Введение

Проблема ускорения сходимости бесконечных кратных рядов с помощью методов экстраполяции в последнее время вызывает значительный интерес. Первая работа по ускорению сходимости кратных рядов была опубликована Чизхолмом [1]. В этой работе Чизхолм определил диагональные аппроксиманты Паде для двойных рядов вида f(x, y) =

$$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} c_{ij} x^i y^j.$$

$$\underline{\textit{Определение 1}}$$
 [1]: пусть $f(x,y) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} c_{ij} x^i y^j$ – степенной ряд по двум

переменным, тогда диагональным аппроксимантом Паде порядка [n,n] называется рациональная функция

$$[n,n]f(x,y) = \frac{P_n(x,y)}{Q_n(x,y)} = \frac{\sum_{i=0}^n \sum_{j=0}^n u_{ij} x^i y^j}{\sum_{i=0}^n \sum_{j=0}^n v_{ij} x^i y^j}$$

такая, что в разложении $f(x,y)Q_n(x,y) - P_n(x,y)$ аннулируются все мономы суммарного порядка $\leq 2n$. Коэффициенты u_{ij} и v_{ij} определяются из линейной системы, возникающей при приравнивании коэффициентов степеней x и y до общего порядка 2n.

Недиагональные аппроксиманты $[m/n]_f(x,y)$ были позднее определены Грейвсом-Моррисом, Хьюзом Джонсом и Мейкинсоном. Диагональные аппроксиманты из [1] были обобщены на степенные ряды от N переменных Чизхолмом и Макьюэном, а недиагональные аппроксиманты из были обобщены на N переменных Хьюзом Джонсом. Аппроксиманты Паде общего порядка для кратных степенных рядов были определены Левиным [2] и далее развиты Кайтом [8].

Общее обсуждение ускорения сходимости бесконечных двойных рядов и интегралов было представлено в работе Левина [3]. Статья Грайфа и Левина [4] объединяет общую идею из [3] с подходом, основанным на d-преобразовании для одномерных бесконечных рядов, предложенных Левиным и Сиди. Ранее, Сиди уже предложил подход [7], в котором d-преобразование используется последовавтельно для суммирования кратных рядов.

Рассмотрим некоторые детали подхода, основанного на асимптотических разложениях и обобщенном процессе экстраполяции Ричардсона, которые приводят к d-преобразованиям.

 $d^{(m)}$ -преобразование для одномерных бесконечных рядов

Рассмотрим $d^{(m)}$ -преобразование, предложенное в работе [6], для ускорения сходимости бесконечных рядов. Определим класс функций $A_0^{(\gamma)}$.

<u>Определение 2</u> [5]: функция $\alpha(x)$, определённая для всех $x \ge a$ при котором $a \ge 0$, принадлежит множеству $A_0^{(\gamma)}$, если она имеет асимптотическое разложение Пуанкаре вида:

$$\alpha(x) \sim \sum_{i=0}^{\infty} \alpha_i x^{\gamma-i}, \qquad x \to \infty.$$
 (1)

<u>Определение 3</u> [11]: пусть функция $\alpha(x)$ определена при $x \to \infty$, предположим, что найдётся последовательность невырожденных функций $\varphi_0(x)$, $\varphi_1(x)$, $\varphi_2(x)$, ... таких, что:

- 1) $\lim_{x\to\infty} \frac{\varphi_{k+1}(x)}{\varphi_k(x)} = 0$ для всех $k\geq 0$;
- 2) для каждого k существует X_k такое, что $\varphi_k(x) \neq 0$ при всех $x > X_k$.

Тогда говорят, что функция $\alpha(x)$ имеет асимптотическое разложение Пуанкаре

$$\alpha(x) \sim \sum_{k=0}^{\infty} \alpha_k \varphi_k(x), \qquad x \to \infty,$$

если для любого целого $N \ge 1$ справедливо

$$\alpha(x) - \sum_{k=0}^{N-1} \alpha_k \varphi_k(x) = O(\varphi_N(x)), \qquad x \to \infty.$$

Если, кроме того, $\alpha_0 \neq 0$ в (1), то говорят, что $\alpha(x)$ строго принадлежит $A_0^{(\gamma)}$. Здесь γ может быть комплексным. Отметим также, что от функций $A_0^{(\gamma)}$ не требуется дифференцируемости, поэтому $A_0^{(\gamma)} \supset A^{(\gamma)}$. Определим семейство последовательностей $b^{(m)}$.

<u>Определение 4</u> [5]: Последовательность $\{a_n\}$ принадлежит множеству $b^{(m)}$, если она удовлетворяет линейному однородному разностному уравнению порядка m вида:

$$a_n = \sum_{k=1}^m p_k(n) \Delta^k a_n, \qquad (2)$$

где $p_k \in A_0^{(k)}$, $k=1,\dots,m$. Здесь $\Delta^0 a_n = a_n$, $\Delta^1 a_n = \Delta a_n = a_{n+1} - a_n$, и $\Delta^k a_n = \Delta(\Delta^{k-1}a_n)$, $k=2,3,\dots$

Следующая теорема, приведённая в [6], является основой для $d^{(m)}$ -преобразования.

<u>Теорема 1</u>: пусть последовательность $\{a_n\}$ принадлежит $b^{(m)}$, и пусть ряд $\sum_{k=1}^{\infty} a_k$ сходится. Предположим также, что:

$$\lim_{n \to \infty} \left(\Delta^{j-1} p_k(n) \right) \left(\Delta^{k-j} a_n \right) = 0, \qquad k = j, j+1, \dots, m, \qquad j = 1, 2, \dots, m, \tag{3}$$

и что:

$$\sum_{k=1}^{m} l(l-1) \dots (l-k+1) \bar{p}_k \neq 1, \qquad l = \pm 1, 2, 3, \dots,$$
 (4)

где

$$\bar{p}_k = \lim_{n \to \infty} n^{-k} p_k(n), \qquad k = 1, \dots, m.$$
 (5)

Определим:

$$S({a_k}) = \sum_{k=1}^{\infty} a_k, \qquad A_n = \sum_{k=1}^{n} a_k, \qquad n = 1, 2, \dots$$
 (6)

Тогда:

$$A_{n-1} = S(\{a_k\}) + \sum_{k=0}^{m-1} n^{\rho_k} (\Delta^k a_n) g_k(n),$$
 (7)

где $\rho_k \leq k+1$ – целые числа, а функции $g_k \in A_0^{(0)}$, $k=0,1,\dots,m-1$. Более того, если $\rho_k \in A_0^{(i_k)}$ строго для некоторых целых $i_k \leq k, k=1,\dots,m$, то:

$$\rho_k \le \overline{\rho_k} \equiv \max(i_{k+1}, i_{k+2} - 1, \dots, i_m - m + k + 1) \le k + 1,$$

$$k = 0, 1, \dots, m - 1.$$
(8)

Равенство в (8) достигается, когда целые числа, среди которых берется максимум, различны. Наконец, поскольку $g_k(n) \in A_0^{(0)}$, они имеют асимптотическое разложение вида:

$$g_k(n) \sim \sum_{i=0}^{\infty} g_{ki} n^{-i}$$
 при $n \to \infty$. (9)

Важно [5]:

- 1) из (5) следует, что если $\overline{p_k} \neq 0$, тогда и только тогда, когда $p_k \in A_0^{(k)}$ строго; таким образом, если $p_k \in A_0^{(i_k)}$ при $i_k < k$, то $\overline{p_k} = 0$, это означает, что при $i_k < k$ для всех k = 1, ..., m условие (4) выполняется автоматически;
- 2) из (8) следует, что $\rho_{m-1} = i_m$ всегда;
- 3) аналогично, для m=1 имеем $\rho_0=i_1$ точно;
- 4) целые числа ρ_k и функции $g_k(n)$ в (7) зависят только от $p_k(n)$ в разностном уравнении (2); таким образом, они одинаковы для всех решений a_n , уравнения (2), удовлетворяющих (3), для которых ряд $\sum_{k=1}^{\infty} a_k$ сходится;
- 5) из (3) и (8) также следует, что $\lim_{n \to \infty} n^{\overline{p_k}} \Delta^k a_n = 0$, k = 0, 1, ..., m-1.

Аналогия с *GREP* [5]:

1) $A_{n-1} \leftrightarrow A(y)$;

- 2) $n^{-1} \leftrightarrow y$;
- 3) $n^{\rho_{k-1}} \Delta^{k-1} a_n \longleftrightarrow \phi_k(y);$
- 4) $r_k = 1 \ \forall k, k = 1, ..., m$;
- 5) $S(\{a_k\}) \leftrightarrow A$.

Проводя аналогию, видим, что A(y) принадлежит $F^{(m)}$. Переменная y здесь дискретна и принимает значения 1,1/2,1/3,...Исследования [5] показывают, что требование $\{a_k\} \in b^{(m)}$ является наиболее важным среди условий теоремы (3). Остальные условия, а именно (3)-(5) обычно выполняются автоматически. Поэтому для проверки принадлежности $A(y) \equiv A_{n-1}$ (где $y=n^{-1}$) множеству $F^{(m)}$ достаточно убедиться, что $\{a_k\} \in b^{(m)}$. Хотя теорема (3) сформулирована для последовательностей $\{a_n\} \in b^{(m)}$, для которых ряд $\sum_{k=1}^{\infty} a_k$ сходится, соотношение (7)-(9) может выполняться и для расходящихся рядов, если их антипредел $S(\{a_k\})$ определён в некотором смысле суммируемости. Заменив каждое ρ_k в (7) его верхней оценкой k+1, добавив a_n к обеим частям (7) и применив формулировку определения GREP, можно определить d-преобразование.

<u>Определение 5</u> [5]: выберем последовательность целых чисел $\{R_l\}_{l=0}^{\infty}$, где $1 \leq R_0 < R_1 < R_2 < \cdots$. Пусть $n \equiv (n_1, \dots, n_m)$ — неотрицательные целые числа. Тогда приближение $d_n^{(m,j)}$ к $S(\{a_k\})$ определяется системой линейных уравнений:

$$A_{R_{l}} = d_{n}^{(m,j)} + \sum_{k=1}^{m} R_{l}^{k} (\Delta^{k-1} a_{R_{l}}) \sum_{i=0}^{n_{k}-1} \frac{\overline{\beta k_{l}}}{R_{l}^{i}}, \quad j \leq l \leq j+N,$$

$$N = \sum_{k=1}^{m} n_{k}.$$
(10)

Здесь $\overline{\beta k_l}$ представляют собой дополнительные неизвестные. В формуле (10) принято, что $\sum_{i=0}^{-1} c_i \equiv 0$, поэтому $d_{[0,\dots,0]}^{(mj)} = A_j \ \forall j$. Этот процесс обобщённой экстраполяции Ричардсона (*GREP*), генерирующий $d_n^{(m,j)}$, называется $d^{(m)}$ -преобразованием или просто d-преобразованием (для краткости). Это определение d-преобразования было дано в [8] и отличается от исходного определения в [13] заменой ρ_k на их верхние оценки k+1. Такой подход более удобен для пользователя, поскольку не требует знания точных значений ρ_k . Если же эти значения известны, их следует использовать для повышения точностей вычислений.

Для применения $d^{(m)}$ -преобразования необходимо определить значение m. Это можно сделать одним из двух способов [5]:

- 1) методом проб и ошибок начать тест с m = 1, и увеличивать m до достижения удовлетворительного ускорения сходимости;
- 2) математической оценкой использовать эмпирические правила: если $\{u_n\} \in b^{(r)}, \{v_n\} \in b^{(s)}$, то:
 - a) $\{u_n v_n\} \in b^{(m)}, m \le rs;$
 - b) $\{u_n+v_n\}\in b^{(m)}, m\leq r+s.$

Псевдокод для $d^{(m)}$ -преобразования для одномерных рядов представлен на $\underline{Pucyнкe}$ \underline{I} , а пример его применения представлен на $\underline{Pucyнke}$ \underline{I} .

Вход: ряд S в виде $\sum_{n=1}^{\infty} a_n$, где $\{a_n\}$ - последовательность, удовлетворяющая разностному уравнению (2), $m \geq 1$ — порядок преобразования (обосновано в <u>Teopeme 1</u>), $\{R_l\}$ — возрастающая последовательность целых чисел для выбора точек (<u>Определение 5</u>)

Выход: $d_n^{(m,j)}$ - аппроксимация суммы ряда

Проверка условий *Теоремы 2* (стр. 6, условия (3)-(5))

if $\{a_n\}$ не удовлетворяет условиям <u>Теоремы 2</u>: # Условия (3)-(5)

return «Ряд не удовлетворяет условиям *Теоремы 2*»

else:

for
$$l$$
 от j до $j + N - 1$: $\#(N = \sum_{k=1}^{m} n_k)$

Вычислить частичные суммы A_n для $n \in \{R_l\}$ (по формуле для частичных сумм (6))

for *k* от 1 до *m*:

Вычислить конечные разности $\Delta^{k-1}a_{R_I}$ # Определение 5

Сформировать уравнение (10)

Решить систему линейных уравнений (10) относительно $d_n^{(m,j)}$ и βk_i

return $d_n^{(m,j)}$

 $\underline{\mathit{Pucyhok}\ \mathit{1}}$. Псевдокод для $d^{(m)}$ -преобразования для одномерных рядов.

Вход:
$$a_n = \sum_{n=1}^{\infty} \frac{1}{n^2+1}$$
, $m = 2$, $R_l = [5,10,15,20]$

Выход: $d_n^{(m,j)} = 1.2035$

 $\underline{Pucyнok\ 2}$. Пример применения $d^{(m)}$ -преобразования для одномерных рядов.

Последовательное d-преобразование для s-мерных рядов

Вычисление многомерных рядов может быть выполнено с помощью последовательного применения d-преобразования при определённых условиях. Такой подход был впервые предложен в работе [15] для двойных бесконечных рядов, где он также был теоретически обоснован и проиллюстрирован на примерах. Кратко опишем данный метод. Чтобы упростить изложение для дальнейшего использования, введём некоторые обозначения:

$$y = (y_1, ..., y_s), 0 = (0, ..., 0), 1 = (1, ..., 1),$$

$$u \ge v \iff u_j \ge v_j, j = 1, ..., s,$$

$$\mathbb{Z}^s = \{i = (i_1, ..., i_s)\}, i_j \in \mathbb{Z}, \mathbb{Z}_0^s = \{i \in \mathbb{Z}^s | i \ge 0\},$$

$$\mathbb{Z}_r^s = \{i \in \mathbb{Z}_0^s | i \ge r\}, \mathbb{Z}_+^s = \mathbb{Z}_1^s.$$

Рассмотрим *s*-мерный бесконечный ряд $S(\{a_i\}) = \Sigma_{i \in \mathbb{Z}_+^s} a_i$ и определим [14]:

$$L_1(i_1, ..., i_s) = a_i = a_{i_1, ..., i_1},$$

$$L_{k+1}(i_{k+1}, ..., i_s) = \sum_{i_k=1}^{\infty} L_k(i_k, ..., i_s), \qquad k = 1, ..., s-1.$$

Таким образом, $S(\{a_i\}) = \sum_{i_s=1}^{\infty} L_s(i_s)$.

<u>Лемма 1</u> [14]: предположим, что для каждого k и фиксированных i_{k+1}, \dots, i_S , применяя последовательность $\{L_k(i_k, \dots, i_S)\}_{i_{k+1}}^{\infty}$ принадлежит классу $b^{(m_k)}$ для некоторого целого m_k (это предположение, по-видимому, выполняется, когда $\{a_i\}_{i_{k+1}}^{\infty} \in b^{(m_k)}$ для каждого k и фиксированных i_{k+1}, \dots, i_S . Следовательно, $L_{k+1}(i_{k+1}, \dots, i_S)$ может быть вычислено путём применения $d^{(m_k)}$ -преобразования к ряду $\sum_{i_k=1}^{\infty} L_k(i_k, \dots, i_S)$, вычисление $S(\{a_i\})$ завершается применением $d^{(m_S)}$ -преобразования к ряду $\sum_{i_S=1}^{\infty} L_S(i_S)$.

Преимущество этого подхода к суммированию s-мерных рядов заключается в том, что данное предположение автоматически выполняется, когда $a_i = \Pi_{j=1}^s a_{ij}^{(j)}$, где $\left\{a_{ij}^{(j)}\right\}_{i=1}^\infty \in b^{(m_j)}$ для некоторых целых чисел m_j . Псевдокод для последовательного d-преобразования для s-мерных рядов представлен на $\underline{Pucyhke\ 3}$, а пример его применения представлен на $\underline{Pucyhke\ 4}$.

```
Вход: s-мерный массив элементов a[i_1, ..., i_s], вектор порядков преобразований m=
[m_1, \dots, m_s], двумерный массив R - последовательности точек \left\{R_l^{(k)}\right\}_{l=1}^{N_k} для каждой
размерности k = 1, ..., s
Выход: ускоренная сумма L_{s+1}
Инициализировать L_1(i_1, ..., i_s) = a[i_1, ..., i_s]
for k от 1 до s:
       if \{L_k(i_k, ..., i_s)\}_{i_{k=1}}^{\infty} \notin b^{(m_k)}:
               return «Ошибка: размерность k не удовлетворяет условиям»
       else:
               # Применить d^{(m_k)}-преобразование (Лемма 1)
               for каждого фиксированного набора (i_{k+1}, ..., i_s):
                       Вычислить частичные суммы A_{R_I} (аналогично формуле (6))
                       Вычислить конечные разности требуемых порядков # Определение 5
               Построить и решить систему уравнений (аналогичную (10))
               Результат записать в L_{k+1}(i_{k+1},...,i_S)
return L_{S+1}
```

Pucyнок 3. Псевдокод для последовательного d-преобразования для s-мерных рядов.

Вход:
$$a[i,j] = \frac{1}{i^2+j}$$
, $m = [1,2]$, $R = [[5,10],[4,8]]$
Выход: $L_{S+1} = 2.721$

<u>Рисунок 4</u>. Пример применения последовательного d-преобразования для s-мерных рядов.

Факториальное $d^{(m)}$ -преобразование

Путём перезаписи асимптотических разложений функций $g_k(n)$ из (9) в других формах, получаем другие варианты d-преобразования [11]. Например, произвольный асимптотический ряд $\sum_{i=0}^{\infty} \frac{\gamma_k}{n^i}$ при $n \to \infty$ можно также представить в виде $\sum_{i=0}^{\infty} \frac{\hat{\gamma}_i}{(n)_i}$ при $n \to \infty$, где $(n)_0 = 1$ и $(n)_i = \prod_{k=0}^{i-1} (n+s)$, $i \ge 1$. Здесь $\hat{\gamma}_i = \gamma_i$ для $0 \le i \le 2$, $\hat{\gamma}_3 = \gamma_2 + \gamma_3$, и так далее. Для каждого i коэффициент $\hat{\gamma}_i$ однозначно определяется значениями $\gamma_0, \gamma_1, \dots, \gamma_i$. Если теперь переписать асимптотические разложения $\sum_{i=0}^{\infty} \frac{g_{ki}}{(n)_i}$ при $n \to \infty$ в форме $\sum_{i=0}^{\infty} \frac{\hat{g}_{ki}}{(n)_i}$ при $n \to \infty$ и продолжить аналогичным образом, можно определить факториальное $d^{(m)}$ -преобразование для бесконечных рядов с помощью линейных уравнений:

$$A_{R_{l}} = d_{n}^{(m,j)} + \sum_{k=1}^{m} R_{l}^{k} (\Delta^{k-1} a_{R_{l}}) \sum_{i=0}^{n_{k}-1} \frac{\overline{\beta k_{l}}}{(R_{l} + \alpha)_{i}}, \quad j \leq l \leq j + N,$$

$$N = \sum_{k=1}^{m} n_{k}.$$
(11)

И для бесконечных последовательностей с помощью линейных уравнений:

$$A_{R_{l}} = d_{n}^{(m,j)} + \sum_{k=1}^{m} \left[R_{l}^{k} (\Delta^{k} A_{R_{l}-1}) \sum_{i=0}^{n_{k}-1} \frac{\overline{\beta_{ki}}}{(R_{l} + \beta)_{i}} \right], j \leq l \leq j + N;$$

$$N = \sum_{k=1}^{m} n_{k}.$$

Псевдокод для факториального $d^{(m)}$ -преобразования представлен на $\underline{Pucyнкe\ 5}$, а пример его применения представлен на $\underline{Pucyнke\ 6}$.

Вход: ряд S в виде $\sum_{n=1}^{\infty} a_n$, где $\{a_n\}$ – последовательность с асимптотикой вида (9), $m \geq 1$ – порядок преобразования ($\underline{Teopema\ I}$), α – параметр сдвига, $\{R_l\}$ – последовательность точек ($\underline{Onpedenehue\ 5}$) **Выход**: приближение $d_n^{(m,j)}$

#Проверить соответствие асимптотики

if $\{a_n\}$ не соответствует формуле (9):

return "Ошибка: неверный тип асимптотики"

else:

for
$$l$$
 от j до $j + N - 1$ ($N = \sum_{k=1}^{m} n_k$):

Вычислить частичные суммы A_n для $n \in \{R_l\}$ (аналогично формуле (6))

for i от 0 до n_{k-1} :

Вычислить факториальные члены $(R_l + \alpha)_i$ из (11)

Сформировать уравнение (11)

Решить систему линейных уравнений (11) относительно $d_n^{(m,j)}$ и βk_i

return $d_n^{(m,j)}$

<u>Рисунок 5</u>. Псевдокод для факториального $d^{(m)}$ -преобразования.

Вход:
$$a_n = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}, m = 1, \alpha = 1, R_l = [3,6,9]$$
Выход: $d_n^{(m,j)} = 0.997$

 $\underline{\mathit{Pucyhok}\ 6}$. Пример применения факториального $d^{(m)}$ -преобразования.

Н-трансформация

Метод, называемый H-преобразованием, был предложен Хомейером [18] для ускорения сходимости рядов Фурье по синусам и косинусам. Рассмотрим это преобразование, так как оно является частным случаем $GREP^{(2)}$ и вариантом $d^{(m)}$ -преобразования. Пусть дан ряд Фурье:

$$F(x) \coloneqq \sum_{k=0}^{\infty} (b_k \cos kx + c_k \sin kx),$$

а его частичные суммы имеют вид:

$$S_n = \sum_{k=0}^{n} (b_k \cos kx + c_k \sin kx), \qquad n = 0,1,...$$

Тогда приближение $H_n^{(j)}$ к сумме этого ряда определяется через линейную систему:

$$S_{l} = H_{n}^{(j)} + r_{l} \left[\cos lx \sum_{i=0}^{n-1} \frac{\overline{\beta}_{l}}{(l+\delta)^{i}} + \sin lx \sum_{i=0}^{n-1} \frac{\overline{\gamma}_{l}}{(l+\delta)^{i}} \right], \qquad j \le l \le j+2n, \tag{12}$$

где

$$r_n = (n+1)M(b_n, c_n), \qquad M(p, q) = \begin{cases} p, & \text{если } |p| > |q| \\ q & \text{в ином случае} \end{cases}$$
 (13)

а δ - некоторая фиксированная константа. Здесь $\overline{\beta_l}$ и $\overline{\gamma_l}$ — дополнительные вспомогательные неизвестные. Хомейер предложил эффективный рекуррентный алгоритм для реализации H-преобразования, отличающийся высокой экономичностью.

Однако у этого преобразования есть два недостатка [11]:

1) Ограниченное применение: класс ряд рядов Фурье, для которых метод работает успешно, довольно узок. Это видно при сравнении уравнений (12) с определяющими уравнениями для $d_{(n.n)}^{(2,j)}$:

$$S_{R_{l}} = d_{(n.n)}^{(2,j)} + a_{R_{l}} \sum_{i=0}^{n-1} \frac{\overline{\beta_{i}}}{R_{l}^{i}} + \Delta a_{R_{l}} \sum_{i=0}^{n-1} \frac{\overline{\gamma_{i}}}{R_{l}^{i}}, \quad j \leq l \leq j+2n,$$

где $a_n = b_n \cos nx + c_n \sin nx$, при специальном выборе R_l , а именно $R_l = l+1$. Таким образом, $d_{(n.n)}^{(2,l)}$ и $H_n^{(j)}$ используют практически одинаковое количество членов ряда F(x). Уравнения в (12) сразу же показывают, что H-преобразование может быть эффективным, когда

$$S_n \sim S + r_n \left[\cos nx \sum_{i=0}^{\infty} \frac{\beta_i}{n^i} + \sin nx \sum_{i=0}^{\infty} \frac{\gamma_i}{n^i} \right], \quad n \to \infty,$$

то есть, когда S_n связана с функцией $A(y) \in F^{(2)}$. Такая ситуация возможна только тогда, когда $\{b_n\}$ и $\{c_n\}$ оба принадлежат классу $b^{(1)}$. Учитывая это, становится ясно, что, если хотя бы одна из последовательностей $\{b_n\}$ или $\{c_n\}$ (или обе) принадлежат классу $b^{(s)}$ при s>1, H-преобразование перестаёт быть эффективным. В отличие от этого, $d^{(m)}$ —преобразование при подходящем значении m>2 остаётся эффективным.

В качестве примера рассмотрим [11] ряд косинусов $F(x) := \sum_{k=0}^{\infty} b_k \cos kx$, где $b_n = P_n(t)$ — полиномы Лежандра. Поскольку $\{b_n\} \in b^{(2)}$, получаем, что $\{b_n cosnx\} \in b^{(4)}$. В этом случае:

- 1) $d^{(4)}$ —преобразование может быть применено напрямую к F(x);
- 2) $d^{(2)}$ -преобразование с использованием комплексного подхода также применимо и требует примерно вдвое меньше вычислений по сравнению с прямым методом;
- 3) *Н*-преобразование неэффективно.
- 2) Из определения r_n очевидно [11], что предполагается доступность b_n и c_n . В таком случае, $d^{(1)}$ -преобразование с $R_l = l+1$ (которое является ничем иным, как преобразованием Левина) в сочетании с комплексным подходом обеспечивает требуемую точность при примерно вдвое меньших вычислительных затратах по сравнению с H-преобразованием, когда последнее применимо. Разумеется, лучшая устойчивость и точность достигаются при использовании $d^{(1)}$ -преобразования с APS вблизи точек сингулярности.

Псевдокод для последовательного H-преобразования представлен на $\underline{Pucyhke\ 7}$, а пример его применения представлен на $\underline{Pucyhke\ 8}$.

Вход: ряд Фурье F(x) (определение перед (12)), $n \ge 1$ - порядок преобразования, $\delta > 0$ – параметр сдвига, коэффициенты $\{b_n\}, \{c_n\} \in b^{(1)}$ (следует из условия эффективности H-преобразования)

Выход: приближение $H_n^{(j)}$

if $\{b_n\}, \{c_n\} \notin b^{(1)}$:

return "Ошибка: коэффициенты не $\in b^{(1)}$ "

else:

for l от j до j + 2n - 1:

Вычислить частичную сумму ряда Фурье $S_l = \sum_{k=0}^l (b_k \cos kx + c_k \sin kx)$

Вычислить r_l (аналогично (13))

Сформировать уравнение (12)

Решить систему линейных уравнений (12) относительно $H_n^{(j)}, \gamma_i, \beta_i$

return $H_n^{(j)}$

 $\underline{Pucyнo\kappa\ 7}$. Псевдокод для H-преобразования.

Вход:
$$F(x) = \sum_{n=0}^{\infty} \frac{\cos(nx)}{n}$$
, $n = 2$, $\delta = 0.5$, $\{b_n\} = \{\frac{1}{n}\}$, $\{c_n\} = \{0\}$

Выход: $H_n^{(j)} = 1.064$

Рисунок 8. Пример применения Н-преобразования.

Заключение

Полученные преобразования могут быть применены к широкому классу последовательностей, включая, среди прочего, линейные и общие линейные последовательности, где обычно применяется ε -алгоритм. Они были созданы на основе строгого анализа асимптотических разложений хвостов бесконечных рядов. В некоторых частных случаях приближения, полученные с помощью $d^{(m)}$ -преобразования, совпадают с теми, которые даёт преобразование Шенкса.

Список литературы

- [1] Rational approximants defined from double power series // J. S. R. Chisholm. -1973. P. 941-848.
- [2] General Rational approximants in N variables // D. Levin. 1976. P. 1-8.
- [3] On accelerating the convergence of infinite double series and integrals // D. Levin. 1980. P. 1331-1980.
- [4] The $d_{(2)}$ -transformation for infinite double series and the $D_{(2)}$ -transformation for infinite double integrals. // E. Houle, Lothar Reichel 1998. P. 695-714.
- [5] Extrapolation Methods for infinite multiple series and integrals // D. Levin, A. Sidi 2001. P. 167-184.
- [6] Two new classes of nonlinear transformations for accelerating the convergence of infinite integrals and series // D. Levin, A. Sidi 1975. P. 175-215.
- [7] Further convergence and stability results for the generalized Richardson extrapolation process $GREP^{(1)}$ with and application to the $D^{(1)}$ -transformation for infinite integrals // A. Sidi. 1999. P. 153-167.
- [8] An algorithm for a generalization of the Richardson extrapolation process // W. F. Ford and A. Sidi. -1987. -P. 1212-1232.
- [9] Exponential function approximation to Laplace transform inversion and development of non-linear methods for accelerating the convergence of infinite integrals and series // I. M. Longman. 1977.
- [10] Development of non-linear transformations for improving convergence of sequences // D. Levin. 1975. P. 371-388, 1331-1345.
- [11] Practical Extrapolation Methods: Theory and Applications // A. Sidi -2003. P. 121-157, 238-250, 253-261, 363-371.
- [12] An algorithm for a special case of a generalization of the Richardson extrapolation process // A. Sidi. 1982. P. 223-233.
- [13] Acceleration of linear and logarithmic convergence // D. A. Smith, W. F. Ford. 1979. P. 223-240.
- [14] Numerical comparisons of nonlinear convergence accelerators // D. A. Smith, W. F. Ford. 1982. P. 481-499.
- [15] A new method for deriving Pade approximants for some hypergeometric functions // A. Sidi. 1981. P. 37-40.
- [16] A Maple package for transforming sequences and functions // J. Grotendorst. -1991. P. 325-342.
- [17] A Levin-type algorithm for accelerating the convergence of Fourier series // H. H. H. Homeier. 1992. P. 245-254.