$\mathcal{A}^{(i)}$.

PCT WELTORGANISATION FUR GEISTIGES EIGENTUM Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07K 5/02, C07D 233/32, A61K 31/415, 38/05

(11) Internationale Veröffentlichungsnummer:

WO 99/60015

A1 (43) Internationales Veröffentlichungsdatum:

25. November 1999 (25.11.99)

(21) Internationales Aktenzeichen:

PCT/EP99/03072

(22) Internationales Anmeldedatum:

5. Mai 1999 (05.05.99)

(30) Prioritätsdaten:

198 21 483.9

14. Mai 1998 (14.05.98)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): HOECHST MARION ROUSSEL DEUTSCHLAND GMBH [DE/DE]; Brüningstrasse 50, D-65929 Frankfurt am Main (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): NEISES, Bernhard [DE/DE]; Flößerweg 5 c, D-77652 Offenburg (DE). WEHNER, Volkmar [DE/DE]: Lindenstrasse 1, D-97657 Sandberg (DE). STILZ, Hans, Ulrich [DE/DE]; Johannesallee 18, D-65929 Frankfurt am Main (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD. SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: IMIDAZOLIDINE DERIVATIVES, THE PRODUCTION THEREOF, THEIR USE AND PHARMACEUTICAL PREPARA-TIONS CONTAINING THE SAME

(54) Bezeichnung: IMIDAZOLIDINDERIVATE, IHRE HERSTELLUNG, IHRE VERWENDUNG UND SIE ENTHALTENDE PHAR-MAZEUTISCHE PRÄPARATE

(57) Abstract

The invention relates to imidazolidine derivatives of formula (I), in which B, E, W, Y, R, R², R³, R³⁰, e and h have the meanings cited in the claims. The compounds of formula (I) are valuable medicament active agents which are suited, for example, for treating and preventing inflammatory diseases, for example, rheumatoid arthritis, or allergic disorders. The compounds of formula (I) are inhibitors of adhesion and migration of leukocytes and/or antagonists of the adhesion receptor VLA-4 which belong to the group of integrins. They are generally suited for treating or preventing diseases which are caused by an undesirable degree of leukocyte adhesion and/or leukocyte migration or are connected therewith or with which cell-cell interactions or cell-matrix interactions play a roll. Said interactions are based on interactions of VLA-4 receptors with the ligands thereof. The invention also relates to a method for producing the compounds of formula (I), to the use thereof, especially as medicament active agents, and to pharmaceutical preparations which contain compounds of formula (I).

(57) Zusammenfassung

Die vorliegende Erfindung betrifft Imidazolidinderivate der Formel (I), in der B, E, W, Y, R, R², R³, R³⁰, e und h die in den Ansprüchen angegebenen Bedeutungen haben. Die Verbindungen der Formel (I) sind wertvolle Arzneimittelwirkstoffe, die sich zum Beispiel zur Therapie und Prophylaxe von Entzündungserkrankungen, beispielsweise der rheumatoiden Arthritis, oder von allergischen Erkrankungen eignen. Die Verbindungen der Formel (I) sind Inhibitoren der Adhäsion und Migration von Leukozyten und/oder Antagonisten des zur Gruppe der Integrine gehörenden Adhäsionsrezeptors VLA-4. Sie eignen sich generell zur Therapie oder Prophylaxe von Krankheiten, die durch ein unerwünschtes Ausmaß an Leukozytenadhäsion und/oder Leukozytenmigration verursacht werden oder damit verbunden sind oder bei denen Zell-Zell- oder Zell-Matrix-Interaktionen eine Rolle spielen, die auf Wechselwirkungen von VLA-4-Rezeptoren mit ihren Liganden beruhen. Die Erfindung betrifft weiterhin Verfahren zur Herstellung der Verbindungen der Formel (I), ihre Verwendung, insbesondere als Arzneimittelwirkstoffe, und pharmazeutische Präparate, die Verbindungen der Formel (I) enthalten.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenies
AM	Armenien	FI	Pinnland	LT	Litauen	SK	Slowakci
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tachad
BA	Bosnien-Herzegowina	GE	Georgien .	MD	Republik Moldan	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugostawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	ΙĖ	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NB	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neusceland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen .		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	ΚZ	Kasachstan	RO	Rumanien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Pöderation		
DE	Deutschland	u	Liechtenstein	SD	Sudan		
DK	Dinemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Beschreibung

5

25

30

Imidazolidinderivate, ihre Herstellung, ihre Verwendung und sie enthaltende pharmazeutische Präparate

Die vorliegende Erfindung betrifft Imidazolidinderivate der Formel I, 10

in der B, E, W, Y, R, R², R³, R³⁰, e und h die unten angegebenen Bedeutungen haben. Die Verbindungen der Formel I sind wertvolle Arzneimittelwirkstoffe, die sich zum Beispiel zur Therapie und Prophylaxe von Entzündungserkrankungen, 20 beispielsweise der rheumatoiden Arthritis, oder von allergischen Erkrankungen eignen. Die Verbindungen der Formel I sind Inhibitoren der Adhäsion und Migration von Leukozyten und/oder Antagonisten des zur Gruppe der Integrine gehörenden Adhäsionsrezeptors VLA-4. Sie eignen sich generell zur Therapie oder Prophylaxe von Krankheiten, die durch ein unerwünschtes Ausmaß an Leukozytenadhäsion und/oder Leukozytenmigration verursacht werden oder damit verbunden sind oder bei denen Zell-Zell- oder Zell-Matrix-Interaktionen eine Rolle spielen, die auf Wechselwirkungen von VLA-4-Rezeptoren mit ihren Liganden beruhen. Die Erfindung betrifft weiterhin Verfahren zur Herstellung der Verbindungen der Formel

Die Integrine sind eine Gruppe von Adhäsionsrezeptoren, die bei Zell-Zellbindenden und Zell-Extrazelluläre Matrix-bindenden Prozessen eine wesentliche

Präparate, die Verbindungen der Formel I enthalten.

I, ihre Verwendung, insbesondere als Arzneimittelwirkstoffe, und pharmazeutische

PCT/EP99/03072

Rolle spielen. Sie weisen eine αβ-heterodimere Struktur auf und zeigen eine weite zelluläre Verbreitung und ein hohes Maß an evolutiver Konservierung. Zu den Integrinen gehört zum Beispiel der Fibrinogen-Rezeptor auf Thrombozyten, der vor allem mit der RGD-Sequenz des Fibrinogens interagiert, oder der Vitronectin-Rezeptor auf Osteoclasten, der vor allem mit der RGD-Sequenz des Vitronectins oder des Osteopontins interagiert. Man teilt die Integrine in drei Großgruppen ein, die B2-Unterfamilie mit den Vertretern LFA-1, Mac-1 und p150/95, die insbesondere für Zell-Interaktionen des Immunsystems verantwortlich sind, und die Unterfamilien 81 und 83, deren Vertreter hauptsächlich die Zellanheftung an Komponenten der extrazellulären Matrix vermitteln (Ruoslahti, Annu. Rev. Biochem. 10 1988, 57, 375). Die Integrine der β1-Unterfamilie, auch VLA-Proteine (very late (activation) antigen) genannt, umfassen mindestens sechs Rezeptoren, die spezifisch mit Fibronektin, Kollagen und/oder Laminin als Liganden interagieren. Innerhalb der VLA-Familie ist das Integrin VLA-4 (α4β1) insofern untypisch, als es hauptsächlich auf lymphoide und myeloide Zellen begrenzt ist und bei diesen verantwortlich ist für Zell-Zell-Interaktionen mit einer Vielzahl von anderen Zellen. VLA-4 vermittelt zum Beispiel die Interaktion von T- und B-Lymphozyten mit dem Heparin II-Bindungsfragment von humanem Plasmafibronektin (FN). Die Bindung von VLA-4 mit dem Heparin II-Bindungsfragment des Plasmafibronektins beruht vor allem auf einer Interaktion mit einer LDVP-Sequenz. Im Unterschied zum 20 Fibrinogen- oder Vitronectin-Rezeptor ist VLA-4 kein typisches RGD-bindendes Integrin (Kilger und Holzmann, J. Mol. Meth. 1995, 73, 347).

Die im Blut zirkulierenden Leukozyten zeigen normalerweise nur eine geringe
25 Affinität zu den vaskulären endothelialen Zellen, die die Blutgefäße auskleiden.
Zytokine, die von entzündetem Gewebe abgegeben werden, bewirken die
Aktivierung von Endothelzellen und damit die Expression einer Vielzahl von
Zelloberflächenantigenen. Diese umfassen zum Beispiel die Adhäsionsmoleküle
ELAM-1 (endothelial cell adhesion molecule-1; auch als E-Selektin bezeichnet), das
30 unter anderem Neutrophile bindet, ICAM-1 (intercellular adhesion molecule-1), das
mit LFA-1 (leucocyte function-associated antigen 1) auf Leukozyten interagiert, und

VCAM-1 (vascular cell adhesion molecule-1), das verschiedene Leukozyten, unter anderem Lymphozyten, bindet (Osborn et al., Cell 1989, 59, 1203). VCAM-1 ist, wie ICAM-1, ein Mitglied der Immunglobulin-Gen-Überfamilie. Identifiziert wurde VCAM-1 (zuerst bekannt als INCAM-110) als ein Adhäsionsmolekül, das auf endothelialen Zellen durch Entzündungs-Zytokine wie TNF und IL-1 und Lipopolysaccharide 5 (LPS) induziert wird. Elices et al. (Cell 1990, 60, 577) zeigten, daß VLA-4 und VCAM-1 ein Rezeptor-Ligand-Paar bilden, das die Anheftung von Lymphozyten an aktiviertes Endothel vermittelt. Die Bindung von VCAM-1 an VLA-4 erfolgt dabei nicht durch eine Interaktion des VLA-4 mit einer RGD-Sequenz, eine solche ist im VCAM-1-nicht enthalten (Bergelson et al., Current Biology 1995, 5, 615). VLA-4 tritt 10 aber auch auf anderen Leukozyten auf, und über den VCAM-1/VLA-4-Adhäsionsmechanismus wird auch die Anheftung von anderen Leukozyten als Lymphozyten vermittelt. VLA-4 repräsentiert somit ein einzelnes Beispiel eines β1-Integrin-Rezeptors, der über die Liganden VCAM-1 bzw. Fibronektin sowohl bei Zell-Zell-Interaktionen als auch bei Zell-Extrazellulärer Matrix-Interaktionen eine 15 wesentliche Rolle spielt.

Die Zytokin-induzierten Adhäsionsmoleküle spielen eine wichtige Rolle bei der Rekrutierung von Leukozyten in extravaskuläre Gewebebereiche. Leukozyten werden in entzündliche Gewebebereiche durch Zelladhäsionsmoleküle rekrutiert, 20 die auf der Oberfläche von endothelialen Zellen exprimiert werden und als Liganden für Leukozyten-Zelloberflächen-Proteine oder -Proteinkomplexe (Rezeptoren) dienen (die Begriffe Ligand und Rezeptor können auch vice versa verwendet werden). Leukozyten aus dem Blut müssen zunächst an endotheliale Zellen anheften, bevor sie in das Synovium auswandern können. Da VCAM-1 an Zellen 25 bindet, die das Integrin VLA-4 (α4β1) tragen, wie Eosinophile, T- und B-Lymphozyten, Monozyten oder auch Neutrophile, kommt ihm und dem VCAM-1/ VLA-4-Mechanismus die Funktion zu, derartige Zellen aus dem Blutstrom in Infektionsgebiete und Entzündungsherde zu rekrutieren (Elices et al., Cell 1990, 60, 577; Osborn, Cell 1990, 62, 3; Issekutz et al., J. Exp. Med. 1996, 183, 2175). 30

Der VCAM-1/VLA-4-Adhäsionsmechanismus wurde mit einer Reihe von physiologischen und pathologischen Prozessen in Verbindung gebracht. VCAM-1 wird außer von Zytokin-induziertem Endothel unter anderem noch von den folgenden Zellen exprimiert: Myoblasten, lymphoiden dendritischen Zellen und Gewebsmakrophagen, rheumatoidem Synovium, Zytokin-stimulierten Neuralzellen, parietalen Epithelzellen der Bowmans Kapsel, dem renalen Tubularepithel, entzündetem Gewebe bei Herz- und Nieren-Transplantat-Abstoßung und von Intestinalgewebe bei Graft versus host-Krankheit. VCAM-1 findet man auch exprimiert auf solchen Gewebearealen des arteriellen Endotheliums, die frühen arteriosklerotischen Plaques eines Kaninchenmodells entsprechen. Zusätzlich wird 10 VCAM-1 auf follikulären dendritischen Zellen von humanen Lymphknoten exprimiert und findet sich auf Stromazellen des Knochenmarks, zum Beispiel in der Maus. Letzterer Befund weist auf eine Funktion von VCAM-1 in der B-Zell-Entwicklung hin. VLA-4 wird, außer auf Zellen haematopoetischen Ursprunges, auch zum Beispiel auf Melanoma-Zellinien gefunden, und der VCAM-1/VLA-4-Adhäsionsmechanismus 15 wird mit der Metastasierung von solchen Tumoren in Verbindung gebracht (Rice et al., Science 1989, 246, 1303).

Die hauptsächliche Form, in der VCAM-1 in vivo auf endothelialen Zellen vorkommt und die die dominante Form in vivo ist, wird als VCAM-7D bezeichnet und trägt sieben Immunglobulin-Domänen. Die Domänen 4, 5 und 6 ähneln in ihren Aminosäuresequenzen den Domänen 1, 2 und 3. Die vierte Domäne ist bei einer weiteren, aus sechs Domänen bestehenden Form, hier als VCAM-6D bezeichnet, durch alternatives Splicing entfernt. Auch VCAM-6D kann VLA-4-exprimierende Zellen binden.

Weitere Angaben zu VLA-4, VCAM-1, Integrinen und Adhäsionsproteinen finden sich zum Beispiel in den Artikeln von Kilger und Holzmann, J. Mol. Meth. 1995, 73, 347; Elices, Cell Adhesion in Human Disease, Wiley, Chichester 1995, S. 79; Kuijpers, Springer Semin. Immunopathol. 1995, 16, 379.

Aufgrund der Rolle des VCAM-1/VLA-4-Mechanismus bei Zelladhäsionsprozessen, die von Bedeutung zum Beispiel bei Infektionen, Entzündungen oder Atherosklerose sind, wurde versucht, durch Eingriffe in diese Adhäsionsprozesse Krankheiten zu bekämpfen, insbesondere zum Beispiel Entzündungen (Osborn et al., Cell 1989, 59, 1203). Eine Methode hierzu ist die Verwendung von monoklonalen Antikörpern, die gegen VLA-4 gerichtet sind. Derartige monoklonale Antikörper (mAK), die als VLA-4-Antagonisten die Interaktion zwischen VCAM-1 und VLA-4 blockieren, sind bekannt. So inhibieren zum Beispiel die anti-VLA-4 mAK HP2/1 und HP1/3 die Anheftung von VLA-4 exprimierenden Ramos-Zellen (B-Zell-ähnlichen Zellen) an humane Nabelschnurendothelzellen und an VCAM-1-transfizierte COS-Zellen. Ebenso inhibiert der anti-VCAM-1 mAK 4B9 die Adhäsion von Ramos-Zellen, Jurkat-Zellen (T-Zell-ähnlichen Zellen) und HL60-Zellen (Granulozyten-ähnlichen Zellen) an COS-Zellen transfiziert mit genetischen Konstrukten, die veranlassen, daß VCAM-6D und VCAM-7D exprimiert werden. In vitro-Daten mit Antikörpern, die gegen die α4-Untereinheit von VLA-4 gerichtet sind, zeigen, daß die Anheftung von 15 Lymphozyten an synoviale Endothelzellen blockiert wird, eine Adhäsion, die bei der rheumatoiden Arthritis eine Rolle spielt (van Dinther-Janssen et al., J. Immunol. 1991, 147, 4207).

- In vivo-Versuche haben gezeigt, daß eine experimentelle autoimmune Enzephalomyelitis durch anti-α4 mAK gehemmt werden kann. Die Wanderung von Leukozyten in einen Entzündungsherd wird ebenfalls durch einen monoklonalen Antikörper gegen die α4-Kette von VLA-4 blockiert. Die Beeinflussung des VLA-4-abhängigen Adhäsionsmechanismus mit Antikörpern wurde auch in einem Asthma-Modell untersucht, um die Rolle von VLA-4 bei der Rekrutierung von Leukozyten in entzündetes Lungengewebe zu untersuchen (WO-A-93/13798). Die Gabe von anti-VLA-4-Antikörpern inhibierte die Spätphasenreaktion und die Atemwegsüberreaktion in allergischen Schafen.
- 30 Der VLA-4 abhängige Zelladhäsionsmechanismus wurde ebenfalls in einem Primatenmodell der inflammatory bowel disease (IBD) untersucht. In diesem Modell,

25

das der ulcerativen Colitis im Menschen entspricht, ergab die Gabe von anti-VLA-4-Antikörpern eine signifikante Reduktion der akuten Entzündung.

Darüber hinaus konnte gezeigt werden, daß die VLA-4-abhängige Zelladhäsion bei den folgenden klinischen Konditionen einschließlich der folgenden chronischen entzündlichen Prozesse eine Rolle spielt: Rheumatoide Arthritis (Cronstein und Weismann, Arthritis Rheum. 1993, 36, 147; Elices et al., J. Clin. Invest. 1994, 93, 405), Diabetes mellitus (Yang et al., Proc. Natl. Acad. Sci. USA 1993, 90, 10494), systemischer Lupus erythematosus (Takeuchi et al., J. Clin. Invest. 1993, 92, 3008), Allergien vom verzögerten Typ (Typ IV-Allergie) (Elices et al., Clin. Exp. Rheumatol. 10 1993, 11, S77), multiple Sklerose (Yednock et al., Nature 1992, 356, 63), Malaria (Ockenhouse et al., J. Exp. Med. 1992, 176, 1183), Arteriosklerose (O'Brien et al., J. Clin. Invest. 1993, 92, 945), Transplantation (Isobe et al., Transplantation Proceedings 1994, 26, 867-868), verschiedene Malignitäten, zum Beispiel Melanom (Renkonen et al., Am. J. Pathol. 1992, 140, 763), Lymphom (Freedman et al., Blood 15 1992, 79, 206) und andere (Albelda et al., J. Cell Biol. 1991, 114, 1059).

Eine VLA-4-Blockierung durch geeignete Antagonisten bietet danach effektive therapeutische Möglichkeiten, insbesondere zum Beispiel verschiedene entzündliche Konditionen einschließlich Asthma und IBD zu behandeln. Die besondere Relevanz von VLA-4-Antagonisten für die Behandlung der rheumatoiden Arthritis ergibt sich dabei, wie bereits gesagt, aus der Tatsache, daß Leukozyten aus dem Blut zunächst an endotheliale Zellen anheften müssen, ehe sie in das Synovium auswandern können, und daß bei dieser Anheftung der VLA-4-Rezeptor eine Rolle spielt. Darauf, daß durch Entzündungsagenzien auf endothelialen Zellen VCAM-1 induziert wird (Osborn, Cell 1990, 62, 3; Stoolman, Cell 1989, 56, 907), und auf die Rekrutierung verschiedener Leukozyten in Infektionsgebiete und Entzündungsherde wurde bereits oben eingegangen. T-Zellen adherieren dabei an aktiviertes Endothel hauptsächlich über die LFA-1/ICAM-1- und VLA-4/VCAM-1-Adhäsionsmechanismen (Springer, Cell 1994, 76, 301). Auf den meisten synovialen 30 T-Zellen ist die Bindungskapazität von VLA-4 für VCAM-1 bei der rheumatoiden

PCT/EP99/03072

Arthritis erhöht (Postigo et al., J. Clin. Invest. 1992, 89, 1445). Zusätzlich wurde eine verstärkte Anheftung von synovialen T-Zellen an Fibronektin beobachtet (Laffon et al., J. Clin. Invest. 1991, 88, 546; Morales-Ducret et al., J. Immunol. 1992, 149, 1424). VLA-4 ist also hochreguliert sowohl im Rahmen seiner Expression als auch hinsichtlich seiner Funktion auf T-Lymphozyten der rheumatoiden Synovialmembran. Die Blockierung der Bindung von VLA-4 an seine physiologischen Liganden VCAM-1 und Fibronektin ermöglicht eine effektive Verhinderung oder Linderung von artikulären Entzündungsprozessen. Dies wird auch durch Experimente mit dem Antikörper HP2/1 an Lewis-Ratten mit Adjuvanz-10 Arthritis bestätigt, bei denen eine effektive Krankheitsprävention beobachtet wurde (Barbadillo et al., Springer Semin. Immunopathol. 1995, 16, 427). VLA-4 stellt also ein wichtiges therapeutisches Zielmolekül dar.

7

Die oben erwähnten VLA-4-Antikörper und der Einsatz von Antikörpern als VLA-4Antagonisten sind in den Patentanmeldungen WO-A-93/13798, WO-A-93/15764,
WO-A-94/16094, WO-A-94/17828 und WO-A-95/19790 beschrieben. In den
Patentanmeldungen WO-A-94/15958, WO-A-95/15973, WO-A-96/00581, WO-A96/06108 und WO-A-96/20216 werden peptidische Verbindungen als VLA-4Antagonisten beschrieben. Der Einsatz von Antikörpern und peptidischen
Verbindungen als Arzneimitteln ist aber mit Nachteilen behaftet, zum Beispiel
mangelnder oraler Verfügbarkeit, leichter Abbaubarkeit oder immunoger Wirkung
bei längerfristiger Anwendung, und es besteht somit Bedarf nach VLA-4Antagonisten mit einem günstigen Eigenschaftsprofil für einen Einsatz in der
Therapie und Prophylaxe.

25

30

In der WO-A-95/14008, der WO-A-94/21607 (US-A-5 658 935), der WO-A-93/18057, der EP-A-449 079, der EP-A-530 505 (US-A-5 389 614), der EP-A-566 919 (US-A-5 397 796), der EP-A-580 008 (US-A-5 424 293) und der EP-A-584 694 (US-A-5 554 594) sind substituierte 5-Ring-Heterocyclen beschrieben, die am N-terminalen Ende des Moleküls eine Amino-, Amidino- oder Guanidinofunktion aufweisen und die thrombozytenaggregationshemmende Wirkungen zeigen. In der

EP-A-796 855 sind weitere Heterocyclen beschrieben, die Inhibitoren der Knochenresorption sind. In der EP-A-842 943 (deutsche Patentanmeldung 19647380.2), der EP-A-842 945 (deutsche Patentanmeldung 19647381.0) und der EP-A-842 944 (deutsche Patentanmeldung 19647382.9) wird beschrieben, daß

Verbindungen aus diesen Reihen und weitere Verbindungen überraschenderweise auch die Leukozytenadhäsion hemmen und VLA-4-Antagonisten sind. Hemmstoffe der Leukozytenadhäsion und VLA-4-Antagonisten sind auch in der EP-A-903 353 (deutsche Patentanmeldung 19741235.1), der EP-A-905 139 (deutsche Patentanmeldung 19741873.2) und der EP-A-918 059 (deutsche Patentanmeldung 19751251.8) beschrieben. Weitere Untersuchungen zeigten, daß auch die Verbindungen der vorliegenden Anmeldung starke Hemmstoffe der Leukozytenadhäsion und/oder VLA-4-Antagonisten sind.

Die vorliegende Erfindung betrifft Verbindungen der Formel I,

15

10

5

20

worin

W für einen zweiwertigen Rest aus der Reihe R¹-A-C(R¹³), R¹-A-C(R¹³)=C,

25

30

$$R^1-A-L$$
 C
 C
 $m1$
 $C=C$
 $m2$

steht, wobei die Ringsysteme

10

В

25

30

ein oder zwei gleiche oder verschiedene Heteroatome aus der Reihe N, O und S enthalten können, gesättigt oder einfach oder mehrfach ungesättigt sein können und durch 1, 2 oder 3 gleiche oder verschiedene Substituenten R¹³ und/oder durch ein oder zwei doppelt gebundene Sauerstoffatome und/oder Schwefelatome substituiert sein können, und wobei L für C(R¹³) oder N steht und wobei m1 und m2 unabhängig voneinander für eine der Zahlen 0, 1, 2, 3, 4, 5 und 6 stehen, die Summe m1 + m2 aber für eine der Zahlen 1, 2, 3, 4, 5 oder 6 steht:

Y für eine Carbonylgruppe, Thiocarbonylgruppe oder Methylengruppe steht;

für eine direkte Bindung, einen der zweiwertigen Reste (C₁-C₆)-Alkylen, (C₃-C₇)-Cycloalkylen, Phenylen, Phenylen-(C₁-C₆)-alkyl, Phenylen-(C₂-C₆)-alkenyl oder für einen zweiwertigen Rest eines 5-gliedrigen oder 6-gliedrigen gesättigten oder ungesättigten Heterocyclus, der ein oder zwei Stickstoffatome enthalten kann und einfach oder zweifach durch (C₁-C₆)-Alkyl oder doppelt gebundenen Sauerstoff oder Schwefel substituiert sein kann, steht, wobei in den Resten Phenylenalkyl und Phenylenalkenyl der Rest R¹ an die Phenylengruppe gebunden ist;

für einen zweiwertigen Rest aus der Reihe (C_1 - C_6)-Alkylen, (C_2 - C_6)-Alkenylen, Phenylen, Phenylen-(C_1 - C_3)-alkyl, (C_1 - C_3)-Alkylen-phenyl und (C_1 - C_3)-Alkylen-phenyl-(C_1 - C_3)-alkyl steht, wobei der (C_1 - C_6)-Alkylen-Rest und der (C_2 - C_6)-Alkenylen-Rest unsubstituiert sind oder substituiert sind durch einen oder mehrere gleiche oder verschiedene Reste aus der Reihe (C_1 - C_6)-Alkyl, (C_2 - C_6)-Alkenyl, (C_2 - C_8)-Alkinyl, (C_3 - C_1 0)-Cycloalkyl, (C_3 - C_1 0)-Cycloalkyl-(C_1 - C_6)-alkyl, gegebenenfalls substituiertes (C_6 - C_1 4)-Aryl-(C_1 - C_6)-alkyl, gegebenenfalls substituiertes Heteroaryl-(C_1 - C_6)-alkyl;

- für Tetrazolyi, (R⁸O)₂P(O), R⁸OS(O)₂, R⁹NHS(O)₂, R⁶CO, R⁷CO oder R¹⁰CO Ε steht:
- für Wasserstoff, (C_1-C_8) -Alkyl, (C_3-C_{12}) -Cycloalkyl, (C_3-C_{12}) -Cycloalkyl- (C_1-C_8) -R alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes (C₈-C₁₄)-Aryl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes 5 Heteroaryl oder im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₈)-alkyl steht, wobei alle Reste R unabhängig voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein können;
- für Wasserstoff, (C₃-C₁₂)-Cycloalkyl, (C₃-C₁₂)-Cycloalkyl-(C₁-C₈)-alkyl, im R¹ 10 Arylrest gegebenenfalls substituiertes R²¹-((C₆-C₁₄)-Aryl), im Arylrest gegebenenfalls substituiertes (R²¹-((C₆-C₁₄)-Aryl))-(C₁-C₈)-alkyl, den Rest Het-, Het-(C₁-C₈)-alkyl, für einen der Reste X-NH-C(=NH)-R²⁰-, X¹-NH-R²⁰-, $R^{21}O-R^{20}$ -, $R^{21}N(R^{21})-R^{20}$ -, $R^{21}C(O)$ -, $R^{21}O-C(O)$ -, $R^{22}N(R^{21})-C(O)$ -,
- $R^{22}C(O)-N(R^{21})-$, $R^{21}O-N=$, O= und S=, oder für $(C_1-C_{10})-Alkyl$, das 15 gegebenenfalls durch Fluor einfach oder mehrfach substituiert sein kann, steht;
- für Wasserstoff, (C_1-C_6) -Alkyl, (C_1-C_6) -Alkylcarbonyl, (C_1-C_6) -Alkoxycarbonyl, X (C₁-C₁₀)-Alkylcarbonyloxy-(C₁-C₆)-alkoxycarbonyl, gegebenenfalls substituiertes (C_6 - C_{14})-Arylcarbonyl, gegebenenfalls substituiertes (C_6 - C_{14})-20 Aryloxycarbonyl, (C₆-C₁₄)-Aryl-(C₁-C₆)-alkoxycarbonyl, das im Arylrest auch substituiert sein kann, Cyano, Hydroxy, (C₁-C₆)-Alkoxy, (C₆-C₁₄)-Aryl-(C₁-C₆)alkoxy, das im Arylrest auch substituiert sein kann, oder Amino steht;
- eine der Bedeutungen von X hat oder für R'-NH-C(=N-R") steht, wobei R' und X^1 R" unabhängig voneinander die Bedeutungen von X haben; 25
 - für Wasserstoff, (C₁-C₈)-Alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im R^2 Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl oder (C₃-C₈)-Cycloalkyl steht;
- für Wasserstoff, (C_1-C_8) -Alkyl, gegebenenfalls substituiertes (C_6-C_{14}) -Aryl, im R^3 Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl, 30 gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls

10

30

substituiertes Heteroaryl-(C_1 - C_8)-alkyl, (C_3 - C_8)-Cycloalkyl, (C_3 - C_8)-Cycloalkyl-(C_1 - C_8)-alkyl, (C_6 - C_{12})-Bicycloalkyl, (C_6 - C_{12})-Bicycloalkyl-(C_1 - C_8)-alkyl, (C_8 - C_{12})-Tricycloalkyl-(C_1 - C_8)-alkyl, (C_2 - C_8)-Alkinyl, (C_1 - C_8)-Alkinyl, R¹¹NH, CON(CH₃)R⁴, CONHR⁴, COOR²¹, COOR¹⁵, CON(CH₃)R¹⁵ oder CONHR¹⁵ steht;

- für Wasserstoff oder (C₁-C₁₀)-Alkyl steht, das unsubstituiert ist oder einfach oder mehrfach substituiert ist durch gleiche oder verschiedene Reste aus der Reihe Hydroxy, (C₁-C₈)-Alkoxy, R⁵, gegebenenfalls substituiertes (C₃-C₈)-Cycloalkyl, Hydroxycarbonyl, Aminocarbonyl, Mono- oder Di-((C₁-C₁₀)-alkyl)-aminocarbonyl, (C₆-C₁₄)-Aryl-(C₁-C₈)-alkoxycarbonyl, das im Arylrest auch substituiert sein kann, (C₁-C₈)-Alkoxycarbonyl, R⁶-CO, R⁷-CO, Tetrazolyl und Trifluormethyl;
- für gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl oder einen Rest eines gegebenenfalls substituierten monocyclischen oder bicyclischen, 5-gliedrigen bis 12-gliedrigen heterocyclischen Ringes, der aromatisch, teilweise gesättigt oder vollständig gesättigt sein kann und der ein, zwei oder drei gleiche oder verschiedene Heteroatome aus der Reihe Stickstoff, Sauerstoff und Schwefel enthalten kann, steht;
- für den Rest einer natürlichen oder unnatürlichen Aminosäure, Iminosäure, gegebenenfalls N-(C₁-C₈)-alkylierten oder N-((C₆-C₁₄)-Aryl-(C₁-C₈)-alkylierten) Azaaminosäure, die im Arylrest auch substituiert sein kann, oder den Rest eines Dipeptids, Tripeptids oder Tetrapeptids steht, sowie für deren Ester und Amide, wobei freie funktionelle Gruppen durch in der Peptidchemie übliche Schutzgruppen geschützt sein können und wobei die Stickstoffatome in den Amidbindungen in der Gruppe R⁶-CO einen Rest R als Substituenten tragen können;
 - für den Rest eines über ein Stickstoffatom gebundenen 5-gliedrigen bis 10gliedrigen, gesättigten monocyclischen oder polycyclischen Heterocyclus
 steht, der ein, zwei, drei oder vier gleiche oder verschiedene zusätzliche RingHeteroatome aus der Reihe Sauerstoff, Stickstoff und Schwefel enthalten kann

10

- und der an Kohlenstoffatomen und an zusätzlichen Ring-Stickstoffatomen gegebenenfalls substituiert sein kann, wobei zusätzliche Ring-Stickstoffatome gleiche oder verschiedene Reste aus der Reihe Wasserstoff, R^h , HCO, R^h CO, R^h O-CO, HO-CO-(C_1 - C_4)-Alkyl und R^h O-CO-(C_1 - C_4)-Alkyl als Substituenten tragen können und R^h für (C_1 - C_8)-Alkyl, (C_3 - C_8)-Cycloalkyl, (C_3 - C_8)-Cycloalkyl, (C_3 - C_8)-Cycloalkyl, (C_3 - C_8)-alkyl, gegebenenfalls substituiertes (C_8 - C_1)-Aryl oder im Arylrest gegebenenfalls substituiertes (C_8 - C_1)-Aryl-(C_1 - C_8)-alkyl steht;
- R⁸ für Wasserstoff, (C₁-C₁₀)-Alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl oder (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl, das im Arylrest auch substituiert sein kann, steht, wobei die Reste R⁸ unabhängig voneinander sind;
- für Wasserstoff, Aminocarbonyl, (C_1-C_{10}) -Alkylaminocarbonyl, (C_3-C_8) -Cycloalkylaminocarbonyl, gegebenenfalls substituiertes (C_6-C_{14}) -Arylaminocarbonyl, (C_1-C_{10}) -Alkyl, gegebenenfalls substituiertes (C_6-C_{14}) -Aryloder (C_3-C_8) -Cycloalkyl steht;
- für Hydroxy, (C_1-C_{10}) -Alkoxy, (C_6-C_{14}) -Aryl- (C_1-C_8) -alkoxy, das im Arylrest auch substituiert sein kann, gegebenenfalls substituiertes (C_6-C_{14}) -Aryloxy, (C_1-C_8) -Alkylcarbonyloxy- (C_1-C_8) -alkoxy, im Arylrest gegebenenfalls substituiertes (C_8-C_{14}) -Arylcarbonyloxy- (C_1-C_8) -alkoxy, Amino oder Monooder Di- $((C_1-C_{10})$ -alkyl)-amino steht;
- 20 R¹¹ für Wasserstoff, R^{12a}, R^{12a}-CO, H-CO, R^{12a}-O-CO, R^{12b}-CO, R^{12b}-CS, R^{12a}-S(O)₂ oder R^{12b}-S(O)₂ steht;
 - $\begin{array}{lll} & \text{für } (C_1\text{-}C_{10})\text{-}\text{Alkyl, } (C_2\text{-}C_8)\text{-}\text{Alkenyl, } (C_2\text{-}C_8)\text{-}\text{Alkinyl, } (C_3\text{-}C_{12})\text{-}\text{Cycloalkyl, } (C_3\text{-}C_{12})\text{-}\text{Cycloalkyl, } (C_3\text{-}C_{12})\text{-}\text{Cycloalkyl-} (C_1\text{-}C_8)\text{-}\text{alkyl, } \text{gegebenenfalls substituiertes } (C_6\text{-}C_{14})\text{-}\text{Aryl-} \text{im} \\ & \text{Arylrest gegebenenfalls substituiertes } (C_6\text{-}C_{14})\text{-}\text{Aryl-} (C_1\text{-}C_8)\text{-}\text{alkyl,} \end{array}$
- 25 gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₈)-alkyl oder den Rest R¹⁵ steht;
 - R^{12b} für Amino, Di-((C_1 - C_{10})-alkyl)-amino oder R^{12a} -NH steht;
 - für Wasserstoff, gegebenenfalls substituiertes (C₈-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₆)-alkyl, (C₃-C₈)-Cycloalkyl,
- 30 (C₃-C₈)-Cycloalkyl-(C₁-C₆)-alkyl oder (C₁-C₆)-Alkyl, das gegebenenfalls einfach oder mehrfach durch Fluor substituiert sein kann, steht;

20

- R^{15} für R^{16} -(C_1 - C_6)-alkyl oder für R^{16} steht;
- R¹⁶ für einen Rest eines 6-gliedrigen bis 24-gliedrigen bicyclischen oder tricyclischen Ringes steht, der gesättigt oder teilweise ungesättigt ist und der auch ein, zwei, drei oder vier gleiche oder verschiedene Heteroatome aus der Reihe Stickstoff, Sauerstoff und Schwefel enthalten kann und der auch durch einen oder mehrere gleiche oder verschiedene Substituenten aus der Reihe (C₁-C₄)-Alkyl und Oxo substituiert sein kann;
 - R²⁰ für eine direkte Bindung oder einen zweiwertigen (C₁-C₆)-Alkylenrest steht;
- für Wasserstoff, (C₁-C₈)-Alkyl, (C₃-C₁₂)-Cycloalkyl, (C₃-C₁₂)-Cycloalkyl-(C₁-C₈)alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im Arylrest gegebenenfalls
 substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl, den Rest Het- oder Het-(C₁-C₈)-alkyl
 steht, wobei Alkylreste durch Fluor einfach oder mehrfach substituiert sein
 können und die Reste R²¹ bei mehrfachem Auftreten unabhängig voneinander
 sind und gleich oder verschieden sein können;
- 15 R^{22} für R^{21} -, $R^{21}O$ -, $R^{21}N(R^{21})$ -, $R^{21}C(O)$ -, $R^{21}O$ -C(O)-, $R^{21}N(R^{21})$ - $C(=N(R^{21}))$ oder $R^{21}C(O)$ - $N(R^{21})$ steht;
 - für einen der Reste R³²-(C(R)(R))_m-R³¹-, R³²-CR=CR-R³¹-, R³²-C=C-R³¹-, R³²-O-R³¹- und R³²-S-R³¹- steht, wobei die Reste R unabhängig voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein können, und m für 1, 2 oder 3 steht;
 - R³¹ für den zweiwertigen Rest -R³³-R³⁴-R³⁵-R³⁶- steht, wobei R³⁸ an das Stickstoffatom im Imidazolidinring in der Formel I gebunden ist;
 - für Wasserstoff, (C_2-C_8) -Alkenyl, (C_2-C_8) -Alkinyl, (C_3-C_{12}) -Cycloalkyl, (C_3-C_{12}) -Cycloalkyl- (C_1-C_8) -alkyl, (C_8-C_{12}) -Bicycloalkyl, (C_8-C_{12}) -Bicycloalkyl- (C_1-C_8) -
- alkyl, (C₈-C₁₂)-Tricycloalkyl, (C₆-C₁₂)-Tricycloalkyl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₈)-alkyl oder (C₁-C₈)-Alkyl, das gegebenenfalls durch 1 bis 8 Fluoratome substituiert sein kann, steht;
 - R³³ für eine direkte Bindung oder einen zweiwertigen (C₁-C₆)-Alkylenrest steht;

 $m R^{34}$ für einen zweiwertigen Rest aus der Reihe (C₃-C₁₂)-Cycloalkylen, (C₆-C₁₂)-Bicycloalkylen, (C₆-C₁₂)-Tricycloalkylen, gegebenenfalls substituiertes (C₆-C₁₄)-Arylen und gegebenenfalls substituiertes Heteroarylen steht;

R³⁵ für eine direkte Bindung oder einen zweiwertigen (C₁-C₈)-Alkylenrest steht;

5 R³⁶ für eine direkte Bindung, die Gruppe -CO- oder die Gruppe -S(O)_n- steht;

Het für einen Rest eines monocyclischen oder polycyclischen, 4-gliedrigen bis 14-gliedrigen, aromatischen oder nicht aromatischen Ringes steht, der 1, 2, 3 oder 4 gleiche oder verschiedene Heteroatome aus der Reihe N, O und S als Ringglieder enthält und gegebenenfalls durch einen oder mehrere, gleiche oder verschiedene Substituenten substituiert sein kann;

e und h unabhängig voneinander für 0 oder 1 stehen und gleich oder verschieden sein können;

n für 1 oder 2 steht;

in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen, und ihre physiologisch verträglichen Salze.

Reste, die mehrfach in den Verbindungen der Formel I auftreten können, können in allen Fällen unabhängig voneinander die angegebenen Bedeutungen haben und gleich oder verschieden sein.

20

25

30

10

15

Alkylreste können geradkettig oder verzweigt sein. Dies gilt auch, wenn sie Substituenten tragen oder als Substituenten in anderen Resten auftreten, beispielsweise in Alkoxyresten, Alkoxycarbonylresten oder Arylalkylresten. Von Alkylresten abgeleitete zweiwertige Reste, das heißt Alkylenreste (= Alkandiylreste), können ebenfalls geradkettig oder verzweigt sein. Beispiele für geeignete Alkylreste sind Methyl, Ethyl, n-Propyl, n-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Pentadecyl, n-Hexadecyl, n-Heptadecyl, n-Octadecyl, Isopropyl, Isobutyl, Isopentyl, Isohexyl, 3-Methylpentyl, Neopentyl, Neohexyl, 2,3,5-Trimethylhexyl, sec-Butyl, tert-Butyl, tert-Pentyl. Bevorzugte Alkylreste sind Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec-Butyl, tert-Butyl, n-Pentyl, Isopentyl, n-Hexyl und Isohexyl. Beispiele

WO 99/60015

15

für Alkylenreste sind die den vorstehend genannten einwertigen Resten entsprechenden zweiwertigen Reste, zum Beispiel Methylen, Ethylen, Trimethylen, Tetramethylen, Pentamethylen, Hexamethylen, durch Alkylreste substituiertes Methylen oder Ethylen, zum Beispiel Methylen, das durch eine Methylgruppe, eine Ethylgruppe, eine n-Propylgruppe, eine Isopropylgruppe, eine n-Butylgruppe, eine Isobutylgruppe, eine tert-Butylgruppe, eine n-Pentylgruppe, eine Isopentylgruppe oder eine n-Hexylgruppe substituiert ist, oder zum Beispiel Ethylen, das sowohl an dem einem Kohlenstoffatom als auch an dem anderen Kohlenstoffatom oder auch an an beiden Kohlenstoffatomen substituiert sein kann.

10

15

20

5

Auch Alkenylreste und die zweiwertigen Alkenylenreste (= Alkendiylreste) sowie Alkinylreste können geradkettig oder verzweigt sein. Beispiele für Alkenylreste sind Vinyl, 1-Propenyl, Allyl, Butenyl, 2-Methyl-1-propenyl, 2-Methyl-2-propenyl, 3-Methyl-2-butenyl, für Alkenylenreste Vinylen, Propenylen, Butenylen, für Alkinylreste Ethinyl, 1-Propinyl, Propargyl.

Cycloalkylreste sind insbesondere Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclohetyl, Cyclooctyl, Cyclononyl, Cyclodecyl, Cycloundecyl und Cyclododecyl, die aber auch durch beispielsweise durch (C₁-C₄)-Alkyl substituiert sein können. Als Beispiele für substituierte Cycloalkylreste seien 4-Methylcyclohexyl und 2,3-Dimethylcyclopentyl genannt. Analoges gilt für die zweiwertigen Cycloalkylenreste (= Cycloalkandiylreste).

Bicycloalkylreste, Tricycloalkylreste und die für R¹⁶ stehenden Reste von 6gliedrigen bis 24-gliedrigen bicyclischen und tricyclischen Ringsystemen werden
formal durch Abstraktion eines Wasserstoffatoms aus Bicyclen bzw. Tricyclen
erhalten. Die zugrunde liegenden Bicyclen und Tricyclen können als Ringglieder nur
Kohlenstoffatome enthalten, es kann sich also um Bicycloalkane oder
Tricycloalkane handeln, sie können im Falle der für R¹⁶ stehenden Reste aber auch
ein bis vier gleiche oder verschiedene Heteroatome aus der Reihe Stickstoff,
Sauerstoff und Schwefel enthalten, es kann sich also um Aza-, Oxa- und Thia-

WO 99/60015 PCT/EP99/03072

bicycloalkane und -tricycloalkane handeln. Wenn Heteroatome enthalten sind, so sind bevorzugt ein oder zwei Heteroatome, insbesondere Stickstoffatome oder Sauerstoffatome, enthalten. Die Heteroatome können beliebige Positionen im bicyclischen bzw. tricyclischen Gerüst einnehmen, sie können sich in den Brücken oder im Falle von Stickstoffatomen auch an den Brückenköpfen befinden. Sowohl die Bicycloalkane und Tricycloalkane als auch ihre Hetero-Analoga können vollständig gesättigt sein oder eine oder mehrere Doppelbindungen enthalten. Bevorzugt enthalten sie eine oder zwei Doppelbindungen oder sind insbesondere vollständig gesättigt. Sowohl die Bicycloalkane und Tricycloalkane als auch die Hetero-Analoga und sowohl die gesättigten als auch die ungesättigten Vertreter 10 können unsubstituiert sein oder in beliebigen geeigneten Positionen durch eine oder mehrere Oxogruppen und/oder eine oder mehrere gleiche oder verschiedene (C₁-C₄)-Alkylgruppen, zum Beispiel Methylgruppen oder Isopropylgruppen, bevorzugt Methylgruppen, substituiert sein. Die freie Bindung des bicyclischen oder tricyclischen Restes kann sich in einer beliebigen Position des Moleküls befinden, 15 der Rest kann also über ein Brückenkopfatom oder ein Atom in einer Brücke gebunden sein. Die freie Bindung kann sich auch in einer beliebigen stereochemischen Position befinden, beispielsweise in einer exo-Position oder einer endo-Position.

20

30

Beispiele für Grundkörper bicyclischer Ringsysteme, von denen sich ein bicyclischer Rest ableiten kann, sind das Norbornan (= Bicyclo[2.2.1]heptan), das Bicyclo[2.2.2]octan und das Bicyclo[3.2.1]octan. Beispiele für Systeme, die Heteroatome enthalten oder die ungesättigt oder substituiert sind, sind das 7-Azabicylo[2.2.1]heptan, das Bicyclo[2.2.2.]oct-5-en und der Campher (= 1,7,7-Trimethyl-2-oxobicyclo[2.2.1]heptan).

Beispiele für Systeme, von denen sich ein tricyclischer Rest ableiten kann, sind das Twistan (= Tricyclo[4.4.0.0^{3.8}]decan), das Adamantan (= Tricyclo[3.3.1.1^{3,7}]decan), das Noradamantan (= Tricyclo[3.3.1.0^{3,7}]nonan), das Tricyclo[2.2.1.0^{2,6}]heptan, das Tricyclo[5.3.2.0^{4,9}]dodecan, das Tricyclo[5.4.0.0^{2,9}]undecan oder das

Tricyclo[5.5.1.0^{3,11}]tridecan.

Bevorzugt leiten sich bicyclische oder tricyclische Reste von verbrückten Bicyclen bzw. Tricyclen ab, also von Systemen, in denen Ringe zwei oder mehr als zwei

Atome gemeinsam haben. Bevorzugt sind, soweit nicht anders angegeben, weiterhin auch bicyclische oder tricyclische Reste mit 6 bis 18 Ringgliedern, besonders bevorzugt solche mit 6 bis 14 Ringgliedern, ganz besonders bevorzugt solche mit 7 bis 12 Ringgliedern.

Im einzelnen sind besonders bevorzugte bicyclische oder tricyclische Reste, die zum Beispiel für eine Bicycloalkylgruppe oder für eine Tricycloalkylgruppe stehen können, der 2-Norbornylrest, sowohl derjenige mit der freien Bindung in der exo-Position als auch derjenige mit der freien Bindung in der endo-Position, der 2-Bicyclo[3.2.1]octylrest, der Adamantylrest, sowohl der 1-Adamantylrest als auch der 2-Adamantylrest, der Homoadamantylrest und der Noradamantylrest, zum Beispiel der 3-Noradamantylrest. Darüber hinaus bevorzugt sind der 1-Adamantylrest und der 2-Adamantylrest.

Entsprechendes gilt für die zweiwertigen Bicycloalkylenreste (= 20 Bicycloalkandiylreste) und Tricycloalkylenreste (= Tricycloalkandiylreste).

(C₈-C₁₄)-Arylgruppen sind beispielsweise Phenyl, Naphthyl, zum Beispiel 1-Naphthyl und 2-Naphthyl, Biphenylyl, zum Beispiel 2-Biphenylyl, 3-Biphenylyl und 4-Biphenylyl, Anthryl oder Fluorenyl, (C₆-C₁₀)-Arylgruppen sind beispielsweise 1-Naphthyl, 2-Naphthyl und Phenyl. Biphenylylreste, Naphthylreste und insbesondere Phenylreste sind bevorzugte Arylreste. Arylreste, insbesondere Phenylreste, können unsubstituiert sein oder einfach oder mehrfach, bevorzugt einfach, zweifach oder dreifach, durch gleiche oder verschiedene Reste substituiert sein. Substituierte Reste sind bevorzugt substituiert durch Reste aus der Reihe (C₁-C₈)-Alkyl, insbesondere (C₁-C₄)-Alkyl, (C₁-C₈)-Alkoxy, insbesondere (C₁-C₄)-Alkoxy, Halogen, Nitro, Amino, Trifluormethyl, Hydroxy, Hydroxy-(C₁-C₄)-alkyl wie zum Beispiel

Hydroxymethyl oder 1-Hydroxyethyl oder 2-Hydroxyethyl, Methylendioxy, Ethylendioxy, Formyl, Acetyl, Cyano, Hydroxycarbonyl, Aminocarbonyl, (C1-C4)-Alkoxycarbonyl, Phenyl, Phenoxy, Benzyl, Benzyloxy und Tetrazolyl. Entsprechendes gilt beispielsweise für Reste wie Arylalkyl oder Arylcarbonyl. Arylalkylreste sind insbesondere Benzyl sowie 1- und 2-Naphthylmethyl, 2-, 3- und 4-Biphenylylmethyl und 9-Fluorenylmethyl, die auch substituiert sein können. Substituierte Arylalkylreste sind beispielsweise durch einen oder mehrere (C1-C8)-Alkylreste, insbesondere (C₁-C₄)-Alkylreste, im Arylteil substituierte Benzylreste und Naphthylmethylreste, zum Beispiel 2-, 3- und 4-Methylbenzyl, 4-Isobutylbenzyl, 4tert-Butylbenzyl, 4-Octylbenzyl, 3,5-Dimethylbenzyl, Pentamethylbenzyl, 2-, 3-, 4-, 10 5-, 6-, 7- und 8-Methyl-1-naphthylmethyl, 1-, 3-, 4-, 5-, 6-, 7- und 8-Methyl-2naphthylmethyl; durch einen oder mehrere (C₁-C₈)-Alkoxyreste, insbesondere (C₁-C₄)-Alkoxyreste, im Arylteil substituierte Benzylreste und Naphthylmethylreste, zum Beispiel 4-Methoxybenzyl, 4-Neopentyloxybenzyl, 3,5-Dimethoxybenzyl, 3,4-Methylendioxybenzyl, 2,3,4-Trimethoxybenzyl; Nitrobenzylreste, zum Beispiel 2-, 3-15 und 4-Nitrobenzyl; Halobenzylreste, zum Beispiel 2-, 3- und 4-Chlor- und 2-, 3-, und

Beispiel 3- und 4-Trifluormethylbenzyl oder 3,5-Bis(trifluormethyl)benzyl.

Substituierte Arylalkylreste können aber auch unterschiedliche Substituenten

aufweisen. In den Verbindungen der Formel I können aber im allgemeinen nicht
mehr als zwei Nitrogruppen im Molekül vorhanden sein.

4-Fluorbenzyl, 3,4-Dichlorbenzyl, Pentafluorbenzyl; Trifluormethylbenzylreste, zum

In monosubstituierten Phenylresten kann sich der Substituent in der 2-Position, der 3-Position oder der 4-Position befinden. Zweifach substituiertes Phenyl kann in 2,3-Position, 2,4-Position, 2,5-Position, 2,6-Position, 3,4-Position oder 3,5-Position substituiert sein. In dreifach substituierten Phenylresten können sich die Substituenten in 2,3,4-Position, 2,3,5-Position, 2,4,5-Position, 2,4,6-Position, 2,3,6-Position oder 3,4,5-Position befinden.

30 Die Erläuterungen zu den Arylresten gelten entsprechend für zweiwertige Arylenreste, zum Beispiel für Phenylenreste, die beispielsweise als 1,4-Phenylen

oder als 1,3-Phenylen vorliegen können.

Phenylen- (C_1-C_6) -alkyl ist insbesondere Phenylenmethyl $(-C_6H_4-CH_2-)$ und Phenylenethyl, (C_1-C_6) -Alkylen-phenyl insbesondere Methylenphenyl $(-CH_2-C_6H_4-)$. Phenylen- (C_2-C_6) -alkenyl ist insbesondere Phenylenethenyl und Phenylenpropenyl.

Heteroaryl steht für einen Rest eines monocyclischen oder polycyclischen aromatischen Systems mit 5 bis 14 Ringgliedem, das 1, 2, 3, 4 oder 5 Heteroatome als Ringglieder enthält. Beispiele für Heteroatome sind N, O und S. Sind mehrere Heteroatome enthalten, können diese gleich oder verschieden sein. Heteroarylreste 10 können ebenfalls unsubstituiert sein oder einfach oder mehrfach, bevorzugt einfach, zweifach oder dreifach, durch gleiche oder verschiedene Reste aus der Reihe (C1- C_8)-Alkyl, insbesondere (C_1 - C_4)-Alkyl, (C_1 - C_8)-Alkoxy, insbesondere (C_1 - C_4)-Alkoxy, Halogen, Nitro, Amino, Trifluormethyl, Hydroxy, Hydroxy-(C₁-C₄)-alkyl wie zum Beispiel Hydroxymethyl oder 1-Hydroxyethyl oder 2-Hydroxyethyl, Methylendioxy, 15 Ethylendioxy, Formyl, Acetyl, Cyano, Hydroxycarbonyl, Aminocarbonyl, (C1-C4)-Alkoxycarbonyl, Phenyl, Phenoxy, Benzyl, Benzyloxy und Tetrazolyl substituiert sein. Bevorzugt steht Heteroaryl für einen monocyclischen oder bicyclischen aromatischen Rest, der 1, 2, 3 oder 4, insbesondere 1, 2 oder 3, gleiche oder verschiedene Heteroatome aus der Reihe N, O und S enthält und der durch 1, 2, 3 20 oder 4, insbesondere 1 bis 3, gleiche oder verschiedene Substituenten aus der Reihe (C₁-C₆)-Alkyl, (C₁-C₆)-Alkoxy, Fluor, Chlor, Nitro, Amino, Trifluormethyl, Hydroxy, Hydroxy- (C_1-C_4) -alkyl, (C_1-C_4) -Alkoxycarbonyl, Phenyl, Phenoxy, Benzyloxy und Benzyl substituiert sein kann. Besonders bevorzugt steht Heteroaryl für einen monocyclischen oder bicyclischen aromatischen Rest mit 5 bis 10 25 Ringgliedern, insbesondere für einen 5-gliedrigen bis 6-gliedrigen monocyclischen aromatischen Rest, der 1, 2 oder 3, insbesondere 1 oder 2, gleiche oder verschiedene Heteroatome aus der Reihe N, O und S enthält und durch 1 oder 2 gleiche oder verschiedene Substituenten aus der Reihe (C1-C4)-Alkyl, (C1-C4)-Alkoxy, Phenyl, Phenoxy, Benzyloxy und Benzyl substituiert sein kann. 30

Heterocyclen, die für monocyclische oder bicyclische 5-gliedrige bis 12-gliedrige heterocyclische Ringe stehen, können aromatisch oder teilweise gesättigt oder vollständig gesättigt sein. Sie können unsubstituiert sein oder an einem oder mehreren Kohlenstoffatomen oder an einem oder mehreren Stickstoffatomen durch gleiche oder verschiedene Substituenten substituiert sein, wie dies für den Rest Heteroaryl angegeben ist. Insbesondere kann der heterocyclische Ring einfach oder mehrfach, zum Beispiel einfach, zweifach, dreifach oder vierfach, an Kohlenstoffatomen durch gleiche oder verschiedene Reste aus der Reihe (C1-C8)-Alkyl, zum Beispiel (C_1 - C_4)-Alkyl, (C_1 - C_8)-Alkoxy, zum Beispiel (C_1 - C_4)-Alkoxy wie Methoxy, Phenyl-(C₁-C₄)-alkoxy, zum Beispiel Benzyloxy, Hydroxy, Oxo, Halogen, 10 Nitro, Amino oder Trifluormethyl substituiert sein und/oder es können Ring-Stickstoffatome in heterocyclischen Ringen - wie auch in Heteroarylresten - durch (C1-C8)-Alkyl, zum Beispiel (C1-C4)-Alkyl wie Methyl oder Ethyl, durch gegebenenfalls substituiertes Phenyl oder Phenyl-(C1-C4)-alkyl, zum Beispiel Benzyl, substituiert sein. 15

Het umfaßt zum einen aromatische Heterocyclen und damit auch die für Heteroaryl stehenden Gruppen, soweit diese hinsichtlich der Zahl der Ringglieder und Heteroatome unter die Definition von Het fallen. Het umfaßt aber zusätzlich auch nicht aromatische Heterocyclen, die vollständig gesättigt sind oder die eine oder 20 mehrere Doppelbindungen im Ringsystem enthalten. Het kann an Stickstoffatomen und/oder Kohlenstoffatomen durch einen oder mehrere, zum Beispiel 1, 2, 3 oder 4, gleiche oder verschiedene Substituenten substituiert sein, beispielsweise durch (C1-C₈)-Alkyl, insbesondere (C₁-C₄)-Alkyl, (C₃-C₁₂)-Cycloalkyl, (C₃-C₁₂)-Cycloalkyl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im Arylrest gegebenenfalls 25 substituiertes (C_8 - C_{14})-Aryl-(C_1 - C_8)-alkyl, Heteroaryl, Heteroaryl-(C_1 - C_8)-alkyl, (C_1 - C_8)-Alkoxy, insbesondere (C_1 - C_4)-Alkoxy, gegebenenfalls substituiertes Phenoxy, Benzyloxy, Halogen, Nitro, Amino, (C₁-C₈)-Alkylamino, Di-((C₁-C₈)-Alkyl)-amino, Trifluormethyl, Hydroxy, Methylendioxy, Ethylendioxy, Cyano, Hydroxycarbonyl, Aminocarbonyl, (C₁-C₄)-Alkoxycarbonyl und allgemein durch Estergruppen, 30 Acylgruppen, Oxo, Thioxo, wobei Alkylreste durch Fluor einfach oder mehrfach

substituiert sein können.

Beispiele für Grundkörper von Heterocyclen, die einem Heteroarylrest, dem Rest Het, dem Rest eines monocyclischen oder bicyclischen 5-gliedrigen bis 12-gliedrigen heterocyclischen Ringes, dem zweiwertigen Rest eines 5-gliedrigen oder 6-gliedrigen Heterocyclus, dem für R⁷ stehenden heterocyclischen Rest oder einem für R¹⁸ stehenden heterocyclischen Rest zugrunde liegen können, sind, soweit sie im Einzelfall unter die jeweilige Definition fallen, Pyrrol, Furan, Thiophen, Imidazol, Pyrazol, Oxazol, Isoxazol, Thiazol, Isothiazol, Tetrazol, Pyridin, Pyrazin, Pyrimidin,
Oxazin, Indol, Isoindol, Indazol, Phthalazin, Chinolin, Isochinolin, Chinoxalin, Chinazolin, Cinnolin, β-Carbolin und benz-anellierte, cyclopenta-, cyclohexa- oder cyclohepta-anellierte Derivate dieser Heterocyclen.

Stickstoffheterocyclen können auch als N-Oxide vorliegen oder als Quartärsalze.

15

20

25

30

Benzodioxolanyl.

Reste, die für Heteroaryl oder den Rest eines monocyclischen oder bicyclischen 5-gliedrigen bis 12-gliedrigen heterocyclischen Ringes stehen können, sind beispielsweise 2- oder 3-Pyrrolyl, Phenylpyrrolyl, zum Beispiel 4- oder 5-Phenyl-2-pyrrolyl, 2- oder 3-Furyl, 2- oder 3-Thienyl, 4-Imidazolyl, Methylimidazolyl, zum Beispiel 1-Methyl-2-, -4- oder -5-imidazolyl, 1,3-Thiazol-2-yl, 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, 2-, 3- oder 4-Pyridyl-N-oxid, 2-Pyrazinyl, 2-, 4- oder 5-Pyrimidinyl, 2-, 3- oder 5-Indolyl, substituiertes 2-Indolyl, zum Beispiel 1-Methyl-, 5-Methyl-, 5-Methoxy-, 5-Benzyloxy-, 5-Chlor- oder 4,5-Dimethyl-2-indolyl, 1-Benzyl-2- oder -3-indolyl, 4,5,6,7-Tetrahydro-2-indolyl, Cyclohepta[b]-5-pyrrolyl, 2-, 3- oder 4-Chinolyl, 1-, 3- oder 4-Isochinolyl, 1-Oxo-1,2-dihydro-3-isochinolyl, 2-Chinoxalinyl, 2-Benzofuranyl, 2-Benzothienyl, 2-Benzoxazolyl oder 2-Benzothiazolyl oder, als Reste von teilweie gesättigten oder vollständig gesättigten heterocyclischen Ringen, beispielsweise auch Dihydropyridinyl, Pyrrolidinyl, zum Beispiel 2- oder 3-(N-Methylpyrrolidinyl), Piperazinyl, Morpholinyl, Thiomorpholinyl, Tetrahydrothienyl,

Die Erläuterungen zu Heteroarylresten gelten entsprechend für die zweiwertigen Heteroarylenreste.

Für den Rest R⁷ stehende heterocyclische Reste können an den Kohlenstoffatomen und/oder an zusätzlichen Ring-Stickstoffatomen unsubstituiert sein oder einfach 5 oder mehrfach, zum Beispiel einfach, zweifach, dreifach, vierfach oder fünffach, durch gleiche oder verschiedene Substituenten substituiert sein. Kohlenstoffatome können zum Beispiel durch (C_1 - C_8)-Alkyl, insbesondere (C_1 - C_4)-Alkyl, (C_1 - C_8)-Alkoxy, insbesondere (C₁-C₄)-Alkoxy, Halogen, Nitro, Amino, Trifluormethyl, Hydroxy, Oxo, Cyano, Hydroxycarbonyl, Aminocarbonyl, (C1-C4)-Alkoxycarbonyl, Phenyl, Phenoxy, Benzyl, Benzyloxy, Tetrazolyl substituiert sein, insbesondere durch (C₁-C₄)-Alkyl, zum Beispiel Methyl, Ethyl oder tert-Butyl, (C₁-C₄)-Alkoxy, zum Beispiel Methoxy, Hydroxy, Oxo, Phenyl, Phenoxy, Benzyl, Benzyloxy. Schwefelatome können zum Sulfoxid oder zum Sulfon oxidiert sein. Beispiele für den Rest Het sind 1-Pyrrolidinyl, 1-Piperidinyl, 1-Piperazinyl, 4-substituiertes 1-15 Piperazinyl, 4-Morpholinyl, 4-Thiomorpholinyl, 1-Oxo-4-thiomorpholinyl, 1,1-Dioxo-4-thiomorpholinyl, Perhydroazepin-1-yl, 2,6-Dimethyl-1-piperidinyl, 3,3-Dimethyl-4morpholinyl, 4-Isopropyl-2,2,6,6-tetramethyl-1-piperazinyl, 4-Acetyl-1-piperazinyl, 4-Ethoxycarbonyl-1-piperazinyl.

20

Halogen steht für Fluor, Chlor, Brom oder lod, insbesondere für Fluor oder Chlor.

Der Substituent an einem für B stehenden substituierten Alkylenrest oder Alkenylenrest kann zum einen einen Cyclus enthalten, wenn es sich um einen Substituenten aus der Reihe (C₃-C₁₀)-Cycloalkyl, (C₃-C₁₀)-Cycloalkyl-(C₁-C₆)-alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes Heteroaryl und im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₆) handelt, und kann zum anderen acyclisch sein, wenn es sich um einen Substituenten aus der Reihe (C₁-C₈)-Alkyl, (C₂-C₈)-Alkenyl und (C₂-C₈)-Alkinyl handelt. Die acyclischen Substituenten können 2, 3, 4, 5, 6, 7 oder 8 Kohlenstoffatome oder im Falle des

20

25

30

gesättigten Alkylrests auch 1 Kohlenstoffatom enthalten. Im Falle der Alkenylreste und Alkinylreste kann sich die Doppelbindung oder Dreifachbindung in einer beliebigen Position befinden und im Falle der Doppelbindung cis-Konfiguration oder trans-Konfiguration aufweisen. Wie oben erläutert, können diese Alkylreste, Alkenylreste und Alkinylreste geradkettig oder verzweigt sein.

Als Beispiele für Substituenten, die der für B stehende (C₁-C₆)-Alkylenrest oder (C₂-C₆)-Alkenylenrest tragen kann, seien insbesondere genannt Methyl, Ethyl, n-Propyl, n-Butyl, n-Pentyl, n-Heptyl, n-Octyl, Isopropyl, Isobutyl, Isopentyl, Isohexyl, sec-Butyl, tert-Butyl, tert-Pentyl, Neopentyl, Neohexyl, 3-Methylpentyl, 2-Ethylbutyl, Vinyl, Allyl, 1-Propenyl, 2-Butenyl, 3-Butenyl, 3-Methyl-2-butenyl, Ethinyl, 1-Propinyl, 2-Propinyl, 6-Hexinyl, Phenyl, Benzyl, 1-Phenylethyl, 2-Phenylethyl, 3-Phenylpropyl, 4-Biphenylylmethyl, Cyclopropyl, Cyclopropylmethyl, Cyclopentyl, Cyclohexyl, Cyclohexylmethyl, 2-Cyclohexylethyl, 3-Cyclooctylpropyl, 2-Pyridyl, 3-Pyridyl, 4-Pyridylmethyl, 2-(4-Pyridyl)ethyl, 2-Furylmethyl, 2-Thienylmethyl, 3-Thienylmethyl oder 2-(3-Indolyl)ethyl.

Der Rest einer Aminosäure, Iminosäure oder Azaaminosäure oder eines Dipeptids, Tripeptids oder Tetrapeptids wird wie in der Peptidchemie üblich aus der entsprechenden Aminosäure, Iminosäure oder Azaaminosäure oder dem Dipeptid, Tripeptid oder Tetrapeptid erhalten, indem von der N-terminalen Aminogruppe oder von der Iminogruppe formal ein Wasserstoffatom entfernt wird. Über die so entstehende freie Bindung an der Aminogruppe oder der Iminogruppe ist diese Gruppe dann peptidartig durch eine Amidbindung mit der CO-Gruppe in der Gruppe R⁶-CO verknüpft.

Die natürlichen und unnatürlichen Aminosäuren können in allen stereochemischen Formen vorliegen, beispielsweise in der D-Form, der L-Form oder in Form einer Mischung von Stereoisomeren, zum Beispiel in Form eines Racemats. Bevorzugte Aminosäuren sind α -Aminosäuren und β -Aminosäuren, besonders bevorzugt sind α -Aminosäuren. Als in Betracht kommende Aminosäuren seien beispielsweise

genannt (vgl. Houben-Weyl, Methoden der organischen Chemie, Band 15/1 und 15/2, Georg Thieme Verlag, Stuttgart, 1974):

Aad, Abu, γAbu, ABz, 2ABz, εAca, Ach, Acp, Adpd, Ahb, Aib, βAib, Ala, βAla, ΔAla,
Alg, All, Ama, Amt, Ape, Apm, Apr, Arg, Asn, Asp, Asu, Aze, Azi, Bai, Bph, Can, Cit, Cys, (Cys)₂, Cyta, Daad, Dab, Dadd, Dap, Dapm, Dasu, Djen, Dpa, Dtc, Fel, Gln, Glu, Gly, Guv, hAla, hArg, hCys, hGln, hGlu, His, hlle, hLeu, hLys, hMet, hPhe, hPro, hSer, hThr, hTrp, hTyr, Hyl, Hyp, 3Hyp, Ile, Ise, Iva, Kyn, Lant, Lcn, Leu, Lsg, Lys, βLys, ΔLys, Met, Mim, Min, nArg, Nle, Nva, Oly, Orn, Pan, Pec, Pen, Phe, Phg,
Pic, Pro, ΔPro, Pse, Pya, Pyr, Pza, Qin, Ros, Sar, Sec, Sem, Ser, Thi, βThi, Thr, Thy, Thx, Tia, Tle, Tly, Trp, Trta, Tyr, Val, tert-Butylglycin (Tbg), Neopentylglycin (Npg), Cyclohexylglycin (Chg), Cyclohexylalanin (Cha), 2-Thienylalanin (Thia), 2,2-Diphenylaminoessigsäure, 2-(p-Tolyl)-2-phenylaminoessigsäure, 2-(p-Chlorphenyl)-aminoessigsäure.

15

Steht R^6 für den Rest einer natürlichen oder unnatürlichen α -Aminosäure, so kann dieser Rest beispielsweise durch die Formel -N(R)-CH(SC)-CO-AG wiedergegeben werden, in der CO-AG für die Säuregruppe der Aminosäure oder ein Derivat davon, zum Beispiel eine Estergruppe, eine Amidgruppe oder eine Amidgruppe, die einen Peptidrest enthält, steht und SC für die Seitenkette der α -Aminosäure steht, also 20 zum Beispiel für einen der Substituenten, die in der α -Position der vorstehend aufgelisteten α -Aminosäuren enthalten sind. Beispiele für Seitenketten sind Alkylreste, zum Beispiel die Methylgruppe im Alanin oder die Isopropylgruppe im Valin, der Benzylrest im Phenylalanin, der Phenylrest im Phenylglycin, der 4-Aminobutylrest im Lysin oder die Hydroxycarbonylmethylgruppe in der 25 Asparaginsäure. Solche Seitenketten und damit die Aminosäuren können außer durch ihre chemische Struktur zum Beispiel auch aufgrund ihrer physikochemischen Eigenschaften zu einer Gruppe zusammengefaßt werden, beispielsweise können lipophile Seitenketten von hydrophilen Seitenketten, die polare Gruppen enthalten. unterschieden werden. Beispiele für lipophile Seitenketten, die in für R⁶ stehenden 30 Aminosäuren enthalten sein können, sind Alkylreste, Arylalkylreste oder Arylreste.

Entsprechendes gilt für Aminosäuren, die Teil eines für R⁶ stehenden Restes eines Dipeptids, Tripeptids oder Tetrapeptids sind.

Azaaminosäuren sind natürliche oder unnatürliche Aminosäuren, in denen eine CH-5 Einheit durch ein Stickstoffatom ersetzt ist, beispielsweise in α-Aminosäuren der Zentralbaustein

ersetzt ist.

Als Reste von Iminosäuren kommen insbesondere Reste von Heterocyclen aus der 15 folgenden Gruppe in Betracht: Pyrrolidin-2-carbonsäure; Piperidin-2-carbonsäure; 1,2,3,4-Tetrahydroisochinolin-3-carbonsäure; Decahydroisochinolin-3-carbonsäure; Octahydroindol-2-carbonsäure; Decahydrochinolin-2-carbonsäure; Octahydrocyclopenta[b]pyrrol-2-carbonsäure; 2-Azabicyclo[2.2.2]octan-3carbonsäure; 2-Azabicyclo[2.2.1]heptan-3-carbonsäure; 2-Azabicyclo[3.1.0]hexan-20 3-carbonsäure; 2-Azaspiro[4.4]nonan-3-carbonsäure; 2-Azaspiro[4.5]decan-3carbonsäure; Spiro(bicyclo[2.2.1]heptan)-2,3-pyrrolidin-5-carbonsäure; Spiro(bicyclo[2.2.2]octan)-2,3-pyrrolidin-5-carbonsäure; 2-Azatricyclo[4.3.0.1^{6,9}]decan-3-carbonsäure; Decahydrocyclohepta[b]pyrrol-2carbonsäure; Decahydrocycloocta[c]pyrrol-2-carbonsäure; 25 Octahydrocyclopenta[c]pyrrol-2-carbonsäure; Octahydroisoindol-1-carbonsäure; 2,3,3a,4,6a-Hexahydrocyclopenta[b]pyrrol-2-carbonsäure; 2,3,3a,4,5,7a-Hexahydroindol-2-carbonsäure; Tetrahydrothiazol-4-carbonsäure; Isoxazolidin-3carbonsäure; Pyrazolidin-3-carbonsäure, Hydroxypyrrolidin-2-carbonsäure, die alle gegebenenfalls substituiert sein können (siehe folgende Formeln): 30

Die den obigen Resten zugrundeliegenden Heterocyclen sind beispielsweise bekannt aus US-A-4,344,949; US-A 4,374,847; US-A 4,350,704; EP-A 29,488; EP-A 31,741; EP-A 46,953; EP-A 49,605; EP-A 49,658; EP-A 50,800; EP-A 51,020; EP-A 52,870; EP-A 79,022; EP-A 84,164; EP-A 89,637; EP-A 90,341; EP-A 90,362; EP-A 105,102; EP-A 109,020; EP-A 111,873; EP-A 271,865 und EP-A 344,682.

Dipeptide, Tripeptide und Tetrapeptide können als Bausteine natürliche oder unnatürliche Aminosäuren, Iminosäuren sowie Azaaminosäuren enthalten. Ferner können die natürlichen oder unnatürlichen Aminosäuren, Iminosäuren, Azaaminosäuren, Dipeptide, Tripeptide und Tetrapeptide auch in Form von Derivaten der Carbonsäuregruppe vorliegen, zum Beispiel als Ester oder Amide, wie zum Beispiel als Methylester, Ethylester, n-Propylester, Isopropylester, Isobutylester, tert-Butylester, Benzylester, unsubstituiertes Amid, Methylamid, Ethylamid, Semicarbazid oder ω-Amino-(C₂-C₈)-alkylamid.

Funktionelle Gruppen in Resten von Aminosäuren, Iminosäuren, Azaaminosäuren, Dipeptiden, Tripeptiden und Tetrapeptiden sowie in anderen Teilen der Verbindungen der Formel I können in geschützter Form vorliegen. Geeignete Schutzgruppen wie zum Beispiel Urethanschutzgruppen, Carboxylschutzgruppen und Seitenkettenschutzgruppen sind bei Hubbuch, Kontakte (Merck) 1979, Nr. 3, Seiten 14 bis 23, und bei Büllesbach, Kontakte (Merck) 1980, Nr. 1, Seiten 23 bis 35, beschrieben. Insbesondere seien genannt: Aloc, Pyoc, Fmoc, Tcboc, Z, Boc, Ddz, Bpoc, Adoc, Msc, Moc, Z(NO₂), Z(Hal_n), Bobz, Iboc, Adpoc, Mboc, Acm, tert-Butyl, OBzl, ONbzl, OMbzl, Bzl, Mob, Pic, Trt.

Physiologisch verträgliche Salze der Verbindungen der Formel I sind insbesondere pharmazeutisch verwendbare oder nicht-toxische Salze. Von Verbindungen der

WO 99/60015 PCT/EP99/03072

Formel I, welche saure Gruppen, zum Beispiel Carbonsäuregruppen enthalten, sind solche Salze beispielsweise Alkalimetallsalze oder Erdalkalimetallsalze, wie zum Beispiel Natriumsalze, Kaliumsalze, Magnesiumsalze und Calciumsalze, sowie Salze mit physiologisch verträglichen quartären Ammoniumionen und Säureadditionssalze mit Ammoniak und physiologisch verträglichen organischen Aminen, wie zum Beispiel Triethylamin, Ethanolamin, Tris-(2-hydroxyethyl)-amin, α, α, α -Tris-(hydroxymethyl)-methylamin oder Aminosäuren, insbesondere basischen Aminosäuren.

- Verbindungen der Formel I, welche basische Gruppen, zum Beispiel eine Aminogruppe, Amidinogruppe oder Guanidinogruppe enthalten, bilden Salze mit anorganischen Säuren, wie zum Beispiel Salzsäure, Schwefelsäure oder Phosphorsäure, und mit organischen Carbonsäuren oder Sulfonsäuren, wie zum Beispiel Essigsäure, Citronensäure, Benzoesäure, Maleinsäure, Fumarsäure,
 Weinsäure, Methansulfonsäure oder p-Toluolsulfonsäure. Verbindungen, die sowohl saure Gruppen als auch basische Gruppen enthalten, können auch in Form von inneren Salzen oder Betainen vorliegen, die ebenso von der vorliegenden Erfindung umfaßt werden.
- Salze können aus den Verbindungen der Formel I nach üblichen, dem Fachmann bekannten Verfahren erhalten werden, beispielsweise durch Vereinigung mit einer organischen oder anorganischen Säure oder Base in einem Lösungsmittel oder Dispergiermittel, oder auch durch Anionenaustausch oder Kationenaustausch aus anderen Salzen.

25

30

Die Verbindungen der Formel I können in stereoisomeren Formen vorliegen.
Enthalten die Verbindungen der Formel I ein oder mehrere Asymmetriezentren, so können diese unabhängig voneinander die S-Konfiguration oder die R-Konfiguration aufweisen. Zur Erfindung gehören alle möglichen Stereoisomeren der Verbindungen der Formel I, zum Beispiel Enantiomere und Diastereomere, und Mischungen von zwei oder mehr stereoisomeren Formen, zum Beispiel Mischungen von

WO 99/60015

im Verlaufe der Synthese.

PCT/EP99/03072

Enantiomeren und/oder Diastereomeren, in allen Verhältnissen. Enantiomere sind also in enantiomerenreiner Form, sowohl als linksdrehende als auch als rechtsdrehende Antipoden, in Form von Racematen und in Form von Mischungen der beiden Enantiomeren in allen Verhältnissen Gegenstand der Erfindung. Ebenso sind Diastereomere in reiner Form und in Form von Mischungen von zwei oder mehr 5 Diastereomeren in allen Verhältnissen Gegenstand der Erfindung. Bei Vorliegen einer cis/trans-Isomerie, zum Beispiel an Doppelbindungen, sind sowohl die cis-Form als auch die trans-Form und Mischungen dieser Formen in allen Verhältnissen Gegenstand der Erfindung. Die Herstellung von einzelnen Stereoisomeren kann gewünschtenfalls durch Verwendung von stereochemisch einheitlichen 10 Ausgangssubstanzen bei der Synthese, durch stereoselektive Synthese oder durch Auftrennung eines Gemisches nach üblichen Methoden, zum Beispiel durch Chromatographie oder Kristallisation, erfolgen, im Fall von Enantiomeren zum Beispiel durch Chromatographie an chiralen Phasen. Gegebenenfalls kann vor einer Trennung von Stereoisomeren eine Derivatisierung erfolgen. Die Trennung 15 eines Stereoisomerengemisches kann auf der Stufe der Verbindungen der Formel I erfolgen oder auf der Stufe einer Ausgangssubstanz oder eines Zwischenprodukts

29

Die erfindungsgemäßen Verbindungen der Formel I können darüber hinaus bewegliche Wasserstoffatome enthalten, also in verschiedenen tautomeren Formen vorliegen. Auch alle diese Tautomeren sind Gegenstand der vorliegenden Erfindung. Die vorliegende Erfindung umfaßt weiterhin Solvate von Verbindungen der Formel I, zum Beispiel Hydrate und Addukte mit Alkoholen, Derivate von
 Verbindungen der Formel I, zum Beispiel Ester, Prodrugs und andere physiologisch verträgliche Derivate, sowie aktive Metabolite von Verbindungen der Formel I.
 Gegenstand der Erfindung sind insbesondere Prodrugs der Verbindungen der Formel I umgewandelt werden. Geeignete Prodrugs für die Verbindungen der Formel I, also chemisch modifizierte Derivate der Verbindungen der Formel I mit in gewünschter Weise verbesserten Eigenschaften, sind dem Fachmann bekannt. Nähere Angaben

zu Prodrugs finden sich zum Beispiel in Fleisher et al., Advanced Drug Delivery Reviews 19 (1996) 115-130; Design of Prodrugs, H. Bundgaard, Ed., Elsevier, 1985; H. Bundgaard, Drugs of the Future 16 (1991) 443; Saulnier et al., Bioorg. Med. Chem. Lett. 4 (1994) 1985; Safadi et al., Pharmaceutical Res. 10 (1993) 1350. Als Prodrugs für die Verbindungen der Formel I kommen speziell in Betracht Ester-5 Prodrugs von Carbonsäuregruppen sowie Acyl-Prodrugs und Carbamat-Prodrugs von acylierbaren stickstoffhaltigen Gruppen wie Aminogruppen, Amidinogruppen und Guanidinogruppen. In den Acyl-Prodrugs oder Carbamat-Prodrugs ist ein Wasserstoffatom an einem Stickstoffatom durch eine Acylgruppe oder Carbamatgruppe ersetzt. Als Acylgruppen und Carbamatgruppen für die Acyl-10 Prodrugs und Carbamat-Prodrugs kommen beispielsweise die Gruppen RP-CO und RPaO-CO in Betracht, in denen RP für Wasserstoff, (C1-C18)-Alkyl, (C3- C_{12})-Cycloalkyl, (C_3-C_{12}) -Cycloalkyl- (C_1-C_8) -alkyl, (C_6-C_{14}) -Aryl, (C_6-C_{14}) -Aryl- (C_1-C_8) -alkyl, (C_8-C_{14}) -Aryl- (C_1-C_8) -alkyl, (C_8-C_{14}) -Aryl- (C_1-C_8) -alkyl, (C_8-C_{14}) -Aryl- (C_8-C_{14}) -Aryl-C_a)-alkyl, Heteroaryl oder Heteroaryl-(C₁-C_a)-alkyl steht und R^{pa} die für R^p angegebenen Bedeutungen mit Ausnahme von Wasserstoff hat. 15

Die einzelnen Strukturelemente in der Formel I haben bevorzugt die folgenden Bedeutungen, die sie unabhängig voneinander haben können.

20 W steht bevorzugt für einen zweiwertigen Rest aus der Reihe R¹-A-C(R¹³) und

$$R^1-A-L$$
 C
 M^1
 M^2

25

wobei die Ringsysteme

ein oder zwei gleiche oder verschiedene Heteroatome aus der Reihe N und O enthalten können, gesättigt oder einfach ungesättigt sein können und durch 1 oder 2 gleiche oder verschiedene Substituenten R¹³ und/oder durch ein oder zwei doppelt gebundene Sauerstoffatome substituiert sein können, und wobei L für C(R¹³) oder N steht und wobei m1 und m2 unabhängig voneinander für eine der Zahlen 0, 1, 2, 3 und 4 stehen, die Summe m1 + m2 aber für eine der Zahlen 3 und 4 steht. Besonders bevorzugt steht W für den zweiwertigen Rest R¹-A-C(R¹³), wobei R¹³ die oben angegebenen Bedeutungen hat. Ganz besonders bevorzugt steht W für den zweiwertigen Rest R¹-A-C(R¹³), worin R¹³ die oben angegebenen Bedeutungen hat, aber nicht für Wasserstoff stehen kann. Eine bevorzugte Bedeutung des Restes R¹-A- in diesem Fall ist (C₁-C₄)-Alkyl.

Y steht bevorzugt für eine Carbonylgruppe oder Thiocarbonylgruppe, besonders bevorzugt für eine Carbonylgruppe.

15

20

25

30

A steht bevorzugt für eine direkte Bindung, einen der zweiwertigen Reste (C_1 - C_6)-Alkylen, (C_5 - C_6)-Cycloalkylen, Phenylen, Phenylen-(C_1 - C_4)-alkyl, insbesondere Phenylen-(C_1 - C_2)-alkyl, oder für einen zweiwertigen Rest eines 5-gliedrigen oder 6-gliedrigen gesättigten oder ungesättigten Heterocyclus, der ein oder zwei Stickstoffatome enthalten kann und einfach oder zweifach durch (C_1 - C_6)-Alkyl oder doppelt gebundenen Sauerstoff oder Schwefel substituiert sein kann.

B steht bevorzugt für einen zweiwertigen Methylenrest oder Ethylenrest (= 1,2-Ethylen), wobei der Methylenrest und der Ethylenrest unsubstituiert sind oder substituiert sind durch einen oder mehrere gleiche oder verschiedene Reste aus der Reihe (C_1 - C_8)-Alkyl, (C_2 - C_8)-Alkenyl, (C_2 - C_8)-Alkinyl, (C_3 - C_{10})-Cycloalkyl, insbesondere (C_3 - C_6)-Cycloalkyl, (C_3 - C_{10})-Cycloalkyl-(C_1 - C_6)-alkyl, insbesondere (C_3 - C_6)-Cycloalkyl-(C_1 - C_6)-alkyl, gegebenenfalls substituiertes (C_6 - C_1)-Aryl, im Arylrest gegebenenfalls substituiertes (C_6 - C_1)-Aryl-(C_1 - C_6)-alkyl, insbesondere im Arylrest gegebenenfalls substituiertes (C_6 - C_1)-Aryl-(C_1 - C_6)-alkyl, gegebenenfalls

10

20

substituiertes Heteroaryl und im Heteroarylrest gegebenenfalls substituiertes
Heteroaryl-(C₁-C₆)-alkyl. Besonders bevorzugt steht B für einen derart substituierten
Methylenrest oder Ethylenrest, insbesondere für einen derart substituierten
Methylenrest. Ist ein für B stehendender Alkylenrest oder Alkenylenrest einfach oder
mehrfach substituiert, so ist er bevorzugt einfach, zweifach oder dreifach, besonders
bevorzugt einfach oder zweifach, insbesondere einfach, substituiert. Ist ein für B
stehender Methylenrest oder Ethylenrest substituiert, so ist er bevorzugt substituiert
durch einen oder zwei gleiche oder verschiedene (C₁-C₈)-Alkylreste, insbesondere
durch einen (C₁-C₈)-Alkylrest, also durch geradkettige oder verzweigte Alkylreste
mit 1, 2, 3, 4, 5, 6, 7 oder 8 Kohlenstoffatomen.

E steht bevorzugt für Tetrazolyl, R⁶CO, R⁷CO oder R¹⁰CO, besonders bevorzugt für Tetrazolyl oder R¹⁰CO, ganz besonders bevorzugt für R¹⁰CO.

Die Reste R stehen bevorzugt unabhängig voneinander für Wasserstoff oder (C₁-C₈)-Alkyl, insbesondere für Wasserstoff, Methyl oder Ethyl, speziell für Wasserstoff.

 R^2 steht bevorzugt für Wasserstoff oder (C_1 - C_8)-Alkyl, insbesondere (C_1 - C_6)-Alkyl, besonders bevorzugt für Wasserstoff, Methyl oder Ethyl, speziell für Wasserstoff.

R³ steht bevorzugt für Wasserstoff, (C₁-C₈)-Alkyl, gegebenenfalls substituiertes (C₆-C₁₀)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Aryl-(C₁-C₆)-alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₆)-alkyl, (C₃-C₈)-Cycloalkyl, (C₃-C₈)-Cycloalkyl-(C₁-C₆)-alkyl, (C₆-C₁₂)-Bicycloalkyl-(C₁-C₆)-alkyl, (C₆-C₁₂)-Tricycloalkyl-(C₁-C₆)-alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, R¹¹NH, COOR²¹, CON(CH₃)R⁴, CONHR⁴, CON(CH₃)R¹⁵ oder CONHR¹⁵. Besonders bevorzugt steht R³ für Wasserstoff, (C₁-C₈)-Alkyl, gegebenenfalls substituiertes (C₆-

gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₄)-alkyl, (C₃-C₈)-Cycloalkyl, (C₃-C₈)-Cycloalkyl-(C₁-C₄)-alkyl-(C₁-C₄)-alkyl-(C₁-C₈)-Cycloalkyl-(C₁-C₈-C₈)-Cycloalkyl-(C₁-C₈-C₈-Cycloalkyl-(C₁-C₈-C₈-Cycloalkyl-(C₁-C₈-Cycloalkyl-(C₁-C₈-Cycloalkyl-(C₁-C₈-Cycloalkyl-(C₁-C₈-Cycloalkyl-(C₁-Cycloalkyl-(C₁-Cycloalkyl-(C₁-Cycloalkyl-(C₁-Cycloalkyl-(C₁-Cycloalkyl-(C₁-Cycloalkyl-(C₁-Cycloalkyl-(C₁-Cycloalkyl-(Cycloalkyl-(C₁-Cycloalkyl-(

C₁₀)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Aryl-(C₁-C₄)-alkyl,

10

 C_4)-alkyl, (C_6-C_{12}) -Bicycloalkyl, (C_6-C_{12}) -Bicycloalkyl- (C_1-C_4) -alkyl, (C_6-C_{12}) -Tricycloalkyl, (C_6-C_{12}) -Tricycloalkyl- (C_1-C_4) -alkyl, (C_1-C_4) -alkyl, (C_1-C_4) -alkyl, (C_1-C_4) -alkyl, (C_1-C_4) -alkyl, (C_1-C_4) -alkyl, (C_1-C_4) -alkyl, gegebenenfalls substituiertes (C_6-C_{10}) -Aryl, im Arylrest gegebenenfalls substituiertes (C_6-C_{10}) -Aryl- (C_1-C_4) -alkyl, gegebenenfalls substituiertes betteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl- (C_1-C_4) -alkyl, (C_3-C_8) -Cycloalkyl, (C_3-C_8) -Cycloalkyl- (C_1-C_4) -alkyl, (C_1-C_4) -alkyl, insbesondere (C_1-C_4) -Alkyl, oder gegebenenfalls substituiertes (C_6-C_{10}) -Aryl.

R⁴ steht bevorzugt für (C₁-C₈)-Alkyl, das unsubstituiert ist oder wie in der obigen Definition von R⁴ angegeben substituiert ist. Besonders bevorzugt steht R⁴ für (C₁-C₈)-Alkyl, insbesondere (C₁-C₆)-Alkyl, das unsubstituiert ist oder substituiert ist durch einen oder zwei gleiche oder verschiedene Substituenten aus der Reihe 15 Hydroxy, (C₁-C₂)-Alkoxy, R⁵, gegebenenfalls substituiertes (C₃-C₈)-Cycloalkyl, Hydroxycarbonyl, Aminocarbonyl, (C₆-C₁₀)-Aryl-(C₁-C₄)-alkoxycarbonyl, das im Arvirest auch substituiert sein kann, (C₁-C₆)-Alkoxycarbonyl, R⁶-CO, R⁷-CO, Tetrazolyl und Trifluormethyl. Ganz besonders bevorzugt ist es, wenn einer der Substituenten in der für R⁴ stehenden Alkylgruppe in der 1-Position der Alkylgruppe 20 gebunden ist, also an dasjenige Kohlenstoffatom der Alkylgruppe, an das auch das Stickstoffatom in der Gruppe CONHR⁴ oder in der Gruppe CON(CH₃)R⁴ gebunden ist, und wenn dieser Substituent in der 1-Position einer der Reste Hydroxycarbonyl. Aminocarbonyl, (C₆-C₁₀)-Aryl-(C₁-C₄)-alkoxycarbonyl, das im Arylrest auch substituiert sein kann, R⁶-CO, R⁷-CO, (C₁-C₆)-Alkoxycarbonyl oder Tetrazolyl ist. In 25 diesem ganz besonders bevorzugten Fall steht der Rest -NHR⁴ bzw. der Rest -N(CH₃)R⁴ dann für den Rest einer α-Aminosäure bzw. einer N-Methyl-αaminosäure oder eines Derivates davon, wobei formal der Rest der Aminosäure durch Abstraktion eines Wasserstoffatoms von der Aminogruppe der Aminosäure erhalten wird. Wenn der Substituent in der 1-Position die Gruppe R⁶-CO ist, so steht 30 der Rest -NHR⁴ bzw. der Rest -N(CH₃)R⁴ entsprechend für den Rest eines

20

25

30

Dipeptids, Tripeptids, Tetrapeptids oder Pentapeptids. Speziell bevorzugte α-Aminosäuren sind dabei solche mit einer lipophilen Seitenkette, zum Beispiel Phenylglycin, Phenylalanin, Valin, Leucin, Isoleucin und Homologe davon, sowie Derivate dieser Aminosäuren wie Ester, Amide oder die Derivate, in denen die Carbonsäuregruppe in den Rest R⁸-CO oder R⁷-CO überführt ist.

 R^{10} steht bevorzugt für Hydroxy oder (C_1 - C_6)-Alkoxy, insbesondere für Hydroxy oder (C_1 - C_4)-Alkoxy.

- 10 R¹¹ steht bevorzugt für Wasserstoff, R^{12a}, R^{12a}-CO, R^{12a}-O-CO, R^{12b}-CO, R^{12b}-CS oder R^{12a}-S(O)₂, besonders bevorzugt für Wasserstoff, R^{12a}, R^{12a}-CO, R^{12a}-O-CO, R^{12b}-CO oder R^{12a}-S(O)₂, ganz besonders bevorzugt für R^{12a}, R^{12a}-CO, R^{12a}-CO, R^{12a}-O-CO oder R^{12a}-S(O)₂
- 15 R^{12a} steht bevorzugt für (C₁-C₁₀)-Alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, (C₅-C₁₀)-Cycloalkyl, (C₅-C₁₀)-Alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₈)-alkyl oder den Rest R¹⁵.

 R^{13} steht bevorzugt für Wasserstoff oder für (C_1-C_6) -Alkyl, insbesondere für Wasserstoff oder (C_1-C_4) -Alkyl, wobei ein bevorzugter Alkylrest, für den R^{13} steht, der Methylrest ist. Besonders bevorzugt steht R^{13} für (C_1-C_6) -Alkyl, insbesondere für (C_1-C_4) -Alkyl. Ganz besonders bevorzugt steht R^{13} für Methyl.

 R^{20} steht bevorzugt für eine direkte Bindung oder einen zweiwertigen (C_1 - C_4)Alkylenrest, besonders bevorzugt für eine direkte Bindung oder einen zweiwertigen (C_1 - C_2)-Alkylenrest, insbesondere für eine direkte Bindung oder einen Methylenrest oder Ethylenrest (1,2-Ethylen), ganz besonders bevorzugt für eine direkte Bindung oder einen Methylenrest.

R²¹ steht bevorzugt für Wasserstoff, (C₁-C₈)-Alkyl, (C₅-C₁₀)-Cycloalkyl, (C₅-C₁₀)-Cycloalkyl, gegebenenfalls substituiertes (C₆-C₁₀)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Aryl-(C₁-C₈)-alkyl, den Rest Het- oder Het- (C₁-C₈)-alkyl steht, wobei Alkylreste durch Fluor einfach oder mehrfach substituiert sein können und die Reste R²¹ bei mehrfachem Auftreten unabhängig voneinander sind und gleich oder verschieden sein können. R²¹ steht besonders bevorzugt für Wasserstoff, (C₁-C₈)-Alkyl, (C₅-C₈)-Cycloalkyl, (C₅-C₈)-Cycloalkyl-(C₁-C₄)-alkyl, gegebenenfalls substituiertes (C₆-C₁₀)-Aryl oder im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Alkyl, wobei Alkylreste durch Fluor einfach oder mehrfach substituiert sein können. R²¹ steht ganz besonders bevorzugt für Wasserstoff, (C₁-C₈)-Alkyl, (C₅-C₈)-Cycloalkyl, (C₅-C₆)-Cycloalkyl-(C₁-C₂)-alkyl, gegebenenfalls substituiertes (C₆-C₁₀)-Aryl oder im Arylrest gegebenenfalls

R³⁰ steht bevorzugt für einen der Reste R³²-CR=CR-R³¹- und R³²-C≡C-R³¹-, wobei die Reste R unabhängig voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein können.

20

25

30

10

15

 R^{32} steht bevorzugt für Wasserstoff, $(C_2\text{-}C_8)\text{-}Alkenyl, (C_2\text{-}C_8)\text{-}Alkinyl, (C_3\text{-}C_{12})\text{-}$ Cycloalkyl, $(C_3\text{-}C_{12})\text{-}$ Cycloalkyl, $(C_3\text{-}C_{12})\text{-}$ Bicycloalkyl, $(C_6\text{-}C_{12})\text{-}$ Bicycloalkyl- $(C_1\text{-}C_8)\text{-}$ alkyl, $(C_6\text{-}C_{12})\text{-}$ Tricycloalkyl, $(C_6\text{-}C_{12})\text{-}$ Tricycloalkyl- $(C_1\text{-}C_8)\text{-}$ alkyl, gegebenenfalls substituiertes $(C_6\text{-}C_{14})\text{-}$ Aryl- $(C_1\text{-}C_8)\text{-}$ alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl- $(C_1\text{-}C_8)\text{-}$ alkyl, das gegebenenfalls durch 1 bis 8 Fluoratome substituiert sein kann. Besonders bevorzugt steht R^{32} für Wasserstoff, $(C_2\text{-}C_8)\text{-}$ Alkenyl, $(C_2\text{-}C_8)\text{-}$ Alkinyl, $(C_5\text{-}C_6)\text{-}$ Cycloalkyl, $(C_5\text{-}C_6)\text{-}$ Cycloalkyl- $(C_1\text{-}C_8)\text{-}$ alkyl, gegebenenfalls substituiertes $(C_8\text{-}C_{10})\text{-}$ Aryl, im Arylrest gegebenenfalls substituiertes $(C_6\text{-}C_{10})\text{-}$ Aryl- $(C_1\text{-}C_8)\text{-}$ alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroaryl-est gegebenenfalls

substituiertes Heteroaryl-(C_1 - C_6)-alkyl oder (C_1 - C_6)-Alkyl, das gegebenenfalls durch 1 bis 6 Fluoratome substituiert sein kann. Ganz besonders bevorzugt steht R^{32} für Wasserstoff, (C_2 - C_6)-Alkenyl, (C_2 - C_6)-Alkinyl, (C_5 - C_6)-Cycloalkyl, (C_5 - C_6)-Cycloalkyl-(C_1 - C_4)-alkyl, gegebenenfalls substituiertes (C_6 - C_{10})-Aryl-(C_1 - C_4)-alkyl, gegebenenfalls substituiertes (C_6 - C_{10})-Aryl-(C_1 - C_4)-alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C_1 - C_4)-alkyl oder (C_1 - C_6)-Alkyl, das gegebenenfalls durch 1 bis 6 Fluoratome substituiert sein kann. Wenn R^{30} für R^{32} -S- R^{31} - steht, ist es weiterhin bevorzugt, wenn R^{32} eine andere Bedeutung als Wasserstoff hat.

10

 R^{33} steht bevorzugt für eine direkte Bindung oder (C_1 - C_4)-Alkylen, besonders bevorzugt für eine direkte Bindung oder (C_1 - C_2)-Alkylen, ganz besonders bevorzugt für direkte Bindung.

- R³⁴ steht bevorzugt zweiwertigen Rest aus der Reihe (C₅-C₁₀)-Cycloalkylen, (C₆-C₁₂)-Bicycloalkylen, gegebenenfalls substituiertes (C₆-C₁₄)-Arylen und gegebenenfalls substituiertes Heteroarylen, besonders bevorzugt für einen zweiwertigen Rest aus der Reihe (C₅-C₆)-Cycloalkylen, gegebenenfalls substituiertes (C₆-C₁₀)-Arylen und gegebenenfalls substituiertes Heteroarylen, ganz besonders bevorzugt für einen zweiwertigen Rest aus der Reihe gegebenenfalls substituiertes (C₆-C₁₀)-Arylen und gegebenenfalls substituiertes Heteroarylen, darüber hinaus bevorzugt für einen zweiwertigen, gegebenenfalls substituierten (C₆-C₁₀)-Arylenrest.
- 25 R^{35} steht bevorzugt für eine direkte Bindung oder (C_1-C_4) -Alkylen, besonders bevorzugt für eine direkte Bindung oder (C_1-C_2) -Alkylen, insbesondere eine direkte Bindung oder Methylen oder Ethylen (1,2-Ethylen), ganz besonders bevorzugt für (C_1-C_2) -Alkylen.
- 30 R³⁶ steht bevorzugt für eine direkte Bindung.

R³¹ steht bevorzugt für den zweiwertigen Rest -R³³-R³⁴-R³⁵-R³⁶-, in dem einer oder mehrere der Reste R³³, R³⁴, R³⁵ und R³⁶ bevorzugte Bedeutungen haben. Besonders bevorzugt steht R31 für einen zweiwertigen Rest aus der Reihe (C5-C8)-Cycloalkylen, (C₅-C₆)-Cycloalkylen-(C₁-C₆)-alkyl, gegebenenfalls substituiertes (C₆-C₁₀)-Arylen, im Arylenrest gegebenenfalls substituiertes (C₆-C₁₀)-Arylen-(C₁-C₆)-5 alkyl, gegebenenfalls substituiertes Heteroarylen, im Heteroarylenrest gegebenenfalls substituiertes Heteroarylen-(C₁-C₈)-alkyl, (C₁-C₈)-Alkylen-CO, gegebenenfalls substituiertes (C₆-C₁₀)-Arylen-CO, im Arylenrest gegebenenfalls substituiertes (C₆-C₁₀)-Arylen-(C₁-C₆)-alkyl-CO, gegebenenfalls substituiertes Heteroarylen-CO, im Heteroarylenrest gegebenenfalls substituiertes Heteroarylen-10 (C₁-C₆)-alkyl-CO, gegebenenfalls substituiertes (C₆-C₁₀)-Arylen-S(O)_n, im Arylenrest gegebenenfalls substituiertes (C₆-C₁₀)-Arylen-(C₁-C₆)-alkyl-S(O)_n, gegebenenfalls substituiertes Heteroarylen-S(O), und im Heteroarylenrest gegebenenfalls substituiertes Heteroarylen-(C1-C6)-alkyl-S(O)n, wobei n für 1 oder 2 steht, und wobei die CO-Gruppe und die S(O)_n-Gruppe an das Stickstoffatom im 15 Imidazolidinring in der Formel I gebunden sind und im Falle der Reste Cycloalkylenalkyl, Arylenalkyl und Heteroarylenalkyl die Alkylgruppe an das Stickstoffatom im Imidazolidinring in der Formel I gebunden ist. Ganz besonders bevorzugt steht R31 für einen zweiwertigen Rest aus der Reihe gegebenenfalls substituiertes (C₆-C₁₀)-Arylen und im Arylrest gegebenenfalls substituiertes (C₆-20 C_{10})-Arylen- (C_1-C_4) -alkyl, wobei im Falle des Arylenalkylrestes die Alkylgruppe an das Stickstoffatom im Imidazolidinring in der Formel I gebunden ist.

Steht R³ für Wasserstoff oder einen der Reste (C₁-C₈)-Alkyl, gegebenenfalls

substituiertes (C₆-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl(C₁-C₈)-alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest
gegebenenfalls substituiertes Heteroaryl-(C₁-C₈)-alkyl, (C₃-C₈)-Cycloalkyl, (C₃-C₈)Cycloalkyl-(C₁-C₈)-alkyl, (C₆-C₁₂)-Bicycloalkyl, (C₆-C₁₂)-Bicycloalkyl-(C₁-C₈)-alkyl,
(C₆-C₁₂)-Tricycloalkyl, (C₆-C₁₂)-Tricycloalkyl-(C₁-C₈)-alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)
Alkinyl, COOR²¹, CON(CH₃)R⁴, CONHR⁴, COOR¹⁵, CON(CH₃)R¹⁵ oder CONHR¹⁵,
so steht bevorzugt e für 0 und h für 1. Steht R³ für R¹¹NH, so steht bevorzugt e für 1

und h für 0.

5

15

Bevorzugte Verbindungen der Formel I sind solche Verbindungen, in denen einer oder mehrere der Reste bevorzugte Bedeutungen haben, wobei auch alle Kombinationen von einer oder mehreren bevorzugten Bedeutungen oder von spezifischen Bedeutungen von Resten von der vorliegenden Erfindung umfaßt werden. Besonders bevorzugte Verbindungen der Formel I sind solche, worin W für einen zweiwertigen Rest aus der Reihe R¹-A-C(R¹³), R¹-A-C(R¹³)=C,

10
$$R^{1}-A-L C \qquad und \qquad R^{1}-A-L C=C$$

$$\searrow_{m2}$$

steht, wobei die Ringsysteme

L ()

ein oder zwei gleiche oder verschiedene Heteroatome aus der Reihe N und O enthalten können, gesättigt oder einfach ungesättigt sein können und durch 1 oder 2 gleiche oder verschiedene Substituenten R¹³ und/oder durch ein oder zwei doppelt gebundene Sauerstoffatome substituiert sein können, und wobei L für C(R¹³) oder N steht und wobei m1 und m2 unabhängig voneinander für eine der Zahlen 0, 1, 2, 3, 4 und 5 stehen, die Summe m1 + m2 aber für eine der Zahlen 3, 4 und 5 steht;

- Y für eine Carbonylgruppe oder Thiocarbonylgruppe steht;
- A für eine direkte Bindung, einen der zweiwertigen Reste (C₁-C₆)-Alkylen, (C₃-C₇)-Cycloalkylen, Phenylen, Phenylen-(C₁-C₆)-alkyl, Phenylen-(C₂-C₆)-alkenyl oder für einen zweiwertigen Rest eines 5-gliedrigen oder 6-gliedrigen gesättigten oder ungesättigten Heterocyclus, der ein oder zwei Stickstoffatome

enthalten kann und einfach oder zweifach durch (C1-C6)-Alkyl oder doppelt gebundenen Sauerstoff oder Schwefel substituiert sein kann, steht, wobei in den Resten Phenylenalkyl und Phenylenalkenyl der Rest R1 an die Phenylengruppe gebunden ist;

- für einen zweiwertigen Methylenrest oder Ethylenrest steht, wobei der 5 В Methylenrest und der Ethylenrest unsubstituiert sind oder substituiert sind durch einen oder mehrere gleiche oder verschiedene Reste aus der Reihe (C_1-C_8) -Alkyl, (C_2-C_8) -Alkenyl, (C_2-C_8) -Alkinyl, (C_3-C_{10}) -Cycloalkyl, (C_3-C_{10}) -Cycloalkyl-(C₁-C₆)-alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im
- Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₆)-alkyl, 10 gegebenenfalls substituiertes Heteroaryl und im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C1-C6)-alkyl;
 - für Tetrazolyl, R⁶CO, R⁷CO oder R¹⁰CO steht; E
- für Wasserstoff, (C_1-C_8) -Alkyl, (C_3-C_{10}) -Cycloalkyl, (C_3-C_{10}) -Cycloalkyl- (C_1-C_8) -R alkyl, gegebenenfalls substituiertes (C₆-C₁₀)-Aryl, im Arylrest gegebenenfalls 15 substituiertes (C₆-C₁₀)-Aryl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes Heteroaryl oder im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C1-C6)-alkyl steht, wobei alle Reste R unabhängig voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein 20 können;
 - für Wasserstoff, (C_5 - C_{10})-Cycloalkyl, (C_5 - C_{10})-Cycloalkyl-(C_1 - C_6)-alkyl, im R^1 Arylrest gegebenenfalls substituiertes R²¹-((C₆-C₁₄)-Aryl), im Arylrest gegebenenfalls substituiertes (R²¹-((C₆-C₁₄)-Aryl))-(C₁-C₈)-alkyl, den Rest Het-, Het-(C₁-C₈)-alkyl, für einen der Reste X-NH-C(=NH)-R²⁰-, X¹-NH-R²⁰-,
- $R^{21}O-R^{20}$ -, $R^{22}C(O)-N(R^{21})$ -, $R^{22}N(R^{21})-C(O)$ -, $R^{21}O-N$ =, O= und S=, oder für 25 (C1-C10)-Alkyl, das gegebenenfalls durch Fluor einfach oder mehrfach substituiert sein kann, steht;
- für Wasserstoff, (C₁-C₆)-Alkyl, (C₁-C₆)-Alkylcarbonyl, (C₁-C₆)-Alkoxycarbonyl, X (C₁-C₁₀)-Alkylcarbonyloxy-(C₁-C₆)-alkoxycarbonyl, gegebenenfalls substituiertes (C₆-C₁₄)-Arylcarbonyl, gegebenenfalls substituiertes (C₆-C₁₄)-30 Aryloxycarbonyl, (C₆-C₁₄)-Aryl-(C₁-C₆)-alkoxycarbonyl, das im Arylrest auch

25

- substituiert sein kann, Hydroxy, (C_1-C_6) -Alkoxy, (C_6-C_{14}) -Aryl- (C_1-C_6) -alkoxy, das im Arylrest auch substituiert sein kann, oder Amino steht;
- x¹ eine der Bedeutungen von X hat oder für R'-NH-C(=N-R") steht, wobei R' und R" unabhängig voneinander die Bedeutungen von X haben;
- 5 R² für Wasserstoff, (C₁-C₈)-Alkyl, gegebenenfalls substituiertes (C₆-C₁₀)-Aryl oder im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Aryl-(C₁-C₈)-alkyl steht;
 - für Wasserstoff, (C_1-C_8) -Alkyl, gegebenenfalls substituiertes (C_8-C_{14}) -Aryl, im Arylrest gegebenenfalls substituiertes (C_6-C_{14}) -Aryl- (C_1-C_8) -alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl- (C_1-C_8) -alkyl, (C_3-C_8) -Cycloalkyl, (C_3-C_8) -Cycloalkyl- (C_1-C_8) -alkyl, (C_6-C_{12}) -Bicycloalkyl, (C_6-C_{12}) -Bicycloalkyl, (C_6-C_{12}) -Alkenyl, (C_8-C_{12}) -Tricycloalkyl- (C_1-C_8) -alkyl, (C_2-C_8) -Alkenyl, (C_8-C_{12}) -Tricycloalkyl- (C_1-C_8) -Alkenyl, (C_2-C_8) -Alkenyl, (C_2-C_8) -Alkenyl, (C_8-C_8) -Alkenyl

C_a)-Alkinyl, R¹¹NH, COOR²¹, CON(CH₃)R⁴, CONHR⁴, COOR¹⁵, CON(CH₃)R¹⁵

oder CONHR¹⁵ steht;

kann, steht;

- für Wasserstoff oder (C₁-C₈)-Alkyl steht, das unsubstituiert ist oder einfach oder mehrfach substituiert ist durch gleiche oder verschiedene Reste aus der Reihe Hydroxy, (C₁-C₈)-Alkoxy, R⁵, gegebenenfalls substituiertes (C₃-C₈)-Cycloalkyl, Hydroxycarbonyl, Aminocarbonyl, Mono- oder Di-((C₁-C₁₀)-alkyl)-aminocarbonyl, (C₆-C₁₄)-Aryl-(C₁-C₈)-alkoxycarbonyl, das im Arylrest auch substituiert sein kann, (C₁-C₈)-Alkoxycarbonyl, R⁶-CO, R⁷-CO, Tetrazolyl und Trifluormethyl;
 - für gegebenenfalls substituiertes (C_6 - C_{14})-Aryl, im Arylrest gegebenenfalls substituiertes (C_6 - C_{14})-Aryl-(C_1 - C_8)-alkyl oder einen Rest eines gegebenenfalls substituierten monocyclischen oder bicyclischen, 5-gliedrigen bis 12-gliedrigen heterocyclischen Ringes, der aromatisch, teilweise gesättigt oder vollständig gesättigt sein kann und der ein, zwei oder drei gleiche oder verschiedene Heteroatome aus der Reihe Stickstoff, Sauerstoff und Schwefel enthalten
- für den Rest einer natürlichen oder unnatürlichen Aminosäure, Iminosäure,
 gegebenenfalls N-(C₁-C₈)-alkylierten oder N-((C₆-C₁₄)-Aryl-(C₁-C₈)-alkylierten)
 Azaaminosäure, die im Arylrest auch substituiert sein kann, oder den Rest

20

eines Dipeptids, Tripeptids oder Tetrapeptids steht, sowie für deren Ester und Amide, wobei freie funktionelle Gruppen durch in der Peptidchemie übliche Schutzgruppen geschützt sein können und wobei die Stickstoffatome in den Amidbindungen in der Gruppe R⁶-CO einen Rest R als Substituenten tragen können;

- für den Rest eines über ein Stickstoffatom gebundenen 5-gliedrigen bis 10gliedrigen, gesättigten monocyclischen oder polycyclischen Heterocyclus
 steht, der ein, zwei, drei oder vier gleiche oder verschiedene zusätzliche RingHeteroatome aus der Reihe Sauerstoff, Stickstoff und Schwefel enthalten kann
 und der an Kohlenstoffatomen und an zusätzlichen Ring-Stickstoffatomen
 gegebenenfalls substituiert sein kann, wobei zusätzliche Ring-Stickstoffatome
 gleiche oder verschiedene Reste aus der Reihe Wasserstoff, Rh, HCO, RhCO,
 RhO-CO, HO-CO-(C₁-C₄)-Alkyl und RhO-CO-(C₁-C₄)-Alkyl als Substituenten
 tragen können und Rh für (C₁-C₈)-Alkyl, (C₃-C₈)-Cycloalkyl, (C₃-C₈)-Cycloalkyl(C₁-C₈)-alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl oder im Arylrest
 gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl steht;
 - für Hydroxy, (C_1-C_{10}) -Alkoxy, (C_6-C_{14}) -Aryl- (C_1-C_8) -alkoxy, das im Arylrest auch substituiert sein kann, gegebenenfalls substituiertes (C_6-C_{14}) -Aryloxy, (C_1-C_8) -Alkylcarbonyloxy- (C_1-C_6) -alkoxy, im Arylrest gegebenenfalls substituiertes (C_6-C_{14}) -Arylcarbonyloxy- (C_1-C_8) -alkoxy, Amino oder Monooder Di- $((C_1-C_{10})$ -alkyl)-amino steht;
 - R^{11} für Wasserstoff, R^{12a} , R^{12a} -CO, R^{12a} -O-CO, R^{12b} -CO, R^{12b} -CS oder R^{12a} -S(O)₂ steht;
- für (C₁-C₁₀)-Alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, (C₅-C₁₀)-Cycloalkyl, (C₅-C₁₀)-Cycloalkyl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₈)-alkyl oder den Rest R¹⁵ steht;
 - R^{12b} für Amino, Di-((C₁-C₁₀)-alkyl)-amino oder R^{12a}-NH steht;
- 30 R¹³ für Wasserstoff oder (C₁-C₆)-Alkyl steht;
 - R¹⁵ für R¹⁶-(C₁-C₆)-alkyl oder für R¹⁶ steht;

- für einen Rest eines 6-gliedrigen bis 14-gliedrigen bicyclischen oder tricyclischen Ringes steht, der gesättigt oder teilweise ungesättigt ist und der auch ein, zwei, drei oder vier gleiche oder verschiedene Heteroatome aus der Reihe Stickstoff, Sauerstoff und Schwefel enthalten kann und der auch durch einen oder mehrere gleiche oder verschiedene Substituenten aus der Reihe (C1-C4)-Alkyl und Oxo substituiert sein kann;
- für eine direkte Bindung oder (C₁-C₄)-Alkylen steht;

- für Wasserstoff, (C₁-C₈)-Alkyl, (C₅-C₁₀)-Cycloalkyl, (C₅-C₁₀)-Cycloalkyl-(C₁-C₆)alkyl, gegebenenfalls substiuiertes (C₆-C₁₀)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₆)-alkyl, den Rest Het- oder Het-(C₁-C₆)-alkyl 10 steht, wobei Alkylreste durch Fluor einfach oder mehrfach substituiert sein können und die Reste R²¹ bei mehrfachem Auftreten gleich oder verschieden sein können:
- R^{22} für einen der Reste R^{21} -, $R^{21}N(R^{21})$ -, $R^{21}C(0)$ -, $R^{21}0$ -C(0)- oder $R^{21}N(R^{21})-C(=N(R^{21}))-$ steht; 15
 - für einen der Reste R^{32} - $(C(R)(R))_m$ - R^{31} -, R^{32} -CR=CR- R^{31} -, R^{32} -C=C- R^{31} -, R³²-O-R³¹- und R³²-S-R³¹- steht, wobei die Reste R unabhängig voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein können, und m für 1, 2 oder 3 steht;
- für den zweiwertigen Rest -R³³-R³⁴-R³⁵-R³⁶- steht, wobei R³⁶ an das R³¹ 20 Stickstoffatom im Imidazolidinring in der Formel I gebunden ist;
 - für Wasserstoff, (C2-C8)-Alkenyl, (C2-C8)-Alkinyl, (C3-C12)-Cycloalkyl, (C3-C12)-Cycloalkyl-(C₁-C₈)-alkyl, (C₆-C₁₂)-Bicycloalkyl, (C₆-C₁₂)-Bicycloalkyl-(C₁-C₈)alkyl, (C₆-C₁₂)-Tricycloalkyl, (C₆-C₁₂)-Tricycloalkyl-(C₁-C₈)-alkyl,
- gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im Arylrest gegebenenfalls 25 substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C1-C8)alkyl oder (C₁-C₈)-Alkyl, das gegebenenfalls durch 1 bis 8 Fluoratome substituiert sein kann, steht;
- für eine direkte Bindung oder einen zweiwertigen (C1-C6)-Alkylenrest steht; R³³ 30 für einen zweiwertigen Rest aus der Reihe (C5-C10)-Cycloalkylen, (C6-C12)- R^{34}

Bicycloalkylen, gegebenenfalls substituiertes (C₆-C₁₄)-Arylen und gegebenenfalls substituiertes Heteroarylen steht;

R³⁵ für eine direkte Bindung oder einen zweiwertigen (C₁-C₈)-Alkylenrest steht;

 R^{36} für eine direkte Bindung, die Gruppe -CO- oder die Gruppe -S(O)_n- steht;

- Figure 1 12
 5 Het für einen Rest eines monocyclischen oder polycyclischen, 5-gliedrigen bis 12gliedrigen, aromatischen oder nicht aromatischen Ringes steht, der 1, 2, 3

 5 oder 4 gleiche oder verschiedene Heteroatome aus der Reihe N und O als

 6 Ringglieder enthält und gegebenenfalls durch einen oder mehrere, gleiche

 7 oder verschiedene Substituenten substituiert sein kann:
- 10 e und h unabhängig voneinander für 0 oder 1 stehen und gleich oder verschieden sein können;
 - n für 1 oder 2 steht;

in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen, und ihre physiologisch verträglichen Salze.

15

Ganz besonders bevorzugte Verbindungen der Formel I sind solche, worin W für einen zweiwertigen Rest aus der Reihe R¹-A-C(R¹³) und

$$R^{1}-A-L C$$

$$M_{m2}$$

steht, wobei die Ringsysteme

25

ein oder zwei gleiche oder verschiedenen Heteroatome aus der Reihe N und
O enthalten können, gesättigt oder einfach ungesättigt sein können und durch
1 oder 2 gleiche oder verschiedene Substituenten R¹³ und/oder durch ein oder

zwei doppelt gebundene Sauerstoffatome substituiert sein können, und wobei L für C(R¹³) oder N steht und wobei m1 und m2 unabhängig voneinander für eine der Zahlen 0, 1, 2, 3 und 4 stehen, die Summe m1 + m2 aber für eine der Zahlen 3 und 4 steht;

- 5 Y für eine Carbonylgruppe oder Thiocarbonylgruppe steht;
 - A für eine direkte Bindung, einen der zweiwertigen Reste (C₁-C₆)-Alkylen, (C₅-C₆)-Cycloalkylen, Phenylen, Phenylen-(C₁-C₄)-alkyl oder für einen zweiwertigen Rest eines 5-gliedrigen oder 6-gliedrigen gesättigten oder ungesättigten Heterocyclus, der ein oder zwei Stickstoffatome enthalten kann und einfach oder zweifach durch (C₁-C₆)-Alkyl oder doppelt gebundenen Sauerstoff oder Schwefel substituiert sein kann, steht, wobei in dem Rest Phenylenalkyl der Rest R¹ an die Phenylengruppe gebunden ist;
- für einen zweiwertigen Methylenrest oder Ethylenrest steht, wobei der Methylenrest und der Ethylenrest unsubstituiert sind oder substituiert sind durch einen oder zwei gleich oder verschiedene Reste aus der Reihe (C₁-C₈)-Alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, (C₃-C₆)-Cycloalkyl, (C₃-C₆)-Cycloalkyl- (C₁-C₆)-alkyl, gegebenenfalls substituiertes (C₆-C₁₀)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Aryl-(C₁-C₆)-alkyl, gegebenenfalls substituiertes Heteroaryl und im Heteroarylrest gegebenenfalls substituiertes

 Heteroaryl-(C₁-C₆)-alkyl;
 - E für Tetrazolyl oder R¹⁰CO steht;
 - R für Wasserstoff oder (C₁-C₈)-Alkyl steht, wobei alle Reste R unabhängig voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein können;
- für Wasserstoff, im Arylrest gegebenenfalls substituiertes R²¹-((C₆-C₁₀)-Aryl), im Arylrest gegebenenfalls substituiertes (R²¹-((C₆-C₁₀)-Aryl))-(C₁-C₆)-alkyl, den Rest Het-, Het-(C₁-C₆)-alkyl, für einen der Reste X-NH-C(=NH)-R²⁰-, X¹-NH-R²⁰-, R²²N(R²¹)-C(O)-, O= und S=, oder für (C₁-C₁₀)-Alkyl, das gegebenenfalls durch Fluor einfach oder mehrfach substituiert sein kann, steht;
 - χ für Wasserstoff, (C₁-C₆)-Alkyl, (C₁-C₆)-Alkylcarbonyl, (C₁-C₆)-Alkoxycarbonyl,

- (C_1-C_8) -Alkylcarbonyloxy- (C_1-C_8) -alkoxycarbonyl, gegebenenfalls substituiertes (C_8-C_{10}) -Arylcarbonyl, gegebenenfalls substituiertes (C_8-C_{10}) -Aryloxycarbonyl, (C_8-C_{14}) -Aryl- (C_1-C_8) -alkoxycarbonyl, das im Arylrest auch substituiert sein kann, Hydroxy, (C_1-C_8) -Alkoxy oder Amino steht;
- eine der Bedeutungen von X hat oder für R'-NH-C(=N-R") steht, wobei R' und R" unabhängig voneinander die Bedeutungen von X haben;
 - R² für Wasserstoff oder (C₁-C₈)-Alkyl steht;
 - R^3 für Wasserstoff, (C_1-C_8) -Alkyl, gegebenenfalls substituiertes (C_8-C_{10}) -Aryl, im Arylrest gegebenenfalls substituiertes (C_8-C_{10}) -Aryl- (C_1-C_8) -alkyl,
- gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₆)-alkyl, (C₃-C₈)-Cycloalkyl, (C₃-C₈)-Cycloalkyl-(C₁-C₆)-alkyl, (C₆-C₁₂)-Bicycloalkyl-(C₁-C₆)-alkyl, (C₆-C₁₂)-Bicycloalkyl-(C₁-C₆)-alkyl, (C₆-C₁₂)-Tricycloalkyl-(C₁-C₆)-alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, R¹¹NH, COOR²¹, CON(CH₃)R⁴, CONHR⁴, CON(CH₃)R¹⁵ oder CONHR¹⁵ steht;
 - für (C₁-C₈)-Alkyl steht, das unsubstituiert ist oder einfach oder zweifach substituiert ist durch gleiche oder verschiedene Reste aus der Reihe Hydroxy, (C₁-C₈)-Alkoxy, R⁵, gegebenenfalls substituiertes (C₃-C₈)-Cycloalkyl, Hydroxycarbonyl, Aminocarbonyl, (C₆-C₁₀)-Aryl-(C₁-C₄)-alkoxycarbonyl, das im Arylrest auch substituiert sein kann, (C₁-C₆)-Alkoxycarbonyl, R⁶-CO, R⁷-CO, Tetrazolyl und Trifluormethyl;
- für gegebenenfalls substituiertes (C₆-C₁₂)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₂)-Aryl-(C₁-C₈)-alkyl oder einen Rest eines gegebenenfalls substituierten monocyclischen oder bicyclischen, 5-gliedrigen bis 12-gliedrigen heterocyclischen Ringes, der aromatisch, teilweise gesättigt oder vollständig gesättigt sein kann und der ein, zwei oder drei gleiche oder verschiedene Heteroatome aus der Reihe Stickstoff, Sauerstoff und Schwefel enthalten kann, steht;
- für den Rest einer natürlichen oder unnatürlichen Aminosäure, Iminosäure,

 gegebenenfalls N-(C₁-C₈)-alkylierten oder N-((C₆-C₁₂)-Aryl-(C₁-C₈)-alkylierten)

 Azaaminosäure, die im Arylrest auch substituiert sein kann, oder den Rest

20

25

eines Dipeptids oder Tripeptids steht, sowie für deren Ester und Amide, wobei freie funktionelle Gruppen durch in der Peptidchemie übliche Schutzgruppen geschützt sein können und wobei die Stickstoffatome in den Amidbindungen in der Gruppe R⁶-CO einen Rest R als Substituenten tragen können;

- R⁷ für den Rest eines über ein Stickstoffatom gebundenen 5-gliedrigen bis 7-5 aliedrigen, gesättigten monocyclischen oder bicyclischen Heterocyclus steht, der ein, zwei, drei oder vier gleiche oder verschiedene zusätzliche Ring-Heteroatome aus der Reihe Sauerstoff, Stickstoff und Schwefel enthalten kann und der an Kohlenstoffatomen und an zusätzlichen Ring-Stickstoffatomen gegebenenfalls substituiert sein kann, wobei zusätzliche Ring-Stickstoffatome 10 gleiche oder verschiedene Reste aus der Reihe Wasserstoff, Rh. HCO, RhCO, R^hO -CO, HO-CO-(C₁-C₄)-Alkyl und R^hO -CO-(C₁-C₄)-Alkyl als Substituenten tragen können und Rh für (C1-C6)-Alkyl, (C3-C8)-Cycloalkyl, (C3-C8)-Cycloalkyl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes (C₆-C₁₀)-Aryl oder im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Aryl-(C₁-C₄)-alkyl steht;
 - für Hydroxy, (C₁-C₈)-Alkoxy, (C₆-C₁₀)-Aryl-(C₁-C₆)-alkoxy, das im Arylrest auch substituiert sein kann, gegebenenfalls substituiertes (C₆-C₁₀)-Aryloxy, (C₁-C₈)-Alkylcarbonyloxy-(C₁-C₄)-alkoxy, im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Arylcarbonyloxy-(C₁-C₄)-alkoxy, Amino oder Mono- oder Di-((C₁-C₈)alkyl)-amino steht:
 - für Wasserstoff, R^{12a}, R^{12a}-CO, R^{12a}-O-CO, R^{12b}-CO oder R^{11} R^{12a}-S(O)₂ steht;
 - R^{12a} für (C₁-C₁₀)-Alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, (C₅-C₁₀)-Cycloalkyl, (C₅-C₁₀)-Cycloalkyl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes (C₈-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C1-C8)-alkyl oder den Rest R15 steht;
 - für Amino, Di-((C₁-C₁₀)-alkyl)-amino oder R^{12a}-NH steht;
 - R¹³ für Wasserstoff oder (C1-C6)-Alkyl steht;
- für R¹⁶-(C₁-C₈)-alkyl oder für R¹⁶ steht; R¹⁵ 30
 - R¹⁶ für einen Rest eines 6-gliedrigen bis 14-gliedrigen bicyclischen oder

15

tricyclischen Ringes steht, der gesättigt oder teilweise ungesättigt ist und der auch ein, zwei, drei oder vier gleiche oder verschiedene Heteroatome aus der Reihe Stickstoff, Sauerstoff und Schwefel enthalten kann und der auch durch einen oder mehrere gleiche oder verschiedene Substituenten aus der Reihe (C_1-C_4) -Alkyl und Oxo substituiert sein kann;

- R²⁰ für eine direkte Bindung oder (C₁-C₂)-Alkylen steht;
- für Wasserstoff, (C₁-C₆)-Alkyl, (C₅-C₆)-Cycloalkyl, (C₅-C₆)-Cycloalkyl-(C₁-C₄)alkyl, gegebenenfalls substituiertes (C₆-C₁₀)-Aryl, im Arylrest gegebenenfalls
 substituiertes (C₆-C₁₀)-Aryl-(C₁-C₄)-alkyl, den Rest Het- oder Het-(C₁-C₄)-alkyl
 steht, wobei Alkylreste durch Fluor einfach oder mehrfach substituiert sein
 können und die Reste R²¹ bei mehrfachem Auftreten gleich oder verschieden
 sein können:
 - R^{22} für einen der Reste R^{21} -, $R^{21}N(R^{21})$ oder $R^{21}N(R^{21})$ -C(=N(R²¹))- steht;
 - R³⁰ für einen der Reste R³²-(C(R)(R))_m-R³¹-, R³²-CR=CR-R³¹-, R³²-C≡C-R³¹-, R³²-O-R³¹- und R³²-S-R³¹- steht, wobei die Reste R unabhängig voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein können, und m für 1, 2 oder 3 steht;
 - R³¹ für den zweiwertigen Rest -R³³-R³⁴-R³⁵-R³⁶- steht, wobei R³⁸ an das Stickstoffatom im Imidazolidinring in der Formel I gebunden ist;
- für Wasserstoff, (C₂-C₆)-Alkenyl, (C₂-C₆)-Alkinyl, (C₅-C₆)-Cycloalkyl, (C₅-C₆)-Cycloalkyl, (C₅-C₆)-Cycloalkyl, (C₅-C₆)-Cycloalkyl, (C₅-C₆)-Cycloalkyl, (C₅-C₆)-Cycloalkyl, (C₅-C₆)-Cycloalkyl, (C₅-C₆)-Alkyl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Aryl-(C₁-C₆)-alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₆)-alkyl oder (C₁-C₆)-Alkyl, das gegebenenfalls durch 1 bis 6 Fluoratome substituiert sein kann, steht;
 - R³³ für eine direkte Bindung oder einen zweiwertigen (C₁-C₄)-Alkylenrest steht;
 - $m R^{34}$ für einen zweiwertigen Rest aus der Reihe ($\rm C_5$ - $\rm C_6$)-Cycloalkylen, gegebenenfalls substituiertes ($\rm C_6$ - $\rm C_{10}$)-Arylen und gegebenenfalls substituiertes Heteroarylen steht;
- 30 R³⁵ für eine direkte Bindung oder einen zweiwertigen (C₁-C₈)-Alkylenrest steht;
 - R³⁶ für eine direkte Bindung, die Gruppe -CO- oder die Gruppe -S(O)_n- steht;

WO 99/60015

48

- Het für einen Rest eines monocyclischen oder polycyclischen, 5-gliedrigen bis 12gliedrigen, aromatischen oder nicht aromatischen Ringes steht, der 1 oder 2 gleiche oder verschiedene Heteroatome aus der Reihe N und O als Ringglieder enthält und gegebenenfalls durch einen oder mehrere, gleiche oder verschiedene Substituenten substituiert sein kann:
- e und h unabhängig voneinander für 0 oder 1 stehen und gleich oder verschieden sein können;
- für 1 oder 2 steht; n in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen, und ihre physiologisch verträglichen Salze. 10

Darüber hinaus bevorzugte Verbindungen der Formel I sind solche, worin für den zweiwertigen Rest R¹-A-C(R¹³) steht; W

für eine Carbonylgruppe steht; Y

5

25

- für eine direkte Bindung, einen der zweiwertigen Reste (C1-C6)-Alkylen, Α 15 Phenylen, Phenylen-(C1-C2)-alkyl oder für einen zweiwertigen Rest eines 5gliedrigen oder 6-gliedrigen gesättigten oder ungesättigten Heterocyclus, der ein oder zwei Stickstoffatome enthalten kann und einfach oder zweifach durch (C₁-C₆)-Alkyl oder doppelt gebundenen Sauerstoff oder Schwefel substituiert sein kann, steht, wobei in dem Rest Phenylenalkyl der Rest R1 an die 20 Phenylengruppe gebunden ist;
 - für einen zweiwertigen Methylenrest oder Ethylenrest steht, wobei der В Methylenrest und der Ethylenrest unsubstituiert sind oder substituiert sind durch einen Rest aus der Reihe (C₁-C₈)-Alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, (C_3-C_6) -Cycloalkyl, (C_3-C_6) -Cycloalkyl- (C_1-C_6) -alkyl, gegebenenfalls substituiertes (C_6 - C_{10})-Aryl, im Arylrest gegebenenfalls substituiertes (C_6 - C_{10})-Aryl-(C1-C6)-alkyl, gegebenenfalls substituiertes Heteroaryl und im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₆)-alkyl;
 - für Tetrazolyl oder R¹⁰CO steht; Ε
- für Wasserstoff oder (C₁-C₈)-Alkyl steht, wobei alle Reste R unabhängig R 30 voneinander die angegebenen Bedeutungen haben können und gleich oder

20

- verschieden sein können;
- R¹ für Wasserstoff, im Arylrest gegebenenfalls substituiertes R^{21} -((C_6 - C_{10})-Aryl), im Arylrest gegebenenfalls substituiertes (R^{21} -((C_6 - C_{10})-Aryl))-(C_1 - C_6)-alkyl, den Rest Het-, Het-(C_1 - C_4)-alkyl, für einen der Reste
- 5 X-NH-C(=NH)-R²⁰-, X¹-NH-R²⁰- und O=, oder (C₁-C₁₀)-Alkyl, das gegebenenfalls durch Fluor einfach oder mehrfach substituiert sein kann, steht;
 - für Wasserstoff, (C_1-C_6) -Alkyl, (C_1-C_6) -Alkylcarbonyl, (C_1-C_6) -Alkoxycarbonyl, (C_1-C_6) -Alkylcarbonyloxy- (C_1-C_6) -alkoxycarbonyl, gegebenenfalls substituiertes (C_6-C_{10}) -Arylcarbonyl, gegebenenfalls substituiertes (C_6-C_{10}) -Aryloxycarbonyl, (C_6-C_{14}) -Aryl- (C_1-C_6) -alkoxycarbonyl, das im Arylrest auch substituiert sein kann, Hydroxy, (C_1-C_6) -Alkoxy oder Amino steht;
 - X¹ eine der Bedeutungen von X hat oder für R'-NH-C(=N-R") steht, wobei R' und R" unabhängig voneinander die Bedeutungen von X haben;
- 15 R² für Wasserstoff oder (C₁-C₆)-Alkyl steht;

CONHR¹⁵ steht:

- für Wasserstoff, (C_1-C_8) -Alkyl, gegebenenfalls substituiertes (C_6-C_{10}) -Aryl, im Arylrest gegebenenfalls substituiertes (C_6-C_{10}) -Aryl- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl- (C_1-C_4) -alkyl, (C_3-C_8) -Cycloalkyl, (C_3-C_8) -Cycloalkyl- (C_1-C_4) -alkyl, (C_6-C_{12}) -Bicycloalkyl, (C_6-C_{12}) -Bicycloalkyl- (C_1-C_4) -alkyl, (C_6-C_{12}) -Tricycloalkyl- (C_1-C_4) -alkyl, (C_2-C_8) -Alkenyl, (C_2-C_8) -Alkinyl, (C_8-C_{12}) -Tricycloalkyl- (C_1-C_4) -alkyl, (C_8-C_8) -Alkinyl, (C_8-C_{12}) -Tricycloalkyl- (C_1-C_4) -alkyl, (C_8-C_8) -Alkinyl, (C_8-C_{12}) -Tricycloalkyl- (C_8-C_8) -Alkinyl, (C_8-C_8) -Alkinyl,
- für (C₁-C₆)-Alkyl steht, das unsubstituiert ist oder einfach oder zweifach substituiert ist durch gleiche oder verschiedene Reste aus der Reihe Hydroxy, (C₁-C₈)-Alkoxy, R⁵, gegebenenfalls substituiertes (C₃-C₈)-Cycloalkyl, Hydroxycarbonyl, Aminocarbonyl, (C₆-C₁₀)-Aryl-(C₁-C₄)-alkoxycarbonyl, das im Arylrest auch substituiert sein kann, (C₁-C₆)-Alkoxycarbonyl, R⁶-CO, R⁷-CO, Tetrazolyl und Trifluormethyl;
- 30 R^5 für gegebenenfalls substituiertes (C_6 - C_{10})-Aryl, im Arylrest gegebenenfalls substituiertes (C_6 - C_{10})-Aryl-(C_1 - C_4)-alkyl oder einen Rest eines gegebenenfalls

10

25

30

substituierten monocyclischen oder bicyclischen, 5-gliedrigen bis 12-gliedrigen heterocyclischen Ringes, der aromatisch, teilweise gesättigt oder vollständig gesättigt sein kann und der ein, zwei oder drei gleiche oder verschiedene Heteroatome aus der Reihe Stickstoff, Sauerstoff und Schwefel enthalten kann, steht:

- R⁸ für einen Rest einer natürlichen oder unnatürlichen Aminosäure oder den Rest eines Dipeptids oder Tripeptids steht, sowie für deren Ester und Amide, wobei freie funktionelle Gruppen durch in der Peptidchemie übliche Schutzgruppen geschützt sein können und wobei die Stickstoffatome in den Amidbindungen in der Gruppe R⁶-CO einen Rest R als Substituenten tragen können;
- R⁷ für den Rest eines über ein Stickstoffatom gebundenen 5-gliedrigen bis 7gliedrigen, gesättigten monocyclischen Heterocyclus steht, der ein oder zwei gleiche oder verschiedene zusätzliche Ring-Heteroatome aus der Reihe Sauerstoff, Stickstoff und Schwefel enthalten kann und der an
- Kohlenstoffatomen und an zusätzlichen Ring-Stickstoffatomen gegebenenfalls substituiert sein kann, wobei zusätzliche Ring-Stickstoffatome gleiche oder verschiedene Reste aus der Reihe Wasserstoff, R^h, HCO, R^hCO, R^hO-CO, HO-CO-(C₁-C₄)-Alkyl und R^hO-CO-(C₁-C₄)-Alkyl als Substituenten tragen können und R^h für (C₁-C₄)-Alkyl, gegebenenfalls substituiertes (C₈-C₁₀)-Aryl oder im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Aryl-(C₁-C₄)-alkyl steht;
 - für Hydroxy, (C₁-C₆)-Alkoxy, (C₆-C₁₀)-Aryl-(C₁-C₄)-alkoxy, das im Arylrest auch substituiert sein kann, gegebenenfalls substituiertes (C₆-C₁₀)-Aryloxy, (C₁-C₆)-Alkylcarbonyloxy-(C₁-C₄)-alkoxy, im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Arylcarbonyloxy-(C₁-C₄)-alkoxy, Amino oder Mono- oder Di-((C₁-C₈)-alkyl)-amino steht;
 - R¹¹ für Wasserstoff, R^{12a}, R^{12a}-CO, R^{12a}-O-CO, R^{12b}-CO oder R^{12a}-S(O)₂ steht;
 - R^{12a} für (C_1-C_8) -Alkyl, (C_2-C_8) -Alkenyl, (C_2-C_8) -Alkinyl, (C_5-C_8) -Cycloalkyl, (C_5-C_8) -Cycloalkyl- (C_1-C_4) -alkyl, gegebenenfalls substituiertes (C_6-C_{10}) -Aryl, im Arylrest gegebenenfalls substituiertes (C_6-C_{10}) -Aryl- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls

20

substituiertes Heteroaryl-(C₁-C₄)-alkyl oder den Rest R¹⁵ steht;

- R^{12b} für Amino, Di-((C₁-C₈)-alkyl)-amino oder R^{12a}-NH steht;
- R¹³ für Wasserstoff oder (C₁-C₆)-Alkyl steht;
- R¹⁵ für R¹⁶-(C₁-C₆)-alkyl oder für R¹⁶ steht;
- 5 R¹⁶ für einen Rest eines 6-gliedrigen bis 12-gliedrigen bicyclischen oder tricyclischen Ringes steht, der gesättigt oder teilweise ungesättigt ist und der auch ein, zwei, drei oder vier gleiche oder verschiedene Heteroatome aus der Reihe Stickstoff, Sauerstoff und Schwefel enthalten kann und der auch durch einen oder mehrere gleiche oder verschiedene Substituenten aus der Reihe (C₁-C₄)-Alkyl und Oxo substituiert sein kann;
 - R²⁰ für eine direkte Bindung oder Methylen steht;
 - R^{21} für Wasserstoff, (C_1-C_6) -Alkyl, gegebenenfalls substituiertes (C_6-C_{10}) -Aryl, im Arylrest gegebenenfalls substituiertes (C_6-C_{10}) -Aryl- (C_1-C_2) -alkyl, den Rest Het- oder Het- (C_1-C_2) -alkyl steht, wobei Alkylreste einfach bis vierfach durch Fluor substituiert sein können und die Reste R^{21} bei mehrfachem Auftreten gleich oder verschieden sein können;
 - R³⁰ für einen der Reste R³²-(C(R)(R))_m-R³¹-, R³²-CR=CR-R³¹-, R³²-C≡C-R³¹-, R³²-O-R³¹- und R³²-S-R³¹- steht, wobei die Reste R unabhängig voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein können, und m für 1, 2 oder 3 steht;
 - für einen zweiwertigen Rest aus der Reihe gegebenenfalls substituiertes (C_6 - C_{10})-Arylen, im Arylenrest gegebenenfalls substituiertes (C_6 - C_{10})-Arylen-(C_1 - C_4)-alkyl, (C_5 - C_6)-Cycloalkylen, (C_5 - C_6)-Cycloalkylen-(C_1 - C_4)-alkyl, gegebenenfalls substituiertes Heteroarylen oder im Heteroarylenrest gegebenenfalls substituiertes Heteroarylen-(C_1 - C_4)-alkyl steht, wobei im Falle
- gegebenenfalls substituiertes Heteroarylen-(C₁-C₄)-alkyl steht, wobei im des Arylenalkylrestes, des Cycloalkylenalkylrestes und des Heteroarylenalkylrestes die Alkylgruppe an das Stickstoffatom im Imidazolidinring in der Formel I gebunden ist;
- für Wasserstoff, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_5-C_6) -Cycloalkyl, (C_5-C_6)
 Cycloalkyl- (C_1-C_4) -alkyl, gegebenenfalls substituiertes (C_6-C_{10}) -Aryl, im

 Arylrest gegebenenfalls substituiertes (C_6-C_{10}) -Aryl- (C_1-C_4) -alkyl,

10

25

30

gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl- (C_1-C_4) -alkyl oder (C_1-C_6) -Alkyl, das gegebenenfalls durch 1 bis 6 Fluoratome substituiert sein kann, steht;

Het für einen Rest eines monocyclischen oder polycyclischen, 5-gliedrigen bis 10gliedrigen, aromatischen oder nicht aromatischen Ringes steht, der 1 oder 2
gleiche oder verschiedene Heteroatome aus der Reihe N und O als
Ringglieder enthält und gegebenenfalls durch einen oder mehrere, gleiche
oder verschiedene Substituenten substituiert sein kann;

e und h unabhängig voneinander für 0 oder 1 stehen und gleich oder verschieden sein können:

in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen, und ihre physiologisch verträglichen Salze.

Eine Reihe von speziell bevorzugten Verbindungen umfaßt solche Verbindungen der Formel I, worin B für unsubstituiertes Methylen steht oder für Methylen steht, das durch einen (C₁-C₈)-Alkylrest substituiert ist, in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen, und ihre physiologisch verträglichen Salze. Besonders speziell bevorzugt in dieser Reihe sind Verbindungen der Formel I, worin B für Methylen steht, das durch einen (C₁-C₈)-Alkylrest substituiert ist, in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen, und ihre physiologisch verträglichen Salze.

Eine weitere Reihe von speziell bevorzugten Verbindungen umfaßt solche Verbindungen der Formel I, worin R³⁰ für einen der Reste R³²-(C(R)(R))_m-R³¹-, R³²-CR=CR-R³¹-, R³²-C=C-R³¹-, R³²-O-R³¹- und R³²-S-R³¹- steht, insbesondere für einen der Reste R³²-CR=CR-R³¹- und R³²-C=C-R³¹- steht, wobei die Reste R unabhängig voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein können, und m für 1, 2 oder 3 steht, und R³¹ für einen zweiwertigen, im Arylenrest gegebenenfalls substituierten (C₆-C₁₀)-Arylen-(C₁-C₄)-alkylrest steht, wobei die Alkylgruppe des Arylenalkylrestes an das Stickstoffatom im Imidazolidinring in der Formel I gebunden ist; in allen ihren stereoisomeren Formen

und Mischungen davon in allen Verhältnissen, und ihre physiologisch verträglichen Salze.

Eine weitere Reihe von speziell bevorzugten Verbindungen umfaßt solche
Verbindungen der Formel I, worin R¹³ für Wasserstoff oder Methyl steht, in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen, und ihre physiologisch verträglichen Salze. Besonders speziell bevorzugt sind in dieser Reihe Verbindungen der Formel I, worin die Gruppe R¹-A- nicht für Wasserstoff steht und gleichzeitig auch die Gruppe R¹³ nicht für Wasserstoff steht, also
Verbindungen, in denen W nicht für CH₂ steht, in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen, und ihre physiologisch verträglichen Salze, wobei es ganz besonders speziell bevorzugt ist, wenn in diesen Verbindungen R¹³ für Methyl steht, wenn also Verbindungen vorliegen, in denen W für den zweiwertigen Rest R¹-A-C(CH₃) steht und darin R¹-A- eine andere
Bedeutung als Wasserstoff hat, zum Beispiel die Bedeutung Methyl.

Eine weitere Reihe von speziell bevorzugten Verbindungen umfaßt solche Verbindungen der Formel I, worin in dem Rest $-N(R)-(C(R)(R))_a-C(R^2)(R^3)$ (C(R)(R))_h-E, der durch eine Amidbindung mit der Gruppe -B-CO- verknüpft ist, die 20 Kette von Kohlenstoffatomen zwischen der Gruppe N(R) und der ersten an diese Kette gebundenen Gruppe, die eine Säuregruppe wie eine Carbonsäuregruppe, Sulfonsäuregruppe, Phosphonsäuregruppe oder ein Derivat davon wie einen Ester oder ein Amid oder eine Tetrazolylgruppe darstellt, zwei oder mehr als zwei Kohlenstoffatome enthält, in allen ihren stereoisomeren Formen und Mischungen 25 davon in allen Verhältnissen, und ihre physiologisch verträglichen Salze. Diese erste Säuregruppe (oder das Derivat davon), die, ausgehend von der Gruppe N(R), an diese Kette von Kohlenstoffatomen gebunden ist, kann durch die Gruppe E dargestellt werden oder durch die Gruppe R³, wenn letztere zum Beispiel für COOR²¹, CONHR⁴, COR⁶, COR⁷ etc. steht. Besonders speziell bevorzugt sind in 30 dieser Reihe Verbindungen der Formel I, worin in dem Rest $-N(R)-(C(R)(R))_n-C(R^2)(R^3)-(C(R)(R))_n-E$ die Kette von Kohlenstoffatomen zwischen

der Gruppe N(R) und der ersten an diese Kette gebundenen Gruppe, die eine Säuregruppe oder ein Derivat davon darstellt, gerade zwei Kohlenstoffatome umfaßt, in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen, und ihre physiologisch verträglichen Salze. Derartige besonders speziell bevorzugte Verbindungen der Formel I können zum Beispiel Verbindungen 5 sein, worin e für 1 steht, das heißt Verbindungen, die die Gruppe $-N(R)-C(R)(R)-C(R^2)(R^3)-(C(R)(R))_n-E$ enthalten, wobei im Falle dieser Verbindungen h für 1 oder 0 stehen kann und wobei es im Falle dieser Verbindungen bevorzugt ist, wenn R³ für R¹¹NH steht und gleichzeitig h für 0 steht, in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen, 10 und ihre physiologisch verträglichen Salze. Derartige besonders speziell bevorzugte Verbindungen der Formel I können zum Beispiel auch Verbindungen sein, worin e für 0 steht. h für 1 steht und R³ nicht für eine Säuregruppe oder ein Derivat davon steht, in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen, und ihre physiologisch verträglichen Salze, das heißt Verbindungen, 15 die einen Rest -N(R)-C(R2)(R3a)-C(R)(R)-E enthalten, worin R3a wie R3 definiert ist, aber nicht für eine Carbonsäuregruppe oder ein Derivat davon wie einen Ester oder ein Amid stehen kann. Bevorzugt steht in diesen Verbindungen R^{3a} für Wasserstoff, (C₁-C₈)-Alkyl, gegebenenfalls substituiertes (C₈-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl, gegebenenfalls 20 substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl- (C_1-C_8) -alkyl, (C_3-C_8) -Cycloalkyl, (C_3-C_8) -Cycloalkyl- (C_1-C_8) -alkyl, (C_8-C_8) C₁₂)-Bicycloalkyl, (C₆-C₁₂)-Bicycloalkyl-(C₁-C₈)-alkyl, (C₆-C₁₂)-Tricycloalkyl, (C₆- C_{12})-Tricycloalkyl- (C_1-C_8) -alkyl, (C_2-C_8) -Alkenyl oder (C_2-C_8) -Alkinyl. Besonders bevorzugt steht in diesen Verbindungen R^{3a} für Wasserstoff, (C₁-C₈)-Alkyl, 25 gegebenenfalls substituiertes (C₆-C₁₀)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Aryl-(C₁-C₄)-alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₄)-alkyl, (C₅-Cଛ)-Cycloalkyl, (C_5-C_6) -Cycloalkyl- (C_1-C_4) -alkyl, $(C_{10}-C_{12})$ -Tricycloalkyl oder $(C_{10}-C_{12})$ -Tricycloalkyl-(C1-C4)-alkyl. Bevorzugt ist es in den Verbindungen dieser Reihe 30

weiterhin, wenn die Gruppe -N(R)- im Rest -N(R)- $(C(R)(R))_e$ - $C(R^2)(R^3)$ - $(C(R)(R))_h$ -E

für die Gruppe -NH- steht.

Eine weitere Reihe von speziell bevorzugten Verbindungen umfaßt solche Verbindungen der Formel I, worin in dem Rest

- $-N(R)-(C(R)(R))_a-C(R^2)(R^3)-(C(R)(R))_b-E$ die Kette von Kohlenstoffatomen zwischen 5 der Gruppe N(R) und der ersten an diese Kette gebundenen Gruppe, die eine Säuregruppe oder ein Derivat davon darstellt, nur ein Kohlenstoffatom umfaßt, in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen und ihre physiologisch verträglichen Salze, wobei aber in diesen Verbindungen die 10 erste Säuregruppe oder das Derivat davon, das ausgehend von der Gruppe N(R) an die Kette von Kohlenstoffatomen gebunden ist, die folgende Bedingung erfüllen muß: die erste Säuregruppe oder das Derivat davon ist eine Amidgruppe, die in einem Alkylsubstituenten am Amidstickstoff keine an diesen Alkylsubstituenten gebundene Carbonsäuregruppe oder ein Derivat davon wie eine Estergruppe oder eine Amidgruppe enthält, oder die erste Säuregruppe ist eine freie Säuregruppe 15 (oder ein Salz davon), oder die erste Säuregruppe oder das Derivat davon ist eine Estergruppe. Verbindungen dieser Reihe können zum Beispiel Verbindungen der Formel I sein, in der e für 0 steht und R³ für COOR²¹, COOR¹⁵, CONHR¹⁵ oder CON(CH₃)R¹⁵, bevorzugt für CONHR¹⁵, steht und h für 0 oder 1, bevorzugt für 1, steht. Verbindungen dieser Reihe können zum Beispiel auch Verbindungen der 20 Formel I sein, in der e für 0 steht, h für 0 oder 1, bevorzugt für 1, steht und R3 für CON(CH₂)R⁴ oder CONHR⁴ steht, worin aber ein für R⁴ stehender (C₁-C₁₀)-Alkylrest nicht durch eine Carbonsäuregruppe oder ein Derivat davon wie einen Ester oder ein Amid substituiert sein kann, also zum Beispiel Verbindungen, in denen R⁴ für Wasserstoff oder insbesondere für (C₁-C₁₀)-Alkyl steht, das unsubstituiert ist oder 25 durch einen oder mehrere gleiche oder verschiedene Reste aus der Reihe Hydroxy, (C₁-C₈)-Alkoxy, R⁵, gegebenenfalls substituiertes (C₃-C₈)-Cycloalkyl, Tetrazolyl, Trifluormethyl substituiert ist.
- 30 Generell sind Verbindungen der Formel I bevorzugt, die an Chiralitätszentren, zum Beispiel bei entsprechender Substitution an dem die Reste R² und R³ tragenden

Kohlenstoffatom oder an dem Zentrum W im Imidazolidin-Ring in der Formel I, eine einheitliche Konfiguration aufweisen, wobei die einzelnen Chiralitätszentren unabhängig voneinander die R-Konfiguration oder die S-Konfiguration aufweisen können.

. 5

Die Verbindungen der Formel I können beispielsweise hergestellt werden durch Fragmentkondensation einer Verbindung der Formel II

10

$$\begin{array}{c}
O \\
V \\
N-Y
\end{array}$$
 $\begin{array}{c}
B-G \\
N-Y
\end{array}$
 $\begin{array}{c}
(II)
\end{array}$

15

mit einer Verbindung der Formel III,

$$H - N - \begin{bmatrix} R & R^{2} & R \\ I & I & I \\ -C & I & -C \\ R & R^{3} & R \end{bmatrix} + E$$
 (III)

20

25

30

wobei in den Formeln II und III die Gruppen W, Y, B, E, R, R², R³, R³⁰ sowie e und h wie oben angegeben definiert sind oder auch in diesen Gruppen funktionelle Gruppen in geschützter Form oder in Form von Vorstufen enthalten sein können, und wobei G für Hydroxycarbonyl, (C₁-C₈)-Alkoxycarbonyl oder aktivierte Carbonsäurederivate wie Säurechloride oder Aktivester steht. In den Verbindungen der Formel III kann aber beispielsweise auch, wenn Verbindungen der Formel I hergestellt werden sollen, in denen zum Beispiel R³ in der Formel I für ein Carbonsäurederivat steht oder ein solches enthält, der Rest R³ zunächst für eine in geschützter Form vorliegende Hydroxycarbonylgruppe stehen oder eine solche enthalten, und dann erst nach der Kondensation der Verbindungen der Formeln II

und III in einem oder mehreren weiteren Schritten die gewünschte endgültige Gruppe R³ aufgebaut werden.

Zur Kondensation der Verbindungen der Formel II mit denen der Formel III
 verwendet man vorteilhafterweise die dem Fachmann an sich wohlbekannten Kupplungsmethoden der Peptidchemie (siehe zum Beispiel Houben-Weyl, Methoden der Organischen Chemie, Band 15/1 und 15/2, Georg Thieme Verlag, Stuttgart, 1974). Als Kondensationsmittel bzw. Kupplungsreagenzien kommen zum Beispiel Carbonyldiimidazol, Carbodiimide wie Dicyclohexylcarbodiimid oder
 Diisopropylcarbodiimid, das O-((Cyano(ethoxycarbonyl)methylen)amino)-N,N,N',N'-tetramethyluronium-tetrafluoroborat (TOTU) oder Propylphosphonsäureanhydrid (PPA) in Frage.

Die Kondensationen können unter wohlbekannten Standardbedingungen durchgeführt werden. Bei der Kondensation ist es in der Regel nötig, daß 15 vorhandene, nicht reagierende Aminogruppen durch reversible Schutzgruppen geschützt werden. Gleiches gilt für nicht an der Reaktion beteiligte Carboxylgruppen, die während der Kondensation bevorzugt als (C₁-C₆)-Alkylester, Benzylester oder tert-Butylester vorliegen. Ein Aminogruppen-Schutz erübrigt sich, wenn die Aminogruppen noch in Form von Vorstufen, zum Beispiel als Nitrogruppen oder Cyanogruppen, vorliegen und erst nach der Kondensation zum Beispiel durch Hydrierung gebildet werden. Nach der Kondensation werden die vorhandenen Schutzgruppen in geeigneter Weise abgespalten. Beispielsweise können NO₂-Gruppen (Guanidinoschutz in Aminosäuren), Benzyloxycarbonylgruppen und Benzylgruppen in Benzylestern abhydriert werden. Die Schutzgruppen vom tert-25 Butyltyp werden sauer abgespalten, während der 9-Fluorenylmethyloxycarbonylrest durch sekundäre Amine entfernt wird. Die Herstellung der Verbindungen der Formel I kann beispielsweise auch erfolgen, indem man die Verbindungen nach üblichen Methoden schrittweise an einer Festphase aufbaut, wobei die einzelnen Bauelemente des Moleküls in unterschiedlicher Reihenfolge eingeführt werden 30 können.

Verbindungen der Formel II, in der W für R¹-A-C(R¹³) steht und Y für eine Carbonylgruppe steht, können beispielsweise hergestellt werden, indem man zunächst Verbindungen der Formel IV

5

$$R^{1}$$
 A C R^{13} (IV)

in einer Bucherer-Reaktion zu Verbindungen der Formel V

10

15

umsetzt (H. T. Bucherer, V. A. Lieb, J. Prakt. Chem. 141(1934), 5), wobei in den Formeln IV und V die Gruppen R¹, R¹³ und A wie oben angegeben definiert sind. Verbindungen der Formel VI,

20

$$R^{13} \stackrel{O}{||}$$
 $R^{1-}A \stackrel{C}{-}C$
 $N \stackrel{B}{-}G$ (VI)

25

30

in der R¹, R¹³, A, B und G wie oben angegeben definiert sind, können dann erhalten werden, indem man die Verbindungen der Formel V beispielsweise zunächst mit einem alkylierenden Reagenz umsetzt, das den Rest -B-G in das Molekül einführt. Die Umsetzung von Verbindungen der Formel VI mit einem zweiten Reagenz der Formel R³⁰-LG, in der R³⁰ die oben angegebenen Bedeutungen hat und LG eine

nucleophil substituierbare Abgangsgruppe, zum Beispiel Halogen, insbesondere Chlor, Brom oder Iod, Sulfonyloxy wie Tosyloxy, Methylsulfonyloxy oder Trifluormethylsulfonyloxy, (C₁-C₄)-Alkoxy, gegebenenfalls substituiertes Phenoxy oder eine heterocyclische Abgangsgruppe wie zum Beispiel Imidazolyl, darstellt, führt zu dann den entsprechenden Verbindungen der Formet II.

Generell kann es je nach den Bedeutungen des Restes R³⁰ und anderer Reste auch vorteilhaft sein, nicht den endgültigen Rest R³⁰ mittels des Reagenzes R³⁰-LG in das Molekül einzuführen, sondern nach Anknüpfung einer Vorstufe der Gruppe R³⁰ an den Imidazolidinring den Rest R³⁰ am Imidazolidinring aufzubauen. Dies kann zum Beispiel auf der Stufe einer Verbindung der Formel VI bzw. der daraus hergestellten Verbindung der Formel II erfolgen oder auf der Stufe eines anderen Zwischenprodukts der Synthese. Zum Beispiel kann eine Verbindung der Formel VI mit einer Verbindung der Formel RG-R³¹-LG zu einer Verbindung der Formel VII

15

5

$$\begin{array}{c|c}
R^{13} & O \\
R^{1} & | I \\
C & N \\
N - C \\
RG - R^{31} & O
\end{array}$$
(VII)

20

25

30

umgesetzt werden, in der A, B, G, R¹, R¹³ und R³¹ die oben angegebenen Bedeutungen haben. In der Formel RG-R³¹-LG steht LG wie oben für eine nucleophil substituierbare Abgangsgruppe, zum Beispiel Halogen, insbesondere Chlor, Brom oder lod, oder einen Sulfonyloxyrest. RG- steht in der Formel RG-R³¹-LG und in der Formel VII für eine reaktive Gruppe, die in einen der Reste R³²-(C(R)(R))_m-, R³²-CR=CR-, R³²-C≡C-, R³²-O- und R³²-S- überführt werden kann. RG kann beispielsweise für Halogen, Cyan oder eine Carbonylgruppe stehen. Die Überführung der Gruppe RG in die gewünschte Zielgruppe kann in einem oder mehreren Schritten erfolgen und nach dem Fachmann geläufigen Standardverfahren durchgeführt werden. Beispielhaft ist diese Vorgehensweise im

folgenden für die Herstellung von Verbindungen der Formel II erläutert, in der R³⁰ für R³²-CR=CR- steht.

So können Verbindungen der Formel VI in Verbindungen der Formel VII überführt werden, in denen die Gruppe RG eine Gruppe ist, die eine Vorstufe für eine 5 Aldehydgruppe darstellt und die im nächsten Reaktionsschritt dann in eine Aldehydgruppe überführt wird. Beispielsweise kann eine Verbindung der Formel VI zunächst mit einer Cyanverbindung der Formel NC-R31-LG zu einer Verbindung der Formel VII umgesetzt werden, in der RG für Cyan steht. Die Cyangruppe kann dann beispielsweise durch Reduktion in eine Aldehydgruppe überführt werden (zum Beispiel analog D. M. Flanagan und M. M. Joullie, Synthetic Communications 1990, 20, 459-467). Die Aldehydgruppe kann anschließend in einer Horner-Emmons-Reaktion, beispielsweise mit einem Phosphoran der Formel R³²-C(R)=P(0)(OC₂H₅)₂ unter Verwendung einer geeigneten Base wie zum Beispiel Natriumhydrid, oder in einer anderen üblichen Carbonylolefinierungsreaktion zu einer Verbindung der 15 Formel II umgesetzt werden, in der R³⁰ für R³²-CR=CR-R³¹- steht. Gemäß dieser Vorgehensweise können zahlreiche weitere Überführungen in Verbindungen der . Formei II durchgeführt werden.

Weiterhin können aus Verbindungen der Formel VI mit einem Reagenz der Formel Hal-R³¹-LG, in der Hal für Halogen, insbesondere Chlor, Brom oder Iod, steht, Verbindungen der Formel VII hergestellt werden, in der RG für Halogen steht.
Derartige Verbindungen können beispielsweise in einer Heck-Reaktion in Gegenwart eines Palladium(0)-Katalysators mit Olefinen der Formel R³²-CR=CHR,
zum Beispiel mit Styrolen, zu Verbindungen der Formel II umgesetzt werden, in der R³⁰ für R³²-CR=CR-R³¹- steht, zum Beispiel zu Stilben-Derivaten (vergleiche R. F. Heck, Org. Reactions 1982, 27, 345). Analog können aus Verbindungen der Formel VII, in der RG für Halogen steht, in einer Heck-Reaktion in Gegenwart eines Palladium(0)-Katalysators mit Acetylenen der Formel R³²-C=CH, zum Beispiel mit
Phenylacetylenen, Verbindungen der Formel II erhalten werden, in der R³⁰ für R³²-C=C-R³¹- steht, zum Beispiel Tolan-Derivate.

25

30

Als weiteres Beispiel für Umwandlungen seien Reaktionen an Verbindungen genannt, in denen R³⁰ für R³²-O-R³¹- steht. Verbindungen der Formel VI können mit Verbindungen der Formel PG-O-R³¹-LG umgesetzt werden, in der LG wie oben definiert ist und PG eine Alkohol-Schutzgruppe ist, zum Beispiel eine Benzylgruppe 5 oder ein leicht abspaltbarer Etherrest. Ist die Gruppe PG zum Beispiel eine Benzylgruppe, so stellt die erhaltene Verbindung der Formel VII bereits eine Verbindung der Formel II dar, in der R³⁰ für Benzyl-O-R³¹- steht. In dieser Verbindung der Formel II kann die Benzylgruppe aber auch durch katalytische Hydrierung entfernt werden (oder eine andere Schutzgruppe auf geeignete Art entfernt werden) und die freigesetzte Hydroxygruppe dann nach Standardverfahren 10 verethert werden, wobei weitere Verbindungen der Formel II erhalten werden, in denen R³⁰ für R³²-O-R³¹- steht. Solche Veretherungen können zum Beispiel mit gegebenenfalls substituierten Alkylhalogeniden in Gegenwart von Basen wie Kaliumcarbonat oder mit Alkoholen unter den Bedingungen der Mitsunobu-Reaktion durchgeführt werden. Analoges gilt für Verbindungen, in denen R³⁰ für R³²-S-R³¹-15 steht.

In Verbindungen der Formel II, aber ebenso auch in Verbindungen der Formel I, können Doppelbindungen und Dreifachbindungen in der Gruppe R³⁰ ineinander und in Einfachbindungen umgewandelt werden. Verbindungen der Formeln II oder I, in denen R³⁰ für R³²-CR=CR-R³¹- steht, können durch katalytische Hydrierung in Verbindungen umgewandelt werden, in denen R³⁰ für R³²-(C(R)(R))_m-R³¹- steht und m = 2 ist. Verbindungen, in denen R³⁰ für R³²-C=C-R³¹- steht, können durch vollständige Hydrierung in Verbindungen mit einer C-C-Einfachbindung oder durch partielle Hydrierung in Verbindungen mit einer C-C-Doppelbindung umgewandelt werden. Verbindungen, in denen R³⁰ für R³²-CR=CR-R³¹- steht, können durch Bromierung der Doppelbindung mit elementarem Brom in die entsprechenden Dibromide und anschließend durch Dehydrohalogenierung in Verbindungen überführt werden, in denen R³⁰ für R³²-C=C-R³¹- steht, zum Beispiel Tolan-Derivate (siehe zum Beispiel G.W. Kabalka, K. Yang, N.K. Reddy, C. Narayana, Synthetic Communications 1998, 28(5), 925-929; S. Nakatsuji, K. Matsuda, Y. Uesugi, K.

15

Nakashima, S. Akiyama und W. Fabian, J. Chem. Soc. Perk. Trans. I 1992, 755 - 758; K. Fukunaga und H. Yamaguchi, Synthesis 1981, 879 - 880).

Gemäß diesen Vorgehensweise können zahlreiche weitere Verbindungen der Formel I aufgebaut werden, wobei die durchzuführenden Reaktionen stets Standardverfahren sind, die dem Fachmann geläufig sind.

Ganz generell können die einzelnen Schritte bei der Herstellung der Verbindungen der Formel I nach oder analog zu bekannten, dem Fachmann geläufigen Methoden durchgeführt werden. Je nach dem Einzelfall kann es hierbei, wie bereits erläutert, bei allen Schritten in der Synthese der Verbindungen der Formel I angebracht sein, funktionelle Gruppen, die zu Nebenreaktionen oder unerwünschten Reaktionen führen könnten, durch eine dem Syntheseproblem angepaßte Schutzgruppenstrategie temporär zu blockieren, was dem Fachmann bekannt ist.

Die erläuterte Vorgehensweise, funktionelle Gruppen nicht direkt in der endgültigen Form in das Molekül einzuführen, sondern zunächst Vorstufen in das Molekül einzuführen und dann auf der Stufe eines Zwischenprodukts die endgültige funktionelle Gruppe aufzubauen, kann, wie bereits erwähnt, entsprechend auch für andere Teile der Moleküls der Formel I angewandt werden, beispielsweise für die

andere Teile der Moleküls der Formel I angewandt werden, beispielsweise für die Gruppe R¹ oder die Gruppe R³.

Verbindungen der Formel II, in der W für

$$R^{1}-A-L C$$

$$M^{2}$$

steht und Y für eine Carbonylgruppe steht, können beispielsweise hergestellt werden, indem man Verbindungen der Formel VIII,

$$R^{1}-A-L \bigvee_{m_{2}}^{m_{1}} C=O$$
 (VIII)

5 in der R¹, A, L, m1 und m2 wie oben angegeben definiert sind, in einer Bucherer-Reaktion wie oben für die Herstellung der Verbindungen der Formel V beschrieben zu Verbindungen der Formel IX

10
$$R^{1} - A - L \qquad C \qquad NH$$

$$V = N - C \qquad (IX)$$

umsetzt und diese mit einem Reagenz, das den Rest -B-G in das Molekül einführt,

15 wie oben für die Herstellung der Verbindungen der Formel VI beschrieben in

Verbindungen der Formel X

überführt, wobei in den Verbindungen der Formeln IX und X die Gruppen R¹, A, B, G und L sowie m1 und m2 die oben angegebenen Bedeutungen haben. Die Verbindungen der Formel X können dann wiederum entsprechend den oben beschriebenen Umsetzungen der Verbindungen der Formel VI umgesetzt werden.

Steht W für R1-A-C(R13)=C oder den Rest

$$R^{1}-A-L C=C$$

$$()_{m2}$$

so kann dieses Strukturelement beispielsweise eingeführt werden, indem analog bekannten Methoden der entsprechende Aldehyd oder das entsprechende Keton mit einem Dioxo- oder Thioxo-oxo-imidazolidin kondensiert wird, das eine unsubstituierte Methylengruppe in der Position enthält, die der Gruppe W entspricht.

10

Die Aminoverbindungen der Formel III sind käuflich oder können nach oder analog zu wohlbekannten Standardverfahren aus Ausgangsverbindungen aufgebaut werden, die käuflich sind oder nach oder analog zu Literaturvorschriften erhältlich sind.

15

Verbindungen der Formel I, in denen W für R¹-A-C(R¹³) steht, können auch wie folgt erhalten werden:

Durch Reaktion von nach Standardverfahren erhältlichen α-Aminosäuren oder Nsubstituierten α-Aminosäuren oder bevorzugt deren Estern, zum Beispiel der
 Methylester, Ethylester, tert-Butylester oder Benzylester, beispielsweise von
Verbindungen der Formel XI,

25

30

$$R^{1-3}$$
 R^{1-4}
 R^{1-3}
 R^{1-4}
 R^{30}
 R^{30}
 R^{30}
 R^{30}
 R^{30}
 R^{30}
 R^{30}

worin R¹, R¹³, R³⁰ und A wie oben angegeben definiert sind, mit einem Isocyanat oder Isothiocyanat beispielsweise der Formel XII,

$$U - B - C - N - \begin{bmatrix} -C - \\ -C \end{bmatrix} - \begin{bmatrix} -C - \\ -C \end{bmatrix} - \begin{bmatrix} -C - \\ -C \end{bmatrix} + \begin{bmatrix} -C - \\ -C - \end{bmatrix} + \begin{bmatrix} -C -$$

worin B, E, R, R², R³, e und h wie oben angegeben definiert sind und U für Isocyanato oder Isothiocyanato steht, erhält man Harnstoffderivate oder Thiohamstoffderivate beispielsweise der Formel XIII,

10
$$Z = H = C = N = C = R = R^{2} = R = R^{2} = R = R^{30} = R^{3$$

15

für die die oben angegebenen Definitionen gelten und in der Z für Sauerstoff oder Schwefel steht. Die Verbindungen der Formel XIII können durch Erhitzen mit Säure zu Verbindungen der Formel la

20

25

30

cyclisiert werden, für die die oben angegebenen Bedeutungen gelten. Die Cyclisierung der Verbindungen der Formel XIII zu den Verbindungen der Formel la kann auch durch Behandlung mit Basen in inerten Lösungsmittel durchgeführt werden, zum Beispiel durch Behandlung mit Natriumhydrid in einem aprotischen Lösungsmittel wie Dimethylformamid. Während der Cyclisierung können wiederum funktionelle Gruppen in geschützter Form vorliegen.

Verbindungen der Formel I, in denen W für R¹-A-C(R¹³) steht, können auch erhalten werden, indem man eine Verbindung der Formel XI mit einem Isocyanat oder Isothiocyanat der Formel XIV

umsetzt, in der B und U wie oben für die Formel XII angegeben definiert sind und Q
eine Alkoxygruppe, zum Beispiel eine (C₁-C₄)-Alkoxygruppe wie Methoxy, Ethoxy
oder tert-Butoxy, eine (C₆-C₁₄)-Aryloxygruppe, zum Beispiel Phenoxy, oder eine (C₆-C₁₄)-Aryl-(C₁-C₄)-alkoxygruppe, zum Beispiel Benzyloxy, bedeutet. Dabei wird eine
Verbindung der Formel XV

15
$$Z H O C - Q C - N - B - C - Q (XV)$$

$$C(R^{13}) - A - R^{1}$$

$$COOCH_{3}$$

25

30

erhalten, in der Z für Sauerstoff oder Schwefel steht und A, B, Q, R¹, R¹³ und R³⁰ wie oben für die Formeln XI und XIV angegeben definiert sind, die dann unter dem Einfluß einer Säure oder einer Base, wie oben für die Cyclisierung der Verbindungen der Formel XIII beschrieben, zu einer Verbindung der Formel XVI,

$$\begin{array}{c|c}
O & O \\
V & B - C - Q
\end{array}$$

$$\begin{array}{c|c}
A & C & (XVI)
\end{array}$$

$$\begin{array}{c|c}
R^{30} & Z
\end{array}$$

in der W für R^1 -A-C(R^{13}) steht und Z, B, Q und R^{30} wie oben angegeben definiert

sind, cyclisiert wird. Aus der Verbindung der Formel XVI kann dann durch Hydrolyse der Gruppe CO-Q zur Carbonsäure COOH und nachfolgende Kupplung mit einer Verbindung der Formel III, wie oben für die Kupplung der Verbindungen der Formeln II und III beschrieben, eine Verbindung der Formel la erhalten werden.

Auch hier können während der Cyclisierung funktionelle Gruppen in geschützter Form oder in Form von Vorstufen vorliegen. Anstatt von Verbindungen der Formel XI kann auch von analogen Verbindungen ausgegangen werden, die in der Aminogruppe an Stelle der Gruppe R³⁰ ein Wasserstoffatom enthalten, und die Gruppe R³⁰ dann wie erläutert später in einem oder in mehreren Schritten in das Molekül eingeführt werden.

Eine weitere Methode zur Herstellung von Verbindungen der Formel la ist beispielsweise die Umsetzung von Verbindungen der Formel XVII,

15

10

$$\begin{array}{c|c}
O & R & R^2 & R \\
\downarrow C & N - [-C -] - C - [-C -] - E
\end{array}$$
(XVII)

20

in der W für R¹-A-C(R¹³) steht und für die ansonsten die oben angegebenen Definitionen gelten, mit Phosgen oder Thiophosgen oder entsprechenden Äquivalenten (analog S. Goldschmidt und M. Wick, Liebigs Ann. Chem. 575 (1952), 217-231 und C. Tropp, Chem. Ber. 61 (1928), 1431-1439).

25

Eine im Rest R¹ enthaltene Guanidinogruppe kann beispielsweise mit den folgenden Reagenzien aus einer Aminogruppe erhalten werden, die wiederum beispielsweise aus einer Nitrogruppe oder einer Cyangruppe durch Reduktion erhältlich ist:

30

1. O-Methylisoharnstoff (S. Weiss und H. Krommer, Chemiker-Zeitung 98 (1974),

617-618)

15

- 2. S-Methylisothioharnstoff (R. F. Borne, M. L. Forrester und I. W. Waters, J. Med. Chem. 20 (1977), 771-776)
- 3. Nitro-S-methylisothiohamstoff (L. S. Hafner und R. E. Evans, J. Org. Chem. 24 (1959) 1157)
 - 4. Formamidinosulfonsäure (K. Kim, Y.-T. Lin und H. S. Mosher, Tetrah. Lett. 29 (1988), 3183-3186)
 - 5. 3,5-Dimethyl-1-pyrazolyl-formamidinium-nitrat (F. L. Scott, D. G. O'Donovan und J. Reilly, J. Amer. Chem. Soc. 75 (1953), 4053-4054)
- 10 6. N,N'-Di-tert-butyloxycarbonyl-S-methyl-isothiohamstoff (R. J. Bergeron und J. S. McManis, J. Org. Chem. 52 (1987), 1700-1703)
 - 7. N-Alkoxycarbonyl-, N,N'-Dialkoxycarbonyl-, N-Alkylcarbonyl- und N,N'-dialkylcarbonyl-S-methyl-isothioharnstoff (H. Wollweber, H. Kölling, E. Niemers, A. Widdig, P. Andrews, H.-P. Schulz und H. Thomas, Arzneim. Forsch./Drug Res. 34 (1984), 531-542).
 - Amidine können aus den entsprechenden Cyanoverbindungen durch Anlagerung von Alkoholen, zum Beispiel Methanol oder Ethanol, in saurem wasserfreiem Medium, zum Beispiel Dioxan, Methanol oder Ethanol, und anschließende
- 20 Aminolyse, zum Beispiel Behandlung mit Ammoniak in Alkoholen wie zum Beispiel Isopropanol, Methanol oder Ethanol, hergestellt werden (G. Wagner, P. Richter und Ch. Garbe, Pharmazie 29 (1974), 12-55). Eine weitere Methode, Amidine herzustellen, ist die Anlagerung von Schwefelwasserstoff an die Cyanogruppe, gefolgt von einer Methylierung des entstandenen Thioamids und anschließender
- Umsetzung mit Ammoniak (DDR-Patent Nr. 235 866). Weiterhin kann Hydroxylamin an die Cyanogruppe angelagert werden, wobei N-Hydroxyamidine entstehen, die gewünschtenfalls ebenfalls in die Amidine überführt werden können, zum Beispiel durch Hydrierung.
- 30 Hinsichtlich der Herstellung der Verbindungen der Formel I wird weiterhin vollinhaltlich Bezug genommen auf die WO-A-95/14008, auf die EP-A-796 855 und

die ihr entsprechenden Anmeldungen, sowie auf die WO-A-96/33976. Insbesondere wird auch hinsichtlich der Herstellung der Verbindungen der Formeln V und VI in racemischer Form und in enantiomerenreiner Form Bezug genommen auf die entsprechenden Ausführungen in der WO-A-96/33976, die Bestandteil der vorliegenden Offenbarung sind.

5

Die Verbindungen der Formel I sind wertvolle Arzneimittelwirkstoffe, die sich beispielsweise für die Therapie und Prophylaxe von Entzündungserkrankungen, allergischen Erkrankungen oder Asthma eignen. Die Verbindungen der Formel I und ihre physiologisch verträglichen Salze können erfindungsgemäß am Tier, bevorzugt am Säugetier, und insbesondere am Menschen als Arzneimittel zur Therapie oder Prophylaxe verabreicht werden. Sie können für sich allein, in Mischungen untereinander oder in Form von pharmazeutischen Präparaten verabreicht werden, die eine enterale oder parenterale Anwendung gestatten und die als aktiven Bestandteil eine wirksame Dosis mindestens einer Verbindung der Formel I und/oder ihrer physiologisch verträglichen Salze neben üblichen pharmazeutisch einwandfreien Trägerstoffen und/oder Zusatzstoffen enthalten.

Gegenstand der vorliegenden Erfindung sind daher auch die Verbindungen der
Formel I und/oder ihre physiologisch verträglichen Salze zur Verwendung als
Arzneimittel, die Verwendung der Verbindungen der Formel I und/oder ihrer
physiologisch verträglichen Salze zur Herstellung von Arzneimitteln für die Therapie
und Prophylaxe der oben und im folgenden erläuterten Krankheiten, zum Beispiel
für die Therapie und Prophylaxe von Entzündungserkrankungen, sowie die
Verwendung der Verbindungen der Formel I und/oder ihrer physiologisch
verträglichen Salze bei der Therapie und Prophylaxe dieser Krankheiten. Weiterhin
sind Gegenstand der vorliegenden Erfindung pharmazeutische Präparate (oder
pharmazeutische Zusammensetzungen), die eine wirksame Dosis mindestens einer
Verbindung der Formel I und/oder ihrer physiologisch verträglichen Salze und einen
üblichen pharmazeutisch einwandfreien Träger enthalten.

WO 99/60015 PCT/EP99/03072

70

Die Arzneimittel können systemisch oder lokal verabreicht werden. Sie können zum Beispiel oral in Form von Pillen, Tabletten, Filmtabletten, Dragees, Granulaten, Hart- und Weichgelatinekapseln, Pulvern, Lösungen, Sirupen, Emulsionen, Suspensionen oder in anderen Arzneiformen verabreicht werden. Die Verabreichung kann aber auch vaginal oder rektal, zum Beispiel in Form von Suppositorien, oder parenteral oder implantiv, zum Beispiel in Form von Injektionslösungen oder Infusionslösungen, Mikrokapseln oder Rods, oder topisch oder perkutan, zum Beispiel in Form von Salben, Lösungen oder Tinkturen, oder auf anderem Wege, zum Beispiel in Form von Nasalsprays oder Aerosolmischungen, erfolgen. Parenteral kann die Verabreichung zum Beispiel intravenös, intramuskulär, subkutan, intraartikulär, intrasynovial oder auf andere Weise erfolgen.

Die Herstellung der erfindungsgemäßen pharmazeutischen Präparate erfolgt in an sich bekannter Weise, wobei neben der oder den Verbindungen der Formel I 15 und/oder ihren physiologisch verträglichen Salzen pharmazeutisch inerte anorganische und/oder organische Trägerstoffe verwendet werden können. Für die Herstellung von Pillen, Tabletten, Dragees und Hartgelatinekapseln kann man zum Beispiel Lactose, Maisstärke oder Derivate davon, Talk, Stearinsäure oder deren Salze, etc. verwenden. Trägerstoffe für Weichgelatinekapseln und Suppositorien 20 sind zum Beispiel Fette, Wachse, halbfeste und flüssige Polyole, natürliche oder gehärtete Öle etc. Als Trägerstoffe für die Herstellung von Lösungen, zum Beispiel Injektionslösungen, oder von Emulsionen oder Sirupen eignen sich zum Beispiel Wasser, Alkohole, Diole, Glycerin, Polyole, Saccharose, Invertzucker, Glukose, pflanzliche Öle etc. Als Trägerstoffe für Mikrokapseln, Implantate oder Rods eignen 25 sich zum Beispiel Mischpolymerisate aus Glykolsäure und Milchsäure. Die pharmazeutischen Präparate enthalten normalerweise etwa 0,5 bis 90 Gew.-% der Verbindungen der Formel I und/oder ihrer physiologisch verträglichen Salze. Die Menge an Wirkstoff der Formel I und/oder dessen physiologisch verträglichen Salzen in den pharmazeutischen Präparaten beträgt normalerweise 0,2 bis 500 mg, 30 vorzugsweise 1 bis 200 mg, es können aber auch größere Wirkstoffmengen

enthalten sein.

Die pharmazeutischen Präparate können neben den Wirkstoffen und Trägerstoffen noch Zusatzstoffe (oder Hilfsstoffe) enthalten, wie zum Beispiel Füllstoffe, Spreng-,

Binde-, Gleit-, Netz-, Stabilisierungs-, Emulgier-, Konservierungs-, Süß-, Färbe-,
Geschmacks-, Aromatisierungs-, Dickungs- oder Verdünnungsmittel,
Puffersubstanzen, Lösungsmittel, Lösungsvermittler, Mittel zur Erzielung eines
Depoteffekts, Salze zur Veränderung des osmotischen Drucks, Überzugsmittel oder
Antioxidantien. Sie können auch zwei oder mehrere Verbindungen der Formel I
und/oder deren physiologisch verträgliche Salze enthalten. Ferner können sie
neben mindestens einer Verbindung der Formel I und/oder ihren physiologisch
verträglichen Salzen noch einen oder mehrere andere therapeutisch oder
prophylaktisch wirksame Stoffe, zum Beispiel Stoffe mit entzündungshemmender
Wirkung, enthalten.

15

Wenn die Verbindungen der Formel I bzw. sie enthaltende pharmazeutische Zubereitungen als Aerosole verabreicht werden, zum Beispiel in Form von Nasalaerosolen oder durch Inhalation, so kann dies beispielsweise unter Verwendung eines Sprays, eines Zerstäubers, eines Pumpzerstäubers, eines 20 Inhalationsgerätes, eines Dosierinhalators oder eines Trockenpulverinhalators erfolgen. Arzneiformen für eine Verabreichung der Verbindungen der Formel I als Aerosol können nach dem Fachmann wohlbekannten Verfahren hergestellt werden. In Betracht kommen für deren Herstellung beispielsweise Lösungen oder Dispersionen der Verbindungen der Formel I in Wasser, Wasser-Alkohol-25 Gemischen oder geeigneten Kochsalzlösungen unter Verwendung von üblichen Zusatzstoffen, zum Beispiel Benzylalkohol oder anderen geeigneten Konservierungsmitteln, Absorptionsverbesserern zur Erhöhung der Bioverfügbarkeit, Lösungsvermittlern, Dispergiermitteln und anderen, und gegebenenfalls üblichen Treibmitteln, zum Beispiel Fluorchlorkohlenwasserstoffen 30 und/oder Fluorkohlenwasserstoffen.

Die Verbindungen der Formel I haben beispielsweise die Fähigkeit, Zell-Zell-Interaktionsprozesse und Zell-Matrix-Interaktionsprozesse zu inhibieren, bei denen Wechselwirkungen zwischen VLA-4 mit seinen Liganden eine Rolle spielen. Die Wirksamkeit der Verbindungen der Formel I kann zum Beispiel in einem Assay nachgewiesen werden, in dem die Bindung von Zellen, die den VLA-4-Rezeptor 5 aufweisen, zum Beispiel von Leukozyten, an Liganden dieses Rezeptors gemessen wird, zum Beispiel an VCAM-1, das dafür vorteilhafterweise auch gentechnisch hergestellt werden kann. Einzelheiten eines solchen Assay sind weiter unten beschrieben. Insbesondere vermögen die Verbindungen der Formel I die Adhäsion und die Migration von Leukozyten inhibieren, etwa die Anheftung von Leukozyten 10 an endotheliale Zellen, die - wie oben erläutert - über den VCAM-1/VLA-4-Adhäsionsmechanismus gesteuert wird. Außer als Entzündungshemmstoffe eignen sich die Verbindungen der Formel I und ihre physiologisch verträglichen Salze daher allgemein zur Therapie und Prophylaxe von Krankheiten, die auf der Wechselwirkung zwischen dem VLA-4-Rezeptor und seinen Liganden beruhen oder 15 durch eine Hemmung dieser Wechselwirkung beeinflußt werden können, und insbesondere eignen sie sich für die Therapie und Prophylaxe von Krankheiten, die zumindest teilweise durch ein unerwünschtes Ausmaß an Leukozytenadhäsion und/oder Leukozytenmigration verursacht werden oder damit verbunden sind, und zu deren Vorbeugung, Linderung oder Heilung die Adhäsion und/oder Migration von 20 Leukozyten verringert werden soll.

Gegenstand der vorliegenden Erfindung sind daher auch die Verbindungen der Formel I zur Hemmung der Adhäsion und/oder Migration von Leukozyten oder zur Hemmung des VLA-4-Rezeptors und die Verwendung der Verbindungen der Formel I zur Herstellung von Arzneimitteln dafür, also von Arzneimitteln zur Therapie oder Prophylaxe von Krankheiten, bei denen die Leukozytenadhäsion und/oder Leukozytenmigration ein unerwünschtes Ausmaß aufweist, oder zur Therapie oder Prophylaxe von Krankheiten, bei denen VLA-4-abhängige Adhäsionsvorgänge eine Rolle spielen, sowie die Verwendung der Verbindungen der Formel I und/oder ihrer physiologisch verträglichen Salze bei der Therapie und Prophylaxe derartiger

Krankheiten.

Die Verbindungen der Formel I können bei entzündlichen Erscheinungen unterschiedlichster Ursache als Entzündungshemmer eingesetzt werden, um die unerwünschten oder schädigenden Folgen der Entzündung zu verhindem, zu 5 verringern oder zu unterdrücken. Anwendung finden sie beispielsweise zur Therapie oder Prophylaxe der Arthritis, der rheumatoiden Arthritis, der Polyarthritis, der inflammatory bowel disease (ulcerativen Colitis), des systemischen Lupus erythematosus, zur Therapie oder Prophylaxe von inflammatorischen Erkrankungen des zentralen Nervensystems, wie zum Beispiel der Multiplen Sklerose, oder zur 10 Therapie oder Prophylaxe von Asthma oder von Allergien, zum Beispiel Allergien vom verzögerten Typ (Typ IV-Allergie). Weiterhin eignen sie sich zur Therapie oder Prophylaxe von cardiovaskulären Erkrankungen, der Arteriosklerose, von Restenosen, von Diabetes, der Schädigung von Organtransplantaten, von Immunerkrankungen, von Autoimmunerkrankungen, von Tumorwachstum oder 15 Tumormetastasierung bei verschiedenen Malignitäten, der Malaria sowie von weiteren Krankheiten, bei denen eine Blockierung des Integrins VLA-4 und/oder eine Beeinflussung der Leukozytenaktivität zur Vorbeugung, Linderung oder Heilung angebracht erscheint.

20

25

30

Die Dosis bei der Anwendung der Verbindungen der Formel I kann innerhalb weiter Grenzen variieren und ist wie üblich in jedem einzelnen Fall den individuellen Gegebenheiten anzupassen, was dem Arzt bekannt ist. Sie hängt beispielsweise von der Art und Schwere der zu behandelnden Krankheit ab, von der eingesetzten Verbindung oder davon, ob ein akuter oder chronischer Krankheitszustand behandelt wird oder Prophylaxe betrieben wird, oder davon, ob neben den Verbindungen der Formel I weitere Wirkstoffe verabreicht werden. Im allgemeinen ist bei der oralen Verabreichung eine Tagesdosis von etwa 0,01 bis 100 mg/kg, vorzugsweise 0,1 bis 10 mg/kg, insbesondere 0,3 bis 2 mg/kg (jeweils pro kg Körpergewicht) bei einem ca. 75 kg schweren Erwachsenen zur Erzielung wirksamer Ergebnisse angemessen. Bei intravenöser Applikation beträgt die

WO 99/60015

5

Tagesdosis im allgemeinen etwa 0,01 bis 50 mg/kg, vorzugsweise 0,01 bis 10 mg/kg Körpergewicht. Die Tagesdosis kann, insbesondere bei der Applikation größerer Mengen, in mehrere, zum Beispiel 2, 3, oder 4, Teilverabreichungen aufgeteilt werden. Gegebenenfalls kann es je nach individuellem Verhalten erforderlich werden, von der angegebenen Tagesdosis nach oben oder nach unten abzuweichen.

Die Verbindungen der Formel I und ihre Salze können weiterhin für diagnostische Zwecke, zum Beispiel bei in vitro-Diagnosen, und als Hilfsmittel in biochemischen Untersuchungen eingesetzt werden, bei denen eine VLA-4-Blockierung oder eine Beeinflussung von Zell-Zell- oder Zell-Matrix-Interaktionen angestrebt wird. Weiterhin können sie als Zwischenprodukte für die Herstellung anderer Verbindungen dienen, insbesondere anderer Arzneimittelwirkstoffe, die aus den Verbindungen der Formel I beispielsweise durch Abwandlung oder Einführung von Resten oder funktionellen Gruppen erhältlich sind.

Beispiele

- 20 Die Produkte wurden über Massenspektren (MS) und/oder NMR-Spektren identifiziert. Basische Verbindungen, die durch Chromatographie unter Verwendung eines Laufmittels gereinigt wurden, das beispielsweise Essigsäure oder Trifluoressigsäure enthielt, und anschließend gefriergetrocknet wurden, oder die mit einer Säure, zum Beispiel mit Trifluoressigsäure, behandelt wurden und zur
- Aufarbeitung zum Beispiel gefriergetrocknet wurden, enthielten zum Teil je nach Durchführung der Gefriertrocknung oder Aufarbeitung noch die verwendete Säure, sind also teilweise oder vollständig in Form eines Salzes der verwendeten Säure, zum Beispiel in Form des Essigsäuresalzes oder Trifluoressigsäuresalzes, angefallen. Angegebene Mischungsverhältnisse von Lösungsmitteln oder
- 30 Reagenzien sind Volumenverhältnisse.

Es bedeuten:

MTBE

Methyl-tert-butylether

DMF

N,N-Dimethylformamid

THF

Tetrahydrofuran

5 DCC

N.N'-Dicyclohexylcarbodiimid

TOTU

O-((Cyano(ethoxycarbonyl)methylen)amino)-N,N,N',N'-

tetramethyluronium-tetrafluoroborat

HOBt

1-Hydroxybenzotriazol

TFA

Trifluoressigsäure

10 Phosphazen P1

tert-Butylimino-tris-(dimethylamino)-phosphoran

Die Verbindungen wurden auf den in den Schemata 1 bis 3 dargestellten Wegen nach den im folgenden beschriebenen allgemeinen Verfahren hergestellt. tBu für 15 tert-Butyl, Alkyl im Schema 1 steht für Methyl oder Ethyl. Im Verfahren gemäß Schema 1 wurde zur Herstellung des Zwischenprodukts der Formel Vla ein in der α-Position durch die Gruppen R¹³ und R¹-A- substituierter α-Aminosäurealkylester mit einem Isocyanatocarbonsäure-tert-butylester zum Harnstoff umgesetzt und dieser mit Natriumhydrid cyclisiert (Schritte A und B). Es kann auch von einem in der 4-Position durch die Gruppen R¹³ und R1-A- substituierten Hydantoin ausgegangen werden und dieses mit einem Bromcarbonsäure-tert-butylester alkyliert werden (Schritt C). Das Zwischenprodukt der Formel Vla kann in situ in die folgende Synthesestufe eingesetzt werden oder isoliert werden.

25 Gemäß einer der durchgeführten Varianten wurde das Zwischenprodukt der Formel VIa mit einer Verbindung der Formel R³⁰-LG (siehe allgemeine Synthesebeschreibung), zum Beispiel mit 4-Chlormethylstilben der Formel C₆H₅-CH=CH-C₆H₄-(4-CH₂Cl), umgesetzt (Schritt D). Nachfolgend wurde mit Trifluoressigsäure die tert-Butylestergruppe zur Säure gespalten, wobei eine Verbindung der Formel IIa erhalten wurde (Schritt E).

<u>.</u>..

Schema 1

Gemäß einer anderen Variante wurde die Verbindung der Formel VIa mit einer Verbindung der Formel RG-R³¹-LG (siehe allgemeine Synthesebeschreibung) zu einer Verbindung der Formel VIIa umgesetzt (Schritt F), in der dann die Gruppe RG-R³¹- in die Gruppe R³⁰ umgewandelt wurde (allgemeiner Schritt G). Im Schritt G durchgeführte Umwandlungen sind im einzelnen in den Schemata 2 und 3 dargestellt.

Schema 2 zeigt die Umwandlung eines cyan-substituierten Hydantoins der Formel VIIb, d. h. einer Verbindung der Formel VIIa mit RG = Cyan, durch Reduktion der Cyangruppe zur Aldehydgruppe (Schritt K) und Umsetzung der Aldehydgruppe in einer Horner-Emmons-Reaktion zur Verbindung der Formel VIIc (Schritt L). Verbindungen der Formel VIIb wurden durch Alkylierung von Verbindungen der Formel VIa beispielsweise mit 4-Cyanbenzylbromid erhalten.

15 Schema 2

5

$$R^{13} O$$
 $R^{13} O$
 $R^{13} O$
 $R^{14} A$
 $R^{13} O$
 $R^{14} A$
 $R^{13} O$
 $R^{14} A$
 $R^{13} O$
 $R^{14} A$
 $R^{14} A$

Schema 3 zeigt die Umwandlung eines halogen-substituierten Hydantoins der Formel VIId, d. h. einer Verbindung der Formel VIIa mit RG = Halogen (in der Formel VIId steht Hal für Halogen, insbesondere für Iod oder Brom). Verbindungen der Formel VIId wurden durch Alkylierung von Verbindungen der Formel VIa beispielsweise mit 4-lodbenzylbromid zu 3-(4-lodbenzyl)-hydantoinen erhalten und wurden in einer Heck-Reaktion in Gegenwart eines Palladiumkatalysators mit Styrolen zu Verbindungen der Formel VIIe (Schritt M) oder mit Phenylacetylenen zu Verbindungen der Formel VIIf (Schritt N) umgesetzt (siehe R. F. Heck, Org. React. 1982, 27, S. 345).

10

15

5

Schema 3

In den in den Schritten L, M, N bzw. allgemein im Schritt G erhaltenen Verbindungen wurde dann wiederum die tert-Butylestergruppe mit Trifluoressigsäure in die Carbonsäuregruppe überführt (Schritt H). Das in den Schritten E oder H erhaltene Zwischenprodukt der Formel IIa wurde dann mit einer Aminoverbindung der Formel Formel III gekuppelt, in der eine gegebenenfalls vorhandene Carbonsäuregruppe als tert-Butylester geschützt war, und schließlich nach Abspaltung der tert-Butylester-Schutzgruppe die Zielverbindung der Formel I erhalten (Schritt J; Schema 1). Die in die einzelnen Schritte eingesetzten Ausgangsverbindungen ergeben sich aus den Strukturen der einzelnen Beispiele.

In den einzelnen Syntheseschritten wurde nach den folgenden allgemeinen Verfahrenvorschriften gearbeitet.

10

15

5

Schritte A und B

Der α-Aminosäurealkylester (90 mmol) wurde in 200 ml DMF gelöst und mit 1 Equivalent des Isocyanatocarbonsäure-tert-butylesters versetzt. Das Gemisch wurde 12 h bei Raumtemperatur gerührt (vollständiger Umsatz nach DC-Kontrolle). Die Lösung des entstandenen Harnstoffes in DMF (Gesamtvolumen 230 ml) wurde ohne weitere Reinigung und Aufarbeitung in die folgende Reaktion eingesetzt.

Zur Cyclisierung des Harnstoffs zum Hydantoin wurde ein Aliquot der Harnstofflösung auf 0 °C gekühlt und mit 1,2 Equivalenten (bezogen auf den Harnstoff) Natriumhydrid (als 55 %ige Suspension in Mineralöl) versetzt. Das Gemisch wurde 15 min bei 0 °C und anschließend 2 h bei Raumtemperatur gerührt. (vollständiger Umsatz nach DC-Kontrolle (Heptan/MTBE, 1/1)). Das Lösungsmittel wurde am Rotationsverdampfer entfemt. Der Rückstand wurde durch Flash-Chromatographie gereinigt (Kieselgel, Heptan/MTBE, 6/4). Man erhielt das cyclisierte Hydantoin in einer Ausbeute von > 90%.

Schritt C

Zur Herstellung der Verbindungen der Formel VIa kann das Ausgangs-Hydantoin in DMF gelöst werden und mit 1,2 Equivalenten Natriumhydrid (55 %ige Suspension in Mineralöl) versetzt werden. Das Gemisch wird dann im allgemeinen 4 h bei Raumtemperatur gerührt. Nach Zugabe von 1,7 Equivalenten des

WO 99/60015 PCT/EP99/03072

Bromcarbonsäure-tert-butylesters wird bei Raumtemperatur über Nacht weitergerührt. Das Lösungsmittel wird am Rotationsverdampfer entfernt. Der Rückstand wird durch Flash-Chromatographie gereinigt.

Schritt D (Umsetzung mit 4-Chlormethylstilben)
 Zu dem im Schritt B erhaltenen Hydantoin wurden je 1,1 Equivalente (bezogen auf das Hydantoin) 4-Chlormethylstilben und Natriumhydrid zugegeben und das Gemisch 4 h bei Raumtemperatur gerührt. Die Reaktion wurde durch Zugabe von Wasser gequencht und das Lösungsmittel am Rotationsverdampfer abgezogen. Der ölige Rückstand wurde in Essigester aufgenommen und mit Wasser gewaschen. Die organische Phase wurde über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde durch Flash-Chromatographie gereinigt (Kieselgel, Hexan/MTBE, 6/4). Neben einer Fraktion, die das reine 3-alkylierte Hydantoinderivat in einer Ausbeute von 50 - 60 % enthielt, wurden weitere
 Fraktionen erhalten, die das Produkt in leicht verunreinigter Form enthielten.

Schritt F (Umsetzung mit 4-Cyanbenzylbromid)

Das in Schritt B erhaltene alkylierte Hydantoin (14 mmol) wurde in 50 ml DMF gelöst und mit 1,2 Equivalenten Caesiumcarbonat und 1 Equivalent 4-Cyanbenzylbromid

versetzt und die Mischung 16 - 20 h bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde durch Zugabe von Wasser gequencht und das Lösungsmittel am Rotationsverdampfer abgezogen. Der ölige Rückstand wurde in Essigester aufgenommen und mit Wasser gewaschen. Die organische Phase wurde über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Man erhielt das 3-(4-Cyanobenzyl)-hydantoinderivat in einer Ausbeute von ca. 60 %.

Schritt K

Das im Schritt F erhaltene 3-(4-Cyanobenzyl)-hydantoinderivat (ca. 14 mmol) wurde in 360 ml einer Mischung von Pyridin/Essigsäure/Wasser (2/1/1) gelöst, auf 0 °C gekühlt und mit 25,1 g Natriumhypophosphit (Monohydrat) und 4,17 g feuchtem Raney-Nickel versetzt. Nach 6 h Rühren bei 60 °C wurden die Lösungsmittel im

Vakuum entfernt und der Rückstand in Essigester aufgenommen. Die Lösung wurde mit 10%iger Citronensäurelösung, gesättigter Natriumbicarbonatlösung und gesättigter Natriumchloridlösung gewaschen und über Magnesiumsulfat getrocknet. Nach Filtration und Einengen wurde das erhaltene 3-(4-Formylbenzyl)hydantoinderivat ohne weitere Reinigung in den nächsten Schritt eingesetzt.

Schritt L

5

30

Zu 1,16 g (4,8 mmol) Diethylbenzylphosphonat (in 20 ml DMF gelöst) wurden 150 mg (6,24 mmol) Natriumhydrid (60 %ige Suspension in Öl) gegeben. Die Mischung wurde 15 Minuten bei Raumtemperatur gerührt. Anschließend wurden 2,0 g (4,8 10 mmol) des in Schritt K erhaltenen 3-(4-Formylbenzyl)-hydantoinderivats zugegeben und die Mischung 16 h bei Raumtemperatur gerührt. Das Lösungsmittel wurde unter vermindertem Druck abgezogen und der Rückstand in Essigester aufgenommen. Die Lösung wurde mit Wasser gewaschen, über Magnesiumsulfat getrocknet und filtriert. Das Filtrat wurde im Vakuum eingeengt und der ölige Rückstand über 15 Kieselgel chromatographiert (n-Heptan/Essigester, 6/1). Die die Zielverbindung enthaltenden Fraktionen wurden vereinigt und vom Lösungsmittel befreit. Man erhielt ca. 60% des gewünschten Stilbens.

Schritt F (Umsetzung mit 4-lodbenzylbromid) 20 Das in Schritt B erhaltene alkylierte Hydantoin (14 mmol) wurde in 50 ml DMF gelöst, mit je 1,1 Equivalenten Phosphazen P-1 als Base und 4-lodbenzylbromid versetzt und die Mischung 2 - 3 h bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde durch Zugabe von Wasser gequencht und das Lösungsmittel am Rotationsverdampfer abgezogen. Der ölige Rückstand wurde in 25 Essigester aufgenommen und mit Wasser gewaschen. Die organische Phase wurde über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde durch Flash-Chromatographie gereinigt (Kieselgel, Hexan/MTBE, 6/4). Man erhielt das reine 3-(4-lodbenzyl)-hydantoinderivat in einer Ausbeute von ca. 60 %.

Schritt M

Das in Schritt F erhaltene 3-(4-lodbenzyl)-hydantoinderivat (7 mmol) wurde in 30 ml DMF gelöst und mit 2 Equivalenten des Styrols der Formel R³²-CR=CHR und Palladium(II)acetat/Triphenylphosphin versetzt. Das Gemisch wurde 14 h auf 90 °C erhitzt (vollständiger Umsatz nach DC-Kontrolle (Ethylacetat/Petrolether, 1/4)). Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand durch Flash-Chromatographie gereinigt (Kieselgel, Ethylacetat/Petrolether, 1/4). Man erhielt das Produkt in einer Ausbeute von ca. 80 %.

10 Schritt N

Das 3-(4-lodobenzyl)-hydantoinderivat (7 mmol) wurde in 30 ml DMF gelöst und mit 2 Equivalenten des Phenylacetylens der Formel R³²-C≡CH und Palladium(II)acetat/Triphenylphosphin versetzt. Das Gemisch wurde 14 h auf 90 °C erhitzt (vollständiger Umsatz nach DC-Kontrolle (Ethylacetat/Petrolether, 1/4). Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand durch Flash-Chromatographie gereinigt (Kieselgel, Ethylacetat/Petrolether, 1/4). Man erhielt das Produkt in einer Ausbeute von ca. 80 %.

Schritte E und H

Der in den Schritten D, L, M oder N erhaltene tert-Butylester wurde zur Überführung in die Carbonsäure 1 h bei Raumtemperatur in Trifluoressigsäure/Dichlormethan (1/1; ca. 20 ml/mmol) geschüttelt. Die Trifluoressigsäure wurde am Rotationsverdampfer entfernt und der Rückstand gefriergetrocknet. Man erhielt die Carbonsäure in quantitativer Ausbeute.

25

Schritt J

Die in Schritt E oder H erhaltene Carbonsäure (ca. 2 mmol) wurde in 10 ml DMF gelöst und mit 1 Equivalent der zu kuppelnden Aminoverbindung, in der eine Carbonsäuregruppe als tert-Butylester vorlag, und 1 Equivalent HOBt versetzt. Das Gemisch wurde auf 0 °C gekühlt, mit 1 Equivalent DCC versetzt und 1 h bei 0 °C gerührt. Anschließend wurde 4 h bei Raumtemperatur gerührt (vollständiger Umsatz

nach DC-Kontrolle (Dichlormethan/Methanol, 20/1)). Das Gemisch wurde filtriert und das Lösungsmittel im Vakuum entfernt. Reinigung des Rückstandes durch Flash-Chromatographie (Kieselgel, Dichlormethan/Methanol, 20/1) ergab das Kupplungsprodukt in einer Ausbeute von > 80 %. Zur Spaltung der tert-Butylester-Schutzgruppe wurde das Kupplungsprodukt in Trifluoressigsäure/Dichlormethan (1/1; ca. 20 ml/mmol) gelöst und 1 h bei Raumtemperatur geschüttelt. Das Lösungsmittel wurde am Rotationsverdampfer entfernt. Der Rückstand wurde, teilweise nach Zusatz von Essigsäure/Wasser, gefriergetrocknet oder durch Chromatographie gereinigt. Man erhielt die unten in den einzelnen Beispielen bezeichnete Säure in quantitativer Ausbeute.

Anstatt mit Aminoverbindungen in Lösung können die in Schritt E oder H erhaltenen Carbonsäuren auch mit harzgebundenen Aminoverbindungen gekuppelt werden, die auch am Harz aufgebaut werden können. Soll als Aminoverbindung eine Aminocarbonsäure in die Kupplung eingesetzt werden, wird zur Anknüpfung der 15 Aminocarbonsäure oder des C-terminalen Bausteins einer Aminoverbindung, die am Harz aufgebaut werden soll, an den polymeren Träger das Harz (Wang, Polystyrol, Bachem) mit 2 Equivalenten der Fmoc-geschützten Aminocarbonsäure, 2 Equivalenten HOBt und 2 Equivalenten TOTU versetzt. Zu dem Gemisch werden 2 Equivalente Diisopropylethylamin, gelöst in DMF (10 ml/g Träger), gegeben. Das 20 Gemisch wird 12 h bei 40 °C geschüttelt. Anschließend wird zu dem Gemisch 1 Equivalent Acetanhydrid und 1 Equivalent Diisopropylethylamin gegeben und weitere 30 min bei Raumtemperatur geschüttelt. Das Lösungsmittel wird durch Filtration entfemt, der Rückstand wird jeweils 5 mal mit DMF, Toluol und Dichlormethan gewaschen. Die Beladung des Harzes wird an einer Probe durch 25 Fmoc-Abspaltung nach Standardmethoden der Peptidsynthese bestimmt (die Beladung beträgt je nach eingesetzter Aminosäure im allgemeinen 0,3 bis 0,6 mmol/g Harz). Zur Abspaltung der Fmoc-Gruppe wird das Harz dann in einer 20 %igen Lösung von Piperidin in DMF suspendiert (10 ml Lösung/g Harz) und für 20 min geschüttelt. Die Lösung wird abfiltriert und der Vorgang wird wiederholt. Danach 30 wird das Harz mehrfach mit DMF und Dichlormethan gewaschen. Die

harzgebundene Aminosäure (100 mg Harz) wird mit 2 Equivalenten der zu kuppelnden Carbonsäure, 2 Equivalenten HOBt und 2 Equivalenten TOTU versetzt. Zu dem Gemisch werden 2 Equivalente Diisopropylethylamin, gelöst in 2 ml DMF, gegeben. Das Gemisch wird 12 h bei Raumtemperatur geschüttelt. Es wird filtriert und danach jeweils 5 mal mit DMF, Toluol und Dichlormethan gewaschen. Zur Abspaltung des Kupplungsprodukts vom Träger wird das gereinigte Harz mit 1 ml Trifluoressigsäure/Dichlormethan (1/1) versetzt und 1 h geschüttelt. Die Abspaltungslösung wird eingeengt, der Rückstand zur Reinigung mit Essigester über eine mit Kieselgel gefüllte Kartusche filtriert und das Lösungsmittel entfernt.

Wurden Verbindungen nach dieser Vorgehensweise hergestellt, so ist unten angegeben, daß an Harz gebundene Aminoverbindungen eingesetzt wurden.

Allgemeines Verfahren zur Herstellung von im Schritt J eingesetzten 3-substituierten

3-Amino-propionsäure-tert-butylestem

Die entsprechende 3-substituierte Acrylsäure (0,1 mol) wurde mit 1,1 Equivalenten Oxalylchlorid in 100 ml Dichlormethan gelöst. Das Gemisch wurde 4 h bei Raumtemperatur gerührt. Das Lösungsmittel wurde am Rotationsverdampfer entfernt. Der Rückstand wurde in 100 ml tert-Butanol aufgenommen und 2 h bei Raumtemperatur gerührt. Nach beendeter Reaktion wurde das Lösungsmittel am Rotationsverdampfer entfernt. Der Rückstand wurde in Diethylether gelöst und mit Wasser, Natriumhydrogencarbonatlösung und erneut mit Wasser gewaschen. Die organische Phase wurde über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Man erhielt den 3-substituierten Acrylsäure-tert-butylester in einer Ausbeute von > 80 %.

Zur Einführung der Aminogruppe wurden zu einer Lösung von (R)-(+)-N-Benzyl-N-(1-phenyl-ethyl)-amin (60 mmol) in 100 ml THF bei -70 °C über den Zeitraum von 1 h 0,95 Equivalente n-Butyllithium (in n-Hexan) zugetropft. Das Gemisch wurde 1 h bei dieser Temperatur gerührt, dann wurde eine Lösung des 3-substituierten

Acrylsäure-tert-butylesters (0,9 Equivalente) in 75 ml THF über den Zeitraum von 1 h zugetropft. Das Gemisch wurde 2 h bei -70 °C gerührt. Nach Entfernen der Kühlung wurden 115 ml 5 %ige Citronensäurelösung zugetropft. Die Lösung wurde 1 h gerührt, mit Essigester versetzt und mit Wasser gewaschen. Die organische Phase wurde mit Natriumhydrogencarbonatlösung und Wasser gewaschen und über Magnesiumsulfat getrocknet. Das Lösungsmitel wurde im Vakuum entfernt. Der Rückstand wurde durch Flash-Chromatographie gereinigt (Kieselgel, Heptan/Essigester, 9/1). Man erhielt den 3-substituierten 3-(N-Benzyl-N-(1-phenylethyl)-amino)-propionsäure-tert-butylester in einer Ausbeute von ca. 50 % als gelbes Öl. Zur Abspaltung der Benzylgruppe und der Phenylethylgruppe wurde die 10 Substanz (ca. 30 mmol) in 200 ml eines Gemisches aus Essigester/Essigsäure (4/1) gelöst und mit 1.5 g Pd(OH)2 versetzt. Unter einer Wasserstoffatmosphäre wurde 8 h bei Raumtemperatur hydriert. Der Katalysator wurde abfiltriert und das Filtrat am Rotationsverdampfer eingeengt. Der Rückstand wurde in Ether/Wasser aufgenommen. Die wäßrige Phase wurde mit Natriumhydrogencarbonat neutralisiert und mehrfach mit Ether extrahiert. Die vereinigten organischen Phasen wurden über Magnesiumsulfat getrocknet und vorsichtig am Rotationsverdampfer eingeengt. Man erhielt den 3-substituierten 3-Amino-propionsäure-tert-butylester als dünnflüssiges, leichtflüchtiges Öl in einer Ausbeute von > 50 %.

20

Beispiel 1

(R)-3-((S)-2-(4,4-Dimethyl-3-(4-styryl-benzyl)-2,5-dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-acetylamino)-3-methyl-propionsäure

30

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B, D, E und J, hergestellt. Im Schritt D wurde (S)-2-(4,4-Dimethyl-2,5-dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-essigsäure-tert-butylester mit 4-Chlormethylstilben alkyliert. Im Schritt J wurde als Aminoverbindung (R)-3-Amino-3-methyl-propionsäure-tert-butylester eingesetzt.

Ausbeute: 170 mg

ES(+)-MS: 520,4 (M+H)

Beispiel 2

10 (R)-3-((S)-2-(4,4-Dimethyl-3-(4-(2-phenyl-ethyl)-benzyl)-2,5-dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-acetylamino)-3-methyl-propionsäure

Die Verbindung wurde durch katalytische Hydrierung der im Beispiel 1 erhaltenen Styrylverbindung hergestellt (Pd/C, 1 bar Wasserstoffüberdruck, Methanol, Raumtemperatur).

Ausbeute: 102 mg

ES(+)-MS: 522,4 (M+H)

25 Beispiel 3

(R)-3-((S)-2-(4,4-Dimethyl-3-(4-styryl-benzyl)-2,5-dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-acetylamino)-3-phenyl-propionsäure

٠.,

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B, D, E und J, hergestellt. Im Schritt J wurde als Aminoverbindung (R)-3-Amino-3-phenyl-propionsäure-tert-butylester eingesetzt.

Ausbeute: 130 mg

ES(+)-MS: 582,6 (M+H)

Beispiel 4

5

10

20

15 3-((S)-2-(4,4-Dimethyl-3-(4-styryl-benzyl)-2,5-dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-acetylamino)-propionsäure

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B,

D, E und J, hergestellt. Im Schritt J wurde als Aminoverbindung β -Alanin-tertbutylester eingesetzt.

Ausbeute: 102 mg

ES(+)-MS: 506,5 (M+H)

30 Beispiel 5

(R)-3-((S)-2-(4,4-Dimethyl-3-(4-styryl-benzyl)-2,5-dioxoimidazolidin-1-yl)-2-(2-

methylpropyl)-acetylamino)-3-(3,4-methylendioxyphenyl)-propionsäure

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B,

D, E und J, hergestellt. Im Schritt J wurde als Aminoverbindung (R)-3-Amino-3-(3,4-methylendioxyphenyl)-propionsäure-tert-butylester eingesetzt.

Ausbeute: 320 mg

ES(+)-MS: 626,2 (M+H)

15 Beispiel 6

5

(R)-3-((S)-2-(4,4-Dimethyl-2,5-dioxo-3-(4-phenyloxy-benzyl)-imidazolidin-1-yl)-2-(2-methylpropyl)-acetylamino)-3-(3,4-methylendioxyphenyl)-propionsäure

25

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B, D, E und J, hergestellt. Im Schritt D wurde (S)-2-(4,4-Dimethyl-2,5-dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-essigsäure-tert-butylester mit 4-Phenoxybenzylbromid alkyliert. Im Schritt J wurde als Aminoverbindung (R)-3-

30 Amino-(3,4-methylendioxyphenyl)-propionsäure-tert-butylester eingesetzt.

Ausbeute: 205 mg

ES(+)-MS: 616,3 (M+H)

Beispiel 7

(R)-3-((S)-2-(3-(4-Benzyloxy-benzyl)-4,4-dimethyl-2,5-dioxoimidazolidin-1-yl)-2-(2methylpropyl)-acetylamino)-3-methyl-propionsäure 5

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B, D, E und J hergestellt. Im Schritt D wurde (S)-2-(4,4-Dimethyl-2,5-dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-essigsäure-tert-butylester mit 4-Benzyloxybenzylbromid 15 alkyliert. Im Schritt J wurde als Aminoverbindung (R)-3-Amino-3-methylpropionsäure-tert-butylester eingesetzt.

Ausbeute: 11,5 mg

ES(+)-MS: 524,4 (M+H)

20

Beispiel 8

(R)-3-((S)-2-(4,4-Dimethyl-3-(4-(2-(2-methylphenyl)-vinyl)-benzyl)-2,5dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-acetylamino)-3-methyl-propionsäure

30

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B, F

(Umsetzung mit 4-Cyanbenzylbromid), K, L, H und J hergestellt. Im Schritt J wurde als Aminoverbindung (R)-3-Amino-3-methyl-propionsäure-tert-butylester eingesetzt.

Ausbeute: 260 mg

ES(+)-MS: 534,4 (M+H)

5

Beispiel 9

(R)-3-((S)-2-(4,4-Dimethyl-3-(4-(2-(2-methylphenyl)-vinyl)-benzyl)-2,5-dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-acetylamino)-3-phenyl-propionsäure

10

15

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B, F (Umsetzung mit 4-Cyanbenzylbromid), K, L, H und J hergestellt. Im Schritt J wurde als Aminoverbindung (R)-3-Amino-3-phenyl-propionsäure-tert-butylester eingesetzt.

Ausbeute: 85 mg

. oo mg

20 ES(+)-MS: 596,4 (M+H)

Beispiel 10

3-((S)-2-(4,4-Dimethyl-3-(4-styryl-benzyl)-2,5-dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-acetylamino)-3-(3-methoxyphenyl)-propionsäure

25

30

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B, D, E und J, hergestellt. Im Schritt J wurde als Aminoverbindung an Wang-Harz gebundene 3-Amino-3-(3-methoxyphenyl)-propionsäure eingesetzt.

Ausbeute: 2,9 mg

5 ES(+)-MS: 612,7 (M+H)

Beispiel 11

3-((S)-2-(4,4-Dimethyl-3-(4-styryl-benzyl)-2,5-dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-acetylamino)-3-(4-fluorphenyl)-propionsäure

10

15

20

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B, D, E und J, hergestellt. Im Schritt J wurde als Aminoverbindung an Wang-Harz gebundene 3-Amino-3-(4-fluorphenyl)-propionsäure eingesetzt.

Ausbeute: 4,1 mg

ES(+)-MS: 600,7 (M+H)

Beispiel 12

25 3-((S)-2-(4,4-Dimethyl-3-(4-styryl-benzyl)-2,5-dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-acetylamino)-3-(3-fluor-4-methoxyphenyl)-propionsäure

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B,

D, E und J, hergestellt. Im Schritt J wurde als Aminoverbindung an Wang-Harz gebundene 3-Amino-3-(3-fluor-4-methoxyphenyl)-propionsäure eingesetzt.

Ausbeute: 2,3 mg

ES(+)-MS: 630,7 (M+H)

15 Beispiel 13

5

3-((S)-2-(4,4-Dimethyl-3-(4-styryl-benzyl)-2,5-dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-acetylamino)-3-(3-methylphenyl)-propionsäure

20 OH

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B, D, E und J, hergestellt. Im Schritt J wurde als Aminoverbindung an Wang-Harz gebundene 3-Amino-3-(3-methylphenyl)-propionsäure eingesetzt.

Ausbeute: 5,0 mg

ES(+)-MS: 596,7 (M+H)

30

Beispiel 14

3-((S)-2-(4,4-Dimethyl-3-(4-styryl-benzyl)-2,5-dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-acetylamino)-3-(2-fluorphenyl)-propionsäure

5 N O F O OH

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B, D, E und J, hergestellt. Im Schritt J wurde als Aminoverbindung an Wang-Harz gebundene 3-Amino-3-(2-fluorphenyl)-propionsäure eingesetzt.

Ausbeute: 4,9 mg

ES(+)-MS: 600,7 (M+H)

15

Beispiel 15

3-((S)-2-(4,4-Dimethyl-3-(4-styryl-benzyl)-2,5-dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-acetylamino)-3-(3-fluorphenyl)-propionsäure

20

25

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B, D, E und J, hergestellt. Im Schritt J wurde als Aminoverbindung an Wang-Harz gebundene 3-Amino-(3-fluorphenyl)-propionsäure eingesetzt.

Ausbeute: 4,2 mg

30 ES(+)-MS: 600,7 (M+H)

Beispiel 16

3-(4-Butylphenyl)-3-((S)-2-(4,4-dimethyl-3-(4-styryl-benzyl)-2,5-dioxoimidazolidin-1yl)-2-(2-methylpropyl)-acetylamino)-propionsäure

5

10

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B, D, E und J, hergestellt. Im Schritt J wurde als Aminoverbindung an Wang-Harz gebundene 3-Amino-3-(4-butylphenyl)-propionsäure eingesetzt.

15 Ausbeute: 8,5 mg

ES(+)-MS: 638,7 (M+H)

Beispiel 17

3-(4-Chlorphenyl)-3-((S)-2-(4,4-Dimethyl-3-(4-styryl-benzyl)-2,5-dioxoimidazolidin-1-20 yl)-2-(2-methylpropyl)-acetylamino)-propionsäure

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B, D, E und J, hergestellt. Im Schritt J wurde als Aminoverbindung an Wang-Harz 30 gebundene 3-Amino-3-(4-chlorphenyl)-propionsäure eingesetzt.

Ausbeute: 7,9 mg

ES(+)-MS: 617,7 (M+H)

Beispiel 18

5 (R)-3-((S)-2-(4,4-Dimethyl-3-(4-(2-phenyl-ethinyl)-benzyl)-2,5-dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-acetylamino)-3-methyl-propionsäure

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B, F (Umsetzung mit 4-lodbenzylbromid), N (Umsetzung mit Phenylacetylen), H und J, hergestellt. Im Schritt J wurde als Aminoverbindung (R)-3-Amino-3-methylpropionsäure-tert-butylester eingesetzt.

Ausbeute: 15 mg

20

Beispiel 19

(R)-3-((S)-2-(4,4-Dimethyl-3-(4-(2-(2-fluorphenyl)-ethinyl)-benzyl)-2,5-dioxoimidazolidin-1-yl)-2-(2-methylpropyl)-acetylamino)-3-methyl-propionsäure

30

Die Verbindung wurde nach den allgemeinen Herstellungsverfahren, Schritte A, B, F

(Umsetzung mit 4-lodbenzylbromid), N (Umsetzung mit 2-Fluorphenyl-acetylen), H und J, hergestellt. Im Schritt J wurde als Aminoverbindung (R)-3-Amino-3-methylpropionsäure-tert-butylester eingesetzt.

Ausbeute: 20 mg

5

Untersuchung der biologischen Aktivität

Als Testmethode für die Wirksamkeit der Verbindungen der Formel I auf die Interaktion zwischen VCAM-1 und VLA-4 wird ein Assay verwendet, der für diese Interaktion spezifisch ist. Die zellulären Bindungspartner, d. h. die VLA-4-Integrine, 10 werden in ihrer natürlichen Form als Oberflächenmoleküle auf humanen U937-Zellen (ATCC CRL 1593), die zur Gruppe der Leukozyten gehören, angeboten. Als spezifische Bindungspartner werden gentechnisch hergestellte rekombinante lösliche Fusionsproteine, bestehend aus der extrazytoplasmatischen Domäne von humanen VCAM-1 und der konstanten Region eines humanen Immunglobulins der 15 Subklasse IgG1, verwendet.

Testmethode

- Assay zur Messung der Adhäsion von U937-Zellen (ATCC CRL 1593) an 20 hVCAM-1(1-3)-lgG
 - 1. Herstellung von humanem VCAM-1(1-3)-lgG und humanem CD4-lgG
- Eingesetzt wurde ein genetisches Konstrukt zur Expression der extrazellulären 25 Domäne des humanen VCAM-1, verbunden mit der genetischen Sequenz der schweren Kette des humanen Immunglobulins IgG1 (Hinge, CH2 und CH3 Regionen) (von Dr. Brian Seed, Massachusetts General Hospital, Boston, USA; vgl. Damle und Aruffo, Proc. Natl. Acad. Sci. USA 1991, 88, 6403-6407). Das lösliche Fusionsprotein hVCAM-1(1-3)-IgG enthielt die drei aminoterminalen extrazellulären 30 Immunglobulin-ähnlichen Domänen des humanen VCAM-1 (Damle und Aruffo, Proc.

- Natl. Acad. Sci. USA 1991, 88, 6403-6407). CD4-IgG (Zettlmeissl et al., DNA and Cell Biology 1990, 9, 347) diente als Fusionsprotein für negative Kontrollen. Die rekombinanten Proteine wurden als lösliche Proteine nach DEAE/Dextranvermittelter DNA-Transfektion in COS-Zellen (ATCC CRL1651) gemäß Standardprozeduren exprimiert (Ausubel et al., Current protocols in molecular biology, John Wiley & Sons, Inc., 1994).
 - Assay zur Messung der Adhäsion von U937-Zellen an hVCAM-1(1-3)-IgG 2.
- 2.1 96 well-Mikrotitertestplatten (Nunc Maxisorb) wurden mit 100 µl/well einer 10 Ziege-anti-human-lgG-Antikörperlösung (10 µg/ml in 50 mM Tris, pH 9,5) 1 Stunde bei Raumtemperatur inkubiert. Nach Entfernen der Antikörperlösung wurde einmal mit PBS gewaschen.
- 2.2 150 µl/well eines Blockierungspuffers (1 % BSA in PBS) wurde 0,5 Stunden 15 bei Raumtemperatur auf den Platten inkubiert. Nach Entfernen des Blockierungspuffers wurde einmal mit PBS gewaschen.
- 2.3 100 µl pro well eines Zellkulturüberstandes von transfektierten COS-Zellen wurde für 1,5 Stunden bei Raumtemperatur auf den Platten inkubiert. Die COS-20 Zellen waren mit einem Plasmid transfiziert, welches für die drei N-terminalen Immunglobulin-ähnlichen Domänen des VCAM-1, gekoppelt an den Fc-Teil von humanem IgG₁ (hVCAM-1(1-3)-IgG), codiert. Der Gehalt an hVCAM-1(1-3)-IgG betrug ca. 0,5 - 1 µg/ml. Nach Entfernen des Kulturüberstandes wurde einmal mit PBS gewaschen. 25
 - 2.4 Die Platten wurden mit 100 μl/well Fc-Rezeptor-Blockpuffer (1 mg/ml γ-Globulin, 100 mM NaCl, 100 µM MgCl₂, 100 µM MnCl₂, 100 µM CaCl₂, 1 mg/ml BSA in 50 mM HEPES, pH 7,5) für 20 Minuten bei Raumtemperatur inkubiert. Nach Entfernen des Fc-Rezeptor-Blockpuffers wurde einmal mit PBS gewaschen.

- 2.5 20 μl Bindungspuffer (100 mM NaCl, 100 μM MgCl₂, 100 μM MnCl₂, 100 μM CaCl₂, 1 mg/ml BSA in 50 mM HEPES, pH 7,5) wurden vorgelegt, die zu testenden Substanzen in 10 μl Bindungspuffer zugegeben und für 20 Minuten inkubiert. Als Kontrollen dienten Antikörper gegen VCAM-1 (BBT, Nr. BBA6) und gegen VLA-4 (Immunotech, Nr. 0764).
- 2.6 U937-Zellen wurden 20 Minuten in Fc-Rezeptor-Blockpuffer inkubiert und anschließend in einer Konzentration von 1 x 10^6 /ml und in einer Menge von 100 μ l pro well zupipettiert (Endvolumen 125 μ l/well).

5

- 2.7 Die Platten wurden in einem 45°-Winkel in Stoppuffer (100 mM NaCl, 100 μ M MgCl₂, 100 μ M MnCl₂, 100 μ M CaCl₂ in 25 mM Tris, pH 7,5) langsam eingetaucht und ausgeschlagen. Der Vorgang wurde wiederholt.
- 15 2.8 Anschließend wurden 50 μl/well einer Färbelösung (16,7 μg/ml Hoechst Farbstoff 33258, 4 % Formaldehyd, 0,5 % Triton-X-100 in PBS) 15 Minuten auf den Platten inkubiert.
- 2.9 Die Platten wurden ausgeschlagen und in einem 45°-Winkel in Stop-Puffer
 20 (100 mM NaCl, 100 μM MgCl₂, 100 μM MnCl₂, 100 μM CaCl₂ in 25 mM Tris, pH 7,5) langsam eingetaucht. Der Vorgang wurde wiederholt. Anschließend wurden die Platten mit der enthaltenen Flüssigkeit (Stop-Puffer) in einem Cytofluorimeter (Millipore) gemessen (Sensitivität: 5, Filter: Anregungswellenlänge: 360 nm, Emissionswellenlänge: 460 nm).

25

30

Die Intensität des von den angefärbten U937-Zellen emittierten Lichts ist ein Maß für die Zahl der an der Platte verbliebenen, an das hVCAM-1(1-3)-IgG adhärierten U937-Zellen und somit ein Maß für die Fähigkeit der zugesetzten Testsubstanz, diese Adhäsion zu hemmen. Aus der Hemmung der Adhäsion bei verschiedenen Konzentrationen der Testsubstanz wurde die Konzentration IC₅₀ berechnet, die zu einer Hemmung der Adhäsion um 50 % führt.

99

Es wurden die folgenden Testergebnisse erhalten:

	Verbindung	U937/VCAM-1 Zelladhäsionstest
	des Beispiels	ΙC ₅₀ (μΜ)
5		•
	1	3,2
	2	118,2
	3	0,56
	4	27,8
10	5	0,15
	6	16,4
	7	2,9
	8	2,0
	9	0,18
15	10	24,5
	11	18,0
	12	17,5
	13	64,6
	14	15,3
20	15	61,5
	16	34,9
	17	36,6

Patentansprüche

1. Verbindungen der Formel I,

5

10

worin

für einen zweiwertigen Rest aus der Reihe R¹-A-C(R¹³), R¹-A-C(R¹³)=C, W

15

$$R^1-A-L$$
 C M_{m2}

und
$$R^1-A-L$$
 $C=C$

steht, wobei die Ringsysteme

20

25

30

ein oder zwei gleiche oder verschiedene Heteroatome aus der Reihe N, O und S enthalten können, gesättigt oder einfach oder mehrfach ungesättigt sein können und durch 1, 2 oder 3 gleiche oder verschiedene Substituenten R¹³ und/oder durch ein oder zwei doppelt gebundene Sauerstoffatome und/oder Schwefelatome substituiert sein können, und wobei L für C(R¹³) oder N steht und wobei m1 und m2 unabhängig voneinander für eine der Zahlen 0, 1, 2, 3, 4, 5 und 6 stehen, die Summe m1 + m2 aber für eine der Zahlen 1, 2, 3, 4, 5 oder 6 steht:

Phenylengruppe gebunden ist,

5

- Y für eine Carbonylgruppe, Thiocarbonylgruppe oder Methylengruppe steht;
- für eine direkte Bindung, einen der zweiwertigen Reste (C₁-C₈)-Alkylen, (C₃-C₇)-Cycloalkylen, Phenylen, Phenylen-(C₁-C₈)-alkyl, Phenylen-(C₂-C₆)-alkenyl oder für einen zweiwertigen Rest eines 5-gliedrigen oder 6-gliedrigen gesättigten oder ungesättigten Heterocyclus, der ein oder zwei Stickstoffatome enthalten kann und einfach oder zweifach durch (C₁-C₈)-Alkyl oder doppelt gebundenen Sauerstoff oder Schwefel substituiert sein kann, steht, wobei in den Resten Phenylenalkyl und Phenylenalkenyl der Rest R¹ an die
- für einen zweiwertigen Rest aus der Reihe (C₁-C₆)-Alkylen, (C₂-C₆)-Alkenylen, Phenylen, Phenylen-(C₁-C₃)-alkyl, (C₁-C₃)-Alkylen-phenyl und (C₁-C₃)-Alkylen-phenyl-(C₁-C₃)-alkyl steht, wobei der (C₁-C₆)-Alkylen-Rest und der (C₂-C₆)-Alkenylen-Rest unsubstituiert sind oder substituiert sind durch einen oder mehrere gleiche oder verschiedene Reste aus der Reihe (C₁-C₈)-Alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, (C₃-C₁₀)-Cycloalkyl, (C₃-C₁₀)-Cycloalkyl-(C₁-C₆)-alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₆)-alkyl, gegebenenfalls substituiertes
- C₆)-alkyl; 20 E für Tetrazolyl, (R⁸O)₂P(O), R⁸OS(O)₂, R⁹NHS(O)₂, R⁶CO, R⁷CO oder R¹⁰CO steht·
 - R für Wasserstoff, (C_1-C_8) -Alkyl, (C_3-C_{12}) -Cycloalkyl, (C_3-C_{12}) -Cycloalkyl- (C_1-C_8) -alkyl, gegebenenfalls substituiertes (C_8-C_{14}) -Aryl, im Arylrest gegebenenfalls substituiertes (C_8-C_{14}) -Aryl- (C_1-C_8) -alkyl, gegebenenfalls substituiertes

Heteroaryl und im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C1-

- Heteroaryl oder im Heteroarylrest gegebenenfalls substituiertes Heteroaryl(C₁-C₈)-alkyl steht, wobei alle Reste R unabhängig voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein können;
- für Wasserstoff, (C_3-C_{12}) -Cycloalkyl, (C_3-C_{12}) -Cycloalkyl- (C_1-C_8) -alkyl, im Arylrest gegebenenfalls substituiertes R^{21} - $((C_8-C_{14})$ -Aryl), im Arylrest gegebenenfalls substituiertes $(R^{21}-((C_8-C_{14})$ -Aryl))- (C_1-C_8) -alkyl, den Rest

10

Het-, Het-(C_1 - C_8)-alkyl, für einen der Reste X-NH-C(=NH)-R²⁰-, X¹-NH-R²⁰-, R²¹O-R²⁰-, R²¹N(R²¹)-R²⁰-, R²¹C(O)-, R²¹O-C(O)-, R²²N(R²¹)-C(O)-, R²²C(O)-N(R²¹)-, R²¹O-N=, O= und S=, oder (C_1 - C_{10})-Alkyl, das gegebenenfalls durch Fluor einfach oder mehrfach substituiert sein kann, steht;

- für Wasserstoff, (C_1-C_6) -Alkyl, (C_1-C_6) -Alkylcarbonyl, (C_1-C_6) -Alkoxycarbonyl, (C_1-C_6) -Alkoxycarbonyl, gegebenenfalls substituiertes (C_6-C_{14}) -Arylcarbonyl, gegebenenfalls substituiertes (C_6-C_{14}) -Aryl- (C_1-C_6) -alkoxycarbonyl, das im Arylrest auch substituiert sein kann, Cyano, Hydroxy, (C_1-C_6) -Alkoxy, (C_6-C_{14}) -Aryl- (C_1-C_6) -alkoxy, das im Arylrest auch substituiert sein kann, oder Amino steht;
- X¹ eine der Bedeutungen von X hat oder für R'-NH-C(=N-R") steht, wobei R' und R" unabhängig voneinander die Bedeutungen von X haben;
- für Wasserstoff, (C₁-C₈)-Alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im

 Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl oder (C₃-C₈)
 Cycloalkyl steht;
- für Wasserstoff, (C₁-C₈)-Alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₈)-alkyl, (C₃-C₈)-Cycloalkyl, (C₃-C₈)-Cycloalkyl-(C₁-C₈)-alkyl, (C₆-C₁₂)-Bicycloalkyl-(C₁-C₈)-alkyl, (C₆-C₁₂)-Bicycloalkyl-(C₁-C₈)-alkyl, (C₆-C₁₂)-Tricycloalkyl-(C₁-C₈)-alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, R¹¹NH, CON(CH₃)R⁴, CONHR⁴, COOR²¹, COOR¹⁵, CON(CH₃)R¹⁵ oder CONHR¹⁵ steht;
- für Wasserstoff oder (C₁-C₁₀)-Alkyl steht, das unsubstituiert ist oder einfach oder mehrfach substituiert ist durch gleiche oder verschiedene Reste aus der Reihe Hydroxy, (C₁-C₈)-Alkoxy, R⁵, gegebenenfalls substituiertes (C₃-C₈)-Cycloalkyl, Hydroxycarbonyl, Aminocarbonyl, Mono- oder Di-((C₁-C₁₀)-alkyl)-aminocarbonyl, (C₆-C₁₄)-Aryl-(C₁-C₈)-alkoxycarbonyl, das im Arylrest auch substituiert sein kann, (C₁-C₈)-Alkoxycarbonyl, R⁶-CO, R⁷-CO, Tetrazolyl und Trifluormethyl;

- für gegebenenfalls substituiertes (C₈-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl oder einen Rest eines gegebenenfalls substituierten monocyclischen oder bicyclischen, 5-gliedrigen bis 12-gliedrigen heterocyclischen Ringes, der aromatisch, teilweise gesättigt oder vollständig gesättigt sein kann und der ein, zwei oder drei gleiche oder verschiedene Heteroatome aus der Reihe Stickstoff, Sauerstoff und Schwefel enthalten kann, steht:
- für den Rest einer natürlichen oder unnatürlichen Aminosäure, Iminosäure, gegebenenfalls N-(C₁-C₈)-alkylierten oder N-((C₆-C₁₄)-Aryl-(C₁-C₈)-alkylierten)

 Azaaminosäure, die im Arylrest auch substituiert sein kann, oder den Rest eines Dipeptids, Tripeptids oder Tetrapeptids steht, sowie für deren Ester und Amide, wobei freie funktionelle Gruppen durch in der Peptidchemie übliche Schutzgruppen geschützt sein können und wobei die Stickstoffatome in den Amidbindungen in der Gruppe R⁸-CO einen Rest R als Substituenten tragen können;
- für den Rest eines über ein Stickstoffatom gebundenen 5-gliedrigen bis 10gliedrigen, gesättigten monocyclischen oder polycyclischen Heterocyclus
 steht, der ein, zwei, drei oder vier gleiche oder verschiedene zusätzliche RingHeteroatome aus der Reihe Sauerstoff, Stickstoff und Schwefel enthalten kann
 und der an Kohlenstoffatomen und an zusätzlichen Ring-Stickstoffatomen
 gegebenenfalls substituiert sein kann, wobei zusätzliche Ring-Stickstoffatome
 gleiche oder verschiedene Reste aus der Reihe Wasserstoff, R^h, HCO, R^hCO,
 R^hO-CO, HO-CO-(C₁-C₄)-Alkyl und R^hO-CO-(C₁-C₄)-Alkyl als Substituenten
 tragen können und R^h für (C₁-C₈)-Alkyl, (C₃-C₈)-Cycloalkyl, (C₃-C₈)-Cycloalkyl(C₁-C₈)-alkyl, gegebenenfalls substituiertes (C₈-C₁₄)-Aryl oder im Arylrest
 gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl steht;
 - R⁸ für Wasserstoff, (C_1-C_{10}) -Alkyl, gegebenenfalls substituiertes (C_8-C_{14}) -Aryl oder (C_8-C_{14}) -Aryl- (C_1-C_8) -alkyl, das im Arylrest auch substituiert sein kann, steht, wobei die Reste R⁸ unabhängig voneinander sind;
- 30 R^9 für Wasserstoff, Aminocarbonyl, (C_1-C_{10}) -Alkylaminocarbonyl, (C_3-C_8) -Cycloalkylaminocarbonyl, gegebenenfalls substituiertes (C_6-C_{14}) -

- Arylaminocarbonyl, (C_1-C_{10}) -Alkyl, gegebenenfalls substituiertes (C_6-C_{14}) -Aryl oder (C_3-C_8) -Cycloalkyl steht;
- R^{10} für Hydroxy, (C_1-C_{10}) -Alkoxy, (C_8-C_{14}) -Aryl- (C_1-C_8) -alkoxy, das im Arylrest auch substituiert sein kann, gegebenenfalls substituiertes (C_8-C_{14}) -Aryloxy,
- 5 (C₁-C₈)-Alkylcarbonyloxy-(C₁-C₆)-alkoxy, im Arylrest gegebenenfalls substituiertes (C₈-C₁₄)-Arylcarbonyloxy-(C₁-C₆)-alkoxy, Amino oder Monooder Di-((C₁-C₁₀)-alkyl)-amino steht;
 - R^{11} für Wasserstoff, R^{12a} , R^{12a} -CO, H-CO, R^{12a} -O-CO, R^{12b} -CO, R^{12b} -CS, R^{12a} -S(O)₂ oder R^{12b} -S(O)₂ steht;
- 10 R^{12a} für (C₁-C₁₀)-Alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, (C₃-C₁₂)-Cycloalkyl, (C₃-C₁₂)-Cycloalkyl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes (C₈-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₈)-alkyl oder den Rest R¹⁵ steht;
- 15 R^{12b} für Amino, Di-((C₁-C₁₀)-alkyl)-amino oder R^{12a}-NH steht;
 - für Wasserstoff, gegebenenfalls substituiertes (C_6 - C_{14})-Aryl, im Arylrest gegebenenfalls substituiertes (C_6 - C_{14})-Aryl-(C_1 - C_6)-alkyl, (C_3 - C_8)-Cycloalkyl-(C_1 - C_6)-alkyl oder (C_1 - C_6)-Alkyl, das gegebenenfalls einfach oder mehrfach durch Fluor substituiert sein kann, steht;
- 20 R¹⁵ für R¹⁸-(C₁-C₆)-alkyl oder für R¹⁶ steht;

30

- für einen Rest eines 6-gliedrigen bis 24-gliedrigen bicyclischen oder tricyclischen Ringes steht, der gesättigt oder teilweise ungesättigt ist und der auch ein, zwei, drei oder vier gleiche oder verschiedene Heteroatome aus der Reihe Stickstoff, Sauerstoff und Schwefel enthalten kann und der auch durch einen oder mehrere gleiche oder verschiedene Substituenten aus der Reihe (C₁-C₄)-Alkyl und Oxo substituiert sein kann;
- R²⁰ für eine direkte Bindung oder einen zweiwertigen (C₁-C₈)-Alkylenrest steht;
- für Wasserstoff, (C_1-C_8) -Alkyl, (C_3-C_{12}) -Cycloalkyl, (C_3-C_{12}) -Cycloalkyl- (C_1-C_8) -alkyl, gegebenenfalls substituiertes (C_8-C_{14}) -Aryl, im Arylrest gegebenenfalls substituiertes (C_8-C_{14}) -Aryl- (C_1-C_8) -alkyl, den Rest Het- oder Het- (C_1-C_8) -alkyl steht, wobei Alkylreste durch Fluor einfach oder mehrfach substituiert sein

WO 99/60015 PCT/EP99/03072

können und die Reste R²¹ bei mehrfachem Auftreten unabhängig voneinander sind und gleich oder verschieden sein können;

- R^{22} für R^{21} -, $R^{21}O$ -, $R^{21}N(R^{21})$ -, $R^{21}C(O)$ -, $R^{21}O$ -C(O)-, $R^{21}N(R^{21})$ -C(O)-, $R^{21}N(R^{21})$ $C(=N(R^{21}))$ oder $R^{21}C(O)$ - $N(R^{21})$ steht;
- 5 R³⁰ für einen der Reste R³²-(C(R)(R))_m-R³¹-, R³²-CR=CR-R³¹-, R³²-C≡C-R³¹-, R³²-O-R³¹- und R³²-S-R³¹- steht, wobei die Reste R unabhängig voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein können, und m für 1, 2 oder 3 steht;
 - R³¹ für den zweiwertigen Rest -R³³-R³⁴-R³⁵-R³⁶- steht, wobei R³⁶ an das Stickstoffatom im Imidazolidinring in der Formel I gebunden ist;

10

15

- für Wasserstoff, (C_2-C_8) -Alkenyl, (C_2-C_8) -Alkinyl, (C_3-C_{12}) -Cycloalkyl, (C_3-C_{12}) -Cycloalkyl- (C_1-C_8) -alkyl, (C_6-C_{12}) -Bicycloalkyl, (C_6-C_{12}) -Bicycloalkyl- (C_1-C_8) -alkyl, (C_6-C_{12}) -Tricycloalkyl, (C_6-C_{12}) -Tricycloalkyl- (C_1-C_8) -alkyl, gegebenenfalls substituiertes (C_6-C_{14}) -Aryl, im Arylrest gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl- (C_1-C_8) -alkyl oder (C_1-C_8) -Alkyl, das gegebenenfalls durch 1 bis 8 Fluoratome
 - R³³ für eine direkte Bindung oder einen zweiwertigen (C₁-C₆)-Alkylenrest steht;
- 20 R³⁴ für einen zweiwertigen Rest aus der Reihe (C₃-C₁₂)-Cycloalkylen, (C₆-C₁₂)-Bicycloalkylen, (C₆-C₁₂)-Tricycloalkylen, gegebenenfalls substituiertes (C₆-C₁₄)-Arylen und gegebenenfalls substituiertes Heteroarylen steht;

substituiert sein kann, steht;

- R³⁵ für eine direkte Bindung oder einen zweiwertigen (C₁-C₈)-Alkylenrest steht;
- R³⁸ für eine direkte Bindung, die Gruppe -CO- oder die Gruppe -S(O)_n- steht;
- 25 Het für einen Rest eines monocyclischen oder polycyclischen, 4-gliedrigen bis 14gliedrigen, aromatischen oder nicht aromatischen Ringes steht, der 1, 2, 3
 oder 4 gleiche oder verschiedene Heteroatome aus der Reihe N, O und S als
 Ringglieder enthält und gegebenenfalls durch einen oder mehrere, gleiche
 oder verschiedene Substituenten substituiert sein kann;
- 30 e und h unabhängig voneinander für 0 oder 1 stehen und gleich oder verschieden sein können;

n für 1 oder 2 steht;

in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen, und ihre physiologisch verträglichen Salze.

- 5 2. Verbindungen der Formel I gemäß Anspruch 1, worin
 - W für einen zweiwertigen Rest aus der Reihe R¹-A-C(R¹³), R¹-A-C(R¹³)=C,

$$R^{1}-A-L C \qquad und \qquad R^{1}-A-L C=C$$

$$10 \qquad N_{m2} \qquad Und \qquad R^{1}-A-L C=C$$

steht, wobei die Ringsysteme

20

30

ein oder zwei gleiche oder verschiedene Heteroatome aus der Reihe N und O enthalten können, gesättigt oder einfach ungesättigt sein können und durch 1 oder 2 gleiche oder verschiedene Substituenten R¹³ und/oder durch ein oder zwei doppelt gebundene Sauerstoffatome substituiert sein können, und wobei L für C(R¹³) oder N steht und wobei m1 und m2 unabhängig voneinander für eine der Zahlen 0, 1, 2, 3, 4 und 5 stehen, die Summe m1 + m2 aber für eine der Zahlen 3, 4 und 5 steht;

- 25 Y für eine Carbonylgruppe oder Thiocarbonylgruppe steht;
 - für eine direkte Bindung, einen der zweiwertigen Reste (C₁-C₆)-Alkylen, (C₃-C₇)-Cycloalkylen, Phenylen, Phenylen-(C₁-C₆)-alkyl, Phenylen-(C₂-C₆)-alkenyl oder für einen zweiwertigen Rest eines 5-gliedrigen oder 6-gliedrigen gesättigten oder ungesättigten Heterocyclus, der ein oder zwei Stickstoffatome enthalten kann und einfach oder zweifach durch (C₁-C₆)-Alkyl oder doppelt gebundenen Sauerstoff oder Schwefel substituiert sein kann, steht, wobei in

- den Resten Phenylenalkyl und Phenylenalkenyl der Rest R¹ an die Phenylengruppe gebunden ist;
- B für einen zweiwertigen Methylenrest oder Ethylenrest steht, wobei der Methylenrest und der Ethylenrest unsubstituiert sind oder substituiert sind durch einen oder mehrere gleiche oder verschiedene Reste aus der Reihe (C₁-C₈)-Alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, (C₃-C₁₀)-Cycloalkyl, (C₃-C₁₀)-Cycloalkyl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes Heteroaryl und im Heteroarylrest gegebenenfalls substituiertes Heteroaryl und im Heteroarylrest gegebenenfalls
 - E für Tetrazolyi, R⁶CO, R⁷CO oder R¹⁰CO steht;
 - für Wasserstoff, (C_1-C_8) -Alkyl, (C_3-C_{10}) -Cycloalkyl, (C_3-C_{10}) -Cycloalkyl- (C_1-C_6) -alkyl, gegebenenfalls substituiertes (C_8-C_{10}) -Aryl, im Arylrest gegebenenfalls substituiertes (C_6-C_{10}) -Aryl- (C_1-C_8) -alkyl, gegebenenfalls substituiertes
- Heteroaryl oder im Heteroarylrest gegebenenfalls substituiertes Heteroaryl(C₁-C_e)-alkyl steht, wobei alle Reste R unabhängig voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein können;
- für Wasserstoff, (C₅-C₁₀)-Cycloalkyl, (C₅-C₁₀)-Cycloalkyl-(C₁-C₆)-alkyl, im

 Arylrest gegebenenfalls substituiertes R²¹-((C₆-C₁₄)-Aryl), im Arylrest
 gegebenenfalls substituiertes (R²¹-((C₆-C₁₄)-Aryl))-(C₁-C₈)-alkyl, den Rest
 Het-, Het-(C₁-C₈)-alkyl, für einen der Reste X-NH-C(=NH)-R²⁰-, X¹-NH-R²⁰-,
 R²¹O-R²⁰-, R²²C(O)-N(R²¹)-, R²²N(R²¹)-C(O)-, R²¹O-N=, O= und S=, oder (C₁-C₁₀)-Alkyl, das gegebenenfalls durch Fluor einfach oder mehrfach substituiert
 sein kann, steht;
 - für Wasserstoff, (C_1-C_6) -Alkyl, (C_1-C_6) -Alkylcarbonyl, (C_1-C_6) -Alkoxycarbonyl, (C_1-C_6) -Alkoxycarbonyl, gegebenenfalls substituiertes (C_6-C_{14}) -Arylcarbonyl, gegebenenfalls substituiertes (C_6-C_{14}) -Aryl- (C_1-C_6) -alkoxycarbonyl, das im Arylrest auch substituiert sein kann, Hydroxy, (C_1-C_6) -Alkoxy, (C_6-C_{14}) -Aryl- (C_1-C_6) -alkoxy, das im Arylrest auch substituiert sein kann, oder Amino steht;

- x¹ eine der Bedeutungen von X hat oder für R'-NH-C(=N-R") steht, wobei R' und R" unabhängig voneinander die Bedeutungen von X haben;
- R^2 für Wasserstoff, (C_1 - C_8)-Alkyl, gegebenenfalls substituiertes (C_6 - C_{10})-Aryl oder im Arylrest gegebenenfalls substituiertes (C_6 - C_{10})-Aryl-(C_1 - C_8)-alkyl steht;
- für Wasserstoff, (C₁-C₈)-Alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₈)-alkyl, (C₃-C₈)-Cycloalkyl, (C₃-C₈)-Cycloalkyl-(C₁-C₈)-alkyl, (C₆-C₁₂)-Bicycloalkyl, (C₆-C₁₂)-Bicycloalkyl-(C₁-C₈)-alkyl, (C₆-C₁₂)-Tricycloalkyl-(C₁-C₈)-alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, R¹¹NH, COOR²¹, CON(CH₃)R⁴, CONHR⁴, COOR¹⁵, CON(CH₃)R¹⁵ oder CONHR¹⁵ steht;
- für Wasserstoff oder (C₁-C₈)-Alkyl steht, das unsubstituiert ist oder einfach oder mehrfach substituiert ist durch gleiche oder verschiedene Reste aus der Reihe Hydroxy, (C₁-C₈)-Alkoxy, R⁵, gegebenenfalls substituiertes (C₃-C₈)-Cycloalkyl, Hydroxycarbonyl, Aminocarbonyl, Mono- oder Di-((C₁-C₁₀)-alkyl)-aminocarbonyl, (C₆-C₁₄)-Aryl-(C₁-C₈)-alkoxycarbonyl, das im Arylrest auch substituiert sein kann, (C₁-C₈)-Alkoxycarbonyl, R⁶-CO, R⁷-CO, Tetrazolyl und Trifluormethyl;
- für gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl oder einen Rest eines gegebenenfalls substituierten monocyclischen oder bicyclischen, 5-gliedrigen bis 12-gliedrigen heterocyclischen Ringes, der aromatisch, teilweise gesättigt oder vollständig gesättigt sein kann und der ein, zwei oder drei gleiche oder verschiedene Heteroatome aus der Reihe Stickstoff, Sauerstoff und Schwefel enthalten kann, steht;
 - für den Rest einer natürlichen oder unnatürlichen Aminosäure, Iminosäure, gegebenenfalls N-(C₁-C₈)-alkylierten oder N-((C₆-C₁₄)-Aryl-(C₁-C₈)-alkylierten) Azaaminosäure, die im Arylrest auch substituiert sein kann, oder den Rest eines Dipeptids, Tripeptids oder Tetrapeptids steht, sowie für deren Ester und Amide, wobei freie funktionelle Gruppen durch in der Peptidchemie übliche

WO 99/60015 PCT/EP99/03072

Schutzgruppen geschützt sein können und wobei die Stickstoffatome in den Amidbindungen in der Gruppe R⁶-CO einen Rest R als Substituenten tragen können;

- für den Rest eines über ein Stickstoffatom gebundenen 5-gliedrigen bis 10gliedrigen, gesättigten monocyclischen oder polycyclischen Heterocyclus
 steht, der ein, zwei, drei oder vier gleiche oder verschiedene zusätzliche RingHeteroatome aus der Reihe Sauerstoff, Stickstoff und Schwefel enthalten kann
 und der an Kohlenstoffatomen und an zusätzlichen Ring-Stickstoffatomen
 gegebenenfalls substituiert sein kann, wobei zusätzliche Ring-Stickstoffatome
 gleiche oder verschiedene Reste aus der Reihe Wasserstoff, Rh, HCO, RhCO,
 RhO-CO, HO-CO-(C₁-C₄)-Alkyl und RhO-CO-(C₁-C₄)-Alkyl als Substituenten
 tragen können und Rh für (C₁-C₈)-Alkyl, (C₃-C₈)-Cycloalkyl, (C₃-C₈)-Cycloalkyl(C₁-C₈)-alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl oder im Arylrest
 gegebenenfalls substituiertes (C₆-C₁₄)-Aryl-(C₁-C₈)-alkyl steht;
- 15 R¹⁰ für Hydroxy, (C₁-C₁₀)-Alkoxy, (C₆-C₁₄)-Aryl-(C₁-C₈)-alkoxy, das im Arylrest auch substituiert sein kann, gegebenenfalls substituiertes (C₆-C₁₄)-Aryloxy, (C₁-C₈)-Alkylcarbonyloxy-(C₁-C₆)-alkoxy, im Arylrest gegebenenfalls substituiertes (C₆-C₁₄)-Arylcarbonyloxy-(C₁-C₆)-alkoxy, Amino oder Monooder Di-((C₁-C₁₀)-alkyl)-amino steht;
- 20 R¹¹ für Wasserstoff, R^{12a}, R^{12a}-CO, R^{12a}-O-CO, R^{12b}-CO, R^{12b}-CS oder R^{12a}-S(O)₂ steht;
 - $\begin{array}{lll} & \text{für } (C_1\text{-}C_{10})\text{-}\text{Alkyl, } (C_2\text{-}C_8)\text{-}\text{Alkenyl, } (C_2\text{-}C_8)\text{-}\text{Alkinyl, } (C_5\text{-}C_{10})\text{-}\text{Cycloalkyl, } (C_5\text{-}C_{10})\text{-}\text{Cycloalkyl-} (C_1\text{-}C_8)\text{-}\text{alkyl, } \text{gegebenenfalls substituiertes } (C_6\text{-}C_{14})\text{-}\text{Aryl, im} \\ & \text{Arylrest gegebenenfalls substituiertes } (C_6\text{-}C_{14})\text{-}\text{Aryl-} (C_1\text{-}C_8)\text{-}\text{alkyl,} \end{array}$
- 25 gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₈)-alkyl oder den Rest R¹⁵ steht;
 - R^{12b} für Amino, Di-((C₁-C₁₀)-alkyl)-amino oder R^{12a}-NH steht;
 - R¹³ für Wasserstoff oder (C₁-C₆)-Alkyl steht;
 - R¹⁵ für R¹⁶-(C₁-C₆)-alkyl oder für R¹⁶ steht;
- 30 R¹⁶ für einen Rest eines 6-gliedrigen bis 14-gliedrigen bicyclischen oder tricyclischen Ringes steht, der gesättigt oder teilweise ungesättigt ist und der

auch ein, zwei, drei oder vier gleiche oder verschiedene Heteroatome aus der Reihe Stickstoff, Sauerstoff und Schwefel enthalten kann und der auch durch einen oder mehrere gleiche oder verschiedene Substituenten aus der Reihe (C₁-C₄)-Alkyl und Oxo substituiert sein kann;

- 5 R^{20} für eine direkte Bindung oder (C_1-C_4) -Alkylen steht;
 - R^{21} für Wasserstoff, (C_1-C_8) -Alkyl, (C_5-C_{10}) -Cycloalkyl, (C_5-C_{10}) -Cycloalkyl- (C_1-C_8) -alkyl, gegebenenfalls substituiertes (C_6-C_{10}) -Aryl, im Arylrest gegebenenfalls substituiertes (C_6-C_{14}) -Aryl- (C_1-C_8) -alkyl, den Rest Het- oder Het- (C_1-C_8) -alkyl steht, wobei Alkylreste durch Fluor einfach oder mehrfach substituiert sein können und die Reste R^{21} bei mehrfachem Auftreten gleich oder verschieden sein können;
 - R^{22} für einen der Reste R^{21} -, $R^{21}N(R^{21})$ -, $R^{21}C(O)$ -, $R^{21}O$ -C(O)- oder $R^{21}N(R^{21})$ - $C(=N(R^{21}))$ steht;
- für einen der Reste R³²-(C(R)(R))_m-R³¹-, R³²-CR=CR-R³¹-, R³²-C=C-R³¹-,

 R³²-O-R³¹- und R³²-S-R³¹- steht, wobei die Reste R unabhängig voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein können, und m für 1, 2 oder 3 steht;
 - R³¹ für den zweiwertigen Rest -R³³-R³⁴-R³⁵-R³⁶- steht, wobei R³⁶ an das Stickstoffatom im Imidazolidinring in der Formel I gebunden ist;
- für Wasserstoff, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, (C₃-C₁₂)-Cycloalkyl, (C₃-C₁₂)-Cycloalkyl, (C₃-C₁₂)-Cycloalkyl, (C₆-C₁₂)-Bicycloalkyl, (C₆-C₁₂)-Bicycloalkyl-(C₁-C₈)-alkyl, (C₆-C₁₂)-Tricycloalkyl, (C₆-C₁₂)-Tricycloalkyl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes (C₆-C₁₄)-Aryl, im Arylrest gegebenenfalls substituiertes
- 25 Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₈)-alkyl oder (C₁-C₈)-Alkyl, das gegebenenfalls durch 1 bis 8 Fluoratome substituiert sein kann, steht;
 - R³³ für eine direkte Bindung oder einen zweiwertigen (C₁-C₆)-Alkylenrest steht;
- für einen zweiwertigen Rest aus der Reihe (C₅-C₁₀)-Cycloalkylen, (C₆-C₁₂)Bicycloalkylen, gegebenenfalls substituiertes (C₆-C₁₄)-Arylen und
 gegebenenfalls substituiertes Heteroarylen steht;

für eine direkte Bindung oder einen zweiwertigen (C₁-C₈)-Alkylenrest steht;
 für eine direkte Bindung, die Gruppe -CO- oder die Gruppe -S(O)_n- steht;
 Het für einen Rest eines monocyclischen oder polycyclischen, 5-gliedrigen bis 12-gliedrigen, aromatischen oder nicht aromatischen Ringes steht, der 1, 2, 3

gliedrigen, aromatischen oder nicht aromatischen Ringes steht, der 1, 2, 3 oder 4 gleiche oder verschiedene Heteroatome aus der Reihe N und O als Ringglieder enthält und gegebenenfalls durch einen oder mehrere, gleiche oder verschiedene Substituenten substituiert sein kann;

e und h unabhängig voneinander für 0 oder 1 stehen und gleich oder verschieden sein können;

10 n für 1 oder 2 steht; in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen, und ihre physiologisch verträglichen Salze.

3. Verbindungen der Formel I gemäß Anspruch 1 und/oder 2, worin
 15 W für einen zweiwertigen Rest aus der Reihe R¹-A-C(R¹³) und

$$R^1-A-L$$
 C
 m_2

20

5

steht, wobei die Ringsysteme

25

30

ein oder zwei gleiche oder verschiedenen Heteroatome aus der Reihe N und O enthalten können, gesättigt oder einfach ungesättigt sein können und durch 1 oder 2 gleiche oder verschiedene Substituenten R¹³ und/oder durch ein oder zwei doppelt gebundene Sauerstoffatome substituiert sein können, und wobei L für C(R¹³) oder N steht und wobei m1 und m2 unabhängig voneinander für

- eine der Zahlen 0, 1, 2, 3 und 4 stehen, die Summe m1 + m2 aber für eine der Zahlen 3 und 4 steht;
- Y für eine Carbonylgruppe oder Thiocarbonylgruppe steht;
- A für eine direkte Bindung, einen der zweiwertigen Reste (C₁-C₆)-Alkylen, (C₅-C₆)-Cycloalkylen, Phenylen, Phenylen-(C₁-C₄)-alkyl oder für einen zweiwertigen Rest eines 5-gliedrigen oder 6-gliedrigen gesättigten oder ungesättigten Heterocyclus, der ein oder zwei Stickstoffatome enthalten kann und einfach oder zweifach durch (C₁-C₆)-Alkyl oder doppelt gebundenen Sauerstoff oder Schwefel substituiert sein kann, steht, wobei in dem Rest
- 10 Phenylenalkyl der Rest R¹ an die Phenylengruppe gebunden ist;
 - B für einen zweiwertigen Methylenrest oder Ethylenrest steht, wobei der Methylenrest und der Ethylenrest unsubstituiert sind oder substituiert sind durch einen oder zwei gleich oder verschiedene Reste aus der Reihe (C₁-C₈)-Alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, (C₃-C₆)-Cycloalkyl-
- 15 (C_1 - C_6)-alkyl, gegebenenfalls substituiertes (C_6 - C_{10})-Aryl, im Arylrest gegebenenfalls substituiertes (C_6 - C_{10})-Aryl-(C_1 - C_6)-alkyl, gegebenenfalls substituiertes Heteroaryl und im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C_1 - C_6)-alkyl;
 - E für Tetrazolyl oder R¹⁰CO steht;

- 20 R für Wasserstoff oder (C₁-C₈)-Alkyl steht, wobei alle Reste R unabhängig voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein können;
 - für Wasserstoff, im Arylrest gegebenenfalls substituiertes R^{21} -((C_6 - C_{10})-Aryl), im Arylrest gegebenenfalls substituiertes (R^{21} -((C_6 - C_{10})-Aryl))-(C_1 - C_6)-alkyl, den Rest Het-, Het-(C_1 - C_6)-alkyl, für einen der Reste X-NH-C(=NH)- R^{20} -, X^1 -NH- R^{20} -, R^{22} N(R^{21})-C(O)-, O= und S=, oder (C_1 - C_{10})-Alkyl, das
 - X^1 -NH-R²⁰-, R²²N(R²¹)-C(O)-, O= und S=, oder (C₁-C₁₀)-Alkyl, das gegebenenfalls durch Fluor einfach oder mehrfach substituiert sein kann, steht;
- für Wasserstoff, (C_1-C_6) -Alkyl, (C_1-C_6) -Alkylcarbonyl, (C_1-C_6) -Alkoxycarbonyl, (C_1-C_8) -Alkylcarbonyloxy- (C_1-C_6) -alkoxycarbonyl, gegebenenfalls substituiertes (C_6-C_{10}) -Arylcarbonyl, gegebenenfalls substituiertes (C_6-C_{10}) -

- Aryloxycarbonyl, (C_6-C_{14}) -Aryl- (C_1-C_6) -alkoxycarbonyl, das im Arylrest auch substituiert sein kann, Hydroxy, (C_1-C_6) -Alkoxy oder Amino steht;
- X¹ eine der Bedeutungen von X hat oder für R'-NH-C(=N-R") steht, wobei R' und R" unabhängig voneinander die Bedeutungen von X haben;
- 5 R² für Wasserstoff oder (C₁-C₈)-Alkyl steht;
 - für Wasserstoff, (C₁-C₈)-Alkyl, gegebenenfalls substituiertes (C₆-C₁₀)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Aryl-(C₁-C₆)-alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₆)-alkyl, (C₃-C₈)-Cycloalkyl, (C₃-C₈)-Cycloalkyl-(C₁-C₆)-alkyl, (C₆-C₁₂)-Bicycloalkyl-(C₁-C₆)-alkyl, (C₆-C₁₂)-Bicycloalkyl-(C₁-C₆)-alkyl, (C₆-C₁₂)-Tricycloalkyl-(C₁-C₆)-alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, R¹¹NH, COOR²¹, CON(CH₃)R⁴, CONHR⁴, CON(CH₃)R¹⁵ oder CONHR¹⁵ steht:
- für (C₁-C₈)-Alkyl steht, das unsubstituiert ist oder einfach oder zweifach substituiert ist durch gleiche oder verschiedene Reste aus der Reihe Hydroxy, (C₁-C₈)-Alkoxy, R⁵, gegebenenfalls substituiertes (C₃-C₈)-Cycloalkyl, Hydroxycarbonyl, Aminocarbonyl, (C₆-C₁₀)-Aryl-(C₁-C₄)-alkoxycarbonyl, das im Arylrest auch substituiert sein kann, (C₁-C₆)-Alkoxycarbonyl, R⁶-CO, R⁷-CO, Tetrazolyl und Trifluormethyl;
- 20 R⁵ für gegebenenfalls substituiertes (C₆-C₁₂)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₂)-Aryl-(C₁-C₈)-alkyl oder einen Rest eines gegebenenfalls substituierten monocyclischen oder bicyclischen, 5-gliedrigen bis 12-gliedrigen heterocyclischen Ringes, der aromatisch, teilweise gesättigt oder vollständig gesättigt sein kann und der ein, zwei oder drei gleiche oder verschiedene Heteroatome aus der Reihe Stickstoff, Sauerstoff und Schwefel enthalten kann, steht;
 - für den Rest einer natürlichen oder unnatürlichen Aminosäure, Iminosäure, gegebenenfalls N-(C₁-C₈)-alkylierten oder N-((C₈-C₁₂)-Aryl-(C₁-C₈)-alkylierten) Azaaminosäure, die im Arylrest auch substituiert sein kann, oder den Rest eines Dipeptids oder Tripeptids steht, sowie für deren Ester und Amide, wobei freie funktionelle Gruppen durch in der Peptidchemie übliche Schutzgruppen

25

geschützt sein können und wobei die Stickstoffatome in den Amidbindungen in der Gruppe R⁶-CO einen Rest R als Substituenten tragen können;

- für den Rest eines über ein Stickstoffatom gebundenen 5-gliedrigen bis 7-gliedrigen, gesättigten monocyclischen oder bicyclischen Heterocyclus steht,
 der ein, zwei, drei oder vier gleiche oder verschiedene zusätzliche RingHeteroatome aus der Reihe Sauerstoff, Stickstoff und Schwefel enthalten kann und der an Kohlenstoffatomen und an zusätzlichen Ring-Stickstoffatomen gegebenenfalls substituiert sein kann, wobei zusätzliche Ring-Stickstoffatome gleiche oder verschiedene Reste aus der Reihe Wasserstoff, R^h, HCO, R^hCO,
 R^hO-CO, HO-CO-(C₁-C₄)-Alkyl und R^hO-CO-(C₁-C₄)-Alkyl als Substituenten tragen können und R^h für (C₁-C₆)-Alkyl, (C₃-C₈)-Cycloalkyl, (C₃-C₈)-Cycloalkyl-(C₁-C₈)-alkyl, gegebenenfalls substituiertes (C₆-C₁₀)-Aryl oder im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Aryl-(C₁-C₄)-alkyl steht;
- für Hydroxy, (C₁-C₈)-Alkoxy, (C₈-C₁₀)-Aryl-(C₁-C₆)-alkoxy, das im Arylrest auch substituiert sein kann, gegebenenfalls substituiertes (C₈-C₁₀)-Aryloxy, (C₁-C₈)-Alkylcarbonyloxy-(C₁-C₄)-alkoxy, im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Arylcarbonyloxy-(C₁-C₄)-alkoxy, Amino oder Mono- oder Di-((C₁-C₈)-alkyl)-amino steht;
 - R¹¹ für Wasserstoff, R^{12a}, R^{12a}-CO, R^{12a}-O-CO, R^{12b}-CO oder R^{12a}-S(O)₂ steht;
 - R^{12n} für (C_1-C_{10}) -Alkyl, (C_2-C_8) -Alkenyl, (C_2-C_8) -Alkinyl, (C_5-C_{10}) -Cycloalkyl- (C_1-C_8) -alkyl, gegebenenfalls substituiertes (C_8-C_{14}) -Aryl, im Arylrest gegebenenfalls substituiertes (C_8-C_{14}) -Aryl- (C_1-C_8) -alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl- (C_1-C_8) -alkyl oder den Rest R^{15} steht;
 - R^{12b} für Amino, Di-((C₁-C₁₀)-alkyl)-amino oder R^{12a}-NH steht;
 - R¹³ für Wasserstoff oder (C₁-C₆)-Alkyl steht;
 - R¹⁵ für R¹⁶-(C₁-C₆)-alkyl oder für R¹⁶ steht;
- für einen Rest eines 6-gliedrigen bis 14-gliedrigen bicyclischen oder
 tricyclischen Ringes steht, der gesättigt oder teilweise ungesättigt ist und der
 auch ein, zwei, drei oder vier gleiche oder verschiedene Heteroatome aus der

Reihe Stickstoff, Sauerstoff und Schwefel enthalten kann und der auch durch einen oder mehrere gleiche oder verschiedene Substituenten aus der Reihe (C₁-C₄)-Alkyl und Oxo substituiert sein kann;

- R^{20} für eine direkte Bindung oder (C_1 - C_2)-Alkylen steht;
- für Wasserstoff, (C₁-C₆)-Alkyl, (C₅-C₆)-Cycloalkyl, (C₅-C₆)-Cycloalkyl-(C₁-C₄)alkyl, gegebenenfalls substituiertes (C₆-C₁₀)-Aryl, im Arylrest gegebenenfalls
 substituiertes (C₆-C₁₀)-Aryl-(C₁-C₄)-alkyl, den Rest Het- oder Het-(C₁-C₄)-alkyl
 steht, wobei Alkylreste durch Fluor einfach oder mehrfach substituiert sein
 können und die Reste R²¹ bei mehrfachem Auftreten gleich oder verschieden
 sein können:
 - R^{22} für einen der Reste R^{21} -, $R^{21}N(R^{21})$ oder $R^{21}N(R^{21})$ -C(=N(R^{21}))- steht;
 - R³⁰ für einen der Reste R³²-(C(R)(R))_m-R³¹-, R³²-CR=CR-R³¹-, R³²-C≡C-R³¹-, R³²-O-R³¹- und R³²-S-R³¹- steht, wobei die Reste R unabhängig voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein können, und m für 1, 2 oder 3 steht;
 - R³¹ für den zweiwertigen Rest -R³³-R³⁴-R³⁵-R³⁶- steht, wobei R³⁶ an das Stickstoffatom im Imidazolidinring in der Formel I gebunden ist;
 - für Wasserstoff, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_5-C_6) -Cycloalkyl, (C_5-C_6) -Cycloalkyl- (C_1-C_6) -alkyl, gegebenenfalls substituiertes (C_6-C_{10}) -Aryl, im
- Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Aryl-(C₁-C₆)-alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C₁-C₆)-alkyl oder (C₁-C₆)-Alkyl, das gegebenenfalls durch 1 bis 6 Fluoratome substituiert sein kann, steht;
 - R³³ für eine direkte Bindung oder einen zweiwertigen (C₁-C₄)-Alkylenrest steht;
- 25 R^{34} für einen zweiwertigen Rest aus der Reihe (C_5 - C_6)-Cycloalkylen, gegebenenfalls substituiertes (C_6 - C_{10})-Arylen und gegebenenfalls substituiertes Heteroarylen steht;
 - R³⁵ für eine direkte Bindung oder einen zweiwertigen (C₁-C₆)-Alkylenrest steht;
 - R³⁶ für eine direkte Bindung, die Gruppe -CO- oder die Gruppe -S(O)_n- steht;
- 30 Het für einen Rest eines monocyclischen oder polycyclischen, 5-gliedrigen bis 12gliedrigen, aromatischen oder nicht aromatischen Ringes steht, der 1 oder 2

gleiche oder verschiedene Heteroatome aus der Reihe N und O als Ringglieder enthält und gegebenenfalls durch einen oder mehrere, gleiche oder verschiedene Substituenten substituiert sein kann;

e und h unabhängig voneinander für 0 oder 1 stehen und gleich oder verschieden sein können;

n für 1 oder 2 steht;

in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen, und ihre physiologisch verträglichen Salze.

- 4. Verbindungen der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 3,
 worin
 - W für den zweiwertigen Rest R¹-A-C(R¹³) steht;
 - Y für eine Carbonylgruppe steht;
- A für eine direkte Bindung, einen der zweiwertigen Reste (C₁-C₆)-Alkylen,

 Phenylen, Phenylen-(C₁-C₂)-alkyl oder für einen zweiwertigen Rest eines 5gliedrigen oder 6-gliedrigen gesättigten oder ungesättigten Heterocyclus, der
 ein oder zwei Stickstoffatome enthalten kann und einfach oder zweifach durch
 (C₁-C₆)-Alkyl oder doppelt gebundenen Sauerstoff oder Schwefel substituiert
 sein kann, steht, wobei in dem Rest Phenylenalkyl der Rest R¹ an die

 Phenylengruppe gebunden ist;
 - B für einen zweiwertigen Methylenrest oder Ethylenrest steht, wobei der Methylenrest und der Ethylenrest unsubstituiert sind oder substituiert sind durch einen Rest aus der Reihe (C₁-C₈)-Alkyl, (C₂-C₈)-Alkenyl, (C₂-C₈)-Alkinyl, (C₃-C₆)-Cycloalkyl, (C₃-C₆)-Cycloalkyl-(C₁-C₆)-alkyl, gegebenenfalls substituiertes (C₆-C₁₀)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-
- substituiertes (C_6 - C_{10})-Aryl, im Arylrest gegebenenfalls substituiertes (C_6 - C_{10})Aryl-(C_1 - C_6)-alkyl, gegebenenfalls substituiertes Heteroaryl und im
 Heteroarylrest gegebenenfalls substituiertes Heteroaryl-(C_1 - C_6)-alkyl;
 - E für Tetrazolyl oder R¹⁰CO steht;
- R für Wasserstoff oder (C₁-C₈)-Alkyl steht, wobei alle Reste R unabhängig 30 voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein können;

10

Ţ.,

- für Wasserstoff, im Arylrest gegebenenfalls substituiertes R^{21} -((C_6 - C_{10})-Aryl), im Arylrest gegebenenfalls substituiertes (R^{21} -((C_6 - C_{10})-Aryl))-(C_1 - C_6)-alkyl, den Rest Het-, Het-(C_1 - C_4)-alkyl, für einen der Reste X-NH-C(=NH)- R^{20} -, X^1 -NH- R^{20} und O=, oder (C_1 - C_{10})-Alkyl, das gegebenenfalls durch Fluor einfach oder mehrfach substituiert sein kann, steht;
- für Wasserstoff, (C_1-C_6) -Alkyl, (C_1-C_6) -Alkylcarbonyl, (C_1-C_6) -Alkoxycarbonyl, (C_1-C_6) -Alkylcarbonyloxy- (C_1-C_6) -alkoxycarbonyl, gegebenenfalls substituiertes (C_6-C_{10}) -Arylcarbonyl, gegebenenfalls substituiertes (C_6-C_{10}) -Aryloxycarbonyl, (C_6-C_{14}) -Aryl- (C_1-C_6) -alkoxycarbonyl, das im Arylrest auch substituiert sein kann, Hydroxy, (C_1-C_6) -Alkoxy oder Amino steht;
- X¹ eine der Bedeutungen von X hat oder für R'-NH-C(=N-R") steht, wobei R' und R" unabhängig voneinander die Bedeutungen von X haben;
- R² für Wasserstoff oder (C₁-C₆)-Alkyl steht;
- für Wasserstoff, (C₁-C₈)-Alkyl, gegebenenfalls substituiertes (C₆-C₁₀)-Aryl, im

 Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Aryl-(C₁-C₄)-alkyl,
 gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls
 substituiertes Heteroaryl-(C₁-C₄)-alkyl, (C₃-C₈)-Cycloalkyl, (C₃-C₈)-Cycloalkyl(C₁-C₄)-alkyl, (C₆-C₁₂)-Bicycloalkyl, (C₆-C₁₂)-Bicycloalkyl-(C₁-C₄)-alkyl, (C₆C₁₂)-Tricycloalkyl, (C₆-C₁₂)-Tricycloalkyl-(C₁-C₄)-alkyl, (C₂-C₈)-Alkenyl, (C₂C₈)-Alkinyl, R¹¹NH, COOR²¹, CON(CH₃)R⁴, CONHR⁴, CON(CH₃)R¹⁵ oder
 CONHR¹⁵ steht:
 - R⁴ für (C₁-C₆)-Alkyl steht, das unsubstituiert ist oder einfach oder zweifach substituiert ist durch gleiche oder verschiedene Reste aus der Reihe Hydroxy, (C₁-C₈)-Alkoxy, R⁵, gegebenenfalls substituiertes (C₃-C₈)-Cycloalkyl,
- 25 Hydroxycarbonyl, Aminocarbonyl, (C_6-C_{10}) -Aryl- (C_1-C_4) -alkoxycarbonyl, das im Arylrest auch substituiert sein kann, (C_1-C_6) -Alkoxycarbonyl, R^6 -CO, R^7 -CO, Tetrazolyl und Trifluormethyl;
- für gegebenenfalls substituiertes (C₆-C₁₀)-Aryl, im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Aryl-(C₁-C₄)-alkyl oder einen Rest eines gegebenenfalls substituierten monocyclischen oder bicyclischen, 5-gliedrigen bis 12-gliedrigen heterocyclischen Ringes, der aromatisch, teilweise gesättigt oder vollständig

gesättigt sein kann und der ein, zwei oder drei gleiche oder verschiedene Heteroatome aus der Reihe Stickstoff, Sauerstoff und Schwefel enthalten kann, steht;

- für einen Rest einer natürlichen oder unnatürlichen Aminosäure oder den Rest eines Dipeptids oder Tripeptids steht, sowie für deren Ester und Amide, wobei freie funktionelle Gruppen durch in der Peptidchemie übliche Schutzgruppen geschützt sein können und wobei die Stickstoffatome in den Amidbindungen in der Gruppe R⁶-CO einen Rest R als Substituenten tragen können;
- für den Rest eines über ein Stickstoffatom gebundenen 5-gliedrigen bis 7gliedrigen, gesättigten monocyclischen Heterocyclus steht, der ein oder zwei
 gleiche oder verschiedene zusätzliche Ring-Heteroatome aus der Reihe
 Sauerstoff, Stickstoff und Schwefel enthalten kann und der an
 Kohlenstoffatomen und an zusätzlichen Ring-Stickstoffatomen gegebenenfalls
 substituiert sein kann, wobei zusätzliche Ring-Stickstoffatome gleiche oder
 verschiedene Reste aus der Reihe Wasserstoff, Rh, HCO, RhCO, RhO-CO,
 HO-CO-(C₁-C₄)-Alkyl und RhO-CO-(C₁-C₄)-Alkyl als Substituenten tragen
 können und Rh für (C₁-C₄)-Alkyl, gegebenenfalls substituiertes (C₆-C₁₀)-Aryl
 oder im Arylrest gegebenenfalls substituiertes (C₆-C₁₀)-Aryl-(C₁-C₄)-alkyl steht;
 für Hydroxy, (C₁-C₆)-Alkoxy, (C₆-C₁₀)-Aryl-(C₁-C₄)-alkoxy, das im Arylrest auch
 substituiert sein kann, gegebenenfalls substituiertes (C₆-C₁₀)-Aryloxy, (C₁-C₆)
 - fur Hydroxy, (C_1-C_6) -Alkoxy, (C_6-C_{10}) -Aryl- (C_1-C_4) -alkoxy, das im Arylrest auch substituiert sein kann, gegebenenfalls substituiertes (C_6-C_{10}) -Aryloxy, (C_1-C_6) -Alkylcarbonyloxy- (C_1-C_4) -alkoxy, im Arylrest gegebenenfalls substituiertes (C_6-C_{10}) -Arylcarbonyloxy- (C_1-C_4) -alkoxy, Amino oder Mono- oder Di- $((C_1-C_8)$ -alkyl)-amino steht;
 - R¹¹ für Wasserstoff, R^{12a}, R^{12a}-CO, R^{12a}-O-CO, R^{12b}-CO oder R^{12a}-S(O)₂ steht;

25

- R^{12a} für (C_1-C_8) -Alkyl, (C_2-C_8) -Alkenyl, (C_2-C_8) -Alkinyl, (C_5-C_6) -Cycloalkyl, (C_5-C_6) -Cycloalkyl- (C_1-C_4) -alkyl, gegebenenfalls substituiertes (C_6-C_{10}) -Aryl, im Arylrest gegebenenfalls substituiertes (C_6-C_{10}) -Aryl- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl- (C_1-C_4) -alkyl oder den Rest R^{15} steht;
- R^{12b} für Amino, Di-((C₁-C₈)-alkyl)-amino oder R^{12a}-NH steht;

- R¹³ für Wasserstoff oder (C₁-C₆)-Alkyl steht;
- R¹⁵ für R¹⁶-(C₁-C₆)-alkyl oder für R¹⁶ steht;
- für einen Rest eines 6-gliedrigen bis 12-gliedrigen bicyclischen oder tricyclischen Ringes steht, der gesättigt oder teilweise ungesättigt ist und der auch ein, zwei, drei oder vier gleiche oder verschiedene Heteroatome aus der Reihe Stickstoff, Sauerstoff und Schwefel enthalten kann und der auch durch einen oder mehrere gleiche oder verschiedene Substituenten aus der Reihe (C₁-C₄)-Alkyl und Oxo substituiert sein kann;
 - R²⁰ für eine direkte Bindung oder Methylen steht;
- 10 R^{21} für Wasserstoff, (C_1-C_8) -Alkyl, gegebenenfalls substituiertes (C_8-C_{10}) -Aryl, im Arylrest gegebenenfalls substituiertes (C_8-C_{10}) -Aryl- (C_1-C_2) -alkyl, den Rest Het- oder Het- (C_1-C_2) -alkyl steht, wobei Alkylreste einfach bis vierfach durch Fluor substituiert sein können und die Reste R^{21} bei mehrfachem Auftreten gleich oder verschieden sein können;
- 15 R³⁰ für einen der Reste R³²-(C(R)(R))_m-R³¹-, R³²-CR=CR-R³¹-, R³²-C≡C-R³¹-, R³²-O-R³¹- und R³²-S-R³¹- steht, wobei die Reste R unabhängig voneinander die angegebenen Bedeutungen haben können und gleich oder verschieden sein können, und m für 1, 2 oder 3 steht;
- für einen zweiwertigen Rest aus der Reihe gegebenenfalls substituiertes (C₆-C₁₀)-Arylen, im Arylenrest gegebenenfalls substituiertes (C₆-C₁₀)-Arylen-(C₁-C₄)-alkyl, (C₅-C₆)-Cycloalkylen, (C₅-C₆)-Cycloalkylen-(C₁-C₄)-alkyl, gegebenenfalls substituiertes Heteroarylen oder im Heteroarylenrest gegebenenfalls substituiertes Heteroarylen-(C₁-C₄)-alkyl steht, wobei im Falle des Arylenalkylrestes, des Cycloalkylenalkylrestes und des
- Heteroarylenalkylrestes die Alkylgruppe an das Stickstoffatom im Imidazolidinring in der Formel I gebunden ist;
 - für Wasserstoff, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_5-C_6) -Cycloalkyl, (C_5-C_6) -Cycloalkyl- (C_1-C_4) -alkyl, gegebenenfalls substituiertes (C_6-C_{10}) -Aryl, im Arylrest gegebenenfalls substituiertes (C_6-C_{10}) -Aryl- (C_1-C_4) -alkyl,
- gegebenenfalls substituiertes Heteroaryl, im Heteroarylrest gegebenenfalls substituiertes Heteroaryl- (C_1-C_4) -alkyl oder (C_1-C_6) -Alkyl, das gegebenenfalls

20

25

durch 1 bis 6 Fluoratome substituiert sein kann, steht;

Het für einen Rest eines monocyclischen oder polycyclischen, 5-gliedrigen bis 10gliedrigen, aromatischen oder nicht aromatischen Ringes steht, der 1 oder 2
gleiche oder verschiedene Heteroatome aus der Reihe N und O als
Ringglieder enthält und gegebenenfalls durch einen oder mehrere, gleiche
oder verschiedene Substituenten substituiert sein kann;

e und h unabhängig voneinander für 0 oder 1 stehen und gleich oder verschieden sein können;

in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen, 10 und ihre physiologisch verträglichen Salze.

- 5. Verbindungen der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 4, worin B für unsubstituiertes Methylen steht oder für Methylen steht, das durch einen (C₁-C₈)-Alkylrest substituiert ist, in allen ihren stereoisomeren Formen und Mischungen davon in allen Verhältnissen, und ihre physiologisch verträglichen Salze.
 - 6. Verfahren zur Herstellung von Verbindungen der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man eine Fragmentkondensation einer Verbindung der Formel II

mit einer Verbindung der Formel III,

durchführt, wobei in den Formeln II und III die Gruppen W, Y, B, E, R, R^2 , R^3 , R^{30} sowie e und h wie in den Ansprüchen 1 bis 5 angegeben definiert sind oder auch funktionelle Gruppen in geschützter Form oder in Form von Vorstufen enthalten sein können, und wobei G für Hydroxycarbonyl, (C_1 - C_6)-Alkoxycarbonyl oder aktivierte Carbonsäurederivate steht.

- 7. Verbindungen der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 5 und/oder ihre physiologisch verträglichen Salze zur Verwendung als Arzneimittel.
- 8. Pharmazeutisches Präparat, dadurch gekennzeichnet, daß es eine oder mehrere Verbindungen der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 5 und/oder ihre physiologisch verträglichen Salze und einen pharmazeutisch einwandfreien Träger enthält.
- 9. Verbindungen der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 5 und/oder ihre physiologisch verträglichen Salze zur Verwendung als Entzündungshemmstoffe.
- 10. Verbindungen der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 5 und/oder ihre physiologisch verträglichen Salze zur Verwendung in der Therapie oder Prophylaxe der Arthritis, der rheumatoiden Arthritis, der Polyarthritis, der inflammatory bowel disease, des systemischen Lupus erythematosus, der Multiplen Sklerose oder von inflammatorischen Erkrankungen des zentralen Nervensystems.
- 11. Verbindungen der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 5 und/oder ihre physiologisch verträgliche Salze zur Verwendung in der Therapie oder Prophylaxe von Asthma oder Allergien.
- 12. Verbindungen der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 5
 30 und/oder ihre physiologisch verträgliche Salze zur Verwendung in der Therapie oder Prophylaxe von cardiovaskulären Erkrankungen, der Arteriosklerose, von

WO 99/60015 PCT/EP99/03072

122

Restenosen, von Diabetes, der Schädigung von Organtransplantaten, von Immunerkrankungen, von Autoimmunerkrankungen, von Tumorwachstum oder Tumormetastasierung oder der Malaria.

13. Verbindungen der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 5 und/oder ihre physiologisch verträglichen Salze zur Hemmung der Adhäsion und/oder der Migration von Leukozyten oder zur Hemmung des VLA-4-Rezeptors.

intr tional Application No PCI/EP 99/03072

CLASSIFICATION OF SUBJECT MATTER PC 6 CO7K5/02 CO7E A CLASSI CO7D233/32 A61K31/415 A61K38/05 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 CO7K CO7D A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to daim No. Category 1-13 WO 95 14008 A (CASSELLA AG) X 26 May 1995 (1995-05-26) the whole document X,P DE 196 47 380 A (HOECHST AG) 1-13 20 May 1998 (1998-05-20) cited in the application the whole document 1-13 X,P DE 196 47 381 A (HOECHST AG) 20 May 1998 (1998-05-20) cited in the application the whole document X,P 1-13 DE 196 47 382 A (HOECHST AG) 20 May 1998 (1998-05-20) cited in the application the whole document -/--Patent family members are listed in annex. X Further documents are listed in the continuation of box C. Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the International "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 17/09/1999 8 September 1999 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016 Masturzo. P

intr "tional Application No PCI/EP 99/03072

C (Combine	Minn) DOCHMENTS CONCINCATE TO SECURE	PC1/EF 99/030/2
Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X		1.0
X	DE 41 26 277 A (CASSELLA AG) 11 February 1993 (1993-02-11) cited in the application the whole document	1-13
X	CHEMICAL ABSTRACTS, vol. 129, no. 18, 2 November 1998 (1998-11-02) Columbus, Ohio, US; abstract no. 225489, H U STILZ ET AL.: "From a peptide lead to an orally active peptidomimetic fibrinogen receptor antagonist" XP002114309 & LETTERS IN PEPTIDE SCIENCE, vol. 5, no. 2-3, May 1998 (1998-05), pages 215-221, ESCOM SCIENCE PUBLISHERS, NL ISSN: 0929-5666 abstract	1-13
E	DE 197 51 251 A (HOECHST MARION ROUSSELL DEUTSCHLAND GMBH) 20 May 1999 (1999-05-20) cited in the application the whole document	1-13
P,X	EP 0 905 139 A (HOECHST MARION ROUSSEL DEUTSCHLAND GMBH) 31 March 1999 (1999-03-31) cited in the application the whole document	1-13
P,X	EP 0 903 353 A (HOECHST MARION ROUSSEL DEUTSCHLAND GMBH) 24 March 1999 (1999-03-24) cited in the application the whole document	1-13
	·	

nformation on patent family members

Inte Yonal Application No PCI/EP 99/03072

Patent document cited in search report		Publication date		atent family nember(s)	Publication date
WO 9514008	A	26-05-1995	DE DE AU CA CN CZ EP FI HU JP PL SK ZA	4338944 A 4427979 A 693811 B 7939794 A 2169643 A 1134696 A 9601162 A 0729460 A 962043 A 74736 A 9505062 T 314306 A 58596 A 9409017 A	18-05-1995 15-02-1996 09-07-1998 06-06-1995 26-05-1995 30-10-1996 16-10-1996 04-09-1996 14-05-1996 28-02-1997 20-05-1997 02-09-1996 07-05-1997 15-05-1995
DE 19647380	A	20-05-1998	AU CA CZ EP HR HU JP NO PL SK	4515997 A 2220784 A 9703599 A 0842943 A 970605 A 9702035 A 10147573 A 975244 A 323128 A 152697 A	21-05-1998 15-05-1998 17-06-1998 20-05-1998 31-08-1998 28-07-1998 02-06-1998 18-05-1998 25-05-1998 03-06-1998
DE 19647381	A	20-05-1998	AU CA CN CZ EP HR HU JP NO NZ PL SK	4515597 A 2220777 A 1182746 A 9703601 A 0842945 A 970604 A 9702036 A 10158298 A 975246 A 329176 A 323129 A 152797 A	21-05-1998 15-05-1998 27-05-1998 17-06-1998 20-05-1998 31-08-1998 28-07-1998 16-06-1998 18-05-1998 29-03-1999 25-05-1998
DE 19647382	A	20-05-1998	AU CA CN CZ EP HR HU JP NO NZ PL SK	4525797 A 2220822 A 1193022 A 9703600 A 0842944 A 970606 A 9702034 A 10147574 A 975245 A 329177 A 323130 A 152597 A	21-05-1998 15-05-1998 16-09-1998 17-06-1998 20-05-1998 31-08-1998 28-07-1998 02-06-1998 18-05-1998 25-11-1998 25-05-1998 03-06-1998
DE 4126277	A	11-02-1993	AT AU AU CA DE DK	128985 T 651716 B 2089292 A 2075590 A 59203976 D 530505 T	15-10-1995 28-07-1994 11-03-1993 09-02-1993 16-11-1995 12-02-1996

nformation on patent family members

Intr "Ional Application No PC i/EP 99/03072

		,		101/	721 33703072
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
DE 4126277	Α		EP	0530505 A	10-03-1993
			ËS	2081000 T	16-02-1996
			GR	3018557 T	31-03-1996
			ĪĹ	102759 A	10-06-1997
			ĴΡ	5213895 A	24-08-1993
			US	5389614 A	14-02-1995
			 -		14 02 1995
DE 19751251	Α	20-05-1999	UΑ	9242198 A	10-06-1999
			EP	0918059 A	26-05-1999
			NO	985368 A	20-05-1999
			PL	329790 A	24-05-1999
					
EP 905139	Α	31-03-1999	DE	19741873 A	25-03-1999
			AU	8614898 A	15 - 04-1999
			CA	2247735 A	23-03-1999
			CN	1216767 A	19-05-1999
			CZ	9803031 A	14 - 04-199 9
			HR	980519 A	30-06-1999
			HU	9802143 A	28-06-1999
			NO	984414 A	24-03-1999
<u> </u>			PL	328789 A	29-03-1999
EP 903353	Α	24-03-1999	DE	19741235 A	25-03-1999
			LIA	8523198 A	01-04-1999
			CN	1218047 A	02-06-1999
			CZ	9802988 A	14-04-1999
			HR	980511 A	30-06-1999
			HU	9802121 A	28-06-199 9
			NO	984309 A	19-03-1999
			PL	328686 A	29-03-1999

Int retionales Aktenzeichen Pui/EP 99/03072

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 C07K5/02 C07D233/32 A61K31/415 A61K38/05 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 CO7K CO7D A61K Recherchierte aber nicht zum Mindestprüßtoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegrifte) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. X WO 95 14008 A (CASSELLA AG) 1-13 26. Mai 1995 (1995-05-26) das ganze Dokument X.P DE 196 47 380 A (HOECHST AG) 1-13 20. Mai 1998 (1998-05-20) in der Anmeldung erwähnt das ganze Dokument X,P DE 196 47 381 A (HOECHST AG) 1-13 20. Mai 1998 (1998-05-20) in der Anmeldung erwähnt das ganze Dokument X,P DE 196 47 382 A (HOECHST AG) 1-13 20. Mai 1998 (1998-05-20) in der Anmeldung erwähnt das ganze Dokument -/--Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu X Siehe Anhang Patentfamilie * Besondere Kategorien von angegebenen Veröffentlichungen T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondem nur zum Verständnis des der "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung: die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden. Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhalt erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist ausgeführt) "O" Veröffentlichung, die alch auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem Internationalen Amneldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 8. September 1999 17/09/1999 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Masturzo, P Fax: (+31-70) 340-3016

PCI/EP 99/03072

C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	1 01/21 99/030/2
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Teile Betr. Anspruch Nr.
X	DE 41 26 277 A (CASSELLA AG) 11. Februar 1993 (1993-02-11) in der Anmeldung erwähnt das ganze Dokument	1-13
X	CHEMICAL ABSTRACTS, vol. 129, no. 18, 2. November 1998 (1998-11-02) Columbus, Ohio, US; abstract no. 225489, H U STILZ ET AL.: "From a peptide lead to an orally active peptidomimetic fibrinogen receptor antagonist "XP002114309 & LETTERS IN PEPTIDE SCIENCE, Bd. 5, Nr. 2-3, Mai 1998 (1998-05), Seiten 215-221, ESCOM SCIENCE PUBLISHERS, NL ISSN: 0929-5666 Zusammenfassung	1–13
E	DE 197 51 251 A (HOECHST MARION ROUSSELL DEUTSCHLAND GMBH) 20. Mai 1999 (1999-05-20) in der Anmeldung erwähnt das ganze Dokument	1-13
P,X	EP 0 905 139 A (HOECHST MARION ROUSSEL DEUTSCHLAND GMBH) 31. März 1999 (1999-03-31) in der Anmeldung erwähnt das ganze Dokument	1-13
P , X	EP 0 903 353 A (HOECHST MARION ROUSSEL DEUTSCHLAND GMBH) 24. März 1999 (1999-03-24) in der Anmeldung erwähnt das ganze Dokument	1-13

Angaben zu Veröffentlich. ... in, die zur selben Patentfamilie gehören

Intr ionales Aktenzeichen PU1/EP 99/03072

Im Recherchenberich angeführtes Patentdokur		Datum der Veröffentlichung		tglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9514008	A	26-05-1995	DE DE AU CA CN CZ EP FI HU JP PL SK	4338944 A 4427979 A 693811 B 7939794 A 2169643 A 1134696 A 9601162 A 0729460 A 962043 A 74736 A 9505062 T 314306 A 58596 A	18-05-1995 15-02-1996 09-07-1998 06-06-1995 26-05-1995 30-10-1996 16-10-1996 04-09-1996 14-05-1996 28-02-1997 20-05-1997 02-09-1996 07-05-1997
DE 19647380	A	20-05-1998	AU CA CZ EP HR HU JP NO PL SK	9409017 A 4515997 A 2220784 A 9703599 A 0842943 A 970605 A 9702035 A 10147573 A 975244 A 323128 A 152697 A	15-05-1995
DE 19647381	A	20-05-1998	AU CA CN CZ EP HR HU JP NO NZ PL SK	4515597 A 2220777 A 1182746 A 9703601 A 0842945 A 970604 A 9702036 A 10158298 A 975246 A 329176 A 323129 A 152797 A	21-05-1998 15-05-1998 27-05-1998 17-06-1998 20-05-1998 31-08-1998 28-07-1998 16-06-1998 18-05-1998 29-03-1999 25-05-1998 03-06-1998
DE 19647382	A	20-05-1998	AU CA CN CZ EP HR HU JP NO NZ PL SK	4525797 A 2220822 A 1193022 A 9703600 A 0842944 A 970606 A 9702034 A 10147574 A 975245 A 329177 A 323130 A 152597 A	21-05-1998 15-05-1998 16-09-1998 17-06-1998 20-05-1998 31-08-1998 28-07-1998 02-06-1998 18-05-1998 25-11-1998 25-05-1998 03-06-1998
DE 4126277	A	11-02-1993	AT AU AU CA DE DK	128985 T 651716 B 2089292 A 2075590 A 59203976 D 530505 T	15-10-1995 28-07-1994 11-03-1993 09-02-1993 16-11-1995 12-02-1996

Angaben zu Veröffentlich ...n., die zur selben Patentlamilie gehören

Inte 'ionales Aktenzeichen PC1/EP 99/03072

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
		voronsmaching		- aterruarinae	veronentiliciting
DE 41262	77 A		EP	0530505 A	10-03-1993
			ES	2081000 T	16-02-1996
			GR	3018557 T	31-03-1996
			IL	102759 A	10-06-1997
			JP	5213895 A	24-08-1993
			US	5389614 A	14-02-1995
DE 19751	251 A	20-05-1999	AU	9242198 A	10-06-1999
			ΕP	0918059 A	26-05-1999
			NO	985368 A	20-05-1999
			PL	329790 A	24-05-1999
EP 90513	9 A	31-03-1999	DE	19741873 A	25-03-1999
			AU	8614898 A	15-04-1999
			CA	2247735 A	23-03-1999
			CN	1216767 A	19-05-1999
			CZ	9803031 A	14-04-1999
			HR	980519 A	30-06-1999
			HU	9802143 A	28-06-1999
	•		NO	984414 A	24-03-1999
			PL	328789 A	29-03-199 9
EP 90335	3 A	24-03-1999	DE	19741235 A	25-03-1999
			AU	8523198 A	01-04-1999
			CN	1218047 A	02-06-1999
			CZ	9802988 A	14-04-1999
			HR	980511 A	30-06-1999
			HU	9802121 A	28-06-1999
			NO	984309 A	19-03-1999
			PL	328686 A	29-03-1999