1. Eliminate the parameter and find a rectangular equation for the following parametric equations. Show all work.

A) [3pts]
$$x = t^3$$
 and $y = 1 - t$

B)
$$[3pts] x = 4 \sin t \text{ and } y = 3 \cos t$$

2. Graph the curve whose parametric equations are given, indicating the orientation of the curve with arrows. Clearly label the axes on your graph paper before graphing.

A) [3pts]
$$x = t + 5$$
 and $y = (t - 1)^2$ where $-2 \le t \le 2$

B) [3pts] $x(t) = 4\cos(t)$ and $y(t) = 4\sin(t)$ where $0 \le t < 2\pi$

Polar Equations

- 1. [2pts] Convert (5, -5) to polar coordinates with $0 \le \theta < 2\pi$
- 2. [2pts] Convert $(6,2\sqrt{3})$ to polar coordinates with $0 \le \theta < 2\pi$
- 3. [2pts] Convert $(6.2\pi/3)$ to rectangular coordinates _____
- 4. [2pts] Convert $(5,3\pi/2)$ to rectangular coordinates
- 5. [2pts] Which of the following is **not** a possible coordinate for point **A**?

B)
$$(-2.4\pi/3)$$

C)
$$(2,13\pi/3)$$

D)
$$(-2, -\pi/3)$$

E)
$$(-2, -8\pi/3)$$

6. [2pts] Which of the following *polar coordinate* points is furthest from the origin?

A)
$$(-\pi, 4)$$

B)
$$(-3, \pi/2)$$

C)
$$(2,3\pi)$$

D)
$$(1,6\pi)$$

7. [2pts] Convert to polar: $x^2 - y^2 = 16$

A)
$$r = \frac{4}{\cos\theta - \sin\theta}$$

B)
$$r^2 = \frac{16}{\cos^2 \theta - \sin^2 \theta}$$

C)
$$r = \frac{16}{\sin\theta\cos\theta}$$

D)
$$r = \frac{16}{\sin\theta - \cos\theta}$$

E)
$$r = \frac{4}{\sin\theta - \cos\theta}$$

- 8. [2pts] Convert to rectangular: $r = \cos(\theta)$
 - A) $x^2 + y^2 = x$
 - B) $y = x^2 y^2$
 - C) $\sqrt{x+y} = y$
 - D) $xy = 1 y^2$
 - $E) \quad x^2 + y^2 = y$
- 9. [2pts] Convert to rectangular $r = \sec(\theta)$
 - A) y = 1
 - B) xy = 1
 - C) y = x
 - D) x = 1
 - E) y = -x

Questions 10-12 Refer to the graphs below. The scale in the "r" axis is 1 unit per circle.

- 10. [1pt] Which of the above (A-F) is the graph of $r = 4 \sin(2\theta)$?
- 11. [1pt] Which of the above (A-F) is the graph of $r = -3\cos(\theta)$?
- 12. [1pt] Which of the above (A-F) is the graph of $r = 2 + 2\cos(\theta)$?

True/False	
1.	[1pt] It is possible for a single point in the plane to have the same coordinates in both
	rectangular and polar representations.
2.	[1pt] A function $y = f(x)$ cannot intersect itself
3.	[1pt] In a polar graph, the value of r is always non-negative.
4.	[1pt] Arrows on a parametric graph indicate the direction of increasing y values.
5.	[1pt] Every point in the plane has infinitely many polar coordinate representations.
Free	e Response
	seball pitcher throws a baseball with an initial speed of 138 feet per second at an angle of 20° to the ontal. At time $t = 0$, the ball leaves the pitcher's hand at a height of 4 feet above the ground.
1.	[1pt] Find four parametric equations that describe the position and velocity of the ball as a function of time. (Assume the ground has a <i>y</i> -coordinate of 0).
2.	[1pt] Set up but do not solve an equation to answer: How long is the ball in the air?
3.	[1pt] Set up but do not solve an equation to answer: At what time does the ball reach its maximum height?
4.	[1pt] What is the height of the ball after 2 seconds?

[1pt] Does the ball fly for more than 4 seconds?

5.