MP Programme de colle n° 15

Cours:

Chapitre 10

Variables aléatoires discrètes

- 3.5 Inégalité de Markov
- 4. Variance, écart-type

Chapitre 11

Fonctions vectorielles

- 1. Dérivée en un point
- 2. Opérations sur les fonctions dérivables
- 3. Fonctions de classe C^k
- 4. <u>Intégration sur un segment</u>

Les démos à connaître du chapitre 10

3.5

Proposition Inégalité de Markov

Si X est une variable aléatoire discrète positive admettant une espérance

finie, alors :
$$\forall a \in \mathbb{R}_+^*$$
 $P(X \geqslant a) \leqslant \frac{E(X)}{a}$

4.1.b

Propriété 2 Inégalité de Cauchy-Schwarz

Si deux variables aléatoires X et Y admettent un moment d'ordre 2, la variable aléatoire XY est d'espérance finie et $E(XY)^2 \leq E(X^2)E(Y^2)$.

4.2.b

Propriété 2 Soit X une variable aléatoire admettant un moment d'ordre 2. Alors : $[\sigma(X) = 0] \Leftrightarrow [X \text{ est presque sûrement constante}]$.

4.3

Loi de X	Notation	$X(\Omega)$	Définition de la loi	Espérance	Variance
binomiale	$\mathcal{B}(n,p)$	$[\![0,n[\![$	$P(X = k) = \binom{n}{k} p^k q^{n-k}$	np	npq
géométrique	$\mathcal{G}(p)$	\mathbb{N}_*	$P(X=n) = pq^{n-1}$	$\frac{1}{p}$	$rac{q}{p^2}$
de Poisson	$\mathcal{P}(\lambda)$	\mathbb{N}	$P(X=n) = e^{-\lambda} \frac{\lambda^n}{n!}$	λ	λ

4.4

Théorème Inégalité de Bienaymé-Tchebychev

Soit X une variable aléatoire admettant une variance.

Alors
$$\forall \varepsilon > 0$$
: $P(|X - E(X)| \ge \varepsilon) \le \frac{V(X)}{\varepsilon^2}$

Les démos à connaître du chapitre 11

2.2

Proposition 2:

Soit $f: I \to F$ une fonction dérivable en a et $L \in \mathcal{L}(F,G)$ où F et G sont deux espaces vectoriels de dimension finie.

Alors $L \circ f$ est dérivable en a et $(L \circ f)'(a) = L(f'(a))$

2.3

Proposition 4:

Soit $B: F \times G \to H$ une application bilinéaire où F, G et H sont des \mathbb{R} -espaces vectoriels de dimension finie. Soient $f: I \to F$ et $g: I \to G$, dérivables toutes deux en a. Alors l'application $B(f,g): I \to H$ définie par $t \to B(f(t),g(t))$ est dérivable en a et B(f,g)'(a) = B(f'(a),g(a)) + B(f(a),g'(a)).

2.5

<u>Proposition 5</u>: Soit $f: I \to J$ une fonction dérivable en a et $g: J \to F$ une fonction dérivable en b = f(a) où I et J sont deux intervalles de $\mathbb R$. Alors $g \circ f$ est dérivable en a et $(g \circ f)'(a) = f'(a).g'(f(a))$.

3.3

Proposition 6 : formule de Leibniz

Si $(f,g) \in \mathcal{C}^n(I,\mathbb{K})^2$ alors $f \times g \in \mathcal{C}^n(I,\mathbb{K})$ et $\left| (f \times g)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(n-k)} \times g^{(k)} \right|$.