## Natural Language Processing & Word Embeddings

Quiz, 10 questions

| <b>~</b>           | Congratulations! You passed!                                                                                                                         | Next Item       |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                    |                                                                                                                                                      |                 |
| <b>~</b>           | 1/1<br>point                                                                                                                                         |                 |
|                    | se you learn a word embedding for a vocabulary of 10000 words. Then the<br>be 10000 dimensional, so as to capture the full range of variation and me | _               |
|                    | True                                                                                                                                                 |                 |
| 0                  | False                                                                                                                                                |                 |
|                    | ect<br>dimension of word vectors is usually smaller than the size of the vocabula<br>s for word vectors ranges between 50 and 400.                   | ry. Most common |
| <b>~</b>           | 1/1<br>point                                                                                                                                         |                 |
| 2.<br>What is      | s t-SNE?                                                                                                                                             |                 |
|                    | A linear transformation that allows us to solve analogies on word vectors                                                                            | 5               |
| 0                  | A non-linear dimensionality reduction technique                                                                                                      |                 |
| <b>Corr</b><br>Yes | ect                                                                                                                                                  |                 |
|                    | A supervised learning algorithm for learning word embeddings                                                                                         |                 |
|                    | An open-source sequence modeling library                                                                                                             |                 |
|                    |                                                                                                                                                      |                 |

Natural Language Processing & Word Embeddings trained on a huge corpus of text. Quiz, Mowestien use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

| x (input text)               | y (happy?) |
|------------------------------|------------|
| I'm feeling wonderful today! | 1          |
| I'm bummed my cat is ill.    | 0          |
| Really enjoying this!        | 1          |

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

| 0     |  |
|-------|--|
| Corre |  |
|       |  |

True

#### ect

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic would contain a positive/happy connotation which will probably make your model classified the sentence as a "1".



**False** 



1/1 point

Which of these equations do you think should hold for a good word embedding? (Check all that apply)



$$e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$$

#### Correct

Yes!



$$e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$$

**Un-selected is correct** 



$$e_{boy} - e_{brother} \approx e_{girl} - e_{sister}$$

Correct

#### Yes!

### Natural Language Processing & Word Embeddings

Quiz, 10 questions



$$e_{boy} - e_{brother} \approx e_{sister} - e_{girl}$$

**Un-selected** is correct



1/1 point

5.

Let E be an embedding matrix, and let  $o_{1234}$  be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call  $E*o_{1234}$  in Python?



It is computationally wasteful.



Yes, the element-wise multiplication will be extremely inefficient.

- The correct formula is  $E^T * o_{1234}$ .
- This doesn't handle unknown words (<UNK>).
- None of the above: calling the Python snippet as described above is fine.



1/1 point

6

When learning word embeddings, we create an artificial task of estimating  $P(target \mid context)$ . It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.



True

Correct

\_\_\_\_ F

**False** 



1/1 point

7.

| In the Natural Quiz, 10 quest | c and $t$ are chosen to be nearby words.                                                                                                                                                                                                                                                                                                  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | c is a sequence of several words immediately before $t.$                                                                                                                                                                                                                                                                                  |
|                               | c is the sequence of all the words in the sentence before $t.$                                                                                                                                                                                                                                                                            |
|                               | c is the one word that comes immediately before $t.$                                                                                                                                                                                                                                                                                      |
| word2 $P(t \mid a)$           | se you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The vec model uses the following softmax function: $e^{\frac{e^{0_t^T e_c}}{\sum_{t'=1}^{10000} e^{\theta_t^T e_c}}}$ of these statements are correct? Check all that apply. $\theta_t \text{ and } e_c \text{ are both 500 dimensional vectors.}$ |

 $igcup_t$  and  $e_c$  are both 10000 dimensional vectors.

#### **Un-selected is correct**

 $heta_t$  and  $e_c$  are both trained with an optimization algorithm such as Adam or gradient descent.

#### Correct

After training, we should expect  $heta_t$  to be very close to  $e_c$  when t and c are the same word.

#### **Un-selected is correct**

## Natural Language Processing & Word Embeddings

Quiz, 10 questions 9.

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$$

Which of these statements are correct? Check all that apply.

 $igcup_i$  and  $e_j$  should be initialized to 0 at the beginning of training.

**Un-selected** is correct

 $\theta_i$  and  $e_j$  should be initialized randomly at the beginning of training.

Correct

 $X_{ij}$  is the number of times word i appears in the context of word j.

Correct

lacksquare The weighting function f(.) must satisfy f(0)=0.

#### Correct

The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function.



1/1 point

10.

You have trained word embeddings using a text dataset of  $m_1$  words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of  $m_2$  words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?

 $\bigcap$   $m_1 >> m_2$ 

Correct

 $m_1 \ll m_2$ 

# Natural Language Processing & Word Embeddings Quiz, 10 questions

