

ETR02042-004

Ultra-Low Power (88nA) Voltage Detector

■GENERAL DESCRIPTION

The XC6136 series is ultra-low power voltage detector with high accuracy detection, manufactured using CMOS process and laser trimming technologies.

The device is available in both CMOS and N-channel open drain output configurations. Also detect logic is available in both RESETB (Active Low) and RESET (Active High).

Ultra-small low height package USPQ-4B05 and standard packages SSOT-24 and SOT-25 which are ideally suited for small design of portable devices and high densely mounting applications.

UVLO circuit is implemented in order to suppress the floating of RESETB pin (undefined operation) when V_{IN} voltage is lower than the minimum operating voltage.

APPLICATIONS

Energy Harvesting

Wearable devices

- Smart meter
- Microprocessor logic reset circuitry
- System battery life and charge voltage monitors
- Power-on reset circuits
- Power failure Detection

■ FEATURES

Ultra-Low Power :91nA TYP.(@detect, V_{DF}=1.2V, V_{IN}=1.1V)

:88nA TYP.(@release, V_{DF}=1.2V, V_{IN}=1.32V)

High Accuracy : $\pm 0.8\%$ (V_{DF} ≤ 3.0 V, Ta=25°C)

±1.0% (3.1V≦V_{DF}, Ta=25°C)

:±2.5% ($V_{DF} \le 3.0V$, Ta = -40°C~ 105°C)

±2.7% (3.1V≦V_{DF}, Ta=-40°C~ 105°C)

Temperature Characteristics : ±50ppm/°C (TYP.)

Hysteresis width :TYPE:A/C V_{DF}×5.0% (TYP.)

TYPE:B/D 2mV ~ 28mV (TYP.)

Detect voltage range :1.2V ~ 5.0V (0.1Vstep)

Operating voltage range :1.1V ~ 6.0V

Output type : CMOS

Nch open drain

Output logic : RESETB (Active Low)

RESET (Active High)

Undefined operation :Output pin Voltage 0.38V

Protection (MAX: $Ta=-40^{\circ}C \sim 105^{\circ}C$)

operating voltage (MIN.)

Packages : USPQ-4B05, SSOT-24, SOT-25 Environment friendly : EU RoHS Compliant, Pb Free

■TYPICAL APPLICATION CIRCUIT

■TYPICAL PERFORMANCE CHARACTERISTICS

Supply Current vs. Ambient Temperature V_{DF}=1.2V

■BLOCK DIAGRAMS

(1) XC6136C Series A/B type (RESETB OUTPUT:CMOS output/Active Low)

^{*} Diodes inside the circuits are ESD protection diodes and parasitic diodes.

(2) XC6136C Series C/D type (RESET OUTPUT:CMOS output /Active High)

^{*} Diodes inside the circuits are ESD protection diodes and parasitic diodes.

■BLOCK DIAGRAMS

(3) XC6136N Series A/B type (RESETB OUTPUT: Nch open drain output /Active Low)

* Diodes inside the circuits are ESD protection diodes and parasitic diodes

(4) XC6136N Series C/D type (RESET OUTPUT: Nch open drain output /Active High)

* Diodes inside the circuits are ESD protection diodes and parasitic diodes

■ PRODUCT CLASSIFICATION

Ordering Information

XC6136(1)(2)(3)(4)(5)(6)-(7)(*1)

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
(1)	Output Configuration	С	CMOS output
1)	Output Configuration	N	Nch open drain output
23	Detect Voltage	12 ~ 50	e.g. 1.2V → ②=1, ③=2
		Α	
	T	В	Refer to Selection Guide
4	Туре	С	Refer to Selection Guide
		D	
		9R-G	USPQ-4B05 (5,000pcs/Reel)
⑤ ⑥-⑦ ^(*1)	PKG	NR-G	SSOT-24 (3,000pcs/Reel)
		MR-G	SOT-25 (3,000pcs/Reel) (*2)

^(*1) The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

Selection Guide

TYPE	RESETB/RESET OUTPUT	HYSTERESIS
А	Active Low	V _{DF} ×5.0% (TYP)
В	↑	2mV ~ 28mV (TYP) (*1)
С	Active High	V _{DF} ×5.0% (TYP)
D	<u> </u>	2mV ~ 28mV (TYP) (*1)

^(*1) Refer to SPEC TABLE.

■ PIN CONFIGURATION

●Type: C/D

^{*}The dissipation pad for the USPQ-4B05 package should be solder-plated in reference mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to V_{SS} (No. 3) pin.

^(*2) SOT-25 uses Cu bonding wires.

■ PIN ASSIGNMENT

	PIN NUMBER		PIN NAME	FUNCTION
USPQ-4B05	SSOT-24	SOT-25	I III INAIVIL	1 GIVE HOLV
1	2	1	RESETB	Reset Output (Active Low) (*1)
'	3		RESET	Reset Output (Active High) (*2)
2	1	4,5	NC	No Connection
3	2	3	V _{SS}	Ground
4	4	2	Vin	Power Input

^(*1) Type A,B (Refer to the ④ in Ordering Information table.)

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL		RATINGS	UNITS			
Input Vo	Input Voltage		N	-0.3 ~ 7.0	V			
Output Voltage	XC6136C(*2)	\/	\/	Vss - 0.3 ~ V _{IN} + 0.3 or 7.0 (*1)	V			
Output Voltage	XC6136N(*3)	V _{RESETB}	V _{RESET}	Vss - 0.3 ~ 7.0	V			
Cutout Current	XC6136C(*2)		1	±50	A			
Output Current	XC6136N ^(*3)	IRBOUT	IROUT	50	mA			
	LICDO ADOL			100				
	USPQ-4B05			550 (40mm x 40mm Standard board) (*4)	7			
				150				
Power Dissipation	SSOT-24	Pd		500 (40mm x 40mm Standard board) (*4)	\^/			
(Ta=25°C)				P	a	680 (JESD51-7 board) (*4)	mW	
				250				
	SOT-25			600 (40mm x 40mm Standard board) (*4)				
				760 (JESD51-7 board) (*4)				
Operating Ambient Temperature		То	pr	-40 ~ 105	$^{\circ}\!\mathbb{C}$			
Storage Temperature		Tstg		-55 ~ 125	$^{\circ}\!\mathbb{C}$			

 $^{^{\}ast}$ All voltages are described based on the $V_{\text{SS}}.$

^(*2) Type C,D (Refer to the ④ in Ordering Information table.)

 $[\]ensuremath{^{(^*1)}}$ The maximum value should be either $V_{\ensuremath{\text{IN}}}\xspace+0.3V$ or 7.0V in the lowest.

^(*2) CMOS output

^(*3) Nch open drain output

^(*4) The power dissipation figure shown is PCB mounted and is for reference only. Please refer to PACKAGING INFORMATION for the mounting condition.

■ELECTRICAL CHARACTERISTICS

			Ta=25°C -40°C≦Ta≦105°C(°		05°C(*5)						
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	CIRCUIT	
Operating Voltage	V _{IN}		1.1		6.0	1.1		6.0	V		
MIN Voltage Holding the Detection(*3)	V _{INL}	V _{IN} =V _{SEN}	-	i	0.4	-	-	0.4	>		
Detect Voltage	V_{DF}	V _{DF(T)} ^(*1) =1.2V~3.0V	V _{DF(T)} × 0.992	$V_{DF(T)}$	V _{DF(T)} ×1.008	V _{DF(T)} ×0.975	$V_{DF(T)}$	V _{DF(T)} ×1.025	V		
Detect Voltage	V DF	V _{DF(T)} (*1)=3.1V~5.0V	V _{DF(T)} × 0.990	$V_{DF(T)}$	V _{DF(T)} ×1.010	V _{DF(T)} × 0.973	$V_{DF(T)}$	V _{DF(T)} ×1.027	V	①	
Temperature Characteristics	$\Delta V_{DF}/$ $(\Delta Topr \cdot V_{DF})$	-40°C≦Topr≦105°C	-	±50	-	-	±50	-	ppm/°C		
Hysteresis Width (TYPE: A/C)	V _{HYS}		V _{DF} ×0.032	V _{DF} × 0.05	V _{DF} × 0.068	V _{DF} × 0.03	V _{DF} × 0.05	V _{DF} × 0.07	V		
Hysteresis Width (TYPE: B/D)	VIII3		-	E-	1 (*2)	-	E-2	2 ^(*2)	V		
Supply Current1 (TYPE:A/B) CMOS output Supply Current1 (TYPE:C/D)	I _{ss1}	V _{IN} =V _{DF} ×0.9	-	E∹	3 ^(*2)	-		μ(*2) 5(*2)			
CMOS output Supply Current1 (TYPE:A/B/C/D) Nch open drain output							E-6 ^(*2)		nΛ	2	
Supply Current2 (TYPE:A/B) CMOS output Supply Current2 (TYPE:C/D)	I _{ss2}	V V 44	V _{IN} =V _{DF} ×1.1	_	E-7	7 (*2)	-		g(*2)	nA	(2)
CMOS output Supply Current2 (TYPE:A/B/C/D) Nch open drain output	332							0 ^(*2)			
Peak of Undefined Operation ^(*4) (TYPE:A/B)	V _{UNO}	V _{IN} <0.4V	-	0.1	0.38	-	0.1	0.38		3	
UVLO Release Voltage	V _{UVLOR}	V _{IN} =0V→1.1 V	-	0.82	-	-	0.82	-	V		
UVLO Detect Voltage	V _{UVLOD}	V _{IN} =1.1V→0∨	-	0.79	-	-	0.79	-		-	
UVLO Release Delay Time	t _{UVLOR}	V _{IN} = 0V→1.1V	-	157	-	-	157	-	μs	-	

 $^{^{(*1)}}V_{DF(T)}$: Nominal detect voltage

^(*2) Refer to SPEC TABLE(P.8,9).

 $^{^{(\}mbox{\tiny '3})}$ For XC6136C (CMOS output) only. $\mbox{V}_{\mbox{\tiny IN}}$ value where RESETB <0.05V or RESET> $\mbox{V}_{\mbox{\tiny IN}}.0.05V.$

^(*4) XC6136C(CMOS output)only.

 $^{^{(^*5)}}$ The ambient temperature range (-40°C \leq Ta \leq 105°C) is a design value.

■ELECTRICAL CHARACTERISTICS

DADAMETED	SYMBOL CONDITIONS -		Ta=25°			-40°C	-40°C≦Ta≦105°C ^(*17)			CIRCUIT
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Release Delay Time(*6)	t _{DR0}	$V_{IN} = V_{DF} \times 0.9 \rightarrow V_{DF} \times 1.1$	-	44	200	-	44	224		4
Detect Delay Time(*7)	t _{DF0}	$V_{IN} = V_{DF} \times 1.1 \rightarrow V_{DF} \times 0.9$	-	40	170	-	40	184	μs	4
		Nch. V _{RESETB} =0.3V								
		V _{IN} =1.1V	0.3	1.4	-	0.2	1.4	-		
	I _{RBOUTN}	V _{IN} =2.0V ^(*8)	4.1	6.2	-	3.1	6.2	-		
RESETB		V _{IN} =3.0V ^(*9)	8.1	10.8	-	4.3	10.8	-	A	
Output Current		V _{IN} =4.0V ^(*10)	11.2	14.3	-	6.2	14.3	-	mA	
		Pch. V _{RESETB} =V _{IN} -0.3V								
	I _{RBOUTP} (*11)	V _{IN} =3.0V ^(*12)	-	-3.2	-1.4	-	-3.2	-1.3		
		V _{IN} =6.0V	-	-5.1	-2.9	-	-5.1	-2.6		
		Nch. V _{RESET} =0.3V								
	I _{ROUTN}	V _{IN} =2.0V ^(*13)	4.1	6.2	-	3.1	6.2	-		(5)
		V _{IN} =3.0V ^(*12)	8.1	10.8	-	4.3	10.8	-		
		V _{IN} =4.0V ^(*14)	11.2	14.3	-	6.2	14.3	-		
RESET Output Current		V _{IN} =5.0V ^(*15)	13.7	17.1	-	7.3	17.1	-	mA	•
Output Current		V _{IN} =6.0V	15.7	19.3	-	8.1	19.3	-		
		Pch. V _{RESET} =V _{IN} -0.3V								
	I _{ROUTP} (*16)	V _{IN} =1.1V	-	-0.7	-0.2	-	-0.7	-0.15		
		V _{IN} =3.0V ^(*9)	-	-3.2	-1.4	-	-3.2	-1.3		
RESETB Output	I _{LEAKN} (*16)	V _{IN} =6.0V, Nch. V _{RESETB} =6.0V	-	0.01	0.1	-	0.01	0.3		
Leakage Current	I _{LEAKP}	V _{IN} =1.1V, Pch. V _{RESETB} =0V	-	-0.01	-	-	-0.01	-		
RESET Output	I _{LEAKN} (*16)	V _{IN} =1.1V, Nch. V _{RESET} =6.0V	-	0.01	0.1	-	0.01	0.3	μΑ	
Leakage Current	I _{LEAKP}	V _{IN} =6.0V, Pch. V _{RESET} =0V	-	-0.01	-	-	-0.01	-		

 $^{^{(}r_6)}$ RESETB product: Time from when the V_{IN} pin voltage reaches the release voltage until the reset output pin reaches V_{IN} x90%. RESET product: Time from when the V_{IN} pin voltage reaches the release voltage until the reset output pin reaches V_{IN} x10% Release voltage (V_{DR}) =Detect voltage (V_{DF}) + Hysteresis width (V_{HYS}).

^(*7) RESETB product: Time from when the V_{IN} pin voltage reaches the detect voltage until the reset output pin reaches V_{IN} ×10%. RESET product: Time from when the V_{IN} pin voltage reaches the detect voltage until the reset output pin reaches V_{IN} ×90%.

 $^{^{(*8)}\,} For \, V_{DF(T)} {\geqq} 2.1 V$ only

 $^{^{(*9)}}$ For $V_{DF(T)} \ge 3.1V$ only.

 $^{^{(*10)}}$ For $V_{DF(T)} \ge 4.1V$ only.

^(*11) For XC6136C (CMOS output) only.

 $^{^{\}mbox{\tiny (*12)}}\mbox{For }V_{DF(T)}{\leqq}2.9V$ only.

 $^{^{(*13)}}$ For $V_{DF(T)} \leq 1.9V$ only.

 $^{^{(^*14)}\,} For \,\, V_{DF(T)} {\leqq} 3.8 V$ only.

 $^{^{(*15)}}$ For $V_{DF(T)} \leq 4.8V$ only.

 $[\]ensuremath{^{(^*16)}}$ Max. value is for XC6136N (Nch open drain).

^(*17) The ambient temperature range (-40°C≦Ta≦105°C) is a design Value.

■ELECTRICAL CHARACTERISTICS (SPEC TABLE)

Table of Characteristics by Voltage Setting

NOMINAL		-1		E-2	E	-3	E	-4	Е	-5	Е	-6
DETECT	Ta=	:25°C	-40°C≦	Γa≦105°C	Ta=	25°C		-	40°C≦T	a≦105°0		
VOLTAGE(V)		Hysteresis	Width (m	V)			S	upply Cu	rrent1 (r	nA)		
$V_{DF(T)}$	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.
1.2	2	4.8	2	5.3	91	213	91	431	91	325	91	338
1.3	2	5.2	2	5.7	94	218	94	437	94	331	94	345
1.4	2	5.6	2	6.2	98	224	98	444	98	338	98	351
1.5	2	6.0	2	6.6	101	229	101	451	101	344	101	358
1.6	2	6.4	2	7.1	104	235	104	457	104	351	104	364
1.7	3	6.8	3	7.5	108	240	108	464	108	357	108	371
1.8	3	7.2	3	8.0	111	245	111	471	111	363	111	377
1.9	3	7.9	3	8.7	114	251	114	478	114	370	114	384
2.0	3	8.6	3	9.5	117	256	117	484	117	376	117	390
2.1	4	9.4	4	10	121	262	121	491	121	383	121	397
2.2	4	10	4	11	124	267	124	498	124	389	124	403
2.3	5	11	5	12	127	272	127	504	127	395	127	410
2.4	5	12	5	13	131	278	131	511	131	402	131	416
2.5	6	13	6	14	134	283	134	518	134	408	134	423
2.6	6	14	6	15	137	289	137	524	137	415	137	429
2.7	7	15	7	16	140	294	140	531	140	421	140	436
2.8	8	16	8	17	144	299	144	538	144	427	144	442
2.9	8	17	8	18	147	305	147	545	147	434	147	449
3.0	9	18	9	19	150	310	150	551	150	440	150	455
3.1	9	19	9	20	154	316	154	558	154	447	154	462
3.2	10	20	10	21	157	321	157	565	157	453	157	468
3.3	11	21	11	23	160	326	160	571	160	459	160	475
3.4	12	22	12	24	163	332	163	578	163	466	163	481
3.5	12	23	12	25	167	337	167	585	167	472	167	488
3.6	13	25	13	26	170	343	170	591	170	479	170	494
3.7	14	26	14	28	173	348	173	598	173	485	173	501
3.8	15	27	15	29	177	353	177	605	177	491	177	507
3.9	16	29	16	30	180	359	180	612	180	498	180	514
4.0	17	30	17	32	183	364	183	618	183	504	183	520
4.1	18	32	18	33	186	370	186	625	186	511	186	527
4.2	19	33	19	35	190	375	190	632	190	517	190	533
4.3	20	35	20	36	193	380	193	638	193	523	193	540
4.4	21	36	21	38	196	386	196	645	196	530	196	546
4.5	22	38	22	40	200	391	200	652	200	536	200	553
4.6	23	39	23	41	203	397	203	658	203	543	203	559
4.7	24	41	24	43	206	402	206	665	206	549	206	566
4.8	25	43	25	45	210	407	210	672	210	555	210	572
4.9	26	44	26	46	213	413	213	679	213	562	213	579
5.0	28	46	28	48	216	418	216	685	216	568	216	585

■ELECTRICAL CHARACTERISTICS (SPEC TABLE)

Table of Characteristics by Voltage Setting

NOMINAL DETECT Ta=25°C Supply Current2 (nA)	40
VOLTAGE(V) Supply Current2 (nA) VDF(T) TYP. MAX. TYP. Max. <t< td=""><td>10</td></t<>	10
V _{DF(T)} TYP. MAX. TYP. MAX. TYP. MAX. TYP. 1.2 88 204 88 325 88 474 88 1.3 92 211 92 334 92 482 92 1.4 95 217 95 342 95 490 95 1.5 99 224 99 350 99 498 99 1.6 103 230 103 358 103 506 103 1.7 107 237 107 366 107 515 107 1.8 111 243 111 374 111 523 111 1.9 115 250 115 382 115 531 115 2.0 119 256 119 390 119 539 119 2.1 123 263 123 398 123 547 123	
1.2 88 204 88 325 88 474 88 1.3 92 211 92 334 92 482 92 1.4 95 217 95 342 95 490 95 1.5 99 224 99 350 99 498 99 1.6 103 230 103 358 103 506 103 1.7 107 237 107 366 107 515 107 1.8 111 243 111 374 111 523 111 1.9 115 250 115 382 115 531 115 2.0 119 256 119 390 119 539 119 2.1 123 263 123 398 123 547 123 2.2 127 269 127 406 127 556 127	
1.3 92 211 92 334 92 482 92 1.4 95 217 95 342 95 490 95 1.5 99 224 99 350 99 498 99 1.6 103 230 103 358 103 506 103 1.7 107 237 107 366 107 515 107 1.8 111 243 111 374 111 523 111 1.9 115 250 115 382 115 531 115 2.0 119 256 119 390 119 539 119 2.1 123 263 123 398 123 547 123 2.2 127 269 127 406 127 556 127 2.3 131 276 131 415 131 564 131 2.4 135 282 135 423 135 572 135 2.5 139 289 139 431 139 580 139 2.6 143 295 143 439	MAX.
1.4 95 217 95 342 95 490 95 1.5 99 224 99 350 99 498 99 1.6 103 230 103 358 103 506 103 1.7 107 237 107 366 107 515 107 1.8 111 243 111 374 111 523 111 1.9 115 250 115 382 115 531 115 2.0 119 256 119 390 119 539 119 2.1 123 263 123 398 123 547 123 2.2 127 269 127 406 127 556 127 2.3 131 276 131 415 131 564 131 2.4 135 282 135 423 135 572 135 2.5 139 289 139 431 139 580 139	327
1.5 99 224 99 350 99 498 99 1.6 103 230 103 358 103 506 103 1.7 107 237 107 366 107 515 107 1.8 111 243 111 374 111 523 111 1.9 115 250 115 382 115 531 115 2.0 119 256 119 390 119 539 119 2.1 123 263 123 398 123 547 123 2.2 127 269 127 406 127 556 127 2.3 131 276 131 415 131 564 131 2.4 135 282 135 423 135 572 135 2.5 139 289 139 431 139 580 139	336
1.6 103 230 103 358 103 506 103 1.7 107 237 107 366 107 515 107 1.8 111 243 111 374 111 523 111 1.9 115 250 115 382 115 531 115 2.0 119 256 119 390 119 539 119 2.1 123 263 123 398 123 547 123 2.2 127 269 127 406 127 556 127 2.3 131 276 131 415 131 564 131 2.4 135 282 135 423 135 572 135 2.5 139 289 139 431 139 580 139 2.6 143 295 143 439 143 588 143 2.7 147 302 147 447 147 597 1	344
1.7 107 237 107 366 107 515 107 1.8 111 243 111 374 111 523 111 1.9 115 250 115 382 115 531 115 2.0 119 256 119 390 119 539 119 2.1 123 263 123 398 123 547 123 2.2 127 269 127 406 127 556 127 2.3 131 276 131 415 131 564 131 2.4 135 282 135 423 135 572 135 2.5 139 289 139 431 139 580 139 2.6 143 295 143 439 143 588 143 2.7 147 302 147 447 147 597 147 2.8 151 308 151 455 151 605 1	352
1.8 111 243 111 374 111 523 111 1.9 115 250 115 382 115 531 115 2.0 119 256 119 390 119 539 119 2.1 123 263 123 398 123 547 123 2.2 127 269 127 406 127 556 127 2.3 131 276 131 415 131 564 131 2.4 135 282 135 423 135 572 135 2.5 139 289 139 431 139 580 139 2.6 143 295 143 439 143 588 143 2.7 147 302 147 447 147 597 147 2.8 151 308 151 455 151 605 151 2.9 155 315 155 463 155 613 1	360
1.9 115 250 115 382 115 531 115 2.0 119 256 119 390 119 539 119 2.1 123 263 123 398 123 547 123 2.2 127 269 127 406 127 556 127 2.3 131 276 131 415 131 564 131 2.4 135 282 135 423 135 572 135 2.5 139 289 139 431 139 580 139 2.6 143 295 143 439 143 588 143 2.7 147 302 147 447 147 597 147 2.8 151 308 151 455 151 605 151 2.9 155 315 155 463 155 613 155 3.0 158 321 158 471 158 621 1	368
2.0 119 256 119 390 119 539 119 2.1 123 263 123 398 123 547 123 2.2 127 269 127 406 127 556 127 2.3 131 276 131 415 131 564 131 2.4 135 282 135 423 135 572 135 2.5 139 289 139 431 139 580 139 2.6 143 295 143 439 143 588 143 2.7 147 302 147 447 147 597 147 2.8 151 308 151 455 151 605 151 2.9 155 315 155 463 155 613 155 3.0 158 321 158 471 158 621 158 3.1 162 328 162 479 162 629 1	376
2.1 123 263 123 398 123 547 123 2.2 127 269 127 406 127 556 127 2.3 131 276 131 415 131 564 131 2.4 135 282 135 423 135 572 135 2.5 139 289 139 431 139 580 139 2.6 143 295 143 439 143 588 143 2.7 147 302 147 447 147 597 147 2.8 151 308 151 455 151 605 151 2.9 155 315 155 463 155 613 155 3.0 158 321 158 471 158 621 158 3.1 162 328 162 479 162 629 162 3.2 166 334 166 487 166 638 1	384
2.2 127 269 127 406 127 556 127 2.3 131 276 131 415 131 564 131 2.4 135 282 135 423 135 572 135 2.5 139 289 139 431 139 580 139 2.6 143 295 143 439 143 588 143 2.7 147 302 147 447 147 597 147 2.8 151 308 151 455 151 605 151 2.9 155 315 155 463 155 613 155 3.0 158 321 158 471 158 621 158 3.1 162 328 162 479 162 629 162 3.2 166 334 166 487 166 638 166	392
2.3 131 276 131 415 131 564 131 2.4 135 282 135 423 135 572 135 2.5 139 289 139 431 139 580 139 2.6 143 295 143 439 143 588 143 2.7 147 302 147 447 147 597 147 2.8 151 308 151 455 151 605 151 2.9 155 315 155 463 155 613 155 3.0 158 321 158 471 158 621 158 3.1 162 328 162 479 162 629 162 3.2 166 334 166 487 166 638 166	400
2.4 135 282 135 423 135 572 135 2.5 139 289 139 431 139 580 139 2.6 143 295 143 439 143 588 143 2.7 147 302 147 447 147 597 147 2.8 151 308 151 455 151 605 151 2.9 155 315 155 463 155 613 155 3.0 158 321 158 471 158 621 158 3.1 162 328 162 479 162 629 162 3.2 166 334 166 487 166 638 166	408
2.5 139 289 139 431 139 580 139 2.6 143 295 143 439 143 588 143 2.7 147 302 147 447 147 597 147 2.8 151 308 151 455 151 605 151 2.9 155 315 155 463 155 613 155 3.0 158 321 158 471 158 621 158 3.1 162 328 162 479 162 629 162 3.2 166 334 166 487 166 638 166	417
2.6 143 295 143 439 143 588 143 2.7 147 302 147 447 147 597 147 2.8 151 308 151 455 151 605 151 2.9 155 315 155 463 155 613 155 3.0 158 321 158 471 158 621 158 3.1 162 328 162 479 162 629 162 3.2 166 334 166 487 166 638 166	425
2.7 147 302 147 447 147 597 147 2.8 151 308 151 455 151 605 151 2.9 155 315 155 463 155 613 155 3.0 158 321 158 471 158 621 158 3.1 162 328 162 479 162 629 162 3.2 166 334 166 487 166 638 166	433
2.8 151 308 151 455 151 605 151 2.9 155 315 155 463 155 613 155 3.0 158 321 158 471 158 621 158 3.1 162 328 162 479 162 629 162 3.2 166 334 166 487 166 638 166	441
2.9 155 315 155 463 155 613 155 3.0 158 321 158 471 158 621 158 3.1 162 328 162 479 162 629 162 3.2 166 334 166 487 166 638 166	449
3.0 158 321 158 471 158 621 158 3.1 162 328 162 479 162 629 162 3.2 166 334 166 487 166 638 166	457
3.1 162 328 162 479 162 629 162 3.2 166 334 166 487 166 638 166	465
3.2 166 334 166 487 166 638 166	473
	481
3.3 170 341 170 496 170 646 170	489
	498
3.4 174 347 174 504 174 654 174	506
3.5 178 354 178 512 178 662 178	514
3.6 182 360 182 520 182 670 182	522
3.7 186 367 186 528 186 679 186	530
3.8 190 373 190 536 190 687 190	538
3.9 194 380 194 544 194 695 194	546
4.0 198 386 198 552 198 703 198	554
4.1 202 393 202 560 202 711 202	562
4.2 206 399 206 568 206 720 206	570
4.3 210 406 210 577 210 728 210	579
4.4 214 412 214 585 214 736 214	587
4.5 218 419 218 593 218 744 218	595
4.6 222 425 222 601 222 752 222	603
4.7 225 432 225 609 225 761 225	611
4.8 229 438 229 617 229 769 229	619
4.9 233 445 233 625 233 777 233	627
5.0 237 451 237 633 237 785 237	635

■TEST CIRCUITS

^{*&}quot;RESETB" is A/B type, and "RESET" is C/D type.

■OPERATIONAL DESCRIPTION

Fig. 1: Typical block diagram (CMOS output/Active Low product)

Fig. 2: Timing chart of Fig. 1

The circuit operation in the above representative circuit example will be explained using the timing chart.

- (1) Assume that the input voltage (V_{IN}) in the initial state is higher than the release voltage (V_{DR}), and V_{IN} gradually decreases. In a state where a voltage higher than the detection voltage (V_{DF}) is applied to the input voltage (V_{IN}), the input voltage (V_{IN}) is output to the RESETB pin (released state).
 - * In the case of N-ch open drain output products, the RESETB pin goes into a high impedance state.

When the output is pulled up, the pull-up voltage is output to the RESETB pin.

- (2) When the input voltage (V_{IN}) drops below the detection voltage (V_{DF}), the ground potential (V_{SS}) is output to the RESETB pin (detection state).
 - * N-ch open drain output products are also the same.
- (3) If the input voltage (V_{IN}) further decreases and becomes lower than the minimum operating voltage (1.1V), the output becomes undefined.

However, the XC6136C series (CMOS output product) has an under-voltage lockout (UVLO) circuit to prevent undefined operation due to a decrease in V_{IN} .

Therefore, the floating of the RESETB terminal caused by less than the minimum operating voltage is minimized.

- * Pull-up voltage may be output to the RESETB terminal when the output terminal is pulled up with an N-ch open drain output product.
- (4) The RESETB pin holds the ground potential (V_{SS}) until the input voltage (V_{IN}) rises above the minimum operating voltage (1.1V) and reaches the release voltage (V_{DR}).
- (5) When the input voltage (V_{IN}) becomes equal to or higher than the release voltage (V_{DR}), the input voltage (V_{IN}) is output to the RESETB pin.
 - * In the case of N-ch open drain output products, the RESETB pin goes into a high-impedance state in the same way as in 1), and if the output is pulled up, the pull-up voltage is output to the RESETB pin.
- (6) The difference between the release voltage (VDR) and the detect voltage (VDF) is the hysteresis width (VHYS). Note: In the above explanation, the operation time of the circuit is omitted for simplicity of explanation. In addition, above explanation is the operation using Active Low product. For Active High products, please reverse the output logic of RESETB pin voltage.

■NOTES ON USE

- (1) Please use this IC within the stated maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- (2) The power input pin voltage may fall due to the flow through current during IC operation and the resistance component between the power supply and the power input pin.
 - In the case of CMOS output, a drop in the power input pin voltage may occur in the same way due to the output current. When this happens, if the power input pin voltage drops below the minimum operating voltage, a malfunction may occur.
- (3) Note that large, sharp changes of the power input pin voltage may lead to malfunction.
- (4) Since the power supply noise may cause malfunction, please fully evaluate with an actual system. As necessary, please take measures such as inserting a capacitor between V_{IN} and V_{SS}.
- (5) When an N-ch open drain output is used, the V_{RESETB} voltage at detection and release is determined by the pull-up resistance connected to the output pin. Refer to the following when selecting the resistance value.

At detection:

 $V_{RESETB} = V_{pull} / (1 + R_{pull} / R_{ON})$ V_{pull} : Voltage after pull-up

RON^(*1): ON resistance of N-ch driver M1 (calculated from VRESETB/IRBOUTN based on electrical characteristics)

Example: When $V_{\text{IN}}=2.0\text{V}^{(*2)}$, $R_{\text{ON}}=0.3\text{V}$ / $(4.1\times10^{-3}\,\text{A}) \ \ = \ 73.2\Omega$ (MAX.) If it is desired to make V_{RESETB} at detection 0.1V or less when V_{pull} is 3.0V, $R_{\text{pull}}=\{\ (\ V_{\text{pull}}\ /\ V_{\text{RESETB}}\)-1\ \}\times R_{\text{ON}}=\{\ (\ 3\text{V}\ /\ 0.1\text{V}\)-1\ \}\times 73.2\Omega\ \ \ \ \equiv\ 2.1\text{k}\Omega$

Therefore, to make the output voltage at detection 0.1V or less under the above conditions, the pull-up resistance must be $2.1k\Omega$ or higher. (*1) Note that R_{ON} becomes larger as V_{IN} becomes smaller.

(*2) For V_{IN} in the calculation, use the lowest value of the input voltage range you will use.

At release:

 $V_{RESETB} = V_{pull} / (1 + R_{pull} / R_{off})$ V_{pull} : Voltage after pull-up

Roff: Resistance when N-ch driver M1 is OFF (calculated from V_{RESETB}/I_{LEAKN} based on electrical characteristics)

Example: When V_{pull} is 6.0V, $R_{off} = 6V / (0.1 \times 10^{-6} \, A) = 60M\Omega$ (MIN.). If it is desired to make V_{RESETB} 5.99V or higher, $R_{pull} = \{ (V_{pull} / V_{RESETB}) - 1 \} \times R_{off} = \{ (6V / 5.99V) - 1 \} \times 60 \times 10^{6}\Omega \ \stackrel{.}{=} \ 100k\Omega$

Therefore, to make the output voltage at release 5.99V or higher under the above conditions, the pull-up resistance must be $100k\Omega$ or less.

The above V_{RESETB} voltage is an example calculation of Active Low products.

To calculate the VRESET voltage (Active High product), calculate by inverting the logic at detection and release.

(6) Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.

■TYPICAL PERFORMANCE CHARACTERISTICS

(1) Detect, Release Voltage vs. Ambient Temperature

(2)Output Voltage vs. Input Voltage

(3) Hysteresis Width vs. Ambient Temperature

(4) Supply Current vs. Ambient Temperature

(5)Supply Current vs. Input Voltage

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(6)Output Voltage vs. Input Voltage (V_{IN}<Operating Voltage)

(7)Release, Detect Delay Time vs. Ambient Temperature

(8) RESETB Output Current vs. Ambient Temperature

(9) RESETB Output Leakage Current vs. Ambient Temperature

■PACKAGING INFORMATION

For the latest package information go to, www.torexsemi.com/technical-support/packages

PACKAGE	OUTLIN / LAND PATTERN	THERMAL CHARACTERISTICS				
SSOT-24	SSOT 24 DVC	Standard Board	SSOT-24 Power Dissipation			
3301-24	SSOT-24 PKG	JESD51-7 Board	SSO1-24 Power Dissipation			
SOT-25	SOT-25 PKG	Standard Board	SOT-25 Power Dissipation			
301-25	<u>301-23 FKG</u>	JESD51-7 Board	SOT-25 Power Dissipation			
USPQ-4B05	USPQ-4B05 PKG	Standard Board	USPQ-4B05 Power Dissipation			

■MARKING RULE

USPQ-4B05 (with underline mark 1)

USPQ-4B05 (with overline mark) ①

USPQ-4B05 (with underline mark2)

SSOT-24 (with underline mark) ①

SSOT-24 (with overline mark) ①

SSOT-24 (with underline mark2)

1 represents products series

	MARK	Registration order	PRODUCT SERIES
X	(with underline)	1	
1	(with overline)	2	
3	(with overline)	3	
5	(with overline)	4	XC6136*****-G
Α		5	
В	_	6	
С	_	7	

^{*}Mark 1 is a common symbol and Mark 2 is assigned a sequential number.

(The sequential numbers of Mark2) are numbered stating from "0".)

2 represents internal sequential number

MARK①	MARK ①Line	MARK ②Line
<u>X</u>	with underline	-
1	with overline	-
3	with overline	-
5	with overline	-
А	-	with underline
В	-	with underline
С	-	with underline

sequential number 0~9, A~Z repeated.(G, I, J, O, Q, W excluded)

③,④ represents production lot number

01~09, 0A~0Z, 11~9Z, A1~A9, AA~A9, AA~Z9 repeated.

(G, I, J, O, Q, W excluded)

■ MARKING RULE

SOT-25 (under dot)

1 represents products series

MARK	PRODUCT SERIES
X	XC6136*****-G

②③ represents internal sequential number 01~09、10~99、A0~A9、B0~B9···Z0~Z9、AA~AZ、BA~BZ···ZA~ZZ repeated. (G, I, J, O, Q, W excluded)

④⑤ represents production lot number
 01~09、0A~0Z、11···9Z、A1~A9、AA···Z9、ZA~ZZ repeated
 (G, I, J, O, Q, W excluded)
 * No character inversion used.

TOIREX

- 1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.
- Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.
- 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance.
- 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.
- 6. Our products are not designed to be Radiation-resistant.
- 7. Please use the product listed in this datasheet within the specified ranges.
- 8. We assume no responsibility for damage or loss due to abnormal use.
- 9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.

TOREX SEMICONDUCTOR LTD.