

VLSI Testing 積體電路測試

Design For Testability (DFT) Part I: Internal Scan Chains

Professor James Chien-Mo Li 李建模
Lab. of Dependable Systems
Graduate Institute of Electronics Engineering
National Taiwan University

Course Roadmap (Design Topics)

Motivating Problem

- Sequential ATPG fails to generate test pattern. Your manager asked you to add circuits so that this fault can be detected.
- Can we change FF to improve controllability/observability?

Why Am I Learning This?

- Design for Testability
 - Make ATPG easier
 - Improve fault coverage (test quality)
 - Reduce test length (test cost)

"Good design is obvious. Great design is transparent."

(Joe Sparanolf)

DFT Outline

- Part 1
 - Introduction
 - Internal Scan
 - * FF-based: MUX-scan, clock scan
 - * Latch-based: LSSD
- Part 2
 - External Scan
 - * JTAG (1149.1)

Design for Testability (DFT)

- What is DFT?
 - Insert circuitry that has little to do with function, but
 - Improves testability: controllability and observability
- Why DFT?
 - 1. Reduce ATPG effort
 - * Shorten ATPG run time
 - 2. Improve test quality
 - High fault coverage
 - 3. Reduce test cost
 - Shorten test length and test time
 - 4. Reduce time to market
 - Easy debug and diagnosis

Penalty of DFT

- 1. Design effort overhead
- 2. Performance degradation
- 3. Hardware overhead
 - extra area, extra pins
- 4. Yield loss
 - Larger area means lower yield
- 5. Power overhead
 - "Power tax" of testing

- In 1970's, expensive silicon and simple design, DFT not popular
 - Now, cheaper silicon and complex design, DFT is necessary

DFT is Necessary for Modern Designs

Quiz

Q: Which of the following is NOT true about DFT?

- A. DFT reduces designers' effort
- B. DFT cost extra hardware and power
- C. DFT reduces test cost so it is needed for complex design

ANS:

DFT - Part 1

- Part 1
 - Introduction
 - * Ad-hoc DFT
 - Test point insertion
 - Internal Scan
 - * FF-based
 - * Latch-based
- Part 2
 - External Scan
 - * JTAG (1149.1)

Ad Hoc DFT

- What is "Ad hoc" ?
 - for the particular end or case at hand without consideration of wider application [Webster dictionary]
- What is Ad Hoc DFT?
 - DFT technique for a particular design
 - Not generally applicable to all designs
 - Relies on good design practice learned from experience
- Ad-hoc DFT examples:
 - Rule1: design circuits easily initializable
 - Rule2: disable internal clocks during test
 - Rule3: partition large circuits into small blocks
 - Rule4: insert test points into circuits of low testability
 -

Ad Hoc DFT Example (1)

- Rule1: design circuits easily initializable
 - Self-initialization, or
 - Initializble from tester

Courtesy Prof. McClueksy, Stanford University

Ad Hoc DFT Example (2)

- Rule2: disable internal clocks during test
 - Disable on-chip PLL in test mode

DFT - Part 1

- Part 1
 - Introduction
 - * Ad-hoc DFT
 - Test point insertion
 - Internal Scan
 - * FF-based
 - * Latch-based
- Part 2
 - External Scan
 - * JTAG (1149.1)

Test Point Insertion

- Objective:
 - Insert test points to enhance
 - * Controllability
 - * Observability
- Two types of test points
 - Control points: enhance controllability.
 - Observation points: enhance observability

Control Points

- Control signals come from primary input (PI) or scan FF
 - Details see next video

Control Point (2)

- When TM=0, normal operation
- When TM=1, nodes ABC are controlled by FF 1, 2, 3, respectively

DI=date input
DO=data output
TM=test mode
SI=scan input
SO=scan output

Control point insertion

Quiz

Q: What are control values in NORMAL mode?

ANS:

Test mode

Normal mode

Observation Points

- SE=0, ABC are captured into FF by one CK
- SE=1, after three CK, values are observed at scan output (SO)

Observation point insertion

Issues with Test Points

- 1. Performance degradation
 - design slower with test points
- 2. Area overhead
 - About 1 test point every 1K gates
- 3. Pin overhead
- 4. Where to insert test points?
 - Need testability measure
- 5. Built-in Self Test (BIST) needs test point more than ATPG
 - Improve fault coverage, see BIST chapter

Summary

- Introduction to DFT
 - DFT helps to improve controllability/observability
 - Ad-hoc DFT based on experience
 - * Advantage
 - Suitable for your particular design under test
 - Disadvantage
 - Not systematic → lacks EDA tool
 - As opposed to structured DFT
 - Test point insertion
 - control point/ observation points
 - * EDA tools ready for use

Structured DFT is Preferred than Ad Hoc DFT

FFT

• Q: What do we do to control AND gate output to 1?