

- **Graph shortest paths**
 - directed graph G=(V,E)
 - Dijkstra algorithm single-pair shortest path
 - Dijkstra algorithm all-pairs shortest paths

C2

C3

C4

C5

C6

C7

C8

C2

C7

C8

C6

solution directly based on the *Dijkstra* algorithm FOR i IN {C1, ..., C8}

Dijkstra(i) until all other vertices are visited

- **Graph shortest paths**
 - directed graph G=(V,E)
 - Dijkstra algorithm single-pair shortest path
 - Dijkstra algorithm all-pairs shortest paths

C2

C3

C4

C5

C6

C7

C2

C6

C8

C7

- **Graph Floyd algorithm -** all-pairs shortest paths
 - k-path: intermediate vertices (except the two ends) all have indices less than k
 - best (k+1)-path from s to t is either case 1) or case 2)
 - 1) the best k-path from s to k followed by the best k-path from k to t
 - 2) the best k-path from s to t

25

Floyd algorithm

INIT: Set the 0-path (direct edges among vertices)

LOOP: k FROM 1 TO n

Compute the k-path according to the (k-1)-path

- Graph Floyd algorithm all-pairs shortest paths
 - k-path: intermediate vertices (except the two ends) all have indices less than k
 - best (k+1)-path from s to t is either case 1) or case 2)
 - 1) the best k-path from s to k followed by the best k-path from k to t

• Graph - Floyd algorithm - all-pairs shortest paths

			•	Graj	oh - F	Floyd	algo	rithn
0-pat	th =>				1.3			
v.	0	1	2	3	4	5	6	7
0	0	18	14	23	10000	10000	10000	10000
1	18	0	8	10000	12	10000	10000	25
2	14	8	0	10	7	9	10000	10000
0 1 2 3 4 5 6 7	23	10000	10	0	10000	11	19	10000
4	10000	12	7	10000	0	6	13	15
5	10000	10000	9	11	6	0	10	10000
6	10000	10000	10000	19	13	10	0	17
7	10000	25	10000	10000	15	10000	17	0
1-pat	th =>							
484	0	1	2	3	4	5	6	7
0	0	18	14	23	10000	10000	10000	10000
1	18	0	8	41	12	10000	10000	25
0 1 2 3 4 5 6 7	14	8	0	10	7	9	10000	10000
3	23	41	10	0	10000	11	19	10000
4	10000	12	7	10000	0	6	13	15
5	10000	10000	9	11	6	0	10	10000
6	10000	10000	10000	19	13	10	0	17
	10000	25	10000	10000	15	10000	17	0
2-pat	th =>							
	0	1	2	3	4	5	6	7
0	0	18	14	23	30	10000	10000	43
1	18	0	8	41	12	10000	10000	25
2	14	8	0	10	7	9	10000	33
3	23	41	10	0	53	11	19	66
4	30	12	7	53	0	6	13	15
5	10000	10000	9	11	6	0	10	10000
0 1 2 3 4 5 6 7	10000	10000	10000	19	13	10	0	17
7	43	25	33	66	15	10000	17	0

• Graph - Floyd algorithm - all-pairs shortest paths

• Graph - Floyd algorithm - all-pairs shortest paths

					-	•	\sim	
6-pat	th =>							
	0	1	2	3	4	5	6	7
0	0	18	14	23	21	23	33	36
1	18	0	8	18	12	17	25	25
2	14	8	0	10	7	9	19	22
3	23	18	10	0	17	11	19	32
0 1 2 3 4 5 6 7	21	12	7	17	0	6	13	15
5	23	17	9	11	6	0	10	21
6	33	25	19	19	13	10	0	17
7	36	25	22	32	15	21	17	0
7-pat	th =>							
	0	1	2	3	4	5	6	7
0	0	18	14	23	21	23	33	36
0 1 2 3 4 5 6 7	18	0	8	18	12	17	25	25
2	14	8	0	10	7	9	19	22
3	23	18	10	0	17	11	19	32
4	21	12	7	17	0	6	13	15
5	23	17	9	11	6	0	10	21
6	33	25	19	19	13	10	0	17
7	36	25	22	32	15	21	17	0
8-pat	th =>							
	0	1	2	3	4	5	6	7
0	0	18	14	23	21	23	33	36
1	18	0	8	18	12	17	25	25
2	14	8	0	10	7	9	19	22
3	23	18	10	Θ	17	11	19	32
0 1 2 3 4 5 6	21	12	7	17	0	6	13	15
5	23	17	9	11	6	0	10	21
6	33	25	19	19	13	10	0	17
7	36	25	22	32	15	21	17	Θ

- Graph Floyd algorithm all-pairs shortest paths
 - k-path: intermediate vertices (except the two ends) all have indices less than k
 - **D.P.** (k+1)-path^{best}[s to t] \leq k-path^{best}[s to k]+k-path^{best}[k to t] or k-path^{best}[s to t]
 - retrieve the min-path
 - no preceding vertex to track
 - how ?

	C1	C2	С3	C4	C5	C6	C7	C8
C1	0	18	14	23	21	23	33	36
C2	18	0	8	18	12	17	25	25
C3	14	8	0	10	7	9	19	22
C4	23	18	10	0	17	11	19	32
C5	21	12	7	17	0	6	13	15
C6	23	17	9	11	6	0	10	21
C7	33	25	19	19	13	10	0	17
C8	36	25	22	32	15	21	17	0

- Graph Floyd algorithm all-pairs shortest paths
 - k-path: intermediate vertices (except the two ends) all have indices less than k
 - **D.P.** (k+1)-path^{best}[s to t] \leq k-path^{best}[s to k]+k-path^{best}[k to t] or k-path^{best}[s to t]
 - retrieve the min-path

23

- Graph Floyd algorithm all-pairs shortest paths
 - k-path: intermediate vertices (except the two ends) all have indices less than k
 - **D.P.** (k+1)-path^{best}[s to t] \leq k-path^{best}[s to k]+k-path^{best}[k to t] or k-path^{best}[s to t]
 - retrieve the min-path

- Graph Floyd algorithm all-pairs shortest paths
 - k-path: intermediate vertices (except the two ends) all have indices less than k
 - **D.P.** (k+1)-path^{best}[s to t] \leq k-path^{best}[s to k]+k-path^{best}[k to t] or k-path^{best}[s to t]
 - retrieve the min-path

- **Graph Floyd algorithm -** all-pairs shortest paths
 - k-path: intermediate vertices (except the two ends) all have indices less than k
 - **D.P.** (k+1)-path^{best}[s to t] \leq k-path^{best}[s to k]+k-path^{best}[k to t] or k-path^{best}[s to t]
 - retrieve the min-path check the distance consistency
 - complexity
 - adjacency list based Dijkstra with heap based MDFO: O(|V|(|V|+|E|) log |V|)
 - suitable to sparse graphs
 - adjacency matrix based *Dijkstra*: $O(|V||V|^2) = O(|V|^3)$
 - Floyd: O($|V|^3$)
 - suitable to dense graphs (in terms of not only efficiency but also implementation simplicity)

THANK YOU

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - minimum-cost means having the minimum sum of all edge weights of the sub-graph
 - such sub-graph must be a tree (so why called MS"T")
 - a cycle must have a redundant edge that can be removed without violating sub-graph connectivity

MST = {C1C3,C2C3,C3C4,C3C5,C5C6,C5C8,C6C7} minimum-cost |MST| = 14+8+10+7+6+15+10 = 70

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - *Prim* algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - *Prim* algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - *Prim* algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - *Prim* algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - *Prim* algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - *Prim* algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - *Prim* algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - *Prim* algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - Prim algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - Prim algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - Prim algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - Prim algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - Prim algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - *Prim* algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - *Prim* algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - *Prim* algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - *Prim* algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - Prim algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - *Prim* algorithm
 - incrementally incorporate the closest vertex until all vertices are incorporated

- Minimum-cost spanning tree (MST)
 - Prim algorithm incrementally incorporate the closest vertex

```
Prim MST from 0 =>
add out-MST edges from 0 : =>0-1:18=>0-2:14=>0-3:23
remove min-edge 0-2:14=>2 incorporated into MST
add out-MST edges from 2 : =>2-1:8=>2-3:10=>2-4:7=>2-5:9
remove min-edge 2-4:7=>4 incorporated into MST
add out-MST edges from 4 : =>4-1:12=>4-5:6=>4-6:13=>4-7:15
remove min-edge 4-5:6=>5 incorporated into MST
add out-MST edges from 5 : =>5-3:11=>5-6:10
remove min-edge 2-1:8=>1 incorporated into MST
add out-MST edges from 1 : =>1-7:25
remove min-edge 2-5:9=>5 already in MST
remove min-edge 5-6:10=>6 incorporated into MST
add out-MST edges from 6 : =>6-3:19=>6-7:17
remove min-edge 2-3:10=>3 incorporated into MST
add out-MST edges from 3 :
remove min-edge 5-3:11=>3 already in MST
remove min-edge 4-1:12=>1 already in MST
remove min-edge 4-6:13=>6 already in MST
remove min-edge 4-7:15=>7 incorporated into MST
Prim MST from 0 =>| 0-2:14 2-4:7 4-5:6 2-1:8 5-6:10 2-3:10 4-7:15
```


- Minimum-cost spanning tree (MST)
 - Prim algorithm incrementally incorporate the closest vertex

```
Prim MST from 7 =>
add out-MST edges from 7 : =>7-1:25=>7-4:15=>7-6:17
remove min-edge 7-4:15=>4 incorporated into MST
add out-MST edges from 4 : =>4-1:12=>4-2:7=>4-5:6=>4-6:13
remove min-edge 4-5:6=>5 incorporated into MST
add out-MST edges from 5 : =>5-2:9=>5-3:11=>5-6:10
remove min-edge 4-2:7=>2 incorporated into MST
add out-MST edges from 2 : =>2-0:14=>2-1:8=>2-3:10
remove min-edge 2-1:8=>1 incorporated into MST
add out-MST edges from 1 : =>1-0:18
remove min-edge 5-2:9=>2 already in MST
remove min-edge 2-3:10=>3 incorporated into MST
add out-MST edges from 3 : =>3-0:23=>3-6:19
remove min-edge 5-6:10=>6 incorporated into MST
add out-MST edges from 6 :
remove min-edge 5-3:11=>3 already in MST
remove min-edge 4-1:12=>1 already in MST
remove min-edge 4-6:13=>6 already in MST
remove min-edge 2-0:14=>0 incorporated into MST
Prim MST from 7 =>| 7-4:15 4-5:6 4-2:7 2-1:8 2-3:10 5-6:10 2-0:14
```


- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - Prim algorithm incrementally incorporate the closest vertex
 - Kruskal algorithm
 - organize graph edges via heap
 - incrementally merge sub-graphs via the min-edge

Minimum-cost spanning tree (MST)

- connected & undirected graph G=(V,E)
- connected sub-graph that has the minimum cost
- Prim algorithm incrementally incorporate the closest vertex
- Kruskal algorithm
 - organize graph edges via heap
 - incrementally merge sub-graphs via the min-edge

Minimum-cost spanning tree (MST)

- connected & undirected graph G=(V,E)
- connected sub-graph that has the minimum cost
- Prim algorithm incrementally incorporate the closest vertex
- Kruskal algorithm
 - organize graph edges via heap
 - incrementally merge sub-graphs via the min-edge

 $\begin{array}{l} \{C1\} \ \{C2\} \ \{C3,\,C5,\,C6\} \ \{C4\} \ \{C7\} \ \{C8\} \\ E = \{C5C6,C3C5\} \end{array}$

Minimum-cost spanning tree (MST)

- connected & undirected graph G=(V,E)
- connected sub-graph that has the minimum cost
- Prim algorithm incrementally incorporate the closest vertex
- Kruskal algorithm
 - organize graph edges via heap
 - incrementally merge sub-graphs via the min-edge

Minimum-cost spanning tree (MST)

- connected & undirected graph G=(V,E)
- connected sub-graph that has the minimum cost
- Prim algorithm incrementally incorporate the closest vertex
- Kruskal algorithm
 - organize graph edges via heap
 - incrementally merge sub-graphs via the min-edge

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - Prim algorithm incrementally incorporate the closest vertex
 - Kruskal algorithm
 - organize graph edges via heap
 - incrementally merge sub-graphs via the min-edge

{C1} {C2, C3, C5, C6, C7} {C4} {C8} E = {C5C6,C3C5,C2C3,C6C7}

Minimum-cost spanning tree (MST)

- connected & undirected graph G=(V,E)
- connected sub-graph that has the minimum cost
- Prim algorithm incrementally incorporate the closest vertex
- Kruskal algorithm
 - organize graph edges via heap
 - incrementally merge sub-graphs via the min-edge

 $\begin{aligned} &\{C1\} \ \{C2,\,C3,\,C4,\,C5,\,C6,\,C7\} \ \{C8\} \\ &E = \{C5C6,\!C3C5,\!C2C3,\!C6C7,\!C3C4\} \end{aligned}$

Minimum-cost spanning tree (MST)

- connected & undirected graph G=(V,E)
- connected sub-graph that has the minimum cost
- Prim algorithm incrementally incorporate the closest vertex
- Kruskal algorithm
 - organize graph edges via heap
 - incrementally merge sub-graphs via the min-edge

 $\begin{aligned} &\{C1\} \ \{C2,\,C3,\,C4,\,C5,\,C6,\,C7\} \ \{C8\} \\ &E = \{C5C6,\!C3C5,\!C2C3,\!C6C7,\!C3C4\} \end{aligned}$

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - Prim algorithm incrementally incorporate the closest vertex
 - Kruskal algorithm
 - organize graph edges via heap
 - incrementally merge sub-graphs via the min-edge

 $\{C1\} \ \{C2, C3, C4, C5, C6, C7\} \ \{C8\}$ $E = \{C5C6, C3C5, C2C3, C6C7, C3C4\}$

Minimum-cost spanning tree (MST)

- connected & undirected graph G=(V,E)
- connected sub-graph that has the minimum cost
- Prim algorithm incrementally incorporate the closest vertex
- Kruskal algorithm
 - organize graph edges via heap
 - incrementally merge sub-graphs via the min-edge

 $\{C1\} \ \{C2, C3, C4, C5, C6, C7\} \ \{C8\}$ $E = \{C5C6, C3C5, C2C3, C6C7, C3C4\}$

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - Prim algorithm incrementally incorporate the closest vertex
 - Kruskal algorithm
 - organize graph edges via heap
 - incrementally merge sub-graphs via the min-edge

{C1, C2, C3, C4, C5, C6, C7} {C8} E = {C5C6,C3C5,C2C3,C6C7,C3C4,C1C3}

Minimum-cost spanning tree (MST)

- connected & undirected graph G=(V,E)
- connected sub-graph that has the minimum cost
- Prim algorithm incrementally incorporate the closest vertex
- Kruskal algorithm
 - organize graph edges via heap
 - incrementally merge sub-graphs via the min-edge

{C1, C2, C3, C4, C5, C6, C7, C8} E = {C5C6,C3C5,C2C3,C6C7,C3C4,C1C3,C5C8}

- Minimum-cost spanning tree (MST)
 - connected & undirected graph G=(V,E)
 - connected sub-graph that has the minimum cost
 - Prim algorithm incrementally incorporate the closest vertex
 - Kruskal algorithm incrementally merge sub-graphs (sub-trees) via the min-edge

• how to check if two vertices are in the same sub-tree?

template <class T> class PPNode{ // parent pointer GT node abstract class

REVIEW • General tree

parent pointer implementation

```
private:T e;int n; // node's element; number of nodes of the node's tree
                         PPNode *p; // node's parent
                 public: PPNode(){p=NULL;n=1;} ~PPNode(){} PPNode(const T& ei){e=ei;p=NULL;n=1;}
                          const T& getE() const{return e;} void setE(const T& ei){e=ei;}
                         int getN() const{return n;} void setN(int ni){n=ni;}
                         inline PPNode* getP() const{return p;} void setP(PPNode* g){p=g;}
                         static PPNode* find(PPNode* q){while(q->qetP()!=NULL) q=q->qetP();return q;}
                         static void ppunion(PPNode* a,PPNode* b){a=find(a);b=find(b);if(a==b) return;
                                  if(a->getN()<=b->getN()){a->setP(b);b->setN(b->getN()+a->getN());}
                                  else{b->setP(a);a->setN(a->getN()+b->getN());}}
                 // ostream overloading, so that 'cout<<{PPNode<T> object}' can have meaning
                 template <typename T> std::ostream& operator<<(std::ostream& out,PPNode<T>* b){
                          out<<b->getE()<<':'<<b->getN(); return out;}
    PPNode<char> *p1,*p2;PPNode<char>* pp[26]={new PPNode<char>('A'),
    new PPNode<char>('B'), new PPNode<char>('C'), new PPNode<char>('D'), new PPNode<char>('E'), new PPNode<char>('F'),
    new PPNode<char>('G'), new PPNode<char>('H'), new PPNode<char>('I'), new PPNode<char>('J'), new PPNode<char>('K'),
     new PPNode<char>('L'), new PPNode<char>('M'), new PPNode<char>('N'), new PPNode<char>('O'), new PPNode<char>('P'),
    new PPNode<char>('0'), new PPNode<char>('R'), new PPNode<char>('S'), new PPNode<char>('T'), new PPNode<char>('U'),
    new PPNode<char>('V'), new PPNode<char>('W'), new PPNode<char>('X'), new PPNode<char>('Y'), new PPNode<char>('Z')};
    while(true){int i=rand()%26,j=rand()%26;p1=PPNode<char>::find(pp[i]);p2=PPNode<char>::find(pp[i]);
           if(p1==p2){cout<<p1<<"=="<<p2<<" unnecessary to merge!\n";}</pre>
           else{PPNode<char>::ppunion(p1,p2);
F
                  if(p1->getN()<p2->getN()){cout<<" merge into "<<p2<<endl;if(26==p2->getN()) break;}
                  else{cout<<" merge into "<<pl<>endl;if(26==pl->getN()) break;}}}
```


- Minimum-cost spanning tree (MST)
 - Kruskal algorithm incrementally merge sub-graphs (sub-trees) via the min-edge

THANK YOU

