Ingineria Reglarii Automate (IRA) *Laborator*

Indicatori de performanta in timp si frecventa

Introducere

- Indicatorii de performanta sunt impusi de beneficiarul instalatiei care trebuie automatizata
- Trebuie luati in considerare pe parcursul procesului de proiectare
- Descriu "calitatea dinamica" a instalatiei automatizate

Definite in legatura cu cele doua obiective ale reglarii:

- urmarirea referintei
- rejectia perturbatiei

Indicatori in timp (performanta dinamica)

- timp tranzitoriu
- timp de crestere
- timp mort
- eroare stationara
- suprareglaj

Indicatori in frecventa (stabilitate)

- marginea de amplitudine
- marginea de faza

Indicatori de performanta in timp

Indicatorii de performanta in timp "masoara calitatea dinamica" analizand raspunsul indicial al sistemului in bucla inchisa.

Timpul tranzitoriu – t_t [sec]

Def: reprezintă intervalul de timp de la momentul în care se aplică treapta de referință la intrarea sistemului până la momentul în care ieșirea **intră și nu mai părăsește** o bandă de \pm 5% din valoarea de staționar (y_{st}) raportată la valoarea inițială a ieșirii (y_0).

Obs: Valoarea ieşirii la momentul de timp t_t (limitele benzii de $\pm 5\%$) sunt:

$$y_{t_t} = y_0 + 0.95 \cdot (y_{st} - y_0) \text{ sau } y_{t_t} = y_0 + 1.05 \cdot (y_{st} - y_0)$$

- 1. Determin limitele benzii de +5%
- 2. Determin ultimul punct de intersectie
- 3. Determin valoarea timpului in acel punct
- Determin intervalul de timp de la aplicarea treptei

Sist. ord. I

Timpul tranzitoriu – t_t [sec]

Timpul de crestere – t_c [sec]

Def: reprezintă timpul în care ieşirea sistemului variază de la 10% la 90% din valoarea sa de regim staționar (y_{st}) raportată la valoarea initială (y_0).

Obs: cele doua limite sunt:

$$y_{[10\%]} = y_0 + 0.1 \cdot (y_{st} - y_0) \text{ si } y_{[90\%]} = y_0 + 0.9 \cdot (y_{st} - y_0)$$

- Determin cele doua limite
- 2. Determin primele puncte de intersectie cu graficul
- 3. Determin valoarea timpului in acele puncte
- 4. Determin intervalul de timp dintre ele

Sist. ord. I

Timpul de crestere – t_c [sec]

Timpul mort – τ [sec]

Def: reprezintă intervalul de timp de la momentul aplicării treptei de referință până la momentul în care sistemul începe să răspundă (ieșirea începe să crească).

Sist. ord. I

Sist. ord. II

Eroarea stationara – ε_{st} [ca y]

Def: reprezintă diferența dintre ieșirea sistemului și intrarea acestuia în regim staționar.

$$\varepsilon_{st} = r_{st} - y_{st} = \lim_{t \to \infty} r(t) - y(t)$$

Sist. ord. I

Sist. ord. II

Suprareglajul – σ [ad.]

Def: reprezintă depăşirea maximă a ieşirii faţă de valoarea sa de regim stationar (y_{st}) , exprimată în procente.

$$\sigma = \frac{y_{max} - y_{st}}{y_{st} - y_0} \cdot 100$$

Sist. ord. I

Suprareglajul – σ [ad.]

 σ nu exista

 σ nu exista

$$\zeta < 0$$

$$\zeta = 0$$

$$y_{\text{max}}$$
 y_{max}
 y_{st}
 y_{st}

$$\zeta \in (0,1)$$

 $\sigma = 0$

Indicatori de performanta in frecventa

Indicatorii de performanta in frecventa "masoara" stabilitatea sistemului in bucla inchisa analizand raspunsul sistemului in bucla deschisa la intrari armonice.

Marginea de amplitudine [db]

$$M_a = -|H_d(j\omega_\Pi)|_{db}$$
 unde ω_Π este pulsația pentru care: $\arg(H_d(j\omega_\Pi)) = -\Pi$ sau $\operatorname{Im}(H_d(j\omega_\Pi)) = 0$

Exprima amplificarea maxima ce poate fi adaugata pe calea directa pentru ca sistemul sa ajunga la limita de stabilitate.

Marginea de faza [o sau rad]

$$M_{\phi}=180^{o}+arg(H_{d}(j\omega_{c}))$$
 unde ω_{c} este pulsația pentru care: $\left|H_{d}(j\omega_{c})\right|_{db}=0$ sau $\left|H_{d}(j\omega_{c})\right|=1$

Exprima defazajul maxim ce poate fi adaugat pe calea directa pentru ca sistemul sa ajunga la limita de stabilitate.

Analiza

Diagrama Bode

$$A(\omega) = |H_d(j\omega)|$$

$$A(\omega)_{db} = 20 |g|H_d(j\omega)| = 20 |gA(\omega)|$$

$$\phi(\omega) = arg(H_d(j\omega))$$

Diagrama Nyquist

Stabilitate

Un sistem este stabil daca marginile de amplitudine si de faza sunt pozitive.

Criteriul Nyquist simplificat

Un sistem este stabil daca locul de transfer al sistemului în buclă deschisă trece prin dreapta punctului critic de coordonate (-1,0).