Math 109—Rational Function

I. Domain & Vertical Asymptotes

- A. State the domain of each rational function.
- B. Give the equation of the vertical asymptote(s) of the rational function.

1.
$$f(x) = \frac{3}{2x-1}$$

$$2x-1 = 0$$

$$x = \frac{1}{2}$$

$$0.2x \mid x \neq \frac{1}{2}$$

3.
$$f(x) = \frac{x^2 + 1}{x^2 - 4}$$

$$x^2 - 4 = 0$$

$$x = \pm 2$$

$$x = \pm 2$$

$$x = \pm 2$$

2.
$$f(x) = \frac{x}{(x+1)(x-3)}$$

 $(x+1)(x-3) = 0$
 $x=-1, 3$
 $x=-1, 3$

4.
$$f(x) = \frac{3x^{2}}{x^{2}-4x-12}$$

$$x^{2}-4x-12 = 0$$

$$(x-6)(x+2) = 0$$

$$x=6,-2$$

$$x=6,-3$$

$$x=6,-3$$

II. Graphs & Range

- A. Match each rational function with its graph.
- B. State the range for each rational function.
- C. Find each of the horizontal asymptotes.

5.
$$f(x) = \frac{2x+1}{x-1}$$
 6. $f(x) = \frac{x+1}{x-2}$ 0

6.
$$f(x) = \frac{x+1}{x-2}$$

7.
$$f(x) = \frac{x-1}{x+2}$$

III. Graph and find all of the important parts

- A. Find the horizontal and vertical asymptote for each rational function (using limits as appropriate).
 - B. Sketch the graph of each rational function.
 - C. Find the domain and range.

V.a.
$$X=-4$$

No $x-4$
 $X=-4$
 $X=-4$

11.
$$f(x) = \frac{x^2+5}{2x^2-x-1}$$

 $2x^2-x-1=0$ $x^2+5=0$ y-ut
 $(2x+1)(x-1)=0$ $x \neq (0,-5)$
 $x=-\frac{1}{2}, 1 \neq 0$ No x-ut

D: Ex 1x #-2.13 R: (-0,0)

9. $f(x) = \frac{2x}{x-3}$ y-int (0,0)

L) based on your gaph!