Stochastic Differential Equation

Mid-term Presentation

Karri Lakshmi Yamini (2020MT60881)

Supervisor: Prof. Ananta Kumar Majee

September 30, 2024

SDE

• ODE: Deterministic evolution

ODE: Deterministic evolution

$$\frac{dX(t)}{dt} = b(X(t)) \tag{1}$$

• ODE: Deterministic evolution

$$\frac{dX(t)}{dt} = b(X(t)) \tag{1}$$

• SDE: Includes randomness

ODE: Deterministic evolution

$$\frac{dX(t)}{dt} = b(X(t)) \tag{1}$$

SDE: Includes randomness

$$dX(t) = b(X(t))dt + \sigma(X(t))dW(t)$$
 (2)

ODE: Deterministic evolution

$$\frac{dX(t)}{dt} = b(X(t)) \tag{1}$$

SDE: Includes randomness

$$dX(t) = b(X(t))dt + \sigma(X(t))dW(t)$$
 (2)

Figure: ODE Trajectory

Figure: SDE Sample Path

Quick Overview

- Understanding Randomness
- Brownian Motion
- Ito Calculus
- Stochastic Differential Equations (SDEs)
- Numerical Approaches
- Future Directions

• Randomness: Unpredictable variations in system behavior

- Randomness: Unpredictable variations in system behavior
- Random Variable: Assigns a numerical value to each outcome in a random event

- Randomness: Unpredictable variations in system behavior
- Random Variable: Assigns a numerical value to each outcome in a random event

$$X(\omega):\Omega\to\mathbb{R}$$
 (3)

- Randomness: Unpredictable variations in system behavior
- Random Variable: Assigns a numerical value to each outcome in a random event

$$X(\omega):\Omega\to\mathbb{R}$$
 (3)

Stochastic Process: A collection of random variables indexed by time

- Randomness: Unpredictable variations in system behavior
- Random Variable: Assigns a numerical value to each outcome in a random event

$$X(\omega):\Omega\to\mathbb{R}$$
 (3)

Stochastic Process: A collection of random variables indexed by time

$$\{X(t), t \in T\} \tag{4}$$

- Randomness: Unpredictable variations in system behavior
- Random Variable: Assigns a numerical value to each outcome in a random event

$$X(\omega):\Omega\to\mathbb{R}$$
 (3)

Stochastic Process: A collection of random variables indexed by time

$$\{X(t), t \in T\} \tag{4}$$

• Brownian Motion (W(t)): A continuous-time stochastic process

• A stochastic process W(t) for $t \ge 0$ is called a standard Brownian motion if:

- A stochastic process W(t) for $t \ge 0$ is called a standard Brownian motion if:
- W(0) = 0 almost surely

- A stochastic process W(t) for $t \ge 0$ is called a standard Brownian motion if:
- W(0) = 0 almost surely
- For $0 \le s < t$, $W(t) W(s) \sim N(0, t s)$ (normally distributed increments)

- A stochastic process W(t) for $t \ge 0$ is called a standard Brownian motion if:
- W(0) = 0 almost surely
- For $0 \le s < t$, $W(t) W(s) \sim N(0, t s)$ (normally distributed increments)
- The process has independent increments: for any $0 \le t_1 < t_2 < \cdots < t_n$, the increments $W(t_2) W(t_1), \ldots, W(t_n) W(t_{n-1})$ are independent

- Expected Value: E[W(t)] = 0
- Variance: Var(W(t)) = t

- Expected Value: E[W(t)] = 0
- Variance: Var(W(t)) = t
- Independent Increments: Increments of W(t) over disjoint time intervals are independent

- Expected Value: E[W(t)] = 0
- Variance: Var(W(t)) = t
- Independent Increments: Increments of W(t) over disjoint time intervals are independent
- Gaussian Distribution: $W(t) W(s) \sim N(0, t s)$

- Expected Value: E[W(t)] = 0
- Variance: Var(W(t)) = t
- Independent Increments: Increments of W(t) over disjoint time intervals are independent
- Gaussian Distribution: $W(t) W(s) \sim N(0, t s)$
- Quadratic Variation:

$$\sum_{i=1}^n (W(t_{i+1}) - W(t_i))^2 o T$$
 as $n o \infty$

- Expected Value: E[W(t)] = 0
- Variance: Var(W(t)) = t
- Independent Increments: Increments of W(t) over disjoint time intervals are independent
- Gaussian Distribution: $W(t) W(s) \sim N(0, t s)$
- Quadratic Variation:

$$\sum_{i=1}^n (W(t_{i+1}) - W(t_i))^2 o T$$
 as $n o \infty$

- Continuity: Continuous sample paths
- Non-differentiability: Nowhere differentiable paths

Explanation of SDE and Why Ito Calculus is Needed

SDE Form:

$$dX(t) = b(X(t))dt + \sigma(X(t))dW(t)$$

- b(X(t)): Drift term, describing deterministic evolution.
- $\sigma(X(t))$: Diffusion term, accounting for randomness.
- dW(t): Differential of Brownian motion(Wiener process i.e., randomness).

Explanation of SDE and Why Ito Calculus is Needed

SDE Form:

$$dX(t) = b(X(t))dt + \sigma(X(t))dW(t)$$

- b(X(t)): Drift term, describing deterministic evolution.
- $\sigma(X(t))$: Diffusion term, accounting for randomness.
- dW(t): Differential of Brownian motion(Wiener process i.e., randomness).

Why Ito Calculus is Needed

- Brownian motion is not differentiable, and traditional calculus doesn't apply.
- Ito calculus allows integration with respect to stochastic processes.

Ito Integral Definition

• The **Ito Integral** is defined as:

$$\int_0^t f(s)dW(s) \tag{5}$$

Ito Integral Definition

The Ito Integral is defined as:

$$\int_0^t f(s)dW(s) \tag{5}$$

Constructed using the Riemann sum:

$$\lim_{n \to \infty} \sum_{i=0}^{n-1} f(t_i) \left(W(t_{i+1}) - W(t_i) \right) \tag{6}$$

Ito Integral Definition

• The Ito Integral is defined as:

$$\int_0^t f(s)dW(s) \tag{5}$$

Constructed using the Riemann sum:

$$\lim_{n \to \infty} \sum_{i=0}^{n-1} f(t_i) \left(W(t_{i+1}) - W(t_i) \right) \tag{6}$$

Evaluated as the limit of sums over random increments.

Properties of the Ito Integral

Linearity:

$$\int_0^t (af(s) + bg(s))dW(s) = a \int_0^t f(s)dW(s) + b \int_0^t g(s)dW(s)$$
 (7)

Properties of the Ito Integral

Linearity:

$$\int_0^t (af(s) + bg(s))dW(s) = a \int_0^t f(s)dW(s) + b \int_0^t g(s)dW(s)$$
 (7)

Zero Expectation:

$$E\left[\int_0^t f(s)dW(s)\right] = 0 \tag{8}$$

Properties of the Ito Integral

Linearity:

$$\int_0^t (af(s) + bg(s))dW(s) = a \int_0^t f(s)dW(s) + b \int_0^t g(s)dW(s)$$
 (7)

Zero Expectation:

$$E\left[\int_0^t f(s)dW(s)\right] = 0 \tag{8}$$

Isometry:

$$E\left[\left(\int_0^t f(s)dW(s)\right)^2\right] = \int_0^t f(s)^2 ds \tag{9}$$

Explanation of Ito's Lemma

Ito's Lemma is derived using Taylor's expansion for the stochastic differential equation (SDE), considering the quadratic variation of Brownian motion.

Explanation of Ito's Lemma

Ito's Lemma is derived using Taylor's expansion for the stochastic differential equation (SDE), considering the quadratic variation of Brownian motion.

$$du = \frac{\partial u}{\partial t}dt + \frac{\partial u}{\partial X}dX + \frac{1}{2}\frac{\partial^2 u}{\partial X^2}(dX)^2$$
 (10)

Explanation of Ito's Lemma

Ito's Lemma is derived using Taylor's expansion for the stochastic differential equation (SDE), considering the quadratic variation of Brownian motion.

$$du = \frac{\partial u}{\partial t}dt + \frac{\partial u}{\partial X}dX + \frac{1}{2}\frac{\partial^2 u}{\partial X^2}(dX)^2$$
 (10)

Here, dX follows the SDE:

$$dX(t) = b(X(t), t)dt + \sigma(X(t), t)dW(t)$$
(11)

Explanation of Ito's Lemma

Ito's Lemma is derived using Taylor's expansion for the stochastic differential equation (SDE), considering the quadratic variation of Brownian motion.

$$du = \frac{\partial u}{\partial t}dt + \frac{\partial u}{\partial X}dX + \frac{1}{2}\frac{\partial^2 u}{\partial X^2}(dX)^2$$
 (10)

Here, dX follows the SDE:

$$dX(t) = b(X(t), t)dt + \sigma(X(t), t)dW(t)$$
(11)

Using $(dX)^2 = \sigma^2(X(t), t)dt$, the full form of **Ito's Lemma** becomes:

$$du = \left(\frac{\partial u}{\partial t} + b(X(t), t)\frac{\partial u}{\partial X} + \frac{1}{2}\sigma^2(X(t), t)\frac{\partial^2 u}{\partial X^2}\right)dt + \sigma(X(t), t)\frac{\partial u}{\partial X}dW(t)$$

Stochastic Differential Equations (SDEs)

- SDEs describe systems with both deterministic trends and random noise.
- The general form of an SDE is:

$$dX(t) = b(X(t), t)dt + \sigma(X(t), t)dW(t)$$
(12)

Stochastic Differential Equations (SDEs)

- SDEs describe systems with both deterministic trends and random noise.
- The general form of an SDE is:

$$dX(t) = b(X(t), t)dt + \sigma(X(t), t)dW(t)$$
(12)

- b(X(t), t): Drift term (deterministic part)
- $\sigma(X(t), t)$: Diffusion term (random part)
- dW(t): Wiener process (Brownian motion)

Existence and Uniqueness Conditions

Lipschitz Condition:

$$|b(x,t)-b(y,t)|+|\sigma(x,t)-\sigma(y,t)|\leq L|x-y|$$
 (13)

Existence and Uniqueness Conditions

Lipschitz Condition:

$$|b(x,t)-b(y,t)|+|\sigma(x,t)-\sigma(y,t)|\leq L|x-y|$$
 (13)

Linear Growth Condition:

$$|b(x,t)| + |\sigma(x,t)| \le C(1+|x|)$$
 (14)

Numerical Methods: Euler-Maruyama and Milstein Method

Euler-Maruyama Method:

$$X_{n+1} = X_n + b(X_n, t_n)\Delta t + \sigma(X_n, t_n)\Delta W_n$$
 (15)

where $\Delta W_n = W(t_{n+1}) - W(t_n)$ and $\Delta t = t_{n+1} - t_n$.

Numerical Methods: Euler-Maruyama and Milstein Method

Euler-Maruyama Method:

$$X_{n+1} = X_n + b(X_n, t_n)\Delta t + \sigma(X_n, t_n)\Delta W_n$$
 (15)

where $\Delta W_n = W(t_{n+1}) - W(t_n)$ and $\Delta t = t_{n+1} - t_n$.

Milstein Method:

$$X_{n+1} = X_n + b(X_n, t_n)\Delta t + \sigma(X_n, t_n)\Delta W_n$$
 (16)

$$+\frac{1}{2}\sigma(X_n,t_n)\frac{\partial\sigma}{\partial X}(X_n,t_n)\left((\Delta W_n)^2-\Delta t\right) \tag{17}$$

Numerical Methods: Euler-Maruyama and Milstein Method

Euler-Maruyama Method:

$$X_{n+1} = X_n + b(X_n, t_n)\Delta t + \sigma(X_n, t_n)\Delta W_n$$
 (15)

where $\Delta W_n = W(t_{n+1}) - W(t_n)$ and $\Delta t = t_{n+1} - t_n$.

Milstein Method:

$$X_{n+1} = X_n + b(X_n, t_n)\Delta t + \sigma(X_n, t_n)\Delta W_n$$
 (16)

$$+\frac{1}{2}\sigma(X_n,t_n)\frac{\partial\sigma}{\partial X}(X_n,t_n)\left((\Delta W_n)^2-\Delta t\right) \tag{17}$$

Analytical Solution

Analytical Solution:

- Exact solutions are often available for linear SDEs (e.g., $dX(t) = \lambda X(t) dt + \mu X(t) dW(t)$).
- Example solution:

$$X(t) = X_0 \exp\left((\lambda - \frac{\mu^2}{2})t + \mu W(t)\right)$$

 The analytical solution provides a reference to measure the accuracy of numerical schemes.

Comparison and Future Directions

Comparison of Methods:

- **Euler-Maruyama:** Simple to implement, widely used for approximating SDEs. Suitable for many practical problems with acceptable precision.
- Milstein: More accurate due to the inclusion of additional terms accounting for the nonlinearity in the diffusion function, useful when higher precision is required.

Future Directions:

- Explore advanced stochastic control techniques, focusing on optimal control problems in random systems.
- Investigate the relationship between dynamic programming and the maximum principle for optimal control strategies in SDEs.

Thank You!

Thank You!