Organização de Computadores Digitais

Lista de Exercícios 11/2016

Prof. Eduardo Simões

Para as questões seguintes, considere as instruções da Tabela I e a arquitetura da figura 1 abaixo.

Tabela I – Instruções do processador

LOAD Rx #Nr	LOAD Rx END	LOAD Rx Ry	MOV Rx Ry
NOP	STORE END Rx	STORE Rx Ry	ADD Rx Ry Rz
SUB Rx Ry Rz	MUL Rx Ry Rz	DIV Rx Ry Rz	AND Rx Ry Rz
OR Rx Ry Rz	XOR Rx Ry Rz	NOT Rx Ry	SHIFT RX
JMP	CMP	CALL	RTS
PUSH Rx	POP Rx	INCHAR Rx	OUTCHAR Rx Ry
INC Rx	DEC Rx		

Figura 1:

1ª Questão: Quais são os 4 componentes de um processador e suas funções?

- 2ª Questão (BARRAMENTO): Dado um barramento A de 16 bits:
 - a) Desenhe um circuito capaz de Zerar sob um comando (Zera = 1) os 8 bits menos significativos de A;
 - b) Desenhe um circuito capaz de Zerar sob um comando (Zera = 1) os 8 bits mais significativos de A;
 - c) Desenhe um circuito capaz de Zerar sob um comando (Zera = 1) os bits A6, A7 e A8 de A;
 - d) Dado um Barramento B de 8 bits, desenhe um circuito capaz de realizar a seguintes operações: $A(15-8) \le A(7-0)$; $A(7-3) \le B(7-3)$ e $A(2-0) \le 101$ ". Obs.: isso é equivalente a: $A(15-0) \le A(7-0) + B(7-3) + 101$ ".
- 3ª. Questão (MEMÓRIA): Construa uma Memória de 64k x 16 bits da seguinte maneira:
 - a) Desenhe uma célula de memória mínima de 1 bit, contendo sinais de Read/Write, clock, DataIn e DataOut.
 - b) Desenhe uma célula de Memória de 16 bits utilizando Flip-flops do tipo D sensível a borda de clock, contendo sinais de Read/Write, clock, DataIn e DataOut.
 - c) Desenhe uma Memória completa com 64K células de 16 bits utilizando Flipflops do tipo D sensível a borda de clock, contendo sinais de Read/Write, clock, enable, DataIn e DataOut.
- 4ª. Questão (REGISTRADORES): Dadas as Instruções que o Processador deve executar, inclusive aquelas específicas dos 4 Registradores de propósito geral (LOAD, SHIFT, ROTATE, STORE), pergunta-se:
 - a) Que funcionalidades devem ter os registradores IR, MAR, PC, Rx?
 - b) Desenhe estes registradores contendo estas funções.
 - c) Acrescente um circuito capaz de realizar as Instruções de INC e DEC para os registradores ligados à ULA (Rx);
- 5^a. Questão (ULA): Considerando-se uma ULA somadora/subtratora de 16 bits:
 - a) Desenhe o circuito de um Somador de 16 bits utilizando o circuito de um Somador Completo (SC) de 1 bit;
 - b) Acrescente os dispositivos necessários para que o Somador de 16 bits possa também realizar Subtrações;
 - c) Acrescente o circuito do Flag de Carry, contendo Load, Set, Reset e Clock;
 - d) Acrescente o circuito dos Flags de Zero e de Overflow, contendo Reset, Load e Clock;
 - e) Desenhe na ULA o circuito de um Comparador para determinar se Rx > Ry, se Rx < Ry ou se Rx = Ry;
 - f) Acrescente os circuitos dos Flags de Maior, Menor e Igual, contendo Reset, Load e Clock;
- 6ª Questão: Quais são as funções dos seguintes registradores: PC contador de programa; IR registrador de instruções; MAR registrador de endereçamento à memória; MBR registrador temporário de dados?

7ª Questão: O que acontece especificamente nos ciclos de Busca e Execução?

8ª Questão: O que acontece especificamente depois que o código da instrução é armazenado no IR, nas seguintes possibilidades:

Processador-Memória:

Processador-E/S:

Processamento de dados:

Controle:

9^a Questão: Explique o seguinte ciclo de instrução:

10^a Questão: Explique o que é interrupção e dê exemplos dos seguintes tipos:

- a) Software:
- b) Clock:
- c) E/S:
- d) Falha de hardware:

11ª Questão: Explique o seguinte ciclo de instrução com interrupção:

12ª Questão: Explique o que ocorre quando o processador precisa se conectar com um dispositivo de E/S por meio do módulo de E/S. Quais as funções do módulo de E/S

- 13ª Questão: Explique as três técnicas de operações de entrada e saída:
 - a) E/S programada (processador, sem interrupção)
 - b) E/S dirigida por interrupção (processador, com interrupção)
 - c) Acesso direto à memória (DMA Direct Memory Access) (diretamente com interrupção)
- 14ª Questão: Explique o que acontece neste fluxo de entrada e saída com interrupção:

15ª Questão: Explique o tratamento de múltiplas interrupções com prioridade:

16ª Questão: Explique as diferenças entre os três formas de E/S:

E/S Interrupção

Taxa de Transferência pequena

Processador parcialmente liberado

E/S Programada

Taxa de Transferência pequena

Processador ocupado

DMA – Acesso Direto à Memória

Taxa de Transferência alta

Processador liberado

- 17ª Questão: Explique o que acontece nas 2 maneiras de se implementar o DMA:
 - a) Força o uso do barramento -> suspende o processador temporariamente
 - b) Usando de modo transparente do barramento-> a transferência é mais lenta

18ª Questão: Compare E/S por Acesso Direto à Memória (DMA) nos três diferentes tipos de barramento:

19ª Questão: Qual é a vantagem quando o Módulo de E/S ganha uma memória local própria

20ª Questão: O que acontece nas duas maneiras de transferir dados usando DMA:

- a) third-party DMA:
- b) first-party DMA: