Question Review

ΑII

In the expansion of $\left(x-rac{1}{x}
ight)^6$, the constant term is

- **○** -20
- O 20
- O 30
- → 30

EXPLANATIONS

Report (

50 % were correct!

In the expansion of $\left(x-\frac{1}{x}\right)^6$, the general term is

$$^6C_rx^{6-r}igg(-rac{1}{x}igg)^r=^6C_r(-1)^rx^{6-2r}$$

For term independent of $x, 6-2r=0 \Rightarrow r=3$

Thus the required coefficient $=(-1)^3\cdot^6 C_3=-20.$

The least value of k for which the function x^2+kx+1 is an increasing function in the interval 1 < x < 2 is :

- O -4
- O -1
- **○** -2

EXPLANATIONS

Report !

31 % were correct!

To be increasing, $\dfrac{d}{dx}(x^2+kx+1)>0 \Rightarrow 2x+k>0$

For $x\in(1,\,2)$, the least value of k is -2.

Locus of mid point of the portion between the axes of $x\cos lpha + y\sin lpha = p$ where p is constant is

$$x^2 + y^2 = \frac{4}{p^2}$$

$$x^2 + y^2 = 4p^2$$

$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2}$$

$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$$

EXPLANATIONS Report !

32 % were correct!

Equation of AB is $x\cos\alpha + y\sin\alpha = p$

$$egin{aligned} &\Rightarrow rac{x\coslpha}{p} + rac{y\sinlpha}{p} = 1 \ &\Rightarrow rac{x}{p/\coslpha} + rac{y}{p/\sinlpha} = 1 \end{aligned}$$

Co-ordinates of \boldsymbol{A} and \boldsymbol{B} are

$$\left(\frac{p}{\cos\alpha},0\right)$$
 and $\left(0,\frac{p}{\sin\alpha}\right)$

So, coordinates of midpoint of AB are

$$\left(rac{p}{2\coslpha},rac{p}{2\sinlpha}
ight)=(x_1,y_1)$$
 (say)

$$egin{aligned} x_1 &= rac{p}{2\coslpha} \,\&\, y_1 = rac{p}{2\sinlpha} \ \Rightarrow \coslpha &= p/2x_1 ext{ and } \sinlpha &= p/2y_1 \end{aligned}$$

We have,

$$\cos^2 lpha + \sin^2 lpha = 1 \Rightarrow rac{p^2}{4}igg(rac{1}{x_1^2} + rac{1}{y_1^2}igg) = 1$$

Locus of (x_1,y_1) is $\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{4}{p^2}$

The equation of parabola whose vertex and focus are (0, 4) and (0, 2) respectively, is

- $y^2 8x = 32$
- $y^2 + 8x = 32$
- $x^2 + 8y = 32$
- $x^2 8y = 32$

EXPLANATIONS Report (!)

54 % were correct!

The parabola has (0,4) as vertex and (0,2) as focus. So, its axis is x=0 i.e, Y-axis. Hence its equation is in the form of $(x-0)^2=4a(y-4)$ But a is distance between focus and vertex, i.e, a=-2. So, equation is $x^2=-8y+32$ or $x^2+8y=32$

The equation of the plane which bisects the line joining the points (-1, 2, 3) and (3, -5, 6) at right angle, is:

- 4x 7y 3z = 8
- \bigcirc 4x + 2y 3z = 28
- 4x 7y + 3z = 28
- \bigcirc 4x 7y 3z = 28

<u>Report</u> []

65 % were correct!

The dr's of given line are 4, -7, 3.

Since this line is perpendicular to the plane, the equation of the plane is:

$$4x - 7y + 3z = k.$$

Only option (c) satisfies.

Further, the plane satisfies midpoint of the line, i.e, $\left(1,-1.5,4.5\right)$

so,
$$4+21/2+27/2=28=k$$

The value of $rac{i^{592}+i^{590}+i^{588}+i^{586}+i^{584}}{i^{582}+i^{580}+i^{578}+i^{576}+i^{574}}-1=$

- **○** -2
- O -3
- _ -4

EXPLANATIONS

64 % were correct!

$$egin{split} rac{i^{584} \left(i^8+i^6+i^4+i^2+1
ight)}{i^{574} \left(i^8+i^6+i^4+i^2+1
ight)} -1 &= rac{i^{584}}{i^{574}} -1 \ &= i^{10}-1 = -1 -1 = -2 \end{split}$$

Domain of $f(x)=rac{x^2-3x+2}{x^2+x-6}$ is

- $\bigcirc \{x: x \in R, x \neq 3\}$
- $\bigcirc \{x: x \in \mathbb{R}, x \neq 2\}$
- $\bigcirc \{x:x\in R\}$
- $\{x: x \in R, x \neq 2, x \neq -3\}$

EXPLANATIONS Report (!)

73 % were correct!

Upon factorization,

$$f(x) = \frac{(x-2)(x-1)}{(x-2)(x+3)}$$

Since denominator should be non-zero, x
eq 2 and x
eq -3.

So, domain is $\{x: x \in R, \quad x
eq 2, x
eq -3\}$

If $lpha,eta,\gamma$ are angles of a triangle, then $\sin^2lpha+\sin^2eta+\sin^2\gamma-2\coslpha\coseta\cos\gamma$ is

O 2

O -1

_ -2

O

EXPLANATIONS Report !

54 % were correct!

For
$$A+B+C=\pi$$

$$\sin^2 A + \sin^2 B + \sin^2 C = 2 + 2\cos A\cos B\cos C$$

Proof:

$$A+B+C=\pi$$

$$\sin(A+B) = -\sin C$$

 $(\sin A\cos B + \cos A + \sin B)^2 = \sin^2 C$

Report (

Upon simplification,

 $\sin^2 A + \sin^2 B - \sin^2 C = 2\sin A \sin B \cos C$

Adding $2\sin^2 C$ on both sides,

 $\sin^2 A + \sin^2 B + \sin^2 C = 2 + 2\cos C(\sin A\sin B - \cos C)$

Or, $\sin^2 A + \sin^2 B + \sin^2 C = 2 + 2\cos C(\sin A\sin B + \cos(A+B))$

As, $\cos(A+B) = \cos A \cos B - \sin A \sin B$,

Which of the following is not a chalcogen?

we get the result

(It is better to check with equilateral triangle than do such proof)

O O

 \bigcirc S

○ Se

Na

EXPLANATIONS Report (!)

67 % were correct!

16th group called chalcogens (oxygen family) while *Na* is a Ist group element which is called alkali metal.

Which of the following behaves as both oxidising and reducing agents?

O H₂SO₄

• SO₂

O H₂S

O HNO3

EXPLANATIONS Report (!)

53 % were correct!

In SO_2 sulphur is in +4 oxidation state which is intermediate state (between -2 and +6) i.e minimum and maximum ON of S So it can act as oxidising agent by decreasing its ON or act as reducing agent by increasing is ON.

In other compounds, they are in maiximum of minimum oxidation state.

A molar solution is one that contains one mole of a solute in

One litre of the solution

 \bigcirc 1000 g of the solvent

22.4 litres of the solution

None

EXPLANATIONS

Report !

58 % were correct!

According to definition of molar solution, a molar solution is one that contains one mole of a solute in one litre of the solution.

What is the oxidation number of sulphur in $Na_2S_4O_6$

 $\bigcirc \frac{3}{5}$

 $\frac{5}{2}$

EXPLANATIONS

Report !

79 % were correct!

 $Na_2\overset{*}{S_4}O_6$

$$2 + 4x - 12 = 0$$

$$4x = 10$$

$$x = \frac{10}{4}$$

$$x = \frac{5}{2}$$

An alkaline solution has **pH 10**. The number of OH^- ions present in **50 ml** of this solution is

O NA

 $\frac{NA}{10^4}$

 $\frac{NA}{50 \times 10^4}$

EXPLANATIONS Report !

48 % were correct!

Here pH = 10

so pOH = 14-10 = 4

i.e concentration of OH^- ions = 10^{-4} moles in 1 litre

Now

1000ml of the solution $=N_A imes 10^{-4}=rac{N_A}{10^4}ions$

50ml of the solution $=rac{N_A}{10^4} imesrac{50}{1000}=rac{N_A}{20 imes10^4}ions$

Which of the following has least mass

- 2 g atom of nitrogen
- \circ 3 × 10²³ atoms of C
- 1 mole of S
- 7.0 g of Ag

EXPLANATIONS Report !

38 % were correct!

- (a) 2 gm atom of nitrogen = 28 gm
- (b) $6 imes10^{23}$ atoms of C has mass $=12gm~3 imes10^{23}$ atoms of C has mass $=rac{12 imes3 imes10^{23}}{6 imes10^{23}}=6gm$
- (c) Imole of S has mass = 32 gm
- (d) 7.0 gm of Ag So, lowest mass = 6 gm of C.

A current 2.0 A is passed for 5 hours through a molten metal salt deposits 22 g of metal (At. wt. =177). The oxidation state of the metal in the metal salt is

+ 2

+ 3

+	4

EXPLANATIONS

Report !

63 % were correct!

$$E_{
m metal} = rac{{
m Weight~of~metal} imes 96500}{{
m Number~of~coulombs}}$$

$$=\frac{22.2 \times 96500}{2 \times 5 \times 60 \times 60}=59.5$$

Oxidation number of the metal $=rac{177}{59.5}=+3$

A certain quantity of electricity is passed through an aqueous solution of $AgNO_3$ and cupric salt solution connected in series. The amount of Ag deposited is $1.08\,gm$, the amount of copper deposited is (atomic weight of Cu = 63.5; Ag = 108)

- 0.6454 g
- 6.354 g
- **o** 0.3177 g
- 3.177 g

EXPLANATIONS Report (!)

54 % were correct!

$$\frac{\operatorname{Wt. of} \, Cu}{\operatorname{Wt. of} \, Ag} = \frac{\operatorname{Eq. wt. of} \, Cu}{\operatorname{Eq. wt. of} \, Ag}$$

$$\frac{\text{Wt. of } Cu}{1.08} = \frac{63.5/2}{108}$$

Wt. of $Cu=0.3177\,$ gm.

Anu remained at home because she had a sore throat.

- a simple sentence
- a compound sentence
- o a complex sentence
- a compound-complex sentence

EXPLANATIONS Report !

21 % were correct!

Anu remained at home. (independent clause)

It suffers pneumonia.	
○ with	
of of	
• from	
at	
Mr. Oli the project by next month.	
) will complete	
will be completing	
will have been completing	
will have completed	
PLANATIONS	<u>Report</u>
52 % were correct! To indicate an action that will be completed by a particula	r point in the future, we use future perfect tense.
<u>Well,</u> I'm pretty sure I'll pass the test.	
noun	
pronoun	
adverb	
adverb interjection	

6/22/22, 5:49 PM

Test Result | EngineeringDote

<u>Previous</u>

1

Next

2022 \circledcirc **engineeringdote**, a product of Studydote Pvt. Ltd - Online study portal

