# Vorlesung 8 Rekursive Aufzählbarkeit

# Wdh.: Der Satz von Rice

### Satz

Sei  $\mathcal{R}$  die Menge der von TMen berechenbaren partiellen Funktionen und  $\mathcal{S}$  eine Teilmenge von  $\mathcal{R}$  mit  $\emptyset \subsetneq \mathcal{S} \subsetneq \mathcal{R}$ . Dann ist die Sprache

 $L(S) = \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus } S \}$ 

unentscheidbar.



# Wdh.: Satz von Rice – Illustration





Vorlesung BuK im WS 22/23, M. Grohe

Seite 193

Version 11. November 2022

# Wdh.: Satz von Rice – Anwendungsbeispiele

### Beispiel 2

- ► Sei  $S = \{ f_M \mid \forall w \in \{0, 1\}^* : f_M(w) \neq \bot \}.$
- Dann ist

$$L(S) = \{\langle M \rangle \mid M \text{ berechnet eine Funktion aus } S\}$$
  
=  $\{\langle M \rangle \mid M \text{ hält auf jeder Eingabe}\}$ 

- ightharpoonup Diese Sprache ist auch als das allgemeine Halteproblem  $H_{\text{all}}$  bekannt.
- ightharpoonup Gemäß Satz von Rice ist  $H_{\text{all}}$  unentscheidbar.

### Beispiel 5

- ► Sei  $H_{42} = \{\langle M \rangle \mid$  Auf jeder Eingabe hält M nach höchstens 42 Schritten $\}$ .
- ▶ Über diese Sprache sagt der Satz von Rice nichts aus!
- ► Ist *H*<sub>42</sub> entscheidbar?

### Erkennen vs Entscheiden

#### Definition

Sei M eine Turingmaschine. Dann ist L(M) die Menge der von M akzeptieren Wörter, also

$$L(M) = \{ w \in \{0, 1\}^* \mid M \text{ akzeptiert } w \}.$$

Wir nennen L(M) die von M erkannte Sprache.

Achtung: Bei Eingabe eines Wortes  $w \notin L(M)$  hält M entweder nicht an oder hält an und verwirft.

### Beobachtung

$$L(M) = \{ w \mid \text{das Wort } f_M(w) \text{ beginnt mit einer } 1 \}.$$

#### Beachte

Wenn M auf allen Eingaben hält, dann ist L(M) gerade die von M entschiedene Sprache.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 195

Version 11. November 2022

### Semi-Entscheidbarkeit

Eine Sprache L wird von einer TM M entschieden, wenn

- ► *M* auf jeder Eingabe hält, und
- ► *M* genau die Wörter aus *L* akzeptiert.

Eine Sprache *L*, für die eine TM existiert, die *L* entscheidet, wird als entscheidbar bezeichnet.

Eine Sprache L wird von einer TM M erkannt, wenn

- ▶ *M* jedes Wort aus *L* akzeptiert, und
- ▶ *M* kein Wort akzeptiert, das nicht in *L* enthalten ist.

Es ist also L(M) gerade die von M erkannte Sprache.

#### Definition

Eine Sprache *L*, für die eine TM existiert, die *L* erkennt, wird als semi-entscheidbar bezeichnet.

# Beispiel

#### Das Halteproblem

 $H = \{\langle M \rangle w \mid M \text{ hält auf } w\}.$ 

ist unentscheidbar.

### Behauptung

Das Halteproblem ist semi-entscheidbar.

#### **Beweis**

Die folgende TM M' erkennt H: Erhält M' eine Eingabe der Form  $\langle M \rangle_W$ , so

- ightharpoonup simuliert M' die TM M mit Eingabe w, und
- ► akzeptiert, falls *M* auf *w* hält.

Syntaktisch inkorrekte Eingaben werden von M' verworfen.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 197

Version 11. November 2022

# Aufzähler, rekursive Aufzählbarkeit

Ein Aufzähler für eine Sprache  $L \subseteq \Sigma^*$  ist eine Variante einer TM mit einem angeschlossenen Drucker im Sinne eines zusätzlichen Ausgabebandes, auf dem sich der Kopf nur nach rechts bewegt.

- ► Gestartet mit leerem Arbeitsband, gibt der Aufzähler alle Wörter aus L (möglicherweise mit Wiederholungen) auf dem Drucker aus.
- ightharpoonup Die ausgegebenen Wörter sind dabei durch ein Zeichen getrennt, das nicht in  $\Sigma$  enthalten ist.

### Definition

Eine Sprache, für die es einen Aufzähler gibt, heißt rekursiv aufzählbar.



Vorlesung BuK im WS 22/23, M. Grohe

Seite 199

Version 11. November 2022





Vorlesung BuK im WS 22/23, M. Grohe

Seite 199

Version 11. November 2022





Vorlesung BuK im WS 22/23, M. Grohe

Seite 199

Version 11. November 2022





Vorlesung BuK im WS 22/23, M. Grohe

Seite 199

Version 11. November 2022



### rekursiv aufzählbar = semi-entscheidbar

#### Satz

Eine Sprache L ist genau dann semi-entscheidbar, wenn sie rekursiv aufzählbar ist.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 200

Version 11. November 2022

# Beweis: L rekursiv aufzählbar $\Rightarrow$ L semi-entscheidbar

Sei A ein Aufzähler für L. Wir konstruieren eine TM M, die L erkennt.

#### Bei Eingabe w arbeitet M wie folgt:

- ► *M* simuliert *A* mit Hilfe einer Spur, welche die Rolle des Druckers übernimmt.
- ► Immer wenn ein neues Wort gedruckt worden ist, vergleicht *M* dieses Wort mit *w* und akzeptiert bei Übereinstimmung.

#### Korrektheit:

- Falls  $w \in L$ , so wird w irgendwann gedruckt und somit von M akzeptiert.
- ► Falls  $w \notin L$ , so wird w nicht gedruckt und somit nicht akzeptiert.

# Beweis: L semi-entscheidbar $\Rightarrow$ L rekursiv aufzählbar

Sei M eine TM, die L erkennt. Wir konstruieren einen Aufzähler A für L.

Sei  $x_0, x_1, x_2, ...$  die Aufzählung von  $\Sigma^*$  in kanonischer Reihenfolge. Programm von A:

Für i = 1, 2, 3, ...

- ▶ Simuliere je *i* Schritte von *M* auf jedem Wort aus  $\{x_0, \ldots, x_{i-1}\}$ .
- ▶ Wann immer dabei eines der Worte akzeptiert wird, so drucke es aus.

#### Korrektheit:

Aufzähler A druckt offensichtlich nur Wörter aus L aus. Aber druckt er auch alle Wörter aus L aus?

- ightharpoonup Sei  $x_k$  ein Wort aus L.
- ▶ Dann wird  $x_k$  von M nach einer endlichen Anzahl von Schritten  $t_k$  akzeptiert.
- ▶ Das heißt,  $x_k$  wird in jeder Iteration i mit  $i \ge \max\{k, t_k\}$  von A ausgedruckt.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 202

Version 11. November 2022

# Schnitte von Sprachen

### Satz

- a) Wenn die Sprachen  $L_1$  und  $L_2$  entscheidbar sind, so ist auch die Sprache  $L_1 \cap L_2$  entscheidbar.
- b) Wenn die Sprachen  $L_1$  und  $L_2$  semi-entscheidbar sind, so ist auch die Sprache  $L_1 \cap L_2$  semi-entscheidbar.

# Schnitte von Sprachen – Beweis a)

Seien  $M_1$  und  $M_2$  zwei TMen, die  $L_1$  bzw.  $L_2$  entscheiden.

#### TM M, die $L_1 \cap L_2$ entscheidet:

- 1. Bei Eingabe w simuliert M zunächst das Verhalten von  $M_1$  auf w und dann das Verhalten von  $M_2$  auf w.
- 2. Falls  $M_1$  und  $M_2$  das Wort w akzeptieren, so akzeptiert auch M; sonst verwirft M.

#### Korrektheit:

- ▶ Falls  $w \in L_1 \cap L_2$ , so wird w akzeptiert.
- Sonst wird w verworfen.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 204

Version 11. November 2022

# Schnitte von Sprachen – Beweis b)

Seien nun  $M_1$  und  $M_2$  zwei TMen, die  $L_1$  bzw.  $L_2$  <u>erkennen</u>.

#### TM M, die $L_1 \cap L_2$ erkennt:

- 1. Bei Eingabe w simuliert M zunächst das Verhalten von  $M_1$  auf w und dann das Verhalten von  $M_2$  auf w.
- 2. Falls  $M_1$  und  $M_2$  akzeptieren, so akzeptiert auch M.

Wir verwenden die gleiche Konstruktion für M wie in a).

#### Korrektheit:

- ▶ Falls  $w \in L_1 \cap L_2$ , so wird w von M akzeptiert.
- Sonst wird w nicht akzeptiert.

# Vereinigungen von Sprachen

#### Satz

- a) Wenn die Sprachen  $L_1$  und  $L_2$  entscheidbar sind, so ist auch die Sprache  $L_1 \cup L_2$  entscheidbar.
- b) Wenn die Sprachen  $L_1$  und  $L_2$  semi-entscheidbar sind, so ist auch die Sprache  $L_1 \cup L_2$  semi-entscheidbar.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 206

Version 11. November 2022

# Vereinigungen von Sprachen – Beweis a)

Seien  $M_1$  und  $M_2$  zwei TMen, die  $L_1$  bzw.  $L_2$  entscheiden.

### TM M, die $L_1 \cup L_2$ entscheidet

- ▶ Bei Eingabe w simuliert M zunächst das Verhalten von  $M_1$  auf w und dann das Verhalten von  $M_2$  auf w.
- ▶ Falls  $M_1$  oder  $M_2$  akzeptiert, so akzeptiert auch M. Sonst verwirft M.

#### Korrektheit:

- ► Falls  $w \in L_1 \cup L_2$ , so wird w von  $M_1$  oder von  $M_2$  und somit auch von M akzeptiert.
- ▶ Sonst verwerfen  $M_1$  und  $M_2$ , so dass auch M verwirft.

# Vereinigungen von Sprachen – Beweis b)

Seien nun  $M_1$  und  $M_2$  zwei TMen, die  $L_1$  bzw.  $L_2$  erkennen.

Welches Problem tritt auf, wenn wir die Simulation aus a) einfach übernehmen?

*Idee:* Simuliere  $M_1$  und  $M_2$  parallel statt sequentiell.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 208

Version 11. November 2022

# Vereinigungen von Sprachen – Beweis b)

#### TM M, die $L_1 \cup L_2$ erkennt

- ▶ Wir nehmen o.B.d.A. an, dass *M* über zwei Bänder verfügt.
- ▶ Auf Band 1 wird  $M_1$  auf w simuliert.
- ▶ Auf Band 2 wird  $M_2$  auf w simuliert.
- Sobald ein Schritt erreicht wird, in dem  $M_1$  oder  $M_2$  akzeptiert, akzeptiert auch M.

#### Korrektheit:

- ► Falls  $w \in L_1 \cup L_2$ , so wird w von  $M_1$  oder von  $M_2$  und somit auch von M akzeptiert.
- ► Sonst wird *w* nicht akzeptiert.

# "2×semi-entscheidbar ⇔ entscheidbar"

#### Lemma \*

Seien  $L \subseteq \Sigma^*$  und  $\overline{L} := \Sigma^* \setminus L$  semi-entscheidbar. Dann ist L entscheidbar.

#### **Beweis**

Seien M und  $\overline{M}$  Maschinen, die L bzw.  $\overline{L}$  erkennen.

Die TM M' entscheidet L durch eine parallele Simulation von M und  $\overline{M}$  auf der Eingabe w:

- $\triangleright$  M' akzeptiert w, sobald M akzeptiert.
- ightharpoonup M' verwirft w, sobald  $\overline{M}$  akzeptiert.

Da entweder  $w \in L$  oder  $w \notin L$ , tritt eines der obigen Ereignisse nach endlicher Zeit ein, so dass die Terminierung von M' sichergestellt ist.  $\square$ 

Vorlesung BuK im WS 22/23, M. Grohe

Seite 210

Version 11. November 2022

# Komplemente von Sprachen

### Beobachtung 1

Wenn die Sprache L entscheidbar ist, so ist auch  $\overline{L}$  entscheidbar, da wir das Akzeptanzverhalten einer TM M, die M entscheidet, invertieren können.

### Beobachtung 2

Die Menge der semi-entscheidbaren Sprachen ist hingegen nicht unter Komplementbildung abgeschlossen.

### Beispiel

- H ist semi-entscheidbar.
- $\blacktriangleright$  Wäre  $\overline{H}$  ebenfalls semi-entscheidbar, so wäre H nach Lemma \* entscheidbar.
- ightharpoonup Also ist  $\overline{H}$  nicht semi-entscheidbar.

# Schlussfolgerung

#### Korollar

Für jede Sprache L gilt genau eine der vier folgenden Eigenschaften.

- 1. L ist entscheidbar und sowohl L als auch  $\overline{L}$  sind semi-entscheidbar;
- 2. L ist semi-entscheidbar, aber  $\overline{L}$  ist nicht semi-entscheidbar;
- 3.  $\overline{L}$  ist semi-entscheidbar, aber L ist nicht semi-entscheidbar;
- 4. sowohl L als auch  $\overline{L}$  sind nicht semi-entscheidbar

### Beispiele

- Kategorie 1: Graphzusammenhang, Hamiltonkreis
- ► Kategorie 2: H,  $H_{\epsilon}$ ,  $\overline{D}$
- ► Kategorie 3:  $\overline{H}$ ,  $\overline{H}_{\epsilon}$ , D,
- ► Kategorie 4:  $H_{\text{all}} = \{\langle M \rangle \mid M \text{ hält auf jeder Eingabe}\}$

Vorlesung BuK im WS 22/23, M. Grohe

Seite 212

Version 11. November 2022

# Berechenbarkeitslandschaft



# Allgemeines Halteproblem

Das allgemeine Halteproblem ist definiert als

$$H_{\text{all}} = \{\langle M \rangle \mid M \text{ hält auf jeder Eingabe}\}$$

Wie kann man nachweisen, dass sowohl  $H_{\text{all}}$  als auch  $\overline{H}_{\text{all}}$  nicht semi-entscheidbar sind?

Wir verwenden eine spezielle Variante der Unterprogrammtechnik, die sogenannte Reduktion.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 214

Version 11. November 2022

# Reduktionen

#### Definition

Es seien  $L_1$  und  $L_2$  Sprachen über einem Alphabet  $\Sigma$ . Dann heißt  $L_1$  auf  $L_2$  reduzierbar, Notation  $L_1 \leq L_2$ , wenn es eine berechenbare Funktion  $f: \Sigma^* \to \Sigma^*$  gibt, so dass für alle  $x \in \Sigma^*$  gilt

$$x \in L_1 \Leftrightarrow f(x) \in L_2$$
.



# Reduktionen

#### Lemma

Falls  $L_1 \leq L_2$  und  $L_2$  semi-entscheidbar ist, so ist  $L_1$  semi-entscheidbar.

#### **Beweis**

Wir konstruieren eine TM  $M_1$ , die  $L_1$  erkennt, indem als Unterprogramm eine TM  $M_2$  verwenden, die  $L_2$  erkennt:

- ▶ Die TM  $M_1$  berechnet f(x) auf ihrer Eingabe x. (Dies ist möglich da f berechenbar ist.)
- ▶ Dann simuliert  $M_1$  die TM  $M_2$  mit der Eingabe f(x) und übernimmt das Akzeptanzverhalten.

#### Korrektheit:

 $M_1$  akzeptiert  $x \Leftrightarrow M_2$  akzeptiert  $f(x) \Leftrightarrow f(x) \in L_2 \Leftrightarrow x \in L_1$ .

Vorlesung BuK im WS 22/23, M. Grohe

Seite 216

Version 11. November 2022

### Reduktionen – Illustration



# Verwendung von Reduktionen in umgekehrter Richtung

Im Umkehrschluss gilt:

#### Korollar

Falls  $L_1 \leq L_2$  und  $L_1$  nicht semi-entscheidbar ist, so ist  $L_2$  nicht semi-entscheidbar.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 218

Version 11. November 2022

# Anwendung

Vorbeobachtung:  $H_{\epsilon}$  ist unentscheidbar, aber semi-entscheidbar. Folglich ist  $\overline{H}_{\epsilon}$  nicht semi-entscheidbar.

Wir werden zeigen

Behauptung A

Behauptung B

$$\overline{H}_{\epsilon} \leq \overline{H}_{\text{all}}$$

 $\overline{H}_{\epsilon} \leq H_{\text{all}}$ 

Aus diesen Reduktionen folgt:

Satz

Weder  $\overline{H}_{all}$  noch  $H_{all}$  ist semi-entscheidbar.