General Voronoi

$$d(q, p_i) = |qp_i|^2 - \omega_i$$

Weighted circle $C(p_i, r_i)$: the center is p_i and the radius $r_i = \sqrt{\omega_i}$.

- If $d(q, p_i) > 0$, q is outside of $C(p_i, r_i)$;
- If $d(q, p_i) = 0$, q is on $C(p_i, r_i)$;
- If $d(q, p_i) < 0$, q is inside of $C(p_i, r_i)$;
- If $\omega_i < 0$, we always have $d(q, p_i) > 0$ and q is outside of the imaginary circle $C(p_i, r_i)$.

$$d(q, p_i) = |qp_i|^2 - \omega_i$$

Energy Area: $VR(p_i) = \{q | d(q, p_i) \le d(q, p_j), i \ne j\}$

Energy Edge: $B(p_i, p_j) = \{q | d(q, p_i) = d(q, p_j), i \neq j\}$

Examples of energy edge:

 $B(p_i, p_j)$ is a line.

 $B(p_i, p_j)$ is perpendicular to $p_i p_j$.

• For any pint on $B(p_i, p_j)$, $d(q, p_i) = d(q, p_j)$, $|qp_i|^2 - \omega_i = |qp_j|^2 - \omega_j$. The energy diagram does not change if $\omega_i + \Delta \omega = \omega_j + \Delta \omega$.

• $VR(p_i)$ is also the intersection of several half planes.

$$d(q, p_i) = |qp_i| - \omega_i$$

Weighted circle $C(p_i, r_i)$: the center is p_i and the radius is ω_i .

- If $d(q, p_i) > 0$, q is outside of $C(p_i, \omega_i)$;
- If $d(q, p_i) = 0$, q is on $C(p_i, \omega_i)$;
- If $d(q, p_i) < 0$, q is inside of $C(p_i, \omega_i)$;

For two seeds p_i , p_j , the half plane of p_i can be denoted as

$$h(p_i, p_j) = \{q \mid |qp_i| - \omega_i \le |qp_j| - \omega_j, j \ne i, p_i, p_j \in P\}$$

$$h(p_i, p_j) = \{q \mid |qp_i| - |qp_j| \le \omega_i - \omega_j, j \ne i, p_i, p_j \in P\}$$

$$h(p_i, p_j) = \{q \mid |qp_i| - |qp_j| \le \omega_i - \omega_j, j \ne i, p_i, p_j \in P\}$$

1. $0 < |p_i p_j| < \omega_i - \omega_j$

For $\Delta q p_i p_j$, we get $|q p_i| - |q p_j| < |p_i p_j|$. Then, $|q p_i| - |q p_j| < \omega_i - \omega_j$.

Then, $h(p_i, p_i)$ is the whole plane, and $h(p_i, p_i)$ is empty.

$$2. |p_i p_j| = \omega_i - \omega_j$$

For the ray $p_i p_j$ removing the line segment $p_i p_j$, $|qp_i| - |qp_j| = \omega_i - \omega_j$.

For other areas, we get $|qp_i| - |qp_j| < |p_ip_j|$. Then, $|qp_i| - |qp_j| < \omega_i - \omega_j$.

Then, $h(p_i, p_j)$ is the whole plane, and $h(p_j, p_i)$ is the ray $p_i p_j$ removing the line segment $p_i p_j$ (bold in the figure).

3.
$$|p_ip_j| > \omega_i - \omega_j$$

When $\omega_i = \omega_i$, the bisector is perpendicular bisector.

When $\omega_i - \omega_j > 0$, the bisector is one hyperbola curve. For the point on the hyperbola curve, the difference of the distance to p_i and p_j is the constant $\omega_i - \omega_j$.

Examples

