

planetmath.org

Math for the people, by the people.

idempotent semiring

Canonical name IdempotentSemiring
Date of creation 2013-03-22 15:52:12
Last modified on 2013-03-22 15:52:12

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771)
Entry type Definition
Classification msc 16Y60
Synonym i-semiring
Synonym dioid

A semiring S is called an *idempotent semiring*, or *i-semiring* for short, if, addition + is an idempotent binary operation:

$$a + a = a$$
, for all $a \in S$.

Some properties of an i-semiring S.

1. If we define a binary relation \leq on S by

$$a \le b$$
 iff $a+b=b$

then \leq becomes a partial order on S. Indeed, for a+a=a implies $a \leq a$; if $a \leq b$ and $b \leq a$, then b=a+b=a; and finally, if $a \leq b$ and $b \leq c$, then a+c=a+(b+c)=(a+b)+c=b+c=c so $a \leq c$.

- 2. $0 \le a$ for any $a \in S$, because 0 + a = a.
- 3. Define $a \vee b$ as the supremum of a and b (with respect to \leq). Then $a \vee b$ exists and

$$a \lor b = a + b$$
.

To see this, we have a+(a+b)=(a+a)+b=a+b, so $a \le a+b$. Similarly $b \le a+b$. If $a \le c$ and $b \le c$, then (a+b)+c=a+(b+c)=a+c=c. So $a+b \le c$.

- 4. Collecting all the information above, we see that (S, +) is an upper semilattice with + as the join operation on S and 0 the bottom element.
- 5. Addition and multiplication respect partial ordering: suppose $a \leq b$, then for any $c \in S$, (c+a) + (c+b) = (c+c) + (a+b) = c+b, hence $c+a \leq c+b$; also, cb = c(a+b) = ca+cb implies $ca \leq cb$.

Remark. S in general is not a lattice, and 1 is not the top element of S. The main example of an i-semiring is a Kleene algebra used in the theory of computations.