Progress and Questions in QHA

Edward McDonald (Penn State University)

Ghent University

January 12, 2025

Plan for this talk

In this talk I will go over some of the recent work

Prologue: Meyer's decomposition

Nemytskij operators

Let $F \in C^{\infty}(\mathbb{R})$. The mapping of functional composition

$$L_{\infty}(\mathbb{R}^d,\mathbb{R}) \to L_{\infty}(\mathbb{R}^d), \quad u \mapsto F(u)$$

is sometimes called the Nemytskij operator.

Nemytskij operators

Let $F \in C^{\infty}(\mathbb{R})$. The mapping of functional composition

$$L_{\infty}(\mathbb{R}^d,\mathbb{R}) \to L_{\infty}(\mathbb{R}^d), \quad u \mapsto F(u)$$

is sometimes called the *Nemytskij operator*. **Question:** In terms of function spaces what are the mapping properties of $u \mapsto F(u)$? (This is needed for nonlinear PDE).

Meyer's decomposition

How can we study Nemytskij operators from the point of view of harmonic analysis?

Meyer's decomposition

How can we study Nemytskij operators from the point of view of harmonic analysis?

One method relates Nemytskij operators to pseudodifferential operators via the *Meyer decomposition*.

Meyer's decomposition

How can we study Nemytskij operators from the point of view of harmonic analysis?

One method relates Nemytskij operators to pseudodifferential operators via the *Meyer decomposition*.

Let $\{\Delta_j\}_{j=0}^{\infty}$ be an inhomogeneous Littlewood-Paley decomposition for \mathbb{R}^d . That is, $\Delta_j = \Psi_j(-i\nabla)$ where Ψ_j is supported in the ball of radius 2^j and

$$\sum_{j=0}^{\infty} \Psi_j = 1.$$

Let
$$S_n = \sum_{j=0}^n \Delta_j$$
.

Meyer's decomposition (cont.)

Assume initially that $u = S_n u$ for some $n \ge 1$. We have

$$F(u) = F(0) + F(S_n u) - F(0) = F(0) + \sum_{j=0}^{\infty} F(S_j u) - F(S_{j-1} u)$$

where $S_{-1}u = 0$. Therefore

$$F(u) = F(0) + \sum_{j=0}^{\infty} \int_{0}^{1} F'(S_{j-1}u + \theta \Delta_{j}u) \Delta_{j}u d\theta =: F(0) + m(F, u)u$$

where m(F, u) is the paradifferential operator

$$m(F,u) = \sum_{j=0}^{\infty} \int_0^1 F'(S_{j-1}u + \theta \Delta_j u) \Delta_j d\theta.$$

Bourdaud's theorem

Some elementary estimates show for any $u \in L_{\infty}(\mathbb{R}^d, \mathbb{R})$ and $F \in C^{\infty}(\mathbb{R})$, m(F, u) is a pseudodifferential operator in the Hörmander class $\Psi^0_{1,1}(\mathbb{R}^d)$ (Stein's "forbidden symbols").

Theorem (Bourdaud (1988))

If $T \in \Psi^0_{1,1}(\mathbb{R}^d)$, then T is bounded on the Sobolev space $W^s_p(\mathbb{R}^d)$ for all s > 0 and 1 .

Bourdaud's theorem

Some elementary estimates show for any $u \in L_{\infty}(\mathbb{R}^d, \mathbb{R})$ and $F \in C^{\infty}(\mathbb{R})$, m(F, u) is a pseudodifferential operator in the Hörmander class $\Psi^0_{1,1}(\mathbb{R}^d)$ (Stein's "forbidden symbols").

Theorem (Bourdaud (1988))

If $T \in \Psi^0_{1,1}(\mathbb{R}^d)$, then T is bounded on the Sobolev space $W^s_p(\mathbb{R}^d)$ for all s > 0 and 1 .

Conclusion: If F(0) = 0 and $u \in W_p^s(\mathbb{R}^d, \mathbb{R})$ for some s > 0 and $1 then <math>F(u) \in W_p^s(\mathbb{R}^d)$.

Section 2: Quantum Harmonic Analysis

Quantum Euclidean spaces

Let $d\geq 1$ and let θ be a $d\times d$ antisymmetric real matrix. The quantum Euclidean space is an attempt to make rigorous mathematical sense of a space \mathbb{R}^d_θ with coordinates functions

$$\{x_1,\ldots,x_d\}$$

which do not commute, but instead

$$x_j x_k - x_k x_j = i\theta_{j,k}$$
.

The construciton goes by many names (Noncommutative Euclidean space, Quantum Euclidean space, Moyal *d*-space, Groenwald space, and others).

Quantum Euclidean spaces

Let $d\geq 1$ and let θ be a $d\times d$ antisymmetric real matrix. The quantum Euclidean space is an attempt to make rigorous mathematical sense of a space \mathbb{R}^d_θ with coordinates functions

$$\{x_1,\ldots,x_d\}$$

which do not commute, but instead

$$x_j x_k - x_k x_j = i\theta_{j,k}$$
.

The construciton goes by many names (Noncommutative Euclidean space, Quantum Euclidean space, Moyal d-space, Groenwald space, and others). Much of the literature motivates this from the relation $[q,p]=i\hbar$ from quantum mechanics.

Uncertainty principle

Fig. 1.5 Precise q implying large uncertainty in p.

(Similar pictures can be found in many physics books. This one is from Müller-Kirsten's "Introduction to Quantum mechanics")

Definition of \mathbb{R}^d_{θ}

 \mathbb{R}^d_{θ} is a space in the sense of noncommutative geometry: we do not define it directly, but instead we define it in terms of its function spaces $L_{\infty}(\mathbb{R}^d_{\theta})$, $L_2(\mathbb{R}^d_{\theta})$, $\mathcal{S}(\mathbb{R}^d_{\theta})$, etc.

Definition of \mathbb{R}^d_{θ}

 \mathbb{R}^d_{θ} is a space in the sense of noncommutative geometry: we do not define it directly, but instead we define it in terms of its function spaces $L_{\infty}(\mathbb{R}^d_{\theta})$, $L_2(\mathbb{R}^d_{\theta})$, $\mathcal{S}(\mathbb{R}^d_{\theta})$, etc.The following definition is expedient:

Definition

For $t \in \mathbb{R}^d$, let $\lambda_{\theta}(t)$ be the unitary operator on $L_2(\mathbb{R}^d)$ given by

$$\lambda_{ heta}(t)u(s):=e^{i(t,s)}u(s-rac{1}{2} heta t),\quad u\in L_2(\mathbb{R}^d).$$

The von Neumann subalgebra of $\mathcal{B}(L_2(\mathbb{R}^d))$ generated by $\{\lambda_{\theta}(t)\}_{t\in\mathbb{R}^d}$ is denoted $L_{\infty}(\mathbb{R}^d_{\theta})$.

Remarks on the definition

- Note that if $\theta=0$, this reduces to the description of $L_{\infty}(\mathbb{R}^d)$ represented as bounded multipliers on $L_2(\mathbb{R}^d)$, and λ_0 is the operator of pointwise multiplication by the exponential function $s\mapsto \exp(i(t,s))$.
- A simple computation shows that

$$\lambda_{ heta}(t+s) = \exp(\frac{1}{2}i(t, heta s))\lambda_{ heta}(t)\lambda_{ heta}(s), \quad t,s \in \mathbb{R}^d.$$

This is the Weyl form of the canonical commutation relations. It is also a twisted unitary representation of the group \mathbb{R}^d by a 2-cocycle.

Heuristically, we have

$$\lambda_{\theta}(t) = \exp(it_1x_1 + \cdots + it_dx_d)$$

where

$$[x_i, x_k] = i\theta_{i,k}$$
.

Identification of $L_{\infty}(\mathbb{R}^d_{\theta})$

As a von Neumann algebra, $L_{\infty}(\mathbb{R}^d_{\theta})$ is not very complicated: it has type I.

Theorem (Essentially due to Stone and von Neumann)

There is a *-algebra isomorphism

$$L_{\infty}(\mathbb{R}^d_{ heta}) pprox L_{\infty}(\mathbb{R}^{\ker(heta)}) \otimes \mathcal{B}(L_2(\mathbb{R}^{rac{ ank(heta)}{2}})).$$

When $\theta = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, this is recognisable as the Schrödinger representation;

$$x_1 = M_x$$
, $x_2 = -i\partial_x$, on $L_2(\mathbb{R}_x)$.

Derivatives

There is a group action of \mathbb{R}^d on $L_\infty(\mathbb{R}^d_ heta)$ given on the generators by

$$T_t \lambda_{\theta}(s) = e^{i(t,s)} \lambda_{\theta}(s), \quad t, s \in \mathbb{R}^d.$$

This is the action of *translation*. Say that $x \in L_{\infty}(\mathbb{R}^d_{\theta})$ is uniformly smooth if

$$t\mapsto T_t x, \quad \mathbb{R}^d \to L_\infty(\mathbb{R}^d_\theta)$$

is smooth. We can define the derivatives

$$\partial_j x = \frac{d}{dt} T_{te_j}(x)|_{t=0}.$$

Weyl transform

Given $f \in \mathcal{S}(\mathbb{R}^d)$, let

$$\lambda_{ heta}(f) = \int_{\mathbb{R}^d} f(t) \lambda_{ heta}(t) dt.$$

The space $\mathcal{S}(\mathbb{R}^d_{\theta})$ is defined as the image $\lambda_{\theta}(\mathcal{S}(\mathbb{R}^d))$. This is a *-algebra, multiplication is given by twisted convolution

$$\lambda_{\theta}(f)\lambda_{\theta}(g) = \lambda_{\theta}(f *_{\theta} g).$$

Noncommutative integral

The noncommutative integral $au_{ heta}$ is defined on $\mathcal{S}(\mathbb{R}^d_{ heta})$ by

$$\tau_{\theta}(\lambda_{\theta}(f)) := (2\pi)^{d} f(0).$$

Theorem

 $au_{ heta}$ extends to a semifinite normal trace on $L_{\infty}(\mathbb{R}^d_{\theta})$, giving the pair $(L_{\infty}(\mathbb{R}^d_{\theta}), au_{\theta})$ the structure of a semifinite von Neumann algebra.

We can therefore define L_p spaces, $L_p(L_\infty(\mathbb{R}^d_\theta), \tau_\theta)$, which we abbreviate as $L_p(\mathbb{R}^d_\theta)$.

Harmonic analysis questions

Many authors (notably G. Hong) and most recently M. Ruzhansky and S. Shaimardan and K. Tulenov have addressed the problem of Fourier multipliers on \mathbb{R}^d_θ . I.e., the boundedness of functions

$$m(-i\nabla): L_p(\mathbb{R}^d_\theta) \to L_q(\mathbb{R}^d_\theta)$$

and associated questions such as Sobolev embedding and elliptic regularity.

Harmonic analysis questions

Many authors (notably G. Hong) and most recently M. Ruzhansky and S. Shaimardan and K. Tulenov have addressed the problem of Fourier multipliers on \mathbb{R}^d_θ . I.e., the boundedness of functions

$$m(-i\nabla): L_p(\mathbb{R}^d_\theta) \to L_q(\mathbb{R}^d_\theta)$$

and associated questions such as Sobolev embedding and elliptic regularity. We can also define Sobolev spaces $W^s_p(\mathbb{R}^d_\theta)$ (Gonzales-Perez, Junge, Parcet) and Besov spaces $B^s_{p,q}(\mathbb{R}^d_\theta)$ (Lafleche). Triebel spaces $F^s_{p,q}(\mathbb{R}^d_\theta)$ are more challenging.

Section 3: PDE on quantum Euclidean spaces

Linear PDE, constant coefficients

Linear PDE with constant coefficients

$$P(-i\nabla)u=f$$

are best studied with Fourier multipliers. Here pretty much everything works as in the commutative case.

Linear PDE, variable coefficients

There is a theory (Gonzales-Perez, Junge, Parcet [GJP]) of elliptic PDE defined in terms of *left* multipliers:

$$\sum_{|\alpha| \le m} a_{\alpha} \cdot \partial^{\alpha} u = f$$

where $a_{\alpha} \in C^{\infty}(\mathbb{R}^d_{\theta})$.

Linear PDE, variable coefficients

There is a theory (Gonzales-Perez, Junge, Parcet [GJP]) of elliptic PDE defined in terms of *left* multipliers:

$$\sum_{|\alpha| \le m} \mathsf{a}_{\alpha} \cdot \partial^{\alpha} \mathsf{u} = \mathsf{f}$$

where $a_{\alpha} \in C^{\infty}(\mathbb{R}^d_{\theta})$.

To analyse these, they defined left pseudodifferential operators on $u \in \mathcal{S}(\mathbb{R}^d_\theta)$ by

$$T_{\sigma}u = (2\pi)^{-d} \int_{\mathbb{R}^d} \sigma(\xi) \lambda_{\theta}(\xi) \tau_{\theta}(\lambda_{\theta}(\xi)^* u) d\xi.$$

Here, $\sigma:\mathbb{R}^d o L_\infty(\mathbb{R}^d_\theta)$ is a smooth function satisfying

$$\|\partial_{\xi}^{\alpha}\partial^{\beta}\sigma(x,\xi)\|_{\infty}\lesssim (1+|\xi|)^{m-\rho|\alpha|+\delta|\beta|}.$$

Linear PDE, variable coefficients

There is a theory (Gonzales-Perez, Junge, Parcet [GJP]) of elliptic PDE defined in terms of *left* multipliers:

$$\sum_{|\alpha| \le m} \mathsf{a}_\alpha \cdot \partial^\alpha \mathsf{u} = \mathsf{f}$$

where $a_{\alpha} \in C^{\infty}(\mathbb{R}^d_{\theta})$.

To analyse these, they defined left pseudodifferential operators on $u \in \mathcal{S}(\mathbb{R}^d_\theta)$ by

$$T_{\sigma}u = (2\pi)^{-d} \int_{\mathbb{R}^d} \sigma(\xi) \lambda_{\theta}(\xi) \tau_{\theta}(\lambda_{\theta}(\xi)^* u) d\xi.$$

Here, $\sigma:\mathbb{R}^d o L_\infty(\mathbb{R}^d_ heta)$ is a smooth function satisfying

$$\|\partial_{\xi}^{\alpha}\partial^{\beta}\sigma(x,\xi)\|_{\infty}\lesssim (1+|\xi|)^{m-\rho|\alpha|+\delta|\beta|}.$$

Using these operators, [GJP] analysed the L_p -theory of linear elliptic equations.

Unaddressed question: two-sided linear PDE

A trivial modification of [GJP] allows to study right PDE

$$\sum_{|\alpha| \le m} (\partial^{\alpha} u) a_{\alpha} = f$$

where $a_{\alpha} \in C^{\infty}(\mathbb{R}^d_{\theta})$.

Something that no-one has addressed (to my knowledge) is the question of two-sided linear PDE, something like

$$\sum_{|\alpha|\leq m} a_{\alpha}(\partial^{\alpha}u)b_{\alpha} = f.$$

This is a new phenomenon in the noncommutative case.

Unaddressed question: two-sided linear PDE

A trivial modification of [GJP] allows to study right PDE

$$\sum_{|\alpha| \le m} (\partial^{\alpha} u) a_{\alpha} = f$$

where $a_{\alpha} \in C^{\infty}(\mathbb{R}^d_{\theta})$.

Something that no-one has addressed (to my knowledge) is the question of two-sided linear PDE, something like

$$\sum_{|\alpha|\leq m} a_{\alpha}(\partial^{\alpha}u)b_{\alpha} = f.$$

This is a new phenomenon in the noncommutative case. To analyse it, we would need some kind of theory of *bilateral pseudodifferential operators*.

Section 4: Towards a theory of bilateral pseudodifferential operators

Noncommutative Meyer decomposition?

If we want to study nonlinear PDE, we need to consider Nemytskij operators

$$u \mapsto F(u)$$

where now F(u) is defined for an operator u using functional calculus. Can we do something similar to Meyer's decomposition?

Noncommutative Meyer decomposition?

If we want to study nonlinear PDE, we need to consider Nemytskij operators

$$u \mapsto F(u)$$

where now F(u) is defined for an operator u using functional calculus. Can we do something similar to Meyer's decomposition? Answer: Yes, but we need pseudodifferential operators formed out of both left and right multipliers.

Simple case of a noncommutative Meyer decomposition

Consider the case $F(u) = u^2$. Then

$$F(u) = \sum_{j=0}^{\infty} F(S_j u) - F(S_{j-1} u) = \sum_{j=0}^{\infty} S_{j-1} u \Delta_j u + \Delta_j u S_j u.$$

So the Meyer operator should be the following:

$$m(F, u)v = \sum_{i=0}^{\infty} S_{j-1}u\Delta_j v + \Delta_j v S_j u.$$

Note that here we need both left and right multiplication.

Bilateral multiplication

The algebra $L_{\infty}(\mathbb{R}^d_{\theta})^{\mathrm{op}}$ is the opposite algebra. Given $A \in L_{\infty}(\mathbb{R}^d_{\theta}) \otimes L_{\infty}(\mathbb{R}^d_{\theta})^{\mathrm{op}}$ and $u \in L_1(\mathbb{R}^d_{\theta})$, denote $A \sharp u$ for the linear extension of the mapping $(a \otimes b) \sharp u = aub$. The Haagerup tensor product $L_{\infty}(\mathbb{R}^d_{\theta}) \otimes_h L_{\infty}(\mathbb{R}^d_{\theta})$ has the property that \sharp has a continuous extension

$$\sharp: (L_{\infty}(\mathbb{R}^d_{\theta}) \otimes_h L_{\infty}(\mathbb{R}^d_{\theta})^{\mathrm{op}}) \times L_{\infty}(\mathbb{R}^d_{\theta}) \to L_{\infty}(\mathbb{R}^d_{\theta}).$$

Proposed double symbol definition

Definition

Let $\rho, \delta_1, \delta_2 \in [0, 1]$ and $m \in \mathbb{R}$. A bisymbol in the class $S^m_{\rho, \delta_1, \delta_2}(\mathbb{R}^d \times \mathbb{R}^d_\theta)$ is a function:

$$\sigma: \mathbb{R}^d \to L_{\infty}(\mathbb{R}^d_{\theta}) \otimes_h L_{\infty}(\mathbb{R}^d_{\theta})^{\mathrm{op}}.$$

Such that for all multi-indices $\alpha, \beta_1, \beta_2 \in \mathbb{N}^d$ we have:

$$\|\partial_{\xi}^{\alpha}(\partial_{x}^{\beta_{1}}\otimes\partial_{x}^{\beta_{2}})\sigma(\xi)\|_{L_{\infty}(\mathbb{R}_{\theta}^{d})\otimes_{h}L_{\infty}(\mathbb{R}_{\theta}^{d})}\leq C_{\alpha,\beta_{1},\beta_{2}}(1+|\xi|)^{m-\rho|\alpha|+\delta_{1}|\beta_{1}|+\delta_{2}|\beta_{2}|}$$

Bilateral pseudodifferential operators

Let $\sigma \in S^m_{\rho,\delta_1,\delta_2}(\mathbb{R}^d imes \mathbb{R}^d_{\theta})$. Define an operator T_{σ} on $u \in \mathcal{S}(\mathbb{R}^d_{\theta})$ by

$$\mathcal{T}_{\sigma}u:=(2\pi)^{-d}\int_{\mathbb{R}^d}(\sigma(\xi)\sharp\lambda_{\theta}(\xi))\tau_{\theta}(\lambda_{\theta}(\xi)^*u)\,d\xi$$

Denote space of such operators by $\Psi^m_{\rho,\delta_1,\delta_2}(\mathbb{R}^d_\theta)$.

Bilateral pseudodifferential operators

Let $\sigma \in S^m_{\rho,\delta_1,\delta_2}(\mathbb{R}^d \times \mathbb{R}^d_\theta)$. Define an operator T_σ on $u \in \mathcal{S}(\mathbb{R}^d_\theta)$ by

$$\mathcal{T}_{\sigma}u:=(2\pi)^{-d}\int_{\mathbb{R}^d}(\sigma(\xi)\sharp\lambda_{\theta}(\xi))\tau_{\theta}(\lambda_{\theta}(\xi)^*u)\,d\xi$$

Denote space of such operators by $\Psi^m_{\rho,\delta_1,\delta_2}(\mathbb{R}^d_\theta)$.

Conjecture

• For $\delta_1 + \delta_2 < \rho$, $\Psi^{m}_{\rho,\delta_1,\delta_2}(\mathbb{R}^d_{\theta})$ has similar properties of adjointability, composition and asymptotic convergence to traditional pseudodifferential operators.

Bilateral pseudodifferential operators

Let $\sigma \in S^m_{\rho,\delta_1,\delta_2}(\mathbb{R}^d imes \mathbb{R}^d_{\theta})$. Define an operator T_{σ} on $u \in \mathcal{S}(\mathbb{R}^d_{\theta})$ by

$$T_{\sigma}u := (2\pi)^{-d} \int_{\mathbb{R}^d} (\sigma(\xi) \sharp \lambda_{\theta}(\xi)) \tau_{\theta}(\lambda_{\theta}(\xi)^* u) d\xi$$

Denote space of such operators by $\Psi^m_{\rho,\delta_1,\delta_2}(\mathbb{R}^d_\theta)$.

Conjecture

- For $\delta_1 + \delta_2 < \rho$, $\Psi^m_{\rho,\delta_1,\delta_2}(\mathbb{R}^d_\theta)$ has similar properties of adjointability, composition and asymptotic convergence to traditional pseudodifferential operators.
- For $\rho = 1 > \delta_1 + \delta_2$, and m = 0, we have boundedness on $L_p(\mathbb{R}^d_\theta)$ for 1 .
- In general for m=0, we have boundedness on $W^s_p(\mathbb{R}^d_\theta)$ for s>0.

Why is it interesting?

- If the conjecture is correct, we would have a *genuinely* noncommutative theory of pseudodifferential operators which would allow us to study bilateral PDE and also nonlinear PDE over \mathbb{R}^d_θ .
- Following the standard commutative proofs does not seem to work.

Thank you for listening!