2024-2025 学年第二学期高等代数与解析几何 第一次月考

一、(15分)用可逆线性替换将下述实二次型化为规范型,并求出它的符号差。

$$2x_1x_2 + 2x_1x_4 + 2x_2x_3 + 2x_3x_4$$
.

二、(15 分) 当实数 a 取何值时, 矩阵

$$A = \begin{pmatrix} a & -1 & 0 \\ -1 & a & -1 \\ 0 & -1 & a \end{pmatrix}$$

正定?

三、(15分)已知基组:

I:
$$\{-1, x - 2, x^2 - 3\}$$

II: $\{x - 1, x + 1, x^2 - x\}$

是 $\mathbb{R}[x]_3$ 的两组基。求:

- 1. 从基 I 到基 II 的过渡矩阵;
- 2. 多项式 $x^2 + x + 1$ 在基 II 下的坐标。

四、(15分)设矩阵

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 1 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix},$$

并设线性方程组 $A\mathbf{x} = \mathbf{0}$ 的解空间为 V。证明:

- 1. 所有使方程组 $A\mathbf{x} = \mathbf{b}$ 有解的向量 \mathbf{b} 构成线性空间 W;
- 2. 求 $V \cap W$ 的维数和一组基。

五、(15分)设向量空间:

$$V = \{ f(x) \in P[x]_4 \mid 3f(1) - f'(1) = f(0) = 0 \},$$

$$W = \{ g(x) \in P[x]_4 \mid g(-x) = g(x) \}.$$

- 1. 证明 $P[x]_4 = V \oplus W$;
- 2. 定义映射 $\mathcal{F}: W \to V$ 为

$$\mathcal{F}(g(x)) = xg(x) - 2g(0)x^2, \quad \forall g(x) \in W.$$

证明 F 是同构映射。

六、 $(10\ \mathcal{H})$ 设 V 是数域 P 上的 n 维线性空间。证明存在映射 $f:P\to V$,使得对 P 中任意 n 个互不相同的数 a_1,a_2,\ldots,a_n ,向量组 $f(a_1),f(a_2),\ldots,f(a_n)$ 都线性无关。

$$|tA + B| \ge t^n |A|$$
.