1강. 행렬과 행렬식

— Index —

1. 행렬

(1) 용어정리

(2) 행렬의 연산

2. 연립일차방정식

(1) 행렬의 표현

(2) 가우스 조던

소거법 (3) 역행렬 이용

3. 행렬식

(1) 행렬식이란?

(2) 역행렬

(3) 크래머 공식

1. 행렬

(1) 용어정리

성분 := 행렬 안에 배열된 구성원 (=항=원소)

행 := 행렬의 가로줄

열 := 행렬의 세로줄

 $m \times n$ **행렬** := m개의 행과 n개의 열로 이루어진 행렬

—— Index ——

1. 행렬

(1) 용어정리

(2) 행렬의 연산

2. 연립일차방정식

(1) 행렬의 표현

(2) 가우스 조던

소거법

(3) 역행렬 이용

3. 행렬식

(1) 행렬식이란?

(2) 역행렬

(3) 크래머 공식

주대각선 := 행렬의 왼쪽 위에서 오른쪽

아래를 가르는 선

대각성분 := 주대각선에 걸치는, 행과

열의 지표수가 같은 성분

영행렬 := 모든 성분이 0인 행렬

전치행렬 := (a_{ij}) 에 대하여 (a_{ji})

대칭행렬 := $A = A^T$ 인 A

정사각행렬 := 행, 열의 개수가 같은 행렬

단위행렬 := 모든 대각성분이 1이고, 그

외의 성분은 0인 정사각행렬

1 http://수학의신.com

— Index —

1. 행렬

(1) 용어정리

(2) 행렬의 연산

2. 연립일차방정식

- (1) 행렬의 표현
- (2) 가우스 조던 소거법
- (3) 역행렬 이용
- 3. 행렬식
- (1) 행렬식이란?
- (2) 역행렬
- (3) 크래머 공식

(2) 행렬의 연산

 $m \times n$ 행렬 $A = (a_{ij}), B = (b_{ij})$ 에 대해

① 덧셈과 뺄셈

$$A \pm B = (a_{ij} \pm b_{ij})$$

② 상수배

상수 c 에 대해 $cA = (ca_{ij})$

— Index —

- 1. 행렬
- (1) 용어정리
- (2) 행렬의 연산

2. 연립일차방정식

- (1) 행렬의 표현
- (2) 가우스 조던 소거법
- (3) 역행렬 이용
- 3. 행렬식
- (1) 행렬식이란?
- (2) 역행렬
- (3) 크래머 공식

 $m \times n$ 행렬 $A = (a_{ij})$ 와 $n \times r$ 행렬 $B = (b_{jk})$ 에 대해

③ 곱셈

$$AB = (c_{ik})$$
 : $m \times r$ 행렬

단,
$$c_{ik} = \sum_{j=1}^{n} a_{ij}b_{jk}$$

※ 행렬의 곱셈은 교환법칙이 성립되지 않는다.

— Index —

- 1. 행렬
- (1) 용어정리
- (2) 행렬의 연산
- 2. 연립일차방정식
- (1) 행렬의 표현
- (2) 가우스 조던 소거법
- (3) 역행렬 이용
- 3. 행렬식
- (1) 행렬식이란?
- (2) 역행렬
- (3) 크래머 공식

2. 연립일차방정식

(1) 행렬의 표현

예를 들어,
$$\begin{cases} x+2y=5\\ 2x+3y=8 \end{cases} =$$

①
$$\begin{pmatrix} 1\,2\,5 \\ 2\,3\,8 \end{pmatrix}$$
 표현 \Rightarrow 가우스 조던 소거법

②
$$\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 8 \end{pmatrix}$$
 표현 \Rightarrow 역행렬 이용

— Index —

1. 행렬

- (1) 용어정리
- (2) 행렬의 연산
- 2. 연립일차방정식
- (1) 행렬의 표현
- (2) 가우스 조던
- 소거법 (3) 역행렬 이용
- 3. 행렬식
- (1) 행렬식이란?
- (2) 역행렬
- (3) 크래머 공식

(2) 가우스 조던 소거법

다음 세 가지의 기본 행 연산을 통해 연립일차방정식의 첨가행렬을 기약 행 사다리꼴로 변환하여 해를 구한다.

- 1) 한 행을 상수배한다.
- 2) 한 행을 상수배하여 다른 행에 더한다.
- 3) 두 행을 맞바꾼다.

— Index —

1. 행렬

- (1) 용어정리
- (2) 행렬의 연산
- 2. 연립일차방정식
- (1) 행렬의 표현
- (2) 가우스 조던 소거법
- (3) 역행렬 이용

3. 행렬식

- (1) 행렬식이란?
- (2) 역행렬
- (3) 크래머 공식

(3) 역행렬 이용

연립일차방정식 AX=B 에서 A의 역행렬 A^{-1} 가 존재하면, $X=A^{-1}B$ 이다.

예를 들어,

$$\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 8 \end{pmatrix} \iff \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}^{-1} \begin{pmatrix} 5 \\ 8 \end{pmatrix}$$

— Index —

1. 행렬

- (1) 용어정리
- (2) 행렬의 연산

2. 연립일차방정식

- (1) 행렬의 표현
- (2) 가우스 조던
- 소거법
- (3) 역행렬 이용

3. 행렬식

- (1) 행렬식이란?
- (2) 역행렬
- (3) 크래머 공식

3. 행렬식

(1) 행렬식이란?

정사각행렬 A를 하나의 수로써 대응시키는 특별한 함수. $\det A = |A|$

이때, A 가

- 1) $0 \times 0 \Rightarrow \det() = 0$
- 2) $1 \times 1 \Rightarrow \det(a) = a$
- 3) $2 \times 2 \implies \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} a_{12}a_{21}$

— Index —

- 1. 행렬
- (1) 용어정리
- (2) 행렬의 연산
- 2. 연립일차방정식
- (1) 행렬의 표현
- (2) 가우스 조던 소거법
- (3) 역행렬 이용
- 3. 행렬식
- (1) 행렬식이란?
- (2) 역행렬
- (3) 크래머 공식

4)
$$3 \times 3 \Rightarrow$$

$$\begin{split} \det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \\ &= a_{11} M_{11} - a_{12} M_{12} + a_{13} M_{13} \\ &= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \\ &= a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} \\ &- a_{13} a_{22} a_{31} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} \end{split}$$

5)
$$4\times4 \Rightarrow$$

$$\det A = a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13} - a_{14}M_{14}$$

— Index —

- 1. 행렬
- (1) 용어정리
- (2) 행렬의 연산
- 2. 연립일차방정식
- (1) 행렬의 표현
- (2) 가우스 조던 소거법
- (3) 역행렬 이용
- 3. 행렬식
- (1) 행렬식이란?
- (2) 역행렬
- (3) 크래머 공식

(2) 역행렬

행렬식이 0이면 역행렬이 존재하지 않는다. 즉, 행렬식이 0이 아닌 정사각행렬 A 의 역행렬 A^{-1} 은

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} C_{11} & C_{21} & \cdots \\ C_{12} & C_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

(단,
$$C_{ij} = (-1)^{i+j} M_{ij}$$
)

ex.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

— Index —

- 1. 행렬
- (1) 용어정리
- (2) 행렬의 연산
- 2. 연립일차방정식
- (1) 행렬의 표현
- (2) 가우스 조던
- 소거법
- (3) 역행렬 이용
- 3. 행렬식
- (1) 행렬식이란?
- (2) 역행렬
- (3) 크래머 공식

(3) 크래머 공식

연립일차방정식 AX = B 에서, A가 행렬식이 0이 아닌 정사각행렬일 때,

$$x_{j} = \frac{\det A_{j}}{\det A} = \frac{\begin{vmatrix} a_{11} & \cdots & b_{1} & \cdots & a_{1n} \\ a_{21} & \cdots & b_{2} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & b_{n} & \cdots & a_{nn} \end{vmatrix}}{\begin{vmatrix} a_{11} & \cdots & b_{1} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{1j} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix}}$$

단, $j=1, \dots, n$ 이고 A_j 는 A의 j번째 열을 B의 원소로 바꾼 행렬이다.

[연습문제]

- 1. 다음 연립일차방정식을 가우스 조던 소거법 또는 역행렬을 이용하여 풀이하고, 해에 대해 탁구하시오.

- $\begin{cases} 2x + 4y 3z = 1 \\ x + y + 2z = 9 \\ 3x + 6y 5z = 0 \end{cases}$ $(2) \begin{cases} x y + 2z = 5 \\ 2x 3y + z = -10 \\ 3x 3y + 6z = 15 \end{cases}$ $(3) \begin{cases} 2x + 4y 2z = 6 \\ x + y + 2z = 9 \\ x + 2y z = 4 \end{cases}$ $(4) \begin{cases} x + y + 2z + 4w + v = 0 \\ z + w + 2v = 0 \\ 2x + 2y z + 3w = 0 \end{cases}$
- 2. 역행렬이 존재하는 두 정사각행렬 A, B 에 대하여 $(AB)^{-1} = B^{-1}A^{-1}$ 임을 보이시오.
- 3. 다음 행렬의 역행렬을 구하시오.
 - $(1) \ \begin{pmatrix} 2 \ 1 \\ 4 \ 3 \end{pmatrix}$
- $(2) \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{pmatrix}$
- 4. 정사각행렬 A 와 A 의 역행렬 A^{-1} 에 대하여 $\det(A^{-1}) = \frac{1}{\det(A)}$ 임을 증명하시오.
- 5. 크래머 공식을 이용하여 다음 연립일차방정식의 해를 구하시오.

 - (1) $\begin{cases} 5x + 3y + 2 = 0 \\ 4x y + 5 = 0 \end{cases}$ (2) $\begin{cases} x + 2z = 6 \\ -x 2y + 3z = 8 \\ -3x + 4y + 6z = 30 \end{cases}$