



## Chapitre 6 : Problèmes d'affectations

J.-F. Scheid

# Plan du chapitre

- I. Affectation simple
  - Introduction
  - Modélisation par un PL en variables binaires.
  - Modélisation par flot maximal.
  - Résolution par l'algorithme de Ford-Fulkerson.
- II. Affectation multiple
  - Introduction
  - Modélisations et résolution (Ford-Fulkerson).

# I. Affectation simple1) Introduction

Un exemple : 4 tâches (demandes)  $C_1, \dots, C_4$  doivent être réalisées en disposant de 3 machines (offres)  $L_1, \dots, L_3$ . Chaque machine ne peut effectuer que certaines tâches bien précises.

Les tâches permises et non-permises pour chaque machine, sont indiquées dans le tableau des cases admissibles :

|                | $C_1$ | <i>C</i> <sub>2</sub> | <i>C</i> <sub>3</sub> | C <sub>4</sub> |
|----------------|-------|-----------------------|-----------------------|----------------|
| $L_1$          |       |                       |                       |                |
| $L_2$          |       |                       |                       |                |
| L <sub>3</sub> |       |                       |                       |                |



Chaque tâche ne doit pas être effectuée par plus d'une machine et chaque machine ne peut pas effectuer plus d'une tâche.

#### Affectation simple :

- Chaque demande (tâche) ne peut pas être traitée par plus d'une offre (machine).
- Chaque offre (machine) ne peut pas traiter plus d'une demande (tâche).

**Remarque**. Une demande peut ne pas être traitée du tout et une offre peut n'être affectée à aucune demande.

#### Problème d'affectation

Trouver le maximum d'affectations possibles.

# 2) Modélisation par un PL en variables binaires

On introduit les variables  $t_{ij}$  qui indiquent si l'offre  $L_i$  est affectée à la demande  $C_i$ :

$$t_{ij} = \left\{ \right.$$

pour  $(i,j) \in \mathcal{U}$  ensemble des indices **admissibles** 

### Exemple.

|                | $C_1$ | $C_2$ | <i>C</i> <sub>3</sub> | C <sub>4</sub> |
|----------------|-------|-------|-----------------------|----------------|
| $L_1$          |       |       |                       |                |
| L <sub>2</sub> |       |       |                       |                |
| L <sub>3</sub> |       |       |                       |                |

$$\mathcal{U} = \left\{ \begin{array}{l} (1,1), \\ (2,1), (2,2), (2,3), (2,4), \\ (3,1), (3,2) \end{array} \right\}$$

# 2) Modélisation par un PL en variables binaires

## Problème de programmation linéaire (primal)

$$(P_1) \left\{ \begin{array}{ll} \displaystyle \max_{t_{ij}} \left[ F_1 = \displaystyle \sum_{(i,j) \in \mathcal{U}} t_{ij} \right] & \leftarrow \text{ maximisation du } \\ \forall i, & \leftarrow \text{ offre } L_i \text{ affect\'ee \`a} \\ \forall j, & \leftarrow \text{ demande } a_i \text{ pl} \\ \forall j, & \leftarrow \text{ demande } C_j \text{ affect} \\ \forall (i,j) \in \mathcal{U}, \ t_{ij} \geq 0 \end{array} \right.$$

- une demande au plus
- $\leftarrow$  demande  $C_i$  affectée à

#### Exemple.

|                | $C_1$ | $C_2$ | <i>C</i> <sub>3</sub> | $C_4$ |
|----------------|-------|-------|-----------------------|-------|
| $L_1$          |       |       |                       |       |
| L <sub>2</sub> |       |       |                       |       |
| L <sub>3</sub> |       |       |                       |       |

$$\max_{\mathbf{t}} F(\mathbf{t}) = \mathbf{c}^{\top} \mathbf{t}$$
$$\begin{cases} A\mathbf{t} \leq \mathbf{b} \\ \mathbf{t} \geq 0 \end{cases}$$

7

## Propriété

Toute solution de base optimale  $t_{ii}^*$  de  $(P_1)$  vérifie  $t_{ii}^* \in \{0, 1\}$ .

#### En effet,

- ullet on a  $0 \leq t^*_{ii} \leq 1$
- on peut montrer que la solution de base optimale est entière (cf. chapitre 7, PL en variables entières)

Le problème primal  $(P_1)$  s'interprète de la façon suivante :

On veut trouver un maximum de cases admissibles 2 à 2 <u>indépendantes</u> c'est-à-dire ni sur la même ligne, ni sur la même colonne.

Par exemple,

|                | $C_1$ | $C_2$ | <i>C</i> <sub>3</sub> | $C_4$ |
|----------------|-------|-------|-----------------------|-------|
| $L_1$          |       |       |                       |       |
| $L_2$          |       |       |                       |       |
| L <sub>3</sub> |       |       |                       |       |

Le problème primal  $(P_1)$  admet le dual suivant.

#### Dual

$$(D_1) \left\{egin{array}{l} \min_{l_i,k_j} \left[G_1 = \sum_i l_i + \sum_j k_j
ight] \ orall (i,j) \in \mathcal{U}, \ l_i + k_j \geq 1 \ orall i, \ l_i \geq 0 \ orall j, \ k_j \geq 0 \end{array}
ight.$$

**Remarque.** On montre qu'à l'optimum, les variables duales sont entières et  $l_i$ ,  $k_j \in \{0, 1\}$ .

#### Définition

Un **support** est un ensemble de lignes et de colonnes qui couvrent toutes les cases admissibles du tableau.

|       | $C_1$ | $C_2$ | <i>C</i> <sub>3</sub> | C <sub>4</sub> |
|-------|-------|-------|-----------------------|----------------|
| $L_1$ |       |       |                       |                |
| $L_2$ |       |       |                       |                |
| $L_3$ |       |       |                       |                |

Supports :  $\{L_1, L_2, L_3\}$ ,  $\{C_1, C_2, C_3, C_4\}$ ,  $\{C_1, L_2, L_3\}$ , ...

**Remarque.** Si  $l_i = 1$  alors  $L_i$  est dans le support. De même si  $k_j = 1$  alors  $C_j$  est dans le support.

 → Le problème dual correspond à la recherche d'un support minimal (i.e. support de cardinal minimal)

# 3) Modélisation par flot maximal

Au tableau des cases admissibles, on peut associer un diagramme sagital avec un graphe biparti.

#### Définition

Un graphe est dit **biparti** si l'ensemble de ses sommets peut être partitionné en 2 sous-ensembles X et Y tels que toute arête possède une extrémité dans X et l'autre dans Y.

|                | $C_1$ | $C_2$ | $C_3$ | C <sub>4</sub> |
|----------------|-------|-------|-------|----------------|
| $L_1$          |       |       |       |                |
| L <sub>2</sub> |       |       |       |                |
| L <sub>3</sub> |       |       |       |                |

**Remarque.** Sur le graphe biparti associé au tableau des cases admissibles, le problème d'affectation modélisé par le problème primal  $(P_1)$ , correspond à rechercher le maximum d'arêtes 2 à 2 <u>non-adjacentes</u> c'est-à-dire qui n'ont *ni la même origine, ni le même sommet terminal*.

|                |       |       |                       |                |         | ( |
|----------------|-------|-------|-----------------------|----------------|---------|---|
|                | $C_1$ | $C_2$ | <i>C</i> <sub>3</sub> | C <sub>4</sub> | $(L_l)$ | ( |
| $L_1$          | 1     |       |                       |                |         | ` |
| L <sub>2</sub> | 0     | 1     | 0                     | 0              | $(L_2)$ | ( |
| L <sub>3</sub> | 0     | 0     |                       |                |         | ( |
|                |       |       |                       |                | $(L_3)$ | ( |
|                |       |       |                       |                |         | ( |

#### Graphe biparti complété.

Soit G le graphe biparti associé au tableau des cases admissibles avec X et Y les deux sous-ensembles tels que toute arête a une extrémité dans X et l'autre dans Y.

- On ajoute une **source**  $s \in X$  et des arêtes (s, i) de capacité c(s, i) = 1 pour tous les sommets i de X.
- On ajoute un **puits**  $t \in Y$  et des arêtes (j, t) de capacité c(j, t) = 1 pour tous les sommets j de Y.
- A chaque arête (i, j) du graphe G initial, on associe une capacité infinie

On obtient ainsi un graphe biparti complété



Le problème d'affectation est un problème de flot maximal à travers le graphe biparti complété.

## Flot maximal : problème primal $(P_2)$

$$egin{aligned} \max\left[F_2=v
ight] & \left\{egin{aligned} (s) & -v+\sum_i f_{si}=0 \ orall L_i, & -f_{si}+\sum_j f_{ij}=0 \ orall C_j, & -\sum_i f_{ij}+f_{jt}=0 \ (t) & -\sum_j f_{jt}+v=0 \ orall L_i, & f_{si}\leq 1 \ orall C_j, & f_{jt}\leq 1 \ orall C_j, & f_{jt}\geq 0 \ v & ext{de signe quelconque} \end{aligned}
ight.$$

### Exemple.



$$\mathbf{f} = (f_{s1}, f_{s2}, f_{s3} | f_{11}, f_{21}, f_{22}, f_{23}, f_{24}, f_{31}, f_{32} | f_{1t}, f_{2t}, f_{3t}, f_{4t})^{\top} \in \mathbb{R}^{14}$$

$$\mathbf{v} = (-v, 0, 0, 0, 0, 0, 0, 0, 0, v)^{\top} \in \mathbb{R}^{9};$$

Matrice  $A \in \mathcal{M}_{9 \times 14}$  :

## Propriétés

- Toute solution de base optimale  $f_{ij}^*$  de  $(P_2)$  vérifie  $f_{ij}^* \in \{0, 1\}$ : à l'optimum, les flots des arêtes valent 0 ou 1:
- 2 Les 2 problèmes primaux  $(P_1)$  et  $(P_2)$  sont équivalents.

#### Preuve:

- 1) toute solution de base optimale de  $(P_2)$  est **entière** (cf. Chapitre 7, PL en nb entiers).
- 2) prendre  $t_{ij} = f_{ij}$  (exercice)

## 4) Résolution par Ford-Fulkerson

Algorithme de Ford-Fulkerson pour calculer le flot maximal à travers le graphe biparti complété.

• Initialisation du flot (coin nord-ouest).
On attribue les affectations en partant de la 1ère ligne et en allant de gauche à droite.

|                | $C_1$ | $C_2$ | <i>C</i> <sub>3</sub> | C <sub>4</sub> |              |
|----------------|-------|-------|-----------------------|----------------|--------------|
| $L_1$          |       |       |                       |                |              |
| L <sub>2</sub> |       |       |                       |                |              |
| L <sub>3</sub> |       |       |                       |                |              |
|                |       |       |                       |                | $(L_3)$      |
|                |       |       |                       |                | $\neg (C_4)$ |

#### Amélioration du flot par l'algorithme de Ford-Fulkerson

- \* marquage pile largeur (par ex.) : à partir du haut de la pile, on marque et on empile tous les sommets successeurs non encore marqués.
- $\star$  inutile d'indiquer le tableau des améliorations arepsilon : on a toujours arepsilon=1

| E    | S |  |  |  |
|------|---|--|--|--|
| orig | _ |  |  |  |



#### Tableau correspondant

|                | $C_1$ | $C_2$ | $C_3$ | $C_4$ |
|----------------|-------|-------|-------|-------|
| $L_1$          |       |       |       |       |
| L <sub>2</sub> |       |       |       |       |
| L <sub>3</sub> |       |       |       |       |

- Sur le graphe :  $(X, \overline{X})$  coupe minimale  $\Rightarrow$  \_\_\_\_\_\_
- Dans le tableau : nombre d'affectations = min(nb de ligne, nb de colonne) =  $3 \Rightarrow$  \_\_\_\_\_\_.

# II. Affectation multiple1) Introduction

On reprend l'exemple précédent (affectation simple) mais cette fois chaque machine (offre) peut réaliser plusieurs tâches (demande) :

• la machine  $L_i$  peut être utilisée au plus  $a_i$  fois  $(a_i \in \mathbb{N}^*)$ .

On suppose aussi que chaque tâche peut utiliser un certain nombre de fois les différentes machines :

• la tâche  $C_j$  peut être réalisée en utilisant au plus  $b_j$  machines  $(b_j \in \mathbb{N}^*)$ .

Les offres et demandes sont indiquées dans le tableau des cases admissibles :

|                | $C_1$ | $C_2$ | $C_3$ | C <sub>4</sub> | ai |
|----------------|-------|-------|-------|----------------|----|
| $L_1$          |       |       |       |                | 6  |
| L <sub>2</sub> |       |       |       |                | 7  |
| L <sub>3</sub> |       |       |       |                | 3  |
| bj             | 10    | 3     | 4     | 6              |    |

Dans l'exemple ci-dessus, la machine  $L_1$  peut être utilisée au plus 6 fois. La tâche  $C_1$  peut être effectuée par au plus 10 machines...

→ Trouver le maximum d'affectations possibles

# 2) Modélisations

## a) Programmation linéaire

Variable  $t_{ij}$  = nombre de fois que l'offre  $L_i$  est utilisée par la demande  $C_j$  = nombre d'affectations de l'offre  $L_i$  à la demande  $C_j$ 

$$\left\{egin{array}{l} \max_{t_{ij}}\left[F=\sum_{(i,j)\in\mathcal{U}}t_{ij}
ight] \ &orall i, & ext{(offre)} \ &orall j, & ext{(demande)} \ &orall (i,j)\in\mathcal{U}, \ t_{ij}\geq0 \end{array}
ight.$$

**Remarque**. Si les  $a_i$  et  $b_j$  sont entiers alors à l'optimum les  $t_{ij}$  sont entiers.

## b) Modélisation par flot maximal

Le problème de l'affectation multiple peut se modéliser par la recherche d'un flot maximal à travers un graphe **biparti complété** :

- On ajoute une **source** s et des arêtes (s, i) reliant s aux offres  $L_i$  avec des capacités  $c(s, i) = a_i$ .
- On ajoute un **puits** t et des arêtes (j, t) reliant les demandes  $C_j$  à t avec des capacités  $c(j, t) = b_i$ .
- Pour chaque arête (i,j) entre  $L_i$  et  $C_j$ , on considère une capacité **infinie**.

## Exemple

|                | $C_1$ | $C_2$ | <i>C</i> <sub>3</sub> | C <sub>4</sub> | aį |
|----------------|-------|-------|-----------------------|----------------|----|
| $L_1$          |       |       |                       |                | 6  |
| L <sub>2</sub> |       |       |                       |                | 7  |
| L <sub>3</sub> |       |       |                       |                | 3  |
| bj             | 10    | 3     | 4                     | 6              |    |



# 3) Résolution par Ford-Fulkerson

Algorithme de Ford-Fulkerson pour calculer le flot maximal à travers le graphe biparti complété.

Initialisation du flot (coin nord-ouest).

|                | $C_1$ | $C_2$ | <i>C</i> <sub>3</sub> | $C_4$ | a <sub>i</sub> |
|----------------|-------|-------|-----------------------|-------|----------------|
| $L_1$          |       |       |                       |       | 6              |
| $L_2$          |       |       |                       |       | 7              |
| L <sub>3</sub> |       |       |                       |       | 3              |
| $b_j$          | 10    | 3     | 4                     | 6     |                |



## 2 Amélioration du flot par Ford-Fulkerson Marquage pile largeur (par ex.)

| E    | S        |  |  |  |
|------|----------|--|--|--|
| orig | _        |  |  |  |
| ε    | $\infty$ |  |  |  |



#### Tableau correspondant

|       | $C_1$ | $C_2$ | $C_3$ | $C_4$ | a <sub>i</sub> |
|-------|-------|-------|-------|-------|----------------|
| $L_1$ |       |       |       |       | 6              |
| $L_2$ |       |       |       |       | 7              |
| $L_3$ |       |       |       |       | 3              |
| bj    | 10    | 3     | 4     | 6     |                |

- Sur le graphe :  $(X, \overline{X})$  coupe minimale  $\Rightarrow$  \_\_\_\_\_\_.
- Dans le tableau : il n'y a plus d'affectation possible selon les lignes
   ⇒