

8 Добыча природных ресурсов

1 Стандартный

2 000 Mc

Условие задачи

Вы живете в городе прямоугольной формы с длиной n и шириной m, в котором находятся k различных видов природных ресурсов. Вам известны месторождения каждого ресурса в виде списка координат [x,y], где x — позиция по длине города n, а y — по ширине m.

Чтобы сократить объемы расходов на освоение ресурсов, найдите участок города:

- · с минимально возможной площадью;
- · прямоугольной формы со сторонами параллельными сторонам города;
- · с хотя бы одним месторождением каждого ресурса.

Набор тестов

Скачать

Входные данные

Каждый тест состоит из нескольких наборов входных данных.

Первая строка содержит целое число t (1 $\leq t \leq$ 10³) — количество наборов входных данных. Далее следует описание наборов входных данных.

Первая строка каждого набора входных данных содержит два целых числа n и m $(1 \le n, m \le 10^5, n \cdot m \le 10^5)$ — длина и ширина города.

Вторая строка каждого набора входных данных содержит целое число $k \ (2 \le k \le 10)$ количество видов природных ресурсов. Далее следует k описаний месторождений ресурсов.

Первая строка каждого описания содержит целое число $count_i$ (1 $\leq count_i \leq n \cdot m$) количество месторождений i-го ресурса.

Следующие $count_i$ строк i-го описания содержат два целых числа x_i и y_i $(1 \le x_i \le n, 1 \le y_i \le m)$ — координаты j-го месторождения i-го ресурса.

Гарантируется, что сумма значений $n\cdot m$ по всем наборам входных данных не превышает $10^5.$

Выходные данные

Для каждого набора входных данных выведите одно целое число — минимальную площадь города, которая содержит все виды ресурсов.

Группа	Ограничения		Баллы
	t	$n\cdot m$	Danin
1	$t \leqslant 10$	$\sum n \cdot m \leqslant 200$	10
2	$t \leqslant 100$	$\sum n \cdot m \leqslant 10^4$	20
3	$t \leqslant 10^3$	$\sum n \cdot m \leqslant 10^5$	40

Считаем, что ответ на задачу содержится в подматрице, ограниченной углами (i1, j1) и (i2, j2) включительно, где i1 и j1 — координаты верхнего левого угла, а i2 и j2 — координаты нижнего правого угла.

Тогда:

· для первого набора входных данных, ответ будет лежать между углами (1, 3) и (2, 3). На координате (1, 3) — лежит ресурс первого типа, на (2, 3) — второго типа.

· для второго набора, ответ будет лежать между углами (1, 1) и (3, 2). На координате (3, 1) — лежат ресурсы первого и третьего типа, на (1, 2) — ресурс второго типа.

Можно доказать, что для этих двух наборов входных данных нельзя найти ответ с меньшей площадью.

Пример теста 1

Входные данные

2 2 3

2

2

2

3 3

3 1

3 1 2

Выходные данные

2

6