← Key concepts on Deep Neural Networks Quiz, 10 questions

10/10 points (100.00%)

✓ Congratulations! You passed!	Next Item			
1/1 point				
1. What is the "cache" used for in our implementation of forward propagation and backward prop	pagation?			
It is used to keep track of the hyperparameters that we are searching over, to speed up	computation.			
We use it to pass variables computed during backward propagation to the corresponding contains useful values for forward propagation to compute activations.	We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.			
It is used to cache the intermediate values of the cost function during training.				
We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.				
Correct Correct, the "cache" records values from the forward propagation units and sends it to the backward propagation units because it is needed to compute the chain rule derivatives.				
✓ 1/1 point				
2. Among the following, which ones are "hyperparameters"? (Check all that apply.)				
number of iterations Correct				
weight matrices $W^{[l]}$				
Un-selected is correct				

lacksquare number of layers L in the neural network

Correct

 $igcap activation values a^{[l]}$

Un-selected is correct

(Key concepts on Deep Neural Networks Qubiastrapediate of [l]	10/10 points (100.00%)
	Un-selected is correct	
	$lacksquare{lacksquare}$ size of the hidden layers $n^{[l]}$	
	Correct	
	lacksquare learning rate $lpha$	
	Correct	
	1/1	
	point	
3 V	3. Vhich of the following statements is true?	
	The deeper layers of a neural network are typically computing more complex features of the i	nput than the earlier layers.
	Correct	
	The earlier layers of a neural network are typically computing more complex features of the ir	iput than the deeper layers.
•	1/1 point	
4		1. 1. C
	(ectorization allows you to compute forward propagation in an L -layer neural network without an explicit iterative loop) over the layers l=1, 2,,L. True/False?	olicit for-loop (or any other
	True	
	C False	
	Correct	
	Forward propagation propagates the input through the layers, although for shallow networks we ma $[a^{[2]}=g^{[2]}(z^{[2]}),z^{[2]}=W^{[2]}a^{[1]}+b^{[2]},)$ in a deeper network, we cannot avoid a for loop iterating	ay just write all the lines (g over the layers: (
	$a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$,).	
-		
	1/1	
_	point	
5 A	n_0 . Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x$, 4,3,2,1]. So n_0	ayer 1 has four hidden units,

layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
\leftarrow
```

```
1 for(i in range(1, len(layer_dims)/2)):

Key²Conceptivnin' Deepi Neumala Nertwoorki gyers[i], layers[i

Quiz, 10 questions -1])) * 0.01

Quiz, 10 questions -1]) + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

Correct

1/1 point

6

Consider the following neural network.

How many layers does this network have?

The number of layers L is 4. The number of hidden layers is 3.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

The number of layers L is 3. The number of hidden layers is 3.

Key concepts on Deep Neural Networks is 4. Quiz, 10 questions The number of layers L is 5. The number of hidden layers is 4. The number of hidden layers is 4.	10/10 points (100.00%)
1/1 point	
7. During forward propagation, in the forward function for a layer l you need to know what is the activat tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know v for layer l , since the gradient depends on it. True/False?	
O True	
Correct Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropay which activation was used in the forward propagation to be able to compute the correct derivative.	gation you need to know
False	
1/1 point 8.	
There are certain functions with the following properties: (i) To compute the function using a shallow network circuit, you will need a large network (where we n logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an export True/False?	
True	
Correct	
○ False	
✓ 1/1 point	
9.	

 \leftarrow

Consider the following 2 hidden layer neural network: Key concepts on Deep Neural Networks

10/10 points (100.00%)

Which of the following statements are True? (Check all that apply).

$W^{\left[1 ight]}$ will have shape (4, 4)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

$$igcup b^{[1]}$$
 will have shape (4, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

Un-selected is correct

$$b^{[1]}$$
 will have shape (3, 1)

Un-selected is correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

$$igcup b^{[2]}$$
 will have shape (1, 1)

(Un-Kley tion Teep Neural Networks Quiz, 10 questions	10/10 points (100.00%)
	$W^{[2]}$ will have shape (3, 1)	
	Un-selected is correct	
	$b^{[2]}$ will have shape (3, 1)	
	Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.	
	$W^{[3]}$ will have shape (3, 1)	
	Un-selected is correct	
	$b^{[3]}$ will have shape (1, 1)	
	Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.	
	$W^{[3]}$ will have shape (1, 3)	
	Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.	
	$b^{[3]}$ will have shape (3, 1)	
	Un-selected is correct	
	1/1 point	
١	$10.$ Whereas the previous question used a specific network, in the general case what is the dimension of V associated with layer \emph{l} ?	V^{[l]}, the weight matrix
	$igcup W^{[l]}$ has shape $(n^{[l]},n^{[l+1]})$	
	$igcup W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$	
	$igcup W^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$	
	$igcup_{[l]} W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$	
	Correct True	

Key concepts on Deep Neural Networks Quiz, 10 questions

10/10 points (100.00%)

