We claim:

2

3 interfering, adjacent sub-band components.

1	1. In a communication system in which data is communicated to a
2	receiving station on a communication link susceptible to distortion, an improvement
3	of apparatus for facilitating recovery of the data, communicated pursuant to a
4	frequency division multiplexing scheme as a first data part communicated upon a first
5	sub-band and at least a second data-part communicated upon at least a second sub-
6	band, the adjacent ones of the first and at least second sub-bands partially
7	overlapping in frequency, said apparatus comprising:
8	a data-part isolating a filter coupled to receive indications of values of
9.	the data, once received at the receiving station, said data-part isolating filter for
0	forming separate filtered values within frequency ranges defining each of the first and
1	at least second sub-bands, respectively;
12	a pre-filter sample coupled to receive the separate filtered values
3	formed by said data-part isolating filter for each of the first and at least second sub-
4	bands, said pre-filter sampler for sampling the separate filtered values applied thereto
15	at sampling rates causing frequency-shifting of selected portions of each of the
16	separate filtered values to out-of-bound frequency ranges; and
17	a pre-filter rejection filter coupled to said pre-filter sampler, said pre-
18	filter rejection filter for rejecting the selected portions of each of the separate filtered
9	values frequency-shifted by said pre-filter sampler and for forming therefrom filtered
20	representations of each of the first and at least second data-parts.
1	2. The apparatus of claim 1 wherein the separate filtered values formed by

said data-part isolating filter are each formed of an intended sub-band component and

The apparatus of claim 1 wherein data-parts communicated upon each 1 2 of the first and at least second sub-bands is formatted into a data-portion and 3 training-portion and wherein said apparatus further comprises an Impulse Response (IR) estimator, said Impulse Response estimator for estimating an Impulse Response 4 of the communication link responsive to values of the training-portion of the data 5 6 parts. The apparatus of claim 3 wherein said Impulse Response (IR) estimator 2 estimates a separate impulse response for each of the first and at least second sub-3 bands. The apparatus of claim 4 wherein said pre-filter sampler comprises an anti-causal filter. 2 The apparatus of claim 4 wherein said pre-filter sampler comprises a 1 2 Finite Impulse Response (FIR) filter. The apparatus of claim 4 wherein said pre-filter sampler performs 1 2 temporal whitening of the indications of the values of the data applied thereto. The apparatus of claim 1 wherein said pre-filter rejection filter 1 8. 2 comprises a Finite Impulse Response (FIR) filter. The apparatus of claim 1 wherein said pre-filter rejection filter 2 comprises a causal filter. The apparatus of claim 1 wherein said pre-filter rejection filter 1 2 comprises a passband filter exhibiting passbands at each of the first and at least 3. second sub-bands

2

3

4

5

1	11. The apparatus of claim 1 wherein said pre-filter sampler utilizes
2 .	Maximum Sequence Estimation (MSE) to determine filter coefficients determinative
3	of operation thereof to cause the frequency-shifting of the selected portions of each of
4	the separate filtered values.

- 12. The apparatus of claim 1 wherein the communication system comprises a radio communication system, wherein the communication link comprises a radio link, wherein the distortion comprises fading, and wherein the filtered representations of each of the first and at least second data-pats are substantially orthogonal to one another.
- 1 13. The apparatus of claim 1 further comprising a frequency translator 2 coupled to receive the filtered representations of each of the first and at least second 3 data-parts, said frequency translator for translating the filtered representations to 4 selected frequency-offsets.
- 1 14. The apparatus of claim 1 further comprising a Fourier Transformer
 2 coupled to receive indications of the filtered representations formed by said pre-filter
 3 rejection filter, said Fourier Transformer for transforming the indications of the
 4 representations of the representations between a frequency domain and a time
 5 domain.

1 .	15. In a method for communicating in a communication system in which
2 .	data is communicated to a receiving station on a communication link susceptible to
3 .	distortion, an improvement of a method for facilitating recovery of the data,
4	communicated pursuant to a frequency division multiplexing scheme as a first data
5	part communicated pursuant to a frequency division multiplexing scheme as a first
6	data-part communicated upon a first sub-band and at least a second data-part
7	communicated upon at least a second sub-band, adjacent ones of the first and at leas
8	second sub-bands partially overlapping in frequency, said method comprising:
9	forming, responsive to indications of values of the data once received at the
0	receiving station, separate filtered values within frequency ranges defining each of
1	the first and at least second sub-bands respectively;
2	sampling the separate filtered values applied thereto at sampling rates causing
3	frequency-shifting of selected portions of each of the separate filtered values applied
4	thereto at sampling rates causing frequency-shifting of selected portions of each of
5	the separate filtered values to out-of-bound frequency ranges; and
6	rejecting the selected portions of each of the separate filtered values of the
7	frequency-shifted to the out-of-bound frequency ranges, thereby forming filtered
8	representations of each of the first and at least second data-parts.
1	16. The method of claim 15 further comprising the operation, prior to said
2	operation of forming, of:
3	modulating the data into the first part and at least the second part at
4	frequencies, respectively, at the first sub-band and at least at the second sub-band,
5	that partially overlap theretogether; and
6	sending the first and at least second data parts upon the communication
7	link to the receiving station.

- 1 17. The method of claim 16 wherein the first and at least second data parts 2 are formatted into data-portions and training-portions.
- 1 18. The method of claim 17 further comprising the operation of estimating 2 an Impulse Response of the communication link.
- 1 19. The method of claim 15 wherein said operation of sampling temporally whitens the indications of the values of the data.
- 1 20. The method of claim 19 further comprising the operation of performing 2 maximum sequence estimation to determine operational parameters by which to carry
- 3 out said operation of sampling.