Advanced Time Series

Lecture 1: Introduction to time series

Gleb Ivashkevich

The team

Gleb Ivashkevich

Anatoly Bardukov

What is ATS about?

Time series are sequences.

- all the sequential deep learning blocks can be applied (RNN, CNN, combinations, incl. transformers → adaptations)
- **various problems:** forecasting, classification, event prediction, representation learning
- **mental image** of time series problems how to select parameters, architectures, etc.

What ATS is not about?

- AR, VAR, ARIMA, etc.
- specific domains
- econometrics
- financial time series

We will briefly **overview** the classical stuff. And will use it to build some **intuition**.

Course logistics

6 lectures, 3 hours each, Google classroom

- slides + notebook(-s)
- 4 homeworks (in teams)
- 2 paper reviews + 2 paper implementations
- manual grading
- Slack

Course structure

Intro + 4 topics:

- TS **forecasting**: RNNs^(various), transformers
- TS **classification**: CNN^(various) and combined^(RNN+CNN) models
- **TTE prediction**: DL models for predictive maintenance, basics of survival analysis
- TS **representation learning**: VAMPnets, autoencoders^(various)

Course structure

Power consumption Weather Sales Traffic

Forecasting

AR models ^(review only) RNNs Probabilistic forecasts

Any highly structured TS

Representation

VAMPnets AEs

ATS

Activity data (inertial sensors) Sound Medical signals

Classification

Dilated/causal convolutions CNNs and hybrid models Attention mechanism Segmentation

Equipment data Earthquakes and other physical signals

TTE prediction

Survival models Interpretability ^(very basics)

Time series basics: temporal

Electricity load dataset

- 370 individual households
- 15 minutes sampling interval

Electricity load dataset

- 370 individual households
- 15 minutes sampling interval

Temporal structure?

- shift the data: 12 hours

Temporal structure?

- shift the data: 24 hours

Temporal structure?

- shift the data: 12, 24 hours

Modeling

Modeling ideas:

- use some AR-alike classical model
- use some RF, gradient boosting, provide lags explicitly
- recurrent model (modified?)

Time series basics: structural

ADL Recognition <u>dataset</u>

- multiple activities, short samples
- 50 Hz sampling rate

ACF? Non-informative: wrong "scale"

- FFT for the rescue

Power spectrum:

Modeling

Modeling ideas:

- use manual features (tsfresh) and some classical model
- **CNN** model (modified?)

Time series basics: other examples

Industrial equipment

Condition monitoring of hydraulic systems dataset

- multiple sensors (temperature, pressure)
- 100 Hz sampling rate

Industrial equipment

Time series basics: tools

Pandas

Mostly for preprocessing:

- datetime operations
- resampling, rolling
- shifts

Cross-validation

Random split cannot be applied to time series

- use fixed split
- use rolling CV
- otherwise, autocorrelation will kill your model

Forecasting I

TS forecasting problem

Forecasting:

- estimate the **target time series in the future** using past data (endogenous)
- sometimes, you may know **something else besides** target (exogenous)
- depends strongly on **time scales** of relevant processes

TS forecasting setup

endogenous only weather time series, power consumption, sales

endogenous + past exogenous

manufacturing

TS forecasting setup

endogenous + past and future exogenous

power consumption, sales

may be a forecast

TS forecasting: past and future

- future values may depend on past information
- they can depend on the future information as well
- you cannot forecast if you do not have information
- no free lunch

TS forecasting: past and future

Power consumption **tomorrow** depends on:

- consumption today, yesterday, etc.
- weather **tomorrow**,
- traffic **tomorrow**

Time series: concepts

- stationarity: X(t), X(t + 1), ... $\rightarrow X(t + h)$, X(t + 1 + h), ...
- seasonality: season variations → calendar
- trend
- autocorrelation

Electricity load dataset

- 370 individual households
- 15 minutes sampling interval

Electricity load dataset

- 370 individual households
- 15 minutes sampling interval

Classical models

- AR: autoregressive
- MA: moving average
- ARIMA: AR integrated moving average

More: Time Series: Autoregressive models AR, MA, ARMA,

ARIMA

SARIMA

SARIMA: tools

statstools:

- a lot of time series functionality
- a lot of classical time series models
- convenient plotting

Classical models limitations

- linearity
- multiple seasonalities
- stationarity
- somewhat tricky
- good baseline

Data generation process

- all the underlying processes, which result in the observed data
- may be multilayered and non-linear
- not everything is known at inference time

Recurrent models

Power consumption

Power consumption data in US grid:

- multiple years
- hourly
- generally clean
- seasonality patterns on multiple scales

Recurrent neural network

Recurrent neural network

- sequential data
- have their own problems
- can be combined with other blocks (CNN)

LSTM: idea

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ ilde{c}_t &= \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ c_t &= f_t \circ c_{t-1} + i_t \circ ilde{c}_t \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

Encoder-decoder architecture

Encoder-decoder setup

endogenous only

weather time series, power consumption, sales

The most basic setup:

- only target itself is used
- calendar information may be added

Encoder-decoder arch

Encoder-decoder: implementation details

*1D target, N hidden units

Encoder-decoder arch

Variations:

- encoder and decoder may share weights
- encoder and decoder may have different architectures
- **calendar** information, **exogeneous** variables may be added
- categoricals may be added (one-hot or embeddings)

Calendar information

Two main options:

- one-hot encoded (month, day of week, weekend/weekday, holidays, sale)
- Fourier features: explicit multi-seasonality endogenous only weather time series, power consumption, sales

Production considerations

Forecasting windows:

- it is usually desirable to forecast on regular intervals
- based on data availability, you may need to skip a window

questions?