Circuiti Combinatori: Applicazioni

Contesto

- Finora abbiamo visto come <u>realizzare circuiti</u> <u>combinatori a partire da specifiche/tabelle di</u> verità
- Inoltre, abbiamo visto come minimizzare il numero di gate utilizzati per creare un circuito
- Nelle prossime lezioni, passeremo in rassegna alcuni <u>esempi di circuiti combinatori tipicamente</u> <u>disponibili e utilizzati per realizzare circuiti</u> <u>digitali più complessi</u>

Adder

Half Adder

- Somma due bit
- · Produce 2 output:
 - La **somma** dei due bit
 - · L'eventuale riporto (carry)

Realizziamolo...

Full Adder

Motivazioni

- E' chiaro che per sommare numeri binari dovremmo combinare più adder
- · Problema: l'half-adder ha sempre due input
- Ci servirebbe un <u>ulteriore input per aggiungere</u> <u>il carry della somma delle cifre a destra</u>

Esempio

Full Adder

- 3 ingressi: A, B, e carry-in
- 2 uscite: Somma, Carry-out

Rappresentazione:

Proviamo a realizzarlo...

Ora, proviamo a realizzarlo combinando degli half-adder...

Disegniamo un circuito che implementa un adder a 4 bit

4-bit Parallel Adder $C_{4} \leftarrow C_{0}$ $A_{3} B_{3} A_{2} B_{2} A_{1} B_{1} A_{0} B_{0}$ 4-bit Parallel Adder $A_{3} B_{3} A_{2} B_{2} A_{1} B_{1} A_{0} B_{0}$

4-bit Parallel Adder

- Primo approccio: costruire una tabella di verità per un circuito con 9 ingressi (2 bit per ogni addendo, + carry in) e 5 uscite (4 somme parziali e carry out)
- Approccio migliore: cercare di riutilizzare l'adder a 2 bit e costruire adder a n bit connettendo tra loro più adder

Interconnessione adder

Due soluzioni possibili:

- · Ripple carry adder
- Carry lookahead adder

Ripple Carry Adder

Il carry-in sulla somma in posizione i è disponibile una volta che la somma in posizione i-1 è stata effettuata e quindi l'eventuale carry-out prodotto

Ripple Carry Adder

- · Consiste in n full adder
- Il carry-out alla posizione i è connesso al carry-in alla posizione (i+1)
- · Vantaggio: design semplice
- Svantaggio: lentezza
 - Ciascun bit di somma può essere calcolato solo una volta che il bit di carry-out precedente è stato calcolato
- Ritardo ~ n * Ritardo(FA)

Ripple Carry Adder

Combiniamo due (o più) full adder in maniera da gestire somme più bit.

ll carry out (C₄) non è pronto fintanto che il carry non viene propagato lungo tutti gli adder. Discorso analogo per C₃, C₂, C₁

Quindi...

- Il Ripple Carry Adder può diventare estremamente lento per un numero elevato di bit
- Il Carry Lookahead Adder garantisce minori tempi di risposta al costo di hardware addizionale necessario per gestire il calcolo del carry propagation

Carry Lookahead Adder A₃ B₃ A₂ B₂ A₁ B₁ A₀ B₀ 1 bit 1 bit 1 bit full adder full adder full adder full adder S₃ $|S_0|$ S2 S₁ P₃ G₃ C₃ P₂ G₂ C₂ P₁ G₁ C₁ P₀ G₀ C_4 Circuito di carry-lookahead a 4 valori/bit

Carry Lookahead Adder

- Usa della logica addizionale rispetto all'adder per capire se una somma di bit genera o propaga un carry
- Un carry è generato se sia A_i che B_i sono = 1
 - Funzione "generate": $G(A_i, B_i) = A_i \cdot B_i$
- Un carry è **propagato** se almeno uno tra A_i e B_i è 1
 - Funzione "propagate": P(A_i, B_i) = A_i + B_i

Carry Lookahead Adder

2 azioni: generazione e propagazione

Carry Lookahead Adder

Per ciascun valore (o stage) dell'adder il carry-out del bit i (ovvero il carry in del bit i+1, indicato con C_{i+1}) può essere definito in termini delle <u>funzioni di generazione</u> <u>e propagazione del bit precedente</u>

$$C_{i+1} = G_i + (P_i \cdot C_i)$$
carry-out carry-in

 C_{i+1} è alto se lo stage i genera un carry (G_i) OPPURE propaga C_i : ($P_i \cdot C_i$)

Carry Lookahead Adder

Per lo stage 0:

- $C_1 = G_0 + (P_0 \cdot C_0)$
- $C_1 = (A_0 \cdot B_0) + ((A_0 + B_0) \cdot C_0)$

Notare che:

- · C₁ è funzione degli ingressi del sistema
- · Il circuito è a 3 livelli, quindi ho un ritardo causato da 3 gate
- Ok, <u>fin qui il ritardo è lo stesso generato dal full'adder sul carry...</u>

Ritardo sul carry in un Full Adder

Ritardo sul carry: D₁+D₂+D₃

Carry Lookahead Adder

Stage 1:

- $C_2 = G_1 + (P_1 \cdot C_1)$
- $C_2 = (A_1 \cdot B_1) + ((A_1 + B_1) \cdot C_1)$
- $C_2 = (A_1 \cdot B_1) + ((A_1 + B_1) \cdot ((A_0 \cdot B_0) + ((A_0 + B_0) \cdot C_0))$
- $C_{2}=A_{1}B_{1}+(A_{1}+B_{1})\cdot A_{0}B_{0}+(A_{1}+B_{1})(A_{0}+B_{0})\cdot C_{0}$
- · C₂ è funzione degli input primari del circuito e del carry-in d'ingresso
- · C2 non dipende dal carry degli stadi precedenti, solo da C0
- · Circuito a 3 livelli, quindi ritardo solo su 3 gate

Carry Lookahead Adder

Stage 2:

- $C_3 = G_2 + (P_2 \cdot C_2)$
- $C_3 = G_2 + (P_2 \cdot (G_1 + (P_1 \cdot C_1)))$
- $C_3 = G_2 + (P_2 \cdot (G_1 + (P_1 \cdot (G_0 + (P_0 \cdot C_0))))$
- $C_3 = G_2 + P_2 \cdot (G_1 + P_1 \cdot G_0 + P_1 \cdot P_0 \cdot C_0)$
- $\begin{array}{l} \bullet \ C_{3} = G_{2} + P_{2} \cdot G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0}C_{0} = \\ A_{2}B_{2} + (A_{2} + B_{2}) \cdot A_{1}B_{1} + (A_{2} + B_{2}) \cdot (A_{1} + B_{1}) \cdot A_{0}B_{0} + (A_{2} + B_{2})(A_{1} + B_{1})(A_{0} + B_{0}) \cdot C_{0} \end{array}$
- · C₃ è ancora funzione soltanto degli input del circuito, e del carry d'ingresso Co
- · Il circuito risultante è sempre a 3 livelli, quindi ho un ritardo causato da 3 gate

Carry Lookahead Adder

Stage i:

$$C_{i+1} = F(G_0..G_i, P_0..P_i, C_0)$$

- Per i>4, il circuito di lookahead <u>diventa troppo</u> <u>complesso e richiede troppi gate</u>...
- Tradeoff: velocità vs. area occupata sul silicio/numero di gate

Implementazione (2 bit) Alti Alti Alti Alti Alti Bit I Bot I Gold Alti Bit I Bot I Bo

Implementazione completa Le control of the contro

Circuito Integrato Parallel Adder a 4 bit

2 ingressi a 4 bit, un bit di carry in e uno di carry out

- Esempio di componente: 74LS283
- Look-ahead carry, con delay massimo sul carry out = 17 ns.

Come realizzo adder a 8, 16 bit?

Oltre 4 bit, la logica lookahead diventa troppo complessa...

4 adder in cascata

Circuito Subtractor

Sottrazione tra 2 numeri binari

1 1 0 1 -0 1 1 0 =

Come procediamo?
Potremmo eseguire la sottrazione così come sappiamo fare per i numeri decimali...

Realizzazione subtractor

Potremmo costruire un circuito <u>sottrattore in base alla tabelle di verità della sottrazione</u>

· Poco comune e poco efficiente

Soluzione: usare la rappresentazione dei numeri negativi in complemento a 2

- Utilizzo di un adder
- Dovendo calcolare A-B, si effettua la somma tra A e il complemento a 2 di B

Problemi

- Non posso convertire in numeri negativi numeri positivi con la cifra più significativa alta
- Di fatto <u>riduco il range di positivi che posso rappresentare</u> con n bit (numeri da -2⁽ⁿ⁻¹⁾ a 2⁽ⁿ⁻¹⁾ -1
- · Necessità di gestire gli overflow

Sottrattore a 4 bit

Il complemento a <u>2 si ottiene negando i bit e</u> <u>aggiungendo 1</u> (ovvero ponendo a 1 il carry-in del circuito)

Ora realizziamo un circuito in grado di effettuare <u>sia</u> addizioni che sottrazioni...

Individuazione di Problemi di Overflow

Overflow nelle sottrazioni

- · Si verifica se il risultato è fuori range
- Non <u>può verificarsi quando sottraiamo due</u> numeri con lo stesso segno
- Può verificarsi, invece, quando sottraiamo un numero positivo da uno negativo o viceversa.
 - # positivo # negativo → # negativo
 - # negativo # positivo → # positivo

Overflow nelle addizioni

- · Si verifica se il <u>risultato è fuori range</u>
- Non può verificarsi quando sommiamo un numero positivo con un numero negativo
- Quindi, si verifica se <u>sommiamo due numeri con lo</u> <u>stesso segno</u>
- Effetto collaterale che potrebbe verificarsi:
 - Somma due numeri positivi → Numero negativo
- Somma due numeri negativi → Numero positivo

Calcolo overflow

 $V = C_{i-1} XOR C_{i-2}$

In pratica, metto in XOR i carry-out degli ultimi 2 bit, ovvero il carry in e il carry out dell'ultimo bit

Perché funziona?

Calcolo overflow

 $V = C_{i-1} XOR C_{i-2}$

Caso 1: carry-in=0, carry-out=1 (C_{i-1}=1, C_{i-2}=0)

- Se il carry-in è 0, l'unica ragione per cui il carry out possa essere 1 è quando i bit più significativi dei due addendi sono entrambi 1 (x_{i-1} = 1, y_{i-1} = 1), e la somma produce 0 nel bit più significativo
- Ovvero, <u>sommo due negativi</u> e ottengo un numero positivo!

Esempi

Entrambi positivi		Entrambi negativi	
0111+ 0110=	1001+ 1100=	1101+ 1100=	
C ₃ =1, C ₄ =0 OVERFLOW	C ₃ =0, C ₄ =1 OVERFLOW	C ₃ =1, C ₄ =1 NO OVERFLOW	
(7+6)	(-7-4)	(-3-4)	
	0111+ 0110= C ₃₌₁ , C ₄₌₀ OVERFLOW	0111+ 1001+ 0110= 1100= C ₃₌₁ , C ₄₌₀ C ₃₌₀ , C ₄₌₁ OVERFLOW OVERFLOW	

Calcolo overflow

 $V = C_{i-1} XOR C_{i-2}$

Caso 2: 1 carry-in=1, carry-out=0 (C_{i-1}=0, C_{i-2}=1)

- In questo caso, se il carry-in è 1, l'unico caso in cui il carry out possa essere 0 è quando entrambe le cifre più significative sono 0 (x_{i-1} = 0, y_{i-1} = 0), e la somma produce 1 nel bit più significativo
- Ovvero, sommo <u>due numeri positivi e ottengo un</u> numero negativo

Comparatori

Realizzazione comparatore

- Il comparatore confronta due numeri binari e ne determina la relazione (A>B, A=B, A<B)
- Nella forma più semplice, il comparatore verifica soltanto la condizione di uguaglianza
- · Come realizziamo tale comparatore nel caso di numeri a n bit (es. 4 bit)?

Risposta: mettiamo in AND 4 porte XNOR

Interconnessione modulare comparatori

E' possibile integrare più comparatori in cascata, interconnettendo gli output A>B, A=B, A<B del primo col i corrispondenti ingressi del secondo.

Gli ingressi A>B, A<B del primo comparatore sono collegati con un valore logico basso. L'ingresso A=B del primo comparatore è collegato con un valore logico alto.

Circuito Integrato Comparatore

Oltre che gli output A>B, A=B, A<B, il circuito integrato è dotato di "cascading input" corrispondenti.

Tali input sono utilizzati per consentire l'interconnessione di più comparatori.

