Math 104 Worksheet 11

UC Berkeley, Summer 2021 Wednesday, July 21

Exercise 1. (a) Prove that the function f(x) = |x| is continuous on \mathbb{R} using the $\varepsilon - \delta$ definition of continuity. (Hint: Recall the reverse triangle inequality, $||a| - |b|| \le |a - b|$ for any $a, b \in \mathbb{R}$.)

(b) Prove that if g is continuous at x_0 , then the function |g| is continuous at x_0 .

Exercise 2. (a) Prove that $\max(a,b) = \frac{1}{2}(a+b) + \frac{1}{2}|a-b|$ for any $a,b \in \mathbb{R}$.

(b) Prove that $\min(a, b) = -\max(-a, -b)$ for any $a, b \in \mathbb{R}$.

(c) Prove that if f and g are continuous at x_0 , then the functions $\max(f,g)$ and $\min(f,g)$ are continuous at x_0 .