2.1 Write a Boolean equation is sum- of- products canonical form for each of the truth tables

A.
$$ABY$$
 $Y(A,B) = \sum (0,2,3)$ B. $ABCY$ $Y(A,B,C) = \sum (0,7)$

2.2 (9-0) Write a boolean equation in sum-of-poducts canonical firm

A.
$$Y(A,B) = \xi(1,2,3)$$
 B. $Y(A,B,C) = \xi(1,2,3,4,6)$ C. $Y(A,B,C) = \xi(1,6,7)$

23 (a-c) Write a boolean equation in product-of-sums canonical form

A.
$$Y(A,B) = \pi(1)$$
 B. $Y(A,B,C) = \{(1,2,3,4,5,6) \ C. \ Y(A,B,C) = \{(1,3,5) \ C. \ Y(A,B,C) = \{(1,3,5$

2.5 (a-c) Minimize each boolean equation from 2.1

2.6 (a-c) Minimize each boolean equation from 2.2

10 AC+ AB+AC

2.28 Find a minimal Bookean equation for the function

Y- AL + AB+ A CO

2,33 Picnic with criters

2.34 Complete the design of the 7-segment decoder

A. S. D_{3:2}
D₁, 100
D
X
X
X
X

$$S_{c} = \overline{D_{1}} \overline{D_{3}} + \overline{D_{1}} D_{2} + \overline{D_{1}} \overline{D_{3}} + \overline{D_{1}} \overline{D_{3}}$$

$$S_{D} = \overline{D_{0}} \overline{D_{1}} \overline{D_{2}} + \overline{D_{1}} \overline{D_{3}} + \overline{D_{3}} \overline{D_{2}} + \overline{D_{0}} \overline{D_{3}}$$

$$S_{E} = \overline{D_{0}} \overline{D_{1}} \overline{D_{2}} + \overline{D_{0}} \overline{D_{3}}$$

$$S_{P} = \overline{D_{0}} \overline{D_{1}} \overline{D_{3}} + \overline{D_{1}} \overline{D_{3}} + \overline{D_{0}} \overline{D_{3}} + \overline{D_{0}} \overline{D_{3}}$$

 $S_{3} = \overline{D_{1}} \overline{D_{3}} + \overline{D_{0}} \overline{D_{3}} + \overline{D_{1}} \overline{D_{0}} + \overline{D_{1}} \overline{D_{2}}$

represents with boot care's

$$S_0 = \overline{D_0} \, \overline{D_1} \, \overline{D_2} + \overline{D_1} \, \overline{D_0} + \overline{D_3} \, \overline{D_2} + \overline{D_0} \, \overline{D_3}$$

$$S_{F} = \overline{O}_{5} \overline{O}_{1} + \overline{O}_{1} O_{2} + \overline{O}_{1} O_{3} + \overline{O}_{5} \overline{O}_{3} O_{2}$$

c. Sketch a simple gate level implementation for part b

