Лекция 4. Разные конструкции

В начале лекции дадим еще некоторое число новых понятий, а потом, по ходу разберем несколько задач из домашнего задания.

Определение 1. Даны две группы G, H. Отображение $\varphi \colon G \to H$ называется гомоморфизмом групп, если $\forall a, b \in G, \ \varphi(a \cdot_G b) = \varphi(a) \cdot_H \varphi(b)$.

Предложение 1. При любом гомоморфизме а) $\varphi(e) = e$; б) $\varphi(g^{-1}) = \varphi(g)^{-1}$;

Определение 2. Пусть дан гомоморфизм групп $\varphi \colon G \to H$. Ядром гомоморфизма (обозначается $\ker \varphi$) называется $\{g \in G | \varphi(g) = e\}$. Образом гомоморфизма (обозначается $\operatorname{Im}(\varphi)$ называется $\{h \in H | \exists g \in G \varphi(g) = h\}$.

Предложение 2. а). Кег φ является нормальной подгруппой в G. б) Іт φ является подгруппой в H.

Предложение 3. $\varphi(g_1) = \varphi(g_2) \Leftrightarrow g_1 \in g_2 \operatorname{Ker} \varphi$. В частности гомоморфизм φ инъективен тогда и только тогда, когда $\operatorname{Ker} \varphi = \{e\}$.

Примеры

- 1. Отображение взятия остатка по модулю n из \mathbb{Z} в \mathbb{Z}_n является гомоморфизмом. Ядро это подгруппа $n\mathbb{Z}$.
- **2.** Отображение четности определяет гомоморфизм из группы перестановок S_n в группу C_2 . Ядро это подгруппа четных перестановок, она обозначается A_n .
- **3.** Вычисление определителя задает гомоморфизм из группы матриц $GL(N, \mathbb{C})$ в группу \mathbb{C}^* . Ядро это матрицы с определителем 1, эта группа обозначается $SL(N, \mathbb{C})$.
- **4.** Действия группы G на множестве $\{1,2,\ldots,n\}$ находятся в биекции с гомоморфизмами $G \to S_n$.

Теорема 4 (Теорема о гомоморфизме). Пусть $\varphi \colon G \to H$ гомоморфизм групп. Тогда $G/\mathrm{Ker}(\varphi) \simeq \mathrm{Im}(\varphi)$.

Краткое доказательство. Изоморфизм устроен так: каждому элементу $h = \varphi(g) \in \operatorname{Im} \varphi$ ставится в соответствии класс $g \operatorname{Ker} \varphi$. Корректность следует из доказанных выше свойств, свойство гомоморфизма проверяется напрямую.

Предложение 5 (Следствие). Если группа G конечна, то $|G| = |\operatorname{Ker} \varphi| \cdot |\operatorname{Im} \varphi|$.

Теорема 6 (Теорема Кэли). Любая конечная группа изоморфна подгруппе в симметрической группе S_n для какого-то n.

Краткое доказательство Пусть n = |G|. Группа G действует на себе умножением слева. Значит, по примеру выше есть гомоморфизм $G \to S_n$, элемент $g \in G$ переходит в перестановку $\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ gx_1 & gx_2 & \dots & gx_n \end{pmatrix}$.

Разберем несколько задач из прошлого домашнего задания и дадим нужный для них контекст.

Задача 2. а) Пусть G — группа движений сохраняющих правильный тетраэдр. Докажите, что действие G на множестве вершин тетраэдра задает изоморфизм G и

- S_4 . Опишите геометрически (как вращения, симметрии или зеркальные повороты) все перестановки. Найдите классы сопряженности.
- б) Пусть G_0 это подгруппа собственных движений сохраняющих правильный тетраэдр. Является ли она нормальной? Найдите классы сопряженности в G_0 .

Краткое решение. а). Действие группы G на множестве вершин задает гомоморфизм в группу S_4 . То, что это изоморфизм, следует из того, что любое преобразование однозначно задается перестановкой вершин и любая перестановка вершин получается из движении трехмерного пространства. Геометрическая интерпретация указана в следующей таблице:

Геометрическая интерпретация.	Циклический тип.
Тождественное преобразование,	e,
Отражение относительно плоскости проходящей	Цикл длины $2 (1, 2)$.
через ребро и центр противоположного ребра,	
Поворот вокруг оси проходящей через вершину на	Цикл длины $3 (1, 2, 3)$.
угол $2\pi/3$ или $4\pi/3$.	
Зеркальный поворот относительно плоскости про-	Цикл длины $4 (1, 2, 3, 4)$.
ходящей черех середины 4 ребер и на угол $\pi/2$.	
Поворот вокруг оси проходящей через середины	Произведение двух независи-
противоположных граней на угол π .	мых циклов длины $2(1,2)(3,4)$.

На прошлой лекции было доказано, что класс сопряженности в группе S_n определяется циклической структурой, т.е. всего будет 5 классов сопряженности. Геометрически это тоже понятно, при сопряжении отражение переходит в отражение, вращение вокруг оси переходит в поворот на тот же угол и т.д. Повороты на углы $2\pi/3$ или $4\pi/3$ сопряжены посредством несобственного преобразования.

б). Как видно из таблицы выше собственным движениям соответствуют четные перестановки (причем все), значит группа $G_0 \simeq A_4$. Она состоит из полных классов сопряженности в S_4 поэтому она нормальна.

Ясно, что если элементы не были сопряжены в S_4 , то они и не будут сопряжены в A_4 . Однако обратное неверно и класс состоящий из тройных циклов распадается на два: повороты на угол $2\pi/3$ и повороты на угол 4pi/3, один в другой не переводится посредством сопряжения собственным движением.

Это же можно увидеть и алгебраически. А именно, покажем, что тройные циклы (1,2,3) и (1,3,2) не сопряжены в A_4 . Действительно, так как $\alpha(1,2,3)\alpha^{-1}=(\alpha(1),\alpha(2),\alpha(3))$, то в качестве α могут выступать $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 \end{pmatrix}$ которые все являются нечетными.

Задача 3. а) Через D_{nh} обозначим группу симметрий прямоугольной призмы с основанием правильный n угольник. Найдите порядок группы D_{nh} . Другое описание группы D_{nh} — группа движений трехмерного пространства, сохраняющих правильный многоугольник c n сторонами e плоскости.

б) Изоморфны ли группы D_{3h} и D_6 ?

Доказательство. Внутри D_{nh} есть подгруппа D_n движений переводящих верхнее основание в себя. И есть подгруппа C_2 состоящая из тождественного преобразования и отражения переставляющего верхнее и нижнее основания (плоскость проходит через середины вертикальных ребер). Легко видеть, что любой элемент D_{nh} представим в виде произведения элемента из D_n и C_2 . Теперь, чтобы доказать изоморфизм достаточно применить следующее предложение.

Предложение 7. Пусть группа G содержит две подгруппы A, B, такие, что A, B коммутируют (для любых $a \in A, b \in B, ab = ba$), $A \cap B = \{e\}, G = A \cdot B$ (т.е. $\forall g \in G, \exists a \in A, b \in B \colon g = ab$). Тогда $G \simeq A \times B$.

Доказательство. Построим гомоморфизм из $A \times B$ в G, который переводит пару (a,b) в их произведение. То, что это гомоморфизм следует из того подгруппы A,B коммутируют. Далее, из того $A \cap B = \{e\}$ следует, что это инъекция, а из $G = A \cdot B$ то, что это сюрьекция. Значит это изоморфизм.

Докажем теперь, что $D_6 \simeq D_3 \times C_2$. Три вершины шестиугольника стоящие через один образуют правильный треугольник. Подгруппа группы D_6 переводящая этот треугольник в себя изоморфна D_3 . Подгруппа D_6 состоящая из тождественного преобразования и центральной симметрии изоморфна C_2 . Эти две подгруппы коммутируют, не пересекаются, и любой элемент D_6 может быть записан как их произведение. Значит, по предложению выше $D_6 \simeq D_3 \times C_2 \simeq D_{3h}$.

Определение 3. Центром группы G называется множество $Z(G) = \{g \in G | \forall x \in G, xg = gx\}.$

Легко видеть что Z(G) является подгруппой. В задаче выше в разложении $D_6 \simeq D_3 \times C_2$ элементы C_2 должны лежать в центре, поэтому в качестве порождающей C_2 можно взять центральную симметрию, но *нельзя* брать никакую осевую симметрию.

Упомянем еще такую тему как задание группы образующими и соотношениями. Мы не будем давать аккуратного определения, а ограничимся одним примером.

Предложение 8. Группа D_n порождается одним поворотом на угол $2\pi/n$ который мы обозначим r и одним отражением, которое мы обозначим s. Соотношения имеют вид $r^n = s^2 = rsrs = e$.

Доказательство. Во первых, легко видеть, что любое вращение из D_n иеет вид r^b , $0 \le b \le n-1$, а любое отражение может быть получено как композиция s и вращения. Из этого следует, что группа D_n порождена s, r.

Во вторых, эти соотношения выполнены в группе D_n . Единственное, что не сразу очевидно, это rsrs = e, это происходит из того, что rs является несобственным преобразованием, а, значит, отражением.

Наконец, проверим, что другие соотношения налагать не надо. Любой элемент группы порожденной r, s может быть записан в виде $s^{a_1}r^{b_1}\cdots s^{a_k}r^{b_k}$, где $a_i\in\mathbb{Z}$. Пользуясь соотношением $rs=sr^{-1}$ мы можем пронести s влево и переписать слово в виде s^ar^b , где $a=0,1,\,b=0,\ldots,n-1$. Значит группа с данными образующими и соотношениями содержит не более 2n элементов. С другой стороны, она содержит не менее 2n элементов так как из нее есть сюрьективный гомоморфизм в D_n .

Задача 4. а) Пусть G — группа симметрий прямоугольной (но не квадратной) решетки на плоскости, T — подгруппа состоящая из трансляций. Докажите, что T является нормальной подгруппой в G. Найдите факторгруппу G/T. Представьте G в виде полупрямого произведения.

 $6)^*$ Найдите классы сопряженности в G.

Доказательство. Любое аффинное преобразование можно записать в виде $x\mapsto Ax+v$. Так как начало координат должно переходить в точку решетки, то вектор v — это вектор решетки. Кроме того, так как горизонтальные прямые решетки должны перейти в горизотнтальные прямые и тоже про вертикальные, то матрица A — диагональная. Так как A к тому же ортогональная, то всего есть 4 варианта преобразований в G:

$$(\mathbf{i}) : \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \qquad (\mathbf{ii}) : \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \end{pmatrix},$$

$$(\mathbf{iii}) : \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \qquad (\mathbf{iv}) : \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}.$$

Геометрически, преобразования типа (i) — это трансляции, преобразования типа (ii) — это скользящие симметрии относительно горизонтальных осей, преобразования типа (iii) — это скользящие симметрии отражения относительно вертикальных осей, преобразования типа (iv) — это центральные симметрии.

Подгруппа T сотстоит из преобразований типа (1). Построим гомоморфизм из группы G в группу матриц вида

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \tag{1}$$

который переводит аффинное преобразование в соответствующую ему матрицу A. Легко проверить, что это действительно гомоморфизм.

Ядром этого гоморфизма является группа трансляций T, значит, она являтеся нормальной. По теореме о гомоморфизме G/T изоморфно образу, то есть группе состоящей из матриц (1), эта группа изоморфна $C_2 \times C_2$. Значит $G/T \simeq C_2 \times C_2$.

Обозначим через G_0 подгруппу G сохраняющую начало координат (т.е. линейных преобразований в формуле выше). Отметим, что подгруппы G_0 и T не коммутируют. Например

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} -v_1 \\ v_2 \end{pmatrix}.$$

Значит, нельзя сказать, что G является произведением G_0 и T. Но G является полупрямым произведением $G \simeq G_0 \ltimes T$, это можно увидеть как напрямую, так и из следующего общего предложения.

Предложение 9. Пусть группа G содержит две подгруппы A, B такие, что $A \cap B = \{e\}, A \cdot B = G, B \lhd G$. Тогда G является полупрямым произведением A и B.

Доказательство. Определим $\phi_a(b) = aba^{-1}$. Легко проверить, что сопоставление $a \mapsto \phi_a$ удовлетворяет условиям

$$\phi_a(b_1b_2) = \phi_a(b_1)\phi_a(b_2),$$
 и $\phi_{a_1}(\phi_{a_2}(b)) = \phi_{a_1a_2}(b).$

Поэтому мы можем определить полупрямое произведение $G = A \ltimes B$. Гомоморфизм $\varphi \colon A \ltimes B \to G$ строится по формуле $(a,b) \mapsto a \cdot b$. Инъективность и сюръективность этого отображения следует из того, что $A \cap B = \{e\}, A \cdot B = G$. То, что это действительно гомоморфизм проверяется напрямую

$$\varphi((a_1, b_1)) \cdot \varphi((a_2, b_2)) = a_1 b_1 a_2 b_2 = a_1 a_2 (a_2^{-1} b_1 a_2) b_2 = a_1 a_2 \phi_{a_1^{-1}}(b_1) b_2 =$$

$$= \varphi((a_1 a_2, \phi_{a_1^{-1}}(b_1) b_2)) = \varphi((a_1, b_1) \cdot (a_2, b_2)) \quad \blacksquare$$

Предложение 10. Если $G = A \ltimes B$, то $G/B \simeq A$.

Доказательство. Построим гомоморфизм из G в A по формуле $(a,b) \mapsto a$. Его ядро есть B, образ изоморфен A, по теореме о гомоморфизме получаем нужное.

Замечание. Аналогичное задаче утверждение верно и дле всей группы движений — она изоморфна полупрямому произведению ортогональной группы и группы трансляций $O(2) \ltimes \mathbb{R}^2$. Также для любой сигнатуры, например группа Пуанкаре есть полупрямое произведение группы Лоренца и группы трансляций $O(3,1) \ltimes \mathbb{R}^4$.

Домашнее задание

Решения задач 3 и 4 надо прислать до начала лекции 7 марта. Задачи 1 и 2 надо прислать до начала лекции 14 марта. Помимо письменной сдачи надо быть готовым ответить на вопросы по решениям.

Задача 1. Постройте сюръективный гомоморфизм из группы S_4 в группу S_3 . Найдите его ядро.

Указание: воспользуйтесь действием S_4 на пространстве многочленов от четырех переменных переставляя переменные. Точнее воспользуйтесь орбитой многочлена $P=x_1x_2+x_3x_4$ для такого действия.

Задача 2. Через \mathbb{C}^* обозначим группу ненулевых комплексных чисел с операцией множения, через \mathbb{R}_+ обозначим подгруппу положительных вещественных чисел. Найдите факторгруппу $\mathbb{C}^*/\mathbb{R}_+$.

Указание: представьте \mathbb{C}^* в виде произведения \mathbb{R}_+ и другой подгруппы.

Определение 4. Подгруппа порожденная элементами вида $xyx^{-1}y^{-1}$ называется коммутантом группы G. Выражение $xyx^{-1}y^{-1}$ называется коммутатором элементов x,y. Коммутант группы G обозначается [G,G].

Задача 3. а) Найдите классы сопряженности в группе D_n .

б) Найдите коммутант группы D_n .

Указание: используйте, то что любой элемент D_n может быть записан в виде r^b или sr^b и соотношения на r,s найденные на лекции

в)* Представьте группу D_n в виде нетривиального полупрямого произведения.

Задача 4. Пусть G — группа движений сохраняющих куб, G_0 — подгруппа собственных движений.

- а) Постройте нетривиальный гомоморфизм из G_0 в S_4 используя действие G на множестве диагоналей куба. Является ли он изоморфизмом?
- б) Найдите классы сопряженности в группе G_0 . Опишите эти классы геометрически как (как вращения, симметрии или зеркальные повороты).
- в) Опишите G как произведение (прямое или полупрямое) Сколько существует классов сопряженности в G?