

Свежие комментарии

- SmNikolay к записи STM Урок 89. LAN. ENC28J60. TCP WEB Server. Подключаем карту SD
- Narod Stream к записи AVR Урок 3. Пишем код на СИ. Зажигаем светодиод
- strannik2039 к записи AVR Урок 3. Пишем код на СИ. Зажигаем светодиод
- Dmitriy к записи AVR Урок 1. Знакомство с семейством AVR
- Narod Stream к записи STM Урок 9. НАІ Шина І2С Продолжаем работу с DS3231

Форум. Последние ответы

- 🔊 Narod Stream в Программирование MK STM32
 - 1 неделя, 2 дн. назад
- П Zandy в Программирование МК STM32
 - 1 неделя, 3 дн. назад
- 🜆 Narod Stream в Программирование MK STM32
 - 3 нед. назад
- 🔊 Narod Stream в Программирование MK STM32
 - 3 нед. назад
- Программирование МК STM32
 - 3 нед., 3 дн. назад

Январь 2018

Пн	Вт	Ср	Чт	Пт	Сб	Вс
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				
« Дек						

Архивы

- Январь 2018
- Декабрь 2017
- Ноябрь 2017
- Октябрь 2017
- Сентябрь 2017
- Август 2017 • Июль 2017

Главная > I2C > AVR Урок 16. Интерфейс TWI (I2C). Часть 4

AVR Ypok 16. Интерфейс TWI (I2C). Часть 4

Stream Опубликовано в I2C, Программирование AVR — 7 комментариев ↓

Изготовление Печать Изготовление печатных плат

партий. Звони pcb.electropribor-penza.ru Ад

Одноплатные компі

Процессорные модули, PC-104 платы, NANO-ITX, EPIC, PCI-ITX и многие другие! ірс2и.ru Адрес и телефон

Программирование МК РІФ Тесты устройств и аксессуаров

Урок 16 Часть 4

Интерфейс TWI (12C)

В предыдущей части занятия мы поближе познакомились со всеми практически регистрами шины **TWI** и уже написали код отправки в шину условия СТАРТ. Причем не только написали, а ещё и проверили отправку, считав данные из регистра статуса через порт USART. Также мы бегло ознакомились с протоколом передачи и приема. Если нам впоследствии что-то потребуется, то мы к нему ещё вернёмся.

Будем теперь думать, как нам ещё чтонибудь в шину I2С отправить. Для этого будут ещё нужны некоторые функции.

Раз уж есть функция для условия СТАРТ, то, конечно же, нужна функция для передачи условия СТОП.

Поэтому зайдём в файл twi.c и напишем её, скопировав полностью предыдущую функцию и немного её подправив

```
void I2C StopCondition(void)
  TWCR = (1 << TWINT) | (1 << TWSTO) |
(1<<TWEN);
```


Заходите на канал **Narod Stream**

- Июнь 2017
- Май 2017
- Март 2017
- Февраль 2017
- Январь 2017
- Декабрь 2016
- Ноябрь 2016

Здесь только изменился бит TWSTA на TWSTO, а также в этом случае мы уже никакого подтверждения от ведомого не ждём.

Также нам нужно написать функцию для передачи байта в шину I2C

```
void I2C_SendByte(unsigned char c)
{
   TWDR = c;//запишем байт в регистр
данных
   TWCR = (1<<TWINT)|(1<<TWEN);//
включим передачу байта
   while (!(TWCR & (1<<TWINT)));//
подождем пока установится TWIN
```

Здесь мы сначала записываем байт, предназначенный для отправки, в регистр TWDR, затем запустим передачу байта, установив биты TWINT и TWEN и здесь мы уже ждём подтверждения от ведомого устройства. То есть, если мы передаем адрес устройства, то если среди всех присутствующих на шине найдётся именно владелец данного адреса, то он и установит шину в низкое состояние, после чего контроллер, поняв это, установит бит TWINT в ноль, ну, или сбросит его.

Также напоминаю о необходимости добавления прототипов на данные функции в файле twi.h.

Теперь продолжим, используч вышенаписанные функции, писать код в функцию main(), чтобы нам удостовериться, что у нас шина I2C исправна и устройство, подключенное к ней, нормально откликается.

Также для достижения данной цели нам неохдодимо изучить, как именно нужно передавать данные нашей микросхеме ЕЕРROM. Для этого зайдём в техническую документацию и посмотрим следующую картинку

Здесь рассказано, как передать один байт для записи в определённый адрес памяти микросхемы. Сначала мы передаём адрес и бит записи, затем подтверждение, затем старший байт адреса памяти, подтверждение, младший бит адреса памяти. подтверждение, байт данных для записи, подтверждение и СТОП.

Только нам вовсе не интересно в данную память передавать по одному байту данных, поэтому существует ещё одна картинка в даташите

Здесь мы в начале наблюдаем ту же картину. Старт, адрес устройства с битом записи, подтверждение, старший байт адреса памяти, с которого начинаем запись байтов, подтверждение, младший

Рубрики

- 1-WIRE (3)
- ADC (6)
- DAC (4)
- GPIO (26)
- I2C (19)
- SPI (13)
- USART (8)
- Программирование AVR (131)
- Программирование РІС (7)
- Программирование STM32 (213)
- Тесты устройств и аксессуаров (1)

байт адреса памяти, подтверждение, и затем идут подряд байты с подтверждениями, которые будут укладываться в ячейки памяти ЕЕРROM, начиная с переданного адреса до тех пор, пока мы на шине не сгенерируем условие СТОП.

Ну, давайте же что-то попытаемся записать в микросхему. Также после каждой операции будем смотреть статус её выполнения. Напишем следующий код в функцию main()

I2C_StartCondition(); //Отправим
условие START
USART_Transmit(TWSR); //читаем

статусный регистр

I2C_SendByte(0b10100000); //передаем
адрес и бит записи (0)

USART_Transmit(TWSR); //читаем

статусный регистр

I2C_SendByte(0);//переходим на

0x0000 — старший байт адреса памяти

USART_Transmit(TWSR); //читаем статусный регистр

I2C_SendByte(0); // - младший байт
адреса памяти

USART_Transmit(TWSR); //читаем

статусный регистр
I2C_StopCondition(); //Отправим

условие STOP
USART_Transmit(TWSR); //читаем
статусный регистр

while(1)

Чем занимается данный код, прекрасно видно из комментариев.

Соберём код и прошьём контроллер.

Глянем в терминальную программу

И теперь с помощью таблицы будем разбираться, что же нам "рассказал" регистр TWSR

Table 66. Status codes for Master Transmitter Mode

Table of Status sease is Master Transmitter Mede					
Status Code (TWSR) Prescaler Bits are 0	Status of the Two-wire Serial Bus and Two-wire Serial Inter- face Hardware	Applicatio To/from TWDR			
0x08	A START condition has been transmitted	Load SLA+W			
0x18	SLA+W has been transmitted; ACK has been received	Load data byte or			
0x28	Data byte has been transmitted; ACK has been received	Load data byte or			

Вот коды, которые мы получали

0х08 — условие СТАРТ было передано

0x18 — адрес и бит записи был передан и подтверждение получено

0x28 — байт данных был передан и подтверждение получено

Адрес ячейки памяти для нашего контроллера таковым не считается, это для него обычные данные.

минут, начнешь играть и забудешь про сон (18+) Все об игре Выбери свой класс Следи за новостями Тебя ждет подарок ргото. 101хр. сот

Разработка мобильных приложений.

Разрабатываем все

типы мобильных приложений для любых нужд бизнеса. Звоните! Стартапы Коммерческие приложения Справочные приложения

narisuemvse.by Адрес и телефон одарки: куг I с каждого он сейчас! А **0xF8** — это типа ошибки. Ну нам уже это не важно. Скорей всего это потому, что после СТОП ведомый уже перед нами не отчитывается и флаг также не сбросится.

В следующей части занятия мы постараемся уже что-то в память микросхемы записать.

Техническая документация на микросхему AT24C32

Программатор и модуль RTC DS1307 с микросхемой памяти можно приобрести здесь:

Программатор (продавец надёжный) USBASP USBISP 2.0

Модуль RTC DS1307 с микросхемой памяти

Смотреть ВИДЕОУРОК (нажмите на картинку)

Post Views: 580

AVR Урок 16.

Интерфейс TWI

7 комментариев на "AVR Урока 16: 3 Интерфейс TWI (I2C). Часть 4" AVR Урок 16.

Евгений: Интерфейс TWI Июль 16, 2017 (1233). ДНасть 5 →

А почему мы не используем прерывания? Ведь если у нас ведомый в процессе приёма отвалится, то мы навечно подвесим МК в этом цикле: while (!(TWCR & (1<<TWINT))); Но даже если ведомый примет посылку, получается, что всё время передачи, несмотря на наличие аппаратного TWI наш микроконтроллер будет работать с частотой 100 кГц.

Или я чего-то не понимаю?

Ответить

admin: Июль 16, 2017 в 7:23 дп

Потому что во время выхода данного урока я ещё не знал, как их использовать.

Ответить

Сергей:

Июль 16, 2017 в 8:09 дп

Сделал все как указано, но у меня вместо 18 и 28 получаются соответственно 20 и 30, т.е. у меня отправляется не сигнал АСК, а сигнал NOT ACK. Что я делаю не так?

Ответить

admin: Июль 17, 2017 в 5:46 дп

Флаг должен быть правильный установлен. Посмотрите урок по внешнему EEPROM, там мы используем и первый и другой вариант (и с подтверждением и без).

Ответить

Сергей:

Июль 16, 2017 в 4:22 пп

Добавление к предыдущему вопросу. Модуль спаял сам, с ардуинкой работаем без проблем — время показывает. Но сигнал возвращается именно NO ACK.

Ответить

Сергей:

Июль 16, 2017 в 5:45 пп

Нашел проблему. Если NO ACK указывает, что по данному адресу устройство не обнаружено.
Запустил на ардуинке i2c_scaner, который показал адрес ds1307 есть 0x68. перевел в двоичное — 1101000, добавил 0 как флак записи. Т.е. получилось I2C_SendByte(0b11010000); После этого получил долгожданные 18 и 28.

Ответить

admin: Июль 17, 2017 в 5:46 дл

Отлично!

Ответить

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены * Комментарий

Наверх

© 2018