

Quantum Measurements and Relativity

Kishor Bharti

Centre for Quantum Technologies. Singapore October 23, 2016

· Quantum mechanics not compatible with Relativity

- · Quantum mechanics not compatible with Relativity
- · What if it does?

- · Quantum mechanics not compatible with Relativity
- What if it does? \implies Paradox

- · Quantum mechanics not compatible with Relativity
- What if it does? \implies Paradox
 - · What is the paradox?

 \cdot According to QM, measurement \implies instantaneous collapse

- \cdot According to QM, measurement \implies instantaneous collapse
- E.g.: Particle in momentum eigenstate

- \cdot According to QM, measurement \implies instantaneous collapse
- E.g.: Particle in momentum eigenstate

• In another frame of reference?

• In another frame of reference?

 $\boldsymbol{\cdot}$ What if particle confined in past light cone?

- · What if particle confined in past light cone?
 - No longer momentum eigenstate

- What if particle confined in past light cone?
 - · No longer momentum eigenstate

$$\boxed{|\Psi_{-}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\right)}$$

• E.g.: 2 distinguishable particle singlet state, space-like separated

$$\boxed{\ket{\Psi_-}=rac{1}{\sqrt{2}}\left(\ket{\uparrow\downarrow}-\ket{\downarrow\uparrow}
ight)}$$

• Who collapses state first?

$$\boxed{|\Psi_{-}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\right)}$$

- · Who collapses state first?
 - If Alice measures first, ∃ intertial frame s.t. Bob measures first

$$\boxed{|\Psi_{-}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\right)}$$

- · Who collapses state first?
 - \cdot If Alice measures first, \exists intertial frame s.t. Bob measures first
- Collapse at intersection of light cone?

$$\boxed{|\Psi_{-}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\right)}$$

- · Who collapses state first?
 - \cdot If Alice measures first, \exists intertial frame s.t. Bob measures first
- Collapse at intersection of light cone?

• E.g.: 2 distinguishable particle singlet state, space-like separated

$$\boxed{|\Psi_{-}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\right)}$$

- · Who collapses state first?
 - \cdot If Alice measures first, \exists intertial frame s.t. Bob measures first
- · Collapse at intersection of light cone?

Collapse happens in the past ⇒ A, B measures product state ⇒ Obeys Bell's inequality ⇒ Paradox

Landau and Peierls:

Theorem (Relativistic Uncertainty Relation)

Measurement of momentum cannot be instantaneous. Momentum with accuracy Δp cannot take time less than Δt such that

$$\Delta p \, \Delta t \geq \frac{\hbar}{c} \, .$$

Landau and Peierls:

Theorem (Relativistic Uncertainty Relation)

Measurement of momentum cannot be instantaneous. Momentum with accuracy Δp cannot take time less than Δt such that

$$\Delta p \, \Delta t \geq \frac{\hbar}{c} \, .$$

· Measurement of non-local operator cannot be instantaneous.

$$\left|\Psi_{\alpha\beta}\right\rangle = \alpha\left|\uparrow\downarrow\right\rangle + \beta\left|\downarrow\uparrow\right\rangle \;.$$

E.g.: Measure total spin of 2 localised spin- $\frac{1}{2}$ particles with state

$$|\Psi_{\alpha\beta}\rangle = \alpha |\uparrow\downarrow\rangle + \beta |\downarrow\uparrow\rangle$$
.

• Suppose A and B can measure S^2 instantaneously.

E.g.: Measure total spin of 2 localised spin- $\frac{1}{2}$ particles with state

$$|\Psi_{\alpha\beta}\rangle = \alpha |\uparrow\downarrow\rangle + \beta |\downarrow\uparrow\rangle$$
.

- Suppose A and B can measure S^2 instantaneously.
- · Rewrite state in total spin basis:

$$|\Psi_{\alpha\beta}\rangle = \frac{\alpha+\beta}{\sqrt{2}}|2,0\rangle + \frac{\alpha-\beta}{\sqrt{2}}|0,0\rangle$$
,

where

$$|0,0\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$
 and $|2,0\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$.

8

$$|\Psi_{\alpha\beta}\rangle = \frac{\alpha+\beta}{\sqrt{2}}|2,0\rangle + \frac{\alpha-\beta}{\sqrt{2}}|0,0\rangle$$

E.g.: Measure total spin of 2 localised spin- $\frac{1}{2}$ particles with state

$$|\Psi_{\alpha\beta}\rangle = \frac{\alpha+\beta}{\sqrt{2}}|2,0\rangle + \frac{\alpha-\beta}{\sqrt{2}}|0,0\rangle$$

Measurement 1:

9

$$|\Psi_{\alpha\beta}\rangle = \frac{\alpha+\beta}{\sqrt{2}}|2,0\rangle + \frac{\alpha-\beta}{\sqrt{2}}|0,0\rangle$$

- Measurement 1:
 - 1. A and B measure S^2

$$|\Psi_{\alpha\beta}\rangle = \frac{\alpha+\beta}{\sqrt{2}}|2,0\rangle + \frac{\alpha-\beta}{\sqrt{2}}|0,0\rangle$$

- · Measurement 1:
 - 1. A and B measure S^2
 - 2. A measures $S_z \implies \frac{1}{2}$ probability get \uparrow or \downarrow

$$|\Psi_{\alpha\beta}\rangle = \frac{\alpha+\beta}{\sqrt{2}}|2,0\rangle + \frac{\alpha-\beta}{\sqrt{2}}|0,0\rangle$$

- · Measurement 1:
 - 1. A and B measure S^2
 - 2. A measures $S_z \implies \frac{1}{2}$ probability get \uparrow or \downarrow
- · Measurement 2:

E.g.: Measure total spin of 2 localised spin- $\frac{1}{2}$ particles with state

$$|\Psi_{\alpha\beta}\rangle = \frac{\alpha+\beta}{\sqrt{2}}|2,0\rangle + \frac{\alpha-\beta}{\sqrt{2}}|0,0\rangle$$

- · Measurement 1:
 - 1. A and B measure S^2
 - 2. A measures $S_z \implies \frac{1}{2}$ probability get \uparrow or \downarrow
- · Measurement 2:
 - 1. B flips his spin

$$\left|\Psi'_{\alpha\beta}\right\rangle = \alpha\left|2,1\right\rangle + \beta\left|2,-1\right\rangle$$

9

E.g.: Measure total spin of 2 localised spin- $\frac{1}{2}$ particles with state

$$|\Psi_{\alpha\beta}\rangle = \frac{\alpha+\beta}{\sqrt{2}}|2,0\rangle + \frac{\alpha-\beta}{\sqrt{2}}|0,0\rangle$$

- · Measurement 1:
 - 1. A and B measure S^2
 - 2. A measures $S_z \implies \frac{1}{2}$ probability get \uparrow or \downarrow
- · Measurement 2:
 - 1. B flips his spin

$$|\Psi'_{\alpha\beta}\rangle = \alpha |2,1\rangle + \beta |2,-1\rangle$$

2. A and B measure S^2

E.g.: Measure total spin of 2 localised spin- $\frac{1}{2}$ particles with state

$$|\Psi_{\alpha\beta}\rangle = \frac{\alpha+\beta}{\sqrt{2}}|2,0\rangle + \frac{\alpha-\beta}{\sqrt{2}}|0,0\rangle$$

- · Measurement 1:
 - 1. A and B measure S^2
 - 2. A measures $S_z \implies \frac{1}{2}$ probability get \uparrow or \downarrow
- · Measurement 2:
 - 1. B flips his spin

$$|\Psi'_{\alpha\beta}\rangle = \alpha |2,1\rangle + \beta |2,-1\rangle$$

- 2. A and B measure S^2
- 3. A measures $S_z \implies |\alpha|^2$ probability get \uparrow , $|\beta|^2$ get \downarrow

g

$$|\Psi_{\alpha\beta}\rangle = \frac{\alpha+\beta}{\sqrt{2}}|2,0\rangle + \frac{\alpha-\beta}{\sqrt{2}}|0,0\rangle$$

E.g.: Measure total spin of 2 localised spin- $\frac{1}{2}$ particles with state

$$|\Psi_{\alpha\beta}\rangle = \frac{\alpha+\beta}{\sqrt{2}}|2,0\rangle + \frac{\alpha-\beta}{\sqrt{2}}|0,0\rangle$$

· B can send superluminal message by flipping in his lab!

$$|\Psi_{\alpha\beta}\rangle = \frac{\alpha+\beta}{\sqrt{2}}|2,0\rangle + \frac{\alpha-\beta}{\sqrt{2}}|0,0\rangle$$

- · B can send superluminal message by flipping in his lab!
- Unless $|\alpha|^2 = |\beta|^2 = \frac{1}{2}$.

Non-local Measurements

What if
$$|\alpha|^2 = |\beta|^2 = \frac{1}{2}$$
? \implies state-specific measurement

What if
$$|\alpha|^2 = |\beta|^2 = \frac{1}{2}$$
? \Longrightarrow state-specific measurement

· Measurement interaction

$$\mathcal{H}_{int} = g(t) \left[S_z^A P_z^A + S_z^B P_z^B \right]$$

What if
$$|\alpha|^2 = |\beta|^2 = \frac{1}{2}$$
? \Longrightarrow state-specific measurement

Measurement interaction

$$\mathcal{H}_{int} = g(t) \left[S_z^A P_z^A + S_z^B P_z^B \right]$$

where

$$g(t) = \begin{cases} \frac{1}{T}, & 0 \le t \le T \\ 0, & \text{otherwise} \end{cases}$$

What if $|\alpha|^2 = |\beta|^2 = \frac{1}{2}$? \implies state-specific measurement

Measurement interaction

$$\mathcal{H}_{int} = g(t) \left[S_z^A P_z^A + S_z^B P_z^B \right]$$

where

$$g(t) = \begin{cases} \frac{1}{T}, & 0 \le t \le T \\ 0, & \text{otherwise} \end{cases}$$

· Measuring device state

$$Q_z^A + Q_z^B = 0 = P_z^A - P_z^B$$
.

What if
$$|\alpha|^2 = |\beta|^2 = \frac{1}{2}$$
? \Longrightarrow state-specific measurement

What if
$$|\alpha|^2 = |\beta|^2 = \frac{1}{2}$$
? \implies state-specific measurement

• Measures
$$Q_z^A + Q_z^B \implies$$
 Measures $S_z = S_z^A + S_z^B$

What if
$$|\alpha|^2 = |\beta|^2 = \frac{1}{2}$$
? \implies state-specific measurement

- Measures $Q_z^A + Q_z^B \implies$ Measures $S_z = S_z^A + S_z^B$
- Do this for S_x and S_y too.

What if
$$|\alpha|^2 = |\beta|^2 = \frac{1}{2}$$
? \Longrightarrow state-specific measurement

- Measures $Q_z^A + Q_z^B \implies$ Measures $S_z = S_z^A + S_z^B$
- Do this for S_x and S_y too.
- If $S_x = S_y = S_z$, then $S^2 = 0 \implies \text{verified } |0,0\rangle$

 \exists operator measurable instantaneously? \Longrightarrow Operator-specific measurement

 \exists operator measurable instantaneously? \Longrightarrow Operator-specific measurement

• Suppose ∃ such non-degenerate operator *W* with eigenstate

$$|\Psi_{\alpha\beta}\rangle = \alpha |\uparrow\downarrow\rangle + \beta |\downarrow\uparrow\rangle$$
 with $\alpha, \beta \in \mathbb{R}$.

 \exists operator measurable instantaneously? \Longrightarrow Operator-specific measurement

• Suppose ∃ such non-degenerate operator W with eigenstate

$$|\Psi_{\alpha\beta}\rangle = \alpha |\uparrow\downarrow\rangle + \beta |\downarrow\uparrow\rangle \quad \text{with} \quad \alpha, \beta \in \mathbb{R}.$$

• The other 3 eigenstates are $|W_1\rangle$, $|W_2\rangle$ and $|W_3\rangle$

 \exists operator measurable instantaneously? \Longrightarrow Operator-specific measurement

· Suppose ∃ such non-degenerate operator W with eigenstate

$$|\Psi_{\alpha\beta}\rangle = \alpha |\uparrow\downarrow\rangle + \beta |\downarrow\uparrow\rangle$$
 with $\alpha, \beta \in \mathbb{R}$.

- The other 3 eigenstates are $|W_1\rangle$, $|W_2\rangle$ and $|W_3\rangle$
- · The space is spanned by bases

$$|\Psi_{\alpha\beta}\rangle = \alpha |\uparrow\downarrow\rangle + \beta |\downarrow\uparrow\rangle; \quad |\Psi_{\alpha\beta}^{\perp}\rangle = \beta |\uparrow\downarrow\rangle - \alpha |\downarrow\uparrow\rangle; \quad |\uparrow\uparrow\rangle; \quad |\downarrow\downarrow\rangle.$$

• Measurement: Prepare state
$$|0,0\rangle = \frac{\alpha-\beta}{\sqrt{2}} \, |\Psi_{\alpha\beta}\rangle + \frac{\alpha+\beta}{\sqrt{2}} \, |\Psi_{\alpha\beta}^{\perp}\rangle$$

- Measurement: Prepare state $|0,0\rangle = \frac{\alpha-\beta}{\sqrt{2}} \, |\Psi_{\alpha\beta}\rangle + \frac{\alpha+\beta}{\sqrt{2}} \, |\Psi_{\alpha\beta}^{\perp}\rangle$
 - 1. A and B measure W instantaneously

- Measurement: Prepare state $|0,0\rangle = \frac{\alpha-\beta}{\sqrt{2}} \, |\Psi_{\alpha\beta}\rangle + \frac{\alpha+\beta}{\sqrt{2}} \, |\Psi_{\alpha\beta}^{\perp}\rangle$
 - 1. A and B measure W instantaneously
 - · Probability $\frac{|lpha-eta|^2}{2}$, getting $|\Psi_{lphaeta}
 angle$

- Measurement: Prepare state $|0,0\rangle = \frac{\alpha-\beta}{\sqrt{2}} |\Psi_{\alpha\beta}\rangle + \frac{\alpha+\beta}{\sqrt{2}} |\Psi_{\alpha\beta}^{\perp}\rangle$
 - 1. A and B measure W instantaneously
 - Probability $\frac{|\alpha-\beta|^2}{2}$, getting $|\Psi_{\alpha\beta}\rangle$
 - Probability $\frac{|\alpha+\beta|^2}{2}$, getting any of the other eigenstates W_i

- Measurement: Prepare state $|0,0\rangle = \frac{\alpha-\beta}{\sqrt{2}} |\Psi_{\alpha\beta}\rangle + \frac{\alpha+\beta}{\sqrt{2}} |\Psi_{\alpha\beta}^{\perp}\rangle$
 - 1. A and B measure W instantaneously
 - Probability $\frac{|\alpha-\beta|^2}{2}$, getting $|\Psi_{\alpha\beta}\rangle$
 - · Probability $\frac{|\alpha+\beta|^2}{2}$, getting any of the other eigenstates W_i
 - 2. A measures S_z^A

- Measurement: Prepare state $|0,0\rangle = \frac{\alpha-\beta}{\sqrt{2}} |\Psi_{\alpha\beta}\rangle + \frac{\alpha+\beta}{\sqrt{2}} |\Psi_{\alpha\beta}^{\perp}\rangle$
 - 1. A and B measure W instantaneously
 - Probability $\frac{|\alpha-\beta|^2}{2}$, getting $|\Psi_{\alpha\beta}\rangle$
 - · Probability $\frac{|\alpha+\beta|^2}{2}$, getting any of the other eigenstates W_i
 - 2. A measures S_z^A
- · For Alice, probability of getting up

- Measurement: Prepare state $|0,0\rangle = \frac{\alpha-\beta}{\sqrt{2}} \left| \Psi_{\alpha\beta} \right\rangle + \frac{\alpha+\beta}{\sqrt{2}} \left| \Psi_{\alpha\beta}^{\perp} \right\rangle$
 - 1. A and B measure W instantaneously
 - · Probability $\frac{|\alpha-\beta|^2}{2}$, getting $|\Psi_{\alpha\beta}\rangle$
 - · Probability $\frac{|\alpha+\beta|^2}{2}$, getting any of the other eigenstates W_i
 - 2. A measures S_z^A
- · For Alice, probability of getting up

$$P(\uparrow_{A}) = \frac{1 - 2\alpha\beta}{2}\alpha^{2} + \frac{1 + 2\alpha\beta}{2}\sum_{i}\left|\left\langle W_{i}\middle|\Psi_{\alpha\beta}^{\perp}\right\rangle\right|^{2}\left[\left|\left\langle W_{i}\middle|\uparrow\uparrow\rangle\right|^{2} + \beta^{2}\middle|\left\langle W_{i}\middle|\Psi_{\alpha\beta}^{\perp}\right\rangle\right|^{2}\right]$$

- Measurement: Prepare state $|0,0\rangle = \frac{\alpha-\beta}{\sqrt{2}} |\Psi_{\alpha\beta}\rangle + \frac{\alpha+\beta}{\sqrt{2}} |\Psi_{\alpha\beta}^{\perp}\rangle$
 - 1. A and B measure W instantaneously
 - Probability $\frac{|\alpha-\beta|^2}{2}$, getting $|\Psi_{\alpha\beta}\rangle$
 - Probability $\frac{|\alpha+\beta|^2}{2}$, getting any of the other eigenstates W_i
 - 2. A measures S_z^A
- · For Alice, probability of getting up

$$P(\uparrow_{A}) = \frac{1 - 2\alpha\beta}{2}\alpha^{2} + \frac{1 + 2\alpha\beta}{2}\sum_{i}\left|\left\langle W_{i}\middle|\Psi_{\alpha\beta}^{\perp}\right\rangle\right|^{2}\left[\left|\left\langle W_{i}\middle|\uparrow\uparrow\rangle\right|^{2} + \beta^{2}\middle|\left\langle W_{i}\middle|\Psi_{\alpha\beta}^{\perp}\right\rangle\right|^{2}\right]$$

For Bob probability of getting up

- Measurement: Prepare state $|0,0\rangle = \frac{\alpha-\beta}{\sqrt{2}} |\Psi_{\alpha\beta}\rangle + \frac{\alpha+\beta}{\sqrt{2}} |\Psi_{\alpha\beta}^{\perp}\rangle$
 - 1. A and B measure W instantaneously
 - · Probability $\frac{|\alpha-\beta|^2}{2}$, getting $|\Psi_{\alpha\beta}\rangle$
 - Probability $\frac{|\alpha+\beta|^2}{2}$, getting any of the other eigenstates W_i
 - 2. A measures S_z^A
- · For Alice, probability of getting up

$$P(\uparrow_{A}) = \frac{1 - 2\alpha\beta}{2}\alpha^{2} + \frac{1 + 2\alpha\beta}{2}\sum_{i}\left|\left\langle W_{i}\middle|\Psi_{\alpha\beta}^{\perp}\right\rangle\right|^{2}\left[\left|\left\langle W_{i}\middle|\uparrow\uparrow\rangle\right|^{2} + \beta^{2}\middle|\left\langle W_{i}\middle|\Psi_{\alpha\beta}^{\perp}\right\rangle\right|^{2}\right]$$

For Bob probability of getting up

$$P(\uparrow_B) = \frac{1 - 2\alpha\beta}{2}\beta^2 + \frac{1 + 2\alpha\beta}{2}\sum_i \left| \left\langle W_i \middle| \Psi_{\alpha\beta}^{\perp} \right\rangle \right|^2 \left[\left| \left\langle W_i \middle| \uparrow \uparrow \right\rangle \right|^2 + \alpha^2 \left| \left\langle W_i \middle| \Psi_{\alpha\beta}^{\perp} \right\rangle \right|^2 \right]$$

What if Alice and Bob apply local unitary transformations (change relative phase)

What if Alice and Bob apply local unitary transformations (change relative phase)

$$|0,0\rangle \mapsto |2,0\rangle$$

What if Alice and Bob apply local unitary transformations (change relative phase)

$$|0,0\rangle \mapsto |2,0\rangle$$

Repeat measurement:

What if Alice and Bob apply local unitary transformations (change relative phase)

$$|0,0\rangle\mapsto|2,0\rangle$$

· Repeat measurement:

$$\begin{split} P(\uparrow_{A}) &= \frac{1+2\alpha\beta}{2}\alpha^{2} + \frac{1-2\alpha\beta}{2}\sum_{i}\left|\left\langle W_{i}\middle|\Psi_{\alpha\beta}^{\perp}\right\rangle\right|^{2}\left[\left|\left\langle W_{i}\middle|\uparrow\uparrow\rangle\right|^{2} + \beta^{2}\middle|\left\langle W_{i}\middle|\Psi_{\alpha\beta}^{\perp}\right\rangle\right|^{2}\right] \\ P(\uparrow_{B}) &= \frac{1+2\alpha\beta}{2}\beta^{2} + \frac{1-2\alpha\beta}{2}\sum_{i}\left|\left\langle W_{i}\middle|\Psi_{\alpha\beta}^{\perp}\right\rangle\right|^{2}\left[\left|\left\langle W_{i}\middle|\uparrow\uparrow\rangle\right|^{2} + \alpha^{2}\middle|\left\langle W_{i}\middle|\Psi_{\alpha\beta}^{\perp}\right\rangle\right|^{2}\right] \end{split}$$

What if Alice and Bob apply local unitary transformations (change relative phase)

$$|0,0\rangle\mapsto|2,0\rangle$$

· Repeat measurement:

$$P(\uparrow_{A}) = \frac{1 + 2\alpha\beta}{2}\alpha^{2} + \frac{1 - 2\alpha\beta}{2}\sum_{i}\left|\left\langle W_{i}\middle|\Psi_{\alpha\beta}^{\perp}\right\rangle\right|^{2}\left[\left|\left\langle W_{i}\middle|\uparrow\uparrow\rangle\right|^{2} + \beta^{2}\middle|\left\langle W_{i}\middle|\Psi_{\alpha\beta}^{\perp}\right\rangle\right|^{2}\right]$$

$$P(\uparrow_{B}) = \frac{1 + 2\alpha\beta}{2}\beta^{2} + \frac{1 - 2\alpha\beta}{2}\sum_{i}\left|\left\langle W_{i}\middle|\Psi_{\alpha\beta}^{\perp}\right\rangle\right|^{2}\left[\left|\left\langle W_{i}\middle|\uparrow\uparrow\rangle\right|^{2} + \alpha^{2}\middle|\left\langle W_{i}\middle|\Psi_{\alpha\beta}^{\perp}\right\rangle\right|^{2}\right]$$

Demand probabilities to be the same

$$\implies \alpha\beta = 0$$
 or $\alpha = \pm \beta$

Conclusion:

Conclusion:

A and B cannot measure W instantaneously unless each eigenstate of W is $|\Psi_{\alpha\beta}\rangle$ with $\alpha\beta=0$ or $\alpha=\pm\beta$, up to local unitary transformation.

Conclusion:

A and B cannot measure W instantaneously unless each eigenstate of W is $|\Psi_{\alpha\beta}\rangle$ with $\alpha\beta=0$ or $\alpha=\pm\beta$, up to local unitary transformation.

• This is necessary but not sufficient. Why? Think of S^2 .

• What about an operator with an eigenvector that is not entangled ($\alpha\beta=0$)?

- What about an operator with an eigenvector that is not entangled ($\alpha\beta=0$)?
- · Can A and B simultaneously measure such an operator?

- What about an operator with an eigenvector that is not entangled ($\alpha\beta=0$)?
- · Can A and B simultaneously measure such an operator?
- Take two eigenvectors to be $\frac{1}{\sqrt{2}}\left(|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle\right)$ and $|\uparrow\uparrow\rangle$

- What about an operator with an eigenvector that is not entangled ($\alpha\beta=0$)?
- · Can A and B simultaneously measure such an operator?
- Take two eigenvectors to be $\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle \right)$ and $|\uparrow\uparrow\rangle$
- Can Alice and bob instantaneously measure an operator with these two states as eigenstates?

· If yes

- \cdot If yes \Longrightarrow
 - A and B prepare their spins in the state $\left|\uparrow\uparrow\right\rangle$

- \cdot If yes \Longrightarrow
 - A and B prepare their spins in the state $|\!\!\uparrow\uparrow\rangle$
 - $\boldsymbol{\cdot}$ A and B measure instantaneously

- \cdot If yes \Longrightarrow
 - A and B prepare their spins in the state $|\uparrow\uparrow\rangle$
 - · A and B measure instantaneously
 - Alice measures σ_z on her spin and she is certain to obtain $\sigma_z=1$

- \cdot If yes \Longrightarrow
 - · A and B prepare their spins in the state $|\uparrow\uparrow\rangle$
 - · A and B measure instantaneously
 - Alice measures σ_z on her spin and she is certain to obtain $\sigma_z = 1$
 - But, what if just before the measuring the non-local operator, Bob flips his spin?

- \cdot If yes \Longrightarrow
 - \cdot A and B prepare their spins in the state $|\uparrow\uparrow\rangle$
 - A and B measure instantaneously
 - Alice measures σ_z on her spin and she is certain to obtain $\sigma_z = 1$
 - But, what if just before the measuring the non-local operator, Bob flips his spin?
 - \cdot $|\uparrow\uparrow\rangle$ changes to $|\uparrow\downarrow\rangle$

- \cdot If yes \Longrightarrow
 - \cdot A and B prepare their spins in the state $|\uparrow\uparrow\rangle$
 - A and B measure instantaneously
 - Alice measures σ_z on her spin and she is certain to obtain $\sigma_z = 1$
 - But, what if just before the measuring the non-local operator, Bob flips his spin?
 - $\cdot \mid \uparrow \uparrow \rangle$ changes to $\mid \uparrow \downarrow \rangle$
 - This is not an eigenstate of the chosen non-local operator!

- \cdot If yes \Longrightarrow
 - A and B prepare their spins in the state $|\!\!\uparrow\uparrow\rangle$
 - A and B measure instantaneously
 - Alice measures σ_z on her spin and she is certain to obtain $\sigma_z = 1$
 - But, what if just before the measuring the non-local operator, Bob flips his spin?
 - $\cdot \mid \uparrow \uparrow \rangle$ changes to $\mid \uparrow \downarrow \rangle$
 - · This is not an eigenstate of the chosen non-local operator!
 - The non-local operator has a chance of leaving the spins in the state $\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle)$

- \cdot If yes \Longrightarrow
 - · A and B prepare their spins in the state $|\uparrow\uparrow\rangle$
 - · A and B measure instantaneously
 - Alice measures σ_z on her spin and she is certain to obtain $\sigma_z = 1$
 - But, what if just before the measuring the non-local operator, Bob flips his spin?
 - $\cdot \mid \uparrow \uparrow \rangle$ changes to $\mid \uparrow \downarrow \rangle$
 - · This is not an eigenstate of the chosen non-local operator!
 - The non-local operator has a chance of leaving the spins in the state $\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle)$
 - \cdot Now Alice has a chance of obtaining -1 when she measures σ_{z}

- \cdot If yes \Longrightarrow
 - A and B prepare their spins in the state $|\!\!\uparrow\uparrow\rangle$
 - A and B measure instantaneously
 - Alice measures σ_z on her spin and she is certain to obtain $\sigma_z = 1$
 - But, what if just before the measuring the non-local operator, Bob flips his spin?
 - $\cdot \mid \uparrow \uparrow \rangle$ changes to $\mid \uparrow \downarrow \rangle$
 - · This is not an eigenstate of the chosen non-local operator!
 - The non-local operator has a chance of leaving the spins in the state $\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle)$
 - · Now Alice has a chance of obtaining -1 when she measures σ_z
 - Bob can send superluminal signal to Alice!

- \cdot If yes \Longrightarrow
 - \cdot A and B prepare their spins in the state $|\uparrow\uparrow\rangle$
 - · A and B measure instantaneously
 - Alice measures σ_z on her spin and she is certain to obtain $\sigma_z = 1$
 - But, what if just before the measuring the non-local operator, Bob flips his spin?
 - $\cdot \mid \uparrow \uparrow \rangle$ changes to $\mid \uparrow \downarrow \rangle$
 - · This is not an eigenstate of the chosen non-local operator!
 - The non-local operator has a chance of leaving the spins in the state $\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle)$
 - · Now Alice has a chance of obtaining -1 when she measures σ_z
 - Bob can send superluminal signal to Alice! ⇒ Alice and Bob can't measure such an operator instantaneously!

Conclusion:

A and B cannot measure W instantaneously unless each eigenstate of W is $|\Psi_{\alpha\beta}\rangle$ with $\alpha=\pm\beta$, up to local unitary transformation.

 \cdot Collapse is not Lorentz invariant \implies

 \cdot Collapse is not Lorentz invariant \implies Observers in different frames disagree about collapse

- \cdot Collapse is not Lorentz invariant \implies Observers in different frames disagree about collapse
- So what?

- \cdot Collapse is not Lorentz invariant \implies Observers in different frames disagree about collapse
- · So what?
- · This is not a contradiction

- \cdot Collapse is not Lorentz invariant \implies Observers in different frames disagree about collapse
- · So what?
- · This is not a contradiction
- We have a contradiction only if observers in different frames verify incompatible account of collapse

- \cdot Collapse is not Lorentz invariant \implies Observers in different frames disagree about collapse
- · So what?
- · This is not a contradiction
- We have a contradiction only if observers in different frames verify incompatible account of collapse
- · Which they can't!

 State specific verifications disturb one another and so verifications are incompatible.

- State specific verifications disturb one another and so verifications are incompatible.
- · No contradiction over collapse!

- State specific verifications disturb one another and so verifications are incompatible.
- · No contradiction over collapse!
- · In fact, disagreement is fine!

- State specific verifications disturb one another and so verifications are incompatible.
- · No contradiction over collapse!
- · In fact, disagreement is fine!
- Observers in different frames disagree over length, temporal order etc.

· So what?

- · So what?
- Is everything okay?

- · So what?
- · Is everything okay?
- · What about measurements?

- · So what?
- Is everything okay?
- · What about measurements?
- Relativistic causality forbids an instantaneous collapse of almost all non-local operators!

Then what happens in our experiments?

