

(noun) a maker of arrows

A Typst package for diagrams with lots of arrows, built on top of CeTZ.

Commutative diagrams, flow charts, state machines, block diagrams...

github.com/Jollywatt/typst-fletcher

Version 0.4.6

Guide

Diagrams 4

Elastic coordinates 4 Fractional coordinates 4 Nodes 4 Node shapes 5 Node groups 5 Edges 6 Specifying edge vertices 6 Implicit coordinates 6 Relative coordinates 6 Named or labelled coordinates 7 Edge types 7 Marks and arrows 8 Custom marks 8 Mark objects9 Special mark properties 10 Detailed example 11 Custom mark shorthands 11 CeTZ integration 12 Bézier edges 12

Reference

Main functions	14
diagram()	14
node()	18
edge()	23
Behind the scenes	31
marks.typ	31
shapes.typ	35
coords.typ	42
draw.typ	44
utils.tvp	48

Usage examples

Avoid importing everything with * as many internal functions are also exported.

```
#import "@preview/fletcher:0.4.6" as fletcher: diagram, node, edge
// You can specify nodes in math-mode, separated by `&`:
#diagram($
  G edge(f, ->) edge("d", pi, ->>) & im(f) \
 G slash ker(f) edge("ur", tilde(f), "hook-->")
                                                                         G/\ker(f)
// Or you can use code-mode, with variables, loops, etc:
#diagram(spacing: 2cm, {
  let (A, B) = ((0,0), (1,0))
  node(A, $cal(A)$)
  node(B, $cal(B)$)
  edge(A, B, $F$, "->", bend: +35deg)
  edge(A, B, $G$, "->", bend: -35deg)
  let h = 0.2
  edge((.5,-h), (.5,+h), $alpha$, "=>")
})
#diagram(
  spacing: (10mm, 5mm), // wide columns, narrow rows
                                                                                  F(s)
                     // outline node shapes
  node-stroke: 1pt,
                       // make lines thicker
  edge-stroke: lpt,
                       // make arrowheads smaller
  mark-scale: 60%,
  edge((-2,0), "r,u,r", "-|>", $f$, label-side: left),
edge((-2,0), "r,d,r", "..|>", $g$),
  node((0,-1), F(s)),
                                                                                  G(s)
  node((0,+1), $G(s)$),
  node(enclose: ((0,-1), (0,+1)), stroke: teal, inset: 8pt),
  edge((0,+1), (1,0), "..|>", corner: left),
  edge((0,-1), (1,0), "-|>", corner: right),
  node((1,0), text(white, $ plus.circle $), inset: 2pt, fill: black),
  edge("-|>"),
)
                                                                        An equation f: A \to B and
An equation $f: A -> B$ and \
an inline diagram #diagram(
                                                                       an inline diagram A \xrightarrow{f} B.
 node-inset: 2pt,
  label-sep: Opt,
  $A edge(->, text(#0.8em, f)) & B$
#import fletcher.shapes: diamond
                                                                                               3a
#diagram(
  node-stroke: black + 0.5pt,
  node-fill: gradient.radial(white, blue, center: (40%, 20%),
                             radius: 150%),
  spacing: (10mm, 5mm),
  node((0,0), [1], name: <1>, extrude: (0, -4)), // double stroke
  node((1,0), [2], name: <2>, shape: diamond),
  node((2,-1), [3a], name: <3a>),
  node((2,+1), [3b], name: <3b>),
  edge(<1>, <2>, [go], "->"),
                                                                                              loop!
```

edge(<2>, <3a>, "->", bend: -15deg), edge(<2>, <3b>, "->", bend: +15deg),

edge(<3b>, <3b>, "->", bend: -130deg, label: [loop!]),

Diagrams

Diagrams created with diagram() are a collection of *nodes* and *edges* rendered on a CeTZ canvas.

Elastic coordinates

Diagrams are laid out on a *flexible coordinate grid*, visible when the <u>debug</u> option of <u>diagram()</u> is turned on. When a node is placed, the rows and columns grow to accommodate the node's size, like a table.

By default, coordinates (u,v) have u going \rightarrow and v going \downarrow . This can be changed with the <u>axes</u> option of <u>diagram()</u>. The <u>cell-size</u> option is the minimum row and column width, and <u>spacing</u> is the gutter between rows and columns.

```
#let c = (orange, red, green, blue).map(x => x.lighten(50%))
#diagram(
  debug: 2,
  spacing: 10pt,
  node-corner-radius: 3pt,
  node((0,0), [a], fill: c.at(0), width: 10mm, height: 10mm),
  node((1,0), [b], fill: c.at(1), width: 5mm, height: 5mm),
  node((1,1), [c], fill: c.at(2), width: 20mm, height: 5mm),
  node((0,2), [d], fill: c.at(3), width: 5mm, height: 10mm),
)
```


Fractional coordinates

So far, this is just like a table — however, coordinates can be *fractional*. These are dealt with by linearly interpolating the diagram between what it would be if the coordinates were rounded up or down.

Nodes

```
node((x, y), label, ..options)
```

Nodes are content centered at a particular coordinate. They can be circular, rectangular, or any custom shape. Nodes automatically fit to the size of their label (with an <u>inset</u>), but can also be given an exact width, height, or radius, as well as a <u>stroke</u> and <u>fill</u>. For example:

```
#diagram(
  debug: true, // show a coordinate grid
  spacing: (5pt, 4em), // small column gaps, large row spacing
  node((0,0), $f$),
  node((1,0), $f$, stroke: 1pt),
  node((2,0), $f$, stroke: blue, shape: rect),
  node((3,0), \$f\$, stroke: 1pt, radius: 6mm, extrude: (0, 3)),
    let b = blue.lighten(70%)
   node((0,1), `xyz`, fill: b, )
    let dash = (paint: blue, dash: "dashed")
                                                                      XYZ
   node((1,1), `xyz`, stroke: dash, inset: lem)
   node((2,1), `xyz`, fill: b, stroke: blue, extrude: (0, -2))
   node((3,1), `xyz`, fill: b, height: 5em, corner-radius: 5pt)
 }
)
```


Node shapes

By default, nodes are circular or rectangular depending on the aspect ratio of their label. The <u>shape</u> option accepts rect, circle, various shapes provided in the <u>fletcher.shapes</u> submodule, or a function.

```
#import fletcher.shapes: pill, parallelogram, diamond, hexagon
#diagram(
    node-fill: gradient.radial(white, blue, radius: 200%),
    node-stroke: blue,
    (
        node((0,0), [Blue Pill], shape: pill),
        node((1,0), [_Slant_], shape: parallelogram.with(angle: 20deg)),
        node((0,1), [Choice], shape: diamond),
        node((1,1), [Stop], shape: hexagon, extrude: (-3, 0), inset: 10pt),
    ).intersperse(edge("o--|>")).join()
}
```

Custom node shapes may be implemented with <u>CeTZ</u> via the <u>shape</u> option of <u>node()</u>, but it is up to the user to support outline extrusion for custom shapes. The predefined shapes are:

Shapes respect the stroke, fill, width, height, and extrude options of edge().

Node groups

Nodes are usually centered at a particular coordinate, but they can also <u>enclose</u> multiple centers. When the <u>enclose</u> option of <u>node()</u> is given, the node automatically resizes.

```
#diagram(
node-stroke: 0.6pt,
node($Sigma$, enclose: ((1,1), (1,2)), // a node spanning multiple centers
    inset: 10pt, stroke: teal, fill: teal.lighten(90%), name: <bar>),
node((2,1), [X]),
node((2,2), [Y]),
edge((1,1), "r", "->", snap-to: (<bar>, auto)),
edge((1,2), "r", "->", snap-to: (<bar>, auto)),
)
```

You can also enclose other nodes by coordinate or name to create node groups:

```
#diagram(
    node-stroke: 0.6pt,
    node-fill: white,
    node((0,1), [X]),
    edge("->-", bend: 40deg),
    node((1,0), [Y], name: <y>),
    node($Sigma$, enclose: ((0,1), <y>),
        stroke: teal, fill: teal.lighten(90%),
        snap: -1, // prioritise other nodes when auto-snapping
        name: <group>),
    edge(<group>, <z>, "->"),
    node((2.5,0.5), [Z], name: <z>),
)
```


Edges

```
edge(...vertices, ...options)
```

An edge connects two coordinates. If there is a node at the endpoint, the edge snaps to the nodes' bounding shape (after applying the node's outset). An edge can have a label, can bend into an arc, and can have various arrow marks.

```
#diagram(spacing: (12mm, 6mm), {
                                                                               A \times B \times C
  let (a, b, c, abc) = ((-1,0), (0,1), (1,0), (0,-1))
  node(abc, $A times B times C$)
  node(a, $A$)
  node(b, $B$)
  node(c, $C$)
  edge(a, b, bend: -18deg, "dashed")
  edge(c, b, bend: +18deg, "<-<<")</pre>
  edge(a, abc, $a$)
  edge(b, abc, "<=>")
  edge(c, abc, $c$)
                                                                                      ····· just a thought...
  node((.6,3), [\_just a thought..._])
  edge(b, "..|>", corner: right)
})
```

Specifying edge vertices

The first few arguments given to <a>edge() specify its <a>vertices, of which there can be two or more.

Implicit coordinates

To specify the start and end points of an edge, you may provide both explicitly, like edge(from, to); leave from implicit, like edge(to); or leave both implicit. When from is implicit, it becomes the coordinate of the last node, and if to is implicit, the next node.

Implicit coordinates can be handy for diagrams in math-mode:

```
#diagram($ L edge("->", bend: #30deg) & P $) L \qquad \qquad L \qquad P
```

However, don't forget you can also use variables in code-mode, which is a more explicit and flexible way to reduce repetition of coordinates.

```
#diagram(node-fill: blue, {
  let (dep, arv) = ((0,0), (1,1))
  node(dep, text(white)[London])
  node(arv, text(white)[Paris])
  edge(dep, arv, "==>", bend: 40deg)
})

Paris
```

Relative coordinates

You may specify an edge's direction instead of its end coordinate. This can be done with edge((x, y), (rel: $(\Delta x, \Delta y))$), or with string of *directions* for short, e.g., "u" for up or "br" for bottom right. Any combination of top/up/north, bottomp/down/south, left/west, and right/east are allowed. Together with implicit coordinates, this allows you to do things like:

Named or labelled coordinates

Another way coordinates can be expressed is through node names. Nodes can be given a name, which is a label (not a string) identifying that node. A label as an edge vertex is interpreted as the position of the node with that label.

```
#diagram(
    node((0,0), $frak(A)$, name: <A>),
    node((1,0.5), $frak(B)$, name: <B>),
    edge(<A>, <B>, "-->")
)
```

Node names are labels (instead of strings like <u>CeTZ</u>) so that positional arguments to <u>edge()</u> are possible to disambiguate by their type. (Node labels are not inserted into the final output, so they do not interfere with other labels in the document.)

Edge types

There are three types of edges: "line", "arc", and "poly". All edges have at least two vertices, but "poly" edges can have more. If unspecified, kind is chosen based on bend and the number of vertices.

```
#diagram(
  edge((0,0), (1,1), "->", `line`),
  edge((2,0), (3,1), "->", bend: -30deg, `arc`),
  edge((4,0), (4,1), (5,1), (6,0), "->", `poly`),
```

All vertices except the first can be relative coordinates (see above), so that in the example above, the "poly" edge could also be written in these equivalent ways:

```
edge((4,0), (rel: (0,1)), (rel: (1,0)), (rel: (1,-1)), "->", `poly`)
edge((4,0), "d", "r", "ur", "->", `poly`) // using relative coordinate names
edge((4,0), "d,r,ur", "->", `poly`) // shorthand
```

Only the first and last vertices of an edge automatically snap to nodes.

Tweaking where edges connect

A node's <u>outset</u> controls how *close* edges connect to the node's boundary. To adjust *where* along the boundary the edge connects, you can adjust the edge's end coordinates by a fractional amount.

```
#diagram(
    node-stroke: (thickness: .5pt, dash: "dashed"),
    node((0,0), [no outset], outset: 0pt),
    node((0,1), [big outset], outset: 10pt),
    edge((0,0), (0,1)),
    edge((-0.1,0), (-0.4,1), "-o", "wave"), // shifted with fractional coordinates
    edge((0,0), (0,1), "=>", shift: 15pt), // shifted by a length
```

Alternatively, the shift option of edge() lets you shift edges sideways by an absolute length:

By default, edges which are incident at an angle are automatically adjusted slightly, especially if the node is wide or tall. Aesthetically, things can look more comfortable if edges don't all connect to the node's exact center, but instead spread out a bit. Notice the (subtle) difference the figures below.

Figure 1: With focus (default)

Figure 2: Without defocus

The strength of this adjustment is controlled by the <u>defocus</u> option of <u>node()</u> (or the <u>node-defocus</u> option of <u>diagram()</u>).

Marks and arrows

Arrow marks can be specified like edge(a, b, "-->") or with the marks option of edge(). Some mathematical arrow heads are supported, which match \rightarrow , \Rightarrow , \Rightarrow , \mapsto , \rightarrow , and \hookrightarrow in the default font.

A few other marks are provided, and all marks can be placed anywhere along the edge.

All the built-in marks are defined in the state variable fletcher.MARKS, which you may access with context fletcher.MARKS.get().

Because it is a state variable, you can modify fletcher. MARKS to add or modify mark styles.

Custom marks

While shorthands like "|=>" exist for specifying marks and stroke styles, finer control is possible. Marks can be specified by passing an array of *mark objects* to the marks option of edge(). For example:

```
#diagram(
  edge-stroke: 1.5pt,
  spacing: 25mm,
  edge((0,1), (-0.1,0), bend: -8deg, marks: (
     (inherit: ">>", size: 6, delta: 70deg, sharpness: 65deg),
     (inherit: "head", rev: true, pos: 0.8, sharpness: 0deg, size: 17),
     (inherit: "bar", size: 1, pos: 0.3),
     (inherit: "solid", size: 12, rev: true, stealth: 0.1, fill: red.mix(purple)),
     ), stroke: green.darken(50%)),
}
```


In fact, shorthands like "|=>" are expanded with interpret-marks-arg() into a form more like the example above. More precisely, edge(from, to, "|=>") is equivalent to:

```
context edge(from, to, ..fletcher.interpret-marks-arg("|=>"))
```

If you want to explore the internals of mark objects, you might find it handy to inspect the output of context fletcher.interpret-marks-arg(..) with various mark shorthands as input.

Mark objects

A *mark object* is a dictionary with, at the very least, a draw entry containing the <u>CeTZ</u> objects to be drawn on the edge. These <u>CeTZ</u> objects are translated and scaled to fit the edge; the mark's center should be at the origin, and the stroke's thickness is defined as the unit length. For example, here is a basic circle mark:

```
#import cetz.draw
#let my-mark = (
    draw: draw.circle((0,0), radius: 2, fill: none)
)
#diagram(
    edge((0,0), (1,0), stroke: 1pt, marks: (my-mark, my-mark), bend: 30deg),
    edge((0,1), (1,1), stroke: 3pt + orange, marks: (none, my-mark)),
)
```

A mark object can contain arbitrary parameters, which may depend on parameters defined earlier by being written as a *function* of the mark object. For example, the mark above could also be written as:

```
#let my-mark = (
    size: 2,
    draw: mark => draw.circle((0,0), radius: mark.size, fill: none)
)
```

This form makes it easier to change the size without modifying the draw function, for example:

```
#diagram(edge(stroke: 3pt, marks: (my-mark + (size: 4), my-mark)))
```


Internally, marks are passed to <u>resolve-mark()</u>, which ensures all entries are evaluated to final values.

Special mark properties

A mark object may contain any properties, but some have special functions.

Name	Description	Default
inherit	The name of a mark in fletcher.MARKS to inherit properties from. This can be used to make mark aliases, for instance, "<" is defined as (inherit: "head", rev: true).	
draw	As described above, this contains the final $\underline{\text{CeTZ}}$ objects to be drawn. Objects should be centered at $(0,0)$ and be scaled so that one unit is the stroke thickness. The default stroke and fill is inherited from the edge's style.	
pos	Location of the mark along the edge, from 0 (start) to 1 (end).	auto
fill stroke	The default fill and stroke styles for <u>CeTZ</u> objects returned by draw. If none, polygons will not be filled/stroked by default, and if auto, the style is inherited from the edge's stroke style.	auto
rev	Whether to reverse the mark so it points backwards.	false
flip	Whether to reflect the mark across the edge; the difference between and for example. A suffix ' in the name, such as "hook'", results in a flip.	false
scale	Overall scaling factor. See also the mark-scale option of edge().	100%
extrude	Whether to duplicate the mark and draw it offset at each extrude position. For example, (inherit: "head", extrude: (-5, 0, 5)) looks like	(0,)
tip-origin tail-origin	These two properties control the x coordinate of the point of the mark, relative to $(0,0)$. If the mark is acting as a tip $(\longrightarrow \text{or} \longleftarrow)$ then tiporigin applies, and tail-origin applies when the mark is a tail $(\longrightarrow \text{or} \bigcirc)$. See mark-debug().	Θ
tip-end tail-end	These control the x coordinate at which the edge's stroke terminates, relative to $(0,0)$. See <u>mark-debug()</u> .	0
cap-offset	A function (mark, y) => x returning the x coordinate at which the edge's stroke terminates relative to tip-end or tail-end, as a function of the y coordinate. This is relevant for extruded edges. See cap-offset().	

The last few properties control the fine behaviours of how marks connect to the target point and to the edge's stroke. Briefly, a mark has four possibly-distinct center points. It is easier to show than to tell:

See mark-debug() and cap-offset() for details.

Detailed example

As a complete example, here is the implementation of a straight arrowhead in src/default-marks.typ:

```
tip-end
#let straight = (
  size: 8,
  sharpness: 20deg,
  tip-origin: mark => 0.5/calc.sin(mark.sharpness),
  tail-origin: mark => -mark.size*calc.cos(mark.sharpness),
                                                                                tail-origin
  fill: none.
                                                                                          tail-end
  draw: mark => {
    draw.line(
      (180deg + mark.sharpness, mark.size), // polar cetz coordinate
      (180deg - mark.sharpness, mark.size),
    )
  },
  cap-offset: (mark, y) => calc.tan(mark.sharpness + 90deg)*calc.abs(y),
#set align(center)
#fletcher.mark-debug(straight)
#fletcher.mark-demo(straight)
```

Custom mark shorthands

While you can pass custom mark objects directly to the marks option of edge(), this can get annoying if you use the same mark often. In these cases, you can define your own mark shorthands.

Mark shorthands such as "hook->" search the state variable fletcher.MARKS for defined mark names.

With a bit of care, you can modify the MARKS state like so:

```
Original marks:
                                                                          Original marks: ←
#diagram(spacing: 2cm, edge("<->", stroke: 1pt))
                                                                          Updated marks: >---
#fletcher.MARKS.update(m => m + (
  "<": (inherit: "stealth", rev: true),</pre>
  ">": (inherit: "stealth", rev: false),
  "multi": (
    inherit: "straight",
    draw: mark => fletcher.cetz.draw.line(
      (0, +mark.size*calc.sin(mark.sharpness)),
      (-mark.size*calc.cos(mark.sharpness), 0),
      (0, -mark.size*calc.sin(mark.sharpness)),
   ),
 ),
))
Updated marks:
#diagram(spacing: 2cm, edge("multi->-multi", stroke: 1pt + eastern))
```

Here, we redefined which mark style the "<" and ">" shorthands refer to, and added an entirely new mark style with the shorthand "multi".

Finally, I will restore the default state so as not to affect the rest of this manual:

```
#fletcher.MARKS.update(fletcher.DEFAULT_MARKS) // restore to built-in mark styles
```

CeTZ integration

Fletcher's drawing capabilities are deliberately restricted to a few simple building blocks. However, an escape hatch is provided with the render option of diagram() so you can intercept diagram data and draw things using CeTZ directly.

Bézier edges

Here is an example of how you might hack together a Bézier edge using the same functions that fletcher uses internally to anchor edges to nodes:

```
#diagram(
                                                                                               Bézier
  node((0,1), $A$, stroke: lpt, shape: fletcher.shapes.diamond),
  node((2,0), [Bézier], fill: purple.lighten(80%)),
  render: (grid, nodes, edges, options) => {
    // cetz is also exported as fletcher.cetz
      // this is the default code to render the diagram
      fletcher.draw-diagram(grid, nodes, edges, debug: options.debug)
      // retrieve node data by coordinates
      let n1 = fletcher.find-node-at(nodes, (0,1))
      let n2 = fletcher.find-node-at(nodes, (2,0))
      let out-angle = 45deg
      let in-angle = -110 \deg
      fletcher.get-node-anchor(n1, out-angle, p1 => {
        fletcher.get-node-anchor(n2, in-angle, p2 => {
          // make some control points
          let c1 = (to: p1, rel: (out-angle, 10mm))
          let c2 = (to: p2, rel: (in-angle, 20mm))
          cetz.draw.bezier(
            p1, p2, c1, c2,
            mark: (end: ">") // cetz-style mark
       })
      })
   })
 }
```

Touying integration

You can create incrementally-revealed diagrams in <u>Touying</u> presentation slides by defining the following touying-reducer:

```
#import "@preview/touying:0.2.1": *
#let diagram = touying-reducer.with(reduce: fletcher.diagram, cover: fletcher.hide)
#let (init, slide) = utils.methods(s)
#show: init
#slide[
  Slide with animated figure:
  #diagram(
    node-stroke: .1em,
    node-fill: gradient.radial(blue.lighten(80%), blue,
      center: (30%, 20%), radius: 80%),
    spacing: 4em,
    edge((-1,0), "r", "-|>", `open(path)`, label-pos: 0, label-side: center),
    node((0,0), `reading`, radius: 2em),
    edge((0,0), (0,0), `read()`, "--|>", bend: 130deg),
    edge(`read()`, "-|>"),
    node((1,0), `eof`, radius: 2em),
    pause,
    edge(`close()`, "-|>"),
    node((2,0), `closed`, radius: 2em, extrude: (-2.5, 0)),
    edge((0,0), (2,0), `close()`, "-|>", bend: -40deg),
  )
]
```

Reference

Main functions

diagram()

Draw a diagram containing node()s and edge()s.

```
diagram(
  ..args: array,
  debug: bool 1 2 3,
  axes: pair of directions,
  spacing: length pair of lengths,
  cell-size: length pair of lengths,
  edge-stroke: stroke,
  node-stroke: stroke none,
  edge-corner-radius: length none,
  node-corner-radius: length none,
  node-inset: length pair of lengths ,
  node-outset: length pair of lengths,
  node-fill: paint,
  node-defocus: number,
  label-sep: length,
  label-size: length,
  label-wrapper: function,
  mark-scale: percent,
  crossing-fill: paint,
  crossing-thickness: number,
  render: function,
```

```
..args array
```

Content to draw in the diagram, including nodes and edges.

The results of node() and edge() can be *joined*, meaning you can specify them as separate arguments, or in a block:

```
#diagram(
  // one object per argument
  node((0, 0), $A$),
  node((1, 0), $B$),
  {
     // multiple objects in a block
     // can use scripting, loops, etc
     node((2, 0), $C$)
     node((3, 0), $D$)
  },
  for x in range(4) { node((x, 1) [#x]) },
}
```

Nodes and edges can also be specified in math-mode.

```
node(sqrt(pi), stroke: #1pt) // a node with options
$)
```

debug bool or 1 or 2 or 3

Level of detail for drawing debug information. Level 1 or true shows a coordinate grid; higher levels show bounding boxes and anchors, etc.

Default: false

axes pair of directions

The orientation of the diagram's axes.

This defines the elastic coordinate system used by nodes and edges. To make the y coordinate increase up the page, use (ltr, btt). For the matrix convention (row, column), use (ttb, ltr).

Default: (ltr, ttb)

spacing length or pair of lengths

Gaps between rows and columns. Ensures that nodes at adjacent grid points are at least this far apart (measured as the space between their bounding boxes).

Separate horizontal/vertical gutters can be specified with (x, y). A single length d is short for (d, d).

Default: 3em

cell-size length or pair of lengths

Minimum size of all rows and columns. A single length d is short for (d, d).

Default: Opt

edge-stroke stroke

Default value of the <u>stroke</u> option of <u>edge()</u>. By default, this is chosen to match the thickness of mathematical arrows such as $A \to B$ in the current font size.

The default stroke is folded with the stroke specified for the edge. For example, if edge-stroke is lpt and the stroke option of edge() is red, then the resulting stroke is lpt + red.

Default: 0.048em

node-stroke stroke or none

Default value of the stroke option of node().

The default stroke is folded with the stroke specified for the node. For example, if node-stroke is lpt and the stroke option of node() is red, then the resulting stroke is lpt + red.

Default: none

edge-corner-radius length or none

Default value of the corner-radius option of edge().

Default: 2.5pt

node-corner-radius length or none

Default value of the corner-radius option of node().

Default: none

node-inset length or pair of lengths

Default value of the <u>inset</u> option of <u>node()</u>.

Default: 6pt

node-outset length or pair of lengths

Default value of the outset option of node().

Default: Opt

node-fill paint

Default value of the fill option of node().

Default: none

node-defocus number Default value of the defocus option of node(). Default: 0.2 label-sep length Default value of the <u>label-sep</u> option of <u>edge()</u>. Default: 0.4em label-size length Default value of the label-size option of edge(). Default: 1em label-wrapper function Default value of the label-wrapper option of edge(). Default: edge => box([#edge.label], inset: .2em, radius: .2em, fill: edge.label-fill,) mark-scale percent Default value of the mark-scale option of edge(). Default: 100% crossing-fill paint Color to use behind connectors or labels to give the illusion of crossing over other objects. See the crossing-fill option of edge(). Default: white crossing-thickness number Default thickness of the occlusion made by crossing connectors. See crossing-thickness.

Default: 5

render function

After the node sizes and grid layout have been determined, the render function is called with the following arguments:

- grid: a dictionary of the row and column widths and positions;
- nodes: an array of nodes (dictionaries) with computed attributes (including size and physical coordinates);
- edges: an array of connectors (dictionaries) in the diagram; and
- options: other diagram attributes.

This callback is exposed so you can access the above data and draw things directly with CeTZ.

```
Default: (grid, nodes, edges, options) => {
   cetz.canvas(draw-diagram(grid, nodes, edges, debug: options.debug))
}
```

node()

Draw a labelled node in a diagram which can connect to edges.

```
node(
  ..args,
  pos: coordinate,
  name: label none,
  label: content,
  inset: length auto,
  outset: length auto,
  fill: paint,
  stroke: stroke,
  extrude: array,
  width: length auto,
  height: length auto,
  radius,
  enclose: array,
  corner-radius: length,
  shape: rect circle function auto,
  defocus: number,
  layer: number auto,
  snap,
  post: function,
)
```

pos coordinate

Dimensionless "elastic coordinates" (x, y) of the node.

See the options of diagram() to control the physical scale of elastic coordinates.

Default: auto

```
name label or none
```

An optional name to give the node.

Names can sometimes be used in place of coordinates. For example:

Note that you can also just use variables to refer to coordinates:

```
fletcher.diagram({
  let A = (0,0)
  let B = (1,0.6)
  node(A, $A$)
  node(B, $B$)
  edge(A, B, "->")
})
```

Default: none

label content

Content to display inside the node.

If a node is larger than its label, you can wrap the label in align() to control the label alignment within the node.

```
diagram(
  node((0,0), align(bottom + left)[¡Hola!],
    width: 3cm, height: 2cm, fill: yellow),
)
¡Hola!
```

Default: none

inset length or auto

Padding between the node's content and its outline.

In debug mode, the inset is visualised by a thin green outline.

```
diagram(
    debug: 3,
    node-stroke: lpt,
    node((0,0), [Hello,]),
    edge(),
    node((1,0), [World!], inset: l0pt),
)

World!

(→,↓)

0

Hello,

World!
```

Default: auto

outset length or auto

Margin between the node's bounds to the anchor points for connecting edges.

This does not affect node layout, only how closely edges connect to the node.

In debug mode, the outset is visualised by a thin green outline.

```
diagram(
  debug: 3,
  node-stroke: 1pt,
  node((0,0), [Hello,]),
  edge(),
  node((1,0), [World!], outset: 10pt),
)
```


Default: auto

fill paint

Fill style of the node. The fill is drawn within the node outline as defined by the first extrude value.

Defaults to the node-fill option of diagram().

Default: auto

stroke stroke

Stroke style for the node outline.

Defaults to the node-stroke option of diagram().

Default: auto

extrude array

Draw strokes around the node at the given offsets to obtain a multi-stroke effect. Offsets may be numbers (specifying multiples of the stroke's thickness) or lengths.

The node's fill is drawn within the boundary defined by the first offset in the array.

See also the extrude option of edge().

Default: (0,)

width length or auto

Width of the node. If auto, the node's width is the width of the node label, plus twice the inset.

If the width is not auto, you can use align to control the placement of the node's <u>label</u>.

Default: auto

height length or auto

Height of the node. If auto, the node's height is the height of the node label, plus twice the inset.

If the height is not auto, you can use align to control the placement of the node's label.

Default: auto

enclose array

Positions or names of other nodes to enclose by enlarging this node.

If given, causes the node to resize so that its bounding rectangle surrounds the given nodes. The center <u>pos</u> does not affect the node's position if enclose is given, but still affects connecting edges.

```
diagram(
  node-stroke: lpt,
  node((0,0), [ABC], name: <A>),
  node((1,1), [XYZ], name: <Z>),
  node(
    text(teal)[Node group], stroke: teal,
    enclose: (<A>, <Z>), name: <group>),
  edge(<group>, (3,0.5), stroke: teal),
)
```


Default: ()

corner-radius length

Radius of rounded corners, if supported by the node shape.

Defaults to the node-corner-radius option of diagram().

Default: auto

shape rect or circle or function or auto

Shape to draw for the node. If auto, one of rect or circle is chosen depending on the aspect ratio of the node's label.

Other shapes are defined in the fletcher.shapes submodule, including cetz, draw, vector, rect, circle, ellipse, pill, parallelogram, trapezium, diamond, triangle, house, chevron, hexagon, and octagon.

Custom shapes should be specified as a function (node, extrude, ...parameters) => (...) which returns cetz objects.

- The node argument is a dictionary containing the node's attributes, including its dimensions (node.size), and other options (such as node.corner-radius).
- The extrude argument is a length which the shape outline should be extruded outwards by. This serves two functions: to support automatic edge anchoring with a non-zero node outset, and to create multi-stroke effects using the extrude node option.

See the src/shapes.typ source file for examples.

Default: auto

defocus number

Strength of the "defocus" adjustment for connectors incident with this node.

This affects how connectors attach to non-square nodes. If 0, the adjustment is disabled and connectors are always directed at the node's exact center.

Defaults to the node-defocus option of diagram().

Default: auto

layer number or auto

Layer on which to draw the node.

Objects on a higher layer are drawn on top of objects on a lower layer. Objects on the same layer are drawn in the order they are passed to diagram().

By default, nodes are drawn on layer 0 unless they <u>enclose</u> points, in which case layer defaults to -1.

Default: auto

post function

Callback function to intercept cetz objects before they are drawn to the canvas.

This can be used to hide elements without affecting layout (for use with <u>Touying</u>, for example). The <u>hide()</u> function also helps for this purpose.

Default: $x \Rightarrow x$

edge()

Draw a connecting line or arc in an arrow diagram.

```
edge(
  ..args: any
  vertices: array,
  label: content,
  label-side: left right center,
  label-pos: number,
  label-sep: length,
  label-angle: angle left right top bottom auto,
  label-anchor: anchor,
  label-fill: bool paint,
  label-size: auto length ,
  label-wrapper: auto function,
  stroke: stroke,
  dash: string,
  decorations: none string function,
  extrude: array,
  shift: length number pair,
  kind: string,
  bend: angle,
  corner: none left right,
  corner-radius: length none,
  marks: array,
  mark-scale: percent,
  crossing: bool,
  crossing-thickness: number,
  crossing-fill: paint,
  snap-to: pair,
  layer: number,
  post: function,
)
```

```
..args any
```

An edge's positional arguments may specify:

- the edge's vertices
- the label content
- marks and other style options

Vertex coordinates must come first, and are optional:

```
edge(from, to, ..) // explicit start and end nodes
edge(to, ..) // start node chosen automatically based on last node specified
edge(..) // both nodes chosen automatically depending on adjacent nodes
edge(from, v1, v2, ..vs, to, ..) // a multi-segmented edge
```

All coordinates except the start point can be relative (a dictionary of the form (rel: $(\Delta x, \Delta y)$) or a string containing the characters $\{l, r, u, d, t, b, n, e, s, w\}$).

An edge's marks and label can be also be specified as positional arguments. They are disambiguated by guessing based on the types. For example, the following are equivalent:

```
edge((0,0), (1,0), $f$, "->")
edge((0,0), (1,0), "->", $f$)
edge((0,0), (1,0), $f$, marks: "->")
```

```
edge((0,0), (1,0), "->", label: $f$)
edge((0,0), (1,0), label: $f$, marks: "->")
```

Additionally, some common options are given flags that may be given as string positional arguments. These are "dashed", "dotted", "double", "triple", "crossing", "wave", "zigzag", and "coil". For example, the following are equivalent:

```
edge((0,0), (1,0), $f$, "wave", "crossing")
edge((0,0), (1,0), $f$, decorations: "wave", crossing: true)
```

vertices array

Array of (at least two) coordinates for the edge.

Vertices can also be specified as leading positional arguments, but if so, the vertices option must be empty. If the number of vertices is greater than two, kind defaults to "poly".

Default: ()

label content

Content for the edge label. See the <u>label-pos</u> and <u>label-side</u> options to control the position (and <u>label-sep</u> and <u>label-anchor</u> for finer control).

Default: none

label-side left or right or center

Which side of the edge to place the label on, viewed as you walk along it from base to tip.

If center, then the label is placed directly on the edge and <u>label-fill</u> defaults to <u>true</u>. When auto, a value of left or right is automatically chosen so that the label is:

- roughly above the connector, in the case of straight lines; or
- on the outside of the curve, in the case of arcs.

Default: auto

label-pos number

Position of the label along the connector, from the start to end (from 0 to 1).

Default: 0.5

label-sep length

Separation between the connector and the label anchor.

With the default anchor (automatically set to "south" in this case):

With label-anchor set to "center":

Set debug to 2 or higher to see label anchors and outlines as seen here.

Default: the label-sep option of diagram()

Angle to rotate the label (counterclockwise).

If a direction is given, the label is rotated so that the edge travels in that direction relative to the label. If auto, the best of right or left is chosen.

Default: Odeg

label-anchor anchor

The <u>CeTZ</u>-style anchor point of the label to use for placement (e.g., "north-east" or "center"). If <u>auto</u>, the best anchor is chosen based on <u>label-side</u>, <u>label-angle</u>, and the edge's direction.

Default: auto

label-fill bool or paint

The background fill for the label. If true, defaults to the value of crossing-fill. If false or none, no fill is used. If auto, then defaults to true if the label is covering the edge (label-side: center).

Default: auto

label-size auto or length

The default text size to apply to edge labels.

Default: the label-size option of diagram()

```
label-wrapper auto or function
```

Callback function accepting a node dictionary and returning the label content. This is used to add a label background (see crossing-fill), and can be used to adjust the label's padding, outline, and so on.

```
diagram(edge($f$, label-wrapper: e =>
  circle(e.label, fill: e.label-fill)))
```

Default: the <u>label-wrapper</u> option of <u>diagram()</u>

stroke stroke

Stroke style of the edge. Arrows/marks scale with the stroke thickness (and with mark-scale).

Default: auto

dash string

The stroke's dash style. This is also set by some mark styles. For example, setting marks: "<..>" applies dash: "dotted".

Default: none

decorations none or string or function

Apply a <u>CeTZ</u> path decoration to the stroke. Preset options are "wave", "zigzag", and "coil" (which may also be passed as convenience positional arguments), but a decoration function may also be specified.

```
A \sim \sim \sim B \sim \sim C \sim D
\alpha \leftarrow \sim \sim \sim \omega
```

Default: none

extrude array

Draw a separate stroke for each extrusion offset to obtain a multi-stroke effect. Offsets may be numbers (specifying multiples of the stroke's thickness) or lengths.

Notice how the ends of the line need to shift a little depending on the mark. This offset is computed with cap-offset().

See also the extrude option of node().

Default: (0,)

```
shift length or number or pair
```

Amount to shift the edge sideways by, perpendicular to its direction. A pair (from, to) controls the shifts at each end of the edge independently, and a single shift s is short for (s, s). Shifts can absolute lengths (e.g., 5pt) or coordinate differences (e.g., 0.1).

```
A \xrightarrow{\mathsf{3pt}} B
```

If an edge has many vertices, the shifts only affect the first and last segments of the edge.

```
diagram(
  node-fill: luma(70%),
  node((0,0), [Hello]),
  edge("u,r,d", "->"),
  edge("u,r,d", "-->", shift: 8pt),
  node((1,0), [World]),
)
Hello
World
```

Default: Opt

kind string

The kind of the edge, one of "line", "arc", or "poly". This is chosen automatically based on the presence of other options (bend implies "arc", corner or additional vertices implies "poly").

Default: auto

bend angle

Edge curvature. If Odeg, the connector is a straight line; positive angles bend clockwise.

Default: Odeg

corner none or left or right

Whether to create a right-angled corner, turning left or right. (Bending right means the corner sticks out to the left, and vice versa.)

Default: none

corner-radius length or none

Radius of rounded corners for edges with multiple segments. Note that none is distinct from Opt.

This length specifies the corner radius for right-angled bends. The actual radius is smaller for acute angles and larger for obtuse angles to balance things visually. (Trust me, it looks naff otherwise!)

Default: the edge-corner-radius option of diagram()

marks array

The marks (arrowheads) to draw along an edge's stroke. This may be:

• A shorthand string such as " -> " or "hook' -/ ->> ". Specifically, shorthand strings are of the form M_1LM_2 or $M_1LM_2LM_3$, etc, where

$$M_i \in \text{fletcher.MARKS} = \begin{cases} \text{head, doublehead, triplehead, harpoon, straight,} \\ \text{solid, stealth, latex, cone, circle,} \\ \text{square, diamond, bar, cross, hook,} \\ \text{hooks,} & >, & <, & >>, & <<, \\ \text{>>>}, & <<<, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & |>, & <|, & <|, & |>, & <|, & |>, & <|, & <|, & |>, & <|, & <|, & |>, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, & <|, &$$

is a mark name and

$$L \in \mathsf{fletcher.LINE_ALIASES} = \{-, =, ==, --, \ldots, \sim\}$$

is the line style.

• An array of marks, where each mark is specified by name of as a *mark object* (dictionary of parameters with a draw entry).

Shorthands are expanded into other arguments. For example, edge(p1, p2, "=>") is short for edge(p1, p2, marks: (none, "head"), "double"), or more precisely, the result of edge(p1, p2, ...fletcher.interpret-marks-arg("=>")).

Result	Value of marks
\longrightarrow	"->"
≫ →	">>>"
\iff	"<=>"
\Longrightarrow	"==>"
	"->>-"
×-/-•	"x-/-@"
·	" "
←	"hook->>"
	"hook'->>"
H • 7	" -*-harpoon'"
$\times \longrightarrow$	("X", (inherit: "head", size: 15, sharpness: 40deg))
-	((inherit: "circle", pos: 0.5, fill: auto),)

Default: ()

mark-scale percent

Scale factor for marks or arrowheads, relative to the stroke thickness. See also the mark-scale option of diagram().

Note that the default arrowheads scale automatically with double and triple strokes:

Default: 100%

crossing bool

If true, draws a backdrop of color crossing-fill to give the illusion of lines crossing each other.

You can also pass "crossing" as a positional argument as a shorthand for crossing: true.

Default: false

crossing-thickness number

Thickness of the "crossing" background stroke (applicable if crossing is true) in multiples of the normal stroke's thickness.

Default: the crossing-thickness option of diagram()

crossing-fill paint

Color to use behind connectors or labels to give the illusion of crossing over other objects.

Default: the crossing-fill option of diagram()

snap-to pair

The nodes the start and end of an edge should snap to. Each node can be a position or node name, or none to disable snapping.

By default, an edge's first and last <u>vertices</u> snap to nearby nodes. This option can be used in case automatic snapping fails (if there are many nodes close together, for example.)

Default: (auto, auto)

layer number

Layer on which to draw the edge.

Objects on a higher layer are drawn on top of objects on a lower layer. Objects on the same layer are drawn in the order they are passed to diagram().

Default: 0

post function

Callback function to intercept cetz objects before they are drawn to the canvas.

This can be used to hide elements without affecting layout (for use with <u>Touying</u>, for example). The <u>hide()</u> function also helps for this purpose.

Default: $x \Rightarrow x$

Behind the scenes

marks.typ

- cap-offset()
- resolve-mark()
- draw-mark()
- mark-debug()

cap-offset()

For a given mark, determine where that the stroke should terminate at, relative to the mark's origin point, as a function of the shift.

Imagine the tip-origin of the mark is at (x,y)=(0,0). A stroke along the line y= shift coming from $x=-\infty$ terminates at x= offset, where offset is the result of this function. Units are in multiples of stroke thickness.

This is used to correctly implement multi-stroke marks, e.g., \iff . The function mark-debug() can help visualise a mark's cap offset.

```
fletcher.mark-debug("0")

tip-end
tip-origin
tail-origin
tail-end
```

The dashed green line shows the stroke tip end as a function of y, and the dashed red line shows where the stroke ends if the mark is acting as a tail.

```
cap-offset(mark, shift)
```

resolve-mark()

Resolve a mark dictionary by applying inheritance, adding any required entries, and evaluating any closure entries.

```
context fletcher.resolve-mark((
 a: 1,
                                                  a: 1,
 b: 2,
                                                  b: 2,
  c: mark => mark.a + mark.b,
))
                                                  c: 3,
                                                  rev: false,
                                                  flip: false,
                                                  scale: 100%,
                                                  extrude: (0,),
                                                  tip-end: 0,
                                                  tail-end: 0,
                                                  tip-origin: 0,
                                                  tail-origin: 0,
```

resolve-mark(mark, defaults)

draw-mark()

```
Draw a mark at a given position and angle
```

```
draw-mark(
  mark: dictionary,
  stroke: stroke,
  origin: point,
  angle: angle,
  debug: bool,
)
  mark dictionary
  Mark object to draw. Must contain a draw entry.
  stroke stroke
  Stroke style for the mark. The stroke's paint is used as the default fill style.
  Default: 1pt
  origin point
  Coordinate of the mark's origin (as defined by tip-origin or tail-origin).
  Default: (0,0)
  angle angle
  Angle of the mark, 0deg being \rightarrow, counterclockwise.
  Default: Odeg
  debug bool
  Whether to draw the origin points.
  Default: false
```

mark-debug()

Visualise a mark's anatomy.

```
context {
  let mark = fletcher.MARKS.get().stealth
  // make a wide stealth arrow
  mark += (angle: 45deg)
  fletcher.mark-debug(mark)
}
```


- Green/left stroke: the edge's stroke when the mark is at the tip.
- Red/right stroke: edge's stroke if the mark is at the start acting as a tail.
- Blue-white dot: the origin point (0,0) in the mark's coordinate frame.
- tip-origin: the *x*-coordinate of the point of the mark's tip.
- tail-origin: the *x*-coordinate of the mark's tip when it is acting as a reversed tail mark.
- tip-end: The x-coordinate of the end point of the edge's stroke (green stroke).
- tail-end: The x-coordinate of the end point of the edge's stroke when acting as a tail mark (red stroke).
- Dashed green/red lines: The stroke end points as a function of y. This is controlled by the special cap-offset mark property and is used for multi-stroke effects like \Longrightarrow . See <u>cap-offset()</u>.

This is mainly useful for designing your own marks.

```
mark-debug(
  mark: string dictionary,
  stroke: stroke,
  show-labels: bool,
  show-offsets: bool,
  offset-range: number,
)
```

```
mark string or dictionary
```

The mark name or dictionary.

```
stroke stroke
```

The stroke style, whose paint and thickness applies both to the stroke and the mark itself.

Default: 5pt

show-labels bool

Whether to label the tip/tail origin/end points.

Default: true

```
show-offsets bool
```

Whether to visualise the cap-offset() values.

Default: true

```
offset-range number
```

The span above and below the stroke line to plot the cap offsets, in multiples of the stroke's thickness.

Default: 6

shapes.typ

To use built-in shapes in a diagram, import them with:

```
#import fletcher: shapes
#diagram(node([Hello], stroke: lpt, shape: shapes.hexagon))
or:
#import fletcher.shapes: hexagon
#diagram(node([Hello], stroke: lpt, shape: hexagon))
```

To set a shape parameter, use shape.with(..), for example hexagon.with(angle: 45deg). Shapes respect the stroke, fill, width, height, and extrude options of edge().

- rect()
- circle()
- ellipse()
- pill()
- parallelogram()
- trapezium()
- diamond()
- triangle()
- house()
- chevron()
- hexagon()
- octagon()

rect()

The standard rectangle node shape.

A string "rect" or the element function rect given to the shape option of node() are interpreted as this shape.

rect

rect(node, extrude)

circle()

The standard circle node shape.

A string "circle" or the element function circle given to the shape option of node() are interpreted as this shape.

circle(node, extrude)

ellipse()

An elliptical node shape.

```
ellipse(
node,
```

```
node,
extrude,
scale: number,
```

scale number

Scale factor for ellipse radii.

Default: 1

pill()

A capsule node shape.

pill(node, extrude)

parallelogram()

A slanted rectangle node shape.

```
parallelogram
```

```
parallelogram(
  node,
  extrude,
  flip,
  angle: angle,
  fit: number,
)
```

angle angle

Angle of the slant, 0 deg is a rectangle. Don't set to 90 deg unless you want your document to be larger than the solar system.

Default: 20deg

fit number

Adjusts how comfortably the parallelogram fits the label's bounding box.

Default: 0.8

trapezium()

An isosceles trapezium node shape.

```
trapezium
```

```
trapezium(
  node,
  extrude,
  dir: top bottom left right,
  angle: angle,
  fit: number,
)
```

```
dir top or bottom or left or right
```

The side the shorter parallel edge is on.

Default: top

angle angle

Angle of the slant, <code>Odeg</code> is a rectangle. Don't set to <code>90deg</code> unless you want your document to be larger than the solar system.

Default: 20deg

fit number

Adjusts how comfortably the trapezium fits the label's bounding box.

Default: 0.8

diamond()

A rhombus node shape.

fit number

Default: 0.5

Adjusts how comfortably the diamond fits the label's bounding box.

triangle()

An isosceles triangle node shape.

One of angle or aspect may be given, but not both. The triangle's base coincides with the label's base and widens to enclose the label; see https://www.desmos.com/calculator/i4i9svunj4.

house()

A pentagonal house-like node shape.

```
house
house(
  node,
  extrude,
  dir: top bottom left right,
  angle: angle,
)
  dir top or bottom or left or right
  Direction of the roof of the house.
  Default: top
  angle angle
  The slant of the roof. A plain rectangle is <code>0deg</code>, and <code>90deg</code> is a sky scraper stretching past Pluto.
  Default: 10deg
chevron()
A chevron node shape.
  chevron
chevron(
  node,
  extrude,
  dir: top bottom left right,
```

dir top or bottom or left or right

Direction the chevron points.

Default: right

angle: angle,
fit: number,

```
angle angle
```

The slant of the arrow. A plain rectangle is <code>0deg</code>.

Default: 30deg

```
fit number
```

Adjusts how comfortably the chevron fits the label's bounding box.

Default: 0.8

hexagon()

An (irregular) hexagon node shape.

```
hexagon(
```

```
node,
extrude,
angle: angle,
fit: number,
```

```
angle angle
```

Half the exterior angle, <code>0deg</code> being a rectangle.

Default: 30deg

fit number

Adjusts how comfortably the hexagon fits the label's bounding box.

```
fit: 0 fit: 0.5 fit: 1
```

Default: 0.8

octagon()

A truncated rectangle node shape.

```
octagon(
node,
extrude,
truncate: number length,
```

truncate number or length

Size of the truncated corners. A number is interpreted as a multiple of the smaller of the node's width or height.

Default: 0.5

coords.typ

- uv-to-xy()
- xy-to-uv()
- duv-to-dxy()
- dxy-to-duv()
- vector-polar-with-xy-or-uv-length()
- resolve-label-coordinate()
- resolve-relative-coordinates()

uv-to-xy()

Convert from elastic to absolute coordinates, $(u, v) \mapsto (x, y)$.

Elastic coordinates are specific to the diagram and adapt to row/column sizes; *absolute* coordinates are the final, physical lengths which are passed to cetz.

```
uv-to-xy(grid: dictionary, uv: array)
```

grid dictionary

Representation of the grid layout, including:

- origin
- centers
- spacing
- flip

The grid is passed to the <u>render</u> option of <u>diagram()</u>.

uv array

Elastic coordinate, (float, float).

xy-to-uv()

Convert from absolute to elastic coordinates, $(x, y) \mapsto (u, v)$.

Inverse of $\underline{uv-to-xy}$ ().

```
xy-to-uv(grid, xy)
```

duv-to-dxy()

Jacobian of the coordinate map uv-to-xy().

Used to convert a "nudge" in uv coordinates to a "nudge" in xy coordinates. This is needed because uv coordinates are non-linear (they're elastic). Uses a balanced finite differences approximation.

```
duv-to-dxy(
  grid: dictionary,
  uv: array,
  duv: array,
)

grid dictionary

Representation of the grid layout. The grid is passed to the render option of diagram().

uv array

The point (float, float) in the uv-manifold where the shift tangent vector is rooted.
```

The shift tangent vector (float, float) in uv coordinates.

dxy-to-duv()

array

duv

Jacobian of the coordinate map xy-to-uv().

```
dxy-to-duv(
  grid,
  xy,
  dxy,
)
```

vector-polar-with-xy-or-uv-length()

Return a vector rooted at a xy coordinate with a given angle θ in xy-space but with a length specified in either xy-space or uv-space.

```
vector-polar-with-xy-or-uv-length(
  grid,
  xy,
  target-length,
  θ,
)
```

resolve-label-coordinate()

Convert labels into the coordinates of a node with that label, leaving anything else unchanged.

```
resolve-label-coordinate(nodes, coord)
```

resolve-relative-coordinates()

Given a sequence of coordinates of the form (x, y) or $(rel: (\Delta x, \Delta y))$, return a sequence in the form (x, y) where relative coordinates are applied relative to the previous coordinate in the sequence.

The first coordinate must be of the form (x, y).

```
resolve-relative-coordinates(coords)
```

draw.typ

```
• place-edge-label-on-curve()
```

- draw-edge-line()
- draw-edge-arc()
- draw-edge-polyline()
- find-farthest-intersection()
- get-node-anchor()
- defocus-adjustment()
- draw-debug-axes()
- hide()

place-edge-label-on-curve()

Draw an edge label at point along a curve.

Label is drawn near the point curve(edge.label-pos), respecting the label options of edge() such as label-side and label-angle.

```
place-edge-label-on-curve(
  edge: dictionary,
    curve: function,
  debug,
)
```

edge dictionary

Edge object. Must include:

- label-pos
- label-sep
- label-side
- label-anchor
- label-angle
- label-wrapper

curve function

Parametric curve $\mathbb{R} \to \mathbb{R}^2$ describing the shape of the edge in xy coordinates.

draw-edge-line()

Draw a straight edge.

draw-edge-line(edge: dictionary, debug: int)

edge dictionary

The edge object, a dictionary, containing:

- vertices: an array of two points, the line's start and end points.
- extrude: An array of extrusion lengths to apply a multi-stroke effect with.
- stroke: The stroke style.
- marks: An array of marks to draw along the edge.
- label: Content for label.
- label-side, label-pos, label-sep, and label-anchor.

debug int

Level of debug details to draw.

Default: 0

draw-edge-arc()

Draw a bent edge.

draw-edge-arc(edge: dictionary, debug: int)

edge dictionary

The edge object, a dictionary, containing:

- vertices: an array of two points, the arc's start and end points.
- bend: The angle of the arc.
- extrude: An array of extrusion lengths to apply a multi-stroke effect with.
- stroke: The stroke style.
- marks: An array of marks to draw along the edge.
- label: Content for label.
- label-side, label-pos, label-sep, and label-anchor.

debug int

Level of debug details to draw.

Default: 0

draw-edge-polyline()

Draw a multi-segment edge

```
draw-edge-polyline(edge: dictionary, debug: int)
```

edge dictionary

The edge object, a dictionary, containing:

- vertices: an array of at least two points to draw segments between.
- corner-radius: Radius of curvature between segments.
- extrude: An array of extrusion lengths to apply a multi-stroke effect with.
- stroke: The stroke style.
- marks: An array of marks to draw along the edge.
- label: Content for label.
- label-side, label-pos, label-sep, and label-anchor.

debug int

Level of debug details to draw.

Default: 0

find-farthest-intersection()

Of all the intersection points within a set of $\underline{\text{CeTZ}}$ objects, find the one which is farthest from a target point and pass it to a callback.

If no intersection points are found, use the target point itself.

```
find-farthest-intersection(
  objects: cetz array none,
  target: point,
  callback,
)
```

```
objects cetz array or none
```

Objects to search within for intersections. If none, callback is immediately called with target.

target point

Target point to sort intersections by proximity with, and to use as a fallback if no intersections are found.

get-node-anchor()

Get the anchor point around a node outline at a certain angle.

```
get-node-anchor(
  node,
  θ,
  callback,
)
```

defocus-adjustment()

Return the anchor point for an edge connecting to a node with the "defocus" adjustment.

Basically, for very long/wide nodes, don't make edges coming in from all angles go to the exact node center, but "spread them out" a bit.

See https://www.desmos.com/calculator/irt0mvixky.

```
defocus-adjustment(node, \theta)
```

draw-debug-axes()

Draw diagram coordinate axes.

```
draw-debug-axes(grid: dictionary, debug)
```

grid dictionary

Dictionary specifying the diagram's grid, containing:

- origin: (u-min, v-min), the minimum values of elastic coordinates,
- flip: (x, y, xy), the axes orientation (see interpret-axes()),
- centers: (x-centers, y-centers), the physical offsets of each row and each column,
- cell-sizes: (x-sizes, y-sizes), the physical sizes of each row and each column.

hide()

Make diagram contents invisible, with or without affecting layout. Works by wrapping final drawing objects in cetz.draw.hide.

```
rect(diagram({
   fletcher.hide({
      node((0,0), [Can't see me])
      edge("->")
   })
   node((1,1), [Can see me])
}))
```


hide(objects: content array, bounds: bool)

```
objects content or array
```

Diagram objects to hide.

bounds bool

If false, layout is as if the objects were never there; if true, the layout treats the objects is present but invisible.

Default: true

utils.typ

- interp()
- interp-inv()
- get-arc-connecting-points()
- is-space()

interp()

Linearly interpolate an array with linear behaviour outside bounds

```
interp(
  values: array,
  index: int float,
  spacing: length,
)
```

```
values array
```

Array of lengths defining interpolation function.

```
index int or float
```

Index-coordinate to sample.

spacing length Gradient for linear extrapolation beyond array bounds. Default: Opt

interp-inv()

```
Inverse of interp().
interp-inv(
  values: array,
  value,
  spacing: length,
)
```

values array

Array of lengths defining interpolation function.

• value: Value to find the interpolated index of.

```
spacing length
```

Gradient for linear extrapolation beyond array bounds.

Default: Opt

get-arc-connecting-points()

Determine arc between two points with a given bend angle

The bend angle is the angle between chord of the arc (line connecting the points) and the tangent to the arc and the first point.

Returns a dictionary containing:

- center: the center of the arc's curvature
- radius
- start: the start angle of the arc
- stop: the end angle of the arc

```
get-arc-connecting-points(
  from: point,
  to: point,
  angle: langle,
) -> dictionary
```

from point

2D vector of initial point.

to point

2D vector of final point.

angle angle

The bend angle between chord of the arc (line connecting the points) and the tangent to the arc and the first point.

is-space()

Return true if a content element is a space or sequence of spaces

is-space(el)