

- (i) $\exists x \in \mathbb{R}, \exists \delta > 0, \forall y \in \mathbb{R}, [|x y| \le \delta \implies f(x) \ge f(y)]$ (où f est une fonction de \mathbb{R} dans \mathbb{R})
- (ii) $\forall x \in \mathbb{R}, \forall \epsilon > 0, \exists \delta > 0, \forall y \in \mathbb{R}, [|x y| < \delta \implies |f(x) f(y)| \le \epsilon]$ (où f est une fonction de \mathbb{R} dans \mathbb{R})
- (iii) $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall x \in \mathbb{R}, \forall n \geq N, [n \geq N \implies |f_n(x) f(x)| \leq \epsilon]$ (où f est une fonction de \mathbb{R} dans \mathbb{R})
- (iv) $\forall E \subset \mathbb{N}, [E \neq \emptyset \implies (\exists n \in E, \forall m \in E, m > n)]$
- $(\mathbf{v}) \ \forall E \subset \mathbb{R}, [E \neq \emptyset \implies \exists a \in \mathbb{R}, ((\forall b \in E : b \leq a) \mathrm{et}(\forall \epsilon > 0, \exists b \in E : b \geq a \epsilon))]$

Exercice 2. (Différence symétrique). L'opération \triangle est définie sur les ensembles $A, B \subset E$ par $A \triangle B = (A \cap B^C) \cup (B \cap A^C)$.

- (i) Montrer que $A \triangle B = (A \cup B) \setminus (A \cap B)$
- (ii) Vérifier que $A \triangle B = 0 \implies (A = B)$

Exercice 3. Expliquer verbalement ce que signifient les assertions suivantes et écrire leur négation.

- (i) $\forall n \geq 0, u_n < u_{n+1}$ (où (u_n) est une suite réelle)
- (ii) Soit $f: E \to \mathbb{R}$ une fonction :
 - (a) $\exists C \in \mathbb{R}, \forall x \in E, f(x) = C$
 - (b) $\exists x \in E, [f(x) = 0 \implies x = 0]$
 - (c) $\forall y \in \mathbb{R}, \exists x \in E, f(x) = y$
 - (d) $\forall x \in E, \forall y \in E, [f(x) = f(y) \implies x = y]$
 - (e) $\exists A \in \mathbb{R}, \forall x \in E, f(x) \leq A$

Exercice 4. Soit $f: E \to \mathbb{R}$ une fonction. Exprimer à l'aide de quantificateurs les assertions suivantes.

- (i) La fonction f s'annule.
- (ii) La fonction f est la fonction nulle.
- (iii) f n'est pas une fonction constante.
- (iv) f ne prend jamais deux fois la même valeur.
- (v) La fonction f admet un minimum.
- (vi) f prend des valeurs arbitrairement grandes.
- (vii) f ne peut s'annuler qu'une seule fois.

Exercice 5. Soient E et F deux ensembles et A(x,y) des assertions indexées par $(x,y) \in E \times F$.

- (i) Montrer que $\forall x \in E, \forall y \in F, A(x,y) \iff \forall y \in F, \forall x \in E, A(x,y).$
- (ii) Montrer que $\exists x \in E, \exists y \in F, A(x,y) \iff \exists y \in F, \exists x \in E, A(x,y).$
- (iii) Montrer en donnant un exemple que $\exists x \in E, \forall y \in F, A(x,y)$ n'est pas nécessairement équivalent à $\forall y \in F, \exists x \in E, A(x,y)$.

On dira que l'on peut échanger les quantificateurs \forall adjacents (ou les \exists adjacents), mais que l'on ne peut pas échanger les quantificateurs \forall et \exists .

Exercice 6. (Fonctions caractéristiques χ_A). Soient E un ensemble et $A \subset E$. La fonction caractéristique de A est définie par $\chi_A : E \to \{0,1\}$ et

$$\chi_A : x \mapsto \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon.} \end{cases}$$

- (i) Montrer que deux ensembles sont égaux si et seulement si ils ont la même fonction caractéristique.
- (ii) Que peut-on dire sur A et B si $\chi_A(x) \leq \chi_B(x)$ pour tout $x \in E$?
- (iii) Montrer que $\chi_{A \cap B} = \chi_A \chi_B$, $\chi_{A^C} = 1 \chi_A$ et $\chi_{A \cup B} = \chi_A + \chi_B \chi_A \chi_B$.
- (iv) Montrer que les formules de De Morgan pour $(A \cup B)^C$ et $(A \cap B)^C$ en utilisant les fonctions caractéristiques.

Exercice 7. Soit $f: E \to F$ une fonction bijective. Démontrer les propriétés suivantes énoncées mais pas démontrées en classe (Proposition 1.23).

- (i) $(f^{-1})^{-1} = f$, $f^{-1} \circ f = I_E$, $f \circ f^{-1} = I_F$.
- (ii) (unicité de l'inverse) Si $g: F \to E$ tel que $g \circ f = I_E$ et $f \circ g = I_F$, alors $g = f^{-1}$.
- (iii) (composition des inverses) Soit $g: F \to G$ une autre fonction bijective. Alors $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Exercice 8. Soit $f: E \to F$ une fonction.

- (i) Soit $B \subset F$. Dans le cas où f est bijective, montrer que l'image réciproque $f^{-1}(B)$ de B est égale à l'image directe de B par la fonction inverse f^{-1} . (Notons que l'image réciproque existe pour tout f, tandis que la fonction inverse uniquement si f est bijective.)
- (ii) Montrer que pour tout $A, B \subset F$ on a

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B), \quad f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

(iii) Montrer que pour tout $A, B \subset F$ on a

$$f(A \cup B) = f(A) \cup f(B), \quad f(A \cap B) \subset f(A) \cap f(B)$$

(iv) Montrer qu'en général $f(A \cap B) = f(A) \cap f(B)$ est fausse. Montrer aussi qu'elle est vraie si f est injective.

Exercice 9.

(i) Soit $E = \mathbb{R}^{\mathbb{Z}}$. Les éléments de E sont des familles $x = (x_i)_{i \in \mathbb{Z}}$ indexées par \mathbb{Z} . Définissons la fonction $f: E \to E$ par

$$f:(x_i)_{i\in\mathbb{Z}}\mapsto (x_{i+1})_{i\in\mathbb{Z}}$$

Montrer que f est bijective et déterminer f^{-1} .

(ii) Soit $E = \mathbb{R}^{\mathbb{N}}$. Les éléments de E sont des familles $x = (x_i)_{i \in \mathbb{N}}$ indexées par \mathbb{N} (aussi appelées suites). Définissons la fonction $f : E \to E$ par

$$f:(x_i)_{i\in\mathbb{N}}\mapsto (x_{i+1})_{i\in\mathbb{N}}$$

Est-ce que f est injective? Surjective?

(iii) Soit f la fonction de (ii). Définissons les ensembles $A, B \subset \mathbb{R}^{\mathbb{N}}$ par

$$A = \{(x_i)_{i \in \mathbb{N}} : x_0 \in [0, 1], x_1 \le 0\}, \quad B = \{(x_i)_{i \in \mathbb{N}} : \exists i \in \mathbb{N}, x_i \ge 0\}$$

Déterminer les images directes f(A) et f(B) ainsi que les images réciproques $f^{-1}(A)$ et $f^{-1}(B)$.