ÜBUNGEN ZU "PARTIELLE DIFFERENTIALGLEICHUNGEN" WS 2020 BLATT 6 (5. 11. 2020), SKRIPTUM BIS ABSCHNITT 5.2

EDUARD NIGSCH, CLAUDIA RAITHEL

1. Sei $\Omega \subset \mathbb{R}^n$ eine offene, beschränkte Menge und $u \in C^2(\Omega)$. Es gelte für alle R > 0 und $x \in \Omega$ mit $\overline{B_R(x)}$ die Mittelwerteigenschaft

$$u(x) = \frac{1}{S_n R^{n-1}} \int_{\partial B_R(x)} u \, ds,$$

wobei S_n die Oberfläche der Einheitskugel ist. Zeigen Sie, dass u harmonisch ist.

- 2. Zeigen Sie, dass die Aussage von Beispiel 1. schon für $u \in C^1(\Omega)$ gilt und u dann sogar in $C^{\infty}(\Omega)$ ist. Hinweis: schreiben sie die Mittelwerteigenschaft als u(x) = u * v für eine geeignete Funktion v; versuchen Sie dann v durch eine besser geeignete Funktion $\phi \in C^2(\Omega)$ zu ersetzen.
- **3.** Sei $\Omega \subset \mathbb{R}^n$ offen und $u \in C^2(\Omega)$. Zeigen Sie:
 - (i) Wenn $\phi \in C^{\infty}(\mathbb{R})$ konvex und u harmonisch ist, dann ist $v = \phi(u)$ subharmonisch, d.h. $\Delta v \geq 0$.
 - (ii) Ist $u \in \overline{C}^3(\Omega)$ harmonisch, so ist $v = |\nabla u|^2$ subharmonisch.
- **4.** Es sei $(a,b) \subset \mathbb{R}$ ein beschränktes offenes Intervall und $L := \frac{d^2}{x^2} + g \frac{d}{dx}$, mit $g:(a,b) \to \mathbb{R}$ eine beschränkte Funktion. Zeigen Sie, dass für eine Funktion $u \in C^2((a,b)) \cap C([a,b])$ folgende Implikationen gelten.
 - (i) Lu > 0 in $(a, b) \implies u$ kann ihr Maximum nicht in (a, b) annehmen.
 - (ii) $Lu \ge 0$ in $(a,b) \implies u$ kann ihr Maximum nicht in (a,b) annehmen, außer u ist konstant.

Überlegen Sie, ob (i) und (ii) ihre Gültigkeit behalten, wenn g nur in jedem abgeschlossenen Intervall $[a',b'] \subset (a,b)$, aber nicht unbedingt in [a,b] beschränkt ist.

5. Zeigen Sie, dass folgendes Problem nur die triviale Lösung u=0 hat:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = u^3 \text{ für } x^2 + y^2 < 1,$$
$$u = 0 \text{ für } x^2 + y^2 = 1.$$

6. Zeigen Sie: Ist w harmonisch auf einer offenen Menge $\Omega \subseteq \mathbb{R}^n$, r > 0, $x \in \Omega$ sodass $\overline{B_r(x)} \subseteq \Omega$, dann gilt für alle $i = 1 \dots n$:

$$|\partial_i w| \le \frac{n}{r} ||w||_{L^{\infty}(B_r(x))}.$$

Zeigen Sie weiters, dass für jeden Multiindex α mit $|\alpha| = k$ gilt:

$$|\partial^{\alpha} w(x)| \le \left(\frac{kn}{r}\right)^k ||w||_{L^{\infty}(B_r(x))}.$$

- 7. Sei $U \subseteq \mathbb{R}^n$ offen und beschränkt und $u \in H^1(U)$. Angenommen $f \in C^1(\mathbb{R})$ und $\sup_{y \in R} |f'(y)| < \infty$. Zeigen Sie, dass $f \circ u \in H^1(U)$ und $\partial_i (f \circ u) = f'(u) \partial_i u$ gilt. Zeigen Sie dasselbe Resultat für unbeschränkte U unter der zusätzlichen Voraussetzung f(0) = 0.
- 8. Zeigen Sie mit Hilfe der vorherigen Aufgabe: ist $u \in H^1(\Omega)$, dann sind auch $u^+ = \max\{u,0\}$, $u^- = -\min\{u,0\}$ und |u| in $H^1(\Omega)$. (Hinweis: die ersten beiden Aussagen ergeben sich direkt aus der dritten).