Terceiro Relatório de Lab de Circuitos II

Henrique da Silva hpsilva@proton.me

18 de fevereiro de 2023

Sumário

1	Intr	crodução					
2	Aná	Análise preliminar					
	2.1	O Circ	cuito				
	2.2		axima				
		2.2.1					
		2.2.2	Analise do circuito 1				
			Analise do circuito 2				
	2.3		ce				
		2.3.1					
		2.3.2	Analise em $100Hz$				
			Analise em $200Hz$				
		2.3.4	Analise em $400Hz$				
			Analise em $480Hz$				
		2.3.6	Analise em $550Hz$				
			Analise em $1100Hz$				
		2.3.8	Tabela de resultados				
3	Medicoes em laboratorio						
	3.1		a de componentes				
	3.2						
		3.2.1	Analise em $100Hz$				
			Analise em $200Hz$				
		3.2.3	Analise em $400Hz$				
			Tabela de resultados				
	3.3		aração com valores teóricos				
	3.4						
		3.4.1					
			$de H(jw) e f \dots \dots$				
		3.4.2					
			H(jw) e f				

1 Introdução

Neste relatório, vamos discutir calcular graficos de Bode de dois circuitos de segunda ordem e medir suas caracteristicas.

Todos arquivos utilizados para criar este relatório, e o relatorio em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/5thsemester/CircuitsII/

2 Análise preliminar

Utilizarei o WxMaxima e LTSpice para fazer a análise teórica do circuito antes de montálo fisicamente.

Após terminar as análises compararei os resultados obtidos nas analises numericas e em laboratorio para verificar sua coerencia.

2.1 O Circuito

4 Conclusões

2.2 WxMaxima

2.2.1 Analise geral do circuito

Primeiro fiz manualmente a análise nodal do circuito que vamos construir, e passei ele para o domínio da frequência.

eq1:
$$0 = (Va-Vi)/R1 + Va-s\cdot C1 + (Va/R3) + (Va-V0)/R2;$$

eq2: $0 = -Va/R3 - V0\cdot s\cdot C2;$
 $0 = C1 \ Va \ s + \frac{Va-Vi}{R1} + \frac{Va-V0}{R2} + \frac{Va}{R3}$
 $0 = -C2 \ V0 \ s - \frac{Va}{R3}$

Após isso resolvi para Va e V_0

results: linsolve([eq1,eq2],[Va,V0]);

$$[Va = \frac{C2 R2 R3 Vi s}{C1 C2 R1 R2 R3 s^{2} + ((C2 R2 + C2 R1) R3 + C2 R1 R2) s + R1}$$

$$V0 = -\frac{R2 Vi}{C1 C2 R1 R2 R3 s^{2} + ((C2 R2 + C2 R1) R3 + C2 R1 R2) s + R1}]$$

Daqui criamos nossa função transferência ${\cal H}.$

Agora com a função H em mãos podemos substituir os valores dos resistores e do capacitor pelos que utilizaremos nos circuitos a serem analisados.

2.2.2 Analise do circuito 1

Fazemos a substituicao em H dos valores que utilizaremos no circuito 1.

$$C_1 = 100nF$$

$$C_2 = 10nF$$

$$R_1 = 47k\Omega$$

$$R_2 = 470k\Omega$$

$$R_3 = 470k\Omega$$

H1: at(H, [C1 = 10^-7, C2 = 10^-8,R1=47000, R2=470000, R3=470000]);

Analisamos os polos e zeros da função transferência e vemos que nao ha zeros. E os polos estao abaixo:

solve(denom(H1),s);

$$s = -\frac{1000\sqrt{26 + 6000}}{47}, s = \frac{1000\sqrt{26 - 6000}}{47}$$

Agora faremos graficos de Bode para analisar o comportamento da magnitude da funcao transferencia e o angulo de fase entre as saidas e entradas do circuito.

Figura 1: Magnitude de H(s) do circuito 1.

Figura 2: Fase de H(s) do circuito 1.

Daqui retornei para o dominio do tempo para ter a funcao que descreve completamente o comportamento da resposta do circuito.

iltH1: ilt((H1·0.8)/s, s, t);
laced -376000.0 by -376000/1 = -376000.0
%e
$$\frac{-\frac{6000 t}{47} \left(\frac{106032 \sinh \left(\frac{1000 \sqrt{26} t}{47} \right)}{\sqrt{26}} + 17672 \cosh \left(\frac{1000 \sqrt{26} t}{47} \right) \right)}{2209}$$

Podemos ver que ja que todos termos exceto o -8 dependem de uma exponencial negativa em t, entao se nosso tempo tende a infinito, a resposta do circuito tende a -8.

Fazendo esta analise numericamente abaixo verificamos este resultado.

Com a funcao que descreve o comportamento do circuito no tempo em mãos podemos montar seu grafico e analisar seu comportamento para qualquer tempo.

Figura 3: Grafico de $V_0(t)$ do circuito 1.

Observamos que a funcao atinge valor final de -8V.

E chega a 10% deste valor em 9.2ms e 90% em 122.2ms.

2.2.3 Analise do circuito 2

Fazemos a substituicao em H dos valores que utilizaremos no circuito 1.

$$C_1 = 100nF$$

$$C_2 = 10nF$$

$$R_1 = 470k\Omega$$

$$R_2 = 470k\Omega$$

$$R_3 = 47k\Omega$$

Analisamos os polos e zeros da função transferência e vemos que nao ha zeros. E os polos estao abaixo:

solve(denom(H2),s);

$$s = -\frac{8000 \% i + 6000}{47}, s = \frac{8000 \% i - 6000}{47}$$

Agora faremos graficos de Bode para analisar o comportamento da magnitude da funcao transferencia e o angulo de fase entre as saidas e entradas do circuito.

Figura 4: Magnitude de H(s) do circuito 2.

Figura 5: Fase de H(s) do circuito 2.

Daqui retornei para o dominio do tempo para ter a funcao que descreve completamente o comportamento da resposta do circuito.

iltH2: ilt((H2·5)/s, s,t);

%e
$$\frac{\frac{6000 t}{47} \left(\frac{33135 \sin \left(\frac{8000 t}{47} \right)}{4} + 11045 \cos \left(\frac{8000 t}{47} \right) \right)}{2209}$$

Podemos ver que ja que todos termos exceto o -5 dependem de uma exponencial negativa em t, entao se nosso tempo tende a infinito, a resposta do circuito tende a -5.

Fazendo esta analise numericamente abaixo verificamos este resultado.

Com a funcao que descreve o comportamento do circuito no tempo em mãos podemos montar seu grafico e analisar seu comportamento para qualquer tempo.

Figura 6: Grafico de $V_0(t)$ do circuito 2.

Observamos que a funcao atinge valor final de -5V.

E chega a 10% deste valor em 2.4ms e 90% em 10.9ms.

A partir de 10.9ms a funcao estara contida entre 90% e 110% do valor final.

2.3 LTSpice

Montagem do circuito

No LTSpice montaremos o circuito e mediremos seu angulo de fase e a magnitude a funcao transferenecia, com estes valores criaremos um grafico e compararemos com o grafico de Bode.

eq:: 0 = (Vo. Vigitt + Var-C1 + (Vallett) + (Vo.-VGRID) eq:: 0 = -Vallett - Vo.-C2 $0 = C7 \text{ My s} + \frac{Var-M}{4} + \frac{Var-M}{82} + \frac{Var}{83}$ $0 = C2 \text{ My s} + \frac{Var}{4}$

2.3.1 Analise em 40Hz

 $\begin{aligned} & \text{eq1: } 0 = (V_0 \times W_0^2) + V_0 \times C1 + (V_0 \times W_0^2) + (V_0 \times W_0^2) \\ & \text{eq2: } 0 = \mathcal{X}_0 W_0^2 + \mathcal{X}_0 \times W_0^2 + \frac{V_0 \times W_0^2}{A^2} + \frac{V_0}{A^2} \\ & 0 = C1 \cdot W_0 \times \frac{W_0}{A^2} + \frac{V_0 \times W_0^2}{A^2} + \frac{V_0}{A^2} \\ & 0 = C2 \cdot W_0 \times \frac{W_0}{A^2} + \frac{V_0}{A^2} + \frac{V_0}{A^2} \end{aligned}$

$$V_f = 117.10115mV$$

 $V_i = 199.76772mV$
 $Magnitude(H) = 0.586186547$
 $Fase = -1.68605608$

2.3.2 Analise em 100Hz

 $\begin{aligned} & & \text{eq 1: } 0 = (\text{Varifiel}) + \text{Varifiel} + (\text{Varifiel}) + (\text{Varifie$

$V_f =$	303.64554mV
$V_i =$	199.34196mV
Magnitude(H) =	1.52323946
Fase =	-1.60226153

2.3.3 Analise em 200Hz

 $\begin{aligned} & \text{eq1: } 0 = (Va \land VB \land VB \land V + (Va \land VB) = (Va \land VB \land VB) \\ & \text{eq2: } 0 = Va \land B : VB \land VB \land C : \\ & 0 = CT \land B : S + \frac{VB \cdot B}{B!} + \frac{VB \cdot B}{A!} + \frac{VB}{A!} \\ & 0 = CL \land B : S \cdot \frac{B}{B!} + \frac{B \cdot B}{B!} + \frac{VB}{A!} \end{aligned}$

 $V_f = 704.6312mV$ $V_i = 199.46039mV$ Magnitude(H) = 3.53268737Fase = -1.67119113

2.3.4 Analise em 400Hz

eq1: 0 = (Va-Vi)/H + Va-SC1 + (Va/RS) = (Va-VO)/H2 eq2: 0 = -Va/H3 - VB-SC2: 0 = CT R3 $\pm \frac{V_{2} - 1}{22} + \frac{V_{2} - 1}{22} + \frac{V_{2} - V_{2}}{22} + \frac{V_{2}$

$$V_f = 3.7148299V$$
 $V_i = 199.72118mV$
 $Magnitude(H) = 18.6104333$
 $Fase = -2.06820459$

2.3.5 Analise em 480Hz

 $\begin{aligned} &\text{eq.1: } 0 = (V + V \otimes V \otimes V) + (V \otimes V \otimes C) + (V \otimes V \otimes S) + (V \otimes V \otimes V \otimes C) \\ &\text{eq.2: } 0 = V \otimes V \otimes S + (V \otimes V \otimes S) \\ &0 = CY + V \otimes S + \frac{V \otimes V \otimes S}{2S} + \frac{V \otimes V \otimes S}{2S} + \frac{V \otimes S}{2S} \\ &0 = (Q + V \otimes S + \frac{V \otimes S}{2S}) + \frac{V \otimes S}{2S} + \frac{V \otimes S}{2S} \end{aligned}$

 $V_f = 9.7253442V$ $V_i = 199.42436mV$ Magnitude(H) = 48.7670824 Fase = -3.13491022

2.3.6 Analise em 550Hz

$$\begin{split} & \text{eqt: } 0 = (Na \times V) \text{form} + Va \times C1 + (Na \times V) + (Na \times V) \text{form} \\ & \text{eqt: } 0 = Na \times V \times C2 + V \times V \times V \\ & 0 = C1 \text{ My s} + \frac{Va \times V}{A1} + \frac{Va \times V}{B2} + \frac{Va}{B2} \\ & 0 = (Q \times V) \times \frac{Va}{A2} \end{split}$$

 $V_f = 4.1496957V$ $V_i = 199.35122mV$ Magnitude(H) = 20.8160035 Fase = -2.01155708

2.3.7 Analise em 1100Hz

 $\begin{aligned} 0 &= (S, M) + \frac{83}{16} \\ 0 &= (S, M) + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} \\ 0 &= (S, M) + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} \\ 0 &= (S, M) + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} \\ 0 &= (S, M) + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} \\ 0 &= (S, M) + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} \\ 0 &= (S, M) + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} \\ 0 &= (S, M) + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} \\ 0 &= (S, M) + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} \\ 0 &= (S, M) + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} \\ 0 &= (S, M) + \frac{1}{16} + \frac{1}{1$

 $V_f = 724.81506mV$ $V_i = 199.55853mV$ Magnitude(H) = 3.6320926 Fase = -1.65494612

2.3.8 Tabela de resultados

Freq (Hz)	— H (jw) —	Fase (H)
40	0.586186547	-1.68605608
100	1.52323946	-1.60226153
200	3.53268737	-1.67119113
400	18.6104333	-2.06820459
480	48.7670824	-3.1349102
550	20.8160035	-2.01155708
1100	3.6320926	-1.65494612
2200	1.55687244	-4.68032157
5500	0.595261852	1.60939706
11000	0.296616925	-4.65829159

3 Medicoes em laboratorio

Vamos inicialmente fazer as medições dos componentes a serem usados.

3.1 Tabela de componentes

$$C_1 = 104.89nF$$

 $C_2 = 101.28nF$

 $R_1 = 465.1omega$

 $R_2 = 473.7omega$

 $R_3 = 46.25omega$

3.2 Médicos no osciloscopio

Analise em 40Hz

eq1: 0 = (Va-Vi)/R1 + Va-s-C1 + (Va/R3) + (Va-V0)/R2; eq2: 0 = -Va/R3 - V0-s-C2;

 $0 = C1 \ Va \ s + \frac{Va - Vi}{R1} + \frac{Va - VO}{R2} + \frac{Va}{R3}$

0=-C2 V0 s- Va

$$V_f = 0.565V$$

$$V_i = 0.092V$$

Magnitude(H) = 0.473

Fase = -1.5833627

3.2.1 Analise em 100Hz

eq1: 0 = (Va-Vi)/R1 + Va·s·C1 + (Va/R3) + (Va-V0)/R2; eq2: 0 = -Va/R3 - V0·s·C2;

 $0 = C1 \ Va \ s + \frac{Va - Vi}{R1} + \frac{Va - VO}{R2} + \frac{Va}{R3}$

0=-C2 V0 s- Va

$$V_f = 1.52V$$

 $V_i = 0.09425V$

Magnitude(H) = 1.42575

Fase = -1.57079633

3.2.2 Analise em 200Hz

eq1: 0 = (Va-Vi)/R1 + Va·s·C1 + (Va/R3) + (Va-V0)/R2;

 $0 = C1 \ Va \ s + \frac{Va - Vi}{R1} + \frac{Va - V0}{R2} + \frac{Va}{R3}$

 $0 = -C2 \ VO \ s - \frac{Vo}{R^2}$

 $V_f = 3.5425V$

 $V_i = 0.097V$

Magnitude(H) = 3.4455

Fase = -1.55822996

3.2.3 Analise em 400Hz

eq1: 0 = (Va-Vi)/R1 + Va·s·C1 + (Va/R3) + (Va-V0)/R2; eq2: 0 = -Va/R3 - V0·s·C2;

 $0 = C1 \ Va \ s + \frac{Va - Vi}{R1} + \frac{Va - V0}{R2} + \frac{Va}{R3}$

0=-C2 V0 s- Va

 $V_f = 21.5V$

 $V_i = 0.106V$

Magnitude(H) = 21.394

Fase = -1.98548656

 $V_f = 0.09V$

 $V_i = 199.57788mV$

Magnitude(H) = 0.04325V

Fase = 1.24407069

3.2.4 Tabela de resultados

Freq (Hz)	— H (jw) —	Fase (H)					
40	0.473	-1.5833627					
100	1.42575	-1.57079633					
200	3.4455	-1.55822996					
400	21.394	-1.98548656					
480	36.65	-3.40799971					
550	16.71800	2.07345115					
1100	3.6320926	1.58964588					
2200	0.575	1.65876092					
5500	0.61	0.552920307					
11000	0.04325	1.24407069					

3.3 Comparação com valores teóricos

Podemos ver que os valores de magnitude ficaram coerentes com ambas análises teóricas, e os de fases para frequências baixas também, mas tive problemas para entender o sentido do sinal da fase a medida que a frequência subia.

3.4 Gráficos

3.4.1 Escala log-log da magnitude de H(jw) e f

eq1: 0 = (Va-Vi)/R1 + Va·s·C1 + (Va/R3) + (Va/R3)

eq2: $0 = -Va/R3 - V0 \cdot s \cdot C2$;

$$0 = C1 \ Va \ s + \frac{Va - Vi}{R1} + \frac{Va - V0}{R2} + \frac{Va}{R3}$$

$$0 = -C2 \ V0 \ s - \frac{Va}{R3}$$

3.4.2 Escala semilog da fase de H(jw) e f

eq1:
$$0 = (Va-Vi)/R1 + Va\cdot s\cdot C1 + (Va/R3) + (Va-V0)/R2$$
;
eq2: $0 = -Va/R3 - V0\cdot s\cdot C2$;

$$0 = C1 \ Va \ s + \frac{Va - Vi}{R1} + \frac{Va - V0}{R2} + \frac{Va}{R3}$$

$$0 = -C2 \ V0 \ s - \frac{Va}{R3}$$

4 Conclusões

Conseguimos com sucesso fazer a análise numérica por dois meios, utilizando o LTSpice e WxMaxima, e comparamos os resultados.

Nos resultados práticos, a magnitude da função transferência foi coerente com os resultados esperados, porém a fase em frequências baixas se manteve coerente, porém em frequências altas ela se tornou inconsistente.

Creio que por erros das minhas medidas, eu não fui consistente em usar o mesmo cursor na mesma onda de entrada ou saída.

A frequência de saída começou adiantada em relação a frequência de entrada, e à medida que aumentamos a frequência ela se atrasa até que é ultrapassada pela entrada.

Creio que isso faria com que a fase se inverta.

Mas em suma creio que tivemos sucesso em nos familiarizar com as ferramentas de análise de circuitos elétricos numéricos.