MATH230: Tutorial Two

Propositional Logic: Natural Deductions with Negation

Key ideas

• Write natural deduction proofs involving \neg negation.

 \bullet Write natural deductions using Ex Falso i.e. \bot elimination.

Relevant Topic: Propositional Logic

Relevant reading: L $\exists \forall N$ Chapters 3,4 and Simon section 1.1

Hand in exercises: 1a, 1b, 1c, 1i, 1k

Due Friday @ 5pm to the submission box on Learn.

Discussion Questions

1. Show $A \vdash \neg \neg A$.

2. Show $(A \lor B) \land (A \lor C) \vdash A \lor (B \land C)$.

Tutorial Exercises

1. **Minimal Logic.** Provide natural deduction proofs of the following sequents. These deductions require only the use of minimal logic; the introduction and elimination rules for \land conjunction, \lor disjunction, \rightarrow implication, and the definition of \neg negation as an implication.

(a) $\neg A \vdash (C \rightarrow A) \rightarrow \neg C$

[Handin exercise]

(b) $A \wedge \neg B \vdash \neg (A \rightarrow B)$

[Handin exercise]

(c) $A \to C$, $B \to D$, $\neg C \lor \neg D \vdash \neg A \lor \neg B$

[Handin exercise]

- (d) $A, \neg A \vdash \neg B$
- (e) $A \to B$, $A \to \neg B \vdash \neg A$
- (f) $A \rightarrow \neg B \vdash B \rightarrow \neg A$
- (g) $\neg (A \land B) \vdash A \rightarrow \neg B$
- (h) $A \vdash \neg \neg A$

(i) $\neg \neg \neg A \vdash \neg A$

[Handin exercise]

- (j) $\neg A \lor \neg B \vdash \neg (A \land B)$
- (k) $\neg A \land \neg B \vdash \neg (A \lor B)$

[Handin exercise]

- (1) $\neg (A \lor B) \vdash \neg A \land \neg B$
- (m) $A \to \neg B \vdash \neg (A \land B)$

(n) $\vdash \neg \neg (A \lor \neg A)$

[Challenge!]

- 2. **Intuitionistic derivations.** Provide natural deduction proofs of the following. You do not need to use the *classical* \perp rule for these questions, but may find that the *intuitionistic* \perp rule is necessary.
 - (a) $A, \neg A \vdash B$
 - (b) $\neg A \vdash A \rightarrow B$
 - (c) $\neg A \lor B \vdash A \to B$
 - (d) $A \vee B$, $\neg A \vdash B$
 - (e) $\vdash \neg (B \to A) \to (A \to B)$
 - (f) $A \to B, A \to \neg B \vdash A \to C$
 - (g) $A \vee B, \neg A, \neg B \vdash C$