Installing and Configuring Kubernetes

Anthony E. Nocentino
ENTERPRISE ARCHITECT @ CENTINO SYSTEMS
@nocentino www.centinosystems.com

Course Overview

Introduction

Exploring Kubernetes Architecture

Installing and Configuring Kubernetes

Working with Your Kubernetes Cluster

Overview

Installation Considerations
Installation Overview
Getting Kubernetes
Installing a Cluster With kubeadm
Creating a Cluster in the Cloud

Installation Considerations

Where to install?

Cloud

laaS - Virtual Machines

PaaS - Managed Service

On-Prem

Bare Metal

Virtual Machines

Which one should you choose?

https://kubernetes.io/docs/setup/pick-right-solution/

Installation Considerations (con't)

Cluster Networking

Scalability

High Availability

Disaster Recovery

Installation Methods

Desktop kubeadm

From Scratch Cloud Scenarios

https://kubernetes.io/docs/setup/scratch/ https://github.com/kelseyhightower/kubernetes-the-hard-way/

Installation Requirements

System Requirements	Container Runtime	Networking
Linux - Ubuntu/CentOS	Container Runtime Interface (CRI)	Connectivity between all Nodes
2 CPUs	Docker	
2GB RAM		

Swap Disabled

Cluster Network Ports

Component	Ports (tcp)	Used By
API	6443	All
etcd	2379-2380	API/etcd
Scheduler	10251	Self
Controller Manager	10252	Self
Kubelet	10250	Control Plane
Kubelet	10250	Control Plane
NodePort	30000-32767	All

Getting Kubernetes

Maintained on GitHub

https://github.com/kubernetes/kubernetes

Linux Distribution Repositories yum and apt

Building Your Cluster

Install Kubernetes

Create Your Cluster

Configure Pod Networking

Join Nodes to your Cluster

Required Packages

Install on all Nodes in your cluster

```
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
cat <<EOF >/etc/apt/sources.list.d/kubernetes.list
deb https://apt.kubernetes.io/ kubernetes-xenial main
EOF
apt-get update
apt-get install -y kubelet kubeadm kubectl docker.io
apt-mark hold kubelet kubeadm kubectl docker.io
```

Getting and Installing Kubernetes on Ubuntu VMs

Do this on all nodes

Hostnames set Host file on each

Lab Environment

c1-master1 172.16.94.10

Cluster Store

Scheduler

Controller Manager API Server

c1-node1 172.16.94.11

Kublet

Kube-proxy

Container Runtime

c1-node2 172.16.94.12

Kublet

Kube-proxy

Container Runtime Ubuntu 16.0.4 VMware Fusion VMs 2vCPU 2GB RAM 100GB Swap Disabled

Demo

Installing

- kubelet
- kubeadm
- kubectl
- docker

systemd Units

essis customization strapping a Cluster with kubeadm

kubeadm init

Pre-flight checks

Creates a Certificate Authority

Generates kubeconfig files

Generates
Static Pod
Manifests

Starts up the Control Plane

Taints the Master

Generates a
Bootstrap
Token

Starts Add-On Pods: DNS and kube-proxy

Certificate Authority

Self signed CA

Can be part of an external PKI

Securing cluster communications

API Server

Authentication of users and kubelets

/etc/kubernetes/pki

Distributed to each Node

kubeadm Created kubeconfig Files

Used to define how to connect to your Cluster

Certificate information

Cluster location

/etc/kubernetes

admin.conf (kubernetes-admin)

kubelet.conf

controller-manager.conf

scheduler.conf

Static Pod Manifests

Manifest describes a configuration

/etc/kubernetes/manifests

etcd

API Server

Controller Manager

Scheduler

Monitored by the kubelet and started automatically when the system starts and over time

Enable the startup of the cluster...without the cluster

Pod Networking

https://kubernetes.io/docs/concepts/cluster-administration/networking/


```
wget https://docs.projectcalico.org/v3.3/getting-started/kubernetes/
installation/hosted/rbac-kdd.yaml
wget https://docs.projectcalico.org/v3.3/getting-started/kubernetes/
installation/hosted/kubernetes-datastore/calico-networking/1.7/calico.yaml
kubeadm init --pod-network-cidr=192.168.0.0/16
kubectl apply -f rbac-kdd.yaml
kubectl apply -f calico.yaml
```

Creating a master

Your Kubernetes master has initialized successfully!

To start using your cluster, you need to run the following as a regular user:

```
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
```

You should now deploy a pod network to the cluster.

Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:

https://kubernetes.io/docs/concepts/cluster-administration/addons/

You can now join any number of machines by running the following on each node as root:

kubeadm join 172.16.94.10:6443

- --token i0pr88.pbid2af0071xhuo1
- --discovery-token-ca-cert-hash sha256:9a56f13bbae1f77e3a01fecc2bf8c59e6977d9c71c2d3482b988fa47767353d7

Adding a Node to a Cluster

kubeadm join

Download Cluster Information

Node submits a CSR

CA Signs the CSR automatically

Configures kubelet.conf

Demo

Creating a Cluster
systemd Units...again!
Static manifests
Joining Nodes to a Cluster

Managed Cloud Deployment Scenarios

Elastic Container Service for Kubernetes (EKS)

https://aws.amazon.com/getting-started/projects/deploy-kubernetes-app-amazon-eks/

Google Kubernetes Engine (GKE)
https://cloud.google.com/kubernetes-engine/docs/how-to/

Azure Kubernetes Services (AKS)
https://docs.microsoft.com/en-us/azure/aks/kubernetes-walkthrough

Demo

Creating a Cluster in the Cloud

- Azure Kubernetes Services (AKS)
- Google Kubernetes Engine (GKE)

Summary

Installation Considerations
Installation Overview
Getting Kubernetes
Installing a Cluster With kubeadm

Creating a Cluster in the Cloud

What's Next! Working With Your Cluster