Gandhar Kulkarni (mmat2304)

1

- 1. This statement is true. Take any vector space V, which necessarily has a Hamel basis, trivially the entire space is a basis. Then for a choice of basis (b_n) we have for all $x \in V$, $x = \sum k_i b_i$, where the sum is finite. Then define $||x|| := \max\{|k_i|\}$. See that this fulfills the definition of a norm.
- 2. This statement is false. For sake of contradiction, let $(X, ||\cdot||)$ be a normed linear space such that the induced metric is the discrete metric. Then for $x, y \in X, x \neq y$ we must have ||x-y|| = 1. Note that $2x \neq 2y$, so we must have ||2x-2y|| = 2||x-y|| = 2, but by the discrete metric the answer should still be 1! Thus there can be no such norm.

2

We wish to show that the function $||\cdot||$ on X satisfies the triangle inequality iff the closed unit ball is convex. Assume that the function $||\cdot||$ is indeed a norm. Then let $x, y \in D$, the closed unit ball. Then $||x||, ||y|| \le 1$. Now we have for $\alpha \in [0, 1]$ $z = \alpha x + (1 - \alpha)y$. See that

$$||z|| = ||\alpha x + (1 - \alpha)y|| \le \alpha ||x|| + (1 - \alpha)||y|| \le \alpha \cdot 1 + (1 - \alpha) \cdot 1 \le 1,$$

thus we have $z \in D$.

Take two elements $x, y \in X$ both non-zero, since if either were zero the inequality would be trivial. Then

$$||x+y|| = (||x|| + ||y||) \cdot \left| \left| \alpha \frac{x}{||x||} + (1-\alpha) \frac{y}{||y||} \right| \right|,$$

where $\alpha = \frac{||x||}{||x||+||y||}$. Note that $\frac{x}{||x||} = \frac{y}{||y||} = 1$, thus we can use the convexity condition to see that $\frac{||x+y||}{||x||+||y||} \le 1$, which is the triangle inequality.

3

1. Pick a $f \in C([a,b])$. Then $|f| \leq M = \sup\{|f(x)| : x \in [a,b]\}$. Now see that

$$\int_{a}^{b} |f(t)|^{p} dt \le (b-a)M^{p} \ge 0.$$

Thus $||f||_p \ge 0$. For f = 0, we have M = 0, so $\int_a^b |0|^p dt = 0$. If $\int_a^b |f(t)|^p dt = 0$, then see that $0 \le (b-a)M^p \ge 0$. Thus we must have

$$(b-a)M^p = 0 \implies M = 0 \implies f = 0.$$

To see the next axiom, for $\alpha \in \mathbb{K}$, we have $\int_a^b |\alpha f(t)|^p dt = \int_a^b |\alpha|^p |f(t)|^p dt$. Then

$$||\alpha f||_p = \left(|\alpha|^p \int_a^b |f(t)|^p dt \right)^{\frac{1}{p}} = |\alpha| ||f||_p.$$

Now let $f, g \in C[a, b]$. Then we have to prove Minkowski's inequality to show the triangle inequality.

$$\begin{split} ||f+g||_p^p &= \int_a^b |f+g|^p dx \\ &= \int_a^b |f+g| \cdot |f+g|^{p-1} dx \\ &\leq \int_a^b |f| |f+g|^{p-1} dx + \int_a^b |g| |f+g|^{p-1} dx \\ &\leq \left(\int_a^b |f|^p dx + \int_a^b |g|^p dx \right) \left(\int_a^b |f+g|^{(p-1)\frac{p}{p-1}} dx \right)^{1-\frac{1}{p}} \text{ (H\"older's inequality)} \\ &= (||f||_p + ||g||_p) \frac{||f+g||_p^p}{||f+g||_p}, \end{split}$$

which yields the required result.

2. We consider (f_n) , which is a Cauchy sequence of L^p functions. Take a subsequence of functions (f_{n_i}) where $||f_{n_i} - f_{n_{i+1}}||_p < 2^{-i}$. Now define $g_n(x) = \sum_{i=1}^n |f_{n_i} - f_{n_{i+1}}|$ and $g(x) = \sum_{i=1}^\infty |f_{n_i} - f_{n_{i+1}}|$. Using the triangle triangle inequality, we have $||g_n||_p \le 1$. By Fatou's lemma, we have

$$\int_{a}^{b} \liminf_{n} g_{n} \leq \liminf_{n} \int_{a}^{b} g_{n}.$$

We must have g_n converges almost everywhere on X. We let $f(x) = \liminf_n f_{n_i}(x)$ for almost $x \in X$, where the function 0 wherever the pointwise limit does not exist. Then we claim that this is the limit. For $\varepsilon > 0$, take N such that $||f_m - f_n||_p < \varepsilon$. By Fatou's lemma, we have

$$\int_{a}^{b} |f - f_n|^p \le \liminf_{n} \int_{a}^{b} |f_{n_i} - f_n|^p \le \varepsilon^p,$$

which means $f \in L^p$ and $(f_n) \to f$.

4

1. $||f_1 - F||_{\infty}$ is to be found, where F is the subspace of constant functions. Unfolding the term, we get

$$||f_1 - F||_{\infty} = \inf_{c \in \mathbb{R}} \{ \sup_{t \in [0,1]} |t - c| \},$$

which for $c \in [-1,0] \cup [1,2]$ is 1, while in (0,1) it decreases to $\frac{1}{2}$ then goes back up to 1. Thus, we must have $||f_1 - F||_{\infty} = \frac{1}{2}$.

2. We want to now see the distance between $f_2=t^2$ and G, the space of all polynomials with degree at most 1. Then for some polynomial $-ax-b\in G$, we want to see $\inf_{a,b\in\mathbb{R}}\sup_{t\in[0,1]}\{|t^2+ax+b|\}$. See that we have $\sup_{t\in[0,1]}|t^2-t+1/8|=\frac{1}{8}$. This is an upper bound. See that by varying a, we translate it along the x-axis. We can vary b, which gives us translation in the y-axis. Note that to minimise the maximum value of $|t^2+at+b|$ we must have the value of the polynomial at $t=0, t=1, t=\frac{-a}{2}$ be the same. Then we take the polynomial to be symmetric about $t=\frac{1}{2}$. For this, a=-1. Now we have $|t^2-t+b|$, which attains a critical value at $t=\frac{1}{2}$, that is $|b-\frac{1}{4}|$. Thus we have $|b|=|b-\frac{1}{4}|$. A solution is $b=\frac{1}{8}$. See that the this then must indeed be $||t^2-G||$.

5

Let Y and X/Y be Banach spaces. Then take (x_n) to be a Cauchy sequence in X. That is, for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for $m, n \geq N$ we have

$$||x_m - x_n|| < \varepsilon.$$

Consider the canonical projection $p: X \to X/Y$. Its kernel is Y. The sequence (x_n) sent to X/Y is also Cauchy, as $||(x_m - x_n) + Y|| \le ||x_m - x_n|| < \varepsilon$. This must converge to some coset K in X/Y, since X/Yis Banach. Now pick an element y_n such that $||(x_m - x_n) + y_n|| < \varepsilon$. Then this sequence (y_n) is Cauchy since $||y_m - y_n|| < ||(x_n - y_n) - (x_m - y_m)|| < \varepsilon$. Then we have that $y_n \to y$, where $y \in Y$. Now we propose that there is an element in X that is K + y, where K is of the form x + Y. Then we say that $x \in x + Y + y$ is the limit of (x_n) . Note that Y contains -y, so the element in x + Y that corresponds to $-y \in Y$ is our choice of X. See that $x_n + Y \to x + Y$, and $y_n \to y$, by setting -y instead of Y and adding the two convergent sequences in X we get our desired result.

Let X and X/Y be Banach spaces. Then take (y_n) , a Cauchy sequence in Y. Thus for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for $m, n \geq N$, we have $||y_m - y_n|| < \varepsilon$. As a Cauchy sequence in X, this must converge to some element $y_0 \in X$. We now need to show that $y_0 \in Y$. But since Y is closed and y_0 is a limit point, we must have $y_0 \in Y$.

Let X and Y be Banach spaces. Take (x_n) as a sequence in X such that $(x_n + Y)$ is Cauchy. Then pick $\varepsilon > 0$. Then there is a $N \in \mathbb{N}$ such that for $m, n \geq N ||(x_m - x_n) + Y|| < \varepsilon$. See that $||x_m - x_n|| \le ||(x_m - x_n) + y|| + ||y||$. Since the expression on the left is independent of y, then we can set $||(x_m - x_n) + y||$ to $||(x_m - x_n) + Y||$, and ||y|| to 0, as $0 \in Y$. Then we have $||x_m - x_n|| < \varepsilon$, which means that (x_n) is Cauchy. Then since X is Banach, we have $x_n \to x$. Then we propose that x + Y is the limit of $(x_n + Y)$. See that $||(x_n + Y) - (x + Y)|| = ||(x_n - x) + Y|| = \inf_{y \in Y} \{||(x_n - x) + y||\}$. Then, for any choice of $y \in Y$, we have

$$||(x_n - x) + Y|| \le ||(x_n - x) + y||.$$

Then for y = 0, we have

$$||(x_n - x) + Y|| \le ||x_n - x|| < \varepsilon,$$

which implies that X/Y is Banach.

6

Assume that X is a Banach space. Let (x_n) be an absolutely convergent series in X, that is, $\sum_{i=1}^n ||x_i||$ converges to $c \in \mathbb{R}$ as $n \to \infty$. Thus $s_n = \sum_{i=1}^n x_i$, so for any $\varepsilon > 0$ there is some $N \in \mathbb{N}$ such that for $n \geq N$, we have $\sum_{i=N}^{\infty} ||x_i|| < \varepsilon$. Now we have $||s_n - s_m|| \leq \sum_{i=n+1}^m ||x_i|| < \varepsilon$. Since (s_n) is Cauchy, it must converge to some value $s \in X$. Thus this sequence converges.

For the converse, take a Cauchy sequence (x_n) . For $k \in \mathbb{N}$ pick $n_k \in \mathbb{N}$ such that for $m, n \geq n_k$, we have $||x_m - x_n|| < 2^{-k}$. In particular, $||x_{n_{k+1}} - x_{n_k}|| < 2^{-k}$. Let $y_1 = x_{n_1}$, and $y_n = x_{n_{k+1}} - x_{n_k}$. From this, it follows that $\sum ||y_n|| \le ||x_{n_1}|| + 1$, thus this sequence is absolutely convergent. From this, see that this series must converge. Thus $\sum_{i=1}^{\infty} y_n = \lim_{n \to \infty} x_n$ is defined, hence the space X is Banach.

7

Let ℓ^p be the space of all p-power summable sequences. Then $||(x_n)|| = (\sum_{i=1}^{\infty} |x_i|^p)^{\frac{1}{p}}$. Now we want to show that the space $K = \{(x_n) \in \ell^p : x_i = 0 \forall i > n, n \in \mathbb{N}\}$ is dense in ℓ^p . Take any $(x_n)_{n \in \mathbb{N}}^{(0)} \in \ell^p$. There is a sequence of elements in $\ell^p(x_n)^{(m)} \subseteq K$ such that $x_n^{(m)} = x_n$ if $n \leq m$, and 0 otherwise. See that $||(x_n)^{(m)} - (x_n)^{(0)}||_p = \left(\sum_{i=m+1}^{\infty} |x_i|^p\right)^{\frac{1}{p}}$. Since $||(x_n)^{(m)}||_p \to ||(x_n)^{(0)}||_p$ as $m \to \infty$, we must have for a choice of $\varepsilon > 0$ there being $N \in \mathbb{N}$ such that for $m \ge N$, $|||(x_n)^{(m)}||_p - ||(x_n)^{(0)}||_p| < \varepsilon$. Multiplying on both sides by $\frac{||(x_n)^{(m)}||_p^p - ||(x_n)^{(0)}||_p^p}{||(x_n)^{(m)}||_p - ||(x_n)^{(0)}||_p}$, and after a change in the value of ε , we get

$$||(x_n)^{(m)}||_p^p - ||(x_n)^{(0)}||_p^p < \varepsilon.$$

Thus we have shown that K is dense in ℓ^p . For a fixed m, and a fixed n, look at $x_n^{(m)}$. This is a real number or a complex number, which can be approximated by a sequence of rationals (or elements of $\mathbb{Q}(i)$) such that $x_n^{(m)}$ is its limit. Now we have a sequence (t_k) , where $t_k \to x_n^{(m)}$ as $k \to \infty$. Now let us see that $K' = \{(x_n) \in K : x_n \in \mathbb{Q} \text{ or } \mathbb{Q}(i)\} \subset K$ is countable, and as we saw above must

be dense in ℓ^p . Thus it is separable.

8

We first show that ℓ^{∞} is not separable. Take the space K of all sequences in ℓ^{∞} such that their entries are either 0 or 1. Then for $x \neq y \in K$, we have $||x_y||_{\infty} = 1$, since at least one entry is different between the two. Then we have uncountably points. consider a ball of radius $\frac{1}{2}$ centred at $x \in K$, for all such points in K. We know what uncountably many open sets, all of which are disjoint from each other. Let S be a possibly dense set. Then we have that each open ball contains at least one point of S. This then means that there must be uncountably many elements, so ℓ^{∞} .

If there was a Schauder basis for ℓ^{∞} , then for all $x \in \ell^{\infty}$ we would have a sequence $(a_1, a_2, ...)$ described using the basis. We can approximate each term by a sequence of elements in \mathbb{Q} or $\mathbb{Q}(i)$, which would then mean that we would have all the rational points of ℓ^{∞} as a dense subset, which contradicts the fact that the space is not separable. Thus there can be no Schauder basis.

9

We want to see if this function is continuous. Pick a $x_0 \in \mathbb{R}$. Now for all $\varepsilon > 0$ have $f(z_0 + h) - f(z_0) = f(h)$. See that f(2) = 2f(1), $f(0) = 2f(0) \Longrightarrow f(0) = 0$, and that $f(0) = 0 = f(1) + f(-1) \Longrightarrow f(-1) = -f(1)$. Thus f(n) = nf(1) for all $n \in \mathbb{Z}$. We know that $f(1) = f\left(n\frac{1}{n}\right) \Longrightarrow f\left(\frac{1}{n}\right) = \frac{1}{n}f(1)$. Thus we have f(q) = qf(1) for all $q \in \mathbb{Q}$. Since any real number can be approximated by a sequence of rationals, we can easily see that for $q_n \to r$ and $n \to \infty$, we have $f(q_n) = q_n f(1) \to rf(1)$. Thus we can extend this to all real numbers. Now we have $|f(z_0 + h) - f(z_0)| = |hf(1)| < \varepsilon$, for a choice of $h = \frac{\varepsilon}{|f(1)|}$.

10

Let P([0,1]) be the space of all real polynomials defined on [0,1] be a real vector space. Let the norm of a polynomial $f(x) = a_0 + a_1 x + \dots + a_n x^n \in P([0,1])$ be given thus: $||f|| = |a_0| + |a_1| + \dots + |a_n|$. Now see that the operator $I: P([0,1]) \to P([0,1])$ such that $x^t \mapsto \frac{x^{t+1}}{t+1}$, we then see that

$$||I|| = \sup_{0 \neq x \in P([0,1])} \frac{||If||}{||f||} = \frac{a_0 x + \dots \frac{a_n}{n+1} a_{n+1}}{a_0 + \dots + a_n x^n} = \frac{|a_0| + \left|\frac{a_1}{2}\right| + \dots + \left|\frac{a_n}{n+1}\right|}{|a_0| + \dots + |a_n|} \le 1.$$

Also see that this supremum is indeed attained since $I(a_0) = a_0 x$, and in this case $\frac{||I(a_0)||}{||a_0||} = 1$. Thus we have ||I|| = 1. We wish to find the inverse of this operator, see that the differential operator D such that $x^t \mapsto tx^{t-1}$, is the required inverse. However, see that for $f(x) = x^n$, we have $Df = I^{-1}f = nx^{n-1}$. Now we have

$$||D|| = \sup_{0 \neq x \in P([0,1])} \frac{||Df||}{||f||} \ge \frac{||Dx^n||}{||x^n||} = \frac{n}{1}.$$

Thus we have that our operator D is unbounded, since for any chosen $N \in \mathbb{N}$ we can choose x^{N+1} , such that $\frac{||Dx^{N+1}||}{||x^{N+1}||}$ is larger.

11

Since the linear functional $f: X \to \mathbb{R}$ is unbounded, we have a sequence (x_n) such that $f(x_n) > n||x_n||$. We can say without loss of generality, and by discarding non-zero elements, we have a sequence (x_n) of norm 1. Pick $x \in X$. Then see that the sequence $z_n = x - \frac{f(x)}{f(x_n)}x_n$, which is clearly in K, the kernel of f. Also it can be seen that as $n \to \infty$, we have $||z_n|| \le$

12

For X is finite dimensional, we take $r_n = 1 - \frac{1}{n}$, and let $Y \subseteq Z$ be two closed subspaces of X. Then we have by Riesz lemma (z_n) such that $||z_n|| = 1$, and $||z_n - Y|| \ge r_n$. Then note that $r_n \to 1$, since (z_n) is on the closed sphere in a finite dimensional linear space which is compact, there is a convergent subsequence whose limit is on the sphere, while the distance of this limit must be 1! Let z be that convergent point

for the subsequence $(z_{n_i})_{i\in\mathbb{N}}$. Then for $\varepsilon=\frac{1}{n_i}>0$ we have $||z_{n_i}-z||<\frac{1}{n_i}$, and $|r_{n_i}-1|<\frac{1}{n_i}$, which means that for finite dimensional linear spaces the Riesz lemma holds for r=1.