MOOC Econometrics

Training Exercise 2.4.1

Questions

By solving the questions of this exercise, you provide a proof of the Gauss-Markov theorem. We use the following notation.

- The OLS estimator is $b = A_0 y$, where $A_0 = (X'X)^{-1}X'$.
- Let $\hat{\beta} = Ay$ be linear unbiased, with $A(k \times n)$ matrix.
- Define the difference matrix $D = A A_0$.
- (a) Prove the following three results:

(i)
$$var(\hat{\beta}) = \sigma^2 A A'$$
.

- (ii) $\hat{\beta}$ unbiased implies AX = I and DX = 0.
- (iii) Part (ii) implies $AA' = DD' + (X'X)^{-1}$.
- (b) Prove that part (a-iii) implies $var(\hat{\beta}) = var(b) + \sigma^2 DD'$.
- (c) Prove that part (b) implies $var(\hat{\beta}) var(b)$ is positive semidefinite (Gauss-Markov).
- (d) Prove that $var(\hat{\beta}_j) \ge var(b_j)$ for every j = 1, ..., k.