Table a44 Input data, **soccerball.bin**, for re-loading the shell with Load Set A: the uniform external pressure. This run immediately follows the STAGS run for which the soccerball.bin file is listed in Table a42 (load-relaxation to determine the residual "cos(theta)" dent). Note that NSTRAT = 0, NPATH = 0, and NSOL = 1 (discontinuous solution). The purpose of this and the following STAGS run is to determine the collapse pressure of the shell with the residual "cos(theta)" dent in it.

optimized imperfect shell, nonlinear theory (INDIC=3)

- 3, \$ INDIC=1 is bifur.buckling; INDIC=3 is nonlinear BEGIN B-1
- 1, \$ IPOST=1 means save displacements every IPOSTth step
- 0, \$ ILIST = 0 means normal batch-oriented output
- 0, \$ ICOR = 0 means projection in; 1 means not in.
- 1, \$ IMPTHE=index for imperfection theory.
- 0, \$ IOPTIM=0 means bandwith optimization will be performed
- 0, \$ IFLU =0 means no fluid interaction.
- -1 \$ ISOLVR= 0 means original solver; -1 new solver.END B-1 rec
- 5.0E-02, \$ STLD(1)=starting load factor, System A. BEGIN C-1 rec.
- 5.0E-02, \$ STEP(1)=load factor increment, System A
- 0.700, \$ FACM(1) = maximum load factor, System A
- 0., \$ STLD(2) = starting load factor, System B
- 0., \$ STEP(2) = load factor increment, System B
- 0.0, \$ FACM(2) = maximum load factor, System B
- 0 \$ ITEMP = 0 means no thermal loads. END C-1 rec.
- 40, \$ ISTART=restart from ISTARTth load step. BEGIN D-1 rec.
- 500,\$ NSEC= number of CPU seconds before run termination
- 10,\$ NCUT = number of times step size may be cut
- -20, \$ NEWT = number of refactorings allowed
- 0,\$ NSTRAT=-1 means path length used as independent parameter
- 0.00010,\$ DELX=convergence tolerance
- 0. \$ WUND = 0 means initial relaxation factor =1.END D-1 rec.
- 0, 0, 1 \$ NPATH=0: Riks, NEIGS=no.of eigs, NSOL=1=discontin.ET-1
