Matrix

M	I	T R R	E L E	V E	I :	I Z	A	A E	Y	L	Y	M N
Т		M	S	A U	Y :	I		ΕΙ	U	J		G
L		K	F	0	E I	K		Y L				R
С		S	P	A								Н
•		N	N									
		S										

První písmena?

Jaroslav Seifert byl <u>významný český básník</u>. Leoš Janáček pocházel <u>z Hukvald</u>. Hode só <u>naše</u>. Intersob se koná <u>v Brně</u>. Najvyššia hora Slovenska sa volá <u>Gerlachovský štít</u>.

Sousloví

mimo jaro rtové klíště kabát z paží dovážej mravence síťuj její země alfo, vsaď dostat ji (infinitiv) autový mazlíček borovicové jablko

Řada

1, 11, 21, 1211, 111221, 312211, ?

Obrázková

Kdo to má číst?!

BBEBBMBMMBBBBBGMBBOBBMMBBBMMMBBWOFEBBBQBMMMMMOptSSOWWBBZbJUBPoApQBBFJXtYjYABBBBMMMBBMBBMMMBMBMBMBGZvopjijcoPtijYJCtOW WWBBBMBBBMMMMBQWQWQQQQQWQWQBBBZJjYzbBBBBBFXiiijMMMMMMAOSSnoWMBMBBBBBMBBEGFFBBUEOEEBQQBMBMBZQBzFpJWBBQXJnoBQWEEAEEO MBBBBBQQQWMMMMBQGEEQOQOQQQQQQQQBBBBMMMBMMBWEJYvviiittJtSnzSonStoCtjXYXCttntoFdPZPEZdAAoAAPZEOQviiiiiiiiiiiimmMMMMMBWBBQ BBBBWWWBWQQOBBMMBOddOOOEQEEbEZEbOBMMMBOdZIpPOQWQWQOJtCCjCtoSFZISOSFSzoFFAoAAdpZAZAZAEbEbObdpIivvvvvviiiBMMMMMMMMMMMMM MW-v-XjunBMMBBBMMMMMBMMMBOYicAcviiCbOOFpndOdEwdZPbdBMBBBBBAdJJZbMMMBBMBMMBjjiviibWPQOEovUOWBOPJPBBBMBMMBEQQQOOWnYcUBB OBACXndAMMINIQQBMMMMMBQdBOEbWWJv1cWWBMMMMQUSUzzpOWMMBQBBBBMMMMMMMMMMBBQBBBBAPWMMMObFAbBBBBBBBBBBBBBBBBBDGGEEdBWDZOOO MMMMBBBpadpZQMMBBMBBMBBMBBBWBBMMMOBWQMMMBQZPEWEBBMBMBBMMBFAFFIWBMMMMMZ-CIOBMMMMMMMMBMMESOOQQEdSpFWpAIAoZBMMMMMMBZJZ OQBOQFIZQQFSIonUWMMMMMBUFAOIQOBBBBMBWAYcv1XnUBBoBBBBMBMMBBMMMBDPpUPpbEBBMMMBWBBQoQBBBQBMMMMMMMMMMMMMMMMMMMMMMBbZv BWQWWBBMMMMMMBBdUozJJOMMMMBBMMMMBWBBMMMOZQQBBMMS1pUAISzdBMMMMMMBBBQWWWBMBMBMMMMMBQBMBBOPpBBBBBBBBBBBBBBBBBBBBB JYJtoUEQBMMBBMBWOZEOOBMMBIZPBMMMBMMBQEBMMMMMMMBWDWBMMMBBBWMMMMMMMMMBtvvcjtjcvcvvicpZAZAbEBMMBWBMBBBBQQOQQWWBQQQWD иЕВВЫХОВИМИМИМВВВИМИМИМИМИМИМВИМВОВИМИВИМИМООВТіїї «СЕВИМВИМИМИМИМИВООА» АІZЕVІЇЇЇЇ ІЇ ІЙ ВИМИВВВИВВВВВВВВОВОВ БИРЕДИМВИМИВРЕМИМВОООООФИДИО SFSDOWFZWBMMMMMMMMMBBBQZOWOEWPQMMMMMMMMEQBBDSjtvvvjWMBBMMMMBBBMMBBWMBBWBQWWQEOOQQQBMM MBMBBBBOQBBBBOEZWBBBBZdZEbEEWWBBMMBEZJnOWBBBBBBBBMMMBBBWQdZFZJJtntntJtnJFUUZUFIFUZISSCjcviiiivvcvcvcvcvcviibBQBBBBBBWQZ

SOB

О В S В О В В S S 0 S S В S 0 S В 0 S В 0 0 В S S В 0 0 S 0 В 0 В В S S В S В В В 0 S 0 S В S 0 В 0 В 0 0 В S В В 0 S В S S В S О S В 0 В 0 В S В В S S 0 В В В S В S В S 0 В 0 В 0 0 0 0 0 0 S S О S S В 0 S В 0 В 0 В 0 В S 0 В 0 0 S S В О 0 S 0 В В S 0 В 0 0 0 В S S В В 0 S S 0 0 0 В В В В S S 0 В S S В О 0 В В S В В S О 0 0 0 S В В S S 0 S 0 S 0 S 0 S 0 В В 0 0 S S В S В S S В О В S В В Ο 0 О 0 В S В В В 0 0 S 0 S В Ο В В S 0 S S В В 0 0 0 В 0 В 0 S

Slalom

Do každého čtverce zakreslete právě jednu z diagonál. Každé číslo v kroužku udává, kolik diagonál do něj vede. Čáry nesmí nikde v obrazci vytvořit uzavřený okruh. Jako řešení vypište pro každý řádek počet stoupajících diagonál. (Pro příklad je to: 2031.)

Šipky

Do prázdných políček okolo tabulky nakreslete šipku směřující vodorovně, svisle nebo šikmo. Všechny šipky musí směřovat dovnitř čtverce. Čísla v tabulce udávají, kolik šipek na ně ukazuje.

Jako řešení vypište světové strany, kam ukazují šipky nad tabulkou zleva doprava. (Pro příklad je to: J-J-JZ.)

0	2	က	_	
က	4	က	2	
4	2	4	3	
_	2	က	0	

Příklad

•	1)	3	
-	4	2	6	•
-	8	9	9	•
	#	#		
]
	1	0	3	
	4	2	9	
	3	5	2	

2	2	7	3	
2	1	3	4	
	2	_	4	
_	က	4	2	

Pilulky

Vložte do obrazce 10 pilulek velikosti 1×3 políčka (v příkladu jen 3 pilulky) tak, aby se vzájemně nepřekrývaly. Každá pilulka musí pokrývat jiný součet čísel od 1 po 10. Pro každý řádek i sloupec je zadaný celkový součet čísel uvnitř pilulek.

Jako řešení zapište pro pilulky od 1 do 10, zda leží vodorovně (V) nebo svisle (S). (pro příklad je to: SVS.)

				2			
				က			
13	4	4	7	4	2	4	0
2	0	2	_	3	2	0	7
3	0	0	0	က	2	3	2
∞	2	2	7	3	3	0	3
18	3	3	4	_	2	4	4
•		4				$\overline{}$	(0

	i				
ad	_	2	U	0	9
Ĭ K	3	U	2	0	<u></u>
Б	_	1	1	2	1
	7	1	1	0	L
	·	_	3	0	7
	7	2	1	0	0
	3	1	2	0	0
	_	1	1	2	_
	1	l	1	0	_
	'	_	လ	0	2

12	4	1	2	2	4	2	4
				2			
∞	1	1	3	3	3	1	0
œ	1	0	4	3	4	2	1
3	0	2	0	3	7	0	0
œ	3	1	_	2	0	2	4
9	4	0	l	0	7	3	0
•	13	_	14	တ	5	7	11

Had

Do obrazce zakreslete hada šířky 1 políčko. Políčka navazují vodorovně nebo svisle. Had se sám sebe nedotýká, ani rohem. První a poslední políčko je vždy zadané. Dále je vyčíslen počet políček v každém řádku i sloupci. Jako řešení vypište obsah diagonály z levého horního rohu do pravého spodního, prázdná políčka označte písmenem X. (Pro příklad je to: X9X3X21X.)

21 20 27 26 25 24 23 22 10 11 12 က ∞ က

3 3

Příklad

