1. 已知
$$\cos(\alpha+\beta)=\frac{4}{5}, \cos(\alpha-\beta)=-\frac{4}{5},$$
其中 $\alpha+\beta\in(\frac{7\pi}{4},2\pi), \ \alpha-\beta\in(\frac{3\pi}{4},\pi),$ 求 $\cos 2\alpha.$ 解答在这里因为 $\frac{7\pi}{4}<\alpha+\beta<2\pi, \frac{3\pi}{4}<\alpha-\beta<\pi,$ 所以 $\sin(\alpha+\beta)=-\frac{3}{5}, \sin(\alpha-\beta)=\frac{3}{5},$ 于是 $\cos 2\alpha=\cos[(\alpha+\beta)+(\alpha-\beta)]=\cos(\alpha+\beta)\cos(\alpha-\beta)-\sin(\alpha+\beta)\sin(\alpha-\beta)=\frac{4}{5}(-\frac{4}{5})-(-\frac{3}{5})\times\frac{3}{5}=-\frac{16}{25}+\frac{9}{25}=-\frac{7}{25}.$

- 2. 求证: $\tan(\alpha \beta) + \tan(\beta \gamma) + \tan(\gamma \alpha) = \tan(\alpha \beta) \tan(\beta \gamma) \tan(\gamma \alpha)$. 解答在这里 $\tan(\gamma \alpha) = -\tan(\alpha \gamma) = -\tan[(\alpha \beta) + (\beta \gamma)] = -\frac{\tan(\alpha \beta) + \tan(\beta \gamma)}{1 \tan(\alpha \beta) \tan(\beta \gamma)}$. 去分母, 得 $-\tan(\gamma \alpha) + \tan(\gamma \alpha) \tan(\alpha \beta) \tan(\beta \gamma) = \tan(\alpha \beta) + \tan(\beta \gamma)$, 即 $\tan(\alpha \beta) + \tan(\beta \gamma) + \tan(\gamma \alpha) = \tan(\alpha \beta) \tan(\beta \gamma) \tan(\gamma \alpha)$.
- 3. 求 $\frac{2\cos 10^{\circ} \sin 20^{\circ}}{\cos 20^{\circ}}$ 的值. 解答在这里原试 = $\frac{2\cos (30^{\circ} - 20^{\circ}) - \sin 20^{\circ}}{\cos 20^{\circ}} = \frac{2(\cos 30^{\circ}\cos 20^{\circ} + \sin 30^{\circ}\sin 20^{\circ}) - \sin 20^{\circ}}{\cos 20^{\circ}} = \frac{2\cos 30^{\circ}\cos 20^{\circ}}{\cos 20^{\circ}} = \sqrt{3}$.
- 4. 已知 $\sin(\frac{\pi}{4}-x)=\frac{5}{13}$,且 $0< x<\frac{\pi}{4}$.求 $\frac{\cos 2x}{\cos(\frac{\pi}{4}+x)}$ 的值. 解答在这里由条件,得 $\cos(\frac{\pi}{4}-x)=\frac{12}{13}$.所以原式 $=\frac{\sin(\frac{\pi}{2}-2x)}{\cos(\frac{\pi}{4}+x)}=\frac{\sin 2(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\cos(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\cos(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\cos(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}+x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}-x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}-x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}-x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}-x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}=\frac{2\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}{\cos(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}$
- 5. 求 $\tan 65^{\circ} + \tan 70^{\circ} + 1 \tan 65^{\circ} \tan 70^{\circ}$ 的值. 解答在这里原式 = $\tan(65^{\circ} + 70^{\circ})(1 - \tan 65^{\circ} \tan 70^{\circ}) + 1 - \tan 65^{\circ} \tan 70^{\circ} = (-1) \cdot (1 - \tan 65^{\circ} \tan 70^{\circ}) + 1 - \tan 65^{\circ} \tan 70^{\circ} = 0$.
- 6. 求函数 $f(x) = \sin x \sqrt{3}\cos x$ 的值域、最小正周期以及为增函数的区间。 解答在这里因为 $f(x) = 2(\sin x \cdot \frac{1}{2} \cos x \cdot \frac{\sqrt{3}}{2}) = 2\sin(x \frac{\pi}{3})$,所以函数的值域为 [-2, 2],最小正周期是 2π ,为增函数的区间是 $[2k\pi \frac{\pi}{6}, 2k\pi + \frac{5\pi}{6}](k \in \mathbf{Z})$.
- 7. 求函数 $y = \frac{\sqrt{3}\sin x}{2 + \cos x}$ 的值域.

解答在这里由已知,得
$$2y + y \cos x = \sqrt{3} \sin x$$
,即 $\sqrt{3} \sin x - y \cos x = 2y$,所以 $\sin x \cdot \frac{\sqrt{3}}{\sqrt{3 + y^2}} - \cos x \cdot \frac{y}{\sqrt{3 + y^2}} = \frac{2y}{\sqrt{3 + y^2}}$.于是 $\sin(x - \varphi) = \frac{2y}{\sqrt{3 + y^2}}$ (其中 φ 满足 $\sin \varphi = \frac{y}{\sqrt{3 + y^2}}$, $\cos \varphi = \frac{\sqrt{3}}{\sqrt{3 + y^2}}$).因为 $|\sin(x - \varphi)| \le 1$,所以 $\frac{2y}{\sqrt{3 + y^2}} \le 1$,所以 $-1 \le y \le 1$.

8. 化简
$$\frac{1+\cos\theta-\sin\theta}{1-\cos\theta-\sin\theta}+\frac{1-\cos\theta-\sin\theta}{1+\cos\theta-\sin\theta}.$$
 解答在这里原式
$$=\frac{2\cos^2\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\sin^2\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}+\frac{2\sin^2\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}=\frac{\cos\frac{\theta}{2}(\cos\frac{\theta}{2}-\sin\frac{\theta}{2})}{\sin\frac{\theta}{2}(\sin\frac{\theta}{2}-\cos\frac{\theta}{2})}+\frac{\sin\frac{\theta}{2}(\sin\frac{\theta}{2}-\cos\frac{\theta}{2})}{\cos\frac{\theta}{2}(\cos\frac{\theta}{2}-\sin\frac{\theta}{2})}=-(\cot\frac{\theta}{2}+\tan\frac{\theta}{2})=-(\frac{1+\cos\theta}{\sin\theta}+\frac{1-\cos\theta}{\sin\theta})=-\frac{2}{\sin\theta}=-2\csc\theta.$$

- 9. 求函数 $y = 3\sin^2 \alpha 4\sin \alpha \cdot \cos \alpha + \cos^2 \alpha$ 的值域和最小正周期. 解答在这里因为 $y=3\cdot\frac{1-\cos2\alpha}{2}-2\sin2\alpha+\frac{1+\cos2\alpha}{2}=2-(2\sin2\alpha+\cos2\alpha)=2-\sqrt{5}(2\alpha+\varphi)$, 其中 $\sin \varphi = \frac{1}{\sqrt{5}}, \cos \varphi = \frac{2}{\sqrt{5}},$ 所以函数的值域是 $[2-\sqrt{5},2+\sqrt{5}],$ 最小正周期是 π .
- 10. 化简 $\sin(x+y)\sin x + \cos(x+y)\cos x$ 的结果是 (
 - A. cos(2x + y)

- C. $\sin(2x+y)$
- D. $\sin y$

- 11. 满足 $\cos \alpha \cos \beta = \frac{\sqrt{3}}{2} + \sin \alpha \sin \beta$ 的一组 α, β 的值是 ().
 - A. $\alpha = \frac{13\pi}{12}, \ \beta = \frac{3\pi}{4}$ B. $\alpha = \frac{\pi}{2}, \ \beta = \frac{\pi}{3}$ C. $\alpha = \frac{\pi}{2}, \ \beta = \frac{\pi}{6}$ D. $\alpha = \frac{\pi}{3}, \ \beta = \frac{\pi}{6}$

- 12. 若 $\frac{3\pi}{2} < \alpha < 2\pi$, 且 $\cot(\frac{3\pi}{2} + \alpha) = \frac{3}{4}$, 则 $\cos(\alpha \frac{3\pi}{2})$ 的值等于 (

- B. $-\frac{\sqrt{2}}{10}$
- D. $-\frac{7\sqrt{2}}{10}$
- 13. 若三角形的两内角 α, β 满足 $\cos \alpha \cos \beta > \sin \alpha \sin \beta$, 则这个三角形的形状 (
 - A. 是锐角三角形
- B. 是貞角三角形
- C. 是钝角三角形
- D. 不能确定
- 14. 若关于 x 的方程 $x^2+x\cos\alpha\cos\beta+\cos\gamma=0$ 的两根 x_1,x_2 满足 $x_1+x_2=\frac{x_1x_2}{2}$, 则以 α,β,γ 为内角的三 角形的形状(
 - A. 是等腰三角形, 不可能是直角三角形
- B. 是直角三角形, 不可能是等腰三角形

C. 是等腰直角三角形

- D. 是等腰三角形, 也可能是直角三角形
- 15. 若 $\tan x = \frac{4}{3}(\pi < x < 2\pi)$,则 $\cos(2x \frac{\pi}{3}) \cdot \cos(\frac{\pi}{3} x) \sin(2x \frac{\pi}{3}) \cdot \sin(\frac{\pi}{3} x) = \underline{\hspace{1cm}}$
- 16. 若锐角 α, β 满足 $\cos \alpha = \frac{3}{5}, \cos(\alpha + \beta) = -\frac{5}{13}$ 则 $\cos \beta =$ ______.
- 17. 若 $\cos(\alpha \beta) = -\frac{4}{5}$, $\cos(\alpha + \beta) = \frac{4}{5}$, 且 $90^{\circ} < \alpha \beta < 180^{\circ}$, $270^{\circ} < \alpha + \beta < 360^{\circ}$, 则 $\cos 2\alpha =$ ______
- 18. 若 $\cos x + \cos y = \frac{1}{2}$, $\sin x \sin y = \frac{1}{3}$, 则 $\cos(x+y) =$ ______.
- 19. 若 $\sin \alpha \sin \beta = 1$, 则 $\cos(\alpha + \beta)$ 的值是 (
 - A. -1

B. 0

C. 1

D. ± 1

- 20. 若 α, β 为锐角,则(
 - A. $\cos(\alpha + \beta) > \cos \alpha + \cos \beta$

B. $\cos(\alpha + \beta) > \sin \alpha + \sin \beta$

C. $\cos(\alpha + \beta) < \cos \alpha + \cos \beta$

- D. $\cos(\alpha + \beta) < \sin \alpha + \sin \beta$
- 21. 若 $\sin \alpha + \sin \beta = \frac{\sqrt{2}}{2}$, 则 $\cos \alpha + \cos \beta$ 的取值范围是 (
 - A. $[0, \frac{\sqrt{2}}{2}]$
- B. $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$
- C. [-2, 2]
- D. $\left[-\frac{\sqrt{14}}{2}, \frac{\sqrt{14}}{2}\right]$.

22.	22. 若三角形的两内角 α, β 满足 $\tan \alpha \tan \beta > 1$, 则这个三角形的形状是 ().							
	A. 等腰直角三角形	B. 不等腰的直角三角形	C. 锐角三角形	D. 钝角三角形				
23.	23. 若三角形的两内角 $lpha,eta$ 满足 $\sinlpha=rac{3}{5},\coseta=rac{5}{13},$ 则此三角形的另一内角 γ 的余弦值等于 ().							
	A. $\frac{16}{65}$ 或 $\frac{56}{65}$	B. $\frac{56}{65}$	C. $\frac{16}{65}$	D. $-\frac{16}{65}$ 或 $-\frac{56}{65}$				
24.	24. 已知锐角 α, β 满足 $\cos \alpha = \frac{4}{5}$, $\tan(\alpha - \beta) = -\frac{1}{3}$, 求 $\cos \beta$.							
25.	25. 已知 $\cos(\frac{\pi}{4} - \alpha) = \frac{3}{5}$, $\sin(\frac{3\pi}{4} + \beta) = \frac{5}{13}$, 其中 $\frac{\pi}{4} < \alpha < \frac{3\pi}{4}$, $0 < \beta < \frac{\pi}{4}$, 求 $\sin(\alpha + \beta)$ 的值.							
26.	26. 已知 α, β 为锐角, 满足 $\cos \alpha = \frac{1}{7}, \sin(\alpha + \beta) = \frac{5\sqrt{3}}{14},$ 求 $\cos \beta$ 的值.							
27.	27. 已知 $8\cos(2\alpha+\beta)+5\cos\beta=0$, 求 $\tan(\alpha+\beta)\cdot\tan\alpha$ 的值.							
28. 解不等式: $\sin 4x + \cos 4x \cdot \cot 2x > 1$.								
29.	29. 已知锐角 α, β, γ 满足 $\sin \alpha + \sin \gamma = \sin \beta$, $\cos \alpha - \cos \gamma = \cos \beta$, 求 $\alpha - \beta$ 的值.							
30.	若 α, β 为锐角, 且满足 $\cos \alpha$	$\alpha = \frac{4}{5}$, $\cos(\alpha + \beta) = \frac{3}{5}$, 则 s	$\sin \beta$ 的值是 ().					
	A. $\frac{17}{25}$	B. $\frac{3}{5}$	C. $\frac{7}{25}$	D. $\frac{1}{5}$				
31.	函数 $y = \sin(x + \frac{\pi}{3}) - \sqrt{3} \cot(x + \frac{\pi}{3})$	$\cos(x + \frac{\pi}{3})(\qquad).$						
	A. 是奇函数, 但不是偶函数	¢	B. 是偶函数, 但不是奇函数					
	A. 是奇函数, 但不是偶函数 C. 既不是奇函数, 也不是個		B. 是偶函数, 但不是奇函数 D. 奇偶性无法确定					
32.		場函数	D. 奇偶性无法确定					
32.	C. 既不是奇函数, 也不是個	場函数	D. 奇偶性无法确定	D. $y = \sin x \cos x$				
	C. 既不是奇函数, 也不是假下列函数中, 与 $y = \sin x + \cos x$	揭函数 $\cos x$ 的振幅、最小正周期者 $\mathrm{B.}\ y = \cos x$	D. 奇偶性无法确定 $\label{eq:definition} \text{ T}$ $\label{eq:definition} \text{ T}$ $\text{C. } y = \sqrt{2}\sin x$	D. $y = \sin x \cos x$				
	C. 既不是奇函数, 也不是假下列函数中, 与 $y = \sin x + \cos x$ A. $y = \sin x$ 函数 $y = \sin x + \sqrt{3}\cos x(0)$	揭函数 $\cos x$ 的振幅、最小正周期者 $\mathrm{B.}\ y = \cos x$	D. 奇偶性无法确定 $\label{eq:definition} \text{ T}$ $\label{eq:definition} \text{ T}$ $\text{C. } y = \sqrt{2}\sin x$	D. $y = \sin x \cos x$ D. $[0, 2]$				
33.	C. 既不是奇函数, 也不是假下列函数中, 与 $y = \sin x + \cos x$ A. $y = \sin x$ 函数 $y = \sin x + \sqrt{3}\cos x$	場函数 $\cos x$ 的振幅、最小正周期者 $\mathrm{B.}\ y = \cos x$ $\leq x \leq \frac{\pi}{2})$ 的值域是 $($ $)$ $\mathrm{B.}\ [1,2]$	D. 奇偶性无法确定 $\mathbb{F}(x)$ $$					
33. 34.	C. 既不是奇函数,也不是假下列函数中,与 $y = \sin x + \epsilon$ A. $y = \sin x$ 函数 $y = \sin x + \sqrt{3} \cos x (0$ A. $[1, \frac{3}{2}]$ 化简 $\sin(x + 27^\circ) \cos(18^\circ - 18^\circ)$	易函数 $\cos x$ 的振幅、最小正周期者 $\mathrm{B.}\ y = \cos x$ $\leq x \leq \frac{\pi}{2}$) 的值域是 () $\mathrm{B.}\ [1,2]$ $x) + \cos(x + 27^\circ)\sin(18^\circ - 27^\circ)\sin$	D. 奇偶性无法确定 $\mathbb{F}(x)$ $$	D. [0, 2]				
33.34.35.	C. 既不是奇函数, 也不是個下列函数中, 与 $y = \sin x + \alpha$ A. $y = \sin x$ 函数 $y = \sin x + \sqrt{3}\cos x(0)$ A. $[1, \frac{3}{2}]$ 化简 $\sin(x + 27^{\circ})\cos(18^{\circ} - \alpha)$ 函数 $y = 3\sin 2x + 3\sqrt{3}\cos x$ 若 α 是一个三角形的最小内	場函数 $\cos x$ 的振幅、最小正周期者 $\mathrm{B.}\ y = \cos x$ $\leq x \leq \frac{\pi}{2})$ 的值域是 () $\mathrm{B.}\ [1,2]$ $x) + \cos(x + 27^\circ)\sin(18^\circ - 2x + 1)$ 的最小正周期是	 D. 奇偶性无法确定	D. [0,2] , 最小值是				
33.34.35.36.	C. 既不是奇函数, 也不是假下列函数中, 与 $y = \sin x + \alpha$ A. $y = \sin x$ 函数 $y = \sin x + \sqrt{3}\cos x(0)$ A. $[1, \frac{3}{2}]$ 化简 $\sin(x + 27^{\circ})\cos(18^{\circ} - \alpha)$ 函数 $y = 3\sin 2x + 3\sqrt{3}\cos x$ 若 α 是一个三角形的最小内 A. $[-\sqrt{2}, \sqrt{2}]$	場函数 $\cos x$ 的振幅、最小正周期者 $\mathrm{B.}\ y = \cos x$ $\leq x \leq \frac{\pi}{2}$) 的值域是 () $\mathrm{B.}\ [1,2]$ $x) + \cos(x + 27^\circ)\sin(18^\circ - 2x + 1)$ 的最小正周期是	D. 奇偶性无法确定	D. [0,2]				
33.34.35.36.	C. 既不是奇函数, 也不是假下列函数中, 与 $y = \sin x + \alpha$ A. $y = \sin x$ 函数 $y = \sin x + \sqrt{3}\cos x(0)$ A. $[1, \frac{3}{2}]$ 化简 $\sin(x + 27^{\circ})\cos(18^{\circ} - \alpha)$ 函数 $y = 3\sin 2x + 3\sqrt{3}\cos x$ 若 α 是一个三角形的最小内 A. $[-\sqrt{2}, \sqrt{2}]$	場函数 $\cos x$ 的振幅、最小正周期者 $\mathrm{B.}\ y = \cos x$ $\leq x \leq \frac{\pi}{2}$) 的值域是 () $\mathrm{B.}\ [1,2]$ $x) + \cos(x + 27^\circ)\sin(18^\circ - 2x + 1)$ 的最小正周期是	 D. 奇偶性无法确定	D. [0,2]				
33.34.35.36.	C. 既不是奇函数, 也不是信下列函数中, 与 $y = \sin x + \alpha$ A. $y = \sin x$ 函数 $y = \sin x + \sqrt{3}\cos x(0)$ A. $[1, \frac{3}{2}]$ 化简 $\sin(x + 27^{\circ})\cos(18^{\circ} - \alpha)$ 函数 $y = 3\sin 2x + 3\sqrt{3}\cos x$ 若 α 是一个三角形的最小内 A. $[-\sqrt{2}, \sqrt{2}]$ 若函数 $f(x) = \sin 2x + a\cos x$ A. $\sqrt{2}$	場函数 $\cos x$ 的振幅、最小正周期者 $B. \ y = \cos x$ $\leq x \leq \frac{\pi}{2}$) 的值域是 () $B. \ [1,2]$ $x) + \cos(x + 27^{\circ}) \sin(18^{\circ} - 2x + 1)$ 的最小正周期是	D. 奇偶性无法确定 x 相同的函数是 (). C. $y = \sqrt{2} \sin x$. C. $\left[\frac{3}{2}, 2\right]$. x) = , 最大值是 α 的值域为 (). C. $(-1, \frac{\sqrt{3}-1}{2}]$. $\frac{\pi}{8}$ 对称, 则实数 a 的值等于 (C. 1	D. [0,2] _, 最小值是 D. [-1, $\frac{\sqrt{3}-1}{2}$]				
33.34.35.36.	C. 既不是奇函数, 也不是假下列函数中, 与 $y = \sin x + \alpha$ A. $y = \sin x$ 函数 $y = \sin x + \sqrt{3}\cos x (0)$ A. $[1, \frac{3}{2}]$ 化简 $\sin(x + 27^{\circ})\cos(18^{\circ} - \alpha)$ 函数 $y = 3\sin 2x + 3\sqrt{3}\cos 2x$ 若 α 是一个三角形的最小内 A. $[-\sqrt{2}, \sqrt{2}]$ 若函数 $f(x) = \sin 2x + a\cos 2x$	場函数 $\cos x$ 的振幅、最小正周期者 $B. \ y = \cos x$ $\leq x \leq \frac{\pi}{2}$) 的值域是 () $B. \ [1,2]$ $x) + \cos(x + 27^{\circ}) \sin(18^{\circ} - 2x + 1)$ 的最小正周期是	D. 奇偶性无法确定 x 相同的函数是 (). C. $y = \sqrt{2} \sin x$. C. $\left[\frac{3}{2}, 2\right]$. x) = , 最大值是 α 的值域为 (). C. $(-1, \frac{\sqrt{3}-1}{2}]$. $\frac{\pi}{8}$ 对称, 则实数 a 的值等于 (C. 1	D. [0, 2] , 最小值是 D. [-1, $\frac{\sqrt{3}-1}{2}$]).				

- 40. 计算: $\csc 10^{\circ} \sqrt{3} \sec 10^{\circ} =$ ______.
- 41. 函数 $y = \log_{0.2}(\sin x + \cos x)$ 为增函数的区间是
- 42. 不等式 $\sin x < \cos x$ 的解是_
- 43. 求函数 $y = \frac{\sqrt{5}\sin x + 1}{\cos x + 2}$ 的值域.
- 44. 求函数 $y = \frac{\tan \theta + 2}{\cos \theta 1}$ 的值域.
- 45. 在 $\triangle ABC$ 中, 已知 $2\cos B\cos C = 1 \cos A$, 且 $2\sin B\cos C = 1 + \sin(B-C)$, 判断此三角形的形状.
- 46. 已知关于 x 的方程 $x^2 + px + q = 0$ 的两根是 $\tan \alpha$, $\tan \beta$, 求 $\frac{\sin(\alpha + \beta)}{\cos(\alpha \beta)}$ 的值.
- 47. 已知 $\sin(\alpha + \beta) = \frac{1}{2}$, $\sin(\alpha \beta) = \frac{1}{3}$, 求 $\tan \alpha \cot \beta$ 的值.
- 48. 已知 $\tan(\alpha + \beta) = -2$, $\tan(\alpha \beta) = \frac{1}{2}$, 求 $\frac{\sin 2\alpha}{\sin 2\beta}$ 的值.
- 49. 已知 $\tan \alpha = 1$, $3\sin \beta = \sin(2\alpha + \beta)$, 求 $\tan(\alpha + \beta)$ 的值.
- 50. 已知 $\frac{\tan(\alpha \gamma)}{\tan \alpha} + \frac{\sin^2 \beta}{\sin^2 \alpha} = 1$, 求证: $\tan^2 \beta = \tan \alpha \tan \gamma$.
- 51. 求函数 $y = \frac{\sin x \cos x}{1 + \sin x + \cos x}$ 的最大值,
- 52. 求函数 $y = \sin x + \cos x + \sin x \cos x$ 的值域.
- 53. 若 $\tan(\alpha + \beta) = \frac{2}{5}$, $\tan(\beta \frac{\pi}{4}) = \frac{1}{4}$, 则 $\tan(\alpha + \frac{\pi}{4})$ 等于 ().

A.
$$\frac{13}{18}$$

B.
$$\frac{13}{22}$$

C.
$$\frac{3}{22}$$

D.
$$\frac{1}{6}$$

54. 若
$$\frac{1-\tan A}{1+\tan A}=4+\sqrt{5}$$
, 则 $\cot(\frac{\pi}{4}+A)$ 的值等于 ().

A.
$$-4 - \sqrt{5}$$

B.
$$4 + \sqrt{5}$$

C.
$$-\frac{1}{4+\sqrt{5}}$$

D.
$$\frac{1}{4+\sqrt{5}}$$

55. 已知
$$\alpha + \beta = \frac{3\pi}{4}$$
, 则 $(1 - \tan \alpha)(1 - \tan \beta)$ 的值等于 ().

D.
$$-1$$

56. 计算
$$\frac{1 + \cot 15^{\circ}}{1 - \tan 75^{\circ}} =$$
______.

57. 若
$$\alpha + \beta = \frac{\pi}{4}$$
, 则 $\frac{1 - \tan \beta}{1 + \tan \beta} =$ _____.

59. 在
$$\triangle ABC$$
 中, $\tan A$, $\tan B$ 是方程 $3x^2 + 8x - 1 = 0$ 的两个根, 则 $\tan C =$ _____.

60. 若
$$\tan(\alpha + \frac{\pi}{4}) = -\frac{9}{40}$$
,则 $\tan \alpha = ______$, $\tan(\alpha - \frac{\pi}{4}) = ______$

61. 若
$$\alpha, \beta \in (\frac{\pi}{2}, \pi)$$
, 且 $\tan \alpha < \cot \beta$, 则 ().

A.
$$\alpha < \beta$$

B.
$$\beta > \alpha$$

C.
$$\pi < \alpha + \beta < \frac{3\pi}{2}$$
 D. $\alpha + \beta > \frac{3\pi}{2}$

$$0. \ \alpha + \beta > \frac{3\pi}{2}$$

62.	函数 $y = \frac{\cos 2x + \sin 2x}{\cos 2x - \sin 2x}$ 的是						
	A. 2π	B. $\frac{3\pi}{2}$	С. π	D. $\frac{\pi}{2}$			
63.	若 $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}, -\frac{\pi}{2} < \beta <$						
	A. $\frac{\pi}{3}$	B. $-\frac{2\pi}{3}$	C. $\frac{\pi}{3}$ 或 $\frac{4\pi}{3}$	D. $\frac{\pi}{3}$ 或 $-\frac{2\pi}{3}$			
64.	若 $\tan \theta$ 和 $\tan(\frac{\pi}{4} - \theta)$ 是方程 $x^2 + px + q = 0$ 的两个根,则 p,q 满足关系式						
65.	若 $\tan \alpha = \frac{1}{7}$, $\tan \beta = \frac{1}{3}$, $\alpha, \beta \in (0, \frac{\pi}{2})$, 则 $\alpha + 2\beta =$						
66.	计算: $1 + \tan 66^{\circ} + \tan 69^{\circ} - \tan 66^{\circ} \tan 69^{\circ} =$						
67.	计算: $\tan 19^{\circ} + \tan 101^{\circ} - \sqrt{3} \tan 19^{\circ} \tan 101^{\circ} = \underline{\hspace{1cm}}$.						
68.	. 若 $\alpha + \beta = k\pi + \frac{\pi}{4}(k \in \mathbf{Z})$, 则 $(1 + \tan \alpha)(1 + \tan \beta) = \underline{\hspace{1cm}}$.						
69.	计算 $(1 + \tan 1^\circ)(1 + \tan 2^\circ)(1 + \tan 3^\circ)\cdots(1 + \tan 43^\circ)(1 + \tan 44^\circ) =$						
70.	求证: tan 20° tan 30° + tan 3	$0^{\circ} \tan 40^{\circ} + \tan 40^{\circ} \tan 20^{\circ} =$	= 1.				
71.	求证: 当 $A+B+C=k\pi(k\in\mathbf{Z})$ 时, $\tan(A-B)+\tan(B-C)+\tan(C-A)=\tan(A-B)\tan(B-C)\tan(C-A)$.						
72.	求证: $\tan A + \tan B + \tan C = \tan A \tan B \tan C$, 其中 $A + B + C = k\pi (k \in \mathbf{Z})$.						
73.	已知锐角 α, β 满足 $\tan \alpha = \sqrt{3}(m+1), \tan(-\beta) = \sqrt{3}(\tan \alpha \tan \beta + m),$ 求 $\alpha + \beta$ 的值.						
74.	求 $\frac{\tan 20^{\circ} + \tan 40^{\circ} + \tan 120^{\circ}}{\tan 20^{\circ} \tan 40^{\circ}}$ 的值.						
75.	已知 $\tan \theta = \frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha} (\alpha, \theta)$ 都是锐角), 求 $\frac{\sin \alpha - \cos \alpha}{\sin \theta}$ 的值.						
76.	已知 $\tan(\frac{\pi}{4} + \alpha) = -\frac{1}{2}$,求 $\frac{2\cos\alpha(\sin\alpha - \cos\alpha)}{1 + \tan\alpha}$ 的值.						
77.	已知 $\tan \alpha$, $\tan \beta$ 是关于 x 的方程 $mx^2 - 2x\sqrt{7m-3} + 2m = 0$ 的两个实根, 求 $\tan(\alpha + \beta)$ 的取值范围.						
78.	若 $\sin \alpha + \cos \alpha = -\sqrt{2}$, 则 $\tan \alpha + \cot \alpha$ 等于 ().						
	A2	В. –1	C. 1	D. 2			
79.	若三角形的一个内角 α 满足	若三角形的一个内角 $lpha$ 满足 $\sinlpha+\coslpha=rac{3}{4},$ 则这个三角形的形状是 $($ $).$					
	A. 锐角三角形	B. 钝角三角形	C. 不等腰的直角三角形	D. 等腰直角三角形			
80.	函数 $f(x) = \sqrt{\cos^2 x - \cos^4 x}$	· 的最小正周期为 ().					
	A. $\frac{\pi}{2}$	Β. π	C. $\frac{3\pi}{2}$	D. 2π			
81.	若 $\alpha \in [\frac{5\pi}{2}, \frac{7}{2}\pi]$,则 $\sqrt{1+\sin \theta}$	$\overline{\alpha \alpha} + \sqrt{1 - \sin \alpha}$ 的值为 ().				
	A. $2\cos\frac{\alpha}{2}$	B. $-2\cos\frac{\alpha}{2}$	C. $2\sin\frac{\alpha}{2}$	D. $-2\sin\frac{\alpha}{2}$			

- 82. 函数 $y = \log_{1/2}(\sin x \cos x)$ 为增函数的区间是 (

B. $(k\pi, k\pi + \frac{\pi}{4}](k \in \mathbf{Z})$

A. $(k\pi - \frac{\pi}{4}, k\pi + \frac{\pi}{4})(k \in \mathbf{Z})$ C. $(k\pi + \frac{\pi}{4}, k\pi + \frac{\pi}{2})(k \in \mathbf{Z})$

D. $[k\pi + \frac{\pi}{4}, k\pi + \frac{3\pi}{4})(k \in \mathbf{Z})$

- 83. $\cos \frac{\pi}{5} \cos \frac{2\pi}{5}$ 的值等于 ().

C. 2

D. $\frac{1}{2}$

- 84. 若 $\cos^2(\frac{x}{2}) = \sin x$, 则 $\tan \frac{x}{2}$ 等于______.
- 85. 计算: sin 105° cos 75° =_____.
- 86. $\cos^2 15^\circ + \cos^2 75^\circ + \cos 15^\circ \cos 75^\circ =$
- 87. $\cos \frac{5\pi}{8} \cos \frac{\pi}{8} =$ ______.
- 88. 函数 $y = \cos(\frac{\pi}{2}x)\cos[\frac{\pi}{2}(x-1)]$ 的最小正周期是______.
- 89. 若 $\sin x \cos x = \frac{1}{2}$, 则 $\sin^3 x \cos^3 x = \underline{\hspace{1cm}}$.
- 90. 在 $\triangle ABC$ 中, $\angle C = 90^\circ$, $\tan A + \tan B = 4$, 则此三角形的两个锐角分别等于_____
- 91. 若 $\sin 2\alpha = \frac{4}{5}$, 则 $\tan^2 \alpha + \cot^2 \alpha =$ _____.
- 92. 若 $\sin x \cos y = \frac{1}{2}$, 则 $\cos x \sin y$ 的取值范围是 ().
 - A. $\left[-\frac{1}{2}, \frac{1}{2}\right]$
- B. $\left[-\frac{3}{2}, \frac{1}{2}\right]$
- C. $\left[-\frac{1}{2}, \frac{3}{2}\right]$
- D. [-1,1]

- 93. 求值: sin 18° sin 54°.
- 94. 求值: $\frac{\pi}{17}\cos\frac{2\pi}{17}\cos\frac{4\pi}{17}\cos\frac{8\pi}{17}$.
- 95. 求值: $\cos^4(\frac{\pi}{8}) + \cos^4(\frac{3\pi}{8}) + \cos^4(\frac{5\pi}{8}) + \cos^4(\frac{7\pi}{8})$.
- 96. 求值: $\sin^4(\frac{\pi}{16}) + \sin^4(\frac{3\pi}{16}) + \sin^4(\frac{5\pi}{16}) + \sin^4(\frac{7\pi}{16})$.
- 97. 求值: $\csc 10^{\circ} \sqrt{3} \sec 10^{\circ}$.
- 98. 求值: $\cos 40^{\circ} (1 + \sqrt{3} \cot 80^{\circ})$.
- 99. 求值: $\tan 70^{\circ} \cos 10^{\circ} (\sqrt{3} \tan 20^{\circ} 1)$.
- 100. 求值: $\sec 50^{\circ} + \cot 80^{\circ}$.
- 101. 若 $x = \frac{\pi}{12}$, 则 $\cos^4 x \sin^4 x$ 的值为 (
 - A. 0

B. $\frac{1}{2}$

C. $\frac{\sqrt{2}}{2}$

D. $\frac{\sqrt{3}}{2}$

- 102. 函数 $y = \sin^2 x$ 是 (
 - Α. 最小正周期为 2π 的偶函数

Β. 最小正周期为 2π 的奇函数

C. 最小正周期为 π 的偶函数

- D. 最小正周期为 π 的奇函数
- 103. 若 $\sin \frac{\alpha}{2} = \frac{3}{5}$, $\cos \frac{\alpha}{2} = -\frac{4}{5}$, 则角 α 所在的象限是 (
 - A. 第一象限
- B. 第二象限
- C. 第三象限
- D. 第四象限
- 104. 函数 $y = 2\sin x \cos sx (\cos^2 x \sin^2 x)$ 的最大值与最小值之积等于 (

B. -2

C. 1

D. -1

- 105. 函数 $y = 1 \cos^2 x + \cos^4 x$ 的最小正周期是 (
 - A. 2π

B. π

C. $\frac{\pi}{2}$

D. $\frac{\pi}{4}$

- 106. 化简 $\sqrt{1-\cos 4-\sin^2 2}$ 的结果是 ().
 - A. $\cos 2$

- $B. \cos 2$
- C. $\sqrt{3}\cos 2$
- D. $-\sqrt{3}\cos 2$

- 107. 若 $\sin \theta : \sin \frac{\theta}{2} = 8 : 5$, 则 $\cos \theta =$ _____.
- 108. 计算 $\sin \frac{\pi}{8} \cos \frac{\pi}{8} \cot \frac{\pi}{8} =$ ______.
- 109. 若 $8\cos(\frac{\pi}{8} + \alpha)\cos(\frac{\pi}{4} \alpha) = 1$, 则 $\sin^4 \alpha + \cos^4 \alpha =$ ______
- 110. 函数 $y = \sin x \cos x 2 \sin^3 x \cos x$ 的最小正周期是_
- 111. 若 $\tan x = \sqrt{2}$, 则 $\frac{2\cos^2\frac{x}{2} \sin x 1}{\sin x + \cos x} =$ _____
- 112. 函数 $y = 2 \sin x (\sin x + \cos x)$ 为减函数的区间是_
- 113. 若 $270^{\circ} < \alpha < 360^{\circ}$,则化简 $\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\cos 2\alpha}}$ 的结果是 (
- B. $-\sin\frac{\alpha}{2}$
- D. $-\cos\frac{\alpha}{2}$
- 114. 若 $\pi < x < \frac{3\pi}{2}$,则 $\sqrt{\tan x + \sin x} + \sqrt{\tan x \sin x}$ 可以化成 ().

- A. $2\sqrt{\tan x}\sin(\frac{x}{2}-\frac{\pi}{4})$ B. $2\sqrt{\tan x}\sin(\frac{x}{2}+\frac{\pi}{4})$ C. $-2\sqrt{\tan x}\sin(\frac{x}{2}-\frac{\pi}{4})$ D. $-2\sqrt{\tan x}\sin(\frac{x}{2}+\frac{\pi}{4})$
- 115. 已知 $\sin \alpha + \sin \beta = \frac{1}{2}$, $\cos \alpha + \cos \beta = \frac{1}{2}$, 求 $\cos^2(\frac{\alpha \beta}{2})$ 的值.
- 116. 求 $y = \sin^6 x + \cos^6 x$ 的最小正周期.
- 117. 已知 $\tan \alpha \tan \beta = \frac{1}{\sqrt{3}}$, 求 $(2 \cos 2\alpha)(2 \cos 2\beta)$ 的值.
- 118. 化简: $\frac{2\cos^2\alpha 1}{2\tan(\frac{\pi}{4} \alpha)\sin^2(\frac{\pi}{4} + \alpha)}.$
- 119. 化简: $\frac{1+\cos\theta-\sin\theta}{1-\cos\theta-\sin\theta}+\frac{1-\cos\theta-\sin\theta}{1+\cos\theta-\sin\theta}$

- 120. 已知 $\cos(\frac{\pi}{4} + x) = \frac{4}{5}(\frac{19\pi}{12} < x < \frac{7\pi}{4})$,求 $\frac{\sin 2x 2\sin^2 x}{1 \tan x}$ 的值.
- 121. 求函数 $f(x) = 4\cos 2x + 12\sin x 5\cos^2 x$ 的最大值及其相应的 x 值.
- 122. 求函数 $f(x) = \sin 2x + \sin x + \cos x$ 的最大值及其相应的 x 值.
- 123. 求函数 $f(x) = \frac{\sin x \cos x}{1 + \sin x + \cos x}$ 的最大值及其相应的 x 值.
- 124. 求函数 $y = \sin^2 x + 2\sin x \cos x + 3\cos^2 x 2$ 的取值范围、最小正周期以及为增函数的区间.
- 125. 化简 $\frac{\cot \frac{\alpha}{2} \tan \frac{\alpha}{2}}{\cot \frac{\alpha}{2} + \tan \frac{\alpha}{2}}$ 的结果是 ().
 - A. $\sin \alpha$

B. $\cos \alpha$

- C. $\tan \alpha$
- D. $\cot \alpha$

- 126. 函数 $y = \lg \frac{\tan x}{1 + \tan x}$ 为增函数的区间是 ().
- A. $(k\pi, k\pi + \frac{\pi}{4}], k \in \mathbf{Z}$ B. $(k\pi, 2k\pi + \frac{\pi}{4}], k \in \mathbf{Z}$ C. $(2k\pi, 2k\pi + \frac{\pi}{2}], k \in \mathbf{Z}$ D. $(2k\pi, k\pi + \frac{\pi}{2}], k \in \mathbf{Z}$

- 127. 若 $f(\tan x) = \sin 2x$, 则 f(-1) 的值是 (
 - $A. \sin 2$

C. $\frac{1}{2}$

D. 1

- 128. 若 $\tan \frac{A}{2} = \frac{m}{n}$, 则 $m \cos A n \sin A$ 等于 ().

C. m

D. -m

- 129. 若锐角 θ 满足 $\sin \frac{\theta}{2} = \sqrt{\frac{x-1}{2x}}$, 则 $\tan \theta$ 等于 ().

- B. $\frac{x+1}{\sqrt{x-1}}$
- C. $\frac{\sqrt{x^2-1}}{x}$
- D. $\sqrt{x^2 1}$

- 130. 化简 $\frac{\tan(45^\circ \alpha)}{1 \tan^2(45^\circ \alpha)} \cdot \frac{\sin \alpha \cos \alpha}{\cos^2 \alpha \sin^2 \alpha} = \underline{\hspace{1cm}}.$
- 131. 若 $\tan \frac{\alpha}{2} = \frac{2}{5}$, 则 $\frac{2\sin \alpha + 3\cos \alpha}{3\cos \alpha 4\sin \alpha} =$ ______.
- 132. 若 $\frac{2\sin\theta + \cos\theta}{\sin\theta 3\cos\theta} = -5$, 则 $3\cos 2\theta + 4\sin 2\theta =$ ______.
- 133. 已知 $\sin \alpha = \frac{3}{5}$, $\alpha \in (\frac{\pi}{2}, \pi)$, $\tan(\pi \beta) = \frac{1}{2}$, 求 $\tan(\alpha 2\beta)$ 的值.
- 134. 已知 $\tan 2\theta = -2\sqrt{2}, \frac{\pi}{4} < \theta < \frac{\pi}{2},$ 求 $\frac{2\cos^2(\frac{\theta}{2}) \sin \theta 1}{\sqrt{2}\sin(\frac{\pi}{4} + \theta)}$ 的值.
- 135. 已知 $a \sin x + b \cos x = 0$, $A \sin 2x + B \cos 2x = C$, (a, b 是不同时为零的实数), 求证: $2abA + (b^2 a^2)B + B \cos 2x = C$ $(a^2 + b^2)C = 0.$
- 136. 下列函数中, 最小正周期为 π 的是 (

 - A. $y = \frac{\sin x}{1 \cos x}$ B. $y = \tan \frac{x}{2} \frac{1}{\sin x}$ C. $y = \cos^2(2x)$ D. $y = \tan x \cot x$

137. 若 $\cos \alpha = -\frac{3}{5}$, 且 $\pi < \alpha < \frac{3\pi}{2}$, 则 $\cos \frac{\alpha}{2}$ 的值等于 (

A.
$$\frac{\sqrt{5}}{5}$$

B.
$$-\frac{\sqrt{5}}{5}$$

C.
$$\frac{2\sqrt{5}}{5}$$

D.
$$-\frac{2\sqrt{5}}{5}$$

138. 若 $2\pi < \theta < 4\pi$, $\sin \theta = -\frac{3}{5}$, $\cos \theta < 0$, 则 $\tan \frac{\theta}{2}$ 的值等于 ().

C.
$$-\frac{1}{3}$$

D.
$$\frac{1}{3}$$

139. 若 $\alpha + \beta = \frac{\pi}{2}$, 则 ().

A.
$$\cos \frac{\alpha}{2} = -\sqrt{\frac{1+\sin\beta}{2}}$$
 B. $\sin \frac{\alpha}{2} = -\sqrt{\frac{1-\sin\beta}{2}}$ C. $\tan \frac{\alpha}{2} = \pm\sqrt{\frac{1-\sin\beta}{1+\sin\beta}}$ D. $\tan \frac{\alpha}{2} = \pm\sqrt{\frac{1+\sin\beta}{1-\sin\beta}}$

B.
$$\sin \frac{\alpha}{2} = -\sqrt{\frac{1 - \sin \beta}{2}}$$

C.
$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \sin \beta}{1 + \sin \beta}}$$

D.
$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \sin \beta}{1 - \sin \beta}}$$

140. 当 $3\pi < \alpha < 4\pi$ 时. 化简 $\sqrt{\frac{1+\cos\alpha}{2}} - \sqrt{\frac{1-\cos\alpha}{2}}$ 得 ().

$$A. -\sqrt{2}\sin(\frac{\alpha}{2} + \frac{\pi}{4}) \qquad B. \sqrt{2}\sin(\frac{\alpha}{2} + \frac{\pi}{4}) \qquad C. -\sqrt{2}\sin(\frac{\alpha}{2} - \frac{\pi}{4}) \qquad D. \sqrt{2}\sin(\frac{\alpha}{2} - \frac{\pi}{4})$$

B.
$$\sqrt{2}\sin(\frac{\alpha}{2} + \frac{\pi}{4})$$

$$C. -\sqrt{2}\sin(\frac{\alpha}{2} - \frac{\pi}{4})$$

D.
$$\sqrt{2}\sin(\frac{\alpha}{2} - \frac{\pi}{4})$$

141. 若 $\sin 2\alpha = a$, $\cos 2\alpha = b$, 则 $\tan(\alpha + \frac{\pi}{4})$ 的值是 ().

A.
$$\frac{a}{1+b}$$

B.
$$\frac{1+a}{b}$$

C.
$$\frac{1+a-b}{1-a+b}$$

D.
$$\frac{a-b+1}{a+b+1}$$

142. 若 $\sin x = \frac{2}{3}$, 且 $\frac{\pi}{2} < x < \pi$, 则 $\sin \frac{x}{2} =$ ______.

143. 若 α 是第三象限角,且 $\sin(\alpha+\beta)\cos\beta-\sin\beta\cdot\cos(\alpha+\beta)=-\frac{5}{13}$,则 $\tan\frac{\alpha}{2}=$

144. 若 $3\sin\alpha = 4\cos\alpha$, 且 $\sin\alpha < 0$, 则 $\tan\frac{\alpha}{2} =$ ______.

145. 若 $\tan 35^\circ = m$, 则 $\frac{\cos 20^\circ}{1 - \sin 20^\circ} =$ ______.

146. 当 $k \in \mathbf{Z}$ 时, $(\tan \frac{5\pi}{12})^k \cdot (\tan \frac{\pi}{12})^{k+2} = \underline{\hspace{1cm}}$.

147. 与 $\lg(\cos x - 1)^2$ 相等的式子是 ().

A.
$$4\lg|\cos\frac{x}{2}| + 2\lg 2$$
 B. $2\lg(\cos x - 1)$

B.
$$2\lg(\cos x - 1)$$

C.
$$[\lg(\cos x - 1)]^5$$

C.
$$[\lg(\cos x - 1)]^2$$
 D. $4\lg|\sin\frac{x}{2}| + 2\lg 2$

148. 已知 $\frac{1-\cos 2\theta}{1+\cos 2\theta} = 7-4\sqrt{3}$, 且 $(\frac{1}{2})^{\sin 2\theta} > 1$, 求 $\tan \theta$ 的值.

149. 已知 $\sin(\alpha + \frac{3\pi}{4}) = \frac{5}{13}$, $\cos(\frac{\pi}{4} - \beta) = \frac{3}{5}$, 且 $-\frac{\pi}{4} < \alpha < \frac{\pi}{4}$, $\frac{\pi}{4} < \beta < \frac{3\pi}{4}$, 求 $\sin\frac{\alpha - \beta}{2}$ 的值.

150. 已知 $\sin \alpha - \cos \alpha = \frac{1}{2}$, 且 $\pi < \alpha < 2\pi$, 求 $\tan \frac{\alpha}{2}$ 的值.

151. 已知 $\cos \alpha = -\frac{3}{5}$, 且 α 为第二象限角, 求 $\frac{\tan \frac{n+\alpha}{4}}{1-\cot^2 \frac{\pi-\alpha}{2}}$ 的值.

152. 求证: $\cos x + \cos 2x + \dots + \cos nx = \frac{\cos \frac{n+1}{2} x \sin \frac{n}{2} x}{\sin \frac{x}{2}}$.

解答在这里因为左边 = $\frac{1}{\sin\frac{x}{2}}(\sin\frac{x}{2}\cos x + \sin\frac{x^2}{2}\cos 2x + \sin\frac{x}{2}\cos 3x + \dots + \sin\frac{x}{2}\cos nx) = \frac{1}{2\sin\frac{x}{2}}[(\sin\frac{3x}{2} - \sin\frac{x}{2}\cos x + \sin\frac{$

$$\sin\frac{x}{2}) + (\sin\frac{5x}{2} - \sin\frac{3x}{2}) + (\sin\frac{7x}{2} - \sin\frac{5x}{2}) + \dots + (\sin\frac{2n+1}{2}x - \sin\frac{2n-1}{2}x)] = \frac{1}{2\sin\frac{x}{2}}(\sin\frac{2n+1}{2}x - \sin\frac{x}{2}) = \frac{\cos\frac{n+1}{2}x\sin\frac{n}{2}}{\sin\frac{x}{2}} = 右边、所以原式得证.$$

- 153. 在 $\triangle ABC$ 中,求证: $\sin^2\frac{A}{2} + \sin^2\frac{B}{2} + \sin^2\frac{C}{2} = 1 2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$. 解答在这里因为左边 $= \frac{3}{2} \frac{1}{2}(\cos A + \cos B + \cos C) = \frac{3}{2} \frac{1}{2}(2\cos\frac{A+B}{2}\cos\frac{A-B}{2} + \cos C) = \frac{3}{2} \frac{1}{2}(2\sin\frac{C}{2}\cos\frac{A-B}{2} + 1 2\sin^2\frac{C}{2})$ $= 1 \sin\frac{C}{2}(\cos\frac{A-B}{2} \sin\frac{C}{2}) = 1 \sin\frac{C}{2}(\cos\frac{A-B}{2} \sin\frac{C}{2}) = 1 \sin\frac{C}{2}(\cos\frac{A-B}{2} \sin\frac{C}{2}) = 1 2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} =$ 看边,所以原式得证.
- 154. 已知 $\cos \alpha + \cos \beta = a$, $\sin \alpha + \sin \beta = b(ab \neq 0)$, 求 $\cos(\alpha \beta)$, $\cos(\alpha + \beta)$ 的值. 解答在这里两式平方相加,可得 $2 + 2\cos(\alpha \beta) = a^2 + b^2$,所以 $\cos(\alpha \beta) = \frac{a^2 + b^2 2}{2}$. 再将两式和 差化积,得 $2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha \beta}{2} = a$, $2\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha \beta}{2} = b$. 显然 $\cos\frac{\alpha \beta}{2} \neq 0$,于是两式相除,得 $\tan\frac{\alpha + \beta}{2} = \frac{b}{a}$. 再由万能公式,得 $\cos(\alpha + \beta) = \frac{1 \tan^2(\frac{\alpha + \beta}{2})}{1 + \tan^2(\frac{\alpha + \beta}{2})} = \frac{1 \frac{b^2}{a^2}}{1 + \frac{b^2}{a^2}} = \frac{a^2 b^2}{a^2 + b^2}$.
- 155. 已知 $a\cos\alpha + b\sin\alpha = c$, $a\cos\beta + b\sin\beta = c$, 其中 $\alpha \pm \beta \neq k\pi$, $k \in \mathbf{Z}$, 求证: $\frac{a}{\cos\frac{\alpha+\beta}{2}} = \frac{b}{\sin\frac{\alpha+\beta}{2}} = \frac{c}{\cos\frac{\alpha-\beta}{2}}$.

解答在这里将已知的两式相减,得 $a(\cos\alpha-\cos\beta)+b(\sin\alpha-\sin\beta)=0$. 利用和差化积,得 $-2a\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}+2b\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}=0$. 由条件知 $\sin\frac{\alpha-\beta}{2}\neq0$,所以 $a\sin\frac{\alpha+\beta}{2}=b\cos\frac{\alpha+\beta}{2}$,即 $\frac{a}{\cos\frac{\alpha+\beta}{2}}=\frac{b\sin\alpha}{\cos\frac{\alpha+\beta}{2}}=\frac{b\sin\alpha}{\sin\frac{\alpha+\beta}{2}}$. 再利用等比性质,得 $\frac{a\cos\alpha}{\cos\frac{\alpha+\beta}{2}\cos\alpha}=\frac{b\sin\alpha}{\sin\frac{\alpha+\beta}{2}\sin\alpha}=\frac{a\cos\alpha+b\sin\alpha}{\cos\frac{\alpha+\beta}{2}\cos\alpha+\sin\frac{\alpha+\beta}{2}\sin\alpha}=\frac{b}{\cos\frac{\alpha-\beta}{2}}$,所以 $\frac{a}{\cos\frac{\alpha+\beta}{2}}=\frac{b}{\sin\frac{\alpha+\beta}{2}}=\frac{c}{\cos\frac{\alpha-\beta}{2}}$

156. 已知 $\alpha+\beta=\frac{2\pi}{3}$, 求 $\sin^2\alpha+\sin^2\beta$ 的取值范围. 解答在这里因为 $\sin^2\alpha+\sin^2\beta=\frac{1-\cos2\alpha}{2}+\frac{1-\cos2\beta}{2}=1-\frac{1}{2}(\cos2\alpha+\cos2\beta)=1-\cos(\alpha+\beta)\cos(\alpha-\beta)=1+\frac{1}{2}\cos(\alpha-\beta)$, 又 $=-1\leq\cos(\alpha-\beta)\leq 1$, 所以 $\sin^2\alpha+\sin^2\beta$ 的取值范围是 $[\frac{1}{2},\frac{3}{2}]$.

- 157. 函数 $y=\sin(3x+\frac{\pi}{12})\sin(3x-\frac{5\pi}{12})$ 的最小正周期是(). A. $\frac{\pi}{3}$ B. $\frac{2\pi}{3}$ C. 3π D. 6π
- 158. 若 $\cos^2 \alpha \cos^2 \beta = m$, 则 $\sin(\alpha + \beta) \sin(\alpha \beta)$ 等于 ().
- A. 4m B. -4m C. m D. -m
- 159. $\cos(\frac{\pi}{5}+1)\cos(\frac{\pi}{5}-1)$ 等于 ().

A.
$$\cos^2(\frac{\pi}{5}) + \sin^2 3$$

B.
$$\sin^2(\frac{\pi}{5}) - \cos^2 1$$

C.
$$\cos^2(\frac{\pi}{5}) - \sin^2 1$$

$$\text{A. } \cos^2(\frac{\pi}{5}) + \sin^2 1 \\ \text{B. } \sin^2(\frac{\pi}{5}) - \cos^2 1 \\ \text{C. } \cos^2(\frac{\pi}{5}) - \sin^2 1 \\ \text{D. } \sin^2(\frac{\pi}{5}) + \cos^2 1 \\ \text{D. } \sin^2(\frac{\pi}{5}) + \cos^2(\frac{\pi}{5}) + \cos^2(\frac{\pi}{5}) + \cos^2(\frac{\pi}{5}) \\ \text{D. } \sin^2(\frac{\pi}{5}) + \cos^2(\frac{\pi}{5}) + \cos^2(\frac{\pi}{5}) \\ \text{D. }$$

160. 函数
$$f(x) = \sin(x + \frac{5\pi}{12})\cos(x - \frac{\pi}{12})$$
 是 ().

Α. 最小正周期为 π 的奇函数

Β. 最小正周期为 π 的偶函数

C. 最小正周期为 2π 的函数, 没有奇偶性

D. 最小正周期为 π 的函数, 没有奇偶性

161. 函数
$$f(x) = 2\sin\frac{x}{2}\sin(\alpha - \frac{x}{2})$$
 的最大值等于 ().

A.
$$2\sin^2(\frac{\alpha}{2})$$

B.
$$-2\sin^2(\frac{\alpha}{2})$$
 C. $2\cos^2(\frac{\alpha}{2})$

C.
$$2\cos^2(\frac{\alpha}{2})$$

D.
$$-2\cos^2(\frac{\alpha}{2})$$

162. 函数
$$y = \sin(\frac{3\pi}{4} - x)\sin(\frac{3\pi}{4} + x)$$
 的值域是______.

164. 化简:
$$\cos^2 \alpha - \cos(\alpha + 60^\circ) \cos(\alpha - 60^\circ) =$$
_____.

165. 化简:
$$\cos(\alpha + \beta)\cos(\alpha - \beta) + \sin^2\beta =$$
_____.

166. 若
$$\sin(\alpha + \beta) = \frac{2}{3}$$
, $\sin(\alpha - \beta) = \frac{1}{5}$, 则 $\tan \alpha \cot \beta =$ ______.

167. 若
$$\sin(\theta + \frac{\pi}{6})\sin(\theta - \frac{\pi}{6}) = \frac{11}{20}$$
, 则 $\tan \theta =$ _____.

168. 计算:
$$\sin 63^{\circ} - \cos 63^{\circ} + 2\sqrt{2}\sin 66^{\circ}\cos 84^{\circ} =$$
______.

169. 计算:
$$\frac{1}{2\sin 10^{\circ}} - 2\sin 70^{\circ} =$$
______.

170. 计算:
$$\frac{1 - 4\sin 10^{\circ} + 8\sin^{3} 10^{\circ}}{2\cos 80^{\circ}} = \underline{\hspace{1cm}}.$$

171. 计算:
$$\sin 80^{\circ} \cos 20^{\circ} + \sin 45^{\circ} \cos 145^{\circ} + \sin 55^{\circ} \cos 245^{\circ} =$$
______.

172. 求证:
$$\tan \frac{3\alpha}{2} - \tan \frac{\alpha}{2} = \frac{2\sin \alpha}{\cos \alpha + \cos 2\alpha}$$
.

173. 已知
$$\tan \frac{\alpha + \beta}{2} = \frac{\sqrt{2}}{2}$$
, 求 $\cos 2\alpha \cdot \cos 2\beta - \cos^2(\alpha - \beta)$ 的值.

174. 已知 A, B, C 是 $\triangle ABC$ 的三内角, 若 $B = 60^{\circ}$, 求 $\cos A \cos C$ 的取值范围.

175. 计算:
$$\cos 20^{\circ} + \cos 60^{\circ} + \cos 100^{\circ} + \cos 140^{\circ}$$
.

176. 计算:
$$\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$$
.

177. 求证:
$$\sin \alpha \sin(60^{\circ} + \alpha) \sin(60^{\circ} - \alpha) = \frac{1}{4} \sin 3\alpha$$
.

178. 求证:
$$\cos \alpha \cos(60^\circ + \alpha) \cos(60^\circ - \alpha) = \frac{1}{4} \cos 3\alpha$$
.

179. 求证:
$$\tan \alpha \tan(60^\circ + \alpha) \tan(60^\circ - \alpha) = \tan 3\alpha$$
.

180. 计算:
$$\sin 5^{\circ} \sin 55^{\circ} \sin 65^{\circ}$$
.

181. 计算:
$$\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}$$
.

- 182. 计算: $\cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ}$.
- 183. 计算: $\sin x \sin(\frac{1}{2}\pi + x) \sin(\frac{2}{3}\pi + x)$.
- 184. 计算: tan 5° tan 55° tan 65° tan 75°.
- 185. 已知 $f(x) = \cos^2(x+\theta) 2\cos\theta\cos x\cos(x+\theta) + \cos^2\theta$.
 - (1) 求此函数的最小正周期:
 - (2) 若 $\frac{1}{4} \le f(x) \le \frac{3}{4}$, $0 \le x \le 2\pi$, 求 取值范围.
- 186. 已知 $\cos(\alpha+\beta)\sin(\alpha-\beta)+\frac{1}{2}\sin\alpha\cos\alpha=0$,且 $3\sin^2\alpha+2\sin^2\beta=1$, $\alpha,\beta\in(0,\frac{\pi}{2})$,求 $\sin(\alpha+\beta)$ 的值.
- 187. 下列各式中, 不正确的是(

A.
$$\sin \alpha + \sin \beta = 2 \sin \frac{\beta + \alpha}{\beta^2} \cos \frac{\beta - \alpha}{\beta^2}$$

C.
$$\cos \alpha + \cos \beta = 2 \cos \frac{\beta^2 + \alpha}{2} \cos \frac{\beta^2 - \alpha}{2}$$

$$\begin{array}{ll} \text{A. } \sin\alpha + \sin\beta = 2\sin\frac{\beta + \alpha}{2}\cos\frac{\beta - \alpha}{2} & \text{B. } \sin\alpha - \sin\beta = 2\cos\frac{\beta + \alpha}{2}\sin\frac{\beta - \alpha}{2} \\ \text{C. } \cos\alpha + \cos\beta = 2\cos\frac{\beta + \alpha}{2}\cos\frac{\beta - \alpha}{2} & \text{D. } \cos\alpha - \cos\beta = 2\sin\frac{\beta + \alpha}{2}\sin\frac{\beta - \alpha}{2} \end{array}$$

188. 函数
$$y = \cos^2(x - \frac{\pi}{12}) + \sin^2(x + \frac{\pi}{12}) - 1$$
 是 ().

Α. 最小正周期为 2π 的奇函数

B. 最小正周期为 2π 的偶函数

C. 最小正周期为 π 的奇函数

- D. 最小正周期为 π 的偶函数
- 189. 将 $\cos^2 x \sin^2 y$ 化为积的形式, 结果是 (

A.
$$-\sin(x+y)\sin(x-y)$$
 B. $\cos(x+y)\cos(x-y)$

C.
$$\sin(x+y)\cos(x-y)$$
 D. $-\cos(x+y)\sin(x-y)$

D.
$$-\cos(x+y)\sin(x-y)$$

190. 设
$$x + y = \frac{2\pi}{3}$$
, 则 $\cos x - \cos y$ 的最大值是 ().

$$A = \sqrt{3}$$

B.
$$2\sqrt{3}$$

C.
$$\sqrt{3}$$

191. 函数
$$f(x) = \frac{\cos 3x - \cos x}{\cos x}$$
 的值域是 ().

A.
$$[-4, +\infty)$$

B.
$$[-4,0)$$

C.
$$(-4,0]$$

D.
$$(-4, 4]$$

192. 求值:
$$\sin 10^{\circ} + \sin 50^{\circ} - \sin 70^{\circ} =$$
_____.

193. 求值:
$$\cos 20^{\circ} - \cos 80^{\circ} - \sin 50^{\circ} =$$

194. 求值:
$$\sin 15^{\circ} - \sin 75^{\circ} + 2 \sin 15^{\circ} \sin 75^{\circ} =$$
______.

195. 求值:
$$\sin 80^{\circ} - \sin 20^{\circ} + 2\sin 10^{\circ}\cos 50^{\circ} =$$
_____.

196. 求值:
$$\cos \frac{5\pi}{13} + \cos \frac{3\pi}{13} + 2\cos \frac{9\pi}{13}\cos \frac{\pi}{13} =$$
______.

197. 化简:
$$\cos^2(\alpha+\beta) + \cos^2(\alpha-\beta) - \cos 2\alpha \cos 2\beta =$$
_____.

198. 化筒:
$$\cos \alpha + \cos(\frac{2}{3}\pi + \alpha) + \cos(\frac{2}{3}\pi - \alpha) =$$
_____.

199. 求值:
$$\sin^2 40^\circ + \sin^2 80^\circ + \frac{1}{2}\cos 220^\circ =$$
_____.

200. 求值:
$$\cos 20^{\circ} + \sin 60^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} =$$
_____.

- 201. 求值: $\sin 63^{\circ} \sin 27^{\circ} + 2\sqrt{2}\cos 84^{\circ}\sin 66^{\circ} =$ _____
- 202. 计算: $\frac{\sin 20^{\circ} \cos 50^{\circ}}{\cos 80^{\circ}} =$ _____.
- 203. 计算: $\frac{\sin 10^{\circ} + \sin 50^{\circ}}{\sin 35^{\circ} \sin 55^{\circ}} =$ _____.
- 204. 计算: $\csc 18^{\circ} \csc 54^{\circ} =$ _____.
- 205. 若 x + y = 1, 则 $\sin x + \sin y$ 与 1 的大小关系是 (
 - A. $\sin x + \sin y > 1$

B. $\sin x + \sin y = 1$

C. $\sin x + \sin y < 1$

- D. 随 x,y 的取值而定
- 206. 若 $\sqrt{3}(\sin \alpha + \sin \beta) = \cos \beta \cos \alpha, \ \alpha, \beta \in (0, \pi), \ \text{则} \ \alpha \beta$ 等于 (
 - A. $-\frac{2\pi}{2}$
- B. $-\frac{\pi}{2}$

- D. $\frac{2\pi}{2}$
- 207. 若 x > 0, y > 0, $0 < x + y < 2\pi$, 则 $f(x) = \sin(x + y) \sin x \sin y$ 的值 (
 - A. 恒大于零

B. 恒小于零

C. 恒等于零

- D. 符号随 x,y 的取值而定
- 208. 函数 $y = \sin(2x \frac{\pi}{6}) \cos 2x$ 的图像, 可由函数 $y = \sqrt{3} \sin 2x$ 的图像 (
- B. 向左平移 $\frac{\pi}{3}$ 个单位长度得到 D. 向左平移 $\frac{\pi}{6}$ 个单位长度得到
- A. 向右平移 $\frac{\pi}{3}$ 个单位长度得到 C. 向右平移 $\frac{\pi}{6}$ 个单位长度得到

- 209. 在① $\cos 40^{\circ} + \sqrt{3} \sin 40^{\circ} = 2 \cos 20^{\circ}$,② $1 + 2 \cos 20^{\circ} = 4 \cos 20^{\circ} \cos 40^{\circ}$,③ $\frac{\sin 40^{\circ}}{1 + \cos 40^{\circ}} = \cot 70^{\circ}$,④ $rac{1- an40^\circ}{1+ an40^\circ}= an20^\circ$ 这四个式子中,成立的个数是(
 - A. 1

B. 2

C. 3

D. 4

- 210. 已知 $\cos 36^{\circ} \cos 72^{\circ} = \frac{1}{4}$,求 $\cos 36^{\circ} \cos 72^{\circ}$.
- 211. 已知 $\cos 36^{\circ} \cos 72^{\circ} = \frac{1}{4}$,求 $\cos^2(\frac{\pi}{5}) + \sin^2(\frac{\pi}{10})$.
- 212. 已知 $\cos 36^{\circ} \cos 72^{\circ} = \frac{1}{4}$, 求 $\cos 12^{\circ} \cos 24^{\circ} \cos 48^{\circ} + \cos 84^{\circ}$.
- 213. $\Re \cos^2 73^\circ + \sin^2 43^\circ + \cos 73^\circ \sin 43^\circ$.
- 214. $\Re \cos^2 10^\circ + \cos^2 110^\circ + \cos^2 130^\circ$.
- 215. $\Re \sin 10^{\circ} \sin 50^{\circ} \sin 50^{\circ} \sin 70^{\circ} \sin 70^{\circ} \sin 10^{\circ}$.
- 216. $\Re \tan 9^{\circ} \tan 27^{\circ} \tan 63^{\circ} + \tan 81^{\circ}$.
- 217. 已知 $\cos \alpha \cos \beta = \frac{1}{2}$, $\sin \alpha \sin \beta = -\frac{1}{3}$, 求 $\sin(\alpha + \beta)$, $\cos(\alpha \beta)$ 的值.
- 218. 已知 $\cos \alpha + \cos \beta = \frac{\sqrt{2}}{4}$, $\tan(\alpha + \beta) = -\frac{4}{3}$, 求 $\sin \alpha + \sin \beta$ 的值.

- 219. 已知 $a\cos x + b\sin x + c = 0 (a \neq 0)$ 在区间 $(\frac{\pi}{2},\pi)$ 内有两个相异的实根 $\alpha,\beta,$ 求 $\sin(\alpha+\beta)$ 的值.
- 220. 已知 $\sin \alpha + \sin \beta = \frac{3}{5}$, $\cos \alpha + \cos \beta = \frac{4}{5}$, 求 $\cos \alpha \cdot \cos \beta$ 的值.
- 221. 若 $\sin A + \sin B = \cos A + \cos B$, 判断 $\triangle ABC$ 的形状.
- 222. 若 $\sin^2 A + \sin^2 B + \sin^2 C < 2$, 判断 $\triangle ABC$ 的形状.
- 223. 若 $\tan B = \frac{\cos(B-C)}{\sin A \sin(B-C)}$, 判断 $\triangle ABC$ 的形状.
- 224. 若 $\sin A = \frac{\sin B + \sin C}{\cos B + \cos C}$, 判断 $\triangle ABC$ 的形状.
- 225. 将 $\sin x + \sin y + \sin z \sin(x + y + z)$ 化为积的形式.
- 226. 若 $\frac{\sin(A+30^\circ)-\sin(B+30^\circ)}{\cos A-\cos B}=m\cot\frac{A+B}{2}+n$, 求 m,n 的值.
- 227. 已知 $\sin A + \sin B \sin C = 0$, $\cos A + \cos B \cos C = 0$, 求证: $\sin^2 A + \sin^2 B + \sin^2 C$ 为定值.
- 228. 已知 $0 < x < \pi$, 求函数 $f(x) = -\frac{1}{2} + \frac{\sin \frac{5x}{2}}{2 \sin \frac{x}{2}}$ 的最小值.
- 229. 已知三角形内角 θ 满足 $\frac{\sin\frac{5\theta}{2}}{2\sin\frac{\theta}{2}} \frac{1}{2} = a\cos\theta + a$, 求实数 a 的取值范围.
- 230. 已知 $0 < \alpha < \pi$, $0 < \beta < \pi$, 且 $\cos \alpha + \cos \beta \cos(\alpha + \beta) = \frac{3}{2}$, 求证: $\alpha = \beta = \frac{\pi}{3}$.
- 231. 已知 A, B 是两个锐角,且满足 $a \sin A + b \cos B \sin B = 0$, $a \sin B + b \cos A \sin A = 0$,又 $\tan \frac{A+B}{2} = a+1$,求证: $a^2 + b = 1$.
- 232. 已知 $\frac{a^3+b^3-c^3}{a+b-c}=c^2$, 且 $\sin A \sin B=\frac{3}{4}$, 确定三角形 ABC 的形状. 解答在这里由 $\frac{a^3+b^3-c^3}{a+b-c}=c^2$, 得 $a^2+b^2=c^2(a+b)$, 即 $(a+b)(a^2-ab+b^2-c^2)=0$. 因为 $a+b\neq 0$, 所以 $c^2=a^2+b^2-ab$, 结合余弦定理可得 $2\cos C=1$. 所以 $\cos C=\frac{1}{2}$, 故 $C=60^\circ$, 再由 $\sin A \sin B=\frac{3}{4}$, 得 $-\frac{1}{2}[\cos(A+B)-\cos(A-B)]=\frac{3}{4}$. 因为 $A+B=120^\circ$, 所以 $\frac{1}{2}\cos(A-B)=\frac{1}{2}$, 所以 A=B. 所以 $\triangle ABC$ 为等边三角形.
- 233. 已知 $\cos A + \cos B > \sin A + \sin B$, 确定三角形 ABC 的形状.

解答在这里因为 $(\cos A + \cos B) - (\sin A + \sin B) = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2} - 2\sin\frac{A+B}{2}\cos\frac{A-B}{2} = 2\cos\frac{A-B}{2}(\cos\frac{A+B}{2}-\sin\frac{A+B}{2}) = 2\sqrt{2}\cos\frac{A-B}{2}\sin(\frac{\pi}{4}-\frac{A+B}{2}),$ 由条件 $\cos A + \cos B > \sin A + \sin B$ 及 $\cos\frac{A-B}{2}>0$, 得 $\sin\frac{\pi-2(A+B)}{4}>0$, 所以 $2k\pi<\frac{\pi-2(A+B)}{4}<2k\pi+\pi$, 即 $2k\pi<\frac{C-(A+B)}{4}<2k\pi+\pi$. 又因为 A,B,C 是三角形的内角,取 k=0,所以 $0< C-(A+B)<4\pi$,即 C>A+B. 结合 $A+B=\pi-C$,有 $C>\frac{\pi}{2}$,所以 $\triangle ABC$ 是钝角三角形(C 为钝角).

234. 已知 $a\cos B + b\cos C + c\cos A = b\cos A + c\cos B + a\cos C$, 确定三角形 ABC 的形状.

解答在这里利用正弦定理,有
$$a=2R\sin A,\ b=2R\sin B,\ c=2R\sin C(R\ 为\ \triangle ABC\$$
的外接圆半径),由已知条件可得 $(\sin A\cos B-\cos A\sin B)+(\sin B\cos C-\cos B\sin C)+(\sin C\cos A-\cos C\sin A)=0.$ 即 $\sin(A-B)+\sin(B-C)+\sin(C-A)=0,\$ 前两项和差化积. 便得 $2\sin\frac{A-C}{2}\cos\frac{A-2B+C}{2}-\cos\frac{A-2B+C}{2}\cos\frac{A-C}{2}=0,$ 即 $\sin\frac{A-C}{2}(\cos\frac{A-2B+C}{2}-\cos\frac{A-C}{2})=0.$ 再和差化积, 得 $\sin\frac{A-B}{2}\sin\frac{B-C}{2}\sin\frac{C-C}{2}$ 0, 于是 $A=B$ 或 $B=C$ 或 $C=A$. 所以是等腰三角形.

235. 在
$$\triangle ABC$$
 中,求证: $\sin^2\frac{A}{2} + \sin^2\frac{B}{2} + \sin^2\frac{C}{2} = 1 - 2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$. 解答在这里因为左边 = $\frac{1-\cos A}{2} + \frac{1-\cos B}{2} + \sin^2\frac{C}{2} = 1 - \cos\frac{A+B}{2}\cos\frac{A-B}{2} + \sin^2\frac{C}{2} = 1 - \sin\frac{C}{2}(\cos\frac{A-B}{2} - \cos\frac{A+B}{2}) = 1 - (-2)\sin\frac{C}{2}\sin\frac{A}{2}\sin(-\frac{B}{2}) = 1 - 2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = 右边,所以原式得证.$

236. 在
$$\triangle ABC$$
 中,求证: $(a-b)\cot\frac{C}{2} + (b-c)\cot\frac{A}{2} + (c-a)\cot\frac{B}{2} = 0$. 解答在这里因为左边 = $2R(\sin A - \sin B)\tan\frac{A+B}{2} + 2R(\sin B - \sin C)\tan\frac{B+C}{2} + 2R(\sin C - \sin A)\tan\frac{C+A}{2} = 2R(2\cos\frac{A+B}{2}\sin\frac{A-B}{2}\cdot\frac{\sin\frac{A+B}{2}}{\cos\frac{A+B}{2}} + 2\cos\frac{B+C}{2}\sin\frac{B-C}{2}\cdot\frac{\sin\frac{B+C}{2}}{\cos\frac{B+C}{2}} + 2\cos\frac{C+A}{2}\sin\frac{C-A}{2}\cdot\frac{\sin\frac{C+A}{2}}{\cos\frac{C+A}{2}})$ = $4R(\sin\frac{A+B}{2}\sin\frac{A-B}{2} + \sin\frac{B+C}{2}\sin\frac{B-C}{2} + \sin\frac{C+A}{2}\sin\frac{C-A}{2}) = 2R[(\cos A - \cos B) + (\cos B - \cos C) + (\cos C - \cos A)] = 0 = 右边,所以原式得证.$

237. 在 $\triangle ABC$ 中. 已知 A>B>C, 且 A=2C, b=4, a+c=8, 求 a,c 的长.

解答在这里由正弦定理
$$\frac{a}{\sin A} = \frac{c}{\sin C}$$
 及 $A = 2C$,得 $\cos C = \frac{a}{2c}$. 由条件 $a+c=8=2b$,利用余弦定理得 $\cos C = \frac{a^2+b^2-c^2}{2ab} = \frac{a^2+(\frac{a+c}{2})^2-c^2}{a(a+c)} = \frac{5a^2+2ac-3c^2}{4a(a+c)} = \frac{(5a-3c)(a+c)}{4a(a+c)} = \frac{5a-3c}{4a}$. 于是 $\frac{a}{2c} = \frac{5a-3c}{4a}$,整理得 $(2a-3c)(a-c)=0$. 因为 $a\neq c$,所以 $2a=3c$. 因为 $a+c=8$,所以 $a=\frac{24}{5}$, $c=\frac{16}{5}$.

- 238. 如图, 海岛 O 上有一座海拔 1000 米的山, 山顶上设有一个观察站 A, 上午 11 时测得一轮船在岛北偏东 60°的 C 处, 俯角为 30°; 11 时 10 分又测得该船在岛的北偏西 60°的 B 处, 俯角为 60°.
 - (1) 该船的速度为每小时多少千米?
 - (2) 若此船以不变航速继续前进,则它何时到达岛的正西方向? 此时所在点 E 离开海岛多少千米?

解答在这里(1)在 Rt $\triangle ABC$ 与 Rt $\triangle AOC$ 中,求得 $OB = OA \tan 30^\circ = \frac{\sqrt{3}}{3}$ (千米), $OC = OA \tan 60^\circ = \sqrt{3}$ (千米).由余弦定理,得 $BC = \sqrt{OB^2 + OC^2 - 2 \cdot OB \cdot OC \cos \angle BOC} = \sqrt{\frac{3}{9} + 3 - 2(-\frac{1}{2})} = \sqrt{\frac{13}{3}}$,于是 船速 $v = \frac{BC}{\frac{1}{6}} = 2\sqrt{39}$ (千米/时).

```
(2) 在 \triangle OBC 中,由余弦定理,得 \cos \angle OBC = \frac{BC^2 + OB^2 - OC^2}{2 \cdot BC \cdot OB} = \frac{\frac{13}{3} + \frac{3}{9} - 3}{2\sqrt{\frac{13}{3} \cdot \frac{\sqrt{3}}{3}}} = \frac{5}{\sqrt{13}}26. 于是
     \sin \angle EBO = \sin \angle OBC = \sqrt{1 - (\frac{5\sqrt{13}}{26})^2} = \frac{3\sqrt{39}}{26}, \sin \angle BEO = \sin[180^\circ - (\angle EBO + 30^\circ)] = \sin(\angle EBO + 30^\circ) = \frac{3\sqrt{39}}{26} \times \frac{\sqrt{3}}{2} - \frac{5\sqrt{13}}{26} \times \frac{1}{2} = \frac{\sqrt{13}}{13}. 在 \triangle BEO 中,由正弦定理,得 OE = \frac{OB \cdot \sin \angle EBO}{\sin \angle BEO} = \frac{3}{2}(千米), BE = \frac{OB \sin \angle BOE}{\sin \angle BEO} = \frac{\sqrt{39}}{6}(千米).于是从 B 到 E 所需时间 t = \frac{BE}{v} = \frac{1}{12}(时) = 5 分.所以再经过 5 分
      到达海岛的正西方方向, 此时 E 点离海岛 1.5 千米.
239. 在 \triangle ABC 中, 若 A = 60^{\circ}, AC = 16, 且此三角形的面积为 220\sqrt{3}, 则 BC 边的长是 ( ).
       A. \sqrt{2400}
                                           B. 25
                                                                              C. 51
                                                                                                                 D. 49
240. 在 \triangle ABC 中, 若 a+b=10, c=6, C=30^{\circ}, 则此三角形的面积等于 ( ).
       A. 8(2+\sqrt{3})
                           B. 8(2-\sqrt{3})
                                                                              C. 16(2+\sqrt{3})
                                                                                                             D. 16(2-\sqrt{3})
241. 若 \triangle ABC 的三边 a,b,c 满足 \frac{1}{a+b} + \frac{1}{b+c} = \frac{3}{a+b+c}, 则 B 等于 ( ).
       A. 30°
                                                                                                                 D. 120°
242. 在 \triangle ABC 中, 若 A=60^{\circ}, 且最大边长和最小边长恰好是方程 x^2-7x+11=0 的两根, 则第三边的边长为
      ( ).
       A. 2
                                           B. 3
                                                                              C. 4
                                                                                                                 D. 5
243. 若三角形的三条边氏分别是 4,5,6,则这个三角形的形状().
                                                                              C. 是钝角三角形
       A. 是锐角三角形
                                          B. 是直角三角形
                                                                                                                 D. 不能确定
244. 若三角形的角 A 满足 \sin A = \frac{\sqrt{3}}{2}, 则 A 等于 ( ).
                                                                                                                 D. 30° 或 150°
                                                                              C. 60° 或 120°
       A. 60^{\circ}
245. 若三角形的三内角之比为 1:2:3,则它们所对边的边长之比为(
                                                                              C. 11:\sqrt{3}:2
       A. 1:2:3
                                           B. 3:4:5
                                                                                                                 D.5:6:7
246. 在 \triangle ABC 中, a(\sin B - \sin C) + b(\sin C - \sin A) + c(\sin A - \sin B) 的值是 ( ).
                                                                                                                 D. \pi
247. 若方程 x^2 \sin A + 2x \sin B + \sin C = 0 有重根, 则 \triangle ABC 的三边 a, b, c 满足关系式 (
                                          B. a = b = c
                                                                                                                 D. b^2 = ac
       A. b = ac
                                                                              C. c = ab
248. 在 \triangle ABC 中, 若 a = 1, b = \sqrt{3}, A = 30^{\circ}, 则 B 的值是 ( ).
                                           B. 60° 或 120°
```

C. 120°

D. 30° 或 150°

A. 60°

249.	在 $\triangle ABC$ 中, 若 $B=45^{\circ},\ c=2\sqrt{2},\ b=\frac{4\sqrt{3}}{3},\ 则\ A$ 的值是 ().							
	A. 15°	B. 75°	C. 105°	D. 15° 或 75°				
250.	50. 在 $\triangle ABC$ 中, 若 $B=45^{\circ},b=10,c=5\sqrt{6},$ 则 a 等于 ().							
	A. $5(\sqrt{3}+1)$		B. $5(\sqrt{3}-1)$					
	C. $10(\sqrt{3}+1)$ 或 $10(\sqrt{3}-$	1)	D. $5(\sqrt{3}+1)$ 或 $5(\sqrt{3}-1)$					
251.	在 △ABC 中, 若三内角满足	$! \sin^2 A = \sin^2 B + \sin B s$	$\operatorname{in} C + \operatorname{sin}^2 C$,则 A 等于 ().				
	A. 30°	B. 60°	C. 120°	D. 150°				
252.	a . 在 $\triangle ABC$ 中, 若 $b=2\sqrt{2},a=2,$ 且三角形有解, 则 A 的取值范围是 ().							
	A. $0^{\circ} < A < 30^{\circ}$	B. $0^{\circ} < A \le 45^{\circ}$	C. $0^{\circ} < A < 90^{\circ}$	D. $30^{\circ} < A < 60^{\circ}$				
253.	253. 在 $\triangle ABC$ 中, 若 $a\cos A = b\cos B$, 则 $\triangle ABC$ 的形状 ().							
	A. 只可能是等边三角形		B. 只可能是等腰三角形					
	C. 只可能是直角三角形		D. 既可能是等腰三角形, 也可能是直角三角形					
254.	在 Rt $\triangle ABC$ 中, 已知 $C=S$	$90^{\circ}, a = 2, c = \sqrt{29},$ 那么	tan B 的值等于 ().					
	A. $\frac{2}{5}$	B. $\frac{2\sqrt{29}}{29}$	C. $\frac{5\sqrt{29}}{29}$	D. $\frac{5}{2}$				
255. 在 $\triangle ABC$ 巾, 若 $C = 90^{\circ}$, $S_{\triangle ABC} = 8\sqrt{3}$, $b = 4$, 则 B 等于 ().								
	A. 15°	B. 30°	C. 45°	D. 60°				
256.	在 $\triangle ABC$ 中, 若 $C=90^{\circ}$,	则 $a^3 \cos A + b^3 \cos B$ 等于	· ().					
	A. c^{3}	B. abc	C. $(a+b)c^2$	D. $(a+b)c^3$				
257.	在 Rt $\triangle ABC$ 中, 若 $B=60$	°, $C = 45^{\circ}$, $BC = 8$, AD	\perp BC 于点 D , 则 AD 的长为	().				
	A. $4(\sqrt{3}-1)$	B. $4(\sqrt{3}+1)$	C. $4(3-\sqrt{3})$	D. $4(3+\sqrt{3})$				
258.	$258.$ 若 $\mathrm{Rt} \triangle ABC$ 的斜边 $AB=2$, 则其内切圆的半径 r 的取值范围是 ().							
	A. $(1, \sqrt{2}]$	B. $[1, \sqrt{2}]$	C. $(0, \sqrt{2} - 1]$	D. $[1, \sqrt{2} - 1]$				
259.	若 AD 是 Rt△ABC 斜边 E	BC 上的高, 则下列命题不足	成立的是 ().					
	A. $\sin B = \sqrt{\frac{CD}{BC}}$	B. $\cos B = \sqrt{\frac{BD}{BC}}$	C. $\tan B = \sqrt{\frac{BD}{CD}}$	D. $\cot B = \sqrt{\frac{BD \cdot BC}{AC}}$				
260.	在 $\triangle ABC$ 中, 若 $\sin A = \sin A$	$\mathbf{n}B$, 则下列结论中正确的	是 ().					
	A. $A = B$		B. $A = 180^{\circ} - B$					
	C. $A = B$ 或 $A = 180^{\circ} - B$	3	D. $A + B = 90^{\circ}$					
261.	在 $\triangle ABC$ 中, 若 $\sin A : \sin$	$B: \sin C = 3:5:7$,则此3	三角形的最大内角的度数等于 ().				
	A. 75°	B. 120°	C. 135°	D. 150°				

262. 在 $\triangle ABC$ 中, 若 $A = 60^{\circ}$, B = 1, $S_{\triangle ABC} = \sqrt{3}$, 则 $\frac{a + b + c}{\sin A + \sin B + \sin C}$ 等于 ().

A.
$$\frac{8\sqrt{3}}{3}$$

B.
$$\frac{2\sqrt{39}}{3}$$

C.
$$\frac{26\sqrt{3}}{3}$$

D. $2\sqrt{7}$

263. 若 $\triangle ABC$ 的三边 a,b,c 满足 (a+b-c)(c-a)=0, 则此三角形的形状是 ().

A. 不等腰的锐角三角形

- B. 直角三角形
- C. 不等腰的钝角三角形
- D. 等腰三角形

264. 在 $\triangle ABC$ 中, 若 $\sin A \cdot \cos B < 0$, 则 $\triangle ABC$ 的形状 ().

- A. 是锐角三角形
- B. 是直角三角形
- C. 是钝角三角形
- D. 不能确定

265. 在 $\triangle ABC$ 中, 若 $\sin A = 2\cos B \cdot \sin C$, 则此三角形的形状 ().

A. 是等腰三角形, 但不一定是等边三角形

B. 是等边三角形

C. 是不等腰的直角三角形

D. 是边长互不相等的三角形

266. 一角槽的横断面如图所示, $\angle ADE = \angle BED = 90^{\circ}$, 且 $\alpha = 50^{\circ}$, $\beta = 70^{\circ}$, AC = 90mm, BC = 150mm, 则 DE 的长约等于 ().

- A. 210mm
- B. 200mm
- C. 198mm
- D. 171mm

267. $\triangle ABC$ 的 BC 边上有一点 D, 满足 $\angle CAD = \angle DAB = 60^{\circ}$, 且 AC = 3, AB = 6, 则 AD 的长为 ().

A. 2

B. 2.5

C. 3

D. 3.5

268. 设 a, a+1, a+2 是钝角三角形的三边, 则 a 的取值范围是 ().

- A. 0 < a < 3
- B. 1 < a < 3
- C. 3 < a < 4
- D. 4 < a < 6

269. 在 $\triangle ABC$ 中, 若 $a = \sqrt{3} + 1$, b = 2, $c = \sqrt{6}$, 则 A =.

270. 在 $\triangle ABC$ 中, 若 $a:b:c=\sqrt{2}:(1+\sqrt{3}):2$, 则 A=

271. 在 $\triangle ABC$ 中, 若三角形中三边长的比为 $3:4:\sqrt{37}$, 则这个三角形的最大内角等于______.

272. 在 $\triangle ABC$ 中, 若 (a+b+c)(b+c-a)=3bc, 则 A=_____.

273. 在 $\triangle ABC$ 中, 若 $2\lg(a^2+b^2-c^2)=\lg 2+2\lg a+2\lg b$, 则 C=_____.

274. 在 $\triangle ABC$ 中,若三角形面积 $S = \frac{1}{4\sqrt{3}}(b^2 + c^2 - a^2)$,则 $A = \underline{\hspace{1cm}}$

- 275. 在 $\triangle ABC$ 中, 若 a = 6, $b = 6\sqrt{3}$, $A = 30^{\circ}$, 则 c = 2.5
- 276. 在 $\triangle ABC$ 中, 若一内角为 30°, 它的一邻边边长为 4, 对边长为 $\frac{5}{2}$, 则另一邻边边长为______.
- 277. 在 $\triangle ABC$ 中, 若一个内角是 45° , 这个角的一条邻边长是 $\sqrt{3}+1$, 对边长是 2, 则其另一条邻边长等于______
- 278. 在 $\triangle ABC$ 中, 若 $\frac{b-1}{c+2} = \frac{2}{3}$, $a = \sqrt{21}$, $A = 60^{\circ}$, 则 $c = \underline{\hspace{1cm}}$.
- 279. 在 $\triangle ABC$ 中, 若 AB = AC, BC AB = 2, $\cos B = \frac{4}{5}$, 则 $AB = _______$, $BC = _______$.
- 280. 在 $\triangle ABC$ 中, 若 a+b=8, c=7, $C=60^{\circ}$, 则 a=_______, b=______.
- 281. 在 $\triangle ABC$ 中, 若三角形的面积为 $\sqrt{3}$, $B = 60^{\circ}$, b = 4, 则 $a = ______$, $c = ______$.
- 282. 在 $\triangle ABC$ 中,根据条件求三角形的内角: (1) 若 $b=2c\sin B$,则 C=______. (2) 若 $a=4,\ b=6,$ $\sin B=\frac{3}{4}$,则 A=_____. (3) 若 $a=2\sqrt{2},\ b=2\sqrt{3},\ A=45^{\circ}$.则 C=_____.
- 283. 在 $\triangle ABC$ 中, 若等边 $\triangle ABC$ 的外接圆半径为 $6\sqrt{3}$ cm, 则它的边长为_____.
- 284. 在 $\triangle ABC$ 中, 若 $A = 105^{\circ}$, $B = 45^{\circ}$, $c = \sqrt{2}$, 则 b = 284.
- 285. 在 $\triangle ABC$ 中, 若 $A = 45^{\circ}$, $B = 60^{\circ}$, a = 10, 则 $b = _____$, $c = _____$
- 286. 在 $\triangle ABC$ 中, 若 $\cos A = \frac{\sin B}{2\sin C}$, $b = 4\sqrt{3}$, $2\sin B = \sqrt{3}$, 则 $a = \underline{\hspace{1cm}}$.
- 287. 在 $\triangle ABC$ 中, 若 $\sqrt{(\sin B \frac{\sqrt{2}}{2})^2} + (\sqrt{3} \tan C)^2 = 0$, 则 $A = \underline{\hspace{1cm}}$.
- 288. 在 $\triangle ABC$ 中, 若 AC = 5, $B = 60^{\circ}$, $AD \perp BC$ 于点 D, 且 AD = 3, 则 $BC = _______$, $AB = _______$.
- 289. 在 $\triangle ABC$ 中, 若 $C = 90^{\circ}$, $CD \perp AB$ 于点 D, BD = 6, CD = 2, 则 $\sin A =$ _____.
- 290. 在 $\triangle ABC$ 中, 若 2B = A + C, 且边 AC = 2, 则外接圆半径 $R = _____$.
- 291. 在 $\triangle ABC$ 中,若面积 $S=\frac{1}{4}$,外接圆半径 R=1,则 abc=______.
- 292. 在 $\triangle ABC$ 中, 若 $\frac{a}{\sin A} = 2$, 则 $\frac{a+b+c}{\sin A + \sin B + \sin C} =$ ______.
- 293. 在 $\triangle ABC$ 中, 若 (b+c):(c+a):(a+b)=4:5:6, 则 $\sin A:\sin B:\sin C=$ ______.
- 294. 在 $\triangle ABC$ 中, 若 $A=105^{\circ}$, $B=30^{\circ}$, $BC=\frac{\sqrt{6}}{2}$, 则的 B 分线的长为______.
- 295. 在 $\triangle ABC$ 中, 若 BC 边上的中线 $m = \sqrt{\frac{8-3\sqrt{3}}{2}}$, 且 $a = \sqrt{3}+1$, $b = \sqrt{6}$, 则 $B = \underline{\hspace{1cm}}$.
- 296. 若 $\sin A : \sin B : \sin C = 2 : 3 : 4$, 则 $\triangle ABC$ 是 三角形.
- 297. 若关于 x 的方程 $x^2 + \cos B \cdot x \frac{a}{c} = 0$ 的两根之和等于两根之积, 则 $\triangle ABC$ 是_____ 三角形.
- 298. 若 $b \sin B = c \sin C$, 则 $\triangle ABC$ 是 三角形.
- 299. 若 $a\cos A = b\cos B$, 则 $\triangle ABC$ 是_____ 三角形.

- 300. 若 $\sin A = 2 \sin B \cos C$, 且 $\frac{a+b-c}{b+c-a} = \frac{3b}{c}$, 则 $\triangle ABC$ 是_____ 三角形.
- 301. 若 $B = 30^{\circ}$, c = 150, $b = 50\sqrt{3}$, 则 $\triangle ABC$ 是_____ 三角形.
- 302. 若 $b = a \sin C$, $c = a \sin(90^{\circ} B)$, $B < 90^{\circ}$, 则 $\triangle ABC$ 是_____ 三角形.
- 303. 若 $a = \sqrt{3} 1$, $b = \frac{\sqrt{6}}{2}$, $C = \frac{\pi}{4}$, 则 $\triangle ABC$ 是_____ 三角形.
- 304. 在 $\triangle ABC$ 中, 已知 a=8, b=7, c=5, 求 B 及三角形的面积 S.
- 305. 在 $\triangle ABC$ 中, 已知 $a = 12, b = 4\sqrt{3}, A = 120^{\circ}, 求 C$ 及三角形的面积.
- 306. 在 $\triangle ABC$ 中, 已知 a = 7, b = 3, c = 5, 求最大角与 $\sin C$ 的值.
- 307. 在 $\triangle ABC$ 中, 已知 $b = \sqrt{2}$, c = 1, $B = 45^{\circ}$, 求 a, C 的值.
- 308. 在 $\triangle ABC$ 中, 已知 $A = 45^{\circ}$, $B = 60^{\circ}$, a = 10, 求 b, c 的值.
- 309. 在 $\triangle ABC$ 中, 已知 $a = 10, b = 6, C = 120^{\circ}, 求 \sin A$ 的值.
- 310. 在 $\triangle ABC$ 中, 已知一个内角是 60°, 其对边为 7, 且而积为 $10\sqrt{3}$, 求其他两边的长.
- 311. 已知钝角三角形的三边长是三个连续偶数, 求三边长.
- 312. 若 $A = 60^{\circ}$, a = 1, b + c = 2, 判断 $\triangle ABC$ 的形状.
- 313. 若 $(b-c)\cos^2 A = b\cos^2 B c\cos^2 C$, 判断 $\triangle ABC$ 的形状.
- 314. 若 $\tan \frac{A-B}{2} = \frac{a-b}{a+b}$, 判断 $\triangle ABC$ 的形状.
- 315. 在 $\triangle ABC$ 中, 求证: $a(\sin B \sin C) + b(\sin C \sin A) + c(\sin A \sin B) = 0$.
- 316. 在 $\triangle ABC$ 中, 求证: $\sin^2 A + \sin^2 B + \cos^2 C + 2 \sin A \sin B \cos(A + B) = 1$.
- 317. 在 $\triangle ABC$ 中, 求证: $a^2(\cos^2 B \cos^2 C) + b^2(\cos^2 C \cos^2 A) + c^2(\cos^2 A \cos^2 B) = 0$.
- 318. 在 $\triangle ABC$ 中, 求证: $(a^2 b^2 c^2) \tan A + (a^2 b^2 + c^2) \tan B = 0$.
- 319. 在 $\triangle ABC$ 中, 求证: $\frac{a-c\cos B}{b-c\cos A} = \frac{\sin B}{\sin A}$.
- 320. 在 $\triangle ABC$ 中,已知 (a+b+c)(a+b-c)=3ab,求 C.
- 321. 在 $\triangle ABC$ 中, 已知 ab = 60, ab = 60, 面积 S = 15, 求三内角.
- 322. 在 $\triangle ABC$ 中, 已知三边长分别为 $k^2 + k + 1$, $k^2 1$, 2k + 1, 求最大内角.
- 323. 在 $\triangle ABC$ 中, 已知 (b+c):(c+a):(a+b)=4:5:6 求最大内角.
- 324. 在 $\triangle ABC$ 中, 已知面积 $S = \sqrt{3}$, $a = 2\sqrt{3}$, b = 2, 求 A, B, c.
- 325. 在 $\triangle ABC$ 中, 已知 $A = 120^{\circ}$, AB + BC = 21, AC + BC = 20, 求 BC 的长.

- 326. 在 $\triangle ABC$ 中,已知 $A > 90^{\circ}$, $\sin B = \frac{5\sqrt{3}}{14}$, $2^{5a-7b} = 1$, 求 a:b:c.
- 327. 在 $\triangle ABC$ 中, 已知两边之和为 4, 其夹角为 60° , 分別求周长的最小值和面积的最大值.
- 328. 在 $\triangle ABC$ 中,已知 $C=90^\circ$,求证: $\sin 2A \cdot \cot A = \frac{2b^2}{c^2}$.
- 329. 在 $\triangle ABC$ 中,已知 A: B=1: 2,求证: $\frac{a}{b} = \frac{a+b}{a+b+c}$.
- 330. 在 $\triangle ABC$ 中,已知 C = 2B,求证: $c^2 b^2 = ab$.
- 331. 在 $\triangle ABC$ 中, 已知 $A=100^\circ$, AB=AC, 角 B 的平分线交 AC 于点 D, 求证: AD+DB=BC.
- 332. 在 $\triangle ABC$ 中,已知 2b=a+c,求证: $\tan\frac{A}{2}\cdot\tan\frac{C}{2}=\frac{1}{3}$.
- 333. 在 $\triangle ABC$ 中,已知 2b=a+c,求证: $\cos A+\cos C-\cos A\cdot\cos C+\frac{1}{3}\sin A\cdot\sin C$ 为定值.
- 334. 在 $\triangle ABC$ 中,已知 $\sin A + \sin C = 2\sin B$,且最大角与最小角之差为 90°,求证: 三边之比为 $(\sqrt{7} 1): \sqrt{7}: (\sqrt{7} + 1)$.
- 335. 在 $\triangle ABC$ 中,已知 $C=90^\circ$,CD 是斜边 AB 上的高,且 $\triangle CBD$ 的面积是 $\triangle ACD$, $\triangle ABC$ 面积的比例中项,求证: $\sin B=\frac{\sqrt{5}-1}{2}$.
- 336. 在 $\triangle ABC$ 中,已知 B 的 2 倍等于其他两角的和,最长边长与最短边长的和是 $8\mathrm{cm}$,最长边长与最短边长的积是 $15\mathrm{cm}^2$,求面积及 B 所对边的长.
- 337. 在 $\triangle ABC$ 中,已知 B 为锐角, $b=7\mathrm{cm}$,外接圆半径 $R=\frac{7\sqrt{3}}{3}\mathrm{cm}$,面积 $S=10\sqrt{3}\mathrm{cm}^2$,求其他两边的长.
- 338. 在 $\triangle ABC$ 中, 已知 $A = 120^{\circ}$, $\sin B : \sin C = 3 : 2$, 且面积 $S = 6\sqrt{3}$, 求 a 的值.
- 339. 在 $\triangle ABC$ 中, 已知 $\sin A : \sin B : \sin C = 4 : 5 : 6$, 且最大边为 10, 求外接圆半径 R 和内切圆半径 r.
- 340. 如图, 在圆内接四边形 ABCD 中, 已知边 AB=3, AD=5, 对角线 BD=7, $\angle BDC=45^{\circ}$, 求:

- (1) $\sin \angle BAD$ 的值;
- (2) 边 BC 的长.
- 341. 如图, AB 是半圆 O 的直径, 延长 AB 到 C, 使 BC = AB, D 是半圆上一点, 连接 CD, 且 $\tan \angle CDB = \frac{1}{3}$, 求 $\cos \angle DAB$ 的值.

342. 已知 R,r 分別是直角三角形的外接圆半径与内切圆半径, 求 $\frac{r}{R}$ 的最大值, 并说明此时三角形的形状.

343. 如图, 为了测定河的宽度, 在一岸边选定两点 A, B, 望对岸标记物 C, 测得 $\angle CAB = 30^{\circ}$, $\angle CBA = 75^{\circ}$, AB = 120 米, 求河的宽度.

344. 如图, 在塔底 B 测得山顶 C 的仰角为 60° , 在山顶 C 测得塔顶 A 的俯角为 45° , 已知塔高 AB=20 米, 求山高 DC.

345. 如图, 半圆 O 的直径 MN 的长为 2, A 为直径延长线上一点, 且 OA = 2, B 为半圆上任意一点, 以 AB 为边作等边 $\triangle ABC(A,B,C$ 顺时针排列), $\angle AOB$ 等于多少时, 四边形 OACB 的面积最大? 最大面积是多少?

346. 利用三角代换, 求函数 $y = x + \sqrt{1 - x^2} + 3$ 的值域.

- 347. 利用三角代换, 求函数 $y = \sqrt{x-4} + \sqrt{15-3x}$ 的值域.
- 348. 利用三角代换, 求函数 $y = 2\sqrt{x+3} + \sqrt{2-x}$ 的值域.
- 349. 利用三角代换, 求函数 $S = x^2 + xy + y^2$ 的值域.
- 350. 利用三角代换, 求函数 $1 \le x^2 + y^2 \le 2$ 的值域.
- 351. 利用三角代换, 求函数 $y = \sqrt{1+x} \sqrt{x}$ 的值域.
- 352. 求函数 $f(x) = \sqrt{x-1} + \sqrt{2-x}$ 的最大值、最小值.
- 353. 已知 a, b > 0, 求函数 $f(x) = a\sqrt{1 x^2} + bx$ 的最大值、最小值.
- 354. 已知 $0 \le y < x < \frac{\pi}{2}$, 且满足 $\tan x = 3 \tan y$, 求 x y 的最大值.
- 355. $0 < \alpha < \beta < \frac{\pi}{2}$, 且 $\sin \alpha$, $\sin \beta$ 是方程 $x^2 (\sqrt{2}\cos 40^\circ)x + \cos^2 40^\circ \frac{1}{2} = 0$ 的两根, 求 $\cos(2\alpha \beta)$ 的值.
- 356. 在 $\triangle ABC$ 中, $\tan A$, $\tan B$ 是关于 x 的二次方程 $x^2 + mx + m + 1 = 0$ 的两个实根, 求实数 m 的取值范围.
- 357. 如图, 已知 P 为 $\triangle ABC$ 内一点, 且满足 $\angle PAB = \angle PBC = \angle PCA = \theta$, 求证: $\cot \theta = \cot A + \cot B + \cot C$.

- 358. 若不等式 $\frac{(x^2+1)\cos\theta x(\cos\theta 5) + 3}{x^2 x + 1} > \sin\theta 1$ 对任意实数 x 恒成立, 求 θ 的取值范围.
- 359. 已知函数 $f(x) = a + b \cos x + c \sin x$ 的图像过两点 $(0,1), (\frac{\pi}{2},1)$, 且当 $x \in [0,\frac{\pi}{2}]$ 时, $|f(x)| \le 2$, 求实数 a 的取值范围.
- 360. 已知 $\odot O$ 的半径为 R, 它的内接三角形 ABC 满足关系式 $2R(\sin^2 A \sin^2 C) = (\sqrt{2}a b)\sin B$, 求 $\triangle ABC$ 面积的最大值.
- 361. 如图, 已知扇形 AOB 的中心角为 45° , 半径为 1, 矩形 MNPQ 内接于扇形, 使 P,Q 点在半径 OA 上, 求矩 形 MNPQ 的对角线 PM 的最小值.

362. 如图, 已知 P 是正方形 ABCD 内一点, $PQ \perp BC$, $PR \perp CD$, (Q,R) 为垂足), AB=10, AP=9, 求矩形面积的最大值、最小值.

363. 若
$$x \neq k\pi(k \in \mathbf{N})$$
, 求证: $\frac{1}{\sin 2x} = \cot x - \cot 2x$.

364. 若
$$x \neq k\pi(k \in \mathbf{N})$$
,求证: $\frac{1}{\sin 2x} + \frac{1}{\sin 2^2x} + \dots + \frac{1}{\sin 2^nx} = \cot x - \cot 2^nx$.

365. 求证:
$$\tan x \tan 2x + \tan 2x \tan 3x + \dots + \tan(n-1)x \tan nx = \frac{\tan nx}{\tan x} - n(n \in \mathbf{N}).$$

366. 求证:
$$(2\cos\theta - 1)(2\cos2\theta - 1)(2\cos2^2\theta - 1)\cdots(2\cos2^{n-1}\theta - 1) = \frac{2\cos2^n\theta + 1}{2\cos\theta + 1}$$

367. 求
$$\cos \frac{\pi}{17} \cos \frac{2\pi}{17} \cos \frac{3\pi}{17} \cos \frac{4\pi}{17} \cos \frac{5\pi}{17} \cos \frac{6\pi}{17} \cos \frac{7\pi}{17} \cos \frac{8\pi}{17}$$
 的值.

368. 实数 x, y, z 满足 $\sin x = a \sin(y - z)$, $\sin y = b \sin(z - x)$, $\sin z = c \sin(x - y)(a, b, c \neq 1)$, 且 $\sin(x - y)$, $\sin(y - z)$, $\sin(z - x)$ 都不为 0, 求 a, b, c 应满足的关系式.