КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

ОТЧЁТ ПО КУРСУ «ПРИКЛАДНЫЕ ВОПРОСЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ»

Студент 3 курса Группа 09-641 Десятов А.Г.

Задание 1. Выборочные характеристики.

Постановка задачи.

Вычислить основные статистические характеристики выборочных данных: среднее арифметическое, дисперсию. стандартное отклонение, коэффициент асимметрии, коэффициент эксцесса.

4	Α	В	С
1	Выборочные моменты		
2			
3	Объём выборки п	78	
4	Среднее х	121,2218	
5	Дисперсия S ²	5,756833	
6	Ст. Отклонение S	2,39934	
7	Асимметрия g ₁	0,298587	
8	Эксцесс g ₂	0,238606	
9			

Задание 2. Гистограмма выборки.

Постановка задачи.

Построить график гистограммы выборки с подогнанной ожидаемой функцией плотности.

Задание 3. Эмпирическая функция распределения.

Постановка задачи.

Построить график эмпирической функции распределения с подогнанной ожидаемой функцией распределения.

Задание 4.

Критерий согласия хи-квадрат.

Постановка задачи.

Требуется проверить гипотезу о том, что функция распределения выборочных данных принадлежит нормальному семейству распределений.

А аницы 110,85 111,85 112,85 113,85 114,85	0 0			Е Хи-квадрат	F	G	Н
110,85 111,85 112,85 113,85	о 0 0	7,70412E-06	частоты				
110,85 111,85 112,85 113,85	0 0	7,70412E-06					
111,85 112,85 113,85	0		0.000600921				
111,85 112,85 113,85	0			0,000600921			
113,85		7,00200L-00	-	-			
		0,000242228	0,015233958	0,015233958	18	степеней	свободы
11/1 95	0	0,001061632	0,063913555	0,063913555	α_{r-1}	0,394013	
114,00	0	0,003957847	0,225904785	0,225904785	16	степеней	свободы
115,85	0	0,012582399	0,672715058	0,672715058	α _{r-3}	0,270508	
116,85	3	0,034221255	1,687830715	1,020119031			
117,85	1	0,079965902	3,56808247	1,84834505	α	0,01	
118,85	8	0,161449099	6,355689399	0,425407408			
119,85	8	0,283749603	9,539439323	0,248429006	Вывод:		
120,85	12	0,438427553	12,06488009	0,000348899	Гипотеза принимается,		
121,85	17	0,603271484	12,85782658	1,334409089	пот	тому что α	< α_{r-3}
122,85	11	0,751306042	11,54669552	0,025884114			
123,85	8	0,863326366	8,737585311	0,062263437			
124,85	4	0,934754429	5,571388911	0,443204226			
125,85	2	0,973131417	2,993405055	0,329675932			
126,85	1	0,990505084	1,355145995	0,093073867			
127,85	3	0,997132075	0,516905355	11,92821655			
>127.85			0,223698125	0,223698125			
его	78		78				
			_				
			x2 =	18,96450188			
	16						
E	121,85 122,85 123,85 124,85 125,85 126,85 127,85	121,85 17 122,85 11 123,85 8 124,85 4 125,85 2 126,85 1 127,85 3 2127,85 0 2 78	121,85 17 0,603271484 122,85 11 0,751306042 123,85 8 0,863326366 124,85 4 0,934754429 125,85 2 0,973131417 126,85 1 0,990505084 127,85 3 0,997132075 2127,85 0 1	121,85 17 0,603271484 12,85782658 122,85 11 0,751306042 11,54669552 123,85 8 0,863326366 8,737585311 124,85 4 0,934754429 5,571388911 125,85 2 0,973131417 2,993405055 126,85 1 0,990505084 1,355145995 127,85 3 0,997132075 0,516905355 127,85 0 1 0,223698125 127.85 78	121,85	121,85	121,85

Задание 5. Одновыборочный критерий Стьюдента.

Постановка задачи.

Имеются две выборки одинакового объема. Известно, что распределения в этих выборках подчинены нормальному закону и, кроме того, каждое наблюдение в 1-ой выборке зависит (в вероятностном смысле) от соответствующего наблюдения во второй выборке. Требуется проверить гипотезу однородности выборок. Точнее, требуется проверить гипотезу о том, что среднее значение разности выборок равно нулю.

	Выборочные хар	актеристи	ки	
	До	После	Разность	
Среднее х	182,2113208	182,7925	0,581132	
Ст. Отклонение S	9,693231647	7,931567	3,743778	
Станд. ошиб. средн. (+-) m	1,344209374	1,09991	0,519169	
Объём выборки п	53	53	53	
	Статистика Стью,			
		1,119351		
Гипотеза	Альтернатива	α крит	Принимає	ется
Не изменилось	Увеличивается	Гипотеза		

Задание 6. Критерий знаков.

Постановка задачи.

Имеются две выборки одинакового объема. Известно, что каждое наблюдение в 1-ой выборке зависит (в вероятностном смысле) от соответствующего наблюдения во второй выборке. Распределение выборок неизвестно. Требуется проверить гипотезу однородности выборок.

D	E	F	G					
	H0: p = 1/2	K: p>1/2						
	Число наблюдений n	53						
	Число успехов m	29						
	Уровень значимости							
	α _{крит} =	0,291566						
	Наличие эффекта:							
	отсутсвует (хорошее согласие с гипотезой)							
Вывод:	Препарат не способствует							
	увеличению давл	пения						

Задание 7. Двухвыборочный критерий Стьюдента.

Постановка задачи.

Имеются две выборки, относящиеся к двум независимым группам наблюдений одной и той же характеристики, подчиняющейся нормальному закону с одинаковыми для обеих выборок дисперсиями. Требуется проверить гипотезу однородности выборок, то есть гипотезу совпадения средних значений.

E	E F		Н	1	J	
Станд. ошиб. средн. (+-) m	1,405408861	1,412954042				
Объём выборки п	38	31				
	Уровень значимости		0.05			
	Статисти					
		-15,61734864				
$\mathbf{H}_0: \mu_1 = \mu_2$						
Гипотеза	Альтернатива	$\alpha_{\text{ крит}} > 0.9999$	Принимается			
Равны	знач в І-ой выб. больше		Гипотеза			
Вывод:	Хорошее согласие с гипо					
	Выборочные данные не свидетельствуют в пользу новой методики					

Задание 8. Критерий Вилкоксона.

Постановка задачи.

Имеются две выборки, относящиеся к двум независимым группам наблюдений одной и той же характеристики. Требуется проверить гипотезу однородности выборок в ситуации, когда ожидается, что значения в 1-й выборке будут меньше значений во второй выборке.

Статистика Вилкоксона	743,5	
Среднее статистики Вилкоксона		
1330,5		
Дисперсия статистики Вилкоксона		
6871,666667		
Приближенное значение		
уровня значимости		
α крит	7,14541E-13	
Гипотезу однородности следует		
отвергнуть		

Задание 9.

Построить интервальную оценку для среднего значения нормального распределения.

Постановка задачи.

Имеется выборка из нормального распределения. Требуется построить 99%доверительную верхнюю границу для неизвестного среднего этого распределения.

1 ,		
Характери	стика	
Среднее		101,2226
Дисперсия	1	25,7011
Станд. Отк	лонение	5,069626
Ошибка ср	еднего	0,649099
Число дан	ных	62
Уровень		0,01
Надежнос	ть	99%
Квантиль	t ^a	2,389047
Верхняя гр	раница	102,7733

Задание 10. Проверить независимость двух характеристик по критерию сопряженности хи-квадрат

Постановка задачи.

По выборке из двумерного распределения (не обязательно нормального) проверить гипотезу независимости компонентов наблюдаемого случайного вектора.

Интервалы	(-беск; 116,05]	(116,05; 120,05]	(120,05; 124,05]	(124,05; +беск)	Σ	Таблица к	блица квадратов расхождений			
(-беск; 81,05]	4	10	7	4	25	0,013585	0,03543	0,013256	0,147601	
(81,05; 87,05]	11	33	18	8	70	0,017823	0,362695	0,298426	0,167732	
(87,05; +беск)	1	2	6	2	11	0,26265	1,526377	2,407597	0,206077	
Σ	16	45	31	14	106			$X^{2} =$	5,45925	
								акрит	0,486396	
								α	0,025	
						Вывод: та	так как α _{коит} > α, признаки независимы			симые
							•			

Задания 11-12.

Проверить независимость двух характеристик по критерию Стьюдента. Построить линии регрессии.

Постановка задачи.

По выборке из двумерного нормального распределения проверить гипотезу независимости компонентов наблюдаемого случайного вектора. Построить линии регрессии одного из признаков по другому признаку. Найти наилучший прогноз признака X при фиксированном значении признака Y=82.

