God Kheng Vi Jevan

	9	
AU17	9 806L Date No.	
	Student number: A01998062	
	C = 98, Ø = 6, M = 99, R = 7	
1.	By Newton's second law of motion, ZF = ma	
	$ZF = ma$ $\frac{12y(t)}{t}$	
	$\frac{\partial f = mu}{\partial (t) - ky(t)} = M \frac{d^2y(t)}{dt^2}$	
	$\frac{99 \frac{d^2 y(t)}{dt^2} + 7y(t) = b(t)}{dt^2}$	
2.	From differential egn obtained in gnl,	
	From differential egn obtained in gn 1, $99 \frac{d^2y(t)}{dt^2} + 7y(t) = f(t)$	
	Andrea 1 leas from	
	Applying Laplace Romsform,	
	\Rightarrow 99 [s ² y(s) - sy(0) - y'(0)] + 7y(s) = F(s) Assuming y(0) = 0 and y'(0) = 0,	
	Anymore 14(0)=0 and 12'(0)=0.	
	1 Sydning g Co / - C was g	
-()-	$\Rightarrow 99 c^2 y(s) + 7 y(s) = F(s)$	
	y(s) 1	
	$\frac{1}{7(s)} = 99s^2 + 7$	
	(6) - (7)	
	$\frac{G(s) - F(s)}{G(s) - F(s)} = \frac{99s^2 + 7}{G(s) - G(s)}$	
	poles => 9952+7=0	
	$S = \frac{f}{M} \int \frac{K}{M}$	
	0 0011	

F(s) = (Asinwit)e st dt $= A \left(\frac{\omega_t}{c^2 + (\omega_t)^2} \right) = \frac{10}{s^2 + 100}$ $\frac{3(s) = G(s) - F(s)}{= \frac{1}{99s^2 + 7} \cdot \frac{10}{s^2 + 100}} = \frac{10}{(0)}$ $= \frac{10}{(0)$

POP bazic*

5. $M_i \frac{d^2 x(t)}{dt} = \mathcal{K}_i \left(y(t) - x(t) \right)$ Assuming x(0) and x'(0) = 0, M, s2 X(s) = K, Y(s) - K, X(s) $\chi(s) = \frac{K, \, y(s)}{M \, s^2 + K} \qquad - (1)$ $M = \int_{1}^{2} y(t) = \int_{1}^{2} (t) - \chi(t) - \chi(t) + \chi(t) - \chi(t)$ Assuming you and y'(0) =0, $M_{s^{2}}y(s) = F(s) - ky(s) - k_{i}y(s) + k_{i}x(s)$ sub in (1), => Ms2y(s)=F(s)-Ry(s)-Ry(s)+ Riy(s)+ Riy(s)+ Ms2+Ri $MM,s^{4}YG + K,Ms^{2}Y(s) = FG)M,s^{2} + K,F(s) - M,s^{2}KY(s)$ $- K,KY(s) - K,Y(s)M,s^{2} - K,^{2}Y(s) + K,^{2}Y(s)$ $(MM,s^{4} + K,MM,s^{2} + M,s^{2}K + K,K + K,M,s^{2})Y(s) = (M,s^{2} + K,FG)$ $Y(s) M,s^{4} + K,Ms^{2} + M,Ks^{2} + K,M,s^{2} + K,K$ $F(s) MM,s^{4} + K,Ms^{2} + M,Ks^{2} + K,M,s^{2} + K,K$ G(s) = 99M, s4 + (99K, + 7M, +K, M,)s2 + 7K,

		Date	No.
6.	(20(5) = 99M, (M,S' + K,)		
	G2(5) = 99N, (M,S' + K,)		
	S4 (K, +7) S2+ 7Ki		
	99M. (M, S2 +K,)		
- 200 mayor hasanangan his office laboraring	$\frac{(G_2(S))^2}{S''''''''''''''''''''''''''''''''''''$		
		2 (4)	
	Company with given from of	TAI	
	Company with given from of (s2+Wni)	sit with	
	l (
	C = qqM, => M, = qqc		
	$\frac{\langle \zeta_i^2 \rangle}{qqM_i} = 0 \Rightarrow \langle \zeta_i = 0 \rangle$		
	79M,		
5			