# Machine learningbased prediction of functionally similar protein pairs

Liv Toft



Supervisor: Prof. Yu (Brandon) Xia April 11, 2024

# Outline



Data
Integration









# Background & Motivation

## The Protein Function Annotation Problem

- 230 million protein sequences exist
- Only 0.25% have functional annotations
- Experimental functional annotation is slow and costly



# **Motivations**



Advance our knowledge of biological systems and processes

2

Discover novel disease genes

3

Identify new drug targets

# Filling In The Gaps With Machine Learning

 A lot of data already exists → use different genomic data sources to infer protein function from related proteins



- Rigorous solution to heterogenous data integration
- Fast
- Inexpensive
- Accurate

# **Project Objective**

Create a pipeline for combining heterogeneous genomic data sources for yeast and use it to train a machine learning model that can predict functionally similar protein pairs



2

# Data Integration

# **Experimental Protein-Protein Interactions (PPI)**

| Experimental Method(s)             | Description                                                                                       | Rationale                                                                                             |
|------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Yeast-two hybrid, affinity capture | Physical protein-protein interactions experimentally validated by two or more independent sources | Proteins that physically interact<br>have been found to be more<br>likely to share a similar function |





Affinity capture

# **Genetic Interaction (GI) Score**

| Experimental Method(s)  | Description                                                                                                           | Rationale                                                                                 |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Synthetic genetic array | GI score for a pair of genes found<br>by comparing the expected<br>versus true fitness of double-<br>mutant knockouts | Protein pairs that have a greater genetic interaction are shown to have similar functions |



# **GI Profile Similarity**

| Experimental Method(s)  | Description                                                                                            | Rationale                                                                                         |  |
|-------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| Synthetic genetic array | Pearson correlation coefficient for the GI profiles (GI scores for all proteins) of a pair of proteins | Proteins with similar GI profiles are more likely to be involved in the same biological processes |  |





## **PPI Structural Information**

| Experimental Method(s)                                               | Description                                                                                                                               | Reasoning                                                                           |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Experimental co-crystal<br>PPI structures and PPI<br>homology models | PPI structural information<br>derived from three-dimensional<br>structures from the Protein Data<br>Bank (PDB) and PPI homology<br>models | Proteins that physically interact<br>are more likely to share a<br>similar function |

# **Co-Expression**

| Experimental Method(s)                 | Description                                                                                                                                                | Reasoning                                                                 |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| cDNA microarray<br>hybridization assay | Pearson correlation coefficient for the pair of gene expression profiles corresponding to expression under 300 different mutations and chemical treatments | Pairs of proteins with similar functions have similar expression profiles |



# **Co-Complex**

| Experimental Method(s)                                    | Description                                                                                                               | Reasoning                                                                                                               |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Various<br>(E.g. affinity capture +<br>mass spectrometry) | Whether a pair of proteins are found in the same protein complex and are demonstrated to have the same molecular function | Proteins in the same complex<br>share similar functions. This<br>may capture more interacting<br>proteins than PPI data |



# **Co-Pathway**

| Experimental Method(s)                                       | Description                                           | Reasoning                                            |
|--------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| Various<br>(E.g. mass spectrometry<br>+ omics data analysis) | Whether a pair of proteins belong to the same pathway | Proteins in the same pathway share similar functions |



# **Sequence Similarity**

| Experimental Method(s)                     | Description                                                                 | Reasoning                                                                   |
|--------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| BLASTp pairwise protein sequence alignment | Log(E-value) for the BLAST<br>alignment of each protein pairs'<br>sequences | Sequence similarity may be an indicator of structural-functional similarity |

# **Target: Protein Similarity**

- SimGIC is a quantitative measurement of protein pair functional similarity
  - Based on Gene Ontology (GO) annotation and information entropy
- Set a threshold to **classify** similar and dissimilar protein pairs
  - More on this later



# **Integrated Dataset**

| Protein pair    | Experimental<br>PPI | GI score | GI profile<br>similarity | Structural information | Co-<br>expression<br>correlation | Co-complex | Co-pathway | Log(E-<br>value) | Similar |
|-----------------|---------------------|----------|--------------------------|------------------------|----------------------------------|------------|------------|------------------|---------|
| P1_ID,<br>P2_ID | [O, 1]              | (-1, 1)  | (-1, 1)                  | [O, 1]                 | (-1, 1)                          | [O, 1]     | [O, 1]     | [-460,<br>4.6]   | [O, 1]  |



# Integrated Dataset

- 13,458 entries
- Pairwise correlation plots show no feature pairs have a correlation > 0.55



3

# Machine Learning Models

## **Naïve Bayes**

- For benchmarking
- Utilizes Bayes' Theorem
- Simple, fast running times
- Conditional independence assumption can lead to low performance

$$P(c|x) = \frac{P(x|c)P(c)}{P(x)}$$

$$\hat{y} = \underset{c \in C}{\operatorname{argmax}} \left[ \log(p(y = c)) + \sum_{i=0}^{k} \log(p(x_i | y = c)) \right]$$

$$\text{Log prior} \qquad \text{Log likelihood}$$

*C* = [similar, not similar]

 $x_i$  = observed feature value

y = target

 $\hat{y}$  = prediction

# Multi-Layer Perceptron (MLP)



- Neural network-based model
- Input data goes through multiple layers of abstraction that maps it to the outputs
- Architecture that is more suitable for tabular data
  - Does not assume a spatial relationship between features

#### **Key Parameters**

- Hidden layers
- Nodes/layer
- Activation function
- Alpha

# **Extreme Gradient Boosted Trees (XGBoost)**







- Decision tree ensemble model
  - Individual classification and regression trees are combined to partition the data
- Shown to outperform neural network models on tabular data

#### **Key Parameters**

- Number of trees
- Max depth
- Learning rate
- Regularization

$$f() = (+2) + (+0.9) = +2.9$$

## **Model Training**



# Remove 'ambiguous' pairs for training



Keep all pairs for testing



Hyperparameter tuning with 10-fold cross-validation

#### **MLP**

Hidden layers: 2 Nodes/layer: 20, 60 Activation func.: relu

Alpha: 5e-6

#### **XGBoost**

# trees: 20 Max depth: 4

**LR:** 0.22

Regularization: 4

# 4 Results

## **Confusion Matrices**

Threshold = 0.175

| • • • • |       |
|---------|-------|
|         |       |
| Naive   | Bayes |
|         | ,     |

|           |       | Actual |       |  |
|-----------|-------|--------|-------|--|
|           |       | S      | Not S |  |
| Predicted | S     | 334    | 347   |  |
| Pred      | Not S | 240    | 1771  |  |

#### **MLP**

|           |       | Actual |       |
|-----------|-------|--------|-------|
|           |       | S      | Not S |
| icted     | S     | 399    | 555   |
| Predicted | Not S | 175    | 1563  |

#### **XGBoost**

|           |       | Actual |       |  |
|-----------|-------|--------|-------|--|
|           |       | S      | Not S |  |
| Predicted | S     | 388    | 523   |  |
|           | Not S | 186    | 1595  |  |

# **Performance Comparison**





How often the model makes the right prediction



How often similar protein pairs are predicted as similar



How often a positive prediction is right



How often dissimilar protein pairs are predicted as similar

| Model       | Accuracy | Sensitivity | Positive<br>Predictive Value | False Positive<br>Rate |
|-------------|----------|-------------|------------------------------|------------------------|
| Naïve Bayes | 0.766    | 0.526       | 0.756                        | 0.097                  |
| MLP         | 0.795    | 0.632       | 0.763                        | 0.113                  |
| XGBoost     | 0.789    | 0.702       | 0.712                        | 0.162                  |

# Receiver Operating Characteristic (ROC) Curves



Performance improvement comes from the models' abilities to distinguish similar protein pairs at higher cutoff thresholds

# **E Future Work**

## **Future Work**

- There is always more data to integrate
- Regression models to directly predict SimGIC score
- Building a functional linkage network

# Thank you.

# **Appendix**Train + Test Thresholds



B) Train

1400

1200

Histogram of SimGIC scores

# **Appendix**

### Test Threshold Selection



## References

- 1. L. A. Bugnon, E. Fenoy, A. A. Edera, J. Raad, G. Stegmayer, and D. H. Milone, "Transfer learning: The key to functionally annotate the protein universe," *Patterns*, vol. 4, no. 2, 2023, doi: 10.1016/j.patter.2023.100691.
- 2. M. Varadi et al., "3D-Beacons: decreasing the gap between protein sequences and structures through a federated network of protein structure data resources," *GigaScience*, vol. 11, 2022, doi: https://doi.org/10.1093/gigascience/giac118.
- 3. M. Varadi et al., "AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences," *Nucleic Acids Research*, vol. 52, no. D1, pp. D368-D375, 2023, doi: <a href="https://doi.org/10.1093/nar/gkad1011">https://doi.org/10.1093/nar/gkad1011</a>.
- 4. B. Linghu, E. A. Franzosa, and Y. Xia, "Construction of functional linkage gene networks by data integration," *Data Mining for Systems Biology*, vol. 939, pp. 215-232, 2013, doi: <a href="https://doi.org/10.1007/978-1-62703-107-3\_14">https://doi.org/10.1007/978-1-62703-107-3\_14</a>.
- 5. A. Derry and R. B. Altman, "Explainable protein function annotation using local structure embeddings," *bioRxiv*, 2023, doi: https://doi.org/10.1101/2023.10.13.562298.
- 6. C. Stark, B.-J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers, "BioGRID: a general repository for interaction datasets," *Nucleic Acids Research*, vol. 34, no. 1, pp. D535-D539, 2006, doi: 10.1093/nar/gkj109.
- 7. M. Usaj et al., "TheCellMap.org: A web-accessible database for visualizing and mining the global yeast genetic interaction network," G3: Genes, Genemes, Genetics, vol. 7, no. 5, pp. 1539-1549, 2017, doi: 10.1534/g3.117.040220.

## References

- 8. T. R. Hughes et al., "Functional discovery via a compendium of expression profiles," *The Cell*, vol. 102, no. 1, pp. 109-126, 2000, doi: <a href="https://doi.org/10.1016/S0092-8674(00)00015-5">https://doi.org/10.1016/S0092-8674(00)00015-5</a>.
- 9. Meldal BHM, Bye-A-Jee H, Gajdoš L, Hammerová Z, Horácková A, Melicher F, Perfetto L, Pokorný D, Lopez MR, Türková A, Wong ED, Xie Z, Casanova EB, Del-Toro N, Koch M, Porras P, Hermjakob H, Orchard S (2019). Complex Portal 2018: extended content and enhanced visualization tools for macromolecular complexes. Nucleic Acids Res, 47(d1):D550-D558, 01 Jan 2019, PMID: 30357405
- 10. Wishart DS, Li C, Marcu A, et al. <u>PathBank: A Comprehensive Pathway Database for Model Organisms.</u> *Nucleic Acids Res.* 2020 Jan 8;48(D1):D470-D478.
- 11. C. Pesquita, D. Faria, H. Bastos, A. E. N. Ferreira, A. O. Falcão, and F. M. Couto, "Metrics for GO based protein semantic similarity: A systematic evaluation," *BMC Bioinformatics*, vol. 9, 2008, doi: <a href="https://doi.org/10.1186/1471-2105-9-S5-S4">https://doi.org/10.1186/1471-2105-9-S5-S4</a>.
- 12. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990) "Basic local alignment search tool." J. Mol. Biol. 215:403-410.
- 13. Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. (2008) "BLAST+: architecture and applications." BMC Bioinformatics 10:421.
- 14. S. Ranganathan, M. Gribskov, K. Nakai, and C. Schönbach, "Bayes' theorem and naive Bayes classifier," in *Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics*: Elsevier, 2019.
- 15. V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and G. Kasneci, "Deep Neural Networks and Tabular Data: A Survey," *IEEE Transactions on Neural Networks and Learning Systems*, 2022, doi: 10.1109/TNNLS.2022.3229161.
- 16. J. Brownlee. "Crash course on multi-layer perceptron neural networks." Machine Learning Mastery. <a href="https://machinelearningmastery.com/neural-networks-crash-course/">https://machinelearningmastery.com/neural-networks-crash-course/</a> (accessed January 28, 2025).

## References

- 17. XGBoost developers. "Introduction to Boosted Trees." XGBoost Tutorials. <a href="https://xgboost.readthedocs.io/en/stable/tutorials/model.html">https://xgboost.readthedocs.io/en/stable/tutorials/model.html</a> (accessed January 28, 2024).
- 18. L. Grinsztajn, E. Oyallon, and G. Varoquaux, "Why do tree-based models still outperform deep learning on typical tabular data?," presented at the 36th Conference on Neural Information Processing Systems, New Orleans, USA, 2022.