Math 591 Lecture 7

Thomas Cohn

9/16/20

Observe:

(1) $\dim O(n) = \dim(\operatorname{ambient}) - \dim(\operatorname{Symm}(n,\mathbb{R})) = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$. (2) $\ker F'(I) = \{M \in \operatorname{Mat}(n,\mathbb{R}) \mid M + M^T = 0\} = \{\text{skew-symmetric matrices}\}$. This is the tangent space to O(n) at I.

Similarly, $U(n) = \{g \in \operatorname{Mat}(n, \mathbb{C}) \mid g^{-1} = \overline{g}^T\}$ has a C^{∞} structure, as well as $SU(n) = \{g \in U \mid \det g = 1\}$. $(g \in U(n) \Rightarrow \det(g) \in S^1$, i.e., $|\det g| = 1$.)

(3) O(n), in fact, has 2 connected components, as $g \in O(n) \Rightarrow \underbrace{|\det g|}_{\in \mathbb{R}} = 1 \Rightarrow \det g = \pm 1$.

Defn: $SO(n) = \{g \in O(n) \mid \det g = 1\}$ is a subgroup of O(n). $O(n) = SO(n) \cup \{g \in O(n) \mid \det g = -1\}.$

More examples: $SL(n,\mathbb{R}) = \{g \in GL(n,\mathbb{R}) \mid \det g = 1\}.$

Some facts: U(n) and O(n) are compact, whereas $SL(n,\mathbb{R})$ is not.

More examples can be constructed by:

- Cartesian products: If M and N are C^{∞} manifolds, then $M \times N$ has a natural smooth structure. Charts on $M \times N$ are just $(U \times V, \phi \times \psi)$, where (U, ϕ) is a chart on M and (V, ψ) is a chart on N. For example, the *n*th torus $\underbrace{S^1 \times \cdots \times S^1}_n$.
- Covering maps of C^{∞} manifolds: Let M be a C^{∞} manifold. A covering map on M is $f: \tilde{M} \to M$ (with \tilde{M} a topological space) such that $\forall p \in M, \exists U \ni p \text{ open s.t. } F^{-1}(U) = \bigcup_{i \in I \text{ finite}} U_i, \text{ with } U_i \subseteq \tilde{M} \text{ open s.t. } \forall i, F|_{U_i} : U_i \stackrel{\cong}{\to} V$ is a homeomorphism.

Then:

Thm: M has a unique C^{∞} manifold structure s.t. F is locally a diffeomorphism (isomorphism).

Thm: SO(n) has a double cover (a 2-to-1 covering space), $Spin(n) \stackrel{2-1}{\to} SO(n)$. Spin(n) has a group structure.

Ex: (of a covering map)

$$\mathbb{R} \to S^1$$
$$x \mapsto e^{ix}$$

Defn: Let M be a C^{∞} manifold, and $f:M\to\mathbb{R},\,p\in M$. Then f is C^{∞} at p if there's a chart (U,ϕ) of M such that $p \in U$ and $f \circ \phi^{-1} : \phi(U) \to \mathbb{R}$ is C^{∞} .

Observe: A chart (U, ϕ) one a C^{∞} manifold is also called a coordinate system. We'll often write $\phi = (x^1, \dots, x^n)$, where $x^i: U \to \mathbb{R}$ is the *i*th component of ϕ , i.e., a coordinate function.

Observe: In the definition above, f only needs to be defined in a neighborhood of p.

Defn: Let M be a C^{∞} manifold, $f: M \to \mathbb{R}$ is smooth iff $\forall p \in M$, f is smooth at p.

Lemma: $f: M \to \mathbb{R}$ is smooth iff $\forall (U, \phi)$ smooth chart of $M, f \circ \phi^{-1} : \phi(U) \to \mathbb{R}$ is smooth.

Proof: (see §6 for full details)

 $\Leftarrow \text{ is immediate}$

 \Rightarrow is based on the fact that f smooth $\Rightarrow \forall p \in M$, there's a chart (V, ψ) around p s.t. $f \circ \psi^{-1}$ is smooth.

Ex: Let $M \subseteq \mathbb{R}^N$ be a local graph. $M = F^{-1}(0)$, 0 is a regular value of F. If $\tilde{f}: \mathbb{R}^N \to \mathbb{R}$ is smooth, then $f = \tilde{f}M: M \to \mathbb{R}$ is smooth. Proof: There are charts on M (U, ϕ) s.t. $\phi^{-1}(x') = (x', G(x'))$ after permuting coordinates (G is a graph function). Then $(f \circ \phi^{-1})(x') = \tilde{f}(x', G(x'))$, and this is C^{∞} . \square