Hamilton-Jacobi via neural networks Master's thesis defense

Averil PROST directed by Olivier BOKANOWSKI

Table of Contents

Framework

(Semi-)Lagrangian schemes

Neural networks

Main result

Numerical exploration

Deterministic control problems

Level set formulation

• target region : $\varphi \leqslant 0$

<u>Deterministic</u> control problems

Level set formulation

- target region : $\varphi \leqslant 0$
- state constraints (obstacle) : $g \le 0$

Level set formulation

Framework

000

- target region : $\varphi \leqslant 0$
- state constraints (obstacle) : $g \leq 0$
- backward reachable sets $t: u(t, \cdot) \leq 0$

Level set formulation

- target region : $\varphi \leqslant 0$
- state constraints (obstacle) : $g \leq 0$
- backward reachable sets $t: u(t, \cdot) \leq 0$

Level set formulation

- target region : $\varphi \leqslant 0$
- state constraints (obstacle) : $g \leq 0$
- backward reachable sets $t: u(t, \cdot) \leq 0$

Level set formulation

Framework

000

- target region : $\varphi \leqslant 0$
- state constraints (obstacle) : $g \leq 0$
- backward reachable sets $t: u(t, \cdot) \leq 0$

Level set formulation

- target region : $\varphi \leqslant 0$
- state constraints (obstacle) : $g \leq 0$
- backward reachable sets $t: u(t, \cdot) \leq 0$

Level set formulation

- target region : $\varphi \leqslant 0$
- state constraints (obstacle) : $g \leq 0$
- backward reachable sets $t: u(t, \cdot) \leq 0$

$$\min (\partial_t u + H(\nabla u), u - g) = 0, \quad u(T, \cdot) = \varphi \vee g.$$

Level set formulation

- target region : $\varphi \leqslant 0$
- state constraints (obstacle) : $g \leq 0$
- backward reachable sets $t: u(t, \cdot) \leq 0$

$$\min (\partial_t u + H(\nabla u), u - g) = 0, \quad u(T, \cdot) = \varphi \vee g.$$

Numerical methods:

Mesh-based methods (FD, FV, FE, DG...)
 Curse of dimensionality.

Level set formulation

- target region : $\varphi \leqslant 0$
- state constraints (obstacle) : $g \leq 0$
- backward reachable sets $t: u(t, \cdot) \leq 0$

$$\min (\partial_t u + H(\nabla u), u - g) = 0, \quad u(T, \cdot) = \varphi \vee g.$$

Numerical methods:

- Mesh-based methods (FD, FV, FE, DG...)
 Curse of dimensionality.
- Reinforcement/learning methods.

Obstacle problem ([ABZ13]) Find u = u(t, x) s.t.

$$\begin{cases} \min\left(\partial_t u + \max_{a \in A} \nabla u \cdot f(x, a), u - g(x)\right) = 0, \\ u(T, x) = \varphi(x) \vee g(x). \end{cases}$$

Obstacle problem ([ABZ13]) Find u = u(t, x) s.t.

$$\begin{cases} \min\left(\partial_t u + \max_{a \in A} \nabla u \cdot f(x, a), u - g(x)\right) = 0, \\ u(T, x) = \varphi(x) \vee g(x). \end{cases}$$

Noticeable examples:

• $f(x,a) = b \in \mathbb{R}^n$ constant. Advection with obstacle.

Main result

Obstacle problem ([ABZ13]) Find u = u(t, x) s.t.

$$\begin{cases} \min\left(\partial_t u + \max_{a \in A} \nabla u \cdot f(x, a), u - g(x)\right) = 0, \\ u(T, x) = \varphi(x) \vee g(x). \end{cases}$$

Noticeable examples:

- $f(x,a) = b \in \mathbb{R}^n$ constant. Advection with obstacle.
- f(x,a) = b(x). Let $\dot{y}^a_x(\theta) = f(y^a_x(\theta),a(\theta))$, $y^a_x(0) \coloneqq x$. Then,

$$u(t,x) = \varphi(y_x(T-t)) \bigvee \max_{\theta \in [t,T]} g(y_x(\theta)).$$

Obstacle problem ([ABZ13]) Find u = u(t, x) s.t.

$$\begin{cases} \min\left(\partial_t u + \max_{a \in A} \nabla u \cdot f(x, a), u - g(x)\right) = 0, \\ u(T, x) = \varphi(x) \vee g(x). \end{cases}$$

Noticeable examples:

- $f(x,a) = b \in \mathbb{R}^n$ constant. Advection with obstacle.
- f(x,a) = b(x). Let $\dot{y}_x^a(\theta) = f(y_x^a(\theta), a(\theta)), \ y_x^a(0) \coloneqq x$. Then,

$$u(t,x) = \varphi(y_x(T-t)) \bigvee \max_{\theta \in [t,T]} g(y_x(\theta)).$$

• f(x,a) = a, $g \equiv -\infty$: $u(t,x) = \min_{b \in \mathscr{B}(0,t)} \varphi(x-tb)$.

Table of Contents

(Semi-)Lagrangian schemes

We consider the integral version of our model:

Dynamical programming principle $\forall h \in [0, T-t]$,

$$u(t,x) = \inf_{a(\cdot) \in \mathbb{A}_{[t,t+h]}} u(t+h,y^a_x(h)) \bigvee \max_{\theta \in [0,h]} g(y^a_x(\theta))$$

Main result

00000

DPP

We consider the integral version of our model:

Dynamical programming principle $\forall h \in [0, T-t]$,

$$u(t,x) = \inf_{a(\cdot) \in \mathbb{A}_{[t,t+h]}} u(t+h,y^a_x(h)) \bigvee \max_{\theta \in [0,h]} g(y^a_x(\theta))$$

First. let us introduce *feedback* controls:

 $\alpha(\theta, x) := \alpha(\theta), \quad a \text{ optimal for the problem issued from } x \text{ in } t = \theta.$

00000

DPP

We consider the integral version of our model:

Dynamical programming principle $\forall h \in [0, T-t]$,

$$u(t,x) = \inf_{a(\cdot) \in \mathbb{A}_{[t,t+h]}} u(t+h,y^a_x(h)) \bigvee \max_{\theta \in [0,h]} g(y^a_x(\theta))$$

First. let us introduce *feedback* controls:

 $\alpha(\theta, x) := \alpha(\theta), \quad a \text{ optimal for the problem issued from } x \text{ in } t = \theta.$

May lack regularity (measurable and bounded if A compact).

00000

DPP

We consider the integral version of our model:

Dynamical programming principle $\forall h \in [0, T-t]$,

$$u(t,x) = \inf_{a(\cdot) \in \mathbb{A}_{[t,t+h]}} u(t+h,y^a_x(h)) \bigvee \max_{\theta \in [0,h]} g(y^a_x(\theta))$$

First. let us introduce *feedback* controls:

 $\alpha(\theta, x) := \alpha(\theta), \quad a \text{ optimal for the problem issued from } x \text{ in } t = \theta.$

- May lack regularity (measurable and bounded if A compact).
- May not be defined everywhere (no uniqueness).

Framework

We consider the integral version of our model :

Dynamical programming principle $\forall h \in [0, T-t]$,

$$u(t,x) = \inf_{a(\cdot) \in \mathbb{A}_{[t,t+h]}} u(t+h,y^a_x(h)) \bigvee \max_{\theta \in [0,h]} g(y^a_x(\theta))$$

First, let us introduce feedback controls:

 $\alpha(\theta, x) \coloneqq a(\theta), \quad a \text{ optimal for the problem issued from } x \text{ in } t = \theta.$

- May lack regularity (measurable and bounded if A compact).
- May not be defined everywhere (no uniqueness).
- If $\alpha(\cdot,\cdot) \in \mathcal{A}_{[t,t+h]} := L^{\infty}([0,T],A)$, equivalent formulation.

Functional formulation

Let μ a positive measure such that $\mu(\Omega)<\infty$, with Ω the space domain. New equivalent formulation :

$$\begin{cases} J(t,x,\alpha) \coloneqq u(t+h,y_x^a(h)) \bigvee \max_{\theta \in [0,h]} g(y_x^a(\theta)) \\ \alpha^* \in \operatorname{argmin}_{\alpha \in \mathcal{A}_{[t,t+h]}} \int_{x \in \Omega} J(t,x,\alpha) \mu(dx), \\ u(t,x) \coloneqq J(t,x,\alpha^*). \end{cases}$$

Functional formulation

Let μ a positive measure such that $\mu(\Omega)<\infty$, with Ω the space domain. New equivalent formulation :

$$\begin{cases} J(t, x, \alpha) \coloneqq u(t + h, y_x^a(h)) \bigvee \max_{\theta \in [0, h]} g(y_x^a(\theta)) \\ \alpha^* \in \operatorname{argmin}_{\alpha \in \mathcal{A}_{[t, t + h]}} \int_{x \in \Omega} J(t, x, \alpha) \mu(dx), \\ u(t, x) \coloneqq J(t, x, \alpha^*). \end{cases}$$

Two-step discretization:

• Fonction space : finite-dimensional space $\hat{\mathcal{A}} \subset \mathcal{A}$ for the controls.

Functional formulation

Let μ a positive measure such that $\mu(\Omega)<\infty$, with Ω the space domain. New equivalent formulation :

$$\begin{cases} J(t, x, \alpha) \coloneqq u(t+h, y_x^a(h)) \bigvee \max_{\theta \in [0,h]} g(y_x^a(\theta)) \\ \alpha^* \in \operatorname{argmin}_{\alpha \in \mathcal{A}_{[t,t+h]}} \int_{x \in \Omega} J(t, x, \alpha) \mu(dx), \\ u(t, x) \coloneqq J(t, x, \alpha^*). \end{cases}$$

Two-step discretization:

- Fonction space : finite-dimensional space $\hat{\mathcal{A}} \subset \mathcal{A}$ for the controls.
- Time : let $h=\Delta t$, computation of $u^n(\cdot)\simeq u(n\Delta t,\cdot)$ with u^{n+1} by induction.

Lagrangian scheme

00000

(Semi-)Lagrangian schemes

Let \hat{A} a finite-dimensional space (FE, spectral basis, neural networks...), $N := T/\Delta t$, and $M \in \mathbb{N}^*$. Let $\hat{y}_r^{\alpha}(\Delta t) \simeq y_r^{\alpha}(\Delta t)$.

Lagrangian scheme

Let \hat{A} a finite-dimensional space (FE, spectral basis, neural networks...), $N := T/\Delta t$, and $M \in \mathbb{N}^*$. Let $\hat{y}_x^{\alpha}(\Delta t) \simeq y_x^{\alpha}(\Delta t)$.

- 1 Choose $\hat{u}^N := \varphi \vee q$.
- 2 for $n \in [N-1,0]$ do
- Draw $(X_k)_k$ M iid samples of $X \sim \mu$. 3
- Pick $\hat{\alpha}^n \in \operatorname{argmin}_{\hat{\alpha} \in \hat{A}} \sum_{i=1}^M \hat{u}^{n+1}(\hat{y}_{X_i}^{\hat{\alpha}}(\Delta t)) \vee g(X_i)$. 4
- Define $\hat{u}^n(x) := \hat{u}^{n+1}(\hat{y}_x^{\hat{\alpha}^n}(\Delta t)) \vee q(x)$.

Main result

Lagrangian scheme

Let $\hat{\mathcal{A}}$ a finite-dimensional space (FE, spectral basis, neural networks...), $N\coloneqq T/\Delta t$, and $M\in\mathbb{N}^*$. Let $\hat{y}^\alpha_x(\Delta t)\simeq y^\alpha_x(\Delta t)$.

- 1 Choose $\hat{u}^N \coloneqq \varphi \vee g$.
- 2 for $n \in [\![N-1,0]\!]$ do
- 3 Draw $(X_k)_k$ M iid samples of $X \sim \mu$.
- 4 Pick $\hat{\alpha}^n \in \operatorname{argmin}_{\hat{\alpha} \in \hat{\mathcal{A}}} \sum_{i=1}^M \hat{u}^{n+1}(\hat{y}_{X_i}^{\hat{\alpha}}(\Delta t)) \vee g(X_i).$
- Define $\hat{u}^n(x) \coloneqq \hat{u}^{n+1}(\hat{y}_x^{\hat{\alpha}^n}(\Delta t)) \vee g(x)$.
 - The variable u^n is computed with $(\hat{\alpha}^k)_{k \geqslant n}$.

Framework

Let $\hat{\mathcal{A}}$ a finite-dimensional space (FE, spectral basis, neural networks...), $N \coloneqq T/\Delta t$, and $M \in \mathbb{N}^*$. Let $\hat{y}_x^{\alpha}(\Delta t) \simeq y_x^{\alpha}(\Delta t)$.

- 1 Choose $\hat{u}^N \coloneqq \varphi \vee g$.
- 2 for $n \in [\![N-1,0]\!]$ do
- 3 | Draw $(X_k)_k M$ iid samples of $X \sim \mu$.
- 4 Pick $\hat{\alpha}^n \in \operatorname{argmin}_{\hat{\alpha} \in \hat{\mathcal{A}}} \sum_{i=1}^M \hat{u}^{n+1}(\hat{y}_{X_i}^{\hat{\alpha}}(\Delta t)) \vee g(X_i).$
- 5 Define $\hat{u}^n(x) \coloneqq \hat{u}^{n+1}(\hat{y}_x^{\hat{\alpha}^n}(\Delta t)) \vee g(x)$.
 - The variable u^n is computed with $(\hat{\alpha}^k)_{k \geqslant n}$.
 - Refinement : consider $\max_{\theta \in \Theta} g(\hat{y}_{X_i}^{\hat{\alpha}}(\theta))$, $\Theta \subset [0, \Delta t]$.

Lagrangian scheme

Let \hat{A} a finite-dimensional space (FE, spectral basis, neural networks...), $N := T/\Delta t$, and $M \in \mathbb{N}^*$. Let $\hat{y}_x^{\alpha}(\Delta t) \simeq y_x^{\alpha}(\Delta t)$.

- 1 Choose $\hat{u}^N := \varphi \vee q$.
- 2 for $n \in [N-1,0]$ do
- Draw $(X_k)_k$ M iid samples of $X \sim \mu$. 3
- Pick $\hat{\alpha}^n \in \operatorname{argmin}_{\hat{\alpha} \in \hat{A}} \sum_{i=1}^{M} \hat{u}^{n+1}(\hat{y}_X^{\hat{\alpha}}(\Delta t)) \vee g(X_i)$.
- Define $\hat{u}^n(x) := \hat{u}^{n+1}(\hat{y}_x^{\hat{\alpha}^n}(\Delta t)) \vee a(x)$.
 - The variable u^n is computed with $(\hat{\alpha}^k)_{k \geq n}$.
 - Refinement : consider $\max_{\theta \in \Theta} g(\hat{y}_{X_i}^{\hat{\alpha}}(\theta))$, $\Theta \subset [0, \Delta t]$.
 - Quadratic complexity.

Additional variable \hat{U}^n for the minimization step. Let $\hat{\mathcal{U}}$ be a finite-dimensional space.

Main result

Additional variable \hat{U}^n for the minimization step. Let $\hat{\mathcal{U}}$ be a finite-dimensional space.

- 1 Let $\hat{U}^N := \mathbb{P}_{\hat{\mathcal{U}}}(\varphi \vee g)$.
- 2 for $n \in [\![N-1,0]\!]$ do
- 3 Draw $(X_k)_k M$ iid samples of $X \sim \mu$.
- $\mathbf{4} \quad | \quad \mathsf{Pick} \ \hat{\alpha}^n \in \mathrm{argmin}_{\hat{\alpha} \in \hat{\mathcal{A}}} \sum_{i=1}^M \hat{U}^{n+1}(\hat{y}_{X_i}^{\hat{\alpha}}(\Delta t)) \vee g(X_i).$
- $\mathbf{5} \quad \bigg| \quad \text{Define } \hat{U}^n(x) \coloneqq \mathbb{P}_{\hat{\mathcal{U}}} \, \Big\{ \hat{U}^{n+1}(\hat{y}_x^{\hat{\alpha}^n}(\Delta t)) \vee g(x) \Big\}.$

Additional variable \hat{U}^n for the minimization step. Let $\hat{\mathcal{U}}$ be a finite-dimensional space.

```
 \begin{array}{lll} \mathbf{1} \  \, \mathrm{Let} \ \hat{U}^N \coloneqq \mathbb{P}_{\hat{\mathcal{U}}}(\varphi \vee g). \\ \mathbf{2} \  \, \mathrm{for} \  \, n \in \llbracket N-1,0 \rrbracket \  \, \mathrm{do} \\ \mathbf{3} & \quad \text{Draw} \  \, (X_k)_k \ M \  \, \mathrm{iid} \  \, \mathrm{samples} \  \, \mathrm{of} \  \, X \sim \mu. \\ \mathbf{4} & \quad \mathrm{Pick} \  \, \hat{\alpha}^n \in \mathrm{argmin}_{\hat{\alpha} \in \hat{\mathcal{A}}} \sum_{i=1}^M \hat{U}^{n+1}(\hat{y}_{X_i}^{\hat{\alpha}}(\Delta t)) \vee g(X_i). \\ \mathbf{5} & \quad \mathrm{Define} \  \, \hat{U}^n(x) \coloneqq \mathbb{P}_{\hat{\mathcal{U}}} \left\{ \hat{U}^{n+1}(\hat{y}_x^{\hat{\alpha}^n}(\Delta t)) \vee g(x) \right\}. \\ \end{array}
```

• Linear complexity (with double computational/memory cost).

Additional variable \hat{U}^n for the minimization step. Let $\hat{\mathcal{U}}$ be a finite-dimensional space.

```
 \begin{array}{lll} \mathbf{1} \  \, \mathrm{Let} \ \hat{U}^N \coloneqq \mathbb{P}_{\hat{\mathcal{U}}}(\varphi \vee g). \\ \mathbf{2} \  \, \mathrm{for} \  \, n \in \llbracket N-1,0 \rrbracket \  \, \mathrm{do} \\ \mathbf{3} \  \, \middle| \  \, \mathrm{Draw} \  \, (X_k)_k \  \, M \  \, \mathrm{iid} \  \, \mathrm{samples} \  \, \mathrm{of} \  \, X \sim \mu. \\ \mathbf{4} \  \, \middle| \  \, \mathrm{Pick} \  \, \hat{\alpha}^n \in \mathrm{argmin}_{\hat{\alpha} \in \hat{\mathcal{A}}} \sum_{i=1}^M \hat{U}^{n+1}(\hat{y}_{X_i}^{\hat{\alpha}}(\Delta t)) \vee g(X_i). \\ \mathbf{5} \  \, \middle| \  \, \mathrm{Define} \  \, \hat{U}^n(x) \coloneqq \mathbb{P}_{\hat{\mathcal{U}}} \left\{ \hat{U}^{n+1}(\hat{y}_x^{\hat{\alpha}^n}(\Delta t)) \vee g(x) \right\}. \end{array}
```

- Linear complexity (with double computational/memory cost).
- Projection step induces diffusion.

Framework

Additional variable \hat{U}^n for the minimization step. Let $\hat{\mathcal{U}}$ be a finite-dimensional space.

```
1 Let \hat{U}^N := \mathbb{P}_{\hat{\mathcal{U}}}(\varphi \vee g).
2 for n \in [N-1,0] do
```

3 | Draw
$$(X_k)_k M$$
 iid samples of $X \sim \mu$.

$$\mathbf{4} \quad \text{Pick } \hat{\alpha}^n \in \operatorname{argmin}_{\hat{\alpha} \in \hat{\mathcal{A}}} \sum_{i=1}^M \hat{U}^{n+1}(\hat{y}_{X_i}^{\hat{\alpha}}(\Delta t)) \vee g(X_i).$$

Define
$$\hat{U}^n(x) \coloneqq \mathbb{P}_{\hat{\mathcal{U}}} \left\{ \hat{U}^{n+1}(\hat{y}_x^{\hat{\alpha}^n}(\Delta t)) \lor g(x) \right\}.$$

- Linear complexity (with double computational/memory cost).
- Projection step induces diffusion.
- Hybrid algorithm if the evaluation step is fully Lagrangian.

Table of Contents

Frameworl

(Semi-)Lagrangian scheme

Neural networks

Main result

Numerical exploration

Definition

$$\mathscr{R}(x) = \sigma_1 \circ L_1 \circ \cdots \circ \sigma_p \circ L_p$$
, L_i affine, σ_i nonlinear.

Historically, $\sigma \simeq \frac{1}{1+\exp(-x)}$ the logistic function : classifiers.

Definition

$$\mathscr{R}(x) = \sigma_1 \circ L_1 \circ \cdots \circ \sigma_n \circ L_n$$
, L_i affine, σ_i nonlinear.

- Historically, $\sigma \simeq \frac{1}{1+\exp(-x)}$ the logistic function : classifiers.
- Activation $\sigma(x) = \max(0, x)$ (ReLu) often used for function approximation.

Definition

$$\mathscr{R}(x) = \sigma_1 \circ L_1 \circ \cdots \circ \sigma_p \circ L_p$$
, L_i affine, σ_i nonlinear.

- Historically, $\sigma \simeq \frac{1}{1+\exp(-x)}$ the logistic function : classifiers.
- Activation $\sigma(x) = \max(0, x)$ (ReLu) often used for function approximation.
- The regularity of $\mathbb{R}^m \mapsto \mathbb{R}^p$ stems from that of σ (continuity/Lipschitz-continuity with GroupSort).

Let $\Omega \subset \mathbb{R}$ be compact.

Squasher
$$\lim_{x\to -\infty}\sigma(x)=0$$
, σ nondecreasing and $\lim_{x\to \infty}\sigma(x)=1$.

Main result

Let $\Omega \subset \mathbb{R}$ be compact.

Squasher
$$\lim_{x\to -\infty}\sigma(x)=0$$
, σ nondecreasing and $\lim_{x\to \infty}\sigma(x)=1$.

Théorème – Universal approximatin theorem (Lemma 16.1 of [GKKW02]) The space of neural network is dense in $(\mathcal{C}(\Omega, \mathbb{R}^p), |\cdot|_{\infty})$.

Let $\Omega \subset \mathbb{R}$ be compact.

Squasher
$$\lim_{x\to -\infty}\sigma(x)=0$$
, σ nondecreasing and $\lim_{x\to \infty}\sigma(x)=1$.

Théorème – Universal approximatin theorem (Lemma 16.1 of [GKKW02]) The space of neural network is dense in $(\mathcal{C}(\Omega,\mathbb{R}^p),|\cdot|_{\infty})$.

• Estimates in $|\cdot|_{\infty}$ norm for dim. 1, in $|\cdot|_{L^2}$ norm otherwise (see Table 1. of [TSB20]).

Let $\Omega \subset \mathbb{R}$ be compact.

Squasher
$$\lim_{x\to -\infty}\sigma(x)=0$$
, σ nondecreasing and $\lim_{x\to \infty}\sigma(x)=1$.

Théorème – Universal approximatin theorem (Lemma 16.1 of [GKKW02]) The space of neural network is dense in $(\mathcal{C}(\Omega, \mathbb{R}^p), |\cdot|_{\infty})$.

- Estimates in $|\cdot|_{\infty}$ norm for dim. 1, in $|\cdot|_{L^2}$ norm otherwise (see Table 1. of [TSB20]).
- Gap between the estimates and the numerical efficiency of networks.

Table of Contents

Framework

(Semi-)Lagrangian schemes

Neural networks

Main result

Numerical exploration

Let $\boldsymbol{\Omega}$ bounded. We assume some regularity of the data :

Numerical exploration

Let Ω bounded. We assume some regularity of the data :

Controls are valued in a convex compact $A \subset \mathbb{R}^p$.

Let Ω bounded. We assume some regularity of the data :

- Controls are valued in a convex compact $A \subset \mathbb{R}^p$.
- The functions f, g and φ are Lipschitz-continuous.

0000

Assumptions

Let Ω bounded. We assume some regularity of the data :

- Controls are valued in a convex compact $A \subset \mathbb{R}^p$.
- The functions f, g and φ are Lipschitz-continuous.
- The training densities μ_n are bounded by $0 < \nu \leqslant \mu_n \leqslant C$.

Framework

Let Ω bounded. We assume some regularity of the data :

- Controls are valued in a convex compact $A \subset \mathbb{R}^p$.
- The functions f, g and φ are Lipschitz-continuous.
- The training densities μ_n are bounded by $0 < \nu \leqslant \mu_n \leqslant C$.

Moreover, we assume that the support of the densities "follows" the dynamics, i.e. $\forall \omega \subset \Omega$ open, $y_\omega^{a^*}(T-t_n) \in \{\varphi \leqslant 0\}$ implies $\mu_n(\omega) > 0$.

Result

Let $N \in \mathbb{N}$ be fixed. Let Θ the dimension of the control space.

Proposition Let $(X_n)_n$ a random variable sequence following the laws μ_n .

$$\lim_{\Theta \to \infty} \inf_{\hat{a} \in \hat{\mathcal{A}}_{\Theta}} \mathbb{E}[|\hat{V}_n(X_n) - V_n(X_n)|] = 0$$

0000

Lack of smoothness on the control : let a_n^{ε} be the regularization of a_n^* by convolution. We decompose $\hat{V}_n - \hat{V}_n$ in

$$0 \leqslant \mathbb{E}(\hat{V}_n - V_n) \leqslant C_1 \inf_{\hat{a} \in \hat{\mathcal{A}}} \mathbb{E} |a_n^{\varepsilon} - a_n^*|$$
 regularization error $+ \dots$

Idea of the proof

Framework

Lack of smoothness on the control : let a_n^ε be the regularization of a_n^* by convolution. We decompose \hat{V}_n-V_n in

$$\begin{split} 0 \leqslant \mathbb{E}(\hat{V}_n - V_n) \leqslant C_1 \inf_{\hat{a} \in \hat{\mathcal{A}}} \mathbb{E} \left| a_n^{\varepsilon} - a_n^* \right| & \text{regularization error} \\ & + C_2 \inf_{\hat{a} \in \hat{\mathcal{A}}} \mathbb{E} \left| \hat{a} - a_n^{\varepsilon} \right| & \text{approximation of } \mathcal{A} \text{ by } \hat{\mathcal{A}} \\ & + \dots \end{split}$$

Framework

Lack of smoothness on the control : let a_n^ε be the regularization of a_n^* by convolution. We decompose \hat{V}_n-V_n in

$$\begin{split} 0 \leqslant \mathbb{E}(\hat{V}_n - V_n) \leqslant C_1 \inf_{\hat{a} \in \hat{\mathcal{A}}} \mathbb{E} \left| a_n^{\varepsilon} - a_n^* \right| & \text{regularization error} \\ & + C_2 \inf_{\hat{a} \in \hat{\mathcal{A}}} \mathbb{E} \left| \hat{a} - a_n^{\varepsilon} \right| & \text{approximation of } \mathcal{A} \text{ by } \hat{\mathcal{A}} \\ & + C_3 \, \mathbb{E} \left(\hat{V}_{n+1} - V_{n+1} \right) & \text{induction term} \end{split}$$

Letting $\Theta \to \infty$, we may control the growth of C_3 when $\varepsilon \searrow 0$. Hence convergence for fixed N.

Table of Contents

Framework

(Semi-)Lagrangian schemes

Neural networks

Main result

Numerical exploration

Advection-eikonal equation with obstacle term

Let
$$A:=\mathscr{B}_{\mathbb{R}^n}(0,1),\ b\in\mathbb{R}^n,\ c\geqslant 0.$$
 Find $u=u(t,x)$ s. t.
$$\min(-\partial_t u + \max_{a\in A} \nabla u\cdot [b+ca], u-g) = 0$$

One simulation example

Figure – Left : $N_{it} = 8$, right : $N_{it} = 16$, Lagrangian scheme.

One simulation example

Figure – Left : $N_{it} = 8$, right : $N_{it} = 16$, Lagrangian scheme.

One simulation example

Figure – Left : $N_{it} = 8$, right : $N_{it} = 16$, Lagrangian scheme.

Parameters : $b=e_1$, c=1/2, 3 layers of 60 neurons, ReLu activation, 10^5 iterations of S.G. with 4000 points.

Main result

One simulation example

Figure – Left : $N_{it} = 8$, right : $N_{it} = 16$, Lagrangian scheme.

One simulation example

Figure – Left : $N_{it} = 8$, right : $N_{it} = 16$, Lagrangian scheme.

Error

d	Global errors		Local errors		Time
	L_{∞}	L_1 rel.	L_{∞}	L_1 rel.	Time
2	2.66e-01	5.99e-03	1.19e-01	4.61e-02	3h02
4	3.90e-01	6.77e-03	1.16e-01	2.69e-02	8h13
6	9.69e-01	1.09e-02	1.78e-01	2.88e-02	35h20

Table – Errors when the dimension d increases.

Conclusion & future work

Done:

• Lagrangian scheme for obstacle problems in high dimension.

Conclusion & future work

Done:

- Lagrangian scheme for obstacle problems in high dimension.
- On one hand, convergence result for fixed N.

Conclusion & future work

Done:

- Lagrangian scheme for obstacle problems in high dimension.
- On one hand, convergence result for fixed N.
- On the other hand, hope in numerical results.

Conclusion & future work

Done:

- Lagrangian scheme for obstacle problems in high dimension.
- On one hand, convergence result for fixed N.
- On the other hand, hope in numerical results.

To do:

• Influence of the training measure μ .

Conclusion & future work

Done:

- Lagrangian scheme for obstacle problems in high dimension.
- On one hand, convergence result for fixed N.
- On the other hand, hope in numerical results.

To do:

- Influence of the training measure μ .
- Scheme of order > 1 for discontinuous right hand-side ODE!

Thank you

Albert Altarovici, Olivier Bokanowski, and Hasnaa Zidani.

A general Hamilton-Jacobi framework for non-linear state-constrained control problems.

ESAIM: Control, Optimisation and Calculus of Variations, 19(2):337–357, April 2013.

László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. *A Distribution-Free Theory of Nonparametric Regression*. Springer Series in Statistics. Springer New York, NY. 2002.

Ugo Tanielian, Maxime Sangnier, and Gerard Biau. Approximating Lipschitz continuous functions with GroupSort neural networks. 2020.