E-commerce Fraud Transactions

•••

Presented by: Hugo Milesi

Last Updated: June 19th, 2024

Overview

- Analyze E-commerce company data to predict whether or not a transaction is fraudulent or not.
- The data has 1472952 unique transactions (16 features).
 - Is fraudulent (0 or 1)
 - Transaction information (transaction amount, date, quantity, etc)
 - Demographic information (customer age, location)
- Source: <u>Kaggle</u>

Target Variable - Is Fraudulent

- **Imbalance target**: The dataset is highly imbalanced with only 5% of the transactions being fraudulent.
- To approach this problem, i will use an oversampling technique callet SMOTE.

Distribution of Transaction Values

- Transaction amount exceeding 4000 are predominantly fraudulent.
- Fraudulent Transactions tend to have higher amounts.

Customer Age

- Given the summary of the boxplot for customer age, it is clear that the data contains erroneous values.
- The lower fence outliers indicate ages smaller than 9 and impossible values like negative ages.

Quantity, Product Category and Device Used

desktop

device used

mobile

100000

tablet

Distribution of Account Age (days)

Accounts created recently exhibit a higher tendency for fraudulent activity.

Time Frames

- Hours 0 to 4 exhibit a higher frequency of fraudulent transactions.
- Day 1 and 2 have higher number of transactions.
- Even distribution for weekday.
- Low register for month4.

Model Explanation

- Fully connected neural network with 2 hidden layers to classify the transactions.
- The neural network has 23 input nodes (the number of all the features of the dataset), 32 nodes in the first hidden layer, 16 in the second hidden layer and 2 output nodes for each class (fraudulent and non-fraudulent).

Loss and Accuracy Results

- The training loss and test loss shows that the model was able to converge and learn from the training data without overfitting.
- Similarly, the training and test accuracy shows that the model was able to achieve good accuracy on both data.
- Accuracy plateaued around 87% with a loss score of 2977.

Test and Validation Results

Test Results

	precision	recall	f1-score	support		precision	recall	f1-score	support
non-fraudulent Fraudulent	0.83 0.93	0.93 0.81	0.88 0.86	279823 279823	non-fraudulent Fraudulent	0.92 0.93	0.94 0.92	0.93 0.93	22412 22412
accuracy macro avg weighted avg	0.88 0.88	0.87 0.87	0.87 0.87 0.87	559646 559646 559646	accuracy macro avg weighted avg	0.93 0.93	0.93 0.93	0.93 0.93 0.93	44824 44824 44824

- **Perform comparison:** The model performs slightly better on the validation set compared to the test set, with higher precision, recall and F1-scores.
- **Precision and Recall Trade-off:** For fraudulent transactions, precision is high, meaning some fraudulent transactions might not be detected. For non-fraudulent transactions, the opposite is true, with slightly lower precision and higher recall.

Conclusions

- **Imbalance dataset**: The target variable is highly imbalanced with only 5% of the transactions being fraudulent.
- Fraudulent Transactions tend to have higher amounts.
- Accounts created recently exhibit a higher tendency for fraudulent activity.
- Hours 0 to 4 exhibit a higher frequency of fraudulent transactions.
- The model is composed of four layers. The input layer contains 23 nodes, corresponding to each feature. It includes two hidden layers, and the output layer consists of 2 nodes.
- Model Accuracy plateaued around 87% with a loss score of 2977.
- The slight differences between the test and validation results suggest that the model is well-tuned but should still be monitored for any signs of overfitting or underfitting in future data.