Math 118A Theorems and Definitions

Brandon Su

December 2024

Chapter 1: Topology in Metric Space

Definition: Let X be a set, a metric $d: X \times X \to \mathbb{R}$ is a map satisfying the following properties:

- 1. Non-negativity: d(x,y) > 0 if $x,y \in X$ and $x \neq y$. d(x,x) = 0 for all $x \in X$.
- 2. Symmetry: d(x, y) = d(y, x).
- 3. Triangle Inequality: $d(x, z) \leq d(x, y) + d(y, z)$ for all $x, y, z \in X$.

Then, (X, d) is a metric space.

Example:

- 1. Euclidean metric space: Let $X = \mathbb{R}$ and d(x, y) = |x y|.
 - d(x,y) > 0 for all $x,y \in \mathbb{R}$ and d(x,x) = |x-x| = 0
 - d(x,y) = |x y| = |y x| = d(y,x)
 - $d(x,z) = |x-z| = |(x-y) + (y-z)| \le |x-y| + |y-z| = d(x,y) + d(y,z)$
- 2. Let X be an infinite set. Define $d: X \times X \to \mathbb{R}$ by d(x,y) = 1 if $x \neq y$ and d(x,y) = 0 if x = y. Then (X, d) is a metric space.

Definition: Let (X, d) be a metric space, let $a \in X$ and r > 0. Define the ball centered at a with radius r > 0 to be

$$B(a,r) = \{ x \in X : d(x,a) < r \}$$

B(a,r) is also said to be a neighborhood of a.

Example: $X = \mathbb{R}$ and d(x, y) = |x - y|, so

$$B(a,r) = \{x \in \mathbb{R}, |x-a| < r\}$$

$$= \{x \in \mathbb{R}, -r \le x - a \le r\}$$

$$= \{x \in \mathbb{R}, -r + a \le x \le r + a\}$$

$$= (a - r, a + r)$$

Definition: Let (X, d) be a metric space,

1. Set $O \subseteq X$ is said to be open if for every $a \in O$, there is a neighborhood B(a,r) of a such that $B(a,r) \subseteq O$.

- 2. $F \subseteq X$ is said to be closed if F^{\complement} is open.
- 3. A set $E \subseteq X$ is said to be bounded if there is $a \in E$ and M > 0 s.t. $d(x, a) \leq M$ for all $x \in E$.
- 4. A point $a \in X$ is said to be a limit point of E if every neighborhood of a intersects E in a point different from a.
- 5. Let $E \subseteq X$, define E' to be the set of limit points of E, then the closure of E is

$$\overline{E} = E \cup E'$$

Example: $X = \mathbb{R}$ and d(x, y) = |x - y|, so

$$B(a,r) = \{x \in \mathbb{R}, |x-a| < r\}$$

$$= \{x \in \mathbb{R}, -r \le x - a \le r\}$$

$$= \{x \in \mathbb{R}, -r + a \le x \le r + a\}$$

$$= (a - r, a + r)$$

Theorem: Let (X, d) be a metric space,

- 1. Let \mathcal{F} be a collection of open subsets of X, then $\bigcup_{E \in \mathcal{F}}$ is open.
- 2. Let E_1, E_2, \ldots, E_N be open sets in X. Then $E_1 \cap E_2 \cap \cdots \cap E_N$ is open.
- 3. Let \mathcal{F} be a collection of closed sets in X, then $\bigcap_{E \in \mathcal{F}}$ is closed.
- 4. Let E_1, E_2, \ldots, E_N be closed sets in X. Then $E_1 \cup E_2 \cup \cdots \cup E_N$ is closed.

Theorem: Let (X, d) be a metric space, let $a \in X$ and r > 0,

- 1. B(a,r) is open.
- 2. $\overline{B(a,r)} \subseteq \{x \in X : d(a,r) \le r\}.$

Theorem: Let (X, d) be a metric space, let $E \subseteq X$,

- 1. \overline{E} is closed.
- 2. E is closed $\iff E = \overline{E}$
- 3. \overline{E} is the smallest set containing E, in other words, if F is a closed set, s.t. $E \subseteq F$, then $\overline{E} \subseteq F$.

Definition: Let (X, d) be a metric space, let $E \subseteq X$, a family S of open sets is said to be an open cover of E if $E \subseteq \bigcup_{B \in S} B$. A subcover of E is a subfamily of S that is also an open cover of E. E is said to be compact if every open cover of E has a finite subcover.

Example:

$$(\mathbb{R}, |x-y|)$$

• The interval (0,1) is not compact. Look at:

$$S = \left\{ \left(\frac{1}{n}, 1\right) : n \in \mathbb{N} \right\}$$

Note that S is an open cover of (0,1) but it does not have a finite subcover, we cannot have finite

$$\left(\frac{1}{n_1},1\right)\cup\left(\frac{1}{n_2},1\right)\cup\cdots\cup\left(\frac{1}{n_k},1\right)$$

because eventually there will be some part of (0,1) that cannot be covered.

Heine-Borel Theorem: Let $X = \mathbb{R}^d$ and d(x, y) = |x - y|. Let $E \subseteq X$, then E is compact if and only if E is closed and bounded.

Theorem: Let (X, d) be a metric space, if E is a compact subset of X, then E is closed and bounded.

Chapter 2: Sequences and Series

0.1 Sequences in Metric Space

Definition: Let (X, d) be a metric space, let (a_n) be a sequence in X. We say that (a_n) converges to $a \in X$, if for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ s.t.

$$n \ge N \Longrightarrow d(a_n, a) < \varepsilon.$$

Theorem: Let (X, d) be a metric space, let (a_n) be a sequence in X.

- 1. Let $a \in X$, then (a_n) converges to $a \iff$ every neighborhood of a contains all but finitely many terms of a.
- 2. If $a_1, a_2 \in X$ and (a_n) converges to a_1 and a_2 , then $a_1 = a_2$. [Show that $d(a_1, a_2) = 0 \iff d(a_1, a_2) < \varepsilon$ for any $\varepsilon > 0$.]
- 3. If (a_n) converges to a, then (a_n) is bounded.
- 4. If $E \subseteq X$ and a is a limit point of E, then there is a sequence (a_n) in E s.t. $a_n \xrightarrow{n \to \infty} a$.

Theorem: Let (a_n) and (b_n) be sequences of real numbers converge to $a \in \mathbb{R}$ and $b \in \mathbb{R}$ respectively.

- 1. $(a_n + b_n)$ converges to a + b.
- 2. (a_nb_n) converges to ab.
- 3. $\left(\frac{1}{a_n}\right)$ converges to $\frac{1}{a}$ provided that $a_n \neq 0$ for all $n \in \mathbb{N}$ and $a \neq 0$.

Theorem: Let (a_n) be a sequences in \mathbb{R} s.t. (a_n) is increasing and bounded from above, then (a_n) converges to

$$a = \sup_{n \in \mathbb{N}} a_n \in \mathbb{R}.$$

Corollary: Let (a_n) be a sequences in \mathbb{R} s.t. (a_n) is decreasing and bounded from below, then (a_n) converges to

$$a = \inf_{n \in \mathbb{N}} a_n \in \mathbb{R}.$$

0.2 Subsequences in Metric Space

Definition: Let (X,d) be a metric space, let $(a_n) \subseteq X$. Consider a sequence of positive integers s.t. $n_1 < n_2 < \ldots$. Then (a_{n_k}) is called a subsequence of (a_n) . If (a_{n_k}) converges, its limit is called a subsequential limit

$$(a_n): a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, \dots$$

 $(a_{2n}): a_2, a_4, a_6, a_8, \dots n_k \ge k$
 $a_{n_1}, a_{n_2}, a_{n_3}, a_{n_4}, \dots$

Theorem: Let (X,d) be metric space, let $(a_n) \subseteq X$, then $a_n \xrightarrow{n \to \infty} a \in X \iff$ every subsequence of (a_n) converge to a.

Theorem: Let (X, d) be a compact metric space, let $(a_n) \subseteq X$. Then (a_n) has a subsequence that converges to some $a \in X$.

Corollary (Bolzano - Weierstrass): Every bounded sequence in \mathbb{R}^d has a convergent subsequence.

Theorem: Let (X, d) be metric space, let $(a_n) \subseteq X$. Denote by S the set of subsequential limits of (a_n) , then S is closed.

Definition: Let $(a_n) \subseteq \mathbb{R}$, we say that (a_n) diverges to ∞ if for all M > 0, there exists $N \in \mathbb{N}$ such that

$$n \ge N \Longrightarrow a_n > M$$

and diverges to $-\infty$ if for all M < 0, there exists $N \in \mathbb{N}$ such that

$$n \ge N \Longrightarrow a_n < M$$

Definition: Let $(a_n) \subseteq \mathbb{R}$, let S be the set of subsequential limits. Define $\limsup a_n$ to be the supremum of S and $\liminf a_n$ to be the infimum of S.

Theorem: Let $(a_n) \subseteq \mathbb{R}$, let S be the set of subsequential limits. Then

- 1. $\limsup a_n \in S$ and $\liminf a_n \in S$.
- 2. (a_n) converges to $a \in \mathbb{R}$ if and only if $S = \{a\}$.

Lemma: Let $(a_n) \subseteq \mathbb{R}$,

- 1. If (a_n) is bounded, (a_n) has a subsequence converging to $a \in \mathbb{R}$. (BW)
- 2. If (a_n) is unbounded above, (a_n) has a subsequence diverging to ∞ .
- 3. If (a_n) is unbounded below, (a_n) has a subsequence diverging to $-\infty$.

0.3 Cauchy Sequences in Metric Spaces

Definition: Let (X, d) be a metric space, and $(a_n) \subseteq X$, (a_n) is said to be Cauchy if for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ s.t. $m, n \geq N \Longrightarrow d(a_m, a_n) < \varepsilon$.

Theorem: Let (X, d) be a metric space, and $(a_n) \subseteq X$.

1. If (a_n) converges, then (a_n) is Cauchy.

- 2. If X is compact and (a_n) is Cauchy, then (a_n) converges to some $a \in X$.
- 3. If $X \in \mathbb{R}^n$, then (a_n) converges \iff (a_n) is Cauchy.

Definition: A metric space (X, d) is said to be complete if every Cauchy sequence in X converges to some $a \in X$.

Example: Let X = (0,1) and d(x,y) = |x-y|. Note that $\frac{1}{n}$ is Cauchy but does not converge to an element in X. It converges to 0, but $0 \notin X$.

Theorem: Let (X, d) be a complete metric space, and E is a closed subset of X, then (E, d) is complete.

0.4 Series

Definition: Let (a_n) be a sequence in \mathbb{R} . Define the sequence of partial sums $S_n = \sum_{k=1}^n a_k$, if $S_n \to S$, we say that the series converges and we write $S = \sum_{n=1}^{\infty} a_n$.

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
:

Lemma: Let $(a_n) \subseteq \mathbb{R}$, then (a_n) is Cauchy $\iff \exists N_0 \in \mathbb{N}$ such that $m, n \geq N_0 \implies |a_m - a_{n-1}| \leq \varepsilon$.

Cauchy Criterion: Let $(a_n) \subseteq \mathbb{R}$, then $\sum_{n=1}^{\infty} a_n$ converges \iff for all $\varepsilon > 0$, $\exists N \in \mathbb{N}$ such that $m \ge n \ge N \Longrightarrow \left| \sum_{k=n}^{\infty} a_k \right| < \varepsilon$

Corollary: Let $(a_n) \subseteq \mathbb{R}$, we say that $\sum_{n=1}^{\infty} a_n$ converges absolutely if $\left|\sum_{n=1}^{\infty} a_n\right|$ converges. If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} a_n$ converges.

Theorem: Let $(a_n) \subseteq \mathbb{R}$, if $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$.

Comparison Test: Let $(a_n) \in \mathbb{R}$,

- 1. Suppose $|a_n| \leq c_n$ for all $n \in \mathbb{N}$, and $\sum_{n=1}^{\infty} c_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- 2. Suppose $a_n \geq d_n \geq 0$ for all $n \in \mathbb{N}$, and $\sum_{n=1}^{\infty} d_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem:

1. If $0 \le x \le 1$, then $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$, if $x \ge 1$, the series diverges.

2. If p > 1, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges, if $p \le 1$, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges.

Lemma: Let $(a_n) \subseteq \mathbb{R}$, let $S = \limsup a_n$, let $\alpha > S$, then there exists $N \in \mathbb{N}$ such that $n \geq N \Longrightarrow a_n \leq \alpha$.

Root Test: Let $(a_n) \in \mathbb{R}$, let $\alpha = \limsup |a_n|^{\frac{1}{n}}$,

- 1. If $\alpha < 1$, then $\sum_{n=1}^{\infty} a_n$ converges.
- 2. If $\alpha > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.
- 3. When $\alpha = 1$, the result is inconclusive.

Ratio Test: Let $(a_n) \in \mathbb{R}$, let $\beta = \limsup \frac{|a_{n+1}|}{|a_n|}$,

- 1. If $\beta < 1$, then $\sum_{n=1}^{\infty} a_n$ converges.
- 2. If $\left|\frac{a_{n+1}}{a_n}\right| > 1$ for all integers n, then $\sum_{n=1}^{\infty} a_n$ diverges.

Definition: Let $(a_n) \subseteq \mathbb{R}$, the series $\sum_{n=0}^{\infty} a_n x^n$ is a power series, it is a function.

Theorem: Let $(a_n) \subseteq \mathbb{R}$, let $R = \frac{1}{\limsup |a_n|^{\frac{1}{n}}}$, then $\sum_{n=0}^{\infty} a_n x^n$ converges if |x| < R and diverges if |x| > R.

Chapter 3: Continuity

01. Continuity in Metric Spaces

Definition: Let (X, d_X) and (Y, d_Y) be metric spaces, let $E \subset X$. A function $f : E \to Y$ is said to be continuous at (fixed) $x_0 \in E$ if for each $\varepsilon > 0$, there is $\delta > 0$ such that $\underset{d_X(x,x_0)<\delta}{x} \in E \Longrightarrow d_Y(f(x),f(x_0)) < \varepsilon$.

Theorem: Let (X, d_X) and (Y, d_Y) be metric spaces, let $E \subseteq X$, let function $f : E \to Y$ be continuous at $a \in E$. Then for every sequence $(a_n) \subseteq E$ converging to $a \in E$, we have $\lim_{n \to \infty} d_Y(f(a_n), f(a)) = 0$.

Theorem: Let (X, d_X) and (Y, d_Y) be metric spaces, let $E \subseteq X$. A function $f : E \to Y$ is continuous on $E \iff f^{-1}(O)$ is open in E for every open set O in Y.

Theorem: Let (X, d_X) and (Y, d_Y) be metric spaces, let $E \subseteq X$, let $f : E \to Y$ be a continuous function. If E is compact, then f(E) is compact.

Corollary: Let (X, d) be a metric space, let $E \subseteq X$ be an nonempty compact subset of X. Let $f: E \to \mathbb{R}$ be continuous. Then f attains its max and min of E.

02. Uniform Continuity in Metric Spaces

Definition: Let (X, d_X) and (Y, d_Y) be metric spaces, let $E \subset X$, a function $f : E \to Y$ is said to be uniformly continuous on E if for each $\varepsilon > 0$, there is $\delta > 0$ such that

$$d_X(x,y) < \delta \Longrightarrow d_Y(f(x),f(y)) < \varepsilon.$$

(for every $x, y \in E$).

Theorem: Let (X, d_X) and (Y, d_Y) be metric spaces, let $E \subset X$ and $f : E \to Y$ be uniformly continuous. If (a_n) is Cauchy in E, then $(f(a_n))$ is Cauchy in Y. It is useful to prove a function isn't continuous.

Theorem: Let (X, d_X) and (Y, d_Y) be metric spaces, let $E \subset X$ be compact. Let $f : E \to Y$ be a function. Then, f is continuous on $E \iff f$ is uniformly continuous on E.

03. Continuity and Connectedness

Definition: Let (X, d) be a metric space, let $A, B \subset X$. A and B are said to be separated if $A \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$. A set E is said to be connected if E is not the union of 2 non-empty separated sets.

Theorem: Let (X, d_X) and (Y, d_Y) be metric spaces, and $f: x \to Y$ be continuous. If $E \subseteq X$ is connected, then f(E) is connected.