Heuristic analysis

Jinxiang Ruan

Purpose

This project defines 3 problems in classical PDDL (Planning Domain Definition Language) in an Air Cargo transport system domain. After implemented the functions to represent the problem schema, the Planning Graph and the heuristic methods, this document is to analyse the execution performance between uninformed planning searches and heuristics searches.

Uninformed non-heuristics searches

The uninformed non-heuristic planning was experimented with below search algorithms:

- Breadth First Search (BFS)
- Depth First Graph Search (DFS)
- Uniform Cost Search (UCS)

Metrics For uninformed non-heuristic Search

Problem	Search	Expansions	Goal	New	Plan	Time	Optimality
	Function		Tests	Nodes	Length	(sec)	
P1	BFS	43	56	180	6	0.02764	Yes
P1	DFS	12	13	48	12	0.00606	No
P1	UCS	55	57	224	6	0.02982	Yes
P2	BFS	3343	4609	30509	9	6.86852	Yes
P2	DFS	582	583	5211	575	2.64048	No
P2	UCS	4761	4763	43206	9	9.00185	Yes
Р3	BFS	14663	18098	129631	12	32.4266	Yes
Р3	DFS	627	628	5176	596	2.65447	No
P3	UCS	17783	17785	155920	12	40.5475	Yes

Execution time & Nodes Expansions

Sorting by execution time and nodes expansions from low to high: 1) DFS 2) BFS 3) UCS That is to say, in terms of the time taken to reach goal state, **DFS** expands least number of nodes and is the fastest planning search among the three.

Plan Length & Optimality

BFS and **UCS** provide optimal solutions for all 3 problems while DFS doesn't. And the plan length for DFS is much higher as compared to BFS and UCS.

Heuristics searches

The heuristic planning was experimented using A* search with below heuristics:

- h_ignore_preconditions (releax problem by ignoring preconditions)
- h_pg_level_sum (planning graph sum of level costs)

Metrics For A* heuristic Search

Problem	Heuristics	Expansions	Goal	New	Plan	Time	Optimality
			Tests	Nodes	Length	(sec)	
P1	h_ignore_preconditions	41	43	170	6	0.03387	Yes
P1	h_pg_level_sum	11	13	50	6	0.71442	Yes
P2	h_ignore_preconditions	1450	1452	13303	9	3.63267	Yes
P2	h_pg_level_sum	86	88	841	9	64.3592	Yes
Р3	h_ignore_preconditions	5003	5005	44586	12	13.5388	Yes
Р3	h_pg_level_sum	311	313	2863	12	326.130	Yes

Execution time

The time taken to reach the goal state by h_ignore_preconditions is lower than h_pg_level_sum, h_pg_level_sum suffer from high computation hence it took longer to run.

Nodes Expansions & Goal Tests & New Nodes

h_pg_level_sum outperforms h_ignore_preconditions by expansions, number of goal tests and number of new nodes.

Optimality

Both h_ignore_preconditions and h_pg_level_sum provides optimal solutions for all 3 problems.

Summary

Considering the balance of execution time reasonable number of nodes expanded, I recon A* with h_ignore_preconditions heuristic is the best option, h_pg_levelsum do out performs in terms of number of nodes expanded, but suffer from high cost of computation and run much slower.

In terms of time taken, DFS is the fastest. However, it gives us a much higher plan length and the solution obtained by DFS is not optimal.

Optimal Plans

Problem 1

Load(C1, P1, SFO)

Fly(P1, SFO, JFK)

Unload(C1, P1, JFK)

Load(C2, P2, JFK)

Fly(P2, JFK, SFO)

Problem 2

Unload(C2, P2, SFO)

Load(C1, P1, SFO)
Load(C2, P2, JFK)
Load(C3, P3, ATL)
Fly(P1, SFO, JFK)
Fly(P2, JFK, SFO)
Fly(P3, ATL, SFO)
Unload(C3, P3, SFO)
Unload(C2, P2, SFO)
Unload(C1, P1, JFK)

Problem 3

Load(C1, P1, SFO)

Load(C2, P2, JFK)

Fly(P1, SFO, ATL)

Load(C3, P1, ATL)

Fly(P2, JFK, ORD)

Load(C4, P2, ORD)

Fly(P1, ATL, JFK)

Fly(P2, ORD, SFO)

Unload(C4, P2, SFO)

Unload(C3, P1, JFK)

Unload(C2, P2, SFO)

Unload(C1, P1, JFK)