Залікова контрольна робота з Теорії Коливань

Захаров Дмитро

23 травня, 2025

Зміст

1	Задача 1	1
2	Задача 2	3
3	Задача 3	6

Задача 1

Умова 1.1. Умови рівноваги голономної системи з ідеальними в'язями.

Відповідь. Нехай маємо систему частинок m_1,\ldots,m_N з координатами ${\bf r}_1,\ldots,{\bf r}_N$. Положенням рівноваги такої системи будемо називати таке положення, в якому система частинок має нульову швидкість протягом певного інтервалу часу, тобто $\dot{\bf r}_i=0$ для всіх $i=1,\ldots,N$. Нехай усі в'язі, що ми позначаємо як ${\bf R}_1,\ldots,{\bf R}_N$, є ідеальними. Що це означає? Розглянемо другий закон Ньютона для кожної частинки: ${\bf F}_i+{\bf R}_i=m_i\ddot{r}_i$, де ${\bf F}_i$ — зовнішня сила. Таким чином, маємо мати:

$$\sum_{i=1}^{N} (\mathbf{F}_i - m_i \ddot{\mathbf{r}}_i + \mathbf{R}_i) \delta \mathbf{r}_i = 0,$$

де $\delta {f r}_i$ — віртуальне переміщення частинки i в околі рівноваги. Ми вважаємо в'язі ідеальними, тому $\sum_{i=1}^N {f R}_i \delta {f r}_i = 0$, а тому рівняння динаміки має вигляд

 $\sum_{i=1}^{N} (\mathbf{F}_i - m_i \ddot{\mathbf{r}}_i) \delta \mathbf{r}_i = 0$. В стані рівноваги отримуємо **рівняння статики**:

$$\sum_{i=1}^{N} \mathbf{F}_i \delta \mathbf{r}_i = 0.$$

Нехай маємо узагальнені координати $\mathbf{q}=(q_1,\ldots,q_n)$ з відповідними узагальненими силами $\mathbf{Q}_i=\sum_{j=1}^N\mathbf{F}_j\frac{\partial\mathbf{r}_j}{\partial q_i}$. Нагадаємо, що під **голономною системою** розуміють систему, що описується за допомогою системи рівнянь $f_i(q_1,\ldots,q_n,t)=0$ для всіх $i=1,\ldots,k$. Згадаємо, що для таких систем:

$$\sum_{i=1}^{N} \mathbf{F}_{i} \delta \mathbf{r}_{i} = \sum_{j=1}^{n} \mathbf{Q}_{j} \delta \mathbf{q}_{j}$$

А отже з рівняння статики маємо $\sum_{j=1}^{n} \mathbf{Q}_{j} \delta \mathbf{q}_{j} = 0$. Проте, оскільки усі переміщення $\delta \mathbf{q}_{j}$ є незалежними, то для того, щоб рівняння виконувалось, необхідно, щоб усі узагальнені сили дорівнювали нулю, тобто $\mathbf{Q}_{j} = 0$ для всіх $j = 1, \ldots, n$. Отже, умова рівноваги записується як

$$\mathbf{Q}_j = 0, \quad j = 1, \dots, n.$$

Зокрема, у випадку консервативної системи, маємо $\mathbf{Q}_j = -\frac{\partial V}{\partial \mathbf{q}_j}(\mathbf{q})$, тому у рівновазі $\frac{\partial V}{\partial \mathbf{q}_j} = 0$. Таким чином, точка спокою консервативної системи це стаціонарна точка потенціальної енергії як функції від узагальнених координат. За теоремою Лагранжа-Діріхле, якщо в точці спокою потенціальна енергія має мінімум, то система буде стійкою.

2 Задача 2

Умова 2.1. Параметричні коливання. Теорема Флоке. Параметричний резонанс.

Відповідь. Одразу наведемо означення параметричних коливань.

Definition 2.2. Параметричними коливаннями називають коливання, в яких параметри системи, що входять до рівняння руху, змінюються в часі. Такі зміни, у свою чергу, можуть викликати резонансні явища, які називаються параметричним резонансом.

Простий приклад наступний: нехай маємо математичний маятник, в якому довжина нитки ℓ є функцією часу: $\ell = \ell(t)$:

$$\ddot{\varphi} + \frac{g}{\ell(t)}\sin\varphi = 0.$$

Доволі широкий клас задач з параметричними коливаннями можна звести до **рівняння Хілла**:

$$\ddot{\varphi} + \Omega^2(t)\varphi = 0,$$

де $\Omega(t)$ — періодична функція.

Example. Малі періодичні зміни довжини нитки $\ell(t)$ описуються рівнянням Хілла. Дійсно, можна записати $\ell(t) = \ell_0 (1 + \varepsilon \cos \omega t)$, а отже

$$\ddot{\varphi} + \frac{g}{\ell_0(1 + \varepsilon \cos \omega t)} \sin \varphi = 0.$$

За малих ε , маємо $\frac{1}{1+\varepsilon\cos\omega t} \approx 1-\varepsilon\cos\omega t$, тому рівняння зведеться до:

$$\ddot{\varphi} + \omega_0^2 (1 - \varepsilon \cos \omega t) \varphi = 0, \quad \omega_0^2 = \frac{g}{\ell_0},$$

що є рівнянням Хілла з $\Omega(t) = \omega_0 \sqrt{1 - \varepsilon \cos \omega t}$.

Теорія Флоке. Нехай маємо динамічну систему $\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x}$, де матриця $\mathbf{A}(t) \in \mathbb{R}^{n \times n}$ — періодична матриця. Нехай її період дорівнює T, тобто маємо $\mathbf{A}(t+T) = \mathbf{A}(t)$. Нас цікавить вид розв'язку такої системи.

Remark. Насправді, таким рівняння можна описати доволі широкий клас задач, зокрема і рівняння Хілла, оскільки достатньо ввести зміни $\dot{x}_1=x_2$ та $\dot{x}_2=-\omega^2(t)x_1$, тоді для $\mathbf{x}(t):=(x_1(t),x_2(t))$ будемо мати

$$\dot{x} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\omega^2(t) & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{A}(t)\mathbf{x}, \quad \mathbf{A}(t) = \begin{pmatrix} 0 & 1 \\ -\omega^2(t) & 0 \end{pmatrix}$$

Позначимо через $\Phi(t,t_0)$ фундаментальну систему розв'язків системи $\dot{\mathbf{x}}=\mathbf{A}(t)\mathbf{x}$, яка задовольняє початкову умову $\Phi(t_0,t_0)=\mathbf{E}_{n\times n}$, де $\mathbf{E}_{n\times n}-$ одинична матриця. Таким чином, розв'язок системи має вигляд $\mathbf{x}(t)=\Phi(t,t_0)\mathbf{x}(t_0)$. Нас цікавить конкретний вигляд матриці $\Phi(t,t_0)$.

Theorem 2.3 (Теорема Флоке). Фундаментальну систему розв'язків $\Phi(t,0)$ системи $\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x}$ можна записати у вигляді:

$$\mathbf{\Phi}(t,0) = \mathbf{P}(t)e^{\mathbf{R}t}.$$

де ${f P}(t)$ — періодична матриця $n \times n$, а ${f R} = \ln({f \Phi}(T))/T$ є константною матрицею $n \times n$.

Залишимо цю теорему без доведення. Проте, цікавим наслідком є наступе: кожен момент часу t ми можемо записати як $t=kT+\tau$, де $k\in\mathbb{Z}_{\geq 0}$ та $\tau\in[0,T)$. Тоді, координату $\mathbf{x}(t)$ ми можемо знайти так:

$$\mathbf{x}(t) = \mathbf{\Phi}(kT + \tau, kT) \prod_{j=0}^{k-1} \mathbf{\Phi}((j+1)T, jT)\mathbf{x}(0)$$

Через періодичність системи маємо: $\mathbf{x}(t) = \mathbf{\Phi}(kT + \tau, kT)\mathbf{\Phi}(T, 0)^k$. Таким чином, стійкість системи визначається повністю поведінкою $\mathbf{\Phi}(T, 0)^k$, що в свою чергу в силу теореми Флоке визначається лише матрицею \mathbf{R} , а саме її власними числами.

Стійкість. Природньо поговорити про стійкість системи. Нехай маємо певну динамічну систему $\dot{\mathbf{y}}=\mathbf{Y}(t,\mathbf{y})$. Нехай $\mathbf{y}(t)=\boldsymbol{f}(t)$ є частковим розв'язком — незбурений рух. Тоді будь-який розв'язок системи $\mathbf{y}(t)$ називають збуреним рухом і природньо називати величину $\mathbf{x}(t):=\mathbf{y}(t)-\boldsymbol{f}(t)$ збуреням, причому $\mathbf{x}(t)$ задовільняє системи звичайних диференціальних рівнянь, що ми називаємо рівнянням збуреного руху: $\dot{\mathbf{x}}=\mathbf{X}(t,\mathbf{x})$, де $\mathbf{X}(t,\mathbf{x})=\mathbf{Y}(t,\mathbf{x}+\boldsymbol{f}(t))-\mathbf{Y}(t,\boldsymbol{f}(t))$. Це рівняння вочевидь має тривіальний розв'язок $\mathbf{x}(t)\equiv\mathbf{0}$, який відповідає незбуреному руху. Ми називаємо незбурених рух стаціонарним або автономною, якщо \mathbf{X} не залежить від часу.

Definition 2.4. Незбурений рух називають **стійким за Ляпуновим** якщо

$$(\forall \varepsilon > 0) (\exists \delta > 0) \{ \mathbf{x}(t_0) \in \mathcal{U}_{\delta}(\mathbf{0}) \implies \mathbf{x}(t) \in \mathcal{U}_{\varepsilon}(\mathbf{0}), \ t > t_0 \}.$$

Зупинимось на випадку автономної системи. Оскільки систему $\dot{\mathbf{x}} = \mathbf{X}(\mathbf{x})$ складно розглядати в загальному вигляді, то для аналізу безпосередньо стійкості достатньо *лінеаризувати* її в околі $\mathbf{0}$:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathcal{O}(\|\mathbf{x}\|^2), \quad \mathbf{x} \to \mathbf{0}$$

Тут матриця $\mathbf{A} = \frac{\partial \mathbf{X}(0)}{\partial \mathbf{x}} \in \mathbb{R}^{n \times n}$. Рівняння без малого (відносно $\mathbf{x} \to \mathbf{0}$) доданку $\mathcal{O}(\|\mathbf{x}\|^2)$ називають *рівняння першого наближення*. Ляпунов показав, що стійкість незбуреного руху можна описати за допомогою спектру матриці \mathbf{A} , що позначаємо як $\sigma(\mathbf{A}) \subseteq \mathbb{C}$.

Theorem 2.5 (Теорема Ляпунова). Якщо для всіх власних значень $\lambda_i \in \sigma(\mathbf{A})$ виконується $\mathrm{Re}(\lambda_i) < 0$, то незбурених рух є асимптотично стійким за Ляпуновим. Якщо ж знайшовся хоча б один власний вектор $\lambda_i \in \sigma(\mathbf{A})$ з $\mathrm{Re}(\lambda_i) > 0$, то незбурених рух є асимптотично нестійким за Ляпуновим.

3 Задача 3

Умова 3.1. Скласти рівняння руху (рівняння Лагранжа) та визначити період малих коливань однорідного диска маси m і радіуса r, закріпленого двома пружинами жорсткості k, який може котитися без проковзування по горизонтальній поверхні. (20 балів)

Розв'язання. Нехай x — зміщення центра мас диска вздовж горизонтальної осі, φ — кутова координата диска. Тоді умова без проковзування має вигляд $x=r\varphi$, звідки $\dot{x}=r\dot{\varphi}$.

При цьому, потенціальна енергія кожної з пружин дорівнює $\frac{1}{2}kx^2$, а отже сумарна потенціальна енергія системи дорівнює $V(x)=kx^2$.

Кінетична енергія системи дорівнює сумі обертальної кінетичної енергії диска $\frac{1}{2}I\omega^2$ та поступальної кінетичної енергії $\frac{1}{2}mv^2$. Момент інерції диска відносно осі, що проходить через його центр мас дорівнює $I=\frac{1}{2}mr^2$ і як ми вже з'ясували, $\omega=\frac{\dot{x}}{r}$, тому

$$K(\dot{x}) = \frac{1}{2}I\omega^2 + \frac{1}{2}mv^2 = \frac{1}{2}\cdot\frac{1}{2}mr^2\cdot\left(\frac{\dot{x}}{r}\right)^2 + \frac{1}{2}m\dot{x}^2 = \frac{3}{4}m\dot{x}^2.$$

Отже, рівняння Лагранжа має вигляд:

$$\mathcal{L}(x, \dot{x}) = K(\dot{x}) - V(x) = \frac{3}{4}m\dot{x}^2 - kx^2.$$

Згадаємо, що рівняння Лагранжа має вигляд $\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{x}}-\frac{\partial \mathcal{L}}{\partial x}=0$, тому

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{x}} = \frac{d}{dt}\left(\frac{3}{2}m\dot{x}\right) = \frac{3}{2}m\ddot{x},$$
$$\frac{\partial \mathcal{L}}{\partial x} = -2kx.$$

Таким чином, рівняння руху має вигляд:

$$\frac{3}{2}m\ddot{x} + 2kx = 0 \Rightarrow \boxed{\ddot{x} + \frac{4k}{3m}x = 0}.$$

Таким чином, циклічна частота має вигляд $\omega=\sqrt{\frac{4k}{3m}}=2\sqrt{\frac{k}{3m}}$, а період малих коливань у свою чергу тоді:

$$T = \frac{2\pi}{\omega} = \boxed{\pi\sqrt{\frac{3m}{k}}}.$$