CrowdGather: Budgeted Entity Extraction over Structured Data Domains

Theodoros Rekatsinas University of Maryland, College Park

thodrek@cs.umd.edu

Amol Deshpande University of Maryland, College Park

amol@cs.umd.edu

Aditya Parameswaran University of Illinois, Urbana-Champaign University adityagp@illinois.edu

ABSTRACT

Crowd entity extraction has become a popular means of acquiring data for many applications, including recommendation systems, listing aggregation and knowledge base compilation. Most of the current solutions focus on entity extraction for specific queries and do not consider entity extraction over broader entity domains. Due to the time and cost of human labor, considering each query in isolation may incur large costs when applied to broader domains, thus, limiting the applicability of current approaches.

In this paper, we explore the problem of *budgeted entity extraction* over *structured entity domains*. We consider domains that can be fully described by a collection of attributes, each characterized by a hierarchical structure. We develop new statistical tools that enable users to reason about the gain of issuing *further queries* in the presence of little information and show how to exploit the dependencies across different points of the data domain to obtain more accurate estimates. We also demonstrate how budgeted entity extraction over large domains can be cast as an adaptive optimization problem that seeks to maximize the number of extracted entities while minimizing the overall extraction cost. We evaluate our techniques with experiments on both synthetic and real-world data.

1. INTRODUCTION

Combining human computation with traditional computation has been recently proven beneficial in extracting knowledge and acquiring data for many application domains, including recommendation systems [1], knowledge base completion [2], entity extraction and structured data collection [4, 3]. In fact, extracting information, and entities in particular, from the crowd has been shown to provide access to more fine grained information that may belong to the long tail of the web or even be completely unavailable on the web [5].

A fundamental challenge in crowdsourced entity extraction is reasoning about the completeness of the extracted information. More precisely, given a task that seeks to enumerate entities from a specific domain by asking human workers, e.g., "extract all restaurants in New York", it is not easy to judge if we have extracted all entities (in this case restaurants). This is because we are in an "open world" [4] scenario. Extracting entities from the crowd can

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Articles from this volume were invited to present their results at The 39th International Conference on Very Large Data Bases, August 26th - 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 5 Copyright 2013 VLDB Endowment 2150-8097/13/03... \$ 10.00. be done by issuing *queries* of the form "Give me k entities corresponding to a specific domain". In our restaurant example, such queries may correspond to crowdsourced task of the form "give me 5 French restaurant in Manhattan, NY". Recent work has considered this problem for isolated queries [4], i.e., queries that correspond to exactly the same question and are repeatedly evaluated against workers. In this line of work, the query predicates specify the data domain of interest.

Often, however, crowd entity extraction techniques are used to acquire information from large data domains that cannot be described adequately by a single query with fixed predicates. Consider for example a scenario where crowd sourcing techniques are used to collect information about various types of events (e.g., music concerts or political rallies) over different countries. If we just asked workers to provide us with events without specifying the event type or location, we would get a limited number of *popular* events. Moreover, the characteristics of collected events would heavily depend on the demographics of the workers completing the task. For example, a US based worker is more likely to provide us with events occurring in the state she is located.

However, if we want to maximize the number of extracted events we can intuitively issue multiple diversified queries, requesting the crowd to provide information for specific types of events potentially focusing on a specific location. Notice, that following this approach we are less likely to be affected by heavily popular events and the worker specific characteristics. However, deciding on the right queries in such domains entails several challenges. Next, we use a real-world scenario to illustrate these challenges.

1.1 Challenges and Opportunities

We consider Eventbrite 1, an online event aggregator, that relies on crowdsourcing to compile a directory of events with detailed information about the location, type, date and category of each event. Typically, event aggregators are interested in collecting information about diverse events spanning from conferences and music festivals to political rallies for multiple locations across different location, i.e., countries or cities. In particular, Eventbrite collects information about events across different countries in the world. Each country is further split into cities and areas across the country. Moreover, events are organized according to their type and topic. We collected a dataset from Eventbrite spanning over 63 countries that are divided into 1,709 subareas (e.g., states) and 10,739 cities, containing events of 19 different types, such as rallies, tournaments, conferences, conventions, etc. and a time period of 31 days spanning over the months of October and November. It is easy to see that two of the three dimensions, i.e., location and time, describing the domain of collected events are hierarchically

¹https://www.eventbrite.com

Figure 1: The attributes describing the events domain and the hierarchical structure of each attribute.

structured. The overall domain can be fully specified if we consider the cross product across the possible values for location, event type and time. For each of the location, time, type dimensions we also consider a special *wildcard* value. Taking the cross-product across the possible values of these dimensions results in a total of 8,508,160 points containing 57,805 distinct events overall.

The first challenge stems from the fact that due to the sheer size of the data domain there are potentially many sparsely populated points, i.e., points that contain only a limited number of items. Assuming a given budget for crowdsourced entity extraction, one needs to avoid such points when issuing crowdsourced entity enumeration queries in order to maximize the number of extracted entities under the specified budget.

EXAMPLE 1. We focus on the collected Eventbrite dataset and plot the number of items for each of the data items associated with each point corresponding to the event domain.

I want to fill this out with plots of eventbrite events. I will use the eventbrite API and create the plots

First challenge: sparse areas of the data domain. Given a budget might not worth be issuing any queries to extract more events there Add a plot showing that for certain location, event type, topic combinations there are no events or a much smaller number of events.

Opportunity: Exploit the hierarchical structure of the data domain. Discuss how the structure of Eventbrite's hierarchy can be exploited to discover sparse areas and optimize for the budget.

Second challenge: Information flow across crowd entity extraction queries that correspond to overlapping parts of the data domain. Show example of overlaps. and the fact that when we request events for a location we get many events for a specific topic etc. dependent samples.

1.2 Contributions

Motivated by these examples, we study the problem of *budgeted* crowd entity extraction over structured domains. More precisely, we focus on domains described by a collection of attributes, each following a known hierarchical structure. We assume that for each attribute the corresponding hierarchy is known. Moreover, we assume that after issuing a query against the crowd the retrieved answers can be associated with all relevant nodes across all attribute

hierarchies, i.e., a worker will provide all the attribute values describing a reported entity. Dealing with incomplete information about entities is not the main focus of this paper and is part of the future work preposed in Section 6/

We propose a novel algorithmic framework that exploits the structure of the domain to maximize the number of extracted entities under given budget constraints. In particular, we view the problem of entity extraction as a *multi-round adaptive optimization problem*. At each round we exploit the information on extracted entities obtained by previous queries to adaptively select the crowd query that will maximize the *gain* and cost trade-off at each round. The gain of a query is defined as the number of new unique entities extracted by it. Building upon techniques from the species estimation literature, we introduce a new methodology for estimating the gain for generalized queries and show how the hierarchical structure of the domain can be exploited to improve the accuracy of our estimates. Our main contributions are as follows:

- We study the challenge of information flow across entity extraction queries for overlapping parts of the data domain.
- We develop a new technique to estimate the gain of generalized entity extraction queries under the presence of dependent information. The proposed technique exploits the structure of the data domain to obtain accurate estimates.
- We introduce an adaptive optimization algorithm that takes as input the gain estimates for different types of queries and identifies querying policies that maximize the total number of retrieved entities under given budget constraints.
- Finally, we show that our techniques can effectively solve the problem of budgeted crowd entity extraction for large data domains on both real-world and synthetic data.

2. PRELIMINARIES

In this section we first review different types of crowd queries for entity extraction. We also define the problem of *crowd entity extraction* over *structured domains* under budget constraints. Then, we formally introduce the challenge of information flow across queries when extracting entities from structured domains, and finally, we present an overview of our proposed algorithmic framework.

2.1 Entity Extraction Queries

Let \mathcal{D} be a data domain described by a set of discrete attributes $\mathcal{A}_D=\{A_1,A_2,\ldots,A_d\}$. Let $dom(A_i)$ denote the domain of each attribute $A_i\in\mathcal{A}_D$. We consider three different types of crowd queries for extracting entities from the crowd. The first type corresponds to single entity queries where workers are required to provide "one more" entity that satisfies the collection of predicates over attributes in A_D . The second type of queries corresponds to queries of size k where workers are asked to provide up to k distinct entities. Finally, the last type corresponds to exclude list queries. Here, workers are provided with l entities that have already been extracted and are required to provide up to k distinct entities under the constraint that none of them is included in the exclude list. It is easy to see that the last type of queries generalizes the previous two. Therefore, in the remainder of the paper, we will consider that all queries of the third type. To describe a query, we will use the notation q(k, l) denoting a query of size k accompanied with an exclude list of length l.

In a typical crowdsourcing environment, tasks have different costs depending on their difficulty. Thus, crowdsourced queries of different difficulties should also exhibit different costs. Let $c(\dot{})$ be a cost

function for any query q(k,l). This cost function should obey the following properties: (a) given an exclude list of fixed length l then $c(q(k',l)) \geq c(q(k,l)), \forall k' \geq k$, and (b) given a fixed query size k then $c(q(k,l')) \geq c(q(k,l)), \forall l' \geq l$.

2.2 Crowd Entity Extraction

We focus on structured domains where each attribute is hierarchically organized. For example, consider the event domain introduced in Section 1.1. The data domain \mathcal{D} corresponds to all events and the attributes describing the entities in \mathcal{D} are $\mathcal{A}_D = \{\text{"Event Type"}, \text{"Event Topic"}, \text{"Location"}, \text{"Date"}\}$. Figure 2 shows the hierarchical organization of each attribute.

Event Data Domain

Figure 2: The attributes describing the events domain and the hierarchical structure of each attribute.

The domain \mathcal{D} can be viewed as a *lattice* corresponding to the crossproduct of all available hierarchies. Part of the lattice corresponding to the previous example is shown in Figure 3. We denote this crossproduct as \mathcal{H}_D . We define a *point* in \mathcal{D} as a possible combination of values of *all* attributes. We will also refer to a collection of points for which only a subset of attributes shares the same value as a *slice* \mathcal{D}_P of \mathcal{D} . For example, a slice of the event domain described above may correspond to rock concerts in Boston. The predicates describing this slice are EVENT TYPE = "Concert", EVENT TOPIC="Music, Rock", LOCATION = "Boston, MA", DATE = "*". It is easy to see that each node in \mathcal{H}_D represents a slice of the data domain \mathcal{D} .

Figure 3: Part of the lattice defining the entire event entity domain described by the attributes in Figure 2.

The basic version of *crowd entity extraction* [4] seeks to extract entities that belong in a *single* slice \mathcal{D}_P of \mathcal{D} , specified by a set of predicates P over a subset of attributes in \mathcal{A}_D . However, when considering large entity domains, such as the event domain, one may need to issue a series of entity extraction queries over multiple slices of \mathcal{D} - that may overlap with each other- so that the entire domain is covered. Issuing queries for different slices of the domain ensures that the coverage across the domain will be maximized.

Let $\mathcal{P}(\mathcal{D})$ denote the set of all possible slices that their union covers the domain \mathcal{D} . Moreover, let π denote a *querying policy*,

that is, a chain of crowd queries corresponding to different slices in $\mathcal{P}(\mathcal{D})$. Each query asks workers to provide entities corresponding to a slice \mathcal{D}_P . Notice, that multiple queries can be issued against the same slice. Let $C(\pi)$ denote the overall cost, both in terms of monetary cost and latency, of a querying policy π . We define the gain of a querying policy π as the total number of unique entities, denoted by $\mathcal{E}(\pi)$ extracted when following policy π .

The above naturally gives raise to a tradeoff between the total number of extracted entities and the total cost. To optimize this tradeoff, previous work has proposed either a *pay-as-you-go* scheme [4] or a fixed answer size scheme [3]. In the first case, one repeatedly issues queries to the crowd until the *marginal gain*, i.e., the difference between the new extracted entities and the querying cost, drops below a desired threshold. However, the proposed scheme does not enforce any budget constraints explicitly and focuses on a single query in isolation. Thus, it does not optimize the gain-cost tradeoff over an entire querying policy. In the second case, one repeatedly issues queries to the crowd until a desired number of entities is retrieved. The latter is specified by the user. Notice, that this assumes knowledge of the number of entities to be extracted, nevertheless, this information may not be available in many real-world scenarios.

Here, we require that the user will only provide a monetary budget τ_c imposing a constraint on the total cost of a selected querying policy, and optimize over all possible querying policies across different slices of the data domain. Our goal is to identify the policy that maximizes the number of retrieved entities under the given budget constraint. More formally, we define the problem of budgeted crowd entity extraction as follows:

DEFINITION 1 (BUDGETED CROWD ENTITY EXTRACTION). Let \mathcal{D} be a given entity domain and τ_c a monetary budget on the total cost of issued queries. The Budgeted Crowd Entity Extraction problem seeks to find a querying policy π_s^* over a subset of slices $S \subseteq \mathcal{P}(\mathcal{D})$ that maximizes the number of unique entities extracted $\mathcal{E}(\pi_s^*)$ under the constraint $C(\pi_s^*) \leq \tau_c$.

If \mathcal{D} is fully specified by a hierarchy \mathcal{H}_D then $\mathcal{P}(\mathcal{D}) = \mathcal{H}_D$. Thus, determining the optimal querying policy requires detecting the optimal subset of nodes in \mathcal{H}_D to be queried so that the goal number of extracted entities is maximized under the given budget constraint. Notice that due to the different query configurations the optimal querying policy for the problem of budgeted crowd entity extraction should also identify the optimal configuration (k,l) for each query in π_S^* .

The cost of a querying policy π is defined as the total cost of all queries issued by following π . We have that $C(\pi) = \sum_{q \in \pi} c(q)$ where the cost of each query q is defined according to a cost model specified by the user. Computing the total cost of a policy π is easy. However, the gain $\mathcal{E}(\pi)$ of a policy π is unknown as we do not know in advance the entities corresponding to each node in \mathcal{H}_D , and hence, needs to be estimated, as we discuss next.

2.3 Oueries in Structured Domains

The entities in the domain are unknown, hence, each entity extraction query can be viewed as taking a random sample from an unknown population of entities. The probability that an entity will appear in a query depends on its *popularity* in the overall entity population. The popularity of an entity is defined as the probability that this entity will appear in a query q(1,0), i.e., a query asking for one entity from the population and using an exclude list of size zero. In the remainder of the paper, we will refer to the distribution characterizing the popularities of entities corresponding to a population as the *popularity distribution* of the population.

Estimating the gain of a query q(k,l) at a node $v \in \mathcal{H}_D$ is equivalent to estimating the number of new entities extracted by taking additional samples from the population of v given all the retrieved entities by past samples associated with node v [4].

When extracting entities from a structured domain, the retrieved entities for a node v can correspond to two different kinds of samples: (i) those that were extracted by considering the **entire population** corresponding to node v (ii) and those that we obtained by sampling **only a part of the population** corresponding to v. Samples for a node v can be obtained either by querying node v or by indirect information flowing to v by queries at other nodes in \mathcal{H}_D . We refer to the latter case as *information flow across queries*.

Figure 4: An example query that extract an entity sample from the red node. The nodes marked with green correspond to the nodes for which indirect entity samples are retrieved.

We use an example considering the lattice in Figure 3, to illustrate these the two cases. The example is shown in Figure 4. Assume a query q(k,0) issued against node {EventType X1}. Assume that the query result contains entities that correspond only to node {X1,ST12}. The green nodes in Figure 4 are nodes for which samples are obtained indirectly without querying them. Notice, that all these nodes, are ancestors of {X1,ST12}. Analyzing the samples for the different nodes we have:

- The samples corresponding to nodes {X1, T1} and {X1,ST12} where obtained by considering their *entire population*. The reason is that node {EventType X1} is an ancestor of both and the entity population corresponding to it fully contains the populations of both {X1,T1} and {X1,ST1}.
- The samples corresponding to nodes { }, {EventTopic T1} and {Event SubTopic ST12} where obtained by considering only a part of their population. The reason is that the population of node {EventType X1} does not fully contain the populations of these nodes.

Both sample types need to be considered when estimating the gain of a query at a node in $v \in \mathcal{H}_D$. However, one cannot merge them directly into a single sample since samples that consider only part of the population for a node v do not follow the same popularity distribution as samples that consider the entire population. To address, this challenge, we can view the process described above as an instance of *stratified sampling*. More precisely, given the hierarchical structure of the domain \mathcal{D} , we can consider the population of each node in \mathcal{H}_D as being split in multiple strata considering to the populations of its direct descendants. Following, this approach one can combine the aforementioned types of samples into a single stratified sample and use this observation to estimate the gain of different queries for the nodes in \mathcal{H}_D (see Section 3).

2.4 Framework Overview

Figure 5: Solution overview for budgeted entity extraction.

We present an overview of our proposed framework for solving the problem of budgeted crowd entity extraction over structured domains. We view the optimization problem described in Section 2.2 as a multi-round adaptive optimization problem where at each round we solve the following subproblems:

- Estimating the Gain for a Query. For each node in v ∈ H_D, consider the retrieved entities associated with v and estimate the number of new unique entities that will be retrieved if a new query q(k, l) is issued at v. This needs to be repeat for all possible configurations of k and l.
- Detecting the Optimal Querying Policy. Using the gain estimates from the previous problem as input, identify the next (query, node) combination so that the total gain across all rounds is maximized with respect to the given budget constraint.

Our proposed framework iteratively solves the aforementioned problems until the entire budget is used. Figure 5 shows a high-level diagram of our proposed framework.

3. ESTIMATING THE GAIN OF QUERIES

In this section, we present a novel lower bound for the return of a generalized query q(k,l) at a node $v \in \mathcal{H}_D$. Previous work [4] has drawn connections between this problem and the literature of species estimation [?]. However, the proposed techniques are agnostic to the presence of an exclude list. We first review the existing methodology for estimating the gain of a query, then we discuss how these estimators can be extended to consider an exclude list, and finally, we present a new methodology for estimating the gain of generalized queries q(k,l). We first introduce our approach considering samples that are retrieved by the entire entity population corresponding to a node and then generalize it to stratified samples.

3.1 Previous Estimators

Consider a specific node $v \in \mathcal{H}_D$. Prior work only considers samples retrieved from the entire population associated with v and does not consider an exclude list. Let Q be the set of all existing samples retrieved by issuing queries against v. These samples can be combined into a single sample of size $n = \sum_{q \in Q} \operatorname{size}(q)$. Let f_i denote the number of entities that appear i times in this unified sample, and let f_0 denote the number of unseen entities from the population under consideration. Finally, let C be the population coverage of the unified sample.

A new query q(k,0) at node v can be viewed as increasing the size of the unified sample by k elements. Prior work, leveraged techniques from the species estimation literature to estimate the expected number of new entities returned in q(k,0). Shen et al. [?], derive an estimator for the number of new species \hat{N}_{Shen} that would

be found in an increased sample of size k. The approach assumes that the unobserved entities have equal relative popularity. An estimate of the unique elements found in an increased sample of size k is given by:

$$\hat{N}_{Shen} = f_0 \left(1 - \left(1 - \frac{1 - C}{f_0} \right)^k \right)$$
 (1)

Notice, that the quantities f_0 and C are unknown and thus need to be estimated considering the entities in the running unified sample. The coverage can be estimated by considering the Good-Turing estimator $\hat{C}=1-\frac{f_1}{n}$ for the existing retrieved sample. On the other hand, multiple estimators have been proposed for estimating the number of unseen entities f_0 . Trushkowsky et al. [4] proposed a variation of an estimator introduced by Chao et al. [?] to estimate f_0 .

However, the estimator by Chao [?] on which the authors build has been shown to result in considerable negative bias in cases where the number of observed entities from a population represents only a small fraction of the entire population [?]. To address this problem, Hwang and Shen [?] proposed a regression based technique to estimate f_0 . This estimator is shown to result in significantly smaller bias and empirically outperforms previously proposed estimators, including the one proposed by Chao, when the ratio of retrieved entities to the entire entity population is small. It also performs comparably to previous estimators when the ratio is larger. Notice, that the output of this estimator can also be used as a plug-in quantity in Equation (1).

However, both the aforementioned estimators are agnostic to an exclude list. Next, we discuss how one can estimate the return of a query q(k,l) in the presence of an exclude list of size l.

3.2 Queries With an Exclude List

Consider an exclude list of size l. As discussed before an exclude list is a set of entities that correspond to invalid worker answers. Considering an exclude list for a query at a node $v \in \mathcal{H}_D$ corresponds to limiting our sampling to a restricted subset of the entity population corresponding to node v. In fact, we want to estimate the expected return of a query of size k conditioning on the fact that the entities in the exclude list will not be retrieved by any new sample. The latter corresponds to removing these entities from the population under consideration. Thus, the estimates \hat{f}_0 and \hat{C} should be updated before applying Equation (1) to compute the expected return of a query of size k. This can be done by removing the entities included in the exclude list from the running sample for node v, recomputing the entity counts f_i and following the techniques presented above for computing the updated estimates for \hat{f}_0 and \hat{C} . This approach requires that the exclude list is known in advance. To construct an exclude list on can follow a randomized approach, where l of the retrieved entities are including in the list uniformly at random.

3.3 Regression Based Gain Estimation

Building upon the approach of Hwang and Shen [?], we introduce a new technique for estimating the gain of a generalized query q(k,l) directly without using the estimator shown in Equation (1). Since we want to estimate the gain even for nodes with a small number of retrieved entities we propose a regression based technique that is able to capture the structural properties of the expected gain function as discussed below.

To derive the new lower bound we make used of the generalized jackknife procedure for species richness estimation. Given two (biased) estimators of S, say \hat{S}_1 and \hat{S}_2 , let R be the ratio of their

biases:

$$R = \frac{E(\hat{S}_1) - S}{E(\hat{S}_2) - S} \tag{2}$$

By the generalized jackknife procedure, we can completely eliminate the bias resulting from either \hat{S}_1 or \hat{S}_2 via

$$S = G(\hat{S}_1, \hat{S}_2) = \frac{\hat{S}_1 - R\hat{S}_2}{1 - R}$$
 (3)

provided the ratio of biases ${\cal R}$ is known. However, ${\cal R}$ is unknown and we need to estimate it.

Let D_n denote the number of unique entities in a unified sample of size n. We consider the following two biased estimators of S: $\hat{S}_1 = D_n$ and $\hat{S}_2 = \sum_{j=1}^n D_{n-1}(j)/n = D_n - f_1/n$ where $D_{n-1}(j)$ is the number of species discovered with the jth observation removed from the original sample. Replacing these estimators in Equation (3) gives us:

$$S = D_n + \frac{R}{1 - R} \frac{f_1}{n} \tag{4}$$

Similarly, for a sample of increased size n + m we have:

$$S = D_{n+m} + \frac{R'}{1 - R'} \frac{f_1'}{n + m} \tag{5}$$

where R' is the ratio of the biases and f'_1 the number of singleton entities for the increased sample.

Let $K=\frac{R}{1-R}$ and $K'=\frac{R'}{1-R'}$. Taking the difference of the previous two equations we have:

$$D_{n+m} - D_n = K \frac{f_1}{n} - K' \frac{f_1'}{n+m}$$
 (6)

Therefore, we have:

$$new = K\frac{f_1}{n} - K'\frac{f_1'}{n+m} \tag{7}$$

We need to estimate K, K' and f_1' . We start with f_1' denoting the number of singleton in the increased sample of size n+m. Notice, that f_1' is not known since we have not obtained the increased sample yet, so we need to express it in terms of f_1 , i.e., the number of singletons, in the running sample of size n. We have:

$$f_1' = new + f_1 - f_1 * Pr[in query of size m]$$
 (8)

Following an approach similar to Shen et al. [?], we have that the probability of a singleton appearing in a query of size m is:

$$\Pr[\text{in query of size m}] = \sum_{k=0}^{m} (1 - (1 - \frac{1}{f_1})^k) \binom{m}{k} (1 - p_1)^k p_1^{m-k}$$
(9)

where p_1 denotes the probability that a singleton item in the sample of size n will be selected in a future query. We estimate this probability using the corresponding Good-Turing estimator considering the running sample. We have:

$$p_1 = \hat{\theta}(1) = \frac{1}{n} 2 \frac{N_2}{N_1} \tag{10}$$

where N_2 is the number of entities that appear twice in the sample and N_1 is the number of singletons. Eventually we have that:

$$f_1' = new + f_1 \left(1 - \sum_{k=0}^{m} \left(1 - \left(1 - \frac{1}{f_1}\right)^k\right) \binom{m}{k} \left(1 - p_1\right)^k p_1^{m-k}\right)$$

$$f_1' = new + f_1 (1 - P) \tag{11}$$

Replacing the last equation in Equation (7) we have:

$$new = K \frac{f_1}{n} - K' \frac{new + f_1(1 - P)}{n + m}$$

$$new = K \frac{f_1}{n} - K' \frac{new}{n + m} - K' \frac{f_1(1 - P)}{n + m}$$

$$new(1 + \frac{K'}{n + m}) = K \frac{f_1}{n} - K' \frac{f_1(1 - P)}{n + m}$$

$$new = \frac{1}{(1 + \frac{K'}{n + m})} (K \frac{f_1}{n} - K' \frac{f_1(1 - P)}{n + m})$$

Next, we discuss how one can estimate K and K_{\prime} . To estimate K we follow the regression approach introduced by Hwang and Shen [?]. From the Cauchy-Schwarz inequality we have that:

$$K = \frac{\sum_{i=1}^{S} (1 - p_i)^n}{\sum_{i=1}^{S} p_i (1 - p_i)^{n-1}} \ge \frac{(n-1)f_1}{2f_2}$$
 (12)

This can be generalized

$$K = \frac{nf_0}{f_1} \ge \frac{(n-1)f_1}{2f_2} \ge \frac{(n-2)f_2}{3f_3} \ge \dots$$
 (13)

Let $g(i) = \frac{(n-i)f_i}{(i+1)f_{i+1}}$. From the above we have that the function g(x) is a smooth monotone function for all $x \geq 0$. Moreover, let y_i denote a realization of g(i) mixed with a random error. Hwang and Shen how one can use an exponential regression model to estimate K. The proposed model corresponds to:

$$y_i = \beta_0 \exp(\beta_1 i^{\beta_2}) + \epsilon_i \tag{14}$$

where $i = 1, ..., n - 1, \beta_0 > 0, \beta_1 < 0, \beta_2 > 0$ and ϵ_i denotes random errors. It follows that $K = \beta_0$.

Finally, we show how one can estimate the value of K_t for an increased sample of size n + m. First, we show that K increases monotonically as the size of the running sample increases. Let $K(n) = \frac{\sum_{i=1}^{S} (1-p_i)^n}{\sum_{i=1}^{S} p_i (1-p_i)^{n-1}}$ be a function returning the value of K for a sample of size n. We have the following lemma.

LEMMA 1. We have $K(n+m) > K(n), \forall n, m > 0$.

PROOF. In the remainder of the proof we will denote K(n+m)as K'. By definition we have that $K = \frac{\sum_{i=1}^{S} (1-p_i)^n}{\sum_{i=1}^{S} p_i (1-p_i)^{n-1}}$ and $K' = \frac{\sum_{i=1}^{S} (1-p_i)^{n+m}}{\sum_{i=1}^{S} p_i (1-p_i)^{n+m-1}}$. We want to show that:

$$\frac{\sum_{i=1}^{S}(1-p_i)^{n+m}}{\sum_{i=1}^{S}p_i(1-p_i)^{n+m-1}} \geq \frac{\sum_{i=1}^{S}(1-p_i)^n}{\sum_{i=1}^{S}p_i(1-p_i)^{n-1}}$$
 i.e., $k = \sum_{c \in C(v)} \frac{n_c+1}{\sum_{c \in C(v)} n_c+1} k$. Let $r(q(k,l),v)$ denote the gain by issuing query $q(k,l)$ at node $v \in \mathcal{H}_D$. The exclude list of size l for node v can be constructed by $v \in \mathcal{H}_D$. The exclude list of size l for node v can be partitioned accordingly across the direct descendants of v resulting to $|C(v)|$ exclude lists of size l for each descendant node $v \in \mathcal{H}_D$. The exclude list of size $v \in \mathcal{H}_D$ and $v \in \mathcal{H}_D$ and $v \in \mathcal{H}_D$ and $v \in \mathcal{H}_D$ and $v \in \mathcal{H}_D$ and

But the last inequality always holds since each term of the summation is positive. In particular, if $p_j \ge p_i$ then also $1-p_i \ge 1-p_j$ and if $p_j \leq p_i$ then $1 - p_i \leq 1 - p_j$. \square

We have that K(n) is an increasing function of the sample size. Moreover, K(n) has a decreasing slope. We model K as a generalized logistic function of the form $f(x) = \frac{A}{1 + exp(-G(x-D))}$. As we observe samples of different sizes for different queries we estimate K as described above and therefore we observe different realizations of $f(\cdot)$. Thus, we can learn the parameters of f and use it to estimate K'

In the presence of an exclude list of size l we follow the approach described in Section 3.2 to update the quantities f_i used in the analysis above.

Negative Answers and Gain Estimation

Next, we study the effect of negative answers on estimating the gain of future queries. It is possible to issue a query at a specific node $v \in \mathcal{H}_D$ and receive no entities, i.e., we receive a negative answer. This is an indication that the underlying entity population of v is empty. In such scenarios we assign the expected gain of future queries at v and all its descendants to zero.

Another type of negative answer corresponds to the scenario where we issue a query at an ancestor node u of v and receive no entities associated with v but received some entities for u. Notice, that in this case we do not have enough information to update our estimates for node u. The reason is that due to the restricted query size entities from other descendants of u may be more popular with respect to the popularity distribution of u.

Estimation with Stratified Samples

The previous estimators can only be used when the samples for a node $v \in \mathcal{H}_D$ have been retrieved considering its entire entity population. However, as discussed in Section 2.3 this is not always the case in hierarchically structured domains as we may have stratified samples for the nodes in \mathcal{H}_D . In this case one needs to take into account how the entities in the result of a query q(k, l) at node v are distributed across its direct descendants, i.e., the strata corresponding to v. Let k be the total number of entities in the query result and C(v) the set of direct descendants of v. According to propionate stratification we have that $k = \sum_{c \in C(v)} \frac{n_c}{\sum_c \in C(v) n_c} k$ where n_c denotes the number of entities in descendant c obtained only by querying node v directly. Notice, that the quantity $\frac{n_c}{\sum_c \in C(v) n_c}$ corresponds to the probability that an entity in the query result will be retrieved by the population corresponding to descendant c. To account for descendants for which no entities have been retrieved, we consider a smoothed version of the previous equation, i.e., $k = \sum_{c \in C(v)} \frac{n_c + 1}{\sum_c \in C(v) n_c + 1} k$.

Let r(q(k, l), v) denote the gain by issuing query q(k, l) at node $v \in \mathcal{H}_D$. The exclude list of size l for node v can be constructed by accordingly across the direct descendants of v resulting to |C(v)|exclude lists of size l_c for each descendant node $c \in C(v)$. Combining this with the proportionate stratification of the query result, we can estimate r(q(k, l), v) as:

$$r(q(k,l),v) = \sum_{c \in C(v)} r(q(\frac{n_c + 1}{\sum_c \in C(v)n_c + 1}k, l_c), c)$$
 (16)

If the entities in a descendant node $c \in C(v)$ have been retrieved only by considering the entire population corresponding to c, one can use the approach presented in Section 3.3 to estimate the quantity $r(q(\frac{n_c+1}{\sum_c \in C(v)n_c+1}k, l_c), c)$. Otherwise, one needs to recursively apply the technique proposed here.

Discussion. Applying the approach of proportionate stratification can be prohibitively expensive due to the exponential size of lattice \mathcal{H}_D . Therefore, one can estimate r(q(k,l),v) by computing the quantities $r(q(\frac{n_c+1}{\sum_c \in C(v)n_c+1}k,l_c),c), \forall c \in C(v)$ using the estimator proposed in Section 3.3. While, the latter ignores the presence of stratified samples can significantly speed up the corresponding computations.

DISCOVERING QUERYING POLICIES

In this section, we focus on the second component of our proposed algorithmic framework, and introduce a multi-round adaptive optimization algorithm for identifying a querying strategy that will maximize the total gain across all rounds under the given budget constraints. At each round the proposed algorithm uses as input the estimated return for queries q(k, l) at the different nodes in \mathcal{H}_D . Before presenting our proposed algorithm we list several challenges associated with this adaptive optimization problem.

- 1. The first challenge is that the number of nodes in \mathcal{H}_D is exponential with respect to the number of attributes A_D describing the domain of interest. Querying every possible node to estimate its expected return for different queries q(k, l) is prohibitively expensive. In fact, it is natural to assume a budget that does not allow any algorithm to query all nodes in the hierarchy. However, we assume that keeping estimates for each of the nodes for which at least one entity has been retrieved is feasible.
- 2. The second challenge is balancing there tradeoff between exploitation and exploration. The first refers to querying nodes for which sufficient entities have been retrieved and hence we have an accurate estimate for their expected return while the latter refers to exploring new nodes in \mathcal{H}_D in order to avoid locally optimal policies.

Balancing Exploration and Exploitation

While issuing different queries q(k, l) at different nodes of \mathcal{H}_D we obtain a collection of entities that can be assigned to different nodes in \mathcal{H}_D . For each such node we can estimate the return of a new query q(k, l) using the estimator presented in Section 3.3. However, this estimate is based on a rather small sample of the underlying population. Thus, exploiting this information at every round may need to suboptimal decision. This is the reason why one needs to balance the trade-off between exploiting nodes for which the estimated return is high and nodes that haven't been queried many times. Formally, the latter corresponds to upper bounding the expected return of each potential action with a confidence interval that depends on both the variance of the expected return and the number of times an action is evaluated.

Let $r(\alpha)$ denote the expected return of action α that is an estimate of the true return $r^*(\alpha)$. We assume that the expected return is normalized so that it has support in [0, 1]. We can normalize that by dividing it with the query size k. Moreover, let $\mathcal{E}(\alpha)$ be an error component on the return of action α chosen such that $r(\alpha) - \sigma(\alpha) \le r^*(\alpha) \le r(\alpha) + \sigma(\alpha)$ with high probability. The parameter $\sigma(\alpha)$ should take into account both the empirical variance of the expected return as well as our uncertainty if an action has been chosen few times. Let $n_{\alpha,t}$ be the number of times we have chosen action α by round t, and let $v_{\alpha,t}$ denote the maximum between some constance c (e.g., c = 0.01) and the empirical variance for action α at round t. The latter can be computed using bootstrapping over the estimator presented in Section 3.3. We choose to use the following formula for sigma:

$$\sigma(\alpha) = \sqrt{\frac{v_{\alpha,t} \cdot \log(t)}{n_{\alpha,t}}}$$
 (17)

4.2 A Frontier UCB Algorithm

We now introduce our proposed multi-round algorithm for solving the budgeted entity enumeration problem. At a high-level our algorithm proceeds as follows. Let S denote the set of all potential queries q(k, l) that can be issued at the different nodes of \mathcal{H}_D . Moreover, let $f(\alpha)$ and $c(\alpha)$ denote the upper bounded return and cost for an action $\alpha \in A_{\mathcal{F}}$. An overview of the proposed algorithm is shown in Algorithm 1.

Algorithm 1 Frontier UCB

- 1: **Input:** \mathcal{H}_D : the hierarchy describing the entity domain; f: value oracle access to return upper bound; c: value oracle access to the query costs; β_c : query budget;
- 2: Output: E: a set of extracted distinct entities;
- $3: \mathcal{E} \leftarrow \{\}$
- 4: $RB \leftarrow \beta_c$ /* Set remaining budget */
- 5: while RB>0 and $QF\neq \{\}$ do 6: $\alpha\leftarrow\arg\max_{\alpha\in\mathcal{S}}\frac{f(a)}{c(a)}$ such that RB-c(a)>0
- if α is NULL then 7:

8:

- 9: $RB \leftarrow RB - c(a)$ /* Update budget */
- 10: Issue query corresponding to α
- 11: $E \leftarrow$ entities from query
- 12: $\mathcal{E} \leftarrow \mathcal{E} \cup E /*$ Update unique entities */
- 13: Remove bad actions from S.
- 14: return \mathcal{E}

4.2.1 Removing Bad Actions

At each point we can eliminate actions that are not promising. We define non-promising actions as follows:

DEFINITION 2 (BAD ACTION). An action $\alpha \in S$ is said to be bad if

$$r(\alpha) + \sigma(\alpha) < \max_{\alpha' \in \mathcal{S}} (r(\alpha') - \sigma(\alpha'))$$
 (18)

Intuitively, the above definitions says that we do not need to consider again an action as long as there exists another action such that the upper bounded return of the former is lower than the lower bounded return of the latter.

4.2.2 Regret Analysis

RELATED WORK

Beth's work Work by Yael Amsterdamer on Crowd Mining CrowdFill work by Stanford

CONCLUSIONS

REFERENCES

- [1] Y. Amsterdamer, S. B. Davidson, T. Milo, S. Novgorodov, and A. Somech. OASSIS: query driven crowd mining. In International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 589-600,
- [2] S. K. Kondredi, P. Triantafillou, and G. Weikum. Combining information extraction and human computing for crowdsourced knowledge acquisition. In 30th IEEE International Conference on Data Engineering, ICDE '14, 2014.

- [3] H. Park and J. Widom. Crowdfill: A system for collecting structured data from the crowd. In 23rd International World Wide Web Conference (WWW), 2014.
- [4] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar. Crowdsourced enumeration queries. In *Proceedings of the 2013 IEEE International Conference on Data Engineering (ICDE 2013)*, ICDE '13, pages 673–684, 2013.
- [5] R. West, E. Gabrilovich, K. Murphy, S. Sun, R. Gupta, and D. Lin. Knowledge base completion via search-based question answering. In *Proceedings of the 23rd International Conference on World Wide Web*, WWW '14, pages 515–526, 2014.