Deep Reinforcement Learning: A brief introduction

A/Prof Richard Yi Da Xu Yida.Xu@uts.edu.au Wechat: aubedata

https://github.com/roboticcam/machine-learning-notes

University of Technology Sydney (UTS)

February 18, 2018

Deep Reinforcement Learning

- A video from Google DeepMind's Deep Q-learning playing Atari Breakout: https://www.youtube.com/watch?v=TmPfTpjtdgg
- Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).
- code is also available
 https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner

N.B.

▶ Apologies for those have seen it before

significance of this demo shows it's possible to use Neural Network to learn how to play a game, based on:

- sequences of screen images
- scores the game receives
- goal is to learn the best policy for actions to take

Surely you don't need a menu to learn how to play Atari. i.e., it's model-free!

Reinforcement Learning (RL)

Forget about the Neural network for a second, how is Reinforcement Learning (RL) different to conventional supervised learning?

- ▶ No data label like supervised learning, i.e., no "best-action-for-that-screen" label
- only reward signal
- feedback in delayed, not instantaneous
- data are not i.i.d., (consecutive frames are similar)
- agent's actions affects the subsequent data it receives.

Let's get started with some RL background.

Reinforcement Learning (RL)

another way to look at it:

- RL uses training information that evaluates the actions taken rather than instructs by giving correct actions.
- ▶ a need for active exploration: explicit trial-and-error search for good behavior.
- purely evaluative feedback indicates how good the action taken is, but not whether it is the best or the worst action possible.
- purely instructive feedback indicates correct action to take, independently of the action actually taken. supervised learning

Application of RLs

- marketing customer's attributes s, marketing actions a, customer signs up r
- drone control all avaiable sensor data a, controls s, not crashing r
- chatbot conversations to-date s, things that a robot will say a, customer satisfaction r

Markov Process

- one may start from python and generate sequences with transition probabilities to end up in DLS star. examples:
 - Python, Python, TensorFlow, Keras, DLS star
 - Python, Python, Python, TensorFlow, TensorFlow, Keras, DRL, DRL RL, DLS star
 - Python, Python, TensorFlow, TensorFlow, Keras, DRL, DLS star
 - ▶ The question is: how we may able to measure "how good" each path? . . .

Markov Reward Process

Let's add some rewards to being at each of the state:

What we care is the **total return** G_t : sum of **discounted** reward from time-step t

$$\textit{G}_{t} = \textit{R}_{t+1} + \gamma \textit{R}_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^{k} \textit{R}_{t+k+1} \qquad \text{where } \gamma \in [0,1]$$

note that G_t is a random variable exercise what happens when $\gamma = 0$ and $\gamma = 1$

Markov Random Process: State value function

- ▶ state value function v(s)
- is expected total return starting from state s

$$\begin{aligned} v(s) &\equiv v(S_t) = \mathbb{E}_{s_{t+1}, s_{t+2}, \dots} [G_t | s_t = s] \\ &= \mathbb{E}_{s_{t+1}, s_{t+2}, \dots} [R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | s_t = s] \end{aligned}$$

 \triangleright v(s) indicates the long future value, if you are currently at state s

Markov Random Process: Bellman Equation

 \triangleright state value function v(s) is expected total return starting from state s

$$\begin{split} v(s) &= \mathbb{E}_{s_{t+1}, s_{t+2}, \dots} [G_t | s_t = s] \\ &= \mathbb{E}_{s_{t+1}, s_{t+2}, \dots} [R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | s_t = s] \\ &= \mathbb{E}_{s_{t+1}, s_{t+2}, \dots} [R_{t+1} + \gamma \underbrace{(R_{t+2} + \gamma R_{t+3} + \dots)}_{G_{t+1}} | s_t = s] \\ &= \mathbb{E}_{s_{t+1}, s_{t+2}, \dots} [R_{t+1} + \gamma G_{t+1} | s_t = s] \end{split}$$

• we know that, $\mathbb{E}_{x,y}[r(X) + r(X,Y)] = \mathbb{E}_x[r(X) + \mathbb{E}_y[r(X,Y)]]$

$$v(s) = \mathbb{E}_{s_{t+1}} [R_{t+1} + \gamma \mathbb{E}_{s_2, s_3, \dots} [G_{t+1} | s_{t+1}] | s_t = s]$$

= $\mathbb{E}_{s_{t+1}} [R_{t+1} + \gamma v(S_{t+1}) | s_t = s]$

Bellman equations: value of the current state, v(s) breaks up into (1) immediate and (2) future rewards.

Bellman Equation in matrix form

$$v(s_t) \equiv v(s) = \mathbb{E}_{s_1} \left[R_{t+1} + \gamma v(S_{t+1}) | s_t = s \right]$$

▶ say $s \in \{1, ..., n\}$:

$$\underbrace{\frac{v(s_{t}=1)}{v(1)}}_{v(1)} = \mathbb{E}_{s_{1}} \left[\underbrace{R_{t+1}(s_{t}=1)}_{R_{1}} + \gamma v(S_{t+1}) | s_{t}=1 \right]$$

$$v(s_{t}=2) = \mathbb{E}_{s_{1}} \left[R_{t+1}(s_{t}=2) + \gamma v(S_{t+1}) | s_{t}=2 \right]$$
...

take the first line.

$$v(1) = \mathbb{E}_{s_1} \left[R_1 + \gamma v(S_{t+1}) | s_t = 1 \right]$$

$$= R_1 + \gamma \mathbb{E} \left[v(S_{t+1}) | s_t = 1 \right]$$

$$= R_1 + \gamma \left(\sum_{s_{t+1}=1}^{n} v(s_{t+1}) \Pr(1 \to s_{t+1}) \right)$$

$$= R_1 + \gamma \left(\sum_{j=1}^{n} v(j) \Pr(1 \to j) \right)$$
...

 $\implies v(k) = R_k + \gamma \left(\sum_{j=1}^n v(j) \Pr(k \to j) \right)$

Bellman Equation in matrix form (2)

$$v(k) = R_k + \gamma \left(\sum_{j=1}^n v(j) \operatorname{Pr}(k \to j) \right)$$

$$= R_k + \gamma \mathcal{P}_{k,:}^{\mathsf{T}} \mathbf{v}$$

$$\Rightarrow \mathbf{v} = \mathbf{R} + \gamma \mathcal{P} \mathbf{v}$$

$$\Rightarrow \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} = \begin{bmatrix} R_1 \\ \vdots \\ R_n \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{1,1} & \dots & \mathcal{P}_{1,n} \\ \vdots & & \vdots \\ \mathcal{P}_{n,1} & \dots & \mathcal{P}_{n,n} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

the solution to MRP is straight forward:

$$\mathbf{v} = \mathbf{R} + \gamma \mathcal{P} \mathbf{v}$$
 $(I - \gamma \mathcal{P}) \mathbf{v} = R$
 $\mathbf{v} = (I - \gamma \mathcal{P})^{-1} R$

Markov Decision Process (MDP)

- now agent has actions
- concept of **policy** π : take a state s_t as input and decides and action a_t

$$\pi(a|s) = \Pr(A_t = a|S_t = s)$$

- a policy is time-invariant (or stationary) and stochastic
- next state for an agent, now also depends on its action taken:

$$\mathcal{P}_{s o s'}^a = \text{Pr}(S_{t+1} = s' | S_t = s, A_t = a)$$

- ightharpoonup multiple transition matrix \mathcal{P} each depends on the a taken
- once fixed π , MDP becomes MRP with transition probability $\mathcal{P}^{\pi}_{s \to s'}$:

$$\mathcal{P}^{\pi}_{s \to s'} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}^{a}_{s \to s'}$$

Markov Decision Process: State Value function

 \blacktriangleright is the expected return starting from state s, and then follow policy π :

$$v^{\pi}(s) = \mathbb{E}[G_t|s_t = s]$$

• for example, $v^{\pi}(s_0)$:

$$egin{aligned} oldsymbol{v}^{\pi}(oldsymbol{s}_0) &= \mathbb{E}_{oldsymbol{s}_1, oldsymbol{s}_2, oldsymbol{s}_3, ...} igg[\sum_{t=0}^{\infty} \gamma^t \underbrace{ au_t(oldsymbol{s}_t, \pi(oldsymbol{s}_t), oldsymbol{s}_{t+1}) }_{ ext{reward}} |oldsymbol{s}_0] \end{aligned}$$

the optimal state value is computed using best policy:

$$V^*(s_0) = \max_{\pi} \left(\mathbb{E}_{s_1, s_2, s_3, \dots} \left[\sum_{t=0}^{\infty} \gamma^t r_t(s_t, \pi(s_t), s_{t+1}) | s_0 \right] \right)$$

Dynamic programming

$$\begin{split} V^*(s_0) &= \max_{\pi} \left(\mathbb{E}_{s_1, s_2, s_3, \dots} \left[\sum_{t=0}^{\infty} \gamma^t \underbrace{r_t(s_t, \pi(s_t), s_{t+1})} \middle| s_0 \right] \right) \\ &= \max_{\pi} \left(\mathbb{E}_{s_1} \left[\mathbb{E}_{s_2, s_3, \dots} \left[\gamma^0 r_0(s_0, \pi(s_0), s_1) + \sum_{t=1}^{\infty} \gamma^t r_t(s_t, \pi(s_t), s_{t+1}) \right] \middle| s_0 \right] \right) \\ &= \max_{\pi} \left(\mathbb{E}_{s_1} \left[\gamma^0 r_0(s_0, \underbrace{\pi(s_0)}, s_1) + \mathbb{E}_{s_2, s_3, \dots} \left[\sum_{t=1}^{\infty} \gamma^t r_t(s_t, \pi(s_t), s_{t+1}) \middle| s_1 \right] \middle| s_0 \right] \right) \\ & \text{since} \quad a_t = \pi(s_t) \implies \max_{\pi} f(\pi(s_t)) = \max_{a_t} f(\pi(s_t)) \text{ and } \pi \text{ still takes care of rest of } a_1, \dots \\ &= \max_{a_0} \left(\mathbb{E}_{s_1} \left[\gamma^0 r_0(s_0, \pi(s_0), s_1) + \max_{\pi} \left(\mathbb{E}_{s_2, s_3, \dots} \left[\sum_{t=1}^{\infty} \gamma^t r_t(s_t, \pi(s_t), s_{t+1}) \middle| s_1 \right] \right) \middle| s_0 \right] \right) \\ & \text{we like the first } \gamma \text{ to be 1} \\ &= \max_{a_0} \left(\mathbb{E}_{s_1} \left[\underbrace{\gamma^0}_{t=1} r_0(s_0, \pi(s_0), s_1) + \gamma \max_{\pi} \left(\mathbb{E}_{s_2, s_3, \dots} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t(s_t, \pi(s_t), s_{t+1}) \middle| s_1 \right] \right) \middle| s_0 \right] \right) \\ & \xrightarrow{V^*(s_1)} V^*(s_1) \end{split}$$

Dynamic programming

$$\begin{split} V^*(s_0) &= \max_{\pi} \left(\mathbb{E}_{s_1, s_2, s_3, \dots} \left[\sum_{t=0}^{\infty} \gamma^t r_t(s_t, \pi(s_t), s_{t+1}) \middle| s_0 \right] \right) \\ &= \max_{s_0} \left(\mathbb{E}_{s_1} \left[r_0(s_0, \pi(s_0), s_1) + \gamma \underbrace{\max_{\pi} \left(\mathbb{E}_{s_2, s_3, \dots} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t(s_t, \pi(s_t), s_{t+1}) \middle| s_1 \right] \right)}_{V^*(s_1)} \middle| s_0 \right] \right) \\ &= \max_{s_0} \left(\mathbb{E}_{s_1} \left[r_0(s_0, \pi(s_0), s_1) + \gamma V^*(s_1) \middle| s_0 \right] \right) \end{split}$$

Bellman's equation

$$V^*(s) = \max_{a} \left(\mathbb{E}_{s'} \left[r(s, \pi(s), s') + \gamma V^*(s') \middle| s \right] \right)$$

▶ drop |s. one has:

$$V^{\pi}(s) = \mathbb{E}_{s'} \left[r(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

$$\implies V^{\pi}(s) + \eta V^{\pi}(s) = V^{\pi}(s) + \eta \left(\mathbb{E}_{s'} \left[r(s, \pi(s), s') + \gamma V^{\pi}(s') \right] \right)$$

$$\implies V^{\pi}(s) = V^{\pi}(s) + \eta \left(\mathbb{E}_{s'} \left[r(s, \pi(s), s') + \gamma V^{\pi}(s') \right] - V^{\pi}(s) \right)$$

▶ instead of compute this expectation, in **each iteration** t, we sample a new state $\tilde{s'} \sim \Pr(s'|\dots)$

$$V_{t+1}^{\pi}(s) = V_t^{\pi}(s) + \eta \left(r(s, \pi(s), \tilde{s}') + \gamma V_t^{\pi}(\tilde{s}') - V_t^{\pi}(s) \right)$$

▶ note that the last equation is called **temporal difference**

Bellman's equation: Three ways of solving it

$$V^{\pi}(s) = \mathbb{E}_{\pi}\left[G_{l}|s_{t} = s
ight] - ext{could be approximated by Monte-carlo, i.e., sample } s_{t+1}, s_{t+2}, \dots ext{ and compute } G_{t}$$

$$= \mathbb{E}_{\pi}\left[r(s, \pi(s), s') + \gamma V^{\pi}(s')\right] - ext{could be approximated by Temporal Difference}$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}^{a}_{s \to s'} \left[r(s, \pi(s), s') + \gamma V^{\pi}(s')\right] - ext{could be solved exactly by Dynamic programming}$$

Action-value (Q) function

- ▶ action-valued function $Q^{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a, \pi]$:
- ightharpoonup expected total return starting from state s, taking action a, and then follow policy π
- Stochastic policy π:

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)}[Q^{\pi}(s, a)]$$

deterministic policy:

$$v^*(s) = \max_{a'} Q^*(s, a')$$

from before:

$$\begin{split} V^*(s) &= \max_{a} \left(\mathbb{E}_{s'} \left[r(s, a, s') + \gamma \underbrace{V^*(s')}_{a'} \middle| s \right] \right) \\ &= \max_{a} \underbrace{\left(\mathbb{E}_{s'} \left[r(s, a, s') + \gamma \left(\max_{a'} Q^*(s', a') \right) \middle| s \right] \right)}_{Q^*(s', a') \text{ by definition}} \end{split}$$

therefore:

$$Q^*(s, a) = \mathbb{E}_{s'}\left[r(s, a, s') + \gamma \left(\max_{a'} Q^*(s', a')\right) \middle| s, a\right]\right)$$

Action-value (Q) function

$$Q^*(s, a) = \mathbb{E}_{s'}\left[r(s, a, s') + \gamma \big(\max_{a'} Q^*(s', a')\big)\big|s, a\right]\right)$$

ightharpoonup drop |s, a| let's solve this by **temporal difference**:

$$Q^{\pi}(s, a) = \mathbb{E}_{s'}\left[r(s, \pi(s), s') + \gamma\left(\max_{a'} Q^{\pi}(s', a')\right)\right]$$

$$\implies Q^{\pi}(s, a) + \eta Q^{\pi}(s, a) = Q^{\pi}(s, a) + \eta\left(\mathbb{E}_{s'}\left[r(s, a, s') + \gamma\left(\max_{a'} Q^{\pi}(s', a')\right)\right]\right)$$

$$\implies Q^{\pi}(s, a) = Q^{\pi}(s, a) + \eta\left(\mathbb{E}_{s'}\left[r(s, a, s') + \gamma\left(\max_{a'} Q^{\pi}(s', a')\right)\right] - Q^{\pi}(s, a)\right)$$

instead of compute this expectation, in each iteration t, we sample a new state (s̄', ã) ~ Pr(s', a| . . .).

Q-Learning: recursively:

$$Q(s, \tilde{a}) = Q(s, \tilde{a}) + \eta \left(\underbrace{r(s, \tilde{a}, \tilde{s'}) + \gamma \left(\max_{a'} Q(\tilde{s'}, a') \right)}_{V} - Q(s, \tilde{a}) \right)$$

let $\eta = 1$:

$$Q(s, \tilde{a}) = r(s, \tilde{a}, \tilde{s}') + \gamma \left(\max_{a'} Q(\tilde{s}', a') \right)$$

advantage function

advantage function:

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

$$\begin{split} &\mathbb{E}_{a \sim \pi(s)}[A^{\pi}(s, a)] \\ =& \mathbb{E}_{a \sim \pi(s)}[Q^{\pi}(s, a) - V^{\pi}(s)] \\ =& \mathbb{E}_{a \sim \pi(s)}[Q^{\pi}(s, a)] - V^{\pi}(s) = 0 \end{split}$$

- V measures how good in a particular state s.
- Q measures value of choosing a particular action when in this state.
- A measures relative importance of each action.

Q-Learning algorithm

```
Require: choice of \gamma Rewards matrix R

1: Q \leftarrow \mathbf{0}

2: for each episode do

3: randomise initiate state s_0

4: while goal state not reached do

5: select (a, s') \sim \Pr(a, s'|.)

6: compute \max_{a'} Q(s', a')

7: Q(s, a) \leftarrow r(s, a, s') + \gamma \left(\max_{a'} Q(s', a')\right)

8: s_t \leftarrow s_{t+1}

9: end while

10: end for
```

Q-Learning example

We took the example from the Markov Reward Process example earlier:

- there is small immediate rewards by going from one module to another
- you get a final large reward by becoming DLS star
- ▶ in this special example, a = s', i.e., the action is to turn into the next state (module of studies).
- assume equal probabilities for all edges.

Q-Learning example: episode 1

before

after

- s ~ Pr(s|.) = 1, i.e, Keras
- \blacktriangleright at s= 1, it has allowable actions: go to state $\{3,\,4,\,5\},$ i.e., $a\in\{3,\,4,\,5\}$
- $(a, s') \sim Pr(a, s' | .) = (5, 5)$
- ▶ at s' = 5, it has allowable actions: $a' \in \{1, 5\}$:

$$Q(s, a) = r(s, a, s') + \gamma \left(\max_{a'} Q(s', a') \right)$$

$$= R(1, s' = 5) + 0.5 \max_{a} [Q(s' = 5, 1), Q(s' = 5, 5)]$$

$$= 100 + 0.5 \times 0 = 100$$

▶ set $s \leftarrow s' \implies s = 5$, i.e., goal state, end

$S\downarrow,A\rightarrow$	RL(0)	Ke(1)	Py(2)	TF(3)	DRL(4)	DLS*(5))
RL(0)	(0	0	0	0	0	0	1
Ke(1)	0	0	0	0	0	100	-
_Py(2)	0	0	0	0	0	0	
TF(3)	0	0	0	0	0	0	
DRL(4)	0	0	0	0	0	0	
DLS*(5)	(0	0	0	0	0	0	/

Q-Learning example: episode 2, Iteration 1

$$s \sim \Pr(s|.) = 3$$

at s=3, it has allowable actions: go to state $\{1,2\}$, i.e., $a\in\{1,2\}$

$$(a, s') \sim \Pr(a, s' | .) = (1, 1)$$

▶ at s' = 1, it has allowable actions: $a' \in \{3, 4, 5\}$:

$$Q(s, a) = r(s, a, s') + \gamma \left(\max_{a'} Q(s', a') \right)$$

= $R(3, 1) + 0.5 \max[Q(1, 3), Q(1, 4), Q(1, 5)]$
= $1 + 0.5 \times 100 = 51$

set $s \leftarrow s' \implies s = 1$, i.e., **not** a goal state, keep on going

before

after

Q-Learning example: episode 2, Iteration 2

before

$S\downarrow,A\rightarrow$	RL(0)	Ke(1)	Py(2)	TF(3)	DRL(4)	DLS*(5)
RL(0)	(0	0	0	0	0	0 \
Ke(1)	0	0	0	0	0	100
Q = Py(2)	0	0	0	0	0	0
TF(3)	0	51	0	0	0	0
DRL(4)	0	0	0	0	0	0
DLS*(5)	(0	0	0	0	0	0 /

after

- s = 1 from previous iteration
- at s=1, it has allowable actions: go to state $\{3,4,5\}$, i.e., $a\in\{3,4,5\}$
- $ightharpoonup (a, s') \sim \Pr(a, s'|.) = (5, 5)$
- ▶ at s' = 5, it has allowable actions: $a' \in \{1, 5\}$:

$$Q(s, a) = r(s, a, s') + \gamma \left(\max_{a'} Q(s', a') \right)$$
$$Q(1, 5) = R(1, 5) + 0.5 \max[Q(5, 1), Q(5, 5)]$$
$$= 100 + 0.5 \times 0 = 100$$

▶ set $s \leftarrow s' \implies s = 5$, i.e., goal state, end

the state-action table gets updated until convergence.

On the setting of Atari

- the states are far too many!
- ▶ need a **function approximator** to estimate the action-value function, $Q(s, a|\theta) \approx Q^*(s, a)$
- guess what? Deep Neural Network helps!

Represent Q(s, a) using neural networks

The figure below represents a row of the Q function table earlier:

$$\mathsf{Conv}\: [\mathsf{16}] \to \mathsf{ReLU} \to \mathsf{Conv}\: [\mathsf{32}] \to \mathsf{ReLU} \to \mathsf{FC}\: [\mathsf{256}] \to \mathsf{ReLU} \to \mathsf{FC}\: [|\mathsf{A}|]$$

these are not softmax functions.

abstracted algorithm for Deep Q-Learning

Require: Initialize an empty replay memory **Require:** Initialize the DQN weights θ

1: for each episode do

2: **for** t = 1, ..., T **do**

3: with probability ϵ select \tilde{a} random action

4: otherwise, select:

$$\tilde{a} = \max_{a} (Q^*(s, a|\theta))$$

5: perform \tilde{a} and receive rewards r_t and state s'.

add tuple (s, \tilde{a}, r_t, s') into replay memory

7: Sample a mini-batch of tuples (s_j, a_j, r_j, s_i') from the replay memory

8: and perform stochastic gradient descent on the DQN, based on the loss function:

$$\left(\underbrace{r_j + \gamma(\max_{a'} Q(s'_j, a'|\theta^-))}_{y_j} - Q(s_j, a_j|\theta)\right)^2$$

9: end for 10: end for

innovation

- freeze parameters of target network $Q(s_i', a'|\theta^-)$ for fixed number of iterations
- while updating the online network $Q(s; a; \theta_i)$ by gradient descent

double Deep Q-Leanring

 \blacktriangleright same values θ both to select and to evaluate an action:

$$y_j = r_j + \gamma \left(\max_{a'} Q(s'_j, a'|\theta) \right)$$

= $r_j + \gamma \left(Q(s'_j, \arg \max_{a} Q(s'_j, a, \theta)|\theta) \right)$

- more likely to select overestimated values
- resulting in overoptimistic value estimates
- the solution is:

$$y_j = r_j + \gamma \left(\max_{a'} Q(s'_j, \arg \max_{a} Q(s'_j, a, \theta) | \theta') \right)$$

- \blacktriangleright still estimating value of policy according to current values defined by θ
- use second set of weights θ' to **fairly** evaluate value of this policy

In summary

- CNN and RNN are two of the building blocks in Deep Learning
- People have been putting them into many existing machine learning frameworks, and have generated many interesting stuff
- but there is plenty still needs to be explored!

UTS DataLounge