

KWAZULU-NATAL PROVINCE

EDUCATION REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 10

PHYSICAL SCIENCES

COMMON TEST

MARCH 2023

TIME:

11/2 hours

MARKS: 75

This question paper consists of 9 pages and a data sheet.

Downloaded from Stanmorephysics.com

Physical Sciences (Grade 10)

NSC 2 Common Test March 2023

INSTRUCTIONS AND INFORMATION

- 1. Write your name and class (e.g. 10A) in the appropriate spaces on the ANSWER BOOK.
- This question paper consists of 7 questions. Answer ALL questions in the ANSWER BOOK.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- Leave ONE line between two sub-questions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 5. You may use a non-programmable calculator.
- You are advised to use the attached DATA SHEET.
- 7. Show ALL formulae and substitutions in ALL calculations.
- 8. Round off your final numerical answers to a minimum of TWO decimal places.
- 9. Give brief motivations, discussions, etc where required.
- 10. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A-D) next to the question numbers (1.1-1.6) in the ANSWER BOOK, e.g 1.7 D

- 1.1 The maximum displacement of a particle from its rest position is known as its ...
 - A wavelength.

nnn

- B amplitude.
- C frequency.
- D period.

(2)

- 1.2 Which ONE of the following statements is TRUE?
 - A Sound waves can travel in vacuum
 - B Sound waves are electromagnetic waves
 - C The speed of sound waves is always constant
 - D The pitch of a sound wave is dependent on its frequency

(2)

1.3 The diagrams below represent two sound waves A and B.

Which ONE of the following combinations that compares the frequency and loudness of A with B is CORRECT?

	Frequency of A	Loudness of A
Α	Less than B	Greater than B
В	Greater than B	Less than B
С	The same as B	Less than B
D	The same as B	Greater than B

(2)

(2)

- 1.4 Which ONE of the following statements best describes the behaviour of an electromagnetic wave?
 - A Electric and magnetic fields vibrate perpendicularly to one another
 - B Electric and magnetic fields vibrate parallel to one another
 - C The electric field is vibrating and the magnetic field is stationary
 - D Both the electric and magnetic fields are stationary
- 1.5 A learner has determined the charges on various objects. Which value has been INCORRECTLY calculated?
 - A 9,6 x 10⁻¹⁹ C
 - B 6,4 x 10⁻¹⁹ C
 - C 4,8 x 10⁻¹⁹ C
 - D $4.0 \times 10^{-19} \,\mathrm{C}$ (2)
- 1.6 The voltmeter below reads 8V.

The emf of the battery is ...

- A 12V
- B 8V
- C 6V
- D 4V

(2)

2 x 6 [12]

The diagram below shows two pulses P and Q travelling in opposite directions in the same medium. Pulse Q travels to the left.

The amplitude of pulse P is 3cm and that of pulse Q is UNKNOWN. The two pulses meet at point X and the resulting amplitude is shown below.

- 2.1 Define *pulse*. (2)
- 2.2 What type of interference takes place at X? (1)
- 2.3 Determine the amplitude of Q. (1)
- 2.4 A learner states that immediately AFTER pulses P and Q meet at point X, pulse P will move TO THE LEFT.
 - 2.4.1 Is the learner's observation correct? Answer YES or NO. (1)
 - 2.4.2 Use a physics principle to explain the answer to Question 2.4.1 (2)

[7]

The following wave pattern is produced by a wave that takes 2,5 seconds to complete one wave cycle.

A particle at point B vibrates at 90° to the direction in which the waves are moving.

3.1	What type of wave is indicated in the diagram above?	(1)
3.2	Give ONE reason why a particle at B will be OUT OF PHASE with a particle	
	at C.	(1)
3.3	Determine the frequency of this wave.	(3)
3.4	If the speed of the wave is 0,08 m.s ⁻¹ , calculate the value of x in metres.	(4)
3.5	How long (in seconds) does it take for a particle to move from point A to	
	point D?	(2)
		[11]

QUESTION 4

A wave source on a ship sends out sound waves of frequency 25 kHz to the bottom of the sea. A receiver attached to the ship detects these waves a short while later. The speed of sound in water is 1500 m·s⁻¹.

4.1	What is an echo?	(2)
4.2	Calculate the wavelength of these waves	(3)
4.3	Can these sound waves be heard by the human ear? Give a reason.	(2)
4.4	Calculate the depth of the water beneath the ship if the waves are detected	
	by the receiver 10 seconds after being emitted.	(4)
		[11]

Copyright reserved Please turn over

The electromagnetic spectrum includes amongst others, radio waves, ultraviolet waves, gamma rays, visible light and x-rays.

- 5.1 Briefly explain what is meant by the DUAL nature of electromagnetic radiation. (2)
- 5.2 Name the type of electromagnetic radiation that:
 - 5.2.1 Is used to sterilize medical instruments. (1)
 - 5.2.2 Has the longest wavelength. (1)
- 5.3 State ONE danger of ultraviolet light. (1)
- 5.4 A photon of an electromagnetic wave has a wavelength of 700 nm.

 Calculate the energy associated with this photon. (5)
- 5.5 How will the energy of this photon be affected if its wavelength is decreased?

 Choose from INCREASES, DECREASES or REMAINS THE SAME.

 Give a reason for the answer.

[12]

(2)

QUESTION 6

Two identical insulated spheres, X and Y, suspended by threads from a ceiling, are held at a small distance apart, as shown in the diagram below.

Sphere X carries a charge of +6,4 x 10⁻¹⁸C, while sphere Y has an EXCESS of 30 electrons.

6.1 Calculate the magnitude of the charge on sphere Y.

(3)

- 6.2 The spheres are allowed to touch each other. After touching, they move away from each other.
 - 6.2.1 State the principle of conservation of charge.

(2)

touching.

6.2.2 Give a reason why the spheres move away from each other after

6.2.3 Calculate the charge on each sphere after they have separated.

6.3 A NEUTRAL sphere Z, is placed next to sphere Y as shown below.

6.3.1 What is meant by a neutral sphere? (2)

6.3.2 Use a sketch to show how the charges re-arrange themselves inside sphere Z.

(2) [13]

Copyright reserved Please turn over

9

QUESTION 7

Study the circuit diagram below. Ignore the resistance of the battery and the wires. Switch S is initially CLOSED.

- 7.1 Define terminal potential difference. (2)
- 7.2 Calculate the reading on the voltmeter V if the battery transfers $3 \times 10^4 \, \text{J}$ of energy per every 2,5 x $10^3 \, \text{C}$ of charge that flows through the circuit. (3)
- 7.3 Determine the reading on ammeter A₃ if the reading on ammeter A₁ is 1,62 A and the reading on ammeter A₂ is 0,65A (2)
- 7.4 How will the resistance of R₁ compare to that of R₂?
 Choose from GREATERTHAN, LESS THAN or EQUAL TO. (1)
- 7.4 Switch S is now OPENED. What term is used to describe the reading on the voltmeter? . (1)

TOTAL [75]

Copyright reserved Please turn over

DATA FOR PHYSICAL SCIENCES GRADE 10 PAPER 1 (PHYSICS)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 10 VRAESTEL 1 (FISIKA)

TABLE 1 PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Speed of light in a vacuum Spoed van lig in 'n vacuum	С	3,0 x 10 ⁸ m·s ⁻¹
Planck's constant Planck se konstante	h	6,63 x 10 ⁻³⁴ J·s
Electron mass Elektronmassa	m _e	9,11 x 10 ⁻³¹ kg
Electron charge	Q _e	-1,6 x 10 ⁻¹⁹ C

TABLE 2: FORMULAE/TABEL 2: FORMULES

WAVES, SOUND AND LIGHT/GOLWE, KLANK EN LIG

$v = f\lambda$ or $c = f\lambda$	$T = \frac{1}{f}$	E = hf
----------------------------------	-------------------	--------

ELECTROSTATICS

$n = \frac{Q}{Q_e}$	$Q = \frac{Q_1 + Q_2}{2}$
---------------------	---------------------------

ELECTRIC CIRCUIT

$Q = I \Delta t$	$\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \dots$
	$Rp R_1 R_2$
$R_s = R_1 + R_2 +$	$V = \frac{W}{Q}$

Downloaded from Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

GRADE 10

PHYSICAL SCIENCES

COMMON TEST

MARCH 2023

MARKING GUIDELINE

TIME: 1 1/2 Hour

MARKS: 75

These marking guideline consists of 5 pages.

1.4 A
$$\checkmark\checkmark$$
 (2)

QUESTION 2

QUESTION 3

3.3
$$f= 1/T \checkmark$$
 $= 1/2,5 \checkmark$ $= 0,4 Hz \checkmark$ (3)

3.4
$$v = f \times \lambda \checkmark$$

 $0.08 = 0.4 \times \lambda \checkmark$
 $\lambda = 0.2 \text{ m}$
 $x = 0.35 \text{m} \checkmark \checkmark$ (4)

[11]

QUESTION 4

4.1 A sound wave that is reflected ✓off a surface ✓ (2)

4.2 $v = f \times \lambda \checkmark$ $1500 = 25000 \times \lambda \checkmark$ $\lambda = 0.06m \checkmark$ (3)

4.3 No. ✓ frequency is beyond range for the human ear ✓ (2)

4.4 speed = $\frac{D}{\Delta t}$ \(
1500 = $\frac{D}{5}$ \(
\times 0 = 7500 \text{ m} \times (4)
\]
[11]

QUESTION 5

5.1 Light behaves as a wave ✓ and as a particle ✓ (2)

5.2

5.2.1 Ultraviolet ✓ (1) 5.2.2 Radio waves ✓ (1)

5.3 Causes skin cancer ✓ (1)

5.4

 $E = \frac{hc}{\lambda} \checkmark$ $= \frac{(6,63x10^{-34})(3x10^{8})}{(700x10^{-9})} \checkmark$ $= 2,84x10^{-10} J \checkmark$ (5)

5.5 Increases ✓. Energy is inversely proportional to wavelength ✓ (2) [12]

6.1

$$n_{e} = \frac{Q}{Qe} \checkmark$$

$$30 = \frac{Q}{1.6 \times 10^{-19}} \checkmark$$

$$Q = -4.8 \times 10^{-18} C \checkmark$$

(3)

- 6.2.1 Total charge in an isolated system remains constant. ✓✓ (2)
- 6.2.2 Both spheres carry identical charges ✓ (1)
- 6.2.3 $Q_{new} = \frac{Q_1 + Q_2}{2}$

$$= \frac{(6.4x10^{-18}) + (-4.8x10^{18})}{2} \checkmark$$

$$= 8x10^{-19}C \checkmark$$
(3)

- 6.3.1 The number of electrons is equal to the number of protons ✓✓ (2)
- 6.3.2

[13]

(2)

QUESTION 7

7.1 Reading across the terminals of a battery when current flows in the circuit

(2)

7.2
$$V = \frac{W}{Q}$$
 \checkmark

$$= \frac{3 \times 10^4}{2,5 \times 10^3} \checkmark$$

$$= 12V \checkmark$$

- 7.3 0,97 A ✓✓ (2)
- 7.4 GREATER THAN√ (1)
- 7.5 emf ✓ (1) **[9]**

TOTAL MARKS: [75]