

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки
КАФЕДРА	Прикладная математика

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Решение дифференциального уравнения Рейнольдса методом конечных элементов

Студент	$\Phi H2-71 B$	В.Г. Пиневич		
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Руководитель курсовой работы			А.В. Селиванов	
		(Подпись, дата)	(И.О. Фамилия)	

Оглавление 2

Оглавление

Введение	3
1. Постановка задачи	3
2. Вывод уравнения Рейнольдса	3
Заключение	6
Список использованных источников	7

Введение 3

Введение

1. Постановка задачи

Задача данной работы — вывести, а затем найти решение дифференциального уравнения Рейнольдса методом конечных элементов.

$$\frac{\partial}{\partial x} \left(h^3 \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial z} \left(h^3 \frac{\partial p}{\partial z} \right) = 6\mu U \frac{\partial h}{\partial x},\tag{1}$$

где h=h(x) — толщина слоя, p=p(x,z) — давление, μ — коэффициент вязкости. Граничные условия: U — скорость в направлении x на одной из пластин, p_b — повышенное давление, p_l — пониженное давление.

2. Вывод уравнения Рейнольдса

Гидродинамические уравнения несжимаемой жидкости с внутренним трением могут быть представлены в очень простой форме, если пренебречь силами, пропорциональными массам, равно как и силами инерции.

Обозначая через , , z прямоугольные координаты точки, через — гидродинамическое давление в этой точке,

$$\begin{cases} p_{xy}, p_{xz}; \\ p_{yx}, p_{yz}; \\ p_{zx}, p_{zy}. \end{cases}$$

силы трения, перпендикулярные к оси, обозначенной первой буквой индекса и параллельные оси, обозначенной второй буквой индекса u, ν, ω – проекции скорости на осях x, y, z. μ — коэффициент внутреннего трения жидкости, можно написать три группы следующих уравнений:

1) Группа, определяющая гидродинамическое давление в точке x, y, z:

$$\begin{cases}
\frac{\partial p}{\partial x} = \mu \left(\frac{\partial^2 u}{\partial^2 x} + \frac{\partial^2 u}{\partial^2 y} + \frac{\partial^2 u}{\partial^2 z} \right), \\
\frac{\partial p}{\partial y} = \mu \left(\frac{\partial^2 \nu}{\partial^2 x} + \frac{\partial^2 \nu}{\partial^2 y} + \frac{\partial^2 \nu}{\partial^2 z} \right), \\
\frac{\partial p}{\partial z} = \mu \left(\frac{\partial^2 \omega}{\partial^2 x} + \frac{\partial^2 \omega}{\partial^2 y} + \frac{\partial^2 \omega}{\partial^2 z} \right).
\end{cases} (2)$$

2) Группа, определяющая силы трения в той же точке:

$$\begin{cases}
p_{yz} = p_{zy} = \mu \left(\frac{\partial \omega}{\partial y} + \frac{\partial \nu}{\partial z} \right), \\
p_{zx} = p_{xz} = \mu \left(\frac{\partial \omega}{\partial x} + \frac{\partial u}{\partial z} \right), \\
p_{xy} = p_{yx} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial \nu}{\partial x} \right).
\end{cases}$$
(3)

3) Условие несжимаемости жидкости, выраженное урав нением:

$$\frac{\partial u}{\partial x} + \frac{\partial \nu}{\partial y} + \frac{\partial \omega}{\partial z} = 0. \tag{4}$$

Примем, что скорость $\nu=0$, поскольку она мала по сравнению со скоростями $u=0,\,\omega=0.$

Изменения скоростей и и со при заданном значении y для всех изменений x и z могут рассматриваться как чрезмерно малые, поэтому причем

$$\frac{\partial^2 u}{\partial^2 x} = 0, \frac{\partial^2 u}{\partial^2 z} = 0, \frac{\partial^2 \omega}{\partial^2 x} = 0, \frac{\partial^2 \omega}{\partial^2 z} = 0.$$

Ограничиваясь приближенным решением, которое можно получить при указанных выше предположениях, уравнения (2), (3) и (4) могут быть приведены к следующей форме.

$$\begin{cases} \frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial^2 y}, \\ \frac{\partial p}{\partial y} = 0, \\ \frac{\partial p}{\partial z} = \mu \frac{\partial^2 \omega}{\partial^2 y}. \end{cases}$$
 (5)

$$\begin{cases} p_{yz} = p_{xy} = \mu \frac{\partial \omega}{\partial y}, \\ p_{zx} = p_{xz} = 0, \\ p_{xy} = p_{yx} = \mu \frac{\partial u}{\partial y}. \end{cases}$$

$$\frac{\partial u}{\partial x} + \frac{\partial \nu}{\partial y} + \frac{\partial \omega}{\partial z} = 0.$$
(6)

Для определения давления необходимо интегрировать выражения (5), (6). Для этого определим граничные условия. Для y=0 имеем

$$u = U_0, \nu = 0, \omega = 0.$$

Для y = h имеем

$$u = U_1, \nu = U_1 - U_1 \frac{\partial h}{\partial h}, \omega = 0.$$

На некотором контуре f(x, y) = 0 имеем

Поскольку p не зависит от y, то интегрирование уравнений (5) приводит к уравнениям

$$\begin{cases} u = \frac{1}{2\mu} \frac{\partial p}{\partial x} (y - h) y + U_0 \frac{h - y}{h} + U_1 \frac{y}{h}, \\ \omega = \frac{1}{2\mu} \frac{\partial p}{\partial z} (y - h) y. \end{cases}$$
(7)

Первые производные вторых членов этих уравнений, перене сенные в соответствующие уравнения группы (6), приводят к уравнениям

$$\begin{cases} p_{yz} = p_{zy} = \frac{1}{2} \frac{\partial p}{\partial z} (2y - h), \\ p_{xy} = p_{yz} = \frac{1}{2} \frac{\partial p}{\partial x} (2y - h) + \mu \frac{U_1 - U_0}{h}. \end{cases}$$
(8)

Если считать независимым от z, то четыре последних уравнения сокращаются до двух: первое из группы (7) и второе из группы (8).

Взяв производные от первого из этих уравнений по x и от второго по z и подставляя это в уравнение (4), находим, что

$$\frac{\partial \nu}{\partial y} = -\frac{1}{2\mu} \left(\frac{\partial}{\partial x} \left(\frac{\partial p}{\partial x} (y - x) y \right) + \frac{\partial}{\partial z} \left(\frac{\partial p}{\partial z} (y - h) h \right) - \frac{\partial}{\partial x} \left(U_0 \frac{h - y}{h} + U_1 \frac{y}{h} \right) \right).$$

Интегрируя это уравнение в пределах от $\Gamma/=0$ до $\Gamma/=\Pi$ и принимая во внимание условия [6], получаем

$$\frac{\partial}{\partial x} \left(h^3 \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial z} \left(h^3 \frac{\partial p}{\partial z} \right) + \frac{\partial}{\partial x} \left(h^3 \frac{p}{x} \right) = 6\mu \left((U_0 - U_1) \frac{\partial h}{\partial x} \right) + 2V_1.$$

 $2V_1$ используется для учёта движений одной из стенок зазора, меняющих значение функции. Если пренебречь этим, и обозначить $U_0 - U_1$ как U, то получим искомое уравнение (1).

Заключение 6

Заключение

1) .

Список использованных источников

1. Петров Н. Гидродинамическая теория смазки, М.: Из-во академии наук СССР, 1948. — 558 с.