Предикатно смятане от първи ред

Тодор Дуков

1 Синтаксис

Първо фиксираме едно изброимо множество от променливи Vars.

Нотация. Обикновено елементите на Vars ще означаваме с буквите x, y, z, t, u, v, w с потенциални индекси, примове и така нататък.

След това фиксираме логическите символи \exists , \neg , \lor , помощните символи (,) и , (символът запетая) и символ \doteq за формално равенство, които не са елементи на Vars.

Дефиниция. Език на предикатното смятане от първи ред (или накратко предикатен език) ще наричаме всяко $\mathcal{L} = \langle \mathcal{C}, \mathcal{F}, \mathcal{P}, \# \rangle$, за което:

- ullet С е множество, чиито елементи ще наричаме константни символи;
- \bullet \mathcal{F} е множество, чиито елементи ще наричаме функционални символи;
- Р е множество, чиито елементи ще наричаме предикатни символи;
- C.FuP ca dee no dee чужди:
- нито един от фиксираните символи не попада в C, \mathcal{F} или \mathcal{P} , потенциално с изключение на \doteq , който е възможно да е елемент на \mathcal{P} ;
- #: $\mathcal{F} \cup \mathcal{P} \to \mathbb{N} \setminus \{0\}$ ще наричаме функця на арност, като винаги #($\dot{=}$) = 2 (ако е добре дефинирано).

 $A \kappa o \#(\zeta) = n, \ mo \ moraвa \ ще \ наричаме \ \zeta \ n$ -местен функционален/предикатен символ.

Нотация. Обикновено ще използваме:

- буквите a, b, c, d за константни символи;
- буквите f, g, h за функционални символи;
- \bullet буквите p, q, r, s за предикатни символи,

като позволяваме да има индекси, примове и така нататък.

Дефиниция. Дефинираме индуктивно понятието терм в предикатен език $\mathcal{L} = \langle \mathcal{C}, \mathcal{F}, \mathcal{P}, \# \rangle$:

- всеки елемент на $\mathcal{C} \cup \text{Vars } e \text{ терм } \mathsf{в } \mathcal{L};$
- ако τ_1, \ldots, τ_n са термове в \mathcal{L} и $f \in \mathcal{F}$ има свойството #(f) = n, то тогава $f(\tau_1, \ldots, \tau_n)$ е терм в \mathcal{L} .

Нотация. Термовете винаги ще бележим с буквата τ с потенциални индекси, примове и така нататък.

Дефиниция. Дефинираме индуктивно понятието формула в предикатен език $\mathcal{L} = \langle \mathcal{C}, \mathcal{F}, \mathcal{P}, \# \rangle$:

- за всеки n-местен предикатен символ p и термове τ_1, \ldots, τ_n е изпълнено, че $p(\tau_1, \ldots, \tau_k)$ е (атомарна) формула в \mathcal{L} ;
- $a\kappa o \varphi u \psi ca \phi o p m y n u e \mathcal{L}$, $mo moraea \neg \varphi u (\varphi \lor \psi) ca \phi o p m y n u e \mathcal{L}$;
- ако x е променлива u φ е формула в \mathcal{L} , то тогава $\exists x \varphi$ е формула в \mathcal{L} .

Нотация. Формулите винаги ще бележим с буквите φ, ψ, χ с потенциални индекси, примове и така нататък.

Дефиниция. За формула или терм α с $Vars[\alpha]$ ще бележим множеството от всички променливи, които се срещат в α .

Дефиниция. Всеки терм τ , за който $Vars[\tau] = \varnothing$, се нарича затворен.

Нотация. Под $\tau[x_1,\ldots,x_n]$ ще имаме предвид " τ е терм с променливи измежду x_1,\ldots,x_n ", тоест $\mathrm{Vars}[\tau]\subseteq\{x_1,\ldots,x_n\}.$

Дефиниция. Дефинираме множеството от свободни променливи $\text{Free}[\varphi]$ за формула φ в предикатен език $\mathcal L$ с индукция относно построението на φ :

- Free $[p(\tau_1, \ldots, \tau_n)] = \bigcup_{i=1}^n \text{Vars}[\tau_i];$
- Free $[(\varphi \lor \psi)]$ = Free $[\varphi] \cup$ Free $[\psi]$;
- Free $[\neg \varphi]$ = Free $[\varphi]$;
- Free $[\exists x \varphi]$ = Free $[\varphi] \setminus \{x\}$.

Нотация. За двуместни функционални/предикатни символи ζ въвеждаме записа $\tau_1 \zeta \tau_2$ като съкращение на $\zeta(\tau_1, \tau_2)$.

Дефиниция. Всяка формула φ , за която $\operatorname{Free}[\varphi] = \varnothing$, се нарича затворена.

Нотация. Под $\varphi[x_1,\ldots,x_n]$ ще имаме предвид " φ е формула със свободни променливи измежду x_1,\ldots,x_n ", тоест $\mathrm{Free}[\varphi]\subseteq\{x_1,\ldots,x_n\}$.

Нотация. Нека фиксираме новите символи $\&, \Rightarrow, \Leftrightarrow, \forall$. Въвеждаме следните съкращения:

- $(\varphi \& \psi)$ е съкращение за $\neg(\neg \varphi \lor \neg \psi)$;
- $(\varphi \Rightarrow \psi)$ е съкращение за $(\neg \varphi \lor \psi)$;
- $(\varphi \Leftrightarrow \psi)$ е съкращение за $((\varphi \Rightarrow \psi) \& (\psi \Rightarrow \varphi));$
- $\forall x$ е съкращение за $\neg \exists x \neg$;
- $\varphi_1 \sigma \ldots \sigma \varphi_n$ е съкращение за $(\varphi_1 \sigma (\varphi_2 \sigma (\ldots (\varphi_{n-1} \sigma \varphi_n) \ldots)))$ за $\sigma \in \{\vee, \&\};$
- няма да пишем най-външните скоби, ако формулата започва с такива.

2 Семантика

Дефиниция. Структура за предикатен език $\mathcal{L} = \langle \mathcal{C}, \mathcal{F}, \mathcal{P}, \# \rangle$ ще наричаме всяко $\mathcal{A} = \langle A, C, F, P \rangle$, за което:

- $A \neq \emptyset$ се нарича универсум или носител на A;
- $C \subseteq A$ и за всяко $c \in \mathcal{C}$ има $c^{\mathcal{A}} \in C$;
- за всяко $f \in \mathcal{F}$ с #(f) = n има $f^{\mathcal{A}} \in F$, като $f^{\mathcal{A}} : A^n \to A$;
- за всяко $p \in \mathcal{P}$ с #(p) = n има $p^A \in F$, като $p^A \subseteq A^n$ и в частност $\stackrel{\cdot}{=}^A$ винаги играе ролята на идентитет (при език с формално равенство).

Нотация. Обикновено структурите ще бележим с ръкописни латински букви $\mathcal{A}, \mathcal{B}, \dots, \mathcal{Z}$ с потенциални индекси, примове и така нататък.

Нотация. Вместо да използваме записа $\mathcal{A} = \langle A, C, F, P \rangle$ ще изреждаме всички символи, тоест ще пишем $\mathcal{A} = \langle A, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, \dots, f_0^{\mathcal{A}}, f_1^{\mathcal{A}}, \dots, p_0^{\mathcal{A}}, p_1^{\mathcal{A}}, \dots \rangle$.

Нотация. Универсум на структурата \mathcal{A} ще бележим с $|\mathcal{A}|$.

Нотация. За да няма конфликти между обектния език и метаезика ще използваме f[x] вместо f(x), когато искаме образът на x през f.

Дефиниция. Нека \mathcal{L} е предикатен език и \mathcal{A} е структура за \mathcal{L} . Оценка в структурата \mathcal{A} ще наричаме всяка функция $v : \text{Vars} \to |\mathcal{A}|$.

Дефиниция. Нека \mathcal{L} е предикатен език, \mathcal{A} е структура за езика \mathcal{L} и v е оценка в \mathcal{A} . C индукция относно построението на терма τ дефинираме $\tau_v^{\mathcal{A}}$:

- $c_v^{\mathcal{A}} = c^{\mathcal{A}};$
- $x_v^{\mathcal{A}} = v[x];$
- $f(\tau_1, \dots, \tau_k)_v^{\mathcal{A}} = f^{\mathcal{A}}[\tau_1_v^{\mathcal{A}}, \dots, \tau_k_v^{\mathcal{A}}].$

Дефиниция. Нека \mathcal{L} е предикатен език, \mathcal{A} е структура за \mathcal{L} и v е оценка в \mathcal{A} . Тогава $x \in \text{Vars } u \ a \in |\mathcal{A}|$ дефинираме оценката:

$$v_x^a[y] = \begin{cases} a, & \text{and } y = x \\ v[y], & \text{uhave} \end{cases}$$

Дефиниция. Нека \mathcal{L} е предикатен език, \mathcal{A} е структура за езика \mathcal{L} и v е оценка в \mathcal{A} . C индукция относно построението на формулата φ дефинираме $\mathcal{A} \models_v \varphi$:

- $\mathcal{A} \models_v p(\tau_1, \dots, \tau_k) \stackrel{\partial e\phi.}{\longleftrightarrow} \langle \tau_1^{\mathcal{A}}, \dots, \tau_k^{\mathcal{A}} \rangle \in p^{\mathcal{A}};$
- $\mathcal{A} \models_{v} \neg \varphi \stackrel{\text{def.}}{\longleftrightarrow} \mathcal{A} \not\models_{v} \varphi \text{ (не е вярно, че } \mathcal{A} \models_{v} \varphi \text{)};$
- $\mathcal{A} \models_v (\varphi \lor \psi) \stackrel{\partial e\phi.}{\longleftrightarrow} \mathcal{A} \models_v \varphi \text{ unu } \mathcal{A} \models_v \psi;$
- $\mathcal{A} \models_v \exists x \varphi \overset{\text{def.}}{\longleftrightarrow} u$ u u $a \in |\mathcal{A}|$, $\exists a \text{ koemo } \mathcal{A} \models_{v_x^a} \varphi$.

Дефиниция. Ако за всяка оценка v в структурата A е изпълнено, че $A \models_v \varphi$, тогава ще пишем $A \models_\varphi \varphi$.

Свойство. Нека \mathcal{L} е предикатен език, \mathcal{A} е структура за \mathcal{L} и v е оценка в \mathcal{A} . Тогава следните са в сила:

- $\mathcal{A} \models_v (\varphi \& \psi) \longleftrightarrow \mathcal{A} \models_v \varphi \ u \ \mathcal{A} \models_v \psi;$
- $\mathcal{A} \models_v (\varphi \Rightarrow \psi) \longleftrightarrow a\kappa o \mathcal{A} \models_v \varphi, mo \mathcal{A} \models_v \psi;$
- $\mathcal{A} \models_v (\varphi \Leftrightarrow \psi) \longleftrightarrow \mathcal{A} \models_v \varphi \ m.c.m.\kappa. \ \mathcal{A} \models_v \psi;$
- $\mathcal{A} \models_v \forall x \varphi \longleftrightarrow$ за всяко $a \in |\mathcal{A}|$ имаме $\mathcal{A} \models_{v_x^a} \varphi$;

Свойство. Нека \mathcal{L} е предикатен език, \mathcal{A} е структура за \mathcal{L} , φ е формула в \mathcal{L} и v_1, v_2 са такива оценки в \mathcal{A} , за които за всяко $x \in \text{Free}[\varphi]$ имаме $v_1[x] = v_2[x]$. Тогава:

$$\mathcal{A} \models_{v_1} \varphi \longleftrightarrow \mathcal{A} \models_{v_2} \varphi.$$

Това свойство прави следното съкращение коректно:

Нотация. Нека \mathcal{L} е предикатен език, \mathcal{A} е структура за \mathcal{L} с $a_1, \ldots, a_n \in |\mathcal{A}|$. За формула $\varphi[x_1, \ldots, x_n]$ пишем, че $\mathcal{A} \models \varphi[a_1, \ldots, a_n]$, ако има оценка v в \mathcal{A} , за която за всяко $1 \leq i \leq n$ имаме $v[x_i] = a_i$ и $\mathcal{A} \models_v \varphi$.

Дефиниция. Нека \mathcal{A} е структура за предикатния език \mathcal{L} . Казваме, че едно множество $X \subseteq |\mathcal{A}|^n$ е определимо в езика \mathcal{L} , ако има формула φ в \mathcal{L} , за която:

$$\langle a_1, \ldots, a_n \rangle \in X \longleftrightarrow \mathcal{A} \models \varphi \llbracket a_1, \ldots, a_n \rrbracket.$$

Дефиниция. Нека Γ е множество от формули в предикатния език \mathcal{L} и \mathcal{A} е структура за \mathcal{L} . Казваме, че \mathcal{A} е модел на Γ и пишем $\mathcal{A} \models \Gamma$, ако за всяко $\varphi \in \Gamma$ е изпълнено, че $\mathcal{A} \models \varphi$.

Дефиниция. Едно множество от формули наричаме изпълнимо, ако за него съществува модел.

Дефиниция. Нека \mathcal{A} и \mathcal{B} са структури за предикатния език \mathcal{L} . Функцията $h: |\mathcal{A}| \to |\mathcal{B}|$ наричаме изоморфизъм, ако:

- h е биекция;
- $h[c^A] = c^B$ за всеки константен символ c;
- $h[f^{\mathcal{A}}[a_1,\ldots,a_n]] = f^{\mathcal{B}}[h[a_1],\ldots,h[a_n]]$ за всеки функционален символ f и $a_1,\ldots,a_n \in |\mathcal{A}|;$
- $\langle a_1, \ldots, a_n \rangle \in p^{\mathcal{A}} \longleftrightarrow \langle h[a_1], \ldots, h[a_n] \rangle \in p^{\mathcal{B}}$ за всеки предикатен символ p и $a_1, \ldots, a_n \in |\mathcal{A}|$.

Aко $\mathcal{A} = \mathcal{B}$, то тогава h се нарича и автоморфизъм.

Свойство. Нека \mathcal{A} и \mathcal{B} са структури за предикатния език \mathcal{L} и h е изоморфизъм межсду тях. Тогава за всеки терм $\tau[x_1, \ldots, x_n]$, за всяка формула $\varphi[x_1, \ldots, x_n]$ и $a_1, \ldots, a_n \in |\mathcal{A}|$:

$$h[\tau^{\mathcal{A}}\llbracket a_1,\ldots,a_n\rrbracket] = \tau^{\mathcal{B}}\llbracket h[a_1],\ldots,h[a_n]\rrbracket \ u \ \mathcal{A} \models \varphi \longleftrightarrow \mathcal{B} \models \varphi\llbracket h[a_1],\ldots,h[a_n]\rrbracket.$$

Свойство. Нека A е структура за предикатния език \mathcal{L} , h е автоморфизъм (от A към себе cu) и $X \subseteq |A|^n$. Тогава ако X е определимо, то:

$$\{\langle h[a_1], \ldots, h[a_n] \rangle \mid \langle a_1, \ldots, a_n \rangle \in X\} = X.$$