

<u>Lab Manual # 08</u> <u>Combinational Circuits using System Verilog</u>

<u>Name</u>	<u>Muddassir Ali Siddiqui</u>
Instructor	Sir Musaddiq Hussain & Sir Bilal
<u>Date</u>	<u> 30th July 2025</u>

1. In-Lab Tasks: (Write your lab task & screenshots here)

i. Task 1:

ii. Task 2:

iii. Task 3:

iv. Task 4:

v. Task 5:

2. FPGA Outputs:

Task 1:

Task 2:

Task 3:

Task 4:

3. Critical Analysis: (Write you critical analysis / conclusion here)

In this lab we design in task 1 mux with 3 different approaches by gate level, case statement and behavioral. In task 2 we convert BCD to seven segment and show output on the FPGA's 7-segment display. In task 3 we perform priority encoder by analyzing the truth table. In task 4 we do barrel shifter left and right by giving the direction to shift. In task 5 carry lookahead adder is performed by me.