

# Global Energy Balance

June 14<sup>th</sup>, 2021



### Solar Energy

Solar energy is electromagnetic energy

Wavelengths and frequency

Electromagnetic spectrum

Three important areas on the spectrum

- Visible radiation
- Ultraviolet radiation
- Infrared radiation

Shortwave solar radiation, insolation

#### **Radiation**

Movement of energy without a medium







### What will happen to the Energy?

#### **Absorption**

• the ability of an object to assimilate (take up or hold) energy from the electromagnetic waves that strike.

#### Reflection

 the ability of an object to repel waves without altering either the object or the waves

#### **Scattering**

#### **Transmission**

• Electromagnetic waves pass completely through a medium



### Reflection and Albedo

Albedo is the ability of a surface to reflect insolation - the reflective quality or intrinsic brightness of a surface.

It is an important control over the amount of insolation that is available for absorption.

Stated in terms of the percentage of insolation that is reflected (0% is total absorption; 100% is total reflectance).

Primarily controlled by an object's color.





### Planetary Albedo

The reflectivity or albedo of Earth affects the heat budget of the planet.

- Surfaces
- Clouds
- Water
- Land
- Plants

**Aerosols** – natural sources are volcanoes, wildfires, windblown dust of soils, land and ocean emissions of biologically produced gases, and sea-salt spray.





### Earth's Solar Radiation Budget

#### **Budget = balance of incoming and outgoing radiation**

Long term there is a balance of energy coming in and energy leaving the planet

Humans are likely altering this balance, but we ignore this for the purpose of understanding atmospheric warming.

Understanding this exchange is critical for grasping weather processes



### Earth's Energy Budget

#### Earth's radiation budget can be described as follows:

Let's for simplicity consider that 100 units of energy represents total insolation (100 %) received at the outer edge of the atmosphere.

Let's assume too that these are annual averages for the entire globe, and do not apply to any specific location; values are approximate.

#### UTD

### Earth's Energy Budget

Earth's radiation budget can be described as follows:

**Radiation loss from reflection**: About 31 units of total insolation are reflected back (or scattered) into space by the atmosphere (Earth 's Albedo = 31%)

**Direct Absorption of Solar radiation**: 24 units heat the atmosphere directly = 3 heating the Ozone (UV energy) and 21 heating the remainder of the atmosphere (*gases and clouds*).

**Surface-to-Atmosphere Energy Transfer**: 45 units (nearly half the amount) transmits through the atmosphere and are **absorbed** by the Earth's surface where they regulate temperatures

Total energy input budget = 31 + 3 + 21(24) + 45 = 100 units



### Global Energy Budget





### Global Energy Budget

#### Of the 100 units that arrived:

- Conduction and convection: 4 units are lost from Earth's surface via
- Latent heat loss: 19 units are lost via evaporation (latent heat) in water vapor.
  - (¾ of all radiation falls on water surfaces).
- Some of the longwave radiation emitted by Earth's surface is transmitted directly back to space (through the atmospheric window) = 8 units;
- Through the **absorption of terrestrial radiation by greenhouse gases** the atmosphere receives a net of 14 units.
  - Total longwave radiation emitted from the surface the Earth: 22 units

**Surface longwave budget:** 4 + 19 + 8 + 14 = 45 Units

#### UTD

### Global Energy Budget

Atmospheric longwave budget (in units):

• Longwave energy re-radiated by ozone = 3 PLUS Longwave energy reradiated by the atmosphere = 21. This gives 21 + 3 = 24 Units

Total re-radiated surface and atmospheric **longwave energy** (in units):

$$45 + 24 = 69$$

Total longwave re-radiated: 69; total shortwave reflected: 31



### Earth's Energy Budget



#### UTD

### Earth's Energy Budget

In terms of annual balance, for every 110 units of energy radiated from the surface to the atmosphere, about 96 units of longwave radiation are returned to Earth .

Lost from Earth's surface as longwave radiation = 110; lost from atmosphere back to Earth's surface: 96; = 110 – 96 = 14

Through the absorption of terrestrial radiation by greenhouse gases, the atmosphere **receives a net gain of 14 units** of energy.

The atmosphere's greenhouse effect absorbs large amounts of energy and reradiates it back to the Earth – the surface heats the lower atmosphere and in turn the lower atmosphere reheats the surface == *the greenhouse effect*.



### Air Pollution: Human-Induced Atmospheric Change



### Air Pollution

#### **Human-Induced Atmospheric Change**

Pollutants, inefficient and wasteful fossil fuel use, and rapid population growth are all contributing to changes in Earth's atmosphere.

Consequences on global climate change have been of a larger concern in recent years.

Trends observed include rising temperatures, sea-level change, increasing heavy downpours, longer growing seasons, reductions in snow and ice, and changes in the amounts and timing of river flows.



### Human-Induced Atmospheric Change

Primary versus secondary pollutant

Primary pollutants – released directly into the air

- Particulates
- Carbon monoxide
- Nitrogen compounds
- Sulfur compounds

Secondary pollutants – form because of pollution

Photochemical smog

Indoor pollutants





### Primary Pollutants

- Particulates
  - Aerosols: tiny solid or liquid particles
  - Smoke from combustion, dust from industrial activities, secondary pollutants
- Carbon monoxide
  - Odorless, colorless
  - Incomplete combustion of carbon-based fuels
- Nitrogen compounds
  - Byproduct of biological process
- Sulfur compounds
  - Volcanoes, burning of fossils



### Secondary Pollutant

#### **Photochemical Smog:**

**Photochemical:** pertaining to chemical reactions involving chemical compounds in the presence of radiant energy

**Photochemical smog**: the mix of natural and atmospheric chemicals with anthropogenic emissions derived mainly from fossil fuel burning produced in the presence of solar radiation.

Leads to reddish, yellow-brown, and gray hazes in the sky

**Smog:** smoke-fog; haze

Beijing, China



http://i.telegraph.co.uk/telegraph/multimedia/archive/00778/beijing-smog-404\_778961c.jpg



# Chemicals contributing to Photochemical smog

Carbon monoxide

Sulfur and nitrogen oxides

Lead

Toxic hydrocarbons

Particulates

**Product of Photochemical Smog** 

Ozone



### Where is smog a problem?

Cities where temperature inversions occur:

Denver



 $http://www.huffingtonpost.com/2010/o1/o8/denversmog-crackdown-epa\_n\_416234.html\\$ 

Los Angeles

Mexico City



http://news.bbc.co.uk/2/hi/america s/1809705.stm

http://www.flickr.com/photos/infinitewilderness/261718673/sizes/o/in/photostream/



### Vertical Temperature Patterns

#### - Environmental Lapse Rate

- The observed rate of vertical temperature change in the atmosphere.
- Rate at which temperature drops as altitude increases can vary according to season, time of day, amount of cloud cover, and other factors.

#### Average Lapse Rate

normal vertical temperature gradient,
 with temperature dropping 3.6° F per
 1,000 feet (6.5° C per kilometer)





### **Temperature Inversions**

#### a) Normal conditions





### b) Temperature inversion conditions





### Where is smog a problem?

Cities where temperature inversions occur

Savanna grasslands and sugarcane areas

 NOx and other hydrocarbons released in the burning of biomass



Smoke plumes dot the African savanna in Zambia during the burning season (roughly September through April).



### Where is smog a problem?

As a component of urban pollution

- Big problem especially in areas like Beijing, New Delhi where coal and oil are a source of energy
- Recently Dallas: <u>http://thescoopblog.dallasnews.co</u> <u>m/category/smog-2/</u>





The Brooklyn and Manhattan bridges covered in Smog, NYC



### **Urban pollution**

| Gray air cities                                                                                                  | Brown air cities                                                                                                               |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Sulfur oxides and particulates (from factories) important Smog generated in cold, wet (moist) climates (winters) | Warm, dry and sunny climates Ozone important Unburned hydrocarbons and nitrogen from automobiles and powerplants               |
| Industrialized<br>Heavy dependence on coal and oil                                                               | Relatively non-industrialized                                                                                                  |
| E.g., Old industrialized cities: New<br>York, St. Louis-Missouri, Philadelphia,<br>Pittsburg, London             | E.g., Newer relatively non-<br>industrialized: Denver, LA, Salt Lake<br>City, Albuquerque, Vancouver, Canada,<br>Dallas, Texas |



#### **Ozone**

Ozone is naturally produced in the **stratosphere** (and troposphere), and it serves to protect life on Earth by shielding us from the deadly ultraviolet rays of the Sun.

- It is created by the action of UV radiation.
- UV radiation splits oxygen molecules into free oxygen atoms that then combine with oxygen molecules to form ozone.
- In the **stratosphere**, ozone molecules will be naturally broken down into oxygen molecules and free oxygen atoms by UV-B and UV-C radiation.
- The breakdown and formation of ozone is an ongoing process in this layer of the Earth's atmosphere.



### **Functions of Ozone**

| Name | Wavelength Range (nm) | Reaction to Ozone          | Biological Effect                                                                  |
|------|-----------------------|----------------------------|------------------------------------------------------------------------------------|
| UV-A | 320 - 400nm           | Passes through ozone layer | Relatively harmless to life; causes tanning but not burning                        |
| UV-B | 290- 320nm            | Ozone absorbs most         | Somewhat lethal to life:<br>causes sunburn, skin<br>cancer, and other<br>disorders |
| UV-C | 200-290nm             | Nearly totally<br>absorbed | Lethal to life: extremely harmful to life on Earth                                 |



### Ozone layer depletion: The "Hole" in the Ozone layer

Ozone in the stratosphere, lying in the ozone layer, is being depleted through a combination of natural and human-produced factors.

The layer has not only thinned, but it has disappeared entirely in some areas.

Dramatic thinning of the ozone layer has been observed since the 1970s.

The major thinning has been caused by the release of human-produced chemicals such as CFCs.

Ozone depletion has been correlated with increased levels of UV radiation reaching ground surfaces in Antarctica, Australia, mountainous regions in Europe, central Canada, and New Zealand.



**Ozone cycle with CFCs** 



### Ozone Hole in Antarctica



Total ozone levels over the southern hemisphere in spring (October 1-15 averages) for 15 years, based on NASA TOMS satellite data



### Current view

#### **National Aeronautics and Space Administration**; Goddard Space **Flight Center:**

- https://ozonewatch.gsfc.nasa.gov/
- https://ozonewatch.gsfc.nasa.gov/ monthly/SH.html





The latest false-color view of total ozone over the Antarctic pole. The purple and blue colors are where there is the least ozone, and the yellows and reds are where there is more ozone

#### 2019 Season



View the latest status of the ozone layer over the Antarctic, with a focus on the ox Click any map image to bring up a new page with a high-resolution image. **Ozone Movies** 

Watch a movie of the daily progression through a season or the annual progress

|           | 360 | x240 | 720 | x486 | 1280x720 | 1920x1080 |
|-----------|-----|------|-----|------|----------|-----------|
| 2019      | mp4 | mpg  | mp4 | mpg  | mp4      | mp4       |
| 2018      | mp4 | mpg  | mp4 | mpg  | mp4      | mp4       |
| September | mp4 | mpg  | mp4 | mpg  | mp4      | mp4       |

#### Data sources

NASA TOMS NASA/NOAA Nimbus-7 NASA METEOR-3 NASA Earth Probe TOMS

Aura OMI (KNMI | NASA) OMTO3d (Global Ozone Data)

Suomi NPP OMPS NMTO3-L3-DAILY

NASA GMAO MERRA MERRA-2 **GEOS FP ESA GOME** 

16 Sep.

SBUV/2

NASA Nimbus-4. Nimbus-7 NOAA-9, NOAA-11, NOAA-14, NOAA-16

NASA JPL MLS **UARS** Aura

NOAA South Pole Balloon Sondes

#### Ozone facts

What is ozone?



### Stratospheric "good" ozone

**About 90 percent of all atmospheric ozone is found in the Stratosphere**, where it forms a fragile shield by absorbing most of the potentially dangerous UV radiation from the Sun.

Prolonged exposure to **UV radiation can cause cancer**, suppress the immune system, diminish crop yields, and kill microscopic plankton on the ocean's surface.

When produced in the **Troposphere**, ozone harms life, where it damages tissues in humans (eyes, lungs, noses); it also damages vegetation and corrodes buildings.

• Ozone is produced naturally in the stratosphere, while the combination of human activity such as automobile emissions and incoming solar radiation leads to its (excessive) production in the troposphere.



### Tropospheric "bad" ozone

Major product of smog

Pollutant

Harmful to plants, animals, humans

Acts as a greenhouse gas

Produced by complex chemical reactions, including...

- $\circ$  NOx
- Sunlight
- volatile organic compounds (VOCs)
  - Hydrocarbons, halogen-containing chemical compounds, alcohols, ethers, etc.
  - Methane is most important on a global scale.



### Natural ozone cycle

$$NO_2 + sunlight \longrightarrow NO + O$$
  
 $O_2 + O \longrightarrow O_3 \text{ (ozone)}$   
 $NO + O_3 \longrightarrow NO_2 + O_2$ 

• cycle repeats

i.e., ozone is produced and destroyed – no net increase or decrease





### Ozone cycle with VOCs

$$NO_2$$
 + sunlight  $\longrightarrow$   $NO + O$   
 $O_2 + O \longrightarrow O_3$  (ozone)  
 $VOC + NO \longrightarrow NO_2 \longrightarrow O_3$   
i.e., no need for an ozone molecule  
ozone accumulates

Amount of ozone formed depends on:

- Sunlight
- Weather conditions
- Ratio of VOCs to nitrogen oxides



### without VOCs

### with VOCs





# Primary sources of nitrogen oxides

| Natural                          | Anthropogenic         |
|----------------------------------|-----------------------|
| Soils                            | Motor Vehicles        |
| Lightning                        | Electric power plants |
| Oxidation of atmospheric ammonia |                       |
| Forest Fires                     |                       |



### Primary sources of VOCs

| Natural                        | Anthropogenic   |
|--------------------------------|-----------------|
| Growing terrestrial vegetation | Industry        |
| Ocean                          | Transportation  |
| Forest fires                   | Fuel combustion |



### Health effects of air pollution

| Sulfur dioxide                       | Respiratory irritation, shortness of breath, impaired pulmonary function, increased susceptibility to infection, illness in the lower respiratory tract (particularly ir children), chronic lung disease, and pulmonary fibrosis. Increased toxicity in combination with other pollutants. |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Respirable particulate matter        | Irritation, altered immune defense, systemic toxicity, decreased pul-<br>monary function, and stress on the heart. Acts in combination with SO <sub>2</sub> ;<br>effects depend on the chemical and biological properties of the individual<br>particles.                                  |  |  |
| Oxides of nitrogen                   | Eye and nasal irritation, respiratory tract disease, lung damage, decreased pulmonary function, and stress on heart.                                                                                                                                                                       |  |  |
| Carbon monoxide                      | Interferes with oxygen uptake into the blood (chronic anoxia). Can result in heart and brain damage, impaired perception, asphyxiation, or, in low doses, in weakness, fatigue, headaches, and nausea.                                                                                     |  |  |
| Lead                                 | Kidney disease and neurological impairments. Primarily affects children<br>Lead in the environment has decreased dramatically, since regulations<br>restricting its use as an antiknock agent in gasoline and use in paint were<br>put in effect                                           |  |  |
| Photochemical oxidants (e.g., ozone) | Decreased pulmonary function, heart stress or failure, emphysema, fibrosis, and aging of lung and respiratory tissue.                                                                                                                                                                      |  |  |



### Controlling tropospheric ozone

Emission control devices - depend on source

- Catalytic converters, vapor recovery systems (cars)
- Low-nitrogen oxide burners (power plants/engines)
- Improved vehicle design and use of alternative fuels
- Alternatives to fossil fuel combustion





# Air Quality Index (AQI)

| Air Quality Index<br>(AQI) Values | Levels of Health<br>Concern       | Colors                       |  |
|-----------------------------------|-----------------------------------|------------------------------|--|
| When the AQI is in this range:    | air quality conditions are:       | as symbolized by this color: |  |
| 0-50                              | Good                              | Green                        |  |
| 51-100                            | Moderate                          | Yellow                       |  |
| 101-150                           | Unhealthy for<br>Sensitive Groups | Orange                       |  |
| 151 to 200                        | Unhealthy                         | Red                          |  |
| 201 to 300                        | Very Unhealthy                    | Purple                       |  |
| 301 to 500                        | Hazardous                         | Maroon                       |  |

| Air Quality<br>Index Levels<br>of Health<br>Concern | Numerical<br>Value | Meaning                                                                                                                                                                        |
|-----------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Good                                                | 0 to 50            | Air quality is considered satisfactory, and air pollution poses little or no risk                                                                                              |
| Moderate                                            | 51 to 100          | Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution. |
| Unhealthy for<br>Sensitive Groups                   | 101 to 150         | Members of sensitive groups may experience health effects. The general public is not likely to be affected.                                                                    |
| Unhealthy                                           | 151 to 200         | Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects.                                                       |
| Very Unhealthy                                      | 201 to 300         | Health warnings of emergency conditions. The entire population is more likely to be affected.                                                                                  |
| Hazardous                                           | 301 to 500         | Health alert: everyone may experience more serious health effects                                                                                                              |





# Global Air Quality

