Statistics 305: Introduction to Biostatistical Methods for Health Sciences

R Demo for Chapter 14: Inference for Proportions

Jinko Graham

2018-08-23

Confidence Intervals

Recall: WHI has 16,608 women aged 50 to 79 randomized to receive either estrogen plus progestin (EP; $n_1 = 8506$), or a placebo ($n_2 = 8102$). After five years, 166 or those in the EP group had developed invasive breast cancer, compared to 122 in the placebo group.

```
numCancer1 <- 166; n1 <- 8506 #EP group
p1hat <- numCancer1/n1
numCancer2 <- 122; n2 <- 8102 #Placebo group
p2hat <- numCancer2/n2
phatDiff <- p1hat - p2hat
phatDiff</pre>
```

```
## [1] 0.004457626
```

▶ The difference in proportions is about 0.004

- ▶ 95% CI is estimate \pm margin of error, where
 - estimate of $p_1 p_2$ is $\hat{p}_1 \hat{p}_2 = 0.0044$
 - margin of error is a critical value times standard error of difference.

```
zstar <- qnorm((1-.95)/2,lower.tail=FALSE) #get critical value
se <- sqrt(p1hat*(1-p1hat)/n1 + p2hat*(1-p2hat)/n2) #get se
me <- zstar*se #get margin of error

CI <- c(phatDiff - me,phatDiff + me)
CI</pre>
```

[1] 0.000498629 0.008416622

The 95% CI is about (0.0005, 0.008)

R Lookup Table

CI for Difference of Proportions

▶ $n_1 = 8506$ women receive EP and $n_2 = 8102$ receive placebo. 166 in EP group and 122 in placebo group get breast cancer. Table to help understand R code:

R variable	Notation	Value
numCancer1	-	166
n1	n_1	8506
p1hat	$\hat{\rho}_1$	166/8506
numCancer2	_	122
n2	n_2	8102
p2hat	\hat{p}_2	122/8102
phatDiff	$\hat{ ho}_1 - \hat{ ho}_2$	0.0044
zstar	z^*	1.96
se	$\sqrt{\hat{p}_1*(1-\hat{p}_1)/n_1+\hat{p}_2*(1-\hat{p}_2)/n_2}$	0.00202
CI	$(\hat{ ho}_1 - \hat{ ho}_2) \pm z^* * \sqrt{\hat{ ho}_1 * (1 - \hat{ ho}_1)/n_1 + \hat{ ho}_2 * (1 - \hat{ ho}_2)/n_2}$	(0.0005,
	·	0.008)

Test statistic

- ▶ Under $H_0: p_1 p_2 = 0$ or $p_1 = p_2 = p$, and so both the EP and placebo populations have the same proportion p of cancer cases.
- ► Calculating the test statistic requires the pooled-sample estimate of *p*.

```
\label{eq:phat} $$ phat <- (numCancer1+numCancer2)/(n1+n2) $$ \#pooled-sample estimate of p $$ se <- sqrt(phat*(1-phat)*(1/n1+1/n2)) $$ \#based on phat $$ z <- phatDiff/se $$ z $$
```

```
## [1] 2.199707
```

▶ The test statistic is about 2.2

Hypothesis test

For the hypothesis test of $H_0: p_1 - p_2 = 0$ vs. $H_a: p_1 - p_2 \neq 0$, we have:

```
pval<-2*pnorm(abs(z),lower.tail=FALSE)
pval</pre>
```

```
## [1] 0.02782772
```

- * The pvalue is about 0.03.
 - ▶ We therefore reject H_0 at the 5% level.
 - There is statistical evidence that women taking EP have a higher risk of invasive breast cancer than those taking the placebo.

R Lookup Table

Testing
$$H_0: p_1 - p_2 = 0$$
 vs. $H_a: p_1 - p_2 \neq 0$.

▶ $n_1 = 8506$ women receive EP and $n_2 = 8102$ receive placebo. 166 in EP group and 122 in placebo group get breast cancer.

R variable	Notation	Value
numCancer1	_	166
n1	n_1	8506
p1hat	$\hat{ ho}_1$	166/8506
numCancer2	<u>-</u>	122
n2	n_2	8102
p2hat	\hat{p}_2	122/8102
phatDiff	$\hat{p}_1 - \hat{p}_2$	0.0044
1	71 72	
phat	ĝ	166+122
phao	P	8506+8102
se	$\sqrt{\hat{p}*(1-\hat{p})*(1/n_1+1/n_2)}$	0.00203
z	$\frac{(\hat{ ho}_1 - \hat{ ho}_2)}{\sqrt{\hat{ ho}*(1-\hat{ ho})*(1/n_1+1/n_2)}}$	2.2
	$\sqrt{\hat{p}*(1-\hat{p})*(1/n_1+1/n_2)}$	
_	0 0(7 > 1 1)	0.00
pval	$2*P(Z \geq z)$	0.03

Test and CI using prop.test()

Can also use prop.test() function to get p-value and CI.

```
numCancer <- c(numCancer1,numCancer2)</pre>
n < -c(n1,n2)
prop.test(numCancer,n,conf.level=0.95,correct=FALSE)
##
##
   2-sample test for equality of proportions without continuity
##
   correction
##
## data: numCancer out of n
## X-squared = 4.8387, df = 1, p-value = 0.02783
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.000498629 0.008416622
## sample estimates:
##
       prop 1
              prop 2
## 0.01951564 0.01505801
```

Software Notes

- Arguments to prop.test():
 - ► The first two arguments are the numbers of successes (cancers) and number of trials (women), respectively.
 - conf.level is the confidence-interval level (default = 0.95).
 - correct specifies whether to apply a "continuity correction" that improves the statistical inference when the total size of the sample is small. The default is correct=TRUE, but I set correct=FALSE to re-create the results from using the formulas in the text.

Output:

- Mostly like the output of t.test()
- ▶ X-squared is the square of the test statistic Z that we have discussed. This has a chi-squared (χ^2) distribution with one df.
- When the alternative hypothesis is two-sided, the p-value from the χ^2 test is equivalent to the p-value from the Z-test.