Chapitre 11. Intégrales dépendant d'un paramètre

Plan du chapitre

1	Continuité des intégrales à paramètrespage	e 2
2	Dérivation des intégrales à paramètrespage	e 5
3	Définition et étude de la fonction Γ	e 8
	3.1 Définition	
	3.2 Relation fonctionnellepag	
	3.3 Quelques valeurs	ge 9
	3.4 Continuité	
	3.5 Dérivation	10
	3.5.1 Dérivée premièrepage	
	3.5.2 Dérivées successives	
	3.6 Convexité	
	3.7 Variations	11
	3.8 Etude en $+\infty$	
	3.9 Etude en 0	11
	3.10 Graphe page	12

Dans ce chapitre, on va s'intéresser aux fonctions de la forme $F: x \mapsto \int_I f(x,t) dt$ où f est une fonction de deux variables et par exemple apprendre à dériver de telles fonctions. Il ne faut pas confondre avec une autre situation analysée en math sup voire en terminale, les fonctions du type $F: x \mapsto \int_a^x f(t) dt$ où f est une fonction d'une seule variable (qui est, quand f est continue, une primitive de f).

Nous allons le moment venu dériver la fonction de deux variables $(x,t) \mapsto f(x,t)$ par rapport à la variable x. Rappelons brièvement ce qui a dit dans le cours de mathématiques en maths sup. Dériver par rapport à la variable x la fonction $(x,t) \mapsto f(x,t)$ consiste à fixer la variable t et à dériver la fonction $g: x \mapsto f(x,t)$. Plus précisément, pour obtenir cette dérivée partielle en (x_0,t_0) , on fixe t égal à t_0 et on calcule :

$$\lim_{x \to x_0} \frac{f(x, t_0) - f(x_0, t_0)}{x - x_0} = g'(x_0).$$

En refaisant ensuite varier (x_0, t_0) , le résultat obtenu contient les variables x et t et définit ainsi une fonction de deux variables appelée dérivée partielle de f par rapport à x et notée $\frac{\partial f}{\partial x}$. Ainsi, pour tout (x, t), on a

$$\frac{\partial f}{\partial x}(x,t) = g'(x).$$

Par exemple, si pour tout $(x,t) \in \mathbb{R} \times]0, +\infty[$, $f(x,t) = t^x e^{-t}$, alors pour tout $(x,t) \in \mathbb{R} \times]0, +\infty[$, $\frac{\partial f}{\partial x}(x,t) = (\ln t)t^x e^{-t}$ et $\frac{\partial f}{\partial t}(x,t) = xt^{x-1}e^{-t} - t^x e^{-t} = (x-t)t^{x-1}e^{-t}$.

On prendra garde au fait que dans la notation $\frac{\partial f}{\partial x}(x,t)$, la lettre x, utilisée deux fois, ne désigne pas la même chose. Dans ∂x , elle indique la variable par rapport à laquelle on a dérivé et dans (x,t), elle précise en quel point on a évalué. Si on évalue en (x_0,t_0) , on obtient $\frac{\partial f}{\partial x}(x_0,t_0)$ et non pas $\frac{\partial f}{\partial x_0}(x_0,t_0)$.

1 Continuité des intégrales à paramètres

Théorème 1. (continuité des intégrales à paramètres)

Soient I et J deux intervalles non vides de \mathbb{R} . Soit $f:(x,t)\mapsto f(x,t)$ une fonction définie sur $J\times I$ à valeurs dans $\mathbb{K}=\mathbb{R}$ ou \mathbb{C} . On suppose que

- pour chaque x de J, la fonction $t \mapsto f(x,t)$ est continue par morceaux sur I;
- pour chaque t de I, la fonction $x \mapsto f(x,t)$ est continue sur J;
- il existe une fonction ϕ , définie, continue par morceaux et intégrable sur I telle que, pour chaque $(x,t) \in J \times I$, $|f(x,t)| \leq \phi(t)$ (hypothèse de domination).

Alors, la fonction F: $x \mapsto \int_I f(x,t) dt$ est définie et continue sur J.

DÉMONSTRATION. Soit $x \in J$. La fonction $t \mapsto f(x,t)$ est continue par morceaux sur I et son module est majoré sur I par la fonction ϕ qui est continue par morceaux et intégrable sur I. Donc, la fonction $t \mapsto f(x,t)$ est intégrable sur I. On en déduit l'existence de F(x).

La fonction F est donc définie sur J. Soit $a \in J$. Montrons que F est continue en a. Soit $(x_n)_{n \in \mathbb{N}}$ une suite d'éléments de J, convergente, de limite a. Pour $n \in \mathbb{N}$ et $t \in I$, posons $g_n(t) = f(x_n, t)$.

- chaque fonction g_n , $n \in \mathbb{N}$, est continue par morceaux sur I;
- puisque pour chaque $t \in I$, la fonction $x \mapsto f(x,t)$ est continue sur J et que $x_n \xrightarrow[n \to +\infty]{} a$, on en déduit que pour chaque $t \in I$, la suite numérique $(g_n(t))$ converge vers f(a,t) ou encore la suite de fonctions (g_n) converge simplement sur I vers la fonction $t \mapsto f(a,t)$. De plus, la fonction $t \mapsto f(a,t)$ est continue par morceaux sur I.
- Pour tout $n \in \mathbb{N}$ et tout $t \in I$, $|g_n(t)| = |f(x_n, t)| \le \varphi(t)$ où φ est une fonction continue par morceaux et intégrable sur I.

D'après le théorème de convergence dominée, la suite $(F(x_n))_{n\in\mathbb{N}}=\left(\int_Ig_n(t)\;dt\right)_{n\in\mathbb{N}}$ converge et a pour limite $\int_If(a,t)\;dt=F(a).$

On a montré que pour tout suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de J, convergente, de limite \mathfrak{a} , la suite $(F(x_n))_{n\in\mathbb{N}}$ converge (et a pour limite $F(\mathfrak{a})$). On sait alors que la fonction F est continue en \mathfrak{a} .

- ⇒ Commentaire. Le théorème 1 peut se généraliser de différentes façons (avec une conclusion identique) :
- ⋄ on peut remplacer la première hypothèse et l'hypothèse de domination, valable sur J par les mêmes hypothèses sur tout segment de J,
- ⋄ ou aussi on peut remplacer J par une partie A d'un espace vectoriel normé de dimension finie.

Exercice 1. Pour
$$x \in \mathbb{R}$$
, on pose $F(x) = \int_0^{+\infty} \sin(xt)e^{-t^2} dt$.

- 1) Montrer que F est définie sur \mathbb{R} .
- **2)** Montrer que F est continue sur \mathbb{R} .

Solution 1.

1) Soit $x \in \mathbb{R}$. La fonction $t \mapsto \sin(xt)e^{-t^2}$ est continue sur $[0, +\infty[$ et la fonction $t \mapsto \left|\sin(xt)e^{-t^2}\right|$ est négligeable devant $\frac{1}{t^2}$ en $+\infty$ d'après un théorème de croissances comparées. Donc, la fonction $t \mapsto \sin(xt)e^{-t^2}$ est intégrable sur $[0, +\infty[$. On en déduit l'existence de F(x).

On a montré que F est définie sur \mathbb{R} .

- 2) Pour $(x,t) \in \mathbb{R} \times [0,+\infty[$, posons $f(x,t) = \sin(xt)e^{-t^2}$ de sorte que pour tout $x \in \mathbb{R}$, $F(x) = \int_0^{+\infty} f(x,t) dt$.
 - pour chaque $x \in \mathbb{R}$, la fonction $t \mapsto f(x,t)$ est continue par morceaux sur $[0,+\infty[$;
 - pour chaque $t \in [0, +\infty[$, la fonction $x \mapsto f(x, t)$ est continue sur \mathbb{R} ;
 - pour chaque $(x,t) \in \mathbb{R} \times [0,+\infty[,|f(x,t)|=|\sin(xt)|e^{-t^2} \leqslant e^{-t^2}=\phi(t)$. De plus, la fonction ϕ est continue par morceaux puis intégrable sur $[0,+\infty[$ car négligeable en $+\infty$ devant $\frac{1}{t^2}$ d'après un théorème de croissances comparées.

D'après le théorème de continuité des intégrales à paramètres, la fonction F est continue sur \mathbb{R} .

Exercice 2. Pour
$$x \ge 1$$
, on pose $F(x) = \int_0^{\pi} \sqrt{x + \cos t} \ dt$.

- 1) Vérifier que F est bien définie sur $[1, +\infty[$.
- 2) Montrer que F est continue sur $[1, +\infty[$.

Solution 2.

1) Soit $x \in [1, +\infty[$. La fonction $t \mapsto \sqrt{x + \cos t}$ est continue sur le segment $[0, \pi]$ (car pour tout réel $t \in [0, \pi]$, $x + \cos t \ge 1 + \cos t \ge 0$). Donc, la fonction $t \mapsto \sqrt{x + \cos t}$ est intégrable sur $[0, \pi]$. On en déduit l'existence de F(x).

On a montré que F est définie sur $[1, +\infty[$.

- 2) Soit A > 1. Pour $(x, t) \in [1, A] \times [0, \pi]$, posons $f(x, t) = \sqrt{x + \cos t}$ de sorte que pour tout $x \in [1, A]$, $F(x) = \int_0^{\pi} f(x, t) dt$.
 - pour chaque $x \in [1, A]$, la fonction $t \mapsto f(x, t)$ est continue par morceaux sur $[0, \pi]$;
 - pour chaque $t \in [0, \pi]$, la fonction $x \mapsto f(x, t)$ est continue sur [1, A];
 - pour chaque $(x,t) \in [1,A] \times [0,\pi, |f(x,t)| = \sqrt{x + \cos t} \le \sqrt{A + \cos t} = \phi(t)$. De plus, la fonction ϕ est continue sur le segment $[0,\pi]$ et donc intégrable sur $[0,\pi]$.

D'après le théorème de continuité des intégrales à paramètres, la fonction F est continue sur [1, A]. Ceci étant étant vrai pour tout A > 1, on a montré que F est continue sur $[1, +\infty[$.

Le théorème 1 dit que $\lim_{x\to a} \int_I f(x,t) dt = \int_I \lim_{x\to a} f(x,t) dt$ quand α est dans le domaine et en cas de continuité en α . Le programme officiel précédent contenait un théorème généralisant le théorème 1 car permettant de passer à la limite dans

l'intégrale dans le cas où α était un réel non dans I mais adhérent à I ou dans le cas où $\alpha = \pm \infty$. Ce théorème n'existe plus dans le nouveau programme.

Si on doit passer à la limite à l'intérieur d'une intégrale à paramètre, on se débrouille soit en se ramenant à des suites et en utilisant le théorème de convergence dominée, soit en se ramenant à l'étude de la continuité d'une certaine fonction (si $a = \pm \infty$, on peut appliquer le théorème 1 à la fonction $(x, t) \mapsto f\left(\frac{1}{x}, t\right)$, correctement prolongée, en 0 à droite). C'est ce qu'analyse l'exercice suivant :

Exercice 3. Déterminer
$$\lim_{x\to +\infty} \int_0^{+\infty} e^{-x^2t^2} dt$$
.

Solution 3. Soit x > 0. La fonction $t \mapsto e^{-x^2t^2}$ est continue sur $[0, +\infty[$ et négligeable en $+\infty$ devant $\frac{1}{t^2}$. Donc, la $\mathrm{fonction}\;F\;:\;x\mapsto \int_{\,\,\hat{}}^{+\infty}e^{-x^2t^2}\;dt\;\mathrm{est}\;\mathrm{d\acute{e}finie}\;\mathrm{sur}\;]0,+\infty[.\;\mathrm{Etudions}\;\mathrm{maintenant}\;\lim_{x\to+\infty}F(x).$

Pour tout $(x, t) \in]0, +\infty[\times[0, +\infty[$, posons $f(x, t) = e^{-x^2t^2}$.

1ère solution. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels supérieurs ou égaux à 1, tendant vers $+\infty$ quand $\mathfrak n$ tend vers $+\infty$. Pour $n \in \mathbb{N}$ et $t \in [0, +\infty[$, posons $g_n(t) = f(x_n, t) = e^{-x_n^2 t^2}$.

- \bullet chaque fonction $g_{\mathfrak{n}},\, \mathfrak{n}\in \mathbb{N},$ est continue par morceaux sur $[0,+\infty[,$
- $\bullet \text{ la suite de fonctions } (g_n)_{n \in \mathbb{N}} \text{ converge simplement vers la fonction } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ converge simplement vers la fonction } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ converge simplement vers la fonction } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ converge simplement vers la fonction } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ converge simplement vers la fonction } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ converge simplement vers la fonction } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ converge simplement vers la fonction } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ converge simplement vers la fonction } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ converge simplement vers la fonction } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ converge simplement vers la fonction } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ et } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ et } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ et } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ et } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ et } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ et } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ et } g = 0 \text{ sur } [0, +\infty[\text{ et } g \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ et } g = 0 \text{ est continue par morceaux }] (g_n)_{n \in \mathbb{N}} \text{ et } g = 0 \text{ est continue par morceaux }]$
- pour tout $n \in \mathbb{N}$ et $t \in [0, +\infty[$, $|g_n(t)| \le e^{-t^2} = \varphi(t)$ où φ est une une fonction continue par morceaux et intégrable sur $[0, +\infty[$.

$$\text{D'après le th\'eor\`eme de convergence domin\'ee}, \lim_{n \to +\infty} F\left(x_n\right) = \lim_{n \to +\infty} \int_0^{+\infty} g_n(t) \ dt = \int_0^{+\infty} \lim_{n \to +\infty} g_n(t) \ dt = \int_0^{+\infty} 0 \ dt = 0.$$

On a montré que pour toute suite $(x_n)_{n\in\mathbb{N}}$ de réels strictement positifs tendant vers $+\infty$ (car une suite tendant vers $+\infty$ dépasse 1 à partir d'un certain rang), $\lim_{n\to+\infty} F(x_n) = 0$. Ceci montre que $\lim_{x\to+\infty} F(x)$ existe et que $\lim_{x\to+\infty} F(x) = 0$.

2 ème solution.

$$\mathrm{Pour}\;(x,t)\in[0,1]\times]0, +\infty[,\;\mathrm{posons}\;g(x,t)=\left\{\begin{array}{ll}f\left(\frac{1}{x},t\right)\;\mathrm{si}\;x>0\\0\;\mathrm{si}\;x=0\end{array}\right. \;\;\mathrm{puis}\;G(x)=\int_0^{+\infty}g(x,t)\;dt.$$

- pour chaque x de [0,1], la fonction $t \mapsto f(x,t)$ est continue par morceaux sur $]0,+\infty[$;
- pour chaque t de]0, $+\infty$ [, la fonction $x \mapsto f(x,t)$ est continue sur [0,1] car si $\lim_{\substack{x \to 0 \\ x > 0}} g(x,t) = \lim_{\substack{x \to 0 \\ x > 0}} e^{-t^2/x^2} = 0 = g(0,t)$; pour tout $(x,t) \in [0,1] \times]0, +\infty$ [, $|g(x,t)| = \begin{cases} e^{-t^2/x^2} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases} \leqslant e^{-t^2} = \phi(t)$ où de plus la fonction ϕ est continue par morceaux et intégrable sur $]0, +\infty[$

On en déduit que la fonction $G: x \mapsto \int_{0}^{+\infty} g(x,t) dt$ est continue sur [0,1]. En particulier,

$$\lim_{x \to +\infty} F(x) = \lim_{\substack{x \to 0 \\ x > 0}} F\left(\frac{1}{x}\right) = \lim_{\substack{x \to 0 \\ x > 0}} G(x) = G(0) = \int_0^{+\infty} 0 \ dt = 0.$$

3 ème solution. Soit x>0. En posant, u=xt, on obtient $F(x)=\frac{1}{x}\int_{a}^{+\infty}e^{-u^{2}}\ du$. Ceci montre immédiatement que $\lim_{x \to +\infty} F(x) = 0.$

$\mathbf{2}$ Dérivation des intégrales à paramètres

Théorème 2. (théorème de dérivation des intégrales à paramètres ou théorème de dérivation sous le signe somme ou théorème de Leibniz)

Soient I et J deux intervalles non vides de \mathbb{R} . Soit $f:(x,t)\mapsto f(x,t)$ une fonction définie sur $J\times I$ à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On suppose que

pour chaque x de J, la fonction $t \mapsto f(x,t)$ est continue par morceaux et intégrable sur I.

On suppose de plus que f est pourvue sur $J \times I$ d'une dérivée partielle par rapport à sa première variable x vérifiant;

- pour chaque x de J, la fonction $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur I;
- pour chaque t de I, la fonction $x \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue sur I (ou encore $x \mapsto f(x,t)$ est de classe C^1 sur J);
- ullet il existe une fonction ϕ_1 , définie, continue par morceaux et intégrable sur I telle que, pour chaque $(x,t)\in J\times I$, $\left| \frac{\partial f}{\partial x}(x,t) \right| \leq \varphi_1(t)$ (hypothèse de domination).

Alors, la fonction $F: x \mapsto \int_{T} f(x,t) dt$ est de classe C^1 sur J et sa dérivée s'obtient par dérivation sous le signe somme :

$$\forall x \in J, \ F'(x) = \int_{I} \frac{\partial f}{\partial x}(x,t) \ dt.$$

DÉMONSTRATION. Puisque pour chaque x de J, la fonction $t \mapsto f(x,t)$ est continue par morceaux et intégrable sur I, la fonction $F: x \mapsto \int_{\mathbb{R}} f(x,t) dt$ est définie sur J.

 $\begin{aligned} \text{Pour } (x,t) \in J \times I, \text{ posons } g(x,t) = \left\{ \begin{array}{l} \frac{f(x,t) - f(\alpha,t)}{x-\alpha} \text{ si } x \neq \alpha \\ \frac{\partial f}{\partial x}(\alpha,t) \text{ si } x = \alpha \\ \frac{F(x) - F(\alpha)}{x-\alpha} = \int_I g(x,t) \ dt. \end{array} \right. \end{aligned}$

- Pour chaque x dans J, la fonction $t \mapsto g(x,t)$ est continue par morceaux sur I (y compris pour x = a).
- Pour chaque t dans I, la fonction $x \mapsto g(x,t)$ est continue sur J (y compris en x = a car par définition de $\frac{\partial f}{\partial x}(a,t)$, $(\mathrm{puisque} \ \frac{f(x,t) - f(\alpha,t)}{x - \alpha} \underset{x \to \alpha}{\to} \frac{\partial f}{\partial x}(\alpha,t)).$ \bullet Soit $(x,t) \in (J \setminus \{\alpha\}) \times I.$ D'après l'inégalité des accroissements finis,

$$|g(x,t)| = \left|\frac{f(x,t) - f(\alpha,t)}{x - \alpha}\right| \leqslant \operatorname{Sup}\left\{\left|\frac{\partial f}{\partial x}(u,t)\right|, \ u \in J\right\} \leqslant \phi_1(t),$$

ce qui reste vrai quand x = a et $t \in I$.

D'après le théorème de continuité des intégrales à paramètres, la fonction $G: x \mapsto \int_{T} g(x,t) dt$ est continue sur J et en particulier en a. On en déduit que le taux $\frac{F(x) - F(a)}{x - a}$ a une limite quand x tend vers a et donc que F est dérivable en a. De plus,

$$F'(\alpha) = \lim_{x \to \alpha} \frac{F(x) - F(\alpha)}{x - \alpha} = \lim_{x \to \alpha} \int_{T} g(x,t) \ dt = \int_{T} g(\alpha,t) \ dt = \int_{T} \frac{\partial f}{\partial x}(\alpha,t) \ dt.$$

Ainsi, F est dérivable sur J et et sa dérivée s'obtient par dérivation sous le signe somme. Enfin, toujours d'apirès le théorème de continuité des intégrales à paramètres, la fonction $F': x \mapsto \int_{I} \frac{\partial f}{\partial x}(x,t) dt$ est continue sur J et donc F est de classe C^1 sur J

 $\begin{aligned} & \textbf{Exercice 4.} \text{ (un calcul de l'intégrale de Gauss}: \int_0^{+\infty} e^{-t^2} \ dt) \\ & \text{Pour } x \in \mathbb{R}, \text{ on pose } F(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} \ dt \text{ et } G(x) = \left(\int_0^x e^{-t^2} \ dt\right)^2. \end{aligned}$

- 1) Montrer que F est de classe C^1 sur \mathbb{R} et préciser F'.
- 2) Montrer que G est de classe C^1 sur \mathbb{R} et préciser G'.
- 3) Montrer que la fonction F + G est constante sur \mathbb{R} .
- 4) Déterminer $\lim_{x \to +\infty} F(x)$.
- 5) En déduire I.

Solution 4.

- 1) Soit A>0. Soit $f:[-A,A]\times[0,1]\to\mathbb{R}$. $(x,t)\mapsto\frac{e^{-x^2(1+t^2)}}{1+t^2}\;.$
- Pour chaque x de [-A, A], la fonction $t \mapsto f(x, t)$ est continue sur le segment [0, 1] et est donc intégrable sur ce segment.
- La fonction f admet sur $[-A, A] \times [0, 1]$ une dérivée partielle par rapport à sa première variable x définie par :

$$\forall (x,t) \in [-A,A] \times [0,1], \ \frac{\partial f}{\partial x}(x,t) = -2xe^{-x^2(1+t^2)}.$$

De plus,

- pour chaque $x \in [-A, A]$, la fonction $t \mapsto \frac{\partial f}{\partial x}(x, t)$ est continue par morceaux sur le segment [0, 1],
- pour chaque $t \in [0, 1]$, la fonction $x \mapsto \frac{\partial f}{\partial x}(x, t)$ est continue sur [-A, A],
- pour chaque $(x,t) \in [-A,A] \times [0,1], \left| \frac{\partial f}{\partial x}(x,t) \right| \leq 2A = \phi_1(t)$, la fonction ϕ_1 étant continue et donc intégrable sur le segment [0,1].

D'après le théorème de dérivation des intégrales à paramètres (théorème de Leibniz), la fonction F est de classe C^1 sur [-A,A] et sa dérivée s'obtient en dérivant sous le signe somme. Ceci étant vrai pour tout A>0, F est de classe C^1 sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, \, F'(x) = -2x \int_0^1 e^{-x^2(1+t^2)} \, dt = -2xe^{-x^2} \int_0^1 e^{-x^2t^2} \, dt.$$

2) La fonction $x\mapsto e^{-x^2}$ est continue sur $\mathbb R$. On en déduit que la fonction $x\mapsto \int_0^x e^{-t^2}\,dt$ est définie et de classe C^1 sur $\mathbb R$. Il en est de même de la fonction G et

$$\forall x \in \mathbb{R}, \ G'(x) = 2e^{-x^2} \int_0^x e^{-t^2} \ dt.$$

3) Soit $x \in \mathbb{R}^*$. En posant u = xt, on obtient

$$F'(x) = -2e^{-x^2} \int_0^1 e^{-(xt)^2} x dt = -e^{-x^2} \int_0^x e^{-u^2} du = -G'(x),$$

cette égalité restant vraie quand x=0 par continuité des fonctions F' et G' sur \mathbb{R} .

Ainsi,
$$(F+G)'=0$$
 et donc $\forall x \in \mathbb{R}$, $F(x)+G(x)=F(0)+G(0)=\int_0^1 \frac{1}{1+t^2} \, dt = \frac{\pi}{4}$.

$$\forall x \in \mathbb{R}, \ F(x) + G(x) = \frac{\pi}{4}.$$

4) Pour $x \in \mathbb{R}$,

$$|F(x)| = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} \ dt \leqslant \int_0^1 \frac{e^{-x^2(1+0^2)}}{1+0^2} \ dt = e^{-x^2},$$

et puisque $\lim_{x\to +\infty} e^{-x^2} = 0$, on a montré que

$$\lim_{x\to +\infty} F(x)=0.$$

5) Pour x>0, on a $\int_0^x e^{-t^2}\ dt\geqslant 0$ et donc d'après la question 3),

$$\int_{0}^{x} e^{-t^{2}} dt = \sqrt{G(x)} = \sqrt{\frac{\pi}{4} - F(x)}.$$

La question 4) permet alors d'affirmer que $\lim_{x\to +\infty} G(x) = \frac{\sqrt{\pi}}{2}$ et donc que

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$$

Exercice 5. Existence et calcul de $\int_0^{+\infty} e^{-t^2} \operatorname{ch}(2tx) \ dt.$

Solution 5. Pour $x \in \mathbb{R}$, posons $F(x) = \int_0^{+\infty} e^{-t^2} \operatorname{ch}(2tx) \ dt$.

1) Soit $x \in \mathbb{R}$. La fonction $t \mapsto e^{-t^2} \operatorname{ch}(2tx)$ est continue sur $[0, +\infty[$. De plus, pour tout $t \geqslant 0$,

$$\mathrm{ch}(2tx) = \frac{e^{2\mathsf{t}x} + e^{-2\mathsf{t}x}}{2} \leqslant e^{2\mathsf{t}|x|}$$

et donc

$$\left|t^2e^{-t^2}\operatorname{ch}(2tx)\right|\leqslant t^2e^{-t^2+2t|x|}\underset{t\to +\infty}{=} o(1),$$

d'après un théorème de croissances comparées. Ainsi, la fonction $t \mapsto e^{-t^2} \operatorname{ch}(2tx)$ est négligeable devant $\frac{1}{t^2}$ en $+\infty$ et est donc intégrable sur un voisinage de $+\infty$. Finalement, la fonction $t \mapsto e^{-t^2} \operatorname{ch}(2tx)$ est intégrable sur $[0, +\infty[$. On en déduit que la fonction F est définie sur \mathbb{R} . De plus, il est clair que F est paire.

- $\textbf{2)} \ \mathrm{Soit} \ A > 0. \ \mathrm{Soit} \ \ f : \ \ [-A,A] \times [0,+\infty[\ \rightarrow \ \mathbb{R} \\ (x,t) \ \mapsto \ \ e^{-t^2} \operatorname{ch}(2tx)$ de sorte que pour tout $x \in [-A,A], \ F(x) = \int_0^{+\infty} f(x,t) \ dt.$
- On sait déjà que pour tout $x \in [-A, A]$, la fonction $t \mapsto f(x, t)$ est continue par morceaux et intégrable sur $[0, +\infty[$.
- La fonction f admet sur $[-A,A] \times [0,+\infty[$ une dérivée partielle par rapport à sa première variable x définie par :

$$\forall (x,t) \in [-A,A] \times [0,+\infty[, \frac{\partial f}{\partial x}(x,t) = 2te^{-t^2} \operatorname{sh}(tx).$$

De plus,

- pour chaque x de [-A,A], la fonction $t\mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur $[0,+\infty[\,;$
- pour chaque t de $[0, +\infty[$, la fonction $x \mapsto \frac{\partial \hat{f}}{\partial x}(x, t)$ est continue sur [-A, A];
- $-\text{ pour chaque }(x,t)\text{ de }[-A,A]\times[0,+\infty[,\left|\frac{\partial f}{\partial x}(x,t)\right|=2te^{-t^2}\sin(2t|x|)\leqslant 2te^{-t^2}\sin(2At)=\phi_1(t)\text{ où de plus, la fonction}$

 ϕ_1 est continue par morceaux et intégrable sur $[0, +\infty[$ car négligeable en $+\infty$ devant $\frac{1}{t^2}$.

D'après le théorème de dérivation des intégrales à paramètres (théorème de Leibniz), la fonction F est de classe C^1 sur [-A,A] et sa dérivée s'obtient en dérivant sous le signe somme. Ceci étant vrai pour tout A>0, on a montré que la fonction F est de classe C^1 sur $\mathbb R$ et que

$$\forall x \in \mathbb{R}, \ F'(x) = \int_0^{+\infty} 2t e^{-t^2} \operatorname{sh}(2tx) \ dt.$$

3) Soit $x \in \mathbb{R}$. Soit A > 0. Les deux fonctions $t \mapsto -e^{-t^2}$ et $t \mapsto \operatorname{sh}(2tx)$ sont de classe C^1 sur le segment [0,A]. On peut donc effectuer une intégration par parties qui fournit

$$\int_0^A 2t e^{-t^2} \sinh(2tx) \ dt = \left[-e^{-t^2} \sinh(2tx) \right]_0^A + 2x \int_0^A e^{-t^2} \cosh(2tx) \ dt = -e^{-A^2} \sinh(2Ax) + 2x \int_0^A e^{-t^2} \cosh(2tx) \ dt.$$

Quand A tend vers $+\infty$, $-e^{-A^2} \operatorname{sh}(2Ax) = \frac{1}{2} \left(e^{-A^2 + 2AX} - e^{-A^2 - 2Ax} \right)$ tend vers 0. Quand A tend vers $+\infty$, on obtient $\forall x \in \mathbb{R}, \ F'(x) = 2x \int_0^{+\infty} e^{-t^2} \operatorname{ch}(2tx) \ dt = 2x F(x)$.

4)

$$\begin{split} \forall x \in \mathbb{R}, \ F'(x) = 2xF(x) \Rightarrow \forall x \in \mathbb{R}, \ e^{-x^2}F'(x) - 2xe^{-x^2}F(x) = 0 \Rightarrow \forall x \in \mathbb{R}, \ \left(e^{-x^2}F\right)'(x) = 0 \\ \Rightarrow \forall x \in \mathbb{R}, \ e^{-x^2}F(x) = e^0F(0) \Rightarrow \forall x \in \mathbb{R}, \ F(x) = \frac{\sqrt{\pi}}{2}e^{x^2}. \end{split}$$

$$\forall x \in \mathbb{R}, \int_0^{+\infty} e^{-t^2} \operatorname{ch}(2tx) \ dt = \frac{\sqrt{\pi}}{2} e^{x^2}.$$

Si on redérive $\frac{\partial f}{\partial x}$ (qui est une fonction de deux variables) par rapport à sa première variable x, on obtient une fonction notée $\frac{\partial^2 f}{\partial x^2}$ et si on recommence, on obtient plus généralement $\frac{\partial^k f}{\partial x^k}$...

Par récurrence, on en déduit du théorème 2, le théorème plus général suivant :

Théorème 3. (théorème de dérivation sous le signe somme généralisé)

Soient I et J deux intervalles non vides de \mathbb{R} . Soit $f:(x,t)\mapsto f(x,t)$ une fonction définie sur $J\times I$ à valeurs dans $\mathbb{K}=\mathbb{R}$ ou \mathbb{C} . On suppose que

pour chaque x de J, la fonction $t \mapsto f(x,t)$ est continue par morceaux et intégrable sur I.

On suppose de plus que f est pourvue sur $J \times I$ de dérivées partielles successives par rapport à sa première variable x jusqu'à l'ordre $n \ge 1$ (resp. à tout ordre) vérifiant;

- pour chaque $k \in [1, n]$, (resp. $k \in \mathbb{N}^*$) et chaque x de J, la fonction $t \mapsto \frac{\partial^k f}{\partial x^k}(x, t)$ est continue par morceaux sur I;
- pour chaque $k \in [1, n]$, (resp. $k \in \mathbb{N}^*$) et chaque t de I, la fonction $x \mapsto \frac{\partial^k f}{\partial x^k}(x, t)$ est continue sur I;
- $\bullet \text{ pour chaque } k \in [\![1,n]\!], \text{ (resp. } k \in \mathbb{N}^*), \text{ il existe une fonction } \phi_k, \text{ définie, continue par morceaux et intégrable sur I telle que, pour chaque } (x,t) \in J \times I, \left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \leqslant \phi_k(t) \text{ (hypothèses de domination)}.$

Alors, la fonction $F: x \mapsto \int_I f(x,t) dt$ est de classe C^n (resp. C^∞) sur J et ses dérivées successives s'obtiennent par dérivation sous le signe somme :

$$\forall k \in \llbracket 1, n \rrbracket \text{ (resp. } k \in \mathbb{N}^*), \ \forall x \in J, \ F^{(k)}(x) = \int_{I} \frac{\partial^k f}{\partial x^k}(x,t) \ dt.$$

Nous mettrons en œuvre ce théorème dans le paragraphe suivant où on étudie la fonction Γ d'Euler.

3 Définition et étude de la fonction Γ

3.1 Définition

Soit $x \in \mathbb{R}$. On pose $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$. La fonction $f: t \mapsto t^x e^{-t}$ est continue et positive sur $]0, +\infty[$.

Etude en $+\infty$. D'après un théorème de croissances comparées, $t^2 \times t^{x-1}e^{-t} \xrightarrow[t \to +\infty]{} 0$ et donc $t^{x-1}e^{-t} = 0$ en déduit que la fonction f est intégrable sur un voisinage de $+\infty$.

Etude en 0. $t^{x-1}e^{-t}$ $\underset{t\to+\infty}{\sim}$ t^{x-1} et donc la fonction f est intégrable sur un voisinage de 0 si et seulement si x-1>-1 ce qui équivaut à x>0.

Finalement, $\Gamma(x)$ existe si et seulement si x > 0.

$$\forall x > 0, \ \Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} \ dt.$$

3.2 Relation fonctionnelle

Soit x > 0. Soient a et A deux réels tels que 0 < a < A. Les deux fonctions $t \mapsto t^x$ et $t \mapsto -e^{-t}$ sont de classe C^1 sur le segment [a, A]. On peut donc effectuer une intégration par parties et on obtient

$$\int_{a}^{A} t^{x} e^{-t} dt = \left[-t^{x} e^{-t} \right]_{a}^{A} + x \int_{a}^{A} t^{x-1} e^{-t} dt = -A^{x} e^{-A} + a^{x} e^{-a} + x \int_{a}^{A} t^{x-1} e^{-t} dt$$

Puisque x > 0 et donc x + 1 > 0, quand a tend vers 0 et A tend vers $+\infty$, on obtient $\Gamma(x + 1) = x\Gamma(x)$.

$$\forall x > 0, \ \Gamma(x+1) = x\Gamma(x).$$

3.3 Quelques valeurs

• En particulier, pour tout entier naturel $n \ge 2$, $\Gamma(n) = (n-1)\Gamma(n-1)$. De plus, $\Gamma(1) = \int_0^{+\infty} e^{-t} dt = \left[-e^{-t}\right]_0^{+\infty} = 1$. Par récurrence, on obtient alors

$$\forall n \in \mathbb{N}^*, \, \Gamma(n) = (n-1)!.$$

ullet Calculons aussi $\Gamma\left(\frac{1}{2}\right)$. On pose $u=\sqrt{t}$ et donc $t=u^2$ et dt=2u du et on obtient

$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} \ dt = \int_0^{+\infty} \frac{e^{-u^2}}{u} \ 2u du = 2 \int_0^{+\infty} e^{-u^2} \ du = \sqrt{\pi} \ (\text{intégrale de Gauss}).$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.$$

 $\text{La relation fonctionnelle du 2) permet encore d'écrire}: \forall n \in \mathbb{N}^*, \ \Gamma\left(n+\frac{1}{2}\right) = \left(n-\frac{1}{2}\right)\Gamma\left(n-\frac{1}{2}\right) \text{ et donc pour } n \in \mathbb{N}^*,$

$$\Gamma\left(n+\frac{1}{2}\right) = \frac{2n-1}{2} \times \frac{2n-3}{2} \times \ldots \times \frac{1}{2} \times \Gamma\left(\frac{1}{2}\right) = \frac{(2n)\times(2n-1)\times\ldots\times3\times2}{2^n(2n)\times(2n-2)\times\ldots\times2} \sqrt{\pi} = \frac{(2n)!\sqrt{\pi}}{2^{2n}n!},$$

ce qui reste vrai quand n = 0.

$$\forall n \in \mathbb{N}, \ \Gamma\left(n + \frac{1}{2}\right) = \frac{(2n)!\sqrt{\pi}}{2^{2n}n!}.$$

Continuité

Soient $\mathfrak a$ et A deux réels tels que $0 < \mathfrak a < A$. Soit Φ : $[\mathfrak a, A] \times]\mathfrak 0, +\infty[\to \mathbb R$ de sorte que pour tout $\mathfrak x \in [\mathfrak a, A], (\mathfrak x, \mathfrak t) \mapsto \mathfrak t^{\mathfrak x - 1} e^{-\mathfrak t}$

$$\Gamma(x) = \int_0^{+\infty} \Phi(x, t) dt.$$

- Pour chaque $x \in [a, A]$, la fonction $t \mapsto \Phi(x, t)$ est continue par morceaux sur $]0, +\infty[$,
- pour chaque $t \in]0, +\infty[$, la fonction $x \mapsto \Phi(x, t)$ est continue sur [a, A],
- Soit $(x,t) \in [a,A] \times]0, +\infty[$. Si $0 < t \le 1$, alors $|t^{x-1}e^{-t}| = t^{x-1}e^{-t} \le t^{a-1}e^{-t}$ et si $t \ge 1$, $|t^{x-1}e^{-t}| \le t^{A-1}e^{-t}$. On en déduit que

$$\forall (x,t) \in [\alpha,A] \times]0, +\infty[, \, |\Phi(x,t)| \leqslant \left\{ \begin{array}{l} t^{\alpha-1}e^{-t} \operatorname{si} \, t < 1 \\ t^{A-1}e^{-t} \operatorname{si} \, t \geqslant 1 \end{array} \right. = \phi_0(t).$$

D'après le paragraphe 3.1, la fonction φ_0 est continue par morceaux et intégrable sur $]0, +\infty[$.

D'après le théorème de continuité des intégrales à paramètres, la fonction Γ est continue sur [a,A]. Ceci étant vrai pour tous réels a et A tels que 0 < a < A, on a montré que

La fonction
$$\Gamma$$
 est continue sur $]0, +\infty[$.

Dérivation. 3.5

Dérivée première 3.5.1

On reprend les notations du pargraphe 3.4.

- Pour chaque x de [a, A], la fonction $t \mapsto \Phi(x, t)$ est continue par morceaux et intégrable sur $]0, +\infty[$.
- La fonction Φ admet sur $[\mathfrak{a},A]\times]\mathfrak{d},+\infty[$ une dérivée partielle par rapport à sa première variable x définie par

$$\forall (x,t) \in [a,A] \times]0, +\infty[, \frac{\partial \Phi}{\partial x}(x,t) = (\ln t)t^{x-1}e^{-t}.$$

De plus,

- pour chaque x de [a, A], la fonction $t \mapsto \frac{\partial \Phi}{\partial x}(x, t)$ est continue par morceaux sur $]0, +\infty[$,

 pour chaque $t \in]0, +\infty[$, la fonction $x \mapsto \frac{\partial \Phi}{\partial x}(x, t)$ est continue sur [a, A],

 pour chaque $(x, t) \in [a, A] \times]0, +\infty[$, $\left|\frac{\partial \Phi}{\partial x}(x, t)\right| \le \begin{cases} |\ln t|t^{\alpha-1}e^{-t} & \text{si } t < 1\\ |\ln t|t^{A-1}e^{-t} & \text{si } t \ge 1 \end{cases} = \varphi_1(t)$.

Vérifions alors l'intégrabilité de la fonction φ_1 sur $]0, +\infty[$. Pour cela, pour $\alpha > 0$ donné, vérifions l'intégrabilité de la fonction $t \mapsto (\ln t)t^{\alpha-1}e^{-t}$ sur $]0, +\infty[$. Cette fonction est

- * continue par morceaux sur $]0, +\infty[$,
- * négligeable en $+\infty$ devant $\frac{1}{+2}$ d'après un théorème de croissances comparées,
- $* \text{ n\'egligeable en 0 devant } t^{-1+\frac{\alpha}{2}} \text{ avec } -1 + \frac{\alpha}{2} > -1 \text{ car } t^{1-\frac{\alpha}{2}} \times (\ln t) t^{\alpha-1} e^{-t} \underset{t\to 0}{\sim} t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0}{\to} 0 \text{ d'après un } t^{\alpha/2} (\ln t) \underset{t\to 0$ théorème de croissances comparées.

On en déduit que la fonction $t \mapsto (\ln t)t^{\alpha-1}e^{-t}$ est intégrable sur $]0,+\infty[$ et il en est de même de la fonction φ_1 . D'après le théorème de dérivation des intégrales à paramètres (théorème de Leibniz), la fonction Γ est de classe C^1 sur [a, A] et sa dérivée s'obtient par dérivation sous le signe somme. Ceci étant vrai pour tous réels a et A tels que 0 < a < A, on a montré que

La fonction
$$\Gamma$$
 est de classe C^1 sur $]0,+\infty[$ et $\forall x>0,$ $\Gamma'(x)=\int_0^{+\infty}(\ln t)t^{x-1}e^{-t}$ dt.

Dérivées successives

- Pour chaque x de [a, A], la fonction $t \mapsto \Phi(x, t)$ est continue par morceaux et intégrable sur $]0, +\infty[$.
- La fonction Φ admet sur $[a, A] \times]0, +\infty[$ des dérivées partielles à tout ordre par rapport à sa première variable x définies par

$$\forall k \in \mathbb{N}^*, \, \forall (x,t) \in [\mathfrak{a},A] \times]0, +\infty[, \, \frac{\partial^k \Phi}{\partial x^k}(x,t) = (\ln t)^k t^{x-1} e^{-t}.$$

De plus, pour chaque $k \in \mathbb{N}^*$,

- $\text{- pour chaque } x \text{ de } [\mathfrak{a},A], \text{ la fonction } t \mapsto \frac{\partial^k \Phi}{\partial x^k}(x,t) \text{ est continue par morceaux sur }]0,+\infty[,$
- pour chaque $t \in]0, +\infty[$, la fonction $x \mapsto \frac{\partial^k \Phi}{\partial x^k}(x,t)$ est continue sur [a,A],
- $\begin{array}{l} -\mathrm{\,pour\,\,chaque}\,\,(x,t)\in[\alpha,A]\times]0, +\infty[,\, \left|\frac{\partial^k\Phi}{\partial x^k}(x,t)\right|\leqslant\left\{\begin{array}{l} |\ln t|^kt^{\alpha-1}e^{-t}\,\,\mathrm{si}\,\,t<1\\ |\ln t|^kt^{A-1}e^{-t}\,\,\mathrm{si}\,\,t\geqslant1 \end{array}\right. =\phi_k(t). \\ \mathrm{Enfin,\,\,les\,\,fonctions}\,\,\phi_k,\, k\in\mathbb{N}^*,\, \mathrm{sont\,\,int\acute{e}grables\,\,sur\,\,}]0, +\infty[\,\,\mathrm{pour\,\,les\,\,m\acute{e}mes\,\,raisons\,\,que\,\,la\,\,fonction}\,\,\phi_1. \end{array}$

D'après une généralisation du théorème de dérivation des intégrales à paramètres, la fonction Γ est de classe \mathbb{C}^{∞} sur $[\mathfrak{a},A]$ et ses dérivées successives s'obtiennent par dérivation sous le signe somme. Ceci étant vrai pour tous réels a et A tels que $0 < \alpha < A$, on a montré que

La fonction
$$\Gamma$$
 est de classe C^{∞} sur $]0,+\infty[$ et $\forall k\in\mathbb{N}^{*},\,\forall x>0,\,\Gamma^{(k)}(x)=\int_{0}^{+\infty}(\ln t)^{k}t^{x-1}e^{-t}$ dt.

3.6 Convexité

D'après 5), la fonction Γ est deux fois dérivable sur $]0,+\infty[$ et $\forall x>0,$ $\Gamma''(x)=\int_0^{+\infty} (\ln t)^2 t^{x-1} e^{-t} dt>0$ (intégrable d'une fonction continue positive et non nulle). Donc

La fonction
$$\Gamma$$
 est strictement convexe sur $]0, +\infty[$.

3.7 Variations

Puisque la fonction Γ'' est strictement positive sur $]0, +\infty[$, la fonction Γ' est strictement croissante sur $]0, +\infty[$. De plus,

- la fonction Γ est continue sur [1,2],
- la fonction Γ est dérivable sur]1, 2[,
- $-\Gamma(1) = \Gamma(2) = 1$,

et le théorème de ROLLE permet d'affirmer qu'il existe $x_0 \in]1,2[$ tel que $\Gamma'(x_0)=0.$ Puisque la fonction Γ' est strictement croissante sur $]0, +\infty[$, la fonction Γ' est strictement négative sur $]0, x_0[$ et strictement positive sur $]x_0, +\infty[$. On a montré que

$$\exists x_0 \in]1,2[/\text{ la fonction }\Gamma \text{ est strictement décroissante sur }]0,x_0] \text{ et strictement croissante sur }[x_0,+\infty[.$$

3.8 Etude en $+\infty$

Puisque la fonction Γ est croissante sur $[2, +\infty[$, pour $x \ge 3, \Gamma(x) = (x-1)\Gamma(x-1) \ge (x-1)\Gamma(2) = x-1$ et on en déduit $\mathrm{que}\,\lim_{x\to+\infty}\Gamma(x)=+\infty.$

De plus, pour x > 1, $\frac{\Gamma(x)}{x} = \frac{x-1}{x}\Gamma(x-1) \underset{x \to +\infty}{\longrightarrow} +\infty$. On en déduit que la courbe représentative de la fonction Γ admet en $+\infty$ une branche parabolique de direction (Oy).

$$\lim_{x\to +\infty} \Gamma(x) = +\infty \text{ et } \lim_{x\to +\infty} \frac{\Gamma(x)}{x} = +\infty.$$

3.9 Etude en 0

Pour x > 0, $x\Gamma(x) = \Gamma(x+1) \xrightarrow{x \to 0} \Gamma(1) = 1$ par continuité de la fonction Γ en 1. Donc

$$\Gamma(x) \underset{x \to 0^+}{\sim} \frac{1}{x} \ \mathrm{et \ en \ particulier}, \ \lim_{x \to 0^+} \Gamma(x) = +\infty.$$

3.10 Graphe

