SesameStreet++

James Rowell

January 15, 2017

There are 10 sorts of people in the world: those who understand binary and those who don't.

Most of us think about "whole numbers" not too differently from the way we learned to count by watching Sesame Street, the difference being that now we can count a little higher. How we've trained ourselves it's automatic to think that the way we write a number or say a number is the number.

If I owe you 13 cents and I give you one dime and three pennies then after thanking me profusely for repaying this staggering debt, we'll agree that it's settled with those coins equaling 13 pennies. We identify the symbol "13" very strongly with this particular number - it would be tough to get through life in the modern world without such an automatic process running in our brains. This example highlights what this particular symbol "13" actually means - one dime (1×10) plus three pennies (3×1) .

Let's look at the number 13 in some alternative ways - it's the number of months in a year plus one month; what I'm suggesting is that there is no need for the symbol "13" in order to think about this particular number of months. Similarly, 13 is this many apples **cácááááááááá**; or 13 is the sixth prime number. None of these ways of thinking about the number 13 require that we represent it using the digits 1 and 3 butted up next to each other.

Each number exists independently from any symbol or word that might represent it. Numbers are an idea - perhaps such a strong idea that the universe wouldn't exist without them! Anyway, for our purposes whole numbers exist in some abstract realm - Each number is one whole unit more than the previous number, starting at nothing, that is "zero", and jumping to something, that is "one", then one more, which gets us to "two", then again to "three", etc. Continuing in this way forever... we get them all.

To get back to the idea of what a whole number really is, try to forget about the symbols or words we use and picture a pile of apples. There's zero apples (it's hard to show no-apples), then we introduce an "t" to get our very first, and smallest, non-empty pile of apples. Then add another apple to get a pile of "tt", then "tt", then "tt" then some big pile of "tt" after we've been adding apples for a while. Each successively bigger pile of apples corresponds with each successive whole number.

We expand this entire set of whole numbers to include their negative-counterparts and call this larger set "integers". We denote the set of integers with this symbol: \mathbb{Z} . If we only want to talk about positive integers along with zero, we use this symbol: $\mathbb{Z}_{>0}$.

However, using a "1" followed by a "3" to represent "**tátátátátátátá**" is VERY handy. So we use Hindu-Arabic numbers and the positional notation of "base-ten", more commonly

known as "decimal", to represent each specific integer. We slap a "-" on the front if we need to talk about a negative integer.

Base-ten representation of an integer is far superior to ancient Roman numerals for example. Try adding two numbers together in ancient Rome, or worse, multiplying or dividing them. What's XI times IX? Would you believe me if I told you it's XCIX? Unless you convert those to Hindu-Arabic numerals to check, you're just gonna have to trust me. Truth is - I don't know how to multiply using Roman numerals - nor did most Romans! Not only that, but I'll bet that most kids who graduated from Sesame Street can count higher than any Roman could - as the Roman system only effectively allowed counting up to 4999.

Using base-ten for us is automatic, we barely think about it when we're adding numbers or multiplying them - but it's worth looking carefully at how base-ten works - so let's examine it from the ground up*.

It's useful to have simple symbols to represent each of the integers from one to nine, namely our familiar 1, 2, 3, 4, 5, 6, 7, 8 and 9 which have an interesting history and predate their use in base-ten.

Slightly more modern, but still quite ancient, is the symbol "0" for "zero", originally meaning "empty". Zero also predates its use in base-ten but without zero, base-ten wouldn't be possible

Base-ten uses the idea of stringing a series of digits together (a digit being one of the numbers 0, $1, 2, \ldots 9$), one after the other to be able to represent any whole number. Let's look at the first two-digit number, that is, ten, which as you well know looks like this: "10". This extra digit on the left tells us how many tens we have and the last, or rightmost digit says how many additional units to add to it.

So our very first two-digit number 10 means "one lot of ten - plus zero units". When we see "11" - we interpret it to mean "one lot of ten - plus one unit", and "12" is "one lot of ten - plus two units", etc. Continuing on; "20" - we interpret to mean "two lots of ten, plus zero units", etc. up to "90" meaning "nine lots of ten, plus zero units".

Following this line of reasoning since "10" now means the integer ten, then "100" must mean "ten lots of ten, plus zero units"- which is exactly what it means. We have a special word for this number we call it "one hundred" or "one lot of a hundred, plus zero lots of tens, plus zero units". Similarly "200" means "two lots of a hundred, plus zero lots of ten, plus zero units", etc.

We can keep going by one-hundred until we similarly get to "1000" or "ten lots of a hundred, plus zero lots of ten, plus zero units" otherwise known as "a thousand" or more specifically "one lot of a thousand, plus zero lots of a hundred, plus zero lots of ten, plus zero units".

It gets a little tedious to be so specific when reading out a number so our language has developed quite a few verbal shortcuts. Furthermore it doesn't take long before we run out of fancy names for these "powers of ten" like, million, billion, trillion, zillion etc. So let's introduce some nice clean mathematical notation to describe these powers of ten and let's forget the fancy words.

^{*}Please forgive the incredibly obvious nature of much of the following discussion, but I want to take a good running start at some more unfamiliar notions. Perhaps looking at the familiar with fresh eyes will help in seeing the new ideas easier.

$$100 = 10 \times 10 = 10^{2},$$

$$1000 = 10 \times 10 \times 10 = 10^{3},$$

$$10000 = 10 \times 10 \times 10 \times 10 = 10^{4},$$
...
$$\underbrace{10...000}_{\text{k zeros}} = \underbrace{10 \times 10 \times 10 \times 10 \times ... \times 10}_{\text{k 10s}} = 10^{k}$$

 10^k means there are k 10's multiplied together - also written as a 1 followed by k zeros. The above list shows the cases for k = 2, 3 and 4. Using the k like that is just a way to show that we can pick ANY whole number, i.e., there is no limit on how big k can be.

The notation of 10^k is very handy, in fact it extends to the case when k=0 and k=1.*

So 10^1 means that there is only one 10 multiplied together, or one "0" following the "1", in other words just the number 10 itself.

How about when k=0? Examining the pattern of how the power k relates to how many zeros follow the "1" (eg, $10^1=10$, $10^2=100$, $10^3=1000$, etc.) then it makes sense that $10^0=1$, i.e., no zeros follow the "1", which is exactly right. Actually any number raised to the $0^{\rm th}$ power is 1.

Let's look at an example. Reading the number 46307 out according to our technique we can see that it's "four lots of ten-thousand, plus six lots of a thousand, plus three lots of a hundred, plus zero lots of ten, plus seven units":

Written in terms of powers of ten: $46307 = 4 \times 10^4 + 6 \times 10^3 + 3 \times 10^2 + 0 \times 10^1 + 7 \times 10^0$.

You can think of each digit as being a little dial that controls how many lots of its corresponding power of ten will contribute to the value of the integer.

Claim: Given that we can use as high as power of ten as we like and we can string together as LONG A LIST of digits as pleases us, that means that we can create ANY INTEGER WE WANT no matter how big it is.

That's a pretty tall claim. How do we know that we can create ALL the nonnegative integers with this scheme? For example, how do we know that we didn't miss one? Or how do we know that some string of digits doesn't represent two different integers? I know it seems silly to ask that, but attention to these kinds of details is what is referred to as "rigor" in Mathematics - it's

^{*} 10^k also extends to the cases when k is negative as in 10^{-1} , or 10^{-2} , etc. which means $\frac{1}{10}$ and $\frac{1}{100}$ respectively but those are called "Rational" numbers and we aren't concerning ourselves with those kinds of numbers in this paper.

[†]Proof: $a^b = a^{b+0} = a^b a^0$ so because of the uniqueness of the multiplicative identity, then $a^0 = 1$ for all $a \neq 0$. Furthermore mathematicians just go ahead and define $0^0 = 1$ because it's not inconsistent to do so, you can make a couple of decent arguments as to why it make sense, and it makes certain equations and relationships much simpler and more elegant to express.

necessary so we don't end up fooling ourselves or spouting bullshit - or if we are full of it then it's easy for other Mathematicians to call us on our nonsense.

We're going to jump into the deep end and make our claim in a careful mathy kind of way. Such a careful statement is called a theorem - theorems require proof which we will get to below.

Base-Ten Representation Theorem

Let $n, k \in \mathbb{Z}_{>0}$. Then every n can be uniquely expressed as follows:

$$n = d_k 10^k + d_{k-1} 10^{k-1} + \dots + d_2 10^2 + d_1 10^1 + d_0 10^0$$

for some k such that $0 \le d_i \le 9$ where $d_i, i \in \mathbb{Z}$ and $0 \le i \le k$.

Furthermore $d_k \neq 0$ except when n = 0.

Definition: n is represented in base-ten as $d_k d_{k-1} \dots d_2 d_1 d_0$

A difficulty many folks have with math is the notation - it's a kind of a language unto itself - like a computer program is a language. Let's take our theorem statement by statement and turn it into English.

i) "Let $n, k \in \mathbb{Z}_{>0}$ "

This means we are going to talk about two distinct numbers that we are labeling n and k. That strange looking \in means "is an element of" (or "is a member of") and is always followed by something that is a "set". We talked above about the symbol $\mathbb{Z}_{\geq 0}$ which we defined as being the set of nonnegative integers. So, in other words, n can be one of 0 or 1 or 2 or 3 or ... any number - no matter how large - and the same goes for k.

This might be what it would sound like to read that line out loud:

"Let n and k be elements of the set of nonnegative integers."

ii) "Then every n can be uniquely expressed as follows"

What we are about to say applies to ALL nonnegative integers and furthermore the expression is going to be unique for each integer.

iii) "
$$n = d_k 10^k + d_{k-1} 10^{k-1} + \dots + d_2 10^2 + d_1 10^1 + d_0 10^0$$
"

This is the expression in question. It equates n with a series of multiplications of some numbers (the d_i terms where i can be any number from 0 to k) times descending powers of 10, and adds them all together.

It's useful to point out the meaning of our $d_0, d_1, d_2, \ldots, d_k$ and d_i terms. Mathematical formulas such as this make judicious use of subscripts when coming up with names for lists of variables or constants. Subscripts following a letter or symbol, such as d_0, d_1, d_2, \ldots are a handy way to get a list of variable or constant names that are similar looking to each other, and is meant to imply that they each fulfill a similar role to each other. Note here how the value of the subscript on each d_i corresponds to its power of ten, even in the single digit case when the subscript is 0, or the highest power case when the subscript is k. Please also note that it isn't necessary that the subscript indices match with the powers, but it's pretty helpful to tie the two terms together conceptually.

If we had to read the line out loud it might sound something like this:

"n is equal to... dee-kay times ten-to-the-kay, plus dee-kay-minus-one times ten-to-the-kay-minus-one, plus etc. etc., down to... dee-two times ten-squared, plus dee-one times ten, plus dee-zero times one".

iv) "for some k such that $0 \le d_i \le 9$ where $d_i, i \in \mathbb{Z}$ and $0 \le i \le k$ "

The "for some k" means that each integer n has a specific k associated with it.

It then states that those d_i terms are integers, and can ONLY take on the values 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9. Note that our uniqueness claim above means that each integer n has its own unique list of d's.

It also is very fastidiously pointing out that the little "i" we just introduced in the subscript of the d's is also an integer and can be as small as zero but only as large as our highest power k - whatever k might be. This is very picky stuff - like a computer program spelling things out very precisely so the computer knows exactly what you mean. (That's right - you are the computer).

Sounding it out might sound like this:

"for some kay such that zero is less-than-or-equal-to dee-i which is less-than-or-equal-to nine, for each dee-i and i, which are integers; also i is between zero and k inclusive"

v) "Furthermore $d_k \neq 0 \dots$ "

This is spelling out one more important fastidious detail. We want to make sure that the "most significant d", that is, our d_k that goes along with the highest power 10^k is not 0, in other words it must be one of 1, 2, 3, 4, 5, 6, 7, 8 or 9. This is necessary so that we can get our uniqueness property, otherwise we could say 13 = 013 = 0000013 which are all the integer 13, so let's outlaw this uninteresting and annoying possibility.

vi) "... except when n = 0"

... completing that last statement which allows for one exception to the requirement that the "most significant digit" is not allowed to be zero, and that's exactly when the integer n in question IS zero.

vii) "Definition: n is represented in base-ten as $d_k d_{k-1} \dots d_2 d_1 d_0$ "

This is introducing what it means to write the number out in base-ten; that is, we toss out all the extraneous stuff from our expression in (iii) above, and string all the "digits" one after another, from most significant digit d_k on the left down to least significant digit d_0 on the right.

Before we prove our theorem, consider that base-ten is not the only base in use these days. Since the introduction of the EDVAC* computer, around 1950, there have been many orders of magnitude more calculations done in base-two (otherwise known as binary) by computers than have EVER been done by people in base-ten for the entirety of human history. (This might even be true if we only count one-day's worth of binary computer calculations - someone needs to check this.)

Binary-computer logic gates (the building blocks of the modern computer) can only take one of two states, that is; "off" or "on". We interpret these two states to represent these two numbers:

^{*}You might be thinking, don't you mean ENIAC which was earlier? Actually no - the ENIAC used base-ten accumulators, not binary!

0 and 1. By doing so, in the same way that base-ten uses ten numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 for its digits; we can represent integers in base-two with just the digits 0 and 1. How is this possible? Let's find out with an imaginary trip into space.

Consider distant Planet-Nova on which the emergent intelligent species only have nine fingers. They have three hands with three fingers each - anyway, that's why they use base-nine, so they only need the numbers 0, 1, 2, 3, 4, 5, 6, 7 and 8 for their digits. So like we Earthlings do for the integer ten, instead of making up a new symbol for nine, they use "10" to represent the integer nine - which for them means "One lot of nine, plus zero units".

Similarly on Planet-Ocho, since they only have eight fingers, then they use base-eight and only use numbers 0, 1, 2, 3, 4, 5, 6 and 7 for their digits. For them "10" means "One lot of eight, plus zero units".

On and on past Planet-Gary-Seven, and Planet-Secks, Planet-Penta, ...

Finally we come upon Planet-Claire (well someone has to come from Planet-Claire, I know she came from there), where the poor blighters only have two fingers so they only use the digits 0 and 1 and base-two, so for them "10" means "one lot of two and zero units". So on Planet-Claire "10" means two. Recall above how we arrived at our 100 in base-ten, being "ten lots of ten, plus zero units" - similarly on Planet-Claire "100" in base-two for them means "Two lots of two plus zero units" in other words, four! What is "11" in base-two? Using our technique to describe the digits we see that it's "One lot of two, plus one unit", in other words three.

Here's how they count on Planet-Claire using base-two:

base-two	base-ten	base-two	base-ten
0	0	$(\dots cont)$	
1	1	1101	13
10	2	1110	14
11	3	1111	15
100	4	10000	16
101	5	10001	17
110	6		
111	7	11111	31
1000	8	100000	32
1001	9		
1010	10	1000000	64
1011	11	10000000	128
1100	12 (cont)	100000000	256

Note something interesting in the list above - the powers of two, written in base-two, resemble our powers of 10 in base-ten! That is:

```
\begin{array}{lll} 1=2^0=1, & 32=2^5=100000_{\rm (base-2)}, \\ 2=2^1=10_{\rm (base-2)}, & 64=2^6=1000000_{\rm (base-2)}, \\ 4=2^2=100_{\rm (base-2)}, & 128=2^7=10000000_{\rm (base-2)}, \\ 8=2^3=1000_{\rm (base-2)}, & 256=2^8=100000000_{\rm (base-2)}, \\ 16=2^4=10000_{\rm (base-2)}, & \dots \end{array}
```

Let's look at the binary number 11010 for example. Using our wordy technique to describe the number we can see that it's "One lot of sixteen, plus one lot of eight, plus zero lots of four, plus one lot of two, plus zero units":

Written in terms of powers of two: $11010_{\text{(base-2)}} = 26 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$.

Each digit in base-two can be thought of as a little switch that turns on or off the contribution of its corresponding power of two.

Claim: Given that the inhabitants of Planet-Claire can use as high a power of two as they like, and that they can string together as LONG A LIST of binary-digits as pleases them, that means that they can create ANY INTEGER THEY WANT no matter how big it is.

Sound familiar? Let's restate our theorem for base-ten but rewritten for base-two.

Base-Two Representation Theorem

Let $n, k \in \mathbb{Z}_{>0}$. Then every n can be uniquely expressed as follows:

$$n = d_k 2^k + d_{k-1} 2^{k-1} + \dots + d_2 2^2 + d_1 2^1 + d_0 2^0$$

for some k such that $0 \le d_i \le 1$ where $d_i, i \in \mathbb{Z}$ and $0 \le i \le k$.

Furthermore $d_k \neq 0$ except when n = 0.

Definition: n is represented in base-two as $(d_k d_{k-1} \dots d_2 d_1 d_0)_2$

Try reading the above out loud in your head, line by line, item by item, like we did above when we sounded it out for the base-ten theorem - it's helpful to turn the "math-code" into understandable English and a useful habit to get into when reading mathematical statements.

Before we go on, I want to introduce a little notation to help avoid confusion. How do you know what I'm talking about if I just write "1000"? Do I mean 10^3 or 2^3 ? If there is any possibility for confusion we write the number like this $(1000)_{10}$ for the base-ten version meaning one-thousand and $(1000)_2$ for the binary version meaning eight.

As is hinted by the habits of our various alien friends above it seems that we can use ANY integer greater than or equal to 2 as a base (base-one doesn't really make sense - think about it for a while). In fact computer graphics artists are known to stumble upon numbers written in hexadecimal (usually relating to specifying a color-channel), which is base-sixteen.

Base-sixteen introduces some new single-character symbols to the usual numbers 0, 1, 2, thru 9, to represent the numbers 10, 11, 12, 13, 14 and 15. Base-sixteen adds the "digits" A, B, C, D, E and F where $A_{16}=(10)_{10}$, $B_{16}=(11)_{10}$, $C_{16}=(12)_{10}$, $D_{16}=(13)_{10}$, $E_{16}=(14)_{10}$, $F_{16}=(15)_{10}$. So if you see this number (80FB)₁₆ then I bet at this point (if you take a little time with a calculator and a pad of paper and pencil) then you can figure out that it's (33019)₁₀.

Note that if we omit the parentheses and subscript from a number, it means we're talking about it in base-ten; our "default" base. Case in point: the subscripts that we use to denote the base (like the "16" in (80FB)₁₆) are written in base-ten!

We really need to get on with proving our two theorems above. But what about proving the "base-nine" version of the theorem for the aliens on Planet-Nova, or the "base-eight" version for the inhabitants of Planet-Ocho?

To cover all bases (pun intended) let's restate our theorem for the general case, call it "base-b", where b is any number greater than or equal to two. If we can prove that theorem, then we'll automatically get all the cases of specific bases for free.

Basis Representation Theorem

Let $n, k, b \in \mathbb{Z}_{\geq 0}$ such that $b \geq 2$. Then every n can be uniquely expressed as follows:

$$n = d_k b^k + d_{k-1} b^{k-1} + \dots + d_2 b^2 + d_1 b^1 + d_0 b^0$$

for some k such that $0 \le d_i \le (b-1)$ where $d_i, i \in \mathbb{Z}$ and $0 \le i \le k$.

Furthermore $d_k \neq 0$ except when n = 0.

Definition: n is represented in base-b as $(d_k d_{k-1} \dots d_2 d_1 d_0)_b$

As we discussed way up at the top of this essay, we think about generating the set of positive integers as a process that builds them up one by one. That is, each successive integer is one more than the previous one, starting at 1, then one more taking us to 2, then 3, 4, 5, ... ad infinitum*...

This idea of being able to step one after the other, beginning at 1 and going forever is embodied within the "Principle of Mathematical Induction" and is a basic property of the positive integers. This principle is more than just a way to generate the set of integers, it's also a way of thinking about properties of the integers.

Suppose that P(n) means that the property P holds for the number n; where n is a positive integer. Then the principle of mathematical induction states that P(n) is true for ALL positive integers n provided that[†]:

- i) P(1) is true
- ii) Whenever P(k) is true, P(k+1) is true.

Why would these two conditions show that P(n) is true for all positive integers? Note that condition ii) only asserts the truth of P(k+1) under the assumption that P(k) is true. However if we also know that P(1) is true then condition ii) implies that P(2) is true, which again implies that P(3) is true, which in turn leads to the truth of P(4), etc., over and over for all positive integers.

Some people picture an infinite row of dominoes. Having condition i) (called the "base case") is like being able to knock over the first domino. Then knowing condition ii) is also true is like the

^{* &}quot;ad infinitum" means "to infinity", or "continue forever, without limit".

[†]This wording of the definition of "The Principle of Mathematical Induction" is essentially borrowed from "Calculus" by Michael Spivak - a fabulous introductory textbook on Analysis.

fact that any one domino has the ability to knock over the next. Once you've knocked over the first domino, they all fall.

Let's look at a simple example: Perhaps you've heard the story of young Carl Friedrich Gauss as a boy in the 1780s who was assigned (along with all his classmates) the tedious task of summing the first 100 integers - presumably to keep them quiet and busy while the teacher corrected some papers. Anyway, young Gauss immediately produced the answer, 5050, before most of the boys had summed the first couple of numbers. It wasn't young Gauss's extraordinary computational speed which allowed him to perform this dazzling task, but he had the deeper insight that instead of adding 1 plus 2, then adding 3, then 4, etc. he saw that if you paired 1 with 100, and 2 with 99, and 3 with 98, etc., that each of those pairs added up to 101, furthermore he knew he'd have 50 such pairs, meaning he could state the result in a heartbeat - tada - "5050"! Gauss is widely regarded as being one of the greatest mathematicians who has ever lived - the young eight-year old was just getting started.

Anyway, to generalize Gauss's insight we can write the expression like this:

$$1+2+3+\ldots+n = \frac{n(n+1)}{2}$$

So let's prove this relationship using the principle of mathematical induction.

Let n = 1 for the "base case", then

$$\frac{1(1+1)}{2} = \frac{2}{2} = 1$$

Which is the trivial sum* of the first positive integer 1.

Now let's assume the relationship is true for n, and prove that it must also be true for n+1:

$$(1+2+3+...+n) + (n+1)$$

$$= \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$

$$= \frac{n^2+n+2n+2}{2}$$

$$= \frac{n^2+3n+2}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

$$= \frac{(n+1)((n+1)+1)}{2}$$

Which proves young Gauss's expression is true for the positive integer n+1 whenever it's true for n - then by the principle of mathematical induction, the expression is true for all positive integers. QED[†]

^{*}The word "sum" here is used in the context of the expression we are trying to prove. In this case we are summing only one item thus it's "trivial".

^{†&}quot;QED" - is often used at the conclusion of a proof to state that it's done - it's an acronym for the Latin phrase "quod erat demonstrandum" which means "that which was to be demonstrated". In other words we've proven what we set out to prove.

We are going to use two techniques to prove the Basis Representation Theorem.

First we will prove that there is such a representation for all integers n (existence proof) using the principle of mathematical induction. Meaning that every integer has a way of being written in the form described by the theorem - especially as relates to the restrictions on the values that the "digits" can take on.

Here's a little insight into how the existence proof works, but applied to a specific number in base-ten: All we want to show is that for any number, if you add 1 to it, that it's also possible to express it as a valid number in base-ten.

For example, adding 1 to 69412995 gives us 69412996, which is pretty trivial to show that it's valid in base-ten, only the least-significant digit was changed, and it's clearly within the range of 0...9.

But what about dealing with a "carry", for example if we were adding 1 to 69412999? We'd need to algebraically capture the idea of the carry. The way we do it in the proof is essentially to say that 69412999 = 69410000 + 2999 = 69410000 + (3000 - 1) so that when we add one to it, then it's clear that the answer is just:

$$69412999 + 1 = 69410000 + (3000 - 1) + 1 = 69410000 + 3000 + (-1 + 1) = 69413000$$

Secondly, we will use another technique, called proof by contradiction, to prove that each such representation is unique - in other words there aren't two (or more) ways to represent the same integer in base-b.

Existence Proof of the Basis Representation Theorem

Base case:

The Principle of Mathematical Induction always starts with 1^* , but we also need to take care of the slightly special case of n=0; so let's take care of n=0 AND n=1 which will serve as our base induction step.

Let n = 0.

We can choose k = 0 and $d_0 = 0$. (This is the one exception spelled out in the theorem in which the most significant digit of n is allowed to be zero.) Then,

$$n = d_0 b^0 = 0 \times b^0 = 0$$

showing that we have a valid representation for 0 in base-b since our only digit $d_0 = 0 \le (b-1)$, for all $b \ge 2$.

Now let n = 1.

In this case, we can choose k = 0 and $d_0 = 1$. Then,

$$n = d_0 b^0 = 1 \times b^0 = 1 \times 1 = 1$$

showing that we have a valid representation for 1 in base-b since $d_0 = 1 \le (b-1)$, for all $b \ge 2$.

^{*}The Principle of Mathematical induction only talks about positive integers, not zero

Induction Case:

Assume that n has a valid representation in base-b, that is, n can be written thus:

$$n = d_k b^k + d_{k-1} b^{k-1} + \dots + d_2 b^2 + d_1 b^1 + d_0 b^0$$

with all the appropriate conditions holding for the values of d_i , b and k; and we will prove that n+1 also has a valid representation in base-b.

We're going to break this step into two cases which cover all possibilities.

Case 1)
$$d_0 \le (b-2)$$

This case examines when the least significant digit of n is *strictly-less-than* the largest value it can take in base-b. For example, in base-two d_0 can only be zero; In base-five d_0 can be at most three; In base-ten d_0 can be at most eight, etc. This case is quite easy to deal with, so let's quickly dispense with it*.

$$n = d_k b^k + d_{k-1} b^{k-1} + \dots + d_2 b^2 + d_1 b^1 + d_0 b^0$$
if and only if,
$$n + 1 = d_k b^k + d_{k-1} b^{k-1} + \dots + d_2 b^2 + d_1 b^1 + d_0 b^0 + 1$$

$$= d_k b^k + d_{k-1} b^{k-1} + \dots + d_2 b^2 + d_1 b^1 + d_0 b^0 + b^0$$

$$= d_k b^k + d_{k-1} b^{k-1} + \dots + d_2 b^2 + d_1 b^1 + (d_0 + 1) b^0$$

and our by assumption that $d_0 \leq (b-2)$, then

$$(d_0+1) \le (b-2)+1 = (b-1)$$

showing us that the "least significant digit" of n+1, being (d_0+1) , is less than or equal to (b-1) which means that (d_0+1) is a valid digit in base-b.

Since all the other d_i terms (d_1, d_2, \dots, d_k) for n+1 are unchanged from their values for n then all the digits of n+1 are valid in base-b.

Therefore we've established the truth of "Case 1" for the integer n + 1.

Case 2)
$$d_0 = (b-1)$$

Now we'll look at the case when the least significant digit of n is equal to the largest value it can take in base-b, that is, $d_0 = (b-1)$. (Note that "Case 1" and "Case 2" cover all the possibilities for what d_0 can be.) For example in base-two $d_0 = 1$; in base-five $d_0 = 4$; in base-ten $d_0 = 9$, etc.

Let $j \in \mathbb{Z}_{\geq 0}$ be the lowest power of b such that $d_j < (b-1)$, meaning we can write n as follows (... in other words all the digits to the right of d_j are equal to (b-1)):

$$n = d_k b^k + d_{k-1} b^{k-1} + \dots + d_j b^j + (b-1)b^{j-1} + \dots + (b-1)b^1 + (b-1)b^0$$

^{*}It will be helpful at this point to recall the axiom of "Distribution" that is a(b+c) = ab + ac; In fact, it might not hurt to do a quick refresh of some of the others as well, "Associativity": (a+b) + c = a + (b+c) and a(bc) = (ab)c, "Commutativity": a+b=b+a and ab=ba, "Existence of inverses and identities": a+0=a and $a\times 1=a$ and a+(-a)=0. Note: in general integers do NOT have multiplicative inverses

For example, if n = 69412999, then j = 3, since 10^3 is the lowest power of 10 such that its digit d_3 is less than 9 (it's 2).*

$$n = d_k b^k + \dots + d_j b^j + (b-1)b^{j-1} + \dots + (b-1)b^1 + (b-1)b^0$$

$$= d_k b^k + \dots + d_j b^j + (b^j - b^{j-1}) + (b^{j-1} - b^{j-2}) + \dots + (b^2 - b^1) + (b^1 - b^0)$$

$$= d_k b^k + \dots + (d_j b^j + b^j) + (-b^{j-1} + b^{j-1}) + \dots + (-b^2 + b^2) + (-b^1 + b^1) - b^0$$

$$= d_k b^k + \dots + (d_j + 1)b^j - b^0$$

$$= d_k b^k + \dots + (d_j + 1)b^j - 1$$

Therefore,

$$n+1 = d_k b^k + \dots + (d_j + 1)b^j - 1 + 1$$

= $d_k b^k + \dots + (d_j + 1)b^j$ (1)

Since we picked j such that $d_j < (b-1)$, we can restate the inequality as $d_j \le (b-2)$ therefore,

$$(d_i + 1) \le (b - 2) + 1 = (b - 1)$$

meaning the j^{th} digit of n+1 is a valid base-b digit.

All digits d_k, \ldots, d_{j+1} remain unchanged from the base-b representation of n, and all digits d_{j-1}, \ldots, d_0 are 0.

Therefore all the digits of the base-b representation of n+1 are valid in base-b.

If you've been fastidiously following the conditions on our subscript j above, then you may notice that our proof doesn't leave room for the case that *all* the digits are equal to (b-1) because of how we defined j. For example when n=99999.

Let's attend to this remaining detail.

Suppose $d_i = (b-1)$ for all $0 \le i \le k$, then let $d_{k+1} = 0$ and j = k+1.

All the arguments we just made are essentially the same so picking up at equation (1) above, with our new terms, we have:

$$n+1 = (d_j + 1)b^j$$

$$= (d_{k+1} + 1)b^{k+1}$$

$$= (0+1)b^{k+1}$$

$$= b^{k+1}$$

Meaning that n+1 now has a $(k+1)^{st}$ digit and it's equal to 1, with all the rest of the digits being 0 - which is a valid representation for n+1 in base-b for all $b \ge 2$.

Therefore by the principle of mathematical induction, we have proven that there is a base-b representation for all nonnegative integers.

^{*}It will be helpful at this point to recall some rules of exponents, that is $a^b a^c = a^{b+c}$.

In order to proceed with proving the uniqueness aspect of the Basis Representation Theorem, we need to make use of a well established theorem called the "Euclidean Division Theorem".* It sounds onerous, but don't worry, you all learned it in the third grade but perhaps not so formally, you called it "long division". It simply states the following:

Euclidean Division Theorem

For all $a, b \in \mathbb{Z}$ where b > 0, there exists unique integers q and r such that that \dagger :

$$a = qb + r$$
 and $0 \le r \le (b-1)$

Definition: In the above equation:

a is the dividend ("the number being divided")
b is the divisor ("the number doing the dividing")
q is the quotient ("the result of the division")
r is the remainder ("the leftover")

This is how you first learned to divide. For example if someone asks you "What is nineteen divided by three?", you'd answer "six with one remaining". Here 19 is the *dividend*, 3 is the *divisor*, 6 is the *quotient* and 1 is the *remainder*. Written in the form of the theorem:

$$19 = 6 \times 3 + 1$$

Often proofs make use of little mini-theorems of their own. Creating these mini-theorems is a way to simplify a step in the main proof by establishing a useful non-trivial intermediary result. It makes reading the main proof easier to follow by not having us get sidetracked with the technicalities of a step we want to make. These mini-theorems are called "Lemmas" and we're going to make one to help with proving the uniqueness part of the Basis Representation Theorem. We're going to make use of the Euclidean Division Theorem in proving our lemma.

Lemma

Let $b, q, r \in \mathbb{Z}$ such that b > 0 and $0 \le r \le (b-1)$, then

$$0 = qb + r$$

if and only if q = 0 and r = 0.

^{*}I don't want to misrepresent that the proof in this paper is the only way to prove the Basis Representation Theorem, in fact I know of two others.

One is more constructive, and makes extensive use of the Euclidean Division Theorem but it's just as lengthy as ours here. However it does give some nifty insight in how to convert any integer into a specific base.

Another is quite elegant and short, but abstract. It's not particularly illuminating for our purposes. However, you can find it in the book "Number Theory" by George E. Andrews, and also on the website "ProofWiki", just search for "Basis Representation Theorem" to find the proof.

[†]Actually the theorem is stronger than we have stated here. Specifically, it only requires that $b \neq 0$, however to keep the remainder positive, the restriction on r is stated like this $0 \leq r \leq (|b| - 1)$ to deal with the possibility that b might be negative.

Proof of Lemma

Let $b, q, r \in \mathbb{Z}$ such that b > 0 and $0 \le r \le (b-1)$.

If q = 0 and r = 0, then

$$qb + r = 0 \cdot b + 0 = 0$$

but also, by the Euclidean Division Theorem since q and r are unique for every dividend and divisor b > 0, then we can also conclude that if 0 = qb + r then q = 0 and r = 0 must be true, otherwise the quotient and remainder would not be unique.

QED

Uniqueness Proof of the Basis Representation Theorem

Assume n is not unique and that,

$$n = d_k b^k + d_{k-1} b^{k-1} + \dots + d_2 b^2 + d_1 b^1 + d_0 b^0$$
, and
 $n = c_k b^k + c_{k-1} b^{k-1} + \dots + c_2 b^2 + c_1 b^1 + c_0 b^0$

Let's further suppose that the index j is the lowest power such that the digits $d_j \neq c_j$ and without any loss of generality, let's assume that $d_j > c_j$.

Therefore*:

$$c_k b^k + c_{k-1} b^{k-1} + \dots + c_2 b^2 + c_1 b^1 + c_0 b^0 = d_k b^k + d_{k-1} b^{k-1} + \dots + d_2 b^2 + d_1 b^1 + d_0 b$$

$$\Leftrightarrow 0 = (d_k - c_k) b^k + (d_{k-1} - c_{k-1}) b^{k-1} + \dots + (d_j - c_j) b^j$$

$$\Leftrightarrow \frac{0}{b^j} = \frac{(d_k - c_k) b^k + (d_{k-1} - c_{k-1}) b^{k-1} + \dots + (d_j - c_j) b^j}{b^j}, \text{ since } b \neq 0$$

$$\Leftrightarrow 0 = (d_k - c_k) b^{k-j} + (d_{k-1} - c_{k-1}) b^{k-j-1} + \dots + (d_{j+1} - c_{j+1}) b + (d_j - c_j)$$

$$\Leftrightarrow 0 = \left((d_k - c_k) b^{k-j-1} + (d_{k-1} - c_{k-1}) b^{k-j-2} + \dots + (d_{j+1} - c_{j+1}) \right) b + (d_j - c_j)$$
Let $q = \left((d_k - c_k) b^{k-j-1} + (d_{k-1} - c_{k-1}) b^{k-j-2} + \dots + (d_{j+1} - c_{j+1}) \right), \text{ then}$

$$0 = qb + (d_j - c_j)$$

Since $0 \le (d_j - c_j) \le (b - 1)$ and b > 0 then by our lemma we know that q = 0 and $d_j - c_j = 0$.

But $d_j - c_j = 0$ if and only if $d_j = c_j$ which contradicts our assumption that $d_j \neq c_j$. This implies that the initial assumption that "n is not unique" is false, in other words:

The base-b representation of n is unique.

Therefore since we have proven that there exists a base-b representation of ALL the nonnegative integers, and that this representation is unique for ALL such integers, then we have proven the Basis Representation Theorem.

QED

^{*}Please read the bidirectional arrow symbol \Leftrightarrow as "if and only if" - it's like a logical "equals" sign

Epilogue

Thanks for taking that little ride - if you got this far, then I'd love to give you 50 gold stars! In addition, being Canadian, I feel compelled to apologize for a couple of things.

First, if I turned you off math more than you were before, then I failed miserably! For that you deserve a HUGE Canadian apology.

Second, if this paper did turn you off then I might not blame you as this proof is hardly what one would call elegant. In fact here's what one of the world's greatest Mathematicians*, G. H. Hardy, had to say about proofs like this[†]:

"We do not want many 'variations' in the proof of a mathematical theorem: 'enumeration of cases', indeed, is one of the duller forms of mathematical argument. A mathematical proof should resemble a simple and clear-cut constellation, not a scattered cluster in the Milky Way."

I couldn't agree more, however, a more elegant proof along the lines of what Hardy argues for is possibly provided by George E. Andrews in his introductory book called "Number Theory". Andrew's proof is cool, and the logic inescapable, but not an obvious way to approach the problem. Perhaps it's a little too out there for our Sesame-Street-plus-plus approach that this paper is going for. Like I mentioned in a footnote above, if you want to check it out, it's easy to find on the web at the site "ProofWiki".

I encourage you to try your hands at the following exercises. Answers are supplied - but don't peek until you try them yourself!

 $^{^{\}ast}\mathrm{along}$ with the aforementioned Gauss and Euclid.

[†]coincidentally in an essay he wrote called "A Mathematician's Apology".

Exercises

- 1. What are the following numbers expressed in base-ten?
 - i) $(11010)_2$
 - ii) $(A053D)_{16}$
 - iii) $(1017)_{23}$
- 2. What are the following base-ten numbers expressed in an alternate base?
 - i) 33 expressed in base-two?
 - ii) 127 expressed in base-two? (Hint: 127 = (128 1))
 - iii) 8079 expressed in base-sixteen?

Hint: For a moment, pretend that we don't use base-ten to write out our numbers, instead picture a pile of apples. Can you picture 7654 apples? Yes? Good let's use 7654 as our example.

If we apply the Euclidean Division Theorem to 7654 using 10 as a divisor we get the following:

$$7654 = 765 \times 10 + 4$$

Notice the remainder 4 is the least significant digit (our d_0 in the theorem) of our integer 7654.

How do we get the next digit, i.e. d_1 that corresponds to the 10^1 term? Well, it's kind of cheating, but since we happen to be looking at the numbers written in base-ten we can see it sitting right there in at the end of the quotient 765. Let's apply the Euclidean Division Theorem with 10 as the divisor, but this time to 765:

$$765 = 76 \times 10 + 5$$

So the remainder is 5 our d_1 digit. Let's keep going, this time dividing the previous quotient 76 by 10...

$$76 = 7 \times 10 + 6$$

and finally,

$$7 = 0 \times 10 + 7$$

So, our series of remainders happens to be the digits of the number in base 10. Specifically $d_3 = 7$, $d_2 = 6$, $d_1 = 5$ and $d_0 = 4$.

Try doing that for 8079, but use 16 instead of 10 as the divisor.

- iv) Let $A_{23}=10, B_{23}=11, C_{23}=12, D_{23}=13, E_{23}=14, F_{23}=15, G_{23}=16, H_{23}=17, I_{23}=18, J_{23}=19, K_{23}=20, L_{23}=21$ and $M_{23}=22,$ then what is 185190 expressed in base-twenty-three?
- v) 291480 expressed in base-twenty-three?
- 3. If $b, n \in \mathbb{Z}_{\geq 0}$ and $b \neq 1$ then prove,

$$1 + b + b^2 + \dots + b^{n-1} = \frac{b^n - 1}{b - 1}$$

Hint: use induction on n, the base case being n = 1.

Answers

- 1. What are the following numbers expressed in base-ten?
 - i) $(11010)_2 = 53$
 - ii) $(A053D)_{16} = 656701$
 - iii) $(1017)_{23} = 12197$
- 2. What are the following base-ten numbers expressed in an alternate base?
 - i) $33 = (100001)_2$
 - ii) $127 = (11111111)_2$
 - iii) $8079 = (1F8F)_{16}$
 - iv) $185190 = (F51H)_{23}$
 - v) $291480 = (10M01)_{23}$
- 3. Proof Base case: n = 1

$$\frac{b^1 - 1}{b - 1} = \frac{b - 1}{b - 1} = 1 = b^0 = b^{1 - 1}$$

Induction step: Assume the following

$$1 + b + b^{2} + \dots + b^{n-1} = \frac{b^{n} - 1}{b - 1}$$

Then,

$$(1+b+b^{2}+\cdots+b^{n-1})+b^{n}$$

$$=\frac{b^{n}-1}{b-1}+b^{n}$$

$$=\frac{b^{n}-1}{b-1}+\frac{b^{n}(b-1)}{b-1}$$

$$=\frac{b^{n}-1+b^{n+1}-b^{n}}{b-1}$$

$$=\frac{b^{n+1}+b^{n}-b^{n}-1}{b-1}$$

$$=\frac{b^{n+1}-1}{b-1}$$

QED