Assignment 1

- Submit the assignment by **25th September by 11:00 PM**. (12 days from today).
- There will be a penalty for late submissions.
- Answers should be solved individually (this is not a group assignment).
- Please be careful, do not copy the assignments. Zero marks will be awarded to both persons.
- Try to submit a soft copy (using a word file) since handwritten softcopy is sometimes hard to read.

Q1. What do you understand by proximity measures? Compute the following measures on given vectors X and Y below:

$$X = (0,1,0,0,1,1,0,0,1,1)$$

$$Y = (1,0,0,0,1,1,0,0,0,1)$$

- a) Cosine Similarity
- b) Jaccard Similarity
- c) Pearson's correlation
- **Q2.** Consider the training examples given below for a binary classification problem.
 - (a) Compute the Gini index for the overall collection of training examples.
 - (b) Compute the Gini index for the Customer ID attribute.
 - (c) Compute the Gini index for the Gender attribute.
 - (d) Compute the Gini index for the Car Type attribute using multiway split.
 - (e) Compute the Gini index for the Shirt Size attribute using multiway split.
 - (f) Which attribute is better, Gender, Car Type, or Shirt Size?
 - (g) Explain why Customer ID should not be used as the attribute test condition even though it has the lowest Gini.
 - (h) Construct a decision tree by considering the algorithms ID3.
 - (i) Construct a decision tree by considering the algorithms C4.5.

Customer ID	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

Q3. Consider the decision tree shown in the figure below:

- (a) Compute the generalization error rate of the tree using the optimistic approach.
- (b) Compute the generalization error rate of the tree using the pessimistic approach. (For simplicity, use the strategy of adding a factor of 0.5 to each leaf node.)
- (c) Compute the generalization error rate of the tree using the validation set shown above.

Instance	Α	В	С	Class
- 1	0	0	0	+
2	0	0	1	+
3	0	1	0	+
4	0	1	1	778
5	1	0	0	+
6	1	0	0	
7	1	1	0	
8	1	0	1	+
9	1	1	0	_
10	1	1	0	-

Validation:

Instance	Α	В	C	Class
11	0	0	0	+
12	0	1	1	+
13	1	1	0	+
14	1	0	1	
15	1	0	0	+

Q4. Consider the decision trees shown in the figure below. Assume they are generated from a data set that contains 25 binary attributes and 3 classes, C1, C2, and C3.

Consider the left decision tree has 9 errors and the right decision tree has 6 errors. Compute the total description length of each decision tree according to the minimum description length principle. Which decision tree is better, according to the MDL principle?

Q5. Consider a binary classification problem with the following set of attributes and attribute values:

```
• Air Conditioner: {Working, Broken}
```

• Engine: {Good, Bad}

• Mileage: {High, Medium, Low}

• Rust: {yes, No}

Suppose a rule-based classifier produces the following rule set:

```
Mileage = High → Value = Low
Mileage = Low → Value = High
Air Conditioner = Working, Engine = Good → Value = High
Air Conditioner = Working, Engine = Bad → Value = Low
Air Conditioner = Broken → Value = Low
```

- a) Are the rules mutually exclusive?
- b) Is the rule set exhaustive?
- c) Is ordering needed for this set of rules?
- d) Do you need a default class for the rule set?