Strategies for Stable Merge Sorting

Authors:

Sam Buss, Alexander Knop

Institute:

U.C. San Diego

It is impossible to sort with runtime less than $n \log n$.

It is impossible to sort with runtime less than $n \log n$. Merge Sort also known as "von Neumann sort" is one of the first sorting algorithms with $O(n \log n)$ runtime.

Basic Von Neumann merge sort

- ► A "run" is an ascending sequence.
- Input consists of runs of size 1 (at leaves).
- Output: a single run containing all inputs (at the root).
- Formed by binary tree of merges combining runs.
- ▶ Runtime is $O(n \log n)$, where n = input size.

Merge sort is readily made stable, by merging only adjacent runs.

Bottom up algorithm for Von Neumann Sort

```
def von_neumann_sort(S, n)
    Q = [] # Stack of runs
    while S.empty? do
        Q.push(Run.new(S.pop, 1)), l = Q.size
        while Q[l - 2].size < 2 * Q[l - 1].size do
        Q.merge(l - 2, l - 1)
        end
    end
    Q.merge(Q.size - 2, Q.size - 1) while Q.size > 1
    return Q[0]
end
```

It is impossible to sort with runtime less than $n \log n$. Merge Sort also known as "von Neumann sort" is one of the first sorting algorithms with $O(n \log n)$ runtime.

It is impossible to sort with runtime less than $n \log n$. Merge Sort also known as "von Neumann sort" is one of the first sorting algorithms with $O(n \log n)$ runtime.

If we know something about the elements of the list we can sort much faster e.g. if all the elements of the list are integers with c digits, then the running time of the Digit Sort is $O(n \log c)$.

It is impossible to sort with runtime less than $n \log n$. Merge Sort also known as "von Neumann sort" is one of the first sorting algorithms with $O(n \log n)$ runtime.

- If we know something about the elements of the list we can sort much faster e.g. if all the elements of the list are integers with c digits, then the running time of the Digit Sort is $O(n \log c)$.
- ▶ If the array is partially presorted we again can sort much faster e.g. if it is possible to split the list into m sorted subsequences (called "runs"), then the running time of the Natural Merge Sort (suggested by Knuth) is O(n log m).

It is impossible to sort with runtime less than $n \log n$. Merge Sort also known as "von Neumann sort" is one of the first sorting algorithms with $O(n \log n)$ runtime.

- If we know something about the elements of the list we can sort much faster e.g. if all the elements of the list are integers with c digits, then the running time of the Digit Sort is $O(n \log c)$.
- ▶ If the array is partially presorted we again can sort much faster e.g. if it is possible to split the list into *m* sorted subsequences (called "runs"), then the running time of the **Natural Merge Sort** (suggested by Knuth) is $O(n \log m)$. Natural Merge Sort identify runs which are already represent in the input.

Unequal run sizes - left-to-right binary merging

Merging follows same left-to-right binary tree pattern as before.

Unequal run sizes - left-to-right binary merging

- Merging follows same left-to-right binary tree pattern as before.
- ▶ Inefficiency: the two longer runs are merged too soon.

Unequal run sizes - left-to-right binary merging

- Merging follows same left-to-right binary tree pattern as before.
- Inefficiency: the two longer runs are merged too soon. More efficient to delay merging them...

▶ Merge Cost: To merge runs of size ℓ_1 , ℓ_2 takes time $\Theta(\ell_1 + \ell_2)$.

▶ **Merge Cost:** To merge runs of size ℓ_1 , ℓ_2 takes time $\Theta(\ell_1 + \ell_2)$. We measure runtime by summing merge cost of all merges.

- ▶ Merge Cost: To merge runs of size ℓ_1 , ℓ_2 takes time $\Theta(\ell_1 + \ell_2)$. We measure runtime by summing merge cost of all merges.
- Merge cost upper bounds comparison cost, and essentially matches comparison cost in most implementations.

- ▶ Merge Cost: To merge runs of size ℓ_1 , ℓ_2 takes time $\Theta(\ell_1 + \ell_2)$. We measure runtime by summing merge cost of all merges.
- Merge cost upper bounds comparison cost, and essentially matches comparison cost in most implementations.

An **adaptive** merge sort chooses the order of merges to minimize the merge cost.

Basic framework for merge sorts: (k_1, k_2) -aware

```
def generic merge sort(S, n)
    O = []
    while Q.size > 1 or not S.empty? do
        1 = 0.size
        if merge?(Q[l - k 1].size,
                    Q[1 - k 1 + 1].size
                    Q[1 - 1].size,
                    S.empty?) then
            i = choose runs(Q) # 1 - k 2 <= i < 1 - 1
            Q.merge(i, i + 1)
        else
            Q.push(S.pop run())
        end
    end
    return 0[0]
end
```

TimSort is a natural merge sort - defined on next slide.

TimSort is a natural merge sort - defined on next slide.

► TimSort is perhaps the most widely deployed sort ever, used in Python, Android, Java, and some browsers.

TimSort is a natural merge sort - defined on next slide.

- ► TimSort is perhaps the most widely deployed sort ever, used in Python, Android, Java, and some browsers.
- ▶ Due to Tim Peters [*Python-Dev* blog post, 2002].

TimSort is a natural merge sort - defined on next slide.

- ► TimSort is perhaps the most widely deployed sort ever, used in Python, Android, Java, and some browsers.
- ▶ Due to Tim Peters [Python-Dev blog post, 2002].
- ► TimSort is 4-aware; indeed (4,3)-aware. Based on the top four runs' sizes, chooses whether to merge some pair of runs.

TimSort is a natural merge sort - defined on next slide.

- ► TimSort is perhaps the most widely deployed sort ever, used in Python, Android, Java, and some browsers.
- ▶ Due to Tim Peters [Python-Dev blog post, 2002].
- ► TimSort is 4-aware; indeed (4,3)-aware. Based on the top four runs' sizes, chooses whether to merge some pair of runs.
- Designed to work well both with partially sorted data, and with n log n worst-case runtime.

TimSort is a natural merge sort - defined on next slide.

- ► TimSort is perhaps the most widely deployed sort ever, used in Python, Android, Java, and some browsers.
- ▶ Due to Tim Peters [Python-Dev blog post, 2002].
- ► TimSort is 4-aware; indeed (4,3)-aware. Based on the top four runs' sizes, chooses whether to merge some pair of runs.
- Designed to work well both with partially sorted data, and with n log n worst-case runtime.
- Has received little academic study until recently.

```
def tim sort(S, n)
  O = []
  while S.empty? do
    Q.push(S.pop run()), l = Q.size
    while true do
      if Q[1 - 3].size < Q[1 - 1].size then
        Q.merge(1 - 3, 1 - 2)
      elsif O[1 - 3].size <=
               O[1 - 2].size + Q[1 - 1].size
          or O[1 - 4].size <=
               O[1 - 3].size + O[1 - 2].size
          or Q[1 - 2].size <= Q[1 - 1].size then</pre>
        Q.merge(1 - 2, 1 - 1)
      else
        break
      end
    end
  end
  Q.merge(Q.size - 2, Q.size - 1) while Q.size > 1
  return 0[0]
end
```

Intuition for TimSort:

$$Q[i].size > Q[i + 1].size + Q[i + 2].size$$

is maintained.

Intuition for TimSort:

$$Q[i].size > Q[i + 1].size + Q[i + 2].size$$

is maintained. Thus stack Q has logarithmic height; and runtime is $O(n \log n)$.

Intuition for TimSort:

$$Q[i].size > Q[i + 1].size + Q[i + 2].size$$

is maintained. Thus stack Q has logarithmic height; and runtime is $O(n \log n)$. This is true of the corrected version of [dGRBBH]; they corrected this while developing a formal proof of correctness.

Intuition for TimSort:

$$Q[i].size > Q[i + 1].size + Q[i + 2].size$$

is maintained. Thus stack Q has logarithmic height; and runtime is $O(n \log n)$. This is true of the corrected version of [dGRBBH]; they corrected this while developing a formal proof of correctness.

THEOREM (AJNP'18)

TimSort has runtime $O(n \log m)$. (Proving a conjecture of [Buss-K.'19]).

Intuition for TimSort:

$$Q[i].size > Q[i + 1].size + Q[i + 2].size$$

is maintained. Thus stack Q has logarithmic height; and runtime is $O(n \log n)$. This is true of the corrected version of [dGRBBH]; they corrected this while developing a formal proof of correctness.

THEOREM (AJNP'18)

TimSort has runtime $O(n \log m)$. (Proving a conjecture of [Buss-K.'19]).

THEOREM (BUSS-K.'19)

TimSort has worst-case merge cost $\geq (1.5 - o(1))n \log n$.

Summary of merge costs upper/lower bounds

Algorithm	Upper bound	Lower bound
TimSort	$O(n \log m)$	$1.5 \cdot n \log n$ [Buss-K.'19]
lpha-stack sort	$O(n \log n)$ [ANP'15]	$c_{\alpha} \cdot n \log n$ $\omega(n \log m)$ [Buss-K.'19]
Shivers sort	n log n [Shivers'02]	$\omega(n \log m)$ [Buss-K.'19]
2-merge sort	$c_2 \cdot n \log m$ [Buss-K.'19]	$c_2 \cdot n \log n$ [Buss-K.'19]
lpha-merge sort	$c_{lpha} \cdot n \log m$ [Buss-K.'19]	$c_{\alpha} \cdot n \log n$ [Buss-K.'19]

for $\varphi < \alpha \leq$ 2. φ is the golden ratio. Bounds are asymptotic.

Stable Merge Sorting Sam Buss, Alexander Knop

Summary of merge costs upper/lower bounds

Algorithm	Upper bound	Lower bound
TimSort	$O(n \log m)$	$1.5 \cdot n \log n$ [Buss-K.'19]
lpha-stack sort	$O(n \log n)$ [ANP'15]	$c_{\alpha} \cdot n \log n$ $\omega(n \log m)$ [Buss-K.'19]
Shivers sort	n log n [Shivers'02]	$\omega(n \log m)$ [Buss-K.'19]
2-merge sort	$c_2 \cdot n \log m$ [Buss-K.'19]	$c_2 \cdot n \log n$ [Buss-K.'19]
lpha-merge sort	$c_{lpha} \cdot n \log m$ [Buss-K.'19]	$c_{\alpha} \cdot n \log n$ [Buss-K.'19]

for $\varphi < \alpha \leq 2$. φ is the golden ratio. Bounds are asymptotic. The constants c_2 and c_α satisfy:

$$c_2 = 3/\log(27/4) pprox 1.08897.$$
 $1.042 < c_{lpha} \le c_2$

for
$$\varphi < \alpha \leq 2$$
.

2-Stack Sort

The 2-stack sort can be viewed similar to a "naturalized, adaptive" von Neumann sort.

Stable Merge Sorting Sam Buss, Alexander Knop

2-Merge Sort - Intuition

2-merge sort merges either Q[1 - 3] and Q[1 - 2] or merges Q[1 - 2] and Q[1 - 3].

Target invariant: Maintain

Stable Merge Sorting Sam Buss, Alexander Knop

2-Merge Sort - Intuition

2-merge sort merges either Q[1 - 3] and Q[1 - 2] or merges Q[1 - 2] and Q[1 - 3].

Target invariant: Maintain

Whenever invariant is violated: it will be violated by the top two elements Q[1 - 2] and Q[1 - 1]. When this happens, merge Q[1 - 2] with the smaller of Q[1 - 3] and Q[1 - 1].

Stable Merge Sorting | Sam Buss, Alexander Knop

2-Merge Sort

Stable Merge Sorting | Sam Buss, Alexander Knop 1

lpha-Merge Sort ($arphi < lpha \le 2$)

```
def alpha merge sort(S, n, alpha)
  \cap = []
  while S.empty? do
    Q.push(S.pop run()), l = Q.size
    while Q[1 - 2].size < alpha * Q[1 - 1].size
        and Q[1 - 3].size < alpha * Q[1 - 2].size do</pre>
      if Q[1 - 3].size < Q[1 - 1].size then
        Q.merge(1 - 3, 1 - 2)
      else
        Q.merge(1 - 2, 1 - 1)
    end
  end
  Q.merge(Q.size - 2, Q.size - 1) while Q.size > 1
  return 0[0]
end
```

Define
$$c_2=3/\log(27/4)pprox 1.08897.$$
 Define $c_lpha=rac{lpha+1}{(lpha+1)\log(lpha+1)-lpha\loglpha}.$

THEOREM (BUSS-K.'19)

1) The worst case merge-cost of 2-merge sort is $(c_2 - o(1))n\log n$.

Define
$$c_2=3/\log(27/4)pprox 1.08897.$$
 Define $c_{lpha}=rac{lpha+1}{(lpha+1)\log(lpha+1)-lpha\loglpha}.$

THEOREM (BUSS-K.'19)

- \bigcirc The worst case merge-cost of 2-merge sort is $(c_2-o(1))n\log n$.
- ② The worst case merge-cost of lpha-merge sort is $(c_lpha-o(1))n\log n$.

Define
$$c_2=3/\log(27/4)pprox 1.08897.$$
 Define $c_{lpha}=rac{lpha+1}{(lpha+1)\log(lpha+1)-lpha\loglpha}.$

THEOREM (BUSS-K.'19)

- 1) The worst case merge-cost of 2-merge sort is $(c_2-o(1))n\log n$.
- $ext{(2)}$ The worst case merge-cost of lpha-merge sort is $(extbf{ extit{c}}_lpha extbf{ extit{o}}(extbf{1})) extbf{ extit{n}} \log extbf{ extit{n}}.$
- \odot The 2-merge sort has merge-cost $\leq (c_2 + o(1))n\log m$.

Define
$$c_2=3/\log(27/4)pprox 1.08897.$$
 Define $c_{lpha}=rac{lpha+1}{(lpha+1)\log(lpha+1)-lpha\loglpha}.$

THEOREM (BUSS-K.'19)

- \bigcirc The worst case merge-cost of 2-merge sort is $(c_2-o(1))n\log n$.
- $ext{ }^{ ext{ }}$ The worst case merge-cost of lpha-merge sort is $(extbf{\emph{c}}_lpha extbf{\emph{o}}(1)) extbf{\emph{n}} \log extbf{\emph{n}}.$
- \bigcirc The 2-merge sort has merge-cost $\leq (c_2 + o(1))n\log m$.
- $ext{ 4)}$ The lpha-merge sort has merge-cost $\leq (extbf{\emph{c}}_lpha + extbf{\emph{o}}(1)) extbf{\emph{n}} \log extbf{\emph{m}}.$

THEOREM (MW'18)

There is a stable merge sorting algorithm similar to 3-aware algorithms achieving upper bounds and worst-case lower bounds equal to $n \log m$.

THEOREM (MW'18)

There is a stable merge sorting algorithm similar to 3-aware algorithms achieving upper bounds and worst-case lower bounds equal to $n \log m$.

THEOREM (JUGE'18)

There is 3-aware algorithm achieving upper bounds and worst-case lower bounds equal to $n \log m$.

THEOREM (MW'18)

There is a stable merge sorting algorithm similar to 3-aware algorithms achieving upper bounds and worst-case lower bounds equal to $n \log m$.

THEOREM (JUGE'18)

There is 3-aware algorithm achieving upper bounds and worst-case lower bounds equal to $n \log m$.

Moreover, the upper bounds have the form $(1 + o(1))n\mathcal{H}$, where \mathcal{H} is the entropy-based *optimum*, *non-stable* merge-cost.

THEOREM (MW'18)

There is a stable merge sorting algorithm similar to 3-aware algorithms achieving upper bounds and worst-case lower bounds equal to $n \log m$.

THEOREM (JUGE'18)

There is 3-aware algorithm achieving upper bounds and worst-case lower bounds equal to $n \log m$.

Moreover, the upper bounds have the form $(1 + o(1))n\mathcal{H}$, where \mathcal{H} is the entropy-based *optimum*, *non-stable* merge-cost.

THEOREM (JUGE, P.C.)

The 1.5 lower bound for TimSort is asymptotically tight.

We generate *m* runs:

We generate m runs: with probability 0.95 the run has uniformly random length from 1 to 100, and

We generate m runs: with probability 0.95 the run has uniformly random length from 1 to 100, and with probability 0.05 the run has uniformly random length from 10^4 to 10^5 .

Future Work / Open Questions?

- ▶ Would it be worthwhile/possible to collect real-world data to choose the best-in-practice merge sort algorithm? E.g., with only a small overhead, this could be done globally on smartphones.
- Explain the behavior of the algorithms during the simulation.