Pairwise comparisons of WER using other noise generation techniques

	Librispeech		Commonvoice			Timit			
	Deepspeech	Sphinx	Google	Deepspeech	Sphinx	Google	Deepspeech	Sphinx	Google
All VS Random	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.0039
All VS Important	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.033
Important VS Random	0.001	0.001	0.001	0.001	0.0461	0.9	0.158	0.5847	0.4916

Table 1: P-values using One way Anova and Tukey's HSD for pairwise comparison of frame selection methods with respect to WER achieved. GL is used for noise generation.

	Librispeech			Commonvoice			Timit		
	Deepspeech	Sphinx	Google	Deepspeech	Sphinx	Google	Deepspeech	Sphinx	Google
All VS Random	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
All VS Important	0.001	0.001	0.034	0.001	0.001	0.001	0.001	0.001	0.0171
Important VS Random	0.001	0.001	0.0033	0.53	0.1637	0.9	0.9	0.7507	0.5239

Table 2: P-values using One way Anova and Tukey's HSD for pairwise comparison of frame selection methods with respect to WER achieved. WN is used for noise generation.

As can be seen from the table 2, when using WN, there is no big difference between Random and Important on Commonvoice. This is because the white noise of this group is more focused on high similarity and lacks aggressiveness when setting. So Random and Important are not much different.

	Librispeech			Commonvoice			Timit		
	Deepspeech	Sphinx	Google	Deepspeech	Sphinx	Google	Deepspeech	Sphinx	Google
GL VS WN	0.001	0.001	0.001	0.001	0.0085	0.001	0.001	0.001	0.001
OP VS WN	0.001	0.001	0.001	0.001	0.0229	0.001	0.001	0.001	0.001
OP VS GL	0.001	0.041	0.001	0.9	0.9	0.9	0.7692	0.9	0.9

Table 3: P-values using One way Anova and Tukey's HSD for pairwise comparison of noise generation mehtods with respect to WER achieved. Random frames is used as the frame selection method.

	Librispeech		Commonvoice			Timit			
	Deepspeech	Sphinx	Google	Deepspeech	Sphinx	Google	Deepspeech	Sphinx	Google
GL VS WN	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
OP VS WN	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
OP VS GL	0.001	0.001	0.001	0.9	0.6951	0.9	0.9	0.9	0.9

Table 4: P-values using One way Anova and Tukey's HSD for pairwise comparison of noise generation mehtods with respect to WER achieved. Important frames is used as the frame selection method.

Pairwise comparisons of Similarity using other noise generation techniques

Table 5: P-values using One way Anova Tukey's HSD for pairwise comparison of Similarity achieved by different frames selection technologies. (They are all based on the WN technology of noise generation part)

	Librispeech	Commonvoice	Timit
Random VS All	0.001	0.001	0.001
Important VS ALL	0.001	0.001	0.001
Random VS Important	0.001	0.0470	0.5438

Table 6: P-values using One way Anova Tukey's HSD for pairwise comparison of Similarity achieved by different frames selection technologies. (They are all based on the GL technology of noise generation part)

	Librispeech	Commonvoice	Timit
Random VS All	0.001	0.001	0.001
Important VS ALL	0.001	0.001	0.001
Random VS Important	0.001	0.0411	0.7929

Table 7: P-values using One way Anova Tukey's HSD for pairwise comparison of Similarity achieved by different noise generation technologies. (They are all based on the Random technology of frames selection part.)

	Librispeech	Commonvoice	Timit
GL VS WN	0.001	0.001	0.7334
OP VS WN	0.001	0.001	0.802
OP VS GL	0.4847	0.8261	0.3887

Table 8: P-values using One way Anova Tukey's HSD for pairwise comparison of Similarity achieved by different noise generation technologies. (They are all based on the Important technology of frames selection part.)

	Librispeech	Commonvoice	Timit
GL VS WN	0.001	0.001	0.0568
OP VS WN	0.001	0.001	0.4622
OP VS GL	0.2978	0.6312	0.5102