Статика. Соединение оконных блоков

Основы статических расчетов оконных конструкций

Принятие во внимание ожидаемых эксплуатационных нагрузок необходимо по причине безопасности. Величины нагрузок и воздействий, а также их сочетание определено в строительных нормах и правилах «Нагрузки и воздействия» - СНиП 2.01.07-85* с изменением №2 от 29.05.03.

Окна не предназначены для восприятия силовых нагрузок со стороны здания. Непосредственно на окна действующие силы, главным образом это ветровая нагрузка, должны быть переданы через окно на строительный объект. При этом элементы окна не должны деформироваться настолько, чтобы вызвать нарушение работы окна и отдельных его элементов.

Жестко закрепленная в проеме коробка с шагом крепежных элементов не превышающим 700 мм (нормы для ПВХ профилей) не подвергается статическим расчетам.

Таким образом, расчету подвергаются только свободностоящие элементы оконной конструкции (импосты, соединители, коробки, пилястры). В качестве расчетного случая изгиба этих свободностоящих элементов рассматривается двухопертая балка с трапециидальной распределенной нагрузкой. Потребная изгибная жесткость определяется по формуле (см. ниже).

Расчет по этой формуле достаточно трудоемок. Поэтому рекомендуется работать с таблицами, в которых в зависимости от длины свободностоящего элемента и ширины полей нагрузки уже просчитаны потребный момент инерции и потребная изгибная жесткость из условий допустимого прогиба 1/300 длины этого элемента. Ветровая нагрузка в этих таблицах взята из немецких промышленных норм DIN 1055, которая в большинстве случаев превышает значение ветровой нагрузки просчитанной по СНиП 2.01.07-85* даже с учетом пульсационной составляющей. Поэтому нижеприведенные таблицы в большинстве случаев дают завышенные потребные жесткости расчетных элементов окна, что можно рассматривать как наличие определенного запаса прочности. Для ветровых районов, где нормативное значение ветрового давления выше немецких норм (см. п. 6.4.СНиПа), таких как побережье Камчатки, ветровую нагрузку следует считать по методике изложенной в СНиП 2.01.07-85*.

Итак, формула:

$$W \cdot I^4 \cdot b$$

 $E \cdot I_{\text{потр.}} = \frac{1920 \cdot f_{\text{доп.}}}{1920 \cdot f_{\text{доп.}}} \cdot [25 - 40 (b/I)^2 + 16(b/I)^4] [H \cdot cm^2]$

 $\mathbf{E} \cdot \mathbf{I}_{\text{потр.}}$ = потребная изгибная жесткость свободностоящего элемента в $\mathbf{H} \cdot \mathbf{c} \mathbf{m}^2$

ветровая нагрузка в соответствии с высотой здания в Н/см²
 DIN 1055 дает следующую классификацию:

Высота здания относительно местности	Ветровая нагрузка – обычное здание	Ветровая нагрузка – здание в виде башни
0 - 8 м	0,060 Н/см²	0,080 Н/см²
8 - 20 м	0,096 H/см²	0,128 Н/см²
20 - 100 м	0,132 Н/см²	0,176 Н/см²
свыше 100 м	0,156 H/см²	0,208 Н/см²

I = тах. длина свободностоящего элемента в см.

b = ширина нагрузки в см (см. нижеследующий пример)

E = модуль упругости расчетного элемента в H/cm^2 = $21 \cdot 10^6 H/cm^2$ сталь; $7 \cdot 10^6 H/cm^2$ алюминий.

 $\mathbf{f}_{\mathsf{доп.}}$ = допустимый прогиб в см. По DIN 18 056 допустимо 1/300 · I.

При применении стеклопакетов максимальный прогиб ограничен 8 мм.

Для длины стекол более 240 см значения в таблице, из-за максимально допустимого прогиба для стеклопакетов 8 мм, необходимо корректировать, умножая их на соответствующий поправочный коэффициент.

Поправочный коэффициент для стекол с длиной стороны более 240 см:

Таблица 3:

Длина стороны	Поправочный
---------------	-------------

СМ	коэффициент
250	1,04
300	1,24
350	1,45
400	1,66
450	1,87

ПРИМЕРЫ для работы с таблицей 1 «Потребные моменты инерций»

При использовании таблицы 2 «Потребная изгибная жесткость» применять туже методику.

Пример 1:

$$L = 160 \text{ cm}$$

$$B = 200 \text{ cm}$$

$$B_1 = 120 \text{ cm}$$

$$B_2 = 80 \text{ cm}$$

Остекление: стеклопакет

«Межопорное расстояние L» является длиной импоста (или в общем случае - длиной свободностоящего элемента).

«Ширина нагрузки b» - половина левой и соответственно правой частей окна,

итак:
$$B_1/2 = b_1 = 60 \text{ см}$$

$$B_2/2 = b_2 = 40 \text{ cm}$$

С таблицей необходимо работать следующим образом:

- 1. В столбце «Межопорное расстояние L» найти строку «160 см».
- 2. В этой строке двигаться направо до пересечения со столбцом «Ширина нагрузки b» b₄ = 60 см.

Получаем значение:

2,1

3. Для правой половины окна при «Межопорном расстоянии L» 160 см и «Ширине нагрузки b» b_2 = 40 cm

получаем по аналогии значение:

1,6

4. Чтобы получить потребный момент инерции, значения для левой и правой частей окна надо сложить:

2,1 + 1,6 = **3,7** = потребный момент инерции см⁴

- 5. В нашем случае длина стороны стеклопакета меньше 2,40 м (L < 2,40 м). Поэтому вычисления выполнены по максимально допустимому прогибу 1/300 L со значениями из таблицы 1 или 2. Поправочные коэффициенты из таблицы 3 не требуются.
- 6. Полученное значение 3,7 см⁴ действительно только для высоты монтажа до 8 м! При больших высотах установки окон полученное значение необходимо умножать на коэффициент увеличения нагрузки (см. таблицы 1 и 2).

Коэффициент увеличения нагрузки для высоты установки окон > 8 м:

Высота установки м	Коэффициент увеличения ветровой нагрузки						
8 - 20	1,6						
20 - 100	2,2						

В нашем примере:

Потребный момент инерции см 4 при:

высоте установки: 0 - 8 M 3,7 см⁴ высоте установки: 8 - 20 M 3,7 х 1,6 = 5,92 см⁴ высоте установки: 20 - 100 M 3,7 х 2,2 = 8,14 см⁴

Пример 2:

L = 350 cm

 $L_1 = 50 \text{ cm}$

 $L_2 = 300 \text{ cm}$

B = 300 cm

 $B_1 = 200 \text{ cm}$

 $B_2 = 100 \text{ cm}$

Остекление: стеклопакет

«Межопорное расстояние L» является длиной импоста (или в общем случае - длиной свободностоящего элемента).

«Ширина нагрузки b» - половина левой и соответственно правой частей окна,

итак:
$$B_1/2 = b_1 = 100 \text{ см}$$

$$B_2/2 = b_2 = 50 \text{ cm}$$

С таблицей необходимо работать следующим образом:

- 1. В столбце «Межопорное расстояние L» найти строку «350 см».
- 2. В этой строке двигаться направо до пересечения со столбцом «Ширина нагрузки $b_1 = 100$ см.

Получаем значение: 41,8

3. Для правой половины окна при «Межопорном расстоянии L» 350 см и «Ширине нагрузки b» $b_2 = 50$ cm

получаем по аналогии значение: 23,1

4. Чтобы получить потребный момент инерции, значения для левой и правой частей окна надо сложить:

5. В нашем случае длина стороны стеклопакета больше 2,40 м (L₂ = 300 cm). Расчеты должны учитывать допустимый прогиб стеклопакета - 8 мм. Поэтому «потребный момент инерции» необходимо умножить на поправочный коэффициент (таблица 3).

Потребный момент инерции <i>(пример)</i> :	64,9 см ⁴
Поправочный коэффициент из таблицы 3 для длины стороны стеклопакета 300 см	1,24

$$64,9 \times 1,24 =$$
 80,48 = потр. момент инерции см⁴

6. Полученное значение $80,48\,$ см 4 действительно только для высоты монтажа до $8\,$ м!

При больших высотах установки окон полученное значение необходимо умножать на коэффициент увеличения нагрузки (см. таблицы 1 и 2).

Коэффициент увеличения нагрузки для высоты установки окон > 8 м:

Высота установки м	Коэффициент увеличения ветровой нагрузки
8 - 20	1,6
20 - 100	2,2

В нашем примере:

Потребный момент инерции см при:

высоте установки: 0 - 8 м **80,48** см

высоте установки: 8 - 20 м $80,48 \times 1,6 =$ **128,77** см⁴

высоте установки: 20 - 100 м $80,48 \times 2,2 =$ **177,06** см⁴

Потребный момент инерции I_{X} (см $^{\scriptscriptstyle 4}$)

для стальных армирующих профилей - тах. прогиб 1/300 L

Действует для ветровой нагрузки до 600 Ника,м = высота здания до Коэффициент увеличения нагрузки : высота здания до высота здания до

145,0 230 144,0 සි L = межопорное расстояние (см) р , ф = щирина нагрузки (см) 82,5 74,4 142,0 91,1 130 ر 2 8′99 74,2 59,9 82,0 90,2 139,0 8 ا 1 53,5 26'1 66,3 73,4 6'08 88'8 135,0 170 47,5 42,3 29,0 65,4 79,3 6′98 53,1 72,1 131,0 160 32,9 46,9 37,2 6′/9 41,9 52,2 63,9 84,3 126,0 70,3 150 77,1 * учитывать таблицу 3 45,8 28,7 32,5 62,0 25,2 36,7 41,1 50,9 26,3 74,5 81,3 121,0 68,1 149 18,9 16,3 21,8 24,9 28,2 35,8 39,9 9'69 31,9 44,4 49,2 54,3 65,4 71,4 77,8 115,0 130 27,4 6'95 73,8 24,3 30,9 34,5 51,8 8′29 16,2 18,6 21,3 38,4 42,6 62,2 13,9 47,1 108,0 120 ر 8 9'85 63,8 8,69 6'6 15,8 23,4 26,4 32,9 36,6 40,5 44,6 49,0 53,7 101,0 13,7 18,1 20,7 읅 27,9 45,8 54,6 6,9 ر عر 13,2 15,2 17,4 19,7 22,2 93,3 Ширина нагрузки b(см) 100 5,7 9,7 11,4 25,0 31,0 34,4 38,0 41,8 50,1 59,4 64,4 8 18,5 20,8 23,3 26,0 28,8 4,6 14,4 16,4 31,9 38,6 42,2 54,6 3,7 5,6 10,9 12,6 46,1 50,2 6,7 8,0 9,4 35,1 85,7 59,1 53,5 77,2 4,5 5,4 6,4 9'/ 23,8 41,9 45,5 49,4 3,6 26,4 8,8 10,2 13,4 21,4 32,0 38,4 19,2 11,7 1,7 29,1 15,1 35,1 8 2,2 8,7 3,5 4 2 31,3 37,3 47,5 5,0 6,0 0′/ 9,3 10,7 13,7 15,4 17,3 19,2 21,4 23,6 26,0 28,6 34,2 40,5 43,9 68,4 8,1 12,1 2 <u>..</u> 6,3 16,9 0,7 1,0 [] 2,6 8,3 29,8 32,5 59,2 3,2 3,8 4,6 5,4 12,1 13,6 15,2 35,2 38,2 41,3 9 2,1 7,7 9,5 10,7 18,7 20,7 25,0 27,3 6,0 0,5 0,7 6′0 ű 7, 6,1 ري 8 م 34,8 49,3 3,4 4,0 12,9 14,4 15,9 17,5 19,3 25,2 27,4 32,2 2 4,7 5,4 6,2 8,1 9,2 10,3 11,6 29,7 7,1 2,1 23,1 8 0,3 0,4 9′0 8′0 1,0 1,6 2,0 3,3 3,8 4,5 10,5 11,7 12,9 14,2 24,0 26,0 1,3 2,4 ر 8 5,9 6,6 7,5 8,4 9,4 15,6 18,7 20,4 5,1 17,1 22,1 28,1 40,1 0,3 5,0 ۵,0 9′0 89 1,0 1,2 7, 1,8 2,2 2,5 3,4 3,0 8,8 30,2 ജ 4,5 5,7 6,4 ۲,۲ 8,6 10,8 11,8 12,9 16,7 19,6 21,2 8,0 15,4 5, 18,1 14,1 κ, 4 8, 4 8, 4 5,9 ۵,0 9,2 6,0 9,4 0,5 0,7 8,0 읔 1,2 ₹. 1,7 2,0 E. 3.7 E. 3,4 3,8 7,2 7,9 9,5 10,3 14,2 5,4 9′9 8,7 20,2 ຄ 11,2 12,1 13,1 340 370 330 360 8 33 400 120 140 170 180 240 8 2 8 350 450 吕 8 150 160 9 Таблица 1 Межопорное расстояние L(см)

8 м 20 m - 1.6 100 m - 2.2

Потребная изгибная жесткость $E_{\rm I_{\rm X}} \cdot ({\rm H\,cm})^2 \cdot 10^{\,\delta}$

для тах. прогиба 1/300 L

Действует для ветровой нагружи до 600 Нука.м = высота здания до 8 м. Коаффициент увеличения нагружи : высота здания до 20 m - 1.6 высота здания до

_																																		_
		510																																3045
		200 200		-	• •										1			•		(WC													1920	3024
		190					/	//		_	_	\rightarrow	`		_	2	- 🚣	u a)) әпнкошээ	узки (см)										1563	1733	1914	2982
		180	_			_	_	_	_	/	/	/	$\stackrel{>}{\sim}$	\geq	\ -	ء ۔				= межопорное расстояние (см)	, ф = ширина нагрузки (см)	-							1258	1403	1559	1722	1895	2919
		170	_	മ									>	/		о 1				көw =	$n = q^{t}$, q	-					1002	1124	1254	1393	1542	1699	1865	2835
		160							7						_		_ ~								786	688	866	1116	1239	1374	1515	1666	1825	2751 6
			_	_																			209	169	782	880 8	985							
		150	_							_					•			ty 3			_							1097	3 1216	2 1342	1477	5 1620	7 1771	1 2646
		140								7							_	* учитывать таблицу 3			460	230	603	683	771	864	962	1069	1183	1302	1431	1565	1707	2541
		130																миты *	343	397	458	523	593	0/9	752	838	933	1034	1141	1252	1374	1450	1634	2415
		120															249	292	341	391	448	211	276	649	725	807	895	066	1088	1195	1306	1424	1550	2268
		91													176	510	247	588	332	381	435	492	222	620	169	69/	821	637	1029	1128	1231	1340	1456	2121
	п р(см)	100											120	146	174	506	241	278	320	399	414	467	525	286	651	723	798	8/8	362	1052	1147	1248	1353	1960
	Ширина нагрузки в(см)	8									78,7	97,4	119	143	169	198	230	565	303	345	389	437	490	546	605	0/9	738	811	887	696	1054	1146	1241	1800
1	dnm	8							49,2	62,4	77,5	94,7	115	136	160	187	216	246	282	318	360	404	450	200	555	612	672	738	807	088	926	1037	1124	1621
		70					28,8	37,8	48,2	60,2	74,0	89,4	107	127	148	172	197	225	255	588	324	364	404	450	496	546	109	829	61/	739	851	322	866	1436
		09			15,6	21,3	28,1	36,1	45,4	26,0	1,89	81,7	6'96	114	133	153	176	500	225	255	586	320	355	393	435	479	525	574	979	683	740	803	898	1243
		20	7,5	10,9	15,0	20,05	25,9	32,8	40,8	49,9	5,09	71,7	84,6	6′86	115	132	151	171	194	217	244	271	303	334	368	406	444	486	230	576	624	21.9	731	1035
	ŀ	40	7,1	10,01	13,5	9′11	22,5	28,1	34,7	42,1	50,4	29,8	70,3	6,18	94,6	109	124	139	158	177	198	221	246	271	299	328					505			843 10
			6,1	8,3	11,0	14,2 1	5 6,71	22,2		32,8 4		46,3 5		8 0'69	72,7			108	120	135		691	185	506 5									446 5	635 8
		8																							2 227			0 297		6 351	5 381	6 412		
		ଯ	4,4	5,9	7,7	6'6	12,5	15,4	18,7	22,5	56,8	31,6	36,9	42,8	49,3	56,3	64,1	71,4	79,8	6'06	101	114	124	139	152	166	183	500	217	236	255	276	533	425
	Табина 2	4 200	100	110	120	130	₹	55	160	170	180	130	500	210	220	සි	240	520	260	270	280	290	300	310	320	330	340	320	360	370	88	330	400	420
	Табп	1001														(шо)) ən	нкот	bacc	эонdо	өжош	W												

Моменты инерции, изгибная жесткость стальных армирующих профилей

Ap	эмирующий профи	1ЛЬ	I _X (cm ⁴)	E*I _X (Ncm ²)10 ⁻⁶	I _y	E*I _y (Ncm ²)10 ⁻⁶	Применяется в в ПВХ профиле
ARL 1	y <u>X</u>	17/44,5/7,5 s=1.5	2.41	50.61	0.18	3.78	LL60/D, ZL 60/D, TL 60/D
ART 1		17/44,5 s=1.5	3.85	80.85	0.85	17.85	TL 60/D
NA 3 15160		40/30 s=1.5	4.6	96.6	2.9	60.9	KP 100
NA 21 14260		25/25 s=2.0	1.54	32.34	1.54	32.34	KP 40
NA 30 14591		60/10 s=2.0	8.6	180.6	0.39	8.19	KP 1
NA 32 15167		32/21 s=2.0	20.0	420.0	1.27	26.67	KP 14
SA 2 14592		10/30 s=2.0	1.22	25.62	0.19	3.99	KP 12
Стальная труба		Ø42.4 s=3.25	7.71	161.91	7.71	161.91	EV 20
NA 44 14081		41,5/25 s=1.5	4.22	88.62	1.70	35.7	T23/FD

Соединение оконных блоков

Силикон применять в случае, если подставочный профиль снизу закрывает указанные зазоры

Соединение оконных блоков

Соединение оконных блоков

Моменты инерции:

а) Одно армирование	ARL 1 NA 32	$1x = 2,41 \text{ cm}_4^4$ $1x = 20,0 \text{ cm}^4$
б) Удвоенное армирование (как показано)	2 x ARL 1 2 x NA 32 Сумма:	$Ix = 4,82 \text{ cm}^4$ $Ix = 40,0 \text{ cm}^4$ $Ix = 44,82 \text{ cm}^4$

Эркерное соединение оконных блоков

Вычитаемые размеры для EV 10/ EV 20

ARL 1 Стальная труба $I_X = 2.41 \text{ cm } \frac{4}{4}$ $I_X = 7.71 \text{ cm } \frac{4}{4}$

Угол "X"	Вычитаемый А 1	Вычитаемый А 2
90°	5.7 mm	65.0 mm
95°	8.2 mm	62.5 mm
100°	10.4 mm	60.2 mm
105°	12.5 mm	58.0 mm
110°	14.5 mm	56.0 mm
115°	16.3 mm	54.1 mm
120°	18.1 mm	52.3 mm
125°	19.8 mm	50.6 mm
130°	21.3 mm	49.0 mm
135°	22.9 mm	47.4 mm

Угол "X"	Вычитаемый	Вычитаемый					
140°	24.3 mm	45.9 mm					
145°	25.8 mm	44.5 mm					
150°	27.2 mm	43.0 mm					
155°	28.5 mm	41.7 mm					
160°	29.8 mm	40.3 mm					
165°	31.1 mm	39.0 mm					
170°	32.4 mm	37.6 mm					
175°	33.7 mm	36.3 mm					
180°	35.0 mm	35.0 mm					