MISR UNIVERSITY FOR SCIENCE AND TECHNOLOGY COLLEGE OF ENGINEERING MECHATRONICS DEPARTMENT

MTE 405 SENSORS AND MEASUREMENTS

LAB 4 - SPRING 2020

Goals Of The Lab

Introduction to Sensors and Signal Conditioning with Virtual Prototyping

Working with encoders

Lab 4 Encoders

Mechatronics Usage

Learning outcome Implementation of lecture notes Building speed monitoring application

Importance of Encoders

Importance of Encoders

Anatomy of encoders

Rotating Shaft

Rotary Encoder

Position / Velocity / Acceleration feedback

Lab 4

Types of encoders

How it works

ABSOLUTE ENCODER

Types of encoders

How it works

INCREMENTAL ENCODER

Types of encoders

How it works

HALL/MAGNETIC

Types of encoders

How it works

Magnetic Encoder

- 3.3 V 20 V
- 2-Channels
- 6 poles

Two Channel Encoder Connections

1. Black : - Motor

2. Red : + Motor

3. Brown : Hall Sensor Vcc

4. Green : Hall Sensor GND

5. Blue : Hall Sensor A Vout

6. Purple: Hall Sensor B Vout

What's the number of pulses per revolution / channel?

Can we increase the encoder resolution? XOR?

HALL/MAGNETIC

Types of encoders

Geared DC Motor

3.Mechanical characteristic

3.1 Reduction ratio

1/19.225

Advantages of Gear Reduction

- Boosting torque.
- Enhancing encoder resolution

Encoder (PPR) = 6 (poles)X 2(channels)X 19Reduction Ratio

 $Encoder(PPR) \cong 231$

GEARED DC MOTOR

Lab 4 Encoders

Calculations

MATHEMATICAL FORMULAE

Basic calculations for incremental encoders

Formulations

Given

Number of slots per channel : N_s (slots)

Number of channels: N_c

Computed

Encoder resolution per channel:
$$R_c \left(\frac{degrees}{step} \right)$$
 $R_c = \frac{360^{\circ}}{N_s} \left(\frac{degrees}{step} \right)$

Total encoder resolution: $R_t \left(\frac{degrees}{step} \right)$ $R_t = \frac{360^{\circ}}{N_s N_c} \left(\frac{degrees}{step} \right)$

Basic calculations for incremental encoders

Formulations

Example

A quadrature encoder of (2 – channels) holding 60 slots per channel. Calculate the resolutoj per channel and if both channels are XORed.

$$R_c = \frac{360^o}{N_s} = \frac{360}{60} = \frac{6^o}{step}$$

$$R_c = \frac{360^o}{N_s} = \frac{360}{60} = \frac{6^o}{step}$$
 $R_t = \frac{360^o}{N_s N_c} = \frac{360}{(60)(2)} = \frac{3^o}{step}$

Basic calculations for incremental encoders

Formulations

Example

From **previous calculations**, the same encoder was mounted on a wheel drive. If the wheel diameter is 0.1 m and the received count is 1240. What is the distance travelled? What is the reading error?

$$\therefore R_t = \frac{3^o}{step}$$
 and $\frac{Distance}{One\ Rotation} = \pi D_{wheel} = (\pi)(0.1) = 0.314\ m$

Basic calculations for incremental encoders

Formulations

Example

From **previous calculations**, the same encoder was mounted on a wheel drive. If the wheel diameter is 0.1 m and the received count is 1240. What is the distance travelled? What is the reading error?

$$R_{t} = \frac{3^{o}}{step} \text{ and}$$

$$\frac{Distance}{One \ Rotation} = 0.314 \ m$$

Basic calculations for incremental encoders

Formulations

Example

From **previous calculations**, the same encoder was mounted on a wheel drive. If the wheel diameter is 0.1 m and the received count is 1240. What is the distance travelled? What is the reading error?

$$Total\ Distance\ (L) = \frac{1240\ (Count)}{120\ (\frac{Count}{Rotation})} * \left(0.314 \frac{m}{Rotation}\right) = 3.24\ m$$

Basic calculations for incremental encoders

Formulations

Notation (continued)

Total distance travelled : L(m)

Total encoder counts : C_t (counts)

Total encoder counts per rotation : $C_{t-r} \left(\frac{counts}{rotation} \right)$

Distance travelled after one rotation: $L_{t-r} \left(\frac{m}{rotation} \right)$

$$L(m) = \frac{C_t (Count)}{C_{t-r} (\frac{Count}{Rotation})} * L_{t-r} (\frac{m}{rotation})$$

Basic calculations for incremental encoders

Formulations

Notation (continued)

 $Motor\ speed: S_{motor}\ (RPM)$

 $Total\ encoder\ speed: S_{encoder}\ (Pulse\ Per\ Second\ -PPS)$

 $Microcontroller\ sampling\ time: \Delta t\ (Seconds)$

$$S_{encoder} (PPS) = \frac{Encoder Count @(t) - Encoder Count @(t - \triangle t)}{\triangle t}$$

$$S_{motor}(RPM) = S_{encoder}\left(\frac{pulse}{s}\right) * \frac{R_t\left(\frac{degree}{pulse}\right)}{360^o\left(\frac{degree}{revolution}\right)} * 60.0\left(\frac{s}{min}\right)$$

Assignment 3

An encoder fixed on a wheel of 10 cm diameter is rotating at speed of 20 Pulse Per Second. If the encoder has 5 slots around circumference, compute the distance travelled after 3 min.

Due 15-04-2020

PAST ASSIGNMENT

ASSIGNMENT

Don't forget to pull the lab update from.

http://github.com/wbadry/mte405

END OF Lab 4