

امتحانات انتخاب تیم ایران در المپیاد جهانی زیست شناسی 2020

آزمون اکولوژی

مدت آزمون

90 دقيقه

تاریخ برگزاری

12 خرداد 1399

تعداد سوالات

6 سوال

نكات خاص آزمون

- نمره منفی تمامی سوالات به گونه ای است که امید ریاضی نمره شما در صورت شانسی زدن 0 هست. ولی توصیه میکنم شجاع باشید و سعی کنید توی آزمون گپ بندازید. (صحیح غلط ها هر مورد درست 1 نمره اشتباه منفی 1 نمره)
 - ممكن است تعريف پارامتر ها كمى با آنچه پيش تر از اين علائم صحبت كرديم متفاوت باشد، حواستون باشه.

تجدید نظر	تصحیح دوم	تصحیح اول	در این کادر چیزی ننویسید

سوال ١)

نمودار زیر ایزوکلاین مربوط به دو گونه را نشان میدهد. در این مورد درستی گزاره های زیر را مشخص کنید (5 نمره)

الف) گونه 2 در این رابطه انرژی بیشتری برای سود رساندن به گونه 1 مصرف میکند.
ب) گونه 1 نرخ رشد ذاتی بیشتری دارد.
ج) در این رابطه وجود گونه گونه 1 به گونه 2 وابسته است.
د) این رابطه شبیه هم سفرگی است.
ه) این رابطه شبیه تسهیل است.

قسمت دوم؛

مناسب ترین معادله را برای رشد هر یک از دو گونه انتخاب کنید:N خودگونه و M گونه دیگریست) (مقدار تمام پارامتر ها بزرگتر از صفر است) (هر گزینه را میتوان 2 بار انتخاب کرد. هر پاسخ درست 2 نمره. پاسخ نادرست منفی 0.5 نمره)

 \$ 5 5 5 0/5 5 5
$\frac{dN}{dt} = \frac{rN(k-N-\alpha M)}{k}$ (الف
$\frac{dN}{dt} = rN \frac{(k+M-\alpha N)}{k} (\cdot)$
$\frac{dN}{dt} = rN \frac{K(M-N)}{KM} (z)$
$\frac{dN}{dt} = rN \frac{\alpha M - N}{M} (s)$
$\frac{dN}{dt} = rN(\frac{\alpha M}{N} - 1) \ (\circ$

[

سوال ۲)

گونه ای به دوشکل جنسی و غیرجنسی تولید مثل میکند. در تولید مثل جنسی نرخ تولید مثل این گونه r است و در تولید مثل غیرجنسی نرخ تولید مثل آنها R است (Rبزرگتر از r است) و در اندازه ای از جمعیت به مرور از تولید مثل غیر جنسی به جنسی تغییر روش میدهند: در مورد r گزاره اول بصورت صحیح و غلط مشخص کنید آیا معادله های زیر میتوانند رشد این گونه را نشان دهند. (r نمره)

 $\frac{dN}{dt} = b - dN$ عادله 2:

 (-)
$\frac{dN}{dt} = N(\frac{N^{\theta}}{k+N^{\theta}}r + \frac{k}{k+N^{\theta}}R)$ (الف)
$\frac{dN}{dt} = RN - (R - r)N(\frac{N^{\theta}}{k + N^{\theta}})(\psi)$
$\frac{dN}{dt} = rN + (R - r)N(\frac{k}{k + N\theta}) \ (\varepsilon$
د) در هر سه معادله، هرچه θ بزرگتر باشد، سرعت تغییر سیستم تولید مثلی بیشتر است
ه) در معادله های بالا k اندازه ای از جمعیت را نشان میدهد که تغییر سیستم تولید مثلی در آن اتفاق می افتد.

سوال ٣)

برای رشد گونه ای دو معادله پیشنهاد شده است:

$$\frac{dN}{dt} = rN - b$$
 عادله

در مورد آن درستی گزاره های زیر را بررسی کنید (4 نمره)

الف) در معادله $\frac{b}{a}$ میرسیم اولیه غیر صفری شروع کنیم به اندازه $\frac{b}{a}$ میرسیم
ب) در معادله 1 جمعیت رشد نمایی دارد ولی MVP دارد و ومقدارش $rac{b}{r}$ است
ج) در معدله 2 هرچه مقدار r بیشتر باشد احتمال ایجاد نوسان بیشتر است
د) اگر معادله 2 را به صورت گسسته بنویسیم و مقدار r را زیاد کنیم احتمالا رفتار نوسانی میبینیم

سوال ۴)

در زیر صفحه فاز مربوط به اینترکشن های دو به دو ۳ گونه را میبینید، در مورد این ۳ گونه به سوالات زیر پاسخ دهید: (این صفحه فاز ها در شرایطی رسم شده که تنها دو گونه در محیط هستند)

قسمت اول)

درستی گذاره های زیر را بررسی کنید. در 3 گزاره اول به صورت صحیح غلط مشخص کنید معادله رشد گونه 1 در صفحه فاز گونه 1 و 2 کدام موارد می تواند باشد؟ (M جمعیت گونه دوم است) (M نمره)

	$rac{dN}{dt} = rac{rN(k-n+lpha M^{\mu})}{k}$ (اكف
	$\frac{dN}{dt} = rN \frac{k-N + \frac{\alpha M}{M+\beta}}{k}$ (ب
	$\frac{dN}{dt} = rN(1 - \frac{N}{k} + \frac{\alpha M}{M + \beta}) $ (7)
	د) در معادله ب، ظرفیت محیط برای گونه اول در اندازه های جمعیت پایین گونه دوم، با شیب $\frac{\alpha}{\beta}$ زیاد میشود.
	ه) در معادله ب، هرجه eta بن گتر باشد، گونه 2 ، منبع محدود کننده تری در تعیین ظرفیت محیط برای گونه 1 است

قسمت دوم) (5 نمره)

الف) اگر اندازه جمعیت دو گونه ۱و2 خیلی زیاد باشد، ظرفیت محیط برای گونه 3 به k3+d-c میل میکند.
ب) فضای فاز برای این ۳ گونه تنها $m{1}$ نقطه تعادل پایدار دارد
ج) در فضای فاز این 3 گونه هر گونه یک نال کلاین پایدار دارد(خطی در این فضا که اندازه جمعیت آن گونه درجهت نزدیک شدن به آن تغییر میکند و روی آن تغییرات انداره جمعیت 0 است)
د) در رقابت بین گونه 1 و 3 ، گونه 3 میتواند گونه 1 را منقرض کند ولی گونه 1 به هیچ وجه نمیتواند گونه 3 را منقرض کند.
ه) اگر هر 3 گونه باهم در محیط حضور داشته باشند، تنظیمی که روی جمعیت گونه 2 اتفاق میافتد فیدبک منفی است

ىد

برای رشد هرکدام از جمعیت های مناسب ترین معادله را انتخاب کنید. (میتوانید از هر معادله بیش از 1 بار استفاده کنید) (هر پاسخ اشتباه منفی یک چهارم نمره سوال)

جمعیت 1) جمعیت گوزن ها در جنگل تایگا در فصل زمستان 2 نمره)
جمعیت 2) جمعیت انسان های تهران (0.5 نمره)
جمعیت 3) جمعیت انسان های یک روستا 1 نمره)
جمعیت 4) جمعیت 1 روزه ها (حشره ای از خانواده ephemeroptera) در فصل بهار (2 نمره)

$$N_{t+1}=N_t+rN_t$$
 (ع
$$N_{t+1}=RN_t(K-Nt)$$
 (ج
$$\frac{dN}{dt}=rN$$
 (ب
$$\frac{dN}{dt}=\frac{rN(k-n)}{k}$$
 (ف
$$N_{t+1}=N_t+\frac{rN_t(k-N)}{k}$$
 (ه

سوال 6)

در مورد مدل زیر صحت گزاره های زیر را مشخص کنید (مدل مناسب مدلی است که رفتاری شبیه به واقعیت پیش بینی کند) (5 نمره)

$$\frac{dN}{dt} = -\log\left(\frac{N}{k} * e^b\right)$$

الف) این یک مدل رشد لجستیک است
ب) اگر b مساوی 0 باشد، این مدل برای تعداد ماهی ها در حوض مناسب است، درصورتی که ماهی ها عقیم باشند و
ما پیوسته با نرخ ثابتی ماهی به حوض اضافه کنیم.
ج) اگر b صفر نباشد، این مدل برای رشد جمعیت موش ها در جنگل مناسب است و b تعیین کننده MVP آنهاست.
د) هرچه b بزرگتر باشد، MVP گوچکتر است.
ه) اندازه تعادلی غیر صفر این گونه $rac{k}{e^b}$ است.