LOGICKÉ SYSTÉMY

Prednáška 3, 2014-2015

Ing. Adam Jaroš, PhD - prednášky, cvičenia

Ing. Michal Chovanec -cvičenia

Katedra technickej kybernetiky

Web predmetu: http://frtk.fri.uniza.sk

OPAKOVANIE - ZÁPIS KARNAUGHOVEJ MAPY DO ALGEBRICKEJ FORMY

Popis Karnaughovej mapy.

Disjunktívna forma predstavuje popis "jednotiek" - Konjunktívna forma predstavuje popis "núl".

Na základe použitých logických hradiel upravujeme získanú formu.

<u>Požiadavka je:</u> implementácia s použitím jediného typu logických obvodov (hradiel). To spĺňa:

NAND a NOR

OPAKOVANIE - DISJUNKTÍVNE FORMY

Príklad 1: Zapíšte NDF Karnaughovej mapy.

Riešenie:

$$y = \overline{x1} \cdot x2 \cdot x3 + x1 \cdot \overline{x2} \cdot \overline{x3} + x1 \cdot \overline{x2} \cdot x3$$

Úplná normálna disjunktívna forma - ÚNDF.

OPAKOVANIE - NORMÁLNA SIEŤ – ELEKTRICKÁ SCHÉMA

Elektrická schéme úplnej normálnej disjunktívnej formy:

$$y = \overline{x1} \cdot x2 \cdot x3 + x1 \cdot \overline{x2} \cdot \overline{x3} + x1 \cdot \overline{x2} \cdot x3$$

Vlastnosti normálnej siete sú:

- je bez "spätnej" väzby
- obsahuje vetvenie signálov
- zaťažiteľnosť výstupov *fan-out* (je obmedzená konštrukciou,
 štandardne 10, výkonové hradlá 20)

OPAKOVANIE - ONESKORENIE NORMÁLNEJ SIETE

Pri zmene hodnôt nezávislých (vstupných) premenných sa výstup logického obvodu nezmení okamžite.

Je k tomu potrebný určitý čas.

Zjednodušenie: uvažujeme "*jednotkové*" oneskorenie pre každé logické hradlo.

Priemerné neskorenie log. hradla:

hradlo Invertor 8-12ns

hradlo NAND 10-13ns

Hradlo NOR 12ns

OPAKOVANIE - MINIMALIZÁCIA LOGICKÝCH VÝRAZOV

Minimalizácia zložitosti elektrickej schémy je významnou požiadavkou pri vytváraní logických obvodov.

Spôsoby minimalizácie:

- použitie pravidiel Booleovej algebry
- minimálny zápis Karnaughovej mapy

Cieľ:

Znižujeme tak rozmery, nároky na výkon výstupov (fan-out), vyžarovanie tepla a cenu.

Nevýhody? Rušenie, spoľahlivosť, aplikačné prostredie (vesmírne, lekárske, vedecké, ...).

OPAKOVANIE - PRAVIDELNÁ KONFIGURÁCIA V MAPE (GRAFICKÁ METÓDA)

Pravidelná konfigurácia v Karnaughovej mape zahŕňa skupinu bodov s rovnakou hodnotou. Stupeň pravidelnej konfigurácie označíme s.

Vlastnosti pravidelnej konfigurácie:

- zahŕňa práve 2°s bodov,
- * každý bod má práve s susedných bodov, ktoré sú súčasťou konfigurácie.

Dva body sú susedné, keď sa líšia v hodnote jednej premennej.

Nech je n počet premenných, R rád súčinu a s je stupeň konfigurácie.

Potom platí

$$R = n - s$$

OPAKOVANIE - PRAVIDELNÁ KONFIGURÁCIA V MAPE (GRAFICKÁ METÓDA)

Príklad 2:

Nájdite optimálne konfigurácie v Karnaughovej mape funkcie M3.

Riešenie:

$$v=h1\cdot h2+h2\cdot h3+h1\cdot h3$$

zápis predstavuje optimálne konfigurácie.

Normálna disjunktívna forma - NDF.

Ak sme vytvorili "**najlepšie**" konfigurácie *iredudantná normálna disjunktívna forma* – INDF.

OPAKOVANIE - METÓDA QUINE – MC CLUSKEY PRE MINIMALIZÁCIU LOGICKÉHO VÝRAZU

Pri určovaní optimálnych konfigurácií v počítači je grafická metóda nevhodná.

Autori Quine a Mc Cluskey zostavili tabuľkovú metódu, ktorá je prehľadná a hľadanie konfigurácií pozostáva z niekoľkých krokov.

Popis metódy v učebnici *Logické systémy, 2. vydanie z roku 1986* od autorov Frištacký, Kolesár a kol.

Úloha:

Vytvorte software pre výpočet optimálnych konfigurácií 1) v jednej Karnaughovej mape, 2) vo viacerých mapách (globálna optimalizácia).

OPAKOVANIE - NORMÁLNE FORMY

Cieľom je realizácia normálnej siete s použitím jediného typu logických členov.

Ukážme, že logické funkcie NAND respektíve NOR k tomu postačujú a predstavujú tak úplný systém logických funkcií.

Logická funkcia NAND

$$\overline{a \cdot b} = a|b$$

vytvorenie negácie: $\overline{a \cdot a}$

 $\overline{a \cdot a} = a|a = \overline{a} = a|$

vytvorenie logického súčtu: $(a|)|(b|) = \overline{a}|\overline{b} = \overline{a} \cdot \overline{b} = \overline{a} \vee \overline{b} = a \vee b$

vytvorenie logického súčinu: $(a|b)| = \overline{\overline{a \cdot b}} = a \cdot b$

Logická funkcia NOR

$$\overline{x_1 \lor x_2} = x_1 \downarrow x_2$$

vytvorenie negácie: $\overline{a \lor a} = a \downarrow a = \overline{a} = a \downarrow$

vytvorenie logického súčinu: $(a\downarrow)\downarrow(b\downarrow)=\overline{a}\overline{\sqrt{b}}=\overline{a\cdot b}=a\cdot b$

vytvorenie logického súčtu: $(a \downarrow b) \downarrow = \overline{a \lor b} = a \lor b$

OPAKOVANIE - 1. NORMÁLNA SHAFFEROVA FORMA

Zápis NDF(INDF) prevedieme do **Shafferovej** a **Pierceovej** funkcie úpravami výrazu podľa pravidiel Booleovej algebry a použitím De Morganových zákonov.

1. Normálna Shafferova forma (1. NSF), log. funkcia NAND

$$y = \underbrace{(x_{11}|x_{12}| \dots |x_{1a})|(x_{21}|x_{22}| \dots |x_{2b})| \dots |(x_{n1}|x_{n2}| \dots |x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) \cdot (x_{21} \cdot x_{22} \cdot \dots \cdot x_{2b}) \cdot \dots \cdot (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) + (x_{21} \cdot x_{22} \cdot \dots \cdot x_{2b}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) + (x_{21} \cdot x_{22} \cdot \dots \cdot x_{2b}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) + (x_{21} \cdot x_{22} \cdot \dots \cdot x_{2b}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) + (x_{21} \cdot x_{22} \cdot \dots \cdot x_{2b}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) + (x_{21} \cdot x_{22} \cdot \dots \cdot x_{2b}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) + (x_{21} \cdot x_{22} \cdot \dots \cdot x_{2b}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) + (x_{21} \cdot x_{22} \cdot \dots \cdot x_{2b}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) + (x_{21} \cdot x_{22} \cdot \dots \cdot x_{2b}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) + (x_{21} \cdot x_{22} \cdot \dots \cdot x_{2b}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) + (x_{21} \cdot x_{22} \cdot \dots \cdot x_{2b}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) + (x_{12} \cdot \dots \cdot x_{2b}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) + (x_{12} \cdot \dots \cdot x_{2b}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) + (x_{12} \cdot \dots \cdot x_{2b}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) + (x_{12} \cdot \dots \cdot x_{2b}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) + (x_{12} \cdot \dots \cdot x_{2b}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}) + (x_{12} \cdot \dots \cdot x_{na}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{na}) + (x_{12} \cdot \dots \cdot x_{na}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm})}_{= \underbrace{(x_{11} \cdot x_{12} \cdot \dots \cdot x_{na}) + \dots + (x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{na})}_{= \underbrace{(x_{11} \cdot$$

Pravidlá pre prepis NDF(INDF) do 1. NSF:

- súčiny uzavrieme do zátvoriek
- všetky operátory nahradíme Shafferovým operátorom

Výnimky.

OPAKOVANIE - 2. NORMÁLNA PIERCEOVA FORMA

2. Normálna Pierceova forma (2. NPF), log. funkcia NOR

$$y = [(x_{11} \downarrow x_{12} \downarrow \cdots \downarrow x_{1a}) \downarrow (x_{21} \downarrow x_{22} \downarrow \cdots \downarrow x_{2b}) \downarrow \cdots \downarrow (x_{n1} \downarrow x_{n2} \downarrow \cdots \downarrow x_{nm})] \downarrow$$

$$= \overline{(\overline{x_{11} \lor x_{12} \lor \dots \lor x_{1a}}) \lor (\overline{x_{21} \lor x_{22} \lor \dots \lor x_{2b}}) \lor \dots \lor (\overline{x_{n1} \lor x_{n2} \lor \dots \lor x_{nm}})} = (\overline{x_{11} \lor x_{12} \lor \dots \lor x_{1a}}) \lor (\overline{x_{21} \lor x_{22} \lor \dots \lor x_{2b}}) \lor \dots \lor (\overline{x_{n1} \lor x_{n2} \lor \dots \lor x_{nm}})} = (\overline{x_{11}} \cdot \overline{x_{12}} \cdot \dots \cdot \overline{x_{1a}}) + (\overline{x_{21}} \cdot \overline{x_{22}} \cdot \dots \cdot \overline{x_{2b}}) + \dots + (\overline{x_{n1}} \cdot \overline{x_{n2}} \cdot \dots \cdot \overline{x_{nm}})$$

Pravidlá pre prepis NDF(INDF) do 1. NSF:

- súčiny uzavrieme do zátvoriek
- všetky operátory nahradíme Pierceovým operátorom
- negujeme každú premennú
- na celý výraz aplikujeme Pierceov operátor (operácia negácie)

Výnimky.

OPAKOVANIE - KONJUNKTÍVNE FORMY

Príklad 3:

Zapíšte NKF.

Riešenie:

$$y = (a \lor \overline{b} \lor c) \cdot (a \lor \overline{b} \lor \overline{c}) \cdot (\overline{a} \lor \overline{b} \lor \overline{c})$$

Úplná normálna konjunktívna forma – ÚNKF.

Výrazy v zátvorkách voláme pre ÚNKF mintermy a pri ÚNDF maxtermy.

OPAKOVANIE - KONJUNKTÍVNE FORMY

Konfigurácie v Karnaughovej mape z "núl".

Príklad:

Zapíšte NKF.

$$y = (a \lor \bar{b}) \cdot (\bar{b} \lor \bar{c})$$

Normálna konjunktívna forma - NKF.

Iredundantná normálna konjunktívna forma – INKF.

Príklad 4:

Nájdite INKF v Karnaughovej mape funkcie M3.

Riešenie:

$$v = (h2 \lor h3) \cdot (h1 \lor h2) \cdot (h1 \lor h3)$$

OPAKOVANIE - 1. NORMÁLNA PIERCEOVA FORMA

Zápis NKF(INKF) prevedieme do Pierceovej a Shafferovej funkcie úpravami výrazu podľa pravidiel Booleovej algebry a použitím De Morganových zákonov.

1. Normálna Pierceova forma (1. NPF), log. funkcia NOR

$$\begin{split} y &= (x_{11} \downarrow x_{12} \downarrow \cdots \downarrow x_{1a}) \downarrow (x_{21} \downarrow x_{22} \downarrow \cdots \downarrow x_{2b}) \downarrow \cdots \\ &\qquad \qquad \downarrow (x_{n1} \downarrow x_{n2} \downarrow \cdots \downarrow x_{nm}) \\ &= \overline{(\overline{x_{11} \lor x_{12} \lor \dots \lor x_{1a}}) \lor (\overline{x_{21} \lor x_{22} \lor \dots \lor x_{2b}}) \lor \dots \lor (\overline{x_{n1} \lor x_{n2} \lor \dots \lor x_{nm}})} \\ &= (\overline{x_{11} \lor x_{12} \lor \dots \lor x_{1a}}) \cdot (\overline{x_{21} \lor x_{22} \lor \dots \lor x_{2b}}) \cdot \dots \cdot (\overline{x_{n1} \lor x_{n2} \lor \dots \lor x_{nm}}) \\ &= (x_{11} \lor x_{12} \lor \dots \lor x_{1a}) \cdot (x_{21} \lor x_{22} \lor \dots \lor x_{2b}) \cdot \dots \cdot (x_{n1} \lor x_{n2} \lor \dots \lor x_{nm}) \end{split}$$

Pravidlá pre prepis NKF(INKF) do 1. NPF:

- súčiny uzavrieme do zátvoriek
- všetky operátory nahradíme Pierceovým operátorom

Výnimky.

OPAKOVANIE - 2. NORMÁLNA SHAFFEROVA FORMA

2. Normálna Shafferova forma (2. NSF), log. funkcia NAND

$$y = \underbrace{ [(x_{11}|x_{12}|\dots|x_{1a})|(x_{21}|x_{22}|\dots|x_{2b})|\dots(x_{n1}|x_{n2}|\dots|x_{nm})]|}_{= \underbrace{(\overline{x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}}) \cdot (\overline{x_{21} \cdot x_{22} \cdot \dots \cdot x_{2b}}) \cdot \dots \cdot (\overline{x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm}})}_{= \underbrace{(\overline{x_{11} \cdot x_{12} \cdot \dots \cdot x_{1a}}) \cdot (\overline{x_{21} \cdot x_{22} \cdot \dots \cdot x_{2b}}) \cdot \dots \cdot (\overline{x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm}})}_{= \underbrace{(\overline{x_{11}} + \overline{x_{12}} + \dots + \overline{x_{1a}}) \cdot (\overline{x_{21}} + \overline{x_{22}} + \dots + \overline{x_{2b}}) \cdot \dots \cdot (\overline{x_{n1} \cdot x_{n2} \cdot \dots \cdot x_{nm}})}_{\cdot (\overline{x_{n1}} + \overline{x_{n2}} + \dots + \overline{x_{nm}})}$$

Pravidlá pre prepis NKF(IKDF) do 2. NSF:

- súčty uzavrieme do zátvoriek
- všetky operátory nahradíme Shafferovým operátorom
- negujeme každú premennú
- na celý výraz aplikujeme Shafferovým operátor (operácia negácie)

Výnimky.

OPAKOVANIE - NEÚPLNE DEFINOVANÁ LOGICKÁ FUNKCIA

V praxi sa často stretávame s prípadmi, kedy výstup nie je definovaný pre všetky možné resp. reálne kombinácie vstupných hodnôt.

Potom zápis pravdivostnej tabuľky je *redukovaný* a v Karnaughovej mape máme "*prázdne*" miesta.

Tieto prípady umožňujú návrhárovi vhodne "dodefinovať" prázdne miesta a to tak, aby sme dosiahli zjednodušenie riešenia.

NEÚPLNE DEFINOVANÁ LOGICKÁ FUNKCIA

Príklad

Určte optimálne konfigurácie a zapíšte výrazy pre INDF a INKF v Karnaughovej mape

a)		d			
b a	0	0	0	1	
	1	Χ	0	Χ	
	1	1	0	0	
"	0	Х	1	1	
-		3	ÿ		

Riešenie

Zakreslíme a popíšme konfigurácie "jednotiek" a "núl".

INDF:
$$y = b \cdot \bar{d} + a \cdot \bar{b} \cdot d + \bar{b} \cdot \bar{c} \cdot d$$
,

INKF:
$$y = (b \lor d) \cdot (\overline{b} \lor \overline{d}) \cdot (a \lor \overline{c}).$$

OPAKOVANIE - KONTAKTNÉ SYSTÉMY

Stavebné prvky: kontakty.

Reprezentácia logických úrovní: log. 0 – "kľudový stav" (tlačidlo je uvoľnené),

log. 1 - "akcia".

Základnými stavebnými prvkami sú invertor, logický súčet a logický súčin.

PREDNÁŠKA 3

Raspberry Pi

Témy prednášky:

- Prehľad normálnych foriem
- Kontaktné systémy (pokračovanie)
- Návrh zložitých kombinačných systémov, štrukturálna dekompozícia 3)

B+

PREHĽAD NORMÁLNYCH FORIEM

Popis Karnaughovej mapy a spôsoby ich prepisu s použitím De Morganových pravidiel do normálnych foriem (Pierceová a Shafferova).

Príklad

Zakreslite kontaktnú reprezentáciu funkcie M3 (majorita z troch, príklad hlasovacieho systému).

Riešenie

Kontaktná štrukturálna schéma hlasovacieho systému.

Príklad

Zakreslite kontaktnú sieť a elektrickú schému z logických členov NAND a NOR kombinačného logického obvodu zadaného Karnaughovou mapou.

Riešenie

Zapíšme si výrazy pravidelných konfigurácií zakreslených v obrázku – NDF modrou a NKF zelenou farbou.

INDF:
$$y = (a \cdot \bar{c}) + (\bar{a} \cdot c) + (\bar{b} \cdot c)$$

INKF:
$$y = (a+c) \cdot (\bar{a} + \bar{b} + \bar{c})$$

Riešenie

pokračovanie

INDF:
$$y = (a \cdot \bar{c}) + (\bar{a} \cdot c) + (\bar{b} \cdot c)$$

INKF:
$$y = (a+c) \cdot (\bar{a} + \bar{b} + \bar{c})$$

Kontaktná sieť vytvorená zo zápisu INDF.

Riešenie

pokračovanie

INDF:
$$y = (a \cdot \bar{c}) + (\bar{a} \cdot c) + (\bar{b} \cdot c)$$

INKF:
$$y = (a+c) \cdot (\bar{a} + \bar{b} + \bar{c})$$

Kontaktná sieť vytvorená zo zápisu INKF.

Riešenie

pokračovanie

Výrazy prepíšme do príslušných foriem - INDF do 1. NSF a INKF do 1. NPF.

INDF zapísaná v 1. NSF: $y = (a|\bar{c})|(\bar{a}|c)|(\bar{b}|c)$

INKF zapísaná v 1. NPF: $y = (a \downarrow c) \downarrow (\bar{a} \downarrow \bar{b} \downarrow \bar{c})$

Riešenie

pokračovanie

INDF zapísaná v 1. NSF: $y = (a|\bar{c})|(\bar{a}|c)|(\bar{b}|c)$

INKF zapísaná v 1. NPF: $y = (a \downarrow c) \downarrow (\bar{a} \downarrow \bar{b} \downarrow \bar{c})$

Normálna sieť 1. NSF

Riešenie

pokračovanie

INDF zapísaná v 1. NSF: $y = (a|\bar{c})|(\bar{a}|c)|(\bar{b}|c)$

INKF zapísaná v 1. NPF: $y = (a \downarrow c) \downarrow (\bar{a} \downarrow \bar{b} \downarrow \bar{c})$

Normálna sieť 1. NKF.

Spôsob kreslenia 1. vrstvy siete, kedy inverziu vstupnej premennej kreslíme vždy len raz.

Príklad

Navrhnite a zakreslite kontaktnú sieť chodbového resp. schodiskového prepínača osvetlenia. Rozšírte riešenie pre jednu a dve odbočky.

Riešenie

Riešenie úlohy spočíva v použití kontaktného prevedenia funkcie XOR.

Riešenie

pokračovanie

So špeciálnym typom prepínača je možné riešiť ľubovoľný počet odbočiek.

Princíp "krížového" prepínača.

Riešenie

pokračovanie

So špeciálnym typom prepínača je možné riešiť ľubovoľný počet odbočiek.

Princíp "krížového" prepínača.

PRINCÍPY HĽADANIA "OPTIMÁLNEHO" RIEŠENIA

- pravidelné konfigurácie
- použitie pravidiel Booleovej algebry (zátvorkové pravidlá)
- v praxi sú obmedzenia dané použitou súčiastkovou základňou a požiadavkami na vlastnosti zapojenia, napr. rýchlosť.
- v súčasnosti vieme riešiť exaktne úlohy len s malým počtom premenných
- pri hľadaní optimálnych konfigurácií
 v logickom systéme s viacerými výstupmi
 je možné aplikovať globálnu optimalizáciu.

Zákon a	a+a=a absorpcie:	a.a=a		
a+a.b=a Zákon absorpcie negácie:		a.(a+b)=a		
	$a + \bar{a}.b = a + b$	$a.(\bar{a}+b)=a.b$		
Distributívny zákon:				
Napr.:	a+(b.c)=(a+b).(a+c) a+(a.b)=a	a.(b+c)=a.b+a.c $a.(a+b)=a$		
	$a.b + \bar{a}.b = b$	$(a+b).(\bar{a}+b)=b$		
Neutrálnosť nuly a jednotky:				
a+0=a Agresívnosť nuly a jednotky:		a.1=a		
a+1=1 Zákon vylúčenia tretieho:		a.0=0		
	$a + \bar{a} = 1$	$a.\bar{a}=0$		
De Morganove zákony:				
	$\overline{a+b} = \bar{a}.\bar{b}$	$\overline{a.b} = \overline{a} + \overline{b}$		

Princíp spočíva vo vytváraní takých pravidelných konfigurácií, ktoré sa dajú aplikovať vo viacerých Karnaughových mapách súčasne.

Uveďme si zátvorkové pravidlá Booleovej algebry.

$$(a+b) \cdot (a+c) = a+b \cdot c$$
$$a \cdot b + a \cdot c = a \cdot (b+c)$$

Elektrické schémy zátvorkových pravidiel

Príklad

Aplikujte zátvorkové pravidlá na zadanú NDF

$$y = a \cdot \bar{c} + b \cdot d + \bar{c} \cdot d$$

Riešenie

Pre aplikovanie pravidla máme dve možnosti, premenné \overline{c} a d. Aplikujme pravidlo na prvý a posledný súčin:

$$y = \bar{c} \cdot (a+d) + b \cdot d$$

Výsledok zjednodušenia je na obrázku.

Riešenie

pokračovanie

Pokračujme aplikovaním pravidla po druhý krát. K výrazu najskôr pripočítajme $\overline{c}\cdot d$

$$y = \bar{c} \cdot (a+d) + b \cdot d + \bar{c} \cdot d$$

= $\bar{c} \cdot (a+d) + d \cdot (b+\bar{c})$

Výsledok druhého zjednodušenia je na obrázku.

Záver

Ak je nejaký súčin použitý v zátvorkovej forme je nevhodné použiť rovnaký súčin v ďalšej zátvorkovej forme, viď. počet hradiel v zapojeniach na obrázkoch.

Príklad

Aplikujte zátvorkové pravidlá na zadanú NKF, ktorej zapojenie je na obrázku.

Zapíšte výsledok do 1. NPF a 2. NSF.

$$y = (a + \bar{b}) \cdot (b + \bar{c}) \cdot (a + c)$$

Výsledok zjednodušenia.

Platí rovnaký "záver" ako pri NDF.

pokračovanie

Úpravu do 1. NPF prevedieme za pomoci substitúcie $K = \bar{\underline{b}} \cdot c$:

$$y = (a + K) \cdot (b + \overline{c})$$

$$= (a \downarrow K) \downarrow (b \downarrow \overline{c})$$

$$= (a + K) \cdot \overline{K}$$

$$= a \cdot \overline{K} = \overline{a} \downarrow K$$

kde

$$K = \overline{b} \cdot c = \overline{\overline{\overline{b} \cdot c}} = \overline{b \vee \overline{c}} = b \downarrow \overline{c}$$

si upravíme s použitím De Morganovho pravidla a zákona absorpcie po dosadení dostaneme

$$y=\bar{a}\downarrow(b\downarrow\bar{c})$$

pokračovanie

Úpravu do 2. NSF prevedieme podobne za pomoci substitúcie

$$K = \overline{b} \cdot c = \overline{\overline{b} \cdot c} = (\overline{b}|c)|$$

a získame:

$$y=[a|(\overline{b}|c)]|$$

Elektrické schémy

Štrukturálna schéma funkcie y = f(a, b, c) vytvorená z hradiel NOR a NAND.

Existujú logické obvody, ktoré vo svojej štruktúre obsahujú jednoduchší blok, ktorý sa opakuje. Tento blok nazývame *iteratív*.

Pri návrhu logického obvodu s opakovanou štruktúrou najskôr hľadáme popis správania sa iteratívu.

Snažíme sa vytvoriť *iteratív* čo najmenší a s minimálnym počtom vstupných signálov.

Definujeme vzťahy medzi blokmi. Tomuto spôsobu návrhu hovoríme štrukturálna dekompozícia.

Tento prístup vedie na pomalšie systémy.

Patria tu napr. sčítačky, násobičky, deliče frekvencie, čítače a iné.

Príklad

Navrhnite a zakreslite schému 8-bitovej binárnej sčítačky metódou štrukturálnej dekompozície. Určte celkové oneskorenie sčítačky.

Princíp logického systému s opakovanou štruktúrou a *n*-bitová binárna sčítačka.

Riešenie

Uveďme si matematický princíp sčítavania dvoch čísel bez znamienka.

Z princípu sčítavania je zrejmá štruktúra iteratívu, ktorá je na obrázku. Prípad nultého bitu môže byť vyriešený samostatne.

Riešenie

pokračovanie

Karnaughove mapy pre oba prípady spolu s pravidelnými konfiguráciami.

Riešenie

pokračovanie

Zapíšme si NDF všetkých výstupných premenných.

$$\begin{split} c_i &= p_{i-1} \cdot \overline{a}_i \cdot \overline{b}_i + p_{i-1} \cdot a_i \cdot b_i + \overline{p}_{i-1} \cdot a_i \cdot \overline{b}_i + \overline{p}_{i-1} \cdot \overline{a}_i \cdot b_i \\ p_i &= p_{i-1} \cdot a_i + p_{i-1} \cdot b_i + a_i \cdot b_i \\ c_0 &= a_0 \cdot \overline{b}_0 + \overline{a}_0 \cdot b_0 \\ p_0 &= a_0 \cdot b_0 \end{split}$$

a preved'me ich do 1. NSF

$$c_{i} = (p_{i-1}|\bar{a}_{i}|\bar{b}_{i})|(p_{i-1}|a_{i}|b_{i})|(\bar{p}_{i-1}|a_{i}|\bar{b}_{i})(\bar{p}_{i-1}|\bar{a}_{i}|b_{i})$$

$$p_{i} = (p_{i-1}|a_{i})|(p_{i-1}|b_{i})|(a_{i}|b_{i})$$

$$c_{0} = (a_{0}|\bar{b}_{0})|(\bar{a}_{0}|b_{0})$$

$$p_{0} = (a_{0}|b_{0})|$$

Riešenie

pokračovanie

$$\begin{array}{l} c_i = (p_{i-1}|\bar{a}_i|\bar{b}_i)|(p_{i-1}|a_i|b_i)|(\bar{p}_{i-1}|a_i|\bar{b}_i)(\bar{p}_{i-1}|\bar{a}_i|b_i)\\ p_i = (p_{i-1}|a_i)|(p_{i-1}|b_i)|(a_i|b_i)\\ c_0 = (a_0|\bar{b}_0)|(\bar{a}_0|b_0)\\ p_0 = (a_0|b_0)| \end{array}$$

Výsledné zapojenie jedného iteratívu je na obrázku. Jedná sa o zapojenie jednobitovej plnej sčítačky. Naopak špeciálny prípad (bez prenosového vstupu) popísaný v obrázku (vpravo) predstavuje polovičnú sčítačku.

Jednobitová plná sčítačka, realizácia použitím logických hradiel NAND.

Riešenie

pokračovanie Výpočet oneskorenia sčítačky.

Ak uvažujeme jednotkové obneskorenie každého hradla je celkové oneskorenie 8-bitovej sčítačky rovné 3+2.7 = 17 časových jednotiek od okamžiku pripojenia vstupných čísel *a*, *b* až po získanie platného výsledku *c*.

To je cena za jednoduchý návrh.

Riešenie

pokračovanie Praktická aplikácia sčítačky.

V praxi sa častejšie používa zapojenie s hradlami XOR.

Zapíšme si výrazy pre polovičnú a plnú sčítačku.

Polovičná sčítačka: $c_i = a_i \oplus b_i$

 $p_i = a_i \cdot b_i$

Plná sčítačka: $c_i = (a_i \oplus b_i) \oplus p_{i-1} = a_i \oplus b_i \oplus p_{i-1}$

 $p_i = a_i \cdot b_i + p_{i-1} \cdot (a_i \oplus b_i)$