II. Théorème du rang.

semaine du 23 mars 2020

Le théorème du rang est un résultat central de l'Algèbre Linéaire.

Théorème

(Un **corps** "des scalaires" \mathbb{K} est fixé.) Soit une application linéaire $f: E \longrightarrow F$; rappelons que son **rang** est la dimension de son image : rang(f) = dim(Im f).

Théorème

Si E est de dimension finie, dim(E) = dim(Ker f) + rang(f); en particulier : $rang(f) \leq dim(E)$.

Preuve. La restriction $f^\circ: E \longrightarrow Im(f)$ de f est linéaire surjective. Soit alors un supplémentaire E' de Ker(f) dans E: il existe d'après la base incomplète. Par calcul : $f^\circ(E') = f(E') = Im(f)$. En conséquence, la restriction f' de f° à E' est surjective aussi. Montrant la formule $Ker(f') = Ker(f) \cap E'$, nous déduisons Ker(f') = 0, soit $f': E' \to Im(f)$ est un isomorphisme et dim(E') = dim(Imf). Nous concluons avec $E = Ker(f) \oplus E'$: dim(E) = dim(Kerf) + dim(E') = dim(Kerf) + dim(Imf).

Cas des Endomorphismes

Soit E, un e.v de dimension finie; soit f, un endomorphisme de E.

Théorème

f est injectif \iff f est surjectif \iff f est bijectif.

- En dimension finie : un endomorphisme injectif est toujours un isomorphisme; *idem* pour les endomorphismes surjectifs.
- Le théorème fonctionne aussi pour une application linéaire
 f : E → F, telle que dim(E) = dim(F) (dimension finie).
- Le "principe des tiroirs" assure que, pour un ensemble X fini, toute application injective $X \to X$ est surjective et *vice versa*. Notre théorème est une version linéaire de ce principe.
- Le théorème est faux en dimensions infinies, la dérivation D (fonctionnelle $C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ ou polynomiale $\mathbb{R}[X] \to \mathbb{R}[X]$) est un contre-exemple : elle est non injective (le noyau est une droite, l'ensemble des constantes), mais surjective (primitive).

Conditions Nécessaires

Soit une application linéaire $f: E \longrightarrow F$ (e.v de dimensions finies).

Théorème

Si dim(E) < dim(F), f n'est pas surjective.

Si dim(F) < dim(E), f n'est pas injective.

Soient des entiers naturels n et m et soit une application linéaire $f: \mathbb{K}^n \to \mathbb{K}^m$. Pour n < m, f n'est pas surjective; pour m < n, f n'est pas injective. Mais les seules dimensions n et m ne permettent pas de conclure à l'injectivité ou à la surjectivité : garder en tête l'application **nulle** $\mathbb{K}^n \to \mathbb{K}^m$ (rarement injective ou surjective). **Exercice :** montrer la formule de Grassmann à partir du théorème du rang (F et G deux s.e.v d'un e.v E). 1) Considérer l'application $\Psi: F \times G \longrightarrow F + G$, $\Psi(x,y) = x + y$: linéaire et surjective. 2) La fonction $F \cap G \to Ker(\Psi)$, $x \mapsto (x,-x)$, est un isomorphisme. 3) Puisque $dim(F \cap G) = dim(Ker \Psi)$, conclure avec le Théorème.