Parallel Computing: Performance Overview Quiz by CCL

	Which approach should we use to benchmark runtime across languages in Julia? (2:49)
	The Otime macro
	○ BenchmarkTools
	<pre>time_ns() A stopwotch</pre>
	○ A stopwatch
2.	What is NOT a possible cause of inconsistencies in runtime taken, when summing elements in a rand(1:10000) dim array? (3:00)
	○ Using an unreliable library for timing
	○ The random seed for array dimensions
	○ Competition with other computer process
	○ None of the above
3.	What of the following is NOT a feature of BenchmarkTools' @benchmark macro? (4:26)
	○ Memory estimate
	○ Allocs estimate
	○ Remaining RAM
	○ Mean time
4.	Which of the following is NOT true about benchmarking Python and C in Julia? (time stamp: 7:41)
	○ C code in IJulia is commonly executed with Libdl
	O Python code in IJulia is commonly executed with Pycall
	O Python built-in functions are slower than Numpy
	○ Numpy is implemented in and callable from Python
5.	Which of the following is a reason why Julia built-in and Python Numpy functions are so much faster than Python? (15:53)
	 Python is a dynamically-typed language and checks variable types during runtime Numpy and Julia exploit parallelism
	O Python interprets code at runtime to know which functions to dispatch
	○ All of the above
6.	Which of the following is NOT true about allowing floating point associativity in Julia? (16:19)
	○ Uses packages Distributed and DistributedArrays
	O Puts to work multiple cores or computers for a single task
	○ Is an example of parallel computing
	○ Is only possible on GPU machines
7.	What is the main difference between parallelism with SIMD vs DistributedArrays? (26:12)
	Only the latter allows for floating point associativity
	○ The former is performed on CPUs, and the latter on GPUs
	O Parallelism with SIMD is generally faster than with DistributedArrays
	○ SIMD performs single-processor parallelism, while DistributedArrays perfroms multi-process parallelism

Answers: B, D, C, D, D, D, A