Movie Reviews Sentiment Analysis

Team ID: 24

Level	ID	Name
SC 4	2021170488	محمد مصطفي محمد السيد
SC 4	2021170345	عمار إبراهيم سمير قطورة
SC 4	2021170520	مصطفي خالد محمود محمد
SC 4	2021170493	محمود أحمد عبدالرحيم السيد
SC 4	2021170232	سلمي سعيد محمد طه
SC 4	2021170262	شهد عبدالمقصود علي أحمد

Overview

This project implements sentiment analysis on movie reviews using both traditional Machine Learning and BERT-based approaches. The goal is to classify movie reviews as either positive or negative.

Data

Source: Movie reviews dataset from rt_polarity stored in `all_reviews.csv`

Structure:

Size: 10,662 reviews

Features:

o review: The movie review text

o label: Sentiment label (1 for positive, 0 for negative)

Data Overview:

No missing (null) values in the dataset

Some duplicate entries present (removed during preprocessing)

Balanced classes: 5,331 positive and 5,331 negative reviews

Text Characteristics:

o Review lengths are well within BERT's 128-token limit

o Maximum review length: 59 tokens

Average review length: 21 tokens

Review Length Distribution

Data Preprocessing

Text Preprocessing Pipeline

1. Clean Text

- Remove URLs
- Remove special characters and numbers
- Remove extra whitespace

2. Character Normalization

❖ Normalize repeated characters (e.g., "goooood" → "good")

3. N-gram Deduplication

- ❖ Remove duplicate n-grams for n=1,2,3
- Process contiguous sequences

4. Stop Words Removal

- Using NLTK stopwords
- Preserving sentiment words:
 - not, no, never, very, really, too, so, much, many, few, little, hardly, barely, scarcely

5. Word Normalization

- Primary approach: Lemmatization using NLTK's WordNetLemmatizer
- Alternative tested: Stemming was also evaluated using NLTK's PorterStemmer
- Comparison results showed no significant performance difference between stemming and lemmatization
- Chose lemmatization for final implementation as it produces more readable words

Models

Machine Learning Approach

- Vectorization: TF-IDF with unigrams and bigrams
- Models Used:
 - Logistic Regression
 - Linear SVM
 - Random Forest (n estimators=100)
- Data Split: 80% training, 20% testing

Classification Reports

Random Forest	Classificat precision		t: f1-score	support
Negative Positive	0.66 0.77	0.82 0.58	0.73 0.66	1062 1071
accuracy macro avg weighted avg	0.71 0.71	0.70 0.70	0.70 0.70 0.70	2133 2133 2133

Logistic Regression Classification Report:					
	precision	recall	f1-score	support	
Negative	0.72	0.76	0.74	1062	
Positive	0.75	0.71	0.73	1071	
accuracy			0.73	2133	
macro avg	0.74	0.73	0.73	2133	
weighted avg	0.74	0.73	0.73	2133	

Linear SVC Cl	assification precision		f1-score	support
Negative Positive	0.74 0.76	0.77 0.74	0.76 0.75	1062 1071
accuracy macro avg weighted avg	0.75 0.75	0.75 0.75	0.75 0.75 0.75	2133 2133 2133

BERT Model

- Base Model: textattack/bert-base-uncased-SST-2
- **Device**: CUDA/CPU auto-detection

Parameters

- BATCH_SIZE = 16
- MAX_LENGTH = 128
- LEARNING_RATE = 2e-5
- NUM EPOCHS = 10
- PATIENCE = 2
- LOGGING_STEPS = 50

Training Configuration

- AdamW optimizer
- CrossEntropyLoss
- Data split:
- 70% training
- 15% validation
- 15% test
- Training arguments:
 - o warmup_steps = 200
 - o weight decay = 0.01
 - o gradient_accumulation_steps = 2

Training Progress

Results and Evaluation

Machine Learning Models Performance

- Evaluated using:
 - Accuracy
 - o Precision
 - o Recall
 - o F1 Score

BERT Model Performance

```
Evaluating on validation set...

[100/100 00:06]

Validation Accuracy: 0.8487

Evaluating on test set...
Test Accuracy: 0.8313
```

• Validation Accuracy: 84%

• Test Accuracy: 83%