Chapter 13 Problems: 3, 6, 7, 8, 9, 12, 17, 19, 21, 22, 23, 40, 46, 48, 54

7. Show that the three properties listed in Exercise 6 are valid for \mathbb{Z}_p , where p is prime.

To reiterate, those properties are:

- **a.** $a^2 = a$ implies a = 0 or a = 1.
- **b.** ab = 0 implies a = 0 or b = 0.
- **c.** ab = ac and $a \neq 0$ imply b = c.

Proof.

(a.) B.W.O.C. Assume $a^2 \mod p = a$ and $a \neq 0$ and $a \neq 1$ $\implies a^2 = (p+1)a$ $\implies ap+a \mod p = 0+a=a$ however $p+1 \not\in \mathbb{Z}_p$

 $\Rightarrow \Leftarrow$

 $\therefore a = 0 \text{ or } a = 1$

(b.) B.W.O.C. Assume $a \neq 0$ and $b \neq 0$ $\implies a \cdot b = k \cdot p$, for $k \in \mathbb{N}$ $\implies a$ or $b = p \notin \mathbb{Z}_p$

 $\Rightarrow \leftarrow$

 $\therefore a = 0 \text{ or } b = 0$

(c.) $ab = ac, a \neq 0 \implies b = c$ $\implies ab = ac$ $\implies ab - ac = 0$ $\implies a(b - c) = 0$ and we know that $a \neq 0$ $\implies b - c = 0$ $\therefore b = c$

Q.E.D.

8. Show that a ring is commutative if it has the property that ab = ca implies b = c when $a \neq 0$. This is actually a chain of implications of the form:

$$ab = ca, a \neq 0 \implies b = c \implies R$$
 is commutative

What we need to show is that for any arbitrary element $x \in R$, ax = xa.

Proof.

We know that $ab = ca, a \neq 0 \implies b = c$.

Using b = c,

 $\implies ab = ac$ however, by our assumption, ab = ca, this implies that,

ab = ca = ac

 $\therefore ca = ac$, which shows R is commutative.

17. Show that a ring that is cyclic under addition is commutative.

```
Proof.

Let R = \langle a \rangle, |R| = n, n_1, n_2 < n, \text{ and }, n_1 < n_2 \text{ for } n_1, n_2 \in \mathbb{Z} which means R = \{i \cdot a \in R \mid i \in [n]\},

(n_1 \cdot a) + (n_2 \cdot a)

\implies (a + \dots + a) + (a + \dots + a)

which by associativity implies,

\implies (n_1 - (n_1 - n_2)) \cdot a + (n_2 - (n_2 - n_1)) \cdot a
```

Q.E.D.

22. Let R be a commutative ring with unity and let U(R) denote the set of units of R. Prove that U(R) is a group under the multiplication of R. (This group is called the *group of units of* R.) Let $a, b \in U(R)$,

```
a^{-1}, b^{-1} \in U(R), by definition unit,
Show a \cdot b^{-1} \in U(R),
```

```
Proof.
```

We know that $a, a^{-1}, b, b^{-1} \in U(R)$. This implies that $a \cdot b^{-1} \cdot b \cdot a^{-1} \in R$, $\implies a \cdot 1 \cdot a^{-1}$, $\implies a \cdot a^{-1} = 1$, $\implies a \cdot b^{-1} \in U(R)$, $\therefore U(R) \leq R$

Q.E.D.