Understanding Deep Neural Networks

Chapter Three

Backpropagation Algorithm

Zhang Yi, IEEE Fellow Autumn 2020

Outline

- ■Brief Review of Computational Model of Neural Networks
- Three Pages to Understand BP

 Only One Page to Understand BP

 The BP Algorithm

 'Assignment' ■ Network Performance: Cost Function

 - Assignment

Computational Model of Synapse

Computational Model of Neurons

Activation function Neuron output

Neuron total input

Computational Model of Neural Networks

Forward Computing

Local activation functions f_i^l

Computing unit

l+1 layer i^{th} neuron

Computing unit

One page to understand forward computing

Component form

$$\begin{cases} a_i^{l+1} = f(z_i^{l+1}) \\ z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l \end{cases}$$

$$a_i^{l+1} = f\left(\sum_{j=1}^{n_l} w_{ij}^l a_j^l\right)$$

Vector form

$$\begin{cases} a^{l+1} = f(z^{l+1}) \\ z^{l+1} = w^l a^l \end{cases}$$

Algorithm:

Input
$$W^l$$
, a^1
for $l = 1$: L
 $a^{l+1} = fc(W^l, a^l)$
return

Function
$$fc(W^l, a^l)$$

 $for i = 1: n_{l+1}$
 $z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$
 $a_i^{l+1} = f(z_i^{l+1})$
 end

Nonlinear Mapping / Dynamical Systems

A neural network can be looked as a nonlinear mapping or a dynamical system.

$$\begin{bmatrix} a^{L} = f\left(W^{L-1}f\left(W^{L-2}f\left(W^{L-3}\cdots f(W^{1}a^{1})\right)\right)\right) \\ R^{n_{1}} & \\ & \text{Nonlinear mapping} \end{bmatrix}$$

$$a_i^{l+1} = f\left(\sum_{j=1}^{n_l} w_{ij}^l a_j^l\right) \xrightarrow{l \to t} a_i(t+1) = f\left(\sum_{j=1}^{n_t} w_{ij}(t) a_j(t)\right)$$

Discrete time dynamical system

Computational Model of Neural Networks

Artificial neural network Biological neural network 一条模型 $a^l \quad w^l \quad a^{l+1}$ $a^{L-1}w^{L-1}$ Input Output Biological Intelligence

Artificial Intelligence

Handwritten digits recognition

Handwritten digits recognition

Outline

- ■Brief Review of Computational Model of Neural Networks
- Network Performance: Cost Function

- Three Pages to Understand BP

 Only One Page to Understand BP

 The BP Algorithm

 Assignment

 - Assignment

Training Data

Good Performance!

The father knows the correct answer.

Supervised Learning

Two important factors:

- 1. There must be a measure to measure the correctness between correct answer and the boy's real output. ----Performance function.
- 2. There must be a mechanism to change the knowledge system of the boy. ----Learning algorithm.

Training Data Set

updating the weights: Learning algorithm

Network prediction

$$\mathbf{C} a^L = \begin{bmatrix} a_1^L \\ \vdots \\ a_{n_L}^L \end{bmatrix}$$

Target

$$y^L = \begin{bmatrix} y_1^L \\ \vdots \\ y_{n_L}^L \end{bmatrix}$$

$$J(a^L, y^L)$$

Performance function $J(a^L, y^L)$, or cost function, is used to describe the distance between a^L and $y^L, J(a^L, y^L)$ is indeed a function of (w^1, \dots, w^L) , i. e.,

$$J = J(w^1, \cdots, w^L).$$

Supervised Learning

Input

Training Data

A training sample (x, y^L)

Network prediction

Target

$$a^{L} = \begin{bmatrix} a_{1}^{L} \\ \vdots \\ a_{n_{L}}^{L} \end{bmatrix} \qquad \qquad y^{L} = \begin{bmatrix} y_{1}^{L} \\ \vdots \\ y_{n_{L}}^{L} \end{bmatrix}$$

Cost function

$$J(a^L, y^L) = J(w^1, \dots, w^L)$$

updating the weights: Learning algorithm

 $a^{L-1}w^{L-1}a^{L}$

Output

In supervised learning, each training sample contains input and the associated target output.

Problem: How to construct a cost function?

A cost function J describes the performance of the network. If the J is small, it implies that the network prediction a^L close to the target y^L , the network is called in good performance. Since J is a function with variables (w^1, \dots, w^L) , good performance means to find suitable (w^1, \dots, w^L) such that J is small. The process of looking for suitable (w^1, \dots, w^L) is called network learning.

Problem: How to learn?

Target

Network prediction

$$y^L = \begin{bmatrix} y_1^L \\ \vdots \\ y_{n_L}^L \end{bmatrix}$$

$$a^L = \begin{bmatrix} a_1^L \\ \vdots \\ a_{n_L}^L \end{bmatrix}$$

There are many ways to construct cost functions. A frequently used cost is as follows:

$$e_{j} = a_{j}^{L} - y_{j}^{L}$$

$$J = \frac{1}{2} \sum_{j=1}^{n_{L}} e_{j}^{2} = J(w^{1}, \dots, w^{L})$$

Clearly, J is a function of w^1, \dots, w^L .

Learning is a process such that a^L is close to y^L , i.e., the cost function J reaches minimum. A cost function J = $J(w^1, \dots, w^{L-1})$ is a function with variables $w^l(l=1, \dots, L)$ thus the network learning is to looking for some $w^l(l=1, \dots, L)$ $y^L = \begin{bmatrix} y_1^L \\ \vdots \\ y_{n_L}^L \end{bmatrix}$ $a^L = \begin{bmatrix} a_1^L \\ \vdots \\ a_{n_L}^L \end{bmatrix}$ A frequently used cost function:

Target

Network prediction

$$y^L = \begin{bmatrix} y_1^L \\ \vdots \\ y_{n_L}^L \end{bmatrix}$$

$$a^L = \begin{bmatrix} a_1^L \\ \vdots \\ a_{n_L}^L \end{bmatrix}$$

$$J = \frac{1}{2} \sum_{j=1}^{n_L} e_j^2 = J(w^1, \dots, w^L)$$

I is a function of w^1, \dots, w^L .

Learning = Looking for minimum points $w^l (l = 1, \dots, L)$ of I

Outline

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function

- Three Pages to Understand BP

 Only One Page to Understand BP

 The BP Algorithm

 'Assignman

 - Assignment

Minimum Points

$$J(w_1, w_2) = (w_2 - w_1)^4 + 8w_1w_2 - w_1 + w_2 + 3$$

General Nonlinear function $J(w), w \in \mathbb{R}^n$ w^* is a minimum point if $J(w^*) \leq J(w)$ for any w that very close to w^* .

$$J(w_1, w_2) = (w_1^2 - 1.5w_1w_2 + 2w_2^2)w_1^2$$

Contour

Minimum points

- Minima V202

Problem:

How to find the minimum points?

Iteration Method

Finding a minimum point step by step

$$w(k+1) = w(k) + \alpha_k \cdot p_k$$

To begin the iteration, you must need a given starting point w_0 .

Problem: How to get the searching direction p_k ?

Steepest Descent Method

Slowest changing direction

Fastest increasing direction

Gradient:

$$g_{k} = \nabla J(w) \Big|_{w(k)} = \frac{\partial J}{\partial w} \Big|_{w(k)} = \begin{pmatrix} \frac{\partial J}{\partial w_{1}} \\ \vdots \\ \frac{\partial J}{\partial w_{n}} \end{pmatrix} \Big|_{w(k)}$$

Steepest Descent Algorithm:

$$p_k = -g_k$$

$$w(k+1) = w(k) - \alpha_k \cdot g_k$$

or

$$w(k+1) = w(k) - \alpha_k \cdot \frac{\partial J}{\partial w}\Big|_{w(k)}$$

Steepest descent direction

Steepest Descent Method

Steepest Descent Method

Target

l layer

Prediction

$$y^{L} = \begin{bmatrix} y_{1}^{L} \\ \vdots \\ y_{n_{L}}^{L} \end{bmatrix} \qquad a^{L} = \begin{bmatrix} a_{1}^{L} \\ \vdots \\ a_{n_{L}}^{L} \end{bmatrix}$$
$$l + 1 \text{ layer}$$

$$J = \frac{1}{2} \sum_{j=1}^{n_L} e_j^2 = \frac{1}{2} \sum_{j=1}^{n_L} (a_j^L - y_j^L)^2 = J(\dots, w_{ij}, \dots)$$

$$\frac{\partial J}{\partial w_{ji}^l}$$

2. Updating

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ii}^l}$$

$$a^{L} = f(W^{L-1}a^{L-1}) = f\left(W^{L-1}f\left(W^{L-2}f(W^{L-3}\cdots f(W^{1}a^{1}))\right)\right)$$

Problem: How to compute $\frac{\partial J}{\partial w_{ij}^l}$?

Answer:

Using the well-known BP method.

Outline

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function

- Three Pages to Understand BP

 Only One Page to Understand BP

 The BP Algorithm

 'Assignman

 - Assignment

Backpropagation

Forward computing a^l -E17E20K

Layer 1

Back propagation δ^l

Layer L

Backpropagation is a efficient way to calculate

$$\frac{\partial J}{\partial w_{ji}^l}$$

Cost function:

$$J = \frac{1}{2} \sum_{j=1}^{n_L} e_j^2 = \frac{1}{2} \sum_{j=1}^{n_L} (a_j^L - y_j^L)^2$$

Local function defined on neuron

Local activation function f_i^l

Global cost function J

 $l \text{ layer } i^{th} \text{ neuron } \delta_i^l = \frac{\delta_J^l}{\partial z_i^l}$ $\delta_i^l \mid J \qquad \delta^l = \begin{bmatrix} \delta_1^l \\ \delta_2^l \\ \vdots \\ \delta_{n_l}^l \end{bmatrix}$

Global function defined on network

27

Problem 1:

 $a^{L-1}w^{L-1}a^{L}$

Output

What's the relation between
$$\delta_i^{l+1}$$
 and $\frac{\partial J}{\partial w_{ji}^l}$?

l layer

$$\widehat{a_i^l}$$
 f_i^l

$$J(W^1,\cdots,W^{L-1})$$

Relation between δ_i^l and $\frac{\partial J}{\partial w_{ii}^l}$

$$\frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$$

Why?

$$\frac{\partial J}{\partial w_{ji}^l} = \frac{\partial J}{\partial z_j^{l+1}} \cdot \frac{\partial z_j^{l+1}}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$$

Problem 2:

How to calculate the last layer's δ_i^L ?

By definition

$$\delta_i^L = \frac{\partial J}{\partial z_i^L}$$

$$J = \frac{1}{2} \sum_{j=1}^{n_L} \left(a_j^L - y_j^L \right)^2$$
 then,

then,
$$\delta_i^L = \frac{\partial J}{\partial z_i^L} = \left(a_i^L - y_i^L\right) \cdot \frac{\partial a_i^L}{\partial z_i^L} = \left(a_i^L - y_i^L\right) \cdot \dot{f}(z_i^L)$$

L layer i^{th} neuron

$$\delta_{i}^{l} = \frac{\partial J}{\partial z_{i}^{l}} = \sum_{j=1}^{n_{l+1}} \frac{\partial J}{\partial z_{j}^{l+1}} \cdot \frac{\partial z_{j}^{l+1}}{\partial z_{i}^{l}} = \sum_{j=1}^{n_{l+1}} \delta_{j}^{l+1} \cdot \frac{\partial z_{j}^{l+1}}{\partial z_{i}^{l}} = \sum_{j=1}^{n_{l+1}} \delta_{j}^{l+1} \cdot w_{ji}^{l} \dot{f}(z_{i}^{l}) = \dot{f}(z_{i}^{l}) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^{l} \cdot \delta_{j}^{l+1}\right)$$

Outline

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function

- Janual
 Janual
 Janual
 Janual
 Janual
 Janual
 Januar
 J

 - Assignment

Three Pages to Understand BP: The first page

Cost function: $J(w^1, \dots, w^L)$

Updating rule: $w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}$

Relationship: $\frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$

Three Pages to Understand BP: The second page

Three Pages to Understand BP: The third page

Outline

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function

- Janual
 Janual
 Janual
 Janual
 Janual
 January
 January
 -

 - Assignment

Only One Page to Understand BP

Cost function: $J(w^1, \dots, w^L)$

Updating rule: $w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}$

Relationship: $\frac{\partial J}{\partial w_{ii}^l} = \delta_j^{l+1} \cdot a_i^l$

l layer i^{th} neuron

Outline

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function

- Three Pages to Understand BP

 Only One Page to Understand BP

 The BP Algorithm

 'Assignman'

 - Assignment

Training Data

 $D = \{(x, y^L) | m \text{ samples} \}$

x: input sample y^L : target output

There are two ways to train the network.

1. Online training: For each sample $(x, y) \in D$, define a cost function, for example, as

$$J(x,y) = \frac{1}{2} \sum_{j=1}^{n_L} (a_j^L - y_j^L)^2$$

2. Batch training: Define cost function as

$$J = \frac{1}{m} \sum_{(x,y) \in D} J(x,y)$$

Online BP Algorithm:

Step 1. Input the training data set $D = \{(x, y^L)\}$

Step 2. Initial each w_{ii}^l , and choose a learning rate α .

end The Total Condition of the Condition Step 3. Choose a sample $(x, y^L) \in D$, define $J(x, y^L)$, set $a^1 = x$

for
$$l = 1: L$$

 $fc(w^l, a^l);$
end
 $\partial I(x, v^L)$

$$\delta^L = \frac{\partial J(x, y^L)}{\partial z^L};$$

for
$$l = L - 1:1$$

$$bc(w^l, \delta^{l+1});$$

end

Step 4. Updating

$$\frac{\partial J}{\partial w_{ji}^{l}} = \delta_{j}^{l+1} \cdot a_{i}^{l}$$

$$w_{ji}^{l} \leftarrow w_{ji}^{l} - \alpha \cdot \frac{\partial J(x, y)}{\partial w_{ii}^{l}}$$

Step 5. Return to Step 3 until each w^l converge.

function
$$fc(w^l, a^l)$$

 $for i = 1: n_{l+1}$

$$z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$$

$$a_i^{l+1} = f(z_i^{l+1})$$

Relationship:

$$\frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$$

function
$$bc(w^l, \delta^{l+1})$$

 $for i = 1: n_l$

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^l \delta_j^{l+1}\right)$$

end

Batch BP Algorithm:

Step 1. Input the training data set $D = \{(x, y^L)\}$

Step 2. Initial each $w_{i,i}^l$, and choose a learning rate α .

Step 3. For each sample $(x, y^L) \in D$, set $a^1 = x$

for
$$l = 1$$
: L

$$fc(w^{l}, a^{l});$$
end
$$\partial I$$

$$\delta^{L} = \frac{\partial J}{\partial z^{L}};$$

for $l = L - 1:1$
 $bc(w^{l}, \delta^{l+1});$

end

$$\frac{\partial J}{\partial w_{ji}^l} \leftarrow \frac{\partial J}{\partial w_{ji}^l} + \delta_j^{l+1} \cdot a_i^l$$

Step 4. Updating

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}$$

Step 5. Return to Step 3 until each w^l converge.

function
$$fc(w^l, a^l)$$

 $for i = 1: n_{l+1}$
 $z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$
 $a_i^{l+1} = f(z_i^{l+1})$
Relationship:

$$\frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$$

Relationship:

$$\frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$$

function
$$bc(w^l, \delta^{l+1})$$
 $for \ i = 1: n_l$

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^l \delta_j^{l+1}\right)$$

end

Outline

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function

- Three Pages to Understand BP

 Only One Page to Understand BP

 The BP Algorithm

 'Assignme.

 - Assignment

Assignment

Assignment 1: Encoding the BP algorithms.

Batch BP Algorithm:

Step 1. Input the training data set $D = \{(x, y^L)\}$

Step 2. Initial each w_{ij}^l , and choose a learning rate α .

Step 3. For each sample
$$(x, y^L) \in D$$
, set $a^1 = x$

for
$$l = 1: L$$

 $fc(W^l, a^l);$

end

$$\delta^L = \frac{\partial J}{\partial z^L};$$

for l = L - 1:1

$$bc(W^l, \delta^{l+1});$$

end

$$\frac{\partial J}{\partial w_{ii}^l} \leftarrow \frac{\partial J}{\partial w_{ii}^l} + \delta_j^{l+1} \cdot \alpha_i^l$$

Step 4. Updating

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ii}^l}$$

Step 5. Return to Step 3 until each w^l converge.

Function
$$fc(W^l, a^l)$$

 $for i = 1: n_{l+1}$

$$z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$$

$$a_i^{l+1} = f(z_i^{l+1})$$
end

Function
$$bc(W^l, \delta^{l+1})$$
 $for \ i=1:n_l$

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^l \delta_j^{l+1}\right)$$
and

Online BP Algorithm:

Step 1. Input the training data set $D = \{(x, y^L)\}$

Step 2. Initial each w_{ij}^l , and choose a learning rate α .

Step 3. Choose a sample $(x, y^L) \in D$, define $J(x, y^L)$, set $a^1 = x$

for
$$l = 1:L$$

$$fc(W^l,a^l);$$

end

$$\delta^L = \frac{\partial J(x, y^L)}{\partial z^L};$$

for
$$l = L - 1:1$$

$$bc(W^l, \delta^{l+1});$$

enc

Step 4. Updating

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J(x, y^L)}{\partial w_{ii}^l}$$

Step 5. Return to Step 3 until each w^l converge.

Thanks is 2029