Et puisque $V_t = V_1 + V_2$. On en déduit $V_1 = \frac{T_1}{T_2} V_2 = \frac{T_1}{T_2} (V_t - V_1)$; Soit $V_1 \left(1 + \frac{T_1}{T_2} \right) = \frac{T_1}{T_2} V_t$: On a finalement : $V_1 = \frac{T_1}{T_0 + T_1} V_t$. Puis $V_2 = V_t - V_1 = V_t \left(1 - \frac{T_1}{T_0 + T_1} \right) = \frac{T_0}{T_0 + T_1} V_t$; Soit $V_2 = \frac{T_0}{T_0 + T_1} V_t$. Réponses B et D. **Q2.** D'après l'<u>équilibre mécanique du piston, on s'est déjà servi de $P_1 = P_2$.</u> De plus, on a $P_1 = \frac{nRT_1}{V_1} = \frac{nRT_1}{V_2} \times (T_1 + T_0) = \frac{nR}{V_1} \times (T_1 + T_0)$: Réponses A et B.

Q3. U est une fonction d'état extensive, donc $\Delta U = \Delta U_1 + \Delta U_2$.

Q1. Le compartiment (2) est séparé du milieu extérieur par une paroi diathermane et est en contact avec un

De plus, l'équilibre mécanique du piston implique $P_1 = P_2$ D'où la relation $\frac{nRT_1}{V_2} = \frac{nRT_0}{V_2}$.

thermostat à la température T_0 . Alors $T_2 = T_0$.

Q6.

L'équation d'état des GP donne $P_1V_1 = nRT_1$ et $P_2V_2 = nRT_2 = nRT_0$

Mais la transformation (2) est monotherme, car la température initiale est aussi T_0 . Ainsi $\Delta T_2 = 0$.

La première loi de Joule pour un gaz parfait U=U(T) nous indique alors que $\Delta U_2=0$. De plus, pour n moles gaz parfait dont on connait γ , on sait que $dU = nC_{vm}dT = n\frac{R}{v-1}dT$

On en déduit après intégration que $\Delta U = \Delta U_1 = \frac{nR}{r-1} (T_1 - T_0)$. Réponse B. **Q4.** La transformation étant supposée <u>réversible</u>, on a, à tout instant $P = P_{ext}$ et $T = T_0$ (une transformation

monotherme réversible étant isotherme). Ainsi, la définition du travail des forces de pression pour le

compartiment 2, nous permet d'écrire que :
$$W_2 = \int_{V_0}^{V_2} -p_{ext} dV = -\int_{V_0}^{V_2} p dV = -\int_{V_0}^{V_2} \frac{nRT_0}{V} dV = nRT_0 \ln\left(\frac{V_0}{V_2}\right) = nRT_0 \ln\left(\frac{V_0(T_0 + T_1)}{T_0V_t}\right)$$

$$W_{2} = \int_{V_{0}}^{T} -p_{ext} dV = -\int_{V_{0}}^{T} p dV = -\int_{V_{0}}^{T} \frac{nRT_{0}}{V} dV = nRT_{0} \ln\left(\frac{V_{0}}{V_{2}}\right) = nRT_{0} \ln\left(\frac{V_{0}(T_{0} + T_{1})}{T_{0}V_{t}}\right)$$
oit $W_{2} = nRT_{0} \ln\left(\frac{T_{0} + T_{1}}{V_{0}}\right)$ car $V_{2} = 2V_{0}$

Soit $W_2 = nRT_0 \ln \left(\frac{T_0 + T_1}{2T_0}\right)$, car $V_t = 2V_0$. D'autre part d'après le 1^{er} principe de la thermodynamique, $\Delta U_2=W_2+Q_2=0$; Ainsi ${m Q}_2=-{m W}_2$.

D'autre part d'après le 1^{er} principe de la thermodynamique,
$$\Delta U_2 = W_2 + Q_2 = 0$$
; Ainsi $Q_2 = W_2$.

Réponses A et D.

Q5. D'une part, la chaleur apportée par le résistor est $Q_1 = ri^2 \tau$ par définition de la puissance électrique d'un résistor fournie sur une durée τ , mais on a également $W_{tot} = W_1 + W_2 = 0$, car le volume total du système est

constant. D'où : $W_2 = -W_1$. Ainsi : $\Delta U = \Delta U_1 = Q_1 + W_1 = Q_1 - W_2$; Soit : $Q_1 = \Delta U + W_2$.

Réponses B et D. sait d'après le 2nd principe de la thermodynamique que
$$\Delta S_2 = S_2^{(c)} + S_2^{(r)}$$
.

On sait d'après le 2nd principe de la thermodynamique que $\Delta S_2 = S_2^{(c)} + S_2^{(r)}$. Or on sait d'après la question Q4, que la transformation est réversible, alors $S_2^{(c)} = 0$.

Alors $\Delta S_2 = S_2^{(r)} = nR \ln \left(\frac{V_2}{V_0} \right) = nR \ln \left(\frac{2T_0}{T_0 + T_1} \right)$ car $\frac{V_2}{V_0} = \frac{2T_0}{T_0 + T_1}$, puisque $V_t = 2V_0$. Réponses A et D.