

Casting

Introduction

Prof. Juhani Orkas

History

•	5000 BC	Casted gold (middle east)
•	4000 BC	Casted copper (Shaan´xi, China)
•	3000 BC	Casted bronze in India and Mesopotamia
•	2700 BC	Copper Age in Europe
•	1800 BC	Bronze Age in Europe
•	500 BC	Cast iron (China)
•	475 BC	Tempering (China)
•	1390	Cast iron (Europe)
•	1630	First temper patent in England
•	1015	
	1845	Cast steel (J.Mayer, J.C. Fischer)
•	1845	Cast steel (J.Mayer, J.C. Fischer) First aluminum alloy
•		
•	1894	First aluminum alloy

The ancient way, BC castings from China

Nowadays

Metallurgy and automation

 3D CAD modelling and simulation

Casting

Fluid metal poured into a mold and solidified by cooling

Motor blocks and cylinder heads

- Design, castability, material properties
- GJL tai GJS cast iron or nodular iron
- Valmet Jyväskylä Oy, Componenta Oyj

Wind turbine castings

- Design, dynamics and material properties
- GJS400 nodular iron
- Valmet Jyväskylä Oy, Suomivalimo Oy, Uudenkaupungin Rautavalimo Oy, LeinoCast Oy

Steel castings

TEVO Lokomo Oy, Karhula
 Foundry Oy, LeinoCast Oy, Peiron
 Oy, Sacotec Components Oy

Pump casting after the mould shakeout

The biggest pump casting to the paper machine. Duplex steel. Karhula Foundry.

Aluminium and magnesium castings

 Alteams Oyj, Alsiva Oy, Novacast Oy

Gearbox, 90 kg, aluminium alloy.

Gearbox to the aircraft, magnesium alloy.

Browser

3D-model of cast component

3D-model of the core

With the core you shape the hollow features of the component

•With the aid of the core prints the core is mounted between the mould halves!

Pattern table = pattern tool

(P ▼ (E) (C) Q (C)

Sand casting

- Most common casting method
- Pattern
 - Form cavity in the mould sand
- Cores
 - Hollows inside the casted part
- Gating system
 - For uniformly flow of the metal
 - Risers prevent cavities due to shrinkage
 - Gas while casting can leak

Principles of sand molding.

Investment casting

- Pattern Tree
 - Wax petterns
 - Connected at a gating system
- Shell
 - Ceramic slurry
 - Sand and fireclay
 - Drying
- Melting out of the wax
- Casting
- Beak of the ceramic shell

Investment casting

- Complex shapes
- Details
- Accurate casting
 - Little machining needed
- Very good surface
- CAD-Models direct usable
 - Rapid prototyping

Die casting (cold chamber)

Permanent mould, no pattern

- Alloys with higher melting point
 - Al-, Cu-, Mg-alloys
- Metal ladled into shot camber
- Injection by a plunger
- 140 1400 bar/atm
- Fine grain due to the pressure
 - High strength
- 200-400 shots per hour

