Backpropagation

Backpropagation Algorithm

Step 1:

Inputs X, arrive through the preconnected path.

Step 2:

The input is modeled using true weights W. Weights are usually chosen randomly.

Step 3:

Calculate the output of each neuron from the input layer to the hidden layer to the output layer.

Backpropagation Algorithm

Step 4:

Calculate the error in the outputs

Backpropagation Error= Actual Output - Desired Output

Step 5:

From the output layer, go back to the hidden layer to adjust the weights to reduce the error.

Step 6:

Repeat the process until the desired output is achieved.

Parameters

- $x = inputs training vector <math>x = (x_1, x_2, \dots, x_n)$.
- $t = target vector t = (t_1, t_2, t_n)$
- δ_k = error at output unit.
- δ_i = error at hidden layer.
- α = learning rate.
- V_{0i} = bias of hidden unit j.

Backpropagation Algorithm

Training Algorithm:

- Step 1: Initialize weight to small random values.
- **Step 2:** While the steps stopping condition is to be false do step 3 to 10.
- Step 3: For each training pair do step 4 to 9 (Feed-Forward).
- **Step 4:** Each input unit receives the signal unit and transmits the signal x_i signal to all the units.

Training Algorithm

Step 5: Each hidden unit Zj (z=1 to a) sums its weighted input signal
to calculate its net input

$$z_{inj} = v_{0j} + \Sigma x_i v_{ij}$$
 (i=1 to n)

Applying activation function $z_j = f(z_{inj})$ and sends this signals to all units in the layer about i.e output units

For each output $l=unit y_k = (k=1 to m)$ sums its weighted input signals.

$$y_{ink} = w_{0k} + \sum z_i w_{jk}$$
 (j=1 to a)

and applies its activation function to calculate the output signals.

$$y_k = f(y_{ink})$$

Backpropagation Error

• Step 6: Each output unit y_k (k=1 to n) receives a target pattern corresponding to an input pattern then error is calculated as:

$$\delta_k = (t_k - y_k) + y_{ink}$$

• Step 7: Each hidden unit Z_j (j=1 to a) sums its input from all units in the layer above

$$\delta_{inj} = \Sigma \delta_j W_{jk}$$

The error information term is calculated as:

$$\delta_{j} = \delta_{inj} + z_{inj}$$

Updation of weight and bias

• Step 8: Each output unit y_k (k=1 to m) updates its bias and weight (j=1 to a). The weight correction term is given by :

$$\Delta w_{jk} = \alpha \delta_k z_j$$

and the bias correction term is given by $\Delta w_k = \alpha \delta_k$

therefore
$$w_{jk(new)} = w_{jk(old)} + \Delta w_{jk}$$

$$W_{Ok(new)} = W_{ok(old)} + \Delta W_{ok}$$

for each hidden unit z_j (j=1 to a) update its bias and weights (i=0 to n) the weight connection term

$$\Delta v_{ij} = \alpha \delta_j x_i$$

and the bias connection on term

$$\Delta v_{0j} = \alpha \delta_j$$

Therefore $v_{ij(new)} = v_{ij(old)} + \Delta v_{ij}$

$$V_{0j(new)} = V_{0j(old)} + \Delta V_{0j}$$

• **Step 9:** Test the stopping condition. The stopping condition can be the minimization of error, number of epochs.

Backpropagation-Sample model

Solution in separate pdf

What is overfitting?

- It is a common pitfall in <u>deep learning</u> algorithms in which a model tries to fit the <u>training</u> <u>data</u> entirely and ends up memorizing the data patterns and the noise and random fluctuations.
- These models fail to generalize and perform well in the case of unseen data scenarios, defeating the model's purpose.
- When can overfitting occur?
- The high variance of the model performance is an indicator of an overfitting problem.
- The training time of the model or its architectural complexity may cause the model to overfit.
- If the model trains for too long on the training data or is too complex, it learns the noise or irrelevant information within the dataset.

Bias-variance

• Bias:

- Bias measures the difference between the model's prediction and the target value.
- If the model is oversimplified, then the predicted value would be far from the ground truth resulting in more bias.

Variance:

- Variance is the measure of the inconsistency of different predictions over varied datasets.
- If the model's performance is <u>tested on different datasets</u>, the closer the prediction, the lesser the variance.
- Higher variance is an indication of overfitting in which the model loses the ability to generalize.

Bias-variance

- Bias-variance tradeoff:
- A simple linear model is expected to have a high bias and low variance due to less complexity of the model and fewer trainable parameters.
- On the other hand, complex non-linear models tend to observe an opposite behavior. In an ideal scenario, the model would have an optimal balance of bias and variance.

Overfitting happens when?

- The data used for training is not cleaned and contains garbage values.
 The model captures the noise in the training data and fails to generalize the model's learning.
- The model has a high variance.
- The training data size is not enough, and the model trains on the limited training data for several epochs.
- The architecture of the model has several neural layers stacked together. Deep neural networks are complex and require a significant amount of time to train, and often lead to overfitting the training set.

How to detect overfit models?

- Detecting overfitting is technically not possible unless we test the data.
 - K-fold cross-validation is one of the most popular techniques commonly used to detect overfitting.
 - We split the data points into k equally sized subsets in K-folds cross-validation, called "folds." One split subsets act as the testing set, and the remaining folds will train the model.
 - After all the iterations, we average the scores to assess the performance of the overall model.

How to detect overfit models?

Techniques to avoid overfitting

Train with more cleaned data

assumption in this method is that the data to be fed into the model should be clean;
 otherwise, it would worsen the problem of overfitting

Data augmentation

makes a sample data look slightly different every time the model processes it.

Feature selection

 model can detect many redundant features or features determinable from other features leading to unnecessary complexity

Simplify data

 by decreasing the complexity of the model to make it simple enough that it does not overfit pruning a decision tree, reducing the number of parameters in a neural network

Early stopping

• Stopping the training of deep learning models where the number of epochs is set high

Dropout techniques

randomly selecting nodes and removing them from training

Train, Validation, and Test Datasets

- To reiterate the findings from researching the experts above, this section provides unambiguous definitions of the three terms.
- **Training Dataset**: The sample of data used to fit the model.
- Validation Dataset: The sample of data used to provide an unbiased evaluation of a model fit on the training dataset while tuning model hyperparameters. The evaluation becomes more biased as skill on the validation dataset is incorporated into the model configuration.
- **Test Dataset**: The sample of data used to provide an unbiased evaluation of a final model fit on the training dataset.