Semiconductor Physics

Unit I

Band Formation in Solid Atomic Structure

Splitting of Energy level

Formation of Energy Band

Splitting of energy levels which are closely spaced for Virtual continuum called Energy Band.

- With decrease the inter atomic distance Valance band & Conduction band over lap with each other.
- ❖ The equilibrium spacing determines the forbidden energy gap & type of element.

Energy Bands in solids

- ❖ Valence Band The band is formed by the series of energy levels consist of valance electrons known as valance band.it is partially or completely filled depend upon nature of crystal.
- ❖ Conduction Band-The band is formed by the series of energy levels consist of conduction electrons known as conduction band.it is partially or completely empty depend upon nature of crystal.
- ❖ Forbidden Band-valance band & conduction band are separated by a gap known as Forbidden gap. It is the series of energy levels between top of valance band & bottom of conduction band.

Types of Solids

On the bases of forbidden energy solid is divide in to three types

Insulator

- The material in which forbidden gap is very large is known as an insulator.
- \clubsuit Band gap energy (Eg) is \ge 5eV.
- Under normal condition electron can not jump from valance band to the conduction band.
- ❖ The transfer of electron from valance band to the conduction band required high activation energy is of the order of temp.of thousand of degrees.
- Insulator have very low conductivity & very high resistivity.
- Examples: Wood, Plastics, Rubber etc

Insulators

Conductor

- The material in which there is no forbidden gap or overlaps between valance band & conduction band is known as Conductor.
- ❖ Band gap energy (Eg) is 0 eV.
- Electrons easily transfer from valance band to the conduction band.
- ❖ At room temp. Have high electrical conductivity.
- Examples: Silver, Copper, Gold etc

Conductors

Semiconductor

- The material whose conductivity lies between conductor & insulator is known as Semiconductor.
- **❖** Band gap energy (Eg) is ≤ 2eV.
- At 0°k it behaves like an insulator & at room temp. It behaves like conductor.
- ❖ Electron required some electrical or optical energy to jump from valance band to the conduction band.
- ❖At 0°k its resistivity is high & at room temp. Its conductivity is high.
- ❖ Examples: Silicon (Eg=1.12 eV), Germanium(Eg=0.72 eV)

Semiconductors

Covalent bond

- ❖ Bond which is formed due to the sharing of electron.
- Sharing of electron between two some or different type of atoms.

Bounded & Free Electron

- ❖ At absolute 0°k atoms are tightly bound with other.
- ❖ With increase in temp. covalent bond breaks & electron becomes free.
- ❖This electron free to move through out the crystal like gas molecules.
- ❖When electric field is applied this free electron drift towards the positive electrode which gives the current.
- With free motion this electron collide with one of the broken covalent bond & combine with hole.
- ❖ Form electron & hole pair ,covalent bond is completed.
- Thus free electron becomes bounded.

Hole

- ❖The vacancy of electron is called hole.
- When covalent bond broken due to the supply of energy, electron becomes free thus form a Quantum vacancy.
- *Removal of negative charge create positive charge.
- ❖ This positive charge vacancy attract electron from adjacent bond and hole is shifted to position of attracted electron.
- Created hole move in the crystal like free electron but in opposite direction.
- In presence of electric field holes are drift towards the negative electrode.

© 2006 www.radartutorial.de

Fermi Level in Semiconductor

- ❖ V.B & C.B are separated by Forbidden energy gap.
- ❖ Fermi level lies in the middle of Forbidden gap.
- ❖ Energy level corresponding to the center of gravity of conduction electrons & holes weighted according to their energies.

Fermi level in Intrinsic Semiconductor

- ❖ In intrinsic semiconductor equal no. of electrons & Holes .
- Concentration of electrons decreases above the bottom of C.B
- Concentration of holes decreases below the top of V.B
- Center of gravity of electrons & holes lies exactly at the middle of forbidden Gap.

Fermi Energy Diagram for Intrinsic Semiconductors

The Fermi level (E_F) lies at the middle of the forbidden energy gap.

Electron Distribution Function

$$n(E)\Delta E = g(E) f(E)\Delta E$$

Where,

 $n(E)\Delta E$ – No. of electrons per unit volume in with energy between E & E+ ΔE

g(E) – No. of energy state per unit volume in energy range ΔE .

F(E)-Distribution function or probability that finding an electron in Energy state E ΔE – Energy Interval.

Fermi Dirac Distribution Function.

- ❖ Fermi-Dirac gives this function in 1926.
- ❖ This function F(E) gives the carrier occupancy of energy level.
- ❖ The equation gives the distribution of electron among the energy level as function of temperature known as Fermi-Dirac distribution function.

$$f_F(E) = \frac{1}{1 + exp\left(\frac{E - E_F}{kT}\right)}$$

Derivation: Fermi energy level lies at the center of Forbidden Gap.

Prove that
$$E_f = \frac{E_c + E_v}{2}$$
 Assumptions

- ❖ All the electron in conduction band have energy Ec & valance band have energy Ev.
- ❖The width of valance band & conduction band is very small as compare to the width of Forbidden gap.

Let Nc & Nv be the nunmer of electrons in conduction band & number of electrons in valance band.

N be the total number of electrons in both the bands.

$$N = Nc + Nv$$
(1)
Now $f(Ec) = \frac{Nc}{N}$
 $Nc = Nf(Ec)$ (2)

But
$$f(Ec) = \frac{1}{1 + e^{[Ec - Ef/kT]}}$$

$$Nc = \frac{N}{1 + e^{[Ec - Ef/kT]}}$$
(3)

Similarly
$$Nv = \frac{N}{1 + e^{[Ev - Ef/kT]}}$$
(4)

becomes
$$Nc = \frac{N}{1 + e^{[Ec - Ef/kT]}} \quad(3) \qquad 1 = \frac{1}{1 + e^{[Ec - Ef/kT]}} + \frac{1}{1 + e^{[Ev - Ef/kT]}}$$

 $N = \frac{IV}{1 + e^{[Ec - Ef/kT]}} + \frac{IV}{1 + e^{[Ev - Ef/kT]}}$

$$(1+e^{[Ec-Ef/kT]})(1+e^{[Ev-Ef/kT]})=1+e^{[Ev-Ef/kT]}+1+e^{[Ec-Ef/kT]}$$

 $(1 + e^{[Ec - Ef/kT]})(1 + e^{[Ev - Ef/kT]}) = 1 + e^{[Ev - Ef/kT]} + 1 + e^{[Ec - Ef/kT]}$

 $1 + e^{[Ev-Ef/kT]} + e^{[Ec-Ef/kT]} + e^{[Ec-Ef/kT]} = 1 + e^{[Ev-Ef/kT]} + 1 + e^{[Ec-Ef/kT]}$

$$\therefore Ec + Ev - 2Ef = 0$$

$$\therefore 2Ef = Ec + Ev$$

$$\therefore Ef = \frac{Ec + Ev}{2}$$

Taking log on both the sides $\rho^{[Ec+Ev-2Ef/kT]} = 1$

At all the temp. ie T>0° k probability of occupancy of Fermi level is 50%

- An electrons in solids obys Fermi Dirac Statistics
- A/c to this distribution of electron among the energy level as function of temperature given by

$$f(E) = \frac{1}{1 + e^{[E - Ef/kT]}}$$

Since f(E) represent probability, its value lies between 0 &1

Let T=0°k, kT=0

Case-I

When E< Ef , (E-Ef) is Negative ,then $\left[E-Ef/kT\right]=-\infty$

Fermi function becomes

$$f(E) = \frac{1}{1 + e^{-\infty}} = \frac{1}{1 + 0} = 1$$

Thus at absolute zero temp.all the levels below ${\sf E} f$ are filled .

Context of Fermi level for a semiconductor

Case-II

When E>Ef, (E-Ef) is Positive ,then
$$[E-Ef/kT] = \infty$$

Fermi function becomes

$$f(E) = \frac{1}{1 + e^{\infty}} = \frac{1}{1 + \infty} = 0$$

Thus at absolute zero temp.all the levels above Ef are empty.

Case-III

For T>0°k, kT= positive

When E=Ef,(E-Ef) is zero, then [E-Ef/kT]=0

Fermi function becomes
$$f(E) = \frac{1}{1+e^0} = \frac{1}{1+1} = \frac{1}{2}$$

Thus distribution function shows that occupation of Fermi level at any non zero temp. is 1/2

- At temp. greater than 0°k probability distribution function changes from 1 to 0 over energy range of about kT values.
- At T=T1 there are some probability f(E) shows that states above Ef are filled.
- The probability [1-f(E)] shows that states below Ef are empty.

Equation for Concentration of Electrons & Holes in Semiconductor

- When semiconductor is heated above 0°K, Electrons are excited from V.B to C.B.
- Thus Electrons in C.B & Holes in V.B are made available for conduction .
- The no. of Electrons per unit volume in C.B & the no. Holes per unit Volume in V.B called Electron Concentration & hole concentration respectively.
- If density of available energy state in C.B & V.B are known, concentration can be calculated with Feri Dirac distribution function.
- Let f(E) is the probability of occupancy of electron in level "E"at temp.T
- At Equilibrium most of the electrons are present at the bottom of C.B.
- Thus the concentration of conduction electron is

$$n = Ncf(Ec)$$
re

Nc – Number of energy state in C.B

Ec – Energy for C.B

$$f(Ec)$$
 – Probability of occupation of Ec

$$f(Ec) = \frac{1}{1 + e^{(Ec - Ef/kT)}} \dots (2)$$

At room temp

Where

 $kT=1.38\times10-23\times300$ $kT \approx 0.025$ eV is very small as compare to (Ec-Ef)

(Ec-Ef) >> kT $e^{(Ec-Ef/kT)}\rangle\rangle 1$

$$\langle kT \rangle \rangle$$

 $1 + e^{(Ec - Ef/kT)} \approx e^{(Ec - Ef/kT)}$

Putting in eq (2)

 $f(Ec) = \frac{1}{e^{(Ec - Ef/kT)}}$ $f(Ec) = e^{-(Ec-Ef/kT)} \dots (4)$

putting in eq (1) $n = Nc e^{-(Ec-Ef/kT)} \dots (5)$

But no. of available state in C.B is $Nc = 2 \left[\left(\frac{2\pi m_e kT}{h^2} \right)^{\frac{3}{2}} \right]$

Putting in eq (5)

$$n = 2 \left| \left(\frac{2\pi m_e kT}{h^2} \right)^{\frac{3}{2}} \right| e^{-(Ec - Ef/kT)} \quad(6)$$

Where m_e is the effective mass of electron

- Above equation shows that electron concentration is a function of position of Fermi level in semiconductor.
- As *Ef* moves close to the conduction band (*Ec-Ef*) decreases & concentration increases.

• If Nv be the no. of energy state in V.B, then the concentration of Holes in V.B is

$$p = Nv[1 - f(Ev)]....(1)$$

where, f(Ev)- Probability of occupation of energy state Ev by electron at temp." T"

$$1 - f(Ev) = 1 - \frac{1}{1 + e^{(Ev - Ef/kT)}}$$
But no. of available state in V. B are

$$f(Ev) = 1 - \frac{1}{1 + e^{(Ev - Ef/kT)}}$$
But no. of available s

$$1 - f(Ev) = \frac{1 + e^{(Ev - Ef/kT)} - 1}{1 + e^{(Ev - Ef/kT)}}$$

$$put in eq(3)$$

$$1 - f(Ev) \approx e^{(Ev - Ef/kT)}$$

$$1 - f(Ev) \approx e^{-(Ef - Ev/kT)}$$

$$put in eq(3)$$

$$p = 2\left[\left(\frac{2\pi m_h kT}{h^2}\right)^{\frac{3}{2}}\right] e^{-(Ef - Ev/kT)}$$

Putting in eq(1)the above equation shows that hole concentration $p = Nv e^{-(Ef - Ev/kT)} \dots (3)$

increases as Fermi level moves closer to the V.B.

 $Nv = 2 \left[\left(\frac{2\pi m_h kT}{h^2} \right)^{\frac{3}{2}} \right]$

Types of Semiconductor

Intrinsic Semiconductor (Pure)
Ex. Silicon (Si)
Germanium(Ge) $n_e = n_h = n_i$

Intrinsic Semiconductor

- Pure form of Semiconductor.
- Transformation of electrons to the C.B & generation of Holes in V.B achieved purely due to thermal excitation.
- Produce Equal no. of Electrons & holes called as Intrinsic charge carriers.
- Conductivity is known as Intrinsic conductivity.

At 0°K

- Each silicon atom consist of 4 valance electrons.
- At 0°K all the electrons are strongly bounded with their parent atoms & spend most of time with neighboring atoms i.e forming covalent bond.
- No. free electrons exist in the solid.
- Thus at 0°K semiconductor acts as perfect insulator.

At Room temp.

- Atom gain thermal energy & vibrate about its mean position.
- When electron acquires sufficient energy, breaks the covalent bond & Randomly move in crystal.
- Further increase in temp. free electron jump to the C.B creating hole behind.
- Thus semiconductor behaves as conductor.

At T>0 K, four thermally generated electron-hole pairs. The filled circles (\bullet) represent electrons and empty fields (\bullet) represent holes.

Extrinsic Semiconductor

- Small amount of impurity is added in pure semiconductor
- The process of addition of impurity is called doping & impurity is called dopant.
- Depending on type of doping Extrinsic semiconductor is of two types N-type & P-type.

N-type Semiconductor

- Semiconductor is doped with pentavalent impurity like Phosphorus, Antimony, Arsenic etc.
- When Phosphorus is added in pure silicon, four electrons of Phosphorus forms covalent bond with four neighboring silicon atoms.
- Fifth electron remains free.
- An impurity gives an excess (a free) electron, hence called as donor impurity.
- In this semiconductor conductivity is due to electrons i.e Negatively charge particles, hence called as N-type Semiconductor.
- Electrons are majority charge carriers & holes are minority charge carriers.
- Fermi level is near the bottom of C.B.

- Si = Intrinsic semiconductor atom
- P = Pentavalent impurity atom

P-type Semiconductor

- Semiconductor is doped with trivalent impurity like Gallium, Indium, Boron, Aluminum etc.
- When aluminum is added in pure silicon, three electrons of Al forms covalent bond with three neighboring silicon atoms.
- One covalent is incomplete with vacancy of electron, create a hole & accept electron from neighboring atoms.
- An impurity accept the electrons, hence called as acceptor impurity.
- In this semiconductor conductivity is due to holes i.e positively charge particles, hence called as P-type Semiconductor.
- Holes are majority charge carriers & electrons are minority charge carriers.
- Fermi level is near the top of V.B.

- Si = Intrinsic semiconductor atom
- Al = Trivalent impurity atom

Law of mass action

The product of electrons & holes concentration in doped semiconductor is constant & is equal to the square of intrinsic carrier density at given temperature.

$$n_i^2 = n.p$$

Charge Neutrality Condition

- Semiconductor (Intrinsic/Extrinsic) it is electrically neutral in its equilibrium condition.
- In N-type no. electrons in C.B must be equal to sum of electrons originated from donor level & electrons excited from the V.B.
- Electrons in donor level leaves behind positive ions & electrons in V.B leaves behind holes.
- Thus total negative charge mobile electrons is equal to total positive charge created in the crystal.

Charge Neutrality condition in

N type

Since $n_e \gg n_h$

Electron concentration is given by

 $n_e = N_D + n_h$

 $n_e \approx N_D$

But A/c to Law of mass action

 $n_{\rm e} n_{\rm h} = n_{\rm i}^{2}$

 $n_{\rm h} = \frac{n_{\rm i}^2}{n_{\rm e}}$

 $n_h = \frac{n_i^2}{N_D}$

P-type

Holes concentration is given by

 $p_h = N_A + p_e$ Since $p_h >> p_e$

 $P_h \approx N_{\Delta}$ But A/c to Law of mass action

 $p_h p_e = n_i^2$

 $p_{\rm e} = \frac{n_{\rm i}^2}{p_{\rm h}}$

 $p_e = \frac{n_i^2}{N}$

Position of Fermi level in Extrinsic Semiconductor

N-Type

- Pure Si or Ge doped with Pentavalent impurity.
- Addition of such impurity introduced new energy level in Band structure, just below the bottom of C.B
- At 0°K the level is filled with electrons.
- This level donates electrons to the C.B, Hence called Donor Level.
- At 0°K Fermi level lies exactly in the middle of bottom of C.B & donor level.
- When temp. increase electrons from donor level jump to the C.B

P-Type

- Pure Si or Ge doped with Trivalent impurity.
- Addition of such impurity introduced new energy level in Band structure, just above the top of V.B
- At 0°K the level is filled with holes.
- This level accept electrons from the V.B, Hence called Acceptor Level.
- At 0°K Fermi level lies exactly in the middle of top of V.B & acceptor level.
- When temp. increase acceptor level accept the electrons from the V.B.

Effect of Temperature on Fermi level in Extrinsic Semiconductor

N-type

- Fermi level lies in the middle of bottom of C.B & donor level at 0°K.
- With constant impurity concentration as temperature increases the Fermi level moves down wards.
- it passes through the donor level & finally reached at intrinsic level.
- Thus semiconductor behaves like Intrinsic semiconductor.
- At lower temp. some of the donor atoms get ionized i.e electrons jump from donor level to the C.B.
- At certain temp. all the atoms get ionized.
- Beyond this temp. electrons are jump from V.B to C.B.
- Thus Fermi level get shifted down to intrinsic position.

 Energy band diagram of n-type semiconductor

P-Type

- Fermi level lies in the middle of top of V.B & acceptor level at 0°K.
- With constant impurity concentration as temperature increases the Fermi level moves up wards.
- it passes through the acceptor level & finally reached at intrinsic level.
- At some temp. electrons from V.B excited to acceptor level.
- At certain temp. all the empty state in acceptor level are filled.
- Above this temp. electrons from V.B will jumped to C.B.
- Thus at specific temp. Fermi level remains at intrinsic position.
- P type semiconductor behaves like Intrinsic semiconductor.

Energy band diagram for a p-type semiconductor

Equations of Electrical Conductivity for Semiconductor

For Metal

Electrical conductivity due to electron only.

thus

$$\sigma = ne\mu_e$$

Where, n- No. of free e- per unit volume

e- Charge on electron

$$\mu_{e}$$
- Mobility of electron $\mu_{e} = \frac{V}{E}$

For Semiconductor

Electrical conductivity due to both electrons & holes

Thus
$$\sigma = ne\mu_e + pe\mu_h$$
 $\sigma = e(n\mu_e + p\mu_h)$

This is the general Equation

Where, n- No. of free e- per unit volume, p- No. of holes- per unit volume, μ_e - Mobility of electron, μ_h - hole mobility, e- Charge.

For Intrinsic Semiconductor

In Intrinsic Semiconductor no. of free electrons is equal to no. of Holes i.e

$$n = p = n_i$$

Where n_i is intrinsic carrier concentration

$$\sigma = e(n_i \mu_e + n_i \mu_h)$$
 $\sigma = en_i(\mu_e + \mu_h)$

Conductivity in Extrinsic Semiconductor

For N-Type
$$n >> p$$

$$n \approx N_D$$

$$Also \quad n >> p$$

$$n\mu_e >> p\mu_h$$

$$n\mu_e + p\mu_h \approx n\mu_e \approx N_D\mu_e$$

Thus the conductivity of N-type semiconductor is

$$\sigma_n = eN_D\mu_e$$

For P-Type
$$p>>n$$

$$p\approx N_A$$
Also
$$p>>n$$

$$p\mu_h>>n\mu_e$$

$$p\mu_h+n\mu_e\approx p\mu_h\approx N_A\mu_h$$
Thus the conductivity of P-type semiconductor is
$$\sigma_p=eN_A\mu_h$$

Drift & diffusion in Semiconductor

Drift

- In metal the conductivity is due to electrons $J = \sigma E$
- But in semiconductor the electrical conductivity is the sum of conductivity due to electrons & holes
- Thus the net current in semiconductor is $J = [\sigma_n + \sigma_p]E \Rightarrow J = [ne\mu_e + pe\mu_h]E$
- When an electric field is applied across semiconductor, electric force act on charges
- due to electric force electrons are moving in the opposite direction of applied electric field & holes are in the direction of electric field.
- This motion of charge carriers due to electric field is called as the drifting & it gives current called drift current.

Diffusion

- Directional movement of charge carriers due to Concentration gradient.
- The concentration of charge carriers varies with distance in semiconductor called Concentration gradient.
- The motion of charge carriers produce current known as Diffusion current.
- Diffusion current is directly proportional to concentration gradient at point

Let $\frac{dn}{dx}$ is concentration gradient in case of electrons

 $\frac{dp}{dt}$ is concentration gradient in case of Holes

• Diffusion current(Electron) $\alpha \frac{dn}{dx} = D_n \frac{dn}{dx}$

Diffusion current density for electron is $J_n = eD_n \frac{dn}{dx}$

Diffusion current density for holes is $J_p = -eD_p \frac{dp}{dx}$

$$J = J_n + J_p$$

$$J = J_n [Drift + Diffusion] + J_p [Drift + Diffusion]$$

$$J = \left[ne\mu_e E + eD_e \frac{dn}{dx} \right] + \left[pe\mu_h E - eD_h \frac{dp}{dx} \right]$$

$$J = \left[n\mu_e E + D_e \frac{dn}{dx} \right] + \left[p\mu_h E - D_h \frac{dp}{dx} \right]$$

P-N junction

- A single piece of semiconductor is doped with donor impurity at one end & acceptor impurity at other end.
- It's the sharp boundary between P type & N type of semiconductor.

As soon as junction is formed

- The holes from P region diffused in into N region & recombine with free electrons.
- The electrons from N region diffused into P region & recombine with holes.
- During diffusion ,electrons diffused from N to P region leaves behind uncompensated donor ions(positive ions) in N region.
- Holes diffused from P to N region leaves behind uncompensated acceptor ions(negative ions) in P region.

- Near the junction a narrow region is formed due to free charge carriers containing only uncompensated immobile ions called Depletion region.
- Width of depletion region depend on doping level of impurity. It is of the order of 10⁻⁶m or 1micron.
- In depletion region the are positive immobile ions in N region & negative immobile ions in P region.
- Due to the charge separation, Voltage V_B is developed across the junction under equilibrium condition known as Potential barrier.

Capacitance of PN junction

 In PN junction two parallel rows of charge impurity ions acts as plates of capacitor while depletion region act as a dielectric between them. The Capacitance formed in the junction known as junction capacitance.

Working of P-N junction Diode

P-N junction Diode

- it consist of P-N junction formed either by Si or Ge.
- Having two terminals one is connected to P-region & other connected to N- region of diode.
- Ckt symbol is as shown in fig b.
- The arrow head represent the direction of flow of current in forward bias.
- Real appearance is shown in fig c.

Forward Bias P-N Junction Diode

- Positive terminal of B.T is connected to the P-region & negative terminal of B.T is connected to N-region of Diode.
- The holes from P- region repelled by positive terminal of B.T towards the junction.
- The electrons from N- region repelled by negative terminal of B.T towards the junction.
- Due to this some of the electrons & holes enters in the depletion region & recombine with each other.
- This reduced the barrier potential & large current flow through the junction due to majority charge carriers.
- In F.B junction has low resistance.
- P-N junction is ON in F.B.

Forward bias

Reverse Bias P-N Junction Diode

- Positive terminal of B.T is connected to the N-region & negative terminal of B.T is connected to P-region of Diode.
- The holes from P- region are attracted by negative terminal of B.T away from the junction.
- The electrons from N- region are attracted by positive terminal of B.T away from the junction.
- Due to this potential barrier as well as width of depletion region increased.
- Very small current flowing through the diode due to the minority charge carriers & known as Reverse saturation current.
- This current is due to thermally generated electrons & holes.
- In R.B junction has high resistance.

Reverse bias

V-I characteristics of P-N junction Diode

• The graph which shows the variation of current through the diode when voltage is applied across P-N junction diode in F.B & R.B called as V-I characteristics.

Forward Characteristics of P-N Junction Diode

- Characteristics of diode in forward bias
- Initially no current(I) flowing through the diode up to certain value of voltage(V).
- Above the certain value of voltage(V), current(I) increases rapidly.
- This is because the external voltage is initially oppose by barrier potential up to certain point.

- At certain voltage the barrier potential becomes zero & depletion region breaks.
- Heavy current starts flowing through the diode.
- The forward voltage at which the diode starts conducting is called Knee voltage or Cut in voltage or threshold voltage.
- The cut in voltage for Ge is 0.3 V & Si is 0.7 V.

Reverse Characteristics of P-N junction Diode

- Characteristics of diode in reverse bias.
- Diode current(I_r) is very small even reverse voltage (V_r) is high.
- When reverse voltage increase to sufficient large value, reverse current increase rapidly.

- The reverse voltage at which reverse current increase rapidly known as Break down voltage.
- Reverse current remains constant below break down known as Reverse Saturation current.
- Above the break down voltage diode will not recover to its original form & damage completely.

Applications of P-N junction Diode

- Rectifier (Converting AC to DC).
- Signal diode in communication ckt.
- Switch in Logic ckt.
- Varacator Diode in radio, TV receivers.
- Photo diode used in computer hard wears.
- As solar cell in Space application.

Zener Diode

- It is a reverse bias heavily doped P-N junction diode.
- Operated in Break down region.
- Current is limited by external resistance only.
- Also called Voltage regulator, Breakdown or Advance diode.

V-I Characteristics of Zener Diode

- When the reverse voltage of zener diode increases, initially due to high reverse resistance very small current flow due to minority carriers.
- Further increase in the reverse voltage current increases rapidly.
- The reverse voltage at reverse current increases rapidly called Zener break down voltage or Zener voltage.
- In Zener diode, breakdown voltage is very small.
- Increase in the reverse voltage above the Zener voltage, control breakdown protect the diode from damage.
- After break down voltage, current increases rapidly while voltage remains constant.
- Location of Zener region can be controlled by doping.
- Increase in doping decrease the Zener potential.
- There are two types of Breakdown

Zener Breakdown & Avalanche Breakdown

Zener break down.

- Zener Breakdown occurs in heavily doped junction diode
- breaking of covalent bond by strong electric field.
- When reverse voltage of junction increase, strong electric filed set in across narrow depletion region.
- This electric field is strong enough to breaks the covalent bond.
- Generation of electron-hole pairs & accelerating towards the junction.
- Thus large current flow through the diode.
- An internal electric field is developed is of the order of 10⁶ V/m for 1 volt of reverse potential.
- This break down observed up to 6 V.
- Explanation was first given by Zener, hence called Zener mechanism.

Avalanche Breakdown

- Zener Breakdown occurs in lightly doped junction diode
- Electric field is not strong enough.
- When reverse voltage of junction increase, the amount of energy imparted to minority charge carriers.
- These minority charge carriers collide with host atom, breaks the covalent bond & generate additional electron-hole pairs.
- These carriers also get energy due to applied voltage & collides another host atoms which gives further charge carriers.
- thus avalanche of carriers takes place & reverse current increase sharply in very short time.
- This mechanism known as Avalanche breakd

Applications of Zener Diode

- Voltage regulator.
- Reference diode in transistor ckt.
- Peck clipper in wave shaping ckt
- For meter protection.

Light Emitting Diode

- LED is optoelectronics device
- Converts electrical energy into light energy.

Working of LED

- P-N junction of LED is forward bias.
- The majority of charge carriers moving towards the junction.
- Recombination takes place.
- during recombination, electrons in C.B of N side falls in V.B of P side which is on lower level.
- i.e electrons are jumped from higher energy level to lower energy level.
- Hence difference of energy radiated in the form of heat & light.
- In LED greater percentage of energy is given out in the form of light due to the material used for making LED.
- The energy emitted is given by

$$E_g = hv$$

$$E_g = \frac{hc}{\lambda}$$
 $\Rightarrow \lambda = \frac{hc}{E_g} \Rightarrow \lambda = \frac{1.24}{E_g} \mu m$

• the voltage at which LED just glows & current starts increasing rapidly is known as Striking potential.

V-I characteristic of LED

The semiconducting material used for LED

Typical LED Characteristics			
Semiconductor Material	Wavelength	Colour	V _F @ 20mA
GaAs	850-940nm	Infra-Red	1.2v
GaAsP	630-660nm	Red	1.8v
GaAsP	605-620nm	Amber	2.0v
GaAsP:N	585-595nm	Yellow	2.2v
AlGaP	550-570nm	Green	3.5v
SiC	430-505nm	Blue	3.6v
GalnN	450nm	White	4.0v

Applications of LED

- Infrared LED used in Burglar alarm.
- In optical switch application.
- Power ON/OFF condition.
- In 7- segment, 16- segment & dot matrix display.
- In the field of optical communication.
- In image sensing circuit.

Fermi Function & Fermi Energy

Related Formulae

M

?

C

A

L

L S

$$f(E) = \frac{1}{1 + e^{\left[\frac{E - E_f}{kT}\right]}} \qquad k = 1.38 \times 10^{-23} J/K$$

$$1 \qquad m = 9.1 \times 10^{-31} Kg$$

$$E_f = \frac{1}{2}mv_f^2 = kT$$

$$\Rightarrow F(E_g) = e^{\left[-\frac{E_g}{2kT}\right]}$$

$$m = 9.1 \times 10^{-31} Kg$$

 $e = 1.6 \times 10^{-19} C$

$$1eV = 1.6 \times 10^{-19}J$$

M

${f E}$

Solution-

$$\left\lceil \frac{E - E_f}{kT} \right\rceil = 1$$

 $f(E) = \frac{1}{1 + e^{\left[\frac{E - E_f}{kT}\right]}}$

For energy above Fermi energy

$$\left[\frac{1}{kT}\right] = 1$$

$$=\frac{1}{1+e^1}$$

• Evaluate the Fermi function as kT above Fermi energy.

$$\therefore f(E) = \frac{1}{1 + e^1}$$

$$\Rightarrow f(E) = \frac{1}{1 + 2.718}$$

$$\Rightarrow f(E) = 0.2689$$

• Calculate the Fermi velocity of charge carrier in a metal having Fermi temp.2500°k.

Solution-we have $\frac{1}{2}mv_f^2 = kT$ $\Rightarrow v_f^2 = \frac{2kT}{m}$

C A $\Rightarrow v_f^2 = \frac{2 \times 1.38 \times 10^{-23} \times 2500}{9.1 \times 10^{-31}}$ $\Rightarrow v_f^2 = \frac{2 \times 1.38 \times 10^{-23} \times 2500}{9.1 \times 10^{-31}}$

 $\Rightarrow v_f^2 = 7.582 \times 10^{10}$

 $\Rightarrow v_f = 275.35 \times 10^3 m/s$

A L

Solution-
Given
$$E_g = 5.6 \, eV = 5.6 \times 1.6 \times 10^{-19} \, J$$

$$T = 27^{\circ}C = 27 + 273 = 300^{\circ}K$$

$$T = 27^{\circ}C = 27 + 273 = 300^{\circ}K$$

$$k = 1.38 \times 10^{-23} J / K$$

$$F(F_{\circ}) = 2$$

$$F(E_g) = ?$$

$$\Rightarrow F(E_g) = e^{\left[-\frac{E_g}{2kT}\right]}$$

$$\Rightarrow F(E_g) = e^{\begin{bmatrix} 2kT \end{bmatrix}}$$

$$\Rightarrow F(E_g) = e^{\begin{bmatrix} \frac{5.6 \times 1.6 \times 10^{-19}}{2 \times 1.38 \times 10^{-23} \times 300} \end{bmatrix}}$$

$$\Rightarrow F(E_g) = 1.008 \times 10^{-47}$$

• The Fermi level for potassium is 2.1 eV. Calculate velocity of the electron at the Fermi level.

 $v_f = ?$

Now $E_f = \frac{1}{2}mv_f^2$

 $\Rightarrow v_f^2 = \frac{2E_f}{m}$

 $\Rightarrow v_f = \sqrt{\frac{2 \times 2.1 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}}}$

 $\Rightarrow v_f = 8.6 \times 10^5 m/s$

Solution-

Given, $E_f = 2.1eV = 2.1 \times 1.6 \times 10^{-19} J$

Electrical Conductivity of Semiconductor

• Calculate the mobility of electron in copper, if the free electrons per unit volume is 8.496×10²² cm⁻³ and resistivity of copper is 1.7×10^{-6} ohm-cm.

Solution-

$$n = 8.496 \times 10^{22} cm^{-3} = 8.496 \times 10^{28} m^{-3}$$

$$\rho = 1.7 \times 10^{-6} ohm - cm = 1.7 \times 10^{-8} ohm - m$$

$$\mu_e = ?$$

$$o = \frac{1}{}$$

$$u_e = \frac{1}{ne\rho}$$

Now,
$$\rho = \frac{1}{\sigma}$$
 $\Rightarrow \mu_e = \frac{1}{ne\rho}$
$$\Rightarrow \mu_e = \frac{1}{8.496 \times 10^{28} \times 1.6 \times 10^{-19} \times 1.7 \times 10^{-8}}$$

$$=\frac{1}{ne\mu}$$

$$\Rightarrow \rho = \frac{1}{ne\mu_e} \qquad \Rightarrow \mu_e = 4.327 \times 10^{-3} \, m^2 / Vs$$

• Mobilities of holes & electrons in a sample of intrinsic germanium at room temperature are 1700cm²/V.s and 3600 cm²/Vs resp.If the electron & hole densities are each equal to 2.5×10¹³ per cm³, calculate its conductivity.

Solution-Given that,

 $\mu_h = 1700cm^2/Vs = 1700 \times 10^{-4}m^2/Vs$ $\mu_{\rm P} = 3600 \, cm^2 / Vs = 3600 \times 10^{-4} \, m^2 / Vs$

 $n = p = n_i = 2.5 \times 10^{13} / cm^3 = 2.5 \times 10^{19} / m^3$ we know that , $\sigma = n_i e(\mu_e + \mu_h)$

$$\Rightarrow \sigma = 2.5 \times 10^{19} \times 1.6 \times 10^{-19} (3600 \times 10^{-4} + 1700 \times 10^{-4})$$

 $\Rightarrow \sigma = 2.12 \text{ ohm}^{-1}\text{m}^{-1}$

• LED is made from GaAs emits yellow light of wavelength
$$5850A^{\circ}$$
.calculate energy band gap of the material.

Solution-

Given that, $\lambda = 5850A^{\circ} = 5850 \times 10^{-10}m$
 $h = 6.63 \times 10^{-34} Is$

 $c = 3 \times 10^8 m/s$

 $E_g = ?$ $E_g = hv$

 $E_g = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{5850 \times 10^{-10}}$

 $E_q = 3.4 \times 10^{-19} J = 2.12 \ eV$

 $E_g = \frac{hc}{\lambda}$