DSA 8070 R Session 1: Characterizing and Displaying Multivariate Data

Whitney

Contents

Descriptive Statistics	. 1
Sample covariance visualization	. 1
Sample and population covariance	. 3
Bivariate Data Example	. 4
Generliazed Variance	. 4
Graphs and Visualization	. 5
pairs	. 5
ggpairs	. 5
3D Scatter Plot	. 7
Chernoff Faces	. 7
Visualizing Summary Statistics	. 10

Descriptive Statistics

Sample covariance visualization

Here, we simulate a bivariate dataset that follows a bivariate normal distribution with a mean vector of $(0,0)^T$ and variances of 4 and 1, respectively. Furthermore, these two variables are positively correlated with a population covariance of 1.4 (resulting in a population correlation of $\frac{1.4}{\sqrt{4}\times\sqrt{1}} = 0.7$). We will use a scatterplot to visualize the covariance.

```
set.seed(123)
library(MASS)
dat <- mvrnorm(n = 20, mu = c(0, 0), Sigma = matrix(c(4, 1.4, 1.4, 1), 2))
n <- dim(dat)[1]
par(mar = c(3.6, 3.6, 0.8, 0.6), las = 1)
plot(dat, pch = 16, las = 1, xlab = "", ylab = "")
mtext(expression(X[j]), 1, line = 2); mtext(expression(X[k]), 2, line = 2)
text(-3.8, 1.5, expression(paste(S[jk], " = ")))
text(-3.3, 1.5, round(cov(dat[, 1], dat[, 2]), 2))
abline(h = mean(dat[, 2]), lty = 2); abline(v = mean(dat[, 1]), lty = 2)</pre>
```


We can also create two side-by-side run plots (i.e., plot data by order) to visualize the co-movement.

```
par(mfrow = c(2, 1), mar = c(3.6, 3.6, 0.8, 0.6), las = 1)
plot(1:n, dat[, 1], pch = 16, xlab = "", ylab = "")
abline(h = mean(dat[, 1]))
mtext(expression(X[j]), 1, line = 2)
plot(1:n, dat[, 2], pch = 16, xlab = "", ylab = "")
abline(h = mean(dat[, 2]))
mtext(expression(X[k]), 1, line = 2)
```


Sample and population covariance

5

Here, we simulate data with size sample n = 20 from a bivariate normal distribution with population covariance $\rho_{12} = 0$. For each simulated data set, we calculate the sample covariance s_{12} and repeat this process 1,000 times.

15

20

The main purpose of this exercise is to demonstrate that one can conduct a Monte Carlo experiment to approximate the sampling distribution of s_{12} when two variables are independent to each other.

```
dat \leftarrow replicate(1000, mvrnorm(n = 20, mu = c(0, 0), Sigma = matrix(c(1, 0, 0, 1), 2)))
s12 \leftarrow apply(dat, 3, function(x) cov(x[, 1], x[, 2]))
hist(s12, 20, las = 1, main = "")
abline(v = 0, col = "red")
```


Bivariate Data Example

```
data <- cbind(x1 = c(42, 52, 88, 58, 60), x2 = c(4, 5, 7, 4, 5))
(means <- apply(data, 2, mean))

## x1 x2
## 60 5

cov(data)

## x1 x2
## x1 294 19.0
## x2 19 1.5

cor(data)

## x1 x2
## x1 .0000000 0.9047619
## x2 0.9047619 1.0000000</pre>
```

Generliazed Variance

```
data(mtcars)
vars <- which(names(mtcars) %in% c("mpg", "disp", "hp", "drat", "wt"))
car <- mtcars[, vars]; S <- cov(car)
(genVar <- det(S))</pre>
```

[1] 3951786

Graphs and Visualization

pairs

head(iris)

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
              5.1
                          3.5
                                       1.4
                                                   0.2 setosa
## 2
              4.9
                          3.0
                                       1.4
                                                   0.2 setosa
                                                   0.2 setosa
## 3
              4.7
                          3.2
                                       1.3
                          3.1
                                       1.5
## 4
              4.6
                                                   0.2 setosa
## 5
              5.0
                          3.6
                                       1.4
                                                   0.2 setosa
## 6
              5.4
                          3.9
                                       1.7
                                                   0.4 setosa
```


ggpairs

library(GGally)

```
## Loading required package: ggplot2
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'tibble'
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'pillar'
## Registered S3 method overwritten by 'GGally':
##
     method from
##
     +.gg
            ggplot2
library(ggplot2)
p <- ggpairs(iris[, -5], aes(color = iris$Species)) + theme_bw()</pre>
# Change color manually.
# Loop through each plot changing relevant scales
for(i in 1:p$nrow) {
  for(j in 1:p$ncol){
    p[i, j] \leftarrow p[i, j] +
        scale_fill_manual(values = c("green", "red", "blue")) +
        scale_color_manual(values = c("green", "red", "blue"))
  }
}
p
```


3D Scatter Plot

```
library(scatterplot3d)
scatterplot3d(iris[, 1:3], pch = 19, color = rep(c("green", "red", "blue"), each = 50), grid = TRUE, box
```


Chernoff Faces

```
library(aplpack)
par(mar = rep(0, 4))
faces(mtcars, cex = 0.8)
```


Arizona 8.1 294 80 31.0 ## Arkansas 8.8 190 50 19.5 ## California 9.0 276 91 40.6 ## Colorado 7.9 204 78 38.7 ## Connecticut 3.3 110 77 11.1 ## Delaware 5.9 238 72 15.8 ## Florida 15.4 335 80 31.9 ## Georgia 17.4 211 60 25.8 ## Hawaii 5.3 46 83 20.2 2.6 120 54 14.2 ## Idaho

##	Illinois	10.4	249	83 24.0
##	Indiana	7.2	113	65 21.0
##	Iowa	2.2	56	57 11.3
##	Kansas	6.0	115	66 18.0
##	Kentucky	9.7	109	52 16.3
##	Louisiana	15.4	249	66 22.2
##	Maine	2.1	83	51 7.8
##	Maryland	11.3	300	67 27.8
##	Massachusetts	4.4	149	85 16.3
##	Michigan	12.1	255	74 35.1
##	Minnesota	2.7	72	66 14.9
##	Mississippi	16.1	259	44 17.1
##	Missouri	9.0	178	70 28.2
##	Montana	6.0	109	53 16.4
##	Nebraska	4.3	102	62 16.5
	Nevada	12.2	252	81 46.0
##	New Hampshire	2.1	57	56 9.5
##	New Jersey	7.4	159	89 18.8
##	New Mexico	11.4	285	70 32.1
##	New York	11.1	254	86 26.1
##	North Carolina	13.0	337	45 16.1
##	North Dakota	0.8	45	44 7.3
	Ohio	7.3	120	75 21.4
##	Oklahoma	6.6	151	68 20.0
##	Oregon	4.9	159	67 29.3
	Pennsylvania	6.3	106	72 14.9
	Rhode Island	3.4	174	87 8.3
##	South Carolina	14.4	279	48 22.5
	South Dakota	3.8	86	45 12.8
	Tennessee	13.2	188	59 26.9
##	Texas	12.7	201	80 25.5
	Utah	3.2	120	80 22.9
	Vermont	2.2 8.5	48	32 11.2
	Virginia		156	63 20.7
	Washington	4.0 5.7	145 81	73 26.2 39 9.3
##	West Virginia Wisconsin	2.6	53	39 9.3 66 10.8
##		2.6 6.8	161	60 15.6
##	Wyoming	0.0	101	00 13.0

faces(USArrests, cex = 0.8)

Visualizing Summary Statistics

