A Book of Abstract Algebra: Solutions to Chapter 5

Tushar Tyagi

May 31, 2016

Notes

A subgroup S is called a subgroup of a group G, if:

- 1. It is closed on the given operation, i.e. the operation (\cdot) of two elements produces an element $\in S$.
- 2. It is closed under inverse, i.e. the inverse of each element of S is in S.

Also, each subgroup is a group as well, and therefore follows the three group laws:

- 1. Associativity
- 2. Identity
- 3. Inverse

The *identity*, e of the group is shared by the subgroup.

Trivial & Proper Subgroups

- 1. The one-element subset $\{e\}$ and the entire group G are the smallest and the largest subgroups of G and are called *trivial subgroups*.
- 2. All the other subgroups of G are called *proper subgroups*.

Cyclic Groups and Subgroups

If a group (or a subgroup) is generated by a single element, we call that group Cyclic and it is written as $\langle a \rangle$, where a is called the *generator* and is the single element which, along with the identity and a^{-1} , can define the entire group.

Defining Equations

A set of equations, involving only the generators and their inverses, is called a set of *defining equations*. These equations can completely define the operation table of the group.

Solutions

Set A

1.
$$G = \langle R, + \rangle, H = \{loga : a \in \mathbb{Q}, a > 0\}$$

• Addition:

Let
$$a, b \in \mathbb{Q}$$

 $log \ a + log \ b = log \ ab$
 $\therefore a, b \in \mathbb{Q},$
 $\therefore ab \in \mathbb{Q}, ab > 0,$
 $\Rightarrow log \ ab \in H$

• Identity:

The identity element would not change the value of $log\ a$ under addition. $log\ 1$ or 0 is the identity element, since:

If
$$log \ a + log \ b = log \ a$$
, then $log \ b = 0$, and $b = 1$.

• Inverse:

$$\log a + \log a^{-1} = e$$

$$\Rightarrow \log a \qquad = -\log a^{-1}$$

$$\Rightarrow \log a \qquad = \log(\frac{1}{a^{-1}})$$

$$\Rightarrow a \qquad = \frac{1}{a^{-1}}$$

Since $a \in \mathbb{Q}$, $\frac{1}{a^{-1}} \in \mathbb{Q}$, $\therefore log \ a^{-1} \in H$

- 2. $G = \langle R, + \rangle, H = \{loga : a \in \mathbb{Z}, a > 0\}$
 - Addition:

Same reasoning as previous question.

- Inverse: As calculated in the previous question, $a^{-1} = \frac{1}{a}$ Since $a \in \mathbb{Z}, a^{-1} \notin$
- 3. $G = \langle R, + \rangle, H = \{x \in \mathbb{R} : tanx \in \mathbb{Q}\}$
 - Addition:

Let $x, y \in \mathbb{R}$.

$$\therefore tan(x+y) = \frac{tanx + tany}{1 - tanx \cdot tany}$$

If $x = y = 45^{\circ}$, then $\tan x = \tan y = 1$, which makes the denominator undefined, and therefore addition is not defined for H.

- 4. $G = \langle R, \cdot \rangle, H = \{2^n 3^m, m, n \in \mathbb{Z}\}\$
 - Multiplication:

Let $n, m, n', m' \in \mathbb{Z}$.

$$2^{n}3^{m} \cdot 2^{n'}3^{m'} = 2^{n+n'}3^{m+m'}$$

$$\therefore n + n', m + m' \in \mathbb{Z}$$
$$\therefore 2^{n+n'}3^{m+m'} \in H$$

$$\therefore 2^{n+n'}3^{m+m'} \in H$$

• Inverse:

Since $2^n 3^m \in \mathbb{Z}$, The inverse is $\frac{1}{2^n 3^m} = 2^{-n} 3^{-m} : -n, -m \in \mathbb{Z}, : 2^{-n} 3^{-m} \in \mathbb{Z}$

- 5. $G = \langle R \times R, + \rangle, H = \{(x, y) : y = 2x\}$
 - Addition:

$$(x,y) + (x',y') = (x+x,y+y')$$

$$\therefore x, x', y, y' \in \mathbb{R},$$

$$\therefore x + x', \ y + y' \in \mathbb{R}$$

$$\therefore (y+y') = 2(x+x')$$

• Inverse:

$$e = (0,0)$$
 Inverse: $(-x, -y)$
 $\therefore y = 2x$
 $\Rightarrow -y = -2x$
 $\Rightarrow y' = 2x'$

- 6. $G = \langle R \times R, + \rangle, H = \{(x, y) : x^2 + y^2 > 0\}$
 - Addition

$$(x,y) + (x',y') = (x+x',y+y')$$

 $\Rightarrow (x+x')^2 + (y+y')^2 > 0,$
 \therefore Addition operation is defined for H .

• Inverse:

$$\therefore e = (0,0)$$
Inverse is $(-x, -y)$
Let $x, y \in H$,
$$\therefore x^2 + y^2 > 0$$
,
$$\Rightarrow (-x)^2 + (-y)^2 > 0 \in H$$
So inverse is defined.

- 7. Let C and D be sets, with $C \subseteq D$. Prove that P_C is a subgroup of P_D In a way, $G = \langle P_D, + \rangle, H = \langle P_c, + \rangle$
 - Identity: (common to both P_C and P_D): $\{\phi\}$
 - \bullet Inverse:

$$A^{-1} = A$$

We have already proved this in Chapter 3, Exercise C.

• Addition:

Let
$$A, B \subseteq H$$
,
 $A + B = (A - B) \cup (B - A)$
Since $A \subseteq P_C$, $(A - B) \subseteq P_C$.

Similarly, $(B-A) \subseteq P_C$. So the operation of symmetric difference is closed on subgroup H.

Set B

- 1. $G = \langle \mathscr{F}(R), + \rangle$, $H = \{ f \in \mathscr{F}(R) : f(x) = 0 \ \forall x \in [0, 1] \}$
 - Addition

Let
$$f, g \in H$$

 $f(x) = 0, g(x) = 0, \forall x \in [0, 1]$
 $[f + g](x) = f(x) + g(x) = 0 + 0 = 0$
 $\therefore f + g \in H$

• Inverse

Let
$$f \in H$$
, then $[-f](x) = -f(x) = 0 = f(x)x \in [0, 1]$

- 2. $G = \langle \mathscr{F}(R), + \rangle$, $H = \{ f \in \mathscr{F}(R) : f(-x) = -f(x) \}$
 - Addition

Let
$$f, g \in H$$

 $[f+g](-x)$
 $= f(-x) + g(-x)$
 $= -f(x) - g(x)$
 $= -(f(x) + g(x))$
 $= -[f+g](x)$
∴ $f+g \in H$