2/2

2/2

2/2

-1/2

2/2

0/2

0/2

Fouquet Hugo Note: 5/20 (score total : 5/20)

+71/1/50+

QCM THLR 2		
Nom et prénom, lisibles :	Identifiant (de haut en bas) : □0 □1 ■2 □3 □4 □5 □6 □7 □8 □9	
Larguet Mido		
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « △ » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. ☐ J'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +71/1/xx+···+71/2/xx+.		
Q.2 Pour toute expression rationnelle e , on a $\varepsilon e \equiv e\varepsilon \equiv e$.	 □ n'est pas nécessairement dénombrable □ peut n'être inclus dans aucun langage dénoté par une expression rationnelle 	
🗌 faux 📳 vrai	est toujours inclus (⊆) dans un langage rationnel	
Q.3 Pour toutes expressions rationnelles e, f, g, h , on a $(e+f)(g+h) \equiv eg+fh$.	Q.8 Si e et f sont deux expressions rationnelles, quelle identité n'est pas nécessairement vérifiée?	
☐ vrai 📵 faux	$\boxtimes (ef)^* \equiv e(fe)^* f \qquad \Box \emptyset^* \equiv \varepsilon$	
Q.4 Pour toutes expressions rationnelles e, f , on a $(e+f)^* \equiv e^*(e+f)^*$.	$(ef)^*e \equiv e(fe)^*$ $(e+f)^* \equiv (f^*(ef)^*e^*)^*$ $(e+f)^* \equiv (e^*f^*)^*$	-1/2
🛚 vrai 📵 faux	Q.9 Ces deux expressions rationnelles :	
Q.5 À quoi est équivalent Ø*?	$(a^* + b)^* + c((ab)^*(bc))^*(ab)^* \qquad c(ab + bc)^* + (a + b)^*$	
\bigcirc $\emptyset \varepsilon$ \bigcirc \emptyset \bigcirc $\varepsilon \emptyset$ \bigcirc ε Q.6 Un langage quelconque \bigcirc peut n'inclure aucun langage dénoté par une	 □ ne sont pas équivalentes □ sont identiques □ dénotent des langages différents 	0/2
expression rationnelle ☐ contient toujours (⊇) un langage rationnel ☐ peut avoir une intersection non vide avec son complémentaire	Q.10 \triangle Soit A, L, M trois langages. Parmi les propositions suivantes, lesquelles sont suffisantes pour garantir $L = M$?	
peut être indénombrable Q.7 Un langage quelconque peut avoir une intersection non vide avec son complémentaire		-1/2

Fin de l'épreuve.

.