Cloud is not a silver bullet: A Case Study of Cloud-based Mobile Browsing

Ashiwan Sivakumar¹, Vijay Gopalakrishnan², Seungjoon Lee², Sanjay Rao¹, Subhabrata Sen² and Oliver Spatscheck²

¹ School of ECE, Purdue University

² AT&T Labs - Research

Cloud Augmented Mobile Web Browsing

Cloud central theme in mobile app development !!

Re-evaluating Cloud-based Mobile Browsing

- Increase in processing power
 - CPU speed: 4x in 6 years [ARM]
- Cellular networks becoming ubiquitous
 - Mobile traffic growth: 7x in 4 years [CISCO]
- Battery continues to be a resource limitation
 - Cellular radio interface significant component

Time to revisit assumptions given new trade-offs

Design Space of Mobile Browsers

- Proprietary nature of solutions
 - Need for a systematic understanding

Our Contributions

- First step towards understanding trade-offs in architecting mobile browsers
- Study the functionality of an operational mobile cloud browser (CB)
 - A popular browser with a user base of over 300 M
- Key findings
 - Offloading JavaScript (JS) can hurt
 - Increases network energy for 60% of pages (~10J worst case)
 - Made worse in an interactive session (~60.9J)
 - Data compaction != Network energy savings
 - Increases network energy for 80% of pages (~10J worst case)

Outline

- Page Download Process Direct Vs. CB
- Setup, Methodology and Metrics of Interest
- Evaluating CB Performance and Energy
- Conclusions and Future Work

Mobile Web Browsing 101

- A HTTP GET index.html
- B Parse index.html tag-by-tag
- C Fetch required objects spread across many domains
- D Evaluate JavaScript (JS), Cascading Style Sheets (CSS)

Direct Vs. CB

- CB runs JS in the cloud
- Sends compact page in proprietary format

Outline

- Page Download Process Direct Vs. CB
- Setup, Methodology and Metrics of Interest
- Evaluating CB Performance and Energy
- Conclusions and Future Work

Setup and Methodology

• Setup:

- Samsung galaxy S3 phone
- 4G LTE network
- 40 from top 100 pages in Alexa

Methodology:

- Conduct active measurements
- First-time download disable local caching
- Direct, CB multiple back-to-back runs
- In the night time
- Each run 60 sec long

Metrics of Interest

2 tcpdump

- Page Download Time
- 2 Network Energy (ARO - Mobisys'12)
- 3 CPU Energy (PowerTutor - CODES+ISSS'10)

Total energy =
$$\frac{2}{2}$$
 + $\frac{3}{3}$

Outline

- Page Download Process Direct Vs. CB
- Setup, Methodology and Metrics of Interest
- Evaluating CB Performance and Energy
- Conclusions and Future Work

CB Evaluation Results

- Multiple back-to-back runs with Direct, CB
- Compute energy(download time) increase with CB
- Negative value => CB better

Not a win in both performance and energy

When does CB lose?

- Pages light on JS processing (intuitive)
 (e.g. 40% pages CB increases total energy by 21.31J)
- Pages with long-running JS. Why?
 - Periodic data transfer when pages change

CB Overhead to Support Interactivity

- Interactive user session
- With local caching in Direct and CB

Cumulative Network Energy Increases

CB hurts more in an interactive session

Data Compaction in CB

- Achieves less compaction with no JS
- Loses in total energy for 80% of pages with no JS
 - E.g. despite 90% compression, network energy increases by 10J
- Why does CB lose despite compression?
 - Longer compression time == longer radio wait time

Data compaction != network energy savings

Conclusions

- Devices getting powerful and cellular networks becoming ubiquitous
 - Need to revisit trade-offs
- First step towards understanding trade-offs in architecting mobile browsers
- Key findings
 - Offloading JS can hurt
 - Data compaction != Network energy savings

Thank You!!

Questions