

User Analysis: CTR Prediction on Features & Behaviors

Yingfan Duan, Hazel Gu, Haotian Wu, Han Yu, Dawei Zhao

Agenda

Business Problem
Value & Impact

Data

EDA & Preprocessing
Feature Engineering

Model Mining
LightGBM
Random Forest

Model Findings & Tests

Model Evaluation
Feature Importance

DiscussionKey Takeaways

Future Works

Potential Improvements

Which guy 🤎 should I choose?

Which guy advertiser should I choose?

Business Problem

DSP & Social **Platforms**

 $eCPM = CTR \times bid_{cpc} \times 1000$

Need to estimate CTR to calculate the bid price in Real-Time Bidding auction

Advertiser

Attempt to figure out the recipe for high CTR observations for **Precision Marketing**

Accurately predicting the CTR is the core to solve these problem

Business Value

Dataset Introduction

Size & Shape			
Size	456 MB		
Rows &	#3M		
Columns	#36		
Target	'Label'		
Variable	(1 = clicked)		

Features Groups			
User	uid age gender net_type		
Ads	adv_id slot_id Inter_type_cd		
Apps	spread_app_id app_first_class his_app_size		

Stats				
Dtype	All numerical Int64 / float64			
Missing	Represented by -1			
Unique	uid: #1.05M adv_id: #5796			

EDA

click

3.9%

96.1%

EDA

Feature Overview

Data Preprocessing

Data Preprocessing

03

Ordinal Data Encoder

- Not actually continuous

Mobile Launch Time

Device Price/Size

Put into Buckets

Equally Spaced

Frequency Considered

Memory Reduction

Find appropriate data type for each feature

Feature Engineering: User Exposure and Interaction

User Exposure: Count

Compute the count for each feature value per day (both train and validation set: Day 1 - Day 7)

 Apply and create the Count features to every features (User side/ Advertisement side/Media(app) side)

Interaction: Crossing Count

- □ Compute the count for each feature pair per day (both train and validation set:

 Day 1 Day 7)
- Example: User 'A' + Advertisement 'Apple'
- Apply and create the Crossing features to some pair generated by user profile and advertisement characteristics

Feature Engineering: CTR - Related

Previous Day CTR CTR Using the 'LABEL' column (mean) Using the 'LABEL' column (mean) The CTR for train (day 1 - day 6) is Calculate the CTR based on the previous computed using its own day's label mean day's label mean The CTR for validation (day 7) is Set day 6 as the previous day of both day evaluated using the overall label mean of 1 (train) and day 7 (validation) the rest days Apply and create the PREVDAY_CTR Apply and create the CTR features to features to **every features** in the data set **every features** in the data set

Feature Engineering: Embedding

Word2Vec

- Convert data into numerical matrix
- ☐ Use SKIP GRAM for Word2Vec
- ☐ Set embedding size = 8
- Primarily apply to User & Ads related features cross-relationship with others

Example:

User id & Adv id Adv id & User age
User id & Adv tags Adv id & Adv App id
Adv id & Residence Adv id & City rank

Embedding: T-SNE Visualization

LightGBM Introduction

LightGBM (Light Gradient Boosting)

- Developed by Microsoft in 2016
- Distributed Gradient Boosting
- Decision Tree Algorithm
- Used for classification, ranking, etc.
- Improve performance and scalability
- ☐ Gradient-Based One-Side Sampling (GOSS)
- Exclusive Feature Bunding (EFB)
- □ ALWAYS used for CTR prediction problem & high-dimensional data

Histogram based algorithm

buckets continuous features into discrete bins

EFB

Dimension reduction by bundling features together

GOSS

Retains large gradients while random sampling small gradients

LightGBM & Random Forest

Model Framework

Feature Performance Comparison

We selected original features, stat features, all ctr features and one set of embedding features for final model.

Model Selection

Choose LightGBM as our final model

Parameter Tuning

Methodology

- Split train and valid into K fold separately
- Run model on different fold of train dataset, and test on k fold valid dataset

Best Model

boosting_type	goss	AUC	0.71
lambda_l1	0	F1	0.18
max_depth	12	Recall	0.55
num_leaves	31	Precision	0.11
scale_pos_weight	0.9		

Findings & Recommendations

- slot_id related features
 - Deeper analysis on ads position on Apps
- device-related features
 - Have customized ads for different types of mobile devices

Challenges

- Enormous data size needs high computational power
- Masked data can only conclude on feature importance, but unable to generate literal recommendations
- Imbalance issue 96.2% vs. 3.8%; did perform SMOTE and undersampled the data, but was still unbalanced

Future Works

•