Data Mining HW 4

Jeff Carney

March 29, 2017

1

Q: Given $k_1(x,y)$ is a valid kernel show the scalar product $k(x,y) = ck_1(x,y)$ is a valid kernel.

Since $k_1(x,y)$ is a valid kernel $\exists \phi_1$ s.t. $k_1(x,y) = \langle \phi_1(x), \phi_1(y) \rangle$. Note that $ck_1(x,y) = c \langle \phi_1(x), \phi_1(y) \rangle = \langle \sqrt{c}\phi_1(x), \sqrt{c}\phi_1(y) \rangle$. Let $\phi = \sqrt{c}\phi_1$. Then $k(x,y) = ck_1(x,y) = \langle \phi(x), \phi(y) \rangle$. Thus k(x,y) is a valid kernel.

2

Q: Given $k_1(x,y)$ and $k_2(x,y)$ are valid kernels show the sum $k(x,y) = k_1(x,y) + k_2(x,y)$ is a valid kernel.

Since $k_1(x,y)$ is a valid kernel $\exists \phi_1$ s.t. $k_1(x,y) = \langle \phi_1(x), \phi_1(y) \rangle$. Since $k_2(x,y)$ is a valid kernel $\exists \phi_2$ s.t. $k_2(x,y) = \langle \phi_2(x), \phi_2(y) \rangle$. Note that $k_1(x,y)+k_2(x,y) = \langle \phi_1(x), \phi_1(y) \rangle + \langle \phi_2(x), \phi_2(y) \rangle = \langle \phi_1(x)+\phi_2(x), \phi_1(y)+\phi_2(y) \rangle$. Let $\phi(x) = \phi_1(x) + \phi_2(x)$. Then $k(x,y) = k_1(x,y) + k_2(x,y) = \langle \phi(x), \phi(y) \rangle$. Thus, k(x,y) is a valid kernel.

Q: For support vectors $<\beta, x_*> \le <\beta, x>$ for $x\in C_1$ and $<\beta, x_\#> \ge <\beta, x>$ for $x\in C_0$, show that the support vectors must satisfy:

$$\alpha_{opt} + < \beta_{opt}, x_* > = 1, \quad \alpha_{opt} + < \beta_{opt}, x_\# > = -1$$

Where x_* is the support vector for class 1 and $x_\#$ is the support vector for class 0.

We know that if $\alpha + < \beta, x > \ge 1$ then $x \in C_1$ and if $\alpha + < \beta, x > \le -1$ then $x \in C_0$. Let $x_1 \in C_1$. Then $\alpha + < \beta, x_1 > \ge 1$ and $< \beta, x_* > \le < \beta, x_1 >$. In order to satisfy these two inequalities without a contradiction, we must have that $\alpha_{opt} + < \beta_{opt}, x_* > = 1$. Now let $x_0 \in C_0$. Then $\alpha + < \beta, x_0 > \le -1$ and $< \beta, x_\# > \ge < \beta, x_0 >$. In order to satisfy these two inequalities without a contradiction, we must have that $\alpha_{opt} + < \beta_{opt}, x_\# > = -1$.

7b

 ${f Q}$: Show the symmetric normalized Graph Laplacian and symmetric normalized Adjacency matrix share the same eigenvalues, i.e. λ is an eigenvalue of $D^{-1/2}(D-A)D^{-1/2}$ if and only if $1-\lambda$ is an eigenvalue of $D^{-1/2}AD^{-1/2}$.

(\$\Rightarrow\$) Assume that
$$D^{-1/2}(D-A)D^{-1/2}x = \lambda x$$
. Then
$$(D^{-1/2}DD^{-1/2} - D^{-1/2}AD^{-1/2})x = \lambda x$$

$$\Rightarrow (1 - D^{-1/2}AD^{-1/2})x = \lambda x$$

$$\Rightarrow x - D^{-1/2}AD^{-1/2}x = \lambda x$$

$$\Rightarrow D^{-1/2}AD^{-1/2}x = x - \lambda x$$

$$\Rightarrow D^{-1/2}AD^{-1/2}x = (1 - \lambda)x$$

Thus, $1 - \lambda$ is an eigenvalue of $D^{-1/2}AD^{-1/2}$.

Assume $D^{-1/2}AD^{-1/2}x = (1 - \lambda)x$. Then:

$$\Rightarrow D^{-1/2}AD^{-1/2}x = x - \lambda x$$

$$\Rightarrow x - D^{-1/2}AD^{-1/2}x = \lambda x$$

$$\Rightarrow (1 - D^{-1/2}AD^{-1/2})x = \lambda x$$

$$\Rightarrow (D^{-1/2}DD^{-1/2} - D^{-1/2}AD^{-1/2})x = \lambda x$$

$$\Rightarrow D^{-1/2}(D - A)D^{-1/2}x = \lambda x$$

Thus, λ is an eigenvalue of $D^{-1/2}(D-A)D^{-1/2}$.

 \checkmark

 \checkmark

Now we have shown that both directions of the if and only if statement are true. Therefore we can conclude that λ is an eigenvalue of $D^{-1/2}(D-A)D^{-1/2}$ if and only if $1-\lambda$ is an eigenvalue of $D^{-1/2}AD^{-1/2}$.