Discrete Et Geometrique | CM: 4

Par Lorenzo

18 février 2025

1 Fondement de la théorie des probabilités - cas de l'univers fini

La théorie des probabilités est une science appliquée, qui doit être modélisé et se servir d'appareil mathématique.

Un modèle probabiliste introduit:

- Ω l'univers
- événements
- probabilité

Définition 1.1. Ω "l'univers" est l'ensemble des résultats possibles d'une expérience aléatoire.

Remarques 1.1. L'introduction de Ω est un choix du modélisateur.

Example 1.1. 1. On lance un dé: $\Omega = \{1, 2, 3, 4, 5, 6\}$.

2. On lance deux dés distinguables: $\Omega = \{(1,1), (1,2), \ldots, (6,6)\}$.

Définition 1.2. Un événement est un sous-ensemble de Ω . On note $\mathcal{P}(\Omega)$ l'ensemble des parties de Ω .

Remarques 1.2. • $\Omega \subset \Omega$ est appelé l'événement certain.

- $\emptyset \subset \Omega$ est appelé l'événement impossible.
- **Example 1.2.** On lance un dé: $\Omega = \{1, 2, 3, 4, 5, 6\}$. $A = \{2, 4, 6\} \subset \Omega$ est la modélisation est "le dé a montré un nombre pair de points".
 - On lance deux dés distinguables: $\Omega = \{(1,1), (1,2), \dots, (6,6)\}$. $A = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,6)\}$. $A = \{(1,6), (2,5), (2,5), (2,5), (2,5), (2,5), (2,5), (2,5)\}$. $A = \{(1,6), (2,5), (2,5), (2,5), (2,5), (2,5), (2,5)\}$. $A = \{(1,6), (2,5), (2,5), (2,5), (2,5), (2,5), (2,5)\}$. $A = \{(1,6), (2,5), (2,5), (2,5), (2,5), (2,5)\}$. $A = \{(1,6), (2,5), (2,5)\}$. A =

Définition 1.3. Une probabilité est une fonction $P: \mathcal{P}(\Omega) \to [0,1]$ telle que:

- 1. $P(\Omega) = 1$
- 2. $\forall (A,B) \subset \Omega^2, A \cap B = \emptyset \implies P(A \cup B) = P(A) + P(B)$

3.
$$A \neq \emptyset \implies P(A) \neq 0$$

Proposition 1.1.

Dans les conditions de la définition $P(\emptyset) = 0$.

Démonstration 1.1.

Posons $A=\Omega$ et $B=\emptyset$ alors $A,B\subset\Omega,A\cap B=\emptyset.$ Donc $P(\Omega\cup\emptyset)=P(\Omega)+P(\emptyset)=1+0=1.$ Donc $P(\emptyset)=0.$