Travail pour le 11/05

Révisions SIGMA202

Equation AR : $X_t = \sum_{i=1}^p a_i X_{t-i} + \epsilon_t$

→ Conditions pou l'existence d'une solution stationnaire et construction de X

→ Calcul du prédicteur : $\hat{X}_{t+1} = proj(X_{t+1} | \mathcal{H}_t^X)$

TVAR:

$$(TVAR(p)) X_t = \sum_{i=1}^{p} a_i(t)X_{t-i} + \sigma(t)\epsilon_t$$

Cas simple:

Prendre $\sigma_t = 1$ et $a_i(t) = \begin{cases} 0 \text{ si } t < 0 \\ a_i \text{ si } t \ge 0 \end{cases}$

Trouver une condition (*) sur les $(a_i)_{i=1,\dots,p}$ pour qu'il existe une solution qui vérifie la condition de stabilité :

$$(S) \quad \sup_t E[|X_t|^2] < +\infty$$

 \rightarrow Commencer par p=1

Cas où p=1:

Montrer que si p=1 alors si pour tout t les $\left(a_i(t)\right)_{i=1\dots p}$ vérifient (*) alors il existe de une solution de TVAR qui vérifie (S)

Contre-exemple pour $p \ge 2$:

Prendre
$$p = 2$$
 et $\begin{cases} a_i(2t) = a_i^{(P)} \\ a_i(2t+1) = a_i^{(I)} \end{cases}$ pour $i = 1,2$ avec $a_2^{(P)} = 0$ et $a_1^{(I)} = 0$

Trouver $a_1^{(P)}$ et $a_2^{(I)}$ pour que (*) soit vérifiée et montrer alors que X_{2t} est un TVAR(1) donc les coeff vérifient (*) mais qui ne vérifie par (S)

→ Coder le contre-exemple

Autre équation :

$$X_{t,T} = \sum_{i=1}^{p} a_i \left(\frac{t}{T}\right) X_{t-i,T} + \sigma \left(\frac{t}{T}\right) \epsilon_t$$

Cela permet de restreindre l'ensemble où sont évaluées les fonctions a_i et σ à [0,1] si $t \in \{0, ..., T\}$. Si ces fonctions sont suffisamment régulières on peut considérer que la solution est localement stationnaire.

En effet : pour $u \in [0,1]$, on considère $t \in [(u-b)T, (u+b)T]$, si T est assez grand on peut prendre b petit et donc $\frac{t}{T} \in [u-b, u+b]$ reste proche de u et si a_i et σ sont suffisamment régulières, on peut approcher l'équation par une équation AR à coefficients constants.

Condition sur a_i (cf articles de 2005 et de 2015)

Si
$$|a_i(u) - a_i(v)| \le L|u - v|^{\beta} + (*) \ \forall t + \text{conditions initiales alors}$$

$$\sup_{t,T:0 \le t \le T} E\left[\left|X_{t,T}\right|^2\right] < + \infty$$