Branch: CSE & IT

Batch: English

Database Management System

FD's and Normalization

DPP 08

[MCQ]

- 1. Assume a relation R which has 5 attributes PQRST, and the following functional dependencies: $P \rightarrow Q$, $QR \rightarrow S$ and $S \rightarrow T$. Then the closure of PR i.e., $(PR)^+$ is?
 - (a) PQRST
- (b) POR
- (c) PQRS
- (d) None of the above

[MCQ]

- 2. Assume a relation R with attributes MNOPQ and F is a set of functional dependencies $\{M \rightarrow MNOPQ, N \rightarrow O\}$ which of the following statement is true?
 - **S₁:** R₁ (MOPQ), R₂ (NO) are both in BCNF and preserves lossless join.
 - S_2 : R_1 (MNPQ), R_2 (NO) are both in BCNF and preserves lossless-join.
 - (a) Only S₁ is true
 - (b) Only S₂ is true
 - (c) Both S_1 and S_2 are true
 - (d) Neither S_1 and S_2 is true

[MCQ]

- 3. Assume a relation schema R with 5 attributes P, Q, R, S, T and the set of FD'S P → RS, Q → RT, T→ Q consider the statements:
 - S_1 : The only candidate key of R is PQ and PT
 - S_2 : The highest normal form satisfied by R is 2NF Which of the statement is true?
 - (a) Only S_1 is true
 - (b) Only S_2 is true
 - (c) Both S_1 and S_2 and true
 - (d) Neither S_1 nor S_2 is true

[MCO]

- **4.** Consider a relation R with attributes P, Q, R, S, T. The following set of functional dependencies hold on R $\{Q \to R, S \to P, P \to Q\}$. The highest normal form satisfied by R is.
 - (a) 1NF
- (b) 2NF
- (c) 3NF
- (d) BCNF

[MCQ]

- 5. Consider a relation R (P, Q, R, S, T) with the following FD's, $\{P \rightarrow Q, QS \rightarrow P, P \rightarrow R\}$ if we decompose R into BCNF then which of the following FD cannot be preserved?
 - (a) $P \rightarrow Q$
 - (b) $P \rightarrow R$
 - (c) $OS \rightarrow P$
 - (d) All of them are preserved

[MCQ]

6. Consider a relation R (L, M, N, O) with the functional dependencies:

 $L \rightarrow M$,

 $M \rightarrow N$,

 $N \rightarrow O$

which one of the following decompositions is not lossless?

- (a) $R_1(L, M), R_2(M, N), R_3(N, O)$
- (b) $R_1(L, M), R_2(L, N), R_3(L, O)$
- (c) $R_1(L, O), R_2(M, O), R_3(N, O)$
- (d) All of the above are lossless

[MSQ]

7. Consider a relation X (P, Q, R, S, T) with the FD's:

 $PQ \rightarrow R$

 $Q \rightarrow S$

 $ST \rightarrow P$

 $Q \rightarrow S$ is a BCNF violation for X. Suppose we decide to decompose X into $X_1(Q,S)$, and $X_2(P,Q,R,S,T)$.

Which of the following statements are incorrect?

- (1) $\{PQ \rightarrow R\}$ is a minimal cover for the FD's that hold in X_2 .
- (2) $PQ \rightarrow R$ is a BCNF violation for X_2 .
- (3) X_2 should be decomposed further into $X_3(P, Q, R)$ and $X_4(R, T)$
- (a) (1)
- (b) (2)
- (c) (3)
- (d) (1) and (2) only

[MCQ]

- 8. Suppose functional dependency $Q \to R$ holds in relation R (P, Q, R, S) which additional FD will make R be in 3NF, but not BCNF?
 - (a) $S \rightarrow PQ$
- (b) $PR \rightarrow S$
- (c) $RS \rightarrow Q$
- (d) $PS \rightarrow Q$

Answer Key

1. (a)

2. **(b)**

(a)

4. (a)

(c) (c)

7. (a, c)

8. (c)

Hints & Solutions

1. (a)

Closure of $(PR)^+ = \{P, Q, R, S, T\}$ and also PR is candidate key of the given relation R(PQRST).

2. **(b)**

For BCNF, we make a relation for those FD which violates BCNF property, relation is made for FD $N \rightarrow O$ and by removing O from relation R and creating two relation R_1 (MNPQ) R_2 (NO) Hence, the decomposition is lossless.

3. (a)

S₁: $P \rightarrow RS$, $Q \rightarrow RT$, $T \rightarrow Q$ $\{PQ\}^+ = \{PQRST\}$, $\{PT\}^+ = \{PQTRS\}$ So, candidate key of R is PQ and PT Hence, S₁ is true

 S_2 : False, we have partial dependency in the relation " $Q \rightarrow R$ ". Hence, the given relation is in 1NF.

4. (a)

 $Q \rightarrow R$

 $S \rightarrow P$

 $P \rightarrow Q$

ST must be a part of candidate key ST is candidate key. If satisfies 1NF.

 $S \rightarrow P$ violates 2NF

Become $S \rightarrow P$ is a partial functional dependency.

5. (c)

Starting with $P \to Q$, we decompose R into PQ and PRST. Now, PRST contains a FD $P \to R$ that violates BCNF, so we decompose it further into PQR and PST, $P \to Q$ and $P \to R$ holds in PQR. And PST doesn't support any nontrivial FD's

Hence, $QS \rightarrow P$ is not preserved.

6. (c)

(a) It is lossless because the relations are decomposed based on the FD's and thus each relation has a

common attribute which is also the primary key in either of them.

- (b) It is also lossless as it has common attribute L in three of them and L is also the key in R_1 , R_2 , as well as in R_3 .
- (c) It is a lossy decomposition because the common attribute is O and O is not the key in either of them. Hence, the correct option is(c).

7. (a, c)

Since Q and T do not appear on the right side of any FD, they must be a part of every key.

On computing the closure of $\{Q, T\}$. First, apply $Q \to S$ to get S into the closure. Then, $ST \to P$ adds P into the closure.

Finally, $PQ \rightarrow R$ adds R into the closure.

The closure of $\{Q, T\}$ covers all attributes of X, so it's a super key of X. But we also know that Q and T must be a part of every key, so $\{Q, T\}$ is the only key.

- (a) It is incorrect because $QT \rightarrow PR$ also holds in X_2 (which should be rather obvious because $\{Q, T\}$ is a key).
- (b) It is true because PQ does not contain $\{Q, T\}$, the only key of X_2 .
- (c) It is incorrect because X₄ should be (P, Q, T) instead of (R, T)

Hence a and c is correct option.

8. (c)

- (a) In this, S is the only key, so $Q \rightarrow R$ is both a 3NF and BCNF violation.
- (b) Here, PQ is the only key, so both FD's are 3NF and BCNF violations.
- (c) Here, we can check that the keys are PRS and PQS. Both FD's violate BCNF, but all the attributes are prime, so there can be no 3NF violation.
- (d) PS is the only key, so $Q \rightarrow R$ violates both normal forms.

Hence, the correct option is (c)

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

