Shashank Singh sss1@andrew.cmu.edu

21-373 Algebraic Structures, Fall 2011 Assignment 4

Due: Friday, October 7

Exercise 22: Lemma: If G is a finite group and p = |G|, the order of G, is prime, then G is cyclic. **Proof:** Let $g \in G$, with $g \neq e$ (such a G exists, since p is prime and thus p > 1). Since the order of g divides p and is greater than 1, it must be p, and so, $\forall i, j \in \mathbb{N}$ with i < j < p, $g^i \neq g^j$. Therefore, the p distinct elements $e, g, g^2, g^3, \ldots, g^{p-1}$ are precisely the elements of G and G is cyclic.

As a consequence of the above lemma, a subgroup of E_{p^n} of order p is determined by determining a single generator element. If, for some $k_2, k_3, \ldots, k_n, l_2, l_3, \ldots, l_n \in \mathbb{Z}_n$, letting $b=1, g_1=(b,k_2,k_2,\ldots,k_n)$, $g_2=(b,l_2,l_3,\ldots,l_n)$, then $< g_1>=< g_2>$ if and only if $k_1=l_1, k_2=l_2,\ldots,k_n=l_n$. This follows from the fact that $k_i^n=l_i^n \ \forall n \in \mathbb{N}$ if and only if $k_i=l_i$. Thus, choosing values for k_2,k_3,\ldots,k_n from the p values in \mathbb{Z}_p , there are p^{n-1} subgroups of the form of g_1 . The same reasoning holds if we let b=0, with the exception that e does not generate a subgroup of order p. Thus, there are $2*p^{n-1}-1$ subgroups of E_{p^n} of order p.

Exercise 23: Let G be a finite group, and let n be the order of G. Then, since, $\forall g \in G$, the order of g must divide the order of G, n is a natural number such that $\forall g \in G$, $g^n = e$, so \exists a minimal $k \in \mathbb{N}$ such that, $\forall g \in \mathbb{G}$, $g^k = e$ (i.e., k is the exponent of G).

Note that k is not necessarily the order of any element in G; consider, for instance, the symmetric group S_3 . The exponent of S_3 is 6, but no element of S_3 has order greater than 3.

Let $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \dots$ Then, $|G| = |\mathcal{P}(\mathbb{N})|$ (the mapping $f : \mathbb{G} \to \mathcal{P}(\mathbb{N})$ such that, $\forall g = (g_1, g_2, g_3, \dots) \in G$, $f(g) = \{n \in \mathbb{N} : g_n = 1\}$ gives a simple bijection), but the order of any element $g \in G$ is 1 or 2, so that the exponent of G is 2. Thus, there exist infinite groups of finite exponent.

Exercise 24: Let G be an Abelian group, let $p \in \mathbb{N}$ be prime, let $G^p = \{g^p : g \in G\}$, and let $G_p = \{g \in G : g^p \in G\}$. Clearly, by their definition, and the closure of G under its group operation, $G^p \subseteq G$ and $G_p \subseteq G$. Furthermore, clearly, $e \in G^p$ and $e \in G_p$, since $e^p = e$, so $G^p \neq \emptyset$ and $G_p \neq \emptyset$. Suppose $a, b \in G^p$. Then, $\exists g_1, g_2 \in G$, such that $g_1^p = a, g_2^p = b$. Thus, $g_1g_2^{-1} \in G$, so, since G is Abelian and thus $\left(g_1g_2^{-1}\right)^p = g_1^p\left(g_2^p\right)^{-1} = ab^{-1}, ab^{-1} \in G^p$. Suppose, on the other hand, that $g_1, g_2 \in G_p$, so that $g_1^p = g_2^p = e$. Then, since G is Abelian, $\left(g_1g_2^{-1}\right)^p = g_1^p\left(g_2^p\right)^{-1} = ee^{-1} = e$, so $g_1g_2^{-1} \in G_p$. Thus, $G^p \in G$ and $G_p \in G$.

Let G, H, K be groups, with $G = H \times K$, and let $p \in \mathbb{N}$ be prime.

Suppose $g \in H^p \times K^p$, so that $\exists h_1 \in H^p, k_1 \in K^p$, such that $g = (h_1, k_1)$. Then, for some $h_0 \in H$, $k_0 \in K$, $h_1 = h_0^p$ and $k_1 = k_0^p$, so that $g = (h_1, h_1) = (h_0, k_0)^p$. Thus, since $(h_0, k_0) \in G$ and G is a group and consequently closed under its operation, $g \in G$. Suppose, on the other hand, that $g_1 \in G^p$, so that $g_1 = g_0^p$, for some $g_0 \in G$. Since $G = H \times K$, $g_0 = (h_0, k_0)$, for some $h_0 \in H$, $h_0 \in K$, so that $g_1 = (h_0, k_0)^p = (h_0^p, k_0^p)$. Thus, since $h_0^p \in H^p$ and $h_0^p \in K^p$, $g_1 \in H^p \times K^p$. Therefore, $G^p = H^p \times K^p$.

Suppose $g \in H_p \times K_p$, so that, for some $h \in H, k \in K$ with $h^p = e_H, k^p = e_K$ (where e_H, e_K denote the identities of their respective groups), g = (h, k). Since $G = H \times K$, $g \in G$. Furthermore, (e_H, e_K) is the identity of $H \times K$ and thus of G (i.e., $(e_H, e_K) = e$), so, since $g^p = (h, k)^p = (h^p, k^p) = (e_H, e_K) = e$, $g \in G_p$. Suppose, on the other hand, that $g \in G^p$. Then, since $G = H \times K$, $g \in (H \times K)^p$, so $\exists h \in H, k \in K$ such that g = (h, k) and $(h^p, k^p) = (h, k)^p = e = (e_H, e_K)$. Therefore, $h \in H_p, k$, so $g = (h, k) \in H_p \times K_p$.

Exercise 27: Let G be a group of order pqr, where $p, q, r \in \mathbb{N}$ are primes with p < q < r. Let n_p, n_q, n_r denote the number of Sylow-p,-q, and -r subgroups of G, respectively. Suppose, for sake of contradiction, that G is simple. Then, $n_p, n_q, n_r > 1$, since, otherwise, as explained in Remark 11.6 a Sylow-p,-q, or -r

subgroup would be a non-trivial normal subgroup of G. By another of the Sylow theorems, $n_p \cong 1 \pmod{p}$, $n_q \cong 1 \pmod{q}$, and $n_r \cong 1 \pmod{r}$, so that $n_p > p$, $n_q > q$, and $n_r > r > q > p$. Then, since p, q are prime and, by another of the Sylow theorems $n_r|pq$, $n_r = pq$. Similarly, since $n_q|pr$ and $n_p|qr$, $n_q \geq r$ and $n_p \geq q$. Note that, since the Sylow-p subgroups of G are all cyclic (as shown in the proof for Exercise 22), they are disjoint except for the identity (i.e., if G_1, G_2 are two distinct Sylow-p subgroups of G, then $G_1 \cap G_2 = \{e\}$). Furthermore, the same holds for any pair of a Sylow-q subgroups or Sylow-q subgroups, as well as any pair of Sylow-q, and Sylow-q, and Sylow-q subgroups. Thus, the number of elements in G is at least

$$|\{e\}| + n_r(r-1) + n_q(q-1) + n_p(p-1) \ge 1 + pq(r-1) + r(q-1) + q(r-1)$$

$$> pq(r-1) + r(q-1)$$

$$\ge pq(r-1) + pq = pqr.$$

However, this contradicts the given that G is of order pqr. Thus, G cannot be simple.

Let G be a group of order p^2q , where $p,q \in \mathbb{N}$ are primes with p < q. Suppose, for sake of contradiction, that G is simple. As explained previously, since G is simple, letting n_p denote the number of Sylow-p subgroups of G and n_q the number of Sylow-q subgroups of G, $n_p, n_q > 1$, $n_p|q$, $n_q|p^2$, $n_p \cong 1 \pmod{p}$, and $n_q \cong 1 \pmod{q}$, so that $n_q = p^2$ (since $n_q = p$ or $n_q = p^2$, but $n_q > q > p$), $n_p = q$, and thus $q|(p^2 - 1)$. Since q is prime, this implies that q|(p+1) or q|(p-1). The latter is impossible, since p < q; the former implies q = p+1, for the same reason. Since either p or p+1 is even, and both p and q are prime, this is only possible if p = 2 and q = 3. However, then, there are $(q-1)*n_q = 8$ elements of order q, 1 element of order 1 (the identity), so there are not enough elements to construct the requisite number of Sylow-p subgroups $(n_p = 3)$.

Exercise 28: Suppose, for sake of contradiction, that there exists a a simple group G of order 90. As explained in the proof of Exercise 27, by the result of 11.6, since G is simple, if p is prime, the number of Sylow-p subgroups of G, denoted n_p , must be greater than 1 (i.e., $n_p > 1$). Furthermore, by the Sylow theorems, $n_p \cong 1 \pmod{p}$ and $n_p | (90/p)$. Thus, $n_5 \cong 1 \pmod{5}$, $n_5 | 18$, and $n_p > 1$, so $n_p = 6$, and, similarly, it can be seen that $n_3 = 10$. However, since the intersection of different Sylow-p subgroups can contain only the identity, this implies there are (9-1)*10 = 80 elements of order 9, and (5-1)*6 = 24 elements of order 5, which is impossible, since 24 + 80 > 90 = |G|. Thus, no simple group of order 90 can exist.