

Year 12 Specialist TEST 2 2018

TIME: 5 mins reading 40 minutes working

	Classpads allowed! 36 marks 8 Questions
Name: SOLUTIONS	_
Teacher:	
Note: All part questions worth more than	2 marks require working to obtain full marks.
Q1 (2 & 2 = 4 marks)	
Consider $f(x) = x^3 - x^2 + 4x - 4$.	
i) Show that $(x-2i)$ is a factor of f $+(2i) = (2i)^3 - (2i)^3$	$ (x) $ $ (x) $ $ + (2i) - 4 \Rightarrow -8i + 4 + 8i - 4 = 0 $
ii) Determine three linear factors of $f(x-1)(x-2x)$	
$(\chi - i)(\chi - 2i)(i)$	$\sqrt{x+2i}$
Q2 (5 marks) Consider $f(x) = x^3 + bx^2 + ax + 8$	
	here $b \& c$ are constants. Given that $(x+2)$ is a factor
	$(c-3)$ has a remainder of -10 . Determine $b \ \& \ c$.
f(-2)=0 $f(3)$:	=-10
-8+4b -2c+8=0	-10 = 27 + 96 + 3c + 8
4b-2c=0	$\sqrt{f(-2)} = 0$
96+3c=-45	$\sqrt{f(3)} = -10$
1	= -3 / shows two simultaneous egar
~	1) state b
	=-6 / ctale c
Q3 (3 marks)	
Given that $f(x) = \sqrt{x+2}$ and $g(x) =$	$=5x-3$. Does $f\circ g(x)$ exist over the natural

To exist $rg \in df$ V States conclusion $R \nleq x \geq -2$ V States domain of f over natural domain of gdomain of $\,g\,$? Explain your answer. dg: R rg: R df:x2-2 ff: y 20

Istates rule V states simplified rule

Q4 (2 & 2 = 4 marks)

Given that $f(x) = \sqrt{x}$ and $h(x) = \frac{1}{x^2 + 5}$:

- i) Determine the rule of $h \circ f(x) = \frac{1}{x+5}$
- ii) State the natural domain and range of $h \circ f(x)$ / states domain $\chi \geq 0$ $\chi \leq \frac{1}{5}$ / states range

Q5 (3 & 3 = 6 marks)

i) On the diagram, sketch the inverse function $f^{-1}(x)$

I function reflected in line
y=x

Intersects f(a) at (1,1)

y <1.5 our 02 x <3

ii) On the diagram below, sketch $y = \frac{1}{f(x)}$

Q6) (1, 1, 2 & 2= 6 marks)

Consider the function $f(x) = \frac{cx+d}{ax+b}$ where a,b,c & d are non-zero constants.

Determine the natural domain of f

ii) Determine the limit that f approaches as $x \to \pm \infty$

iii) Determine the inverse function $f^{-1}(x)$ in terms of $a,b,c\ \&\ d$.

Determine the inverse function
$$f^{-1}(x)$$
 in terms of $a,b,c \& d$.

 $x = cy + d$
 $x(ay + b) = cy + d$
 $x(a$

iv) Determine the possible values of $a,b,c\ \&\ d$ if $f=f^{-1}$.

Q7 (4 marks)

Consider the equation |2x+5| = p|x+q| + r which is true and only true for $\frac{-5}{2} \le x \le 3$.

Determine the possible values of the constants $\,p,q\ \&\ r\,.\,$

Sketcher overlap only

between - \$\frac{5}{2} \size > \le 3

(OR other reasoning that)

shows this

$$\sqrt{g=-3}$$

$$\sqrt{r=11}$$

$$\sqrt{p=-2}$$

Right/wrong
No follow through

Q8 (4 marks)

Let
$$z = \cos(2\theta) + i\sin(2\theta)$$
 , prove that $\frac{1+z}{1-z} = \frac{i}{\tan\theta}$

$$LHS = \frac{\cos 20 + 1 + 4 \sin 20}{1 - \cos 20} + 4 \sin 20} \frac{(1 - \cos 20) + 4 \sin 20}{(1 - \cos 20) + 4 \sin 20}$$

$$= \frac{(1+\cos 20)(1-\cos 20) - \sin^2 20}{(1-\cos 20)^2 + \sin^2 20}$$

$$= \frac{1 - \cos^2 0 - \sin^2 20}{1 - 2\cos^2 20 + \cos^2 20 + \sin^2 20}$$

$$=\frac{2 L \sin 20}{2 - 2 \cos 20}$$

/ multiplies by conjugate of denominator v shows that resulting numerator 13 complex

obtains expression in terms of O by using double andle