Лекция 2.

Косовский Н.Н.

18 февраля 2020 г.

Содержание

1	Замкнутые множества.		3
	1.1	Теорема о множестве замкнутых множеств	3
	1.2	Теорема о соответствующей топологии	3
2	Вну	утренность, замыкание и граница	5
	2.1	Существование внутренности и замыкания	5
	2.2	Свойства замыкания, внутренности и границы	6
3	База топологии		7
	3.1	Критерий базы топологии Ω	7
	3 2	Критерий базы некоторой топологии	8

1 Замкнутые множества.

• Определение:

F-3амкнуто $\Longleftrightarrow X \backslash F$ — открыто.

1.1 Теорема о множестве замкнутых множеств

 \mathcal{F} — множество замкнутых множеств.

Тогда:

- 1. \emptyset , $X \in \mathcal{F}$
- 2. $F, G \in \mathcal{F} \Longrightarrow F \cup G \in \mathcal{F}$
- 3. $F_{\alpha} \in \mathcal{F} \Longrightarrow \bigcap_{\alpha \in I} F_{\alpha} \in \mathcal{F}$

Доказательство:

- 1. очевидно: $(X \setminus X = \emptyset \ ; \ X \setminus \emptyset = X)$
- 2. $F \cup G$ замкнуто $\iff X \setminus (F \cup G)$ —открыто. Но $X \setminus (F \cup G) = (X \setminus F) \cap (X \setminus G)$ — открыто как пересечение двух открытых.
- 3. $X \setminus (\bigcap_{\alpha \in I} F_{\alpha}) = \bigcup_{\alpha \in I} (X \setminus F_{\alpha})$ рассуждение аналогично (2.)

1.2 Теорема о соответствующей топологии

Пусть $\mathcal{F} \subseteq 2^X$ такое, что:

- 1. \emptyset , $X \in \mathcal{F}$
- 2. $F, G \in \mathcal{F} \Longrightarrow F \cup G \in \mathcal{F}$
- 3. $F_{\alpha} \in \mathcal{F} \Longrightarrow \bigcap_{\alpha \in I} F_{\alpha} \in \mathcal{F}$

Тогда существует единственная топология Ω такая, что ${\mathcal F}$ - множество замкнутых множеств.

Доказательство:

1. Докажем единственность:

Если такая топология Ω существует, то $\Omega = \{X \setminus F | F \in \mathcal{F}\}.$

Действительно, каждое такое множество должно входить в Ω , и ни одно другое в неё входить не может. Таким образом, Ω - единственная возможная топология по построению.

- 2. Теперь докажем, что построенная Ω действительно является топологией. Для этого проверим 3 необходимых свойства из определения.
 - (a) \varnothing , $X \in \Omega$ очевидно.

- (b) $U=X\backslash F,\ V=X\backslash G;\ F,\ G\in\mathcal{F}$ $U\cap V=(X\backslash F)\cap (X\backslash G)=X\backslash (F\cup G)\Longrightarrow U\cap V\in\Omega.\ -$ здесь мы пользуемся свойством (2).
- (c) $U_{\alpha}=X\backslash F_{\alpha}; \quad F_{\alpha}\in \mathcal{F}$ $\bigcup_{\alpha\in I}U_{\alpha}=\bigcup_{\alpha\in I}X\backslash F_{\alpha}=X\backslash \bigcap_{\alpha\in I}F_{\alpha} \text{ здесь мы пользуемся свойством (3)}.$

2 Внутренность, замыкание и граница

• Определения:

$A \subseteq X$

- 1. x Bнутренняя точка A, если $\exists U_x \in \Omega : U_x \subseteq A$, т.е. точка входит в A с некоторой окрестностью. Заметим, что условие можно переписать как $(U_x \cap (X \setminus A)) = \emptyset$
- 2. x Внешняя точка A, если $\exists U_x \in \Omega : U_x \subseteq X \backslash A$, т.е. точка входит в дополнение A с некоторой окрестностью. Иначе говоря, $U_x \cap A = \emptyset$.
- 3. $x \Gamma$ раничная точка A, если $\forall U_x \in \Omega : (U_x \cap A \neq \varnothing) \& (U_x \cap (X \setminus A) \neq \varnothing)$, т.е. любая окрестность пересекает и A, и дополнение A.
 - *Упражнение*: Доказать, что в случае метрических пространств определения останутся эквивалентными при замене окрестностей на шаровые.
- 4. x Точка прикосновения A, если $\forall U_x \ U_x \cap A \neq \varnothing$
- 5. Внутренность Int(A) наибольшее по включению открытое множество, содержащееся в A. Примечание: Также используется обозначение $\overset{\circ}{A}$.
- 6. Замыкание Cl(A) наименьшее по включению замкнутое множество, содержащее А. Примечание: Также используется обозначение \overline{A} и cl(A).
- 7. Граница ∂A множество граничных точек A. Примечание: Также используется обозначение Fr(A). Если необходимо подчеркнуть, к какому всеобъ-

2.1 Существование внутренности и замыкания

емлещему множеству относится граница, пишут $\partial_X A$.

1. Int(A) существует и $Int(A) \stackrel{1}{=} \bigcup_{\substack{U \subseteq A, \\ U \in O}} U \stackrel{2}{=} \{ x \mid x$ — внутр.}

Доказательство:

- <u>1.</u> Первое равенство справедливо, т.к. объединение открытых множеств открыто, содержится в A и любое открытое подмножество A лежит в нем по определению.
- 2. Покажем, что второе множество содержится в первом и наоборот.
- (a) Пусть x внутренняя точка A. Тогда существует $U_x\subseteq A$. Но $U_x\subseteq\bigcup_{U\subseteq A,\ U\in\Omega}U$, значит $x\in\bigcup_{U\subseteq A,\ U\in\Omega}U$, то есть $\{x\mid x$ внутр. $\}\subseteq\bigcup_{U\subseteq A,\ U\in\Omega}U$
- (b) Пусть точка x лежит в нашем объединении. Значит существует открытое множество, в котором она лежит. Но тогда x - внутренняя точка A, то есть любая точка из объединения является внутренней, а значит { x | x− внутр.} ⊇ ∪ U.

Значит множества действительно равны. Заметим, что иногда последняя часть равенства используется в качестве определения.

2. Cl(A) существует и $Cl(A) \stackrel{1}{=} \bigcap\limits_{\substack{F \supseteq A \\ F \subseteq F}} F \stackrel{2}{=} \{x | x$ —т. прикосн. $A\}$.

Доказательство:

 $R := \bigcap_{\substack{F \supseteq A, \\ F \in \mathcal{F}}} F \supseteq A$, R - замкнуто как пересечение замкнутых. Если замкнутое множество G содержит A, то G содержит и R, ведь G входит в пересечение. Значит R - действительно наименьшее (по включению) замкнутое множество, содержащее A.

2.2 Свойства замыкания, внутренности и границы.

1. $X \setminus Cl(A) = Int(X \setminus A)$. - это очевидно, но давайте докажем:

Доказательство:

$$X\backslash Cl(A)=X\backslash (\cap F)^1=\cup (X\backslash F)=[U=X\backslash F\text{ -открыто}]=\bigcup_{U\subseteq (X\backslash A)}U=Int(X\backslash A)\ .$$

- 2. $X \setminus Cl(A)$ множество всех внешних точек А. Следует напрямую из пункта 1.
- 3. $X \setminus Int(A) = Cl(X \setminus A)$. Доказывается абсолютно аналогично пункту 1.

Выпишем ещё несколько свойств, оставив часть из них читателю в качестве упражнения.

1. (a) A - OTKP.
$$\iff A = Int(A)$$

(b) A - замкнуто
$$\iff A = Cl(A)$$

2. (a)
$$A \subseteq B \Longrightarrow Int(A) \subseteq Int(B)$$

(b)
$$A \subseteq B \Longrightarrow Cl(A) \subseteq Cl(A)$$

3. (a)
$$Int(A \cap B) = Int(A) \cap Int(B)$$

(b)
$$Cl(A \cup B) = Cl(A) \cup Cl(B)$$

4. (a)
$$Int(A \cup B) \supseteq Int(A) \cup Int(B)$$

(b)
$$Cl(A \cap B) \subseteq Cl(A) \cap Cl(B)$$

Приведем лишь доказательства пунктов (a), пункт (b) же выводится либо из (a), либо аналогично (a). Итак, начнем.

- 1. Как и всегда в таких теоремах, разобьем утверждение на 2 и докажем их по отдельности.
 - \leq : На самом деле очевидно, т.к. $A = Int(A) = \cup U_x$ открыто как объединение открытых.
 - \Rightarrow : открыто, $A \subseteq A$. Значит A входит в объединение открытых подмножеств, содержащихся в A, откуда очевидно A = Int(A).
- 2. Воспользуемся другим определением внутренности: $Int(A) = \{ x | x \text{ внутр. в A} \}$. Заметим, что если x внутр. в $A, A \subseteq B$, то x внутр. в B ($U_x \subseteq A \subseteq B$). Откуда $Int(A) = \{ x | x \text{ внутр. в A} \} \subseteq \{ x | x \text{ внутр. в B} \} = Int(B)$.

¹Здесь и далее индексы объединения/пересечения/суммирования пишутся только в первом употреблении и далее опускаются чтобы не загромождать текст. Как правило всё ясно из контекста и без них.

3. Существует по меньшей мере 2 доказательства данного факта. Мы приведем лишь один, оставив второй на совесть читателя.

Как и всегда в таких ситуациях, разобьем утверждение на 2 и докажем их по отдельности.

$$\subseteq$$
: $A \cap B \subseteq A \Longrightarrow Int(A \cap B) \subseteq Int(A)$ (по пункту (2)).

Аналогично, $Int(A \cap B) \subseteq Int(B)$, откуда $Int(A \cap B) \subseteq Int(A) \cap Int(B)$.

⊇:

$$\left\{ \begin{array}{l} A \supseteq Int(A) \\ B \supseteq Int(B) \end{array} \right. | \Longrightarrow A \cap B \supseteq Int(A) \cap Int(B) \Longrightarrow Int(A \cap B) \supseteq Int(A) \cap Int(B)$$

(здесь используются сразу пункты 1 и 2)

4. Пусть x — внутренняя точка А. Тогда она внутренняя и для $A \cup B$, значит $Int(A) \subseteq Int(A \cup B)$. Аналогично для Int(B).

Тогда
$$Int(A) \cup Int(B) \subseteq Int(A \cup B) \cup Int(A \cup B) = Int(A \cup B)$$
.

QED.

3 База топологии

• Определение:

 $(X,\ \Omega)$ - топологическое пространство. $\Sigma\subseteq\Omega$ — *Ваза топологии*, если любой элемент из Ω представим в виде объединения некоторых элементов из Σ .

3.1 Критерий базы топологии Ω

Оказывается, что определение базы Σ для топологии Ω эквивалентно совокупности следующих двух условий:

- 1. $\forall U \in \Omega \ \forall x \in U \exists S \in \Sigma : \ x \in S \subseteq U$
- 2. $\forall S \in \Sigma : S \text{откр.}$

Доказательство:

 \Rightarrow :

- 1. По условию, $\forall U \in \Omega \ \exists I: \ \bigcup_{\alpha \in I} S_\alpha \in \Sigma: \ U = \bigcup_{\alpha \in I} S_\alpha$ Тогда $x \in \bigcup_{\alpha \in I} S_\alpha \Longrightarrow \exists \alpha_0 \in I: \ x \in S_{\alpha_0}, \ \text{но} \ S_{\alpha_0} \subseteq \bigcup_{\alpha \in I} S_\alpha = U. \ S = S_{\alpha_0}$ подходит.
- 2. очевидно из определения.

≝:

По усновию,
$$\forall x \in U \exists S_x \in \Sigma: x \in S_x \subseteq U$$

Но тогда $U \subseteq \bigcup_{\alpha \in I} S_\alpha \subseteq U \iff \bigcup_{\alpha \in I} S_\alpha = U.$

• Упражнение: Докажите, что шары - база метрической топологии.

3.2 Критерий базы некоторой топологии

Оказывается, что Σ — база некоторой топологии тогда и только тогда, когда выполняются следующие два условия:

1. $\forall x \in X \ \exists S_x : \ x \in S_x$

2. $\forall S_{1,2} \in \Sigma$: $\forall x \in S_1 \cap S_2 \ \exists S_x \in \Sigma$: $x \in S_x \subseteq S_1 \cap S_2$

Причем заданная топология единственна.

Доказательство:

 \Rightarrow :

1.
$$\forall x \in X \in \Omega \Longrightarrow \exists I : S_{\alpha} \in \Sigma \& X = \bigcup_{\alpha \in I} S_{\alpha}$$

 $|\Rightarrow \forall x \in X \exists \alpha : x \in S_{\alpha}.$

2.
$$S_1 \cap S_2$$
 - откр. $\Longrightarrow \exists I: S_\alpha \in \Sigma;$
$$S_1 \cap S_2 = \bigcup_{\alpha \in I} \Longrightarrow \exists \alpha: \ x \in S_\alpha \subseteq S_1 \cap S_2.$$

⇐ :

Если топология существует, то $\Omega = \bigcap_{\alpha \in I} S_{\alpha} | S_{\alpha} \in \Sigma$

Если это топология, то Σ — её база. Проверим, что Ω — действительно топология.

1) \varnothing — "пустое объединение" (|I|=0).

X есть по свойству 1. Например, можно взять объединение всех S из Ω .

2)
$$U, V \in \Omega, \iff U = \cup S_{\alpha}, V = \cup S_{\beta}.$$

$$U \cap V = (\cup S_{\alpha}) \cap (\cup S_{\beta}) = \cup (S_{\alpha} \cap S_{\beta}) = 0$$

$$\forall x \in S_{\alpha} \cap S_{\beta} \ \exists S_x : x \in S_x \subseteq S_{\alpha} \cap S_{\alpha} \ (\text{свойство 2})$$

$$S_{\alpha} \cap S_{\alpha} \subseteq \bigcup_{x \in S_{\alpha} \cap S_{\alpha}} S_x \subseteq S_{\alpha} \cap S_{\alpha}$$

 \equiv $\bigcup_{\alpha,\beta} (\bigcup_{x \in S_{\alpha} \cap S_{\alpha}} S_x)$ - лежит в Ω . Объясним это в пункте 3, попутно доказав его.

3) $\bigcup_{\beta \in I} S_{\beta} = \bigcup_{\alpha \in I_b} (\bigcup_{\alpha \in I_b} S_{\alpha})$ - это объединение объединений множеств из базы. Поскольку объединение ассоциативно, это просто объединение множеств из базы. А значит, оно лежит в Ω .

QED.