Лабораторная работа 1.1.3 Статистическая обработка результатов многократных измерений

Шульга Михаил

Сентябрь 2023

1 Аннотация

Цель работы:

Применение методов обработки экспериментальных данных при измерении сопротивлений. Использование статистических методов.

В работе используются:

Набор резисторов (270 штук), универсальный цифровой вольтметр, работающий в режиме "Измерение сопротивлений постоянному току".

2 Теоретические сведения

Среднее значение сопротивления:

$$\langle R \rangle = \frac{1}{N} \sum_{i=1}^{N} R_i$$

N — число резисторов

 R_i — значение сопротивления

Интервал изменения сопротивления:

$$\Delta R = \frac{R_{\text{\tiny MAKC}} - R_{\text{\tiny MUH}}}{m}$$

 $R_{\scriptscriptstyle
m MИH}$ — минимальное сопротивление

 $R_{
m makc}$ — максимальное сопротивление

m — количество частей

Построение гистограммы:

Гистограмму будем строить следующим образом. По оси абсцисс откладываем сопротивление резистора и отмечаем интервалы изменения сопротивления. А по оси ординат над каждым интервалом можно откладывать число результатов Δn , которое попадает в данный интервал. Удобнее будет это число разделить на число всех измерений и на ширину используемого интервала ΔR .

$$y = \frac{\Delta n}{N\Delta R}$$

На том же графике отложим по оси абсцисс среднее значение сопротивления. Для характеристики разброса случайной величины используется среднеквадратичное отклонение

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (R_i - \langle R \rangle)^2}$$

На оси абсцисс полезно будет отметить точки $\langle R \rangle - \sigma$ и $\langle R \rangle + \sigma$, чтобы посмотреть, как располагается гистограмма относительно этих точек.

Используя σ , можно построить функцию распределения Гаусса

$$y = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(R - \langle R \rangle)^2}{2\sigma^2}}$$

Эту зависимость нанесём на гистограмму.

3 Методика измерений

Подготовить вольтметр к работе, включив его в сеть и дав ему прогреться в течение 15-20 минут. Провести измерения сопротивлений резисторов изнабора N=250-300 штук.

4 Используемое оборудование

Обоснование пренебрежения погрешностью при измерении

Поскольку наш цифровой вольтметр обеспечивает точность до сотых долей процента относительной погрешности, погрешностью измерений, связанных с ним можно пренебречь по сравнению с отклонениями от номинала, полученными в процессе изготовления резисторов.

5 Результаты измерений и обработка данных

Результаты измерения сопротивления 270 резисторов

Шуминов					Шульга					Хабибуллин				
498,5	499,3	501,0	496,6	501,3	498,6	501,1	499,2	498,9	500,0	497,2	499,8	498,0	502,8	500,8
500,1	500,5	500,2	497,6	497,6	502,3	501,6	497,0	501,0	500,1	500,2	498,5	498,7	500,3	497,8
498,7	499,3	499,3	501,7	497,7	500,1	498,3	499,2	497,6	500,6	500,6	498,4	499,3	500,4	500,0
499,2	$498,\!8$	499,6	499,9	499,8	499,2	499,1	498,6	498,1	$498,\!8$	497,5	498,7	499,7	500,3	499,8
500,1	500,2	498,1	499,7	502,9	499,4	500,3	502,1	498,9	498,5	499,4	499,1	501,0	497,2	497,9
497,8	498,9	500,1	500,3	499,9	501,1	500,5	500,6	499,9	500,8	500,6	497,7	498,9	499,9	500,6
499,1	498,6	501,6	497,2	499,0	499,9	501,6	499,2	501,2	500,0	499,9	499,3	499,8	$498,\!8$	501,4
499,8	500,2	502,0	499,6	498,6	501,8	499,0	499,9	502,9	497,5	498,1	499,8	504,2	501,0	498,4
499,8	500,1	498,5	500,5	499,4	500,7	501,2	500,4	502,6	500,7	497,8	500,0	498,3	500,9	501,7
500,7	500,9	$498,\!8$	500,7	501,5	502,3	502,5	499,0	497,8	499,2	499,4	499,7	499,3	500,0	501,9
500,0	499,7	500,2	502,3	502,5	499,6	500,3	499,1	501,7	499,5	500,9	500,0	497,8	502,2	498,1
499,8	501,0	$498,\!8$	499,2	499,7	500,9	500,4	499,8	500,1	499,9	500,2	498,5	499,0	501,6	498,3
499,6	498,7	500,2	501,3	504,9	500,8	502,0	500,0	499,6	502,1	499,4	499,7	499,2	499,0	500,6
499,9	499,5	500,6	499,8	499,8	498,6	498,6	500,6	501,4	499,9	500,3	498,2	501,8	499,5	501,7
498,5	500,7	499,3	$498,\!8$	503,3	498,7	500,5	$498,\!8$	501,2	500,1	500,7	497,5	500,2	$498,\!8$	499,4
500,1	499,4	499,5	500,0	501,3	499,9	501,1	500,3	498,6	498,8	499,5	501,0	501,2	503,2	500,6
498,2	498,0	498,0	$498,\!8$	498,2	498,7	499,7	498,9	498,9	500,6	498,3	498,6	500,5	501,9	497,8
497,1	498,1	500,1	499,1	500,3	498,2	498,8	500,4	499,0	500,6	498,7	499,7	498,7	500,6	499,2

Построение графиков

Построим по 2 графика m=10 и m=20 для своих измерений (Шульга), измерений подгруппы (Шуминов, Шульга, Хабибуллин), измерений всей группы, предварительно вычислив $\langle R \rangle$ и σ .

Рис. 1: Графики своих измерений(Шульга)

Рис. 2: Графики измерений подгруппы (Шуминов, Шульга, Хабибуллин)

Рис. 3: Графики измерений всей группы

6 Обсуждение результатов

Сравнение $\langle R \rangle$ с номиналом

Для измерений подгруппы $\langle R \rangle = 499,8$ Ом. Считая 500 Ом номиналом, получаем, что погрешность составляет 0.64%.

Соотвествие гистограммы и распрделения Гаусса

Видно, что Гауссово распрделение соотвествует гистограмме. При увелечении количества измерений соотвествие становится выше. Но при наименьшем количестве измерений (Рис. 1) и сильном разбиении m=20, видны серьезные несоотвествия.

Вероятность попадания в определенный интервал

В интервал от $\langle R \rangle - \sigma$ до $\langle R \rangle + \sigma$ укладывается 85% значений, в интервал от $\langle R \rangle - 2\sigma$ до $\langle R \rangle + 2\sigma$ укладывается 97% значений.

Практически мы получаем, что величина сопротивления резистора, наугад выбранного из данного набора, попадает в интервал $499,80\pm1,35~{\rm Om}$ с вероятностью 46%, в интервал $499,80\pm18~{\rm Om}$ - с вероятностью 97%.

7 Заключение

В данной лабораторной работе были проведены измерения сопротивлений 270 резисторов и осуществлена их статистическая обработка. Мы вычислили среднее значение сопротивления, построили гистограммы и сравнили результаты с нормальным распределением. Работа позволила понять, какие значения сопротивлений наиболее вероятны, и как они соотносятся с ожидаемыми значениями.