Gradient Matching Generative Networks for Zero-Shot Learning

Mert Bulent Sariyildiz
Bilkent University
Department of Computer Engineering

mert.sariyildiz@bilkent.edu.tr

Ramazan Gokberk Cinbis

Middle East Technical University (METU)

Department of Computer Engineering

gcinbis@metu.edu.tr

CVPR 2019 (Oral)

2019.10.15

발표자: 김용규

Introduction

Zero-shot learning(ZSL)

- Seen classes 로부터 학습한 classification 모델을 가지고 unseen classes에 대해서 추측

Introduction

Discriminative model 문제점

- 분포 차이로 인해 domain shift 문제가 발생 -> 정확도가 떨어짐

해결책

- Unseen lass label 정보를 통해 feature를 생성: Unsupervised learning → Supervised learning

목적: label data(semantic embedding)를 통해 유의미한 feature 생성 -> good classification accuracy

- Seen data & Unseen data // Train data & Test data
- WGAN Loss
- Gradient Matching Loss

 $f(x, a; W, b) = x^{\mathsf{T}} W a + b$

GT: Feature x 의 class에 해당하는 confidence score

Cross Entropy loss..?

Gradient Matching Loss

Gradient Matching Loss

- G가 true class manifold를 잘 학습한 경우, classification model parameter에 대한 loss function의 partial derivative 사이에 correlation이 높다.
- G가 true class manifold를 잘 학습한 것과 두 partial derivative 사이에 연관이 있다.
- 따라서, x 의 partial derivative를 GT로 사용해서 같아지도록 학습하자.

Gradient Matching Loss

$$g_{\rm r}(\theta) = \underset{(x,a) \sim \mathcal{D}_{\rm s}}{\mathbb{E}} \left[\nabla_{\theta_f} \mathcal{L}_{\rm CLS}(f,x,a;\theta_f = \theta) \right],$$

$$g_{s}(\theta) = \underset{\tilde{x} \sim \mathcal{G}(a \sim \mathcal{A}_{s})}{\mathbb{E}} \left[\nabla_{\theta_{f}} \mathcal{L}_{CLS}(f, \tilde{x}, a; \theta_{f} = \theta) \right]$$

$$\mathcal{L}_{GM} = \mathbb{E}_{\theta} \left[1 - \frac{g_{r}(\theta)^{T} g_{s}(\theta)}{\|g_{r}(\theta)\|_{2} \|g_{s}(\theta)\|_{2}} \right]$$

Local minimum으로 향하지 않도록 하기 위해서 absolute scale 보다 direction이 더 중요

$$\begin{split} \theta_{\mathcal{G}}^*, \theta_{\mathcal{D}}^* &= \arg\min_{\theta_{\mathcal{G}}, \theta_{\mathcal{D}}} \left\{ \mathcal{L}_{\text{WGAN}} + \beta \mathcal{L}_{\text{GM}} \right\} + L_{\textit{CLS}} \\ \mathcal{L}_{\text{WGAN}}^{\text{S}} &= \min_{\tilde{x} \sim \mathcal{G}(a \sim \mathcal{A}_{\text{sl}})} \left[\mathcal{D}(\tilde{x}) \right] - \underset{x \sim \mathcal{X}_{\text{s}}}{\mathbb{E}} \left[\mathcal{D}(x) \right] + \lambda \mathcal{L}_{\text{GP}} \\ \mathcal{L}_{\text{WGAN}}^{\text{S+U}} &= \underset{\tilde{x} \sim \mathcal{G}(a \sim \mathcal{A}_{\text{sll}})}{\mathbb{E}} \left[\mathcal{D}(\tilde{x}) \right] - \underset{x \sim \mathcal{X}_{\text{sll}}}{\mathbb{E}} \left[\mathcal{D}(x) \right] + \lambda \mathcal{L}_{\text{GP}} \\ \mathcal{L}_{\text{WGAN}}^{\text{S+U}} &= \underset{\tilde{x} \sim \mathcal{G}(a \sim \mathcal{A}_{\text{sll}})}{\mathbb{E}} \left[\mathcal{D}(\tilde{x}) \right] - \underset{x \sim \mathcal{X}_{\text{sll}}}{\mathbb{E}} \left[\mathcal{D}(x) \right] + \lambda \mathcal{L}_{\text{GP}} \\ \mathcal{L}_{\text{WGAN}}^{\text{S+U}} &= \underset{\tilde{x} \sim \mathcal{G}(a \sim \mathcal{A}_{\text{sll}})}{\mathbb{E}} \left[\mathcal{D}(\tilde{x}) \right] - \underset{x \sim \mathcal{X}_{\text{sll}}}{\mathbb{E}} \left[\mathcal{D}(x) \right] + \lambda \mathcal{L}_{\text{GP}} \\ \mathcal{L}_{\text{WGAN}}^{\text{S}} &= \underset{\tilde{x} \sim \mathcal{G}(a \sim \mathcal{A}_{\text{sll}})}{\mathbb{E}} \left[\mathcal{D}(\tilde{x}) \right] - \underset{x \sim \mathcal{X}_{\text{sll}}}{\mathbb{E}} \left[\mathcal{D}(x) \right] + \lambda \mathcal{L}_{\text{GP}} \\ \mathcal{L}_{\text{WGAN}}^{\text{S}} &= \underset{\tilde{x} \sim \mathcal{G}(a \sim \mathcal{A}_{\text{sll}})}{\mathbb{E}} \left[\mathcal{D}(\tilde{x}) \right] - \underset{x \sim \mathcal{X}_{\text{sll}}}{\mathbb{E}} \left[\mathcal{D}(x) \right] + \lambda \mathcal{L}_{\text{GP}} \\ \mathcal{L}_{\text{WGAN}}^{\text{S}} &= \underset{\tilde{x} \sim \mathcal{G}(a \sim \mathcal{A}_{\text{sll}})}{\mathbb{E}} \left[\mathcal{D}(\tilde{x}) \right] - \underset{\tilde{x} \sim \mathcal{X}_{\text{sll}}}{\mathbb{E}} \left[\mathcal{D}(\tilde{x}) \right] - \underset{\tilde{x} \sim \mathcal{X}$$

Experiments

ZSL: Unseen class 비교

GZSL: Unseen class + Seen class 비교

u: unseen class data 비교

s: seen class data 비교

	Zero-S	Shot Le	arning	Generalized Zero-Shot Learning									
	CUB	SUN	AWA	CUB			SUN			AWA			
Method	T-1	T-1	T-1	u	S	h	u	s	h	u	s	h	
Train only with real samples (\mathcal{D}_s)	56.8	60.7	62.3	26.9	67.6	38.4	23.4	36.3	28.4	13.4	78.1	22.9	
$\mathcal{L}_{ ext{WGAN}}^{ ext{S}} + \mathcal{L}_{ ext{CLS}}$	58.3	61.4	70.0	47.0	71.0	56.5	47.7	41.2	44.2	47.8	78.7	59.5	
$\mathcal{L}_{ ext{cWGAN}}^{ ext{S}}$	60.6	62.6	72.0	55.9	71.1	62.6	53.6	41.1	46.5	55.2	79.1	65.0	
$\mathcal{L}_{ ext{WGAN}}^{ ext{S}} + \mathcal{L}_{ ext{GM}}$	61.9	63.8	70.4	55.8	70.7	62.4	53.8	40.9	46.5	52.1	78.8	62.7	
$\mathcal{L}_{ ext{cWGAN}}^{ ext{S}} + \mathcal{L}_{ ext{GM}}$	64.6	64.1	73.9	57.9	71.2	63.9	55.2	40.8	46.9	63.2	78.8	70.1	
$\mathcal{L}_{ ext{WGAN}}^{ ext{S+U}} + \mathcal{L}_{ ext{GM}}$ (transductive)	64.6	64.3	82.5	60.2	70.6	65.0	57 .1	40.7	47.5	70.8	79.2	74.8	

Experiments

	Zero-	Shot Le	arning	Generalized Zero-Shot Learning									
	CUB	SUN	AWA		CUB			SUN			AWA		
Method	T-1	T-1	T-1	u	S	h	u	s	h	u	s	h	
Zhang et al. [46] '18	52.6	61.7	67.4	31.5	40.2	35.3	41.2	26.7	32.4	38.7	74.6	51.0	
Bucher et al. [25] '17	57.8	60.4	66.3	28.8	55.7	38.0	40.5	37.2	38.8	2.3	90.2	4.5	
Xian et al. [26] - DEVISE '18	60.3	60.9	66.9	52.2	42.4	46.7	38.4	25.4	30.6	35.0	62.8	45.0	
Xian et al. [26] - ALE '18	61.5	62.1	68.2	40.2	59.3	47.9	41.3	31.1	35.5	47.6	57.2	52.0	
Verma et al. [28] '18	59.6	63.4	69.5	41.5	53.3	46.7	40.9	30.5	34.9	56.3	67.8	61.5	
Felix et al. [27] - cycle-WGAN '18	57.8	59.7	65.6	46.0	60.3	52.2	48.3	33.1	39.2	56.4	63.5	59.7	
Felix et al. [27] - cycle-CLSWGAN '18	58.4	60.0	66.3	45.7	61.0	52.3	49.4	33.6	40.0	56.9	64.0	60.2	
$\mathcal{L}_{\text{cWGAN}}^{\text{S}} + \mathcal{L}_{\text{CLS}}$ [26]	62.2	62.7	69.4	51.1	54.9	52.9	50.6	30.3	37.3	57.5	66.8	61.8	
$\mathcal{L}_{\mathrm{cWGAN}}^{\mathrm{S}} + \mathcal{L}_{\mathrm{GM}} (Ours)$	64.3	63.6	71.9	56.1	54.3	55.2	53.2	33.0	40.7	61.1	71.3	65.8	
$\mathcal{L}_{\mathrm{cWGAN}}^{\mathrm{S}} + \mathcal{L}_{\mathrm{GM}} \ddagger (Ours)$	64.6	64.1	73.9	57.9	71.2	63.9	55.2	40.8	46.9	63.2	78.8	70.1	