Fig.1

$$\frac{A}{C} = CH_{2} - CH_{2} - C$$

$$\frac{A}{C} = CH_{2} - CH_{2} - CH_{2} - C$$

$$\frac{A}{C} = CH_{2} - CH_{2} - CH_{2} - CH_{2} - C$$

$$\frac{A}{C} = CH_{2} - CH$$

Fig.2

COO-CH-CH2-CH3

1.MLABu

COO-CH₂-C₆H₅

ĊH - O

2.MLABe

Z-BUTYL MALOLACTONATE BENZL MALOLACTONATE

COO-CH₂-CH=CH₂

ĊH - Ó

CH₂- C=O

3.MLAAI

ALLYL MALOLACTONATE

STRUCTURE OF THE 3 B-LACTONES

FIG.3

SYNTHESIS OF ALKYL MALDLACTONATE FROM DL-ASPARTIC ACID

R = -CH(CH3)-CH2-CH3, BENZYL MALOLACTONATE OR -CH(CH3)-CH2-CH3
(2-BVYL MALOLACTONATE) OR -CH2-CH=CH2 (ALLYL MALOLACTONATE).

Fig.4

$$\begin{pmatrix}
-CH - CH_2 - C \\
-CH - CH_2 - C
\end{pmatrix}_{x}
\begin{pmatrix}
-CH - CH_2 - C \\
-CH - CH_2 - C
\end{pmatrix}_{y}
\begin{pmatrix}
-CH - CH_2 - C \\
-CH - CH_2 - C
\end{pmatrix}_{z}$$

$$\begin{pmatrix}
-CH - CH_2 - C \\
-CH - CH_2 - C
\end{pmatrix}_{x}$$

$$\begin{pmatrix}
-CH - CH_2 - C \\
-CH - C \\
-C$$

SYNTHESIS OF DERIVATIVES OF POLY (B-MALIC ACID)

Monomers type A-Y

Monomers type A-Z

Figure 6

Reference	٠	X =	Y =	Z
		୫ COO⁻	% S03-	
RGTA 1000	CM ₁ D	48,98	0	0
RGTA 1001	CM ₁ DS _{0,5}	48,5	13,1	
RGTA 1002	CM ₁ DS ₀ ,75	44,7	25,3	0
RGTA 1003	CM ₁ DS ₁	40,9	40,6	0
RGTA 1004	CM ₁ DS _{1,5}	31,7	56,5	0
RGTA 1005	CM ₁ DS ₂	26,3	82,3	00
RGTA 1006	CM ₁ DSex	19,1	94,4	. 0
RGTA 1007	CM2D	91,8	0	0
RGTA 1008	CM2DS0,5	84,9	18,4	0 '
RGTA 1009	CM2DS0,75	63,7	30,3	0
RGTA 1010	CM2DS1	61,1	37,3	0
RGTA 1011	CM2DS1,5	57,8	44,6	0
RGTA 1012	CM2DS2.	55,0	55,7	0
RGTA 1013	CM2DSex	22,6	58,5	00
RGTA 1014	CM3D	118,3	0	0
RGTA 1015	CM3DS0,5	102,7	15,6	0
RGTA 1016	CM3DS0,75	70,9	36,5	0
RGTA 1017	CM3DS1	87,3	42,0	0
RGTA 1018	CM3DS1,5	71,2	55,0_	0
RGTA 1019	CM3DS2	68,9	57,3	0
RGTA 1020	CM4D	154,0	0	0
RGTA 1021	CM4DS0,5	114,8	. 8,9	0
RGTA 1022	· CM4DS1	104,9	24,6	0
RGTA 1023	CM4DS2	72,2	51,8	0 .
RGTA 0040	DS commercial	0	97,6	 0
RGTA 1024	DS _{0,5} équiv	0	103,0	. 0
RGTA 1025	DS _{0,25} équiv	. 0	41,4	. 0
RGTA 1026	DS _{0,125} équiv	0 ·	23,5	0

TABLE PRESENTING FOR EACH OF THE REFERENCED RATH AND CORRESPONDING TO THE POLYMERS OF TYPE CM, DS, THE PERCENTAGES BY DEFINITION OF FREE GROUPS X AND Y. Z = NOTHING

Figure 7

Figure 8

$$\begin{array}{c|c} \text{CM}_2\text{DES}_1 & \begin{array}{c|c} & & & \\ & &$$

Figure 9

Figure 10

$$\begin{array}{c} \text{CM}_1 \text{DoleicS}_1 \\ \hline \\ 30\text{SO} \\ \hline \\ 0 = 0 \\ \hline \\ 0 = 0 \\ \hline \\ \text{CH}_2 \\ \hline \\ \text{CH}_3 \\ \hline \end{array}$$

Figure 11

•					
Reference	polymer s	Activity oF anti-	Reference	polymer s	Activity OF anti-
•		coagulant:			coagulant
		IN UI			IN UI
		176	RGTA 1013	CM ₂ DSex	<50
<u>Hép</u>	Héparine_		RGTA 1014	CM3D	<50
RGTA 2010	Pc00-	<50		CM3DS0,5	<50
RGTA 2011	P1S	<50	RGTA 1015	CM3DS1	<50
RGTA 2012	P2S	<50	RGTA 1016	CM3DS1,5	<50
RGTA 1000	CM ₁ D	<50	RGTA 1017		<50
RGTA 1001	CM1DS0,5	<50	RGTA 1019	CM3DS2	<50
RGTA 1002	CM1DS0,75	<50	RGTA 1110	CM2DPhSS1	
RGTA 1003	CM1DS1	<50	RGTA 1111	CM2DES1	<50
RGTA 1004	CM1DS1,5	<50	RGTA 1112	CM2DPheS2	<50
RGTA 1005	CM1DS2	<50	RGTA 1113	CM3DTyrS2	<50
RGTA 1006	CM ₁ DSex	<50	RGTA 1114	CM1DPalmS1	<50
	CM2D	<50	RGTA 1115	CM ₁ DOléicS1	<50
RGTA 1007		<50	RGTA 0040	DS commercial	<50
RGTA 1008	CM2DS0,5	<50	RGTA 1024	DS0,5 équiv	<50
RGTA 1009	CM2DS0,75		RGTA 1025	DS0,25 équiv	<50
RGTA 1010	CM2DS1	<50		DS0,125 équiv	<50
RGTA 1011	CM2DS1,5	<50	RGTA 1026		<50
RGTA 1012	CM2DS2	<50	RGTA 0001	Dextran T40	1

ANTICO AGULANT ACTIVITIES OF THE POLYMERS

Figure 12

	20° C	20° C	20° C	20° C	37° C	37° C
TREATMENT				15 DAYS	1 DAYS	7 DAYS
VALLE ED50 à	0 DAYS	2 91.15			7	>20
FGF1 ALOP/E	6	8	14	>20		15
FGF1 +Héparine	0,8	1,2	6	16	1,4	
FGF1 + Dextran T40	6	10	>20	>20	7	>20
	6	8	>20_	>20	7	>20
FGF1 + DS commercial	6	8	>20	>20	7	>20_
FGF1 + DS0,5 équiv		10	>20	>20	7	>20
FGF1 + DS0,125 équiv	6		>20	>20	18	>20
· Pcoo-	8	>20		17	5	15
P1S	3	6	10		3	11
P2S	1	3	9	14		>20
FGF1 + CM1D	6	. 9	>20	>20	7	
FGF1 + CM2D	6	7	>20	>20	7	>20
	0,5	1,1	6	. 17	2,1	16
FGF1 + CM1DS2		8	15	>20	5	>20
FGF1 + CM2DS2	2		>20_	>20	. 8	>20
FGF1 + CM2DPhS	8	15		>20	3	14
FGF1 + CM2DPhSS1	2	6	18		9	. >20
FGF1 + CM2DES1	11	3	8	17		17
FGF1 + CM2DPheS2	0,9	2	4	13	8	
FGF1 + CM3DTyrS2	3	5	>20	>20	99	>20
	4	4	16	>20	14	>20
FGF1 + CM1DPalmS1						

STABILIZING EFFECTS OF THE POLYMERS ON FGF !

Figure 13

Reference	Conditions	concentrations	ED50 FGF1 (ng/ml)	ED50 FGF2 (pg/ml)
polymer s	TOTAL OUT	(μg/ml) . 0	8	56
	FGF ALENE héparino	1	2	35
RGTA 2010	Pcoo-	100	4	56
RGTA 2011	P1S	100	2.5	38
RGTA 2012	P2S	100	4	41
RGTA 0040	DS commercial	100	3	30
RGTA 1024	DS0,5 équiv	100	4	36
RGTA 1026	DS _{0,125} équiv	100	6	48
RGTA 1000	CM1D	10	12	168
RGTA 1007	CM2D	10	16	297
RGTA 1005	CM1DS2	10	1	31
RGTA 1012	CM2DS2	10	1,5	53 .
RGTA 1110	CM2DPhS1	10	8	45
RGTA 1111	CM2DES1	10	5	38
RGTA 1112	CM2DPheS2	10	3	30
RGTA 1113	CM3DTyrS2	10	2	42
RGTA 1114	CM1DPalmS1	10	9	

POTENTIATION EFFECTS ON FGF1 AND FGFZ

Figure 14

							+ FG	E1	pol	ymer	+ TG	гβ
,—————————————————————————————————————	po]	ymer	+ FG			ymer	5	0.5	100	50	5	0.5
concentration	500	50	5.	0.5	500	50	5	0.5				
(µg/ml)						i				10	00 .	
FGF2 ALONE		10	0			10				<		
FGF2 +		. <	1			<	1				٠.	
trypsin											1	
heparin		. 10	0			10	00					
(10 µg/ml)				·			1	1.0	5	<1	<1	<1
trypsin +	14.4	24.4	18	22	29.7	25	18	16		``		
Pcoo-	 						120	63	58	84	70	22
trypsin +	61.3	100	97	87.5	85	96	100	63	30	0-		
PlS				ļ <u> </u>	 			-	1 33	75	92	67
trypsin +	59	68	65	57	72	84	91	49	33	1	12	
P2S	<u>.l</u>	<u> </u>		<u></u>	<u> </u>	<u> </u>	<u> </u>		<u></u>	J		

PERCENTAGE OF FGF1, FGF2 AND TGFB NOT DEGRADED BY TRYPSIN IN THE PRESENCE OF THE POLY (B-MALIC ACID) POLYMERS

Figure 15

	% protection of THE FACTORS			% pro	tection ACTORS
Polymer s	FGF2	TGFβ	· Polymer s	FGF2	TGFβ
Héparin	100	15	CM3D	22	23
CM ₁ D	20	25	CM3DS0,5	29.	32
CM1DS0,5	74	65	CM3DS1	32	38
CM1DS0,75	77	71	CM3DS1,5	35	40
CM1DS1	80	75	CM3DS2	40	47
CM1DS1,5	96	78	CM2DPhSS1	76	67
CM ₁ DS ₂	100	80	CM2DES1	81 .	71
CM ₁ DSex	100	81	CM2DPheS2	67	56
CM ₂ D	20	25	CM3DTyrS2	83	54
CM2DS0,5	87	74	CM1DPalmS1	67	74
CM2DS0,75	90	77 .	CM ₁ DOléicS1	58	72
CM2DS1	97	80	DS commercial	87	12 .
CM2DS1,5	95	79	DS _{0,5} équiv	66	9
CM2DS2	90	80	DS _{0,125} équiv	51	·10
CM2DSex	88	74	Dextran T40	6	5

PERCENTAGE OF FGFZ & FGFB NOT DEGRADED BY TRYPS IN IN THE PRESENCE OF THE POLYMERS DERIVED FROM DEXTRANS

Figure 16

			•		
	IC 50	mg/ml		IC 50	mg/ml
Polymèr s	Elastase	plasmi n .	Polymer s	Elastase	plasmin
Héparin	1,8	1	CM2DSex	5	0,07
. Pcoo-	100	53	CM3D	>100	>100
P1S	2	0,98	ĊM3DS0,5	88	6
P2S	4,7	0,82	CM3DS1	6	- 6
CM ₁ D	>100	>100	CM3DS1,5	4	6
CM1DS0,5	37	8	CM3DS2	2 .	1,5
CM1DS0,75	24	2,5	CM2DPhS1	12	2,4
CM1DS1	20	1	CM2DES1	18	3,8
CM1DS1,5	3	0,15	CM2DPheS2	4	0,3
CM ₁ DS ₂	1	0.08	CM3DTyrS2	1,8	0,15
CM ₁ DSex	1	0,035	CM ₁ DPalmS1	1,4	6
CM2D	>100	>100	CM ₁ DOléicS1	2 ·	9
CM2DS0,5	7	1	DS commercial	>100	>100
CM2DS0,75	- 5	0,7	DS0,5 équiv	>100	>100
CM2DS1	2	0,5	DS0,25 équiv	>100 ·	>100
CM2DS1,5	2	0,1	DS _{0,125} équiv	>100	>100
CM2DS2	2	0,05	Dextran T40	>100	>100

INHIBITORY EFFECTS OF THE POLYMERS ON THE ACTIVITIES OF LEUKOCYTE ELASTASE AND PLASMIN

Figure 17

•			·		
Produ c ts	doses µg/ml	FFFECTS IN 90 OF THE CONTROL	Produ c ts	doses μg/ml	GONTROL
		100	CM1DS1	50	134
Dextran T40	10	<100		100	189
•	50	<100		200	231
	100	<100	CM2D	50	<100
	200	<100		100	<100
Heparin ·	10	<100	CM2DS2	20	143
	50	120		50	138
	100	<100		100	191
,	200	<100		200	213
DS commercial	100	112	CM3D	50	<100
	200	124	,	100	<100
DS0,5 équiv	100	<100	CM3DS2	50	136
	200	121		100	147 ·
DS _{0,25} équiv	100	109		200	178
	200	125	CM2DPhS1	50	115
DS0,125 équiv	100	<100		100	178 :
·	200	129		200	189
Pcoo-	50	<100	CM2DES1	50	137
	100	<100		100	144
	200	<100		200	168
P1S	50	150	CM2DPheS2	50	152
	100	199		100	196
	200	135		200	154
P2S	50	152	CM3DTyrS2	50	167
	100	170		100	241
	200	177		200	203 .
· CM1D	50	<100	CM ₁ DPalmS1	50	133
	100	<100		100	157
·	200	<100	·	200	176

PERENTAGES OF MUSCULAR REGENERATION
AFTER INJECTION OF VARIABLE DOSES OF POLYMERS

Figure 18

EXPERIMENTAL CONDITIONS	ACTIVITY OF SOD, IN ARBITRARY UNITS
SOD CONTROL at pH = 7	100
50 microg/mL of CM1DS2 + SOD at pH = 7	132
250 microg/mL of CM1DS2 + SOD at pH = 7	165
500 microg/mL of CM1DS2 + SOD at pH = 7	196
50 microg/mL of CM3DTyrS2 + SOD at pH = 7	105
250 microg/mL of CM3DTyrS2 + SOD at pH = 7	122
500 microg/mL of CM3DTyrS2 + SOD at pH = 7	118
SOD CONTROL at pH = 3	20
50 microg/mL of CM1Ds2 + SOD at pH = 3	65
250 microg/mL of CM1DS2 + SOD at pH = 3	115
500 microg/mL of CM1DS2 + SOD at pH = 3	130
50 microg/mL of CM3DTyrs2 + SOD atpH = 3	85
250 microg/mL of CM3DTyrS2 + SOD at pH = 3	133
500 microg/mL of CM3DTyrs2 + SOD at pH = 3	150
SOD CONTROL at pH = 11	30
50 microg/mL of CM1DS2 + SOD atpH = 11	40
250 microg/mL of CM1DS2 + SOD at pH = 11	95
500 microg/mL of CM1DS2 + SOD at pH = 11	122
50 microg/mL of CM3DTyrs2 + SOD at pH = 11	65
250 microg/mL of CM3DTyrS2 + SOD alpH = 11	93
500 microg/mL of CM3DTyrs2 + SOD atpH = 11	110

MODULATION OF THE IN VITRO ACTIVITY OF SOD BY THE POLYMERS: PROTECTIVE & POTENTIATING EFFECTS OF TWO RATA, RATA 1005 (CMIDS2) AND RATA 1113 (CM3DTYrS2) ON THE IN VITRO ACTIVITY OF SOD.

Figure 19

	% OF RE	SIDUAL		% OF R	ESIDUAL
	Activity				WITY
Polymer s	SOD +	son at	Polymer s	SOD +	son at
. 100 mg/ml	Trypsin	60 ℃	100 mg/ml	Trypsin	60 °C
Rien	0	0	CM ₃ D	0	0
Héparine	60	45	CM3DS0,5	55	60
Pcoo-	0	0	CM3DS1	30	40
PIS	70	80	CM3DS2	10	20
P2S	80	80	CM4D	0	0
CM ₁ D	0	0	CM4DS0,5	60	100
CM1DS0,5	90	70	. CM4DS1	80	100
CM1DS0,75	100	70	CM2DPhSS1	50	60
CM ₁ DS ₁	100	90	CM2DES1	60	80
CM1DS1,5	95	75	CM2DPheS2	80	100
CM ₁ DS ₂	100	85	CM3DTyrS2	80	100
CM1DSex	90	90	CM ₁ DPalmS1	75	60
CM ₂ D	0	0	CM ₁ DOléicS1	70	50
CM2DS0,5	90 :	55	DS commercial	20	10
CM ₂ DS ₁	100	70	DS _{0,5} équiv	30	20
CM2DS1.5	70	85	DS _{0,25} équiv	20	0
CM ₂ DS ₂	90	60	DS0,125 équiv	20	0
CM ₂ DSex	70	40	Dextran T40	0	0

PROTECTIVE EFFECT OF THE POLYMERS ON SOD AFTER TREATMENT BY TRYPSIN AND THERMAL SHOCK

Figure 20

POTENTIATION EFFECT OF SOD PRODUCED IN VITRO BY ACTIVATED MONOCYTES

Figure 21

Polymer s	90 OF RESIDUAL
	ACTIVITY
Dextran T40	100
CM ₁ D	100
CM1DS0,5	30
CM ₁ DS ₁	10
CM ₁ DS ₁ , 5	0
CM ₁ DS ₂	0
CM ₁ DSex	
CM ₂ D	100
CM2DS0,5	10
CM2DS1	0
CM2DS2	0
CM ₂ DSex	10
CM2DPhSS1	10
: CM2DES1	. 0
CM ₂ DPheS2	0
CM3DTyrS2	0
CM ₁ DPalmS1	35
CM ₁ DOléicS1	50
DS commercial	100

INHIBITORY EFFECTS OF THE RGTA ON CALPAINE

Figure 22

% OF RESIDUAL ACTIVITY	heparanase	90 OF RESIDUAL ACTIVITY	heparanase
Dextran T40	0	CM3D	0
· CM1D	. 0	CM3DS0,5	90
CM1DS0,5	60	CM3DS1	100
CM ₁ DS ₁	100	CM3DS2	100
CM1DS1,5	100	CM4D	0
CM ₁ DS ₂	100	CM4DS1	75
CM1DSex	100	CM4DS2	60
CM2D	0	CM2DPhSS1	80
CM2DS0,5	80 .	CM2DES1	90
CM2DS1	100	CM2DPheS2	100
CM2DS2	100	CM3DTyrS2	100
CM2DSex	100	CM ₁ DPalmS1	60
DS commercial	100	Héparin o	100

INHIBITORY EFFECTS OF THE RGTA ON HEPARITINASE

Figure 23

ACTIONS OF THE RGTA ON THE SECRETION OF COLLAGENS IN VITRO BY THE HISM CEUS SUBJECTED TO LONIZING RADIATION OF 60 CO

Figure 24

ACTION OF THE RATA ON THE SYNTHESIS OF TYPE I, II & I COLLAGENS BY THE HISM CELLS SUBJECTED TO CONIZING RADIATION OF 60 CO

Figure 25

PROTECTIVE EFFECTS OF THE RGTA ON THE SURVIVAL OF CELLS SUBJECTED TO 600 IRRADIATION

Figure 26

	INHIBITION OF PROLITERATION	IC ₅₀ Inhibition In µg M	(%) SMNTNESIS collagen / protein s	Collagen Type 1 IN 9. of TAG TOTAL 1+3+5	Collagen Type 3 IN 9. OF THE TOTAL 1+3+5	Collagen Type 5 IN 9 OF THE TOTAL 1+3+5
Dextran T40	0		17,1	58,7	36,9	4,4
CM ₁ D	0		17,6	59,1	35,8	5,1
CM ₁ DS ₂	85	0,62	11,4	58,1	21,8	14,1
CM2DS1	75	0,47	9,3	58,7	15,8	25,5
CM ₂ DPheS2	85	1,12	12,1	68,5	18,5	13,0
CM3DTyrS2	80	0,95	10,8	65,5	20,6	13,9
Heparin	82	0,36	15,5	73,0	20,9	6,1

ANTIFIBROTIC ACTION OF THE RGTA ON PIG AORTA SMOOTH MUSCLE CEUS

28/30 Fig.28

EFFECTS OF THE RATA ON THE REGULATION OF THE OSSEOUS MASS AND ON THE QUALITY OF ITS RESTRUCTURING: EXAMPLE OF A CHRONIC PERIODONTAL DISEASE