EE4.07 Coding Theory

W. Dai

Imperial College London (IC)

2015

Syllabus

Instructor: Dr. Wei Dai

Lectures: 2 hours per week \times 10 weeks = 20 hours

Office hours: Tuesday and Friday 10:00-10:55 (Room 811, EEE Building)

Assessment: One exam in the next summer.

Textbook: No textbook is required. You can rely on lecture notes.

References:

- ▶ "Introduction to coding theory" Ron M. Roth
- ▶ "Coding Theory: a First Course," S. Lin and C. Xing
- ▶ "Codes: An Introduction to Information Communication and Cryptography," N. L. Biggs

Contents

- 1. Mathematical foundations: finite fields
- 2. Cryptography
 - Password management: store, exchange, and secret share
 - Public key cryptography
 - Digital signature
- 3. Error correcting codes
 - Linear block codes
 - Hamming codes
 - Reed-Solomon codes and decoding
- 4. Modern codes
 - Brief introduction to information theory
 - Low-density parity check (LDPC) codes
 - Polar codes

Section 1 Finite Fields

- Basic facts
 - Euclidean algorithm
 - Unique factorisation theorem
- Finite fields: definition and construction
- ► Finite fields: general properties
- Primitive elements
- Polynomial factorisation and minimal polynomials

For basic number theory, the best reference is Wikipedia. For contents relevant to finite fields, refer to Lin&Xing's book, Chapter 3.

Three Facts for Coding Theory

Euclidean geometry: all theorems are derived from a small number of axioms.

This course: mostly relies on three facts.

- A polynomial of degree n has at most n roots.
- \blacktriangleright Every positive integer n>1 can be uniquely represented as a product of prime numbers. (will be proved.)
- ► Euclidean algorithm to compute the greatest common divisor. (Details will be given.)

Greatest Common Divisor (GCD)

How to find the gcd for 0 < b < a?

```
\gcd(5,13) = 1. (Easy!) \gcd(20,36) = 4. (OK) But \gcd(654,2406) = ?
```

The Euclidean Algorithm

Lemma 1.1 (Euclidean Algorithm)

Let $a, b \in \mathbb{Z}^+$. Without loss of generality (WLOG), assume a < b. To find the greatest common divisor of a and b,

$$\begin{array}{rcl} a & = q_1 b & +r_1 \\ b & = q_2 r_1 & +r_2 \\ r_1 & = q_3 r_2 & +r_3 \\ \vdots & \vdots & \vdots \\ r_{n-2} & = q_n r_{n-1} & +r_n \\ r_{n-1} & = q_{n+1} r_n \end{array}$$

Then $d := \gcd(a, b) = r_n$.

The Euclidean Algorithm: An Example

Example 1.2

$$\gcd(654, 2406) = ?:$$

$$2406 = 3 \times 654 +444$$

$$654 = 1 \times 444 +210$$

$$444 = 2 \times 210 +24$$

$$210 = 8 \times 24 +18$$

$$24 = 1 \times 18 +6$$

$$18 = 3 \times 6$$

$$\gcd(654, 2406) = 6.$$

The Euclidean Algorithm: Theory

Theorem 1.3

For 0 < b < a, define $r = a \mod b \neq 0$. Then $\gcd(a, b) = \gcd(b, r)$.

Proof: Let a = bq + r where $1 \le r < b$. Let $d_1 = \gcd(a, b)$ and $d_2 = \gcd(b, r)$. Want to show $d_1 = d_2$. $d_1|a$ and $d_1|b \Rightarrow d_1|(a - ba) \Rightarrow d_1|r$

$$\begin{aligned} d_1|a \text{ and } d_1|b &\Rightarrow d_1|\left(a-bq\right) \Rightarrow d_1|r\\ d_2 &= \gcd\left(b,r\right) \end{aligned} \right\} \Rightarrow d_1 \leq d_2. \\ d_2|b \text{ and } d_2|r &\Rightarrow d_2|\left(bq+r\right) \Rightarrow d_2|a\\ d_1 &= \gcd\left(a,b\right) \end{aligned} \right\} \Rightarrow d_2 \leq d_1.$$

Therefore, $d_1 = d_2$.

Corollary 1.4 (Validation of Euclidean Alg.)

In the Euclidean algorithm,

$$\gcd(a,b) = \gcd(b,r_1) = \cdots = \gcd(r_{n-1},r_n) = r_n.$$

Bézout's Identity

Lemma 1.5 (Bézout's Identity or Bézout's Lemma)

Given positive integers a and b, let $d=\gcd{(a,b)}$. Then d can be written as an integer linear combination of a and b, i.e., $\exists x,y\in\mathbb{Z}$ s.t. $d=\gcd{(a,b)}=xa+yb$.

$$r_n = -q_n r_{n-1} + r_{n-2}$$

$$= -q_n \left(-q_{n-1} r_{n-2} + r_{n-3} \right) + r_{n-2}$$

$$= \left(1 + q_n q_{n-1} \right) r_{n-2} - q_n r_{n-3}$$

$$= \cdots = xa + yb.$$

Example 1.6 (gcd (13, 5) = 1)

□ -1'.1.... ∧1...

Euclidean Alg.	bezout s identity
$13 = 2 \cdot 5 + 3$	1 = 3 - 2
$5 = 1 \cdot 3 + 2$	$\begin{array}{ccc} 1 & -3 - 2 \\ & = 3 - (5 - 3) = 2 \cdot 3 - 5 \end{array}$
$3 = 1 \cdot 2 + 1$	$= 3 - (3 - 3) = 2 \cdot 3 - 3$ $= 2 \cdot (13 - 2 \cdot 5) - 5 = 2 \cdot 13 - 5 \cdot 5$
$2 = 2 \cdot 1$	$= 2 \cdot (13 - 2 \cdot 3) - 3 = 2 \cdot 13 - 3 \cdot 3$

Dr. a. P. Henri

Euclidean Algorithm for Polynomials

Extend the Euclidean algorithm to polynomials.

Example 1.7

Let
$$a(x) = x^4 + x^2 + x + 1$$
 and $b(x) = x^2 + x$. Find $gcd(a(x), b(x))$.

$$x^{4} + x^{2} + x + 1 = (x^{2} - x + 2)(x^{2} + x) + (-x + 1)$$

$$x^{2} + x = (-x - 2)(-x + 1) + 2$$

$$-x + 1 = (-\frac{1}{2}x + \frac{1}{2}) \cdot 2.$$

One has

$$2 = (x^{2} + x) + (x + 2) (-x + 1)$$

$$= b(x) + (x + 2) (a(x) - (x^{2} - x + 2) b(x))$$

$$= (x + 2) a(x) + (-x^{3} - x^{2} - 3) b(x).$$

As a result,

$$1 = \gcd(a(x), b(x)) = \frac{1}{2}(x+2) a(x) - \frac{1}{2}(x^3 + x^2 + 3) b(x).$$

Fundamental Theorem of Arithmetic

Theorem 1.8 (Unique Factorisation Theorem)

Any $n \in \mathbb{Z}^+$, n > 1, can be uniquely represented as a product of prime powers:

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} = \prod_{i=1}^k p_i^{\alpha_i}$$

Example 1.9 (Applications)

If we know the factorisation of a and b,

► Greatest common divisor:

$$\gcd(a,b) = 2^{\min(a_2,b_2)} 3^{\min(a_3,b_3)} 5^{\min(a_5,b_5)} 7^{\min(a_7,b_7)} \cdots$$
$$= \prod_i p_i^{\min(a_{p_i},b_{p_i})},$$

► Least common multiple:

$$lcm(a,b) = 2^{\max(a_2,b_2)} 3^{\max(a_3,b_3)} 5^{\max(a_5,b_5)} 7^{\max(a_7,b_7)} \cdots
= \prod_i p_i^{\max(a_{p_i},b_{p_i})}.$$

Some Examples

Example 1.10

$$4 = 2^2$$
.
 $6 = 2 \cdot 3$.
 $\gcd(4, 6) = 2^1 \cdot 3^0 = 2$.
 $\ker(4, 6) = 2^2 \cdot 3^1 = 12$.

$$4 = 2^{2}$$
.
 $9 = 3^{2}$.
 $\gcd(4, 9) = 2^{0} \cdot 3^{0} = 1$.
 $\ker(4, 9) = 2^{2} \cdot 3^{2} = 36$.

$$654 = 2 \cdot 3 \cdot 109.$$

$$2406 = 2 \cdot 3 \cdot 401.$$

$$\Rightarrow \qquad \gcd(654, 2406) = 6.$$

$$\lg (654, 2406) = 262254.$$

Proof of Unique Factorisation Theorem

Existence: By induction.

Assume it is true for all numbers less than n.

If n is prime, n is the product of one prime n.

Otherwise, $\exists a, b$ where $n = a \cdot b$ and $1 < a \le b < n$. By the induction

hypothesis, $a=p_1p_2\cdots p_n$ and $b=q_1q_2\cdots q_m$ are products of primes.

Then $n = p_1 p_2 \cdots p_n q_1 q_2 \cdots q_m$ is the product of primes.

 \Diamond

Uniqueness: will need the Euclid's lemma.

Euclid's Lemma

Lemma 1.11 (Euclid's Lemma)

Let p be a prime number. If $p \mid ab$, then $p \mid a$ or $p \mid b$ (or both). Or equivalently,

- If $p \nmid a$ and $p \nmid b$, then $p \nmid ab$.
- If $p \nmid a$ and $p \mid ab$, then $p \mid b$.

Proof of the last statement: Since $p \nmid a$, gcd(p, a) = 1.

By Bézout's Identity, $\exists x,y \in \mathbb{Z}$ s.t.

$$xp + ya = 1$$
.

Multiply both sides by b,

$$xpb + yab = b.$$

Since $p \mid xpb$ and $p \mid ab$ (by assumption), it holds that $p \mid xpb + yab$. Hence $p \mid b$.

Proof of Unique Factorisation Theorem (Uniqueness)

Assume that n > 1 is the product of primes in two different ways:

$$n = p_1 p_2 \cdots p_m$$
, and $n = q_1 q_2 \cdots q_n$.

We shall show m=n and that the q_i are a rearrangement of the p_i .

WLOG, assume m < n. By Euclid's lemma, p_1 must divide one of the q_i . Relabel the q_i if necessary, say that $p_1|q_1$. But q_1 is prime. Hence $p_1=q_1$ so that

$$\frac{n}{p_1} = p_2 \cdots p_m = q_2 \cdots q_n.$$

Repeat the process, we eventually arrive at

$$\frac{n}{p_1 \cdots p_m} = 1 = q_{m+1} \cdots q_n$$

 $\frac{n}{p_1\cdots p_m}=1=q_{m+1}\cdots q_n.$ From this, it is clear that m=n and every q_j is a p_i .

Fields: Definition

Definition 1.12 (Field)

A field $\mathbb F$ is a nonempty set of elements with two operations, called addition (+) and multiplication (\cdot) .

- $ightharpoonup \mathbb{F}$ is closed under + and \cdot , i.e., a+b and $a\cdot b$ are in \mathbb{F} .
 - ▶ Commutative: a + b = b + a
 - Associative: a + (b + c) = (a + b) + c
 - $\qquad \qquad \textbf{Distributive} \ a\left(b+c\right) = ab + ac$
- Exists two distinct identity 0 and 1 (additive and multiplicative identities, respectively)
 - $a + 0 = a, \forall a \in \mathbb{F}$
 - \bullet $a \cdot 1 = a$ and $a \cdot 0 = 0$, $\forall a \in \mathbb{F}$
 - ▶ Additive inverse: $\forall a \in \mathbb{F}$, $\exists (-a) \in \mathbb{F}$, s.t. a + (-a) = 0.
 - ▶ Multiplicative inverse: $\forall a \in \mathbb{F} \setminus \{0\}$, $\exists a^{-1} \in \mathbb{F}$, s.t. $a \cdot a^{-1} = 1$.

Example: \mathbb{R} , \mathbb{Q} , \mathbb{Z}_7 are fields, \mathbb{Z} is not.

Integer Ring

Definition 1.13 (Modulo)

The modulo operator finds the remainder of one number divided by another.

Examples: $5 \mod 4 = 1$, $14 \mod 4 = 2$.

Definition 1.14 (Integer Ring)

- $ightharpoonup \mathbb{Z}_m = \{0, \cdots, m-1\}$: a nonempty set of elements.
- ightharpoonup "+" operator: $+ \mod m$
- "·" operator: $\cdot \mod m$.

```
Example of m=4:
```

$$\mathbb{Z}_m = \{0, 1, 2, 3\}.$$

$$1+1=2 \pmod{4}$$
; $2+3=1 \pmod{4}$.

$$3 \cdot 3 = 1 \pmod{4}$$
; $2 \cdot 2 = 4 = 0 \pmod{4}$.

Examples: Integer Rings Versus Fields

- $ightharpoonup \mathbb{Z}_3$ is a field.
 - -0 = 0, -1 = 2, -2 = 1.
 - $1^{-1} = 1, 2^{-1} = 2.$
- $ightharpoonup \mathbb{Z}_4$ is not a field.
 - -0 = 0, -1 = 3, -2 = 2, -3 = 1.
 - $1^{-1} = 1, \ \ 2^{-1}, \ 3^{-1} = 3.$

When a Multiplicative Inverse Exists

Lemma 1.15 (Existence of the multiplicative inverse)

Let $a, n \in \mathbb{Z}^+$ with a < n. The multiplicative inverse $a^{-1} \pmod n$ exists iff $\gcd(a, n) = 1$.

Proof:

- 1. If gcd(a, n) = 1, by Bézout's identity $\exists x, y$ s.t. $1 = xn + ya \equiv ya \pmod{n}$. Hence y is a^{-1} .
- 2. If $a^{-1} \pmod{n}$ exists, want to show that $\gcd{(a,n)} = 1$. Suppose not, i.e., $d = \gcd{(a,n)} > 1$. By assumption that a^{-1} exists, $\exists x = a^{-1}$ and y s.t. $1 = xa \mod n = xa yn$.
 - As $d \mid a$ and $d \mid n$, it follows $d \mid (xa yn)$, i.e. $d \mid 1$. This contradicts with d > 1.

Finite Fields of Integers

Theorem 1.16

 \mathbb{Z}_m is a field if and only if m is a prime. (Hence notation \mathbb{F}_n .)

Proof of the "if" part: m be a prime $\Rightarrow \mathbb{Z}_m$ is a field.

 $\forall a \in \mathbb{Z}_m \setminus \{0\}$, since m is a prime, one has $\gcd(a, m) = 1$.

By Lemma 1.15, a^{-1} exists.

Proof of the "only if" part: \mathbb{Z}_m is a field $\Rightarrow m$ is a prime.

Suppose m is not a prime. $\exists 1 < a, b < m \text{ s.t. } a \cdot b = m$.

Since $a = \gcd(a, m) \neq 1$, by Lemma 1.15, a^{-1} does not exist.

An Alternative Proof

Recall: \mathbb{Z}_m is a field if and only if m is a prime. (Hence notation \mathbb{F}_p .)

Lemma 1.17

Let $a, b \in \mathbb{F}_p$. Then ab = 0 implies a = 0 or b = 0.

Proof: Suppose that $a \neq 0$. Then $0 = a^{-1} \cdot 0 = a^{-1} \cdot (a \cdot b) = b$.

Alternative proof of the "only if" part:

Suppose m is not a prime. $\exists 1 < a, b < m$ s.t. $a \cdot b = m = 0 \pmod{m}$. Either a or b is zero mod m. Contradict with 1 < a, b < m.

Set of Polynomials

```
Polynomials over a field \mathbb{F}_p: f(x) = \sum_{i=0}^d a_i x^i, a_i \in \mathbb{F}_p. Degree: highest degree of its terms: \deg(f) = d if a_d \neq 0. Monic polynomials: a_d = 1.
```

Polynomial division:

$$a\left(x\right)=q\left(x\right)b\left(x\right)+r\left(x\right) \text{ where } 0\leq \deg\left(r\left(x\right)\right)<\deg\left(b\left(x\right)\right).$$
 Example: Let $a\left(x\right)=x^3+x+1\in\mathbb{F}_2\left[x\right]$ and $b\left(x\right)=x^2+x\in\mathbb{F}_2\left[x\right].$ Then $a\left(x\right)=\left(x+1\right)b\left(x\right)+1.$

 $f\left(x\right)\in\mathbb{F}\left[x\right]$ is irreducible if $f\left(x\right)=g\left(x\right)h\left(x\right),\,g,h\in\mathbb{F}\left[x\right]$, implies either g or h is a constant (similar to prime numbers).

Finite Fields: Polynomials

$$\mathbb{F}_{p}[x] = \left\{ g(x) = \sum_{i=0}^{d} a_{i} x^{i} : a_{i} \in \mathbb{F}_{p} \right\}.$$

 $\mathbb{F}_{p}[x]/f(x)$: $\mathbb{F}_{p}[x]$ with "mod f(x)" algebra.

It contains all the polynomials with degree less than $\deg(f)$.

Example:
$$f(x) = x^2 + x \in \mathbb{F}_2[x]$$
.

$$\mathbb{F}_{2}[x]/f(x) = \{0, 1, x, x+1\}.$$

$$x \cdot (x+1) = x^2 + x \equiv 0 \bmod f(x).$$

Theorem 1.18

 $\mathbb{F}_{p}\left[x\right]/f\left(x\right)$ is a field iff $f\left(x
ight)$ is irreducible over $\mathbb{F}_{p}.$

Proof: Same idea as before.

- $ightharpoonup \mathbb{F}_q$ contains numbers: q=p.
- \mathbb{F}_q contains polynomials: $q = p^d$ where $d = \deg(f)$.

Example Fields Containing Polynomials

Some irreducible polynomials over \mathbb{F}_2

$$x, x + 1, x^2 + x + 1, x^3 + x + 1, x^3 + x^2 + 1, x^4 + x + 1, \cdots$$

Each of these polynomial generates a finite field.

Example 1.19

	$\mathbb{F}_{2}[x]/x^{3}+x+1$	$\mathbb{F}_2[x]/x^3+x^2+1$
0	0	0
1	1	1
x	x	x
x^2	x^2	x^2
x^3	x+1	$x^2 + 1$
x^4	$x^2 + x$	$x^2 + x + 1$
x^5	$x^2 + x + 1$	x + 1
x^6	$x^2 + 1$	$x^2 + x$

Another Example

Example 1.20 (An Example of \mathbb{F}_{16})

	$\mathbb{F}_2[x]/x^4 + x + 1$		$\mathbb{F}_2\left[x\right]/x^4+x+1$
0	0	x^7	$x^3 + x + 1$
1	1	x^8	$x^{2} + 1$
x	x	x^9	$x^3 + x$
x^2	x^2	x^{10}	$x^2 + x + 1$
x^3	x^3	x^{11}	$x^3 + x^2 + x$
x^4	x+1	x^{12}	$x^3 + x^2 + x + 1$
x^5	$x^2 + x$	x^{13}	$x^3 + x^2 + 1$
x^6	$x^{3} + x^{2}$	x^{14}	$x^{3} + 1$

Useful Exercise

Example 1.21 (An Exercise)

- 1. Understand Examples 1.19 and 1.20.
- 2. For the field $\mathbb{F}_2[x]/x^4+x+1$ in Example 1.20, compute:

$$(x^3 + x^2)(x^3 + x^2 + 1) = ?$$

- ▶ Answer: x + 1.
- $(x^3 + x^2)^{-1} = ?$ (Use Euclidean algorithm)
 - Answer: $x^3 + x$.
- $(x^3 + x^2 + 1)^{-1} = ?$ (Use Euclidean algorithm)
 - Answer: x^2 .

Finite Fields: General Properties?

Previously, we saw two ways to construct finite fields.

- $ightharpoonup \mathbb{F}_p$: p many integers.
- $ightharpoonup \mathbb{F}_p\left[x\right]/f\left(x\right)$: $p^{\deg(f)}$ many polynomials.

What can we say about the size of a finite field \mathbb{F} in general?

Characteristic: Definition

Let \mathbb{F} be an arbitrary field.

By definition, \exists a multiplicative identity, denoted by '1'.

Consider a sequence in \mathbb{F}_q : 1, 1 + 1, \cdots

Since $|\mathbb{F}_q| = q < \infty$, we will see repetitions.

That is,
$$\exists t \in \mathbb{Z}^+$$
 s.t. $\underbrace{1 + \cdots + 1}_{} = t \cdot 1 = 0$.

t times

Remark: To compute $1+\cdots+1=t\cdot 1$, we have used the algebra defined for this field \mathbb{F} .

Definition 1.22

The smallest t s.t. $t \cdot 1 = 0$ is called characteristic of \mathbb{F} .

Characteristic: Property

Lemma 1.23

The characteristic t is always a prime.

Proof: Otherwise, $t \cdot 1 = ab \cdot 1 = 0$.

1st equation uses normal algebra for integers. 2nd equation uses the algebra for the finite field.

This implies a = 0 or b = 0 (by Lemma 1.17).

Contradict with that t is the smallest.

Finite Fields: Size

Theorem 1.24

All finite fields are of the size p^m .

Proof: For any given finite field \mathbb{F}_q , let p be its characteristic.

Choose a nonzero element from \mathbb{F}_q , say b_1 .

Choose another nonzero element from \mathbb{F}_q , say b_2 , such that b_2 and b_1 are linearly independent, i.e.,

$$\lambda_1 b_1 + \lambda_2 b_2 = 0, \ \lambda_1, \lambda_2 \in \mathbb{F}_p \iff \lambda_1 = \lambda_2 = 0.$$

Consider a maximal set

$$\mathcal{B} = \{b_1, \cdots, b_m\} \subset \mathbb{F}$$

which are linearly independent over \mathbb{F}_p .

Define the linear span of ${\cal B}$

$$\operatorname{span}(\mathcal{B}) = \{\lambda_1 b_1 + \dots + \lambda_m b_m : \ \lambda_i \in \mathbb{F}_p\}.$$

Finite Fields: Size and Dimension

Proof continued:

- 1. Then $|\mathrm{span}\,(\mathcal{B})| = p^m \leq |\mathbb{F}_q|$. If $\left(\lambda_1^{(1)}, \cdots, \lambda_m^{(1)}\right) \neq \left(\lambda_1^{(2)}, \cdots, \lambda_m^{(2)}\right)$, then $\sum \lambda_i^{(1)} b_i \neq \sum \lambda_i^{(2)} b_i$. Suppose not, i.e., $\sum \lambda_i^{(1)} b_i = \sum \lambda_i^{(2)} b_i$. Then $\sum \left(\lambda_i^{(1)} \lambda_i^{(2)}\right) b_i = 0$ which, by linear independence of b_i 's, implies that $\lambda_i^{(1)} = \lambda_i^{(2)}$. This contradicts the assumption that $\left(\lambda_1^{(1)}, \cdots, \lambda_m^{(1)}\right) \neq \left(\lambda_1^{(2)}, \cdots, \lambda_m^{(2)}\right)$.
- 2. It also holds that $|\operatorname{span}(\mathcal{B})| = |\mathbb{F}_q|$:
 Otherwise $\exists b_{m+1}$ linearly independent of \mathcal{B} .
 This contradicts with the definition of the maximal independent set \mathcal{B} .

Hence, for any finite field \mathbb{F}_q , $q=p^m$.

 \mathcal{B} is a basis of \mathbb{F}_q . m is the dimension of \mathbb{F}_q .

Primitive Elements

 $\forall a \in \mathbb{F}$, consider the sequence a, a^2, a^3, \cdots . Since $|\mathbb{F}_q| = q$ is finite, we will see repetitions. That is, $\exists t \text{ s.t. } a^t = 1$.

Definition 1.25

The order of $a \in \mathbb{F}$ (ord (a)) is the smallest t s.t. $a^t = 1$.

An element of order q-1 is called a primitive element of \mathbb{F}_q .

Example 1.26

Consider the field $\mathbb{F}_2[x]/x^4+x+1$ in Example 1.20.

It can be verified that

ord
$$(x) = \text{ord } (x^2) = \text{ord } (x^4) = 15.$$

Hence x, x^2 , and x^4 are primitive elements (Primitive element is not unique).

It can also be verified that ord $(x^3) = 5$. Hence x^3 is not a primitive element.

Represent a Field by a Primitive Element

Let α be a primitive element. Since $\alpha^0 = 1, \alpha, \dots, \alpha^{q-2}$ are distinct, $\mathbb{F} = \{0, 1, \alpha, \cdots, \alpha^{q-2}\}.$

▶ Standard notation: $\mathbb{F}^* = \mathbb{F} \setminus \{0\} = \{\alpha^0, \cdots, \alpha^{q-2}\}.$

Why primitive elements? Recall Example 1.21

- Calculate multiplication:

 - $(x^3 + x^2) (x^3 + x^2 + 1) = ?$ $\alpha^6 \cdot \alpha^{13} = \alpha^{19} = \alpha^{15+4} = \alpha^4 = x + 1.$
- Find inverse:
 - $(x^3+x^2)^{-1}=?; (x^3+x^2+1)^{-1}=?$
 - Note that $\alpha^{q-1} = 1 = \alpha^0$. The multiplicative inverse of $\alpha^a = \alpha^{q-1-a}$. $\alpha^{-6} = \alpha^{15-6} = \alpha^9 = x^3 + x$: $\alpha^{-13} = x^2$.

Existence of Primitive Elements

Theorem 1.27

Every finite field \mathbb{F}_q contains a primitive element.

To prove this theorem, we need several lemmas. After presenting and proving these lemmas, we shall prove the theorem.

Lemma 1: Fermat's Little Theorem

Theorem 1.28 (Fermat's Little Theorem)

For every $\beta \in \mathbb{F}_q^*$, we have $\beta^{q-1} = 1$. Or equivalently, $\forall \beta \in \mathbb{F}_q$, it holds that $\beta^q = \beta$.

History (from Wikipedia):

Pierre de Fermat first stated the theorem in a letter dated October 18, 1640, to his friend and confidant Frénicle de Bessy.

Fermat did not prove his assertion, only stating: " \cdots , the proof of which I would send to you, if I were not afraid to be too long."

Euler provided the first published proof in 1736, but Leibniz had given virtually the same proof in an unpublished manuscript from sometime before 1683.

(The same proof technique will be used to prove Euler's Theorem.)

Proof of Fermat's Little Theorem

Proof: For any $\beta \in \mathbb{F}_q^*$, define $\beta \mathbb{F}_q^* = \{\beta \beta_1, \cdots, \beta \beta_{q-1}\}$.

- $\beta \beta_i \neq 0 \Rightarrow \beta \mathbb{F}_q^* \subseteq \mathbb{F}_q^*.$ Otherwise $\beta_i = \beta^{-1} \beta \beta_i = \beta^{-1} \cdot 0 = 0.$ A contradiction.
- $\beta \beta_i \neq \beta \beta_j \text{ for } i \neq j. \Rightarrow \left|\beta \mathbb{F}_q^*\right| = q-1.$ Otherwise $\beta_i = \beta^{-1} \left(\beta \beta_i\right) = \beta^{-1} \left(\beta \beta_j\right) = \beta_j.$ A contradiction.

Hence,
$$\mathbb{F}_q^* = \beta \mathbb{F}_q^*$$
.

Therefore,
$$\prod_{\gamma \in \mathbb{F}_a^*} \gamma = \prod_{\gamma \in \beta \mathbb{F}_a^*} \gamma$$
.

That is,

$$\beta_1 \cdot \beta_2 \cdot \dots \cdot \beta_{q-1}$$

$$= (\beta \beta_1) \cdot (\beta \beta_2) \cdot \dots \cdot (\beta \beta_{q-1})$$

$$= \beta^{q-1} \cdot (\beta_1 \cdot \beta_2 \cdot \dots \cdot \beta_{q-1}).$$

We conclude $\beta^{q-1} = 1$.

Examples Related to Fermat's Little Theorem

Example 1.29

$$\begin{array}{ll} \text{Let } \mathbb{F} = \mathbb{F}_5. \ \text{Find } \mathbb{F}^* \ \text{and } \beta \cdot \mathbb{F}^* \ \text{for all } \beta \in \mathbb{F}^*. \\ \mathbb{F}^* = 1 \cdot \mathbb{F}^* = \{1, 2, 3, 4\} & 2 \cdot \mathbb{F}^* = \{2, 4, 1, 3\} \\ 3 \cdot \mathbb{F}^* = \{3, 1, 4, 2\} & 4 \cdot \mathbb{F}^* = \{4, 3, 2, 1\} \end{array}$$

Example 1.30

 $(x+1) \cdot \mathbb{F}^* = \{x+1,1,x\}$

Let
$$\mathbb{F} = \mathbb{F}_2[x] / (x^2 + x + 1)$$
. Find \mathbb{F}^* and $\beta \cdot \mathbb{F}^*$ for all $\beta \in \mathbb{F}^*$. $\mathbb{F}^* = 1 \cdot \mathbb{F}^* = \{1, x, x + 1\}$ $x \cdot \mathbb{F}^* = \{x, x + 1, 1\}$

Existence of Primitive Elements: Lemma 2

Lemma 1.31

For any $\beta \in \mathbb{F}^*$, if $\beta^t = 1$ for some $t \in \mathbb{Z}^+$, then ord $(\beta) | t$.

Proof: Let $a = \operatorname{ord}(\beta) \& t = ka + b$ where 0 < b < a.

Then $\beta^t = \beta^b = 1$.

Contradict with that a is the smallest number that $\beta^a = 1$.

Corollary 1.32

 $\forall \beta \in \mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$, it holds that $\operatorname{ord}(\beta) | q - 1$.

Proof: This is proved by Fermat's little theorem (Theorem 1.28) and Lemma 1.31.

Existence of Primitive Elements: Lemma 3

Lemma 1.33

Suppose that ord $(\beta_1) = r_1$, ord $(\beta_2) = r_2$, and $\gcd(r_1, r_2) = 1$. Let $r = ord(\beta_1\beta_2)$. Then $r = r_1r_2$.

Proof:

- 1. Since $(\beta_1\beta_2)^{r_1r_2} = 1$, it holds $r|r_1r_2$ by Lemma 1.31.
- 2. $r_1r_2|r$: $1 = (\beta_1 \beta_2)^{rr_1} = (\beta_1^{r_1})^r \beta_2^{rr_1} = \beta_2^{rr_1}$. Then $r_2 | rr_1$. Then $r_2 | r$. Similarly, $r_1|r$.
- Hence $\operatorname{lcm}(r_1, r_2) | r$ or equivalently $r_1 r_2 | r$. 3. That $r|r_1r_2$ and $r_1r_2|r$ implies $r=r_1r_2$.

An Example Related to Lemmas 2 & 3

Consider
$$\mathbb{F} = \mathbb{F}_7$$
.

$$\mathbb{F}^* = \{1, 2, 3, 4, 5, 6\}$$

$$ord(1) = 1$$
 $ord(2) = 3$
 $ord(3) = 6$ $ord(4) = 3$
 $ord(5) = 6$ $ord(6) = 2$

You may check the above results with Corollary 1.32.

Note that
$$\operatorname{ord}(2)=3$$
 and $\operatorname{ord}(6)=2$. Fact 1.33 implies that $\operatorname{ord}(2\cdot 6)=3\times 2=6=\operatorname{ord}(5)$.

Existence of Primitive Elements: the Proof

Proof of Theorem 1.27 (the existence):

Let $\mathbb{F}_q^* = \{\alpha_1, \dots, \alpha_{q-1}\}$ and $r_i = \operatorname{ord}(\alpha_i)$. Define $m := \operatorname{lcm}(r_1, \dots, r_{q-1})$. Based on the unique factorisation

theorem (Theorem 1.8), m can be written as $m=p_1^{k_1}\cdots p_\ell^{k_\ell}$.

$$\exists lpha_i \in \mathbb{F}_q^* ext{ s.t. } p_1^{k_1} | ext{ord} (lpha_i):$$
 $k_1 = \max \left(k_1^{(1)}, \cdots, k_1^{(i)}, \cdots, k_1^{(q-1)}\right) ext{ from Example 1.9.}$

Let $\beta_1 = \alpha_i^{\operatorname{ord}(\alpha_i)/p_1^{k_1}}$, then $\operatorname{ord}(\beta_1) = p_1^{k_1}$. Similarly find β_1, \dots, β_k

Similarly, find $\beta_2, \cdots, \beta_\ell$.

Let
$$\beta = \beta_1 \cdot \dots \cdot \beta_\ell$$
. Clearly, ord $(\beta) = m$ (Lemma 1.33).

Hence, m|(q-1) (Corollary 1.32) or $m \leq q-1$.

On the other hand, all q-1 elements in \mathbb{F}_q^* are roots of x^m-1 . Therefore $m\geq q-1$.

It then can be concluded that m=q-1 and β is a primitive element.

Uniqueness of Finite Fields

Definition 1.34

Two fields \mathbb{F} and \mathbb{G} are isomorphic if there exists a one-to-one mapping $\varphi: \mathbb{F} \to \mathbb{G}$ that satisfies $\varphi(ab) = \varphi(a) \varphi(b), \ \varphi(a+b) = \varphi(a) + \varphi(b).$

Theorem 1.35

The finite field \mathbb{F}_q is unique up to isomorphism.

Proof is not required.

Example: $\mathbb{F}_{2}\left[x\right]/\left(x^{3}+x+1\right)$ and $\mathbb{F}_{2}\left[x\right]/\left(x^{3}+x^{2}+1\right)$ are isomorphic.

Example

$$\varphi: \mathbb{F}_{2}[x]/(x^{3}+x^{2}+1) \longrightarrow \mathbb{F}_{2}[y]/(y^{3}+y+1)$$

$$x \mapsto \varphi(x) = y+1$$

φ :	$\mathbb{F}_2\left[x\right]/\left(x^3+x^2+1\right)$	$\mathbb{F}_2[y] = y^3 + y + 1$
	0	0
	1	1
	$x_{\underline{}}$	y+1
	x^2	$y^2 + 1$
	$x^2 + 1$	y^2
	$x^2 + x + 1$	$y^2 + y + 1$
	x + 1	y
	$x^2 + x$	$y^2 + y$

$$\begin{array}{l} \text{Verify } \varphi \left(ab \right) = \varphi \left(a \right) \varphi \left(b \right) \text{:} \\ \varphi \left(x^2 \cdot \left(x+1 \right) \right) = \varphi \left(x^3 + x^2 \right) = \varphi \left(x^2 + 1 + x^2 \right) = \varphi \left(1 \right) = 1. \\ \varphi \left(x^2 \right) \varphi \left(x+1 \right) = \left(y^2 + 1 \right) \cdot y = y^3 + y = y + 1 + y = 1. \end{array}$$

Polynomial Factorisation

Problem: factorise the polynomial $x^{q^m-1}-1$.

Be careful about the concept of "irreducible polynomial":

Have to specify the field we are considering.

Example 1.36

Consider a polynomial $M(x) = x^2 + 1$.

- 1. M(x) is irreducible w.r.t. \mathbb{R} .
- 2. M(x) is reducible w.r.t. \mathbb{C} : M(x) = (x + j)(x j).

Consider a polynomial $M(x) = x^2 + x + 1$.

- 1. M(x) is irreducible w.r.t. \mathbb{F}_2 .
- 2. M(x) is reducible w.r.t. $\mathbb{F}_4 = \mathbb{F}_2[y]/y^2 + y + 1$
 - $\mathbb{F}_4 = \{0, 1, y, y + 1\}.$
 - $M(x) = (x y)(x (y + 1)) = x^2 (y + y + 1)x + y(y + 1).$

A Preview of the Final Result

- Let α be a primitive element of \mathbb{F}_{q^m} . (\mathbb{F}_{q^m} is well defined?) $x^{q^m-1}-1=\prod_{i=0}^{q^m-2}\left(x-\alpha^i\right)$. (Irreducible polynomials in $\mathbb{F}_{q^m}\left[x\right]$)
- $x^{q^m-1}-1=\prod_{k=1}^s M^{(k)}\left(x\right)$. (Irreducible polynomials in $\mathbb{F}_q\left[x
 ight]$)

Example 1.37

Want to factorise $x^3 - 1 \in \mathbb{F}_2[x]$.

Let α be a primitive element of $\mathbb{F}_4 = \mathbb{F}_2[y]/y^2 + y + 1$.

That is, $\mathbb{F}_{4}^{*} = \{1, \alpha, \alpha^{2}\} = \{1, y, y+1\}.$

$$x^{3} - 1 = (x - 1)(x - \alpha)(x - \alpha^{2})$$

$$= (x - 1)(x - y)(x - (y + 1))$$

$$= (x - 1)(x^{2} + x + 1).$$

Both x-1 and x^2+x+1 are irreducible polynomial in $\mathbb{F}_2[x]$.

A factorisation of x^3-1 in terms of irreducible polynomials in $\mathbb{F}_2\left[x\right]$.

Next introduce minimal polynomials $M^{(k)}\left(x\right)$ for factorisation.

Minimal Polynomials

Definition 1.38

A minimal polynomial of $\beta \in \mathbb{F}_{q^m}$ w.r.t. \mathbb{F}_q is a nonzero monic polynomial $M\left(x\right) \in \mathbb{F}_q\left[x\right]$ of the least degree s.t. $M\left(\beta\right) = 0$.

Minimal Polynomials: Examples

Example 1.39

The minimal polynomial of $i := \sqrt{-1} \in \mathbb{C}$ in $\mathbb{R}[x]$ is $x^2 + 1$.

Example 1.40

Consider $\mathbb{F}_4 = \mathbb{F}_2[y]/y^2 + y + 1 = \{0, 1, y, y + 1\}.$

Find minimal polynomials of $\beta \in \mathbb{F}_4$ in $\mathbb{F}_2[x]$.

- $\beta = 0$: the constant poly. M(x) = 0.
- $\beta = 1: M(x) = x + 1.$
- $\beta = y$: $M(x) = x^2 + x + 1$.

There are two possible polynomials of degree one in $\mathbb{F}_2[x]$: $f_1(x)=x$ and $f_2(x)=x+1$. It is easy to verify that $f_1(y)\neq 0$ and $f_2(y)\neq 0$. Try polynomials of degree two in $\mathbb{F}_2[x]$. As M(y)=0, M(x) is the minimal polynomial.

 $\beta = y + 1$: $M(x) = x^2 + x + 1$.

Minimal Polynomials: Properties

Theorem 1.41

- 1. The minimal polynomial of $\beta \in \mathbb{F}_{q^m}$ in $\mathbb{F}_q[x]$ is unique.
- 2. A polynomial $M(x) \in \mathbb{F}_q[x]$ is the minimal polynomial of $\beta \in \mathbb{F}_{q^m}$ iff M(x) is irreducible and $M(\beta) = 0$.

Proof of Part I:

```
Suppose that both M_1\left(x\right) \neq M_2\left(x\right) are minimal polynomials.
```

Then
$$M_1(x) = q(x) M_2(x) + r(x)$$
 for some r s.t. $deg(r) < deg(M_2)$.

Since
$$r(\beta) = M_1(\beta) - q(\beta) M_2(\beta) = 0$$
 and $deg(r) < deg(M_2)$,

by the definition of minimal polynomial r(x) = 0.

Hence,
$$q(x) = c$$
 and $M_1(x) = M_2(x)$.

Proof (Continued)

Part II "only if" part:

Let $M\left(x\right)$ be the minimal polynomial of β . Then $M\left(\beta\right)=0$ obviously. Suppose that $M\left(x\right)$ is not irreducible.

Then M(x) = h(x) f(x) with deg(h), deg(f) < deg(M).

 $M\left(\beta\right)=0$ implies either $h\left(\beta\right)=0$ or $f\left(\beta\right)=0.$

Contradicts that M(x) is the minimal polynomial.

Part II "if" part: Let $M(\beta) = 0$ and M(x) is irreducible.

Suppose that M(x) is not the minimal polynomial of β .

Let f(x) be the minimal polynomial.

Write M(x) = q(x) f(x) + r(x) where deg(r) < deg(f).

Since $r(\beta) = 0$ and f(x) is minimal, one has r(x) = 0.

Contradicts with that M(x) is irreducible.

Construction of Minimal Polynomials

Theorem 1.42

Let α be a primitive element of \mathbb{F}_{q^m} . The minimal polynomial of α^i in $\mathbb{F}_q\left[x\right]$ is

$$M^{(i)}(x) = \prod_{j \in \mathcal{C}_i} (x - \alpha^j),$$

where C_i is the cyclotomic coset of q modulo $q^m - 1$ containing i.

Definition 1.43 (Cyclotomic Coset)

The cyclotomic coset of q modulo $n=q^m-1$ containing i is $\mathcal{C}_i=\left\{i\cdot q^j \text{ mod } n:\ j=0,1,2,\cdots\right\}\subset \mathbb{Z}_n$

Example 1.44

Cyclotomic cosets of $2 \mod 15$ $\left(=2^4-1\right)$ are $\mathcal{C}_0=\{0\},\ \mathcal{C}_1=\{1,2,4,8\},\ \mathcal{C}_3=\{3,6,12,9\},\ \mathcal{C}_5=\{5,10\},\ \mathcal{C}_7=\{7,14,13,11\}.$

An Example of Minimal Polynomials

Consider the field $\mathbb{F}_4 = \mathbb{F}_2\left[y\right]/y^2 + y + 1 = \{0, 1, y, y + 1\}$. Find the minimal poly. of $y + 1 \in \mathbb{F}_4$ in $\mathbb{F}_2\left[x\right]$.

- Cyclotomic cosets of 2 modulo $(2^2 1 = 3)$:
 - $\mathcal{C}_0 = \{0\}, \ \mathcal{C}_1 = \{1, 2\}.$
- y is primitive: $y \neq 1$, $y^2 = y + 1 \neq 1$, $y^3 = y^2 + y = 1$.
- Theorem 1.42 claims $M^{(1)}\left(x\right)=\left(x-y\right)\left(x-y^2\right)=x^2+x+1$ is the minimal poly. of y+1 in $\mathbb{F}_2\left[x\right]$.

Cyclotomic Coset: Properties (1)

Lemma 1.45

Let C_i be the cyclotomic coset of q modulo $q^m - 1$ containing i. Define $qC_i := \{qj \mod q^m - 1 : j \in C_i\}$. Then $qC_i = C_i$.

```
Proof: Define r:=|\mathcal{C}_i|. Write \mathcal{C}_i=\left\{i,\ iq,\ \cdots,\ iq^{r-1}\ (\mathrm{mod}\ q^m-1)\right\}. To show q\mathcal{C}_i=\mathcal{C}_i, it suffices to show iq^r=i\ (\mathrm{mod}\ q^m-1). By defintion of cyclotomic coset, iq^r\ (\mathrm{mod}\ q^m-1)\in\mathcal{C}_i. Suppose iq^r=iq^\ell\ (\mathrm{mod}\ q^m-1) with 1\leq\ell\leq r-1. Then iq^{r-\ell}=i\ (\mathrm{mod}\ q^m-1) and |\mathcal{C}_i|\leq r-\ell< r. This contradicts with |\mathcal{C}_i|=r.
```


Cyclotomic Coset: Properties (2)

Corollary 1.46

Let α be a primitive element of \mathbb{F}_{q^m} . Then

$$M^{(i)}(x) = \prod_{j \in \mathcal{C}_i} (x - \alpha^j) = \prod_{j \in \mathcal{C}_i} (x - \alpha^{jq}).$$

Proof: By Fermat's little theorem (Theorem 1.28)
$$\alpha^{q^m-1} = 1$$
.

$$\prod_{j \in \mathcal{C}_i} (x - \alpha^{jq}) = \prod_{\ell \in q\mathcal{C}_i} (x - \alpha^{\ell}) = \prod_{j \in \mathcal{C}_i} (x - \alpha^j).$$

Proof Sketch of Theorem 1.42

Proof Sketch:

- $M^{(i)}(x) \in \mathbb{F}_q[x]$
 - $M^{(i)}(x) = x^r + a_{r-1}x^{r-1} + \dots + a_0 \text{ where } a_i \in \mathbb{F}_q.$
- $ightharpoonup M^{(i)}(x)$ is "minimal".

Lemma 1.47

Every \mathbb{F}_{q^m} contains a sub-field \mathbb{F}_q . For any $\beta \in \mathbb{F}_{q^m}$, $\beta \in \mathbb{F}_q$ iff $\beta^q = \beta$.

Proof: \Rightarrow : If $\beta \in \mathbb{F}_q$, by Fermat's little theorem (Theorem 1.28) $\beta^q = \beta$. \Leftarrow : The polynomial $x^q - x$ has at most q distinct roots in \mathbb{F}_{q^m} . As all elements in \mathbb{F}_q are roots of $x^q - x$ and $|\mathbb{F}_q| = q$, it holds $\mathbb{F}_q = \{ \text{all roots of } x^q - x \text{ in } \mathbb{F}_{q^m} \}$.

A Useful Lemma

Lemma 1.48

Let p be the characteristic of \mathbb{F}_q . It holds that $(x+y)^p=x^p+y^p$.

Clearly
$$\binom{p}{0}=\binom{p}{p}=1$$
. For any $1\leq i\leq p-1$, $\binom{p}{i}=\frac{p!}{i!(p-i)!}=\frac{p(p-1)\cdots(p-i+1)}{i!}\in\mathbb{Z}^+$. Note that $\gcd{(i!,p)}=1$ but $\binom{p}{i}\in\mathbb{Z}^+$. By Euclid's Lemma (Theorem 1.11), $i!|(p-1)\cdots(p-i+1)$ and $\binom{p}{i}=p\cdot s$ for some $s\in\mathbb{Z}^+$. By the definition of the characteristic, $\binom{p}{i}=0$, $\forall 1\leq i\leq p-1$.

Corollary 1.49

On the field \mathbb{F}_{q^m} , $(x+y)^q = x^q + y^q$.

Proof: $(x+y)^p = \sum_{i=0}^{p} {p \choose i} x^i y^{p-i}$.

$$M^{(i)}(x) \in \mathbb{F}_q[x]$$

Let $r = |\mathcal{C}_i|$. Write

$$M^{(i)}(x) = \sum_{\ell} a_{\ell} x^{\ell} = \prod_{j \in \mathcal{C}_i} (x - \alpha^j)$$

$$\stackrel{(a)}{=} \sum_{\ell} \left(\sum_{j_1, \dots, j_{r-\ell}} \alpha^{j_1} \dots \alpha^{j_{r-\ell}} \right) x^{\ell},$$

where (a) comes from the expansion of $\prod_{j\in\mathcal{C}_i} (x-\alpha^j)$. At the same time,

$$M^{(i)}(x) = \prod_{j \in \mathcal{C}_i} (x - \alpha^j) \stackrel{(a)}{=} \prod_{j \in \mathcal{C}_i} (x - \alpha^{jq})$$

$$= \sum_{\ell} \left(\sum_{j_1, \dots, j_{r-\ell}} \alpha^{j_1 q} \dots \alpha^{j_{r-\ell} q} \right) x^{\ell}$$

$$\stackrel{(b)}{=} \sum_{\ell} \left(\sum_{j_1, \dots, j_{r-\ell}} \alpha^{j_1} \dots \alpha^{j_{r-\ell}} \right)^q x^{\ell}$$

$$= \sum_{\ell} \alpha_{\ell}^q x^{\ell},$$

where (a) comes from Corollary 1.46, (b) comes from Corollary 1.49. Hence, $a_{\ell} = a_{\ell}^{q}$, which implies $a_{\ell} \in \mathbb{F}_{a}$ and $M^{(i)}(x) \in \mathbb{F}_{a}[x]$.

$M^{(i)}(x)$ is "minimal"

Step 1: The roots of $M^{(i)}(x)$ in \mathbb{F}_{q^m} are α^j , $j \in C_i$. As α is primitive, $\alpha^j \neq \alpha^k$ for $j \neq k$. The roots are distinctive.

Step 2: Let $f\left(x\right)\in\mathbb{F}_{q}\left[x\right]$ and $f\left(\alpha^{i}\right)=0$. We shall show $M^{\left(i\right)}\left(x\right)|f\left(x\right)$. Write $f\left(x\right)=f_{0}+f_{1}x+\cdots+f_{n}x^{n}$. For any $j\in\mathcal{C}_{i},\;\exists\ell$ s.t. $j=iq^{\ell}\bmod q^{m}-1$.

$$f(\alpha^{j}) = f(\alpha^{iq^{\ell}}) = f_0 + f_1 \alpha^{iq^{\ell}} + \dots + f_n \alpha^{iq^{\ell} \cdot n}$$
$$= f_0^{q^{\ell}} + f_1^{q^{\ell}} \alpha^{iq^{\ell}} + \dots + f_n^{q^{\ell}} \alpha^{iq^{\ell} \cdot n}$$
$$= (f_0 + f_1 \alpha^i + \dots + f_n \alpha^{in})^{q^{\ell}} = f(\alpha^i)^{q^{\ell}} = 0,$$

i.e., α^{j} is also a root of f. Hence, $M^{(i)}\left(x\right)|f\left(x\right)$. As this holds for all $f\left(x\right)$ s.t. $f\left(\alpha^{i}\right)=0$, $M^{(i)}\left(x\right)$ is the minimal polynomial.

Representatives of Cyclotomic Cosets

Definition 1.50

Consider the cyclotomic cosets of $q \mod n$.

A subset $\{i_1,\cdots,i_j\}\subset\mathbb{Z}_n$ is a complete set of representatives of cyclotomic cosets if

$$C_{i_1} \bigcup \cdots \bigcup C_{i_j} = \mathbb{Z}_n.$$

Example 1.51

Cyclotomic cosets of 2 mod 15 are

$$C_0 = \{0\}, C_1 = \{1, 2, 4, 8\}, C_3 = \{3, 6, 12, 9\}, C_5 = \{5, 10\}, C_7 = \{7, 14, 13, 11\}.$$

The complete set of representatives is $\{0, 1, 3, 5, 7\}$.

Factorisation

Theorem 1.52

Let α be a primitive element of \mathbb{F}_{q^m} . Let $\{i_1, \cdots, i_s\}$ be a complete set of representatives of cyclotomic cosets of q modulo q^m-1 . Then $x^{q^m-1}-1=\prod_{i=0}^{q^m-2}(x-\alpha^i)=\prod_{k=1}^s M^{(i_k)}(x)$.

Proof:

The first equality: The degrees are the same. The coefficients before x^{q^m-1} are the same. The roots are also the same.

The second equality: holds from the definitions of $M^{(i_k)}\left(x\right)$ and the complete set of representatives.

Section 2 Cryptography

- Introduction
- ▶ Password management: store, exchange, and secret share
- The public key cryptography
 - ► The RSA cryptosystem
 - ▶ The ElGamal cryptosystem
- ▶ Digital signature

The contents are heavily based on Biggs' book, Chapters 13 & 14.

Cryptography

Definition 2.1 (Cryptography)

A framework of cryptography includes a set of plaintext messages \mathcal{M} , a set of ciphertext messages \mathcal{C} , and a set of keys \mathcal{K} . For each $k \in \mathcal{K}$, there is an encryption function $E_k : \mathcal{M} \to \mathcal{C}$ and the corresponding decryption function $D_\ell : \mathcal{C} \to \mathcal{M}$ such that

$$D_{\ell}(E_k(m)) = m$$
, for all $m \in \mathcal{M}$.

Cryptography: An Example

One of the oldest cryptographic systems is said to have been used by Julius Caesar over two thousand years ago.

Let \mathcal{A} be the English alphabet set. Let $\mathcal{K}=\{1,2,\cdots,25\}$. For a given key $k\in\mathcal{K}$, replace each letter by the one that is k places later.

For example, if k = 5, then the message

SEE_JYOU_TOMORROW becomes XJJ_DTZ_JYTRTWWTB

For the Caesar system, a simple attack is exhaustive search as there are only 25 keys.

A natural extension is to use any permutation of 26 letters, yielding $26! \approx 4 \times 10^{27}$ keys. Exhaustive search is impossible.

However, in this case another method, called *frequency analysis*, is a much more effective attack.

It uses the observation that the frequencies of the English letters are fairly constant over a wide range of texts.

Another Example: Hill's Cryptography System

Consider a 29-symbol alphabet including 26 English letters, the space $_{\sqcup}$, comma, and full stop. It is mapped to \mathbb{F}_{29} .

Given a stream of symbols, split it into blocks of size n so that each block can be written as $m \in \mathbb{F}_{29}^n$. A key $K \in \mathbb{F}_{29}^{n \times n}$ is an invertible matrix. The encryption function is given by

$$c = Km$$
,

and the decryption function is

$$\boldsymbol{m} = \boldsymbol{K}^{-1} \boldsymbol{c}.$$

Diagram of Cryptography Systems

Adapted from http://www.akadia.com/services/email security.html

- Popular cryptography systems are built on large prime numbers.
- ▶ Symmetric cryptography: encryption key $k = \text{decryption key } \ell$.
- Asymmetric cryptography: $k \neq \ell$.

Existence of Large Prime Numbers

Theorem: There exist infinitely many prime numbers.

Proof:

- 1. Suppose that there exist only finitely many prime numbers.
- 2. List all these prime numbers, p_1, p_2, \dots, p_N .
- 3. Let $x = p_1 \cdot p_2 \cdots p_N + 1$.
- 4. Claim: x is a prime number. Proved by the Unique Factorisation Theorem 1.8 as $\gcd\left(p_i,x\right)=1$.
- 5. This contradicts the assumption that the list of p_1, p_2, \dots, p_N contains all the prime numbers.

Large Prime Numbers

A list of large prime numbers (http://primes.utm.edu)

Prime	When	Prime	When	Prime	When
$2^{57885161} - 1$	2013	$2^{43112609} - 1$	2008	$2^{42643801} - 1$	2009
$2^{37156667} - 1$	2008	$2^{32582657} - 1$	2006	$2^{30402457} - 1$	2005

Large prime numbers matter:

To check whether a 64bit number is a prime or not by brute force, how long will it take?

Assume a computer can evaluate 1G (10^9) "basic operations" per second. $2^{64}/(10^9\cdot 3600\cdot 24\cdot 365)\approx 585 \text{ years!}$

Nowadays, a prime number between 512b and 1024b is often used. Any brute force method is impractical!

How to Store Passwords on a Server?

- ▶ A set of users wish to log in securely to a server.
- ► Each user choose a password.
- ► The passwords are stored in a file
 - Should not be saved in the 'raw' format.
 - Easy to check whether a password is valid.
 - Very difficult to extract the passwords from the file.

Solution: use the discrete logarithmic function.

The Discrete Logarithm

Normal exponential function:

$$x \mapsto y = b^x$$
,

Normal logarithmic function:

$$y \mapsto x = \log_b y$$
.

It can be solved by Taylor expansion efficiently.

Definition 2.2 (Discrete logarithm problem (DLP))

Let p be a prime number and $b \in \mathbb{F}_p^*$ be a primitive element. For any given $y \in \mathbb{F}_p^*$, find the $x \in \mathbb{F}_p^*$ such that $y = b^x \pmod p$.

▶ It is well-defined if and only if b is primitive.

Computation Complexity

```
Discrete exponential function: computational complexity O(\log(p)) Example: 3^{211} = ? \pmod{811} Note that 211 = 128 + 64 + 16 + 2 + 1. One has 3^{211} = 3^{128} \cdot 3^{64} \cdot 3^{16} \cdot 3^2 \cdot 3^1 \pmod{811}. It can be achieved by computing 3^2 = 3 \cdot 3 \pmod{811}, 3^4 = 3^2 \cdot 3^2 \pmod{811}, \cdots, 3^{2^k} = 3^{2^{k-1}} \cdot 3^{2^{k-1}} \pmod{811}.
```

Discrete logarithmic function: computational complexity O(p).

- It is usually solved by brute force search.
 - No sufficiently efficient algorithm in general.

Examples

Let p = 811 and b = 3.

The output of discrete logarithmic function looks random:

$$\log_3 2 = 717$$
; $\log_3 3 = 1$; $\log_3 4 = 624$; $\log_3 5 = 494$; ...

Store Passwords on a Server: A Solution

- ▶ The administrator chooses a prime *p* and a primitive element *b*.
 - ▶ The values of *p* and *b* are also kept on the server.
- ▶ The user i chooses a password. This is converted into a number $x_i \in \mathbb{F}_p^*$.
- Let $y_i = b^{x_i} \pmod{p}$ and the pair (i, y_i) is stored.

Cryptography for Information Exchange

In the previous scheme:

Decoding is difficult for everyone.

In the information exchange scenario, for example, Alice sends some message to Bob.

Alice's information to Bob should be encrypted.

Bob would like to be able to decrypt the message easily.

The traditional choice: Symmetric cryptography

The encryption and decryption keys are the same, i.e., $k = \ell$.

The keys are known to both Alice and Bob for encryption and decryption respectively.

Disadvantages: A secure channel is needed for key exchange.

Disasters may happen if the key is leaked.

Symmetric Key Cryptography

From http://chrispacia.wordpress.com/2013/09/07/bitcoin-cryptography-digital-signatures-explained/

The key is to keep the key safe.

Key Exchange

Problem: Alice and Bob want to share a secret key but their information exchange could be observed by their adversary Eve. How is it possible for Alice and Bob to share a key without making it known to Eve?

Solution: Diffie-Hellman key exchange.

Wikipedia: The scheme was first published by Whitfield Diffie and Martin Hellman in 1976, although it had been separately invented a few years earlier within GCHQ, the British signals intelligence agency, by James H. Ellis, Clifford Cocks and Malcolm J. Williamson but was kept classified.

Diffie-Hellman Key Exchange

- 1. Alice and Bob agree on a large prime p and an integer $q \mod p$. The values of p and q are publicly known.
- 2. Alice picks a secret integer a that she does not reveal to anyone, and Bob picks an integer b that he keeps secret. They compute

$$A = g^a \mod p$$
, and $B = g^b \mod p$,

respectively. They next exchange these computed values. Note that Eve sees the values of A and B.

3. Alice and Bob uses their secret integers to compute

$$A' = B^a \mod p$$
, and $B' = A^b \mod p$,

respectively. Note that $A' = B' = g^{ab}$ is the shared secret key for information exchange.

Secret Share: Motivation

Secrecy-reliability tradeoff in storing an encryption key

- Maximum secrecy: keep a single copy of the key in one location
 - ▶ What if it gets lost.
- ▶ Reliability: store multiple copies at different locations
 - What if a copy falls into the wrong hand.

Secret Sharing: (k, n) threshold scheme.

Store the secret S into n pieces of encrypted words S_1, \dots, S_n such that

- ▶ Knowledge of any K or more S_i pieces makes S easily computable.
- ▶ Knowledge of any k-1 or fewer S_i pieces leaves S undetermined.

Shamir's Secret Sharing

Idea of Adi Shamir's threshold scheme: k points to define a polynomial of degree k-1. 2 points are sufficient to define a line, 3 points are sufficient to define a parabola, 4 points to define a cubic curve and so forth.

A (k, n) threshold scheme to share our secret S:

- 1. Let p be a prime number. Let n < p and S < p.
- 2. Randomly choose k-1 positive integers a_1, \dots, a_{k-1} . Set $a_0 = S$.
- 3. Set $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{k-1} x^{k-1}$.
- 4. Evaluate f(x) at n points to obtain $(t_i, f(t_i))$, $t_i \in \mathbb{F}_p^*$ and $i = 1, \dots, n$.

Claim: given any k such pairs $(t_i, f(t_i))$, we can find the coefficients of the polynomial and therefore a_0 .

Finding the Polynomial Coefficients

Polynomial coefficients can be found via

► Solving the linear system:

$$\begin{bmatrix} f(t_{i_1}) \\ f(t_{i_2}) \\ \vdots \\ f(t_{i_k}) \end{bmatrix} = \begin{bmatrix} 1 & t_{i_1} & \cdots & t_{i_1}^{k-1} \\ 1 & t_{i_2} & \cdots & t_{i_2}^{k-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & t_{i_k} & \cdots & t_{i_k}^{k-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{m-1} \end{bmatrix}.$$

Or polynomial interpolation:

$$f(x) = \sum_{j=1}^{k} f(t_{i_j}) \prod_{\ell \neq j} \frac{x - t_{i_\ell}}{x_{i_j} - x_{i_\ell}}.$$

Cryptography for Information Exchange (2)

A modern solution: Public key algorithms (Asymmetric Cryptography)

Encryption key $k \neq \ell$ decryption key.

The encryption key is public while the decryption key is kept secret.

From http://www.akadia.com/services/email security.html

Comparison

Comparisons of asymmetric cryptography over the symmetric one.

Advantages:

- No secret channel is necessary for the key exchange.
- \blacktriangleright Less key-management problems. Only 2n keys are needed for nentities to communicate securely with one another (each entity maintains a private key and a public key). In a system based on symmetric ciphers, you would need $\binom{n}{2} = n(n-1)/2$ secret keys (each pair of entities agrees on a key).
- ▶ More robust to "brute-force" attack in which all possible keys are attempted.
- Can provide digital signatures.

Disadvantages:

Much slower. The computational complexity of asymmetric cryptography is much larger.

In practice, these two schemes are rarely used exclusively. For example, your browser encrypts a symmetric key using the server's public key.

2015

The ElGamal Cryptography

Key generation:

- ▶ Choose a prime p and a primitive element $b \in \mathbb{F}_p^*$.
- ▶ Private key: choose an integer $a' \in \mathbb{N}$.
- ▶ Public key: $a = b^{a'} \in \mathbb{F}_n^*$.

Encryption: Alice transmits her public key a to Bob and keeps the private key a' secret. Bob randomly choose $t \in \mathbb{N}$ and encrypt the message m to (b^t, ma^t)

Decryption: Alice can recover m via

$$m = ma^t (b^t)^{-a'} = ma^t a^{-t} \bmod p.$$

Advantage:

The random number t generates a random encryption function.

RSA Cryptography

RSA public key cryptography:

Published in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman at MIT.

Key generation

- ▶ Choose primes $p_1 \neq p_2$. Let $n = p_1 p_2$ and $t = (p_1 1)(p_2 1)$.
- ▶ Public key: (n, e) where 1 < e < t and gcd(e, t) = 1.
- ▶ Private key: d where 1 < d < t and $d \cdot e \mod t = 1$.
 - Find d by the Euclidean algorithm.

Encryption: Bob sends his public key (n,e) to Alice and keeps the private key d secret. Alice encrypts the message m to c via

$$c = m^e \mod n$$
.

Decryption: Bob can recover m from c via $m = c^d \mod n$

An Example

- ▶ Bob chooses $p_1 = 47$ and $p_2 = 59$.
- $n = 47 \times 59 = 2773$. $t = 46 \times 58 = 2668$.
- ightharpoonup e = 157 is a valid public key as gcd(e, 2668) = 1.
- ▶ Use Euclidean algorithm, d = 17.
- ightharpoonup To send a message m=5, Alice computes the ciphertext $c = m^e = 5^{157} = 1044 \pmod{2773}$.
- Bob deciphers the ciphertext via $\hat{m} = c^d = 1044^{17} = 5 \pmod{2773}$. which is the correct message.

Theory Behind RSA

Recall Fermat's Little Theorem (Thm 1.28): $\forall a \in \mathbb{F}_p^*, a^{p-1} = 1 \mod p$

Theorem 2.3 (Euler's Theorem)

Let $p_1 \neq p_2$ be two prime numbers. Define $n := p_1 p_2$ and $t := (p_1 - 1)(p_2 - 1)$. Then $\forall a \in \mathbb{Z}^+$,

$$a^{kt+1} = a \bmod n, \ \forall k \ge 0$$

The correctness of RSA:

$$(m^e)^d = m^{ed} = m^{qt+1} = m^{qt} \cdot m = m \mod n.$$

Proof of Euler's Theorem: A Lemma

With a slight abuse of notation, define $x = y \mod p$ if $|x - y| = 0 \mod p$.

Lemma 2.4

For any two positive integers x and y, if $x = y \mod p_1$ and $x = y \mod p_2$, then $x = y \mod p_1 p_2$.

Proof: Since $x = y \mod p_1$ and $x = y \mod p_2$, it is clear that $x - y = k_1 p_1 = k_2 p_2$ for some integers k_1 and k_2 . By Euclid's Lemma (Lemma 1.11), $p_2|(p_1k_1)$ and $\gcd(p_2,p_1)=1$ imply that $p_2|k_1$, or equivalently $k_1 = k_3p_2$ for some integer k_3 . Hence, $x - y = (k_3 p_2) p_1$ and $x \equiv y \mod p_1 p_2$.

2015

Proof of Euler's Theorem

Fix an $a \in \{1, 2, \dots, p_1p_2 - 1\}$.

- We first show that $a^{de} = a \mod p_1$. If $p_1|a$, then it is clear that $a^{de} = a + (a^{de} - 1) a = a \mod p_1$. If $p_1 \nmid a$, then by Fermat's Little Theorem (Thm 1.28) $a^{p_1-1} \equiv 1 \mod p_1$ and therefore $a^{de} \equiv a^{k(p_1-1)(p_2-1)+1} \equiv a \mod p_1$.
- ightharpoonup Similarly $a^{de} = a \mod p_2$.
- $\blacktriangleright \text{ Hence } a^{de} = a \bmod p_1 p_2.$

Euler's Theorem is therefore proved.

Attack

Decryption is hard without the private key.

- Decryption is the inverse function of encryption.
 - Uniquely defined as $m = c^d$.
- Find d from public available information?

```
d = e^{-1} \mod t  (t = (p_1 - 1)(p_2 - 1)).
Without knowing the factorization n = p_1 p_2,
it is difficult to find t and hence d.
```

Digital Signature: The General Principle

Problem:

- ▶ Alice wishes to send a message *m* to Bob.
- ▶ Bob would like to verify that the message comes from Alice.

In physical world, Alice sign the letter.
In digital world, any fixed signature can be easily copied.

General principle:

- ▶ Alice sends (m, y = s(m)),
 - y = s(m) is the message dependent signature.
 - ▶ The signature function *s* should kept secret.
- ▶ Bob checks whether $m = s^{-1}(y)$.
 - ightharpoonup He doesn't know the signature function s.

RSA Signature Scheme

- ▶ Let $p_1 \neq p_2$, $n = p_1 p_2$, and $t = (p_1 1) (p_2 1)$.
- ▶ Public key: (n, e) where $1 < e < t \& \gcd(e, t) = 1$.
- ▶ Private key: 1 < d < t s.t. $d \cdot e = 1 \mod t$.

"Sign" the message:

Alice computes $y = s(m) = m^d \mod n$ and sends (m, y).

Read the signature: If the message comes from Alice, then $y^e = \left(m^d\right)^e = m^{kt+1} = m \bmod n.$

Extend ElGamal Cryptography to ElGamal Signature?

RSA based schemes:

- ▶ In cryptography, we have $D_{\ell}(E_k(m))$.
- ▶ In digital signature, we have $E_k\left(D_\ell\left(m\right)\right)$.
- ▶ This works as $(m^e)^d = (m^d)^e$.

This principle cannot be directly applied to ElGamal scheme.

ElGamal Signature Scheme

Notation:

 $\forall x \in \mathbb{F}_p^*$, let $|x| \in \{1, \dots p-1\}$ be the integer to represent $x \in \mathbb{F}_p^*$.

- lacktriangle Choose a prime p and a primitive element $b\in \mathbb{F}_p^*$.
- ▶ Choose a private key $a' \in \mathbb{N}$. Set the public key $a = b^{a'} \in \mathbb{F}_p^*$.
- ▶ Random choose $1 \le t \le p-1$ such that gcd(t, p-1) = 1.
 - Set u s.t. $t \cdot u = 1 \mod p 1$.
- The signature function $s_t: \mathcal{M} \to (\mathbb{F}_p^*, \mathbb{N})$ is defined by $s_t(m) = (i, j)$, where $i = b^t$, j = u(|m| a'|i|).

The algebra in computing j is w.r.t. normal integers. That is, the multiplication and subtraction are not w.r.t. \mathbb{F}_p .

lackbox(i,j) is a valid signature for the message m if

$$\begin{array}{ll} a^{|i|}i^j &= b^{a'|i|}b^{t\bar{u}(|m|-a'|i|)} \\ &= b^{|m|} \text{ in } \mathbb{F}_p^*. \end{array}$$

Summary

- ► Factorize a product of two large prime numbers
 - RSA public key cryptography
 - RSA signature scheme
- Discrete logarithm problem
 - Store passwords
 - Diffie-Hellman key exchange
 - ElGamal public key cryptography
 - ElGamal signature scheme
- Polynomial
 - Secret share