Cycles of Length 2n + 1 with Descent Set [n]

Stuart Paton

January 24, 2013

1 Introduction

1.1 Definitions

The subsections Cycle structure, Quasi-symmetric function and Quasi-symmetric generating function are defined in [1]

1.1.1 Cycle Structure

Let $\sigma \in S_n$.

If σ has n_i cycles of length i, then the **cycle structure** of σ is the partition $1^{n_1}2^{n_2}...$

1.1.2 Descent set

The descent set of σ , denoted by $Des(\sigma)$ is:

$$Des(\sigma) = \{i | 1 \le i \le n \text{ and } \sigma_i > \sigma_{i+1} \}$$
 (1)

Recall that subsets of $\{1,...,n-1\}$ is given by the bijection with compositions of n given by:

$$D \to C(D)$$

$$\{d_0 < d_1 < d_2 < \dots < d_k\} \rightarrow (d_1 - d_0, d_2 - d_1, \dots, d_{k+1} - d_k)$$

where $d_0 = 0$ and $d_{k+1} = n$.

Let's denote $C(\sigma)$ to be the composition associated to the descent set of σ : $C(\sigma) = C(D(\sigma))$.

1.1.3 Quasi-symmetric function

Let X be an infinite totally ordered set of variables. A formal power series F in $\mathbb{Q}[[x]]$ is called quasi-symmetric if for any variables $x_1,...,x_n,\ y_1,...,y_n$ in X with $n_1<...< x_n$ and $y_1<...< y_n$ and for any positive interes $k_1,...,k_n$ the coefficients of F of $x^{n_{k_1}}...x^{n_{k_2}}$ and $y^{n_{k_1}}...y^{n_{k_2}}$ are equal.

Quasi-symmetric generating function

Let A be a set of permutations. Lets define the quasi-symmetric generating function to be the quasi-symmetric function $\sum_{\pi \in A} F_{C(\pi)}$.

2 Cycles of Length 2n + 1 with Descent Set [n]are Catalan Structures

Theorem: The number of cycles with descent $\{i\}$ is $(1/n)\sum_{d|qcd(n,i)}\mu(d)\binom{n/d}{i/d}$ for n > 1.

Proof: The quasi-symmetric generating function for n-cycles is $L_n(x)$.

We have $L_n(1) = 0$ for $n \ge 1$ and

 $= (1/n) \sum_{d|n} \mu(d) (1+q^d)^{n/d}$

 $= (1/n) \sum_{\substack{d \mid gcd(n,i) \\ j=1}} \sum_{j=0}^{n} \mu(d) \binom{n/d}{j} q^{d_j}$ $= (1/n) \sum_{i=1}^{n} q^i \sum_{\substack{d \mid n,d \mid i \\ i/d}} \mu(d) \binom{n/d}{i/d}$ where $L_n(q,1)$ has no constant term, $\mu(d)$ is the Mobius function and

 $L_n = (1/n) \sum_{d|n} \mu(d) p_d^{n/d}.$ QED.

Theorem: Cycles of Length 2n+1 with Descent Set [n] are Catalan Struc-

Proof: From the above theorem, if we set n = 2i + 1 then this is:

$$\frac{1}{2i+1} {2i+1 \choose i} = \frac{1}{i+1} {2i \choose i}$$
 QED.

References

[1] I.M Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent set, Journal of Combinatoral Theory 64 (1993), 189 -