# Supplementary Materials for "Deep Bilateral Learning for Stereo Image Super-Resolution"

In the supplemental material, we describe the details of recurrent refinement module in Fig. 2. The recurrent refinement module consists of one RDB, one splat block and three bilateral filters.

### I. RDB

In the RDB, we use 6 convolutions with a growth rate of 16. Then, the output of our RDB ( $I_{res}^0$ ) is added to  $I_{res}^m$  in each bilateral filter.

# II. SPLAT BLOCK

Our splat block consists of a RDB block, two  $3 \times 3$  convolutions with stride 2 and two upscalers. Given input features (e.g.,  $F_{right}^{'}$ ), it is first passed to the RDB block for multi-scale feature extraction. Then, the resulting features are fed to two cascaded convolutions with stride 2. Then we upsample the features with two cascaded upscalers. Then, the output  $F_{splat} \in R^{h \times w \times 128}$  is fed to each bilateral filter for the generation of bilateral grid.



Fig. 1. The structure of the splat block.

## III. BILATERAL GRID

After splat block, the output features  $F_{splat}$  is fed to a  $3 \times 3$ convolution for channel fusion. Then, we produce bilateral grid  $\Gamma \in R^{w \times h \times d \times g}$  by reshape the fused feature  $F_{map}$ . Our bilateral grid delivers a compact set of transformation from LR images to HR images. Then, we use another  $3 \times 3$ convolution to predict a guidance map Z from  $I_{in}$ , resulting in  $Z \in \mathbb{R}^{H \times W \times d}$ . For each pixel (x,y) in an HR image  $I^{HR} \in R^{H \times W \times 3}$ , its coordinates are first transformed as  $\hat{x} = x/H * h, \hat{y} = y/W * w$ . Then, bilinear interpolation is used to obtain a guidance vector  $z \in \mathbb{R}^{h \times w \times d}$  from Z at location  $(\hat{x}, \hat{y})$ . Next, trilinear interpolation is performed on bilateral grid at location  $(\hat{x}, \hat{y}, z(\hat{x}, \hat{y}))$  to produce a kernel  $K_c \in \mathbb{R}^{81\times 1}$ , which is then reshaped to  $\mathbb{R}^{3\times 3\times k\times k}$ . The kernel  $K_c$  learns a mapping from a mapping from a  $3 \times 3$ neighborhood centered at (x, y) in  $I_{in}$ . In our experiment, we set k = 3, g = 81 and d = 8.

# IV. BILATERAL FILTER

For each pixel (x,y) in  $I^m$ , the sliced  $K_c$  is convolved with the neighborhood patch  $I_{patch} \in R^{3 \times 3 \times 3}$  centered at (x,y). Then, the residual image  $I^m_{res}$  and  $I^m$  are added to the resulting to produce  $I_{out} \in R^{H \times W \times 3}$ . Next,  $I_{out}$  is passed to a space-to-depth layer [1] to produce feature  $R^{h \times w \times 3r^2}(r = H/h)$ , which is then concatenated with  $I^0_{res}$  to feed to the next bilateral filter to produce  $I^{m+1}_{res}$ . For gray image  $I_{gray} \in R^{H \times W \times 1}$ , we process the image  $I'_{gray} \in R^{H \times W \times 3}$ , which is generated by replicating  $I_{gray}$  in the third dimension.

### REFERENCES

 L. Wang, Y. Guo, L. Liu, Z. Lin, X. Deng, and W. An, "Deep video super-resolution using hr optical flow estimation," *IEEE Transactions on Image Processing*, vol. 29, pp. 4323–4336, 2020.

1