Exercise 4:

Derivation of linear regression

$$m{x}_i = egin{pmatrix} 1 \ x_{i1} \ dots \ x_{iD} \end{pmatrix}, m{X} = egin{pmatrix} m{x}_1^T \ m{x}_2^T \ dots \ m{x}_N^T \end{pmatrix}, m{t} = egin{pmatrix} t_1 \ t_2 \ dots \ t_N \end{pmatrix}, m{w} = egin{pmatrix} w_0 \ w_1 \ dots \ m{w}_D \end{pmatrix}$$

Find a linear regression model $t = w^T x$ using the training samples

- 1. Express the sum of squared errors E as a function of w
- 2. Derive the following (a)(b) to find the gradient $\nabla_w E$ for w of the sum of squared errors E

(a)
$$\sum_{i=1}^{N} t_i \boldsymbol{x}_i = \boldsymbol{X}^T \boldsymbol{t}$$

(b)
$$\sum_{i=1}^{N} \boldsymbol{x}_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i} = \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}$$

- 3. Show the gradient $\frac{\partial E}{\partial w}$ in terms of x_i (or X), t
- 4. (Approximate solution) Show the parameter update equation for the linear regression model using the gradient descent method in terms of x_i (or X), t Initial solution w^{θ} , t-th update w^t , step size parameter η
- 5. (Analytic solution) Show that w where $\frac{\partial E}{\partial w} = 0$ is

$$\boldsymbol{w} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{t}$$

Exercise 4:

Derivation of linear regression

$$m{x}_i = egin{pmatrix} 1 \ x_{i1} \ dots \ x_{iD} \end{pmatrix}, m{X} = egin{pmatrix} m{x}_1^T \ m{x}_2^T \ dots \ m{x}_N^T \end{pmatrix}, m{t} = egin{pmatrix} t_1 \ t_2 \ dots \ t_N \end{pmatrix}, m{w} = egin{pmatrix} w_0 \ w_1 \ dots \ m{w}_1 \end{bmatrix}$$
 とする。事例群 $\{(m{x}_i, t_i)\}_{i=1}^N$

を使って線形回帰モデル $t = \boldsymbol{w}^T \boldsymbol{x}$ を求めることを考える。

- 1. 二乗誤差和 E を w の関数で表せ
- 2. 二乗誤差和 E の w についての勾配 $\nabla_w E$ を求めるために、以下を導出せよ

(a)
$$\sum_{i=1}^{N} t_i \boldsymbol{x}_i = \boldsymbol{X}^T \boldsymbol{t}$$

(b)
$$\sum_{i=1}^{N} \boldsymbol{x}_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i} = \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}$$

- 3. 勾配 $\frac{\partial E}{\partial \boldsymbol{w}}$ を \boldsymbol{x}_i (あるいは \boldsymbol{X}), \boldsymbol{t} の式で示せ。
- 4. (近似解法) 線形回帰モデルを最急降下法で求めるときの、パラメータの更新式を x_i (あるいは X), t の式で示せ。初期解を w^0 , t 回目の更新時の回を w^t , ステップサイズパラメータを η とする。
- 5. (解析解) $\frac{\partial E}{\partial \boldsymbol{w}} = 0$ なる \boldsymbol{w} が $\boldsymbol{w} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{t}$ であることを示せ。