Определение теплоёмкости твёрдых тел (2.1.4)

Манро Эйден

Введение

Цель работы: 1) измерение количества подведенного тепла и вызванного им нагрева твердого тела; 2) определение теплоемкости по экстраполяции отношения $\Delta Q/\Delta T$ к нулевым потерям тепла.

Оборудование: калориметр с нагревателем и термометром сопротивления; амперметр; вольтметр; мост постоянного тока; источник питания 36 В.

Теоретические сведения

В данной работе происходит измерение теплоемкости твердого тела с использованием следующей принципиальной связи:

$$C = \frac{\Delta Q}{\Delta T}$$

Определение количества теплоты, переданного телу вызывает некоторые затруднения, так как часть теплоты будет передана окружающей среде через стенки калориметра. В итоге, количество теплоты, переданное телу с учетом теплопотерь через стенки можно определить как:

$$\Delta Q = P\Delta t - \lambda \left(T - T_{\kappa} \right) \Delta t,$$

где P — мощность нагревателя, λ — коэффициент теплоотдачи стенок калориметра, T — температура тела, T_{κ} — температура окружающего калориметр воздуха, Δt — время, в течении которого происходит нагрев.

Из уравнений (??) и (??) получаем:

$$C = \frac{P - \lambda \left(T - T_{\kappa}\right)}{\Delta T / \Delta t}$$

Формула (??) является основной расчетной формулой данной работы.

В формуле (??) в знаменателе стоит величина, для определения которой воспользуемся следующей методикой:

Построим график зависимости $\frac{\Delta T}{\Delta t} = f(T)$ для широкого диапазона температур, после чего экстраполируем его для значения $T = T_{\rm K}$. В таком случае формула (??) приобретает вид:

$$C = \frac{P}{(\Delta T/\Delta t)_{T_{\rm K}}}$$

Измерение температуры строится на принципе линейной зависимости сопротивления материала от изменения температуры по закону:

$$R_T = R_0 \left(1 + \alpha \Delta T \right),$$

Где R_0 – сопротивление термометра при температуре 0°С, R_T – сопротивление термометра при данной температуре. Учитывая данную зависимость, получаем итоговый вид для основной формулы:

$$C = \frac{PR\alpha}{\left(\frac{dR}{dt}\right)_{T_{\rm K}} \left(1 + \alpha \Delta T_{\rm K}\right)}$$

Коэффициент α , входящий в данную формулу для меди равен $\alpha=4,28\cdot 10^{-3}\,K^{-1}$, все остальные величины определяются экспериментально.

Экспериментальная установка

Установка состоит из калориметра с пенопластовой изоляцией, помещенного в ящик из многослойной клееной фанеры. Внутренние стенки калориметра выполнены из материала с высокой теплопроводностью. Надежность теплового контакта между телом и стенками обеспечивается их формой: они имеют форму усеченных конусов и плотно прилегают друг к другу. Для выталкивания образца служит винт в донышке внутренней стенки калориметра.

В стенку калориметра вмонтированы электронагреватель и тер-

Рис. 1: Схема включения нагревателя

мометр сопротивления. Схема включения нагревателя изображена на рисунке (??). Система реостатов позволяет установить нужную силу тока в цепи нагревателя. По амперметру и вольтметру определяется мощность, выделяемая током в нагревателе. Величина сопротивления термометра нагревателя измеряется мостом постоянного тока.

Рис. 2: Устройство калориметра

На рисунке (??) изображено устройство калориметра.

материал образца:	титан
масса образца, г	$293,2 \pm 0,5$

Таблица 1: Параметры исследуемых образцов

Запишем также иные параметры экспериментальной установки:

$$R_0 = 17.84 \pm 0.01 \, \mathrm{Om}, \quad t_0 = 24.4^{\circ} \pm 1^{\circ} C$$

$$U=36\,{\rm B},\,I=0,\!3\,{\rm A},\,P=10,\!8\,{\rm Bt}$$