第三章 (傅里叶变换)

一、选择题

1. 阶跃信号 $u(t)$ 的傅里叶变换为()				
	A, $\pi\delta(\omega) + \frac{1}{j\omega}$	$B \cdot \pi \delta(\omega) - \frac{1}{j\omega}$	$C \cdot \pi \delta(\omega) + j\omega$	D, $\pi\delta(\omega) - j\omega$
2. 狄里克雷(Dirichlet)条件是傅里叶变换存在的()				
A,	充要条件	B、充分条件	C、必要条件	D、以上均不正确
3. =	若时域信号f(t)	的傅里叶变换F(ω)在	生频域是周期的,则T	下列说法正确的是()
A,	f(t)是离散的	B、 $f(t)$ 是周期的	C、 $f(t)$ 是连续的	D、 $f(t)$ 是非周期的
4. 假设信号 $f_1(t)$ 的奈奎斯特频率为 ω_1 弧度/秒,信号 $f_2(t)$ 的奈奎斯特频率为 ω_2 弧				
度/秒,且 $\omega_1 > \omega_2$,则信号 $f(t) = f_1(t+1) + f_2(t+2)$ 的奈奎斯特频率为()。				
A	$a \sim \omega_1$ B, a	ω_2 $C_1 + \omega_2$	D, $\omega_1 \cdot \omega_2$	
5.	若信号 $f(t)$ 的带	带宽为 20 KHz,则信	言号 $f(2t)$ 的带宽为()
A	10KHz	B, 20KHz	C、30KHz	D, 40KHz
B. C.	与时间变量有关 与时间变量无关	长,与频率变量无关 长,与频率变量也有 长,与频率变量有关 长,与频率变量也无		
谐》 A. B. C.	设 <i>f(t)</i> 为半波像 ^x 皮项。 奇次分量 偶次分量 直流分量 基波分量	对称信号 (即奇谐信	号),展开为傅里叶纫	及数时,只含有()
8. 若对信号 $f(t)$ 进行理想抽样,其奈奎斯特频率为 f_s 赫兹,则对信号 $f(0.5t-2)$				
的进行理想抽样,其奈奎斯特频率为()赫兹。				
A	$0.5f_s$ B.	$2f_s$ C, $0.5(f_s)$	(-2) D, $2(f_s -$	2)
9. 假设信号 $f_1(t)$ 的奈奎斯特频率为 ω_1 弧度/秒,信号 $f_2(t)$ 的奈奎斯特频率为 ω_2 弧				
度/秒,且 $\omega_1 > \omega_2$,则信号 $f(t) = f_1(t+1) \cdot f_2(t+2)$ 的奈奎斯特频率为()。				
A	ω_1 B, ω_2	o_2 C , $\omega_1 + \omega_2$	D, $\omega_1 \cdot \omega_2$	

- **10.** 冲激信号 $\delta(\cos t)$ 表示的含义为 ()。
 - A. $\sum_{k=-\infty}^{\infty} (-1)^{k+1} \delta(t \frac{2k+1}{2}\pi)$ B. $\sum_{k=-\infty}^{\infty} (-1)^k \delta(t \frac{2k+1}{2}\pi)$
 - $C_{s} \sum_{k=-\infty}^{\infty} \delta(t \frac{2k+1}{2}\pi)$ $D_{s} \sum_{k=-\infty}^{\infty} \delta(t \frac{2k+1}{2}\pi)$
- **11.** 连续时间信号 $f(t) = \sin(t) \cdot u(t)$ 和 $h(t) = \delta'(t) + u(t)$ 的卷积为(
 - $A \cdot \delta(t)$

- B, u(t) C, $2\cos(t) \cdot u(t)$ D, $-2\cos(t) \cdot u(t)$
- **12.** 离散时间信号卷积和 $2^n u(n) * 3^n u(n) = ($)。
 - A, $(3^{n+1} + 2^{n+1})u(n)$ B, $(3^n + 2^n)u(n)$ C, $(3^{n+1} 2^{n+1})u(n)$ D, $(3^n 2^n)u(n)$

- 13. 若对信号 f(t) 进行理想抽样,其奈奎斯特频率为 f_s 赫兹,则对信号 f(3t-2)的进行理想抽样,其奈奎斯特频率为()赫兹。

- A, $3f_s$ B, $f_s/3$ C, $3(f_s-2)$ D, $(f_s-2)/3$
- 14.系统的幅频特性|H(jw)|和相频特性如图(a),(b)所示,则下列信号通过该 系统时,不产生失真的是(

图 1

A. $f(t) = \cos(t) + \cos(8t)$

B. $f(t) = \sin(t) + \sin(3t)$

C. $f(t) = \sin(2t)\sin(3t)$

- D. $f(t) = \cos^2(3t)$
- 15. 以下哪种信号的频谱被称为"均匀谱"或"白色谱"(

 - A 单位斜变信号 B 单位阶跃信号 C 单位冲激信号 D 单位冲激偶信号
- **16.** 系统框图如下图,则系统的频率响应 $H(i\omega)$ 为(

$$A. - \frac{1 - 2e^{-j\omega T} + e^{-j2\omega T}}{\omega^2}$$

$$B. - \frac{1 + 2e^{-j\omega T} + e^{-j2\omega T}}{\omega^2}$$

C.
$$-\frac{1-2e^{-jT}+e^{-j2T}}{\omega^2}$$

D.
$$-\frac{1+2e^{-jT}+e^{-j2T}}{\omega^2}$$

- 17. 对 $\left(\frac{\sin 200t}{\pi t}\right)^4$ 进行理想冲激抽样的奈奎斯特抽样角频率为() rad/s
- A. 200
- B. 400
- C. 800
- D. 1600

- 18.无失真传输的条件是()
- A. 幅频特性等于常数
- B. 相位特性是一通过原点的直线
- C. 幅频特性等于常数, 相位特性是一通过原点的直线
- D. 相位特性等于常数,幅频特性是一通过原点的直线
- **19.** 对于信号 $f(t) = \sin 2\pi \times 10^3 t + \sin 4\pi \times 10^3 t$ 的最小取样频率是(
- A. 8 *kHz*
- B. 4 *kHz*
- C. 2 *kHz*
- D. 1 *kHz*
- **20.** 设 f(t)的频谱分别为 $F(\omega)$,则 f(-t)的频谱是(
- A. $jF(\omega)$
- B. $-jF(\omega)$
- C. $F(-\omega)$
- D. $jF(-\omega)$
- **21.** 系统框图如下图,则系统的频率响应 $H(i\omega)$ 为(

A. $1 - 2e^{-j\omega T} + e^{-j2\omega T}$

B. $1 + 2e^{-j\omega T} + e^{-j2\omega T}$

C. $1-2e^{-jT}+e^{-j2T}$

- D. $1 + 2e^{-jT} + e^{-j2T}$
- **22.**已知某理想低通滤波器的频率响应为 $H(j\omega) = \begin{cases} e^{-j\omega} & |\omega| < 2 \\ 0 & |\omega| \ge 2 \end{cases}$,则滤波器的单位

冲 激响应 h(t) = ()

- A. $\frac{\sin 2t}{\pi(t-1)}$ B. $\frac{\sin 2(t-1)}{\pi(t-1)}$ C. $\frac{\sin t}{\pi(t-1)}$ D. $\frac{\sin(t-1)}{\pi(t-1)}$

二、填空题

16. 无失真传输系统的系统函数的相位特性为

三、分析计算题

1. 求图所示系统的频谱响应 $H(j\omega)$ 和单位冲激响应h(t)。

2. 零状态系统如图所示,图中理想低通滤波器的系统函数为:

$$H(j\omega) = \begin{cases} e^{-j\omega t_0}, & |\omega| \le 1 \\ 0, & |\omega| > 1 \end{cases}$$
 $f(t) \longrightarrow H(j\omega) \longrightarrow y(t)$

- (1) 求 $H(j\omega)$ 的傅里叶反变换h(t);
- (2) 若 f(t) = Sa(2t), 求 y(t);
- (3) 若 f(t) = Sa(0.5t), 求 y(t)。
- **3.** 已知 $f_1(t) = u(t-1)$, $f_2(t)$ 如图所示,用图解法计算卷积 $y(t) = f_1(t) * f_2(t)$,写出分步计算过程,大致做出 y(t) 图形。

- 4. 利用时域与频域的对称性质, 求下列傅里叶变换的时域函数;
- (1) $F(\omega) = \delta(\omega \omega_0);$ (2) $F(\omega) = u(\omega + \omega_0) u(\omega \omega_0);$
- (3) $F(\omega) = \frac{\omega_0}{\pi} [u(\omega + \omega_0) u(\omega \omega_0)];$
- 5. 求解下列信号的傅里叶变换或傅里叶逆变换
 - (1) 已知系统的单位冲激响应h(t)如图所示,求系统频率响应 $H(j\omega)$;

(2)理想带通滤波器的频率响应 $H(j\omega)=|H(j\omega)|\cdot e^{j\phi(\omega)}$ 如图所示,且 $\phi(\omega)=0$,求单位冲激响应h(t)。

