - B中没覆盖的元素均减1
 - 双重覆盖元加1
 - 修改界值
 - 没覆盖的x;行: |(x;) ← |(x;) δ
 - 已覆盖的y_i列: I(y_i) ←I(y_i)+δ
 - 重新求最小覆盖
 - 如第1, 2, 3, 5列
 - 在未覆盖的元素中选最小非零元,即 δ =1

最佳匹配及KM算法(8)

- 覆盖数r<n, δ=1
- B中没覆盖的元素均减1
- 修改界值
 - 没覆盖的x;行: I(x;) ← I(x;)-δ
 - 已覆盖的y_j列: I(y_j) ←I(y_j)+δ
- 重新求最小覆盖
 - 如第3、4、5行和3、5列
- 最小覆盖数r=n
- 一个最大权匹配方案是 {C₁₃, C₂₅, C₃₄, C₄₂, C₅₁}
- 最大权 $\sum (l(x_i) + l(y_j)) = 29$
- 定理5.3.1:上述算法(最大权匹配算法)的结果是矩阵C的最大权匹配

图匹配问题

基于图匹配的多目标跟踪

图像拼接

三维重建

同步定位与建图

目标检测与跟踪

特征匹配相关 应用

变化检测

图像检索

定位导航

图匹配建模

- ◆ 利用分配矩阵对图匹配进行数学建模
- ◆ 二值0-1矩阵,每行(列)不超过1个1,每列(行)只有1个1

图匹配建模

◆ 结合点点相似度矩阵和分配矩阵

• S. Gold and A. Rangarajan, "A graduated assignment algorithm for graph matching," IEEE Transaction on PAMI, 1996

图匹配建模

- ◆ 节点相似度可以拓展为边的匹配
- ◆ 子集内部节点有关联

1st-order Feature (eg. Local Texture)

Feature Matching (linear)

2nd-order Feature (eg, Edge Length)

Graph Matching (quadratic)

图匹配

◆ 综合考虑节点相似度和边的相似度

广义相似度矩阵

◈ 顶点间相似度(假想自环)

◆ 边相似度

基于广义相似度矩阵的图匹配建模

◈ 图匹配建模

• M. Leordeanu and M. Hebert, "A spectral technique for correspondence problems using pairwise constraints," in ICCV, 2005

图匹配的谱近似算法

◆ 谱近似算法

- M. Leordeanu and M. Hebert, "A spectral technique for correspondence problems using pairwise constraints," in ICCV, 2005
- P. S. T. Cour and J. Shi, "Balanced graph matching," in NIPS, 2006

基于谱分析的优化

有约束优化问题求解,令 $\mu_1 = vec(X)$

$$\mu_1 = \arg\max_{\mu_1} \mu_1^{\top} K \mu_1 \quad s.t., \quad \mu_1^T \mu_1 = 1$$

- ◆利用拉格朗日法求解
 - 特征值问题 $K\mu_1 = \lambda_1\mu_1$
 - μ_1 的解是 K 最大的特征对应的特征向量
- ◆特征值分解(Eigendecomposition),又称谱分解 (Spectral decomposition)

总结

- ◆ 二分图的匹配
 - 独立集算法
 - 。最大匹配等于最小覆盖
- ◆完全匹配
 - □ 霍尔定理
- ◆ 最佳匹配
 - 。匈牙利算法
 - 。KM算法
 - □谱分析算法

