Formalizing Ionescu-Tulcea: Countable Kernel Compositional Products

Matthias G. Mayer

2025-02-09

1. Measures

1. Measures

We quickly recall what measures are.

We quickly recall what measures are.

Let (Ω, \mathcal{A}) be a measurable space, i.e. $\mathcal{A} \subseteq \mathfrak{P}(\Omega)$, s.t.

- 1. $\Omega \in \mathcal{A}$,
- 2. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$,
- 3. $A_n \in \mathcal{A} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$.

We quickly recall what measures are.

Let (Ω, \mathcal{A}) be a measurable space, i.e. $\mathcal{A} \subseteq \mathfrak{P}(\Omega)$, s.t.

- 1. $\Omega \in \mathcal{A}$,
- 2. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$,
- 3. $A_n \in \mathcal{A} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$.

Definition 1.1 (probability measure): A probability measure is a function $\mu: \mathcal{A} \to \mathbb{R}_{>0}$, s.t.

- 1. $\mu(\emptyset) = 0$
- 2. For $A_n \in \mathcal{A}$ pairwise disjoint, $\mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \sum_{n \in \mathbb{N}} \mu(A_n)$.
- 3. $\mu(\Omega) = 1$

For $n \in \mathbb{N}$, let $(\Omega_n, \mathcal{A}_n)$ be a measurable space.

For $n \in \mathbb{N}$, let $(\Omega_n, \mathcal{A}_n)$ be a measurable space.

Definition 2.1.1 (Markov kernel): A Markov kernel from $(\Omega_0, \mathcal{A}_0)$ to $(\Omega_1, \mathcal{A}_1)$ is a map $K : \Omega_0 \times \mathcal{A}_1 \to \mathbb{R}$, s.t.

- 1. $\forall \omega \in \Omega_0 : K(\omega, \cdot)$ is a probability measure.
- 2. $\forall A \in \mathcal{A}_1 : K(\cdot, A)$ is measurable.

2025-02-09

Definition 2.2.1 (compositional product): Let μ be a measure on $(\Omega_0, \mathcal{A}_0)$ and K a kernel from $(\Omega_0, \mathcal{A}_0)$ to $(\Omega_1, \mathcal{A}_1)$. We define a measure on $(\Omega_0 \times \Omega_1, \mathcal{A}_0 \otimes \mathcal{A}_1)$ by

$$(\mu \times K)(A) = \int_{\Omega_0} K(\omega_0, A(\omega_0)) \, \mathrm{d}\mu(\omega_0)$$

where $A \in \mathcal{A}_0 \otimes \mathcal{A}_1$ and $A(\omega_0) = \{\omega_1 \mid (\omega_0, \omega_1) \in A\}.$

6 / 10

Let μ be a measure on $(\Omega_0, \mathcal{A}_0)$.

2.3 Finite Compositional Product

2. Kernels

2025-02-09

6 / 10

Let μ be a measure on $(\Omega_0, \mathcal{A}_0)$. For $n \in \mathbb{N}^+$, let K_n be a kernel from $\bigotimes_{m < n} (\Omega_m, \mathcal{A}_m)$ to $(\Omega_n, \mathcal{A}_n)$

2.3 Finite Compositional Product

2. Kernels

Let μ be a measure on $(\Omega_0, \mathcal{A}_0)$. For $n \in \mathbb{N}^+$, let K_n be a kernel from $\bigotimes_{m < n} (\Omega_m, \mathcal{A}_m)$ to $(\Omega_n, \mathcal{A}_n)$

Then by induction, we can define a measure on $\bigotimes_{m \leq n} (\Omega_m, \mathcal{A}_m)$ by

$$\mu \times K_1 \times \ldots \times K_n = ((\mu \times K_1) \times \ldots \times K_{n-1}) \times K_n$$

Let μ be a measure on $(\Omega_0, \mathcal{A}_0)$. For $n \in \mathbb{N}^+$, let K_n be a kernel from $\bigotimes_{m < n} (\Omega_m, \mathcal{A}_m)$ to $(\Omega_n, \mathcal{A}_n)$

Then by induction, we can define a measure on $\bigotimes_{m \leq n} (\Omega_m, \mathcal{A}_m)$ by

$$\mu \times K_1 \times \ldots \times K_n = ((\mu \times K_1) \times \ldots \times K_{n-1}) \times K_n$$

These fulfill the following consistency property:

Lemma 2.3.1:

$$\mu \times \ldots \times K_n(A) = \mu \times \ldots \times K_{n+m}(A \times {\textstyle \times \atop n < k < n+m} \Omega_k)$$

Let μ be a measure on $(\Omega_0, \mathcal{A}_0)$. For $n \in \mathbb{N}^+$, let K_n be a kernel from $\bigotimes_{m < n} (\Omega_m, \mathcal{A}_m)$ to $(\Omega_n, \mathcal{A}_n)$

Then by induction, we can define a measure on $\bigotimes_{m \leq n} (\Omega_m, \mathcal{A}_m)$ by

$$\mu \times K_1 \times \ldots \times K_n = ((\mu \times K_1) \times \ldots \times K_{n-1}) \times K_n$$

These fulfill the following consistency property:

Lemma 2.3.1:

$$\mu \times \ldots \times K_n(A) = \mu \times \ldots \times K_{n+m}(A \times {\textstyle \times \atop n < k < n+m} \Omega_k)$$

The goal is to show that we can define " $\mu \times K_1 \times K_2 \times ...$ " if μ is a probability measure and K_n are Markov kernels.

Theorem 2.4.1 (Ionescu-Tulcea): Let μ be a prob.-measure on $(\Omega_0, \mathcal{A}_0)$ and K_n be Markov kernels from $\bigotimes_{m < n} (\Omega_m, \mathcal{A}_m)$ to $(\Omega_n, \mathcal{A}_n)$ There exists a unique probability measure \mathbb{P} on $\bigotimes_{n\in\mathbb{N}}(\Omega_n,\mathcal{A}_n)$, s.t.

$$\forall n \in \mathbb{N} : \forall A \in \bigotimes_{m \le n} \mathcal{A}_m :$$

$$\mathbb{P}(A \times \sum_{k>n} \Omega_k) = (\mu \times K_1 \times \dots \times K_n)(A).$$

2025-02-09

Theorem 2.4.1 (Ionescu-Tulcea): Let μ be a prob.-measure on $(\Omega_0, \mathcal{A}_0)$ and K_n be Markov kernels from $\bigotimes_{m < n} (\Omega_m, \mathcal{A}_m)$ to $(\Omega_n, \mathcal{A}_n)$ There exists a unique probability measure $\mathbb P$ on $\bigotimes_{n \in \mathbb N} (\Omega_n, \mathcal{A}_n)$, s.t.

$$\forall n \in \mathbb{N} : \forall A \in \bigotimes_{m \leq n} \mathcal{A}_m :$$

$$\mathbb{P}(A \times \sum_{k > n} \Omega_k) = (\mu \times K_1 \times \ldots \times K_n)(A).$$

Definition 2.4.2: Cylinder sets are sets of the form $A \times X_{k>n} \Omega_k$ where $n \in \mathbb{N}$ and $A \in \bigotimes_{k \le n} \mathcal{A}_k$.

2.4 Ionescu-Tulcea

2. Kernels

Theorem 2.4.1 (Ionescu-Tulcea): Let μ be a prob.-measure on $(\Omega_0, \mathcal{A}_0)$ and K_n be Markov kernels from $\bigotimes_{m < n} (\Omega_m, \mathcal{A}_m)$ to $(\Omega_n, \mathcal{A}_n)$ There exists a unique probability measure $\mathbb P$ on $\bigotimes_{n \in \mathbb N} (\Omega_n, \mathcal{A}_n)$, s.t.

$$\forall n \in \mathbb{N} : \forall A \in \bigotimes_{m \leq n} \mathcal{A}_m :$$

$$\mathbb{P}(A \times \sum_{k>n} \Omega_k) = (\mu \times K_1 \times \ldots \times K_n)(A).$$

Definition 2.4.2: Cylinder sets are sets of the form $A \times X_{k>n} \Omega_k$ where $n \in \mathbb{N}$ and $A \in \bigotimes_{k \le n} \mathcal{A}_k$.

Lemma 2.4.3: Cylinder sets are a \bigcap -stable generator of $\bigotimes_{n\in\mathbb{N}} \mathcal{A}_n$.

Definition 2.5.1 (Set algebra): $\mathcal{A} \subset \mathfrak{P}(\Omega)$ is a set algebra if it contains \emptyset and is closed under unions and intersections.

Definition 2.5.1 (Set algebra): $\mathcal{A} \subset \mathfrak{P}(\Omega)$ is a set algebra if it contains \emptyset and is closed under unions and intersections.

Definition 2.5.2 (Content): Let \mathcal{A} be a set algebra. A function $\mu : \mathcal{A} \to \mathbb{R}_{>0}$ is a content if it is additive and $\mu(\emptyset) = 0$.

Definition 2.5.1 (Set algebra): $\mathcal{A} \subset \mathfrak{P}(\Omega)$ is a set algebra if it contains \emptyset and is closed under unions and intersections.

Definition 2.5.2 (Content): Let \mathcal{A} be a set algebra. A function $\mu : \mathcal{A} \to \mathbb{R}_{>0}$ is a content if it is additive and $\mu(\emptyset) = 0$.

Definition 2.5.3 (sigma additivity): A content μ is sigma additive if for all pairwise disjoint sequences $A_n \in \mathcal{A}$ with $\bigcup_n A_n \in \mathcal{A}$, we have $\mu(\bigcup_n A_n) = \sum_{n \in \mathbb{N}} \mu(A_n)$.

2.5 Caratheodory's extension

Definition 2.5.1 (Set algebra): $\mathcal{A} \subset \mathfrak{P}(\Omega)$ is a set algebra if it contains \emptyset and is closed under unions and intersections.

Definition 2.5.2 (Content): Let \mathcal{A} be a set algebra. A function $\mu : \mathcal{A} \to \mathbb{R}_{\geq 0}$ is a content if it is additive and $\mu(\emptyset) = 0$.

Definition 2.5.3 (sigma additivity): A content μ is sigma additive if for all pairwise disjoint sequences $A_n \in \mathcal{A}$ with $\bigcup_n A_n \in \mathcal{A}$, we have $\mu(\bigcup_n A_n) = \sum_{n \in \mathbb{N}} \mu(A_n)$.

Theorem 2.5.4 (Caratheodory's extension theorem): Every σ -additive content on a set algebra \mathcal{A} can be extended to a measure on $\sigma(\mathcal{A})$.

2.6 Proof Sketch

2. Kernels

'Uniqueness': The measure is specified on a \bigcap -stable generator.

'Uniqueness': The measure is specified on a \bigcap -stable generator.

'Existence': Recall that the cylinder sets C are of the form

$$A \times X_{k>n} \Omega_k$$
.

'Uniqueness': The measure is specified on a \bigcap -stable generator.

'Existence': Recall that the cylinder sets C are of the form

 $A \times X_{k > n} \Omega_k$. It is easy to see that the cylinder sets C form a set

algebra, i.e. contains empty set and closed under unions/intersections.

'Uniqueness': The measure is specified on a \bigcap -stable generator. 'Existence': Recall that the cylinder sets C are of the form $A \times \sum_{k>n} \Omega_k$. It is easy to see that the cylinder sets C form a set algebra, i.e. contains empty set and closed under unions/intersections.

Furthermore, the function

$$P: \qquad C \to [0,1]$$

$$A \times \underset{k>n}{ \times} \Omega_k \mapsto \mu \times \ldots \times K_n(A)$$

is well defined and a content (i.e. additive).

'Uniqueness': The measure is specified on a \bigcap -stable generator.

'Existence': Recall that the cylinder sets ${\cal C}$ are of the form

 $A \times X_{k>n} \Omega_k$. It is easy to see that the cylinder sets C form a set algebra, i.e. contains empty set and closed under unions/intersections.

Furthermore, the function

$$P: \qquad C \to [0,1]$$

$$A \times \underset{k>n}{\textstyle \times} \Omega_k \mapsto \mu \times \ldots \times K_n(A)$$

is well defined and a content (i.e. additive). It is left to show that P is σ -additive.

It is known that it suffices to show for $B_n \in C$ and $B_n \downarrow \emptyset$, that $P(B_n) \to 0$.

It is known that it suffices to show for $B_n \in C$ and $B_n \downarrow \emptyset$, that $P(B_n) \to 0$. W.l.o.g. we can assume that $B_n = A_n \times \times_{m>n} \Omega_m$.

It is known that it suffices to show for $B_n \in C$ and $B_n \downarrow \emptyset$, that $P(B_n) \to 0$. W.l.o.g. we can assume that $B_n = A_n \times \times_{m>n} \Omega_m$. Assume to the contrary that $\inf_n P(B_n) > 0$.

2025-02-09

It is known that it suffices to show for $B_n \in C$ and $B_n \downarrow \emptyset$, that $P(B_n) \to 0$. W.l.o.g. we can assume that $B_n = A_n \times \sum_{m > n} \Omega_m$. Assume to the contrary that $\inf_n P(B_n) > 0$. We recursively construct $\omega \in \times_{n \in \mathbb{N}} \Omega_n$, s.t. $\omega_{1,\dots,n} \in A_n$.

It is known that it suffices to show for $B_n \in C$ and $B_n \downarrow \emptyset$, that $P(B_n) \to 0$. W.l.o.g. we can assume that $B_n = A_n \times \sum_{m \leq n} \Omega_m$. Assume to the contrary that $\inf_n P(B_n) > 0$. We recursively construct $\omega \in X_{n \in \mathbb{N}} \Omega_n$, s.t. $\omega_{1,\dots,n} \in A_n$. We sketch the argument: Define

$$Q_{n,m} = K_n \times ... \times K_{n+m}$$

$$f_{n,m}\big(\omega_{1,...,n}\big) = Q_{n,m}\big(\omega_{1,...,n}, A_{n+m+1}\big(\omega_{1,...,n}\big)\big)$$

It is known that it suffices to show for $B_n \in C$ and $B_n \downarrow \emptyset$, that $P(B_n) \to 0$. W.l.o.g. we can assume that $B_n = A_n \times {\textstyle \times}_{m>n} \Omega_m$. Assume to the contrary that $\inf_n P(B_n) > 0$. We recursively construct $\omega \in {\textstyle \times}_{n\in\mathbb{N}} \Omega_n$, s.t. $\omega_{1,\ldots,n} \in A_n$. We sketch the argument: Define

$$Q_{n,m} = K_n \times \ldots \times K_{n+m}$$

$$f_{n,m}\big(\omega_{1,\ldots,n}\big) = Q_{n,m}\big(\omega_{1,\ldots,n},A_{n+m+1}\big(\omega_{1,\ldots,n}\big)\big)$$

We then would strengthen our induction and show

$$\exists \omega : \forall n \in \mathbb{N} : \inf_{m} f_{n,m}(\omega_{1,\dots,n}) > 0$$

If
$$f_{n,0}(\omega_{1,\dots,n}) > 0$$
 then $A_{n+1}(\omega_{1,\dots,n}) \neq \emptyset$ then $\omega_{1,\dots,n} \in A_n$