

Data Analytics Stiftung Universität Hildesheim Marienburger Platz 22 31141 Hildesheim Prof. Dr. Dr. Lars Schmidt-Thieme

Thesis Unsupervised Real-Time Time-Series Anomaly Detection

Abdul Rehman Liaqat 271336, Liaqat@uni-hidesheim.de

Abstract

Anomaly detection is a crucial task for machine learning due to wide-spread usage and type. In particular, it is worth noting that most data arising in industrial setups are of a streaming nature, thus restricting the range of standard anomaly detection tools. This thesis will identify the potential approaches to learn the identification of abnormal behavior from large-scale streaming data. An empirical comparison of state-of-the-art methods will to be extended by a novel technical contribution. In this thesis, the focus is particularly on streaming time-series Anomaly Detection which changes in nature with time and novel contribution will especially try to target this dynamic nature of time-series.

Contents

1	1 Introduction	Introduction								4
	1.1 Motivation									. 5
	1.2 Objective									6
2	Related Work and State of the art								7	
3	Benchmarks							8		
	3.1 Autoencoder based models									9
	3.1.1 Fully connected layers									9
	3.1.2 Fully convolution layers									
	3.1.3 LSTM based									
	3.2 Prediction based models									
	3.2.1 Fully connected layers									
	3.2.2 Fully convolution layers									
	3.2.3 LSTM based									10
4	Unsupervised Anomaly detection with recency 1								11	
5	Usage of RBF loss function							12		
6	6 Experiments									13
	6.1 Data								14	
	6.1.1 Numenta Anomaly Benchmark (NAb))								14
7	7 Execution and Results									15
8	8 Discussion									16
9	9 Experiment Infrastructure									17
	9.1 Experiment Management using MLflow									18
	9.2 Parallel execution using Docker									
10	10 Best practices									20
11	11 Reference Usage									21
19	12 References									22

1 Introduction

1.1 Motivation

1.2 Objective

2 Related Work and State of the art

3 Benchmarks

3.1 Autoencoder based models

- 3.1.1 Fully connected layers
- 3.1.2 Fully convolution layers
- 3.1.3 LSTM based

- 3.2 Prediction based models
- 3.2.1 Fully connected layers
- 3.2.2 Fully convolution layers
- 3.2.3 LSTM based

4 Unsupervised Anomaly detection with recency

5 Usage of RBF loss function

6 Experiments

- 6.1 Data
- 6.1.1 Numenta Anomaly Benchmark (NAb)

7 Execution and Results

8 Discussion

9 Experiment Infrastructure

9.1 Experiment Management using MLflow

9.2 Parallel execution using Docker

10 Best practices

Following steps were taken to maximize the efficiency and speed of research:

- 1. Use version control to track the code and share between different devices.
- 2. Separate code from data. This will keep the code base small and easy to debug.
- 3. Separate input data, working data and output data.
 - Input Data: Input data-set that never change. For my case it is NAB and other external datasets.
 - Working Data: nothing for now.
 - Output Data: Results and threshold profiles in my case.
- 4. Separate options from parameter. This is important:
 - Options specify how your algorithm should run. For example data path, working directory and result directory path, epochs, learning rate and so on.
 - parameters are the result of training data. it includes the score and hyper-parameters.

11 Reference Usage

12 References