

Materials Studio中文培训资料

MS Forcite Plus

Materials Studio是整合的计算模拟平台

- 可兼顾科研和教学需求
- 可在大规模机群上进行并行计算
- 客户端-服务器 计算方式
 - Windows, Linux
 - 最大限度的使用已有IT资源
- 包含多种计算方法
 - DFT及半经验量子力学
 - 线形标度量子力学
 - 分子力学
 - QM/MM方法
 - 介观模拟
 - 统计方法
 - 分析仪器模拟
 - **–**

- •全面的应用领域
 - 固体物理与表面化学
 - 催化、分离与化学反应
 - 半导体功能材料
 - 金属与合金材料
 - 特种陶瓷材料
 - 高分子与软材料
 - 纳米材料
 - 材料表征与仪器分析
 - 晶体与结晶
 - 构效关系研究与配方设计

-

Materials Studio可对不同时间和空间尺度的体系进行研究

Forcite Plus是先进的分子力学和分子动力学模拟程序

- 支持多种分子力场
- 对各种体系均适用
- 随着计算机软硬件的发展, 近年来备受重视

其研究领域包括:

- •计算径向分布函数,取向关联函数和散射曲线
- •测量距离、角度和旋转半径的分布
- •给出特定成分的浓度曲线
- •绘制温度、压力、体积、应力以及单胞参数
- •给出分子力学和分子动力学模拟的势能及其组成项、动能和总能量值
- •材料力学性质研究
- •计算偶极相关函数
- •大量分子体系的内聚能密度和溶解性参数
- •对于估算自扩散系数的均方位移和速度相关函数
- •在学习表中观察并绘制轨迹数据 按任意性质排序,如,按能量排序,找到最低 能量构型

Forcite Plus: 基本任务

- 单点能计算
- 几何优化
- 动力学计算
- 淬火模拟
- 退火模拟
- 内聚能密度的计算
- 力学特性的计算

Forcite Plus: 各类性质分析

- 学习表中观察并绘制轨迹数据
- 速度相关函数
- 总动能
- 距离、角度和旋转半径分布
- •温度、压力
- 应力相关函数
- •取向关联函数
- 散射曲线
- •径向分布函数
- •势能项组成
- •均方位移
- •焓变
- •动态波动特征
- •偶极相关函数
- •密度、单胞参数
- •浓度分布曲线

Forcite Plus: 计算参数设置

分子力学方法

- n 使用球和弹簧来描述原子之间所成的共价键
- n 包括非键Van der Waals作用和静电相互作用
- n 通过实验手段和/或QM计算来获取相关参数
- n 通常与动力学、结构优化或者蒙特卡罗方法联: 用
- n 非常适合于模拟分子与晶体间的相互作用

模块的概念 —— 分子力学

$$\begin{split} V(r_1, r_2, ..., r_N) &= V_r + V_\alpha + V_\theta + V_{nb} + V_q \\ &= \sum_{bonds} \frac{1}{2} K_r [r - r_{eq}]^2 + \sum_{angle} \frac{1}{2} K_\alpha [\alpha - \alpha_{eq}]^2 \\ &+ \sum_{dihedrals} K_\theta [1 + \cos(n\theta - \delta)] \\ &+ \sum_{\substack{pairs(i,j) \\ i < j}} \left[\frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^6} \right] \\ &+ \sum_{\substack{pairs(i,j) \\ i < j}} \frac{q_i q_j}{\mathcal{E} r_{ij}} \end{split}$$

力场

• 分子可以用一系列带电点(原子)来描述,之间由弹簧连接(键)

- 对于该体系的数学描述,就是我们所说的力场
- 力场被用来计算分子的相对势能(相对于同样分子的其它构型)

力场表达式 - Part 1

势能

$$E_{\text{total}} = E_{\text{valence}} + E_{\text{crossterm}} + E_{\text{non-bond}}$$

键合能

$$E_{\text{valence}} = E_{\text{bond}} + E_{\text{angle}} + E_{\text{torsion}} + E_{\text{oop}} + E_{\text{UB}}$$

非键能

$$E_{\text{non-bond}} = E_{\text{vdW}} + E_{\text{Coulomb}} + E_{\text{hbond}}$$

力场表达式 – Part 2

CVFF 力场函数形式

$$\begin{split} E_{\text{pot}} &= \sum_{b} D_{b} [1 - e^{-\alpha(b - b_{0})}] + \sum_{\theta} H_{\theta}(\theta - \theta_{0})^{2} + \sum_{\phi} H_{\phi}[1 + s\cos(n\phi)] \\ &+ \sum_{\lambda} H_{\chi} \chi^{2} + \sum_{b} \sum_{b'} F_{bb'}(b - b_{0})(b' - b'_{0}) + \sum_{\theta} \sum_{\theta'} F_{\theta\theta'}(\theta - \theta_{0})(\theta' - \theta'_{0}) \\ &+ \sum_{\lambda} \sum_{\theta} F_{b\theta}(b - b_{0})(\theta - \theta_{0}) + \sum_{\phi} F_{\phi\theta\theta'}\cos\phi(\theta - \theta_{0})(\theta' - \theta'_{0}) + \sum_{\lambda} \sum_{\lambda'} F_{\chi\chi'}\chi\chi' \\ &+ \sum_{\delta} \sum_{\theta} [(r^{*}/r)^{12} - 2(r^{*}/r)^{6}] + \sum_{\delta} q_{i}q_{i}/\epsilon r_{ij} \end{split}$$

$$(10) \qquad (11)$$

PCFF 函数形式

$$\begin{split} E_{\text{pot}} &= \sum_{b} \left[K_{2} (b - b_{0})^{2} + K_{3} (b - b_{0})^{3} + K_{4} (b - b_{0})^{4} \right] \\ &+ \sum_{\theta} H_{2} (\theta - \theta_{0})^{2} + H_{3} (\theta - \theta_{0})^{3} + H_{4} (\theta - \theta_{0})^{4} \\ &\left(\mathbf{2} \right) \\ &+ \sum_{\phi} \left[V_{1} \left[1 - \cos \left(\phi - \phi_{1}^{0} \right) \right] + V_{2} \left[1 - \cos \left(2\phi - \phi_{2}^{0} \right) \right] + V_{3} \left[1 - \cos \left(3\phi - \phi_{3}^{0} \right) \right] \right] \\ &\left(\mathbf{3} \right) \\ &+ \sum_{\chi} K_{\chi} \chi^{2} + \sum_{b} \sum_{b'} F_{bb'} (b - b_{0}) \left(b' - b'_{0} \right) + \sum_{\theta} \sum_{\theta'} F_{\theta\theta'} (\theta - \theta_{0}) \left(\theta' - \theta'_{0} \right) \\ &\left(\mathbf{4} \right) \\ & \left(\mathbf{5} \right) \\ &+ \sum_{b} \sum_{\theta} F_{b\theta} \left(b - b_{0} \right) \left(\theta - \theta_{0} \right) + \sum_{b} \sum_{\phi} \left(b - b_{0} \right) \left[V_{1} \cos \phi + V_{2} \cos 2\phi + V_{3} \cos 3\phi \right] \\ &+ \sum_{b'} \sum_{\phi} \left(\theta' - \theta'_{0} \right) \left[V_{1} \cos \phi + V_{2} \cos 2\phi + V_{3} \cos 3\phi \right] \\ &+ \sum_{\theta} \sum_{\phi} \left(\theta - \theta_{0} \right) \left[V_{1} \cos \phi + V_{2} \cos 2\phi + V_{3} \cos 3\phi \right] \\ &+ \sum_{\phi} \sum_{\phi} \sum_{\theta'} K_{\phi\theta\theta'} \cos \phi \left(\theta - \theta_{0} \right) \left(\theta' - \theta'_{0} \right) + \sum_{i>j} \frac{q_{i}q_{j}}{\varepsilon r_{ij}} + \sum_{i>j} \left[\frac{A_{ij}}{r_{ij}^{\theta}} - \frac{B_{ij}}{r_{ij}^{\theta}} \right] \\ &+ \sum_{\phi} \sum_{\phi} \sum_{\phi} \left(M_{\phi\theta\theta'} \cos \phi \left(\theta - \theta_{0} \right) \left(\theta' - \theta'_{0} \right) + \sum_{i>j} \frac{q_{i}q_{j}}{\varepsilon r_{ij}} + \sum_{i>j} \left[\frac{A_{ij}}{r_{ij}^{\theta}} - \frac{B_{ij}}{r_{ij}^{\theta}} \right] \\ &+ \sum_{\phi} \sum_{\phi} \left(M_{\phi\theta\theta'} \cos \phi \left(\theta - \theta_{0} \right) \left(\theta' - \theta'_{0} \right) + \sum_{i>j} \frac{q_{i}q_{j}}{\varepsilon r_{ij}} + \sum_{i>j} \left[\frac{A_{ij}}{r_{ij}^{\theta}} - \frac{B_{ij}}{r_{ij}^{\theta}} \right] \\ &+ \sum_{\phi} \left(M_{\phi\theta\theta'} \cos \phi \left(\theta - \theta_{0} \right) \left(\theta' - \theta'_{0} \right) + \sum_{\phi} \left(M_{\phi\theta'} \cos \phi \left(\theta - \theta_{0} \right) \left(\theta' - \theta'_{0} \right) \right) \right] \\ &+ \sum_{\phi} \left(M_{\phi\theta'} \cos \phi \left(\theta - \theta_{0} \right) \left(M_{\phi'} - \theta'_{0} \right) \right) \\ &+ \sum_{\phi} \left(M_{\phi\theta'} \cos \phi \left(\theta - \theta_{0} \right) \left(M_{\phi'} - \theta'_{0} \right) \right) \\ &+ \sum_{\phi} \left(M_{\phi\theta'} \cos \phi \left(M_{\phi'} - M_{\phi'} \right) \left(M_{\phi'} - M_{\phi'} \right) \right) \\ &+ \sum_{\phi} \left(M_{\phi} \cos \phi \left(M_{\phi'} - M_{\phi'} \right) \left(M_{\phi'} - M_{\phi'} \right) \right) \\ &+ \sum_{\phi} \left(M_{\phi'} \cos \phi \left(M_{\phi'} - M_{\phi'} \right) \left(M_{\phi'} - M_{\phi'} \right) \\ &+ \sum_{\phi} \left(M_{\phi'} \cos \phi \left(M_{\phi'} - M_{\phi'} \right) \left(M_{\phi'} - M_{\phi'} \right) \left(M_{\phi'} - M_{\phi'} \right) \right) \\ &+ \sum_{\phi} \left(M_{\phi'} \cos \phi \left(M_{\phi'} - M_{\phi'} \right) \left(M_{\phi'} - M_{\phi'} \right) \left(M_{\phi'} - M_{\phi'} \right) \\ &+ \sum_{\phi} \left(M_{\phi'} - M_{\phi'} \right) \left(M_{\phi'} - M_{\phi'} \right) \left(M_{\phi'} - M_{\phi'} \right) \\ &+ \sum_{\phi} \left(M_{\phi'} - M_{\phi'}$$

COMPASS 力场

- ❖ 针对凝聚态专门优化的分子势,用于分子力学研究
- ❖ 价参数和原子点电荷由ab initio数据拟合得到
- ❖ van der Waals参数通过对实验测得的内聚能和平衡密度 数据的拟合得到
- ❖ 适合的范围包括有机和无机分子
- ❖ 精确、快速的预测体系的结构、构象、频率以及热物理性质
- ❖ 专门针对-ONO₂体系进行过优化,适合研究含能材料体系

H. Sun, J. Phys. Chem. B, 1998, 112: 7338-7364

COMPASS 力场主要添加的新功能:

新增COMPASS II力场添加对离子液体的支持,强化对聚合物和杂环体系的支持。新力场覆盖253种元素力场种类,包含8294种力场参数。在新的训练集中总共包含有1402种分子片段。

	COMPASS	COMPASS II
原素力场种类	229	253
力场参数	3856	8294

COMPASSII力场参数获取的训练集设置:

- 1) 使用COMPASS力场分析一个包含有430种单聚物和共聚物的**聚合物数据库**,查找到105种分子片段中454种相互作用关系的缺失,并将这些缺失添加到新训练集中。
- 2) 分析**NIST离子液体分子数据库并**添加40种片段到新训练集中。
- 3) 分析Maybridge化合物数据库中包含的59,465种分子,并添加1,257种片段到新训练集中。

非键截断

非键截断: 计算范德华和静电作用能时

考虑体系中所有原子相互作用计算量庞大

原子间距增加范德华和静电作用能减小很多

提高计算效率

非键截断函数:

 $r \geq r_{off}$ 时,S=0

$$E_{elec} = \sum_{r} E_{elec}(r) S(r_{on}, r_{off})$$
 $E_{vdw} = \sum_{r} E_{vdw}(r) S(r_{on}, r_{off})$
 $r \leq r_{on}$ 时, $S = 1$
 $r_{on} \leq r \leq r_{off}$ 时, E 逐渐平滑下降到 0

非键作用能截断函数

分子力学法

目的: 合理的分子结构 ➡ 能量最小化 单个分子—合理的键长、键角及相应二面角 多分子聚集体系—合理的分子间堆砌构型

势能对笛卡尔坐标的一阶导 数为零,二阶导数大于零

$$\frac{\partial f}{\partial x_i} = 0 \qquad \frac{\partial^2 f}{\partial x_i^2} > 0$$

结构优化法

最速下降法:方向变化大(接近极小点时方向不准)、收敛慢、优化辐度大;

共轭梯度法: 收敛快, 易陷入局部势阱, 对初始结构偏离不大;

Newton法: 计算量较大, 当微商小时收敛快, 远离极小点时方向不准;

动力学的背景

在分子动力学模拟中,测定一个可观测的量,必须能将这个量表达为体系中粒子的位置与动量的函数。例如在一个多体体系中,对温度的方便定义是采用在所有自由度上的等配方能,以使它们以二次型进入哈密顿函数。特别是在各个自由度的平均动能,可得到:

$$\left\langle \frac{1}{2} m v_{\alpha}^{2} \right\rangle = \frac{1}{2} k_{\mathrm{B}} T$$

在模拟中,用这一方程作为温度的实际定义。实际过程中,测量体系的总动能,并除以体系的自由度数 N_f ,由于体系的总动能涨落,体系的瞬时温度也随之改变, N_f N_f

$$T(t) = \sum_{i=1}^{N} \frac{m_i \ v_i^2(t)}{k_B N_f}$$

温度的相对涨落为 $1/\sqrt{N_f}$ 左右。由于 N_f 一般为100-1000,因此温度的统计涨落约为 $5\%\sim10\%$ 。要达到温度的一个正确估计,应对许多涨落进行平均才行。

注释

分子动力学法

数值求解方法—有限差分方法

Verlet算法、Predictor-corrector算法、各自的变种 Verlet类型的算法是目前性能最好、应用最广的积分算法

粒子系综 微观水平信息 ———— 宏观性质

微正则系综(NVE)— 孤立的保守系综,系统的总动量 $\sum P = 0$ 等焓等压系综(NPH)—晶胞体积和形状可变 正则系综(NVT)—系统能量可能有涨落但系综温度保持恒定 等温等压系综(NPT)—与外界可进行能量交换

温度控制 动能势能相互转化,动能与温度存在统计关系 动能变化导致温度变化 为不断接近目标温度,速率应得到适当调整 速率法、Berendsen、Nose和Andersen方法

结构优化与动力学的异同点

相同:

Minimizer与Dynamics都是寻找能量最低点的方法。

区别:

Minimizer只能够找到与其相邻的能量最低结构,但是不能够找到全局能量最低结构。0K

Dynamics可以考虑温度因素,通过加入能量扰动来搜索势能面,从而找到 全局最优结构。

Setup菜单

• 计算任务(Task)

单点能计算;几何优化;动力学计算;淬火模拟;退火模拟;内聚能密度的计算;力学特性的计算

• 精度控制(Quality)

Setup菜单-----Geometry Optimization/More

- 算法(Algorithm)
 精确计算法(Smart); 最速下降法
 (Steepest descent); 共轭梯度法(Conjugate gradient); 牛顿法(Quasi-Newton);
 ABNR法
- 精度控制(Quality)
 能量(Energy);力(Force); 应力(stress);位 置(Displacement)
- 模拟时间(max.iterations)
- 静态压力(external pressure)
- 优化单胞(optimize cell)
- 运动单元(Motion groups)

Setup菜单-----Dynamics/More Forcite Dynamics

- 系统(Ensemble)
 NVT, NPH, NVE, NPT
- 初始速度(Initial velocities)
 任意的(Random); 当前的(current)
- 温度(Temperature)以及控温方法 速率法; Nose法; Andersen法; Berendsen法
- 压力(pressure)以及控压方法 Andersen法; Berendsen法
- 时间步长(Time step)
- 总模拟时间(Total simulation time)
- 模拟步数(Number of steps)
- 每多少步输出运动单元(Motion groups)

Setup菜单-----Quench /More

- 淬火步数(Algorithm) 控制了MD中输出构象的步数
- 动力学选项
- 几何优化选项

淬火模拟指的是 每进行一次MD, 则进行一次几何 优化

灰色

Forcite Plus的参数设置

Setup菜单-----Anneal /More

- 退火循环数(Algorithm)
- 初始温度(Initial temperature)
- 中间循环温度(Mid-cycle temperature)
- 初始温度与中间循环温度之间取得温度点个数
- 每个温度点动力学模拟步数
- 总的模拟步数(Total number of steps)
- 几何优化

灰色

Setup菜单-----Cohesive Energy Density/More

计算分子内相互作用 输出Study Table文件

• Study table中包括输入的结构文件

Setup菜单-----

Cohesive Energy Density/More

- 优化结构
- 明确应变模式中产生的应变数目 推荐使用偶数值(2-100)
- 指出结构最大的形变 值在0.001-0.1之间较为合理
- 应变模式(Strain Pattern) 应变张量矩阵,由结构对称性决定

Energy 菜单

- 力场(Forcefield)
 Dreiding; Universal; COMPASS26/27;
 COMPASS; CVFF; PCFF; PCFF30;
 Browse...
- 电荷(charges)
 Use current (默认); 电荷平衡算法(Charge using QEq); Charge using Gasteiger
- 精度(Quality)—加和方法精度
- 加和方法(Summation method) 静电相互作用;非键相互作用 原子截断(Atom based);电荷组截断(Group based); Ewald截断

Job Control菜单

Forcite Plus的参数设置

客户端

客户端-服务器工作模式

服务器

Gateway

Finished successfully!

Hardware: PC

Laptop

Workstation

OS: Windows2000

WindowsXP

Windows Vista

Hardware: PC

Workstation

HPC machine

OS: Windows2000

WindowsXP

Windows Vista

Windows2003 Server

RedHat AS4.0/5.0

SLES 9.0/10.0

Analysis菜单

- 学习表中观察并绘制轨迹数据
- 速度相关函数
- 总动能
- 距离、角度和旋转半径分布

结构;

统计学性质;

动力学性质等

- •温度、压力
- 应力相关函数
- •取向关联函数
- 散射曲线
- •径向分布函数
- •势能项组成
- •均方位移(研究扩散)
- •焓变
- •动态波动特征
- •偶极相关函数
- •密度、单胞参数
- •浓度分布曲线(研究元素分布)

Forcite Analysis

与结构相关的性质:

- Angle distribution
- Concentration profile
- Density field
- Length distribution
- Radial distribution function
- Radius of gyration
- Scattering
- Spatial orientation correlation function
- Torsion distribution

Forcite Analysis

与结构相关的性质:Angle distribution 分析结构/轨迹中角度的分布几率,分析前 需首先量出需要分析的角度。

- Structure/Trajectory:用于选择结构或轨迹,默
 认为当前激活文件
- Sets: 当存在多个set时,用于指定某个set,或 在结构中手动选中。不选等价于对所有set分析。
- Bin width:直方图中小区间的宽度。合适的数值 可以得到高分辨的图形
- Raw distribution: 绘制角度的几率密度图
- Smoothed distribution: 绘制平滑的几率密度图
- Width:平滑函数的宽度

Forcite Analysis

Forcite Analysis

与结构相关的性质: Concentration Profile 浓度分布曲线,表示粒子在一定厚度区间(slab)中的密度与其在体系中密度的比值。

- Specified direction (h k l):指定密勒晶面。垂直于该面的浓度分布。
- Number of bins:区间的个数。
- Frames to average:轨迹将分割为若个数据块, 每个数据块均单独计算。

Concentration Profile

$$=\frac{\rho_i}{\rho_{\rm total}} \quad (i=1,2,3,4)$$

Forcite Analysis

通过水分子的浓度分布曲线,缓蚀剂的加入有效的降低了水分子在金属表面的浓度,起到了阻断水分子与金属表面接触的作用。

Acta Phys. -Chim. Sin., 2010, 26(5): 1385-1390

Forcite Analysis

与结构相关的性质: Density field

创建3D图形来显示结构/轨迹中元素种类/不同力场类型的密度

- Create fields by:根据什么标准产生密度分布: 元素类型、力场类型
- Create isosurfaces:创建并显示等值面
- Exclude analyzed objects in output:在输出结果中不显示指定的Sets

Forcite Analysis

Without Exclude

Exclude

经过Exclude 后,设为set的H原子全部不再显示出来

Forcite Analysis

Forcite Analysis

与结构相关的性质: Length distribution 分析结构/轨迹中长度或键长的分布几率 , 长度分析前需首先量出。

- Distance measurements:分析结构或轨迹中已 测量出的长度。若设定了Sets,则分析两者共有 部分,若没有设定,则分析所有已测量的长度。
- Bond lengths:分析结构或轨迹中的键长。若设定了Sets,则分析两者共有部分,若没有设定,则分析所有键长。

Forcite Analysis

Forcite Analysis

与结构相关的性质:

Radial distribution function (RDF)

计算组元之间的径向分布函数

- Sets:计算以Set-1为中心, Set-2的径向分布
- · Cutoff: 计算径向分布的距离截断
- Interval:统计径向分布的区间的宽度
- Include intra-/intermolecular components: 计算径向 分布时包含分子内/分子间的作用
- Include periodic self-interactions: 计算径向分布时包
 含周期性的镜像
- Structure factor:通过径向分布函数计算结构因子
- Cutoff: 计算结构因子的距离截断
- Interval: 计算结构因子的间隔, 小的间隔可以得到高分辨的谱图

Forcite Analysis

Radial Distribution Function

$$g(R) = \frac{\frac{N}{\frac{4}{3}\pi(R_{cutoff}^3 - r_{cutoff}^3)}}{\rho_{\text{total}}}$$

Coordination Number

$$N = g(R) * \rho_{\text{total}} * \frac{4}{3} \pi (R_{cutoff}^3 - r_{cutoff}^3)$$

Forcite Analysis

与结构相关的性质: Radius of gyration

分析体系的回转半径的几率分布

$$R(g)^2 = \frac{\sum_{i=1}^{N} s_i^2}{N}, s_i$$
为 i 原子到质心的距离

Use mass weighting: 计算回转半径时考虑原子的质量,否则认为所有原子质量相同

$$R(g)^{2} = \frac{\sum_{i=1}^{N} m_{i} s_{i}^{2}}{\sum_{i=1}^{N} m_{i}}$$

Forcite Analysis

Radius of gyration	Р
1.43000000	0.00000000
1.44000000	0.09995002
1.45000000	0.09995002
1.46000000	0.29985007
1.47000000	0.69965017
1.48000000	1.89905047
1.49000000	2.29885057
1 50000000	3 94802599

Forcite Analysis

与结构相关的性质: Scattering

计算体系的中子或X射线散射谱

- Radiation:选择辐射源,中子/X射线
- Cutoff:散射强度计算的截断值。截断大时,小角度 散射的贡献大
- Use model size correction: 针对有限大小的分子进行的散射进行模型大小补偿,一般用于非周期的小结构
- Radius:模型大小校正的半径大小
- Plot against scattering vector、Plot against 2-Theta:
 绘制散射谱时的横坐标轴,散射向量/2θ角
- Wavelength:散射采用的辐射波长
- From/To:指定散射强度的计算范围

Forcite Analysis

Forcite Analysis

与结构相关的性质: Torsion distribution 分析结构/轨迹中二面角的分布几率,分析前需首先量出需要分析的二面角。

Forcite Analysis

统计学性质:

- Hamiltonian
- Total kinetic energy
- Potential energy components
- Pressure
- Temperature
- Density
- Cell parameters

Forcite Analysis

统计学性质: Hamiltonian

分析体系的哈密顿量随模拟时间的变化

- Running average:以时间为横轴分析体系哈密顿量自第一帧至当前时间的累积平均值
- Profile:以时间为横轴分析体系的哈密顿量
- Block average:以时间为横轴分析体系哈密顿 量以一定宽度和间隔的块平均
- Width、Interval: 块平均计算的宽度和间隔

Forcite Analysis

NVE系综下, Hamiltonian量等于体系的总内能, 应该是守恒的。

NVT系综 + Nosé控温, Hamiltonian量不再守恒, 守恒的是Helmholtz自由能

$$H_{MVT} = H_{MVE} + \frac{s^2 P_s^2}{2Q_{mass}} + \frac{N \ln s}{\beta}$$

NPH系综 + Andersen控压, 守恒的是热焓

NPT系综+ Nosé控温 + Andersen控压 , 守恒的是Gibbs自由能

Forcite Analysis

Forcite Analysis

Forcite Analysis

统计学性质: Total kinetic energy

分析体系的总动能随模拟时间的变化

Forcite Analysis - Total kinetic energy

Forcite Analysis

统计学性质: Potential energy components

分析体系的组成势能的各组分随模拟时间的变化

 Include all potential energy components:包含 所有的势能组分

Forcite Analysis

Forcite Analysis

从能量组分的角度,随着温度的变化,玻璃化温度的出现主要与二面角扭转能、范德华能有关。

Polymer (2010) 51, 291-299

Forcite Analysis

统计学性质: Pressure

分析体系的压力随模拟时间的变化

Forcite Analysis - Pressure

Forcite Analysis

统计学性质: Temperature

分析体系的温度随模拟时间的变化

Forcite Analysis - Temperature

Forcite Analysis

统计学性质: Density

分析体系的密度随模拟时间的变化

Forcite Analysis - Density

Forcite Analysis

统计学性质: Cell parameters

分析体系的晶格参数随模拟时间的变化

Forcite Analysis

动力学性质及其他:

- Velocity profile
- Temperature profile
- Mean square displacement
- Dipole autocorrelation function
- Stress autocorrelation function
- Fluctuation properties
- Rotational time correlation function
- Space time correlation function
- Velocity autocorrelation function
- View in a study table

Forcite Analysis

动力学性质: Velocity profile

分析体系沿一定方向的平均速度分布

• Flow direction:分析速度在哪个方向上的分量

Forcite Analysis - Velocity Profile

Velocity (Angstrom/ps)
0.04
0.03
0.02
0.01
0.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0.01
0.02
0.03

Forcite Analysis

动力学性质: Temperature profile

分析体系沿一定方向的平均温度分布,与速度分布 对应

Correct for flow in direction:若为Shear或Confined shear模拟,分析温度分布时将指定方向的流动速度排除

Forcite Analysis

动力学性质: Mean square displacement

分析指定set的均方位移,扩散系数

- Origin step:指定MSD计算的时间原点步长
- Length:指定MSD计算的时间域长度
- Include anisotropic components:包含各向异性的结果

$$MSD = \sum_{i=1}^{N} \langle |\boldsymbol{r}_i(t) - \boldsymbol{r}_i(0)|^2 \rangle \qquad D = \frac{1}{6} \lim_{t \to \infty} \frac{d}{dt} (MSD)$$

Forcite Analysis

$$D = \frac{1}{6} \lim_{t \to \infty} \frac{d}{dt} \sum_{i=1}^{N} \langle |r_i(t) - r_i(0)|^2 \rangle$$

为了精度高的结果,最小化统计噪点,通常会采用多个时间原点的系综平均

为了有足够的统计样本,一般Length不会超过总模拟时间的一半

Forcite Analysis

计算得到水的扩散系数为2.419×10⁻⁹ m²s⁻¹,实验值为2.09~2.66×10⁻⁹ m²s⁻¹ 横坐标的时间指的是时间间隔,意义是原子从任一时间原点起,经历一定时间间隔的平均位移。

Corrosion Science **53** (2011) 1331–1336

Forcite Analysis

动力学性质:

Dipole autocorrelation function

分析体系的偶极自相关函数

Normalize by <μ(0).μ(0)>:将起始帧的DACF设为1,进行归一化

功率谱,对应振动性质

Forcite Analysis

PNAS (2010) 107, 12068-12073

Forcite Analysis

低频区,速度自相关(红色)、偶极自相关(绿色)得到的结果与简谐近似模型下的分析一致,高频区偏差较大。

J. Phys. Chem. A 2012, 116, 399-414

Forcite Analysis

动力学性质:

Stress autocorrelation function

分析体系的应力自相关函数

得到体系的Shear viscosity、Bulk viscosity

$$\eta = \frac{V}{k_B T} \int_{0}^{\infty} \langle P_{\alpha\beta}(t) P_{\alpha\beta}(0) \rangle dt$$

$$\eta_{v} = \frac{V}{k_{B}T} \int_{0}^{\infty} \langle \delta P(t) \delta P(0) \rangle dt$$

Forcite Analysis

Bulk viscosity	Shear viscosity
0.28360000	8.155890e-004

Molecular Simulation (2007) 33, 1261-1266

Forcite Analysis

动力学性质:Fluctuation properties

分析体系的系综涨落性质

Ensemble:选择合适的系综, NPH,
 NPT, NVE or NVT, 注意此处系综的选择须与计算时的系综保持一致。

某一性质的系综涨落,定义为力学性质与其系综 平均的差值。 $\delta X = X - \langle X \rangle_{ens}$

一个重要的例子,等体积热容与正则系综内能的

涨落之间的关系: $\langle \delta E^2 \rangle_{NVT} = k_B T^2 C_V$

Forcite Analysis

不同的系综可能得到不同的性质,同一性质在不同系综下也可能不同的数值。

NVT、NVE	NPT、NPH						
 等体积热容, C_ν kcal mol⁻¹ K⁻¹ 热压力系数, γ_ν GPa K⁻¹ 							
	 等压热容, C_P kcal mol⁻¹ K⁻¹ 热膨胀系数, α_P K⁻¹ 绝热压缩性, β_S GPa⁻¹ 等温压缩性, β_T GPa⁻¹ Grüneisen参数, γ 等焓焦耳汤姆逊系数, μ K GPa⁻¹ 等温焦耳汤姆逊系数, φ Å³ 声速, ω m s⁻¹ 						

Forcite Analysis

其他: View in study table

将轨迹文件中选定帧的数据以study stable

的形式显示

包括:结构、帧数、时间、能量组分、压力、

温度、密度、体积、晶格常数

Forcite Analysis

	Α	В	С	D	E	F	G	Н	1	J	K	L	
	Structure	Time	Frame step	Frame number	Hamiltonian	Total kinetic energy	Total potential energy	Bond energy	Angle energy	Torsion energy	van der Waals energy	Electrostatic energy	
1	alcohol - 1	0.00000000	0	1	-2.485698e+003	1.171089e+003	-3.656786e+003	91.02724513	93.30891394	-406.44192516	485.59913565	-3.866684e+003	Γ
2	alcohol - 2	0.01000000	10	2	-2.477059e+003	786.17809513	-3.261311e+003	184.86910914	202.70802348	-399.79467815	493.60094582	-3.687808e+003	Ī
3	alcohol - 3	0.02000000	20	3	-2.464598e+003	598.41500156	-3.053760e+003	292.28127016	246.40669184	-395.91239313	543.37039207	-3.684053e+003	İ
4	alcohol - 4	0.03000000	30	4	-2.463826e+003	551.90935096	-2.992552e+003	314.91918103	302.69037994	-389.54577204	585.70823767	-3.730194e+003	1
5	_	0.04000000	40	5	-2.468267e+003	612.87605548	-3.039128e+003	277.34162840	256.54013686	-385.83195452	571.58794009	-3.700071e+003	
	_	0.05000000	50	6	-2.409413c+003	619.53500812	-3.022475 c+ 003	204.51093793	270.01513020	-300.02090375	500.50022040	-3.002921 c+ 003	
,	alcohol - 7	0.06000000	60	7	-2.468799e+003	665.09565335	-3.037307e+003	309.72033159	216.43478898	-393.00073203	504.50584288	-3.613841e+003	
;	alcohol - 8	0.07000000	70	8	-2.468355e+003	649.83477296	-2.983604e+003	357.83827505	233.87004003	-393.64666846	489.08808289	-3.614899e+003	
)	alcohol - 9	0.0800000	80	9	-2.471922e+003	709.52795460	-3.001743e+003	347.60887197	206.78848452	-392.38137204	472.46744522	-3.577392e+003	
0	alcohol -	0.09000000	90	10	-2.472590e+003	714.13649908	-2.957402e+003	357.14839881	262.08353911	-387.78500613	470.42921615	-3.591357e+003	
1	alcohol -	0.10000000	100	11	-2.476470e+003	727.11236876	-2.912552e+003	343.13978412	265.78627049	-382.28506208	458.89725563	-3.533762e+003	
2	alcohol -	0.11000000	110	12	-2.483994e+003	783.88370577	-2.906396e+003	372.53678060	276.95922320	-384.81935335	435.24390452	-3.541650e+003	
3	alcohol -	0.12000000	120	13	-2.492723e+003	827.25458352	-2.875915e+003	379.74807839	273.72764355	-385.17153120	444.80819314	-3.516383e+003	
<u> </u>	Properties /	[4]											ĺ

Forcite Plus的参数设置

Forcefield Manager菜单

可对标准力场Dreiding进行编辑

Summary描述力 场的简单文本

Types描述力场的 类型与特征

Interactions描述的是键合项和非键项 非键相互作用

¬ Forcite Forcefield ■anager

Standard Forcefields:

Project Forcefields:

帮助文档

在线帮助文档从原理到操作再到参考文献一应俱全

我们的技术支持帐号

ms@neotrident.com

关注我们的网站

www.neotrident.com

报名参加各类相 关的网络讲座及 高级培训班

MS Forcite Plus