Utility Functions

1. match features()

Using the feature matching that was implemented in one of the course homeworks, we matched our sift features, maintaining the 0.7 ratio test.

2. resize ImageSet()

Resizes the images to make the feature extraction and matching less computationally intensive.

3. SIFT_Extraction()

Uses SIFT to extract relevant features from an image pair.

4. camera_metric_cal()

Using singular-value-decomposition we recover the camera pose.

5. triangulation()

Triangulates the 3D points from matched 2-D features using triangulatePoints().

6. pixel_value_points()

Obtains RGB values for corresponding 3D points.

7. PnP():

Uses OpenCV's solvePnPRansac() to compute the next camera's pose and return inliers that correspond to the camera matrix found.

8. common_points():

Finds common features that have been matched across three images to be fed into PnP.

Following the pipeline mentioned in the report, a base reference of 3D points is calculated across the first two images, before moving on to triangulating points across all image pairs sequentially to obtain X ('x,y,z' coords), our final 3D reconstruction.