

IN THE CLAIMS

Please add the following claims:

15. A receiver circuit arranged in a receiving unit of multiplex radio equipment, said receiving unit including an identifying circuit for identifying a signal at a predetermined identification level, said signal being obtained by demodulating a multilevel orthogonal modulated signal, an equalizing circuit for subjecting said demodulated signal to an equalizing process, and a clock regenerating circuit regenerating a signal identification clock for said identifying circuit and then supplying said signal identification clock to said identifying circuit; comprising:

B

a clock regenerating unit for regenerating said signal identification clock based on a signal before said multilevel orthogonal modulated signal is detected;

a phase adjusting unit for adjusting the phase of a clock from said clock regenerating unit and then supplying the phase-adjusted clock to said identifying circuit; and

a clock phase detecting unit for detecting a phase component of said signal identification clock based on }

RECEIVED - 10/22/1960
AL COX

and the output signal
~~the input/output signals of said equalizing circuit and then supplying the result as a phase adjustment control signal to said phase adjusting unit.~~

A

16. The receiver circuit arranged in a receiving unit of multiplex radio equipment, according to claim 15, further comprising an averaging unit arranged between said clock phase detecting unit and said phase adjusting unit, for averaging the output from said clock phase detecting unit.

not shown

17. The receiver circuit arranged in a receiving unit of multiplex radio equipment, according to claim 15, wherein said identifying circuit comprises plural identifying units corresponding to the number of plural demodulated signals obtained by demodulating said multilevel orthogonal modulation signal; and wherein said clock regenerating unit, said phase adjusting unit, and said clock phase detecting unit are used in common to said plural identifying units.

*112 LST
not shown -
Fig 28-42*

18. The receiver circuit arranged in a receiving unit of multiplex radio equipment, according to claim 15, wherein said identifying circuit comprises plural

AC
Copy

identifying units corresponding to the number of plural demodulated signals obtained by demodulating said multilevel orthogonal modulation signal; and further comprising an averaging unit arranged between said clock phase detecting unit and said phase adjusting unit, for averaging the output from said clock phase detecting unit; and wherein said clock regenerating unit, said phase adjusting unit, said averaging unit, and said clock phase detecting unit are used in common to said plural identifying units.

112 25A
not shown

19. The receiver circuit arranged in a receiving unit of multiplex radio equipment, according to claim 15, wherein said identifying circuit comprises plural identifying units corresponding to the number of plural demodulated signals obtained by demodulating said multilevel orthogonal modulation signal; and wherein said clock regenerating unit is shared among said plural identifying units; and wherein plural phase adjusting units and plural clock phase detecting units are arranged corresponding to said plural identifying units.

112 25A

20. The receiver circuit arranged in a receiving unit of multiplex radio equipment, according to claim 15,

*Al
CONX*

wherein said identifying circuit comprises plural identifying units corresponding to the number of plural demodulated signals obtained by demodulating said multilevel orthogonal modulated signal; and further comprising an averaging unit arranged between said clock phase detecting unit and said phase adjusting unit, for averaging the output from said clock phase detecting unit; said clock regenerating unit is used in common to said plural identifying units; and a plurality of said phase adjusting units, said averaging units and said clock phase detecting units are arranged corresponding to said plural identifying units.

112 15A

21. The receiver circuit arranged in a receiving unit of multiplex radio equipment, according to claim 15, further comprising a test signal generating unit for generating a test signal; and a selecting unit for selectively producing the output from said clock phase detecting unit and the output from said test signal generating unit, said output of said selecting unit being supplied as an input to said phase adjusting unit.

112 15A

22. A receiver circuit arranged in a receiving unit of multiplex radio equipment, said receiving unit including

A
cont

an identifying circuit for identifying a signal at a predetermined identification level, said signal being obtained by demodulating a multilevel orthogonal modulated signal, an equalizing circuit for subjecting said signal obtained by demodulating a multilevel orthogonal modulated signal and an equalizing circuit to an equalizing process, and a clock regenerating circuit regenerating a signal identification clock for said identifying circuit and then supplying said signal identification clock to said identifying circuit; comprising:

a clock phase detecting unit for detecting a phase component of said signal identification clock based on signals input to or output from said equalizing circuit;
a loop filter unit for integrating the output from said clock phase detecting unit; and
an oscillating unit for producing a signal identification clock for said identifying circuit to said identifying circuit, in response to as a control input the output from said loop filter unit.

23. The receiver circuit arranged in a receiving unit of multiplex radio equipment, according to claim 22, wherein said identifying circuit comprises plural identifying units corresponding to the number of plural

112 151

demodulated signals obtained by demodulating said
multilevel orthogonal modulation signal; and wherein said
clock phase detecting unit, said loop filter unit, and said
oscillating unit are used in common to said plural
identifying units.

112 151

24. The receiver circuit arranged in a receiving unit
of multiplex radio equipment, according to claim 22,
wherein said identifying circuit comprises plural
identifying units corresponding to the number of plural
demodulated signals obtained by demodulating said
multilevel orthogonal modulated signal; and wherein plural
clock phase detecting units are arranged to said
identifying units; and wherein said loop filter unit and
said oscillating unit are used in common to said
identifying units; and further comprising a composing unit
for composing the outputs of said clock phase detecting
units to input the resultant output of said composing unit
to said loop filter unit.

112 151

25. The receiver circuit arranged in a receiving unit
of multiplex radio equipment, according to claim 22,
wherein said identifying circuit comprises plural
identifying units corresponding to the number of plural

112 259

AN
CNTX

demodulated signals obtained by demodulating said
multilevel orthogonal modulated signal; and further
comprising plural clock phase detecting units and plural
loop filter units being arranged corresponding to said
plural identifying units; said oscillating unit being used
in common to said plural identifying units; a part of said
plural identifying units being connected to said
oscillating unit via said phase adjusting unit, said output
of said loop filter unit being supplied as a control input
to said oscillating unit or said phase adjusting unit.

112 259

26. The receiver circuit arranged in a receiving unit
of multiplex radio equipment, according to claim 22,
wherein said identifying circuit comprises plural
identifying units corresponding to the number of plural
demodulated signals obtained by demodulating said
multilevel orthogonal modulated signal; and wherein said
loop filter unit and said oscillating unit are used in
common to said plural identifying units; and further
comprising a second clock phase detecting unit for
detecting the phase component of said signal identification
clock in a method different from that of said clock phase
detecting unit and a composing unit for composing the
output from said clock phase detecting unit with the output

from said second clock phase detecting unit, the output of
said composing unit being supplied as an input to said loop
filter unit.

27. The receiver circuit arranged in a receiving unit
of multiplex radio equipment, according to claim 22,
wherein said identifying circuit comprises plural
identifying units corresponding to the number of plural
demodulated signals obtained by demodulating said
multilevel orthogonal modulated signal; and wherein said
loop filter unit and said oscillating unit are used in
common to said plural identifying units; and further
comprising a second clock phase detecting unit for
detecting the phase component of said signal identification
clock in a method different from that of said clock phase
detecting unit and a selecting unit for selectively
producing the output from said clock phase detecting unit
and the output from said second clock phase detecting unit,
the output of said selecting unit being supplied as an
input to said loop filter unit.

28. The receiver circuit arranged in a receiving unit
of multiplex radio equipment, according to claim 22,
further comprising a test signal generating unit for

generating a test signal; and a selecting unit for selectively producing the output from said clock phase detecting unit and the output from said test signal generating unit, said output of said selecting unit being supplied as an input to said loop filter unit.

*A
cont
fig. 4*

29. A receiver circuit arranged in a receiving unit of multiplex radio equipment, comprising:

an identifying circuit for identifying a signal at a predetermined identification level, said signal being obtained by demodulating a multilevel orthogonal modulated signal;

a clock regenerating circuit for regenerating a signal identification clock for said identifying circuit to supply said clock to said identifying circuit; and

a clock phase detecting unit for detecting a phase component of said signal identification clock based on clock phase difference information supplied to said identifying circuit and signal error differential information obtained by said identifying circuit and then supplying said resultant phase component to said clock regenerating circuit.

30. The receiver circuit arranged in a receiving unit

Fig. 1

A
C
X

of multiplex radio equipment, according to claim 29,
wherein said clock phase detecting unit comprises:

a clock phase difference detecting unit for detecting
said clock phase difference information supplied to said
identifying circuit;

a signal error differential detecting unit for
detecting signal error differential information obtained by
said identifying circuit; and

a clock phase calculating unit for calculating the
phase component of said signal identification clock based
on the output from said clock phase difference detecting
unit and the output from said signal error differential
detecting unit.

31. The receiver circuit arranged in a receiving unit
of multiplex radio equipment, according to claim 29,
wherein said clock phase calculating unit comprises a
dividing unit that subjects the output of said error
detecting unit and the output of said signal inclination
detecting unit to a dividing calculation process.

32. The receiver circuit arranged in a receiving unit
of multiplex radio equipment, according to claim 29,
wherein said clock phase calculating unit is formed as an

*AT
CONT*

exclusive OR calculating unit that subjects the output of
said error detecting unit and the output of said signal
inclination detecting unit to an exclusive OR calculation
process.

33. A receiver circuit arranged in a receiving unit
of multiplex radio equipment, said receiving unit having an
identifying circuit that identifies a signal obtained by
demodulating a multilevel orthogonal modulated signal at a
predetermined identification level, and a clock
regenerating circuit regenerating a signal identification
clock for said identifying circuit to supply said clock to
said identifying circuit, comprising:

a clock regenerating unit for regenerating said
signal identification clock based on a signal before said
multilevel orthogonal modulation signal is detected;

a phase adjusting unit for adjusting the phase of a
clock sent from said clock regenerating unit and supplying
the resultant clock to said identifying circuit; and

a clock phase detecting unit for detecting a phase
component of said signal identification clock based on
clock phase difference information supplied to said
identifying circuit and signal error differential
information obtained by said identifying circuit and then

✓ 4

supplying said resultant phase component to said clock regenerating circuit.

34. The receiver circuit arranged in a receiving unit of multiplex radio equipment, according to claim 33, further comprising an averaging unit arranged between said clock phase detecting unit and said phase adjusting unit, for averaging the output from said clock phase detecting unit.

not shown

Q1 CONX

35. The receiver circuit arranged in a receiving unit of multiplex radio equipment, according to claim 33, wherein said identifying circuit comprises plural identifying units corresponding to the number of plural demodulated signals obtained by demodulating said multilevel orthogonal modulated signal; and wherein said clock regenerating unit, said phase adjusting unit, and said clock phase detecting unit are used in common to said plural identifying units.

36. The receiver circuit arranged in a receiving unit of multiplex radio equipment, according to claim 33, wherein said identifying circuit comprises plural identifying units corresponding to the number of plural

*At
cont*

demodulated signals obtained by demodulating said multilevel orthogonal modulated signal; and further comprising an averaging unit arranged between said clock phase detecting unit and said phase adjusting unit, for averaging the output from said clock phase detecting unit; and wherein said clock regenerating unit, said phase adjusting unit, said averaging unit, and said clock phase detecting unit are used in common to said plural identifying units.

37. The receiver circuit arranged in a receiving unit of multiplex radio equipment, according to claim 33, wherein said identifying circuit comprises plural identifying units corresponding to the number of plural demodulated signals obtained by demodulating said multilevel orthogonal modulated signal; and wherein said clock regenerating unit is used in common to said plural identifying units; and wherein plural phase adjusting units and plural clock phase detecting units are arranged corresponding to said plural identifying units.

38. The receiver circuit arranged in a receiving unit of multiplex radio equipment, according to claim 33, wherein said identifying circuit comprises plural

✓ CONX

identifying units corresponding to the number of plural demodulated signals obtained by demodulating said multilevel orthogonal modulated signal; and further comprising an averaging unit arranged between said clock phase detecting unit and said phase adjusting unit, for averaging the output from said clock phase detecting unit; and wherein said clock regenerating unit is used in common to said plural identifying units, and a plurality of said phase adjusting units, said averaging units and said clock phase detecting units are arranged corresponding to said plural identifying units.

✓ A

39. The receiver circuit arranged in a receiving unit of multiplex radio equipment, according to claim 33, further comprising a test signal generating unit for generating a test signal; and a selecting unit for selectively producing the output from said clock phase detecting unit and the output from said test signal generating unit, said output of said selecting unit being supplied as an input to said phase adjusting unit.

✓ h

40. A receiver circuit arranged in a receiving unit of multiplex radio equipment, said receiving unit including an identifying circuit for identifying a signal at a

predetermined identification level, said signal being obtained by demodulating a multilevel orthogonal modulated signal, and a clock regenerating circuit regenerating a signal identification clock for said identifying circuit and then supplying said signal identification clock to said identifying circuit; comprising:

a clock phase detecting unit for detecting a phase component of said signal identification clock based on clock phase difference information supplied to said identifying circuit and signal error differential information obtained by said identifying circuit and supplying said phase component to said clock regenerating circuit;

a loop filter unit for integrating the output from said clock phase detecting unit; and

an oscillating unit for producing a signal identification clock for said identifying circuit to said identifying circuit, in response to the output as a control input from said loop filter unit.

41. The receiver circuit arranged in a receiving unit of multiplex radio equipment, according to claim 40, wherein said identifying circuit comprises plural identifying units corresponding to the number of plural

*ft
cont*

demodulated signals obtained by demodulating said
multilevel orthogonal modulation signal; and wherein said
clock phase detecting unit, said loop filter unit, and said
oscillating unit are used in common to said plural
identifying units.

42. The receiver circuit arranged in a receiving unit
of multiplex radio equipment, according to claim 40,
wherein said identifying circuit comprises plural
identifying units corresponding to the number of plural
demodulated signals obtained by demodulating said
multilevel orthogonal modulated signal; and wherein said
loop filter unit and said oscillating unit are used in
common to said identifying units, and plural clock phase
detecting units are arranged corresponding to said
identifying units; and further comprising a composing unit
that composes outputs of said plural clock phase detecting
units and then supplies the resultant output as an input to
said loop filter unit.

43. The receiver circuit arranged in a receiving unit
of multiplex radio equipment, according to claim 40,
wherein said identifying circuit comprises plural
identifying units corresponding to the number of plural

fl
cont

demodulated signals obtained by demodulating said
multilevel orthogonal modulated signal; and further
comprising plural clock phase detecting units and plural
loop filter units being arranged corresponding to said
plural identifying units; said oscillating unit being used
in common to said plural identifying units; a part of said
plural identifying units being connected to said
oscillating unit via said phase adjusting unit, said output
of said loop filter unit being supplied as a control input
to said oscillating unit or said phase adjusting unit.

44. The receiver circuit arranged in a receiving unit
of multiplex radio equipment, according to claim 40,
wherein said identifying circuit comprises plural
identifying units corresponding to the number of plural
demodulated signals obtained by demodulating said
multilevel orthogonal modulated signal; and wherein said
loop filter unit and said oscillating unit are used in
common to said plural identifying units; and further
comprising a second clock phase detecting unit for
detecting the phase component of said signal identification
?

clock in a method different from that of said clock phase
detecting unit and a composing unit for composing the
output from said clock phase detecting unit with the output

AI CORX

from said second clock phase detecting unit, the output of
said composing unit being supplied as an input to said loop
filter unit.

45. The receiver circuit arranged in a receiving unit
of multiplex radio equipment, according to claim 40,
wherein said identifying circuit comprises plural
identifying units corresponding to the number of plural
demodulated signals obtained by demodulating said
multilevel orthogonal modulated signal; and wherein said
loop filter unit and said oscillating unit are used in
common to said plural identifying units; and further
comprising a second clock phase detecting unit for
detecting the phase component of said signal identification
clock in a method different from that of said clock phase
detecting unit and a selecting unit for selectively
producing the output from said clock phase detecting unit
and the output from said second clock phase detecting unit,
the output of said selecting unit being supplied as an
input to said loop filter unit.

46. The receiver circuit arranged in a receiving unit
of multiplex radio equipment, according to claim 40,
further comprising a test signal generating unit for

~~generating a test signal; and a selecting unit for selectively producing the output from said clock phase detecting unit and the output from said test signal generating unit, said output of said selecting unit being supplied as an input to said loop filter unit.~~

→ reads on Figs. 4-6 only (not Figs. 1-3) ?

47. A receiver circuit arranged in a receiving unit of multiplex radio equipment, comprising:

an identifying circuit for identifying a demodulated signal at a predetermined identification level, said demodulated signal being obtained by demodulating a multilevel orthogonal modulated signal;

a clock regenerating circuit for regenerating a signal identification clock for said identifying circuit to supply said signal identification clock to said identifying circuit; and

a clock phase detecting section for detecting a phase component of said signal identification clock, based on clock-phase-detecting composite input information including any one of (i) a combination of demodulated signal which is obtained by demodulating the multilevel orthogonal modulated signal and an equalized demodulated signal and (ii) a combination of clock phase information to be supplied to said identifying circuit and signal error