

Started on	Sunday, 21 May 2023, 8:33 PM
State	Finished
Completed on	Sunday, 21 May 2023, 8:56 PM
Time taken	22 mins 55 secs
Grade	8.50 out of 10.00 (85 %)
Ouestion 1	

Partially correct

Mark 0.50 out of 1.00

Match the edges with the appropriate type of edge.

The correct answer is: Black Edges (4) \rightarrow Tree Edge, Green Edge (1) \rightarrow Back Edge, Blue Edge (3) \rightarrow Forward Edge, Red Edge (2) \rightarrow Cross Edge

Question 2 Correct	
Mark 1.00 c	ut of 1.00
Which o	of the following is true about Prim's algorithm?
Select o	
	It is a Greedy algorithm ✔
	It is a Divide and conquer algorithm
	It uses Dynamic Programming
	None of the statements statements are true
U.	None of the Statements Statements are tide
Your an	swer is correct.
The cor	rect answer is:
It is a G	reedy algorithm
Question 3	
Question 3 Correct	
Mark 1.00 c	ut of 1.00
	complete graph G with 5 vertices. Each edge is of the same weight. Then any minimum spanning trees are there for graph G?
how ma	iny minimum spanning trees are there for graph G?
Answer A comp	any minimum spanning trees are there for graph G?
Answer A comp	Inly minimum spanning trees are there for graph G? 125 Lete graph with n vertices has n ⁽ⁿ⁻²⁾ spanning trees. rect answer is: 125
Answer A comp The cor	Inly minimum spanning trees are there for graph G? 125 Lete graph with n vertices has n ⁽ⁿ⁻²⁾ spanning trees. rect answer is: 125
Answer A comp The cor Question 4	Inly minimum spanning trees are there for graph G? 125 Lete graph with n vertices has n ⁽ⁿ⁻²⁾ spanning trees. rect answer is: 125
Answer A comp The cor Question 4 Correct Mark 1.00 co	Inly minimum spanning trees are there for graph G? 125 Lete graph with n vertices has n ⁽ⁿ⁻²⁾ spanning trees. rect answer is: 125
Answer A comp The cor Question 4 Correct Mark 1.00 co When u	lete graph with n vertices has n ⁽ⁿ⁻²⁾ spanning trees. rect answer is: 125 ut of 1.00 sing Kruskal's algorithm, what data structure is most suitable to keep the sets of vertices in the growing MST?
A comp The cor Question 4 Correct Mark 1.00 co When u	Inly minimum spanning trees are there for graph G? In the graph with n vertices has n ⁽ⁿ⁻²⁾ spanning trees.
A comp The cor Question 4 Correct Mark 1.00 c When u track of a. b.	Inly minimum spanning trees are there for graph G? In the graph with n vertices has n ⁽ⁿ⁻²⁾ spanning trees.
A comp The cor Question 4 Correct Wark 1.00 c When u track of	Inly minimum spanning trees are there for graph G? Ilete graph with n vertices has n ⁽ⁿ⁻²⁾ spanning trees. In rect answer is: 125 In the graph with n vertices has n (n-2) spanning trees. In the graph with n vertices has n (n-2) spanning trees. In the graph with n vertices in the graph of the graph of the sets of vertices in the growing MST? In the graph with n vertices are there for graph G? In the graph with n vertices has n (n-2) spanning trees. In the graph with
Answer A comp The cor Question 4 Correct Mark 1.00 c When u track of a. b. c. d.	Inly minimum spanning trees are there for graph G? Ilete graph with n vertices has n ⁽ⁿ⁻²⁾ spanning trees. In rect answer is: 125 In the graph with n vertices has n ⁽ⁿ⁻²⁾ spanning trees. In the graph with n vertices has n ⁽ⁿ⁻²⁾ spanning trees. In the graph with n vertices in the graph of the gr
Answer A comp The cor Question 4 Correct Mark 1.00 c When u track of a. b. c. d.	Inly minimum spanning trees are there for graph G? Ilete graph with n vertices has n ⁽ⁿ⁻²⁾ spanning trees. In rect answer is: 125 In the graph with n vertices has n ⁽ⁿ⁻²⁾ spanning trees. In the graph with n vertices has n ⁽ⁿ⁻²⁾ spanning trees. In the graph with n vertices in the graph of the graph with n vertices in the graph of the graph with n vertices in the graph with n vertices has n (n-2) spanning trees. In the graph with n vertice

Correct	
1ark 1.00 oı	ıt of 1.00
MS1 car	n be either acyclic or cyclic depending on the original graph
Select o	ne:
O True	
False	
The corr	ect answer is 'False'.
uestion 6	
Correct	
/lark 1.00 oı	ıt of 1.00
14/la: a la .a.	f she fellowing a legislature is a great declaration of a fee data.
	f the following algorithms is a greedy algorithm used to find the n Spanning Tree of a graph?
2	Prim's Algorithm ✔
	Breadth-First Search
	Depth-First Search
	Dijkstra's Algorithm
U u.	DIJKSUAS AIGOTUIIII
Your ans	swer is correct.
	ect answer is:
Prim's A	lgorithm
Question 7	
Correct	
/lark 1.00 o	ut of 1.00
-	f a DFS can be classified as tree edge, back edge, forward edge and lge. Which types of edges are present in the DFS of an undirected graph
Select o	ne or more:
✓ a.	Back edges ❤
□ b.	Cross edges
_ c.	Forward edges
✓ d.	Tree edges ✔
V	
	swer is correct.
i ne corr	ect answers are: Tree edges, Back edges

Question 8

Incorrect

Mark 0.00 out of 1.00

Consider a complete undirected graph with vertex set {0, 1, 2, 3, 4}. W_{ij} entry in the matrix W below is the weight of the edge {i, j}.

In the graph given, what is the minimum possible weight of a path P from vertex 1 to vertex 2 in this graph such that P contains at most 3 edges?

$$W = \begin{pmatrix} 0 & 1 & 8 & 1 & 4 \\ 1 & 0 & 12 & 4 & 9 \\ 8 & 12 & 0 & 7 & 3 \\ 1 & 4 & 7 & 0 & 2 \\ 4 & 9 & 3 & 2 & 0 \end{pmatrix}$$

Select one:

- a. 10
- ob. 8
- Oc. 9
- d. 7 x

The correct answer is: 8

Question 9

Correct

Mark 1.00 out of 1.00

An undirected graph G(V,E) contains n(n>2) nodes named V_1,V_2,V_3,\ldots,V_n . Two nodes V_i,V_j are connected if and only if 0<|i-j|<=2 Each edge (V_i,V_j) is assigned a weight i+j. A sample graph with n=4 is shown below.

What will be the cost of the minimum spanning tree (MST) of such a graph with n nodes?

Select one:

- a. 2n + 1
- \bigcirc b. 6n-11
- \odot c. $\frac{1}{12}(11n2-5n)$
- \odot d. n^2-n+1

The correct answer is: $n^2 - n + 1$

