参数估计的评价准则

3月机器学习在线班 邹博 2015年3月8日

历史遗留问题

- □估计量的优良性准则
 - 无偏性
 - 均方误差准则

无偏性 $E(\hat{\theta}) = \theta$

- □利用已知样本 $X_1, X_2, \cdots X_n$ 能够得到参数的一个估计 $\hat{\theta}$,因此, $\hat{\theta}$ 可以写成 $\hat{\theta}(X_1, X_2, \cdots X_n)$,对于不同的样本, $\hat{\theta}$ 的值一般不同。因此,可以看成是关于样本的随机变量。它是可以求均值的: $E(\hat{\theta})$
- \square 如果 $E(\hat{\theta})$ 等于总体的实际分布 θ ,就说这个估计是无偏估计。 $E(\hat{\theta})=\theta$
 - 用 θ 去估计 θ ,有 时偏 高 ,有 时 偏 低 , 但 平 均 来 说 , 它 等 于 位 置 参 数 θ

3/9

举例

□ 无偏估计

$$\hat{\mu} = X_1$$

$$\hat{\mu} = \frac{X_1 + X_2}{2}$$

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

□不是无偏估计

$$\hat{\mu} = 2X_1$$

$$\hat{\mu} = \frac{X_1 + X_2}{3}$$

$$\hat{\mu} = \frac{1}{n-3} \sum_{i=1}^{n} X_i$$

样本均值和方差是总体的无偏估计

□设总体均值为μ, 方差为 σ^2 , $X_1, X_2, ... X_n$ 为来自该总体的样本, 即:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$S = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

口则:
$$E(\overline{X}) = \mu$$
 $E(S^2) = \sigma^2$

均值的无偏性

□ 因为 $X_1, X_2, ... X_n$ 为同分布的,于是 $E(X_i)$ = μ , 所以:

$$E(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} \cdot n\mu = \mu$$

方差的无偏性

区 此
$$E(\overline{X}^2) = Var(\overline{X}) + [E(\overline{X})]^2 = \frac{\sigma^2}{n} + \mu^2$$

$$E(X_i^2) = Var(X_i) + [E(X_i)]^2 = \sigma^2 + \mu^2$$

$$\sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2} = \sum_{i=1}^{n} X_{i}^{2} - 2 \left(\sum_{i=1}^{n} X_{i} \right) \overline{X} + n \overline{X}^{2} = \sum_{i=1}^{n} X_{i}^{2} - 2 \left(n \overline{X} \right) \cdot \overline{X} + n \overline{X}^{2} = \sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2}$$

□所以

$$E(S^2) = \frac{1}{n-1} \left[E\left(\sum_{i=1}^n X_i^2\right) - nE(\overline{X}^2) \right] = \frac{1}{n-1} \left[\left(n\sigma^2 + n\mu^2\right) - n\left(\frac{\sigma^2}{n} + \mu^2\right) \right] = \sigma^2$$

均方误差准则 $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$

- 口用估计量 $\hat{\theta}$ 去估计 θ ,其误差是 $\hat{\theta}$ - θ ,该误差显然随样本 $X_1,X_2,...X_n$ 而定,因此, $\hat{\theta}$ - θ 是随机变量,它的平方的均值,称作均方误差。这个量越小,平均误差越小,估计结果越优。 $MSE(\hat{\theta}) = E\left[(\hat{\theta} \theta)^2\right]$
- \square 显然,若 $\hat{\theta}$ 是无偏估计,则MSE即方差。

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = E[(\hat{\theta} - E(\hat{\theta}))^2] = Var(\hat{\theta})$$

感谢大家! 恳请大家批评指正!

