RRTs (Rapidly - exploring Random Trees)

→ Data structure & path planning algorithm, designed for efficiently sourch paths in non-convex high-dimensional spaces.

vertices of thee.

GENERATE_RRT $(x_{init}, \overline{K}, \Delta t)$

- 1 $\mathcal{T}.init(x_{init});$ Initial pose of robot.
- 2 for k=1 to K do (loop can change to checking closest distance from thee to goal)
- $x_{rand} \leftarrow ext{RANDOM_STATE}(); ext{ can change to RANDOM_FREE_STATE}$
- 4 $x_{near} \leftarrow \text{NEAREST_NEIGHBOR}(x_{rand}, \mathcal{T}); \times_{\text{near}} \in \mathcal{T}$
- 5 Control $u \leftarrow \text{SELECT_INPUT}(x_{rand}, x_{near});$
- 6 $x_{new} \leftarrow \text{NEW_STATE}(x_{near}, u, \Delta t);$
- 7 $\mathcal{T}.\mathrm{add_vertex}(x_{new});$
- 8 \mathcal{T} .add_edge (x_{near}, x_{new}, u) ; \blacktriangleleft Can check obstacle
- 9 Return \mathcal{T}

In practice, "goal bias" is tequited : teplacing X rand into Xgoal for pre-fixed frequency

G Example of RRT expansion

```
RRT & stands for optimal
```

Algorithm 6: RRT*

1 $V \leftarrow \{x_{\text{init}}\}; E \leftarrow \emptyset;$

5

6

7

10

11

12

13

14

15

16

17 return G = (V, E);

2 for i = 1, ..., n do

 $x_{\text{rand}} \leftarrow \texttt{SampleFree}_i;$

3

4

 $x_{\text{nearest}} \leftarrow \texttt{Nearest}(G = (V, E), x_{\text{rand}});$ $x_{\text{new}} \leftarrow \texttt{Steer}(x_{\text{nearest}}, x_{\text{rand}})$;

if $ObtacleFree(x_{nearest}, x_{new})$ then

 $X_{\text{near}} \leftarrow \text{Near}(G = (V, E), x_{\text{new}}, \min\{\gamma_{\text{RRT}^*}(\log(\text{card}(V)) / \text{card}(V))^{1/d}\}$

foreach $x_{\text{near}} \in X_{\text{near}}$ do

 $E \leftarrow E \cup \{(x_{\min}, x_{\text{new}})\};$

foreach $x_{\text{near}} \in X_{\text{near}}$ do

then $x_{\text{parent}} \leftarrow \text{Parent}(x_{\text{near}});$

 $E \leftarrow (E \setminus \{(x_{\text{parent}}, x_{\text{near}})\}) \cup \{(x_{\text{new}}, x_{\text{near}})\}$

 $V \leftarrow V \cup \{x_{\text{new}}\};$

 $x_{\min} \leftarrow x_{\text{near}}; c_{\min} \leftarrow \text{Cost}(x_{\text{near}}) + c(\text{Line}(x_{\text{near}}, x_{\text{new}}))$

Cost from Xiiit→ Incorpst/ - Straight path $x_{\min} \leftarrow x_{\text{nearest}}; c_{\min} \leftarrow \text{Cost}(x_{\text{nearest}}) + c(\text{Line}(x_{\text{nearest}}, x_{\text{new}}));$

 $\textbf{if CollisionFree}(x_{\text{new}}, x_{\text{near}}) \land \texttt{Cost}(x_{\text{new}}) + c(\texttt{Line}(x_{\text{new}}, x_{\text{near}})) < \texttt{Cost}(x_{\text{near}})$

 q_{near}

Cardinality 1V

if CollisionFree $(x_{\text{near}}, x_{\text{new}}) \land \text{Cost}(x_{\text{near}}) + c(\text{Line}(x_{\text{near}}, x_{\text{new}})) < c_{\text{min}}$ then

 q_5

 q_{new}

 q_2

distance // Connect along a minimum-cost path

// Rewire the tree