# Why significant variables aren't automatically good predictors

Adeline Lo, Herman Chernoff, Tian Zheng and Shaw-Hwa Lo

Chiraag Limaye

Sriranga Ramakrishna

## Problem Statement

- Inability to use the results of the identified statistically significant variables
- "Why Significant Variables not leading to good predictions of the outcome?"

## Road Map

- Introduction
- Highly Significant v/s Highly Predictive
- Three Examples
- Analyzing the Real Breast Cancer Data
- Conclusion

## Introduction

- Prediction was important
- Newly Identified variables
- GWAS Study
- Size of the Data
  - Variable Selection
  - Variable Prediction

## Highly Significant vs Highly Predictive Variables

- Two popular Concepts
  - 1. Significance: statistical Inference
  - 2. Prediction: Identifying future behavior
- Key Difference : Underlying Distribution
- $P(T_n >= t_n)$
- $\sum_{x:f_D(x) < f_H(x)} f_D(x)$  and  $\sum_{x:f_D(x) \ge f_H(x)} f_H(x)$ . prediction rate = 0.5  $\sum_x \max(f_D(x), f_H(x))$ .
- Highly significant: uses assumption, but no knowledge of exact distributions
- Highly Predictive uses knowledge of both f<sub>h</sub> and f<sub>d</sub>

## Example 1

#### **Hypothesis H**

- For Variable X:
  - Mean = 0 , SD = 1
  - 0 < a(x) < 1
  - Error rate = e(c,H)
- For Variable Y:
  - Mean = 0, SD = 1

#### **Hypothesis K**

- For Variable X:
  - Mean = 3 , SD = 1
  - a(x) = random values
  - Error rate = e(c,K)
- For Variable Y:
  - Mean = 0, SD = 0.05

## Example 1 continued

#### Variable X

- $e_x$ = 0.174
- $S_x = 0.0014$
- Predictivity =  $1-e_x = 0.826$

#### Variable Y

- $e_{v}$ = 0.06
- $s_y = 0.5$
- Predictivity =  $1-e_y$  = 0.94

## Examples 2 and 3



## Comparing Significance test with I score



Each vertical bar is one variable set (VS). Its height and color represent the "importance" of a given VS. The taller and lighter (towards yellow) a bar, the more important the VS. In this example, 546 variable sets are considered with different MAF and OR settings. Three settings of sample sizes are considered.



## Comparing Significance test with I score



Each vertical bar is one variable set.

546 variable modules are considered.

## Applying I score to Real Breast Cancer Data

Table 1. Real breast cancer example: Five genes in the top returned predictive variable set from van't Veer data

| Systematic name | Gene name | Marginal P value |
|-----------------|-----------|------------------|
| Contig45347_RC  | KIAA1683  | 0.008            |
| NM_005145       | GNG7      | 0.54             |
| Z34893          | ICAP-1A   | 0.15             |
| NM_006121       | KRT1      | 0.9              |
| NM_004701       | CCNB2     | 0.003            |

## I Score

- $Y_i = i^{th}$  individual
- $\bar{Y}$  = Mean of all Y values
- s = SD of all Y values
- $\bar{Y}_i$  = Mean of all Y values in cell j
- $n_j$  = No of individuals in cell j
- n = Total no of individuals

$$I = \sum_{j=1}^{m_1} \frac{n_j}{n} \frac{\left(\overline{Y}_j - \overline{Y}\right)^2}{s^2/n_j} = \frac{\sum_{j=1}^{m_1} n_j^2 \left(\overline{Y}_j - \overline{Y}\right)^2}{\sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2},$$

## Conclusion

- In order to apply efficient techniques, we need to know the underlying distribution
- Real examples are difficult to analyze because of large number of variables
- exploration away from significance-based methodologies and toward prediction-oriented ones is encouraged
- The partition retention method, helps in reducing prediction error from 30% to 8% on a long-studied breast cancer data set.

## References

- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4653162/pdf/pnas.2 01518285.pdf
- <a href="https://en.wikipedia.org/wiki/Genome-wide-association-study">https://en.wikipedia.org/wiki/Genome-wide-association\_study</a>
- https://www.cebm.net/2014/02/likelihood-ratios/
- https://arxiv.org/pdf/1009.5744.pdf