AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A device for treating spinal deformities, comprising:

a spinal anchoring element adapted to seat first and second spinal fixation elements at a distance spaced apart from one another, the spinal anchoring element having a bore extending therethrough;

a fastening element adapted to extend through the bore to mate the spinal anchoring element to bone; and

a closure mechanism adapted to <u>removably</u> mate to the spinal anchoring element to lock each of the first and second spinal fixation elements in a fixed position relative to the spinal anchoring element, the closure mechanism adapted to receive a locking mechanism that directly engages the bore.

- 2. (Original) The device of claim 1, wherein the spinal anchoring element includes a first recess adapted to receive a first spinal fixation element, and a second recess spaced a distance apart from the first recess and adapted to receive a second spinal fixation element.
- 3. (Previously Presented) The device of claim 2, wherein the spinal anchoring element includes a central portion positioned between the first and second recesses and adapted to receive the fastening element for mating the anchoring element to bone.
- 4. (Previously Presented) The device of claim 3, wherein the central portion includes the bore extending therethrough.
- 5. (Original) The device of claim 4, wherein the closure mechanism includes a central portion adapted to receive a locking mechanism for mating the closure mechanism to the spinal anchoring element.
- 6. (Previously Presented) The device of claim 5, further comprising a locking mechanism for mating the closure mechanism to the spinal anchoring element.

Application No. 10/709,796 Reply to Office Action of September 19, 2008

- 7. (Original) The device of claim 6, wherein the fastening element comprises a bone screw, and the locking mechanism comprises a set screw.
- 8. (Original) The device of claim 3, wherein the first recess is formed in a first end portion of the spinal anchoring element and the second recess is formed in a second, opposed end portion of the spinal anchoring element.
- 9. (Original) The device of claim 8, wherein each end portion includes a superior surface and an inferior surface, the first and second recesses being formed in the superior surface.
- 10. (Original) The device of claim 9, further comprising a bone engaging member extending distally from the inferior surface of each of the first and second end portions.
- 11. (Original) The device of claim 10, wherein each bone engaging member comprises a spike adapted to extend into bone to prevent rotation of the spinal anchoring element.
- 12. (Original) The device of claim 8, wherein the closure mechanism includes a first end portion adapted to lock a spinal fixation element within the first recess, and a second end portion adapted to lock a spinal fixation element within the second recess.
- 13. (Withdrawn) The device of claim 12, wherein the first and second ends portions on the closure mechanism each include a bore formed therethrough for receiving an engagement mechanism adapted to extend into and engage a spinal fixation element disposed within each of the first and second recesses in the spinal anchoring element.
- 14. (Withdrawn) The device of claim 13, further comprising first and second engagement mechanisms, each engagement mechanism including a proximal, threaded portion adapted to mate with corresponding threads formed within the bore in the closure mechanism, and a distal pin member adapted to extend into a spinal fixation element positioned in each of the first and second recesses.

Application No. 10/709,796 Docket No.: 101896-0251 (DEP5318)
Reply to Office Action of September 19, 2008

15. (Original) The device of claim 1, further comprising first and second spinal fixation elements adapted to be disposed between the spinal anchoring element and the closure mechanism.

- 16. (Original) The device of claim 15, wherein each spinal fixation element comprises a flexible fixation element.
- 17. (Original) The device of claim 15, wherein each spinal fixation element is formed from a bioabsorbable material.
- 18. (Original) The device of claim 2, wherein each recess has a substantially concave shape.
- 19. (Withdrawn) The device of claim 2, wherein each recess includes at least one protrusion formed therein and adapted to extend into and engage a spinal fixation element positioned therein.
- 20. (Withdrawn) The device of claim 2, wherein the closure mechanism includes at least one protrusion formed thereon and adapted to extend into and engage a spinal fixation element disposed in each of the first and second recesses formed in the spinal anchoring element.
- 21. (Currently Amended) A medical system for treating spinal deformities, comprising: first and second flexible spinal fixation elements;

a plurality of spinal anchoring devices adapted to mate to a plurality of vertebrae and to engage the first and second spinal fixation elements such that the first and second spinal fixation elements can be tensioned between the plurality of spinal anchoring devices to adjust a position of the plurality of vertebrae in both a sagittal plane and a coronal plate when the plurality of spinal anchoring devices are implanted in a plurality of vertebrae, at least one of the spinal anchoring devices being adapted to receive a fastening element for mating the spinal anchoring device to bone and a elosure locking mechanism axially aligned with the fastening element to lock the first and second spinal fixation elements to the spinal anchoring device.

wherein at least one of the plurality of spinal anchoring devices includes a spinal anchoring

Application No. 10/709,796 Docket No.: 101896-0251 (DEP5318)

Reply to Office Action of September 19, 2008

element and a closure mechanism adapted to removably mate to the spinal anchoring element to

lock the first and second flexible spinal fixation elements therein.

22. (Cancelled).

23. (Currently Amended) The system of claim 22 21, wherein the spinal anchoring element and the

closure mechanism each include first and second recesses formed therein for seating the first and

second spinal fixation elements therebetween.

24. (Withdrawn) The system of claim 23, wherein the closure mechanism includes first and second

bores formed therein and configured to receive an engagement mechanism adapted to extend into

and engage the first and second spinal fixation elements.

25. (Original) The system of claim 23, wherein the first recess in each of the spinal anchoring

element and closure mechanism is spaced a distance apart from the second recess in each of the

spinal anchoring element and closure mechanism.

26. (Original) The system of claim 25, further comprising a bore extending through the closure

mechanism and spinal anchoring element for receiving a fastening element adapted to mate the

spinal anchoring element to bone, and a locking mechanism adapted to mate the closure mechanism

to the spinal anchoring element.

27. (Original) The system of claim 26, wherein the fastening element comprises a bone screw, and

the locking mechanism comprises a set screw.

28. (Original) The system of claim 26, wherein the bore in the closure mechanism and spinal

anchoring element is positioned between the first and second recesses.

5

Application No. 10/709,796 Reply to Office Action of September 19, 2008

29. (Original) The system of claim 25, wherein the first recess is formed in a first end portion of each of the spinal anchoring element and the closure mechanism, and the second recess is formed in a second, opposed end portion of each of the spinal anchoring element and the closure mechanism.

- 30. (Original) The system of claim 29, wherein the first and second recesses have a substantially concave shape.
- 31. (Original) The system of claim 29, wherein the recesses are formed in an inferior surface of the closure mechanism and a superior surface of the spinal anchoring element.
- 32. (Withdrawn) The system of claim 31, wherein the first and second recesses in at least one of each closure mechanism and each spinal fixation element includes at least one protrusion formed therein for extending into and engaging the first and second spinal fixation elements.
- 33. (Original) The system of claim 21, further comprising at least one bone engaging member formed on at least one of the plurality of spinal anchoring devices for extending into bone to prevent rotation of the spinal anchoring device relative thereto.
- 34. (Original) The system of claim 21, wherein the first and second spinal fixation elements are flexible.
- 35. (Original) The system of claim 21, wherein the first and second spinal fixation elements are formed from a bioabsorbable material.
- 36-52. (Cancelled).