Final Presentation Team 13

Erin Werner, Ian Dela Cruz, Jae Park, Song Park

The Case for Flight Prediction & Data Sets

Impact: Increased operational efficiency, customer experience, etc.

Goal: Create a model to predict whether or not a departure delay > 15m will occur for a given flight (2h prior).

Audience: Airlines.

Data:

Airlines Data

Weather Station Data

Weather Data

Data Pipeline & Agenda

EDA: Airlines Dataset

On-time data for flights from all major
 US certified air carriers

- Timeframe: 2015-2019

- 63.5 million flights

Departure	# of Flights	% of Flights	
On-Time	51,152,008	80.56%	
Delayed	11,387,082	17.93%	
NA	954,592	1.50%	

% of Flights Delayed: Day of Week, Month

% of Flights Delayed: Time

* EDA performed on the full airlines dataset.

% of Flights Delayed: Distance, Carrier

Data Prep, Feature Selection & Engineering

Data Cleaning and Transformations

- Weather data parsing and normalization
- Handling of nulls/NaNs
 - Imputation
 - Drop records

Feature Selection & Engineering

- Selection of relevant features
- Derived features:
 - Average flights per airline-airport
 - Average percent delayed flights per airline-airport
 - Average of distance flown per airline-airport
- One-hot Encoded Categorical features

Data Join, Performance & Results

Runtimes	Prep	Join	
3-mo Dataset	~3 min	~158 min	
Total Dataset	~3 min	~460 min	

Total Dataset	Training Data	Validation Data	Test Data
# Records	16,831,304	7,078,983	7,268,299

Algorithms

Logistic Regression

Gradient Boosted Trees & XGBoost

Final Model & Advantages

Main Model:

Extreme Gradient Boosting

Further Optimization:

- Gridsearch
- Time Series Cross-Validation

Advantages:

- 1. Algorithmic optimization
 - a. Regularization
 - b. Sparsity Awareness
 - c. Weighted Quantile Sketch
- 2. System optimization
 - a. Parallelization
 - o. Tree Pruning
 - c. Hardware Optimization

ML Pipeline Overview

Objectives:

- Address Imbalanced Dataset
 - Down-sampling, Class weights
 - SMOTE
- Custom Pipeline to Input features to fit each models
 - Standardization for numeric features (LR)
 - OHE for categorical features
 - Relevant Feature selection via Chi-Square Selector
- Hyperparameter Tuning
 - Gridsearch
 - K-fold time series split

Cross Validation

Process

- GridSearch for each model
- 2. Iterate and choose param set
 - Train & Validate model on each fold
 - Calculate F2 score for each fold
 - Update best validation parameter set
- 3. Train final model
 - 2015-2018, param from validation
- 4. Evaluate on final test data

Model Performance & Scalability

	XGBoost		Gradient Boosted Trees		Logistic Regression	
	Train	Test	Train	Test	Train	Test
F1	0.41	0.41	0.42	0.42	0.42	0.42
F2	0.61	0.61	0.57	0.58	0.54	0.54
Recall	0.90	0.90	0.75	0.76	0.67	0.68
Precision	0.27	0.26	0.29	0.29	0.31	0.30
Runtime (seconds)	1933.2	1462.2	1263.1	1097.4	159.1	604.2

Challenges

- Imbalanced Outcome Variable
- Feature Independence
- Lack of Domain Knowledge
- Multi-Dataset Join
 - Loss of Information

Future Work

- Expand the dataset to more recent years (i.e. 2020)
- Incorporate additional outside datasets to add new features
- Create data pipeline to stream new data in real-time

The End

