MUT Application
1. Zero derivative implies constant.
1). Let a < b. Let f be a function defined on Ia, b].
If $\mathscr{D} \ \forall x \in (a, b)$. $f'(x) = 0$.
© f to continuous on [a, b].
Then f ts constant on Ia, b] any arbitrary two values are the same.
20. Proof.
WTS: 7x1, x2 6 [a, b]. f(x1) = f(x2).
Let x1, x2 & Za, b], x1 < x2; Assume D & D.
HD: f to continuous on [a, b]> f to continuous on [281, 26]
$HO: f$ to differentiable on (a,b) . $\Rightarrow f$ is differentiable on (x_1, x_2, y_3)
By MV7. $\exists ce(x_1, x_2)$ s.t. $f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - \delta_1}$.
Since $f'(c) = 0$, $f(x_1) = f(x_2)$.
3). Let acb. Let f be a function defined on (a, b).
If $\forall x \in (a,b)$. $f'(x) = 0$.
Then f is constant on (a, b).
47. Proof.
$\omega 7S$. $\forall x_1, x_2 \in (a, b), x_1 < x_2$. $f(x_1) = f(x_2)$.
Since f is differentiable on (a,b). I co(a,b).
$\lim_{x \to c} f(x) - f(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \cdot (x - c) = f'(c) \cdot o = 0.$
Gives. Lim f(x) = f(c). which f(x) is continuous on (a, b)
HD: f(x) is continuous on (a, b) -> f(x) is continuous on [x1, 8=]
HO: fix) is differentiable on (a, b) -> fix) is differentiable on (x1, x2)
By MVT. 3c6(x, x). s.t. f(c) = \frac{f(x)-f(x)}{x_2-x_1}

	Since $f'(c) = 0$, $f(x) = f(x_0)$.
Goal: use f' 50 to obtain info of flix).	e.g. Prove that there exist a constant C s.t.
	Cognivalently showing arctan $\int_{-7+x}^{1+x} = C - \frac{1}{2}$ arcsinx. Requivalently showing arctan $\int_{-7+x}^{1-x} + \frac{1}{2}$ arcsinx = C.
	$F(x) = \arctan \int \frac{1-x}{1+x} + \frac{1}{2} \arcsin x$. defined on C-1, 17 $\forall x \in C-1, 1$. $F'(x) = -\frac{1}{2(Hx)^{\frac{1}{2}}(U-x)^{\frac{1}{2}}} + \frac{1}{2} \cdot \frac{1}{(U-x^2)^{\frac{1}{2}}} = 0$
Take any x6 C-1, 1].	Therefore, $\exists C \in \mathbb{R}$, s.t. $\forall x \in (-1, 1)$, $\exists f(x) = C$. Since $\exists f(x) \in C$ the continuous on $f(x) \in C$. $f(x) \in C$. $f(x) \in C$. f(x) = C.
6.	eg. It f satisfies $\forall x \in \mathbb{R}$, $f'(x) = x^2$, then $\exists C \in \mathbb{R}$ s.t.
	$\forall x \in \mathbb{R}, f(x) = \frac{1}{3} x^3 + C.$ If h has zero derivative on an open inteval l. then h
	Is constant on I. If f and g have some derivative on an open inteval I, then
	f-q +s constant on l. Since $\forall x \in \mathbb{R}$, $f'(x) > x^2$, gives $\frac{d}{dx} [f(x)] = \frac{d}{dx} [\frac{1}{3} x^3]$. $f(x) - \frac{1}{3} x^3 = C$.
	$f(x) = \frac{1}{3}x^3 + C \text{ are all solutions to } f'(x) = x^2$

