Chapter 14: Analyses of variance: Going beyond *t*-tests

TXCL7565/PHSC7565

What This Chapter Covers

- Factors and levels
- One-way analysis of variance
- Two-way analysis of variance
- Fixed and random factors

When we want to compare interval scale data between more than 2 groups, we use an **Analysis of Variance** (**ANOVA**).

FACTORS AND LEVELS

Factors and levels

- Factor something that can take two or more categorical values.
 - either spontaneously varies or can be manipulated as part of an experiment
 - want to know if the different values of the factor cause different values of the outcome
- Level individual values of a factor

Sex is a factor.

'Male' and 'female' are values of that factor.

ONE-WAY ANALYSIS OF VARIANCE

One-way ANOVA

One-way ANOVA - the independent (predictor) variable is single experimental factor with multiple levels and the dependent (outcome) variable is an interval variable

Table 14.1 Effect catalyst on yield (percentage of theoretical maximum)

Platinum	Palladium	Iridium	Palladium/ Iridium	Rhodium
11.3	15.4	12.1	13.1	12.0
10.7	17.0	12.2	13.7	11.6
9.8	18.4	13.1	13.5	9.1
10.4	17.5	11.8	14.0	11.9
11.5	18.8	10.4	14.2	11.3

Multiple t-tests. vs ANVOA

Could do several t-tests for all the comparisons that we are interested in...

- Multiple testing
 - For each comparison there is a 5% risk of a false positive. If there are 5 comparisons, the risk of at least one producing a significant results when none are truly different is ...
 - (probability of not making a mistake)⁵

$$1 - (1 - \alpha)^5 = 1 - 0.95^5 = 0.23$$

- Estimate of SD
 - In t-test, estimating within group SD from 10 samples. In ANOVA estimating within group SD from 25 samples.

Two-sample t-test vs. One-way ANOVA

- Two sample t-test Is the difference between these two samples means greater than can reasonably be accounted for by random sampling error?
- One-way ANOVA Are the differences among these various sample means greater than can reasonably be accounted for by random sampling error?

Diagrammatic representation of one-way ANOVA

Null and alternative hypothesis

- Null hypothesis the population means for all levels of the factor are the same
- Alternative hypothesis at least one of the population means for a level of the factor is different from the rest of the population means for the remaining factors

 $H_0: \mu_1 = \mu_2 = \dots = \mu_n$

 H_a : at least one μ is different from the rest

Intra-group variation - variation within a group of replicates Inter-group variation - variation between groups

What governs whether a significant result will emerge?

1.Select 'No matching or pairing' and 'Yes. Use ANOVA'

ANOVA Table

ANOVA Table	SS	DF	MS	F (DFn, DFd)	P value
Treatment (between columns)	148.1	4	37.02	F (4,20) = 38.37	<0.0001
Residual (within columns)	19.3	20	0.9648		
Total	167.4	24			

Follow up tests - Interpreting significance

- p-value < 0.05 indicates that we have evidence against the null hypothesis
- don't know the nature of the differences

FOLLOW-UP TESTS

Dunnett's test

- Select one treatment as a 'control' or 'reference' group. All other groups are then compared against the control.
- Confidence intervals and p-values are automatically adjusted to control 'test-wide error rate' to 5%

1.Select the 'Multiple Comparisons' tab

2.Select the 'Compare the mean of each column with the mean of a control column'

1.Select the 'Options' tab

'Dunnett' for

comparisons

2.Select

test

multiple

Parameters: One-Way ANOVA (and Nonparametric) Experimental Design | Multiple Comparison | Options Multiple com Correct for multiple comparisons using statistical hypothesis testing. Recommended. Test: Dunnett (recommended) Correct for multiple compa Test: Two-stage step-up m od of Benjamini, Krieger and Yekutieli (recommended) 🗘 Don't correct for multiple comparisons. Each comparison stands alone. er's LSD test Multiple comparisons Swap direction of comparisons (A-B) vs. (B-A) Report multiplicity adjusted P value for each comparison. Each P value is adjusted to account for multiple comparisons. 0.05 (95% confidence interval) Family-wise significance and confidence level: Graphing Graph confidence intervals. Graph residuals. Graph ranks (nonparametric). **Additional results** Descriptive statistics for each data set. Report comparison of models using AICc. Output GP: 0.1234 (ns), 0.0332 (*), 0.0021 (**), 0.0002 (***), <0.0... 🗘 P-value style: significant digits. Show 4 Make options on this tab be the default for future One-Way ANOVAs. ? Cancel OK

3.Swapdirection ofcomparisonto matchTable 14.5results

Tukey's test

- All pairwise comparisons between levels are made.
- Confidence intervals and p-values are automatically adjusted to control 'test-wide error rate' to 5%

1.Select the 'Multiple Comparisons' tab

2.Select the
'Compare the
mean of each
column with
the mean of
every other
column'

Balanced data

- Balanced data the same number of sample in each group
- The power of the ANOVA will be greatest with a balanced data set
- The power for Tukey's tests will be greatest with a balanced data set.
- The only circumstance where power will be greater with an imbalanced data set is where a Dunnett's test is planned (more samples in 'control' group = more power).

Requirements for performing analysis of variance

- Randomly sampled from a population
- Normally distributed values within a level
- Equal SD in each group

Assumption of equal SD

- Brown-Forsythe Test statistical test for differences in SD between groups
 - p<0.05 indicates the intra-group variances are significantly different
- Bartlett's Test statistical test for differences in SD between groups; sensitive to non-normality
 - p<0.05 indicates the intra-group variances are significantly different and/or data are NOT normally distributed

Common graphics for ANOVA

TWO-WAY ANALYSIS OF VARIANCE

Investigating two experimental factors simultaneously

Two-way analysis of variance is used when:

- The endpoint is a measured value (generally on the interval scale)
- There are two experimental factors
- All possible combinations of the two factors have been studied (full factorial experiment)

Diagrammatic representation of two-way ANOVA

1.Select 'Grouped' for new table.

catalyst and mixing

Table 14.8 Mean yield for each combination of catalyst and stirring method (%)

	Pt	Pd	IR	Pd/lr	Rh
Stirred	10.80	17.28	11.58	13.94	11.36
Ultrasonic	12.66	19.64	14.30	16.32	13.34

Interactions

Interaction is present when the effect produced by changing the level of one factor is dependent upon the level of another factor.

Interaction present

No interaction

Null hypotheses

In this case, we will be testing three null hypotheses:

- Population means among the levels of the first factors are the same
- Population means among the levels of the second factors are the same
- 3. There is not interaction between the two factors

These are independent hypotheses. We could end up accepting them all, rejecting them all, or accepting some and rejecting others.

1.Select 'No matching' under Experimental design

2.Can change Factor names

ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
Interaction	1.186	4	0.2965	F (4, 40) = 0.2657	P=0.8983
Mixing	63.85	1	63.85	F (1, 40) = 57.2	P<0.0001
Catalyst	300.9	4	75.23	F (4, 40) = 67.41	P<0.0001
Residual	44.64	40	1.116		

Interpretation of two-way ANOVA in the absence of interaction

- P-value for interaction effect = 0.898, nonsignificant interaction effect
- Since catalyst and mixing are significant but the interaction is not, there are 'additive' effects of catalyst and mixing

Estimating the effect of type of mixing

Metal	Increase in yield (%)
Pt	1.86
Pd	2.36
lr	2.72
Pd/Ir	2.38
Rh	1.98
MEAN	2.26%

Summary of example twoway ANOVA

- There is no significant evidence of interaction between the two factors (p=0.898).
- There is significant evidence that yield varies according to the mixing method used (p<0.001).
 Whatever metal is used, ultrasonic mixing produces a yield around 2.3% greater than that achieved by stirring.
- There is significant evidence confirming that yield varies according to which catalyst is used (p<0.001).

Two-way ANOVA with Interaction

Summary of example twoway ANOVA with interaction

ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
Interaction	32.29	2	16.14	F (2, 30) = 20.35	P<0.0001
Force	58.85	1	58.85	F (1, 30) = 74.21	P<0.0001
Punch	203.4	2	101.7	F (2, 30) = 128.2	P<0.0001
Residual	23.79	30	0.7931		

- There is significant evidence of interaction between the two factors (p<0.0001).
- This is an example of quantitative interaction and should be followed up by specific comparisons.

What did we learn?

- One-way ANOVA is used when there are more than two groups to compare based on an interval outcome.
- When looking at pairwise comparisons of levels in a significant ANOVA model, you must 'adjust' your p-values for multiple testing, e.g., Tukey, Dunnett.
- Two-way ANOVA is used when there are two nominal/ ordinal factors that contribute to an interval outcome and all possible combinations of the two factors have been studied
- A significant interaction in a two-way ANOVA need to be interpreted with caution (graphics are extremely helpful).