









2022年 秋季学期 What do we see? Structure 结构 Wait! I think hierarchical design - limited complexity at each level - reusable building blocks one off Interfaces 接口 - Key elements of system engineering - Isolate technologies, allow evolution - Major abstraction mechanism What makes a good system design? - minimal mechanism, maximal function - reliable in a wide range of environments - accommodates future technical improvements wang\_hong@tsinghua.edu.cn

7







第一章 信息和编码

Logic gates Combinational logic circuits

MOSFets & Voltages

「D サール規模电路 明试,工具的使用 可編程器件変現大規模电路 EDA工具,硬件描述语言 (提前) PCB板変現成熟电路 EDA工具,焊接调试 wang\_hong@tsinghua.edu.cn パネスタ

10



wang\_hong@tsinghua.edu.cn

2022年 秋季学期













2022年 秋季学期 二进制,八进制,十进制,十六进制 ◆ A binary digit has only 2 possibilities 逢二进一 ◆ An octal digit has 8 possibilities 逢八进一 A decimal digit has 10 possibilities-逢十进一 A hexadecimal (hex) digital has 16 possibilities 逢十六进一 wang\_hong@tsinghua.edu.cn

18



|                           | 2022                         | 年 秋季学期 |
|---------------------------|------------------------------|--------|
| Powers of 2               |                              |        |
| • 2 <sup>0</sup> = 1      | • 2 <sup>8</sup> = 256       |        |
| • 21 = 2                  | • 29 = 512                   |        |
| • 2 <sup>2</sup> = 4      | • 2 <sup>10</sup> = 1024     |        |
| • 2 <sup>3</sup> = 8      | • 2 <sup>11</sup> = 2048     |        |
| • 2 <sup>4</sup> = 16     | • 2 <sup>12</sup> = 4096     |        |
| • 2 <sup>5</sup> = 32     | • 2 <sup>13</sup> = 8192     |        |
| • 2 <sup>6</sup> = 64     | • 2 <sup>14</sup> = 16384    |        |
| • 2 <sup>7</sup> = 128    | • 2 <sup>15</sup> = 32768    |        |
| • 2 <sup>10</sup> = 1 kil | o ≈ 1000 (1024)              |        |
| • 2 <sup>20</sup> = 1 me  | ega ≈ 1 million (1,048,576)  |        |
| • 2 <sup>30</sup> = 1 gig | ga ≈ 1 billion (1,073,741,82 | 24)    |
|                           | wang_hong@tsinghua.edu.cn    |        |



Sign/Magnitude Numbers

1 sign bit, N-1 magnitude bits
Sign bit is the most significant (left-most) bit
Positive number: sign bit = 0
Negative number: sign bit = 1

Example, 4-bit sign/mag representations of ± 6:
+6 = 0110
-6 = 1110
Range of an N-bit sign/magnitude number:
[-(2<sup>N-1</sup>-1), 2<sup>N-1</sup>-1]











| F <sub>e</sub> t L |                                                          | 2022年 | 秋季学期 |
|--------------------|----------------------------------------------------------|-------|------|
| Z                  | lero-Extension                                           |       |      |
| •                  | Zeros copied to msb's                                    |       |      |
| •                  | Value changes for negative number                        | s     |      |
| •                  | Example 1:                                               |       |      |
|                    | - 4-bit value = 0011 <sub>2</sub> = 3 <sub>10</sub>      |       |      |
|                    | - 8-bit zero-extended value: 00000011 = 3 <sub>10</sub>  |       |      |
| •                  | Example 2:                                               |       |      |
|                    | - 4-bit value = 1011 = -5 <sub>10</sub>                  |       |      |
|                    | - 8-bit zero-extended value: 00001011 = 11 <sub>10</sub> |       |      |
|                    |                                                          |       |      |
|                    |                                                          |       |      |
|                    | wang_hong@tsinghua.edu.cn                                | it    | 大学   |



Sign-Extension

Sign bit copied to msb's

Number value is same

Example 1:

- 4-bit representation of 3 = 0011

- 8-bit sign-extended value:

Example 2:

- 4-bit representation of -5 = 1011

- 8-bit sign-extended value:





Fixed-Point Numbers

• 6.75 using 4 integer bits and 4 fraction bits:

01101100

0110.1100

2² + 2¹ + 2⁻¹ + 2⁻² = 6.75

• Binary point is implied

• The number of integer and fraction bits must be agreed upon beforehand

• Represent 7.5₁₀ using 4 integer bits and 4 fraction bits.

0111.1000

wang\_hong@tsinghua.edu.cn 資本大意

\* 例  $(101.11)_B = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$   $+ 1 \times 2^{-1} + 1 \times 2^{-2}$   $= (5.75)_D$   $(2A.7F)_H = 2 \times 16^1 + 10 \times 16^0$   $+ 7 \times 16^{-1} + 15 \times 16^{-2}$   $= (42.4960937)_D$   $D = \sum K_i N^i$  任意进制。。。 wang\_hong@tsinghua.edu.cn





· 码制
用不同数码表示不同事物时遵循的规则例如: 学号,身份证号,车牌号。。。
· 目前,数字电路中都采用二进制
· 表示数量时称二进制
· 表示事物时称二值逻辑

wang\_hong@tsinghua.edu.cn

2022年 秋季学期 Signed Fixed-Point Numbers • Represent 7.5<sub>10</sub> using 4 integer bits and 4 fraction bits. 0111.1000 Representations: - Sign/magnitude Two's complement • Example: Represent -7.5<sub>10</sub> using 4 integer and 4 fraction bits 11111000 Sign/magnitude: - Two's complement: 1. +7.5: 0111.1000 2. Invert bits: 1000.0111 3. Add 1 to LSB: + 1000.1000 wang\_hong@tsinghua.edu.cn