AI-Powered Health Monitoring System

1. Introduction

This project delivers an AI-Powered Health Monitoring System designed to track and analyze health vitals in real-time. The system identifies potential health anomalies and generates actionable recommendations through a user-friendly dashboard application.

2. Objectives

- Develop a functional AI-powered health monitoring system.
- Visualize health data via an intuitive application.
- Provide anomaly detection and health recommendations.
- Generate structured reports for health status monitoring.

3. System Overview

3.1 Technologies Used

- Python 3
- Streamlit (Dashboard)
- Scikit-learn (Machine Learning)
- Pandas & NumPy (Data Processing)
- Matplotlib & Seaborn (Data Visualization)

3.2 Architecture

- Data Simulation: Generates real-time simulated health data.
- Preprocessing: Scales and normalizes input features.
- Anomaly Detection: Uses Isolation Forest algorithm.
- Recommendations Engine: Applies rule-based logic.
- Visualization Dashboard: Interactive display using Streamlit.

4. Implementation Details

4.1 Data Simulation

Simulated parameters include: - Heart rate - Blood oxygen levels - Body temperature - Respiration rate - Activity level

Each parameter is randomly generated within realistic ranges to mimic live sensor data.

4.2 Preprocessing

Activity levels are converted to numeric values. Data is normalized using StandardScaler to prepare it for machine learning.

4.3 Anomaly Detection

Isolation Forest model detects health anomalies based on user-selected contamination rates.

4.4 Recommendations Engine

Simple rule-based checks provide health advice, such as: - High heart rate triggers rest advice. - Low oxygen level prompts medical attention. - Elevated temperature suggests monitoring.

4.5 Dashboard Application

Users interact with: - Configuration sliders (users, data length, contamination). - Tables showing raw and processed data. - Anomaly detection results. - Health recommendations. - Graphical visualization of anomalies. - Exportable CSV report.

5. Results

- Successfully detects simulated anomalies.
- Displays real-time graphs and data tables.
- · Provides health status reports with recommendations.

6. Conclusion

This AI-Powered Health Monitoring System offers a scalable framework adaptable to real health data. Future expansions could incorporate: - Real-time IoT sensor integrations. - Deep learning models for improved detection. - Mobile app development for patient access.

7. References

- Scikit-learn documentation
- Streamlit documentation
- Medical standard thresholds for vitals (WHO guidelines)