- 1 The answers for all parts are presented below:
 - (a) We have:

$$\mathbb{P}(A) = 0.6, \ \mathbb{P}(B) = 0.4, \ \mathbb{P}(C) = 0.3,$$

 $\mathbb{P}(A \cap B) = 0.2, \ \mathbb{P}(A \cap C) = 0.1, \ \mathbb{P}(B \cap C) = 0.2,$
 $\mathbb{P}(A \cap B \cap C) = 0.05.$

(b) Using that (i) C and \bar{C} form a partition of the sample space and (ii) B and \bar{B} form a partition of the sample space, the following calculations are straightforward:

$$E_{1} \cup E_{2} \cup E_{3} \cup E_{4}$$

$$= \left[(A \cap B \cap C) \cup (A \cap B \cap \bar{C}) \right] \cup \left[(A \cap \bar{B} \cap \bar{C}) \cup (A \cap \bar{B} \cap C) \right]$$

$$= (A \cap B) \cup (A \cap \bar{B})$$

$$= A.$$
(1)

Similarly, we have:

$$E_1 \cup E_2 \cup E_5 \cup E_6$$

$$= \left[(A \cap B \cap C) \cup (A \cap B \cap \bar{C}) \right] \cup \left[(\bar{A} \cap B \cap \bar{C}) \cup (\bar{A} \cap B \cap C) \right]$$

$$= (A \cap B) \cup (\bar{A} \cap B)$$

$$= B,$$

$$E_{1} \cup E_{4} \cup E_{6} \cup E_{7}$$

$$= \left[(A \cap B \cap C) \cup (A \cap \bar{B} \cap C) \right] \cup \left[(\bar{A} \cap B \cap C) \cup (\bar{A} \cap \bar{B} \cap C) \right]$$

$$= (A \cap C) \cup (\bar{A} \cap C)$$

$$= C.$$
(2)

(c) From (1), we have that $E_1 \cup E_2 = A \cap B$. Similarly, we have that $E_1 \cup E_4 = A \cap C$ from (2). Using the fact that A and \bar{A} form a partition of the sample space, together with the definitions of E_1 and E_6 , we get $E_1 \cup E_6 = B \cap C$.

Assuming that the identities for A, B and C in part (b) have not been obtained as presented above, another possible approach for proving the identities in part (c) is described below.

The key observation is that

$$E_i \cap E_j = \emptyset$$
 for all $i, j \in \{1, 2, \dots, 7\}$ with property $i \neq j$. (3)

Assignment 1, Semester 1, 2019

In order to write the equations in a more compact form, we define $E_{i,j} = E_i \cup E_j$ for all $i, j \in \{1, 2, ..., 7\}$ with property that i < j. Hence, we have:

$A \cap B$

=
$$(E_{1,2} \cup E_{3,4}) \cap (E_{1,2} \cup E_{5,6})$$
 [associative law]
= $[(E_{1,2} \cup E_{3,4}) \cap E_{1,2}] \cup [(E_{1,2} \cup E_{3,4}) \cap E_{5,6}]$ [distributive law]
= $E_{1,2} \cup \emptyset$
= $E_{1,2}$
= $E_{1} \cup E_{2}$,

$A \cap C$

$$= (E_{1,4} \cup E_{2,3}) \cap (E_{1,4} \cup E_{6,7}) \text{ [associative law]}$$

$$= [(E_{1,4} \cup E_{2,3}) \cap E_{1,4}] \cup [(E_{1,4} \cup E_{2,3}) \cap E_{6,7}] \text{ [distributive law]}$$

$$= E_{1,4} \cup \emptyset$$

$$= E_{1,4}$$

$$= E_{1} \cup E_{4},$$

$B \cap C$

$$= (E_{1,6} \cup E_{2,5}) \cap (E_{1,6} \cup E_{4,7}) \text{ [associative law]}$$

$$= [(E_{1,6} \cup E_{2,5}) \cap E_{1,6}] \cup [(E_{1,6} \cup E_{2,5}) \cap E_{4,7}] \text{ [distributive law]}$$

$$= E_{1,6} \cup \emptyset$$

$$= E_{1,6} \cup E_{6}.$$

(d) We have:

$$\mathbb{P}(C) = \mathbb{P}(E_1 \cup E_4 \cup E_6 \cup E_7) \text{ [see part (b)]}$$

= $p_1 + p_4 + p_6 + p_7 \text{ [see (3)]},$

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(\bigcup_{i=1}^{7} E_i) \text{ [see part (b)]}$$
$$= \sum_{i=1}^{7} p_i \text{ [see (3)]},$$

$$\mathbb{P}(A \cap B) = \mathbb{P}(E_1 \cup E_2) \text{ [see part (c)]}$$
$$= p_1 + p_2 \text{ [see (3)]}.$$

- (e) Based on the results in part (d), we get: $\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) [\mathbb{P}(A \cap B) + \mathbb{P}(A \cap C) + \mathbb{P}(B \cap C)] = \sum_{i=2}^{7} p_i. \text{ All that remains is to observe that } \mathbb{P}(A \cap B \cap C) = p_1 \text{ and } \mathbb{P}(A \cup B \cup C) = \sum_{i=1}^{7} p_i \text{ (see again part (d))}.$
- (f) We need to calculate $\mathbb{P}(A \cup B \cup C)$. Combining the results from part (a) with those from part (e), we have: $\mathbb{P}(A \cup B \cup C) = (0.6 + 0.4 + 0.3) (0.2 + 0.1 + 0.2) + 0.05 = 0.85$. Hence, 85% of the families in the city subscribe to at least one of the three newspapers.
- (g) We need to calculate $\mathbb{P}(E_3 \cup E_5 \cup E_7)$. We have:

$$\mathbb{P}(E_{3} \cup E_{5} \cup E_{7}) \\
= p_{3} + p_{5} + p_{7} \text{ [see (3)]} \\
= (\sum_{i=1}^{7} p_{i}) - p_{1} - (p_{2} + p_{4} + p_{6}) \\
= (\sum_{i=1}^{7} p_{i}) - p_{1} - [\mathbb{P}(A \cap B) + \mathbb{P}(A \cap C) + \mathbb{P}(B \cap C) - 3p_{1}] \text{ [see part (d)]} \\
= (\sum_{i=1}^{7} p_{i}) + 2p_{1} - [\mathbb{P}(A \cap B) + \mathbb{P}(A \cap C) + \mathbb{P}(B \cap C)] \\
= (\sum_{i=1}^{7} p_{i}) + 2\mathbb{P}(A \cap B \cap C) - [\mathbb{P}(A \cap B) + \mathbb{P}(A \cap C) + \mathbb{P}(B \cap C)] \\
= \mathbb{P}(A \cup B \cup C) + 2\mathbb{P}(A \cap B \cap C) \\
- [\mathbb{P}(A \cap B) + \mathbb{P}(A \cap C) + \mathbb{P}(B \cap C)] \text{ [see part (d)]} \\
= 0.85 + 2 * 0.05 - (0.2 + 0.1 + 0.2) \\
= 0.45.$$

Hence, 45% of the families in the city subscribe to exactly one of the three newspapers.

(h) Apply the formula for conditional probabilities:

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)}$$
$$= \frac{0.2}{0.6}$$
$$= \frac{1}{3}.$$

2 We define the following events for $j \geq 1$:

 $R_j = \{ \text{a red ball is obtained on the } j \text{th draw} \},$

 $B_j = \{ \text{a blue ball is obtained on the } j \text{th draw} \}.$

(a) We have:

$$\mathbb{P}(R_2) = \mathbb{P}(R_1 \cap R_2) + \mathbb{P}(B_1 \cap R_2)$$

$$= \mathbb{P}(R_1)\mathbb{P}(R_2|R_1) + \mathbb{P}(B_1)\mathbb{P}(R_2|B_1) \text{ [formula cond. prob.]}$$

$$= \frac{r}{r+b} \frac{r+k}{r+b+k} + \frac{b}{r+b} \frac{r}{r+b+k}$$

$$= \frac{r}{r+b} \left[\frac{r+k}{r+b+k} + \frac{b}{r+b+k} \right]$$

$$= \frac{r}{r+b}$$

$$= 0.2.$$

(b) We apply the formula for the probability of the chains of events:

$$\mathbb{P}(R_1 \cap R_2 \cap R_3 \cap B_4) \\
= \mathbb{P}(R_1)\mathbb{P}(R_2|R_1)\mathbb{P}(R_3|R_1 \cap R_2)\mathbb{P}(B_4|R_1 \cap R_2 \cap R_3) \\
= \frac{r}{r+b} \frac{r+k}{r+b+k} \frac{r+2k}{r+b+2k} \frac{b}{r+b+3k} \\
= 0.0143.$$

3 We define the following events:

 $C^{i} = \{ \text{the } i \text{th coin was selected}, i = 1, 2, 3, 4, 5 \},\$

 $H_j = \{ \text{head on the } j \text{th toss}, \ j = 1, 2 \},$

 $T_j = \{ \text{tail on the } j \text{th toss}, \ j = 1, 2 \}.$

(a) For $i \in \{1, 2, 3, 4, 5\}$, we have:

$$\mathbb{P}(C^{i}|H_{1}) = \frac{\mathbb{P}(H_{1}|C^{i})\mathbb{P}(C^{i})}{\mathbb{P}(H_{1})} \text{ [Bayes Theorem]}$$

$$= \frac{\mathbb{P}(H_{1}|C^{i})\mathbb{P}(C^{i})}{\sum_{i=1}^{5} \mathbb{P}(H_{1}|C^{i})\mathbb{P}(C^{i})} \text{ [Partition Theorem]}.$$

Simple calculations lead to

$$\sum_{i=1}^{5} \mathbb{P}(H_1|C^i)\mathbb{P}(C^i) = \frac{1}{5} \left[\frac{0}{4} + \frac{1}{4} + \frac{2}{4} + \frac{3}{4} + \frac{4}{4} \right]$$
$$= \frac{10}{20} = \frac{1}{2}.$$

Hence, we get:

$$\mathbb{P}(C^{1}|H_{1}) = \frac{0 * (1/5)}{1/2} = 0,$$

$$\mathbb{P}(C^{2}|H_{1}) = \frac{(1/4) * (1/5)}{1/2} = \frac{1}{10},$$

$$\mathbb{P}(C^{3}|H_{1}) = \frac{(1/2) * (1/5)}{1/2} = \frac{2}{10},$$

$$\mathbb{P}(C^{4}|H_{1}) = \frac{(3/4) * (1/5)}{1/2} = \frac{3}{10},$$

$$\mathbb{P}(C^{5}|H_{1}) = \frac{1 * (1/5)}{1/2} = \frac{4}{10}.$$

(b) We have:

$$\mathbb{P}(H_{2}|H_{1}) = \sum_{i=2}^{5} \mathbb{P}(H_{2}|C^{i} \cap H_{1})\mathbb{P}(C^{i}|H_{1}) \text{ [Partition Th. with extra conditioning]} \\
= \sum_{i=2}^{5} \frac{\mathbb{P}(H_{2} \cap H_{1} \cap C^{i})}{\mathbb{P}(H_{1} \cap C_{i})} \mathbb{P}(C^{i}|H_{1}) \text{ [formula cond. prob.]} \\
= \sum_{i=2}^{5} \frac{\mathbb{P}(H_{2} \cap H_{1}|C^{i})\mathbb{P}(C^{i})}{\mathbb{P}(H_{1}|C^{i})\mathbb{P}(C^{i})} \mathbb{P}(C^{i}|H_{1}) \text{ [formula cond. prob.]} \\
= \sum_{i=2}^{5} \frac{\mathbb{P}(H_{2}|C^{i})\mathbb{P}(H_{1}|C^{i})}{\mathbb{P}(H_{1}|C^{i})} \mathbb{P}(C^{i}|H_{1}) \text{ [conditional independence]} \\
= \sum_{i=2}^{5} \mathbb{P}(H_{2}|C^{i})\mathbb{P}(C^{i}|H_{1}) \\
= \frac{1}{4} \frac{1}{10} + \frac{2}{4} \frac{2}{10} + \frac{3}{4} \frac{3}{10} + \frac{4}{4} \frac{4}{10} \\
= \frac{30}{40} = \frac{3}{4}.$$

Another possibility is to do the calculations as follows:

$$\mathbb{P}(H_{2}|H_{1}) = \frac{\mathbb{P}(H_{1} \cap H_{2})}{\mathbb{P}(H_{1})} \text{ [formula cond. prob.]}$$

$$= \frac{1}{\mathbb{P}(H_{1})} \sum_{i=2}^{5} \mathbb{P}(H_{1} \cap H_{2}|C^{i}) \mathbb{P}(C^{i}) \text{ [Partition Theorem]}$$

$$= \frac{1}{\mathbb{P}(H_{1})} \sum_{i=2}^{5} \mathbb{P}(H_{1}|C^{i}) \mathbb{P}(H_{2}|C^{i}) \mathbb{P}(C^{i}) \text{ [cond. indep.]} \qquad (4)$$

$$= \sum_{i=2}^{5} \mathbb{P}(H_{2}|C^{i}) \frac{\mathbb{P}(H_{1}|C^{i}) \mathbb{P}(C^{i})}{\mathbb{P}(H_{1})}$$

$$= \sum_{i=2}^{5} \mathbb{P}(H_{2}|C^{i}) \mathbb{P}(C^{i}|H_{1}) \text{ [Bayes Theorem]}$$

(c) The formula is similar to the one used in part (b):

$$\mathbb{P}(H_2|T_1) = \sum_{i=1}^4 \mathbb{P}(H_2|C^i)\mathbb{P}(C^i|T_1).$$

For $i \in \{1, 2, 3, 4\}$, we need to calculate

$$\mathbb{P}(C^i|T_1) = \frac{\mathbb{P}(T_1|C^i)\mathbb{P}(C^i)}{\mathbb{P}(T_1)}$$
 [Bayes Theorem].

Because $\mathbb{P}(H_1) = 1/2$, we have $\mathbb{P}(T_1) = 1/2$. Hence, we get:

$$\mathbb{P}(C^{1}|T_{1}) = \frac{(4/4) * (1/5)}{1/2} = \frac{4}{10},$$

$$\mathbb{P}(C^{2}|T_{1}) = \frac{(3/4) * (1/5)}{1/2} = \frac{3}{10},$$

$$\mathbb{P}(C^{3}|T_{1}) = \frac{(1/2) * (1/5)}{1/2} = \frac{2}{10},$$

$$\mathbb{P}(C^{4}|T_{1}) = \frac{(1/4) * (1/5)}{1/2} = \frac{1}{10}.$$

It follows that

$$\mathbb{P}(H_2|T_1) = \frac{0}{4} \frac{4}{10} + \frac{1}{4} \frac{3}{10} + \frac{2}{4} \frac{2}{10} + \frac{3}{4} \frac{1}{10} \\
= \frac{10}{40} = \frac{1}{4}.$$

Another possibility is to use the formula that it is similar to (4):

$$\mathbb{P}(H_2|T_1) \\
= \frac{1}{\mathbb{P}(T_1)} \sum_{i=1}^{4} \mathbb{P}(T_1|C^i) \mathbb{P}(H_2|C^i) \mathbb{P}(C^i) \\
= \frac{1/5}{1/2} \left[(1*0) + \left(\frac{3}{4} * \frac{1}{4} \right) + \left(\frac{1}{2} * \frac{1}{2} \right) + \left(\frac{1}{4} * \frac{3}{4} \right) \right] \\
= \frac{2}{5} \left(\frac{3}{16} + \frac{4}{16} + \frac{3}{16} \right) \\
= \frac{1}{4}.$$

Note: Questions are from M.H. De Groot and M.J. Schervish, "Probability and Statistics", Addison-Wesley, $2002.\,$