PROGETTO

MALWARE ANALYSIS

Redatto da: Anapaula Palacin

>>>> INDICE

Introduzione e risorse		3
Traccia		4
Analisi librerie		5
Analisi sezioni		6
Identificazione costrutti		7
Funzionalitá		8
Spiegazione del codice		9
Conclusioni e BP	1	1

L'analisi del malware ha il compito di comprendere il funzionamento, le capacità e l'impatto dei software dannosi. Esistono principalmente due tipi di analisi:

Analisi statica: É fare l'analisi del codice senza eseguire il malware. Viene effettuata attraverso la decompilazione del codice permettendo di studiare la struttura e il suo comportamento.

Analisi dinamica: Implica l'esecuzione del malware in un ambiente controllato per osservare il suo comportamento in tempo reale questo permette di rilevare le azioni che il malware compie durante la sua esecuzione.

CFF EXPLORER

CFF Explorer è un tool gratuito per analizzare e modificare i file eseguibili di Windows. Consente di visualizzare e modificare intestazioni, sezioni, importazioni, esportazioni e risorse. È utile per l'analisi del malware, l'inversione e la decompressione dei file.

ASSEMBLY

É un linguaggio di programazione di basso livello che viene utilizzato per comunicare direttamente con l'hardware del computer.

L'uso dell'Assembly fa parte dell'analisi statica avanzata ed è fondamentale per una comprensione approfondita e dettagliata del funzionamento interno del malware a livello d'istruzione macchina

>>>> TRACCIA

Con riferimento al file **Malware_U3_W2_L5** presente all'interno della cartella **«Esercizio_Pratico_U3_W2_L5 »** sul desktop della macchina virtuale dedicata per l'analisi dei malware, rispondere ai seguenti quesiti:

- Quali **librerie** vengono importate dal file eseguibile?
- Quali sono le **sezioni** di cui si compone il file eseguibile del malware?

Con riferimento alla figura in slide 3, risponde ai seguenti quesiti:

- Identificare i **costrutti** noti (creazione dello stack, eventuali cicli, altri costrutti)
- Ipotizzare il comportamento della funzionalità implementata
- BONUS fare tabella con significato delle singole righe di codice Assembly

FIGURA 1

```
push
                ebp
                ebp, esp
       mov
       push
                ecx
                                   dwReserved
       push
       push
                                 ; lpdwFlags
       call
                ds:InternetGetCon
                [ebp+var_4], eax
        mov
                [ebp+var_4], 0
       спр
                short loc_40102B
                                                                        III N W
⊞NW
push
        offset aSuccessInterne ;
                                   "Success: Internet Connection\n
                                                                                                  ; "Error 1.1: No Internet\n
call
        sub_40117F
                                                                        loc 40102B:
add
        esp, 4
                                                                        push
                                                                                offset aError1_1NoInte
                                                                                sub_40117F
mov
        eax. 1
                                                                        call.
        short loc_40103A
jmp
                                                                        add
                                                                                esp, 4
                                                                                eax. eax
                                                                        xor
                                                       III N III
                                                       loc 40103A:
                                                               esp, ebp
                                                       mov
                                                       pop
                                                               ebp
                                                       retn
                                                       sub_401000 endp
```

>>>> ANALISI LIBRERIE

Per iniziare l'analisi delle librerie importate del malware possiamo fare l'uso del tool CFF Explorer.

Una volta aperto il malware, dobbiamo andare al panello principale e scegliere "Import Directory"

Le librerie contengono funzioni e risorse che i programmi possono utlizzare per svolgere varie operazioni. Nel contesto di malware si utlizzano per compiere azioni dannose o nascoste. Nell'analisi fatto possiamo vedere queste 2 librerie:

KERNELL32.dll

Contiene le funzioni basi per interagire col sistema operativo windows come la gestione della memoria, la manipolazione dei file e la gestione dei processi.

Gestione dei file: Funzioni come CreateFile. ReadFile, WriteFile e DeleteFile

Gestione dei processi: Funzioni come CreateProcess, ExitProcess

WININET.dll

Fornisce le funzioni per implementare i protocolli Internet e gestire conessioni di rete attraverso protocolli come HTTP e FTP.

Gestione delle conessioni internet: Funzioni come InternetOpen, InternetConnect.

Trasferimento di dati: Funzioni come InternetReadFile, InternetWriteFile, HttpSedRequest.

Ora dobbiamo ritornare al panello principale e scegliere "Section Headers"

Le sezioni sono uno degli aspetti cruciali da esaminare perché contengono dati specifici e necessari per avere una chiara visione del comportamento del malware nell'esecuzione del programma. Le sezioni trovate in questo caso sono:

.text

Contiene il codice eseguibile. Generalmente é la prima sezione ad essere eseguita quando il programma viene avviato. Ha una protezione RX: Read and Execute.

.rdata (Read-Only Data)

Contiene dati di solo lettura come stringhe di testo o informazioni costanti.

.data

Contiene dati che possono essere letti e modificati durante l'esecuzione del programma. Si utilizza anche per memorizzare variabili globali e dati inizializzati.

>>>> IDENTIFICAZIONE COSTRUTTI

Possiamo identificare diversi costrutti:

- 1 Costrutto per la Creazione dello Stack: Tramite le istruzioni push e mov
- **2 Costrutto condizionale IF:** Per la presenza delle istruzioni "cmp" che confronta i registri e "jz" (jump if zero) fa un salto condizionale
- **3 Costrutto per Messaggi di Stato**: Gestisce la visualizzazione dei messaggi di successo o errore (Success / Error)
- 4 Costrutto per la Pulizia dello Stack: esce della funzione e ripristina lo stack e i registri con le istruzioni "mov esp, ebp"

>>>> FUNZIONALITÁ

```
push
                 ebp
        mov
                 ebp, esp
        push
                 ecx
                                     dwReserved
        push
                                   ; lpdwFlags
        push
        call
                 ds:InternetGetConnectedState
                 [ebp+var_4], eax
[ebp+var_4], 0
short loc_40102B
        mov
        cmp
                                                                            🖽 N աև
⊞N₩
push
         offset aSuccessInterne ; "Success: Internet Connection\n
                                                                            loc_40102B:
         sub_48117F
                                                                                                        "Error 1.1: No Internet\n"
call
         esp, 4
                                                                            push
                                                                                     offset aError1_1NoInte
add
mov
                                                                            call
                                                                                     sub_40117F
jmp
         short loc_40103A
                                                                            add
                                                                                     esp, 4
eax, eax
                                                                            xor
                                                         ™NW
                                                          loc_40103A:
                                                          mov
                                                                   esp, ebp
                                                          pop
                                                                   ebp
                                                          retn
                                                          sub_401000 endp
```

Il codice del malware verifica se il sistema è connesso a Internet utilizzando la funzione InternetGetConnectedState. In base al risultato della chiamata:

- Se la connessione è presente, stampa "Success: Internet Connection" e imposta eax a 1.
- Se la connessione non è presente, stampa "Error 1.1: No Internet" e imposta eax a 0.

Una volta determinato lo stato della conessione Internet la funzione esegue le istruzioni di uscita.

>>>> SPIEGAZIONE CODICE

- 1 Crea e salva il valore del puntatore nello stack
- 2 Imposta il puntatore ebp al valore del puntatore esp

```
1 * .text:00401000 push ebp
2 * .text:00401001 mov ebp, esp
```

3 Salva il valore del registro "exc" nello stack

```
      3 * .text:00401003
      push ecx

      * .text:00401004
      push 0 ; dwReserved

      * .text:00401006
      4 push 0 ; lpdwFlags

      * .text:00401008
      call ds:InternetGetConnectedState
```

4 Chiama la funzione "InternetGetConnectedState" e fa passare i parametri sullo stack tramite l'istruzione push per verificare lo stato della conessione a Internet.

```
5 * .text:0040100E mov [ebp+var_4], eax
6 * .text:00401011 cmp [ebp+var_4], 0
7 - .text:00401015 jz short loc_40102B
```

- 5 Salva la risposta di "InternetGetConnectedState" nella variabile locale "var_4"
- 6 Confronta il valore di "var_4" con 0
- 7 Se "var_4" è uguale a 0, salta all'indirizzo loc_40102B. (no internet)

```
8 push offset aSuccessInterne; "Success: Internet Connection\n"
9 call sub_40117F
10 add esp, 4
11 mov eax, 1
12 jmp short loc_40103A
```

- 8 "push" spinge l'indirizzo della stringa "aSuccessInterne" nello stack
- 9 Chiama la funzione "sub_40105F" per stampare il messaggio
- 10 aggiusta il puntatore dello stack aumentando esp di 4
- 11 Imposta la risposta di "InternetGetConnectedState" a 1
- 12 Fa un salto alla etichettata "loc 40103A"

>> SPIEGAZIONE CODICE

Etichetta nel caso di errore nella connessione

- 13 "push" spinge l'indirizzo della stringa "aError1_1NoInte" nello stack
- 14 Chiama la funzione "sub_40105F" per stampare il messaggio
- 15 aggiusta il puntatore dello stack aumentando esp di 4
- 16 Imposta il registro eax a 0 per indicare l'errore.

Etichetta per il termine della funzione

- 17 Ripristina il valore del registro esp dal registro esp
- 18 Ripristina il valore precedente del registro ebp
- 19 Ritorna dalla funzione

BUONE PRATICHE E CONCLUSIONI

Buone pratiche:

1. Ambiente controllato:

Eseguire sempre l'analisi del malware in un ambiente controllato e isolato, come una macchina virtuale, per evitare la diffusione accidentale del malware.

2. Documentazione accurata:

Documentate ogni fase dell'analisi, comprese le sezioni di codice esaminate, le funzioni analizzate e i comportamenti osservati.

3. Analisi statica e dinamica:

Combinare l'analisi statica (esaminare il codice senza eseguirlo) con l'analisi dinamica (osservare il comportamento del malware in esecuzione) per ottenere un quadro completo.

Conclusioni:

L'esercizio ci ha permesso di identificare e capire come il malware controlla lo stato della connessione a Internet e risponde con messaggi di successo o di errore.

Strumenti e tecniche come CFF Explorer sono essenziali per disassemblare e analizzare il codice del malware, consentendo agli analisti di ispezionare le sezioni di codice e le intestazioni delle sezioni.

FINE