Read an external file of poly(A) sites and analyze it with the movAPA package

Xiaohui Wu, Wenbin Ye, Tao Liu, Hongjuan Fu

Last modified 2020-12-25

Contents

1	Overview	1
2	Read the file of PACs with genome annotation	2
	2.1 Data read	2
	2.2 Statistics	3
3	Read the file of PACs with only coordinates	4
	3.1 Data read	Ę
	3.2 Annotation	6
	3.3 Statistics	7
4	Session Information	7

1 Overview

This documentation describes how to read an external file of poly(A) sites and analyze it with movAPA. We used the model species – Arabidopsis for demonstration. First we can download a poly(A) site list from PlantAPAdb. Here we just downloaded poly(A) site clusters (PACs) for demostration. A PAC is already the group of nearby cleavage sites.

Demo file 1: PACs with genome annotation (3 replicates). Download the data (arabidopsis_thaliana.SRP093950_amp.high_confidence.PAC.annotation.tpm.csv) here.

Demo file 2: PACs in bed format with only coordinates. Download the data here.

These data files and the Arabidopsis TAIR10 gff3 file can also be downloaded from here.

2 Read the file of PACs with genome annotation

movAPA implemented the *PACdataset* object for storing the expression levels and annotation of PACs from various conditions/samples. Almost all analyses of poly(A) site data in movAPA are based on the *PACdataset*. The "counts" matrix is the first element in the array list of *PACdataset*, which stores non-negative values representing expression levels of PACs. The "colData" matrix records the sample information and the "anno" matrix stores the genome annotation or additional information of the poly(A) site data.

2.1 Data read

```
library(movAPA, warn.conflicts = FALSE, quietly=TRUE)
filename <- 'arabidopsis_thaliana.SRP093950_amp.high_confidence.PAC.annotation.tpm.csv'
pac=read.csv(filename,stringsAsFactors =F)
pac \leftarrow pac[,-1]
## Rename annotation columns.
## In a PACdataset, the annotation column names must be named as
##(gene/gene_type/ftr/ftr_start/ftr_end/UPA_start/UPA_end).
## Other non-sample columns will be also retained
## in the @anno slot of the PACdataset.
pac=dplyr::rename(pac, UPA_start = 'start', UPA_end='end', gene_type='biotype')
colnames(pac)
#> [1] "chr"
                            "UPA_start"
                                               "UPA_end"
                                                                   "strand"
  [5] "PAnum"
                            "tot_tag"
                                               "coord"
                                                                   "refPAnum"
#>
#> [9] "ftr"
                            "gene_id"
                                               "gene_type"
                                                                   "ftr_start"
#> [13] "ftr_end"
                            "upstream_id"
                                                                   "upstream_end"
                                               "upstream_start"
#> [17] "downstream_id"
                            "downstream_start" "downstream_end"
                                                                   "Amp311_R1"
#> [21] "Amp311_R2"
                            "Amp311_R3"
                                               "average"
## Describe the sample columns and corresponding group(s) in a data.frame
colData=as.data.frame(matrix(c('Amp', 'Amp', 'Amp'), ncol=1,
                              dimnames=list(paste0('Amp311_R',1:3), 'group')))
## Read the PAC file into a PACdataset
PACds=readPACds(pacFile=pac, colDataFile=colData, noIntergenic=FALSE, PAname='PA')
#> 16959 PACs
PACds
#> PAC# 16959
#> gene# 0
               nPAC
#>
#> 3UTR
              14475
#> 5UTR
                 78
#> CDS
                315
#> exon
                129
#> intergenic 1733
```

```
#> intron
               229
#> sample# 3
#> Amp311_R1 Amp311_R2 Amp311_R3 ...
#> groups:
#> @colData...[3 x 1]
#>
            group
#> Amp311_R1 Amp
#> Amp311_R2 Amp
#> @counts...[16959 x 3]
      Amp311 R1 Amp311 R2 Amp311 R3
#> PA1 1.881794 3.730031 3.874707
#> PA2 4.390854 1.017281 6.027323
#> @colData...[3 x 1]
#>
            group
#> Amp311_R1
              Amp
#> Amp311_R2
             Amp
#> @anno...[16959 x 20]
      chr UPA_start UPA_end strand PAnum tot_tag coord refPAnum
                                                                    ftr
                                        34 5895
#> PA1
              5846 5922
                              +
                                   13
                                                                   3UTR
        1
#> PA2
      1
              13924 13935
                              +
                                    4
                                            27 13926
                                                          23 intergenic
                    gene_type ftr_start ftr_end upstream_id upstream_start
        qene_id
                                         5899
#> PA1 AT1G01010 protein_coding 5631
                                                      <NA>
#> PA2 AT1G03987
                       lncRNA
                                  11372 23121
                                                 AT1G03987
                                                                   11101
      upstream_end downstream_id downstream_start downstream_end average
#> PA1
               NA
                           <NA>
                                             NA
                                                           NA 3.162177
                                          23121
#> PA2
             11372
                      AT1G01040
                                                      31227 3.811819
```

2.2 Statistics

After read the data into a *PACdataset*, users can use many functions in movAPA for removing internal priming artifacts, polyA signal analysis, etc. Please follow the vignette of "movAPA_on_rice_tissues" for more details.

```
#> [1] 11873
length(PACdsIP$ip)
#> [1] 5086
\# Base compostions and k-grams
faFiles=faFromPACds(PACds, bsgenome, what='updn', fapre='updn',
                    up=-300, dn=100, byGrp='ftr')
#> 14475 >>> updn.3UTR.fa
#> 1733 >>> updn.intergenic.fa
#> 229 >>> updn.intron.fa
#> 129 >>> updn.exon.fa
#> 78 >>> updn.5UTR.fa
#> 315 >>> updn.CDS.fa
faFiles=c("updn.3UTR.fa", "updn.CDS.fa", "updn.intergenic.fa", "updn.intron.fa")
## Plot single nucleotide profiles using the extracted sequences
## and merge all plots into one.
plotATCGforFAfile (faFiles, ofreq=FALSE, opdf=FALSE,
                   refPos=301, mergePlots = TRUE)
```


3 Read the file of PACs with only coordinates

In this section, we show how to read a list of polyA sites with only coordinates. Here we use the file in bed format for demonstration.

3.1 Data read

```
library(movAPA)
## Read a BED file
pac=read.table('arabidopsis_thaliana.SRP093950_amp.high_confidence.PAC.bed',
              header=F, stringsAsFactors = F)
head(pac)
#> V1
          V2
                V3 V4 V5
#> 1 1 5846 5922 . +
#> 2 1 13924 13935 . +
#> 3 1 31127 31190 . +
#> 4 1 74000 74111 . +
#> 5 1 76647 76709 . +
#> 6 1 89687 89851 . +
# We only keep the chr/strand/coord, here we used the start position as the coord.
colnames(pac)=c('chr','coord','x','dot','strand')
pac=pac[,c('chr','strand','coord')]
# We don't have any expression level of the sample,
# so we only read the PAC list and set the expression as 1.
## Read the PAC file into a PACdataset
PACds=readPACds(pacFile=pac, colDataFile=NULL, noIntergenic=FALSE, PAname='PA')
#> 16959 PACs
PACds
#> PAC# 16959
#> sample# 1
#> tag ...
#> groups:
#> @colData...[1 x 1]
#>
       group
#> tag group1
#> @counts...[16959 x 1]
#>
       taq
#> PA1
       1
#> PA2
#> @colData...[1 x 1]
#>
       group
#> tag group1
#> @anno...[16959 x 3]
#> chr strand coord
#> PA1 1
             + 5846
#> PA2 1 + 13924
```

3.2 Annotation

After read the data into a *PACdataset*, users can use movAPA for annotation first. Please download the genome annotation file of Arabidopsis TAIR 10 in gff3 format from the tair website.

```
athGFF="./Arabidopsis_thaliana.TAIR10.42/Arabidopsis_thaliana.TAIR10.42.gff3"
# First we parse the gff3 file.
gff=parseGff(athGFF)
# Please make sure the chromosome name of your PAC data is the same as
# the qff file (and the BSgenome)
head(gff$anno.need)
#>
     segnames start end width strand
                                          source
                                                            type score phase
#> 4
            1 3631 3759
                            129
                                     + araport11 five_prime_UTR
                                                                    NA
                                                                          NA
               3631 3913
                            283
#> 5
                                     + araport11
                                                                          NA
                                                            exon
#> 6
            1 3760 3913
                           154
                                     + araport11
                                                             CDS
                                                                            0
            1 3996 4276
                            281
                                     + araport11
                                                            exon
                                                                    NA
                                                                          NA
#> 8
            1 3996 4276
                            281
                                     + araport11
                                                             CDS
                                                                            2
                                                                    NA
#> 9
            1 4486 4605
                            120
                                     + araport11
                                                            exon
                                                                    NA
                                                                          NA
#>
              ID Alias
                                     Name
                                                  biotype description
                                                                        gene id
#> 4
            <NA>
                                     <NA> protein_coding
                                                                 <NA> AT1G01010
#> 5
            <NA>
                       AT1G01010.1.exon1 protein coding
                                                                 <NA> AT1G01010
#> 6 AT1G01010.1
                                     <NA> protein_coding
                                                                 <NA> AT1G01010
#> 7
            <NA>
                       AT1G01010.1.exon2 protein_coding
                                                                 <NA> AT1G01010
                                     <NA> protein_coding
#> 8 AT1G01010.1
                                                                 <NA> AT1G01010
#> 9
            <NA>
                       AT1G01010.1.exon3 protein_coding
                                                                 <NA> AT1G01010
#>
     logic_name
                     Parent transcript_id constitutive ensembl_end_phase
#> 4
           <NA> AT1G01010.1
                                      <NA>
                                                    <NA>
                                                                       <NA>
#> 5
           <NA> AT1G01010.1
                                      <NA>
                                                       1
                                                                          1
#> 6
           <NA> AT1G01010.1
                                      <NA>
                                                    <NA>
                                                                       <NA>
#> 7
           <NA> AT1G01010.1
                                      <NA>
                                                       1
                                                                          0
#> 8
           <NA> AT1G01010.1
                                      <NA>
                                                    <NA>
                                                                       <NA>
           <NA> AT1G01010.1
#> 9
                                      <NA>
                                                       1
#>
     ensembl_phase
                              exon_id rank protein_id Is_circular
#> 4
                                                   <NA>
              <NA>
                                 <NA> <NA>
                                                               <NA>
#> 5
                -1 AT1G01010.1.exon1
                                        1
                                                   <NA>
                                                               <NA>
#> 6
                                 <NA> <NA> AT1G01010.1
                                                               <NA>
              <NA>
#> 7
                 1 AT1G01010.1.exon2
                                         2
                                                               <NA>
#> 8
              <NA>
                                 <NA> <NA> AT1G01010.1
                                                               <NA>
                 O AT1G01010.1.exon3
                                         3
                                                   <NA>
                                                               <NA>
# You can also save the parsed gff file as an rda object for further use.
# save(gff, file='TAIR10.gff.rda')
# Annotate the PAC data
PACds=annotatePAC(PACds, gff)
PACds
#> PAC# 16959
#> gene# 11769
#>
               nPAC
#> 3UTR
              12927
```

```
#> 5UTR
                 89
#> CDS
                450
#> exon
                140
#> intergenic
               3088
#> intron
                265
#> Mean 3UTR length of PACs (bp): 217
#> sample# 1
#> tag ...
#> groups:
#> @colData...[1 x 1]
#>
        group
#> tag group1
#> @counts...[16959 x 1]
#>
          tag
#> PA9399
            1
#> PA9400
          1
#> @colData...[1 x 1]
        group
#> tag group1
#> @anno...[16959 x 19]
          chr strand
                                               gene_type ftr_start ftr_end
                        coord
                                      ftr
#> PA9399
           1
                   - 10031958 intergenic protein_coding 10031985 10014256
                   - 10041642
                                    3UTR protein_coding 10041576 10041837
#> PA9400
#>
               gene gene_start gene_end gene_stop_codon upstream_id upstream_start
#> PA9399 AT1G28530
                      10031985 10035638
                                                10032127
                                                           AT1G28530
                                                                            10031985
#> PA9400 AT1G28570
                      10041576 10044258
                                                10041838
                                                                 <NA>
                                                                                  NA
          upstream end downstream id downstream start downstream end
#> PA9399
              10035638
                           AT1G28480
                                              10013434
                                                             10014256
#> PA9400
                    NA
                                 <NA>
                                                    NA
                                                                   NA
          three_UTR_length three_extend
#> PA9399
                       169
#> PA9400
                       196
                                      NA
#> @supp...[1]
#> stopCodon
```

3.3 Statistics

After read the data into a *PACdataset*, users can use many functions in movAPA for removing internal priming artifacts, polyA signal analysis, etc. Please follow the vignette of "movAPA_on_rice_tissues" or the above example for more details.

4 Session Information

The session information records the versions of all the packages used in the generation of the present document.

```
sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 18363)
#>
#> Matrix products: default
#>
#> locale:
#> [1] LC_COLLATE=Chinese (Simplified)_China.936
#> [2] LC_CTYPE=Chinese (Simplified)_China.936
#> [3] LC_MONETARY=Chinese (Simplified)_China.936
#> [4] LC_NUMERIC=C
#> [5] LC_TIME=Chinese (Simplified)_China.936
#>
#> attached base packages:
#> [1] stats4 parallel stats graphics grDevices utils
                                                                   datasets
#> [8] methods
                base
#> other attached packages:
#> [1] BSgenome.Athaliana.TAIR.TAIR9_1.3.1000
#> [2] movAPA_0.1.0
#> [3] DEXSeq_1.32.0
#> [4] DESeg2 1.26.0
#> [5] SummarizedExperiment_1.16.1
#> [6] DelayedArray_0.12.3
#> [7] BiocParallel_1.20.1
#> [8] matrixStats_0.57.0
#> [9] GenomicFeatures_1.38.2
#> [10] AnnotationDbi_1.48.0
#> [11] Biobase_2.46.0
#> [12] ggbio_1.34.0
#> [13] BSgenome_1.54.0
#> [14] rtracklayer_1.46.0
#> [15] Biostrings_2.54.0
#> [16] XVector_0.26.0
#> [17] ggplot2_3.3.2
#> [18] data.table_1.13.2
#> [19] RColorBrewer 1.1-2
#> [20] GenomicRanges_1.38.0
#> [21] GenomeInfoDb_1.22.1
#> [22] IRanges_2.20.2
#> [23] S4Vectors_0.24.4
#> [24] BiocGenerics_0.32.0
#> [25] reshape2_1.4.4
#> [26] dplyr_1.0.2
#>
#> loaded via a namespace (and not attached):
```

#>	[1] colorspace_1.4-1	$hwriter_1.3.2$	$ellipsis_0.3.1$
#>	[4] biovizBase_1.34.1	$htmlTable_2.1.0$	base64enc_0.1-3
#>	[7] dichromat_2.0-0	$rstudioapi_0.11$	$farver_2.0.3$
#>	[10] bit64_4.0.5	$splines_3.6.0$	$geneplotter_1.64.0$
#>	[13] knitr_1.30	Formula_1.2-4	${\it Rsamtools_2.2.3}$
#>	[16] annotate_1.64.0	$cluster_2.1.0$	$dbplyr_1.4.4$
#>	[19] png_0.1-7	graph_1.64.0	${\it BiocManager_1.30.10}$
#>	[22] compiler_3.6.0	$httr_1.4.2$	$backports_1.1.10$
#>	[25] $assertthat_0.2.1$	<i>Matrix_1.2-18</i>	$lazyeval_0.2.2$
#>	[28] htmltools_0.5.0	$prettyunits_1.1.1$	tools_3.6.0
#>	[31] gtable_0.3.0	$glue_1.4.2$	${\it GenomeInfoDbData_1.2.2}$
#>	[34] rappdirs_0.3.1	Rcpp_1.0.5	$vctrs_0.3.4$
#>	[37] xfun_0.19	$stringr_1.4.0$	$lifecycle_0.2.0$
#>	[40] $ensembldb_2.10.2$	$statmod_1.4.35$	XML_3.99-0.3
#>	[43] zlibbioc_1.32.0	scales_1.1.1	$Variant Annotation_1.32.0$
#>	[46] hms_0.5.3	$ProtGenerics_1.18.0$	RBGL_1.62.1
#>	[49] $AnnotationFilter_1.10.0$	$yaml_2.2.1$	$curl_4.3$
#>	[52] memoise_1.1.0	$gridExtra_2.3$	$biomaRt_2.42.1$
#>	[55] rpart_4.1-15	$reshape_0.8.8$	$latticeExtra_0.6$ -29
#>	[58] stringi_1.4.6	$ extit{RSQLite_2.2.1}$	$genefilter_1.68.0$
#>	[61] checkmate_2.0.0	$rlang_0.4.8$	$pkgconfig_2.0.3$
#>	[64] bitops_1.0-6	$evaluate_0.14$	lattice_0.20-41
#>	[67] purrr_0.3.4	$labeling_0.4.2$	${\it GenomicAlignments_1.22.1}$
#>	[70] htmlwidgets_1.5.2	bit_4.0.4	$tidyselect_1.1.0$
#>	[73] GGally_2.0.0	$plyr_1.8.6$	${\it magrittr}_{1.5}$
#>	[76] R6_2.4.1	$generics_0.0.2$	$Hmisc_4.4-1$
#>	[79] DBI_1.1.0	$pillar_1.4.6$	foreign_0.8-71
#>	[82] withr_2.3.0	$survival_3.2-7$	$RCurl_1.98$ –1.2
#>	[85] nnet_7.3-14	$tibble_3.0.4$	crayon_1.3.4
#>	[88] OrganismDbi_1.28.0	${\it BiocFileCache_1.10.2}$	${\it rmarkdown_2.5}$
#>	[91] jpeg_0.1-8.1	progress_1.2.2	locfit_1.5-9.4
#>	[94] grid_3.6.0	blob_1.2.1	$digest_0.6.27$
#>	[97] xtable_1.8-4	$openssl_1.4.3$	$munsell_0.5.0$
#>	[100] askpass_1.1		