

CLAIMS

1. A method of making a window unit, the method comprising:
providing a coating on a glass substrate, the coating including at least
one layer comprising Ag;

depositing a protective layer comprising diamond-like carbon (DLC)
on the glass substrate over the coating;

heat treating the glass substrate with the coating and protective layer
thereon so that the protective layer comprising diamond-like carbon (DLC) at least
partially burns off during the heat treating; and

following said heat treating, coupling the glass substrate with the
coating thereon to another substrate in order to form the window unit.

2. The method of claim 1, wherein the window unit is an insulating glass
(IG) window unit.

3. The method of claim 1, wherein said coupling comprises laminating
the glass substrate to the another substrate via a polymer inclusive interlayer in order
to form a vehicle windshield.

4. The method of claim 1, wherein said heat treating comprises heating
the glass substrate to a temperature of at least about 570⁰C.

5. The method of claim 4, wherein said heat treating comprises heating
the glass substrate to a temperature of from about 590⁰C to 788⁰C for at least one
minute in thermally tempering and/or heat bending the glass substrate.

6. The method of claim 1, wherein the protective layer comprising DLC
entirely burns off during the heat treatment.

7. The method of claim 1, wherein the protective layer comprising DLC
is deposited on the glass substrate over the coating via ion beam deposition using a
hydrocarbon inclusive gas in an ion beam source.

8. The method of claim 1, wherein the protective layer comprising DLC has an average hardness of at least about 10 GPa.

9. The method of claim 8, wherein the protective layer comprising DLC has an average hardness of at least about 20 GPa.

10. The method of claim 1, wherein the protective layer comprising DLC includes more sp³ carbon-carbon bonds than sp² carbon-carbon bonds.

11. The method of claim 1, wherein the coating comprises a second layer comprising Ag, and wherein the two layers comprising Ag in the coating are spaced from one another with at least one dielectric layer provided therebetween.

12. The method of claim 1, wherein the dielectric layer comprises at least one of tin oxide and silicon nitride.

13. A method of making a window unit, the method comprising:
providing a solar control coating on a glass substrate;
ion beam depositing a protective layer comprising diamond-like carbon (DLC) on the glass substrate over the coating;

heat treating the substrate with the coating and protective layer thereon at a temperature of at least 570 degrees C so that the protective layer comprising diamond-like carbon (DLC) at least partially burns off; and

following said heat treating, coupling the glass substrate with the coating thereon to another substrate in order to form the window unit.

14. The method of claim 13, wherein the window unit comprises at least one of an IG window unit and a vehicle windshield.

15. The method of claim 13, wherein the solar control coating comprises at least one layer comprising Ag, and at least first and second dielectric layers on opposites sides of the layer comprising Ag.

16. A method of making a window unit, the method comprising:
providing a solar control coating on a glass substrate;

depositing at least one temporary protective layer on the glass substrate over the coating;

heat treating the substrate with the coating and protective layer thereon at a temperature of at least 570 degrees C so that the protective layer burns-off; and

following said heat treating, coupling the glass substrate with the coating thereon to another substrate in order to form the window unit.

2025 RELEASE UNDER E.O. 14176