You may assume the following facts in this quiz without proving them. But you must explicitly indicate this by writing something like "(using fact i)" wherever you are using the i^{th} fact from here.

- 1. If p is a prime number, and $a, b \in \mathbb{Z}$, then $p \mid ab$ if and only if $p \mid a$ or $p \mid b$.
- 2. $k^n 1$ is evenly divisible by k 1, for any $n \ge 0$ and $k \ge 2$.
- 1. [1 mark] Show that if a and b are both positive integers, then $(2^a-1) \mod (2^b-1) = 2^{(a \mod b)}-1$.

Ans: Let a = bq + r, where $r = a \mod b$.

$$\begin{array}{l} (2^a-1) \bmod (2^b-1) \\ = (2^{(bq+r)}-1) \bmod (2^b-1) \\ = ((2^{bq}\cdot 2^r)-1) \bmod (2^b-1) \\ = (((2^{bq}\cdot 2^r)-1) \bmod (2^b-1) \\ = (((2^{bq}-1)\cdot 2^r)+(2^r-1)) \bmod (2^b-1) \\ = (2^r-1) \bmod (2^b-1) \\ = (2^r-1) \\ = (2^a \bmod b)-1 \end{array}$$

2. [2 marks] Show that if a and b are positive integers, then $gcd(2^a - 1, 2^b - 1) = 2^{gcd(a,b)} - 1$. Use mathematical induction.

Ans: The claim holds trivially when a equals b. Therefore, we assume that a > b (without loss of generality).

Consider the statement

$$P(a)$$
: for all $0 < b < a$, $qcd(2^a - 1, 2^b - 1) = 2^{gcd(a,b)} - 1$

We will prove (using induction) that P(a) holds for all $a \geq 2$.

Base case: When a = 2, b = 1, $qcd(2^a - 1, 2^b - 1) = qcd(3, 1) = 1 = 2^{gcd(2,1)} - 1 = 2^{gcd(a,b)} - 1$.

Inductive step: We assume that P(k) holds for all $2 \le k \le a$.

Consider $gcd(2^{(a+1)}-1,2^b-1)$. This equals

$$\begin{array}{ll} \gcd(2^b-1,(2^{(a+1)}-1) \bmod (2^b-1)) & \gcd(x,y)=\gcd(y,x \bmod y) \\ = \gcd(2^b-1,(2^{(a+1) \bmod b}-1)) & from \ Q1,\ above \\ = 2^{\gcd(b,(a+1) \bmod b)}-1 & from \ the \ induction \ hypothesis \\ = 2^{\gcd((a+1),b)}-1 & \gcd(x,y)=\gcd(y,x \bmod y) \end{array}$$

3. [1.5 marks] Let a and b be relatively prime. Let c be relatively prime to both a and b. Prove that c and ab are also relatively prime.

Ans: Suppose not. Let d be an integer ≥ 2 such that $d \mid c$ and $d \mid ab$.

We know that there exist integers x and y such that

```
ax + cy = 1 Extended-Euclid gives us such x and y, for a and c relatively prime implies, abx + bcy = b multiplying both sides by b
```

Since d divides the LHS (because $d \mid ab$ and $d \mid c$), d must also divide b. But this contradicts the fact that c is relatively prime to b (because $d \ge 2$ divides both c and b).

- 4. [1.5 marks] A palindromic bitstring is a string of 0's and 1's that reads the same front-to-back as it does from back-to-front. For example, 0010100 is a palindromic bitstring, where 011 is not. Here is a recursive definition of palindromic bitstrings.
 - The empty string ϵ is a palindromic bitstring.
 - The string 0 (consisting of a single 0) is a palindromic bitstring.
 - The string 1 (consisting of a single 1) is a palindromic bitstring.
 - If s is a palindromic bitstring, so is 0s0.
 - If s is a palindromic bitstring, so is 1s1.

Let $n_0(s)$ and $n_1(s)$ denote, respectively, the number of 0's and 1's in a palindromic bitstring s. Use induction to prove that $n_0(s) \cdot n_1(s)$ is even for any palindromic bitstring s.

Ans: We will prove this by structural induction on the form of all bitstrings s.

For the cases where s is an empty string, or a single 0 or 1, the $n_0(s) \cdot n_1(s)$ evaluates to 0, which is even.

When s is of the form 0x0, $n_0(s) \cdot n_1(s)$ equals $(2 + n_0(x)) \cdot n_1(x)$, which equals $2 \cdot n_1(x) + n_0(x) \cdot n_1(x)$, which is the sum of two even numbers, and therefore even. (The first term is a multiple of 2, the second term is even by induction hypothesis – x is structurally smaller than s.)

The case when s is of the form 1x1 is similar to the one above.