# Monte Carlo Algorithm and its Application Applied Math Tutorial

Tianlu Zhu

Shanghaitech Unversity

February 28, 2023

#### Outline

MC Integration

•00

#### 1. Monte Carlo Integration

- 2. Transformation method
  - Algorithm
  - Pros and Cons
- 3. Accept-Reject method
  - Intuition
  - Algorithm and Proof
  - Code Implementation
- 4. Markov Chain Monte Carlo Algorithm
  - Background Knowledge
  - Metropolis Algorithm
  - Proof of Metropolis Algorithm
  - Code Implementation

Suppose we want to evaluate an integral

$$\int_{D} \phi(x) dx$$

Accept-Reject method

for which there is no closed analytic solution. If the integration has the form

$$\phi(x) = \tilde{\phi}(x)f(x)$$

for some density function f, then the integral has the form:

$$\int_{D} \phi(x)dx = \int_{D} \tilde{\phi}(x)f(x)dx = E[\tilde{\phi}(X)]$$

where X is an RV with PDF f.

000

If we know how to simulate realisations of X, say  $x^{(1)}, \ldots, x^{(n)}$ , then we have an estimate

Accept-Reject method

$$\int_{D} \phi(x)dx = E[\tilde{\phi}(X)] \approx \frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}\left(x^{(i)}\right) = \hat{I}$$

000

If we know how to simulate realisations of X, say  $x^{(1)}, \ldots, x^{(n)}$ , then we have an estimate

Accept-Reject method

$$\int_{D} \phi(x)dx = E[\tilde{\phi}(X)] \approx \frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}\left(x^{(i)}\right) = \hat{I}$$

Also, the variance should be

$$\operatorname{Var}(I) = \frac{1}{n^2} \sum_{i=1}^{n} \operatorname{Var}\left(\tilde{\phi}(x)\right)$$
$$\approx \frac{1}{n(n-1)} \sum_{i=1}^{n} \left(\tilde{\phi}\left(x^{(i)}\right) - \hat{I}\right)$$

So it is crucial to generate sample from a specific distribution.

#### Outline

- 1. Monte Carlo Integration
- 2. Transformation method
  - Algorithm
  - Pros and Cons
- 3. Accept-Reject method
  - Intuition
  - Algorithm and Proof
  - Code Implementation
- 4. Markov Chain Monte Carlo Algorithm
  - Background Knowledge
  - Metropolis Algorithm
  - Proof of Metropolis Algorithm
  - Code Implementation

## Derivation of the Algorithm

MC Integration

The easiest distribution for computer to generate is Unif[0,1]. If X owns CDF  $F(\cdot)$ , Then  $F(X) \sim \text{Unif}[0.1]$ . By inversion, setting  $X \sim F^{-1}(U)$ , which  $U \sim \mathrm{Unif}[0,1]$ . Then From the uniform distribution sample we can generate sample follows  $F(\cdot)$ .

## Derivation of the Algorithm

MC Integration

The easiest distribution for computer to generate is Unif[0,1]. If X owns CDF  $F(\cdot)$ , Then  $F(X) \sim \text{Unif}[0.1]$ . By inversion, setting  $X \sim F^{-1}(U)$ , which  $U \sim \text{Unif}[0,1]$ . Then From the uniform distribution sample we can generate sample follows  $F(\cdot)$ .

Consider discrete random variable, simply left

$$F^{-1}(u) = \min \{ x : F(x) \ge u \}$$

And the algorithm goes on as continuous situation.

## Pros and Cons

#### Pros

Naive way to generate a group of sample

#### Cons

• The CDF is not invertible, i.e. PDF  $f(\cdot) = 0$  somewhere.

#### Outline

- 1. Monte Carlo Integration
- 2. Transformation method
  - Algorithm
  - Pros and Cons
- 3. Accept-Reject method
  - Intuition
  - Algorithm and Proof
  - Code Implementation
- 4. Markov Chain Monte Carlo Algorithm
  - Background Knowledge
  - Metropolis Algorithm
  - Proof of Metropolis Algorithm
  - Code Implementation

## Intuition



- f(x): object function
- g(x): proposal function
- M: auxiliary constant
- Make sure that  $Mg(x) \ge f(x)$  for all  $x \in \Omega$

## Algorithm



- **1** Produce a sample y from  $g(\cdot)$
- 2 Produce a sample u from Unif(0,1)
- **3** Do comparasion. If  $u \leq \frac{f(y)}{Ma(y)}$ , accept the sample. Otherwise, reject the sample.
- 4 Back to the first step unless we already have enough sample.

Accept-Reject method

0000000

## Proof of Algorithm

Let  $U \sim \text{Unif}[0,1]$  and Y owns PDF  $g(\omega) = F'(\omega)$ , one obtain:

Accept-Reject method

0000000

$$P\left(U \le \frac{f(Y)}{Mg(Y)} \middle| Y = y\right) = \frac{f(y)}{Mg(y)}$$

Let  $U \sim \mathrm{Unif}[0,1]$  and Y owns PDF  $g(\omega) = F'(\omega)$ , one obtain:

$$P\left(U \leq \frac{f(Y)}{Mg(Y)} \middle| Y = y\right) = \frac{f(y)}{Mg(y)}$$

Accept-Reject method

0000000

The total probability is:

$$P\left(U \le \frac{f(Y)}{Mg(Y)}\right) = \int_{-\infty}^{\infty} \frac{f(y)}{Mg(y)} g(y) dy = \frac{1}{M}$$

Let  $U \sim \text{Unif}[0,1]$  and Y owns PDF  $g(\omega) = F'(\omega)$ , one obtain:

$$P\left(U \le \frac{f(Y)}{Mg(Y)} \middle| Y = y\right) = \frac{f(y)}{Mg(y)}$$

Accept-Reject method

0000000

The total probability is:

$$P\left(U \le \frac{f(Y)}{Mg(Y)}\right) = \int_{-\infty}^{\infty} \frac{f(y)}{Mg(y)} g(y) dy = \frac{1}{M}$$

By Bayesian's formula,

$$\begin{split} P\left(Y = y \middle| U \leq \frac{f(Y)}{Mg(Y)}\right) &= P(A|B) = \frac{p(B|A)P(A)}{P(B)} \\ &= M \int_{-\infty}^{y} P\left(U \leq \frac{f(Y)}{Mg(Y)}\middle| Y = \omega \leq y\right) g(\omega)d\omega \\ &= M \int_{-\infty}^{y} \frac{f(\omega)}{Mg(\omega)}g(\omega)d\omega = F(y) \end{split}$$

## An Implementation of the Algorithm in R

```
N < -50000
  M < -3.858
y < - \text{runif}(N, \min = 0, \max = 2)
  |u| < - \text{runif}(N, \text{min} = 0, \text{max} = 1)
   gv < -0.5
  | \text{ fy } < -6 * (y - 0.5)^2 / 7
   |x < -y[u < fy / gy / M]
   sample < length(x)
   hist (x, breaks = 50, freq = FALSE, col = "#adabab",
   main = "f(x) = 6(x - 0.5)^2/7"
10
   curve(6 * (x - 0.5)^2 / 7, from = 0.
11
        to = 2, add = TRUE, col = "red")
12
```

## Output



#### Pros and Cons

#### Pros

- Deal with almost every distribution.
- Easy to handle.

#### Cons

- Lack of efficient.
- Do not perform perfectly with unbounded PDF, i.e. Beta distribution.
- Do not work well with PMF.

#### Outline

- 1. Monte Carlo Integration
- 2. Transformation method
  - Algorithm
  - Pros and Cons
- 3. Accept-Reject method
  - Intuition
  - Algorithm and Proof
  - Code Implementation
- 4. Markov Chain Monte Carlo Algorithm
  - Background Knowledge
  - Metropolis Algorithm
  - Proof of Metropolis Algorithm
  - Code Implementation

## Background

#### Property of Markov Chain:

•  $P(X_n = x_n | X_{n-1} = x_{n-1} \cdots X_1 = x_1) = P(X_n = x_1)$  $x_n|X_{n-1}=x_{n-1}$ ) Next state independent of the past states and only depends on the present state.

Accept-Reject method

## Background

#### Property of Markov Chain:

- $P(X_n = x_n | X_{n-1} = x_{n-1} \cdots X_1 = x_1) = P(X_n = x_n | X_{n-1} = x_{n-1})$  Next state independent of the past states and only depends on the present state.
- Homogeneous: Transition matrix is independent with time.
- Stationary distribution:  $\pi=\pi P$ . Every finite positive homogeneous chain have unique Stationary distribution, which is given by *Perron-Frobenius* theorem. The stationary distribution does not depend on initial distribution.

## MCMC Sampling: Metropolis Algorithm

Suppose we want to generate a group of sample from the object PMF  $f(\cdot)$ 

- 1 Initialization: Choose arbitrary value  $x_0$ , proposal markov chain with transition probability  $g(\cdot|\cdot)$  and set t=1.
- 2 Generate  $x_t^* \sim P(x_t^*|x_{t-1})$  and  $u \sim \text{Unif}[0,1]$ .
- 3 Compute

$$h(x_{t-1}, x_t^*) = \min \left\{ 1, \frac{f(x_t^*)g(x_{t-1}|x_t^*)}{f(x_{t-1})g(x_t^*|x_{t-1})} \right\}$$

- 4 If  $u < h(x_{t-1}, x_t^*)$ , let  $x_t = x_t^*$ ; Otherwise, let  $x_t = x_{t-1}$
- **5** Let t + +. Back to the second step unless reach stationary distribution.

#### Intuition

MC Integration

#### Immigration problem.

- To keep the population ratio stable.
- · Randomly reject some visa with specific probability.
- Finally, reach a balance.
- Aribtrary start does not affect.
- Dynamic balance.

## Another Example



## Proof of Metropolis Algorithm

Detailed balance condition:

$$\delta_{xy} = m(x)P(x \to y) - m(y)P(y \to x) = 0$$

One need to show that  $m(x) \propto f(x)$ .

$$\frac{m(x)}{m(y)} = \frac{P(y \to x)}{P(x \to y)} = \frac{h(x,y)}{h(y,x)} = \frac{f(x)}{f(y)}$$

## Simulation: Throwing Two Dice

The object PMF is:

MC Integration

| $\overline{x}$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|----------------|---|---|---|---|---|---|---|---|----|----|----|
| f(x)           | 1 | 2 | 3 | 4 | 5 | 6 | 5 | 4 | 3  | 2  | 1  |

Accept-Reject method

We apply minimum neighborhood method:

$$G = \begin{pmatrix} 1/2 & 1/2 & 0 & \cdots & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & \cdots & 0 & 0 & 0 \\ 0 & 1/2 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1/2 & 0 \\ 0 & 0 & 0 & \cdots & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & \cdots & 0 & 1/2 & 1/2 \end{pmatrix}.$$

## **Thanks**