Лабораторные работы МФТИ

Лабораторная работа 1.1.8

Измерение ускорения свободного падения

Теоретическая справка

- Уравнение ускоренного движения : $y = v_0 t + \frac{g t^2}{2}$
- Для n-го пролета между датчиком (расстояние между метками l): $nl = v_0 t_n + \frac{g_0 t^2}{2}$
- Сила сопротивления: $F_{\text{conp}} = C\pi r^2 \rho v^2 = mkv^2$
- Усредним силу сопротивления и получим формулу для $\Delta g:\Delta g=rac{k v_{\max}^2}{3}$
- $g = g_0 \Delta g$

Экспериментальные данные

r, MM	l, см	т, гр	C	ρ , k Γ/M^3
15	38.8	106	0.2	1.2

_

Таблица 1: Значениея необходимых величин

Таблица 2: Временя пролета первых трех меток

Рис. 1: График, тангенс наклона которго равен g_0

$$g_0 = 9.966 \; {
m M/c^2}$$
 $\upsilon_{
m max} pprox 6.3 {
m M/c} => \Delta g = 0.0022 \; {
m M/c^2}$ $\Delta g: g = 9.964 \; {
m M/c^2}$