

Multivariate Linear Regression

|多元线性回归

用多个解释变量来预测响应变量结果

科学不知道它对想象力的依赖。

Science does not know its debt to imagination.

—— 拉尔夫·沃尔多·爱默生 (Ralph Waldo Emerson) | 美国思想家、文学家 | 1942 ~ 2018

- matplotlib.pyplot.quiver() 绘制箭头图
- numpy.arccos() 反余弦函数
- numpy.cov() 计算协方差矩阵
- numpy.identity() 构造单位矩阵
- numpy.linalg.det() 计算矩阵的行列式值
- numpy.linalg.inv() 求矩阵逆
- numpy.linalg.matrix rank() 计算矩阵的秩
- numpy.matrix() 构造矩阵
- numpy.ones() 构造全1矩阵或向量
- numpy.ones_like() 按照给定矩阵或向量形状构造全 1 矩阵或向量
- plot wireframe() 绘制线框图
- scipy.stats.f.cdf() F 分布累积分布函数
- seaborn.heatmap() 绘制热图
- seaborn.jointplot() 绘制联合分布/散点图和边际分布
- seaborn.kdeplot() 绘制 KDE 核概率密度估计曲线
- seaborn.pairplot() 绘制成对分析图
- statsmodels.api.add constant() 线性回归增加一列常数 1
- statsmodels.api.OLS() 最小二乘法函数
- statsmodels.stats.outliers influence.variance inflation factor() 计算方差膨胀因子

3.1 多元线性回归

这一章将探讨多元线性回归。多元线性回归是一种统计分析方法,用于研究两个或多个自变量与一个因变量之间的关系。它通过拟合一个包含多个自变量的线性模型来预测因变量的值。

多元线性回归的表达式如下:

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_D x_D + \varepsilon$$
 (1)

其中, b_0 为截距项, $b_1, b_2, ..., b_D$ 代表自变量系数, ε 为残差项,D 为自变量个数。几何角度来看,多元线性回归得到一个**超平面** (hyperplane)。

用矩阵运算表达(1):

$$\mathbf{y} = \underbrace{b_0 \mathbf{I} + b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 + \dots + b_D \mathbf{x}_D}_{\mathbf{y}} + \boldsymbol{\varepsilon}$$
(2)

其中, 1 为全1列向量。

换一种方式来写(2):

$$y = Xb + \varepsilon \tag{3}$$

其中,

$$\boldsymbol{X}_{n \times (D+1)} = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \cdots & \boldsymbol{x}_{D} \end{bmatrix} = \begin{bmatrix} 1 & \boldsymbol{x}_{1,1} & \cdots & \boldsymbol{x}_{1,D} \\ 1 & \boldsymbol{x}_{2,1} & \cdots & \boldsymbol{x}_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \boldsymbol{x}_{n,1} & \cdots & \boldsymbol{x}_{n,D} \end{bmatrix}_{n \times (D+1)}, \quad \boldsymbol{y} = \begin{bmatrix} \boldsymbol{y}_{1} \\ \boldsymbol{y}_{2} \\ \vdots \\ \boldsymbol{y}_{n} \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} \boldsymbol{b}_{0} \\ \boldsymbol{b}_{1} \\ \vdots \\ \boldsymbol{b}_{D} \end{bmatrix}, \quad \boldsymbol{\varepsilon} = \begin{bmatrix} \boldsymbol{\varepsilon}^{(1)} \\ \boldsymbol{\varepsilon}^{(2)} \\ \vdots \\ \boldsymbol{\varepsilon}^{(n)} \end{bmatrix}$$
(4)

矩阵 X 常被称作**设计矩阵** (design matrix)。图 1 所示矩阵运算对应 (3)。

图 1. 多元线性回归模型矩阵运算

预测值构成的列向量 ŷ, 通过下式计算得到:

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{b} \tag{5}$$

残差向量的算式为:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$$\varepsilon = y - \hat{y} = y - Xb \tag{6}$$

如图2所示, 第i个观测点的残差项, 可以通过下式计算得到:

$$\varepsilon^{(i)} = y^{(i)} - \hat{y}^{(i)} = y^{(i)} - x^{(i)}b$$

图 2. 计算第 i 个观测点的残差项

图 3 所示为多元 OLS 线性回归数据关系。也就是说, \hat{y} 可以看成设计矩阵 X 的列向量线性组合。

图 3. 多元 OLS 线性回归数据关系

⚠ 注意,矩阵 X 为 n 行,D+1 列,第一列为全 1 列向量;增加一列全 1 列向量目的是为了引入常数项。

如图 4 所示,如果数据都已经中心化(去均值),则可以不必考虑常数项。

图 4. 多元 OLS 线性回归数据关系,中心化数据

3.2 **优化问题: OLS**

一般通过如下两种方式求得线性回归参数:

- **最小二乘法** (Ordinary Least Square, OLS),因变量和拟合值之间的欧氏距离最小化;
- 最大似然概率估计 (Maximum Likelihood Estimation, MLE),用样本数据反推最可能的模型参数值。

OLS 线性最小二乘法通过最小化残差值平方和 SSE 来计算得到最佳的拟合回归线参数:

$$\underset{b}{\operatorname{arg\,min}} \text{ SSE} \tag{7}$$

对于多元线性回归,残差平方和 SSE 为:

$$SSE = \sum_{i=1}^{n} \left(\boldsymbol{\varepsilon}^{(i)} \right)^{2} = \boldsymbol{\varepsilon} \cdot \boldsymbol{\varepsilon} = \left\| \boldsymbol{\varepsilon} \right\|_{2}^{2} = \boldsymbol{\varepsilon}^{T} \boldsymbol{\varepsilon} = \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{b} \right)^{T} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{b} \right) = \left\| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{b} \right\|_{2}^{2}$$
(8)

OLS 多元线性优化问题的目标函数可以写成:

$$f(b) = (y - Xb)^{\mathsf{T}} (y - Xb)$$
(9)

f(b) 可以整理为:

$$f(\mathbf{b}) = (\mathbf{y} - \mathbf{X}\mathbf{b})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\mathbf{b})$$

$$= (\mathbf{y}^{\mathsf{T}} - \mathbf{b}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}}) (\mathbf{y} - \mathbf{X}\mathbf{b})$$

$$= \mathbf{y}^{\mathsf{T}} \mathbf{y} - \mathbf{y}^{\mathsf{T}} \mathbf{X}\mathbf{b} - \mathbf{b}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{b}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X}\mathbf{b}$$

$$= \underbrace{\mathbf{b}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X}\mathbf{b}}_{\text{Quadratic term}} \underbrace{-2\mathbf{b}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}}_{\text{Constant}}$$
(10)

观察上式,发现 f(b) 可以看成一个多元二次函数,含有二次项、一次项和常数项。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

因此,对于二元回归,不考虑常数项系数 b_0 的话, b_1 和 b_2 构成的曲面 $f(b_1,b_2)$ 为椭圆抛物面,如图 5 所示。

图 5. f(b1, b2) 函数曲面

f(b) 梯度向量如下:

$$\nabla f(\boldsymbol{b}) = \frac{\partial f(\boldsymbol{b})}{\partial \boldsymbol{b}} \tag{11}$$

f(b) 为连续函数,取得极值时,梯度向量为零向量:

$$\nabla f(\mathbf{b}) = \mathbf{0} \quad \Rightarrow \quad \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{b} - \mathbf{X}^{\mathsf{T}} \mathbf{y} = \mathbf{0} \tag{12}$$

如果 X^TX 可逆, **b**的解为:

$$\boldsymbol{b} = (\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X})^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{y} \tag{13}$$

igoplus《矩阵力量》介绍过,如果 $oldsymbol{X}^{ op}oldsymbol{X}$ 不可逆,可以用奇异值分解求伪逆。

f(b) 的黑塞矩阵为:

$$\nabla^2 f(\boldsymbol{b}) = \frac{\partial^2 f(\boldsymbol{b})}{\partial \boldsymbol{b} \partial \boldsymbol{b}^{\mathrm{T}}} = 2\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$$
 (14)

下面,判断 f(b) 黑塞矩阵为正定矩阵,从而判定极值点为最小值点。

对于任意非零向量a,下式恒大于等于0:

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\boldsymbol{a}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)\boldsymbol{a} = \left(\boldsymbol{X}\boldsymbol{a}\right)^{\mathrm{T}}\left(\boldsymbol{X}\boldsymbol{a}\right) = \left\|\boldsymbol{X}\boldsymbol{a}\right\|^{2} \ge 0 \tag{15}$$

等号成立时,即Xa=0,即当X列向量线性相关,我们暂时不考虑这种情况。因此,对于X为列满 秩, f(b) 黑塞矩阵为正定矩阵, f(b) 在极值点处取得最小值。

模型拟合值向量 ŷ 为:

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{b} = \mathbf{X} \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y} \tag{16}$$

残差向量 ε 为:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$$\varepsilon = y - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y \tag{17}$$

 $X(X^TX)^{-1}X^T$ 为《矩阵力量》第9章介绍的**帽子矩阵** (hat matrix) H,它常出现在矩阵投影运算中。

令,

$$\boldsymbol{H} = \boldsymbol{X} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\mathrm{T}} \tag{18}$$

帽子矩阵 H 为**幂等矩阵** (idempotent matrix),幂等矩阵是指一个矩阵与自身相乘后仍等于它本身的矩阵,即满足 $H^2 = H$ 。幂等矩阵在线性代数中有广泛的应用,特别是在投影、几何变换等领域。在投影中,幂等矩阵可以用来描述一个向量在一个子空间上的投影;在几何变换中,幂等矩阵可以用来描述一个对象在进行相应变换后仍等于它本身。最简单的幂等矩阵就是单位矩阵 I,满足 $I^2 = I$ 。

利用帽子矩阵H.

$$\begin{cases} \hat{y} = Hy \\ \varepsilon = (I - H)y \end{cases} \tag{19}$$

3.3 几何解释: 投影

图 6 所示为多维空间视角下的数据矩阵;矩阵 $X = [x_1, x_2, ..., x_D]$ 每一列代表一个特征,每一列可以看做一个向量。

⇒ 鸢尾花书《矩阵力量》一书中,我们反复探讨过这一点。

图 6. 多维空间视角下的矩阵 X

不考虑常数项, 预测值向量 ў 可以通过下式计算得到:

$$\hat{\mathbf{y}} = b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 + \dots + b_D \mathbf{x}_D \tag{20}$$

(20) 说明,预测值向量 \hat{y} 是自变量向量 $x_1, x_2, ..., x_D$ 的线性组合。如果 $x_1, x_2, ..., x_D$ 构成一个超平面H, \hat{y} 在H这个平面内。

有了这一思想,构造因变量向量 y 和自变量向量 $x_1, x_2, ..., x_D$ 的线性回归模型,相当于 y 向 $x_1, x_2, ..., x_D$ 构成的超平面 H 投影。如图 7 所示,预测值向量 \hat{y} 是因变量向量 y 在 H 的投影结果:

$$y = \hat{y} + \varepsilon \tag{21}$$

简单来说,从向量投影的角度来理解多元线性回归,可以将回归问题看作是将因变量向量在自变量 向量所张成的子空间上的投影。

D dimensional hyperplane spanned by column vectors of $X(x_1, x_2, ..., x_{D-1}, x_D)$

图 7. 几何角度解释多元最小二乘法线性回归

而残差项向量 ε 是预测值向量 \hat{y} 是因变量向量 y 两者之差:

$$\varepsilon = y - \hat{y} \tag{22}$$

残差项向量 ε 垂直于 $x_1, x_2, ..., x_D$ 构成的超平面 H。

由上所述,残差 ε ($\varepsilon = y - \hat{y}$) 是无法通过 ($x_0, x_1, ..., x_{D-1}, x_D$) 解释部分向量,垂直于超平面:

$$\boldsymbol{\varepsilon} \perp \boldsymbol{X} \quad \Rightarrow \quad \boldsymbol{X}^{\mathsf{T}} \boldsymbol{\varepsilon} = 0 \tag{23}$$

得到

$$\boldsymbol{X}^{\mathsf{T}}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}) = 0 \quad \Rightarrow \quad \boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\boldsymbol{b} = \boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} \tag{24}$$

这和上一节得到的结果完全一致,但是从几何视角看 OLS, 让求解过程变得非常简洁。

请大家再次注意,只有X为列满秩时, X^TX 才存在逆。

此外,我们可以很容易在 X 最左侧加入一列全 1 向量 1,残差项向量 ϵ 则垂直于 $1, x_1, x_2, ..., x_D$ 构成的超平面 H。

《统计至简》介绍过 OLS 线性回归假设条件。OLS 线性回归的假设条件是用来保证模型的有效性和可靠性。简单来说,这些假设条件主要包括线性关系、正态分布、同方差性、独立性和残差之和为零。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

首先,线性关系假设要求因变量和自变量之间的关系是线性的,即在自变量变化时,因变量的变化量是按照线性关系变化的。这个假设是 OLS 回归分析的前提条件,否则回归结果将会失真。

其次,正态分布假设要求模型的残差应该满足正态分布。正态分布是概率论和统计学中最为重要的分布之一,如果残差不满足正态分布,可能会导致回归结果失真。

同方差性假设要求残差的方差在各个自变量取值下都相等。如果残差的方差不相等,会导致回归结 果的可靠性下降。

独立性假设要求各个观测值之间是独立的,即一个观测值的取值不受其他观测值的影响。如果存在相关性,回归结果可能会失真。

最后,残差之和为零要求模型的残差的总和为零,这是保证回归分析的正确性的必要条件。

总之,这些假设条件对于 OLS 线性回归的结果具有重要影响,需要在回归分析中进行检验和确认。

表1所示为用矩阵方式表达 OLS 线性回归假设。

假设	矩阵表达
线性模型	$y = Xb + \varepsilon$
残差服从正态分布	$\varepsilon X \sim N(\theta, \hat{\sigma}^2 I)$
残差期望值为 0	$\mathrm{E}(\boldsymbol{\varepsilon} X) = \boldsymbol{0}$
残差同方差性	$\operatorname{var}(\boldsymbol{\varepsilon} \boldsymbol{X}) = \begin{bmatrix} \operatorname{var}(\boldsymbol{\varepsilon}^{(1)}) & \operatorname{cov}(\boldsymbol{\varepsilon}^{(1)}, \boldsymbol{\varepsilon}^{(2)}) & \cdots & \operatorname{cov}(\boldsymbol{\varepsilon}^{(1)}, \boldsymbol{\varepsilon}^{(n)}) \\ \operatorname{cov}(\boldsymbol{\varepsilon}^{(2)}, \boldsymbol{\varepsilon}^{(1)}) & \operatorname{var}(\boldsymbol{\varepsilon}^{(2)}) & \cdots & \operatorname{cov}(\boldsymbol{\varepsilon}^{(2)}, \boldsymbol{\varepsilon}^{(n)}) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}(\boldsymbol{\varepsilon}^{(n)}, \boldsymbol{\varepsilon}^{(1)}) & \operatorname{cov}(\boldsymbol{\varepsilon}^{(n)}, \boldsymbol{\varepsilon}^{(2)}) & \cdots & \operatorname{var}(\boldsymbol{\varepsilon}^{(n)}) \end{bmatrix} = \hat{\sigma}^{2} \boldsymbol{I}$
矩阵 X 不存在多重共线性	$rank(X) = D + 1$ $det(X^{T}X) \neq 0$

表 1. 用矩阵运算表达 OLS 线性回归假设

3.4 **二元线性回归**

为了方便大家理解,本节用实例讲解二元线性回归。

二元线性回归解析式为:

$$\hat{\mathbf{y}} = b_0 \mathbf{1} + b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 \tag{25}$$

图 8 所示为二元 OLS 线性回归数据关系。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

图 8. 二元 OLS 线性回归数据关系

本节介绍利用两个股票日收益率解释 S&P 500 日收益率。图 9 所示为参与回归数据 $[y, x_1, x_2]$ 的散点图。

图 10 所示为 $[y, x_1, x_2]$ 数据的成对特征分析图。

图 11 所示为 $[y, x_1, x_2]$ 数据的协方差矩阵、相关性和夹角热图。

图 12 所示为二元 OLS 线性回归结果。图 13 所示为三维数据散点图和回归平面。

图 9. 二元线性回归数据

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

图 10. 二元线性回归数据 $[y,x_1,x_2]$ 成对特征分析图

图 $11.[y,x_1,x_2]$ 数据的协方差矩阵、相关性和夹角热图

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML本书配套微课视频均发布在 B 站——生姜 DrGinger: ht

⁻⁻ 生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

OLS Regression Results

			, 				
Dep. Variable:		SP5		D-sm			0.830
Model:)T _i S	_	R-squared:		0.829
Method:		Least Squar		_	atistic:		607.4
Date:	VV	Least Squar			(F-statistic):		1.69e-96
					,		
Time:	XX.	XXXXXXXXXXX		_	Likelihood:		831.06
No. Observations:				AIC:			-1656.
Df Residuals:		2		BIC:			-1646.
Df Model:			2				
Covariance Type:		nonrobu	ıst				
==========							
	coef	std err		t	P> t	[0.025	0.975]
const -0.	0006	0.001	-0.	.984	0.326	-0.002	0.001
AAPL 0.	3977	0.024	16.	.326	0.000	0.350	0.446
MCD 0.	4096	0.028	14.	.442	0.000	0.354	0.465
Omnibus:		37.7	44	Durb	========= in-Watson:		1.991
Prob(Omnibus):		0.0	000	Jarq	ue-Bera (JB):		157.711
Skew:				Prob			5.67e-35
Kurtosis:		6.7		Cond			59.4
=============				-====	 		========

图 12. 二元 OLS 线性回归分析结果

图 13. 三维空间,回归平面

Bk7_Ch03_01.ipynb 完成本节二元线性回归。

3.5 多元回归

本节介绍一个多元回归问题,构造多元 OLS 线性回归模型用 12 只股票日收益率预测 S&P 500 日收益率。图 14 所示股价数据。

图 14. 股价数据, 起始值归一化

根据股价水平计算得到的日收益率。图 15 所示为日收益率热图。图 16 所示为[y, X] 数据协方差矩阵。图 17 所示为均方差 (即波动率) 直方图。

图 18 所示为 [y, X] 数据相关性系数矩阵热图。图 19 所示为几只不同股票股价收益率和 S&P 500 收益率相关性系数柱状图。利用余弦相似性,根据相关性系数矩阵,可以计算得到 [y, X] 标准差向量夹角,矩阵热图如图 20 所示。图 21 所示为多元 OLS 线性回归解。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

图 15. [y, X] 日收益率热图

图 16. [y, X] 数据协方差矩阵

图 17. 日波动率柱状图

SP500 -	1.000	0.463	0.359	0.505	0.417	0.571	0.386	0.433	0.341	0.390	0.340	0.517	0.570
TSLA –	0.463	1.000	0.211	0.238	0.044	0.150	0.420	0.052	0.143	-0.009	-0.039	0.353	0.193
WMT –	0.359	0.211	1.000	0.148	-0.021	0.160	0.282	0.020	-0.040	0.111	0.104	0.562	0.149
MCD -	0.505	0.238	0.148	1.000	0.152	0.508	0.188	0.132	-0.003	0.352	0.305	0.358	0.243
USB –	0.417	0.044	-0.021	0.152	1.000	0.456	-0.127	0.908	0.309	0.631	0.497	-0.193	0.327
YUM –	0.571	0.150	0.160	0.508	0.456	1.000	-0.003	0.438	0.276	0.488	0.410	0.180	0.365
NFLX –	0.386	0.420	0.282	0.188	-0.127	-0.003	1.000	-0.183	-0.143	-0.074	-0.011	0.468	-0.013
JPM –	0.433	0.052	0.020	0.132	0.908	0.438	-0.183	1.000	0.338	0.608	0.455	-0.167	0.331
PFE –	0.341	0.143	-0.040	-0.003	0.309	0.276	-0.143	0.338	1.000	0.227	0.238	0.011	0.479
F –	0.390	-0.009	0.111	0.352	0.631	0.488	-0.074	0.608	0.227	1.000	0.721	0.039	0.269
GM –	0.340	-0.039	0.104	0.305	0.497	0.410	-0.011	0.455	0.238	0.721	1.000	0.045	0.308
COST –	0.517	0.353	0.562	0.358	-0.193	0.180	0.468	-0.167	0.011	0.039	0.045	1.000	0.229
JNJ –	0.570	0.193	0.149	0.243	0.327	0.365	-0.013	0.331	0.479	0.269	0.308	0.229	1.000
,	SP500 —	TSLA -	WMT -	MCD -	USB -	YUM -	NFLX -	– Mdt	PFE -	[<u>T</u> ,	– MĐ	COST –	. INI

图 18. [y, X] 数据相关性系数矩阵热图

图 19. 股价收益率和 S&P 500 收益率相关性系数柱状图

SP500 -	0.0	62.4	69.0	59.7	65.3	55.2	67.3	64.3	70.1	67.1	70.1	58.9	55.2
TSLA -	62.4	0.0	77.8	76.2	87.5	81.4	65.1	87.0	81.8	90.5	92.3	69.3	78.9
WMT -	69.0	77.8	0.0	81.5	91.2	80.8	73.6	88.9	92.3	83.6	84.0	55.8	81.4
MCD -	59.7	76.2	81.5	0.0	81.3	59.4	79.2	82.4	90.2	69.4	72.2	69.0	76.0
USB –	65.3	87.5	91.2	81.3	0.0	62.9	97.3	24.7	72.0	50.9	60.2	101.1	70.9
YUM –	55.2	81.4	80.8	59.4	62.9	0.0	90.2	64.0	74.0	60.8	65.8	79.6	68.6
NFLX -	67.3	65.1	73.6	79.2	97.3	90.2	0.0	100.6	98.2	94.2	90.6	62.1	90.7
ЈРМ –	64.3	87.0	88.9	82.4	24.7	64.0	100.6	0.0	70.2	52.6	62.9	99.6	70.7
PFE -	70.1	81.8	92.3	90.2	72.0	74.0	98.2	70.2	0.0	76.9	76.2	89.4	61.4
F -	67.1	90.5	83.6	69.4	50.9	60.8	94.2	52.6	76.9	0.0	43.8	87.8	74.4
GM -	70.1	92.3	84.0	72.2	60.2	65.8	90.6	62.9	76.2	43.8	0.0	87.4	72.1
COST -	58.9	69.3	55.8	69.0	101.1	79.6	62.1	99.6	89.4	87.8	87.4	0.0	76.8
JNJ –	55.2	78.9	81.4	76.0	70.9	68.6	90.7	70.7	61.4	74.4	72.1	76.8	0.0
	SP500 -	TSLA -	WMT -	MCD -	USB –	YUM -	NFLX -	JPM –	PFE -	<u>г</u>	- WD	COST -	- INI

图 20. [y, X] 标准差向量夹角矩阵热图,余弦相似性

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 成队归用于八字面版社所有,唱勿简用,引用谓注明面风。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

OLS Regression Results

Dep. Varia Model: Method: Date: Time: No. Observ Df Residua Df Model: Covariance	rations:	SI Least Squa XXXXXXXXXXXX XXXXXXXXXXXXX nonrok	OLS Adj. ares F-st XXXX Prob XXXX Log- 127 AIC: 114 BIC:	uared: R-squared: atistic: (F-statisti Likelihood:	c):	0.774 0.750 32.48 3.03e-31 493.88 -961.8 -924.8
	coef	std err	t	P> t	[0.025	0.975]
CONST TS LA WMT MCD USB YUM NF LX JPM PFE F GM COST JNJ	-0.0005 0.0248 0.0272 0.1435 0.0164 0.1469 0.0972 0.1415 0.0546 -0.0068 -0.0105 0.2176	0.000 0.011 0.041 0.057 0.051 0.047 0.021 0.055 0.033 0.036 0.027 0.059	-1.038 2.248 0.667 2.536 0.322 3.114 4.539 2.583 1.662 -0.187 -0.388 3.713 4.350	0.302 0.027 0.506 0.013 0.748 0.002 0.000 0.011 0.099 0.852 0.699 0.000	-0.001 0.003 -0.054 0.031 -0.084 0.053 0.055 0.033 -0.010 -0.078 -0.064 0.101	0.000 0.047 0.108 0.256 0.117 0.240 0.140 0.250 0.120 0.065 0.043 0.334 0.351
Omnibus: Prob (Omnib Skew: Kurtosis:	ous):	0.	.023 Jarq .400 Prob	in-Watson: ue-Bera (JB) (JB): . No.	:	1.862 8.445 0.0147 156.

图 21. 多元 OLS 线性回归分析结果

Bk7_Ch03_02.ipynb 完成本节多元线性回归。

3.6 正交关系

第一个直角三角形

通过上一章学习,大家都很清楚第一个勾股关系:

$$\underbrace{\left\| \mathbf{y} - \overline{\mathbf{y}} \mathbf{I} \right\|_{2}^{2}}_{\text{SST}} = \underbrace{\left\| \hat{\mathbf{y}} - \overline{\mathbf{y}} \mathbf{I} \right\|_{2}^{2}}_{\text{SSR}} + \underbrace{\left\| \mathbf{y} - \hat{\mathbf{y}} \right\|_{2}^{2}}_{\text{SSE}}$$
(26)

具体如图 22 所示。上一章提到这一个直角三角形可以帮助我们解释 R²。

图 22. 第一个直角三角形

第二个直角三角形

除了(26)这个重要的直角三角形的勾股定理之外,还有另外一个重要的直角三角形勾股定理关系。

$$\|\mathbf{y}\|_{2}^{2} = \|\hat{\mathbf{y}}\|_{2}^{2} + \|\mathbf{y} - \hat{\mathbf{y}}\|_{2}^{2} = \|\hat{\mathbf{y}}\|_{2}^{2} + \|\mathbf{\varepsilon}\|_{2}^{2}$$
(27)

具体如图 23 所示。图 23 这个直角很容易理解。残差向量 ϵ 垂直于超平面 H 内的一切向量,显然 ϵ 垂直 \hat{y} 。

图 23. 第二个直角三角形

第三个直角三角形

此外,《矩阵力量》第 22 章介绍过,向量 $y - \bar{y}I$ 垂直于向量 $\bar{y}I$:

$$\left(\overline{y}I\right)^{\mathrm{T}}\left(y-\overline{y}I\right)=0\tag{28}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

具体如图 24 所示。上式体现的核心思想就是 y 中可以被均值解释的部分为 \overline{y} I 。

图 24. 第三个直角三角形

第四个直角三角形

OLS 假设残差之和为 0:

$$\sum_{i=1}^{n} \varepsilon^{(i)} = 0 \tag{29}$$

注意,如果总残差不为0,就说明预测值的总和与实际观测值的总和不相等,这意味着模型存在偏 差,不能很好地解释数据。

对应向量运算:

$$\boldsymbol{I}^{\mathsf{T}}\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}^{\mathsf{T}}\boldsymbol{I} = 0 \tag{30}$$

残差向量可以写成:

$$\varepsilon = y - \hat{y} = y - \overline{y}I - (\hat{y} - \overline{y}I) \tag{31}$$

上式左乘 1^T, 得到:

$$I^{\mathsf{T}}_{0} \varepsilon = \underbrace{I^{\mathsf{T}} \left(y - \overline{y} I \right)}_{0} - I^{\mathsf{T}} \left(\hat{y} - \overline{y} I \right)$$
(32)

即

$$\boldsymbol{I}^{\mathrm{T}}(\hat{\boldsymbol{y}} - \overline{\boldsymbol{y}}\boldsymbol{I}) = 0 \tag{33}$$

也就是说,如图 25 所示, $\hat{y} - \bar{y}I$ 垂直于向量 $\bar{y}I$:

$$\bar{\mathbf{y}} \mathbf{I}^{\mathrm{T}} \left(\hat{\mathbf{y}} - \bar{\mathbf{y}} \mathbf{I} \right) = 0 \tag{34}$$

上式体现的核心思想就是 \hat{y} 的均值也是 \bar{y} 。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

Hyperplane spanned by column vectors of X

图 25. 第四个直角三角形

这一节介绍对于多元 OLS 线性回归,如何求解 SST、SSR 和 SSE 这三个平方和。

对于多元 OLS 线性回归模型, SST 可以通过矩阵运算求得:

$$SST = \mathbf{y}^{\mathrm{T}} \left(\mathbf{I} - \frac{\mathbf{J}}{n} \right) \mathbf{y} \tag{35}$$

其中矩阵 J 为全 1 方阵,形状为 $n \times n$:

$$J_{n \times n} = II^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$
(36)

SSR 可以通过矩阵运算求得:

$$SSR = y^{T} \left(H - \frac{J}{n} \right) y \tag{37}$$

其中矩阵 H 为本书前文所讲的帽子矩阵,形状为 $n \times n$:

$$\boldsymbol{H} = \boldsymbol{X} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\mathrm{T}} \tag{38}$$

同样,对于多元 OLS 线性回归模型, SSE 可以通过矩阵运算求得:

$$SSE = \mathbf{y}^{\mathrm{T}} (\mathbf{I} - \mathbf{H}) \mathbf{y} \tag{39}$$

对于多元 OLS 线性回归模型, MSE 的矩阵运算为:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$MSE = \frac{\|(I - H)y\|_{2}^{2}}{n - k}$$

$$= \frac{y^{T}y - 2y^{T}Hy + y^{T}H^{2}y}{n - k}$$

$$= \frac{y^{T}y - y^{T}Hy}{n - k}$$

$$= \frac{y^{T}(I - H)y}{n - k}$$

$$(40)$$

上式推导过程采用帽子矩阵重要的性质。

3.8 t检验

对于多元 OLS 线性回归模型,模型系数 b_0 、 b_1 、 b_2 … b_D 的协方差矩阵 C 可以通过下式计算得到:

$$C = \hat{\sigma}^2 \left(X^{\mathsf{T}} X \right)^{-1} \tag{41}$$

其中,

$$\hat{\sigma}^2 = MSE = \frac{\boldsymbol{\varepsilon}^T \boldsymbol{\varepsilon}}{n - k} \tag{42}$$

矩阵 C 的对角线元素 $C_{j+1,j+1}$ 为 \hat{b}_i 的方差,非对角线元素为 \hat{b}_i 和 \hat{b}_k 的协方差。

 \hat{b}_j 的标准误 $SE(\hat{b}_j)$ 为:

$$SE\left(\hat{b}_{j}\right) = \sqrt{C_{j+1,j+1}} \tag{43}$$

对于多元线性回归, 假设检验原假设和备择假设分别为:

$$\begin{cases} H_0: \ b_j = b_{j,0} \\ H_1: \ b_j \neq b_{j,0} \end{cases} \tag{44}$$

 b_i 的 t 检验统计值:

$$T_{j} = \frac{\hat{b}_{j} - b_{j,0}}{\operatorname{SE}(\hat{b}_{j})} \tag{45}$$

类似地,如果下式成立,接受零假设 H_0 :

$$-t_{1-\alpha/2, n-k} < T_i < t_{1-\alpha/2, n-k} \tag{46}$$

否则,则拒绝零假设 H_0 。

系数 b_i 的 $1-\alpha$ 置信区间为:

$$\hat{b}_{j} \pm t_{1-\alpha/2, n-k} \cdot \text{SE}(\hat{b}_{j}) \tag{47}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

对于多元 OLS 线性模型, 预测值 $\hat{y}^{(i)}$, 的 $1-\alpha$ 置信区间:

$$\hat{\mathbf{y}}^{(i)} \pm t_{1-\alpha/2, n-2} \cdot \sqrt{\text{MSE}} \cdot \sqrt{\mathbf{x}^{(i)} \left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \left(\mathbf{x}^{(i)}\right)^{\mathrm{T}}}$$

$$\tag{48}$$

 $x^{(i)}$ 为矩阵 X 的第 i 行:

$$\mathbf{x}^{(i)} = \begin{bmatrix} 1 & x_{i,1} & x_{i,2} & \cdots & x_{i,D} \end{bmatrix}$$
 (49)

类似地,对于多元 OLS 线性回归模型, yp的预测区间估计为:

$$\hat{y}^{(i)} \pm t_{1-\alpha/2, n-2} \cdot \sqrt{\text{MSE}} \cdot \sqrt{1 + \boldsymbol{x}^{(i)} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \left(\boldsymbol{x}^{(i)}\right)^{\mathrm{T}}}$$
(50)

3.9 多重共线性

线性回归模型的解释变量不满足相互独立的基本假设前提下,如果模型的解释变量存在多重共线性,将导致最小二乘法得到的模型参数估计量非有效且方差变大,参数估计量经济含义不合理等。

上一章介绍过采用**条件数** (Condition number) 来判定多重共线性。对 X^TX 进行特征值分解,得到最大特征值 λ_{max} 和最小特征值 λ_{min} 。条件数的定义为两者的比值的平方根。条件数小于 30,可以不必担心多重共线性。

如果 X^TX 可逆, X^TX 的行列式值不为 0:

$$\det\left(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\right) \neq 0 \tag{51}$$

这里再介绍一个评价共线性的度量指标,**方差膨胀因子** (variance inflation factor, VIF),也称为**方差 扩大因子**。

一个还有n个解释变量的矩阵 $\hat{X}_{i,i}$,对于其中的任意解释变量 $\left\{X_{i,i}\right\}$,其对应的方差膨胀因子 VIF_{i} 可由下式计算:

$$VIF_i = \frac{1}{1 - R_i^2} \tag{52}$$

其中 R_i^2 是解释变量 $\{X_{i,i}\}$ 与其解释变量 $\{X_{j,i}\}$, $j \neq i$ 回归模型的决定系数:

$$X_{i,t} = \alpha_0 + \sum_{j=1, j \neq i}^{n} \alpha_j X_{j,t} + \varepsilon_t$$
 (53)

当某个变量 $\{X_{i,i}\}$ 能被其他变量完全线性解释时, R_i^2 的值趋近于 1, VIF_i 的值将趋近于无穷大;所以,各个变量的 VIF 值越小,说明共线性越弱。最常用的 VIF 阈值是 10,即解释变量的 VIF 值都不大于 10 时,认为共线性在可接受范围内;此外,VIF \leq 5 也是比较常见的、但相对而言更为严格的判断标准。

3.10 条件概率视角看多元线性回归

→《统计至简》第 12 章介绍过,多元线性回归本质上就是条件概率中的条件期望值。

如果随机变量向量 χ 和 γ 服从多维高斯分布:

$$\begin{bmatrix} \chi \\ \gamma \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} \mu_{\chi} \\ \mu_{\gamma} \end{bmatrix}, \begin{bmatrix} \Sigma_{\chi\chi} & \Sigma_{\chi\gamma} \\ \Sigma_{\chi\chi} & \Sigma_{\gamma\gamma} \end{bmatrix}$$
 (54)

其中, χ 为随机变量 X_i 构成的列向量, γ 为随机变量 Y_j 构成的列向量:

$$\chi = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_D \end{bmatrix}, \quad \gamma = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_M \end{bmatrix}$$
(55)

图 26. 均值向量、协方差矩阵形状,图片来自鸢尾花书《统计至简》第 12 章

如图 27 所示,给定 $\chi = x$ 的条件下 γ 的条件期望为:

$$E(\gamma | \chi = x) = \mu_{\gamma | \chi = x} = \Sigma_{\gamma \chi} \Sigma_{\chi \chi}^{-1} (x - \mu_{\chi}) + \mu_{\gamma}$$
(56)

图 27. 给定 $\chi = x$ 的条件下 γ 的期望值的矩阵运算,图片来自鸢尾花书《统计至简》第 12 章

对于本例, 我们对 (56) 进行转置得到:

$$\mu_{y|x} = \mathrm{E}(y) + (x - \mathrm{E}(X)) \underbrace{(\Sigma_{XX})^{-1} \Sigma_{Xy}}_{b}$$
 (57)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

[y, X] 对应的协方差矩阵如图 28 所示。图 29 为对 Σxx 求逆。

图 28. [y, X] 协方差矩阵

图 29. 分块协方差矩阵求逆

如图 30 所示, 截距系数之外的多元线性回归系数向量为:

$$\boldsymbol{b}_{1\sim D} = \left(\boldsymbol{\Sigma}_{XX}\right)^{-1} \boldsymbol{\Sigma}_{Xy} \tag{58}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

如图 31 所示, b₀ 为:

$$b_0 = \mathbf{E}(\mathbf{y}) - \mathbf{E}(\mathbf{X})\mathbf{b}_{1\sim D} \tag{59}$$

其中, E(X) 为行向量。

图 30. 求线性回归参数, 除截距以外

图 31. 求截距系数

Bk7_Ch03_03.ipynb 完成本节运算。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

OLS 线性回归是一种在机器学习中常用的算法,它可以通过最小化残差平方和来建立线性模型,从 而用于预测和分析因变量与自变量之间的关系。OLS 线性回归适用于数据分析、预测模型、异常检测、 特征工程等多种机器学习任务。通过使用 OLS 线性回归,可以得出自变量对因变量的影响程度、探索自 变量之间的关系、预测因变量的取值,以及识别异常值等。OLS 线性回归是一种简单但可靠的机器学习 算法,为数据分析和预测建模提供了强大的工具和方法。

鸢尾花书从不同视角介绍过 OLS 线性回归。《数学要素》从代数、几何、优化角度讲过线性回归, 《矩阵力量》从线性代数、正交投影、矩阵分解视角分析线性回归。《统计至简》又增加了条件概率、 MLE 这两个视角。鸢尾花书有关 OLS 线性回归的讲解至此告一段落,本书后续将介绍回归中的正则 化、贝叶斯回归、非线性回归等话题。