CSE 417: Algorithms and Computational Complexity

6: Dynamic Programming, III Longest Increasing Subseq.

Winter 2002 Instructor: W. L. Ruzzo

Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that number of different parameters in the recursive algorithm is "small" (e.g., bounded by a low-degree polynomial)
- Specify an order of evaluation for the recurrence so that already have the partial results ready when you need them.

2

Longest Increasing Subsequence

- Given a sequence of integers S₁,...,S_n find a subsequence S_{i1} < S_{i2} <... < S_{ik} with i₁ <... < i_k so that k is as large as possible.
- e.g. Given 9,5,2,8,7,3,1,6,4 as input,
 - possible increasing subsequence is 5,7
 - better is 2,3,6 or 2,3,4 (either or which would be a correct output to our problem)

,

Find recursive algorithm

- Solve sub-problem on $s_1,...,s_{n-1}$ and then try to extend using s_n
- Two cases:
 - S_n is not used
 - I answer is the same answer as on $s_1,...,s_{n-1}$
 - I s_n is used
 - I answer is s_n preceded by the longest increasing subsequence in $s_1,...,s_{n-1}$ that ends in a number smaller than s_n

Refined recursive idea (stronger notion of subproblem)

- Suppose that we knew for each i<n the longest increasing subsequence in s₁,...,s_n that ends in s_i.
- i=n-1 is just the n-1 size sub-problem we tried before.
- Now to compute value for i=n find
 - I s_n preceded by the maximum over all i<n such that s_i
 $< s_n$ of the longest increasing subsequence ending in s_i
- First find the best length rather than trying to actually compute the sequence itself.

5

Recurrence

- Let L[i]=length of longest increasing subsequence in s₁,...,s_n that ends in s_i.
- L[j]=1+max{L[i]: i<j and s_i<s_j} (where max of an empty set is 0)
- Length of longest increasing subsequence:
 - $\quad \quad I \quad max\{L[i] \colon 1 \leq i \leq n\}$

6

Computing the actual sequence

- For each j, we computed
- Also maintain P[j] the value of the i that achieved that max
 - I this will be the index of the predecessor of \mathbf{s}_{j} in a longest increasing subsequence that ends in \mathbf{s}_{i}
 - by following the P[j] values we can reconstruct the whole sequence in linear time.

Longest Increasing Subsequence Algorithm

- **I** for j=1 to n do
 - L[j]←1
 - P[j]←0 **for** i=1 **to** j-1 **do**
 - if (s_i<s_i & L[i]+1>L[j]) then
 - endfor
 - endfor
- Now find j such that L[j] is largest and walk backwards through P[j] pointers to find the sequence

