Turbomachinery - Summary of Equations

Course MJ2430/MJ2244

Gas Equations

 $pv^n = const.$ Polytropic relation Polytropic coefficient

 $\frac{n-1}{n} = \eta_p \frac{\gamma - 1}{\gamma}$ **Expansion process**

 $\frac{n-1}{n} = \frac{1}{\eta_p} \frac{\gamma - 1}{\gamma}$ Compression process

Note: for $\eta_p = 1 \rightarrow n = \gamma \rightarrow \text{isentropic (i.e. ideal)}$

 $p^{\frac{1-n}{n}}T = const.$ \rightarrow isentropic $\frac{T_1}{T_2} = \left(\frac{p_1}{p_2}\right)^{\frac{\gamma-1}{\gamma}}$ Equivalent identities

 $p\rho^{-n} = const.$

 $c_p T = \frac{\gamma}{\gamma - 1} p v$ $\frac{T_{01}}{T_{02s}} = \left(\frac{p_{01}}{p_{02s}}\right)^{\frac{\gamma - 1}{\gamma}}$

 $h = c_p \cdot T$ Enthalpy

 $\Delta h_{01\to 02} = c_p(T_{01} - T_{02}) = c_p T_{01} \left[1 - \left(\frac{p_{02}}{p_{01}} \right)^{\eta_p \frac{\gamma - 1}{\gamma}} \right]$ Enthalpy difference (polytropic, expansion)

 $\Delta h_{01\to 02} = \eta_{tt} c_p T_{01} \left[1 - \left(\frac{p_{02s}}{p_{01}} \right)^{\frac{\gamma - 1}{\gamma}} \right]$ Enthalpy difference (isentropic)

 $M = \left\lceil \frac{2}{\gamma - 1} \left\lceil \left(\frac{p_0}{p} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right\rceil \right\rceil^{\frac{1}{2}} = \left\lceil \frac{2}{\gamma - 1} \left\lceil \left(\frac{T_0}{T} \right) - 1 \right\rceil \right\rceil^{\frac{1}{2}}$

Compressible Analysis

Speed of sound
$$a = \sqrt{\gamma RT}$$

Velocity
$$c = M \cdot a = \left[\frac{2\gamma RT}{\gamma - 1} \left[\left(\frac{p_0}{p} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right] \right]^{\frac{1}{2}}$$

Energy, Mass and Momentum Balance

Power
$$\dot{W} = \dot{m}\Delta h_0$$
 $\dot{W} \rightarrow \left[\frac{J}{s}\right], \ \dot{m} \rightarrow \left[\frac{kg}{s}\right], \ \Delta h_0 \rightarrow \left[\frac{J}{kg}\right]$

Expressed by torque
$$\dot{W} = M\omega$$
 $M \rightarrow [Nm], \omega \rightarrow \left[\frac{rad}{s}\right]$

Rotational frequency
$$\omega = \frac{\pi n}{30}$$
 $n \to [rpm]$

Mass balance
$$\dot{m} = \Omega \cdot \rho \cdot cn = \Omega \cdot \rho \cdot \phi \cdot u$$

Euler equation
$$h_{01} - h_{02} = u_1 c_{\theta 1} - u_2 c_{\theta 2}$$

Stagnation enthalpy (
$$\rightarrow$$
 constant in stator) $h_0 = h + \frac{1}{2}c^2$

Rothalpy (
$$\Rightarrow$$
 constant in rotor)
$$I = h + \frac{1}{2}c^2 - u \cdot c_\theta = h + \frac{1}{2}w^2 - \frac{1}{2}u^2$$

Trigonometry

$$\tan \alpha = \frac{c_{\theta}}{c_x}$$

$$\cos\alpha = \frac{c_x}{c}$$

$$\sin \alpha = \frac{c_{\theta}}{c}$$

Turbomachinery Stages

Design Parameters

Assumption: normal repetition stage: turbine: $\vec{c}_0 = \vec{c}_2$, $c_{x,0} = c_{x,1} = c_{x,2} = const$, $u_0 = u_1 = u_2$ compressor $\vec{c}_1 = \vec{c}_3$, $c_{x,1} = c_{x,2} = c_{x,3} = const$, $u_1 = u_2 = u_3$

Parameter	Turbine	Compressor
Degree of reaction	$R = -\frac{1}{2u} \left(w_{\theta,2} + w_{\theta,1} \right)$	$R = -\frac{1}{2u} \left(w_{\theta,1} + w_{\theta,2} \right)$
$R = \frac{\Delta h_{rotor}}{\Lambda}$	2u	$2u \stackrel{(0,1)}{\sim} 0,2$
Δh_{stage}	$R = \frac{1}{2} - \frac{c_x}{2u} \left(\tan \beta_2 + \tan \alpha_1 \right)$	$R = \frac{1}{2} - \frac{c_x}{2u} \left(\tan \alpha_1 + \tan \beta_2 \right)$
Loading coefficient	$\psi = \frac{c_{\theta,1} - c_{\theta,2}}{c_{\theta,1} - c_{\theta,2}}$	$\psi = \frac{c_{\theta,2} - c_{\theta,1}}{2}$
$\psi = \frac{\Delta h_0}{u^2}$	$\psi = \frac{u}{u}$	$\psi = \frac{u}{u}$
u^2	$\psi = -1 + \frac{c_x}{u} \left(\tan \alpha_1 - \tan \beta_2 \right)$	$\psi = 1 + \frac{c_x}{u} \left(\tan \beta_2 - \tan \alpha_1 \right)$
Flow coefficient	$\phi = \frac{c_x}{c_x}$	$\phi = \frac{c_x}{c_x}$
$\phi = \frac{c_x}{c_x}$	$\psi - \frac{u}{u}$	$\varphi = \frac{u}{u}$
$\int_{0}^{\tau} u$		

Multistage machine with z similar stages

$$\Delta h_{0,\alpha \to \omega} = \sum_{i=1}^{z} \psi_i u_i^2 = z \cdot \psi \cdot u^2$$

Engine Geometry

Radius ratio	$Y = \frac{r_s}{r_h}$	Hub radius	$r_h = \frac{2r_m}{Y+1}$
Blade length	$s = r_s - r_h$	Shroud radius	$r_s = \frac{2Yr_m}{Y+1}$
Mean radius	$r_m = \frac{r_h + r_s}{2}$	Cross section	$\Omega = \pi (r_s^2 - r_h^2) = 4\pi r_m^2 \frac{Y-1}{Y+1} = 2\pi \cdot r_m s$

Radial compressors

Slip factor definition
$$\sigma = \frac{c_{\theta 2}}{c_{\theta 2}},$$

Slip factor by Stodola
$$\sigma = 1 - \frac{\pi}{n} \cdot \frac{\cos \beta_2'}{1 - \phi_2 \tan \beta_2'}$$

Slip factor by Stanitz
$$\sigma = 1 - \frac{\pi}{n} \cdot \frac{0.63}{1 - \phi_2 \tan \beta_2}$$

Velocity Triangles

Normalized velocity triangle turbine stage

Normalized velocity triangle compressor stage

Jet Engine Cycles

Total pressure at intake outlet $p_{01} = p_a \Bigg[1 + \eta_i \, \frac{c_a^2}{2c_p T_a} \Bigg]^{\gamma/\ (\gamma-1)}$

Critical nozzle pressure ratio $\frac{p_{04}}{p_c} = \frac{1}{\left[1 - \frac{1}{\eta_j} \left(\frac{\gamma - 1}{\gamma + 1}\right)\right]^{\gamma/(\gamma - 1)}}$

Specific thrust (turbojet, choked nozzle) $F_s = \left(c_j - c_a\right) + \frac{A_j}{m} \left(p_c - p_a\right)$

Specific thrust (turbojet, unchoked nozzle) $F_s = (c_i - c_a)$

Specific thrust (turbofan, unchoked nozzle) $F_s = (c_{jc} - c_a) + BPR \cdot (c_{jb} - c_a)$

Energy balance fan – LPT $(1 + BPR) \Delta h_{0, fan} = |\Delta h_{0, LPT}| \cdot \eta_{mech}$

Bypass ratio $BPR = \frac{\dot{m}_{bypass}}{\dot{m}_{core}}$

Fan mass flow $\dot{m}_{fan} = \dot{m}_{core} \cdot (1 + BPR)$

p_a	ambient static pressure	η_i	isentropic intake efficiency
T_a	ambient static temperature	η_j	isentropic nozzle efficiency
p_{01}	total pressure at intake outlet	$\eta_{\it mech}$	mechanical efficiency
p_{04}	total pressure at nozzle inlet	F_s	specific thrust
p_c	critical static pressure (at nozzle outlet)	A_j	nozzle outlet area
c_a	flight speed	BPR	bypass ratio
c_{j}	jet velocity	ṁ	mass flow rate
c_{jc}	core flow jet velocity	γ	ratio of specific heats
c_{jb}	bypass flow jet velocity	c_p	specific heat at constant pressure