Predicting Beer Ratings

Emily Miller

Beer Advocate

Beer attributes

- Name
- Style
- Alcohol by volume (ABV)
- Brewery
- State
- Year released

Target data:

Avg user rating

Top Rated Beers: Alabama (US)

Beers from brewers in: Alabama (US) | view more

✓ You've had 0 beers on this list. Log in or Sign up to begin your beer ticking adventure.

		WR	Reviews Rating
1	El Gordo Good People Brewing Company Russian Imperial Stout / 13.90% ABV	4.29	26 103
2	Cabernet Barrel-Aged Laika Stout Straight To Ale Russian Imperial Stout / 11.70% ABV	4.2	35 16
3	Hitchhiker Good People Brewing Company American IPA / 7.40% ABV	4.17	19 9
4	Snake Handler Double IPA Good People Brewing Company American Double / Imperial IPA / 10.00% ABV	4.14	115 54
5	Fatso Good People Brewing Company Russian Imperial Stout / 8.50% ABV	4.11	21 8
6	Bourbon Barrel-Aged Laika Stout Straight To Ale Russian Imperial Stout / 11.70% ABV	4.1	27 15
7	Unobtanium Barrel-Aged Old Ale Straight To Ale Old Ale / 11.50% ABV	4.07	54 23
8	Illudium Straight To Ale Old Ale / 11.50% ABV	4.07	15 8
9	Coffee Oatmeal Stout Good People Brewing Company Oatmeal Stout / 6.00% ABV	4.05	100 41
10	Take The Causeway IPA Fairhope Brewing Company American IPA / 8.20% ABV	4.04	23 9
1	Laika Russian Imperial Stout Straight To Ale Russian Imperial Stout / 9.75% ABV	4.01	43 17
12	Velvet Evil Straight To Ale Old Ale / 13.00% ABV	4.01	17 6
13	Tobacco Road Yellowhammer Brewing American Amber / Red Ale / 9.40% ABV	4	11 3
14	Mumbai Rye Good People Brewing Company American IPA / 6.60% ABV	3.99	18 5
15	Double Stuff Pinstripe Stout Blue Pants Brewery American Double / Imperial Stout / 8.00% ABV	3.98	15 5

Scraped top beers for all 50 states plus D.C.

Total of 3,824 beers

Feature engineering

- Name
- Brewery
- Style
- Alcohol by volume (ABV)
- Year released
- State

- Number of beers per brewery (proxy for brewery size)
- Brewery rating -- avg rating of all other beers by that brewery (avoid data leakage)
- Beer style taxonomy x2
 - Ales and lagers by region
 - Individual dummies
- State dummy variables

Models

- Linear regression with ridge or lasso regularization does well
 - R-squared around 0.63
- Lasso zeroes out nearly all beer style and state dummies

Can I predict beer ratings with only a few variables?

Tree models

- R-squared around 0.71 with random forest
- 30 trees in the forest with leaves no smaller than 10 observations
- Four variables
 - Brewery rating
 - Brewery size proxy
 - ABV
 - Year

Tree models

- R-squared around 0.71 with random forest
- 30 trees in the forest with leaves no smaller than 10 observations
- Four variables
 - Brewery rating
 - Brewery size proxy
 - ABV
 - Year

But can we do better?

Feature engineering

Take two

- Adjust treatment of missing values for brewery rating
 - Initially set to zero for breweries with one beer
 - Replace with average of all other beers (across breweries)

Scrape zip code data

Average beer rating for breweries across the U.S.

Random forest

- Brewery avg rating
- Brewery size proxy
- ABV
- Year
- Zipcode

Random forest

- Brewery avg rating
- ABV
- Zipcode
- Year
- Brewery size proxy

R-squared ~0.73 with test data

With more time and data...

- Improve current model
 - Imputed values for missing ABV data
- Extend model
 - Lower rated beers
 - Other countries
- Data visualizations
 - Interactive preference map in d3
- Additional data
 - Beer description and tasting notes → NLP
 - User reviews → preference prediction

Appendix

Best model: feature importance

```
sorted_features(trees['rftree2'], Xtrain_lim3, Xtest_lim3)

Score: 0.720791216872
('brewery_avg_rating2', 0.77446377088677021)
('abv', 0.10833019979025442)
('zipcode', 0.054609763102820619)
('year', 0.035685337446081537)
('brew counts', 0.026910928774073275)
```

Modifying variables within best model

best model: five vars

Model: rftree2

Score: 0.728063155376

without avg_rating

Model: rftree2

Score: 0.604045114502

without avg rating and zipcode

Model: rftree2

Score: 0.377929913887

Highest rated beer styles

	beer_style	rating
27	Bière de Champagne / Bière Brut	4.450000
59	Gueuze	4.373333
40	Eisbock	4.355000
11	American Double / Imperial Stout	4.283497
9	American Double / Imperial IPA	4.244880
20	American Wild Ale	4.242000
41	English Barleywine	4.237931
67	Lambic - Fruit	4.228667
54	Flanders Red Ale	4.208571
79	Russian Imperial Stout	4.207260

Breweries with highest avg beer rating

	brewery	lat	lon	rating
0	Brick & Feather Brewery	42.59	-72.55	4.650000
1	Monkish Brewing Co.	33.83	-118.31	4.600000
2	Sand City Brewing Co.	40.90	-73.34	4.584286
3	Bottle Logic Brewing	33.83	-117.86	4.583333
4	Moonraker Brewing Company	39.00	-121.09	4.570000
5	Tree House Brewing Company	42.09	-72.31	4.568750
6	Night Shift Brewing	42.40	-71.05	4.560000
7	Angry Chair Brewing	27.95	-82.48	4.514000
8	Sante Adairius Rustic Ales	36.97	-121.95	4.506000
9	Hangar 24 Brewery	34.06	-117.17	4.495000

Linear models

```
def run linear models(xtrain data, xtest data):
   models = {}
   models['lin reg'] = LinearRegression()
   models['ridge'] = Ridge()
   models['lasso1'] = Lasso(alpha=.2)
   models['lasso2'] = Lasso(alpha=.02)
   models['lasso3'] = Lasso(alpha=.002)
   models['lasso4'] = Lasso(alpha=.0002)
    #models['lasso5'] = Lasso(alpha=.00002)
   models['elasticnet'] = ElasticNet()
   for name, model in models.items():
       model.fit(xtrain data, ytrain)
       print('Model: ' + name)
       print("Score: " + str(model.score(xtest data, ytest)))
       print("")
```

Tree models

```
def run tree models(xtrain data, xtest data):
    trees = {}
    trees['cart'] = tree.DecisionTreeRegressor(max depth=7)
    trees['extratrees'] =tree.ExtraTreeRegressor(max depth=7)
    trees['randomForest'] = RandomForestRegressor()
    trees['rftree1'] = RandomForestRegressor(n estimators = 10, max features='auto', min samples split=10)
    trees['rftree2'] = RandomForestRegressor(n estimators = 30, max features='auto', min samples split=10)
    trees['rftree3'] = RandomForestRegressor(n estimators = 50, max features='auto', min samples split=10)
    trees['rftree4'] = RandomForestRegressor(n estimators = 100, max features='auto', min samples split=10)
    trees['bagged randomForest'] = BaggingRegressor(RandomForestRegressor())
    trees['adaboostedTrees'] = ensemble.AdaBoostRegressor()
    trees['gradboostedTrees'] = ensemble.GradientBoostingRegressor()
    for name, model in trees.items():
        model.fit(xtrain data, ytrain)
        print('Model: ' + name)
        print("Score: " + str(model.score(xtest data, ytest)))
        print("")
```

A quarter of states have 100 beers listed

State

```
count_per_state = df.groupby(['state'])['rating'].count()
# 25 states have 100 beers
# 51 'states' as DC is included
count_per_state.hist();
25
20
15
10
5
```