

Técnicas digitales I Ingeniería electrónica

Primer parcial 2019

Apellido y nombre:			Legajo:			
Ejercicio	1	2	3	4	5	Nota
Nota						

A continuación se enumeran los componentes disponibles para la realización del parcial

- Compuertas de dos entradas: and, or, xor, not y buffer
- Multiplexores: 2a1, 4a1 y 8a1
- Codificadores con y sin prioridad: 4a2, 8a3 y 16a4 (con dos entradas de habilitación una activa alta y otra activa baja)
- Decodificadores: 2a4, 3a8 y 4a16 (con dos entradas de habilitación una activa alta y otra activa baja)
- Sumador/restador de N bits de operandos y resultado con Cin y Cout.
- Comparadores de magnitud de N bits
- FFD y FFT con clear y preset

 Los parámetros temporales de los componentes son:

	Min[ns]	Max[ns]
ts	0,2	4
th	0,1	2
tcq	1	4
tg	0.5	1

- 1. (2 puntos) Implemente un circuito que mida el periodo de una señal de entrada con una resolución de +/-100ns, sabiendo que la frecuencia de la señal de entrada estará entre 1kHz y 10kHz
 - a. Dibuje un diagrama en bloques y explique brevemente el funcionamiento.
 - b. Dibuje el circuito a nivel de compuertas y flip-flop
 - c. Indique y justifique la frecuencia mínima de funcionamiento.
 - d. Calcule para la frecuencia del punto C el slack de setup y el slack de hold
- 2. (2 puntos) Diseñe un circuito que coloque un uno en la salida cuando detecte la siguiente secuencia 101 sin solapamiento.
 - a. Realice un diagrama en bloque indicando claramente las salidas y entradas involucradas.
 - b. Dibuje el diagrama de estados.
 - c. Realice el circuito a nivel de compuertas y flip-flop.
 - d. Determine la frecuencia máxima de clock. Justifique la respuesta.
- 3. (2 puntos) Implemente un circuito que realice el antirebote para un pulsador. Considere que la frecuencia de clock del sistema es de 1MHz y el tiempo de estabilización del pulsador está en el orden de los 5 ms.
 - a. Realice un diagrama en bloque indicando claramente las salidas y entradas involucradas.
 - b. Realice el circuito a nivel de compuertas y flip-flop.
 - c. Calcule el slack de setup.

Primer parcial 2019

Técnicas digitales I Ingeniería electrónica

Primer parcial 2019

4. (1.5 punto) Dado el siguiente código en VHDL dibuje el circuito resultante

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.NUMERIC STD.ALL;
entity sumador is
   generic ( N : integer := 4);
    Port ( opA : in STD_LOGIC_VECTOR (N-1 downto 0);
                   : in STD LOGIC VECTOR (N-1 downto 0);
                   : out STD LOGIC VECTOR (N-1 downto 0));
end sumador;
architecture Behavioral of sumador is
    signal res S : STD LOGIC VECTOR (N-1 downto 0);
    signal ov S : STD LOGIC;
    signal s : STD LOGIC VECTOR (1 downto 0);
    signal satMax, satMin : STD_LOGIC_VECTOR (N-1 downto 0);
begin
ov S \le 1' when ((signed (opA) >= 0) and (signed (opB) > 0) and (signed(res S) <= 0))
      '1' when ((signed (opA) < 0) and (signed (opB) < 0) and (signed(res S) >= 0))
else
else
       '0';
    res S <= std logic vector (signed (opA) + signed (opB));
    s \le ov S \& res S(N-1);
    satMax(N-1) \le '0'; satMax(N-2 downto 0) \le (others => '1');
    satMin <= not (satMax);</pre>
    with s select
       res <= res S when "00",
               res_S when "01",
               satMin when "10",
               satMax when others;
end Behavioral;
```

 (2.5 puntos) Diseñe un circuito que genere una señal modulada por ancho de pulso o PWM (Pulse Width Modulation). El mismo debe tener duty, frecuencia y polaridad configurable. El clock del circuito tiene una frecuencia de 200 MHz.

Primer parcial 2019 2

Técnicas digitales I Ingeniería electrónica

Primer parcial 2019

 a. La entrada duty solo tomará valores entre 0001 y 1001 inclusive respondiendo a la siguiente tabla:

Duty	Ancho del pulso	Duty	Ancho del pulso
0001	10%	0110	60%
0010	20%	0111	70%
0011	30%	1000	80%
0100	40%	1001	90%
0101	50%		

b. La entrada **freq** responde a la siguiente tabla:

freq	Frecuencia de la señal PWM	
00	1 MHz	
01	2 MHz	
10	4 MHz	
11	8 MHz	

c. La entrada pol selecciona la polaridad de la señal.

Si **pol =** 0

> **pwm** vale 1 durante el tiempo **duty**

Si **pol** = 1

pwm vale 0 durante el tiempo duty

- d. Cuando **load** = 1 el circuito debe registrar los valores de las entradas **duty**, **freq** y **pol**.
- e. Si rst = 1 el circuito toma los siguientes valores por defecto duty = 50%, freq = 1 MHz y pol = 0.

Primer parcial 2019 3