النمربن 1: (10ن)

 $f(x)=x^2-\ln(x)+x-2$: نعتبر f الدالة المعرفة على $[0,+\infty[$ بما يلي $[0,+\infty[$ بما يلي $[0,+\infty[$ منحناها في معلم متعامد ممنظم $[0,+\infty[$ بما يلي $[0,+\infty[$

- $\lim_{x \to +\infty} f(x) = +\infty$ بین أن
- بين أن $\lim_{x o 0^+} f(x) = +\infty$ ثم أو ل النتيجة هندسيا. 2
- $.f'(x)=rac{2x^2+x-1}{x}$: $]0,+\infty[$ بين أنه لكل x من 3
 - f ضع جدول إشارة $1-x^2+x-1$ ثم جدول تغيرات 4

 $f''(x)=rac{2x^2+1}{x^2}$: $]0,+\infty[$ نم ضع جدو ل تقعر $[0,+\infty[$ بین أنه لکل $[0,+\infty[$

- [0,1;0,2[بين أن المعادلة f(x)=0 تقبل حلا و حيدا lpha على المجال [6]
- $+\infty$ بين أن (C_f) يقبل فرعا شلجميا اتجاهه محور الأراتيب بجوار 7
- y=2x-2 بين أن معادلة المماس ل (C_f) في النقطة ذات الأفصول المماس ي[8]
 - $|\overrightarrow{i}||=2cm$ انشئ (C_f) انشئ
 - . $f(x) \leqslant 0$ عل في $]0, +\infty[$ المتراجحة ا

النمربن 2: (10ن)

 $Z=\mathfrak{z}^2+\overline{\mathfrak{z}}+1$ و X و X عددا عقدیا حیث X=x+iy و $X=\mathfrak{z}=x+iy$ عددا عقدیا حیث $X=\mathfrak{z}=x+iy$

- . على شكله الجبري Z على شكله الجبري
- . ایکون Z عددا حقیقیا x عددا حقیقیا -2.1

a=-3+i في المستوى العقدي نعتبر النقط A و B و B التي ألحاقها على التوالي . c=-2-3i و b=1+2i

- $\frac{b-a}{c-a}=i$ بین آن $\frac{b-a}{c-a}=1.2$
- . A متساوي الساقين و قائم الزاوية في -2.2
- $|\mathfrak{z}-1-2i|=|\mathfrak{z}+3-i|$ حدد مجموعة النقط M ذات اللحق \mathfrak{z} حيث -3.2
 - $\mathfrak{z}_2=\sqrt{3}-i$ و $\mathfrak{z}_1=1+i$ ليكن 3
 - . و \mathfrak{F}_2 على الشكل المثلثي \mathfrak{F}_3 و \mathfrak{F}_3 على الشكل
 - . على الشكل الجبري ثم على الشكل المثلثي على الشكل المثلثي . على الشكل المثلثي .
 - $\sin\left(\frac{\pi}{12}\right)$ و $\cos\left(\frac{\pi}{12}\right)$ من ڪل من ڪيمة ڪيمة ڪل من

النمربن 1: (10ن)

 $f(x)=x^2-\ln(x)+x-2$: نعتبر f الدالة المعرفة على $[0,+\infty[$ بما يلي $[0,+\infty[$ بما يلي $[0,+\infty[$ منحناها في معلم متعامد ممنظم $[0,+\infty[$ بما يلي $[0,+\infty[$

- $\lim_{x \to +\infty} f(x) = +\infty$ بین أن
- بين أن $\lim_{x o 0^+} f(x) = +\infty$ ثم أو ل النتيجة هندسيا. 2
- $.f'(x)=rac{2x^2+x-1}{x}$: $]0,+\infty[$ بين أنه لكل x من 3
 - f ضع جدول إشارة $1-x^2+x-1$ ثم جدول تغيرات 4

 $f''(x)=rac{2x^2+1}{x^2}$: $]0,+\infty[$ نم ضع جدو ل تقعر $[0,+\infty[$ بین أنه لکل $[0,+\infty[$

- [0,1;0,2[بين أن المعادلة f(x)=0 تقبل حلا و حيدا lpha على المجال [6]
- $+\infty$ بين أن (C_f) يقبل فرعا شلجميا اتجاهه محور الأراتيب بجوار 7
- y=2x-2 بين أن معادلة المماس ل (C_f) في النقطة ذات الأفصول المماس ي[8]
 - $|\overrightarrow{i}||=2cm$ انشئ (C_f) انشئ
 - . $f(x) \leqslant 0$ عل في $]0, +\infty[$ المتراجحة ا

النمربن 2: (10ن)

 $Z=\mathfrak{z}^2+\overline{\mathfrak{z}}+1$ و X و X عددا عقدیا حیث X=x+iy و $X=\mathfrak{z}=x+iy$ عددا عقدیا حیث $X=\mathfrak{z}=x+iy$

- . على شكله الجبري Z على شكله الجبري
- . ایکون Z عددا حقیقیا x عددا حقیقیا -2.1

a=-3+i في المستوى العقدي نعتبر النقط A و B و B التي ألحاقها على التوالي . c=-2-3i و b=1+2i

- $\frac{b-a}{c-a}=i$ بین آن $\frac{b-a}{c-a}=1.2$
- . A متساوي الساقين و قائم الزاوية في -2.2
- $|\mathfrak{z}-1-2i|=|\mathfrak{z}+3-i|$ حدد مجموعة النقط M ذات اللحق \mathfrak{z} حيث -3.2
 - $\mathfrak{z}_2=\sqrt{3}-i$ و $\mathfrak{z}_1=1+i$ ليكن 3
 - . و \mathfrak{F}_2 على الشكل المثلثي \mathfrak{F}_3 و \mathfrak{F}_3 على الشكل
 - . على الشكل الجبري ثم على الشكل المثلثي على الشكل المثلثي . على الشكل المثلثي .
 - $\sin\left(\frac{\pi}{12}\right)$ و $\cos\left(\frac{\pi}{12}\right)$ من ڪل من ڪيمة ڪيمة ڪل من