(11) Publication number:

0 234 045

A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 86118020.6

(22) Date of filing: 23.12.86

(5) Int. Cl.³: **C 07 D 231/20** C 07 D 231/18, C 07 D 405/4- 2

C 07 D 409/12, C 07 D 413/1- 2

C 07 D 401/12, C 07 D 231/2-

(30) Priority: 27.12.85 JP 295759/85

27.12.85 JP 295760/85

08.02.86 JP 26582/86

27.06.86 JP 151187/86

28.07.86 JP 177447/86

02.09.86 JP 206442/86

03.09.86 JP 206993/86

(43) Date of publication of application: 02.09.87 Bulletin 87/36

(84) Designated Contracting States: CH DE ES FR GB IT LI NL SE

(71) Applicant: NIHON NOHYAKU CO., LTD. 1-2-5, Nihonbashi Chuo-ku Tokyo(JP)

(72) Inventor: Hamaguchi, Hiroshi Rose Manshon Fujinomori

A-804

10-1, Fukakusa-Hottacho Fushimi-ku Kyoto(JP)

(72) Inventor: Takaishi, Hideo 7-20, Nigawa-Yurinocho Nishinomiya-shi(JP)

(72) Inventor: Ohshima, Tetsuji 7-20, Nigawa-Yurinocho Nishinomiya-shi(JP)

(72) Inventor: Konno, Takamichi 3121 A, Aileen Dr. Raleigh NC 27606(US)

(72) Inventor: Miyagi, Yukio 7-23-816, Nankonaka-4-chome Suminoe-ku Osaka(JP)

(72) Inventor: Shiraiwa, Yutaka 521-3, Kusabe Saikai-shi(JP)

(72) Inventor: Akita, Takayuki 2038-29, Murakami Yachiyo-shi(JP)

(74) Representative: Patentanwälte Grünecker, Kinkeldey, Stockmair & Partner Maximilianstrasse 58 D-8000 München 22(DE)

(54) A pyrazole oxime derivative and its production and use.

(57) A pyrazole oxime derivative represented by the general formula (I) which is useful as an insecticide, mitecide and fungicide,

$$R^{2} \xrightarrow{C=NO-Q-Z^{2}-R^{4}} I$$

wherein R1 represents C1-C4 alkyl or phenyl; R2 represents hydrogen, C₁-C₅ alkyl, C₁-C₃ haloalkyl or phenyl; R³ represents hydrogen, C₁-C₄ alkyl gr phenyl; R⁴ represents hydrogen, C2-C4 alkylcarbonyl, benzoyl, naphthyl or a substituent of the formula,

[in which X represents hydrogen; halogen; C1-C12 alkyl; C1-C6 alkyl substituted with halogen, cyano, hydroxy, C1-C5 alkoxy or C2-C6 alkoxycarbonyl; C3-C8 cycloalkyl; cycloalkyl substituted with from one to three members selected from the group

consisting of C1-C4 alkyl, halogen and cyano; C2-C4 alkenyl substituted with halogen, hydroxy, C2-C4 alkoxycarbonyl or C2-C6 alkylcarbonyl; phenyl; hydroxy; C1-C6 alkoxy; C1-C4 alkoxy substituted with halogen or C2-C6 alkoxycarbonyl; phenoxy which may or may not be substituted with C1-C3 haloalkyl benzyloxy; C1-C3 alkylenedioxy formed by two adjacent Xs; pyridyloxy which may or may not be substituted with halogen or C1-C3 haloalkyl; a substituent of the formula, -S(O)_pR⁵ (in which R⁵ represents C₁-C₆ alkyl, C₁-C₅ haloalkyl or

phenyl, and p represents an integer of 0, 1 or 2); cyano; formyl; nitro; a substituent of the formula -COORs (in which R⁶ represents hydrogen; alkali metal; C₁-C₁₀ alkyl; C₁-C₆ alkyl substituted with halogen, C1-C4 alkoxy, phenoxy, C2-C4 alkoxycarbonyl or phenoxyphenyl; C2-C7 alkenyl; C3-C7 alkynyl; C₃-C₈ cycloalkyl; C₃-C₈ cycloalkyl substituted with C₁-C₃ alkyl; phenyl; or a substituent of the formula,

./...

(in which R7, R8 and R9, which may be the same or different, C1-C4 haloalkyl, halogen, hydroxy, C1-C4 alkoxy, C1-C4 halorepresent C1-C4 alkyl or C3-C8 cycloalkyl)); C2-C6 alkylcarb- alkoxy, C1-C3 alkylenedioxy, phenoxy which may or may not onyl; C2-C6 alkylcarbonyl substituted with cyano or C2-C6 be substituted with trifluoromethyl, a substitutent of the foralkoxycarbonyl; benzoyl which may or may not be substitu- mula, $-S(O)_qR^{27}$ (in which R^{27} represents C_1-C_3 alkyl and q ted with halogen or C₁-C₈ alkyl; C₂-C₅ alkylthiocarbonyl; C₃-C₇ represents an integer of 0, 1 or 2), hydroxycarbonyl, C₂-C₅ alkoxycarbonylcarbonyl; a substituent of the formula,

$$\begin{array}{c}
0 \\
R^{10} \\
-CN
\end{array}$$

(in which R10 and R11, which may be the same or different, represent hydrogen, C₁-C₅ alkyl or phenyl); piperidino- (in which R²⁸ and R²⁹, which may be the same or different, carbonyl; morpholinocarbonyl which may or may not be sub-represent hydrogen, C₁-C₄ alkyl, or benzyl which may or may stituted with one or two C₁-C₄ alkyls; a substituent of the for- not be substituted with C₂-C₆ alkoxycarbonyl); Z¹ represents mula,

(in which R¹² represents hydrogen or C₁-C₅ alkyl, and R¹³ re- said pests by using the same oxime derivative. presents formyl, C2-C12 alkoxycarbonyl, or C2-C5 alkoxycarbonyl substituted with halogen or C1-C4 alkoxy); a substituent of the formula,

(in which R14 represents hydrogen, C1-C4 alkyl or C2-C6 alkoxyalkyl); a substituent of the formula,

(in which R15 and R16, which may be the same or different, represent C1-C4 alkyl, or taken together, may form C1-C4 alkylene, R17 represents C1-C5 alkyl, cyano or C2-C6 alkoxycarbonyl, and B represents oxygen or sulfur); a substituent of the formula,

(in which R^{18} represents hydrogen or C_2 - C_4 alkylcarbonyl, and R¹⁹ and R²⁰, which may be the same or different, represent hydrogen or C1-C8 alkyl); a substituent of the formula,

-Si
$$R^{21}$$

(in which R^{21} , R^{22} and R^{23} , which may be the same or different, represent C1-C4 alkyl); or a substituent of the formula,

(in which R24, R25 and R26, which may be the same or different, represent C1-C4 alkyl), and n represents an integer of from 1 to 5, and when n represents an integer of from 2 to 5, X may be the same or different]; Y represents hydrogen, C1-C6 alkyl,

alkoxycarbonyl or a substituent of the formula,

oxygen or sulfur; Z2 represents oxygen, sulfur or single bond; O represents C1-C8 alkylene, C1-C8 alkylene substituted with halogen or phenyl, C₃-C₁₂ alkenylene, C₃-C₁₂ haloalkenylene or C3-C8 alkynylene; and m represents an integer of from 1 to 3, and when m represents an integer of 2 or 3, Y may be the same or different; and the method of controlling

A PYRAZOLE OXIME DERIVATIVE AND ITS PRODUCTION AND USE

The present invention relates to a pyrazole oxime derivative, its production and an insecticidal and acaricidal composition containing it as an active ingredient for use in agriculture and horticulture, said pyrazole oxime derivative being represented by the general formula (I),

$$R^{2} \qquad C = NO-Q-Z^{2}-R^{4}$$

$$\downarrow N \qquad \downarrow N$$

wherein R^1 represents C_1-C_4 alkyl or phenyl; R^2 represents hydrogen, C_1-C_5 alkyl, C_1-C_3 haloalkyl or phenyl; R^3 represents hydrogen, C_1-C_4 alkyl or phenyl; R^4 represents hydrogen, C_2-C_4 alkylcarbonyl, benzoyl, naphthyl or a substituent of

10 the formula, - [in which X represents hydrogen;

halogen; C_1 - C_{12} alkyl; C_1 - C_6 alkyl substituted with halogen, cyano, hydroxy, C_1 - C_5 alkoxy or C_2 - C_6 alkoxycarbonyl; C_3 - C_8 cycloakyl; cycloalkyl substituted with from one to three members selected from the group consisting of C_1 - C_4 alkyl, halogen and cyano; C_2 - C_4 alkenyl substituted with halogen, hydroxy, C_2 - C_4 alkoxycarbonyl or C_2 - C_6 alkylcarbonyl; phenyl; hydroxy; C_1 - C_6 alkoxy; C_1 - C_4 alkoxy substituted

with halogen or C₂-C₆ alkoxycarbonyl; phenoxy which may or may not be substituted with C₁-C₃ haloalkyl; benzyloxy; C₁-C₃ alkylenedioxy formed by two adjacent Xs; pyridyloxy which may or may not be substituted with halogen or C₁-C₃ haloalkyl; a substituent of the formula, -S(0)_pR⁵ (in which R⁵ represents C₁-C₆ alkyl, C₁-C₅ haloalkyl or phenyl, and p represents an integer of 0, 1 or 2); cyano; formyl; nitro; a substituent of the formula -COOR⁶ (in which R⁶ represents hydrogen; alkali metal; C₁-C₁₀ alkyl; C₁-C₅ alkyl substituted with halogen, C₁-C₄ alkoxy, phenoxy, C₂-C₄ alkoxy-carbonyl or phenoxyphenyl; C₂-C₇ alkenyl; C₃-C₇ alkynyl;

C₃-C₈ cycloalkyl; C₃-C₈ cycloalkyl substituted with C₁-C₃

alkyl; phenyl; or a substituent of the formula, $-s_n = \frac{R^8}{R^9}$

(in which R^7 , R^8 and R^9 , which may be the same or different, represent C_1 - C_4 alkyl or C_3 - C_8 cycloalkyl)}; C_2 - C_6 alkylcarbonyl; C_2 - C_6 alkylcarbonyl substituted with cyano or C_2 - C_6 alkoxycarbonyl; benzoyl which may or may not be substituted with halogen or C_1 - C_6 alkyl; C_2 - C_6 alkylthiocarbonyl; C_3 - C_7 alkoxycarbonylcarbonyl; a substituent of

the formula, $-CN < R^{10}$ (in which R^{10} and R^{11} , which may be

the same or different, represent hydrogen, C_1 - C_6 alkyl or 20 phenyl); piperidinocarbonyl; morpholinocarbonyl which may or may not be substituted with one or two C_1 - C_4 alkyls; a

sents hydrogen or C_1 - C_5 alkyl, and R^{13} represents formyl, C_2 - C_{12} alkoxycarbonyl, or C_2 - C_5 alkoxycarbonyl substituted with halogen or C_1-C_4 alkoxy); a substituent of the for-

5 mula, -N 0 (in which R^{14} represents hydrogen, C_1-C_4

alkyl or C₂-C₆ alkoxyalkyl); a substituent of the formula, $-C = \mathbb{R}^{17}$ (in which \mathbb{R}^{15} and \mathbb{R}^{16} , which may be the same or different, represent C₁-C₄ alkyl or, taken together, may form $c_1^{-c_4}$ alkylene, R^{17} represents $c_1^{-c_5}$ alkyl, cyano or 10 C_2 - C_6 alkoxycarbonyl, and B represents oxygen or sulfur); a

substituent of the formula, $-C = \mathbb{R}^{19}$ (in which \mathbb{R}^{18} repre-

sents hydrogen or $C_2^{-C_4}$ alkylcarbonyl, and R^{19} and R^{20} , which may be the same or different, represent hydrogen or

 C_1-C_6 alkyl); a substituent of the formula, $-Si-R^{22}$ (in

which R^{21} , R^{22} and R^{23} , which may be the same or different, represent C_1-C_4 alkyl); or a substituent of the formula,

 $-0-\text{Si} = \mathbb{R}^{25}$ (in which \mathbb{R}^{24} , \mathbb{R}^{25} , and \mathbb{R}^{26} , which may be the

same or different, represent C_1-C_4 alkyl), and n represents

- an integer of from 1 to 5, and when n represents an integer of from 2 to 5, X may be the same or different]; Y represents hydrogen, C_1-C_6 alkyl, C_1-C_4 haloalkyl, halogen, hydroxy, C_1-C_4 alkoxy, C_1-C_4 haloalkoxy, C_1-C_3 alkylene-
- dioxy, phenoxy which may or may not be substituted with trifluoromethyl, a substituent of the formula, $-S(0)_qR^{27}$ (in which R^{27} represents C_1-C_3 alkyl and q represents an integer of 0, 1 or 2), hydroxycarbonyl, C_2-C_5 alkoxy-

carbonyl or a substituent of the formula, $-N < R^{28}$ (in

which R²⁸ and R²⁹, which may be the same or different, represent hydrogen, C₁-C₄ alkyl, or benzyl which may or may not be substituted with C₂-C₆ alkoxycarbonyl); Z¹ represents oxygen or sulfur; Z² represents oxygen, sulfur or single bond; Q represents C₁-C₈ alkylene, C₁-C₈ alkylene substituted with halogen or phenyl, C₃-C₁₂ alkenylene, C₃-C₁₂ haloalkenylene or C₃-C₆ alkynylene; and m represents an integer of from 1 to 3, and when m represents an integer of 2 or 3, Y may be the same or different.

The terms "alkyl, alkylene, alkenylene and
alkynylene" as used herein mean straight-chain or branched
alkyl, alkylene, alkenylene and alkynylene groups,
respectively. The term "halo" means halogen such as
fluorine, bromine, chlorine, etc., and the term "haloalkyl"
means an alkyl group substituted with one or more halogen
atoms which may be the same or different.

The compounds represented by the foregoing

1 general formula (I) are novel compounds not described in the literatrues. They have excellent insecticidal activity against insects belonging to Lepidoptera such as diamondback moth, cabbage armyworm, tobacco cutworm, rice stem

. ..

borer, etc., insects belonging to Hemiptera such as brown planthoper, green peach aphid, etc. and mites. In addition, they have excellent fungicidal activity against diseases of vegetables, fruit trees, flowers and ornamental plants, etc., such as rice blast, powdery mildew, downy
mildew, crown rust, leaf blight, sheath blight, purple

Of the compounds of the present invention, those which are particularly useful as an insecticide and acaricide will be shown below:

15 Tert-butyl 4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)methyleneaminooxymethyl]benzoate

Tert-butyl 4-[{5-(4-fluorophenoxy)-1,3-dimethyl-pyrazol-4-yl}-methyleneaminooxymethyl]benzoate

Tert-pentyl 4-[(1,3-dimethyl-5-phenoxypyrazol-4-

20 yl)methyleneaminooxymethyl]benzoate

stain, etc.

Cyclohexyl 4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)methyleneaminooxymethyl]benzoate

l-Methylcyclohexyl 4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)methyleneaminooxymethyl]benzoate

25 2-Chloromethyl-2-propyl 4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)methyleneaminooxymethyl]benzoate

Tert-pentyl 4-[(1-methyl-5-phenoxy-3-trifluoro-methylpyrazol-4-yl)methyleneaminooxymethyl]benzoate

1	1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde
	oxime 0-4-tert-butylbenzyl ether
	1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde
	oxime 0-4-(1-cyanocyclopentyl)benzyl ether
5	1,3-Dimethyl-5-phenoxypyraxole-4-carbaldehyde
	oxime 0-4-(2,2-dichloro-1-methylcyclopropyl)benzyl ether
	1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde
	oxime 0-4-trimethylsilylbenzyl ether
	1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde
10	oxime 0-4-(1,1,2,2-tetrafluoroethoxy)benzyl ether
	1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde
	oxime O-4-tert-butoxybenzyl ether
	1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde
	oxime 0-4-(heptafluoropropylthio)benzyl ether
15	1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde
	oxime 0-4-(heptafluoropropylsulfinyl)benzyl ether
	1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde
	oxime 0-4-(1,1,2,2-tetrafluoroethylthio)benzyl ether
	N,N-diisopropyl 4-[(1,3-dimethyl-5-phenoxy-
20	pyrazol-4-yl)methyleneaminooxymethyl]benzamide
	Tert-butyl 4-[(1,3-dimethyl-5-phenoxypyrazol-4-
	yl)methyleneaminooxymethyl]phenyl ketone
	2-Isopropyl-2-[4-{(1,3-dimethyl-5-phenoxypyrazol-
	4-yl)methyleneaminooxymethyl}phenyl]-1,3-dioxolane
25	2-Isopropyl-2-[4-{(1,3-dimethyl-5-phenoxypyrazol-
	4-yl)methyleneaminooxymethyl}phenyl]-1,3-dithiolane
	Tert-butyl N-4-[(1,3-dimethyl-5-phenoxypyrazol-4-
	yl)methyleneaminooxymethyl]phenyl-N-ethylcarbamate

1 1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde
oxime 0-2-(4-tert-butylphenoxy)ethyl ether

Also, compounds particularly useful as a fungicide will be shown below:

Isopropyl 4-[{5-(4-fluorophenoxy)-1,3-dimethylpyrazol-4-yl}-methyleneaminooxymethyl]benzoate

1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde

10 oxime O-4-(methythio)benzyl ether

1,3-Dimethyl-5-phenoxypyraxole-4-carbaldehyde oxime O-4-(difluoromethylsulfinyl)benzyl ether

N,N-dimethyl 4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)methyleneaminooxymethyl]benzamide

Methyl N-4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)-methyleneaminooxymethyl]phenyl-N-ethylcarbamate

5-Ethyl-3-[N'-4-{(1,3-dimethyl-5-phenoxypyrazol-4-yl)methyleneaminooxymethyl}phenyl]-2-oxazolidone

The compounds represented by the general formula

20 (I) can be synthesized, for example, by methods A, B, C and
D shown below in chemical formulae.

Method A:

l wherein R^1 , R^2 , R^3 , R^4 , Q, Y, Z^1 , Z^2 , m and n are as defined above, Hal represents a halogen atom and M^1 represents a hydrogen atom or an alkali metal atom.

The pyrazole oxime derivatives represented by the general formula (I) can be obtained by reacting a compound of the general formula (II) with a compound of the general formula (III) in an inert solvent in the presence or absence of a base.

Solvents which can be used in the present invention may be any of those not disturbing the reaction, and 10 include for example alcohols (e.g. isopropanol, tertbutanol, diethylene glycol), ketones (e.g. acetone, methyl ethyl ketone, cyclohexanone), ethers (e.g. diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, monoglyme, diglyme), halogenated hydrocarbons (e.g. dichloroethane, 15 chloroform, carbon tetrachloride, tetrachloroethane), aromatic hydrocarbons (e.g. benzene, chlorobenzene, nitrobenzene, toluene), nitriles (e.g. acetonitrile), dimethyl sulfoxide, dimethylformamide and water. These solvents can be used alone or in combination. When a two-20 phase reaction is carried out using the solvents in combination, phase transfer catalysts such as triethylbenzylammonium chloride, trioctylmethylammonium chloride, etc. may be used.

25 For the base, inorganic and organic bases can be used. The inorganic bases include for example alkali or alkaline earth metal carbonates such as sodium carbonate, potassium carbonate, calcium carbonate, sodium

- hydrogencarbonate, etc., alkali or alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide, calcium hydroxide, etc., and alkali metal hydrides such as lithium hydride, sodium hydride, etc.
- The organic bases include for example diethylamine, triethylamine, pyridine, 4-dimethylaminopyridine, etc.

As to the amount of the base used, it suffices to use an amount equimolar to the compound represented by the general formula (II), but amounts in excess thereof will do.

The compound of the general formula (II) used in the present invention can be produced, for example, by the method described below:

$$\begin{array}{c|c}
 & R^2 & R^3 \\
 & C = NOM^1 \\
 & & Z^1 \\
 & & Y_m
\end{array}$$
(II)

1 wherein R^1 , R^2 , R^3 , Y, Z^1 , m, Hal and M^1 are as defined above.

That is, the compound of the general formula (II) can be produced by reacting a compound of the general

formula (IV) with a compound of the general formula (V) in
 a suitable solvent and subsequently reacting the resulting compound of the general formula (VI) with hydroxylamine.

Among the compounds represented by the general formula (III), especially when Q is methylene, \mathbf{Z}^2 is a single bond and \mathbf{R}^4 is a substituted phenyl group, are also some novel compounds, but they can be produced in the same manner as in the case of the known compounds.

Method B:

$$\begin{array}{c}
\mathbb{R}^{2} \\
\mathbb{R$$

1 wherein R¹, R², R³, R⁴, Q, Y, Z¹, Z², m and n are as defined above.

The pyrazole oxime derivatives represented by the general formula (I) can be obtained by reacting a compound of the general formula (VI) with a compound of the general formula (VII) in an inert solvent.

For the solvent which can be used in this reaction, there are mentiond the solvents except ketones shown in Method A.

The compound represented by the general formula (VII) can be produced according to the well-known method, for example, described in Methoden der Organishen Chemie (Hougen Weyl) Band X/I Stickstoffverbindungen Teil I, P 1192.

15 Method C:

$$R^{2}$$
 $C=NO-Q-Hal$
 $X=1$
 X

$$\begin{array}{c|c}
R^2 & C = NO - Q - Z^2 R^4 \\
\hline
N & Z^1 & Y_{\Pi}
\end{array}$$
(1)

1 wherein R^1 , R^2 , R^3 , R^4 , Q, Y, Z^1 , Z^2 , m and n are as defined above, and M^2 represents a hydrogen atom or an alkali metal atom.

The pyrazole oxime derivatives represented by the general formula (I) can be obtained by reacting a compound of the general formula (VIII) with a compound of the general formula (IX) in an inert solvent in the presence or absence of a base.

For the solvent and base which can be used in

10 this reaction, there are mentioned the solvents and bases
shown in Method A.

Method D:

(Ia)

wherein R^1 , R^2 , R^3 , Q, Y, z^1 , z^2 and m are as defined above; X^1 represents hydrogen or C_1 - C_4 alkyl; and R represents a substituent of the formula, -OW {in which W represents alkali metal; C_1 - C_{10} alkyl; alkyl substituted with halogen, C_1 - C_4 alkoxy, phenoxy, C_2 - C_4 alkoxycarbonyl or phenyl; C_2 - C_7 alkenyl; C_3 - C_8 cycloalkyl; C_3 - C_8 cycloalkyl substituted with C_1 - C_3 alkyl; phenyl; or a sub-

stituent of the formula, $-s_n = R^8$ (in which R^7 , R^8 , R^9 ,

which may be the same or different, represent C_1-C_4 10 alkyl or C_3-C_8 cycloalkyl), a substituent of the formula,

$$-N$$
 (in which R^{10} and R^{11} , which may be the same or

different, represent hydrogen, C_1 - C_6 alkyl or phenyl); piperidino; morpholino which may or may not be substituted with one or two C_1 - C_4 alkyls; or C_2 - C_6 alkylthio.

15

20

That is, the pyrazole oxime derivatives represented by the general formula (Ia) can be obtained by reacting a compound of the general formula (X) with a compound of the general formula (XI) in an inert solvent in the presence of a dehydrating agent. The compound (X) may be reacted with the compound (XI) after converting it to acid chloride.

Solvents which can be used in this reaction may be any of those not disturbing the reaction, and

1 include for example ethers (e.g. diethyl ether, tetrahydrofuran, dioxane, diethylene glycol), halogenated hydrocarbons (e.g. dichloromethane, chloroform, carbon tetrachloride), dimethyl sulfoxide, dimethylformamide, 5 etc. These solvents may be used alone or in combination.

In the methods A to D, the reaction temperature may properly be selected from a range of from room temperature to the boiling point of the solvent. reaction time depends upon the reaction temperature and 10 reaction scale, but it may properly be selected from a range of from 1 minute to 48 hours.

As to the molar ratio of the reagents in practicing the reaction of the present invention, they are used in equimolar amounts because this reaction is an 15 equimolar reaction, but either one of them may be used in excess of the other.

After completion of the reaction, the desired compound can be separated by the usual methods, and if necessary, can be purified by recrystallization, column chromatography, etc.

20

The pyrazole oxime derivatives represented by the general formula (I) have two isomers, E-isomer and Z-isomer. In the scope of the present invention are also included the both isomers and their mixtures.

E-isomer

$$R^{2}$$

$$C = N$$

$$Q - Z^{2} - R^{4}$$

$$Z^{1}$$

$$Y_{m}$$

Z-isomer

Representative examples of the pyrazole oxime derivatives represented by the general formula (I) will be shown in Table 1, but the derivatives are not limited to these examples.

- Cont'd -

Table 1(a)

This formula corresponds to the general formula

(I) wherein Q is a methylene group, z^2 is a

(IP)

single bond and \mathbb{R}^4 is $\left\langle \bigotimes_{Y} \right\rangle$

Physical property m.p. (°C) or refractive index		n _D 1.5772	n ²⁰ 1.5656	0 n _D 1.5788	n ²⁰ 1.5654	n ²⁰ 1.5462	n_{D}^{20} 1.5446	n _D 1.5579
72	-1-00	0	0	0	0	0	0	0
π ^X		ш	. 4-F	4 - C2	4-ocH ₃	Ħ	4 - F	4-ocH ₃
u X	-	2-cooch ₃	2-coocH ₃	2-cooch ₃	2-coocH ₃	2-cooc4H9-t	2-cooc4H9-t	2-cooc4H9-t
ж Э		Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	щ
R ²		СНЗ	СНЗ	СНЗ	СНЗ	CH ₃	CH ₃	
۳,		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	СНЗ
Compound No.		•	2	m	4	ស	9	7

-	n _D 1.5548	n _D 1.5457	n _D 1.5560	n ²⁰ 1.5429	n ²⁰ 1.5501	nD 1.5555	m.p. 183.3	m.p. >300	n _D 1.5612	m.p. 66.0	n _D 1.5800	m.p. 55.7	n _D 1.5613	n _D 1.5561	n ²⁰ 1.5658	n _D 1.5664	n ²⁰ 1.5660	- Cont'd -	
_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
(Cont'd)	н.	4 - F	4-0CH ₃	щ	3-F	4-0CH ₃	m	н	н	4-F	4-C2	4-0CH ₃	H	4-F	4-C2	4-0CH ₃	· H	12. The state of t	
Table 1(a)	3-C00C4H9-t	3-cooc4H9-t	3-cooc4H9-t	$3-\cos (c H_3)_2 c_2 H_5$	3-cooc(cH ₃) ₂ c ₂ H ₅	$_3$ -cooc (c $_{\rm H_3}$) $_2$ $_2$ $_{\rm H_5}$	4-C00H	4-COONa	4-coocH ₃	4-COOCH ₃	4-coocH ₃	4-cooch ₃	4-cooc ₂ H ₅	4-cooc ₃ H ₇ -n					
	н	Ħ	Ħ	Ħ	Ħ	Ħ	E	Ħ	ш	æ	н	н	Ħ	щ	н	= -	Ħ	•	
	CH ₃	CH ₃	СНЗ	CH_3	cH_3	СНЗ	CH ₃	$c_{\rm H_3}$	CH ₃	CH_3	CH_3	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃		
	сн3	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	СН3	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	ĊH3	CH ₃	CH ₃	CH ₃	· · ·	
	80	6	10	11	12	13	14	15	16	17	18	19	20	21	2%	23:	24	-	

	n _D 1.5579	n _D 1.5628	$n_{ m D}^{20}$ 1.5321	n _D 1.5608	n_{D}^{20} 1.5512	$n_{\rm D}^{20}$ 1.5579	n_{D}^{20} 1.5471	$n_{\rm D}^{20}$ 1.5523	n_{D}^{20} 1.5531	n _D 1.5541	n _D 1.5610	n_{D}^{20} 1.5608	nD 1.5640	n _D 1.5648	n_{D}^{20} 1.5618	$n_{\rm D}^{20}$ 1.5586	$n_{\rm D}^{20}$ 1.5585	- Cont'd -
•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
(Cont'd)	4-1	4-0CH ₃	ш	4-CH ₃	3-c2H5	4-C ₂ H ₅	4-C4H9-t	22 Ft - 1	ਲ ਸ਼-ਸ਼	4 - F	3-C1 .	4-C1	2,4-C1 ₂	3,4-C1 ₂	4-Br	2-0CH ₃	3-0CH ₃	:
Table 1(a) (Cont'd)	4-cooc ₃ H ₇ -n	4-cooc ₃ H ₇ -n	1 4-cooc ₃ H ₇ -1		4-cooc ₃ H ₇ -1	1 4-cooc ₃ H ₇ -1	-											
	CH ₃ H	сн3 н	ж3 н	ж3 — н	.н. В Н	н 3 — н	н н	H ₃ H	Н3 Н	H H	.н н	H ₃ H	H.3 H	H ₃ H	Н3 Н	Н. Н.	H ₃ H	
	25	26	27	28	0.0	30	31	3.2	33	34	35	36	37	. 88	39	40	41	

· ·	$n_{\rm D}^{20}$ 1.5597	n ²⁰ 1.5621	$n_{\rm D}^{20}$ 1.5536	n_D^{20} 1.5819	$n_{\rm D}^{20}$ 1.5729	$n_{\rm D}^{20}$ 1.5633	$n_{\rm D}^{20}$ 1.5593	$n_{\rm D}^{20}$ 1.5649	n _D 1.5619	$n_{\rm D}^{20}$ 1.5536	n ²⁰ 1.5629	$\frac{20}{n_D}$ 1.5536	n ²⁰ 1.5602	n ²⁰ 1.5541	n20 1.5594	n _D 1.5629	n _D 1.5561	- Cont'd -
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
(Cont'd)	4-0CH ₃	3,5-(OCH ₃) ₂	4-0C ₂ H ₅	4-SCH ₃	4-S(0)CH ₃	4-S(0) ₂ CH ₃	3,4(-ocH ₂ o-)	3-N(CH ₃) ₂	ı	4-F	4-C2	4-0CH ₃) Н	4 - A	4-0CH,	γ	4 - F	
Table 1(a)	H 4-COOC ₃ H ₇ -1	H 4-COOC ₃ H ₇ -1	H 4-cooc ₃ H ₇ -1	H $4-\cos^3 H_7-1$	H 4-cooc ₃ H ₇ -1	H 4-COOC ₃ H ₇ -1	H 4-COOC ₃ H ₇ -1	$H \mid 4-\cos c_3 H_7 - i$	H 4-cooc4H9-n	H 4-COOC ₄ H ₉ -n	H 4-COOC ₄ H ₉ -n	H 4-COOC ₄ H ₉ -n	H 4-COOC4H9-s	H 4-COOC4H9-s	H 4-cooc4H9-s	H 4-COOC4H9-1	H 4-COOC4H9-1	
~	CH ₃	CH ₃	CH ₃	СНЗ	сн3	CH ₃	CH ₃	CH ₃	CH ₃	CH3	CH3	CH ₃	3H3	3 H	H3	H3		
												CH ₃						
	42	43	44	45	46	47	48	49	50	5.1	52	53	54	55	26	57	58	

n _D 1.5608	m.p. 101.7	m.p. 73.0	n_{D}^{20} 1.5542	$n_{\rm D}^{20}$ 1.5440	n_{D}^{20} 1.5423	m.p. 92.1	m.p. 73.9	m.p. 86.8	$n_{\rm D}^{20}$ 1.5632	Paste	n _D 1.5660	n _D 1.5150	m.p. 72.3	n _D 1.5663	n _D 1.5566	m.p. 145.0	Cont
 0	0	0	0	0	0	.0	0	0	0	0	0	0	0	0	0	0	

(Cont'd)	4-0CH ₃	Ħ	4-CH ₃	3-C2H5	4-C2H5	4-C4H9-t	2 - F	က မ	4 - F	3-0%	4-C2	4-Br	3-CF3	2-0CH ₃	3-0CH ₃	4-0CH ₃	4-OH
Table 1(a)	4-COOC4H9-1	$4-\cos c_4 H_9 - t$	4-cooc4H9-t	$4-\cos c_4 H_9 - t$	4-cooc ₄ H ₉ -t	4-COOC4H9-t	$4-\cos^4_4H_9$ -t	4-COOC4H9-t	$4-\cos C_4H_9-t$	4-cooc4H9-t	4-C00C4H9-t	4-cooc4H9-t	4-cooc4Hg-t	4-cooc ₄ H ₉ -t	4-C00C4H9-t	4-COOC4H9-t	4-cooc4H9-t
	ш	Ħ	Ħ	Ħ	Ħ	Ħ	H	Ħ	н	Ħ	H	. #I	## 	H	田	H	=
	CH ₃	сн3	СНЗ	CH ₃	CH ₃	CH ₃	CH3	CH ₃	CH ₃	CH ₃	CH ₃	CH3	СНЗ	СНЗ	CH ₃	CH ₃	CH ₃
	CII3				CH ₃	CH ₃	CH ₃	CH3	CH ₃	CH ₃	CH ₃	CH3	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃
	59	09	61	62	63	64	65	99	29	89	69	70	7.1	72	73	74	75

	n _D 1.5487	n _D 1.5653	n _D 1.5620	n _D 1.5521	n _D 1.5641	$n_{\rm D}^{20}$ 1.5515	n _D 1.5538	n _D 1.5605	n _D 1.5689	n _D 1.5564	n _D 1.5413	n _D 1.5529	$n_{\rm D}^{20}$ 1.5530	$n_{\rm D}^{20}$ 1.5592	n _D 1.5590	n _D 1.5502	- Contid -
	0	0.	0	0.	0	0	0	0	0	0	0	0	0	0	! O	0	
(Cont'd)	4-0C ₂ H ₅	4-scH ₃	4-s(0)CH ₃	4-S(0) ₂ CH ₃	4-c0 ₂ c ₃ H ₇ -n	3,4(-OCH ₂ O-)	3-N(CH ₃) ₂	$4-NHCH_2 \bigotimes Co_2 C_4 H_9 - t$	$4-N(CH_2 \bigotimes CO_2C_4H_9-t)_2$	H	3-F	4-F	3-0CH ₃	4-0CH ₃	н	4-F	
Table 1(a)	4-cooc ₄ H ₉ -t	4-cooc4H9-t	4-cooc ₄ H ₉ -t	4-cooc ₄ H ₉ -t	4-cooc ₄ H ₉ -t	4-cooc ₄ H ₉ -t	4-cooc4H9-t	4-COOC ₄ H ₉ -t	4-cooc ₄ H ₉ -t	4-COCC(CH ₃) ₂ C ₂ H ₅	4-cooc(cH ₃) ₂ c ₂ H ₅	4-cooc(cH ₃) ₂ c ₂ H ₅	4-cooc(CH ₂) ₂ C ₂ H ₅	4-cooc(cH ₃) ₂ C ₂ H ₅	4-cooch(C ₂ H ₅) ₂	4-cooch(c ₂ H ₅) ₂	
	H	H	H	H			H .	出	H	ш		Ħ	Ħ	· ##	H	H	- .
	CH ₃	cH_3	СН3	CH ₃	CH_3	CH ₃	CH ₃	СНЗ	СНЗ	СН3	СН3	СН3	CH ₃	СНЗ	CH ₃	CH ₃	_
•	СНЗ	СНЗ	СНЗ	CH ₃	СНЗ	CH ₃	СНЗ	сн3	CH ₃	СНЗ	СНЗ	CH ₃	СН3	сн3	CH ₃	CH ₃	-
•	76	77	78	62	80	81	82	83	84	85	98	87	88	83	06	16)

	- 22 -	- : ::::	0234045
n _D 1.5591 n _D 1.5538 n _D 1.5470 n _D 1.5470	n ²⁰ 1.5653 n ²⁰ 1.5537 n ²⁰ 1.5695	- -	n _D 1.5611 n _D 1.5558 n _D 1.5520 n _D 1.5620
0 0 0 0	0 0 ! 0 0	0 0	0 0 0

(Cont'd)	4-0CH ₃	Ħ	4 - F	4-0CH ₃	Ħ	4 - F	4-0CH ₃	Ħ	4 ት	· 4-0CH ₃	•¤	4 1 H	. 4-0CH ₃
Table 1(a)	4-cooch (C ₂ H ₅) ₂	4-COOCH ₂ C ₄ H ₉ -t	$4-COOCH_2C_4H_9-t$	4-COOCH ₂ C ₄ H ₉ -t	4-coo	4-000-4	4-coo	4-coo	4-coo	4-coo	4-cooc(CH ₃) ₂ CH=CH ₂	4-cooc(CH ₃) ₂ CH=CH ₂	4-cooc(CH ₃) ₂ CH=CH ₂
	H	Ħ	Ħ	H	Ħ	田	Ħ	Ħ	Ħ	H	H	Ħ	=
	CH ₃	CH ₃	CH ₃	CH3	СНЗ	CH ₃	CH ₃	СНЗ	СНЗ	СНЗ	CH ₃	CH ₃	CH ₃
	CH ₃	СНЗ	CH ₃	СНЗ	CH ₃	CH ₃	CH ₃	СНЗ	CH ₃	CH ₃	CH ₃	· CH3	CH ₃
	92	93	94	95	96	. 6	86	66	100	101	102	103	104

1.5525 1.5465 1.5480 1.5431 1.5540 1.5529 1.5529

0

0

0

0

0

0

0

0 0

1,5633

1.5468

0 0

1.5549

1.5863

Ο.

Paste

0

(Cont'd)	н.	н	4-F	4-0CH ₃	щ	3-F	4 - F	н	4-F	4-0CH ₃	н	4-F	4-0CH ₃	#	4-F	
Table 1(a)	4-cooch (c ₂ H ₅) C≡CH	4-cooc ₆ ₁₃ -n	4-cooc ₆ H ₁₃ -n	4-cooc _{6H13} -n	4-cooc(cH ₃) ₂ c ₃ H ₇ -1	$4-\cos(cH_3)_2c_3H_7-i$	4-cooc(cH ₃) ₂ c ₃ H ₇ -i	4-cooc(c ₂ H ₅) ₂ cH ₃	4-cooc(c ₂ H ₅) ₂ CH ₃	4-cooc(c ₂ H ₅) ₂ CH ₃	$4-\cos CH (CH_3) C_4 H_9 - t$	4-соосн (сн ₃) с ₄ н9-t	$4-\cos cH(cH_3)c_4H_9-t$	4-coo	4-coo	
	H	Æ	#	æ	Ħ	Ħ	Ħ	ш	Ħ	Ħ	#	Ħ	Ħ	Ħ	ш	
	$_{\rm CH_3}$	$c_{\rm H_3}$	CH_3	CH ₃	CH ₃	CH_3	CH ₃	CH_3	CH ₃	$_{\rm CH_3}$	CH ₃	$_{\rm CH_3}$	CH ₃	СНЗ	СНЗ	
	CH ₃	CH ₃	СНЗ	СН3	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	$_{\rm CH_3}$	CH_3	CH ₃	СНЗ	
	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	_
														•		

- Cont'd

n _D 1.59	n _D 1.597	n _D 1.562	n _D 1.551	n _D 1.5541	n ²⁰ 1.5584	n _D 1.5370	- Cont
0	0	0	0	0	0	0	
	n _D 1.	n _D 1.	n 20 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0	n ² 0 1.	n ² 0 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	n ² 0 1. n ² 0 1.	n ² 0 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

(Cont'd)	4-C2	4-0CH ₃	ш	4 – F	4-0CH ₃	Ħ	4 - F	
Table I(a)	4-c00	4-coo	$4-\cos$ CH_3	4-coo	$4-\cos$ CH_3	CH3 CH3	$4-\cos\phi \Rightarrow cH_3$	
	Ħ	н	E	Ħ	Ħ	ш	ш	
	СНЗ	CH ₃	СНЗ	CH ₃	СНЗ	СН3	СН3	,
_	СН3	CH ₃	сн3	СНЗ	СНЗ	CH3	CH ₃	
	120	. 121	122	123	124	125	126 _.	

÷

np 1.5492	n _D 1.5552	n _D 1.5541	n _D 1.5471	n _D 1.5400	n _D 1.5490	n _D 1.5465	$n_{\rm D}^{20}$ 1.5462	n _D 1.5518	n _D 1.5730	- Cont'd -
0	0	0	0	0	· 0	0	0	0		<u>-</u>

(Cont'd)	4-0CH ₃	## ### ### ### ### ### #### #### ######	4-0CH ₃	Ħ	4 - F	4-0CH ₃	H	4 - F	4-0CH ₃	# 1
Table 1(a) (Cont'd)	4-coo	$4-\cos \left(\begin{array}{c} cH_3 \\ c_3H_7 - 1 \end{array} \right)$	$4-\cos \left(\begin{array}{c} cH_3 \\ 4-\cos \left(\begin{array}{c} c_3 \\ c_3 \\ \end{array} \right) -1 \end{array} \right)$	4-COOCH(C ₃ H ₇ -1) ₂	$4-\cos(c_3H_7-1)_2$	4-COOCH(C3H7-1)2	4-cooc(c ₂ H ₅) ₃	4-cooc(c ₂ H ₅) ₃	4-cooc(c ₂ H ₅) ₃	4-cooch(ch ₃)
_	声	ш	щ	Ħ	E	Ħ	Ħ	H	H	— III
-	СН3	СН3	снз	$_{\rm CH_3}$	CH ₃	cH_3	CH.	CH ₃	CH ₃	СНЗ
-	CH ₃	СНЗ	CH ₃	снз	CH ₃	CH ₃	CH_3	CH ₃	CH ₃	СН3
•	127	128	129	130	. 131	132	133	134	135	136

n _D 1.5901	n _D 1.5675	n _D 1.5672	n _D 1.5563	n_{D}^{20} 1.5583	n _D 1.5655	n _D 1,5685	n _D 1.5764	$n_{\rm D}^{20}$ 1.5695	$n_{\rm D}^{20}$ 1.5491	$n_{\rm D}^{20}$ 1.5409	$n_{\rm D}^{20}$ 1.5450	$n_{\rm D}^{20}$ 1.5459	- Cont'd -
0	0	0	0	0	0	0	0	0.	0	0	0	0	•

(Cont'd)	щ	н	Ħ	Ħ	н	4 - F	. 4-C2	4-och ₃	4-0CH,	n ##	H-	4-C2	4-0CH ₃
Table 1(a)	4-cooch ₂	4-cooc ₂ H ₄ o	4-cooc ₂ H ₄ och ₃	4-cooch(ch3)ch2och3	4-соос(сн ₃) ₂ со ₂ сн ₃	$4-\cos c_2 H_4 \circ \bigcirc$	$4-\cos c_2 H_4 \circ \bigcirc$	4-cooc ₂ H ₄ o	4-cooc ₂ H ₄ ocH ₃	4-COOCH2 CF3.	4-cooch ₂ cF ₃	4-COOCH2CF3	4-cooch ₂ cF ₃
_	H	H	H	Ħ	н	Ħ	н	н	Ħ	Ħ	Ħ	H	H
_	CH ₃	CH ₃	CH ₃	CH ₃	СНЗ	CH ₃	CH ₃	СНЗ	СНЗ	СНЗ	CH ₃	CH ₃	CH ₃
-	Сн3	СНЗ	CH ₃	СН3	СН3	СНЗ	СНЗ	СНЗ	CH3	CH3	CH ₃	CH ₃	СНЗ
	137	138	139	140	141	142	143	144	145	146	147	148	149

÷ : . . .

_	$n_{\rm D}^{20}$ 1.5563	np 1.5632	nD 1.5664	n _D 1.5451	n _D 1.5662	n _D 1.5520	n _D 1.5598	n _D 1.5651	n ²⁰ 1.5639	n _D 1.5602	n _D 1.5665	n ²⁰ 1.5656	n _D 1.5600	n _D 1.5603	n _D 1.5260	- Cont'd -
_	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	-
(a) (Cont'd)	` m	4-F	4-0CH ₃	ш	ш.	3- E	4-F	3-C1	4-C1	3-0CH ₃	4-0CH ₃	н	H	#	Ħ	
Table 1(a)	4-cooch (CF ₃) ₂	4 -cooch (CF $_3$) $_2$	4-COOCH (CF ₃) ₂	4-COOCH (CH ₂ C1) ₂	4-cooc (CH ₃) ₂ CH ₂ C1	$4-\cos(cH_3)_2cH_2c1$	4 -cooc (cH ₃) $_2$ CH $_2$ C1	$4-\cos (cH_3)_2 cH_2 c1$	4-cooc (CH ₃), 2CH ₂ C1	4-cooc (CH ₃) ₂ CH ₂ C1	$4-\cos (cH_3)_2 cH_2 c1$	4-coo-	4-coosn (C ₄ H ₉ -n) ₃	$4-\cos(-1)^3$	4-cooc (CH ₃) ₂ C ₂ H ₅	
•	Ħ	Ħ	#	Ħ	Ħ	Ħ	皿	Ħ	Ħ	ш	Ħ	Ħ	Ħ	H	Ħ	- -
	CH ₃	ĊH3	CH ₃	CH ₃	CH ₃	CH ₃	CH3	CH3	CH3	СНЗ	СНЗ	СНЗ	CH3	CH3	CF 3	_
	СНЗ	CH ₃	CH ₃	СНЗ	СН3	CH3	СНЗ	СНЗ	СНЗ	CH3	СНЗ	Сн3	СНЗ	CH ₃	CH ₃	
	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	_

- Cont'd -

	Paste	m.p. 94.4	n _D 1.5536	$_{ m D}^{20}$ 1.5644	m.p. 60.9	n _D 1.5570	C		n _D 1.5491	Paste	n ²⁰ 1.5821	m.p. 112.3		n ²⁰ 1.5689	Paste - Cont'd
	0	0	0	0	0	0		0	0	0	w	യ	S (0)	S(0) ₂	0
	ж	m	н	Ħ	ш	Ħ		ш	ш	Ħ	#	E	ш		
	4-соон	4-C00C,Ho-t		4-C00C4H9-t	4-cooc (cH ₃) ₂ C ₂ H ₅	4-C(с́н ₃	$4-\cos (c H_3) 2^{CH_2 CI}$	4-COOC3H7-i	4-COOC4H9-t	4-cooc ₃ H ₇ -i	$4-\cos c_4 H_9 - t$	$4-\cos c_4 H_9 - t$	4 - $\cos c_4 H_9$ - $\cot c_4 H_9$	4-C00C4H9-t, 5-CH3
_	CH	CH	2H5	0	СНЗ	СНЗ		CH ₃	ш - т	Ħ	Ħ	Ħ	Ħ	H	Ħ
-	CH3		CH3		CH ₃	CH3		СНЗ	C3H2	н	СНЗ	CH3	CH ₃	CH ₃	СНЗ
-	СНЗ	CH.	CH ₃	CH3	CH3	СНЗ		CH3			CH ₃	CH ₃	СНЗ	СНЗ	CH ₃
-	165	166	167	168	169	170		171	172	173	174	175	176	177	178

Table 1(a) (Cont'd)

- Cont'd

0 0

 $n_{\rm D}^{20}$ 1.5823

0

0

0

Paste n_D 1.5517 n_D 1.5800 n_D 1.5738 n_D 1.5895 n_D 1.5895 n_D 1.5895 n_D 1.5895 n_D 1.5766 n_D 1.5766 n_D 1.5766

Ó

0

0

q)
nt
(Con
a)
1
le
Tab

截之 1. 万利等人

Paste

Ħ	H	H .	2-CH ₃	. 3-СН ₃	2-C1	3-C1	4-C1	2,4-Cl ₂	4-0CH ₃	$4-0$ \leftarrow \bigcirc \rightarrow CF_3	#	H .	ш	н	
4-COOC4H9-t, 3-CH3	4-cooc (CH ₃) ₂ CH ₂ F	н	н	н		ш	· E	Ħ	ш	#	2-CH ₃	3-сн ₃	4-CH3	4-CF3	- · · · · · · · · · · · · · · · · · · ·
m .	E	ж	ш	Ħ	щ	н	Ħ	ш	· ##	E	H	H	Ħ	H	
CH3	CH3	CH3	CH ₃	CH ₃	CH ₃	CH3	CH3	СНЗ	CH ₃	СНЗ	CH ₃	CH ₃	CH ₃	СНЗ	_
CH3	СНЗ	CH ₃	снз	СНЗ	сн3	СнЗ	СНЗ	СНЗ	CH ₃	CH3	CH ₃	CH ₃	CH3	CH3	<u>:</u>
179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	·· ·

3-CH₃

n _D 1.5355	$n_{\rm D}^{20}$ 1.5539	n_{D}^{20} 1.5739	$n_{\rm D}^{20}$ 1.5594	m.p. 77.4	m.p. 109.1	m.p. 94.7	$n_{\rm D}^{20}$ 1.5567	$_{\rm D}^{20}$ 1.5665	$n_{\rm D}^{20}$ 1.5631	$n_{\rm D}^{20}$ 1.5628	$n_{\rm D}^{20}$ 1.5402	n _D 1.5605	m.p. 112.4	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	

H 4-F H H H H

Table 1(a) (Cont'd)

4-F 4-C1 H

4-CF3	4-CF3	4-C2H5	4-C3H7-1	4-C (CH ₃) 2CN	No No	$4-c (cH_3)_2 cN$	4-C4H9-n	4-C4H9-n	4-C4H9-8	4-C4H9-1	4-C4H9-t	4-C4H9-t	4-C4H9-t
 æ	Œ	Ħ	H	Ħ	Ħ	Ħ	Ħ	H	Ħ	Ħ	Ħ	H	Ħ
 СНЗ	СНЗ	СНЗ	CH3	CH3	CH ₃	СНЗ	СНЗ	СНЗ	CH ₃	снз	СНЗ	СНЗ	CH ₃ .
 Сн3	CH3	CH3	CH3	снз	Снз	CH3	CH3	СНЗ	СНЗ	СНЗ	CH3	СНЗ	СНЗ
194	195	196	197	198	199	200	201	202	203	204	205	206	207

	n _D 1.5539	m.p. 79.0	n _D 1.5475	m.p. 67.7	m.p. 66.9	$_{ m D}^{ m 20}$ 1.5507	$_{ m D}^{ m 20}$ 1.5633	$n_{\rm D}^{20}$ 1.5573	$n_{\rm D}^{20}$ 1.5653	$n_{\rm D}^{20}$ 1.5636	$n_{\rm D}^{20}$ 1.5352	m.p. 76.3	$_{ m D}^{20}$ 1.6590	$n_{\rm D}^{20}$ 1.5584	$^{20}_{D}$ 1.5535	$_{ m D}^{20}$ 1.5555	- Cont'd -
	0	0	O.	0	0	0	0	0	0	0	0	0	.0	0	0	0	
(a) (Cont'd)	3-C ₂ H ₅	4-C2H5	$4-C_4H_9-t$	2-F	3-F	4-F	2-c1	3-C1	4-C1	4-Br	3-CF3	2-0CH ₃	3-0CH ₃	4-0CH ₃	3, 5-(OCH ₃) ₂	4-0C ₂ H ₅	
Table 1(a)								-	* *								
T	4-C4H9-t	$4-C_4H_9-t$	4-C4H9-t	4-C4H9-t	4-C4H9-t	4-C4H9-t	4-C4H9-t.	4-C4H9-t	4-C4H9-t	$4-C_4H_9-t$	4-C4H9-t	4-C4H9-t	4-C4H9-t	$4-C_4H_9-t$	4-C4H9-t	4-C4H9-t	
,	Ħ	#	H	Ħ	=	н	Ħ	Ħ	Ħ	Ħ	H	н		н	# 	н	
,	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	СНЗ	CH ₃	CH ₃	СНЗ	ĊН3	СНЗ	СНЗ	$^{\mathrm{CH}_3}$	CH ₃	CH ₃	CH3	
	СНЗ	СНЗ	CH3	СНЗ	CH ₃	СНЗ	снз	СНЗ	СНЗ	СНЗ	СН3	СНЗ	СНЗ	СНЗ	СНЗ	СНЗ	
	208	209	210	211	212	213	214	215	216	217	218	21.9	220	221	. 222	223	

(Cont'd)
1 (a)
Table]

-			n _D 1.5858	$n_{\rm D}^{20}$ 1.5712	n _D 1.5546		.i		nD 1.5633			-i -	n_ T.5584	n ²⁰ 1.5612	- Cont'd -
_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Table 1(a) (cont.u)	4-CO ₂ C ₃ H ₇ -n	3,4(-ocH ₂ o-)	3-N (CH ₃) ₂	$4-N(CH_2 < \bigcirc) - C_4H_9 - t)_2$	н	æ	4-1	4-C1	· # ·	2-5	4-F	4-c1	4-0CH ₃	ш	
	4-C4H9-t	4-C4H9-t	$4-C_4H_9-t$	4-C4H9-t	4-C ₅ H ₁₁ -n	4-сн (сн ₃) с ₃ н ₇ -п	$4-CH (CH_3) C_3 H_7-n$	$4-CH(CH_3)^{'}C_3H_7-n$	4-C(CH ₃) ₂ C ₂ H ₅	$_{4}$ -C(CH ₃) $_{2}$ C $_{2}$ H ₅	4-C(CH ₃) ₂ C ₂ H ₅	4-c (cH ₃) ₂ C ₂ H ₅	4-C(CH ₃) ₂ C ₂ H ₅	4	CN
	=======================================	Ħ	Ħ	н	Ħ	Ħ	н	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	H	
	СНЗ	СНЗ	СНЗ	CH ₃	СНЭ	CH3	CH3	CH ₃	СНЗ	CH ₃	CH ₃	CH ₃	СНЗ	СНЗ	
	СНЗ	CH ₃	СНЗ	CH ₃	CH3	CH ₃	CH ₃	CH ₃	CH3	CH3	CH3	CH ₃	СНЗ	СНЗ	
	224	225	226	227	228	229	230	231	232	233	234	235	236	237	

Table 1(a) (Cont'd)	n _D 1.5632	$n_{\rm D}^{20}$ 1.5500	$_{ m D}^{20}$ 1.5445	$_{ m D}^{20}$ 1.5500	n ²⁰ 1.5545	$n_{\rm D}^{20}$ 1.5635	$n_{\rm D}^{20}$ 1.5591	$n_{\rm D}^{20}$ 1.5577	$n_{\rm D}^{20}$ 1.5728	$n_{\rm D}^{20}$ 1.5590	n _D 1.5656	- Cont'd -
	0	0	0	0	0	0	0	0	0	0	0	
	3-0CH ₃	Н	4 - F	4-C1	н		2-F	4-F	4-C1	3,5-(OCH ₃) ₂	ш	
	A CN	$4-CH(OH)C_4H_9-t$	$4-CH(OH)C_4H_9-t$	4-CH(OH)C,H9-t	4-C ₆ H ₁₃ -n	\bigvee^{4}	←	4 →	4	4	4	CH ₃
	ж .	#	Ħ	ш	н	田	н	压	E	Ħ		
	СНЗ	CH3	CH ₃	СНЗ	СНЗ	CH3	СНЗ	СНЗ	сн3	CH ₃	СНЗ	
	СНЗ	СНЗ	CH ₃	СНЗ	СНЗ	СНЗ	СНЗ	СНЗ	СНЗ	снз	СНЗ	
	238	239	240	241	242	243	244	245	246	247	248	

 $n_{\rm D}^{20}$ 1.5480 $n_{\rm D}^{20}$ 1.5532

m.p. 121.7

n_D 1.5596

n20 1.5645 n20 1.5513 n20 1.5580 n20 1.5580 n20 1.5526 n20 1.5526 n20 1.5576 n20 1.5821 n20 1.5887 n20 1.5887

m.p. 109.3 - Cont'd 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Table 1(a) (Cont'd) 4-0CH₃ 4-0CH3 4-0CH₃ 4-F 1-сн=снсн (он) с₄ н₉-ф 4-CH=CHCOC4H9-t 1-сн=сисос₄н₉-t 4-CH=CHCOC4H9-t 4-CH=CHCO₂C₂H₅ 4-CH=CHCO₂C₂H₅ 4-CH=CHCO₂C₂H₅ 4-с (сн₃) ₂осн₃ 4-C(CH₃)₂OCH₃ 4-C₇H₁₅-n 4-CH=CBr₂ 4-C₈H₁7-n CH₃ CH_3 c_{H_3} CH_3 CH_3 CH_3 CH_3 CH_3 $c_{\rm H_3}$ CH_3 CH3 CH3 CH_3 CH_3 CH3 CH_3 CH_3 cH_3 CH_3 CH_3 CH_3 CH_3 CH_3 249 252 260 250 251 253 254 255 256 257 258 259 261 262

$\begin{array}{c} n_{D}^{20} & 1.5320 \\ n_{D}^{20} & 1.5502 \\ n_{D}^{20} & 1.5492 \end{array}$	n ²⁰ 1.5680	n_{D}^{20} 1.5654	n _D 1.5660	n ²⁰ 1.5653	$n_{\rm D}^{20}$ 1.5654	n ²⁰ 1.5672	n _D 1.5567	$n_{\rm D}^{20}$ 1.5572
0 0 0	. 0	0	. 0	0	. 0	0		0

4-0CH3 4-C1 4-C1 4-F 4-F $4-c(cH_3)_2cO_2c_3H_7-1$ $4-c(cH_3)_2cO_2c_2H_5$ $4-C(CH_3)_2CO_2C_2H_5$ $2,4-(CH_3)_2$ CJ $2,4-(CH_3)_2$ CI I Ξ H H H H 耳 $c_{\rm H_3}$ СНЗ CH3 $c_{\rm H_3}$ Сн3 $_3^{\rm CH}$ $c_{\rm H_3}$ CH₃ $\dot{c}_{\rm H_3}$ cH_3 cH_3 $^{\mathrm{CH}_3}$ CH_3 CH_3 CH₃ CH₃ 270 263 272 . 273 264 265 266 269 271 274 267 268

Table 1:(a) (Cont'd)

111.0	97.9	a)	1.5528	1.5933	1.5689	1.5850	1,5536	1.5775	99.2	- Cont'd -
ď.m	m.p.	Paste	n _D 1				n ²⁰	n _D 20	m.p.	_
0	0	0	0	0	0	0	0	0	0	
Ħ	4 - F	4-C1	4-0CH ₃	4-c1	ш.	н	. "	н		
			<u> </u>						· · · · · · · · · · · · · · · · · · ·	
2,6-(CH ₃) ₂ , 4-C ₄ H ₉ -t	$2,6-(\mathrm{CH}_3)_2,4-\mathrm{C}_4+9-\mathrm{t}_5$	$^{2,6-(CH_3)_{2'}}_{4-C_4H_9-t}$	2,6-(CH ₃)2, 4-C ₄ H ₉ -t	Ħ	4-C4H9-t	4-C4H9-t	4-C4H9-t	4	4-C4H9-t	
E	Ħ	Ħ	E	H	Ħ	CH3	C2H5	СНЗ		
СНЗ	СН3	СНЭ	Сн3	H	Ħ	СНЗ	CH3	CH ₃	$ c_2^{H_5} $	
СНЗ	СНЗ	сн3	СНЗ	СНЗ	CH3	СНЗ	СН3	СНЗ	CH3	
275	276	277	278	279	280	281	282	283	284	
	CH ₃ CH ₃ H 2,6-(CH ₃) ₂ , H A-C ₄ H ₉ -t	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH ₃ CH ₃ H 2,6-(CH ₃) ₂ , H CH ₃ CH ₃ CH ₃ H 2,6-(CH ₃) ₂ , 4-F CH ₃ CH ₃ H 2,6-(CH ₃) ₂ , 4-F CH ₃ CH ₃ H 2,6-(CH ₃) ₂ , 4-C1 CH ₃ CH ₃ H 2,6-(CH ₃) ₂ , 4-CH ₃ CH ₃ CH ₃ H 2,6-(CH ₃) ₂ , 4-CH ₃ CH ₃ H 2,6-(CH ₃) ₂ , 4-CH ₃ -t	CH ₃ CH ₃ H 2,6-(CH ₃)2, H CH ₃ CH ₃ H 2,6-(CH ₃)2, 4-F CH ₃ CH ₃ H 2,6-(CH ₃)2, 4-F CH ₃ CH ₃ H 2,6-(CH ₃)2, 4-C1 CH ₃ CH ₃ H 2,6-(CH ₃)2, 4-CH ₃ CH ₃ CH ₃ H 2,6-(CH ₃)2, 4-CH ₃ CH ₃ H H 4-C ₄ H ₉ -t CH ₃ H H H 4-C ₄ H ₉ -t CH ₃ H H 4-C ₄ H ₉ -t	CH ₃ CH ₃ H 2,6-(CH ₃) ₂ , H 4-C ₄ H ₉ -t CH ₃ CH ₃ H 2,6-(CH ₃) ₂ , 4-F CH ₃ CH ₃ H 2,6-(CH ₃) ₂ , 4-F CH ₃ CH ₃ H 2,6-(CH ₃) ₂ , 4-C1 CH ₃ CH ₃ H 2,6-(CH ₃) ₂ , 4-CH ₃ CH ₃ H H 2,6-(CH ₃) ₂ , 4-CH ₃ CH ₃ H H 4-C ₄ H ₉ -t CH ₃ H H 4-C ₄ H ₉ -t CH ₃ CH ₃ CH ₃ 4-C ₄ H ₉ -t CH ₃ CH ₃ CH ₃ 4-C ₄ H ₉ -t CH ₃ CH ₃ CH ₃ CH ₃ 4-C ₄ H ₉ -t	CH3 CH3 H 2,6-(CH3)2, H 0 CH3 CH3 H 2,6-(CH3)2, 4-F 0 CH3 H 2,6-(CH3)2, 4-C1 0 CH3 CH3 H 2,6-(CH3)2, 4-C1 0 CH3 CH3 H A-C4H9-t A-CH9-t 0 CH3 CH3 H A-C4H9-t H 0 CH3 CH3 CH3 A-C4H9-t H 0 CH3 CH3 CH3 A-C4H9-t H 0 CH3 CH3 CH3 A-C4H9-t H 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

	m.p. 71.5	n _D 1.5966	n ²⁰ 1.6000	n _D 1.5521	n _D 1.5905	$\frac{20}{n_{D}}$ 1.5562	n _D 1.5760	r.	i.	n ²⁰ 1.5567	n ²⁰ 1.5553	n ²⁰ 1.5853	n ^{2U} 1.5698	m.p. 133.6	
	0	0	0	0	Ο.	ω .	ഗ	o .	0	0	0	0 .	0	0	
Table 1(a) (Cont'd)	·	4-C1	4-C1	H	Ħ	4-c1	. ш	н	4-F	4-C1	4-0CH ₃	4-SCH ₃	4-S (0) CH ₃	4-S (0) 2CH ₃	
Table 1(4-C4H9-t	ж	4-	4-C ₄ H ₉ -t	4-C ₄ H ₉ -t	н	4-C4H9-t	$4-c(cH_3)(co_2c_2H_5)_2$	$4-c(cH_3)(cO_2C_2H_5)_2$	4-c(cH ₃)(CO ₂ C ₂ H ₅) ₂	$_{4-c (cH_{3}) (cO_{2}^{C_{2}H_{5})_{2}}}$	4-c4H9-t	4-C4H9-t	4-C4H9-t	
	田中	H	Ħ	Ħ	# .	H	Ħ	H	Ħ	H	E		Ħ.	田	
	C3H7-	0	.0	CH ₃	СНЗ	CH3	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH3	
	CH ₃	СНЗ	CH3	C2H5	0	ĊНЗ	СНЗ	ĊH3	СН3	CH ₃	CH ₃	СН3	CH ₃	СН3	-
	285	286	287	288	289	290	291	292	. 293	294	295	296	297	298	_
											-				

Paste

n_D 1.5586

n_D 1.5859

n_D 1.5858

n_D 1.5896

n_D 1.5896

n_D 1.5681

n_D 1.5886

n_D 1.5868

n_D 1.5868

n_D 1.5868

n_D 1.5868

n_D 1.5869

n_D 1.5869

n_D 1.5860

n_D 1.5820

0

_
ש
*
u
ဋ
ပ္ပ
Q
_
<u>a</u>
<u>le</u>
Tab
Ĕ
•

E	Ħ	4-C1	Ħ	4-C1	н	н	4-C1	н	# ·	4-C1	щ	4-C1	щ	. н	2-c1
4-C(CH ₃) ₂ CH ₂ F	4 C1	4-C1	4-SCHF2	4-SCHF2	4-S(0) CHF ₂	4-F	4 - F	2,3,4,5,6-F5	2-C1	2-c1	3-c1	3-c1	4-C1	4-C1	4-C1
H	H	н	H	H	Ħ	Ħ	ж	н	Ħ	щ	Ħ	H	н	ж	н
СНЗ	Ħ	Ħ	H	Œ	Ħ	снз	СНЗ	СНЗ	СНЗ	СНЗ	CH3	сн3	СНЗ	СНЗ	СНЗ
СН3	СНЗ	СНЗ	СНЗ	CH ₃	CH ₃	СНЗ	сн3	СНЗ	СН3	СНЗ	СНЗ	СНЗ	СН3	снз	СНЗ
299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314

- Cont'd -

n _D 1.5905	n _D 1.5785	m.p. 96.7	$_{ m D}^{20}$ 1.5569	$_{ m D}^{20}$ 1.5642	m.p. 117.9	n _D 1.5809	m.p. 97.8	n _D 1.5811	$n_{\rm D}^{20}$ 1.5958	n ²⁰ 1.5826	$n_{\rm D}^{20}$ 1.5778	$n_{\rm D}^{20}$ 1.5825	$n_{\rm D}^{20}$ 1.5878	$n_{\rm D}^{20}$ 1.5972		- Cont'd
 0	0	လ	SO	sos	0	0	0	0	0	0	0	0	0	Ö	0	_

2,5-C1₂ 3,4-Cl₂ 3,5-C1₂ 2,4-Cl₂ (4-C1 4-Br 4-C1 4-C1 4-C1 4-C1 4-C1 4-C1 I H CH_3 CH₃ CH_3 CH₃ CH3 CH_3 cH_3 c_{H_3} CH_3 CH_3 CH3 $c_{\rm H_3}$ cH_3 сн₃ $c_{\rm H_3}$ CH_3 $c_{\rm H_3}$ CH_3 $c_{\rm H_3}$ $c_{\rm H_3}$ 330 324 325 326 329 322 323 327 315 319 320 316 317 318 321

Table 1(a) (Cont'd)

	nD 1.5882	n ²⁰ 1.5942	m.p. 50.8	m.p. 61.2	m.p. >300	n _D 1.5739	n _D 1.5422	$_{ m D}^{20}$ 1.5772	$n_{\rm D}^{20}$ 1.5583	$_{ m n_D}^{20}$ 1.5745	$_{ m D}^{20}$ 1.5396	n _D 1.5455	$n_{\rm D}^{20}$ 1.5630	$n_{\rm D}^{20}$ 1.5584	$n_{\rm D}^{20}$ 1.5460	$n_{\rm D}^{20}$ 1.5462	- Cont'd -
	0	0	0	0	0	0	0	တ	SO	0	o _.	0	0	0	0	0	-
l(a) (Cont'd)	н	Ħ	Æ	. ##	н	Ħ	æ		н	4-CH3	4-C4H9-t	4-F	3-C1	4-C1	3,4-c1 ₂	4-0CH ₃	
Table 1(a)	4-CN	4-NO ₂	4-S1 (CH ₃) ₃	4-Si (CH ₃) ₃	4-OH	4-0CH ₃	4-ochr2	4-OCHF2	4-ochr ₂	4-ochr ₂	4-ochr ₂	4-ochr ₂	4-ochr ₂	4-ochr ₂	4-ochr ₂	4-0CHF ₂	
_	#	Ħ	#	CH ₃	Ħ.	ш	Ħ	Ħ	Ħ	Ħ	н	Ħ	H	H	ш	Ħ	_
	сн3	CH ₃	СН3	CH ₃	СНЗ	СНЗ	СНЗ	СНЗ	CH ₃	СНЭ	CH_3	$c_{\rm H_3}$	СНЗ	СНЗ	CH ₃	CH3	
_	СНЗ	СН3	CH ₃	СНЗ	СНЗ	СНЗ	СНЗ	снз	снз	СНЗ	СНЗ	снз	сн3	CH ₃	СНЗ	СНЗ	-
	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	

$n_{\rm D}^{20}$ 1.5386	$n_{\rm D}^{20}$ 1.5510	$n_{\rm D}^{20}$ 1.5399	$n_{\rm D}^{20}$ 1.5244	$n_{\rm D}^{20}$ 1.5736	n_{D}^{20} 1.5744	n _D 1.5287	$n_{\rm D}^{20}$ 1.5252	$n_{\rm D}^{20}$ 1.5130	$n_{\rm D}^{20}$ 1.5242	m.p. 83.8	n _D 1.5300	$n_{\rm D}^{20}$ 1.5686	$n_{\rm D}^{20}$ 1.5665	$n_{\rm D}^{20}$ 1.5689	$n_{\rm D}^{20}$ 1.5642	- Cont'd
 0	တ	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	_

H
3-C1
4-C1
H
7-C1
H
7-

CH₃ C₂H₅ 4-OCF₂CHF₂ CH₃ H 4-OCF₂CHF₂ $4-\text{OCF}_2\text{CHF}_2$ 4-OCF2CHF2 4-0CF₂CHF₂ 4-0C₃H₇-i 4-OCF2CHF2 4-OCF₂CHF₂ 4-0C $_2$ H $_5$ 4-0C2H5 4-0CF3 4-0CF₃ 4-0CF3 H H H Ħ $_{\rm CH_3}$ cH_3 cH_3 $c_{\rm H_3}$ $c_{\rm H_3}$ $^{\text{CH}_3}$ $c_{\rm H_3}$ CH_3 cH_3 CH_3 347 348 349 350 352 353 354 355 356 357 358 359 351 360 361 362

Table 1(a) (Cont'd)

n_D 1.5640

0

 $n_{\rm D}^{20}$ 1.5850

0

- Cont'd -

 $n_{\rm D}^{20}$ 1.5586

0

 n_{D}^{20} 1.5896

0

 $n_{\rm D}^{20}$ 1.5945

0

n²⁰ 1.5562 n²⁰ 1.5682 m.p. 89.4 n²⁰ 1.5663

0

0

 n_{D}^{20} 1.5852

0

 $n_{\rm D}^{20}$ 1.5921

(a) (Cont'd)	E	4 - F	4-C1	4-0CH ₃	æ	2,4-Cl ₂	æ	4- 4-	4-C1	. ж	Ħ	
Table 1(a)	4-0C4H9-t	4-0C4H9-t	4-0C4H9-t	4-0C4H9-t	3-0	3-0	4-0-6	4-0-	4-0-4	$4-0$ \sim	3,4(-ocH ₂ o-)	
•	 Ħ	H	н	Ħ	Ħ	ж	Ħ	H	н	Ħ	Ħ	
	CH3	CH3	СНЗ	снз	CH3	СНЗ	сн3	СНЗ	СНЗ	СНЗ	СНЗ	
	 СНЗ	CH ₃	CH3	СНЗ	CH3	СНЗ	СНЗ	СНЗ	СН3	СНЗ	снз	
	 363	364	365	366	367	368	369	370	371	372	373	

	n ²⁰ 1.5750	n ²⁰ 1.5867	n _D 1.5505	n _D 1.5447	n ²⁰ 1,5560.	$n_{\rm D}^{20}$ 1.5600	n _D 1.5431	n ²⁰ 1.5480	$n_{\rm D}^{20}$ 1.5408	- Cont'd -
	0	0	0	0	0	0	0	0	0	_
Table 1(a) (Cont'd)	4 - F	4-C1	н	ш	4-F	4-C1	4-ocH ₃	4-0CH ₃	ш	_
Table	3,4(-OCH ₂ O-)	3,4(-OCH ₂ O-)	CH ₃ 4-ochcooc ₂ H ₅	CH ₃ 4-ochcooc ₃ H ₇ -i	CH3 4-OCHCOOC ₂ H ₅	$\begin{array}{c} c_{\mathrm{H_3}} \\ \downarrow \\ 4 - \text{ochcooc}_{2}_{\mathrm{H_5}} \end{array}$	CH ₃ 4-ochcooc ₂ H ₅	CH3 4-0CHCOOC ₃ H ₇ -i	$^{\text{CH}_3}_{4-\text{ochcooc}_4^{\text{H}_9}}$	
	E	H	Œ	皿	н	н	Ħ	Œ	Œ	
	CH ₃	СНЗ	СНЗ	СНЗ	CH ₃	CH3	CH3	СНЗ	СНЗ	-
	снз	CH3	CH ₃	CH3	СН3	СНЗ	CH3	СНЗ	СНЗ	-
	374	375	376	377	3.78	379	380	381	382	 -

 n_{D}^{20} 1.5423

- Cont'd -

 $n_{\rm D}^{20}$ 1.5553

 $n_{\rm D}^{20}$ 1.5522

 $n_{\rm D}^{20}$ 1.5565

	Ó	0	0	0	0	0	. 0
Table 1(a) (Cont'd)	4-F	4-0CH ₃	н	m	. ₩ .	н	H .
Table 1	$\begin{pmatrix} cH_3 \\ 4 - ochcooc_4 H_9 - t \end{pmatrix}$	CH3 4-0CHCOOC4H9-t C.Hi	4-0CHC00C ₂ H ₅	CH3 4-occooc ₂ H ₅ CH3	CH ₃ 4-occooc ₃ H ₇ -i CH ₃	4-ocH ₂	$^{\text{CH}_3}_{4-\text{OSiC}_4^{\text{H}_9}-\text{t}}$
	=	#	Ħ	Ħ	ж	Ħ	E
	СНЗ	CH ₃	СНЗ	Сн3	CH ₃	СНЗ	СНЗ
	CH ₃	CH ₃	СНЗ	Сн3	СНЗ	СНЗ	CH ₃
	383	384	385	386	387	388	389

 $n_{\rm D}^{20}$ 1.5300

n_D 1.5380 n_D 1.5448

· ·	m.p. 81.8	n ²⁰ 1.5930	$\frac{20}{n_{\rm D}}$ 1.5955	$\frac{20}{n_{\rm D}}$ 1.5995	n ²⁰ 1.5865	n ²⁰ 1.5700	n ²⁰ 1.5908	$n_{\rm D}^{20}$ 1.5864	n_{D}^{20} 1.5745	$n_{\rm D}^{20}$ 1.5658	$n_{\rm D}^{20}$ 1.5672	$\frac{20}{n_D^2}$ 1.5866	$n_{\rm D}^{20}$ 1.6026	$n_{\rm D}^{20}$ 1.5940	$n_{\rm D}^{20}$ 1.5899	$\frac{20}{D}$ 1.5740	Cont'd +
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
Table 1(a) (Cont'd)	III	.4-F	44C1	4 ÷ OCH3	ш	4-7	4~C1	4-0CH ₃	.: H	전-7	4-C1	4-0CH ₃	H	4 - F	н .	4-F	
Tab.	4-SCH ₃	4-SCH ₃	4-SCH ₃	4-SCH ₃	4-SOCH3	4-SOCH ₃	4-soch ₃	4-SOCH3	4-SO ₂ CH ₃	4-SC ₂ H ₅	4-SC ₂ H ₅	4-SOC ₂ H ₅	4-SOC ₂ H ₅	•			
	H	ш	H	-H	田	H	Ξ	ж	=	Ħ	#	H	H .	Ξ	田	н	_
	CH3	CH ₃	CH ₃	СНЗ	CH ₃	CH ₃	CH ₃	СНЗ	CH ₃	СН3	CH ₃	CH ₃	СН3	CH ₃	CH ₃	СНЗ	_
-	СНЗ	СНЗ	CH ₃	СН3	СНЗ	СНЗ	СН3	СН3	CH ₃	CH ₃	CH ₃	СН3	CH ₃	СНЗ	СНЗ	СН3	-
	390	391	392	393	394	395	39.6	397	398	399	400	401	402	403	404	405	

		m.p. 118.9	$n_{\rm D}^{20}$ 1.5891	$_{ m D}^{20}$ 1.5830	$n_{\rm D}^{20}$ 1.5902	n _D 1.5872	$n_{\rm D}^{20}$ 1.5752	$n_{\rm D}^{20}$ 1.5928	$n_{\rm D}^{20}$ 1.5862	$n_{\rm D}^{20}$ 1.5802	n _D 1.5669	$n_{\rm D}^{20}$ 1.5810	$n_{\rm D}^{20}$ 1.5748	n ²⁰ 1.5626	n_{D}^{20} 1.5594	$n_{\rm D}^{20}$ 1.5652	٠.	- Cont'd -
-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-
		н	4-F	ш	Ж	H	4-F	4-C1	4-0CH ₃	Ħ	. 4-F	4-C1	4-0CH ₃	H	4~₽	4-0CH ₃		_
		4-SO ₂ C ₂ H ₅	4-SO2C2H5	2-SC3H7-i, 5-CH3	4-SC3H7-i	2-SC3H7-i	4-sc ₃ H ₇ -i	4-5C3H7-i	4-sc ₃ H ₇ -i	4-SOC3H7-1	4-SOC3H7-1	4-SOC3H7-1	4-SOC ₃ H ₇ -1	4-SO2C3H7-1	4-SO2C3H7-i	4-SO ₂ C ₃ H ₇ -i		_
		H	ш	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	H	Ħ	н	Ħ	Ħ	H		
		CH ₃	CH ₃	CH ₃	CH ₃	СН3	СНЗ	СНЗ	СНЗ	СНЗ	СНЗ	СНЗ	Сн3	СНЗ	СНЗ	СНЗ		_
	~	CH3	CH ₃	СНЗ	CH3	CH ₃	СНЗ	CH ₃	CH ₃	СН3	СН3	СНЗ	Сн3	СНЗ	СНЗ	CH3	·	_
	1	406	407	408	409	410	411	412	. 413	414	415	416	417	418	419	420		

Table 1(a) (Cont'd)

0 0 0

 $n_{\rm D}^{20}$ 1.5917

 $\begin{array}{c} n_{\rm D}^{20} & 1.5715 \\ n_{\rm D}^{20} & 1.5741 \\ n_{\rm D}^{20} & 1.5780 \\ n_{\rm D}^{20} & 1.5569 \\ n_{\rm D}^{20} & 1.5679 \\ n_{\rm D}^{20} & 1.5750 \\ n_{\rm D}^{20} & 1.5721 \\ n_{\rm D}^{20} & 1.5721 \\ n_{\rm D}^{20} & 1.5395 \\ n_{\rm D}^{20} & 1.5852 \end{array}$

0 0

4.32

 $\begin{array}{c} n_{\rm D}^{20} & 1.5853 \\ n_{\rm D}^{20} & 1.5733 \\ n_{\rm D}^{20} & 1.6056 \\ n_{\rm D}^{20} & 1.5482 \\ n_{\rm D}^{20} & 1.5659 \end{array}$

4.29

0 0 0

- Cont'd

1(a) (Cont'd)	H	ш	ři.	т.	н.	н	2-CH ₃	3-CH3	4-CH ₃	4-C ₄ H ₉ -t	4F	2-c1	3-C1	4-C1	3,4-C1 ₂
rable 1(a)															
	4-SC4H9-t	4-SCHF2	4-SCHF2	4-SCHF2	4-SCHF2	4-SCHF ₂	4-SCHF2	4-SCHF2	4-SCHF2	$4-SCHF_2$	4-SCHF ₂	4-SCHF ₂	4-SCHF2	4-SCHF2	4-SCHF2
·	Ħ	Ħ	Ħ	СНЗ	H	0	Ħ	H	Ħ	Ħ	щ	н	Ħ	Ħ.	Ħ
	CH ₃	CH3	СНЗ	СНЗ	CH3	CH ₃	СНЗ	СНЗ	CH ₃	CH3	СНЗ	СН3	CH ₃	CH ₃	СНЗ
	СНЗ	СН3	CH ₃	СНЗ	$c_{2}H_{5}$	СНЗ	сн3	СНЗ	СНЗ	СНЗ	СНЗ	CH ₃	CH ₃	сн3	СНЗ

- Cont'd -

	n ²⁰ 1.5855	n_{D}^{20} 1.5694	n _D 1.5575	Paste	n ²⁰ 1.5748	n ²⁰ 1.5768		n _D 1.5765	n _D 1.5500	n ²⁰ 1.5612	n ²⁰ 1.5643	_	n ²⁰ 1.5801	m.p. 82.3	n _D 1.5557	 - Cont'
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
י (בסוור מ)	4-Br	4-0CH ₃	н	4-F	4-C1	4-Br	4-0CH ₃	н	.4-F	. 4-C1	4-Br	4-0CH ₃	н	4 - F	н	
Table 1	4-SCHF2	4-SCHF2	4-SOCHF2	4-SOCHF ₂	4-SOCHF2	4-SOCHF ₂	4-SOCHF2	4-SO ₂ CHF ₂	4-SO ₂ CHF ₂	4-SO ₂ CHF ₂	4-SO2CHF2	4-SO ₂ CHF;	4-SCF ₂ Br	4-SCF ₂ Br	4-SCF ₂ CFC1 ₂	
_	Ħ	н	Ħ	Н	Ħ	Ħ	Ħ	Ħ	H	Ħ	Ħ	Ħ	田	Ħ	Ħ	
-	СНЗ	CH3	CH ₃	CH ₃	CH3	CH ₃	CH ₃	СНЗ	CH ₃	СНЗ	CH3	CH ₃	CH ₃	CH ₃	CH ₃	
_	CH ₃	СНЗ	CH ₃	СНЗ	СНЗ	CH3	СНЗ	СН3	СН3	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	
-	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	

_
(p
4
Cont
(a)
-
le
Tabl
Н

n_{D}^{20} 1.5557	$n_{\rm D}^{20}$ 1.5676	$n_{\rm D}^{20}$ 1.5640	$n_{\rm D}^{20}$ 1.5889	n_{D}^{20} 1.5958	n_{D}^{20} 1.5722	$n_{\rm D}^{20}$ 1.5569	$n_{\rm D}^{20}$ 1.5732	$n_{\rm D}^{20}$ 1.5568	n ²⁰ 1.5501	$n_{\rm D}^{20}$ 1.5620	n ²⁰ 1.5518	$n_{\rm D}^{20}$ 1.5449	$n_{\rm D}^{20}$ 1.5497	hD 1.5527	- Cont'd -
 0	0 -	0	0	0	0	0	0	0	0	0	0	0	0	0	
선-단	4-C1	4-0CH ₃	H	ш	æ	4-F	4-C1	4-0CH ₃	4-F	4-C1	4-0CH ₃	4 - F	4-C1	ш	
4-SCF ₂ CFCl ₂	4-SCF ₂ CFCl ₂	4-SCF2CFC12	4-SOCF2CFC12	4-so ₂ cF ₂ cFC1 ₂	4-SCH ₂ CF ₃	4-SOCH ₂ CF ₃	4-SOCH ₂ CF ₃	4-SOCH ₂ CF ₃	4-so ₂ cH ₂ cF ₃	4-SO ₂ CH ₂ CF ₃	4-SCR ₂ CHF ₂	•			
 Ħ	ж	H	Ħ	н	H	Ħ	Ħ	H	Ħ	Ħ	H	H .	Ή.	H	
 CH ₃	CH ₃	CH ₃	СН3	СНЗ	СНЗ	CH3	CH ₃	CH ₃	СНЗ	CH ₃	CH ₃	CH ₃	СНЗ	сн3	
 CH ₃	СНЗ	СНЗ	СНЗ	CH ₃	СНЗ	CH ₃	сн3	СНЗ	СНЗ	СНЗ	СНЗ	CH3;	СНЗ	снз	_
 451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	_

Cont'd)	
1 (a) (
Table	

	n _D 1.5514	n _D 1.5462	n ²⁰ 1.5450	n _D 1.5536	n ²⁰ 1.5540	n _D 1.5636	n _D 1.5547	$n_{\rm D}^{20}$ 1.5541	n _D 1.5645	n _D 1.5477	n _D 1.5865	n ²⁰ 1.5684	$n_{\rm D}^{20}$ 1.5498	n ²⁰ 1.5786	Paste		- Cont'd -
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	Ħ	2~F	3-F	4-F	2-c1	4-C1	2-0CH ₃	3-0CH ₃	4-0CH ₃	.3,5-(OCH ₃) ₂	H	4 - F	4-c1	4-0CH ₃	4-F		-
	4-SCF ₂ CHF ₂	4-SCF ₂ CHF ₂	4-SCF2CHF2	4-SCF ₂ CHF ₂	4-SCF2CHF2	4-SCF2CHF2	4-SOCF2CHF2	$4-SOCF_2CHF_2$	4-SOCF ₂ CHF ₂	4-SOCF ₂ CHF ₂	$4-50_2$ CF $_2$ CHF $_2$						
	сн3	Ħ.	Ħ	Ħ	Ħ	н	出	H	Ħ	Ħ	Ħ	H	Ħ	Ħ	H	•	•
	CH ₃	CH ₃	CH ₃	СНЗ	CH ₃	CH_3	СНЗ	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH3	СНЗ		-
	CH3	СН3	CH3	CH3.	CH ₃	СНЗ	СН3	сн3	СН3	CH ₃	СНЗ	СНЗ	СНЗ	CH ₃	CH ₃	·	
-	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480		-

$\overline{}$
b
-
Ţ
Ē
O
ဥ
$\overline{}$
$\overline{}$
Ø
_
\vdash
Φ
P
Ω
ď
H

Paste	n_{D}^{20} 1.5420	n_{D}^{20} 1.5890	n_{D}^{20} 1.5632	n ²⁰ 1.5585	n_{D}^{20} 1.5655	n_{D}^{20} 1.5622	n _D 1.5680	$n_{D.}^{20}$ 1.5503	n ²⁰ 1.5686	n _D 1.5611	n _D 1.5588	n_{D}^{20} 1.5250	n_{D}^{20} 1.5217	n _D 1.5228
 0	0	0	0	0	0	0	0	0	0	0	0	0	0	
. н	4-C1	4-0CH ₃	н	4-F	4-C1	4-0CH ₃	н	. 4-F	4∼ ₽	4-C1	4-0CH ₃	ш	H	4-CH ₃
4-SO ₂ CF ₂ CHF ₂	4-SO2CF2CHF2	4-SO ₂ CF ₂ CHF ₂	4-SCF2CF2Br	4-SCF ₂ CF ₂ Br	4-SCF ₂ CF ₂ Br	4-SCF ₂ CF ₂ Br	4-SOCF2CF2Br	4-SOCF ₂ CF ₂ Br	4-SO ₂ CF ₂ CF ₂ Br	4-SOCF2CF2Br	4-SOCF2CF2Br	4-SC3F7	4-SC3F7	4-SC3F7
 H	ж	н	二	Ħ	н	H	H	H	田	Ħ	H .	_ H	CH ₃	, Ħ
СН3	CH ₃	CH ₃	CH ₃	CH ₃	CH 3	CH ₃	СНЗ	CH ₃	CH ₃	CH ₃	СНЗ	CH ₃	.CH3	CH ₃
СНЗ	сн3	сн3	ĊНЗ	CH ₃	сн3	СНЗ	сн3	СН3	CH ₃	CH ₃	СНЗ	ĊH3	CH ₃	CH ₃
481	482	483	484	485	486	487	488	489	490	491	492	493	494	495

Cont'd -

Cont'd)
\mathbf{c}
a)
ü
Н
o
Table

	n _D 1.5172	$n_{\rm D}^{20}$ 1.5175	$n_{\rm D}^{20}$ 1.5298	Paste	n ²⁰ 1.5020	$n_{\rm D}^{20}$ 1.5263	$n_{\rm D}^{20}$ 1.5137	n ²⁰ 1.5289	Paste	Paste .	nD 1.6134	n ²⁰ 1.5980	n _D 1.5940	n _D 1.6052	- Cont'd -
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3-F	4 -F	3-C1	4-C1	3-CF3	3-0CH ₃	4-0CH ₃	Ħ	4 - F	4-A'	н	m	m .	4-C1	
_	4-SC3F7	4-SC3F7	4-SC3F7	4-SC3F7	4-SC3F7	4-SC3F7	4-SC3F7	4-SOC ₃ F ₇	4-SOC3F7	4-SOC3F7	4-8-0	4-50	4-502-0	4-C1	•
_	田	H	H	H	耳	Ħ	#	Ħ	=	Ħ	Ħ	Ħ	Ħ	Ħ	_
	CH ₃	CH ₃	СНЗ	CH ₃	CH ₃	CH ₃	CH_3	CH ₃	CH ₃	CH ₃	СНЗ	CH ₃	СНЗ	CH3	_
	снз	сн3	снз	снз	CH ₃	СНЗ	СН3	СН3	СН3	СНЗ	СНЗ	СНЗ	снз	CH ₃	-
	496	497	498	499	200	501	502	503	504	505	506	507	508	509	-

n²⁰ 1.5643 n²⁰ 1.5320 n²⁰ 1.5324 n²⁰ 1.5876 n²⁰ 1.5876 n²⁰ 1.5889 n²⁰ 1.5889 n²⁰ 1.5889 n²⁰ 1.5896 crystal n²⁰ 1.5576 m.p. 94.4 m.p. 136.4 m.p. 136.7

0 0 0 0

0 0

_
ď
-
بد
Con
ដ
=
<u>_</u> @
_
٠.
Ø
ᅼ
Tabl
פ
-

0.0

0

0

 4-CI	ш	ш		4-OCHF,	4-0CF ₃	T H	ш	Η	ш	4 - F	Н	4 1	н	4-F	
4-SOCHF2	4-SCF3	4-SOCF ₃	4-S0 ₂ CF ₃	4-SC3F7	$4-SC_3F_7$	4-cosc ₂ H ₅	4-cosc3H7-i	4-cosc ₄ H ₉ -t	4-CONHCH ₃	4-CONHCH ₃	4-CONHC3H7-1	4-CONHC ₃ H ₇ -i	4-CONHC4H9-t	4-CONHC4H9-t	
 Ħ	н	Ħ	H	Ħ	Ħ	H	Ħ	Ħ	H	н	н	H	н	Ħ	·
 CH ₃	CH ₃	CH ₃	СНЗ	CH ₃	СНЗ	CH ₃	CH 3	CH3	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	СН3	
 CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	СНЗ	CH ₃	CH ₃	СНЗ	сн3	СНЗ	CH ₃	СН3	СНЗ	
510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	

: - Cont'd

÷...

(Cont'd)
1 (a)
Table

	<u>.</u>		nD 1.5263		i.	n_D 1.5328	n _D 1.5803		n ²⁰ 1.5689	n _D 1.5755	n _D 1.5657.	Paste	- Cont'd -
	0	0	0	0	0	0	0		0	0	0	0	
	4-0CH ₃	æ	Œ	4-F	4-c1	4-0CH ₃	щ		·Ħ	4-F	4-C1	4-0CH ₃	
	4-CONHC4H9-t	4 -con (cH $_3$) $_2$	4 -con (c_3 H $_7$ -i) $_2$	$4-\cos(c_3H_7-i)_2$	4 -con (c_3 H $_7$ -i) $_2$	4 -con (c_3 H $_7$ -i) $_2$	4-con CH ₃	<u> </u>	4-con	4-con	4-con	4-con	
-	ж	ш	H	E	Ħ	Η.	H		Œ	표	<u> </u>	Ħ	
-	CH ₃	CH ₃	CH ₃	СНЗ	CH3	CH3	СНЗ		СНЗ	CH ₃	СН3	СНЗ	
	CH ₃	CH ₃ .		СН3	CH ₃	снз	СНЗ		CH3	CH ₃	CH ₃	СН3	
-	525	526	527	. 528	529	530	531		532	533	534	535	

- Cont'd -

	$_{ m D}^{20}$ 1.5632	$n_{\rm D}^{20}$ 1.5600	n_{D}^{20} 1.5498	n _D 1.5617	n 1.5643	m.p. 88.0	$n_{\rm D}^{20}$ 1.5709	$n_{\rm D}^{20}$ 1.5756	m.p. 59.0	$n_{\rm D}^{20}$ 1.5664	יים + אמניים ו
	0	0	0	0	0	0	.0	0	0	0	
l (a) (Cont'd)	Ħ	4-F	4-0CH ₃	ш	주 - -	н	·H	ÉЩ	н	4-F	
Table 1(a)	4-con	4-con 0	4-con	$4-\cos\left(\frac{\text{CH}_3}{\text{CH}_3}\right)$	$4 - \cos \begin{pmatrix} cH_3 \\ 0 \\ CH_3 \end{pmatrix}$	4-coch ₃	4-cocooc ₂ H ₅	4-cocooc ₃ H ₇ -i	4-coc ₂ H ₅	4-COC ₂ H ₅	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
	H	Ħ	н	Ħ	н	# .	Ħ	щ	. ##	ж	
	СН3	СНЗ	СНЗ	CH ₃	CH ₃	CH3	CH ₃	CH ₃	CH ₃		
	СН3	СНЗ	CH ₃	СН3	СН3	сн3	СН3	СН3	сн3	CH ₃ .	
										•	

540 541 542 543 544

536

537

538

0 0

н		Ħ	4-F	4-C1	Ħ			Ħ	•	ш	4-C1	· #	
i i	4-00-3117-1	4-COC4H9-t	4-coc4H9-t	4-coc4H9-t	CH ₃ 4-co-c-cn	CH ₃	CH ₃	4-coc-coocH ₃	ćн ₃	4-co-	4-co-	4-co-{O}-c1	
:	E .	H	Ħ	н	Ħ			H		H	Ħ	H	
	E	CH ₃	CH ₃	CH ₃	CH ₃			СНЗ		CH ₃	CH ₃	CH ₃	
	CH ₃	СНЗ	CH ₃	СНЗ	СН3			СНЗ		СНЗ	СНЗ	СНЗ	
	546	547	548	549	550			551		552	553	. 554	,

Ó

555 CH_3 CH_3 CH_3 H $4-CO-O-C1$ $4-F$ O O_D^2 O			•		,		. •		•			1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, i		-	-	÷.	1.	.	, ,	Cont
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	0	. 0	0	0		0	φ		- · • ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						•						
CH ₃ CH ₃ H 4-CO CH ₃ CH ₃	(5 A 113)		ብ	4-C1	4-0CH ₃	ж	4 - F	4-C1	À-0CH₃	Ħ	4 - F	
CH ₃		(CH ₃	$\frac{4}{\sqrt{6}}$	
CH ₃ CH ₃ CH ₃ CH ₃	_			E	, III	Ħ	Ħ	H	Ħ	ш	æ	٠.
GH GH GH 3	· .	*	CH ₃	CH ₃	СНЗ	СН3	СНЗ	CH ₃	CH ₃	CH ₃	СНЗ	
555 556 557 559 561 562 563	-		CH ₃	CH ₃	СНЗ	СН3	сн3	СН3				
	•		555	556	557	. 558 	559	260	561	562	563	

Table 1(a) (Cont'd)

:

Cont'd)
1 (a) ((
Table 1

n _D 1.5569	n ²⁰ 1.5619	Paste	n _D 1.5689	n _D 1.5593	n _D 1.5630	- Cont'd -
0	0	0	0	0	0	

4-C1

CH ₃	4 CH ₃	\sum	4 CH ₃	CH ₃	c_2^H	·
E	н	Ħ	Ħ	Ħ	н	
СНЗ	Сн3	Снэ	СНЗ	СН3	снз	
CH ₃	СНЗ	СНЗ	снз	СНЗ	CH 3	
564	. 565 5	566	567	268	569	

(Cont'd)
1 (a)
Table

n _D 1.5472	nD 1.5623	n _D 1.5560	n _D 1.5526	n _D 1.5656	n _D 1.5123	 - Cont'd -
. 0	0	0	0	0	0	

4-F	ш	H .	4 – F	4-0CH ₃
-----	---	------------	-------	--------------------

4 0 C 2 H 5	$4 \begin{array}{c} 4 \\ c_2 \\ c_3 \\ H_5 \end{array}$	$\begin{cases} 4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	4 CH ₃	44 CH ₃	$\left \begin{array}{c} CH_3 \\ CH_3 \end{array} \right $
Œ	Ħ	Ħ	Ħ	Ħ	Ħ
СН3	сн3	Сн3	CH ₃	CH ₃	CH ₃
СН3	CH ₃	СНЗ	СНЗ	СНЗ	CH ₃
570	571	572	573	574	575

H

-	n _D 1.6188	n _D 1.6089	n _D 1.5978	n _D 1.5831	n _D 1.5952	Paste	- Cont'd -
_	0	0	0	0	0	0	

Table 1(a) (Cont'd)

H

H

4-F

CH ₃	$4 \times S \times $	8 S S S S S S S S S S S S S S S S S S S	4-c (sc ₂ H ₅) ₂	C ₃ H ₇ -1	S S NO	
=	=	Ξ.	Ħ	Ħ	Ħ	
CH ₃	CH ₃	CH ₃	СНЗ	СНЗ	CH 3	
CH ₃	CH ₃	СНЗ	CH ₃	CH ₃	СНЗ	
576	577	578	579	280	581	

- Cont'd -

(Cont'd)
1 (a)
Table

	n ²⁰ 1.5665	$_{ m D}^{20}$ 1.5685	n _D 1.5748	n _D 1.5623	n ²⁰ 1.5682	n _D 1.5768		- Cont'd -
_	0	0	0	0	0	0	0	
_	щ ,	ш	н	н	н	н	H	
-	4 \times	$4 \xrightarrow{S} S$ $Cooc_3H_7 - i$	4-chch ₃	4-CHCH ₃	4-c (cH ₃) ₂	4-CHC ₂ H ₅	C ₂ H ₅ 4-c-c ₄ H ₉ -n OH	-
•	щ	Ħ	ш	н	Ħ	н		
	CH 3	СНЗ	СНЗ	сн3	СНЗ	СН3	СНЗ	•
	СНЗ	СНЗ	СНЗ	снз	СН3	CH ₃	CH ₃	•
	582	583	584	585	586	587	588	٠

Paste

- Contid -

 $n_{\rm D}^{20}$ 1.5659

m.p. 115.2

| n_D 1.5705

Cont.(d)	
_	
(5
_	
Table	1

0	0	0	0	0	0	0	0
	m	Ħ	4-F	4-0CH ₃	н	4-F	
4-N <hcho< td=""><td>4-N<h< td=""><td>4-N COOCH2CH2OCH3</td><td>4-NCH2CH2CH3</td><td>4-N COOCH₂CH₂OCH₃</td><td>4-N COOC 3H7-1</td><td>4-N COOC₃H₇-i</td><td>2-N CH₃</td></h<></td></hcho<>	4-N <h< td=""><td>4-N COOCH2CH2OCH3</td><td>4-NCH2CH2CH3</td><td>4-N COOCH₂CH₂OCH₃</td><td>4-N COOC 3H7-1</td><td>4-N COOC₃H₇-i</td><td>2-N CH₃</td></h<>	4-N COOCH2CH2OCH3	4-NCH2CH2CH3	4-N COOCH ₂ CH ₂ OCH ₃	4-N COOC 3H7-1	4-N COOC ₃ H ₇ -i	2-N CH ₃
Ħ	Æ	Ħ	Ħ		Ħ		ш
сн3 н	Сн3 н	сн3 н	сн ₃ н	СН3 Н	СН3 Н		
		Ħ	Ħ	Ħ	声	Ħ	ц
сн3	СНЗ	сн3 н	сн ₃ н	СН3 Н	СН3 Н	сн3 н	сн3 н

 $n_{\rm D}^{20}$ 1.5683

0

- Cont'd -

0

Paste

0

Paste

0

 $n_{\rm D}^{20}$ 1.5685

0

 $n_{\rm D}^{20}$ 1.5764

0

 $n_{\rm D}^{20}$ 1.5599

0

 $n_{\rm D}^{20}$ 1.5561

4-F	4-0CH ₃	ж	4 - F	4-0CH ₃	. ш	4-F	H.	
2-N COOCH ₃	$2-N < CH_3 < COOCH_3$	3-N CH3 COOCH3	$3-N < CH_3 < COOCH_3$	3-N COOCH3	4-N CH3 COOCH3	4-N COOCH ₃	4-NCCH3 COOCH3	_
н	н	三	Ħ	ш	Ħ	Ħ	н	
СНЗ	Сн3	СНЗ	СН3	сн3	СНЗ	CH ₃	CH ₃	
СНЗ	СН3	СН3	CH ₃	СНЗ	СН3	СНЗ	сн3	
597	598	599	009	601	. 602	603	604	

(Cont'd)
a)
7
Table

n _D 1.5662	n _D 1.5582	n_{D}^{20} 1.5625	$n_{ m D}^{20}$ 1.5564	n _D 1.5559	$n_{ m D}^{20}$ 1.5595	$n_{\rm D}^{20}$ 1.5557	n _D 1.5648	- Cont'd -
0	0	0	0	0	0	0	0	
н	4-F	4-0CH ₃	=	4-F	4~C1	4-ocH ₃	·	
3-N CH3 COOC 3H2-n	3-N COOC ₃ H ₇ -n	3-N CH3 COOC ₃ H ₇ -n	4-N <ch3< td=""><td>4-N<ch3 COOC₃H₇-n</ch3 </td><td>4-N<c00c<sub>3H₇-n</c00c<sub></td><td>4-N COOC₃H₇-n</td><td>4-N<ch3 COOC3H7-i</ch3 </td><td></td></ch3<>	4-N <ch3 COOC₃H₇-n</ch3 	4-N <c00c<sub>3H₇-n</c00c<sub>	4-N COOC ₃ H ₇ -n	4-N <ch3 COOC3H7-i</ch3 	
<u> </u>	E	Ħ	Ħ	Ħ	E	н	H	
CH ₃	CH ₃	CH ₃	CH ₃	снз	СНЗ	CH ₃	СНЗ	
СН3	СН3	СНЗ	CH ₃	CH ₃	CH ₃	CH ₃	СНЗ	
605	909	209	809	609	610	611	612	

t'd)
Ö
(Con
_
a
Φ
Ä
Д
Tabl

							
n _D 1.5529	n _D 1.5582	$n_{\rm D}^{20}$ 1.5421	$n_{\rm D}^{20}$ 1.5573	n _D 1.5538	$n_{\rm D}^{20}$ 1.5621	$n_{\rm D}^{20}$ 1.5638	Paste
0	0	0	0	0	0	0	0
4 - F	ж	4. F.	4-C1	4-0CH ₃	3,4(-OCH ₂ O-)	ж	4-F
4-N CH3 COOC 3H7-1	$4-N$ $COOC_4H_9-1$	$4-N < CH_3 < COOC_4 H_9 - i$	$4-N < CH_3 < COOC_4 H_9 - 1$	$4-N$ CH_3 $COOC_4H_9-i$	$4-N$ CH_3 $COOC_4H_9-1$	$4-N < C_2^{H_5}$	$4-N < {^{C}_{2}}^{H_{5}}$
E	距	斑	斑	н	ж	H	н
CH ₃	СНЗ	СНЗ	СНЗ	снз	СНЗ	СНЗ	СН3
CH3	CH ₃	СН3	CH ₃	СН3	CH ₃	СНЗ	СН3
613	614	615	616	617	618	619	620

_
q
ہے
(Cont
$\overline{}$
_
(a)
1 (a)
n D
Н

m.p. 83.4	$n_{ m D}^{20}$ 1.5706	Paste	n _D 1.5695	n _D 1.5605	n _D 1.5532	n _D 1.5602	- Cont'd -
		0		0	0	0	_
æ	н	ብ- ች	4-0CH ₃	н	4. F.	4-0CH ₃	
$4-N$ $C_2^{H_5}$ C_{COOCH_3}	$4-N < C_2H_5$ $C_{COCH_2CH_2C1}$	$4-N < {^{C}_2}^{H_5}$ $< cooch_2$ ch_2 ch_2	$4-N < {^{\mathrm{C}_{2}}}^{\mathrm{H_{5}}} < c_{\mathrm{COCH}_{2}}$	$4-N$ $C_2^{H_5}$ $C_{COOC_3^{H_7}-n}$	$4-N < C_2^{H_5}$	4-N C ₂ H ₅ COOC ₃ H ₇ -n	
СНЗ	三	Ħ	Ħ	Ħ	Ħ	Ħ	
CH ₃	CH ₃	CH 3	CH 3	CH ₃	CH 3	CH ₃	
CH ₃	СН3	СНЗ	CH ₃	СНЗ	CH.3	CH.3	
622	623	624	625	626	627	628	
	CH_3 CH_3 CH_3 CC_2H_5 CC_3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH ₃ CH ₃ CH ₃ CH ₃ 4-N <c<sub>2H₅ CH₃ CH₃ CH₃ CH₃ CH₃ H 4-N<c<sub>2H₅ CCH₃ CH₃ CH₃ H 4-N<c<sub>2H₅ CCH₃ CH₃ H 4-N<c<sub>2H₅ CCH₃ CH₃ H 4-N<c<sub>2H₅ CCH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CCH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CCH₃ CH₃ CH</c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub></c<sub>

- Cont'd

 $n_{\rm D}^{20}$ 1.5701

0

1.5689

0

 $n_{\rm D}^{20}$ 1.5481

0

0

g
-0
nt
Ö
_
ā
ø
5
Tab
₽-

ш	4-F	4-0CH ₃	т	4-F	. ж	4 - F
$\begin{pmatrix} c_2^{H_5} \\ 4-N \\ cooc_3^{H_7-i} \end{pmatrix}$	$4-N < C_2^H_5$ $C_{COOC_3^H_7-i}$	4-N C2H5 COOC3H7-i	$4-N$ $C_2^H_5$ $C_0 C_4^H_9 - t$	$4-N < C_2H_5$ $< cooc_4H_9-t$	$4-N < {^C_2}^{H_5}$ $COOCH_2CHC_4^{H_9}-n$	$c_{2^{H_5}}$
н	H	Ħ	ж		Ħ	н
CH ₃	СНЗ	СНЗ	СНЗ	снз	СН3	СНЗ
CH ₃	CH ₃	СНЗ	CH 3	СНЗ	CH ₃	СН3 СН3
629	630	631	632	633	634	635

 $n_{\rm D}^{20}$ 1.5549

0

 $n_{\rm D}^{20}$ 1.5448

0

 $n_{\rm D}^{20}$ 1.5513

4-F

 m.p. 73.3	n _D 1.5685	n _D 1.5710	n _D 1.5520	Paste	h _D 1.5610	n _D 1.5516	n _D 1.5489	Cont'd
 0	0	0	0	0	Ö	0	0	

4-0CH₃

4-F.

Ħ

4-0CH₃

4-F

H

Table 1(a) (Cont'd)

4-N C3H7-i	$4-N$ C_{3} C_{CHO}	$4-N < \frac{C_3 H_7 - i}{CHO}$	4-N C3H7-i	$4-N < C_3H_7-1$ C_3COCH_3	4-N C3H7-1 COOCH3	$4-N$ C_3H_7-i $COOC_3H_7-n$	$4-N$ C_3H_7-i $C_0OC_3H_7-n$
4	4	4	4	4	<u>4</u>	4	<u> </u>
—	щ	Ħ	Ħ	Ħ	Ħ	Ħ	斑
CH ₃	снз	СНЗ	СНЗ	CH ₃	СНЗ	СНЗ	сн3
СНЗ	СНЗ	СН3	СНЗ	СНЗ	СНЗ	СНЗ	СНЗ
636	637	638	639	640	641	642	643

_
פ
nt
9
_
(a
~
<u>1</u> e
Tabl
•

n _D 1.5542	$n_{\rm D}^{20}$ 1.5545	n _D 1.5448	Paste	m.p. 85.0	Paste	n _D 1.5861 - Cont'd -
0	0	0	0	0	0	0
4-0CH ₃	н	4-F	н	щ	4-F	4-0CH ₃
$\begin{vmatrix} 4-N \\ C3^{H_7-i} \\ COOC_3^{H_7-n} \end{vmatrix}$	$4-N < C_3H_7-i$ $COOC_3H_7-i$	$4-N < \frac{C_3 H_7 - i}{C_{000C_3 H_7 - i}}$	$4-N < C_2^{H_5} < COC_4^{H_9} - t$		0=(N-4)	0 N-4
E	ж	斑	田	н	Щ	ж
CH ₃	СНЗ	СН3	CH ₃	CH 3	CH ₃	CH ₃
CH ₃	CH ₃	СНЗ	СНЗ	CH ₃	CH ₃	CH ₃
644	645	646	647	648	649	650

(Cont'd)
a)
H
Table
H

	m.p. 115.1	n _D 1.5718	n ²⁰ 1.5730	n _D 1.5551	n _D 1.5660
_	0	0	0	0	0
	Ħ	4-F	m	4 - F	4-0CH ₃
	4-N CH ₃	4-N CH ₃	4-N O CH2OCH3	4-N O CH2OCH3	4-N OCH 2 OCH 3
	н	Œ	щ	Œ	E
	СН3	СНЗ	СНЗ	СНЗ	CH ₃
	CH ₃	СНЗ	CH ₃	СН3	CH ₃
	651	652	653	654	. 655

*****	n ²⁰ 1.5718	n _D 1.5601
	0	0
Table 1(a).(Cont'd)	C ₂ H ₅	$\langle c_2 H_5 \rangle$
	0=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	н	Ħ
	CH ₃ CH ₃	сн3 сн3
	CH ₃	СНЗ
	656	657

Table I(b)

This formula corresponds to the general formula

(I) wherein z^1 is an oxygen atom.

(Ic)

Compound	,0	₀ 2	₀ 3		2.5	4.	;	Physical property
No.	4	4	4	×	4		ч Щ	m.p.('C) or refractive index
658	CH ₃	сн3 сн3	н	-CH2CH2-	0	Ŷ	н	n _D 1.5657
629	СНЗ	сн3 сн3	Ħ	-cH ₂ cH ₂ -	0		Ħ	n _D 1.5760
099	СН3	сн3 сн3	Ħ	-сн ₂ сн ₂ -	0	C. 3.	н	n _D 1.5683
661	CH ₃	сн ₃ сн ₃ н	二	-cH ₂ CH ₂ -	0	, de la company	Ħ	n _D 1.5704
				-	• •			- Cont'd -

-	n _D 1.5524	m.p. 63.4	n _D 1.5592	n _D 1.5641	n _D 1.5669	n _D 1.5606	n _D 1.5509	$n_{\rm D}^{20}$ 1.5459
	4-F	н	н	4-c1	3-C1	4-0CH ₃	Ħ	3-0CH ₃
Cont'd)	O cH ₃	O to	$\bigcirc C_{4^{H_9}-t}$	C4Hg-t	CAHO-t		-(O)-c4H9-t	-{○}-c ₄ H ₉ -t
S	0	0	0	0	0	0	0	0
Table 1(b) (Cont'd)	-сн ₂ сн ₂ -	-сн ₂ сн ₂ -	-сн2сн2-	-сн ₂ сн ₂ -	-сн ₂ сн ₂ -	-CH ₂ CH ₂ -	-cH2cH2-	-сн ₂ сн ₂ -
	щ	Ħ	ш	н	н	Щ	н	Ħ
	CH ₃	СНЗ	СНЗ	СНЗ	сн3	сн3	СНЗ	СНЗ
	сн ₃ сн ₃	CH ₃ CH ₃	сн3	сн3 сн3	сн3 сн3	СНЗ	СНЗ	CH ₃ CH ₃
	662	663	664	999	999	299	668	699

m.p. 59.6	n _D 1.5287	n _D 1.5612	n _D 1.5741	n _D 1.5618	n _D 1.5657	m.p. 100.2	nD 1.5552	10000
4-0CH3	3-CF3	н	4-C1	щ	н	4-C1	щ	
-C4H9-t	-C4H9-t	CH3 CH3 CH3	CH3 CH3 CH3 CH3	Q _{E4}			-F	•
	<u> </u>	0	0	0	0	0	0	
-CH2CH2-	-CH ₂ CH ₂ -	-CH2CH2-	-ch2cH2-	-сн2 сн2-	-CH ₂ CH ₂ -	-CH ₂ CH ₂ -	-CH2CH2-	
H	Ħ	四	Ħ	н	Ħ	щ	Ħ	
CH ₃	СНЗ	CH ₃	CH ₃	сн3	CH ₃	СНЗ	сн3	
CH ₃	CH ₃	CH ₃	CH ₃	СНЗ	СН3	СН3	CH ₃	
670	671	672	673	674	675	929	677	
	$ ^{CH_3} ^{CH_3} ^{H}$ $ ^{-CH_2CH_2}^{-CH_2CH_2} ^{O}$ $ ^{-C_4H_9}^{-C_5H_9}^{-C_5H_9}^{-C_5H_9}^{-C_5H_9}^{-C_5H_9}^{-C_5H_9}^{-C_5H_9}^{-C_5H_9}^{-C_5H_9}^{-C_5H_9}^{-C_5$	$ \begin{vmatrix} c_{H_3} & c_{H_3} & H & -c_{H_2}c_{H_2} - & o & -c_{H_9}-t & 4-o_{CH_3} & m.p. \\ c_{H_3} & c_{H_3} & H & -c_{H_2}c_{H_2} - & o & -c_{H_9}-t & 3-c_{F_3} & n_D^{20} & 1. \\ \end{vmatrix} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH ₃ CH ₃ CH ₃ H $-CH_2CH_2$ O $-C_4H_9$ + 4-OCH ₃ m.p. CH ₃ CH ₃ CH ₃ H $-CH_2CH_2$ O $-C_4H_9$ + 3-CF ₃ $-CF_3$ $-CF_4$ $-C$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

	n_{D}^{20} 1.5738	nD 1.5730	n _D 1.5681	m.p. 51.2	n _D 1.5722	$n_{\rm D}^{20}$ 1.5795	$n_{\rm D}^{20}$ 1.5936	m.p. 101.5	m.p. 86.1	n _D 1.5833
	4-c1	3-c1	4-0CH ₃	ш	н	Ħ	н	4-C1	д	ш
Cont'd)		- CO→F	-F	Q ²	O T	-Co-c1	-{○}-Br	-Br	-O-cn	-Сно
) (q	0	0	0	0	0	0	0	0	0	0
Table 1(b) (Cont'd)	-CH2 CH2-	-CH2CH2-	-CH ₂ CH ₂ -	-сн ₂ сн ₂ -	-CH ₂ CH ₂ -	-cH ₂ CH ₂ -	-сн ₂ сн ₂ -	-CH ₂ CH ₂ -	-CH ₂ CH ₂ -	-сн2сн2-
	E		н	ш	H	н	Ħ	н	Ħ	Ħ
	сн3 сн3	CH ₃	CH ₃	сн3 сн3	СНЗ	СНЗ	CH3	СНЗ	СНЗ	CH ₃
	CH ₃	СНЗ	СНЗ	СНЗ	CH ₃	CH ₃	CH ₃	СНЗ	СНЗ	CH ₃ CH ₃
	678	629	680	681	682	683	684	685	989	687

- cont'd -

_										 .	1
	m.p. 87.7	$n_{\rm D}^{20}$ 1.5777	m.p. 58.6	n _D 1.5769	n _D 1.5583	m.p. 90.3	n _D 1.5565	m.p. 81.5	n _D 1.5682	m.p. 53.0	- Cont'd
	4 H-	4-0CH ₃	Ħ	Ħ	Ħ	4-C1	4-F	4-0CH ₃	ш	4 H	-
Cont'd)	оно-СРО	-Сно	QH H 3	OCH ₃	-O-och3	-O>-ocH ₃	-О>-осн ₃	-O-och ₃	-(C)-oc ₂ H ₅	-(C)-0c ₂ H ₅	
ت -	0	0	0	0	0	0	0	0	0	0	-
rable 1(b) (Cont'd)	-CH ₂ CH ₂ -	-cH ₂ CH ₂ -	-CH2CH2-	-CH2 CH2-	-CH ₂ CH ₂ -	-CH ₂ CH ₂ -	_				
	Ħ	Щ	Ħ	ш	Ħ	Ħ	Ħ	Ħ	Ħ	н	
	СН3	СНЗ	CH ₃	СНЗ	СНЗ	СНЗ	СНЗ	СН3	CH ₃	СНЗ	
	CH ₃ CH ₃	СНЗ	Сн3	Сн3	CH ₃	CH ₃	CH3	CH ₃	CH3	CH ₃ CH ₃	-
	688	689	069	691	692	693	694	695	969	697	

and the second second second second

-									F. 67 - F	The state of the 	1
	m.p. 103.6	n _D 1.5800	n _D 1.5901	n_{D}^{20} 1.5835	nD 1.5742	n _D 1.5851	m.p. 60.6	m.p. 60.5	n _D 1.5577	n20 1.5579	- Cont'd
•	4-0CH ₃	ш	ш	ш	Ħ	н	ш	Ħ	Œ	=	· •
(Cont'd)	-O-oc ₂ H ₅	0000	SCH ₃	-⟨O⟩scн ₃	-{○}-сосн³	-⟨○⟩-cH(oCH ₃) ₂	-COCCH ₃	€H20002-{○}	-(O)-cooc-#-	Ó 	י
<u>წ</u>	0	0	0	0	0	0	0	0	Q	Θ	_
Table 1(b)	-CH ₂ CH ₂ -	-сн ₂ сн ₂ -	-cH ₂ CH ₂ -	-сн ₂ сн ₂ -	-cH ₂ CH ₂ -	-c#.c#	-CH2 CH2-				
	Ħ	ш	Ħ	Ħ	н	Ħ	H	#	=	#	
	CH ₃	СНЗ	СНЗ	CH ₃	сн3	CH3	СНЗ	CH ₃	E E	GH ₃	
	сн ₃ сн ₃	CH ₃	СНЗ	СНЗ	снз	СН3	СНЗ	CH3	5	CH ₃	
	869	669	700	701	702	703	704	705	-706	707	

.....

•	n _D 1.5581		$n_{\hat{D}}^{20}$ 1.5632	-	$n_{\rm D}^{20}$ 1.5555	n _D 1.5490	n _D 1.5616	m.p. 92.5	n _D 1.5701	n _D 1.5598
	4-C1	a	ш ,	ш	Ħ	Ħ	н	4-C1	3-C1	4-0CH ₃
Cont'd)		COOC ₃ H ₇ -i	-(O)-cooc ₃ H ₇ -1	-cooc4 H ₉ -s	-{O}-cooc ₄ H ₉ -n	-(O)-cooc4H9-t	-{○}-сн ₃ сн ₃	-CH ₃	-O-cH ₃	С снз
· «	,o	• • • •	Ο,	0 .	0	0	0	0	0	0
Table 1(b) (Cont'd)	-CH ₂ CH ₂ -	•	-CH ² CH ² -	-ch2ch2-	-cH ₂ CH ₂ -	-сн2сн2-	-сн ₂ сн ₂ -	-cH ₂ CH ₂ -	-CH ₂ CH ₂ -	-сн ₂ сн ₂ -
	Ħ		Ħ	ш	Ħ	Ħ	щ	Ħ	Ħ	Œ
	CH ₃		CH ₃	CH ₃	CH3	CH3	СНЗ	СНЭ	СНЗ	СНЗ
	CH3 CH3		СНЗ	СНЗ	СНЗ	сн3	сн3	СН3	CH ₃	CH ₃
	108		406	710	711	712	713	714	715	716

	n _D 1.5813	n _D 1.5838	[†] 20 1.5846	m.p. 80.3	n _D 1.5862	n _D 1.5816	n _D 1.5756
	#	н	н	Ħ	щ	щ	4-c1
nt'd))-c1	Q ⁱ	O-c1				O-c1
(00)	0	Υ 'Ü	Υ •	- °	Y 0	0'Y'U	Y
table 1(b) (Cont'd)	-CH2CH2-	-CH ₂ CH ₂ -	-CH ₂ CH ₂ -	-CH ₂ CH ₂	-cH ₂ CH ₂	-сн2сн2-	-сн2сн2-
	Ħ	Ħ	Ħ	Ħ	щ	Ж	缸
	сн3 сн3	СН3	СНЗ	сн3	CH ₃	СНЗ	CH3
	CH ₃	сн3	СН3	СНЗ	CH ₃	СНЗ	СНЗ
	717	718	719	720	721	722	723
	717	718	719	720	721	722	723

į.

							
n ²⁰ 1.5798	m.p. 72.2	m.p. 73.8	n _D 1.5694	_n D 1.5665	n _D 1.5588	$n_{ m D}^{20}$ 1.5677	n _D 1.5650
4-0CH ₃	4 Fi	щ	4-C1	4-0CH ₃	4-F	н	.4-C1
-c1	⊖-c1	-c1	-CH ₃	·	-CH ₃	$-\bigcirc -c_4^{H_9-t}$	$\begin{array}{c} -\langle\bigcirc\rangle - c_4 H_9 - t \\ c_1 \end{array}$
0	0	0	0	0	0	0	0
-сн ₂ сн ₂	-ch ₂ ch ₂ -	-ch2ch2-	-сн ₂ сн ₂ -	-сн2 сн2 -	-CH ₂ CH ₂ -	-CH ₂ CH ₂ -	-CH2CH2-
# ·	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	¤
СНЗ	СНЗ	СНЗ	СНЗ	CH ₃	CH ₃	CH ₃	CH ₃
сн3	сн3	СНЗ	СНЗ	CH ₃	СНЗ	СНЗ	CH3
724	725	726	727	728	729	730	731
	$\left \begin{array}{c cccc} \operatorname{CH}_{3} & \operatorname{CH}_{3} & \operatorname{H} & -\operatorname{CH}_{2} & \operatorname{CH}_{2}^{-} & \operatorname{O} & \bigodot & -\operatorname{CI}_{3} & \operatorname{n}_{D}^{20} \end{array} \right $	$\begin{vmatrix} c_{H_3} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_3} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_2} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_3} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_$	$ \begin{vmatrix} c_{H_3} \\ c_{H_3} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_3} \\ c_{H_3} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_2} \\ c_{H_2} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_2} \\ c_{H_2} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_2} \\ c_{H_3} \\ c_{H_3} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_2} \\ c_{H_3} \\ c_{H_3} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_2} \\ c_{H_3} \\ c_{H_3} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_2} \\ c_{H_3} \\ c_{H_3} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_3} \\ c_{H_3} \\ c_{H_3} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_3} \\ c_{H_3} \\ c_{H_3} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_3} \\ c_{H_3} \\ c_{H_3} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_3} \\ c_{H_3} \\ c_{H_3} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_3} \\ c_{H_3} \\ c_{H_3} \\ c_{H_3} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_3} \\ c_{H_3} \\ c_{H_3} \\ c_{H_3} \end{vmatrix} = \begin{vmatrix} c_{H_3} \\ c_{H_3} \\ c_{H_3}$				$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

1
ס
ب
Con
υ
1

	n _D 1.5552	n_{D}^{20} .1.5657	n _D 1.5682	n _D 1.5612	n _D 1.5737	n _D 1.5626	n _D 1.5571
-	4 - F	4-0CH ₃	4-0CH ₃	4 - F	ш	щ	H
Cont'd)	C_1	-O-C4H9-t	j O		15 C1 C1	Q ^E	
_	0	0	0	0	0	0	0 .
Table 1(b) (Cont'd)	-сн2 сн2-	-CH2CH2-	-CH2CH2-	-cH ₂ CH ₂ -	-сн ₂ сн ₂ -	-сн ₂ сн ₂ -	-сн ₂ сн ₂ -
	H	Ħ	Ħ	ш	Ħ	н	щ
	сн3 сн3	СНЗ	СН3	СН3	СНЗ	сн3 с2 н5	CH ₃ C H-1
	СНЗ	сн3	СН3	СН3	СНЗ	CH ₃	СНЗ
	732	733	734	735	736	737	738

	n_{D}^{20} 1.5530	n _D 1.5530	n _D 1.5484	n _D 1.5520	n _D 1.5405	n _D 1.5368	n _D 1.5482	n _D 1.5693
	#	ш	4 - F	ш	# 	4-F	H	H
Cont'd)	-(C)-c4H9-t	Ф ⁻		—О-сн ₃	-(O)-c ₄ H ₉ -t	-C4H9-t	-О-осн3	
ڪ ج	0	0	0	0	0	0	0	0
Table 1(b) (Cont'd)	-cH ₂ CH ₂ -	-ch ₂ ch- ch ₃						
	сн ₃ сн ₃ сн ₃	Ħ	Ħ	缸	Ħ	Ħ	н	Ħ
	CH ₃	CH3	CH ₃	СНЗ	CH ₃	CH ₃	CH ₃	CH ₃
	CH ₃	CII3	СН3	СН3	СНЗ	СНЗ	CH ₃	CH ₃ CH ₃
	739	740	741	742	743	744	745	746

									
	n _D 1.5453	n _D 1.5418	n _D 1.5613	n _D 1.5440	$n_{\rm D}^{20}$ 1.5594	n _D 1.5902	n _D 1.5775	m.p. 87.4	m.p. 96.4
	ш	4 - F	4-c1	4-0CH ₃	H	н	н	Ħ	ш
Cont'd)	-CH ₃	€нэ-⟨О⟩-	-CH ₃	-Cr ₃		-Ch-cH ₃	-(O)-c4H9-t	-cı	-c1 -c1
) ⊙	0	0	0	0	ល	മ	Ŋ	ß	Ŋ
Table 1(b) (Cont'd)	$-cH_{2}CH_{-1}$	$-cH_{2}CH_{-1}$ $c_{3}H_{7}-i$	$-cH_{2}CH_{-}$ $c_{3}H_{7}-1$	-CH ₂ CH- C ₃ H ₇ -1	-сн ₂ сн ₂ -	-сн ₂ сн ₂ -	-сн ₂ сн ₂ -	-CH2CH2-	-CH2CH2-
•	Ħ	Ħ	Ħ	Ħ	н	H	Ħ	Ħ	н
	сн3	СНЗ	CH ₃	CH ₃	CH ₃	СН3	СН3	СНЗ	CH ₃
	СН3 СН3	СН3	СНЗ	CH ₃	СН3	CH ₃	CH ₃	Ch ₃	CH ₃ CH ₃
	747	748	749	750	751	752	753	754	755

	n _D 1.5647	n _D 1.5593	n _D 1.5766	n _D 1.5700	n _D 1.5520	$n_{\rm D}^{20}$ 1.5746	n _D 1.5764	n _D 1.5648	n _D 1.5748	n _D 1.5689	n _D 1.5670	- Cont'd -
	ж	4-F	4-C1	4-0CH ₃	Ħ	н	4-c1	4-F	4-0CH ₃	щ	Ħ	-
Cont'd)	<u></u>	\oints			-C4H9-t	-C)-c1	-c1	-0)-61		-О-соосн ₃		
) (q	0	0	0	0	0	0	0	0	0	0	0	
Table 1(b) (Cont'd)	$-\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2-$	$-cH_2cH_2cH_2-$	$-cH_2cH_2cH_2-$	-сн2сн2сн2-	$-ch_2ch_2ch_2$	-ch2ch2ch2-	-ch2cH2cH2-	-ch2ch2ch2-	-сн ₂ сн ₂ сн ₂ -	-сн2сн2сн2-	-сн ₂ сн ₂ сн ₂ -	
	Ħ	н	Ħ	Ħ	Ħ	斑	Ħ	ж	Ħ	Ħ	ш	-
	сн3 сн3	СН3	СНЗ	СНЗ	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	СНЗ	CH3	•
	CH ₃	СНЗ	СНЗ	СНЗ	CH ₃	СН3	СН3	СН3	CH ₃	СНЗ	СНЗ	-
•	756	757	758	759	760	761	762	763	764	765	992	•

											1
	n _D 1.5553	$n_{\rm D}^{20}$ 1.5678	n _D 1.5605	n _D 1.5620	n _D 1,5511	n _D 1.5672	n _D 1.5653	n _D 1.5638	n _D 1.5763	n _D 1.5712	n _D 1.5635
_	4 - F	4-c1	4-0CH ₃	ж	Ħ	¤	Ħ	#	H	Ħ	#
ont'd)		Q		-CH ₃	-C4H9-t	O-c1	-O-och3		° ©	-c1	
0	0	0	0	0	0	0	0	0	0	0	0
Table 1(b) (Cont'd)	-cH2CH2CH2-	-ch2ch2ch2-	-ch ₂ ch ₂ ch ₂ -	-сн ₂ сн ₂ сн ₂ -	сн ₂ сн ₂ сн ₂ -	$-cH_2$ CH $_2$ CH $_2$ -	-cH2CH2CH2-	$-c_{\rm H_2}c_{\rm H_2}c_{\rm H_2}^{\rm CH_2}$	-ch2cH2cH2-	-CH2CH=CHCH2-	-cH2CH2CH2CH2-
	==	H	#	Ħ	н	н	Ħ	Ħ	#	щ	ш
	CH ₃	CH ₃	CH ₃	СНЗ	СНЗ	СНЗ	СН3	CH3	CH ₃	сн3 сн3	сн ₃
	сн. Сн.	CH ₃	CH ₃		СНЗ	CH3	CH3	СН3	CH3	CH ₃	CH ₃
	767	768	769	. 770	771	772	773	774	775	776.	777

	nD 1.5511	n _D 1.5671	n _D 1.5583	n _D 1.5478	n _D 1.5631	m.p. 110.1	m.p. 107.4	n _D 1.6107	n _D 1.5411	n _D 1.5632	$n_{\rm D}^{20}$ 1.5273	n _D 1.5407
_	æ	æ	Ħ	Ħ	Ħ	4-C1	E	H	Ħ	Ħ	æ	Н
Cont'd)	-C4H9-t	-0}-01		-C4H9-t	-O-c1				-сосн	(O)-00-	$-c_4H_9-t$	-c ₂ H ₅
S .	0	0	0	0	0	0	0	0	0	0	0	0
Table 1(b) (Cont'd)	-ch2ch2ch2ch2-	-сн ₂ сн ₂ сн ₂ сн ₂ -	-ch ₂ ch ₂ ch ₂ ch ₂ ch ₂ -	-сн ₂ сн ₂ сн ₂ сн ₂ сн ₂ -	-cH ₂ CH ₂ CH ₂ CH ₂ CH ₂ -	-сн ₂ сн ₂ -	-CH ₂ CH ₂ -	-cH ₂ CH ₂ -	-CH2CH2-	-cH ₂ CH ₂ -	-cH ₂ CH ₂ -	-сн ₂ сн ₂
	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	ш.	Ħ	Ħ	н
	CH ₃	сн3	СНЗ	СНЗ	сн3	СНЗ	СН3	СН3	сн3	СНЗ	снз	СН3
	CH ₃	CH ₃	СНЗ	СНЗ	CH ₃	CH3	СНЗ	CH ₃	снз	СНЗ	сн3	СНЗ
	178	179	780	781	782	783	784	785	786	787	788	789

Table I(c)	R ³ c=NO-Q-z ² . R ⁴	$\frac{1}{R^{1}}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
	^{R2}	=z =z

(I)

							•
Physical property m.p. (°C) or refractive index	m.p. 70.2	n _P 1.5504	np 1.5721	n 20 1.5432	n20 1.5560	n_020 1.5670	n ²⁰ 1.5618
, H	Н	щ	н	ш	æ	4-c1	Ħ
-0-z ² -R ⁴	-сн ₃	-C ₂ H ₅	-CH ₂ CH ₂ Br	-C3H7-1	-ch2 ch-ch2	-сн, с≡сн	-CH2CH2CH2BF
ж3	Н	щ	щ	H	Ħ	Ħ	Ħ
R ²	СН3	CH ₃	CH ₃	CH3	CH ₃	CH ₃	E 3
В	СН3	СН3	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃
Compound No.	790	791	792		794	795	796

					 						1
	n _D 1.5494	n ²⁰ 1.5571	$\frac{20}{D}$ 1.5522	n _D 1.5267	n _D 1.5294	n _D 1.5290	n _D 1.5408	n _D 1.5578	n _D 1.5653	n _D 1.5470	- Cont' d
	· #	: #	'nщ	н	4 - F	4-C1	н	н	4-C1	ш	
Table I(c) (Cont'd)	-CH2 CH=C(CH3)2	-ch2ch2ch2ch2br	-ch2ch2ch2ch2ch2br	сн ₂ сн=ссн ₂ сн ₂ сн=с (сн ₃) ₂	$c_{\rm H_2}^{\rm CH_3}$ $c_{\rm H_2}^{\rm CH_2}$ $c_{\rm H_2}^{\rm CH_2}$ $c_{\rm H_3}^{\rm CH_3}$ $c_{\rm H_3}^{\rm CH_3}$	$c_{1}^{\mathrm{CH}_{3}}$ $-c_{1}^{\mathrm{CH}_{2}}$ $c_{2}^{\mathrm{CH}_{2}}$ $c_{2}^{\mathrm{CH}_{2}}$	$-c_{H_2}c_{H_2}N\bigcirc$	-ch2ccl=chcl	-сн-О-сл	-ch-O-c4H9-t	
	н	H	Ħ	Ħ	Ħ	Ħ	Ħ	H	Ħ.	E	-
	CH.3	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	СНЗ	СН3	СН3	СНЗ	
	CH.	CH3	CH3	CH3	СНЗ	CH ₃	СНЗ	CH ₃	СНЗ	СНЗ	
	7.67	798	199	800	801	802	803	804	805	806	
		. •									

Table I(c) (Cont'd)

and the second of the second second second second

t 'd)
c) (con
1e I
Tab

807 CH_3 CH_3 CH_3 CH_3 H $\frac{-CH}{C_3H\gamma^{-1}}$ H $\frac{-CH}{C_3H\gamma^{-1}}$ H $\frac{h^2}{h^2}$ 1.5662 809 CH_3 CH_3 CH_3 H $\frac{-CH}{C_3H\gamma^{-1}}$ H h^2 h^2 1.5675 810 CH_3 CH_3 CH_3 H $\frac{-CH}{C_3H\gamma^{-1}}$ H $\frac{h^2}{h^2}$ 1.5716 811 CH_3 CH_3 CH_3 H $\frac{-CH}{CH_2CH_2C}$ H H $\frac{h^2}{h^2}$ 1.5716 812 CH_3 CH_3 CH_3 H $\frac{-CH}{CH_2CH_2C}$ H H $\frac{h^2}{h^2}$ 1.5674 813 CH_3 CH_3 CH_3 H $\frac{-CH}{CH_2CH_2C}$ $\frac{-CH}{C}$							39 s .	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n _D 1.5662	n _D 1.5675		n _D 1.5716	_	•	*** /	, -
CH3 CH3 H -CH-OS CH3 H -CH-CHS CH3 H -CH-CHS CH3 H -CH-CHS CH3 H -CH-CH2 CH3 CH3 H -CH2CH2 CH3 CH3 H -CH2CH2	н	н	щ	ш	н		4. Fi	4-c1
CH ₃	-сн-О с ₃ н ₇ -1			. 🔷	-cH ₂ CH ₂ -			
GH G	Ħ	匨	ж	Ħ	Ħ	Ħ	#	1 2
	СН3	СН3	сн3	СНЗ	CH ₃	CH3	.	CH ₃
808 809 811 812 813	СН3	CH ₃	СНЗ	CH ₃	СНЗ	CH ₃	E E	£
	807	808	808	810	811	8.12	813	814

٠:

_
סי
_
·
_
=
Ö
7
_
_
$\overline{}$
73
Ü
<u>0</u>
こ
о) Н
こ
H
こ
H
le I (
le I (
le I (
H

-											1
	n _D 1.5588	n 20 1.5653	n _D 1.5547	n _D 1.5688	n _D 1.5643	$n_{\rm D}^{20}$ 1.5755	$n_{\rm D}^{20}$ 1.5747	$n_{\rm D}^{20}$ 1.5654	n _D 1.5757	$n_{\rm D}^{20}$ 1.5751	n _D 1.5733
	4-0CH ₃	H 4.	4 Fi	4-C1	4-0CH ₃	ш	н	ш	ш	4-c1	4-0CH ₃
	-си₂ си₂О}-г	-cH2CH2C4H9-t	$-cH_2CH_2-\bigcirc\bigcirc-c_4H_9-t$	$-cH_2cH_2-\bigcirc -c_4H_9-t$	$-cH_2CH_2-\bigcirc -c_4H_9-t$	$-cH_2CH_2-\bigcirc\bigcirc-ocH_3$	-cH ₂ CH ₂ CH ₂ -(①)	-сн ₂ сн ₂ сн ₂ -С	-cH ₂ CH ₂ CH ₂ -O-C1	-сн ₂ сн ₂ -Сл	-сн ₂ сн ₂ сн ₂ -СЛ
	Ħr.	耳:	Ħ	Ħ	Ħ	H	Ħ	=	Ħ	Ħ	Ħ
	ÇH3	CH ₃	CH ₃			CH ₃			CH ₃	СНЗ	СН3
	CH3	CH 3	CH ₃	сн3	сн3	CH ₃	CH ₃	сн3	сн3	сн3	СНЗ
	8.15	816	8.17	818	819	820	821	822	823	824	825

•	1
	ַס
	Cont
	1

										-	
	n_{D}^{20} 1.5543	n _D 1.5450	$n_{\rm D}^{20}$ 1.5578	n_{D}^{20} 1.5539	n _D 1.5463	n _D 1.5695	$n_{\rm D}^{20}$ 1.5332	$n_{\rm D}^{20}$ 1.5613	$n_{\rm D}^{20}$ 1.5760	n ²⁰ 1.5690	
	н	4-F	4-C1	4-0CH ₃	н	ж	4-F	4-F	4-c1	4-0CH ₃	
Table I(c) (Cont'd)	$-cH_2CH_2CH_2 - \bigcirc -c_4H_9 - c_4$	$-cH_2CH_2CH_2-\bigcirc\bigcirc-c_4H_9-t$	$-cH_2CH_2CH_2-\bigcirc\bigcirc-c_4H_9-t$	$-cH_2CH_2CH_2-\bigcirc\bigcirc-c_4H_9-c$	$-cH_2CH_2CH_2 - \bigcirc -c_5H_{11} - n$	$-cH_2cH_2cH_2-\bigcirc\bigcirc-ocH_3$	-сн ₂ сн ₂ сн ₂ С ₅ н ₁₁ -п	-сн ₂ сн ₂ -сн ₂ -СО}-осн ₃	-сн₂сн₂сн₂-О}-осн₃	-сн ₂ сн ₂ сн ₂ -О)-осн ₃	
	ш	#	н	H	н	ш	Ħ	Ħ	ጁ	æ	_
	СН3	СН3	CH ₃	СН3	СН3	СН3	СН3	CH ₃	СНЭ	CH ₃	•
	CH ₃	CH ₃	СНЗ	снз	СНЗ	CH ₃	СНЗ	CH ₃	CH ₃	CH3	
	826	827	828	829	830	831	832	833	834	835	
										•	

•	
ਯ	
•	
ىد	
E	
0	
O	

	$n_{\rm D}^{20}$ 1.5545	n ²⁰ 1.5722	$n_{\rm D}^{20}$ 1.5577	n _D 1.5660	n _D 1.5576	n _D 1.5960	$n_{\rm D}^{20}$ 1.5647	n _D 1.5829	n_{D}^{20} 1.5732	$n_{\rm D}^{20}$ 1.5972	
-	™ () :	#	¤ _	斑	4-F	4-C1	н	4-C1	4-0CH ₃	ш	
Table 1(b) (conc.d)	-сн ₂ сн ₂ сн ₂ (О)-sсг ₂ сг ₂ н.	-сн ₂ сн ₂ -сн ₂ -СО>-соосн ₃	$-c_{H_2}c_{H_2}-\bigcirc$ $-c_{O_2}c_{4}c_{H_9}-c_{C_{O_2}}$	-сн ₂ сн ₂ сн ₂ -О	-сн ₂ сн ₂ сн ₂ -О	-сн₂сн=сн-⊖	-сн₂сн=сн-⊖}-ғ	-ch2cH=CH-O>-F	$-ch_2$ ch=ch $-\bigcirc$ -F	-сн₂сн=сн-⊖-с1	
	# _T	# ₄	н.	щ.	Ħ	H	Ħ	Ħ	ш	斑	
	CH ₃	CH ₃	CH ₃	CH ₃	сн3	CH ₃	CH3	CH ₃			-
	CH ₃	CH	CH ₃	CH ₃	CH ₃	СН3	СНЗ	CH ₃	CH ₃	СНЗ	
	836	837	838	839	840	841	842	843	844	845	_

Table I(b) (Cont'd)

n _D 1.5980	m.p. 119.9	n _D 1.6045	n _D 1.5886	Paste	n _D 1.5828	Paste	Paste	Paste	n _D 1.5815
4-C1	н	ш	4-C1	н	4 - F	н	4-F	4-c1	4-0CH ₃
-сн₂сн=сн-⟨О⟩-с1	-сн₂сн=сн-(○)-с1	-cH ₂ C≡C-⟨○⟩	-cH ₂ C≡C-⟨◯⟩	-cH2c≡c-{○}-F	-cH2C≡C-{○}-F	-сн ₂ с≡с-{О}-с1	-сн ₂ с≡с-{⊙}-с1	-cH ₂ C≡ C-{○}-c1	-сн₂с≡с-{⊙}-с1
щ	⊞ .	Ħ	H	ш	Ħ	н	н	н	#
0	CH ₃	СН3	СН3	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	снз
CH ₃	CH ₃	СНЗ	сн3	СНЗ	сн3	СНЗ	снз	CH ₃	CH ₃
846	847	848	849	850	851	852	853	854	855

ď
(Cont
(p)
le I
Tab

-cH ₃	-CH ₂ CH=CH ₂
	0
CH ₃	СНЗ
сн3	CH ₃
856	857

 $n_{\rm D}^{20}$ 1.5822 $n_{\rm D}^{20}$ 1.5800

H

H

- 5 Note 2. ¹HNMR value (CDCl₃, TMS) of compound No. 299; 1.37 (6H, s), 2.34 (3H, s), 3.55 (3H, s), 4.53 (2H, d, J=47.5Hz), 4.95 (2H, s), 6.7 - 7.4 (9H, m), 7.76 (1H, s)

production of the compounds of the present

invention will be illstrated with reference to the

following examples, but it is not limited to these

examples.

Example 1 Methyl 4-[(1,3-dimethyl-5-phenoxypyrazol- .
4-yl)methyleneaminooxymethyl]benzoate
(compound No. 16)

15

2.0 Grams (0.00865 mole) of 1,3-dimethyl-5phenoxypyrazole-4-carbaldehyde oxime, 1.98 g (0.00865 mole) of methyl 4-bromomethylbenzoate and 1.19 g (0.009 mole) of potassium carbonate were added to 50 ml of acetone, and the resulting mixture was heated under reflux for 8 hours. After completion of the reaction, acetone was removed by evaporation under reduced pressure, after which water was added to the residue and extraction was carried out with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 2.0 g of the desired product.

Yield 61%. n_D^{20} 1.5612

Example 2 Tert-butyl 4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)methyleneaminooxymethyl]benzoate (compound No. 60)

2.0 Grams (0.00855 mole) of 1,3-dimethyl-5phenoxypyrazole-4-carbaldehyde oxime was dissolved in 20 ml

- 1 of dimethyl sulfoxide, and after adding 0.65 g (0.0116 mole) of powdery potassium hydroxide, the resulting mixture was stirred at 30° C for 30 minutes. To this solution was added 2.32 g (0.00855 mole) of tert-butyl 4-
- bromomethylbenzoate, and reaction was carried out at from 5 50° to 60° C for 1 hour. After completion of the reaction, water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was 10 removed by evaporation to obtain crude crystals. crystals were recrystallized from methanol to obtain 2.4 g

Yield 67.0%. m.p. 101.7°C.

Example 3 Methyl 2-[{5-(4-chlorophenoxy)-1,3-dimethyl-15 pyrazol-4-yl}methyleneaminoxymethyl]benzoate (compound No. 3)

of the desired compound.

1 2.0 Grams (0.00755 mole) of 5-(4-chlorophenoxy)1,3-dimethyl-pyrazole-4-carbaldehyde oxime was dissolved in
20 ml of dimethylformamide, and after adding 0.5 g (0.0125
mole) of powdery sodium hydroxide, the resulting mixture
5 was thoroughly stirred. To this solution was added 1.73 g
(0.00755 mole) of methyl 2-bromomethylbenzoate, and
reaction was carried out at from 70° to 80°C for 5 hours.
After completion of the reaction, water was added to the
reaction solution which was then extracted with ethyl
10 acetate. The ethyl acetate extract was washed with water
and dried, and ethyl acetate was removed by evaporation to
obtain an oily product. This oily product was columnchromatographed on silica gel to obtain 2.0 g cf the
desired compound.

15 Yield 64.0%. n_D 20 1.5788.

Example 4 Isopropyl 4-[(1,3-dimethyl-5-phenylthiopyrazol-4-yl)methyleneaminooxymethyl]benzoate (compound No. 174)

3.0 Grams (0.0121 mole) of 1,3-dimethy1-5-1 phenylthiopyrazole-4-carbaldehyde oxime, 2.57 g (0.0121 mole) of isopropyl 4-chloromethylbenzoate and 2.8 g (0.026 mole) of sodium carbonate were added to 50 ml of methyl 5 ethyl ketone, and the resulting mixture was heated under reflux for 5 hours. After completion of the reaction, methyl ethyl ketone was removed by evaporation under reduced pressure, after which water was added to the residue and extraction was carried out with ethyl acetate. 10 The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 3.0 g of the desired compound. n_D^{20} 1.5821. Yield 59.0%.

15 Example 5 Tert-butyl 4-[1-(1,3-dimethyl-5-phenoxypyrazol-4-yl)-ethylideneaminooxymethyl] benzoate (compound No. 166)

$$\begin{array}{c} \text{CH}_{3} \\ \text{C=NOH} \\ \text{CH}_{3} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{COOC}_{4}^{\text{H}_{9}-\text{t}} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{5} \\ \text{CH}_$$

2.0 Grams (0.00816 mole) of methyl 1,3-dimethyl5-phenoxy-pyraxol-4-yl ketone oxime, 2.2 g (0.00816 mole)
of tert-butyl 4-bromomethylbenzoate and 4.0 g (0.028 mole)
of potassium carbonate were added to 50 ml of acetonitrile,
and the resulting mixture was heated under reflux for 5
hours. After completion of the reaction, acetonitrile was
removed by evaporation under reduced pressure, after which
water was added to the residue and extraction was carried
out with ethyl acetate. The ethyl acetate extract was
washed with water and dried, and ethyl acetate was removed
by evaporation to obtain crude crystals. The crystals were
recrystallized from methanol to obtain 2.8 g of the desired
compound.

Yield 79.0%. m.p. 94.4°C.

15 Example 6 Cyclohexyl 4-[{5-(4-fluorophenoxy)-1,3-dimethylpyrazol-4-yl}methyleneaminooxymethyl]benzoate (compound No. 119)

ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 3.0 g of the desired compound.

Yield 80.0%. n_D^{20} 1.5863.

15 Example 7 Tert-butyl 4-[(l-methyl-5-phenoxypyrazol-4-yl)methyleneaminooxymethyl]benzoate (compound No. 174)

1 1.0 Gram (0.0049 mole) of 1-methyl-5-

phenoxypyrazole-4-carbaldehyde and 1.1 g (0.0049 mole) of tert-butyl 4-aminooxymethylbenzoate were added to 20 ml of ethanol, and the resulting mixture was heated under reflux 5 to carry out reaction. After completion of the reaction, ethanol was removed by evaporation, after which water was added to the residue and extraction was carried out with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.6 g of the desired compound.

> Yield 80%. Form of product: paste.

NMR (CDCl 3, TMS):

10

15 1.56 (s, 9H), 3.60 (s, 3H), (mag) &

4.96 (s, 2H), 6.60 - 7.40 (m, 7H),

7.63 (s, lH), 7.66 (s, lH),

7.75 - 8.00 (m, 2H).

2-phenoxyethyl 4-[{5-(4-fluorophenoxy)-Example 8 20 1,3-dimethylpyrazol-4-yl}methyleneaminooxymethyl]benzoate (compound No. 142)

$$\begin{array}{c|c} CH_3 & CH=NOH \\ \hline & & \\ & &$$

2.0 Grams (0.008 mole) of 5-(4-fluorophenoxy)-1 1,3-dimethylpyrazole-4-carbaldehyde oxime was dissolved in 20 ml of dimethyl sulfoxide, and after adding 0.65 g (0.0116 mole) of powdery potassium hydroxide, the resulting solution was stirred at 30°C for 30 minutes. To this solution was added 2.5 g (0.00865 mole) of 2-phenoxyethyl 4-chloromethylbenzoate, and reaction was carried out at from 50° to 60°C for 1 hour. After completion of the reaction, water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate 10 extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. oily product was column-chromatographed on silica gel to obtain 3.0 g of the desired compound.

15 Yield 75.0%. n_D 1.5655.

Phenyl 4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)methyleneaminooxy]benzoate (compound No. 161)

1.0 Gram (0.0027 mole) of 4-[(1,3-dimethyl-5phenoxypyrazol-4-yl)methyleneaminooxymethyl]benzoic acid,
0.25 g (0.0027 mole) of phenol and 0.7 g (0.0027 mole) of
triphenylphosphine were added to 50 ml of ether, and the
resulting mixture was stirred. To this solution was added
0.47 g (0.0027 mole) of diethyl azodicarboxylate, and the
resulting solution was heated under reflux for 3 hours.
After completion of the reaction, the ether layer was
filtered, and ether was removed by evaporation to obtain
an oily product. This oily product was columnchromatographed on silica gel to obtain 0.9 g of the
desired compound.

Yield 76.0%. n_D^{20} 1.5656.

1 Example 10 4-[(1,3-Dimethyl-5-phenoxypyrazol-4-yl)methyleneaminooxymethyl]benzoic acid (compound
No. 14)

Three grams (0.0079 mole) of methyl 4-[(1,3-5 dimethyl-5-phenoxypyrazol-4-yl)methyleneaminooxymethyl]-

benzoate was dissolved in 20 ml of methanol and a solution of 0.24 g of lithium hydroxide in 5 ml of water was added. Reaction was then carried out at room temperature for 2 hours. After completion of the reaction, methanol was removed by evaporation, and after adding water, the solution was acidified with hydrochloric acid to precipitate crystals. The crystals were collected by filtration to obtain 2 g of the desired compound.

Yield 70%. m.p. 183.3°C.

1.0 Gram (0.0027 mole) of 4-[(1,3-dimethyl-55 phenoxypyrazol-4-yl)methyleneaminooxymethyl]benzoic acid
and 0.07 g (0.0028 mole) of sodium hydroxide were added to
10 ml of water, and the resulting mixture was stirred for 2
hours. After completion of the reaction, water was removed
by evaporation under reduced pressure to obtain the desired
10 compound in a quantitative yield.

m.p. >300°C.

2.0 Grams (0.00866 mole) of 1,3-dimethyl-5phenoxypyrazole-4-carbaldehyde oxime, 1.5 g (0.0087 mole)

5 of benzyl bromide and 2.0 g (0.0145 mole) of potassium
carbonate were dissolved in 50 ml of acetone, and the
resulting solution was heated under reflux for 7 hours.

After completion of the reaction, acetone was removed by
evaporation under reduced pressure, after which water was

10 added and extraction was carried out with ethyl acetate.
The ethyl acetate extract was washed with water and dried,
and ethyl acetate was removed by evaporation to obtain an
oily product. This oily product was column-chromatographed
on silica gel to obtain 2.6 g of the desired compound.

Yield 93.0%. n_D^{20} 1.5517.

15

Example 13 5-(4-Chlorophenoxy)-1,3-dimethylpyrazole-4-1 carbaldehyde oxime O-4-trifluoromethylbenzyl ether (compound No. 195)

2.0 Grams (0.0075 mole) of 5-(chlorophenoxy)-1,3-

- dimethylpyrazole-4-carbaldehyde oxime was dissolved in 40 ml of tetrahydrofuran, and after adding 0.19 g (0.0079mole) of sodium hydride at room temperature, the resulting solution was stirred. Thereafter, 1.7 g (0.0071 mole) of 4-trifluoromethylbenzyl bromide was added, followed by
- heating under reflux for 3 hours. After completion of the 10 reaction, 100 ml of water was added to the reaction solution which was then extracted with ethyl acetate. ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on 15 silica gel to obtain 2.7 g of the desired compound.

Yield 85.0%. n_D^{20} 1.5539.

2.0 Grams (0.0086 mole) of 1,3-dimethy1-5-

phenoxypyrazole-4-carbaldehyde oxime was dissolved in 30 ml of dimethylformamide, and a solution of 0.5 g (0.0125 mole) of sodium hydroxide in 5 ml of water was added. After stirring was continued for 30 minutes, 2.0 g (0.0086 mole) of 1-(4-bromomethylphenyl)cyclopropane-1-carbonitrile was added to the solution, and reaction was carried out at from 60° to 70°C for 3 hours. After completion of the reaction, 100 ml of water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate 15 was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 2.8 g of the desired compound.

Yield 84.0%. m.p. 109.1°C.

1 Example 15 1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde oxime 4-tert-butylbenzyl ether (compound No. 205)

2.0 Grams (0.0086 mole) of 1,3-dimethyl-5-

5 phenoxypyrazole-4-carbaldehyde oxime was dissolved in 20 ml of dimethyl sulfoxide, and after adding 1.0 g (0.0178 mole) of potassium hydroxide, the resulting solution was stirred at room temperature for 30 minutes. To this solution was added 1.5 g (0.0086 mole) of 4-tert-butylbenzyl chloride, and reaction was carried out at from 50° to 60°C for 3 10 hours. After completion of the reaction, 100 ml of water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by 15 evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 2.4 g of the desired compound.

Yield 74.0%. n_D^{20} 1.5402.

1 Example 16 5-(4-Chlorophenoxy)-1-methylpyrazole-4carbaldehyde oxime O-benzyl ether (compound No.
279)

2.0 Grams (0.0092 mole) of 5-(4-chlorophenoxy)-15 methylpyrazole-4-carbaldehyde oxime, 1.5 g (0.0092 mole) of
benzyl bromide and 2.0 g (0.0145 mole) of potassium
carbonate were dissolved in 50 ml of acetonitrile, and the
resulting solution was heated under reflux for 9 hours.
After completion of the reaction, 100 ml of water was added
10 to the reaction solution which was then extracted with
ethyl acetate. The ethyl acetate extract was washed with
water and dried, and ethyl acetate was removed by
evaporation to obtain an oily product. This oily product
was column-chromatographed on silica gel to obtain 2.2 g of
15 the desired compound.

Yield 78.0%. n_D^{20} 1.5933.

1 Example 17 1,3-Dimethyl-5-phenoxypyrazol-4-yl methyl ketone oxime O-4-cyclohexylbenzyl ether (compound No. 283)

2.0 Grams (0.0040 mole) of 1,3-dimethy1-5-

phenoxypyrazol-4-yl methyl ketone oxime was dissolved in 30 ml of dioxane, and 0.1 g (0.0042 mole) of sodium borohydride was added to the solution with thorough stirring. After 30 minutes, 1.6 g (0.0038 mole) of 4-cyclohexylbenzyl bromide was added to the reaction solution which was then heated under reflux for 5 hours. After completion of the reaction, 100 ml of water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.2 g of

1 the desired compound.

5

Yield 72.0%.
$$n_D^{20}$$
 1.5775

Example 18 5-(4-Chlorophenylthio)-1,3-dimethylpyrazole-4-carbaldehyde oxime O-benzyl ether (compound No. 290)

2.0 Grams (0.0071 mole) of 5-(4-chlorophenylthio)-1,3-dimethylpyrazole-4-carbaldehyde oxime was dissolved in 20 ml of dimethyl sulfoxide, and to this solution was added a solution of 0.5 g (0.009 mole) of potassium hydroxide in 5 ml of water. After thorough stirring, 0.9 g (0.0071 mole) of benzyl choride was added, and reaction was carried out at from 60° to 70°C for 2 hours. After completion of the reaction, 100 ml of water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by

1 evaporation to obtain an oily product. This oily product
was column-chromatographed on silica gel to obtain 2.3 g of
the desired compound.

Yield 87.0%.
$$n_D^{20}$$
 1.5562.

5 Example 19 5-(4-Methoxyphenoxy)-1,3-dimethylpyrazole-4-carbaldehyde oxime O-4-(1-cyanocyclopentyl)-benzyl ether (compound No. 238)

2.0 Grams (0.0081 mole) of 1,3-dimethyl-5-(4-methoxyphenoxy)pyrazole-4-carbaldehyde was dissolved in

10 50 ml of ethanol, and 1.7 g (0.0081 mole) of 0-4-(1-cyanocyclopentyl)benzylhydroxylamine was added, after which reaction was carried out at from 50° to 60°C for 3 hours.

After completion of the reaction, ethanol was removed by evaporation under reduced pressure, after which water was

The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 3.0 g of the desired compound.

Yield 83.0%. n_D^{20} 1.5632.

Example 20 1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde oxime O-4-(2,2-dibromovinyl)benzyl ether (compound No. 262)

2.0 Grams (0.0093 mole) of 1,3-dimethy1-5phenoxypyrazole-4-carbaldehyde was dissolved in 50 ml
of methanol, and 2.8 g (0.0091 mole) of O-4-(2,2dibromovinyl)benzylhydroxylamine was added to the solution
which was then heated under reflux for 3 hours. After

completion of the reaction, methanol was removed by
evaporation under reduced pressure, after which water was
added and extraction was carried out with ethyl acetate.

1 The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatpgraphed on silica gel to obtain 3.5 g of the desired compound.

5 Yield 76.0%. m.p. 109.3°C.

Example 21 1,3-dimethyl-5-phenoxypyrazole-4-carbaldehyde oxime 0-4-fluorobenzyl ether (compound No. 305)

1.0 Gram (0.0043 mole) of 1,3-dimethyl-5phenoxypyrazole-4-carbaldehyde oxime was dissolved in 20 ml

10 of dimethyl sulfoxide, and after adding 0.3 g (0.0053 mole)
of powdery potassium hydroxide, the resulting solution was
stirred. To this reaction solution was added 0.81 g

(0.0043 mole) of 4-fluorobenzyl bromide, and reaction was
carried out at room temperature for 3 hours. After

15 completion of the reaction, 200 ml of water was added to
the reaction solution which was then extracted with ethyl

1 acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.3g of the 5 desired compound.

Yield 89%. n_D^{20} 1.5681.

Example 22 5-(4-Chlorophenoxy)-1,3-dimethylpyrazole-4-carbaldehyde oxime O-2-chlorobenzyl ether (compound No. 309)

1.0 Gram (0.0038 mole) of 5-(4-chlorophenoxy)l,3-dimethylpyrazole-4-carbaldehyde oxime, 0.78 g (0.0038 mole) of 2-chlorobenzyl bromide and 1.0 g (0.0072 mole) of potassium carbonate were added to 20 ml of acetonitrile, and the resulting mixture was heated under reflux for 6
hours. After completion of the reaction, acetonitrile was removed by evaporation under reduced pressure, after which

1 Water was added and extraction was carried out with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column5 chromatographed on silica gel to obtain 1.2 g of the

Yield 81%. n_D^{20} 1.5760

desired compound.

10

Example 23 5-(4-Chlorophenoxy)-1,3-dimethylpyrazole-4-carbaldehyde oxime O-4-(4-trifluoromethyl-phenoxy)benzyl ether (compound No. 322)

1.0 Gram (0.0038 mole) of 5-(4-chlorophenoxy)1,3-dimethylpyrazole-4-carbaldehyde oxime, 1.1 g (0.0038 mole) of 4-(4-trifluoromethylphenoxy)benzyl chloride and 0.8 g (0.076 mole) of sodium carbonate were added to 40 ml of acetone, and the resulting mixture was heated under reflux for 8 hours. After completion of the reaction,

after which water was added and extraction was carried out with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product

was column-chromatographed on silica gel to obtain 1.4 g of

Yield 72%. m.p. 97.8°C.

the desired compound.

15

Example 24 1,3-Dimethyl-5-phenoxypyrazol-4-yl methyl ketone oxime O-4-trimethylsilylbenzyl ether (compound No. 334)

1.0 Gram (0.0041 mole) of 1,3-dimethy1-5phenoxypyrazol-4-yl methyl ketone oxime was dissolved in 20
ml of dimethyl sulfoxide, and after adding 0.3 g (0.0053
mole) of potassium hydroxide, the resulting solution was
stirred. To this reaction solution was added 1.0 g (0.0041
mole) of 4-trimethylsilylbenzyl bromide, and reaction was

1 carried out at room temperature for 4 hours. After completion of the reaction, 200 ml of water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.5 g of the

Yield 92%. m.p. 61.2°C.

desired compound.

10 Example 25 1,3-Dimethyl-5-phenoxypyrazol-4-yl ethyl ketone oxime 0-4-(1,1,2,2-tetrafluoroethoxy)benzyl ether (compound No. 354)

1.0 Gram (0.0035 mole) of sodium salt of 1,3-dimethyl-5-phenoxypyrazol-4-yl ethyl ketone oxime and 1.0 g

(0.0035 mole) of 4-(1,1,2,2-tetrafluoroethoxy)benzyl

...0234045

- bromide were added to 50 ml of acetone, and the resulting mixture was heated for 5 hours to carry out reaction. After completion of the reaction, acetone was removed by evaporation under reduced pressure, after which water was
- added and extraction was carried out with ethyl acetate.

 The ethyl acetate extract was washed with water and dried,
 and ethyl acetate was removed by evaporation to obtain an
 oily product. This oily product was column-chromatographed
 on silica gel to obtain 1.3 g of the desired compound.

10 Yield 76%. n_D²⁰ 1.5252.

Example 26 5-(4-Methoxyphenoxy)-1,3-dimethylpyrazole-4-carbaldehyde oxime O-4-tert-butoxybenzyl ether (compound No. 366)

1.0 Gram (0.0038 mole) of 5-(4-methoxyphenoxy)15 1,3-dimethyl-pyrazole-4-carbaldehyde oxime was dissolved in
30 ml of tetrahydrofuran, and 0.092 g of sodium hydride was

added to synthesize the sodium salt of said oxime. To this solution was added 0.92 g (0.0038 mole) of 4-tert-butoxybenzyl bromide, and reaction was carried out at from 50° to 60° C for 5 hours. After completion of the reaction,

5 200 ml of water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.3 g of the desired compound.

Yield 80%. n_D^{20} 1.5653

Example 27 5-(4-Fluorophenoxy)-1,3-dimethylpyrazole-4-carbaldehyde oxime 0-3,4-methylenedioxybenzylether (compound No. 374)

CH₃ CH=NOCH₂ O CH₂

15

1.0 Gram (0.0040 mole) of 5~(4-fluorophenoxy)1,3-dimethylpyrazole-4-carbaldehyde oxime was dissolved in
20 ml of dimethylformamide, and after adding 0.2 g (0.005

1 mole) of sodium hydroxide, the resulting solution was stirred for 30 minutes. To this reaction solution was added 0.86 g (0.004 mole) of 3,4-methylenedioxybenzyl bromide, and reaction was carried out at from 40° to 50°C for 3 hours. After completion of the reaction, 200 ml of water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.1 g of the desired compound.

Yield 72%. n_D^{20} 1.5750.

Example 28 5-(4-Methoxyphenoxy)-1,3-dimethylpyrazole-4-carbaldehyde oxime O-4-methylsulfonylbenzyl ether (compound No. 401)

1.0 Gram (0.0038 mole) of 5-(4-methoxyphenoxy)1,3-dimethylpyrazole-4-carbaldehyde oxime and 0.79 g
(0.0038 mole) of 4-methylsulfonylbenzyl chloride were
dissolved in 30 ml of tetrahydrofuran. To this solution

5 was added 0.6 g (0.0039 mole) of 1,8-diazabicyclo[5.4.0]7-undecene, and reaction was carried out at from 40° to
50°C for 5 hours. After completion of the reaction, 200 ml
of water was added to the reaction solution which was then
extracted with ethyl acetate. The ethyl acetate extract

10 was washed with water and dried, and ethyl acetate was
removed by evaporation to obtain an oily product. This
oily product was column-chromatographed on silica gel to
obtain 1.2 g of the desired compound.

Yield 74%. n_D^{20} 1.5866.

15 Example 29 1,3-Dimethyl-5-phenoxypyrazol-4-yl phenyl ketone oxime O-4-difluoromethylthiobenzyl ether (compound No. 426)

phenoxypyrazol-4-yl phenyl ketone oxime, 0.82 g (0.0033 mole) of 4-difluoromethylthiobenzyl bromide and 1.0 g (0.0072 mole) of potassium carbonate were added to 50 ml of acetone, and the resulting mixture was heated for 6 hours to carry out reaction. After completion of the reaction, acetone was removed by evaporation under reduced pressure, after which water was added and extraction was carried out with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.4 g of the desired compound.

Yield 86%. n_D^{20} 1.5917.

1 Example 30 5-(2-Fluorophenoxy)-1,3-dimethylpyrazole-4-carbaldehyde oxime 0-4-(1,1,2,2-tetrafluoro-ethylthio)benzyl ether (compound No. 467)

1.1 Gram (0.0043 mole) of 5-(2-fluorophenoxy)-

- of ethanol, and 1.1 g (0.0043 mole) of O-[4-(1,1,2,2-tetrafluoroethylthio)benzyl]hydroxylamine was added.

 Reaction was then carried out at from 50° to 60°C for 2 hours. After completion of the reaction, ethanol was removed by evaporation under reduced pressure, after which water was added and extraction was carried out with chloroform. The chloroform extract was dried, chloroform was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.3 g of the desired compound
 - Yield 64%. n²⁰ 1.5462.

1 Example 31 1,3-Dimethyl-5-phenoxypyrazol-4-yl methyl ketone oxime O-4-heptafluoropropylthiobenzyl ether (compound No. 494)

1.0 Gram (0.0043 mole) of 4-acetyl-1,3-dimethyl-

5 5-phenoxypyrazole and 1.4 g (0.0043 mole) of 0-(4-heptafluoropropylthiobenzyl)hydroxylamine were added to 30 ml of methanol, and the resulting mixture was heated for 5 hours to carry out reaction. After completion of the reaction, methanol was removed by evaporation under reduced pressure, after which water was added and extraction was carried out with chloroform. The chloroform extract was dried, and chloroform was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to 1.4 g of the desired compound.

Yield 60%. n_D^{20} 1.5217.

1 Example 32 S-Ethyl 4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)methyleneaminoxymethyl]benzothioate (compound No. 516)

1.0 Gram (0.0043 mole) of 1,3-dimethyl-5-

5 phenoxypyrazole-4-carbaldehyde oxime was dissolved in 20 ml of dimethyl sulfoxide, and after adding 0.3 g (0.0053 mole) of powdery potassium hydroxide, the resulting solution was stirred. To this solution was added 0.92 g (0.0043 mole) of S-ethyl 4-chloromethylbenzothiate, and reaction was carried out at room temperature for 3 hours. After completion of the reaction, 200 ml of water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.4 g of the desired compound.

Yield 80%. n_D^{20} 1.5889.

1.0 Gram (0.0038 mole) of 5-(4-methoxyphenoxy)
1,3-dimethylpyrazole-4-carbaldehyde oxime, 0.86 g (0.0038 mole) of N-tert-butyl-4-chloromethylbenzamide and 1.0 g (0.0072 mole) of potassium carbonate were added to 20 ml of acetonitrile, and the resulting mixture was heated under reflux for 6 hours. After completion of the reaction,

10 acetonitrile was removed by evaporation under reduced pressure, after which water was added to the residue and extraction was carried out with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily

15 product. This oily product was column-chromatographed on

silica gel to obtain 1.4 g of the desired compound. Yield 82%. n_D^{20} 1.5662.

1 Example 34 5-(4-Fluorophenoxy)-1,3-dimethylpyrazole-4-carbaldehyde oxime O-4-pivaloylbenzyl ether (compound No. 548)

1.0 Gram (0.0040 mole) of 5-(4-fluorophenoxy)-

- 5 1,3-dimethylpyrazole-4-carbaldehyde oxime, 1.0 g (0.0039 mole) of tert-butyl 4-bromomethylphenyl ketone and 1.0 g (0.0094 mole) of sodium carbonate were added to 40 ml of acetone, and the resulting mixture was heated to carry out reaction. After completion of the reaction, acetone was 10 removed by evaporation under reduced pressure, after which water was added to the residue and extraction was carried out with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.5 g of the desired compound.
 - Yield 89%. n²⁰ 1.5567.

1 Example 35 2-Methyl-2-[4-{(1,3-dimethyl-5-phenoxypyrazol4-yl)methyleneaminoxymethyl}phenyl]-1,3-dioxolane (compound No. 562)

1.0 Gram (0.0043 mole) of 1,3-dimethy1-5-

- phenoxypyrazole-4-carbaldehyde oxime was dissolved in 20 ml of dioxane, and 0.14 g (0.0058 mole) of sodium hydride was added. Thereafter, 1.1 g (0.0043 mole) of 2-(4-bromomethylphenyl)-2-methyl-1,3-dioxolane was added to this solution which was then heated under reflux for 3 hours.
- After completion of the reaction, the reaction solution was poured into 200 ml of cold water and extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-
- chromatographed on silica gel to obtain 1.3 g of the desired compound.

Yield 74%. n_D^{20} 1.5698.

1 Example 36 2-[4-[{5-(4-Fluorophenoxy)-1,3-dimethylpyrazol4-yl}methyleneaminoxymethyl]phenyl]-2-methyl1,3-dioxolane (compound No. 563)

1.1 Gram (0.0043 mole) of 5-(4-fluorophenoxy)-

5 1,3-dimethylpyrazole-4-carbaldehyde and 0.9 g (0.0043 mole) of 2-[4-(aminooxymethyl)phenyl]-2-methyl-1,3-dioxolane were added to 20 ml of ethanol, and the resulting mixture was heated for 3 hours to carry out reaction.

After completion of the reaction, ethanol was removed by evaporation under reduced pressure, after which water was added to the residue and extraction was carried out with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.3 g of the desired compound.

Yield 72%. n_D^{20} 1.5555.

1

1.0 Gram (0.0028 mole) of 1,3-dimethy1-5-

- phenoxypyrazole-4-carbaldehyde oxime-0-4-acetylbenzyl ether, 1.0 g (0.0026 mole) of sodium borohydride and 1 g (0.025 mole) of sodium hydroxide were added to 100 ml of methanol, and the resulting mixture was heated under reflux for 3 hours. After completion of the reaction, methanol was removed by evaporation under reduced pressure, after which water added to the residue and extraction was carried out with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily
- product was column-chromatographed on silica gel to obtain 0.8 g of the desired compound.

Yield 78%. n_D^{20} 1.5748.

1 Example 38 N-4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)methyleneaminooxymethyl]phenylformamide (compound No. 589)

5

1.0 Gram (0.0043 mole) of 1,3-dimethy1-5-

phenoxypyrazole-4-carbaldehyde oxime was dissolved in 20 ml

of dimethyl sulfoxide, and after adding 0.3 g (0.0053 mole) of powdery potassium hydroxide, the resulting solution was stirred. To this reaction solution was added 0.92 g (0.0043 mole) of N-(4-bromomethylphenyl)formamide, and reaction was carried out at room temperature for 3 hours. After completion of the reaction, the reaction solution was poured into 200 ml of water and extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.2 g of the desired compound.

Yield 76%. m.p. 105.3°c.

1.0 Gram (0.0040 mole) of 5-(4-fluorophenoxy)-

5 1,3-dimethylpyrazole-4-carbaldehyde oxime, 1.1 g (0.0040 mole) of isopropyl N-4-bromomethylphenylcarbamate and 1.0 g (0.0072 mole) of potassium carbonate were added to 20 ml of acetonitrile, and the resulting mixture was heated under reflux for 6 hours. After completion of the reaction, acetonitrile was removed by evaporation under reduced pressure, after which water was added and extraction was carried out with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was colum-chromatographed on silica gel to obtain 1.5 g of the desired compound.

Yield 85%. n_D^{20} 1.5645.

$$\begin{array}{c} \text{CH}_{3} \\ \text{N} \\ \text{N} \\ \text{O} \\ \end{array} \begin{array}{c} \text{OCH}_{3} + \text{BrCH}_{2} \\ \text{CH}_{3} \\ \text{COOC}_{4}^{\text{H}_{9}} - \text{i} \end{array}$$

1.0 Gram (0.0038 mole) of 5-(4-methoxyphenoxy)
1,3-dimethylpyrazole-4-carbaldehyde oxime, 1.1 g (0.0038 mole) of isobutyl N-4-bromomethylphenyl-N-methylcarbamate and 1.0 g (0.0094 mole) of sodium carbonate were added to 40 ml of acetone, and the resulting mixture was heated to carry out reaction. After completion of the reaction,

10 acetone was removed by evaporation under reduced pressure, after which water was added and extraction was carried out with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.5 g of the described compound.

Yield 83%. n_D^{20} 1.5538.

1 Example 41 N-4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)
methyleneaminooxymethyl]phenyl-Nisopropylformamide (compound No. 636)

1.0 Gram (0.0043 mole) of 1,3-dimethyl-5-

phenoxypyrazole-4-carbaldehyde oxime was dissolved in 20 ml of dioxane, and 0.1 g (0.0043 mole) of sodium hydride was added to synthesize the sodium salt of said oxime. To this reaction solution was added 1.1 g (0.0043 mole) of N-4-bromomethylphenyl-N-isopropylformamide, and reaction was carried out at from 40° to 50°C for 3 hours. After completion of the reaction, the reaction solution was poured into 200 ml of water and extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oil product was column-chromatographed on silica gel to obtain 1.3 g of the desired compound.

Yield 75%. m.p. 73.3°C.

4

1 Example 42 N-4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)methyleneaminooxymethyl]phenyl-Nethylpivalamide (compound No. 647)

1.0 Gram (0.0043 mole) of 1,3-dimethy1-5-

5 phenoxypyrazole-4-carbaldehyde oxime, 1.3 g (0.0043 mole) of N-4-bromomethylphenyl-N-ethylpivalamide and 0.2 g (0.005 mole) of potassium hydroxide were dissolved in 30 ml of dimethyl sulfoxide, and reaction was carried out at from 40° to 50°C for 6 hours. After completion of the reaction, 10 the reaction solution was poured into 200 ml of water and extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.5 g of the desired compound.

Yield 78%. Form of product: paste.

1.0 Gram (0.0040 mole) of 5-(4-fluorophenoxy)
1,3-dimethylpyrazole-4-carbaldehyde oxime and 1.1 g (0.0040 mole) of 3-(4-bromomethylphenyl)-5-ethyl-2-oxazolidone were dissolved in 20 ml of dimethyl sulfoxide, and 0.3 g (0.0053 mole) of powdery potassium hydroxide was added. Reaction was then carried out at from 40° to 50°C for 5 hours. After completion of the reaction, the reaction solution was poured into 200 ml of water and extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.3 g of the desired compound.

Yield 72%. n_D^{20} 1.5601.

1 Example 44 1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde oxime 0-2-phenoxyethyl ether (compound No. 658)

5

10

15

phenoxypyrazole-4-carbaldehyde oxime was dissolved in 20 ml of dimethyl sulfoxide, and after adding 0.3 g (0.0053 mole) of powdery potassium hydroxide, the resulting solution was stirred. To this solution was added 0.86 g (0.0043 mole) of 2-bromoethoxybenzene, and reaction was carried out at room temperature for 3 hours. After completion of the reaction, water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.3 g of the desired compound.

Yield 86%. n_D^{20} 1.5657.

1 Example 45 1,3-Dimethyl-5-(3-trifluoromethyphenoxy)
pyrazole-4-carbaldehyde oxime O-2-(4-tert
butylphenoxy)ethyl ether (compound No. 671)

1.0 Gram (0.0030 mole) of 1,3-dimethy1-5-(3-

5 trifluoromethylphenoxy)pyrazole-4-carbaldehyde oxime,
0.86 g (0.0034 mole) of p-(2-bromoethoxy)-tert-butylbenzene and 1.38 g of potassium carbonate were added to 50 ml of acetonitrile, and the resulting mixture was heated under reflux for 8 hours. After completion of the reaction,
10 water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to
15 obtain 1.4 g of the desired compound.

Yield 89%. n_D^{20} 1.5287

Example 46 Ethyl 4-[2-{(1,3-dimethyl-5-phenoxypyrazol-4-yl)methyleneaminooxy}ethoxy]benzoate

(compound No. 706)

1.0 Gram (0.0043 mole) of 1,3-dimethyl-5-

phenoxypyrazole-4-carbaldehyde oxime and 0.3 g (0.0075 5 mole) of powdery sodium hydroxide were added to 30 ml of dimethylformamide, and the resulting mixture was stirred. To this solution was added 0.99 g (0.0043 mole) of ethyl p-(2-chloroethoxy)benzoate, and reaction was carried out at from 30° to 40°C for 3 hours. After completion of the 10 reaction, water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromato-15 graphed on silica gel to obtain 1.3 g of the desired compound.

Yield 72%. n_D^{20} 1.5577.

1.0 Gram (0.0038 mole) of 5-(4-chlorophenoxy)
1,3-dimethylpyrazole-4-carbaldehyde oxime, 1.0 g (0.0038 mole) of 2-bromoethoxy-3,4-dichlorobenzene and 0.58 g (0.0038 mole) of 1,8-diazabicyclo[5.4.0]-7-undecene were dissolved in 50 ml of dioxane, and reaction was carried out at from 60° to 80°C for 5 hours with stirring. After completion of the reaction, water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.5 g of the desired compound.

Yield 87%. n_D^{20} 1.5756.

1 Example 48 5-(4-Fluorophenoxy)-1,3-dimethylpyazole-4-carbaldehyde oxime 0-2-phenoxypropyl ether (compound No. 741)

1.0 Gram (0.0037 mole) of sodium 5-(4-

chlorophenoxy)-1,3-dimethylpyrazole-4-carbaldehyde oxime and 0.63 g (0.037 mole) of 2-chloro-1-methylethoxybenzene were added to 50 ml of tetrahydrofuran, and the resulting mixture was heated under reflux for 5 hours with stirring. After completion of the reaction, water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.3 g of the desired compound.

Yield 87%. $n_{\overline{D}}^{20}$ 1.5484.

1 Example 49 1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde oxime 0-2-(4-tert-butylphenylthio)ethyl ether (compound No. 753)

1.0 Gram (0.0030 mole) of 1,3-dimethyl-5-

phenoxypyrazole-4-carbaldehyde oxime 0-2-bromoethyl ether,
0.5 g (0.0030 mole) of p-tert-butylbenzenethiol and 1.0 g
(0.0072 mole) of potassium carbonate were added to 60 ml of
acetonitrile, and the resulting mixture was heated under
reflux for 5 hours. After completion of the reaction,
water was added to the reaction solution which was then
extracted with ethyl acetate. The ethyl acetate extract
was washed with water and dried, and ethyl acetate was
removed by evaporation to obtain an oily product. This
oily product was column-chromatographed on silica gel to
obtain 1.1 g of the desired compound.

Yield 87%. n_D^{20} 1.5775.

1.0 Gram (0.0043 mole) of 1,3-dimethyl-5phenoxypyrazole-4-carbaldehyde oxime and 0.3 g (0.0053 5 mole) of potassium hydroxide were added to 20 ml of dimethyl sulfoxide, and the resulting mixture was stirred for 1 hour. To this solution was added 1.07 g (0.0043 mole) of p-chloro-3-bromopropoxybenzene, and reaction was carried out at from 40° to 50°C for 4 hours. After 10 completion of the reaction, water was added to the reaction solution which was then extracted with ethyl acetate. ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on 15 silica gel to obtain 1.3 g of the desired compound.

Yield 76%. n_{D}^{20} 1.5746

1.0 Gram (0.0031 mole) of 1,3-dimethyl-5-

phenoxypyrazole-4-carbaldehyde oxime 0-4-chloro-2-butenyl ether and 0.6 g (0.0036 mole) of the potassium salt of p-chlorophenol were added to 50 ml of tetrahydrofuran, and the resulting mixture was heated under reflux for 3 hours with stirring. After completion of the reaction, water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.2 g of the desired compound.

Yield 93%. n_D^{20} 1.5712.

1 Example 52 1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde oxime O-6-phenoxyhexyl ether (compound No. 780)

1.0 Gram (0.0043 mole) of 1,3-dimethyl-5phenoxypyrazole-4-carbaldehyde oxime was dissolved in 10 ml 5 of dimethyl sulfoxide, and after adding 0.11 g (0.0045 mole) of sodium hydride at room temperature, the resulting solution was stirred for 30 minutes. To this solution was added 1.1 g (0.0043 mole) of 6-bromohexyloxybenzene, and reaction was carried out at from 50° to 60°C for 3 hours. After completion of the reaction, water was added to the reaction solution which was then extracted with acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.4 g of the desired compound. Yield 80%. n_D^{20} 1.5583.

10

15

1 Example 53 2-[(1,3-Dimethyl-5-phenoxypyrazol-4-yl)methyleneaminooxy]ethyl benzoate (compound No. 787)

CH₃

1.0 Gram (0.0043 mole) of 1,3-dimethyl-5-

phenoxypyrazole-4-carbaldehyde oxime and 0.3 g (0.0054 mole) of powdery potassium hydroxide were added to 20 ml of dimethyl sulfoxide, and the resulting mixture was stirred for 30 minutes. To this solution was added 0.8 g (0.0043 mole) of 2-chloroethyl benzoate, and reaction was carried out at from 40° to 50°C for 3 hours. After completion of the reaction, water was added to the reaction solution which was then extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.3 g of the desired compound.

Yield 86%. n_D^{20} 1.5632.

1 Example 54 1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde oxime O-2-ethoxyethyl ether (compound No. 789)

phenoxypyrazole-4-carbaldehyde was dissolved in

40 ml of ethanol, and 0.48 g (0.0046 mole) of

6-(2-ethoxyethyl)hydroxylamine was added with stirring.

Reaction was then carried out at room temperature for 3

hours. After completion of the reaction, water was added to the reaction solution which was then extracted with

ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.2 g of the desired compound.

15 Yield 86%. n_D²⁰ 1.5407.

1 Example 55 1,3-Dimethyl-5-phenoxypyrazole-4-carbaldehyde oxime O-methyl ether (compound No. 790)

$$CH_3$$
 $CH=NOH$
 CH_3
 $CH=NOCH_3$
 CH_3
 $CH=NOCH_3$

1.0 Gram (0.0043 mole) of 1,3-dimethy1-5phenoxypyrazole-4-carbaldehyde oxime was dissolved in 20 m1

5 of dimethyl sulfoxide, and after adding 0.3 g (0.0053 mole) of powdery potassium hydroxide, the resulting mixture was stirred. To this reaction solution was added 1.0 g (0.0063 mole) of methyl iodide, and reaction was carried out at room temperature for 3 hours. After completion of the

10 reaction, the reaction solution was poured into 200 ml of water and extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation under reduced pressure to obtain an oily product. This oily product was column
15 chromatographed on silica gel to obtain 0.3 g of the desired compound.

Yield 76%. m.p. 70.2°C.

1 Example 56 5-(4-Chlorophenoxy)-1,3-dimethylpyrazole-4carbaldehyde oxime O-2-propynyl ether (compound
No. 795)

1.0 Gram (0.0033 mole) of 5-(4-chlorophenoxy)-

- 5 1,3-dimethylpyrazole-4-carbaldehyde oxime, 0.5 g (0.0042 mole) of propargyl bromide and 1.0 g (0.0072 mole) of potassium carbonate were added to 50 ml of acetone, and the resulting mixture was heated under reflux. After completion of the reaction, the reaction solution was poured into 200 ml of water and extracted with ethyl
 - acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation under reduced pressure to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 0.9 g of the desired compound.

obtain 0.9 g of the desired compound.

Yield 87%. n_D^{20} 1.5670.

.0234045

1 Example 57 5-(4-Methoxyphenoxy)-1,3-dimethylpyrazole-4carbaldehyde oxime 0-2-(4-fluorophenyl)ethyl ether (compound No. 815)

1.0 Gram (0.0038 mole) of 5-(4-methoxyphenoxy)-1,3-dimethylpyrazole-4-carbaldehyde oxime was dissolved in 5 20 ml of dioxane, and after adding 0.1 g (0.0042 mole) of sodium hydride, the resulting mixture was stirred. To this reaction solution was added 0.78 g (0.0038 mole) of 2-(4-fluorophenyl)ethyl bromide, and reaction was carried out at from 40° to 50° C for 3 hours. After completion of 10 the reaction, the reaction solution was poured into 200 ml of water and extracted with ethyl acetate. acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation under reduced pressure to obtain an oily product. This oily product was columnchromatographed on silica gel to obtain 1.2 g of the desired compound.

Yield 82%. n_D^{20} 1.5588.

1 Example 58 5-(4-Chlorophenoxy)-1,3-dimethylpyrazole-4-carbaldehyde oxime 0-3-(4-chlorophenyl)
propyl ether (compound No. 824)

1.0 Gram (0.004 mole) of 5-(4-chlorophenoxy)-

in 30 ml of methanol, and 0.74 g (0.004 mole) of O-[3-(4-chlorophenyl)propyl]hydroxylamine was added at room temperature with stirring. Reaction was then carried out at from 40° to 50°C for 2 hours. Methanol was then removed by evaporation under reduced pressure, after which water was added to the residue and extraction was carried out with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation under reduced pressure to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.1 g of the desired compound.

Yield 66%. n_D^{20} 1.5751.

1 Example 59 5-(4-Chlorophenoxy)-1-methyl-3-phenylpyrazole-4-carbaldehyde oxime O-4-chlorocinnamyl ether (compound No. 846)

1.0 Gram (0.0030 mole) of 5-(4-chlorophenoxy)-1
5 methyl-3-phenylpyrazole-4-carbaldehyde oxime was reacted with 0.7 g (0.0030 mole) of p-chlorocinnamyl bromide and 0.2 g (0.005 mole) of sodium hydroxide at 30°C for 6 hours in 30 ml of dimethyl sulfoxide. After completion of the reaction, the reaction solution was poured into 200 ml of water and extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried, and ethyl acetate was removed by evaporation under reduced pressure to obtain an oily product. This oily product was column-chromatographed on silica gel to obtain 1.1 g of the desired compound.

Yield 76%. n_D^{20} 1.5980.

1 Example 60 1,3-Dimethyl-5-phenoxypyrazol-4-yl phenyl ketone oxime O-allyl ether (compound No. 857)

phenoxypyrazol-4-yl phenyl ketone oxime, 0.5 g (0.0041

mole) of allyl bromide and 1.0 g of potassium carbonate
were added to 50 ml of acetone, and the resulting mixture
was heated for 6 hours to carry out reaction. After
compltion of the reaction, the reaction solution was poured
into 200 ml of water and extracted with ethyl acetate. The
ethyl acetate extract was washed with water and dried, and
ethyl acetate was removed by evaporation under reduced
pressure to obtain an oily product. This oily product was
column-chromatographed on silica gel to obtain 0.9 g of the
desired compound.

15 Yield 79%. n_D^{20} 1.5800.

1 Synthesis of starting materials
 Synthetic example 1

$$CH_3 - COOC_4H_9 - t$$
 $BrcH_2 - COOC_4H_9 - t$

methylbenzoate, 0.3 g (0.0012 mole) of benzoyl peroxide

5 and 6 g (0.006 mole) of sodium carbonate were suspended in
100 ml of carbon tetrachloride, and 9.6 g (0.06 mole) of
bromine was added dropwise at 50°C over 30 minutes with
stirring. After completion of the addition, reaction was
continued for further 30 minutes. The reaction solution

10 was then cooled and filtered to remove carbon tetrachloride-insoluble matters. Carbon tetrachloride was
then removed by evaporation under reduced pressure to
obtain 16.2 g of tert-butyl 4-bromomethylbenzoate as
crystals.

15 Yield 90%. m.p. 53.4°C.

Synthetic example 2

15.0 Grams (0.049 mole) of tert-butyl 4-bromomethylbenzoate, 8.2 g (0.05 mole) of N-hydroxy-phthalimide and 3.0 g (0.054 mole) of potassium

hydroxide were added to 200 ml of dimethylformamide, and the resulting mixture was stirred at room temperature for 30 minutes and then at 50°C for 30 minutes. The reaction solution was cooled with ice water and filtered to obtain 5 crystals. The crystals were dissolved in 50 ml of methylene chloride, and to this solution was slowly added dropwise 3 ml of isopropanol containing 0.5 g (0.05 mole) of hydrazine hydrate at room temperature. After completion of the addition, the reaction solution was heated under 10 reflux for 2 hours. The reaction solution was cooled and filtered, and the filtrate was concentrated to obtain 11.0 g of tert-butyl 4-(aminoxymethyl)benzoate.

Yield 90%.
$$n_D^{15.6}$$
 1.5296.

Synthetic example 3

3.0 Grams (0.02 mole) of 1-p-tolylcyclopropane-1-carbonitrile and 0.1 g (0.0004 mole) of benzoyl peroxide were dissolved in 50 ml of carbon tetrachloride, and 3.2 g of bromine was added dropwise over 30 minutes under reflux. After completion of the addition, reaction was continued for further 30 minutes. After cooling the reaction solution, carbon tetrachloride was removed by evaporation to obtain 4.4 g of 1-(4-bromomethylphenyl)cyclopropane-1-carbonitrile.

Form of product: paste. 1 Yield 90%. NMR:

Synthetic example 4

5

15

20

5.0 Grams (0.00216 mole) of 1,3-dimethyl-5phenoxypyrazole-4-carbaldehyde oxime and 41.0 g (0.218 mole) of 1,2-dibromethane were dissolved in 100 ml of 10 dimethyl sulfoxide, and after adding 14.4 g (0.219 mole) of 85% powdery potassium hydroxide with ice-cooling, the resulting solution was stirred for 30 minutes. After completion of the reaction, the reaction solution was poured into 300 ml of water, extracted with three 80-ml portions of ether and washed with 300 ml of water. The ether extract was dried over anhydrous sodium sulfate, and ether was removed by evaporation. The residue was dry column-chromatographed on silica gel to obtain 5.2 g of 1,3-dimethy1-5- phenoxypyrazol-4-carbaldehyde oxime 0-2-bromoethyl ether.

Yield 71.2%.
$$n_D^{23.8}$$
 1.5721.

The present invention provides a technique for exterminating or controlling injurious insects and mites using the physiological activity of the compounds of the present invention. In one of the embodiments of the invention, the compounds are directly applied as such to the objects to be protected or to the pests to be controlled (undiluted spray). For instance, the compounds of the present invention in the form of a liquid of 95% or higher purity can be sprayed from aeroplanes to form a fog 10 of extremely fine liquid particles.

The compounds of the present invention can also be used to treat ponds and pools in which the larvae of the insects live or treat environmental water or irrigative water grown with hosts for the larvae to render the living environment or feed (hosts) toxic to the larvae.

As is customary in the art, however, in order to exterminate or control injurious insects and mites using the physiological activity of the compounds of the present invention, the compounds are applied in most cases in a 20 form suitable for use, for example, as supported on or diluted with inert carriers and if necessary, mixed with auxiliary agents.

General suggestions regarding the formulation of insecticidal compositions with the compounds of the present invention will be described below.

The compounds of the present invention are mixed with a suitable proportion of suitable inert carriers together with auxiliary agents if necessary to allow the

- 1 compounds to dissolve, disperse, suspend, mix, impregnate,
 adsorb or adhere, and thus they are formed into suitable
 preparations such as for example solutions, suspensions,
 emulsifiable concentrates, oil sprays, wettable powders,
 5 dusts, granules, tablets, pellets, pastes, aerosols, etc.
 - The inert carriers used in the formulation may be either solid or liquid. As examples of the solid carriers, there may be mentioned vegetable powders such as soybean flour, cereal flour, wood flour, bark flour, saw dust,
- powdered tobacco stalk, powdered walnut shell, bran, powdered cellulose, and extraction residues of vegetables; fibrous materials such as paper, corrugated paperboard, and waste cloth; synthetic polymers such as powdered synthetic resins; inorganic or mineral products such as clays (e.g.
- 15 Kaolin, bentonite, and acid clay), talcs (e.g. talc and pyrophylite), siliceous substances [e.g. diatomaceous earth, silica sand, mica, and "white carbon" (highly dispersed synthetic silicon dioxide, also called finely divided hydrated silica or hydrated silicon dioxide, some
- commercial products containing calcium silicate as major constituent)], activated carbon, powdered sulfur, pumice, calcined diatomaceous earth, ground brick, fly ash, sand, calcium carbonate, and calcium phosphate; chemical fertilizers such as ammonium sulfate, ammonium nitrate,
- urea, and ammonium chloride; and farmyard manure. These materials are used alone or in combination. Materials usable as liquid carriers are selected from those which will dissolve the active ingredients and those which do not

- dissolve them, but can disperse them with the aid of adjuvants. For example, the following materials can be used alone or in combination: Water, alcohols (e.g. methanol, ethanol, isopropanol, butanol, ethylene glycol),
- ketones (e.g. acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone and cyclohexanone), ethers (e.g. ethyl ether, dioxane, cellosolves, dipropyl ether and tetrahydrofuran), aliphatic hydrocarbons (e.g. gasoline and mineral oils), aromatic hydrocarbons (e.g. benzene,
- toluene, xylene, solvent naphtha and alkylnaphthalenes), halohydrocarbons (e.g.dichloroethane, chlorinated benzenes, chloroform and carbon tetrachloride), esters (e.g. ethyl acetate, dibutyl phthalate, diisopropyl phthalate and dioctyl phthalate), acid amides (e.g. dimethylformamide,
- 15 diethylformamide and dimethylacetamide), nitriles (e.g. acetonitrile), and dimethyl sulfoxide.

Gaseous carriers include freons and other aerosol propellants which are a gas under normal conditions.

The adjuvants, which are mentioned below, are used according to individual purposes. In some cases, they are used in combination with one another. In some other cases, no adjuvant is used at all.

For the purpose of emulsification, dispersion, solubilization and/or wetting of the active ingredients, there are used surface active agents such as for example polyoxyethylene alkylaryl ethers, polyoxyethylene alkyl ethers, polyoxyethylene higher fatty acid esters, polyoxyethylene resinates, polyoxyethylene sorbitan

- 1 monolaurate, polyoxyethylene sorbitan monooleate, alkylarylsulfonates, naphthalenesulfonic acid condensation products, ligninsulfonates and higher alcohol sulfate esters.
- For the purpose of stabilizing the dispersion, tackification and/or agglomeration of the active ingredients, there may be used for example casein, gelatin, starch, alginic acid, methylcellulose, carboxymethylcellulose, gum arabic, polyvinyl alcohol, turpentine oil, rice bran oil, bentonite and ligninsulfonates.

For the purpose of improving the flow property of the solid compositions, it is recommendable to use waxes, stearates or alkyl phosphates.

As peptizers for dispersible compositions, it
is also recommendable to use naphthalenesulfonic acid
condensation products and polyphosphates.

It is also possible to add a defoamer such as for example a silicone oil.

The content of the active ingredient may be
20 adjusted as occasion demands. For the preparation of
powdered or granulated products, the content is usually
from 0.5 to 20% by weight, and for the preparation of
emulsifiable concentrates, suspension concentrates or
wettable powders, it is preferably from 0.1 to 50% by
25 weight.

For controlling various insects, mites and fungi, inhibiting their growth and protecting useful plants from damage caused by these insects, mites and

- 1 fungi, the compositions of the present invention for use in agriculture and horticulture are applied in insecticidally, acaricidally or fungicidally effective amounts. In applying the present compositions, they
- are applied, as such or after properly diluted with or suspended in water or other suitable medium, to soil or the foliage of crops to be protected from the attack of insects, mites and fungi.

The amount of the active ingredient used

10 depends upon various factors such as for example the
purpose of application, growth state of crops, weather,
environmental conditions, the form of the composition,
the mode of application, the type of fields to be
treated, and the like.

In applying the present fungicidal compositions alone, the dosage of the present active ingredient is preferably selected from a range of from 0.1 to 500 g per 10 ares.

Furthermore, the present compounds can be
20 applied in the form of mixed formulations with other
fungicides, insecticides, fertilizers and plant growth
regulators, as far as such agents can be used in combination with the present compounds.

Examples of pesticides usable in admixture

25 with the insecticide of the present invention will be shown below:

O,O-dimethyl O-(4-nitro-3-methylphenyl)thiophosphate (Phenitrothion)

```
1
              O,O-dimethyl O-(3-methyl-4-methylthiophenyl)-
    thiophosphate (Baycid)
              0,0-dimethyl S-(carbethoxyphenylmethyl)-
   dithiophosphate (Elsan)
 5
              0,0-diethyl 0-(2-isopropyl-4-methylpyrimidyl-6)-
   thiophosphate (Diazinon)
              0,0-dimethyl 2,2,2-trichloro-1-hydroxyethyl-
   phosphate (Dipterex)
              O-ethyl O-p-cyanophenyl phenylphosphonothioate
    (Surecide)
10
              O-ethyl O-p-nitrophenyl phenylthiophosphonate
    (EPN)
              O,O-dipropyl O-4-methylthiophenylphosphate
    (Propaphos)
15
              O,O-dimethyl S-phthalimidomethyl dithiophosphate
    (Imidan)
              O,O-dimethyl O-dichlorovinyl phosphate (DDVP)
              O,O-dimethyl S-(N-methylcarbamoylmethyl)-
   dithiophosphate (Dimethoate)
              0,0-dimethyl S-(1,2-dicarbethoxyethyl)-
20
   dithiophosphate (Malathon)
              1-Naphthyl N-methylcarbamate (NAC)
             m-Tolyl N-methylcarbamate (MTMC)
              2-Isopropoxyphenyl N-methylcarbamate (PHC)
             Ethyl N-(diethyl-dithiophosphorylacetyl)-N-
25
   methylcarbamate (Mecarbam)
            3,4-Xylyl N-methylcarbamate (MPMC)
              2-s-Butylphenyl N-methylcarbamate (BPMC)
```

```
2-Isopropylphenyl N-methylcarbamate (MIPC)
1
              2-Chlorophenyl N-methylcarbamate (CPMC)
              3,5-Xylyl N-methylcarbamate (XMC)
              2-(1,3-Dioxolan-2-)phenyl N-methylcarbamate
5
    (Dioxacarb)
              3-tert-Butylphenyl N-methylcarbamate (Terbam)
              4-Diallylamino-3,5-dimethylphenyl N-methyl-
    carbamate (APC)
              S-methyl-N-(methylcarbamoyloxy) thioacetoimidate
10
    (Methomil)
              N-(2-methyl-4-chlorophenyl)-N,N-dimethyl-
    formamidine hydrochloride (Chlorophenamidine)
              1,3-Bis(carbamoylthio)-2-(N,N-dimethylamino)-
    propane hydrochloride (Cartap)
              Diisopropyl-1,3-dithiolan-2-ylidene malonate
15
    (Isoprothiolan)
              N-[[(4-chlorophenyl)amino]carbonyl]-2,6-
    difluorobenzamide (Diflubenzuron)
              O,O-Dimethyl-S-[2-(isopropylthio)ethyl]-
    phosphorodithioate (Isothioate)
20
              O,O-Diethyl-S-[2-(ethylthio)ethyl]-phos-
    phorodithioate (Disulfoton)
              2,3-Dihydro-2,2-dimethylbenzofuran-7-yl
    methylcarbamate (Carbofuran)
25
              O-Ethyl S,S-diphenyl phosphorodithioate
    (Edibenfos)
              N-(trichloromethylthio)cyclohex-4-ene-1,2-
    dicarboxamide (Captan)
```

1 2,4,5,6-Tetrachloro-1,3-isophthalonitril
 (Chlorothalonil)

N-(1,1,2,2-tetrachloroethylthio)cyclohex-4-ene-1,2-dicarboxamide (Captafol)

5 Dimethyl 4,4-o-phenylene bis(3-thioallophanate)
(Thiophanate methyl)

Methyl 3-(butylcarbamoyl)-3H-benzimidazol-2-ylcarbamate (Benomyl)

Zinc ethylenebis (dithiocarbamate) (polymeric)

10 (Zineb)

20

Manganese ethylenebis(dithiocarbamate)(polymeric) (Maneb)

In order to demonstrate the effectiveness of the present compounds, some test examples and formulation examples will be shown below, but the present invention is not limited to these examples only.

Test example 1 Fungicidal activity against the powdery mildow of barley (Erysiphe graminis f. sp. hordei)

Barley seedlings at 2-leaf stage were sprayed with test compound (200 ppm) one day after inoculation with conidia of Erysiphe graminis f. sp. hordei. The seedlings were kept in a constant-temperature room at 25°C for one week and the percentage of the infected area per leaf was examined. The fungicidal activity was judged based on the following criterion in comparison with the untreated plot.

1 The results are shown in Table 2.

A : Control of disease 100 - 95% ·

B : Control of disease 94 - 80%

C : Control of disease 79 - 60%

D : Control of disease 59 - 0%

Table 2.

Compound No.	Fungicidal activity	Compound No.	Fungicidal activity	Compound No.	Fungicidal activity
4	В	55	A	97	С
9	С	56	A	98	A
16	B	57	c	102	A
17	A	58	С	103	С
18	В	59	A	105	A
19	A	60	A	109	A
20	В	66	A	110	В
21	A	67	A	111	A
22	A	68	A	112	A
23	A	69	A	113	A
24	A	71	В	. 114	·A
25	A ·	73	A	118	В
26	A	74	A	119	С
27	A	85	A	120	В
33	A	86	· A	123	A
34	A	87	A	124	В
35	A	88	A	133	A
36	A	. 89	A	134	В
41	· A ·	90 .	A	136	A
42	A	91	A	140	В
50	A	92	A	142	С
51	A	93	В	144	С
52	В	94	A	145	A
53	A	95	В	153	A
54	A	96	С	154	A .

Table 2 (Cont'd)

	155	A	212	A	249	С	
	156	A	213	A	250	A	
	157	Α.	216	A	251	В	
	158	A	217	В	252	A	
	159	A	219	С	253	A	
	160	A	220	A	254	A	
	161	В	221	A	255	A	
	167	A	222	С	257	В	
	181	С	228	В	258	В	
	186	В	229	A	262	В	
	188	A	230	Α .	263	A	
	190	С	231	A	264	A	
	193	A	232	A	265	A	
	194	A	234	A	266	A	ļ
	195	A	235	A _.	267	A	
	197	A	236	С	268	A	
	198	A	237	A	269	В	
	199	A	238	С	270	В	
	200	A	239	A	281	В	
	201	A	240	A	282	С	
	202	A	241	A	283	A	
	203	A	242	A	300	С	
1	204	В	243	A	302	В	-
-	205	A	245	A	303	В	
	206	С	246	В	304	В	
	207	С	248	A	305	В.	
			1	1	1	1 .	

Table 2	(Cont'd)
---------	----------

306	A	351	A	391	A	
309	В	352	В	392	A	
311	c ·	353	. A	393	A	
312	, В	356	A	· 394	A	
315	A	357	A	395	A	
316	A	. 358	A	396	A	
321	A	363	A	397	A	
323	A	364	A	398	A	
324	С	3,65	A	399	A	
328	В	366	A	400	A	
. 329	A	369	· A	401	A	
330	A	370	A	402	A	
331	A	371	С	403	A	
332	A	372	A	404	A	
333	A	373	С	405	A	
334	A	374	. A	, 406	A	
336	В	375	A	407	A	
337	В	382	A	409	A	
340	A	.383	A	421	A	
342	A	384	A	422	A	
343	A	385	A	424	A	
344	A	386	A	427	A	
346	A	387	A	428	A	
347	A	388	c	429	A	
349	В	389	A .	431	A	
350	A	390 ⁻	A	432	В.	
		1	i.			1

Table 2 (Cont'd)

Ú .				_	
433	A	470	В	496	A
434	A	471	- A	497	A
435	В	472	A	498	A
436	A	473	A	499	A
437	A	474	A	501	A
438	A	475	В.	502	A
439	A.	476	A.	503	A
440	A	477	A	504	A
441	A	478	В	505	A
443	A	479	A-	506	A
444	A	480	Α .	507	A
445	A	481	A	508	A
446	A	482	A	518	С
447	A	483	A	522	В
448	A	484	A	523	В
449	A	485	A	524	В
450	A	486	A	527	A
451	A	487	A	528	A
452	A	488	В	529	В
453	A	489	В	530	В
454	A	490	В	532	A
455	A	491	С	533	A
465	A	492	В	534	c
466	A	493	A	535	В
468	A	494	A	536	A
469	A	495	A	537	В

Table 2 (Cont'd)

0					
538	A	574	В	612	A
541	A	576	A	613	A
545	A	578	В	614	A
546	A	579	В	615	A
547	A	580	В	616	A
548	A	581	С	617	A
549	В	584	В	618	A
550	c ·	586	С	619	A
551	В	587	В	620	A
552	c	589	A	621	A
553	Α .	591	В	622	A
554	c ·	592	A	623	A
555	С	593	В	624	A
556	В .	594	В	625	A
557	A	595	c ·	626	A
562	A	596	С	627	В
563	· . A	597	С	628	В
565	A	598	С	629	A
566	A.	601	С	630	A
567	· A	602	A	631	A
568	A	603	A	636	A
569	В	604	A	637	A
570	A	608	A	638	A
571 .	A	609	A	639	A
572	В	610	A	640	A
573	В	611	A	641	В
I					

	le 2 (Cont'	đ)
--	-------------	----

		10010 0	(cont u)			
642	с	677	A	727	A	
643	A	678	A	729	A	
644	В	680	A	730	В	
645	A	682	A	731	В	
646	A	683	A	732	A	
648	A	684	A	733	A	
649	A	691	В .	737	A	
650	В	692	В	739	С	
652	С	693	A	740	A	
653	В	694	A	741	A	
654	В	695	A	746	В	
655	A	696	В	751	В	
656	В	697	· B	753	В	
657	В	700	С	754	A	
658	A	701	A	755	A	
659	В	702	В	757	A	
660	A	707	В	758	A	
661	В	708	A	759	A	
662	В	713	A	763	В	
663	A	715	A	766	A	
667	С	716	В	767	A	
668	A	718	С	768	A	
670	A	719	A	769	A	
672	В	720	В	772	В	-
675	В	724	A	773	A	
676	В	726	В	775	В	
		11	1	1	I	1

Table 2 (Cont'd)

1	l	u	ſ	0	
783	В	823	A	841	В
784	В	824	A	842	A
795	A	825	A	843	A
796 .	В	827	В	844	A
803	A	828	С	848	A
804	С	829	A	849	A
805	С	831	С	850	A
816	A	833	В	851	A
817	A	834	A	852	В
818	A	835	В	853	A
819	A	836	A	854	С
821	В	839	A	855	A
822	В	840	В		
		·			

1 Test example 2 Fungicidal activity against the crown rust of oat (Puccinia coronata f.sp. avenae)

Oat seedling at 8-leaf stage were sprayed with test compound (200 ppm) one day after inoculation with uredospores of <u>Puccinia coronata f.sp. avenae</u>. The seedlings were kept in a constant-temperature room at 25°C for ten days and the percentage of the infected area per leaf was examined. The fungicidal activity was judged according to the same criterion as in Test example 1.

The results are shown in Table 3.

Table 3

Compound No.	Fungicidal activity	Compound No.	Fungicidal activity	Compound No.	Fungicidal activity
7.4		-			
14	В	60	A	111	A
18	С	66	A.	112	A
19	С	67	A	113	A
21	С	. 68	A	114	A
22	В	69	A	133	A
23	В	71	A	134	, A
24	В	73	A	135	В
25	В	74	A	136	A
27	A	85	A	138	A
33	A	86	A	139	A
34	A	87	A	140	A
35	A	88	B	142	A
36	A	89	A	143	A
41	A	90	A	144	A
42	A	91	A	145	A
50	A	92	С	153	A
51	A	93	В	154	A
52	A	94	В	155	A
53	A	95	A	156	A
54	A	96	A	157	A
55	A	97	С	158	A
56	A	98	A	159	В
57	A	105	A	160	В
58	A	109	A	161	A
59	A	110	A	186	A

Table 3 (Cont'd)

188	А	241	A	328	A
193	A	242	В.	329	A
194	A	243	Α.	330	A
195	A	245	Α .	331	A
198	A	246	A	332	A
199	A	248	С	333	A
200	A	250	A	337	A
201	В	251	A	340	В
202	С	254	В	342	A
203	A	257	A	343	A
204	В	258	A	344 .	A
205	В	263	Α .	345	В
212	Α .	264	A	346	A
213	С	265	A	347	A
217	c	266	В	349	·A
220	В	267	В	350	A
221	A	268	В	351	В
228	В	283	В	353	A
229	A	303	С	355	В
230	A	305	В	356	A
231	A	306	A	357	A
234	A	309	С	358	A
237	A	312	A	363	A
238	В	315	A	364	A
239	A	316	A .	366	A
240	A	323	В	369	A
1	1	E.			

- 179 -

Table 3 (Cont'd)

370	A	402	A	446	c
371	A	403	A	447	A
372	A	404	A ·	448	A
373	A	405	A	449	A
374	A	406	A	450	A
375	A	407	A	451	A
381	С	409	A	452	A
382	A	421	A	453	A
383	A	422	A	454	A
384	A	427	c	455	A
385	A	428	A	465	A
386	Ą	429	A	468	A
387	В	431	A	469	A
388	С	433	A	470	A
390	A	434	A	471	A
391	A	435	В	472	A
392	A	436	A	473	A
393	A	437	A	474	A
394	A	438	c .	475	A
395	A	439	· A	476	В
396	A	440	A	477	A
397	A	441	A	478	A
398	A	442	A	479	A
399	A	443	В	480	A
400	A	444	A	481	С
401	A	445	В	482	A .
1			I.		

Table 3 (Cont'd)

483	A	523	A	557	A	
484	A	524	A	558	С	
485	A	525	Α.	559	С	
486	A	527	С	560	В	
487	A	528	A	561	A	
488	A	529	A	562	В	
489	A	530	A	563	A	
490	A	531	A	565	A	
491	A	532	A	566	A	
492	A	533	A	567	A	
493	A	534	A	568	A	1
494	A	535	A	569	A	
495	A	536	A	570	A	
496	A	537	A	571	A	
497	A	538	A	572	A	
498	A	544	В	573	С	
499	A	545	A	574	В	
500	С	546	A	576	A	
501	A	548	A	577	A	
502	A	550	c ·	578	A	
503	A	551	A	579	A	
504	A	552	c ·	580	A	
505	A	553	В	585	С	
506	A	554	A	586	A	
507	A	555	A	587	A	
508	A	556	A	589	A	
				Į.	1	-

Table 3 (Cont'd)

1	Ĺ	11	r	44		
590	A	621	A	651	В	
591	A	622	A	652	A	
592	A	623	Α',	653	В	
593	A	624	A '	654	A	
594	A	625	A	655	A	
595	A	626	A	656	A	
596	В	627	A	657	A	
599	В	628	A	658	A	
602	A	629	A	659	В	
603	Α .	630	A	660	A	
604	A	631	A	661	A	
606	С	636	A	662	A	
607	. A	637	A	663	Α .	
608	A	638	A	667	С	
609	A	639	A	668	A	
610	A	640	A	669	В	
611	A	641	A	670	B	
612	A	642	A	672	В .	
613	A	643	A	674	В	
614	A	644	A	675	A	
615	A	645	A	677	A	
616	A	646	A	678	A	
617	Α.	647	A	679	В	
618	A	648	A	680	A	
619	A	649	Α .	682	A	
620	A	650	A	683	A	
1	ij	1	1			

Table 3 (Cont'd)

684	A	727	A	784	В	
685	A	729	A	794	С	
690	С	730	Α.	796	A	
691	С	731	A	804	A	
692	A	732	A	812	В	
693	A	733	A	813	A	
694	A	737	B	814	В	
695	A	746	В	815	. B	
696	A	751	В	817	С	
697	A	755	A	821	A	
699	A	757	В	822	С.	
701	A	758	A	823	A	
706	В	759	A	824	A	
709	A	763	A	825	A	
710	A	764	В	829	A	
711	A	766	A	830	С	
712	A	767	A	831	A	
713	В	768	A	832	С	
715	В	769	A	833	A	
717	С	770	В.	834	A	
719	A	772	A	835	A	
720	С	773	A	838	A	
723	В	780	В	842	A	
724	A	781	С	843	A	1
725	A	782	A	844	A	
726	A	783	В	848	A	
		1				1

- 183 -

Table 3 (Cont'd)

849	В	851	A	853	A
850	A	852	В	854	А

,

.

-

1 Test example 3 Fungicidal activity against the downy mildew of cucumber (Pseudoperonospora cubensis)

Cucumber plants at 2-leaf stage were sprayed with test compound (200 ppm) one day before inoculation with

- 5 zoospores of <u>Psudopernospora</u> <u>cubensis</u>. After the plants were kept in a humid room at 25 °C one day and then in a greenhouse for six days, the degree of infection per leaf was examined and the fungicidal activity was judged according to the same criterion as in Test example 1.
- The results are shown in Table 4.

Table 4

		Idbio	•			
Compound No.	Fungicidal activity	Compound No.	Fungicidal activity	Compound No.	Fungicidal activity	
4	В	51	В	90	A	l
9	A	52	В	91	A	
10	В	53	С	92	A	
12	С	54	A	93	A	
13	В	55	A	94	A	
16	С	56	A	95	A	
17	A	57	A	96	A	
18	С	58	С	97	A	
19	A	59	С	98	A	
20	В	60	A	99	A	
21	A	65	С	100	A	
22	A .	66	A	101	A	
23	A	67	A	102	A	
24	A	68	A	103	В	
25	A	69	В	104	С	
26	A	73	С	105	В	
27	A	74	A	109	В	١
33	A	75	В	110	A	
34	A	77	В	111	A	
36	A	78	A	112	В	
41	A	79	С	113	Α.	
42	A	85	A	114	A	
45	A	86	В	115	A	
47	С	87	A	116	A .	
50	A	88	C.	117	В	İ
					- Con't	_

Table 4 (Cont'd)

1						
	118	В	179	A	228	В
	121	С	180	A	229	В
	122	A	181	c.	230	В
	123	В	182	A	231	С
	130	A	183	В	232	В
	131	A	186	С	234	· A
	133	С	188	A	237	A
	136	A	192	A	239	С
	137	В	193	A	240	A
	138	В	194	A	242	С
	139	A	195	В	243	A
	140	A	196	В	245	A
	141	, C	197	A	246	_B
	145	В	198	A	251	С
	147	A	199	A	252	В
	153	В	200	A	253	. А
	154	A	201	В	254	A
	155	A	202	В	255	В
	156	A	203	A	256	В
	159	С	204	A	257	c
	160	В	205	A	258	c
	161	A	212	A	262	С
	162	A	213	A	263	С
	171	С	216	С	264	С
	173	A	220	В	265	A
	178	A	221	A	266	В
	1	11		1		

Table 4 (Cont'd)

267	С	336	A	376	В	
269	В	337	В	377	В	
270	С	342	Α.	378	С	
284	С	343	С	383	A	
288	С	344	В	385	A	
292	A	346	A	386	В	
293	В	350	В	387	В	
296	В	351	A	388	A	
297	A	352	В	389	В	ŀ
298	С	353	A	390	А	
299	A	354	С	391	A	
302	A	355	С	392	A	
303	С	356	A	393	. А	
304	A	357	A	394	A	
305	В	358	A	395	A	
306	В	363	A	396	A	;
312	В	364	Α.	397	A	
316	С	365	A	398	Α.	
321	A	366	A	399	· A	
326	В	369	A .	400	A	
328	В	370	A .	401	A	
329	В	371	В	402	A	
330	В	372	A	403	A	
331	A	373	A	404	A	
332	A	374	A	405	A	
333	A	375	A	406	A	

Table 4 (Cont'd)

				No.		
407	A	452	A	492	С	
409	A	453	A	493	В	
420	В	454	A	496	A	
421	A	455	A	497	A	
424	A	465	A	498	С	
428	В	468	A	499	С	
429	A	469	A	502	С	
431	A	471	A	503	С	
432	В	473	С	504	A	
433	В	474	С	505	С	
434	В	476	В	506	A	
436	A	477	A	507	A	
437	A	478	A	508	A	
438	A	479	В	511	A	
439	A	480	A	512	A	
440	A	481	A	513	A	
441	A	482	A	514	A	
442	В	483	В	515	A	
444	A	484	A	516	В	
445	A	485	A	518	С	
446	В	486	A	523	A	
447	A	487	A	524	A	
448	В	488	A	525	A	
449	A	489	A	527	В	
450	A	490	A	528	A	
451	A	491	В	529	В	
		11		U		1

Table 4 (Cont'd)

1	1	ti	ſ			
531	С	572	A	609	A	
532	A	574	В	610	A	
533	A	576	A ·	611	A	
534	A	577	A	612	A	
535	A	578	С	613	A	
536	A	579	В	614	A	
537	A	584	В	615	A	
538	A	585	В	616	A	
541	В	586	A	617	A	
544	A	588	С	618	A	
546 ·	A	589	A	619	A	
548	A	590	A	620	A	
551	A	591	A	621	A	
553	С	592	A	622	В	
554	С	593	Α .	623	A	
555	В	594	A	624	A	
556	С	595	A	625	A	
557 [.]	В	596	С	626	A	
562	A	597	С	627	A	
563	A	598	c ·	628	A	
565	A	599	В	629	A	
566	A	602	A	630	A	
567	В	603	A	631	С	
568	В	604	A	632	A	
569	A	605	A	633	A	
570	A	608	A	636	Α .	

Table 4 (Cont'd)

637	A	663	A	699	С	
638	A	668	A	700	С	İ
639	A	669	A	701	A	
640	A	670	A	702	A	
641	A	673	В	705	A	
642	A	674	A	706	С	
643	С	675	A	709	A	
644	В	676	A	713	A	
645	A	677	A	714	В	
646	A	678	A	715 .	В	
647	A	680	A	716	В	
648	A	681 .	A	717	A	
649	A	682	A	719	В	
650	A	683	A	720	A	
651	A	684	A	725	В	
652	A	685	A	726	В	ŀ
653	A	686	A	727	В	ŀ
654	A	690	В	728	В	-
655	A	691	A	729	A	
656	A	692	A	730	A	
657	A	693	A	731	В	
658	A	694	A	732	A	
659	A	695	A	733	A -	
660	A	696	A	737	С	
661	A	697	A	739	В.	
662	A	698	A	740	В	
I	1	H.	1	И	1	1

Table 4 (Cont'd)

1	i	it	1	19	
741	A	780	A	836	A
742	A	782	В	837	В
746	A	783	A ·	838	С
751	A	784	A	839	с
752	A .	787	В	840	С
754	В	789	В	841-	С
755	A	804	A	842	A
756	A	812	A	843	A
757	A	813	A	844	A
758	A	814	A	845	В
759	A	815	С	848	A
761	С	817	· c	849	Α.
763	· c	820	С	850	A
764	A	821	A	851	A
765	В	822	A	852	A ·
766	A	823	A	853	A
767	A	824	A	854	A
768	A	825	A	855	A
769	A	826	В		
770	В	827	В .		
772	A	828	В		
773	A	829	A		·
774	A	831	A		
775	A	833	A .		
776	A	834	· A		
777	А	835	Α .		

1 Test example 4 Insecticidal activity against the brown
planthopper (Nilaparvata lugens)

Rice seedlings were dipped into the aqueous emulsion of the compound at 200 ppm for 30 seconds. After air-drying, the seedling were placed in a glass tube, and the 3rd instar nymphs were inoculated on the plants. On 8th day after treatment, the corrected mortality was caluculated and the insecticidal activity was judged based on the following criterion.

The results are shown in Table 5.

A:	Reviced Mortality	100	-	90%
B:	п	89	-	80%
C:	Ħ	79	_	50%

Table 5

Compound No.	Insecti- cidal activity	Compound No.	Insecti- cidal activity	Compound No.	Insecti- cidal activity
16	A	71	A.	123	A
17	A	72	В	124	A
19	Α .	73	A	125	A
20	A	74	A	133	A
21	A	85	A	134	A
22	A	86	A	135	A
23	A	87	A	136	A
27	A	88	A	140	A
32	A	89	A	154	A
33	A	90	A	155	A
34	A	91	A	157	A
35	A	92	A	158	A
36	A	95	A	159	A
40	С	96	С	160	A
41	A	102	· A	161	A
42	A	103	A	166	A
54	A	104	A	193	A
55	A	105	A	194	A .
56	В	109	A	195	A
60	A	110	A	198	A
65	С	111	A	199	В
66	A	112	A	200	Ā
67	A	113	A	203	A
68	A	114	A	204	A
69	A	122	A	211	C

- Con't -

Table	5	(Con	t'	d)
-------	---	------	----	----

			i ,	•	
212	A	283	Α.	345	A
214	В .	302	A	346	С
217	` c	303	В	347	A
221	A	304	С	349	A
229	A	305	С	350	A
230	A	306	A	351	A
231	A	310	A	352	A
232	A	311	A	353	A
234	A	314	С	355	A
235	В	315	A	356	A
236	A	316	A	357	A
237	A	321	A	358	A
239	A	328	A	363	A
240	A	329	A	364	A
241	A	330	A	365	A
242	A	331	A	366	A
248	A	332	A	369	A
250	A	333	A	370	A
255	A	334	A	371	A
257	A	336	A	372	A
258	A	337	A	373	A
260	С	339	С	374	A
266	A	340	A	375	A
267	A	342	A	388	A
268	С	343	A	389	A
269	С	344	A	390	A .

Table 5 (Cont'd)

1 1	ı	i	u	1	î
391	A	435	. В	471	A
392	Α ·	436	A	472	A
394	A	437	A	473	A
395	A	438	A	474	A
396	A	439	A	475	A
397	A	440	A	47.6	A
398	A	441	В	477	A
399	A	442	A	479	A
400	В	443	A	480	A
401	A	444	В	481	A
402	A	445	С	482	A
403	A	446	В	483	A
404	A	447	A	484	A
405	A	448	A	485	A
406	A	449	A	486	A
407	A	450	A	487	A
409	A	451	A	488	A
421	A	452	A	489	A
422	A	453	A	499	A
424	A	454	A	500	В
427	A	465	A	501	A
428	A	466	A	502	A
429	А	467	A	503	A
431	A	468	A	504	A
433	A	469	A	505	A
434	A	470	A	506	A
434	A	4.70	A		1 "

Table 5 (Cont'd)

i		ì		,			
50	7	A	551	A	581	A	1
50	8	A	552	A	584	В	
51	6	С	553	A .	585	A	1
51	7 A	A	554	A	586	A	
518	8	A	555	A	587	A	
523	3	A	556	A	588	В	
524	4	A	557	A	589	В	
525	5	A	562	A	594	В	
527	7	A	563	A	595	A	
528	3	A	56,4	A	602	A	
529		A	565	A	603	A	
531		A	566	A	604	A	
532		A	567	A	608	A	
533		A	568	A	609	A	
534		A	569	A	610	A	
535		A	570	A	611	A	
536		A	571	A	612	A	
537		A	572	A	613	A	
538		A	573	A	614	A	
541		A	574	A	615	A	
544		A	575	A	616	A	
545		A	576	A	617	A	
546		A	577	В	618	A	
547		A	578	В	619	A	
548		A	579	A	620	A	
549		A	580	В	621	A ·	
	l	ŧ				· ·	

Table 5 (Cont'd) 0234045

I.	1		i			
623	A	655	A	692	A	
624	A	656	В	693	A	
625	A	657	A	694	В	
626	A	658	A	695	В	
627	A	659	С	696	A	
628	A	660	A	697	A	
629	A	661	A	698	A	
630	A	662	. A	699	A	
631	A	663	A	701	A	
636	A	668	· A	702	A	
637	A	669	A	703	С	
638	A	670	A	710	C	
639	. А	671	A	713	A	
640	A	672	С	715	A	
641	С	673	C	716	A	
642	A	674	В	717	A	
643	A	675	A	719	A	
644	A	677	A	720	С	
645	A	679	A	723	В	
646	A	680	À	724	A	
647	A	682	А	725	A	
648	A	683	A	726	A	
649	В	684	Ą	727	A	
652	В	685	. A	728	· A	
653	A	686	· c	729	A	
654	A	691	A	730	С	
(11					1

Table 5 Cont'd)

,	:						
	731	A	769	À	824	A	
	732	A	770	A	825	A	
	733	A	772	A	826	A	
	734	A	774	A	827	A	
l	735	A	775	A	828	A	
	739	В	776	A	829	A	
	740	A	790	A	830	A	
	741	A	791	A	831	A	
	742	A	792	С	832	A	
	744	A	793	A	833	A	
	745	A	794	A	834	A	
	746	A	795	A"	835	A	
	751	A	799	A	836	A	
	752	С	801	С	837	С	
	753	A	812	С	838	A	
	756	A	813	A	839	A	
	757	A	814	С	840	A	
	758	A	815	С.	841	A	
	759	A	816	A	842	A	
	761	A	817	A	843	A	
	762	A	818	С	844	A	
	763	A	819	С	845	A	
	.764	A .	820	A	847	В	
	766	A	821	A	848	A	
	767	A	822	A	849	A	
	768	A	823	A	850	A	
	•	1	I.	Ł	11	I	1

- Cont'd -

Table 5 (Cont'd)

1	l ı	1	1	!	
851	A	853	A	855	A
852	A	854	A		

1 Test example 5 Insecticidal activity against the
 diamondback moth (Plutella xylostella)

Eggs laid on a leaf piece (6 cm \times 5 cm) of a chinese cabbage were dipped into the aqueous emulsion of

5 the compound at 500 ppm for 30 seconds. After air-drying, the insects and the plant were placed in a petri dish. On 6th day after treatment, the corrected mortality was calculated and the insecticidal activity was judged according to the same criterion as in the test example 4.

The results are shown in Table 6.

Table 6

Compound No.	Insecti- cidal activity	Compound No.	Insecti cidal activity	Compound No.	Insecti- cidal activity
8	A	74	A	133	A
18	С	85	A	136	В
26	A	86	C	142	С
27	С	87	A	154	А
33	A	88	В	155	A
34	A	89	A	156	A
35	Α .	90	A	157	В
36	В	91	A	158	A
41	A	92	A	159	В
42	A	94	A	160	A
51	С	95	A	169	·c
52	Α .	97	c	192	A
53	В	98	A	193	A
54	В	102	A	195	A
55	В	103	A	196	A
56	A	104	A	197	В
57	С	105	С	198	A
59	A	. 109	A	199	. A
60	A	110	В	200	A
66	A	111	В	201	A
67	A	112	A	202	A
68	Α .	113	A	203	A
69	A	122	A	204	A
72	A	123	Α .	205	В
73	A	126	С	206	В

Table 6 (Cont'd)

207	A	251	С	328	A	
212	A	252	С	329	A	
213	A	253	A	330	A	
215	A	· 254	A	331	В	
216	A	255	В	333	A	
217	A	256	A	337	A	
220 ·	В	257	A	340	A	
221	С	262	A	342	A	
228	A	263	A	343	A	
229	A	264	A	344	A	
230	A	265	С	345 .	В	
231	A	266	A	346	A	
232	. B	267	A	347	A	
234	В	268	A	349	A	
235	A	269	С	350	A	
237	С	280	В	351	A	
239	В	281	A	352	A	
240	A	283	A	353	A	
241	A	284	A	355	A	
242	A	300	A .	356	A	
243	A	302	c ·	357	A	
244	A	· 303	A	358	A	
245	A	312	A	365	A	
246	A	316	A	366	A	
248	В	321	A	369	A	
250	В	324	A	370	В .	
	212 213 215 216 217 220 221 228 229 230 231 232 234 235 237 239 240 241 242 243 244 245 246 248	212 A 213 A 215 A 216 A 217 A 220 B 221 C 228 A 229 A 230 A 231 A 232 B 234 B 235 A 237 C 239 B 240 A 241 A 242 A 243 A 244 A 245 A 248 B	212 A 252 213 A 253 215 A 254 216 A 255 217 A 256 220 B 257 221 C 262 228 A 263 229 A 264 230 A 265 231 A 266 232 B 267 234 B 268 235 A 269 237 C 280 239 B 281 240 A 283 241 A 284 242 A 300 243 A 302 244 A 303 245 A 312 246 A 316 248 B 321	212 A 252 C 213 A 253 A 215 A 254 A 216 A 255 B 217 A 256 A 220 B 257 A 221 C 262 A 228 A 263 A 229 A 264 A 230 A 265 C 231 A 266 A 232 B 267 A 234 B 268 A 235 A 269 C 237 C 280 B 239 B 281 A 240 A 283 A 241 A 284 A 242 A 300 A 243 A 302 C 244 A 303 A 245 A 312 A 246	212 A 252 C 329 213 A 253 A 330 215 A 254 A 331 216 A 255 B 333 217 A 256 A 337 220 B 257 A 340 221 C 262 A 342 228 A 263 A 343 229 A 264 A 344 230 A 265 C 345 231 A 266 A 346 232 B 267 A 347 234 B 268 A 349 235 A 269 C 350 237 C 280 B 351 239 B 281 A 352 240 A 283 A 353 241 A 284 A 355 242 A <td< td=""><td>212 A 252 C 329 A 213 A 253 A 330 A 215 A 254 A 331 B 216 A 255 B 333 A 217 A 256 A 337 A 220 B 257 A 340 A 221 C 262 A 342 A 228 A 263 A 343 A 229 A 264 A 344 A 229 A 264 A 344 A 230 A 265 C 345 B 231 A 266 A 346 A 232 B 267 A 347 A 234 B 268 A 349 A 235 A 269 C 350 A 237 C 280 B 351 A</td></td<>	212 A 252 C 329 A 213 A 253 A 330 A 215 A 254 A 331 B 216 A 255 B 333 A 217 A 256 A 337 A 220 B 257 A 340 A 221 C 262 A 342 A 228 A 263 A 343 A 229 A 264 A 344 A 229 A 264 A 344 A 230 A 265 C 345 B 231 A 266 A 346 A 232 B 267 A 347 A 234 B 268 A 349 A 235 A 269 C 350 A 237 C 280 B 351 A

Table 6 (Cont'd)

		i	í	100 m		
	371	В	407	A	449	A
	372	A	409	A	450	· A
	373	A	420	A	451	A
	374	À	421	A	452	A
	375	A ·	424	В	453	A
	383	С	425	A	454	A
	384	В	427	A	455	A
	386	С	428	A	465	A
	388	A	429	A	466	A
	390	· A	431	A	467	A A
	391	A	432	В	468	A
	392	· д	433	A	46 9	A
	393	A	434	A	470	A
	394	A A	435	A	471	A
	395	A	436	A	472	A
	396	Α	437	A	473	A
İ	397	A	438	A .	474	A
	398	A	439	A	475	A
	399	A	440	· A	476	A
	400	A	441	A	477	A
	401	A	442	A	478	A
1	402	A	444	A	479	A
	403	A	445	A	480	A
	404	Ā	446	A	481	A
	405	A	447	A	482	A
	406	A	448	A	483	A

Table 6 (Cont'd)

	1	11	i	п	1	1
4	184	A	524	В	564	A
4	185	A	525	В	567	A
4	186	A	527	A ·	568	A
4	187	A	531	Α .	569	A
، ا	189	A	532	Α	570	A
,	190	A	533	A	. 571-	A
,	491	Α.	534	A	572	A
,	192	A	535	c .	573	A
4	193	A	536	A	576	A
	494	A	537	Α	577	A
.	495	A	538	С	. 578	A
4	496	Α.	544	С	579	A
'	497	. A	545	Α .	580	В
,	498	A	546	Α .	581	A
'	199	A	547	Α .	585	c
!	500	С	548	Α .	586	В
	501	A	549	A	587	С
	502	A	551	A .	588	С
:	503	A	552	С	589	В
:	504	A	553	В	590	c
	505	A	554	В	592	В
!	506	A	555	С	593	С
!	507	A	556	С	599	c
1	508	A	557	С	602	A
!	517	С	562	A	603	A
!	518	С	563	A	604	А .
Ī			H	Į.	H ₁	1 1

Table 6 (Cont'd)

1			i	11		
	606	С	636	A	676	A
	607	С	638	A	677	A
	608	A	639	C ·	678	A
	609	A	640	A	679	A
	610	A	641	A	68 <u>0</u>	A
	611	B	642	Α.	682-	A
	612	A	643	A	683	A
	613	В	648	В	684	A
	614	В	649	A	685	A
	615	В	650	A	. 686	В
	616	A	651	С	687	c
	617	В	653	В	688	c
	618	A	657	A	691	С
	619	A	658	A	692	В
	620	A	659	В	693	A
	621	A	660	A	694	A
	622	A	661	A	. 695	A
	623	A	662	A	696	В
	624	A	663	A	698	c ·
	625	В	667	С	699	С
	626	A	668	A	701	A
	627	A	670	A	702	A
	628	A	671	С	703	С
	629	A	673	A	710	С
	630	A	674	A	713	A
	631	A	675	В	714	A .
	t		1	ļ.	ħ	ı ş

Table 6 (Cont'd)

1	i .		,		•	
715	A	760	В	818	A	
716	A	761	В	819	A	
717	A	762	A	821	A	
719	A	763	С	822	A	
720	A	764	A	823	A	
721	A	766	A	824.	A	
723	A	767	A	825	A	
724	A	768	A	826	A	
725	A	769	A	827	A	
726	A	770	A	828	A	
727	A	772	A	829	A	
728	A	773	A	830	A	
729	. A	- 774	Α .	831	A	ŀ
731	A	775	A	832	В	
732	A	776	С	833	A	
733	Ā	777	A	834	A	
734	A	780	С	835	A	-
735	A	784	С	836	A	
737	В	786	С	837	. A	
740	A	795	A	838	A	
741	A	799	С	839	A	
742	A	802	A	840	В	
746	A	805	С	841	A	
756	A	812	С	842	A	
757	A	815	С	843	A	
759	В	817	A	844	Α .	
1		1	1	Į.		

Table 6 (Cont'd)

1	1 1	1			
845	A	850	A ·	853	A
847	A	851	A	854	A
848	В	852	A ·	855	· А
849	A				

1 Test example 6 Insecticidal activity against the green
peach aphid (Myzus percicae)

All stages of the aphids ware inoculated on a chirase cabbage. Insects and the plant were sprayed with

the aqueous emulsion of the compound at 200 ppm. On 3rd day after treatment, the insecticidal activity was judged according to the same criterion as in the test example 4.

The results are shown in Table 7.

Table 7

Compound	Insecti- cidal	Compound	Insecti-	Compound	Insecti-
No.	cidal activity	No.	cidal activity	No.	cidal activity
9	В	54	А	99	A
10	В	55	A	100	В
12	С	56	A	101	A
14	С	57	·A	102	В
. 16	С	58	A	103	A
18	A	59	A	104	A .
19	A	60	A	105	С
20	A	66	A	106	A
21	A	67	A	107	C
22	A	68	A	108	С
23	A	69	A	109	Α .
24	В	71	A	110	A
26	A	72	В	111	A
27	A	73	A	112	A
33	A	74	A	113	A
34	Α ·	77	A	114	С
35	В	85	A	115	A
36	A	86	В	116	A
41	С	87	A	117	- A
42	A	88	A	122	В
45	A	89	A	123	С
50	A	90	A	124	С
51	A	91	A	130	A
5,2	A	92	A	131	A
53	A	95	A	132	A

Table 7 (Cont'd)

		•				
133	A	197	A	237	A	
134	A	198	A	238	В.	
135	С	199	A	239	A	
136	A	200	A	240	A	
138	С	201	A	241	С	
139	В	202	A	243-	· A	
140	A	203	A	245	В	
141	A	204	A	246	A	
143	A	205	A	248	В	
145	A	207	С	249	В	
153	A	211	A	250	С	
154	В	212	A	251	A	
155	В	213	A	253	С	
156	В	215	A	254	A	
157	A	216	В	255	A	
158	В	217	С	257	ıç .	
159	С	220	A	258	A	
160	A	221	A	262	С	
161	С	228	С	263	В	
163	A	229	A	264	A	
173	A	230	A	265	A	
180	A	231	A	266	В	
193	A	232	A	267	A	
194	A	234	A	268	- A	
195	A	235	A	282	c	
196	A	236	A	296	. A	
l	ko	II.	1	ll .	1	1

Table 7 (Cont'd)

ı	1		ž.		
299	A	355	A	401	В
302	В	356	A	402	В
306	A	357	A	403	A
311	С	358	A	404	A
315	A	364	В	405	· A
316	В	365	Α .	406	С
321	A	366	A ·	407	B
328	A	370	В	409	A
329	A	371	В	421	A
330	A	372	С	422	A
331	A	373	В	424	В
332	В	374	B	427	A
333	A	375	. А	428	A
334	В	388	в .	429	A
337	A .	389	A	431	A
340	A	390	A	432	A
342	A	391	A	433	A
343	A	392	A	434	A
344	A	393	В	435	A
345	A	394	A	436	A
346	A	395	A	437	A
347	A	396	A	438	A
349	A	397	A	439	В
350	A	398	В	440	A
352	A	399	В	441	A
353	A	400	A	442	A .
1	l l	ļ			

Table 7 (Cont'd)

1	1	rt.	ı	11	1	1
	443	A	479	A	507	A
	444	A	480	A	508	A
	445	A	481	A	511	. А
	446	A	482	A	512	Α .
	447	В	483	A	513	A
	448	A	484	A	514 -	A
	449	A	485	A	515	A
	450	A	486	A	517	С
	451	A	487	A	518	С
	452	A	488	A	527	A
	453	A	489	A	532	A
	454	A	· 490	A .	533	A
	455	. В	491	A	534	A
	465	В	492	A	537	A
	466	A	493	· A	538	A
	467	A	495	A	541	В
	468	A	496	В	544	С
	469	В	497	A	545	- A
	470	A	498	A	546	A
	471	В	499	A	547	A
	472	В	501	A	548	A
	473	A	502	A	549	A
	474	A	503	A	550	c
	476	A	504	A	551	C
	477	A	505	A	552	С
	478	В	506	Α .	553 .	A .
-	l	1	4	•	h	1

Table 7 (Cont'd)

A B	595	А	630	
B			630	A
- P	602	A	631	A
В	603	A ·	633	A
С	604	В	634	В
A	608	A	636	A
A	609	A	637-	A
В	610	A	638	В
A	611	C	639	С
С	612	A	640	A
A	613	A	642	В
A	614	В	643	В
A	615	В.	644	. с
. А	616	С	645	A
A	617	A	646	A
A	618	В	652	A .
В	619	A ·	654	В :
С	620	A	. 656	A
A	621	В	657	A
В	622	В .	658	A
A	623	С	660	A
С	624	A	661	A
С	625	A	662	В
С	626	A	663	A :
A	627	A	664	С
С	628	· A	665	С
С	629	A .	667 _.	В .
	C A A A A A B C A B A C C C A C	C 604 A 608 A 609 B 610 A 611 C 612 A 613 A 614 A 615 A 616 A 617 A 618 B 619 C 620 A 621 B 622 A 623 C 624 C 625 C 626 A 627 C 628	C 604 B A 608 A A 609 A B 610 A A 611 C C 612 A A 613 A A 614 B A 615 B A 616 C A 617 A A 618 B B 619 A C 620 A A 621 B B 622 B A 623 C C 624 A C 625 A C 626 A A 627 A C 628 A	C 604 B 634 A 608 A 636 A 609 A 637- B 610 A 638 A 611 C 639 C 612 A 640 A 613 A 642 A 614 B 643 A 615 B 644 A 616 C 645 A 617 A 646 A 618 B 652 B 619 A 654 C 620 A 656 A 621 B 657 B 622 B 658 A 623 C 660 C 624 A 661 C 625 A 662 C 626 A 663 A 627 A 664 C 628 A 665

- 214 -

Table 7 (Cont'd)

1 .					
668	A	697	A	737	A
669	A	698	С	741	. с
670	A	699	A	742	С
671	A	701	A	743	с
673	В	702	A	746	С
674	A	703	С	751.	с
675	В	710	С	752	c
676	В	713	A	757	В
677	A	715	A	758	A
. 678	A	716	A	759 .	. A
679	A	717	С	762	A
680	A	719	A	763	c
681	С	720	С	764	С
682	A	723	В	766	A
683	A	724	. А	767	· A
684	В	725	A	768	A
685	С	726	A	769	A
686	A	727	A	770	A
687	В	728	A	772	· A
689	В	729	A	774	A
691	В	730	A	775	B
692	A	731	A	776	В
693	A	732	A	777	. в
694	A	733	A	779	A
695	A	734	A	798	A
696	A	735	A	799	Α .
					1.

Table 7 (Cont'd)

1	ı	•				
801	С	824	В	840	С	
804	С	825 ·	В	841	A	
805	· c	826	В.	842	A	
812	A	827	A ·	843	A ·	
813	В	828	A	844	A	
814	В	829	A	848	С	1
815	В	831	A	849	A	
816	c ·	832	A	850	В	
817	С	833	A	851	A	
818	С	834	A	852	A	
819	С	835	A	853	A	
821	A	836	A	854	A	-
822	A	837	A	855	В	
823	A	839	A			ľ
						ŀ

1 Test example 7 Acaricidal activity against the citrus red mite (Panonychus citri)

Female adults were inoculated on a grapefruit leaf, and were sprayed with the aqueous emulsion of the compound at 200 ppm. On 10th day after treatment, the number of the progeny survived was counted and acaricidal activity was judged according to the same criterion as in the test example 4.

The results are shown in Table 8.

Table 8

Compound No.	Acaricidal activity	Compound No.	Acaricidal activity	Compound No.	Acaricidal activity
8	A	71	A	122	А
9	A	74	A	124	A
10	A	86	A ·	125	A
11	A	87	A	126	A
12	A	88	A	133	A
13	В	89	A	134	A
24	A	90	A	135	A
25	В	91	A	136	A
27	A	92	A	140	В
32	A	94	В	147	В
33	Α	95	A	150	С
34	A	96	A	152	A
35	A	97	A	153	Α .
41	A	98	A	154	A
42	A	102	A	155	A
50	A	103	A	156	A
51	A	105	A	157	A
53	С	109	· A	158	A
54	A	112	A	159	A
55	A	113	A	160	A
56	A	114	A	161	c
57	A	118	A	164	A
65	A	119	В	166	A
68	A	120	В	167	B
69	A	121	A	169	A

- Con't -

Table 8 (Cont'd)

-	170	A	235	A	269	A	
1	171	A	237	A	282	A	
	193	A	238	A	283	A	
	194	A	239	A	284	С	
	195	В	240	A	300 .	С	
	196	С	241	A	329	В	
	197	A	242	A	330	В	
	198	A	243	A	333	A	
	199	. А	245	A	334	A	
	200	A	246	A	335	A	
	201	A	248	A	337	A	
	202	A	251	В	342	A	ŀ
	206	. A	252	A	343	A	
	207	С	253	A	344	A	
	211	A	254	A	347	A	
	212	A	255	В	349	A	
	214	A	256	A	350	A	
	217	A	257	A	351	A	
	218	A	258	A	353	A	
	219	A	262	A	354	A	
	220	A	263	A	355	A	
	221	С	264	A	356	Α ·	
	227	A	265	A	357	A	
	230	A	266	A	358	A	
	232	A	267	A	363	A	
	233	В	268	A	364	A	
	I	1		ļ	П	ı	1

- 219 -

Table 8 (Cont'd)

1	t	;	i			
365	A	403	A .	465	A	
366	A	404	A	466	A	
367	A	406	В	467	С	
369	A	407	С	468	A	Ì
370	A	408	С	469	A	-
371	A	409	A	470	A	
373	A	410	С	471	А	
374	A	421	A	472	A	
375	В	422	A	473	. : A	
376	В	431	A	476	A	
377	В	432	A	477	A	
381	A	433	A	478	C	
385	A	434	В	479	A	
387	A	437	A	480	A	
388	A	439	С	481	A	
389	A	442	A	482	A	
390	A	443	A	483	A	
391	A	444	A	484	A	
392	A	447	A	485	Α .	
393	A	448	A ·	486	A	
394	A	449	A	487	A	
397	С	450	A	488	A	
399	A	451	A	489	A	
400	В	452	A	516	A	
401	A	453	A	517	A	
402	A	455	A	518	Α .	
	1	(1	1

Table 8 (Cont'd)

1			_			
523	A	563	A	595	A	
524	A	564	A	596	В	
525	A	565	A	. 597	A	
527	A	566	A	598	В	
529	A	567	A	599	В	
532	A	568	A	602	В	
533	A	569	A	603	С	
534	A	570	A	604	A	
535	В	571	A	605	В	
537	A	572	A	606	A	
538	A	573	В	607	Λ	
541	В	574	A	608	L	
543	С	575	A	609	A	
544	A	576	A	610	A	
545	A	577	A	611	A	
546	A	578	A	612	A	
547	В	579	В	613	A	
548	A	580	Α .	614	A	
549	A	584	A	.615	A	
552	A	585	A	616	A	
553	A	586	A	617	A	
554	A	587	A	618	A	
555	A	588	A	619	В	
556	A	589	С	620	A	
557	A	592	С	621	A	
562	A	594	A	623	Α.	
	1					

Table 8 (C	cont'd)
------------	---------

1					_		
	624	A	654	B .	682	· А	
	625	A	655	В	683	A	
	626	A	656	В	684	A	
	627	A	∶657	· c	685.	В	
	628	A	658	A	686	B	
	629	A	659	A	688	С	
	630	A ·	-660	A	690	A	
	631	A	661	A	691	A	
	636	A	662	A	692	A	
	637	A	663	A	693	A	
	638	A	664	A	694	A	
	639	A	665	A.	695	A	
ŀ	640	A	666	A.	696	A	
	641	A	667	А	697	A	
	642	A	668	A	698	· A	
	643	A	. 669	A	699	A.	
	644	В	<u>,</u> 670	A	700	A	
	645	A	671	A	701	A	
	646	A	672	A	702	С	
	647	A	673	A	703	A	
	648	A	674	A	705	A	
	649	A	. 675	A	710	A.	
	650	В	677	A	711	c	
	651	A	678	A	712	A	
	652	A	680	A	713	A	
	653	A	681	A	714	A	
-				1			

Table 8 (Cont'd)

715	A	750	С	812	A
716	A	751	A	813	A
717	A	754	A·	815	A
719	A	755	A	816	A
720	A	756	A	817	A
725	A	757	A	818	A
726	A ·	758	В	819	A
727	С	759	A	821	A
728	A	760	A	822	A
729	A	761	A	823	A
730	A	763	В	. 824	В.
731	A	764	С	825	A
732	A	766	A	826	A
733	A	767	A	827	A
734	A	768	A	828	A
735	A	769	A	829	A
737	A	772	В	830	A
739	A	773	С	831	В
740	A	774	A	832	В
741	A	775	A _.	834	С
742	A	777	A	835	A
743	A	778	В	836	A
744	A	795	A	839	В
745	A	800	A	840	c
746	A	801	В	842	A
749	A	802	A	843	В .
[1		

Table 8 (Cont'd)

		1	1	1		
١	845	. A	851 .	A	854	В
	848	A	852	A	856	В
	850	A	853	A	857	В
					•	÷

l Test example 8 Acaricidal activity against the twospotted spidermite (Tetranychus urticae)

All stages of the mites were inoculated on a soybean plant. The mites and the plant were sprayed with

the aqueous emulsion of the compound at 200 ppm. On 8th day after treatment, the acaricidal activity was judged according to the same criterion as in the test example 4.

The results are shown in table 9.

Table 9

Compound No.	Acaricidal activity	Compound No.	Acaricidal activity	Compound No.	Acaricidal activity
8	A	52	. A	92	· A
9	Α .	53	A	93	. A
10	A	54	A	94	A
11	A	55	A	95	·· А
12	A	56	A	96	: A
13	A	57	A	97	A
17	С	58	A	98	· A
19	A	59	A	102	A
20	A	60	A	103	: A
21	A	65	В	104	A
· 22	A	66	A	105	· A
23	A	67	A	109	A
24	A	68	A	110	A
25	A	69	A	111	A
27	A	71	A	112	A
32	В	72	A	113	A
33	A	73	A	114	A
34	A	74	A	118	A
35	A	85	A	119	A
36	A	86	A	120	· A
40	A	87	A	121	A
41	В	88	A	122	A
42	· A	89	A	123	A
50	A	90	A	124	A
51	В	91	A	125	A

Table 9 (Cont'd)

126	A	159	A	214	A
127 .	A	160	· A	215	A
133	A	161	С	217	A
134	A	164	A	219	. A
135	Α .	166	A	220	A
136	A	167	A	221	A
138	A	169	A	228	A
139	A	170	A	229	. A
140	A	171	A	230	A
141	А	193	A	231	. A
142	С	194	A	232	В
143	A	195	. A	233	. A
144	c	197	В	234	A
145	A	198	A	235	A
146	A	199	A	236	A
147	A	200	A	237	A
149	С	201	A	238	A
150	С	202	A	_ 239	A
151	С	203	A	240	A
152	В	204	A	. 241	A
153	A	205	A	242	A
154	A	206	A	243	A
. 155	A	207	A	244	A
156	A	211	A	245	A·
157.	A	212	A	246	A
158	A	213	В	248	Α.
1		l			

Table 9 (Cont'd)

249	A	334	A	377	, c
250	A	335	В	378	· с
251	A	337	С	379	с
253	A	342	, B	382	A
254	A	343	С	383	A
255	A	344	В	384	A
256	· A	350	c	-385	В
257	A	353	A .	386	A
258	A	354	· A	387	· A
262	A	355	A	388	A
263	· A	356	A	389	. А
264	A	357	A	390	A
265	. А	358	В	. 391	A
266	A	363	A	392	A
267	A	364	A	393	· A
268	A	365	A	394	A
269	A	366	A	395	A
281	· B	367	В	396	В
282	A	369	A	397	В
283	A	370	В	399	A
302	В	371	A	400	· A
304	С	372	A	401	A
328	С	373	A	402	A
331	С	374	A	403	A
332	C.	375	A	404	A
333	A	376	В	405	A
i	1	ſ	.I		1 1

Table 9 (Cont'd)

i i	i		ı	_	. 2
406	A	451	A	487	A
407	A	452	A	488	A
409	A	453	A	489	A
421	A	454	A	490	A
422	A	455	A	491	. А
424	В	465	A	492	A
427	В	466	A	493	A
428	В	· 467	A	494	. А
431	В	468	A	495	A
432	В	469	A	496	A
433	С	470	A	497	A
434	С	471	A	498	A
436	A	472	A	499	A
437	С	473	A	500	A
438	A	474	A	501	A:
439	A	476	A	502	A
440	В	477	. А	503	A
441	A	478	С	504	A
443	A	479	A	505	A
444	A	480	A	506	A
445	A	481	A	507	A
446	A	482	A	508	С
447	С	483	A	516	С
448	A	484	A	517	A
449	A	485	A	518	. A
450	A	486	A	523	A
I	1 (1			[

Table 9 (Cont'd)

1			11		. 1
524	A	558	A	594	A
. 525	Α .	559	В	595	A
527	A	561	A	596	С
531	A	. 562	A	597	B
532	· A	563	· A ·	599	В
533	A	564	A	600	В
534	A	565	В	602	A
535	A	566	В	603	A
536	A	567	A	604	A
537	A	568	A	605	A
538	A	569	A	606	A
541	A	570	A	607	В
544	A	571	A	608	A
545	A	572	A	609	A
546	A	573	A	610	A.
547	A	574	A	611	A
. 548	A	575	B	612	A
549	A	576	A	613	A
550	В	577	A	614	A
551	A	578	A	615	À
552	A	579	A	616	A
553	A	580	A	617	A
554	A	584	· A	618	A
555	A	585	A	619	A
556	A	587	A	620	Ä
557	A	588	A	621	A
		()	1	ļļ	1

Table 9 (Cont'd)

. 623	A	656	A	684	A
624	A	657	A	691	A
625	A	658	A	692	A
626	A	659	A	694	A
627	A	660	A	695	С
628	A	661	A	696	. A .
629	A	662	A	697	A
630	A	663	A	699	A
631	A	664	A	701	A
636	A	665	A	702	A
637	A	666	A .	703	A
638	A	667	A	704	В
639	A	668	A	705	A
640	A	669	A	706	A
642	A	670	A	709	A
643	A	671	A	710	A
644	С	672	A	712	A
645	A	673	A	713	A
646	A	674	A	714	В
647	A	675	A	715	A
648	A	677	A	716	A
650	С	678	A	717	A
652	A	680	A	718	c
653	В	681	A	719	A
654	A	. 682	A	720	A
655	A	683	A	721	A ·
l		1		1	

Table 9 (Cont'd)

i i		, i	i ,	,	i ·	
723	A	756	В	785	ъ В	
724	A	757	A	789	· c	
725.	A	758	A.	791	с	
726	A	759	··· A	792	В	
1: 727	- ^ А	760	· A	799	В	
728	A	761	A	800	. B:	
729	Α .	762	- B	801	В	
730	A	763	A	804	A	
731	A	764	В	811	с	
732	A	765	С	816	A	
733	Α .	766	A	817	A .	
734	A	767	A	818	A	
735	. В	768	A	819	A	
736	С	769	A	821	A	
737	A	770	A	822	A	
739	A	771	A	823	A	
740	A	772	• А	824	A	
741	A	773	A	825	В	
742	A	774	A	826	A	
743	A	775	A	827	A	
745	В	776	A	828	A	
746	A	777	A	829	A	
751	A	778	A	830	A	
752	A	779	A	831	A	
753	, A	780	A	832	A	
754	В	782	A	833	A ·	
1	1		I		1	

- 232 - C234045
Table 9 (Cont'd)

T		ı .		,	
834	Α	840	A	850	A
835	A	842	A	851	А
836	A	843	Α	. 852	A
837	A	844	A	853	A
838	В	845	С	854	A
839	A	848	A	855	· A
	·				

Next, formulation examples will be shown. In the examples, all parts are by weight.

Formulation example 1 Wettable powder

Compound No.60 50 parts

Mixture of diatomaceous earth and clay 45 parts

Polyoxyethylene nonylphenyl ether 5 parts

The above materials were uniformly mixed and ground to obtain a wettable powder.

Formulation example 2 Emulsion

5

٠.

1 Ì

ş :

10 Compound No.154

Tetrahydrofuran

Xylene

Mixture of polyoxyethylene nonylphenyl
ether and a salt of alkylbenzenesulfonic

15 acid

20 parts

45 parts

15 parts

The above materials were uniformly mixed and dissolved to obtain an emulsion.

Formulation example 3 Dust

Compound No.503 4 parts

20 Mixture of diatomaceous earth, clay and
talc 95 parts
Calcium stearate 1 part

The above materials were univormly mixed and ground to obtain a dust.

1 Formulation example 4 Granule

Compound No.237

3 parts

Mixture of bentonite and clay

92 parts

Calcium ligninsulfonate

5 parts

5 The above materials were uniformly mixed and ground. The resulting ground mixture were thoroughly kneaded with a proper amount of water and pelletized to obtain granules.

What is claimed is:

A pyrazole oxime derivative represented by the general formula (I),

wherein R^1 represents C_1-C_4 alkyl or phenyl; R^2 represents hydrogen, C_1-C_5 alkyl, C_1-C_3 haloaklyl or phenyl; R^3 represents hydrogen, C_1 - C_4 alkyl or phenyl; R^4 represents hydrogen, C_2-C_4 alkylcarbonyl, benzoyl, naphthyl or a substituent of

the formula, - [in which X represents hydrogen;

halogen; $c_1^{-c}c_{12}$ alkyl; $c_1^{-c}c_6$ alkyl substituted with halogen, cyano, hydroxy, C_1-C_5 alkoxy or C_2-C_6 alkoxycarbonyl; C3-C8 cycloalkyl; cycloalkyl substituted with from one to three members selected from the group consisting of C_1 - C_4 alkyl, halogen and cyano; C_2 - C_4 alkenyl substituted with halogen, hydroxy, $C_2^{-C_4}$ alkoxycarbonyl or C2-C6 alkylcarbonyl; phenyl; hydroxy; C1-C6 alkoxy; C1-C4 alkoxy substituted with halogen or C2-C6 alkoxycarbonyl; phenoxy which may or may not be substituted with C_1-C_3 haloalkyl; benzyloxy; C_1-C_3 alkylendioxy formed by two adjacent Xs; pyridyloxy which may or may not be substituted with halogen or C_1-C_3 haloalkyl; a substituent of the formula, $-S(0)_{D}R^{5}$ (in which R^{5} represents $C_{1}-C_{6}$ alkyl, $\mathrm{C}_1\mathrm{-C}_5$ haloalkyl or phenyl, and p represents an integer of 0, 1 or 2); cyano; formyl; nitro; a substituent of the formula, -COOR {in which R represents hydrogen; alkali metal; $C_1 - C_{10}$ alkyl; $C_1 - C_5$ alkyl substituted with halogen, c_1-c_4 alkoxy, phenoxy, c_2-c_4 alkoxycarbonyl or phenoxyphenyl; C_2-C_7 alkenyl; C_3-C_7 alkynyl; C_3-C_8 cycloalkyl; C_3-C_8 cycloalkyl substituted with C_1-C_3 alkyl; phenyl; or a

substituent of the formula, $-s_n = R^8$ (in which R^7 , R^8 and

 R^9 , which may be the same or different, represent C_1 - C_4 alkyl or C₃-C₈ cycloalkyl)); C₂-C₆ alkylcarbonyl; C₂-C₆ alkylcarbonyl substituted with cyano or C2-C6 alkoxycarbonyl; benzoyl which may or may not be substituted with halogen or C₁-C₆ alkyl; C₂-C₆ alkylthiocarbonyl; C₃-C₇ alkoxycarbonylcarbonyl; a substituent of the formula,

 $\begin{array}{c} 0 \\ -CN \end{array}$ (in which R^{10} and R^{11} , which may be the same or

different, represent hydrogen, C_1-C_6 alkyl or phenyl); piperidinocarbonyl; morpholinocarbonyl which may or may not be substituted with one or two $C_1 - C_4$ alkyls; a substituent

of the formula, -N = 13 (in which R^{12} represents hydrogen

or C_1-C_5 alkyl, and R^{13} represents formyl, C_2-C_{12} alkoxycarbonyl, or $C_2^{-C_5}$ alkoxycarbonyl substituted with halogen - 237 - 0234945 or C_1 - C_4 alkoxy); a substituent of the formula, O_1 (in which R^{14} represents hydrogen, $C_1 - C_4$ alkyl or $C_2 - C_6$ alkoxyalkyl); a substituent of the formula, -C-R¹⁷

(in which R^{15} and R^{16} , which may be the same or different, represent $C_1 - C_4$ alkyl or, taken together, may form $C_1 - C_4$ alkylene, R^{17} represents C_1-C_5 alkyl, cyano or C_2-C_6 alkoxycarbonyl, and B represents oxygen or sulfur); a sub-

stituent of the formula, $-C = R^{19}$ (in which R^{18} represents

hydrogen or C_2 - C_4 alkycarbonyl, and R^{19} and R^{20} , which may be the same or different, represent hydrogen or $c_1 - c_6$

alkyl); a substituent of the formula, $-\sin R^{22}$ (in which -23

 R^{21} , R^{22} and R^{23} , which may be the same or different, represent C_1-C_4 alkyl); or a substituent of the formula,

$$-0-\sin^{24}$$
 (in which R^{24} , R^{25} and R^{26} , which may be the

same or different, represent C_1-C_4 alkyl), and n represents an integer of from 1 to 5, and when n represents an integer of from 2 to 5, X may be the same or different]; Y represents hydrogen, C_1-C_6 alkyl, C_1-C_4 haloalkyl, halogen, hydroxy, C_1-C_4 alkoxy, C_1-C_4 haloalkoxy, C_1-C_3 alkylenedioxy,

phenoxy which may or may not be substituted with trifluoromethyl, a substituent of the formula, $-s(0)_q R^{27}$ (in which R^{27} represents C_1-C_3 alkyl and q represents an integer of 0, 1 or 2), hydroxycarbonyl, C_2-C_5 alkoxycarbonyl or a

substituent of the formula, -N R^{28} (in which R^{28} and R^{29} ,

which may be the same or different, represent hydrogen, C_1-C_4 alkyl, or benzyl which may or may not be substituted with C_2-C_6 alkoxycarbonyl); z^1 represents oxygen or sulfur; z^2 represents oxygen, sulfur or single bond; Q represents C_1-C_8 alkylene, C_1-C_8 alkylene substituted with halogen or phenyl, C_3-C_{12} alkenylene, C_3-C_{12} haloalkenylene or C_3-C_6 alkynylene; and m represents an integer of from 1 to 3, and when m represents an integer of 2 or 3, Y may be the same or different.

2. A pyrazole oxime derivative according to Claim 1, wherein R^1 represents $C_1 - C_4$ alkyl; R^2 represents $C_1 - C_4$ alkyl or $C_1 - C_3$ haloalkyl; R^3 represents hydrogen, $C_1 - C_4$ alkyl or phenyl; R^4 represents a substituent of the for-

mula,
$$C_1$$
 [in which X represents C_1 - C_{12} alkyl; C_1 - C_4

haloalkyl; C_3 - C_7 cycloalkyl; C_3 - C_7 cycloalkyl substituted with from one to three members selected from the group consisting of C_1 - C_4 alkyl, halogen and cyano; C_1 - C_5 alkoxy; C_1 - C_4 haloalkoxy; 3-chloro-5-trifluoromethylpyridin-2-yloxy; a substituent of the formula, $-S(0)_pR^5$ (in which R^5

represents C_1 - C_5 alkyl, C_1 - C_5 haloalkyl or phenyl, and p represents an integer of 0, 1 or 2); a substituent of the formula, $-COOR^6$ (in which R^6 represents C_1 - C_8 alkyl, C_1 - C_6 haloalkyl, C_5 - C_7 cycloalkyl; or C_3 - C_8 cycloalkyl substituted with C_1 - C_3 alkyl); C_2 - C_6 alkylcarbonyl; C_2 - C_6 alkylcarbonyl; C_2 - C_6 alkylcarbonyl; a substituent of

the formula, -N R^{12} (in which R^{12} represents C_1-C_5 alkyl,

and R^{13} represents C_2-C_{10} alkoxycarbonyl or formyl); a sub-

stituent of the formula, -N (in which R^{14} repre-

sents hydrogen, C_1-C_4 alkyl or C_2-C_5 alkoxyalkyl); a sub-

stituent of the formula, $-C = \mathbb{R}^{15}$ (in which \mathbb{R}^{15} and \mathbb{R}^{16} , \mathbb{R}^{16}

taken together, form C_1 - C_7 alkylene, R^{17} represents C_1 - C_4 alkyl and B represents oxygen or sulfur); or trimethylsilyl]; Y represents hydrogen, C_1 - C_6 alkyl, halogen, C_1 - C_4 alkoxy or C_1 - C_4 haloalkoxy; and Q represents C_1 - C_4 alkylene which may have a branched chain.

3. A pyrazole oxime derivative according to Claim 1, wherein R¹ represents methyl; R² represents methyl or trifluoromethyl; R³ represents hydrogen or methyl; R⁴ repre-

sents a substituent of the formula, --X [in which X

represents tert-butyl, 2,2-dichloro-l-methlcyclopropyl, l-cyanocyclopentyl, cyclohexyl, tert-butoxy, 1,1,2,2-tetra-fluoroethoxy, 3-chloro-5-trifluoromethylpyridin-2-yloxy, C₁-C₄ alkylthio, heptafluoropropylthio, C₁-C₃ haloalkyl-sulfinyl, tert-butylcarbonyl, tert-butylthiocarbonyl, C₃-C₇ N,N-dialkylcarbamoyl, 2-methyl-1,3-dioxolane-2-yl, 2,4-dimethyl-1,3-dioxolane-2-yl, 2-isopropyl-1,3-dioxolane-2-yl, 2-isopropyl-1,3-dioxolane-2-yl, 2-isopropyl-1,3-dioxolane-2-yl, a substituent of the formula, -COOR⁶ (in which R⁶ represents C₃-C₅ alkyl, 1,1-dimethyl-2-chloroethyl, cyclohexyl or l-methylcyclohexyl),

a substituent of the formula, -N $C_2^{H_5}$ (in which R^{13}

represents C_2 - C_9 alkoxycarbonyl or 2-chloroethoxycarbonyl), 5-ethyl-1,3-oxazolidone-2-yl or trimethylsilyl]; Y represents hydrogen or fluorine; z^1 represents oxygen; z^2 represents oxygen or single bond; and Q represents C_1 - C_3 alkylene which may have a branched chain.

4. A pyrazole oxime derivative according to claim 1, wherein R¹ represents methyl; R² represents methyl or trifluoromethyl; R³ represents hydrogen; R⁴ represents a sub-

stituent of the formula, -X [in which X represents

tert-butyl, 2,2-dichloro-l-methylcyclopropyl, 1-cyano-cyclopentyl, tert-butoxy, 1,1,2,2-tetrafluoroethoxy, heptafluoropropylthio, C_1-C_3 haloalkylsulfinyl, tert-butylcarbonyl, C_3-C_7 N,N-dialkylcarbamoyl,

2-isopropyl-1,3-dioxolane-2-yl, 2-isopropyl-1,3-dithiolane-2-yl, a substituent of the formula, $-\text{COOR}^6$ (in which R^6 represents $\text{C}_3\text{-C}_5$ alkyl, 1,1-dimethyl-2-chloroethyl, cyclohexyl or 1-methylcyclohexyl), a substituent of the formula,

$$^{\text{C}_{2}\text{H}_{5}}$$
 -N $_{\text{R}^{13}}$ (in which $^{\text{R}^{13}}$ represents $^{\text{C}_{2}\text{-C}_{5}}$ alkoxycarbonyl) or

5-ethyl-1,3-oxazolidone-2-yl]; Y represents hydrogen or fluorine; Z^1 represents oxygen; Z^2 represents oxygen or single bond; Q represents $C_1^{-}C_2$ alkylene which may have a branched chain; and m represents an integer of 1.

5. A method for producing a pyrazole oxime derivative represented by the general formula (I),

wherein R^1 represents C_1 - C_4 alkyl or phenyl; R^2 represents hydrogen, C_1 - C_5 alkyl, C_1 - C_3 haloalkyl or phenyl; R^3 represents hydrogen, C_1 - C_4 alkyl or phenyl; R^4 represents hydrogen, C_2 - C_4 alkylcarbonyl, benzoyl, naphthyl or a substituent of

the formula, \nearrow X n [in which X represents hydrogen;

halogen; C_1-C_{12} alkyl, C_1-C_6 alkyl substituted with halogen, cyano, hydroxy, C_1-C_5 alkoxy or C_2-C_6 alkoxycarbonyl;

 C_3 - C_8 cycloalkyl; cycloalkyl substituted with from one to three members selected from the group consisting of ${\rm C_{1}-C_{4}}$ alkyl, halogen and cyano; C2-C4 alkenyl substituted with halogen, hydroxy, C_2-C_4 alkoxycarbonyl or C_2-C_6 alkylcarbonyl; phenyl; hydroxy; C_1-C_6 alkoxy; C_1-C_4 alkoxy substituted with halogen or C2-C6 alkoxycarbonyl; phenoxy which may or may not be substituted with c_1-c_3 haloalkyl; benzyloxy; C₁-C₃ alkylenedioxy formed by two adjacent Xs; pyridyloxy which may or may not be substituted with halogen or C₁-C₃ haloalkyl; a substituent of the formula, -S(0)_pR⁵ (in which R^5 represents $C_1 - C_6$ alkyl, $C_1 - C_5$ haloalkyl or phenyl, and p represents an integer of 0, 1 or 2); cyano; formyl; nitro; a substituent of the formula, -COOP. 6 {in which R⁶ represents hydrogen; alkali metal; C₁-C₁₀ alkyl; C_1-C_5 alkyl substituted with halogen, C_1-C_4 alkoxy, phenoxy, C_2-C_4 alkoxycarbonyl or phenoxyphenyl; C_2-C_7 alkenyl; C_3-C_7 alkynyl; C_3-C_8 cycloalkyl; C_3-C_8 cycloalkyl substituted with c_1-c_3 alkyl; phenyl; or a substituent of

the formula, $-s_n = R^8$ (in which R^7 , R^8 and R^9 , which may be

the same or different, represent C_1-C_4 alkyl or C_3-C_8 cycloalkyl)}; C_2-C_6 alkylcarbonyl; C_2-C_6 alkylcarbonyl substituted with cyano or C_2-C_6 alkoxycarbonyl; benzoyl which may or may not be substituted with halogen or C_1-C_6 alkyl; C_2-C_6 alkylthiocarbonyl; C_3-C_7 alkoxycarbonyl-

carbonyl; a substituent of the formula, -CN R^{10} (in

which R^{10} and R^{11} , which may be the same or different, represent hydrogen, $C_1^{-C}_6$ alkyl or phenyl); piperidinocarbonyl; morpholinocarbonyl which may or may not be substituted with one or two $C_1^{-C}_4$ alkyls; a substituent of the

formula, -N R^{12} (in which R^{12} represents hydrogen or

 $\rm C_1-C_5$ alkyl, and $\rm R^{13}$ represents formyl, $\rm C_2-C_{12}$ alkoxycarbonyl, or $\rm C_2-C_5$ alkoxycarbonyl substituted with halogen

or C_1 - C_4 alkoxy); a substituent of the formula, -N = 0

(in which R^{14} represents hydrogen, $C_1 - C_4$ alkyl or $C_2 - C_6$

alkoxyalkyl); a substituent of the formula, $-C-R^{17}$ (in

which R^{15} and R^{16} , which may be the same or different, represent $C_1^{-C_4}$ alkyl or, taken together, may form $C_1^{-C_4}$ alkylene, R^{17} represents $C_1^{-C_5}$ alkyl, cyano or $C_2^{-C_6}$ alkoxycarbonyl, and B represents oxygen or sulfur); a

substituent of the formula, $-C = R^{19}$ (in which R^{18} repre-

sents hydrogen or C_2 - C_4 alkylcarbonyl, and R^{19} and R^{20} , which may be the same or different, represent hydrogen or

 C_1 - C_6 alkyl); a substituent of the formula, $-Si-R^{21}$ (in

which R^{21} , R^{22} and R^{23} , which may be the same or different, represent C_1 - C_4 alkyl); or a substituent of the formula,

$$R^{24}$$
 $= -0-Si-R^{25}$ (in which R^{24} , R^{25} and R^{26} , which may be the

same or different, represent C_1-C_4 alkyl), and n represents an integer of from 1 to 5, and when n represents an integer of from 2 to 5, X may be the same or different]; Y represents hydrogen, C_1-C_6 alkyl, C_1-C_4 haloalkyl, halogen, hydroxy, C_1-C_4 alkoxy, C_1-C_4 haloalkoxy, C_1-C_3 alkylenedioxy, phenoxy which may or may not be substituted with trifluoromethyl, a substituent of the formula, $-S(0)_q R^{27}$ (in which R^{27} represents C_1-C_3 alkyl and q represents an integer of 0, 1 or 2), hydroxycarbonyl, C_2-C_5 alkoxy-

carbonyl or a substituent of the formula, -N (in

which R^{28} and R^{29} , which may be the same or different, represent hydrogen, C_1 - C_4 alkyl, or benzyl which may or may not be substituted with C_2 - C_6 alkoxycarbonyl); z^1 represents oxygen or sulfur; z^2 represents oxygen, sulfur or single bond; Q represents C_1 - C_8 alkylene, C_1 - C_8 alkylene substituted with halogen or phenyl, C_3 - C_{12} alkenylene, C_3 - C_{12} haloalkenylene or C_3 - C_6 alkynylene; and m represents an integer of from I to 3, and when m represents an integer of 2 or 3, Y may be the same or different, which comprises reacting a compound represented by the general formula (II),

$$\begin{array}{c|c}
R^3 \\
c = NOM^1
\end{array}$$

wherein R^1 , R^2 , R^3 , Y, Z^1 and m are as defined above, and M^1 represents hydrogen or alkali metal,

with a compound represented by the general formula (III),

$$Hal-Q-Z^2-R^4$$
 (III)

wherein R^4 , Q and Z^2 are as defined above, and Hal represents halogen.

6. A method for producing a pyrazole oxime derivative represented by the general formula (I),

wherein R^1 represents C_1-C_4 alkyl or phenyl; R^2 represents hydrogen, C_1-C_5 alkyl, C_1-C_3 haloalkyl or phenyl; R^3 represents hydrogen, C_1-C_4 alkyl or phenyl; R^4 represents hydrogen, C_2-C_4 alkylcarbonyl, benzoyl, naphthyl or a substituent of

the formula, \bigcirc [in which X represents hydrogen;

halogen; C1-C12 alkyl; C1-C6 alkyl substituted with halogen, cyano, hydroxy, C₁-C₅ alkoxy or C₂-C₆ alkoxycarbonyl; C3-C8 cycloalkyl; cycloalkyl substituted with from one to three members selected from the group consisting of C_1-C_A alkyl, halogen and cyano; C2-C4 alkenyl substituted with halogen, hydroxy, C_2 - C_4 alkoxycarbonyl or C_2 - C_6 alkylcarbonyl; phenyl; hydroxy; C_1-C_6 alkoxy; C_1-C_4 alkoxy substituted with halogen or C2-C6 alkoxycarbonyl; phenoxy which may or may not be substituted with c_1 - c_3 haloalkyl; benzyloxy; C1-C3 alkylenedioxy formed by two adjacent Xs; pyridyloxy which may or may not be substituted with halogen of C_1-C_3 haloalkyl; a substituent of the formula, $-S(0)_{pR}^5$ (in which R^5 represents $c_1^{-c}c_6$ alkyl, $c_1^{-c}c_5$ haloalkyl or phenyl, and p represents an integer of 0, 1 or 2); cyano; formyl; nitro; a substituent of the formula, -COOR {in which R^6 represents hydrogen; alkali metal; C_1-C_{10} alkyl; C_1-C_5 alkyl substituted with halogen, C_1-C_4 alkoxy, phenoxy, C_2-C_4 alkoxycarbonyl or phenoxyphenyl; C_2-C_7 alkenyl; C3-C7 alkynyl; C3-C8 cycloalkyl; C3-C8 cycloalkyl substituted with C₁-C₃ alkyl; phenyl; or a substituent of the

formula, $-S_n = \frac{R^7}{R^9}$ (in which R^7 , R^8 and R^9 , which may be the

same or different, represent C_1 - C_4 alkyl or C_3 - C_8 cycloalkyl)}; C_2 - C_6 alkylcarbonyl; C_2 - C_6 alkylcarbonyl substituted with cyano or C_2 - C_6 alkoxycarbonyl; benzoyl which may or may not be substituted with halogen or C_1 - C_6 alkyl; C_2 - C_6 alkylthiocarbonyl; C_3 - C_7 alkoxycarbonylcarbonyl; a

- 247 - 0234045 substituent of the formula, $-\text{CN}_{\text{pl1}}^{\text{l0}}$ (in which R^{l0} and

R11, which may be the same or different, represent hydrogen, C₁-C₆ alkyl or phenyl); piperidinocarbonyl; morpholinocarbonyl which may or may not be substituted with one or two c_1 - c_4 alkyls; a substituent of the formula,

$$-N_{\rm R}^{12}$$
 (in which $\rm R^{12}$ represents hydrogen or $\rm C_1-C_5$ alkyl,

and R^{13} represents formyl, C_2-C_{12} alkoxycarbonyl, or C_2-C_5 alkoxycarbonyl substituted with halogen or $C_1^{-C_4}$ alkoxy); a

substituent of the formula,
$$-N = 0$$
 (in which R^{14}

represents hydrogen, c_1 - c_4 alkyl or c_2 - c_6 alkoxyalkyl); a

substituent of the formula,
$$-C = R^{17}$$
 (in which R^{15} and R^{16}

 R^{16} , which may be the same or different, represent $\mathrm{C}_1\mathrm{-C}_4$ alkyl or, taken together, may form c_1-c_4 alkylene, R^{17} represents C_1-C_5 alkyl, cyano or C_2-C_6 alkoxycarbonyl, and B represents oxygen or sulfur); a substituent of the

formula,
$$-C = R^{19}$$
 (in which R^{18} represents hydrogen or R^{20}

 C_2-C_4 alkycarbonyl, and R^{19} and R^{20} , which may be the same or different, represent hydrogen or C1-C6 alkyl); a

substituent of the formula, $-\sin^{21}$ (in which R^{21} , R^{22}

and R^{23} , which may be the same or different, represent C_1-C_4 alkyl); or a substituent of the formula, $-0-Si-R^{25}$

(in which R^{24} , R^{25} and R^{26} , which may be the same or different, represent C_1-C_4 alkyl), and n represents an integer of from 1 to 5, and when n represents an integer of from 2 to 5, X may be the same or different]; Y represents hydrogen, C_1-C_6 alkyl, C_1-C_4 haloalkyl, halogen, hydroxy, C_1-C_4 alkoxy, C_1-C_4 haloalkoxy, C_1-C_3 alkylenedioxy, phenoxy which may or may not be substituted with trifluoromethyl, a substituent of the formula, $-S(0)_{\sigma}R^{27}$ (in which R^{27} represents C_1-C_3 alkyl and q represents an integer of 0, 1 or 2), hydroxycarbonyl, C_2-C_5 alkoxy-

carbonyl or a substituent of the formula, -N 29

which R^{28} and R^{29} , which may be the same or different, represent hydrogen, C_1-C_4 alkyl, or benzyl which may or may not be substituted with C2-C6 alkoxycarbonyl); Z1 represents oxygen or sulfur; Z² represents oxygen, sulfur or single bond; Q represents C_1-C_8 alkylene, C_1-C_8 alkylene substituted with halogen or phenyl, C3-C12 alkenylene, C_3-C_{12} haloalkenylene or C_3-C_6 alkynylene; and m represents an integer of from 1 to 3, and when m represents an integer of 2 or 3, Y may be the same or different,

which comprises reacting a compound represented by the general formula (VI),

$$\begin{array}{c|c}
R^{3} \\
\downarrow \\
C = 0
\end{array}$$

$$\begin{array}{c|c}
Y_{m} \\
\downarrow \\
R^{1}
\end{array}$$
(VI)

wherein R^1 , R^2 , R^3 , Y, Z^1 and m are as defined above, with a compound represented by the general formula (VII),

$$H_2NO-Q-z^2-R^4$$
 (VII)

wherein R^4 , Q and Z^2 are as defined above.

7. A method for producing a pyrazole oxime derivative represented by the general formula (I),

$$\begin{array}{c|c}
R^{2} & C = NO - Q - Z^{2} - R^{4} \\
N & Z^{1} - O \end{array}$$
(1)

wherein R^1 represents C_1-C_4 alkyl or phenyl; R^2 represents hydrogen, C_1-C_5 alkyl, C_1-C_3 haloalkyl or phenyl; R^3 represents hydrogen, C_1-C_4 alkyl or phenyl; R^4 represents hydrogen, C_2-C_4 alkylcarbonyl, benzoyl, naphthyl or a substituent of

the formula, - [in which X represents hydrogen;

1

; :

halogen; C_1-C_{12} alkyl; C_1-C_6 alkyl substituted with halogen, cyano, hydroxy, C_1-C_5 alkoxy or C_2-C_6 alkoxycarbonyl; C_3 - C_8 cycloalkyl; cycloalkyl substituted with from one to three members selected from the group consisting of $c_1 - c_4$ alkyl, halogen and cyano; C_2-C_4 alkenyl substituted with halogen, hydroxy, C_2 - C_4 alkoxycarbonyl or C_2 - C_6 alkylcarbonyl; phenyl; hydroxy; C_1-C_6 alkoxy; C_1-C_4 alkoxy substituted with halogen or C2-C6 alkoxycarbonyl; phenoxy which may or may not be substituted with C1-C3 haloalkyl; benzyloxy; C_1^{-C} alkylenedioxy formed by two adjacent Xs; pyridyloxy which may or may not be substituted with halogen or C₁-C₃ haloalkyl; a substituent of the formula, -S(0)_R5 (in which R^5 represents C_1-C_6 alkyl, C_1-C_5 haloalkyl or phenyl, and p represents an integer of 0, 1 or 2); cyano; formyl; nitro; a substituent of the formula, -COOR 6 {in which R⁶ represents hydrogen; alkali metal; C₁-C₁₀ alkyl; C_1-C_5 alkyl substituted with halogen, C_1-C_4 alkoxy, phenoxy, $c_2^{-c_4}$ alkoxycarbonyl or phenoxyphenyl; $c_2^{-c_7}$ alkenyl; C_3-C_7 alkynyl; C_3-C_8 cycloalkyl, C_3-C_8 cycloalkyl substituted with C_1-C_3 alkyl; phenyl; or a substituent of the

formula, $-s_{n} \stackrel{R^{7}}{\underset{R^{9}}{\stackrel{}{\sim}}}$ (in which R^{7} , R^{8} and R^{9} , which may be

the same or different, represent C_1 - C_4 alkyl or C_3 - C_8 cycloalkyl)); C_2 - C_6 alkylcarbonyl; C_2 - C_6 alkylcarbonyl substituted with cyano or C_2 - C_6 alkoxycarbonyl; benzoyl which may or may not be substituted with halogen or C_1 - C_6 alkyl; C_2 - C_6 alkylthiocarbonyl; C_3 - C_7 alkoxycarbonylcarbonyl; a

 R^{11} , which may be the same or different, represent hydrogen, $C_1^{-C}_6$ alkyl or phenyl); piperidinocarbonyl; morpholinocarbonyl which may or may not be substituted with one or two $C_1^{-C}_4$ alkyls; a substituent of the formula,

$$-N_{R13}^{12}$$
 (in which R^{12} represents hydrogen or C_1 - C_5 alkyl,

and R^{13} represents formyl, $C_2 - C_{12}$ alkoxycarbonyl, or $C_2 - C_5$ alkoxycarbonyl substituted with halogen or $C_1 - C_4$ alkoxy); a

substituent of the formula,
$$-N$$
 (in which R^{14}

represents hydrogen, C_1-C_4 alkyl or C_2-C_6 alkoxyalkyl); a

substituent of the formula,
$$-C = R^{17}$$
 (in which R^{15} and R^{16}

 R^{16} , which may be the same or different, represent $C_1^{-C_4}$ alkyl or, taken together, may form $C_1^{-C_4}$ alkylene, R^{17} represents $C_1^{-C_5}$ alkyl, cyano or $C_2^{-C_6}$ alkoxycarbonyl, and B represents oxygen or sulfur); a substituent of the

formula,
$$-C = R^{19}$$
 (in which R^{18} represents hydrogen or R^{20}

 C_2-C_4 alkylcarbonyl, and R^{19} and R^{20} , which may be the same or different, represent hydrogen or C_1-C_6 alkyl); a

substituent of the formula, $-\text{Si} = \frac{R^{21}}{R^{23}}$ (in which R^{21} , R^{22}

and R²³, which may be the same or different, represent

 C_1 - C_4 alkyl); or a substituent of the formula, -0- S_1 - R^{24}

(in which R^{24} , R^{25} and R^{26} , which may be the same or different, represent C_1 - C_4 alkyl), and n represents an integer of from 1 to 5, and when n represents an integer of from 2 to 5, X may be the same or different]; Y represents hydrogen, C_1 - C_6 alkyl, C_1 - C_4 haloalkyl, halogen, hydroxy, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_3 alkylenedioxy, phenoxy which may or may not be substituted with trifluoromethyl, a substituent of the formula, $-s(0)_q R^{27}$ (in which R^{27} represents C_1 - C_3 alkyl and q represents an integer of 0, 1 or 2), hydroxycarbonyl, C_2 - C_5 alkoxy-

carbonyl or a substituent of the formula, $-N < R^{28}$ (in

which R^{28} and R^{29} , which may be the same or different, represent hydrogen, C_1 - C_4 alkyl, or benzyl which may or may not be substituted with C_2 - C_6 alkoxycarbonyl), Z^1 represents oxygen or sulfur; Z^2 represents oxygen, sulfur or single bond; Q represents C_1 - C_8 alkylene, C_1 - C_8 alkylene substituted with halogen or phenyl, C_3 - C_{12} alkenylene, C_3 - C_{12} haloalkenylene or C_3 - C_6 alkynylene; and m represents an integer of from 1 to 3, and when m represents an integer of 2 or 3, Y may be the same or different,

which comprises reacting a compound represented by the general formula (VIII),

$$\begin{array}{c|c}
R^{2} & R^{3} \\
\downarrow & C=NO-Q-Hal \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow & X \\
\downarrow &$$

wherein R^1 , R^2 , R^3 , Y, Q, Z^1 and m are as defined above, and Hal represents halogen,

with a compound represented by the general formula (IX),

$$M^2 - Z^2 - R^4 \tag{IX}$$

wherein R^4 and Z^2 are as defined above, and M^2 represents hydrogen or alkali metal.

8. A method for producing a pyrazole oxime derivative represented by the general formula (Ia),

wherein R represents a substituent of the formula, -OW {in which W represents alkali metal; C_1-C_{10} alkyl; alkyl substituted with halogen, C_1-C_4 alkoxy, phenoxy, C_2-C_4 alkoxycarbonyl or phenoxyphenyl; C_2-C_7 alkenyl; C_3-C_7 alkynyl; C_3-C_8 cycloalkyl; C_3-C_8 cycloalkyl substituted

with C_1-C_3 alkyl; phenyl; or a substituent of the formula,

$$-s_n = \frac{R^7}{R^9}$$
 (in which R^7 , R^8 and R^9 which may be the same or

different, represent C_1-C_4 alkyl or C_3-C_8 cycloalkyl)}, a substituent of the formula, $-N < R^{10}_{R}$ (in which R^{10} and R^{11} , which may be the same or different, represent hydrogen, C_1-C_6 alkyl or phenyl); piperidino; morpholino which may or may not be substituted with one or two C_1-C_4 alkyls; or C_2-C_6 alkylthio; R^1 represents C_1-C_4 alkyl or phenyl; R^2 represents hydrogen, C_1-C_5 alkyl, C_1-C_3 haloalkyl or phenyl; R^3 represents hydrogen, C_1-C_4 alkyl or phenyl; R^3 represents hydrogen, R_1-R_4 alkyl or phenyl; R_1-R_4 represents hydrogen, R_1-R_4 alkyl, R_1-R_4 haloalkyl, halogen, hydroxy, R_1-R_4 alkoxy, R_1-R_4 haloalkoxy, R_1-R_4 alkoxy, R_1-R_4 haloalkoxy, R_1-R_4 haloalkoxy, phenoxy which may or may not be substituted with trifluoromethyl, a substituent of the formula, R_1-R_4 (in which R_1-R_4 represents R_1-R_4 alkyl and R_1-R_4 represents an integer of 0, 1 or 2), hydroxycarbonyl, R_1-R_4 alkoxy-

carbonyl or a substituent of the formula, $-N = R^{28}$ (in

which R^{28} and R^{29} , which may be the same or different, represent hydrogen, C_1 - C_4 alkyl, or benzyl which may or may not be substituted with C_2 - C_6 alkoxycarbonyl); Z^1 represents oxygen or sulfur; Z^2 represents oxygen, sulfur or single bond; Q represents C_1 - C_8 alkylene, C_1 - C_8 alkylene substituted with halogen or phenyl, C_3 - C_{12} alkenylene,

 C_3 - C_{12} haloalkenlene or C_3 - C_6 alkynylene; m represents an integer of from 1 to 3, and when m represents an integer of 2 or 3, Y may be the same or different; and x^1 represents hydrogen or C_1 - C_4 alkyl,

which comprises reacting a compound represented by the general formula (X),

wherein R^1 , R^2 , R^3 , X^1 , Y, Z^1 , Z^2 , Q and m are as defined above, with a compound represented by the general formula (XI),

wherein R is as defined above.

9. An insecticidal and acaricidal composition for use in agriculture and horticulture comprising an insecticidally and/or acaricidally effective amount of a pyrazole oxime derivative as an active ingredient and a suitable carrier, said pyrazole oxime derivative being represented by the general formula (I),

$$R^{2}$$

$$C=NO-Q-Z^{2}-R^{4}$$

$$N$$

$$R^{1}$$

$$Z^{1}$$

$$R^{2}$$

$$Y_{m}$$

$$(I)$$

wherein R^1 represents C_1-C_4 alkyl or phenyl; R^2 represents hydrogen, C_1-C_5 alkyl, C_1-C_3 haloalkyl or phenyl; R^3 represents hydrogen, C_1-C_4 alkyl or phenyl; R^4 represents hydrogen, C_2-C_4 alkylcarbonyl, benzoyl, naphthyl or a substituent of

the formula,
$$\bigvee_{n=1}^{X_n} X_n$$
 [in which X represents hydrogen;

halogen; C_1 - C_{12} alkyl; C_1 - C_6 alkyl substituted with halogen, cyano, hydroxy, C_1 - C_5 alkoxy or C_2 - C_6 alkoxycarbonyl; C_3 - C_8 cycloalkyl; cycloalkyl substituted with from one to three members selected from the group consisting of C_1 - C_4 alkyl, halogen and cyano; C_2 - C_4 alkenyl substituted with halogen, hydroxy, C_2 - C_4 alkoxycarbonyl or C_2 - C_6 alkyl-carbonyl; phenyl; hydroxy; C_1 - C_6 alkoxy; C_1 - C_4 alkoxy substituted with halogen or C_2 - C_6 alkoxycarbonyl; phenoxy which may or may not be substituted with C_1 - C_3 haloalkyl; benzyloxy; C_1 - C_3 alkylenedioxy formed by two adjacent Xs; pyridyloxy which may or may not be substituted with halogen or C_1 - C_3 haloalkyl; a substituent of the formula, $-s(0)_p R^5$ (in which R^5 represents C_1 - C_6 alkyl, C_1 - C_5 haloalkyl or phenyl, and p represents an integer of 0, 1 or 2); cyano; formyl; nitro; a substituent of the formula, $-coon^6$ {in

which R^6 represents hydrogen; alkali metal; C_1-C_{10} alkyl, C_1-C_5 alkyl substituted with halogen, C_1-C_4 alkoxy, phenoxy, C_2-C_4 alkoxycarbonyl or phenoxyphenyl; C_2-C_7 alkenyl; C_3-C_7 alkynyl; C_3-C_8 cycloalkyl; C_3-C_8 cycloalkyl substituted with C_1-C_3 alkyl; phenyl; or a substituent of

the formula, $-s_n = \begin{bmatrix} R^7 \\ R^8 \\ 9 \end{bmatrix}$ (in which R^7 , R^8 and R^9 , which may be

the same or different, represent C_1-C_4 alkyl or C_3-C_8 cycloalkyl)}; C2-C6 alkylcarbonyl; C2-C6 alkylcarbonyl substituted with cyano or C2-C6 alkoxycarbonyl; benzoyl which may or may not be substituted with halogen or $C_1 - C_6$ alkyl; C2-C6 alkylthiocarbonyl; C3-C7 alkoxycarbonyl-

carbonyl; a substituent of the formula, $-CN < \frac{10}{11}$ (in which

 ${\tt R}^{10}$ and ${\tt R}^{11}$, which may be the same or different, represent hydrogen, C_1-C_6 alkyl or phenyl); piperidinocarbonyl; morpholinocarbonyl which may or may not be substituted with one or two C_1-C_4 alkyls; a substituent of the formula,

$$-N < R^{12}$$
 (in which R^{12} represents hydrogen or C_1-C_5 alkyl,

and R^{13} represents formyl, C_2-C_{12} alkoxycarbonyl, or C_2-C_5 alkoxycarbonyl substituted with halogen or C_1-C_4 alkoxy); a

substituent of the formula,
$$-N \xrightarrow{0} 0$$
 (in which R^{14}

represents hydrogen, C_1-C_4 alkyl or C_2-C_6 alkoxyalkyl; a substituent of the formula, $-C = R^{17}$ (in which R^{15} and R^{16} ,

which may be the same or different, represent c_1 - c_4 alkyl or, taken together, may form C₁-C₄ alkylene, R¹⁷ represents C_1-C_5 alkyl, cyano or C_2-C_6 alkoxycarbonyl, and B represents oxygen or sulfur); a substituent of the formula,

$$-C$$
 R^{19}
(in which R^{18} represents hydrogen or C_2 - C_4

alkylcarbonyl, and R^{19} and R^{20} , which may be the same or different, represent hydrogen or c_1-c_6 alkyl); a sub-

stituent of the formula,
$$-\sin \frac{R^{21}}{R^{23}}$$
 (in which R^{21} , R^{22} and

 R^{23} , which may be the same or different, represent C_1 - C_4

alkyl); or a substituent of the formula,
$$-0-si < \frac{R^{24}}{R^{25}}$$
 (in

which R^{24} , R^{25} and R^{26} , which may be the same or different, represent C_1-C_4 alkyl), and n represents an integer of from I to 5, and when n represents an integer of from 2 to 5, xmay be the same or different]; Y represents hydrogen, C_1-C_6 alkyl, C_1-C_4 haloalkyl, halogen, hydroxy, C_1-C_4 alkoxy, C_1-C_4 haloalkoxy, C_1-C_3 alkylenedioxy, phenoxy which may or may not be substituted with trifluoromethyl, a substituent of the formula, $-s(0)_{\alpha}R^{27}$ (in which R^{27} represents C_1-C_3

- 259 - **G234045**

alkyl and q represents an integer of 0, 1 or 2), hydroxy-carbonyl, C_2 - C_5 alkoxycarbonyl or a substituent of the

formula, $-N < R^{28}$ (in which R^{28} and R^{29} , which may be the

same or different, represent hydrogen, C_1-C_4 alkyl, or benzyl which may or may not be substituted with C_2-C_6 alkoxycarbonyl); Z^1 represents oxygen or sulfur; Z^2 represents oxygen, sulfur or single bond; Q represents C_1-C_8 alkylene, C_1-C_8 alkylene substituted with halogen or phenyl, C_3-C_{12} alkenylene, C_3-C_{12} haloalkenylene or C_3-C_6 alkynylene; and m represents an integer of from 1 to 3, and when m represents an integer of 2 or 3, Y may be the same or different.

10. An insecticidal and acaricidal composition for use in agriculture and horticulture according to Claim 9, wherein R^1 represents C_1-C_4 alkyl; R^2 represents C_1-C_4 alkyl or C_1-C_3 haloalkyl; R^3 represents hydrogen or C_1-C_4

alkyl; R⁴ represents a substituent of the formula,

[in which X represents C_1-C_{12} alkyl, C_1-C_4 haloalkyl, C_5-C_7 cycloalkyl; C_3-C_7 cycloalkyl substituted with from one to three members selected from the group consisting of C_1-C_3 alkyl, halogen and cyano; C_3-C_4 alkoxy; C_1-C_2 haloalkoxy; 3-chloro-5-trifluoromethylpyridin-2-yloxy; a substituent of the formula, $-S(0)_pR^5$ (in which R^5 represents C_2-C_4 alkyl, C_1-C_3 haloalkyl or phenyl, and p represents an integer of

0, 1 or 2); a substituent of the formula, $-\cos^6$ (in which R^6 represents C_3-C_7 alkyl; C_4-C_6 haloalkyl; C_5-C_6 cycloalkyl; or C_5-C_6 cycloalkyl substituted with C_1-C_3 alkyl); C_2-C_6 alkylcarbonyl; C_2-C_6 alkylthiocarbonyl; C_3-C_9 N,N-

dialkylcarbamoyl; a substituent of the formula, $-N < \frac{R^{12}}{R^{13}}$

(in which R^{12} represents C_1-C_5 alkyl and R^{13} represents C_2-C_{10} alkoxycarbonyl or formyl); 1,3-dioxolane-2-yl substituted with C_1-C_4 alkyl; 1,3-dithiolane-2-yl substituted with C_1-C_4 alkyl; or trimethylsilyl]; Y represents hydrogen, halogen, C_1-C_4 alkoxy or C_1-C_4 haloalkoxy; and Q represents C_1-C_4 alkylene.

11. An insecticidal and acaricidal composition for use in agriculture and horticulture according to Claim 9, wherein R¹ represents methyl; R² represents methyl or trifluoromethyl; R³ represents hydrogen or methyl; R⁴

represents a substituent of the formula, -X [ir

which X represents tert-butyl, 2,2-dichloro-l-methylcyclo-propyl, 1-cyanocyclopentyl, cyclohexyl, tert-butoxy, 1,1,2,2-tetrafluoroethoxy, 3-chloro-5-trifluoromethyl-pyridin-2-yloxy, tert-butylthio, heptafluoropropylthio, heptafluoropropylsulfinyl, 1,1,2,2-tetrafluoroethyl-sulfinyl, a substituent of the formula, $-COOR^6$ (in which R^6 represents C_3-C_5 alkyl, 1,1-dimethyl-2-chloroethyl, cyclohexyl or 1-methylcyclohexyl), tert-butylcarbonyl,

tert-butylthiocarbonyl, N,N-diisopropylcarbamoyl, a

substituent of the formula, $-N < \frac{c_2^H s}{R^{13}}$ (in which R^{13} repre-

sents C_4 - C_9 alkoxycarbonyl or 2-chloroethoxycarbonyl), 2-isopropyl-1,3-dioxolane-2-yl, 2-isopropyl-1,3-dithiolane-2-yl or trimethylsilyl]; Y represents hydrogen or fluorine; z^1 represents oxygen; z^2 represents oxygen or single bond; z^2 represents z^2 represents oxygen or single bond; z^2 represents z^2 represents oxygen or single bond; z^2 represents z^2 represents oxygen or single bond; z^2 represents oxygen or single bond; z^2 represents oxygen or single bond;

12. An insecticidal and acaricidal composition for use in agriculture and horticulture according to Claim 9, wherein R¹ represents methyl; R² represents methyl or trifluoromethyl; R³ represents hydrogen; R⁴ represents a

substituent of the formula, -X [in which X repre-

sents tert-butyl, 2,2-dichloro-1-methylcyclopropyl, 1-cyanocyclopentyl, tert-butoxy, 1,1,2,2-tetrafluoroethoxy, heptafluoropropylthio, heptafluoropropylsulfinyl, a substituent of the formula, $-\text{COOR}^6$ (in which R^6 represents C_3-C_5 alkyl, 1,1-dimethyl-2-chloroethyl, cyclohexyl or 1-methylcyclohexyl), tert-butylcarbonyl, N,N-diisopropyl-

carbamoyl, a substituent of the formula, $-N < \frac{C_2H_5}{R^{13}}$ (in

which R^{13} represents C_4-C_8 alkoxycarbonyl), 2-isopropyl-1,3-dioxolane-2-yl, 2-isopropyl-1,3-dithiolane-2-yl or

trimethylsilyl]; Y represents hydrogen or fluorine; z^1 represents oxygen; z^2 represents oxygen or single bond; Q represents C_1-C_2 alkylene which may have a branched chain; and m represents an integer of 1.