Práctica 10 - Problemas de búsqueda de subcadenas (string matching)

NOTAS PRELIMINARES

Los objetivos de esta práctica son:

- Comprender profundamente los algoritmos más importantes para el problema de búsqueda de subcadenas.
- Modificar esos algoritmos para situaciones particulares de la entrada o variantes del problema.

Los ejercicios marcados con el símbolo * constituyen un subconjunto mnimo de ejercitación. Sin embargo, aconsejamos fuertemente hacer todos los ejercicios.

Ejercicio 1 *

Supongamos un patrón P donde todos los caracteres sean diferentes. Mostrar como podra adaptarse el algoritmo naive (también llamado de fuerza bruta) para hallar en O(n) las apariciones de P en un texto de n caracteres.

Ejercicio 2 *

Supongamos que permitimos que el patrón de búsqueda P contenga el carcter * indicando que este puede ser reemplazado por 0 o más caracteres. Damos por hecho que * no aparece en T.

Por ejemplo, el patrón ab*ba*c ocurre en el texto T=cabccbacbacab, en T[2,8] y T[2,11] (siendo 1 la primera posición de T).

Dar un algoritmo naive pero polinomial para determinar si P se encuentra en T y analizar la complejidad del mismo.

Ejercicio 3 *

Cuántos falsos positivos encuentra el algoritmo de Rabin y Karp buscando el patrón P=26 en el texto T=3141592653589793, si se trabaja tomando módulo 11 en la función de hash?

Ejercicio 4 *

Cómo extendería el algoritmo de Rabin-Karp para hallar una ocurrencia de alguno de los k patrones pertenecientes a un conjunto de entrada?

Ayuda 1: Comenzar resolviendo el problema suponiendo que todos los patrones son de igual longitud y luego generalizar la solución al caso de longitudes mixtas.

 $Ayuda \ 2: \ (a+b)mod(c) = ((amod(c)) + (bmod(c)))mod(c). \ La \ misma \ propiedad \ vale \ para \ la \ multiplicaci\'on.$

Ejercicio 5 *

Dar un algoritmo para el problema del ejercicio $\bf 2$ basado en el algoritmo del autómata. El tiempo de ejecución del mismo (sin contar el preprocesamiento) debe ser de O(|T|).

Ejercicio 6 *

Dados dos patrones P y P', construir un autómata que permita hallar las apariciones de ambos patrones en un texto T. Se espera una solución donde se minimice la cantidad de estados.

Ejercicio 7 *

Dar un algoritmo $O(m|\Sigma|)$, donde m=|P|, para construir el autómata que permita buscar el patrón P en cualquier texto.

Ayuda: inspirarse en el algoritmo de Knuth, Morris y Pratt y demostrar que $\delta(q,a) = \delta(\pi[q],a)$ si q=m o si $P[q+1] \neq a$.