

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

DOCUMENT DE PRIORITÉ

COPIE OFFICIELLE

PRÉSENTÉ OU TRANSMIS CONFORMÉMENT À LA REGLE 17.1.a) OU b)

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris. le 16 AOUT 1999

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

Martine PLANCHE

INSTITUT NATIONAL DE LA PROPRIETE INDUSTRIELLE SIEGE 26 bis, rue de Saint Petersbourg 75800 PARIS Cédex 08 Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30

Ÿ

BREVET D'INVENTION, CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle-Livre VI

26 bis, rue de Saint Pétersbourg 75800 Paris Cedex 08

REQUÊTE EN DÉLIVRANCE Confirmation d'un dépôt par télécopie

٠		
	•	
	-	

•	remplir à l'encre noire en lettres capitales
DATE DE REMISE DES PIÈCES N° D'ENREGISTREMENT NATIONAL DÉPARTEMENT DE DÉPÔT DATE DE DÉPÔT 1 0 NOV. 1998 2 DEMANDE Nature du titre de propriété industrielle brevet d'invention demande divisionnaire certificat d'utilite transformation d'une demande de brevet européen établissement du rapport de recherche de différé invention demande initiale de brevet d'invention	1 Nom et adresse du demandeur ou du mandataire à qui la correspondance doit être adressée Hoechst Marion Roussel Monsieur VIEILLEFOSSE Jean-Claude 102, Route de Noisy 93235 ROMAINVILLE CEDEX n°du pouvoir permanent références du correspondant téléphone pg06335 ML/2504 0149915727 — certificat d'utilité n° date
3 DEMANDEUR (S) n° SIREN 5 5 2 0 8 1 4 7 3 code APE-NAF	
Nom et prénoms (souligner le nom patronymique) ou dénomination	Forme juridique
Hoechst Marion Roussel	Société Anonyme à Directoire et Conseil de Surveillance
Nationalité (s) FRANCAISE Adresse (s) complète (s)	Pays
l, Terrasse Bellini	
92800 PUTEAUX	FRANCE
En cas d'insu 4 INVENTEUR (S) Les inventeurs sont les demandeurs oui \(\frac{1}{N} \) non 5 RÉDUCTION DU TAUX DES REDEVANCES requise pour la 1ère fois 6 DÉCLARATION DE PRIORITÉ OU REQUÊTE DU BÉNÉFICE DE LA DATE DE DÉPÔT D'UI	uffisance de place, poursuivre sur papier libre
6 DÉCLARATION DE PRIORITÉ OU REQUETE DU BENEFICE DE LA DATE DE DEPOT D'UI pays d'origine numéro	date de dépôt nature de la demande
1	
	·
7 DIVISIONS antérieures à la présente demande n° date	n° date
8 SIGNATURE DU DEMANDEUR OU DU MANDATAIRE (nom et qualité du signataire - n° d'incresson) Jean Caude VIEILLEFOSSE	IRE DU PRÉPOSÉ À LA RÉCEPTION SIGNATURE APRES ENREISTREMENT DE LA DEMANDE À L'INPI
	j

DÉSIGNATION DE L'INVENTEUR

usi le demandeur n'est pas r'inventeur ou l'unique inventeur)

Nº D'ENREGISTREMENT NATIONAL

9814147 cas 250.

DIVISION ADMINISTRATIVE DES BREVETS

26bis, rue de Saint-Pétersbourg 75800 Paris Cédex 08 Tél.: 01 53 04 53 04 - Télécopie: 01 42 93 59 30

TITRE DE L'INVENTION: Gène tfIIIA de Candida albicans (CatfIIIA) et la protéine codée CATFIIIA.

LE(S) SOUSSIGNÉ(S) Jean Claude VIEILLEFOSSE

DÉSIGNE(NT) EN TANT QU'INVENTEUR(S) (indiquer nom, prénoms, adresse et souligner le nom patronymique) :

- BORDON-PALLIER Florence 37, Boulevard Beethoven 78280 GUYANCOURT
- . CAMIER Sylvie 66 Oakmont Avenue PIEMONT, CA 94610 USA
- . SENTENAC André Service de Biochimie et génétique moléculaire Bât. 142 CEA/SACLAY 91191 GIF SUR YVETTE CEDEX

NOTA : A titre exceptionnel, le nom de l'inventeur peut être suivi de celui de la société à laquelle il appartient (société d'appartenance) lorsque celle-ci est différente de la société déposante ou titulaire.

Date et signature (s) du (des) demandeur (s) ou du mandataire

Jean Claude VIEILLEFOSSE

Gène tfIIIA de Candida albicans (CatfIIIA) et la protéine codée CATFIIIA.

La présente invention concerne le facteur de transcrip-5 tion de Candida albicans nommé ci-après CATFIIIA et ses analogues ainsi que les polynucléotides (ARN, ADN) codant pour cette protéine ou pour les polypeptides analogues de cette protéine.

La présente invention concerne également le procédé de préparation de ces polypeptides et polynucléotides, leur utilisation pour l'étude des mécanismes de la transcription chez Candida albicans et pour la préparation d'inhibiteurs de ce facteur de transcription CATFIIIA pouvant être utilisés comme agent antifongiques et les compositions pharmaceutiques contenant de tels inhibiteurs.

La présente invention concerne donc notamment un nouveau facteur de transcription de Candida albicans et la séquence d'ADN codant pour ce facteur de transcription, leur préparation et leurs utilisations.

Nous utiliserons également ci-après les abréviations suivantes : AA pour acides aminés, AN pour acides nucléiques, ARN pour acide ribonucléique, RNase pour ribonucléase, ADN ou DNA pour acide désoxyribonucléique, ADNc pour ADN complémentaire, pb pour paires de bases, PCR pour réaction en chaîne par une polymérase, CA ou Candida a. pour Candida albicans et SC ou Saccharomyces c. pour Saccharomyces cerevisiae.

On utilisera également le terme screening qui désigne une technique de criblage spécifique et le terme primer qui 30 désigne un oligonucléotide utilisé en amorce.

Le terme polynucléotides désigne ci-après les polynucléotides de la présente invention soit les séquences d'ADN et également ARN codant pour le facteur CATFIIIA de la présente invention et ses homologues ayant la même fonction de facteur de transcription. Le terme CAtfIIIA a le sens donné ci-dessus à polynucléotides.

Le terme polypeptides désigne ci-après les polypeptides de la présente invention soit le facteur CATFIIIA de la

présente invention et ses analogues ou homologues fonctionnels tels que définis ci-après, ayant donc la même fonction de facteur de transcription. Le terme CATFIIIA a le sens donné ci-dessus à polypeptides.

Nous appellerons tfIIIA (ou tfC2) le gène codant pour le facteur de transcription TFIIIA tandis que CAtfIIIA (ou CAtfC2) désigne le gène codant pour le facteur de transcription de Candida albicans CATFIIIA.

Le spectre des infections fongiques connues s'étend de 10 l'attaque fongique de la peau ou des ongles à des infections mycotiques plus graves d'organes internes. De telles infections et les maladies qui en résultent sont identifiées comme des mycoses. Des substances antimycotiques à effets fongistatiques ou fongicides, sont utilisées pour le traitement de ces mycoses.

La présente invention concerne ainsi l'identification de substances antimycotiques et notamment de substances anti-Candida albicans.

La présente invention concerne ainsi des inhibiteurs de 20 facteurs de transcription pouvant être utilisés comme agents antifongiques.

Candida albicans est une levure pathogène qui cause des maladies infectieuses dans l'organisme humain. Dans le but de trouver des moyens de traiter des maladies, on peut choisir

25 des cibles intracellulaires et le facteur de transcription TFIIIA peut être l'une de ces cibles.

Dans les organismes eucaryotes, ce facteur joue un rôle clé dans l'initiation de la transcription des gènes ARN 5S par la RNA-polymérase III. En particulier, pour SC qui est une

30 levure proche de CA, il a été montré que cette levure SC ne pouvait pas survivre sans une source additionnelle de ARN 5S lorsque le gène chromosomique du facteur TFIIIA était interrompu, cet ARN 5S additionnel étant synthétisé au moyen d'un plasmide sans la participation du facteur TFIIIA (référence:

35 S. Camier, A.-M. Dechampesme, A. Sentenac./Proc. Natl. Acad. Sci. (1995) 92, 9338-9342).

Le gène tfIIIA et la protéine correspondante TFIIIA seraient impliqués dans la régulation du mécanisme biologique

de la transcription comme indiqué ci-après.

Depuis que la protéine TFIIIA a été purifiée comme facteur de transcription pour la première fois en 1980 à partir d'ovocytes de Xénope [Segall et Al, J. Biol. Chem., 5 255, 11986-11991 (1980)], des travaux ont été menés in vivo et in vitro dans le Xénope pour étudier le mécanisme de contrôle de la transcription exercé par TFIIIA. On a ainsi montré que TFIIIA de Xénope est nécessaire pour l'initiation de la transcription du gène ARN 5S [Sakonji et al, Cell 19, 13-25 (1980)] et se lie à une région de contrôle interne du gène ARN 5S [Bogenhagen et al, Cell, 19,27-35 (1980)].

La séquence en nucléotides de l'ADNc de tfIIIA de xénope et la séquence correspondante en acides aminés ont déjà été publiées [Ginberg et al, Cell, 39,479-489 (1984)]. On peut noter que ce gène code pour une protéine ayant 9 doigts de zinc, un doigt de zinc correspondant à un motif contenant deux cystéines et deux histidines reliées par un atome de zinc (CYS2 HIS2) (C2H2). Cette structure en doigt de zinc constitue un domaine de liaison des protéines à l'ADN et est donc considérée comme un domaine essentiel pour un groupe de protéines qui se lient à l'ADN (DNA binding proteins). [Miller et al, Embo J., 4, 1607-1614 (1985)]

On peut noter que l'on connaît d'autres facteurs de transcription se liant à l'ADN qui possèdent également cette structure en doigt de zinc tels que par exemple, chez l'être humain, XT1 du gène de la tumeur humaine de Wilms, [Gessier et al, Nature, 343, 774-778 (1990)], le répresseur humain de transcription YY1 [Shi et al, Cell, 67, 377-388 (1991)], la protéine MAZ associée au promoteur cMYC [Bossone et al, Proc. Natl. Acad. Sci., USA, 89, 7452-7456 (1992)] ou encore spl [Kuwahara et al, J. Biol. Chem, 29, 8627-8631 (1990)].

L'étude de différents organismes tels que notamment l'homme, le xénope ou Candida albicans a montré qu'il existe ce que l'on peut appeler une famille de facteurs de trans-35 criptions TFIIIA possédant les caractéristiques suivantes :

- ils sont associés à l'ARN polymérase III
- ils possèdent 9 doigts de zinc
- ils sont indispensables pour la transcription du gène

codant pour l'ARN 5S.

Une fonction essentielle connue de la protéine codée par le gène tfIIIA (tfC2) de la levure est d'initier la transcription du gène de l'ARN 5S chez Saccharomyces 5 cerevisiae (Camier et al., Proc. Natl. Acad. Sa USA (1995) 92 : 9338-9342).

La présente invention a ainsi permis d'isoler les polynucléotides ADN et ARN codant pour la protéine du facteur de transcription CATFIIIA de Candida albicans et de révéler 10 leurs séquences nucléotidiques.

La présente invention a donc pour objet un polynucléotide isolé contenant une séquence nucléotidique choisie dans le groupe suivant :

- a) un polynucléotide ayant au moins 50 % ou au moins 60% et 15 de préférence au moins 70 % d'identité avec un polynucléotide codant pour un polypeptide ayant la fonction de facteur de transcription et ayant une séquence en acides aminés homologue de la séquence SEQ ID N°3 indiquée ci-après.
 - b) un polynucléotide complémentaire du polynucléotide a)
- 20 c) un polynucléotide comprenant au moins 15 bases consécutives du polynucléotide défini en a) et b).

 La présente invention a ainsi pour objet un polynucléotide défini ci-dessus tel que ce polynucléotide est un ADN.

La présente invention a ainsi pour objet un polynuclé-25 otide défini ci-dessus tel que ce polynucléotide est un ARN

La présente invention a plus précisément pour objet le polynucléotide tel que défini ci-dessus comprenant la séquence de nucléotides SEQ ID N°1.

La présente invention a ainsi permis d'isoler la 30 séquence d'ADN codant pour le facteur de transcription de Candida albicans CATFIIIA.

La présente invention a également permis de révéler la séquence d'acides nucléiques du gène CAtfIIIA et également la séquence d'acides aminés de la protéine CATFIIIA codée par ce 35 gène.

La présente invention a ainsi pour objet une séquence d'ADN telle que définie par le polynucléotide ci-dessus

caractérisée en ce que cette séquence d'ADN est celle du gène CAtfIIIA codant pour une protéine ayant la fonction biologique du facteur de transcription de Candida albicans CATFIIIA et contenant la séquence de nucléotides SEQ ID N01 Une telle séquence SEQ ID n°1 de la présente invention comprend donc 2060 nucléotides.

La présente invention a précisément pour objet une séquence d'ADN telle que définie ci-dessus ayant la séquence commençant au nucléotide 720 et se terminant au nucléotide 10 1955 de SEO ID N01.

Une telle séquence comprend donc 1236 nucléotides.

La présente invention a aussi pour objet la séquence d'ADN du gène CAtfIIIA telle que définie ci-dessus codant pour la séquence d'acides aminés SEQ ID N°3.

15 La séquence SEQ ID N°3 comprend donc 412 AA.

La présente invention a particulièrement pour objet la séquence d'ADN codant pour le facteur de transcription CATFIIIA telle que définie ci-dessus ainsi que les séquences d'ADN qui hybrident avec celle-ci et/ou présentent des 20 homologies significatives avec cette séquence ou des fragments de celle-ci et ayant la même fonction.

La présente invention a également pour objet une séquence d'ADN telle que définie ci-dessus comprenant des modifications introduites par suppression, insertion et/ou substitution d'au moins un nucléotide codant pour une protéine ayant la même activité biologique que le facteur de transcription CATFIIIA.

La présente invention a notamment pour objet la séquence d'ADN telle que définie ci-dessus ainsi que les séquences 30 d'ADN qui ont une homologie de séquence nucléotidique d'au moins 50 % ou au moins 60 % et de préférence au moins 70 % avec ladite séquence d'ADN.

La présente invention a ainsi également pour objet la séquence d'ADN telle que définie ci-dessus ainsi que les séquences d'ADN qui codent pour une protéine de fonction similaire dont la séquence en AA a une homologie d'au moins 40 % et notamment de 45 % ou d'au moins 50 %, plutôt au moins 60 % et de préférence au moins 70 % avec la séquence

en AA codée par ladite séquence d'ADN.

Par séquences qui hybrident, on inclut les séquences d'ADN qui hybrident avec l'une des séquences d'ADN ci-dessus sous des conditions standard de stringence élevée, moyenne ou 5 basse et qui codent pour un polypeptide ayant la même fonction de facteur de transcription. Les conditions de stringence sont celles réalisées dans les conditions connues de l'homme du métier telles que celles décrites par Sambrook et al, Molecular cloning, Cold Spring Harbor Laboratory 10 Press, 1989. De telles conditions de stringence sont par exemple une hybridation à 65°C, pendant 18 heures dans une solution 5 x SSPE ; 10 x Denhardt's ; $100\mu g/ml$ ADNss ; 1 % SDS suivie de 3 lavages pendant 5 minutes avec 2 x SSC; 0,05 % SDS, puis 3 lavages pendant 15 minutes à 65°C dans 1 x 15 SSC ; 0,1 % SDS. Les conditions de forte stringence comprennent par exemple une hybridation à 65°C, pendant 18 heures dans une solution 5 x SSPE ; 10 x Denhardt ; 100 µg/ml ADNss ; 1 % SDS suivie de 2 lavages pendant 20 minutes avec une solution 2 x SSC; 0,05 % SDS à 65°C suivis d'un dernier 20 lavage pendant 45 minutes dans une solution 0,1 x SSC ; 0,1 %

SDS à 65°C. Les conditions de stringence moyenne comprennent par exemple un dernier lavage pendant 20 minutes dans une solution 0,2 x SSC, 0,1 % SDS à 65°C.

Par séquences qui présentent des homologies signifi-

par sequences qui presentent des nomologies signifi25 catives, on inclut les séquences ayant une identité modérée
ou importante de séquence nucléotidique avec l'une des
séquences d'ADN ci-dessus et qui codent pour une protéine
ayant la même fonction de facteur de transcription.

Par séquence d'ADN similaires, on entend ainsi des
30 séquences d'ADN qui peuvent appartenir à d'autres mycètes que
Candida albicans et notamment à SC, et qui sont similaires ou
identiques à la séquence d'ADN du gène de Candida albicans
CatfIIIA. Ces séquences d'ADN similaires ne sont pas
forcément identiques à la séquence d'ADN du gène de Candida
35 albicans CatfIIIA. L'homologie de séquence au niveau
nucléotidique peut-être modérée ou importante. La présente
invention concerne ainsi notamment les séquences d'ADN qui
présentent une homologie de séquence nucléotidique d'au moins

50 %, de façon préférée d'au moins 60 % et de façon encore plus préférée d'au moins 70 % avec la séquence CAtfIIIA de la présente invention.

De plus, ces séquences d'ADN similaires ne codent pas 5 forcément pour des protéines identiques, au niveau de la séquence en acides aminés, à la protéine codée par le gène CAtfIIIA. Ainsi la présente invention concerne notamment les séquences d'ADN qui codent pour des protéines dites homologues ayant une homologie de séquence en acides aminés 10 d'au moins 40 %, notamment 45%, de façon préférée au moins de 50 %, de façon plus préférée au moins de 60 % et de façon encore plus préférée au moins de 70 % avec la protéine codée par CAtfIIIA de la présente invention.

Le gène de la présente invention est représenté comme 15 une séquence ADN simple brin comme indiqué dans SEQ ID N°1 mais il est entendu que la présente invention inclut la séquence ADN complémentaire de cette séquence ADN simple brin et inclut également la séquence ADN dite double brin constituée de ces deux séquences ADN complémentaires d'une de 20 l'autre.

La séquence d'ADN telle que définie ci-dessus est un exemple de combinaison de codons codant pour les acides aminés correspondant à la séquence d'acides aminés SEQ ID N°3, mais il est entendu également que la présente invention 25 inclut toute autre combinaison arbitraire de codons codant pour cette même séquence d'acides aminés SEQ ID N°3. Pour la préparation des polynucléotides et notamment des séquences d'ADN telles que définies ci-dessus, des séquences d'ADN modifiées comme indiqué ci-dessus ou encore des séquences d'ADN homologues telles que définies ci-dessus, on peut utiliser les techniques connues de l'homme du métier et notamment celles décrites dans l'ouvrage de Sambrook, J. Fritsh, E. F. § Maniatis, T. (1989) intitulé: `Molecular cloning: a laboratory manual', Laboratory, Cold Spring

30

35 Harbor NY.

Les séquences d'ADN homologues telles que définies ci-dessus peuvent notamment être isolées selon les méthodes connues de l'homme du métier par exemple par la technique de PCR en

utilisant des amorces nucléotidiques dégénérées pour amplifier ces ADN à partir de banques génomiques ou de banques d'ADNc des mycètes correspondants. Les ADNc peuvent également être préparés à partir de mARN isolés de mycètes 5 d'espèces différentes étudiées dans le cadre de la présente invention telles que Candida albicans mais par exemple et tout aussi bien : Candida stellatoidea, Candida tropicalis, Candida parapsilosis, Candida krusei, Candida pseudotropicalis, Candida quillermondii, Candida glabrata, Candida 10 lusianiae ou Candida rugosa ou encore des mycètes telles que Saccharomyces cerevisiae ou encore des mycètes du type Aspergillus ou Cryptococcus et notamment, par exemple, Aspergillus fumigatus, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum, Blastomyces dermatitidis, Paracoc-15 cidioides brasiliens and Sporothrix schenckii ou encore des mycètes des classes des phycomycètes or eumycètes en particulier les sous-classes de basidiomycètes, ascomycètes, mehiascomycétales (levure) and plectascales, gymnascales (champignon de la peau et des cheveux) ou de la classe des 20 hyphomycètes, notamment les sous-classes conidiosporales and thallosporales parmi lesquels les espèces suivantes : mucor, rhizopus, coccidioides, paracoccidioides (blastomyces, brasiliensis), endomyces (blastomyces), aspergillus, menicilium (scopulariopsis), trichophyton (ctenomyces), epidermo-25 phton, microsporon, piedraia, hormodendron, phialophora, sporotrichon, cryptococcus, candida, geotrichum, trichosporon ou encore toropsulosis.

Les polynucléotides de la présente invention peuvent ainsi être obtenus en utilisant les méthodes usuelles de clonage et clonage et de criblage telles que celles de clonage et séquençage à partir de fragments d'ADN chromosomique extraits de cellules. Par exemple, pour obtenir les polynucléotides de la présente invention, on peut partir d'une banque de fragments d'ADN chromosomique. On peut préparer une sonde correspondant à un oligonucléotide marqué par un élément radioactif, constituée de préférence de 17 nucléotides ou plus et dérivée d'une séquence partielle. Les clones contenant un ADN identique à celui de la sonde peuvent être

ainsi identifiés sous des conditions stringentes. Par le séquençage de clones individuels ainsi identifiés, en utilisant des primers de séquençage issus de la séquence d'origine, il est alors possible de prolonger la séquence 5 dans les deux directions pour déterminer la séquence du gène complet. De façon usuelle et efficace, un tel séquençage peut être réalisé en utilisant un ADN double brin dénaturé préparé à partir d'un plasmide. De telles techniques sont décrites par Maniatis, T. Fritsch, E.F. et Sambrook comme indiqué ci-dessus. (Laboratory Manual, Cold Spring Harbor, New York (1989) (notamment en 1.90 et 13.70 dans les chapitres de screening par hybridation et séquençage à partir de ADN double brin dénaturé).

Dans le cadre de la présente invention, on pourrait 15 notamment utiliser une banque de fragments d'ADN chromosomique de Candida albicans comme indiqué ci-après à l'exemple 1 dans la partie expérimentale.

Une description détaillée des conditions opératoires dans lesquelles a été réalisée la présente invention est 20 donnée ci-après.

L'invention a tout particulièrement pour objet le polypeptide ayant la fonction de facteur de transcription CATFILIA et ayant la séquence d'acides aminés SEQ ID N°3 codée par la séquence d'ADN telle que définie ci-dessus et les analogues de ce polypeptide.

Par analogues de polypeptides, on entend les polypeptides dont la séquence d'acides aminés a été modifiée par substitution, suppression ou addition d'un ou plusieurs acides aminés mais qui conservent la même fonction biologique. De

30 tels polypeptides analogues peuvent être produits spontanément ou peuvent être produits par modification posttranscriptionnelle ou encore par modification de la séquence ADN de la présente invention comme indiqué ci-dessus, en utilisant les techniques connues de l'homme du métier : parmi 35 ces techniques, on peut citer notamment la technique de

mutagénèse dirigée connue de l'homme du métier (Kramer, W., et al., Nucl. Acids Res., 12, 9441 (1984); Kramer, W. and Fritz, H.J., Methods in Enzymology, 154, 350 (1987);

Zoller, M.J. and Smith, M. Methods in Enzymology, 100,468 (1983)).

La synthèse d'ADN modifiés peut être faite comme indiqué cidessus et notamment en utilisant des techniques de synthèse

5 chimique bien connues telles que par exemple la méthode au
phosphotriester [Letsinger, R.L and Ogilvie, K.K., K. Am.
CHEM. Soc., 91,3350 (1969); Merrifield, R.B., Sciences, 150,
178 (1968)] ou la méthode à la phosphoamidite [Beaucage, S.L
and Caruthers, M.H., Tetrahedron Lett., 22, 1859 (1981);

10 McBRIDE, L.J. and Caruthers, M.H. Tetrahedron Lett., 24 245
(1983)] ou encore par la combinaison de ces méthodes.

Les polypeptides de la présente invention peuvent donc être préparés par les techniques connues de l'homme du métier, notamment partiellement par synthèse chimique ou encore par la technique de l'ADN recombinant par expression dans une cellule hôte procaryote ou eucaryote comme indiqué ci-après.

La présente invention a particulièrement pour objet le procédé de préparation de la protéine recombinante CATFIIIA 20 ayant la séquence d'acides aminés SEQ ID N°3 comprenant l'expression de la séquence d'ADN telle que définie ci-dessus dans un hôte approprié puis l'isolement et la purification de ladite protéine recombinante.

Pour produire le polypeptide de la présente invention,
25 on peut notamment utiliser les techniques de l'ADN
recombinant en utilisant les méthodes de génie génétique et
de culture cellulaire connues de l'homme du métier. On peut
ainsi procéder par les étapes suivantes : d'abord préparation
du gène approprié, puis incorporation de ce gène dans un
30 vecteur, transfert du vecteur porteur du gène dans une
cellule hôte appropriée, production du polypeptide par
expression du gène, isolement du polypeptide, le polypeptide
ainsi produit pouvant être ensuite purifié.

Les polypeptides de la présente invention obtenus par l'expression des polynucléotides de la présente invention peuvent être purifiés à partir de cultures de cellules transformées par les méthodes bien connues de l'homme du métier telles que précipitation au sulfate d'ammonium ou à

l'éthanol, extraction en conditions acides, chromatographie échangeuse d'anions ou de cations, chromatographie d'interaction hydrophobique, chromatographie d'affinité, chromatographie à l'hydroxylapatite et la chromatographie à haute performance liquide (HPLC). Des techniques bien connues de l'homme du métier peuvent être utilisées pour régénérer la protéine lorsque celle-ci est dénaturée durant son isolement ou sa purification.

Les séquences d'ADN selon la présente invention et

10 notamment SEQ ID N°1 et SEQ ID N°2 peuvent être préparées
selon les techniques connues de l'homme du métier notamment
par synthèse chimique ou par criblage d'une banque génomique
ou d'une banque d'ADNc à l'aide de sondes d'oligonucléotides
de synthèse par les techniques connues d'hybridation, ainsi

15 amplification d'ADN à partir de fragments isolés ou encore
par réverse transcriptase à partir d'ARN messager (ARNm).
L'avantage de la technique comprenant d'abord l'isolement
d'ARNm par extraction des ARN totaux puis la synthèse d'ADNc
à partir de ces ARNm par réverse transcriptase réside

20 notamment dans le fait que l'ARNm ne contient pas les introns
alors que ces séquences non codantes sont présentes dans
l'ADN génomique.

clonage connues de l'homme du métier et notamment décrites
25 dans l'ouvrage de Sambrook, J. Fritsh, E. F. § Maniatis, T.
(1989) intitulé: `Molecular cloning : a laboratory manual',
Laboratory, Cold Spring Harbor NY.

Dans ces techniques, on peut procèder au clonage par
insertion de fragment dans un plasmide qui peut être fourni
30 avec un kit commercial adapté puis transformation d'une
souche bactérienne par le plasmide ainsi obtenu. On peut
utiliser notamment la souche E. coli XL1 Blue ou DH5 alpha.
Les clones peuvent ensuite être cultivés pour extraire l'ADN
plasmidique selon les techniques classiques de l'homme du
35 métier référencées ci-dessus (Sambrook, Fritsh et Maniatis).
On peut procéder au séquençage de l'ADN du fragment amplifié
contenu dans l'ADN plasmidique.

On peut procéder en utilisant les techniques usuelles de

Les polypeptides de la présente invention peuvent être

obtenus par expression dans une cellule hôte contenant un polynucléotide selon la présente invention et notamment une séquence d'ADN codant pour un polypeptide de la présente invention précédée d'une séquence promoteur convenable. La cellule hôte peut être une cellule procaryote, par exemple E. coli ou une cellule eucaryote telle que les levures comme par exemple les ascomycètes parmi lesquels les saccharomyces ou encore des cellules de mammifères comme par exemple des cellule Cos.

10 La présente invention a particulièrement pour objet le vecteur d'expression contenant une séquence d'ADN telle que définie ci-dessus.

Dans le vecteur d'expression, une telle séquence d'ADN est donc ainsi notamment la séquence d'ADN du gène CAtfIIIA 15 codant pour une protéine ayant la fonction biologique du facteur de transcription de Candida albicans CATFIIIA et contenant la séquence de nucléotides SEQ ID N°1.

Dans le vecteur d'expression, une telle séquence d'ADN est ainsi plus particulièrement la séquence d'ADN commençant au nucléotide 720 et se terminant au nucléotide 1955 de SEQ ID N°1.

20

Dans le vecteur d'expression, une telle séquence d'ADN est ainsi encore plus particulièrement celle du gène CAtfIIIA tel que défini ci-dessus codant pour la séquence d'acides aminés 25 SEO ID N°3.

Dans le vecteur d'expression, une telle séquence d'ADN est ainsi une séquence d'ADN telle que définie ci-dessus codant pour le facteur de transcription CATFIIIA ainsi que les séquences d'ADN qui hybrident avec celle-ci et/ou présentent

des homologies significatives avec cette séquence ou des fragments de celle-ci ou encore les séquences d'ADN comprenant des modifications introduites par suppression, insertion et/ou substitution d'au moins un nucléotide codant pour une protéine ayant la même activité biologique que le

Dans le vecteur d'expression, une telle séquence d'ADN est notamment une séquence d'ADN telle que définie ci-dessus ainsi que les séquences d'ADN similaires qui ont une

35 facteur de transcription CATFIIIA.

homologie de séquence nucléotidique d'au moins 50 % ou au moins 60 % et de préférence au moins 70 % avec ladite séquence d'ADN ou encore les séquences d'ADN similaires qui codent pour une protéine dont la séquence en AA a une 5 homologie d'au moins 40 % et notamment de 45 % ou d'au moins 50 %, plutôt au moins 60 % et de préférence au moins 70 % avec la séquence en AA codée par ladite séquence d'ADN. Les vecteurs d'expression sont des vecteurs permettant l'expression de la protéine sous le contrôle d'un promoteur 10 convenable. Un tel vecteur peut être un plasmide, un cosmide ou un ADN viral. Pour les cellules procaryotes, le promoteur peut être par exemple le promoteur lac, le promoteur trp, le promoteur tac, le promoteur β -lactamase ou le promoteur PL. Pour les cellules de levure, le promoteur peut être par 15 exemple le promoteur PGK ou le promoteur GAL. Pour les cellules de mammifères, le promoteur peut être par exemple le promoteur SV40 ou les promoteurs de l'adénovirus.

Des vecteurs type Baculovirus peuvent être aussi utilisés pour l'expression dans des cellules d'insectes.

20 Les cellules hôtes sont par exemple des cellules procaryotes ou des cellules eucaryotes. Les cellules procaryotes sont par exemple E. coli, Bacillus ou Streptomyces. Les cellules hôtes eucaryotes comprennent des levures ainsi que des cellules d'organismes supérieurs, par exemple des cellules de mammi
25 fères ou des cellules d'insectes. Les cellules de mammifères sont par exemple des fibroblastes tels que des cellules CHO ou BHK de hamster et des cellules Cos de singe. Les cellules d'insectes sont par exemple des cellules SF9.

La présente invention concerne donc un procédé qui comprend l'expression d'un polynucléotide selon la présente invention codant pour la protéine CATFIIIA dans une cellule hôte transformée par un polynucléotide selon la présente invention et notamment une séquence d'ADN codant pour la séquence en acides aminés SEQ ID N°3. Dans la réalisation d'un tel procédé, la cellule hôte est notamment une cellule eucaryote.

Pour la réalisation de la présente invention, les vecteurs utilisés peuvent être par exemple pGEX ou pBAD et la cellule

hôte peut être E. coli ou par exemple le vecteur pYX222 et la cellule hôte peut être notamment Saccharomyces cerevisiae.

La présente invention a notamment pour objet la cellule hôte transformée avec un vecteur tel que défini ci-dessus et 5 renfermant une séquence d'ADN selon la présente invention.

La présente invention a ainsi pour objet le procédé de préparation d'une protéine recombinante selon la présente invention, tel que défini ci-dessus, dans lequel la cellule hôte est E. coli DH5 alpha ou E. coli XL1-Blue ou notamment Saccharomyces cerevisiae.

Un exposé détaillé des conditions dans lesquelles peuvent être menées les opérations indiquées ci-dessus est donné ciaprès dans la partie expérimentale. On a ainsi obtenu un plasmide dans lequel est inséré le gène de la présente

15 invention et on obtient ainsi également ce plasmide introduit dans une cellule hôte en opérant selon les techniques usuelles connues de l'homme du métier.

La présente invention a très précisément pour objet le plasmide déposé à la CNCM sous le numéro I-2072.

20 Il s'agit ainsi précisément de la souche XL1-Blue/Yep24-Catfc2 renfermant le gène CAtfIIIA selon la présente invention.

Ce gène correspond donc à la séquence 720-1955 de SEQ ID $N^{\circ}1$.

25 Les conditions opératoires dans lesquelles a été réalisée la présente invention sont décrites ci-après dans la partie expérimentale.

La protéine TFIIIA codée par le gène CAtfIIIA est donc un facteur de transcription. En effet, la protéine TFIIIA 30 codée par le gène de la présente invention a un rôle biologique comme protéine se liant à l'ADN et serait utile comme facteur de transcription.

En particulier, le gène de la présente invention est exprimé dans différents tissus et joue un rôle important dans

35 l'initiation de la transcription du gène de l'ARN ribosomal 5S.

L'étude de ces facteurs peut également être utile dans l'analyse des mécanismes de régulation de la transcription.

La présente invention a ainsi pour objet un procédé de criblage de produits antifongiques caractérisé en ce qu'il comprend une étape où l'on mesure l'activité de facteur de transcription de CATFIIIA tel que défini ci-dessus en présence de chacun des produits dont on souhaite déterminer les propriétés antifongiques et l'on sélectionne les produits ayant un effet inhibiteur sur cette activité.

La mise en évidence dans le cadre de la présente invention de l'homologie fonctionnelle des facteurs de 10 transcription de Candida albicans et Saccharomyces cerevisiae, illustrée dans la partie expérimentale ci-après, permet d'envisager de nombreuses applications pour le facteur de transcription CATFIIIA de la présente invention.

En particulier du fait qu'il apparaît que l'activité de 15 SCTFIIIA est essentielle pour la survie cellulaire, des substances inhibitrices de cette activité peuvent être utilisables comme agents antifongiques, soit en tant que médicaments soit sur le plan industriel.

Par exemple, pour cribler des substances antifongiques telles que des substances actives sur Candida albicans, on mesure l'activité de CATFIIIA ou de l'un de ses homologues fonctionnels constitué par un facteur de transcription TFIIIA en présence de chacun des produits dont on souhaite déterminer les propriétés antifongiques et l'on sélectionne 25 les produits ayant un effet inhibiteur sur cette activité.

On peut effectuer un tel criblage en mesurant l'activité de transcription de TFIIIA en présence d'activateurs ou d'inhibiteurs potentiels à tester. La transcription de l'ARN 5S peut par exemple être mesurée in vitro directement en 30 détectant la synthèse de l'ARN 5S dans un milieu réactionnel approprié.

L'activité de transcription peut également être mesurée in vivo par un test de viabilité cellulaire. Par exemple, l'activité de transcription peut être avantageusement mesurée dans des cellules d'un mutant de Saccharomyces cerevisiae n'exprimant pas TFIIIA de SC transformées par le gène CAtfIIIA.

L'invention englobe également l'utilisation d'un produit

sélectionné comme indiqué ci-dessus pour ses propriétés inhibitrices d'un facteur de transcription TFIIIA pour l'obtention d'un agent antifongique.

La présente invention sera mieux comprise à l'aide de la 5 partie expérimentale qui suit et qui décrit le clonage du gène CAtfIIIa de la présente invention.

La présente invention a ainsi pour objet l'utilisation d'un produit sélectionné par le procédé de criblage de produits antifongiques tel que défini ci-dessus pour 10 l'obtention d'un agent antifongique.

La présente invention a également pour objet l'utilisation du gène du facteur de transcription CAtfIIIA de
Candida albicans ou du facteur de transcription codé par ce
gène tel que défini ci-dessus pour la sélection d'un produit
15 ayant des propriétés antifongiques tel que défini ci-dessus
et utilisé comme inhibiteur du facteur de transcription de
Candida albicans.

La présente invention a également pour objet les compositions pharmaceutiques renfermant à titre de principe 20 actif au moins un inhibiteur du facteur de transcription de Candida albicans telles que définies ci-dessus. De telles compositions peuvent notamment être utiles pour traiter les infections fongiques topiques et systémiques. Les compositions pharmaceutiques indiquées ci-dessus peuvent 25 être administrées par voie buccale, rectale, par voie parentérale ou par voie locale en application topique sur la peau et les muqueuses ou par injection par voie intraveineuse ou intramusculaire. Ces compositions peuvent être solides ou liquides et se présenter sous toutes les formes pharma-30 ceutiques couramment utilisées en médecine humaine comme, par exemple, les comprimés simples ou dragéifiés, les gélules, les granulés, les suppositoires, les préparations injectables, les pommades, les crèmes, les gels et les préparations en aérosols ; elles sont préparées selon les 35 méthodes usuelles. Le principe actif peut y être incorporé à des excipients habituellement employés dans ces compositions pharmaceutiques, tels que le talc, la gomme arabique, le lactose, l'amidon, le stéarate de magnésium, le beurre de

cacao, les véhicules aqueux ou non, les corps gras d'origine animale ou végétale, les dérivés paraffiniques, les glycols, les divers agents mouillants, dispersants ou émulsifiants, les conservateurs.

La posologie sera variable selon le produit utilisé, le sujet traité et l'affection en cause.

La présente invention a ainsi notamment pour objet l'utilisation des compositions telles que définies ci-dessus comme agents antifongiques.

La présente invention a encore pour objet une méthode d'induction d'une réponse immunologique chez un mammifère comprenant l'inoculation à ce mammifère du polypeptide selon la présente invention tel que défini ci-dessus ou un fragment de ce polypeptide ayant la même fonction de façon à produire un anticorps permettant de protéger l'animal contre la maladie.

La présente invention a ainsi pour objet des anticorps dirigés contre les polypeptides de la présente invention tels que définis ci-dessus ayant la fonction de facteur de trans20 cription CATFIIIA ou contre un fragment de ces polypeptides ayant la même fonction et codés par les polynucléotides de la présente invention et notamment par une séquence d'ADN telle que définie ci-dessus.

Les polypeptides de la présente invention peuvent ainsi être
25 utilisés comme immunogènes pour produire des anticorps
immunospécifiques de ces polypeptides. Le terme anticorps
utilisé désigne les anticorps aussi bien monoclonaux que
polyclonaux, chimériques, simple chaîne, les anticorps non
humains et les anticorps humains, aussi bien que les
30 fragments Fab, incluant ainsi les produits d'une banque
d'immunoglobuline Fab. Les anticorps générés contre les
polypeptides de la présente invention peuvent être obtenus
par administration des polypeptides de la présente invention
ou de fragments portant des épitopes, leurs analogues ou
35 encore des cellules à un animal, de préférence non humain, en
utilisant des protocoles de routine pour la préparation
d'anticorps monoclonaux. De tels anticorps peuvent être
préparés par les méthodes bien connues dans ce domaine telles

que celles décrites dans l'ouvrage Antibodies, Laboratory manuel Ed. Harbow et David Larre, Cold Spring Harbor laboratory Eds, 1988.

La présente invention a ainsi tout particulièrement pour 5 objet un anticorps dirigé contre la protéine CATFIIIA de la présente invention ou un fragment de cette protéine ayant notamment la même fonction.

La présente invention a encore pour objet l'utilisation du gène du facteur de transcription CAtfIIIA ou du facteur de 10 transcription codé par ce gène tel que défini ci-dessus pour la préparation de compositions utiles pour le diagnostic ou le traitement de maladies causées par la levure pathogène Candida albicans.

La présente invention concerne aussi l'utilisation des 15 polynucléotides de la présente invention comme réactifs de diagnostic. La détection d'un polynucléotide selon la présente invention codant pour la protéine TFIIIA de Candida albicans ou de ses analogues chez un eucaryote en particulier un mammifère et plus particulièrement un être humain, peut 20 constituer un moyen de diagnostic d'une maladie : ainsi, on peut détecter un tel polynucléotide selon la présente invention et notamment une séquence d'ADN par une grande variété de techniques chez un eucaryote en particulier un mammifère et plus particulièrement un être humain, infectés 25 par un organisme contenant au moins l'un des polynucléotides de la présente invention. Les acides nucléiques pour une telle utilisation d'outil de diagnostic peuvent être détectés à partir de cellules ou de tissus infectés, tels que l'os, le sang, le muscle, le cartilage ou la peau. Pour cette 30 détection, l'ADN génomique peut être utilisé directement ou encore être amplifié par PCR ou une autre technique d'amplification. Les ARN ou ADN et ADNc peuvent également être utilisés dans le même but. Par les techniques d'amplification, la lignée du mycète présent dans un 35 eucaryote en particulier un mammifère et plus particulièrement un être humain, peut être caractérisée par l'analyse du génotype. Des délétions ou des insertions peuvent être détectées par le changement de taille du produit amplifié par

comparaison avec le génotype de la séquence de référence. Les points de mutations peuvent être identifiés par hybridation de l'ADN amplifié avec les séquences, marquées par un élément radioactif, de polynucléotides de la présente invention. Des 5 séquences parfaitement complémentaires peuvent ainsi être distinguées de duplex qui résistent mal à la digestion par des nucléases. Les différences de séquences d'ADN peuvent aussi être détectées par des altérations de la mobilité électrophorétique de fragments d'ADN dans des gels, avec ou 10 sans agent dénaturant, ou par un séquençage direct d'ADN (référence : Myers et al. Science, 230 : 1242 (1985)). Des changements de séquences à des localisations spécifiques peuvent aussi être révélées par des expériences de protection contre des nucléases telles que RNase I et S1 ou par des 15 méthodes de clivage chimique (référence : Cotton et al., Proc Natl Acad Sci, USA, 85: 4397-4401 (1985). Des cellules contenant l'un des polynucléotides de la présente invention portant des mutations ou des polymorphismes peuvent aussi être détectées par un grand nombre de 20 techniques permettant notamment de déterminer le sérotype. Par exemple, la technique RT-PCR peut être utilisée pour détecter les mutations. Il est particulièrement préféré d'utiliser les techniques de RT-PCR en conjonction avec des systèmes de détection automatique, tels que par exemple dans 25 la technique GeneScan. ARN et ADNC peuvent être utilisés dans les techniques PCR ou RT-PCR. Par exemple, des amorces complémentaires des polynucléotides codant pour les polypeptides de la présente invention peuvent être utilisés pour identifier et analyser les mutations. 30 Des amorces peuvent ainsi être utilisées pour amplifier un ADN isolé de l'individu infecté. De cette façon des mutations dans la séquence d'ADN peuvent être détectées et utilisées pour diagnostiquer l'infection et déterminer le sérotype ou le classement de l'agent infectieux. De telles techniques 35 sont usuelles pour l'homme du métier et sont décrites notamment dans le manuel `Current Protocols in Molecular Biology, Ausubel et al, ed. John Wiley § sons, Inc., 1995).

La présente invention concerne ainsi un procédé de

diagnostic d'une maladie et de préférence d'une infection fongique provoquée notamment par Candida albicans telles que des mycoses comme indiqué ci-dessus, ce procédé comprenant la détermination à partir d'un échantillon prélevé sur un

5 individu infecté, d'une augmentation de la quantité de polynucléotide de la présente invention. Un tel polynucléotide peut notamment avoir une séquence d'ADN de la présente invention telle que définie ci-dessus.

Des augmentations ou des diminutions de la quantité de 10 polynucléotides peuvent être mesurées par les techniques bien connues de l'homme du métier telles que notamment l'amplification, la PCR, RT PCR, Northern blotting ou autres techniques d'hybridation.

De plus, une méthode de diagnostic en accord avec la présente invention consiste en la détection d'une expression trop importante de polypeptides de la présente invention, par comparaison avec des échantillons de contrôle constitués de tissus normaux non infectés utilisés pour détecter la présence d'une infection.

20 Les techniques qui peuvent être utilisées pour détecter ainsi les quantités de protéines exprimées dans un échantillon d'une cellule hôte sont bien connues de l'homme du métier. On peut ainsi citer par exemple les techniques de radioimmunoassay ou de competitive-binding, analyse par Western Blot et test ELISA (ref Ausubel indiqué ci-dessus).

La présente invention a encore pour objet un kit pour le diagnostic d'infections fongiques comprenant une séquence d'ADN selon la présente invention telle que définie ci-dessus ou une séquence similaire ou un fragment de cette séquence,

30 le polypeptide codé par cette séquence ou un fragment polypeptidique ayant la même fonction ou un anticorps dirigé contre un tel polypeptide codé par cette séquence d'ADN ou contre un fragment de ce polypeptide.

Ce kit pourra ainsi contenir une séquence d'ADN selon la 35 présente invention telle que définie ci-dessus et par exemple la séquence d'ADN SEQ ID N°1 ou un fragment de cette séquence ou encore la séquence 720 à 1955 de SEQ ID N°1. Un tel kit pourra de même contenir un polypeptide selon la présente invention ou un fragment de ce polypeptide et notamment la protéine ayant la séquence en AA SEQ ID N°3 ou encore un anticorps tel que défini ci-dessus.

Un tel kit peut-être préparé selon les méthodes bien connues 5 de l'homme du métier.

Les séquences SEQ ID NO 1 à 9 indiquées dans la présente invention sont décrites ci-après.

La partie expérimentale ci-après permet de décrire la présente invention sans toutefois la limiter.

10 Partie expérimentale

Exemple 1 : Clonage et séquençage du gène CAtfIIIA

a) Conditions de culture :

La bactérie Escherichia coli (E. coli) de la lignée DH5 alpha (Gibco BRL) ou XL1- Blue type K12 (Stratagène) a été 15 utilisée pour la préparation des plasmides de la présente invention.

La croissance de cette bactérie a été effectuée selon les conditions usuelles en milieu liquide LB qui renferme 10g de bactotryptone, 5g d'extrait de levure et 10 g de NaCl pour un

20 litre d'eau et qui renferme également 100 microg/ml d'ampicilline (SIGMA).

La colonie a été prélevée sur milieu solide LB + agar + ampicilline puis cultivée dans 100 ml de milieu LB et incubée jusqu'à DO (600nm) = 0.8.

25 L'incubation a été effectuée à 37°C sous atmosphère normale et agitation à 225 rpm.

La viabilité de la souche est vérifiée lorsque la souche pousse sur milieu LB + ampicilline à 100 microg/ml.

On peut noter qu'un gène de résistance à l'ampicilline Bla 30 fait partie du vecteur dans lequel sont clonés les fragments de CAtfIIIA. Ainsi, la sélection des souches renfermant les plasmides contenant le gène tfIIIA de Candida albicans de la présente invention peut être opérée par la culture des souches dans ce milieu renfermant de l'ampicilline (100

35 microg/ml), un tel milieu permettant la survie uniquement des souches qui renferment le gène de résistance à l'ampicilline et ainsi uniquement des souches qui renferment le gène tfIIIA de Candida a. de la présente invention.

Pour la conservation des souches obtenues, 15 % de glycérol sont ajoutés au milieu de culture : les cultures sont donc conservées dans le milieu de suspension LB +100 microgrammes/ml d'ampicilline + 15 % de glycérol à la concentration bactérienne de DO (600nm = 0.8 sous forme d'aliquots en cryotubes de 1ml par tube.

Pour le séquençage, l'ADN plasmidique de plusieurs bactéries issues de chacun des clonages indiqués ci-après est préparé en utilisant un kit commercial (Qiagen Plasmids kit). Les

- 10 fragments correspondant à la séquence du gène CAtfIIIA sont séquencés sur les deux brins suivant les techniques classiques connues de l'homme du métier (utilisation du séquenceur ABI 377 XL, Perkin Elmer).
 - b) Clonage et séquençage du gène CAtfIIIA
- 15 Dans le cadre de la présente invention, le gène codant pour le facteur de transcription de CA soit SEQ ID N°1 représenté à la figure 1 a été isolé à partir de la banque de fragment génomique de Candida albicans. (Sanglard et al., Antimicrobial agents and chemotherapy 39, 2378-2386, (1995)).
- 20 La structure du gène a été identifiée par séquençage.

 La stratégie utilisée repose sur l'hypothèse que SC et CA sont des levures proches dont la structure des gènes peut être homologue.

On a procédé comme suit :

- Dans le cadre de la présente invention, en utilisant le site internet de Standford qui permet d'accéder aux séquences préliminaires du génome de Candida albicans, une fraction de séquence homologue à tfIIIA de S. cerevisiae a été identifiée. Ce fragment contient un cadre ouvert de lecture (258 pb) codant pour une protéine pour laquelle on peut identifier deux motifs en doigts de zinc et une région riche
 - en résidus sérine caractéristique du facteur TFIIIA de SC. Ce cadre ouvert de lecture contient en réalité 259 nucléotides. Afin d'amplifier le fragment correspondant de Candida
- 35 albicans, deux oligonucléotides ont été sélectionnés dans cette séquence. Ces oligonucléotides sont les suivants :

 INT CAND situé à la position 720-740 de SEQ ID N°1 et nommé SEQ ID N°4 et

3' CAND situé à la position 955-978 de SEQ ID N°1 et nommé SEO ID N°5.

On a ainsi obtenu un fragment de 259 paires de bases.

- Il a d'abord été confirmé par PCR qu'il est possible
- 5 d'amplifier un fragment d'ADN génomique de CA, préparé à partir de cellules de CA par les méthodes usuelles connues de l'homme du métier, et d'autre part dans la banque de gènes de CA. Ces oligonucléotides ont aussi permis de synthétiser un fragment d'ADN à partir d'ADN génomique de Candida albicans
- 10 afin de préparer une sonde marquée au 32P (phosphore 32) en utilisant un kit (Mega Prime, Amersham).
 - Ce fragment a été utilisé pour le criblage de la banque de fragments génomiques Sau 3A de Candida albicans clonés dans le site BamHI du vecteur YEp24 (multicopie-Ura3) [Botstein et
- 15 al., Gene, 8, 17-24, (1979)].

 Les cellules E. coli DH5 alpha transformées avec le vecteur

 YEp24 (vecteur multicopie avec gène de séle+ction URA3)

 contenant les fragments décrits ci-dessus (17000 clones) sont
 étalées sur des boîtes contenant un milieu LB + ampicilline
- 20 et cultivées à 37°C.

 Une réplique sur filtre de nitrocellulose est ensuite traitée par des techniques connues de l'homme du métier comme par exemple NaOH: 0,5M, 5 minutes; Tris-HCl: 1M (pH = 7,5) 5 minutes; NaCl 1,5M/Tris-HCl 0,5M (pH 7,5).
- Pour le séchage, les filtres sont gardés pendant 10 minutes à 80°C puis fixés aux UV (Stratalinker). Préhybridation et hybridation sont réalisées dans un tampon de NaPO4 (pH 7,2) 0,5M; EDTA 10mM; SDS 7 % (réf., Church et Gilbert, PNAS 81: 1991 (1984)).
- 30 La sonde est marquée au 32P avec le kit MegaPrime et(alpha 32P)dCTP (Amersham UK). L'hybridation est réalisée pendant toute la nuit à 65°C. Les filtres sont ensuite lavés dans 1 % SDS, 40 mM NaPO4 (pH 7,2), six fois pendant 5 minutes à 65°C et ils sont ensuite soumis à une autoradiographie pendant
- L'hybridation sur filtre avec la sonde marquée au 32P a permis de sélectionner plusieurs clones positifs qui ont été réensemencés sur boîtes afin de les isoler. Des clones

35 toute la nuit.

- On a ainsi obtenu trois types de clones que l'on nomme 9, 18 et 47 contenant trois inserts différents du gène CAtfIIIA de la présente invention : l'analyse par PCR a confirmé la présence du fragment de 259 pb.
- 5 Les plasmides YEp24 contenant des inserts de Candida albicans ont été récupérés à partir de ces colonies. La carte de restriction de chacun de ces plasmides a été établie, et a permis de constater que tous les inserts provenaient d'une même région du génome de Candida albicans. Pour le séquençage
- 10 de cette région on a utilisé les oligonucléotides suivants : INT-Cand situé à la position : 720-740 de SEQ ID N°1 et nommé SEO ID N°4
 - 3'-Cand situé à la position : 955-978 de SEQ ID N°1 et nommé SEQ ID N°5
- 15 Cont-Int situé à la position : 719-741 de SEQ ID N°1 et nommé SEQ ID N°6
 - Can-Korl situé à la position 1365-1389 de SEQ ID N°1 et nommé SEQ ID N°7
- et le séquenceur ABI 377 XL (Perkin Elmer). Le séquençage de 20 cette région a permis de mettre en évidence les points suivants :
 - 1) Les trois clones contiennent tous seulement un cadre de lecture ouvert, ininterrompu de 1236 pb avec la même séquence qui code pour une protéine.
- 25 2) Le cadre de lecture ouvert code pour une protéine de 412
 AA qui montre une homologie importante avec le facteur
 TFIIIA de Saccharomyces cerevisiae. L'analyse de la protéine
 permet de retrouver les 9 motifs en doigt de zinc qui sont
 caractéristiques du facteur de transcription TFIIIA. La
- 30 comparaison des séquences protéique de CATFIIIA et TFIIIA de SC, permet de mettre en évidence une similarité de 50 % et une identité de 45 %. Pour la traduction en acides aminés il a été tenu compte du fait que dans Candida albicans le codon CTG est traduit en sérine et qu'il y a 2 codons CTG dans
- 35 Candida albicans TFIIIA.

On peut noter :

- La conservation de la région riche en Sérine dans la partie N-terminale

- la présence d'une très longue région intermédiaire entre les doigts de zinc 8 et 9 caractéristique de SC.
- Les différences de séquence entre les protéines TFIIIA de SC et TFIIIA de Candida albicans se situent dans la partie C-
- 5 terminale en dehors des motifs en doigt de zinc. Le plasmide YEp24 contenant la région promotrice et la séquence codante pour CATFIIIA a été transformé dans la souche E. Coli XL1 Blue puis déposé sous le numéro I-2072 à la CNCM, Institut Pasteur 25 rue de Docteur ROUX 75015 Paris,
- 10 le 15 septembre 1998.

Exemple 2 : expression du gène tfIIIA

Un fragment contenu dans le clone 9 a été amplifié par PCR en utilisant des amorces contenant les séquences reconnues par les enzymes de restriction EcoRI et XhoI et s'hybridant au

- 15 gène tfC2, les amorces sont les suivantes : 5-EcoTF situé à la position 720-732 de SEQ ID N°1 et nommé SEQ ID N°8 et
 - 3'-XhoI situé à la position 1946-1960 de SEQ ID N°1 et nommé SEQ ID N°9.
- 20 On procède donc à une amplification par PCR de l'ADN génomique de la façon suivante :
 - 0,5 microgrammes d'ADN du clone 9 sont ajoutés à 50 microlitres d'une solution réactionnelle contenant 200 nanogrammes/ml de chaque dNTP, les primers indiqués ci-
- 25 dessus à raison de 25 micromoles/l pour chacun, 2mM MgCl2, 1
 x Pfu Buffer, 5U Pfu polymérase (Perkin Elmer).
 Le milieu réactionnel est soumis à 30 cycles PCR
 correspondant chacun à 94°C pendant 30 secondes, puis à 60°C
 pendant 45 secondes puis à 72°C pendant 1 minute.
- 30 Le fragment contenant la séquence codante de CATFIIIA a été sous-cloné dans les vecteurs pYX122 (CEN, HIS 3) et pYX222 (2 micron, HIS3) (R et D System). Ce plasmide a été utilisé pour transformer des cellules de Saccharomyces c. YWRI (Mat alpha, can 1-100, his 3-11, leu 2-3, 112 trp 1-1, ura 3-1,
- 35 ade 2-1, tfC2 :: leu2 + pJA230), (Camier et al, Proc. Natl. Acad. Sci. 92 9338-9342, 1995).

La souche transformée selon les mêmes méthodes que celles indiquées ci-dessus permet l'expression du facteur de transcription TFIIIA de Candida albicans contenant un tag HA. Conclusion

- 5 Les réalisations expérimentales indiquées ci-dessus montrent donc les points suivants :
 - 1) Le gène du facteur TFIIIA de Candida albicans a été isolé dans trois clones 9, 18 et 47 obtenus comme indiqué ci-dessus à l'exemple 1 à partir de la banque de gènes de Candida
- 10 albicans en utilisant une technique d'hybridation. La structure de ce gène a été identifiée par séquençage.
 - 2) La protéine CATFIIIA du gène CAtfIIIA obtenue à l'exemple 1 est constituée de 412 AA et montre une forte homologie avec le facteur TFIIIA de SC. Cette protéine contient une région
- 15 riche en résidus SER dans la partie N-terminale et 9 doigts de zinc dont la disposition est identique à celle de la protéine TFIIIA de SC.
- 3) Le sous-clonage du gène du facteur TFIIIA de Candida albicans a été réalisé et le gène a été placé sous contrôle 20 d'un promoteur de SC.

REVENDICATIONS

- 1) Polynucléotide isolé contenant une séquence nucléotidique choisie dans le groupe suivant:
- 5 a) un polynucléotide ayant au moins 50 % ou au moins 60% et de préférence au moins 70 % d'identité avec un polynucléotide codant pour un polypeptide ayant la fonction de facteur de transcription et ayant une séquence en acides aminés homologue de la séquence SEQ ID N°3.
- 10 b) un polynucléotide complémentaire du polynucléotide a).
 - c) un polynucléotide comprenant au moins 15 bases consécutives du polynucléotide défini en a) et b).
 - 2) Polynucléotide selon la revendication 1 tel que ce polynucléotide est un ADN.
- 15 3) Polynucléotide selon la revendication 1 tel que ce polynucléotide est un ARN.
 - 4) Polynucléotide tel que défini à la revendication 2 comprenant la séquence de nucléotides SEQ ID N°1
 - 5) Séquence d'ADN telle que définie aux revendications 1, 2
- 20 et 4 caractérisée en ce que cette séquence d'ADN est celle du gène CAtfIIIA codant pour une protéine ayant la fonction biologique du facteur de transcription de Candida Albicans CATFIIIA et contenant la séquence de nucléotides SEQ ID N01
 - 6) Séquence d'ADN selon la revendication 5 ayant la séquence
- 25 commençant au nucléotide 720 et se terminant au nucléotide 1955 de SEQ ID N01.
 - 7) Séquence d'ADN du gène CAtfIIIA selon la revendication 5 ou 6 codant pour la séquence d'acides aminés SEQ ID N°3 (412 AA).
- 30 8) Séquence d'ADN codant pour le facteur de transcription CATFIIIA selon les revendications 5 à 7 ainsi que les séquences d'ADN qui hybrident avec celle-ci et/ou présentent des homologies significatives avec cette séquence ou des fragments de celle-ci et ayant la même fonction.
- 9) Séquence d'ADN selon les revendications 5 à 8 comprenant des modifications introduites par suppression, insertion et/ou substitution d'au moins un nucléotide codant pour une

protéine ayant la même activité biologique que le facteur de transcription CATFIIIA.

- 10) Séquence d'ADN selon l'une des revendications 5 à 9 ainsi que les séquences d'ADN qui ont une homologie de séquence 5 nucléotidique d'au moins 50 % ou au moins 60 % et de préférence au moins 70 % avec ladite séquence d'ADN.
- 11) Séquence d'ADN selon l'une des revendications 5 à 10 ainsi que les séquences d'ADN qui codent pour une protéine de fonction similaire dont la séquence en AA a une homologie
 10 d'au moins 40 % et notamment de 45 % ou d'au moins 50 %, plutôt au moins 60 % et de préférence au moins 70 % avec la séquence en AA codée par ladite séquence d'ADN.
- 12) Polypeptide ayant la fonction de facteur de transcription CATFIIIA et ayant la séquence d'acides aminés 15 SEQ ID N°3 codée par la séquence d'ADN selon l'une des revendications 5 à 11 et les analogues de ce polypeptide.
- 13) Procédé de préparation de la protéine recombinante CATFIIIA ayant la séquence d'acides aminés SEQ ID N°3 comprenant l'expression de la séquence d'ADN selon l'une 20 des revendications 5 à 11 dans un hôte approprié puis l'isolement et la purification de ladite protéine recombinante.
 - 14) Vecteur d'expression contenant la séquence d'ADN selon l'une des revendications 5 à 11.
- 25 **15)** Cellule hôte transformée avec un vecteur selon la revendication 14.
 - 16) Procédé tel que défini à la revendication 13 dans lequel la cellule hôte est E. coli DH5 alpha ou E. coli XL1-Blue.
 - 17) Procédé tel que défini à la revendication 13 dans
- 30 laquelle la cellule hôte est Saccharomyces cerevisae.
 - (18) Plasmide déposé à la CNCM sous le numéro I-2072.
 - 19) Procédé de criblage de produits antifongiques caractérisé en ce qu'il comprend une étape où l'on mesure l'activité de facteur de transcription de CATFIIIA tel que défini à la
- 35 revendication 12 en présence de chacun des produits dont on souhaite déterminer les propriétés antifongiques et l'on

sélectionne les produits ayant un effet inhibiteur sur cette activité.

- 20) Utilisation d'un produit sélectionné par le procédé selon la revendication 19 pour l'obtention d'un agent antifongique.
- 5 21) Utilisation du gène du facteur de transcription CAtfIIIA de Candida albicans ou du facteur de transcription codé par ce gène selon l'une des revendications 5 à 12 pour la sélection d'un produit ayant des propriétés antifongiques selon la revendication 19 comme inhibiteur du facteur de transcription de Candida albicans.
 - 22) Compositions pharmaceutiques renfermant à titre de principe actif au moins un inhibiteur du facteur de transcription de Candida albicans tel que défini à la revendication 21.
- 15 23) Utilisation des compositions telles que définies à la revendication 22 comme agents antifongiques.
 - 24) Méthode d'induction d'une réponse immunologique chez un mammifère comprenant l'inoculation à ce mammifère du polypeptide tel que défini à la revendication 12 ou un
- 20 fragment de ce polypeptide ayant la même fonction de façon à produire un anticorps permettant de protéger l'animal contre la maladie.
- 25) Anticorps dirigé contre le polypeptide tel que défini à la revendication 12 ou un fragment de ce polypeptide ayant la 25 même fonction.
- 26) Utilisation du gène CAtfIIIA ou du facteur de transcription codé par ce gène selon l'une des revendications 5 à 12 pour la préparation de compositions utiles pour le diagnostic ou le traitement de maladies causées par la 30 levure pathogène Candida albicans.
- 27) Kit pour le diagnostic d'infections fongiques comprenant une séquence d'ADN tel que défini à l'une des revendications 5 à 11 ou une séquence ayant une fonction similaire ou un fragment fonctionnel de cette séquence, le polypeptide codé 35 par cette séquence ou un fragment polypeptidique ayant la même fonction ou un anticorps dirigé contre un tel

polypeptide codé par cette séquence d'ADN ou contre un fragment de ce polypeptide.

LISTAGE DE SEQUENCE

- <110> Hoechst Marion Roussel
- <120> Gène tfIIIA de Candida albicans (CAtfIIIA) et la protéine codée CATFIIIA.
- <130> BREVET 9824
- <140>
- <141>
- <160> 9
- <170> PatentIn Vers. 2.0
- <210> 1
- <211> 2060
- <212> ADN
- <213> Candida albicans
- <400> 1 ctttattagg aagattggct aggccatttt gtattacggg tctccaaagt gcaattgttt 60 tagtaaatat ccaatcattg ggcttcagtg tgaatggggg ttgtcaatct cttggtgtag 120 aaataggcgc aggcctccga atcccaaaaa aagaagaatc aggatgtctc ggctgcaaga 180 acaaaaggaa aagtgattga actagatcag tagtggtctg gaccctctat aattttataa 300 tattgtcacg ggctttagaa tttgtataat tgtgtgtctg acactctgtg gttaatatct 360 ggacatctcg ttccccttgt gaagggtcgt ctgtaatgaa ttcatgatca agaataatat 420 gactttgctc acttcataga gtgccgactt gattattatt gagctttatc ctctgtaata 480 tatcgtaacc acttgactta tttccttgtt gtgggattca ctttggatga tgatgttaac 540 caaatgtaat tggtacaatc ctttttgtcc ttgtcgcgac ttcctttaat atcgcgactt 600 atttcattaa tgagacgcaa cgcattcctc tctccataga aaaaaaaaat aacaaactga 660 aaaaataaac agcggacctc atctctttt ttcaaatcca ctttttatta ctttattcaa 720 tgagtgaaag tgacgaaacc aaatcgatat catctttaat atcttcttct tcttcatcac 780 gtcccaaaaa gtatatttgc acatatgaag ggtgtgataa agcctataat cgaccatcat 840 tattagagca acatttaaga acccacagta atgatcgacc gtataaatgt acagtggacg 900 attgtgataa agcatttttc agaaaatcac atttggaaac acatattgta tcacattccg 960 aaaaaaaacc attccattgt tcagtgtgtg gtaaaggggt taattctcga caacacttga 1020 aaagacatga aatcacccat acaaagtcat ttaaatgtac atttgaaaat tgtcaagaag 1080 cattttataa acatcaatct ttaagacatc atatattatc tgttcatgaa aaaacattaa 1140 cgtgtaaaca atgtaataaa gttttcactc gaccttcaaa attagcacaa cataaattaa 1200 aacatcatgg tggatctcct gcttatcaat gtgatcatcc tggttgtttt aaaaatttcc 1260

1.1 -

aaacttggtc agtattacaa tttcatataa aacaactgca tccaaaactt aaatgtccta 1320 aatgtggtaa aggttgtgt gggaaaaaag gtttatcttc acatatgtta agtcatgatg 1380 attctaccat gatcaaaata tggacttgtg attattgtga tgtggggaaa tttgcaaaga 1440 aaaatgaatt agttgaacat tataatatct tccatgatgg taatatccct gatgatttat 1500 taaaggaaac tgaagtgaaa aaattagaga acctattaga tcaaggatcg aaattaaata 1560 atttgcatga tgaaaaaaga agtgaattaa aagtggaaga agatgaagaa gatgaagaag 1620 atagtctaga tgaaaaaaga agtgatgta gatcagactc aatgtcagct caaagatcaa 1680 taaaatcatt tactgcttct ttggaaggtt caaagagtgt ttctaaactt attctgaata 1740 gtgggaagaa gatcaattgt cctaagaata attgtgatag aatgtttct agagaatatg 1800 atttacgtcg acatttgaaa tggcatgatg ataatttaca aagaattgag tcattcttaa 1860 atagtataga aaaagaagaa actccagaag gtgaaccatt ggttaaaaaa gccaggatgg 1920 atttattgcc aaatgaaca tcagtgatt ctcgataata tacatttaaa attatataa 1980 cattttatt tccttaatt tttatttt gtggctttt tatttacat tatttacat tatttaact 2040 gacatattac tctctaatg

<210> 2 <211> 1239 <212> ADN <213> Candida albicans <220> <221> CDS <222> (1)..(1236) <400> 2 atg agt gaa agt gac gaa acc aaa tcg ata tca tct tta ata tct tct 48 Met Ser Glu Ser Asp Glu Thr Lys Ser Ile Ser Ser Leu Ile Ser Ser 96 tot tot toa toa ogt oco aaa aag tat att tgo aca tat gaa ggg tgt Ser Ser Ser Ser Arg Pro Lys Lys Tyr Ile Cys Thr Tyr Glu Gly Cys 20 gat aaa gcc tat aat cga cca tca tta tta gag caa cat tta aga acc 144 Asp Lys Ala Tyr Asn Arg Pro Ser Leu Leu Glu Gln His Leu Arg Thr cac agt aat gat cga ccg tat aaa tgt aca gtg gac gat tgt gat aaa 192 His Ser Asn Asp Arg Pro Tyr Lys Cys Thr Val Asp Asp Cys Asp Lys 55 gca ttt ttc aga aaa tca cat ttg gaa aca cat att gta tca cat tcc 240 Ala Phe Phe Arg Lys Ser His Leu Glu Thr His Ile Val Ser His Ser 70 65 288 qaa aaa aaa cca ttc cat tgt tca gtg tgt ggt aaa ggg gtt aat tct Glu Lys Lys Pro Phe His Cys Ser Val Cys Gly Lys Gly Val Asn Ser cga caa cac ttg aaa aga cat gaa atc acc cat aca aag tca ttt aaa 336

Arg Gln His Leu Lys Arg His Glu Ile Thr His Thr Lys Ser Phe Lys

100 105 110 tgt aca ttt gaa aat tgt caa gaa gca ttt tat aaa cat caa tct tta 384 Cys Thr Phe Glu Asn Cys Gln Glu Ala Phe Tyr Lys His Gln Ser Leu 120 115 432 aga cat cat ata tta tct gtt cat gaa aaa aca tta acg tgt aaa caa Arg His His Ile Leu Ser Val His Glu Lys Thr Leu Thr Cys Lys Gln 135 140 tgt aat aaa gtt ttc act cga cct tca aaa tta gca caa cat aaa tta 480 Cys Asn Lys Val Phe Thr Arg Pro Ser Lys Leu Ala Gln His Lys Leu 150 aaa cat cat ggt gga tct cct gct tat caa tgt gat cat cct ggt tgt 528 Lys His His Gly Gly Ser Pro Ala Tyr Gln Cys Asp His Pro Gly Cys 165 ttt aaa aat ttc caa act tgg tca gta tta caa ttt cat ata aaa caa 576 Phe Lys Asn Phe Gln Thr Trp Ser Val Leu Gln Phe His Ile Lys Gln 185 ctg cat cca aaa ctt aaa tgt cct aaa tgt ggt aaa ggt tgt gtt ggg 624 Ser His Pro Lys Leu Lys Cys Pro Lys Cys Gly Lys Gly Cys Val Gly aaa aaa ggt tta tct tca cat atg tta agt cat gat gat tct acc atg Lys Lys Gly Leu Ser Ser His Met Leu Ser His Asp Asp Ser Thr Met 210 215 atc aaa ata too act tot oat tat tot gat gtg ggg aaa ttt gca aag 720 Ile Lys Ile Trp Thr Cys Asp Tyr Cys Asp Val Gly Lys Phe Ala Lys 235 230 225 768 aaa aat gaa tta gtt gaa cat tat aat atc ttc cat gat ggt aat atc Lys Asn Glu Leu Val Glu His Tyr Asn Ile Phe His Asp Gly Asn Ile cct gat gat tta tta aag gaa act gaa gtg aaa aaa tta gag aac cta 816 Pro Asp Asp Leu Leu Lys Glu Thr Glu Val Lys Lys Leu Glu Asn Leu 260 265 tta gat caa gga tcg aaa tta aat aat ttg cat gaa tta gaa aca gag Leu Asp Gln Gly Ser Lys Leu Asn Asn Leu His Glu Leu Glu Thr Glu 280 912 Lys Leu Lys Val Glu Glu Asp Glu Glu Asp Glu Glu Asp Ser Leu Asp 295 960 gaa aaa aga agt gat gtt aga tca gac tca atg tca gct caa aga tca Glu Lys Arg Ser Asp Val Arg Ser Asp Ser Met Ser Ala Gln Arg Ser 315 320 ata aaa toa ttt act got tot ttg gaa ggt toa aag agt gtt tot aaa 1008 Ile Lys Ser Phe Thr Ala Ser Leu Glu Gly Ser Lys Ser Val Ser Lys 325 330 335 ctt att ctg aat agt ggg aag aag atc aat tgt cct aag aat aat tgt 1056 Leu Ile Ser Asn Ser Gly Lys Lys Ile Asn Cys Pro Lys Asn Asn Cys 340 345 1104 gat aga atg ttt tct aga gaa tat gat tta cgt cga cat ttg aaa tgg Asp Arg Met Phe Ser Arg Glu Tyr Asp Leu Arg Arg His Leu Lys Trp

360

355

1200

1239

cat gat gat aat tta caa aga att gag tca ttc tta aat agt ata gaa 1152 His Asp Asp Asn Leu Gln Arg Ile Glu Ser Phe Leu Asn Ser Ile Glu 375 380 aaa gaa gaa act cca gaa ggt gaa cca ttg gtt aaa aaa gcc agg atg Lys Glu Glu Thr Pro Glu Gly Glu Pro Leu Val Lys Lys Ala Arg Met 395 390 gat tta ttg cca aat gaa aca tca gtg att tct cga taa Asp Leu Leu Pro Asn Glu Thr Ser Val Ile Ser Arg 405 <210> 3 <211> 412 <212> PRT <213> Candida albicans Met Ser Glu Ser Asp Glu Thr Lys Ser Ile Ser Ser Leu Ile Ser Ser Ser Ser Ser Ser Arg Pro Lys Lys Tyr Ile Cys Thr Tyr Glu Gly Cys
20 25 30 Asp Lys Ala Tyr Asn Arg Pro Ser Leu Leu Glu Gln His Leu Arg Thr His Ser Asn Asp Arg Pro Tyr Lys Cys Thr Val Asp Asp Cys Asp Lys 50 60 Ala Phe Phe Arg Lys Ser His Leu Glu Thr His Ile Val Ser His Ser Glu Lys Lys Pro Phe His Cys Ser Val Cys Gly Lys Gly Val Asn Ser Arg Gln His Leu Lys Arg His Glu Ile Thr His Thr Lys Ser Phe Lys Cys Thr Phe Glu Asn Cys Gln Glu Ala Phe Tyr Lys His Gln Ser Leu 120 Arg His His Ile Leu Ser Val His Glu Lys Thr Leu Thr Cys Lys Gln Cys Asn Lys Val Phe Thr Arg Pro Ser Lys Leu Ala Gln His Lys Leu 155 Lys His His Gly Gly Ser Pro Ala Tyr Gln Cys Asp His Pro Gly Cys Phe Lys Asn Phe Gln Thr Trp Ser Val Leu Gln Phe His Ile Lys Gln 185 Ser His Pro Lys Leu Lys Cys Pro Lys Cys Gly Lys Gly Cys Val Gly Lys Lys Gly Leu Ser Ser His Met Leu Ser His Asp Asp Ser Thr Met Ile Lys Ile Trp Thr Cys Asp Tyr Cys Asp Val Gly Lys Phe Ala Lys

Lys	Asn	Glu	Leu	Val 245	Glu	His	Tyr	Asn	Ile 250	Phe	His	Asp	Gly	Asn 255	Ile	
Pro	Asp	Asp	Leu 260	Leu	Lys	Glu	Thr	Glu 265	Val	Lys	Lys	Leu	Glu 270	Asn	Leu	
Leu	Asp	Gln 275	Gly	Ser	Lys	Leu	Asn 280	Asn	Leu	His	Glu	Leu 285	Glu	Thr	Glu	
Lys	Leu 290	Lys	Val	Glu	Glu	Asp 295	Glu	Glu	Asp	Glu	Glu 300	Asp	Ser	Leu	Asp	
Glu 305	Lys	Arg	Ser	Asp	Val 310	Arg	Ser	Asp	Ser	Met 315	Ser	Ala	Gln	Arg	Ser 320	
Ile	Lys	Ser	Phe	Thr 325	Ala	Ser	Leu	Glu	Gly 330	Ser	Lys	Ser	Val	Ser 335	Lys	
Leu	Ile	Ser	Asn 340	Ser	Gly	Lys	Lys	Ile 345	Asn	Cys	Pro	Lys	Asn 350	Asn	Cys	
Asp	Arg	Met 355	Phe	Ser	Arg	Glu	Tyr 360	Asp	Leu	Arg	Arg	His 365	Leu	Lys	Trp	
His	Asp 370	Asp	Asn	Leu	Gln	Arg 375	Ile	Glu	Ser	Phe	Leu 380	Asn	Ser	Ile	Glu	
Lys 385	Glu	Glu	Thr	Pro	Glu 390	Gly	Glu	Pro	Leu	Val 395	Lys	Lys	Ala	Arg	Met 400	
Asp	Leu	Leu	Pro	Asn 405	Glu	Thr	Ser	Val	Ile 410	Ser	Arg					
<210> 4 <211> 21 <212> ADN <213> Candida albicans																
<400 atga		aaa g	gtgac	gaaa	ac c											21
<210> 5 <211> 24 <212> ADN <213> Candida albicans																
<400> 5 attggaatgg tttttttcg gaat										24						
<210> 6 <211> 23 <212> ADN <213> Candida albicans																
<400> 6 tggtttcgtc actttcactc att										23						
<210> 7 <211> 25 <212> ADN <213> Candida albicans																

<400> 7	
atgttaagtc atgatgattc tacca	25
<210> 8 <211> 27 <212> ADN	
<213> Candida albicans	
<400> 8 ccttagaatt caccatgagt gaaagtg	27
<210> 9 <211> 27 <212> ADN <213> Candida albicans	
<400> 9	27

•