Fonction carré, fonction racine carré

I. La fonction carré

1. Définition et premières propriétés

Définition.

La fonction carré est la fonction f qui à tout réel x associe son carré soit $f(x) = \underline{\hspace{1cm}}$ et on appelle parabole $\mathscr P$ la courbe représentative de cette fonction carré.

Propriété.

- 1. Un carré est toujours positif ou nul dans \mathbb{R} . Pour tout réel x, on a $x^2 \geqslant 0$: la parabole \mathscr{P} est toujours située au dessus de l'axe des abscisses.
- **2.** Un nombre et son opposé ont le même carré. Pour tout réel x, on a $x^2 = (-x)^2$: la parabole \mathscr{P} est symétrique par rapport à l'axe des ordonnées : on dit que la fonction carré est paire.

2

Sens de variation de la fonction carré 2.

Propriété.

La fonction carré est :

- 1. $strictement\ décroissante\ sur\]-\infty;\ 0]$; autrement dit, la fonction carré $ne\ conserve\ pas$ *l'ordre des réels négatifs* : si $u < v \le 0$ alors ______.
- 2. $strictement\ croissante\ sur\ [0\,;\,+\infty[\,;\, autrement\ dit,\, la\ fonction\ carr\'e\ conserve\ l'ordre\ des$ *réels positifs* : si $0 \le u < v$ alors _____

On résume ces variations dans un tableau :

Exercice 1.8. Sans calcul, comparer les carrés de :

1.
$$\pi$$
 et 3, 14

2.
$$-0.96$$
 et -0.8

3.
$$0, 2 \text{ et } -0, 3$$

Propriété.

- 1. Si k < 0, comme un carré est positif, l'équation $x^2 = k$ n'a pas de solution.
- **2.** Si k=0, l'équation $x^2=0$ a pour unique solution x=0.
- 3. Si k > 0, $x^2 = k \Leftrightarrow x^2 k = 0 \Leftrightarrow \left(x + \sqrt{k}\right)\left(x \sqrt{k}\right) = 0$. On obtient les deux solutions $x = -\sqrt{k}$ ou $x = \sqrt{k}$.

 $x^2 = 0$ a pour unique solution 0

 $x^2 = k$ a deux solutions $-\sqrt{k}$ ou \sqrt{k}

Exercice 2.8. Résoudre graphiquement les équations suivantes :

1.
$$x^2 = 16$$

2.
$$x^2 = -2$$

3.
$$x^2 = 0$$

II. La fonction racine carré

Définition et courbe représentative 1.

Définition.

La fonction racine carré est la fonction qui à tout réel x positif ou nul associe sa racine carré : $x \mapsto$ \sqrt{x} .

Sens de variation

Propriété.: L

a fonction racine carré *conserve* l'ordre dans les réels positifs.

Autrement dit, si $0 \le u < v$ alors $\sqrt{u} < \sqrt{v}$, elle est donc *strictement croissante* sur $[0; +\infty[$.

x	0	$+\infty$
Variation de \sqrt{x}	0 -	

2. $\sqrt{x} - 3 \ge 0$

1. $\sqrt{x} < 2$

Propriété.

Exercice 3.8. Résoudre dans $\mathbb R$ les inéquations suivantes :

Pour tous nombres réels a et b positifs :

1.
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

2. Si
$$b \neq 0$$
, $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

3. Si a et b sont non nuls,
$$\sqrt{a+b} < \sqrt{a} + \sqrt{b}$$

Exercice 4.8.

- 1. Écrire $\sqrt{75}$ sous la forme $a\sqrt{3}$.
- 2. Simplifier $\sqrt{\frac{4}{9}}$.
- 3. Démontrer que $(\sqrt{3}-1)(\sqrt{3}+1)$ est un entier.