

Ballistic Characterization of the Scalability of Magnesium Alloy AMX602

by Tyrone L Jones, Katsuyoshi Kondoh, David Moore, Isamu Otsuka, Allan Annis, Hiroto Nakazawa, Yoshinori Ohori, Ryo Numasawa, and Masamichi Takahashi

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Ballistic Characterization of the Scalability of Magnesium Alloy AMX602

by Tyrone L Jones
Weapons and Materials Research Directorate, ARL

Katsuyoshi Kondoh Joining and Welding Research Institute, Osaka University, Osaka, Japan

David Moore and Allan Annis Taber Extrusions, Russellville, AR

Isamu Otsuka and Ryo Numasawa Epson Atmix, Aomori, Japan

Hiroto Nakazawa and Yoshinori Ohori *Pacific Sowa, Tokyo, Japan*

Masamichi Takahashi National Material LP, Elk Grove Village, IL

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE or this collection of information is estimated to average 1 hour per response, including the time for reviewing

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
July 2015	Final	January 2013–January 2015
4. TITLE AND SUBTITLE	•	5a. CONTRACT NUMBER
Ballistic Characterization of th	ne Scalability of Magnesium Alloy AMX602	
		5b. GRANT NUMBER
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
	Condo, David Moore, Isamu Otsuka,	
Allan Annis, Hiroto Nakazawa Masamichi Takahashi	a, Yoshinori Ohori, Ryo Numasawa, and	5e. TASK NUMBER
Masamichi Takanashi		
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NA	, ,	8. PERFORMING ORGANIZATION REPORT NUMBER
US Army Research Laborator	y	A D.I. IID 72.41
ATTN: RDRL-WMP-E Aberdeen Proving Ground, M	D 21005	ARL-TR-7341
9. SPONSORING/MONITORING AGEN		10. SPONSOR/MONITOR'S ACRONYM(S)
9. SPONSOKING/MONITOKING AGEI	VCT IVAINIC(3) AND ADDRESS(ES)	10. SPONSON/MONITOR'S ACKONTINGS
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The US Army Research Laboratory (ARL) formed a collaborative partnership with Osaka University Joining and Welding Research Institute (JWRI), Taber Extrusions, Epson Atmix, Pacific Sowa, Kurimoto, and National Material LP to domestically reproduce and scale-up military-grade magnesium alloy AMX602 at the Taber Extrusions manufacturing facility in Gulfport, MS. AMX602 material was provided in the form of 38.1-mm (1.5-inch)-wide bars, 101.6-mm (4-inch)-wide plate, and 152.4-mm (6-in)-wide plate. ARL and JWRI conducted mechanical analysis and dynamic impact examination to evaluate the lateral dimension scale-up of AMX602. The results were parametrically analyzed and compared with conventionally processed AZ31B-H24 and AA5083-H131. Details of the scalability of the AMX602 alloy are provided.

15. SUBJECT TERMS

magnesium, AMX602, armor mechanisms, AZ31B, aluminum alloy 5083

16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Tyrone L Jones	
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER (Include area code)
Unclassified	Unclassified	Unclassified	UU	30	410-278-6223

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18

Contents

List	of Figures	iv
List	of Tables	iv
1.	Introduction	1
2.	Material Exploration	2
3.	Experimental Evaluation of Raw Materials	3
4.	Powder Metallurgy	4
5.	Fabrication Procedure	4
6.	Mechanical Property Analysis	5
7.	Ballistic Experimental Procedures	6
8.	Ballistic Experimental Results	7
9.	Conclusions	10
10.	References	11
Арр	endix. Raw Ballistic Data	13
List	of Symbols, Abbreviations, and Acronyms	23
Dist	ribution List	24

List of Figures

Fig. 1	AZ31B grain size vs. impact energy absorption1
Fig. 2	a) Schematic illustration of SWAP equipment to produce rapidly solidified Mg alloy powders; b) morphology of Coarse Mg alloy powder prepared by SWAP
Fig. 3	Chemical compositions of noncombustive Mg alloy powders4
Fig. 4	Extruded Mg AMX602 plate5
Fig. 5	Mechanical properties of extruded AMX602 plate6
Fig. 6	The 0.30-cal. FSP schematic diagram
Fig. 7	Projectile weight and hardness specifications7
Fig. 8	Ballistic results of 38-mm-wide plate8
Fig. 9	Ballistic results of scaled-up plate9
Fig. 10	Postballistic images of the AMX602 plates9
List of 1	Tables
Table 1	Objective mechanical properties of Mg armor alloys1
Table 2	Processing specifications of the Taber billets4
Table 3	Processing specifications of the Kurimoto billets5
Table 4	V ₅₀ ballistic limits vs. the 0.30-cal FSP8

1. Introduction

The US Army Research Laboratory's (ARL's) ballistic analysis of magnesium (Mg) alloys over the last 8 years has led to an increased understanding of the material's failure mechanisms and relationship between Mg alloy strength and ductility requirements for lightweight armor applications. While Mg alloys have been used for military structural applications since World War II, very little research has been done to improve its mediocre ballistic performance.² The highest strength commercial Mg alloy available in plate form, AZ31B (1.78 g/cm³), has proven to be a very good substitute armor material for AA5083 (2.66 g/cm³) against armor-piercing projectiles on an equal weight basis.³ It is also an adequate substitute armor material against fragment simulating projectiles (FSPs) within an areal density range that is FSP dependent. However, shearing and scabbing are dominant features during ballistic impact. The ballistic data generated by ARL were used to develop the first set of Mg alloy acceptance standards, MIL-DTL-323333 (MR), titled, "Armor Plate, Magnesium Alloy, AZ31B, Applique". 5 Ultimate tensile strength (UTS), tensile yield strength, ductility, and grain size are all important parameters in determining the ballistic performance of metals. The bulk material properties of AZ31B are shown in Table 1. Figure 1 correlates impact energy absorption (J) versus Mg armor alloy AZ31B grain size (µm).⁶

Table 1 Objective mechanical properties of Mg armor alloys

Mg Alloy	Ultimate Tensile Strength (MPa)	Tensile Yield Strength (MPa)	Elongation to Failure (%)
$AZ31B^7$	245	150	7
New Mg Alloy	400	350	20

Fig. 1 AZ31B grain size vs. impact energy absorption

In 2009, ARL collaborated with the Joining and Welding Research Institute (JWRI) of Osaka University under contract through the International Technology Center-Pacific to develop and evaluate high-strength, high-ductility Mg alloy plate for structural applications that would exceed the ballistic performance of AA5083. Initial evaluation of conventionally rolled AZ31B plate versus powder-formed AZ31B plate showed that grain refinement is needed to significantly improve the viability of Mg armor alloy plate.⁷

New fundamental Mg alloying is needed to increase the impact energy and thus the performance of Mg alloy plates. The result showed a research opportunity to make Mg alloys viable armor materials that could compete with current aluminum (Al) armor alloy solutions. Based on the preliminary material and ballistic analysis, the ARL/JWRI program set goals to develop Mg alloys with the mechanical properties shown on the lower row of Table 1.

Clearly, there were 2 potential paths forward toward achieving these set goals:

- Discover new chemical compositions to create high-strength, high-ductility Mg alloys, while not compromising the desirably low density of 1.78 g/cm³.
- Improve grain refinement through novel processing techniques to produce high-strength, high-ductility Mg alloys.

As a result, ARL and JWRI collaboratively created 2 new experimental Mg alloys, AMX602 and ZAXE1711, in extruded 40-mm bars starting with an advanced metallurgical powder process. The successful ballistic and corrosion evaluation of each material⁸ expanded our partnership into a coalition to reproduce and scale-up the lateral dimensions of AMX602 bars into 305- × 305-mm (12- × 12-inch) plates for commercial production in the United States. Cost was the driver in our selection of AMX602 over ZAXE1711. However, once scaling up of AMX602 is achieved, the same processing methodology can be applied to reproduce ZAXE1711. Details of the scale-up process and ballistic evaluation of AMX602 are discussed in the following sections.

2. Material Exploration

AMX602 (Mg-6Al-0.5Mn-2Ca by mass%) Mg alloy powders produced by the Spinning Water Atomization Process (SWAP) were used as raw input materials. 9,10 The coarse Mg alloy powders had particle dimensions of 1–5 mm. It was previously verified that the coarse Mg powders of these sizes were of low explosion risk. The α -Mg grain size of the raw powders was less than 0.5 μ m. Powder compaction and hot extrusion were applied to these raw powders to fabricate the extruded bars. The bar had dimensions of $24.5 \times 40 \times 1,000$ mm. Tensile test specimens machined

from these bars were evaluated at room temperature. The material microstructures were observed using an optical microscope. The microstructural evaluation of ZAXE1711 is withheld from discussion until the patent application is processed.

3. Experimental Evaluation of Raw Materials

In SWAP powder preparation, schematically illustrated in Fig. 2a, noncombustive AMX602 Mg alloy ingots were melted at 1,053 K in a ceramic crucible covered by a protective inert gas. The molten metals were directly streamed inside the spinning water chamber from a crucible nozzle. Figure 3 shows the chemical composition of AMX602 alloy powders prepared by SWAP. The calcium is necessary because it reduces the combustive properties of the Mg alloys. The impurity content of iron and copper is controlled to less than 0.005% because they are known corrosive elements in Mg alloys. As shown in Fig. 2b, the size of the coarse AMX602 powders prepared by SWAP is approximately 1–4 mm, and they are of irregular shape. A cast ingot with the same composition was also prepared as a reference input material.

Illustration courtesy of Professor Kondoh, JWRI, Osaka University

Photo courtesy of Professor Kondoh, JWRI, Osaka University

Fig. 2 a) Schematic illustration of SWAP equipment to produce rapidly solidified Mg alloy powders; b) morphology of coarse Mg alloy powder prepared by SWAP

AI	Zn	Mn	Fe	Si	Cu	Ca	Mg	
6.01	0.007	0.26	0.002	0.038	0.004	2.09	Bal.	

Fig. 3 Chemical compositions of noncombustive Mg alloy powders

4. Powder Metallurgy

The powder was consolidated at room temperature using a 2,000-kN hydraulic press machine to fabricate the green compact. The green compact had a relative density of 85% and a 42-mm diameter. The columnar compact and cast ingot were heated at approximately 573–673 K for 180 s in an argon gas atmosphere, then immediately consolidated into full density material by hot extrusion. An extrusion ratio of 37 and an extrusion speed 1 m/s were used in this study.

5. Fabrication Procedure

Plate A and Plate B extrusions were performed on a 2,722-tonne (3,000-ton) press with a 279-mm (11-inch) container using a 25.4- \times 101.6-mm (1- \times 4-inch) die. The conditions are detailed in Table 2.

Table 2 Processing specifications of the Taber billets

Plate	A	В
Powder (kg)	25	27
Container temp (C)	427	427
Die temp (C)	426	427
Billet length (cm)	21.6	22.9
Nose billet temp (C)	333	296
Butt billet temp (C)	393	316
Extrusion speed (m/min)	2.44	1.52

The extrusion of Plate A had surface flaws. The cause was thought to be that the extrusion speed was too fast and the compaction too short. Hence, Plate B underwent a longer compaction time and a slower extrusion speed. The material surface and cross section of Plate B was greatly improved based on visual inspection of the extrusion.

Three experiments were conducted using 2 Kurimoto billets on the 1,633-tonne (1,800-ton) press with a 178-mm (7-inch) container to produce $25.4-\times101.6$ -mm (1- \times 4-inch) plates, and then a $25.4-\times152.4$ -mm (1- \times 6-inch) plate on the 2,722-tonne (3,000-ton) press with 279-mm (11-inch) container. Results are shown in Table 3. The material surface and cross section of Plate C, Plate D, and Plate E

looked optically homogeneous. The material surface of Plate E had the best surface appearance.

Table 3 Processing specifications of the Kurimoto billets

Plate	С	D	E
Die Temp (C)	371	288	371
Billet Length (cm)	30.5	30.5	43.2
Nose Billet Temp (C)	316	260	288
Butt Billet Temp (C)	Not Measured	288	367
Extrusion Speed (m/min)	1.83	1.22	1.83

The extruded samples were sent to Osaka University for mechanical property measurement. The results will be discussed in the next section.

6. Mechanical Property Analysis

As mentioned earlier, all extruded plate-specimens were fabricated by using the mass-production equipment under various preheating and extrusion conditions. Figure 4 shows no cracking and fracture of the specimen surfaces. In addition, Fig. 5 indicates that the mean UTS values of the specimens were approximately 355–365 MPa, and the scatter was small. This mean value was almost same as that of the small-scale specimens fabricated in JWRI. Yield strength and elongation were also similar to those obtained at the smaller scale. This means that extrusion process was very stable and the mass-production process could be employed in consolidation of SWAP-Mg alloy powders.

Fig. 4 Extruded Mg AMX602 plate

The extruded SWAP Mg alloy AMX602 was ballistically characterized for 38-mm (1.5-inch)-wide, 101.6-mm (4-inch)-wide, and (152.4-mm) 6-inch-wide plate.

The ballistic threat was selected in a manner that would allow for direct comparison to other metal alloy armor standards, particularly to the Al alloy 5083 (AA5083) armor plate standard. The weldable AA5083 is currently specified for use in many vehicle armor systems.¹¹ The test projectile selected was the 0.30-cal. FSP because it provides for quantifiable macro-mechanism features to be observed between Mg and Al alloys at the 45 kg/m² (9.2 pound per square foot) areal density range.

Ballistic testing of all Mg alloy plate samples was performed by ARL at Aberdeen Proving Grounds, MD, in accordance with MIL-STD-662F, issued 18 December 1997. Ballistic results were characterized using the standard V_{50} test methodology, also documented in MIL-STD-662F.

7. Ballistic Experimental Procedures

The specific ballistic threat used to test the Mg alloy plate samples was the 0.30-cal FSP produced in accordance with MIL-DTL-46593B (MR), issued 6 July 2006, as depicted in Fig. 6.¹³ The weight and hardness specifications are shown in Table 3.

L-Direction	(MPa)	(MPa)	(%)
	YS	UTS	Elongation
A-L direction	287.3	365.2	14.0
B-L direction	293.3	362.9	12.5
C-L direction	281.1	355.7	14.8
D-L direction	278.9	357.2	16.1
E-L direction	285.6	362.7	14.1

Fig. 5 Mechanical properties of extruded AMX602 plate

Fig. 6 The 0.30-cal. FSP schematic diagram

FSP Type	Weight (g)	Rockwell Hardness C
0.30-cal.	2.9	30 ± 2

Fig. 7 Projectile weight and hardness specifications

8. Ballistic Experimental Results

The raw experimental data from this study is provided in the Appendix. Table 4 compares the ballistic limits of the 38.1-mm-wide AMX602 bars manufactured at Taber Extrusions to 40-mm AMX602 bars manufactured by JWRI, ZAXE1711 bars manufactured by JWRI, AZ31B (reference material) manufactured by Magnesium Elektron North America, and AA5083 in terms of equivalent areal densities (i.e., mass per unit surface area) and in terms of the actual plate thicknesses. The AA5083 plate was evaluated in 2014. The V₅₀ ballistic limits of samples B1 and B2 were estimated due to the limited material available. The hardness of the Mg plates was measured on a Brinell 500-kg scale, while the Al plate was measured on the 3,000-kg scale.

Table 4 V_{50} ballistic limits vs. the 0.30-cal FSP

Metal Alloys	Manufacturer	Plate Thickess	Plate Width	Hardness	Ballistic Limit
		mm	mm	HBN	m/s
AZ31B-H24	Mg-Elektron	25.400	304.8	61	843
AA5083 (2014)		17.04	304.8	99	1026
AMX602-1 (JWRI)	JWRI/KURIMOTO	25.190/25.235	40	80	1061
AMX602-2 (JWRI)	JWRI/KURIMOTO	25.171/25.210/25.197	40	80/80/83	1092
AMX602-3 (JWRI)	JWRI/KURIMOTO	25.171/25.178	40	80	1105
AMX602-B1 (Taber)	Taber Extrusions	25.489	38.1	99	1122
AMX602-B2 (Taber)	Taber Extrusions	25.483	38.1	99	1121
ZAXE1711-B (JWRI)	JWRI/KURIMOTO	25.248	40	80	1111
ZAXE1711-C (JWRI)	JWRI/KURIMOTO	25.229/25.241	40	77/83	1117
ZAXE1711-D (JWRI)	JWRI/KURIMOTO	25.210/25.279	40	80	1140

Figure 8 compares the reproduced 38.1-mm-wide AMX602 bars by Taber to the original 40-mm bars produced by JWRI. The performance of AMX602-B1 and AMX602-B2 are similar.

Fig. 8 Ballistic results of 38-mm-wide plate

The 38.1-mm-wide AMX602-B2 bar was evaluated again with the scaled-up AMX602 plates. The performance of 101.6-inch-wide AMX602 plates yielded the highest V_{50} ballistic limits as shown in Fig. 9. Figure 10 illustrates the damage of the 25.4- \times 101.6-mm (1- \times 4-inch) plate and the 25.4- \times 152.4-mm (1- \times 6-inch) plate.

Fig. 9 Ballistic results of scaled-up plate

Fig. 10 Postballistic images of the AMX602 plates

9. Conclusions

Successful reproduction of the ballistic performance of AMX602 was achieved on widths from 38.1-mm-wide bars through 101.6-mm-wide plates produced by Taber. Overall, the AMX602 plates show an 18%-31% improvement over the performance of the baseline AZ31B Mg alloy. Based on the limited number of experimental data, the 152.4-mm plate produced a lower combination of ultimate strength and elongation properties than the 101.6-mm plates, resulting in up to a 7% reduction in a V₅₀ ballistic limit. Still, the 152.4-mm plates provided enough of a deceleration mechanism to exceed the ballistic performance of the objective AA5083 plate by 2%. The anomaly is 101.6-mm Plate D, which showed no correlation between static properties and ballistic performance. A possible explanation may be the die temperature and billet temperature during the extrusion process were different for Plate D. Comparable penetration resistance across all the plates was observed. There was comparable localized damage for the 38.1-mmwide bars through the 152.4-mm-wide plates of AMX602. The plates exhibited good scab containment at the back of the material. Plate A revealed good mechanical properties, especially good ductility. Scaling up to 305-mm-wide bars would be a logical next step based on the performance of the 152.4-mm-wide plate of AMX602. Future research should focus on understanding how to further improve strength without reducing ductility.

10. References

- 1. Jones T, DeLorme R, Burkins M, Gooch W. Ballistic evaluation of magnesium alloy AZ31B. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2007 Apr. Report No.: ARL-TR-4077. Also available at http://www.arl.army.mil/www/default.cfm?technical_report=1369.
- 2. Mathaudhu S, Nyberg E. Magnesium alloys in army applications: past, current and future solutions. Proceedings of the 2010 Minerals, Metals and Materials (TMS) Annual Symposium; 2010 Feb 14–18; Seattle, WA. Hoboken (NJ): Wiley Publications; c2010.
- 3. Jones T, DeLorme R. Development of a ballistic specification for magnesium alloy AZ31B. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2008 Dec. Report No.: ARL-TR-4664. Also available at http://www.arl.army.mil/www/default.cfm?technical_report=1712.
- 4. Jones T, DeLorme R. A comparison of the ballistic performance between rolled plate in AZ31B-H24 magnesium and 5083-H131 aluminum; 24th International Symposium on Ballistics; 2008 Sep 22–26; New Orleans, LA. Lancaster (PA): DEStech Publications. c2008.
- 5. MIL-DTL-32333 (MR); Armor plate, magnesium alloy, AZ31B, Applique. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2009 July 29.
- 6. Liao J, Hotta M, Kaneko K, Kondoh K. Enhanced impact toughness of magnesium alloy by grain refinement. Scripta Materialia. 2009;61:208–211.
- 7. Jones T, Kondoh K. Initial evaluation of advanced powder metallurgy magnesium alloys for dynamic applications. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2009 May. Report No.: ARL-TR-4828. Also available at http://www.arl.army.mil/www/default.cfm?technical_report=1795.
- 8. Jones T, Labukas JP, Placzankis BE, Kondoh K. Ballistic and corrosion analysis of new military-grade magnesium alloys AMX602 and ZAXE1711 for armor applications. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2012 Feb. Report No.: ARL-TR-5931. Also available at http://www.arl.army.mil/www/default.cfm?technical_report=6408.
- 9. Sakamoto M, Akiyama S, Hagio T, Ogi K. Control of oxidation surface film and suppression of ignition of molten Mg-Ca alloy by Ca addition. Journal of Japan Foundry Engineering Society. 1997;69:227–233.

- 10. Nishida S, Motomura I. Estimation of heat transfer coefficient and temperature transition on melt drag process of AZ31 magnesium alloy by heat transfer and solidification analysis. Journal of Japan Institute of Light Metals. 2008;58;439–442.
- 11. MIL-DTL-46027K (MR). Armor plate, aluminum alloy, AA5083, Weldable. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2007 July 31.
- 12. MIL-STD-662F. V50 Ballistic test for armor. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 1997 Dec 18.
- 13. MIL-DTL-46593B (MR). Projectile, calibers .22, .30, .50, and 20MM fragment-simulating. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2006 July 6.

Appendix. Raw Ballistic Data

This appendix appears in its original form, without editorial change.

Target:	Magnesiur	n AZ31	B-H24		21-Feb-08	
Plate #:					EF106	
Lot#:						
Thickness:	24.968mm	0.983	II .			
Hardness:	61 BHN on	500kg	scale			
Obliquity:	0°					
Projectile:	.30 cal FSF	•	Weight:	44	grains	
V50:	843	m/s		# shots:	4	
Std Dev:	8	m/s		Spread:	18	m/s
ZMR:	0					
Striking	Pitch	Yaw	Result	Used	Comments	Shot
Velocity				for V50		#
(m/s)	(deg)	(deg)	(PP/CP)			
845			CP	Υ		6720
no chrono			PP	N		6721
838			PP	Y		6722
834			PP	N		6723
835			PP	Y		6724
871			CP	N		6725
853			CP	Υ		6726

Target:	AA5083-H	131			16-Jun-14		
					EF106		
Plate ID:							
Thickness:	Plate	0.671	"	17.050	mm		
Hardness:		1 3000kg s	cale				
Obliquity:	0°						
Projectile:	0.30-cal F	SP	Weight:	44	grains		
Velocity Mo	⊥ easurement ⊺	:	Chrono				
Low CP:	1019	m/s		Low CP:	3342	ft/s	
High PP:	1027	m/s		High PP:	3368	ft/s	
V50:	1026	m/s		V50:	3365	ft/s	
Std Dev:	8	m/s		Std Dev:	26	ft/s	
ZMR:	8	m/s		ZMR:	26	ft/s	
# shots:	4			# shots:	4		
Spread:	18	m/s		Spread:	58	ft/s	
Striking	Striking	Pitch	Yaw	Result	Used	Comments	Shot
Velocity	Velocity				for V50		#
(ft/s)	(m/s)	(deg)	(deg)	(PP/CP)			
3780	1152			СР	N		13626
3511	1070			CP	N		13627
3368	1027			PP	Υ	-	13628
3464	1056			CP	N		13629
3433	1046			CP	N		13630
3400	1036			CP	Υ		13631
3302	1006			PP	N		13632
3350	1021			PP	Υ		13633
3342	1019			CP	Y		13634

Target:	Mg Plate A	AMX602			20-May-14		
			Mg AMX6	02 bars from	JWRI - Feb	2013	
Temper:	602°C - 630				EF106		
Plate ID:	B2						
Thickness:	Bar	1.007	"	25.565	mm		
Width:	Bar	1.500	"	38.100	mm		
Hardness:	86 BHN on	500kg sca	le				
Obliquity:	0°						
Projectile:	0.30-cal FS	SP	Weight:	44	grains		
			_				
Velocity M	easurement		Chrono				
Low CP:	1070	m/s		Low CP:	3512	ft/s	
High PP:	1070	m/s		High PP:	3512	ft/s	
V50:	1070	m/s		V50:	3510	ft/s	
Std Dev:	2	m/s		Std Dev:	8	ft/s	
ZMR:	0	m/s		ZMR:	0	ft/s	
# shots:				# shots:		liv 3	
Spread:		m/s		Spread:		ft/s	
Opicau.		111/3		Opreau.	13	143	
						_	
Striking	Striking	Pitch	Yaw	Result	Used	Comments	Shot
Velocity	Velocity	(1)		(55 (65)	for V50		#
(ft/s)	(m/s)	(deg)	(deg)	(PP/CP)			
0547	4070			0.5	.,		40556
3517	1072	-	-	CP	Y		13559
3423	1043			PP	N		13560
3414	1041			PP	N		13561
3422	1043			PP	N		13562
3498	1066			PP	Y	Ran out of Bar 1	13563
3416	1041			PP	N	Start on Bar 2	13564
3512	1070			PP	Y	-	13565
3512	1070			СР	Υ		13566

Target:	Mg Plate A				21-May-14		
Taber Extru	usions Repro	oduction of	Mg AMX60	02 bars from	JWRI - Dec	12, 2013	
					EF106		
Plate ID:	Push 1						
Thickness:	Plate	0.996	"	25.286	mm		
Width:	Plate	1.500	"	38.100	mm		
Hardness:	77 BHN on	500kg sca	le				
Obliquity:	0°						
Projectile:	0.30-cal FS	SP	Weight:	44	grains		
/elocity M	easurement	:	Chrono				
Low CP:	1111	m/s		Low CP:	3646	ft/s	
High PP:	1098			High PP:			
V50:	1103			V50:			
Std Dev:	12	m/s		Std Dev:	38	ft/s	
ZMR:	0	m/s		ZMR:	0	ft/s	
# shots:	4			# shots:	6		
Spread:	26	m/s		Spread:	84	ft/s	
Striking	Striking	Pitch	Yaw	Result	Used	Comments	Shot
Velocity	Velocity				for V50		#
(ft/s)	(m/s)	(deg)	(deg)	(PP/CP)			
3526	1075			PP	N		13567
3355	1023			PP	N		13568
3528	1075			PP	N		13569
3466	1056			PP	N		13570
3542	1080			PP	N		13571
3560	1085			PP	N		13572
3601	1098			PP	Υ		13573
3704	1129			CP	N		13574
3707	1130			CP	N		13575
3651	1113			СР	Υ		13576
3646	1111			CP	Υ		13577
3656	1114			СР	Y		13578
3536	1078			PP	N		13579
3578	1091			PP	Y		13580
3572	1089			PP	Y		13581

Target:	Mg Plate A	VMX603			4-Jun-14		
			Μα ΔΜΧ60	2 hars from	JWRI - Dec	12 2013	
Tabel Extre	Joiono repre		IVIG AIVIXOO	Z Dais iloiii	EF106	12, 2013	
Plate ID:	Push 1				Li 100		
Thickness:	Plate	0.997	11	25.317	mm		
Width:	Plate	4.000		101.600			
vviatri.		4.000		101.000	11111		
Hardness:	83 BHN on	500kg sca	le				
Obliquity:	0°						
	0.30-cal FS	SP	Weight:	44	grains		
	0.00 00				grunie		
Velocity Me	easurement	:	Chrono				
,							
Low CP:	1101	m/s		Low CP:	3611	ft/s	
High PP:	1127	m/s		High PP:			
V50:	1105			V50:		ft/s	
Std Dev:	18	m/s		Std Dev:	57	ft/s	
ZMR:	27	m/s		ZMR:	87	ft/s	
# shots:	10			# shots:	10		
Spread:	48	m/s		Spread:	158	ft/s	
a	a					_	
Striking	Striking	Pitch	Yaw	Result	Used	Comments	Shot
Velocity	Velocity				for V50		#
(ft/s)	(m/s)	(deg)	(deg)	(PP/CP)			
0500	4074			DD			10500
3522	1074			PP	N		13589
3481	1061			PP	N		13590
3534 3547	1077 1081			PP PP	N Y		13591 13592
				PP			
3618 3566	1103 1087			PP	Y		13593 13594
3698	1127	-		PP	Y		13594
3668	1118			CP	Y		13595
3705	1129			CP	N		13597
3646	1111			CP	Y		13598
3494	1065			PP	N		13599
3716	1133			CP	N		13600
3540	1079			PP	Y		13601
3660	1116			СР	Y		13602
3611	1101		-	CP	Y	-	13603
3707	1130			CP	N		13604

Target:	Mg Plate A	AMX602			2-Jun-14		
Taber Extru	usions Repro	oduction of	Mg AMX60	02 bars from	JWRI - Dec	13, 2013	
					EF106		
Plate ID:	Push 2						
Thickness:	Plate	1.00	··	25.40	mm		
Width:	Plate	4.00	II .	101.60	mm		
Hardnoss	77 BHN on	500kg sea	lo				
Obliquity:	0°	Juung Sca	16				
	0.30-cal FS	PD	\\/oight:	11	grains		
Projectile:	0.30-cai F3) P	Weight:	44	grains		
Velocity M	easurement:		Chrono				
Low CP:	1051	m/s		Low CP:	3448	ft/s	
High PP:	1101	m/s		High PP:	3611	ft/s	
V50:				V50:			
Std Dev:	35	m/s		Std Dev:	115	ft/s	
ZMR:		m/s		ZMR:		ft/s	
# shots:	2			# shots:	2		
Spread:	50	m/s		Spread:	163	ft/s	
Striking	Striking	Pitch	Yaw	Result	Used	Comments	Shot
Velocity	Velocity				for V50		#
(ft/s)	(m/s)	(deg)	(deg)	(PP/CP)			
3611	1101			PP	Υ		13582
3557	1084			PP	N		13583
3554	1083			PP	N		13584
3555	1084			PP	N		13585
3426	1044			PP	N		13586
3359	1024			PP	N		13587
3448	1051			СР	Y		13588
- · · •					_	Testing Halted; Ran out of bar	

Target:	Mg Plate	AMX602			10-Jun-14		
Taber Extru	usions Repr	oduction of	Mg AMX60	02 bars from	n JWRI - De	c 13, 2013	
					EF106		
Plate ID:	Push 2						
Thickness:	Plate	0.995	"	25.267	mm		
Width:	Plate	4.000	"	101.600	mm		
Hardness:	72 BHN or	1 500kg sc	ale				
Obliquity:	0°						
Projectile:	0.30-cal F	SP	Weight:	44	grains		
Velocity Me	easurement	:	Chrono				
Low CP:				Low CP:			
High PP:		m/s		High PP:			
V50:		m/s		V50:			
Std Dev:	14	m/s		Std Dev:	47	ft/s	
ZMR:		m/s		ZMR:		ft/s	
# shots:	4			# shots:	4		
Spread:	30	m/s		Spread:	100	ft/s	
C & mile inc. on	Ctuilein a	Dital	V	Daguilt	l la a al	0.0000000000000000000000000000000000000	Chat
Striking	Striking	Pitch	Yaw	Result	Used for V50	Comments	Shot
Velocity	Velocity	(doa)	(doa)	(DD/CD)	101 7 50		#
(ft/s)	(m/s)	(deg)	(deg)	(PP/CP)			
3667	1118			CP	N		13606
3665	1117			CP	N		13607
3519	1073			CP	N		13608
3577	1090			CP	N		13609
3483	1062			CP	N		13610
3425	1044			CP	N		13611
3373	1028			CP	N		13612
3324	1013			CP	N		13613
3314	1010			CP	Y		13614
3154	961			PP	N		13615
3255	992			PP	Y	_	13616
3165	965			PP	N		13617
3163	964			PP	N		13618
3214	980		-	PP	Y		13620
3404	1038			CP	N		13621
3371	1027			CP	N		13622
3352	1027			CP	N		13623
3352	1022			CP	N		13624
3308	1008			CP	Y		13625
3300	1000			OF .	1	Testing Halted; Ran out of	

Target:	Mg Plate	AMX602			13-May-14		
Taber Extru	usions Repr	oduction of	Mg AMX6	02 bars from	n JWRI - De	c 13, 2013	
					EF106		
Plate ID:	Push 3						
Thickness:	Plate	0.993	"	25.229	mm		
Width:	Plate	6.000	"	152.400	mm		
Hardness:	83 BHN or	n 500kg sca	ale				
Obliquity:	0°						
Projectile:	0.30-cal F	SP	Weight:	44	grains		
Velocity Mo	easurement	:	Chrono				
		_					
Low CP:				Low CP:	3388		
High PP:				High PP:			
V50:				V50:			
Std Dev:	10	m/s		Std Dev:	32	ft/s	
ZMR:		m/s		ZMR:		ft/s	
# shots:	6			# shots:	6		
Spread:	26	m/s		Spread:	86	ft/s	
Striking	Striking	Pitch	Yaw	Result	Used	Comments	Shot
Velocity	Velocity				for V50		#
(ft/s)	(m/s)	(deg)	(deg)	(PP/CP)			
3635	1108			CP	N		13546
3388	1033			CP	Υ		13547
3333	1016			CP	N		13548
3417	1042			CP	Υ		13549
3349	1021			CP	N		13550
3331	1015			CP	N		13551
3371	1027			CP	N		13552
3501	1067			CP	N		13553
3474	1059			CP	Υ		13554
3373	1028			PP	N		13555
3449	1051			PP	Υ		13556
3466	1056			PP	Υ		13557
3435	1047			PP	Y		13558

INTENTIONALLY LEFT BLANK.

List of Symbols, Abbreviations, and Acronyms

Al aluminum

ARL US Army Research Laboratory

FSP fragment simulating projectile

JWRI Joining and Welding Research Institute

Mg magnesium

SWAP Spinning Water Atomization Process

UTS Ultimate tensile strength

- 1 DEFENSE TECHNICAL
- (PDF) INFORMATION CTR DTIC OCA
 - 2 DIRECTOR
- (PDF) US ARMY RESEARCH LAB RDRL CIO LL IMAL HRA MAIL & RECORDS MGMT
 - 1 GOVT PRINTG OFC
- (PDF) A MALHOTRA
- 1 DIR USARL (PDF) RDRL WMP E T JONES