DSENSOR

多合一气体传感器模组

PTQS1005 数据手册

编制	周勇	版本	V1.1
审核	郑皓馨	发布日期	2017-08-04

主要特性

- ◆ 激光散射原理测量颗粒物浓度
- ◆ 电化学及半导体原理测量甲醛或 VOC
- ◆ 红外非分光原理测量二氧化碳
- ◆ 内部集成温湿度一体检测芯片
- ◆ 多种传感器统一风道,优化空间和反应速度
- ◆ 高度集成,方便用户设计

概述

PTQS1005 是一款多合一气体传感器模组,即可以同时测量多种气体指标。传感器模组内置攀藤科技的激光颗粒物传感器、红外非分光二氧化碳传感器,及最新的电化学和半导体原理相结合的甲醛/VOC 传感器,分别用于颗粒物浓度、二氧化碳和甲醛/VOC 浓度的获取。传感器模组还内置温湿度传感器芯片。多种参数将以数字接口的形式统一输出。本传感器模组通过优化内部结构,使得空气在模组内部的路径与各传感器的取样接口更好地结合,既减小的模组的尺寸,又使各传感器的灵敏度得到保障。

技术指标

如表 1~6 所示

表 1 颗粒物浓度技术指标

参数	指标	单位
颗粒物测量范围	0.3~1.0; 1.0~2.5; 2.5~10	微米(μm)
颗粒物计数效率	50%@0.3 微米 98%@>=0.5 微米	
颗粒物质量浓度有效	0~500	微克/立方米
量程(PM2.5 标准值)		
颗粒物质量浓度最大	≥1000	微克/立方米
量程(PM2.5 标准值)		
*		
颗粒物质量浓度分辨	1	微克/立方米
率		
颗粒物质量浓度一致	±10%@100~500 微克/立方米	
性	±10 微克/立方米 @0~100 微克/立方	
(PM2.5 标准值)*	*	
称准体积	0.1	升 (L)

注 1: 最大量程指本传感器确保 PM2.5 标准值最高输出数值不小于 1000 微克/立 方米。1000 微克/立方米以上以实测为准。

注 2: 颗粒物浓度一致性数据为通讯协议中的数据 2 (见附录 A)测量环境条件为 20℃,湿度 50%

表 2 HCHO 浓度技术指标

参数	指标	单位
有效量程	0-1000	μ g/m ³
最大量程	2000	$\mu \text{ g/m}^3$
分辨率	1	μ g/m ³
最大误差	<±5%	FS

表 3 TVOC 浓度技术指标

参数	指标	单位
有效量程	0-10000	ppb
最大量程	20000	ppb
分辨率	1	ppb
最大误差	<±5%	FS

表 4 CO2 浓度技术指标

参数	指标	单位
有效量程	400~3000	ppm
最大量程	5000	ppm
分辨率	1	ppm
最大误差	± (50ppm+3%FS)	

表 5 温湿度度技术指标

参数	指标	单位
温度测量范围	-30~99	$^{\circ}$ C
温度测量分辨率	0.1	$^{\circ}$
温度测量精度	±0.5	${\mathbb C}$
湿度测量范围	0~99	%
湿度测量分辨率	0.1	%
湿度测量精度	±3	%

表 6 基本技术指标

单次响应时间	<3	秒 (s)
综合响应时间	≤30	秒 (s)
直流供电电压	Typ:5.0 Min:4.5 Max: 5.5	伏特 (V)
工作电流	≤200	毫安 (mA)
待机电流	≤200	微安(μA)
数据接口电平	L <0.8 @3.3 H >2.7@3.3	伏特(V)
工作温度范围	-10~+55	摄氏度(℃)
工作湿度范围	0~99%	
储存温度范围	-40~+80	摄氏度(℃)
平均无故障时间	≥3	年 (Y)
最大尺寸	76 ×52×17	毫米 (mm)

数字接口定义

图 2 接口示意图

管脚序号	功能标号	说明
PIN1	VCC	电源正(+5V)
PIN2	GND	电源负
PIN3	SET	设置管脚 /TTL 电平@3.3V, 高电平或悬空为
		正常工作状态,低电平为休眠状态
PIN4	RXD	串口接收管脚/TTL 电平@3.3V
PIN5	TXD	串口发送管脚/TTL 电平@3.3V
PIN6	RESET	模块复位信号/TTL 电平@3.3V,低复位
PIN7	NC	
PIN8	NC	

电路设计应注意

- 1. PMS5003 需要 5V 供电,这是因为风机需要 5V 驱动。但其他数据通讯和控制管脚均需要 3.3V 作为高电平。因此与之连接通讯的主板 MCU 应为 3.3V 供电。如果主板 MCU 为 5V 供电,则在通讯线(RXD、TXD)和控制线(SET、RESET)上应当加入电平转换芯片或电路。
- 2. SET 和 RESET 内部有上拉电阻,如果不使用,则应悬空。
- 3. PIN7 和 PIN8 为程序内部调试用,应用电路中应使其悬空。
- 4. 应用休眠功能时应注意:休眠时风扇停止工作,而风扇重新启动需要至少30秒的稳定时间,因此为获得准确的数据,休眠唤醒后传感器工作时间不应低于30秒。

型号定义

附 A: 传输协议

- 1. 主机与传感器模组通讯协议(UART, 9600, N, 8, 1):
- 1.1 主机发送指令: 0xAB

格式:

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6
0x42	0x4D	指令码	状态字节	状态字节	校验 H	校验 L

最后两字节是 16bit 校验码,是前面 5 个字节的累加和

例: 0x42,0x4D,0xAB,0x00,0x00,0x01,0x3A

1.2 传感器模组应答指令

字节序号	数值	说明
0	ох42	特征字节1
1	0x4D	特征字节 2
	0x4D	
2		长度码高 8 位
3	0x14	长度码低 8 位,长度码=数据段(n)+校验字节(2)
4		PM2.5 数值高 8 位
5		PM2.5 数值低 8 位,单位 ug/m³
6		TVOC 数值高 8 位
7		TVOC 数值低 8 位,单位 ppb
8		保留 1
9		HCHO 数值高 8 位
10		HCHO 数值低 8 位,单位 ug/m3
11		保留 2
12		CO2 数值高 8 位
13		CO2 数值低 8 位,单位 ppm
14		温度数值高8位
15		温度数值低 8 位。实际温度值=16bit 温度值/10
16		湿度数值高8位
17		湿度数值低 8 位。实际湿度值=16bit 湿度值/10
18		保留 3
19		保留 4
20		保留 5
21		保留 6
22		校验字高8位
23		校验字低 8 位,16bit 校验字=除校验字本身前面所有字节
		累加和