Devoir surveillé n°13

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Solution 1

1. On remarque que pour $P \in GL_n(\mathbb{R})$,

$$M^{2} + pM + qI_{n} = 0$$

$$\iff P(M^{2} + pM + qI_{n})P^{-1} = 0$$

$$\iff (PMP^{-1})^{2} + pPMP^{-1} + qI_{n} = 0$$

On en déduit bien que si M est solution de $(\mathcal{E}_{p,q})$, alors toute matrice de E(M) l'est également.

- 2. a. Soit M une solution de $(\mathcal{E}_{-(a+b),ab})$. On constate que $X^2 (a+b)X + ab = (X-a)(X-b)$ est un polynôme annulateur de M. Comme $a \neq b$, ce polynôme est scindé à racines simples. Ainsi M est diagonalisable.
 - **b.** On peut également affirmer que si M est solution de $(\mathcal{E}_{-(a+b),ab})$, alors $\operatorname{Sp}(M) \subset \{a,b\}$. Posons $\operatorname{M}_k = \begin{pmatrix} a\operatorname{I}_k & 0 \\ 0 & b\operatorname{I}_{n-k} \end{pmatrix}$ pour $k \in [\![0,n]\!]$. On vérifie aisément que M_k est effectivement solution de l'équation $(\mathcal{E}_{-(a+b),b})$. Les questions précédentes montrent alors que l'ensemble des solutions de $(\mathcal{E}_{-(a+b),ab})$ est

$$\bigsqcup_{k=0}^{n} \mathrm{E}(\mathrm{M}_{k})$$

- 3. a. Puisque $M^2 = 0$, $f^2 = 0$. On en déduit immédiatement que Im $f \subset \text{Ker } f$.
 - b. Le théorème du rang stipule que si
 - E et F sont deux K-espaces vectoriels;
 - E est de dimension finie
 - $f \in \mathcal{L}(E, F)$;

alors

- f est de rang fini;
- $\dim E = \operatorname{rg} f + \dim \operatorname{Ker} f$.
- **c.** Puisque Im $f \subset \text{Ker } f$, rg $f \leq \dim \text{Ker } f$. Ainsi

$$n = \dim \operatorname{Erg} f + \dim \operatorname{Ker} f \ge 2\operatorname{rg} f$$

ou encore $\operatorname{rg} f \leq \frac{n}{2}$.

d. Notons S un supplémentaire de Ker f dans \mathbb{R}^n . D'après le théorème du rang

$$\dim S = \dim \mathbb{R}^n - \dim \operatorname{Ker} f = \operatorname{rg} f = p$$

Donnons-nous une base $\mathcal{B}_1 = (e_1, \dots, e_p)$ de S. Puisque $f^2 = 0$, $(f(e_1), \dots, f(e_p))$ est une famille de vecteurs de Ker f. De plus, on sait que f induit un isomorphisme de S sur Im f: notamment f est injectif sur S. On en déduit que $(f(e_1), \dots, f(e_n))$ est une famille libre de Ker f. On peut alors la compléter en une base \mathcal{B}_2 de Ker f. Puisque $\mathbb{R}^n = \mathbb{S} \oplus \mathrm{Ker} f$, la concaténation des bases \mathcal{B}_1 et \mathcal{B}_2 forme une base \mathcal{B} de \mathbb{R}^n . Par construction, la matrice de f dans cette base est

$$J_p = \left(\begin{array}{c|c} 0 & 0 \\ \hline I_p & 0 \end{array}\right)$$

e. Les questions précédentes montrent qu'une solution de $(\mathcal{E}_{0,0})$ est nécessairement semblable à une matrice J_p où p est un entier naturel inférieur ou égal à n/2. De plus, on vérifie que J_p pour $p \le n/2$ est effectivement solution de $(\mathcal{E}_{0,0})$ (l'endomorphisme f canoniquement associé vérifie clairement $f^2 = 0$). On en déduit que l'ensemble des solutions de $(\mathcal{E}_{0,0})$ est

$$\bigsqcup_{0 \le p \le n/2} \mathrm{E}(\mathrm{J}_p)$$

4. a. C'est évident puisque

$$N^2 = (M - aI_n)^2 = M^2 - 2aM + a^2I_n$$

b. D'après la question précédente, M est solution de (\mathcal{E}_{-2a,a^2}) si et seulement si $M-aI_n$ est solution de $\mathcal{E}_{0,0}$. On en déduit donc que l'ensemble des solutions de (\mathcal{E}_{-2a,a^2}) est

$$\bigsqcup_{0 \le p \le n/2} \left(a \mathbf{I}_n + \mathbf{E}(\mathbf{J}_p) \right)$$

Enfin, on remarque que pour $P \in GL_n(\mathbb{R})$,

$$aI_n + PMP^{-1} = P(aI_n + M)P^{-1}$$

de sorte que $aI_n + E(M) = E(aI_n + M)$. On peut donc affirmer que l'ensemble des solutions de (\mathcal{E}_{-2a,a^2}) est

$$\bigsqcup_{0 \le p \le n/2} \left(\mathbb{E}(a\mathbf{I}_n + \mathbf{J}_p) \right)$$

5. Supposons que $M \in \mathcal{M}_n(\mathbb{R})$ soit solution de $M^2 + I_n = 0$. Alors

$$\det(\mathbf{M})^2 = \det(\mathbf{M}^2) = \det(-\mathbf{I}_n)^2 = (-1)^n$$

Comme $det(M)^2 \ge 0$, *n* est pair.

Par contraposition, si n est impair, l'équation $M^2 + I_n = 0$ n'admet pas de solution.

- **6. a.** Soit M une solution de $(\mathcal{E}_{0,1})$. Alors le polynôme $X^2 + 1 = (X i)(X + i)$ annule M et est scindé sur \mathbb{C} donc M est diagonalisable sur \mathbb{C} .
 - b. La question précédente montre également que $\operatorname{Sp}(M) \subset \{i,-i\}$. Puisque M est à coefficients réels, son polynôme caractéristique χ_M l'est également. Ainsi i et -i ont la même multiplicité en tant que racines de χ_M . On en déduit que M est semblable à $D = \begin{pmatrix} iI_p & 0 \\ 0 & -iI_p \end{pmatrix}$ dans $\mathcal{M}_n(\mathbb{C})$.

Un calcul par blocs montre que la matrice $J = \begin{pmatrix} 0 & -I_p \\ I_p & 0 \end{pmatrix}$ vérifie également $J^2 + I_n = 0$. De même que M, J est

donc semblable à D dans $\mathcal{M}_n(\mathbb{C})$. Par transitivité de la similitude, M est semblable à J dans $\mathcal{M}_n(\mathbb{C})$.

On montre alors classiquement que, M et J étant à coefficients réels, elles sont alors semblables dans $\mathcal{M}_n(\mathbb{R})$. On sait qu'il existe $Q \in GL_n(\mathbb{C})$ telle que $Q^{-1}MQ = J$ i.e. MQ = QJ. On peut affirmer qu'il existe $(R,S) \in \mathcal{M}_n(\mathbb{R})^2$ tel que Q = R + iS. Comme M et J sont à coefficients réels, on obtient alors MR = RJ et MS = SJ. La fonction $x \in \mathbb{C} \mapsto \det(R + xS)$ est polynomiale d'après l'expression du déterminant d'une matrice en fonction de ses coefficients. De plus, $\varphi(i) = \det(P) \neq 0$ car P est inversible. Ainsi φ n'est pas contamment nulle et ne possède alors qu'un nombre fini de racines puisqu'elle est polynomiale. Notamment, φ ne peut pas être constamment nulle sur \mathbb{R} . Il existe donc $\alpha \in \mathbb{R}$ tel que $\varphi(\alpha) \neq 0$. On a alors $P = R + \alpha S \in GL_n(\mathbb{R})$. Comme MR = RJ et MS = SJ, $M(R + \alpha S) = (R + \alpha S)J$ i.e. $P^{-1}MP = J$.

c. La question précédente montre que l'ensemble des solutions de l'équation $(\mathcal{E}_{0,1})$ est E(J).

Solution 2

1. Soit $x \in \mathbb{R}$. Alors $|u_n(x)| \leq \frac{|\alpha|^n}{n!}$. La série $\sum \frac{|\alpha|^n}{n!}$ converge en tant que série exponentielle. La série $\sum |u_n(x)|$ converge donc par majoration. La série $\sum u_n(x)$ converge donc (absolument). On en déduit que $\mathcal{D} = \mathbb{R}$.

- 2. D'après la question précédente, $\|u_n\|_{\infty} \leq \frac{|\alpha|^n}{n!}$. A nouveau, la série $\sum \frac{|\alpha|^n}{n!}$ donc la série $\sum \|u_n\|_{\infty}$ converge par majoration. La série $\sum u_n$ converge donc normalement sur $\mathbb R$ et donc uniformément sur $\mathbb R$.
- 3. Soit $x \in \mathbb{R}$. Posons $v_n(x) = \frac{\alpha^n e^{inx}}{n!} = \frac{(\alpha e^{ix})^n}{n!}$. La série $\sum v_n(x)$ est une série exponentielle. Elle converge et

$$\sum_{n=0}^{+\infty} v_n(x) = e^{\alpha e^{ix}} = e^{\alpha \cos x} e^{i\alpha \sin x}$$

Ainsi

$$C(x) = \sum_{n=0}^{+\infty} u_n(x) = \sum_{n=0}^{+\infty} \text{Re}(v_n(x)) = \text{Re}\left(\sum_{n=0}^{+\infty} v_n(x)\right) = e^{\alpha \cos x} \cos(\alpha \sin x)$$

4. a. Fixons $n \in \mathbb{N}$.

Remarquons que les fonctions u_n sont paires et donc C également. Par conséquent, $x \mapsto \sin(nx)\cos(nx)$ est impaire et $J_n = 0$.

Posons ensuite $w_k(x) = \cos(nx)u_k(x)$ pour $k \in \mathbb{N}$. Il est clair que $\sum_{k=0}^{+\infty} w_k(x) = \cos(nx)C(x)$. De plus, $||w_k||_{\infty} \le \sum_{k=0}^{+\infty} w_k(x) = \cos(nx)C(x)$.

 $\|u_k\|_{\infty}$ donc $\sum w_k$ converge normalement sur $\mathbb R$ et donc uniformément sur $\mathbb R$. En particulier, $\sum w_k$ converge uniformément sur le *segment* $[-\pi,\pi]$. Enfin, les w_k sont bien continues sur $[-\pi,\pi]$. On peut donc affirmer que

$$J_n = \int_{-\pi}^{\pi} \sum_{k=0}^{+\infty} w_k(x) \, dx = \sum_{k=0}^{+\infty} \int_{-\pi}^{\pi} w_k(x) \, dx$$

D'après l'indication de l'énoncé

$$\int_{-\pi}^{\pi} w_k(x) \, dx = \frac{\alpha^k}{2k!} \int_{-\pi}^{\pi} (\cos((n+k)x) + \cos((n-k)x)) \, dx$$

On en déduit que

$$\int_{-\pi}^{\pi} w_k(x) dx = \begin{cases} 0 & \text{si } k \neq n \\ 2\pi & \text{si } k = n = 0 \\ \frac{\pi \alpha^n}{n!} & \text{si } k = n \neq 0 \end{cases}$$

Par conséquent, $I_0 = 2\pi$ et $I_n = \frac{\pi \alpha^n}{n!}$ si $n \in \mathbb{N}^*$.

- **b.** On en déduit immédiatement que $\lim_{n \to +\infty} J_n = \lim_{n \to +\infty} I_n = 0$.
- 5. Soit $x \in \mathbb{R}$. Remarquons que $\cos^2(nx) = \frac{1 + \cos(2nx)}{2}$ de sorte que

$$\frac{\alpha^n \cos^2(nx)}{n!} = \frac{1}{2} \cdot \frac{\alpha^n}{n!} + \frac{1}{2} \cdot u_n(2x)$$

Or les séries $\sum \frac{\alpha^n}{n!}$ et $\sum u_n(2x)$ convergent donc $\sum \frac{\alpha^n \cos^2(nx)}{n!}$ converge également. Ainsi S est définie sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, \ S(x) = \frac{1}{2} \sum_{n=0}^{+\infty} \frac{\alpha^n}{n!} + \frac{1}{2} \sum_{n=0}^{+\infty} u_n(2x) = \frac{e^{\alpha}}{2} + \frac{1}{2} C(2x) = \frac{e^{\alpha}}{2} + e^{\alpha \cos 2x} \cos(\alpha \sin 2x)$$

Solution 3

1. L'application $x \mapsto \frac{\sin x}{x}$ est continue sur \mathbb{R}_+^* . De plus, elle est prolongeable par continuité en 0 puisque $\lim_{x \to 0} \frac{\sin x}{x} = 1$. On peut d'ores et déjà affirmer que $x \mapsto \frac{\sin x}{x}$ est intégrable sur $]0,\pi]$. A fotiori, $\int_0^\pi \frac{\sin x}{x} \, dx$ converge. Par ailleurs, sous réserve de convergence, on obtient par intégration par parties

$$\int_{\pi}^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x = -\left[\frac{\cos x}{x}\right]_{x=\pi}^{x \to +\infty} - \int_{\pi}^{+\infty} \frac{\cos x}{x^2} \, \mathrm{d}x$$

Or $\lim_{x \to +\infty} \frac{\cos x}{x} = 0$ et $\frac{\cos x}{x^2} = \mathcal{O}\left(\frac{1}{x^2}\right)$ de sorte que $\int_{\pi}^{+\infty} \frac{\cos x}{x^2} dx$ converge. Par conséquent $\int_{\pi}^{+\infty} \frac{\sin x}{x} dx$ converge également.

On en conclut que $\int_0^{+\infty} \frac{\sin x}{x} dx$ converge.

- **2. a.** On sait que $1 \cos u \sim u^2 \over u \to 0$ donc $\lim_{t \to 0} \frac{1 \cos(\alpha t)}{t^2} e^{-itx} = \frac{\alpha^2}{2}$. La fonction $t \mapsto \frac{1 \cos(\alpha t)}{t^2} e^{-itx}$ est donc prolongeable par continuité en 0.
 - **b.** Remarquons que cos est borneé de même que $t\mapsto e^{-itx}$ puisqu'elle est à valeurs dans \mathbb{U} . Ainsi $\frac{1-\cos(\alpha t)}{t^2}e^{-itx}=\mathcal{O}\left(\frac{1}{t^2}\right)$. On en déduit que $t\mapsto \frac{1-\cos(\alpha t)}{t^2}e^{-itx}$ est intégrale sur \mathbb{R} .
- 3. a. Tout d'abord,

$$\bar{I} = \int_{-\infty}^{+\infty} \frac{1 - \cos(\alpha t)}{t^2} e^{itx} dt$$

En effectuant le changement de variable linéaire $t \mapsto -t$, on obtient alors

$$\bar{I} = -\int_{-\infty}^{-\infty} \frac{1 - \cos(-\alpha t)}{(-t)^2} e^{-itx} dt = \int_{-\infty}^{+\infty} \frac{1 - \cos(\alpha t)}{t^2} e^{-itx} dt = I$$

Ainsi $I \in \mathbb{R}$.

b. Par intégration par parties,

$$\int_{A}^{+\infty} \frac{\cos(Bx)}{x^2} dx = -\left[\frac{\cos(Bx)}{x}\right]_{x=A}^{x\to +\infty} - B \int_{A}^{+\infty} \frac{\sin(Bx)}{x} dx$$

Cette intégration par partie est légitime car la première intégrale converge d'après le résultat admis dans l'énoncé et $\lim_{x \to +\infty} \frac{\cos(Bx)}{x} = 0$. Ainsi

$$\int_{A}^{+\infty} \frac{\cos(Bx)}{x^2} dx = \frac{\cos(AB)}{A} - B \int_{A}^{+\infty} \frac{\sin(Bx)}{x} dx$$

On effectue alors le changement de variable linéaire t = Bx dans la seconde intégrale pour obtenir

$$\int_{A}^{+\infty} \frac{\cos(Bx)}{x^2} dx = \frac{\cos(AB)}{A} - B \int_{AB}^{+\infty} \frac{\sin(t)}{t} dt$$

c. D'après la question précédente.

$$\int_{A}^{+\infty} \frac{1 - \cos(Bx)}{x^2} dx = \int_{A}^{+\infty} \frac{dx}{x^2} - \frac{\cos(AB)}{A} + B \int_{AB}^{+\infty} \frac{\sin(t)}{t} dt = \frac{1 - \cos(AB)}{A} + B \int_{AB}^{+\infty} \frac{\sin(t)}{t} dt$$

En utilisant à nouveau l'équivalent $1-\cos u \sim \frac{u^2}{2}$ et comme $\int_0^{+\infty} \frac{\sin t}{t} dt$ converge, on ontient en faisant tendre A vers 0:

$$\int_0^{+\infty} \frac{1 - \cos(Bx)}{x^2} dx = B \int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{B\pi}{2}$$

De plus, si B = 0, il est clair que $\int_0^{+\infty} \frac{1 - \cos(Bx)}{x^2} dx = 0$ et si B < 0, on obtient $\int_0^{+\infty} \frac{1 - \cos(Bx)}{x^2} dx = -\frac{B\pi}{2}$ par parité de cos. On peut simplifier en affirmant que $\int_0^{+\infty} \frac{1 - \cos(Bx)}{x^2} dx = \frac{|B|\pi}{2}$ de manière générale.

d. Par relation de Chasles:

$$I = \int_{-\infty}^{0} \frac{1 - \cos(\alpha t)}{t^2} e^{-itx} dt + \int_{0}^{+\infty} \frac{1 - \cos(\alpha t)}{t^2} e^{-itx} dt$$

En effectuant le changement de variable $t\mapsto -t$ dans la première intégrale, on obtient :

$$I = \int_0^{+\infty} \frac{1 - \cos(\alpha t)}{t^2} e^{itx} dt + \int_0^{+\infty} \frac{1 - \cos(\alpha t)}{t^2} e^{-itx} dt = 2 \int_0^{+\infty} \frac{1 - \cos(\alpha t)}{t^2} \cos(tx) dt$$

Avec des relations de trigonométrie élémentaire

$$I = \int_0^{+\infty} \frac{2\cos(tx) - \cos((x+\alpha)t) - \cos((x-\alpha)t)}{t^2} dt$$

$$= \int_0^{+\infty} \frac{1 - \cos((x+\alpha)t)}{t^2} dt + \int_0^{+\infty} \frac{1 - \cos((x-\alpha)t)}{t^2} dt - 2\int_0^{+\infty} \frac{1 - \cos(tx)}{t^2} dt$$

D'après la question précédente,

$$I = \frac{|x + \alpha|\pi}{2} + \frac{|x - \alpha|\pi}{2} - \pi|x| = \pi \cdot \frac{|x + \alpha| + |x - \alpha| - 2|x|}{2}$$

Solution 4

1. a. Supposons α racine de P.

Alors $a_0 = \alpha$ est racine de P. Supposons a_n racine de P pour un certain $n \in \mathbb{N}$. Alors

$$P(a_{n+1}) = P(a_n^2 + 2a_n) = P((a_n + 1)^2 - 1) = P(a_n)P(a_n + 2) = 0$$

Ainsi a_{n+1} est racine de P.

Par récurrence, a_n est racine de P pour tout $n \in \mathbb{N}$.

- **b.** On montre par récurrence que (a_n) est une suite strictement positive. Alors, pour tout $n \in \mathbb{N}$, $a_{n+1} a_n = a_n^2 + a_n > 0$ donc (a_n) est strictement croissante.
- c. Si $\alpha > 0$ est racine de P, la suite (a_n) est strictement croissante et prend donc une infinité de valeurs. Ainsi P admet une infinité de racines, ce qui contredit le fait que P est non nul. P ne peut admettre de racines strictement positives.
- **2. a.** Supposons que -1 est racine. Alors

$$P(3) = P((-2)^2 - 1) = P(-3)P(-1) = 0$$

Mais 3 ne peut être racine de P puisque P n'admet pas de racines strictement positives.

- **b.** On a $a_{n+1} + 1 = (a_n + 1)^2$. On montre alors par récurrence que $a_n + 1 = (\alpha + 1)^{2^n}$.
- c. Si $|\alpha+1|=0$ ou $|\alpha+1|=1$, la suite (r_n) est constante. Si $0<|\alpha+1|<1$, la suite (r_n) est strictement décroissante. Si $|\alpha+1|>1$, la suite (r_n) est strictement croissante. Ainsi la suite (r_n) est strictement monotone si et seulement si $|\alpha+1|\in]0,1[\cup]1,+\infty[$.
- **d.** Supposons α racine de P.

Si $|\alpha + 1| \in]0,1[\cup]1,+\infty[$, la suite (r_n) est strictement monotone donc injective. A fortiori, la suite (a_n) l'est également. Comme a_n est racine de P pour tout $n \in \mathbb{N}$, P admet une infinité de racines, ce qui contredit le fait que P est non nul.

De plus, on ne peut avoir $|\alpha + 1| = 0$ puisque -1 n'est pas racine de P.

C'est donc que $|\alpha + 1| = 1$.

- e. Supposons α racine de P. Alors $P((\alpha 1)^2 1) = P(\alpha 2)P(\alpha) = 0$. Ainsi $\alpha^2 2\alpha$ est racine de P. D'après la question précédente, $|\alpha^2 2\alpha + 1| = 1$ ou encore $|(\alpha 1)^2| = 1$. On en déduit que $|\alpha 1| = 1$.
- 3. Si P est non constant, P admet au moins une racine. Notons à nouveau α une racine de P. D'après ce qui précède, $|\alpha 1| = |\alpha + 1| = 1$. Le point d'affixe α est donc sur les cercles de rayon 1 et de centres respectifs les points d'affixe -1 et 1. Ainsi $\alpha = 0$. La seule racine de P est donc 0.
- **4.** Soit $P \in \mathbb{C}[X]$ vérifiant la relation (\star) .

Si P est constant, alors il existe $\lambda \in \mathbb{C}$ tel que P = λ . La relation (\star) implique $\lambda = \lambda^2$ i.e. $\lambda = 0$ ou $\lambda = 1$.

Si P est non constant, ce qui prècède montre que P admet 0 pour unique racine. Il existe donc $\lambda \in \mathbb{C}^*$ et $n \in \mathbb{N}^*$ tel que $P = \lambda X^n$. En raisonnant sur les coefficients dominants dans la relation (\star) , on a nécessairement $\lambda = \lambda^2$ et donc $\lambda = 1$ puisque $\lambda \in \mathbb{C}^*$. Ainsi $P = X^n$.

Réciproquement, on constate que le polynôme nul et les polynômes X^n pour $n \in \mathbb{N}$ (on retrouve le polynôme 1 pour n = 0) vérifient bien la relation (\star) .

Les polynômes recherchés sont donc exactement le polynôme nul et les polynômes X^n pour $n \in \mathbb{N}$.