Unconstrained Optimization Algorithms

General Ideas

- Select step size s_k and direction v_k such that $f_0(x_k + s_k v_k)$ is substantially smaller than $f_0(x_k)$.
- v_k is usually selected such that $\nabla f_0(x_k)^{\top} v_k < 0$
- First order descent

Armijo backtracking step size rule

- 1. Chosse $\alpha, \beta \in (0,1)$, set s=1
- 2. If $f_0(x_k + sv_k) \leq f_0(x_k) + s\alpha \nabla f_0(x_k)^{\top} v_k$, then return $s_k = s$.
- 3. Set $s = \beta s$ and return to step 2.

Newton-type methods

- Newton's method: $v_k = -\nabla^2 f_0(x_k)^{-1} \nabla f_0(x_k)$
- Interpretation: Minimizing second order approximation: $\min_x f_0(x_k) + \nabla f_0(x_k)^\top x + \frac{1}{2} x^\top \nabla^2 f_0(x_k) x$
- Quasi-Newton and variable-metric: $v_k = -H_k \nabla f_0(x_k)$
- $\bullet\,$ Combined with any step size rule

Constrained Optimization Algorithms

Methods

- Projected Decent: Use a direction v_k from unconstrained algorithms and compute x'_{k+1} = x_k + s_kv_k and then project x'_{k+1} onto the feasible set.
- Construct an unconstrained problem that approximates the original problem.

Barrier method

- Consider the problem $\min_x f_0(x)$ subject to $f_i(x) \leq 0$ for i = 1...m.
- Define the approximate problem for some parameter $t \ge 0$: $\min_x f_0(x) + \frac{1}{t}\phi(x)$, where the barrier function $\phi(x)$ tends to ∞ as x tends to the boundary of the feasible set from inside.
- We can use the logarithmic barrier function: $\phi(x) = -\sum_{i=1}^{m} log(-f_i(x))$
- If f_0 , f_i are convex, the approximated problem is convex
- The KKT condition is $t\nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x) = 0$
- The approximation error: $0 \le f_0(x^*(t)) p^* \le \frac{m}{t}$

Machine Learning

Linear Model

- Linear model: $y(x) = w^{\top} \phi(x) + e(x)$, where $\phi(x)$ is a feature map and e(x) is a random error
- Least square: $\hat{w} \in \arg\min_{w} \sum_{i} (w^{\top} \phi(x_i) y_i)^2$
- Quantile for $\alpha \in [0, 1)$: $\hat{w} \in \arg\min_{w} \frac{1}{m(1-\alpha)} \sum_{i} \max\{0, w^{\top} \phi(x_{i}) - y_{i}\} - \frac{1}{m} \sum_{i} w^{\top} \phi(x_{i}) - y_{i}$. Still a linear program.

Support Vector Machine

- Classification rule: $\hat{y}(x) = sign(\phi(x)^{\top}x)$
- Convex error function(hinge): $\max\{0, 1 \alpha\}$
- Objective: $\min_{w} \frac{1}{m} \sum_{i} \max\{0, 1 y_{i}\phi(x_{i})^{\top}w\}$
- We can add L_1 or L_2 norm regularization on w

Logistic Regression

- Variant of SVM with another loss function: $\min_{w} \frac{1}{m} \sum_{i} log[1 + exp(-y_i \phi(x_i)^{\top} w)]$
- Interpretation: $P\{Y = y | X = x\} = \frac{1}{1 + exp(-y\phi(x)^\top w)}$

Fisher discrimination

- Idea: find a direction in Rⁿ, such that the projection of data points onto the direction results in those points with positive label are from those with negative label
- Define $A_+ \in R^{n,m_+}$ is the matrix whose column cosists of x_i such that $y_i = 1$, and A_- similarly for negive labeled points. The centered(mean subtracted) data matrices are $\widetilde{A}_{\pm} = A_{\pm}(I_{m_{\pm}} \frac{1}{m_{\pm}} \mathbf{1} \mathbf{1}^{\top})$
- The mean-squared variation of the data projected on u around its centroid is: $u^{\top}Mu = u^{\top}(\frac{1}{m_{-}}\widetilde{A}_{-}\widetilde{A}_{-}^{\top} + \frac{1}{m_{-}}\widetilde{A}_{+}\widetilde{A}_{+}^{\top})u$
- The goal is: $\max_{u\neq 0} \frac{(u^{\top}c)^2}{u^{\top}Mu} = \min u^{\top}Mu$ subject to $u^{\top}c = 1$
- The problem is convex, hence KKT condition implies: $u = \frac{1}{c^{-1}M^{-1}c}M^{-1}c$

SPCA and NNMF

- The original PCA problem: $\max_z z^{\top} \widetilde{X} \widetilde{X}^{\top} z$ s.t. $||z||_2 = 1$
- In sparse PCA, we add constraint $card(z) \le k$
- The problem leads to the rank 1 approximation problem: $\min_{p,q} \|X pq^\top\|_F$ s.t. $card(p) \le k, card(q) \le h$
- One example of rank 1 approximation is: min_{p≥0,q≥0} ||X - pq[⊤]||_F s.t. card(p) ≤ k, card(q) ≤ h. A standard solution is coordinate descent.

Finance

Mean-Variance (Markowitz) Models

- $x \in \mathbb{R}^n$ is the wealth allocation in n groups, r is the random vector of unit wealth return for each group. $\hat{r} = E[r], \Sigma = Cov(r)$
- Hence, $\hat{r}^{\top}x$ is the expected return and $x^{\top}\Sigma x$ is the variance of the portfolio.
- The problems are usually maximize return with variance constraints and minimize variance, with return constraints.
- Buget constraint: $x^{\top} \mathbf{1} \leq b$, no short-selling: $x \geq 0$
- Sector bounds: $\sum_{i \in S} x_i \leq \alpha x^{\top} \mathbf{1}$ for some $\alpha \in (0, 1)$ and sector S
- Diversification: sum of k largest x_i must not exceed $\eta x^{\top} \mathbf{1}$ for $\eta \in (0, 1)$. This is equivalent to $kt + s^{\top} \mathbf{1} \leq \eta x^{\top} \mathbf{1}$, $s \geq 0, x t \mathbf{1} \leq s$ where $t \in \mathbb{R}$ and $s \in \mathbb{R}^n$ are additional variables.
- The Sharpe Ratio of a portfolio is $(\hat{r}^{\top}x r_f)/\sqrt{x^{\top}\Sigma x}$, where r_f is the return of a risk-free asset.
- If r̂[⊤]x > r_f and Σ > 0, then the portfolio that maximizes SR corresponds to a point on the efficient frontier. Max SR can be formulated as SOCP.

Value at Risk and Conditional Value at Risk

- The value-of-risk of a portfolio $r^{\top}x$ at probability level $\alpha \in (0,1)$ is defined as $VaR_{\alpha}(r^{\top}x) = -F^{-1}(\alpha)$, where F is the CDF of $r^{\top}x$.
- If r is Gaussian with mean \hat{r} and covariance Σ , we have $VaR_{\alpha}(r^{\top}x) \leq \gamma$ is equivalent as SOC constraint $\Phi^{-1}(1-\alpha)\|\Sigma^{\frac{1}{2}}\|_{2} \leq \gamma + \hat{r}^{\top}x$

Epi-Spline Curve Fitting

Epi-splines

- Epi-spline: Left continous, piece-wise polynomial
- On the k^{th} segment, $q^k(x) = \sum_{i=0}^p a_i^k x^i$. Hence if we split the domain into N segments with degree p polynomial, our total number of parameters would be N(p+1)
- Continuity constraint: Let $m_1...m_{N-1}$ be the mesh points, we have $q^k(m_k) = q^{k+1}(m_k)$ for k = 1...N 1.
- Continuous differentiability: Continuty constraint plus $(q^k(m_k))' = (q^{k+1}(m_k))'$ for k = 1...N 1.
- Fixed values: $q^k(x) = s(k)$
- Monotonicity (non-increasing): $(q^k(x))' \leq 0$ for $x \in (m_{k-1}, m_k)$, and $q^k(m_k) \geq q^{k+1}(m_{k+1})$. The second requirement is satisfied with continuity.
- Convexity: Continuty constraint and $(q^k(x))'' \ge 0$, $(q^k(m_k))' \le (q^{k+1}(m_{k+1}))'$ for k = 1...N 1.
- All constraints above are linear.

Optimization in Control

Continuous LTI Systems

- The solution is: $x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau, \ t \ge t_0$

Discrete-time LTI System and Discretization

- We discretize the time interval $t=k\Delta$ for $k=\ldots-1,0,1,\ldots$ and DTLTI system can be described as x(k+1)=Ax(k)+Bu(k),y(k)=Cx(k)
- The solution is: $x(k) = A^{k-k_0}x(k_0) + \sum_{i=k_0}^{k-1} A^{k-i-1}Bu(i)$ for $k >= k_0$.
- Assuming constant control input during one time interval, i.e. $u(t) = u(k\Delta), \forall t \in [k\Delta, (k+1)\Delta)$, we can discretize a CTLTI system by letting $A_{\Delta} = e^{A\Delta}, B_{\Delta} = \int_0^{\Delta} e^{A\tau} d\tau$. The we get the system $x(k+1) = A_{\Delta}x(k) + B_{\Delta}u(k)$

Optimization-based Control Synthesis