Pannon Egyetem Mérnöki Kar

SEGÉDLET

Műszaki áramlástan feladatgyűjtemény

Műszaki áramlástan Műszaki áramlástan és hőtan I. Műszaki áramlás- és hőtan

Tartalomjegyzék

ΑJ	apadatok	
	A tárgy adatai	
	A segédlet célja	
	Ajánlott szakirodalom	
1.	Hidrostatika	
	1/16. feladat: Gázharang	
	1/18. feladat: Hasáb alakú tartály	
2.	Veszteségmentes csőáramlások	
3.	Folyadékáramlás erőhatásai, kifolyás tartályból	
4.	Valós folyadék áramlása csővezetékben	
5.	Összenyomhatatlan folyadék egyméretű áramlása	

Alapadatok

A tárgy adatai

Név: Műszaki áramlástan Kód: VEMKGEB143H

Kreditérték: 3 (2 elmélet, 1 gyakorlat)

Követelmény típus: vizsga

Szervezeti egység: Gépészmérnöki Intézet

Előadás látogatása: kötelező Gyakorlat látogatása: kötelező

Számonkérés: a félév végén zárthelyi, írásbeli és szóbeli vizsga

A segédlet célja

A segédlet célja.

A segédlet kidolgozása még folyamatban van.

Ajánlott szakirodalom

• Irodalom.

Hidrostatika

1/16. feladat: Gázharang

Szerző	Cseresznyés Hunor, BO98IB
Szak	Biomérnök Bsc.
Félév	2019/2020 II. (tavaszi) félév

Határozza meg az ábrán látható gáztartályban uralkodó nyomást bar-ban és a gázharang súlyát,ha

$$\begin{split} h &= 1.0 \, \mathrm{m}, \\ \emptyset D &= 3 \, \mathrm{m}, \\ \rho_v &= 10^3 kg/m^3, \\ p_0 &= 1 \, \mathrm{bar}, \end{split}$$

Feladat megoldás

A megoldásunkhoz felhasználjuk a Pascal törvényt, amely azt mondja ki, hogy zárt térben lévő folyadékban vagy gázban a külső erő okozta nyomás minden irányban gyengítetlenül tovaterjed.

$$p_x = p_0 + \rho_v \cdot h \cdot g \tag{1.1}$$

Helyettesítsünk be az egyenletbe a megadott adataink alapján úgy, hogy 1 bar = 101325 Pa és a nehézségi erőt $g = 10m/s^2$ vesszük.

$$p_x = 101325 + 10^3 \cdot 1 \cdot 10 = 111325 Pa \tag{1.2} \label{eq:1.2}$$

$$p_x = \frac{111325}{101325} = 1,098bar \tag{1.3}$$

Tehát a gáztartályban uralkodó nyomás végeredménye bar-ban: 1,098bar

Figyelnünk kell arra hogy a test(harang) vízbe merülő része egy kör alakú felület így ezzel is el kell számolnunk,tehát a gáz harang súlyát a következőképp számolhatjuk ki:

$$G = \frac{D^2 \cdot \pi}{4} \cdot h \cdot \rho_v \cdot g \tag{1.4}$$

$$G = \frac{3^2 \cdot \pi}{4} \cdot 1 \cdot 10^3 \cdot 10 = 70685N \tag{1.5}$$

Tehát a gázharang súlya: 70685N

1/18. feladat: Hasáb alakú tartály

Szerző	Cseresznyés Hunor, BO98IB
Szak	Biomérnök Bsc.
Félév	2019/2020 II. (tavaszi) félév

Egy négyzetes hasáb alakú tartály alapéle a= 60 cm, oldaléle l=2 m , ha $\rho=1250kg/m^3$ sűrűségű folyadékkal teletöltjük, mekkora az alaplapjára és az oldalfalára ható erő? $(g=9,81m/s^2)$

Feladat megoldás

A nyomóerő merőlegesen hat a négyzet alakú hasáb alapjára. Ennek nagysága a nyomás és a felület nagyságának szorzatától függ. Az alapra irányuló nyomást meghatározhatjuk a folyadék sűrűségéből, a ránehezedő folyadékmagasság illetve a nehézségi erő szorzatából. Emellett definiálunk egy "A" felületelemet, aminek területe $a \cdot a$ lesz. Mértékegységekre figyeljünk!

$$F_a = p \cdot A = \rho \cdot g \cdot l \cdot A = 8829N \tag{1.6}$$

Tehát az alaplapjára ható erő: 8829N

Az oldalfalára ható erő megállapításkor először válasszunk ki egy felületelemet (dA)-t és menjünk le differenciális szintre, erre a felületelemre vizsgáljuk meg a erőviszonyokat. Ha differenciális szinten eredményre jutunk, akkor terjesszük ki az egész felületelemre. Nézzük az egyenletek szempontjából:

$$dA = a \cdot dx \tag{1.7}$$

$$dF = p(x) \cdot dA \tag{1.8}$$

$$p(x) = \rho \cdot g \cdot (l - x) \tag{1.9}$$

$$\int dF = \int \rho \cdot g \cdot (l - x) \cdot a \cdot dx \tag{1.10}$$

$$F = \rho \cdot g \cdot a \int_{0}^{l} (l - x) \cdot dx \tag{1.11}$$

$$F = \rho \cdot g \cdot a \cdot [- \cdot (\frac{l-x}{2})^2]_0^l = \rho \cdot g \cdot a \cdot \frac{l^2}{2} = 14715N$$
 (1.12)

Tehát az oldalfalára ható erő: $\underline{14715N}$

Veszteségmentes csőáramlások

Folyadékáramlás erőhatásai, kifolyás tartályból

Valós folyadék áramlása csővezetékben

Összenyomhatatlan folyadék egyméretű áramlása