Applied and Computational Math Individual (4 problems)

1) (20 points)

Given a set \mathcal{X} , $m \in \mathbb{N}$ and a hypothesis space \mathcal{H} , define

$$\Pi_{\mathcal{H}}(m) = \max_{\{x_1, x_2, \dots, x_m\} \subseteq \mathcal{X}} |\{(h(x_1), h(x_2), \dots, h(x_m)) | h \in \mathcal{H}\}|$$

where |S| denotes the cardinality of the set S. The VC dimension of \mathcal{H} is

$$VC(\mathcal{H}) = \max\{m : \Pi_{\mathcal{H}}(m) = 2^m\}.$$

- (i) Let $\mathcal{X} = \mathbf{R}$. If $a \leq b$, define h(x; a, b) = 1 if $x \in [a, b]$ and h(x) = -1 if $x \notin [a, b]$. Find the VC dimension of the hypothesis space $\mathcal{H} = \{h(x; a, b) | a, b \in \mathbf{R}, a \leq b\}$.
- (ii) Let $\mathcal{X} = \mathbf{R}^d$, \mathcal{H} to be the set of linear classifiers, i.e. $\mathcal{H} = \{f(x) | f(x) = \text{sign}(w^\top x + b), w \in \mathbf{R}^d, b \in \mathbf{R}^d \}$
- **R**} where sign(x) = 1 if x > 0, sign(x) = -1 if x < 0 and sign(x) = 0 if x = 0. Show that the VC dimension of \mathcal{H} is d + 1.

2) (25 points)

Consider Richardson's difference scheme for the heat equation $u_t = u_{xx}$:

$$\frac{1}{2k}(u(x,t+k) - u(x,t-k)) = \frac{1}{h^2}(u(x-h,t) - 2u(x,t) + u(x+h,t)).$$

- (i) Show that this scheme has second-order truncation error.
- (ii) Use either ODE principles or von Neumann analysis to show that this scheme is unconditionally unstable.
- (iii) Demonstrate a minor modification of the left-side of Richardson's scheme that yields a familiar unconditionally stable scheme and prove it.

3) (25 points)

Let $\emptyset \neq K$ be a closed convex set in \mathbf{R}^n , i.e., K is a closed set and for any $x, y \in K$ and $\lambda \in (0,1)$, $\lambda x + (1-\lambda)y \in K$. For any $z \in \mathbf{R}^n$, let $\Pi_K(z)$ denote the metric projection of z onto K, which is the unique optimal solution of following problem:

$$\min \frac{1}{2} ||y - z||_2^2, \quad \text{s.t.} \quad y \in K.$$
 (1)

Show that

(i) the point $y \in K$ solves (1) if and only if

$$(z-y)^T(d-y) \leqslant 0, \quad \forall d \in K;$$

(ii) for any $y, z \in \mathbf{R}^n$,

$$\|\Pi_K(y) - \Pi_K(z)\|_2 < \|y - z\|_2;$$

(iii) $\Theta(\cdot)$ is continuously differentiable with its gradient given by

$$\nabla\Theta(z) = z - \Pi_K(z),$$

where for any $z \in \mathbf{R}^n$, $\Theta(z) := \frac{1}{2} ||z - \Pi_K(z)||_2^2$.

4) (25 points) The scientists FitzHugh (1961) and Nagumo, Arimoto, Yoshizawa (1962) derived a mathematical model to characterize the behavior of a neuron under the externally injected current I:

$$\begin{cases} \frac{dV}{dt} &= V - \frac{1}{3}V^3 - W + I, \\ \frac{dW}{dt} &= \frac{1}{\tau} (V + a - bW), \end{cases}$$

where the variable V describes the membrane potential of the neuron, the variable W describes the current arising from opening and closing of ion channels on the neurons membrane. The variables τ , a and b are parameters with typical values: a = 0.7, b = 0.8 and $\tau = 13$.

- (i) For a small positive constant current I, how the neuron behaves.
- (ii) For a large positive constant current I, how the neuron behaves.
- (iii) Suppose one injects a pulse current with different magnitude at some time t_0 , i.e., $I = I_0 \delta(t t_0)$, where I_0 describes the magnitude of the pulse, analyze the dynamical behavior of the neuron when I_0 is small or large.