Oracle-Based Local Search for PBO originally published at ECAI 2023

Jeremias Berg² joint work with Markus Iser¹, and Matti Järvisalo²

1: Karlsruhe Institute of Technology,2: University of Helsinki

November 2024

Motivation - Anytime Solving

- Constraint optimization, useful and important
- Guaranteed optimality nice but not always needed / achievable.
- ullet Anytime solving o good solution within a limited time and memory.
- Our work: Harness recent advances in MaxSAT and conflict driven pseudo-Boolean solving to anytime settings.

Notation

Pseudo-Boolean Optimization (PBO)

- (*F*, *O*) where:
 - Formula F, a set of PB constraints $\sum_{i=1}^{n} c_i \ell_i \geq B$.
 - ▶ Literal ℓ , a 0-1 variable x or its negation $\overline{x} = 1-x$
 - ▶ Objective *O* a PB expression $\sum_{i=1}^{m} c_i b_i$ to be minimized.
- Goal: Compute assignment (solution) α that satisfies F and minimizes $\alpha(O) = \sum_{i=1}^{m} c_i \cdot \alpha(b_i)$

Note: MaxSAT is a special case

Notation

Pseudo-Boolean Optimization (PBO)

- (*F*, *O*) where:
 - Formula F, a set of PB constraints $\sum_{i=1}^{n} c_i \ell_i \geq B$.
 - Literal ℓ , a 0-1 variable x or its negation $\overline{x}=1-x$
 - ▶ Objective *O* a PB expression $\sum_{i=1}^{m} c_i b_i$ to be minimized.
- Goal: Compute assignment (solution) α that satisfies F and minimizes $\alpha(O) = \sum_{i=1}^{m} c_i \cdot \alpha(b_i)$

Satisfiability under Assumptions

- Assumptions A, a set of literals.
- Solve-Assumps(F, A) returns α s.t. $\alpha(\ell) = 1$ for all $\ell \in A$, or unsat.

Notation

Pseudo-Boolean Optimization (PBO)

- (*F*, *O*) where:
 - Formula F, a set of PB constraints $\sum_{i=1}^{n} c_i \ell_i \geq B$.
 - Literal ℓ , a 0-1 variable x or its negation $\overline{x}=1-x$
 - Objective O a PB expression $\sum_{i=1}^{m} c_i b_i$ to be minimized.
- Goal: Compute assignment (solution) α that satisfies F and minimizes $\alpha(O) = \sum_{i=1}^{m} c_i \cdot \alpha(b_i)$

Satisfiability under Assumptions

- Assumptions A, a set of literals.
- Solve-Assumps $(F, \mathcal{A}, clim)$ returns α s.t. $\alpha(\ell) = 1$ for all $\ell \in \mathcal{A}$, unsat, or "unknown" after clim conflicts.
- We add a conflict limit to escape difficult calls.

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3,$$

$$b_1 + b_4 \ge 1,$$

$$b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

- Solve-Assumps $(F, \{\overline{b_1}, \overline{b_5}\})$ returns $\alpha = \{\overline{b_1}, b_2, b_3, b_4, \overline{b_5}\}$, cost 10.
- ullet Solve-Assumps $(F,\{\overline{b_1},\overline{b_4}\})$ returns unsat.
- An optimal solution is $\{\overline{b_1}, \overline{b_2}, b_3, b_4, b_5\}$ has cost 9.

$$F = \{ b_1 + b_2 + b_3 + b_4 + b_5 \ge 3,$$

$$b_1 + b_4 \ge 1,$$

$$b_2 + b_5 \ge 1 \}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

- Solve-Assumps $(F, \{\overline{b_1}, \overline{b_5}\})$ returns $\alpha = \{\overline{b_1}, b_2, b_3, b_4, \overline{b_5}\}$, cost 10.
- Solve-Assumps $(F, \{\overline{b_1}, \overline{b_4}\})$ returns unsat.
- An optimal solution is $\{\overline{b_1}, \overline{b_2}, b_3, b_4, b_5\}$ has cost 9.

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3,$$

$$b_1 + b_4 \ge 1,$$

$$b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

- Solve-Assumps $(F, \{\overline{b_1}, \overline{b_5}\})$ returns $\alpha = \{\overline{b_1}, b_2, b_3, b_4, \overline{b_5}\}$, cost 10.
- ullet Solve-Assumps $(F, \{\overline{b_1}, \overline{b_4}\})$ returns unsat.
- An optimal solution is $\{\overline{b_1}, \overline{b_2}, b_3, b_4, b_5\}$ has cost 9.

$$F = \{ b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, \\ b_1 + b_4 \ge 1, \\ b_2 + b_5 \ge 1 \}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

- Solve-Assumps $(F, \{\overline{b_1}, \overline{b_5}\})$ returns $\alpha = \{\overline{b_1}, b_2, b_3, b_4, \overline{b_5}\}$, cost 10.
- ullet Solve-Assumps $(F,\{\overline{b_1},\overline{b_4}\})$ returns unsat.
- An optimal solution is $\{\overline{b_1}, \overline{b_2}, b_3, b_4, b_5\}$ has cost 9.

Existing approaches to PBO

- Complete:
 - CDCL-based
 - core-guided
 - implicit-hitting set
 - solution-improving
- Any-time:
 - Solution-Improving
 - Stochastic Local Search
 - Oracle-based Local Search
- Early work: convert to CNF
- More recent: direct reasoning with cutting planes

[Devriendt, Gocht, Demirovic, Nordström, and Stuckey, 2021b]

[Elffers and Nordström, 2018]

[Devriendt, Gleixner, and Nordström, 2021a]

[Smirnov, Berg, and Järvisalo, 2022]

[Smirnov, Berg, and Järvisalo, 2021]

[Berre and Parrain, 2010]

[Eén and Sörensson, 2006]

[Sheini and Sakallah, 2006]

[Gebser, Kaufmann, Neumann, and Schaub, 2007]

Our Approach

Combination of solution improving search and oracle-based local search.

Solution Improving Search

SIS(F, O)

Generate initial solution α_{best}

Update $F \leftarrow F \cup \{O < O(\alpha_{best})\}$

Repeat the following:

• Query: Solve-Assumps (F,\emptyset)

If SAT: Update α_{best}

 $F \leftarrow F \cup \{O < O(\alpha_{best})\}$

Else: $\alpha_{\textit{best}}$ is optimal.

Can return the best α_{best} at any time

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, \ b_1 + b_4 \ge 1, \ b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, \ b_1 + b_4 \ge 1, \ b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$\mathsf{ub} = \infty \qquad \qquad \alpha_{\mathit{best}} = \emptyset$$

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, \ b_1 + b_4 \ge 1, \ b_2 + b_5 \ge 1$$

$$3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5 < \infty\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$ub = \infty$$

$$\alpha_{best} = \emptyset$$

- **1** Initialize $ub = \infty$ and $\alpha_{best} = \emptyset$
- 2 Repeat:
 - ▶ Add *O* < ub to *F*
 - ▶ Invoke Solve-Assumps (F, \emptyset)
 - If new solution update ub and α_{best}
 - Else return α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5 < \infty\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$\mathsf{ub} = \infty \qquad \qquad \alpha_{\textit{best}} = \emptyset$$

$$Solve-Assumps(F,\emptyset) = \{b_1,b_2,b_3,b_4,b_5\}$$

- **1** Initialize $ub = \infty$ and $\alpha_{best} = \emptyset$
- 2 Repeat:
 - ► Add O < ub to F
 - ▶ Invoke Solve-Assumps (F, \emptyset)
 - If new solution update ub and α_{best}
 - ightharpoonup Else return α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5 < \infty\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

ub = 13
$$\alpha_{best} = \{b_1, b_2, b_3, b_4, \overline{b_5}\}$$

 $\mathtt{Solve-Assumps}(F,\emptyset) = \{b_1,b_2,b_3,b_4,\overline{b_5}\}$

- **1** Initialize $ub = \infty$ and $\alpha_{best} = \emptyset$
- Repeat:
 - ► Add O < ub to F
 - ▶ Invoke Solve-Assumps (F,\emptyset)
 - ightharpoonup If new solution update ub and $lpha_{\it best}$
 - ightharpoonup Else return α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, \ b_1 + b_4 \ge 1, \ b_2 + b_5 \ge 1$$

$$3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5 < 13\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$ub = 13$$

$$\alpha_{best} = \{b_1, b_2, b_3, b_4, \overline{b_5}\}$$

- **1** Initialize ub = ∞ and $\alpha_{best} = \emptyset$
- 2 Repeat:
 - ▶ Add *O* < ub to *F*
 - ▶ Invoke Solve-Assumps (F, \emptyset)
 - If new solution update ub and α_{best}
 - Else return α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1 \\ 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5 < 13\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$\mathsf{ub} = 13 \qquad \qquad \alpha_{\textit{best}} = \{\textit{b}_1, \textit{b}_2, \textit{b}_3, \textit{b}_4, \overline{\textit{b}_5}\}$$

 $\mathtt{Solve-Assumps}(F,\emptyset) = \{\overline{b_1}, \overline{b_2}, b_3, b_4, b_5\}$

- **1** Initialize $ub = \infty$ and $\alpha_{best} = \emptyset$
- ② Repeat:
 - ► Add O < ub to F
 - ▶ Invoke Solve-Assumps (F, \emptyset)
 - If new solution update ub and α_{best}
 - ightharpoonup Else return α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1 \\ 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5 < 13\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$\mathsf{ub} = 9 \qquad \qquad \alpha_{\textit{best}} = \{\overline{\textit{b}_1}, \overline{\textit{b}_2}, \textit{b}_3, \textit{b}_4, \textit{b}_5\}$$

 $\mathtt{Solve-Assumps}(F,\emptyset) = \{\overline{b_1},\overline{b_2},b_3,b_4,b_5\}$

- **1** Initialize $ub = \infty$ and $\alpha_{best} = \emptyset$
- Repeat:
 - ► Add O < ub to F
 - ▶ Invoke Solve-Assumps (F,\emptyset)
 - ▶ If new solution update ub and $\alpha_{\textit{best}}$
 - ightharpoonup Else return α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, \ b_1 + b_4 \ge 1, \ b_2 + b_5 \ge 1$$

$$3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5 < 9\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$ub = 9$$

$$\alpha_{best} = \{\overline{b_1}, \overline{b_2}, b_3, b_4, b_5\}$$

- **1** Initialize ub = ∞ and $\alpha_{best} = \emptyset$
- 2 Repeat:
 - ▶ Add *O* < ub to *F*
 - ▶ Invoke Solve-Assumps (F, \emptyset)
 - If new solution update ub and α_{best}
 - Else return α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1 \\ 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5 < 9\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$\mathsf{ub} = 9 \qquad \qquad \alpha_{\textit{best}} = \{\overline{\textit{b}_1}, \overline{\textit{b}_2}, \textit{b}_3, \textit{b}_4, \textit{b}_5\}$$

 $\mathtt{Solve-Assumps}(F,\emptyset) = \mathtt{unsat}$

- **1** Initialize $ub = \infty$ and $\alpha_{best} = \emptyset$
- 2 Repeat:
 - ► Add O < ub to F
 - ► Invoke Solve-Assumps (F, \emptyset)
 - If new solution update ub and α_{best}
 - Else return α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, \ b_1 + b_4 \ge 1, \ b_2 + b_5 \ge 1$$

$$3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5 < 9\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$\mathsf{ub} = 9 \qquad \alpha_{best} = \{\overline{b_1}, \overline{b_2}, b_3, b_4, b_5\}$$

- **1** Initialize $ub = \infty$ and $\alpha_{best} = \emptyset$
- 2 Repeat:
 - ► Add *O* < ub to *F*
 - ▶ Invoke Solve-Assumps (F, \emptyset)
 - If new solution update ub and α_{best}
 - ▶ Else return α_{best}

Oracle-Based Local Search

[Nadel, 2019, 2020]

Traditional SLS

objective vars

$$b_1, \overline{b_2}, b_3, \overline{b_4} \mid \ell_1, \ell_2, \ell_3, \ell_4$$

$$\downarrow \text{flip } \ell_3$$

$$b_1, \overline{b_2}, b_3, \overline{b_4} \mid \ell_1, \ell_2, \overline{\ell_3}, \ell_4$$

- 1. Pick a variable
- 2. Check feasibility (directly)
- 3. Update $\alpha_{\textit{best}}$.

Oracle-Based Local Search

[Nadel, 2019, 2020]

Traditional SLS

objective vars

$$b_1, \overline{b_2}, b_3, \overline{b_4} \mid \ell_1, \ell_2, \ell_3, \ell_4$$

$$\downarrow \text{flip } \ell_3$$

$$b_1, \overline{b_2}, b_3, \overline{b_4} \mid \ell_1, \ell_2, \overline{\ell_3}, \ell_4$$

- 1. Pick a variable
- Check feasibility (directly)
- 3. Update α_{best} .

Oracle-based SLS

$$b_3, \overline{b_2}, b_1, \overline{b_4}$$

$$\downarrow \text{flip } b_3$$
 $\overline{b_3}, \overline{b_2}, b_1, \overline{b_4}$

- 1. Shuffle objective
- 2. Pick first variable that incurs cost
- 3. Check feasibility

Solve-Assumps $(F, \{\overline{b_2}, \overline{b_3}, \overline{b_4}\})$

4. Update α_{best} .

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

Oracle-based local search

lacktriangle Initialize ub and $lpha_{\it best}$

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$\mathsf{ub} = 17 \qquad \qquad \alpha_{\textit{best}} = \{b_1, b_2, b_3, \overline{b_4}, b_5\}$$

Oracle-based local search

lacktriangle Initialize ub and $lpha_{\it best}$

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

ub = 17
$$\alpha_{best} = \{b_1, b_2, b_3, \overline{b_4}, b_5\}$$

shuffled-objective-vars = $\{b_1, b_4, b_2, b_3, b_5\}$

- Initialize ub and α_{best}
- Repeat until timeout
 - Shuffle objective vars
 - ▶ Try to locally improve the solution one variable at the time
 - If better solution update ub and α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$\begin{aligned} \text{ub} &= 17 & \alpha_{\textit{best}} &= \{b_1, b_2, b_3, \overline{b_4}, b_5\} \\ \text{shuffled-objective-vars} &= \{b_1, b_4, b_2, b_3, b_5\} \end{aligned}$$

Solve-Assumps $(F, \{\overline{b_1}\})$

- **1** Initialize ub and α_{best}
- Repeat until timeout
 - Shuffle objective vars
 - ► Try to locally improve the solution one variable at the time
 - If better solution update ub and α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

ub = 17
$$\alpha_{best} = \{b_1, b_2, b_3, \overline{b_4}, b_5\}$$

shuffled-objective-vars = $\{b_1, b_4, b_2, b_3, b_5\}$

$${\tt Solve-Assumps}(F,\{\overline{b_1}\})$$

Result (e.g.)
$$\{\overline{b_1}, b_2, b_3, b_4, \overline{b_5}\}$$
, cost 10

- **1** Initialize ub and α_{best}
- Repeat until timeout
 - Shuffle objective vars
 - ► Try to locally improve the solution one variable at the time
 - If better solution update ub and α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

ub = 10
$$\alpha_{best} = \{\overline{b_1}, b_2, b_3, b_4, \overline{b_5}\}$$

shuffled-objective-vars = $\{b_1, b_4, b_2, b_3, b_5\}$

$${\tt Solve-Assumps}(F,\{\overline{b_1}\})$$

Result (e.g.)
$$\{\overline{b_1}, b_2, b_3, b_4, \overline{b_5}\}$$
, cost 10

- Initialize ub and α_{best}
- Repeat until timeout
 - Shuffle objective vars
 - Try to locally improve the solution one variable at the time
 - If better solution update ub and α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$\begin{aligned} \text{ub} &= 10 & \alpha_{\textit{best}} &= \{\overline{\textit{b}_1}, \textit{b}_2, \textit{b}_3, \textit{b}_4, \overline{\textit{b}_5}\} \\ \text{shuffled-objective-vars} &= \{\textit{b}_1, \textit{b}_4, \textit{b}_2, \textit{b}_3, \textit{b}_5\} \end{aligned}$$

 ${\tt Solve-Assumps}(F,\{\overline{b_1},\overline{b_4}\})$

- **1** Initialize ub and α_{best}
- Repeat until timeout
 - Shuffle objective vars
 - Try to locally improve the solution one variable at the time
 - If better solution update ub and α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$\begin{aligned} \text{ub} &= 10 & \alpha_{\textit{best}} &= \{\overline{\textit{b}_1}, \textit{b}_2, \textit{b}_3, \textit{b}_4, \overline{\textit{b}_5}\} \\ \text{shuffled-objective-vars} &= \{\textit{b}_1, \textit{b}_4, \textit{b}_2, \textit{b}_3, \textit{b}_5\} \end{aligned}$$

Solve-Assumps $(F, \{\overline{b_1}, \overline{b_4}\})$ Result unsat

- **1** Initialize ub and α_{best}
- Repeat until timeout
 - Shuffle objective vars
 - Try to locally improve the solution one variable at the time
 - If better solution update ub and α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$\begin{aligned} \text{ub} &= 10 & \alpha_{\textit{best}} &= \{\overline{\textit{b}_1}, \textit{b}_2, \textit{b}_3, \textit{b}_4, \overline{\textit{b}_5}\} \\ \text{shuffled-objective-vars} &= \{\textit{b}_1, \textit{b}_4, \textit{b}_2, \textit{b}_3, \textit{b}_5\} \end{aligned}$$

 $\texttt{Solve-Assumps}(F,\{\overline{b_1},b_4,\overline{b_2}\})$

- **1** Initialize ub and α_{best}
- Repeat until timeout
 - Shuffle objective vars
 - Try to locally improve the solution one variable at the time
 - If better solution update ub and α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$\begin{aligned} \text{ub} &= 10 & \alpha_{\textit{best}} &= \{\overline{\textit{b}_1}, \textit{b}_2, \textit{b}_3, \textit{b}_4, \overline{\textit{b}_5}\} \\ \text{shuffled-objective-vars} &= \{\textit{b}_1, \textit{b}_4, \textit{b}_2, \textit{b}_3, \textit{b}_5\} \end{aligned}$$

$${\tt Solve-Assumps}(\textit{F},\{\overline{\textit{b}_{1}},\textit{b}_{4},\overline{\textit{b}_{2}}\})$$

Result (e.g.)
$$\{\overline{b_1},\overline{b_2},b_3,b_4,b_5\}$$
, cost 9

- **1** Initialize ub and α_{best}
- Repeat until timeout
 - Shuffle objective vars
 - ► Try to locally improve the solution one variable at the time
 - If better solution update ub and α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

ub = 9
$$\alpha_{best} = \{\overline{b_1}, \overline{b_2}, b_3, b_4, b_5\}$$

shuffled-objective-vars = $\{b_1, b_4, b_2, b_3, b_5\}$

$${\tt Solve-Assumps}({\sf F},\{\overline{b_1},b_4,\overline{b_2}\})$$

Result (e.g.)
$$\{\overline{b_1},\overline{b_2},b_3,b_4,b_5\}$$
, cost 9

- Initialize ub and α_{best}
- Repeat until timeout
 - Shuffle objective vars
 - Try to locally improve the solution one variable at the time
 - If better solution update ub and α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

ub = 9
$$\alpha_{\textit{best}} = \{\overline{b_1}, \overline{b_2}, b_3, b_4, b_5\}$$

shuffled-objective-vars = $\{b_1, b_4, b_2, b_3, b_5\}$

$$\texttt{Solve-Assumps}(\textit{F},\{\overline{\textit{b}_{1}},\textit{b}_{4},\overline{\textit{b}_{2}},\overline{\textit{b}_{3}}\})$$

- **1** Initialize ub and α_{best}
- Repeat until timeout
 - Shuffle objective vars
 - Try to locally improve the solution one variable at the time
 - If better solution update ub and α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$\begin{aligned} \mathsf{ub} &= 9 & \alpha_{\textit{best}} &= \{\overline{\textit{b}_1}, \overline{\textit{b}_2}, \textit{b}_3, \textit{b}_4, \textit{b}_5\} \\ \mathsf{shuffled-objective-vars} &= \{\textit{b}_1, \textit{b}_4, \textit{b}_2, \textit{b}_3, \textit{b}_5\} \end{aligned}$$

Solve-Assumps $(F, \{\overline{b_1}, b_4, \overline{b_2}, \overline{b_3}\})$ Result unsat

Oracle-based local search

- **1** Initialize ub and α_{best}
- Repeat until timeout
 - Shuffle objective vars
 - Try to locally improve the solution one variable at the time
 - If better solution update ub and α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$\begin{aligned} \mathsf{ub} &= 9 & \alpha_{\textit{best}} &= \{\overline{\textit{b}_1}, \overline{\textit{b}_2}, \textit{b}_3, \textit{b}_4, \textit{b}_5\} \\ \mathsf{shuffled-objective-vars} &= \{\textit{b}_1, \textit{b}_4, \textit{b}_2, \textit{b}_3, \textit{b}_5\} \end{aligned}$$

 $\mathtt{Solve-Assumps}(\mathit{F},\{\overline{b_1},\mathit{b_4},\overline{b_2},\mathit{b_3},\overline{b_5}\})$

Oracle-based local search

- **1** Initialize ub and α_{best}
- Repeat until timeout
 - Shuffle objective vars
 - Try to locally improve the solution one variable at the time
 - If better solution update ub and α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

$$\begin{aligned} \mathsf{ub} &= 9 & \alpha_{\textit{best}} &= \{\overline{\textit{b}_1}, \overline{\textit{b}_2}, \textit{b}_3, \textit{b}_4, \textit{b}_5\} \\ \mathsf{shuffled-objective-vars} &= \{\textit{b}_1, \textit{b}_4, \textit{b}_2, \textit{b}_3, \textit{b}_5\} \end{aligned}$$

Solve-Assumps $(F, \{\overline{b_1}, b_4, \overline{b_2}, b_3, \overline{b_5}\})$ Result unsat

Oracle-based local search

- **1** Initialize ub and α_{best}
- Repeat until timeout
 - Shuffle objective vars
 - ► Try to locally improve the solution one variable at the time
 - If better solution update ub and α_{best}

$$F = \{b_1 + b_2 + b_3 + b_4 + b_5 \ge 3, b_1 + b_4 \ge 1, b_2 + b_5 \ge 1\}$$

$$O = 3b_1 + 6b_2 + 3b_3 + b_4 + 5b_5$$

ub = 9
$$\alpha_{best} = \{\overline{b_1}, \overline{b_2}, b_3, b_4, b_5\}$$

shuffled-objective-vars = $\{\underline{b_1}, b_4, b_2, b_3, b_5\}$

MS-Beaver

 $\texttt{Solve-Assumps}(F,\{\overline{b_3},b_4,\overline{b_2}\})$

PoloSAT

 ${\tt Solve-Assumps}(F,\{\overline{b_2}\})$

Variants

- ullet Ms. Beaver o use the "full" prefix as assumptions.
- ullet PoloSAT o use only the current variable

OraSLS(F, Objective O)

Generate initial solution α_{best} Update $F \leftarrow F \cup \{O < O(\alpha_{best})\}$ Repeat the following:

- Select order of objective variables
- Initialize assumptions $\mathcal{A} \leftarrow \emptyset$
- For each $b \in \mathbf{reordered}$ objective variables:
 - ▶ Solve F under $A \cup \{\overline{b}\}$ with conflict-limit.
 - ▶ If SAT: Fix $\mathcal{A} \leftarrow \mathcal{A} \cup \{\overline{b}\}$ If solution is better: Update α_{best} and $F \leftarrow F \cup \{O < O(\alpha_{best})\}$
 - ► Else: Fix $A \leftarrow A \cup \{b\}$ If fail-limit is reached: Break
- ullet If $lpha_{\it best}$ was not improved for stagnation-limit number of times:
 - ► Solve *F* without conflict-limit or assumptions
 - ▶ If SAT: Update $\alpha_{\textit{best}}$ and $F \leftarrow F \cup \{O < O(\alpha_{\textit{best}})\}$
 - ▶ Else: Return α_{best}

Our approach: "Bucket Shuffle"

- Start with decreasing order of cost
- Partition into n buckets of equal size
- Shuffle each bucket separately

Our approach: "Bucket Shuffle"

- Start with decreasing order of cost
- Partition into n buckets of equal size
- Shuffle each bucket separately
- ullet On every odd iteration reverse the list o diversification

Our approach: "Bucket Shuffle"

- Start with decreasing order of cost
- Partition into *n* buckets of equal size
- Shuffle each bucket separately
- ullet On every odd iteration reverse the list o diversification

Example with n = 2

$$O = 6b_2 + 5b_5 + 3b_3 + 3b_1 + b_4$$

Our approach: "Bucket Shuffle"

- Start with decreasing order of cost
- Partition into *n* buckets of equal size
- Shuffle each bucket separately
- ullet On every odd iteration reverse the list o diversification

Example with n = 2

$$O = 6b_2 + 5b_5 + 3b_3 + 3b_1 + b_4$$

 $\{b_2, b_5, b_3\}$ $\{b_1, b_4\}$ partition

Our approach: "Bucket Shuffle"

- Start with decreasing order of cost
- Partition into *n* buckets of equal size
- Shuffle each bucket separately
- ullet On every odd iteration reverse the list o diversification

Example with n = 2

$$O=6b_2+5b_5+3b_3+3b_1+b_4$$
 $\{b_2,b_5,b_3\}$ $\{b_1,b_4\}$ partition $\{b_3,b_2,b_5\}$ $\{b_1,b_4\}$ shuffle

Our approach: "Bucket Shuffle"

- Start with decreasing order of cost
- Partition into *n* buckets of equal size
- Shuffle each bucket separately
- ullet On every odd iteration reverse the list o diversification

Example with n = 2

$$O=6b_2+5b_5+3b_3+3b_1+b_4$$
 $\{b_2,b_5,b_3\}$ $\{b_1,b_4\}$ partition $\{b_3,b_2,b_5\}$ $\{b_1,b_4\}$ shuffle

shuffled-objective-vars = $\{b_3, b_2, b_5, b_1, b_4\}$

Heuristics

Initial Solution Computation

- Bump activities of objective variables proportionately to their coefficients.
- Try the assignment that does not incur cost first

Heuristics

Initial Solution Computation

- Bump activities of objective variables proportionately to their coefficients.
- Try the assignment that does not incur cost first

Oracle calls in "internal loop"

- Set polarity selection to match the best known solution.
- Also used in MaxSAT [Demirovic and Stuckey, 2019; Berg, Demirovic, and Stuckey, 2019; Nadel, 2020]

Experimental Setup

- Instantiate OraSLS on top of the decision procedure in RoundingSAT (commit: a7fe32d8)
- Compare solution quality of OraSLS with:
 - LS-PBO (Stochastic Local Search)
 - RoundingSAT (CDCL, core-guided, cutting planes)
 - ★ designed for complete setting
 - ► SIS: solution-improving search in OraSLS codebase
 - ► SIS+: SIS with polarity selection and activity bumping.
- Metric: Average MSE score

$$\mathsf{score}(\mathsf{solver},\mathsf{instance}) = \frac{\mathsf{best\text{-}cost}(\mathcal{I}) + 1}{\mathsf{solver\text{-}cost}(\mathcal{I}) + 1} \in [0,1]$$

 $0 \rightarrow \text{no sol}, 1 \rightarrow \text{best-known sol}.$

Parameters & Overall Results

Parameters

- Number of buckets = 8
- stagnation-limit = 1
- conflict-limit = 20
- fail-limit = 10

Parameters & Overall Results

Parameters

- Number of buckets = 8
- stagnation-limit = 1
- conflict-limit = 20
- fail-limit = 10

Results after 5 minutes (Average scores, TO \rightarrow not solutions found)

Solver	Score	#TO
OraSLS	0.8423	89
RoundingSAT	0.8300	83
SIS+	0.8082	111
SIS	0.7363	114
LS-PBO	0.7280	194

OraSLS vs. RoundingSAT

Domains with more than 0.1 score difference

		Roundi	ngSAT	OraSLS	
Benchmark domain	#	Score	#TO	Score	#TO
MANETS	20	0.52	0	0.87	2
course-alloc	6	0.55	0	0.92	0
decomp	10	0.82	1	0.99	0
lecture-timetabling	20	0.69	0	0.93	0
unibo-various	20	0.61	4	0.77	4
wnq	16	0.65	0	0.42	0
All domains	865	0.83	83	0.84	89
Wins (#domains)			1		5

OraSLS vs. LS-PBO

Domains with more than 0.1 score difference

		LS-F	РВО	OraSLS		
Benchmark domain	#	Score	#TO	Score	#TO	
MANETS	20	0.19	16	0.87	2	
airplane-cost-quality	20	0.80	4	1.00	0	
decomp	10	0.88	0	0.99	0	
domset	15	1.00	0	0.85	0	
golomb-rulers	20	0.52	8	0.84	3	
haplotype-inf	20	0.99	0	0.77	0	
lecture-timetabling	20	0.31	0	0.93	0	
logic-synthesis	20	1.00	0	0.89	0	
market-split	20	0.19	11	0.35	11	
miplib-neos	20	0.67	5	0.81	3	
miplib-various	20	0.48	10	0.84	2	
netlib-various	20	0.43	11	0.58	7	
number-factorization	20	0.20	16	1.00	0	
plan-museum-visits	20	0.40	12	0.89	2	
prime-implicants	20	0.55	9	0.75	5	
radar-station-alloc	12	1.00	0	0.16	10	
repair-bionet	20	0.82	0	1.00	0	
transport-systems	20	0.89	0	1.00	0	
transportation	20	0.20	16	0.71	4	
unibo-various	20	0.18	15	0.77	4	
upgradability	20	0.76	1	1.00	0	
vm-workload	20	0.60	8	0.44	11	
wnq	16	1.00	0	0.42	0	
workshift-design	20	0.12	17	0.98	0	
All domains	865	0.73	194	0.84	89	
Wins (#domains)			6		18	

OraSLS vs. SIS and SIS+

Domains with more than 0.1 score difference

		CIC		CIC		0 00	
		SIS		SIS+		OraSLS	
Benchmark domain	#	Score	#TO	Score	#TO	Score	#TO
MANETS	20	0.45	0	0.74	2	0.87	2
aries-da-nrp	20	0.44	1	0.63	2	0.68	2
course-alloc	6	0.54	0	0.93	0	0.92	0
cryptography	11	0.59	0	0.66	0	0.73	0
decomp	10	0.33	6	0.98	0	0.99	0
haplotype-inf	20	0.61	0	0.74	0	0.77	0
miplib-neos	20	0.69	5	0.72	5	0.81	3
netlib-various	20	0.34	11	0.37	11	0.58	7
repair-bionet	20	0.00	0	1.00	0	1.00	0
transportation	20	0.48	10	0.44	10	0.71	4
unibo-various	20	0.46	8	0.55	8	0.77	4
upgradability	20	0.26	1	0.95	1	1.00	0
wnq	16	0.53	0	0.41	0	0.42	0
workshift-design	20	0.53	0	0.94	0	0.98	0
All domains	865	0.74	114	0.81	111	0.84	89
Wins (#domains)			1		2		12

OraSLS vs. LS-PBO (left) and RoundingSAT (right)

Conclusions

- Anytime constraint optimization finds applications in numerous applications.
- We study the integration of oracle-based SLS and solution-improving search in PBO.
- A careful combination of the two achieves state-of-the-art performance
 - While being orthogonal with previous approaches.

The solver is available at:

https://bitbucket.org/coreo-group/orasls/src/master/

Bibliography I

- Jeremias Berg, Emir Demirovic, and Peter J. Stuckey. Core-boosted linear search for incomplete maxsat. In CPAIOR, volume 11494 of Lecture Notes in Computer Science, pages 39–56. Springer, 2019.
- Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. J. Satisf. Boolean Model. Comput., 7(2-3):59-6, 2010. doi: 10.3233/sat190075.
- Emir Demirovic and Peter J. Stuckey. Techniques inspired by local search for incomplete maxsat and the linear algorithm: Varying resolution and solution-guided search. In CP, volume 11802 of Lecture Notes in Computer Science, pages 177–194. Springer, 2019.
- Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to relax: Integrating 0-1 integer linear programming with pseudo-Boolean conflict-driven search. Constraints, 2021a. ISSN 1383-7133. doi: 10.1007/s10601-020-09318-x.
- Jo Devriendt, Stephan Gocht, Emir Demirovic, Jakob Nordström, and Peter J. Stuckey. Cutting to the core of pseudo-boolean optimization: Combining core-guided search with cutting planes reasoning. In AAAI, pages 3750–3758. AAAI Press, 2021b.
- Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into SAT. J. Satisf. Boolean Model. Comput., 2(1-4):1-26, 2006. doi: 10.3233/SAT190014. URL https://doi.org/10.3233/sat190014.
- Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving. In Jérôme Lang, editor, IJCAI, pages 1291–1299. ijcai.org, 2018.
- Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Conflict-driven answer set solving. In Manuela M. Veloso, editor, IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, page 386, 2007. URL http://ijcai.org/Proceedings/07/Papers/060.pdf.
- Alexander Nadel. Anytime weighted MaxSAT with improved polarity selection and bit-vector optimization. In FMCAD, pages 193–202. IEEE, 2019.
- Alexander Nadel. Polarity and variable selection heuristics for SAT-based anytime MaxSAT. J. Satisf. Boolean Model. Comput., 12(1):17–22, 2020.
- Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid pseudo-boolean SAT solver. *J. Satisf. Boolean Model. Comput.*, 2(1-4):165–189, 2006. doi: 10.3233/SAT190020. URL https://doi.org/10.3233/sat190020.

20 / 21

Bibliography II

Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Pseudo-boolean optimization by implicit hitting sets. In CP, volume 210 of LIPIcs, pages 51:1–51:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Improvements to the implicit hitting set approach to pseudo-boolean optimization. In SAT, volume 236 of LIPIcs, pages 13:1–13:18. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2022.