Morning session: overview

Unsupervised learning: dimension reduction and data integration

- Principal Component Analysis (PCA)
 - Maximal variance principle
- Partial Least Squares (PLS)
 - Maximal covariance principle
- Two-way Orthogonal PLS (O2PLS)
 - Multi-omics data integration

Background

 Recent advances in technology provided many types of biological datasets (multi-omics data)

- Different levels of biological variation measured
- Need for integrative approaches: combine data and extract information

Integrative approach: aims

- How does variation between omics datasets relate?
- Which types of features induce this variation?
- Can we benefit from a joint/integrative analysis?

Transcriptomics

Integrative approach: aims

- How does variation between omics datasets relate?
- Which types of features induce this variation?
- Can we benefit from a joint/integrative analysis?

Integrative approach: aims

- How does variation between omics datasets relate?
- Which types of features induce this variation?
- Can we benefit from a joint/integrative analysis?

Integrative approaches: means

There is typically

- High correlation among features
 - Genes are correlated
 - Metabolites are correlated
- Relation between features from two datasets

 Latent variable approach: few independent latent variables drive association

Example: bivariate data

- Suppose we have two genes, and two metabolites x_1, x_2, y_1, y_2
- The variance of x_1 is larger than of x_2
- The variance of y_2 is larger than of y_1
- Only x_2 and y_1 are correlated
- Which variables will get high weight with PCA? Why?
- Which variables should get high weight when you look at the relation between x and y?

Partial Least Squares (PLS)

- Let X and Y be two data matrices
 - Size: N times p and q, respectively
 - -p and q can be very large
- Recall: in PCA, variance is maximized
- We are interested in the covariation between X and
- Consider covariance between X and $Y: Y^TX$
 - Dimension: q times p

Partial Least Squares (PLS)

- Maximize covariance between projections of X and Y
 - Weights w for X and c for Y
 - Maximize $c^{\mathsf{T}}Y^{\mathsf{T}}Xw$ such that $w^{\mathsf{T}}w=c^{\mathsf{T}}c=1$
 - Lagrange: $c^{\mathsf{T}}Y^{\mathsf{T}}Xw \lambda_w w^{\mathsf{T}}w \lambda_c c^{\mathsf{T}}c$
 - Take derivatives w.r.t. w and c separately, set to zero, and solve
- The solution is given by the singular value decomposition
 - Best w is the first right singular vector, best c is the first left singular vector of Y^TX
- Similar interpretation as PCA, except that we focus on covariance
- The scores can again be calculated as: t = Xw and u = Yc

Example: PLS

```
library(OmicsPLS)
```

```
gene1 <- rnorm(100)
gene2 <- rnorm(100,sd=0.75)
metab1 <- rnorm(100)
metab2 <- gene2
```

```
X <- cbind(gene1, gene2)
Y <- cbind(metab1, metab2)</pre>
```

```
svd(X,0,1)$v
o2m(X, Y, 1, 0, 0)$W.
```

```
These are the weights for PCA
            \lceil,1\rceil
[1,] -0.9882865
[2,] -0.1526100
These are the weights for PLS
Data is not centered, proceeding...
              \lceil,1\rceil
gene1 0.02574932
gene2 0.99966843
```


Partial Least Squares: summary

- For given datasets X and Y, we want to inspect their relation
- We consider directions of maximal covariance
- This direction is represented by weights for each feature, calculated by a singular value decomposition of the covariance matrix Y^TX
- The projections of the data onto these weights are called the scores.
- One can interpret or plot the weights and scores to understand which features/samples are most important

Morning session: overview

Unsupervised learning: dimension reduction and data integration

- Principal Component Analysis (PCA)
 - Maximal variance principle
- Partial Least Squares (PLS)
 - Maximal covariance principle
- Two-way Orthogonal PLS (O2PLS)
 - Multi-omics data integration

