Géométrie et Espaces de Formes - Exercice 6

Tong ZHAO (tong.zhao@eleves.enpc.fr)

Exo 6.1

Soit $(\varphi_n)_{n\geq 0}$ une suite minimisante, on a:

$$\sup_{n} d_G(Id, \varphi_n) < \infty$$

Par suite $\exists (u_n) \in (L_V^2)^{\mathbb{N}}$ tel que $\varphi_n = \phi_1^{u_n}$ et $||u_n||_2 = d_G(Id, \varphi_n)$. $||u_n||_2$ est borné en n. Il existe u_{n_k} qui converge faiblement vers u_{∞} . On a donc:

$$||u_{\infty}||_2 \leq \lim ||u_{n_k}||_2$$

On a $\varphi_{\infty} \in G$ et $\varphi_{\infty} \stackrel{\triangle}{=} \phi_{1}^{\infty}$, alors:

$$d_G(Id, \varphi_\infty) \le ||u_\infty||_2 \le \lim d_G(Id, \varphi_{n_k})$$

Par la continuté faiblement du flot, φ_{n_k} converge compacte uniformément vers φ_{∞} d'où $E(\varphi_{\infty}) \le \lim E(\varphi_{n_k})$. $d_G(\varphi, \varphi') \ge ||u_{\infty}||_2 \ge ||u_{\infty}||_1 \ge d_G(\varphi, \varphi')$.

Ainsi:

$$J(\varphi_{\infty}) = R(d_G(Id, \varphi_{\infty})) + E(\varphi_{\infty})$$
$$R(d_G(Id, \varphi_{\infty})) = \underline{\lim} R(d_G(Id, \varphi_{\infty}))$$
$$E(\varphi_{\infty}) = \underline{\lim} E(\varphi_{\infty})$$

donc inf $J(\varphi) \leq J(\varphi_{\infty}) = \underline{\lim} R(d_G(Id, \varphi_{\infty})) + \underline{\lim} E(\varphi_{\infty}) \leq \underline{\lim} J(\varphi_n) = \inf J(\varphi).$

On en déduit alors qu'il existe $\varphi^* \in G_V$ tel que $J(\varphi^*) = \inf_{\varphi \in G_V} J(\varphi)$.