EXPERIMENT 02

COMBINATIONAL DOUBLE - DABBLE

≥ 5 COMPARATOR

The circuit above is a *comparator* that outputs 1 if the decimal value of the 4-bit input binary number is greater than or equal to 5 and 0 otherwise. The following table checks the accuracy of the circuit by exhaustively calculating the output for each possible 4-bit binary input.

a_3	a_2	a_1	a_0	$b=a_2.a_1$	$c = a_2 \cdot a_0$	$b + c + a_3 = Y$
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	0	1	0	1	1
0	1	1	0	1	0	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	0	1

1	0	1	1	0	0	1
1	1	0	0	0	0	1
1	1	0	1	0	1	1
1	1	1	0	1	0	1
1	1	1	1	1	1	1

CONDITIONAL ADDER BLOCK

The *comparator* discussed in the last section is used to construct the above *conditional adder block*. It adds 3_{10} or $(0011)_2$ to the 4-bit binary input if its decimal value is greater than or equal to 5. Another characteristic of this circuit, that can be considered as a shortcoming, is that it performs the 4-bit addition operation even if the 4-bit binary input is less than 5, but only this time it is added with $(0000)_2$. Therefore, the circuit is unable to save the computation cost when it is certain that the output is same as the input.

This ≥ 5 conditional 3 adder block is needed to construct the binary to BCD converters. It particularly performs the add-3 operation.

4-BIT BINARY TO BCD CONVERTOR

Step No.	Operation	B_1	B_0	
01	INITIALIZATION	0000	0000	$a_3a_2a_1a_0$
02	L-SHIFT	0000	$000a_{3}$	$a_3 a_2 a_1 a_0$
03	L-SHIFT	0000	$00a_{3}a_{2}$	$a_3 a_2 a_1 a_0$
04	L-SHIFT	0000	$0a_{3}a_{2}a_{1}$	$a_3a_2a_1a_0$
05	ADD-3	0000	$b_3 b_2 b_1 b_0$	$a_3a_2a_1a_0$
06	L-SHIFT	$000b_{3}$	$b_2b_1b_0a_0$	$a_3a_2a_1a_0$

Consider the above implementation of *double dabble algorithm* on a general 4-bit binary vector. The following observations can be made based on the above implementation that might help in figuring out the circuital implementation for this algorithm.

- The three most significant bits in the binary number are *left-shifted* without any *add-3* operation because the decimal value of the zeroth nibble would certainly be less than 5.
- *Add-3* operation is performed at most once and that too only on the zeroth nibble. No adjustment or *add-3* operation is ever performed on the first nibble.

The first observation hints that the first three *left-shifts* can be done consecutively without any checking for $(B_0)_{10} < 5$ post each shift. The second observation hints on the need of only one *conditional adder block* in the circuit. In the circuital implementation below, by the virtue of the first observation we can directly start from the 4th step. Therefore, the first step in the circuital implementation would be to input $0a_3a_2a_1$ into the *conditional adder* and get the output $b_3b_2b_1b_0$. The least significant bit a_0 is then simply concatenated to this binary output vector to get the final BCD conversion.

Consider the above circuit diagram. Let $a_3a_2a_1a_0$ be the 4-bit binary vector that is to be converted to its corresponding binary coded decimal representation. The conditional adder block above consists of a comparator that compares the decimal value of the 4-bit binary input with 5, and returns 0 if its less than 5 and 1 otherwise. The conditional adder block decides to add 3_{10} to the 4-bit binary input if and only if the comparator embedded in it returns 1 for that input. The circuit is the exact reflection of the iterative algorithm implemented earlier.

6-BIT BINARY TO BCD CONVERTOR

Step No.	Operation	B_1	B_0	
01	INITIALIZATION	0000	0000	$a_5 a_4 a_3 a_2 a_1 a_0$
02	L-SHIFT	0000	$000a_{5}$	$a_5 a_4 a_3 a_2 a_1 a_0$
03	L-SHIFT	0000	$00a_{5}a_{4}$	$a_5 a_4 a_3 a_2 a_1 a_0$
04	L-SHIFT	0000	$0a_{5}a_{4}a_{3}$	$a_5 a_4 a_3 a_2 a_1 a_0$
05	ADD-3	0000	$b_3 b_2 b_1 b_0$	$a_5a_4a_3a_2a_1a_0$
06	L-SHIFT	$000b_{3}$	$b_2 b_1 b_0 a_2$	$a_5a_4a_3a_2a_1a_0$
07	ADD-3	$000b_{3}$	$c_3c_2c_1c_0$	$a_5a_4a_3a_2a_1a_0$
08	L-SHIFT	$00b_{3}c_{3}$	$c_2c_1c_0a_1$	$a_5a_4a_3a_2a_1a_0$
09	ADD-3	$00b_{3}c_{3}$	$d_3d_2d_1d_0$	$a_5a_4a_3a_2a_1\mathbf{a_0}$
10	L-SHIFT	$0b_3c_3d_3$	$d_2d_1d_0a_0$	$a_5a_4a_3a_2a_1a_0$

Consider the above implementation of *double dabble algorithm* on a general 6-bit binary vector. The following observations can be made based on the above

implementation that might help in figuring out the circuital implementation for this algorithm.

- The three most significant bits in the binary input are *left-shifted* without any *add-3* operation because the decimal value of the zeroth nibble would certainly be less than 5.
- *Add-3* operation is performed at most *thrice* and that too only on the zeroth nibble. No adjustment or *add-3* operation is performed on the first nibble.

The first observation hints that the first three *left-shifts* can be done consecutively without any checking for $(B_0)_{10} < 5$ post each shift. The second observation hints on the need of only three *conditional adder blocks* in the circuit. The following is the circuital implementation of the double-dabble algorithm for a 6-bit binary number that aims at following the same steps as in the above table.

- \circ The circuit starts directly with the *fourth* step of the algorithm where B_1 is 0000 and B_0 is $0a_5a_4a_3$. The binary number $B_0=0a_5a_4a_3$ is passed through a *conditional adder block* that gives $b_3b_2b_1b_0$ as the 4-bit binary output.
- \circ *Left-shift* operation is performed and a_2 is concatenated with the three rightmost bits $b_2b_1b_0$. At this step, B_1 is $000b_3$ and B_0 is $b_2b_1b_0a_2$.
- \circ The zeroth nibble $b_2b_1b_0a_2$ is passed through another *conditional adder block* that gives $c_3c_2c_1c_0$ as the 4-bit binary output.

- o *Left-shift* operation is performed again and a_1 is concatenated with the three rightmost bits $c_2c_1c_0$. At this step, B_1 is $00b_3c_3$ and B_0 is $c_2c_1c_0a_1$.
- \circ The zeroth nibble $c_2c_1c_0a_1$ is passed through the final *conditional adder block* that gives $d_3d_2d_1d_0$ as the 4-bit binary output.
- \circ Now the least significant bit a_0 is simply concatenated to the result of the previous step. Groups of 4 bits are made from the rightmost bit and B_1 is finally $0b_3c_3d_3$ and B_0 is $d_2d_1d_0a_0$.

7-BIT BINARY TO BCD CONVERTOR

Step No.	Operation	B_2	B_1	B_0	
01	INITIALIZATION	0000	0000	0000	$a_6 a_5 a_4 a_3 a_2 a_1 a_0$
02	L-SHIFT	0000	0000	$000a_{6}$	$a_6 a_5 a_4 a_3 a_2 a_1 a_0$
03	L-SHIFT	0000	0000	$00a_{6}a_{5}$	$a_6 a_5 a_4 a_3 a_2 a_1 a_0$
04	L-SHIFT	0000	0000	$0a_{6}a_{5}a_{4}$	$a_6a_5\mathbf{a_4}a_3a_2a_1a_0$
05	ADD-3	0000	0000	$b_3 b_2 b_1 b_0$	$a_6a_5a_4a_3a_2a_1a_0$
06	L-SHIFT	0000	$000b_{3}$	$b_2b_1b_0a_3$	$a_6a_5a_4\mathbf{a_3}a_2a_1a_0$
07	ADD-3	0000	$000b_{3}$	$c_3c_2c_1c_0$	$a_6 a_5 a_4 a_3 a_2 a_1 a_0$
08	L-SHIFT	0000	$00b_{3}c_{3}$	$c_2c_1c_0a_2$	$a_6 a_5 a_4 a_3 a_2 a_1 a_0$
09	ADD-3	0000	$00b_{3}c_{3}$	$d_3d_2d_1d_0$	$a_6 a_5 a_4 a_3 a_2 a_1 a_0$
10	L-SHIFT	0000	$0b_3c_3d_3$	$d_2d_1d_0a_1$	$a_6 a_5 a_4 a_3 a_2 a_1 a_0$

11	ADD-3	0000	$e_3e_2e_1e_0$	$f_3f_2f_1f_0$	$a_6a_5a_4a_3a_2a_1a_0$
12	L-SHIFT	$000e_{3}$	$e_2e_1e_0f_3$	$f_2f_1f_0a_0$	$a_6a_5a_4a_3a_2a_1a_0$

Consider the above implementation of *double dabble algorithm* on a general 7-bit binary vector. The following observations can be made based on the above implementation that might help in figuring out the circuital implementation for this algorithm.

- The three most significant bits in the binary input are left-shifted without any add-3 operation because the decimal value of the zeroth nibble would certainly be less than 5.
- Add-3 operation is performed at most *five times*. Out of maximum of five times, at most *four add-3* operations would be needed on the zeroth nibble and at most *one* on the first nibble. No adjustment or *add-3* operation is performed on the second nibble.

The first observation hints that the first three *left-shifts* can be done consecutively without any checking for $(B_0)_{10} < 5$ post each shift. The second observation hints on the need of exactly five *conditional adder blocks* in the circuit. The following is the circuital implementation of the double-dabble algorithm for a 7-bit binary number that aims at following the same steps as in the above table.

• The circuit starts directly with the *fourth* step of the algorithm where B_1 is 0000 and B_0 is $0a_6a_5a_4$ (B_2 is anyway 0000 till the last step). The

- binary number $B_0=0a_6a_5a_4$ is passed through a *conditional adder block* that gives $b_3b_2b_1b_0$ as the 4-bit binary output.
- o *Left-shift* operation is performed and a_3 is concatenated with the three rightmost bits $b_2b_1b_0$. At this step, B_1 is $000b_3$ and B_0 is $b_2b_1b_0a_3$.
- \circ The zeroth nibble $b_2b_1b_0a_3$ is passed through another *conditional adder block* that gives $c_3c_2c_1c_0$ as the 4-bit binary output.
- o *Left-shift* operation is performed again and a_2 is concatenated with the three rightmost bits $c_2c_1c_0$. At this step, B_1 is $00b_3c_3$ and B_0 is $c_2c_1c_0a_2$.
- \circ The zeroth nibble $c_2c_1c_0a_2$ is passed through the third *conditional adder block* that gives $d_3d_2d_1d_0$ as the 4-bit binary output.
- \circ *Left-shift* operation is performed and a_1 is concatenated with the three rightmost bits $d_2d_1d_0$. At this step, B_1 is $0b_3c_3d_3$ and B_0 is $d_2d_1d_0a_1$.
- \circ Now, this step is different than the ones in the previous part. B_1 is $0b_3c_3d_3$ which means its decimal value can be greater than or equal to 5. Therefore, in this step both the zeroth nibble $d_2d_1d_0a_1$ and the first nibble $0b_3c_3d_3$ are passed through separate conditional adder blocks that give $f_3f_2f_1f_0$ and $e_3e_2e_1e_0$ respectively as the 4-bit binary outputs.
- O Now the least significant bit a_0 is finally concatenated to the result of the previous step. Groups of 4 bits are made from the rightmost bit and B_2 is finally $000e_3$, B_1 is $e_2e_1e_0f_3$ and B_0 is $f_2f_1f_0a_0$.

GROUP MEMBERS

Group ID	Roll No.	Name	
09	19CS10011	Anish Sofat	
09	19CS10031	Abhishek Gandhi	
09	19CS10044	Nakul Aggarwal	
09	19CS10051	Sajal Chhamunya	
09	19CS10053	Satvik Bansal	