

Title Page

Contents





Page 22 of 30

Go Back

Full Screen

Close

Quit

## **Elegant:** *K*- Class Discriminant!

$$y_j(\mathbf{x}) = \mathbf{w}_j^T \mathbf{x} + w_{j0}$$

- Decision rule: Class  $\mathscr{C}_j$  if  $y_j(\mathbf{x}) > y_l(\mathbf{x}) \forall j \neq j$
- Decision boundary b/w  $\mathscr{C}_i$  &  $\mathscr{C}_k$ :  $y_i(\mathbf{x}) = y_k(\mathbf{x})$

$$\bullet \implies \mathbf{w}_{j}^{T}\mathbf{x} + w_{j0} = \mathbf{w}_{k}^{T}\mathbf{x} + w_{k0}$$

$$\bullet \implies (\mathbf{w}_j - \mathbf{w}_k)^T \mathbf{x} + (w_{j0} - w_{k0}) = 0$$

- (D-1) dim hyperplane, same form as the 2-class case: analogous properties
- The decision region for a multi-class linear discriminant must be convex & singly connected
  ■
- Enforced by the formulation! How?



Title Page

Contents





Page 23 of 30

Go Back

Full Screen

Close

Quit



- $\hat{\mathbf{x}}$  lies on the line b/w  $\mathbf{x}_A$  &  $\mathbf{x}_B$
- $\bullet \hat{\mathbf{x}} = \lambda \mathbf{x}_A + (1 \lambda) \mathbf{x}_B$
- Discriminant Fn Convexity

$$\mathbf{v}_{j}(\hat{\mathbf{x}}) = \mathbf{w}_{j}^{T}\hat{\mathbf{x}} + w_{j0} = \mathbf{w}_{j}^{T}(\lambda \mathbf{x}_{A} + (1 - \lambda)\mathbf{x}_{B}) + w_{j0} = \mathbf{w}_{j}^{T}(\lambda \mathbf{x}_{A} + (1 - \lambda)\mathbf{x}_{B}) + w_{j0} = \mathbf{w}_{j0}^{T}(\lambda \mathbf{x}_{A} + (1 - \lambda)\mathbf{x}_{B}) + w_{j0} = \mathbf{w}_{j0}^{T}(\lambda \mathbf{x}_{A} + (1 - \lambda)\mathbf{x}_{B}) + w_{j0} = \mathbf{w}_{j0}^{T}(\lambda \mathbf{x}_{A} + (1 - \lambda)\mathbf{x}_{B}) + w_{j0}^{T}(\lambda \mathbf{x}_{A} + (1 - \lambda)\mathbf{x}_{A}) + w_{j0}^{$$

• 
$$\Longrightarrow |y_j(\hat{\mathbf{x}}) = \lambda y_j(\mathbf{x}_A) + (1 - \lambda)y_j(\mathbf{x}_B)|$$



Title Page

Contents





Page 24 of 30

Go Back

Full Screen

Close

Quit

## Some Physical Significance



- Points x in 2-D space with means m<sub>1</sub> & m<sub>2</sub> (2 classes)
- A line:  $w_2x_2 + w_1x_1 + w_0 = 0$ :  $\mathbf{w}^T \mathbf{x} + w_0 = 0$
- $\mathbf{w} \perp \mathbf{x}$ , perp dist from  $[0, 0] = \frac{w_0}{||\mathbf{w}^T \mathbf{w}||}$
- All 2-D spaces can be superimposed (Euclidean, here):  $[x_2 \ x_1]^T$  or  $[w_2 \ w_1]^T$
- $\mathbf{w}^T \mathbf{x}$ : all points  $\mathbf{x}$  are projected onto line  $\mathbf{w}$
- Line-Point Duality. Line w: by intercepts  $w_2$  &  $w_1$
- Means (2-D points)  $\mathbf{m}_1$  &  $\mathbf{m}_2$  are projected to 1-D projections  $m_1$  &  $m_2$ . Each point  $\mathbf{x}$  to  $\mathbf{x}$



Title Page

Contents





Page 25 of 30

Go Back

Full Screen

Close

Quit



- 2-D point  $\mathbf{m}_j$  is a position vector: joining the origin to the point
- Triangle law of vectors: the line  $\mathbf{z}$  joining  $\mathbf{m}_2$  to  $\mathbf{m}_2$  is  $\mathbf{m}_1 \mathbf{m}_2$ .  $(\mathbf{m}_2 + \mathbf{z} = \mathbf{m}_1)$
- Parallelogram law:
  main diag m<sub>1</sub> + m<sub>2</sub>



Title Page

Contents





Page 26 of 30

Go Back

Full Screen

Close

Quit



## Fisher's Linear Discriminant

R. A. Fisher [1890-1962]

https://upload.wikimedia.org/wikipedia/commons/3/37/Biologist\_and\_statistician\_Ronald\_Fisher.jpg

- Development: 2-class:  $y(\mathbf{x}) = y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x} + w_0$
- Call  $\mathscr{C}_1$  if  $y(\mathbf{x}) \geq 0$  i.e.,  $\mathbf{w}^T \mathbf{x} + w_0 \geq 0$ , else call  $\mathscr{C}_2$
- $\mathbf{w}^T \mathbf{x}$ : projection of D-dim data onto 1-D
- Phy Sig of  $\mathbf{w}^T \mathbf{x} > -w_0$ : comparing with a thresh
- Comment: ■projecting onto 1-D may lead to considerable loss of info; classes well-separated in D-D may strongly overlap in 1-D (projection!)
- However: Adjusting components of w: can select a projection that maximises the class separation



Title Page

Contents





Page 27 of 30

Go Back

Full Screen

Close

Quit

## Start from a 2-class problem

 $\mathscr{C}_1:N_1$  pts;  $\mathbf{m}_1=\frac{1}{N_1}\sum_{i\in\mathscr{C}_1}\mathbf{x}_i;\mathscr{C}_2:N_2$  pts;  $\mathbf{m}_2=\frac{1}{N_2}\sum_{i\in\mathscr{C}_2}\mathbf{x}_i$ 

- Attempt 1: Simplest measure of class separation (when projected onto the w): separation of the projected class means;  $m_1 = \mathbf{w}^T \mathbf{m}_1; m_2 = \mathbf{w}^T \mathbf{m}_2$
- $m_2 m_1 = \mathbf{w}^T (\mathbf{m}_2 \mathbf{m}_1)$  Choose  $\mathbf{w}$  to  $\max m_2 m_1$ 
  - 1. Problems! Can select w arbitrarily large
  - 2.  $\frac{\partial (m_1-m_2)}{\partial \mathbf{w}}=0 \implies m_2-m_1=0$ : Minimum!



Title Page

Contents





Page 28 of 30

Go Back

Full Screen

Close

Quit

- Attempt 2: ■Constrained Optimisation: Find the weight vector among the infinite with unit norm
- $f(\mathbf{w}) = \mathbf{w}^T (\mathbf{m}_2 \mathbf{m}_1) + \lambda (\mathbf{w}^T \mathbf{w} 1) = \mathbf{I}$   $(\mathbf{m}_2 \mathbf{m}_1)^T \mathbf{w} + \lambda (\mathbf{w}^T \mathbf{w} 1) \cdot \mathbf{f}(\mathbf{w}) = 0 : (\mathbf{m}_2 \mathbf{m}_1)^T + 2\lambda \mathbf{w}^T = 0 \implies \mathbf{w} = -2\lambda (\mathbf{m}_2 \mathbf{m}_1) \times \mathbf{f}(\mathbf{m}_2 \mathbf{m}_1)$
- Problem: 2 classes well-separated in the original 2-D space may have considerable overlap when projected onto the line joining the means

[C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006. Fig. 4.6, p. 188]

