	FIDELITY	RENYI $\alpha = 0.5$	RENYI $\alpha = 2$	TRACE	VN
0.001 -	0.5 0.53 0.5 0.51 0.54 0.5 0.57 0.51 0.53 0.49	0.5 0.51 0.52 0.54 0.49 0.51 0.54 0.45 0.49 0.5	0.5 0.51 0.51 0.51 0.5 0.52 0.5 0.49 0.52 0.5	0.5 0.48 0.56 0.49 0.5 0.49 0.53 0.53 0.54 0.53	0.5 0.49 0.47 0.48 0.51 0.46 0.49 0.48 0.53 0.46
0.003 -	0.5 0.5 0.51 0.52 0.46 0.53 0.52 0.5 0.47 0.44	0.5 0.5 0.49 0.47 0.48 0.49 0.5 0.5 0.47 0.5	- 0.5 0.49 <mark>0.54</mark> 0.49 0.44 0.48 0.51 0.46 0.51 <mark>0.53</mark>	- 0.5 0.48 0.53 0.48 0.46 0.46 0.48 0.52 <mark>0.57</mark> 0.53	- 0.5 0.51 0.5 0.52 0.53 <mark>0.56</mark> 0.5 <mark>0.55</mark> 0.52 0.49
0.008 -	0.5 0.5 0.47 0.5 0.52 0.49 0.46 0.49 0.54 0.53	0.5 0.5 0.48 0.48 0.5 0.55 0.51 0.5 0.47 0.44	0.5 0.5 0.51 0.47 0.5 <mark>0.53</mark> 0.48 0.51 0.5 0.46	0.5 0.5 0.5 0.53 0.52 0.54 0.53 0.55 0.47 0.54	0.5 0.5 0.51 0.48 0.53 0.53 0.52 0.52 0.51 0.48
0.022 -	0.5 0.5 0.5 0.52 0.55 0.65 0.68 0.69 0.66 0.66	0.5 0.5 0.48 0.5 0.56 0.6 0.59 0.62 0.59 0.6	0.5 0.5 0.5 0.5 0.5 0.49 0.5 0.54 0.51 0.51	- 0.5 0.5 0.49 0.55 <mark>0.61 0.62 0.56 0.62 0.55 0.59</mark>	- 0.5 0.5 0.49 0.5 0.59 <mark>0.67 0.69 0.6 0.61 0.6</mark>
$\mathcal{E}^{-30.0}$	0.5 0.5 0.5 0.54 0.65 0.76 0.8 0.77 0.76 0.81	0.5 0.5 0.5 0.51 0.58 0.69 0.7 0.71 0.76 0.75	0.5 0.5 0.51 0.5 0.51 0.51 0.53 0.54 0.54 0.53	0.5 0.5 0.5 0.56 0.63 0.66 0.67 0.69 0.66 0.69	0.5 0.5 0.48 0.54 0.65 0.79 0.8 0.81 0.78 0.82
$\begin{bmatrix} s\eta \end{bmatrix}_{0.167}^{2}$	0.5 0.5 0.5 0.55 0.71 0.82 0.83 0.81 0.85 0.83	0.5 0.5 0.5 0.51 0.61 0.72 0.76 0.74 0.72 0.79	0.5 0.5 0.5 0.5 0.51 0.53 0.54 0.53 0.52 0.54	- 0.5 0.5 0.5 0.61 0.66 0.7 0.71 0.72 0.71 0.71	0.5 0.5 0.5 0.55 0.71 0.82 0.83 0.81 0.83 0.85
0.464 -	0.5 0.5 0.5 0.57 0.71 0.82 0.84 0.85 0.86 0.84	0.5 0.5 0.5 0.51 0.64 0.73 0.76 0.78 0.79 0.76	0.5 0.5 0.5 0.5 0.5 0.52 0.53 0.52 0.53 0.52	0.5 0.5 0.5 0.6 0.66 0.71 0.71 0.71 0.72 0.71	0.5 0.5 0.5 0.55 0.68 0.82 0.85 0.84 0.86 0.85
1.292 -	0.5 0.5 0.5 0.57 0.71 0.83 0.84 0.85 0.85 0.86	0.5 0.5 0.5 0.5 0.63 0.76 0.77 0.78 0.78 0.76	0.5 0.5 0.5 0.5 0.51 0.51 0.52 0.51 0.51 0.52	- 0.5 0.5 0.5 0.6 0.66 0.71 0.72 0.71 0.71 0.72	- 0.5 0.5 0.5 0.58 0.69 0.83 0.84 0.85 0.85 0.84
3.594 -	0.5 0.5 0.5 0.58 0.72 0.83 0.83 0.85 0.85 0.85	0.5 0.5 0.5 0.5 0.6 0.76 0.77 0.77 0.77	0.5 0.5 0.5 0.5 0.5 0.51 0.51 0.51 0.51	0.5 0.5 0.5 0.6 0.67 0.71 0.71 0.71 0.71	0.5 0.5 0.5 0.57 0.71 0.83 0.83 0.85 0.85 0.85
10.0 -	0.5 0.5 0.5 0.57 0.7 0.83 0.85 0.85 0.84 0.85	0.5 0.5 0.5 0.5 0.63 0.75 0.76 0.78 0.78 0.77	0.5 0.5 0.5 0.5 0.5 0.51 0.51 0.51 0.51	- 0.5 0.5 0.5 0.6 0.66 0.71 0.71 0.71 0.72 0.72	- 0.5 0.5 0.5 0.57 0.72 0.83 0.84 0.84 0.86 0.85
0.001 -	0.5 0.46 0.5 0.49 0.42 0.53 0.47 0.51 0.51 0.5	0.5 0.5 0.47 0.5 0.49 0.46 0.47 0.51 0.54 0.46	0.5 0.52 0.5 0.46 0.45 0.48 0.53 0.44 0.48 0.48	0.5 0.5 0.49 0.55 0.5 0.44 0.47 0.51 0.48 0.52	0.5 0.51 0.49 0.51 0.52 0.47 0.47 0.45 0.54 0.55
0.003 -	0.5 0.5 0.5 0.54 0.47 0.49 0.47 0.5 0.58 0.49	0.5 0.49 0.53 0.51 0.53 0.53 0.52 0.53 0.46 0.44	- 0.5 0.49 <mark>0.54</mark> 0.53 0.5 0.52 0.45 0.5 <mark>0.55</mark> 0.49	- 0.5 0.5 0.46 <mark>0.53</mark> 0.49 0.5 <mark>0.52</mark> 0.44 0.5 0.51	- 0.5 0.49 <mark>0.52 0.52</mark> 0.47 0.5 0.5 0.5 0.48 0.47
0.008 -	0.5 0.5 0.5 0.51 0.5 0.51 0.48 0.48 0.54 0.5	0.5 0.5 0.5 0.51 0.53 0.56 0.51 0.52 0.51 0.48	0.5 0.5 0.49 0.48 0.5 0.5 0.44 0.48 0.49 0.54	0.5 0.5 0.52 0.51 0.53 0.5 0.5 0.5 0.5 0.53	0.5 0.5 0.5 0.52 0.46 0.56 0.5 0.49 0.42 0.48
0.022 -	0.5 0.5 0.51 0.49 0.54 0.54 0.53 0.54 0.55 0.57	0.5 0.5 0.49 0.52 0.5 0.55 0.59 0.66 0.54 0.54	- 0.5 0.5 0.5 0.52 0.51 0.51 <mark>0.56 0.56</mark> 0.49 0.53	- 0.5 0.5 0.49 0.54 0.52 0.54 0.5 <mark>0.56 0.55 0.57</mark>	- 0.5 0.5 0.51 0.53 0.5 <mark>0.59 0.54 0.54 0.53 0.55</mark>
\sim				0.5 0.5 0.5 0.49 0.52 0.67 0.67 0.66 0.67 0.67	
C = 0.167	0.5 0.5 0.5 0.5 0.55 0.71 0.74 0.76 0.72 0.75	0.5 0.5 0.5 0.52 0.6 0.83 0.85 0.83 0.88 0.82	- 0.5 0.5 0.5 0.52 0.54 0.71 0.72 0.73 0.74 0.76	- 0.5 0.5 0.5 0.51 0.51 0.74 0.76 0.75 0.74 0.76	- 0.5 0.5 0.5 0.5 0.54 0.73 0.74 0.72 0.75 0.76
0.464 -	0.5 0.5 0.5 0.5 0.53 0.76 0.76 0.78 0.78 0.78	0.5 0.5 0.5 0.53 0.58 0.87 0.9 0.9 0.89 0.89	0.5 0.5 0.5 0.5 0.51 0.74 0.75 0.77 0.76 0.77	0.5 0.5 0.5 0.5 0.5 0.53 0.76 0.76 0.75 0.76 0.77	0.5 0.5 0.5 0.5 0.54 0.76 0.76 0.78 0.78 0.77
1.292 -	0.5 0.5 0.5 0.5 0.53 0.76 0.77 0.78 0.77 0.78	0.5 0.5 0.5 0.51 0.58 0.89 0.89 0.9 0.88 0.92	0.5 0.5 0.5 0.5 0.51 0.75 0.76 0.76 0.76 0.77	- 0.5 0.5 0.5 0.5 0.52 0.76 0.77 0.76 0.76 0.76	- 0.5 0.5 0.5 0.5 0.53 0.77 0.77 0.77 0.77 0.77
3.594 -	0.5 0.5 0.5 0.5 0.53 0.76 0.76 0.78 0.77 0.77	0.5 0.5 0.5 0.5 0.58 0.88 0.9 0.91 0.92 0.91	0.5 0.5 0.5 0.5 0.51 0.75 0.77 0.77 0.77 0.76	0.5 0.5 0.5 0.5 0.51 0.76 0.77 0.77 0.76 0.77	0.5 0.5 0.5 0.5 0.53 0.76 0.77 0.77 0.78 0.77
10.0 -	0.5 0.5 0.5 0.5 0.53 0.76 0.76 0.77 0.78 0.77	0.5 0.5 0.5 0.51 0.57 0.9 0.91 0.92 0.92 0.91	0.5 0.5 0.5 0.5 0.51 0.75 0.77 0.77 0.77	- 0.5 0.5 0.5 0.5 0.52 0.76 0.77 0.77 0.77 0.77	- 0.5 0.5 0.5 0.55 0.76 0.76 0.77 0.76 0.77
0.001 -	0.51 0.5 0.41 0.51 0.48 0.47 0.53 0.49 0.55 0.51	0.5 0.51 0.5 0.5 0.5 0.48 0.51 0.5 0.46 0.51	0.51 0.5 0.5 0.48 0.51 0.54 0.48 0.5 0.49 0.52	0.51 0.5 0.51 0.45 0.49 0.49 0.53 0.54 0.47 0.53	0.5 0.45 0.47 0.44 0.48 0.5 0.51 0.47 0.53 0.53
0.003 -	0.5 0.5 0.49 0.51 0.52 0.48 0.46 0.51 0.43 0.51	0.5 0.49 0.48 0.48 0.48 0.46 0.52 0.53 0.52 0.48	- 0.5 0.49 0.48 0.47 <mark>0.54</mark> 0.48 0.48 0.5 <mark>0.56</mark> 0.54	- 0.5 0.49 0.45 0.47 0.51 <mark>0.53 0.52</mark> 0.48 0.47 0.51	- 0.5 0.48 0.51 0.48 <mark>0.51</mark> 0.44 0.47 <mark>0.53</mark> 0.49 0.47
0.008 -	0.5 0.49 0.49 0.51 0.5 0.49 0.51 0.51 0.54 0.55	0.5 0.51 0.49 0.5 0.47 0.48 0.46 0.5 0.52 0.47	0.5 0.51 0.48 0.48 0.53 0.51 0.53 0.51 0.48 0.54	0.5 0.5 0.47 0.52 0.5 0.48 0.51 0.48 0.53 0.5	0.5 0.51 0.51 0.45 0.55 0.49 0.54 0.52 0.5 0.49
0.022 -	0.5 0.5 0.5 0.51 0.5 0.57 0.54 0.52 0.55 0.52	0.5 0.5 0.51 0.48 0.52 0.59 0.56 0.54 0.5 0.57	0.5 0.5 0.51 0.5 0.51 0.51 0.52 0.53 0.5 0.51	- 0.5 0.5 0.48 0.48 0.5 <mark>0.54</mark> 0.51 0.52 0.52 0.53	- 0.5 0.5 0.5 0.5 0.51 0.51 0.47 0.52 <mark>0.57</mark> 0.48
$\mathcal{E}_{0.06}$	0.5 0.5 0.5 0.5 0.5 0.62 0.61 0.61 0.6 0.59	0.5 0.5 0.5 0.5 0.55 0.66 0.63 0.57 0.6 0.63	0.5 0.5 0.5 0.5 0.52 0.57 0.58 0.57 0.53 0.53	0.5 0.5 0.5 0.5 0.52 0.61 0.66 0.61 0.58 0.54	0.5 0.5 0.49 0.51 0.51 0.56 0.6 0.6 0.6 0.59
\Box 0.167 -	0.5 0.5 0.5 0.5 0.5 0.68 0.77 0.78 0.72 0.74	0.5 0.5 0.5 0.49 0.58 0.74 0.78 0.76 0.78 0.72	0.5 0.5 0.5 0.49 0.5 0.64 0.71 0.67 0.72 0.7	- 0.5 0.5 0.5 0.5 0.53 0.66 0.72 0.72 0.76 0.75	- 0.5 0.5 0.5 0.5 0.5 0.67 0.78 0.8 0.76 0.72
0.464 -	0.5 0.5 0.5 0.5 0.51 0.72 0.84 0.87 0.87 0.87	0.5 0.5 0.5 0.5 0.59 0.78 0.81 0.84 0.84 0.79	0.5 0.5 0.5 0.5 0.52 0.66 0.75 0.74 0.76 0.76	0.5 0.5 0.5 0.5 0.54 0.72 0.81 0.84 0.85 0.83	0.5 0.5 0.5 0.5 0.52 0.75 0.85 0.88 0.89 0.83
1.292 -	0.5 0.5 0.5 0.5 0.51 0.74 0.88 0.89 0.89 0.89	0.5 0.5 0.5 0.5 0.59 0.77 0.84 0.84 0.85 0.88	0.5 0.5 0.5 0.5 0.51 0.69 0.77 0.77 0.76 0.79	- 0.5 0.5 0.5 0.5 0.52 0.74 0.84 0.87 0.85 0.84	- 0.5 0.5 0.5 0.5 0.53 0.74 0.87 0.88 0.9 0.89
3.594 -	0.5 0.5 0.5 0.5 0.52 0.77 0.88 0.9 0.89 0.89	0.5 0.5 0.5 0.5 0.58 0.79 0.86 0.84 0.86 0.88	0.5 0.5 0.5 0.5 0.51 0.7 0.78 0.77 0.79 0.76	0.5 0.5 0.5 0.5 0.52 0.74 0.83 0.86 0.86 0.86	0.5 0.5 0.5 0.5 0.52 0.74 0.88 0.89 0.9 0.87
10.0 -	0.5 0.5 0.5 0.5 0.52 0.76 0.88 0.88 0.9 0.88	0.5 0.5 0.5 0.5 0.57 0.78 0.85 0.87 0.87 0.86	0.5 0.5 0.5 0.5 0.52 0.71 0.77 0.77 0.77 0.78	- 0.5 0.5 0.5 0.5 0.53 0.75 0.84 0.86 0.85 0.87	- 0.5 0.5 0.5 0.5 0.51 0.75 0.88 0.88 0.9 0.89
	0,000,000,000,000,000,000,000,000,000	010,030,051,011,000,000,000,000,000,000,001	0'620'037'037'017'0'00'000'000'007'007'007'007	010,013,015,015,010,010,010,010,010,010,010	0'00'039'051'011'0'00'000'000'000'000'000'000'
	$\sigma_c[T]$	$\sigma_c[T]$	$\sigma_c[T]$	$\sigma_c[T]$	$\sigma_c[T]$