# Advection with Lax Solver — Final Specification

#### Introduction

Name: Annabelle Huang

CNET ID: ahuang02

### Verification

Carry out the verification tests described below, using the values specified in Table 1. Carry out each of the following simulations, and show solution at the times specified. Show the z values with a colormap or Z axis.

### Serial Lax with N = 4000



### Shared Memory Parallel Lax with N = 4000 and 16 Cores



| Parameter          | Value                                           |  |  |
|--------------------|-------------------------------------------------|--|--|
| L                  | 1.0                                             |  |  |
| domain             | [-L/2, L/2]                                     |  |  |
| $t_{final}$        | 1.0                                             |  |  |
| u                  | $\sqrt{2}y$                                     |  |  |
| v                  | $-\sqrt{2}x$                                    |  |  |
| dt                 | any stable value                                |  |  |
| N                  | 4000                                            |  |  |
| dx                 | $\frac{L}{N-1}$                                 |  |  |
| boundary condition | periodic                                        |  |  |
| initial condition  | $C(-\frac{L}{2}: \frac{L}{2}, -0.1: 0.1) = 1.0$ |  |  |

Table 1: Parameter values for all of the verification tests. Note that any stable value of dt is acceptable. u and v are constant in time but vary spatially according the specification in the table. Note that the initial condition is a rectangle with the value of one from [-1/2, 1/2] in x and [-0.1, 0.1] in y, and zero elsewhere.

## Distributed Memory Parallel Lax with N=4000 and 4 Nodes and 1 Core Per Node



Hybrid Parallel Lax with N = 4000 and 16 Nodes and 1 MPI Rank and 16 Cores Per Node



#### Performance

Show the following performance data by turning off i/o and placing timers around just the outer loop over timesteps. Do not time i/o or other initialization code. State your best time to solution and the associated configuration. Note that it does not have to be one of the entries in Table 2.

Fastest runtime for benchmark problem: 15.60 sec with 16 cores per node, 16 nodes, hybrid 1 MPI rank per node

| Programming Model             | Nodes        | Cores Per Node | Execution Time (sec) | Grind Rate (cells/sec) |
|-------------------------------|--------------|----------------|----------------------|------------------------|
| MPI-Only                      | 1            | 1              | 234.52               | 545,790,910            |
| MPI-Only                      | $2 \times 1$ | 1              | 132.57               | 965,497,746            |
| MPI-Only                      | $2 \times 2$ | 1              | 69.68                | 1,836,791,755          |
| MPI-Only                      | $3 \times 3$ | 1              | 23.60                | 5,421,583,431          |
| MPI-Only                      | $4 \times 4$ | 1              | 15.68                | 8,160,402,912          |
| OpenMP-Only                   | 1            | 1              | 220.81               | 579,666,110            |
| OpenMP-Only                   | 1            | 2              | 144.45               | 886,092,617            |
| OpenMP-Only                   | 1            | 4              | 60.11                | 2,129,242,062          |
| OpenMP-Only                   | 1            | 9              | 30.08                | 4,254,708,873          |
| OpenMP-Only                   | 1            | 16             | 25.56                | 5,006,293,627          |
| Hybrid: One MPI rank per node | 1            | 16             | 225.68               | 567,167,957            |
| Hybrid: One MPI rank per node | $2 \times 1$ | 16             | 113.74               | 1,125,371,398          |
| Hybrid: One MPI rank per node | $2 \times 2$ | 16             | 59.52                | 2,150,352,900          |
| Hybrid: One MPI rank per node | $3 \times 3$ | 16             | 26.66                | 4,800,832,015          |
| Hybrid: One MPI rank per node | $4 \times 4$ | 16             | 15.60                | 8,205,031,760          |

Table 2: Parameter values for all of the performance tests. Use all problem values shown in Table 1. Additionally, to facilitate performance comparisons, use  $dt = 1.25 \times 10^{-4}$ .