Economics

ELASTICITY

Ch.5 OUTLINE

5.1: Price Elasticity of Demand and Price Elasticity of Supply

5.2: Polar Cases of Elasticity and Constant Elasticity

5.3: Elasticity and Pricing

5.4: Elasticity in Areas Other Than Price

Netflix and Economic Elasticity

 Many on-demand Internet streaming media providers, such as Netflix, have introduced tiered pricing for levels of access to services, begging the question, how will these prices affect buyer's purchasing choices?

5.1 Price Elasticity Demand and Price Elasticity of Supply

- Elasticity is an economics concept that measures the responsiveness of one variable to changes in another variable.
- Price elasticity is the ratio between the percentage change in the quantity demanded (Qd) or supplied (Qs), and the corresponding percent change in price.
- Price elasticity of demand percentage change in the quantity demanded of a good or service divided the percentage
- Price elasticity of supply the percentage change in quantity supplied divided by the percentage change in price.

Elastic, Inelastic, and Unitary: Three Cases of Elasticity

- An elastic demand or elastic supply is one in which the elasticity is greater than one, indicating a high responsiveness to changes in price.
- **Inelastic demand** or **inelastic supply** elasticities that are less than one, indicating low responsiveness to price changes.
- Unitary elasticities indicate proportional responsiveness of either demand or supply,

If	Then	And It Is Called
% change in quantity > % change in price	$\frac{\% \text{ change in quantity}}{\% \text{ change in price}} > 1$	Elastic
% change in quantity = % change in price	$\frac{\% \text{ change in quantity}}{\% \text{ change in price}} = 1$	Unitary
% change in quantity < % change in price	$\frac{\% \text{ change in quantity}}{\% \text{ change in price}} < 1$	Inelastic

Calculate Elasticity of a Curve

To calculate elasticity along a demand or supply curve economists use the average percent change in both quantity and price.

Midpoint Method for Elasticity:

% change in quantity =

% change in price =

$$\frac{Q2-Q1}{(Q2+Q1)/2} \times 100$$

$$\frac{P2-P1}{(P2+P1)/2} \times 100$$

Example -Calculating the Price Elasticity of Demand

- The price elasticity of demand is calculated as the percentage change in quantity divided by the percentage change in price.
- Therefore, the elasticity of demand between these two points is 0.45, an amount *smaller* than one, showing that the demand is <u>inelastic</u> in this interval.

% change in quantity =
$$\frac{3,000 - 2,800}{(3,000 + 2,800)/2} \times 100$$

= $\frac{200}{2,900} \times 100$
= 6.9
% change in price = $\frac{60 - 70}{(60 + 70)/2} \times 100$
= $\frac{-10}{65} \times 100$
= -15.4
Price Elasticity of Demand = $\frac{6.9\%}{-15.4\%}$
= 0.45

Example Calculating the Price Elasticity of Supply

- The price elasticity of supply is calculated as the percentage change in quantity divided by the percentage change in price.
- What category of elasticity does the result fall into?

% change in quantity =
$$\frac{13,000 - 10,000}{(13,000 + 10,000)/2} \times 100$$

= $\frac{3,000}{11,500} \times 100$
= 26.1
% change in price = $\frac{\$700 - \$650}{(\$700 + \$650)/2} \times 100$
= $\frac{50}{675} \times 100$
= 7.4

5.2 Polar Cases of Elasticity and Constant Elasticity

- Infinite elasticity or perfect elasticity either the quantity demanded (Qd) or supplied (Qs) changes by an infinite amount in response to any change in price at all.
- In both cases, the supply and the demand curve are horizontal.
- The quantity supplied or demanded is extremely responsive to price changes, moving from zero for prices close to P to infinite when price reach P.

Zero Elasticity

- Zero elasticity or perfect inelasticity a percentage change in price, no matter how large, results in zero change in quantity.
- The vertical supply curve and vertical demand curve show that there will be zero percentage change in quantity (a) supplied or (b) demanded, regardless of the price.

Constant Unitary Elasticity

 Constant unitary elasticity, in either a supply or demand curve, occurs when a price change of one percent results in a quantity change of one percent.

- A demand curve with constant unitary elasticity will be a curved line.
- Notice how price and quantity demanded change by an identical amount in each step down the demand curve.

Constant Unitary Elasticity

- A constant unitary elasticity <u>supply</u> curve is a straight line reaching up from the origin.
- Between each point, the percentage increase in quantity demanded is the same as the percentage increase in price.

5.3 Elasticity and Pricing

- Most businesses face a day-to-day struggle to figure out ways to produce at a lower cost, as one pathway to their goal of earning higher profits.
- However, in some cases, the price of a key input over which the firm has no control may rise or fall.
- Can businesses pass costs (or cost savings) onto consumers?

Passing Along Cost Savings to Consumers -Technological Improvements

- Cost-saving gains cause supply to shift out to the right from S_0 to S_1 ; that is, at any given price, firms will be willing to supply a greater quantity.
- If <u>demand</u> is <u>inelastic</u>, as in (a), the result of this cost-saving technological improvement will be substantially lower prices.
- If <u>demand</u> is <u>elastic</u>, as in (b), the result will be only slightly lower prices.
- Consumers benefit in either case, from a greater quantity at a lower price, but the benefit is greater when demand is inelastic, as in (a).

Passing Along Higher Costs to Consumers - Rising Taxes

- Higher costs, like a higher tax on cigarette companies for example, lead supply to shift to the left. This shift is identical in (a) and (b).
- However, in (a), where <u>demand</u> is <u>inelastic</u>, the cost increase can largely be passed along to consumers in the form of higher prices, without much of a decline in equilibrium quantity.
- In (b), <u>demand</u> is <u>elastic</u>, so the shift in supply results primarily in a lower equilibrium quantity.
- Consumers do not benefit in either case, but in (a), they pay a <u>higher price</u> for the same quantity, while in (b), they must buy a <u>lower quantity</u> (and presumably needing to shift their consumption elsewhere).

Elasticity and Tax Incidence

- Tax incidence manner in which the tax burden is divided between buyers and sellers.
- If <u>demand is more inelastic</u> than supply, <u>consumers</u> bear most of the tax burden.
- If <u>supply is more inelastic</u> than demand, <u>sellers</u> bear most of the tax burden.

Elasticity and Tax Incidence

- An excise tax introduces a wedge between the price paid by consumers (Pc) and the price received by producers (Pp).
- The more elastic the demand and supply curves are, the lower the tax revenue.
- (a) When the demand is more elastic than supply, the tax incidence on consumers, Pc Pe, is lower than the tax incidence on producers, Pe Pp.
- (b) When the supply is more elastic than demand, the tax incidence on consumers, Pc Pe, is larger than the tax incidence on producers, Pe Pp.

Long-Run vs. Short-Run Impact

- Elasticities are often lower in the short run than in the long run.
- On the <u>demand</u> side of the market, it can sometimes be difficult to change Qd in the short run, but easier in the long run.
- On the <u>supply</u> side of markets, producers of goods and services typically find it easier to expand production in the long term of several years rather than in the short run of a few months.
- In most markets for goods and services:
 - in the short run prices bounce up and down more than quantities.
 - in the long run quantities often move more than prices.

Responsiveness of Demand to Price Changes of Crude Oil

- The intersection (E_0) between demand curve D and supply curve S_0 is the same
- The shift of supply to the left from S_0 to S_1 is identical in both (a) and (b).
- The new equilibrium (E_1) has a higher price and a lower quantity than the original equilibrium (E_0) in both (a) and (b).
- However, the shape of the demand curve D is different in (a) and (b).
- As a result, the shift in supply can result either in a new equilibrium with a much higher price and an only slightly smaller quantity, as in (a).
- Or in a new equilibrium with only a small increase in price and a relatively larger reduction in quantity, as in (b).

5.4 Elasticity in Areas Other Than Price

Income elasticity of demand

= % change in quantity demanded % change in income

- For most products, most of the time, the income elasticity of demand is positive:
- That is, a rise in income will cause an increase in the quantity demanded.

Cross-Price Elasticity of Demand

- A change in the price of one good can shift the quantity demanded for another good.
- Cross-price elasticity of demand the percentage change in the quantity of good A that
 is demanded as a result of a percentage change in the price good B.
 - % change in Qd of good A
 % change in price of good B
- Discussion Question: What are examples of complement and substitute goods, where a change in price of one good would cause a change in demand of the other?

Elasticity in Labor

 Wage elasticity of labor supply - the percentage change in labor supplied divided by the percentage change in wages.

 Wage elasticity of labor demand - the percentage change in labor demanded divided by the percentage change in wages.

% change in quantity of labor demanded
 % change in wage

Elasticity in Financial Capital Markets

- Interest rate elasticity of savings the percentage change in the quantity of savings divided by the percentage change in interest rates.
 - % change in quantity of financial savings
 % change in interest rate
- Interest rate elasticity of borrowing the percentage change in the quantity of borrowing divided by the percentage change in interest rates.
 - % change in quantity of financial borrowing
 % change in interest rate

Back to Netflix

- How did the 60% price increase in 2011 end up for Netflix?
 - Before the price increase 24.6 million U.S. subscribers.
 - After the price increase 810,000 U.S. consumers canceled their subscriptions.
 - Fast forward to June 2013, there were 36 million streaming Netflix subscribers in the United States.
 - An average per quarter growth of about 1.6 million.
 - This was <u>less</u> than the 2 million per quarter increases that had been the previous norm, before the price change.
- Why was the estimate of customers leaving so far off? What missteps did the Netflix management make?
- A misjudgement of the elasticity of demand.
 - Due to increase in the number of close substitutes (Vudu, Amazon Prime, Hulu, Redbox).
- Misjudgement of customers' preferences and tastes.
 - Many consumers still preferred a physical DVD disk over streaming video.

Credits: Greenlaw, S. A., Shapiro, D., & MacDonald, D. (2022). *Principles of economics* (3rd ed.). OpenStax. https://openstax.org/books/principles-economics-3e