Feedback — Final Exam

You submitted this exam on **Tue 26 Feb 2013 9:59 AM CET**. You got a score of **9.17** out of **10.00**.

Question 1

1\ 2	Х	У	Z
а	<mark>2</mark> ,5	<mark>2</mark> ,1	0,1
b	<mark>3</mark> ,2	<mark>4</mark> ,4	1 ,1
С	1 ,0	1 ,1	1 ,2

Find the strictly dominant strategies (there may be zero or more than one):

- 1) a;
- 2) b;
- **3**) c;
- 4) x;
- **5**) y;
- 6) z;

Question 2

1\2	Х	У	Z
a	<mark>2</mark> ,5	2 ,1	0,1
b	<mark>3</mark> ,2	<mark>4</mark> ,4	1 ,1
С	1,0	1 ,1	1,2

Find the weakly dominated strategies (there may be zero or more than one):

- 1) a;
- **2**) b;
- 3) c;
- 4) x;

5)	y;
6)	Z;

Question 3

1\2	Х	У	Z
а	<mark>2</mark> ,5	2 ,1	0,1
b	<mark>3</mark> ,2	<mark>4</mark> ,4	1 ,1
С	1,0	1 ,1	1 ,2

Which strategies survive the process of iterative removal of strictly dominated strategies (there may be zero or more than one)?

- 1) a;
- 2) b;
- 3) c;
- 4) x;
- 5) y;
- 6) z;

Question 4

1\2	Х	У	z
а	<mark>2</mark> ,5	2 ,1	<mark>0</mark> ,1
b	<mark>3</mark> ,2	<mark>4</mark> ,4	<mark>1</mark> ,1
С	1,0	1 ,1	1,2

Find all strategy profiles that form pure strategy Nash equilibria (there may be zero or more than one):

- 1) (a, x);
- 2) (a, y);
- 3) (a, z);
- 4) (b, x);
- 5) (b, y);

- 6) (b, z);
- 7) (c, x);
- 8) (c, y);
- 9) (c, z).

Question 5

1\ 2	У	Z
b	4 ,4	1 ,1
С	<mark>1</mark> ,1	<mark>2</mark> ,2

Which of the following strategies form a mixed strategy Nash equilibrium? (p corresponds to the probability of 1 playing ${\bf b}$ and 1-p to the probability of playing ${\bf c}$; q corresponds to the probability of 2 playing y and 1-q to the probability of playing z).

- p=1/3, q=1/3;
- p = 1/3, q = 1/4;
- p = 2/3, q = 1/4;
- (a) p = 1/4, q = 1/4;

Question 6

Burning the Bridge

- One island is occupied by Army 2, and there is a bridge connecting the island to the mainland through which Army 2 could retreat.
- Stage 1: Army 2 could choose to burn the bridge or not in the very beginning.
- Stage 2: Army 1 then could choose to attack the island or not.
- Stage 3: Army 2 could then choose to fight or retreat if the bridge was not burned, and has
 to flight if the bridge was burned.

First, consider the blue subgame. What is a subgame perfect equilibrium of the blue subgame?

- a) (Attack, Fight).
- b) (Attack, Retreat).
- c) (Not, Fight).
- d) (Not, Retreat).

Question 7

Burning the Bridge

- One island is occupied by Army 2, and there is a bridge connecting the island to the mainland through which Army 2 could retreat.
- Stage 1: Army 2 could choose to burn the bridge or not in the very beginning.
- Stage 2: Army 1 then could choose to attack the island or not.
- Stage 3: Army 2 could then choose to fight or retreat if the bridge was not burned, and has to flight if the bridge was burned.

What is the outcome of a subgame prefect equilibrium of the whole game?

- a) Bridge is burned, 1 attacks and 2 fights.
- b) Bridge is burned, 1 does not attack.
- c) Bridge is not burned, 1 attacks and 2 retreats.
- d) Bridge is not burned, 1 does not attack.

Question 8

Repeated Trust Game

There is a probability p that the game continues next period and a probability (1-p) that it ends. What is the threshold p^* such that when $p \geq p^*$ ((Play,Share), (Trust)) is sustainable as a subgame perfect equilibrium by a grim trigger strategy, but when $p < p^*$ ((Play,Share), (Trust)) can't be sustained as a subgame perfect equilibrium? [Here a trigger strategy is: player 1 playing Not play and player 2 playing Distrust forever after a deviation from ((Play,Share), (Trust)).]

- a) 1/2;
- b) 1/3;
- c) 2/3;
- **d** d) 1/4.

Question 9

Friend or Foe

- There are two players.
- ullet The payoffs to player 2 depend on whether 2 is a friendly player (with probability p) or a

foe (with probability 1-p).

• Player 2 knows if he/she is a friend or a foe, but player 1 doesn't know.

See the following payoff matrices for details.

Friend	Left	Right
Left	3,1	0,0
Right	2,1	1,0

with probability p

Foe	Left	Right
Left	3,0	0,1
Right	2,0	1,1

with probability 1-p

When p=1/4, which is a pure strategy Bayesian equilibrium: (1's strategy; 2's type - 2's strategy)

- a) (Left; Friend Left, Foe Right);
- b) (Right; Friend Left, Foe Right);
- c) (Left; Friend Left, Foe Left);
- d) (Right; Friend Right, Foe Right);

Question 10

Entry Game

Player 1 is a company choosing whether to enter a market or stay out;

• If 1 stays out, the payoff to both players is (0, 3).

Player 2 is already in the market and chooses (simultaneously) whether to fight player 1 if there is entry

• The payoffs to player 2 depend on whether 2 is a normal player (with prob 1-p) or an aggressive player (with prob p).

See the following payoff matrices for details.

Aggressive	Fight	Not
Enter	-1,2	1,-2
Out	0,3	0,3

with probability p

Normal	Fight	Not
Enter	-1,0	1,2
Out	0,3	0,3

with probability 1-p

Player 2 knows if he/she is normal or aggressive, and player 1 doesn't know. Which is true (possibly zero or more than one):

- a) When p>1/2, it is a Bayesian equilibrium for 1 to stay out, 2 to fight when aggressive and not when normal;
- b) When p=1/2, it is a Bayesian equilibrium for 1 to stay out, 2 to fight when aggressive and not when normal;
- c) When p=1/2, it is a Bayesian equilibrium for 1 to enter, 2 to fight when aggressive and not when normal;
- d) When p<1/2, it is a Bayesian equilibrium for 1 to enter, 2 to fight when aggressive and not when normal.