

План

Проблема обобщения
Переобучение / переподгонка / перенастройка
Недообучение / недоподгонка / недонастройка
Сложность алгоритмов
Смещение и разброс
Способы борьбы с переобучением
Регуляризация
В чём нас обманывают...

Проблема обобщения

напоминаем...
$$L(a, X_{\text{train}}) \lor L(a, X_{\text{test}})$$

будет ли алгоритм также работать на новых данных?

Не путать с проблемой представительности выборки!

- неправильное разбиение на обучение и контроль
- данные меняются со временем предсказываем будущее
 - другое распределение теста (пример: ЭКГ)

Считаем, что обучение и контроль одинаково распределены

Термины: переобучение, недообучение, сложность

Переобучение / переподгонка / перенастройка (overfitting)

– явление, когда ошибка на тестовой выборке заметно больше ошибки на обучающей

Это главная проблема машинного обучения!

Если бы её не было ⇒ минимизация эмпирического риска

Недообучение / недоподгонка / недонастройка (underfitting)

явление, когда ошибка на тестовой выборке достаточно большая

(не удаётся «настроиться на выборку»)

Термины: переобучение, недообучение, сложность

«Сложность» допускает много строгих формализаций...

Сложность (complexity / capacity) модели алгоритмов – оценивает, насколько разнообразно семейство алгоритмов в модели с точки зрения их функциональных свойств

(например, способности настраиваться на выборки)

Повышение сложности решает проблему недообучения и вызывает переобучение

дальше это увидим

Проблема: постановка конкретной задачи

целевая зависимость известна с точностью до шума, ищем решение в классе полиномов

Проблема: сравнение разных по сложности алгоритмов

Полиномы малой степени – недостаточно хорошо описывают данные

Полиномы большой степени – проходят через точки обучения, но явно не похожи на «естественные функции»

При увеличении степени

- ошибка на обучении падает
- ошибка на контроле сначала падает, потом растёт

Задача регрессии (есть обобщения для классификации)

Пусть
$$y \equiv y(x) = f(x) + \varepsilon, \varepsilon \sim \text{random}(0, \sigma^2)$$

наш ответ в конкретной новой (нет в обучении) точке $a \equiv a(x)$, тогда

$$\mathbf{E}(y-a)^{2} = \mathbf{E}(y^{2} + a^{2} - 2ya) =$$

$$= \mathbf{E}y^{2} - (\mathbf{E}y)^{2} + (\mathbf{E}y)^{2} + \mathbf{E}a^{2} - (\mathbf{E}a)^{2} + (\mathbf{E}a)^{2} - 2f \mathbf{E}a =$$

$$= \mathbf{D}y + \mathbf{D}a + (\mathbf{E}y)^{2} + (\mathbf{E}a)^{2} - 2\mathbf{E}ya =$$

$$= \mathbf{D}y + \mathbf{D}a + f^{2} + (\mathbf{E}a)^{2} - 2f \mathbf{E}a =$$

$$= \mathbf{D}y + \mathbf{D}a + (\mathbf{E}(f-a))^{2} =$$

$$= \sigma^{2} + \text{variance}(a) + \text{bias}^{2}(f, a)$$

- Разброс (Variance) $\mathbf{D}a$
- ullet Смещение (Bias) $\mathbf{E}(f-a)$
 - Шум σ^2

Тонкий момент про независимость:

$$\mathbf{E}(ya) = \mathbf{E}((f(x) + \varepsilon) \cdot a(x)) =$$

$$= f(x)\mathbf{E}(a(x))$$

C.B.

 \mathcal{E} – шум в новой точке \mathcal{X} \mathcal{A} – обучен на таком же, но

независимом шуме

Задача регрессии

Важно: по чему берётся матожидание

$$\mathbf{E}(y-a)^2 \equiv \mathbf{E}_{(x_i, f(x_i) + \varepsilon_i)_{i=1}^m} (y-a)^2$$

по данным (обучающей выборке)!

Выборки (случайные!) выбираются согласно некоторому распределению \Rightarrow алгоритм a, полученный с помощью обучения на выборке, случаен

Формулу мы получили на конкретном объекте

$$\mathbf{E}(y-a)^2 \equiv \mathbf{E}(y(x) - a(x))^2$$

При желании можно проинтегрировать по всем объектам!

$$\mathbf{E}_{D}\mathbf{E}_{X}(y(x)-a_{D}(x))^{2} = \mathbf{E}_{X}\mathbf{E}_{D}(y(x)-a_{D}(x))^{2}$$

Случайные выборки

для разных выборок будут разные решения – в рамках одной модели

Разброс и смещение

Разброс (Variance) $\mathrm{D}a$

разнообразие алгоритмов

(из-за стохастической природы настройки и/или случайности обучающей выборки, в том числе, шума)

Смещение (Bias) $\mathrm{E}(f-a)$

- способность модели алгоритмов настраиваться на целевую зависимость

Эксперимент: генерируем разные обучающие выборки...

Эксперимент: генерируем разные обучающие выборки...

Разброс и смещение

	Малое смещение	Большое смещение
	Хорошо: настраиваемся на целевую зависимость	Плохо: модель не соответствует данным
Малый разброс Хорошо: Модель устойчива (не зависит от шума в данных)		
Большой разброс Плохо: слишком сложная модель (много алгоритмов в ней), настраиваемся на шум		

Частая картинка

Примеры

MLE обычно несмещённая оценка, но большой разброс

> МАР – обычно смещённая, но малый разброс

«Бедная» модель – не может настроиться на целевую зависимость

«Сложная» модель – может, но не настраивается

(т.к. подвержена переобучению, настраивается на шум)

Есть такие определения: overfitting = «too much variance», complexity = (1 / variance)

Часто: «ёмкость» (capacity), «способность к обобщению» (representation power)...

Частая картинка (шума на графиках нет по понятным причинам...)

видим, что на тесте такой же график ошибки, что и на «частой картинке»

Частая картинка

тут точность (не ошибка) и сложность ~ 1/(число соседей)

Сложность, переобучение, смещение и разброс

Теория: bias-variance

Для k ближайших соседей есть формула:

$$\mathbf{E}(y-a)^{2} = \left(f(x) - \frac{1}{k} \sum_{t=1}^{k} y(x_{t})\right)^{2} + \frac{\sigma^{2}}{k} + \sigma^{2}$$

Hastie T., Tibshirani R., Friedman J. «The Elements of Statistical Learning» – 2009.

Мы вывели для задач регрессии с MSE Есть вывод и для задач классификации

Domingos P. «A unified bias-variance decomposition» // ICML – 2000.

Почему 1NN сложнее 9NN

Разделяющие поверхности 1NN для разных выборок

(одинаково распределённых)

Разделяющие поверхности 9NN для тех же выборок

Результат стабилен!

Почему 1NN сложнее 9NN

Эти алгоритмы имеют

- одинаковые параметры (что бы не понималось под этим...)
- требуют хранения всей обучающей выборки (lazy algorithms)
 - 9NN даже «чуть сложнее в реализации»

но разброс у 9NN меньше...

смещения не отличаются???

Будем иллюстрировать на такой модельной задаче...

1. Выборка специальной структуры

Даже при наличии шума, если есть возможность «формировать выборку», это можно сделать так, чтобы уменьшить переобучение

Выбор специальных данных (ех: которые обманывают алгоритм)

2. Увеличение объёма данных

Данные первичны, алгоритмы вторичны!

Но чтобы сложные алгоритмы не переобучались нужны действительно большие объёмы.

1+2=3. «Аугментация»

Искусственное увеличение выборки так, чтобы алгоритм удовлетворял требуемым свойствам

Частый приём: внесение шума в данные В нейросетях м.б. добавления шума в промежуточные слои! Иногда: в целевой признак.

4. Улучшение качества данных

шум / выбросы / аномальные дубликаты и пропуски

Хотя это всё-таки, как правило, не способ борьбы с переобучением. Это больше влияет на ошибку $\mathcal E$ в $y(x)=f(x)+\mathcal E!$

5. Использование других данных / задач / готовых моделей

Как правило в DL, где модели сложные...

1) нейросеть можно обучить на аналогичной задаче

ех.: другая задача классификации

ех.: такая же задача, но данные на другом оборудовании ех.: синтетические данные (в сегментации)

2) можно взять уже обученную (на другой задаче) нейросеть и дообучить её

Сложность, переобучение, смещение и разброс

6. Сокращение размерности, отбор признаков

(тоже формально про данные)

Почему много признаков – плохо

$$m = n = 100$$
, $y = X_1 - X_2 + \text{norm}(0, 0.5)$, $X_i = \text{norm}(0, 1)$

7. Регуляризация
До этого говорили про данные, теперь про алгоритмы...

Уменьшение сложности модели!

Изменение настройки модели

здесь: добавление штрафующего слагаемого в опт. функционал

Регуляризация

• Добавление штрафующего слагаемого к минимизируемому функционалу

$$(y(x) - f(x|w))^2 + \lambda ||w||^p \rightarrow \min$$
обоснование в МАР

• Разреженные представления

(зануления весов, выходов нейронов)

- Прореживание (Drop Out)
- Подрезка деревьев (Pruning)
- Разделение параметров (Parameter Sharing)

Тренируем НС требуя, чтобы значения её параметров были также близки к параметрам другой НС, обученной без учителя

Пример регуляризации: до и после

Пример регуляризации: до и после

Пример регуляризации: до и после

уже видели, что параметры линейной регрессии $ightarrow \mathbf{0}$

- 8. Организация контроля

 самое важное!

 hold out, CV, и т.п.
- ранняя остановка (early stopping) обучение HC, бустинг где есть итерации используем отложенный контроль

[DLbook] В модельной ситуации ES эквивалентна L2-регуляризации

9. Выбор архитектуры алгоритма

Пример: свёртки + пулинг, где есть инвариантность (+ сокращает число параметров)

Пример: усреднение, бэгинг

в отличие от уменьшения сложности (см. раньше) тут сразу выбираем простое/специально устроенное и т.п.

Пример: batch normalization

вспомним картинку – проведём эксперимент

Это матожидания наших полиномиальных моделей!

Полиномы 2й степени «самые лёгкие...»

Степень полинома – «естественная» мера его сложности Но тогда классической картинки мы не видим!

- общая ошибка может не быть неунимодальной («слегка»)
- смещение и разброс могут не быть строго монотонными!
- смещение может возрастать при увеличении сложности!

Может быть (и это нормально) – сложность модели относительно данных!

Вспомним... сложность реализации схемы в конкретном базисе

Итоги

«Перенастройка» – главная проблема ML, но есть и проблема недонастройки

Всё, казалось бы, регулируется сложностью... но есть ещё много трюков с данными

(увеличение выборки, аугментация, специальная структура и т.п.)

Понятие «сложность» тоже зависит от данных

Ссылки

Классика ML

Hastie T., Tibshirani R., Friedman J. «The Elements of Statistical Learning» – 2009.

Почти упрощённый конспект лекции

https://dyakonov.org/2018/04/25/смещение-bias-и-разброс-variance-модели-алгорит/