Optimal Charging Problem Formulation

J

UC Berkeley 03/08/2018

Optimal Control Problem

$$\min_{I(t),x(t),t_f}$$

Subject to

Model Dynamics

Input Constraints

State Constraints

Side Reaction Constraints

Time Constraints

Initial Conditions

Terminal Conditions

Possible Objective Functions

Minimum Time

$$J = \int_{t_0}^{t_f} 1dt$$

Minimum Time and Temperature Rise

$$J = \beta \int_{t_0}^{t_f} 1dt + (1 - \beta) \left(T(t_f) - T(t_0) \right)$$

Minimum Time and Side Reaction Overpotential (If $\eta_s(t)$ is allowed to go below 0V)

$$J = \beta \int_{t_0}^{t_f} 1 dt + (1 - \beta) \int_{t_0}^{t_f} -[\eta_s(t)]^{-} dt$$

where
$$[\eta_s(t)]^- = \min\{0, \eta_s(t)\}$$

Possible Model Dynamics

Single Particle Model with Electrolyte and Temperature Dynamics

Solid Phase Concentration States

$$c_s^{\pm}(r,t)$$

UC Berkeley – LG Chem – BIC

Electrolyte Phase Concentration States

$$c_e^{\{-,sep,+\}}(x,t)$$

Temperature States

Inputs

Outputs

$$SOC(t), V(t), \eta_s(t)$$

Possible Constraints

Input Constraints

$$I_{min} \leq I(t) \leq I_{max}$$

State Constraints

$$\theta_{min}^{\pm} \leq \frac{c_s^{\pm}(r,t)}{c_{s,max}^{\pm}} \leq \theta_{max}^{\pm}$$

$$c_{e,min} \leq c_e^{\{-,sep,+\}}(x,t) \leq c_{e,max}$$

$$T_{min} \leq T(t) \leq T_{max}$$

Side Reaction Constraints

$$\eta_s(t) \ge 0$$

Time Constraints

$$t_0 \le t_f \le t_{max}$$

Initial and Terminal Conditions

Initial Conditions

$$c_s^\pm(r,t_0)=c_{s,0}^\pm$$

$$c_e^{\{-,sep,+\}}(x,t_0) = c_{e,0}^{\{-,sep,+\}}$$

$$T(t_0) = T_0$$

$$SOC(t_0) = SOC_0$$

UC Berkeley – LG Chem – BIC

Terminal Conditions

$$SOC(t_f) = SOC_f$$