Consultas SQL - SELECT PARTE 2

Prof. Dr. Anderson Chaves Carniel

accarniel@ufscar.br

Base de dados (esquema relacional) considerada

Empregado = {PrimeiroNome, InicialMeio, UltimoNome, NumEmpregado, DataNascimento, Endereco, Sexo, Salario, NumSupervisor, NumDepto Departamento = {NomeDepto, NumDepto, NumGerénte, DataInicioGerencia} Localizacao_Depto = {NumDepto, Localizacao} Projeto = {NomeProj, NumProj, Localizacao, NumDepto} Trabalha = {NumEmpregado, NumProj, Horas}

O esquema possui os dados disponibilizados no Moodle Carregá-los usando o pgAdmin

Dependente = {NumEmpregado, NomeDependente, Sexo, DataAniversario, Parentesco}

Álgebra relacional VERSUS SQL: UNIÃO

• União:

- Resulta em uma tabela que contém todas as tuplas das tabelas envolvidas (colunas devem ser compatíveis de domínio)
- Exemplo: retornar todos os nomes de empregados e dependentes

COMO fica (em álgebra relacional e em SQL)?

Álgebra relacional VERSUS SQL: UNIÃO

• União:

- Resulta em uma tabela que contém todas as tuplas das tabelas envolvidas (colunas devem ser compatíveis de domínio)
- Exemplo: retornar todos os nomes de empregados e dependentes
- Álgebra relacional:

 $\Pi_{\{nomedependente\}}$ dependente $\cup \Pi_{\{primeironome\}}$ empregado

• SQL:

SELECT nomedependente as nomes FROM dependente UNION

SELECT primeironome FROM empregado

<u>, , , , , , , , , , , , , , , , , , , </u>	
	nomes character varying
1	Romeu
2	Vicente
3	Nicoli
4	Raissa
5	Carlos
6	Fran
7	André
8	Karla
9	Ana
10	Antonio
11	Carla
12	Geraldo
13	Julieta
14	Pita
15	Roberto
16	Lucia
17	Nicolai
18	Rodrigo
19	Roberta

Álgebra relacional VERSUS SQL: INTERSECÇÃO

- Intersecção:
 - Resulta em uma tabela que contém somente as tuplas em comum entre as tabelas envolvidas (colunas devem ser compatíveis de domínio)
- Exemplo: retornar todos os nomes comuns de empregados e dependentes

COMO fica (em álgebra relacional e em SQL)?

Álgebra relacional VERSUS SQL: INTERSECÇÃO

- Intersecção:
 - Resulta em uma tabela que contém somente as tuplas em comum entre as tabelas envolvidas (colunas devem ser compatíveis de domínio)
- Exemplo: retornar todos os nomes comuns de empregados e dependentes
- Álgebra relacional:

 $\Pi_{\{nomedependente\}}$ dependente $\cap \Pi_{\{primeironome\}}$ empregado

• SQL:

SELECT nomedependente as nomes FROM dependente

INTERSECT

SELECT primeironome FROM empregado

resultado vazio para o consulta, considerando o conjunto de dados atual

Exercício: inserir 2 tuplas para retornar um resultado para esta consulta

Álgebra relacional VERSUS SQL: DIFERENÇA

Diferença:

- Resulta em uma tabela que contém somente as tuplas da primeira relação mas que não estão na segunda relação (colunas devem ser compatíveis de domínio)
- Exemplo: retornar todos os nomes de empregados que não são usados como nomes de dependentes

COMO fica (em álgebra relacional e em SQL)?

Álgebra relacional VERSUS SQL: DIFERENÇA

Diferença:

- Resulta em uma tabela que contém somente as tuplas da primeira relação mas que não estão na segunda relação (colunas devem ser compatíveis de domínio)
- Exemplo: retornar todos os nomes de empregados que não são usados como nomes de dependentes
- Álgebra relacional:

 $\Pi_{\{primeironome\}}\ empregado-\Pi_{\{nomedependente\}}\ dependente$

SQL:

SELECT primeironome FROM empregado

EXCEPT

SELECT nomedependente FROM dependente

	primeironome character varying	
1	Julieta	
2	Romeu	
3	Lucia	
4	Carlos	
5	Fran	
6	André	
7	Karla	
8	Ana	
9	Antonio	
10	Carla	
11	Geraldo	

Álgebra relacional versus SQL: operações de conjunto

- PostgreSQL tem variações nesses operadores, verificar o manual online!
 - O padrão para essas operações é eliminar tuplas repetidas (DISTINCT)
 - Para manter tuplas repetidas no resultado, inclusive no UNION, devese usar o ALL depois da palavra do operador de conjunto

Álgebra relacional	SQL
U	UNION
\cap	INTERSECT
	EXCEPT