Assignment 6.2

Question 1: Consider an *n*-type Si sample doped with 10^{16} donors per cm³. The length L is 100 µm; the cross-sectional area A is 10 µm × 10 µm. The two ends of the sample are labeled as B and C. The electron affinity (χ) of Si is 4.01 eV and the work functions of four potential metals ($\Phi_{\rm m}$) for contacts at *B* and *C* are listed in the table below:

Table 5.5	Work functions in eV		
Cs	Li	Al	Au
1.8	2.5	4.25	5.0

a) Which metals will result in a Schottky contact? Draw the energy band diagram **after** contact.

- b) Sketch the I-V characteristics when both B and C are Ohmic contacts. What is the relationship (gradient) between I and V? (Hint: conductivity of n-type Si)
- c) Sketch the I-V characteristics when both B and C are Schottky contacts. What is the relationship between I and V?
- d) Sketch the I-V characteristics when B is Ohmic and C is a Schottky junction. What is the relationship between I and V?