Jan Outrata

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI

přednášky

Obsah

1 Úvod

Potřebné pojmy z teorie informace a kódování (entropie), taxonomie kompresních metod, modely dat, základní techniky (RLE, MTF) a kódování čísel.

Statistické metody

Shannon-Fanovo, Huffmanovo, aritmetické a QM kódování, principy a implementace.

3 Kontextové metody

Metody PPM, PAQ (context mixing) a blokové třídění (Burrows-Wheelerova transformace, BWT), principy a implementace.

4 Slovníkové metody

Rodina metod LZ77 a varianta Deflate, rodina metod LZ78 a varianta LZW, principy a implementace.

Anotace

V předmětu jsou představeny základní i moderní metody bezeztrátové komprese dat a ztrátové komprese multimediálních dat.

Literatura

- Sayood K.: Introduction to Data Compression, Fourth Edition. Morgan Kaufmann, 2012. ISBN 978-0124157965
- Salomon D., Motta G.: Handbook of Data Compression, 5th edition. Springer, 2010.
 ISBN 978-1848829022
- Salomon D.: *Data Compression: The complete Reference*, 4th edition. Springer, 2006. ISBN 978-1846286025
- Hankerson D. C., Harris G. A., Johnson P. D.: Introduction to Information Theory and Data Compression, Second Edition (Applied Mathematics). Chapman and Hall/CRC, 2003. ISBN 978-1584883135
- Sayood K.: Lossless compression handbook. Academic Press, 2003. ISBN 0126208611

Úvod

= zmenšení velikosti reprezentace obsahu/dat – jeden z účelů kódování dat, (experimentální) vědní obor

Dvě fáze:

- I identifikování a modelování struktury dat s vynecháním redundancí
 - lacktriangle struktura např. opakování vzorů, statistická pprox frekvence/četnost vzorů, korelace mezi vzory, vzory elementární symboly nebo skupiny symbolů, také např. daná zdrojem dat ightarrow modelování zdroje a syntéza dat (zvuk)
 - také různé modely pro různé části dat
- kódování dat podle modelu
 - plus případně kódování (části) modelu
 - také predikce hodnoty dle modelu a kódování rozdílu (residua)
 - typicky binární kód

$$x_1, x_2, \dots, x_{12} = 2, 2, 4, 6, 7, 7, 7, 10, 10, 11, 11, 14$$

Příklad

$$x_1, x_2, \ldots, x_{12} = 2, 2, 4, 6, 7, 7, 7, 10, 10, 11, 11, 14$$

1 číslo ve dvojkové soustavě $\Rightarrow 4 \text{ b/číslo} = 48 \text{ b}$

$$x_1, x_2, \dots, x_{12} = 2, 2, 4, 6, 7, 7, 7, 10, 10, 11, 11, 14$$

- 1 číslo ve dvojkové soustavě $\Rightarrow 4\,\mathrm{b}/\mathrm{číslo} = 48\,\mathrm{b}$
- 2 7 různých čísel ve dvojkové soustavě $\Rightarrow 3\,\mathrm{b/císlo} = 36\,\mathrm{b}$

- $x_1, x_2, \dots, x_{12} = 2, 2, 4, 6, 7, 7, 7, 10, 10, 11, 11, 14$
- 1 číslo ve dvojkové soustavě $\Rightarrow 4 \, \mathrm{b/císlo} = 48 \, \mathrm{b}$
- **2** 7 různých čísel ve dvojkové soustavě $\Rightarrow 3\,\mathrm{b/císlo} = 36\,\mathrm{b}$
- **8** častější číslo kratší kód $\to 2 \times 2$, 1×4 , 1×6 , 3×7 , 2×10 , 2×11 , $1 \times 14 \to \mathbf{0I}$ pro 7, **III** pro 11, **II0** pro 10, **I0I** pro 2, **I00** pro 14, **000** pro 4 a **00I** pro $6 \Rightarrow 33$ b = 2.75 b/číslo

$$x_1, x_2, \dots, x_{12} = 2, 2, 4, 6, 7, 7, 7, 10, 10, 11, 11, 14$$

- 1 číslo ve dvojkové soustavě $\Rightarrow 4 \, \mathrm{b/císlo} = 48 \, \mathrm{b}$
- **2** 7 různých čísel ve dvojkové soustavě $\Rightarrow 3 \, \mathrm{b/císlo} = 36 \, \mathrm{b}$
- 3 častější číslo kratší kód \rightarrow 2 × 2, 1 × 4, 1 × 6, 3 × 7, 2 × 10, 2 × 11, 1 × 14 \rightarrow **0I** pro 7, **III** pro 11, **II0** pro 10, **I0I** pro 2, **I00** pro 14, **000** pro 4 a **00I** pro 6 \Rightarrow 33 b = 2.75 b/číslo
- 4 kódování opakování čísla \to 0 pro žádné, ${f I0}$ pro jedno a ${f II}$ pro dvě \Rightarrow $7\times 3+11=32$ b $=2.ar{6}$ b/číslo

$$x_1, x_2, \dots, x_{12} = 2, 2, 4, 6, 7, 7, 7, 10, 10, 11, 11, 14$$

- **1** číslo ve dvojkové soustavě $\Rightarrow 4 \text{ b/císlo} = 48 \text{ b}$
- **2** 7 různých čísel ve dvojkové soustavě $\Rightarrow 3\,\mathrm{b/císlo} = 36\,\mathrm{b}$
- 3 častější číslo kratší kód \rightarrow 2 × 2, 1 × 4, 1 × 6, 3 × 7, 2 × 10, 2 × 11, 1 × 14 \rightarrow **0I** pro 7, **III** pro 11, **II0** pro 10, **I0I** pro 2, **I00** pro 14, **000** pro 4 a **00I** pro 6 \Rightarrow 33 b = 2.75 b/číslo
- 4 kódování opakování čísla \to 0 pro žádné, ${f I0}$ pro jedno a ${f II}$ pro dvě \Rightarrow $7\times 3+11=32$ b $=2.ar{6}$ b/číslo
- 5 malé rozdíly mezi sousedními čísly \leadsto predikce \to $d_1=x_1=2$, $d_i=x_i-x_{i-1}=0,2,2,1,0,0,3,0,1,0,3 \to 4\,\mathrm{b}+2\,\mathrm{b/c\'islo} \Rightarrow 26\,\mathrm{b}=2.1\bar{6}\,\mathrm{b/c\'islo}$

$$x_1, x_2, \dots, x_{12} = 2, 2, 4, 6, 7, 7, 7, 10, 10, 11, 11, 14$$

- 1 číslo ve dvojkové soustavě $\Rightarrow 4 \, \mathrm{b/císlo} = 48 \, \mathrm{b}$
- **2** 7 různých čísel ve dvojkové soustavě $\Rightarrow 3\,\mathrm{b/císlo} = 36\,\mathrm{b}$
- 3 častější číslo kratší kód \rightarrow 2 × 2, 1 × 4, 1 × 6, 3 × 7, 2 × 10, 2 × 11, 1 × 14 \rightarrow **0I** pro 7, **III** pro 11, **II0** pro 10, **I0I** pro 2, **I00** pro 14, **000** pro 4 a **00I** pro 6 \Rightarrow 33 b = 2.75 b/číslo
- 4 kódování opakování čísla \to 0 pro žádné, ${\bf I0}$ pro jedno a ${\bf II}$ pro dvě \Rightarrow $7\times 3+11=32$ b $=2.\bar{6}$ b/číslo
- 5 malé rozdíly mezi sousedními čísly \leadsto predikce $\to d_1=x_1=2$, $d_i=x_i-x_{i-1}=0,2,2,1,0,0,3,0,1,0,3\to 4$ b +2 b/číslo $\Rightarrow 26$ b $=2.1\bar{6}$ b/číslo
- **6** vztah mezi čísly \leadsto predikce \to $\hat{x}_i = i+1 \to d_i = x_i \hat{x}_i = 0, -1, 0, 1, 1, 0, -1, 1, 0, 0, -1, 1 <math>\to$ **0** pro 0, **I0** pro -1 a **II** pro $1 \Rightarrow 19 \text{ b} = 1.58\bar{3} \text{ b/číslo}$

- využití ("zneužití") omezení reprodukční techniky a příjemce obsahu (člověka) pro vynechání nevyužitelných informací (obraz, video, zvuk)
- data . . . znaky textu, vzorky obrazu (body) a videa (body v čase), zvuku (úrovně v čase), aj., digitální (digitalizovaná) forma, narůstající objem např. obraz foto $10\,\mathrm{Mpx}$ $24\,\mathrm{bpp} \sim 30\,\mathrm{MB}$, video HDTV 1920×1080 $12\,\mathrm{bpp}$, $25\,\mathrm{fps} \sim 590\,\mathrm{Mb/s}$, zvuk CD $44.1\,\mathrm{kHz}$, $16\,\mathrm{bps}$, stereo $\sim 1.3\,\mathrm{Mb/s}$
- vývoj úložných a přenosových technologií nestačí, navíc (fyzikální) omezení
- umožnění tzv. multimediální revoluce komprese textu, obrazu, videa, zvuku při uložení a přenosu
- ightarrow všudypřítomná počítače, spotřební elektronika, komunikační a distribuční sítě, \dots

Příklady z minulosti

- morseovka: písmena (a číslice a interpunkce) kódována do posloupností teček a čárek, častější (e, t) kratšími pro zmenšení průměrné délky textu
- Braillovo písmo: do 2×3 matice teček kódována písmena (a číslice, interpunkce aj., Grade 1) a častá slova (a jejich zkratky, Grade 2)

Kompresní techniky a metody

- dva algoritmy: kompresní pro kompresi originálních dat na komprimovaná a dekompresní (rekonstrukční) pro dekompresi komprimovaných dat na dekomprimovaná (rekonstruovaná)
- standardy: ISO, ITU-T aj.

Bezeztrátové (lossless)

- = dekomprimovaná data stejná jako data originální = žádná ztráta informace v datech
- např. pro text, programové (binární) soubory, citlivé záznamy (bankovní, zdravotní), nereprodukovatelná data (snímky v čase) aj.
- statistické: Huffmanovo a aritmetické kódování
- kontextové: PPM
- slovníkové: LZ*
- jiné: BWT, ACB, obrazové (JPEG-LS, JBIG)

Kompresní techniky a metody

Ztrátové(lossy)

- = při kompresi vynechání nějaké informace v originálních datech \rightarrow dekomprimovaná data (obecně) odlišná od originálních dat = ztráta informace z originálních dat zkreslení dat
- vyšší míra komprese než u bezeztrátových za cenu vyšší míry zkreslení dat
- např. pro obraz, video, zvuk (hudba, řeč) zkreslení dat vede k artefaktům při reprodukci obsahu
- vzorkování a kvantizace: skalární a vektorová
- diferenční kódování: DPCM, delta modulace
- transformační a podpásmové kódování: Fourierova, Z a kosinová transformace, wavelety
- aplikace: obraz JPEG, fraktály, video H.*, MPEG, zvuk MDCT, G.*, MPEG, LPC, CELP

Míry kompresních algoritmů

- asymptotická časová a paměťová složitost algoritmů komprese a dekomprese
- experimentální časová a paměťová náročnost algoritmů jejich implementací na referenčních datech
- míry komprese
 - kompresní poměr (compression ratio) = poměr velikosti originálních a komprimovaných dat, také jako procento velikosti komprimovaných dat z velikosti originálních dat
 - compression rate = průměrná velikost komprimovaných dat na vzorek originálních dat, např. pixel u obrazu – bitů/pixel, sekunda u videa a zvuku – bitů/s
 - na referenčních datech
- míry zkreslení (distortion) rozdíl mezi originálními a dekomprimovanými daty, více způsobů měření "přesnosti (fidelity)" a "kvality" obsahu, viz dále, na referenčních datech

Fyzický

- = popis zdroje dat např. měřených, popis měřidla
- u ztrátové komprese zvuku (řeči) popis syntezátoru a syntéza dat
- obecně příliš složitý nebo nemožný

Pravděpodobnostní model

= empiricky zjištěný statistický popis zdroje dat

 $P(A \cup B) = P(A) + P(B)$ (3), $\sum_{i} P(\omega_{i}) = 1$

- pro statistické a kontextové bezeztrátové kompresní metody
- ignorantní: výskyt každé hodnoty na výstupu zdroje dat je nezávislý na výskytu ostatních hodnot a je se stejnou pravděpodobností – nejjednodušší
- dostupná pravděpodobnost výskytu nezávisle se vyskytujících hodnot
- pravděpodobnost:
 - frekvence/četnost výskytu výsledku experimentu (hodnot na výstupu zdroje dat) n opakování experimentu, n_i výskytů výsledku $\omega_i \in \Omega, i \in \{1,2,\ldots,N\}$ $(\Omega \ldots \text{prostor výsledků (sample space})) \to \text{frekvence/četnost výskytu výsledku } \omega_i : f(\omega_i) = f_i = \frac{n_i}{n} = \text{přibližná hodnota/odhad pro pravděpodobnost výskytu výsledku } \omega_i : P(\omega_i) = p_i = \lim_{n \to \infty} \frac{n_i}{n}$, událost (event) $A \subseteq \Omega$, výskyt události = výskyt kteréhokoliv výsledku události, $f(A) \ge 0 \Rightarrow P(A) \ge 0$ (1), $P(\Omega) = 1$ (2), $B \subseteq \Omega, A \cap B = \emptyset \Rightarrow$

Pravděpodobnostní model

- pravděpodobnost:
 - míra víry (belief) v událost a priori pravděpodobnost P(A) události A před výskytem události (získání informace) B, a posteriori pravděpodobnost P(A|B) po/za předpokladu, sdružená (joint) pravděpodobnost P(A,B) výskytu obou událostí A,B, Bayesovo pravidlo $P(A|B) = \frac{P(A,B)}{P(B)}$, (statisticky) nezávislé události ... P(A,B) = P(A)P(B), tj. při P(A|B) = P(A), pro případy, kdy experiment není možné provést
 - míra ("velikost") události (jako množiny) jako jiné míry (1) a (3), normalizace (2) = axiomy, z nich např. $P(\bar{A}) = 1 P(A)$, $P(\emptyset) = 0$, $P(A \cup B) = P(A) + P(B) P(A \cap B)$ aj., pro nediskrétní prostor výsledků

Pravděpodobnostní model

- náhodná proměnná/veličina: měřitelné $X:\Omega\mapsto\mathbb{R}$ (\mathbb{R} ... obor reálných čísel), realizace $X(\omega)=x$, např. $P(X(\omega)\leq x)=P(X\leq x)$, diskrétní a spojitá
- rozdělení pravděpodobnosti: distribuční funkce/kumulovaná pravděpodobnost (cumulative distribution function) $F_X(x) = P(X \le x)$, $x_1 \ge x_2 \Rightarrow F_X(x_1) \ge F_X(x_2)$, $P(X = x) = F_X(x) F_X(x^-)$ pro $F_X(x^-) = P(X < x)$, rozdělení/distribuce/hustota pravděpodobnosti (probability distribution/density function) $f_X(x)$. . . diference/derivace $F_X(x)$ pro diskrétní/spojitou X, pro diskrétní typicky $f_X(x) = P(X = x)$, např. binomické, Poissonovo, uniformní, normální (Gaussovo), aj.
- sdružená (joint) distribuční funkce $F_{X_1X_2...X_n}(x_1,x_2,\ldots,x_n) = P(X_1 \leq x_1,X_2 \leq x_2,\ldots,X_n \leq x_n), \text{ sdružené rozložení pravděpodobnosti } f_{X_1X_2...X_n}(x_1,x_2,\ldots,x_n), \text{ marginální pro jednotlivé } X_i, X_1,X_2 \text{ nezávislé, jestliže } F_{X_1X_2}(x_1,x_2) = F_{X_1}(x_1)F_{X_2}(x_2) \text{ (a tedy i } f_{X_1X_2}(x_1,x_2) = f_{X_1}(x_1)f_{X_2}(x_2))$

Pravděpodobnostní model

- střední hodnota (expected value) náhodné proměnné X: $E[X] = \sum_i x_i P(X=x_i)$ pro diskrétní X, $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$ pro spojitou X, statistický průměr (mean, statistical average) $\mu_X = E[X]$, rozptyl (variance) $\sigma_X^2 = E[(X-\mu_X)^2] = E[X^2] \mu_X^2$, standardní odchylka (standard deviation) $\sigma_X = \sqrt{\sigma_X^2}$, X_1, X_2 nekorelované, jestliže $E[(X_1-\mu_1)(X_2-\mu_2)] = 0$
- náhodný/stochastický proces: měřitelné $X:\Omega\mapsto \mathcal{F},\mathcal{F}:\mathbb{R}\mapsto \mathbb{R}$, realizace $X(\omega)=x(t),-\infty< t<\infty$ funkce času, ensemble $X(t)=\{x_\omega(t)\}$, střední hodnota ensemble, vzorek (sample) $X(t_0)$ ensemble = náhodná proměnná
- problém nulové pravděpodobnosti/frekvence (zero probability/frequency problem): kompresní metody předpokládají u modelu všechny uvažované pravděpodobnosti/frekvence nenulové → místo nulových nastavení velice malých

Markovův model (Andrei A. Markov)

- výskyt hodnoty x_j na výstupu zdroje dat je závislý na výskytu (některých, ne nutně bezprostředně) předchozích hodnot $x_i, i < j$
- vychází z pravděpodobnostního modelu
- v bezeztrátové kompresi Markovův řetěz s diskrétním časem: posloupnost hodnot x_j (náhodné proměnné X_j) následuje Markovův model/proces k-tého řádu, jestliže $P(x_j|x_{i_1},x_{i_2},\ldots,x_{i_k})=P(x_j|x_{j-1},x_{j-2},\ldots),i_1,i_2,\ldots,i_k< j$ (znalost některých předchozích k hodnot je stejná jako znalost všech předchozích hodnot), posloupnosti s_j hodnot $x_{i_1},x_{i_2},\ldots,x_{i_k}=$ stavy modelu/procesu/řetězu, $P(x_j|s_j)=$ pravděpodobnosti přechodu mezi stavy
- lacksquare nejběžnější model 1. řádu: $P(x_j|x_i=P(x_j|x_{j-1},x_{j-2},\ldots),i< j$
- s_j , $P(s_j)$, $P(x_j|s_j)$... stavový diagram
- lacktriangle různé modely podle formy závislosti, se zvyšujícím se k vyšší míra komprese než s nezávislými výskyty hodnot
- v kompresi textu Markovův model k-tého řádu = model konečného kontextu (finite context model) - kontext = stav modelu

Markovův model

Příklad

$$x_1x_2\dots x_{10} = aababbabaa$$

stavy modelu 1. řádu = posloupnosti (bezprostředně) předchozích symbolů délky 1 pro všechny symboly: $a,\ b$

$$P(a) = \frac{6}{10}, P(b) = \frac{4}{10},$$

 $P(a|a) = \frac{2}{10}, P(b|a) = \frac{3}{10}$

$$P(a|a) = \frac{2}{5}$$
, $P(b|a) = \frac{3}{5}$, $P(a|b) = \frac{3}{4}$, $P(b|b) = \frac{1}{4}$

stavy modelu 2. řádu = posloupnosti (bezprostředně) předchozích symbolů délky 2 pro všechny symboly: $aa,\ ab,\ ba,\ bb$

$$P(aa) = \frac{2}{9}, P(ab) = \frac{3}{9}, P(ba) = \frac{3}{9}, P(bb) = \frac{1}{9},$$

$$P(a|aa) \to 0$$
, $P(b|aa) \to 1$, $P(a|ab) = \frac{2}{3}$, $P(b|ab) = \frac{1}{3}$, $P(a|ba) = \frac{1}{3}$, $P(b|ba) = \frac{2}{3}$,

$$P(a|bb) \to 1, \ P(b|bb) \to 0$$

Туру

- statický neměnný pro různá originální data a během kódování, známý algoritmu dekomprese
- semi-adaptivní vytvořený pro originální data (1. průchod daty při kompresi), během kódování neměnný (2. průchod) a předaný algoritmu dekomprese (např. s komprimovanými daty)
- adaptivní dynamicky vytvářený/modifikovaný podle doposud zakódovaných originálních a dekomprimovaných dat

Klasická Shannonova

- rámec pro bezeztrátové kompresní metody, vychází z pravděpodobnostního modelu dat
- Claude E. Shannon: A Mathematical Theory of Communication. Bell System Technical Journal 27, pp. 379–423, 623–656, 1948.
- "míra průměrné informace (asociované s) experimentu(-em)" požadavky, pro nezávislé jevy $A_i, i=1,\ldots,m,\bigcup A_i=\Omega$:
 - 1 spojitá funkce $H(p_i), p_i = P(A_i)$
 - **2** monotónně rostoucí vzhledem k počtu m stejně pravděpodobných jevů A_i $(p_i = \frac{1}{m})$
 - 3 stejná při rozdělení experimentu na k podexperimentů (s disjunktními podmnožinami množiny jevů A_i), výsledek experimentu = podmnožina s jevem, výsledek podexperimentu = jev v podmnožině:

$$\begin{array}{l} H(p_i) = H(q_1, q_2, \dots, q_k) + q_1 H(\frac{p_1}{q_1}, \frac{p_2}{q_1}, \dots, \frac{p_{j_1}}{q_1}) + q_2 H(\frac{p_{j_1+1}}{q_2}, \frac{p_{j_1+2}}{q_2}, \dots, \frac{p_{j_2}}{q_2}) + \dots + q_k H(\frac{p_{j_{k-1}+1}}{q_k}, \frac{p_{j_{k-1}+2}}{q_k}, \dots, \frac{p_{j_k}}{q_k}), q_1 = \sum_{i=1}^{j_1} p_i, q_2 = \sum_{i=j_1+1}^{j_2} p_i, \dots, q_k = \sum_{i=j_{k-1}+1}^{j_{k-1}+1} p_i \\ \end{array}$$

lacksquare jediné možné řešení požadavků (Shannon): $H(p_i) = -K \sum_i p_i \log p_i$, K kladná konstanta

Klasická Shannonova

- informace (self-information) (asociovaná s výskytem) jevu A: $i(A) = \log_b \frac{1}{P(A)} = -\log_b P(A)$ $-\log(1) = 0$ a roste s klesající $P(A) \neq 0$, pro nezávislé $A, B \ i(AB) = i(A) + i(B)$
- **j** jednotka i: bit (shannon) pro b=2, nat pro b=e, hartley pro b=10
- entropie (asociovaná s) experimentu(-em): průměr $H(A_i) = \sum_i P(A_i) i(A_i) = -\sum_i P(A_i) \log P(A_i)$ informací nezávislých jevů $A_i, \bigcup A_i = \Omega$ (jako náhodných proměnných), $0 \log 0 := 0$
- Shannon: experiment = zdroj Z posloupnosti X_1, X_2, \ldots, X_n symbolů z množiny $\{a_1, a_2, \ldots, a_m\}$ jako náhodných proměnných $X_j(a_i) = i$, pak entropie zdroje = průměrný počet binárních symbolů (bitů) potřebných pro zakódování každého symbolu posloupnosti = $H(Z) = \lim_{n \to \infty} \frac{1}{n} G_n, G_n = -\sum_{i_1=1}^m \sum_{i_2=1}^m \ldots \sum_{i_n=1}^m P(X_1 = i_1, X_2 = i_2, \ldots, X_n = i_n) \log P(X_1 = i_1, X_2 = i_2, \ldots, X_n = i_n)$ limit pro bezeztrátovou kompresi

Klasická Shannonova

- jestliže je výskyt každého symbolu X_j (jako náhodné proměnné) nezávislý a stejně pravděpodobnostně rozložený, pak $X_j=X$, $G_n=-n\sum_{i=1}^m P(X=i)\log P(X=i)$ a $^1H(Z)=-\sum_{i=1}^m P(a_i)\log P(a_i)=$ entropie 1. řádu
- podmíněná entropie (pro náhodné proměnné) X_1 v závislosti na X_2 : průměr $H(Z)=H(X_1|X_2)=\sum_{i_2=1}^m P(a_{i_2})H(X_1|X_2=i_2)=-\sum_{i_2=1}^m P(a_{i_2})\sum_{i_1=1}^m P(a_{i_1}|a_{i_2})\log P(a_{i_1}|a_{i_2})$ podmíněných entropií X_1 v závislosti na $X_2=i_2$
- lacksquare entropie Markovova modelu 1. řádu se stavy $S=\{s_j\}$: H(X|S)
- entropie (obecně) nezjistitelná ⇒ odhad závislý na modelu struktury dat!

Klasická Shannonova

$$x_1, x_2, \dots, x_{12} = 2, 2, 4, 6, 7, 7, 7, 10, 10, 11, 11, 14$$

■
$$\{a_1, a_2, \dots, a_7\} = \{2, 4, 6, 7, 10, 11, 14\}$$

 $P(a_i) = p_i \approx f(a_i) = f_i$: $f_1 = f_5 = f_6 = \frac{2}{12}$, $f_2 = f_3 = f_7 = \frac{1}{12}$, $f_4 = \frac{3}{12}$
 ${}^1H(a_i) = -\sum_{i=1}^7 p_i \log_2 p_i \doteq 2.689 \text{ bitů/číslo}$

Klasická Shannonova

$$x_1, x_2, \dots, x_{12} = 2, 2, 4, 6, 7, 7, 7, 10, 10, 11, 11, 14$$

- $\{a_1, a_2, \dots, a_7\} = \{2, 4, 6, 7, 10, 11, 14\}$ $P(a_i) = p_i \approx f(a_i) = f_i$: $f_1 = f_5 = f_6 = \frac{2}{12}$, $f_2 = f_3 = f_7 = \frac{1}{12}$, $f_4 = \frac{3}{12}$ $^{1}H(a_{i}) = -\sum_{i=1}^{7} p_{i} \log_{2} p_{i} \doteq 2.689 \text{ bitu}/\text{číslo}$
- Sousední čísla nejsou nezávislá → odstranění závislosti (korelace): $d_2, d_3, \ldots, d_{12} = 0, 2, 2, 1, 0, 0, 3, 0, 1, 0, 3, \{a_1, a_2, a_3, a_4\} = \{0, 1, 2, 3\}$ $f_1 = \frac{5}{11}, f_2 = f_3 = f_4 = \frac{2}{11}$ ${}^{1}H(a_{i}) = -\sum_{i=1}^{4} p_{i} \log_{2} p_{i} \doteq 1.859 \text{ bitů/číslo}$

Klasická Shannonova

$$x_1, x_2, \dots, x_{12} = 2, 2, 4, 6, 7, 7, 7, 10, 10, 11, 11, 14$$

- $\{a_1, a_2, \dots, a_7\} = \{2, 4, 6, 7, 10, 11, 14\}$ $P(a_i) = p_i \approx f(a_i) = f_i$: $f_1 = f_5 = f_6 = \frac{2}{12}$, $f_2 = f_3 = f_7 = \frac{1}{12}$, $f_4 = \frac{3}{12}$ ${}^1H(a_i) = -\sum_{i=1}^7 p_i \log_2 p_i \doteq 2.689 \text{ bitů/číslo}$
- Sousední čísla nejsou nezávislá → odstranění závislosti (korelace): $d_2, d_3, \dots, d_{12} = 0, 2, 2, 1, 0, 0, 3, 0, 1, 0, 3, \ \{a_1, a_2, a_3, a_4\} = \{0, 1, 2, 3\}$ $f_1 = \frac{5}{11}, f_2 = f_3 = f_4 = \frac{2}{11}$ ${}^1H(a_i) = -\sum_{i=1}^4 p_i \log_2 p_i \doteq 1.859 \text{ bitů/číslo}$
- Všechna čísla jsou mezi sebou závislá → odstranění závislosti (korelace): $d_1, d_2, \dots, d_{12} = 0, -1, 0, 1, 1, 0, -1, 1, 0, 0, -1, 1, \ \{a_1, a_2, a_3\} = \{0, -1, 1\}$ $f_1 = \frac{5}{12}, f_2 = \frac{3}{12}, f_3 = \frac{4}{12}$ ${}^1H(a_i) = -\sum_{i=1}^3 p_i \log_2 p_i \doteq 1.555 \text{ bitů/číslo}$

Klasická Shannonova

$$x_1x_2\dots x_{10} = aababbabaa$$

výskyt
$$a$$
 a b nezávislý: $P(a)=\frac{6}{10},~P(b)=\frac{4}{10}$ $H=-P(a)\log_2P(a)-P(b)\log_2P(b)\doteq 0.971$ b/symbol

Klasická Shannonova

$$x_1x_2\dots x_{10} = aababbabaa$$

výskyt
$$a$$
 a b nezávislý: $P(a)=\frac{6}{10},~P(b)=\frac{4}{10}$ $H=-P(a)\log_2P(a)-P(b)\log_2P(b)\doteq 0.971$ b/symbol

$$\begin{array}{l} \text{Markovův model 1. řádu: } P(a) = \frac{5}{9}, \, P(b) = \frac{4}{9}, \\ P(a|a) = \frac{2}{5}, \, P(b|a) = \frac{3}{5}, \, P(a|b) = \frac{3}{4}, \, P(b|b) = \frac{1}{4} \\ H = P(a)H(X|a) + P(b)H(X|b) = P(a)(-P(a|a)\log_2 P(a|a) - P(b|a)\log_2 P(b|a)) + P(b)(-P(a|b)\log_2 P(a|b) - P(b|b)\log_2 P(b|b)) \doteq 0.9 \, \text{b/symbol} \end{array}$$

Klasická Shannonova

$$x_1x_2\dots x_{10} = aababbabaa$$

výskyt
$$a$$
 a b nezávislý: $P(a)=\frac{6}{10},~P(b)=\frac{4}{10}$ $H=-P(a)\log_2P(a)-P(b)\log_2P(b)\doteq 0.971$ b/symbol

$$\begin{array}{l} \text{Markovův model 1. } \check{\text{rádu:}}\ P(a) = \frac{5}{9},\ P(b) = \frac{4}{9},\\ P(a|a) = \frac{2}{5},\ P(b|a) = \frac{3}{5},\ P(a|b) = \frac{3}{4},\ P(b|b) = \frac{1}{4}\\ H = P(a)H(X|a) + P(b)H(X|b) = P(a)(-P(a|a)\log_2P(a|a) - P(b|a)\log_2P(b|a)) + P(b)(-P(a|b)\log_2P(a|b) - P(b|b)\log_2P(b|b)) \stackrel{.}{=} 0.9\ \text{b/symbol} \end{array}$$

Markovův model 2. řádu:
$$P(aa) = \frac{1}{8}$$
, $P(ab) = \frac{3}{8}$, $P(ba) = \frac{3}{8}$, $P(bb) = \frac{1}{8}$, $P(a|aa) \rightarrow 0$, $P(b|aa) \rightarrow 1$, $P(a|ab) = \frac{2}{3}$, $P(b|ab) = \frac{1}{3}$, $P(a|ba) = \frac{1}{3}$, $P(b|ba) = \frac{2}{3}$, $P(a|bb) \rightarrow 1$, $P(b|bb) \rightarrow 0$
$$H = \sum_{x_1 x_2 = aa}^{bb} P(x_1 x_2) H(X|x_1 x_2) = \sum_{x_1 x_2 = aa}^{bb} P(x_1 x_2) - \sum_{y = a,b} P(y|x_1 x_2) \log_2 P(y|x_1 x_2) \doteq 0.689 \, \text{b/symbol}$$

Klasická Shannonova

Uvažováním závislosti mezi symboly dat (posloupnosti) v modelu struktury dat nesnižujeme "entropii dat". Entropie je vlastnost (hypotetického) zdroje dat a je stejná pro všechna data ze zdroje. Snižujeme odhad této entropie uvažováním delších n-tic symbolů dat a závilostí mezi nimi v modelu (až do $n \to \infty$)!

Algoritmická

- Kolmogorov/descriptive complexity / algoritmická entropie dat (Andrey N. Kolmogorov): délka nejmenšího/nejkratšího počítačového programu (včetně vstupu, v jakémkoliv programovacím jazyce), jehož jsou data výstupem způsob modelování struktury dat
- není znám žádný systematický způsob výpočtu nebo libovolně blízkého odhadu
- Minimum Description Length (MDL) princip (J. Risannen): $MDL(x) = min_j(D_{M_j} + R_{M_j}(x)), \ D_{M_j} \ \text{délka popisu možného modelu} \ M_j \ \text{struktury} \ \text{dat} \ x, \ R_{M_j}(x) \ \text{délka reprezentace} \ x \ \text{podle modelu} \ M_j$
- např. M_j polynomy j-tého řádu: pro vyšší j kratší $R_{M_j}(x)$ (přesnější model), ale delší D_{M_j} (složitější model), a naopak \Rightarrow kompromis

Kódování

- \blacksquare abeceda $A = \{a_1, a_2, \dots, a_n\}$, $a_i = \text{symboly}$
- = (kód) ze zdrojové abecedy A do kódové abecedy B: injektivní $C:A\mapsto B^+$, $B^+=$ množina konečných neprázdných posloupností (= slov) symbolů z B často $B=\{\mathbf{0},\mathbf{I}\}\to$ binární kódování (kód)
- $C(a_i) \in B^+$... kódové slovo (kód) pro symbol a_i , $C(A) = \{C(a_i), a_i \in A\} \subseteq B^+$... kód (pro zdrojovou abecedu A), $l(a_i)$... délka $C(a_i)$, pro $B = \{0, I\}$ v bitech
- dekódování: $D:C(A)\mapsto A$
- lacksquare např. $\{\mathbf{0}, \mathbf{I}, \mathbf{00}, \mathbf{II}\}$, ne $\{\mathbf{0}, \mathbf{0}, \mathbf{I}, \mathbf{II}\}$
- blokový kód (kód pevné délky, fixed-length code) = všechna kódová slova (pro všechny symboly) mají stejnou délku, např. ASCII

Jednoznačně dekódovatelný kód

- každá (neprázdná) posloupnost symbolů z kódové abecedy je zřetězením nejvýše jedné posloupnosti kódových slov
- $=C^+:A^+\mapsto B^+,C^+(a_{i_1}a_{i_2}\dots a_{i_j})=C(a_{i_1})C(a_{i_2})\dots C(a_{i_j})$ injektivní
- $\blacksquare \ \operatorname{dek\'odov\'an\'i:} \ D^+:C^+(A^+)\mapsto A^+$
- lacksquare např. každý blokový, $\{0,0I,0II,III\}$, ne $\{0,0I,I0,II\}$
- test: $S \leftarrow C(A)$ a opakuj $S \leftarrow S \cup \{s \in B^+; ps \in S \land p \in S\}$ dokud některé $s \in C(A)$ nebo S zůstane stejná, při $s \in C(A)$ kód C(A) není jednoznačně dekódovatelný

Prefixový (prefix, instantaneous) kód

- žádné kódové slovo není prefixem jiného kódového slova
- např. každý blokový, {0, I0, II0, III}
- jednoznačně dekódovatelný

Věta (Kraftova)

Prefixový kód s k kódovými slovy délek l_1, l_2, \ldots, l_k nad kódovou abecedou velikosti m existuje právě když

$$\sum_{i=1}^{k} m^{-l_i} \le 1 \quad \dots \quad \textit{Kraftova nerovnost}.$$

Věta (Kraftova)

Prefixový kód s k kódovými slovy délek l_1, l_2, \dots, l_k nad kódovou abecedou velikosti m existuje právě když

$$\sum_{i=1}^{k} m^{-l_i} \le 1 \quad \dots \quad \text{Kraftova nerovnost.}$$

Věta (McMillanova)

Jednoznačně dekódovatelný kód s k kódovými slovy délek l_1, l_2, \ldots, l_k nad kódovou abecedou velikosti m existuje právě když

$$\sum_{i=1}^{k} m^{-l_i} \le 1 \quad (\dots \quad \textit{Kraft-McMillanova nerovnost}).$$

Optimální kód

- pro pravděpodobnostní model dat (výskytu symbolů), prefixový kód
- lacktriangle průměrná délka kódu (na symbol, code rate): průměr $\bar{l}(C(A)) = \sum_{i=1}^n P(a_i) l(a_i)$ délek $l(a_i)$ pro všechny $a_i \in A$, $P(a_i) \neq 0 = \text{pravděpodobnost výskytu symbolu } a_i$
- = s minimální $\bar{l}(C(A))$ (v rámci třídy kódů, např. prefixové)

Optimální kód

- pro pravděpodobnostní model dat (výskytu symbolů), prefixový kód
- lacktriangledown průměrná délka kódu (na symbol, code rate): průměr $ar{l}(C(A)) = \sum_{i=1}^n P(a_i) l(a_i)$ délek $l(a_i)$ pro všechny $a_i \in A$, $P(a_i) \neq 0 = {\sf pravděpodobnost}$ výskytu symbolu a_i
- = s minimální $\bar{l}(C(A))$ (v rámci třídy kódů, např. prefixové)

Věta (Shannon noisless coding theorem)

Pro optimální jednoznačně dekódovatelný kód ze zdrojové abecedy A do kódové abecedy B platí

$$\frac{H(A)}{\log_b m} \le \bar{l}(C(A)) < \frac{H(A)}{\log_b m} + 1$$

kde H(A) je entropie zdroje symbolů z A, b je stejné jako v H a m je velikost B. $\bar{l}(C(A)) = \frac{H(A)}{\log_2 m}$ právě když $P(a_i) = m^{-l(a_i)}$ pro všechny $a_i \in A$.

Optimální kód

lacktriangle změnou zdrojové abecedy na k-tice (nezávislých) symbolů z původní abecedy A (rozšíření zdrojové abecedy, source extension) se lze $\bar{l}(C(A)) = rac{H(A)}{\log_b m}$ libovolně přiblížit (až do $k o \infty$):

$$\frac{H(A^k)}{\log_b m} \le \bar{l}(C(A^k)) < \frac{H(A^k)}{\log_b m} + 1$$

$$\frac{kH(A)}{\log_b m} \le k\bar{l}(C(A)) < \frac{kH(A)}{\log_b m} + 1$$

$$\frac{H(A)}{\log_b m} \le \bar{l}(C(A)) < \frac{H(A)}{\log_b m} + \frac{1}{k}$$

Optimální kód

lacktriangle změnou zdrojové abecedy na k-tice (nezávislých) symbolů z původní abecedy A (rozšíření zdrojové abecedy, source extension) se lze $\bar{l}(C(A)) = rac{H(A)}{\log_b m}$ libovolně přiblížit (až do $k o \infty$):

$$\frac{H(A^k)}{\log_b m} \le \bar{l}(C(A^k)) < \frac{H(A^k)}{\log_b m} + 1$$

$$\frac{kH(A)}{\log_b m} \le k\bar{l}(C(A)) < \frac{kH(A)}{\log_b m} + 1$$

$$\frac{H(A)}{\log_b m} \le \bar{l}(C(A)) < \frac{H(A)}{\log_b m} + \frac{1}{k}$$

■ abeceda A^k ale může mít velikost až n^k (n je velikost A)!

Optimální kód

Příklad

$$\begin{split} A &= \{a_1, a_2, a_3\} \\ P(a_i) &= 0.8, P(a_2) = 0.02, P(A_3) = 0.18 \\ H(A) &= -\sum_{i=1}^3 P(a_i) \log_2 P(a_i) \doteq 0.816 \, \text{bitu}/\text{symbol} \\ C(A) &= \{\langle a_1, \mathbf{0} \rangle, \langle a_2, \mathbf{II} \rangle, \langle a_3, \mathbf{IO} \rangle\} \\ \bar{l}(C(A)) &= \sum_{i=1}^3 P(a_i) l(a_i) = 1.2 \, \text{b/symbol} \\ \bar{l}(C(A)) &- \frac{H(A)}{\log_2 2} \doteq 0.384 \, \text{b/symbol} \doteq 47 \, \% \end{split}$$

Optimální kód

Příklad

$$\begin{array}{l} A = \{a_1, a_2, a_3\} \\ P(a_i) = 0.8, P(a_2) = 0.02, P(A_3) = 0.18 \\ H(A) = -\sum_{i=1}^3 P(a_i) \log_2 P(a_i) \doteq 0.816 \, \mathrm{bit\mathring{u}/symbol} \\ C(A) = \{\langle a_1, \mathbf{0} \rangle, \langle a_2, \mathbf{II} \rangle, \langle a_3, \mathbf{I0} \rangle\} \\ \bar{l}(C(A)) = \sum_{i=1}^3 P(a_i) l(a_i) = 1.2 \, \mathrm{b/symbol} \\ \bar{l}(C(A)) - \frac{H(A)}{\log_2 2} \doteq 0.384 \, \mathrm{b/symbol} \doteq 47 \, \% \\ A^2 = \{a_1a_1, a_1a_2, a_1a_3, a_2a_1, a_2a_2, a_2a_3, a_3a_1, a_3a_2, a_3a_3\} \\ P(a_1a_1) = 0.64, P(a_1a_2) = P(a_2a_1) = 0.016, P(a_1a_3) = P(a_3a_1) = 0.144, P(a_2a_2) = 0.0004, P(a_2a_3) = P(a_3a_2) = 0.0036, P(a_3a_3) = 0.0324 \\ C(A^2) = \{\langle a_1a_1, \mathbf{0} \rangle, \langle a_1a_2, \mathbf{I0IOI} \rangle, \langle a_1a_3, \mathbf{II} \rangle, \langle a_2a_1, \mathbf{I0I0000} \rangle, \langle a_2a_2, \mathbf{I0I00IOI} \rangle, \langle a_2a_3, \mathbf{I0IOOII} \rangle, \langle a_3a_1, \mathbf{100} \rangle, \langle a_3a_2, \mathbf{I0I00I000} \rangle, \langle a_3a_3, \mathbf{IOII} \rangle\} \\ \bar{l}(C(A)) = \frac{\bar{l}(C(A^2))}{2} = \frac{\sum_{i=1,j=1}^{3,3} P(a_ia_j) l(a_ia_j)}{2} \doteq \frac{1.723}{2} \doteq 0.862 \, \mathrm{b/symbol} \\ \bar{l}(C(A)) - \frac{H(A)}{\log_2 2} \doteq 0.046 \, \mathrm{b/symbol} \, \dot{=} 5.6 \, \% \end{array}$$

Optimální kód

Věta

Pro optimální prefixový kód ze zdrojové abecedy A do kódové abecedy B platí

- $\begin{tabular}{l} $\bf I & Symboly \ z \ A \ s \ v\ ets \'i \ pravd\ epodobnost\'i \ v\ y\ skytu \ maj\'i \ krat\ s\'i \ k\'odov\'a \ slova. \end{tabular}$
- 2 $m' \in \{2,3,\ldots,m\}, m' \equiv n \pmod{(m-1)}$ symbolů z A s nejmenší pravděpodobností výskytu, kde $n \geq 2$ je velikost A a $m \geq 2$ je velikost B, má stejně (maximálně) dlouhá kódová slova a ta se liší pouze v jednom symbolu.

 $\operatorname{\it Pro\check{c}} m'$ a ne m? Odpověď u Huffmanova kódování (viz dále).

Základní techniky a kódování čísel

Run-length encoding (RLE)

- kódování posloupností stejných zdrojových symbolů (runs) kódy příznaku kódování opakování, délky posloupnosti a jednoho symbolu místo samotných symbolů
- \blacksquare podle délky kódů příznaku a délky až pro posloupnosti delší než určitý počet k symbolů, např. 3
- \blacksquare kód příznaku může být zaměnitelný s kódem symbolu \to kódování s kódem délky zmenšené o k za kódy určitého počtu k symbolů
- aplikace: text, obraz (BMP)

Diferenční kódování

 kódování (malého) rozdílu symbolu/čísla od předchozího (nebo predikce z několika předchozích) kódy příznaku kódování rozdílu a rozdílu místo samotného symbolu/čísla, s výjimkou prvního

Run-length encoding (RLE)


```
Input: číslo k
r \leftarrow 0;
while načti ze vstupu symbol a do
     if r=0 then
          x \leftarrow a;
          r \leftarrow 1:
     else
          if a = x then
               r \leftarrow r + 1:
          else
                if r \le k then
                     zapiš na výstup r kódů symbolu x;
                else
                     zapiš na výstup kódy příznaku, čísla r a symbolu x / k kódů symbolu x a kód čísla r - k;
                x \leftarrow a:
                r \leftarrow 1;
```

PRIKLAD: k=3, vstup bbbbaaaarrrbbaaaaara, kod priznaku x, kod opakovani cislo, kod symbolu symbol, obe varianty

Move-to-front (MTF) kódování

- = kódování často se opakujících symbolů malými čísly (speciálně posloupností stejných symbolů posloupností čísel 0)
- lokálně adaptivní = adaptace podle lokálních četností výskytu symbolů

```
Uses: zdrojová abeceda A=\{a_1,\ldots,a_n\}, (volitelně) pravděpodobnosti \{p_1,\ldots,p_n\} výskytu a_i (volitelně) setřiď a_i a p_i tak, že p_i\geq p_j pro i< j; while načti ze vstupu symbol a\in A do zapiš na výstup číslo i-1, kde a_i=a; if i>1 then x\leftarrow a_i; a_j\leftarrow a_{j-1} pro j=2,3,\ldots,i; a_1\leftarrow x;
```

PRIKLAD: $A=\{a,b,r\}$, $p(a)=\frac{10}{20}, p(b)=\frac{6}{20}, p(r)=\frac{4}{20}$, vstup bbbbaaaarrrbbaaaaara, se setrizenim i bez

Kódování čísel

- přirozených čísel celá lze bijektivně zobrazit na přirozená (např. -2i pro i<0 a 2i+1 pro $i\geq0$)
- předpoklad nižší pravděpodobnosti výskytu u větších čísel
- binární kódy s proměnnou délkou (variable-length codes, fixed-to-variable codes) = proměnná délka kódových slov pro zdrojová slova pevné délky (symboly nebo jejich k-tice), nízká průměrná délka kódu vs. náročnější manipulace s kódem (v porovnání s blokovým kódem, s využitím bufferu)

Unární kód

- kódování přirozených čísel
- = pro $i \ge 0$: zřetězení i I a 0 (nebo opačně), např. IIIII0 pro 5
- lacksquare prefixový, délka i+1, optimální při $P(i)=\frac{1}{2^i}$

Další

 start-step-stop (obecné unární) kódy, start/stop kód, Levensteinův kód, Stoutovy kódy, Yamamotovy kódy, taboo kódy, Goldbachovy kódy, aditivní kódy aj.

Eliasovy kódy

- kódování přirozených čísel, P. Elias
- Alpha = $\alpha(i)$ pro $i \ge 0$: unární kód i, s $\mathbf I$ na konci
- Beta = $\beta(i)$ pro $i \ge 0$: reprezentace i ve dvojkové soustavě (= binární reprezentace) neprefixový
- lacksquare další pro $i\geq 1$: zřetězení kódu $l(eta(i))=\lfloor \log_2 i \rfloor+1$ a eta(i), prefixové
- pro každé $i \ge 1$: $i = 2^{l(\beta(i))-1} + k$, $0 \le k < 2^{l(\beta(i))-1}$

Gamma

- = $\gamma(i)$ pro $i \ge 1$: zřetězení $l(\beta(i))-1$ **0** a $\beta(i)$ nebo $\alpha(l(\beta(i))-1)$ a $\beta(k)$, např. **00I0I** pro 5
- \blacksquare délka $2\lfloor \log_2 i \rfloor + 1$, optimální při $P(i) = \frac{1}{2i^2}$

Delta

- = $\delta(i)$ pro $i \geq 1$: zřetězení $l(\beta(l(\beta(i)))) 1$ 0, $\beta(l(\beta(i)))$ a $\beta(i)$ bez první $\mathbf I$ nebo $\gamma(l(\beta(i)))$ a $\beta(k)$, např. 0 $\mathbf II0\mathbf I$ pro 5
- \blacksquare délka $2\lfloor \log_2\log_2 2i \rfloor + \lfloor \log_2 i \rfloor + 1$, optimální při $P(i) = \frac{1}{2i(\log_2 2i)^2}$

Eliasovy kódy

Omega (rekurzivní)

- = $\omega(i)$ pro i=1: ${\bf 0}$, a pro $i\geq 2$: zřetězení odzadu ${\bf 0}$ a počínaje k:=i pokud $k\geq 2$ rekurzivně $\beta(k)$, $k:=l(\beta(k))-1$, např. ${\bf I0I0I0}$ pro 5
- \blacksquare dekódování: i:=1 a opakovaně jestliže je další bit ${\bf I}$ tak s dalšími i bity tvoří kód $\beta(i)$
- lacksquare délka $\sum_{j=1}^k (\lfloor \log_2 i \rfloor^j + 1) + 1$, $\lfloor \log_2 i \rfloor^k = 1$

Fibonacciho kódy

- kódování přirozených čísel, L. Pisano (Fibonacci)
- Fibonacciho reprezentace $a_1a_2\dots$ přirozeného čísla $i\geq 1$: $i=\sum_{j=1}a_jF_j$, $a_j\in\{0,1\}$, F_j j-té Fibonacciho číslo $(F_1=1,F_2=2,F_j=F_{j-1}+F_{j-2})$ neobsahuje sousední 1
- = pro $i \ge 1$: zřetězení Fibonacciho reprezentace i (jako bitů) a ${\bf I}$, např. 000 ${\bf II}$ pro 5 končí ${\bf II}$
- \blacksquare délka $\leq \lfloor \log_\phi \sqrt{5}n \rfloor + 1$, $\phi = \frac{1}{2}(1+\sqrt{5}) \approx 1.618$ tzv. zlatý řez
- prefixové, robustnější než jiné kódy čísel
- další (zobecněné) založené na k-krokových (zobecněných) Fibonacciho číslech

Golombovy kódy

- kódování přirozených čísel, S. W. Golomb
- lacksquare parametr přirozené číslo j>0
- = pro $i \ge 0$ zřetězení dvou kódů:
 - **1** unární kód $q = \lfloor \frac{i}{j} \rfloor$ (= celé části $\frac{i}{j}$)
 - $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

Příklad

$$j=5$$

 $\lfloor \log_2 5 \rfloor = 2$ -bitové binární reprezentace r=0,1,2 a $\lceil \log_2 5 \rceil = 3$ -bitové binární reprezentace r+3 pro r=3,4

$$0\mapsto \mathbf{000},\ 1\mapsto \mathbf{00I},\ 2\mapsto \mathbf{0I0},\ 3\mapsto \mathbf{0II0},\ 4\mapsto \mathbf{0III},\ 5\mapsto \mathbf{I000},\ 6\mapsto \mathbf{I00I},\ \dots$$

Golombovy kódy

- lacksquare délka pro malé j z malé rychle narůstá, pro velké j z delší narůstá pomalu
- prefixové, pro $j=\lceil -\frac{1}{\log_2 p} \rceil$ (přesněji $j=\lceil -\frac{\log_2(1+p)}{\log_2 p} \rceil$) optimální při $P(i)=p^{i-1}(1-p)$ geometrické rozdělení pravděpodobnosti, např. posloupnost (run z RLE) i-1 výskytů symbolu s vysokou pravděpodobností výskytu p ukončená jedením výskytem jiného symbolu s nízkou pravděpodobností 1-p (např. prohra a výhra) \rightarrow (adaptivní) Golomb RLE
- použití např. v bezeztrátové kompresi obrazu (JPEG-LS)

Riceovy kódy

- ~ Golomb-Riceovy kódy, R. F. Rice (Rice machine)
- = Golombovy kódy pro $j=2^k$ pro nějaké (celé nezáporné) k
- jednodušší kódování (a dekódování) pro $i \geq 0$: zřetězení unárního kódu pro zbývajících $q = \lfloor \frac{i}{j} \rfloor$ bitů a k nejméně významných bitů binární reprezentace i
- \blacksquare délka $\lfloor \frac{i}{j} \rfloor + k + 1$, optimální při $P(i) = \frac{1}{2^{\frac{i}{j} + k + 1}}$
- použití např. v bezeztrátové kompresi audia (MPEG-4 ALS, FLAC)

Statistické metody

Tunstallův kód

- = zdrojová slova proměnné délky kódována na kódová slova pevné délky $k \geq \lceil \log_m n \rceil$ kódových symbolů = blokový kód, \sim variable-to-fixed code (n je velikost zdrojové abecedy, m je velikost kódové abecedy)
- chyby v kódových slovech se při dekódování nešíří robustnost
- požadavky:
 - každou (neprázdnou) posloupnost zdrojových symbolů musí být možné vyjádřit jako (případně prefix) zřetězení právě jedné posloupnosti zdrojových slov kódovaných na kódové slovo jednoznačná kódovatelnost
 - průměrná délka zdrojových slov kódovaných na kódové slovo je maximální = optimální kód → delší zdrojová slova mají větší pravděpodobnost výskytu
 - ${f 3}$ je použito maximum kódových slov, ideálně všech m^k optimalita
- prefixový pro zdrojová slova kódovaná na kódové slovo, jednoznačná kódovatelnost
- \blacksquare průměrná délka kódu: $\frac{k}{\sum_{i=1}^t P(w_i)l(w_i)}$, t počet zdrojových slov w_i délky $l(w_i)$ s pravděpodobností výskytu $P(w_i)$
- pouze statický a semi-adaptivní model

Tunstallův kód

B. P. Tunstall

 $\mathbf{Input} \quad : \check{\mathsf{c}} \mathsf{islo} \ k$

Uses : zdrojová abeceda A, n = |A|, pravděpodobnosti $P(A^+)$ výskytu slova z A,

velikost m kódové abecedy

Output: C(U)

$$T \leftarrow A;$$

$$i \leftarrow 0$$
;

while
$$n + (i+1)(n-1) \le m^k$$
 do $x \leftarrow w \in T, P(w) \ge P(w'), w' \in T;$

$$T \leftarrow (T \setminus \{x\}) \cup \{xy \mid y \in A\};$$

$$i \leftarrow i + 1;$$

 $C(T) \leftarrow \{ \text{k\'odov\'a slova d\'elky } k \} \text{ libovoln\'e};$

PRIKLAD:
$$k = 4$$
, $A = \{a, b, r, u, o\}$, $p(a) = \frac{7}{20}$, $p(b) = \frac{5}{20}$, $p(r) = \frac{5}{20}$, $p(u) = \frac{2}{20}$, $p(o) = \frac{1}{20}$, $m = 2$, vstup $barbaraabarboraubaru$, redundance

Shannon-Fanovo kódování

- C. E. Shannon, R. M. Fano
- první pokus o optimální binární prefixový kód využití distribuční funkce/kumulované pravděpodobnosti (cumulative distribution function) zdroje

```
\begin{array}{ll} \text{Input} & : \check{\mathsf{c}} \mathsf{\'s} \mathsf{ls} \; a, b \\ \text{Uses} & : \mathsf{zdrojov\'a} \; \mathsf{abeceda} \; A = \{a_1, \dots, a_n\}, n \geq 2, \; \mathsf{pravd\check{e}podobnosti} \; \{p_1, \dots, p_n\}, \; p_i \geq p_j \; \mathsf{pro} \; i < j, \; \mathsf{v} \check{\mathsf{y}} \mathsf{skytu} \; a_i \\ \text{Output} & : \mathsf{k\'od} \; C(A) \\ \text{if} \; a+1 = b \; \mathbf{then} \\ & C(a_a) \leftarrow \mathbf{0}; \\ & C(a_b) \leftarrow \mathbf{I}; \\ \mathsf{najdi} \; j \; \mathsf{takov\'e}, \; \check{\mathsf{ze}} \; | \sum_{i=a}^j p_i - \sum_{i=j+1}^b p_i | \; \mathsf{je} \; \mathsf{minim\'aln\'i}; \\ & C(A) \leftarrow \mathsf{zavolej} \; \mathsf{se} \; \mathsf{rekurzivn\check{e}} \; \mathsf{s} \; a, j \; \mathsf{a} \; \mathsf{s} \; j+1, b; \\ & C(a_i) \leftarrow \mathbf{0} C(a_i) \; \mathsf{pro} \; i = a, \dots, j; \\ & C(a_i) \leftarrow \mathbf{I} C(a_i) \; \mathsf{pro} \; i = j+1, \dots, b; \\ & \mathsf{Run} \; \mathsf{with} \; 1. \; n \\ \end{array}
```

PRIKLAD: $A=\{a,b,r,u,o\}$, $p(a)=\frac{7}{20}$, $p(b)=\frac{5}{20}$, $p(r)=\frac{5}{20}$, $p(u)=\frac{2}{20}$, $p(o)=\frac{1}{20}$, vstup barbaraabarboraubaru, redundance

optimální při $|\sum_k p_k = \sum_{i=a}^j p_i - \sum_{i=j+1}^b p_i = \sum_l p_l|, \ k,l \in \{a,\ldots,b\}, \{k\} \cap \{l\} = \emptyset,$ minimální

- David A. Huffman: A method for the construction of minimum-redundancy codes. *Proceedings of the I.R.E.*, pp. 1098–1102, 1952.
- optimální prefixové, vyplývá z vlastností optimálního prefixového kódu (viz Věta dříve)
 a následujícího Lemma

- David A. Huffman: A method for the construction of minimum-redundancy codes. *Proceedings of the I.R.E.*, pp. 1098–1102, 1952.
- optimální prefixové, vyplývá z vlastností optimálního prefixového kódu (viz Věta dříve)
 a následujícího Lemma

Lemma

Nechť $C':A'\mapsto B^+$, kde $A'=\{a'_1,\ldots,a'_{n'}\}, n'\geq m\geq 2, a'_i=a_i\in A, i< n',$ pravděpodobnosti výskytu symbolů a'_i jsou $p'_i=p_i, i< n', p'_{n'}=\sum_{j=n-m'+1}^n p_j,$ $A=\{a_1,\ldots,a_n\},\ n=n'+m'-1,$ s pravděpodobnostmi výskytu p_i symbolů a_i , kde $p_{n-m'+1},\ldots,p_n$ jsou nejmenší, $m'\in\{2,3,\ldots,m\}, m'\equiv n\pmod{(m-1)},$ $B=\{b_1,\ldots,b_m\}$, je optimální prefixový kód ze zdrojové abecedy A' do kódové abecedy B.

Pak kód $C: A \mapsto B^+$, $C(a_i) = C'(a_i'), i < n', C(a_{n-m'+j}) = C'(a_{n'}')b_j, j \le m'$, ze zdrojové abecedy A do kódové abecedy B je také optimální.

Statický a semi-adaptivní model

```
Input
                                               : abeceda A' = \{a'_1, \dots, a'_{n'}\}, pravděpodobnosti \{p'_1, \dots, p'_{n'}\} výskytu a'_i
                                                : zdrojová abeceda A = \{a_1, \dots, a_n\}, pravděpodobnosti \{p_1, \dots, p_n\} výskytu a_i, kódová
                                                        abeceda B = \{b_1, \ldots, b_m\}
Output : kód C(A')
setřiď a'_i a p'_i tak, že p'_i \ge p'_i pro i < j;
if n' \leq m then
                   C(a_i') \leftarrow b_i \text{ pro } i = 1, \dots, n':
else
                  if n' = n then
                                     m' \leftarrow (n-2) \mod (m-1) + 2:
                   else
                                      m'=m
                  C(A') \leftarrow \text{zavolej} se rekurzivně s A' \setminus \{a'_{n'-m'+2}, \dots, a_{n'}\}, \{p'_1, \dots, p'_{n'-m'}, \sum_{i=n'-m'+1}^{n'} p'_i\}:
                  C(a'_{n'-m'+i}) \leftarrow C(a'_{n'-m'+1})b_i \text{ pro } i = 1, \dots, m';
Run with: A = \{a_1, \dots, a_n\}, \{p_1, \dots, p_n\}
PRIKLAD: A = \{a, b, r, u, o\}, p(a) = \frac{7}{20}, p(b) = \frac{5}{20}, p(r) = \frac{5}{20}, p(u) = \frac{2}{20}, p(o) = \frac{1}{20}, p(o) = \frac
```

m=2, vstup barbaraabarboraubaru, m=3, vstup ??, redundance

 $Proč\ m'$ a ne m? Protože při tomto počtu nejdelších kódových slov bude u všech kratších kódových slov a prefixů využito všech m symbolů kódové abecedy a kód má být optimální prefixový.

Huffmanův strom $T_H(A)=\langle V_H(A),E_H(V_H(A))\rangle=$ reprezentace Huffmanova kódu C(A) formou m-árního stromu:

- listové uzly $v_l(a_i) \in V_H(A)$ pro symboly $a_i \in A, i = 1, \dots, n$
- vnitřní uzly $v(a'_{n'}) \in V_H(A)$ pro všechny $a'_{n'}$ (ve všech rekurzivních voláních) + kořenový uzel $v_r \in V_H(A)$
- hrany $\langle v(a'_{n'}), v(a'_{n'-m'+i}) \rangle_{b_i} \in E_H(V_H(A))$ a $\langle v_r, v(a'_i) \rangle_{b_i} \in E_H(V_H(A))$ označené $b_i \in B$ z uzlu pro $a'_{n'}$ následujícího rekurzivního volání do uzlů pro $a'_{n'-m'+i}, i=1,\ldots,m'$ při n'>m a z kořenového uzlu do uzlů pro $a'_i, i=1,\ldots,n'$ při $n'\leq m$
- $lackbox{ } C(a) = {\sf z\check{r}et\check{e}zen\acute{i}}\ b \in B$ označujících hrany na cestě stromem z v_r do $v_l(a)$

PRIKLAD

- minimální rozdíly v délkách kódových slov (pro jejich minimální bufferování při pevné rychlosti přenosu/ukládání): třídění a_i' a p_i' tak, že původní $a_{n'}'$ bude po zatřídění a_i' , i < j pro všechna j, pro která $p_j' = p_i'$
- m=2 a $p_i>\sum_{j=i+2}^n p_j$, $p_i\geq p_j$ pro i< j (speciálně $p_i=2^{-i}, i=1,\ldots,n-1$ a $p_n=2^{-(n-1)}$) \to unární číselný kód i-1 pro $a_i, i=1,\ldots,n-1$ a I pro a_n
- m=2 a $p_1 < p_{n-1} + p_n$, $p_i \ge p_j$ pro i < j (speciálně $p_i = \frac{1}{n}$) \to blokový kód délky $k = \lfloor \log_2 n \rfloor$ pro a_1, \ldots, a_{2^k} a délky k+1 pro a_{2^k+1}, \ldots, a_n

PRIKI ADY

Adaptivní model – binární kód

- triviálně: znovuvytváření kódu pro každý další symbol na vstupu výpočetně náročné
- Faller, Gallager, Knuth, Vitter
- vlastnost Huffmanova stromu (tzv. sibling property): $p'_{n'} \leq \ldots \leq p'_{n'-m'+1} \leq p'_{n'} \leq \ldots \leq p'_{n'-m'+1}$ následujícího rekurzivního volání musí stále platit \to v následujících algoritmech zajištěno pomocí (aktuálního) počtu n(x) výskytů symbolu x a čísla $i(v(x)), v(x) \in V_H(A)$
- lacktriangle speciální (escape) symbol e značící neexistující/první výskyt symbolu

```
T_H(A) \leftarrow \langle \{v_l(e)\}, \emptyset \rangle, \ C(e) \leftarrow \text{prázdný řetězec}; \\ n(e) \leftarrow 0; \\ i(v_l(e)) \leftarrow 1; \\ \text{while načti ze vstupu symbol } a \in A \text{ do} \\ \text{if } v_l(a) \not\in V_H(A) \text{ then} \\ \text{zapiš na výstup } C(e) \text{ a kód } a; \\ \text{else} \\ \text{zapiš na výstup } C(a); \\ \text{zavolej následující algoritmus}; \\
```


Adaptivní model – binární kód

```
if v_l(a) \notin V_H(A) then
      V_H(A) \leftarrow V_H(A) \cup \{v_l(a), v(x)\};
      n(a) \leftarrow n(x) \leftarrow 1:
      i(v(x)) \leftarrow i(v_1(e)): i(v_1(a)) \leftarrow i(v(x)) + 1: i(v_1(e)) \leftarrow i(v_1(a)) + 1:
      E_H(V_H(A)) \leftarrow (E_H(V_H(A)) \setminus \{\langle u, v_l(e) \rangle_b\}) \cup \{\langle v(x), v_l(e) \rangle_{\mathbf{I}}, \langle v(x), v_l(a) \rangle_{\mathbf{0}}, \langle u, v(x) \rangle_b\};
else
      v(x) \leftarrow v_l(a);
while v(x) \neq v_r do
      if \langle v(x), v_l(e) \rangle \notin E_H(V_H(A)) then
            najdi v(y) takové, že i(v(y)) < i(v(z)), \forall v(z) \in V_H(A), n(y) = n(z);
            if v(y) \neq v(x) \land \langle v(y), v(x) \rangle \notin E_H(V_H(A)) then
                  v \leftarrow v(x); v(x) \leftarrow v(y); v(y) \leftarrow v;
                  i \leftarrow i(v(x)); i(v(x)) \leftarrow i(v(y)); i(v(y)) \leftarrow i;
            n(x) \leftarrow n(x) + 1:
      v(x) \leftarrow u, \langle u, v(x) \rangle \in E_H(V_H(A));
n(x) \leftarrow n(x) + 1;
```


Adaptivní model – binární kód

```
T_H(A) \leftarrow \langle \{v_l(e)\}, \emptyset \rangle;
n(e) \leftarrow 0:
i(v_l(e)) \leftarrow 1;
while není konec vstupu do
    v \leftarrow v_r:
    while v \neq v_l(a) do
         načti ze vstupu symbol b \in B;
         v \leftarrow u, \langle v, u \rangle_b \in E_H(V_H(A));
    if a = e then
         načti ze vstupu kód symbolu a \in A;
         dekóduj kód a a zapiš na výstup a:
    else
         zapiš na výstup symbol a \in A;
    zavolej předchozí algoritmus;
```


Aplikace

■ často v návaznosti na jiné metody, např. na diferenční kódování (obraz, zvuk)

Aritmetické kódování

- průměrná délka optimálního prefixového kódu, např. Huffmanova, je minimálně rovna entropii zdroje a nejvýše o 1 větší než entropie (Shannon noisless coding theorem, viz Věta dříve) platí těsnější, nejvýše o nejvyšší pravděpodobnost $p_{max} \geq 0.5$ zdrojových symbolů nebo o $p_{max} + 0.086, p_{max} < 0.5$
- změna zdrojové abecedy na k-tice (nezávislých) symbolů z původní abecedy A pro přiblížení se entropii ale zvyšuje velikost abecedy, a tím i Huffmanova stromu, na $|A|^k$, např. pro $p_1=0.95, p_2=0.03, p_3=0.02$ je entropie přibližně $0.335\,\mathrm{b/symbol}$, průměrná délka Huffmanova kódu $1.05\,\mathrm{b/symbol}$, kódu pro 9 dvojic symbolů přibližně $0.611\,\mathrm{b/symbol}$ a kódu pro ? ?tic symbolů přibližně ? b/symbol!
- ⇒ výhodnější kódovat zdrojová slova než samostatné symboly ale nevytvářet kód pro všechna slova dané délky, např. Huffmanův!
- → kód pouze pro zdrojová slova na vstupu
- vhodné pro malé zdrojové abecedy, např. binární, s velkými rozdíly v pravděpodobnostech symbolů
- = kódování zdrojových slov do čísel z podintervalů [0,1) kódovaných do binárního kódu

Aritmetické kódování

- Pasco, Rissanen, 1976, Rissanen, Langdon, 1979
- využití distribuční funkce/kumulované pravděpodobnosti (cumulative distribution function) $F_X(i) = \sum_{k=1}^i P(X=k), P(X=k) = P(a_k) = p_k$ zdroje (nezávisle se stejným pravděpodobnostním rozložením se vyskytujících) symbolů z abecedy $A = \{a_1, a_2, \dots, a_n\}$ jako náhodných proměnných $X(a_i) = i, F_X(0) = 0$

$$l_p \leftarrow 0; \ u_p \leftarrow 1;$$

while načti ze vstupu symbol $a_i \in A$ do $l \leftarrow l_n + (u_n - l_n)F_X(i-1);$

$$t \leftarrow l_p + (u_p - l_p)F_X(t-1)$$

 $u \leftarrow l_p + (u_p - l_p)F_X(i)$;
 $l_p \leftarrow l$; $u_p \leftarrow u$;
// přeškálování $[l, u)$

zapiš na výstup $C={\rm bin\acute{a}rn\acute{i}}$ reprezentace jakéhokoliv čísla z [l,u) s minimem bitů;

PRIKLAD

- $C(A^+)$ je prefixový binární kód ze zdrojových slov nad abecedou A, průměrná délka pro slova délky k je $H(A^k) \leq \bar{l}(C(A^k)) < H(A^k) + 1 \Rightarrow$ průměrná délka na symbol z A je $H(A) \leq \bar{l} < H(A) + \frac{1}{k}$
- lacktriangle pro dekódování je nutné znát délku L kódovaného zdrojového slova o uložit spolu s komprimovanými daty nebo speciální zdrojový symbol značící konec vstupu

```
\begin{split} &l_p \leftarrow 0; \ u_p \leftarrow 1; \\ &j \leftarrow 0; \\ &\text{načti ze vstupu binární reprezentaci čísla} \ x \in [0,1); \\ &\textbf{while} \ j < L \ \textbf{do} \\ &\text{najdi} \ i \in \{1,\dots,n\} \ \text{takové, že} \ F_X(i-1) \leq \frac{x-l_p}{u_p-l_p} < F_X(i); \\ &\text{zapiš na výstup symbol} \ a_i \in A; \\ &j \leftarrow j+1; \\ &\textbf{if} \ j < L \ \textbf{then} \\ &l \leftarrow l_p + (u_p-l_p)F_X(i-1); \\ &u \leftarrow l_p + (u_p-l_p)F_X(i); \\ &l_p \leftarrow l; \ u_p \leftarrow u; \\ &l// \ \text{přeškálování} \ [l,u) \end{split}
```

PRIKLAD

- lacktriangle u kódování i dekódování žádoucí průběžný výstup během čtení vstupu, ne až po načtení celého vstupu ightarrow kód čísla z [l,u) průběžně
- [l,u) se s délkou zdrojového slova zmenšuje, ale uložení necelých čísel je v praxi s omezenou přesností \to omezení délky slova nebo přeškálování [l,u):
 - 1 u < 0.5: $x \leftarrow 2x, x \in \{l, u\}$
 - 2 $l \ge 0.5$: $x \leftarrow 2(x 0.5), x \in \{l, u\}$
 - 3 $l \ge 0.25 \land u < 0.75$: $x \leftarrow 2(x 0.25), x \in \{l, u\}$

případy
$$3...31 = 12...2$$
 a $3...32 = 21...1$


```
c \leftarrow 0;
// while ...
while u < 0.5 \lor l > 0.5 \lor (l > 0.25 \land u < 0.75) do
      if l \geq 0.25 \wedge u < 0.75 then
            // případ 3
            c \leftarrow c + 1:
            d \leftarrow 0.25:
      else
            if u < 0.5 then
                  // případ 1
                  b \leftarrow \mathbf{0}:
                  d \leftarrow 0:
            else
                  // případ 2
                  b \leftarrow \mathbf{I}:
                  d \leftarrow 0.5:
            zapiš na výstup b;
            while c>0 do
                  zapiš na výstup inverzi b;
                  c \leftarrow c - 1:
     l \leftarrow 2(l-d):
      u \leftarrow 2(u-d);
zapiš na výstup C = \mathbf{I};
```



```
načti ze vstupu \lceil -\log_2 p_{min} \rceil bitů binární reprezentace čísla x \in [0,1), p_{min} nejnižší
pravděpodobnost zdrojových symbolů;
// while ...
while u < 0.5 \lor l > 0.5 \lor (l > 0.25 \land u < 0.75) do
    if l > 0.25 \land u < 0.75 then
         d \leftarrow 0.25:
    else
         if u < 0.5 then
             d \leftarrow 0:
         else
             d \leftarrow 0.5:
    l \leftarrow 2(l-d):
    u \leftarrow 2(u-d);
    načti ze vstupu další bit b anebo b \leftarrow \mathbf{0};
    x \leftarrow 2(x-d) + b \frac{1}{2^{\lceil -\log_2 p_{\min} \rceil}};
```

PRIKLAD

Celočíselná implementace

- zobrazení [0,1) na [0,M-1) $(0.25 \mapsto \frac{M}{4},\, 0.5 \mapsto \frac{M}{2},\, 0.75 \mapsto \frac{3M}{4}),\, M \geq 4\frac{1}{p_{min}},\, M$ typicky $2^8,\, 2^{16},\, 2^{32}$ nebo 2^{64} podle datového typu pro čísla z [0,M-1)
- odhad $F_X(i)$ s frekvencemi/četnostmi $f(a_k) = \frac{n(a_k)}{\sum_{j=1}^{|A|} n(a_j)}$ výskytu symbolu $a_k \in A$ místo pravděpodobností $P(a_k)$
- $l \leftarrow l_p + \lfloor (u_p l_p + 1)F_X(i 1) \rfloor$, $u \leftarrow l_p + \lfloor (u_p l_p + 1)F_X(i) \rfloor 1$, $\frac{x l_p + 1}{u_p l_p + 1}$, $u \leftarrow 2(u d) + 1$, $x \leftarrow 2(x d) + b$ kvůli celočíselné aritmetice
- \blacksquare načti ze vstupu $\lceil \log_2 M \rceil$ bitů binární reprezentace čísla $x \in [0, M-1)$
- při $M=2^k$ pro nějaké $k\geq 2$:
 - $lacksquare u < rac{M}{2}
 ightarrow$ nejvýznamnější bit l i u je $oldsymbol{0}$
 - $lacksquare l \geq rac{ar{M}}{2}
 ightarrow$ nejvýznamnější bit l i u je ${f I}$
 - $l \geq \frac{M}{4} \wedge u < \frac{3M}{4} o ext{druh\'y nejv\'yznamn\'ejš\'i bit } l$ je ${f I}$ a u je ${f 0}$
 - 2x a $2(x-\frac{M}{2})$ → bitový posun x doleva o 1 bit, $2(x-\frac{M}{4})$ → navíc inverze (nového) nejvýznamnějšího bitu

PRIKLAD

Adaptivní model

- průběžný odhad $F_X(i)$ s frekvencemi/četnostmi $f(a_k) = \frac{n(a_k)}{\sum_{j=1}^{|A|} n(a_j)}$ výskytu symbolu $a_k \in A$ místo pravděpodobností $P(a_k)$
 - lacksquare inicializace na známý odhad nebo počet n(a)=1 výskytu každého symbolu $a\in A$
 - lacktriangle inkrementace n(a) po (de)kódování symbolu a
- uložení p_{min} spolu s komprimovanými daty, u celočíselné implementace nesmí p_{min} klesnout pod $4\frac{1}{M} \to \text{v}$ praxi $n(a_j) \leftarrow \frac{n(a_j)}{2}$ pro $n(a_j) > 1$ při $\sum_{j=1}^{|A|} n(a_j) = \frac{M}{4}$

Aplikace

ve standardech komprese multimediálních dat (obraz, video, zvuk)

Aritmetické kódování - QM kódování

- = modifikované adaptivní binární aritmetické kódování (Q kódování, skew kódování), tj. pro binární zdrojovou abecedu s adaptivním modelem
- místo 2 symbolů A, $a_1=\mathbf{0}$ a $a_2=\mathbf{I}$, $a_1=$ více (MPS) a $a_2=$ méně (LPS) pravděpodobný symbol s průběžně odhadovanými frekvencemi/četnostmi 1-q a q výskytu
 - $l \leftarrow l_p$ a $A \leftarrow A_p(1-q)$ pro MPS
 - $l \leftarrow l_p + A_p(1-q)$ a $A \leftarrow A_pq$ pro LPS
 - $\blacksquare \ \frac{x-l_p}{A_p} < 1-q$ pro MPS a $\geq 1-q$ pro LPS
- potlačení násobení (i pro nebinární zdrojové abecedy) udržování hodnoty A v [0.75, 1.5) a zanedbání násobení A_p
 - $l \leftarrow l_p$ a $A \leftarrow A_p q$ pro MPS
 - $l \leftarrow l_p + A_p q \text{ a } A \leftarrow q \text{ pro LPS}$
 - $x l_p < 1 q$ pro MPS a $\geq 1 q$ pro LPS
 - přeškálování l,A: A<0.75: $A\leftarrow2A$, $l\leftarrow2l$ pro l<0.5 a $l\leftarrow2(l-0.5)$ pro $l\geq0.5$

Aritmetické kódování – QM kódování


```
while A < 0.75 do
      if l < 0.5 then
            b \leftarrow \mathbf{0}:
            d \leftarrow 0:
      else
            b \leftarrow \mathbf{I}:
            d \leftarrow 0.5;
      zapiš na výstup b;
     l \leftarrow 2(l-d);
      A \leftarrow 2A:
zapiš na výstup C = \mathbf{I};
načti ze vstupu [-\log_2 q] bitů binární reprezentace čísla x \in [0, 1);
// while ...
while A < 0.75 do
      if l < 0.5 then
            d \leftarrow 0:
      else
            d \leftarrow 0.5:
      l \leftarrow 2(l-d):
      A \leftarrow 2A:
      načti ze vstupu další bit b anebo b \leftarrow \mathbf{0};
     x \leftarrow 2(x-d) + b \frac{1}{2[-\log_2 q]};
```

Aritmetické kódování – QM kódování

- \blacksquare inicializace q=0.5 a aktualizace q podle tabulky hodnot při přeškálování, ne po (de)kódování každého symbolu
- lacktriangle při častějším výskytu LPS než MPS, q>A-q, prohození symbolů včetně aktuálních hodnot l a A, při přeškálování
- e celočíselná implementace: zobrazení [0,1.5) na [0,M-1) $(0.25\mapsto \frac{M}{6},\,0.5\mapsto \frac{M}{3},\,0.75\mapsto \frac{M}{2},1\mapsto \frac{2M}{3})$, $M\geq \frac{4}{3}\frac{1}{q}$, i pro hodnoty q
- použití ve standardu JPEG (JBIG) komprese obrazu

Kontextové (context-based) metody

Kontextové (context-based) metody

- výskyt symbolu na vstupu není nezávislý na výskytu ostatních symbolů
- = pro modelování symbolu na vstupu využití kontextu délky k= posloupnost (bezprostředně) předchozích k symbolů symbolu na vstupu \to Markovův model k-tého řádu
- ightarrow větší rozdíly v (podmíněných) pravděpodobnostech výskytu symbolů v kontextu jiných symbolů ightarrow lepší predikce symbolu (např. na konci slova) ightarrow vyšší míra komprese

Příklad

 $\begin{aligned} & \text{vstup } barbaraabarboraubaru, \ A = \{a,b,r,u,o\} \\ & f(a) = \frac{7}{20}, \ f(b) = \frac{5}{20}, \ f(r) = \frac{5}{20}, \ f(u) = \frac{2}{20}, \ f(o) = \frac{1}{20}, \\ & f(a|a) = \frac{1}{7}, \ f(b|a) = \frac{1}{7}, \ f(r|a) = \frac{4}{7}, \ f(u|a) = \frac{1}{7}, \ f(a|b) = \frac{4}{5}, \ f(o|b) = \frac{1}{5}, \ f(a|r) = \frac{2}{5}, \\ & f(b|r) = \frac{2}{5}, \ f(u|r) = \frac{1}{5}, \ f(b|u) = 1, \ f(r|o) = 1, \ \text{ostatni} \ f = 0 \\ & f(b|aa) = 1, \ f(a|ab) = 1, \ f(a|ar) = \frac{1}{4}, \ f(b|ar) = \frac{2}{4}, \ f(u|ar) = \frac{1}{4}, \ f(b|au) = 1, \\ & f(r|ba) = 1, \ f(r|bo) = 1, \ f(a|ra) = \frac{1}{2}, \ f(u|ra) = \frac{1}{2}, \ f(a|rb) = \frac{1}{2}, \ f(o|rb) = \frac{1}{2}, \\ & f(a|ub) = 1, \ f(a|or) = 1, \ \text{ostatni} \ f = 0 \end{aligned}$

- vyšší pravděpodobnost výskytu symbolu v delším kontextu, ale počet kontextů délky k je $|A|^k$ (A abeceda symbolů)
- ightarrow nezjišťovat pravděpodobnosti výskytu symbolu pro všechny kontexty dané délky, ale pouze pro kontexty na vstupu
 - lacktriangle speciální (escape) symbol e abecedy značící neexistující/první výskyt symbolu na vstupu v aktuálním kontextu
- adaptivní modelování pravděpodobností výskytu symbolů ve zkracujícím se kontextu jako posloupnosti bezprostředně předchozích symbolů
- Cleary, Witten, 1984
- průběžné odhady (podmíněných) pravděpodobností $P(a_i|c^k)$ a distribučních funkcí/kumulovaných pravděpodobností $F_X(i|c^k)$ výskytu symbolů z abecedy $A|c^k \subseteq A \cup \{e\}$ $= \{a_1, a_2, \ldots, a_n, e\}$ jako náhodných proměnných $X(a_i|c^k) = i|c^k$ s frekvencemi/četnostmi $f(a_i|c^k) = \frac{n(a_i|c^k)}{\sum_{j=1}^{|A|c^k|} n(a_j|c^k)}$ výskytu symbolu $a_i \in A|c^k$ v kontextu c_k délky k
 - lacktriangle výskyt v kontextu $c^0=$ výskyt (bez kontextu)
 - výskyt v kontextu $c^{-1}=$ neexistující/první výskyt, $A|c^{-1}=A$, $n(a_i|c^{-1})=1$ pro všechny $a_i\in A$

 $\mathbf{while} \ \ \mathsf{na\check{c}ti} \ \ \mathsf{ze} \ \ \mathsf{vstupu} \ \ \mathsf{symbol} \ \ a \in A \ \ \mathbf{do}$

$$k \leftarrow K$$
;

while a se nevyskytl v kontextu $c^k \wedge k \geq 0$ **do** kóduj speciální symbol e v kontextu c^k ; $k \leftarrow k-1$;

zapiš na výstup kód symbolu a v kontextu c^k ;

- // algorithms datové reprezentace $n(a|c^k)$ nebo
- $n(a|c^k) \leftarrow n(a|c^k) + 1$ pro všechny $c_k, K \ge k \ge 0$;
- ullet $f(e|c^k)$? ze začátku (relativně) velká, s počtem zpracovaných symbolů klesající
 - metoda A (PPMA): $n(e|c^k) = 1$
 - metoda B (PPMB): $n(e|c^k) = |A|c^k \setminus \{e\}|$ a $n(a|c^k) \leftarrow n(a|c^k) 1$ pro $a \in A|c^k \setminus \{e\}$ (při $n(a|c^k) = 0$ vyřazení a z $A|c^k \setminus \{e\}$) větší šance nového symbolu v kontextu s více symboly v kontextu
 - lacktriangle metoda C (PPMC, Moffat): $n(e|c^k) = |A|c^k \setminus \{e\}|$ v průměru nejvyšší míra komprese
 - PPMP: odhad $\frac{d_1}{d} \frac{d_2}{d^2} + \frac{d_3}{d^3} \dots$, d_i symbolů vyskytujících se na vstupu i-krát, na základě Poissonova rozdělení pravděpodobnosti výskytu d symbolů na vstupu
 - PPMX: přibližná verze PPMP s odhadem $\frac{d_1}{d}$, PPMC při $d_1 = 0$ nebo $d_1 = d$


```
\begin{aligned} k \leftarrow K; \\ \textbf{while} \text{ načti ze vstupu a dekóduj kód symbolu } a \in A|c^k \text{ v kontextu } c^k \text{ do} \\ \textbf{if } a = e \text{ then} \\ k \leftarrow k - 1; \\ \textbf{else} \\ \text{zapiš na výstup symbol } a \in A; \\ \text{// algoritmus datové reprezentace } n(a|c^k) \text{ nebo} \\ n(a|c^k) \leftarrow n(a|c^k) + 1 \text{ pro všechny } c_k, K \geq k \geq 0; \\ k \leftarrow K; \end{aligned}
```

PRIKLAD

- K? co nejvyšší? vyšší pravděpodobnost výskytu symbolu v delším kontextu
 - vyšší pravděpodobnost kódování speciálního symbolu e, delší kontexty bývají neaktuální míra komprese nejprve s K prudce roste, ale pak mírně klesá \to v praxi 5 nebo 6 pro textová data
 - PPM*: v delších kontextech bývá výskyt jen jednoho symbolu = deterministický kontext \rightarrow délka nejkratšího, jinak délka nejdelšího nedeterministického, varianta PPMZ (Bloom)
- kódování symbolů (adaptivním) aritmetickým kódováním s dynamickým pravděpodobnostním modelem podmíněným aktuálním kontextem c^k

Exclusion principle

- menší abeceda znamená kratší kódy symbolů
- = když se symbol a nevyskytl v kontextu c^k délky $K \geq k \geq 0$, symboly vyskytující se v c^k , tzn. z $A|c^k\setminus\{e\}$, lze vyřadit ze všech abeced $A|c^l$ kontextů c^l délky $-1\leq l< k$ pouze pro kódování a, aktuální kontext se mění!

PRIKLAD

Datová reprezentace $n(a|c^k), a \in A$ pro všechny kontexty $c^k, K \ge k \ge 0 = n$ -ární strom $T = \langle V, E(V) \rangle$ (n velikost A)

- listové uzly $v_l(a|c^{k_{max}}) \in V$ pro symboly $a \in A$ pro kontext $c^{k_{max}}, k_{max} = \max_{c^k} k_{c^k}$
- vnitřní uzly $v(a_{-i}|c^k) \in V$ pro symboly $a_{-i}, i = -k, \ldots, -1$ kontextu $c^k = a_{-k}c^{k-1}$, $c^1 = a_{-1} +$ kořenový uzel $v_r \in V$
- hrany $\langle v(a_{-1}|c^{k_{max}}), v_l(a|c^{k_{max}}) \rangle \in E(V)$ nebo $\langle v_r, v_l(a|c^0) \rangle \in E(V)$, a $\langle v(a_{-i}|c^k), v(a_{-i+1}|c^k) \rangle \in E(V)$ a $\langle v_r, v(a_{-k}|c^k) \rangle \in E(V)$
- = trie = v uzlech část prvku (symbol a_{-i} kontextu c^k), ne celý prvek (kontext c^k)
- $\mathbf{s}(v(a|c^k)) = v(a|c^{k-1}), k \ge 1$ a $s(v(a|c^0)) = v_r$ pro tentýž symbol a


```
T \leftarrow \langle \{v_r\}, \emptyset \rangle;
v_p \leftarrow v_r;
// while ...
while k > 0 do
     if v_p \neq v_r then
           v_n \leftarrow s(v_n);
     if \langle v_p, v_l(a|c^k) \rangle \not\in E(V) then
           V \leftarrow V \cup \{v_l(a|c^k)\};
           n(a|c^k) \leftarrow 1:
           E(V) \leftarrow E(V) \cup \{\langle v_n, v_l(a|c^k)\rangle\};
     else
           n(a|c^k) \leftarrow n(a|c^k) + 1:
     if k = k_{max} then
           v_n \leftarrow v_l(a|c^k);
     k \leftarrow k - 1:
```


■ pro každý symbol $a \in A$ na vstupu přidáno 0 až K+1 uzlů \to při velkém smazání a konstrukce nového stromu z posledních několika symbolů (v praxi 2048)

PAQ

- kontext nemusí být posloupnost bezprostředně předchozích symbolů na vstupu, jako u PPM
- ightarrow kombinace modelů symbolu na vstupu využívajících různé kontexty = context mixing
- adaptivní modelování pravděpodobností výskytu binárních symbolů (bitů, z binární zdrojové abecedy) kombinací modelů s různými kontexty
- Matt Mahoney, 2002 a další (Osnach, Ratushnyak PAQAR, Skibiński PAsQDa, Taylor – RK) – několik verzí (8 hlavních) a mnoho variant (pro různé typy dat), free software, postupná vylepšení místo zcela nových metod z 80. až 90. let
- kontexty např.:
 - posloupnost bezprostředně předchozích 0 až 63 bitů (po osmi) na vstupu, jako u PPM
 - bezprostředně předchozí 0 a 1 slovo na vstupu např. znak textu
 - nejvýznamnější bity bezprostředně předchozích slov pro multimediální data (zvuk, obraz)
 - sousední slova vícedimenzionálních dat (stejná ve stejné vzdálenosti) např. obrazové body
 - vybraná předchozí slova ("řídký kontext") pro různé binární soubory, např. spustitelné, již (ztrátově) komprimované aj.
- nový model z původního a 10-bitového kontextu na základě aktualizované tabulky = SSE (secondary symbol estimation) – od verze 2

PAQ

- *i*-tý model bitu na vstupu:
 - počty $n_i(a), a = \{\mathbf{0}, \mathbf{I}\}$ bitů v kontextu verze 1 až 6, $n_i = n_i(\mathbf{0}) + n_i(\mathbf{I})$, $n_i(a) \leftarrow n_i(a) + 1$ a $n_i(\mathbf{I} a) \leftarrow \lfloor 1 + \frac{n_i(\mathbf{I} a)}{2} \rfloor$ jestliže $n_i(\mathbf{I} a) > 2$, a hodnota modelovaného bitu
 - průběžné odhady (podmíněných) pravděpodobností $P_i(a|c), a=\{\mathbf{0},\mathbf{I}\}$ od verze 7: $P_i(a|c)=\frac{n_i(a)}{n_i}$
- průběžné odhady (podmíněných) pravděpodobností $P(a|c), a = \{\mathbf{0}, \mathbf{I}\}$ kombinací modelů:
 - $P(a|c) = \frac{s(a)}{s}, s = s(\mathbf{0}) + s(\mathbf{I}), s(a) = \epsilon + \sum_i w_i n_i(a)$ verze 1 až 6, ϵ (experimentálně zjištěný) parametr pro nenulové s(a), w_i váha i-tého modelu závisející na délce kontextu c pevné (verze 1 až 3) nebo upravované pro minimalizaci chyby modelu a preferující přesnější modely (verze 4 až 6): $w_i \leftarrow \max[0, w_i + \frac{sn_i(\mathbf{I}) s(\mathbf{I})n_i}{s(\mathbf{0})s(\mathbf{I})}(a P(\mathbf{I}|c))]$
 - neuronovou sítí od verze 7: $P(\mathbf{I}|c) = \frac{1}{1+e^{-\sum_i w_i x_i}}, x_i = \ln(\frac{P_i(\mathbf{I}|c)}{1-P_i(\mathbf{I}|c)}),$ $w_i \leftarrow w_i + \mu x_i (a-P(\mathbf{I})), \ \mu$ malá konstanta (míra adaptace)
- kódování bitů adaptivním binárním aritmetickým kódováním (QM kódováním??) s dynamickým pravděpodobnostním modelem $\{P(\mathbf{0}|c), P(\mathbf{I},c)\}$ podobně jako v PPM

- ~ Burrows-Wheelerova transformace (BWT)
- Michael Burrows, David J. Wheeler, 1994 (transformace Wheeler, 1983)
- nepoužívá (podmíněné) pravděpodobnosti výskytu symbolů v kontextu jiných symbolů ani posloupností symbolů
- blok b^k délky k: $c^{k-1}a$, a symbol na vstupu, kontext $c^{k-1}=a_{-k+1}a_{-k+2}\dots a_{-1}=$ posloupnost bezprostředně předchozích k-1 symbolů symbolu a
- = permutace bloku b^k na blok obsahující posloupnosti stejných symbolů (viz dále)

- ~ Burrows-Wheelerova transformace (BWT)
- Michael Burrows, David J. Wheeler, 1994 (transformace Wheeler, 1983)
- nepoužívá (podmíněné) pravděpodobnosti výskytu symbolů v kontextu jiných symbolů ani posloupností symbolů
- blok b^k délky k: $c^{k-1}a$, a symbol na vstupu, kontext $c^{k-1}=a_{-k+1}a_{-k+2}\dots a_{-1}=$ posloupnost bezprostředně předchozích k-1 symbolů symbolu a
- = permutace bloku b^k na blok obsahující posloupnosti stejných symbolů (viz dále) \to move-to-front (MTF) kódování permutovaného bloku


```
while načti ze vstupu nejvýše K symbolů jako blok b^k = b_1^k \in A^+ do
    zapiš na výstup číslo k:
    i \leftarrow 2:
    while i \le k do
         b_i^k \leftarrow \text{rotace } b_{i-1}^k \text{ o } 1 \text{ symbol doleva};
         i \leftarrow i + 1:
    setřiď b_1^k, \ldots, b_k^k lexikograficky;
    i \leftarrow 1:
    while i \le k do
         zapiš na výstup poslední symbol b_i^k;
         i \leftarrow i + 1:
    zapiš na výstup číslo i, kde b^k = b_i^k;
PRIKI AD
```


V lexikograficky setříděných blocích b_1^k, \ldots, b_k^k z předchozího algoritmu:

Kódování

■ posloupnost prvních symbolů bloků $b_i^k, i=1,\dots,k$ obsahuje posloupnosti stejných symbolů (kvůli setřídění b_i^k) \Rightarrow posloupnost posledních symbolů bloků b_i^k obsahuje posloupnosti stejných symbolů, jestliže je v původním bloku b^k před prvním symbolem bloku b_i^k (lokálně) opakovaně poslední symbol bloku b_i^k (kvůli rotaci o 1 symbol doleva) = častý kontext

Dekódování

- posloupnost prvních symbolů bloků $b_i^k F_i \in A, i = 1, \ldots, k$ v následujícím algoritmu = lexikograficky setříděná posloupnost posledních symbolů bloků $b_i^k L_i \in A =$ permutace φ posledních symbolů $F_{\varphi(i)} = L_i \Leftrightarrow F_j = L_{\varphi^{-1}(j)}$
- v původním bloku b^k je za posledním symbolem L_j bloku $b^k_j, b^k_j \neq b^k$ první symbol F_j bloku $b^k_j \Rightarrow F_{\varphi^{-1}(j)}$ je za $L_{\varphi^{-1}(j)} = F_j$


```
while načti ze vstupu číslo k do
      načti ze vstupu k symbolů L_1, \ldots, L_k \in A;
      F_i \leftarrow L_i \text{ pro } i = 1, \dots, k;
      setřiď F_1, \ldots, F_k lexikograficky;
      a \leftarrow F_1:
      i_F(a) \leftarrow 1;
      i \leftarrow 2:
      while i \leq k do
             if F_i \neq a then
                   a \leftarrow F_i:
                   i_F(a) \leftarrow i;
             i \leftarrow i + 1
      i \leftarrow 1;
      while i \leq k do
             \varphi^{-1}(i_F(L_i)) \leftarrow i;
             i_F(L_i) \leftarrow i_F(L_i) + 1;
            i \leftarrow i + 1:
      načti ze vstupu číslo j;
      i \leftarrow 1:
      while i \leq k do
             zapiš na výstup symbol F_i;
            j \leftarrow \varphi^{-1}(j);
             i \leftarrow i + 1:
```


Implementace

- maximální délka K bloku až statisíce symbolů (bytů)
- lacktriangle kódování pouze s původním blokem $b^k-b^k_i$ ukazatele na první symbol bloku b^k_i v b^k
- lacksquare dekódování pouze s posledními symboly $L_i \in A$ bloků $b_i^k, i=1,\ldots,k$
- move-to-front (MTF) kódování permutovaného bloku následované run-length kódováním (RLE) a statistickým kódováním (Huffmanovým nebo aritmetickým)

Slovníkové metody

Slovníkové metody

- výskyt symbolu na vstupu není nezávislý na výskytu ostatních symbolů symboly se často vyskytují (nebo naopak nevyskytují) v opakujících se vzorech (patterns), např. slova nebo části vět v textu
- nepoužívají statistický model, např. (podmíněné) pravděpodobnosti výskytu vzorů
- = pro kompresi slov na vstupu využívání často se vyskytujících vzorů symbolů = posloupnosti předchozích symbolů aktuálního symbolu na vstupu
- ightarrow vyhledávání vzorů na vstupu a jejich ukládání do slovníku a kódování odkazu na vzor ve slovníku při/místo kódování slov na vstupu ightarrow vyšší míra komprese
 - slovník = (implicitně) posloupnost předchozích symbolů aktuálního symbolu na vstupu nebo (explicitně) datová struktura vzorů symbolů
 - často se vyskytujících vzorů (ve slovníku) by mělo být relativně málo, vzhledem ke všem vzorům → výběr nejčastěji se vyskytujících vzorů
 - pro specifické aplikace se známými často se vyskytujícími vzory statický, příp.
 semi-adaptivní, model/slovník (neukládání vzorů), jinak adaptivní počáteční prázdný nebo malý výchozí a při naplnění nepřidávání, vymazání celého nebo nejdéle nepoužitých vzorů (least recently used, LRU)
- iednoduchá a rvchlá dekomprese oproti statistickým metodám

Kódování n-gramů

- použití statistického statického, příp. semi-adaptivního, modelu
- lacktriangle slovník = všechny symboly vstupní abecedy A+ nejčastěji se vyskytující 2- až n-tice symbolů (n-gramy) na vstupu do velikosti slovníku, seřazené podle pravděpodobnosti výskytu sestupně
- = kódování slov na vstupu indexem stejného slova ve slovníku

```
x \leftarrow \operatorname{pr\'azdn\'y\' r\'et\' zec;} while načti ze vstupu symbol a \in A do if xa je ve slovníku then x \leftarrow xa; else \operatorname{zapi\'s} \operatorname{na} \operatorname{v\'estup} \operatorname{index} x \operatorname{ve} \operatorname{slovn\'(ku;} x \leftarrow a; if x \neq \operatorname{pr\'azdn\'y\' r\'et\' ezec} then \operatorname{zapi\'s} \operatorname{na} \operatorname{v\'estup} \operatorname{index} x \operatorname{ve} \operatorname{slovn\'(ku;}
```

PRIKLAD

 kódování indexů statickým kódem nebo statistickým kódováním (Huffmanovým nebo aritmetickým)

LZ77

- také LZ1, Abraham Lempel, Jakob Ziv, 1977 základ, mnoho variant \rightarrow rodina metod LZ77
- $\hbox{ adaptivní slovník} = \hbox{posloupnost bezprostředně předchozích K symbolů aktuálního symbolu na vstupu (kontext délky K)} \hbox{search buffer (délky K)}$
- = kódování (i prázdného) slova a dalšího symbolu na vstupu kódy pozice stejného slova začínajícího v search bufferu (nebo pozice 0), jeho délky a symbolu
- lacksquare aktuální posloupnost L symbolů na vstupu look-ahead buffer (délky L)
- search + look-ahead buffer = posuvné okno (délky K + L)

LZ77


```
x \leftarrow \text{prázdný řetězec}, o \leftarrow 0, l \leftarrow 0;
while načti ze vstupu symbol a \in A do
    if xa začíná v search bufferu a l < L then
         o \leftarrow nejmenší vzdálenost (v počtu symbolů) prvního symbolu xa v search bufferu
         od konce bufferu:
         l \leftarrow l + 1:
         x \leftarrow xa:
    else
         zapiš na výstup kódy o, l a a;
         x \leftarrow \text{prázdný řetězec}, o \leftarrow 0, l \leftarrow 0;
if x \neq \text{prázdný řetězec then}
```

PRIKI AD

 kódování vzdáleností, délek a symbolů statickým kódem nebo (adaptivním) statistickým kódováním (Huffmanovým = LZH nebo aritmetickým)

zapiš na výstup kódy o a l:

- kódování celých trojic vzdálenost-délka-symbol místo jednotlivě
- lacktriangle proměnlivé délky K a L bufferů, delší K a L častější a delší nález v search bufferu, ale delší hledání a větší vzdálenosti a délky

LZR (Rodeh)

- lacksquare délky K a L bufferů neomezené
- kompresní metoda z algoritmu LZ76 pro měření "složitosti" textu hledáním předchozích výskytů slov

LZSS (Storer, Szymanski)

- (bitový) příznak pro kódování dvojic vzdálenost-délka anebo symbolu ukládány skupiny příznaků pro skupiny kódů, např. 8
- kódování samostatných symbolů, pokud by kód dvojice byl stejně dlouhý nebo delší (nebo i mírně kratší, kvůli náročnějšímu kódování dvojice)
- \blacksquare délky K a L tak, aby dvojice byla kódována do pevného dvojnásobného počtu bitů než symbol, např. $K=2^{11}$ a $L=2^5$ pro $|A|=2^8$
- varianta LZB: kódování vzdáleností do postupně se zvyšujícího počtu bitů podle aktuální velikosti search bufferu a délek Eliasovým Gamma kódem
- varianta SLH: kódování vzdáleností a symbolů semi-adaptivním Huffmanovým kódem

Deflate (Philip W. Katz)

- nejúspěšnější varianta LZ77 a LZSS dvojice délka-vzdálenost
- volitelně (příp. redukované) vyhledání i delšího vzoru po kódování aktuálního symbolu na vstupu
- komprese vstupních dat po blocích různé délky
- mód 1 = bez komprese 5 B záhlaví navíc (3 b v 1 B kód módu 1, 2 B délka a 2 B jedničkový komplement délky)
- mód 2: kódování dvojic a symbolů podle statických modelů
 - symboly a délky čísly 0-285: 0-255 symboly (byty), 256 konec bloku, 257-285 s dalšími 0-5 bity (pro určení hodnoty) délky 3-258=L, kódovaných statickým Huffmanovým kódem (7-9 bitů/číslo)
 - vzdálenosti $1-2^{15}=K$ čísly 0-29 s dalšími 0-13 bity (pro určení hodnoty v rozsahu), kódovaných binární reprezentací čísla (5 bitů/číslo)

Obrázek: Kódování symbolů/délek a vzdáleností v módu 2

Extra			Extra			Extra				
Code	bits	Lengths	Code	bits	Lengths	Code	bits	Lengths		
257	0	3	267	1		277	4	 67–82		
258	0	4	268	1	17,18	278	4	83-98		
259	0	5	269	2	19 - 22	279	4	99-114		
260	0	6	270	2	23 - 26	280	4	115 - 130		
261	0	7	271	2	27 - 30	281	5	131 - 162	,	D.:
262	0	8	272	2	31 - 34	282	5	163 - 194	edoc	Bits
263	0	9	273	3	35 - 42	283	5	195 – 226	0-143	8
264	0	10	274	3	43 - 50	284	5	227 - 257	144 - 255	9
265	1	11,12	275	3	51 - 58	285	0	258	256-279	7
266	1	$13,\!14$	276	3	59 – 66				280 – 287	8

edoc	Bits	Prefix codes
0-143	8	00110000-10111111
144 - 255	9	110010000 – 1111111111
256 - 279	7	0000000-0010111
280 - 287	8	11000000 - 11000111

Extra			Extra					
Code	bits	Distance	Code	bits	Distance	Code	bits	Distance
0	0	1	10	4	33 - 48	20	9	1025-1536
1	0	2	11	4	49 – 64	21	9	1537 - 2048
2	0	3	12	5	65 - 96	22	10	2049 – 3072
3	0	4	13	5	97 - 128	23	10	3073 - 4096
4	1	5,6	14	6	129 – 192	24	11	4097 – 6144
5	1	7,8	15	6	193 – 256	25	11	6145 – 8192
6	2	9-12	16	7	257 - 384	26	12	8193 - 12288
7	2	13-16	17	7	385 – 512	27	12	12289 – 16384
8	3	17 - 24	18	8	513 - 768	28	13	16385 – 24576
9	3	25 - 32	19	8	769 - 1024	29	13	24577 - 32768

Deflate (Philip W. Katz)

- mód 3: kódování dvojic a symbolů semi-adaptivními Huffmanovými kódy (pro symboly/délky a vzdálenosti s čísly podle módu 2, max. 15 bitů) napříč bloky, kódovaných jako posloupnosti délek kódů RLE (s min. počtem 4 stejných symbolů za sebou) a (semi-adaptivním) Huffmanovým kódem uloženým jako modifikovaná posloupnost délek kódů (3 bity/délka)
 - (ekvivalentní) Huffmanův kód C' z posloupnosti $l(a_1),\ldots,l(a_n)$ délek kódových slov $C(a_i)$ Huffmanova kódu C: $C'(a_i)=$ binární reprezentace čísla B_j+k délky $l(a_i)=j$, kde $B_j=2(B_{j-1}+|\{a\},l(a)=j-1|), B_1=0,\ a_{i'_0},\ldots,a_{i'_k}=a_i,l(a_{i'})=j$ PRIKLAD

LZPP (Pylak)

- varianta LZSS minimální délka 3 nalezeného slova
- většina vzdáleností a délek je malých ⇒ velká entropie → modifikované adaptivní aritmetické kódování (range encoding):
 - $lue{}$ po bytech, pravděpodobnosti výskytu bez kontextu a v kontextu délky 1-s vyloučením symbolů za vyhledaným slovem v search bufferu (exclusion principle)
 - speciální (escape) symbol abecedy pro neexistující/první výskyt symbolu v search bufferu (místo inicializace počtu výskytu každého symbolu na 1) – pravděpodobnost pro každý symbol abecedy (z počtu kódování symbolu speciálním symbolem)
 - i pro příznak klesající pravděpodobnost pro symbol
- další příznaky pro pouze vzdálenosti s nejčastější délkou 3 a kódování v kontextu délky

Varianty LZ77

LZMA (Igor Pavlov)

Další

- LZX
- LZP

Implementace

- lacktriangle délky K a L bufferů až tisíce a desítky až stovky symbolů (bytů)
- pro posuvné okno kruhová fronta (LZSS, LZPP), pro search buffer např. suffix stromy (LZR), (vyvážené) binární vyhledávací stromy (s lexikografickým uspořádáním slov v uzlech, LZSS), hešovací tabulky (SLH, Deflate volitelně tří symbolů, LZPP CRC-32)
- ARJ, (PK)Arc, LHArc, LHA (LZSS + Huffman), (PK)Zip, gzip, zlib a(Deflate), RAR, ACE (LZSS + Huffman) aj.

Aplikace

- nárůst kvůli poplatkům z patentu na LZW
- v síťových protokolech HTTP, PPP (Deflate)
- v kompresi obrazu PNG (Deflate) a dokumentů PDF (Deflate)

- $lue{LZ77}$ předpokládá, že opakující se vzory se vyskytují blízko sebe (do vzdálenosti délky K search bufferu), ale stejné slovo na vstupu může začínat před search bufferem
- \blacksquare také LZ2, Abraham Lempel, Jakob Ziv, 1978 základ, mnoho variant \to rodina metod LZ78
- adaptivní slovník = slova na vstupu uložená ve slovníku (nebo prázdné slovo) zřetězená s dalším symbolem na vstupu za slovem, počáteční prázdný
- kódování (i prázdného) slova a dalšího symbolu na vstupu kódy indexu stejného slova ve slovníku (nebo indexu 0) a symbolu, a uložení do slovníku zřetězení slova a symbolu
- vytváření stejného slovníku při kódování i dekódování
- ze slovníku se nemaže na rozdíl od search bufferu LZ77, vymazání slovníku při jeho naplnění = předpoklad LZ77 (že opakující se vzory se vyskytují blízko sebe – do vzdálenosti odpovídající velikosti slovníku)
- pomalá adaptace na vstup do slovníku se přidávají slova jen o 1 symbol delší než slovo již ve slovníku


```
x \leftarrow \mathsf{pr}\mathsf{azdn}\mathsf{v} řetězec, i \leftarrow 0:
while načti ze vstupu symbol a \in A do
     if xa je ve slovníku then
          i \leftarrow \text{index } xa \text{ ve slovníku (počínaje 1)};
          x \leftarrow xa:
    else
          ulož xa jako další položku do slovníku;
          zapiš na výstup kódy i a a:
          x \leftarrow \text{prázdný řetězec. } i \leftarrow 0:
if x \neq \text{prázdný řetězec then}
     zapiš na výstup kód i:
```

PRIKLAD

 kódování indexů a symbolů statickým kódem nebo (adaptivním) statistickým kódováním (Huffmanovým nebo aritmetickým)


```
 \begin{tabular}{ll} \be
```

PRIKLAD

Datová reprezentace slovníku = n-ární strom $T = \langle V, E(V) \rangle$ (n velikost A)

- lacktriangle velikost slovníku jednotky až desítky tisíc (2^{16}) symbolů
- trie jako u PPM: $a|c^k \approx$ slovo $a_{-k} \dots a_{-1}a$, pro $a \in A$ s prefixem $x \in A^+$ index slova xa ve slovníku
- kódování:
 - $\begin{tabular}{ll} \hline & modifikace: pro uzly $v(xa),v(xab),v(xac),v(xad),\ldots\in V$ pro symboly a s prefixem x a b,c,d,\ldots s prefixem xa hrany $\langle v(xab),v(xac)\rangle,\langle v(xac),v(xad)\rangle,\ldots\in E(V)$ misto hran $\langle v(xa),v(xac)\rangle,\langle v(xa),v(xad)\rangle,\ldots$ } \end{tabular}$
 - lacktriangleright tabulka se sloupci index slova xa, symbol a, index slova xab a pro slova xab, xac, \ldots index slova xac, xad, \ldots
- lacktriangle dekódování: tabulka se sloupci index slova xa, symbol a a pro slova xab index slova xa

PRIKLAD

Varianty LZ78

LZFG (Fiala, Greene)

- kombinace LZ77 (search buffer) a LZ78 (kódy dvojic)
- kódování (neprázdného) slova na vstupu kódy délky a pozice stejného slova začínajícího v search bufferu anebo kódy délky slova a všech jeho symbolů
- varianta A1: 4 bity pro binární reprezentaci délky 2-16=L slova následované pozicí (vzdáleností) 1-4096=K kódovanou do 12 bitů anebo délky 1-16 slova s prefixem ${\bf 0000}$ následované symboly
- varianta A2: zobecněné unární kódy (start-step-stop kódy) pro délku 2-2044 ((2,1,10) kód, 3-18 bitů) následovanou pozicí až $K=2^{10}+2^{12}+2^{14}$ ((10,2,14) kód, 11-16 bitů) anebo délku 1-63 ((0,1,5)kód, 1-10 bitů) následovanou symboly, další vylepšení s postupně narůstajícím K od 21 a pozicí kódovanou do postupně 1-16 bitů ((10-d,2,14-d) kód, d postupně $10,\ldots,0$) aj.
- další varianty B1, B2, C1 a C2

Další

- LZRW1
- LZRW4

- nejpopulárnější varianta LZ78, Terry Welch, 1984
- lacktriangle počáteční slovník (komprese i dekomprese) = všechny symboly vstupní abecedy A
- kódování (neprázdného) slova na vstupu kódem indexu stejného slova ve slovníku, a uložení do slovníku zřetězení slova a dalšího symbolu na vstupu

```
x \leftarrow \mathsf{pr}\mathsf{á}\mathsf{z}\mathsf{dn}\mathsf{y} řetězec;
while načti ze vstupu symbol a \in A do
     if xa je ve slovníku then
          i \leftarrow \text{index } xa \text{ ve slovníku};
          x \leftarrow xa:
     else
          ulož xa jako další položku do slovníku;
          zapiš na výstup kód i;
          x \leftarrow a:
if x \neq \text{prázdný řetězec then}
     zapiš na výstup kód i;
```

PRIKLAD

Kódování

- f I další položka xa ve slovníku: x slovo ve slovníku na aktuálně kódovaném indexu $i,\ a$ první symbol slova na dalším kódovaném indexu
- 2 slovo na dalším kódovaném indexu může být posledně uložená položka ve slovníku

Dekódování

- f 1 další položka xa ve slovníku: x slovo na předchozím dekódovaném indexu, a první symbol slova na aktuálně dekódovaném indexu i
- f 2 slovo na aktuálně dekódovaném indexu i se má právě vložit jako další položka do slovníku $\Rightarrow a=$ první symbol slova x na předchozím dekódovaném indexu


```
x_n \leftarrow \text{prázdný řetězec};
while načti ze vstupu a dekóduj kód indexu i ve slovníku do
    if i je index další položky ve slovníku then
         x \leftarrow x_p;
    else
         x \leftarrow \text{slovo na indexu } i \text{ ve slovníku:}
    if x_p \neq \text{prázdný řetězec then}
         a \leftarrow \mathsf{prvni} \ \mathsf{symbol} \ x;
         ulož x_n a jako další položku do slovníku;
    x_p \leftarrow x;
    zapiš na výstup slovo x \in A^+ na indexu i ve slovníku;
PRIKLAD
```

Varianty LZW

LZC

- lacktriangle postupně zdvojnásobovaná velikost slovníku od 512 (9 bitů/index) do 2^{16} , při naplnění statický a při poklesu kompresního poměru pod mez vymazání
- vylepšení: při kódování indexu slova vyloučení slov ve slovníku začínajících symbolem, kterým slovo pokračuje v jiném slově ve slovníku (exclusion principle)

LZT (Tischer)

- varianta LZC
- při naplnění slovníku vyřazení slova s nejdéle nekódovaným indexem kromě slovníku i seznam slov ze slovníku setříděný podle počtu kódování indexu slova, podobné LZ77, ale "posuvné okno" slov podle počtu kódování indexu, ne pořadí slov na vstupu

Varianty LZW

LZMW (Miller, Wegman)

- při naplnění slovníku vyřazení slova s nejdéle nekódovaným indexem nejstarší ze slov bez pokračování v jiném slově (tzn. index slova nebyl kódován), vyžaduje dat. strukturu slov podle jejich "věku"
- uložení do slovníku zřetězení slova na vstupu, které je ve slovníku, a dalšího slova na vstupu, které je ve slovníku (místo pouze jeho prvního symbolu) ⇒ rychlejší adaptace na vstup do slovníku se přidávají slova o víc než jen o 1 symbol delší
- datová reprezentace slovníku nemůže být trie ve slovníku nemusí být každý prefix slova → dodání s příznakem platnosti, ale při vyhledávání vracení se od neplatných

LZAP (All Prefixes)

- varianta LZMW
- zřetězení nejen s dalším slovem, ale se všemi jeho neprázdnými prefixy (včetně celého slova) → větší slovník, ale nevracení se při vyhledávání

Další

- LZJ
- LZY

Implementace

- pro slovník hešovací tabulka řádků tabulky pro dekódování ukládající trie LZ78 slovníku
- compress na UNIXu (LZC)

Aplikace

- narůstající až do poplatků z patentu
- v kompresi obrazu GIF podobně jako compress
- v kompresním módu modemových přenosů dat po telefonní síti podle standardu
 V.42bis podobně jako compress, ale při naplnění slovníku jeho promazávání o dlouho nepoužitá slova, nekódování posledně uloženého slova ve slovníku, ale jeho složek