Table des matières

0.1	Courbes	1
0.2	Inégalité isopérimetrique	9
0.3	Courbes dans \mathbb{R}^3	0
0.4	surfaces	3
0.5	Courbures normale et geodesique	2
0.6	Arc de Surface	3
0.7	L'indicatrice de Dupin	4
0.8	Géodésiques	5
0.9	Changement de Coordonnées	6
0.10	Géodésiques	7
0.11	Dérivée directionnelle et covariante	8

Résumé

Plan:

- 1. Courbes (plan + espace)
 - étude local
 - étude global
- 2. surfaces dans \mathbb{R}^3

Lesson 1

Définition 1 (Courbe et Courbe Régulière).

1. Une Courbe Paramètre dans \mathbb{R}^3 est une function $c: I \to \mathbb{R}^n$ où I est un intervalle de \mathbb{R} et c est lisse (c est infiniment différentielle, $c \in C^{\infty}$).

$$I \ni t \mapsto c(t) \in \mathbb{R}^3$$
,

t – paramètre.

2. Une courbe paramètre est régulièrement si

$$\dot{c}(t) = \frac{\mathrm{d}}{\mathrm{d}t}c(t) \neq 0,$$

pour tout $t \in I$.

Si une courbe est régulière, $c(t) \neq \text{const.}$ $\dot{c}(t)$ désigne la tangente à la courbe en c(t). Chaque régulière courbe est tangente à la ligne.

Définition 2. La trace d'une courbe paramètre $I \ni t \mapsto c(t) \in \mathbb{R}^n$ est image :

$$\{c(t) \mid t \in I\} \subset \mathbb{R}^n$$
.

Une cure paramètre est plus que sa trace.

La courbe $\mathbb{R} \ni t \mapsto \begin{pmatrix} t^3 \\ 0 \end{pmatrix} \in \mathbb{R}^2$, trace = $\{\begin{pmatrix} x \\ 0 \end{pmatrix} \mid x \in \mathbb{R}\}$. Et la courbe $R \ni t \mapsto$

$$\begin{pmatrix} t \\ 0 \end{pmatrix} \in \mathbb{R}^2$$
 a la même trace!

$$\dot{c}_1(t) = \begin{pmatrix} 3t^2 \\ 0 \end{pmatrix}, \ mais \ \dot{c}_2(t) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Définition 3. Si $I \ni t \mapsto c(t) \in \mathbb{R}$ est une courbe paramètre, $J \subset \mathbb{R}$ – une intervalle et $\varphi: J \to I$ une function lisse t.q. $\varphi^{-1}: J \to I$ est également lisse, on disque(?):

$$J \ni t \mapsto c^2(t) = c \circ \varphi(t) \in \mathbb{R}^n$$

est une reparamétrisation de c.

Remarque. $\dot{\tilde{c}}(t) = \dot{c} \circ \varphi(t) * \dot{\varphi}(t)$. Donc, \tilde{c} - régulière \iff c est régulière.

$$\frac{d}{ds}\varphi^{-1}(s) = \frac{1}{\dot{\varphi} \circ \varphi^{-1}(s)} \neq 0$$

 $\varphi: J \to I$ est un difféomorphisme comme $\dot{\varphi} \neq 0$, on a

$$\left\{ \begin{array}{l} \operatorname{soit} \, \dot{\varphi}(t) > 0, \quad \operatorname{pour} \, \operatorname{tout} \, t \in J \\ \operatorname{soit} \, \dot{\varphi}(t) < 0, \quad \operatorname{pour} \, \operatorname{tout} \, t \in J \end{array} \right. ,$$

$$\left\{ \begin{array}{l} \varphi \, \operatorname{est} \, \nearrow \\ \varphi \, \operatorname{est} \, \searrow \end{array} \right. .$$

 $Si \varphi \ est \nearrow on \ dit \ une \ la \ reparamétrisation \ conserve \ le \ sens \ de \ parcours \ (l'orientation).$ $Si \varphi \ est \searrow$, la reparam inverse le sens de parours.

Définition 4.

1. Une courbe est une Classe d'Equivalence de Courbes Paramètre pour la relation :

$$c \sim \tilde{c} \Longleftrightarrow \tilde{c}$$
 est une reparamétrisation de c

2. Une courbe orientée est une classe d'equivalence des courbes paramètre pour :

 $c \sim \tilde{c} \Longleftrightarrow \tilde{c}$ est une reparamétrisation préservante la sens de parcours de c

Définition 5. Si c est une courbe paramètre t.q. $|\dot{c}(t)| = 1$ pour tout $t \in I$. On dit que c'est paramètre pur sa longueur d'arc.

Proposition 1. Si $I \ni t \mapsto c(t) \in \mathbb{R}^n$ est une courbe paramètre régulière il existe une reparamétrisation de c sa long d'arc :

$$J \ni s \mapsto \tilde{c}(s) = c \circ \varphi(s) \in \mathbb{R}^n$$

 $|\dot{\tilde{c}}(s)| = 1 \ pour \ tout \ s \in J.$

Lemme 1. Si $J_1 \ni s \mapsto \tilde{c_1}(s)$ sont 2 paramètre de par long d'arc de la meme courbe $|\dot{c_1}(s)| = 1 = |\dot{c_2}(s)|$. alors $c_2(s) = c_1(s_0 \pm s)$, pour un $s_0 \in \mathbb{R}$ et si c_1 et c_2 ont un pos le meme suis de parcours. Si $c: [a, b] \to \mathbb{R}^n$ est une courbe paramètre sa longueur est :

$$L[c] = \int_a^b |\dot{c}(t)| \, \mathrm{d} \, t$$

$$l = \int_0^t |\dot{c}(u)| \, \mathrm{d}u = t$$

Définition 6. Une courbe paramétrique $c: R \to R^d$ est appelée PÉRIODIQUE de période p, si $c(t+p) = c(t), \ \forall t \in R$.

Définition 7. Une courbe fermée et appeler une Courbe Fermée Simple s'il existe une parametrisation régulière, périodique de période p et si : $c_{[0,p)}$ est injectif.

Définition 8. $c \in C^{\infty}(I, \mathbb{R}^2)$ est appelée Courbe Plane.

Définition 9. Soit c une courbe paramètre par longueur d'arc (donc une courbe de vitesse 1) (donc $||\dot{c}(t)|| = 1$). Son champs normale est définie par :

$$N(T) := \dot{c}^{\perp}(t), \ t \in I$$

Remarque. $N(t) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \dot{c}(t)$. N depend de l'orientation de la courbe.

Pour chaque t le système \dot{c} , N(t) est un base orthonormée direct de R^2 .

Lemme 2. Soit une courbe vitesse 1, N son champs normals alors $\ddot{c}(t)$ est parallèle a N(t).

Démonstration. Idee $||\dot{c}(t)|| = 1, \ \forall t \iff \ddot{c}(t) \perp \dot{c}(t)$.

Définition 10. Soit $c \in C^{\infty}(I, R^2)$ une courbe plane de vitesse 1, alors $\ddot{c}(t) = \kappa(t)N(t)$, avec $\kappa(t) := \langle \ddot{c}(t), N(t) \rangle$. $\kappa(t)$ - scalar.

Alors $\kappa \in C^{\infty}(I, R)$ et κ est appelé la courbure de c $(\kappa(t)$ la courbure du point c(t))

Théorème 1. Formulas de Frenet Soit $c \in C^{\infty}(I, \mathbb{R}^2)$ une courbe de vitesse 1.

Soit $T(t):=\dot{c}(t),\ N(t):=T^{\perp}(t)$, $\{T(t),\ N(t)\}$ - le systeme ortogonale vecteur. Est appellé le

REPÉRE DE FRENET, ou BASE DE FRENET.

FORMULES DE FRENET:

$$\dot{T}(t) = \kappa(t)N(t)$$

 $\dot{N}(t) = -\kappa(t)T(T)$

Remarque.

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\left(\begin{array}{c} T\\ N \end{array}\right) = \left(\begin{array}{cc} 0 & \kappa\\ -\kappa & 0 \end{array}\right) \left(\begin{array}{c} T\\ N \end{array}\right)$$

Lemme 3. Soit $c: C^{\infty}([a, b], R^2)$ une courbe plane de vitesse, alors il existe $\nu \in C^{\infty}([a, b], R)$ t.q. $\dot{c}(t) = (\cos \nu(t), \sin \nu(t))$

Définition 11. Soit $c \in C^{\infty}(R, R^2)$ une courbe plane, périodique de période L et de vitesse 1. En particulier régulière. Soit $\nu \in C^{\infty}(R, R)$. Talque $\dot{c}(t) =$ $(\cos \nu(t), \sin \nu(t))$ (an dit : une angle de la tangente).

On define Le Nobre de rotation de la tangente de $c: n_c := \frac{1}{2\pi}(\nu(c) - \nu(o))$

Rappel. $c \in C^{\infty}(I; \mathbb{R}^2)$ régulière. Alors $\exists \nu \in C^{\infty}(I; t, q, \dot{c}(t)) = (\cos \nu(t), \sin \nu(t))$. On définie le Nombre de Rotation de la Tangente pour une courbe periodique de p'eriode L:

$$n_c := \frac{1}{2\pi} (\nu(L) - \nu(0))$$

Lemme 4. Soient $c_1, c_2 \in C^{\infty}(\mathbb{R}; \mathbb{R}^2)$ deux courbes périodiques de période L, paramètre par longueur d'arc $S: c_1 = c_2 \circ \varphi \text{ avec } \varphi > 0 \text{ alors } :$

$$n_{c_1} = n_{c_2}$$

 $Si \ \dot{\varphi} < 0 \ alors$

$$n_{c_1} = -n_{c_2}$$

Remarque. Le nombre de rotation de la tangente est donc invariant par rapport à une reparamétrisation que preserve l'orientation.

Démonstration. On avait vu que $\varphi(t) = \pm t + t_0$ donc $\dot{\varphi} > 0 \Rightarrow \varphi(t) = t + t_0$. Soit ν_2 t.q. $\dot{c}_2(t) = (\cos \nu_2(t), \sin \nu_2(t))$ alors pour $\nu_1 := \nu_2 \circ \varphi$ on a que $\dot{c}_1(t) = (\cos \nu_1(t), \sin \nu_1(t))$.

Soit
$$\bar{\nu}_1(t) := \nu_1(t+L)$$
 on a que $\dot{c}(t) = (\cos \bar{\nu}_1(t), \sin \bar{\nu}_1(t))$ car $c_1(t) = c_1(t+L)$.

$$2\pi(n_{c_2} - n_{c_1}) = (\nu_2(L) - \nu_2(0)) - (\nu_1(L) - \nu_1(0)) = (\nu_2(L - t_0) - \nu_2(-t_0)) - (\nu_1(L) - \nu_1(0)) = (\nu_1(L - t_0) - \nu_2(-t_0)) - (\nu_1(L) - \nu_1(0)) = (\nu_1(L - t_0) - \nu_2(-t_0)) - (\nu_1(L) - \nu_1(0)) = (\nu_1(L - t_0) - \nu_1(L) - \nu_1(0)) = (\nu_1(L - t_0) - \nu_1(L) - \nu_1(L)$$

$$2\pi(n_{c_2} - n_{c_1}) = (\nu_2(L) - \nu_2(0)) - (\nu_1(L) - \nu_1(0)) = (\nu_2(L - t_0) - \nu_2(-t_0)) - (\nu_1(L) - \nu_1(0))$$
(1)

Théorème 2. Sait c une courbe plane périodique de période L et paramètre par longueur d'arc. Soit κ la courbure de c alors

$$n_c = \frac{1}{2\pi} \int_0^L \kappa(t) \, \mathrm{d}t$$

Remarque. En particulier $\int_{0}^{L} \kappa(t) dt \in 2\pi \mathbb{Z}$

Démonstration. Soit $\nu \in C^{\infty}(\mathbb{R}, \mathbb{R})$ une fonction angle pour la tangente, c.à.d. $\dot{c}(t) =$ $(\cos \nu(t), \sin \nu(t))$. $\ddot{c}(t) = \kappa(t)\dot{c}^{\perp}(t)$ donc $\kappa(t) = \langle \ddot{c}(t), \dot{c}^{\perp}(t) \rangle$ ou $\ddot{c}(t) = \dot{\nu}(t)(-\sin \nu(t), \cos \nu(t))$

$$n_c = \frac{1}{2\pi} (\nu(L) - \nu(0)) = \frac{1}{2\pi} \int_0^L \dot{\nu}(t) dt = \frac{1}{2\pi} \int_0^L \kappa(t) dt.$$

et $\dot{c}^{\perp}(t) = (-\sin \nu(t), \cos \nu(t))$ donc $< \ddot{c}(t), \dot{c}^{\perp}(t) > = \dot{\nu}(t) = \kappa(t)$ ou

Théorème 3 (Hopf. Turning tangent theorem). Une courbe plane fermée simple a un nombre de rotation (de la tangente) 1 ou -1.

Nombre de rotation
$$n = \frac{1}{2\pi} \int_{0}^{L} \kappa(t) dt = \frac{1}{2\pi} (\nu(L) - \nu(0)).$$
 $c(t+l) = c(t)$ $c(t) = (\cos \nu(t), \sin \nu(t)), \ \dot{\nu} = \kappa$

Remarque. On avait inclu dans la défini de fermée simple qu'il n'ya pas de point singulier.

Pour la preuve on aura besoin du lemme de recouvrement.

Définition 12. Sait $X \subset \mathbb{R}^d$ et $x_0 \in X$ On dit que X est ÉTOILE par rapport à x_0 , (X is star shaped). Si pour chaque $x \in X$ le segment de droite entre x_0 et x est contenu dans X. C'est dire $\forall x \{x_01-t+xt,t\in[0,1]\}\subset X$

Lemme 5. De Recouvrement Soit $X \subset \mathbb{R}^d$ étoilé par rapport à x_0 et soit

$$e: X \to S^1 = \{(x,y) \in \mathbb{R}^2, x^2 + y^2 = 1\}$$
—une application continue

Alors in existe une application <u>continue</u> $\nu: X \to \mathbb{R}$ t.q. $e(x) = (\cos \nu(x), \sin \nu(x))$. ν est unique sous la condition $\nu(x_0) = \nu_0$.

Démonstration. Cas ou $e: X \to S^1$ n'est pas surjective. Supposons qu'il existe $\varphi_0 \in \mathbb{R}$ t.q. $(\cos \varphi_0, \sin \varphi_0) \notin e(X)$. $e(X) = \{z; z = e(x), x \in X\}$. La fonction $\psi: (\varphi_0, \varphi_0 + 2\pi) \to S^1 \{(\cos \varphi_0, \sin \varphi_2)\}$ est un homéomorphisme. On $\nu = \psi^{-1} \circ e$ donc ν est continue.

<u>Cas</u> $e(X) = S^1$. Dans le cas d = 1, X = [0,1], $x_0 = 0$ on a démontré le théorème $(e = \dot{c}$ dériver d'une courbe)

Cas d > 1. Soit $x \in X$. On defini $e_x : [0,1] \to S^1$, $e(x)(t) = e(tx + (1-t)x_0)$. On sait qu'il existe $\nu_x : [0,1] \to \mathbb{R}$ continue t.q. $e_x(t) = (\cos \nu_x(t), \sin \nu_x(t))$ de $\nu_x(t) = \nu(tx + (1-t)x_0)$ donc $\nu(x) = \nu_x(1)$ donc $e(x) = e_x(1) = (\cos \nu_x(1), \sin \nu_x(1))$ is est e a de monte que $\nu_x(1)$ est continue en e.

Soit $\varepsilon > 0$ et $0 = t_0 < t_1 < t_2 < \dots < t_n = 1$ une partition t.q. $e_x|_{[t_j,t_{j+1}]} \subset U_h$, $H \in \{1,2,3,4\}$. Soit y t.q. $||e_x(t) - e_y(t)|| < \varepsilon$, $\forall t \in [0,1]$. Si ε est suffisent petit. $e_y|_{[t_j,t_{j+1})} \subset U_h$. Par example dans le cas h=4 on aura

$$\nu_x(t) = \arctan\left(\frac{e_x^2(t)}{e_x^1(t)}\right)\nu_y(t) \qquad = \arctan\left(\frac{e_y^2(t)}{e_y^1(t)}\right) \tag{2}$$

$$e = (e^1, e^2)$$

Démonstration. du théorème de Hopf Soit c une une paramétrisation de vitesse 1 de période L. Sait $x_0 := \max\{c^1(t); t \in [0, l]\}$. Soit $p = \{(z_1, z_2); z_1 = x_0\} \cap C(\mathbb{R})$ Soit la paramétrisation t.q. c(0) = p. $G = p + \mathbb{R}(1, 0)$. $C(\mathbb{R}) \cap G$ est à gauche de p. Soit $X = \{(t_1, t_2) : 0 \le t_1 \le t_2 \le L\}$ X est étoilé par rapport à (0, 0). On considère $c : X \to S^1$ Formula after an image.

$$c(t_1, t_2) = \begin{cases} \frac{c(t_1) - c(t_1)}{||c(t_1) - c(t_1)||} & t_2 > t_1 \\ \dot{c}(t) & t_2 = t_1 = t \\ -\dot{c}(0) & (t_1, t_2) = (0, L) \end{cases}$$

Alors $e \in C^0(x, S^1)$, en effet $c \in C^\infty$. $c(t_2) = c(t_1) + \dot{c}(t_1)(t_2 - t_1) + o(|t_2 - t_1|)$

$$\begin{split} \frac{c(t_1) - c(t_1)}{||c(t_1) - c(t_1)||} &= \frac{(t_2 - t_1)(\dot{c}(t_1) - o(1))}{||(t_2 - t_1)(\dot{c}(t_1) - o(1))||} \rightarrow \frac{\dot{c}(t_1)}{||\dot{c}(t_1)||} = \dot{c}(t_1) \\ &\qquad \qquad t_2 \rightarrow t_1 \\ \\ \frac{c(L - \varepsilon) - c(0)}{||c(L - \varepsilon) - c(0)||} &= \frac{c(-\varepsilon) - c(0)}{c(-\varepsilon) - c(0)} = \frac{-\varepsilon(\dot{c}(0) + o(1))}{||-\varepsilon(\dot{c}(0) + o(1))||} \rightarrow -\dot{c}(0) \end{split}$$

De plus X est étoilée par rapport à (0,0). Donc il exist $\nu \in C^0(X)$ t.q. $e(t_1,t_2) = (\cos \nu(t_1,t_2), \sin \nu(t_1,t_2))$. Pour de nombre de rotation de (la tangente de) on a :

 $\varepsilon \to (down) + 0 +$

$$2\pi n_c = \nu(L, L) - \nu(0, 0) = \nu(L, L) - \nu(0, L) + \nu(0, L) - \nu(0, 0)$$

(droite \perp à $\dot{c}(0)$) $x_0 = \max\{c^{(1)}, t \in [0, L]\}$ $(1,0) \notin im([0,1] \ni t \mapsto e(0,t))$ car en $c(0), t \mapsto x(t)$ est maximal, donc $im([0,1] \ni t \mapsto \nu(0,t)) \subset (0,2\pi) + 2\pi k$ (car facile du lemme du recouvrement).

$$e(0,L) = -\dot{c}(0) = (0,-1)$$
 donc $\nu(0,L) = \frac{3\pi}{2} + 2\pi k$ de $\nu(0,0) = \frac{\pi}{2} + 2\pi k$ donc $\nu(0,L) - \nu(0,0) = \pi$ de même : $(-1,0) \not\in im(t \mapsto e(t,L)) \Rightarrow \nu(L,L) - \nu(0,L) = \pi$ donc $2\pi n_C = 2\pi$.

Définition 13. Une courbe plane est appelée Convexe si tout ses points sont sur un des cotés de sa tangente. \Leftrightarrow pour chaque $t_C < c(t) - c(t_0) > \geq (\leq)0$, $\forall t$ avec $n(t_0) \perp T_c(t_0)$.

Théorème 4. Soit une courbe plane de vitesse 1. Alors :

1. Si c est convexe on a pour sa courbe κ on a :

$$\kappa(t) > 0 \ \forall t (ou \ \kappa(t) < 0 \forall t)$$

2. Si c est fermé simple et si $\kappa(t) \geq 0$, $\forall t \ (ou \ \kappa(t) \leq 0, \forall t) \ alors \ c \ est \ convexe$.

Démonstration. 1. Soit
$$c$$
 convexe et supposons que $\langle c(t) - c(t_0), n(t_0) \rangle \geq 0$, $\forall t$. On developpe $c(t) = c(t_0) + \dot{c}(t_0)(t - t_0) + \ddot{c}(t)\frac{(t - t_0)^2}{2} + o(|t - t_0|^2)$. $0 \leq \left\langle c(t) - c(t_2), \dot{c}^{\perp}(t_0) \right\rangle = \underbrace{\left\langle \ddot{c}(t_0, \dot{c}^{\perp}(t_0)) \right\rangle}_{\kappa(t_0)} \underbrace{\left\langle \dot{c}(t_0, \dot{c}^{\perp}(t_0)) \right\rangle}_{\kappa(t_0)} \underbrace{\left\langle \dot{c}($

2. Supposons que $\kappa(t) \geq 0 \forall t$ et que c est fermée simple de période L. Si c n'était pas convexe alors il existerait un t_0 t.q. : $\varphi(t) := \langle c(t) - c(t_0), \dot{c}^{\perp}(t_0) \rangle$, a des valeurs positives et négatives. φ atteint un maximum eu point t_2 et un minimum au point t_1 donc $\varphi(t_2) \geq 0$ et $\varphi(t_1)$ et $\varphi(t_1) \leq 0 = \varphi(t_0) \leq \varphi(t_2)$ pour un t_0 . $\dot{\varphi}(t_1) = 0 \langle \dot{c}(t_1), \dot{c}^{\perp}(t_0) \rangle$ donc $\dot{c}(t_1) = \pm \dot{c}(t_0)$, $\dot{c}(t_2) = \pm \dot{c}(t_0)$. Au moins deux des vecteurs $\dot{c}(t_0, \dot{c}(t_1), \dot{c}(t_2))$ sont donc les mêmes. Soit $s_1, s_2 \in \{t_0, t_1, t_2\}$ t.q. $s_1 < s_2 \dot{c}(s_1) = \dot{c}(s_2)$. On a $\nu(s_2) - \nu(s_1) = 2\pi k$ avec $k \in \mathbb{Z}$. $0 \leq \kappa(t) \leq \dot{\nu}(t)$ donc ν est croissant donc $k \in \mathbb{N}$ de même. $\nu(s_1 + L) - \nu(s_2) = 2\pi l$ avec $l \in \mathbb{N}$ donc $2\pi n_c = \nu(s_1 + L) - \nu(s_1) = 2\pi(l + k) = 2\pi$ (Hopf) $\Rightarrow l = 0$ ouk = 0. Supposons que k = 0. Donc

 $\nu(t) = cte \forall t \in [s_1, s_2] \text{ donc } c(s) = c(s_1) + \dot{c}(s_1)(s - s_1) = c(s_1) + \dot{c}(t_0)(s - s_1) \text{ pour } s \in [s_1, s_2]. \text{ donc } \varphi(s) = \left\langle c(s) - c(t_0), \dot{c}^{\perp}(t_0) \right\rangle = \left\langle c(s_1) - c(t_0), \dot{c}^{\perp}(t_0) \right\rangle = cte \text{ ce qui n'est pas possible car au moins 2 des points } t_0, t_1, t_2 \text{ sont dans } [s_1, s_2].$

Définition 14. Une courbe plane de vitesse 1. On dit que c admet un sommet en t_0 si $\dot{\kappa}(t_0) = 0$. (sommet=vertex en anglais)

Exemple 0.1.1. On peut démontrer que l'ellipse à quatres sommets.

Remarque. De manière générale on sait qu'one fonction périodique admet deux points critiques (un maximum et un minimum).

Théorème 5. des 4 sommet (four vertex theorem) Soit $c \in C^{\infty}(\mathbb{R}, \mathbb{R}^2)$ périodique de période L de vitesse 1 et convexe c admet au moins quatre sommets.

Pour la preuve on a besoin de 2 lemmes

Lemme 6. Si l'intersection d'une courbe convexe plane fermée simple avec une droite G contient plus que deux points différents alors c contrent un segment de G.

Remarque.

Démonstration. Supposons que c est orienté positive convexe =0 $\kappa(t)\geq 0 \Rightarrow \dot{\nu}(t)\geq 0$ pour ν une angle $\dot{c}(t)=(\cos\nu(t),\sin\nu(t))$ par Hopf : $\nu(L)-\nu(0)=2\pi$ donc $\nu:[0,L]\to [0,2\pi]+\nu_0$ est croissante et surjective.

Exercice 2

- 1. Démontrer qu'un segment de droite est la courbe la plus courte (de classe C^1) être deux points. S : $A, B \in \mathbb{R}^d$, $c : [0,1] \to \mathbb{R}^d$, c(0) = A, c(1) = B. $L(c) = \int_0^1 ||\dot{c}(t)|| dt$. $c(1) c(0) = B A = \int_0^1 \dot{c}(t) dt$, $||B A|| = ||\int_0^1 \dot{c}(t) dt|| \le \int_0^1 ||\dot{c}(t)|| dt$.
- 2. $f(t) = \cos h(t)$ $\gamma(t) = (t, \cos h(t))$. $s(t) = \int_0^t ||\dot{\gamma}(\tau)|| d\tau = \sin ht$, $t \in [0, 2]$. On doit trouves φ t.q pour $c := \gamma \circ \varphi$ on a $||\dot{c}|| = 1$. t(s) = arcsinhs, $s \in [0, \sin h2]$, $c : (0, \sin h2) \to \mathbb{R}^2$. $c(s) = \gamma(arcsinhs)$, $s \in (o, sinh2)$. $c(s) = (arcsinhs, \sqrt[3]{1 + s^2})$, $s \in (0, sinh2)$.
- 3. $\forall t \neq 1$: γ est régulier.

Exercice 3

1. Démontrer que si $c: \mathbb{R} \to \mathbb{R}^n$ est une paramétrisation par longueur d'arc d'une courbe fermée, alors c est périodique.

Exemple: $t \mapsto (\cos(e^t), \sin(e^t))R = f(t) \ (t \in \mathbb{R})$. f n'est pas périodique, $f(\mathbb{R}) = S^1$. Dénoter: si c est une parametrisation t.q. $||\dot{c}(t)|| = 1$ alors c est périodique. Idée: d(t+T) = d(t) T est période. On definit φ en ce fonction de passage. $s(t) = \int_0^t ||\dot{d}(\tau)|| \, d\tau = \int_0^T ||\dot{d}(\tau)|| \, d\tau = L + s(t)$. $\varphi(u+L) = \varphi(s(t)+L) - \varphi(s(t+T)) = t + T = \varphi(u) + T$, u = s(t), $s \circ \varphi(u) = u$, φ —function inverse function reciproque. $\bar{c} := d \circ \varphi$ est une parameter par long d'arc. $\bar{c}(u+L) = \varphi(s(t)+L) - \varphi(s(t+T)) = t + T = \varphi(u) + T$. (φ la fonction reciproque de s).

Homework all the rest.

Lemme 7. c une courbe plane fermée simple et convexe. c intersecté une droite un plus de trois points alors c contient un segment de droite.

 $\begin{array}{l} \textit{D\'{e}monstration}. \ \textit{Soit} \ c; [0,1] \leftarrow \mathbb{R} \ \textit{la courbe}. \ \textit{Supposons que pour la droite} \ G = p_0 + \mathbb{R}\nu. \\ c([0,1]) \cap G = \{c(0),c(t_1),c(t_2)\}. \ \textit{Supposons que} \ \kappa \geq 0 \ \textit{donc pour l'angle} \ \nu \ \textit{t.q.} \ \dot{c}(t) = (\cos\nu(t),\sin\nu(t)) \ \textit{an a que} \ \dot{\nu} = \kappa \geq 0 \ \textit{et} \ \nu(L) = \nu(0) = 2\pi \ \textit{donc} \ \nu : [0,L] \leftarrow [0,2\pi] + \nu_0 \\ \textit{est croissante et surjective. Soient} \ I_j = [t_j,t_{j+1}] \ ([0,t_1],[t_1,t_2],[t_2,L]). \ \textit{Supposons que} \\ c(I_j) \cap G \neq c(I_j). \ \textit{Soit} \ G_S = G + s\nu^{\perp}. \ \textit{Soit} \ s_1 = \sup\{s > 0; \ G_s \cap c(I_j) \neq 0\}. \ \textit{Soit} \ \tau_j \ \textit{define} \\ \textit{par} \ c(I_j) \cap G_{s_1} = \{c(\tau_j)\} \ \textit{donc} \ \dot{c}(\tau_j) = \pm \nu. \ \textit{Donc} \ \exists \tau_n \ \textit{t.q.} \ 0 < \tau_1 < t_1 < \tau_2 < t_2 < \tau_3 < L \\ \textit{t.q.} \ c(\tau_n) = \pm \nu \ \forall k. \ \textit{Soit} \ \theta_1 \in \theta_0 + [0,2\pi) \ \textit{t.q.} \ (\cos\theta_n,\sin\theta_n) = \nu. \ \textit{Supposons que} \ \theta_2 = \theta_1 + \pi \\ \textit{et} \ (\cos\nu_2,\sin\nu_2) = -\nu \ \textit{donc} \ c(\tau_k) \in \{\theta_1,\theta_2\}, \forall k \in \{1,2,3\}. \ t \mapsto \theta(t) \ \textit{est croissant donc} \\ \exists j \ \textit{t.q.} \ \theta|[t_j,t_{j+1}] \ \textit{est constant.} \end{array}$

Lemme 8. Soit une courbe plane fermée et sample et convexe. G une droite t.q. $G \cap im(c) = \{p_1, p_2\}$ t.q. $T_{p_1}(c) = T_{p_2}(c)$ colinéaire G alors c contient un segment de G.

 $D\acute{e}monstration.$ $G=T_{p_1}(c)$ donc apr convexité la courbe est situé d'un seul coté de G donc supposons :

$$\langle c(t) - p_1, \dot{c}^{\perp}(t_1) \rangle > 0$$

Soit $G_{\varepsilon} = G + \varepsilon \dot{c}^{\perp}(t_1)$. Pout ε suffisent petit $G_{\varepsilon} \cap im(G) = \{q_1, q_2, q_3, q_4\}$ avec $q_j \neq q_k, j \neq k, q_j \in im(c)$. le résultat suit du lemme précédent.

Théorème 6 (des 4 sommets). soit c une courbe plane, convexe fermé simple alors c admet quatre sommet.

Démonstration. Supposons que c est paramétrique par longueur d'arc et de période L. Pour sa courbure κ on sait que κ atteint son maximum et son minimum dans [0,L] donc il existent $t_0,t_1\in[0,L)$ t.q. $\dot{\kappa}(t_j)=0$ $j\in\{1,2\}$. Supposons que $t_0=0$. Soit $G=Aff(c(0),c(t_1))$ la droite affine passant parce points. S'il existerait un trois ème point d'intersection de G avec c alors la courbe contiendrait un segment de G (lemme précédant) donc on aurait fini car $\dot{\kappa}=0$ sur ce segment. Si l'intersection éteint tangentielle en c(0) et $c(t_1)$ alors c on tiendrait un segment de droite parle lemme précédant pour $G=p_0+\mathbb{R}\nu$ on peut donc supposer que :

$$\langle c(t) - c(t_0), \mu^{\perp} \rangle > 0 \ t \in (0, t_1)$$

$$\langle c(t) - c(t_0), \mu^{\perp} \rangle < 0 \ t \in (t_1, L)$$

 κ est périodique de période L donc $\int_0^L \dot{\kappa} = 0$. Si $\dot{\kappa}(t) \neq 0 \ \forall t \in \{0, t_1\}$. Alors on peut supposer que :

$$\dot{\kappa}(t) > 0 \ t \in (t_1, L)$$

 $\dot{\kappa}(t) < 0 \ t \in (0, t_1)$

 $\Rightarrow \dot{\kappa}(t) \left\langle c(t) - c(0), \nu^{\perp} \right\rangle > 0, \ t \in (t_1, L) \text{ et } t \in (0, t_1) \text{ or } \int \dot{\kappa}(t) (c(t) - c(0)) \, \mathrm{d}t = -\int_0^L \kappa(t) \dot{c}(t) \, \mathrm{d}t$ or on sait que $\dot{n}(t) = \kappa(t) \dot{c}(t)$ équation de Frenet $n = \dot{c}^{\perp}$.

$$\dot{T} = \kappa n$$

$$\dot{N} = -\kappa T$$

$$\int_{0}^{L} \dot{\kappa}(t) \left\langle c(t) - c(0), \nu^{\perp} \right\rangle dt = \left\langle 0, \nu^{\perp} \right\rangle = 0$$

C'est une contradiction donc il existe un $t_2 \in \{0, t_1\}$ t.q. $\dot{\kappa}(t_2) = 0$.

Supposons que $t_2 \in (t_1, L)$. S'il n'y avait pas de quartier sommet. Il existe donc une droite qui sépare les regions $\dot{\kappa} > 0$ et $\dot{\kappa} < 0$. Par le même argument pour ces regions on conclut qu'il existe un 4ème sommet.

Remarque. Le théorème reste vrai sans l'hypothèse de la convexité.

0.2 Inégalité isopérimetrique

l'aire du cerclée rayon $R = \pi \mathbb{R}^2 = A$ —area la longueur $2\pi \mathbb{R} = L$ $L^2 = 4\pi^2 \mathbb{R} = 4\pi A$.

Théorème 7. Soit $G \subset \mathbb{R}^2$ une region bornée par une courbe fermé simple de longueur L. Alors pour l'aire A de G on a:

$$4\pi A < L^2$$

et $4\pi A = L^2 \Leftrightarrow la \ courbe \ est \ un \ cercle.$

Démonstration. Soit c une paramétrisation de la courbe de vitesse 1, de période L orientée positive. Pour déterminer A à partir de c on utilise le théorème de Stoks. Pour $F \in C'(G, \mathbb{R}^2)$ un champs de vecteurs on a :

$$\int_{G} \operatorname{rot} F(x, y) \, \mathrm{d}(x, y) = \int_{G} \langle F, \mathrm{d}s \rangle := \int_{0}^{L} \langle F(c(t)), \dot{c}(t) \rangle \, \mathrm{d}t$$

Un F t.q. rot
$$F = 1$$

 $F(x,y) = \frac{1}{2}(-y,x)$

$$rot F(x, y) = \partial_x F2 - \partial_y F_1 = 1$$

donc $\int \operatorname{rot} F = \int_G 1 = A = \int \langle F, \cot c \rangle = \int_0^L (x\dot{y} - \dot{x}y) dt$ avec c(t) = (x(t), Y(t)) On utilise un l'analyse de Fourier. Soit

$$z: \mathbb{R} \leftarrow \mathbb{C}^2$$
$$z(t) := x(\frac{L}{2\pi}t) + iy(\frac{L}{2\pi}t)$$

alors $x \in C^{\infty}$ et $z(t+2\pi) = z(t)$ par Fourier on sait $z(t) = \sum_{k \in \mathbb{Z}} c_k e^{ikt} \ \forall t$.

$$\dot{x}(t) = \frac{L}{2\pi} (\dot{x}(\frac{l}{2\pi}) + i\dot{y}(\frac{l}{2\pi}))$$

$$|\dot{z}(t)|^2 = \frac{L^2}{(2\pi)^2} (\dot{x}^2 + \dot{y}^2)(\frac{L}{2\pi}t)$$

$$\int_0^{2\pi} |\dot{z}(t)|^2 = \frac{l^2}{2\pi}$$

 $\dot{z}(t) = \sum_{c} c_k(ik)e^{iht} \,\forall t \, |\dot{z}|^2(t) = \sum_{k,l} (inc_n)(-il\bar{c}_e)e^{i(k-l)t} \int_0^{2\pi} |\dot{z}|^2(t) = \sum_{k,l} \int (...)e^{i(h-l)t} \, donc : \int_0^{2\pi} |\dot{z}|^2(t) \, dt = \sum_{k \in \mathbb{Z}} k^2 |c_n|^2 \, donc \, \frac{L^2}{2\pi} = \sum_{k} k^2 |c_n|^2. \, Im\dot{z}\bar{z}(t) = (\dot{y}x - x\dot{y})(\frac{L}{2\pi})\frac{L}{2\pi}.$

$$2A = \frac{L}{2\pi} \int_{2\pi}^{2\pi} \operatorname{Im} \dot{z}\bar{z} = \sum k|c_k|^2 \cdot 2\pi$$

$$4\pi A = 4\pi^2 \sum k |c_k|^2$$
$$L^2 = 2\pi \cdot \sum k^2 |c_k|^2$$

or $\sum_{k\in\mathbb{Z}}k|c_k|^2\leq\sum_{k\in\mathbb{Z}}k^2|c_k|^2$ avec égalité $\Leftrightarrow c_k=0$ pour $k\not\in\{0,1\}$ donc égalité $\Leftrightarrow z(t)=c_0+c_1e^{it}\Leftrightarrow t\mapsto (x(t),y(t))$ est un cercle.

0.3 Courbes dans \mathbb{R}^3

Définition 15. Soit $c \in C^{\infty}(I; \mathbb{R}^3)$ une courbe paramétrie et régulière.

1. $\nu \in C^{\infty}(I; \mathbb{R}^3)$

$$\nu(t) := \frac{\dot{c}(t)}{||\dot{c}(t)||}$$

est appelée Champs Tangent. c est appelé une courbe paramétrie Bi-RÉGULIÈRE si $\dot{v}(t) \wedge \ddot{c}(t) \neq 0, \ \forall t \in I$. (produit vectoriel). Dans ce cas on difinit :

$$b(t) := \frac{\dot{c}(t) \wedge \ddot{c}(t)}{||\dot{c}(t) \wedge \ddot{c}(t)||}$$

le Champs Binormalte et le plan Osculateur :

$$\mathbb{P}_c(t) = \{ p \in \mathbb{R}^3 : \langle p - c(t), b(t) \rangle = 0 \}$$

plan affine passant perpendiculaire avec vecteur normale b(t). Le Champs Normale est définie par $n(t) := b(t) \wedge \nu(t)$.

2. Pour une courbe paramétrie birégulière le repére orthomal directe $\{\nu(t), n(t), b(t)\}$ est appelé le REPÉRE DE FRENET de la courbe c au point c(t).

$$\kappa(t) := \frac{1}{||\dot{c}(t)||} \langle \dot{\nu}(t), n(t) \rangle$$

est appelée Courbure de coube de c en t:

$$\tilde{c}(t) := \frac{1}{||\dot{c}(t)||} \langle \dot{n}(t), b(t) \rangle$$

est appelée la Torsion de c en t.

Remarque. 1. la biregular assure que le plan osculaleur est bien definie.

$$\mathbb{P}_c(t) := c(t) + \text{vect}\{\dot{c}(t), \ddot{c}(t)\}\$$

- 2. le vecteur $b(t) \perp \mathbb{P}_c(t)$.
- 3. $n(t) \in \text{vect}\{\dot{c}(t), \ddot{c}(t)\}$
- 4. $\text{vect}\{\dot{c}(t), \ddot{c}(t)\} = \text{vect}\{\nu(t), n(t)\}$
- 5. Si c est de vitesse 1 alors c birégulière $\Leftrightarrow ||\ddot{c}(t)|| \neq 0$, $\forall t$ car dans ce $cas \langle \dot{c}(t), \ddot{c}(t) \rangle = 0$ donc $||\dot{c}() \wedge \ddot{c}(t)|| = ||\dot{c}(t)|| \cdot ||\ddot{c}(t)|| \neq 0$ de plus $\kappa(t) = ||\ddot{c}(t)|| (car \kappa(t) = \langle \dot{\nu}, n(t) \rangle = \langle \dot{c}(t), \frac{\ddot{c}(t)}{||\ddot{c}(t)||} \rangle = ||\ddot{c}(t)||$.

- 6. En particulier pour une courbe dans l'espace $\kappa(t) \geq 0 \ \forall$
- 7. Si $c(I) = imc \subset plan \subset \mathbb{R}^3$ la courbure de c n'est pas même que la courbure definie pour la xstihon \hat{c} au plan on a $\kappa = |\hat{\kappa}|$.

Proposition 2. Equations de Frenet pour une courbe birégulière.

$$\dot{\nu}(t) = \frac{1}{||\dot{c}(t)||} \kappa(t) n(t)$$

$$\dot{n}(t) = \frac{1}{||\dot{c}(t)||} (-\kappa(t)\nu(t) + \tau(t)b(t))$$

$$\dot{b}(t) = - \frac{1}{||\dot{c}(t)||} \tau(t) n(t)$$

Démonstration.
$$\kappa = \frac{1}{||\dot{c}||} \langle \dot{\nu}, n \rangle = 0$$
 (1)

$$\langle \dot{\nu}, b \rangle = 0 \text{ car } \dot{\nu} \in \text{vect}\{\dot{c}, \ddot{c}\}. \ \langle \nu, b \rangle = 0 \Rightarrow \langle \dot{\nu}, b \rangle + \left\langle \nu, \dot{b} \right\rangle = 0 \text{ donc } \dot{b} \perp \nu. \ \tau = \frac{1}{||\dot{c}||} \langle \dot{n}, b \rangle$$

$$\langle n, b \rangle = 0 \ \langle \dot{n}, b \rangle + \left\langle n, \dot{b} \right\rangle = 0 \Rightarrow (3)$$
. (2) découle donc de $\langle \dot{n}, \nu \rangle = -\langle n, \dot{\nu} \rangle$ car $\langle \nu, n \rangle = 0$ $\langle \dot{n}, b \rangle$ definition de τ .

Théorème 8 (foundammentale de la théorie de Frenet). Soit I un intervalle et $\kappa, \tau \in C^{\infty}(I,\mathbb{R})$, $\kappa(t) \geq 0$. Alors il existe une courbe paramétrie de vitesse $1 \ c \in C^{\infty}(I;\mathbb{R}^3)$ tq. sa courbure et sa torsion sont τ et κ . Toute autre courbe qui ales mémes propriétés est de la forme : $\hat{c} = F \circ c$ avec F(x) = Ax + b avec $A \in SO(3)$.

Démonstration. Ce système d'équations differentielles :

$$\begin{split} \dot{\nu} &= \kappa n \\ \dot{n} &= -\kappa \nu + \tau b \\ \dot{b} &= -\tau n \end{split}$$

est lineaire et d'ordre 1. Pour tout systeme orthonue diuct et $\forall t_0 \in I : \{e_1, e_2, e_3\}$ il existe une solution t.q.

$$\nu(t_0) = e_1$$

$$n(t_0) = e_2$$

$$b(t_0) = e_3$$

on define
$$c(t_0) + \int_{t_0}^t \nu$$
 pour un $c(t_0) \in \mathbb{R}^3$

Exemple 0.3.1 (Pour courbure et \bar{c} osion). $\kappa = \frac{1}{||\dot{c}||} \langle \dot{\nu}, n \rangle$; $\tau =$

$$c(t) := (\cos t, \sin t, t), \ t \in \mathbb{R}$$

$$\dot{c}(t) = (-\sin t, \cos t, 1); \ ||\dot{c}(t)||^2 = 2$$

$$\ddot{c}(t) = (-\cos t, -\sin t, 0)$$

$$\nu(t) = \frac{1}{\sqrt{2}}(-\sin t, \cos t, q)$$

$$b(t) = \frac{\dot{c} \wedge \ddot{c}}{||\dot{c} \wedge \ddot{c}||}(t) = \frac{(\sin t, -\cos t, 1)}{\sqrt{2}}$$

$$n(t) = -(\cos t, \sin t, 0)$$

$$\dot{\nu}(t) = \frac{1}{\sqrt{2}}(-\cos t, -\sin t, 0)$$

$$\langle \dot{\nu}, n \rangle = \frac{1}{\sqrt{2}} \Rightarrow \kappa = 1$$

$$\dot{n}(t) = -(-\sin t, \cos t, 0)$$

$$\langle \dot{n}, b \rangle = \frac{1}{\sqrt{2}} \Rightarrow \tau = 1$$

Remarque (Theoreme foundamentalle dans le plan). Soit $\kappa \in C^{\infty}(I;\mathbb{R})$ pour un intervalle I. Alors il existe une courbe paramétrie par lagueur d'arc c t.g. sa courbure est κ . Toute autre courbe set un \hat{c} avec les mêmes proprietes est de forme :

$$\hat{c}(t) = F \circ c(t + t_0),$$

pour $t_0 \in \mathbb{R}$ et F une isometrie directe \Leftrightarrow deplacement.

Deux résultats sur la géométrie globale des courbes dans l'espace.

Définition 16 (courbure totale). Soit $c \in C^{\infty}(\mathbb{R}; \mathbb{R}^3)$ une courbe paramétrie par longueur d'arc et périodique de période L, $\kappa \in C^{\infty}(I; \mathbb{R})$ est sc courbure. Alors $\kappa(c) := \int_0^L \kappa(t) \, \mathrm{d}t$ est appelé COURBURE TOTALE de c.

Remarque. Dans le p'au on sait (Hopf) que $\kappa(c) = \pm 1$ si c est simple.

On peut dénoutrer

 $\frac{1}{||\dot{c}||} \langle \dot{n}, b \rangle$

Théorème 9 (Fenchel). Soit $c \in C^{\infty}(\mathbb{R}; \mathbb{R}^3)$ une courbe fermée simple. Alors pour sa courbure totale :

$$\kappa(c) \ge 2\pi$$
.

De plus on a $\kappa(c) = 2\pi \Leftrightarrow c$ est un courbe plane et convexe.

Démonstration. Sans.

On peut dénouter

Théorème 10 (Fary-Tlilnor). Soit $c \in C^{\infty}(\mathbb{R}; \mathbb{R}^3)$ une courbe fermée simple. Si c admet un noeud alors pour la courbure totale on a

$$\kappa(c) \ge 4\pi$$
.

Remarque. Si c admet un noeud, c'est à dire on ne peut définir c d'une manière continue en une courbe plane fermée simple.

Définition 17. Une ISOTOPIE de \mathbb{R}^3 est une application.

$$\varphi \in C^0([0,1] \times \mathbb{R}^3; \mathbb{R}^3)$$

t.q. $\forall t \in [0,1] \ \varphi(t,\cdot)$ est un homeomorphism.

Définition 18. Deux courbes fermeies simples c_1, c_2 sontnt appélé ISOTOPE. S'il existe une isotopie φ t.q.

$$\varphi(0, X) = X \ \forall x \in \mathbb{R}^3; \ \varphi(1, \operatorname{img}(c_0)) = \operatorname{img}(c_1).$$

Définition 19.

- Un noeud est une class l'equivalence d'une isotopie.
- Une courbe fermé simple est SANS NOEUD, si elle est isotope à une courbe plane fermée simple.

0.4 surfaces

Définition 20 (Surface régulière). Soit $S \subset \mathbb{R}^3$. S est appelé Surface Régulière. Si pour chaque $p \in S$ il existe un ouvert $V \subset \mathbb{R}^3$ t.q. $p \in V$ et s'il existe un ouvert $U \subset \mathbb{R}^2$ et un $F: \underbrace{U}_{\subset \mathbb{R}^2} \to \mathbb{R}^3$ C^{∞} t.q.

- 1. $F(U)=S\cap V$ et $F:U\to S\cap V$ est un homéomorphisme (c.a.d. $F|_U$ continue et son inverse $F^{-1}|_U$ est continue)
- 2. Le Jacobien DuF a rank $2 \forall u \in U$

Remarque. La matrice jacobienne dans U repère standard :

$$F(X_1, X_2) = (F_1(X_1, X_2), F_2(X_1, X_2), F_3(X_1, X_2))$$

$$DuJ = \begin{pmatrix} \partial_{x_1} F_1 & \partial_{x_2} F_1 \\ \partial_{x_1} F_2 & \partial_{x_2} F_2 \\ \partial_{x_1} F_3 & \partial_{x_2} F_3 \end{pmatrix}$$

$$U = (x_1, X_2) \ \partial_{x_j} F = \begin{pmatrix} \partial_{x_j} F_1 \\ \partial_{x_j} F_2 \\ \partial_{x_i} F_3 \end{pmatrix}$$

donc rang $DuF = 2 \Leftrightarrow \partial_{x_1} F, \partial_{x_2} F$ sont indépendants dim $\text{vect}\{\partial_{x_1} F, \partial_{x_2} F\} = 2$ \Leftrightarrow deux vecteurs tangents à S au point F(u) qui sont indépendant c'est a dire : on peut définir l'espace tangent $\Leftrightarrow ||\partial_{x_1} F \wedge \partial_{x_2} F|| \neq 0$.

 $u_1 = (x_1, x_2)$ la ligne $x_2 = \text{const}$ qui passe par U. $\mathbb{R} \ni t \mapsto (x_1, x_2 + t) =: c(t)$, c(0) = u. $t \mapsto F(c(t))$ est la courbe correspondante sur S. $\frac{\partial}{\partial F}(c(t))|_{t=0} = \frac{\partial}{\partial F}(x_1, x_2 + t)|_t = 0 = \partial_{x_2} F(x_1, x_2)$

Définition 21. Pour une surface régulière l'application $F:U\to S\cap V$ (on encore (U,F,V)) Paramétrisation Locale de Sau point p. $S\cap V$ est appelé un Voisinage de Coordonnées et les composantes (u_1,u_2) de u t.q. F(u)=p les Coordonnées de p par Rapport à F.

Exemple 1. Pour $p \in \mathbb{R}3$ et $X_1, X_2 \in \mathbb{R}^3$ le plan affine $S := \{X, X = p + u_1 X_1 + u_2 X_2\}$ est une surface régulière. Car : On peut prendre (pour tout $p \in S$) $V := \mathbb{R}^3$; $U := \mathbb{R}^2$ $F(u_1, u_2) = p + u_1 X_1 + u_2 X_2$

F es une fonction affine donc F est différentiable. (en tout que fonction de $\mathbb{R}^2 \to \mathbb{R}^3$) $F(U) = S = S \cap \mathbb{R}^3 F : U \to S$ est un homéomorphisme.

Exemple 2. graphe d'une fonction (Une seule paramétrisation!) Soit $U \subset \mathbb{R}^2$ ouvert $f: U \to \mathbb{R}$ différentiable. $S = \{x = (x_1, x_2, x_3) : (x_1, x_2) \in U, x_3 = f(x_1, x_2)\}$

On peut prendre de nouveau $V = \mathbb{R}^3$ U (est U) $F(u_1, u_2) := (u_1, u_2, f(u_1, u_2))$ $F: U \to \mathbb{R}^3$ est différentiable. $F: U \to F(U) = S$ est continue $F|_n^{-1}$ est la projection orthogonale donc continue. La surface est régulière car $\partial_{u_1} F = (1, 0, \partial_{u_1} f(u_1, u_2))$ $\partial_{u_2} F = (0, 1, \partial_{u_2} f(u_1, u_2))$ $\partial_{u_1} \wedge \partial_{u_1} = (., ., 1) \neq 0$

Addendum : le plan affine est régulier $X=p+u_1X_1+u_2X_2$ $\partial_{u_1}F=X_1$, $\partial_{u_2}F=X_2$ $\partial_{u_1}F\wedge\partial_{u_2}F=X_1\wedge X_2\neq SiX_1, X_2$ sont indépendantes \Leftrightarrow dim vect $\{X_1,X_2\}=2$.

Exemple 3. $S(=S^2) = \{(x,y,z) \in \mathbb{R}^3; x^2 + y^2 + z^2 = 1\}$ S est une surface régulière? Soit $p = (p_1, p_2, p_3) \in S$ t.q. $p_3 > 0$ $F(X,Y) = (X,Y,\sqrt{1-x^2-y^2})$ $(x^2 + y^2 < 1)$ $U := \{(X,Y); \ x^2 + y^2 < 1\}; V := \{(x,y,z); z > 0\}$

 $S \cup V_3$ est le graphe de $(X,Y) \mapsto \sqrt{1-x^1-y^2}$ qui est C^{∞} par l'exemple du graphe on a que F est une paramétrisation en ppour chaque $p \in S \cap V_+$

Soit $p \in S$; $p_3 < 0$ on choisi $U := \{(x,y); x^2 + y^2 < 1\}$ $V_- = \{(x,y,z); z < 0\}$ $F_-(x,y) := (x,y,-\sqrt{1-x^2-y^2})$ $(x,y) \in U$ $V_- = \{(x,y,z); z < 0\}$ parce que $S \cap V_-$ est le graphe de $U \ni (x,y) \mapsto -\sqrt{1-x^2-y^2}$ qui est différentiel. Par le précédent (U,F_-,V_-) est un voisinage de coordonnées pour chaque point $p \in S$ t.q. $p_3 < 0$.

 $\{p \in S \text{ t.q. } p_2 > 0\} \text{ est le graphe } U \in (x,y) \mapsto \sqrt{1-y^2-z^2} \text{ donc par le précédent } (U,F_{1_\pm},V_{1_\pm}) \text{ avec } V_{1_\pm} = (x,y,z), x>_< 0 \text{ et } F_{1_\pm} = (y,z,\pm\sqrt{1-y^2-x^2}) \text{ De même } : (U,F_{2_\pm},V_{2_\pm}) \text{ avec } V_{2_\pm} = \{x,y,zx>0 \ y<0\} \ F_{2_\pm}(X,z) = (x,z,\pm\sqrt{1-x^2-z^2}) \text{ est un voisinage de coordonnées pour } \{p \in S; p_2>_< 0\}$

En résumé : S^2 est une surface régulière.

Remarque. Il nous a falloir 6 paramétrisations pour monter que S est la une surface régulière. On peut faire avec 2 paramétrisations mais pas avec 1.

Proposition 3. Soit $V_0 \subset \mathbb{R}^3$ ouvert $f \in C^{\infty}(V_0; \mathbb{R})$ $S := \{(x, y, z) \in V_0; f(x, y, z) = 0\}$ $Si \nabla f(p) \neq 0 \forall p \in S \ alors \ S \ est \ une \ surface \ régulière.$

 $-S^2 = f^{-1}(0)$ pour $f(x, y, z) = x^2 + y^2 + z^2 - 1$ -S - le plan affine = $f^{-1}(0)$ de $f(X) = \langle X - P, n \rangle$ pour un $p \in S$ et n un vecteur

normale à S. Démonstration. Soit $p = (X_0, Y_0, Z_0)$ grad $f(p) = (\partial_x f(p), \partial_y f(p), \partial_z f(p)) \neq (0, 0, 0)$

Supposons que $\partial_z f(p) \neq 0$. Par le théorème des fonctions implicites il existe un voisinage $V \subset V_b$ de p un voisinage $U \subset \mathbb{R}^2$ de (X_0, Y_0) et une fonction $g \in C^{\infty}(U, \mathbb{R})$ t.q. $S \cap V = \{(x, y, g(x, y)); x, y \in U\}$ donc on conclure en utilisant l'exemple du graphe d'une fonction (cad f(x, y, g(x, y)) = 0).

Attention : la condition $\nabla f(p) \neq 0 (p \in S)$ est suffisante mais pas nécessaire. Par exemple $S^2 = \tilde{f}^{-1}(0)$ pour $\tilde{f}(x, y, z) = (x^2 + y^2 + z^2 - 1)^2 \nabla \tilde{f}(x, y, z) = 2(x^2 + y^2 + z^2 - 1)^2 \nabla \tilde{f}(x, y, z)$

1)2(x, y, z) = 0 si $x^2 + y^2 + z^2 = 1$ **Exemple 4.** $f(x,y,z) = x^2 + y^2 - z^2(x,y,z) \in \mathbb{R}^3$ $S = f^{-1}(0)$ $\nabla f(x,y,z) = 2(x,y,-z) = 2(x,y,-z)$ $0 \Leftrightarrow (x, y, z) = (0, 0, 0)(0, 0, 0) \in S$

In faut donc examine S autour (=dans un voisinage) de (0,0,0) $S = \{(x,y,z); |z| =$ $\sqrt{x^2+y^2}$ S est un double-cône

Remarque. rotation de la courbe $X \mapsto (X, Z)$ avec |x| = |y| autour de l'axe des z

Il ne eut exister de voisinage $V \subset \mathbb{R}^3$ de (0,0,0) et $U \subset \mathbb{R}$ ouvert t.g. $F|_U: U \to S \cap V$ soit homeomorphe avec $F:U\to\mathbb{R}^2$ t.q. DuF est de rang2 car pour $p\in S\cup V$ avec $p_3 > 0$ et $q \in S \cap V$ avec $q_3 < 0$ et toute courbe $c : [0,1] \to S \cap V$ avec c(0) = p, c(1) = q. $\exists t_0$ t.q. $c(t_0) = (0,0,0)$ or dans U il existent des courbes qui évitent l'origine. C'est à dire $\gamma \in C^0([0,1], U) \ \gamma(0) = F^{-1}(q) \ \gamma(1) = F^{-1}(p) \ \gamma(t) \neq F^{-1}(0) \forall t \in [0,1].$

Proposition 4. $S \subset \mathbb{R}^2$ surface régulière et (U, F, V) une paramétrisation Loz- a U. Soit $W \subset \mathbb{R}^n$ ouvert et $\phi: W \to \mathbb{R}^3$ t.q. $\varphi(W) \subset S \cap V$ alors $\varphi \in C^{\infty}(W; \mathbb{R}^3) \Leftrightarrow$ $F^{-1} \circ \varphi \in C^{\infty}(W, U)$.

 $D\'{e}monstration.$

$$(\Leftarrow) \varphi = \underbrace{F}_{\mathbb{C}^{\infty}} \circ \underbrace{(F^{-1} \circ \varphi)}_{\mathbb{C}^{\infty}} (\Rightarrow)$$
 Soit φ différentielle. On sait que rang $D_u f = 2$

$$\mathcal{C}^{\infty}$$
 \mathcal{C}^{∞}

$$D_{u}f \cong \begin{pmatrix} \partial u_{1}F_{1} & \partial u_{2}F_{1} \\ \partial u_{1}F_{2} & \partial u_{2}F_{2} \\ \partial u_{1}F_{3} & \partial u_{2}F_{3} \end{pmatrix}$$

Supposons qui det $\begin{pmatrix} \partial\,u_1F_1\,\partial\,u_2F_1\\ \partial\,u_1F_2\,\partial\,u_2F_2 \end{pmatrix} \neq 0.$

 $\text{Soit } G: U \times \mathbb{R} \to \mathbb{R}^3. \ G(u_1, u_2, T) := F(u_1, u_w) + (0, 0, t) = (F_1(u_1, u_2, F(u_1, u_2), F(u_1, u_2) + t)) \text{ alors } G \text{ est différentiable, } D_{(u_1 u_2 t)} G \cong \begin{pmatrix} \partial u_1 F_1 & \partial u_2 F_1 & 0 \\ \partial u_1 F_1 & \partial u_1 F_1 & 0 \\ \partial u_1 F_1 & \partial u_1 F_1 & 1 \end{pmatrix} \text{ donc } \det D_{(u_1 u_2 t)} G \neq 0.$

Donc par le théorie de la fonction inverse il existe $U_1 \subset U \times \mathbb{R}^2 et V_1 \subset V$ t.q. $G|_{U_1} : U_1 \to V_1$ est un difféomorphisme. Soit $W_1 = \varphi^{-1}(V_1)$ pour $\hat{p} \in W_1$ on $G^{-1} \circ \varphi(\hat{p}) = (F^{-1} \circ \varphi(\hat{p}), 0)$ car $F(u_1, u_2) = G(u_1, u_2, 0)$ $G^{-1} \circ \varphi$ est G^{∞} sur $G^{-1} \circ \varphi(\hat{p}) = G(u_1, u_2, 0)$ $G^{-1} \circ \varphi$ est G^{∞} sur $G^{-1} \circ \varphi(\hat{p}) = G(u_1, u_2, 0)$

Corollaire 1. Soit S une surface régulière et (U_1, V_1, F_1) et (U_2, V_2, F_2) deux paramétrisations locales. Alors $F_2 \circ F_1^{-1} : F_1^{-1}(V \cap V_2) \to F_2^{-1}(V_1 \cap V_2)$ est \mathbb{C}^{∞} .

Démonstration. On applique la proposition précédente à $W=F_1^{-1}(V_1\cap V_2)$ et $\varphi=F_1$ et

$$(U, V, F) := (U_2, V_2, F_2)$$

Proposition 5. Soit $S \subset \mathbb{R}^3$ une surface régulière $F: S \to \mathbb{R}^n$ continue. Soit $p \in S$, alors sont équivalents :

- 1. $\exists V \subset \mathbb{R}^3$ voisinage de p et une extension \hat{f} de $f|_{S \cap V}$ à V
- 2. \exists une paramétrisation locale (U, F, V) avec $p \in V$ t.q. $f \circ F : U \to \mathbb{R}^n$ est C^{∞}
- 3. \forall paramétrisation locale (U, F, V) avec $p \in V$ $f \circ F : U \to \mathbb{R}^n$ est C^{∞}

Démonstration. 1. (1) \Rightarrow (2) Car F est C^{∞} $f \circ F = \hat{f} \circ F$

- $2. (3) \Rightarrow (2) \text{ Ok}$
- 3. (2) \Rightarrow (1) On considère (de nouveum) $(U_1, U_2, t) := F(u_1, u_2) + (0, 0, t)$ Soit $g(u_1, u_2) := f \circ F(u_1, u_2) = f \circ G(u_1, u_2, 0)$ donc g est C^{∞} en $(F^{-1}(p), 0)$ et $\hat{f} := g \circ G^{-1}$.

Définition 22. Soit $S \subset \mathbb{R}^3$ une surface régulière et $f: S \to \mathbb{R}^n$ continue. On dit que f est C^{∞} EN p si une des trois assertions équivalentes du précédent est vraie.

Définition 23. Soit $S_1, S_2 \subset \mathbb{R}^3$ deux surfaces régulières. Soit $f: S_1 \to S_2$ continue On dit que f est C^∞ en $p \in S_1$. Si'l existe une paramétrisation locale (U_1, V_1, F) de S_1 en p et une paramétrisation locale (U_2, V_2, F_2) de S_1 en f(p) t.q. $F_2^{-1} \circ f \circ F_1: F_1^{-1}(f^{-1}(V_2) \cap V_1) \to U_2$ est C^∞ en p.

Remarque. $Si\ F_2^{-1} \circ f \circ F_1 est C^{\infty}$ pour deux paramétrisations alors $\tilde{F}_2^{-1} \circ f \circ \tilde{F}_1$ est C^{∞} pour toutes paramétrisations \tilde{F}_1, \tilde{F}_2 . $Car\ F_1^{-1} \circ \tilde{F}_1$ et $F_2^{-1} \circ \tilde{F}_2$ sont C^{∞} par le précédent.

Corollaire 2. Soient S_1, S_2 deux surfaces régulières et $V \subset \mathbb{R}^3$ ouvert t.q. $S_1 \subset V$. Soit $f: V \to \mathbb{R}^3$ t.q. $f(S_1) \subset S_2$ alors $f|_{S_1}: S_1 \to S_2$ est différentiable.

Définition 24. Soit S_1, S_2 deux surfaces régulières. $f: S_1 \to S_2$ est appelé DIFFÉOMORPHISME si f est bijection et si f et f^{-1} sont différentiables. Dans ce cas on dit que S_1 est DIFFÉOMORPHE à S_2 .

Exemple 0.4.1. Soit $S_2=S^2$ (la sphère) et $S_1\to S_2=\{(x,y,z)\in\mathbb{R}^3; \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\}$ pour a,b,c>0 e'ellipsoïde S_1 est une surface régulière car $S_1=g^{-1}(0)$ pour $g(x,y,z)=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}-1$ $\nabla g(x,y,z)\neq (0,0,0)$ pour $(x,y,z)\in S_1$. Soit $f:S_1\to S_2$ $f(x,y,z):=(\frac{x}{a},\frac{y}{b},\frac{z}{c})=(f_1,f_2,f_3)$ est bien définie car $(f_1^2+f_2^2+f_3^2)(x,y,z)=1$ pour $(x,y,z)\in S_1f^{-1}(x,y,z)=(ax,by,cz)$ f et f^{-1} sont continue et C^∞ . en tant que fonctions de $\mathbb{R}^3\to\mathbb{R}^3$ donc f est un difféomorphisme et l'ellipsoïde et la sphère sont difféomorphes.

Exemple 5. $\varphi: U \subset \mathbb{R}^2 \to \mathbb{R} \ \varphi \in C^{\infty}$ alors le graphe de φ est difféomorphe à $U \times \{0\}$ car $(x, y, 0) \mapsto (x, y, \varphi(x, y)) = f(x, y)$ est un difféomorphisme. $f^{-1}(p_1, p_2, p_3) = (p_1, p_2)$.

Définition 25. Soit $S \subset \mathbb{R}^3$ une surface régulière. L'espace tangent à S au point $p \in S$ est

 $T_pS:=\{X\in\mathbb{R}^3; \text{il existe une courbe }c\in C^\infty((-\varepsilon,\varepsilon)); S) \text{ t.q. }c(0)=p \text{ t.q. } \dot{c}(0)=X\}$

Proposition 6. Soit $S \subset \mathbb{R}^3$ une surface régulière, $p \in S$ et (U, F, V) une paramétrisation en p. Soit $u_0 = F^{-1}(p)$ alors $T_p S =$ « image de $(D_{u_0} F)$ » = $\text{vect}\{\partial_1 F(u_0), \partial_2 F(u_0)\}$.

 $\begin{array}{ll} D\acute{e}monstration. \ \, (\supset) \ \, \mathrm{Soit} \ \, X \in \ \, \mathrm{wimage} \ \, D_{u_0}F \, \gg \ \, \mathrm{et} \ \, Y \in \mathbb{R}^2 \ \, \mathrm{t.q.} \ \, D_{u_0}F(Y) = \partial_y \, F(u_0) = \\ \frac{\partial}{\partial t}F(u_0+ty)|_{t=0} = X \ \, \mathrm{Soit} \ \, c(t) := F(u_0+ty) \ \, t \in (-\varepsilon,\varepsilon) \ \, \mathrm{pour} \ \, \varepsilon \ \, \mathrm{suffisamment} \ \, \mathrm{petit} \ \, \mathrm{pour} \\ (-\varepsilon,\varepsilon) \ni t \mapsto u_0+ty' \in U. \ \, \mathrm{Donc} \ \, \frac{\partial}{\partial t}c(t)|_{t=0} = D_{u_0}F(y) \ \, (\subset) \ \, \mathrm{Soit} \ \, X \in T_pS \ \, \mathrm{et} \ \, c \ \, \mathrm{t.q.} \\ \dot{c}(0) = X. \ \, \mathrm{Soit} \ \, u(t) := F^{-1} \circ c(t)u \in C^{\infty} \ \, \mathrm{en} \ \, u_0 \ \, (\mathrm{parce} \ \, \mathrm{cest} \ \, C^{\infty}). \ \, \mathrm{Soit} \ \, y := \dot{u}(0). \ \, \mathrm{Alors} \\ D_{u_0}F(y) := \frac{\partial}{\partial t}F \circ u(t)|_{t=0} = \frac{\partial}{\partial t}c(0). \end{array}$

Corollaire 3. $\dim T_p S = 2$

 $D\acute{e}monstration. \ T_pS = \operatorname{Im} D_{u_0}F, \ \operatorname{rank} D_{u_0}F = 2 \ \forall u_0$

Proposition 7. Soit $V \subset \mathbb{R}^3$ est ouvert $f: V \to \mathbb{R}^3$ une fonction C^{∞} $S := f^{-1}(0)$

 $abla f(X) \neq 0 \text{ si } f(x) = 0$ Alors pour $p \in S$ $T_p S = [\nabla f(p)]^{\perp} = \{x \in \mathbb{R}^3; \langle X - p, \nabla f(p) \rangle = 0.$

Démonstration. $t \mapsto c(t) \in S$; $X = \dot{c}(0) \Rightarrow f \circ c(t) = 0$; $\frac{\partial}{\partial t} f \circ c(t)|_0 = D_{c(0)} f(\dot{c}(0)) = \langle \nabla f(c(0)), \dot{c}(0) \rangle = \langle \nabla f(c(0)), X \rangle = 0$.

Exemple 0.4.2. $p \in S^2 = \{x \in \mathbb{R}^3; ||x|| = 1\} T_p S^2 = p^{\perp} \nabla (X \mapsto ||X||^2 - 1) = 2X$

Définition 26. Soient S_1, S_2 deux surfaces régulières $f \in C^{\infty}(S_1, S_2)$. Alors $p \in S_1$ la dérivée de f est définie par $d_p f : T_p S_1 \to T_{f(p)} S_2$. définie telle que pour $X \in T_p S_1 X = \dot{c}(0)$ pour $c \in C^{\infty}((-\varepsilon, \varepsilon); S^1)$; p = c(0) car $d_p f(X) :=$

$$\frac{\partial}{\partial t} f \circ c(0) \in T_{f(p)} S_2$$

Proposition 8. *La définition de f(X) ne dépend pas de la courbe c qu'on utilise pour définir $d_v f(X)$

* $d_p f: t_p S_1 \to T_f(p) S_2$ est linéaire.

Démonstration. $\hat{f} = F_2^{-1} \circ f \circ F_1$. Soit $u_0 = F_1^{-1}(p)$. Soit $a(t) := F_1^{-1}(x(t))$ donc $D_{u_0}F_1(\dot{u}(0)) = \frac{\mathrm{d}}{\mathrm{d}t}c(t)|_{t=0} d_p f(x) = \frac{\mathrm{d}}{\mathrm{d}t}f \circ c(t)|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t}F_2f_2^{-1} \circ f \circ F_1(u(t))|_{t=0} = D_{u_0}(F_2 \circ \hat{f})(D_{u_0}F_1)^{-1}(X)$.

Donc $d_p f(x) = Du0(F_2 \circ \hat{f})((Du0F_1)^{-1}(X))$ la membre de droite est indépendant de c et linéaire.

Remarque. $d_p f$ est donc essentiellement déterminé par le Jacobien de \hat{f} . cad diagramme est un diagramme commutatif.

La première forme fondamentale d'une surface régulière S au point p la restriction du produit scalaire euclidien de \mathbb{R}^3 sur T_pS

Définition 27. Soit S une surface régulière et $p \in S$. $g_p: T_pS \times T_pS \to \mathbb{R}$ $g_p(X_p,Y_p):=\langle X_p,Y_p\rangle$

Remarque. Soit (U, F, V) une paramétrisation en p alors on peut exprimer la forme bilinéaire g_p par une matrice. $((g_{ik}(p)))$ $T_pS = \text{vect}\{\partial_1 F(p), \partial_2 F(p)\}$ $((g_{ik}(p))) = \begin{pmatrix} g_p(\partial_1 F(p), \partial_1 F(p)) & g_p(\partial_1 F(p), \partial_2 F(p)) \\ g_p(\partial_2 F(p), \partial_1 F(p)) & g_p(\partial_2 F(p), \partial_2 F(p)) \end{pmatrix}$ donc pour $X = X^1 \partial_1 + X^p \partial_F$ avec $X^1, X^2 \in \mathbb{R}$ $Y = \sum_{i=1}^2 Y^i \partial_i F$ alors $g_p(X_p, Y_p) = \sum_{i=k}^2 g_{ik}(p) X^j(p) Y^k(p)$

Remarque. $S \ni p \mapsto g_p$ est une fonction à valeurs dans les formes bilinéaires tenseur covariance de degré 2.

Exemple 6. $X_1, X_2 \in \mathbb{R}^2$ indépendantes

A)
$$S = \text{vect}\{X_1, X_2\}X = \sum_j X^j X_j$$
; $Y = \sum_k Y^k X_k \langle X, Y \rangle = \sum_j X^j Y^k \langle X_i, X_k \rangle$
Ex: $X_1 = (\cdot) 1$
 1
 $0), X_2 = (\cdot) 0$

0) alors
$$g_{jk} = \begin{pmatrix} 2 & 3 \\ 3 & 9 \end{pmatrix}$$
 B) $F: (0, \infty) \times (0, 2\pi) \rightarrow \mathbb{R}^3 F(r, \varphi) = (r \cos \varphi, r \sin \varphi, 0)$

$$\partial_1 F(r,\varphi) = \begin{pmatrix} \cos \varphi & \sin \varphi & 0 \end{pmatrix} \partial_2 F(r,\varphi) = \begin{pmatrix} -r \sin \varphi & r \cos \varphi & 0 \end{pmatrix} ((f_{ik})) = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$$

C) Ex 1(ii) $F(x,y) - (\cos x \cos y, \cos y \sin y, \sin x)x \in (-\pi/2, \pi/2) \times \mathbb{R}$ F est une paramétrisation de $S^2 \setminus \{N,S\}N = north, S = south ((g_{ik}(x,y))) = \begin{pmatrix} 1 & 0 \\ 0 & \cos^2 x \end{pmatrix}$

Champ normal, application de Gauss, Orientabilité

Rappel. Définition de la courbure pour une courbe plane (de vitesse 1) $\kappa = \langle \dot{v}, n \rangle = -\langle \dot{n}, v \rangle$ ν -tangente n-normale La courbure est donc la variation de la normal dans la direction de la tangente.

Définition 28. Soit S une surface régulière un champs normal sur

S

est une application

$$N:S\to\mathbb{R}^3$$

t.q.

$$N(p) \perp T_p S \forall p \in S$$

.

Exemple 7. A)

$$S = \mathbb{R}^3 \times \{0\}$$

alors

$$S\ni p\mapsto N(p)=(0,0,1)$$

est un champs normal unitaire. B)

$$S^2 = \{ p \in \mathbb{R}^3 : \|p\| = 1 \}$$

$$N(p) = p$$

est un champs normal unitaire

$$||n(p)||(f)fgd = gdf1$$

$$N(p) = 2p$$

est un champs normal

$$N(p) = g(p)p$$

est un champs normal pour

$$g(p): S^2 \to \mathbb{R}$$

. C) le ruban de Môbius n'admet pas de champs normale unitaire continue.

Définition 29. Une surface régulière appelé orientable s'il existe un champs normale unitaire différentiable.

Remarque. Chaque surface est localement orientable c'est à dire : Soit

une paramétrisation.

$$\partial_1 F \wedge \partial_2 F \neq 0$$

alors

$$u\ni p\mapsto \frac{\partial_1\,F(p)\wedge\partial_2\,F(p)}{\|\partial_1\,F(p)\wedge\partial_2\,F(p)\|}\in\mathbb{R}^3$$

est bien définie (régularité) et différentiable. Soit

$$(U_2, F_2, V_2)$$

une deuxième paramétrisation.

$$N_{2}(p) = \frac{\partial_{1} F(p) \wedge \partial_{2} F(p)}{\|\partial_{1} F(p) \wedge \partial_{2} F(p)\|}|_{V=F_{2}^{-1}(p)}$$

$$N_{1}(p) = \pm N_{2}(p) = \det F_{2}^{-1} \circ F_{1}(u) n_{2}(p)^{r}$$

$$Ax \wedge Ay = \det AA(x \wedge y)$$

$$\partial_{j} F_{D} F(e_{j})$$

$$DF_{2} \circ F_{1} = DF_{2} \circ F_{1} DF$$

Théorème 11. Une surface régulière est orientable si et seulement si; it existe un recouvrement par des paramétrisation (U_j, F_j, V_j) telle que $\det D(F_j^{-1} \circ F_k) > 0$ pour tout j, k.

La deuxième forme fondamentale

Remarque. Une application $A: \mathbb{R}^2 \to \mathbb{R}^2$, $A = A^T$

* peut être caractérise complètement par la forme bilinéaire $(X,Y) \mapsto \langle X,AY \rangle$ * peut être degonalisé $(\Leftrightarrow valeurs \ propres \ vecteur \ propres)$

* on va considère d_nN

Définition 30. Soit S une surface régulière orientable et $N: S \to S^2 \subset \mathbb{R}^3$ un champs normale unitaire différentiable. N est appelée une application de Gauss. L'endomorphisme $W_p: T_pS \to T_pSX \mapsto W_p(X) := -d_pN(X) = -dpXN(p)$ — drive directionnelle. est appelé l'application de forme (shape orientator) ou application de Weingarten.

Remarque. $d_pN(X) \in T_pS$ $car\ N(p) \perp T_pS||N(p)|| = 1$ $donc\ \langle d_pN(X), N(p)\rangle = 0$

Exemple 8. A) $S = plan N(p) = (0,0,1) \Rightarrow p_p N = 0$ B) S^2 la sphère $N(p) = pd_p N = 1$

Proposition 9. Soit S surface régulière orientable. L'application W_p est une application symétrique par rapport à la première forme fondamentale, c'est a dire g(X,WY) = g(WY,X) c'est à dire, $\forall p \in S; X_p, Y_p \in T_pS$. $\langle X_p, W_p Y_p \rangle = \langle W_p X_p, Y_p \rangle$

Proposition 10. La forme bilinéaire $h_p: TpS \times T_pS \to \mathbb{R}$ i) $h_p(X_p, y_p) := g(X_p, W_pY_p) = \langle X_p, W_p(Y_p) \rangle = -\langle X_p, d_pN(Y_p) \rangle$ est appelée la deuxième forme fondamentale de S en p. ii) W_p est appelée diagonalisable. les vecteurs propres de W_p sont appelés directions principales les valeurs propres sont appelées les courbures principales. iii) $p \mapsto \det W_p$ est appelée la courbure de Gauss.

iv) $p\mapsto 1/2traceW_p$ est appelée la courbure moyenne.

Proposition 11. (U, F, V) une paramétrisation dans la base $\{\partial_1 F(p), \partial_2 F(p)\}\$ de T_pS $g_{jk}(p) := \langle \partial_j F, \partial_k F \rangle$ sont les coefficients de la première forme fondamentale. $h_{jk}(p) =$ $\langle \partial_{jk} F, N \rangle$ (p) sont les coevidient de deuxième forme fondamentale ((W)) le matrice de $W_p\ est\ donn\'e\ par\ ((W))=((g))^{-1}((h))$ $w_{jk} = \sum_{e} g_{ie}^{-1} h_{ek}$ $*k(p) = \det W_p = \frac{\det((W))}{\det((Q))} H(p) = \frac{1}{2} \operatorname{tr}((g))^{-1}((h))$

En chaque pt de u, le vecteur normal à M en p = F(u). n(u), ||n(u)|| = 1, $\langle n(u), e_i(u) \rangle =$ 0.

$$n(u) = \pm \frac{e_1(u) \wedge e_2(u)}{\|e_1(u) \wedge e_2(u)\|} \text{ avec} : \|e_1(u) \wedge e_2(u)\| = \left\| \det \left[e_1 \ e_2 \ \left(\frac{\bar{i}}{\bar{j}} \right) \right] \right\|.$$

 $M \to S^2 \subset \mathbb{R}^3$. $p = F(u) \mapsto n(u)$. Application de Gauss de M. M est orientable s'il \exists ensemble de cartes covariant M

et une application de Gauss définie globalement sur M que est continue. Mais le Ruban de Möbius pas orientable.

$$\left\langle n(u), \frac{\partial n(u)}{\partial u} \right\rangle = 0 \Rightarrow \frac{\partial n}{\partial u^1}, \frac{\partial n}{\partial u^2} \text{ sont des vecteurs tangents à } M \text{ en } p = F(u).$$

$$\|n(u)\|^2 = \left\langle n(u), n(u) \right\rangle = 1 \frac{\partial}{\partial u^i} \left\langle n(u), n(u) \right\rangle = 0$$

$$= \left\langle \frac{\partial n(u)}{\partial u^i}, n(u) \right\rangle + \left\langle n(u), \frac{\partial n(u)}{\partial u^i} \right\rangle = 2 \left\langle n(u), \frac{\partial n(u)}{\partial u^i} \right\rangle = 0$$

$$\begin{array}{l} - \left\langle \begin{array}{l} \partial u^{i} \end{array}, h(u) \right/ + \left\langle h(u), \begin{array}{l} \partial u^{i} \end{array} \right/ = 2 \left\langle h(u), \begin{array}{l} \partial u^{i} \end{array} \right/ = 0 \\ \frac{\partial n(u)}{\partial u^{i}} = W_{i}^{j}(u) e_{j}(u) \\ \text{L'application linéaire } W : T_{p}M \rightarrow T_{p}M \ T_{p}M \ni X = X^{i}e_{i}(u) \mapsto W_{i}^{j}(u)X^{i}e_{j}(u) \in T_{p}M \ \text{est l'endomorphisme de Weingarten.} \end{array}$$

$$\underbrace{\left\langle \frac{\partial n(u)}{\partial u^{i}}, e_{k}(u) \right\rangle}_{L_{ik}(u)} = W_{i}^{j}(u) \underbrace{\left\langle e_{j}(u), e_{k}(u) \right\rangle}_{g_{ik}(u)}$$
$$= W_{i}^{j}(u) g_{ik}(u)$$

$$A = (a_{ij}), B = (b_{kn})$$

$$AB = C = C(c_r s) \Rightarrow C_{rs} = \sum a_{rj} b_{js}$$

$$(g^{ij}(u)) = \begin{pmatrix} g^{11}(u) & g^{12}(u) \\ g^{21}(u) & g^{12}(u) \end{pmatrix}$$

$$= (g_{ij}(u))^{-1}$$

 $=\begin{pmatrix} g_{11}(u) & g_{12}(u) \\ g_{21}(u) & g_{22}(u) \end{pmatrix}^{-1}$

$$L_{ij}(u) = \left\langle \frac{\partial n(u)}{\partial u^i}, e_j(u) \right\rangle = -\left\langle n(u), \frac{\partial}{\partial e_j} (u^i) \right\rangle$$

$$\left\langle V(u), W(u) \right\rangle = 0$$

$$\frac{\partial}{\partial u^i} \left\langle \frac{\partial V}{\partial u^i}, W(u) \right\rangle + \left\langle V(u), \frac{\partial W(u)}{\partial u^i} \right\rangle = 0$$

 $L = Wq \Rightarrow W = Lq^{-1}$ $W_{:}^{j}(u) = L_{ik}(u)g^{kj}(u)$

 $L(u)=(L_{ij}(u))=egin{array}{ccc} L_{11}(u) & L_{12}(u) \\ L_{21}(u) & L_{22}(u) \end{array}$ 2ème forme fondamental de M

Si $X, Y \in T_n M, F(u), X = X^i e_i(u), Y = Y^j e_i(u).$

 $L(X,Y) = L_{ij}(u)X^{i}Y^{j}$ forme bilinéaire sur $T_{p}M$.

$$\begin{split} L(X,Y) &= L_{ij}X^iY^j = L_{ji}X^iY^j = L(Y,X) \\ &= (W_i^k g_{kj})X^iY^j \text{ (W est auto-adjoint)} \\ &= g_{kj}(W_i^k X^i)Y^j \\ &= \langle WX,Y \rangle = \langle XY,X \rangle = \langle X,WY \rangle \end{split}$$

Définition 31. La courbure moyenne est : $\bar{\kappa} = \frac{1}{2} \operatorname{tr}(W) = \frac{1}{2} W_i^i = \frac{1}{2} (W_1^1 + W_2^2)$ corbure de Gauss.

$$\kappa = \det(W)$$

Les courbures principales κ_1, κ_2 valeurs propres de W zéros de $\det(W - ZI)$ $\bar{\kappa} = \frac{1}{2}(\kappa_1 + \kappa_2) = \kappa_1 \kappa_2$

0.5 Courbures normale et geodesique

 $M \subset \mathbb{R}^3$ surface régulière (F, U, V) une carte de M

$$\frac{\partial^2 F}{\partial u^i \partial u^j} = L_{ij}(u)n(u) + \Gamma_{ij}^k(u)e_k(u)$$

Formule de Gauss.

Les $\Gamma_{ij}^k(u)$ sont les symbols de Christoffel de M dans la carte (F, U, V).

$$\frac{\partial^2 F}{\partial u^i \partial u^j}, \frac{\partial}{\partial F}$$

Le paraboloïde hyperbolique :
$$F(u,v)=\begin{pmatrix} u\\v\\-\frac{u^2}{a^2}+\frac{v^2}{b^2} \end{pmatrix}$$
 $e_u=\partial Fu=\begin{pmatrix} 1\\0\\-\frac{2u}{u^2} \end{pmatrix}$ $e_v=\begin{pmatrix} 1\\0\\-\frac{2u}{u^2} \end{pmatrix}$

$$\partial Fv = \begin{pmatrix} 0 \\ 1 \\ \frac{2v}{b^2} \end{pmatrix}$$
$$g = \begin{pmatrix} g_{uu} & g_{uv} \\ g_{vu} & g_{vv} \end{pmatrix}$$

$$\Gamma_{uuu} = 4 \frac{u}{a^4} \Gamma_{uuv} = -4 \frac{v}{a^2b^2} \Gamma_{uvu} = 0 \Gamma_{uvv} = 0 \Gamma_{vvu} = -4 \frac{u}{a^2b^2} \Gamma_{vvv} = 4 \frac{v}{b^4}$$

$$g^{-1} = \frac{g^T}{1 + 4(\frac{u^2}{a^4} + \frac{v^2}{b^4})}$$

Equation de Gauss

$$\frac{\partial^2 F}{\partial u^1 \partial u^2} = L_{ij}n + \Gamma_{ij}^k e_k$$
normal tangentielle

Arc de Surface 0.6

Vecteur tangent : $\frac{\mathrm{d}}{\mathrm{d}s}F(u(s)) = \frac{\partial F}{\partial u^1}\dot{u}^1(s) + \frac{\partial F}{\partial u^2}\dot{u}^2(s) = \dot{u}^i(s)e_j(u(s))$ Les composantes du vecteur tangent dans les base locale $\{e_1,e_2\}$ sont $\dot{u}^1(s)$ et $\dot{u}^2(s)$. La normale du vecteur tangent est : $\left\|\frac{\mathrm{d}}{\mathrm{d}s}F(u(s))\right\|^2 = \left\langle \dot{u}^ie \right\rangle = \dot{u}^i(s)\dot{u}^j(s)\left\langle e_1(u(s)),e_j(u(s))\right\rangle = \left\langle \dot{u}^ie \right\rangle = \left\langle \dot{u}^ie$ $g_{ij}(u(s))\dot{u}^1(s)\dot{u}^j(s)$ s est long d'arc sur la courbe ssi $g_{ij}(u(s))\dot{u}^1(s)\dot{u}^j(s) = 1 \forall s$.

Son suppose que s est longueur d'arc.

 $\frac{\mathrm{d}^2}{\mathrm{d}s^2}F(u(s)) = \kappa(s)N(s)$ courbure normale principale.

 $\kappa(s)N(s) = \frac{\mathrm{d}}{\mathrm{d}s}g_{ij}(u(s)\dot{u}^i(s)\dot{u}^j(s)) = \frac{\mathrm{d}}{\mathrm{d}s}\frac{\partial f}{\partial u^i}\dot{u}^i(s) = \frac{\partial^2 F}{\partial u^i\partial u^j}\dot{u}^i(s)\dot{u}^j(s) + \frac{\partial F}{\partial u^j}\ddot{u}^i(s) = (L_{ij}((j))n(s+\Gamma^n_{ij}(u(s))e_n(u(s))\dot{u}^j(s)\dot{u}^j(s)+\ddot{u}^i(s)e_i(u(s))))$ $\kappa(s)N(s) = (\ddot{u}^k(s) + \Gamma_{ij}^n(u(s)\dot{u}^j(s)\dot{u}^j(s))e_n(u(s)) + L_{ij}(u(s))\dot{u}^1(s)\dot{u}^1(s)\dot{u}^(s)n(s(s))$ La courbure normale de la courbe est $\kappa_s(s) = L_{ij}(u(s))\dot{u}^i(s)\dot{u}^j(s) = \kappa(s)\langle N(s), nnn\rangle = \kappa(s)\cos(\alpha(s)) = \kappa(s)\sin(\alpha(s))$ L(T(s),T(s))

 $\Gamma_{ij}^k \dot{u}^1(s) \dot{u}^j(s) e_k(u(s)) \kappa_q(s) = ||K_q|| = \sqrt{\langle K_q, K_q \rangle}$

La courbure géodésique de la courbure est la norme du vecteur $K_q = (\ddot{u}^k(s) +$

Définition 32. Une géodésique de la surface M est une courbe sur M dont la

courbure géodésique est nulle. L'équation d'une géodésique est donc : $\ddot{u}^k(s) + \Gamma_{ij}^k(u(s))\dot{u}^i(s)\dot{u}^j(s) = 0$

La courbure normale d'une courbe paramètre par long d'arc est

$$\kappa_n(s) = L(T(s), T(s)) = L_{ij}(u(s))\dot{u}^i(s)\dot{u}^j(s)$$

Théorème 12. La courbure normale d'une courbe régulière sur une surface régulière est donnée par :

$$\kappa_n(t) = \frac{L(T(s), T(s))}{g(T(s), T(s))}$$

Démonstration. $s = \int_{t_0}^{t} \left\| \frac{\mathrm{d}}{\mathrm{d}\tau} F(u(\tau)) \right\| \mathrm{d}\tau$

Démonstration.
$$s = \int_{t_0}^{\epsilon} \left\| \frac{\mathrm{d}}{\mathrm{d}\tau} F(u(\tau)) \right\| \mathrm{d}\tau$$

$$\frac{\mathrm{d}s}{\mathrm{d}t} = \sqrt{g_{ij}(u(t))\dot{u}^i(t)\dot{u}^j(t)} T(s) = \frac{\mathrm{d}}{\mathrm{d}s} F(u(t(s))) = \frac{\mathrm{d}}{\mathrm{d}t} F(u(t))|_{t=t(s)} \frac{\mathrm{d}t}{\mathrm{d}s} = \frac{\dot{u}^j(t)e_j(u(t))}{\sqrt{g_{ij}(u(t))\dot{u}^j(t)\dot{u}^j(t)}}|_{t=t(s)}$$

$$\frac{T(t)}{\sqrt{\dots}}$$

$$\kappa_n(t(s)) = L(\tilde{T}(s), \tilde{T}(s)) = L(T(t(s))/\sqrt{\dots}, T(t(s))/\sqrt{\dots}) \Rightarrow \kappa_n(t) = \frac{L(T(t(s)), T(t(s)))}{g(T(t), T(t))}$$

Définition 33. La courbure normale de la surface M dans la direction
$$e \in T_pM$$
 est $\kappa_n(p) = \frac{L(e,e)}{g(e,e)} = \frac{L(e,e)}{\|e\|^2}$

La courbure normale d'une courbe sur M est la courbure normale de M dans la direction du vecteur tangent à le courbe.

 $\kappa_n(s) = K(s) \cos \alpha(s), \alpha(s) = KK(n(u(s)), N(s)) \ \rho(s) = \frac{1}{K(s)} = \text{ rayon de courbure de la constant } s$

 $\rho_n(s) = \frac{1}{\kappa_n(s)} = \text{ le rayon de courbure normale } \rho(s) = \rho_n(s) \cos \alpha(s)$

n(u(s)) sont colinéaire. T_pM est engendré par T(s) et $n(u(s)) \land T(s)$ X(s) = F(u(s)) $s = \text{long.d'arc } \langle \dot{x}(s), \ddot{(s)} \rangle = \text{long.d'ar$ 0. Donc la composante tangentielle de \ddot{x} est colinéaire à $n(u(s)) \wedge T(s) \kappa_{\gamma}(\sigma) = \langle \ddot{x}(s), n(u(s)) \wedge T(s) \rangle$

La courbe est géodésique ssi : $\kappa_q = 0 \Leftrightarrow K = \kappa_n \Leftrightarrow \rho = \rho_n \Leftrightarrow \cos \alpha = 1 \Leftrightarrow N(s)$ et

$$\langle a, [b \wedge] \rangle = [a, b, c]$$
 produit triple = $\det[abc] \kappa_g(s) = [\ddot{x}(s), n(u(s)), \dot{x}(s)] = [\dot{x}(s), \ddot{x}(s), n(u(s))]$ si s =long. d'arc.
Courbures normale et géodésique. $\kappa_n = \frac{L(\dot{x}, \dot{x})}{g(\dot{x}, \dot{x})} = L(\dot{x}, \dot{x})$, si $|\dot{x}| = 1$
Courbure normale de M en p la direction $e \in T_0M$ est $\frac{L(e, e)}{g(e, e)} = \kappa_n(e)$.

 $K_g = (\ddot{u}^i + R^i_{ik}\dot{u}^j\dot{u}^k)e_i sig_{iy}\dot{u}^i\dot{u}^j = 1$, si $g_{ij}\dot{u}^1\dot{u}^j = 1$. $\kappa_y = |_y|$.

$$K_g = (\ddot{u}^i + R^i_{jk}\dot{u}^j\dot{u}^k)e_i sig_{iy}\dot{u}^i\dot{u}^j = 1$$
, si $g_{ij}\dot{u}^1\dot{u}^j = 1$. $\kappa_y = |y|$.

 $z(t) = -\frac{x(t)^2}{a^2} + \frac{y(t)^2}{b^2}$

Exemple 1.

1. Droit sur la selle
$$F(x,y)=\begin{pmatrix}x\\y\\-\frac{x^2}{a^2}+\frac{y^2}{b^2}\end{pmatrix}$$
 Droite :
$$x(t)=x_0+\alpha t$$

the
$$F(x,y) \equiv \begin{pmatrix} y \\ -\frac{x^2}{a^2} + \frac{y^2}{b^2} \end{pmatrix}$$
 Divine $x(t) = x_0 + \alpha t$ $y(t) = y_0 + \beta t$

Si
$$\frac{\alpha^2}{a^2} - \frac{\beta^2}{b^2} = 0$$
 alors $X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$ est une droite sur M passant par $(x_0, y_0, F(x_0, y_0))$.
En chaque point de M passant 2 droites sur M . (α, β) , $(\alpha, -\beta)$. $X(t) = F(x(t), y(t))$

$$\dot{X}(t) = \alpha \begin{pmatrix} 1 \\ 0 \\ 0 \\ x(t) \end{pmatrix} + \beta(0$$

 $=-\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}-(\frac{\alpha^2}{a^2}-\frac{\beta^2}{b^2})t^2-2(-\frac{x_0\alpha}{a^2}+\frac{y_0\beta}{b^2})t$

$$\frac{1}{2\frac{y(t)}{b^2}} = e_1 + e_2 \text{ Courbure normale} : \kappa_n(t) = \frac{L(\dot{X}(t,\dot{X}(t)))}{g(\dot{X}(t,\dot{X}(t)))} = 0 \text{ (parce que } L = 0)$$

2. Cercles sur la sphère $\rho = \sin \nu \ \alpha = \pi - \nu \ \kappa = \frac{1}{\rho} = \frac{1}{\sin \nu}$

$$\kappa_n = \kappa \cos \alpha$$

$$= -\frac{\sin \nu}{\sin \nu} = -1$$

La courbure normale d'on cercle sur la sphère est -1. La courbure géodésique est $\operatorname{donc}: K^2 = \kappa_n^2 + \kappa_g^2 \, \tfrac{1}{\sin^2 \nu} = 1/\kappa_g^2 \Rightarrow \kappa_g^2 = (\operatorname{ctg} \nu)^2 \, \kappa_g = 0 \Leftrightarrow \nu = \tfrac{\pi}{2} \, \operatorname{mod} \, \pi \Leftrightarrow \operatorname{le}$ cercle est un grand cercle. Les grands cercles sont des géodésiques de la sphère.

0.7L'indicatrice de Dupin

L'équation $L(\xi,\xi) = \pm 1$; $L_{ij}\xi^i\xi^j = \pm 1$ $L_{11}(\xi^1)^2 + L_{12}\xi^1\xi^2 + L_{21}\xi^2\xi^1 + L_{22}(\xi^2)^2 = \pm 1$ définit une conique := L'indicatrice de Dupin.

ellipse si L est definie positive parabole si $L \neq 0$ et $\det(L) = 0$ hyperbole si L est indéfinie et $\det(L) \neq 0$.

On dit que $p \in M$ est un point :

elliptique si l'indic. de Dupin est une ellipse. parabolique si ... hyperbolique si ... plat si ${\cal L}_p=0$

Exemple 1.

- 1. La sphère : $L = \begin{pmatrix} 1 & 0 \\ 0 & \sin^2 u \end{pmatrix} \xi^2 + \sin^2 \nu \eta^2 = 1$. L'indicatrice de Dupin est une ellipse \Rightarrow tous les points de la sphère sont elliptiques.
- 2. Le tore : $L = \begin{pmatrix} (a+b\cos\beta)\cos\beta & 0 \\ 0 & b \end{pmatrix}$, 0 < b < a. $(a+b\cos\beta)\cos\beta\xi^2 + b\eta^2 = \pm 1$ Si $\cos\beta > 0$: le point de coord (α,β) est elliptique. Si $\cos\beta = 0$: le point est parabolique. Si $\cos\beta < 0$: c'est un point hyperbolique.

Interprétation : L'équation du translaté du plan tangent est : $(X-p) \cdot n(p) = \pm \varepsilon$. L'intersection de M avec ce plan est décrit par : $(F(u)-p) \cdot n(p) = \pm \varepsilon$ Développement de Taylor de F(u) an pt. u + uF(u) = p. On peut supposer F(0) = p $F(u) = F(0) + \frac{\partial F}{\partial u^1}u^1 + \frac{\partial F}{\partial u^2}u^2 + \frac{1}{2}\frac{\partial^2 F}{\partial u^1\partial u^2}u^iu^j + O(u^2) = p + u^1e_1 + u^2e_2 + \frac{1}{2}(L_{ij}n(p) + \Gamma^k_{ij}e_k)u^iu^j + O(u^3)$ $(F(u)-p)\cdot n(0) = (u^1e_1 + u^2e_2 + \frac{1}{2}(L_{ij}n + \Gamma^k_{ij}e_k))\cdot n + O(u^3) = \frac{1}{2}L_{ij}u^iu^j + O(u^3) = \pm \varepsilon$ $\Rightarrow \frac{1}{2}L_{ij}\frac{u^i}{\sqrt{\varepsilon}}\frac{u^j}{\sqrt{\varepsilon}} + O(...) = \pm 1$ $\frac{1}{2}L_{ij}\frac{u^i}{\sqrt{\varepsilon}}\frac{u^j}{\sqrt{\varepsilon}} = \pm 1$

L'indic. de Dupin est les somme asymptotique lorsque $\varepsilon \to 0$ de l'intersection de M avec son pan tangent translaté de ε .

Exemple 2. Ellipse elliptique tore elliptique tore

0.8 Géodésiques

En géométrie euclidienne les segments se droites peuvent être caractérisés comme :

- 1. des courbes de courbure nulle
- 2. le plus court chemin entre deux points
- 3. une courbe dont les vecteurs tangents sont parallèle les autres

Théorème 13. Soit M une surface régulière et (F, U, V) une carte p.t. $p \in V = F(U)$. Soit $z \in T_pM$ t.q. |z| = 1, alors il existe une courbe géodésique sur V passant par p où son vect. tangent est z. De plus cette géodésique est unique.

Elle est donné par la solution de l'équation diff-le

$$\begin{cases} \ddot{u}(s)^{i} + \Gamma_{jk}^{i}(u(s))\ddot{u}(s)\dot{u}^{k}(s) = 0\\ F(u(0)) = p\\ \dot{u}^{i}(0)e_{i}(u(0)) = z \end{cases}$$

La géodésique est F(u(s)) où s est une longueur d'arc.

Démonstration. (g) admet une unique solution pour toutes données initiales p et $z \in T_pM$. Soit $s \mapsto u(s)$ cette solution et X(s) = F(u(s)) la courbe sur M associée. Si s est longueur d'arc de cette courbe, c.à.d. si $|\dot{X}(s)| = 1$, alors sa courbure géodésique est $(\ddot{u}^i(s) + \Gamma^i_{ik}(u(s))\dot{u}^j(s)\dot{u}^k(s))e_i(u(s)) = 0 \Rightarrow$ c'est une géodésique.

 $|\dot{X}(0)|^2 = |z|^2 = 1$ On doit donc montrer que $\frac{\mathrm{d}}{\mathrm{d}s}|\dot{X}(s)|^2 = 0$. $\frac{\mathrm{d}}{\mathrm{d}s}|\dot{X}(s)|^2 = \frac{\mathrm{d}}{\mathrm{d}s}\left\langle\dot{X}(s),\dot{X}(s)\right\rangle = 0$ $2\left\langle \dot{X}(s), \ddot{X}(s) \right\rangle$ $\dot{X}(s) = \dot{u}^{i}(s)e_{1}(u(s))\ddot{X}(s) = (\ddot{u}^{i}(s) + \Gamma^{i}_{ik}(u(s))\dot{u}^{j}(s)\dot{u}^{k}(s))e_{i}(u(s)) + L_{ij}(u(s))n(u(s))\dot{u}^{i}(s)\dot{u}^{j}(s)$ $\left\langle \dot{X}(s), \ddot{X}(s) \right\rangle = \left\langle \dot{u}^l(s) e_l(u(s)), (\ddot{u}^i(s) + \Gamma^i_{jk}(u(s))\dot{u}_j(s)\dot{u}_k(s)) e_i(u(s)) \right\rangle = \dot{u}^l(\ddot{u}^i + \Gamma^i_{jk}\dot{u}^j\dot{u}^k) \left\langle e^{i(s)} \right\rangle = \left\langle \dot{u}^l(s) e_l(u(s)), (\ddot{u}^i(s) + \Gamma^i_{jk}(u(s))\dot{u}_j(s)\dot{u}_k(s)) e_i(u(s)) \right\rangle = \dot{u}^l(\ddot{u}^i + \Gamma^i_{jk}\dot{u}^j\dot{u}^k) \left\langle e^{i(s)} \right\rangle = \left\langle \dot{u}^l(s) e_l(u(s)), (\ddot{u}^i(s) + \Gamma^i_{jk}(u(s))\dot{u}_j(s)\dot{u}_k(s)) e_i(u(s)) \right\rangle = \dot{u}^l(\ddot{u}^i + \Gamma^i_{jk}\dot{u}^j\dot{u}^k) \left\langle e^{i(s)} \right\rangle = \dot{u}^l(\ddot{u}^i + \Gamma^i_{jk}\dot{u}^i\dot{u}^k) \left\langle e^{i(s)} \right\rangle = \dot{u}^l(\ddot{u}^i + \Gamma^i_{jk}\dot{u}^i\dot{u}^k) \left\langle e^{i(s)} \right\rangle = \dot{u}^l(\ddot{u}^i + \Gamma^i_{jk}\dot{u}^i\dot{u}^k) \left\langle e^{i(s)} \right\rangle = \dot{u}^l(\ddot{u}^i + \Gamma^i_{jk}\dot{u}^i\dot{u}^i\dot{u}^k) \left\langle e^{i(s)} \right\rangle = \dot{u}^l(\ddot{u}^i + \Gamma^i_{jk}\dot{u}^i\dot{u}^i\dot{u}^k) \left\langle e^{i(s)} \right\rangle = \dot{u}^l(\ddot{u}^i + \Gamma^i_{jk}\dot{u}^i\dot{u}^$

Pour démontrer le Thm il suffit de montrer que $|\dot{X}(s)|^2 = 1$ pour tout s. Pour s = 0 on a: $\dot{X}(0) = \frac{d}{ds}F(u(s))|_{s=0} = \frac{\partial F}{\partial u^1}\dot{u}^1(0) + \frac{\partial F}{\partial u^2}\dot{u}^2(0) = \dot{u}^1(0)e_1(u(0)) + \dot{u}^2(0)e_2(u(0)) = z \Rightarrow$

Exemple 1. Géodésiques se la sphère toutes les courbes sur la sphère ont courbure normale
$$-1: L = -g, \frac{L}{g} = -1.$$
 $^2 = \kappa_g^2 + \kappa_n^2 = \kappa_g^2 + 1$ une courbe est géodésique sur la sphère si sa courbure est $1 \ddot{X} = n = \kappa_n n = -n = -X X(s) = X(0) \cos(s) + \dot{X}(0) \sin(s)$

X(s) est le grand cercle intersection de la sphère avec le plan dirigé pur X(0) et $\dot{X}(0)$.

 $\bar{T}^{i'_1i'_2...i'_k}_{j'_1j'_2...j'_n}(v) = T^{i_1i_2...i_k}_{j_1j_2...j_n} \cdot \frac{\partial u^{j_1}}{\partial v_{i'_1}}...\frac{\partial u^{j_n}}{\partial v_{i'_n}} \cdot \frac{\partial v^{i'_1}}{\partial v_{i'_n}}...\frac{\partial v^{i'_k}}{\partial v_{i'_k}}$

 $L_{ij}(u) = \left\langle \frac{\partial^2 F_1}{\partial u^i \partial u^j}, n(u) \right\rangle$

Changement de Coordonnées

$$\Phi: F_1^{-1}(V_1 \cap V_2) \to F_2^{-1}(V_1 \cap V_2) \text{ est un difféomorph}$$

$$e_1(u) = \frac{\partial F_1}{\partial u^1} e_2(u) = \frac{\partial F_2}{\partial u^2} \bar{e}_1(v) = \frac{\partial F_1}{\partial v^2} \bar{e}_2(v) = \frac{\partial F_1}{\partial v^2}$$

 $\begin{array}{l} \Phi: F_1^{-1}(V_1\cap V_2)\to F_2^{-1}(V_1\cap V_2) \text{ est un diff\'eomorphisme.} \\ e_1(u)=\frac{\partial F_1}{\partial u^1} \ e_2(u)=\frac{\partial F_1}{\partial u^2} \ \bar{e}_1(v)=\frac{\partial F_1}{\partial v^1} \ \bar{e}_2(v)=\frac{\partial F_1}{\partial v^2} \\ F_2\circ\Phi=F_1\varphi(u)=\begin{bmatrix} \Phi_1(u_1,u_2)\\ \Phi_2(v_1,v_2) \end{bmatrix}=\begin{bmatrix} v_1\\ v_2 \end{bmatrix} \end{array}$

 $0 \cdot g_{li} \Rightarrow |\dot{X}(s)|^2 = |\dot{X}(0)|^2 = 1.$

 $e_1(u) = \frac{\partial}{\partial u^1} F_2 \circ \Phi(u) = \frac{\partial F_1}{\partial v^1} \circ \Phi(u) \circ \frac{\partial \Phi_2}{\partial u^1} + \frac{\partial F_2}{\partial v^2} \circ \Phi(u) \circ \frac{\partial \Phi_2}{\partial u^1} = \bar{e}_1 \circ \Phi \frac{\partial \Phi_1}{\partial u_1} + \bar{e}_2 \circ \Phi \frac{\partial \Phi_2}{\partial u^1}$

 $= \frac{\partial v_1}{\partial u^1} \bar{e}_1(v) + \frac{\partial v_2}{\partial u^1} \bar{e}_2(v) = \frac{\partial v^i}{\partial u^1} \bar{e}_i(v)$ $e_2(u) = \dots = \frac{\partial v^i}{\partial u^2} \bar{e}_i(v)$

Si $X \in T_{F_1(U)}\tilde{M} = T_{F_2(V)}M$ $X = X^j e_j(u) = \bar{X}^i \bar{e}_i(v)$

 $\bar{X}^i \bar{e}_i(v) = X^j \frac{\partial V^i}{\partial u^j} \bar{e}_i(v)$

donc $\bar{X}^i = X^j \frac{\partial V^i}{\partial u^j}$ $\bar{X}^i = T^i_i X^j$

Matrice de passage $T_i^i = \frac{\partial V^i}{\partial u^j} = \frac{\partial \Phi_i}{\partial u^j} = \text{matrice Jacobienne de } \Phi = D\Phi = \Phi'.$

 $g_{ij}(u) = \langle e_i(u), e_j(u) \rangle \ \bar{g}_i j(v) = \langle \bar{e}_i, \bar{e}_j(v) \rangle \Rightarrow g_{ij}(u) = \left\langle \frac{\partial v^k}{\partial u^i} \bar{e}_k(v), \frac{\partial v^l}{\partial u^j} \bar{e}_l(v) \right\rangle = \frac{\partial v^k}{\partial u^i} \frac{\partial v^l}{\partial u^j} \langle \bar{e}_k(v), \frac{\partial v^l}{\partial u^j} \bar{e}_l(v) \rangle$

 $\frac{\partial v^k}{\partial u^i} \frac{\partial v^l}{\partial u^j} \bar{g}_{kl}(v)$

 $\bar{g}_{ij}(v) = \frac{\partial u^k}{\partial v^i} \frac{\partial u^l}{\partial v^j} g_{kl}(u) \quad \frac{\partial u^k}{\partial v^i} = \text{matrice jacobienne de } \Phi^{-1} = D\Phi^{-1} = (\Phi^{-1})' = (D\Phi)^{-1} \circ \Phi^{-1} = (\Phi')^{-1} \circ \Phi^{-1} = \bar{T}_i^k(v)$ $\Phi^{-1} \circ \Phi = Id (\Phi^{-1})' \circ \Phi \Phi' = Id \tilde{T}_i^k(v) T_i^i(u) = \delta_i^i \tilde{T}(v) = T(u)^{-1}$

 $T_{j_1j_2...j_n}^{i_1i_2...i_k}$ est un tenseur k fois contravariant et n fois covariant si il se transforme comme :

Exemple: La 1ère forme fondamentale est un tenseur 2 fois covariant. Un champ de

vecteur tangent sur M est un tenseur 1 fois contravariant. La 2ème forme fondamentale :

$$\bar{L}_{ij}(v) = \left\langle \frac{\partial^2 F_2}{\partial u^i \partial u^j}, n(v) \right\rangle$$
$$F_2 \circ \Phi = F_1$$

 $L_{ij}(u) = \left\langle \frac{\partial^2 F_2}{\partial u^i \partial u^j} \circ \Phi(u), n(u) \right\rangle = \left\langle \frac{\partial}{\partial u^i} (\frac{\partial v^k}{\partial u^j} \frac{\partial F_2}{\partial v^k} \circ \Phi(u)), n(u) \right\rangle = \left\langle \frac{\partial^2 v^k}{\partial u^i \partial u^j} \bar{e}_k(v) + \frac{\partial v^k}{\partial u^j} \frac{\partial^2 v^k}{\partial v^k} \right\rangle$

La 2ème forme fondamentale est un tenseur 2 fois covariant. Si X et $Y \in T_{F(u)}M =$

Weingarten : $W^i_j(u)=-\frac{\partial n^i}{\partial u^j}$ est un tenseur 1 fois covariant et 1 fois contravariant. Γ^k_{ij} n'est pas un tenseur!

 $T_{F(v)}M L(X,Y) = L_{ij}(u)X^{i}Y^{j} = \bar{L}_{kl}(v)\frac{\partial v^{k}}{\partial u^{i}}\frac{\partial v^{l}}{\partial u^{j}}X^{i}Y^{j} = \bar{L}_{kl}(v)(\frac{\partial v^{k}}{\partial u^{i}}X^{i})(\frac{\partial v^{l}}{\partial u^{j}}Y^{j}) = \bar{L}_{kl}(v)\bar{X}^{k}\bar{Y}^{j}$ $g(X,Y) = \langle X,Y \rangle = g_{ij}(u)X^{i}Y^{j} = \bar{g}_{kl}(v)\bar{X}^{k}\bar{Y}^{l}$

Géodésiques 0.10

1. Courbure nulle \Rightarrow courbure géodésique nulle.

 $(g^{ij}(u)) = (g_{ij}(u))^{-1}$

 $g^{ij} = \frac{\partial u^i}{\partial v_k} \bar{g}^{kl} \frac{\partial u^j}{\partial v^l}$

 $\sqrt{g_{ij}(u)w^iw^j}$

 $g_{ij} = \bar{g}_{kl} \frac{\partial v^k}{\partial u^j} \frac{\partial v^l}{\partial u^i} g = (D\Phi)\bar{g}(D\Phi)$ $g^{-1} = (D\Phi)^{-1}\bar{g}^{-1}(D\Phi)^{-1}$

 g^{ij} est un tenseur 2 fois contravariant.

- 2. Courbe le longueur minimale entre 2 pts. ⇒ courbe de long. Extrémale parmis
- toutes les courbes reliant 2 points.

3. vecteurs tangents tous parallèle \Rightarrow vecteurs tangents parallèle sur la courbe.

3. vecteurs tangents tous parallele
$$\Rightarrow$$
 vecteurs tangents parallele sur la courbe

ngueur d'une courbe sur
$$M:c:[a,b]\ni t\mapsto F(u(t))=c(t)\in M.$$

Longueur d'une courbe sur $M: c: [a,b] \ni t \mapsto F(u(t)) = c(t) \in M$. $\mathcal{L} = \mathcal{L}[a] = \int_a^b \underbrace{\sqrt{g_{ij}(u(t))\dot{u}^i(t)\dot{u}^j(t)}}_{\parallel \dot{c}(t)\parallel} dt$

ngueur d'une courbe sur
$$M:c:[a,b]\ni t\mapsto F(u(t))=c(t)\in M.$$

c(a) = A, c(b) = B. $\min \mathcal{L}[a] = \mathcal{L}_{\min}$

$$egin{cases} u:[a,b] o U\ F(u(a))=A\ F(u(b))=B \end{cases}$$

Si $\bar{u}:[a,b]\to U$ t.q. $F(\bar{u}(a))=A$ et $F(\bar{u}(b))=B$ Satisfait $\mathcal{L}[\bar{u}]=\mathcal{L}_{\min}$ alors

 $\frac{\mathrm{d}}{\mathrm{d}\lambda}\mathcal{L}[\bar{u}+\lambda v]|_{\lambda=0}=0$

$$||_{\lambda=0}=0$$

Pour tout $v:[a,b] \to U$ t.q. v(a)=v(b)=0. $\mathcal{L}[u]=\int_a^b L(u(t),\dot{u}(t))\,\mathrm{d}t$ où L(u,w)=0

 $\mathcal{L}[u + \lambda v] = \int_{a}^{b} L(u(t) + \lambda v(t), \dot{u}(t) + \lambda \dot{v}(t)) dt.$

 $\frac{\mathrm{d}}{\mathrm{d}\lambda}\mathcal{L}[u+\lambda v]|_{\lambda=0} = \int_a^b \left[\frac{\partial L}{\partial u}v(t) + \frac{\partial L}{\partial w}\dot{v}(t)\right]\mathrm{d}t = \frac{\partial L}{\partial w}v(t)|_a^b + \int_a^b \left[\frac{\partial L}{\partial u} - \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial w}\right]v(t)\,\mathrm{d}t =$

 \Rightarrow Equation d'Euler-Lagrange :

$$\frac{\partial L}{\partial u}(u(t), \dot{u}(t)) = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial w}(u(t), \dot{u}(t)) \&\&\forall t \in [a, b]$$

Avec $L(u, w) = \sqrt{g_{ij}w^iw^j}$ on a : $\frac{\partial L}{\partial u^k} = \frac{1}{2} \frac{g_{i_1k}(u)w^iw^j}{\sqrt{g_{ij}(u)w^iw^j}}$

 $\frac{\partial L}{\partial w^k} = \frac{1}{2} \frac{g_{ij}(u)(\delta_k^i w^j + w^i \delta_k^j)}{\sqrt{\dots}} = \frac{1}{2} \frac{g_{kj} w^2 + g_{ik} w^i}{\sqrt{\dots}} = \frac{g_{ki} w^i}{\sqrt{\dots}}.$

On suppose que la courbe \bar{u} est paramétrée par longueur d'arc $\sqrt{g_{ij}(\bar{u}(t))}\bar{u}^i(t)\dot{u}^j(t) =$

 $\begin{array}{l} \frac{\partial L}{\partial u^k} = \frac{1}{2} g_{ij_1k}(u(t)) \dot{u}^i \dot{u}^j(t) \\ \frac{\partial L}{\partial w^k} = g_{ki}(u(t)) \dot{u}^i(t) \end{array}$ $\frac{\partial u^k}{\partial t} = g_{ki,j}(\bar{u}(t))\ddot{u}^i(t) + g_{ki}(\bar{u}(t))\ddot{u}^i(t)$

 $\frac{1}{2}g_{ij,k}(\bar{u}(t))\dot{u}^{i}(t)\dot{u}^{j}(t) = g_{ki,j}(\bar{u}(t))\dot{u}^{j}(t)\dot{u}^{j}(t) + g_{ki}(\bar{u}(t))\ddot{u}^{i}(t) = g_{ki}(\bar{u}(t))\ddot{u}^{i}(t) + \underbrace{\frac{1}{2}(g_{ki,j}(\bar{u}(t))\dot{u}^{i}(t) + g_{ki}(\bar{u}(t))\ddot{u}^{i}(t))}_{=g_{ki}(\bar{u}(t))\ddot{u}^{i}(t) + \underbrace{\frac{1}{2}(g_{ki,j}(\bar{u}(t)) + g_{ki}(\bar{u}(t))\ddot{u}^{i}(t))}_{=g_{ki}(\bar{u}(t))\ddot{u}^{i}(t) + g_{ki}(\bar{u}(t))\ddot{u}^{i}(t) + \underbrace{\frac{1}{2}(g_{ki,j}(\bar{u}(t)) + g_{ki}(\bar{u}(t))\ddot{u}^{i}(t))}_{=g_{ki}(\bar{u}(t))\ddot{u}^{i}(t)}$ 0

 $\Rightarrow c(t) = F(\bar{u}(t))$ est géodésique! **Théorème 14** (III.19). Une courbe sur la surface M relient $A \in M$ à $B \in M$ est

qéodésique ssi sur lonqueur est extrémale parmis les courbes sur M relient A à B. Exemple 1.

1. Sphère 2. Cylindre

0.11Dérivée directionnelle et covariante

Définition 34. $TM = \{(p, v) | p \in M, v \in T_pM\}$ Fibré tangent à M. v un champ de vecteur sur M est une application lisse $v: M \to TM$ t.q. $v(p) \in T_pM$.

Si $[a,b] \ni t \mapsto c(t) \in M$ est une courbe sur M, un champ de vecteurs sur c est une

application lisse $[a, b] \ni t \mapsto v(t) \in T_{c(t)}M$. En coord locales un champ de vect. sur M est décrit par $V(F(u)) = V^{i}(u)e_{i}(u)$ où

la fonctions $V^i(u)$ sont lisses. On champ sur les courbe c(t) = F(u(t)) est définit par : $v(t) = v^{i}(t)e_{i}(F(u(t)))$ les fonction $v^{1}(t)$ et $v^{2}(t)$ e'tant lisses. Si v est un champ de vecteurs sur M, alors les $v^i(u)$ forment un tenseur 1 fois contra-

variant.

 $v(F(u)) = v^{i}(u)e_{i}(u) = \bar{u}^{j}(v)\bar{e}_{i}(\bar{v}) = V(G(v)).$ Si F(u) = G(v). $e_i(u) = \frac{\partial F}{\partial u^i} = \frac{\mathrm{d}}{\mathrm{d}u^i} G(v(u)) = \frac{\mathrm{d}G}{\mathrm{d}v^j} \frac{\mathrm{d}V_j}{\mathrm{d}u^i} = \bar{e}_j(v) \frac{\partial V_j}{\partial u^i} V^i(u) \frac{\partial V_j}{\partial u^i} \bar{e}_j(v) = \bar{v}^j(v) \bar{e}_j(v)$

$$v^{i}(u)\frac{\partial V_{j}}{\partial u^{i}} = \bar{v}^{j}(v).$$

Exemple 1.

- 1. Sur la sphère : $F(v,\varphi) = \begin{pmatrix} \sin v \cos \varphi \\ \sin v \sin \varphi \\ \cos v \end{pmatrix} e_v(u,v) = \begin{pmatrix} \cos v \cos \varphi \\ \cos v \sin \varphi \\ -\sin v \end{pmatrix}$ définit un champ de vecteur sur la sphère sauf aux pôles.
- 2. Le gradient d'une fonction. $f: M \to \mathbb{R}$ $d_p f: T_p M \to \mathbb{R}, X \mapsto d_p f(X)$ dérivée de f en p, application linéaire

$$\begin{split} d_p f(X) &= \frac{\mathrm{d}}{\mathrm{d}t} f(c(t))|_{t=0} \text{ où } c(t) \text{ est une courbe sur M t.q. } c(0) = p \text{ et } \dot{c}(0) = X \\ d_p f(X) &= \frac{\mathrm{d}}{\mathrm{d}t} f \circ F(u(t))|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t} \tilde{f}(u(t))|_{t=0} = \frac{\partial \tilde{f}}{\partial u^1} \dot{u}^1(0) + \frac{\partial \tilde{f}}{\partial u^2} \dot{u}^2(0) = \frac{\partial \tilde{f}}{\partial u^1} X^1 + \frac{\partial \tilde{f}}{\partial u^2} X^2 = \langle \nabla_p f, X \rangle = g_{ij}(u(0))(\nabla_p f)^i X^j \\ (\nabla_p f)^i &= g^{ik}(u(0)) \frac{\partial \tilde{f}}{\partial u^k} \\ g_{ji} g^{ik} \frac{\partial \tilde{f}}{\partial u^k} X^j &= \frac{\partial \tilde{f}}{\partial u^j} x^j \end{split}$$

le gradient d'une function. En cord. locale, le gradient d'une function f est le champ de vecteur $(\nabla f)^i = g^{ij} \frac{\partial \bar{f}}{\partial u^j} (\nabla f)(F(u)) = g^{ij}(u) \frac{\partial \bar{f}}{\partial u^j} e_i(u)$

$$\begin{pmatrix} (\nabla f)^1 \\ (\nabla f)^1 \end{pmatrix} = g^{-1} \begin{pmatrix} \frac{\partial f}{\partial u^1} \\ \frac{\partial f}{\partial u^2} \end{pmatrix}$$

Les $(\nabla f)^i$ forment un tenseur 1 fois contravariant. Les dérivée partielles $\frac{\partial \bar{f}}{\partial u^j} = f_{,j}$ Se transforment selon :

$$\tilde{f}(u) = \bar{f}(v)
\frac{\partial \tilde{f}}{\partial u^i} = \frac{\partial \tilde{f}}{\partial v^j} \frac{\partial v^j}{\partial u^i}$$

ce sont les composantes d'un tenseur 1 fois covariant.

Définition 35. La dérivée directionnelle d'une fonction $f: M \to \mathbb{R}$ en $p \in M$ dans en direction $X \in T_pM$ est $\partial_X f(p) = d_p f(X) = \langle \nabla_p f, X \rangle$

Lemme 9. Si $X, Y \in T_pM$, il existe un unique $Z \in T_pM$, tel que pour toute fonction $f: M \to \mathbb{R}: \partial_x \partial_y f(p) - \partial_x \partial_y f(p) = \partial_z f(p)$. On note Z = [X, Y]. Z est la Crochet de Lie de X et Y.

 $\begin{array}{ll} \textit{D\'{e}monstration}. \ \, \text{Localement} \, : \, X \, = \, X^i e_i \, \, Y \, = \, Y^j e_j \, \, p \, = \, F(0) \, \, \partial_X \, f(p) \, = \, X^i(0) f_{,i}(0) \\ \partial_Y \, f(p) \, = \, Y^j(0) f_{,j}(0) \, \, \partial_X \, \partial_Y \, f(p) \, = \, X^i(0) \frac{\partial}{\partial u^i} (\partial_Y \, f) (F(u)) \, = \, X^i(0) \frac{\partial}{\partial u^i} Y^j(u) \frac{\partial f}{\partial u^j} |_{u=0} \, = \\ X^i(0) Y_{,i}^j(0) \frac{\partial f}{\partial u^j} \, + \, X^i(0) Y^j(0) \frac{\partial^2 f}{\partial u^i \partial u^j} \\ \partial_X \, \partial_Y \, f \, - \, \partial_Y \, \partial_X \, f \, = \, X^i(0) Y_{,i}^j(0) \frac{\partial f}{\partial u^j} \, - \, Y^i(0) X_{,i}^j(0) \frac{\partial f}{\partial u^j} \, = \, X^j \frac{\partial f}{\partial u} \\ Z^j \, = \, X^i(0) Y_{,i}^j(0) \, - \, Y^i(0) X_{,i}^j(0) \\ |box[X,Y](F(u)) \, = \, (X^i(u) Y_{,i}^j(u) \, - \, Y^i(u) X_{,i}^j(u) e_j(u))| \end{array}$

Remarque.

$$\left\{ \begin{pmatrix} [\lambda X + \mu Y, Z] = \lambda [X, Z] + \mu [Y, Z] \\ [X, Y] = -[Y, X] \\ Jacobi : [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 \end{pmatrix} \right.$$

L'ensemble des champs de vect . sur M est une algèbre de Lie pour $[\cdot,\cdot]$ Notation

$$X = X^{i}(u) \frac{\partial}{\partial u^{i}}$$
 $e_{i}(u) = \frac{\partial}{\partial x^{i}}$

Définition 36. Pour pM, soit π_p la projection orthogonal de \mathbb{R}^3 sur T_pM la dérivée covariante d'un champ de vecteurs X sur une courbe $c:[a,b]\to M$ est défini comment $\frac{DX}{dt}(t) = \pi_{c(t)} \frac{dX}{dt}$

Exemple 2.

- 1. Courbe plane \Rightarrow n=const $Y(t) \in \mathcal{P} \Rightarrow \forall t \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t+\varepsilon) Y(t)}{\varepsilon} \in \mathcal{P} \Rightarrow \dot{Y}(t) = \lim_{\varepsilon \downarrow 0} \frac{Y(t)}{\varepsilon} = \lim_{\varepsilon \downarrow 0} \frac{Y$ $\frac{DY}{dt}(t)$.
- 2. Sur la sphère. $c(t) = (\cos t \sin \theta, \sin t \sin \theta, \cos \theta)$

$$\frac{D\dot{c}}{dt}(t) = e_{\varphi}(t,\theta)$$
$$\dot{c}(t) = \begin{pmatrix} -\sin t \sin \theta \\ \cos t \sin \theta \end{pmatrix}$$

3.
$$\frac{\mathrm{d}}{\mathrm{d}t}\dot{c}(t) = \ddot{c}(t) = \begin{pmatrix} -\cos t \sin \theta \\ -\sin t \sin \theta \end{pmatrix} n(\theta, \varphi) = F(\theta, \varphi) = \begin{pmatrix} \cos \varphi \sin \theta \\ \sin \varphi \sin \theta \\ \cos \theta \end{pmatrix}$$
$$\frac{D\dot{c}}{\mathrm{d}t}(t) = \pi_{c(t)}\ddot{c}(t) = \ddot{c}(t) - n(\theta, t) \langle n(\theta, t), \ddot{c}(t) \rangle = \begin{pmatrix} -\cos t \sin \theta \\ -\sin t \sin \theta \\ \cos \theta \end{pmatrix} - \begin{pmatrix} \cos t \sin \theta \\ \sin t \sin \theta \\ \cos \theta \end{pmatrix} (-\sin^2 \theta) = \frac{1}{2} \left(-\sin^2 \theta \right) = \frac{1}{2} \left(-\cos^2 \theta \right) = \frac{1}{2} \left(-$$

$$-(1-\sin^2\theta)\begin{pmatrix}\cos t\sin\theta\\\sin t\sin\theta\end{pmatrix}+\cos\theta\sin^2\theta\begin{pmatrix}0\\0\\1\end{pmatrix}.$$
$$\frac{D\dot{c}}{dt}(t)=0\Leftrightarrow\sin2\theta=0\Leftrightarrow\theta=0\text{ où }\theta=\frac{\pi}{2}$$

Les cercles sur la sphère t.q. $\frac{D\dot{c}(t)}{dt} = 0$ sont les grand cercles (les géodésiques!).

$$\frac{\mathrm{D}X}{\mathrm{d}t}(t) = \pi_{c(t)} \frac{\mathrm{d}X}{\mathrm{d}t} = (\dot{X}^k(t) + \Gamma^k_{ij}(u(t))X^i(t)\dot{U}^j(t))e_k(u(t)).$$

Définition 37. Soit X un champ de vecteur sur M et $Y \in T_pM$. La dérivée covariante du champ X en p dans la direction Y est

$$(\nabla_Y X)(p) = \frac{DX(c(t))}{dt}|_{t=0}$$

où c est une courbe sur M tq. c(0) = 0 et $\dot{c}(0) = Y$.

Remarque. $\frac{DX(c(t))}{\mathrm{d}t}|_{t=0}$ ne dépend que de c(0) et $\dot{c}(0)$. En coordonnes locale on a:c(t)=F(u(t)) avec F(u(0))=p et $\dot{c}(t)=\dot{u}^i(0)e_i(u(0))=0$ $Y \frac{\mathrm{d}}{\mathrm{d}t}X(c(t)) = \frac{\mathrm{d}}{\mathrm{d}t}X(F(u(t))) = \frac{\mathrm{d}}{\mathrm{d}t}X^{i}(u(t))e_{i}(u(t)) \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}X^{i}(t) = \frac{\partial X^{i}}{\partial u^{j}}\dot{u}^{j}(t) \ (\nabla_{Y}X)(p) = \frac{\mathrm{d}}{\mathrm{d}t}X^{i}(u(t))e_{i}(u(t)) \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}X^{i}(u(t))e_{i}(u(t))e_{i}(u(t)) \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}X^{i}(u(t))e_{i}(u(t)$ $(X_{ij}^{\vec{k}}(u(0))\dot{u}^{j}(0) + \Gamma_{ij}^{k}(u(0))X^{i}\dot{u}^{j}(0))e_{k}(u(0))$

 $\nabla_Y X = (X_{ij}^k + \Gamma_{ij}^k X^i) \dot{u}^j = (X_{ij}^k + \Gamma_{ij}^k X^i) Y^j) e_k = (\partial_Y X^k + \Gamma_{ij}^k X Y^j) e_k.$ **Propriété 1.** $\lambda, \mu \in \mathbb{R}; X, X_1, X_2, Y, Y_1, Y_2$ champs de vecteurs $f: M \to \mathbb{R}$.

 $\nabla_Y(\lambda X_1 + \mu X_2) = \lambda \nabla_Y X_1 + \mu \nabla_Y X_2 \ \nabla_Y(fX) = (\mathrm{d}_Y f)X + f \nabla_Y X e_k(u(0))$ $\mathrm{d}_Y \left\langle X_1, X_2 \right\rangle = \left\langle \nabla_Y X_1, X_2 \right\rangle + \left\langle X_1, \nabla_Y X_2 \right\rangle \ \nabla_{\lambda Y_1 + \mu Y_2} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{fY} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X \ \nabla_{Y_1} X = \lambda \nabla_{Y_1} X + \mu \nabla_{Y_2} X = \lambda \nabla_{Y_1} X + \mu$ $f\nabla_Y X$.

Exemple 3. Sur la sphère $\nabla_Y X = (\nabla_Y X)^{\theta} e_{\theta} + (\nabla_Y X)^{\varphi} e_{\varphi}$ $(\nabla_Y X)^{\theta} = (X^{\theta}_{\theta} + \Gamma^{\theta}_{\theta\theta})Y^{\theta} + \Gamma^{\theta}_{\varphi\theta} X^{\varphi} Y^{\theta} + (^{\theta}_{\varphi} + \Gamma^{\theta}_{\theta\varphi} X^{\theta})^{\varphi} + \Gamma^{\theta}_{\varphi\varphi} X^{\varphi} Y^{\varphi} = {}^{\theta}_{,\theta} Y^{\theta} + X_{,\varphi}^{\varphi} - \frac{1}{2} \sin(2\theta) X^{\varphi\varphi}$ $(\nabla_Y X)^{\varphi} = X^{\varphi}_{,\theta} Y^{\theta} + X^{\varphi}_{,\varphi} + \operatorname{ctg}(\theta) (X^{\varphi\theta} + X^{\theta} Y^{\varphi})$