8/5/24, 3:38 PM OneNote

Exam 3 Stuff

Thursday, May 04, 2023 9:35 AM

- * Questions in the slideso
- Ch7 slide 31
 O

Combining Turing Machines

- Just as a large algorithm can be described as a number of sub-algorithms working in combination, we can combine several Turing machines into a larger composite TM.
- In the simplest case, if T_1 and T_2 are TMs, we can consider the composition T_1T_2 : "first execute T_1 , then execute T_2 on the result".
 - □ The set of states of T_1T_2 is the union of the sets of states of T_1 and T_2 (relabeled if necessary).
 - \Box The initial state is the initial state of T_1 .

Combining Turing Machines (cont'd.)

- The transitions of T₁T₂ include all of those of T₂ and all of those of T₁ that don't go to h_a.
- A transition in T₁ that goes to h_a is replaced by a similar transition that goes to the start state of T₂.
 - It is important that the output of T_1 be a valid input configuration for T_2 .
 - We may use transition diagrams containing notations such as $T_1 \rightarrow T_2$, in order to avoid showing all the states explicitly.

o
 2 Q abt TM

0

- 2 Q abt recursively enumerable langs
- · Canonical vs lexicographical order
 - C breadth first search

Enumerating a Language

- **Definition 8.8:** Let T be a k-tape Turing machine for some $k \ge 1$, and let $L \subseteq \Sigma^*$. We say T enumerates L if it operates such that the following conditions are satisfied:
 - The tape head on the first tape never moves to the left, and no nonblank symbol printed on tape 1 is subsequently modified or erased;
 - For every $x \in I$, there is some point during the operation of T

8/5/24, 3:38 PM OneNote

when tape 1 has contents $x_1 \# x_2 \# ... \# x_n \# x \#$ for some $n \ge 0$, where the x_i 's are also elements of L and $x_1, x_2, ..., x_n, x$ are distinct:

If L is finite, then nothing is printed after the # following the last element of L.

4/28/2023 Lecture 8 COSC 3302 66

Enumerating a Language (cont'd.)

- **Theorem 8.9:** For every language $L \subseteq \Sigma^*$,
 - L is recursively enumerable if and only if there is a TM enumerating
 L, and
 - L is recursive if and only if there is a TM that enumerates the strings in L in canonical order.
- **Reminder:** For the alphabet $\Sigma = \{a, b\}$, the *canonical order* enumeration of Σ^* is $\{\Lambda, a, b, aa, ab, ba, bb, aaa, aab, ... \}.$
- Note 1: In the canonical order, the shorter strings precede longer strings and strings of the same length appear alphabetically.
- **Note 2:** Canonical order is different from the *lexicographic order* (or *strictly alphabetical order*), in which *aa* precedes *b*.
 - □ The lexicographic order enumeration of Σ^* is $\{\Lambda, a, aa, aaa, ...\}$, hence b and other strings will never be enumerated.

4/28/2023 Lecture 8 COSC 3302

Context Sensitive Grammar

0

Monotone might not be on test

decreasing.

Context-Sensitive Languages and the Chomsky Hierarchy

- Definition: A context-sensitive grammar (CSG) is an unrestricted grammar in which no production is length-
- In other words, every production is of the form $\alpha \to \beta$, where $|\beta| \ge |\alpha|$.
- Note: In fact, the above definition is for monotone grammars.
 - Harrison proved in 1969 that monotone grammars are equivalent to the context-sensitive grammars.
- A language is a context-sensitive language (CSL) if it can be generated by a CSG.
- CSGs cannot have Λ -productions, and CSLs cannot include Λ .
- We think of CSLs as a generalization of CFLs.

4/28/2023 Lecture 8 COSC 3302 80

The original definition of a context sensitive grammar [Chomsky; 1954]

- **Definition 1.** A formal grammar $G = (N, \Sigma, P, S)$, where N is a set of nonterminal symbols, Σ is a set of terminal symbols, P is a set of production rules, and S is the start symbol, is **context-sensitive** if all rules in P are of the form
 - $\alpha A \beta \rightarrow \alpha \gamma \beta$
- where $A \in N$, $\alpha, \beta \in (N \cup \Sigma)^*$ and $\gamma \in (N \cup \Sigma)^+$.
- **Reminder.** A CFG production has the form $A \rightarrow \gamma$, so there is no context surrounding variable A.
- **Definition 2.** A formal grammar $G = (N, \Sigma, P, S)$ is in **standard form** if any rule of G has one of the following forms:
 - 1. $\alpha \to \beta$, where α and $\beta \in N^+$.
 - 2. $A \rightarrow a$, where $A \in N$ and $a \in \Sigma$.

Weighted monotone grammars

Definition 3. Given a formal grammar $G = (N, \Sigma, P, S)$, where N is a set of nonterminal symbols, Σ is a set of terminal symbols, P is a set production rules, and S is the start symbol, we define the weight of C

denoted $\psi(G)$, by $\psi(G) = \max\{|\beta|, \text{ where } \alpha \to \beta \in P\}$.

- Recall that a grammar is monotone iff none of its productions is length-decreasing.
- **Theorem 2.** For any monotone grammar $G = (N, \Sigma, P, S)$, there exist a monotone grammar $G' = (N', \Sigma, P', S)$ of weight at most two such that L(G) = L(G').
- **Proof.** Because G is monotone, $|\alpha| \le |\beta|$ for any production $\alpha \to \beta$.
- If $|\alpha| \le |\beta| \le 2$, then the production $\alpha \to \beta$ is copied in *G*'.
- Let us consider $\alpha \to \beta$ for which $|\beta| > 2$. We'll proceed in a similar way as the equivalent Chomsky normal form.

4/28/2023 Lecture 8 COSC 3302 84 0 Weighted monotone grammars (cont'd) As stated in the previous slide, consider $\alpha \to \beta$ for which $|\beta| > 2$. Hence, $\alpha = x_1 x_2 \dots x_n$ and $\beta = y_1 y_2 \dots y_m$, where $n \le m$ and m > 2, $x_1, x_2, \dots x_n, y_1, y_2, \dots y_m \in N$ (according to Theorem 1). • We need m new additional non-terminal symbols, say, $z_1 z_2 \dots z_m$. • We substitute the rule $x_1 x_2 \dots x_n \rightarrow y_1 y_2 \dots y_m$ the following set of weight at most two rules: $x_1 \rightarrow z_1$ $z_1 x_2 \rightarrow y_1 z_2$ $z_2 x_3 \rightarrow y_2 z_3$ $z_{n-1} x_n \to y_{n-1} z_n$ $z_n \to y_n z_{n+1}$ $z_{n+1} \rightarrow y_{n+1} z_{n+2}$ $= z_{m-1} \longrightarrow y_{m-1} z_m$ $z_m \rightarrow y_m$ 4/28/2023Lecture 8 COSC 3302

Example

```
• Let us continue with G' = (\{A, B, X_a, X_b, X_c\}, \{a, b, c\}, A, P') with P':
```

```
1. X_a \rightarrow a

2. X_b \rightarrow b

3. X_c \rightarrow c

4. A \rightarrow X_a X_b X_c

5. A \rightarrow X_a A B

6. X_b B \rightarrow X_b X_b X_c

7. X_c B \rightarrow B X_c

• The rule A \rightarrow X_a X_b X_c is transformed in: A \rightarrow X_a Z_b Z_1 \rightarrow X_b X_c

• The rule A \rightarrow X_a A B is transformed in: A \rightarrow X_a Z_b Z_2 \rightarrow A B.

• The rule A \rightarrow X_a A B is transformed in: A \rightarrow X_a Z_b Z_2 \rightarrow A B.

• The rule A \rightarrow X_a A B is transformed in: A \rightarrow X_a Z_b Z_2 \rightarrow A B.

• The rule A \rightarrow X_a A B is transformed in: A \rightarrow X_a Z_b Z_2 \rightarrow A B.

• In fact, it is more efficient if the rule X_b B \rightarrow X_b X_b X_c has X_b B \rightarrow X_b Z_l instead. Why? (get a *)
```

Monotone grammars are equivalent to

the context-sensitive grammars

- **Theorem 3.** For any monotone grammar $G = (N, \Sigma, P, S)$, there exists a context-sensitive grammar $G' = (N', \Sigma, P', S)$ such that L(G) = L(G').
- Proof. According to Theorems 1 and 2, there exists an equivalent grammar in standard form of weight at most two.
- Hence, we assume the rules of G have the form $\alpha \to \beta$ for which $|\alpha| \le |\beta| \le 2$. We distinguish six cases:

```
1. A \rightarrow a (sensitive with context (\lambda, \lambda))
2. A \rightarrow B (sensitive with context (\lambda, \lambda))
3. A \rightarrow B C (sensitive with context (\lambda, \lambda))
4. A B \rightarrow A C (sensitive with context (A, \lambda))
5. A B \rightarrow C B (sensitive with context (\lambda, B))
6. A B \rightarrow C D is not sensitive at any context. Hence ...
4/28/2023
```

• Ch 8 slide 31-32

O Ch 8 O

The original definition of a context sensitive

grammar [Chomsky; 1954]

- **Theorem 1.** For any formal grammar $G = (N, \Sigma, P, S)$, there exists a grammar G' in standard form equivalent to G.
- **Proof.** Let us assume that $G = (N, \Sigma, P, S)$ is not in standard form (otherwise G' can be taken as G).
- For each symbol $a \in \Sigma$, we associate a new non-terminal symbol $X_a \notin N \cup \Sigma$.
- We denote $N' = N \cup \{X_a \mid a \in \Sigma\}$.
- We define the function $f: N \cup \Sigma \rightarrow N'$ such that
 - 1. f(y) = y, if $y \in N$.
 - 2. $f(y) = X_y$, if $y \in \Sigma$.
- Function f(x) can be extended to words (if $u = u_1 u_2 ... u_k$, then $f(u) = f(u_1) f(u_2)$
- Consider $G' = (N', \Sigma, P', S)$ where $P' = \{f(u) \to f(v) \mid u \to v \in P\} \cup \{X_y \to y \mid u \in T'\}$
- The proof L(G) = L(G') is rather straightforward.

Example

- Let $G = (\{A, B\}, \{a, b, c\}, A, P)$, where P is given by:
 - $\Box A \rightarrow abc$
 - $\Box A \rightarrow a A B$

 (get a star) What is L(G)?

- $\Box b B \rightarrow b b c$
- What is the equivalent grammar in standard form?
- $G' = (\{A, B, X_a, X_b, X_c\}, \{a, b, c\}, A, P')$ with P':
 - $X_a \to a$
 - $X_b \to b$
 - $X_c \rightarrow c$
 - $\Box A \to X_a X_b X_c$
 - $\Box A \rightarrow X_a A B$
 - $\square X_b B \to X_b X_b X_c$

 $\Box X_c B \to B X_c$

Lecture 8 COSC 3302

Monotone grammars are equivalent to the context-sensitive grammars (cont'd)

- 6. A B → C D is not sensitive at any context. Hence we need to rewrite this rule into three context-sensitive rules as follows (We consider E a new non-terminal symbol – similar to milk-water variable exchange example):
 - a. $A B \rightarrow E B$ (sensitive with context (λ, B))
 - $E B \rightarrow E D$ (sensitive with context (E, λ))
 - E $D \rightarrow C D$ (sensitive with context (λ, D))
- In conclusion, G' has only context-sensitive rules and it is equivalent to G.
- Ch 8 smth like slide 35

0

o Star questions around slide 74

O Star questions around sind

Not Every Language is Recursively

Enumerable

- We will now consider languages over an alphabet Σ and TMs with input alphabet Σ .
 - We will show that there are more languages than TMs to accept them. It follows that there must be many languages not accepted by any TM.
- The first step is to explain how it makes sense to talk about one infinite set being larger than another.
- We'll formulate two definitions:
 - □ What it means for two sets to be the same size;
 - □ What it means for one to be larger than another.

4/28/2023 Lecture 8 COSC 3302 104

Not Every Language is Recursively Enumerable (cont'd.)

- For finite sets, this is easy, because we know how to say that one number is equal to or bigger than another.
- **Definition 8.23:** In general, two sets *A* and *B* are the same size if there is a bijection $f: A \rightarrow B$. A is larger than B if some subset of A is the same size as B but A itself is not.
- **Definition 8.24:** A set *A* is *countably infinite* if there is a bijection $f: \mathbb{N} \to A$, or a list a_0 , a_1 , ... of elements of A such that every element of *A* appears exactly once in the list.
 - □ *A* is *countable* if *A* is either finite or countably infinite.

Not Every Language is Recursively Enumerable (cont'd.)

- **Theorem 8.25:** Every infinite set has a countably infinite subset, and every subset of a countable set is countable.
 - For proof, see book.
- Even though the set $\mathbb{N} \times \mathbb{N}$ seems much larger than \mathbb{N} , it is countable and therefore the same size as N.
 - We can see this by forming a two-dimensional array with all the ordered pairs (i, j) and starting a spiral path at (0, 0) that hits each ordered pair.
 - This is a way of listing the elements of $\mathbb{N} \times \mathbb{N}$.

0

- Post Correspondence Question
 - Domino

0

Post's Correspondence Problem

- Here is a simple case: Think of each of the five rectangles in figure (a) as a domino
 - You have an unlimited supply of each.
 - □ The above array should match the below array.
- □ Can we arrange them (with duplicates allowed) so that the top row of symbols matches the bottom row?
- \Box In this example, the answer is yes, as we see in figure (b)
- □ In general, this is Post's Correspondence Problem.

Post's Correspondence Problem (cont'd.)

Definition 9.14:

- □ An instance of Post's correspondence problem (PCP) is a set $\{(\alpha_1, \beta_1), (\alpha_2, \beta_2), ..., (\alpha_n, \beta_n)\}$ of pairs, where n ≥ 1 and each α_i and each β_i is a nonnull string over an alphabet Σ .
- □ **The decision problem:** Given an instance of this type, do there exist a positive integer k and sequence of integers i_1 , i_2 , ..., i_k with each i_i satisfying $1 \le i_i \le n$, satisfying $\alpha_{i_1}\alpha_{i_2}...\alpha_{i_k} = \beta_{i_1}\beta_{i_2}...\beta_{i_k}$?
- □ An instance of the modified PCP (MPCP) adds the requirement that i_1 be 1.

Lecture 9 COSC 3302 Post's Correspondence Problem (cont'd)

- Definition 9.14: (cont'd.)
- Instances of PCP and MPCP are called correspondence systems and modified correspondence systems.
- For an instance of either type, if it is a yes-instance we will say that there is a *match* for the instance.
- □ We show that $Accepts \le MPCP \le PCP$ and deduce that both problems are undecidable (and that neither is completely unrelated to TMs after all).

4/28/2023 Lecture 9 COSC 3302 10

SAT

O 3SAT or NP or smth

Reductions and the Halting Problem

- We can often solve problems by reducing them to other, simpler ones.
- In this section, we consider reducing one decision problem to another.
- The two crucial features in a reduction are:
 - For every instance *I* of the problem we start with, we must be able to obtain an instance *F(I)* of the second problem algorithmically.
 - ². The answer to the second question for the instance F(I) must be the same as the answer to the original question for I.

4/28/2023 Lecture 9 COSC 3302

Reductions and the Halting Problem (cont'd.)

Definition 9.6:

0

0

0

- □ Suppose P_1 and P_2 are decision problems:
 - We say P_1 is *reducible* to P_2 ($P_1 \le P_2$) if there is an algorithm that finds, for an arbitrary instance I of P_1 , an instance F(I) of P_2 such that the two answers (the answer to P_1 for the instance I, and the answer to P_2 for the instance F(I)) are the same.
- \Box If L_1 and L_2 are languages over alphabets Σ_1 and Σ_2
 - We say L₁ is reducible to L₂ (L₁ ≤ L₂) if there is a Turing-computable function f: Σ₁* → Σ₂* such that for every x ∈ Σ₁*, x ∈ L₁ if and only if f(x) ∈ L₂.

Lecture 9 COSC 3302 130

Example

- Here is the (SAT) problem description.
- Input: V is a set of propositional variables, F is a propositional formula over V defined in Conjunctive Normal Form (CNF);
- Output: Does F have a satisfying assignment?
- Here is the (3SAT) problem description.
- Input: V is a set of propositional variables, F is a propositional formula over V defined in 3CNF;
- Output: Does F have a satisfying assignment?
- Theorem. Prove that (SAT) ≤ (3SAT).

8/5/24, 3:38 PM OneNote

4/28/2023 Lecture 9 COSC 3302 139

The (SAT) Problem

- ... is one of the most central decision problems in Computer Science.
- A propositional variable, A, is a variable that can take only two truth values, T (true) or F (false).
- Example:

0

0

0

- □ The truth value of the assertion 'The door of this room is closed.' can be either true or false.
- Propositional variables can be combined into disjunctions ('or'), conjunctions ('and'), or negations ('negation').

4/28/2023 Lecture 9 COSC 3302 14
O
O
Godel #

Gödel Numbering

- In 1930's, Kurt Gödel developed a method of "arithmetizing" a formal axiomatic system by assigning numbers to statements and formulas.
 - This allowed him to describe relationships between objects in the system using relationships between the corresponding numbers.
- This led to Gödel's Incompleteness Theorem:
 - Any formal system comprehensive enough to include the laws of arithmetic must, if it is consistent, contain true statements that cannot be proved within the system.
- Gödel numbering will be useful in this chapter also.

Gödel Numbering (cont'd.)

- **Definition 10.17:** For every $n \ge 1$ and every finite sequence $x_0, x_1, ..., x_{n-1}$ of n natural numbers, the Gödel number of the sequence is the number $gn(x_0, x_1, ..., x_{n-1}) = 2^{x_0}3^{x_1}...(PrNo(n-1))^{x_{n-1}}$ where PrNo(i) is the ith prime.
 - \Box Every sequence of length n is uniquely determined by its Gödel number.
 - □ If two sequences of different length have the same Gödel number, then they must agree except for the number of trailing 0's.

4/28/2023 Lecture 10 COSC 3302 193

Gödel Numbering (cont'd.)

- Every positive integer is the Gödel number of some sequence of integers.
- For every n, the Gödel numbering determines a function from \mathbb{N}^n to \mathbb{N} .
 - We will be imprecise and use the name gn for any of these functions;
 - □ All of them are nrimitive recursive:

- □ The function *Exponent*: $\mathbb{N}^2 \to \mathbb{N}$, defined by Exponent(i, x) = the exponent of PrNo(i) in x's prime factorization or 0 if i is 0, is primitive recursive.
 - See book for details.

Lecture 10 COSC 3302 0

• Ch 11 slide 27 diagram, also on 35?

Polynomial-Time Reductions and **NP**-Completeness (cont'd.)

- **Definition 11.16:** A language L is \mathcal{NP} -hard if $L_1 \leq_p$ *L* for every $L_1 \in \mathcal{NP}$; *L* is \mathcal{NP} -complete if $L \in \mathcal{NP}$ and L is \mathcal{NP} -hard.
- $lacksymbol{\mathcal{NP}}$ -complete is the intersection of \mathcal{NP} and \mathcal{NP} -hard. We'll come back to

4/28/2023 Lecture 11 COSC 5315 0