UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

ÁLGEBRA MODERNA IV (ejemplo)

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: **Séptimo u octavo**

CLAVE: **0004**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Álgebra Moderna III.

SERIACIÓN INDICATIVA SUBSECUENTE: Ninguna.

OBJETIVO(S): Profundizar en el conocimiento de la teoría de categorías, la teoría de módulos y la de anillos.

NIIM HODAC	LINIDADEC TEMÁTICAC
NUM. HORAS	UNIDADES TEMÁTICAS
10	1. Prerradicales en R-mod
	1.1 Orden. Operaciones: composición, ":", intersección, unión. Pre-
	rradicales idempotentes, radicales, prerradicales exactos izquierdos,
	radicales que preservan epimorfismos. Zoclo, Radical de Jacobson,
	torsión de grupos abelianos, la parte divisible de un grupo abeliano.
	1.2 Clases de torsión hereditarias. La clase de torsión hereditaria
	generada por una clase de módulos. T-nilpotencia. Clases de torsión
	hereditarias cerradas bajo productos.
14	2. Anillos semiartinianos
	2.1 El radical generado por un prerradical.
	2.2 El mayor prerradical idempotente por debajo de un prerradical.
	2.3 El radical generado por el zoclo.
	2.4 El mayor prerradical idempotente por debajo del Radical de Ja-
	cobson.
	2.5 Caracterización de los anillos semiartinianos.
	2.6 El Radical de Jacobson es T-nilpotente en cada módulo semiar-
	tiniano.
	2.7 Anillos Max.
	2.8 V-anillos.

14	3. Anillos semilocales
	3.1 Clases de torsión hereditarias de tipo simple. Si toda clase de
	torsión hereditaria es de tipo simple entonces el anillo es semilocal.
	Anillos buenos (Rad(M)=Rad(R)M, para todo módulo). Los anillos
	semilocales son buenos.
	3.2 Anillos locales.
	3.3 Idempotentes, idempotentes primitivos.
	3.4 Anillos de endomorfismos de anillos locales.
	3.5 Radical de Jacobson de anillos semilocales y de anillos locales.
	3.6 Levantamiento de idempotentes. Se pueden levantar idempoten-
	tes módulo un nilideal. Si se pueden levantar idempotentes, módulo
	un subideal del Radical de Jacobson, entonces se pueden levantar
	familias numerables de idempotentes ortogonales.
14	4. Anillos semiperfectos
	4.1 Módulos superfluos y cápsulas inyectivas. Un módulo simple es
	inyectivo o es superfluo pero no ambas cosas a la vez. Propiedades
	básicas de los módulos superfluos. Módulos huecos. Módulos super-
	fluos y el radical de Jacobson.
	4.2 Cubiertas proyectivas y epimorfismos superfluos. No todo módulo
	tiene cubiertas proyectivas.
	4.3 Un anillo es semiperfecto si es semilocal y se pueden levantar
	idempotentes módulo el radical de Jacobson.
	4.4 Módulos semiperfectos. Módulos con suplementos (todo
	submódulo tiene un suplemento en el módulo). Módulos semiperfec-
	tos (todo cociente del módulo tiene cubierta proyectiva). Un módulo
	con cubierta proyectiva es semiperfecto si y sólo si es suplementado.
	4.5 Un anillo R es semiperfecto si y sólo si R es semiperfecto como
	módulo izquierdo.
	4.6 Un anillo R es semiperfecto si y sólo si todo módulo finitamente
	generado tiene cubierta proyectiva.
	4.7 Módulos proyectivos para anillos semiperfectos.

14	5. Anillos perfectos
	5.1 La caracterización de Bass.
	5.2 Anillos perfectos caracterizados mediante sus clases de torsión
	hereditarias.
	5.3 Anillos perfectos y condición de cadena descendente en ideales
	principales.
	5.4 Clases importantes de anillos perfectos.
	5.5 Anillos QF (proyectivos = inyectivos). Caracterizaciones de
	anillos QF.
	5.6 Anillos uniseriados.
	5.7 Anillos para los que coinciden la cápsula inyectiva y la cubierta
	proyectiva.
14	6. Producto tensorial y anillos regulares
14	
14	6. Producto tensorial y anillos regulares
14	6. Producto tensorial y anillos regulares 6.1 Producto tensorial. Construcción.
14	 6. Producto tensorial y anillos regulares 6.1 Producto tensorial. Construcción. 6.2 Exactitud derecha del producto tensorial en cada variable.
14	 6. Producto tensorial y anillos regulares 6.1 Producto tensorial. Construcción. 6.2 Exactitud derecha del producto tensorial en cada variable. 6.3 El producto tensorial y el funtor Hom.
14	 6. Producto tensorial y anillos regulares 6.1 Producto tensorial. Construcción. 6.2 Exactitud derecha del producto tensorial en cada variable. 6.3 El producto tensorial y el funtor Hom. 6.4 Módulos planos.
14	 6. Producto tensorial y anillos regulares 6.1 Producto tensorial. Construcción. 6.2 Exactitud derecha del producto tensorial en cada variable. 6.3 El producto tensorial y el funtor Hom. 6.4 Módulos planos. 6.5 Pureza.
14	 6. Producto tensorial y anillos regulares 6.1 Producto tensorial. Construcción. 6.2 Exactitud derecha del producto tensorial en cada variable. 6.3 El producto tensorial y el funtor Hom. 6.4 Módulos planos. 6.5 Pureza. 6.6 Anillos regulares.
14	 6. Producto tensorial y anillos regulares 6.1 Producto tensorial. Construcción. 6.2 Exactitud derecha del producto tensorial en cada variable. 6.3 El producto tensorial y el funtor Hom. 6.4 Módulos planos. 6.5 Pureza. 6.6 Anillos regulares. 6.7 Cuándo todo módulo es plano.
14	6. Producto tensorial y anillos regulares 6.1 Producto tensorial. Construcción. 6.2 Exactitud derecha del producto tensorial en cada variable. 6.3 El producto tensorial y el funtor Hom. 6.4 Módulos planos. 6.5 Pureza. 6.6 Anillos regulares. 6.7 Cuándo todo módulo es plano. 6.8 Cuándo todo plano es proyectivo.

BIBLIOGRAFÍA BÁSICA:

- 1. Anderson, F., Fuller, K., Rings and Categories of Modules, 2nd edition, New York: Springer Verlag, 1992.
- 2. Gentile, E.R., Estructuras Algebraicas II, Washington: OEA, 1971.
- 3. Kasch, F., Modules Rings, London: Academic Press 1982.
- 4. Lam, T.Y., A First Course in Non-commutative Rings, Berlin: Springer Verlag, 1991.
- 5. Lambek, J., Lectures on Rings and Modules, Waltham, Mass.: Blaisdell, 1966.
- 6. Rotman, J.J., An Introduction to Homological Algebra, New York: Academic, 1979.
- 7. Wisbauer, R., Foundations of Module and Ring Theory, Philadelphia: Gordon and Breach, 1991.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Bican, L., Kepka, T., Nemec, P., Rings, Modules and Preradicals, New York: Marcel Dekker, 1982.
- 2. Dauns, J., Modules and Rings, Cambridge: Cambridge University Press, 1994.
- 3. Faith, C.C., Algebra II. Ring Theory, New York: Springer Verlag, 1976.
- 4. Goodearl, K.R., Ring Theory, Nonsingular Rings and Modules, New York: Marcel Dekker, 1976.
- 5. Goodearl, K.R., Von Neumann Regular Rings, Marshfield, Mass.: Pitman.
- 6. Lam, T.Y., Lectures on Modules and Rings, New York: Springer Verlag, 1998.
- 7. Lam, T.Y., Exercises in Classical Ring Theory, New York: Springer Verlag, 1995.
- 8. McLane, S., Categories for the Working Mathematician, New York: Springer Verlag, 1972.
- 9. Rowen, L.H., Ring Theory, I, II, Boston: Academic Press, 1998.
- 10. Stenström, B., Rings of Quotients, New York: Springer Verlag, 1975.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.