Metal catalysis

Small metal particles need to be stabilized

THERMOSTABLE SUPPORTED METAL CATALYST

 At approximately half of the melting point the lattice elements of a solid begin to be mobile enough that coalescence of particles becomes important.

Tamman temperature

- At lower temperatures surface mobility might exist
- Well balanced interactions with the support might stabilize particles.
- Corrosive chemisorption may play a major role in sintering

Preparation of supported catalysts

- Co-precipitation
- Impregnation
 - Wet chemical impregnation
 - Incipient wetness impregnation
- Adsorption
- Ion exchange
 - Exchange in aqueous medium
 - Solid state ion exchange

Supported metal catalyst Pd/Al₂O₃

Mechanism of olefin hydrogenation

Hydrogenation of methylacetylene

- The species most abundant on the metal surface is preferentially hydrogenated.
- The reaction rate can be slower than that of the competing reactant.
- Selective catalysts have a high preference to bind methylacetylene.

Bond shift mechanism

Formation of a $\alpha\alpha\gamma$ - adsorption structure such as formed in neopentane isomerization

Structure sensitivity

· Structure insensitive reactions

Usually all reactions which involve making or breaking C-H bonds

- Ethene hydrogenation
- Cyclohexane dehydrogenation
- Structure sensitive reactions

Strong influence of the particle size, the carrier and alloying components upon the rate of reactions; usually reactions involving rupture of C-C bonds

- Alkane hydrogenolysis
- Heptane dehydrocyclization

Hydrogenolysis on metals

Selective hydrogenation of functional groups

- The selectivity to butyraldehyde is high on normal hydrogenation catalysts.
- The rate of hydrogenation of the C=C bond is much higher than the rate of hydrogenation of the C=O bond.

- Increase the repulsion of the terminal group by using flat low index plane surfaces.
- Increasing the interaction with the carbonyl group using strong polar sites.

Redox catalysis

	Activity parameters		Selectivity parameters	
Catalyst	Δq_{red} (χ =0.02) T= 500°C	Relative catalyst activity	$rac{\partial \Delta H}{\partial \chi}$ (kcal/mol)	% Sel. benz. acid T = 345°C
MnO ₂	10	>>10	8	0
SnO ₂ / V ₂ O ₅	24	5	200	90-100
V_2O_5	38	1 0 CH	80	70-80

Hydrotreating reactions

- During hydrotreating, heteroatoms (S,N,O) are removed from the mostly aromatic molecules.
- · The resulting products are hydrogenated.
- The mechanism follows the Mars van Krevelen scheme.
- Larger molecules are increasingly difficult to react steric reasons.

Mechanism of hydrodesulfurization

The reactions follow a (reverse) Mars van Krevelen mechanism.

