

Arquitectura y Diseño de Software

Atributo de Calidad: Disponibilidad

Tácticas, Estrategias y Patrones de Diseño

Agenda

- Contexto
- Índice de Disponibilidad
- Tácticas y Estrategias

Costos Directos / No-Disponibilidad (Tomado de [1])

INDUSTRY	AVERAGE DOWNTIME COST PER HOUR
Brokerage services	\$6.48 million
Energy	\$2.8 million
Credit card	\$2.58 million
Telecomm	\$2 million
Financial	\$1.5 million
Manufacturing	\$1.6 million
Financial institutions	\$1.4 million
Retail	\$1.1 million
Pharmaceutical	\$1.0 million
Chemicals	\$704,000
Health care	\$636,000
Media	\$340,000
Airline reservations	\$90,000

Sources: Network Computing, the Meta Group, and Contingency Planning Research.

Disponibilidad / Inversión (Tomado de [1])

Medición de Disponibilidad (Tomado de [1])

PERCENTAGE UPTIME	PERCENTAGE DOWNTIME	DOWNTIME PER YEAR	DOWNTIME PER WEEK
98%	2%	7.3 days	3 hours, 22 minutes
99%	1%	3.65 days	1 hour, 41 minutes
99.8%	0.2%	17 hours, 30 minutes	20 minutes, 10 seconds
99.9%	0.1%	8 hours, 45 minutes	10 minutes, 5 seconds
99.99%	0.01%	52.5 minutes	1 minute
99.999%	0.001%	5.25 minutes	6 seconds
99.9999% ("six 9s")	0.0001%	31.5 seconds	0.6 seconds

Causas de no disponibilidad (no planeada) (Tomado de [1])

Definición

A = MTBF / (MTBF + MTTR)

Donde:

A = Grado de disponibilidad MTBF= Mean Time Between Failures MTTR= Maximum Time to Repair

Agenda

- Contexto
- Índice de Disponibilidad
- Tácticas y Estrategias

Índice de Disponibilidad

Tomado de [1]

Buenas Prácticas de Administración [1]

- La calidad cuesta
- No asuma nada
- Remueva SPFs
- Promueva la seguridad
- Consolide sus servidores
- Revise su velocidad
- Promueva los mecanismos de control de cambios
- Documente todo
- Defina SLAs
- Planifica con antelación
- Pruebe todo
- Separe sus ambientes
- Aprenda de la historia
- Diseñe para el crecimiento
- Seleccione software maduro
- Seleccione hardware maduro y confiable
- Reutilice configuraciones
- Emplee recursos externos
- Un problema una solución
- K.I.S.S

Backup / Restore [1]

- Mirroring no es igual a backup
- El uso mas frecuente de un backup es por un solo archivo
- Pruebe regularmente el backup
- Verifique el hardware de backup
- Verifique el MTBF de las soluciones de B/R
- Tenga varias copias de la información crítica
- Verifique los formatos de información antigua
- Backup del Backup

Manejo de Datos [1]

- Los Discos son los componentes con mayor probabilidad de fallo
 - Seguido por las fuentes de poder
 - Suponga un MTBF de 200,000 horas (23 años)
 - MTBF/#componentes = 50% de probabilidad de fallo
 - 200,000/100 = 83 días (al menos una falla)
- Los discos contienen datos
- Los datos deben ser protegidos
- El acceso a los datos se debe garantizar
 - RAID 0 Striping
 - RAID 1 Mirroring
 - RAID 2 Hamming Encoding
 - RAID 3, 4 y 5- Parity RAID

Networking [1]

- Fallas Red
- Fallas en los dispositivos físicos
- Balanceo de carga
- Conexiones redundantes

Ambientes Locales [1]

- Data Center
 - Recursos centralizados
 - Seguridad Física
 - Crecimiento
- Planes de mantenimiento
- Inventario de partes (Spare)
- Documentación
- Capacitación
- Operación

Clientes y Consumidores [1]

- Almacenamiento de datos en los clientes
- Clientes delgados / gruesos
- Datos compartidos
- Acceso a servidores de datos y aplicaciones
- Autonomía de los clientes
- Recuperación de los clientes

Servicios y Aplicaciones [1]

- Recuperación de las aplicaciones
 - Detección y reintento
 - Apagado suave
 - Reinicio
 - Reinicio desde un punto de chequeo

Resistencia a Fallas [1]

- Monitoreo de componentes
- Monitoreo del sistema
- Clusters
 - -2 Nodos
 - Activo-Pasivo (Asimétrico)
 - Activo Activo (Simétrico)

Replicación [1]

- Carácterísticas de replicación
 - Latencia
 - Sincrónica
 - Asincrónica
 - Semi-sincrónica
 - Periódica
 - Inicio
 - Hardware
 - Software
 - Sistema de archivos
 - Aplicación
 - Middleware de transacciones

Recuperación de desastres [1]

- Salud y protección de los empleados
- Continuidad de la empresa
- Asignación de responsabilidades
- Plan de acción claro

Agenda

- Contexto
- Índice de Disponibilidad
- Tácticas y Estrategias

Tácticas y Estrategias

- Reporte continuo del estado
- Monitoreo Operacional
- Log en 3 Categorías
- Configuración dinámicamente adaptable

Reporte Continuo del Estado

- Defina una interfase o protocolo por cada tipo de elemento en el sistema que se pueda afectar seriamente la disponibilidad del sistema
 - Cuáles elementos pueden causar el mayor impacto en el sistema?
 - Cuáles elementos pueden ser un cuello de botella?
 - Qué información se requiere de cada elemento
 - Que tan frecuentemente debe reportar su estado el elemento?

Monitoreo Operacional

- Implemente un mecanismo automatizado que vigile los indicadores de los elementos críticos del sistema
- Generación automática de alarmas y notificaciones

Log en 3 Categorías

- Información de la ejecución del sistema
- Alertas sobre condiciones del sistema como timeouts, datos perdidos o flujos de información no autorizados
- Errores, por ejemplo fallas en la comunicación con la base de datos

Configuración dinámicamente adaptable

- Identificar parámetros claves que afectan características nofuncionales del sistema
 - Número de peticiones concurrentes
 - Número de sesiones concurrentes
 - Algoritmo de balanceo de carga
 - Accesos simultáneos al servidor de datos
 - Mecanismos de seguridad
- Para cada un de estos atributos, introducir mecanismos para ajustar esos valores mientras el sistema continua en operación

Bibliografía

- [1] Blueprints for High Availability. Second Edition. Evan Marcus, Hal Stern. Wiley.
- [2] Architecting Enterprise Solutions: Patterns for High-Capability Internet-Based Systems. Paul Dyson and Andy Longshaw. Wiley/