Reference for Assignment 4

problem 4.1

Let $p(n)=\frac{1}{f(n)}$, where f(n) is a non-polynomial function, and $\forall b>0.f(n)=O(b^n)$, i.e., f(n) is a function that grows between polynomial (exclusive) and exponential functions (exclusive). For example, taking $f(n)=2^{\sqrt{n}}$ corresponds to $p(n)=2^{-\sqrt{n}}$.

Some common incorrect answers include $p(n)=\frac{1}{f(n)}$ where f(n) is a polynomial, which does not satisfy the negligibility condition; or $p(n)=\frac{1}{f(n)}$ where f(n) is an exponential function, which does not satisfy $\frac{1}{b^n}=O(p(n))$.

problem 4.2

Let (P,V) be the interactive proof system described in the problem. We construct another proof system (P',V'): for the proposition S, repeat (P,V) for n times, and if V outputs "accept" at least once, V' outputs "accept"; otherwise, it outputs "reject". If S is true, the probability that V' outputs "accept" is at least $1-(1-\frac{2}{3})^n=1-(\frac{1}{3})^n$, where $(\frac{1}{3})^n$ is negligible. Therefore, if S is true, V' outputs "accept" with high probability, satisfying the definition of completeness in Lecture 4.2.

problem 4.3

Completeness: If P knows the homomorphic mapping θ , then the probability that V accepts is 1, which is high. Therefore, it has completeness.

Soundness: If P does not know the homomorphic mapping θ , then the probability that it answers correctly in each round is at most $\frac{1}{2}$, and after n rounds, the probability that V accepts is at most $(\frac{1}{2})^n$, which is negligible. Therefore, it has soundness.

PZK: Construct a simulator σ that generates a random bit $b' \stackrel{\$}{\leftarrow} \{0,1\}$ and a random homomorphic mapping θ' in each round. If b' = 0, it sends $G'' = \theta(G)$ to V^* ; otherwise, it sends $G'' = \theta^{-1}(G')$ to V^* . If b' = 0 and σ simulates V^* asking for the homomorphic mapping between G and G'', or if b' = 1 and σ simulates V^* asking for the homomorphic mapping between G' and G'', it returns θ' . Otherwise, the process is repeated. This simulator is probabilistic polynomial-time and can successfully simulate with high

probability, producing an output with the same distribution as the View of V^* . Therefore, the interactive proof system is a PZK.

problem 4.4

Solution: (Problem 4.4) Let n be the length (*i.e.*, the number of bits) of the description of an isomorphism. We construct a pseudo-ZK proof system (P, V) for proving G is isomorphic to G':

- The verifier V picks x from n-bit strings uniformly at random, and sends x to the prover P.
- P computes $\theta' = \theta \oplus x$ to V, where θ is the isomorphism from G to G'.
- P sends θ' to V.
- V checks that $\theta' \oplus x$ is an isomorphism from G to G'. If that's the case, then V accepts; otherwise, V rejects.

Clearly, the proof is not PZK, because in fact, it completely reveals θ to V. However, it meets the requirement of pseudo-ZKness, because the only message received by V, θ' , is uniformly distributed over n-bit strings. The simulator has no difficulty in generating a random bit string that follows exactly the same distribution.

problem 4.5

Construct a simulator σ that generates a random bit $b' \overset{\$}{\leftarrow} \{0,1\}$ and an integer $f \overset{\$}{\leftarrow} \{1,2,\ldots,q-1\}$. If b'=0, it sends $j=g^f \pmod p$ to V^* ; otherwise, it sends $j=h^{-1} \ g^f \pmod p$ to V^* . Then, if σ simulates V^* 's output b, if b=b', σ outputs f; otherwise, the process is repeated. This simulator is probabilistic polynomial-time and can successfully simulate with high probability, producing an output that is computationally indistinguishable from the View of V^* . Therefore, the interactive proof system is a CZK.

problem 4.6

Solution: (Problem 4.6) Suppose the input is (G, G') such that $\theta(G) = G'$. At the very beginning, the prover P flips n coins, where n is the security parameter. If all coins are 1, then P sends θ to the verifier V. Otherwise, P starts the execution of an existing PZK proof for graph isomorphism.

(P,V) is SZK, because we can build a SZK simulator based on the simulator for the PZK proof, as described below. If the PZK simulator fails, our SZK simulator simply outputs a random bit string. Notice that the output our SZK simulator differs from the view of the possibly cheating verifier V^* only if the SZK proof fails, or the initial n coin flips are all 1s. The total probability of these two events is negligible. Therefore, (P,V) is SZK.

(P,V) is not PZK, because it leaks information about θ with probability 2^{-n} . (Some people might argue that you can construct a simulator to show it's PZK, because your simulator could fails exactly when θ is leaked. We emphasize that they are completely wrong, and such a simulator does not exist. The reason is that the simulator has no access to P's coin flips, and thus it does not know when it should fail.)

problem 4.7

Yes. We note the definition using "distinguisher" as Definition 1 and the one using "algorithm" as Definition 2.

If two random variables are computationally distinguishable by Definition 2, then there exists a algorithm A s.t. $\sum_{v} |Pr[A(X) = 1] - Pr[A(Y) = 1]|$ is not negligible.

Let $S = \{v : Pr[A(X) = v] > Pr[A(Y) = v]\}$. We construct a distinguisher D as follows:

D simulates A. Then outputs 1 if $A(x) \in S$ and outputs 0 otherwise. Obviously, $Pr[D(X) = 1] = Pr[A(X) \in S]$. Then by definition 2,

$$\begin{split} &\sum_{v} Pr[A(X) = v] - Pr[A(Y) = v] \\ &= \sum_{v \in S} Pr[A(X) = v] - Pr[A(Y) = v] + \sum_{v \notin S} Pr[A(X) = v] - Pr[A(Y) = v] \\ &= Pr[A(X) \in S] - Pr[A(Y) \in S] + Pr[A(X) \notin S] - Pr[A(Y) \notin S] \\ &= 2(Pr[A(X) \in S] - Pr[A(Y) \in S]) \\ &> \frac{1}{p(n)}. \end{split}$$

So $|Pr[D(X) = 1] - Pr[D(Y) = 1]| > \frac{1}{p(n)}$, and X and Y are computationally distinguishable by Definition 1.

problem 4.8

(a)False,

Note that the distributions of x and y and y and y are not necessarily independent. For example:

Distribution of x with respect to u:

	0_s	1_s
0_s	0.5	0
1_s	0	0.5

Distribution of y with respect to v:

	0_s	1_s
0_s	0	0.5
1_s	0.5	0

(b) True, proof omitted.