Efficient Algorithms for Geometric Partial Matching

Pankaj K. Agarwal Hsien-Chih Chang Allen Xiao

Department of Computer Science, Duke University

June 2019

Geometric (bipartite) matching

Geometric (bipartite) matching

Geometric (bipartite) matching

Geometric (bipartite) partial matching

Prior work

	approx.	time	
Hungarian algorithm (Kuhn)	exact	$O(km + k^2 \log n)$	$q \ge 1$
		$O(kn \operatorname{polylog} n)$	
Ramshaw, Tarjan 2012	exact ¹	$O(m\sqrt{k}\log(kC))$	$q \ge 1$
	$(1+\varepsilon)$	$O(n\sqrt{k}\operatorname{polylog} n\log(1/\varepsilon))$	
Sharathkumar, Agarwal 2012	$(1+\varepsilon)$	$O(n\operatorname{poly}(\log n, 1/\varepsilon)$	q = 1
new (Hungarian)	1	$O((n+k^2)\operatorname{polylog} n)$	$q \ge 1$
new (cost-scaling)	$(1+\varepsilon)$	$O((n+k\sqrt{k}) \operatorname{polylog} n \log(1/\varepsilon))$	$q \ge 1$

¹Assuming integer costs $\leq C$.

Flow terminology

- $ightharpoonup c_{\pi}(v \rightarrow w) \coloneqq c(v \rightarrow w) \pi(v) + \pi(w)$
- θ -optimality: $c_{\pi}(v \rightarrow w) \geq -\theta$ on all residual arcs
- ▶ admissible residual arcs: $c_{\pi}(v \rightarrow w) \leq 0$

Cost-scaling (Ramshaw-Tarjan)

- θ -optimality: $c_{\pi}(v \rightarrow w) \geq -\theta$ on all residual arcs
- ▶ admissible residual arcs: $c_{\pi}(v \rightarrow w) \leq 0$
- ightharpoonup heta-optimal circulation is $+n\theta$ approx.
- ▶ Find θ -optimal circulations for geometrically decreasing values of θ :
 - 1. Reduce $\theta \leftarrow \theta/2$, while creating O(k) excess.
 - 2. Refine this pseudoflow into a circulation, while preserving θ -optimality

- There exists a k-matching whose longest edge is $(n^q \cdot \alpha)$, and a $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.
- ho (1+arepsilon)-approx. geometric partial matching reduces into executing $O(\log(n^q/arepsilon))$ cost scales.

- There exists a k-matching whose longest edge is $(n^q \cdot \alpha)$, and a $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.
- $(1+\varepsilon)$ -approx. geometric partial matching reduces into executing $O(\log(n^q/\varepsilon))$ cost scales.

- ► There exists a k-matching whose longest edge is $(n^q \cdot \alpha)$, and a $(\varepsilon \alpha/6k)$ -optimal circulation is $(1 + \varepsilon)$ -approx.
- $(1+\varepsilon)$ -approx. geometric partial matching reduces into executing $O(\log(n^q/\varepsilon))$ cost scales.

- ▶ There exists a k-matching whose longest edge is $(n^q \cdot \alpha)$, and a $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.
- (1+arepsilon)-approx. geometric partial matching reduces into executing $O(\log(n^q/arepsilon))$ cost scales.

- ▶ There exists a k-matching whose longest edge is $(n^q \cdot \alpha)$, and a $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.
- $(1+\varepsilon)$ -approx. geometric partial matching reduces into executing $O(\log(n^q/\varepsilon))$ cost scales.

- ► Inside Refine:
 - Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.

- ► Inside Refine:
 - Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.

- ► Inside Refine:
 - Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.

- ► Inside Refine:
 - Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.

- ► Inside Refine:
 - Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.

High-level goal per scale

- Inside Refine:
 - 1. Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.
- After $O(n \operatorname{polylog} n)$ -time preprocessing, perform Hungarian search and find each blocking flow in $O(k \operatorname{polylog} n)$ time.

X: admissible reachable from an excess node

- ▶ Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- Dead nodes: ones which aren't alive.

- ► Alive path: residual path between two alive nodes with no other alive nodes in between.
- Don't need to track potential of dead nodes.

- ▶ Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- Dead nodes: ones which aren't alive.

- ► Alive path: residual path between two alive nodes with no other alive nodes in between.
- Don't need to track potential of dead nodes.

- ▶ Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- Dead nodes: ones which aren't alive.

- ► Alive path: residual path between two alive nodes with no other alive nodes in between.
- Don't need to track potential of dead nodes.

- ▶ Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- Dead nodes: ones which aren't alive.

- ► Alive path: residual path between two alive nodes with no other alive nodes in between.
- Don't need to track potential of dead nodes.

- ▶ Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- Dead nodes: ones which aren't alive.

- ► Alive path: residual path between two alive nodes with no other alive nodes in between.
- Don't need to track potential of dead nodes.

- ▶ Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- Dead nodes: ones which aren't alive.

- ► Alive path: residual path between two alive nodes with no other alive nodes in between.
- Don't need to track potential of dead nodes.

- ▶ Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- Dead nodes: ones which aren't alive.

- ► Alive path: residual path between two alive nodes with no other alive nodes in between.
- Don't need to track potential of dead nodes.

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ightharpoonup Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

Problem: BCP initialization

▶ Dynamic 2D BCP with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)

- ▶ Some BCP may begin a Hungarian search with $\Theta(n)$ vertices.
- ► Can't afford to construct from scratch for every Hungarian search.

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- ▶ Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- ► Persistence?

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- ▶ Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- ► Persistence?

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- ► Persistence?

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- ▶ Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- ► Persistence?

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- ▶ Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- ► Persistence?
- Construct once $(O(n \operatorname{polylog} n))$, then $O(k \operatorname{polylog} n)$ time to rewind \circ

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- ▶ Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- ► Persistence?

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- ▶ Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- ► Persistence?
- Construct once $(O(n \operatorname{polylog} n))$, then $O(k \operatorname{polylog} n)$ time to rewind \circ

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- Persistence?

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- Persistence?

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- Persistence?
- ▶ Construct once $(O(n \operatorname{polylog} n))$, then $O(k \operatorname{polylog} n)$ time to rewind

The End

Thank you.