

Sistema de monitoreo y gestión remota del clima en invernaderos

Martín Anibal Lacheski

Carrera de Especialización en Internet de las Cosas

Director: Leopoldo Alfredo Zimperz (FIUBA)

Jurados:

Jurado 1 (pertenencia) Jurado 2 (pertenencia) Jurado 3 (pertenencia)

Resumen

La presente memoria describe el desarrollo de un prototipo para monitorear y controlar de manera remota las condiciones climáticas en los invernaderos de la Facultad de Ciencias Forestales de la Universidad Nacional de Misiones. La solución propuesta integra sensores y actuadores basados en el microcontrolador ESP32, conectados a un servidor IoT en la nube mediante Wi-Fi y el protocolo MQTT.

Este sistema permite la gestión y el monitoreo remoto a través de una aplicación web, optimizar el uso de recursos, mejorar la productividad y reducir costos operativos. Su implementación requirió conocimientos en sistemas embebidos, sensores, protocolos de comunicación, desarrollo de software, técnicas de seguridad y la implementación de soluciones cloud.

Agradecimientos

Esta sección es para agradecimientos personales y es totalmente **OPCIONAL**.

Índice general

Intro	oducciór	ı gene	eral													
1.1.	Problen	nática	actua	l												
1.2.	Motiva	ción .														
1.3.	Estado	del ar	te													
1.4.	Objetiv	os y a	lcance													
	1.4.1.	Objeti	vo pri	ncip	al											
	1.4.2.	Objeti	vos es	peci	íficc	S										
	1.4.3.	Alcan	ce del	trab	ajo											
1.5.	Requeri	imien	tos .													

Índice de figuras

1.1.	Diagrama en blo	ques del sistema.	 	 					4

Índice de tablas

1	Camaahaniatiaaa	1 - 1 -		Acres also										
.1.	Características	ae ia	compe	etencia.			 							7

Dedicado a... [OPCIONAL]

Capítulo 1

Introducción general

Este capítulo presenta una visión general de los sistemas de gestión y monitoreo en invernaderos, se abordan los desafíos actuales y las oportunidades de mejora en el ámbito de la agricultura. Se describe la problemática relacionada con la falta de optimización en los sistemas de cultivo tradicionales. Además, se describen la motivación, los objetivos, el alcance y los requerimientos asociados a los diferentes componentes del sistema.

1.1. Problemática actual

La agricultura enfrenta desafíos crecientes en la optimización de la productividad y la eficiencia, especialmente en regiones con condiciones climáticas adversas y variables. Según la FAO [1], para el año 2050, se estima que la población superará los 9 mil millones de personas, lo que demandará un aumento del 60 % en la producción de alimentos. Para abordar este desafío, es fundamental optimizar el uso del agua, mejorar la productividad agrícola y fomentar prácticas que contribuyan a la sostenibilidad ambiental.

Ante estos retos, los cultivos hidropónicos han surgido como una solución prometedora debido a su capacidad para utilizar los recursos de manera más eficiente. Entre sus principales ventajas se destacan la reducción en el consumo de agua [2], la posibilidad de cultivar durante todo el año en entornos controlados y un aumento significativo en la productividad, gracias a la mayor velocidad de crecimiento y rendimiento de los cultivos.

En la provincia de Misiones, la producción hidropónica ha experimentado un crecimiento notable en los últimos años [3], [4]. No obstante, persisten desafíos en la gestión eficiente de los recursos esenciales. Actualmente, la mayoría de los productores emplean sistemas de control basados en temporizadores programables, los cuales no consideran las variaciones ambientales. Esto implica la necesidad de intervenciones manuales frecuentes y mediciones directas, limitando la eficiencia del proceso.

La ausencia de un monitoreo en tiempo real impacta negativamente en la calidad y el rendimiento de los cultivos, aumentando los costos operativos y afectando la sostenibilidad ambiental debido a la implementación de prácticas poco optimizadas.

1.2. Motivación

La motivación de este trabajo radica en el desarrollo e implementación de un sistema basado en Internet de las Cosas (IoT, del inglés *Internet of Things*) y de bajo costo, que permite monitorear en tiempo real y controlar de manera remota los invernaderos de la Facultad de Ciencias Forestales (FCF) de la Universidad Nacional de Misiones (UNaM).

Este sistema posibilita el registro continuo de diversas variables de interés, como temperatura ambiente, humedad relativa, dióxido de carbono (CO_2), niveles de nutrientes, y consumo de agua y energía, entre otros. Los datos generados están disponibles para docentes, estudiantes e investigadores, para su uso en la realización de tesis, investigaciones y trabajos académicos.

Así, el proyecto no solo tiene un impacto directo en la producción, sino también en la formación académica y el avance científico. Proporciona una plataforma de datos para el análisis y el desarrollo de nuevas soluciones tecnológicas, alineadas con las demandas actuales de sostenibilidad ambiental y seguridad alimentaria [5].

1.3. Estado del arte

En el mercado actual, existen diversas empresas que ofrecen soluciones comerciales para optimizar la gestión de invernaderos. Estas herramientas permiten el control automatizado de variables clave como temperatura, humedad, ventilación y circulación de nutrientes o riego. La tabla 1.1 presenta una comparación de algunas de las soluciones disponibles y sus características más relevantes.

Empresa Características Hidroponía FIL [6] Ofrece servicios en comodato de sensores y actuadores para monitorear y controlar en tiempo real variables críticas como temperatura ambiente, humedad relativa, conductividad eléctrica, pH, riego e iluminación. Hidrosense [7] Ofrece productos para automatizar la invección de nutrientes en el sistema de riego a través del control del nivel de la conductividad eléctrica, la temperatura y el nivel de pH. Ofrece una plataforma para la visualización del estado, reportes y el envío de alertas. iPONIA [8] Ofrece productos y una plataforma para monitorear y controlar el invernadero hidropónico. Integra sensores para medir el nivel de pH, conductividad eléctrica, temperatura de la solución, temperatura ambiente y humedad relativa del aire. También ofrece dosificadores para inyectar los fertilizantes a la solución nutritiva. Growcast [9] Ofrece productos y una plataforma para controlar cultivos a través de sensores y actuadores que procesan y reportan datos en tiempo real. Integra sensores para medir

temperatura ambiente, humedad relativa y CO_2 . Realiza el control del riego, la iluminación y la ventilación.

TABLA 1.1. Características de la competencia.

1.4. Objetivos y alcance

1.4.1. Objetivo principal

Diseñar y desarrollar un prototipo de sistema para el monitoreo y control remoto de las condiciones climáticas en invernaderos, mediante sensores y actuadores conectados a través de Wi-Fi, un servidor IoT en la nube y una aplicación web, con el fin de optimizar el uso de los recursos, reducir costos operativos y mejorar la sostenibilidad ambiental, además de servir como plataforma de datos para la investigación académica y científica.

1.4.2. Objetivos específicos

- Implementar una arquitectura IoT basada en Wi-Fi para monitorear sensores y actuadores en tiempo real.
- Desarrollar un servidor IoT en la nube para la recolección, almacenamiento y procesamiento de los datos obtenidos.
- Diseñar una aplicación web que permita la visualización en tiempo real y el control remoto de las condiciones del invernadero.
- Facilitar el acceso a los datos generados para su uso en investigaciones académicas, trabajos finales y estudios específicos.

1.4.3. Alcance del trabajo

El alcance del trabajo incluyó las siguientes tareas:

- Diseño e implementación de nodos IoT.
 - Selección de sensores, actuadores y microcontroladores.
 - Configuración de conexión Wi-Fi en nodos sensores y actuadores.
 - Desarrollo de firmware para la adquisición de datos de los sensores y el control de los actuadores.
- Comunicación y Protocolos.
 - Configuración de un servidor IoT para gestión de mensajes entre nodos y aplicaciones.
 - Transmisión de datos al servidor IoT mediante MQTT.
 - Cifrado de comunicaciones mediante TLS (Transport Layer Security).
- Desarrollo de Software.
 - Diseño e implementación de una base de datos para almacenar los datos recolectados por los sensores y permitir su consulta y análisis.
 - Diseño y desarrollo de una API (*Application Programming Interface*) REST (*Representational State Transfer*) que permita la comunicación con el sistema utilizando HTTP (*Hypertext Transfer Protocol*), MQTT y WebSockets.
 - Desarrollo de una aplicación Web responsiva para la visualización de datos en tiempo real y el control remoto de actuadores.

- Entregables.
 - Código fuente completo del sistema (sensores, actuadores, servidor IoT, API y aplicación web).
 - Guías de instalación, configuración y operación.

El trabajo no incluyó:

- Armado de PCB.
- Desarrollo de una aplicación móvil compatible con iOS y Android.

La figura 1.1 muestra el diagrama en bloques del sistema, que evidencia la integración de hardware, software y servicios en la nube.

FIGURA 1.1. Diagrama en bloques del sistema.

1.5. Requerimientos

A continuación se detallan los requerimientos técnicos asociados a los diferentes componentes del sistema.

- 1. Requerimientos de los nodos:
 - a) Utilizar microcontroladores basados en ESP32.
 - b) Implementar certificados TLS para seguridad en las comunicaciones.
 - c) Permitir conexión Wi-Fi.
 - *d*) Identificador único por nodo dentro del sistema.
 - e) Configuración remota del intervalo de envío de datos.
 - f) Los nodos sensores deben transmitir al servidor IoT:
 - 1) Nodos ambientales: Temperatura, humedad relativa, presión atmosférica, nivel de luminosidad y nivel de (CO_2) .

- 2) Nodos de solución nutritiva: Valores de pH, conductividad eléctrica (CE), TDS, nivel y temperatura de la solución.
- 3) Nodos de consumos: Agua, nutrientes y energía eléctrica.
- g) Los nodos actuadores deben transmitir al servidor IoT:
 - 1) Configuración remota de parámetros por canal.
 - 2) Reporte del estado de cada canal al servidor IoT.
 - 3) Activación remota de canales.

2. Broker MQTT:

- a) Soportar conexiones cifradas mediante TLS.
- b) Poseer comunicación bidireccional (publicación/suscripción).
- c) Implementar QoS (*Quality of Service*) para garantizar entrega de mensajes.

3. Frontend (Aplicación Web)

- a) Interfaz intuitiva y responsiva (accesible desde móviles y escritorio).
- b) Autenticación de usuarios mediante credenciales.
- c) Realización de las operaciones CRUD (Crear, Leer, Actualizar, Eliminar).
- *d*) Visualización en tiempo real de datos de sensores y actuadores.
- e) Envío remoto de comandos y configuraciones.
- f) Acceso a datos históricos mediante gráficos y tablas.
- g) Tablero interactivo para monitoreo y control centralizado.

4. Backend:

- a) Soportar conexiones seguras mediante TLS.
- b) Implementar JWT (JSON Web Token).
- c) Persistencia de los datos.
- *d*) Soporte para métodos HTTP (CRUD y reportes), WebSockets (datos en tiempo real) y MQTT (interacción con dispositivos).

5. Requerimientos de documentación:

- a) Se entregará el código del sistema, que incluye todos los componentes desarrollados (sensores, actuadores, broker MQTT, frontend, backend y API).
- *b*) Se entregarán las guías y diagramas de instalación, configuración y operación.

Bibliografía

- [1] Global Agricultural Productivity (GAP). 2016 Global Agricultural Productivity Report. Inf. téc. Documento en línea. Global Agricultural Productivity, 2016. URL: https://globalagriculturalproductivity.org/wp-content/uploads/2019/01/2016_GAP_Report.pdf (visitado 20-03-2025).
- [2] Raquel Salazar-Moreno, Abraham Rojano-Aguilar e Irineo Lorenzo López-Cruz. «La eficiencia en el uso del agua en la agricultura controlada». En: *Tecnología y ciencias del agua* 5.2 (2014). Documento en línea, págs. 177-183. URL: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-24222014000200012&lng=es&tlng=es (visitado 20-03-2025).
- [3] Misiones Online. *Horticultura en Misiones*. Artículo en línea. Misiones Online. 2024. URL: https://misionesonline.net/2024/06/14/horticultura-en-misiones-2/(visitado 20-03-2025).
- [4] Primera Edición. *Misiones: la hidroponía, cada vez más presente*. Artículo en línea. Primera Edición. 2024. URL: https://www.primeraedicion.com.ar/nota/100627758/misiones-la-hidroponia-cada-vez-mas-presente/ (visita-do 20-03-2024).
- [5] Lucas A. Garibaldi et al. «Seguridad alimentaria, medio ambiente y nuestros hábitos de Consumo». En: *Ecología Austral* 28.3 (2018), págs. 572-580. URL: https://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1667-782X2018000400011&lng=es&tlng=es (visitado 20-03-2024).
- [6] Hidroponía FIL. URL: https://hidroponiafil.com.ar/ (visitado 20-03-2024).
- [7] Hidrosense. URL: https://www.hidrosense.com.br/ (visitado 20-03-2024).
- [8] iPonia. URL: https://iponia.com.br/ (visitado 20-03-2024).
- [9] Growcast. URL: https://www.growcast.io/ (visitado 20-03-2024).