МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (МОСКОВСКИЙ ПОЛИТЕХ)

Кафедра «Инфокогнитивные технологии»

Практические и лабораторные занятия по дисциплине «Проектирование интеллектуальных систем»

Лабораторная работа № 1

«Решение оптимизационных задач с помощью генетических алгоритмов»

Группа 224-322

Студент Заборов Артемий Михайлович

Преподаватель Кружалов Алексей Сергеевич

Цель работы

Ознакомиться с подходом и приобрести практический навык решения оптимизационных задач с помощью генетических алгоритмов (ГА).

Задание

- Изучить теоретическое введение.
- Разработать компьютерную программу (среда разработки выбирается студентом самостоятельно).
- Провести серию из 5 + испытаний для изучения принципов работы ГА.
- Оформить отчет по лабораторной работе.

Блок-схема

Эксперименты

Рисунок 1 – Сгенерированный граф

Путь от 7 до 1

Значения рёбер от 2 до 20

Количество вершин графа: 10

	Эксперимент	Эксперимент	Эксперимент	Эксперимент	Эксперимент
	1	2	3	4	5
Размер	6	50	50	100	100
популяции					
Количество	6	6	15	15	15
поколений					
Вероятность	10%	10%	10%	10%	80%
мутации					
Результат	100 [7, 9, 0,	45 [7, 0, 6, 5,	45 [7, 0, 5, 6,	30 [7, 4, 5, 1]	53 [7, 0, 3, 9,
	4, 5, 8, 2, 1]	1]	1]		6, 5, 1]
Ответ	Нет	Нет	Нет	Да	Нет
верный?					

Рисунок 1 – График эксперимента 1

Рисунок 2 – График эксперимента 2

Рисунок 3 – График эксперимента 3

Рисунок 4 – График эксперимента 4

Рисунок 5 – График эксперимента 5

Вывод

После проведения испытаний реализованного алгоритма, можно сделать следующие выводы:

- 1) Размер популяции имеет решающее значение в эффективности обучения;
- 2) При большой популяции есть высокая вероятность того, что правильный ответ будет получен уже в первом поколении;
- 3) Высокий шанс мутации увеличивает вероятность алгоритма выдать неверный результат.

Для эффективного использования алгоритма рекомендуется задавать большое количество особей в популяции и маленький шанс мутации.