ASGN 1 Bailey Wickham

- 1. (a) $\{x_1, x_2, x_3 \in \mathbb{F}^3 : x_1 + 2x_2 + 3x_3 = 0\}$ Subspace
 - (b) $\{x_1, x_2, x_3 \in \mathbb{F}^3 : x_1 + 2x_2 + 3x_3 = 4\}$ Not a subspace
 - (c) $\{(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 \cdot x_2 \cdot x_3\}$ Not a subspace
 - (d) $\{(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 = 5x_3\}$ Subspace
- 3. Show differentiable real-valued functions f on (-4, 4), such that f'(-1) = 3f(2) is a subspace of $\mathbb{R}^{(-4,4)}$
 - let f'(-1) = 3f(2) and g'(-1) = 3g(2)=3f(2)+3g(2)=3(f(2)+g(2)).cf'(1) = c(3f(2))=3(cf(2)).

I think that's right at least...

- 7. Give a nonempty subset U of \mathbb{R}^2 st U is closed under addition and under taking additive inverses, but U is not a subspace.
 - $\{x \in \mathbb{R} : 2|x\}$ Closed under addition, any two even numbers added produces an even number, but not cloded under multiplication by non integer or odd numbers.
- 8. Give an example of U of \mathbb{R}^2 st U is closed under scalar multiplication but not addition.
 - [0,x] and [x,0] both of which can be extended forever but when added they leave their sets. I think this can be any line through the origin but I am not sure.
- 15. U + U: U, addition on subspaces is defined by $u_1 + v_1 + u_2 + v_2$ which can be rewritten as 2U, and since U is closed under scalar multiplication. U + U = U
- 16. Is addition on subspaces comutive? I think this follows from the axioms. u+v=v+u, and since addition is defined $u_1+v_1+u_2+v_2...$ so v_1+u_1 follows from associativity.
- 1. Show that $U = \{cu : c \in \mathbb{F}\}$ and $W = \{cw : c \in \mathbb{F}\}$ where no u = cw
 - cu+cu=2cu but 2cu is the same as cu where c is a different constant. By definition, this in U.
 - kcu = cu for another $c \in \mathbb{F}$. This is because scaling a $c \in \mathbb{F}$ results in another value in \mathbb{F} Thus U is a subspace. The same arguments follow for $w \in W$
 - Since the sets are disjoint, a direct sum follows by theorem.
- 2. Give a nontrivial subspace of $\mathbb{R}^{\mathbb{R}^R}$
 - The set of functions $f: A \to B$ s.t. their derivtive exists.