Modelling and Solving Exercises in MiniZinc -1

Before Starting

- Create a project (.mzp) for each problem.
 - Add the model files (*.mzn)
 - Add the data files (*.dzn)
- Configure the solver to obtain the solution statistics, to search for one or all solutions, and to set a time limit when needed.

Row Model of N-Queens

Variables and Domains

- − A variable for each row $[X_1, X_2, ..., X_n]$ → no row attack
- Domain values {1,...,n} represent the columns:
 - X_i = j means that the queen in row i is in column j

Constraints

- alldifferent([$X_1, X_2, ..., X_n$]) → no column attack
- for all i<j $|X_i-X_i| ≠ |i-j|$ → no diagonal attack

Alldiff Model of N-Queens

- Diagonal attack constraints
 - for all i<j X_i + i ≠ X_j + j ∧ X_i i ≠ X_j j ≡ all different([X_1 + 1, X_2 + 2, ..., X_n + n])
 - \equiv all different([$X_1 1, X_2 2, ..., X_n n$])
 - Alldiff Model
 - alldifferent([X₁, X₂, ..., X_n])
 - all different ($[X_1 + 1, X_2 + 2, ..., X_n + n]$)
 - all different ($[X_1 1, X_2 2, ..., X_n n]$)

Symmetries of N-Queens

Symmetry breaking in N-Queens

Alldiff Model + Boolean Model

- alldifferent([X₁, X₂, ..., X_n])
- all different ($[X_1 + 1, X_2 + 2, ..., X_n + n]$)
- all different ($[X_1 1, X_2 2, ..., X_n n]$)
- for all i, j $B_{i,i}$ ∈ {0,1}
- Channelling constraints
 - for all i,j $X_i = j \leftrightarrow B_{ij} = 1$
- Symmetry breaking lexicographic ordering constraints
 - Study Section 2.6.6 of the MiniZinc Tutorial.

To Do – 1

- Implement 3 models:
 - the row model;
 - the alldiff model;
 - the alldiff_sym model (alldiff + Boolean models).
- Search for all solutions for N = 8, 9, 10, 12 using the default search of Gecode.
- Record the number of solutions and the failures in each experiment.

To Do – 2

- Using the alldiff model, search for a solution for N = 10, 15, 20,, 45, using the following 5 variable - value ordering heuristics of Gecode:
 - input order minimum value
 - smallest domain minimum value
 - domWdeg minimum value
 - input order random value
 - domWdeg random value
- Record the number failures in each experiment.

Optimal N-Queens

- Add an objective to the alldiff model:
 - minimize the total distance of the queens to the main diagonal.
- Search for the optimal solution to the 50-queens problem using Gecode, with a time limit of 5 mins (300 secs).
- Experiment with the default search and the domWdegrand heuristic.
- Experiment with restarting (employing the Luby strategy with L = 250), using the domWdeg-rand heuristic.
- Record the number of failures and the objective value in each experiment.