INTEGRACIÓN EN ESFERAS Y TOROS

AGUSTÍN GARCÍA IGLESIAS

1. Introducción

Sea $f:(a,b)\to\mathbb{R}$ una función continua y $F(x)=\int_a^x f(t)\,\mathrm{d}t$. Un resultado fundamental de la teoría de integración es la llamada Regla de Barrow:

(1)
$$\int_{(a,b)} f(x) dx = F(b) - F(a),$$

que es una consecuencia del Teorema Fundamental del Cálculo. En este curso 1 consideraremos integrales sobre dominios más generales, reemplazando intervalos (a,b) por esferas, toros y otras variedades diferenciables M^{n+1}

y funciones $f:(a,b)\to\mathbb{R}$ por formas diferenciales $\omega:M\to\Lambda^n(M)$. En este contexto, veremos como la fórmula (1) es una consecuencia directa del Teorema de Stokes:

$$\int_M \mathrm{d}\omega = \int_{\partial M} \omega,$$

que también generaliza otros resultados de la teoría de integración como el Teorema de Green y el Teorema de la Divergencia de Gauss.

Nos concentraremos en un caso particular de variedades, que son aquellas descriptas como k-cubos singulares $c:[0,1]^k\to\mathbb{R}^n$.

Referencia: "Cálculo en variedades", Michael Spivak, Ed. Reverté (1988).

¹Notas disponibles en http://www.famaf.unc.edu.ar/~aigarcia/monografias.htm.

2. Cadenas

En esta sección veremos una primera aproximación a los conjuntos sobre los cuales integraremos.

Definición 2.1. Sea $A \subset \mathbb{R}^n$. Un k-cubo en A es una función $c: [0,1]^k \to A$.

Ejemplo 2.2. Si n=0, $[0,1]^0=\{0\}$ y por lo tanto un 0-cubo en A es simplemente un punto $p=c(0)\in A$.

El n-cubo típico en \mathbb{R}^n está dado por

(2)
$$c = I^n : [0,1]^n \to \mathbb{R}^n, \quad I^n(x) = x.$$

Una curva $\gamma \subset \mathbb{R}^2$ es un 1-cubo. Por ejemplo

$$c(t) = (t, t^2),$$
 $c(t) = (t, sen(t)),$ $c(t) = (t^2, t^3).$

También podemos considerar curvas en \mathbb{R}^3 , como

$$c(t) = (\cos(2\pi t), \sin(2\pi t), t), \quad t \in [0, 1].$$

La circunferencia $S^1 \subset \mathbb{R}^2$ es un 1-cubo, para para $c:[0,1] \to \mathbb{R}^2$ dada por

$$c(t) = (\cos(2\pi t), \sin(2\pi t)), \qquad t \in [0, 1].$$

Asimismo, el disco $D^1 \subset \mathbb{R}^2$ es un 2-cubo, para $c:[0,1]^2 \to \mathbb{R}^2$ dada por

$$c(r,s) = (r\cos(2\pi s), r\sin(2\pi s)), \qquad r,s \in [0,1].$$

En 3 dimensiones, la bola $B\subset\mathbb{R}^3$ es un 3-cubo, para

$$c(r,s,t) = (r\cos(2\pi s)\sin(\pi t), r\sin(2\pi s)\sin(\pi t), \cos(\pi t)), \qquad r,s,t \in [0,1].$$

Análogamente, podemos considerar el cilindro

$$c(r, s, t) = (r\cos(2\pi s), r\sin(2\pi s), t), \qquad r, s, t \in [0, 1].$$

Si $r < R \in \mathbb{R}$, el toro $T^2 \subset \mathbb{R}^3$ está dado por

$$c(s,t) = (\cos(2\pi s)(R + r\cos(\pi t)), \sin(2\pi s)(R + r\cos(\pi t)), r\sin(\pi t)),$$

 $s,t \in [0,1].$

Definición 2.3. Una n-cadena es una suma $c = \sum_{i=1}^{r} \lambda_i \cdot c_i$, donde cada $c_i : [0,1]^n \to A$ es un n-cubo y cada λ_i denota un número entero, $i = 1, \ldots, r$.

En este formalismo, las expresiones c-c=0 y $0\cdot c$ indicarán que se considera² el subconjunto vacío $\emptyset\subset A$.

Si bien la expresión $\sum_{i=1}^r \lambda_i c_i$ denota una suma formal, este concepto adquiere mayor relevacia cuando consideramos la frontera o borde de un n-cubo. Intuitivamente, la frontera de un intervalo [a,b] son los puntos a y b (dos 0-cubos), o mejor aún una combinación lineal de los mismos "b-a". Análogamente, la frontera de un cuadrado $[a,b]^2 \subset \mathbb{R}^2$ está dada por (una combinación lineal de) los segmentos que componen el borde del cuadrado.

²Si \mathcal{C} denota el conjunto de los n-cubos en A, podemos describir a las n-cadenas como el conjunto de funciones $f: \mathbb{Z} \to \mathcal{C} \cup \emptyset$ con $f(0) = \emptyset$ y $f(n) = \emptyset$ salvo para finitos $n \in \mathbb{Z}$.

Así, dado un n-cubo, la frontera será una n-1-cadena ∂c . Para integrar, necesitamos otorgarle una orientación o signo a cada n-1 cubo que la compone. Comenzamos analizando el n-cubo típico $I^n:[0,1]^n\to\mathbb{R}^n$ de (2).

Definición 2.4. Sea $I^n: [0,1]^n \to \mathbb{R}^n$ el *n*-cubo típico. Para cada $i,\ldots,n,$ definimos dos n-1-cubos $I^n_{(i,0)}$ y $I^n_{(i,1)}$ como

$$I_{(i,0)}^n = I^n(x_1, \dots, x_{i-1}, 0, x_i, \dots, x_{n-1}) = (x_1, \dots, x_{i-1}, 0, x_i, \dots, x_{n-1}),$$

$$I_{(i,1)}^n = I^n(x_1, \dots, x_{i-1}, 1, x_i, \dots, x_{n-1}) = (x_1, \dots, x_{i-1}, 1, x_i, \dots, x_{n-1}).$$

La frontera ∂I^n se define como la n-1-cadena

$$\partial I^{n} = \sum_{i=1}^{n} (-1)^{i} \left(I_{(i,0)}^{n} - I_{(i,1)}^{n} \right).$$

Si n = 0, entonces $I^n(0) = 0$ y $\partial \mathbb{I}^n = \emptyset$.

Ejemplo 2.5. Sea $I^1:[0,1]\to\mathbb{R}$ el 1-cubo típico. Entonces los 0-cubos $I^1_{(1,0)},I^1_{(1,1)}:\{0\}\to\mathbb{R}$ están dados por $I^1_{(1,0)}(0)=I^1(0)=0$ y $I^1_{(1,1)}(0)=I^1(1)$ y así $\partial I^1=I^1_{(1,1)}-I^1_{(1,0)}$. Es decir, $\partial I^1(0)=$ "1-0".

Ahora podemos definir, de manera análoga, la frontera ∂c de un *n*-cubo cualquiera $c:[0,1]^n\to A$.

Será, entonces, una n-1-cadena $\partial c: [0,1]^{n-1} \to A$.

Definición 2.6. Sea $c:[0,1]^n \to A$ un n-cubo típico. Para cada $i,\ldots,n,$ definimos dos n-1-cubos $c_{(i,0)}$ y $c_{(i,1)}$ como

$$c_{(i,0)} = c \circ I_{(i,0)}^n; \qquad c_{(i,1)} = c \circ I_{(i,1)}^n.$$

La frontera ∂c se define como la n-1-cadena

$$\partial c = \sum_{i=1}^{n} (-1)^{i} \left(c_{(i,0)} - c_{(i,1)} \right) = c \circ \partial I^{n}.$$

Si $c = \sum_i \lambda_i c_i$ es una *n*-cadena, definimos $\partial c = \sum_i \lambda_i \partial c_i$. Si n = 0, $\partial c = 0$.

Tenemos entonces un operador ∂ que tranforma n-cadenas en n-1 cadenas.

Ejercicio 2.7. Recordar la notación del Ejemplo 2.2. Si $c: I \to \mathbb{R}^2$ es la circunferencia S^1 , mostrar que $\partial c = (1,0) - (1,0)$.

Si $c: I^2 \to \mathbb{R}^2$ es el disco D^1 , mostrar que $\partial c = S^1 - 0$. Aquí 0 indica el 1-cubo contante $c: I \to \mathbb{R}^2$, c(t) = (0,0).

Ejemplo 2.8. Sea $c: I^2 \to \mathbb{R}^2$ un 2-cubo. Fijemos los puntos en \mathbb{R}^2 dados por los vértices de I^2 :

$$p_1 = c(0,0),$$
 $p_2 = c(1,0),$ $p_3 = c(1,1),$ $p_4 = c(0,1).$

Ahora, la frontera ∂c es la combinación de cuatro 1-cubos, es decir es la cadena:

$$\partial c(t) = -c_{(1,0)}(t) + c_{(1,1)}(t) + c_{(2,0)}(t) - c_{(2,1)}(t),$$

donde, para $t \in [0, 1]$:

$$c_{(1,0)}(t) = c(0,t),$$
 $c_{(1,1)}(t) = c(1,t),$ $c_{(2,0)}(t) = c(t,0),$ $c_{(2,1)}(t) = c(t,1).$

La frontera de esta cadena será una 0-cadena (puntos en \mathbb{R}^2): para t=0,

$$\partial c_{(1,0)}(t) = c(0,1) - c(0,0) = p_4 - p_1, \quad \partial c_{(1,1)}(t) = c(1,1) - c(1,0) = p_3 - p_2,$$

$$\partial c_{(2,0)}(t) = c(1,0) - c(0,0) = p_2 - p_1, \quad \partial c_{(2,1)}(t) = c(1,1) - c(0,1) = p_3 - p_4.$$

Entonces, para t=0:

$$\partial(\partial c)(t) = -\partial c_{(1,0)} + \partial c_{(1,1)} + \partial c_{(2,0)} - \partial c_{(2,1)}$$

= -(p₄ - p₁) + (p₃ - p₂) + (p₂ - p₁) - (p₃ - p₄)
= 0.

Es decir, $\partial \partial c = 0$.

El ejemplo anterior es una muestra de la siguiente característica fundamental

Proposición 2.9. Sea c una n-cadena en A, entonces $\partial(\partial c) = 0$. En otras palabras, $\partial^2 = 0$.

Prueba. Tomemos $i \leq j$ y sean $\alpha, \beta \in \{0,1\}$. Consideremos $(I_{i,\alpha}^n)_{j,\beta}: [0,1]^{n-2} \to \mathbb{R}^n$. Tenemos que

$$(I_{i,\alpha}^n)_{j,\beta}(x) = I_{i,\alpha}^n(I_{j,\beta}^{n-1}(x))$$

$$= I_{i,\alpha}^n(x_1, \dots, x_{j-1}, \beta, x_j, \dots, x_{n-2})$$

$$= (x_1, \dots, x_{i-1}, \alpha, x_i, \dots, x_{j-1}, \beta, x_j, \dots, x_{n-2}).$$

Análogamente, vemos que

$$(I_{j+1,\beta}^n)_{i,\alpha}(x) = (x_1, \dots, x_{i-1}, \alpha, x_i, \dots, x_{j-1}, \beta, x_j, \dots, x_{n-2}).$$

Es decir, $(I_{i,\alpha}^n)_{j,\beta}=(I_{j+1,\beta}^n)_{i,\alpha}$ y por lo tanto $(c_{i,\alpha})_{j,\beta}=(c_{j+1,\beta})_{i,\alpha}$ para cualquier n-cubo $c, i \leq j$. Ahora bien,

$$\partial(\partial c) = \partial\left(\sum_{i=1}^{n} (-1)^{i} \left(c_{(i,0)} - c_{(i,1)}\right)\right) = \sum_{i=1}^{n} (-1)^{i} \left(\partial c_{(i,0)} - \partial c_{(i,1)}\right)$$

$$= \sum_{i=1}^{n} (-1)^{i} \left(\sum_{j=1}^{n-1} (-1)^{j} \left[\left(c_{(i,0)}\right)_{(j,0)} - \left(c_{(i,0)}\right)_{(j,1)}\right] - \left[\left(c_{(i,1)}\right)_{(j,0)} - \left(c_{(i,1)}\right)_{(j,1)}\right]\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n-1} (-1)^{i+j} \left(\left(c_{(i,0)}\right)_{(j,0)} - \left(c_{(i,0)}\right)_{(j,1)} - \left(c_{(i,1)}\right)_{(j,0)} + \left(c_{(i,1)}\right)_{(j,1)}\right)$$

y en esta suma $(c_{i,\alpha})_{j,\beta} = (c_{j+1,\beta})_{i,\alpha}$ aparecen con signos opuestos, para cada $i, j \neq \alpha, \beta$. Por lo tanto $\partial(\partial c) = 0$.

Como una n-cadena es una suma de n-cubos, la propiedad vale en general.

П

3. ÁLGEBRA MULTILINEAL

Sea $V = \mathbb{R}^n$ el conjunto de vectores $v = (x_1, \dots, x_n)$ en n coordendas reales. Recordemos que existe un una suma de vectores y un producto por escalares (elementos de \mathbb{R}) como

(3)
$$(x_1, \dots, x_n) + (v'_1, \dots, v'_n) = (x_1 + v'_1, \dots, x_n + v'_n), \\ c \cdot (x_1, \dots, x_n) = (c \cdot x_1, \dots, c \cdot x_n).$$

Observación 3.1. En general, un conjunto V con una suma y un producto como en (3) se llama un espacio vectorial (sobre \mathbb{R}). Muchas de las consideraciones que veremos a lo largo de esta sección también valen en ese contexto más general.

Una función $f: \mathbb{R}^n \to \mathbb{R}^m$ de dice lineal (o \mathbb{R} -lineal) si

$$f(v + c \cdot v') = f(v) + c \cdot f(v')$$

para cada $v, v' \in V, c \in \mathbb{R}$.

En esta sección nos concentraremos en las funciones \mathbb{R} -lineales $f:V\to\mathbb{R}$. Escribimos

$$V^* = \{ f : V \to \mathbb{R} : f \text{ es } \mathbb{R}\text{-lineal} \}.$$

Ejemplo 3.2. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ dada por f(x,y) = x + y. Entonces f es \mathbb{R} lineal. Más generalmente, si $a, b \in \mathbb{R}$ (fijos), entonces f(x,y) = ax + by es lineal.

Ejercicio 3.3. Comprobar las afirmaciones del Ejemplo 3.2.

Ejemplo 3.4. Sea $i=1,\ldots,n$ y sea $e^i:V\to\mathbb{R}$ la función que toma la coordenada *i*-ésima. Es decir,

$$e^i(x_1,\ldots,x_n)=x_i.$$

Entonces e^i es \mathbb{R} -lineal (demostrarlo). Si

(4)
$$e_j = (0, \dots, 0, \underbrace{1}_{\text{lugar j}}, 0, \dots, 0)$$

entonces

$$e^{i}(e_{j}) = \begin{cases} 1, & \text{si } i = j, \\ 0 & \text{si } i \neq j. \end{cases}$$

En general, escribimos esto como $e^i(e_j) = \delta_{i,j}$.

Las funciones coordenadas e^i del Ejemplo 3.4 son suficientes para describir toda función lineal en V^* :

Teorema 3.5. Si $f: V \to \mathbb{R}$ es lineal, existen únicos $a_1, \ldots, a_n \in \mathbb{R}$ tales que

$$f = a_1 e^1 + \dots + a_n e^n.$$

Prueba. Si $v = (x_1, \ldots, x_n) \in \mathbb{R}^n$, entonces $v = x_1 e_1 + \cdots + x_n e_n$. Por lo tanto, si $f: V \to \mathbb{R}$ es lineal,

$$f(v) = x_1 f(e_1) + \dots + x_n f(e_n) = e^1(v) f(e_1) + \dots + e^n(v) f(e_n).$$

Es decir,

$$f = f(e_1)e^1 + \dots + f(e_n)e^n$$

y podemos tomar $a_i=f(e_i),\ 1\leq i\leq n.$ En cuento a la unicidad, si $f=a_1'e^1+\cdots+a_n'e^n,$ entonces

$$0 = f - f = (a_1 - a'_1)e^1 + \dots + (a_n - a'_n)e^n.$$

Si evaluamos en algún e_i , obtenemos

$$0 = a_i - a_i'$$

y así vemos que $a_i = a'_i$ y la escritura es única.

3.1. Funciones multilineales. Sea ahora $k \in \mathbb{N}$ y consideremos el producto cartesiano

$$V^k = \underbrace{V \times V \times \cdots \times V}_{k \text{ veces}}.$$

Definición 3.6. Una función $f: V^k \to \mathbb{R}$ se dice *multilineal*, o k-lineal si es lineal en cada coordenada: es decir si, para cada $i = 1, \ldots, k$ fijo y para cada elección de k-1 vectores $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k$, la función $f_i: V \to \mathbb{R}$ dada por

$$f_i(v) = f(v_1, \dots, v_{i-1}, v, v_{i+1}, \dots, v_k)$$

es \mathbb{R} -lineal.

Ejercicio 3.7. Sea $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dada por

$$f((x,y),(z,w)) = xw - zy.$$

Mostrar que f es 2-lineal.

3.2. El producto \otimes . Si $f: V^k \to \mathbb{R}$ y $g: V^\ell \to \mathbb{R}$ son funciones lineales, definimos la función $f \otimes g: V^{k+\ell} \to \mathbb{R}$ como

$$(5) (f \otimes g)(v_1, \dots, v_k, v_{k+1}, \dots, v_\ell) = f(v_1, \dots, v_k)g(v_{k+1}, \dots, v_\ell).$$

Ejemplo 3.8. Sean $f, g : \mathbb{R}^n \to \mathbb{R}$ dos funciones lineales.

Entonces $f \otimes g : V \times V \to \mathbb{R}$ es 2-lineal:

$$(f \otimes g)(v + cv', w) = f(v + cv')g(w) = f(v)g(w) + cf(v')g(w)$$
$$= (f \otimes g)(v, w) + c(f \otimes g)(v', w).$$

Idem
$$(f \otimes g)(v, w + cw') = (f \otimes g)(v, w) + c(f \otimes g)(v, w').$$

El Ejemplo 3.8 ilustra una propiedad general de \otimes , como vemos en el siguiente ejercicio.

Ejercicio 3.9. Sean $f: V^k \to \mathbb{R}$ k-lineal y $g: V^\ell \to \mathbb{R}$ ℓ -lineal. Probar que $f \otimes g$ es $k + \ell$ -lineal.

Teorema 3.10. Si $f: V^k \to \mathbb{R}$ es lineal, existen únicos escalares $a_{i_1,\dots,i_k} \in \mathbb{R}$, $1 \le i_1 < i_2 < \dots < i_k \le n$, tales que

$$f = \sum_{i_1, \dots, i_k} a_{i_1, \dots, i_k} e^{i_1} \otimes \dots \otimes e^{i_k}.$$

Prueba. En el Teorema 3.5 vimos el caso k=1. Si k>1 y $f:V^k\to\mathbb{R}$ es k-lineal, lo mismo vale en cada coordenada: si $v_i=(x_{1,i},\ldots,x_{n,i})\in\mathbb{R}^n$, $i=1,\ldots,k$, entonces

$$f(v_1, \dots, v_k) = f\left(\sum_{i_1=1}^n x_{i,1}e_{i_1}, \dots, \sum_{i_k=1}^n x_{i,k}e_{i_k}\right)$$

$$= \sum_{i_1, \dots, i_k} x_{i,1} \dots x_{i,k} f(e_{i_1}, \dots, e_{i_k})$$

$$= \sum_{i_1, \dots, i_k} e^{i_1}(v_1) \dots e^{i_k}(v_k) f(e_{i_1}, \dots, e_{i_k})$$

y así

$$f = \sum_{i_1, \dots, i_k} f(e_{i_1}, \dots, e_{i_k}) e^{i_1} \otimes \dots \otimes e^{i_k}$$

y vale el teorema con $a_{i_1,\dots,i_k}=f(e_{i_1},\dots,e_{i_k})$. La unicidad de estos coeficientes se sigue como en el Teorema 3.5, evaluando en $(e_{i_1},\dots e_{i_k})\in V^k$.

3.3. Funciones alternadas.

Definición 3.11. Una función k-lineal $f: V^k \to \mathbb{R}$ es alternada si

$$f(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_k) = -f(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k)$$

para todos los $v_1, \ldots, v_k \in V$.

Es decir, $f:V^k\to\mathbb{R}$ es alternada si al cambiar de lugar dos vectores cambia el signo de la función.

Ejercicio 3.12. Mostrar la función f del Ejercicio 3.7 es alternada.

Para cada $k \in \mathbb{N}$ definimos

$$\Lambda^k(V) = \{ f : V^k \to \mathbb{R} : f \text{ es } k\text{-lineal y alternada} \}.$$

Además, $\Lambda^0(V) = \mathbb{R}$. Notar que $f \in \Lambda^1(V)$ si y solo si es \mathbb{R} -lineal (no hay lugares que cambiar), en otras palabras $\Lambda^1(V) = V^*$.

Observación 3.13. Sea $f: V \times V \to R$ alternada. Entonces

$$f(v,v)=0$$
, para todo $v\in V$,

puesto que f(v, v) = -f(v, v) por definición.

Por otro lado, si $g: V \times V \to \mathbb{R}$ es lineal y cumple que g(v, v) = 0 para todo $v \in V$, entonces, para $v, w \in V$, tenemos que:

$$0 = g(v - w, v - w) = g(v, v) + g(w, w) - g(w, v) - g(v, w)$$

= $-g(w, v) - g(v, w)$.

Es decir, g(v, w) = -g(w, v). Por lo tanto g es alternada.

El resultado de la Observación 3.13 es una caracterización general de las funciones alternadas.

Proposición 3.14. Sea $f: V^k \to \mathbb{R}$ multilineal. Entonces $f \in \Lambda^k(V)$ si y solo si

$$f(v_1,\ldots,v_k)=0$$

siempre que existan $1 \le i \ne j \le n$ tales que $v_i = v_j$.

Prueba. Ejercicio. Notar que la implicación \Rightarrow es una consecuencia directa de la Definición 3.11. Para la otra implicación, usar que

$$0 = f(v_1, \ldots, v_i - v_j, \ldots, v_i - v_j, \ldots, v_k).$$

Podemos definir una suma y un producto por escalares en $\Lambda^k(V)$, via:

(6)
$$(f+g)(v_1, \dots, v_k) = f(v_1, \dots, v_k) + g(v_1, \dots, v_k),$$

$$(c \cdot f)(v_1, \dots, v_k) = cf(v_1, \dots, v_k).$$

para cada $f,g\in \Lambda^k(V)$ y $c\in \mathbb{R}$. Dejamos la comprobación de que están bien definidos como ejercicio:

Ejercicio 3.15. Sean $f, g \in \Lambda^k(V)$. Entonces $f + g \in \Lambda^k(V)$ y $c \cdot f \in \Lambda^k(V)$.

- 3.4. Construcción de funciones alternadas. Veremos dos caminos, relacionados entre sí, para obtener nuevos ejemplos de funciones alternadas, a partir de funciones multilineales.
- 3.4.1. El operador alt.

Observación3.16. Sea $f:V\times V\to\mathbb{R}$ una función 2-lineal, y sea

$$alt(f)(v_1, v_2) = \frac{1}{2} (f(v_1, v_2) - f(v_2, v_1)).$$

Entonces alt(f) es alternada.

Prueba. En efecto,
$$alt(f)(v,v) = 0$$
.

La Observación 3.16 es un caso particular de la siguiente definición general.

Definición 3.17. Sea $f: V^k \to \mathbb{R}$ una función multilineal. Se define otra función $alt(f): V^k \to \mathbb{R}$ via

(7)
$$\operatorname{alt}(f)(v_1, \dots, v_k) = \frac{1}{k!} \sum_{\sigma \in \mathbb{S}_*} \operatorname{sgn}(\sigma) f(v_{\sigma(1)}, \dots, v_{\sigma(k)}).$$

Aquí \mathbb{S}_k denota el conjunto de todas las permutaciones del conjunto $\mathbb{I}_k = \{1, \dots, k\}$, es decir

$$\mathbb{S}_k = \{ \sigma : \mathbb{I}_k \to \mathbb{I}_k | \sigma \text{ es biyectiva} \}.$$

A su vez, $sgn(\sigma) = \pm 1$ denota el signo de la permutación³.

Ejemplo 3.18. Sea $g: V \times V \times V \to \mathbb{R}$ una función 3-lineal, entonces

$$alt(g)(v_1, v_2, v_3) = g(v_1, v_2, v_3) - g(v_2, v_1, v_3) - g(v_3, v_2, v_1) - g(v_1, v_3, v_2) + g(v_2, v_3, v_1) + g(v_3, v_1, v_2).$$

Proposición 3.19. Sea $f: V^k \to \mathbb{R}$ k-lineal. Entonces $\operatorname{alt}(f) \in \Lambda^k(V)$. \square

Ejercicio~3.20. Demostrar la Proposición 3.19 en el caso k=3, para g como en el Ejemplo 3.18.

3.4.2. El producto \land . Vimos en el Ejercicio 3.15 que podemos sumar funciones multilineales y alternadas. También sabemos, de (5), que existe un producto \otimes entre funciones multineales. En general, si f y g son alternadas, el producto $f \otimes g$ no será alternado.

Ejercicio 3.21. Dar un ejemplo de dos funciones lineales (y por lo tanto alternadas) $f, g: V \to \mathbb{R}$ tales que $f \otimes g$ no sea alternada.

En esta sección veremos que, no obstante, podemos definir un producto $f \wedge g$ de manera tal que si $f \in \Lambda^k(V)$ y $g \in \Lambda^\ell(V)$, entonces $f \wedge g \in \Lambda^{k+\ell}(V)$.

Ejemplo 3.22. Sean $f,g:V\to\mathbb{R}$ funciones lineales. Entonces la función $f\wedge g:V\times V\to\mathbb{R}$ dada por

$$(f \wedge g)(v, w) = \frac{1}{2} \big(f(v)g(w) - f(w)g(v) \big),$$

es una función alternada.

Prueba. En efecto,
$$(f \wedge g)(v, v) = 0$$
.

Recordemos la definición del operador alt de (7) que transforma funciones lineales en funciones alternadas.

Definición 3.23. Sean $f \in \Lambda^k(V)$ y $g \in \Lambda^{\ell}(V)$. Entonces definimos

$$f \wedge g = \frac{k!\ell!}{(k+\ell)!} \operatorname{alt}(f \otimes g) \in \Lambda^{k+\ell}(V).$$

Es decir,

$$f \wedge g(v_1, \dots, v_{k+\ell}) = \frac{k!\ell!}{(k+\ell)!} \sum_{\sigma \in \mathbb{S}_{k+\ell}} \operatorname{sgn}(\sigma) f(v_{\sigma(1)}, \dots, v_{\sigma(k)}) g(v_{\sigma(k+1)}, \dots, v_{\sigma(k+\ell)}).$$

Se puede probar que el producto \wedge es asociativo. Es decir:

 $^{^3}$ Si escribimos la lista $(\sigma(1), \ldots, \sigma(k))$ y contamos la cantidad c de cambios de lugar que debemos hacer para obtener la lista ordenanada $(1, \ldots, k)$, entonces $\operatorname{sgn}(\sigma) = (-1)^c$.

Proposición 3.24. Sean $f \in \Lambda^k(V)$, $g \in \Lambda^\ell(V)$ y $h \in \Lambda^m(V)$. Entonces

$$(f \wedge g) \wedge h = f \wedge (g \wedge h) = \frac{k!\ell!m!}{(k+\ell+m)!} \operatorname{alt}(f \otimes g \otimes h).$$

Prueba. Ejercicio*.

Observación 3.25. Usted dirá:

¿Para qué multiplica por $\frac{k!\ell!}{(k+\ell)!}$ si ya $\operatorname{alt}(f\otimes g)\in\Lambda^{k+\ell}(V)$?

Veremos más adelante (Ejercicio 3.7) la conveniencia de ajustar el producto \wedge con este factor.

Teorema 3.26. Si $f \in \Lambda^k(V)$, existen únicos escalares $a_{i_1,...,i_k} \in \mathbb{R}$, $1 \le i_1 < i_2 < \cdots < i_k \le n$, tales que

$$f = \sum_{i_1, \dots, i_k} a_{i_1, \dots, i_k} e^{i_1} \wedge \dots \wedge e^{i_k}.$$

Es decir, el conjunto:

$$\{e^{i_1} \wedge \dots \wedge e^{i_k} | 1 \le i_1 < i_2 < \dots < i_k \le n\}$$

es una base de $\Lambda^k(V)$.

Ejercicio~3.27. Sea $f:\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$ como en el Ejercicio 3.7. Mostrar que $f=e^1\wedge e^2,$

donde $e^1, e^2: \mathbb{R}^2 \to \mathbb{R}$ son las funciones coordenadas del Ejemplo 3.4.

Corolario 3.28. $\Lambda^n(\mathbb{R}^n) = \mathbb{R} \cdot (e^1 \wedge \cdots \wedge e^n)$. Es decir, si f es n-lineal en \mathbb{R}^n , entonces existe un único escalar $a \in \mathbb{R}$ tal que

$$f = a e^1 \wedge \dots \wedge e^n.$$

Por otro lado, si m > n, $\Lambda^n(\mathbb{R}^n) = \{0\}$.

Ejercicio 3.29. Sean $1 \leq i_1 < \dots i_k \leq n$. Probar que

$$(e^{i_1} \wedge \cdots \wedge e^{i_k})(e_{i_1}, \ldots, e_{i_k}) = 1.$$

¿Cuánto valdría esta igualdad si el factor $\frac{k!\ell!}{(k+\ell)!}$ no apareciera en la definción del producto \wedge ? Recordar la Observación 3.25.

Ejercicio 3.30.

(1) Probar que

$$(e^1 \wedge \cdots \wedge e^n)(v_1, \dots, v_n) = \det(A)$$

donde A es la matriz $n \times n$ cuyas filas son los vectores v_1, \ldots, v_n .

(2) Sea A como en (1). Probar que

$$(e^{i_1} \wedge \cdots \wedge e^{i_k})(v_1, \dots, v_k) = \det(A_k)$$

donde A_k es la submatriz $k \times k$ obtenida de A seleccionando solo las k columnas i_1, \ldots, i_k .

Observación 3.31. Sea ω una n-forma en \mathbb{R}^n . Entonces ω separa a las distintas $bases^4 \{v_1, \ldots, v_n\}$ de \mathbb{R}^n entre aquellas para las que $\omega(v_1, \ldots, v_n) > 0$ y las que $\omega(v_1, \ldots, v_n) < 0$. Decimos que dos bases con el mismo signo tienen la misma orientación.

4. Formas diferenciales

Si $p \in \mathbb{R}^n$ es un punto dado, vamos a decir que *el espacio tangente* a \mathbb{R}^n en el punto p es el conjunto de vectores $v \in \mathbb{R}^n$ con origen en p. En otras palabras:

Definición 4.1. El espacio tangente a \mathbb{R}^n en el punto p, que denotamos \mathbb{R}_p^n , es el conjunto de los pares (v,p), con $v \in \mathbb{R}^n$. Este espacio tiene una suma y un producto por escalares heredado de estas mismas estructuras en \mathbb{R}^n , a saber:

$$(v, p) + (v', p) = (v + v', p),$$
 $a \cdot (v, p) = (a \cdot v, p)$

para todo $v, v' \in \mathbb{R}^n$, $a \in \mathbb{R}$.

En particular, para cada $p \in \mathbb{R}^n$ podemos considerar el conjunto de las funciones k-lineales y alternadas $\Lambda^k(\mathbb{R}^n_p)$.

Definición 4.2. Sea $A \subset \mathbb{R}^n$, $k \in \mathbb{N}$. Una k-forma diferencial en A es una función ω que asigna a cada punto $p \in A$ una función k-lineal y alternada $\omega(p) \in \Lambda^k(\mathbb{R}^n_p)$. Es decir,

$$\omega: A \to \bigsqcup_{p \in A} \Lambda^k(\mathbb{R}_p^n), \text{ con } \omega(p) \in \Lambda^k(\mathbb{R}_p^n).$$

En particular, una 0-forma es una función $f: A \to \mathbb{R}$.

Observación 4.3. Podemos "independizarnos" del punto p y considerar a una k-forma en A como una función $\omega: A \to \Lambda^k(\mathbb{R}^n)$ que asigna a cada punto $p \in A$ una función alternada $\omega(p): V^k \to \mathbb{R}$.

Ejemplo 4.4. Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función diferenciable, y sea $p \in A$. La derivada $Df(p) = (\frac{\partial f}{\partial x_1}(p), \dots, \frac{\partial f}{\partial x_n}(p))$ se identifica con una función $df: A \to \Lambda^1(\mathbb{R}^n)$, via

$$df(p)(v) = Df(p) \cdot v.$$

Consideremos el caso particular de las funciones coordenadas

$$x^i: A \to \mathbb{R}, \qquad p = (p_1, \dots, p_n) \mapsto p_i$$

para cada $i = 1, \ldots, n$. Notar que

$$Dx^{i}(p) = \left(\frac{\partial x^{i}}{\partial x_{1}}(p), \dots, \frac{\partial x^{i}}{\partial x_{n}}(p)\right) = (0, \dots, 0, \underbrace{1}_{\text{lugar } i}, 0, \dots, 0)$$

⁴Una base de \mathbb{R}^n es un conjunto $\{v_1,\ldots,v_n\}$ tal que la matriz A cuyas filas son los vectores v_1,\ldots,v_n cumple det $A\neq 0$. Esto permite escribir cualquier $v\in\mathbb{R}^n$ de manera única como $v=c_1v_1+\cdots+c_nv_n$, con $c_i\in\mathbb{R}$.

y por lo tanto, si $v = (x_1, \dots, x_n) \in \mathbb{R}_p^n$ tenemos que

$$dx^{i}(p)(v,p) = Dx^{i}(p) \cdot v = (0, \dots, 1, \dots, 0) \cdot v = x_{i}.$$

Es decir, que las 1-formas $dx^i(p)$ coinciden en $\Lambda^1(\mathbb{R}_p^n)$ con las funciones e^i definidas en el Ejemplo 3.4.

Ahora, como $df(p) \in \Lambda^1(V) = V^*$ para cada $p \in A$, el Teorema 3.5 implica que para cada p existen escalares $(df)_1(p), \ldots, (df)_n(p)$ tales que $df(p) = (df)_1(p)dx^1 + \cdots + (df)_n(p)dx^n$. En otras palabras, esto define funciones $(df)_1, \ldots, (df)_n : A \to \mathbb{R}$ tales que $df = (df)_1 dx^1 + \cdots + (df)_n dx^n$. Estas funciones son bien conocidas, como indica el siguiente lema.

Lema 4.5. Sea $f: A \to \mathbb{R}$, entonces

$$df = \frac{\partial f}{\partial x^1} dx^1 + \dots + \frac{\partial f}{\partial x^n} dx^n.$$

Prueba. En efecto, recordar que si $v=(x_1,\ldots,x_n)\in\mathbb{R}_p^n$, entonces $dx^i(p)(v,p)=x_i$. Así:

$$df(p)(v,p) = Df(p)(v) = \left(\frac{\partial f}{\partial x^1}(p), \dots, \frac{\partial f}{\partial x^n}(p)\right) \cdot (x_1, \dots, x_n)$$

$$= \frac{\partial f}{\partial x^1}(p)x_1 + \dots + \frac{\partial f}{\partial x^n}(p)x_n$$

$$= \frac{\partial f}{\partial x^1}(p)dx^1(p)(v,p) + \dots + \frac{\partial f}{\partial x^n}(p)dx^n(p)(v,p),$$

para todo $p \in A$ y todo $(v, p) \in \mathbb{R}_p^n$. Esto muestra el lema.

Así, el Teorema 3.26 puede escribirse en este contexto como:

Teorema 4.6. Si ω es una k-forma en A, existen únicos escalares $\omega_{i_1,\dots,i_k}(p) \in \mathbb{R}$, $1 \leq i_1 < i_2 < \dots < i_k \leq n$, tales que

$$\omega(p) = \sum_{i_1, \dots, i_k} \omega_{i_1, \dots, i_k}(p) dx^{i_1}(p) \wedge \dots \wedge dx^{i_k}(p).$$

Es decir, el conjunto:

$$\{dx^{i_1}(p) \wedge \dots \wedge dx^{i_k}(p) | 1 \le i_1 < i_2 < \dots < i_k \le n\}$$

es una base de $\Lambda^k(\mathbb{R}_p^n)$.

En particular, dada una k-forma ω en A, ésta define funciones

$$\omega_{i_1,\ldots,i_k}:A\to\mathbb{R}$$

para cada $1 \le i_1 < i_2 < \dots < i_k \le n$. Vamos a escribir dx^i en lugar de $dx^i(p)$ cuando el punto p esté claro por el contexto. Así, escribimos

$$\omega = \sum_{i_1, \dots, i_k} \omega_{i_1, \dots, i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}.$$

Definición 4.7. Una k-forma $\omega : A \to \mathbb{R}$ se dice diferenciable si las funciones $\omega_{i_1,\dots,i_k} : A \to \mathbb{R}$ lo son, para todo $1 \le i_1 < i_2 < \dots < i_k \le n$.

El Corolario 3.28 establece que, si ω es una n-forma en $A \subset \mathbb{R}^n$, entonces existe una única función $g: A \to \mathbb{R}$ tal que $\omega = g dx^1 \wedge \cdots \wedge dx^n$.

5. El diferencial d

En lo que sigue, las k-formas que consideraremos serán diferenciales, sin explicitarlo. Es decir, a partir de ahora para nosotros "k-forma" significa "k-forma diferencial".

Si $f: A \to \mathbb{R}$ es una función, en otras palabras, una 0-forma, entonces hemos visto que podemos definir una 1-forma $df: A \to \mathbb{R}$.

En esta sección veremos como extender esto a un operador más general $d: \Lambda^k(\mathbb{R}_p^n) \to \Lambda^{k+1}(\mathbb{R}_p^n)$, que tranforme k-formas en k+1-formas.

Comenzamos con una definición general:

Definición 5.1. Sea $\omega = \sum_{i_1,\dots,i_k} \omega_{i_1,\dots,i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}$ una k-forma. Entonces

$$d\omega = \sum_{i_1,\dots,i_k} (d\omega_{i_1,\dots,i_k}) dx^{i_1} \wedge \dots \wedge dx^{i_k}$$
$$= \sum_{j=1}^n \sum_{i_1,\dots,i_k} \frac{\partial \omega_{i_1,\dots,i_k}}{\partial x^j} dx^j \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}.$$

Es decir, aplicamos d a las 1-formas ω_{i_1,\dots,i_k} , $1 \le i_1 < i_2 < \dots < i_k \le n$. El operador d tiene algunas propiedades interesantes:

Proposición 5.2.

- (1) Es lineal: $d(\omega + \omega') = d\omega + d\omega'$
- (2) Es (casi) multiplicativo: si ω es una k-forma y ω es una ℓ -forma:

$$d(\omega \wedge \omega') = d\omega \wedge \omega' + (-1)^{k\ell} \omega \wedge d\omega'.$$

Prueba. (1) es una consecuencia de la linealidad de la derivada, por la definición de d.

Para ver (2), notemos que la formula es válida si $\omega = dx^{i_1} \wedge \cdots \wedge dx^{i_k}$ y $\omega' = dx^{j_1} \wedge \cdots \wedge dx^{j_\ell}$, ya que $d(\omega \wedge \omega') = 0 = d\omega \wedge \omega' + (-1)^{k\ell} \omega \wedge d\omega'$. Si $\omega = f$ es una forma de orden 0 y $\omega' = gdx^{i_1} \wedge \cdots \wedge dx^{i_\ell}$, entonces $\omega \wedge \omega' = fgdx^{i_1} \wedge \cdots \wedge dx^{i_\ell}$ y

$$d(fgdx^{i_1} \wedge \dots \wedge dx^{i_\ell}) = d(fg)dx^{i_1} \wedge \dots \wedge dx^{i_\ell}$$

$$= d(f)gdx^{i_1} \wedge \dots \wedge dx^{i_k} + fd(g)dx^{i_1} \wedge \dots \wedge dx^{i_\ell}$$

$$= d(\omega) \wedge \omega' + (-1)^{0 \cdot \ell} \omega \wedge d(\omega'),$$

utilizando la regla de la derivada de un producto de funciones. El caso general ahora puede verse utilizando este hecho y (1).

Teorema 5.3. Sea ω una ℓ -formal diferencial. Entonces $d(d\omega) = 0$. En otras palabras $d^2 = 0$.

Prueba. Basta verlo para ω de la forma $\omega = f dx^{i_1} \wedge \cdots \wedge dx^{i_\ell}$, usando la Proposición 5.2 (1) para el caso general. El resultado se sigue del hecho de que las derivadas cruzadas de una función C^{∞} son iguales, es decir:

$$\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right).$$

En efecto, tenemos que

$$d(d\omega) = d\left(\sum_{j=1}^{n} \frac{\partial f}{\partial x^{j}} dx^{j} \wedge dx^{i_{1}} \wedge \dots \wedge dx^{i_{k}}\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial}{\partial x_{i}} \left(\frac{\partial f}{\partial x^{j}}\right) dx^{i} \wedge dx^{j} \wedge dx^{i_{1}} \wedge \dots \wedge dx^{i_{k}}$$

$$= \sum_{i< j=1}^{n} \left[\frac{\partial}{\partial x_{i}} \left(\frac{\partial f}{\partial x^{j}}\right) - \frac{\partial}{\partial x_{j}} \left(\frac{\partial f}{\partial x^{i}}\right)\right] dx^{i} \wedge dx^{j} \wedge dx^{i_{1}} \wedge \dots \wedge dx^{i_{k}}$$

$$= 0$$

usando que $dx^i \wedge dx^i = 0$ y $dx^i \wedge dx^j = -dx^j \wedge dx^i$.

5.1. f^* . Extendamos el Ejemplo 4.4 a un caso más general.

 $\begin{array}{l} \textit{Observaci\'on 5.4. Sea} \ f : \mathbb{R}^n \to \mathbb{R}^m \ \text{una funci\'on } C^\infty, \ \text{y sea} \ p \in A. \ \text{La} \\ \text{derivada} \ Df(p) = \left(\frac{\partial f^i}{\partial x_j}(p)\right)_{\substack{1 \leq i \leq m, \\ 1 \leq j \leq n}} \text{es una matriz } m \times n \ \text{que se identifica con} \\ \text{una trasformaci\'on lineal } Df(p) : \mathbb{R}^n \to \mathbb{R}^m \text{:} \end{array}$

$$Df(p)(v) = Df(p) \cdot v.$$

A su vez, podemos definir entonces una aplicación $f^*: \Lambda^k(\mathbb{R}^m_{f(p)}) \to \Lambda^k(\mathbb{R}^n_p)$, $\omega \mapsto f^*\omega$, donde $(f^*(\omega))(p) = f^*(\omega(p))$. Concretamente,

(8)
$$(f^*(\omega))(p)(v_1,\ldots,v_k) = \omega(f(p))(Df(p)\cdot v_1,\ldots,Df(p)\cdot v_k).$$

Teorema 5.5. Si $f: \mathbb{R}^n \to \mathbb{R}^m$ es diferenciable, entonces

(1)
$$f^*(dx^i) = \sum_{j=1}^n \frac{\partial f^i}{\partial x^j} dx^j = df^i$$
.

- (2) $f^*(\omega + \omega') = f^*\omega + f^*\omega'$.
- $(3) \ f^*(g \cdot \omega) = (g \circ f) \cdot f^*\omega.$
- $(4) f^*(\omega \wedge \omega') = f^*\omega \wedge f^*\omega'.$

Prueba. (1) Si $(v, p) \in \mathbb{R}_p^n$, $v = (x_1, \dots, x_n)$, entonces

$$f^*(dx^i)(v,p) = dx^i(f(p))(Df(p) \cdot v)$$

$$= dx^i(f(p))(\sum_j \frac{\partial f^1}{\partial x^j}(p) \cdot x_j, \dots, \sum_j \frac{\partial f^m}{\partial x^j}(p) \cdot x_j)$$

$$= \sum_j \frac{\partial f^i}{\partial x^j}(p) \cdot x_j = \sum_j \frac{\partial f^i}{\partial x^j}(p) \cdot dx^j(p)(v).$$

La última igualdad se sigue del Lema 4.5.

$$(2), (3), (4)$$
: Ejercicio.

Observación 5.6. Sea $f: \mathbb{R}^n \to \mathbb{R}^n$ una función diferenciable y Df la matriz

$$Df = \left(\frac{\partial f^i}{\partial x^j}\right)_{i,j}.$$

El Teorema 5.5 implica que

(9)
$$f^*(dx^1 \wedge \dots \wedge dx^n) = \det(Df)dx^1 \wedge \dots \wedge dx^n.$$

Veamos el caso n = 2, si $f = (f^1, f^2)$, entonces

$$\begin{split} f^*(dx^1 \wedge dx^2) &= f^*(dx^1) \wedge f^*(dx^2) \\ &= \left(\frac{\partial f^1}{\partial x^1} dx^1 + \frac{\partial f^1}{\partial x^2} dx^2\right) \wedge \left(\frac{\partial f^2}{\partial x^1} dx^1 + \frac{\partial f^2}{\partial x^2} dx^2\right) \\ &= \frac{\partial f^1}{\partial x^1} dx^1 \wedge \frac{\partial f^2}{\partial x^2} dx^2 + \frac{\partial f^1}{\partial x^2} dx^2 \wedge \frac{\partial f^2}{\partial x^1} dx^1 \\ &= \left(\frac{\partial f^1}{\partial x^1} \frac{\partial f^2}{\partial x^2} - \frac{\partial f^1}{\partial x^2} \frac{\partial f^2}{\partial x^1}\right) dx^1 \wedge dx^2 \\ &= \det \left(\frac{\partial f^1}{\partial x^1} \frac{\partial f^1}{\partial x^2} - \frac{\partial f^1}{\partial x^2} \frac{\partial f^2}{\partial x^2}\right) dx^1 \wedge dx^2. \end{split}$$

Recordar que $dx^i \wedge dx^j = -dx^j \wedge dx^i$ y así $dx^i \wedge dx^i = 0$.

Ejercicio 5.7.

- (1) Probar el caso general en la Observación 5.6, es decir, que vale (9).
- (2) Mostrar que si $h: \mathbb{R}^n \to \mathbb{R}$, entonces

$$f^*(h dx^1 \wedge \cdots \wedge dx^n) = (h \circ f) \cdot \det(Df) dx^1 \wedge \cdots \wedge dx^n.$$

La siguiente propiedad será de gran utilidad.

Teorema 5.8. Si $f: \mathbb{R}^n \to \mathbb{R}^m$ es diferenciable, entonces

(10)
$$f^*(d\omega) = d(f^*\omega).$$

Prueba. Es claro para una forma de orden 0. También, si $\omega = dx^i$, entonces $d(dx^i) = 0$ y así $f^*(d\omega) = 0$. Por otro lado,

$$d(f^*dx^i) = d(d(f^i)) = 0$$

Luego procedemos inductivamente: si la afirmación es válida para una k-forma, $k \geq 0$, basta probarla ahora para una k + 1-forma del tipo $\omega \wedge dx^i$, donde ω es una k-forma. Tenemos que

$$f^*(d(\omega \wedge dx^i)) = f^*(d\omega \wedge dx^i + (-1)^k \omega \wedge d(dx^i))$$
$$= f^*(d\omega \wedge dx^i) = f^*(d\omega) \wedge f^*(dx^i)$$
$$= d(f^*\omega \wedge f^*(dx^i))$$
$$= d(f^*(\omega \wedge dx^i)).$$

Esto muestra el teorema.

Ejercicio 5.9. Sean $f: \mathbb{R}^n \to \mathbb{R}^m$ y $g: \mathbb{R}^m \to \mathbb{R}^\ell$ dos funciones diferenciables y ω una k-forma en $A \subset \mathbb{R}^\ell$. Mostrar que $f^*(g^*\omega) = (g \circ f)^*\omega$.

6. Integración en cadenas

Fijemos k > 0 y sea ω una k-forma en $I = [0, 1]^k$. Entonces

$$\omega = f dx^1 \wedge \cdots \wedge dx^k$$

para alguna $f:I\to\mathbb{R},$ por el Teorema 4.6.

Definimos la integral de ω sobre I como:

$$\int_{I} \omega = \int_{0}^{1} \cdots \int_{0}^{1} f(x^{1}, \dots, x^{k}) dx^{1} \dots dx^{k}.$$

Si, más generalmente, ω es un
ak-formaen A y $c:I\to A$ es un
 k-cubo,se define

$$\int_{c} \omega = \int_{I} c^* \omega.$$

Si k=0, recordemos que $\omega=f:A\to\mathbb{R}$ es una función y un 0-cubo $c:\{0\}\to A$ se corresponde con la elección de un punto $p=c(0)\in A$. Definimos

$$\int_{\mathcal{C}} \omega = f(p).$$

Finalmente, si $c = \sum_{i} \lambda_{i} c_{i}$ es una k-cadena, definimos

$$\int_{c} \omega = \sum_{i} \lambda_{i} \int_{c_{i}} \omega.$$

Definición 6.1. Decimos que una k-cadena $c:[0,1]^k\to A$ es diferenciable si existe un entorno abierto U de $[0,1]^k$ y una función diferenciable $C:U\to A$ tal que $C_{[0,1]^k}=c$.

6.1. Ejemplos.

Ejemplo 6.2. Sea $A \subset \mathbb{R}^2$ un conjunto abierto y sea $\gamma \subset A$ una curva suave. Entonces existe un 1-cubo diferenciable $c:[0,1] \to \mathbb{R}^2$, c(t)=(x(t),y(t)) de modo que $c([0,1])=\gamma$. Una 1-forma ω es una combinación $\omega(x,y)=f(x,y)dx+g(x,y)dy$ para dos funciones $f,g:A\to\mathbb{R}$. Entonces

$$\int_{c} \omega = \int_{0}^{1} f(x(t), y(t))x'(t)dt + \int_{0}^{1} g(x(t), y(t))y'(t)dt.$$

Tomemos $c(t)=(t,t^2),\, f(x,y)=0$ y $g(x,y)=y^3.$ Entonces

$$\int_{C} \omega = 2 \int_{0}^{1} (t^{2})^{3} t dt = 2 \int_{0}^{1} t^{7} dt = \frac{1}{4}.$$

Ejemplo 6.3 (La integral de línea). Sean $\gamma \subset \mathbb{R}^2$, $c:[0,1] \to \mathbb{R}^2$ como en el Ejemplo 6.2. Supongamos que $c'(t)=(x'(t),y'(t))\neq (0,0)$ para todo $t\in [0,1]$ y consideremos la 1-forma $ds:\gamma \to \mathbb{R}$ dada por

(11)
$$ds(p) = \frac{x'(t)}{\sqrt{x'(t)^2 + y'(t)^2}} dx + \frac{y'(t)}{\sqrt{x'(t)^2 + y'(t)^2}} dy, \ p = c(t).$$

Sea $f: \gamma \to \mathbb{R}$ una función diferenciable, entonces fds es una 1-forma en γ . Se define la integral de línea de f sobre γ como

$$\oint_{\gamma} f ds = \int_{c} f ds.$$

Es decir,

$$\oint_{\gamma} f ds = \int_{0}^{1} f(x(t), y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} dt.$$

Si f=1, entonces $\oint_{\gamma} f ds$ =longitud de γ . Si $c(t)=(t,t^2)$ como en el Ejemplo 6.2, γ es el arco de la parábola $y=x^2$ para $x\in[0,1]$ y

$$\oint_{\gamma} ds = \int_{0}^{1} \sqrt{1 + 2t} dt = \frac{2}{6} (1 + 2t)^{3/2} \Big|_{0}^{1} = \frac{2}{6} (3\sqrt{3} - 1)$$

determina su longitud.

Ejemplo 6.4 (La integral de superficie). Sea $S \subset \mathbb{R}^3$ una superficie, imagen de un 2-cubo diferenciable c(s,t) = (x(s,t),y(s,t),z(s,t)). Sean

$$c_s(s,t) = \left(\frac{\partial x}{\partial s}(s,t), \frac{\partial y}{\partial s}(s,t), \frac{\partial z}{\partial s}(s,t)\right),$$
$$c_t(s,t) = \left(\frac{\partial x}{\partial t}(s,t), \frac{\partial y}{\partial t}(s,t), \frac{\partial z}{\partial t}(s,t)\right)$$

y $n(s,t) = c_s(s,t) \times c_t(s,t) = (n^1(s,t), n^2(s,t), n^3(s,t))$. Entonces

$$dS(p) = N^{1}(s,t)dxdy + N^{2}(s,t)dydz + N^{3}(s,t)dxdz, \ p = c(s,t).$$

define una 2-forma en S, para

$$N^{i}(s,t) = \frac{n^{i}(s,t)}{\sqrt{n^{1}(s,t)^{2} + n^{2}(s,t)^{2} + n^{3}(s,t)^{2}}}, \ i = 1, 2, 3.$$

Sea $f:S\to\mathbb{R}$ una función diferenciable. La integral de superficie de f sobre S es la integral

$$\oint_{S} f dS = \int_{c} f dS$$

Si f = 1, entonces $\oint_S f dS =$ área de S.

7. EL TEOREMA DE STOKES

El siguiente teorema conecta el diferencial d que transforma k-1-formas en k-formas y el operador de frontera ∂ que transforma k-cadenas en k-1-cadenas.

Teorema 7.1. Sea ω una k-1-forma en A y sea c una k-cadena diferenciable en A. Entonces

$$\int_{c} d\omega = \int_{\partial c} \omega.$$

Prueba. Comenzamos con el caso $c = I^k$. Queremos ver que

(12)
$$\int_{I^k} d\omega = \int_{\partial I^k} \omega$$

Podemos suponer que

$$\omega = f dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^k$$

ya que una k-forma general es una suma de k-formas de este tipo.

Analicemos el término $\int_{\partial c} \omega$. Recordemos la definición de ∂I^k y notemos que, para $\alpha = 0, 1$:

$$(I_{j,\alpha}^k)^* (f dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots dx^k)$$

$$= f(x^1, \dots, \underbrace{\alpha}_{\text{lugar } j}, \dots, x^k) (I_{j,\alpha}^k)^* (dx^1) \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge (I_{j,\alpha}^k)^* (dx^k)$$

Recordar que

$$I_{j,\alpha}^k(x^1,\ldots,\widehat{x^j},\ldots,x^k) = (x^1,\ldots,\underbrace{\alpha}_{\text{lugar }j},\ldots,x^k)$$

y así

$$\left(I_{j,\alpha}^k\right)^*(dx^\ell) = \begin{cases} 0, & j = \ell \\ dx^\ell, & j \neq \ell, \end{cases}$$

En efecto, $\left(I_{j,\alpha}^k\right)^*(dx^j)=d(I_{j,\alpha}^k)^j=0$ ya que la coordenada j de $I_{j,\alpha}^k$ es constante $(=\alpha)$. Por otro lado, si $\ell\neq j$, $\left(I_{j,\alpha}^k\right)^*(dx^\ell)=dx^\ell$ ya que la coordenanda ℓ de $I_{j,\alpha}^k$ es x^ℓ .

Tenemos entonces que

$$\int_{[0,1]^{k-1}} \left(I_{j,\alpha}^k \right)^* (f dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots dx^k)$$

$$= \begin{cases} 0, & j \neq i \\ \int_{[0,1]^k} f(x^1, \dots, \alpha, \dots, x^k) dx^1 \dots dx^k, & j = i, \end{cases}$$

Así.

$$\begin{split} & \int_{\partial I^k} f dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots dx^k \\ & = \sum_{j=1}^k \sum_{\alpha = 0, 1} (-1)^{i + \alpha} \left(\int_{[0, 1]^{k-1}} \left(I_{j, \alpha}^k \right)^* \left(f dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots dx^k \right) \right) \\ & = (-1)^{i+1} \int_{[0, 1]^k} \left(f(x^1, \dots, 1, \dots, x^k) - f(x^1, \dots, 0, \dots, x^k) \right) dx^1 \dots dx^k. \end{split}$$

Ahora analizamos el término $\int_{\mathcal{C}} d\omega$. Primero,

$$d\omega = \frac{\partial f}{\partial x^i} dx^i \wedge dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots dx^k$$
$$= (-1)^{i-1} \frac{\partial f}{\partial x^i} dx^1 \wedge \dots \wedge dx^k$$

ya que los otros términos de df se anulan. Ahora, usando el $Teorema\ de\ Fubini^5$:

$$\int_{I^{k}} d\omega = (-1)^{i-1} \int_{0}^{1} \cdots \int_{0}^{1} \left(\int_{0}^{1} \frac{\partial f}{\partial x^{i}} dx^{i} \right) dx^{1} \dots \widehat{dx^{i}} \dots dx^{k}
= (-1)^{i-1} \int_{0}^{1} \cdots \int_{0}^{1} f(x^{1}, \dots, x^{i-1}, 1, x^{i+1}, \dots, x^{k}) dx^{1} \dots \widehat{dx^{i}} \dots dx^{k}
- (-1)^{i-1} \int_{0}^{1} \cdots \int_{0}^{1} f(x^{1}, \dots, x^{i-1}, 0, x^{i+1}, \dots, x^{k}) dx^{1} \dots \widehat{dx^{i}} \dots dx^{k}
= (-1)^{i+1} \int_{[0,1]^{k}} \left(f(x^{1}, \dots, 1, \dots, x^{k}) - f(x^{1}, \dots, 0, \dots, x^{k}) \right) dx^{1} \dots dx^{k}
= \int_{\partial I^{k}} \omega$$

usando la Regla de Barrow y $\int_0^1 dx^i = 1$.

Para el caso general, notar que si c es un k-cubo, entonces

(13)
$$\int_{\partial c} \omega = \int_{co\partial I^k} \omega = \int_{\partial I^k} c^* \omega,$$

usando el Ejercicio 5.9. Entonces

$$\int_c d\omega \stackrel{\text{def}}{=} \int_{I^k} c^*(d\omega) \stackrel{(10)}{=} \int_{I^k} d(c^*\omega) \stackrel{(12)}{=} \int_{\partial I^k} c^*\omega \stackrel{(13)}{=} \int_{\partial c} \omega.$$

⁵Si $f:[a,b]\times[c,d]\to\mathbb{R}$ es continua, entonces

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy.$$

7.1. Algunas consecuencias.

Teorema 7.2 (Teorema de Green). Sea $M \subset \mathbb{R}^2$ la región encerrada por una curva diferenciable $\gamma:[0,1] \to \mathbb{R}^2$. Sean $\alpha, \beta: M \to \mathbb{R}$ dos funciones diferenciables. Entonces

$$\int_{\gamma} \alpha(x,y)dx + \beta(x,y)dy = \int_{M} \left(\frac{\partial \beta}{\partial x}(x,y) - \frac{\partial \alpha}{\partial y}(x,y) \right) dxdy.$$

Prueba. La función $\omega = \alpha dx + \beta dy$ es una 1-forma en $\gamma = \partial M$ que satisface

$$d\omega = d\alpha dx + d\beta dy = \frac{\partial \alpha}{\partial y} dy \wedge dx + \frac{\partial \beta}{\partial x} dx \wedge dy$$
$$= -\frac{\partial \alpha}{\partial y} dx \wedge dy + \frac{\partial \beta}{\partial x} dx \wedge dy$$

y así el teorema es una consecuencia del Teorema 7.1.

Si $M\subset\mathbb{R}^2$, entonces el área de M puede calcularse como $\int_M dxdy$. El Teorema de Stokes nos da una alternativa.

Corolario 7.3. Sea $M \subset \mathbb{R}^2$ la región encerrada por una curva diferenciable $\gamma: [0,1] \to \mathbb{R}^2$. Entonces el área de M está dada por

$$\int_{\gamma} x dy.$$

Prueba. Tomamos $\alpha(x,y) = 0$ y $\beta(x,y) = x$ en el Teorema de Green. \square

Ejemplo 7.4. Sea $D \subset \mathbb{R}^2$ el disco de radio R. Sabemos que $\partial D = c_1(t)$ donde

$$c_1(t) = (R\cos(2\pi t), R\sin(2\pi t)),$$
 $c_0(t) = (0,0);$ $t \in [0,1].$

Entonces

$$\int_{c_1} x dy = 2\pi \int_0^1 R^2 \cos^2(2\pi t) dt = 2\pi R^2 \left(\frac{1}{2}t + \frac{1}{4}\sin(2t)\right) \Big|_0^1 = \pi R^2,$$

lo cual coincide con el área de D.