Project_AN

May 16, 2025

REGRESIÓN LINEAL MULTIVARIADA - VENTAS DE VIDEOJUEGOS Dataset: vgsales.csv Importar librerías necesarias

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Cargar el dataset

```
[2]: df = pd.read_csv('vgsales.csv')
    print("Primeras filas del dataset:")
    display(df.head())
```

Primeras filas del dataset:

	Rank	Name	${\tt Platform}$	Year	Genre	Publisher	\
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	
3	4	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	
4	5	Pokemon Red/Pokemon Blue	GB	1996.0	Role-Playing	Nintendo	

	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	41.49	29.02	3.77	8.46	82.74
1	29.08	3.58	6.81	0.77	40.24
2	15.85	12.88	3.79	3.31	35.82
3	15.75	11.01	3.28	2.96	33.00
4	11.27	8.89	10.22	1.00	31.37

1. Limpieza de datos Revisar duplicados

```
[3]: print("Duplicados:", df.duplicated().sum())
df = df.drop_duplicates()
```

Duplicados: 0

Revisar valores nulos

```
[4]: print("Valores nulos por columna:")
print(df.isnull().sum())
```

Valores nulos por columna:

Rank Name 0 Platform 0 Year 271 Genre 0 Publisher 58 NA_Sales 0 EU_Sales 0 JP_Sales 0 Other_Sales 0 Global_Sales 0

dtype: int64

Eliminar filas con valores nulos (si existen)

[5]: df = df.dropna()

Verificar nuevamente si hay valores nulos

[6]: if df.isnull().sum().any():
 raise ValueError("El dataset contiene valores nulos después de la limpieza.

→")

2. Estadísticas básicas

[7]: print("Resumen estadístico:") display(df.describe())

Resumen estadístico:

	Rank	Year	NA_Sales	EU_Sales	JP_Sales	\
count	16291.000000	16291.000000	16291.000000	16291.000000	16291.000000	
mean	8290.190228	2006.405561	0.265647	0.147731	0.078833	
std	4792.654450	5.832412	0.822432	0.509303	0.311879	
min	1.000000	1980.000000	0.000000	0.000000	0.000000	
25%	4132.500000	2003.000000	0.000000	0.000000	0.000000	
50%	8292.000000	2007.000000	0.080000	0.020000	0.000000	
75%	12439.500000	2010.000000	0.240000	0.110000	0.040000	
max	16600.000000	2020.000000	41.490000	29.020000	10.220000	

	Other_Sales	Global_Sales
count	16291.000000	16291.000000
mean	0.048426	0.540910
std	0.190083	1.567345
min	0.000000	0.010000
25%	0.000000	0.060000
50%	0.010000	0.170000
75%	0.040000	0.480000
max	10.570000	82.740000

Columnas disponibles

```
[8]: print("Columnas disponibles:", df.columns.tolist())
    Columnas disponibles: ['Rank', 'Name', 'Platform', 'Year', 'Genre', 'Publisher',
    'NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales', 'Global_Sales']
       3. Codificación de variables categóricas (One-Hot Encoding)
[9]: df_encoded = pd.get_dummies(df, columns=['Platform', 'Genre', 'Publisher'],

¬drop_first=True)
     print("Primeras filas del dataset codificado:")
     display(df_encoded.head())
    Primeras filas del dataset codificado:
       Rank
                                   Name
                                           Year
                                                  NA_Sales
                                                            EU_Sales
                                                                       JP_Sales \
          1
    0
                            Wii Sports
                                         2006.0
                                                     41.49
                                                                29.02
                                                                           3.77
    1
          2
                     Super Mario Bros.
                                         1985.0
                                                     29.08
                                                                3.58
                                                                           6.81
    2
                        Mario Kart Wii
          3
                                         2008.0
                                                     15.85
                                                                12.88
                                                                           3.79
                                                     15.75
    3
          4
                     Wii Sports Resort
                                         2009.0
                                                                11.01
                                                                           3.28
    4
             Pokemon Red/Pokemon Blue
                                         1996.0
                                                     11.27
                                                                8.89
                                                                          10.22
                     Global_Sales
                                    Platform_3D0
                                                  Platform_3DS
       Other_Sales
    0
               8.46
                            82.74
                                           False
                                                          False
                            40.24
    1
               0.77
                                           False
                                                          False
    2
               3.31
                             35.82
                                           False
                                                          False ...
    3
               2.96
                             33.00
                                           False
                                                          False
    4
               1.00
                             31.37
                                           False
                                                          False
       Publisher_Zushi Games
                              Publisher bitComposer Games
    0
                        False
                                                       False
    1
                        False
                                                       False
    2
                        False
                                                       False
    3
                        False
                                                       False
    4
                        False
                                                       False
       Publisher_dramatic create
                                    Publisher_fonfun Publisher_iWin
                                                False
    0
                                                                False
                            False
    1
                             False
                                                False
                                                                False
    2
                            False
                                                False
                                                                False
    3
                                                                False
                            False
                                                False
    4
                            False
                                                False
                                                                False
       Publisher_id Software Publisher_imageepoch Inc.
    0
                        False
                                                     False
                        False
    1
                                                     False
    2
                        False
                                                     False
    3
                        False
                                                     False
    4
                        False
                                                     False
```

```
Publisher_inXile Entertainment Publisher_mixi, Inc Publisher_responDESIGN
0
                             False
                                                  False
                                                                            False
                             False
                                                  False
                                                                           False
1
2
                             False
                                                  False
                                                                           False
3
                             False
                                                  False
                                                                           False
4
                             False
                                                  False
                                                                           False
```

[5 rows x 624 columns]

4. Visualización de la variable objetivo: estimar las stimar las ventas globales de videojuegos

```
[10]: plt.figure(figsize=(10, 5))
   plt.hist(df['Global_Sales'], bins=30, color='skyblue', edgecolor='black')

   plt.title("Distribución de Ventas Globales de Videojuegos")
   plt.xlabel("Ventas Globales (millones de unidades)")
   plt.ylabel("Frecuencia")
   plt.grid(axis='y', alpha=0.75)
   plt.show()
```


5. Matriz de correlación

plt.show()

ENTRENAMIENTO DEL MODELO DE REGRESIÓN LINEAL

1. Preparar datos

Asegurarse de que todas las columnas sean numéricas

Normalizar las características para mejorar la convergencia

```
[13]: from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    X = scaler.fit_transform(X)
```

Añadir columna de unos (bias)

```
[14]: X_b = np.c_[np.ones((m, 1)), X]
    print("Shape de X con bias:", X_b.shape)

Shape de X con bias: (16291, 7)

2. Inicializar parámetros

[15]: alpha = 0.0001  # tasa de aprendizaje
    iterations = 14000  # iteraciones
    theta = np.zeros(X_b.shape[1])

3. Definir funciones
```

```
[16]: def compute_loss(X, y, theta):
          m = len(y)
          predictions = X.dot(theta)
          loss = (1 / (2 * m)) * np.sum((predictions - y) ** 2)
          return loss
      def gradient_descent(X, y, theta, alpha, iterations):
          m = len(y)
          loss_history = []
          for i in range(iterations):
              predictions = X.dot(theta)
              error = predictions - y
              gradient = (1 / m) * X.T.dot(error)
              theta -= alpha * gradient
              loss_history.append(compute_loss(X, y, theta))
              if i % 500 == 0:
                  print(f"Iteración {i}: Error = {loss_history[-1]:.4f}")
          return theta, loss_history
```

4. Entrenar modelo

```
[17]: theta_final, loss_history = gradient_descent(X_b, y, theta, alpha, iterations)

Iteración 0: Error = 1.3738

Iteración 500: Error = 1.0593

Iteración 1000: Error = 0.8223
```

Iteración 2500: Error = 0.4044
Iteración 3000: Error = 0.3256
Iteración 3500: Error = 0.2650

Iteración 1500: Error = 0.6433
Iteración 2000: Error = 0.5076

Iteración 4000: Error = 0.2183

```
Iteración 4500: Error = 0.1819
Iteración 5000: Error = 0.1534
Iteración 5500: Error = 0.1308
Iteración 6000: Error = 0.1129
Iteración 6500: Error = 0.0984
Iteración 7000: Error = 0.0866
Iteración 7500: Error = 0.0769
Iteración 8000: Error = 0.0688
Iteración 8500: Error = 0.0620
Iteración 9000: Error = 0.0562
Iteración 9500: Error = 0.0512
Iteración 10000: Error = 0.0469
Iteración 10500: Error = 0.0431
Iteración 11000: Error = 0.0397
Iteración 11500: Error = 0.0368
Iteración 12000: Error = 0.0341
Iteración 12500: Error = 0.0317
Iteración 13000: Error = 0.0295
Iteración 13500: Error = 0.0276
```

5. Gráfico de convergencia

```
[18]: plt.figure(figsize=(8, 5))
    plt.plot(range(iterations), loss_history, color='orange')
    plt.title("Convergencia del Error - Regresión Lineal")
    plt.xlabel("Iteraciones")
    plt.ylabel("Error (ECM)")
    plt.grid(True)
    plt.show()
```


6. Evaluación con \mathbb{R}^2

```
[19]: from sklearn.metrics import r2_score
    y_pred = X_b.dot(theta_final)
    r2 = r2_score(y, y_pred)
    print(f"Coeficiente de determinación R²: {r2:.4f}")
```

Coeficiente de determinación R^2 : 0.9790