

Identify leading factors of auto incidents to locate areas of improvement for safety

OVERWHELMING AMOUNTS OF DATA

3 different datasets totaling at close to a million observations

INCORRECT DATA

Abundance of data that did not make sense in a realistic setting.

over 1,000 lanes present

WHAT WE WORKED ON

MEANINGLESS DATA

Features recording the same value for every entry

MISSING DATA

Crashes - >20% People - >35% Vehicles - >70%

S N

Chicago Crash Locations - Time of Day

ago Crash Locations - Filtered

INJURY DISTRIBUTION BY TRAFFIC CONTROL IN THOUSANDS

INJURY DISTRIBUTION BY TRAFFIC CONTROL IN TENS 5+ INJURIES

9

LOW INJURIES/FATALITIES

>99% were fatality free >85% were injury free

TRAFFIC CONTROL

More injuries did occur WITH traffic control present On average more accidents occurred WITHOUT traffic control

5

STEP 1

Improve data entry and collection

STEP 2

Clean an incorporate additional datasets for further insights Identify problem traffic control areas

STEP 3

Model refinement and alternate classification groupings by association

