Регистрация облаков точек Фотограмметрия. Лекция 7

Александрина Стрельцова aleksandrina.strelczova@gmail.com

7 марта 2023 г.

Облако точек. RGB-D камера

https://www.eth3d.net

Облако точек. LiDAR

LiDAR - Light Detection and Ranging

- Облако точек: $X = \{x_i\}, X \subset \mathbb{R}^3$
- ullet Параметры преобразования: $R\in\mathsf{SO}(3)$ и $t\in\mathbb{R}^3$
- *T* ∈ SE(3)

Как вычислить преобразование, если известны соответствия?

$$e_i = x_{t,i} - Rx_{s,i} - t$$

 $F(R_i t) = \sum_{i=1}^{n} ||e_i||^2$

•
$$F(R,t) = \sum_{i=1}^{n} \|x_{t,i} - Rx_{s,i} - t\|^{2} \to \min \nabla_{\mathbf{t}} = \sum_{i=1}^{n} -2(x_{t,i} - Rx_{s,i} - t)^{1} = 0$$

$$n t = \sum_{i=1}^{n} (x_{t,i} - Rx_{s,i})$$

$$t = \frac{1}{n} \sum_{i=1}^{n} x_{t,i} - R \sum_{i=1}^{n} x_{s,i}$$

•
$$F(R, t) = \sum_{i=1}^{n} \|x_{t,i} - Rx_{s,i} - t\|^2 \to \min$$

•
$$t = \bar{x}_t - R\bar{x}_s$$

• $x'_{t,i} = x_{t,i} - \bar{x}_t, x'_{s,i} = x_{s,i} - \bar{x}_s$

• $x'_{t,i} = x_{t,i} - \bar{x}_t, x'_{s,i} = x_{s,i} - \bar{x}_s$

• $x'_{t,i} = x_{t,i} - \bar{x}_t, x'_{s,i} = x_{s,i} - \bar{x}_s$

• $x'_{t,i} = x_{t,i} - \bar{x}_t, x'_{s,i} = x_{s,i} - \bar{x}_s$

• $x'_{t,i} = x_{t,i} - \bar{x}_t, x'_{s,i} = x_{s,i} - \bar{x}_s$

• $x'_{t,i} = x_{t,i} - \bar{x}_t, x'_{s,i} = x_{s,i} - \bar{x}_s$

• $x'_{t,i} = x_{t,i} - \bar{x}_t, x'_{s,i} = x_{s,i} - \bar{x}_s$

• $x'_{t,i} = x_{t,i} - \bar{x}_t, x'_{s,i} = x_{s,i} - \bar{x}_s$

•
$$F(R, t) = \sum_{i=1}^{n} \|x_{t,i} - Rx_{s,i} - t\|^{2} \rightarrow \min$$

• $t = \bar{x}_{t} - R\bar{x}_{s}$
• $x'_{t,i} = x_{t,i} - \bar{x}_{t}, x'_{s,i} = x_{s,i} - \bar{x}_{s}$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$
• $F(R) = \sum_{i=1}^{n} \|x'_{t,i} - Rx'_{s,i}\|^{2} \rightarrow \min$

•
$$F(R, t) = \sum_{i=1}^{n} \|x_{t,i} - Rx_{s,i} - t\|^2 \to \min$$

- $t = \bar{x}_t R\bar{x}_s$
- $\mathbf{x}_{t,i}' = \mathbf{x}_{t,i} \bar{\mathbf{x}}_{t}$, $\mathbf{x}_{s,i}' = \mathbf{x}_{s,i} \bar{\mathbf{x}}_{s}$
- $F(R) = \sum_{i=1}^{n} ||x'_{t,i} Rx'_{s,i}||^2 \to \min$
- $X'_s X'_t^T = UDV^T$

•
$$F(R, t) = \sum_{i=1}^{n} \|x_{t,i} - Rx_{s,i} - t\|^2 \to \min$$

- $t = \bar{x}_t R\bar{x}_s$
- $\mathbf{x}_{t,i}' = \mathbf{x}_{t,i} \bar{\mathbf{x}}_{t}$, $\mathbf{x}_{s,i}' = \mathbf{x}_{s,i} \bar{\mathbf{x}}_{s}$
- $F(R) = \sum_{i=1}^{n} \|x'_{t,i} Rx'_{s,i}\|^2 \to \min$
- $X_s'X_t'^T = UDV^T$
- $R = VU^T$

- $oldsymbol{1}$ Вычислить центроиды облаков $ar{x}_s$ и $ar{x}_t$
- $oldsymbol{2}$ Сместить облака на $ar{x}_{s}$ и $ar{x}_{t}$ соответственно
- $oldsymbol{3}$ Вычислить сингулярное разложение матрицы $X_s' {X_t'}^{ au}$
- $oldsymbol{4}$ Вычислить параметры преобразования $oldsymbol{R} = oldsymbol{V}oldsymbol{U}^{oldsymbol{T}}$ и $t = ar{x}_t oldsymbol{R}ar{x}_s$

- 1 Инвариантность к повороту
- 2 Инвариантность к масштабу

- Инвариантность к повороту
- Отариантность к масштабу

- 1 Инвариантность к повороту
- 2 Инвариантность к масштабу

нормаль + кривизна

- 1 Инвариантность к повороту
- Инвариантность к масштабу

нормаль + кривизна

нормаль + гравитация

Дексриптор. SHOT

- θ угол между нормалями n и n_i
- $\cos \theta = \mathbf{n}^T \mathbf{n}_i$

В качестве значений гистограммы используется именно $\cos\theta$, а не θ .

статья: Unique Signatures of Histograms for Local Surface Description, 2010

Дексриптор. SHOT

- 1 Разделим окрестность на области
- 2 Для каждой области построим гистограмму значений $\cos \theta$

статья: Unique Signatures of Histograms for Local Surface Description, 2010 дескрипторы с примерами использования: https://robotica.unileon.es

Детектор ключевых точек

Какие точки нас интересуют?

 Радиус кривизны в точке не должен быть большим

Детектор ключевых точек

Какие точки нас интересуют?

- Радиус кривизны в точке не должен быть большим
- Направления кривизны должны задаваться однозначно
- Точка не должна "скользить"по направлению кривизны

Детектор ключевых точек

Какие точки нас интересуют?

- Радиус кривизны в точке не должен быть большим
- Направления кривизны должны задаваться однозначно
- Точка не должна "скользить"по направлению кривизны

статья: Intrinsic Shape Signatures: A Shape Descriptor for 3D Object Recognition, 2009

Матчинг дескрипторов

dist
$$(A, B) = \sqrt{\sum_{i=1}^{352} (A_i - B_i)^2}$$

- K-d дерево
- Полный перебор

Фильтрация сопоставлений

Фильтрация сопоставлений

- K-ratio test
- Left-right check

Фильтрация сопоставлений

Cluster filtering

- N количество соответствий
- М количество итераций
- for _ in range(M):

```
samples = sample(correspondences, 3)
T = estimateTransformation(samples)
inlierRate = countInliers(correspondences, T) / N
```

- N количество соответствий
- М максимальное количество итераций
- for _ in range(min(M, estimatedM)):
 samples = sample(correspondences, 3)
 T = estimateTransformation(samples)
 inlierRate = countInliers(correspondences, T) / N
 estimatedM = estimateIterations(inlierRate, M)

- N количество соответствий
- М максимальное количество итераций
- for _ in range(min(M, estimatedM)):
 samples = sample(correspondences, 3)
 T = estimateTransformation(samples)
 inlierRate = countInliers(correspondences, T) / N
 estimatedM = estimateIterations(inlierRate, M)

• Количество итераций должно быть не меньше $\frac{\log 1 - p}{\log 1 - w^3}$

$$ω$$
 - gous, unitarpob

P[fra basopur cogenicam ayunsarpu] = $(l-ω^2)^M$
 $(l-ω^2)^M < l-p$ - soparre sagarutui
rapament yespentrocmb

 $M > \frac{\log(l-p)}{\log(l-ω^2)}$

- Количество итераций должно быть не меньше $\frac{\log 1 p}{\log 1 w^3}$
- Если выборка не удовлетворяет геометрическим ограничениям, количество инлаеров для неё можно не считать

- Количество итераций должно быть не меньше $\frac{\log 1 p}{\log 1 w^3}$
- Если выборка не удовлетворяет геометрическим ограничениям, количество инлаеров для неё можно не считать
- Полученные параметры можно уточнить, используя аналитическое решение для инлаеров

TEASER

https://github.com/MIT-SPARK/TEASER-plusplus

$$\min_{s>0, R\in \mathrm{SO}(3), t\in \mathbb{R}^3} \sum_{i=1}^N \min\left(\frac{1}{\beta_i^2} \|b_i - sRa_i - t\|^2, \overline{\mathbb{C}^2}\right)$$

статья: TEASER: Fast and Certifiable Point Cloud Registration, 2020

GROR

https://github.com/WPC-WHU/GROR

статья: A New Outlier Removal Strategy Based on Reliability of Correspondence Graph for Fast Point Cloud Registration, 2022

- Количество инлаеров
- Размер перекрытия
- Энтропия инлаеров

Разрешение облака точек

- Облака точек содержат несколько миллионов точек
- Работать с такими облаками напрямую долго

Iterative Closest Point (ICP)

На каждой итерации:

 Для каждой точки исходного облака находим ближайшую в целевом

$$k_i = \underset{j}{\operatorname{argmin}} \|x_i - T \cdot x_j\|$$

 $e_i = x_i - T \cdot x_{k_i}$

 Вычисляем параметры преобразования, используя получившиеся соответствия

$$T^* = \underset{T \in SE(3)}{\operatorname{argmin}} \sum_i \|t_i(T)\|^2$$

статья: A Method for Registration of 3-D Shapes, 1992

Iterative Closest Point (ICP)

- Вместо того чтобы брать все точки, можем их семплировать:
 - случайным образом
 - равномерно в пространстве нормалей

статья: Efficient Variants of the ICP Algorithm, 2001

Iterative Closest Point (ICP)

- Вместо того чтобы брать все точки, можем их семплировать:
 - случайным образом
 - равномерно в пространстве нормалей

- Каждая точка может вносить вклад с разным весом:
 - $w = 1 \frac{dist(p_1, p_2)}{dist_{max}}$
 - $w = n_1^T n_2$

статья: Efficient Variants of the ICP Algorithm, 2001

Регистрация облаков точек

Какие ещё остались проблемы?

- Разрешения сопоставляемых облаков могут отличаться в области перекрытия
- Какой использовать радиус дескриптора?

Какие ещё остались проблемы?

- Разрешения сопоставляемых облаков могут отличаться в области перекрытия
- Какой использовать радиус дескриптора?
- Как сопоставлять более двух облаков точек?

Какие ещё остались проблемы?

- Разрешения сопоставляемых облаков могут отличаться в области перекрытия
- Какой использовать радиус дескриптора?
- Как сопоставлять более двух облаков точек?

