



Fakultät für Mathematik und Wirtschaftswissenschaften

Institut für Numerische Mathematik

## Cache-optimierte QR-Zerlegung

Bachelorarbeit an der Universität Ulm

#### Vorgelegt von:

Florian Krötz florian.kroetz@uni-ulm.de

#### Gutachter:

Dr. Michael Lehn Dr. Andreas Borchert

#### Betreuer:

Dr. Michael Lehn

2018

© 2018 Florian Krötz Satz: PDF-LATEX 2 $_{arepsilon}$ 

# **Inhaltsverzeichnis**

| 1                                | Einl       | Einleitung                 |                          |   |  |
|----------------------------------|------------|----------------------------|--------------------------|---|--|
|                                  | 1.1        | Intel M                    | 1KL                      | 1 |  |
|                                  |            | 1.1.1                      | QR Anwendung oder so was | 1 |  |
| 2                                | QR         | factorisation              |                          |   |  |
|                                  | 2.1        | QR-Ze                      | erlegung                 | 2 |  |
|                                  |            |                            | Definition               | 2 |  |
|                                  | 2.2        | Householder-Transformation |                          |   |  |
|                                  |            | 2.2.1                      | Householder Vector       | 3 |  |
|                                  |            | 2.2.2                      | Apply vector             | 3 |  |
|                                  | 2.3        | LAPAC                      | CK QR                    | 3 |  |
|                                  | 2.4        | NUM1                       | Urban QR                 | 4 |  |
|                                  | 2.5        | Unters                     | schiede der Algorithmen  | 4 |  |
|                                  | 2.6        | QR BI                      | ocked                    | 4 |  |
|                                  |            | 2.6.1                      | Calc Factor T larft      | 5 |  |
|                                  |            | 2.6.2                      | Apply H larfb            | 6 |  |
|                                  |            | 2.6.3                      | Iterativer Algorithmus   |   |  |
|                                  |            | 2.6.4                      | Rekursiver Algorithmus   | 7 |  |
| 3 Implementierung und Benchmarks |            |                            |                          |   |  |
|                                  | 3.1        | MKL V                      | Vraper                   | 8 |  |
|                                  | 3.2        | Bench                      | ımarks                   | 8 |  |
| Α                                | Quelltexte |                            |                          |   |  |
| Literaturverzeichnis 10          |            |                            |                          |   |  |

# 1 Einleitung

Für was brauch ich die QR?
Warum muss die schnell sein?
Was soll die Arbeit?

### 1.1 Intel MKL

Kapitel über die wichtigkeit der Intel MKL.

### 1.1.1 QR Anwendung oder so was

-LGS -Ausgleichsprobleme -QR-Verfahren

## 2 QR factorisation

## 2.1 QR-Zerlegung

#### **Definition**

Eine Matrix  $A \in \mathbb{R}^{m \times n}$  ,  $m \geq n$  besitzt eine eindeutige QR-Zerlegung.

$$A = QR (2.1)$$

mit einer orthogonalen Matrix  $Q \in \mathbb{R}^{m \times n}$  und einer oberen Dreiecksmatrix  $R \in \mathbb{R}^{n \times n}$ 

Eine QR Zerlegung kann mit einer Householder-Transformation bestimmt werden.

### 2.2 Householder-Transformation

Sei  $v \in \mathbb{R}^n$  und  $\tau \in \mathbb{R}$  dann wir die  $n \times n$  Matrix

$$H = I - \tau v v^T \tag{2.2}$$

als Householder-Transformation und der Vektor  $\boldsymbol{v}$  als Householder-Vektor bezeichnet.



Abbildung 2.1: Spiegelung an der zu v orthogonalen Ebene

#### 2.2.1 Householder Vector

### 2.2.2 Apply vector

$$H = I - \tau v v' \tag{2.3}$$

$$HA_2 = A_2 - \tau v v' A_2 \tag{2.4}$$

$$= A_2 - \tau v * (v' * A_2)$$
 (2.5)

### 2.3 LAPACK QR

Der von LAPACK benutzte Algorithmus [2]

$$H = I - \tau \omega \omega^T \tag{2.6}$$

$$\tau = \frac{\alpha - \beta}{\beta} \tag{2.7}$$

$$\alpha = A(i, i) \tag{2.8}$$

$$\beta = \operatorname{sign}(\alpha) \left| \sqrt{\alpha^2 + \|x\|^2} \right| \tag{2.9}$$

$$x = A(i+1:m,i) (2.10)$$

$$\omega = A(i+1:m,i) * \frac{1}{\alpha - \beta}$$
 (2.11)

Algorithmus

### 2.4 NUM1 Urban QR

Algorithmus aus Numerik 1

Mathe

$$H = I - 2\frac{\omega\omega^{T}}{\omega^{T}\omega}$$

$$\omega_{1} = \frac{x - \alpha e_{1}}{x_{1} - \alpha}$$
(2.12)

$$\omega_1 = \frac{x - \alpha e_1}{r_1 - \alpha} \tag{2.13}$$

$$\alpha^2 = ||x||^2 \tag{2.14}$$

## 2.5 Unterschiede der Algorithmen

LAPCK hat das Tau Vor und Nachteile oder so was

### 2.6 QR Blocked

Geblockte Alorighmus

$$H = I - VTV' \tag{2.15}$$

$$H' = I - VT'V' \tag{2.16}$$

$$H'A_2 = A_2 - VT'V'A_2 (2.17)$$

Betrachte A geblockt

$$A = \left(\frac{A_{0,0} \mid A_{0,\text{bs}}}{A_{\text{bs},0} \mid A_{\text{bs},\text{bs}}}\right)$$
 (2.18)

Berechne QR Zerlegung für Blöcke  $A_{0,0}$  und  $A_{\mathrm{bs},0}$ 

$$\left(\frac{A_{0,0}}{A_{\mathsf{bs},0}}\right) \leftarrow \left(\frac{Q_{0,0} \backslash R_{0,0}}{Q_{\mathsf{bs},0}}\right) \tag{2.19}$$



Abbildung 2.2: Partitionierung vom A

Berechne H(0)...H(bs) aus  $Q_{0,0}$  und  $Q_{bs,0}$  mit  $H=I-V*T*V^T$ . Wende  $H^T$  auf  $A_{0,\mathrm{bs}}$  und  $A_{0,\mathrm{bs}}$  an.

$$\left(\frac{A_{0,\text{bs}}}{A_{0,\text{bs}}}\right) \leftarrow H^T \left(\frac{A_{0,\text{bs}}}{A_{0,\text{bs}}}\right) \tag{2.20}$$

Fahre mit  $A_{0, bs}$  fort.

#### 2.6.1 Calc Factor T larft

[1]

$$H_2 H_1 x = (I - \tau_2 v_2 v_2^T) (I - \tau_1 v_1 v_1^T) x$$

$$= (I - \tau_1 v_1 v_1^T - \tau_2 v_2 v_2^T - \tau_2 v_2 v_2^T \tau_1 v_1 v_2^T) x$$

$$= x - \tau_1 v_1 v_1^T x - \tau_2 v_2 v_2^T x - \tau_1 \tau_2 v_2 (v_2^T v_1) v_2^T x$$

$$= x - \tau_1 v_1 v_1^T x - \tau_2 v_2 v_2^T x - \tau_1 \tau_2 (v_2^T v_1) v_2 v_2^T x$$

$$H_{1,2}x = (I - VTV^{T})x = x - VTV^{T}x$$

$$= x - (v_{1}, v_{2}) \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} v_{1}^{T} \\ v_{2}^{T} \end{pmatrix} x$$

$$= x - (v_{1}, v_{2}) \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} v_{1}^{T}x \\ v_{2}^{T}x \end{pmatrix}$$

$$= x - (v_{1}, v_{2}) \begin{pmatrix} av_{1}^{T}x + bv_{2}^{T}x \\ cv_{2}^{T}x \end{pmatrix}$$

$$= x - v_{1}(av_{1}^{T}x + bv_{2}^{T}x) - v_{2}(cv_{2}^{T}x)$$

$$= x - av_{1}v_{1}^{T}x - bv_{1}v_{2}^{T}x - cv_{2}v_{2}^{T}x$$

### 2.6.2 Apply H larfb

Die Funktion larfb berechnet.

$$H^T A = A - V T^T V^T A (2.21)$$

$$W = C' * V = (C1' * V1 + C2' * V2)(storedinWORK)$$

$$W = C1'$$

$$W = W * V1$$

$$IF(M.GT.K)THEN$$

$$W = W + C2' * V2$$

$$W = W * T'orW * T$$

$$C = C - V * W'$$

$$IF(M.GT.K)THEN$$

$$C2 = C2 - V2 * W'$$

$$W = W * V1'$$

$$C1 = C1 - W'$$



Abbildung 2.3: Partitionierung vom A

### 2.6.3 Iterativer Algorithmus

```
for i = 0 : n do
    QR = A;
    if i + ib > n then
        Calc T: H=I-VTV'
        Apply H: A=H'A
    end if
end for
```

## 2.6.4 Rekursiver Algorithmus

е

# 3 Implementierung und Benchmarks

Irgend was über die HPC Bibliothek

- 3.1 MKL Wraper
- 3.2 Benchmarks

# **A Quelltexte**

In diesem Anhang sind einige wichtige Quelltexte aufgeführt.

```
#include < stdio.h >
int main(int argc, char ** argv) {
   printf("Hallo HPC \n");
   return 0;
}
```

## Literaturverzeichnis

- [1] JOFFRAIN, Thierry; LOW, Tze M.; QUINTANA-ORTÍ, Enrique S.; GEIJN, Robert van d.; ZEE, Field G. V.: Accumulating Householder Transformations, Revisited. In: ACM Trans. Math. Softw. 32 (2006), Juni, Nr. 2, 169–179. http://dx.doi.org/10.1145/1141885.1141886. DOI 10.1145/1141885.1141886. ISSN 0098–3500
- [2] TENNESSEE, Univ. of California B. o.; LTD.., NAG: LAPACK unblocked QR. http://www.netlib.org/lapack/explore-3.1.1-html/dgeqr2.f. html, 2006. [Online; zugegriffen 31-01-2018]

| Name: Florian Krötz                                                                                         | Matrikelnummer: 884948    |  |
|-------------------------------------------------------------------------------------------------------------|---------------------------|--|
|                                                                                                             |                           |  |
|                                                                                                             |                           |  |
|                                                                                                             |                           |  |
|                                                                                                             |                           |  |
| Erklärung                                                                                                   |                           |  |
| Ich erkläre, dass ich die Arbeit selbständig verfasst und gegebenen Quellen und Hilfsmittel verwendet habe. | keine anderen als die an- |  |
|                                                                                                             |                           |  |
|                                                                                                             |                           |  |
|                                                                                                             |                           |  |
| Ulm, den                                                                                                    |                           |  |
|                                                                                                             | Florian Krötz             |  |
|                                                                                                             |                           |  |
|                                                                                                             |                           |  |