<u>Home</u> > Chemistry > Inorganic > Redox > Platinum, hydroquinone and silver

Platinum, hydroquinone and silver

Part A Oxidation numbers of platinum

^

The anti-cancer drug *cis-platin* has the formula $Pt(NH_3)_2Cl_2$.

In the human body, one of the chloride ions of *cis-platin* is replaced by one water molecule.

$$Pt(NH_3)_2Cl_2 + H_2O \longrightarrow [Pt(NH_3)_2(H_2O)Cl]^+ + Cl^-$$

What is the oxidation number of platinum in each of these complexes?

	cis-platin	in the aquo complex
Α	+2	+1
В	+2	+2
С	+4	+3
D	+4	+4

/	1	
	-)	-

() E

When exposed film from a camera is developed, one step involves reacting the light-activated silver bromide crystals with hydroquinone in alkali according to the following equation:

OH
$$+ 2AgBr + 2OH^{-}$$
 $+ 2Ag + 2H_{2}O + 2Br^{-}$ Hydroquinone

Figure 1: Hydroquinone and silver bromide in presence of base.

Which of the following describes the role of hydroquinone?

It acts only as a reducing agent
It acts as both an acid and a reducing agent
It acts only as an oxidising agent
It acts as both a base and a reducing agent
It acts only as an acid

Part A adapted with permission from UCLES, A-Level Chemistry, June 1996, Paper 3, Question 9; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1994, Paper 1, Question 3

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

 $\underline{\mbox{Home}}$ > Chemistry > Inorganic > Redox > Oxidation states of S and N

Oxidation states of \boldsymbol{S} and \boldsymbol{N}

Part A Oxidation states of sulfur

^

In which of the following pairs of species is the sulfur in the same oxidation state in both members of the pair?

- 1. ${
 m SF}_6$ and ${
 m SO_4}^{2-}$
- $2.~\mathrm{SO_2}$ and $\mathrm{HSO_3}^-$
- 3. $\mathrm{S_2O_3}^{2-}$ and $\mathrm{S_4O_6}^{2-}$
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct
 - 3 only is correct

Part B Oxidation states of nitrogen

`

In which of the following conversions does the oxidation number of the nitrogen change by two?

- 1. $NH_2OH \longrightarrow NH_3$
- **2**. $N_2 \longrightarrow NO$
- **3**. $NO_2 \longrightarrow HNO_3$
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct
 - 3 only is correct

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.

Home > Chemistry > Inorganic > Redox > Oxides of nitrogen

Oxides of nitrogen

Part A Oxides of nitrogen

^

In an attempt to establish the formula of an oxide of nitrogen, a known volume of the pure gas was mixed with hydrogen and passed over a catalyst at a suitable temperature. 100% conversion of the oxide to ammonia and water was shown to have taken place.

$$\mathrm{N}_x\mathrm{O}_y \xrightarrow[\mathrm{catalyst}]{\mathrm{H}_2} x\,\mathrm{NH}_3 + y\,\mathrm{H}_2\mathrm{O}$$

 $2400\,\mathrm{cm^3}$ of the nitrogen oxide, measured at room temperature and pressure (RTP) produced $7.200\,\mathrm{g}$ of water. The ammonia produced was neutralised by $200\,\mathrm{cm^3}$ of $1.0\,\mathrm{mol}~\mathrm{dm^{-3}}$ HCl.

[Molar volume of gas at RTP = $24000 \, \mathrm{cm}^3 \, \mathrm{mol}^{-1}$]

What was the oxidation number of nitrogen in the solid oxide?

- () +1
- () +2
- () +3
- ---
- () +5

Part B Oxidation numbers of nitrogen

`

The key stage in the manufacture of nitric acid is the reaction of ammonia with air in the presence of a platinum-rhodium gauze:

$$4\,\mathrm{NH_3}\left(\mathrm{g}\right) + 5\,\mathrm{O_2}\left(\mathrm{g}\right) \longrightarrow 4\,\mathrm{NO}\left(\mathrm{g}\right) + 6\,\mathrm{H_2O}\left(\mathrm{g}\right)$$

What is the oxidation number of nitrogen in

 NH_3

NO

Part A adapted with permission from UCLES, A-Level Chemistry, November 1989, Paper 3, Question 2; Part B adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 3, Question 1

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Home > Chemistry > Inorganic > Redox > Oxidation numbers of halides

Oxidation numbers of halides

Part A Oxidation of bromine

^

What changes can be regarded as oxidation of bromine?

- 1. $Br_2 \longrightarrow BrO^-$
- $\textbf{2}.\; Br_2 \longrightarrow BrF$
- 3. $\operatorname{Br}_2 \longrightarrow \operatorname{Br} I$
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct

Part B Oxidation numbers of halides

Which of the statements about the reaction below are correct?

$$IO_3^-(aq) + 2I^-(aq) + 6H^+(aq) + 6Cl^-(aq) \longrightarrow 3ICl_2^-(aq) + 3H_2O(l)$$

- **1**. The oxidation number of chlorine changes from -1 to -2.
- **2**. The oxidation number of the iodine in the iodide ion I^- (aq) changes from -1 to +1.
- **3**. The oxidation number of the iodine in the iodate ion IO_3^- (aq) changes from +5 to +1.
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct

Part A adapted with permission from UCLES, A-Level Chemistry, June 1996, Paper 3, Question 37; Part B adapted with permission from UCLES, A-Level Chemistry, June 1989, Paper 3, Question 37

<u>Home</u> > Chemistry > Inorganic > Redox > Essential Pre-Uni Chemistry K1.4

Essential Pre-Uni Chemistry K1.4

Select the element or species that is being oxidised in the following reactions.

Part A (a)	^
$2\mathrm{Al} + \mathrm{Cr}_2\mathrm{O}_3 \longrightarrow \mathrm{Al}_2\mathrm{O}_3 + 2\mathrm{Cr}$	
\bigcirc O in $\mathrm{Cr}_2\mathrm{O}_3$	
○ Al	
\bigcirc Al in Al $_2$ O $_3$	
\bigcirc Cr in $\mathrm{Cr}_2\mathrm{O}_4$	
Part B (b)	~
$2\mathrm{NH_3} + 3\mathrm{CuO} {\:\longrightarrow\:} \mathrm{N_2} + 3\mathrm{Cu} + 3\mathrm{H_2O}$	
Cu in CuO	
\bigcirc NH $_3$	
O in CuO	
\bigcirc O in CuO \bigcirc N in N ₂	

Part C	(c)	~
2	$\mathrm{Cu}^{2+} + 4\mathrm{I}^- \mathop{-}{\longrightarrow} 2\mathrm{CuI} + \mathrm{I}_2$	
	○ I ⁻	
	☐ I in CuI	
	\bigcirc Cu $^{2+}$	
	Cu in CuI	
Part D	(d)	~
61	${ m PbO} + { m O}_2 \longrightarrow 2 { m Pb}_3 { m O}_4$	
	\bigcirc Pb in Pb $_3$ O $_4$	
	\bigcirc O in O_2	
	O in PbO	
	Pb in PbO	
Part E	(e)	~
Н	$\mathrm{H}_2\mathrm{O}_2+\mathrm{SO}_2\longrightarrow\mathrm{H}_2\mathrm{SO}_4$	
	$igcup H ext{ in } H_2 SO_4$	
	\bigcirc S in $ m H_2SO_4$	
	\bigcirc SO ₂	
	$\bigcirc \ \ \mathrm{H}_{2}\mathrm{O}_{2}$	

Part F	(f)	~
31	$H_2SO_4 + 2 NaBr \longrightarrow 2 NaHSO_4 + Br_2 + SO_2 + 2 H_2O$ $S in H_2SO_4$ $H in H_2SO_4$ $Na in NaBr$	
Part G	Br in NaBr	~
М		
IVI	$egin{aligned} \operatorname{fg} + 2\operatorname{CH}_3\operatorname{COOH} &\longrightarrow \operatorname{Mg}(\operatorname{CH}_3\operatorname{COO})_2 + \operatorname{H}_2 \ & & & & & & & & & & & & & & & & & & $	
	○ C in CH ₃ COOH	
	ho Mg in Mg(CH ₃ COO) ₂	
	O Mg	
Part H	(h)	~
21	${ m Fe}^{3+} + 6{ m ClO}^- + 4{ m OH}^- \longrightarrow 2{ m FeO_4}^{2-} + 3{ m Cl}_2 + 2{ m H}_2{ m O}$	
	\bigcirc Fe $^{3+}$	
	O in ClO ⁻	
	Cl in ClO	
	○ OH-	

Home > Chemistry > Inorganic > Redox > Rocket and metal reduction

Rocket and metal reduction

Part A	Solid rock	at boactar

^

The propellant used in the solid rocket booster of a space shuttle is a mixture of aluminium and compound \mathbf{X} . Compound \mathbf{X} contains chlorine in an oxidation state of +7.

Which of the following could be compound **X**?

- NH₄ClO₄
- N_2H_5Cl
- NH₄ClO₃
- NCl₃
- NH₄Cl

Part B Metals and reduction

V

In which of the following changes has the metal undergone reduction?

- $\qquad [Al(H_2O)_6]^{3+} \longrightarrow [Al(OH)_2(H_2O)_4]^+$
- $\qquad [Co(NH_3)_6]^{2+} \longrightarrow [CoCl_4]^{2-} \\$
- $\bigcirc \quad MnO_4{}^{2-} \longrightarrow MnO_4{}^{-}$

Part A adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 4, Question 15; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1994, Paper 1, Question 12

 \bigcirc C₃H₆

<u>Home</u> > Chemistry > Inorganic > Redox > Essential Pre-Uni Chemistry K1.3

Essential Pre-Uni Chemistry K1.3

Select the element or species that is being reduced in the following reactions

Part A (a)	^
$\mathrm{CuO} + \mathrm{H_2} \longrightarrow \mathrm{Cu} + \mathrm{H_2O}$	
\bigcirc O in $ m H_2O$	
Cu in CuO	
$igcup H ext{ in } H_2$	
O in CuO	
Part B (b)	~
$\mathrm{C_3H_6} + \mathrm{H_2} \longrightarrow \mathrm{C_3H_8}$	
$igcup H$ in H_2	
\bigcirc C ₃ H ₈	
\bigcirc H in $\mathrm{C}_3\mathrm{H}_6$	

Part	(f)	•
	$\mathrm{Fe_2(SO_4)_3} + \mathrm{Zn} \longrightarrow 2\mathrm{FeSO_4} + \mathrm{ZnSO_4}$	
	$igcup_{ ext{S in Fe}_2(ext{SO}_4)_3}$	
	\bigcirc Zn in ZnSO $_4$	
	○ Zn	
	$igcup$ Fe in $\mathrm{Fe_2}(\mathrm{SO_4})_3$	
Part	G (g)	~
	$ ext{NiSO}_4 + ext{Fe} \longrightarrow ext{FeSO}_4 + ext{Ni}$	
	○ Fe	
	○ Ni in NiSO ₄	
	\bigcirc O in NiSO ₄	
	\bigcirc S in NiSO ₄	
Part	H (h)	~
	$4\mathrm{C}_3\mathrm{H}_6\mathrm{O} + \mathrm{NaBH}_4 + 4\mathrm{H}_2\mathrm{O} \longrightarrow 4\mathrm{C}_3\mathrm{H}_8\mathrm{O} + \mathrm{NaB}(\mathrm{OH})_4$	
	○ H in NaBH ₄	
	$igcup H$ in C_3H_6O	
	\bigcirc C ₃ H ₆ O	
	○ B in NaBH₄	

 $\underline{\mathsf{Home}} \; \blacktriangleright \; \mathsf{Chemistry} \; \blacktriangleright \; \mathsf{Inorganic} \; \blacktriangleright \; \mathsf{Redox} \; \blacktriangleright \; \mathsf{Essential} \; \mathsf{Pre-Uni} \; \mathsf{Chemistry} \; \mathsf{K1.2}$

Essential Pre-Uni Chemistry K1.2

· · · · · · · · · · · · · · · · · · ·	
rite down the oxidation number of:	
Part A H ₂ O	
Oxygen in $ m H_2O$	
Part B $ m H_2SO_4$	
Sulfur in $ m H_2SO_4$	
Part C $ m H_3PO_4$	
Phosphorus in $ m H_{3}PO_{4}$	
Part D H ₃ PO ₃	
Phosphorus in $ m H_{3}PO_{3}$	
Part E ClO ₂	
Chlorine in ClO_2	

Part M $\operatorname{Cr}_2\operatorname{O_7}^{2-}$	~
${ m Cr}$ in ${ m Cr}_2{ m O_7}^{2-}$	
Part N $\mathrm{MnO_4}^-$	~
${ m Mn~in~MnO_4}^-$	
Part O ${ m I_3}^-$	~
${ m I \ in \ I_3}^-$	

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.

<u>Home</u> > Chemistry > Inorganic > Redox > Essential Pre-Uni Chemistry K1.1

Essential Pre-Uni Chemistry K1.1

	• • • •					
Give the oxidation number of nitrogen in the following compounds:						
Part A NH ₃	^					
$\mathrm{NH_{3}}$						
Part B NO	~					
NO						
Part C N ₂	~					
N_2						
Part D NO ₂	~					
NO_2						
Part E HNO ₃	~					
HNO_3						

Part F $Ca(NO_3)_2$	
$ m Ca(NO_3)_2$	
Part G N ₂ H ₄	
$ m N_2H_4$	
Part H Mg_3N_2	
${ m Mg_3N_2}$	
Part I NCl ₃	
$ m NCl_3$	
Part J NO ⁺	
NO ⁺	

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.

Home > Chemistry > Inorganic > Redox > Ferrite

Ferrite

Aerials in portable radios are made of a mixed oxide of calcium and iron known as 'Ferrite'. It contains $18.5\,\%$ calcium and $51.9\,\%$ iron by mass. Calculate the empirical formula of 'Ferrite' and hence deduce the oxidation number of the iron it contains.

Part A	Empirical Tormula		^
En	npirical Formula:		
Part B	Oxidation number		~
Ox	kidation number:		

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 2, Question 3