KRKPA7 problem in various data mining tools 4IZ451 - Knowledge discovery in databases

Tomáš Maršálek

December 11, 2014

1 Introduction

The purpose of this work is to analyze database of KRKPA7 problem using four different data mining tools. Some of the chosen data mining programs are freely available (Weka) or freely available for non-commercial use (RapidMiner) or proprietary licensed (SAS Enterprise Miner, IBM PASW). The nature of problem for this assignment is suitable for classification and association modeling, but not for clustering.

2 KRKPA7 problem

KRKPA7 is a shorthand for King Rook versus King Pawn on A7, which is a chess endgame. The black player has a king and a pawn left, where the pawn is on A7, which is one turn away from turning him into a queen. The white player has a turn in this situation and has a king and a rook to play with.

Figure 1: Example board setup

2.1 Data set

Data set contains 3196 setups of chess board, each one with different positions of both kings and the rook, the pawn is fixed on A7. The 37th column is a class column denoting **win** or **nowin** of white player. For our purposes we don't need to perform any preprocessing. The set is not as large for the algorithms to be unable to create desired models.

Each board setup is described by 36 attributes described in table 2.

Position	Abbreviation	description	
1	bkblk	the BK is not in the way	
2	bknwy	the BK is not in the BR's way	
3	bkon8	the BK is on rank 8 in a position to aid the BR	
4	bkona	the BK is on file A in a position to aid the BR	
5	bkspr	the BK can support the BR	
6	bkxbq	the BK is not attacked in some way by the pro- moted WP	
7	bkxcr	the BK can attack the critical square (b7)	
8	bkxwp	the BK can attack the WP	
9	blxwp	B attacks the WP (BR in direction $x = -1$ only)	
10	bxqsq	one or more Black pieces control the queening square	
11	cntxt	the WK is on an edge and not on a8	
12	dsopp	the kings are in normal opposition	
13	dwipd	the WK distance to intersect point is too great	
14	hdchk	there is a good delay because there is a hidden check	
15	katri	the BK controls the intersect point	
16	mulch	B can renew the check to good advantage	
17	qxmsq	the mating square is attacked in some way by the promoted WP	
18	r2ar8	the BR does not have safe access to file A or rank 8	
19	reskd	the WK can be reskewered via a delayed skewer	
20	reskr	the BR alone can renew the skewer threat	
21	rimmx	the BR can be captured safely	
22	rkxwp	the BR bears on the WP (direction $x = -1$ only)	
23	rxmsq	the BR attacks a mating square safely	
24	simpl	a very simple pattern applies	
25	skach	the WK can be skewered after one or more checks	
26	skewr	there is a potential skewer as opposed to fork	
27	skrxp	the BR can achieve a skewer or the BK attacks the WP	
28	spcop	there is a special opposition pattern present	
29	stlmt	the WK is in stalemate	
30	thrsk	there is a skewer threat lurking	
31	wkcti	the WK cannot control the intersect point	
32	wkna8	the WK is on square a8	
33	wknck	the WK is in check	
34	wkovl	the WK is overloaded	
35	wkpos	the WK is in a potential skewer position	
36	wtoeg	the WK is one away from the relevant edge	

Table 1: Board positions attributes [1]

3 WEKA

WEKA (Waikato Environment for Knowledge Analysis) is an open source data mining software from University od Waikato, New Zealand.

3.1 Classification

In order to predict whether the white player wins or loses from board setup, we tested several classification algorithms implemented in WEKA. Classifiers were trained using k-fold cross-validation with k=10.

ZeroR is a simple classifier which ignores every attribute and simply assigns dominating class to each sample. Uneffective in this case because the distribution of win and nowin class is roughly equal (52.2215% win and 47.7785% nowin).

OneR is a classifier which selects attribute with smallest classification error and uses that attribute as its classification rule.

NaiveBayes is a classifier constructed from naive Bayes probability model.

Decision tree algorithms construct a decision tree from the attributes of training set.

Algorithm	Success rate
ZeroR	52.2215%
OneR	66.4581%
NaiveBayes	87.8911%
J48 (decision tree)	99.4368%
SimpleCart (decision tree)	99.3742%
RandomForest (decision tree)	98.7797%

Table 2: WEKA Classifiers

3.2 Association

To find association rules in KRKPA7 data set we used **Apriori** algorithm. Best rules found:

- 1. thrsk=f $3060 \rightarrow \text{spcop} = \text{f } 3060$
- 2. skach=f thrsk=f $3049 \rightarrow \text{spcop}=f 3049$
- 3. hdchk=f thrsk=f $3045 \rightarrow \text{spcop}=f 3045$
- 4. reskd=f thrsk=f 3045 \rightarrow spcop=f 3045
- 5. skach=f 3185 \rightarrow spcop=f 3184
- 6. hdchk=f 3181 \rightarrow spcop=f 3180
- 7. reskd=f 3170 \rightarrow spcop=f 3169
- 8. hdchk=f skach=f 3170 \rightarrow spcop=f 3169
- 9. reskd=f skach=f 3159 \rightarrow spcop=f 3158
- 10. hdchk=f reskd=f $3155 \rightarrow \text{spcop}=f 3154$

4 Rapid Miner

RapidMiner is a software by company RapidMiner for commercial use of machine learning, data and text mining and predictive and business analytics.

4.1 Classification

Preprocessing steps for krkpa7 data set in RapidMiner require to only specify target column. To create a classifier in RapidMiner, we layout several components together starting from data input, then going through validation step, which makes all the partitioning, classification and model performance evaluation, and finishing in the output of the pipeline.

Figure 2: Pipeline setup

Figure 3: Naive bayes classifier component

If we use desicion tree classifier, we can get either graphical or textual representation of the resulting classifier. We only include text formatted tree below, because graphical representation was simply too wide to fit the page.

```
Tree
rimmx = f
    bxqsq = f
        wknck = f
            wkna8 = f
                bkxbq = f
                    wkpos = f
                        katri = b
                            bkblk = f: nowin {won=0, nowin=15}
                            bkblk = t
                                hdchk = f: won {won=21, nowin=1}
                                hdchk = t: nowin {won=0, nowin=4}
                        katri = n
                            bkblk = f
                                wkcti = f: nowin {won=0, nowin=55}
                                wkcti = t
                                    r2ar8 = f
                                         reskr = f
                                             dsopp = f: nowin {won=2, nowin=3}
                                             dsopp = t: won {won=2, nowin=0}
                                         reskr = t: nowin {won=0, nowin=6}
                                    r2ar8 = t: nowin {won=0, nowin=14}
                            bkblk = t
                                hdchk = f: won {won=22, nowin=0}
                                hdchk = t: nowin {won=0, nowin=4}
                        katri = w: won {won=50, nowin=0}
                    wkpos = t
                        katri = b
                            bkblk = f: nowin {won=0, nowin=20}
                            bkblk = t
                                rxmsq = f: won {won=8, nowin=0}
                                rxmsq = t: nowin {won=1, nowin=1}
                        katri = n
                            rxmsq = f
                                dsopp = f: won {won=221, nowin=0}
                                dsopp = t
```

```
dwipd = g
                                skewr = f: won {won=8, nowin=0}
                                skewr = t
                                    wtoeg = n: won {won=3, nowin=0}
                                wtoeg = t: nowin {won=0, nowin=2}
                            dwipd = 1: won {won=23, nowin=0}
                    rxmsq = t
                        qxmsq = f: nowin {won=0, nowin=15}
                        qxmsq = t: won {won=27, nowin=0}
                katri = w: won {won=49, nowin=0}
        bkxbq = t: won {won=599, nowin=0}
    wkna8 = t
        bknwy = f: nowin {won=0, nowin=106}
        bknwy = t
           r2ar8 = f
    simpl = f: won {won=3, nowin=0}
                simpl = t: nowin {won=0, nowin=5}
            r2ar8 = t: nowin {won=0, nowin=9}
wknck = t
   r2ar8 = f
        bkxcr = f
            skrxp = f
                mulch = f
                    thrsk = f
                        bkona = f
                            reskr = f
                                blxwp = f
                        1
                                    bkon8 = f
                                        skach = f: won {won=38, nowin=0}
                                        skach = t: nowin {won=0, nowin=2}
                                    bkon8 = t: nowin {won=0, nowin=2}
                                blxwp = t: nowin {won=0, nowin=3}
                            reskr = t: nowin {won=0, nowin=6}
                        bkona = t: nowin {won=0, nowin=6}
                    thrsk = t: nowin {won=0, nowin=7}
                mulch = t: nowin {won=0, nowin=18}
            skrxp = t: nowin {won=0, nowin=34}
        bkxcr = t: nowin {won=0, nowin=77}
   r2ar8 = t
        wkovl = f
            bkxcr = f
                bkona = f
                    mulch = f
                    1
                        bkon8 = f: won {won=8, nowin=0}
                        bkon8 = t: nowin {won=0, nowin=3}
```

```
| | | | | | | mulch = t: nowin {won=0, nowin=11}
| | | | | | bkona = t: nowin {won=0, nowin=19}
| | | | | bkxcr = t: nowin {won=0, nowin=41}
| | | wkovl = t: nowin {won=0, nowin=295}
| bxqsq = t: nowin {won=0, nowin=743}
rimmx = t: won {won=584, nowin=0}
```

5 IBM SPSS Modeler

Originally named Clementine, also known as SPSS Clementine, PASW Modeler is a data mining and text analytics software by IBM.

5.1 Classification

In the pipeline schema we first retrieve data from a file. Unlike in WEKA and RapidMiner, we need to provide a csv file instead of more suitable arff file, which contains more detailed definitions of data types. We run the data through auto data preparation step and feed the result to feature selector. After the selector is trained in the first run of the pipeline, we use the resulting component in the next step of pipeline and feed the refined data to a partition step so that we get two sets used for training and testing of the upcoming models. In this case we used c5 decision tree and neural network classifiers. Same as in the feature selector component, we need first to build the models and use the newly created components down in the pipeline. To evaluate results (c5 decision tree in table 3 and neural net in table 4) we feed the outputs from the classifiers to error matrices for each of the models.

class	nowin	win
nowin	1510	17
won	95	1574

Table 3: Error matrix for c5 decision tree in PASW

class	nowin	win
nowin	1495	32
won	83	1586

Table 4: Error matrix for neural network in PASW

Figure 4: Pipeline setup of classifiers in PASW

Figure 5: Result of PASW Models

Results for output f	ield class			
Comparing \$C- class	with class			
'Partition'	$1_Training$		2_Testing	
Correct	1 450	96,09%	1	
634 96,86%				
Wrong	59	3,91%	53	3,14%
Total	1 509		1 687	

Figure 6: Analysis of c5 decision tree in PASW

Results for output f	ield class			
Comparing \$N- class	with class			
'Partition'	1_Training		2_Testing	
Correct	1 457	96,55%	1	
624 96,27%				
Wrong	52	3,45%	63	3,73%
Total	1 509		1 687	

Figure 7: Analysis of neural network in PASW

6 SAS Enterprise Miner

SAS (Statistical Analysis System) is a software suite by SAS Institute, which offers both programming language capabilities through SAS programming language and point-and-click interface for non-programmers.

For purposes of this project the point-and-click interface was used resulting in diagram depicted in picture 8.

Figure 8: SAS pipeline setup

Same as in the previous pipeline-designer tools, we first create file importer and load it with krkpag csv input file. The class column is marked as target and the rest is kept as an input (picture 9).

Figure 9: SAS set target attribute

We run the data through data partitioner in default ratio 40:30:30 (Training:Validation:Test) to two models - neural network and decision tree with all the settings kept at defaults. The final stage of the pipeline before reporting results is a model comparison box, which allows us to compare generated models. We push output of this comparison to reporting output which generates a nice pdf file with various data from which we are now only interested in the error matrix for both classifiers and overall performance of the models.

Model	Data Role	False Negative	True Negative	False Positive	True Positive
Neural Network	TRAIN	8	603	8	659
Neural Network	VALIDATE	13	448	10	488
Decision Tree	TRAIN	13	556	55	654
Decision Tree	VALIDATE	16	415	43	485

Table 5: SAS error matrices

Model	Missclassification rate (valid)	Average squared Error (valid)
Neural Network	0.023983	0.021215
Decision Tree	0.061522	0.055342

Table 6: SAS model performance

Model	Average squared error (train)	Missclassification rate (train)
Neural Network	0.010720	0.012520
Decision Tree	0.047754	0.053208

Table 7: SAS model performance

7 Conclusion

We used four data mining tools to show how to perform simple data classification from KRKPA7 data set. We also used WEKA to further analyse the data resulting in a set of association rules among attributes of the data set. The purpose of this project was rather educational to make students familiar with data mining tools both freely available and commercial.

Personally I found all of the tools intuitive to some degree because solving the same problem in one tool makes you understand what to look for in the next tool from the four.

SAS left an impression on me. It is de facto industry standard even though nowadays we have tools like R or numerical Python which are way less heavy on licensing costs, but still not fully adopted by businesses in advanced data analysis compared to SAS.

If I were to choose a data mining tool for my personal purposes I would choose WEKA for the simple reason that it complies with ideas of open software which according to me governs the way of evolution of software these days. It is worth mentioning that it can be used as a library rather than rigidly using it as a heavy-weight GUI all-in-one tool that badly integrates with custom software.

7.1 Results

Principles of used algorithms are basically equal in each of the used data mining tools, therefore the accuracy of same algorithm models across different tools is unsurprisingly very similar.

References

[1] MICHIE, D. Consciousness as an Engineering Issue, Part. *Journal of Consciousness Studies*. 1995, 2, 1, s. 52–66.