WHAT IS CLAIMED IS:

1. A method of inhibiting histone deacetylation activity in cells comprising contacting the cells with an effective amount of a compound of formula (I), thereby treating one or more disorders mediated by histone deacetylase; said compound having the following formula:

4

1

2

3

5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

haloalkyl;

wherein

A is a cyclic moiety selected from the group consisting of C₃₋₁₄ cycloalkyl, 3-14 membered heterocycloalkyl, C₄₋₁₄ cycloalkenyl, 3-8 membered heterocycloalkenyl, aryl, or heteroaryl; the cyclic moiety being optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, amino, alkylcarbonyloxy, alkyloxycarbonyl, alkylcarbonyl, alkylsulfonylamino, aminosulfonyl, or alkylsulfonyl; or A is a saturated branched C₃₋₁₂ hydrocarbon chain or an unsaturated branched C₃₋₁₂ hydrocarbon chain optionally interrupted by -O-, -S-, -N(R^a)-, -C(O)-, -N(R^a)-SO₂-, -SO₂-N(R^a)-, $-N(R^a)-C(O)-O-, -O-C(O)-N(R^a)-, -N(R^a)-C(O)-N(R^b)-, -O-C(O)-, -C(O)-O-, -O-SO_2-, -SO_2-, -SO_2-$ O-, or -O-C(O)-O-, where each of R^a and R^b, independently, is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl; each of the saturated and the unsaturated branched hydrocarbon chain being optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, amino, alkylcarbonyloxy, alkyloxycarbonyl, alkylcarbonyl, alkylsulfonylamino, aminosulfonyl, or alkylsulfonyl; each of Y1 and Y2, independently, is -CH2-, -O-, -S-, -N(Rc)-, -N(Rc)-C(O)-O-, -O-C(O)-N(R^c)-, -N(R^c)-C(O)-N(R^d)-, -O-C(O)-O-, or a bond; each of R^c and R^d , independently, being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or

L is a straight C_{2-12} hydrocarbon chain optionally containing at least one double bond, at least one triple bond, or at least one double bond and one triple bond; said hydrocarbon chain being optionally substituted with C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, hydroxyl, halo, amino, nitro, cyano, C_{3-5} cycloalkyl, 3-5 membered heterocycloalkyl,

- 29 monocyclic aryl, 5-6 membered heteroaryl, C₁₋₄ alkylcarbonyloxy, C₁₋₄ alkyloxycarbonyl,
- C_{1-4} alkylcarbonyl, or formyl; and further being optionally interrupted by -O-, -N(\mathbb{R}^e)-,
- 31 $-N(R^e)-C(O)-O-$, $-O-C(O)-N(R^e)-$, $-N(R^e)-C(O)-N(R^f)-$, or -O-C(O)-O-; each of R^e and R^f ,
- independently, being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or
- 33 haloalkyl;
- X^1 is O or S; and
- 35 X^2 is $-OR^1$, $-SR^1$, $-NR^3$ - OR^1 , $-NR^3$ - SR^1 , -C(O)- OR^1 , $-CHR^4$ - OR^1 , -N=N-C(O)- $N(R^3)_2$,
- or -O-CHR⁴-O-C(O)-R⁵, where each of R¹ and R², independently, is hydrogen, alkyl,
- 37 hydroxylalkyl, haloalkyl, or a hydroxyl protecting group; R³ is hydrogen, alkyl, alkenyl,
- alkynyl, alkoxy, hydroxylalkyl, hydroxyl, haloalkyl, or an amino protecting group; R⁴ is
- 39 hydrogen, alkyl, hydroxylalkyl, or haloalkyl; R⁵ is alkyl, hydroxylalkyl, or haloalkyl; and
- 40 provided that when L is a C_{2-3} hydrocarbon containing no double bonds and X^2 is $-OR^1$, Y^1 is
- not a bond and Y^2 is not a bond;
- or a salt thereof; and
- determining whether the level of acetylated histones in the treated cells is higher than
- in untreated cells under the same conditions.
 - 1 2. The method of claim 1, wherein X^1 is O.
 - 1 3. The method of claim 1, wherein X^1 is S.
 - 4. The method of claim 1, wherein X² is -OR¹, -NR³-OR¹, -C(O)-OR¹, -CHR⁴-OR¹, or
 - 2 -O-CHR 4 -O-C(O)-R 5 .
 - 5. The method of claim 1, wherein X^2 is $-OR^1$, $-NR^3-OR^1$, $-C(O)OR^1$, or
 - 2 $-O-CHR^4-O-C(O)-R^5$.
 - 6. The method of claim 1, wherein each of Y^1 and Y^2 , independently, is -CH₂-, -O-,
 - 2 -N(R^c)-, or a bond.
 - 7. The method of claim 1, wherein each of Y^1 and Y^2 , independently, is -CH₂- or a bond.
 - 1 8. The method of claim 1, wherein L is a saturated hydrocarbon chain.

- 9. The method of claim 8, wherein L is a C_{3-8} hydrocarbon chain substituted with C_{1-2} alkyl,
- 2 C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 1 10. The method of claim 1, wherein L is an unsaturated hydrocarbon chain containing at least
- 2 one double bond and no triple bond.
- 1 11. The method of claim 10, wherein L is an unsaturated C₄₋₈ hydrocarbon chain substituted
- with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 1 12. The method of claim 10, wherein the double bond is in trans configuration.
- 2 13. The method of claim 1, wherein L is an unsaturated hydrocarbon chain containing at least
- one double bond and one triple bond.
- 1 14. The method of claim 13, wherein L is an unsaturated C₄₋₈ hydrocarbon chain substituted
- with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 1 15. The method of claim 13, wherein the double bond is in trans configuration.
- 1 16. The method of claim 1, wherein A is a C₅₋₈ cycloalkenyl or 5-8 membered heteroalkenyl
- 2 containing at least one double bonds.
- 1 17. The method of claim 1, wherein A is phenyl, naphthyl, indanyl, or tetrahydronaphthyl.
- 18. The method of claim 1, wherein A is phenyl optionally substituted with alkyl alkenyl,
- 2 alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, or amino.
- 1 19. The method of claim 18, wherein L is a saturated C₃₋₈ hydrocarbon chain substituted with
- 2 C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 1 20. The method of claim 19, wherein X^1 is O; X^2 is $-OR^1$, $-NR^3-OR^1$, $-C(O)OR^1$, or
- 2 -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^a)-, or a
- 3 bond.

- 1 21. The method of claim 18, wherein L is an unsaturated C₄₋₈ hydrocarbon chain containing
- 2 at least one double bond and no triple bond, said unsaturated hydrocarbon chain optionally
- substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or
- 4 $-N(C_{1-2} \text{ alkyl})_2$.
- 1 22. The method of claim 21, wherein X^1 is O; X^2 is $-OR^1$, $-NR^3-OR^1$, $-C(O)OR^1$, or
- 2 -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a
- 3 bond.
- 1 23. The method of claim 18, wherein L is an unsaturated hydrocarbon chain containing at
- least one double bond and one triple bond, optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy,
- 3 hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 1 24. The method of claim 23, wherein X^1 is O; X^2 is $-OR^1$, $-NR^3-OR^1$, $-C(O)OR^1$, or
- 2 -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a
- 3 bond.
- 1 25. The method of claim 1, wherein A is a saturated branched C₄₋₁₀ hydrocarbon chain
- 2 optionally interrupted by -N(R^a)-, -N(R^a)-C(O)-O-, -O-C(O)-N(R^a)-,
- ³ -N(R^a)-C(O)-N(R^b)-, -O-C(O)-, or -C(O)-O- where each of R^a and R^b, independently, is
- 4 hydrogen, alkyl, alkoxy, hydroxylalkyl, or hydroxyl.
- 1 26. The method of claim 25, wherein L is a saturated C₃₋₈ hydrocarbon chain substituted with
- 2 C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 1 27. The method of claim 26, wherein X^1 is O; X^2 is $-OR^1$, $-NR^3-OR^1$, $-C(O)OR^1$, or
- 2 -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^a)-, or a
- 3 bond.
- 1 28. The method of claim 25, wherein L is an unsaturated C₄₋₈ hydrocarbon chain containing
- only double bonds, said unsaturated hydrocarbon chain optionally substituted with C₁₋₂ alkyl,
- 3 C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.

- 1 29. The method of claim 28, wherein X^1 is O; X^2 is $-OR^1$, $-NR^3$ - OR^1 , $-C(O)OR^1$, or
- 2 -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a
- 3 bond.
- 1 30. The method of claim 25, wherein L is an unsaturated hydrocarbon chain containing at
- least one double bond and one triple bond, optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy,
- 3 hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 1 31. The method of claim 30, wherein X^1 is O; X^2 is $-OR^1$, $-NR^3-OR^1$, $-C(O)OR^1$, or
- 2 -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a
- 3 bond.
- 1 32. The method of claim 1, wherein A is an unsaturated branched C₄₋₁₀ hydrocarbon chain
- optionally interrupted by $-N(R^a)$ -, $-N(R^a)$ -C(O)-O-, -O-C(O)- $N(R^a)$ -, $-N(R^a)$ -C(O)- $N(R^b)$ -,
- 3 -O-C(O)-, or -C(O)-O- where each of R^a and R^b, independently, is hydrogen, alkyl, alkoxy,
- 4 hydroxylalkyl, or hydroxyl.
- 1 33. The method of claim 32, wherein A contains only double bonds.
- 1 34. The method of claim 33, wherein L is a saturated C_{3-8} hydrocarbon chain optionally
- substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 1 35. The method of claim 34, wherein X^1 is O; X^2 is $-OR^1$, $-NR^3-OR^1$, $-C(O)OR^1$, or
- 2 -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a
- 3 bond.
- 1 36. The method of claim 33, wherein L is an unsaturated C₄₋₈ hydrocarbon chain containing
- only double bonds, said unsaturated hydrocarbon chain optionally being substituted with C_{1-2}
- alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.

- 1 37. The method of claim 36, wherein X^1 is O; X^2 is $-OR^1$, $-NR^3-OR^1$, $-C(O)OR^1$, or
- 2 -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a
- 3 bond.
- 1 38. The method of claim 33, wherein L is an unsaturated C₄₋₈ hydrocarbon chain containing
- at least one double bond and one triple bond, said unsaturated hydrocarbon chain optionally
- being substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2}
- 4 alkyl)₂.
- 1 39. The method of claim 38, wherein X¹ is O; X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or
- 2 -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a
- 3 bond.
- 40. The method of claim 1, wherein said compound is 5-phenyl-2,4-pentadienoic acid, 3-
- 2 methyl-5-phenyl-2,4-pentadienoic acid, 4-methyl-5-phenyl-2,4-pentadienoic acid, 4-chloro-
- 5-phenyl-2,4-pentadienoic acid, 5-(4-dimethylaminophenyl)-2,4-pentadienoic acid, 5-(2-
- 4 furyl)-2,4-pentadienoic acid, 5-phenyl-2-en-4-yn-pentanoic acid, 6-phenyl-3,5-hexadienoic
- 5 acid, 7-phenyl-2,4,6-heptatrienoic acid, 8-phenyl-3,5,7-octatrienoic acid, potassium 2-oxo-6-
- 6 phenyl-3,5-hexadienoate, potassium 2-oxo-8-phenyl-3,5,7-octatrienoate,
- 7 cinnamoylhydroxamic acid, methyl-cinnamoylhydroxamic acid, 4-
- 8 cyclohexanebutyroylhydroxamic acid, benzylthioglycoloylhydroxamic acid, 5-
- 9 phenylpentanoylhydroxamic acid, 5-phenyl-2,4-pentadienoylhydroxamic acid, N-methyl-5-
- phenyl-2,4-pentadienoylhydroxamic acid, 3-methyl-5-phenyl-2,4-pentadienoylhydroxamic
- acid, 4-methyl-5-phenyl-2,4-pentadienoyl hydroxamic acid, 4-chloro-5-phenyl-2,4-
- pentadienoylhydroxamic acid, 5-(4-dimethylaminophenyl)-2,4-pentadienoylhydroxamic acid,
- 5-phenyl-2-en-4-yn-pentanoylhydroxamic acid, 5-(2-furyl)-2,4-pentadienoylhydroxamic
- acid, 6-phenylhexanoylhydroxamic acid, 6-phenyl-3,5-hexadienoylhydroxamic acid, N-
- methyl-6-phenyl-3,5-hexadienoylhydroxamic acid, 7-phenylheptanoylhydroxamic acid, 7-
- phenyl-2,4,6-hepta-trienoylhydroxamic acid or 8-phenyloctanoylhydroxamic acid.
- 1 41. The method of claim 1, wherein said compound is 5-phenyl-2,4-pentadienoic acid, 8-
- phenyl-3,5,7-octatrienoic acid, potassium 2-oxo-8-phenyl-3,5,7-octatrienoate,

- 3 benzylthioglycoloylhydroxamic acid, 5-phenyl-2,4-pentadienoylhydroxamic acid, 6-
- 4 phenylhexanoylhydroxamic acid, 7-phenyl-2,4,6-hepta-trienoylhydroxamic acid, or 8-
- 5 phenyloctanoylhydroxamic acid.
- 42. The method of claim 1, wherein the cells are treated with a compound of formula (I) in
- 2 vivo.
- 43. The method of claim 1, wherein the cells are treated with a compound of formula (I) in
- 2 vitro.
- 1 44. The method of claim 1, wherein the cells being treated are cancerous.
- 45. The method of claim 1, wherein the disorder is selected from the group consisting of
- 2 cancer, hemoglobinopathies, thalassemia, sickle cell anemia, cystic fibrosis, protozoan
- infection, adrenoleukodystrophy, alpha-1 anti-trypsin, retrovirus gene vector reactivation,
- wound healing, hair growth, peroxisome biogenesis disorder, and adrenoleukodystrophy.
- 46. The method of claim 1, wherein the disorder is cancer, cystic fibrosis, or
- 2 adrenoleukodystrophy.
- 47. A method of inhibiting histone deacetylase in cells comprising contacting the cells with
- an effective amount of a compound of formula (I):

5 wherein

3 4

A is phenyl optionally substituted with alkyl alkenyl, alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, or amino;

each of Y¹ and Y², independently, is -CH₂-, -O-, -S-, -N(R^c)-, or a bond; where R^c is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl; L is a straight C_{2-12} hydrocarbon chain optionally containing at least one double bond, at least one triple bond, or at least one double bond and one triple bond; said hydrocarbon chain being optionally substituted with C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, hydroxyl, halo, amino, nitro, cyano, C_{3-5} cycloalkyl, 3-5 membered heterocycloalkyl, monocyclic aryl, 5-6 membered heteroaryl, C_{1-4} alkylcarbonyloxy, C_{1-4} alkyloxycarbonyl, C_{1-4} alkylcarbonyl, or formyl; and further being optionally interrupted by -O-, -N(R^e)-, -N(R^e)-, -N(R^e)-, -N(R^e)-, or -O-C(O)-O-; each of R^e and R^f , independently, being hydrogen, alkyl, alkenyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl; X^1 is O or S; and X^2 is -OR 1 , -SR 1 , -NR 3 -OR 1 , -NR 3 -SR 1 , -C(O)-OR 1 , -CHR 4 -OR 1 , -N=N-C(O)-N(R^3)₂, or -O-CHR 4 -O-C(O)-R 5 ; where each of R^1 and R^2 , independently, is hydrogen, alkyl,

X² is -OR¹, -SR¹, -NR³-OR¹, -NR³-SR¹, -C(O)-OR¹, -CHR⁴-OR¹, -N=N-C(O)-N(R³)₂, or -O-CHR⁴-O-C(O)-R⁵; where each of R¹ and R², independently, is hydrogen, alkyl, hydroxylalkyl, haloalkyl, or a hydroxyl protecting group; R³ is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, haloalkyl, or an amino protecting group; R⁴ is hydrogen, alkyl, hydroxylalkyl, or haloalkyl; R⁵ is alkyl, hydroxylalkyl, or haloalkyl; and provided that when L is a C₂₋₃ hydrocarbon containing no double bonds and X² is -OR¹, Y¹ is not a bond and Y² is not a bond;

or a salt thereof; and

determining whether the level of acetylated histones in the treated cells is higher than in untreated cells under the same conditions.

- 48. The method of claim 47, wherein L is a saturated C₃₋₈ hydrocarbon chain substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or -N(C₁₋₂ alkyl)₂.
- 49. The method of claim 48, wherein X¹ is O; X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or
- 2 -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^a)-, or a
- 3 bond.
- 50. The method of claim 47, wherein L is an unsaturated C₄₋₈ hydrocarbon chain containing
- only double bonds, said unsaturated hydrocarbon chain optionally substituted with C₁₋₂ alkyl,
- C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.

- 51. The method of claim 50, wherein X^1 is O; X^2 is $-OR^1$, $-NR^3$ - OR^1 , $-C(O)OR^1$, or
- 2 -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a
- 3 bond.
- 52. The method of claim 47, wherein L is an unsaturated hydrocarbon chain containing at
- least one double bond and one triple bond, optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy,
- hydroxyl, $-NH_2$, $-NH(C_{1-2}$ alkyl), or $-N(C_{1-2}$ alkyl)₂.
- 1 53. The method of claim 53, wherein X¹ is O; X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or
- 2 -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a
- 3 bond.
- 1 54. A method of treating a histone deacetylase-mediated disorder comprising administering
- to a subject in need thereof a therapeutically effective amount of compound of formula (I):

4

5

6

7

8

9

10

11

12

13

14

15

16

17

3

wherein

A is a cyclic moiety selected from the group consisting of C₃₋₁₄ cycloalkyl, 3-14 membered heterocycloalkyl, C₄₋₁₄ cycloalkenyl, 4-14 membered heterocycloalkenyl, monocyclic aryl, or heteroaryl; the cyclic moiety being optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, amino, alkylcarbonyloxy, alkyloxycarbonyl, alkylcarbonyl, alkylsulfonylamino, aminosulfonyl, or alkylsulfonyl; or A is a saturated branched C₃₋₁₂ hydrocarbon chain or an unsaturated branched C₃₋₁₂ hydrocarbon chain optionally interrupted by -O-, -S-, -N(R^a)-, -C(O)-, -N(R^a)-SO₂-, -SO₂-N(R^a)-, -N(R^a)-C(O)-N(R^a)-, -N(R^a)-C(O)-N(R^b)-, -O-C(O)-, -C(O)-O-, -O-SO₂-, -SO₂-O-, or -O-C(O)-O- where each of R^a and R^b, independently, is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl; each of the saturated and the unsaturated branched hydrocarbon chain being optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, amino, alkylcarbonyloxy,

```
alkyloxycarbonyl, alkylcarbonyl, alkylcarbonylamino, aminocarbonyl, alkylsulfonylamino, aminosulfonyl, or alkylsulfonyl;

each of Y¹ and Y², independently, is -CH₂-, -O-, -S-, -N(R°)-, -N(R°)-C(O)-O-,

-O-C(O)-N(R°)-, -N(R°)-C(O)-N(R<sup>d</sup>)-, -O-C(O)-O-, or a bond; each of R° and R<sup>d</sup>,

independently, being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or
```

L is a straight C_{3-12} hydrocarbon chain optionally containing at least one double bond, at least one triple bond, or at least one double bond and one triple bond; said hydrocarbon chain being optionally substituted with C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, hydroxyl, halo, amino, nitro, cyano, C_{3-5} cycloalkyl, 3-5 membered heterocycloalkyl, monocyclic aryl, 5-6 membered heteroaryl, C_{1-4} alkylcarbonyloxy, C_{1-4} alkyloxycarbonyl, C_{1-4} alkylcarbonyl, or formyl; and further being optionally interrupted by -O-, -N(R^e)-, -N(R^e)--, -N(R^e)-C(O)-O-, -O-C(O)-N(R^e)-, -N(R^e)-C(O)-N(R^f)-, or -O-C(O)-O-; each of R^e and R^f , independently, being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl;

X¹ is O or S; and

haloalkyl;

 X^2 is $-OR^1$, $-SR^1$, $-NR^3$ - OR^1 , $-NR^3$ - SR^1 , -C(O)- OR^1 , $-CHR^4$ - OR^1 , -N=N-C(O)- $N(R^3)_2$, or -O- CHR^4 -O-C(O)- R^5 ; where each of R^1 and R^2 , independently, is hydrogen, alkyl, hydroxylalkyl, haloalkyl, or a hydroxyl protecting group; R^3 is hydrogen, alkyl, alkenyl, alkoxy, hydroxylalkyl, hydroxyl, haloalkyl, or an amino protecting group; R^4 is hydrogen, alkyl, hydroxylalkyl, or haloalkyl; R^5 is alkyl, hydroxylalkyl, or haloalkyl; and provided that when L is a C_{2-3} hydrocarbon containing no double bonds and X^2 is $-OR^1$, Y^1 is not a bond and Y^2 is not a bond;

or a salt thereof.

- 55. The method of claim 54, wherein A is phenyl optionally substituted with alkyl alkenyl, alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, or amino.
- 56. The method of claim 55, wherein L is a saturated C₃₋₈ hydrocarbon chain substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or -N(C₁₋₂ alkyl)₂.

- 57. The method of claim 56, wherein X^1 is O; X^2 is $-OR^1$, $-NR^3-OR^1$, $-C(O)OR^1$, or
- 2 -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^a)-, or a
- 3 bond.
- 58. The method of claim 55, wherein L is an unsaturated C₄₋₈ hydrocarbon chain containing
- only double bonds, said unsaturated hydrocarbon chain optionally substituted with C₁₋₂ alkyl,
- 3 C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 59. The method of claim 58, wherein X^1 is O; X^2 is $-OR^1$, $-NR^3$ - OR^1 , $-C(O)OR^1$, or
- 2 -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a
- 3 bond.
- 1 60. The method of claim 55, wherein L is an unsaturated hydrocarbon chain containing at
- least one double bond and one triple bond, optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy,
- 3 hydroxyl, $-NH_2$, $-NH(C_{1-2} \text{ alkyl})$, or $-N(C_{1-2} \text{ alkyl})_2$.
- 61. The method of claim 60, wherein X¹ is O; X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or
- 2 -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a
- 3 bond.
- 62. The method of claim 54, wherein said disorder is selected from the group consisting of
- cancer, hemoglobinopathies, thalassemia, sickle cell anemia, cystic fibrosis, protozoan
- 3 infection, adrenoleukodystrophy, alpha-1 anti-trypsin, retrovirus gene vector reactivation,
- wound healing, hair growth, peroxisome biogenesis disorder, and adrenoleukodystrophy.
- 1 63. The method of claim 54, wherein said disorder is cancer, cystic fibrosis, or
- 2 adrenoleukodystrophy.
- 1 64. The method of claim 54, wherein said compound 5-phenyl-2,4-pentadienoic acid, 3-
- 2 methyl-5-phenyl-2,4-pentadienoic acid, 4-methyl-5-phenyl-2,4-pentadienoic acid, 4-chloro-
- 5-phenyl-2,4-pentadienoic acid, 5-(4-dimethylaminophenyl)-2,4-pentadienoic acid, 5-(2-
- 4 furyl)-2,4-pentadienoic acid, 5-phenyl-2-en-4-yn-pentanoic acid, 6-phenyl-3,5-hexadienoic

- phenyl-2,4-pentadienoylhydroxamic acid, 3-methyl-5-phenyl-2,4-pentadienoylhydroxamic
- acid, 4-methyl-5-phenyl-2,4-pentadienoyl hydroxamic acid, 4-chloro-5-phenyl-2,4-
- pentadienoylhydroxamic acid, 5-(4-dimethylaminophenyl)-2,4-pentadienoylhydroxamic acid,
- 5-phenyl-2-en-4-yn-pentanoylhydroxamic acid, 5-(2-furyl)-2,4-pentadienoylhydroxamic
- acid, 6-phenylhexanoylhydroxamic acid, 6-phenyl-3,5-hexadienoylhydroxamic acid, N-
- methyl-6-phenyl-3,5-hexadienoylhydroxamic acid, 7-phenylheptanoylhydroxamic acid, 7-
- phenyl-2,4,6-hepta-trienoylhydroxamic acid or 8-phenyloctanoylhydroxamic acid.
- 1 65. The method of claim 54, wherein said compound is 5-phenyl-2,4-pentadienoic acid, 8-
- phenyl-3,5,7-octatrienoic acid, potassium 2-oxo-8-phenyl-3,5,7-octatrienoate,
- benzylthioglycoloylhydroxamic acid, 5-phenyl-2,4-pentadienoylhydroxamic acid, 6-
- 4 phenylhexanoylhydroxamic acid, 7-phenyl-2,4,6-hepta-trienoylhydroxamic acid, or 8-
- 5 phenyloctanoylhydroxamic acid.
- 66. The method of claim 54, wherein Y^1 is not a bond.