Remark 2.10. In Proposition 2.8 and all of our computation examples, there is a symmetry between the x_i and y_i coordinates of $X_{\Delta_n}(\mathbb{N}^{2n})$ for all i. Antoine de Saint-Germain has kindly pointed out to the second author that the $x_i \mapsto y_i$ direction of this symmetry has the following names in different contexts:

- the Auslander–Reiten translate in finite-dimensional representation theory;
- the Fomin–Zelevinsky twist in Lie theory (cf. [dSG23, §5.6];
- the Donaldson–Thomas transformation in Calabi–Yau theory;
- the maximal green sequence in combinatorics.
- 2.4. **Effective bounds.** As before, let $A_{\Delta_n}=(\alpha_{i,j})$ be a Cartan matrix for Dynkin type Δ_n . Denote its inverse by $A_{\Delta_n}^{-1}=(\alpha_{i,j}^{-1})$. Define the following associated values:

$$egin{aligned} b_{i,\Delta_n} &:= \prod_{j=1}^n 2^{lpha_{i,j}^{-1}} \ c_{i,\Delta_n} &:= \prod_{j=1}^n \Bigl(1 + 2^{\sum_{k
eq i} a_{j,k}}\Bigr)^{lpha_{i,j}^{-1}}. \end{aligned}$$

Muller [Mul23, Proposition 2.3 and Example 3.1] gives bounds on frieze entries in terms of these values.

Lemma 2.11. [Mul23, Proposition 2.3 and Example 3.1] Let F be a positive integral Δ_n -frieze. Then there is the following upper bound on the product of entries in its i-th row: $\prod_{j=1}^{P_{\Delta_n}} F_{i,j} \leq b_{i,\Delta_n}^{P_{\Delta_n}}$. Furthermore, if all entries in F are at least 2, then $\prod_{j=1}^{P_{\Delta_n}} F_{i,j} \leq c_{i,\Delta_n}^{P_{\Delta_n}}$.

 $\begin{array}{c} {\it Remark~2.12.~There~is~a~misprint~in~[Mul23,~Example~3.1]:~the~bound~(\frac{151875}{16384})^{16}\approx}\\ 2^{51}~{\rm on~the~eighth~row~of~an~E_8-frieze~should~be~c^{16}_{8,E_8}}=(\frac{177347025604248046875}{144115188075855872})^{16}\approx2^{164}. \end{array}$

An immediate consequence of Lemma 2.11 and Proposition 2.3 is that if the frieze F corresponds to the point $(x_1,\ldots,x_n;y_1,\ldots,y_n)\in X_{\Delta_n}(\mathbb{N}^{2n})$, then $x_i\leq b_{i,\Delta_n}^{P_{\Delta_n}}$. Furthermore, if all entries in F are at least 2, then $x_i\leq c_{i,\Delta_n}^{P_{\Delta_n}}$.

The Diophantine model of friezes allows us to find a minimal element in each $\mathbb{Z}/P_{\Delta_n}\mathbb{Z}$ -orbit on which we can reduce existing bounds by a power of $\frac{1}{P_{\Delta_n}}$.

PROPOSITION 2.13. Let F be a positive integral Δ_n -frieze and fix an $i \in \{1, \ldots, n\}$. There is a Δ_n -frieze F' corresponding to $(x_1, \ldots, x_n; y_1, \ldots, y_n) \in X_{\Delta_n}(\mathbb{N}^{2n})$ such that F is a horizontal translation of F' and $x_i \leq b_{i,\Delta_n}$. Furthermore, if all entries in F are at least 2, then $x_i \leq c_{i,\Delta_n}$.

Proof. Each Δ_n -frieze F is a horizontal translation of a frieze F' in its $\mathbb{Z}/P_{\Delta_n}\mathbb{Z}$ -orbit such that $F'_{i,1} \leq F'_{i,j}$ for all $1 \leq j \leq P_{\Delta_n}$. By Lemma 2.11, there is a bound on $\prod_{j=1}^{P_{\Delta_n}} F'_{i,j} \leq b_{i,\Delta_n}^{P_{\Delta_n}}$. But $x_i = F'_{i,1}$ is the smallest factor in the product of P_{Δ_n} -many terms, hence $x_i \leq b_{i,\Delta_n}$. If the entries of F are all at least 2, then the entries of the translation F' are also all at least 2. Hence the same argument gives the bound in terms of c_{i,Δ_n} instead of b_{i,Δ_n} .