

Display LCD (caracteres alfanúmericos)

WH0802A1 Character 8x2

Feature

- 1.5x8 dots includes cursor
- 2.Bulit-in controller (ST7066 or Equivalent)
- 3.5V power supply (Also available for 3V)
- 4.N.V, optional for 3V power supply
- 6.LED can be driven by PIN1, PIN2, PIN15, PIN16 or A and K 7.Interface : 6800, option SPI/32C (RW1063 IC)

Pin No.	Symbol	Description
1	Vss	Ground
2	V _{DD}	Power supply for logic
3,4	Vo	Contrast Adjustment
.4	RS	Data/Instruction select signal
5	/ RW	Read/Write select signal
6	E	Enable signal
7	DB0	Data bus line
8	DB1	Data bus line
9	DB2	Data bus line
10	DB3	Data bus line
11	DB4	Data bus line
12	DB5	Data bus line
13	DB6	Data bus line
14	DB7	Data bus line
15	Α	Power supply for B/L +
16	K	Power supply for B/L -

Mechanical Data

Item	Standard Value	Unit
Module Dimension	58.0 x 32.0	mm
Viewing Area	38.0 x 16.0	mm
Mounting Hole	53.0 x 27.0	mm
Character Size	2.96 x 5.56	mm

Electrical Characteristics

Item	Combat	Standard Value	Unit	
Item	Symbol	typ.		
Input Voltage	VDD	3/5	v	
Paccerrented LCD Driving Voltage for Normal Teng. Vention module @25°C	VDD-VO	4.35	v	

Display Character Address Code

Display position

DIS	piay	1	2	2	4	5	6	7	8	
DD	RAM	Address	00	01	,	7	Ŭ	Ŭ	Ė	07
DD	RAM	Address	40	41						47

Display LCD

Display LCD +Vdd (Lógica) +Vdd (Backlight) -Vss (Lógica) Control de Contraste -Vss (Backlight) D7...D0 Rs E

Display LCD diagrama de bloques

Display LCD: instrucciones

Instruction				Inst	ructi	on C	ode				Description	Execution time (fosc=
ilisu dedoli	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		270 kHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to "00H" from AC	1.53 ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to '00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and enable the shift of entire display.	39 μs
Display ON/ OFF Control	0	0	0	0	0	0	1	D	С	В	Set display(D), cursor(C), and blinking of cursor(B) on/off control bit.	39 μs
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	39 μs
Function Set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL: 8-bit/4-bit), numbers of display line (N: 2-line/1-line) and, display font type (F:5×11dots/5×8 dots)	39 μs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39 μs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39 μs
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 μs
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43 μs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43 μs

Display LCD: memoria

Display LCD: inicialización

Modo 8-bits

Modo 4-bits

Display LCD temporización

Modo 8-bits

Conexión

Conexión

Bibliotecas

LCD_AVR.h 8 bits

Definiciones de Comandos

#ifndef F_CPU #define F_CPU 1000000UL // clock speed is 1MHz #endif

#include<avr/io.h> // AVR header #include<util/delay.h> // delay header

// libería LCD inicio Hardware

#define LCD_DATA PORTC // puerto C es puerto de datos LCD

#define ctrl PORTC // puerto C es puerto de comandos LCD

#define en 1 // enable en pin 1 puerto C

//#define rw PIN_RW // read/write en pin

#define rs 0 // RS en pin 0 puerto C

#define SHIFT Datos 2 // desplazamiento desde el MBS dato al MSB pin

#define CURSOR_ON 2
#define CURSOR OFF 0

#define CURSOR_BLINK 1
#define CURSOR_NOBLINK 0
#define DISPLAY_ON 4
#define DISPLAY_OFF 0
#define DISPLAY_8X5 0
#define DISPLAY 10X5 4

// LCD constantes de configuración

#define _2_LINES 8 #define 1 LINE 0

#define BITS8 0x30 #define BITS4 0x20

#define MEM_ini_Lin1 0x80 #define MEM ini Lin2 0xC0

struction	RS	R/W	DB7	Inst DB6	DB5			DB2	DB1	DB0	Description	Execution time (fosc= 270 kHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to "00H" from AC	1.53 ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53 ms
ntry Mode Set	0	0	0	0	0	0	0	1	Ι/D	SH	Assign cursor moving direction and enable the shift of entire display.	39 μs
isplay ON/ FF Control	0	0	0	0	0	0	1	D	С	В	Set display(D), cursor(C), and blinking of cursor(B) on/off control bit.	39 µs
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	39 µs
unction Set	0	0	0	0	1	DL	N	F		-	Set interface data length (DL: 8-bit/4-bit), numbers of display line (N: 2-line/1-line) and, display font type (F:5×11dots/5×8 dots)	39 μs
et CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39 μs
et DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39 μs
tead Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 μs
rite Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43 μs
Read Data rom RAM	1	1	D7	D6	D5	D4	D3	D2	D1	DO	Read data from internal RAM (DDRAM/CGRAM).	43 μs

* 5" dont ca

//-----/ // Prototipos

void LCD_cmd(unsigned char cmd);

void LCD_init(unsigned char mode1, unsigned char mode2);

void LCD_write(unsigned char data);

void LCD_gotoxy (unsigned char x, unsigned char y);

void LCD_write_string(unsigned char *str);

Conexiones

Funciones

Bibliotecas

```
#include <inttypes.h>
#include <avr/io.h>
#include"LCD 4b.h"
// Funciones
void init LCD(void)
 DDRB=0xF0;
                  // datos LCD como salida
DDRD=0xE0;
                  // RS, RW, E como sallidas
LCD cmd(0x30):
                  // inicialización //
 delay ms(1);
LCD cmd(0x30);
                                 11
                  //
delay ms(10);
LCD cmd(0x32);
                  // inicialización //
 delay ms(1);
LCD cmd(0x28);
                  // Modo 4 bits //
_delay_ms(1);
LCD cmd(0x0C);
                  // 2 lineas //
delay ms(1);
LCD cmd(0x01);
                  // clear LCD
delay ms(1);
LCD_cmd(0x02);
                  // return home
delay ms(1);
LCD cmd(0x06);
                 // incrementa cursor
delay ms(1);
LCD cmd(0x80);
                  // 1 y 0 al primer caracter
delay ms(1);
return,
```

```
//Ubicacion de cursor
void LCD gotoxy (unsigned char x,unsigned char y)
                                                      // y= 1 o 2, x de 1 a 16
 unsigned char inicio[]=\{0x80 \mid 0x00, 0x80 \mid 0xC0\}; // Inicio de: L1=0x00, L2 = 0x40
  LCD cmd(inicio[y-1]+x-1);
  delay ms(100);
// Envio de Comando
void LCD cmd(unsigned char cmd)
LCD DATA = cmd;
                            // comando en linea , parte alta
PORTD &= ~(1<<rs);
                            // RS sets 0
PORTD \&= \sim (1 < rw);
                           // RW sets 0
PORTD |= (1<<en);
                          // habilita enable
_delay_ms(20);
PORTD &= ~(1<<en);
                           // deshabilita enable
LCD DATA = (cmd << 4);
                           // parte baja
PORTD &= ~(1<<rs);
                           // RS sets 0
PORTD &= ~(1<<rw);
                           // RW sets 0
PORTD |= (1<<en); // habilita enable
                                                                   No AC3 D7 D3
                                                 V D7 V D3
                                                         Busy AC3
delay ms(20);
                                                                  Busy Flag Check
PORTD &= ~(1<<en); // deshabilita enable
return;
```

Bibliotecas

```
// Escribir Dato
void LCD_write(unsigned char data)
LCD DATA= (data); // dato en linea, parte alta
PORTD |= (1<<rs);  // RS sets 1
PORTD &= ~(1<<rw); // RW sets 0
PORTD |= (1<<en); // habilita enable
delay ms(20);
PORTD &= ~(1<<en); // deshabilita enable
LCD_DATA = (data<<4); // parte baja
PORTD |= (1<<rs);  // RS sets 1
PORTD &= ~(1<<rw); // RW sets 0
PORTD |= (1<<en); // habilita enable
delay ms(20);
PORTD &= ~(1<<en); // deshabilita enable
return;
```