

高性能自电容触控芯片

V1.0

1. 概述

CST08C 自电容触控芯片,采用高速 MCU 内核并内嵌 DSP 电路,结合快速自电容感应技术。可广泛支持 三角形在内的多种自电容图案,支持单点手势和真实两点操作,实现极高灵敏度和低待机功耗。

2. 芯片特点

- 内置快速自电容检测电路及高性能 DSP 模块
 - 支持在线编程;
 - 内置看门狗;
 - 多个按键支持;
 - ◇ 支持待机手势唤醒功能;
- 电容屏支持
 - ◆ 最多支持8个感应通道;
 - ◇ 通道悬空/下拉设计支持;
 - 模组参数自动调校;
- 性能指标
 - 刷新率 > 100Hz;
 - 单点手势和真实两点操作;

- 功耗指标
 - 动态模式下典型功耗 1.7mA;
 - 待机模式下典型功耗 8.0uA;
 - 休眠模式下典型功耗 1.0uA;
- 通讯接口
 - 12C 主/从通讯接口,速率 10Khz~400Khz

可配置;

- 兼容 1.8V/3.3V 接口电平;
- 电源供电
 - 单电源供电 2.8V ~ 3.6V, 电源纹波 <= 50mv;
- 封装类型: QFN3X3-20L

3. 应用方向

手环、手表等产品, TP 尺寸建议在 1.8 inch 以内。

4. 参考电路

参考电路图

注意事项:

- ✓ CMOD 滤波电容使用至少 10%精度的 NPO/COG 材质电容。
- ✓ CMOD 电容值的选择范围为 1nF 到 5.6nF 之间, 一般选择 1nF。具体的最佳值和相应的本体电容有关。
- ✓ CMOD 滤波电容必须靠近芯片相应管脚放置,与芯片之间的走线越短越好。

5. 引脚分布/说明

名称	说明	备注		
S1~S8	感应通道			
VDDA	电源	2.8V~3.6V,接 2.2uF~ 10uF 电容		
CMOD0/CMOD1	稳压电容	接 1nF~5.6nF 稳压电容		
IRQ	中断输出	上升/下降沿可选		
SCL/SDA	I2C	可选内部上拉/开漏模式		
RST	复位输入	低有效		
GND	衬底	衬底是 GND,必须接		

备注:

1. CMOD0/CMOD1 必须接稳压电容, 大小在 1nF ~ 5.6nF;

6. 订货信息

料号	封装	表面印字	包装	说明
CST08C	QFN3X3-20L	CST08C XXXXX	编带 (5000)	圆点: Pin1 Mark 点 CST08C: 型号字符 XXXXX: 5 位生产追踪码

订货信息

7. 功能描述

CST08C 自电容触控芯片,通过其内置的快速自电容感应模块,可无需任何外接器件(电路旁路电容除外), 即可在三角形等图案上实现单点手势和真实两点功能;在实现快速反应的同时,具有极其优异的抗噪、防 水、低功耗表现。

7.1 上电及复位

芯片内置上电复位电路,不需要在外部接专用的复位电路。

内置上电复位模块将使芯片保持在复位状态直至电压正常,当电压低于某阈值时,芯片也会被复位。

当外部复位引脚 RST 为低时将复位整个芯片,可将该引脚悬空。

描述 符号 最小值 最大值 单位 上电后芯片初始化时间 100 **Tpor** mS RST 引脚延迟拉高时间 5 Tpr mS Tron 复位后芯片重新初始化时间 100 mS Trst 复位脉冲时间 0.1 mS

上电与复位时序说明

7.2 工作模式

动态模式

当频繁有触摸操作时,处于此模式;在此模式下,触控芯片快速对触摸屏进行自电容扫描,以及时检 测触摸并上报给主机。 在无触摸 2S 后, 自动进入待机模式, 此功能功能可以通过写寄存器进行控制。

待机模式

在此模式下,触控芯片以较低频率对触摸屏进行扫描,检测到手指触摸后进入动态模式,同时通过IRQ 引脚唤醒主机;主机可控制复位脚输出低脉冲使芯片切换到动态模式。

休眠模式

当接收到睡眠命令后,处于此模式;在此模式下,触控芯片处于深度睡眠状态,以最大限度节省功耗, 主机可控制复位脚输出底脉冲使芯片切换到动态模式。

7.3 通道/节点配置

CST08C 自电容触控芯片最多可提供 8 个感应通道,每个通道无需外接器件便可支持自电容扫描。 每通道可支持的自电容大小范围: 1pF ~ 400pF

7.4 I2C 通讯

该芯片支持标准的 I2C 通讯协议标准,可实现 10Khz~400Khz 的可配通信速率。 两个 I2C 引脚 SCL 和 SDA,除支持开漏模式外,还支持内部上拉模式,供灵活选择。

7.5 中断方式

触控芯片仅在检测到有效触摸,并需要上报给主机时,才会通过 IRQ 引脚通知主机读取有效数据,以提 高效率,减轻 CPU 负担;中断边沿可根据需要配置为上升沿或者下降沿有效;

当在待机模下匹配预定义手势时, IRQ 引脚还用作唤醒主机。

7.6 IIC 接口说明

芯片支持 IIC 操作,也可软件配成通用 GPIO。具体功能可以根据具体项目由软件自定义。

a) 器件的 IIC 地址

芯片的 7bit 设备地址一般为 0x15, 即设备写地址为 0x2A, 读地址为 0x2B。

部分项目的设备地址可能不同,请咨询相应项目及工程人员。

b) IIC 的通信速度

为了保证通信的可靠性,建议最大使用 400Kbps 的通信速率。

c) 写入单个字节

往 0x1F 寄存器写入 0x01

连续写入多个字节

往 0x1E、0x1F 分别写入 0x20、0x01

读取单个字节 e)

从 0x21 读取单个字节

连续读取多个字节 f)

从 0x21、0x22、0x23 读取 3 个字节

通信时序描述

Symbol	Description	Min	Typica	Max	Unit
Fscl	SCL clock frequency	10	-	400	kHz
Tst1	SCL hold time for START condition	0.6	-	-	us
Tlo	LOW period of SCL	1.3	-	-	us
Thi	HIGH period of SCL	0.6	-	-	us
Tds	SDA setup time	0.6	-	-	us
Tdh	SDA hold time	100	-	-	ns
Tst2	SCL setup time for STOP condition	0.6	-	-	us
Tbuf	Ready time between STOP and START	4.5	-	-	us

IIC Timing Description

8. 应用设计规范

8.1 电源退耦电容

一般在芯片的 VDD 和 VSS 端并接一个 0.1uF 和 10uF 的瓷片电容就可以起到退藕和旁路的作用。 退藕电容应该尽量接近芯片放置,尽量减少电流环路面积。

8.2 CMOD 滤波电容

滤波电容使用至少 10%精度的 NPO/COG 材质电容,其电容值的选择范围为 1nF 到 5.6nF 之间,一般选择 1nF。具体的最佳值和相应的本体电容有关。CMOD 滤波电容必须靠近芯片相应管脚放置,与芯片之间的走线越短越好。

8.3 防水注意事项

Sensor 及其走线周围不要有大块的实地,对于大面积的地,必须打碎处理。

8.4 ESD 注意事项

FPC 的设计会直接影响到 ESD 的效果,在设计时,必须注意以下事项:

- > FPC 尽量使用磁膜进行全屏蔽,同时磁膜必须接地。
- FPC 与 Sensor 的压和位置尽量远离组装的机构缝隙,以减少 ESD 的影响。
- ▶ 电源接入处可以考虑增加 TVS 管到地,以增强抗 ESD 干扰性能。

8.5 电磁干扰注意事项

Sensor 走线必须与可能产生干扰的线隔离开,如电源走线、音频线、LCD 驱动线、蓝牙天线、RF 天线等。 特别的,TP 采用全贴合设计时,有可能会受到 LCD 的干扰,此时 TP 的参数需要特别调试。

8.6 地线

触摸芯片内部的高精度检测线路对于地线比较敏感,如有可能用户应使用星型接地以隔绝其它芯片的噪声。 同时,尽可能地在接地处串入磁珠以增强抗干扰能力。

如星型接地难以实现,用户也需尽量将大电流器件的地与触控芯片地走线分开。

9. 电气特性

9.1 绝对最大值参数

符号	说明	最小值	典型值	最大值	单位
TSTG	存放温度	-40	25	125	°C
Та	通电时的工作环境温度	-20	-	85	°C
Vdd	相对于 Vss 的供电电压	-0.3	-	+3.6	V
Vio	直流输入电压	VSS-0.3	-	VDD+0.3	V
LU	栓锁电流	-	200	-	mA
CDM	ESD 电器件模型	1	1000	-	V
НВМ	ESD 人体模型	-	8000	-	V

9.2 交流电气性能

符号	说明	最小值	典型值	最大值	单位
Fcpu	CPU 频率	-2%	20	+2%	MHz
F32k	内部低速时钟频率	-5%	32	+5%	kHz
txRST	外部复位脉冲宽度	,	0.1	1	mS
tPOWERUP	从 POR 结束到 CPU 执行代码的时间	-	4	-	mS
FGPIO	GPIO 切换频率	-	2	-	MHz
tRISE	引脚电平上升时间,Cload=50pF	-	32	-	nS
tFAIL	引脚电平下降时间,Cload=50pF	-	11.2	-	nS

交流电气特性 (环境温度 25 ℃, VDDA=3.3V)

9.3 直流电气性能

符号	说明	最小值	典型值	最大值	单位
Vdd	供电电压	2.8	3.0	3.6	V
Rpu	上拉电阻	-	5	1	КΩ
Voh	高电平输出电压	0.7*VIO	1	1	V
Vol	低电平输出电压	-	-	0.3* VIO	V
Ioh	高电平输出电流	-	2.0	-	mA
Iol	低电平灌入电流	-	20.0	1	mA
Vil	输入低电平电压	-	-	0.3* VIO	V
Vih	输入高电平电压	0.7* VIO	-	-	V

+		
	栎 TR(创 ON

Iil	输入漏电流	-	10	-	nA
Idd1	工作电流 (动态模式)	-	1.7	-	mA
Idd2	工作电流 (待机模式)	-	8.0	-	uA
Idd3	工作电流 (休眠模式)	-	1.0	-	uA
Vddp	编程电压	2.8	-	3.6	V

直流电气特性 (环境温度 25 °C, VDDA=3.3V VIO=VDDA/1.8 (软件可配))

10.产品封装

Item		Cls al	Dimensio	ns In Mil	limeters
		Symbol	Min	Nom	Max
Total Thickness		Α	0.5	0.55	0.6
Stand Off		A1	0	0.02	0.05
Mold Thickness		A2		0.4	
L/F Thickness		A3		0.152	
Dady Cine	Х	D		3	
Body Size	Υ	Е	3		
	Х	D1	1.6	1.7	1.8
Exposed Pad Size	Υ	E1	1.6	1.7	1.8
Lead Width		b	0.15	0.2	0.25
Lead Pitch		е	0.4		
Lead Length		L	0.2	0.3	0.4
Lead Tip To Exposed Pa	d Edge	K	0.2		0.35
Package Edge Tolerance		aaa		0.1	
Lead Offset		bbb	0.07		0.1
Mold Flatness		ссс		0.1	
Coplanarity		eee		0.08	
Exposed Pad Offset		fff		0.1	

11. 修订历史

版本	修订内容
V1.0	初始发行

免责声明:本文件不存在以明示、暗示或任何其他方式授予任何知识产权许可或作出其他声明及担保,本产品应适用产品销售相关协议约定的条件及条款,包括但不限于知识产权、责任限制等。本产品非专门设计于用作生命维持系统中的关键组件,且其使用应由具备相应开发知识的熟练开发人员进行操作,您在使用过程中应按照技术规范及安全要求,避免因此遭受损害。为尽可能地保证准确性,本文件中所述的产品特性、应用信息及其他内容将可能由海栎创以更新之信息所替代。