

ATK-0.96' OLED 模块用户手册

高性能 OLED 显示模块

用户手册

ALIENTEK 广州市星翼电子科技有限公司

修订历史

版本	日期	原因
V1.00	2013/11/16	第一次发布

目 录

1. 特性参数		
	Ŷ	
	却说明	
	月说明	
	8080 并口模式	
	4 线 SPI 模式	
	显存与指令	
	初始化	
	N37H TG	

1. 特性参数

ATK-0.96' OLED 模块是 ALIENTEK 推出的一款小尺寸(0.96 寸)、高亮、自带升压电路的高性能 OLED 显示模块,分辨率为 128*64,该模块采用原装维信诺高亮 OLED 屏,采用 SSD1306 驱动 IC,该芯片内部集成 DCDC 升压,仅需 3.3V 供电,即可正常工作,无需用户再添加升压 DCDC 电路。

模块支持: 8 位 6800 并口、8 位 8080 并口、IIC 以及 4 线 SPI 等 4 种通信接口,通过模块背面的 BS1, BS2 焊盘,可以自行设置模块的接口方式。默认为: 8 位 8080 并口。该模块各参数如表 1.1 和表 1.2 所示:

项目	说明
接口特性	3.3V(串电阻后,可与 5V 系统连接)
通信接口	8 位 8080 并口(默认)、8 位 6800 并口、IIC、4 线 SPI
屏幕分辨率	128*64
屏幕尺寸	0.96寸
工作温度	-40°C~70°C
颜色	纯蓝色、黄蓝双色 ¹
亮度 ²	80cd/m²
寿命3	16000 小时
模块尺寸	27mm*26mm

表 1.1 ATK-0.96' OLED 模块基本特性

- 注1: 是分区域的双色,前16行为黄色,后48行为蓝色,且黄蓝色之间有一行不显示的间隔区。
- 注 2: OLED 所有点全部点亮。
- 注 3: 此寿命是指 OLED 亮度降到原来的一半 (40cd/m²) 的时候的值。

项目	说明
工作电压	DC3. 3V
工作电流	25mA@全亮
Voh	2.97V (Min)
Vol	0.33V (Max)
Vih	2.64V (Min)
Vil	0. 66V (Max)

表 1.2 ATK-0.96' OLED 模块电气特性

ATK-0.96' OLED 模块支持多种通信接口,通过模块背面的 BS1, BS2,可以自行设置模块的通信接口方式,见表 1.3:

接口方式	4线 SPI	IIC	8 位 6800	8 位 8080
BS1	0^1	1	0	1
BS2	0	0	1	1

表 1.3 ATK-0.96' OLED 模块通信接口方式设置

注 1: 0代表接 GND, 1代表接 VCC。

表 1.3 中,8 位 8080 并口方式,是 ATK-0.96' OLED 模块的默认设置,根据此表,大家可以自行设置模块的通信接口方式。

2. 使用说明

2.1 模块简介

ATK-0.96' OLED 模块是 ALIENTEK 推出的一款高性能 OLED 显示模块,尺寸小巧(27mm*26mm),结构紧凑,模块通过 1 个 2*8P 的 2.54mm 间距排针与外部连接,模块外观如图 2.1.1 所示:

图 2.1.1 ATK-0.96' OLED 模块外观图

该模块具有如下特点:

- ▶ 双色可选,提供纯蓝色或黄蓝双色两种模块
- ▶ 高分辨率,分辨率为: 128*64
- ▶ 超小尺寸, OLED 显示屏为 0.96 寸, 模块尺寸仅为 27mm*26mm
- ▶ 多种接口方式,提供8086 并口、6800 并口、4线 SPI 和 IIC 等五种接口方式
- ▶ 集成 DCDC, 无需外部高压, 仅需提供 3.3V 电源, 即可正常工作

图 2.1.1 中, 左侧的图片是模块的背面图, 右侧的是正面图。

2.2 模块引脚说明

ATK-0.96' OLED 模块通过 2*8 的 2.54 排针同外部单片机通信,各引脚的详细描述如表 2.2.1 所示:

序号	名称	说明
1	GND	地
2	V3	电源(3.3V)
3	DC	数据/指令 控制; DC=1, 传输数据; DC=0, 传输指令
		在 IIC 模式下,作为 SA0,用于设置 IIC 器件地址
4	CS	片选信号,低电平有效
5	RD	在 6800 模式下,作为总使能信号
		在 8080 模式下,作为读使能信号
		在其他模式下,必须接 GND

6	RW	在 6800 模式下,作为读写选择线
		在 8080 模式下,作为写使能信号
		在其他模式下,必须接 GND
7	D0	数据线 0
		在 4 线 SPI 模式下,作为 SCLK
		在 IIC 模式下,作为 IIC 的 SCL
8	RST	复位引脚,低电平有效
9	D2	数据线 2
		在 4 线 SPI 模式下,保持 NC
		在 IIC 模式下,必须将 D1, D2 连接在一起,作为 IIC 的 SDA
10	D1	数据线 1
		在 4 线 SPI 模式下,作为 SDIN
11	D4	数据线 3
12	D3	数据线 4
13	D6	数据线 6
14	D5	数据线 5
15	NC	不用连接
16	D7	数据线 7

表 2.2.1 ATK-0.96' OLED 模块各引脚功能描述

注意,模块在使用 IIC 模式或者 4 线 SPI 模式的时候,是不支持读操作的,所以如果你需要读操作,只能选择 6800 或者 8080 并口模式。模块默认是: 8080 并口模式,大家根据自己选择的接口模式,来接线。

2.3 模块使用说明

ATK-0.96' OLED 模块的控制器是 SSD1306,支持多种接口方式,我们模块支持 4 种连接方式,这里我们介绍其中 2 种常用的连接方式的使用:8080 并口模式和 4 线 SPI 模式。

2.3.1 8080 并口模式

ATK-0.96' OLED 模块支持 8 位 8080 并口模式,总共需要 13 根信号线通信,这些信号 线如下:

CS: OLED 片选信号。

WR(RW): 向 OLED 写入数据。

RD: 从 OLED 读取数据。 D[7:0]: 8 位双向数据线。 RST(RES): 硬复位 OLED。

DC: 命令/数据标志(0,读写命令;1,读写数据)。

模块的 8080 并口读/写的过程为: 先根据要写入/读取的数据的类型,设置 DC 为高(数据)/低(命令),然后拉低片选,选中 SSD1306,接着我们根据是读数据,还是要写数据置 RD/WR 为低,然后:

在 RD 的上升沿, 使数据锁存到数据线(D[7:0])上;

在 WR 的上升沿,使数据写入到 SSD1306 里面;

SSD1306 的 8080 并口写时序如图 2.3.1.1 所示:

图 2.3.1.1 8080 并口写时序图

SSD1306的 8080 并口读时序如图 2.3.1.2 所示:

图 2.3.1.2 8080 并口读时序图

SSD1306 的8080接口方式下,控制脚的信号状态所对应的功能如表2.3.1.1 所示:

功能	RD	WR	DC	
写命令	H^1	1	L	L
读状态	1	Н	L	L
写数据	Н	1	L	Н
读数据	1	Н	L	Н

表 2.3.1.1 控制脚状态功能表

注1: H代表高电平(VCC), L代表低电平(GND), ↑代表上升沿。

在 8080 方式下读数据操作的时候,我们有时候(例如读显存的时候)需要一个假读命(Dummy Read),以使得微控制器的操作频率和显存的操作频率相匹配。在读取真正的数据之前,由一个的假读的过程。这里的假读,其实就是第一个读到的字节丢弃不要,从第二个开始,才是我们真正要读的数据。

一个典型的读显存的时序图,如图 2.3.1.3 所示:

图 2.3.1.3 读显存时序图

可以看到,在发送了列地址之后,开始读数据,第一个是 Dummy Read,也就是假读, 我们从第二个开始,才算是真正有效的数据。

2.3.2 4线 SPI 模式

ATK-0.96' OLED 模块支持 4 线 SPI 通信模式,总共只需要 4 根信号线通信,这些信号线如下:

CS: OLED 片选信号。

RST(RES): 硬复位 OLED。

DC: 命令/数据标志(0,读写命令;1,读写数据)。

SCLK(D0): 串行时钟线。在4线串行模式下,D0信号线作为串行时钟线SCLK。

SDIN(D1): 串行数据线。在4线串行模式下,D1信号线作为串行数据线SDIN。

模块的 D2 需要悬空,其他引脚可以接到 GND。在 4 线串行模式下,只能往模块写数据而不能读数据。

在 4 线 SPI 模式下,每个数据长度均为 8 位,在 SCLK 的上升沿,数据从 SDIN 移入到 SSD1306,并且是高位在前的。DC 线还是用作命令/数据的标志线。在 4 线 SPI 模式下,写操作的时序如图 2.3.2.1 所示:

图 2.3.2.1 4线 SPI 写操作时序图

4线 SPI 模式比较简单,我们就不多说了。SSD1306 还支持其它一些模式,在 SSD1306 的数据手册上都有详细的介绍,我们这里就不详细介绍了,如果要使用这些方式,请大家参考该手册。

2.3.3 显存与指令

显存

SSD1306 的显存总共为 128*64bit 大小, SSD1306 将这些显存分为了 8 页, 其对应关系 如表 2.3.3.1 所示:

	列(COL0~127)								
	SEG0	SEG1	SEG2	•••••	SEG125	SEG126	SEG127		
	PAGE0								
				PAGE1					
行	PAGE2								
(COM0~63)	PAGE3								
(COM0~03)	PAGE4								
	PAGE5								
		PAGE6							
				PAGE7					

表 2.3.3.1 SSD1306 显存与屏幕对应关系表

可以看出,SSD1306的每页包含了128个字节,总共8页,这样刚好是128*64的点阵大小。因为每次写入都是按字节写入的,这就存在一个问题,如果我们使用只写方式操作模块,那么,每次要写8个点,这样,我们在画点的时候,就必须把要设置的点所在的字节的每个位都搞清楚当前的状态(0/1?),否则写入的数据就会覆盖掉之前的状态,结果就是有些不需要显示的点,显示出来了,或者该显示的没有显示了。这个问题在能读的模式下,我们可以先读出来要写入的那个字节,得到当前状况,在修改了要改写的位之后再写进GRAM,这样就不会影响到之前的状况了。但是这样需要能读GRAM,对于4线SPI模式或者IIC模式来说,模块是不支持读的,而且读->改->写的方式速度也比较慢。

所以我们推荐采用的办法是在单片机的内部建立一个 OLED 的 GRAM (需要 128*8 个字节),在每次修改的时候,只是修改单片机上的 GRAM (实际上就是 SRAM),在修改完了之后,一次性把单片机内部的 GRAM 写入到 OLED 的 GRAM。当然这个方法也有坏处,就是对于那些 SRAM 很小的单片机(比如 51 系列)就比较麻烦了,如果内存不够,那就推荐还是采用并口模式,这样可以节约内存。

指令

SSD1306 的指令比较多,这里我们仅介绍几个比较常用的命令,这些命令如表 2.3.3.2 所示:

호무	序号 HEX	各位描述							指令	说明	
沙马		D7	D6	D5	D4	D3	D2	D1	D0	担マ	ルド カ
0	81	1	0	0	0	0	0	0	1	设置对比度	A 的值越大,屏幕越亮
U	A[7:0]	A7	A6	A5	A4	A3	A2	A1	A0	以且刈比反	A[7:0]: 0X00~0XFF
1	AE/AF	1	0	1	0	1	1	1	X0	公署 見云五子	X0=0,关闭显示
1	AE/AF	1	U	1	U	1	1	1	Λυ	0 设置显示开关	X0=1,开启显示
2	8D	1	0	0	0	1	1	0	1	电荷泵设置	A2=0,关闭电荷泵
2	A[7:0]	*	*	0	1	0	A2	0	0	电 何水以且	A2=1,开启电荷泵
3	B0~B7	1	0	1	1	0	X2	X1	X0	设置页地址	X[2:0]: 0~7 对应页 0~7
4	00~0F	0	0	0	0	X3	X2	X1	VO	设置列地址	设置8位起始列地址的
4	00~0F	0	U	O	O	AS	ΛZ	ΛI	X0	(低四位)	低四位
5	10~1F	0	0	0	1	X3	X2	X1	71 V0	设置列地址	设置8位起始列地址的
3	10~1F 0 0 0 1 X3 X2 X1 X0	Λ0	(高四位)	高四位							

表 2.3.3.2 SSD1306 常用命令表

第一个命令为 0X81,用于设置对比度的,这个命令包含了两个字节,第一个 0X81 为命令,随后发送的一个字节为要设置的对比度的值。这个值设置得越大屏幕就越亮。

第二个命令为 0XAE/0XAF。0XAE 为关闭显示命令; 0XAF 为开启显示命令。

第三个命令为 0X8D,该指令也包含 2 个字节,第一个为命令字,第二个为设置值,第二个字节的 BIT2 表示电荷泵的开关状态,该位为 1,则开启电荷泵,为 0 则关闭。在模块初始化的时候,这个必须要开启,否则是看不到屏幕显示的。

第四个命令为 0XB0~B7,该命令用于设置页地址,其低三位的值对应着 GRAM 的页地址。

第五个指令为 0X00~0X0F, 该指令用于设置显示时的起始列地址低四位。

第六个指令为 0X10~0X1F, 该指令用于设置显示时的起始列地址高四位。

其他命令,我们就不在这里一一介绍了,大家可以参考 SSD1306 datasheet 的第 28 页。 从这页开始,对 SSD1306 的指令有详细的介绍。

2.3.4 初始化

ATK-0.96' OLED 模块的驱动 IC 是 SSD1306, 所以, 对模块的初始化, 就是对 SSD1306 的初始化, SSD1306 典型的初始化框图如图 2.2.4.1 所示:

图 2.3.4.1 SD1306 初始化框图

整个过程比较简单,主要是 SSD1306 初始化序列,这部分代码,我们直接用厂家推荐的初始化代码即可,其他不需要变动。

官方推荐的初始化序列如下:

OLED_WR_Byte(0xAE,OLED_CMD); //关闭显示

OLED_WR_Byte(0xD5,OLED_CMD); //设置时钟分频因子,震荡频率

OLED WR Byte(80,OLED CMD); //[3:0],分频因子:[7:4],震荡频率

OLED WR Byte(0xA8,OLED CMD); //设置驱动路数

OLED_WR_Byte(0X3F,OLED_CMD); //默认 0X3F(1/64)

OLED WR Byte(0xD3,OLED CMD); //设置显示偏移

OLED_WR_Byte(0X00,OLED_CMD); //默认为 0

OLED WR Byte(0x40,OLED CMD); //设置显示开始行 [5:0],行数.

OLED_WR_Byte(0x8D,OLED_CMD); //电荷泵设置

OLED_WR_Byte(0x14,OLED_CMD); //bit2, 开启/关闭

OLED_WR_Byte(0x20,OLED_CMD); //设置内存地址模式

OLED_WR_Byte(0x02,OLED_CMD);

//[1:0],00, 列地址模式;01, 行地址模式;10,页地址模式;默认 10;

OLED_WR_Byte(0xA1,OLED_CMD); //段重定义设置,bit0:0,0->0;1,0->127;

OLED_WR_Byte(0xC0,OLED_CMD);

//设置 COM 扫描方向;bit3:0,普通模式;1,重定义模式 COM[N-1]->COM0;N:驱动路数

OLED WR Byte(0xDA,OLED CMD); //设置 COM 硬件引脚配置

OLED_WR_Byte(0x12,OLED_CMD); //[5:4]配置

OLED_WR_Byte(0x81,OLED_CMD); //对比度设置

OLED_WR_Byte(0xEF,OLED_CMD); //1~255;默认 0X7F (亮度设置,越大越亮)

OLED_WR_Byte(0xD9,OLED_CMD); //设置预充电周期

OLED_WR_Byte(0xf1,OLED_CMD); //[3:0],PHASE 1;[7:4],PHASE 2;

OLED_WR_Byte(0xDB,OLED_CMD); //设置 VCOMH 电压倍率

OLED_WR_Byte(0x30,OLED_CMD);

//[6:4] 000,0.65*vcc;001,0.77*vcc;011,0.83*vcc;

OLED WR Byte(0xA4,OLED CMD);

//全局显示开启;bit0:1,开启;0,关闭;(白屏/黑屏)

OLED_WR_Byte(0xA6,OLED_CMD); //设置显示方式;bit0:1,反相显示;0,正常显示

OLED WR Byte(0xAF,OLED CMD); //开启显示

成功驱动后,显示效果如图 2.3.4.2 和 2.3.4.3 所示:

图 2.3.4.2 纯蓝显示效果

图 2.3.4.3 黄蓝双色显示效果

注意:以上图片,由于 **OLED** 模块的保护膜没有撕掉,所以在右下角有一个小框框的边。只要撕掉保护膜,就正常了。

3. 结构尺寸

ATK-0.96' OLED 模块的尺寸结构如图 3.1 所示:

图 3.1 ATK-0.96' OLED 模块尺寸结构图

4. 其他

1、购买地址:

官方店铺 1: http://eboard.taobao.com

官方店铺 2: http://shop62103354.taobao.com

2、资料下载

ATK-0.96' OLED 模块资料下载地址: http://www.openedv.com/posts/list/3194.htm

3、技术支持

公司网址: <u>www.alientek.com</u> 技术论坛: <u>www.openedv.com</u>

传真: 020-36773971 电话: 020-38271790

