实验一:门电路逻辑功能测试

参考资料

数字电子技术基础 4.8 数值比较器 哔哩哔哩 bilibili

逻辑门维基百科

Logisim入门教程-CSDN博客

任务要求

数字逻辑实验报告要求:

- 1.将实验课上做过的部分全部手动抄写一遍 (只写做过的那部分),包括实验目的,设备 器件,实验内容及步骤结果;
- 2.使用川农大实验报告纸撰写;
- 3.需要在报告上写清学号,姓名,专业班级;
- 4.每节课下次实验交上次实验的实验报告; 5.发展加分选做部分:请设计一个能判断两个1位2进制数的A,B大小的电路(用与非门) 实现,包括真值表和实现电路。

1. 实验目的

- 熟悉门电路的逻辑功能;
- 熟悉 TDX-DS/ADS 实验系统的使用。

2. 实验设备和器件

- TDX-DS 或 TDX-ADS 实验箱 1 台
- 74LS00 2 输入端四与非门 1 片
- 74LS02 2 输入端四或非门 1 片
- 74LS04 六反相器 1 片
- 74LS86 2 输入端四异或门 1 片

3. 实验内容及步骤

3.1 实验一:74LS00型与非门逻辑功能测试

3.1.1 实验步骤

- (1) 用逻辑电平开关给门输入端 A、B 输入信号,用 "H"或 "1"表示输入高电平,用 "L"或 "0"表示输入低电平。
- (2) 用发光二极管 (LED) 显示门输出状态。当 LED 亮时,表示门输出状态为"1";当 LED 灭时,表示门输出状态为"0"。
- (3) 将结果填入下表,判断功能是否正确。

3.1.2 实验结果

• 与非门输入、输出电平关系

输入A	输入 B	输出 Y
0	0	1
0	1	1
1	0	1
1	1	0

3.2 实验二:74LS86型异或门逻辑功能测试

3.2.1 实验步骤

测试方法同上,将输入端 A、B 接逻辑开关,输出端 Y 接 LED 显示,将实验结果填入表中。

3.2.2 实验结果

• 异或门输入、输出电平关系

输入A	输入B	输出 Y
0	0	0
0	1	1
1	0	1
1	1	0

3.3 实验三:74LS02或非门和74LS04反相器逻辑功能测试

3.3.1 实验步骤

测试方法同上,将输入端 A、B 接逻辑开关,输出端 Y 接 LED 显示,将实验结果填入表中。

3.3.2 实验结果

• 74LS02 型或非门输入、输出电平关系

输入 A	输入 B	输出 Y
0	0	1
0	1	0
1	0	0
1	1	0

• 74LS04 反相器输入、输出电平关系

输入 A	输出 Y
0	1
1	0

3.4 实验五:与非门信号选通

3.4.1 实验步骤

利用与非门的功能特点,可以用于控制一个时钟信号的选通。

- (1) 选择一组与非门,将其其中一输入端 A 作为信号端,另一输入端 B 作为选通信号,输出 Y 即为选通输出。
- (2) 按照 2-1-5 所示连接测量线路。
- (3) 进入逻辑分析仪,设置触发为上升沿触发,选择通道1为触发源。
- (4) 按动 KK1+, 观察通道 2 的选通输出如何变化,记录下波形。

3.4.2 实验结果

3.5 实验四:门电压传输特性测试

选择一组与非门按图 2-1-3 所示接线,每给定一个输入电压,通过电压测量测出相应的输出电压, 将测得的结果填入下表,并根据所测数据绘制 Vi-Vo 曲线。

门电压传输特性

Vi(V)	0	0.2	0.4	0.6	0.8	0.9
Vo(V)						
Vi(V)	1.05	1.1	1.15	1.2	2	3
Vo (V)						

3.6 附加实验:一位二进制数值比较器

3.6.1 实验步骤

理解功能: 电路判断 A 是否大于 B,同理将A,B跟换端口,即可判断B是否大于A,若两个电路输出都为0证

明A=B。

逻辑表达式: A > B 等价于 A AND (NOT B)。

3	列表格				写函数
A	В	$Y_{(A>B)}$	$Y_{(A=B)}$	$Y_{(A \leq B)}$	$Y_{\cdot \cdot \cdot} = AR^{\dagger}$
0	0	0	1	0	$Y_{(A>B)}=AB'$
Q	1	0	0	1	$Y_{(A=B)} = A'B' + AB$
1	0	1	0	0	
1	1	0	1	0	$Y_{(A < B)} = A'B$

真值表:

输	λ	斩	, ,	出
\boldsymbol{A}	B	$Y_{(A>B)}$	$Y_{(A\leq B)}$	$Y_{(A=B)}$
0	0	0	0	1
0	1	0	1	0
1	0	1	0	0
1	1	0	0	1

与非门实现:

- 用一个与非门实现 NOT B (B 接与非门两输入)。
- 用一个与非门实现 NOT (A AND (NOT B)) (输入为 A 和 NOT B)。
- 再用一个与非门实现 NOT (NOT (A AND (NOT B))), 得到 A > B。

绘制电路图: 根据上述与非门连接方式画出电路图。

3.6.1.1 使用logisim根据真值表自动绘制逻辑电路图

File Edit Project Simulate Window Help

Inputs	Outputs	Table	Exp	ressio	on Mi	nimiz	ed
			A	В	YI	Y2	Y3
			0	0	0	0	1
			0	1	0	1	0
			1	0	1	0	0
			1	1	0	0	1
				Bui	11 -	rcuit	

3.6.1.2 自己设计的方案

实验验证:

- 用 74LS00 (四与非门) 芯片搭建电路。
- 用逻辑开关输入 A、B。
- 用 LED 观察输出,验证真值表。

3.6.2 实验结果

