

05 T CGS 04 01

Durée : 6 heures

Toutes séries réunies

SESSION 2005

CLASSES TERMINALES

<u>MATHEMATIQUES</u>

Les calculatrice électroniques <u>non imprimantes</u> avec entrée unique par clavier sont autorisées. Les calculatrices permettant d'afficher des formulaire ou des tracés de courbe sont interdites. Leur utilisation sera considérée comme une fraude. (Cf. Circulaire n° 5990/OB/DIR. du 12.08.1988). Il sera tenu compte pour l'appréciation des copies de la présentation, de la clarté et de la précision de l'argumentation.

PRELIMINAIRE

1) Déterminer un polynôme P, de degré 3, à coefficients réels, tel que :

$$\forall x \in \mathbb{R}, P(x) - P(x - 1) = x^2$$
, et vérifiant P (0) = 0.

En déduire que pour tout $n \in \mathbb{N}^*$, $1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$.

2) En utilisant une méthode analogue à celle de la première question, montrer que

$$\forall n \in \mathbb{N}^*, 1^3 + 2^3 + 3^3 + ... + n^3 = \frac{n^2 (n+1)^2}{4}.$$

PARTIE A

 (U_n) est une suite arithmétique définie sur \mathbb{N} , de raison r et telle que $U_0 = a$ et $U_{n_0+1} = b$, avec $a \in \mathbb{R}$, $b \in \mathbb{R}$, $a \le b$ et n_0 fixé dans \mathbb{N} .

- 1) Si $r \in \mathbb{N}^*$, montrer que $b a \in \mathbb{N}^*$ et que r est un diviseur de b a.
- 2) On suppose dans cette question que r est fixé dans \mathbb{N}^* et que $a \in \mathbb{N}^*$, $b \in \mathbb{N}^*$. Si b < r ($n_0 + 2$), déterminer le nombre de suites (U_n) possibles.
- 3) On considère un polynôme φ du second degré tel que :

$$\forall x \in \mathbb{R}, Q(x) = \alpha x^2 + \beta x + \gamma, \alpha \in \mathbb{R}^*, (\beta, \gamma) \in \mathbb{R}^2.$$

On suppose dans cette question que la suite (U_n) est strictement croissante et que α .Q (a) > 0, α .Q (b) < 0 et $\beta^2 - 4\alpha\gamma$ > 0.

Montrer que a
$$< \frac{-\beta}{2\alpha}$$
.

- 4) Si r = a, avec $a \in \mathbb{N}^*$ et b = 16200, quel est le nombre de valeurs de a?
- 5) On suppose que n_0 est pair avec $n_0 = 2 h$; on pose $x = \frac{a+b}{2}$. Calculer $U_0, U_1, ..., U_{n_0+1}$ en fonction de x, r et h.
- 6) On suppose que U_0 , U_1 , ..., U_{n_0-1} sont des entiers impairs consécutifs positifs ou négatifs tels que $U_0 + U_1 + ... + U_{n_0-1} = 7^3$.

Donner les valeurs de a et b.

CLASSES TERMINALES

- 7) S_n est la somme des n premiers termes de la suite (U_n) , $r \neq 0$, $a \neq 0$, $n \neq 0$.
 - a) Déterminer les suites (Un) telles que $\frac{S_{2n}}{S_n}$ soit indépendant de n.
 - b) On suppose que $r \ne 0$, $a \ne 0$, $n \ne 0$ et $\frac{S_{2n}}{S_n} = k$, k constante réelle. Donner la valeur de k.

On pose alors $\Sigma_n = S_2 + S_4 + S_6 + ... + S_{2n}$.

Mettre Σ_n sous la forme d'un polynôme factorisé, en n.

Calculer $\Sigma_1 + \Sigma_2 + ... + \Sigma_n$, en fonction de n.

- 8) Soit $S_n = U_0 + U_1 + ... + U_{n-1}, \forall_n \in \mathbb{N}^*,$ On suppose que $S_n = 3n^2 + 4n, \forall_n \in \mathbb{N}^*.$
 - a) Donner la valeur de la raison r de la suite (U_n) et celle de U₀.
 - b) Montrer qu'il y a une infinité de termes de la suite (U_n), qui sont des carrés parfaits et donner la forme générale des indices de ces termes.
- 9) On pose : $U_m = \lambda$, $U_n = \mu$ et $U_p = \gamma$ avec $r \neq 0$. Montrer que : λ $(n - p) + \mu$ $(p - m) + \gamma$ (m - n) = 0.
- 10)On pose: $w_n = e^{Un}$, $\forall n \in \mathbb{N}$.
 - a) Quelle est la nature de la suite (w_n) ?
 - b) Si x, y et z sont des termes consécutifs de la suite (w_n) , montrer que : $\forall k \in \mathbb{Z}, (x^k + y^k + z^k) (x^k y^k + z^k) = x^{2k} + y^{2k} + z^{2k}$.
 - c) x, y et z étant des réels tels que pour tout $k \in \mathbb{Z}$, on ait $(x^k + y^k + z^k) (x^k y^k + z^k) = x^{2k} + y^{2k} + z^{2k}$, donner les conditions sur k, x et z pour que x, y et z soient 3 termes consécutifs d'une suite géométrique.
 - d) Déterminer 3 termes consécutifs d'une suite géométrique (t_n) sachant que la somme de leurs inverses est égale à 26 et que la somme des carrés de leurs inverses est égale à 364.
 - e) Montrer que si t $_{m}$ = s, t $_{n}$ = h et t $_{p}$ = e alors s^{n-p} . h^{p-m} . e^{m-n} = 1.
- 11) Soit f : $x \mapsto f(x) = x^2 e^x$.
 - a) Montrer que f est indéfiniment dérivable sur \mathbb{R} .
 - b) On suppose que (U_n) a pour raison r=2 et que a=0. Montrer que $f^{(n)}$, fonction dérivée $n^{\grave{e}me}$ de f sur \mathbb{R} , vérifie : $\forall \ x \in \mathbb{R}, \forall \ n \in \mathbb{N}^*, \ f^{(n)}(x) = e^x \ (x^2 + x \ U_n + V_n), \ où \ (V_n)$ est une suite à déterminer. Calculer U_n et V_n en fonction de n.

CLASSES TERMINALES

- c) Dans le plan (P) muni d'un repère orthonormal, on considère les points M_n (U $_n$, V $_n$). Montrer que si $n \ge 1$, M_n appartient à une parabole (P) dont on donnera une équation et les éléments caractéristiques.
- 12)On suppose que tan (2a) = 2, que 0 < a < $\frac{\pi}{4}$ et que b a = (n₀ + 1) $\frac{\pi}{2}$. On considère la fonction g : x \mapsto g(x) = e^{-x} sin (2x).
 - a) Etudier la dérivabilité de g sur R.
 - b) Pour tout réel x, calculer g'(x).
 - c) Montrer que les solutions de l'équation g'(x) = 0 sont les termes de la suite (U_n) et que les images par g de ces solutions sont des termes d'une suite géométrique dont on donnera la raison et dont on étudiera le sens de variation et la convergence.

PARTIE B

Le plan (P) est muni d'un repère orthonormal direct (O, \vec{i} , \vec{j}). On suppose que 0 < a < b, U₀ = a et U_{n₀+1} = b.

- 1) Soit f une fonction définie sur \mathbb{R} . Montrer que f se décompose de manière unique en la somme d'une fonction paire et d'une fonction impaire.
- 2) a) Montrer que la fonction $\exp_e : x \mapsto e^x$ peut s'écrire $\exp_e = \phi + \psi$ où ϕ est une fonction paire et ψ une fonction impaire, définies sur $\mathbb R$ et à déterminer.
 - b) Etudier les variations de φ et ψ et tracer dans le repère (O ; \vec{i} , \vec{j}), les courbes(C) et (C') représentatives de φ et ψ respectivement.
 - c) Montrer que ψ est une bijection de $\mathbb R$ sur $\mathbb R$ et que sa bijection réciproque $\psi^{\text{-1}}$ est dérivable sur $\mathbb R$.

Montrer que $\forall \ x \in \mathbb{R}, \ [\phi(x)]^2 - [\psi(x)]^2 = 1$ et en déduire l'expression de (ψ^{-1}) ' (x) en fonction de x et la valeur de l'intégrale $I = \int_0^1 \frac{1}{\sqrt{1+x^2}} \, dx$.

- d) On considère le domaine $(D_n) = \{M(x,y) \in P \mid 0 \le x \le U_n \text{ et } \psi (x) \le y \le \phi(x)\}$ Calculer en unités d'aire, l'aire \mathcal{A}_n de (D_n) . Calculer $\lim_{n \to +\infty} \mathcal{A}_n$ et interpréter graphiquement le résultat obtenu.
- 3) On considère la courbe (H) : 2xy = 1. Soit A le point de (H) d'abscisse $\frac{1}{\sqrt{2}}$ et M le point de (H), de coordonnée (x,y). On désigne par A' et M' les projetés orthogonaux respectifs de A et M sur l'axe (ox) du repère (O; \vec{i} , \vec{j}) et K le point d'intersection de (OA) et (MM').
 - a) Démontrer que le triangle OMK et le trapèze A'A K M' ont même aire . En déduire l'aire A, en unités d'aire, du domaine curviligne fermé OAM limité par [OA], [OM] et l'arc de (H) limité par A et M.

CLASSES TERMINALES

- b) On veut que $\mathcal{A} = U_n$. Calculer alors, en fonction de U_n , les coordonnées x et y de M, dans le repère $(O; \vec{i}, \vec{j})$.
- c) X et Y étant les coordonnées de M dans le repère (O, \vec{l} , \vec{j}) déduit du repère (O, \vec{i} , \vec{j}) par la rotation R (0, $\frac{\pi}{4}$) de centre O et d'angle de mesure $\frac{\pi}{4}$; montrer que : X = ϕ (2 U_n) et Y = ψ (2 U_n).
- d) Calculer $X^2 Y^2$ et en déduire la nature de (H) et ses éléments caractéristiques.
- e) On considère un triangle EFG dont les 3 sommets appartiennent à un même arc de (H); montrer que l'orthocentre T de ce triangle appartient à cet arc de (H).
- f) Ω étant le centre du cercle circonscrit au triangle EFG, on pose : $\vec{v} = \overrightarrow{\Omega T} \overrightarrow{\Omega E} \overrightarrow{\Omega F} \overrightarrow{\Omega G}$.
- Les points E, F et G décrivent un même arc de la courbe (H)de telle sorte que, pour tout réel x, on ait : $(x α) (x β) (x λ) = x^3 \frac{1}{2}$.

Déterminer la position du point Ω .

BAREME

PRELIMINAIRE (0,5 point)

1) = 0.25 point 2) = 0.25 point

PARTIE A (12,5 points)

8) a) =
$$0.5$$
 pt 9) = 0.5 10) a) = 0.5 pt b) = 0.75 pt b) = 0.75 pt b) = 0.75 pt c) = 0.75 pt c) = 0.75 pt c) = 0.75 pt c) = 0.75 pt d) = 0.5 pt d) = 0.5 pt e) = 0.75 pt c) = 0.75 pt d) = 0.5 pt e) = 0.5 pt e) = 0.5 pt

PARTIE B (07 points)