

Oxx15xx & Oxx16xHx Series

Description

This 15 Amp and 16 Amp bi-directional solid state switch series is designed for AC switching and phase control applications such as motor speed, temperature modulation controls, lighting controls, and static switching relays.

Standard type devices normally operate in Quadrants I & III triggered from AC line.

Standard alternistor triac components operate with in-phase signals in Quadrants I or III and ONLY unipolar negative gate pulses for Quadrant II or III. The alternistor triac will not operate in Quadrant IV. These are used in circuit applications requiring a high dv/dt capability.

Agency Approval

Agency	Agency File Number
71	E71639*

^{* -} L Package only

Features & Benefits

- RoHS-compliant
- Glass passivated junctions
- Voltage capability up to 1000 V
- Surge capability up to 200 A
- The L-package has an isolation rating of 2500V_{RMS}
- Solid-state switching eliminates arcing or

- contact bounce that create voltage transients
- No contacts to wear out from reaction of switching events
- Restricted (or limited) RFI generation, depending on activation point in sine wave
- Requires only a small gate activation pulse in each half-cycle

Main Features

Symbol	Value	Unit
I _{T(RMS)}	15 or 16	А
V_{DRM}/V_{RRM}	400, 600, 800 or 1000	V
I _{GT (Q1)}	10, 20, 35, 50 or 80	mA

Schematic Symbol

Additional Information

Applications

Excellent for AC switching and phase control applications such as heating, lighting, and motor speed controls.

Typical applications are AC solid-state switches, light dimmers, power tools, lawn care equipment, home/brown goods and white goods appliances.

Alternistor Triacs (no snubber required) are used in applications with extremely inductive loads requiring highest commutation performance.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

Absolute Maximum Ratings — Standard Triac Symbol Parameter Value Unit Qxx15Ly $T_c = 80$ °C RMS on-state current (full sine wave) 15 Α I_{T(RMS)} Qxx15Ry $T_{\rm C} = 90^{\circ}{\rm C}$ Qxx15Ny f = 50 Hz 167 t = 20 msNon repetitive surge peak on-state current Α I_{TSM} (full cycle, T, initial = 25°C) f = 60 Hz t = 16.7 ms200 $t_p = 8.3 \text{ ms}$ I^2t I2t Value for fusing 166 $\mathsf{A}^2\mathsf{s}$ di/dt Critical rate of rise of on-state current f = 120 Hz $T_{J} = 125^{\circ}C$ 100 A/µs 4 ${\rm I}_{\rm GTM}$ $t_p = 20 \mu s$ T₁= 125°C Α Peak gate trigger current $P_{G(AV)}$ Average gate power dissipation T₁= 125°C 0.5 W -40 to 150 °C Storage temperature range -40 to 125 °C T_{J} Operating junction temperature range

Note: xx = voltage/10, y = sensitivity

Absolute Maximum Ratings — Alternistor Triac (3 Quadrants)

Symbol	Paramete		Value	Unit	
		Qxx16LHy	T _C = 80°C		А
I _{T(RMS)}	RMS on-state current (full sine wave)	Qxx16RHy Qxx16NHy	T _C = 90°C	16	
1	Non repetitive surge peak on-state current	f = 50 Hz	t = 20 ms	167	А
TSM	(full cycle, T _J initial = 25°C)	f = 60 Hz	t = 16.7 ms	200	A
l²t	I²t Value for fusing		$t_p = 8.3 \text{ ms}$	166	A²s
di/dt	Critical rate of rise of on-state current	f = 120 Hz	T _J = 125°C	100	A/µs
I _{GTM}	Peak gate trigger current	t _p =20µs	T _J = 125°C	4	А
P _{G(AV)}	Average gate power dissipation		T _J = 125°C	0.5	W
T _{stg}	Storage temperature range			-40 to 150	°C
T _J	Operating junction temperature range			-40 to 125	°C

Note: xx = voltage/10, y = sensitivity

Electrical Characteristics (T₁ = 25°C, unless otherwise specified) — Standard Triac

Symbol	Test Conditions	Qua	drant	Value	Unit
I _{GT}	$V_D = 12V R_L = 60 \Omega$	1 – 11 – 111	MAX.	50	mA
$V_{\rm GT}$	$V_D = 12V R_L = 60 \Omega$	1 – 11 – 111	MAX.	2.0	V
$V_{\sf GD}$	$V_D = V_{DRM} R_L = 3.3 \text{ k}\Omega T_J = 125^{\circ}\text{C}$	1 – 11 – 111	MIN.	0.2	V
I _H	$I_{T} = 100 \text{mA}$		MAX.	70	mA
		400V	MIN.	275	Mus
dv/dt	$V_D = V_{DRM}$ Gate Open $T_J = 125$ °C	600V		225	
αν/αι		800V	IVIIIN.	200	V/μs
	$V_D = V_{DRM}$ Gate Open $T_J = 100$ °C	1000V		200	
(dv/dt)c	$(di/dt)c = 8.1 \text{ A/ms T}_{J} = 125^{\circ}\text{C}$		MIN.	4	V/µs
t _{gt}	$I_{G} = 2 \times I_{GT}$ PW = 15µs $I_{T} = 22.6$ A(pk)		TYP.	4	μs

Electrical Characteristics (T, = 25°C, unless otherwise specified) — Alternistor Triac (3 Quadrants) Test Conditions Symbol Quadrant Qxx16xH6 $V_D = 12V R_L = 60 \Omega$ I - II - IIIMAX. 10 20 35 80 mΑ I_{GT} $V_{\rm GT}$ $V_{D} = 12V R_{L} = 60 \Omega$ 1 - 11 - 111MAX. 1.3 ٧ $V_D = V_{DRM} R_L = 3.3 \text{ k}\Omega T_J = 125^{\circ}\text{C}$ $1 - \Pi - \Pi\Pi$ MIN. 0.2 ٧ $V_{\rm GD}$ $I_{\rm H}$ $I_{\tau} = 100 \text{mA}$ MAX. 15 35 50 70 mΑ 400V 200 350 475 925 $V_D = V_{DRM}$ Gate Open $T_J = 125$ °C 600V 150 250 400 850 dv/dt MIN. V/µs 800V 100 200 350 475 $V_D = V_{DRM}$ Gate Open $T_J = 100$ °C 100 1000V 200 300 350 2 $(di/dt)c = 8.6 \text{ A/ms T}_1 = 125^{\circ}\text{C}$ 25 30 (dv/dt)c MIN. 20 V/µs $I_{G} = 2 \times I_{GT} \text{ PW} = 15 \mu \text{s} I_{T} = 22.6 \text{ A(pk)}$ TYP. 3 3 3 5 μs

Static Characteristics Symbol Test Conditions Value Unit 15A Device $I_{T} = 21.2A t_{p} = 380 \mu s$ \boldsymbol{V}_{TM} MAX 1.60 ٧ 16A Device $I_T = 22.6A t_n = 380 \mu s$ 400-1000V 5 T₁ = 25°C μΑ DRM $V_D = V_{DRM} / V_{RRM}$ T₁ = 125°C 400-800V MAX 2 mΑ $T_1 = 100^{\circ}C$ 1000V 3

The	Thermal Resistances								
	Symbol	Parameter		Value	Unit				
	$R_{\Theta^{(J\cdotC)}}$	Junction to case (AC)	Qxx15Ry Qxx15Ny Qxx16RHy Qxx16NHy	1.7	°C/W				
			Qxx15Ly Qxx16LHy	2.1					
	D	harding to each in t	Qxx15Ry Qxx16RHy	45	°C/W				
	$R_{\Theta(J-A)}$	Junction to ambient	Qxx15Ly Qxx16LHy	50					

Note: xx = voltage/10; y = sensitivity

Figure 1: Definition of Quadrants

Note: Alternistors will not operate in QIV

Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature

Figure 3: Normalized DC Holding Current vs. Junction Temperature

Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

Figure 7: Maximum Allowable Case Temperature vs. On-State Current (16A devices)

Figure 4: Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature

Figure 6: Maximum Allowable Case Temperature vs. On-State Current (15A devices)

Figure 8: Maximum Allowable Ambient Temperature vs. On-State Current

Figure 9: On-State Current vs. On-State Voltage (Typical)

Figure 10: Surge Peak On-State Current vs. Number of Cycles

Soldering Parameters

Reflow Co	ndition	Pb – Free assembly	
	- Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ra	mp up rate (Liquidus Temp) k	5°C/second max	
$T_{S(max)}$ to T_{L}	- Ramp-up Rate	5°C/second max	
Reflow	- Temperature (T _L) (Liquidus)	217°C	
Reliow	- Temperature (t _L)	60 – 150 seconds	
Peak Temp	erature (T _p)	260+0/-5 °C	
Time within Temperatu	in 5°C of actual peak re (t _p)	20 - 40 seconds	
Ramp-dow	vn Rate	5°C/second max	
Time 25°C	to peak Temperature (T _P)	8 minutes Max.	
Do not exc	eed	280°C	

Physical Specifications Terminal Finish 100% Matte Tin-plated Body Material UL Recognized compound meeting flammability rating V-0 Terminal Material Copper Alloy

Design Considerations

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications				
Test	Specifications and Conditions			
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours			
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell time			
Temperature/Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity			
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C			
Low-Temp Storage	1008 hours; -40°C			
Resistance to Solder Heat	MIL-STD-750 Method 2031			
Solderability	ANSI/J-STD-002, category 3, Test A			
Lead Bend	MIL-STD-750, M-2036 Cond E			

Dimensions — TO-220AB (R-Package) — Non-Isolated Mounting Tab Common with Center Lead

Dimension	Inc	hes	Millimeters		
Difficusion	Min	Max	Min	Max	
Α	0.380	0.420	9.65	10.67	
В	0.105	0.115	2.66	2.92	
С	0.230	0.250	5.84	6.35	
D	0.590	0.620	14.99	15.75	
E	0.142	0.147	3.61	3.73	
F	0.110	0.130	2.79	3.30	
G	0.540	0.575	13.72	14.61	
Н	0.025	0.035	0.64	0.89	
J	0.195	0.205	4.95	5.21	
K	0.095	0.105	2.41	2.67	
L	0.060	0.075	1.52	1.91	
M	0.085	0.095	2.16	2.41	
N	N 0.018 0.024		0.46	0.61	
0	0.178	0.188	4.52	4.78	
P	0.045	0.060	1.14	1.52	
R	0.038	0.048	0.97	1.22	

Dimensions — TO-220AB (L-Package) — Isolated Mounting Tab

Dimension	Inc	hes	Millimeters		
Dimension	Min	Max	Min	Max	
А	0.380	0.420	9.65	10.67	
В	0.105	0.115	2.67	2.92	
С	0.230	0.250	5.84	6.35	
D	0.590	0.620	14.99	15.75	
Е	0.142	0.147	3.61	3.73	
F	0.110	0.130	2.79	3.30	
G	0.540	0.575	13.72	14.60	
Н	0.025	0.035	0.64	0.89	
J	0.195	0.205	4.95	5.21	
K	0.095	0.105	2.41	2.67	
L	0.060	0.075	1.52	1.91	
M	0.085	0.095	2.16	2.41	
N	0.018	0.024	0.46	0.61	
0	0.178	0.188	4.52	4.78	
Р	0.045	0.060	1.14	1.52	
R	0.038	0.048	0.97	1.22	

Dimensions - TO-263AB (N-Package) - D²Pak Surface Mount

Dimension	Inc	hes	Millin	neters
Dimension	Min	Max	Min	Max
Α	0.360	0.370	9.14	9.40
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
E	0.045	0.060	1.14	1.52
F	0.060	0.075	1.52	1.91
G	0.095	0.105	2.41	2.67
Н	0.092	0.102	2.34	2.59
J	0.018	0.024	0.46	0.61
K	0.090	0.110	2.29	2.79
s	0.590	0.625	14.99	15.88
V	0.035	0.045	0.89	1.14
U	0.002	0.010	0.05	0.25
W	0.040	0.070	1.02	1.78

Product Selector

D (N)		Vo	ltage		Gate Sensitivity Quadrants	_	
Part Number	400V	600V	800V	1000V	1-11-111	Туре	Package
Qxx15L5	X	Х	Х	X	50 mA	Standard Triac	TO-220L
Qxx15R5	X	X	X	X	50 mA	Standard Triac	TO-220R
Qxx15N5	X	X	X	X	50 mA	Standard Triac	TO-263 D²-PAK
Qxx16LH2	X	X	Х	X	10 mA	Alternistor Triac	TO-220L
Qxx16RH2	X	X	X	X	10 mA	Alternistor Triac	TO-220R
Qxx16NH2	X	X	X	X	10 mA	Alternistor Triac	TO-263 D²-PAK
Qxx16LH3	X	X	X	X	20 mA	Alternistor Triac	TO-220L
Qxx16RH3	X	X	X	X	20 mA	Alternistor Triac	TO-220R
Qxx16NH3	X	X	X	X	20 mA	Alternistor Triac	TO-263 D²-PAK
Qxx16LH4	X	X	X	X	35 mA	Alternistor Triac	TO-220L
Qxx16RH4	X	X	X	X	35 mA	Alternistor Triac	TO-220R
Qxx16NH4	X	X	X	X	35 mA	Alternistor Triac	TO-263 D²-PAK
Qxx16LH6	X	X	X	X	80 mA	Alternistor Triac	TO-220L
Qxx16RH6	X	X	X	X	80 mA	Alternistor Triac	TO-220R
Qxx16NH6	X	X	X	X	80 mA	Alternistor Triac	TO-263 D²-PAK

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
Qxx15L/RyTP	Qxx15L/Ry	2.2 g	Tube Pack	1000 (50 per tube)
Qxx15NyTP	Qxx15Ny	1.6 g	Tube	1000 (50 per tube)
Qxx15NyRP	Qxx15Ny	1.6 g	Embossed Carrier	500
Qxx16L/RHyTP	Qxx16L/RHy	2.2 g	Tube Pack	1000 (50 per tube)
Qxx16NHyTP	Qxx16NHy	1.6 g	Tube	1000 (50 per tube)
Qxx16NHyRP	Qxx16NHy	1.6 g	Embossed Carrier	500

Note: xx = Voltage/10; y = Sensitivity

TO-263 Embossed Carrier Reel Pack (RP)

Meets all EIA-481-2 Standards

Part Numbering System

Part Marking System

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Littelfuse:

QK016RH4 QK015R5 QK016RH6 QK016RH3 QK015L5 Q8016LH3 Q8016LH4 Q8016LH6 Q2015R5 Q2015L5 Q2016RH3 Q6016RH3 Q6016RH4 Q4016RH3 Q4016RH6 Q2016RH4 Q4016RH4 Q2016RH6 Q6016RH6 Q8008DH4 Q6015R5 QK016LH3 QK016LH4 QK016LH6 Q4015R5 Q4015L5 Q8016RH3 Q8016RH6 Q8016RH4 Q6016LH6 Q6016LH6 Q6016LH3 Q2016LH3 Q4016LH3 Q2016LH6 Q4015L53 Q6016LH4 Q4016LH6 Q2016LH4 Q6016LH6 Q6016LH3 Q2016LH3 Q4016LH3 Q2016LH6 Q4015L559 Q4015L555 Q4015L553 Q8015R5 Q4015L558 Q6015L552 Q6015L556 Q4015L558 Q4015L556 Q4015L559 Q4015L555 Q4015L553 Q8015R5 Q4015N5RP Q8015N5RP Q6015N5RP Q8015N5RP Q8015N5RP Q4015N5TP Q4015N5TP Q6015N5TP Q4015N5TP Q6015N5TP Q6016LH651 QK016NH3RP QK016NH3TP QK016NH4TP Q4016NH4RP Q4016NH4RP Q2016NH4RP Q2016NH4RP Q2016NH4RP Q2016NH4RP Q2016NH4RP Q3016NH4RP Q3016NH4RP Q3016NH4RP Q3016NH4RP Q3016NH4RP Q3016NH4RP Q3016NH4RP Q3016NH4RP Q3016NH6RP Q