Intractability

Introduction

A problem of intractable if it can't be solved in polynomial time.

- Church-Turing thesis
 - Turing machines can compute any function that can be computed by a physically harnessable process of the natural world
 - No need to seek more powerful machines or languages
 - Enables rigorous study of comutation
- Which problems can we solve in practice?
 - Those with poly-time algorithms

Search problems

Four fundamental problems

LSOLVE. Given a system of linear equations, find a solution.

$$0x_0 + 1x_1 + 1x_2 = 4$$

$$2x_0 + 4x_1 - 2x_2 = 2$$

$$0x_0 + 3x_1 + 15x_2 = 36$$

LP. Given a system of linear inequalities, find a solution.

$$x_0 = 1$$

 $x_1 = 1$
 $x_2 = \frac{1}{2}$ variables are real numbers

ILP. Given a system of linear inequalities, find a 0-1 solution.

$$x_0 = 0$$

 $x_1 = 1$ \leftarrow variables are 0 or 1

SAT. Given a system of boolean equations, find a binary solution.

```
(x_1 \text{ or } x_2') \text{ and } (x_0 \text{ or } x_2) = true

(x_0 \text{ or } x_1) \text{ and } (x_1 \text{ or } x_2') = false

(x_0 \text{ or } x_2) \text{ and } (x_0') = true
```


LSOLVE. Given a system of linear equations, find a solution.

- LP. Given a system of linear inequalities, find a solution.
- ILP. Given a system of linear inequalities, find a 0-1 solution.
- SAT. Given a system of boolean equations, find a binary solution.
- Q. Which of these problems have poly-time algorithms?
 - LSOLVE. Yes. Gaussian elimination solves N-by-N system in N³ time.
 - LP. Yes. Ellipsoid algorithm is poly-time. ← but was open problem for decades
 - · ILP, SAT. No poly-time algorithm known or believed to exist!

• NP is the class of all search problems

problem	description	poly-time algorithm	instance I	solution S
LSOLVE (A, b)	Find a vector x that satisfies $Ax = b$	Gaussian elimination	$0x_0 + 1x_1 + 1x_2 = 4$ $2x_0 + 4x_1 - 2x_2 = 2$ $0x_0 + 3x_1 + 15x_2 = 36$	$x_0 = -1$ $x_1 = 2$ $x_2 = 2$
LP (A, b)	Find a vector x that satisfies $Ax \le b$	ellipsoid	$4x_{x_1} + 16x_1 + 119x_2 \le 88$ $5x_{x_1} + 4x_1 + 35x_2 \ge 13$ $15x_{x_1} + 4x_1 + 20x_2 \ge 23$ $x_{x_2} - x_1 - x_2 \ge 0$	$x_0 = 1$ $x_1 = 1$ $x_2 = \frac{1}{3}$
ILP (A, b)	Find a binary vector x that satisfies $Ax \le b$	m	$x_1 + x_2 \ge 1$ $x_0 + x_2 \ge 1$ $x_0 + x_1 + x_2 \le 2$	$x_0 = 0$ $x_1 = 1$ $x_2 = 1$
SAT (Φ, b)	Find a boolean vector x that satisfies $\Phi(x) = b$???	$(x'_1 \circ r x'_2)$ and $(x_0 \circ r x_2) = true$ $(x_0 \circ r x_1)$ and $(x_1 \circ r x'_2) = false$ $(x_0 \circ r x_2)$ and $(x'_0) = true$	$x_0 = false$ $x_1 = false$ $x_2 = true$
FACTOR (x)	Find a nontrivial factor of the integer x	777	147573952589676412927	193707721

• P is the class of search problems solvable in poly-time

Nondeterminism

• nondeterminism machine can guess the desired solution

Classifying Problems

- ullet Problem X ploy-time reduces to problem Y if X can be solved with:
 - Polynomial number of standard computational steps
 - \circ Polynomial number of calls to Y
- Consequence
 - $\circ \:\:$ If we can poly-time reduce SAT to problem Y, then we conclude that Y is (probably) intractable

SAT reduces to ILP

SAT. Given a system of boolean equations, find a solution.

$$x'_1$$
 or x_2 or x_3 = true
 x_1 or x'_2 or x_3 = true
 x'_1 or x'_2 or x'_3 = true
 x'_1 or x'_2 or x_4 = true

ILP. Given a system of linear inequalities, find a binary solution.

$C_i = 1$ iff equation i is satisfied

More reductions to SAT

NP-completeness

- An NP problem is NP-complete if all problems in NP poly-time reduce to it
- SAT is NP-complete
- Implication
 - Poly-time algorithm for SAT iff P=NP
 - \circ No poly-time algorithm for some NP problem \Rightarrow none for SAT

Summary

- P---class of search problems solvable in poly-time
- NP---class of all search problems, some of which seem wickedly hard
- NP-complete---hardest problems in NP
- Intractable---problem with no poly-time algorithm
- Use a theory guide
 - A poly-time algorithm for an NP-complete problem would be a stunning breakthrough (a proof that P=NP)
 - You will confront NP-complete problems in your career
 - Safe to assume that P≠NP and that such problems are intractable
 - Identify these situations and proceed accordingly

Coping with Intractability

- FACTOR
 - o In NP, but not known (or believed) to be in P or NP-complete
- Relax one of desired features
 - Solve arbitrary instances of the problem

Special cases may be tractable.

- Ex: Linear time algorithm for 2-SAT. ← at most two literals per equation
- Ex: Linear time algorithm for Horn-SAT. ← at most one un-negated literal per equation
- Solve the problem to optimality

Develop a heuristic, and hope it produces a good solution.

- · No guarantees on quality of solution.
- · Ex. TSP assignment heuristics.
- · Ex. Metropolis algorithm, simulating annealing, genetic algorithms.

Approximation algorithm. Find solution of provably good quality.

• Ex. MAX-3SAT: provably satisfy 87.5% as many clauses as possible.

but if you can guarantee to satisfy 87.51% as many clauses as possible in poly-time, then P = NP!

Solve the problem in poly-time

Complexity theory deals with worst case behavior.

- · Instance(s) you want to solve may be "easy."
- Chaff solves real-world SAT instances with ~ 10K variable.