Bayesian networks

Bayes' Theorem

Simple:

$$P(Y|X) = P(X|Y)P(Y)$$

 $P(X)$

General:

$$P(Y|X,E) = (X|Y,E)P(Y|E)$$

 $P(X|E)$

Bayesian networks

- A simple, graphical notation (directed acyclic graph) for:
 - Showing conditional independence
 - Calculating full joint distributions.
- It is a causal structure.

Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Example contd.

Semantics

The full joint distribution is defined as the product of the local conditional distributions:

n

$$P(X_1, ..., X_n) = \pi_{i=1} P(X_i | Parents(X_i))$$

e.g., $P(j \land m \land a \land \neg b \land \neg e)$

$$= P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)$$

Calculating joint Prob

•
$$P(A|B) = P(A \cap B) \div P(B)$$

$$P(J|M) = P(J \cap M) \div P(M)$$

$$= P(JMABE) + + P(JM~A~B~E)$$

$$\frac{P(JMABE) + \dots + P(JM\bar{A}\bar{B}\bar{E})}{P(MJABE) + 16 combis}$$

$$P(JMABE) = P(J|A*M|A*P(A|BE)*P(B)*P(E)$$
 and so on....

Inference Example

Supposed we know that A=true.

What is more probable C=true or D=true?

For this we need to compute

$$P(C=t \mid A=t)$$
 and $P(D=t \mid A=t)$.

Let us compute the first one.

$$P(C = t \mid A = t) = \frac{P(A = t, C = t)}{P(A = t)} = \frac{\sum_{b,d} P(A = t, B = b, C = t, D = d)}{P(A = t)}$$

A	P(A)	A	В	P(B A)
false	0.6	false	false	0.01
true	0.4	false	true	0.99
_	_	true	false	0.7
		true	true	0.3

В	D	P(D B)
false	false	0.02
false	true	0.98
true	false	0.05
true	true	0.95

В	C	P(C B)
false	false	0.4
false	true	0.6
true	false	0.9
true	true	0.1

The pros and cons

- Exact inference is feasible in small to medium-sized networks
- Exact inference in large networks takes a very long time
- We resort to approximate inference techniques which are much faster and give pretty good results

How to get BN and CPT

- Get an expert to design it
- Learn it from data