Trabalho IV: Testes uniformemente mais poderosos.

Disciplina: Inferência Estatística Aluno: Rener de Souza Oliveira

16 de Novembro de 2020

Introdução

Vimos que os testes de hipótese fornecem uma abordagem matematicamente sólida para traduzir hipóteses científicas sobre o processo gerador dos dados em decisões sobre os dados – isto é, traduzir afirmações sobre partições do espaço de parâmetros, Ω , em afirmações testáveis sobre o espaço amostral \mathcal{X}^n .

Um teste $\delta(\mathbf{X})$ é uma decisão (binária) de rejeitar ou não uma hipótese nula (H_0) sobre $\theta \in \Omega$ com base em uma amostra \mathbf{X} . A capacidade de um teste de rejeitar H_0 quando ela é falsa é medida pela função poder, $\pi(\theta|\delta)$. Nem todos os testes, no entanto, são criados iguais. Em certas situações, é possível mostrar que um procedimento δ_A é uniformemente mais poderoso que outro procedimento δ_B para testar a mesma hipótese.

Neste trabalho, vamos definir e aplicar o conceito de **teste uniformemente** mais poderoso.

1 - Motivação e Definição

Sejam:

$$H_0: \theta \in \Omega_0 \subset \Omega,$$

 $H_1: \theta \in \Omega_1 \subset \Omega,$
onde $\Omega_1 = \Omega \setminus \Omega_0$ (1)

Ao realizar um procedimento de teste $\delta(\boldsymbol{X})$, é desejável que a função poder $\pi(\theta|\delta) :\stackrel{\text{def}}{=} \Pr(Rejeitar\ H_0|\theta)$ seja menor ou igual à um nível de significância $\alpha_0 \in (0,1)$, quando $\theta \in \Omega_0$, limitando superiormente a probabilidade de erro do tipo I (rejeitar H_0 quando ela é verdadeira). Podemos expressar tal propriedade da seguinte forma:

$$\alpha(\delta) \leq \alpha_0$$

Onde $\alpha(\delta) : \stackrel{\text{def}}{=} \sup_{\theta \in \Omega_0} \pi(\theta|\delta)$ é o tamanho do teste.

Além disso, queremos também ter algum controle sobre a probabilidade de erro do tipo II (não rejeitar H_0 quando ela é falsa). Como a probabilidade de tal erro quando $\theta \in \Omega_1$ é igual a $1 - \pi(\theta|\delta)$, queremos que, na região onde H_0 é falsa (Ω_1) a função poder $\pi(\theta|\delta)$ seja máxima, para todo θ em tal região. Tal maximização, minimiza a probabilidade de erro do tipo II quando $\theta \in \Omega_1$, isso nem sempre é possível, mas quando for, temos um nome especial para esse teste, que segue abaixo sua definição:

Definicão 1 (Teste Uniformemente mais poderoso) Seja C uma classe de teste para as hipóteses (1); $\delta^* \in C$ é chamado de uniformemente mais poderoso (UMP^1) da classe C, se:

$$\pi(\theta|\delta^*) \ge \pi(\theta|\delta) \ \forall \theta \in \Omega_1,$$

para qualquer teste $\delta \in \mathcal{C}$.

Seguindo a motivação dada acima, podemos definir \mathcal{C} como o conjunto de todos dos testes de tamanho menor ou igual a α_0 , limitando o erro tipo I. Neste caso, chamamos δ^* de UMP para (1) ao nível α_0 .

2 - Razão de Verossimilhança Monótona

Definicão 2 (Razão de Verossimilhanças Monótona) Seja $f_n(\mathbf{x}|\theta)$ a função de verossimilhança das observações $\mathbf{X} = (X_1, X_2, \dots, X_n)$, e $T = r(\mathbf{X})$ uma estatística. Dizemos que a distribuição dos dados tem razão de verossimilhanças monótona sob T, quando, $\forall \theta_1, \theta_2 \in \Omega; \theta_1 < \theta_2$, a razão $\frac{f(\mathbf{x}|\theta_2)}{f(\mathbf{x}|\theta_1)}$ depende dos dados através de $r(\mathbf{x})$ somente, e é uma função monótona de $r(\mathbf{x})$ sob seu espaço de definição.

3 - UMP para H_0 simples

Considere uma hipótese nula simples, $H_0: \theta = \theta_0, \theta_0 \in \Omega$. Mostraremos que, se vale o Teorema da Fatorização, e existem $c \in \alpha_0$ tais que

$$\Pr(r(\boldsymbol{X}) \ge c \mid \theta = \theta_0) = \alpha_0,$$

então o procedimento δ^* que rejeita H_0 se $r(X) \geq c$ é UMP para H_0 ao nível α_0 .

Mas antes, vamos enunciar alguns teoremas:

Teorema 1 (Teorema da Fatorização) (citar degroot) Sejam $X_1, X_2, ..., X_n$ amostra aleatória de uma distribuição de densidade ou massa $f(x|\theta)$, onde $\theta \in \Omega$. Uma estatística $T = r(X_1, X_2, ..., X_n)$ é suficiente para θ , se, e somente se a distribuição conjunta dos dados $f_n(\mathbf{x}|\theta)$ pode ser fatorizada como:

$$f_n(\boldsymbol{x}|\theta) = u(\boldsymbol{x})v[r(\boldsymbol{x}),\theta],$$

para todo $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, $e \ \forall \theta \in \Omega$. $u \ e \ v \ s\~{ao} \ funç\~{o}es \ n\~{a}o \ negativas$.

 $^{^1}$ Uniformly Most Powerful Test

A demostração pode ser encontrada em (degroot 445)

Teorema 2 (Lema de Neyman-Pearson)(citar casella 388-389) Seja $(X_1, X_2, ..., X_n) \in \mathbb{R}^n$ uma amostra indexada por θ . Considere as hipóteses

$$H_0: \theta = \theta_0,$$

$$H_1: \theta = \theta_1,$$
(2)

e seja $f_n(\mathbf{x}|\theta_i)$, com i = 0, 1 a função de densidade ou massa dos dados. Seja $R \in \mathbb{R}^n$ uma região de rejeição que satisfaça:

$$\mathbf{x} \in R \text{ se } f(\mathbf{x}|\theta_1) \ge kf(\mathbf{x}|\theta_0)$$

$$e \ \mathbf{x} \in R^C \text{ se } f(\mathbf{x}|\theta_1) \le kf(\mathbf{x}|\theta_0),$$
(3)

para algum $k \ge 0$ e

$$\Pr(\mathbf{X} \in R | \theta = \theta_0) = \alpha_0. \tag{4}$$

Então, todo teste que satisfaz (3) e (4) é UMP ao nivel α_0 .

A demostração será omitida pois pode ser encontrada em (citar casella).

Corolário 1 Considere as hipóteses (2). Seja $T(\mathbf{X})$ uma estatística suficiente para θ e $g(t|\theta_i)$ i=0,1, uma função de $t=T(\mathbf{x})$ tal que fatoriza a verossimilhança dos dados em $f_n(\mathbf{x}|\theta_i)=g(t|\theta_i)u(\mathbf{x})$, para alguma função $u(\mathbf{x})\geq 0$. Seja δ um teste que rejeite H_0 se T pertence a uma região de rejeição S (subconjunto do espaço de definição de T). Assim, δ será UMP ao nível α_0 se satisfazer:

$$g(t|\theta_1) \ge kg(t|\theta_0) \implies t \in S$$

$$e \ g(t|\theta_1) \le kg(t|\theta_0) \implies t \in S^C,$$
(5)

para algum $k \ge 0$ e

$$\Pr[T(\boldsymbol{X}) \in S | \theta = \theta_0] = \alpha_0. \tag{6}$$

Demonstração: Definindo $R = \{x | T(x) \in S\}$, rejeitaremos H_0 se $x \in R$. Pelo Teorema da Fatorização, dado que T(X) é suficiente, a verossimilhança de X pode ser escrita como $f_n(x|\theta_i) = g(T(x)|\theta_i)u(x)$, i = 0, 1, para alguma função u(x) > 0.

Multiplicando tal função nas desigualdades (5) temos:

$$g(T(\boldsymbol{x})|\theta_1) \ge kg(T(\boldsymbol{x})|\theta_0)$$

$$\Leftrightarrow g(T(\boldsymbol{x})|\theta_1)u(\boldsymbol{x}) \ge kg(T(\boldsymbol{x})|\theta_0)u(\boldsymbol{x})$$

$$\Leftrightarrow f_n(\boldsymbol{x}|\theta_1) \ge kf_n(\boldsymbol{x}|\theta_0)$$

Assim, tem-se: $f_n(\boldsymbol{x}|\theta_1) \geq k f_n(\boldsymbol{x}|\theta_0) \implies T(\boldsymbol{x}) \in S \implies \boldsymbol{x} \in R$. Analogamente, $f_n(\boldsymbol{x}|\theta_1) \leq k f_n(\boldsymbol{x}|\theta_0) \implies \boldsymbol{x} \in R^C$. De (6), tem-se:

$$\Pr(\boldsymbol{X} \in R | \theta = \theta_0) = \Pr[T(\boldsymbol{X}) \in S | \theta = \theta_0] = \alpha_0$$

Pelo Lema de Neyman-Pearson concluímos que o teste δ é UMP ao nível α_0 .

Voltando agora ao problema inicial da seção, queremos provar que δ^* é UMP ao nível α_0 para $H_0: \theta = \theta_0$.

Primeiramente precisamos provar que $\alpha(\delta^*) = \alpha_0$.

$$\alpha(\delta^*) = \sup_{\theta \in \Omega_0} \pi(\theta | \delta^*)$$
$$= \sup_{\theta \in \Omega_0} \Pr[r(\boldsymbol{X}) \ge c | \theta]$$

Como $\Omega_0 = \{\theta_0\}$, o supremo ocorre em θ_0 o que implica que $\alpha(\delta^*) = \alpha_0$. Agora precisamos provar que δ^* é UMP.

Façamos θ' arbitrário, com $\theta' \neq \theta_0$, testaremos $H_0: \theta = \theta_0$ contra $H_1': \theta = \theta'$. No problema em questão, vale o **Teorema da Fatorização** para $r(\boldsymbol{X})$, logo assumindo sua suficiência, temos que a verossimilhança pode ser escrita como $f_n(\boldsymbol{x}|\theta) = g(r(\boldsymbol{x})|\theta)u(\boldsymbol{x})$, para alguma função $u(\boldsymbol{x}) \geq 0$. Seja $t = r(\boldsymbol{x})$; Definamos:

$$k = \inf_{t \in \mathcal{T}} \frac{f_n(\boldsymbol{x}|\theta')}{f_n(\boldsymbol{x}|\theta_0)} = \frac{g(t|\theta')}{g(t|\theta_0)}$$

 $\operatorname{Com} \, \mathcal{T} : \stackrel{\operatorname{def}}{=} \{t | t \ge c\}$

Tal ínfimo existe, pois pelo Teorema da Fatorização, a função g é não-negativa, logo, o conjunto na qual estamos tomando ínfimo é limitado inferiormente por 0. Pelo análogo do Axioma do Supremo para ínfimos, k está bem definido.

Pela definição de ínfimo segue que:
$$r(\boldsymbol{x}) \geq c \Leftrightarrow \frac{g(r(\boldsymbol{x})|\theta')}{g(r(\boldsymbol{x})|\theta_0)} \geq k.$$

Pelo Corolário I do Lema de Neyman-Pearson, temos que δ^* é UMP para as hipóteses $H_0: \theta = \theta_0$ e $H_1': \theta = \theta'$, ou seja, $\pi(\theta|\delta^*) \geq \pi(\theta'|\delta)$, para qualquer teste δ de tamanho α_0 . Como θ' foi escolhido arbitrariamente diferente de θ_0 , temos que δ^* satisfaz $\pi(\theta|\delta^*) \geq \pi(\theta'|\delta) \ \forall \theta' \neq \theta_0$, o que prova nossa afirmação inicial. \blacksquare

4 - Duas-Caras e UMP para Bernoulli

Suponha que você encontra o Duas-Caras na rua e ele não vai com a sua... cara. Ele decide jogar a sua famosa moeda para o alto para decidir se te dá um cascudo. Se der cara (C), você toma um cascudo. Você, que sabe bem Estatística, pede que ele pelo menos jogue a moeda umas n=10 vezes antes de tomar a decisão derradeira.

Surpreendentemente, ele concorda. Lança a moeda e obtém

KCKCKCKKK

Você agora deve decidir se foge, se arriscando a tomar dois cascudos ao invés de um, ou se fica e possivelmente não toma cascudo nenhum. Se p é a probabilidade de dar cara, estamos interessados em testar a hipótese

$$H_0: p \le \frac{1}{2},$$

 $H_1: p > \frac{1}{2}.$

1. Escreva a razão de verossimilhanças para esta situação;

Sejam p_0 e p_1 , tais que $0 < p_0 \le \frac{1}{2} < p_1 < 1$. Seja X_i a variável indicadora de cara no i-ésimo lançamento do Duas-Caras; Assumindo que os 10 lançamentos são independentes, temos $X_1, X_2, \ldots, X_{10} \stackrel{iid}{\sim} \text{Bernoulli}(p)$, na qual $f(x_i|p) = p^{x_i}(1-p)^{1-x_i}$.

A verossimilhança sera então:

$$f_n(\boldsymbol{x}|p) = \prod_{i=1}^{10} p^{x_i} (1-p)^{1-x_i} = p^y (1-p)^{10-y},$$

onde
$$y = \sum_{i=1}^{10} x_i$$
.

Assim, a razão de verossimilhança será:

$$\frac{f_n(\boldsymbol{x}|p_1)}{f_n(\boldsymbol{x}|p_0)} = \frac{p_1^y (1-p_1)^{10-y}}{p_0^y (1-p_0)^{10-y}}
= \left[\frac{p_1(1-p_0)}{p_0(1-p_1)}\right]^y \left(\frac{1-p_1}{1-p_0}\right)^{10}$$
(7)

Podemos ver que a razão depende dos dados somente através da estatística suficiente y, e que a expressão é monótona em y, pois $p_0 < p_1 \Rightarrow \frac{p_1(1-p_0)}{p_0(1-p_1)} > 1$, que mostra que a razão é estritamente crescente neste caso. Por definição, dizemos que a distribuição dos dados tem razão de verossimilhança monótona crescente sob y (MLR² crescente).

Veja também que a distribuição da estatística y também terá razão de verossimilhança monótona (sob o próprio y), pois é soma de 10 variáveis i.i.d bernoulli(p), logo $y \sim \text{Binomial}(10, p)$, cuja verossimilhança se descreve por $\mathcal{L}(p; y) = \binom{10}{y} p^y (1-p)^{10-y}$. Se escolhermos $p_0 < p_1$ como antes,

a razão $\frac{\mathcal{L}(p_1;y)}{\mathcal{L}(p_0;y)}$ será exatamente igual a expressão (7), pois o termo $\binom{10}{y}$ se

cancela. Assim, a distribuição da estatística suficiente $y = \sum_{i=1}^{10} x_i$ também

tem MLR.

²Monotone Likelihood Ratio

 Nesta situação, é do seu interesse encontrar um teste UMP. Faça isso e aplique o teste desenvolvido aos dados que conseguiu arrancar do Duas-Caras.

Existe uma generalização dos resultados da seção anterior, que estende a noção de existência de UMP para H_0 composta, e inclui a hipótese de distribuição com MLR. Vamos enunciá-lo e demonstrá-lo brevemente, pois basta algumas adaptações da demonstração da seção anterior para H_0 simples.

Teorema 3 (Teorema de Karlin-Rubin) (citar casella 391-392) Sejam as hipóteses:

$$H_0: \theta \le \theta_0$$
$$H_1: \theta > \theta_0$$

Seja $T=r(\boldsymbol{X})$ uma estatística suficiente para θ e que a sua família de distribuições conjunta $\{g(t|\theta)|\theta\in\Omega\}$ tem razão de verossimilhança monótona. Assim, para qualquer c, o teste δ^* que rejeita H_0 $T\geq c$ é um teste UMP ao nível α_0 , onde $\alpha_0=\Pr[T\geq c\,|\theta=\theta_0]$.

Demonstração: Primeiramente devemos mostrar que o tamanho do teste é α_0 , ou seja:

$$\sup_{\theta \le \theta_0} \Pr[T \ge c \, | \theta]$$

Se a função poder for não-decrescente, o supremo ocorrerá em θ_0 fica provada essa parte, pois foi suposto que $\Pr[T \ge c | \theta = \theta_0] = \alpha_0$.

Provaremos então que $\pi(\theta|\delta^*)$ é não-decrescente em θ , ou seja, dados $\theta_1 < \theta_2$, tem-se $\pi(\theta_1|\delta^*) \leq \pi(\theta_2|\delta^*)$, que equivale a provar que:

$$\Pr(T \ge c|\theta_1) \le \Pr(T \ge c|\theta_1)$$

$$\Leftrightarrow 1 - G(c|\theta_1) \le 1 - G(c|\theta_2)$$

$$\Leftrightarrow G(c|\theta_1) \ge G(c|\theta_2)$$

Onde $G(t|\theta_i),\,i=1,2$ é a distribuição acumulada condicional a θ_i da estatística $T=r(\boldsymbol{X})$