decision errors

- type 1 & type 2 errors
- balancing error rates

Dr. Mine Çetinkaya-Rundel Duke University

		Decision	
		fail to reject Ho	reject Ho
Truth	H ₀ true		Type I error
	Ha true	Type 2 error	

- Type I error is rejecting Ho when Ho is true.
- Type 2 error is failing to reject Ho when HA is true.
- ▶ We (almost) never know if H₀ or H_A is true, but we need to consider all possibilities.

hypothesis test as a trial

If we again think of a hypothesis test as a criminal trial then it makes sense to frame the verdict in terms of the null and alternative hypotheses:

Ho: Defendant is innocent

HA: Defendant is guilty

Which type of error is being committed in the following circumstances?

- \blacktriangleright Declaring the defendant innocent when they are actually guilty Type 2 error
- Declaring the defendant guilty when they are actually innocent Type I error

"better that ten guilty persons escape than that one innocent suffer"

Which error is the worst error to make?

- Type 2: Declaring the defendant innocent when they are actually guilty
- Type I: Declaring the defendant guilty when they are actually innocent

type I error rate

- We reject H_0 when the p-value is less than 0.05 ($\alpha = 0.05$).
- This means that, for those cases where H₀ is actually true, we do not want to incorrectly reject it more than 5% of those times.
- In other words, when using a 5% significance level there is about 5% chance of making a Type I error if the null hypothesis is true.

P(Type I error |
$$H_0$$
 true) = α

This is why we prefer small values of α – increasing α increases the Type I error rate.

or especially costly, choose a small significance level (e.g. 0.01).

Goal: we want to be very cautious about rejecting H₀, so we demand very strong evidence favoring H_A before we would do so.

choosing a

If a Type 2 Error is relatively more dangerous or much more costly, choose a higher significance level (e.g. 0.10).

Goal: we want to be cautious about failing to reject H₀ when the null is actually false.

σοαι	goal:		Decision	
keep α and β			fail to reject Ho	reject Ho
Truth		H ₀ true	I — CX	Type I error, α
	Truth	Ha true	Type 2 error, β	$I - \beta$

- Type I error is rejecting H_0 when you shouldn't have, and the probability of doing so is α (significance level).
- Type 2 error is failing to reject H_0 when you should have, and the probability of doing so is β .
- Power of a test is the probability of correctly rejecting H_0 , and the probability of doing so is $I \beta$

type 2 error rate

If the alternative hypothesis is actually true, what is the chance that we make a Type 2 Error, i.e. we fail to reject the null hypothesis even when we should reject it?

- The answer is not obvious.
- If the true population average is very close to the null value, it will be difficult to detect a difference (and reject H₀).
- If the true population average is very different from the null value, it will be easier to detect a difference.
- \blacktriangleright Clearly, β depends on the effect size (δ), difference between point estimate and null value.