Package 'ASSIST'

May 5, 2021

Type Package
Title Nonparametric Trace Regression via Sign Series Representation
Version 0.1.0
Author Chanwoo Lee <chanwoo.lee@wisc.edu>, Lexin Li <lexinli@berkeley.edu>, Hao Helen Zhang <hzhang@math.arizona.edu>, Miaoyan Wang <miaoyan.wang@wisc.edu></miaoyan.wang@wisc.edu></hzhang@math.arizona.edu></lexinli@berkeley.edu></chanwoo.lee@wisc.edu>
Maintainer Chanwoo Lee <chanwoo.lee@wisc.edu></chanwoo.lee@wisc.edu>
Description Efficient method for fitting nonparametric matrix trace regression model. The detailed description can be found in Lee, C., Li, L., Zhang, H., and Wang, M. (2021). Nonparametric Trace Regression via Sign Series Representation. <arxiv:2105.01783>. The method employs the aggregation of structured sign series for trace regression (ASSIST) algorithm.</arxiv:2105.01783>
URL https://arxiv.org/abs/2105.01783
Imports quadprog, Matrix, glmnet, keras
License GPL(>=2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
R topics documented:
ADMM
Index 7

2 ADMM

ADMM algorithm for weighted classification
--

Description

Implement an ADMM algorithm to optimize the weighted classificiation loss.

Usage

```
ADMM(X,ybar,Weight,Covariate=NULL,r,srow,scol,lambda=0,rho.ini=1)
```

Arguments

X A list of matrix-valued predictors.

ybar A vector of shifted response variables.

Weight Classification weight.

Covariate Additional covariates including intercept. Covariate = NULL indicates no co-

variates.

r The rank of coefficient matrix to be fitted.

srow The number of zero rows in coefficient matrix.

scol The number of zero columns in coefficient matrix.

lambda Lagrangian multiplier. Default is zero.

rho.ini Initial step size. Default is 1.

Value

The returned object is a list of components.

intercept - The estimated intercept of the classifier.

P_row - The left-singular vectors of the coefficient matrix.

P_col - The right-singular vectors of the coefficient matrix.

obj - Trajectory of weighted classification loss values over iterations.

iter - The number of iterations.

fitted - A vector of fitted reponse from estimated classifier.

B - The estimated coefficient matrix of the classifier.

References

Lee, C., Li, L., Zhang, H., and Wang, M. (2021). Nonparametric Trace Regression via Sign Series Representation. *arXiv preprint arXiv:2105.01783*.

ASSIST 3

Examples

```
#### Generate matrix predictors #########
X = list()
for(i in 1:10){
    X[[i]] = matrix(runif(4,-1,1),nrow = 2,ncol = 2)
}

#### Generate coefficient matrix ########
B = runif(2,-1,1)%*%t(runif(2,-1,1))

#### Generate response variables ########
y = NULL
for(i in 1:10){
    y = c(y,sign(sum(X[[i]]*B)+rnorm(1,sd = 0.1)))
}

#### classification with equal weights ########
res = ADMM(X,y,rep(1,10),r = 1,srow = 0,scol = 0)

### Misclassification rate on training data #####
mean(sign(res$fitted)-y)
```

ASSIST

Aggregation of structured sign series for trace regression (ASSIST)

Description

Main function for fitting the nonparametric trace regression. The algorithm uses a learning reduction approach to estimate the nonparametric trace regression via ASSIST.

Usage

```
ASSIST(X,y,X_new=NULL,r,sparse_r,sparse_c,H=10,lambda=0,rho.ini=0.1,min,max)
```

Arguments

Χ	A list of matrix-valued predictors.
У	A vector of response variables.
X_new	A list of new matrices in the test data. X_new = NULL returns fitted values in the training data.
r	The rank of sign representable function to be fitted.
sparse_r	The number of zero rows in coefficient matrix.
sparse_c	The number of zero columns in coefficient matrix.
Н	Resoution parameter that controls the number of classifiers to aggregate.
lambda	Lagrangian multiplier.
rho.ini	Initial step size.
min	Minimum value of the response variables
max	Maximum value of the response variables.

4 ASSIST

Value

The returned object is a list of components.

B_est - An array that collects a series of coefficient matrices for the classifiers used in the algorithm.

fitted - The predicted responses in the test data.

sign_fitted - A matrix that collects a series of predicted signs for the classifiers used in the algorithm.

References

Lee, C., Li, L., Zhang, H., and Wang, M. (2021). Nonparametric Trace Regression via Sign Series Representation. *arXiv* preprint arXiv:2105.01783.

Examples

```
\#\#\#\#\#\#\# Generate matrices in the training data \#\#\#\#\#\#\#\#\#\#\#
X = list()
for(i in 1:10){
X[[i]] = matrix(runif(4,-1,1),nrow = 2,ncol = 2)
B = runif(2,-1,1)%*%t(runif(2,-1,1))
y = NULL; signal = NULL
for(i in 1:10){
signal = c(signal,sum(X[[i]]*B))
y = c(y,sum(X[[i]]*B)+rnorm(1,sd = 0.1))
}
res =ASSIST(X, y, r = 1, sparse_r = 0, sparse_c = 0, min = min(y), max = max(y))
mean(abs(res$fitted-signal))
####### Generate new matrices in the test data ################
X_{new} = list()
for(i in 1:10){
 X_{new}[[i]] = matrix(runif(4,-1,1),nrow = 2,ncol = 2)
}
y_new = NULL
for(i in 1:10){
 y_new = c(y_new, sum(X_new[[i]]*B))
res = ASSIST(X,y,X\_new,r = 1,sparse\_r = 0,sparse\_c = 0,min = min(y),max = max(y))
mean(abs(res$fitted-y_new))
```

CNN 5

ers

Description

Implement a CNN with two hidden layers and ReLU activation.

Usage

```
CNN(X,y,X_new,plot.figure = FALSE)
```

Arguments

X A list of matrix-valued predictors.

y Binary response variable.

X_new A list of new matrices in the test data.

plot.figure Option for plotting trajectory of accuracy over epochs.

Value

The returned object is a list of components.

prob - The predicted probabilities for the test data.

class - The estimated binary response for the test data.

history - The trajectory of classification accuracy over epochs.

acc - The classification accuracy on test data.

Lasso	Logistic probability model via penalized maximum likelihood

Description

Fit a logistic probability model based on Lasso penalty

Usage

```
Lasso(xvec,y,xnew,lambda)
```

Arguments

xvec An input matrix. Each row is a vectorized predictor.

y Binary response variable.

xnew New predictors in the test data. Organized as a matrix with each row being a

data point.

lambda The regularization penalty.

6 Lasso

Value

The returned object is a list of components.

 $B_{\tt est}$ - The estimated coefficient vector of linear predictor.

prob - The predicted probabilities for the test data.

Index

```
ADMM, 2
ASSIST, 3
CNN, 5
Lasso, 5
```