

Nonlinear Programming (NLP)

- Geometric illustration and solution
- Computer Solution (gradient search)
- Lagrange multiplier
- Global and local optima
- Convex and concave NLPs (Convex sets, convex/concave functions)
- Computer solution
 (evolutionary algorithms)

Next Monday's guest lecture:

"Optimisation in Energy Transition"

Matti Vuorinen, Director, Digital Solutions in UPM Energy

Non-linear Programming (NLP)

- LP models *proportional* relationships
 - Linear constraints and objective function
- NLP models non-proportional relationships
 - Nonlinear objective function and constraints
- Terminology
 - Even if only one of the constraints or the objective function is nonlinear → NLP model
 - NLPs can have integer variables → Mixed Integer Non-linear Programming (MINLP)

NLP Example: Production planning

- Par inc. manufactures standard and deluxe golf bags
 - Productions costs: \$70 and \$150
 - Production constraints:
 - Cutting & dying, sewing, finishing, inspection & packing
 - Demand (*d*) and price (*p*) have an inverse relationship

$$d_S = 2250 - 15p_S \iff p_S = (150 - \frac{1}{15}d_S)$$

 $d_D = 1500 - 5p_D \iff p_D = \left(300 - \frac{1}{5}d_D\right)$

$$\left(150 - \frac{1}{15}x_s\right)x_s - 70x_s + \left(300 - \frac{1}{5}x_D\right)x_D - 150x_D$$
$$= 80x_s - \frac{1}{15}x_s^2 + 150x_D - \frac{1}{5}x_D^2$$

NLP Example: Production planning (Cont'd)

$$\max 80x_{S} - \frac{1}{15}x_{S}^{2} + 150x_{D} - \frac{1}{5}x_{D}^{2}$$

$$\frac{7}{10}x_{S} + x_{D} \le 630 \text{ (cutting \& dying)}$$

$$\frac{1}{2}x_{S} + 5/6x_{D} \le 600 \text{ (sewing)}$$

$$x_{S} + \frac{2}{3}x_{D} \le 708 \text{ (finishing)}$$

$$\frac{1}{10}x_{S} + \frac{1}{4}x_{D} \le 135 \text{ (inspection \& packing)}$$

$$x_{S}, x_{D} \ge 0$$

NLP Example: Production planning (Cont'd)

NLP Example: Production planning (Cont'd)

$$\max 80x_{S} - \frac{1}{15}x_{S}^{2} + 150x_{D} - \frac{1}{5}x_{D}^{2}$$

$$\frac{7}{10}x_{S} + x_{D} \le 630 \text{ (cutting \& dying)}$$

$$\frac{1}{2}x_{S} + 5/6x_{D} \le 600 \text{ (sewing)}$$

$$x_{S} + \frac{2}{3}x_{D} \le 708 \text{ (finishing)}$$

$$\frac{1}{10}x_{S} + \frac{1}{4}x_{D} \le 135 \text{ (inspection \& packing)}$$

$$x_{S}, x_{D} \ge 0$$

NLP Example: Location problem

- T-group is planning to use unmanned helicopters to deliver groceries across Finland
 - Market research has identified five areas with most demand (see map)
 - Helsinki (inc. Vantaa and Espoo), Turku, Tampere, Oulu, Jyväskylä, and Kuopio
- T-group has constructed the following NLP to choose a location for the new distribution center serving these areas:
 Monthly deliver

$$\min 500\sqrt{(x-200)^2 + (y-42)^2}$$

$$+220\sqrt{(x-170)^2 + (y-100)^2}$$

$$+200\sqrt{(x-227)^2 + (y-231)^2}$$

$$+180\sqrt{(x-145)^2 + (y-55)^2}$$

$$+140\sqrt{(x-214)^2 + (y-127)^2}$$

$$+100\sqrt{(x-256)^2 + (y-157)^2}$$

$$x, y \ge 0$$

Question:

Interpret the NLP

NLP Example: Location problem – The spreadsheet

NLP Example: Location problem – The Solver

NLP Example: Location problem – Optimal solution

Question:

Near which city should the distribution center be located?

Formulas in Excel that result in a NLP model

Problem parameters (data) located in cells D1:D6

Decision variables located in cells C1:C6.

SUMPRODUCT(D4:D6, C4:C6) [(D1 + D2) / D3] * C4

SUM(D4:D6)

2*C1 + 3*C4 + C6

C1 + C2 + C3

IF(D1>D2; 1; 0)

LP model

SUMPRODUCT(C4:C6, C1:C3)

[(C1 + C2) / C3] * D4

ABS(C1)

SQRT(C1)

C1 * C2

C1 / C2

C1 ^2

IF(C1>D2; 1; 0)

NLP model

NLP Example: Markowitz Portfolio optimization

- Hauck Financial Services allocates capital to 6 funds
 - Historical fund returns are used to construct 5 samples of possible returns for 2022 (scenarios)
 - Hauck aims at a 10% expected return with minimal risk

Question: Interpret the NLP model:

$$\min 0.2 \sum_{s=1}^{5} (r_s - \bar{r})^2$$

$$r_1 = 10.06x_A + 17.64x_B + \dots + 24.56x_F$$

$$r_2 = 13.12x_A + 3.25x_B + \dots + 25.32x_F$$

$$\dots$$

$$r_5 = -21.93x_A + 7.36x_B + \dots + 17.31x_F$$

 $\bar{r} = 0.2r_1 + 0.2r_2 + 0.2r_3 + 0.2r_4 + 0.2r_5$

 $x_A + x_B + x_C + x_D + x_F + x_F = 1$

 $\bar{r} > 10$

 $x_{A},...,x_{F} \geq 0$

that receives value r p_i the expected value	or a random variable R r_i with probability e is $E[R] = \sum_i p_i r_i$ and $E[R] = \sum_i p_i (r_i - E[R])^2$
	ISM-C1004 Business Analytics 1

	Historical returns												
Fund	2017	2018	2019	2020	2021								
Α	10.06	13.12	13.47	45.42	-21.93								
В	17.64	3.25	7.51	-1.33	7.36								
С	32.41	18.71	33.28	41.46	-23.26								
D	32.36	20.61	12.93	7.06	-5.37								
E	33.44	19.4	3.85	58.68	-9.02								
F	24.56	25.32	-6.7	5.43	17.31								

ISM-C1004 Business Analytics 1 Liesiö

17.11.2023

NLP Example: Markowitz Portfolio optimization

\$L\$2 Scenario 1 -7.523319825 \$L\$11 Scenario-specific return 10.00000002 6.179574311

Value

Multiplier

Name

Cell

indice of

Make Unconstrained Variables Non-Negative

Select a Solving Method:

GRG Nonlinear

Liesiö 17.11.2023

NLP Example: Markowitz Portfolio optimization

- Increasing return target by 0.1 units increases variance by about 0.62 (=27.76-27.14).
 - Consistent with "Lagrange multiplier 6.179" on the previous slide since 0.1*6.179=0.62

4	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	P
1																
2								Scenario			П	1				
3				F	Fund	1	2	3	4	5						
4					Α	10.06	13.12	13.47	45.42	-21.93		0.152692				
5					В	17.64	3.25	7.51	-1.33	7.36		0.518809				
5					C	32.41	18.71	33.28	41.46	-23.26	П	0.049069				
7					D	32.36	20.61	12.93	7.06	-5.37	П	0				
В					E	33.44	19.4	3.85	58.68	-9.02	П	0				
9					F	24.56	25.32	-6.7	5.43	17.31	П	0.27943				Return
.0																target
1			Scenario-specific return			19.14	11.68	5.71	9.80	4.17	П	10.10	Mean retu	ırn		10.1
2																
3	Squa	red deviat	viation from mean mean return			81.74	2.50	19.24	0.09	35.22	П	27.76	Variance o	of return		
L4												5.27	St. Dev. of	return		
L5															17	Liesiö 11.2023
16															17.	1.2020

Sensitivity analysis in NLP

- Shadow price in **LP** is the rate of change in the objective function as the RHS of a constraint increases (all other data unchanged)
 - This rate is constant for a range of RHS values ("range of feasibility")
- In NLPs this rate is called "Lagrange multiplier"
 - However, in NLP the rate does not generally remain constant
 - It can be guaranteed to hold only for the current RHS value
 - Cf. A range of feasibility where both range upper and lower bound are equal to current RHS value

NLP Example: Linear objective function

NLP example: All constraints linear

- This NLP problem has
 - 2 decision variables
 - 5 linear constraints
 - a nonlinear objective function

NLP Example: Optimum not on the border of the feasible region

Mathematical formulation

min z=
$$(x_1-1)^2 + (x_2-2)^2$$

s.t. $x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$

Computer solution to NLP problems

- The GRG algorithm in Solver is based on gradient search ("hill-climbing")
 - With the initial starting solution, a direction is computed that most rapidly improves the objective function value
 - Solution is moved (values of decision variables changed) to this direction until
 - a constraint boundary is encountered OR
 - the objective function value no longer improves
 - A new direction is computed with the new solution and the process is repeated until no further improvement in any direction is possible

Global and local optimal solutions

- For NLP problems we often do **not** have a guarantee that the optimal solution is a true **global** optimal solution
 - I.e. no other feasible solution provides a better objective function value
- Most NLP algorithms terminate when they have found a **local** optimal solution
 - I.e. a feasible solution such that all neighboring feasible solutions are worse
- Special case:
 - If NLP is "convex" or "concave" then any local optimal solution is a global optimal solution.

Convex sets

■ **A set is convex** if a line connecting any two points in the set is contained entirely in the set

Question: Which of these sets are convex?

Convex and Concave functions

- **A function is convex** if a line connecting any two points lies above the function
- A function is concave if a line connecting any two points lies below the function

Question: Which of these 4 functions are

concave and which are convex?

concave f(x)

convex f(x)

Convexity of sets defined by inequalities

- Constraint types in NLP: $f(x) \le RHS$ or $f(x) \ge RHS$ (or both: f(x) = RHS)
- Question: When is the feasible region (= the set of values for *x* that satisfy the constraint) convex?

Convex and Concave NLPs

The result from the previous slide can be generalized:

 If in an NLP the LHS function of each ≤ (≥) constraint is convex (concave) then the feasible region is convex

Convex NLP:

- A convex objective function is minimized
- The feasible region is convex

Concave NLP:

A concave objective function is maximized

Same condition!

The feasible region is convex

Property of concave and convex NLPs:

Any local optimal solution is necessarily a global optimal solution.

Evolutionary optimization algorithms

- If an optimization problem is non-linear but its not a convex/concave NLP, how to solve it?
 - One possibility: Evolutionary Algorithms.
- Evolutionary algorithms are **heuristic**, i.e., provide a feasible solution with a "good" objective value, but no guarantees that it is optimal
 - Idea: A large set of solutions ("population") simulated through multiple iterations ("generations")
 - On each iteration:
 - Solutions with best objective function value ("fitness") are combined to produce new solutions ("reproduction")
 - Random changes to some solutions ("mutation")
 - Infeasible solution and those with poor objective function value ("unfit") are deleted
- Excel solver includes an evolutionary algorithm

Non-linear programming (NLP) - Summary

- Can contain a nonlinear objective function or one or more nonlinear constraints
 - Some constrains or the objective function can be linear
- Relaxation of constraints has the same effect as in LP
 - Cannot make objective function value worse
- Lagrange multiplier captures the effect of changes in the RHS of constraints
 - Holds only locally, not for a range of RHS values
- Most NLP algorithms do not ensure a global optimal solution
- For concave/convex NLPs a local optimal solution is also global
 - I.e., "max concave function"/"min convex function" over a convex feasible region

Extra slides

Equivalence between the two formulations of the Markowitz model Classical formulation

• Return of the *i*th asset is a random variable R_i such that:

-
$$P(R_i = r_{si}) = \frac{1}{n}, s = 1, ..., n$$

-
$$E[R_i] = \bar{r}_i$$

- Portfolio return:
 - In scenario s: $r_s = \sum_i x_i r_{si}$
 - Expected:

$$\bar{r} = E[\sum_i x_i R_i] = \sum_i x_i E[R_i] = \sum_i x_i \bar{r}_i$$

$$Var\left(\sum_{i} x_{i}R_{i}\right) = \sum_{i} \sum_{j} x_{i}x_{j}Cov(R_{j}, R_{i})$$

$$= \sum_{i} \sum_{j} x_{i}x_{j} \left[\frac{1}{n} \sum_{s=1}^{n} (r_{si} - \bar{r}_{i})(r_{sj} - \bar{r}_{j})\right]$$

$$= \frac{1}{n} \sum_{s} \sum_{i} x_{i}(r_{si} - \bar{r}_{i}) \sum_{j} x_{j}(r_{sj} - \bar{r}_{j})$$

$$= \frac{1}{n} \sum_{s} \sum_{i} (x_{i}r_{si} - x_{i}\bar{r}_{i}) \sum_{j} (x_{j}r_{sj} - x_{j}\bar{r}_{j})$$

$$= \frac{1}{n} \sum_{s} (r_{s} - \bar{r})(r_{s} - \bar{r}) = \frac{1}{n} \sum_{s} (r_{s} - \bar{r})^{2}$$
pario based formulation

