

## 3,3'-[Biphenyl-4,4'-diylbis(oxy)]-diphthalic acid

Ningning Zhao, Wenjun Li,\* Zhidong Chang, Changyan Sun and Hongxia Fan

Department of Chemistry and Chemical Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China  
Correspondence e-mail: wjli@sas.ustb.edu.cn

Received 21 November 2011; accepted 10 December 2011

Key indicators: single-crystal X-ray study;  $T = 293$  K; mean  $\sigma(C-C) = 0.006$  Å;  $R$  factor = 0.048;  $wR$  factor = 0.118; data-to-parameter ratio = 8.3.

In the title molecule,  $C_{28}H_{18}O_{10}$ , the two central benzene rings form a dihedral angle of  $31.0(1)^\circ$ . In the phthalic acid fragments, the carboxy groups in the *meta* positions are approximately coplanar with the attached benzene rings, being inclined to their planes at  $2.7(1)$  and  $10.3(1)^\circ$ , while the carboxy groups in the *ortho* positions are twisted from the benzene ring planes by  $83.5(1)$  and  $75.4(1)^\circ$ . In the crystal,  $O-H\cdots O$  hydrogen bonds link the molecules into layers parallel to the *bc* plane. Weak  $C-H\cdots O$  hydrogen bonds and  $\pi-\pi$  interactions between the aromatic rings [centroid-centroid distance =  $3.7674(3)$  Å] further consolidate the crystal packing.

### Related literature

For applications of metal-organic frameworks with semi-rigid carboxylic acid ligands, see: Li *et al.* (2008); Chen *et al.* (2008). For background to the synthesis of various semi-rigid multicarboxylate ligands, see: Maglio *et al.* (1997).



### Experimental

#### Crystal data

$C_{28}H_{18}O_{10}$

$M_r = 514.42$

Orthorhombic,  $Pna2_1$   
 $a = 21.5817(7)$  Å  
 $b = 11.2676(4)$  Å  
 $c = 9.5025(3)$  Å  
 $V = 2310.76(13)$  Å<sup>3</sup>

$Z = 4$   
Mo  $K\alpha$  radiation  
 $\mu = 0.11$  mm<sup>-1</sup>  
 $T = 293$  K  
 $0.39 \times 0.32 \times 0.28$  mm

#### Data collection

Bruker APEXII CCD area-detector diffractometer  
Absorption correction: multi-scan (*SADABS*; Bruker, 2005)  
 $T_{\min} = 0.957$ ,  $T_{\max} = 0.969$

5587 measured reflections  
2857 independent reflections  
2352 reflections with  $I > 2\sigma(I)$   
 $R_{\text{int}} = 0.024$

#### Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$   
 $wR(F^2) = 0.118$   
 $S = 1.08$   
2857 reflections  
343 parameters

1 restraint  
H-atom parameters constrained  
 $\Delta\rho_{\max} = 0.18$  e Å<sup>-3</sup>  
 $\Delta\rho_{\min} = -0.16$  e Å<sup>-3</sup>

**Table 1**  
Hydrogen-bond geometry (Å, °).

| $D-H\cdots A$              | $D-H$ | $H\cdots A$ | $D\cdots A$ | $D-H\cdots A$ |
|----------------------------|-------|-------------|-------------|---------------|
| O2-H2···O7 <sup>i</sup>    | 0.82  | 1.85        | 2.649 (4)   | 164           |
| O8-H8A···O1 <sup>ii</sup>  | 0.82  | 1.85        | 2.659 (4)   | 169           |
| O3-H3···O6 <sup>iii</sup>  | 0.82  | 1.76        | 2.575 (4)   | 172           |
| O5-H5···O4 <sup>iv</sup>   | 0.82  | 1.92        | 2.732 (4)   | 169           |
| C11-H11···O6 <sup>v</sup>  | 0.93  | 2.46        | 3.284 (5)   | 148           |
| C13-H13···O3 <sup>vi</sup> | 0.93  | 2.51        | 3.438 (6)   | 173           |
| C16-H16···O6 <sup>v</sup>  | 0.93  | 2.54        | 3.431 (6)   | 161           |

Symmetry codes: (i)  $x, y+1, z+2$ ; (ii)  $x, y-1, z-2$ ; (iii)  $-x+1, -y+2, z+\frac{3}{2}$ ; (iv)  $-x+1, -y+2, z-\frac{3}{2}$ ; (v)  $x, y, z+1$ ; (vi)  $x, y, z-1$ .

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This project was supported by the National Natural Science Foundation of China (grant No. 21101013) and the Foundation of University of Science and Technology Beijing (grant Nos. 00009805 and 06113004).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5208).

### References

Bruker (2005). *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.  
Bruker (2007). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.  
Chen, X.-L., Zhang, B., Hu, H.-M., Fu, F., Wu, X.-L., Qin, T., Yang, M.-L., Xue, G.-L. & Wang, J.-W. (2008). *Cryst. Growth Des.* **8**, 3706–3712.  
Li, S.-L., Lan, Y.-Q., Ma, J.-F., Yang, J., Wei, G.-H., Zhang, L.-P. & Su, Z.-M. (2008). *Cryst. Growth Des.* **8**, 1610–1616.  
Maglio, G., Palumbo, R., Schioppa, A. & Tesauro, D. (1997). *Polymer*, **38**, 5849–5856.  
Sheldrick, G. M. (2008). *Acta Cryst. A* **64**, 112–122.

## **supplementary materials**

Acta Cryst. (2012). E68, o211 [doi:10.1107/S1600536811053219]

### 3,3'-[Biphenyl-4,4'-diylbis(oxy)]diphthalic acid

N. Zhao, W. Li, Z. Chang, C. Sun and H. Fan

#### Comment

Various semirigid multicarboxylate ligands are being used in design of metal-organic frameworks (MOFs) having various potential applications (Chen *et al.*, 2008; Li *et al.*, 2008). Herewith we report the synthesis (Maglio *et al.*, 1997) and single-crystal structure of the title compound - a new semirigid multicarboxylate ligand containing two semirigid phthalic acid groups.

In the title molecule (Fig. 1), two central benzene rings form a dihedral angle of  $31.0(1)^\circ$ . In the phthalic acid fragments, the carboxy groups in *meta* positions are approximately coplanar with the attached benzene rings being inclined to their planes at  $2.7(1)$  and  $10.3(1)^\circ$ , respectively, while carboxy groups in *ortho* positions are twisted from the benzene rings at  $83.5(1)$  and  $75.4(1)^\circ$ , respectively. In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to *bc* plane. Weak intermolecular C—H···O hydrogen bonds (Table 1) and  $\pi$ — $\pi$  interactions between the aromatic rings [centroid-centroid distance of  $3.7674(3)$  Å] consolidate further the crystal packing.

#### Experimental

To a solution of 4,4'-biphenol(1.62 g, 0.01 mol) and anhydrous Na<sub>2</sub>CO<sub>3</sub>(2.12 g, 0.02 mol) in DMF(25 ml) stirred for 30 min, 3-nitrophthalonitrile(3.46 g, 0.02 mol) was added. The resulting mixture was stirred for 48 h. Then the mixture was poured into water (500 ml), and a slightly yellow solid was yielded and isolated by filtration. The crude product was dried in air, yielding 3,3'-(4,4'-biphenylenebis(oxy))diphthalonitrile. The mixture of 3,3'-(4,4'-biphenylenebis(oxy))diphthalonitrile (3.6 g, 0.01 mol) and NaOH (3.2 g, 0.08 mol) in distilled water (150 ml) was refluxed until the solution turned clear. Then, the solution was cooled down to room temperature and filtered. After the pH value of the filtrate was adjusted to about 4–5 with HCl (6.0 mol/L), the filtrate was kept undisturbed at room temperature. After about one day, a large amount of yellow solid of (I) was collected by filtration. A mixture containing Zn(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (0.0595 g, 0.2 mmol), (I)(0.0514 g, 0.1 mmol), and H<sub>2</sub>O (15 ml) was sealed in a Teflon-lined stainless steel reactor and heated at 120 for 3 days. Unfortunately, X-ray quality single crystals of (I) were only obtained.

#### Refinement

All hydrogen atoms were positioned geometrically and included in the refinement using a riding-model approximation [aromatic C—H = 0.93 Å, O—H = 0.82 Å] with  $U_{\text{iso}}(\text{H}) = 1.2U_{\text{eq}}(\text{C, O})$ . In the absence of any significant anomalous scatterers in the molecule, the 689 Friedel pairs were merged before the final refinement.

#### Figures



Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.

# supplementary materials

---

## 3,3'-[Biphenyl-4,4'-diylbis(oxy)]diphthalic acid

### Crystal data

|                                  |                                                         |
|----------------------------------|---------------------------------------------------------|
| $C_{28}H_{18}O_{10}$             | $D_x = 1.479 \text{ Mg m}^{-3}$                         |
| $M_r = 514.42$                   | Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ \AA}$ |
| Orthorhombic, $Pna2_1$           | Cell parameters from 1882 reflections                   |
| $a = 21.5817 (7) \text{ \AA}$    | $\theta = 3.0\text{--}29.1^\circ$                       |
| $b = 11.2676 (4) \text{ \AA}$    | $\mu = 0.11 \text{ mm}^{-1}$                            |
| $c = 9.5025 (3) \text{ \AA}$     | $T = 293 \text{ K}$                                     |
| $V = 2310.76 (13) \text{ \AA}^3$ | Block, yellow                                           |
| $Z = 4$                          | $0.39 \times 0.32 \times 0.28 \text{ mm}$               |
| $F(000) = 1064$                  |                                                         |

### Data collection

|                                                                   |                                                                     |
|-------------------------------------------------------------------|---------------------------------------------------------------------|
| Bruker APEXII CCD area-detector diffractometer                    | 2857 independent reflections                                        |
| Radiation source: fine-focus sealed tube graphite                 | 2352 reflections with $I > 2\sigma(I)$                              |
| phi and $\omega$ scans                                            | $R_{\text{int}} = 0.024$                                            |
| Absorption correction: multi-scan ( <i>SADABS</i> ; Bruker, 2005) | $\theta_{\text{max}} = 25.0^\circ, \theta_{\text{min}} = 3.0^\circ$ |
| $T_{\text{min}} = 0.957, T_{\text{max}} = 0.969$                  | $h = -8 \rightarrow 25$                                             |
| 5587 measured reflections                                         | $k = -13 \rightarrow 9$                                             |
|                                                                   | $l = -5 \rightarrow 11$                                             |

### Refinement

|                                 |                                                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------|
| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                                                 |
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                                           |
| $R[F^2 > 2\sigma(F^2)] = 0.048$ | Hydrogen site location: inferred from neighbouring sites                                                       |
| $wR(F^2) = 0.118$               | H-atom parameters constrained                                                                                  |
| $S = 1.08$                      | $w = 1/[\sigma^2(F_{\text{o}}^2) + (0.0626P)^2 + 0.1818P]$<br>where $P = (F_{\text{o}}^2 + 2F_{\text{c}}^2)/3$ |
| 2857 reflections                | $(\Delta/\sigma)_{\text{max}} < 0.001$                                                                         |
| 343 parameters                  | $\Delta\rho_{\text{max}} = 0.18 \text{ e \AA}^{-3}$                                                            |
| 1 restraint                     | $\Delta\rho_{\text{min}} = -0.16 \text{ e \AA}^{-3}$                                                           |

### Special details

**Geometry.** All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted  $R$ -factor  $wR$  and goodness of fit  $S$  are based on  $F^2$ , conventional  $R$ -factors  $R$  are based on  $F$ , with  $F$  set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating  $R$ -factors(gt) etc. and is not relevant to the choice of reflections for refinement.  $R$ -factors based on  $F^2$  are statistically about twice as large as those based on  $F$ , and  $R$ -factors based on ALL data will be even larger.

*Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\text{\AA}^2$ )*

|     | <i>x</i>     | <i>y</i>   | <i>z</i>    | $U_{\text{iso}}^*/U_{\text{eq}}$ |
|-----|--------------|------------|-------------|----------------------------------|
| C1  | 0.30406 (19) | 1.3782 (3) | 1.6071 (4)  | 0.0542 (10)                      |
| C2  | 0.41811 (18) | 1.3386 (3) | 1.4287 (4)  | 0.0450 (9)                       |
| C3  | 0.30093 (19) | 1.3259 (3) | 1.4624 (4)  | 0.0527 (10)                      |
| C4  | 0.35348 (17) | 1.3116 (3) | 1.3805 (4)  | 0.0445 (9)                       |
| C5  | 0.34704 (19) | 1.2629 (3) | 1.2462 (4)  | 0.0515 (10)                      |
| C6  | 0.2897 (2)   | 1.2302 (4) | 1.1958 (5)  | 0.0638 (12)                      |
| H6  | 0.2860       | 1.1980     | 1.1061      | 0.077*                           |
| C7  | 0.2378 (2)   | 1.2454 (4) | 1.2786 (5)  | 0.0691 (13)                      |
| H7  | 0.1990       | 1.2236     | 1.2444      | 0.083*                           |
| C8  | 0.2431 (2)   | 1.2924 (4) | 1.4110 (5)  | 0.0609 (11)                      |
| H8  | 0.2081       | 1.3020     | 1.4667      | 0.073*                           |
| C9  | 0.40425 (18) | 1.1761 (4) | 1.0552 (4)  | 0.0509 (10)                      |
| C10 | 0.3961 (2)   | 1.0575 (4) | 1.0751 (4)  | 0.0666 (13)                      |
| H10 | 0.3870       | 1.0279     | 1.1641      | 0.080*                           |
| C11 | 0.4016 (2)   | 0.9812 (3) | 0.9611 (5)  | 0.0609 (12)                      |
| H11 | 0.3963       | 0.9001     | 0.9749      | 0.073*                           |
| C12 | 0.41474 (16) | 1.0225 (3) | 0.8286 (4)  | 0.0446 (9)                       |
| C13 | 0.4236 (2)   | 1.1432 (3) | 0.8129 (5)  | 0.0589 (11)                      |
| H13 | 0.4335       | 1.1738     | 0.7248      | 0.071*                           |
| C14 | 0.4178 (2)   | 1.2195 (3) | 0.9266 (5)  | 0.0596 (11)                      |
| H14 | 0.4233       | 1.3007     | 0.9142      | 0.071*                           |
| C15 | 0.41748 (16) | 0.9389 (3) | 0.7056 (4)  | 0.0438 (9)                       |
| C16 | 0.4346 (2)   | 0.8221 (3) | 0.7200 (4)  | 0.0616 (11)                      |
| H16 | 0.4469       | 0.7950     | 0.8082      | 0.074*                           |
| C17 | 0.4343 (2)   | 0.7437 (4) | 0.6092 (5)  | 0.0624 (11)                      |
| H17 | 0.4464       | 0.6653     | 0.6227      | 0.075*                           |
| C18 | 0.41619 (17) | 0.7812 (3) | 0.4798 (4)  | 0.0467 (9)                       |
| C19 | 0.3990 (2)   | 0.8959 (3) | 0.4610 (5)  | 0.0639 (12)                      |
| H19 | 0.3865       | 0.9217     | 0.3724      | 0.077*                           |
| C20 | 0.3997 (2)   | 0.9744 (3) | 0.5721 (4)  | 0.0606 (12)                      |
| H20 | 0.3881       | 1.0529     | 0.5571      | 0.073*                           |
| C21 | 0.42764 (16) | 0.6151 (3) | 0.1051 (4)  | 0.0410 (8)                       |
| C22 | 0.3124 (2)   | 0.5020 (3) | -0.0191 (4) | 0.0539 (10)                      |
| C23 | 0.31384 (17) | 0.5530 (3) | 0.1252 (4)  | 0.0458 (9)                       |
| C24 | 0.36704 (17) | 0.6045 (3) | 0.1821 (4)  | 0.0421 (8)                       |
| C25 | 0.36412 (17) | 0.6571 (3) | 0.3145 (4)  | 0.0466 (9)                       |
| C26 | 0.30915 (18) | 0.6577 (4) | 0.3882 (4)  | 0.0587 (11)                      |
| H26 | 0.3074       | 0.6929     | 0.4767      | 0.070*                           |
| C27 | 0.25716 (19) | 0.6067 (4) | 0.3322 (5)  | 0.0656 (12)                      |
| H27 | 0.2202       | 0.6080     | 0.3824      | 0.079*                           |

## supplementary materials

---

|     |              |            |             |             |
|-----|--------------|------------|-------------|-------------|
| C28 | 0.2594 (2)   | 0.5534 (4) | 0.2014 (4)  | 0.0598 (11) |
| H28 | 0.2241       | 0.5177     | 0.1646      | 0.072*      |
| O1  | 0.35545 (15) | 1.4066 (3) | 1.6566 (3)  | 0.0855 (10) |
| O2  | 0.25406 (16) | 1.3930 (3) | 1.6720 (3)  | 0.0896 (11) |
| H2  | 0.2612       | 1.4218     | 1.7496      | 0.134*      |
| O3  | 0.44618 (13) | 1.2493 (2) | 1.4775 (4)  | 0.0628 (8)  |
| H3  | 0.4811       | 1.2688     | 1.5023      | 0.094*      |
| O4  | 0.43977 (14) | 1.4384 (2) | 1.4219 (4)  | 0.0752 (10) |
| O5  | 0.46202 (13) | 0.5243 (2) | 0.0978 (4)  | 0.0697 (9)  |
| H5  | 0.4936       | 0.5406     | 0.0537      | 0.105*      |
| O6  | 0.44146 (14) | 0.7116 (2) | 0.0561 (4)  | 0.0679 (9)  |
| O7  | 0.26478 (17) | 0.4490 (3) | -0.0584 (4) | 0.0890 (11) |
| O8  | 0.35855 (15) | 0.5180 (3) | -0.0969 (3) | 0.0740 (9)  |
| H8A | 0.3525       | 0.4863     | -0.1733     | 0.111*      |
| O9  | 0.40081 (14) | 1.2559 (3) | 1.1684 (3)  | 0.0626 (8)  |
| O10 | 0.41860 (12) | 0.7034 (2) | 0.3652 (3)  | 0.0551 (7)  |

### Atomic displacement parameters ( $\text{\AA}^2$ )

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.053 (2)   | 0.072 (2)   | 0.039 (2)   | 0.0091 (19)  | -0.004 (2)   | -0.016 (2)   |
| C2  | 0.059 (2)   | 0.0429 (19) | 0.0327 (19) | 0.0044 (19)  | -0.0064 (19) | -0.0080 (16) |
| C3  | 0.059 (2)   | 0.057 (2)   | 0.042 (2)   | 0.0023 (18)  | -0.004 (2)   | -0.014 (2)   |
| C4  | 0.045 (2)   | 0.054 (2)   | 0.035 (2)   | -0.0003 (16) | -0.0065 (18) | -0.0138 (17) |
| C5  | 0.050 (2)   | 0.060 (2)   | 0.044 (2)   | -0.0032 (18) | -0.002 (2)   | -0.0131 (19) |
| C6  | 0.062 (3)   | 0.082 (3)   | 0.047 (3)   | -0.013 (2)   | -0.013 (2)   | -0.022 (2)   |
| C7  | 0.052 (3)   | 0.098 (3)   | 0.057 (3)   | -0.011 (2)   | -0.009 (2)   | -0.024 (3)   |
| C8  | 0.049 (2)   | 0.083 (3)   | 0.051 (3)   | -0.004 (2)   | -0.001 (2)   | -0.019 (2)   |
| C9  | 0.054 (2)   | 0.060 (2)   | 0.039 (2)   | -0.0010 (19) | -0.003 (2)   | -0.016 (2)   |
| C10 | 0.101 (4)   | 0.074 (3)   | 0.025 (2)   | 0.001 (2)    | -0.008 (2)   | -0.006 (2)   |
| C11 | 0.082 (3)   | 0.054 (2)   | 0.047 (3)   | 0.000 (2)    | -0.005 (2)   | -0.009 (2)   |
| C12 | 0.0415 (19) | 0.0541 (19) | 0.038 (2)   | 0.0004 (16)  | -0.0004 (18) | -0.0093 (19) |
| C13 | 0.081 (3)   | 0.061 (2)   | 0.035 (2)   | -0.013 (2)   | 0.005 (2)    | -0.012 (2)   |
| C14 | 0.076 (3)   | 0.053 (2)   | 0.050 (3)   | -0.010 (2)   | 0.005 (2)    | -0.012 (2)   |
| C15 | 0.039 (2)   | 0.054 (2)   | 0.038 (2)   | -0.0012 (16) | -0.0011 (18) | -0.0119 (18) |
| C16 | 0.075 (3)   | 0.071 (2)   | 0.038 (2)   | 0.026 (2)    | -0.013 (2)   | -0.009 (2)   |
| C17 | 0.077 (3)   | 0.057 (2)   | 0.053 (3)   | 0.019 (2)    | -0.001 (2)   | -0.011 (2)   |
| C18 | 0.044 (2)   | 0.053 (2)   | 0.043 (2)   | -0.0015 (17) | 0.006 (2)    | -0.0169 (19) |
| C19 | 0.094 (3)   | 0.066 (2)   | 0.031 (2)   | 0.005 (2)    | -0.008 (2)   | -0.002 (2)   |
| C20 | 0.089 (3)   | 0.049 (2)   | 0.044 (3)   | 0.003 (2)    | -0.002 (2)   | -0.0033 (19) |
| C21 | 0.047 (2)   | 0.0430 (19) | 0.0329 (19) | 0.0040 (16)  | 0.0014 (17)  | -0.0074 (17) |
| C22 | 0.057 (3)   | 0.065 (2)   | 0.039 (2)   | -0.001 (2)   | 0.010 (2)    | -0.009 (2)   |
| C23 | 0.051 (2)   | 0.0537 (19) | 0.033 (2)   | -0.0001 (16) | 0.0028 (19)  | -0.0076 (17) |
| C24 | 0.048 (2)   | 0.0423 (16) | 0.036 (2)   | 0.0029 (16)  | 0.0074 (17)  | -0.0066 (17) |
| C25 | 0.047 (2)   | 0.0537 (19) | 0.039 (2)   | -0.0015 (16) | 0.0073 (19)  | -0.0128 (18) |
| C26 | 0.058 (3)   | 0.083 (3)   | 0.035 (2)   | -0.005 (2)   | 0.011 (2)    | -0.024 (2)   |
| C27 | 0.049 (2)   | 0.097 (3)   | 0.051 (3)   | -0.012 (2)   | 0.016 (2)    | -0.024 (2)   |
| C28 | 0.054 (2)   | 0.081 (3)   | 0.045 (2)   | -0.009 (2)   | 0.005 (2)    | -0.016 (2)   |

|     |             |             |             |              |              |              |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| O1  | 0.060 (2)   | 0.141 (3)   | 0.055 (2)   | 0.0096 (19)  | -0.0108 (16) | -0.046 (2)   |
| O2  | 0.070 (2)   | 0.148 (3)   | 0.0512 (19) | -0.008 (2)   | 0.0082 (17)  | -0.042 (2)   |
| O3  | 0.0580 (17) | 0.0637 (16) | 0.067 (2)   | -0.0040 (14) | -0.0070 (15) | 0.0019 (16)  |
| O4  | 0.075 (2)   | 0.0582 (16) | 0.092 (3)   | -0.0139 (15) | -0.032 (2)   | 0.0110 (17)  |
| O5  | 0.0570 (17) | 0.0566 (14) | 0.096 (3)   | 0.0102 (13)  | 0.0271 (18)  | 0.0128 (17)  |
| O6  | 0.0712 (19) | 0.0516 (15) | 0.081 (2)   | 0.0075 (13)  | 0.0242 (17)  | 0.0159 (15)  |
| O7  | 0.083 (2)   | 0.132 (3)   | 0.0516 (18) | -0.042 (2)   | 0.0072 (18)  | -0.037 (2)   |
| O8  | 0.067 (2)   | 0.111 (2)   | 0.0439 (18) | -0.0010 (16) | 0.0045 (16)  | -0.0348 (17) |
| O9  | 0.0624 (18) | 0.0821 (18) | 0.0433 (17) | -0.0121 (14) | 0.0023 (15)  | -0.0300 (14) |
| O10 | 0.0456 (14) | 0.0718 (16) | 0.0479 (17) | -0.0056 (12) | 0.0097 (13)  | -0.0281 (14) |

Geometric parameters ( $\text{\AA}$ ,  $^\circ$ )

|          |           |             |           |
|----------|-----------|-------------|-----------|
| C1—O1    | 1.246 (5) | C16—C17     | 1.375 (6) |
| C1—O2    | 1.254 (5) | C16—H16     | 0.9300    |
| C1—C3    | 1.497 (6) | C17—C18     | 1.357 (6) |
| C2—O4    | 1.219 (4) | C17—H17     | 0.9300    |
| C2—O3    | 1.263 (4) | C18—C19     | 1.357 (5) |
| C2—C4    | 1.499 (5) | C18—O10     | 1.399 (4) |
| C3—C4    | 1.385 (5) | C19—C20     | 1.378 (6) |
| C3—C8    | 1.392 (5) | C19—H19     | 0.9300    |
| C4—C5    | 1.396 (5) | C20—H20     | 0.9300    |
| C5—C6    | 1.377 (6) | C21—O6      | 1.220 (4) |
| C5—O9    | 1.378 (5) | C21—O5      | 1.266 (4) |
| C6—C7    | 1.381 (6) | C21—C24     | 1.504 (5) |
| C6—H6    | 0.9300    | C22—O7      | 1.246 (5) |
| C7—C8    | 1.370 (6) | C22—O8      | 1.253 (5) |
| C7—H7    | 0.9300    | C22—C23     | 1.487 (5) |
| C8—H8    | 0.9300    | C23—C28     | 1.380 (5) |
| C9—C14   | 1.349 (6) | C23—C24     | 1.395 (5) |
| C9—C10   | 1.361 (6) | C24—C25     | 1.392 (5) |
| C9—O9    | 1.404 (4) | C25—O10     | 1.373 (4) |
| C10—C11  | 1.388 (6) | C25—C26     | 1.378 (5) |
| C10—H10  | 0.9300    | C26—C27     | 1.368 (6) |
| C11—C12  | 1.372 (6) | C26—H26     | 0.9300    |
| C11—H11  | 0.9300    | C27—C28     | 1.381 (6) |
| C12—C13  | 1.382 (5) | C27—H27     | 0.9300    |
| C12—C15  | 1.503 (5) | C28—H28     | 0.9300    |
| C13—C14  | 1.386 (5) | O2—H2       | 0.8200    |
| C13—H13  | 0.9300    | O3—H3       | 0.8200    |
| C14—H14  | 0.9300    | O5—H5       | 0.8200    |
| C15—C16  | 1.374 (5) | O8—H8A      | 0.8200    |
| C15—C20  | 1.384 (6) |             |           |
| O1—C1—O2 | 123.1 (4) | C15—C16—C17 | 122.5 (4) |
| O1—C1—C3 | 119.2 (4) | C15—C16—H16 | 118.8     |
| O2—C1—C3 | 117.7 (4) | C17—C16—H16 | 118.8     |
| O4—C2—O3 | 124.7 (4) | C18—C17—C16 | 119.7 (4) |
| O4—C2—C4 | 121.8 (3) | C18—C17—H17 | 120.1     |
| O3—C2—C4 | 113.4 (3) | C16—C17—H17 | 120.1     |

## supplementary materials

---

|             |           |             |           |
|-------------|-----------|-------------|-----------|
| C4—C3—C8    | 120.3 (4) | C17—C18—C19 | 119.6 (4) |
| C4—C3—C1    | 121.7 (4) | C17—C18—O10 | 120.0 (3) |
| C8—C3—C1    | 118.0 (4) | C19—C18—O10 | 120.3 (4) |
| C3—C4—C5    | 118.6 (4) | C18—C19—C20 | 120.5 (4) |
| C3—C4—C2    | 124.5 (3) | C18—C19—H19 | 119.7     |
| C5—C4—C2    | 116.8 (3) | C20—C19—H19 | 119.7     |
| C6—C5—O9    | 123.7 (4) | C19—C20—C15 | 121.3 (4) |
| C6—C5—C4    | 120.8 (4) | C19—C20—H20 | 119.3     |
| O9—C5—C4    | 115.4 (3) | C15—C20—H20 | 119.3     |
| C5—C6—C7    | 119.9 (4) | O6—C21—O5   | 123.8 (3) |
| C5—C6—H6    | 120.1     | O6—C21—C24  | 118.0 (3) |
| C7—C6—H6    | 120.1     | O5—C21—C24  | 118.2 (3) |
| C8—C7—C6    | 120.2 (4) | O7—C22—O8   | 123.2 (4) |
| C8—C7—H7    | 119.9     | O7—C22—C23  | 118.6 (4) |
| C6—C7—H7    | 119.9     | O8—C22—C23  | 118.2 (4) |
| C7—C8—C3    | 120.2 (4) | C28—C23—C24 | 119.7 (3) |
| C7—C8—H8    | 119.9     | C28—C23—C22 | 117.9 (4) |
| C3—C8—H8    | 119.9     | C24—C23—C22 | 122.3 (3) |
| C14—C9—C10  | 120.6 (4) | C25—C24—C23 | 119.3 (3) |
| C14—C9—O9   | 118.3 (3) | C25—C24—C21 | 116.4 (3) |
| C10—C9—O9   | 121.0 (4) | C23—C24—C21 | 124.1 (3) |
| C9—C10—C11  | 119.3 (4) | O10—C25—C26 | 123.9 (3) |
| C9—C10—H10  | 120.4     | O10—C25—C24 | 116.1 (3) |
| C11—C10—H10 | 120.4     | C26—C25—C24 | 120.0 (3) |
| C12—C11—C10 | 121.6 (3) | C27—C26—C25 | 120.4 (4) |
| C12—C11—H11 | 119.2     | C27—C26—H26 | 119.8     |
| C10—C11—H11 | 119.2     | C25—C26—H26 | 119.8     |
| C11—C12—C13 | 117.5 (3) | C26—C27—C28 | 120.2 (4) |
| C11—C12—C15 | 120.6 (3) | C26—C27—H27 | 119.9     |
| C13—C12—C15 | 121.8 (3) | C28—C27—H27 | 119.9     |
| C12—C13—C14 | 120.9 (4) | C23—C28—C27 | 120.3 (4) |
| C12—C13—H13 | 119.6     | C23—C28—H28 | 119.9     |
| C14—C13—H13 | 119.6     | C27—C28—H28 | 119.9     |
| C9—C14—C13  | 120.1 (3) | C1—O2—H2    | 109.5     |
| C9—C14—H14  | 120.0     | C2—O3—H3    | 109.5     |
| C13—C14—H14 | 120.0     | C21—O5—H5   | 109.5     |
| C16—C15—C20 | 116.3 (3) | C22—O8—H8A  | 109.5     |
| C16—C15—C12 | 122.2 (3) | C5—O9—C9    | 119.5 (3) |
| C20—C15—C12 | 121.4 (3) | C25—O10—C18 | 118.6 (3) |

### Hydrogen-bond geometry (Å, °)

| $D—H\cdots A$           | $D—H$ | $H\cdots A$ | $D\cdots A$ | $D—H\cdots A$ |
|-------------------------|-------|-------------|-------------|---------------|
| O2—H2—O7 <sup>i</sup>   | 0.82  | 1.85        | 2.649 (4)   | 164.          |
| O8—H8A—O1 <sup>ii</sup> | 0.82  | 1.85        | 2.659 (4)   | 169.          |
| O3—H3—O6 <sup>iii</sup> | 0.82  | 1.76        | 2.575 (4)   | 172.          |
| O5—H5—O4 <sup>iv</sup>  | 0.82  | 1.92        | 2.732 (4)   | 169.          |
| C11—H11—O6 <sup>v</sup> | 0.93  | 2.46        | 3.284 (5)   | 148.          |

## supplementary materials

---

|                            |      |      |           |      |
|----------------------------|------|------|-----------|------|
| C13—H13···O3 <sup>vi</sup> | 0.93 | 2.51 | 3.438 (6) | 173. |
| C16—H16···O6 <sup>v</sup>  | 0.93 | 2.54 | 3.431 (6) | 161. |

Symmetry codes: (i)  $x, y+1, z+2$ ; (ii)  $x, y-1, z-2$ ; (iii)  $-x+1, -y+2, z+3/2$ ; (iv)  $-x+1, -y+2, z-3/2$ ; (v)  $x, y, z+1$ ; (vi)  $x, y, z-1$ .

## supplementary materials

---

Fig. 1

