Matemática Discreta

Elementos de Teoria dos Grafos

Universidade de Aveiro 2017/2018

http://moodle.ua.pt

Matemática Discreta

Código de Prüfer

Teorema de Cayley

Exemplos e exercícios

Código de Prüfer

- Vamos denotar por $\mathcal{T}(G)$ o conjunto das árvores abrangentes de um grafo G.
- Código de Prüfer: Seja $T \in \mathcal{T}(G)$. Uma vez que $V = V(K_n)$ é um conjunto totalmente ordenado pela relação \leq , podemos eliminar sucessivamente, para $i = 1, \ldots, n-2$, o menor vértice de grau 1, s_i , da árvore $T \{s_1, \ldots, s_{i-1}\}$, cujo único vizinho é t_i e, desta forma, construimos o (n-2)-uplo $(t_1, t_2, \ldots, t_{n-2})$. Por exemplo, para a árvore representado na figura a seguir, obtém-se o código de Prüfer é (4, 3, 5, 3, 4, 5).

				4		
Si	1	2	6	7	3	4
ti	4	3	5	3	4	5

Figure: Código de Prüfer para a árvore representada.

Algoritmo formal para determinação do código de Prüfer

- Mais formalmente, o algoritmo para a determinação do código de Prüfer pode descrever-se da seguinte maneira:
 - Algoritmo: codificação de Prüfer(T);
 - $ightharpoonup R \leftarrow T; n \leftarrow \nu(T);$
 - ▶ Para *i* = 1 até *n* − 2 fazer
 - **1.** $s \leftarrow \min\{x \in V(R) : d_R(x) = 1\};$
 - 2. $t[i] \leftarrow N_R(s)$;
 - **3.** $R \leftarrow R s$;
 - Devolver t;
 - Fim do algoritmo.

Algoritmo de descodificação do código Prüfer

- O algoritmo de descodificação tem em conta que cada vértice v da árvore T de ordem n aparece $d_T(v) 1$ vezes no código $t = (t_1, \ldots, t_{n-2})$. Logo, as folhas da árvore (ou seja, os vértices de grau 1) não aparecem no código.
 - Algoritmo: descodificação de Prüfer(t, n);
 - ▶ $R \leftarrow \{1, 2, ..., n\}, V(T) \leftarrow R e E(T) \leftarrow \emptyset;$
 - ▶ Para i = 1, ..., n 2, fazer
 - **1.** $t^* \leftarrow (t_i, \ldots, t_{n-2});$
 - **2.** Se $s_i = \min\{s \in R : s \notin t^*\}$, então $E(T) \leftarrow E(T) \cup \{s_i t_i\}$;
 - **3.** $R \leftarrow R \setminus \{s_i\};$
 - Ligar os vértices v do grafo corrente T cujos graus, $d_T(v)$, diferem em uma unidade do valor calculado a partir de t;
 - Devolver T.
 - Fim do algoritmo.

Teorema de Cayley

Teorema (de Cayley)

O número de árvores abrangentes do grafo completo de ordem $n \in \mathbb{N}$ é dado por

$$\tau(K_n)=n^{n-2}.$$

Prova: A prova baseia-se no estabelecimento de uma bijecção entre o conjunto de todas as árvores abrangentes do grafo completo de ordem $n \geq 2$, $\mathcal{T}(G)$, e o conjunto (n-2)-uplos (t_1,t_2,\ldots,t_{n-2}) , tais que $1 \leq t_i \leq n$, ou seja, o produto cartesiano $[n]^{n-2}$, sabendo que cada um deles corresponde ao código de Prüfer de uma única árvore abrangente de K_n e o recíproco também é verdadeiro.

Exemplos

- (a) Determinar a árvore cujo código de Prüfer é (5, 3, 1, 7, 1, 7).
- (b) Determinar o código de Prüfer para a seguinte árvore *T*:

