Ellenőrző kérdések

3. Kis dolgozat kérdései

96. A $\sigma_{\theta_1 \wedge \theta_2 \dots \wedge \theta_n}$ lekérdezésnek adjuk meg kétféle kiszámítási módját! (6 pont)

- végezzünk egyszerű kiválasztást a legkisebb költségű θ-re
 - a fennmaradó θ feltételek szerint szűrjük az eredményt
- több index
 - válasszuk ki a θ_i-khez tartozó indexeket
 - keressünk az indexekben és adjuk vissza a RID-ket
 - válasz: RID-k metszete

97. A $\sigma_{\theta_1 \vee \theta_1 \ldots \vee \theta_n}$ lekérdezésnek adjuk meg kétféle kiszámítási módját! (3 pont)

- több index
 - RID-k uniója
- lineáris keresés

98. Milyen adatbázis műveletekhez kell rendezés? (5 pont)

- SELECT DISTINCT cid FROM takes
 - π-hez szükséges a duplikált értékek kiszűrése
 - rendezés
- halmazműveletekhez ki kell szűrni a duplikált értékeket
 - $\quad R \cap S$
 - $\quad R \cup S$
 - rendezés

99. Milyen két fajtája van a rendezésnek? (2 pont)

- belső rendezés (ha a rekordok beférnek a memóriába)
- külső rendezés

100. Külső összefésülő rendezésnél mire jó a rendező lépés? (1 pont) Sok művelet hatékony kiértékelésére.

101. Külső összefésülő rendezésnél mire jó az összevonási lépés? (1 pont) Rendezett futamok összefésülésére.

102. Külső összefésülő rendezésnél mikor kell több menetben végezni az összevonási lépést? (2 pont)

Ha N > M. Jelölések?

103. Külső összefésülő rendezésnél mennyi a rendező lépés költsége? (2 pont)

A költség $2 * B_R$, ahol B_R az R lapjainak száma.

104. Külső összefésülő rendezésnél mennyi összevonandó futam van kezdetben? (2 pont)

Kezdetben $\left|\frac{B_R}{M}\right|$ összevonandó futam van, ahol B_R az R lapjainak száma, M pedig??.

105. Külső összefésülő rendezésnél mennyi az összes menetek száma? (2 pont)

Az összes menet száma $\left[log_{M-1}\left(\frac{B_R}{M}\right)\right]$. Jelölések?

106. Külső összefésülő rendezésnél mennyi blokkot olvasunk minden menetben? (2 pont)

Minden menetben $2 * B_R$ lapot olvasunk, ahol B_R az R lapjainak száma.

107. Külső összefésülő rendezésnél mennyi a teljes költség, a végeredmény kiírása nélkül? (4 pont)

Teljes költség: $2 * B_R + 2 * B_R * \left| log_{M-1} \left(\frac{B_R}{M} \right) \right| - B_R$. Jelölések?

108. A vetítés milyen három lépés megvalósításából áll? (3 pont)

Kezdeti átnézés, rendezés, végső átnézés.

109. Soroljuk fel az összekapcsolás 5 megvalósítását! (5 pont)

- Skatulyázott ciklusos (nested loop) összekapcsolás
- Blokk-skatulyázott ciklusos (block-nested loop) összekapcsolás
- Indexelt skatulyázott ciklusos összekapcsolás
- Összefésüléses rendező összekapcsolás
- Hasításos összekapcsolás

110. Skatulyázott (Nested Loop) összekapcsolásnál mennyi a költség legjobb esetben? (3 pont)

Legjobb eset, ha a kisebb reláció elfér a memóriában. Ezt használjuk belső relációnak. $B_R + B_S$ a költség.

111. Skatulyázott (Nested Loop) összekapcsolásnál mennyi a költség legrosszabb esetben? (3 pont)

Legrosszabb eset, ha mindkét relációból csak 1-1 lap fér bele a memóriába. Ilyenkor S-t minden R-beli rekordnál végig kell olvasni. Ilyenkor $N_R * B_S + B_R$ a költség.

112. Blokk-Skatulyázott (Block Nested Loop) összekapcsolásnál mennyi a költség legjobb esetben? (3 pont)

A legjobb eset, ha a kisebb reláció elfér a memóriában. Ezt használjuk belső relációnak. $B_R + B_S$ a költség.

113. Blokk-Skatulyázott (Block Nested Loop) összekapcsolásnál mennyi a költség legrosszabb esetben? (3 pont)

Legrosszabb eset, ha mindkét relációból csak 1-1 lap fér bele a memóriába. S-t minden R-beli lapnál végig kell olvasni. Ilyenkor $B_R * B_S + B_R$ a költség.

114. Indexelt összekapcsolásnál mennyi a költség? (3 pont)

 $B_R*N_R*c.$ c a belső relációból index szerinti kiválasztás költsége. A kevesebb rekordot tartalmazó reláció legyen a külső.

115. Rendezéses-Összefésüléses összekapcsolásnál mennyi a költség? (3 pont)

Költsége: A rendezés költsége $+ B_S + B_R$.

116. Hasításos összekapcsolásnál mennyi a költség? (3 pont)

Költsége: $2 * (B_R + B_S) + (B_R + B_S)$

117. Hasításos összekapcsolásnál mekkora méretű kosarakat képezünk? (2 pont)

Alkalmazzunk h₁-et az összekapcsolási mezőkre és felosztjuk a rekordokat a memóriában elférő részekre.

118. Hány sora van a $\sigma_{A=\nu}(R)$ lekérdezés eredményének? (2 pont)

SC(A, R)

119. Hány sora van a $\sigma_{{\scriptscriptstyle A}\leq {\scriptscriptstyle {ee}}}(R)$ lekérdezés eredményének? (2 pont)

$$N_R * \frac{v - min(A, R)}{max(A, R) - min(A, R)}$$

120. Hány sora van a $\sigma_{\theta_1 \wedge \theta_2 \wedge \ldots \wedge \theta_n}(R)$ lekérdezés eredményének? (2 pont)

Szorzódó valószínűségek. $N_R * [(s_1/N_R) * (s_2/N_R) * ... * ((s_n/N_R))]$

121. Hány sora van a $\,\sigma_{\theta_1\vee\theta_2\nu\ldots \vee\theta_n}(R)\,$ lekérdezés eredményének? (2 pont)

$$N_R * (1 - [(1 - s_1/N_R) * (1 - s_2/N_R) * ... * ((1 - s_n/N_R)])$$

122. Hány sora van az R x S lekérdezés eredményének? (2 pont)

 $N_R * N_S$

123. Hány sora van az R \bowtie S lekérdezés eredményének, ha R \cap S = \emptyset ? (2 pont)

 $N_R * N_S$

124. Hány sora van az R ⋈ S lekérdezés eredményének, ha R ∩ S kulcs R-en? (2 pont)

Maximális méret: N_s

125. Hány sora van az R ⋈ S lekérdezés eredményének, ha R ∩ S idegen kulcs R-hez? (2 pont)

Ns

126. Hány sora van az R ⋈ S lekérdezés eredményének, ha R ∩ S = {A} sem R-nek, sem S-nek nem kulcsa? (2 pont)

$$N_R * N_S/V(A,S)$$

 $N_S * N_R/V(A,R)$

127. Mi a szabályos zárójelezések számának rekurzív képlete? (2 pont)

$$T(1) = 1$$

$$T(n) = \sum_{i=1}^{n} T(i) * T(n-i)$$

$$T(6) = 42$$

128. Mennyi n tagú Join fa van? (2 pont)

T(n) * n!, ahol T(n) az n elem szabályos zárójelezéseinek száma.

129. 5 tagú összekapcsolás sorrendjének legjobb tervét dinamikus programozási elvet alkalmazva hogyan számoljuk ki? (3 pont)

BestPlan(A, B, C, D, E) = min of (

BestPlan(A, B, C, D) \bowtie E,

BestPlan(A, B, C, E) ⋈ D,

BestPlan(A, B, D, E) \bowtie C,

BestPlan(A, C, D, E) \bowtie B,

BestPlan(B, C, D, E) ⋈ A

)

130. Több tagú összekapcsolás suboptimális sorrendjét milyen algoritmussal lehet előállítani, és a tartalmazási hálón milyen irányban halad a kiértékelés? (2 pont)

Selinger Algoritmus: R1⋈R2⋈R2⋈R4. A kiértékelés alulról felfele halad.

131. A Q(A,B) JOIN R(B,C) JOIN S(C,D) lekérdezésnek melyik három kiértékelését hasonlítottuk össze, és melyik volt a legjobb ezek közül? (4 pont)

Összehasonlítottuk: Balról jobbra, balról jobbra és a memóriában összekapcsolva a harmadik táblával, valamint a középső ténytábla soraihoz kapcsolva a szélső dimenziótáblákat.

Ezek közül a harmadik volt a legjobb.

132. A Q(A,B) JOIN R(B,C) JOIN S(C,D) lekérdezésnek három kiértékelésénél milyen indexeket tételeztünk fel? (2 pont)

Ugyanannyi soruk van: $T_Q = T_R = T_S = T$

Ugyanannyi helyet foglalnak: $B_Q = B_R = B_S = B$

A képméretek, vagyis az előforduló értékek száma azonos: $I_{Q.B} = I_{R.B} = I_{R.C} = I_{S.C} = I$

133. Az R(A,B) JOIN S(B,C) lekérdezés eredményében mennyi a sorok száma? (2 pont)

$$T_{R\bowtie S} = T_R * T_S/I$$

134. Az R(A,B) JOIN S(B,C) lekérdezés eredménye hány blokkból áll? (2 pont)

$$(T_R * B_S + T_S * B_R)/I$$

135. A Q(A,B) JOIN R(B,C) JOIN S(C,D) lekérdezésnek balról jobbra (a) kiértékelésénél milyen költségek összege lesz a teljes költség, és mennyi a teljes költség? (5 pont)

Az 1. join költsége B + T * B/I +

Az 1. join kiírása (output mérete) 2 * T * B/I +

A 2. join költsége $2 * T * B/I + [(T^2/I) * B]/I +$

A teljes output kiírása összesen $3 * T^2 * B/I^2$

Végeredmény $B + 5 * T * B/I + 4 * T^2 * B/I^2$

136. A Q(A,B) JOIN R(B,C) JOIN S(C,D) lekérdezésnek balról jobbra (b) kiértékelésénél mennyit lehet megspórolni és mennyi a teljes költség? (5 pont)

Megspórolhatjuk az 1. join eredményének kiírását majd újbóli beolvasását, vagyis 2 * (2 * T * B/I)-t. Az eredmény ekkor:

$$B + T * B/I + 4 * T^2 * B/I^2$$

137. A Q(A,B) JOIN R(B,C) JOIN S(C,D) lekérdezésnek c) kiértékelésénél (középső zénytéblához indexek alapján kapcsoljuk a dimenziótáblákat) milyen költségek összege lesz a teljes költség, és mennyi a teljes költség? (4 pont)

Q beolvasása B +

Q és S olvasása R minden sorára T * (B/I + B/I) +

A teljes output kiírása összesen $3 * T^2 * B/I^2$

Végeredmény $B + 2 * T * B/I + 3 * T^2 * B/I^2$

138. A Q(A,B) JOIN R(B,C) JOIN S(C,D) lekérdezésnek c) és b) kiértékelésének költségei hogy aránylanak egymáshoz, és milyen feltétel szükséges ehhez? (2 pont)

Ha a c/b arányt tekintjük, akkor azt mondhatjuk, hogy ez az arány 3/4-hez tart, ha T/I tart a végtelenbe. Vagyis ha T/I elég nagy, akkor a c költsége nagyjából 3/4-e a b-nek.