Scalar, Vector, and Matrix

- Scalar: a single number $s \in \mathbb{R}$ (lower case), e.g., 3.8
- Vector: an ordered list of numbers, e.g. $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$ (boldface, lower-case), e.g., $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \in \mathbb{R}^3$
- Matrix: a two-dimensional array of numbers, e.g. $A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \\ 5 & 2 \end{bmatrix} \in \mathbb{R}^{3 \times 2}$ (capital letter)
 - Matrix size: 3×2 means 3 rows and 2 columns
 - Row vector: a horizontal vector
 - Column vector: a vertical vector

Column is Vertical Vector (Don't be Confused!)

Column Vector and Row Vector

• A vector of n-dimension is usually a column vector, i.e., a matrix

of the size $n \times 1$

•
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n = \mathbb{R}^{n \times 1}$$

Thus, a row vector is usually written as its transpose, i.e.,

•
$$\mathbf{x}^T = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \in \mathbb{R}^{1 \times n}$$

Matrix Notations

- $A \in \mathbb{R}^{n \times n}$: Square matrix (#rows = #columns)
 - e.g., $B = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}$
- $A \in \mathbb{R}^{m \times n}$: Rectangular matrix (possible: #rows \neq #columns)
 - e.g., $A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \\ 5 & 2 \end{bmatrix}$
- A^T : Transpose of matrix (mirroring across the main diagonal)
 - e.g., $A^T = \begin{bmatrix} 1 & 3 & 5 \\ 6 & 4 & 2 \end{bmatrix}$
- A_{ij} : (i,j)-th component of A_i , e.g., $A_{2,1} = 3$
- $A_{i,:}$: *i*-th row vector of A_i , e.g., $A_{2,:} = [3 4]$
- $A_{:,j}$: j-th column vector of $A_{:,j}$ e.g., $A_{:,2} = \begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix}$