Aufgabe 1.

Zeigen Sie, dass jede echte Untergruppe der symmetrischen Gruppe S_3 zyklisch ist. Bestimmen Sie hiermit alle Untergruppen.

Aufgabe 2.

Es seien G, H zwei endliche Gruppen mit teilerfremden Ordnungen |G|, |H|. Zeigen Sie, dass jeder Gruppenhomomorphismus $G \to H$ bereits trivial ist.

Aufgabe 3.

Es sei $N \leq G$ eine normale Untergruppe, so dass G/N abelsch ist. Zeigen Sie, dass jede Untergruppe $H \leq G$ mit $N \leq H$ ebenfalls normal in G ist.

Aufgabe 4.

Es sei G eine endliche Gruppe und x_1, \ldots, x_n ein Repräsentantensystem der Konjugationsklassen von G. Stellen Sie einen Zusammenhang zwischen den Zahlen |G|, |Z(G)| und $|Z_G(x_i)|$ her.

Aufgabe 5.

Es sei G eine Gruppe der Ordnung 77, die auf einer 17-elementigen Menge X wirkt. Zeigen Sie, dass diese Wirkung mindestens 3 Fixpunkte hat.

Aufgabe 6.

Es sei p prim und G eine endliche p-Gruppe, d.h. es gelte $|G| = p^n$ für passendes $n \ge 0$.

1. Die Gruppe G wirke auf einer endlichen Menge X. Zeigen Sie, dass

$$|X| \equiv |X^G| \pmod{p}$$

gilt. Folgern Sie, dass diese Wirkung einen Fixpunkt besitzt, falls $p \nmid |X|$ gilt.

2. Folgern Sie, dass für $G \neq 1$ bereits $Z(G) \neq 1$ gilt.

Aufgabe 7.

Es sei G eine endliche Gruppe mit genau zwei Konjugationsklassen. Zeigen Sie, dass bereits $G\cong \mathbb{Z}/2$ gilt.

Aufgabe 8.

Es sei G eine Gruppe und $H \leq G$ eine Untergruppe von endlichem Index. Zeigen Sie, dass es eine normale Untergruppe $N \subseteq G$ mit $N \subseteq H$ gibt, so dass auch N endlichen Index in G hat.

(*Hinweis*: Konstruieren Sie für $n \coloneqq [G:H]$ einen Gruppenhomomorphismus $G \to S_n$.)

1 Lösungen

Lösung 8.

Wir konstruieren den gewünschten Normalteiler N als den Kern eines Gruppenhomomorphismus, den wir mithilfe einer Gruppenwirkung konstruieren: Die Gruppe G wirkt auf der Menge der Linksnebenklassen G/H vermöge g.(g'H) := (gg')H für alle $g,g' \in G$. Diese Wirkung entspricht einen Gruppenhomomorphismus $\varphi \colon G \to S(G/H)$. Wir betrachten den Normalteiler $N := \ker(\varphi)$.

Es gilt $N \subseteq H$, denn für jedes $g \in N$ gilt

$$(gg')H = g.(g'H) = \varphi(g)(g'H) = id(g'H) = g'H$$

für jedes $g' \in G$, und für g=1 somit insbesondere gH=H, also $g \in H.$ Es gilt

$$[G:N] = |G/N| = |\mathrm{im}(\varphi)| \le |S(G/H)| = |G/H|! = [G:H]! \,.$$

Dabei gilt nach Annahme $[G:H]<\infty$, und somit auch $[G:N]<\infty$.