Jaypee Institute of Information and Technology Department of Mathematics

Course: Matrix Computations (16B1NMA533)

Tutorial Sheet 6 [C301-3.3]

(Topics covered: spanning set, dimension, basis, inner product space, norm, parallelogram law)

- 1. Show that the vectors (1,1,1), (1,1,0) and (1,0,0) span \mathbb{R}^3 .
- 2. Prove that $W = \{(a,b,c): a+b+c=0\}$ is a subspace of \mathbb{R}^3 . Find a basis and the dimension of W.
- 3. Let W be the subspace of R⁴ spanned by the vectors (1,-2,5,-3), (2,3,1,-4), (3,8,-3,-5). Find a basis and the dimension of W.
- 4. Prove that R^2 is an inner product space with respect to the inner product defined as $\langle u, v \rangle = 5x_1x_2 x_1y_2 x_2y_1 + 5y_1y_2$, where $u = (x_1, y_1)$ and $v = (x_2, y_2)$.
- 5. Let V(C) be the vector space of all continuous complex valued functions on the unit interval, $0 \le t \le 1$. Show that the following defined product is an inner product on V(C).

for any
$$f(t)$$
, $g(t) \in V$, $\langle f(t), g(t) \rangle = \int_{0}^{1} f(t) \overline{g(t)} dt$

- 6. Let \langle , \rangle be the standard inner product on R^2 . Let $\alpha = (1, 2)$, $\beta = (-1, 1)$. If γ is a vector such that $\langle \alpha, \gamma \rangle = -1$ and $\langle \beta, \gamma \rangle = 3$, find γ .
- 7. Prove or disprove: there is an inner product on R^2 such that the associated norm is given by $||(a,b)|| = \max\{|a|,|b|\}, \forall (a,b) \in R^2.$
- 8. Suppose $u, v \in V$ are such that ||u|| = 3, ||u + v|| = 4, ||u v|| = 6. What number does ||v|| equal?