CSI 4133 - Lab 04

Colour based object detection

Contents

Introduction to

- Hue colour-correspondence experiment
- Colour-based object detection

Hue colour-correspodence experiment

Procedure

- Load image (folder "images")
- Convert image from RGB space into HSV space
- Isolate pixels with a specific hue value
 - · Use a track bar to set the Hue value H v
 - · Use loops to get all the H,S,V values
 - If (H_current != H_v)
 - Then set H_current, S_current, V_current = 0
- Convert the image containing the isolated pixels from HSV space to RGB space
- Visualize the results

Hue colour-correspodence experiment

Analysis

- Change the Hue value using the track bar to find the min_H and max_H for the
 - · Yellow-Green square (fifth column, second row)
 - · Violet square (fourth column, second row)
 - · Red square (third column, third row)

Colour-based object detection

Procedure

- Get the appropriate Hue value/ranges for the yellow-green square/violet square/red square from <u>Hue colour-</u> <u>correspondence experiment</u>
- Generate the colour masks and refine the colour masks using
 - Erode function
 - Dilate function
 - · Pay attention to the size of the kernel elements

Colour-based object detection

Procedure

- Isolate the yellow-green square, the violate square, and the red square in the grid (create a track bar to select among Yellow_Green(0), Violet(1), and Red(2))
- Show the isolated pixels (in their original colour RGB) in a window
- Show the isolated pixels (as a binary mask of all the detected pixels) in a window

Task

Goal: Experiment to see which hue-values correspond to which visible-spectrum colours in OpenCV.

Idea:

- 1.Load Image (folder "images").
- 2.Convert Image from RGB space into HSV space.
- 3.Isolate pixels with a specific hue value.
- 4.Convert the image containing the isolated pixels from HSV space back into RGB space.
- 5. Visualize the result.

Hints:

- · Your solution may require you to process each pixel individually.
- · When displaying your results, use a window named "Processed Hue" (it is integrated with a track bar associated with the 'hue' variable)

Hints:

- · Your solution may require you to process each pixel individually.
- · When displaying your results, use a window named "Processed Hue" (it is integrated with a track bar associated with the 'hue' variable)

Examples: The HSV image (Picture3.png)

Examples: Different Hue Values

Idea:

- 1. Yellow-Green object detection.
- 2. Violet object detection.
- 3. Red object detection.

Hints:

- · Use Part A's solution to help you pick appropriate hue values/ranges.
- · Generate colour masks for different colours.
- · Some creativity may be required in getting rid of the noise.

Examples: Original RGB Image

Examples: Yellow-Green and Violet object detection results (left: colour masks, right: colour detection results)

Examples: Yellow-Green and Violet object detection results (left: colour masks, right: colour detection results)

Task

Please submit a **lab report**, **source code**, and **screenshots** of your results. Due date is October 14th, at 11:59pm

END

THANK YOU