Forcasting issues

Forcast Padawan 2 November 17, 2016

The goal of this experiment is to design the best model to forcaste the number of issue in the per day in the comming two weeks. We think that sthis could help Open Source organisation to manage there human ressources.

Load the data

```
#install.packages('forecast')
library('forecast')
library(knitr)
#load the data frame
issues.csv <- read.csv("issues/julialang_julia.csv")
commits.csv <- read.csv("commits/julialang_julia.csv")

issues.csv$date = as.POSIXlt(as.Date(issues.csv$date,format='%m/%d/%Y'))
commits.csv$date = as.POSIXlt(as.Date(commits.csv$date,format='%m/%d/%Y'))</pre>
```

keep the last 12 months

```
to_date <- issues.csv$date[length(issues.csv$date)]
from_date <- to_date
from_date$year <- from_date$year - 1

issues.csv <- subset(issues.csv, date <= to_date & date >= from_date)
commits.csv <- subset(commits.csv, date <= to_date & date >= from_date)
```

```
#loading issues and commits into a ts object
issues.ts <- ts(issues.csv$number_of_issues, frequency = 7)

commits.ts <- ts(commits.csv$number_of_commits, frequency = 7)
plot(issues.ts, main = 'Issues', bty = 'l', ylab = 'Number of Issues')</pre>
```

Issues

plot(commits.ts, main = 'Commits', bty = 'l', ylab = 'Number of Commits')

Commits

time <- time(issues.ts)</pre>

```
n.valid <- 21

separate.train.test <- function(timeserie, n.valid) {
   time <- time(timeserie)
   n.train <- length(timeserie) - n.valid
   results = list()
   results$train.ts <- window(timeserie, start=time[1], end=time[n.train])
   results$valid.ts <- window(timeserie, start=time[n.train+1], end=time[n.train+n.valid])
   return(results)
}

issues <- separate.train.test(issues.ts, n.valid)
commits <- separate.train.test(commits.ts, n.valid)</pre>
```

Naive Forecast

Naive

```
train.issues.naive.pred <- naive(issues$train.ts, h=n.valid)
kable(accuracy(train.issues.naive.pred, issues$valid.ts))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	-0.0376812	6.718998	5.260870	-13.08450	42.03105	1.011591	-0.2812264	NA
Test set	5.5238095	7.361418	5.904762	29.53819	34.64023	1.135402	0.5978010	1.293618

```
hist(issues$valid.ts - train.issues.naive.pred$mean)
```

Histogram of issues\$valid.ts - train.issues.naive.pred\$mean

issues\$valid.ts - train.issues.naive.pred\$mean

plot(issues\$valid.ts - train.issues.naive.pred\$mean)

plot(train.issues.naive.pred)
lines(issues\$valid.ts)

Forecasts from Naive method

Seasonal Naive

train.issues.snaive.pred <- snaive(issues\$train.ts, h=n.valid)
kable(accuracy(train.issues.snaive.pred, issues\$valid.ts))</pre>

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.0029499	6.552038	5.200590	-12.839076	42.21488	1.000000	0.1720590	NA
Test set	0.5238095	7.201190	5.761905	-7.239015	42.64360	1.107933	0.0766326	1.489315

hist(issues\$valid.ts - train.issues.snaive.pred\$mean)

Histogram of issues\$valid.ts - train.issues.snaive.pred\$mean

issues\$valid.ts - train.issues.snaive.pred\$mean

plot(issues\$valid.ts - train.issues.snaive.pred\$mean)

plot(train.issues.snaive.pred)
lines(issues\$valid.ts)

Forecasts from Seasonal naive method

Smoothing

Holt Winter

```
train.issues.hw.pred <- hw(issues$train.ts, hw = "ZAA", h = n.valid)
kable(accuracy(train.issues.hw.pred, issues$valid.ts))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	-0.0265046	4.977548	3.872611	-13.061762	32.46036	0.7446484	0.077384	NA
Test set	0.7779834	4.639578	3.621891	-4.980661	27.43986	0.6964384	0.602180	0.837638

hist(issues\$valid.ts - train.issues.hw.pred\$mean)

Histogram of issues\$valid.ts - train.issues.hw.pred\$mean

issues\$valid.ts - train.issues.hw.pred\$mean

plot(issues\$valid.ts - train.issues.hw.pred\$mean)

plot(train.issues.hw.pred)
lines(issues\$valid.ts)

Forecasts from Holt-Winters' additive method

Double differencing

```
train.issues.d1 <- diff(issues$train.ts, lag = 1)
train.issues.d1.d7 <- diff(train.issues.d1, lag = 7)

ma.trailing <- rollmean(train.issues.d1.d7, k = 7, align = "right")
last.ma <- tail(ma.trailing, 1)
ma.trailing.pred <- ts(c(train.issues.d1.d7[1:6], ma.trailing, rep(last.ma, n.valid)), start=c(2,2), fr

ma.dd.pred.d1 <- diffinv(ma.trailing.pred, lag = 7, xi=train.issues.d1[1:7])
ma.dd.pred <- diffinv(ma.dd.pred.d1, lag = 1, xi=issues$train.ts[1])

plot(ma.dd.pred,col='red')
lines(issues.ts,col='blue')</pre>
```


Regression

Linear additive regression

```
train.issues.linear.regr.add.m <- tslm(issues$train.ts ~ trend + season)</pre>
train.issues.linear.regr.add.m
##
## Call:
## tslm(formula = issues$train.ts ~ trend + season)
##
## Coefficients:
##
   (Intercept)
                       trend
                                   season2
                                                {\tt season3}
                                                              season4
##
      13.32711
                     0.02002
                                  -3.10002
                                                -6.36003
                                                             -5.17815
##
       season5
                     season6
                                   season7
      -0.50429
                    -0.36105
                                  -0.09535
train.issues.linear.regr.add.pred <- forecast(train.issues.linear.regr.add.m , h=n.valid)</pre>
kable(accuracy(train.issues.linear.regr.add.pred, issues$valid.ts))
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.000000	5.191735	4.097533	-16.39242	36.04025	0.7878976	0.2745091	NA
Test set	-3.720864	5.913790	4.879717	-40.20440	45.82142	0.9383006	0.5850591	1.394207

Histogram of issues\$valid.ts - train.issues.linear.regr.add.pred\$mea

issues\$valid.ts - train.issues.linear.regr.add.pred\$mean

plot(issues\$valid.ts - train.issues.linear.regr.add.pred\$mean)

plot(train.issues.linear.regr.add.pred)
lines(issues\$valid.ts)

Forecasts from Linear regression model

linear multiplicative regression

```
train.issues.linear.regr.mult.m <- tslm(issues$train.ts ~ trend + season, lambda = 0)</pre>
train.issues.linear.regr.mult.m
##
## Call:
## tslm(formula = issues$train.ts ~ trend + season, lambda = 0)
##
## Coefficients:
  (Intercept)
                                  season2
                                               season3
                                                             season4
                       trend
##
      13.32711
                    0.02002
                                 -3.10002
                                               -6.36003
                                                            -5.17815
                                  season7
##
       season5
                    season6
                                 -0.09535
      -0.50429
                   -0.36105
##
train.issues.linear.regr.mult.pred <- forecast(train.issues.linear.regr.mult.m , h=n.valid)
kable(accuracy(train.issues.linear.regr.mult.pred, issues$valid.ts))
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Training set	$9.582908e{+13}$	1.713166e + 15	9.582912e + 13	-8.716828e + 04	8.724629e + 04	0.4899045	-0.0028054
Test set	-3.635191e+08	4.874506e + 08	$3.635191e{+08}$	-2.418645e+09	2.418645e + 09	0.0000019	0.3705441

```
hist(issues$valid.ts - train.issues.linear.regr.mult.pred$mean)
```

Histogram of issues\$valid.ts - train.issues.linear.regr.mult.pred\$mea

issues\$valid.ts - train.issues.linear.regr.mult.pred\$mean

plot(train.issues.linear.regr.mult.pred)
lines(issues\$valid.ts)

Forecasts from Linear regression model

external regression

```
plot(issues.ts, col='blue')
lines(commits.ts, col='green')
```



```
train.commits.d1 <- diff(commits$train.ts, lag = 1)
train.commits.d1.d7 <- diff(train.commits.d1, lag = 7)

plot(train.issues.d1.d7, col='blue')
lines(lag(train.commits.d1.d7,2), col='green')</pre>
```


train.issues.arima.ext.m <- Arima(issues\$train.ts, order=c(1,0,0), seasonal=c(1,0,0), xreg=commits\$train.issues.arima.ext.m

```
## Series: issues$train.ts
## ARIMA(1,0,0)(1,0,0)[7] with non-zero mean
##
## Coefficients:
##
           ar1
                  sar1 intercept commits$train.ts
                           7.9198
                                             0.4004
        0.2050 0.2187
##
## s.e. 0.0548 0.0565
                           0.7248
                                             0.0366
##
## sigma^2 estimated as 21.16: log likelihood=-1017.15
## AIC=2044.3 AICc=2044.48 BIC=2063.53
```