Projekt 1, Zadanie 23

Wiktor Murawski, 333255, grupa 3, środa 12:15

Obliczanie całek $\iint\limits_D f(x,y)\,dxdy$ na obszarze $D=\{(x,y)\in\mathbb{R}^2:|x|+|y|\leq 1\}$ poprzez podział obszaru D na $4n^2$ trójkątów przystających oraz zastosowanie na każdym z nich kwadratury rzędu drugiego.

Podział obszaru D na $4n^2$ trójkątów przystających

Algorytm podziału

$$\begin{array}{l} \text{for } x=0,1,2,...,n-1 \text{ do} \\ r\leftarrow 1 \\ \text{for } y=0,0,1,1,...,n-x-2,n-x-2,n-x-1 \text{ do} \\ r\leftarrow !r \\ (x_1,y_1)\leftarrow (\frac{x+r}{n},\frac{y+r}{n}) \\ (x_2,y_2)\leftarrow (\frac{x+1}{n},\frac{y}{n}) \\ (x_3,y_3)\leftarrow (\frac{x}{n},\frac{y+1}{n}) \\ \text{Oblicz współrzędne trójkątów w II, III i IV ćwiartce} \\ \text{Zastosuj kwadraturę na wyznaczonych trójkątach} \\ \text{end for} \end{array}$$

Przykład działania algorytmu dla n=2

Formuła całkowa na trójkącie

Niech T będzie trójkątem o wierzchołkach $(x_1,y_1),(x_2,y_2),(x_3,y_3)\in\mathbb{R}^2$ Niech P oznacza pole trójkąta T oraz niech

$$A = \begin{pmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix}$$

Wtedy

$$P = \frac{1}{2}|\det A|$$

Niech $f:\mathbb{R}^2 \to \mathbb{R}$. Wówczas

$$S_S(f) = Pf\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

$$S_W(f) = \frac{P}{3} \Big(f(x_1, y_1) + f(x_2, y_2) + f(x_3, y_3) \Big)$$

są kwadraturami rzędu 2-go.

Mając podział obszaru D na $4n^2$ trójkątów przystających oraz kwadraturę drugiego rzędu na dowolnym trójkącie, możemy obliczyć całkę

$$I(f) = \iint\limits_{D} f(x, y) \, dx dy$$

poprzez zastosowanie na każdym z trójkątów kwadratury rzędu drugiego. Stosując kwadraturę $S_S(f)$ na każdym z trójkątów, otrzymamy kwadraturę złożoną, oznaczmy $S_S^{[n]}(f)$.

Metodę uznamy za poprawną, jeśli

$$S_S^{[n]}(f) = I(f)$$

dla f będących wielomianami dwóch zmiennych stopnia < 2. W celu sprawdzenia poprawności metody przetestujemy ją na takich f

Wyznaczenie analityczne całki z wielomianu stopnia 1

Obliczymy analitycznie

$$I = \iint\limits_{D} f(x, y) \, dx dy$$

gdzie

$$f(x,y) = ax + by + c$$
 $a,b,c \in \mathbb{R}$

Niech

$$D_1 = \{(x, y) \in D : x \le 0\}$$
$$D_2 = \{(x, y) \in D : x > 0\}$$

Oznaczmy

$$I_1 = \iint_{D_1} f(x, y) \, dx dy$$

$$I_2 = \iint\limits_{D_2} f(x, y) \, dx dy$$

Wtedy $D = D_1 \cup D_2$ oraz $I = I_1 + I_2$.

Wyznaczenie analityczne całki z wielomianu stopnia 1

$$I_{1} = \int_{-1}^{0} \int_{-x-1}^{x+1} ax + by + c \, dy dx$$

$$I_{2} = \int_{0}^{1} \int_{x-1}^{-x+1} ax + by + c \, dy dx$$

$$I_{1} = \int_{-1}^{0} \left[axy + \frac{by^{2}}{2} + cy \right]_{-x-1}^{x+1} dx$$

$$I_{2} = \int_{0}^{1} \left[axy + \frac{by^{2}}{2} + cy \right]_{x-1}^{-x+1} dx$$

$$I_{1} = \int_{-1}^{0} 2ax^{2} + 2ax + 2cx + 2c \, dx$$

$$I_{2} = \int_{0}^{1} -2ax^{2} + 2ax - 2cx + 2c \, dx$$

$$I_{3} = 2 \left[\frac{ax^{3}}{3} + \frac{ax^{2}}{2} + \frac{cx^{2}}{2} + cx \right]_{-1}^{0}$$

$$I_{2} = \frac{a}{3} + c$$

$$I_{3} = \frac{a}{3} + c$$

Ostatecznie otrzymujemy $I = I_1 + I_2 = 2c$

Testy poprawności

Funkcja f	I(f)	n	$S_S^{[n]}(f)$	$ S_S^{[n]}(f) - I(f) $
f(x,y) =	2.0000	1	2.0000	0.0000
		5	2.0000	1.3323×10^{-15}
1		10	2.0000	2.0650×10^{-14}
		50	2.0000	1.8763×10^{-13}
		100	2.0000	2.0082×10^{-12}
		500	2.0000	1.5836×10^{-11}
f(x,y) =	2.0000	1	2.0000	0.0000
		5	2.0000	8.8818×10^{-16}
x+y+1		10	2.0000	2.4425×10^{-15}
		50	2.0000	4.6629×10^{-15}
		100	2.0000	4.8850×10^{-15}
		500	2.0000	7.5939×10^{-14}
f(x,y) =	1.0000	1	1.0000	0.0000
		5	1.0000	5.5511×10^{-16}
$8x + 2y + \frac{1}{2}$		10	1.0000	2.2204×10^{-16}
1		50	1.0000	1.1102×10^{-15}
		100	1.0000	1.7764×10^{-15}
		500	1.0000	8.2157×10^{-15}

Testy poprawności

Funkcja f	I(f)	n	$S_S^{[n]}(f)$	$ S_S^{[n]}(f) - I(f) $
f(x,y) =	2.8284	1	2.8284	0.0000
		5	2.8284	1.3323×10^{-15}
$x-y+\sqrt{2}$		10	2.8284	1.7764×10^{-15}
		50	2.8284	5.3291×10^{-15}
		100	2.8284	3.0198×10^{-14}
		500	2.8284	1.5543×10^{-14}
f(x,y) =	-6.2832	1	-6.2832	0.0000
		5	-6.2832	8.8818×10^{-16}
$-x+2y-\pi$		10	-6.2832	0.0000
		50	-6.2832	3.5527×10^{-15}
		100	-6.2832	4.4409×10^{-15}
		500	-6.2832	3.5527×10^{-14}
f(x,y) =	0.0000	1	0.0000	0.0000
		5	1.3878×10^{-17}	1.3878×10^{-17}
$\pi x - ey$		10	-6.9389×10^{-18}	6.9389×10^{-18}
		50	9.7578×10^{-19}	9.7578×10^{-19}
		100	1.3281×10^{-18}	1.3281×10^{-18}
		500	7.9028×10^{-19}	7.9028×10^{-19}

Testy numeryczne

Przetestujemy teraz własności numeryczne zaimplementowanej metody. Zaobserwujemy jak metoda działa dla kilku wybranych funkcji, które nie są wielomianami stopnia < 2.

Zauważymy, że dla niskich n wyniki są bardzo niedokładne. Intuicyjnie, im wyższe n, tym wyniki będą dokładniejsze; k-krotne zwiększenie wartości n spowoduje około k^2 -krotne zmniejszenie wartości błędu bezwzględnego. Wynika to z faktu wspomnianego na wykładzie, mianowicie jeśli f jest wystarczająco wiele razy różniczkowalna, to

$$|S^{[n]}(f) - I(f)| = \mathcal{O}(n^{-p})$$

gdzie p jest rzędem zastosowanej kwadratury, w naszym przypadku

$$|S_S^{[n]}(f) - I(f)| = \mathcal{O}(n^{-2})$$

Testy numeryczne

	- / ->		[m] (->	[n]
Funkcja f	I(f)	n	$S_S^{[n]}(f)$	$ S_S^{[n]}(f) - I(f) $
f(x,y) =	6.6667×10^{-1}	1	4.4444×10^{-1}	2.2222×10^{-1}
		5	6.5778×10^{-1}	8.8889×10^{-3}
$(x+y)^2$		10	6.6444×10^{-1}	2.2222×10^{-3}
		50	6.6658×10^{-1}	8.8889×10^{-5}
		100	6.6664×10^{-1}	2.2222×10^{-5}
		500	6.6667×10^{-1}	8.8889×10^{-7}
f(x,y) =	4.0000×10^{-1}	1	1.9753×10^{-1}	2.0247×10^{-1}
		5	3.8688×10^{-1}	1.3124×10^{-2}
$(x+y)^4$		10	3.9668×10^{-1}	3.3202×10^{-3}
		50	3.9987×10^{-1}	1.3331×10^{-4}
		100	3.9997×10^{-1}	3.3332×10^{-5}
		500	4.0000×10^{-1}	1.3333×10^{-6}
f(x,y) =	7.0613×10^{-3}	1	6.9444×10^{-3}	1.1682×10^{-4}
		5	6.7836×10^{-3}	2.7763×10^{-4}
$\frac{xy}{2}$		10	6.9886×10^{-3}	7.2643×10^{-5}
2+x+y		50	7.0583×10^{-3}	2.9483×10^{-6}
		100	7.0605×10^{-3}	7.3741×10^{-7}
		500	7.0612×10^{-3}	2.9501×10^{-8}

Testy numeryczne

		1	[m]	. [m]
Funkcja f	I(f)	n	$S_S^{[n]}(f)$	$ S_S^{[n]}(f) - I(f) $
f(x,y) =	2.0111	1	2.0124	1.2208×10^{-3}
		5	2.0108	3.5612×10^{-4}
e^{xy}		10	2.0110	9.2198×10^{-5}
		50	2.0111	3.7285×10^{-6}
		100	2.0111	9.3245×10^{-7}
		500	2.0111	3.7302×10^{-8}
f(x,y) =	1.3138	1	1.1547	1.5915×10^{-1}
		5	1.3055	8.3945×10^{-3}
$\sqrt{2x^2 + y^2}$		10	1.3117	2.1453×10^{-3}
		50	1.3138	8.7241×10^{-5}
		100	1.3138	2.1854×10^{-5}
		500	1.3138	8.7555×10^{-7}
f(x,y) =	1.7480	1	1.8091	6.1071×10^{-2}
1		5	1.7504	2.3591×10^{-3}
		10	1.7486	5.8793×10^{-4}
$\sqrt{x^2 + y^2 + 1}$		50	1.7480	2.3494×10^{-5}
		100	1.7480	5.8733×10^{-6}
		500	1.7480	2.3493×10^{-7}

Na następnych slajdach znajdują się wykresy przedstawiające błędy bezwzględne $|S_S^{[n]}(f)-I(f)|$ oraz $|S_W^{[n]}(f)-I(f)|$, a także krzywa n^{-2} .

Zaobserwujemy, że kwadratura złożona $S_S^{[n]}(f)$ daje dokładniejsze wyniki niż $S_W^{[n]}(f)$, a także, że błędy obu tych kwadratur faktycznie są $\mathcal{O}(n^{-2})$ dla rozważanych funkcji.

Wykres błędu dla funkcji $f(x,y) = (x+y)^2$

Wykres błędu dla funkcji $f(x,y) = (x+y)^2$

Wykres błędu dla funkcji $f(x,y) = (x+y)^4$

Wykres błędu dla funkcji $f(x,y) = e^{xy}$

Źródła

 Notatki dr Wróbel, "Notatki do wykładu Metody Numeryczne 2", dostępne na platformie Leon