Probability and Random Processes (15B11MA301)

Lecture-3

Department of Mathematics

Jaypee Institute of Information Technology, Noida

Contents of the Lecture:

- ☐ Axiomatic approach of Probability
- ☐ Addition Theorem
- ☐ Related Results and Questions

Event Space

The sample space of an experiment contains all possible outcomes, the event space contains all *sets of outcomes*; all subsets of the sample space.

Example: Coin Flip

For a simple coin flip, the two possible outcomes are either heads or tails, so the **sample space** is given by

$$S = \{H, T\}$$

The **event space** is a little different. The possible events are:

- •{H}— getting heads,
- •{T}— getting tails,
- •{H,T}— getting either heads *or* tails.

Because each of these are different subsets of the sample space, they count as different events, even though {H} (heads) would imply {H, T} (either H or T). The event space contains all three of those events:

$$A = \{\{H\}, \{T\}, \{H, T\}\}$$

Axiomatic Definition of Probability:

Let S be the sample space and A be an event associated with a random experiment. Then the probability of the event A, denoted by P(A), is designed as a real number satisfying the following axioms.

(i)
$$0 \le P(A) \le 1$$

(ii)
$$P(S) = 1$$

(iii) If A and B are mutually exclusive events, $P(A \cup B) = P(A) + P(B)$ and

(iv) If $A_1, A_2, ..., A_n, ...$ are a set of mutually exclusive events, $P(A_1 \cup A_2 \cup ... \cup A_n...) = P(A_1) + P(A_2) + ... + P(A_n) + ...$

Revision

Definition: Mutually Exclusive Events

A set of events is said to be mutually exclusive if the occurrence of any one of them excludes the occurrence of the others.

Two events A and B are mutually exclusive if A occurs and B does not occur and vice versa.

In other words, A and B cannot occur simultaneously, i.e. $P(A \cap B) = 0$.

Some results derived using axioms of probability:

Result 1: The probability of the impossible event is zero, i.e., if ϕ is the subset (event) containing no sample point, $P(\phi)=0$.

Proof: The certain event S and the impossible event ϕ are mutually exclusive.

Hence
$$P(S \cup \phi) = P(S) + P(\phi)$$
 [Axiom (iii)]

But
$$S \cup \phi = S$$
.

$$P(S) = P(S) + P(\phi)$$

$$\therefore P(\phi) = 0$$

Result 2: If \overline{A} is the complementary event of A, $P(\overline{A})=1-P(A) \le 1$.

Proof: A and \overline{A} are mutually exclusive events, such that $A \cup \overline{A} = S$.

$$P(A \cup \overline{A}) = P(S)$$

$$P(A \cup \overline{A}) = P(S) = 1$$
i.e.,
$$P(A) + P(\overline{A}) = 1$$
[Axiom (iii)]
[Axiom (iii)]

$$P(\overline{A}) = 1 - P(A)$$

Since $P(A) \ge 0$, it follows that $P(\overline{A}) \le 1$.

ADDITION LAW OF PROBABILITY

Result 3: If A and B are any two events, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Proof: A is the union of the mutually exclusive events $A \cap \overline{B}$ and $A \cap B$ and B is the union of the mutually exclusive events $\overline{A} \cap B$ and $A \cap B$.

$$\therefore P(A) = P(A \cap \overline{B}) + P(A \cap B)$$
 [Axiom(iii)]

and $P(B) = P(\overline{A} \cap B) + P(A \cap B)$ [Axiom(iii)]

$$P(A) + P(B) = [P(A \cap \overline{B}) + P(A \cap B) + P(\overline{A} \cap B) + P(A \cap B)]$$
$$= P(A \cup B) + P(A \cap B)$$

$$As, A \cup B = (A \cap \overline{B}) \cup (A \cap B) \cup (\overline{A} \cap B)$$

By Axiom (iii)

$$\Rightarrow P(A \cup B) = P(A \cap \overline{B}) + P(A \cap B) + P(\overline{A} \cap B)$$

This implies
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
.

Observations:

• If A and B are any two events, $P(A \cup B) \le P(A) + P(B)$.

It follows from Addition Law of Probability: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ as $P(A \cap B) \ge 0$.

This implies $P(A \cup B) \leq P(A) + P(B)$.

• If A, B and C are any three events, then

 $P(A \cup B \cup C) = P$ (at least one of A, B and C occurs)

$$= P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$$

Result 4: If $B \subseteq A$, $P(B) \leq P(A)$.

Proof: B and $A \cap \overline{B}$ are mutually exclusive events such that $B \cup (A \cap \overline{B}) = A$.

$$\therefore P(B \cup (A \cap \bar{B})) = P(A)$$

i.e.
$$P(B) + P(A \cap \overline{B}) = P(A)$$
 [Axiom (iii)]

$$P(B) \leq P(A)$$

Example: Determine the range for $P(A \cup B)$ and $P(A \cap B)$ when $P(A) = \frac{3}{4}$ and $P(B) = \frac{5}{8}$.

Example: Determine the range for $P(A \cup B)$ and $P(A \cap B)$ when $P(A) = \frac{3}{4}$ and $P(B) = \frac{5}{8}$.

Sol: Since

$$A \subset A \cup B$$
 and $B \subset A \cup B$

$$\Rightarrow P(A) \le P(A \cup B)$$
 and $P(B) \le P(A \cup B)$

$$\Rightarrow$$
 max[$P(A)$, $P(B)$] $\leq P(A \cup B)$

Here,
$$P(A \cup B) \ge \frac{3}{4}$$

$$\Rightarrow \frac{3}{4} \le P(A \cup B) \le 1$$

$$A \supseteq A \cap B$$
 and $B \supseteq A \cap B$

$$\Rightarrow P(A) \ge P(A \cap B)$$
 and $P(B) \ge P(A \ge B)$

$$\Rightarrow \min[P(A), P(B)] \ge P(A \cap B)$$

Here,
$$P(A \cap B) \leq \frac{5}{8}$$

By addition law:
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \le 1$$

$$\Rightarrow \frac{3}{8} \le P(A \cap B) \le \frac{5}{8}$$

Practice Questions

- 1. If A and B are any two events, prove that $P(\overline{A} \cap B) = P(B) P(A \cap B)$.
- 2. If $A \cap B = \phi$, then show that $P(A) \leq P(\overline{B})$.

References

- 1. Veerarajan, T., Probability, Statistics and Random Processes, 3rd Ed. Tata McGraw-Hill, 2008.
- 2. Ghahramani, S., Fundamentals of Probability with Stochastic Processes, Pearson, 2005.
- 3. Papoulis, A. and Pillai, S.U., Probability, Random Variables and Stochastic Processes, Tata McGraw-Hill, 2002.
- 4. Miller, S., Childers, D., Probability and Random Processes, Academic Press, 2012.