EXERCÍCIOSDCE692 - Pesquisa Operacional

Atualizado em: 6 de setembro de 2023

Departamento de Ciência da Computação

CONVEXIDADE

Quais polígonos são convexos?

MODELAGEM

Um agricultor deve decidir a quantidade de soja e milho que vai plantar.

Ele dispõe de 350 reais.

Cada saco de sementes de soja custa 70 reais e cada saco de sementes de milho custa 50 reais.

Para buscar as sementes o agricultor tem uma picape capaz de carregar 400 kilos.

Cada saco de sementes de soja pesa 50 quilos e cada saco de sementes de milho pesa 80 kilos.

Consultando o vendedor, ele verificou que o vendedor dispõe de 4 sacos de soja e uma grande quantidade de sacos de milho.

O agricultor calculou que irá lucrar na época da colheita 300 reais por saco de soja e 280 reais por saco de milho plantados.

Quanta soja/milho ele deve plantar para maximizar o lucro?

MODELAGEM

Variáveis

- \bigcirc $x_1 \rightarrow$ Quantidade de soja
- \bigcirc $x_2 \rightarrow$ Quantidade de milho

Função objetivo

$$\bigcirc$$
 max $z = 300x_1 + 280x_2$

Restrições

- **Dinheiro**: $70x_1 + 50x_2 \le 350$
- \bigcirc **Peso**: $50x_1 + 80x_2 \le 400$
- Disponibilidade: $x_1 \le 4$

RESOLUÇÃO GRÁFICA

Resolva graficamente o modelo abaixo

min
$$3x_1 + 2x_2$$

 $x_1 + 3x_2 \le 12$
 $2x_1 + x_2 \ge 16$
 $x_1, x_2 \ge 0$

RESOLUÇÃO GRÁFICA

RESOLUÇÃO GRÁFICA

Quais são os vértices do gráfico?

- (0,12)
- (8,0)

Calculando a interseção das retas

$$\begin{cases} x_1 + 3x_2 = 12 \\ 2x_1 + x_2 = 16 \end{cases}$$
(1.6, 7.2)

Coloque o modelo abaixo na forma padrão

max.
$$300x_1+280x_2$$

 $70x_1+50x_2 \le 350$
 $50x_1+80x_2 \le 400$
 $x_1 \le 4$
 $x_1, x_2 \ge 0$

min.
$$-300x_1-280x_2$$

 $70x_1+50x_2+s_1=350$
 $50x_1+80x_2+s_2=400$
 $x_1+s_3=4$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

Seja a equação $2x_1 + 3x_2 \le 5$.

Suponha que $x_2 \in \mathbb{R}$.

Como podemos fazer para passar esta equação para a forma padrão?

$$2x_1 + 3x_2^+ + 3x_2^- + s_1 = 5$$

$$2x_1 + 3(x_2^+ + x_2^-) + s_1 = 5$$

Monte o tableau simplex do gráfico abaixo

VB	x_1	\mathbf{x}_{2}	X_3	0 1	-Z	b
X ₃	1	2	1	0	0	6
X ₄	2	1	0	1	0	6
-Z	-1	-1	0	0	1	0

Dê o modelo de otimização relacionado ao tableau abaixo

VB	x_1	\mathbf{x}_2	\mathbf{x}_3	X_4	\mathbf{x}_{5}	\mathbf{x}_{6}	x ₇	b
X ₅	1	2	3	0	1	0	0	15
x_6	2	1	5	0 0 1	0	1	0	20
x ₇	1	2	1	1	0	0	1	10
-FO	-1	-2	-3	1	0	0	0	0

min
$$-x_1 - 2x_2 - 3x_3 + x_4$$

$$x_1 + 2x_2 + 3x_3 + x_5 = 15$$

$$2x_1 + x_2 + 5x_3 + x_6 = 20$$

$$x_1 + 2x_2 + x_3 + x_4 + x_7 = 10$$

$$x_i \ge 0 \ (i = 1, ..., 7)$$

Qual é a solução ótima do modelo abaixo?

- Resolva pelo método gráfico
- Resolva pelo algoritmo Simplex

max.
$$15x_1+17x_2$$

 $4x_1+ \ 3x_2 \le 300$
 $x_1+ \ x_2 \le 100$
 $x_2 \le 50$
 $x_1, \ x_2 \ge 0$

O modelo do slide anterior pode ser expresso na forma padrão como

min.
$$-15x_1-17x_2$$

 $4x_1+ 3x_2+s_1 = 300$
 $x_1+ x_2 +s_2 = 100$
 $x_2 +s_3=50$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$