Prova $2^{\underline{0}}$ Exame - Turma especial - MA-327 - 24/04/12

1. Considere W o subespaço de \mathbb{R}^4 gerado pelos vetores $v_1 = (1, 1, 0, 0), v_2 = (0, 1, 1, 1), v_3 = (1, 0, 0, 1)$ e $v_4 = (-1, 3, 2, 0)$

- a) (1,0) Exiba uma base de W e calcule sua dimensão. Justifique.
- **b)** (1,0) Pergunta-se: o vetor v = (4, 3, 1, 3) está em W?
- c) (0,5) Considere K o subespaço de \mathbb{R}^4 definido por $K = \{(x, y, z, w); x y + z w = 0\}$. Encontre a dimensão de $W \cap K$.
- **2.** Sejam $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ o operador linear definido por T(x, y, z) = (-y + 2z, x z, 2z) e \mathcal{C} a base canônica de \mathbb{R}^3 .
- a) (1,0) Encontre a matriz $[T]_{\mathcal{C}}^{\mathcal{C}}$, o polinômio característico de T e seus auto-valores.
- b) (1,0) Para cada auto valor encontre o auto-espaço dos auto-vetores associados.
- c) (0,5) Pergunta-se: A é diagonalizável em \mathbb{R} , ie, existe uma matriz invertível $P \in \mathbb{M}_3(\mathbb{R})$ tal que $P^{-1}AP$ é diagonal? (justifique sua resposta).
- **3.** Considere o espaço vetorial \mathbb{R}^4 com o produto interno usual (aqui dados $u, v \in \mathbb{R}^4$ vamos denotar tal produto por $\langle u, v \rangle$). Tome os vetores $v_1 = (1, -1, 1, 1)$, $v_2 = (1, 0, -1, 1)$ e $v_3 = (0, 0, -1, 2)$.
- a) (1,0) Encontre o conjunto $S = \{u = (x, y, z, w) \in \mathbb{R}^4; \langle u, v_1 \rangle = 1, \langle u, v_2 \rangle = 2 \text{ e } \langle u, v_3 \rangle = 3\}$
- b) (1,0) Encontre uma base ortogonal para o subespaço W gerado por v_1 e v_2 .
- c) (0,5) Pergunta-se: o conjunto S do item a) é subespaço vetorial de \mathbb{R}^4 ? (justifique sua resposta)
- 4. Responda cada uma das questões abaixo.
- a) (0,7) Sejam W e K subespaços de \mathbb{R}^n tal que $W \cap K = \{0\}$. Mostre que: se $\alpha = \{u_1, \dots, u_s\} \subset W$ é LI, $\beta = \{v_1, \dots, v_t\} \subset K$ é LI e $K \cap W = \{0\}$ então $\{u_1, \dots u_s, v_1, \dots, v_t\}$ é LI.
- b) (0,6) Pergunta-se: Existe uma transformação linear **injetora** de \mathbb{R}^5 em \mathbb{R}^4 ? (justifique sua resposta)
- c) (0,6) Responda se a seguinte afirmação é falsa ou verdadeira: O conjunto, $W = \{(x, y, z) \in \mathbb{R}^3; x^2 = y^2\}$ não é subespaço de \mathbb{R}^3 , mas é a união de dois subespaços.

d) (0,6) Sejam \mathbb{R}^n com o produto interno canônico e $T:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ um operador linear. Chame de K=N(T) =núcleo de T e $W=Img(T^*)$ =imagem do operador adjunto de T. Mostre que: se $u\in K$ então $u\in W^\perp$.

BOA PROVA