Analyse statistique des données de qPCR du projet ATB biofilm

Sofia DEMMOU

01/04/2022

Table des matières

onctions	1
est sur les données	3
nalyse statistique	3
Fonction finale résultats	4
ésultats	7
16S	
qnrA	12
qnrB	
qnrS	20
anrD	25

Fonctions

Fonction pour importer les données et ajouter les colonnes "ID", "[ADN]ng/µL" et "Dilution".

Fonction de remplacement des données.

```
tri_qPCR = function(tab,Y.intercept,slope,gammeNTC=FALSE,LOQ,moyLOQ,target=FALSE,range=FALSE,ref){
    #paramètre target pour sélectionner un gène en particulier pour la suite
    if (target!=FALSE){
        tab=subset(tab, Target==target)
}

#On calcule la moyenne et le range des Tm STD
    m.Tm.STD=mean(as.numeric(tab$`Melt Temperature`[which(tab$ID=="STD" & tab$`Melt Temperature`!="None")
    #on attribue la même valeur au m.Tm.STD min et max pour
    m.Tm.STD.min=m.Tm.STD
    m.Tm.STD.max=m.Tm.STD
```

```
#si on choisit l'option range
if (range==TRUE){
 r.Tm.STD=range(as.numeric(tab$`Melt Temperature`[which(tab$ID=="STD" & tab$`Melt Temperature`!="Non
 m.Tm.STD.min=r.Tm.STD[1]
 m.Tm.STD.max=r.Tm.STD[2]
}
#On calcule le range des Cq STD
r.Cq.STD=range(as.numeric(tab$Cq[which(tab$ID=="STD" & tab$Cq!="None")]))
#Si on a des Tm différents des Tm Ok
tab$Cq_modif=tab$Cq #création d'une colonne pour les Cq modifiés (copie de la colonne Cq)
tab$Cq_modif[which(tab$Content!="NTC" & tab$`Melt Temperature`!="None" & (tab$`Melt Temperature`<=m.Ti
\#si on a des None pour les Tm
tab$Cq_modif[which(tab$`Melt Temperature`=="None")]=40
tab$Tm_QC="PASS" #création d'une colonne indiquant si le Cq de la ligne (l'échantillon) a été modifié
tab$Tm_QC[which(tab$Content!="NTC" & (tab$`Melt Temperature`<=m.Tm.STD.min-1 | tab$`Melt Temperature`
#Si on a des NTC avec des Cq (pas NA), et des pics au même endroit que les Tm STD => on crée une list
if (gammeNTC=="NTC"){
 li=which(tab$Content=="NTC" & is.na(tab$Cq)==FALSE & tab$`Melt Temperature`>=m.Tm.STD.min-1 & tab$`
  tab$Tm QC[li]=FALSE
  if (length(li)!=0){ #si cette liste existe bien (non vide)
   μ.Cq.NTC=mean(as.numeric(tab$Cq[li]))
   r.Cq.NTC=range(as.numeric(tab$Cq[li]))
    #On visualise le range et la moyenne des Cq NTC
   print(µ.Cq.NTC)
   print(r.Cq.NTC)
    #Pour les échantillons avec Tm +/- moy des Tm STD (Tm OK)
    ech=which(tab$`Melt Temperature`>=m.Tm.STD.min-1 & tab$`Melt Temperature`<=m.Tm.STD.max+1)
    \#Si\ Cq(ech) >= LOQ\ (Cqmean\ NTC\ -\ 1)
    ech2=which(tab$Cq[ech]>=(\mu.Cq.NTC-1))
    if (length(ech2)!=0){ #si on vérifie bien cette condition
     tab$Tm_QC[ech]=FALSE
      #Si CqmeanNTC < 35
     if (\mu.Cq.NTC<35){
        tab$Cq_modif[ech]=\mu.Cq.NTC
       }
      #Si CameanNTC > 35
      else{
        tab$Cq_modif[ech]=35-2
   }
}
if (gammeNTC=="gamme"){
  #parametre gammme => oui => Cq le moins concentré range max +2 pour non quanti
```

```
ech.out = which(tab$Cq > max(tab$Cq[which(tab$ID=="STD")])) #si Cq > à Cq le moins concentré
 tab$Cq_modif[ech.out]=moyLOQ+2
  tab$Tm_QC[ech.out]=FALSE
#On calcule SQ avec les nouveaux Cq
\# \ tab\$SQ\_final=10^{((as.numeric(tab\$Cq\_modif)-Y.intercept)/slope)}
tab$SQ final=10^((as.numeric(tab$Cq modif)-tab$"Y-Intercept")/tab$Slope)
#on garde la valeur de départ pour les STD
tab$SQ_final[which(tab$ID=="STD")]=tab$`Starting Quantity (SQ)`[which(tab$ID=="STD")]
#on rajoute col SQ/dil
tab$SQ_dil=tab$SQ_final #on copie la colonne SQ_final pour la modifier par rapport aux dilution des é
dil_ech=which(tab$Dilution!="NA" & tab$Dilution!="ND" & tab$Dilution!="24.02.20") #on sélectionne les
tab$SQ_dil[dil_ech]=tab$SQ_final[dil_ech]*as.numeric(tab$Dilution[dil_ech])
tab$rapport=tab$SQ_dil/ref #ou SQ_final
#on rajoute une colonne pour les log des rapports
tab$log_rapport=log(tab$rapport,10) #attention bien mettre la base 10 (sinon base exp(1))
tab$absolu=tab$SQ_dil*42
tab$absolu[which(tab$ID=="55")]=tab$SQ_dil[which(tab$ID=="55")]*325
tab$absolu[which(tab$ID=="54" | tab$ID=="56"| tab$ID=="57"| tab$ID=="58"| tab$ID=="119"| tab$ID=="120
tab$log_absolu=log(tab$absolu,10)
return(tab)
```

Test sur les données

Tri des données de qPCR

Plots

Graphique des Cq en fonction des Tm pour chaque gène qnr, permettant de vérifier les résultats obtenus avec la fonction de tri des données de qPCR.

Analyse statistique

Normalité des rapports SQgene/SQref (dilués)

Rapport SQgene/SQref

Vérification, pour chaque gène qnr, de la normalité des rapports SQ(gène)/SQ(ref) avec le test de Shapiro. Visualisation graphique de la répartition des données.

Log des rapports SQgene/SQref

Fusion des tableaux qPCR et metadata (pour avoir les facteurs dans le même tableau)

Modèle pour les campagnes AB

Analyse de la significativité des facteurs bioréacteur, matériel, inoculum, campagne et jour sur le rapport SQ(gène)/SQ(ref).

Il y a 32 échantillons pour la campagnes A et B, mais que 2 échantillons à comparer entre 2 conditions (que Inoculum sans prendre en compte les autres facteurs par exemple)

Pb avec modele AB qui n'affiche pas I ??????????

La normalité n'étant pas toujours respectée, une transformation des rapports en log est nécessaire :

Modèle pour les campagnes EF

Analyse de la significativité des facteurs dosage (forte concentration ou faible concentration) et traitement en FQ sur le rapport SQ(gène)/SQ(ref).

La normalité n'étant pas toujours respectée, une transformation des rapports en log est nécessaire :

Comparaison des moyennes au témoin

Campagnes AB

Campagnes EF

Comparaison au témoin (None) en fonction du type d'ATB (FQ1, FQ2 ou FQ1+FQ2):

Comparaison au témoin (None) en fonction du dosage (High ou Low) :

Fonction finale résultats

```
results_log = function(tab,metadata,testNormalite=FALSE,extendedResults=FALSE){
    for (i in 1:20){
        metadata$ID_ech[i]=str_sub(row.names(metadata)[i],11,end=-19)
    }
    for (i in 21:58){
        metadata$ID_ech[i]=str_sub(row.names(metadata)[i],18,end=-19)
}

tab_lm = merge(tab,metadata, by.x = "ID",by.y = "ID_ech", all.x=TRUE)

#séparation du tableau complet en sous tableaux pour les camapagnes AB et EF (on enlève les échantill tab_lm_AB = subset(tab_lm, Content=="Unkn" & (Campain=="A" | Campain=="B"))
    tab_lm_EF = subset(tab_lm, Content=="Unkn" & (Campain=="E" | Campain=="F"))
        nrow(tab_lm_AB)
        nrow(tab_lm_AB)
        nrow(tab_lm_EF)

cat("\n")
    cat(paste("\t\t","********************,"Facteurs significatifs","*********,sep=""),'\n\n')
    cat(paste("\t\t","*******","Facteurs significatifs","*******,sep=""),'\n\n')
```

```
B=as.factor(tab_lm_AB$Bioreacteur)
M=as.factor(tab_lm_AB$Material)
I=as.factor(tab lm AB$Inoculum)
C=as.factor(tab lm AB$Campain)
Jour=as.factor(tab_lm_AB$Day)
AB.log= tab_lm_AB$log_absolu
if (testNormalite==TRUE){
   p1=ggplot(tab lm AB, aes(x=ID,y=log absolu,label=ID)) + geom point(size=0.5) + geom text(size=2.5)
}
shapiro.test(AB.log) #p-value = 0.07119 (qnrA); 9.862e-08 (qnrB); 0.0009526 (qnrS); 0.07227 (qnrC); 0
\#AB = \mu AB + B + M + I + M * I + C + J + I * J + J * M + J * M * I + e
model.AB.log=lm(AB.log~1+B+M+I+M:I+C+Jour+I:Jour+Jour:M)
if (extendedResults==TRUE){
 par(mfrow=c(2,2)); plot(model.AB.log); par(mfrow=c(1,1))
#pour Anova : Normalité des résidus ou Normalité de chacun des groupes
if (testNormalite==TRUE){
   print(shapiro.test(model.AB.log$residuals))
}
\#p-value = 0.7034
if (extendedResults==TRUE){
 print("####ANOVA")
 print(anova(model.AB.log))
cat('\n\n')
print("####Summary model")
print(summary(model.AB.log))
cat('\n')
if (extendedResults==TRUE){
 print("####Tukey")
 print(TukeyHSD(aov(AB.log~1+B+M+I+M:I+C+Jour+I:Jour+Jour:M), ordered=TRUE))
cat("\n\n")
cat(paste("\t","******","Comparaison au témoin","******",sep=""),'\n\n')
cat('\n')
tab_lm_AB_dunnett = subset(tab_lm, Content=="Unkn" & Campain!="E" & Campain!="F") #on prend tous les
\# \ tab\_lm\_AB\_dunnett\$Inoculum[which(tab\_lm\_AB\_dunnett\$Material == 0 \ | \ tab\_lm\_AB\_dunnett\$ID == 55)] = "envt"
tab_lm_AB_dunnett$Inoculum[which(tab_lm_AB_dunnett$ID==0)]="WW_envt"
tab_lm_AB_dunnett$Inoculum[which(tab_lm_AB_dunnett$ID==55)]="BF_envt"
if (extendedResults==TRUE) {
 model.AB.dunnett <- aov(log_absolu~Inoculum, data = tab_lm_AB_dunnett)</pre>
  shapiro.test(model.AB.dunnett$residuals) #si non normalité des résidus on fait Dunn test ?
 print(summary(model.AB.dunnett))
 print(kruskal.test(log_absolu~Inoculum, data = tab_lm_AB_dunnett))
print(ggplot(tab_lm_AB_dunnett, aes(x=Inoculum, y=log_absolu,color=Inoculum)) +
  geom_boxplot(outlier.colour="black", outlier.shape=16,outlier.size=2, notch=FALSE) +
  scale_color_manual(values=c("#196f3d", "#1abc9c", "#56B4E9", "#2471a3")) +
  geom_dotplot(binaxis='y', stackdir='center',
```

```
position=position_dodge(1)))
#Dunn test non paramétrique
print(dunnTest(log_absolu ~ Inoculum,
                   data=tab_lm_AB_dunnett,
                   method="bonferroni"))
cat("\n\n")
cat(paste("\t\t","**********,"Campagnes E et F","**********,sep=""),'\n\n')
cat(paste("\t","******","Facteurs significatifs","******",sep=""),'\n\n')
# cat('\n')
D=as.factor(tab_lm_EF$Dosage) #Dosage confondu avec la campagne
FQ1=as.factor(tab_lm_EF$FQ1) #présence absence
FQ2=as.factor(tab_lm_EF$FQ2) #présence absence
#J=as.factor(tab_lm_EF$Day) #J14 pour tous les échantillons donc on peut supprier ce facteur
EF.log=tab_lm_EF$log_absolu
if (testNormalite==TRUE){
      p1=ggplot(tab_lm_EF, aes(x=ID,y=log_absolu,label=ID)) + geom_point(size=0.5) + geom_text(size=2.5)
shapiro.test(EF.log)
\#EF = \mu EF + D + FQ1 + FQ2 + FQ1 * FQ2 + J + J * FQ1 + J * FQ2 + J * FQ2 + D * FQ1 + FQ2 + D * FQ2 + D *
model.EF.log=lm(EF.log~1+FQ1+FQ2+FQ1:FQ2)
if (extendedResults==TRUE){
    par(mfrow=c(2,2)); plot(model.EF.log); par(mfrow=c(1,1))
}
if (testNormalite==TRUE){
    print(shapiro.test(model.EF.log$residuals))
if (extendedResults==TRUE){
    print("####ANOVA")
    print(anova(model.EF.log))
}
cat('\n\n')
print("####Summary model")# on regarde la significativité des prédicteurs pour savoir lesquels garder
print(summary(model.EF.log)) #si significatif => montre différences significatives entre les moyennes
cat('\n')
if (extendedResults==TRUE){
   print("####Tukey")
    print(TukeyHSD(aov(EF.log~1+FQ1+FQ2+FQ1:FQ2), ordered=TRUE))
}
cat("\n")
cat(paste("\t","******","Comparaison au témoin","******",sep=""),'\n\n')
cat('\n')
cat("\n")
cat(paste("***","ATB_type","***",sep=""),'\n\n')
cat('\n')
tab_lm_EF_Dunnett=tab_lm_EF
```

```
tab_lm_EF_Dunnett$ATB_type[which(tab_lm_EF_Dunnett$ATB_type==0)]="None"
tab_lm_EF_Dunnett$ATB_type <- relevel(factor(tab_lm_EF_Dunnett$ATB_type), ref="None")</pre>
if (extendedResults==TRUE) {
 model.EF.ATB_type <- aov(log_absolu~ATB_type, data = tab_lm_EF_Dunnett)</pre>
  shapiro.test(model.EF.ATB_type$residuals)
  summary(model.EF.ATB_type)
#boxplot(log_absolu~ATB_type, data = tab_lm_EF_Dunnett)
print(ggplot(tab_lm_EF_Dunnett, aes(x=ATB_type, y=log_absolu,color=ATB_type)) +
 geom_boxplot(outlier.colour="black", outlier.shape=16,outlier.size=2, notch=FALSE) +
 scale_color_manual(values=c("#c0392b", "#E69F00", "#56B4E9", "#999999")) +
  geom_dotplot(binaxis='y', stackdir='center',
                 position=position_dodge(1)))
print(DunnettTest(x=tab_lm_EF_Dunnett$log_absolu, g=tab_lm_EF_Dunnett$ATB_type))
cat('\n')
cat("\n")
cat(paste("***", "Dosage", "***", sep=""), '\n\n')
cat('\n')
tab_lm_EF_Dunnett=tab_lm_EF
tab lm EF Dunnett$ATB type[which(tab lm EF Dunnett$ATB type==0)]="None"
tab_lm_EF_Dunnett$Dosage[which(tab_lm_EF_Dunnett$ATB_type=="None")]="None"
tab_lm_EF_Dunnett$Dosage <- relevel(factor(tab_lm_EF_Dunnett$Dosage), ref="None")
if (extendedResults==TRUE){
 model.EF.Dosage <- aov(log_absolu~Dosage, data = tab_lm_EF_Dunnett)</pre>
  shapiro.test(model.EF.Dosage$residuals)
 print(summary(model.EF.Dosage))
#boxplot(log_absolu~Dosage, data = tab_lm_EF_Dunnett)
print(ggplot(tab_lm_EF_Dunnett, aes(x=Dosage, y=log_absolu,color=Dosage)) + geom_boxplot(outlier.colo
                 position=position_dodge(1)))
library(DescTools)
print(DunnettTest(x=tab_lm_EF_Dunnett$log_absolu, g=tab_lm_EF_Dunnett$Dosage))
```

Résultats

16S

```
##
   *****Facteurs significatifs*****
##
##
##
##
## [1] "###Summary model"
##
## Call:
## lm(formula = AB.log ~ 1 + B + M + I + M:I + C + Jour + I:Jour +
##
       Jour:M)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -0.7764 -0.3034 0.1192 0.2858 0.7868
##
## Coefficients: (1 not defined because of singularities)
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.05152
                          0.27280 25.849 < 2e-16 ***
               0.27813
                          0.24400
                                    1.140 0.26660
## BB2
## BB3
               0.78822
                          0.34506
                                    2.284 0.03237 *
## BB4
               0.62917
                          0.34506
                                    1.823 0.08187 .
## MP
              -1.01175
                          0.29883
                                   -3.386 0.00266 **
## IWW
                                       NA
                    NA
                               NA
                                                NA
## CB
               0.24853
                          0.17253
                                    1.440 0.16381
## JourJ14
               0.48245
                          0.29883
                                    1.614 0.12069
## MP:IWW
               0.53670
                          0.34506
                                    1.555 0.13413
## IWW:JourJ14 0.18581
                          0.34506
                                    0.538 0.59566
## MP:JourJ14 -0.09607
                          0.34506 -0.278 0.78331
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.488 on 22 degrees of freedom
## Multiple R-squared: 0.6359, Adjusted R-squared: 0.487
## F-statistic: 4.27 on 9 and 22 DF, p-value: 0.002614
##
##
##
##
   ******Comparaison au témoin*****
## Bin width defaults to 1/30 of the range of the data. Pick better value with 'binwidth'.
## Dunn (1964) Kruskal-Wallis multiple comparison
    p-values adjusted with the Bonferroni method.
```



```
##
           Comparison
                             Z
                                  P.unadj
                                             P.adj
## 1
         BF - BF_envt -1.6551500 0.09789408 0.5873645
             BF - WW 0.9887212 0.32279955 1.0000000
## 2
         BF_envt - WW 1.9942786 0.04612162 0.2767297
## 3
         BF - WW_envt -1.5543297 0.12010580 0.7206348
## 5 BF_envt - WW_envt 0.9739642 0.33007431 1.0000000
## 6
         WW - WW_envt -2.3616172 0.01819542 0.1091725
##
##
##
##
       ##
   *****Facteurs significatifs*****
##
##
##
##
## [1] "####Summary model"
##
## lm(formula = EF.log ~ 1 + FQ1 + FQ2 + FQ1:FQ2)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
## -0.60840 -0.26846 0.02301 0.22924 0.62477
## Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.47312
                           0.20386 36.658 1.09e-13 ***
                0.06981
## FQ11
                           0.28830
                                     0.242
                                              0.813
## FQ21
               -0.32513
                           0.28830
                                   -1.128
                                              0.281
## FQ11:FQ21
               -0.31753
                           0.40772
                                   -0.779
                                              0.451
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4077 on 12 degrees of freedom
## Multiple R-squared: 0.3489, Adjusted R-squared: 0.1862
## F-statistic: 2.144 on 3 and 12 DF, p-value: 0.1479
##
##
##
##
    ******Comparaison au témoin*****
##
##
##
## ***ATB_type***
```


##
Dunnett's test for comparing several treatments with a control :
95% family-wise confidence level

```
##
## $None
##
                              lwr.ci
                     diff
                                        upr.ci
## FQ1-None
                0.0698115 -0.7037962 0.8434192 0.9897
## FQ1+FQ2-None -0.5728418 -1.3464496 0.2007659 0.1645
## FQ2-None
               -0.3251255 -1.0987332 0.4484823 0.5557
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
##
## ***Dosage***
```



```
##
## Dunnett's test for comparing several treatments with a control :
## 95% family-wise confidence level
##
## $None
## diff lwr.ci upr.ci pval
## H-None -0.5064965 -1.1592162 0.1462233 0.1320
## L-None -0.0456074 -0.6983272 0.6071124 0.9769
##
```

```
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

qnrA

```
results_log(PCR_19_qnrA_tri,metadata)
```

```
##
##
       ##
##
##
   *****Facteurs significatifs*****
##
##
##
## [1] "####Summary model"
##
## lm(formula = AB.log ~ 1 + B + M + I + M:I + C + Jour + I:Jour +
##
      Jour:M)
##
## Residuals:
##
      Min
               1Q Median
                              ЗQ
                                     Max
## -2.2572 -0.2533 0.0658 0.3784 0.7784
##
## Coefficients: (1 not defined because of singularities)
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 2.039563
                          0.397187
                                    5.135 3.8e-05 ***
                                   0.538
                                             0.596
## BB2
               0.190967
                          0.355255
## BB3
               0.692576
                          0.502406
                                   1.379
                                             0.182
                          0.502406
## BB4
                                    1.228
                                             0.232
               0.616956
## MP
              -0.479349
                          0.435096
                                  -1.102
                                             0.282
## IWW
                     NA
                               NA
                                       NA
                                                NA
## CB
               0.062779
                          0.251203
                                    0.250
                                             0.805
## JourJ14
               0.701274
                          0.435096
                                    1.612
                                             0.121
## MP:IWW
               0.512697
                          0.502406
                                    1.020
                                             0.319
## IWW:JourJ14 0.005192
                          0.502406
                                    0.010
                                             0.992
## MP:JourJ14 -0.540746
                          0.502406 -1.076
                                             0.293
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.7105 on 22 degrees of freedom
## Multiple R-squared: 0.3305, Adjusted R-squared: 0.05665
## F-statistic: 1.207 on 9 and 22 DF, p-value: 0.3397
##
##
##
##
   ******Comparaison au témoin*****
```

Dunn (1964) Kruskal-Wallis multiple comparison

p-values adjusted with the Bonferroni method.


```
##
           Comparison
                             Z
                                P.unadj
## 1
         BF - BF_envt 1.6146570 0.1063850 0.6383100
## 2
             BF - WW 0.4279540 0.6686846 1.0000000
## 3
         BF_envt - WW -1.4678700 0.1421395 0.8528372
         BF - WW_envt 0.7349931 0.4623437 1.0000000
## 5 BF_envt - WW_envt -1.2691049 0.2044037 1.0000000
## 6
        WW - WW_envt 0.3855702 0.6998150 1.0000000
##
##
##
##
       ##
   *****Facteurs significatifs*****
##
##
##
## [1] "####Summary model"
##
## Call:
## lm(formula = EF.log ~ 1 + FQ1 + FQ2 + FQ1:FQ2)
##
```

```
## Residuals:
##
       Min
                 1Q
                     Median
                                           Max
                                   3Q
## -1.52812 -0.12811 0.08067 0.33296 0.85690
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                2.5673
                           0.3572
                                   7.188 1.11e-05 ***
                           0.5051 -0.508 0.62039
## FQ11
               -0.2568
## FQ21
               -0.6078
                           0.5051 -1.203 0.25205
## FQ11:FQ21
                2.6019
                           0.7144
                                    3.642 0.00337 **
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.7144 on 12 degrees of freedom
## Multiple R-squared: 0.6807, Adjusted R-squared: 0.6008
## F-statistic: 8.526 on 3 and 12 DF, p-value: 0.002649
##
##
##
   ******Comparaison au témoin*****
##
##
##
##
## ***ATB_type***
```



```
##
    Dunnett's test for comparing several treatments with a control :  \\
##
       95% family-wise confidence level
##
##
## $None
##
                     diff
                              lwr.ci
                                        upr.ci
                                                 pval
## FQ1-None
                -0.256813 -1.6122644 1.0986384 0.9200
## FQ1+FQ2-None 1.737285 0.3818336 3.0927363 0.0127 *
## FQ2-None
                -0.607840 -1.9632914 0.7476114 0.5087
##
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
##
## ***Dosage***
```



```
##
## Dunnett's test for comparing several treatments with a control:
## 95% family-wise confidence level
##
## $None
## diff lwr.ci upr.ci pval
```

```
## H-None -0.1531450 -1.944592 1.638302 0.9657
## L-None 0.7348997 -1.056547 2.526347 0.4994
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

qnrB

```
results_log(PCR_20_qnrB_tri,metadata)
```

```
##
##
       ##
##
##
   *****Facteurs significatifs*****
##
##
##
## [1] "####Summary model"
##
## Call:
## lm(formula = AB.log ~ 1 + B + M + I + M:I + C + Jour + I:Jour +
##
      Jour:M)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                  3Q
                                          Max
## -1.81037 -0.39666 0.09122 0.35401 0.94131
## Coefficients: (1 not defined because of singularities)
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.00518
                         0.35752 11.203 1.47e-10 ***
## BB2
               0.34503
                         0.31978
                                   1.079
                                            0.292
## BB3
               0.04736
                         0.45224
                                   0.105
                                            0.918
## BB4
               0.22121
                         0.45224
                                   0.489
                                            0.630
                         0.39165
## MP
               0.35772
                                   0.913
                                            0.371
## IWW
                   NA
                              NA
                                      NA
                                               NA
               0.36715
                          0.22612
                                   1.624
                                            0.119
## CB
## JourJ14
               0.55625
                         0.39165
                                   1.420
                                            0.170
## MP:IWW
              -0.01390
                          0.45224 -0.031
                                            0.976
## IWW:JourJ14 0.04219
                          0.45224
                                   0.093
                                            0.927
## MP:JourJ14 -0.48367
                          0.45224 - 1.069
                                            0.296
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.6396 on 22 degrees of freedom
## Multiple R-squared: 0.2602, Adjusted R-squared: -0.04247
## F-statistic: 0.8597 on 9 and 22 DF, p-value: 0.5729
##
##
##
##
  *****Comparaison au témoin*****
```

Bin width defaults to 1/30 of the range of the data. Pick better value with 'binwidth'.
Dunn (1964) Kruskal-Wallis multiple comparison

p-values adjusted with the Bonferroni method.


```
##
          Comparison
                            Z
                                P.unadj
                                           P.adj
## 1
         BF - BF_envt 1.1034333 0.2698390 1.0000000
             BF - WW 0.0000000 1.0000000 1.0000000
## 3
         BF_envt - WW -1.1034333 0.2698390 1.0000000
         BF - WW_envt 2.2652247 0.0234989 0.1409934
## 5 BF_envt - WW_envt -0.1475703 0.8826819 1.0000000
## 6
         WW - WW_envt 2.2652247 0.0234989 0.1409934
##
##
##
##
       ##
##
   *****Facteurs significatifs*****
##
##
## [1] "####Summary model"
## Call:
```

```
## lm(formula = EF.log ~ 1 + FQ1 + FQ2 + FQ1:FQ2)
##
## Residuals:
##
               1Q Median
      Min
                               ЗQ
                                      Max
## -3.1588 -0.4709 0.2686 0.4802 1.5040
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 5.0650
                           0.5939
                                   8.528 1.94e-06 ***
               -0.3140
## FQ11
                           0.8399 -0.374
                                             0.715
## FQ21
               -0.5463
                           0.8399 -0.650
                                             0.528
## FQ11:FQ21
               -0.3849
                           1.1879 -0.324
                                             0.751
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 1.188 on 12 degrees of freedom
## Multiple R-squared: 0.1655, Adjusted R-squared: -0.04318
## F-statistic: 0.793 on 3 and 12 DF, p-value: 0.5209
##
##
##
##
   ******Comparaison au témoin*****
##
##
##
## ***ATB_type***
```



```
##
    Dunnett's test for comparing several treatments with a control :
##
##
       95% family-wise confidence level
##
## $None
##
                      diff
                              lwr.ci
                                       upr.ci
                                                pval
                -0.3139703 -2.567822 1.939881 0.9649
## FQ1-None
## FQ1+FQ2-None -1.2451423 -3.498994 1.008709 0.3539
## FQ2-None
                -0.5462763 -2.800128 1.707575 0.8531
##
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
##
##
## ***Dosage***
```



```
##
## Dunnett's test for comparing several treatments with a control :
## 95% family-wise confidence level
##
## $None
## diff lwr.ci upr.ci pval
## H-None -1.5060242 -2.969521 -0.04252703 0.0438 *
## L-None 0.1024316 -1.361066 1.56592881 0.9768
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

qnrS

```
results_log(PCR_21_qnrS_tri,metadata)
```

```
##
## *************************
##
##
## ******Facteurs significatifs*****
##
##
##
```

```
## [1] "###Summary model"
##
## Call:
## lm(formula = AB.log ~ 1 + B + M + I + M:I + C + Jour + I:Jour +
       Jour:M)
##
##
## Residuals:
##
       Min
                  1Q
                      Median
                                    3Q
                                            Max
## -0.82963 -0.25259 0.04557 0.25497 0.68883
## Coefficients: (1 not defined because of singularities)
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.82961
                           0.23270 12.160 5.7e-11 ***
## BB2
               0.40464
                           0.20627
                                     1.962
                                             0.0632 .
## BB3
               0.75771
                           0.29827
                                     2.540
                                             0.0190 *
## BB4
                                     1.828
               0.53311
                           0.29171
                                             0.0819 .
## MP
              -0.39951
                           0.25454
                                    -1.570
                                             0.1315
## IWW
                     NA
                                NA
                                        NA
                                                 NA
                0.37086
                           0.14913
                                     2.487
                                             0.0214 *
## JourJ14
               0.27619
                           0.26930
                                     1.026
                                             0.3168
## MP:IWW
                0.42812
                           0.29827
                                     1.435
                                             0.1659
## IWW:JourJ14 0.06677
                                     0.224
                                             0.8250
                           0.29827
## MP:JourJ14 -0.26209
                           0.29827 -0.879
                                             0.3895
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4125 on 21 degrees of freedom
## Multiple R-squared: 0.4703, Adjusted R-squared: 0.2433
## F-statistic: 2.072 on 9 and 21 DF, p-value: 0.08129
##
##
##
##
   ******Comparaison au témoin*****
## Bin width defaults to 1/30 of the range of the data. Pick better value with 'binwidth'.
## Dunn (1964) Kruskal-Wallis multiple comparison
    p-values adjusted with the Bonferroni method.
```



```
P.unadj
##
           {\tt Comparison}
                             Z
                                             P.adj
## 1
         BF - BF_envt -1.4632177 0.14340781 0.8604469
## 2
             BF - WW 0.4214744 0.67340873 1.0000000
## 3
         BF_envt - WW 1.6130381 0.10673622 0.6404173
         BF - WW_envt 1.5305306 0.12588545 0.7553127
## 5 BF_envt - WW_envt 2.0565185 0.03973257 0.2383954
## 6
         WW - WW_envt 1.1976221 0.23106415 1.0000000
##
##
##
##
       ##
   *****Facteurs significatifs*****
##
##
##
##
## [1] "####Summary model"
## lm(formula = EF.log ~ 1 + FQ1 + FQ2 + FQ1:FQ2)
##
## Residuals:
##
      Min
               1Q Median
                             3Q
## -1.2606 -0.4106 0.1101 0.5081 1.2029
## Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 2.9404
                            0.4324
                                     6.800 1.9e-05 ***
                            0.6116
                                     2.057
## FQ11
                 1.2578
                                             0.0621 .
## FQ21
                 0.1915
                            0.6116
                                     0.313
                                             0.7596
## FQ11:FQ21
                -1.4347
                            0.8649
                                   -1.659
                                             0.1230
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.8649 on 12 degrees of freedom
## Multiple R-squared: 0.3255, Adjusted R-squared: 0.1569
## F-statistic: 1.931 on 3 and 12 DF, p-value: 0.1785
##
##
##
##
    ******Comparaison au témoin*****
##
##
##
## ***ATB_type***
```


##
Dunnett's test for comparing several treatments with a control :
95% family-wise confidence level

```
##
## $None
##
                              lwr.ci
                                       upr.ci
                     diff
## FQ1-None
               1.25776401 -0.3832793 2.898807 0.1472
## FQ1+FQ2-None 0.01458289 -1.6264604 1.655626 1.0000
## FQ2-None
               0.19148238 -1.4495609 1.832526 0.9786
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
##
## ***Dosage***
```



```
##
## Dunnett's test for comparing several treatments with a control :
## 95% family-wise confidence level
##
## $None
## diff lwr.ci upr.ci pval
## H-None 0.05279651 -1.3617055 1.467298 0.9933
## L-None 0.92308968 -0.4914123 2.337592 0.2162
##
```

```
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

qnrD

```
results_log(PCR_22_qnrD_tri,metadata)
```

```
##
##
       ##
##
##
   *****Facteurs significatifs*****
##
##
## [1] "####Summary model"
##
## lm(formula = AB.log ~ 1 + B + M + I + M:I + C + Jour + I:Jour +
##
      Jour:M)
##
## Residuals:
##
      Min
               1Q Median
                              3Q
                                     Max
## -2.4031 -0.4033 0.1171 0.5446 1.0557
##
## Coefficients: (1 not defined because of singularities)
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 4.83402
                          0.47353 10.209 8.28e-10 ***
## BB2
               0.31998
                          0.42353
                                   0.756
                                            0.458
## BB3
              -0.12657
                          0.59897 -0.211
                                            0.835
## BB4
               0.42462
                                   0.709
                                            0.486
                          0.59897
## MP
              -0.41122
                          0.51872
                                  -0.793
                                            0.436
## IWW
                    NA
                              NA
                                      NA
                                               NA
## CB
              0.05204
                          0.29948
                                   0.174
                                            0.864
## JourJ14
              -0.11468
                          0.51872
                                  -0.221
                                            0.827
## MP:IWW
              -0.14802
                          0.59897
                                  -0.247
                                            0.807
## IWW:JourJ14 0.18305
                          0.59897
                                   0.306
                                            0.763
## MP:JourJ14
              0.27379
                          0.59897
                                   0.457
                                            0.652
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.8471 on 22 degrees of freedom
## Multiple R-squared: 0.1592, Adjusted R-squared: -0.1848
## F-statistic: 0.4627 on 9 and 22 DF, p-value: 0.8839
##
##
##
##
   ******Comparaison au témoin*****
```

Dunn (1964) Kruskal-Wallis multiple comparison

p-values adjusted with the Bonferroni method.


```
##
           Comparison
                              Z
                                    P.unadj
## 1
         BF - BF_envt 1.05281711 0.2924248237 1.000000000
## 2
             BF - WW 0.02951407 0.9764546001 1.000000000
## 3
         BF_envt - WW -1.04269386 0.2970901007 1.000000000
         BF - WW_envt 3.59062206 0.0003298897 0.001979338
## 5 BF_envt - WW_envt 0.44271100 0.6579747835 1.000000000
## 6
         WW - WW_envt 3.56652393 0.0003617478 0.002170487
##
##
##
       ##
##
   *****Facteurs significatifs*****
##
##
##
## [1] "####Summary model"
##
## Call:
## lm(formula = EF.log ~ 1 + FQ1 + FQ2 + FQ1:FQ2)
##
```

```
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -1.4819 -0.3406 0.2356 0.6347 0.8329
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.97387
                          0.44414 11.199 1.04e-07 ***
                          0.62811
                                    0.959
## FQ11
               0.60261
                                             0.356
## FQ21
               -0.01156
                          0.62811 -0.018
                                             0.986
## FQ11:FQ21
              -0.27018
                          0.88828 -0.304
                                             0.766
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.8883 on 12 degrees of freedom
## Multiple R-squared: 0.09839,
                                   Adjusted R-squared:
## F-statistic: 0.4365 on 3 and 12 DF, p-value: 0.7309
##
##
##
   ******Comparaison au témoin*****
##
##
##
##
## ***ATB_type***
```



```
##
    Dunnett's test for comparing several treatments with a control :  \\
##
       95% family-wise confidence level
##
##
## $None
##
                       diff
                               lwr.ci
                                        upr.ci
                                                 pval
## FQ1-None
                 0.60260560 -1.082822 2.288034 0.6642
## FQ1+FQ2-None 0.32086805 -1.364560 2.006296 0.9192
## FQ2-None
                -0.01155901 -1.696987 1.673869 1.0000
##
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
##
## ***Dosage***
```



```
##
## Dunnett's test for comparing several treatments with a control:
## 95% family-wise confidence level
##
##
## $None
## diff lwr.ci upr.ci pval
```

```
## H-None -0.3147451 -1.3594619 0.7299718 0.6718
## L-None 0.9226882 -0.1220287 1.9674050 0.0837 .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```