```
<!DOCTYPE html>
<html>
<head>
<title>Singular Vectors</title></head>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/</pre>
font-awesome/4.7.0/css/font-awesome.min.css">
  <style>
  .slidecontainer {
   width: 1200px;
  }
/* TITLE OF THE FOLDER THAT CONTAINS EVERYTHING */
  .slider {
    -webkit-appearance: none;
    width: 600px;
    height: 25px;
    background: #d3d3d3;
    outline: none;
    opacity: 0.7;
    -webkit-transition: .2s;
    transition: opacity .2s;
  }
  .slider:hover {
    opacity: 1;
  .slider::-webkit-slider-thumb {
    -webkit-appearance: none;
    appearance: none;
    width: 25px;
    height: 25px;
    background: #4CAF50;
    cursor: pointer;
  }
  .slider::-moz-range-thumb {
    width: 25px;
    height: 25px;
    background: #4CAF50;
    cursor: pointer;
  }
/* MANY SHORT LABELED INFORMATIONAL AREAS. NOTE WHERE THESE ARE USED
LATER */
  .left {
  float: left;
  width: 900px;
  padding: 10px;
```

```
}
.right{
  float:right;
  width: 1100px;
 padding: 10px;
}
h2 {
      color: #000;
      text-align: center;
      text-decoration: underline;
      text-decoration-color: black;
    }
h3 {
      color: #000;
      text-decoration: underline;
      text-decoration-color: black;
    .tab { margin-left: 20px; }
    label {
        display:inline-block;
        *display: inline;
                               /* for IE7*/
                              /* for IE7*/
        zoom:1;
        padding-top: 5px;
        text-align: left;
        width: 140px;
    }
    i {
      color: blue;
    .arrow1 {
      animation: slide1 1s ease-in-out infinite;
      margin-left: -20px;
    }
    @keyframes slide1 {
      0%,
      100% {
        transform: translate(0, 0);
      }
      50% {
        transform: translate(10px, 0);
      }
    }
```

/* THREE DIFFERENT div.absolute AREAS THAT WILL BE REFERRED TO LATER

```
*/
      div.absolute
        position: absolute;
        top: 250px;
        left: 420px;
        width: 200px;
        height: 100px;
      }
      /* a */
      div.absolute2
        position: absolute;
        top: 85px;
        left: 949px;
        width: 30px;
        height: 10px;
      div.absolute3
        position: absolute;
        top: 15px;
        left: 950px;
        width: 600px;
        height: 100px;
/* TWO MORE ITEMS THAT WILL BE REFERRED TO LATER */
      library
        margin: 0;
        width: 100%;
        height: 100%;
        background-color: black;
        overflow: hidden;
      }
      body
      {
        padding: 0;
        margin: 0;
      }
/* NOW THINGS BEGIN */
/* NOTICE THE USE OF "LEFT" */
/* SWITCHING TO A NEW DIV CLASS */
```

</style>

```
<br/><body ><br/><div class="left" >
```

<h2>SELF-DISCOVERY OF SINGULAR VECTORS AND VALUES</h2>
A 2x2 matrix A maps the unit circle onto an
ellipse. One can reveal this ellipse, point by point, by holding
down and moving along

the t- slidebar. For the value of t giving the "greatest stretch" on the ellipse, that is, the point on the ellipse that is farthest from the

origin, the corresponding (x,y) is the first right singular vector of A. The first left singular vector is the normalized (u,v), that is,

(u,v) divided by its length. The first singular value is |(u,v)|, the length of this greatest stretch.

<div class="absolute">
A

<i class="fa fa-long-arrow-right arrow1" aria-hidden="true"
style="font-size:48px;"></i></div>

<canvas id="demoCanvas" width="400" height="320" style="margin-left:
5px"> canvas</canvas>
<canvas id="Canvas2" width="400" height="320" style="margin-left:
35px;" > canvas</canvas>

They can be found using the method of "least stretch". The second singular value is the length of "least stretch". </div>

```
</div>
  <script>
  var k = 0;
  var slider = document.getElementById("myRange");
  var output = document.getElementById("demo");
  output.innerHTML = slider.value;
  var canvas = document.getElementById('demoCanvas');
  var ctx = canvas.getContext('2d');
  var canvas2 = document.getElementById('Canvas2')
  var ctx2 = canvas2.getContext('2d');
  var xcen = 200;
  var ycen = 160;
  var radius = 100;
  var startAngle = 0 * Math.PI;
  var endAngle = 2 * Math.PI;
  var counterClockwise = false;
  var u = 0
  var v = 0
  var g = 0
/* CANVAS
             */
  ctx.moveTo(xcen,ycen)
  ctx.strokeStyle = "#000000";
  ctx.font = "15px Arial";
  ctx2.font = "15px Arial";
  ctx.clearRect(0,0,600,600);
  ctx.fillText("1",xcen+10,45);
  ctx.fillText("-1",xcen+10,280);
ctx.fillText("1",318,ycen+15)
  ctx.fillText("-1",67,ycen+15)
  ctx.moveTo(50,ycen)
  ctx.lineTo(350,ycen)
  ctx.stroke();
  ctx.moveTo(xcen,10)
  ctx.lineTo(xcen,310)
  ctx.stroke();
  /* CANVAS2 */
  ctx2.beginPath();
  ctx2.moveTo(xcen,ycen)
  ctx2.moveTo(50,ycen)
  ctx2.lineTo(350,ycen)
  ctx2.strokeStyle = "#000000";
  ctx2.stroke();
  ctx2.moveTo(xcen,10)
  ctx2.lineTo(xcen,310)
  ctx2.strokeStyle = "#000000";
  ctx2.stroke();
  slider.oninput = function() {
    x = 200
```

```
y = 160
    radius = 100
    output.innerHTML = this.value;
    k = 1
    if (k!=0) {
      var ctx2 = canvas2.getContext('2d');
      ctx2.beginPath();
      ctx2.strokeStyle = "white";
      ctx2.lineWidth = 4;
      ctx2.moveTo(x,y)
      ctx2.lineTo(x-(radius/g)*1.4*u,y+(radius/g)*1.4*v)
      ctx2.stroke();
    var ctx2 = canvas2.getContext('2d');
   xcen=200
    ycen=160
    ctx2.beginPath()
    ctx2.clearRect(xcen+3,27,40,18)
    ctx2.clearRect(xcen+3,274,48,18)
    ctx2.clearRect(325,ycen+2,50,16)
    ctx2.clearRect(46,ycen+2,48,16)
/* SEE THE MATH DONE IN THE FUNCTION JACOBIAN , LATER */
    var arr = calcJacobian()
   u = arr[0]
    v = arr[1]
    g = arr[2]
/* NUMBER OF DIGITS TO DISPLAY ON THE AXES */
    g=Number(g .toPrecision(2));
    if(g<10 \& g>3){g=Number(g .toPrecision(1))};
    if(g<1 \&\& g>.3){g=Number(g .toPrecision(1))};
    if(g<100 \&\& g>30){g=Number(g .toPrecision(1))};
    if(g<1000 \&\& g>300){g=Number(g .toPrecision(1))};
    if(q<.1 \&\& q>.03){q=Number(q .toPrecision(1))};
    var xcen = 200
    var ycen = 160
    /*+q*/
    ctx2.fillText(g,xcen+10,40);
    ctx2.fillText(-g,xcen+10,290);
    ctx2.fillText(g,325,ycen+15);
    ctx2.fillText(-g,60,ycen+15);
    ctx2.beginPath();
    ctx2.strokeStyle = "red";
    ctx2.moveTo(x,y)
    ctx2.fillRect(x-(100/g)*1.4*u,y+(100/g)*1.4*v,1.5,1.5)
```

```
ctx2.moveTo(x-(100/q)*1.4*u,y+(100/q)*1.4*v)
  ctx2.lineTo(x,y)
  ctx2.stroke();
  /* X - y graph*/
  ctx.clearRect(0,0,500,600);
  ctx.fillText("1",x+10,45);
  ctx.fillText("-1",x+10,280);
ctx.fillText("1",318,ycen+15)
  ctx.fillText("-1",67,ycen+15)
  ctx.beginPath();
  ctx.strokeStyle = "#000000";
  ctx.lineWidth=2;
  ctx.moveTo(xcen,ycen);
  ctx.moveTo(xcen,10);
  ctx.lineTo(xcen,310);
  ctx.stroke();
  ctx.moveTo(xcen,ycen);
  ctx.moveTo(50,ycen);
  ctx.lineTo(350,ycen);
  ctx.stroke();
  ctx.moveTo(xcen,ycen);
  ctx.beginPath();
  ctx.strokeStyle = "#000000";
  ctx.arc(x, y, radius, startAngle, endAngle, counterClockwise);
  ctx.lineWidth = 2;
  // line color
  ctx.stroke();
  var t = output.innerHTML = this.value;
  t = t * (Math.PI/180);
  ctx.moveTo(x,v)
  ctx.strokeStyle = '#ff0000'
  ctx.lineTo(x+ radius*Math.cos(t),y- radius*Math.sin(t))
  ctx.stroke()
}
function calcJacobian() {
  var myArr = document.forms.inputField;
  var myControls = myArr;
  var slider = document.getElementById("myRange");
  var angle = document.getElementById("demo1");
  angle.innerHTML = slider.value + """; /* t value*/
  var x1 = document.getElementById("x")
  x1.innerHTML = Math.cos(slider.value * (Math.PI/180)).toFixed(3)
  var y1 = document.getElementById('y')
  v1.innerHTML = Math.sin(slider.value * (Math.PI/180)).toFixed(3)
 var a = myControls[0].value;
  var b = myControls[1].value;
 var c = myControls[2].value;
  var d = myControls[3].value;
  var u = a*Math.cos(slider.value * (Math.PI/180)) +
```

```
b*Math.sin(slider.value * (Math.PI/180)).toFixed(3)
    var v = c*Math.cos(slider.value * (Math.PI/180)) +
d*Math.sin(slider.value * (Math.PI/180)).toFixed(3)
    var rad2 = Math.sqrt(Math.pow(u,2)+Math.pow(v,2)).toFixed(3)
    var U = document.getElementById('u')
    U.innerHTML = u.toFixed(3)
    var V = document.getElementById('v')
    V.innerHTML = v.toFixed(3)
    var len1 = document.getElementById('len1')
    len1.innerHTML = Math.sqrt(Math.pow(u,2)+Math.pow(v,
2)).toFixed(3)
    var norm u = document.getElementById('normU')
    norm_u.innerHTML = (u/Math.sqrt(Math.pow(u,2)+Math.pow(v,
2))).toFixed(3)
    var norm_v = document.getElementById('normV')
    norm_v.innerHTML = (v/Math.sqrt(Math.pow(u,2)+Math.pow(v,
2))).toFixed(3)
   var intialU = 0
    var intialV = 0
    var intialL = 0
    var temp = 0
    var highT = 0;
    for (var i = 0; i \le 360; i = i+1) {
      intialU = a*Math.cos(i * (Math.PI/180)) + b*Math.sin(i*
(Math.PI/180))
      intialV = c*Math.cos(i * (Math.PI/180)) + d*Math.sin(i *
(Math.PI/180))
      intialL = Math.sqrt(Math.pow(intialU,2)+Math.pow(intialV,2))
      if (temp < intialL) {</pre>
        temp = intialL;
        highT = i;
      }
      else {
        temp = temp
    }
    /* user defined greatest stretch*/
    var uMax = a*Math.cos(slider.value * (Math.PI/180)) +
b*Math.sin(slider.value * (Math.PI/180)).toFixed(3)
    var vMax = c*Math.cos(slider.value * (Math.PI/180)) +
d*Math.sin(slider.value * (Math.PI/180)).toFixed(3)
    var g = 1.05 * Math.max(Math.sqrt(Math.pow(a,2) + Math.pow(c,
2)), Math.sqrt(Math.pow(b,2) + Math.pow(d,2)), Math.sqrt(Math.pow(a,
2) + Math.pow(b,2)), Math.sqrt(Math.pow(c,2) + Math.pow(d,2)))
    var singleValue = Math.sqrt(Math.pow(uMax,2)+Math.pow(vMax,
2)).toFixed(3)
    var T = document.getElementById('HighT')
    T.innerHTML = slider.value + "°"
    var LSVx = document.getElementById('LSVx')
```

```
LSVx.innerHTML = Math.cos(slider.value * (Math.PI/
180)).toFixed(3)
    var LSVy = document.getElementById('LSVy')
    LSVy.innerHTML = Math.sin(slider.value * (Math.PI/
180)).toFixed(3)
    var temp1 = 0
    temp1 = uMax/Math.sgrt(Math.pow(uMax,2)+Math.pow(vMax,
2)).toFixed(3)
    var temp2 = vMax/Math.sqrt(Math.pow(uMax,2)+Math.pow(vMax,
2)).toFixed(3)
    var maxNorm u = document.getElementById('maxNormU')
    maxNorm u.innerHTML = temp1.toFixed(3)
    var maxNorm_v = document.getElementById('maxNormV')
    maxNorm v.innerHTML = temp2.toFixed(3)
    var SV = document.getElementById('sv')
    SV.innerHTML = Math.sqrt(Math.pow(uMax,2)+Math.pow(vMax,
2)).toFixed(3)
/* The ultimate max */
    var uMax1 = a*Math.cos(highT * (Math.PI/180)) + b*Math.sin(highT
* (Math.PI/180)).toFixed(3)
    var vMax1 = c*Math.cos(highT * (Math.PI/180)) + d*Math.sin(highT
* (Math.PI/180)).toFixed(3)
    var singleValue1 =
Math.sqrt(Math.pow(uMax1,2)+Math.pow(vMax1,2)).toFixed(3)
    var con
    var dif = (Math.abs(singleValue - singleValue1))/singleValue1
/* con 1 = show
   con 0 = hidden
   */
   var alert = document.getElementById('alert')
   alert.innerHTML = con
    if (dif>0.02) {
      con = "Alert: you did not find the greatest stretch"
      alert.innerHTML = con
    }
    else {
      con = ""
      alert.innerHTML = con
    return [u,v,g,con];
}
function showDiv() {
```

```
var x = document.getElementById("welcomeDiv");
 if (x.style.display === "none") {
   x.style.display = "block";
 } else {
   x.style.display = "none";
}
function refresh()
 location.reload();
 </script>
</div>
<div class="absolute2">
 A =
</div>
 <div class="absolute3" >
   <div class="well well-lq">
     <h3>Step 1. Enter matrix values</h3>
     <form id="inputField" role="form" style="margin-left:30px">
       <input type="text" name="field00" size="5" >
       <input type="text" name="field01" size="5">
       <input type="text" name="field10" size="5" >
       <input type="text" name="field11" size="5" >
 <input type="button" onclick="calcJacobian()" value="calculate"</pre>
name="calculate" class="btn btn-info" style="margin-left:30px;" >
     </form>
       <hr>
       <imq src="https://i.ibb.co/cxGjpxT/note.png">
       <h3>Step 2.</h3>
        Hold down and slide along the slidebar.
       <h3>Step 3. Results:</h3>
       t = <span id="demo1"></span> 
        vector (x,y) = (<span id = 'x'></span> ,
<span id='y'></span>)
        vector (u,v) = (<span id = 'u'></span> ,
<span id='v'></span>)
        length of (u,v) = |(u,v)| = <span</pre>
id="len1"></span>
        normalized (u,v) = (<span id = 'normU'>
span> , <span id='normV'></span>)
       <h3>Step 4. Exploration:</h3>
       Slide until the length of (u,v) given above
        is maximized. Then click <input type="button"</p>
```

```
name="answer" value="Done" onclick="showDiv()" />
       <div id="welcomeDiv" style="display:none;"</pre>
class="answer list" >
         Value of t that gives the greatest stretch
= <span id="HighT"></span>
         <span id="alert"></</pre>
span>
         Right Sing vec [ = the (x,y) for that t ]
= ( < pan id = 'LSVx' > < / span id = 'LSVy' > < / span > ) 
         Left Sing vec [ = normalized (u,v) for
that t ] = (<span id = 'maxNormU'></span> , <span id='maxNormV'></
span>)
         Singular Value [ = the greatest stretch ]
= <span id="sv"></span>
         <span id="test"></span>
           <span id="test1"></span>
      </div>
     <h3>Step 5. New Matrix
     <input type="button" name = "refresh" value="Refresh"</pre>
class="tab" onclick="refresh()"/></h3>
   </div>
 </div>
</body>
</html>
```