ATOMOVÁ

A JADERNÁ FYZIKA

PŘEDPOKLÁDANÝ OBSAH:

EXISTENCE ATOMŮ

MODEL ATOMU

KVANTOVÁ MECHANIKA

REÁLNĚJŠÍ MODEL ATOMU

1. BLOK

MOLEKULA

JÁDRO

RADIOAKTIVITA

ZÁKLADNÍ ČÁSTICE A ZÁKLADNÍ INTERAKCE

ENERGETICKÉ ZDROJE VODA, VÍTR, SLUNCE ŠTĚPNÁ REAKCE JADERNÁ FÚZE

2. BLOK

KDYBY PŘI NĚJAKÉ KATASTROFĚ ZANIKLY VŠECHNY VĚDECKÉ POZNATKY A DALŠÍM GENERACÍM BY MĚLA ZŮSTAT JEN JEDINÁ VĚTA, KTERÉ TVRZENÍ BY PŘI NEJMENŠÍM POČTU SLOV OBSAHOVALO **NEJBOHATŠÍ INFORMACI?** JSEM PŘESVĚDČEN, ŽE JE TO ATOMOVÁ HYPOTÉZA (NEBO ATOMOVÝ FAKT, NEBO JAK TO **CHCETE NAZVAT), ŽE VŠECHNY** VĚCI SE SKLÁDAJÍ Z ATOMŮ -

MALÝCH ČÁSTIC, JEŽ JSOU V NEUSTÁLÉM POHYBU VZÁJEMNĚ SE PŘITAHUJÍ, KDYŽ JSOU OD SEBE TROCHU VZDÁLENÉ, ALE ODPUZUJÍ SE, KDYŽ JSOU TĚSNĚ U SEBE. V TÉTO JEDINÉ VĚTĚ, JAK UVIDÍTE, JE OBSAŽENO NESMÍRNÉ MNOŽSTVÍ INFORMACÍ O SVĚTĚ: JE K TOMU TŘEBA JEN TROCHU PŘEDSTAVIVOSTI A UVAŽOVÁNÍ.

EXISTUJÍ ATOMY?!

IDEA:

LEUKIPPOS (-500 ?, -440 ?)

DÉMOKRITOS (-460 ?, - 370)

V ŘECKU

A – MOŽNÁ NEZÁVISLE

KANÁDA (mezi -6. a -1. st.)

V INDII

LEUKKIPOS -500? - -440?

DÉMOKRITOS -460? - -370

POČÁTKY VŠEHO JSOU ATOMY A PRÁZDNÝ PROSTOR, VŠECHNO OSTATNÍ JE DOMNĚNKA. SVĚTŮ JE NEOMEZENÉ MNOŽSTVÍ, VZNIKAJÍ A ZANIKAJÍ. NIC NEVZNIKÁ Z NIČEHO A NEZANIKÁ V NIC. ATOMY JSOU NEOMEZENÉ CO DO VELIKOSTI A POČTU, JSOU UNÁŠENY VE VESMÍRU VÍŘIVÝM POHYBEM A TAKTO VYTVÁŘEJÍ VŠECHNY SLOŽENINY, OHEŇ, VODU, VZDUCH A ZEMI, NEBOŤ I TYTO ŽIVLY JSOU SPOJENÍM URČITÝCH ATOMŮ. ATOMY JSOU NEPORUŠITELNÉ A NEMĚNNÉ PRO SVOU TVRDOST. SLUNCE A MĚSÍC JSOU SLOŽENY Z TAKOVÝCH HLADKÝCH A OKROUHLÝCH TĚLÍSEK STEJNĚ JAKO DUŠE, TA JE TOTOŽNÁ S ROZUMEM. MY PAK VIDÍME TÍM, ŽE NÁM PADAJÍ DO OČÍ OBRÁZKY. VŠE SE DĚJE PODLE NUTNOSTI, PROTOŽE PŘÍČINOU VZNIKU VŠEHO JE VÍR, KTERÝ SE NAZÝVÁ NUTNOST. CÍLEM JE DOBRÁ MYSL; NENÍ TOTOŽNÁ S ROZKOŠÍ, JAK TO NĚKTEŘÍ PŘEVZALI, ANIŽ TOMU ROZUMĚLI, NÝBRŽ JE TO STAV, V NĚMŽ ŽIJE DUŠE KLIDNĚ A PEVNĚ, NEJSOUC ZNEPOKOJENA ŽÁDNÝM STRACHEM NEBO NĚJAKOU JINOU VÁŠNÍ. NAZÝVÁ SE TÉŽ SPOKOJENOST I MNOHA JINÝMI JMÉNY. JAKOSTI VĚCÍ JSOU PODLE DOHODY, OD PŘÍRODY JSOU JEN ATOMY A PRÁZDNO. Díogenés Laertios

परमाणु - Paramāņu

ANU JSOU VĚČNÉ, NEZNIČITELNÉ A BEZ POHYBU.
JSOU DISKRÉTNÍ A NEVNÍMATELNÉ.
MAJÍ MINIMÁLNÍ MOŽNOU VELIKOST.
SPOJUJÍ SE DO DVOJIC, TROJIC,
ATD. (dvyanuka, tryanuka...).
TY PAK TYPEM POHYBU VYTVÁŘEJÍ
ZÁKLADNÍ ATOMICKÉ LÁTKY:
ZEMI, VODU, OHEŇ A VZDUCH.

KANĀDA

JEDNALO O "METAFYZICKOU" KONCEPCI

OBECNÝ PROBLÉM – DĚLITELNOST A MOŽNOST ZMĚNY – A "POSTINTERPRETACE" ZKUŠENOSTI

VĚDA VYŽADUJE PŘESNĚJŠÍ FORMULACI – KONTROLOVATELNOST VÝVODŮ – A SCHOPNOST PŘEDPOVĚDĚT NĚKTERÉ POZOROVANÉ VÝSLEDKY

K SOUČASNÉ ATOMÁRNÍ TEORII VEDLY 2 CESTY –
FYZIKÁLNÍ = BERNOULLIHO
a CHEMICKÁ = DALTONOVA

POČÁTEK KINETICKÉ TEORIE (1738)

BUDIŽ TLAK PŘI POLOZE PÍSTU V *E* ROVEN *P*, A PŘI POLOZE *e* ROVEN *p*

NECHŤ eC/EC = s

TLAK SE ZVĚTŠÍ ZVĚTŠENÍM POČTU ČÁSTIC U PÍSTU A ZVĚTŠENÍM FREKVENCE SRÁŽEK

POČET ČÁSTIC U PÍSTU JE 1/s^{2/3} × VĚTŠÍ

FREKVENCE SRÁŽEK JE VĚTŠÍ O FAKTOR $(D-d)/(Ds^{1/3}-d)$, D=STŘEDNÍ VZDÁLENOST ČÁSTIC, <math>d=ROZMĚR ČÁSTICE

CELKEM $p/P = (D - d)/(Ds - ds^{2/3})$

PRO $d \cdot D$: p/P = 1/s = V/VBOYLEŮV-MARIOTTEŮV ZÁKON

NAVÍC : TLAK JE ÚMĚRNÝ KVADRÁTU RYCHLOSTI – VÍCE SRÁŽEK A SILNĚJŠÍCH

KINETICKÝ VÝKLAD TLAKU

Tlak = střední výsledek nárazů molekul na stěnu Uvažme dutinu tvaru kvádru s plynem.

Potřebujeme:

změnu hybnosti při nárazu 1 částice s rychlostí

$$v: \Delta p = 2 m v_x$$
 (stěna kolmá na osu x)

dobu mezi nárazy : $\Delta t = 2 I_x / v_x$ (I_x - vzdálenost stěn ve směru x)

Odtud střední síla od 1 částice:

$$F_1 = \Delta p / \Delta t = m v_x^2 / I_x$$

```
Celková síla je proto F = \sum F_i = m/l_x \cdot \sum v_x^2.
Protože \Sigma v_x^2 = 1/3. \Sigma v^2 = 1/3 N W^2
(Směry jsou rovnocené, W = střední kvadratická
  rychlost),
  je tlak p = F/S = 1/3 \, m/l_x l_y l_z \cdot N W^2,
(S = I_v I_z = velikost stěny)
a tedy
                   pV = 1/3 \, mNW^2
(V = I_{x}I_{y}I_{z})
Střední energie 1 částice \varepsilon = 1/2 \ mW^2,
  celková E = N \varepsilon = 1/2 NmW^2.
Tedy též pV = 2/3 E.
```

POROVNÁNÍ SE STAVOVOU ROVNICÍ

Pro 1 mol platí : pV = 2/3 E = RT(R = 8.31451 J/(mol K) - molární plynová konstanta)

Teplota plynu je tedy úměrná jeho střední kinetické energii.

Tepelné jevy interpretujeme na základě pohybu částic!

PŘENOS ČÁSTIC

Jev: difuze

Experiment : tok částic J je úměrný gradientu koncentrace, tj. $J_z = -D\partial n / \partial z$ (D = koef. difuze)

Zachování počtu částic : $\partial n/\partial t = -\partial J_z/\partial z$

Uvážíme-li, že koncentrace c je úměrná hustotě částic n, dostaneme odtud základní rovnici difuze

$$\partial c/\partial t = D \partial^2 c/\partial z^2$$

Exp hodnota pro N_2 : 1.32 x 10⁻⁵ m²/s

$$\frac{1/6 \ Vn(z+\lambda)}{z+\lambda}$$

$$\frac{z}{z-\lambda}$$

$$\frac{1/6 \ Vn(z-\lambda)}{z-\lambda}$$

Jednoduchý krönigovský model : toky 1/6 *nV* v orientovaných směrech

 $z-\lambda$ V daném případě ze $z+\lambda$ a $z-\lambda$.

V je střední rychlost a λ střední volná dráha.

Dostaneme :
$$J = 1/6 \ Vn(z-\lambda) - 1/6 \ Vn(z+\lambda)$$

= $-1/3 \ V\lambda$, $\partial n/\partial z$

tj.
$$D = 1/3 V\lambda$$

DALTONOVA TEORIE (1803)

PRVKY SE SKLÁDAJÍ Z ATOMŮ.

ATOMY DANÉHO PRVKU JSOU STEJNÉ. (SPECIÁLNĚ MAJÍ STEJNOU VÁHU) ATOMY RŮZNÝCH PRVKŮ RŮZNÉ.

SLOUČENINY VZNIKAJÍ SPOJENÍM (MALÉHO POČTU) ATOMŮ.

Důsledek 1 : POMĚRY HMOTNOSTÍ PRVKŮph TVOŘÍCÍCH SLOUČENINU JSOU STÁLÉ

Důsledek 2 : VYTVÁŘÍ-LI PRVKY VÍCE SLOUČENIN, JSOU POMĚRY VÝSKYTU DANÉ LÁTKY DANÉ MALÝMI CELÝMI ČÍSLY.

EXISTUJE-LI JEDNA (PODVOJNÁ) SLOUČENINA JE TYPU AB, JSOU-LI DVĚ, JSOU TYPU AB A $\rm A_2B$ NEBO $\rm AB_2$, ATD.

JOHN DALTON 1766-1844

POŘÁDEK MEZI ATOMY (A MOLEKULAMI) POMOHL NAJÍT A. AVOGADRO SVÝM ZJIŠTĚNÍM (1811), ŽE

STEJNÉ OBJEMY PLYNŮ
OBSAHUJÍ ZA STEJNÝCH
PODMÍNEK STEJNÉ MNOŽSTVÍ
MOLEKUL

POMĚR VODÍKU A KYSLÍKU 2 : 1 PŘI SLUČOVÁNÍ NA VODU NAZNAČUJE, ŽE MOLEKULA VODY MÁ SLOŽENÍ H₂O A NE HO

AVOGADROVU KONSTANTU URČIL J. J. LOSCHMIDT 1865 STANDARDNÍ MNOŽSTVÍ LÁTKY – VŮČI 1 g VODÍKU, PAK 16 g KYSLÍKU a DNES 12 g UHLÍKU -= MOL

PŘÍSLUŠNÉ HMOTNOSTI JSOU MOLÁRNÍ HMOTNOSTI

POČET ATOMŮ V MOLU JE DÁN AVOGADROVÝM

ČÍSLEM N_A

USPOŘÁDÁNÍ PRVKŮ PODLE MOLÁRNÍ HMOTNOSTI VEDE K MENDĚLEJEVOVĚ SOUSTAVĚ PRVKŮ

D. I. MENDĚLEJEV 1834 - 1907

STATISTICKÝ POPIS RYCHLOSTÍ MOLEKUL V PLYNU (1857)

PŘEDPOKLADY:

HOMOGENITA SYSTÉMU: NEZÁVISLOST NA POLOZE

IZOTROPIE: ZÁVISÍ JEN NA VELIKOSTI RYCHLOSTI, RESP. KVADRÁTU RYCHLOSTI J. CLERK MAXWELL

1831 - 1879

ODTUD PRPOD. RYCHL. = $P(V^2)$

NEZÁVISLÁ ROZDĚLENÍ SLOŽEK p(V_x²) ...

ODTUD:
$$P(V^2) = p(V_x^2). p(V_y^2). p(V_z^2)$$

A In
$$P(V^2) = \ln p(V_x^2) + \ln p(V_y^2) + \ln p(V_z^2)$$

ODTUD: In P, resp. In p jsou lineární funkce V², resp. V_x²...

$$P(V^2) = A^3 \exp(-\alpha V^2), p(V_x^2) = A \exp(-\alpha V_x^2),...$$

ZÁPORNÝ KOEFICIENT KVŮLI NEKONEČNU

NORMOVÁNÍ (CELKOVÁ PRAVDĚPODOBNOST 1) DÁ $A = \sqrt{(\alpha/\pi)}$

HODNOTU α URČÍME POMOCÍ STŘEDNÍ ENERGIE

$$<\epsilon> = <\frac{1}{2}mV^2> = \frac{1}{2}mA^3\int V^2\exp(-\alpha V^2) d^3V = 3m/4\alpha$$

POROVNÁNÍM S
$$\langle \epsilon \rangle = 3/2 \text{ N/R T} = 3/2 \text{ k}_{\text{B}}\text{T}$$

$$\alpha = m/2k_BT$$

A $P(V^2) = (m/2\pi k_B T)^{3/2} \cdot \exp(-\frac{1}{2}mV^2/k_B T) d^3V$

JE TO SPECIÁLNÍ PŘÍPAD P(E) ~ exp(-E/k_BT)

tzv. GIBBSOVA ROZDĚLENÍ

Maxwellovo rozdělení pro atomy He

TEORIE BROWNOVA POHYBU (1905)

PRAVDĚPODOBNOST VÝSKYTU ČÁSTEČKY V KAPALINĚ SPLŇUJE ROVNICI DIFUZE

$$\partial p / \partial t = D \partial^2 p / \partial z^2$$
.

TATO ROVNICE MÁ ŘEŠENÍ

$$p(z, t) = 1/2\sqrt{(\pi Dt)} \cdot \exp(-z^2/4Dt),$$

Z NĚHOŽ VYPLÝVÁ STŘEDNÍ URAŽENÁ VZDÁLENOST ROVNÁ

$$\sqrt{\langle z^2 \rangle} = \sqrt{\int z^2 p(z) dz} = \sqrt{(2Dt)}.$$

NAVÍC UŽIT VZTAH PRO KOEFICIENT DIFUZE $D=RT/N.1/6\pi$ r η , KDE R JE PLYNOVÁ KONST., T TEPLOTA, N AVOGADROVO ČÍSLO, r POLOMĚR ČÁSTEČKY A η VISKOZITA PROSTŘEDÍ.

VYJDE: ČÁSTICE O ROZMĚRU 1 μm URAZÍ VE VODĚ ZA 1 s cca 1 μm.

O EXISTENCI ATOMŮ PŘESVĚDČIL VĚDECKOU KOMUNITU JEAN PERRIN

1908-1913 ZKOUMAL BROWNŮV POHYB A POTVRDIL TEORII EINSTEINA-SMOLUCHOWSKIHO

PERRINŮV DIAGRAM BROWNOVA POHYBU V ŘADĚ POKUSŮ URČIL ROZMĚR ATOMU cca 0.1 nm A AVOGADROVO ČÍSLO cca 6.8 × 10²³ mol⁻¹

AVOGADROVO ČÍSLO NA

PERRIN

```
6.8 × 10<sup>23</sup> PLYNOVÉ EMULZE
```

- 6.2 × 10²³ KAPALNÉ EMULZE
- 6.0 × 10²³ FLUKTUACE KONCENTRACE V EMULZI
- 6.4 × 10²³ POSTUPNÝ BROWNŮV POHYB
- 6.5 × 10²³ OTÁČIVÝ BROWNŮV POHYB

JINÍ

- 7.5 × 10²³ OPALESCENCE KEESOM
- 6.5×10^{23} MODROST OBLOHY BAUER, BRILLOUIN, PAK FOWLER
- 6.4 × 10²³ ZÁŘENÍ ČERNÉHO TĚLESA
- 6.1 × 10²³ ZE ZNALOSTI ELEMENTÁRNÍHO NÁBOJE MILIKAN
- 6.2 7.0 × 10²³ ZE ZKOUMÁNÍ ALFA ROZPADU

PRŮMĚR $6.5 \pm 0.4 \times 10^{23}$

SOUČASNÉ HODNOTY ATOMÁRNÍCH KONSTANT (CODATA 2010 srov. s 2002)

AVOGADROVO ČÍSLO: 6.022 141 29(27) \times 10²³ mol-1

6.022 141 5(10)

ATOMÁRNÍ HMOTNOST: $1.660538921(73) \times 10^{-27} \text{ kg}$

1.660 538 86(28)

STANDARDNÍ HUSTOTA PLYNŮ PŘI 273.15 K A 101.325 kPa : z roku 2002 - 2.686 7773(47) \times 10^{25} m⁻³

STANDARDNÍ MOLÁRNÍ OBJEM : 22.413 968(20) × 10⁻³ m³ mol⁻¹ 22.413 996(39)

BOHRŮV POLOMĚR: 0.529 177 210 92(17) × 10⁻¹⁰ m

0.529 177 2108(18)

JSOU ATOMY ATOMY?

JSOU B-ATOMY RESP. D-ATOMY L-ATOMY?

B-ATOMY JSOU MOLEKULY, D-ATOMY?

NAVÍC NABITÉ F-ATOMY

MNOŽSTVÍ VYLOUČENÉ LÁTKY PŘI ELEKTROLÝZE JE ÚMĚRNÉ PROŠLÉMU NÁBOJI

MODEL:

M = N.m, Q = N.ze

M = HMOTNOST,

N = POČET ATOMŮ,

m = HMOTNOST ATOMU,

Q = NABOJ,

z = POČET ELEM. NÁBOJŮ,

e = ELEMENTÁRNÍ NÁBOJj

ODTUD: M = m/ze.Q

D-ATOM NENÍ ATOM ?!

1896 - RADIOAKTIVITA

AKTIVITA URANOVÝCH SOLÍ

NOVÉ RADIOAKTIVNÍ PRVKY POLONIUM A RADIUM

BECQUEREL 1852-1908

EMITUJÍ SE PAPRSKY ALFA (+) A BETA (-), NEUTRÁLNÍ PAPRSKY GAMA OBJEVENY POZDĚJI.

PŘI RADIOAKTIVNÍCH PROCESECH SE ZMĚNÍ EMITUJÍCÍ PRVEK NA NOVÝ.

MALÉ NABITÉ ATOMY (ELEKTRONY)

1897 ZKOUMÁNÍ KATODOVÉHO ZÁŘENÍ

CHOVÁ SE JAKO PROUD ZÁPORNĚ NABITÝCH ČÁSTIC

ODPOVÍDÁ TOMU POHYB
V ELEKTROSTATICKÉM I MAGNETICKÉM POLI

MĚRNÝ NÁBOJ JE cca 1000 × VĚTŠÍ NEŽ ZJIŠTĚNÝ U ELEKTROLYTŮ

V ELEKTRICKÉM POLI JE e/m $1-3\times10^{11}$ C/kg, V MAGNETICKÉM $0.6-0.9\times10^{11}$ C/kg (DNEŠNÍ HODNOTA 1.758 820 12(15) \times 10¹¹ C /kg)

JE-LI NÁBOJ STEJNÝ JAKO U ČÁSTIC V ELEKTROLYTU, MAJÍ ČÁSTEČKY V KATODOVÉM ZÁŘENÍ cca 1000 × MENŠÍ HMOTNOST NEŽ TYTO ČÁSTICE

PLUM PUDDING MODEL – J.J. THOMSON 1904

ELEKTRONY, USPOŘÁDANÉ VE SLUPKÁCH, V KLADNĚ NABITÉ KOULI

(THOMSON : PLANETÁRNÍ DISKOVÝ MODEL NAGAOKŮV (1904) JE NESMYSL.)

ODRAZ ALFA ČÁSTIC OD ZLATÉ FOLIE

GEIGER A MARSDEN (1909) ZKOUMAJÍ U RUTHERFORDA ROZPTYL ALFA ČÁSTIC NA ZLATÉ (A DALŠÍCH) FOLII.

PROBLÉM:
DOCHÁZÍ K ROZPTYLU NA
VELKÉ ÚHLY?

OBECNÁ ZÁVISLOST?

VĚTŠINA BEZ ZMĚNY SMĚRU, ČÁST VYCHÝLENA cca O 1°, 1/8000 VÍCE NEŽ 90°

RUTHERFORDŮV MODEL ATOMU prosinec 1910

MODEL: VE STŘEDU NÁBOJ Ne
O ROZMĚRU MENŠÍM NEŽ 10⁻¹⁴ m (≈ BOD),
KOLEM NÁBOJ -Ne V KOULI O ROZMĚRU
cca 10⁻¹⁰ m
OKOLNÍ NÁBOJ TVOŘÍ ELEKTRONY

TO VYSVĚTLÍ POZOROVANÝ ROZPTYL NA ZLATÉ FOLII:

ALFA ČÁSTICE S RYCHLOSTÍ cca 2×10^7 m/s SE DOSTANOU AŽ DO VZDÁLENOSTI cca 3×10^{-14} m – DOMINUJE VLIV STŘEDNÍHO NÁBOJE, ODHAD VLIVU ELEKTRONŮ : 1/N VLIVU CENTRA

POČET ČÁSTIC ROZPTÝLENÝCH O ÚHEL θ DO JEDNOTKOVÉ PLOCHY JE ÚMĚRNÝ 1/sin4(θ/2)

GEIGER-MARSDEN DATA (1913)

BOHRŮV MODEL (1913)

PROBLÉM ZÁŘENÍ V RUTHERFORDOVĚ MODELU

KLASICKÉ VZTAHY : ENERGIE W = $eE/4\pi\epsilon_o$.1/2rFREKVENCE ω = $4\pi\epsilon_o/eE.\sqrt{(2W)^3/\sqrt{m}}$

W = energie, -e = náboj elektronu, $E = \text{náboj jádra}, \epsilon_o = \text{permitivita}$ vakua, r = poloměr dráhy,m = hmotnost elektronu

KVANTOVACÍ PODMÍNKA $W = \frac{1}{2} n\hbar \omega$ DÁ

 $W = \frac{1}{2} me^2 E^2 / (4\pi \epsilon_o)^2 / n^2 \hbar^2$, $\omega = me^2 E^2 / (4\pi \epsilon_o)^2 / n^3 \hbar^3$, $r = (4\pi \epsilon_o) / meE n^2 \hbar^2$

TAKTO ZÍSKANÉ STAVY POVAŽUJEME ZA STACIONÁRNÍ. BEZ VYZAŘOVÁNÍ. STAV S NEJVĚTŠÍ (VAZEBNOU) ENERGIÍ JE ZÁKLADNÍ.

ČÍSELNÉ HODNOTY ZÍSKANÝCH VELIČIN při e = E

ENERGIE: 13 eV , FREKVENCE: $3.9 \times 10^{16} \text{ s}^{-1}$,

ROZMĚR: 0.55×10^{-10} m

PODMÍNKA VYZAŘOVÁNÍ: $\hbar \Omega = W(n_2) - W(n_1)$

SOUHLAS RYDBERGOVY KONSTANTY: teor/exp = 3.1/3.29

KVANTOVACÍ PODMÍNKA MŮŽE MÍT TVAR MOMENT HYBNOSTI $mVr = n\hbar$