Insolvability of General Quintic

Sixuan Lou

February 16, 2018

1 Definitions & Preliminaries

We say a field extension K/k is a *simple radical extension* (s.r.e) if $K = k(\alpha)$ for some $\alpha \in K$ and there exists $n \in \mathbb{N}$ such that $\alpha^n \in k$. If K/k can be built up by a chain of s.r.e's, we say K/k is a root extension. That is, there is a chain

$$k = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_r = K$$

where K_{i+1}/K_i is a s.r.e for all $i = 0, \ldots, r-1$.

We say a polynomial $f \in k[x]$ is solvable by radicals if there is a root extension L/k in which f splits.

Lemma 1.1. Let K_1/k , K_2/k be two root extensions, then K_1K_2/k is a root extension as well.

Proof. Suppose we have two chains:

$$k = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_r, \quad k = K_0' \subseteq K_1' \subseteq \cdots \subseteq K_s'$$

Observe, for all K', $K_{i+1}K'/K_iK'$ is a simple radical extension. Suppose $K_{i+1} = K_i(\alpha)$, then $K_{i+1}K' = K_iK'(\alpha)$, and $\alpha^n \in K_i \subseteq K_iK'$ for some $n \in \mathbb{Z}^+$. Then the following chain suffices:

$$k = K_0 K_0' \subseteq K_1 K_0' \subseteq K_1 K_1' \subseteq K_2 K_1' \subseteq K_2 K_2' \subseteq K_3 K_2' \subseteq \dots \subseteq K_r K_{s-1}' \subseteq K_r K_s'$$

Let k be a field of characteristic zero.

Lemma 1.2. If ζ is a primitive *n*-th root of unity, and $x^n - 1$ does not split completely over k, then $k(\zeta)/k$ is Galois and its Galois group embeds into $(\mathbb{Z}/n)^{\times}$.

Proof. Since ζ is a primitive n-th root of unity, $k(\zeta)$ is the splitting field of x^n-1 over k, so $k(\zeta)/k$ is Galois. Let $\sigma \in \operatorname{Gal}(k(\zeta)/k)$, it maps ζ to another primitive n-th roof of unity, $\zeta^{\sigma} = \zeta^i$ for some i. The map $\varphi : \operatorname{Gal}(k(\zeta)/k) \to (\mathbb{Z}/n)^{\times}$ mapping σ to i is a well-defined group homomorphism. It's injective since if $\varphi(\sigma) = 1$, $\zeta^{\sigma} = \zeta$, and it determines the identity map on $k(\zeta)$.

Lemma 1.3. If p is an odd prime, then the group $(\mathbb{Z}/p^e)^{\times}$ is cyclic for all $e \in \mathbb{Z}^+$.

Proof. Observe \mathbb{Z}/p is a field, and finite subgroup of the multiplicative group of a field is cyclic. Let $g \in (\mathbb{Z}/p)^{\times}$ be a generator. Then $g^{p-1} = 1 + pT$ for some $T \in \mathbb{Z}$, so for $t \in \mathbb{Z}/p$,

$$(g+pt)^{p-1} = 1 + p(T_0 - g^{p-2}t + pT) =: 1 + pu.$$

Observe g^{p-2} is also a primite root of unity, so as t runs through \mathbb{Z}/p , the product $g^{p-2}t$ runs through $(\mathbb{Z}/p)^{\times}$, so in particular there exists some $t \in \mathbb{Z}/p$ such that $(g+pt)^{p-1} = 1 + pu$, where $p \nmid u$. We claim g + pt must be a generator of $(\mathbb{Z}/p^e)^{\times}$ for all $e \geq 2$. Observe

$$(g+pt)^{p(p-1)} = (1+pu)^p = 1+p^2u_2 (p \nmid u_2)$$

$$(g+pt)^{p^2(p-1)} = (1+p^2u_2)^p = 1+p^3u_3 (p \nmid u_3)$$
... (1.1)

2

Suppose g+pt has order δ in $(\mathbb{Z}/p^e)^{\times}$, then $(g+pt)^{\delta} \equiv 1 \mod p$, so $p-1 \mid \delta$. Moreover, $\delta \mid \varphi(p^e) = p^{e-1}(p-1)$, so $\delta = p^a(p-1)$ for some $0 \leq a \leq e-1$. However by Equation (1.1), $(g+pt)^{p^a(p-1)} = 1 + p^{a+1}u_{a+1}$ for some $p \nmid u_{a+1}$, so we must have a+1=e, and $\delta = p^{e-1}(p-1) = \varphi(p^e)$, so g+pt is a generator of $(\mathbb{Z}/p^e)^{\times}$.

2 The main result

Theorem 2.1 (Hilbert's Theorem 90 (mult ver.)). Let K/k be a cyclic extension of degree n. Let $\sigma \in \operatorname{Gal}(K/k)$ be a generator, then for all $\beta \in K$,

$$N_{K/k}(\beta) = 1 \iff \beta = \frac{\alpha}{\alpha^{\sigma}} \text{ for some } \alpha \in K^{\times}$$

Proof. 1. Let $\beta \in K$ with $N_{K/k}(\beta) = 1$ be given. Define

$$\beta_1 = \beta, \quad \beta_{i+1} = \beta \beta_i^{\sigma} \quad (0 \le i \le n-2)$$

Since σ generates $\operatorname{Gal}(K/k)$, the list $\{\operatorname{id}, \sigma, \dots, \sigma^{n-1}\}$ is linearly independent, there exists $\theta \in K$ such that

$$\alpha := \theta + \beta_1 \theta^{\sigma} + \beta_2 \theta^{\sigma^2} + \dots + \beta_{n-1} \theta^{\sigma^{n-1}}$$

 α is not zero. Then it is evident that $\alpha/\alpha^{\sigma} = \beta$ (use the fact that $N_{K/k}(\beta) = 1$).

2. Suppose there exists $\alpha \in K^{\times}$ such that $\beta = \alpha/\alpha^{\sigma}$. Then

$$N_{K/k}(\beta) = \prod_{\sigma \in \operatorname{Gal}(K/k)} \beta^{\sigma} = \prod_{\sigma \in \operatorname{Gal}(K/k)} \frac{\alpha^{\sigma}}{\alpha^{\sigma^{2}}} = \frac{N_{K/k}(\alpha)}{N_{K/k}(\alpha)} = 1$$

Lemma 2.2. Let k be a field, $n \in N$ with char $k \nmid n$. Assume $\zeta_n \in k$, then

- 1. If K/k is a cyclic extension of degree n, K/k is a s.r.e.
- 2. Given $a \in K$, let α be a root of $x^n a$, then $k(\alpha)/k$ is cyclic of degree d, for some $d \mid n$, and $\alpha^d \in k$.

Proof. 1. Suppose Gal(K/k) is generated by σ of order n. Since k contains ζ_n , ζ_n^{-1} is fixed by every automorphism of K/k. So,

$$N_{K/k}(\zeta_n^{-1}) = \prod_{\sigma \in \text{Gal}(K/k)} (\zeta_n^{-1})^{\sigma} = \prod_{\sigma \in \text{Gal}(K/k)} \zeta_n^{-1} = \zeta_n^{-n} = 1$$

By Hilbert Theorem 90, there exists $\alpha \in K^{\times}$ such that $\zeta_n^{-1} = \alpha/\alpha^{\sigma}$, so $\alpha^{\sigma} = \zeta_n \alpha$. Since σ generates the Galois group, $\{\alpha, \alpha^{\sigma}, \alpha^{\sigma^2}, \dots, \alpha^{\sigma^{n-1}}\} = \{\alpha, \zeta_n \alpha, \zeta_n^2 \alpha, \dots, \zeta_n^{n-1} \alpha\}$ are all n distinct roots of the minimal polynomial m of α over k. So $\deg m = n$, so $K = k(\alpha)$. Furthermore, for every $\sigma \in \operatorname{Gal}(K/k)$,

$$(\alpha^n)^{\sigma} = (\alpha^{\sigma})^n = (\zeta_n \alpha)^n = \alpha^n$$

so $\alpha^n \in k$.

2. Let $a \in k$ be given, let α be a root of $x^n - a$, then $\{\alpha, \zeta_n \alpha, \zeta_n^2 \alpha, \ldots, \zeta_n^{n-1} \alpha\}$ are n distinct roots of $x^n - a$. Therefore, $k(\alpha)$ is the splitting field of $x^n - a$. Since $x^n - a$ is separable, it follows $k(\alpha)/k$ is Galois and every $\sigma \in \operatorname{Gal}(k(\alpha)/k)$ sends α to $\zeta^i \alpha$ for some i. Define $\left(\varphi : \operatorname{Gal}(k(\alpha)/k) \to \mathbb{Z}/n\right)$, it is easily seen that φ is an injective group homomorphism, therefore $\operatorname{Gal}(k(\alpha)/k)$ is isomorphic to a subgroup of \mathbb{Z}/n , hence $\operatorname{Gal}(k(\alpha)/k) \cong \mathbb{Z}/d$ for some $d \mid n$. Furthermore, for any $\sigma \in \operatorname{Gal}(k(\alpha)/k)$, $\alpha^{\sigma^d} = \zeta_n^{d\varphi(\sigma)} \alpha = \alpha$, so $\zeta_n^{d\varphi(\sigma)} = 1$, so

$$(\alpha^d)^{\sigma} = (\alpha^{\sigma})^d = (\zeta_n^{\varphi(\sigma)})^d \alpha^d = \alpha^d.$$

Hence α^d is fixed by every $\sigma \in \operatorname{Gal}(k(\alpha)/k)$, so $\alpha^d \in k$.

Lemma 2.3. Let k be a field, char k = 0. Let ζ be a primitive n-th root of unity. Then $k(\zeta)/k$ is a root extension and each factor in the chain is cyclic.

- *Proof.* 1. Suppose $n = p^e$ for some odd prime p. Then $\operatorname{Gal}(k(\zeta)/k)$ is isomorphic to a subgroup of $(\mathbb{Z}/p^e)^{\times}$, which is cyclic by Lemma 1.3, hence Galois extension is a s.r.e and the Galois group is cyclic.
 - 2. Suppose $n=2^e$. Then $\operatorname{Gal}(k(\zeta)/k)$ is isomorphic to a subgroup of $(\mathbb{Z}/2^e)^{\times}$, which is of order $\varphi(2^e)=2^e-2^{e-1}=2^{e-1}$, hence $\operatorname{Gal}(k(\zeta)/k)$ is a 2-group. By first Sylow theorem, there is a subgroup $H \lhd \operatorname{Gal}(k(\zeta)/k)$ of index 2, hence $k(\zeta)^H/k$ is Galois, with Galois group $\mathbb{Z}/2$, which is cyclic. Then we have chain

$$k \subseteq k(\zeta)^H \subseteq k(\zeta)$$

Since $[k(\zeta)^H:k]=2,\,k(\zeta)/k(\zeta)^H$ is a proper subextension, the claim follows from induction.

3. Suppose $n = p_1^{e_1} \cdots p_r^{e_r}$. Observe $\zeta^{n/p_i^{e_i}}$ is a primitive $p_i^{e_i}$ -th root for each i. Suppose there exists i such that $\zeta^{n/p_i^{e_i}}$ is not in k, then we have chain:

$$k \subseteq k(\zeta^{n/p_i^{e_i}}) \subseteq k(\zeta)$$

where the first part may be handled in one of the base case, and the latter part is a proper subextension, hence is handled by the inductive hypothesis.

Now suppose $\zeta^{n/p_i^{e_i}} \in k$ for all i, then we claim their product

$$\prod_{i} \zeta^{n/p_i^{e_i}}$$

is a primitive n-th root of unity, since the smallest power that takes it to unity is exactly n (each pair p_i, p_j is coprime). Therefore, in this case, $k(\zeta) = k$, this case is vacuous.

This finishes the proof. \Box

Lemma 2.4. Let ℓ/k be a root extension, then there is a Galois extension L/k that contains ℓ and such that L/k is a root extension where each step is a cyclic s.r.e.

Proof. Suppose ℓ/k has chain:

$$k = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_r = \ell$$

Let K be the Galois closure of ℓ over k. Given $\sigma \in \operatorname{Gal}(K/k)$, we claim ℓ^{σ} is a root extension, with chain:

$$k = K_0^{\sigma} \subseteq K_1^{\sigma} \subseteq \dots \subseteq K_r^{\sigma} = \ell$$

Given i = 0, ..., r - 1, suppose $K_{i+1} = K_i(\alpha)$, then

$$K_{i+1}^{\sigma} = (K_i(\alpha))^{\sigma} = \left\{ \frac{f^{\sigma}(\alpha^{\sigma})}{g^{\sigma}(\alpha^{\sigma})} : f, g \in K_i[x] \right\} = K_i^{\sigma}(\alpha^{\sigma})$$

Suppose $\alpha^n \in K_i$, then $(\alpha^{\sigma})^n = (\alpha^n)^{\sigma} \in K_i^{\sigma}$. Since finite composite of root extension is a root extension, $L := \prod_{\sigma \in \operatorname{Gal}(K/k)} \ell^{\sigma}$ is a root extension over k. We claim L in fact is the Galois closure K.

Since each σ is an automorphism of K, $\ell^{\sigma} \subseteq K$, hence the composite $L \subseteq K$. Conversely, let $\tau \in \operatorname{Gal}(K/k)$ be given, since $\operatorname{Gal}(K/k)$ is a group,

$$L^{\tau} = (\prod_{\sigma \in \operatorname{Gal}(K/k)} \ell^{\sigma})^{\tau} = \prod_{\sigma \in \operatorname{Gal}(K/k)} \ell^{\sigma\tau} = \prod_{\sigma \in \operatorname{Gal}(K/k)} \ell^{\sigma} = L$$

Thus every $\tau \in \operatorname{Gal}(K/k)$ fixes L, it follows that L/k is Galois, and definition of the Galois closure, $K \subseteq L$, hence K = L. Therefore, we have obtained a Galois root extension L/k. Suppose, it is equipped with chain:

$$k = L_0 \subset L_1 \subset \cdots \subset L_s = L$$

Suppose $L_{i+1} = L_i(\alpha_{i+1})$ for some $\alpha_{i+1} \in L_{i+1}$ $(0 \le i \le n-1)$, and suppose $\alpha_i^{n_i} \in L_{i-1}$ $(1 \le i \le n)$. Let $E_0 = L_0$, $E_i = L_i(\zeta_{n_1}, \ldots, \zeta_{n_i})$, and consider the chain:

Lemma 2.3 ensures each $E_i(\zeta_{i+1})/E_i$ is a root extension and each factor is cyclic $(0 \le i \le n-1)$, Lemma 2.2 ensures each $E_{i+1}/E_i(\zeta_{n_{i+1}})$ is a cyclic s.r.e $(0 \le i \le n-1)$. Therefore E_s/k is a root extension in which each factor is a cyclic s.r.e.

Theorem 2.5. $f \in k[x]$ is solvable by radicals if and only if the Galois group of f is solvable.

Proof. Suppose $f \in k[x]$ is solvable by radicals, then there exists a root extension ℓ/k such that f splits over ℓ . By Lemma 2.4, there is a Galois root extension L/k containing ℓ and each factor is cyclic. This precisely means that L/k is a solvable extension. Let K denote the Galois group of f, we have chain of extensions L/K/k, and by the fundamental theorem, $\operatorname{Gal}(K/k) \cong \operatorname{Gal}(L/k)/\operatorname{Gal}(L/K)$. Since quotient of a solvable group is solvable, it follows K/k is solvable.

Conversely, suppose Gal(K/k) is solvable, we have a solvable filtration:

$$1 = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_{r-1} \triangleleft G_r = G$$

Let K be the splitting field of f over k, then by fundamental theorem, we have chain of fixed fields:

$$K = K^{G_0} \supseteq K^{G_1} \supseteq \cdots \supseteq K^{G_{r-1}} \supseteq K^{G_r} = k$$

and for each i, the factor

$$\operatorname{Gal}(K^{G_i}/K^{G_{i+1}}) \cong \frac{\operatorname{Gal}(K/K^{G_{i+1}})}{\operatorname{Gal}(K/K^{G_i})} \cong \frac{G_{i+1}}{G_i} \cong \mathbb{Z}/n_i$$

is cyclic. Define $E_0 = K^{G_r}$, $E_i = K^{G_{r-i}}(\zeta_{n_{r-1}}, \dots, \zeta_{n_{r-i}})$ and consider the chain:

Lemma 2.3 ensures each $E_i(\zeta_{n_{r-i-1}})/E_i$ is a root extension and each factor is cyclic $(0 \le i \le r-1)$, Lemma 2.2 ensures each $E_{i+1}/E_i(\zeta_{n_{r-i-1}})$ is a cyclic s.r.e $(0 \le i \le r-1)$. Therefore E_r/k is a root extension in which each factor is a cyclic s.r.e. Hence f can be solved by radicals.

Corollary 2.6. $f = x^5 - 6x + 3 \in \mathbb{Q}[x]$ has roots cannot be expressed by radicals.

Proof. Notice f is irreducible by Eisenstein. Let K be the splitting field of f over \mathbb{Q} , then $5 \mid [K : \mathbb{Q}] = |\operatorname{Gal}(K/\mathbb{Q})|$. Since we have an injection $\operatorname{Gal}(K/\mathbb{Q}) \hookrightarrow S_5$ by permuting the roots, $\operatorname{Gal}(K/\mathbb{Q})$ contains a 5-cycle. Notice f has at least 3 real roots (by mean value theorem) and f' has exactly 2 roots, it follows that f has exactly 3 real roots. Therefore there is a 2-cycle in $\operatorname{Gal}(K/\mathbb{Q})$ given by conjugating the complex roots.

Since 2-cycle and 5-cycle generates S_5 , the injection is a surjection, $Gal(K/\mathbb{Q}) \cong S_5$. However, S_5 is not solvable (A_5 is not solvable), it follows that f cannot be solved by radicals.