DELAY PROGRAMS

TIME DELAY USING ONE REGISTER

Label	Opcode MVI	Operand C,FFH	Comments ;Load register C	T-states 7
LOOP:	DCR	С	;Decrement C	4
	JNZ	LOOP	Jump back to decrement C	10/7

Clock frequency of the system f = 2 MHz

Clock period
$$T = 1/f = 1/2 \times 10^{-6} = 0.5 \mu s$$

Time to execute MVI = 7 T-states $\times 0.5$

$$= 3.5 \, \mu s$$

The time delay in the loop T_L with 2 MHz clock frequency is calculated as

$$TL = (T \times Loop T-states \times N10)$$

where $T_L = Time delay in the loop$

T = System clock period

N₁₀ = Equivalent decimal number of the hexadecimal count loaded in the delay register

$$T_L = (0.5 \times 10^{-6} \times 14 \times 255)$$

= 1785 \(\mu\s\)
\(\approx\) 1.8 ms

the adjusted loop delay is

$$T_{LA} = T_L - (3 \text{ T-states} \times \text{Clock period})$$

= 1785.0 µs - 1.5 µs = 1783.5 µs

Total Delay =
$$\frac{\text{Time to execute instructions}}{\text{outside loop}} + \frac{\text{Time to execute}}{\text{loop instructions}}$$

$$T_D = T_O + T_{LA}$$

= $(7 \times 0.5 \ \mu s) + 1783.5 \ \mu s = 1787 \ \mu s$
 $\approx 1.8 \ ms$

TIME DELAY USING A REGISTER PAIR

Label	Opcode	Operand	Comments	T-states
LOOP:	LXI	B,2384H	;Load BC with 16-bit count	10
	DCX	B	;Decrement (BC) by one	6
	MOV	A,C	;Place contents of C in A	4
	ORA	B	;OR (B) with (C) to set Zero flag	4
	JNZ	LOOP	;If result ≠ 0, jump back to LOOP	10/7

$$2384H = 2 \times (16)^3 + 3 \times (16)^2 + 8 \times (16)^1 + 4(16^0)$$

= 9092₁₀

If the clock period of the system = $0.5 \mu s$, the delay in the loop T_L is

$$T_L = (0.5 \times 24 \times 9092_{10})$$

 $\approx 109 \text{ ms (without adjusting for the last cycle)}$
Total Delay $T_D = 109 \text{ ms} + T_O$
 $\approx 109 \text{ ms (The instruction LXI adds only 5 } \mu \text{s.)}$

TIME DELAY USING A LOOP WITHIN A LOOP TECHNIQUE

MVI B,38H 7T

LOOP2: MVI C,FFH 7T

LOOP1: DCR C 4T

JNZ LOOP1 10/7T

DCR B 4T

JNZ LOOP2 10/7T

The delay in LOOP1 is $T_{LI} = 1783.5 \mu s$.

$$T_{L2} = 56(T_{L1} + 21 \text{ T-states} \times 0.5 \text{ }\mu\text{s})$$

= $56(1783.5 \text{ }\mu\text{s} + 10.5 \text{ }\mu\text{s})$
= $100.46 \text{ }m\text{s}$

HEXADECIMAL COUNTER(FF TO 00H) WITH 1ms TIME DELAY BETWEEN COUNTS(ASSUME CLOCK OF 2MHz)

Label

Mnemonics

MVI B,00H

NEXT:

DCR B

MVI C.COUNT

DELAY: DCR C

JNZ DELAY

MOV A,B OUT PORT#

JMP NEXT

the time delay T_L in the loop

$$T_L = 14 \text{ T-states} \times \text{T (Clock period)} \times \text{Count}$$

= $14 \times (0.5 \times 10^{-6}) \times \text{Count}$
= $(7.0 \times 10^{-6}) \times \text{Count}$

The delay outside the loop includes the following instructions:

DCR B	4T	Delay outside	2
MVI C,COUNT	7T	the loop: To	$= 35 \text{ T-states} \times \text{T}$
MOV A,B	4T		$=35\times(0.5\times10^{-6})$
OUT PORT	10T		$= 17.5 \mu s$
JMP	10T		12.7

35 T-states

Total Time Delay
$$T_D = T_O + T_L$$

 $1 \text{ ms} = 17.5 \times 10^{-6} + (7.0 \times 10^{-6}) \times \text{Count}$
 $\text{Count} = \frac{1 \times 10^{-3} - 17.5 \times 10^{-6}}{7.0 \times 10^{-6}} \approx 140_{10}$

Zero to nine(modulo 10) counter with 1s time delay between counts (ASSUME CLOCK OF 1 MHz)

Loop Delay
$$T_L = 24$$
 T-states \times T \times Count
I second = $24 \times 1.0 \times 10^{-6} \times$ Count
Count = $\frac{1}{24 \times 10^{-6}} = 41666 = A2C2H$

The instructions outside the loop are: OUT, LXI, INR, MOV, CPI, and JNZ (DSPLAY). These instructions require 45 T-states; therefore, the delay count is calculated as follows:

Total Delay
$$T_D = T_O + T_L$$

1 second = $(45 \times 1.0 \times 10^{-6}) + (24 \times 1.0 \times 10^{+6} \times Count)$
Count ≈ 41665

Generate a continuous square wave with a period of 500 μs , clock period is 325 ns and use bit D_0 to output the square wave

ROTATE:

MVI D,AA MOV A,D RLC

MOV D,A ANI 01H

OUT PORT1

MVI B, COUNT (7T)

DELAY:

DCR B (4T) JNZ DELAY (10/7T)

JMP ROTATE (10T)

 The number of instructions outside the loop is seven; it includes six instructions before the loop beginning at the symbol ROTATE and the last instruction JMP.

Delay outside the Loop: $T_0 = 46$ T-states \times 325 ns = 14.95 μ s

The delay loop includes two instructions (DCR and JNZ) with 14 T-states except for the last cycle, which has 11 T-states.

Loop Delay:
$$T_L = 14$$
 T-states \times 325 ns \times (Count -1) + 11 T-states \times 325 ns $= 4.5 \mu s$ (Count -1) + 3.575 μs

3. The total delay required is 250 µs. Therefore, the count can be calculated as follows:

$$T_D = T_O + T_L$$

250 μ s = 14.95 μ s + 4.5 μ s (Count – 1) + 3.575 μ s
Count = 52.4₁₀ = 34H

DELAY SUBROUTINE

MVI B, FFH

LOOP: DCR B

JNZ LOOP

RET