Schloss Journal Club

Genetic Determinant of the Gut Microbiome in UK Twins

Marc Sze

July 14th, 2016

Introduction

Human Genetics Shape the Gut Microbiome

Julia K. Goodrich, ^{1,2} Jillian L. Waters, ^{1,2} Angela C. Poole, ^{1,2} Jessica L. Sutter, ^{1,2} Omry Koren, ^{1,2,7} Ran Blekhman, ^{1,8} Michelle Beaumont, ³ William Van Treuren, ⁴ Rob Knight, ^{4,5,6} Jordana T. Bell, ³ Timothy D. Spector, ³ Andrew G. Clark, ¹ and Ruth E. Ley^{1,2,4}

		P-value MZ more similar than DZ
Weighted UniFrac	All Bacteria	0.094
	Ruminococcaceae	0.07
	Lachnospiraceae	0.016
	Bacteroidaceae	0.806
	All Bacteria	0.032
Unweighted UniEras	Ruminococcaceae	0.024
Unweighted UniFrac	Lachnospiraceae	0.39
	Bacteroidaceae	0.196
	All Bacteria	0.11
Bray Curtis	Ruminococcaceae	0.097
	Lachnospiraceae	0.036
	Bacteroidaceae	0.448

*No mention of multiple comparison correction

Introduction

Human Genetics Shape the Gut Microbiome

Julia K. Goodrich, ^{1,2} Jillian L. Waters, ^{1,2} Angela C. Poole, ^{1,2} Jessica L. Sutter, ^{1,2} Omry Koren, ^{1,2,7} Ran Blekhman, ^{1,8} Michelle Beaumont, ³ William Van Treuren, ⁴ Rob Knight, ^{4,5,6} Jordana T. Bell, ³ Timothy D. Spector, ³ Andrew G. Clark, ¹ and Ruth E. Ley^{1,2,*}

Introduction

Genetic Determinants of the Gut Microbiome in UK Twins

- Replicate previous findings using larger n
- Identify additional heritable taxa
- Identify gene-microbiome interactions (co-evolution)

In the top 5% of all research outputs scored by Altmetric

Heritability Calculations

- Used ACE model
 - A (additive genetics)

•
$$A = 2 * (r_{mz} - r_{dz})$$

- r_{mz} = correlation of trait in identical twins
- r_{dz} = correlation of trait in fraternal twins
- C (common environment)

•
$$C = r_{mz} - A$$

- E (unique environment)
 - $E = 1 r_{mz}$
- Falconer's formula to calculate Heritability

•
$$H2 = A = 2 * (r_{mz} - r_{dz})$$

OTU Heritability and Replication

A few discrepancies:

- Performed two FDR tests one with all data and one with no OTUs.
- Original P-values distribution is not one that is amenable to FDR correction (more on this on the next two slide)
- Multiple significant findings from the same value used (nonindependence of samples -> more on the next two slide)

OTU Heritability and Replication

OTU Heritability and Replication

1st FDR with all 945 tests

2nd FDR with 163 tests

After removal of duplicates from 2nd test P-values < 0.05 went from 58 to 40

Correlation between Heritable bacteria and Alpha and Beta Diversity

Heritability: Stability and Diversity

Table S2. Genetic and environmental contribution to Alpha- and Beta- diversity metrics. Related to Figure 2.

	Trait	A (95% CI)	P-value	C (95% CI)	E (95% CI)	ICC _{MZ}	ICC _{DZ}	Falconer h ²	
ersity	PD whole tree	0.37 (0.17-0.44)	0.0004	0.01 (0-0.19)	0.62 (0.56-0.68)	0.39	0.19	0.40	
Alpha Diversity	Shannon	0.32 (0.26-0.38)	0.0005	0 (0-0.13)	0.68 (0.62-0.74)	0.33	0.14	0.38	
Alph	Observed species	0.3 (0.24-0.37)	0.0018	0 (0-0.14)	0.7 (0.63-0.76)	0.31	0.13	0.36	
Beta Diversity	Unweighted UniFrac PC1	0.47 (0.29-0.58)	2.1×10^{-07}	0.06 (0-0.21)	0.47 (0.42-0.53)	0.53	0.29	0.48	
	Unweighted UniFrac PC2	0.25 (0.09-0.31)	0.0053	0 (0-0.1)	0.75 (0.69-0.82)	0.25	0.10	0.32	
	Unweighted UniFrac PC3	0.13 (0-0.32)	0.2559	0.13 (0-0.28)	0.74 (0.67-0.81)	0.26	0.19	0.15	
	Weighted UniFrac PC1	0 (0-0.16)	1.0000	0.2 (0.06-0.26)	0.8 (0.74-0.85)	0.20	0.21	-0.03	
	Weighted UniFrac PC2	0.15 (0-0.22)	0.1094	0 (0-0.15)	0.85 (0.78-0.92)	0.17	0.05	0.23	
Beta	Weighted UniFrac PC3	0.11 (0-0.29)	0.3388	0.12 (0-0.25)	0.77 (0.7-0.84)	0.23	0.17	0.12	
	Bray Curtis PC1	0.15 (0-0.36)	0.1597	0.17 (0-0.33)	0.68 (0.61-0.75)	0.32	0.25	0.15	
	Bray Curtis PC2	0.08 (0-0.3)	0.4830	0.17 (0-0.28)	0.75 (0.69-0.82)	0.26	0.20	0.12	
	Bray Curtis PC3	0.17 (0-0.24)	0.0708	0 (0-0.16)	0.83 (0.76-0.9)	0.18	0.07	0.24	

For each Metric, we report the A, C and E estimates from the ACE model (A = additive genetic influence; C = shared environmental influence; E = nonshared environmental influence) and P-value for A (likelihood ratio test comparing the ACE model to the CE model). Intraclass coefficient of correlation for MZ (ICC_{MZ}) and DZ (ICC_{DZ}), Falconer ($h^2 = 2*(ICC_{MZ}-ICC_{DZ})$) heritability.

Gene, SNPs, and Heritable Taxa

Candidate Set Name	Gene or SNP ^a	Number of Genes ^b	Number of SNPs°	Min p Value of Tested SNPs ^d	Min FDR Adjusted p Value of Tested SNPs°	Candidate Set Permutation p Value ^f	References		
Gastric Cancer Risk SNP			25	8.9 × 10 ⁻⁴	0.446	0.286	Mocellin et al., 2015		
Gastric Cancer Risk	Gene	29	611	8.0 × 10 ⁻⁵	0.555	0.307			
Inflammatory Bowel Disease	SNP		140	2.4 × 10 ⁻⁵	0.045	0.056	Jostins et al., 2012		
Inflammatory Bowel Disease	Gene	109	4,337	6.8 × 10 ⁻⁶	0.126	0.203			
Rheumatoid Arthritis	SNP		57	6.9 × 10 ⁻⁴	0.443	0.511	Okada et al., 2014		
Rheumatoid Arthritis	Gene	129	5,555	2.4×10^{-5}	0.599	0.585			
Type 2 Diabetes	SNP		65	0.001	0.527	0.703	Mahajan et al., 2014		
Type 2 Diabetes	Gene	78	7,731	4.0×10^{-6}	0.602	0.214			
Non-HLA Associations with Cholestatic Disorders	Gene	87	5,350	2.5 × 10 ⁻⁵	0.795	0.537	Hirschfield et al., 2013		
Cilantro Soapy Taste	SNP		1	0.084	0.446	0.667	Eriksson et al., 2012		
Cilantro Soapy Taste	Gene	1	13	9.1 × 10 ⁻⁵	0.024	0.011			
Bitter Taste	Gene	21	136	0.001	0.717	0.367	Bachmanov and		
Lipid Taste	Gene	1	51	6.1×10^{-5}	0.022	0.009	Beauchamp, 2007		
Salty Taste	Gene	5	45	0.01	0.965	0.988			
Sour Taste	Gene	7	1,048	1.6 × 10 ⁻⁴	0.492	0.659			
Sweet Taste	Gene	2	15	0.014	0.508	0.816			
Signal of Selection in Ancient Eurasians	SNP		9	0.003	0.603	0.37	Mathieson et al., 2015		
Signal of Selection in Ancient Eurasians	Gene	43	1,122	3.5 × 10 ⁻⁶	0.063	0.022			
Innate Immunity Genes under Selection	Gene	42	2,217	5.1 × 10 ⁻⁵	0.425	0.565	Deschamps et al., 2016		
LCT	Gene	1	21	3.5×10^{-6}	0.001	<0.001			
Davenport SNPs	SNP		187	1.7×10^{-4}	0.369	0.311	Davenport et al., 2015		
NOD2	Gene	1	17	0.007	0.609	0.493			
Org Mouse eQTL	Gene	12	728	0.001	0.987	0.949	Org et al., 2015		
Spor et al. (2011) Previous Microbiome Associations	Gene	27	461	6.2 × 10 ⁻⁴	0.859	0.827	Spor et al., 2011		
Candidate Set Name	Gene or SNP ^a	Number of Genes ^b	Number of SNPs ^c	Min p Value of Tested SNPs ^d	Min FDR Adjusted p Value of Tested SNPs*	Candidate Set Permutation p Value ^f	References		
Blood Lipid Traits	SNP		86	2.1 × 10 ⁻⁷	3.7 × 10 ⁻⁰⁴	< 0.001	Teslovich et al., 2010		
Sugar Transporters	Gene	2	66	0.006	0.789	0.68			
Tight Junctions	Gene	2	207	3.7 × 10 ⁻⁴	0.262	0.32			
TLRs NLRPs ILs	Gene	15	430	6.0 × 10 ⁻⁴	0.845	0.773			
SCFA receptors	Gene	2	6	0.005	0.409	0.378			
Sphingolipids	Gene	3	284	2.7 × 10 ⁻⁴	0.445	0.335			

- Choose 20 taxa with heritability > 0.20 (all from figure 1)
- Significance for trait determined by taking lowest p-value and comparing it to 1000 pvalues of the taxa residuals
 - If there were 3 tests done for a group (pvalues = 0.05, 0.000001, and 0.4) the lowest of the three would then be compared to the distribution of the 1000 p-values of the taxa residuals. This would determine if the trait was significant or not.

GWAS and Microbiome Part 1

- Tested all SNPs (1,300,091) against the 20 heritable taxa identified
 - Found no associations that that achieved study wide significance (FDR < 0.2)
 - Potential correlation between Bifidobacterium and SNPs in genes involved with lactase persistence
 - Used Hutterite data set to try and validate this finding (Davenport, 2015)
 - Used custom algorithm to impute genotypes 98 individuals to 1,317 (>99% accurate in test cases)

GWAS and Microbiome Part 2

- Used program called microbiomeGWAS (Hua et al., 2015)
 - Two problems with initial manuscript (still in biorxiv)
 - No benchmarking against traditional methods
 - Correction removed the signal
 - Trying to correct the large skewness and positive kurtosis that arises from these types of comparisons (i.e. make normally distributed)
 - Typically use permutations or bootstrap

GWAS and Microbiome Part 2

- SNP (rs563779) within UHRF2 was associated with weighted UniFrac
 - P-value = 9.77x10-9
- Two SNPs associated with Bray Curtis dissimilarity

Imputed Gene Expression and Microbiome

- Used PrediXcan
 - Imputes expression in 40 different tissues based on SNPs and Genotype
- Compared full 945 taxa set
- Had two separate significance cutoffs
 - Study-wide
 - 0.05/(40x945x338372) = 3.91x10-12
 - Tissue-wide
 - 0.05/(945 x # genes imputed in that tissue) or 5x10-8

Imputed Gene Expression and Microbiome

- Transverse colon SIGLEC15 expression associated with Akkermansia (p = 6.21 x 10-9)
- Number of other gene-microbiome under cut-off of 5x10-8
 - ZDHHC11B in Brain (cerebellum and Hypothalamus) ML615J.28
 - RAB4B in Artery (Tibial) Lachnospiraceae (4331360)
 - RPS27L Colon (Transverse) *Ruminococcaceae (352347)*
 - HSF2 Heart (Left-Ventricle) *Bacteroides*
 - RPS-468k18.5 Nerve (Tibial) Ruminococcaceae (44151)
 - INSL3 Skin (Sun exposed lower leg) *Lachnospiraceae* (179384)
 - JPH4 Spleen Clostridiales (193075)
 - PPP1R3E Cells (Transformed Fibroblasts) Clostridiales (193075)

Heritability across Studies

	High			Herit	ability Estimates Low					GWAS/QTL signals								
Taxa not observed or excluded from analysis	Human			Mouse					Human				Mouse					
Association reported in QTL/GWAS	TwinsUK	Davenport		Org				O'Connor	D	avenp	ort	BI	Ве	L	М	Org		
No associationreportedin QTL/GWAS		W	S	С	All	М	F	Avg	One		W	S	С					
Actinobacteria																		
Genus Bifidobacterium	0.31	0.26	0.14	0.07						0.78		Т						
Bacteroidetes																		
Family Rikenellaceae	0				0.54	0.57	0.93	0.17	0.1					*				
Genus Bacteroides	0.03	0	0.01	0						0.47		lacksquare						
Genus Barnesiella		0.18	0.38	0.21								П						
Firmicutes																		
Genus Oscillospira	0.19	0	0	0	0.53	0.59	0.78	0.3	0.02	0.76		<u> </u>						
Genus Lactobacillus	0.04	0.36	0	0.19						0.74								
Species L.johnsonii/L.gasseri 97%																		
Genus Lactococcus		0.02	0.40	0.04	0.31	0.51	0.48	0	0									
Order Turicibacterales	0.39				0.54	0.75	0.82	0.12	0.12									
Family Turicibacteraceae	0.39				0.54	0.75	0.82	0.12	0.12									
Genus Turicibacter	0.39	0	0.19	0.13	0.54	0.75	0.82	0.12	0.12	0.29								
Family Clostridiaceae	0.30	0.35		0	0.61	0.83	8.0	0.09	0.05									
Unclassified Clostridiaceae	0.32				0.61	0.83	0.81	0.09	0.05									
Genus Clostridium (Clostridiaceae)	0.24	0.10	0.46	0.04														
Genus Dehalobacterium	0.29									0.73								
Genus Blautia	0.30	0	0	0						0.61		lacksquare						
Genus Lachnobacterium	0.03	0.45	0.22	0.24														
Genus Roseburia	0.17	0	0.06	0	0.33	0.54	0.82	0.4	0.12	0.84		I						
Genus Ruminococcus (Lachnospiraceae)	0.13				0.48	0.59	0.75	0.25	0.29	0.61								
Family Peptococcaceae	0.22									0.78								
Family Peptostreptococcaceae	0.33		0.48		0.49	0.75	0.68	0.1	0.1									
Unclassified Peptostreptococcaceae	0.33				0.49	0.75	0.68	0.1	0.1									
Unclassified Ruminococcaceae	0.29	ĺ			0.39	0.62	0.73	0.09	0									
Genus Anaerotruncus	0.12	0	0.49	0.02						0.82				\blacksquare				
Genus Butyricicoccus		0.27	0	0								Г	П					
Genus Ruminococcus (Ruminococcaceae)	0.03	0	0	0.13	0.35	0.57	0.6	0.23	0.07	0.69		Т						
Family Erysipelotrichaceae	0	0.32	0	0.34	0.51	0.69	0.83	0.26	0.09			T						
Family Lachnospiraceae	0.16	0.13	0	0.29	0.52	0.6	0.69	0.36	0.07			Т						
Proteobacteria											ΙГ							
Order Burkholderiales	0	0.30	0.06	0.26														
Class Deltaproteobacteria	0.19	1																
Order Desulfovibrionales	0.19	0	0.35	0.02														
Genus Desulfovibrio	0.11	0	0.28	0						0.57								
Class Gammaproteobacteria	0.17	0.11	0.45	0.37														
Family Pasteurellaceae	0.20	0.42	0.18	0.19														
Verrucomicrobia																		
Genus Akkermansia	0.14	0	0.01	0	0.54	0.85	0.92	0.13	0.33	0.62								

 Want to show that there is consistency between studies in both mouse and humans with respect to heritable taxa within the microbiome.

^{*}Alistipes was in high correlation with Rikenellaceae so only the genus was tested

Summary

 The cartoon is supposed to emphasize that Bifdobacterium is a heritable taxa and that it is linked to polymorphisms in the LCT gene. So those with a specific SNP in the LCT gene will have more Bifdobacterium then those that do not.

What do you think?