

AD-A284 846

Public reporting burden
gathering and maintaining
information for this collection
of information is estimated to be
less than one hour per response.
Send comments regarding this burden estimate or any other aspect of this
collection directly to the Office of Information and Privacy Protection,
U.S. Department of Defense, Washington, DC 20318.

AGE

Form Approved
OMB No. 0704-0188

1. AGENCY U:

June 21, 1994

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

The Synthesis and Structure of Polyphosphazenes

5. FUNDING NUMBERS

6. AUTHOR(S)

Harry R. Allcock

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Chemistry
The Pennsylvania State University
University Park, Pennsylvania 16802

DTIC
ELECTE
SEP 26 1994
G

PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

94-30692

(CPY)

13. ABSTRACT (Maximum 200 words)

A substantial number of new polymer systems have been synthesized and developed to make use of the valuable properties imparted by inorganic elements incorporated into a macromolecular structure. The new polymers range from solvent-resistant elastomers to non-burning materials, and species that form excellent membranes and structural materials. The work has led also to the development of a system for understanding the relationship between polymer structure and useful property combinations in ways that should assist the rapid evolution of new polymers needed for specific specialized applications.

DTIC QUALITY INSPECTED

14. SUBJECT TERMS

Polymers, materials, polyphosphazenes, elastomers, membranes, composites, and fire-resistant materials

15. NUMBER OF PAGES

5

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED18. SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED20. LIMITATION OF ABSTRACT
UL

THE SYNTHESIS AND STRUCTURE OF POLYPHOSPHAZENES

Final Report for Period May 1, 1991 - April 30, 1994

U. S. Army Research Office

DAAL03-91-G-0124
28711-CH

Harry R. Allcock
Department of Chemistry
The Pennsylvania State University
University Park, Pennsylvania 16802

Accesion For	
NTIS	CRA&I
DTIC	TAB
Unannounced	
Justification	
By _____	
Distribution / _____	
Availability Codes	
Dist	Avail and / or Special
A-1	

June 21, 1994

Approved for public release; distribution unlimited

The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

Problem Studied:

The purpose of this program was the design and exploration of chemical synthesis routes to new polymers with special combinations of properties. The emphasis was on new elastomers and fire-retardant materials, new polymeric composite materials, and polymers for use in membranes.

Summary of the Most Important Results:

Numerous new polymers have been prepared that have backbones of phosphorus and nitrogen atoms with or without carbon or sulfur as co-skeletal elements, and with side groups that range from complex aryloxy units to electroactive species such as pyrrole, thiophene, or furan groups, and from amino groups to organometallic units. These polymers have been fully characterized and their special properties studied.

A new class of polymers--the poly(phosphazophosphazenes)--have been developed. The high loading of phosphorus and nitrogen in these materials underlies their importance as possible flame-resistant and flame-retardant polymers.

A series of new membrane materials for gas separations has been developed and studied. One of these membranes has a very high permeability to oxygen and may have prospective uses in both gas separations and protective clothing.

Other polymers have been studied for the selective complexation of metal ions and are prototypes for hazardous waste management devices.

Finally, several new series of polymer blends and interpenetrating network systems have been developed using polyphosphazenes as one of the components to confer flame-resistance or impact-resistance on the materials.

Significance:

The significance of this research has been recognized by two American Chemical Society awards to the principal investigator during the past two years--the 1992 ACS Award in Materials Chemistry and the 1994 ACS Herman Mark Award in Polymer Science.

Manuscripts Based on this Work Submitted or Published (5/1/91 - 4/30/94):

"Preparation and Characterization of Poly(organophosphazene) Blends
H. R. Allcock and K. B. Visscher
Chemistry of Materials 1992, 4, 1182-1187.

"Strained Inorganic Heterocyclic Compounds and Their Conversion to Macrocycles and High Polymers"
H. R. Allcock
Chapter in *The Chemistry of Inorganic Ring Systems* (R. Steudel, ed.)
Elsevier: Amsterdam, 1992, 145-169.

"Synthesis of Poly(bis-phosphazo)phosphazenes Bearing Aryloxy and Alkoxy Side Groups"
H. R. Allcock and Dennis C. Ngo
Macromolecules 1992, 25, 2802-2810.

"Polyphosphazenes"
H. R. Allcock
J. Inorg. and Organomet. Polymers 1992, 2, 197-211.

"The Synthesis and Molecular Structures of Cyclic and Short-Chain Linear Phosphazenes Bearing α -Dichlorophenoxy and α -Dimethylphenoxy Side Groups"
H. R. Allcock, D. C. Ngo, M. Parvez, and K. B. Visscher
J. Chem. Soc. 1992, 10, 1687-1699.

"Polyphosphazenes Bearing Polymerizable Pyrrole, Thiophene, and Furan Side Groups: Synthesis and Chemical Oxidation"
H. R. Allcock, J. A. Dodge, L. S. Van Dyke, and C. R. Martin
Chemistry of Materials 1992, 4, 780-788.

"Cyanophosphazene Small Molecules and High Polymers: Synthesis and Structure"
H. R. Allcock, J. S. Rutt, M. F. Welker, and M. Parvez
Inorganic Chemistry 1993, 32, 2315-2321

"Ring-Opening Polymerization in Phosphazene Chemistry"
H. R. Allcock
Chapter in *Ring-Opening Polymerization* (D. J. Brunelle, ed.)
Hansers Publishers: Munich, Germany, 1993, pp. 217-327.

"Poly(thiophosphazenes): New Inorganic Polymers"
H. R. Allcock, J. A. Dodge, and I. Manners
Macromolecules 1993, 26, 11-16.

"The Polymerization Behavior of Pentachlorocyclo(carbotriphosphazene), $N_3P_2CCl_5$ "
S. M. Coley, H. R. Allcock, I. Manners, K. Visscher, M. Parvez, O. Nuyken, and G. Renner
Polym. Prepr. (ACS Div. Poly. Chem.) 1993, 33 166-167

"Gas Permeation and Selectivity of Poly(organophosphazene) Membranes"

H. R. Allcock, C. J. Nelson, W. D. Coggio, I. Manners, D. Walker, L. Pessan, and W. J. Koros
Macromolecules 1993, 26, 1493-1502

"Synthesis and Characterization of Metallophosphazene Derivatives: Solution State and Surface Reactions"

H. R. Allcock, E. N. Silverberg, C. Nelson, and W. D. Coggio
Chemistry of Materials 1993, 5, 1307-1314.

"Cyanophosphazene Small Molecules and High Polymers: Synthesis and Structure"

H. R. Allcock, J. S. Rutt, M. F. Welker, and M. Parvez
Inorganic Chemistry 1993, 32, 2315-2321.

"Reactivity and Polymerization Behavior of Pentachloro(carbotriphosphazene), $N_3P_2CCl_5$ "

H. R. Allcock, S. M. Coley, I. Manners, K. B. Visscher, M. Parvez, O. Nuyken, and G. Renner
Inorganic Chemistry 1993, 32, 5088-5094.

"Synthesis and Structures of (*p*-Halogenophenoxy)phosphazenes: Comparison of the Stuctures of Cyclic and Linear Short-Chain Species"

H. R. Allcock, D. C. Ngo, M. Parvez, and K. B. Visscher
Inorganic Chemistry 1994, 33, 2090-2102

"Inorganic-Organic Polymers and their Role in Materials Science"

H. R. Allcock
Advanced Materials 1994, 6, 106-115

"Synthesis of Cyclo- and Polyphosphazenes with Pyridine Side Groups"

U. Diefenbach and H. R. Allcock
Inorganic Chemistry (in press)

"Extrusion of Nitriles from Carbophosphazenes to Yield Classical Phosphazenes, and the Reverse Reaction"

S. M. Coley and H. R. Allcock
J. Am. Chem. Soc. (submitted)

"Synthesis and Properties of Poly[amino(carbophosphazenes)]"

H. R. Allcock, S. M. Coley, and C. T. Morrissey
Macromolecules (submitted)

"Poly(organophosphazenes) Containing Allyl Side Groups: Cross-linking by Hydrosilylation"

H. R. Allcock, D. E. Smith, Y. B. Kim, and J. Fitzgerald
Macromolecules (submitted)

"Synthesis and Characterization of Ion-Complexing Polyphosphazene Interpenetrating Polymer Networks"

H. R. Allcock and K. B. Visscher
Chemistry of Materials (submitted)

"Poly(monophosphazo)phosphazenes: New Polymers with N=PR₃ Side Groups"
H. R. Allcock, S. E. Kuharcik, C. T. Morrissey, and D. C. Ngo
(submitted)

"Cross-Linking Reactions for the Conversion of Polyphosphazenes into Useful Materials"
H. R. Allcock
Chemistry of Materials Review (submitted)

Patents Issued During this Funding Period:

"Polycarbophosphazenes"

H. R. Allcock, I. Manners, G. Renner, and O. Nuyken
U.S. Patent 5,093,438 (1992) (assigned to The Pennsylvania Research Corporation)

"Method for Forming Polythiophosphazene Macromolecules"

H. R. Allcock, J. A. Dodge, I. Manners, G. Renner, and O. Nuyken
U.S. Patent 5,101,003 (1992) (assigned to The Pennsylvania Research Corporation)

Technical Progress Reports:

Period Covered:

- (1) May 1, 1991 - December 31, 1991
- (2) January 1, 1992 - June 30, 1992
- (3) July 1, 1992 - December 31, 1992
- (4) January 1 - December 31, 1993

Scientific Personnel Supported by this Project and Degrees Awarded 5/1/91-4/30/94:

Harry R. Allcock (principal investigator)

Young Baek Kim (postdoctoral fellow)

Dennis C. Ngo (Ph.D. 1991, now a research scientist with 3M)

Jeffrey A. Dodge (Ph.D. 1992, now a research scientist at Miles/Bayer Co.)

Karyn B. Visscher (Ph.D., 1993 and now postdoctoral fellow in group)

Suzanne M. Coley (Ph.D., 1993, now a research scientist with Shipley Co.)

Constance J. Nelson (Ph.D. 1993, now a research scientist with 3M)

Christopher T. Morrissey (graduate student)

Eric H. Klingenberg (graduate student)

Carey Reed (graduate student)