Group Discussion: Integration

Solutions

Authors: Shaleen Baral

Recall the statement of the First Fundamental Theorem of Calculus,

Proposition 0.1: Let f be a continuous real-valued function defined on a closed interval [a, b]. Let F be the function defined, for all $x \in [a, b]$, by

$$F(x) = \int_{a}^{x} f(t)dt.$$

Then F is uniformly continuous on [a, b] and differentiable on the open interval (a, b) and

$$F'(x) = f(x)$$

for all $x \in (a, b)$. That is, F is an antiderivative of f on (a, b).

1. First Fundamental Theorem of Calculus

Quite a few people were confused about exactly what this question required. The task is to first compute A(x) by integration, and then differentiate the result to show that $\frac{d}{dx}A(x)=f(x)$ as claimed by the First Fundamental Theorem of Calculus.

1.1. $a = 0, f(x) = x^2$

$$A(x) = \int_0^x t^2 dt$$
$$= \frac{t^3}{3} \Big|_a^x$$
$$= \frac{x^3}{3}$$

$$\frac{d}{dx}A(x) = x^2$$

1.2. $a=2, f(x)=\frac{1}{x}$

$$A(x) = \int_{2}^{x} \frac{1}{x} dt$$
$$= \ln |x| \Big|_{2}^{x}$$
$$= \ln |x| - \ln 2$$

$$\frac{d}{dx}A(x) = \operatorname{sgn}(x) \cdot \frac{1}{x}$$

Here, $\mathrm{sgn}:\mathbb{R}-\{0\}\to\{-1,1\}$ is the sign function, more formally defined by

$$\operatorname{sgn}(x) = \begin{cases} 1 & \text{if } x > 0, \\ -1 & \text{if } x < 0. \end{cases}$$

1.3. $a = \pi, f(x) = \cos x$

$$A(x) = \int_{\pi}^{x} \cos x dt$$
$$= \sin x \Big|_{\pi}^{x}$$
$$= \sin x - \sin \pi$$
$$= \sin x$$

2. Chain Rule

2.1. $A(x) = \int_0^x t^3 dt$

By the First Fundamental Theorem of Calculus,

$$\frac{d}{dx}A(x) = x^3.$$

2.2. $A(x^2)=\int_0^{x^2}t^3dt$ By the Chain Rule,

$$\frac{d}{dx}A(x^2) = A'(x^2)\frac{d}{dx}x^2 = x^6 \cdot 2x = 2x^7.$$

2.3. $B(x) = \int_{x}^{0} t^{3} dt$

By the First Fundamental Theorem of Calculus,

$$\begin{split} \frac{d}{dx}B(x) &= \frac{d}{dx}\int_{x}^{0}t^{3}dt \\ &= -\frac{d}{dx}\int_{0}^{x}t^{3}dt \\ &= -x^{3}. \end{split}$$

2.4. $B(x^2) = \int_{x^2}^0 t^3 dt$

By the Chain Rule.

$$\frac{d}{dx}B(x^2) = B'(x^2)\frac{d}{dx}x^2 = -x^6 \cdot 2x = -2x^7.$$

$$A(x) = \int_0^x f(t)dt.$$

Then, by the Chain Rule,

$$\frac{d}{dx}A(x^2) = A'(x^2)\frac{d}{dx}x^2 = 2f(x^2)x.$$

2.6. $\frac{d}{dx} \int_{p(x)}^{q(x)} f(t) dt$

This is essentially the same idea as the previous parts, albeit generalized slightly. Consider first the decomposition,

$$\begin{split} \int_{p(x)}^{q(x)} f(t)dt &= \int_{0}^{q(x)} f(t)dt + \int_{p(x)}^{0} f(t)dt \\ &= \int_{0}^{q(x)} f(t)dt - \int_{0}^{p(x)} f(t)dt. \end{split}$$

Then,

$$\begin{split} \frac{d}{dx} \int_{p(x)}^{q(x)} f(t) dt &= \frac{d}{dx} \int_0^{q(x)} f(t) dt - \frac{d}{dx} \int_0^{p(x)} f(t) dt \\ &= f(q(x)) q'(x) - f(p(x)) p'(x). \end{split}$$