NP-Completeness

Peter Lammich

February 19, 2020

Tractability

- How complex is a problem?
 - How long does fastest algorithm take?

Tractability

- How complex is a problem?
 - How long does fastest algorithm take?
- Example: general sorting. $O(n \log n)$
 - no faster algorithm exists!

Tractability

- How complex is a problem?
 - How long does fastest algorithm take?
- Example: general sorting. $O(n \log n)$
 - no faster algorithm exists!
- But how about factorization?
 - find prime factors of *n* bit integer
 - naive algorithm: try all possible factors. O(2ⁿ)
 - fastest algorithm: unknown!

- Recall: we count steps, wrt. some computational model
 - binary search: $O(\log n)$ steps
 - mergesort: $O(n \log n)$ steps
 - Bellman-Ford: $O(|V||E|) = O(|V|^3)$ steps

- Recall: we count steps, wrt. some computational model
 - binary search: $O(\log n)$ steps
 - mergesort: $O(n \log n)$ steps
 - Bellman-Ford: $O(|V||E|) = O(|V|^3)$ steps
- These are all polynomial, i.e., $O(n^k)$ for constant k.

- Recall: we count steps, wrt. some computational model
 - binary search: $O(\log n)$ steps
 - mergesort: $O(n \log n)$ steps
 - Bellman-Ford: $O(|V||E|) = O(|V|^3)$ steps
- These are all polynomial, i.e., $O(n^k)$ for constant k.
- How about SAT: find a solution to a CNF formula over n variables?
 - $(x_1 \lor x_2 \lor x_3) \land (\neg x_2 \lor x_3) \land \dots$

- Recall: we count steps, wrt. some computational model
 - binary search: $O(\log n)$ steps
 - mergesort: $O(n \log n)$ steps
 - Bellman-Ford: $O(|V||E|) = O(|V|^3)$ steps
- These are all polynomial, i.e., $O(n^k)$ for constant k.
- How about SAT: find a solution to a CNF formula over n variables?
 - $(x_1 \lor x_2 \lor x_3) \land (\neg x_2 \lor x_3) \land \dots$
 - Naive algorithm: try all 2^n possibilities. $O(2^n)$

Comparing Execution Times

Comparing Execution Times

- If one step is 1ns (1GHz clock), and algorithm needs f(n) steps
- What input size can we handle in ... (approx values)

f(n)		1 hour	1 day	1 year	1 century	lifetime of universe
$\log(n)$	10 ³⁰¹⁰²⁹⁹⁹⁵					
n	10^{9}	10^{12}	10^{14}	10^{16}	10^{18}	10^{26}
n^2	10 ⁴	10^{6}	10^{7}	10 ⁸	10^{9}	10^{13}
n ⁵	60	300	600	2000	5000	10^{5}
2 ⁿ	29	41	46	54	61	88

A few numbers for comparison (approx/estimates):

- $10^{78} 10^{82}$: atoms in the known universe
- 8.8*10²⁷ meters: diameter of known universe
- 5*10²² stars in known universe
- 4*10¹⁷ seconds since big bang
- 10¹³ bits of memory on a hard disk (1TiB)
- 10¹¹ people ever lived
- 7.8*10⁹ people on earth
- 6.6*10⁶ people in UK

Polynomial Time

• Problem in $O(n^k)$ is called *tractable*

Polynomial Time

- Problem in $O(n^k)$ is called *tractable*
- So we don't care about polynomials
 - We treat n^2 and n^{100} algorithm the same!

Polynomial Time

- Problem in $O(n^k)$ is called *tractable*
- So we don't care about polynomials
 - We treat n^2 and n^{100} algorithm the same!
- Notation poly(n): some polynomial in n

• No!

- No!
- There are undecidable problems, e.g.
 - Halting problem: Does a program terminate for a given input?

- No!
- There are undecidable problems, e.g.
 - Halting problem: Does a program terminate for a given input?
- There are problems that can only be solved in exponential time
 - Can a position in (generalized) Go be won (with Japanese ko rules)

- No!
- There are undecidable problems, e.g.
 - Halting problem: Does a program terminate for a given input?
- There are problems that can only be solved in exponential time
 - Can a position in (generalized) Go be won (with Japanese ko rules)
- There are many problems for which we don't know
 - factorization, SAT, ...

- Given some input of size n, compute a true/false answer
 - is a list sorted?
 - does a graph have a negative-weight cycle?
 - does a CNF formula have a solution?

- Given some input of size n, compute a true/false answer
 - is a list sorted?
 - does a graph have a negative-weight cycle?
 - does a CNF formula have a solution?
- We also had optimization problems
 - compute shortest path

- Given some input of size n, compute a true/false answer
 - is a list sorted?
 - does a graph have a negative-weight cycle?
 - does a CNF formula have a solution?
- We also had optimization problems
 - compute shortest path
- Usually, optimization problems have related decision problem
 - is there a path of length less than k?

- Given some input of size n, compute a true/false answer
 - is a list sorted?
 - does a graph have a negative-weight cycle?
 - does a CNF formula have a solution?
- We also had optimization problems
 - compute shortest path
- Usually, optimization problems have related decision problem
 - is there a path of length less than k?
- We focus on decision problems here!

Describing inputs

- Describing inputs
 - formally: sequences of bits: $\{0,1\}^*$

- Describing inputs
 - formally: sequences of bits: $\{0,1\}^*$
 - informally: nice notation adopted to specific problem
 - can obviously be represented as bits
 - and parsed in polynomial time
 - we don't care about the details

- Describing inputs
 - formally: sequences of bits: {0,1}*
 - informally: nice notation adopted to specific problem
 - can obviously be represented as bits
 - and parsed in polynomial time
 - we don't care about the details
- Decision problem: described by set of accepted words: $L \subseteq \{0,1\}^*$
 - L is called language
 - equivalently: decision function: $f :: \{0,1\}^* \to \{0,1\}, f(w) = w \in L$

- Describing inputs
 - formally: sequences of bits: $\{0,1\}^*$
 - informally: nice notation adopted to specific problem
 - can obviously be represented as bits
 - and parsed in polynomial time
 - we don't care about the details
- Decision problem: described by set of accepted words: $L \subseteq \{0,1\}^*$
 - L is called language
 - equivalently: decision function: $f :: \{0,1\}^* \to \{0,1\}, f(w) = w \in L$
- Examples: Language of all bit-strings representing ...

- Describing inputs
 - formally: sequences of bits: $\{0,1\}^*$
 - informally: nice notation adopted to specific problem
 - can obviously be represented as bits
 - and parsed in polynomial time
 - we don't care about the details
- Decision problem: described by set of accepted words: $L \subseteq \{0,1\}^*$
 - L is called language
 - equivalently: decision function: $f :: \{0,1\}^* \to \{0,1\}, f(w) = w \in L$
- Examples: Language of all bit-strings representing ...
 - ... sorted lists

- Describing inputs
 - formally: sequences of bits: $\{0,1\}^*$
 - informally: nice notation adopted to specific problem
 - can obviously be represented as bits
 - and parsed in polynomial time
 - we don't care about the details
- Decision problem: described by set of accepted words: $L \subseteq \{0,1\}^*$
 - L is called language
 - equivalently: decision function: $f :: \{0,1\}^* \to \{0,1\}, f(w) = w \in L$
- Examples: Language of all bit-strings representing ...
 - ... sorted lists
 - ... graphs without negative-weight cycles

- Describing inputs
 - formally: sequences of bits: {0,1}*
 - informally: nice notation adopted to specific problem
 - can obviously be represented as bits
 - and parsed in polynomial time
 - we don't care about the details
- Decision problem: described by set of accepted words: $L \subseteq \{0,1\}^*$
 - L is called language
 - equivalently: decision function: $f :: \{0,1\}^* \to \{0,1\}, f(w) = w \in L$
- Examples: Language of all bit-strings representing ...
 - ... sorted lists
 - ... graphs without negative-weight cycles
 - ... CNF-formulas that have a solution

Certification

- Certificate: proof that word is in language
 - itself a bit-string

Certification

- Certificate: proof that word is in language
 - itself a bit-string
- Certificate checker *check* : $(\{0,1\}^*,\{0,1\}^*) \rightarrow \{0,1\}$
 - (sound and complete): $(\exists c. check(w, c)) \iff w \in L$
 - Certificate checking is decision problem itself!

Certification

- Certificate: proof that word is in language
 - itself a bit-string
- Certificate checker *check* : $(\{0,1\}^*,\{0,1\}^*) \to \{0,1\}$
 - (sound and complete): $(\exists c. \ check(w, c)) \iff w \in L$
 - Certificate checking is decision problem itself!
- Example: does CNF have solution?
 - certificate is solution (list of variables that are true)
 - certificate checker: evaluate formula

The Complexity Class NP

Definition (NP)

A decision problem is in NP, iff it has polynomial-time checkable certificates

- for word w of size n
 - certificate has size poly(n)
 - check(w, c) executable in time poly(n)

The Complexity Class NP

Definition (NP)

A decision problem is in NP, iff it has polynomial-time checkable certificates

- for word w of size n
 - certificate has size poly(n)
 - check(w, c) executable in time poly(n)
- Example: CNF
 - valuation of variables: polynomial size in formula
 - evaluating formula: polynomial time in formula size

The Complexity Class NP

Definition (NP)

A decision problem is in NP, iff it has polynomial-time checkable certificates

- for word w of size n
 - certificate has size poly(n)
 - check(w, c) executable in time poly(n)
- Example: CNF
 - valuation of variables: polynomial size in formula
 - evaluating formula: polynomial time in formula size
- all polynomial-time solvable problems are in NP
 - the certificate is always empty, and check solves the problem

Reduction

Intuitively:

- Convert problem *A* into problem *B*, in polynomial time
 - if B is in O(f(n)), then A is in O(poly(n) + f(poly(n)))
 - time for conversion, and solving A

Reduction

Intuitively:

- Convert problem A into problem B, in polynomial time
 - if B is in O(f(n)), then A is in O(poly(n) + f(poly(n)))
 - time for conversion, and solving A
- A not harder than B (up to polynomial time factor)

Reduction

Intuitively:

- Convert problem A into problem B, in polynomial time
 - if B is in O(f(n)), then A is in O(poly(n) + f(poly(n)))
 - time for conversion, and solving A
- A not harder than B (up to polynomial time factor)

Formally:

Definition (polynomial-time reducible)

A language L_A is polynomial-time reducible to L_B , iff there is a function $f:\{0,1\}^* \to \{0,1\}^*$ such that

- Notation: $L_A \leq_p L_B$

Reduction and NP

Theorem If $L_A \leq_p L_B$ and $L_B \in NP$, then $L_A \in NP$

Reduction and NP

Theorem

If $L_A \leq_p L_B$ and $L_B \in NP$, then $L_A \in NP$

Proof.

- $check_A(w, c) = check_B(f(w), c)$ is certificate checker.
- and executable in polynomial time.
- note: f(w) can increase word size only polynomially.

Definition (NP-Hardness)

A problem is NP-hard, if every problem in NP can be reduced to it

Definition (NP-Hardness)

A problem is NP-hard, if every problem in NP can be reduced to it

• Intuition: harder (or equally hard) than any problem in NP

Definition (NP-Hardness)

A problem is NP-hard, if every problem in NP can be reduced to it

- Intuition: harder (or equally hard) than any problem in NP
- NP-complete = In NP and NP-hard

Definition (NP-Hardness)

A problem is NP-hard, if every problem in NP can be reduced to it

- Intuition: harder (or equally hard) than any problem in NP
- NP-complete = In NP and NP-hard
- Many interesting problems turn out to be NP-complete

• Intuitively: As hard as any problem in NP

- Intuitively: As hard as any problem in NP
- If one NP-complete problem A has poly-time algorithm

- Intuitively: As hard as any problem in NP
- If one NP-complete problem A has poly-time algorithm then all problems B in NP have poly-time algorithm!

- Intuitively: As hard as any problem in NP
- If one NP-complete problem A has poly-time algorithm then all problems B in NP have poly-time algorithm!
 - reduce B to A (in poly-time), then solve A

- Naive algorithm: for word of size n, enumerate all $2^{poly(n)}$ certificates, and check each in polynomial time.
 - needs exponential time: $O(2^{poly(n)})$

- Naive algorithm: for word of size n, enumerate all $2^{poly(n)}$ certificates, and check each in polynomial time.
 - needs exponential time: $O(2^{poly(n)})$
- Can we do better? E.g. polynomial time?

- Naive algorithm: for word of size n, enumerate all $2^{poly(n)}$ certificates, and check each in polynomial time.
 - needs exponential time: $O(2^{poly(n)})$
- Can we do better? E.g. polynomial time?
 - we don't know!

- Naive algorithm: for word of size n, enumerate all $2^{poly(n)}$ certificates, and check each in polynomial time.
 - needs exponential time: $O(2^{poly(n)})$
- Can we do better? E.g. polynomial time?
 - we don't know!
 - *P* vs *NP* conjecture. One of the Millenium-Prize Problems!

- Naive algorithm: for word of size n, enumerate all $2^{poly(n)}$ certificates, and check each in polynomial time.
 - needs exponential time: $O(2^{poly(n)})$
- Can we do better? E.g. polynomial time?
 - we don't know!
 - P vs NP conjecture. One of the Millenium-Prize Problems!
 - experts' expectation: $P \neq NP$
 - i.e., NP-hard problems intractable.

- Naive algorithm: for word of size n, enumerate all $2^{poly(n)}$ certificates, and check each in polynomial time.
 - needs exponential time: $O(2^{poly(n)})$
- Can we do better? E.g. polynomial time?
 - we don't know!
 - P vs NP conjecture. One of the Millenium-Prize Problems!
 - experts' expectation: $P \neq NP$
 - i.e., NP-hard problems intractable.
- Why do we care then?

- Naive algorithm: for word of size n, enumerate all $2^{poly(n)}$ certificates, and check each in polynomial time.
 - needs exponential time: $O(2^{poly(n)})$
- Can we do better? E.g. polynomial time?
 - we don't know!
 - *P* vs *NP* conjecture. One of the Millenium-Prize Problems!
 - experts' expectation: $P \neq NP$
 - i.e., NP-hard problems intractable.
- Why do we care then?
 - if you recognize you have an NP-hard problem:

- Naive algorithm: for word of size n, enumerate all $2^{poly(n)}$ certificates, and check each in polynomial time.
 - needs exponential time: $O(2^{poly(n)})$
- Can we do better? E.g. polynomial time?
 - we don't know!
 - P vs NP conjecture. One of the Millenium-Prize Problems!
 - experts' expectation: $P \neq NP$
 - i.e., NP-hard problems intractable.
- Why do we care then?
 - if you recognize you have an NP-hard problem:
 - stop searching for efficient algorithms

- Naive algorithm: for word of size n, enumerate all $2^{poly(n)}$ certificates, and check each in polynomial time.
 - needs exponential time: $O(2^{poly(n)})$
- Can we do better? E.g. polynomial time?
 - we don't know!
 - P vs NP conjecture. One of the Millenium-Prize Problems!
 - experts' expectation: $P \neq NP$
 - i.e., NP-hard problems intractable.
- Why do we care then?
 - if you recognize you have an NP-hard problem:
 - stop searching for efficient algorithms
 - can you consider easier subclass of problem instead?

- Naive algorithm: for word of size n, enumerate all $2^{poly(n)}$ certificates, and check each in polynomial time.
 - needs exponential time: $O(2^{poly(n)})$
- Can we do better? E.g. polynomial time?
 - we don't know!
 - P vs NP conjecture. One of the Millenium-Prize Problems!
 - experts' expectation: $P \neq NP$
 - i.e., NP-hard problems intractable.
- Why do we care then?
 - if you recognize you have an NP-hard problem:
 - stop searching for efficient algorithms
 - can you consider easier subclass of problem instead?
 - can you live with approximation? (for optimization problems)

• to show problem is in NP

- to show problem is in NP
 - find polynomial-time checkable certificate!

- to show problem is in NP
 - find polynomial-time checkable certificate!
 - often, that's surprisingly easy!

- to show problem is in NP
 - find polynomial-time checkable certificate!
 - often, that's surprisingly easy!
 - given a puzzle, finding solution much harder than checking and often, it's obvious how to check a solution!

- to show problem is in NP
 - find polynomial-time checkable certificate!
 - often, that's surprisingly easy!
 - given a puzzle, finding solution much harder than checking and often, it's obvious how to check a solution!
- to show problem A is NP-hard

- to show problem is in NP
 - find polynomial-time checkable certificate!
 - often, that's surprisingly easy!
 - given a puzzle, finding solution much harder than checking and often, it's obvious how to check a solution!
- to show problem A is NP-hard
 - reduce an already known NP-hard problem B to it

- to show problem is in NP
 - find polynomial-time checkable certificate!
 - often, that's surprisingly easy!
 - given a puzzle, finding solution much harder than checking and often, it's obvious how to check a solution!
- to show problem A is NP-hard
 - reduce an already known NP-hard problem B to it
 - show $B \leq_p A$. already known: $\forall C \in NP$. $C \leq_p B$
 - by transitivity: $\forall C \in NP$. $C \leq_p A$

- to show problem is in NP
 - find polynomial-time checkable certificate!
 - often, that's surprisingly easy!
 - given a puzzle, finding solution much harder than checking and often, it's obvious how to check a solution!
- to show problem A is NP-hard
 - reduce an already known NP-hard problem B to it
 - show $B \leq_p A$. already known: $\forall C \in NP$. $C \leq_p B$
 - by transitivity: $\forall C \in NP$. $C \leq_p A$
- Now: obtaining an initial NP-hard problem.