

1.0 QUESTION

SPI Interface

- One of the most popular Interfaces nowadays
- Stands for Serial-Peripheral Interface
- Four Wires
 - MOSI: Master-Out-Slave-In
 - MISO: Master-In-Slave-Out
 - SCK: Clock
 - SS_n: Slave Select
- High Data Rates

299

Project: 1- SPI Slave Interface

- One of the most popular Interfaces nowadays
- Stands for Serial-Peripheral Interface
- Four Wires
 - MOSI: Master-Out-Slave-In
 - MISO: Master-In-Slave-Out
 - SCK: Clock
 - SS_n: Slave Select
- High Data Rates

Project: 3- SPI Wrapper

303

2.0 CODE

2.1 Ram

```
module RAM_MODULE (clk,rst_n,rx_valid,din,dout,tx_valid);
     parameter MEM_DEPTH = 256;
     parameter ADDR_SIZE = 8;
     input clk;
     input rst_n;
     input rx_valid;
     input [9:0] din;
   output reg [7:0] dout;
    output reg tx_valid;
14 reg [ADDR_SIZE-1:0] mem [MEM_DEPTH-1:0];
15 reg [7:0] addr_wr;
16 reg [7:0] addr_re;
19 always @(posedge clk) begin
       if (!rst_n) begin
            dout <= 8'b0;
            tx_valid <= 1'b0;</pre>
            addr_wr <= 8'b0;
            addr_re <= 8'b0;
       end else begin
           if (rx_valid) begin
                case (din[9:8])
                     2'b00: begin
                         addr_wr <= din[7:0];</pre>
                         tx_valid <= 1'b0;</pre>
                         mem[addr_wr] <= din[7:0];</pre>
                         tx_valid <= 1'b0;</pre>
                         addr_re <= din[7:0];
                         tx_valid <= 1'b0;</pre>
                         dout <= mem[addr_re];</pre>
                         tx_valid <= 1'b1;</pre>
```

2.2 SPI Module

2.2.1 Definition

2.2.2 State Memory

```
1 always @(posedge clk)
2 begin
3 if(~rst_n)
4 cs <= IDLE;
5 else
6 cs <= ns;
7 end
```

2.2.3 Output Logic

```
always @(posedge clk or negedge rst_n) begin
        if (~rst_n) begin
            counter1 <= 9;
            counter2 <= 7;</pre>
            ADD_DATA_checker <= 1;
            rx_data <= 0;
            rx_valid <= 0;</pre>
       else begin
              rx_valid <= 0;</pre>
                counter1 <= 9;
                counter2 <= 7;
                    bus[counter1] <= MOSI;</pre>
                    counter1 <= counter1 - 1;</pre>
                   rx_valid = 1;
                    rx_data <= bus ;
            else if (cs == READ_ADD) begin
               if (counter1 >= 0)begin
                    bus[counter1] <= MOSI;</pre>
                    counter1 <= counter1 - 1;</pre>
                   rx_valid <= 1;
                    rx_data <= bus ;
                    ADD_DATA_checker <= 0;
                if (counter1 >= 0)begin
                    bus[counter1] <= MOSI;</pre>
                    counter1 <= counter1 - 1;</pre>
                if(counter1 == 4'b1111) begin
                    rx_valid <= 1;
                    rx_data <= bus ;</pre>
                    counter1 <= 9;
                if(rx_valid == 1) rx_valid <= 0;</pre>
                 if(tx_valid==1 && counter2 >=0)begin
                    MISO <= tx_data[counter2] ;</pre>
                    counter2 <= counter2 - 1;</pre>
                if(counter2 == 3'b111)begin
                    ADD_DATA_checker <= 1;
```

2.2.4 Next State Logic

```
lways @(*) begin
       ns = cs;
       case(cs)
            IDLE : begin
                if(SS_n)
                    ns = IDLE;
                   ns = CHK_CMD;
           CHK_CMD : begin
                if(SS_n)
                   if((\sim SS_n) \&\& (MOSI == 0))
                        ns = WRITE;
                    else if ((~SS_n) && (MOSI == 1) && (ADD_DATA_checker == 1))
                        ns = READ_ADD;
                    else if ((~SS_n) && (MOSI == 1) && (ADD_DATA_checker == 0))
                       ns = READ_DATA;
               if(SS_n || counter1 == 4'b1111)
                   ns = IDLE;
            READ_ADD : begin
                if(SS_n || counter1 == 4'b1111)
                   ns = READ_ADD;
            READ_DATA : begin
                if(SS_n)
                   ns = IDLE;
                   ns = READ_DATA;
```

2.3 SPI Wrapper

```
module SPI_Wrapper (clk,ss_n,MOSI,MISO,rst_n);
parameter MEM_DEPTH = 256;
parameter ADDR_SIZE = 8;
input clk , ss_n , MOSI , rst_n;
output MISO;
wire [9:0] rxdata;
wire [7:0] txdata;
wire rx_valid , tx_valid;

SPI_MODULE SPI(.MOSI(MOSI),.MISO(MISO),.clk(clk),.SS_n(ss_n),.rst_n(rst_n)
,.rx_data(rxdata),.tx_data(txdata),.rx_valid(rx_valid),tx_valid(tx_valid));

RAM_MODULE #(.MEM_DEPTH(MEM_DEPTH),.ADDR_SIZE(ADDR_SIZE)) RAM (.din(rxdata),.dout(txdata),.clk(clk)
,.rx_valid(rx_valid),.tx_valid(tx_valid),.rst_n(rst_n));
endmodule
```

2.4 Testbench

2.4.1 Definition

```
module test();
reg clk,rst_n,ss_n,mosi;
wire miso;
SPI_Wrapper DUT(.clk(clk),.rst_n(rst_n),.MOSI(mosi),.MISO(miso),.ss_n(ss_n));
reg [9:0]temp;
integer i=0;
initial begin
clk=0;
forever
#1 clk=~clk;
end
13
```

2.4.2 Main stimulus process

```
1 initial begin
   $readmemh("mem.dat",DUT.RAM.mem);
3 rst_n=0;
4 ss_n=1;
5 temp=0;
6 @(negedge clk);
7 temp=10'b0000_01010;
   rst_n=1;
11 @(negedge clk)begin
   ss_n=0;
   @(negedge clk)begin
   mosi=0;
   for(i=10;i>0;i=i-1)begin
18 @(negedge clk)
       mosi=temp[i-1];
21
   @(negedge clk)
   ss_n=1;
   @(negedge clk)
   ss_n=0;
27 @(negedge clk)begin
28 mosi=0;
   temp=10'b01000_01010;
```

```
for(i=10;i>0;i=i-1)begin
   @(negedge clk)
       mosi=temp[i-1];
5 @(negedge clk)
6 ss_n=1;
8 @(negedge clk)
9 ss_n=0;
10 @(negedge clk)begin
11 mosi=1;
13 temp=10'b10000_01010;
15 for(i=10;i>0;i=i-1)begin
16 @(negedge clk)
       mosi=temp[i-1];
19 @(negedge clk)
20 ss_n=1;
21 @(negedge clk)
22 ss_n=1;
24 @(negedge clk)
25 ss_n=0;
26 @(negedge clk)begin
27 mosi=1;
29 temp=10'b11000_01010;
31 for(i=10;i>0;i=i-1)begin
32 @(negedge clk)
       mosi=temp[i-1];
36 repeat(25)@(negedge clk);
37 @(negedge clk)
38 ss_n=1;
39 repeat(25)@(negedge clk);
40 $stop;
    initial begin
        $monitor("mosi=%b, miso=%b, SS_n=%b", mosi, miso, ss_n);
```

3.0 WAVEFORM

4.0 LINTING

4.1 Schematic

4.2 Errors

```
# End time: 22:26:24 on Jul 31,2025, Elapsed time: 0:00:00
#
# Errors: 0, Warnings: 0
#
```

5.0 SYNTHESIS

5.1 Grey Coding

5.1.1 Schematic

5.1.2 Synthesis Report

5.1.3 Timing Report

5.1.4 Critical Path

Name	Slack	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source ^
Path 1	6.261	2	3	1	RAM/mem_reg/CLKBWRCLK	SPI/MISO_reg/D	3.623	2.823	0.800	10.0	sys_clk_pin

5.2 One Hot

5.2.1 Schematic

5.2.2 Synthesis Report

5.2.3 Timing Report

5.2.4 Critical Path

Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement
Path 1	6.261	2	3	1	RAM/mem_reg/CLKBWRCLK	SPI/MISO_reg/D	3.623	2.823	0.800	10.0

5.3 **Seq**

5.3.1 Schematic

5.3.2 Synthesis Report

5.3.3 Timing Report

5.3.4 Critical Path

Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock	Destination Clock
Path 1	6.261	2	3	1	RAM/mem_reg/CLKBWRCLK	SPI/MISO_reg/D	3.623	2.823	0.800	10.0	sys_clk_pin	sys_clk_pin

6.0 IMPLEMENTATION

6.1 Utilization Report

6.2 Timing Report

6.3 FPGA device snippet

7.0 CRITICAL WARNINGS

7.1 Elaboration

7.2 Synthesis

7.3 Implementation

