Advanced Linear Algebra Week 6

Jamie Gabe

Recall: Let \mathcal{F} be a field (elements: scalars). A vector space over \mathcal{F} (or an \mathcal{F} -vector space) is a set V (elements: vectors) where you can

- add vectors together $(x + y \in V \text{ whenever } x, y \in V)$,
- multiply vectors with scalars: $\alpha x \in V$ whenever $x \in V$ and $\alpha \in \mathcal{F}$,

such that "everything is well-behaved".

A linear combination coming from $S \subseteq V$ is a finite sum $\sum_{i=1}^{n} \alpha_i x_i \in V$ where $x_1, \ldots, x_n \in S$ and $\alpha_1, \ldots, \alpha_n \in \mathcal{F}$. The span of S is the subspace

Span
$$S := \{ \text{linear combinations coming from } S \}$$

= $\{ \sum_{i=1}^{n} \alpha_i x_i \mid x_1, \dots, x_n \in S, \alpha_1, \dots, \alpha_n \in \mathcal{F} \}.$

 $L \subseteq V$ is said to be linearly dependent if $x \in \operatorname{Span}(L \setminus \{x\})$ for some $x \in L$.

Otherwise L is linearly independent, i.e. if $x \notin \operatorname{Span}(L \setminus \{x\})$ for every $x \in L$.

A basis for a vector space V is a subset $B \subseteq V$ s.t.

- (a) $\operatorname{Span} B = V$;
- (b) B is linearly independent.

If $B \subseteq V$ is a basis, then for $x \in V$ there is a unique family $(\alpha_v)_{v \in B}$ of scalars with only finitely many non-zero, such that

$$x = \sum_{v \in R} \alpha_v v.$$

We say that V is finite dimensional, dim $V < \infty$, if V has a finite basis. Otherwise V is infinite dimensional, dim $V = \infty$. V is n-dimensional if it has a basis with n elements.

Theorem (1.22)

Let V be an n-dimensional vector space.

- (1) Every linearly independent subset of V has at most n elements and is contained in a basis;
- (2) Every spanning subset of V has at least n elements and contains a basis;
- (3) Every basis has exactly n elements.

Lemma (1.24)

V is infinite-dimensional if and only if there exists an infinite linearly independent subset $L \subseteq V$.

Proof.

" \leftarrow " Contrapositive: assume V is finite dimensional. Then any linearly independent subset is finite by Theorem 1.22(1). " \Rightarrow " Assume V is infinite dimensional. By Lemma 1.15, any finite linearly independent subset is contained in a linearly independent subset with 1 more element. Starting with $L_0 = \emptyset$, use this to construct

L₀ $\subseteq L_1 \subseteq L_2 \subseteq ...$ linearly independent with $|L_n| = n$. One checks (easy from the definition) that $\bigcup_{n \in \mathbb{N}} L_n$ is linearly independent and infinite.

Theorem (1.25)

Let V be a finite-dimensional vector space with $n = \dim V$, and let $U \subseteq V$ be a subspace. Then U is finite-dimensional with $\dim U \le n$.

Moreover, any basis for U can be extended to a basis for V.

Proof.

Every linearly independent subset of U is also linearly independent in V – hence has at most n elements. Hence dim $U < \infty$ by Lemma 1.24. Thus a basis for U has at most n elements, so dim $U \le n$.

By Theorem 1.22(1) any basis of U is linearly independent in V and is therefore contained in a basis for V.

From now on, U and V are vector spaces over a fixed field \mathcal{F} .

Definition

A linear map (or homomorphism) from U to V is a map A such that

$$A(\alpha x + \beta y) = \alpha A(x) + \beta A(y)$$

for all $x, y \in U$ and $\alpha, \beta \in \mathcal{F}$.

 $\operatorname{Hom}(U,V)$ is the set of linear maps from U to V. $\operatorname{End}(U) := \operatorname{Hom}(U,U)$ and $A \in \operatorname{End}(U)$ are called endomorphisms.

Example

A linear map $\mathcal{F}^m \to \mathcal{F}^n$ is given by an $n \times m$ -matrix with coefficients in \mathcal{F} .

So $\operatorname{Hom}(\mathcal{F}^m,\mathcal{F}^n)=M_{n,m}(\mathcal{F})$ is the set of $n\times m$ -matrices over $\mathcal{F}.$

Similarly $\operatorname{End}(\mathcal{F}^n)=M_n(\mathcal{F})$ are the square $n\times n$ -matrix.

Let B be a basis for U, and let $f: B \to V$ be a map (no linearity assumed!). Then there is a unique linear map $A: U \to V$ which extends f, i.e. A(x) = f(x) for all $x \in B$. Proof.

Any linear map $A: U \rightarrow V$ satisfies

$$A(\sum_{i} \alpha_{i} x_{i}) = \sum_{i} \alpha_{i} A(x_{i})$$

for all linear combinations $\sum_{i} \alpha_{i} x_{i}$ from B (i.e. $x_{i} \in B$). Hence a linear map is uniquely determined by its values on B.

Any $x \in U$ is uniquely a linear combination $x = \sum_{v \in B} \alpha_v v$. It is straight forward to check that

$$A(\sum_{v \in B} \alpha_v v) = \sum_{v \in B} \alpha_v f(v)$$

defines a (necessarily unique) linear map which extends f.

Question: Consider \mathbb{R}^3 as an \mathbb{R} -vector space, with the basis

$$B = \left\{ \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$
. Let $f \colon B \to \mathbb{R}$ be given

by

$$f(v)=1, v\in B$$

and let $A \colon \mathbb{R}^3 \to \mathbb{R}$ be the unique linear extension of f. What is

$$A \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$
?

- (a) 0
- (b) 1
- (c) 2
- (d) 3.

Question: Consider \mathbb{R}^3 as an \mathbb{R} -vector space, with the basis

$$B = \left\{ \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$
. Let $f \colon B \to \mathbb{R}$ be given

by

$$f(v)=1, v\in B$$

and let $A \colon \mathbb{R}^3 \to \mathbb{R}$ be the unique linear extension of f. Then

$$A\begin{pmatrix} 2\\3\\1 \end{pmatrix} = A\begin{pmatrix} 1 \cdot \begin{pmatrix} 2\\0\\0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0\\3\\0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0\\0\\1 \end{pmatrix} \end{pmatrix}$$
$$= 1 \cdot f\begin{pmatrix} 2\\0\\0 \end{pmatrix} + 1 \cdot f\begin{pmatrix} 0\\3\\0 \end{pmatrix} + 1 \cdot f\begin{pmatrix} 0\\0\\1 \end{pmatrix}$$
$$= 1 + 1 + 1 = 3.$$

Definition

Let $A \in \text{Hom}(U, V)$.

- (a) $N(A) := \{x \in U \mid Ax = 0\}$ is the null-space (or kernel) of A;
- (b) $R(A) := \{Ax \mid x \in U\}$ is the range (or image) og A.

N(A) is a subspace of U.

R(A) is a subspace of V.

Lemma (2.5)

- (a) A is injective if and only if $N(A) = \{0\}$;
- (b) A is surjective if and only if R(A) = V.
- (a): " \Rightarrow " if A is injective and $x \in N(A)$, then Ax = 0 = A0,
- so x = 0. Hence $N(A) \subseteq \{0\}$ (and $\{0\} \subseteq N(A)$ is trivial). " \Leftarrow ": If $N(A) = \{0\}$, let $x_1, x_2 \in U$ such that $Ax_1 = Ax_2$.

Then $A(x_1 - x_2) = Ax_1 - Ax_2 = 0$ so $x_1 - x_2 \in N(A)$. Hence $x_1 - x_2 = 0$ so A is injective.

Let $A \in \operatorname{Hom}(\mathbb{R}^2, \mathbb{R}^2)$ be given by

$$A\left(\begin{array}{c}x\\y\end{array}\right)=\left(\begin{array}{c}x+y\\0\end{array}\right)$$

Question: What is the null-space of A?

(a)
$$N(A) = \{0\};$$

(b)
$$N(A) = \left\{ \begin{pmatrix} x \\ -x \end{pmatrix} \mid x \in \mathbb{R} \right\};$$

(c)
$$N(A) = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\};$$

(d)
$$N(A) = \begin{cases} -1 \\ \end{bmatrix}$$

Answer: We have

$$A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} x+y \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow x = -y.$$

So (b) is the answer.

Definition

A bijective linear map $U \to V$ is called a linear isomorphism. If such a map exists, we say that U and V are isomorphic.

Lemma (2.7)

Let $A \in \text{Hom}(U, V)$. Then

- (1) Let $S \subseteq U$ be spanning. Then A is surjective $\Leftrightarrow A(S)$ spans V;
- (2) Let $L \subseteq U$ be linearly independent. Then A is injective $\Rightarrow A|_{\operatorname{Span}(L)}$ is injective $\Leftrightarrow A|_L$ is injective and A(L) is linearly independent;
- (3) Let $B \subseteq U$ be a basis. Then A is bijective $\Leftrightarrow A|_B$ is injective and A(B) is a basis for V.

Let $A \in \text{Hom}(U, V)$. Then

(1) Let $S \subseteq U$ be spanning. Then A is surjective $\Leftrightarrow A(S)$ spans V;

Proof.

(1): Check that $A(\operatorname{Span} S) = \operatorname{Span} A(S)$ for every $S \subseteq U$. When $\operatorname{Span} S = U$ then it implies that $A(U) = \operatorname{Span} A(S)$, so (1) follows.

Let $A \in \text{Hom}(U, V)$. Then

(2) Let $L \subseteq U$ be linearly independent. Then A is injective \Rightarrow $A|_{\operatorname{Span}(L)}$ is injective \Leftrightarrow $A|_L$ is injective and A(L) is linearly independent;

Proof.

(2): The first implication is trivial.

Assume $A|_{\operatorname{Span}(L)}$ is injective. Clearly $A|_L$ is injective. For $x \in L$ we have $x \notin \operatorname{Span}(L \setminus \{x\})$ (by definition of linear independence). By injectivity of $A|_{\operatorname{Span}(L)}$ we have

$$Ax \notin A(\operatorname{Span}(L \setminus \{x\})) = \operatorname{Span}(A(L \setminus \{x\})),$$

and by injectivity $A(L \setminus \{x\}) = A(L) \setminus \{Ax\}$. So A(L) is linearly independent.

Let $A \in \text{Hom}(U, V)$. Then

(2) Let $L \subseteq U$ be linearly independent. Then A is injective \Rightarrow $A|_{\operatorname{Span}(L)}$ is injective \Leftrightarrow $A|_L$ is injective and A(L) is linearly independent;

Proof.

(2): Conversely, assume $A|_L$ is injective and A(L) is linearly independent.

By Lemma 2.5(1) it suffices to show that if $x = \sum_i \alpha_i x_i \in \operatorname{Span}(L)$ and Ax = 0 then x = 0. Since $0 = Ax = \sum_i \alpha_i Ax_i$ and since A(L) is linearly independent, we get that all α_i are zero. Hence x = 0.

Let $A \in \text{Hom}(U, V)$. Then

- (1) Let $S \subseteq U$ be spanning. Then A is surjective $\Leftrightarrow A(S)$ spans V;
- (2) Let $L \subseteq U$ be linearly independent. Then A is injective $\Rightarrow A|_{\operatorname{Span}(L)}$ is injective $\Leftrightarrow A|_L$ is injective and A(L) is linearly independent;
- (3) Let $B \subseteq U$ be a basis. Then A is bijective $\Leftrightarrow A|_B$ is injective and A(B) is a basis for V.

Proof.

(3): This follows from (1) and (2).

Corollary (2.8)

If U and V are finite-dimensional vector spaces over \mathcal{F} , then $\dim U = \dim V$ if and only if U and V are isomorphic.

Proof.

" \Leftarrow ": If $A: U \to V$ is a linear isomorphism, then it maps a basis in U bijectively onto a basis in V (Lemma 2.7(3)). Hence a basis in U has the same number of elements as a basis in V, so dim $U = \dim V$.

" \Rightarrow ": Suppose dim U= dim V and let $B\subseteq U$ and $C\subseteq V$ be bases. As |B|=|C| there exists a bijection $f:B\to C$. Extend f to a linear map $A\colon U\to V$ (Lemma 2.3). Then $A|_B$ is injective and A(B)=C is a basis for V. Hence A is a linear isomorphism.

Question Consider $M_2(\mathbb{R})$ - the \mathbb{R} -vector space of 2×2 -matrices with coefficients in \mathbb{R} . Is $M_2(\mathbb{R})$ isomorphic with \mathbb{C} (considered as an \mathbb{R} -vector space)?

- (a) Yes;
- (b) No.

Answer No.

 $\mathbb C$ is 2-dimensional and $M_2(\mathbb R)$ is 4-dimensional. However $M_2(\mathbb R)$, $\mathbb C^2$ and $\mathbb R^4$ are all 4-dimensional, hence isomorphic.

If $A \in \text{Hom}(U, V)$ is bijective, then $A^{-1}: V \to U$ is linear (straightforward). So $A^{-1} \in \text{Hom}(V, U)$ (whenever A^{-1} is defined!).

In the following, I_U and I_V are the identity maps on U and V respectively.

Lemma (2.9)

If $AT = I_V$ and $SA = I_U$ for some $S, T \in \text{Hom}(V, U)$, then A is an isomorphism and $S = T = A^{-1}$.

Proof.

$$S = S(AT) = (SA)T = T$$
. Recall that A^{-1} is the unique map such that $A^{-1}A = I_U$ and $AA^{-1} = I_V$, so $S = T = A^{-1}$.

Theorem (2.10)

Assume that U and V both have the finite dimension n. If $A \in \text{Hom}(U, V)$ is surjective or injective, then it is bijective.

Proof.

Let $B \subseteq U$ be a basis. Then |B| = n. By Lemma 2.7(3) it suffices to show that $A|_B$ is injective (i.e. A(B) has n elements), and that A(B) is a basis for V. Suppose A is surjective. By Lemma 2.7(1) A(B) spans V. By Theorem 1.22(2), $|A(B)| \ge n$. As |B| = n we have $|A(B)| \le n$ and thus |A(B)| = n. By Corollary 1.23, A(B) is a basis. Suppose A is injective. Then |A(B)| = |B| = n. By Lemma 2.7(2), A(B) is linearly independent. By Corollary 1.23, A(B) is a basis.

Corollary (2.11)

Suppose dim $U = \dim V < \infty$ and let $T \in \operatorname{Hom}(V, U)$. If $AT = I_V$ or $TA = I_U$, then A is an isomorphism and $A^{-1} = T$.

Proof.

If $AT = I_V$ then A is surjective, and if $TA = I_U$ then A is injective. In either case, Theorem 2.10 implies that A is bijective. This implies that $A^{-1} = T$.

When U = V we let

$$GL(V) = \{A \in End(V) \mid A \text{ is bijective}\}.$$

This is then general linear group, which is a group with identity I_V .

Suppose that the n-system of linear equations with n variables

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0$$

 \vdots
 $a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = 0$

only has the unique solution $x_1 = x_2 = \cdots = x_n = 0$.

Question: Does the system

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 1$$

 \vdots
 $a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = 1$

have a solution?

- (a) Yes, there is a solution
- (b) No, there is not a solution
- (c) There is not enough information to determine this.

Answer: Let $A \in \text{Hom}(\mathcal{F}^n, \mathcal{F}^n)$ be the linear map

$$A\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n a_{1i}x_i \\ \sum_{i=1}^n a_{2i}x_i \\ \vdots \\ \sum_{i=1}^n a_{ni}x_i \end{pmatrix}.$$

Uniqueness of the solution $x_1 = x_2 = \cdots = x_n = 0$ means that $N(A) = \{0\}$. Hence A is injective and thus also surjective (Theorem 2.10). So $R(A) = \mathcal{F}^n$, which implies that there exists $\alpha_1, \ldots, \alpha_n \in \mathcal{F}$ so that

$$\begin{pmatrix} \sum_{i=1}^{n} a_{1i} \alpha_{i} \\ \sum_{i=1}^{n} a_{2i} \alpha_{i} \\ \vdots \\ \sum_{i=1}^{n} a_{ni} \alpha_{i} \end{pmatrix} = A \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}.$$

So yes, $x_1 = \alpha_1, \dots, x_n = \alpha_n$ solves the system.

Recall from group theory: Let (G, +) be an abelian group, and $H \subseteq G$ be a subgroup (automatically normal in the abelian case).

For each $x \in G$ define the coset

$$x + H = \{x + h \mid h \in H\} \subseteq G.$$

The quotient $G/H = \{x + H \mid x \in G\}$ is the set of all such cosets, and it is an abelian group with

$$(x + H) + (y + H) = (x + y) + H.$$

Recall that an \mathcal{F} -vector space V is an abelian group when equipped with +. And any subspace $U\subseteq V$ is a subgroup. Form the quotient

$$V/U = \{x + U \mid x \in V\}$$

which is an \mathcal{F} -vector space with scalar multiplication

$$\alpha(x+U):=\alpha x+U.$$

Lemma (2.12)

Let V be an \mathcal{F} -vector space, and $U \subseteq V$ be a subspace. Then V/U (as before) is an \mathcal{F} -vector space. Moreover, the map $\pi \colon V \to V/U$ given by

$$\pi(x) = x + U, \quad for \ x \in V$$

is a surjective linear map with null-space $N(\pi) = U$.

Proof.

Omitted (this is straightforward).

Definition

V/U is called the quotient space of V by U, and the linear surjection $\pi \colon V \to V/U$ is called the (canonical) projection.

Consider the subspace $U = \left\{ \begin{pmatrix} x \\ -x \end{pmatrix} \mid x \in \mathcal{F} \right\} \subseteq \mathcal{F}^2$. Let's describe \mathcal{F}^2/U .

The elements in \mathcal{F}^2/U are $\begin{pmatrix} x \\ y \end{pmatrix} + U$. Note that

$$\begin{pmatrix} x \\ y \end{pmatrix} + U = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y \\ -y \end{pmatrix} + U = \begin{pmatrix} x+y \\ 0 \end{pmatrix} + U.$$

This implies that $\begin{pmatrix} 1 \\ 0 \end{pmatrix} + U$ spans \mathcal{F}^2/U . Any non-zero one-point set is linearly independent, and hence

$$\left\{ \left(\begin{array}{c} 1 \\ 0 \end{array} \right) + U \right\}$$
 is a basis for \mathcal{F}^2/U .

Question: What is the dimension of \mathcal{F}^2/U ?

- (a) $\dim(\mathcal{F}^2/U)=0$
- (b) $\dim(\mathcal{F}^2/U)=1$
- (c) $\dim(\mathcal{F}^2/U)=2$

