Lecture 8: Interprocedural Analysis

17-355/17-665/17-819: Program Analysis Rohan Padhye September 23, 2025

* Course materials developed with Jonathan Aldrich and Claire Le Goues

Extend WHILE with functions

Extend WHILE3ADDR with functions

$$F ::= \operatorname{fun} f(x) \{ \overline{n} : \overline{I} \}$$
 $I ::= \ldots | \operatorname{return} x | y := f(x)$

Extend WHILE3ADDR with functions

```
F ::= \operatorname{fun} f(x) \{ \overline{n:I} \}
I ::= \ldots \mid \operatorname{return} x \mid y := f(x)
```

- 1: fun double(x): int
- 2: y := 2 * x
- 3: return y
- 4: fun main(): void
- 5: z := 0
- $6: \quad w := double(z)$

Extend WHILE3ADDR with functions

$$2: y := 10/x$$

$$3:$$
 return y

$$5: z := 5$$

$$6: w := divByX(z)$$

$$2: y := 2 * x$$

$$3:$$
 return y

$$5: z := 0$$

$$6: w := double(z)$$

How do we analyze these programs?

Data-Flow Analysis

Approach #1: Analyze functions independently

- Pretend function *f()* cannot see the source of function *g()*
- Simulates separate compilation and dynamic linking (e.g. C, Java)
- Create CFG for each function body and run intraprocedural analysis
- **Q**: What should σ_0 and $f_Z[x := g(y)]$ and $f_Z[return x]$ be for zero analysis?

$$\sigma_0 =$$
 $f[x := g(y)](\sigma) =$
 $f[\text{return } x](\sigma) =$

Can we show that division on line 2 is safe?

```
1: fun divByX(x) : int

2: y := 10/x

3: return y

4: fun main() : void

5: z := 5

6: w := divByX(z)
```

Approach #2: User-defined Annotations

@NonZero -> @NonZero

```
1: fun \ div By X(x) : int

2: y := 10/x

3: return \ y

4: fun \ main() : void

5: z := 5

6: w := div By X(z)
```

```
f[x := g(y)](\sigma) = \sigma[x \mapsto annot[g].r] (error if \sigma(y) \not\equiv annot[g].a)

f[return x](\sigma) = \sigma (error if \sigma(x) \not\equiv annot[g].r)
```

Approach #2: User-defined Annotations

@NonZero -> @NonZero

```
1: \quad \mathsf{fun} \ \mathit{divByX}(x): int
```

$$2: \qquad y := 10/x$$

$$3:$$
 return y

$$5: z := 5$$

$$6: \quad w := divByX(z)$$

@NonZero -> @NonZero

$$2: y := 2 * x$$

$$3:$$
 return y

$$5: z := 0$$

$$6: \quad w := double(z) \text{ Error!}$$

$$f[x := g(y)](\sigma) = \sigma[x \mapsto annot[g].r]$$
 (error if $\sigma(y) \not\equiv annot[g].a$)
 $f[return x](\sigma) = \sigma$ (error if $\sigma(x) \not\equiv annot[g].r$)

Approach #2: User-defined Annotations

@NonZero -> @NonZero

```
\begin{array}{ll} 1: & \text{fun } divByX(x):int \\ 2: & y:=10/x \\ 3: & \text{return } y \end{array}
```

$$5: z := 5$$

$$6: \quad w := divByX(z)$$

@Any -> @NonZero

```
1: fun double(x): int
```

$$2: y := 2 * x$$

$$5: z := 0$$

$$6: \quad w := double(z)$$

$$f[x := g(y)](\sigma) = \sigma[x \mapsto annot[g].r]$$
 (error if $\sigma(y) \not\equiv annot[g].a$)
 $f[return x](\sigma) = \sigma$ (error if $\sigma(x) \not\equiv annot[g].r$)

Approach #3: Interprocedural CFG

$$f_{Z}[x \coloneqq g(y)]_{local}(\sigma) = \sigma \setminus (\{x\} \cup Globals)$$

$$f_{Z}[x \coloneqq g(y)]_{call}(\sigma) = \{v \mapsto \sigma(v) | v \in Globals\} \cup \{formal(g) \mapsto \sigma(y)\}$$

$$f_{Z}[return y]_{return_{x}}(\sigma) = \{v \mapsto \sigma(v) | v \in Globals\} \cup \{x \mapsto \sigma(y)\}$$

Approach #3: Interprocedural CFG

Exercise: What would be the result of zero analysis for this program at line 7 and at the end (after line 9)?

```
fun\ double(x):int
   y := 2 * x
2:
3:
     return y
   fun main()
5:
    z := 5
   w := double(z)
7: z := 10/w
8: z := 0
   w := double(z)
9:
```

Approach #3: Interprocedural CFG


```
fun double(x):int
          y := 2 * x
3:
          return y
       fun main()
5:
         z := 5
6:  w := double(z)
7: z := 10/w
8: z := 0
          w := double(z)
9:
f_Z[x := g(y)]_{local}(\sigma) = \sigma \setminus (\{x\} \cup Globals)
f_Z[x := g(y)]_{call}(\sigma) = \{v \mapsto \sigma(v) | v \in Globals\} \cup \{formal(g) \mapsto \sigma(y)\}
```

 $f_Z[[return \ y]]_{return_x}(\sigma) = \{v \mapsto \sigma(v) | \ v \in Globals\} \cup \{x \mapsto \sigma(y)\}$

Problems with Interprocedural CFG

- Merges (joins) information across call sites to same function
- Loses precision
- Models infeasible paths (call from one site and return to another)
- Can we "remember" where to return data-flow values?

