Machine Learning Club

Zweites Treffen

Gewinner der ersten Challenge

Unterschiedliche Arten der Regression

Was ist Regression?

- Regression ist ein Supervised Learning-Verfahren, genau wie Klassifikation.
- Aber: Statt Klassen vorherzusagen, sagt das Modell eine Zahl voraus.
- Ziel: Zusammenhang zwischen Merkmalen (Features) und einer kontinuierlichen Zielgröße (Target) finden.

Beispiele:

- Temperatur morgen in °C
- Alter einer Person basierend auf dem Gesicht
- Immobilienpreis in €

Warum ist Regression wichtig?

- Ermöglicht quantitative Vorhersagen
- Oft Grundlage f\u00fcr wirtschaftliche und technische Entscheidungen
- Wird in vielen Bereichen verwendet:
 - Aktienprognosen
 - o **Immobilien**bewertung
 - Medizinische Messwerte
 - **Preis**berechnung in E-Commerce

Ziel einer Regression

Das Modell versucht, eine Funktion zu lernen:

$$f(x_1, x_2, ..., x_n) = y$$

- $x_1, x_2, ..., x_n$: Eingabewerte (z. B. Alter, Größe, Temperatur)
- y: Zielwert (z. B. Preis, Zeit, Anzahl)
- Ø Ziel: Wenn ich neue Werte eingebe, gibt das Modell eine möglichst gute Schätzung für y

Lineare Regression

Lineare Regression – die einfachste Form

- Das Modell versucht, eine **Gerade** zu finden, die die Daten beschreibt
- Beispiel: Je höher ein Merkmal, desto größer der vorhergesagte Wert
- Mathematisch:

$$y = a_1 x_1 + a_2 x_2 + \dots + b$$

- o a₁,a₂,...: Gewichtungen (werden gelernt)
- o b: **Bias** (Verschiebung der Linie)
- Vorteil: Sehr **einfach**, gut verständlich
- Nachteil: Funktioniert nur bei einfachen Zusammenhängen

Polynomiale Regression

- **Erweiterung** der linearen Regression:
- Modell nutzt auch quadratische, kubische usw. Terme:

$$y = a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

- Kann **gekrümmte Verläufe** beschreiben
- Vorteil: **Flexibler** als einfache Gerade
- Nachteil: Kann zu komplex werden → **Overfitting** (Modell passt sich zu stark an)

Decision Tree Regression

Decision Trees

Decision Trees sind einfache Modelle die Kategorisieren basierend auf einer Folge von Fragen mit Ja/Nein Antworten:

Decision Tree Training

- 1. Ziel Variable festlegen
- 2. Besten Split finden
 - a. Über alle Features iterieren
 - b. Für jeden Feature mögliche Split Points festlegen
 - c. für jeden Split:
 - i. Datensatz in zwei Teile teilen
 - ii. Mean Squared Error ausrechnen
 - d. Split des Features auswählen der den Fehler minimiert
- Decision Node kreieren
- 4. Rekursiv auf Kinder anwenden mit restlichen Features
- 5. Wiederholen bis ein Stop Kriterium erreicht ist

Random Forest

- Kombiniert die Vorhersage mehrerer Decision Trees für eine akkuratere und robustere Vorhersage
- Ziehe gleichverteilt aus den Trainingsdaten und Features neue Trainingsdaten und Features und trainiere decision Trees auf den neuen Daten
- Bilde den Mittelwert der Vorhersagen (Aggregation)
- Weniger anfällig für hohe Varianz und Overfitting

Regressionsarten Übersicht

- **Lineare** Regression: Einfachstes Modell, gute Interpretierbarkeit
- **Polynomiale** Regression: Modelliert **Kurven** statt Geraden
- Ridge / Lasso Regression: Regularisierte Varianten zur Vermeidung von
 Overfitting
- Entscheidungsbäume für Regression: Wenn-Dann-Regeln mit numerischem
 Output
- Neuronale Netze: Komplexe, nichtlineare Beziehungen möglich

Wie bewertet man Regressionsmodelle?

Mean Absolute Error (MAE)

Durchschnittlicher Fehler (Betrag)

(Rooted) Mean Squared Error ((R)MSE)

Bestraft große Fehler stärker

R² (Bestimmtheitsmaß)

- Wie gut erklärt das Modell die Variation der Daten?
- R²=1: perfekte Vorhersage, R²=0: keine Erklärungskraft

Typischer Ablauf

- 1. Daten sammeln & aufbereiten
- 2. Tielgröße bestimmen (z.B. Hauspreis)
- 3. Amerkmale auswählen (z.B. Wohnfläche, Lage)
- 4. Modell trainieren
- 5. Fehler messen und Modell verbessern
- 6. 🊀 Modell verwenden: Vorhersage für neue Fälle

Regression vs. Klassifikation

Aufgabe	Klassifikation	Regression
Ziel	Klasse vorhersagen	Zahl vorhersagen
Beispiel	"Wird es regnen?" (Ja/Nein)	"Wie viele mm Regen?"
Typ des Outputs	Diskret (z. B. 0 oder 1)	Kontinuierlich (z. B. 3.6)
Modell gibt zurück	Klasse oder Wahrscheinlichkeit	Reelle Zahl

Beide lernen aus Beispielen mit **bekannten Ergebnissen**.

№ Wenn die Antwort eine Zahl ist → benutzen wir Regression

Zweite Challenge: Leihfahrrad Nachfage vorhersagen

Leihfahrrad Übersicht

- Nachhaltiger, budgetfreundlicher Ansatz für die Mobilität
- Der globale Fahrrad-Sharing-Markt wurde 2024 auf 9 Milliarden US Dollar geschätzt
- Steigenden Bevölkerungszahlen und Verkehrslast erhöhen die Nachfrage
- Oft effizienter als traditionelle Transportsysteme auf kurzen Strecken

Unser Datensatz

- Vorhersage der Anzahl von Nutzern gegeben der Uhrzeit und dem Wetter
- Ungefähr 17000 Datenpunkte
- Kann auch benutzt werden, um besondere Ereignisse vorherzusagen

Aufbau der Daten

∞ id =	_ dteday _	# season =	# yr ==	# mnth =	# hr ==	# holiday =	# weekday ==	# workingday =	# weathersit =	# temp =	# atemp =	# hum =	# windspeed =	# cnt =
										dia	<u> </u>	<u>alle</u>	44.	
1 17.1k	2011-01-01 2012-12-20	1 4	0 1	1 12	0 23	0 1	0 6	0 1	1 4	0.02 1	0.02 0.91	0 1	0 0.85	1 977
1	2011-01-01	1	0	1	0	0	6	θ	1	0.24	0.2879	0.81	0.0	16
2	2011-01-01	1	0	1	1	0	6	θ	1	0.22	0.2727	0.8	0.0	40
3	2011-01-01	1	0	1	2	0	6	0	1	0.22	0.2727	0.8	0.0	32
4	2011-01-01	1	0	1	3	0	6	θ	1	0.24	0.2879	0.75	0.0	13
5	2011-01-01	1	0	1	4	0	6	0	1	0.24	0.2879	0.75	0.0	1
6	2011-01-01	1	0	1	5	0	6	0	2	0.24	0.2576	0.75	0.0896	1
7	2011-01-01	1	0	1	6	0	6	8	1	0.22	0.2727	0.8	0.0	2
8	2011-01-01	1	0	1	7	0	6	8	1	0.2	0.2576	0.86	0.8	3
9	2011-01-01	1	0	1	8	0	6	0	1	0.24	0.2879	0.75	0.0	8
10	2011-01-01	1	0	1	9	a	6	ρ	1	0.32	0.3485	0.76	0.0	14
11	2011-01-01	1	0	1	10	9	6	0	1	0.38	0.3939	0.76	0.2537	36
12	2011-01-01	1	0	1	11	-		-						
13	2011-01-01	1	0	1	12	. 0	6	в	1	0.36	0.3333	0.81	0.2836	56
14	2011-01-01	1	0	1	13	0	6	0	1	0.42	0.4242	0.77	0.2836	84
15	2011-01-01	1	0	1	14	0	6	0	2	0.46	0.4545	0.72	0.2985	94
16	2011-01-01	1	0	1	15	0	6	θ	2	0.46	0.4545	0.72	0.2836	106
						0	6	θ	2	0.44	0.4394	0.77	0.2985	110

Evaluation - Root Mean Square Error

RMSE =
$$\sqrt{\frac{\sum_{i=1}^{N} ||y(i) - \hat{y}(i)||^2}{N}}$$

y(i) = i-ter richtiger Wert, $\hat{y}(i) = i$ -ter vorhergesagter Wert, N = Anzahl Datenpunkte

- Niedrigster RMSE ist der beste
- Bestraft stark falsche Vorhersagen

Regeln

- Max. 4 Leute pro Team
- Wettbewerb endet am 06.07 um Mitternacht
- Nur öffentliches Leaderboard
- Max. 5 Abgaben pro Tag

Preise

- Erster Platz: Titel des "Regressions Ritter" mit Pokal
- Bragging Rights ein Leben lang
- Gewinner stellen beim nächsten Treffen ihre Lösungen vor

Kontakt

Machine Learning Club

contact@machine-learning.club

https://machine-learning.club

