

Light

Question Paper

Course	CIE IGCSE Physics
Section	3. Waves
Topic	Light
Difficulty	Medium

Time Allowed 80

Score /59

Percentage /100

Head to www.savemyexams.com for more awesome resources

Question la

Some students determine the focal length of a converging lens by two different methods. They use the apparatus shown in Fig. 2.1.

Fig. 2.1

A student sets the distance *U* between the illuminated triangle and the lens.

She moves the screen until a sharp image of the triangle is seen on the screen.

Method 1

The distance *u* between the illuminated triangle and the lens is 5.0 cm. The distance *v* between the lens and the screen is 7.5 cm.

(i) Fig. 2.1 is drawn to 1/5th scale.

Calculate the actual distance *U* between the illuminated triangle and the lens in the experiment.

U =

Calculate the actual distance V between the lens and the screen in the experiment.

V	=	 	 																									
																									1	Γ.	ľ	1

(ii) Calculate a value f_1 for the focal length of the lens, using the following equation:

$$f_1 = \frac{UV}{(U+V)}$$

$$\boldsymbol{f}_1$$
 =[1]

(iii) Briefly describe a technique to obtain an image on the screen that is as sharp as possible in this experiment.

[1]

[3 marks]

Question 1b

On Fig. 2.2, the height of the illuminated triangle, $h_{\rm O}$ is measured to be 1.5 cm.

On Fig. 2.3, the height of the image, $h_{\rm l}$, on the screen is measured to be 2.4 cm.

Fig. 2.2

Fig. 2.3

(i) Calculate a value for the magnification M, using the following equation:

$$M = \frac{h_I}{h_O}$$

M =[1]

(ii) Calculate a second value f_2 for the focal length of the lens, using the value of V from (a)(ii) and the equation:

$$f_2 = \frac{V}{(M+1)}$$

f_2	=	 	٠.					 																					[1	
																				ſ	2	2	r	Υ	1	а	ır	k	3	s	1

Question 1c

State **one** precaution that could be taken to ensure that the measurements in the experiment are taken as reliably as possible.

[1 mark]

Question 1d

Suggest which of **Method 1** or **Method 2** is likely to give the more accurate value for the focal length.

Explain the reason for your choice.

Question 2a

A student is determining the refractive index n of the material of a transparent block.

Fig. 3.1 shows the outline **ABCD** of the transparent block.

Fig. 3.1 (i) On Fig. 3.1: o draw a normal **NL** at the centre of side **AB** o continue the normal so that it passes through side **CD** of the block • label the point **F** where **NL** crosses **AB** • label the point **G** where **NL** crosses **CD**. [1] (ii) Draw a line **EF** at an angle $i = 30^{\circ}$ to the left of the normal and above side **AB**. [1] (iii) Mark the positions of two pins P_1 and P_2 on line **EF** placed at a suitable distance apart for this type of raytracing experiment. [1] [3 marks]

Question 2b

The student observes the images of P_1 and P_2 through side **CD** of the block so that the images of P_1 and P_2 appear one behind the other.

He places two pins P_3 and P_4 between his eye and the block so that P_3 , P_4 and the images of P_1 and P_2 seen through the block, appear one behind the other.

The positions of P_3 and P_4 are marked on Fig. 3.1.

 \circ (i)Draw a line joining the positions of P₃ and P₄. Continue the line until it meets the normal **NL**.

- Label the point **H** where the line meets side **CD**. Draw the line **FH**.
- (ii) Measure and record the length a of the line **GH**.

a =[1]

[1]

(iii) Measure and record the length b of the line **FH**.

- b =[1]
- (iv) Calculate the refractive index *n* using the following equation:

$$n = \frac{0.5b}{a}.$$

n =[1] **[4 marks]**

Question 2c

Extended tier only

The student repeats the procedure using the angle of incidence $i = 45^{\circ}$.

$$a = 3.2 \, \text{cm}$$

$$b = 6.9 \, \text{cm}$$

Calculate the refractive index n, using the equation $n = \frac{0.71b}{a}$.

n =

[1 mark]

Question 2d

The student expected the two values of refractive index *n* obtained in this experiment to be equal.

State **two** difficulties with this type of experiment that could explain any difference in the two values of n.

[2 marks]

 $Head to \underline{www.savemyexams.com} for more awe some resources$

 $\ \ \, \text{A student suggests precautions to take in this experiment to obtain reliable results}.$

Question 2e

Tick one box to indicate the most	sensible suggestion.	
☐ Carry out the experime	ent in a darkened room.	
☐ Use pins that are taller	than the height of the block.	
☐ View the bases of the p	oins.	
☐ View the pins with one	eve closed	

Question 3a

A student investigates the position of the image in a plane mirror.

Fig. 3.1

Fig. 3.1 shows the ray-trace sheet he uses.

The student draws the line MR.

- He draws a normal NL to this line that passes through the centre of MR.
- He labels the point at which **NL** crosses **MR** with the letter **B**.
- He draws a line from **B** at an angle of incidence $i = 30^{\circ}$ to the normal below **MR** and to the left of the normal. He labels the end of this line **A**.
- He places a pin P_1 on line **AB**, as shown in Fig. 3.1. He places another pin P_2 on the line **AB**.
- He places the reflecting face of the mirror vertically on the line MR.
- He views the images of pins P_1 and P_2 from the direction indicated by the eye in Fig. 3.1.
- (i) On Fig. 3.1, mark with a cross a suitable position for pin P_2 in this experiment.

(ii) He places two pins P_3 and P_4 some distance apart so that pin P_3 and the images of P_2 and P_1 all appear exactly behind pin P_4 . The positions of P_3 and P_4 are shown on Fig. 3.1.

Draw the line joining the positions of P_3 and P_4 . Continue the line until it extends at least 7.0 cm beyond **MR**.

[2]

[1]

Question 3b

The student keeps pin P_1 in the same position but moves pin P_2 so that the angle of incidence $i = 40^\circ$.

- The pin positions P_5 and P_6 for the reflected ray are marked on Fig. 3.1.
- (i) Draw the line joining the positions of P_5 and P_6 . Continue the line until it extends at least 7.0 cm beyond **MR**. Label with the letter **Y** the point where the two lines cross beyond **MR**.

(ii) Draw a line from P_1 to **MR** that meets **MR** at a right angle. Measure and record the length a of this line.

a =[1]

(iii) Draw a line from the point labelled **Y** to **MR** that meets **MR** at a right angle. Measure and record the length *b* of this line.

b =

[3 marks]

[1]

Question 3c

The student removes all the pins. He places pin P_7 on the normal at a distance 6.0 cm from the front of the mirror.

- He views the image of P₇ in the mirror.
- He places pin P₈ on the normal behind the mirror.
- He adjusts the position of P₈ so that the image of the bottom of the pin P₇ and the top of pin P₈ seen over the mirror appear as one pin when viewed from all angles in front of the mirror.
- (i) On Fig. 3.1, measure the distance x along the normal between P_8 and the mirror.

Χ	=	٠.																		٠.																		[]		
---	---	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	--	--

(ii) Complete the diagram in Fig. 3.2 to show the appearance of the image of pin P_7 and pin P_8 as described in (c).

Fig. 3.2

[2 marks]

Question 3d

The student expects the readings to show that the image formed in a plane mirror is the same distance behind the mirror as the object is in front of the mirror. Readings of a = b and x = 6.0 cm will show this.

State whether your readings show that the image formed in a plane mirror is the same distance behind the mirror as the

object is in front of the mirror. Justify your statement by reference to the readings.	
statement:	
justification:	[2 marks]

Question 3e

The student carries out this experiment with care. Suggest a practical reason why the results may not be accurate.

Question 4a

A student is investigating the reflection of light by a plane mirror.

Fig. 1.1 shows his ray-trace sheet at full size.

Head to www.savemyexams.com for more awesome resources

Fig. 1.1

The student carries out an initial experiment.

He draws lines **AB** and **CD** as shown in Fig. 1.1.

He then draws a line **EF** through a point **N** as shown in Fig. 1.1 and at an angle θ to line **AB**.

The angle θ is

measured to be 23° ±1°

Draw a normal to line **AB** at point **N** and extend the normal to line **CD**. Label the point at which the normal crosses line **CD** with the letter **L**.

[1 mark]

Question 4b

The student places a plane mirror on line **EF** and a screen with a 2 mm slit on line **CD**. He arranges the screen so that a ray of light shines along line **LN**.

The ray reflected from the mirror passes through point **P**.

State and explain whether point \mathbf{P} , shown on Fig. 1.1, is at a suitable distance from point \mathbf{N} for this investigation.

Question 4c

		a =cm [1] [2 marks]
(ii)	Measure the length a of line LG .	
	Label the point at which this line meets line CD with the letter G .	[1]
(i)	Draw a line joining point N and point P . Extend this line until it meets	line CD.

Question 4d

The student repeats the procedure for values of θ = 25°, 20°, 15°, 10° and 5°. His values for a are shown in Table 1.1.

Table 1.1

θ/°	a/cm
25	12.2
20	8.3
15	5.7
10	3.6
5	1.8

Use the values from Table 1.1 to plot a graph of a / cm (y-axis) against θ / ° (x-axis).

[4 marks]

Question 4e

Suggest a possible source of inaccuracy in this experiment, even if it is carried out carefully.

[1 mark]

Question 4f

A student wishes to check if his values for a are reliable.

Suggest how he could improve the experiment, using the same apparatus, to check the reliability of his results.

Question 5a

A student is determining the focal length f of a lens.

Fig. 3.1 shows the apparatus.

Fig. 3.1

The student places the screen a distance D = 70.0 cm from the illuminated object.

He places the lens close to the screen and moves the lens slowly away from the screen until a clearly focused image is formed on the screen.

He measures the distance u between the centre of the lens and the illuminated object.

He measures the distance v between the centre of the lens and the screen.

He repeats the procedure using values for D of 75.0 cm, 80.0 cm, 85.0 cm and 90.0 cm.

The readings are shown in Table 3.1.

Calculate, and record in Table 3.1, uv for each value of D.

Table 3.1

D/cm	u/cm	v/cm	uv/cm ²
70.0	22.0	48.4	
75.0	20.7	54.5	
80.0	20.0	60.0	
85.0	19.5	65.8	
90.0	19.0	71.2	

[3 marks]

Question 5b

Plot a graph of uv/cm^2 (y-axis) against D/cm (x-axis). You do not need to start your axes at the origin (0,0).

[4 marks]

Head to www.savemyexams.com for more awesome resources

Question 5c

Determine the gradient G of the	line. Snow clearly on the grap	ph now you obtained the ne	ecessary information.

Question 5d

The focal length f of the lens is numerically equal to the gradient G of the graph. Write down a value for the focal length f of the lens. Give your answer to a suitable number of significant figures for this experiment.

f =[2 marks]

Question 5e

Suggest **two** difficulties in this experiment when trying to obtain accurate readings.

[2 marks]

Question 6a

A student is determining the focal length of a lens.

Fig. 3.1 shows the apparatus used.

Fig. 3.1

The student adjusts the position of the screen until a clearly focused image is formed on the screen.

The distance v on Fig. 3.1 is measured to be 5.80 cm.

Fig. 3.1 is drawn 1/5th actual size. (i)

Calculate V, the actual distance from the lens to the screen

V =[1]

(ii) With a clearly focused image formed on the screen, the actual distance from the centre of the lens to the illuminated object, U is 20.0 cm.

Calculate the focal length f_1 of the lens using the equation $f_1 = \frac{UV}{(U+V)}$

f ₁ =	[2]
[3 mark	(s]
Question 6b	
The student repeats the procedure in (a), using a different distance U . She obtains another value for the focal length f_2 .	
$f_2 = 12.2 \text{cm}$	
Calculate the average value f_A of the focal length of the lens, using f_2 and your value for f_1 in (a)(ii) . Give your answer to a suitable number of significant figures for this experiment.	
$f_{A} = \dots $ [2 mark	
Question 6c	
The student states that taking more measurements improves the reliability of the value obtained for f_A .	
Suggest additional values for <i>U</i> that you would use.	cs1
	- 4

Question 6d

State ${\bf two}$ precautions that you would take in this experiment to obtain accurate readings.

[2 marks]