# Содержание

| 1 | Алгебра   |                             | 2 |
|---|-----------|-----------------------------|---|
|   | 1.1       | Уравнения                   | 2 |
|   |           | Линейные уравнения          | 2 |
|   |           | Квадратные уравнения        | 4 |
|   | 1.2       | Неравенства                 | 5 |
|   | 1.3       | Графики функций             | 7 |
|   | 1.4       | Построение графиков функции | 8 |
| 2 | Геометрия |                             | 9 |
|   | 2.1       | Треугольники                | 9 |
|   |           | Подобные треугольники       | 9 |
|   |           | Прямоугольные треугольники  | 0 |
|   | 2.2       | Параллельные прямые         | 0 |
|   | 2.3       | Четырехугольники            | 1 |
|   |           | Параллелограм               | 1 |
|   |           | Ромб                        | 1 |

# 1 Алгебра

## 1.1 Уравнения

### Линейные уравнения

Дадим определение линейного уравнения

Определение 1. Линейное уравнение, это уравнение вида

$$ax + b = c (1)$$

где a, b, c-некоторые коэффициенты(числа).

Опишем алгоритм решения этого уравнения 2

$$ax + b - b = c - b$$
$$ax = c - b$$
$$x = \frac{c - b}{a}$$

Пример 1. Решить уравнение:

$$2x - 7 = 5$$
$$2x = 12$$
$$x = 6$$

Стоит заметить, что иногда нужно перед решением привести подобные слагаемые, и раскрыть скобки, приведем пример решения такой задачи.

## Пример 2.

$$2x + x + 7x - 3x + 4 = 5$$
$$7x + 4 = 5$$
$$7x = 1$$
$$x = \frac{1}{7}$$

# Задача 1. Решите следующие уравнения

1. 
$$2x + 3 = 7$$

$$2. \ 4x - 5 = 3x + 8$$

$$3. \ 6 - 3x = 2x + 10$$

$$4. \ 2(3x - 2) = 4x + 2$$

$$5. \ \frac{1}{2}x - 3 = \frac{1}{4}x + 5$$

### Квадратные уравнения

**Определение 2.** Квадратным уравнением называется уравнение вида.

$$ax^2 + bx + c = 0$$

Где a, b, c числа.

Данное уравнение может иметь один или два корня, или не иметь корней вообще.

Данный вид уравнений решается с помощью формулы дискриминанта.

$$\mathcal{D} = b^2 - 4ac$$

Тогда корни уравнения вычисляются по формуле

$$x_1 = \frac{-b + \sqrt{\mathcal{D}}}{2a}$$
$$x_2 = \frac{-b - \sqrt{\mathcal{D}}}{2a}$$

**Задача 2.** Как количество корней уравнения зависит от значения дискриминанта.

Задача 3. 
$$2x^2 - 10x = 0$$

Задача 4. 
$$x^2 - x - 6 = 0$$

Задача 5. 
$$x^2 + 3x = 4$$

Задача 6. 
$$x^2 = 2x + 8$$

## 1.2 Неравенства

Решение неравенств очень похоже на решение уравнений. Вспомним как решаются линейные и квадратные уравнения.

Мы знаем, что мы можем сравнить два числа, мы знаем что 2 больше трех, а 7 меньше восьми. Для сравнения чисел мы используем следующие знаки.

- 1. > больше,
- 2. < меньше,
- 3. ≤ меньше или равно,
- 4. ≥ больше или равно
- 5. = равно

Числа удобно изображать на числовой прямой, как на рисунке ниже.



Рис. 1: Числовая пряма

### Пример 3. Рассмотрим неравенство:

$$x > 3$$
.

Решить данное неравенство, означает указать все такие числа, которые больше трех. Укажем данные числа на числовой прямой.

**Задача 7.** Решить неравенство x < 3. Указать решение на числовой прямой.

$$-4$$
  $-3$   $-2$   $-1$   $0$   $1$   $2$   $3$   $4$ 

Рис. 2: Числа которые больше трех

Пример 4. Рассмотрим неравенство:

Решить данное неравенство, значить указать все такие числа (икс), которые при умножении на два будут больше восьми. Рассмотрим уравнение 2x=8, решением данного уравнения будет x=4. Заметим, что числа которые меньше 4 при умножении на два меньше восьми, а числа которые больше четырех при умножении на два больше восьми.

Замечание 1. При решений неравенств, мы можем делить обе части неравенства на одно и тоже число (как и при решении уравнений).

Решение неравенства указано на числовой прямой ниже.



Рис. 3: Числа которые больше четырех

Задача 8. Решить следующие неравенство.

## 1.3 Графики функций

Пусть у нас есть два множества: множество  $x = \{\dots, -1, 0, 1, 2.3, \dots\}$  и множество  $y\{\dots, -1, 0, 1, 2.3, \dots\}$ . Допустим мы хотим каждому элементу множества X сопоставить некоторый элемент множества Y, функцией мы будем называть правило этого сопоставления. Множества x, y можно представить как числовые прямые, тогда правила сопоставления можно представить в виде графика как на рисунке ниже.



Рис. 4: График квадратичной функции(параболы)

Далее нам предстоит разобраться в том, как строить графики функций, находить пересечение двух графиков и еще очень много всего интересного...

# 1.4 Построение графиков функции

Покажем графики основных функций:



Рис. 5: График функции  $y=x^3$ 



Рис. 6: График линейной функции

# 2 Геометрия

## 2.1 Треугольники

#### Подобные треугольники

**Определение 3.** Подобные треугольники - это треугольники, которые имеют одинаковые соотношения сторон и углов. Если два треугольника подобны, то соответствующие их стороны пропорциональны, а соответствующие углы равны. Символически это можно записать следующим образом: если  $\triangle ABC$  и  $\triangle DEF$  подобны, то  $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$  и  $\angle A = \angle D, \angle B = \angle E, \angle C = \angle F$ .

### Признаки подобия треугольников

1. **Признак соответствующих углов**: если две пары углов в двух треугольниках равны, то треугольники подобны.

Символически: Если  $\angle A=\angle D, \angle B=\angle E, \angle C=\angle F,$  то  $\triangle ABC\sim\triangle DEF.$ 



- 2. **Признак угла и прилежащих к нему сторон**: если два треугольника имеют равные углы и пропорциональные к ним прилежащие стороны, то они подобны.
- 3. **Признак соответствующих сторон**: если соответствующие стороны двух треугольников пропорциональны, то треугольники подобны.

Символически: Если  $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$ , то  $\triangle ABC \sim \triangle DEF$ .

Символически: Если  $\angle A = \angle D$ , и  $\frac{AB}{DE} = \frac{AC}{DF}$ , то  $\triangle ABC \sim \triangle DEF$ .

#### Прямоугольные треугольники

**Определение 4.** Прямоугольный треугольник, это треугольник у которого один из углов равен 90 градусов.



Стороны которые образуют угол который равен 90 градусов называются катетами. Третья сторона называется гипотенузой.

**Теорема 1.** Сумма квадратов катетов равна квадрату гипотенузы.

**Определение 5.** Синусом угла называется отношение противолежащего катета к гипотенузе.

**Определение 6.** Косинусом угла называется отношение прилежащего катета к гипотенузе.

## 2.2 Параллельные прямые

**Определение 7.** Параллельными прямыми называются прямые которые не пересекаются.



Здесь прямые l и m параллельны друг другу, а прямая n пересекает их.

# 2.3 Четырехугольники

### Параллелограм

**Определение 8.** Параллелограмм - это четырехугольник, у которого противоположные стороны равны и параллельны.



### Ромб

**Определение 9.** Ромб - это параллелограмм, у которого все углы равны между собой.



Заметим, что ромб является частным случаем параллелограма.