Linear Regression Report on Price Dataset

1.Data Analysis and Visualization

Given dataset looked like this:

	कृषि उपज	ईकाइ	न्यूनतम	अधिकतम	औसत	cdate	pricetype
0	गोलभेडा ठूलो(नेपाली)	के.जी.	ξο	રૂપ	33	02/25/2018	w
1	गोलभेडा सानो	के.जी.	२५	3 0	२८	02/25/2018	w
2	अालु रातो	के.जी.	२०	२३	२२	02/25/2018	w
3	अालु सेतो	के.जी.	१८	२०	१९	02/25/2018	w
4	प्याज सुकेको भारतीय	के.जी.	88	४६	४५	02/25/2018	W
	2.27		2.22	221	1123		190
99297	लसुन सुकेको नेपाली	के.जी.	६००	६२०	६१०	02/15/2020	R
99298	ताजा माछा(रहु)	के जी	३ २०	3 30	३२५	02/15/2020	R
99299	ताजा माछा(बचुवा)	के जी	२८०	300	२९०	02/15/2020	R
99300	ताजा माछा(छडी)	के जी	२८०	300	२९०	02/15/2020	R
99301	ताजा माछा(मंुगरी)	के जी	३१०	३२०	३१५	02/15/2020	R

There were 120 unique vegetables in the given dataset. The minimum price was Rs.1 and the maximum price was Rs.1650.

झिगूनी,काउली स्थानिय and तरबुजा(हरियो) had a minimum price than other vegetables at different dates.

	Vegetable	Quantity	MinPrice	MaxPrice	Average	cdate	pricetype
25011	झिगूनी	के.जी.	1	48	31	2018-09-09	W
36257	काउली स्थानिय	के.जी.	1	40	21	2018-12-09	R
37157	तरबुजा(हरियो)	के.जी.	1	55	28	2018-12-16	W

कागती had a maximum price among other vegetables and maximum price in April.

	Vegetable		MinPrice	MaxPrice	Average	cdate	pricetype
5431	कागती	के.जी.	1600	1650	1625 2	2018-04-06	R
5843	कागती	के.जी.	1600	1650	1625 2	2018-04-09	R
5981	कागती	के.जी.	1600	1650	1625 2	2018-04-10	R
6117	कागती	के.जी.	1600	1650	1625 2	2018-04-11	R
6251	कागती	के.जी.	1600	1650	1625 2	2018-04-12	R
6385	कागती	के.जी.	1600	1650	1625 2	2018-04-13	R

In this dataset, maximum vegetables had an average price between 1 to 150.

In the dataset, the number of wholesale and retail was not the same. The difference between wholesale and retail price type was 10.

2. Feature Extraction and Normalization

To predict tomorrow's vegetable price taken two features as the price of yesterday and the day before yesterday.

Final Dataset looked like this:

	Vegetable	Quantity	MinPrice	MaxPrice	Average	cdate	pricetype	type	t_1	t_2
99190	कागती	के.जी.	120	130	125	2020-02-15	W	1	125.0	125.0
99022	कागती	के.जी.	120	130	125	2020-02-14	w	1	125.0	105.0
98859	कागती	के.जी.	120	130	125	2020-02-13	W	1	105.0	105.0
98698	कागती	के.जी.	100	110	105	2020-02-12	w	1	105.0	105.0
98537	कागती	के.जी.	100	110	105	2020-02-11	w	1	105.0	105.0

The train dataset was split into x_{train} and y_{train} and the test dataset was split into x_{train} and y_{train} and y_{train}

Min Max Normalization was used for normalizing data.

Data before normalization

Data after applied Min_Max normalization

```
, 0.01608911, 0.01361386],
, 0.03465347, 0.02846535],
array([[1.
                   , 1.
                 , 0.
       [1.
                              , 0.03341584, 0.03341584],
       [1.
                 , 0.
       ...,
                              , 0.02846535, 0.02846535],
       [1.
                   , 0.
                              , 0.01608911, 0.01608911],
                   , 0.
       [1.
                               , 0.0779703 , 0.0779703 ]])
       [1.
                  , 0.
```

3.Grid search parameter with val loss

Mean Square Error was used as a model and number_of_iterations and Learning_rate used for grid search parameters.

```
import itertools
grid = list(itertools.product(grid_param['number_of_iterations'], grid_param['learning_rate']))
print(grid)
[(1000, 0.001), (1000, 0.1), (2000, 0.001), (2000, 0.1)]
for g in grid:
    p={
    'number_of_iterations':g[0],
    'learning_rate':g[1],
    print(p)
    Weights, train_error, val_error=train_model(x_train, y_train, x_val, y_val, p)
    print(val error)
    plt.plot(np.arange(len(train_error)),train_error)
    plt.xlabel("No. of iterations")
    plt.ylabel("Training Error")
    plt.show()
{'number of iterations': 1000, 'learning_rate': 0.001}
[3884.654393660934]
   9000
  8000
  7000
  6000
   5000
  4000
        Ó
                200
                        400
                                 600
                                         800
                                                 1000
```

4. Train loss plot in best model

Best Hyperparameter was found in a number _of_ iteration 2000 and learning _rate 0.1 with training loss 539.86

5.Model Evaluation using R2 Score

No. of iterations

R-squared is a statistical measure of how close the data are to the fitted regression line. It is also known as the coefficient of determination, or the coefficient of multiple determination for multiple regression.

R-squared = Explained variation / Total variation

By evaluating the model using R2 Score got R2 Score **0.832** it means that model fits data very well.

6.Code Link

https://github.com/rachanakafle/Linear-and-Logistic-Regression/blob/master/LinearRegression.ipvnb