Thrombin system reduction,

Hoang M. Tran

November 14, 2014

Outline

- Problem formulation
- $2 l_1 min formulation$
- 3 Data driven system reduction method
 - Correlation analysis of time series from simulated human coagulation cascade dynamics
 - System reduction using linear transformation
- 4 Update week of November 14th 2014
 - Kuramoto model reconstruction: bound on total perturbation
 - Dimension reduction

Outline

- Problem formulation
- $2 l_1 min formulation$
- 3 Data driven system reduction method
 - Correlation analysis of time series from simulated human coagulation cascade dynamics
 - System reduction using linear transformation
- 4 Update week of November 14th 2014
 - Kuramoto model reconstruction: bound on total perturbation
 - Dimension reduction

Problem formulation

$$\dot{\boldsymbol{y}}(t) = \boldsymbol{f}(\boldsymbol{y}(t), \boldsymbol{k}) \tag{1}$$

where

- $\mathbf{y} = (y_1, ..., y_n), n = 34, y_i$: concentration of chemical species i
- k: reaction rates, given constants
- $f(y(t), k) = (f_1(y(t), k), ..., f_m(y(t), k)), m = 42$, there are 42 rate equation
- y_{14} : concentration of Thrombin

Problem formulation

Find another system of equations in terms of new variable z such that

- z(t) is a transformation of y(t)
- $\dim(z) \leq 4$

Outline

- Problem formulation
- $2 I_1 min formulation$
- 3 Data driven system reduction method
 - Correlation analysis of time series from simulated human coagulation cascade dynamics
 - System reduction using linear transformation
- 4 Update week of November 14th 2014
 - Kuramoto model reconstruction: bound on total perturbation
 - Dimension reduction

I_1 — min formulation

l_1 — min formulation

$$\min |C|_1 \text{ s. t. } \begin{cases} ||\dot{\boldsymbol{z}}(t) - \boldsymbol{f}(\boldsymbol{z}(t), C)||_k & \leq \varepsilon_1 \forall t \in \{t_1, ..., t_N\} \\ ||z_{14} - f_{14}(\boldsymbol{z}(t), C)||_k & \leq \varepsilon_2 \end{cases}$$

where $arepsilon_1>arepsilon_2$

Note that the transformation: $\mathbf{y} \rightarrow \mathbf{z} = \mathbf{y}$.

Outline

- Problem formulation
- $2 l_1 min formulation$
- 3 Data driven system reduction method
 - Correlation analysis of time series from simulated human coagulation cascade dynamics
 - System reduction using linear transformation
- 4 Update week of November 14th 2014
 - Kuramoto model reconstruction: bound on total perturbation
 - Dimension reduction

Time series

Time series: observations

- ullet Time series are highly correlated. 14 o 25: correlation about 1.
- Simulated data Y when solving(1) can be approximately represented in lower dimension space

SVD the simulated data $Y_{n\times N}\stackrel{A}{\to} Y_{n\times N}\approx A_{n\times p}Z_{p\times N}, p\ll n$, use A as transformation to reduce the dynamical system (1)

Dimension reduction using singular value decomposition

$$C_{N\times n} = S_{N\times N} \Sigma_{N\times n} (V_{n\times n})^{T}$$

$$\tilde{C} = Z_{N\times p} \Sigma_{p\times p} (V_{p\times n})^{T}$$

$$\approx C$$

$$\tilde{C}^{T} = (\Sigma_{p\times p} (V_{p\times n})^{T})^{T} S_{N\times p}^{T}$$
(2)

N: sample size, p: reduced dimension.

Apply (2) to
$$C = Y_{n \times N}^T$$
, denote $Z_{p \times N} = S_{N \times p}^T$, $A = (\Sigma_{p \times p}(V_{p \times n})^T)^T = V_{p \times n} \Sigma_{p \times p}^T$

$$\tilde{Y}_{n \times N} = A Z_{p \times N} \tag{3}$$

$$\mathbf{y}(t) = A\mathbf{z}(t) \tag{4}$$

Dimension reduction using singular value decomposition

Error rate: $\frac{||\tilde{Y}^T - Y||_F}{||Y||_F}$

Dimension reduction using linear transformations: singular value decomposition

$$\mathbf{y}(t) \approx A\mathbf{z}(t)$$

$$\mathbf{z}(t) \approx A^{-1}\mathbf{y}(t)$$

$$\frac{d\mathbf{z}(t)}{dt} = A^{-1}\frac{d\mathbf{y}(t)}{dt}$$

$$\frac{d\mathbf{z}(t)}{dt} = A^{-1}\mathbf{f}(\mathbf{y}(t), \mathbf{k})$$

$$\frac{d\mathbf{z}(t)}{dt} \approx A^{-1}\mathbf{f}(A\mathbf{z}(t), \mathbf{k})$$
(6)

- A^{-1} : may need to use pseudo inverse.
- From z(t) we can get Thrombin and other components by y(t) = Az(t).

Validation procedure

- Solve the original system numerically to get $Y_{N \times n}$, N = 1200, n = 34, not 29.
- ② Do SVD $Y_{N\times n} = Z_{N\times N} \Sigma_{N\times n} (V_{n\times n})^T$, $A = (\Sigma_{p\times p} (V_{p\times n})^T)^T$, $\tilde{Y}^{svd} = (\Sigma_{p\times p} (V_{p\times n})^T)^T Z_{N\times p}^T$
- **3** Solve $\dot{\boldsymbol{z}}(t) \approx A^{-1} \boldsymbol{f}(A\boldsymbol{z}(t), \boldsymbol{k})$ to get $(Z_{N \times p}^{reduced})^T$
- Compute $(\tilde{Y}^{reconstruct})^T = A(Z_{N \times p}^{reduced})^T$
- $\begin{tabular}{ll} \hline \textbf{0} & \textbf{Compute error rate using } \tilde{Y}^{\textit{reconstruct}}, \tilde{Y}^{\textit{svd}}_{\textit{N} \times \textit{N}} \\ \hline \end{tabular}$

Result - observations

(1)	1	2	3	4	5	6	7	8	9	10
(2)	-	stiff	-	stiff	stiff	-	stiff	stiff	stiff	stiff
(3)	0.86	5.78	0.17	18	108	0.06	0.07	6.68	5.57	1.8

Row (1) - number of eigenvectors, p or dim(z)

Row (2) - nonstiffness of the reconstructed system

$$\dot{\boldsymbol{z}}(t) \approx A^{-1} \boldsymbol{f}(A\boldsymbol{z}(t), \boldsymbol{k})$$

Rows (3): error rate computed using $\tilde{Y}^{reconstruc}$

- Training data length does matter
- The new system might become very stiff
- Accuracy does not linearly depends on training data length
- p = 3 or p = 6

Time series comparision p = 6

Time series comparision - error

Thrombin time series

Thrombin time series - using the one initial condition, use another initial condition for validation

Thrombin time series - using same initial conditions

Result - some observations

- Using higher dimension space to represent new variable does not guarantee smaller error
- The approximated system might become very stiff
- A depends on intitial condition in the original system

⇒need a mathematical formulation and perturbation analysis

Outline

- Problem formulation
- $2 l_1 min formulation$
- 3 Data driven system reduction method
 - Correlation analysis of time series from simulated human coagulation cascade dynamics
 - System reduction using linear transformation
- 4 Update week of November 14th 2014
 - Kuramoto model reconstruction: bound on total perturbation
 - Dimension reduction

Kuramoto model reconstruction: Bound on total perturbation

Theorem

For matrices R, R^0 if $||R - I||_F + ||\Delta R||_F < 1$ we have:

$$||R^{-1} - (R^0)^{-1}||_F \le ||\Delta R||_F \frac{1}{(1 - ||R - I||_F - ||\Delta R||_F)^2}$$

where $\Delta R = R - R^0$.

Proof.

Apply the Theorem 6.2.30 from Johnson's book for: $f(t) = \sum_{k=0}^{\infty} (-1)^k t^k = \frac{1}{1+t}, \ f_{abs}(t) = \sum_{k=0}^{\infty} t^k = \frac{1}{1-t}, \ \text{we have}$ $f'_{abs}(t) = \frac{1}{(1-t)^2}, f(R-I) = (I+R-I)^{-1} = R^{-1},$ $f(R^0-I) = (R^0)^{-1}$

 $< ||R-R^0||_F f_{abs}'(||R-I||_F + ||(R-R^0)||_F)$

 $||R^{-1} - (R^0)^{-1}||_F = ||f(R-I) - f(R^0 - I)||_F$

Kuramoto model reconstruction: Bound on total perturbation

Theorem

For the network untangling method, $P^0=S^0R^0$, the total perturbation $P-S^0R=-(\Delta S)R$ is bounded by

$$(||P||_F + ||\Delta P||_F)||\Delta R||_F \frac{1}{(1 - ||R - I||_F - ||\Delta R||_F)^2}||R||_F + ||\Delta P||_F$$

Proof.

$$P^{0} = S^{0}R^{0} \Rightarrow S^{0} = P^{0}(R^{0})^{-1}$$

$$S = PR^{-1} \Rightarrow \Delta S = PR^{-1} - P^{0}(R^{0})^{-1}$$

$$\Delta S = (P^{0} + \Delta P)R^{-1} - P^{0}(R^{0})^{-1}$$

$$= P^{0}(R^{-1} - (R^{0})^{-1}) + \Delta PR^{-1}$$

$$= (P - \Delta P)(R^{-1} - (R^{0})^{-1}) + \Delta PR^{-1}$$

$$(11)$$

$$(\Delta S)R = (P - \Delta P)(R^{-1} - (R^{0})^{-1})R + \Delta P$$

$$(12)$$

Problem with SVD based model reduction

SVD the simulated data $Y_{n\times N}\stackrel{A}{\to} Y_{n\times N}\approx A_{n\times p}Z_{p\times N}, p\ll n$, use A as transformation to reduce the dynamical system (1)

•
$$Y_{N\times n} = Z_{N\times N} \Sigma_{N\times n} (V_{n\times n})^T$$
, $A = (\Sigma_{p\times p} (V_{p\times n})^T)^T$, $\mathbf{y}(t) = A\mathbf{z}(t) + \varepsilon_1(t)$

•
$$\dot{\mathbf{z}}(t) \approx A^{-1} \mathbf{f}(A\mathbf{z}(t), \mathbf{k})$$
 to get $(Z_{N \times p}^{reduced})^T$

• Compute
$$(\tilde{Y}^{reconstruct})^T = A(Z^{reduced}_{N \times p})^T$$

Problem: Not robust to the number of component used: stiffness issue, big error rate.

Dimension reduction using linear transformations

A, B are linear transformations that we need to define

$$\begin{aligned} \mathbf{y}(t) &= A\mathbf{z}(t) + \varepsilon_1(t) \\ \mathbf{z}(t) &= B\mathbf{y}(t) - \varepsilon_2(t)) \\ \dot{\mathbf{z}}(t) &= B\dot{\mathbf{y}}(t) - \dot{\varepsilon}_2(t)) \\ &= B\mathbf{f}(\mathbf{y}(t), \mathbf{k}) - \dot{\varepsilon}_2(t) \\ &= B\mathbf{f}(A\mathbf{z}(t) + \varepsilon_1(t), \mathbf{k}) - \dot{\varepsilon}_2(t) \\ \dot{\mathbf{z}}(t) - B\mathbf{f}(A\mathbf{z}(t), \mathbf{k}) &= B\mathbf{f}(A\mathbf{z}(t) + \varepsilon_1(t), \mathbf{k}) - \dot{\varepsilon}_2(t) - B\mathbf{f}(A\mathbf{z}(t), \mathbf{k}) \\ &= B\left[\mathbf{f}(A\mathbf{z}(t) + \varepsilon_1(t), \mathbf{k}) - \mathbf{f}(A\mathbf{z}(t), \mathbf{k})\right] - \dot{\varepsilon}_2(t) \\ &\approx B\frac{J(\mathbf{f})}{J(\mathbf{y})}(A\mathbf{z}(t) + \varepsilon_1(t), \mathbf{k})\varepsilon_1(t) - \dot{\varepsilon}_2(t) + o(||\varepsilon_1(t)||) \\ &\text{(linear approximation at } A\mathbf{z}(t) + \varepsilon_1(t), \text{ not } A\mathbf{z}(t)) \end{aligned}$$

Dimension reduction using linear transformations

$$\dot{\mathbf{z}}(t) - B\mathbf{f}(A\mathbf{z}(t), \mathbf{k}) \approx \mathbf{e}(t)
\mathbf{e}(t) = B\frac{J(\mathbf{f})}{J(\mathbf{y})}(\mathbf{y}(t), \mathbf{k})\varepsilon_1(t) - \dot{\varepsilon_2}(t) + o(||\varepsilon_1(t)||)$$
(13)

We need to find A and B such that

- $Az(t) \approx y(t)$. A is estimated from SVD of simulated data on y(t): $Y_{N \times n} = Z_{N \times N} \sum_{N \times n} (V_{n \times n})^T$, $A = (\sum_{p \times p} (V_{p \times n})^T)^T$,
- ||e(t)|| is as small as possible.
 - We can assume that $\varepsilon_2(t)=0$
 - Current approach: B = pinv(A) (Moore-Penrose pseudoinverse). Some row maybe very big.
 - Another option is choosing $B_{N\times p}$ such that $||B\frac{J(f)}{J(y)}(y(t),k)||$ is minimized. Need to make sure that none of the rows of B is very big.