3팀

김다민 이지원 조성우 김수인 방건우

CONTENTS

1.선형대수학

2.벡터와 행렬

3.벡터와 행렬의 미분

4.선형방정식과 선형결합

5.선형변환

6.벡터공간과 기저

1

선형대수학

선형대수학의 개념

선형대수학 Linear algebra

벡터, 행렬, 선형 변환, 선형 연립 방정식 등을 연구하는 대수학의 한 분야

선형 VS 수학 아님

연립 방정식을 표현하기 위해 벡터와 행렬을 사용

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \end{bmatrix}$$

2차원 이상의 공간을 가지는 데이터를 다루는데 효과적

선형대수학의 필요성

현실 속 데이터셋은 키, 몸무게로 끝나지 않음 경우에 따라 수십만 차원의 데이터를 다루어야 함

Ex)유전체 데이터,추천시스템…

Dataset Characteristics

Multivariate, Time-Series

Feature Type

Real

Subject Area

Computer Science

Instances

2205

Associated Tasks

Classification, Regression

Features

43680

Dataset Characteristics

Multivariate, Time-Series

Feature Type

Real

Subject Area

Computer Science

Instances

180

Associated Tasks

Classification, Regression

Features

150000

선형대수학의 필요성

현실 속 데이터셋은 키, 몸무게로 끝나지 않음 경우에 따라 수십만 차원의 데이터를 다루어야 함

Ex)유전체 데이터,추천시스템…

고차원 데이터를 이해하고 다루기 위해 필요한 여러 방법론들이

선형대수학에 근간을 둠

선형대수학의 필요성

통계학에서의 선형대수학

다변량 분석, 회귀분석, 머신러닝과 딥러닝 뿐만 아니라 다양한 통계 패키지 & 라이브러리에서 행렬대수학을 사용

$$\Sigma = \begin{bmatrix} Var(X_1) & \cdots & Cov(X_1, X_n) \\ \vdots & \ddots & \vdots \\ Cov(X_n, X_n) & \cdots & Var(X_n) \end{bmatrix}$$

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}$$

2

벡터와 행렬

벡터

벡터 Vector

선형대수학의 <mark>기본 단위</mark>, 벡터 개념을 통해 고차원 자료를 표현 물리적으로 **방향**과 **크기**로 구성됨

벡터의 의미

컴퓨터과학적 의미

순서가 있는 숫자의 **리스트**로 행렬, 데이터프레임과 같이 데이터 형태의 **기본 단위**를 이룸 기하학적 의미

값을 나열하여 모아 놓은 개념으로 벡터를 구성하는 값들을 **성분**이라 하고 성분의 개수가 곧 벡터의 **차원**

 $\perp 1$

벡터의 의미

컴퓨터과학적 의미

순서가 있는 숫자의 리스트로 행렬, 데이터프레임과 같이 데이터 형태의 **기본 단위**를 이룸 기하학적 의미

값을 나열하여 모아 놓은 개념으로 벡터를 구성하는 값들을 **성분**이라 하고 성분의 개수가 곧 벡터의 **차원**

벡터의 연산

벡터의 연산법칙

벡터의 기본 연산은 크게 **상수배**와 **벡터 간 덧셈/뺄셈**으로 구성

9

$$(1) u + v = v + u$$

(2)
$$(u + v) + w = u + (v + w)$$

(3)
$$\mathbf{u} + 0 = 0 + \mathbf{u}$$

$$(4) u + (-u) = -u + u = 0$$

$$(5) c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

$$(6) (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

$$(7) c(d\mathbf{u}) = (cd)\mathbf{u}$$

$$(8) 1u = u$$

u, v, w는 벡터, c, d는 스칼라

벡터의 연산의 기하학적 의미

상수배 *Scalar multiplication*

스칼라 c를 곱하는 벡터의 곱셈은 기하학적으로 벡터의 **길이를** c**배** 한다는 것을 의미

벡터의 연산의 기하학적 의미

벡터 간 덧셈/뺄셈

원점에서 벡터 v만큼 화살표 방향으로 이동하고, w만큼 추가로 이동하면 만들어지는 <mark>평행사변형</mark>의 대각선이 v+w

행렬

행렬의 개념

실수를 직사각형 모양의 <mark>행</mark>과 <mark>열</mark>로 배열한 것을 의미

원소(element): 배열 내의 수를 의미하여 성분(entry)라고도 함

$$\begin{pmatrix} A_{11} & \dots & A_{1n} \\ A_{21} & & A_{2n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \dots & A_{mn} \end{pmatrix}$$

 $m \times n$ 행렬

따벟

•

행렬의 연산

상수배

모든 원소에 같은 상수를 곱함

행렬의 합

크기가 같은 두 행렬에서 같은 위치에 있는 원소끼리 합함

행렬의 곱

앞 행렬의 i번째 행, 뉫 행렬의 j번째 열을 곱해 ij번째 원소를 구함

$$2 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$$
$$1/2 \times \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 9 & 12 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 8 \\ 9 & 12 \end{bmatrix} + (-1) \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \times \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 14 & 20 \\ 30 & 44 \end{bmatrix}$$
$$\begin{bmatrix} 1 \times 2 + 2 \times 6 & 1 \times 4 + 2 \times 8 \\ 3 \times 2 + 4 \times 6 & 3 \times 4 + 4 \times 8 \end{bmatrix}$$

앞 행렬의 열과 뒷 행렬의 행의 크기를 맞춰야 함

행렬의 연산

상수배

모든 원소에 같은 상수를 곱힘

$2 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$ $1/2 \times \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

행렬의 합

크기가 같은 두 행렬에서 같은 위치에 있는 원소끼리 합함

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 9 & 12 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 8 \\ 9 & 12 \end{bmatrix} + (-1) \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$$

행렬의 곱

앞 행렬의 i번째 행, 뒷 행렬의 j번째 열을 곱해 ij번째 원소를 구함

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \times \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 14 & 20 \\ 30 & 44 \end{bmatrix}$$
$$\begin{bmatrix} 1 \times 2 + 2 \times 6 & 1 \times 4 + 2 \times 8 \\ 3 \times 2 + 4 \times 6 & 3 \times 4 + 4 \times 8 \end{bmatrix}$$

앞 행렬의 열과 뒷 행렬의 행의 크기를 맞춰야 함

행렬의 연산

상수배

모든 원소에 같은 상수를 곱힘

행렬의 합

크기가 같은 두 행렬에서 같은 위치에 있는 원소끼리 합함

$$2 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$$
$$1/2 \times \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 9 & 12 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 8 \\ 9 & 12 \end{bmatrix} + (-1) \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$$

행렬의 곱

앞 행렬의 *i*번째 행, 뒷 행렬의 *j*번째 열을 곱해 *ij*번째 원소를 구함

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \times \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 14 & 20 \\ 30 & 44 \end{bmatrix}$$
$$\begin{bmatrix} 1 \times 2 + 2 \times 6 & 1 \times 4 + 2 \times 8 \\ 3 \times 2 + 4 \times 6 & 3 \times 4 + 4 \times 8 \end{bmatrix}$$

앞 행렬의 열과 뒷 행렬의 행의 크기를 맞춰야 함

행렬의 종류

영행렬 Zero matrix

모든 원소가 0인 행렬

대각행렬 Diagonal matrix

대각 성분을 제외한 l른 성분이 모두 0인 행렬

단위행렬 Identity matrix

대각행렬 중 주대각선이 1인 행렬

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}$$

행렬의 종류

영행렬 Zero matrix

모든 원소가 0인 행렬

대각행렬 *Diagonal matrix*

대각 성분을 제외한 다른 성분이 모두 0인 행렬

단위행렬 Identity matrix

대각행렬 중 주대각선이 1인 행렬

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}$$

행렬의 종류

영행렬 Zero matrix

모든 원소가 0인 행렬

대각행렬 Diagonal matrix

대각 성분을 제외한 르 성부이 모두 0의 행력

단위행렬 *Identity matrix*

대각행렬 중 주대각선이 1인 행렬

행렬의 종류

삼각행렬 Triangular matrix

정방행렬 중 주 대각선 위 혹은 아래 성분이 모두 0인 행렬

전치행렬 *Transpose matrix*

행과 열을 교환하여 얻는 행렬

대칭행렬 Symmetric matrix

자기자신과 전치행렬이 같은 행렬

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 7 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 3 & 5 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 & 5 \\ 4 & 2 & 6 \\ 5 & 6 & 3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

행렬의 종류

삼각행렬 *Triangular matrix*

정방행렬 중 주 대각선 위 혹은 아래 성분이 모두 0인 행렬

전치행렬 *Transpose matrix*

행과 열을 교환하여 얻는 행렬

대칭행렬 Symmetric matrix

자기자신과 전치행렬이 같은 행렬

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 7 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 3 & 5 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 & 5 \\ 4 & 2 & 6 \\ 5 & 6 & 3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

행렬의 종류

삼각행렬 Triangular matrix

정방행렬 중 주 대각선 위 혹은 아래 성분이 모두 0인 행렬

전치행렬 Transpose matrix

행과 열을 교환하여 얻는 행렬

대칭행렬 Symmetric matrix

자기자신과 전치행렬이 같은 행렬

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 7 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 3 & 5 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 & 5 \\ 4 & 2 & 6 \\ 5 & 6 & 3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3

벡터와 행렬의 미분

행렬 미분

행렬 미분을 배울 필요성

四?

LSE, Gradient Descent 등 **머신러닝의 최적화 기법**에서

벡터, 행렬 미분을 종종 접하게 됨.

행렬 미분을 정확히 알고 있으면 최적화 기법을 이해하는 데 도움

행렬 미분

벡터나 행렬을 입력하는 함수

벡터를 입력으로 갖는 함수

$$f\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = f(\mathbf{x}) = f(x_1, x_2)$$

역러 개의 입력을 가지는 **다변수 함수**는 **벡터를 입력으로 받는 함수**로 볼 수 있음

행렬을 입력으로 갖는 함수

$$f\left(\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}\right) = f(X) = f(x_{11}, \dots, x_{22})$$

행렬 미분

벡터나 행렬을 출력하는 함수

벡터를 출력으로 받는 함수

$$f(x) = \begin{bmatrix} f_{1(x)} \\ f_{2(x)} \end{bmatrix}$$

행렬을 출력으로 갖는 함수

$$f(x) = \begin{bmatrix} f_{11(x)} & f_{12(x)} \\ f_{21(x)} & f_{22(x)} \end{bmatrix}$$

벡터나 행렬을 출력하는 함수는 여러 개의 함수를 합쳐 놓은 것으로 이해

행렬 미분

정확하게는 미분이 아닌 편미분!

행렬 미분

정확하게는 미분이 아닌 편미분!

행렬 미분

행렬 미분은 다음과 같은 4가지 경우로 나눌 수 있음

행렬 미분

① 스칼라를 벡터로 미분

그래디언트 벡터 (gradient vector)

스칼라를 벡터로 미분하는 경우에는 결과를 열벡터로 표시하며, 이렇게 만들어진 벡터를 **그래디언트 벡터**라 부름

$$\nabla f = \frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_N} \end{bmatrix}$$

① 스칼라를 벡터로 미분

그레디언트 벡터 (gradient vector)

스칼라를 벡터로 미분하는 경우에는 결과를 열벡터로 표시하며, 다변수, 함슈를 미분하여 <mark>그래디언트 벡터를 구할</mark> 때 유용하게 쓰이는 것이 <mark>행렬미분법칙</mark>

$$\nabla f = \frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_N} \end{bmatrix}$$

① 스칼라를 벡터로 미분

행렬미분법칙

(Proof)
$$\frac{\partial \mathbf{w}^{T} \mathbf{x}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial (\mathbf{w}^{T} \mathbf{x})}{\partial x_{1}} \\ \frac{\partial (\mathbf{w}^{T} \mathbf{x})}{\partial x_{2}} \\ \vdots \\ \frac{\partial (\mathbf{w}^{T} \mathbf{x})}{\partial x_{N}} \end{bmatrix} = \begin{bmatrix} \frac{\partial (w_{1}x_{1} + w_{2}x_{2} + \cdots w_{N}x_{N})}{\partial x_{1}} \\ \frac{\partial (w_{1}x_{1} + w_{2}x_{2} + \cdots w_{N}x_{N})}{\partial x_{2}} \\ \vdots \\ \frac{\partial (w_{1}x_{1} + w_{2}x_{2} + \cdots w_{N}x_{N})}{\partial x_{N}} \end{bmatrix} = \begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{N} \end{bmatrix} = \mathbf{w}$$

① 스칼라를 벡터로 미분

행렬미분법칙

❤️ 행렬미분법칙2: 이차 형식

이차 형식을 미분하면 행렬과 벡터의 곱으로 나타남

$$f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$$

$$\nabla f = \frac{\partial \mathbf{x}^T A \mathbf{x}}{\partial \mathbf{x}} = (A + A^T) \mathbf{x}$$

① 스칼라를 벡터로 미분

행렬미분법칙

$$\frac{\partial \mathbf{x}^{T} A \mathbf{x}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial (\mathbf{x}^{T} A \mathbf{x})}{\partial x_{1}} \\ \frac{\partial (\mathbf{x}^{T} A \mathbf{x})}{\partial x_{2}} \\ \vdots \\ \frac{\partial (\mathbf{x}^{T} A \mathbf{x})}{\partial x_{N}} \end{bmatrix} = \begin{bmatrix} \frac{\partial (\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} x_{i} x_{j})}{\partial x_{1}} \\ \frac{\partial (\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} x_{i} x_{j})}{\partial x_{2}} \\ \vdots \\ \frac{\partial (\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} x_{i} x_{j})}{\partial x_{N}} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} a_{1i} x_{i} + \sum_{i=1}^{N} a_{i1} x_{i} \\ \sum_{i=1}^{N} a_{2i} x_{i} + \sum_{i=1}^{N} a_{i2} x_{i} \\ \vdots \\ \sum_{i=1}^{N} a_{Ni} x_{i} + \sum_{i=1}^{N} a_{iN} x_{i} \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{i=1}^{N} a_{1i} x_{i} \\ \sum_{i=1}^{N} a_{2i} x_{i} \\ \vdots \\ \sum_{i=1}^{N} a_{2i} x_{i} \end{bmatrix} + \begin{bmatrix} \sum_{i=1}^{N} a_{i1} x_{i} \\ \sum_{i=1}^{N} a_{i1} x_{i} \\ \vdots \\ \sum_{i=1}^{N} a_{iN} x_{i} \end{bmatrix} = A \mathbf{x} + A^{T} \mathbf{x} = (A + A^{T}) \mathbf{x}$$

② 벡터를 스칼라로 미분

출력이 벡터인 함수 f(x)를 스칼라 x로 미분하는 경우에는 결과를 행 벡터로 표시

$$f(x) = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_M \end{bmatrix} \xrightarrow{\square \sqsubseteq} \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x}, & \frac{\partial f_2}{\partial x}, \dots, \frac{\partial f_M}{\partial x} \end{bmatrix}$$

③ 벡터를 벡터로 미분

 $m \times 1$ 벡터를 $n \times 1$ 벡터로 미분하면 입력변수와 출력변수 각각의 조합에 대해 모두 미분이 존재하므로 도함수는 $m \times n$ 행렬이 됨

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x}, & \frac{\partial f_2}{\partial x}, \cdots, \frac{\partial f_N}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_M} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_N}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_N}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_M} & \frac{\partial f_2}{\partial x_M} & \cdots & \frac{\partial f_N}{\partial x_M} \end{bmatrix}$$

③ 벡터를 벡터로 미분

행렬미분법칙 3

행렬미분법칙3: 행렬과 벡터의 곱의 미분

행렬 A와 벡터 x의 Ax를 벡터 Ax로 미분하면 행렬 ATY 됨

$$f(\mathbf{x}) = A\mathbf{x}, \quad \nabla f(x) = \frac{\partial (A\mathbf{x})}{\partial \mathbf{x}} = A^T$$

 $A\mathbf{x} = c_1 x_1 + c_2 x_2 + \cdots c_M x_M$

(Proof)
$$\frac{\partial (A\mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial (c_1 x_1 + c_2 x_2 + \cdots c_M x_M)^T}{\partial x_1} \\ \frac{\partial (c_1 x_1 + c_2 x_2 + \cdots c_M x_M)^T}{\partial x_2} \\ \vdots \\ \frac{\partial (c_1 x_1 + c_2 x_2 + \cdots c_M x_M)^T}{\partial x_M} \end{bmatrix} = \begin{bmatrix} c_1^T \\ c_2^T \\ \vdots \\ c_M^T \end{bmatrix} = A^T$$

④ 스칼라를 행렬로 미분

출력변수 f가 스칼라 값이고 입력변수 X가 행렬인 경우에는 도함수 행렬의 모양이 입력변수 행렬 X와 동일

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x_{1,1}} & \frac{\partial f}{\partial x_{1,2}} & \cdots & \frac{\partial f}{\partial x_{1,N}} \\ \frac{\partial f}{\partial x_{2,1}} & \frac{\partial f}{\partial x_{2,2}} & \cdots & \frac{\partial f}{\partial x_{2,N}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial x_{M,1}} & \frac{\partial f}{\partial x_{M,2}} & \cdots & \frac{\partial f}{\partial x_{M,N}} \end{bmatrix}$$

④ 스칼라를 행렬로 미분

행렬미분법칙 4

❤️ 행렬미분법칙4: 행렬 곱의 대각성분

두 정방행렬을 곱해서 만들어진 행렬의 대각성분은 스칼라이며, 이 스칼라를 뒤의 행렬로 미분하면 앞 행렬의 전치행렬이 나옴

$$f(X) = tr(WX), \quad W \in \mathbb{R}^{N \times N}, X \in \mathbb{R}^{N \times N}$$

$$\frac{\partial f}{\partial X} = \frac{\partial tr(WX)}{\partial X} = W^{T}$$

(Proof)
$$tr(WX) = \sum_{j=1}^{N} \sum_{i=1}^{N} w_{ji} x_{ij}$$

$$\frac{\partial tr(WX)}{\partial x_{ij}} = w_{ji}$$

4

선형 방정식과 선형 결합

선형 방정식과 선형 결합

선형 방정식

선형 방정식 Linear equation

양의 정수 n에 대하여,

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$
 형태로 표현되는 식

하나 이상의 선형 방정식 집합을 **연립 선형 방정식** 또는 **선형시스템**이라고 함

선형 방정식과 선형 결합

선형 방정식

선형 방정식 Linear equation

양의 정수 n에 대하여,

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$
 형태로 표현되는 식

하나 이상의 선형 방정식 집합을 <mark>연립 선형 방정식</mark> 또는 <mark>선형시스템</mark>이라고 함

선형 방정식과 선형 결합

선형 결합

상수 a와 변수 x에 대해 덧셈으로 결합된 꼴

$$Ax = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
$$= a_1x_1 + a_2x_2 + \cdots + a_nx_n$$

행렬×벡터의 결과는 두 열벡터의 선형 결합

$$\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -1 \times a & 1 \times b \\ 1 \times a & 1 \times b \end{bmatrix} \rightarrow a \begin{bmatrix} -1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

선형 결합 Linear Combina

상수 a와 변수 x에 대해 덧셈으로 결합된 꼴

다시 말해,

 $= a_1x_1 + a_2x_2 + \cdots + a_nx_n$ 그 공간 위의 좌표 a, b로 결과를 표현

Ex) 행렬×벡터의 결과관색이뉼다-5에신형 결합으로 표현 가능!

$$\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -1 \times a & 1 \times b \\ 1 \times a & 1 \times b \end{bmatrix} \rightarrow a \begin{bmatrix} -1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

5

선형 변환

선형 변환

선형변환의 수식적 의미

 \mathbb{R}^n 에서 \mathbb{R}^m 으로 변환하는 변환 T가 다음 조건을 만족하면 선형 변환

$$T(k\mathbf{u}) = k \times T(\mathbf{u})$$

$$\mathsf{Ex})\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

 \mathbb{R}^2 의 벡터 \mathbf{x} 에 2×2 크기의 행렬 A를 곱함 \rightarrow 새로운 \mathbb{R}^2 의 벡터 \mathbf{b} 로 변환

선형 변환

서형변화인 스시전 이미

 \mathbb{R}^n 에서 \mathbb{R}^m 으로 변환하는 변환 T가 다음 조건을 만족하면 선형 변환

$$\Im T(u+v) = T(u) + T(v)$$

공간 위의 모든 직선은 변환 이후에도 직선

원점은 변환 이후에도 원점

$$[\mathsf{Ex}] \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

 \mathbb{R}^2 의 벡터 \mathbf{x} 에 2×2 크기의 행렬 A를 곱함 \rightarrow 새로운 \mathbb{R}^2 의 벡터 \mathbf{b} 로 변환

선형 변환 *Linear Transformation*

기하학적 의미

변환 전

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix} = 1 \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \times \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

기저벡터와 기저벡터의 선형 결합이 **직선** 변환 후

$$\begin{bmatrix} 5 \\ 5 \end{bmatrix} = 1 \times \begin{bmatrix} 2 \\ -1 \end{bmatrix} + 3 \times \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

여전히 <mark>직선</mark>인 상태

선형 변환 *Linear Transformation*

기하학적 의미

변환 전

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix} = 1 \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \times \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

기저벡터와 기저벡터의 선형 결합이 **직선** 변환 후

$$\begin{bmatrix} 5 \\ 5 \end{bmatrix} = 1 \times \begin{bmatrix} 2 \\ -1 \end{bmatrix} + 3 \times \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

여전히 **직선**인 상태

선형 변환 *Linear Transformation*

기하학적 의미

변환을 통해 기존 좌표계를 오른쪽으로 회전시키고 늘린 상태

선형 변환 *Linear Transformation*

기하학적 의미

변환을 통해 기존 좌표계를 오른쪽으로 회전시키고 늘린 상태

선형변환은 변환된 두 기저벡터를 갖는 행렬과 벡터의 곱으로 표현 행렬은 벡터의 선형변환과 동일한 기능

행렬×벡터 = 두 열 벡터의 선형 결합

곱해지는 <mark>행렬</mark>은 <mark>선형 변환</mark>을 의미함!

선형 변환 *Linear Transformation*

행렬곱 AB와 BA가 다른 이유

A: 공간을 좌우로 뒤집는 선형 변환

B: 공간을 90도 회전시키는 선형 변환이라고 한다면…

 \downarrow

AB: 공간을 90도 회전시킨 다음, 좌우로 뒤집는 선형 변환

BA: 공간을 좌우로 뒤집은 다음, 90도 뒤집는 선형 변환

선형 변환 *Linear Transformation*

행렬곱 AB와 BA가 다른 이유

행렬 연산에서 **교환 법칙이 성립하지 않는** 이유를 기하학적으로 이해 가능!

역행렬 *Inverse matrix*

기하학적 의미

어떤 벡터 x가 A라는 선형 변환을 통해 b라는 벡터로 변환됐을 때 벡터 b를 벡터 x로 되돌리는 선형 변환

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$
 선형 변환을 **원상복구**

$$A^{-1} = \begin{bmatrix} \frac{2}{5} & -\frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} \end{bmatrix}$$

역행렬 *Inverse matrix*

기하학적 의미

어떤 벡터 x가 A라는 선형 변환을 통해 b라는 벡터로 변환됐을 때 벡터 b를 벡터 x로 되돌리는 선형 변환

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$

선형 변환을 **원상복구**

$$A^{-1} = \begin{bmatrix} \frac{2}{5} & -\frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} \end{bmatrix}$$

역행렬 *Inverse matrix*

기하학적 의미

 $AA^{-1}, A^{-1}A$ 모두 특정 변환을 가한 후 원상태로 되돌리는 변환 \rightarrow **단위행렬**(최초의 공간 그대로 유지)을 반환!

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$

선형 변환을 **원상복구**

$$A^{-1} = \begin{bmatrix} \frac{2}{5} & -\frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} \end{bmatrix}$$

역행렬이 존재하지 않는 경우

공간을 압축시키는 선형 변환을 가한 경우에는 <mark>역행렬 존재 X</mark>

EX) ℝ²-공간이 압축되면서 하나의 축으로 표현된 경우 변형된 1차원 벡터가 어떤 2차원 벡터로 변환되어야 하는지 알 수 없음 ↓ x와 Ax가 서로 일대일 대응 X ⇔ Ax = b의 해가 유일하지 않음 ⇔ 역행렬 존재 X

역행렬이 존재하지 않는 경우

공간을 압축시키는 선형 변환을 가한 경우에는 역행렬 존재 X

Ex) №2공간이 압축되면서 하나의 축으로 표현된 경우 변형된 1차원 벡터가 어떤 2차원 벡터로 변환되어야 하는지 알 수 없음 ↓ x와 Ax가 서로 일대일 대응 X ⇔ Ax = b의 해가 유일하지 않음 ⇔ 역행렬 존재 X

6

벡터공간과 기저

벡터공간과 부분공간

벡터공간 Subspace

선형결합에 대해 닫혀 있는 벡터들의 집합

선형결합에 대해 닫혀 있음

어떤 벡터공간 V에 속하는 벡터들을 이용해 선형결합한 벡터 v 는 여전히 본래 공간 V에 속함 ($v \in V$)

벡터들의 집합, 선형결합을 통해 만들어진 새로운 벡터도 그 벡터공간에 속함

벡터공간과 부분공간

부분공간 Subspace

벡터공간 안의 또 다른 벡터공간

벡터공간이 집합이라면 부분집합에 대응하는 개념

부분공간의 조건

집합 S가 벡터공간 V의 부분공간이라면 다음 조건을 만족한다.

① 영벡터를 포함

② 선형결합에 대해 닫혀 있음

벡터공간과 부분공간

부분공간의 조건

집합 S가 벡터공간 V의 부분공간이라면 다음 조건을 만족함

- ① 영벡터를 포함
- ② 선형결합에 대해 닫혀 있음

W 가 벡터공간 V 의 부분공간일 <mark>필요충분조건</mark>

 $v, w \in W, c, d \in \mathbb{R}$ 에 대해 선형결합 $cv + dw \in W$ 이다.

범터공간과 부분공간

! 부분공간의 조건

왜 영벡터를 포함해야 할까?

원점을 지나지 않는 직선은 <mark>전형변환이 직선 밖</mark>에 존재

^{▽, ▽}어떤 벡터의 ♂스칼라 곱은 영벡터이기 때문이다.

기저와 선형 독립

선형 독립 Linearly Independent

집합 내의 **다른 벡터들의 선형 결합**으로 **표현되지 않는 경우**

기저와 선형 독립

선형 독립 Linearly Independent

집합 내의 다른 벡터들의 선형 결합으로 표현되지 않는 경우

🎚) 선형 독립의 조건

선형 결합 $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$ 을 만족하는 상수 a_i 가 **전부 0**이어야 **선형 독립**

상수 a_i 가 0이 아닌 조합이 존재할 경우 **선형 종속**

기저와 선형 독립

기저 Basis

벡터공간을 **선형 생성**하는 **선형 독립**인 벡터들

두 기저 쌍 모두 2차원 실수 공간(\mathbb{R}^2)을 생성

→ 기저는 유일하지 않음

기저와 선형 독립

두 기저 쌍이 모두 2차원 실수 공간 (\mathbb{R}^2) 생성 \rightarrow 두 기저 쌍이 각각 \mathbb{R}^2 을 span함

열공간 Column Space

행렬의 열벡터들로 만들어지는 벡터 공간

$$\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$$
의열 공간은 2차원 실수 공간 \mathbb{R}^2
$$\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} x + \begin{bmatrix} -1 \\ 2 \end{bmatrix} y = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

위 식에서 b_1 , b_2 가 무엇이 오든 x , y를 구할 수 있음

열공간 Column Space

행렬의 열벡터들로 만들어지는 벡터 공간

위 식에서 b_1 , b_2 가 무엇이 오든 x, y를 구할 수 있음

따라서 열벡터의 선형결합으로 만들 수 있는 **평면**만을 생성함

따라서 열벡터의 선형결합으로 만들 수 있는 <mark>평면</mark>만을 생성함

행공간 Row Space

행렬의 <mark>행벡터들로 만들어지는</mark> 벡터 공간

위 식에서 b_1 , b_2 가 무엇이 오든 x, y를 구할 수 있음

Basic Subspaces

영공간 Null Space

선형 동차방정식 Ax = 0 을 만족시키는 모든 x의 해집합

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

x = 0, y = 0, z = 0이라는 특이해는

어떤 행렬이 와도 동일하게 존재하기에 영공간은 항상 영벡터를 포함

Basic Subspaces

영공간 Null Space

선형 동차방정식 Ax = 0 을 만족시키는 모든 x의 해집합

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

x = 0, y = 0, z = 0이라는 특이해는

어떤 행렬이 와도 동일하게 존재하기에 영공간은 항상 영벡터를 포함

Basic Subspaces - - -

영공간 Null SpacBasic Subspace들 간의 관계는?

선형 동차방정식 Ax = 0 을 만족시키는 모든 x의 해집합

행공간의 차원 = 열공간의 차원 = rank

영공간의 차원 = nullity

지원정 다 이 $\frac{1}{N}$ $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ y \end{bmatrix}$ 자원정 다 의 $\frac{1}{N}$ $\frac{1$

rank + nullity = n

x = 0, y = 0, z = 0이라는 특이해는

어떤 행렬이 와도 동일하게 존재하기에 영공간은 항상 영벡터를 포함 차원정리가 궁금하다면 선대 클린업 2주차에 관심을 ~

다음 주 예고

THANK YOU