UNIVERSIDADE DO ESTADO DO AMAZONAS ESCOLA SUPERIOR DE TECNOLOGIA

LAURO MANOEL LIMA DA GAMA

MONITORAMENTO DE DESCARGAS ELETROESTÁTICAS EM LINHAS DE PRODUÇÃO DE ELETRÔNICOS

Manaus 2014

LAURO MANOEL LIMA DA GAMA

MONITORAMENTO DE DESCARGAS ELETROESTÁTICAS EM LINHAS DE PRODUÇÃO DE ELETRÔNICOS

Projeto de pesquisa proposto durante a disciplina Metodologia da Pesquisa como prérequisito para obtenção do título de Especialista em Desenvolvimento de novos produtos pela Universidade do Estado do Amazonas, Escola Superior de Tecnologia.

Orientador: Paulo Cavalcante

Manaus 2014

LISTA DE ABREVIATURAS E SIGLAS

ESD Electrostatic Discharge

ESDA Electrostatic Discharge Association

EST Escola Superior de Tecnologia

UEA Universidade do Estado do Amazonas

SUMÁRIO

INTRODU	ŢÇÃO	4						
1	TEMA	5						
2	DELIMITAÇÃO DO TEMA	5						
3	FORMULAÇÃO DO PROBLEMA	5						
4	HIPÓTESE	5						
5	OBJETIVO	5						
6	JUSTIFICATIVA	6						
6.1	Justificativa Acadêmica	6						
6.2	Justificativa Social	6						
7	REFERENCIAL TEÓRICO	6						
7.1	DESCARGA ELETROESTÁTICA	6						
7.1.1	carregamento triboelétrico	6						
7.1.2	indução	7						
7.1.3	condução	7						
7.2	DANOS PROVOCADOS POR DESCARGAS ELETROESTÁTICAS .	7						
7.3	MEDIÇÃO DE CARGAS ELETROESTÁTICAS	7						
8	METODOLOGIA	7						
9	CRONOGRAMA	9						
REFERÊNCIAS								

INTRODUÇÃO

A prevenção de descargas eletroestáticas é uma preocupação constante durante a produção de equipamentos eletrônicos. Tais cargas são responsáveis por falhas e danos aos produtos produzidos e representam prejuízos econômicos consideráveis.

Essas falhas são originadas da degradação ou dano a barreiras dielétricas dos componentes eletrônicos por descargas acima do especificado para uso no componente.

A forma mais eficiente de proteger produtos desse problema é a prevenção de sua ocorrência. Tal prevenção ocorre pelo monitoramento constante de acumulo de cargas geradoras de descargas e a neutralização do agente gerador. Esse monitoramento pode ser realizado pela constante medição de cargas em diversos pontos e o envio do resultado dessas medições para um sistema computacional que fará a analise e sinalização desses resultados.

O presente projeto tem como objetivo o desenvolvimento de um sistema de monitoramento de descargas eletroestáticas em linhas de produção de eletrônicos através da medição de cargas eletroestáticas em pessoas e objetos.

1 TEMA

DESCARGAS ELÉTRICAS

2 DELIMITAÇÃO DO TEMA

Monitoramento de descargas eletroestáticas em linhas de produção de eletrônicos.

3 FORMULAÇÃO DO PROBLEMA

A carência de um sistema que monitore cargas eletroestáticas durante o processo de produção afim de evitar descargas eletroestáticas que possam danificar componentes eletrônicos.

4 HIPÓTESE

É possível a criação de um equipamento que meça a quantidade de cargas estáticas em pessoas e equipamentos envolvidos no processo de manufatura de eletroeletrônicos e dissipe essas cargas afim de prevenir a ocorrência de descargas eletroestáticas utilizando módulos microcontroladores e transmissão via rede de radio wifi.

5 OBJETIVO

Estudar a arquitetura de um sistema que monitore as cargas estáticas em pessoas e equipamentos envolvidos no processo de manufatura de eletroeletrônicos.

Projetar um protótipo do sistema que monitore postos de trabalho onde o controle de cargas eletroestáticas seja necessário, indicando quando o objeto sob analise está acumulando cargas estáticas e transmita essa informação via rede de dados wifi a um servidor de dados que sinalize e armazene essas informações para posterior analise.

Serão utilizados para o desenvolvimento do protótipo as instalações e recursos da Universidade do Estado do Amazonas (UEA) na Escola Superior de Tecnologia (EST)

6 JUSTIFICATIVA

6.1 Justificativa Acadêmica

O estudo do monitoramento de cargas eletroestáticas permite o aprofundamento da pesquisa de monitoramento remoto, eletrônica e sistemas embarcados.

6.2 Justificativa Social

Sistemas de monitoramento podem ser utilizados nos mais diversos processos produtivos para assegurar normas de segurança e aumentar a eficiência da linha. A utilização desse sistema irá diminuir a incidência de descargas eletroestáticas durante o processo de manufatura diminuindo perdas econômicas e logísticas.

7 REFERENCIAL TEÓRICO

7.1 DESCARGA ELETROESTÁTICA

A descarga eletrostática (ESD, do inglês *electrostatic discharge*) é um fenômeno natural que pode ser definido como "a rápida e espontânea transferência de carga entre dois corpos em diferentes potenciais elétricos".(1)

A descarga eletrostática pode pode causar grandes danos a equipamentos eletrônicos (2) e segundo Hwang(3), um terço das falhas em campo de circuitos integrados são decorrentes de ESD e outras falhas conhecidas como sobrecargas elétricas.

Existem 3 principais processos de geração de cargas eletrostáticas:

7.1.1 carregamento triboelétrico

Causado pela fricção de diferentes materiais e é o método mais usual de geração de cargas eletroestáticas.

O carregamento triboelétrico é causado por um principio de contato e separação dos materiais. Quando dois materiais com propriedades triboelétricas diferentes são colocados em contato e separados, elétrons carregados negativamente são transferidos da superfície de um material para o outro. O material que sofre perda e o que ganha elétrons é definido por suas propriedades triboelétricas(3).

7.1.2 indução

O processo de indução ocorre quando um objeto condutor mas sem cargas é colocado próximo a um objeto com cargas eletroestáticas. Ao afastar os objetos aquele que não possuía cargas passa a possuir uma carga resultante da somatória algébrica das cargas. A nova carga possui polaridade oposta a do objeto que foi aproximado.

7.1.3 condução

A condução ocorre quando há contato entre objetos com diferentes potenciais de tensão. Ao entrarem em contato os objetos irão se balancear eletricamente resultando em objetos com cargas com polaridades iguais.

7.2 DANOS PROVOCADOS POR DESCARGAS ELETROESTÁTICAS

As descargas eletroestáticas podem causar riscos tanto as pessoas quanto a bens e equipamentos. Em industrias que lidam com substancias inflamáveis as descargas eletroestáticas podem gerar faíscas e inflamar misturas explosivas. (4)

De acordo com Hwang(3), 58% das falhas de circuitos integrados baseados em silício e 27% dos baseados em Gálio-arsênico são decorrentes de ESD e sobrecargas elétricas.

É estimado que as perdas da industria de eletrônicos com descargas eletroestáticas seja de bilhões anualmente. (3)

Os custos podem variar de alguns centavos para centenas de reais por componente.

7.3 MEDIÇÃO DE CARGAS ELETROESTÁTICAS

A medição de cargas eletroestáticas pode ser feita através de medidores de tensão que medem a carga em um componente de um componente ou medindo sua curva de descarga.(5)

Não existem níveis de aceitação padrão, sendo estes dependentes de cada componente a ser testado.

8 METODOLOGIA

Serão feitas pesquisas bibliográficas na área de sistemas microprocessados, com foco na arquitetura Arduino, com foco na linguagem C e programação orientada a objetos com foco na linguagem Python(6) que auxilia a criação do servidor de dados e interface web necessária a visualização dos dados. Serão, por fim, feitas pesquisas sobre circuitos de medição de tensão elétrica, aplicados na leitura de sinais dos objetos a serem testados.

Pesquisas de campo serão aplicadas para coletar dados reais em linhas de produção, serão feitas, também, simulações computacionais e reais nas quais se buscará avaliar a confiabilidade dos algoritmos testados, bem como determinar o mais adequado às limitações inerentes à plataforma de trabalho disponível.

A construção do sistema será dividida em três etapas: A primeira etapa será a implementação dos algoritmos de cálculo de medição de cargas eletroestáticas em *Python* utilizando o pacote *Numpy* de analise matemática.(7)

A segunda etapa será a implementação de um protótipo utilizando o modulo arduino Uno como base para o esquema eletrônico. O algorítimo de medição desenvolvido na etapa um será transcrito para a linguagem C e embarcado no modulo de medição. (8)

A terceira etapa sera o desenvolvimento de um programa servidor de dados em linguagem Python utilizando os pacotes Django(9) e Cherry Py(10).

Após a construção do sistema ele será testado em ambientes laboratoriais e apos essa etapa de testes e subsequente correções, serão feitos testes de campo em uma linha de produção.

9 CRONOGRAMA

As atividades de desenvolvimento do projeto seguirão o seguinte cronograma:

 ${\bf Tabela} \ 1 - {\bf Cronograma} \ {\bf de} \ {\bf atividades}$

Item	Atividade	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1	Escolha do Professor	X								
	Orientador									
2	Definição do Tema		X							
3	Estudo sobre medição		X	X						
	de tensão em compo-									
	nentes eletrônicos									
4	Coleta de Informações		X	X						
	do projeto de pesquisa									
5	Tratamento das Infor-			X						
	mações coletadas									
6	Elaboração do projeto			X	X					
	de pesquisa									
7	Revisão do Texto do				X					
	Projeto de Pesquisa									
8	Elaboração da Apre-				X					
	sentação									
9	Apresentação do Pro-				X					
	jeto de Pesquisa									
10	Estudo de circuitos de					X				
	transmissão de dados									
11	Desenvolvimento do					X				
10	protótipo							**		
12	Elaboração textual da						X	X		
10	Pesquisa							37		
13	Revisão textual da pes-							X		
14	quisa								X	
15	Correções Textuais								Λ	X
10	Entrega da versão final									Λ
16	da Pesquisa									X
10	Elaboração da Apresentação									Λ
17	Apresentação da Pes-									X
11										Λ
	quisa									

REFERÊNCIAS

- 1 ESDA. ESD fundamentals. 2014. Disponível em: http://www.esda.org. Acesso em: 07 set. 2014. Citado na página 6.
- 2 KATSIVELIS, P. K. et al. Electrostatic Discharge Current Linear Approach and Circuit Design Method. *Energies*, v. 3, n. 11, p. 1728–1740, nov. 2010. ISSN 1996-1073. Disponível em: http://www.mdpi.com/1996-1073/3/11/1728/. Citado na página 6.
- 3 HWANG, Y.-C. Electrostatic discharge and electrical overstress failures of non-silicon devices. 122 p. Tese (Doutorado) University of Maryland, 2005. Disponível em: http://drum.lib.umd.edu/bitstream/1903/2198/1/umi-umd-2198.pdf. Citado 2 vezes nas páginas 6 e 7.
- 4 KASSEBAUM J.H.; KOCKEN, R. Controlling static electricity in hazardous (classified) locations. In: Petroleum and Chemical Industry Conference, 1995. Record of Conference Papers., Industry Applications Society 42nd Annual. [S.l.: s.n.], 1995. Citado na página 7.
- 5 BERNDT, H. ELECTROSTATIC DISCHARGE (ESD)? SOURCES OF ELECTROSTATIC CHARGE IN A PRODUCTION LINE (SMT). Pan Pacific Symposium Proceedings, Pan Pacific Symposium Proceedings, Kesslesdorf, Saxony, Germany, 2010. Disponível em: http://www.ipcoutlook.org/pdf/esd_sources_production_line_smta.pdf. Citado na página 7.
- 6 ROSSUM, G. V. *Python.* 2014. Disponível em: https://www.python.org/>. Acesso em: 07 set. 2014. Citado na página 7.
- 7 NUMPY. Numpy. 2014. Disponível em: http://www.numpy.org/>. Acesso em: 07 set. 2014. Citado na página 8.
- 8 ARDUINO. Arduino Uno. 2014. Disponível em: http://arduino.cc/en/Main/ArduinoBoardUno. Acesso em: 07 set. 2014. Citado na página 8.
- 9 DJANGO, S. F. *Django*. 2014. Disponível em: https://www.djangoproject.com/>. Acesso em: 07 set. 2014. Citado na página 8.
- 10 CHERRYPY. *Cherrypy*. 2014. Disponível em: http://www.cherrypy.org/>. Acesso em: 07 set. 2014. Citado na página 8.