

MELODI

Mass E-Learning of design, test, and prototyping DIgital hardware

LEVEL 3

LLS (Light-Barrier LED Servo)

In this task you have to control a servo motor. The angle of the servo arm is controlled via a **PWM** with **50Hz**. In addition, you can control the respective LEDs individually. Light barriers are used for the position detection of the arm, which you can also read out individually. For the detailed control of the servo motor, please refer to the [Level 1]Servo: Wave the Flag. Write a design that starts with an initial position and changes to three other positions defined by the state of two buttons. Whenever the servo arm is detected by a light barrier, the corresponding LED as well as a VIRTUAL FLAG has to be enabled - the detailed description can be seen in Table 1.

Figure 1: Details of the LLS Task.

States						
Button [0]	Button [1]	Duty	Position	LED on	Virtual Flag	
0	0	5%	Init	-	-	
1	0	8.5%	light-barrier [1]	[1]	[0]	
0	1	11%	light-barrier [2]	[2]	[1]	
1	1	13%	light-barrier [3]	[3]	[2]	

Table 1: Required system states.

LLS Control				
Component	Port	Value		
servo motor	O[0]	'0' / '1'		
led [1]	O[1]	'1'=ON / '0'=OFF		
led [2]	O[2]	'1'=ON / '0'=OFF		
led [3]	O[3]	'1'=ON / '0'=OFF		
led [4]	O[4]	'1'=ON / '0'=OFF		
ligt-barrier [1]	LLS[0]	'1'=DETECTED / '0'=NOT_DETECTED		
ligt-barrier [2]	LLS[1]	'1'=DETECTED / '0'=NOT_DETECTED		
ligt-barrier [3]	LLS[2]	'1'=DETECTED / '0'=NOT_DETECTED		
ligt-barrier [4]	LLS[3]	'1'=DETECTED / '0'=NOT_DETECTED		
virtual flag 1	VIRTUAL_FLAG[0]	'1'=ENABLE / '0'=DISABLE		
virtual flag 2	VIRTUAL_FLAG[1]	'1'=ENABLE / '0'=DISABLE		
virtual flag 3	VIRTUAL_FLAG[2]	'1'=ENABLE / '0'=DISABLE		
virtual flag 4	VIRTUAL_FLAG[3]	'1'=ENABLE / '0'=DISABLE		

Table 2: LLS Control.

Entity

Your task is to program the behavior of an entity called "servo_light". This entity is declared in the attached file "servo_light.vhdl" and has the following properties:

• Input: CLK (100MHz) with type std_logic

• Input: BTN with type std_logic_vector of length 2

• Input: LLS with type std_logic_vector of length 4

• Output: O with type std_logic_vector of length 5

• Output: VIRTUAL_FLAG with type std_logic_vector of length 4

Do not change the file "servo_light.vhdl".

To turn in your solution write an email to vhdlabgabe+e384@tuwien.ac.at with subject "Result Task 3" and attach your behavior file(s):

 $\bullet \ \ "servo_light_beh.vhdl"$

Good Luck and May the Force be with you.