	Dr. Pankaj Shukla, Dr. Abhishek Kumar Singh, Dr Dhansekhar, Dr Berin Greeni A , Dr. Kirti Aarya, Dr Kalyan Manna, Dr Vijay Kumar Poshala, Dr. Sandeep Saha, Dr David Raj Michel, Dr Ankit Kumar	Max.	: 50 B1+1B1	The state of the s
Lime	One and half Hours	Marks		100

Answer all the Questions

	741134701 011	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN
1.	(i) Find all critical points of the function $f(x,y) = x^4 + y^4 - 2x^2 - 2y^2 + 4xy$ and check whether the function attains maximum or minimum at each of these points. (ii) Show that point $(0,0)$ is neither a point of local minimum nor a point of local maximum for the function given by $f(x,y) = 3x^4 - 4x^2y + y^2$ for $(x,y) \in \mathbb{R}^2$.	10
2.	(i) If x,y and z are positive real numbers, then find the minimum value of function $x^2 + 8y^2 + 27z^2$, where $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$. (ii) Find the Taylor series expansion of $f(x,y) = \sin xy + x^2y + e^x$ in the power of $(x-1)$ and $(y-\pi)$ up to second degree terms.	10

		100000000000000000000000000000000000000
3.	(i) Find the value of integral by using the polar coordinates.	
	$I = \iint_{D} \sqrt{x^2 + y^2} dy dx \text{where } D = \{(x, y) \in \mathbb{R}^2 : x \le x^2 + y^2 \le 2x\}$ $(ii) Find the scales of interval to the scales of the constant of the scales $	10
decimina decima (Telepho), memorano (C	(ii) Find the value of integral by changing the order of integration $I = \int_0^4 \int_{(4-x)^{\frac{1}{2}}}^2 e^{y^2} dy dx$	
4.	Using multiple integrals, find the volume of the solid region bounded above by hemisphere $z = 1 + \sqrt{1 - x^2 - y^2}$ and bounded below by the cone $z = \sqrt{x^2 + y^2}$.	10
5.	Solve the following integrals by using Beta and Gamma Function:	
	(i) $I = \int_0^\infty \frac{e^{-\frac{x^2}{\lambda^2}}}{x^6} dx \text{where } k \neq 0$	dual)
	$(ii) \qquad I = \int_{1}^{0} x^{4} \sqrt{1 - x^{2}} dx$	Y
	$\int \int \int \int \int \int \int \int \partial x dx$	