13 變異數分析

○ 學習目的

- 1. 討論變異數分析的一般觀念,變異數分析的方法與步驟。
- 2. 瞭解實驗設計的意義。
- 3. 學習一因子變異數分析-完全隨機設計方法。
- 4. 瞭解一因子變異數分析-隨機集區設計方法。
- 5. 瞭解二因子變異數分析的意義
- 6. 利用 Excel 統計軟體來做變異數分析

本章結構

變異數分析

〇 變異數分析的意義

變異數分析是檢定三個或三個以上的母體平均數是 否相等的統計方法,或檢定因子對依變數是否有影響的統計方法。

表13.1 可樂裝填機的測試結果

	A	В	С	D
1	樣本	廠牌A	廠牌B	廠牌C
2	1	106	107	100
3	2	80	112	104
4	3	104	115	95
5	4	110	104	100
6	5	90	117	106
7	樣本平均數	98	111	101
8	樣本變異數	158	29.5	18

○變異數分析的步驟

- (1) 設立兩個假設
- (2) 選取 $\frac{MSF}{MSE}$ 為檢定統計量
- (3) 決定決策法則
- (4) 下結論

圖13.1 虛無假設與對立假設

表13.2 因子與依變數

廠牌₽	依勢	依變數。		
A₽	$Y_{11} \ldots Y_{1n_1} \circ$	\overline{Y}_1 \circ		
Be	$Y_{21} \dots Y_{2n_2} +$	$\overline{Y_2}$ $arphi$		
C	$Y_{31} \dots Y_{3n_3} \circ$	$\overline{Y_3}$ \circ		

〇 總差異

總差異==因子引起的差異+隨機差異

$$SST = SSF + SSE$$

○ 因子引起的差異(組間差異)

$$SSF = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\overline{Y}_i - \overline{\overline{Y}})^2 \qquad \overrightarrow{\exists X} \qquad SSF = \sum_{i=1}^{k} n_i ((\overline{Y}_i - \overline{\overline{Y}})^2)$$

○ 隨機差異(組內差異)

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_i)^2$$
 \implies $SSE = \sum_{i=1}^{k} (n-1)S_i^2$

〇因子引起的變異數 (組間變異)

$$MSF = \frac{SSF}{k-1}$$

〇隨機變異數 (組內變異)

$$MSE = \frac{SSE}{n-k}$$

○F檢定統計量

$$F = \frac{MSF}{MSE} \sim F_{k-1,\sum_{n-k}}$$

〇 決策法則

- ①若 $F > F_{{\scriptscriptstyle k-1},\Sigma_{n-k},\alpha}$,則拒絕 H_0 。
- ②若 $F \leq F_{k-1,\Sigma_{n-k,\alpha}}$,則接受 H_0 。

圖13.2 自由度不同的*F*分配

表13.3 *F*分配表 (α=0.05)

v_2/v_1	1	2	3	4	5	•••	9	10	•••	120	∞
1	161.4	199.5	215.7	224.6	230.2	•••	240.5	241.9	•••	253.3	254.3
2	18.51	19.00	19.16	19.25	19.30	•••	19.38	19.40	•••	19.49	19.50
3	10.13	9.55	9.28	9.12	9.01	•••	8.81	8.79	•••	8.55	8.53
4	7.71	6.94	6.59	6.39	6.26	•••	6.00	5.96	•••	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	•••	4.77	4.74	•••	4.40	4.36
:	:	:	:	:	÷	•••	:	:	•••	:	:
10	4.96	4.10	3.71	3.48	3.33	•••	3.02	2.98	•••	2.58	2.54
11	4.84	3.98	3.59	3.36	3.20	•••	2.90	2.85	•••	2.45	2.40
:	:	:	:	:	÷	•••	:	:	•••	:	:
∞	3.84	3.00	2.60	2.37	2.21	•••	1.88	1.83	•••	1.22	1

圖13.3 F分配的對話方塊

圖**13.4** *F*值

圖13.5 可樂裝填機裝填數量的檢定

表13.4 變異數分析表

變異來源。	平方和(SS)。	自由度(df)。	平均平方和(MS)。	F_{φ}
因子(組間)。	SSF ₽	$k-1$ \circ	$MSF = \frac{SSF}{k-1} \mathcal{S}$	$\frac{MSF}{MSE}$ $^{\circ}$
隨機(組內)。	SSE ₽	$n-k$ \circ	$MSE = \frac{SSE}{n-k} \varphi$	₽.
總和□	SST ≠	$n-1$ φ	₽	Đ.

表13.5 變異數分析表

變異來源。	平方和 (SS)。	自由度(df)。	平均平方和(MS)。	F値。
因子。	463.33₽	2₽	231.66	3.38₽
隨機。	822	12.	68.5₽	÷.
總和↵	1285.33₽	14₽	₽	₽

圖13.6 單因子變異數分析的對話方塊

表13.6 可樂裝填機裝填量的變異數分析

	A	В	С	D	E	F	G
1		單因	子變異	數分析			
2							
3	摘要						
4	組	個數	總和	平均	變異數		
5	廠牌A	5	490	98	158		
6	廠牌B	5	555	111	29.5		
7	廠牌C	5	505	101	18		
8							
9							
10	ANOVA						
11	變源	SS	自由度	MS	F	P-値	臨界値
12	組間	463.3	2	231.6667	3.382	0.068413	3.885294
13	組內	822	12	68.5			
14							
15	總和	1285	14				

實驗設計

○實驗設計

在做研究時,有時候我們必需控制研究中的某些不是研究對象的因子,以便獲得某一所要研究的因子或變數的影響效果。此種研究方法稱為實驗研究(experimental study)或實驗設計(experimental design)。

〇 完全隨機設計的意義

完全隨機設計是將實驗單位隨機區分為 k 個處理,再 從各個處理中隨機抽取 n 個樣本的方法,或將 k 個處 理隨機分配於樣本中的實驗單位以搜集資料的方法。

圖13.7 完全隨機實驗

〇 總差異

總差異=處理間的差異+隨機差異

$$SST = SSTR + SSE$$

〇 處理間的差異(組間變異)

$$SSTR = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\overline{Y}_i - \overline{\overline{Y}})^2 = \sum_{i=1}^{k} n_i ((\overline{Y}_i - \overline{\overline{Y}})^2)$$

○ 隨機差異(組內變異)

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_i)^2 = \sum_{i=1}^{k} (n_i - 1)S_i^2$$

○ 因子引起的變異數 (組間變異)

$$MSTR = \frac{SSTR}{k-1}$$

○ 隨機變異數 (組內變異)

$$MSE = \frac{SSE}{\sum n_i - k}$$

○F檢定統計量

$$F = \frac{MSTR}{MSE}$$

表13.7 變異數分析表

變異來源。	平方和(SS)。	自由度(df)。	平均平方和(MS)。	檢定統計量。
處理(因子)	$SSTR_{\circ}$	$k-1$ \circ	$MSTR = \frac{SSTR}{k-1} \varphi$	$F = \frac{MSTR}{MSE} \varphi$
隨機(組內)。	SSE.	$\sum n_i - k$ 0	$MSE = \frac{SSE}{\sum n_i - k}$	42
總和。	SST_{\circ}	$\sum n_i - 1_{\varphi}$	P	42

〇 決策法則

- ①若 $F > F_{k-1,n_T-k,\alpha}$,則拒絕 H_0 。
- ②若 $F \leq F_{k-1,n_T-k,\alpha}$,則接受 H_0 。

表13.8 四種教學法的學習效果

樣本觀察值。	教學方法。					
	教學法 1↵	教學法 2-	教學法 3₽	教學法 4₽		
1.0	65₽	75₽	59₽	94.		
2.0	87₽	69₽	78₽	89.		
3₽	73₽	83₽	67₽	80.0		
40	79₽	81.	62₽	88.		
5₽	81.	72₽	83.	42		
6₽	69₽	79₽	76₽	42		
7.	₽	90₽	¢.	4		
樣本平均數 \overline{Y}_{i} 。	75.67₽	78.43₽	70.83₽	87.75₽		
樣本變異數 S_i^2	66.67₽	50.620	91.77₽	33.58 _{° I}		

表13.9 三種魚類捕食埃及斑蚊幼蟲的數目

	A	В	С	D		
1	/ ±- /-		魚類			
2	樣本	大肚魚	孔雀魚	蓋斑鬥魚		
3	1	56	46	425		
4	2	78	24	278		
5	3	23	47	551		
6	4	41	19	238		
7	5	22	73	381		
8	6	53				
9	7	35				
10	樣本平均數 \bar{Y}_i	44	41.8	374.6		
11	樣本變異數 Si²	399.3	463.7	15,422.3		

表13.10 一因子變異數分析-完全隨機實驗

	A	В	С	D	Е	F	G
1	單因子變勢	異數分析					
2							
3	摘要						
4	組	個數	總和	平均	變異數		
5	大肚魚	7	308	44	399.3333		
6	孔雀魚	5	209	41.8	463.7		
7	蓋斑鬥魚	5	1873	374.6	15422.3		
8							
9							
10	ANOVA						
11	變源	SS	自由度	MS	F	P-値	臨界値
12	組間	387908.1	2	193954.1	41.17921	1.37E-06	3.738892
13	組內	65940	14	4710			
14							
15	總和	453848.1	16				

表13.11 學習成績的ANOVA表

變異來源。	平方和 (SS) .	自由度。	平均平方和(MS)。	檢定統計量F 。
因子變異。	712.84	3₽	237.6	3.77₽
隨機變異。	1,196.66	19₽	62.98₽	₽
總變異。	1,909.46,	22₽		₽

〇 隨機集區設計的意義

隨機集區設計是將實驗單位依據某一性質如時間、地理位置、實驗材料分成幾個集區(block)。同一集區內的實驗單位具同類的性質,彼此間的差異較小,而不同集區的實驗單位差異較大,然後在每一集區中將 K 個處理隨機分配於實驗單位以搜集資料。

一因子變異數分析—隨機集區設計

圖13.8 隨機集區設計

一因子變異數分析—隨機集區設計

〇 總差異

$$SST = \sum_{i=1}^{b} \sum_{j=1}^{k} (Y_{ij} - \overline{\overline{Y}})^2$$

○ 處理間的差異(組間變異)

$$SSTR = \sum_{i=1}^{b} \sum_{j=1}^{k} (\overline{Y}_{.j} - \overline{\overline{Y}})^{2} = b \sum_{j=1}^{k} (\overline{Y}_{.j} - \overline{\overline{Y}})^{2}$$

○ 集區間的變異

$$SSBK = \sum_{i=1}^{b} \sum_{j=1}^{k} (\overline{Y}_{i} - \overline{\overline{Y}})^{2} = k \sum_{i=1}^{b} (\overline{Y}_{i} - \overline{\overline{Y}})^{2}$$

〇 隨機差異

$$SSE = SST - SSTR - SSBK$$

一因子變異數分析—隨機集區設計

○ 處理引起的變異數(組間變異)

$$MSTR = \frac{SSTR}{k-1}$$

式中:k-1為SSTR的自由度。

○ 集區引起的變異數(集區變異)

$$MSBK = \frac{SSBK}{b-1}$$

式中:b-1 為SSBK的自由度。

〇 隨機變異數

$$MSE = \frac{SSE}{(k-1)(b-1)}$$

式中:(k-1)(b-1) 為SSE的自由度(或表為 $^{kb-k-b+1}$)。

一因子變異數分析--隨機集區設計

- 〇 檢定因子對依變數的影響
- O F檢定統計量

$$\frac{MSTR}{MSE} \sim F_{k-1,(k-1)(b-1)}$$

〇 決策法則

① 岩
$$F > F_{k-1,(k-1)(b-1),\alpha}$$
 ,則拒絕 H_0 。

②岩
$$F \leq F_{k-1,(k-1)(b-1),\alpha}$$
,則接受 H_0 。

- 〇 檢定集區對依變數的影響
- O F檢定統計量

$$\frac{MSTR}{MSE} \sim F_{b-1,(k-1)(b-1)}$$

〇 決策法則

① 岩
$$F > F_{k-1,(k-1)(b-1),\alpha}$$
 ,則拒絕 H_0 。

②岩
$$F \leq F_{k-1,(k-1)(b-1),\alpha}$$
,則接受 H_0 。

表13.12 隨機集區實驗的變異數分析表

變異來源。	平方和(SS)。	自由度(df)。	平均平方和(MS)。	F 値。
處理(因子)	SSTR ₽	$k-1$ φ	$MSTR = \frac{SSTR}{k-1} \circ$	$F_1 = \frac{MSTR}{MSE}$
集區↩	SSBK ₽	<i>b</i> −1 ₽	$MSBK = \frac{SSBK}{b-1} \omega$	$F_2 = \frac{MSBK}{MSE} s$
隨機↵	SSE ₽	$(k-1)(b-1) \circ$		₽
總合。	SST +	<i>kb</i> −1 ₽	₽	47

表13.13 咖啡品質的評選

47		處理 (咖啡)。			集區和	集區平均下
		A_{ϱ}	B₽	Сø	¢.	۰ د
4	專家 1↵	24₽	26₽	25₽	75₽	25.
4	專家 2』	27₽	27₽	26₽	80₽	26.67.
4	專家 3₽	19₽	22.	20₽	61₽	20.33.
4	專家 4。	24₽	27₽	25₽	76₽	25.33₽
# 15	專家 5₽	22.	25₽	22₽	69₽	23.
集區。	專家 6₽	26₽	27.	240	77₽	25.67₽
	專家 7』	27₽	26₽	22₽	75₽	25.
	專家 8』	25₽	27.	24₽	76₽	25.33₽
	專家 9』	220	23₽	20₽	65₽	21.67.
	處理和↵	216	2300	2080	ą.	۰ د
	處理平均數 \overline{Y}_{j}	24.	25.56₽	23.11	÷	tp - C+

表13.15 台農67號稻種果實重量

	A	В	С	D	Е
1		溫度(日間/夜間)			
2		20/15	30/25	35/30	區塊平均數 ፻.
3	區塊1	21.21	26.03	30.55	25.93
4	區塊2	12.27	26.82	27.73	22.27
5	區塊3	11.82	25	25	20.61
6	區塊4	15.10	25.95	27.76	22.94
7	溫度平均數 $ar{Y}_j$	15.10	25.95	27.76	$\overline{\overline{\overline{Y}}} = 22.94$

表13.16 一因子變異數分析-集區設計

4	A	В	C	D	Е
1	雙因子變異數分析				
2					
3	摘要	個數	總和	平均	變異數
4	區塊1	3	77.79	25.93	21.8164
5	區塊2	3	66.82	22.27333	75.25703
6	區塊3	3	61.82	20.60667	57.90413
7	區塊4	3	68.81	22.93667	46.87903
8					
9	溫度20/15	4	60.4	15.1	18.6998
10	溫度30/25	4	103.8	25.95	0.555267
11	溫度35/30	4	111.04	27.76	5.1342

表13.17 一因子變異數分析集區設計ANOVA表

	A	В	С	D	Е	F	G
14	ANOVA						
15	變源	SS	自由度	MS	F	P-値	臨界値
16	列(集區)	44.48687	3	14.82896	3.102191	0.110552	4.757063
17	欄(因子或處理)	375.0323	2	187.5161	39.22804	0.000359	5.143253
18	錯誤(隨機)	28.68093	6	4.780156			
19							
20	總和	448.2001	11				

表13.18 隨機集區設計的ANOVA表

變源	SS	自由度	MS	F
處理	27.68	2	13.84	12.13
集區	104.73	8	13.09	11.47
隨機	18.26	16	1.141	
總和	150.67	26		

〇 二因子變異數分析

考慮兩個或兩個以上因子的影響的實驗稱為因子實驗。 因子實驗包含多個因子,一般只介紹二因子實驗或二因 子的變異數分析。

圖13.11 二因子實驗

成理1		處理1	因子B 處理2	處理C
i i	處理1		•••	
	因 子 處理2 A		•••	
	處理 .		•••	

圖13.10 二因子變異數分析

無交叉影響

圖13.11

圖13.12 有交叉影響

Excel的使用

圖13.13 雙因子變異數分析的對話方塊

