Lesson 18 on 13.6 Complex trig functions HWK 5: Lessons 15,16,17 Wed. WebEx Off. Hr. Tues. 8-9 pm ? log w Log w= Lnlw| +: Arg w = Principal arg.

Principal branch
of complex lay log w= {z: e= w} = { Ln/w| + i0; 0 e arg w} = $\frac{2}{5}$ Lulwl+i(Argw+n211); $n \in \mathbb{Z}$ $log_{\alpha}w = Ln|w| + i\theta$ where $\theta \in argwin \propto < \theta < \alpha + 2\pi$

Warning: e = e e e always Log WIW2 = Log W1 + Log W2 = some times true! + in 2T where n=0 or lor-1 elogw = w = always true Loge = Z = some times true $+in2\pi$ for $n\in\mathbb{Z}$. Complex Trig fcns: $e^{ix} = Cosx + i Sin x$ $e^{-ix} = Cosx - i Sin x$ + 2 Cosx = $e^{ix} + e^{-ix}$ $2iSinx = e^{ix} - e^{-ix}$ Def": $\cos z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$ $z \in \mathbb{C}$ $\sin z = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$ Tanz = Sinz , etc. Euler: $Cos z = 1 - \frac{2^2}{2!} + \frac{2^4}{4!} - \cdots$ Fact: Any Trig identity holds for complex angles! $EX: \quad \sin 2z = \frac{1}{2i} \left(e^{i(2z)} - e^{-i(2z)} \right)$ = 2 Sin & Cos Z $= 2 \frac{1}{2i} \left(e^{i\overline{z}} - e^{-i\overline{z}} \right) \frac{1}{2} \left(e^{i\overline{z}} + e^{-i\overline{z}} \right)$

Use
$$e^{iz} \cdot e^{iz} = e^{i2z}$$
, $e^{iz} \cdot e^{-iz} = e^{iz+(-iz)} \circ e^{-iz} = e^{-iz}$

$$(2)$$
 (2)

$$(\cos(x+iy) = \cos x \cos iy - \sin x \sin iy)$$

Hmmm:
$$\cos iy = \frac{1}{2} \left(e^{i(iy)} + e^{-i(iy)} \right)$$

$$= \pm (e^y + e^y) = (\cosh y)$$

$$\cosh z = \frac{1}{2} \left(e^{z} + e^{-z} \right)$$

$$\begin{array}{ll}
(\cosh z = \frac{1}{2}(e^{z} + e^{-z}) & T_{anh} z = \frac{S_{nh}z}{G_{sh}z} \\
S_{nh}z = \frac{1}{2}(e^{z} - e^{-z}) & T_{anh}z = \frac{S_{nh}z}{G_{sh}z}
\end{array}$$

hold
$$C \rightarrow C$$
.

Why:
$$f_z(e^z) = e^z$$
 and $f_z(e^z) = ie^z$

and
$$\frac{d}{dz}(e^{-iz}) = -ie^{iz}$$

[Today; See via C-Regus-]

$$\frac{d}{dz}\left(\sin z\right) = \frac{d}{dz}\left[\frac{1}{2i}\left(e^{iz} - e^{-iz}\right)\right]$$

$$= \frac{1}{2i} \left(i e^{iz} - (-i) e^{-iz} \right)$$

$$= \frac{1}{2} \left(e^{iz} + e^{-iz} \right) = \cos z$$

Funthing: What is complex Arc Sin fan?

Sin w = Z

$$\frac{1}{2i}\left(e^{cw}-e^{-cw}\right)=Z$$

eiw - eiw = 2iz = multiply by eiw

 $\left(e^{iw}\right)^2 - 1 = 2i\pi \left(e^{iw}\right) = \frac{quadratic}{equ}$

$$\left(e^{iw}\right)^2 - 2i\varepsilon\left(e^{iw}\right) - 1 = 0$$

Quad form: $iw = -(-2iz) + \sqrt{(-2iz)^2 + 4}$ $e = \frac{}{2 \cdot (-2iz)^2}$

$$= iz + \sqrt{1-z^2}$$

 $iW = \log(iz + \sqrt{1-z^2})$ $W = -i\log(iz + \sqrt{1-z^2})$ $V = -i\log(iz + \sqrt{1-z^2})$ $V = -i\log(iz + \sqrt{1-z^2})$

Exciting fact: Complex exponential, complex log, and algebraic fons generate all

the elementary functions.

Liouville: Se-x dx is not an elem. fon!

Prob: Find all ZEC such that Gos Z=2.

$$\frac{1}{2}(2+\frac{1}{2})$$

$$\frac{1}{2}(2+\frac{1}{2})$$

$$\frac{1}{2}(3+\frac{1}{2})$$

$$\frac{1}{2}$$