# Zeit-Masse-Dualitätstheorie (T0-Modell) Herleitung der Parameter $\kappa$ , $\alpha$ und $\beta$

#### Johann Pasher

30.03.2025

#### Abstract

Dieses Dokument präsentiert eine vollständige theoretische Analyse der zentralen Parameter des T0-Modells:

- 1. Fundamentale Herleitungen in natürlichen Einheiten ( $\hbar=c=G=1$ )
- 2. Konvertierung in SI-Einheiten für experimentelle Vorhersagen
- 3. Mikroskopische Begründung der Korrelationslänge  $L_T$
- 4. Störungstheoretische Ableitung von  $\beta$  via Feynman-Diagrammen

### 1 Einleitung

Das T0-Modell postuliert eine Dualität zwischen zeitlicher und massenbezogener Beschreibung physikalischer Prozesse. Zentrale Parameter sind:

- $\kappa$ : Modifikation des Gravitationspotentials  $\Phi(r) = -\frac{GM}{r} + \kappa r$
- $\alpha$ : Photonen-Energieverlustrate  $(1 + z = e^{\alpha r})$
- $\beta$ : Wellenlängenabhängigkeit der Rotverschiebung  $(z(\lambda) = z_0(1+\beta\ln(\lambda/\lambda_0)))$

### 2 Herleitung von $\kappa$

## 2.1 Natürliche Einheiten ( $\hbar = c = G = 1$ )

$$\kappa = \beta \frac{yv}{r_g}, \quad r_g = \sqrt{\frac{M}{a_0}}$$

- y: Yukawa-Kopplung (dimensionslos)
- $v \approx 246$  GeV: Higgs-Vakuum

#### 2.2 SI-Einheiten

$$\kappa_{\rm SI} = \beta \frac{yvc^2}{r_g^2} \approx 4.8 \times 10^{-11} \text{ m/s}^2$$

## 3 Herleitung von $\alpha$

3.1 Natürliche Einheiten ( $\hbar = c = G = 1$ )

$$\alpha = \frac{\lambda_h^2 v}{L_T}, \quad L_T \sim \frac{M_{\rm Pl}}{m_h^2 v}$$

- $\lambda_h \approx 0.13$ : Higgs-Selbstkopplung
- $L_T \approx 10^{26}$  m: Kosmische Korrelationslänge

3.2 SI-Einheiten

$$\alpha_{\rm SI} = \frac{\lambda_h^2 vc^2}{L_T} \approx 2.3 \times 10^{-18} \text{ m}^{-1}$$

- 4 Herleitung von  $\beta$
- 4.1 Natürliche Einheiten ( $\hbar = c = G = 1$ )

$$\beta = \frac{\lambda_h^2 v^2}{4\pi^2 \lambda_0 \alpha_0}$$

- $\lambda_0 \approx 500$  nm: Referenzwellenlänge
- $\alpha_0 = \alpha$  (wie oben)

4.2 Feynman-Diagramm-Analyse



4.3 Störungstheoretisches Ergebnis

$$\beta = \frac{(2\pi)^4 m_h^2}{16\pi^2 v^4 y^2 M_{\rm Pl}^2 \lambda_0^4 \alpha_0} \approx 0.008$$

4.4 Experimentelle Konsequenzen

$$z(\lambda) = z_0 \left( 1 + 0.008 \ln \frac{\lambda}{\lambda_0} \right)$$

2

Nachweisbar mit JWST ( $\Delta z/z \sim 10^{-4}$ ).

## 5 Zusammenfassung

| Parameter | Natürliche Form                                                            | SI-Wert                             |
|-----------|----------------------------------------------------------------------------|-------------------------------------|
| $\kappa$  | $\beta \frac{yv}{r_g}$                                                     | $4.8 \times 10^{-11} \text{ m/s}^2$ |
| $\alpha$  | $rac{\lambda_h^2 v}{L_T}$                                                 | $2.3\times 10^{-18}~{\rm m}^{-1}$   |
| β         | $\frac{(2\pi)^4 m_h^2}{16\pi^2 v^4 y^2 M_{\rm Pl}^2 \lambda_0^4 \alpha_0}$ | 0.008                               |

### Anhang: Vertiefende Erklärungen

### 5.1 Mikroskopische Begründung von $L_T$

• Higgs-Fluktuationen:

$$\langle \delta \Phi(x) \delta \Phi(0) \rangle \sim \frac{m_h}{16\pi^2 M_{\rm Pl}} e^{-m_h|x|}$$

• Mikroskopische Skala:

$$L_h = \frac{1}{m_h} \approx 1.58 \times 10^{-9} \text{ m}$$

• Kosmische Skala:

$$L_T \sim \frac{M_{\rm Pl}}{m_h^2 v} \approx 6.3 \times 10^{27}~{\rm m}$$

### 5.2 Dimensionsanalyse

In natürlichen Einheiten ( $\hbar = c = G = 1$ ):

- $[m_h] = [v] = E = L^{-1}$
- $[M_{\rm Pl}] = E = L^{-1}$
- $\bullet \ [\alpha]=L^{-1},\, [\kappa]=L^{-2}$
- $[\beta] = 1$  (dimensionslos)