Numerical solutions of differential equations

Patrick Henning

pathe@kth.se

Division of Numerical Analysis, KTH, Stockholm

Course SF2521, 7.5 ECTS, VT18

Lecture 11

Entropy solutions

Weak Entropy Condition and Entropy Pairs

Reminder: Lax Entropy Condition

Let: u is weak solution to $\partial_t u + \partial_x f(u) = 0$ with some initial value; *S* is smooth curve in $\mathbb{R} \times \mathbb{R}^+$ along which \underline{u} is discontinuous.

Let
$$(x_0, t_0) \in S$$
, $u_l := \lim_{\delta \to 0} u(x_0 - \delta, t_0)$, $u_r := \lim_{\delta \to 0} u(x_0 + \delta, t_0)$ and $s := \frac{f(u_l) - f(u_r)}{u_l - u_r}$.

Then u fulfills the Lax Entropy Condition in (x_0, t_0) if and only if

$$f'(u_r) < s < f'(u_l).$$

- ▶ We only know: reasonable for convex fluxes. What in general?
- For numerical approximations the discontinuities are typically not given by smooth curves.
- How to guarantee that numerical method does right thing?

Weak entropy solutions

Goal:

- Derive a weak entropy condition that is easy to mimic on the discrete level.
- The weak entropy condition will be again in integral formulation.
- We wish to avoid the assumption of convexity, i.e. f'' > 0, Note: the linear flux f(u) = au is not convex!
- ▶ However, if f'' > o, the new entropy condition should be equivalent to the Lax entropy condition.

Motivation: Weak entropy condition

For $\varepsilon > 0$ we regard the viscose approximation

$$\partial_t \mathbf{u}_{\varepsilon} + \partial_{\mathsf{X}} f(\mathbf{u}_{\varepsilon}) = \varepsilon \partial_{\mathsf{XX}} \mathbf{u}_{\varepsilon}.$$

Let $\eta: \mathbb{R} \to \mathbb{R}$ be convex and smooth. Multiplying with $\eta'(u_{\varepsilon})$:

$$\partial_t u_{\varepsilon} \, \eta'(u_{\varepsilon}) + \partial_x f(u_{\varepsilon}) \, \eta'(u_{\varepsilon}) = \varepsilon \, \partial_{xx} u_{\varepsilon} \, \eta'(u_{\varepsilon}).$$

Hence

$$\partial_t \eta(\mathbf{u}_{\varepsilon}) + f'(\mathbf{u}_{\varepsilon}) \, \eta'(\mathbf{u}_{\varepsilon}) \, \partial_{\mathsf{X}} \mathbf{u}_{\varepsilon} = \varepsilon \, \partial_{\mathsf{XX}} \eta(\mathbf{u}_{\varepsilon}) - \varepsilon \eta''(\mathbf{u}_{\varepsilon}) (\partial_{\mathsf{X}} \mathbf{u}_{\varepsilon})^2.$$

Define *F* such that $F' = f'\eta'$, then it follows with $\eta'' > 0$:

$$\partial_t \eta(\mathbf{u}_{\varepsilon}) + \partial_{\mathsf{X}} F(\mathbf{u}_{\varepsilon}) \leq \varepsilon \, \partial_{\mathsf{XX}} \eta(\mathbf{u}_{\varepsilon}).$$

Passing formally to the viscosity limit arepsilon o o yields

$$\partial_t \eta(\mathbf{u}) + \partial_{\mathbf{x}} F(\mathbf{u}) \leq \mathbf{0}.$$

< □ > < 🗗 >

Weak Entropy Condition

Definition (Entropy - Entropy Flux Pair and Entropy Solution)

1. Let $\eta:\mathbb{R}\to\mathbb{R}$ be convex and smooth and $F:\mathbb{R}\to\mathbb{R}$ a smooth function with

$$F' = f'\eta'$$

Then (η, F) is called entropy - entropy flux pair for the conservation law.

2. A <u>weak solution u</u> fulfills the (weak) entropy condition if for all entropy pairs (η, F) and all $\phi \in C_0^{\infty}(\mathbb{R} \times \mathbb{R}^+)$ with $\phi \ge 0$

$$\int_{\mathbb{R}} \int_{\mathbb{R}^+} (\eta(\mathbf{u}) \, \partial_t \phi + F(\mathbf{u}) \, \partial_x \phi) + \int_{\mathbb{R}} \eta(\mathbf{v_o}) \, \phi(\cdot, o) \geq o.$$

We call *u* the entropy solution.

Entropy Pair - Example

The pair (η, F) is an entropy pair if $\eta : \mathbb{R} \to \mathbb{R}$ is convex and smooth and if $F : \mathbb{R} \to \mathbb{R}$ is a smooth function with

$$F' = f'\eta'$$
.

Example:

1. For given η , the entropy flux F is (up to a constant) given by

$$F(u) = \int_a^u \eta'(s) f'(s) ds, \qquad a \in \mathbb{R}.$$

2. If f is strictly convex, then $\eta(u) = f(u)$ is an entropy with entropy flux

$$F(u) = \int_0^u (f'(s))^2 ds.$$

Uniqueness of entropy solutions

Theorem (Uniqueness)

1. Let u_1 and u_2 denote two entropy solutions for the initial values v_1 und v_2 . Then we have for all t > 0 (a.e.)

$$\|u_1(\cdot,t)-u_2(\cdot,t)\|_{L^1(\mathbb{R})} \leq \|v_1-v_2\|_{L^1(\mathbb{R})}.$$

In particular, this yields uniqueness of entropy solutions for the same initial value $v_1 = v_2$.

2. If u is an entropy solution and if f'' > 0, then u fulfills the Lax entropy condition at all discontinuities.

Hence, both entropy conditions are equivalent in this case.

Kruzkov entropy pairs and Kruzkov entropy solution

Theorem (Kruzkov entropy condition)

Let $\eta_{\kappa}(u) := |u - \kappa|$ and $F_{\kappa}(u) := \operatorname{sign}(u - \kappa)(f(u) - f(\kappa))$ with $\kappa \in \mathbb{R}$.

The family $(\eta_{\kappa}, F_{\kappa})_{\kappa \in \mathbb{R}}$ is called Kruzkov entropy pair.

- Let *u* be a weak solution. Then the following is equivalent:
 - (i) u is entropy solution fulfilling the weak entropy condition.
 - (ii) for all $\kappa \in \mathbb{R}$ and all $\phi \in C_0^{\infty}(\mathbb{R} \times \mathbb{R}_0^+)$ with $\phi \geq 0$ it holds:

$$\int_{\mathbb{R}} \int_{\mathbb{R}^+} (\eta_{\kappa}(u) \, \partial_t \phi + F_{\kappa}(u) \, \partial_x \phi) + \int_{\mathbb{R}} (\eta_{\kappa}(\mathbf{v_0}) \, \phi(\cdot, \mathbf{o})) \geq \mathbf{o}$$

This reduces the "number" of entropy pairs significantly.