

机器学习是做什么事情

Photograph

Monet

predicted: Chavez predicted: Rumsfeld true: Chavez true: Powell

Van Gogh

Cezanne

分类、回归和聚类

分类(监督学习: 学习两个数据集的联系: 观察数据 X 和我们正在尝试预测的额外变量 y)

聚类(无监督学习: 寻求数据表示)

机器学习要素:

- 1. 数据(训练集、测试集、验证集)
- 2. 特征工程
- 3. 训练模型(NN、SVM、RF)
- 4. 学习准则()
- 5. 优化算法 (梯度下降)
- 6. 评估方法(ACC、交叉验证)

回归

数学基础(以FNN为例)

$$f(x_i) = w^T x_i + b$$

参数学习,试图找到合适的 w 和 b ,使得 $f(x_i) \approx y_i$

$$(w^*, b^*) = \underset{(w,b)}{\operatorname{argmin}} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

高中数学, 求函数极小值用什么方法 (求导 -> 梯度下降)

了解3个神器

```
### Office and a second state of the second s
```


宇宙最强IDE: vscode

code

| Dispytian | Select | Second | Second

重量级IDE: PyCharm

机器学习必备笔记本: jupyter

必备的 python package

home // about // get pandas // documentation // community // talks // donate

Python Data Analysis Library

pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Psython programming language.

pandas is a NumFOCUS sponsored project. This will help ensure the success of development of pandas as a world-class open-source project, and makes it possible to <u>donate</u> to the project.

A Fiscally Sponsored Project of

NUMFOCUS

OPEN CODE = BETTER SCIENCE

VERSIONS

Release 0.24.2 - March 2019 download // docs // pdf

Development 0.25.0 - April 2019 github // docs

Previous Releases

0.24.1 - download // docs // pdf 0.24.0 - download // docs // pdf

0.23.4 - download // docs // pdf 0.23.3 - download // docs // pdf 0.23.2 - download // docs // pdf

TensorFlow 简介

TensorFlow makes it easy for beginners and experts to create machine learning models for desktop, mobile, web, and cloud.

See the sections below to get started.

TensorFlow

Learn the foundation of TensorFlow with tutorials for beginners and experts to help you create your next machine learning project.

Learn more

For JavaScript

Use TensorFlow.js to create new machine learning models and deploy existing models with JavaScript.

Learn more

For Mobile & IoT

Run inference with TensorFlow Lite on mobile and embedded devices like Android, iOS, Edge TPU, and Raspberry Pi.

Learn more

For Production

Deploy a production-ready ML pipeline for training and inference using TensorFlow Extended (TFX).

Learn more

TensorFlow 高阶API

Keras 是一个用于构建和训练深度学习模型的高阶 API,它可用于快速设计原型、高级研究和生产,具有以下三个主要优势:

- 方便用户使用
 - Keras 具有针对常见用例做出优化的简单而一致的界面。它可针对用户错误提供切实可行的 清晰反馈。
- 模块化和可组合
 - · 将可配置的构造块连接在一起就可以构建 Keras 模型,并且几乎不受限制。
- 易于扩展
 - 可以编写自定义构造块以表达新的研究创意,并且可以创建新层、损失函数并开发先进的模型。

TensorFlow 低阶API(计算图模型:构建图(tf.Graph),运行图(tf.Session))

TensorFlow 使用数据流图将计算表示为独立的指令之间的依赖关系。这可生成低级别的编程模型,在该模型中,您首先定义数据流图,然后创建 TensorFlow 会话,以便在一组本地和远程设备上运行图的各个部分

元组、指定了阵列每个维度的长度

在数据流图中,节点表示计算单元,边缘表示计算使用或产生的数据 图由两种类型的对象组成:

操作(简称"op"):图的节点。操作描述了消耗和生成张量的计算。 张量:图的边。它们代表将流经图的值,一个张量由一组形成阵列(任 意维数)的原始值组成。张量的阶是它的维数,而它的形状是一个整数

网站和教程推荐

- 1. https://github.com/donnemartin/data-science-ipython-notebooks
- 2. https://github.com/aymericdamien/TensorFlow-Examples
- 3. https://github.com/jtoy/awesome-tensorflow
- 4. https://stackoverflow.com/
- 5. https://medium.com/

技能树点开方案

Linux

Linux系统的常用命令 (vim / awk / sort) Shell编程 (推荐 zsh)

Python

函数式编程 列表生成式 正则表达式 virtualenv

Git

熟悉 git 命令的基本操作 git add git commit git push/pull git merge

Etc.

Docker Spark/Hadoop CUDA

fashion

2019-04-16 13:06

MNIST

2019-04-16 13:06

微信长按识别二维码获取文件

有效期至 2019-04-24 14:19:10

链接:

https://pan.baidu.com/s/ lyPwniboKq6lAyKMaFOn EcQ 提取码: g985 复制这段 内容后打开百度网盘手机App, 操作更方便哦

