

Demonstration and Implementation of Federated Learning

Group Members

Sr. No	Name	Roll No	PRN
1	Sarthak Pithe	9	12210166
2	Hrishikesh Potnis	10	12211239
3	Soham Nimale	53	12210227
4	Madhur Vaidya	70	12211223

Division: CS-TY-D

Batch: 3

Group: TY-83

Project Guide:

Prof. Dr. Deepak Mane

Department of Computer Engineering Vishwakarma Institute of Technology, Pune

Introduction

- Importance of Data
- Some data needs privacy
- ML All about data!
- Data Privacy using ML

Federated Learning

- Decentralized approach to training ML Models
- Data does not leave client
- Data privacy is maintained
- Uses Healthcare, Automotive, Security

Federated Learning

Challenges of Federated Learning

- High Communication requirement
- Impact on accuracy
- Homogenous data needed
- Aggregation challenges
- Slow model convergence

Applications

- Mobile Applications
- Health Care and Medical Research
- Personalized Recommendations

In general Federated Learning can be used in applications requiring data security and privacy

Problem Statement

To develop a federated learning based solution for Glaucoma detection using hospital networks without the need to share patient data.

Literature Review

Name	Author	Summary
Collaborative Federated Learning for Healthcare: Multi- Modal COVID-19 Diagnosis at the Edge	Adnan Qayyum, Kashif Ahmad, Muhammad Ahtazaz Ahsan, Ala Al-Fuqaha, Junaid Qadir	Use of edge computing with clustered federated learning for privacy-focused, real-time COVID-19 diagnosis, achieving notable accuracy improvements over centralized models.
Federated Learning for Healthcare Informatics	Jie Xu, Benjamin S. Glicksberg, Chang Su, Peter Walker, Jiang Bian & Fei Wang	This survey reviews federated learning in healthcare, highlighting its potential to securely unify fragmented, private data from diverse sources for more robust, generalizable insights.

Name	Author	Summary	
Federated Learning for Computer-Aided Diagnosis of Glaucoma Using Retinal Fundus Images	Telmo Baptista, Carlos Soares, Tiago Oliveira, Filipe Soares	Evaluates federated learning strategies for glaucoma diagnosis on diverse retinal fundus image datasets, finding that FedProx effectively handles data heterogeneity with 82% accuracy while preserving privacy.	
Federated Transfer Learning For Diabetic Retinopathy Detection Using CNN Architectures	Mohammad Nasajpour; Mahmut Karakaya; Seyedamin Pouriyeh; Reza M. Parizi	This study uses Federated Learning to accurately detect Diabetic Retinopathy in fundus images while preserving patient data privacy.	

Our Solution

- Glaucoma is a leading cause of irreversible blindness
- Early treatment helps fast recovery
- Eye data being sensitive must not leave hospitals
- What is the suitable machine learning approach in this scenario?

Federated Learning

Methodology

- Data Processing
- Model definition
- Federated Learning setup
- Training Loop
- Centralized Evaluation

Preprocessing

- Resized to (128, 128, 3)
- Normalized pixel value between [0,1]
- 80-20 split

Dataset

- 2081 samples
- Two labels

```
Dataset size: (2081, 128, 128, 3)
Training set size: (1664, 128, 128, 3)
Test set size: (417, 128, 128, 3)
```

Model Definition

- Convolutional layers
- Flatten Layers
- Dense Layers
- Output Layer with Softmax actv.

Layer (type)	Output Shape	Param #			
conv2d (Conv2D)	(None, 128, 128, 32)	896			
max_pooling2d (MaxPooling2 D)	(None, 64, 64, 32)	0			
conv2d_1 (Conv2D)	(None, 64, 64, 64)	18496			
max_pooling2d_1 (MaxPoolin g2D)	(None, 32, 32, 64)	0			
conv2d_2 (Conv2D)	(None, 32, 32, 128)	73856			
<pre>max_pooling2d_2 (MaxPoolin g2D)</pre>	(None, 16, 16, 128)	0			
flatten (Flatten)	(None, 32768)	0			
dense (Dense)	(None, 128)	4194432			
dense_1 (Dense)	(None, 2)	258			
Total params: 4287938 (16.36 MB) Trainable params: 4287938 (16.36 MB) Non-trainable params: 0 (0.00 Byte)					

Federated Learning Setup

- TensorFlow Federated (TFF)
- Federated model wrapper
- 4 clients

```
Adding data from 0 to 416 for client : client_1
Adding data from 416 to 832 for client : client_2
Adding data from 832 to 1248 for client : client_3
Adding data from 1248 to 1664 for client : client_4
```

```
global_model_weights=<
  trainable=<
    float32[3,3,3,32],
    float32[32],
    float32[3,3,32,64],
    float32[64],
    float32[3,3,64,128],
    float32[128],
    float32[32768,128],
    float32[128],
    float32[128,2],
    float32[2]
  >,
  non_trainable=<>
>,
distributor=<>,
client_work=<
  learning rate=float32
>,
aggregator=<
  value sum process=<>,
  weight_sum_process=<>
>,
finalizer=<
  learning_rate=float32
```

Type Signature

Training Loop

Each Client -

- 1. Trains model on local data
- 2. Sends model weights
- 3. Receives updated model

Server aggregates all the client model weights into an updated model

Centralized Evaluation

- Model evaluated after each round on
- Final tested model distributed to all clients

Optimization

- Local Optimization
 - log-loss
 - sgd and sgdm

$$F_k(w) = \frac{1}{n_k} \sum_{i \in \mathcal{P}_k} f_i(w)$$

Global Optimization

Aggregation

Simple Average
Weighted Average
Drift + Penalty Method

$$Weighted\ Average = \frac{\sum wx}{\sum w}$$

Participation

Bernoulli Constant (p)

Demonstration

Eye Disease Predictor: Federated

Choose an image....

Uploaded Image

Patient has Glaucoma

RESOURCES

Learn more about Glaucoma

Feedback

Correct Prediction

Wrong Prediction

Added to feedback dataset: Wrong Prediction

Results

- Achieved global accuracy of 85.7%
 - Clients 4
 - Number rounds 20

Conclusion

- Demonstrated effectivnes of Federated Learning for image classification
- Maintained data privacy

References

- [1] https://en.wikipedia.org/wiki/Federated_learning
- [2] https://www.v7labs.com/blog/federated-learning-guide
- [3] https://federated.withgoogle.com/
- [4] https://www.tensorflow.org/federated
- [5] https://www.tensorflow.org/federated/federated_learning
- [6]https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-
- methods-and-future-directions/

Thank You!