Step-1

Let
$$A_n = (a_{ij})_{n \times n}$$
 where

$$A_1 = (1+1)$$

$$=(2)$$

$$\Rightarrow$$
 det $A_1 = 2$

Step-2

$$A_2 = \begin{pmatrix} 1+1 & 1+2 \\ 2+1 & 2+2 \end{pmatrix}$$

$$=$$
 $\begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}$

$$\Rightarrow$$
 det $A_2 = 8 - 9$

Step-3

$$A_3 = \begin{pmatrix} 1+1 & 1+2 & 1+3 \\ 2+1 & 2+2 & 2+3 \\ 3+1 & 3+2 & 3+3 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{pmatrix}$$

Step-4

$$\Rightarrow \det A_3 = \begin{vmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{vmatrix}$$

$$= \begin{vmatrix} 2 & 3 & 4 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

 $\begin{vmatrix} 1 & 1 \end{vmatrix}$ Adding $\hat{a} \in 1$ time the second row to the third and $\hat{a} \in 1$ time the first row to the second.

=0 (since two rows are qual.)

Step-5

For any $n \ge 3$

$$A_n = \begin{pmatrix} 1 & 3 & 4 & \dots & n+1 \\ 3 & 4 & 5 & \dots & n+2 \\ 4 & 5 & 6 & \dots & n+3 \\ n+1 & n+2 & n+3 & \dots & 2n \end{pmatrix}$$

Cleary subtracting 1^{st} row from 2^{nd} row and 2^{nd} row from third two result in a matrix of two identical rows containing all entries equal to 1 and hence $\det A_n = 0$ for $n \ge 3$

Thus, if a_{ij} is i + j, we have $\det A = 0$ (exception when n = 1 or 2)