

WHAT IS THE GYRO

- يعمل على تحديد الاتجاهات والانحناءات
- يدخل في صناعة العاب الفيديو الحديثة وأجهزة الواقع الافتراضي
 - يعمل على المحافظة على التوازن
 - المروحيات الرباعية
 - طائرات الدرون
 - يقوم الحساس على حساب معدل تغيير الزاوية

WHY GYROSCOPE

- بديل لنظام تحديد المواقع GPS في المناطق التالية:
 - في أعماق المحيطات
 - الفضاء
 - الصحراء
 - الملاحة الجوية والبحرية

عندما تتحرك كتلة (m) ما باتجاه معين بسرعة (V)معينة وزاوية (Ω) فإن تأثير كوريوليس يقوم بتوليد قوة ناتجة عن إزاحة الكتلة. قيمة الازاحة متعلقة بشكل مباشر بالزاوية.

الجايروسكوب الميكانيكي: يتكون الجايروسكوب الميكانيكي من عجلة أو كرة غزل يُطلق عليها الدوار، ونظام إسناد.

وعندما يبدأ الدوار في الحركة فإن الجايروسكوب يقاوم أي محاولة لتغيير اتجاه دورانه. ومن أجل هذه الخاصية يستخدم الجايروسكوب كثيرًا في الطيران وفي معدات الملاحة. يعطى الجايروسكوب معلومات عن مسار الطيران دون تأثّر بالاضطرابات أو الدوامات الهوائية.

الالكتروني: هو عبارة عن جهاز إلكتروني يودي نفس وظيفة الجايروسكوبوب الميكانيكي وتتكون من نظام إسناد وذراعات اهتزازية بالإضافة إلى دوائر إلكترونية تعمل على تحويل السرعة الزاوية المقاسة إلى جهد كهربائي يتم إرساله إلى معالج حاسوبي لمعالجة هذه الإشارة وإصدار التعليمات على ضوءها.

في الوضع الطبيعي تهتز ذراعات الجايروسكوب المصنعة من الكوارتز أو السيراميك أو السيلكون باتجاه معين.

WHAT IS ACCELEROMETER

حساس التسارع هو عبارة عن حساس يقوم بقياس تأثير الجاذبية الأرضية على محاور الاحداثيات.

Weightless State

X=0g Gravitational Y=0g Force 1g Z=0g

X=0g Y=0g Z=1g

HOW THE ACCELEROMETER WORK

MPU6050

Primary Differences between MPU-6000 and MPU-6050

Part / Item	MPU-6000	MPU-6050
VDD	2.375V-3.46V	2.375V-3.46V
VLOGIC	n/a	1.71V to VDD
Serial Interfaces Supported	I ² C, SPI	I ² C
Pin 8	, /CS	VLOGIC
Pin 9	AD0/SDO	AD0
Pin 23	SCL/SCLK	SCL
Pin 24	SDA/SDI	SDA

7.5 Block Diagram

Note: Pin names in round brackets () apply only to MPU-6000 Pin names in square brackets [] apply only to MPU-6050

Address (hex)	Address(DEC)	Туре	Register Name
6B	107	R/W	PWR_MGMT_1
1 B	27	R/W	GYRO_CONFIG
43	67	R	GYRO_XOUT_H
44	68	R	GYRO_XOUT_L
45	69	R	GYRO_YOUT_H
46	70	R	GYRO_YOUT_L
47	71	R	GYRO_ZOUT_H
48	72	R	GYRO_ZOUT_L
1C	28	R/W	ACCEL_CONFIG
3B	59	R	ACCEL_XOUT_H
3C	60	R	ACCEL_XOUT_L
3D	61	R	ACCEL_XOUT_H
3E	62	R	ACCEL_XOUT_L
3F	63	R	ACCEL_XOUT_H
40	64	R	ACCEL_XOUT_L
41	65	R	TEMP_OUT_H
42	66	R	TEPM_OUT_L

CIRCUIT DIAGRAM

POWER MANAGEMENT

BIT7	BIT6	BIT5	Bit4	BIT3	BIT2	BIT1	BITO
DEVICE_RE SET	SLEEP	CYCLE	-	TEMP_DIS		CLKSEL[2:0]	

- يسمح هذا المسجل بضبط الطاقة ومنبع النبضات ومزود ببت من اجل إعادة تشغيل الجهاز بشكل كامل (bit3).
 - عند ضبط بت الـ sleep ب 1 فإن الحساس يدخل بوضع السكون الموفر الطاقة (bit6).
 - البتات من bit0 الى bit0 مخصصين لضبط منبع نبضات الجهاز.

ويتم ضبط هذه الأمور عن طريق PWR_MGMT_2

GYROSCOPE CONFIGURATION

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	ВІТО
XG_ST	YG_ST	ZG_ST	FS_SL[1:0]			-	-

يُستخدم هذا المسجل من اجل تفعيل الاختبار الذاتي للجايروسكوب للمحاور الثلاث وضبط مجال عمل الجايرسكوب.

- عند ضبط البت BIT6 فإن الحساس يُنفذ اختبار ذاتي للجاير سكوب في محور x .
- عند ضبط البت BIT5 فإن الحساس يُنفذ اختبار ذاتي للجايرسكوب في محور y .
 - عند ضبط البت BIT4 فإن الحساس يُنفذ اختبار ذاتي للجايرسكوب في محور z.
 - يتم اختيار مجال عمل الجاير سكوب عن طريق BIT3, BIT4

GYROSCOPE CONFIGURATION

FS_SEL	Full Scale Range
0	±250 °/s
1	±500°/s
2	±1000°/s
3	±2000°/s

GYROSCOPE MEASUREMENTS

تُستخدم هذه المسجلات لتخزين القراءات الخاصة بالجايرسكوب

ADD (HEX)	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	ВІТО		
43	GYRO_XOUT[15:8]									
44	GYRO_XOUT[7:0]									
45	GYRO_YOUT[15:8]									
46	GYRO_YOUT[7:0]									
47	GYRO_ZOUT[15:8]									
48				GYRO_Z	OUT[7:0]					

GYROSCOPE MEASUREMENTS

FS_SEL	Full Scale Range	LSB Sensitivity
0	±250°/s	131 LSB/°/s
1	±500°/s	65.5 LSB/°/s
2	±1000°/s	32.8 LSB/°/s
3	±2000°/s	16.4 LSB/°/s

ACCELEROMETER CONFIGURATION

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	ВІТО
XA_ST	YA_ST	ZA_ST	AFS_SL[1:0]		-	-	-

يُستخدم هذا المسجل من اجل تفعيل الاختبار الذاتي للتسارع للمحاور الثلاث وضبط مجال عمل التسارع.

- عند ضبط البت BIT6 فإن الحساس يُنفذ اختبار ذاتي للتسارع في محور x.
- عند ضبط البت BIT5 فإن الحساس يُنفذ اختبار ذاتي للتسارع في محور y.
- عند ضبط البت BIT4 فإن الحساس يُنفذ اختبار ذاتي للتسارع في محور z.
 - تم اختيار مجال عمل للتسارع عن طريق BIT3, BIT4, حمد اختيار مجال عمل للتسارع

ACCELEROMETER CONFIGURATION

AFS_SEL	Full Scale Range
0	$\pm 2g$
1	$\pm 4g$
2	$\pm 8g$
3	$\pm 16g$

ACCELEROMETER MEASUREMENTS

ADD (HEX)	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	ВІТО			
3B		ACCEL_XOUT[15:8]									
3C		ACCEL_XOUT[7:0]									
3D		ACCEL_YOUT[15:8]									
3E		ACCEL_YOUT[7:0]									
3F		ACCEL_ZOUT[15:8]									
40				ACCEL_Z	OUT[7:0]						

ACCELEROMETER MEASUREMENTS

FS_SEL	Full Scale Range	LSB Sensitivity
0	$\pm 2g$	16384 LSB/°/s
1	$\pm 4g$	8192 LSB/°/s
2	$\pm 8g$	4096 LSB/°/s
3	$\pm 16g$	2048 LSB/°/s

TEMPERATURE MEASUREMENT

ADD (HEX)	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	ВІТО		
41		TEMP_OUT[15:8]								
42				TEMP_C	OUT[7:0]					

Temp in degrees
$$C = \frac{TEMP_OUT(from register)}{340} + 36.53$$