MA4.101 Real Analysis

Monsoon 2022 Assignment-1

- 1. For two sets A and B show that the following statements are equivalent:
 - (a) $A \subseteq B$
 - (b) $A \cup B = B$
 - (c) $A \cap B = A$
- 2. Establish the following set theoretic relations:
 - (a) $A \cup B = B \cup A$ and $A \cap B = B \cap A$ (Commutativity)
 - (b) $A \cup (B \cup C) = (A \cup B) \cup C$ and $A \cap (B \cap C) = (A \cap B) \cap C$ (Associativity)
 - (c) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributivity)
 - (d) $A \subseteq B \iff B^c \subseteq A^c$
 - (e) $A \setminus B = A \cap B^c$
 - (f) $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$ (De Morgan's laws)
- 3. Give a necessary and sufficient condition for

$$A \times B = B \times A$$

- 4. If A, B, C are sets, show that
 - (a) $A \times B = \emptyset \iff A = \emptyset \text{ or } B = \emptyset.$
 - (b) $(A \cup B) \times C = (A \times C) \cup (B \times C)$
 - (c) $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- 5. Suppose $f:A\to B$ and $g:B\to C$ are functions, show that
 - (a) If both f and g are one to one, then $g \circ f$ is one-to-one.
 - (b) If both f and g are onto, then $g \circ f$ is onto.
 - (c) If both f and g are bijective, then $g \circ f$ is bijective.
- 6. For a function $f: X \to Y$, show that the following statements are equivalent:
 - (a) f is one-to-one.
 - (b) $f(A \cap B) = f(A) \cap f(B)$ holds for all $A, B \in \mathcal{P}(X)$.
- 7. For an arbitrary function $f: X \to Y$, prove the following identities:
 - (a) $f^{-1}(\bigcup_{i \in I} B_i) = \bigcup_{i \in I} f^{-1}(B_i)$
 - (b) $f^{-1}(\bigcap_{i \in I} B_i) = \bigcap_{i \in I} f^{-1}(B_i)$
 - (c) $f^{-1}(B^c) = [f^{-1}(B)]^c$