第一章 反常积分

1.1 反常积分的概念

定义 1.1.1: 反常积分的定义

• 无穷区间上反常积分的概念与敛散性

设 F(x) 是 f(x) 在相应区间上的一个原函数:

1.

$$\int_{a}^{+\infty} f(x) dx = \lim_{x \to +\infty} F(x) - F(a)$$

若上述极限存在,则称反常积分收敛,否则称发散

2.

$$\int_{-\infty}^b f(x)\mathrm{d}x = F(b) - \lim_{x \to -\infty} F(x)$$

若上述极限存在,则称反常积分收敛,否则称发散

3.

$$\int_{-\infty}^{+\infty} f(x) \mathrm{d}x = \int_{-\infty}^{x_0} f(x) \mathrm{d}x + \int_{x_0}^{+\infty} f(x) \mathrm{d}x$$

若右端两个积分都收敛^a,则称反常积分收敛,否则称发散

• 无界函数的反常积分的概念与敛散性

定义 1.1.2: 瑕点的定义

使 f(x) 在 x_0 的邻域内无界的点即为瑕点, 例如: $\lim_{x\to 0}\frac{1}{x}=\infty, x=0$ 为函数的瑕点.

设 F(x) 是 f(x) 在相应区间上的一个原函数, x_0 为 f(x) 的瑕点.

1. 若 x = a 是唯一瑕点, 则

$$\int_{a}^{b} f(x) \mathrm{d}x = F(b) - \lim_{x \to a^{+}} F(x)$$

若上述极限存在,则称反常积分收敛,否则称发散. b

2. 若 x = b 是唯一瑕点, 则

$$\int_a^b f(x) \mathrm{d}x = \lim_{x \to b^-} F(x) - F(a)$$

若上述极限存在,则称反常积分收敛,否则称发散.

3. 若 $x = c \in (a, b)$ 是唯一瑕点, 则

$$\int_a^b f(x) \mathrm{d}x = \int_a^c f(x) \mathrm{d}x + \int_c^b f(x) \mathrm{d}x ,$$

若右端两个积分都收敛,则称反常积分收敛,否则称发散.

注 1.1.1: 敛散性的判定

- 无穷区间
 - 1. 比较判别法 a : 设函数 f(x), g(x) 在区间 $[a, +\infty)$ 上连续, 并且 $0 \le f(x) \le g(x) (a \le x < +\infty)$, 则
 - 当 $\int_{a}^{+\infty} g(x)dx$ 收敛时, $\int_{a}^{+\infty} f(x)dx$ 收敛
 - 当 $\int_a^{+\infty} f(x)dx$ 发散时, $\int_a^{+\infty} g(x)dx$ 发散
 - 2. 比较判别法的极限形式 b : 设函数 f(x),g(x) 在区间 $[a,+\infty)$ 上连续,且 $f(x)\geqslant 0,g(x)>0$, $\lim_{x\to+\infty}\frac{f(x)}{g(x)}=\lambda$ (有限或 ∞),则
 - 当 $\lambda \neq 0$ 且 $\lambda \neq \infty$ 时 $, \int_a^{+\infty} f(x) \mathrm{d}x$ 与 $\int_a^{+\infty} g(x) \mathrm{d}x$ 有相同的敛散性
 - 当 $\lambda = 0$ 时, 若 $\int_a^{+\infty} g(x) dx$ 收敛, 则 $\int_a^{+\infty} f(x) dx$ 也收敛
 - 当 $\lambda = \infty$ 时, 若 $\int_a^{+\infty} g(x) dx$ 发散, 则 $\int_a^{+\infty} f(x) dx$ 也发散
- 无界函数

[&]quot;两个积分必须都收敛, 不能使用不存在 + 不存在 = 存在

 $^{^{}b}$ 前面定积分章节,要求 $\int_{a}^{b}f(x)dx$ 存在的必要条件是 f(x) 有界,但是此处似乎无界,也可使积分存在,似乎矛盾,需要注意的是,两者的积分不一样,前面要求有界的是黎曼积分,而此次可以无界的是反常积分,二者不同.

第一章 反常积分 3

1. 比较判别法: 设 f(x), g(x) 在 (a,b] 上连续, 瑕点同为 x=a, 并且 $0 \leqslant f(x) \leqslant g(x) (a < x \leqslant b)$, 则

- 当 $\int_a^b g(x)dx$ 收敛时, $\int_a^b f(x)dx$ 收敛
- 当 $\int_a^b f(x)dx$ 发散时, $\int_a^b g(x)dx$ 发散
- 2. 比较判别法的极限形式: 设 f(x), g(x) 在 (a,b] 上连续, 瑕点同为 x=a, 并且 $f(x) \geqslant 0, g(x) > 0$ $0(a < x \leqslant b), \lim_{x \to a^+} \frac{f(x)}{g(x)} = \lambda (有限或 \infty), 则$
 - 当 $\lambda \neq 0$ 且 $\lambda \neq \infty$ 时, $\int_a^b f(x) dx$ 和 $\int_a^b g(x) dx$ 有相同的敛散性
 - 当 $\lambda = 0$ 时, 若 $\int_a^b g(x) dx$ 收敛, 则 $\int_a^b f(x) dx$ 也收敛
 - 当 $\lambda = \infty$ 时, 若 $\int_a^b g(x) dx$ 发散, 则 $\int_a^b f(x) dx$ 也发散

结论 1.1.1: 两个重要结论

1.
$$\int_0^1 \frac{1}{x^p} dx$$
 { 收敛, $0 发散, $p \ge 1$$

由于
$$x \to 0$$
 时, 存在 $\sin x \sim \dots \sim x$, 因此有 $\int_0^1 \frac{1}{\sin x^p} dx \begin{cases}$ 收敛, $0 , 凡是与 x 趋于 0 的 发散, $p \ge 1$$

"速度"一样的函数 f(x) 均可如上讨论

度"一样, 当
$$ax + b \ge k > 0$$
 时, $\int_{1}^{+\infty} \frac{1}{(ax+b)^{p}} dx$ 依然满足
$$\begin{cases} \psi \otimes, \ p > 1, \\ \xi \otimes, \ p \le 1. \end{cases}$$

[&]quot;可通过不等式放缩来证明

^b通过等价无穷小求极限来判断

第一章 反常积分 4

1.2 反常积分的计算

结论 1.2.1

// TODO