PRZEDMIOT: Systemy baz danych

KLASA: 1A gr. 1

Tydzień 1 Lekcja 1

Temat: Wprowadzenie do Baz Danych

Definicja bazy danych i jej znaczenie:

Definicja bazy danych:

Baza danych to cyfrowy, uporządkowany zbiór informacji, zapisany i przechowywany w sposób ustrukturyzowany, który umożliwia łatwe i szybkie wyszukiwanie, pobieranie, dodawanie, modyfikowanie i usuwanie danych.

Znaczenie bazy danych:

- **Przechowywanie danych** umożliwia gromadzenie dużych ilości informacji w jednym miejscu.
- **Szybki dostęp i wyszukiwanie** dzięki językom zapytań (np. SQL) można błyskawicznie znaleźć potrzebne dane.
- Relacje i spójność pozwala łączyć dane ze sobą (np. klient ↔ zamówienia),
 zachowując integralność.
- **Wielu użytkowników** umożliwia jednoczesną pracę wielu osób/ aplikacji z tymi samymi danymi.
- **⊜ Bezpieczeństwo** zapewnia mechanizmy kontroli dostępu i ochrony przed utratą danych.
- Aktualność zmiany wprowadzane w jednym miejscu są natychmiast widoczne dla wszystkich użytkowników.
- **Uniwersalność** używane w niemal każdej dziedzinie (bankowość, handel, medycyna, edukacja, serwisy internetowe).

Bazy danych można podzielić według sposobu organizacji i przechowywania danych:

•	1. Bazy relacyjne (RDB – Relational Database)Najpopularniejszy typ.						
☐ Dane są przechowywane w tabelach (wiersze = rekordy, kolumny = pola).							
☐ Tabele są powiązane kluczami (np. użytkownik → zamówienia).							
	□ Do zarządzania używa się języka SQL.						
	☐ Przykłady: MySQL, PostgreSQL, Oracle, MS SQL Server.						
•	2. Bazy nierelacyjne (NoSQL)						
	☐ Dane przechowywane w innych formach niż tabele.						
	□ Rodzaje/modele:						
	 Dokumentowe dane przechowywane w formie dokumentów (np. JSON, BSON, XML). 						
	 Grafowe - dane są przechowywane w postaci grafu (Neo4j – dane jako grafy), 						
	 Klucz–wartość - dane przechowywane jako para: klucz → 						
	wartość.(Redis, DynamoDB),						
	 Kolumnowe - dane zapisane w kolumnach zamiast wierszy 						
	(odwrotnie niż w SQL)(Cassandra, HBase).						
3. Bazy obiektowe							
	☐ Dane przechowywane jako obiekty (tak jak w programowaniu obiektowym).						
	☐ Mogą przechowywać nie tylko liczby i tekst, ale także multimedia czy złożone						
	struktury.						
	☐ Przykład: db4o, ObjectDB.						
•	4. Bazy obiektowo-relacyjne						
	☐ Hybryda relacyjnych i obiektowych.						
	☐ Dane przechowywane są w postaci obiektów						
	☐ Obsługują tabele, ale także bardziej złożone typy danych.						
	☐ Przykład: PostgreSQL, Oracle.						
•	5. Bazy hierarchiczne						
	☐ Dane są zorganizowane w strukturę drzewa (rodzic–dziecko).						
	□ Każdy rekord ma jeden nadrzędny i wiele podrzędnych.						
	☐ Szybki dostęp, ale trudne do modyfikacji, mało elastyczne.						
	☐ Przykład: IBM IMS (starsze systemy bankowe).						

5. Bazy sieciowe Dane zorganizowane w strukturze przypominającej sieć lub graf – rekordy mogą mieć wielu rodziców i wielu potomków. Stanowią one rozwinięcie modelu hierarchicznego Pozwalają na reprezentację danych, gdzie jeden element może być powiązany z wieloma innymi elementami, a te z kolei mogą być powiązane z wieloma kolejnymi elementami, tworząc złożoną, grafową strukturę. Przykład: IDS (Integrated Data Store). 6. Bazy rozproszone Dane nie są przechowywane w jednym miejscu (na jednym serwerze), tylko rozsiane po wielu komputerach/serwerach, często w różnych

☐ Dane są **podzielone na części** i każda część jest przechowywana na innym serwerze pp. użytkownicy A–M są na serwerze 1, a N–Z na serwerze 2.

Omówienie podstawowych koncepcji: tabele, rekordy, pola

📌 1. Tabela

To główna struktura w relacyjnej bazie danych. Można ją porównać do arkusza w Excelu – ma wiersze i kolumny. Każda tabela przechowuje dane dotyczące jednego typu obiektów.

← Przykład: Tabela Studenci przechowuje informacje o studentach.

2. Rekord (wiersz, ang. row/record)

lokalizacjach geograficznych.

☐ Łatwo dodać nowe serwery, gdy rośnie liczba danych.

Pojedynczy wiersz w tabeli. Odpowiada jednej jednostce danych (np. jednemu studentowi). Składa się z pól (kolumn).

Przykład rekordu w tabeli Studenci:

ID Imię Nazwisko Wiek Kierunek

1 Anna Kowalska 21 Informatyka

Ten jeden wiersz to rekord opisujący Annę Kowalską.

📌 3. Pole (kolumna, ang. field/column)

To kolumna w tabeli, przechowująca określony typ danych.

Każde pole ma nazwę i jest określonego typu danych (np. liczba, tekst, data).

← Przykłady pól w tabeli Studenci:

Imię – tekst, Nazwisko – tekst, Wiek – liczba całkowita, Kierunek – tekst.

Klucze

Klucz główny (Primary Key, PK) To unikalny identyfikator rekordu w tabeli.

Gwarantuje, że każdy wiersz można jednoznacznie odróżnić.

Kluczem głównym może być:

	liczba	3	całkowita	(np. $ID =$	= 1, 2,	3),
_						

☐ unikalny kod (np. PESEL, NIP),

ID Imię Nazwisko Wiek1 Anna Kowalska 21

Tutaj ID jest kluczem głównym.

✓ Klucz obcy (Foreign Key, FK) To pole w tabeli, które wskazuje na klucz główny w innej tabeli. Dzięki temu możemy powiązać dane między tabelami. ✓ Przykład: Tabela Zapisy (które kursy student wybrał) może mieć klucze obce: StudentID → odwołanie do tabeli Studenci(ID), KursID → odwołanie do tabeli Kursy(ID).

V Podsumowanie w skrócie:						
☐ Relacyjna baza danych – dane w tabelach powiązane relacja	mi.					
□ PK – unikalny identyfikator w tabeli.						
☐ FK – łączy jedną tabelę z drugą.						