# REAL TIME RIVER WATER QUALITY MONITORING AND CONTROL SYSTEM

**Category: INTERNET OF THINGS** 

# A PROJECT REPORT

Submitted by

S.ABIRAMI D.SRINIVASAN S.SOWMIYA E.SARANISRI

**FROM** 

UNIVERSITY COLLEGE OF ENGINEERING KANCHIPURAM

In fulfillment of project in IBM-NALAYATHIRAN 2022

Team Id: PNT2022TMID40434

# **INDEX**

#### 1.INTRODUCTION

**Project Overview** 

Purpose

#### 2.LITERATURE SURVEY

**Existing problem** 

References

**Problem Statement Definition** 

#### 3.IDEATION & PROPOSED SOLUTION

**Empathy Map Canvas** 

**Ideation & Brainstorming** 

**Proposed Solution** 

**Problem Solution fit** 

#### **4.REQUIREMENT ANALYSIS**

**Functional requirement** 

**Non-Functional requirements** 

#### **5.PROJECT DESIGN**

**Data Flow Diagrams** 

**Solution & Technical Architecture** 

**User Stories** 

#### 6. PROJECT PLANNING & SCHEDULING

**Sprint Planning & Estimation** 

**Sprint Delivery Schedule** 

7.RESULTS

7.1 Performance Metrics

**8.ADVANTAGES & DISADVANTAGES** 

**9CONCLUSION** 

10.FUTURE SCOPE

1.

### **INTRODUCTION**

## **Project Overview:**

#### River Water quality monitoring System

River water which is used as drinking water is a very precious commodity for all human beings. The system consists of several sensors which are used for measuring physical and chemical parameters of water. The parameters such as temperature, pH, and dissolved oxygen of the water can be measured. Using this system a person can detect pollutants from a water body from anywhere in the world. Current water quality monitoring system is a manual system with a monotonous process and is very time-consuming. This paper proposes a sensor-based water quality monitoring system. The main components of Wireless Sensor Network (WSN) include a micro-controller for processing the system, communication system for inter and intra node communication and several sensors Real-time data access can be done by using remote monitoring and Internet of Things (IoT) technology Data collected at the IBM cloud Server and verify them to trigger the actions to be performed.

### **Purpose:**

Water quality refers to chemical, physical biological and radio logical characteristics of water. It is a measure of the condition of water relative to the necessities of one or more bio-tic species and or to any human need or purposes .Water quality monitoring is defined as a sampling and analysis of the water in lake, stream, ocean and river and conditions of the water body. Smart water quality monitoring is a process of real-time monitoring and the analysis of water to identify changes in parameters based on the physical, chemical and biological characteristics.Monitoring water quality is clearly important: in our seas, our

rivers, on the surface and in our ports, for both companies and the public. It enables us to assess how they are changing, analyze trends and to inform plans and strategies that improve water quality and ensures that water meets its designated use. There are several indicators determining water quality. These include dissolved oxygen, turbidity, bio indicators, nitrates, pH scale and water temperature. Monitoring water quality helps to identify specific pollutants, a certain chemical, and the source of the pollution. There are many sources of water pollution: wastewater from sewage seeping into the water supply; agricultural practices (e.g., the use of pesticides and fertilizer); oil pollution, river and marine dumping, port, shipping and industrial activity. Monitoring water quality and a water quality assessment regularly provides a source of data identify immediate issues – and their source.

- Identifying trends, short and long-term, in water quality.
- Data collected over a period of time will show trends, for example identifying increasing concentrations of nitrogen pollution in a river or an inland waterway. The total data will then help to identify key water quality parameters.
- Environmental planning methods: water pollution prevention and management.
- Collecting, interpreting and using data is essential for the development of a sound and
  effective water quality strategy. The absence of real-time data will however hamper
  the development of strategies and limit the impact on pollution control. Using digital
  systems and programs for data collection and management is a solution to this
  challenge.
- Monitoring water quality is a global issue and concern: on land and at sea. Within the European Union, the European Green Deal sets out goals for restoring biological biodiversity and reducing water pollution, as well as publishing various directives to ensure standards of water quality. Individual nation states, for example France, have also clear regulatory frameworks requiring the effective monitoring of water quality. In the United States, the Environmental Protection Agency (EPA) enforces regulations to address water pollution in each state. Across the world, countries increasingly understand the importance of effective water quality monitoring parameters and methods.

2.

### LITERATURE SURVEY

### **Existing Problem:**

Due to population growth, urbanization ,and climatic change ,competition for water resources is expected to increase, with a particular impact on agriculture, river water. Water will be suitableness to potable water monitoring compound spillage identification done rivers, remote estimation for swimming pools. It holds self-sufficient hubs that unite with the cloud to ongoing water control .The River water needed to be treated before it is used in agriculture feilds,hence the parameters affecting the quality of river-water need to be analysed and to be used for water treatement purpose.

#### **References:**

1. K.S. Adu-Manu, C. Tapparello, W. Heinzelman, F.A. Katsriku, J.-D. Abdulai

Water quality monitoring using wireless sensor networks: Current trends and future research directions ACM Transactions on Sensor Networks (TOSN) (2017).

2. S. Thombre, R.U. Islam, K. Andersson, M.S. Hossain

**IP based Wireless Sensor Networks : performance Analysis using Simulations and Experiments.** Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 7 (2016).

3. Rushikesh Kshirsagar, R.Mudhalwadkar, Saish Kalaskar

**Design and Development of IoT Based Water Quality Measurement System.** The idea about low-cost IOT based portable approach for water quality measurements system. Because of its low-cost approach, everyone can afford to use it to determine quality of water(2019).

4. N. Vijayakumar, R. Ramya

The real time monitoring of water quality in IoT environment. The parameters such as temperature, PH, turbidity, conductivity, dissolved oxygen of the water can be measured. The measured values from the sensors can be processed by the core controller. The raspberry PI B+ model can be used as a core controller (2015).

5. M.Chitra, D. Sadhihskumar, R. Aravindh, M. Murali, R. Vaittilingame

**IoT based Water Flood Detection and Early Warning System.** The collected information (data) from the water level sensor and temperature and humidity sensor passed to Thingview Android application in order to find the flow graph level of the water level in the river and temperature, humidity values and sends SMS to the registered contact mobile numbers (2020).

#### 6. Dr.Geetha

#### IoT based real time water quality monitoring system using smart sensor

WQM is a cost effective and efficient system designed to monitor drinking water quality with the help of IOT(2020).

### **Problem Statement:**

The reduce the river water pollution and to monitor the parameters of river water and control measures can impact vegetation, health. The Real time analysis of Indicators of River water(Ph,salinity,nutrients,etc...)

### **IDEATION & PROPOSED SOLUTION**

\_

### Empathy Map Canvas:

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviours and attitudes. It is a useful tool to helps teams better understand their users. Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.



## **Ideation & Brainstorming:**

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions.

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.



# **Proposed Solution:**

| S.No. | Parameter                     | Description                                                                                                                                                         |
|-------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Problem Statement (Problem to | IOT based Real Time Rever Water Quality                                                                                                                             |
|       | be solved)                    | Monitoring and Control Systems . The                                                                                                                                |
|       |                               | system consists of several sensors which is                                                                                                                         |
|       |                               | used to measure physical and chemical                                                                                                                               |
|       |                               | parameters of the water. real Time data                                                                                                                             |
|       |                               | access can be done by using remote                                                                                                                                  |
|       |                               | monitoring and Internet of Things(IOT)                                                                                                                              |
|       |                               | technology                                                                                                                                                          |
| 2.    | Idea / Solution description   | * To measure water parameters like PH,                                                                                                                              |
|       |                               | dissolved oxygen, Turbidity, Conductivity                                                                                                                           |
|       |                               | etc. Using available sensors at a remote                                                                                                                            |
|       |                               | place. * Data collected apart site can be                                                                                                                           |
|       |                               | displayed in a visual format on a sensor PC                                                                                                                         |
|       |                               | with the help of IOT compared with                                                                                                                                  |
|       |                               | standard values. If the acquired value is                                                                                                                           |
|       |                               | above the threshold value automated                                                                                                                                 |
|       |                               | warming SMS alert will be sent to the base                                                                                                                          |
|       |                               | station.                                                                                                                                                            |
| 3.    | Novelty / Uniqueness          | The Uniqueness of our proposed paper is to obtain the water monitoring system with high frequency, high system with high frequency, high mobility, and low powered. |
|       |                               |                                                                                                                                                                     |

| 4. | Social Impact /       | More than 50% kinds of diseases are caused  |
|----|-----------------------|---------------------------------------------|
|    | Customer Satisfaction | by drinking water quality and 80% of        |
|    |                       | diseases and 50% of child deaths are relate |
|    |                       | to poor drinking water, agriculture         |
|    |                       |                                             |
|    |                       |                                             |
|    |                       |                                             |
|    |                       |                                             |
|    |                       |                                             |
|    |                       |                                             |
|    |                       |                                             |

|    | Business Model              | * We can give advertisement through the        |
|----|-----------------------------|------------------------------------------------|
|    | (Revenue Model)             | social media. * purity Water is most           |
| 5. | (Revenue Model)             | important in world. * To provide this          |
| 3. |                             | information in advertisement is useful for     |
|    |                             | society                                        |
|    |                             | society                                        |
|    |                             |                                                |
|    |                             |                                                |
|    |                             |                                                |
|    |                             |                                                |
|    |                             |                                                |
|    |                             |                                                |
|    |                             |                                                |
|    |                             |                                                |
|    |                             |                                                |
| 6. | Scalability of the Solution | * IOT sensor, Thermal Sensor, IR sensor, 8     |
|    |                             | assessment of the water purity. * We can use   |
|    |                             | it for agriculture and drinking water. Thus    |
|    |                             | the human begins, goals and cros infected      |
|    |                             | should be avoided by this project by using     |
|    |                             | this water the farmer's land will be affected. |
|    |                             | Using this project we can avoid it. The health |
|    |                             | issues also avoid                              |
|    |                             |                                                |
|    |                             |                                                |
|    |                             |                                                |
|    |                             |                                                |
|    |                             |                                                |

#### **PROBLEM SOLUTION:**



### **4 REQUIREMENT ANALYSIS**

# Functional Requirements:

Following are the functional requirements of the proposed solution.

| FR No. | Functional Requirement             | Sub Requirement (Story / Sub-Task)                        |
|--------|------------------------------------|-----------------------------------------------------------|
|        | (Epic)                             |                                                           |
| FR-1   | User Registration                  | Registration through Mobile no Registration through Gmail |
| FR-2   | User Confirmation                  | Confirmation via Email                                    |
|        |                                    | Confirmation via OTP                                      |
| FR-3   | View current status of river water | View river water quality in the website                   |
| FR-4   | Reporting issue                    | User can report the issue in the website.                 |
| FR-5   | Feedback                           | User can feedback their thoughts in the website           |

# Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

| FR No. | Non-Functional Requirement | Description                                                                 |
|--------|----------------------------|-----------------------------------------------------------------------------|
| NFR-1  | Usability                  | the website should be user friendly and easy to use                         |
| NFR-2  | Security                   | Strong firewall used to protect the user password and data                  |
| NFR-3  | Reliability                | Both the hardware and software work without failure while processing        |
| NFR-4  | Performance                | The performance of system has higher efficiency and environmental friendly. |
| NFR-5  | Availability               | The request should be accept in a few second and allow user to use          |
| NFR-6  | Scalability                | It should be available for the user whenever they need                      |
| NFR-7  | Stability                  | It should work without negative issue and maintain website traffic          |

#### **5 PROJECT DESIGN**

### **Data Flow Diagrams:**

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.



# SOLUTION AND TECHNICAL ARCHITECTURE

# **Summary**

This code pattern explains how to build an IOT based river water monitoring and controlling system with some predefined values.



•

# **Components Technologies & Application Characteristics:**

Table-1 : Components & Technologies:

| S.No | Component                       | Description                                           | Technology                                                     |
|------|---------------------------------|-------------------------------------------------------|----------------------------------------------------------------|
| 1.   | User Interface                  | Web UI, Mobile App                                    | IBM Watson, Node-RED,MIT APP                                   |
| 2.   | Application Logic-1             | For a process in the application generate random data | Python , IBM Watson                                            |
| 3.   | Database                        | Data Type, Configurations etc.                        | MySQLetc.                                                      |
| 4.   | Cloud Database                  | Database Service on Cloud                             | IBM DB2, IBM Cloudant etc.                                     |
| 5.   | File Storage                    | File storage requirements                             | IBM Block Storage or Other Storage Service or Local Filesystem |
| 6.   | Infrastructure (Server / Cloud) | Application Deployment on Local System / Cloud        | Local, Cloud Foundry, Kubernetes, etc.                         |

#### Table-2: Application Characteristics:

| S.No | Characteristics          | Description                                                        | Technology               |
|------|--------------------------|--------------------------------------------------------------------|--------------------------|
| 1.   | Open-Source Frameworks   | open-source frameworks used for the project                        | Node-RED,MIT APP         |
| 2.   | Security Implementations | Strong firewall used to protect user password and data             | MIT APP , WEB UI         |
| 3.   | Scalable Architecture    | It should work without negative issue and maintain website traffic | Node-RED(WEB UI,MIT APP) |
| 4.   | Availability             | It should be available for the user whenever they need             | Node-RED(WEB UI,MIT APP) |
| 5.   | Performance              | The request should be accept in a few second and allow user to use | Node-RED(WEB UI,MIT APP) |

# **User Stories**

Use the below template to list all the user stories for the product.

#### **User Stories**

Use the below template to list all the user stories for the product.

| User Type                        | Functional<br>Requirement<br>(Epic) | User Story<br>Number | User Story / Task                                                      | Acceptance criteria                                     | Priority | Release   |
|----------------------------------|-------------------------------------|----------------------|------------------------------------------------------------------------|---------------------------------------------------------|----------|-----------|
| Customer<br>(Mobile,Web<br>user) | Registration                        | USN-1                | Registration through Mobile no<br>Registration through Gmail           | I can access my account / dashboard                     | High     | Sprint-1  |
|                                  | Confirmation                        | USN-2                | Confirmation via OTP<br>Confirmation via Email                         | I can receive confirmation<br>email & otp click confirm | High     | Sprint-1  |
|                                  | Login                               | USN-3                | As a user can log into the application by<br>entering email & password | I can sign in access the<br>dashboard                   | High     | Sprint-1  |
|                                  | View status of river water          | USN-4                | As a user can view quality of the water                                | Can see the current status of water                     | High     | Sprint-1  |
|                                  | Reporting issue<br>and feedback     | USN-5                | User can report the issue and feedback in the website                  | can report the issue and feedback their thoughts        | High     | Sprint-2  |
|                                  | Sign out                            | USN-6                | User can sign out successfully                                         | User can sign out after their queries                   | High     | Sprint -1 |

# <u>6.</u> <u>PROJECT PLANNING AND SCHEDULING</u>

# **SPRINT PLANNING & SCHEDULING:**

| TITLE                                     | DESCRIPTION                                                                                                                                          | DATE               |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Literature Survey & Information Gathering | Literature survey on the selected project is done by gathering information about related details on technical papers and web browsing.               | 06 OCTOBER<br>2022 |
| Empathy Map                               | Prepared Empathy Map<br>Canvas to combine<br>thoughts and pains, gains<br>of the project with all<br>team members.                                   | 08 OCTOBER<br>2022 |
| Ideation                                  | Brainstorming session is conducted with all team members to list out all the ideas and prioritise the top 3 ideas.                                   | 09 OCTOBER<br>2022 |
| Proposed Solution                         | Prepared the proposed solution document, which includes the novelty feasibility of idea business model, social impact, scalability of solution, etc. | 2022               |
| Problem Solution Fit                      | Prepared problem - solution fit document.                                                                                                            | 30 OCTOBER<br>2022 |

# SPRINT DELIVERY SCHEDULE

# **Product Backlog, Sprint Schedule, and Estimation**

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

| Sprint   | Functional<br>Requirement (Epic) | User Story<br>Number | User Story / Task                                                                                          | Story Points | Priority | Team<br>Members              |
|----------|----------------------------------|----------------------|------------------------------------------------------------------------------------------------------------|--------------|----------|------------------------------|
| Sprint-1 | Registration                     | USN-1                | As a user, we must register for the applicationby entering my email, password, and confirming my password. | 2            | High     | Abirami.S<br>Sowmiya.S       |
| Sprint-1 |                                  | USN-2                | As a user, we must register for an IBM cloud account, IoT platform, RED node service and uncertain DB.     | 1            | High     | Srinivasan.D<br>Sarani Sri.E |
| Sprint-2 |                                  | USN-3                | As a user, we develop a python script to publish random sensor data.                                       | 2            | Low      | Srinivasan.D<br>Sowmiya.S    |
| Sprint-3 |                                  | USN-4                | As a user, a web UI should be created<br>in Node-RED using dashboard nodes<br>available in it.             | 2            | Medium   | Abirami.S<br>Saranisri.E     |
| Sprint-4 | Login                            | USN-5                | As a user, In this milestone you are<br>expected to get started with the ideation<br>and project process.  | [1]          | High     | Abirami.S<br>Srinivasan.D    |

### **Project Tracker, Velocity & Burndown Charts**

| Sprint   | Total<br>Story<br>Points | Durati<br>on | Sprint<br>Start<br>Date | Sprint End<br>Date<br>(Planned) | Story Points Completed (ason Planned End Date) | Sprint<br>Release<br>Date<br>(Actual) |
|----------|--------------------------|--------------|-------------------------|---------------------------------|------------------------------------------------|---------------------------------------|
| Sprint-1 | 20                       | 6 Days       | 24 Oct 2022             | 29 Oct 2022                     | 20                                             | 27 Oct 2022                           |
| Sprint-2 | 20                       | 6 Days       | 28 Oct 2022             | 04 Nov 2022                     | 30                                             | 30 Oct 2022                           |
| Sprint-3 | 20                       | 6 Days       | 03 Nov<br>2022          | 10 Nov 2022                     | 49                                             | 04 Nov 2022                           |
| Sprint-4 | 20                       | 6 Days       | 08 Nov<br>2022          | 15 Nov 2022                     | 50                                             | 09 Nov 2022                           |

# Velocity:

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

#### **Burndown Chart:**



# **RESULT**

# **PERFROMANCE METRICS:**

|      |                                                                   |               | 6                     | NFT - Ri            | sk Assessme         | nt        |                        |            |                     |
|------|-------------------------------------------------------------------|---------------|-----------------------|---------------------|---------------------|-----------|------------------------|------------|---------------------|
| S.No | Project Name                                                      | Scope/feature | Functional<br>Changes | Hardware<br>Changes | Software<br>Changes | Impact of | Load/Voluem<br>Changes | Risk Score | Justification       |
|      | REAL TIME RIVER WATER<br>QUALITY MONITORING<br>AND CONTROL SYSTEM |               | -                     |                     |                     | 8         | -                      |            | As we have seen the |
| 1    | l                                                                 | New           | Low                   | No Changes          | Moderate            | 3days     | >5 to 10%              | ORANGE     | changes             |

# PERFORMANCE TABLE

| PARAMETER        | PERFORMANCE | DESCRIPTION          |
|------------------|-------------|----------------------|
| ADMIN TESTING    | 95%-100%    | THE TESTING DONE     |
|                  |             | BEFORE IT IS         |
|                  |             | DEPLOYED AS AN APP   |
| CUSTOMER         | 75-85%      | THE CUSTOMER NEED    |
| SATISFACTION     |             | TO BE SATISFIED WITH |
|                  |             | THE MOBILE           |
|                  |             | APPLICATION          |
| USER INTERFACE   | 65-85%      | THE APP CAN USED BY  |
|                  |             | ANYONE.(EASE OF      |
|                  |             | ACCESS)              |
| SEVER RESPONSE   | 50-75%      | url - response       |
| DATA VALIDATION  | 60-80%      | VALID DATA FROM THE  |
| WITH NO. OF TEST | (15-30      | APP                  |
| CASE             | TESTCASE)   |                      |
| ERROR            | 3-5%        | REAL-TIME DELAY      |
|                  |             | MAY OCCUR            |

### **ADVANTAGES AND DISADVANTAGES**

### **ADVANTAGES:**

- The prototype developed for water quality maintenance is very beneficial for safeguarding public health and also adds to the clean environment.
- The automation of this water monitoring, cleaning and control process removes the need of manual labor and thus saves time and money.
- The automation of the system makes the control and monitoring process more efficient and effective. Real time monitoring on mobile phone which is possible through the interface of plc with Arduino and Bluetooth module allows remote controlling of the system.

# **DISADVANTAGES:**

- It is difficult to collect the water samples from all the area of the water body.
- The cost of analysis is very high.
- The lab testing and analysis takes some time and hence the lab results does not reflect real time water quality measurement due to delay in measurement.
- The process is time consuming due to slow process of manual data collection from different locations of the water body.
- The method is prone to human errors of various forms.

### **CONCLUSION**

Thus our project is used to Monitoring of Turbidity, PH & Temperature of Water makes use of water detection sensor with unique advantage and existing GSM network. The system can monitor water quality automatically, and it is low in cost and does not require people on duty. So the water quality testing is likely to be more economical, convenient and fast. The system has good flexibility. Only by replacing the corresponding sensors and changing the relevant software programs, this system can be used to monitor other water quality parameters.

The operation is simple. The system can be expanded to monitor hydrologic, air pollution, industrial and agricultural production and so on. It has widespread application and extension value. By keeping the embedded devices in the environment for monitoring enables self protection (i.e., smart environment) to the environment. To implement this need to deploy the sensor devices in the environment for collecting the data and analysis. By deploying sensor devices in the environment, we can bring the environment into real life i.e. it can interact with other objects through the network.

Then the collected data and analysis results will be available to the end user through the Wi-Fi.