"Unconstrained" Optimization for Machine Learning

Dr. Ratna Babu Chinnam
Industrial & Systems Engineering
Wayne State University

Introduction

- **Task**: Find optimal solution \mathbf{w}^* for a differentiable cost function $\xi(\mathbf{w})$ $\xi(\mathbf{w}^*) \leq \xi(\mathbf{w})$
- Necessary condition for optimality: $\nabla \xi(\mathbf{w}^*) = \mathbf{0}$ where $\nabla \xi(\mathbf{w})$ is gradient vector: $\nabla \xi(\mathbf{w}) = \left[\frac{\partial \xi}{\partial w_1}, \frac{\partial \xi}{\partial w_2}, \dots, \frac{\partial \xi}{\partial w_m}\right]^T$
- A class of "unconstrained" optimization algorithms suited for "error-correction learning" is based on the idea of *local iterative descent*:
- Starting with initial guess $\mathbf{w}(0)$, generate a sequence of vectors $\mathbf{w}(1)$, $\mathbf{w}(2)$,.., such that cost function $\xi(\mathbf{w})$ is reduced at each iteration: $\xi(\mathbf{w}(n+1)) < \xi(\mathbf{w}(n))$
- Without precautions, there is a possibility of algorithm divergence

Method of "Steepest" Descent (First-Oder Method)

• Adjustments applied to weight vector \mathbf{w} are in the direction of steepest descent (i.e., direction opposite to gradient vector $\nabla \xi(\mathbf{w})$): $\mathbf{w}(n+1) = \mathbf{w}(n) - \eta \nabla \xi(\mathbf{w})$

where η is a +ve constant called *step-size* or *learning-rate* parameter.

• One can show that technique satisfies condition $\xi(\mathbf{w}(n+1)) < \xi(\mathbf{w}(n))$ using a "first-order" Taylor series expansion:

$$\xi(\mathbf{w}(n+1)) \simeq \xi(\mathbf{w}(n)) + \nabla \xi(\mathbf{w})^T \Delta \mathbf{w}(n) \quad \leftarrow \text{Justified for small } \eta$$

$$\simeq \xi(\mathbf{w}(n)) - \eta \nabla \xi(\mathbf{w})^T \nabla \xi(\mathbf{w})$$

$$\simeq \xi(\mathbf{w}(n)) - \eta \|\nabla \xi(\mathbf{w})\|^2$$

$$< \xi(\mathbf{w}(n)) \qquad \leftarrow \text{Justified for a +ve } \eta$$

Method of Steepest Descent (First-Oder Method) ...

- Stochastic Gradient Descent: Descent based on individual observations rather than overall training dataset
 - Path becomes stochastic for observations are not always in agreement
 - Can help accelerate convergence and even help escape local optima!
- Steepest descent methods converge slowly:

Newton's Method (Second-Order Method)

- Minimizes quadratic approximation of cost $\xi(w)$ at w(n)
- Using a "2nd-order" Taylor series expansion of $\xi(w)$ around $\mathbf{w}(n)$:

$$\xi(\mathbf{w}(n+1)) - \xi(\mathbf{w}(n)) \simeq \nabla \xi(\mathbf{w})^T \Delta \mathbf{w}(n) + \frac{1}{2} \Delta \mathbf{w}(n)^T \mathbf{H}(n) \Delta \mathbf{w}(n)$$

where $\mathbf{H}(n)$ is $m \times m$ Hessian matrix of $\xi(\mathbf{w})$ evaluated at $\mathbf{w}(n)$:

$$\mathbf{H}(n) = \nabla^2 \xi(\mathbf{w}) = \begin{bmatrix} \frac{\partial^2 \xi}{\partial w_1^2} & \dots & \frac{\partial^2 \xi}{\partial w_1 \partial w_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 \xi}{\partial w_m \partial w_1} & \dots & \frac{\partial^2 \xi}{\partial w_m^2} \end{bmatrix}$$

• $\xi(\mathbf{w}(n+1))$ can be optimized around current point $\mathbf{w}(n)$ by taking derivative with respect to $\Delta \mathbf{w}$ and equating it to zero:

$$\nabla \xi(\mathbf{w}) + \mathbf{H}(n) \Delta \mathbf{w}(n) = 0$$

- Solving equation for $\Delta \mathbf{w}(n)$ yields: $\Delta \mathbf{w}(n) = -\mathbf{H}^{-1}(n)\nabla \xi(\mathbf{w})$
- Weight update rule: $\mathbf{w}(n+1) = \mathbf{w}(n) \mathbf{H}^{-1}(n)\nabla \xi(\mathbf{w})$

Newton's Method (Second-Order Method) ...

- Generally, this method converges quickly and does not exhibit zigzagging behavior observed with method of steepest descent
- However, practical application of Newton's method is handicapped:
 - Method does not work unless cost function is twice differentiable
 - For $\mathbf{H}^{-1}(n)$ to be computable, $\mathbf{H}(n)$ has to be positive definite
 - Hessian may also be rank deficient (i.e., columns of **H** are not independent); Results from ill- conditioned nature of supervised-learning problems
 - Requires calculation of inverse Hessian $\mathbf{H}^{-1}(n)$, which can be computationally very expensive

Example: Steepest Descent

Relation:
$$y(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4$$

 $y(x) = 1 + 1.5x - 2x^2 - 1x^3 + 2x^4$

Gradients:
$$\nabla y(x) = b_1 + 2b_2x + 3b_3x^2 + 4b_4x^3$$

 $\nabla^2 y(x) = 2b_2 + 6b_3x + 12b_4x^2$

Algorithm:
$$x(n+1) = x(n) - \eta \nabla y(x(n))$$

$$x(0) = 0.9; \eta = 0.05$$

$$x(1) = 0.9 - 0.05[(1.5) + 2(-2)(0.9) + 3(-1)(0.9^{2}) + 4(2)(0.9^{3}))]$$

= 0.9 - 0.05[1.302] = 0.835

$$x(2) = 0.835 - 0.05[(1.5) + 2(-2)(0.835) + 3(-1)(0.835^{2}) + 4(2)(0.835^{3}))]$$

= 0.835 - 0.05[0.725] = 0.799

$$x(3) = 0.799 - 0.05[(1.5) + 2(-2)(0.799) + 3(-1)(0.799^{2}) + 4(2)(0.799^{3}))]$$

= 0.799 - 0.05[0.467] = 0.775

$$x(14) = 0.714 - 0.05[(1.5) + 2(-2)(0.714) + 3(-1)(0.714^{2}) + 4(2)(0.714^{3}))]$$

= 0.714 - 0.05[0.025] = 0.712

$$x(15) = 0.712 - 0.05[(1.5) + 2(-2)(0.712) + 3(-1)(0.712^{2}) + 4(2)(0.712^{3}))]$$

= 0.712 - 0.05[0.020] = 0.711

Problem: Stuck at local optimal solution!

Polynomial Regression Components

Example: Newton's Method

Relation:

Gradients:

Algorithm:

 $y(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4$ $y(x) = 1 + 1.5x - 2x^2 - 1x^3 + 2x^4$ $\nabla y(x) = b_1 + 2b_2x + 3b_3x^2 + 4b_4x^3$ $\nabla^2 y(x) = 2b_2 + 6b_3 x + 12b_4 x^2$ $x(0) = 0.9; \eta = 0.05$

$$\nabla y(x) + \mathbf{H}(n)\Delta x(n) = 0 \quad \mathbf{H}(n) = \nabla^2 y(x)$$

$$\Delta x(n) = -\frac{b_1 + 2b_2 x + 3b_3 x^2 + 4b_4 x^3}{2b_2 + 6b_3 x + 12b_4 x^2}$$

$$c(n) = -\frac{a_1 + a_2 + a_3 + a_4}{2b_2 + 6b_3 x + 12b_4 x^2}$$

$$\Delta x(0) = -\frac{1.5 + 2(-2)(0.9) + 3(-1)(0.9^2) + 4(2)(0.9^3)}{2(-2) + 6(-1)(0.9) + 12(2)(0.9^2)} = -0.13$$

$$x(1) = x(0) + \Delta x(0) = 0.9 - 0.13 = 0.77$$

$$x(2) = x(1) + \Delta x(1) = 0.77 - 0.053 = 0.718$$

$$x(3) = x(2) + \Delta x(2) = 0.718 - 0.010 = 0.708$$

$$x(4) = x(3) + \Delta x(3) = 0.708 - 0.0004 = 0.707$$

Problem: Fewer iterations but still stuck at local optimum!

Why didn't we

use $H^{-1}(n)$?

X is 1-dimensional

Conjugate-Gradient Method

- An intermediate approach between method of steepest descent and Newton's method
- Goal: Accelerate slow rate of convergence experienced with steepest descent while avoiding computational burden of Newton's method
- Employs one-dimensional linesearch as a part of the method

Comparison of convergence of gradient descent with optimal step size (green) and conjugate vector (red)

Gauss-Newton Method (Least Squares Problems)

- Method can only be used to minimize sum of squared function values
 - Advantage: Second derivatives (challenging to compute) are not required
- Suppose cost function is a sum of squares (e.g., "batch" training):

$$\xi(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} e^2(i)$$

• Given a point
$$w(n)$$
, dependence of $e(i)$ on w is linearized as follows:
$$e^{lin}(i, w) = e(i) + \left[\frac{\partial e(i)}{\partial w}\right]_{w=w(n)}^{T} \left(w - w(n)\right) \quad i = 1, 2, \dots, m$$

• Using matrix notation: $e^{lin}(n, w) = e(n) + J(n)(w - w(n))$

•
$$J(n)$$
 is $m \times p$ Jacobian matrix of $e(n)$: $J(n) = \begin{bmatrix} \frac{\partial e(1)}{\partial w_1} & \cdots & \frac{\partial e(1)}{\partial w_p} \\ \vdots & \ddots & \vdots \\ \frac{\partial e(m)}{\partial w_1} & \cdots & \frac{\partial e(m)}{\partial w_p} \end{bmatrix}_{w=w(n)}$

Gauss-Newton Method (Least Squares Problems) ...

- Updated weight vector is defined by: $\mathbf{w}(n+1) = \underset{\mathbf{w}}{\operatorname{argmin}} \left\{ \frac{1}{2} \left\| e^{\operatorname{lin}}(n, \mathbf{w}) \right\|^2 \right\}$ = $\underset{\mathbf{w}}{\operatorname{argmin}} \left\{ \frac{1}{2} \| \mathbf{e}(n) \|^2 + \mathbf{e}^T(n) \mathbf{J}(n) (\mathbf{w} - \mathbf{w}(n)) + \frac{1}{2} (\mathbf{w} - \mathbf{w}(n))^T \mathbf{J}(n) (\mathbf{w} - \mathbf{w}(n)) \right\}$
- Differentiating argument with respect w and equating to zero:

$$\mathbf{J}^{T}(n)\mathbf{e}(n) + \mathbf{J}^{T}(n)\mathbf{J}(n)(\mathbf{w} - \mathbf{w}(n)) = \mathbf{0}.$$

• Solving for \mathbf{w} , we can write "pure form" of update rule as follows:

$$\mathbf{w}(n+1) = \mathbf{w}(n) - (\mathbf{J}^{T}(n)\mathbf{J}(n))^{-1}\mathbf{J}^{T}(n)\mathbf{e}(n)$$

Generally applied in the following "modified form" to avoid singularity:

$$\mathbf{w}(n+1) = \mathbf{w}(n) - (\mathbf{J}^{T}(n)\mathbf{J}(n) + \delta \mathbf{I})^{-1}\mathbf{J}^{T}(n)\mathbf{e}(n)$$

 δ is a small +ve constant that ensures $\mathbf{J}^T(n)\mathbf{J}(n)+\delta I$ is positive definite

• Effect of added term δI is progressively reduced as n is increased (by decreasing δ with n)

Final Comments

- Steepest descent, Newton, and quasi-Newton methods can minimize general real-valued functions
- Gauss-Newton and Levenberg-Marquardt methods <u>only</u> handle nonlinear least-squares problems
- Levenberg-Marquardt interpolates between the Gauss-Newton algorithm and the method of gradient descent
 - More robust than Gauss–Newton
 - For well-behaved functions, tends to be a bit slower than Gauss-Newton
- Bayesian Regularization technique minimize a linear combination of squared errors and weights
 - Employs Levenberg-Marquardt algorithm
- In practice, Conjugate-Gradient, Levenberg-Marquardt, and Bayesian Regularlization methods are quite effective!