

ECEG-2131 Applied Electronics I

Addis Ababa Institute of Technology (AAIT) School of Electrical and Computer Engineering

Learning Outcomes

- At the end of the lecture, students should be able to know about:
 - Operating Point.
 - Fixed-Bias Circuit.
 - Load-Line Analysis.
 - Emitter Bias Configuration.
 - Voltage-Divider Bias.

- Too often it is assumed that the transistor is a magical device that can raise the level of applied AC input without the assistance of external energy source.
- In actuality, any increase in voltage, current, or power is the result of a transfer of energy from applied DC supplies.
- Biasing is the application of DC voltages to establish a fixed level of current and voltage.
- The following relationships are basic in most analysis.

$$V_{BE} \cong 0.7 \text{ V}$$

$$I_E = (\beta + 1)I_B \cong I_C$$

 Once I_B is known, these relationships can be applied

$$I_C = \beta I_B$$

Bias establishes the operating point (Q-point) of a transistor amplifier; the ac signal moves above and below this point.

A signal that swings outside the active region will be clipped.

OPERATING POINT

BIASING

Application of dc voltages to establish a fixed level of current and voltage. (Q-point)

Operating Point

Must NOT exceed the Maximum Rating of the transistor

 $I_{C \max}$ $P_{C \max}$

At point A:

Transistor "OFF", zero current and voltage (not applicable)

At point B:

Center Point Biasing (applicable). Signal will swing in both Positive and Negative without entering into Cutoff or Saturation region.

 $V_{CE \max}$

At point C:

Applicable but not a good region since this will raise Nonlinearities to the output signal. Limitation of peak-to-Peak value of V_{CF} =0 Vand I_{C} =0 A.

Operating Point

At point D:

Applicable but not a good region also since this will sets the Device operating region near the maximum power.

Summary of the Biasing operation

Mode	EBJ	СВЈ
Cutoff	Reverse	Reverse
Active (forward)	Forward	Reverse
Saturation	Forward	Forward

Standard Notation for Current and Voltage

For Linear (active) operation

NPN BE junction FB. BC junction RB. $\mathbf{V}_{\mathbf{CB}}$ $\mathbf{V}_{\mathbf{CE}}$ V_{BE}

Base-Emitter Loop:

$$V_{CC} - I_B R_B - V_{BE} = 0$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

Collector-Emitter Loop:

$$\begin{split} \boldsymbol{I}_{C} &= \boldsymbol{\beta} \boldsymbol{I}_{B} \\ \boldsymbol{V}_{CE} &+ \boldsymbol{I}_{C} \boldsymbol{R}_{C} - \boldsymbol{V}_{CC} = \boldsymbol{0} \\ \boldsymbol{V}_{CE} &= \boldsymbol{V}_{CC} - \boldsymbol{I}_{C} \boldsymbol{R}_{C} \\ \boldsymbol{V}_{CE} &= \boldsymbol{V}_{C} - \boldsymbol{V}_{E} \end{split}$$

Example 4.1

Find

- (a) I_{BQ} and I_{CQ} (c) V_{B} and V_{C}

(b) V_{CEQ}

(d) V_{BC}

$$I_{BQ} = \frac{V_{CC} - V_{BE}}{R_{R}} = \frac{12 - 0.7}{240k} = 47.08 \mu A$$

$$I_{CQ} = \beta I_{BQ} = (50)(47.08\mu) = 2.35mA$$

$$V_{CEQ} = V_{CC} - I_{CQ} R_{C}$$

$$= 12 - (2.35m)(2.2k)$$

$$= 6.83V$$

$$V_{BC} = V_{BE} = 0.7V$$

$$V_{CE} = V_{CE} = 6.83V$$

$$V_{CE} = V_{CE} = 0.7V$$

$$V_{CE} = V_{CE} = 0.83V$$

$$V_B = V_{BE} = 0.7V$$
 $V_C = V_{CE} = 6.83V$
 $V_{BC} = V_B - V_C$

$$= 0.7V - 6.83V = -6.13V$$

 $240k\Omega$

 $^{\mathsf{R}_\mathsf{c}}2.2k\Omega$

 $\beta = 50$

Transistor Saturation:

- For a transistor operating in the saturation region, the current is a maximum value for the particular design.
- I_{Csat} designed should be less than the maximum collector current provided by the data sheet.
- Saturation conditions are normally avoided because the base-collector junction is no longer reverse-biased and the output amplified signal will be distorted.
- Resistor, R_{CF} between collector and emitter,

$$R_{CE} = \frac{V_{CE}}{I_{C}} = \frac{V_{CEsat}}{I_{Csat}}$$

Assume V_{CEsat} = 0 V then, short-circuit.

$$R_{CE} = \frac{V_{CE}}{I_{C}} = \frac{V_{CEsat}}{I_{Csat}} = \frac{0}{I_{Csat}} = 0\Omega$$

Transistor Saturation

Actual saturation region

Approx. saturation region

Transistor Saturation

Saturation current for fixed-bias

$$I_{Csat} = \frac{V_{CC}}{R_C}$$

 I_{csat} = maximum possible I_{C}

Load-Line Analysis for Fixed-Bias Circuit:

- To investigate the possible range of the Q-points.
- We Can obtain the load-line from the output characteristics.

$$V_{CE} = V_{CC} - I_C R_C \quad ---- (1)$$

From eqn.1, we can obtain two possible points. When $I_C = 0A$,

$$V_{CE} = V_{CC} - \left(0\right)R_C \qquad V_{CE} = V_{CC} \Big|_{I_C = 0A}$$
 When $V_{CE} = 0$ V,
$$I_C = \frac{V_{CC}}{R_C} \Big|_{V_{CE} = 0V}$$

When
$$V_{CE} = 0V$$
, $I_C = \frac{V_{CC}}{R_C}\Big|_{V_{CE} = 0V}$

Insert this two points into the output characteristic curve.

Example 4.3: Given the load line, Determine V_{CC},R_C and R_B.

Emitter Bias Circuit Configuration

- An emitter resistor is used to improve the stability level of the fixedbias circuit.
- It results in Emitter Bias Circuit Configuration.

Emitter Bias Circuit Configuration

Base-Emitter Loop:

$$V_{CC} - I_B R_B - V_{BE} - I_E R_E = 0$$

$$I_E = (\beta + 1)I_B$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E}$$

BE loop

Collector-Emitter Loop:

$$V_{CE} = V_{CC} - I_C (R_C + R_E)$$
 and $I_E \cong I_C$

$$V_E = I_E R_E$$

$$V_C = V_{CE} + V_E$$

$$V_C = V_{CC} - I_C R_C$$

$$V_B = V_{CC} - I_B R_B$$
$$V_B = V_E + V_{BE}$$

 V_{CC}

Example 4.3: Determine I_B, I_C, V_{CE}, V_C, V_E, V_B, V_{BC}.

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (\beta + 1)R_{E}} = \frac{20 \text{ V} - 0.7 \text{ V}}{430 \text{ k}\Omega + (51)(1 \text{ k}\Omega)}$$

$$= \frac{19.3 \text{ V}}{481 \text{ k}\Omega} = 40.1 \,\mu\text{A}$$

$$I_{C} = \beta I_{B}$$

$$= (50)(40.1 \,\mu\text{A})$$

$$\cong 2.01 \,\text{mA}$$

$$V_{CE} = V_{CC} - I_{C}(R_{C} + R_{E})$$

$$= 20 \text{ V} - (2.01 \,\text{mA})(2 \,\text{k}\Omega + 1 \,\text{k}\Omega) = 20 \text{ V} - 6.03 \text{ V}$$

$$= 13.97 \text{ V}$$

$$V_{C} = V_{CC} - I_{C}R_{C}$$

$$= 20 \text{ V} - (2.01 \,\text{mA})(2 \,\text{k}\Omega) = 20 \text{ V} - 4.02 \text{ V}$$

$$= 15.98 \text{ V}$$

$$V_E = V_C - V_{CE}$$

= 15.98 V - 13.97 V
= **2.01 V**

or
$$V_E = I_E R_E \cong I_C R_E$$
 $V_B = V_{BE} + V_E$ $V_{BC} = V_B - V_C$
= $(2.01 \text{ mA})(1 \text{ k}\Omega)$ = $0.7 \text{ V} + 2.01 \text{ V}$ = 2.71 V = 2.71 V

$$V_E = I_E R_E \cong I_C R_E$$
 $V_B = V_{BE} + V_E$ $V_{BC} = V_B - V_C$
= $(2.01 \text{ mA})(1 \text{ k}\Omega)$ = $2.71 \text{ V} - 15.98 \text{ V}$
= $2.71 \text{ V} - 15.98 \text{ V}$

$$V_{BC} = V_B - V_C$$

= 2.71 V - 15.98 V
= -13.27 V

Improved Bias Stability

Comparison between Fixed-Bias and Emitter-Bias Stability

PARAMETER						
Circuit	β	$I_B(\mu A)$	I _C (mA)	V _{CE} (V)	Remarks	
Fixed-Bias	50	47.08	2.35	6.83	I _C changes by 100% V _{CF} changes by 76%	
	100	47.08	4.71	1.64	VCE changes by 7070	
Emitter-Bias	50	40.1	2.01	13.97	I _C changes by 81% V _{CE} changes by 35% (MORE STABLE!!)	
	100	36.3	3.63	9.11		

Temperature and transistor beta change resistance

 A bias circuit that provide less dependent or totally independent of transistor β. (less affected by the temperature variation).

Two analysis methods:

- > Exact
- > Approximation

Exact Analysis:

1. Redraw the input side of the voltage-divider circuit.

- 2. Obtain R_{th} and V_{th} .
- > R_{th}, V_{CC} short Circuit.

$$R_{th} = R_1 || R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

$$V_{th}? V_{th} = V_{R2} = \left(\frac{R_2}{R_1 + R_2}\right) V_{CC}$$

3. Combine R_{th} and V_{th} ,

$$-V_{th} + I_{B}R_{th} + V_{BE} + I_{E}R_{E} = 0$$

$$I_{B} = \frac{V_{th} - V_{BE}}{R_{th} + (\beta + 1)R_{E}}$$

$$I_{E} = (\beta + 1)I_{B}$$

$$I_{E} = (\beta + 1)\frac{V_{th} - V_{BE}}{R_{th} + (\beta + 1)R_{E}}$$

$$I_E = \frac{V_{th} - V_{BE}}{R_E + \frac{R_{th}}{(\beta + 1)}}$$

If $R_E \gg R_{th}/(\beta+1)$, then

$$I_E = rac{V_{th} - V_{BE}}{R_E}$$
 Independent of β

The output equation can be found using the same method as the emitter-bias circuit.

$$V_{CE} = V_{CC} - I_C \left(R_C + R_E \right)$$

Example 4.8: Determine I_C and V_{CE}.

$$V_{CE} = V_{CC} - I_C (R_C + R_E)$$

= 22 V - (0.84 mA)(10 k Ω + 1.5 k Ω)
= 22 V - 9.66 V
= **12.34 V**

$$R_{\text{Th}} = R_1 \| R_2$$

$$= \frac{(39 \text{ k}\Omega)(3.9 \text{ k}\Omega)}{39 \text{ k}\Omega + 3.9 \text{ k}\Omega} = 3.55 \text{ k}\Omega$$

$$E_{\text{Th}} = \frac{R_2 V_{CC}}{R_1 + R_2}$$

$$= \frac{(3.9 \text{ k}\Omega)(22 \text{ V})}{39 \text{ k}\Omega + 3.9 \text{ k}\Omega} = 2 \text{ V}$$

$$= \frac{E_{\text{Th}} - V_{BE}}{R_{\text{Th}} + (\beta + 1)R_E}$$

$$= \frac{2 \text{ V} - 0.7 \text{ V}}{3.55 \text{ k}\Omega + (101)(1.5 \text{ k}\Omega)} = \frac{1.3 \text{ V}}{3.55 \text{ k}\Omega + 151.5 \text{ k}\Omega}$$

$$= 8.38 \, \mu\text{A}$$

$$I_C = \beta I_B$$

= (100)(8.38 μ A)
= **0.84 mA**

Approximate Analysis:

The input section can be approximated as,

→ Reflected resistance

$$\boldsymbol{R}_i = (\beta + 1)\boldsymbol{R}_E$$

Assume that I_B is small compared to I_1 and I_2 ,

$$\boldsymbol{I}_1 = \boldsymbol{I}_2$$

$$V_B = \frac{R_2 V_{CC}}{R_1 + R_2}$$

$$R_i = (\beta + 1)R_E \cong \beta R_E$$

 V_B equation as shown previously can only be used if, $\beta R_E \ge 10 R_2$

V_E can be calculated as

$$egin{aligned} V_E = V_B - V_{BE} \ I_{CO} \cong I_E \end{aligned} \qquad I_E = rac{V_E}{R_E} \end{aligned}$$

The output equation is

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E$$
 or $V_{CEQ} = V_{CC} - I_C (R_C + R_E)$

Independent of β

Example 4.9: Repeat example 4.9 using approximate analysis

$$\beta R_E \ge 10R_2$$
 $(100)(1.5 \,\mathrm{k}\Omega) \ge 10(3.9 \,\mathrm{k}\Omega)$
 $150 \,\mathrm{k}\Omega \ge 39 \,\mathrm{k}\Omega \,(satisfied)$

$$V_B = \frac{R_2 V_{CC}}{R_1 + R_2}$$

$$= \frac{(3.9 \,\mathrm{k}\Omega)(22 \,\mathrm{V})}{39 \,\mathrm{k}\Omega + 3.9 \,\mathrm{k}\Omega}$$

$$= 2 \,\mathrm{V}$$

$$V_E = V_B - V_{BE}$$

$$= 2 \,\mathrm{V} - 0.7 \,\mathrm{V}$$

$$= 1.3 \,\mathrm{V}$$

$$I_{CQ} \cong I_E = \frac{V_E}{R_E} = \frac{1.3 \,\mathrm{V}}{1.5 \,\mathrm{k}\Omega} = \mathbf{0.867 \,\mathrm{mA}}$$

Transistor Saturation:

From the output collector-emitter circuit,

$$V_{CEQ} = V_{CC} - I_C \left(R_C + R_E \right)$$

For saturation, let $V_{CF}=0$, therefore

$$I_{Csat} = \frac{V_{CC}}{R_C + R_E}$$

Example 4.2

Determine the levels of I_{CQ} and V_{CEQ} for the circuit, using the exact & approximation techniques.

Exact Analysis:

$$R_{th} = R_1 \parallel R_2 = 82k\Omega \parallel 22k\Omega$$
$$= 17.35k\Omega$$

$$V_{th} = \frac{R_2 V_{CC}}{R_1 + R_2} = \frac{22k(18V)}{82k + 22k}$$
$$= 3.81V$$

$$I_{B} = \frac{V_{th} - V_{BE}}{R_{th} + (\beta + 1)R_{E}}$$

$$= \frac{3.81 - 0.7}{17.35k + (51)(1.2k)} = 39.6\mu A$$

$$I_{CQ} = \beta I_{B} = (50)(39.6\mu) = 1.98m A$$

$$V_{CEQ} = V_{CC} - I_{C} (R_{C} + R_{E})$$

$$= 18 - (1.98m)(5.6k + 1.2k)$$

$$= 4.54V$$

Approximate Analysis:

$$\beta R_E \ge 10 R_2$$
 (50)(1.2k) $\ge 10(22k)$ 60k $\ge 220k$

Voltage-Divider Bias

Cannot use this formula
$$\longrightarrow V_B = \frac{R_2 V_{CC}}{R_1 + R_2}$$

$$V_B = V_{th} = 3.81V$$

$$V_E = V_B - V_{BE} = 3.81 - 0.7 = 3.11V$$

$$V_E = V_B - V_{BE} = 3.11$$

$$I_{CQ} = I_E = \frac{V_E}{R_E} = \frac{3.11}{1.2k} = 2.59mA$$

$$V_{CEQ} = V_{CC} - I_C (R_C + R_E)$$

$$=18-(2.59m)(5.6k+1.2k)$$

$$=3.88V$$

An improved level of stability (than fixed or emitter bias) can also be obtained by introducing a resistor between base and collector.

Base-Emitter (input) loop

$$V_{CC} - I'_{C}R_{C} - I_{B}R_{F} - V_{BE} - I_{E}R_{E} = 0$$

$$\text{where } I'_{C} = I_{C} + I_{B}$$

$$I'_{C} \cong I_{C} = \beta I_{B} \qquad I_{E} \cong I_{C}$$

$$V_{CC} - \beta I_{B}R_{C} - I_{B}R_{F} - V_{BE} - \beta I_{B}R_{E} = 0$$

$$V_{CC} - V_{BE} - \beta I_{B}(R_{C} + R_{E}) - I_{B}R_{F} = 0$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{F} + \beta(R_{C} + R_{E})}$$

Collector-Emitter (output) loop

$$I_E R_E + V_{CE} + I'_C R_C - V_{CC} = 0$$

Because $I'_C \cong I_C$ and $I_E \cong I_C$, we have

$$I_C(R_C + R_E) + V_{CE} - V_{CC} = 0$$

$$V_{CE} = V_{CC} - I_C(R_C + R_E)$$

Example 4.12: Determine I_{CQ} and V_{CEQ}

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{F} + \beta(R_{C} + R_{E})}$$

$$= \frac{10 \text{ V} - 0.7 \text{ V}}{250 \text{ k}\Omega + (90)(4.7 \text{ k}\Omega + 1.2 \text{ k}\Omega)}$$

$$= \frac{9.3 \text{ V}}{250 \text{ k}\Omega + 531 \text{ k}\Omega} = \frac{9.3 \text{ V}}{781 \text{ k}\Omega}$$

$$= 11.91 \mu\text{A}$$

$$I_{C_{Q}} = \beta I_{B} = (90)(11.91 \mu\text{A})$$

$$I_{C_Q} = \beta I_B = (90)(11.91 \,\mu\text{A})$$

= **1.07 mA**

$$V_{CE_Q} = V_{CC} - I_C(R_C + R_E)$$

= 10 V - (1.07 mA)(4.7 k Ω + 1.2 k Ω)
= 10 V - 6.31 V
= **3.69 V**

Common Collector (Emitter-Follower)

For the Input loop $-I_BR_B - V_{BE} - I_ER_E + V_{EE} = 0$ using $I_E = (\beta + 1)I_B$ $I_BR_B + (\beta + 1)I_BR_E = V_{EE} - V_{BE}$

$$I_B = \frac{V_{EE} - V_{BE}}{R_B + (\beta + 1)R_E}$$

What to Do This Week?

- Reading Assignment on DC biasing of
 - Common Base Configuration.
 - Miscellaneous bias configurations.
 - PNP BJTs
- Reading Task for next class
 - BJT Transistor small signal modelling.