基于前馈神经网络和 MINIST 数据集的手写体数字识别

自动化钱 001 李艺涵 2206123627

一. 背景介绍

本次作业利用前馈神经网络,基于 MINIST 数据集进行训练,最终实现对于手写数字体较为准确的识别。

前馈神经网络是一种基于神经元和层次结构的人工神经网络,由输入层,隐藏层,输出层组成,每一层由若干神经元组成。它的每个神经元都是由激活函数和输入的权重组成,输入的权重表示了神经元对输入信号的加权影响。前馈神经网络可以通过正向传播算法将输入信号传递到输出层,从而实现对输入信号的分类、回归等任务。

MINIST 数据集是常用的手写数字数据集,它包含了 60000 个训练样本和 10000 个测试样本,每个样本都是一个 28x28 像素的灰度图像。 MINIST 数据集已经被广泛应用于手写数字识别的研究中,它的规模适中,便于训练和测试。

二. 工具及相关设置

本次作业使用 Pytorch 框架完成,使用 anaconda 虚拟环境,所使用代码已上传至 GitHub,可在以下链接中查看:

https://github.com/YihanLi126/Handwriting-Rcognization

三. 训练过程

1. 数据收集及处理

利用 Pytorch 中的 datasets 工具获取 MINIST 数据集,提取样本图像中 28*28 的像素灰度值形成适用于 Pytorch 的张量(Torch Tensor),并对张量进行标准化;分别将训练集和测试集数据加载为可读取的、标准的形式,设置每一个 batch 包含 64 个样本,以备训练和测试模型使用。为了加深对于数据集的直观感受,可将数据画出如下:

读取数据后,可以打印出数据集样本及标签的形状和大小:

[(MyEnv) Yihans-MacBook-Air:Handwriting-Rcognization yihanli\$ python img_show.py

Images Shape: torch.Size([64, 1, 28, 28])
Labels Shape: torch.Size([64])

可见每一个 batch 中有 64 张 28*28 大小的图片,相应地,每一个标签集里面有 64 个 对应的标签。

2. 神经网络的搭建

利用 Pytorch 搭建如上前馈神经网络模型:由于每张图片有 28*28=784 个像素点,将 样本图片数据扁平化之后,将产生784个数据点,故将输入层设置为784个节点;隐 层设置为两层,分别由有128和64个节点;将输入层和隐层的激励函数都设置为 ReLU 激励函数:

$$f(x)=x^+=\max(0,x)=egin{cases} x & ext{if } x>0, \ 0 & ext{otherwise}. \end{cases}$$

由于输出层为0~9,将输出层设置为10个节点,并设置输出层激励为适用于分类问 题的 LogSoftMax 激励:

$$ext{LogSoftmax}(x_i) = \log \left(rac{\exp(x_i)}{\sum_j \exp(x_j)}
ight)$$

最后再计算 NLL Loss, 使得 LogSoftMax 与 NLL Loss 共同作用,构成交叉熵损失,用 于每次迭代后的权重调整。

3. 模型的训练

设置迭代次数为 18 次, 记录历次迭代的 loss 值, 用于后续的测试评估。训练完成 后,将模型保存为.dat 文件,用于识别测试集图片。

4. 结果评估

读取并加载测试集数据,对样本图片逐个识别,记录下识别结果与对应的 label 中的 真值并进行比对,对于识别正确和错误的个数进行记录,并计算出模型的正确率。

四. 结果评估

1. 训练过程 loss

作出迭代次数与模型 loss 的关系如上图。可以观察到,第一轮迭代后,loss 有显著的下降,在之后的多次迭代中,loss 的下降速率逐渐减缓,最终稳定在接近 0 的水平。

2. 识别结果可视化

下面给出几个模型识别结果样例:

3. 正确率评估

打印出模型正确率如下:

[(MyEnv) Yihans-MacBook-Air:Handwriting-Rcognization yihanli\$ python model_evaluation.py Number Of Images Tested = 10000

Model Accuracy = 0.976

可知其识别准确率为0.976,准确率较高。

五. 结论

在本次作业中,我利用 Pytorch 框架搭建了一个较为基础的前馈神经网络模型,实现了准确率较高的手写体数字识别。在这个过程中,我对于数据集的获取、处理、神经网络的搭建、训练以及评估等过程有了较为基础的认知,为在相关方面的进一步学习创造了开端,有了很大的收获。

六.参考材料

- 1. http://yann.lecun.com/exdb/mnist/
- 2. https://towardsdatascience.com/handwritten-digit-mnist-pytorch-977b5338e627
- 3. https://medium.com/analytics-vidhya/training-mnist-handwritten-digit-data-using-pytorch-5513bf4614fb
- 4. https://en.wikipedia.org/wiki/Rectifier (neural networks)
- 5. https://pytorch.org/docs/stable/generated/torch.nn.LogSoftmax.html