Combo 8

July 2, 2024

1 Defina M(P)

Sea Σ un alfabeto finito y sea $P: D_P \subseteq \omega \times \omega^n \times \Sigma^{*m} \to \omega$ un predicado. Dado $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$, cuando exista al menos un $t \in \omega$ tal que $P(t, \vec{x}, \vec{\alpha}) = 1$, usaremos $\min_t P(t, \vec{x}, \vec{\alpha})$ para denotar al menor de tales t's.

Definamos

$$M(P) = \lambda \vec{x} \vec{\alpha} \left[\min_t P(t, \vec{x}, \vec{\alpha}) \right]$$

2 Defina Lt

Definamos la funcion $Lt: \mathbf{N} \to \omega$ de la siguiente manera:

$$Lt(x) = \begin{cases} \max_{i} (x)_i \neq 0 & \text{si } x \neq 1 \\ 0 & \text{si } x = 1 \end{cases}$$

3 Defina conjunto rectangular

Sea Σ un alfabeto finito. Un conjunto $\Sigma\text{-mixto }S$ es llamado rectangularsi es de la forma

$$S_1 \times ... \times S_n \times L_1 \times ... \times L_m$$

con cada $S_i \subseteq \omega$ y cada $L_i \subseteq \Sigma^*$.

4 Defina "S es un conjunto de tipo (n, m)"

Dado un conjunto Σ -mixto S, si $n, m \in \omega$ son tales que $S \subseteq \omega^n \times \Sigma^{*m}$, entonces diremos que S es un conjunto de tipo (n, m).