Санкт-Петербургский политехнический университет Высшая школа прикладной математики и вычислительной физики, ИПММ

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Отчет по лабораторной работе №8 по дисциплине «Математическая статистика»

Выполнил студент гр. 3630102/80201

Кирпиченко С. Р.

Руководитель

Баженов А. Н.

Санкт-Петербург 2021

Содержание

		Страница
1	Постановка задачи	5
2	Теория	5
3	Реализация	6
4	Результаты	6
5	Обсуждение	8

Список иллюстраций

		$C\mathbf{T}$	pa	ниц	a
1	Внешний вид входного сигнала				6
2	Гистограмма входного сигнала			•	7
3	Сглаженный сигнал				7
4	Сигнал с размеченными областями				8

Список таблиц

		C	T	oa:	ниі	ца
1	Характеристики выделенных областей					8

1 Постановка задачи

Провести дисперсионный анализ с применением критерия Фишера по данным регистраторов для одного сигнала. Определить области однородности сигнала, переходные области, шум/фон.

2 Теория

По гистограмме входного сигнала можно разметить его области:

- 1. Столбец с самым большим значением описывает точки, отвечающие за шум (фоновый сигнал);
- 2. Второй по величине столбец описывает точки, отвечающие непосредственно за сигнал;
- 3. В остальные столбцы попадают точки, описывающие переходное состояние между сигналом и фоном.

Области однородности определяются с помощью критерия Фишера: однородные области определяются значениями, близкими к 1, переходные - большими. Значение критерия Фишера

$$F = \frac{\sigma_{InterGroup}^2}{\sigma_{IntaGroup}^2}$$

определено внутригрупповой дисперсией $\sigma^2_{InterGroup}$ и межгрупповой $\sigma^2_{IntaGroup}$.

$$\sigma_{InterGroup}^2 = \frac{1}{k} = \sum_{i=1}^{k} \frac{\sum_{j=1}^{n} (x_{ij} - \overline{x})^2}{k - 1}$$

$$\sigma_{IntaGroup}^2 = k \frac{\sum_{i=1}^k (\overline{x}_i + \overline{X})^2}{k-1},$$

где \overline{x} - среднее для части выборки, k - количество частей выборки, n - количество элементов в рассматриваемой части выборки. \overline{x}_i - среднее значение подвыборок, \overline{X} - среднее значение этих средних значений.

Перед определением областей однородности необходимо устранить выбросы, сгладив сигнал медианным фильтром.

3 Реализация

Лабораторная работа выполнена на языке Python 3.9 с использованием библиотек numpy, scipy, matplotlib, seaborn.

4 Результаты

Для исследования был выбран сигнал под номером 228.

Рис. 1: Внешний вид входного сигнала

Рис. 2: Гистограмма входного сигнала

Для сглаживания сигнала медиана считалась по маске из 5 элементов.

Рис. 3: Сглаженный сигнал

Рис. 4: Сигнал с размеченными областями

Промежуток	Тип	Число разбиений	Критерий Фишера
1	Шум	7	0.42
2	Переход	4	15.37
3	Сигнал	4	0.13
4	Переход	4	16.88
5	Шум	7	2.33

Таблица 1: Характеристики выделенных областей

5 Обсуждение

Входные данные были разбиты на следующие области: фоновый шум (2 области), 2 перехода и область сигнала.

Области фонового шума и сигнала однородны - критерий Фишера приблизительно равен 1. На переходах значение критерия сильно больше 1 это области неоднородности.

Примечание

C исходным кодом работы и данного отчета можно ознакомиться в репозитории https://github.com/Stasychbr/MatStat