Problem A. Ultra-QuickSort

Time limit 7000 ms **Mem limit** 65536 kB

In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence

91054,

Ultra-QuickSort produces the output 01459.

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 — the length of the input sequence. Each of the the following n lines contains a single integer $0 \le a[i] \le 999,999,999$, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

Sample

OJ for Divide and Conquer Oct 17, 2023

Input	Output
5	6
9	0
1	
0	
5	
4	
3	
1	
2	
3	
0	