

planetmath.org

Math for the people, by the people.

proof of Mantel's theorem

Canonical name ProofOfMantelsTheorem

Date of creation 2013-03-22 13:03:04 Last modified on 2013-03-22 13:03:04

Owner mps (409) Last modified by mps (409)

Numerical id 6

Author mps (409) Entry type Proof

Classification msc 05C75 Classification msc 05C69 Let G be a triangle-free graph. We may assume that G has at least three vertices and at least one edge; otherwise, there is nothing to prove. Consider the set P of all functions $c: V(G) \to \mathbb{R}_+$ such that $\sum_{v \in V(G)} c(v) = 1$. Define the total weight W(c) of such a function by

$$W(c) = \sum_{uv \in E(G)} c(u) \cdot c(v).$$

By declaring that $c \leq c^*$ if and only if $W(c) \leq W(c^*)$ we make P into a poset.

Consider the function $c_0 \in P$ which takes the constant value $\frac{1}{|V(G)|}$ on each vertex. The total weight of this function is

$$W(c_0) = \sum_{uv \in E(G)} \frac{1}{|V(G)|} \cdot \frac{1}{|V(G)|} = \frac{|E(G)|}{|V(G)|^2},$$

which is positive because G has an edge. So if $c \ge c_0$ in P, then c has support on an induced subgraph of G with at least one edge.

We claim that a maximal element of P above c_0 is supported on a copy of K_2 inside G. To see this, suppose $c \geq c_0$ in P. If c has support on a subgraph larger than K_2 , then there are nonadjacent vertices u and v such that c(u) and c(v) are both positive. Without loss of generality, suppose that

$$\sum_{uw \in E(G)} c(w) \ge \sum_{vw \in E(G)} c(w). \tag{*}$$

Now we push the function off v. To do this, define a function $c^* \colon V(G) \to \mathbb{R}_+$ by

$$c^*(w) = \begin{cases} c(u) + c(v) & w = u \\ 0 & w = v \\ c(w) & \text{otherwise.} \end{cases}$$

Observe that $\sum_{w \in V(G)} c^*(w) = 1$, so c^* is still in the poset P. Furthermore,

by inequality (*) and the definition of c^* ,

$$W(c^*) = \sum_{uw \in E(G)} c^*(u) \cdot c^*(w) + \sum_{vw \in E(G)} c^*(v) \cdot c^*(w) + \sum_{wz \in E(G)} c^*(w) \cdot c^*(z)$$

$$= \sum_{uw \in E(G)} [c(u) + c(v)] \cdot c(w) + 0 + \sum_{wz \in E(G)} c(w) \cdot c(z)$$

$$= \sum_{uw \in E(G)} c(u) \cdot c(w) + \sum_{vw} c(v) \cdot c(w) + \sum_{wz \in E(G)} c(w) \cdot c(z)$$

$$= W(c).$$

Thus $c^* \geq c$ in G and is supported on one less vertex than c is. So let c be a maximal element of P above c_0 . We have just seen that c must be supported on adjacent vertices u and v. The weight W(c) is just $c(u) \cdot c(v)$; since c(u) + c(v) = 1 and c has maximal weight, it must be that $c(u) = c(v) = \frac{1}{2}$. Hence

$$\frac{1}{4} = W(c) \ge W(c_0) = \frac{|E(G)|}{|V(G)|^2},$$

which gives us the desired inequality: $|E(G)| \leq \frac{|V(G)|^2}{4}$.