Part III-B: Probability Theory and Mathematical Statistics

Lecture by 李漫漫 Note by THF

2024年9月16日

目录

1	第一	章	3
	1.1	随机事件	3
		1.1.1 现象	3
		1.1.2 随机试验	3
		1.1.3 样本	3
		1.1.4 随机事件	4
	1.2	事件关系与运算	
	1.3	事件的概率	5
		1.3.1 古典概型	6
		1.3.2 几何概型	7
	1.4	公理化	9
	1.5	条件概率与乘法公式	12
	1.6	全概率公式	12
	1.7	贝叶斯公式	12
	1.8	独立性	14

概述

资源

公众号: 狗熊会、大数据文摘, 好玩的数学

MOOC: 爱课程, Coursera, Edx, 网易公开课等

教师要求

教材: 概率论与数理统计第二版

参考: The Lady Tasting Tea,程序员数学之概率统计, ...

学习目的: 自问自答, 自言自语

考核及成绩组成:

期中(10)

作业与考勤(10)

期末 (70)

MOOC(10)

课程简介

概率: Probability

统计: Statistics

概率论与数理统计: Probability theory and Mathematical statistics

Notation. 第一章重要但不突出

从概率到概率论:新增时间(随机事件、样本空间变化)

从统计到数理统计:统计最开始为记录性质,后来衍生出预测,通过数学模型引入数理统计

类似的还有政府统计、经济统计等

2000-2015 年间, IT 时代逐渐转换为 DT(Data Technology) 时代, 大数据逐渐占时代主体

1 第一章

1.1 随机事件

1.1.1 现象

确定性现象:一定条件下必然发生 随机现象强调统计规律性

Notation. 统计规律性:

- 1. 每次试验前不能预测结果
- 2. 结果不止一个
- 3. 大量试验下有一定规律

Example. 星际旅行时宇航员看到的现象不是随机现象:

对星际旅行的人而言,无法完成大量试验 宇航员观测到的结果无规律,只能称为不确定现象 (Uncertain)

Example. 扔一个骰子不能预测结果,但可以知道结果是 1,2,3,4,5,6 的一个,因此观察扔骰子是随机现象 (Random)

1.1.2 随机试验

随机试验(E): 研究随机现象时进行的实验或观察等

Notation. 随机试验的特性:

- 1. 可以在完全相同的条件下重复进行
- 2. 试验的可能结果在试验前已知
- 3. 试验的结果不可预测

1.1.3 样本

在随机试验中,不可再分的最简单结果成为样本点 ω ,全体样本点组成样本 空间 Ω

Notation. 随机事件是基本事件的集合

Example. 扔骰子存在 6 个基本事件,可以产生 2^6 个随机事件,其中样本空间 $\Omega = \{x | x \in [1, 6], x \in \mathbb{R}\}$

Example. 1. 射击时用 ω_i 表示击中 i 环,样本空间为:

$$\Omega = \{\omega_0, \omega_1, \omega_2, \dots, \omega_{10}\}.$$

2. 微信用户每天收到信息条数的取值范围是 [0,+∞), 样本空间为无限集:

$$\Omega = \{N | N \ge 0, N \in \mathbb{R}\}.$$

- 3. 电视机的寿命样本空间为 $\Omega = \{t | t > 0\}$,为连续的非负实数集
- 4. 投掷两枚硬币,样本空间为 $\Omega = \{(x,y) | x,y = 0,1\}$, 其中 0,1 分别代表正面和背面

Notation. 1. 样本点可以不是数

2. 样本空间可以是无限集

1.1.4 随机事件

1.2 事件关系与运算

- $1.1.\ A \subset B$: A 发生必然 B 发生
- 1.2. $A = B : A \subset B, B \subset A$
- 2. *A*∪*B*: *A* 和 *B* 至少有一个发生
- $2.1 \ A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{i=1}^n A_i$
- $3. A \cap B: A 和 B 只发生一个$
- 4.1. A, B 互斥:不能同时发生: $AB = \emptyset$
- 4.2. A, B 对立: 非此即彼: $A \cup B = \Omega$
- 5. A-B: $A\bar{B}$ 或 $A(\Omega-B)$, 或 A 发生但 B 不发生

Notation. $A - B = A\bar{B} \subset A, \ B - A = B\bar{A} \subset B$ $\stackrel{\text{def}}{=} AB = \emptyset \text{ iff}, \ A - B = A, B - A = B$

Notation. $P(\Omega) = 1, P(\emptyset) = 0, \exists P(\Omega) + P(\emptyset) = 1, \exists \Omega \exists \emptyset \exists F$

6. 结合律: $(A \cup B) \cup C = A \cup (B \cup C)$

7. 分配律: $(AB) \cup C = (A \cup C)(B \cup C)$, $(AUB) C = AC \cup BC$

8. 交換律: $A \cup B = B \cup A$, AB = BA

Notation. 德摩根律:

$$\overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \overline{A_i}.$$

$$\overline{\bigcap_{i=1}^{n} A_i} = \bigcup_{i=1}^{n} \overline{A_i}.$$

Example.

$$\overline{A \cup B} = \overline{A}\overline{B}.$$

$$\overline{(A \cup B) \cup C} = \overline{A \cup B}\overline{C} = \dots$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$

1.3 事件的概率

概率分类:

全 主观概率 统计概率 古典概型 几何概型

Notation. 德摩根、蒲丰、皮尔逊、维纳均进行过投掷硬币的试验,随着试验次数的增加,出现正面的频率逐渐接近 0.5

大数定律说明,该事件的概率为0.5

Definition. 统计概率: A 为试验 E 的一个事件,随着重复次数 n 的增加,A 的 频率接近于某个常数 p,定义事件 A 的概率为 p,记为 P(A) = p

频率的特性:

1. 非负性: $f_n(A) \in [0,1]$

2. 规范性: $f_n(\Omega) = 1$

3. 有限可加性: A_i 两两互斥,则 $f_n(\sum_{i=1}^n A_i) = \sum_{i=1}^n f_n(A_i)$

Definition. 主观概率:人对某个事件发生与否的可能性的估计

Definition. 完备事件组: $A_1, A_2, ..., A_n$ 两两互斥, 且

$$P\left(\sum_{i=1}^{n} A_i\right) = 1.$$

或

$$\sum_{i=1}^{n} A_i = \Omega.$$

则称 $A_1 \rightarrow A_n$ 为完备事件组(不重不漏)

Example. A, \bar{A} 是完备事件组

1.3.1 古典概型

古典概型特点:有限等可能性(基本事件数有限,基本事件发生的可能性相等)

Notation. 概率计算:

$$P(A) = \frac{m}{n} = \frac{n(A)}{n(\Omega)}.$$

Example. 某年级有 6 人在 9 月份出生,求 6 个人中没有人同一天过生日的概率

基本事件总数: 306

目标事件: $30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25 = P_{30}^{6}$

概率:

$$P(A) = \frac{P_{30}^6}{30^6}.$$

Example. 有 N 个乒乓球中有 M 个白球、N-M 个白球,任取 n(n < N) 个球,分有放回和不放回,求取到 m 个黄球的概率

1. 不放回:

基本事件总数: C_N^n

目标事件: $C_M^m C_{N-M}^{n-m}$

概率:

$$P = \frac{C_M^m C_{N-M}^{n-m}}{C_N^n}, n = \max\{0, n - (N-M)\}, \dots, \min\{n, M\}.$$

2. 有放回:

$$P = \frac{C_n^m M^m \left(N - M\right)^{n-m}}{N^n} = C_n^m \left(\frac{M}{N}\right)^m \left(1 - \frac{M}{N}\right)^{n-m}, m \in [0, n].$$

注意到该概率为伯努利分布 $C_n^m B\left(n, \frac{M}{N}\right)$

匹配问题:

Example. 麦克斯韦-玻尔兹曼统计问题:

n 个质点随机落入 N(N > n) 个盒子,盒子容量不限,设 A 表示指定的 n 个盒子各有一个质点,B 表示恰好有 n 个盒子装一个质点

基本事件总数: Nⁿ

A 考虑顺序, 即:

$$P(A) = \frac{n!}{N^n}.$$

同理:

$$P\left(B\right) = \frac{C_N^n}{N^n}.$$

1.3.2 几何概型

几何概型特点:使用事件所对应的几何度量计算

$$P(A) = \frac{m(A)}{m(\Omega)}.$$

Notation. 度量:面积、体积、长度等描述几何量大小的测度方式

Example. 地面铺满 2 dm 的地砖,向地面投掷一个 r=0.5 dm 的光盘,求光盘 不与边线相交的概率

如图:

课后习题: A组8题, B组3题

Example. 两人相约 8-9 点间在某地相见,先到的人等待 20 分钟后离去,求二人会面的概率

设(x,y)分别表示两人到达的时刻

设 G 为样本空间,绘制样本空间:

由题:两人到达的时间之差的绝对值小于 20 分钟 $(\frac{1}{3}$ 小时),即:

$$|x - y| \le \frac{1}{3}.$$

将事件绘制:

Notation. 几何概型的特点:

1. 非负性:

$$P(A) \in [0,1]$$
.

2. 规范性:

$$P(\Omega) = 1.$$

3. 可列可加性:

$$P\left(\sum_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i).$$

1.4 公理化

$$(\Omega, \mathscr{F}, p)$$
.

Definition. Ω : 随机试验所产生的所有样本点的集合

罗:集合内所有子集为元素的集合

P(X): 概率函数

Axiom. 非负性:

$$P(A) \ge 0, A \in \mathscr{F}.$$

Axiom. 规范性:

$$P(\Omega) = 1.$$

Axiom. 可列可加性: 对两两互斥的事件 A_1, A_2, \ldots

$$P\left(\sum_{i=1}^{+\infty} A_i\right) = \sum_{i=1}^{+\infty} P(A_i).$$

从三条公理得出的性质:

Notation. 1. $P(\emptyset) = 0$

2. 有限可加性:

$$\sum_{i=1}^{n} P(A_i) = P\left(\sum_{i=1}^{n} A_i\right).$$

3.
$$P(\bar{A}) = 1 - P(A)$$

4.
$$A \subset B \implies P(B-A) = P(B) - P(A)$$

5.
$$A \subset B \implies P(A) < P(B)$$

6.
$$P(A \cup B) = P(A) + P(B) - P(AB)$$

Notation. 6.1.

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(BC)$$
$$-P(AC) + P(ABC).$$

6.2.

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P(A_{i}A_{j}) + \sum_{i=1}^{n-2} \sum_{j=i+i}^{n-1} \sum_{k=j+1}^{n} P(A_{i}A_{j}A_{k})$$
$$\dots + (-1)^{n-1} P\left(\prod_{i=1}^{n} A_{i}\right).$$

Example. 从有号码 1, 2, ..., n 的 n 个球中有放回地取 m 个球,求取出的 m 个球中最大号码为 k 的概率

$$P\left\{k=1\right\} = \left(\frac{1}{n}\right)^m.$$

逐个列举计算较复杂,记事件 B_k 为取出的 m 个球最大号码不超过 k,只需保证每次摸出的球都不超过 k 即可:

$$P\left(B_{k}\right) = \frac{k^{m}}{n^{m}}.$$

又有 $P(A_k) = P(B_k) - P(B_{k-1})$,且 $B_{k-1} \subset B_k$ 所以:

$$P(A_k) = \frac{k^m}{n^m} - \frac{(k-1)^m}{n^m}.$$

Example. 匹配问题: n 个学生各带有一个礼品,随机分配礼品,设第 i 个人抽到自己的礼品称为一个配对,求至少有一个配对的概率

设 A_i 是第 i 个人抽到自己的礼品, A 为目标事件, 则:

$$A = \bigcup_{i=1}^{n} A_{i}.$$

$$P(A_{i}) = \frac{(n-1)!}{n!} = \frac{1}{n}.$$

$$P(A_{i}A_{j}) = \frac{(n-2)!}{n!} = \frac{1}{P_{n}^{2}}.$$

$$P(A_{i}A_{j}A_{k}) = \frac{1}{P_{n}^{3}}.$$

$$\dots$$

$$P\left(\prod_{i=1}^{n} A_{i}\right) = \frac{1}{n!}.$$

$$P(A) = P\left(\sum_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P(A_{i}A_{j}) + \dots$$

1.5 条件概率与乘法公式

Definition.

$$P(A) > 0, P(B|A) = \frac{P(AB)}{P(A)}.$$

即: 在 A 发生的条件下, B 发生的概率

Definition. 乘法公式:

$$P(AB) = P(A) P(B|A) = P(B) P(A|B).$$

Notation. A, B 独立: P(AB) = P(A) P(B)

结合乘法公式:

$$P(B) = P(B|A)$$
.

$$P(A) = P(A|B).$$

1.6 全概率公式

Corollary. 事件 A_1, A_2, \ldots, A_n 为完备事件组,事件 $B \subset \Omega = \bigcup_{i=1}^n A_i$,则:

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B|A_i).$$

Notation. 此时完备事件组的情况应该已知,通过完备事件组 A 的辅助可以求得较复杂事件 B 的概率

1.7 贝叶斯公式

Corollary.

$$P(A_k|B) = \frac{P(A_kB)}{P(B)} = \frac{P(A_k) P(B|A_k)}{\sum_{i=1}^{n} P(A_i) P(B|A_i)}.$$

贝叶斯公式被称为"逆概率公式/后验公式",其中事件 B 更可能是事件的结果,将事件组 A 看作结果出现的原因,则贝叶斯公式是一个从"结果"推"原因"的可能性的公式

Notation. 对比一般公式: 事件 A 导致 B, 求 B 发生的概率 贝叶斯公式: 事件 A 导致 B, A 中的一个事件 A_i 导致 B 发生的概率

Axiom. 条件概率的公理:

1. 非负性: $P(A) \in [0,1]$

2. 规范性: $P(\Omega|A) = 1$

3. 可列可加性:

$$P\left(\sum_{i=1}^{\infty} B_i | A\right) = \sum_{i=1}^{\infty} P\left(B_i | A\right).$$

Corollary.

$$P(\bar{B}|A) = P(\Omega - B|A) = P(\Omega|A) - P(B|A).$$

Corollary.

$$P(B_1 \cup B_2) = P(B_1) + P(B_2) - P(B_1B_2).$$

$$\implies P(B_1 \cup B_2|A) = P(B_1|A) + P(B_2|A) - P(B_1B_2|A).$$

Corollary. 乘法公式:

$$P(ABC) = P(A(BC)) = P(A) P(BC|A) = P(A) P(B|A) P(C|AB).$$

Example. 8 个红球 2 个白球, 求前三次结果是"红红白"的概率:

1. 不放回取 3 个(和一次取三个球相同)

所有可能性: 10×9×8

目标事件: 8×7×2

或使用乘法公式:设 A_i 为第 i 次取到红球,目标事件可表示为 $A_1A_2\bar{A_3}$ 概率:

$$P(A_1A_2\bar{A}_3) = P(A_1)P(A_2|A_1)P(\bar{A}_3|A_1A_2) = \frac{8}{10} \times \frac{7}{9} \times \frac{2}{8} = \frac{7}{45}.$$

2. 每次取后放回,并加入两个同色的球,取 3 次(不能使用古典概型)概率:

$$P(A_1 A_2 \bar{A}_3) = \frac{8}{10} \times \frac{8}{12} \times \frac{2}{14} = \frac{8}{105}.$$

Example. 某疾病的发病率为 0.0004, 患病检测呈阳性的概率为 0.99, 误诊为阴性的概率为 0.01, 误诊为阳性的概率为 0.05, 不患病检测呈阴性概率为 0.95, 一个人检测呈阳性, 求其患病的概率

设阳性为 A,患病为 B则:

$$P(A|B) = 0.99, P(A|\bar{B}) = 0.05, P(B) = 0.0004.$$

要求: P(B|A)

使用贝叶斯公式:

$$P(B|A) = \frac{P(AB)}{P(A)} = \frac{P(B) P(A|B)}{P(AB) + P(A\bar{B})}.$$

$$= \frac{P(B) P(A|B)}{P(B) P(A|B) + P(A|\bar{B}) P(\bar{B})} = 0.0079.$$

1.8 独立性

Definition. A, B 独立、则: P(A|B) = P(A)

Notation. 证明独立性:

1.
$$P(A) P(B) = P(AB)$$

Notation. 独立事件的特点:

- 1. A, B 独立有: A, B 所有的组合(包含补集)均独立
- 2. A, B 独立的充要条件: P(A|B) = P(A) or P(B|A) = P(B)
- 3. Ø 与任何随机事件独立, Ω 与任何随机事件独立

对于三个事件相互独立:

$$\begin{cases} P(AB) = P(A) P(B) \\ P(AC) = P(A) P(C) \\ P(BC) = P(C) P(C) \\ P(ABC) = P(A) P(B) P(C) \end{cases}$$

对比乘法公式: P(ABC) = P(A) P(B|A) P(C|AB)

Definition. 相互独立:

有 A_1, A_2, \ldots, A_n 事件组, 对 $\forall s \in [2, n]$ 个事件 $A_{k_1}, A_{k_2}, \ldots, A_{k_s}$ 均有:

$$P\left(\prod_{n=1}^{s} A_{k_n}\right) = \prod_{n=1}^{s} P\left(A_{k_n}\right).$$

称事件 A_1, A_2, \ldots, A_n 相互独立

Definition. 两两独立: 对事件 A_1, A_2, \ldots, A_n ,若任意两个事件独立,则称为两两独立

Notation. 相互独立一定两两独立, 反之不一定

Notation. 相互独立事件组的性质:

- 1. 事件 A_1, A_2, \ldots, A_n 相互独立,将其中任意部分改为对立事件,事件组仍为相互独立
- 2. 事件相互独立,将事件组任意分为两组(或多组),对组内事件进行"并、交、差、补"操作后,事件间依然相互独立

独立重复实验

Definition. E_1, E_2 中一个试验的任何结果和另一个试验的任何结果相互独立,则试验相互独立;若 n 个独立试验相互独立且试验相同,称 E_1, E_2, \ldots, E_n 为 n 次独立重复实验,或 n 重独立试验

Example. 扔硬币和掷骰子为独立试验,其中扔硬币为伯努利试验(只有两个结果)

Definition. n 重独立试验 E 中,每次试验都是伯努利试验(可能结果只有两个),称 E 为 n 重伯努利试验

1. 二项概率公式: 成功 k 次的概率记为 $P_n(k)$,假定前 k 次成功,后 n-k 次失败,则

$$P_i = p^k \left(1 - p\right)^{n - k}.$$

指定事件 A 发生的位置有 C_n^k 种,则:

$$P_n(k) = C_n^k p^k (1-p)^{n-k}$$
.

称为二项概率公式

2. 几何概率公式: 首次成功恰好发生在第 k 次的概率记为 G(k) , 设前 k-1 次失败,则:

$$G\left(k\right) = q^{k-1}p.$$

可以验证: $\sum G(k) = 1$

3. 负二项概率: 需要成功 r 次,第 r 次成功恰好发生在第 k 次的概率记为 $G_r(k)$,设前 k-1 次试验有 r-1 次成功,则:

$$G_r(k) = C_{k-1}^{n-1} p^r q^{k-r}.$$

同样有: $\sum G_r(k) = 1$