PROJEC	T - SIVO	K RANG	GPO NEW BG RAILWA	Y LINE	PROJEC	CO-OF	RDINA
LOCATION	ANGLE WITH						
SRUCTU	BEARING OF						
CLIENT -	- IRCON	INTERI	NATIONAL LIMITED			DEPTH	1 OF H
DBILLIN	CACEN	ICV OF	M GEO CONSTRUCTIO	ALDVT	LTD	DEDIO	D OF E
DKILLIN	G AGEN	ICY - OI	VI GEO CONSTRUCTIO	IN PVI.	LID.	PERIO	D OF E
GROUN	D ELEV	ATION 2	271.278			TYPE (OF COI
						LOGG	ED BY
	DEPTH		LITHOLOGY		SIZE OF C	ORE PIECE	S
	from	То	Description	Log		10 to 25mm	25 to 75mm
	110111		Description	205	<10mm	0 25	0 75
elevation					<10	10 t	25 t
271.278	0	0.45	SOIL MIXED WITH SAND				
270.828	0.45	1	AND QUARTZITE				
270.278	1	2					
269.278	2	3				>10	6
268.278	3	4	PHYLLITE AND SOME			>10	10
267.278	4	5	PECIES OF GNEISS			>10	5
266.278	5	6	PHYLLITE AND			>10	3
265.278	6	7	QUARTZATIC PHYLLITE		>10	>10	2
264.278	7 8	8 9			>10 >10	>10 >10	>10
263.278 262.278	9	10			>10	>10	>10
261.278	10	11			>10	>10	10
260.278	11	12			, 10	3	2
259.278	12	12.75					5
258.528	12.75	13.5	PHYLLITE AND			1	
257.778	13.5	15	QUARTZATIC PYLLITE				
256.278	15	16.5	FRACTURED ROCK MASS				
254.778	16.5	18					
253.278	18	18.75					
252.528	18.75	19.5					
251.778	19.5	20.5				ļ	
250.778	20.5	21					
250.278	21	22	DIDULITE AND OLLARSTIC	-			
249.278	22		PHYLLITE AND QUARTZITE			2	5
248.278 247.528	23.75	23.75 24		<u> </u>	 	5	4
247.528	23.75	25			1	-	5
247.278	25	26		-	1	2	2
245.278	26	27.5	MILKY WHITE STRONG		+	3	
243.778	27.5	28.5	<u>QUARTZITE</u>		1	9	
242.778	28.5	29				10	11
242.278	29	30					
241.278	30	30.5					6

	_		
	-		

HORIZONTAL - 90

HOLE - VERTICAL

OLE - 30.50m

EXCUTION - 07/01/2022 - 01/02/2022

RE BARREL - TRIPPLE TUBE

		STRUCTURAL CONDITION	PERCENTA	GE OF RECOVERY			
75 to 150mm	>150mm	Description	0-20	20-40	40-60	08-09	
		OVERBERDEN					
1							
1							
1	1						
8							
5	1						
	1						
2							
2							
1							
1	1						
2					-		
3							
2	2						
	3						
4	2						
2	1						
			I				

								DRILLE
80-100	Infig	RQD	Fracture index	Size of casing	Size of hole	Size of bit	Depth of GWT	II.
	40							
	67			нх				
	58			11/				
	74							
	75	10						
	80	10						
	84	33						
	82			NX				
	88			14/				
	96	17						
	90							
	85							
	96							
	64							
	97							
	80							
	95				NX	NQ3		
	90							
	84							
	80							
	80							
	80							
	75							
	95	55						
	73	33						
	60	60						
	82	20						
	80	68						
	96	72						
	99	63						
	58							
	87	70						
	74							

	-		 -	

D WATER LOSS		PENETRATION RATE	PERMIA	BILITY
partial	complete		Test section	-
		2.75		
		3.12		
		2.22		
		1.96		
		1.81		
		1.53		
		1.66		
		1.44 0.83		
		0.83		
		0.71		
		0.83		
		0.78		
		0.98		
		0.96		
		1.01		
		0.85		
		0.65		
		0.77		
		0.94		
		0.71		
		0.56		
		0.39		
		0.4		
		0.4		
		0.34		
		0.42		
		0.41		
		0.27		
		0.26		
		0.22		
		0.23		

SPECIAL OBSERVATION
STT