의 존 구 문 본 석 (Dependency Parsing)

남궁영 한국해양대학교 컴퓨터공학과 young_ng@kmou.ac.kr

2019. 04. 15.

•••

Content

- What is Graph-based Dependency Parsing
 - Arc-factored model
- Chu-Liu-Edmond's Algorithm
- ❖ Neural Models for Graph-based Dependency Parsing
 - Phrase Embeddings
 - BiLSTM Feature Extractors
 - BiAffine Classifier

Graph-based Dependency Parsing

- **❖** Define a space of candidate dependency trees for a sentence
 - Learning: induce a model for scoring an entire tree
 - Parsing: find a tree with the highest score, given the induced model

Factor the weight/score graphs by subgraphs

$$Y^* = \underset{Y \in \Phi(X)}{argmax} \sum_{(x_i \to x_j) \in Y} score(x_i \to x_j)$$

Graph-based Dependency Parsing

❖ Arc-factored scoring model

- Chart-based parsing
 - Creates projective dependency trees
 - Inspired by the CKY algorithm
 - Collins' algorithm
 - Eisner's algorithm

Minimum Spanning Tree

- Creates non-projective dependency trees
 - Edmond's algorithm

Arc-factored scoring model

- * Express sentence as fully connected directed graph
- Score each edge independently
- Find maximum spanning tree

❖ Find the Best Incoming

❖ Subtract the Max for Each

Contract a Node

* Recursively Call Algorithm

***** Expand Nodes and Delete Edge

Neural Models for Graph-based Dependency Parsing

Phrase Embeddings
BiLSTM Feature Extractors
BiAffine Classifier

Phrase Embeddings

(Pei et al. 2015)

Motivations

words surrounding or between head and dependent are important clues

BiLSTM Feature Extractors

(Kipperwasser and Goldberg, 2016)

Simpler and better accuracy than manual extraction

Pointer Network

attention

- q가 vector x의 요소인 x(i) 각각에 어느 정도 attention을 둬야하는지 수치로 계산하는 방법.
- 따라서 관련도를 계산하는 score f(x(i), q)를 어떻게 정의하는 지가 중요
- Dependency parsing과 관련하여 attention mechanism은 LSTM기반 graph-based approach 에서 score(h, m)를 계산하는 데 그대로 활용됨

$$u_j^i = v^T \tanh(W_1 e_j + W_2 d_i) \quad j \in (1,\dots,n)$$
 attention weight
$$p(C_i|C_1,\dots,C_{i-1},\mathcal{P}) = \operatorname{softmax}(u^i)$$

BiAffine Classifier

Dozat and Manning, 2017)

❖ vector를 MLP를 통해 한번 더 추상화 한 뒤 bilinear classifier로 attention scoring을 적용한 모델.

BiAffine Classifier

Dozat and Manning, 2017)

- deep bilinear attention mechanism: uses the recurrent states directly
 - Learn specific representations for head/dependent for each word

$$\mathbf{h}_{i}^{(arc\text{-}dep)} = \text{MLP}^{(arc\text{-}dep)}(\mathbf{r}_{i})$$

$$\mathbf{h}_{j}^{(arc\text{-}head)} = \text{MLP}^{(arc\text{-}head)}(\mathbf{r}_{j})$$

$$\mathbf{s}_{i}^{(arc)} = H^{(arc\text{-}head)}U^{(1)}\mathbf{h}_{i}^{(arc\text{-}dep)}$$

$$+ H^{(arc\text{-}head)}\mathbf{u}^{(2)}$$

감 사 합 니 다.

남궁영 한국해양대학교 컴퓨터공학과 young_ng@kmou.ac.kr