Вопросы к экзамену по курсу мат. анализа, 3 модуль

Малых М.Д.

2 апреля 2021 г.

Билет состоит из двух вопросов: теор. вопрос и задача.

1. Теоретические вопросы

- 1) Числовые ряды. Примеры сходящихся и расходящихся рядов.
- 2) Ряд $\sum \frac{1}{n^p}$.
- 3) Равномерная сходимость функционального ряда. Теоремы о почленном интегрировании и дифференцировании.
- 4) Степенные ряды. Радиус сходимости. Теоремы о почленном интегрировании и дифференцировании.
- 5) Ряды Фурье. Теорема Дирихле.
- 6) Смешанные производные, теорема об их равенстве.
- 7) Формула Тейлора для функции двух переменных.
- 8) Условный экстремум. Метод множителей Лагранжа. Экстремальные свойства собственных значений.
- 9) Функции двух переменных: необходимые условия экстремума, достаточные условия экстремума.
- 10) Двойные интегралы: определение и сведение к повторному.
- 11) Двойные интегралы: определение и замена переменных.

2. Задачи

1) Сходится ли ряд

$$\sum_{n=1}^{\infty} (-1)^n$$
?

2) Сходится ли ряд

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1}?$$

3) Сходится ли ряд

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^2 + 1}$$

равномерно по $x \in \mathbb{R}$?

4) Найдите радиус сходимости степенного ряда

$$\sum_{n=1}^{\infty} nx^{n!}$$

- 5) Найдите коэффициент при x^5 в разложении в ряд Маклорена функции xe^{x^2} .
- 6) Найдите коэффициент при x^5 в разложении в ряд Маклорена первообразной для функции xe^{x^2} .
- 7) Найдите коэффициент при $\sin 3x$ в ряде Фурье для четной функции, имеющей период 2π и равной x^2 при $0 < x < \pi$.
- 8) Найдите коэффициент при $\sin 3x$ в ряде Фурье для нечетной функции, имеющей период 2π и равной x^2 при $0 < x < \pi$.
- 9) Сходится ли ряд Фурье для четной функции, имеющей период 2π и равной x при $0 < x < \pi$, равномерно по $x \in \mathbb{R}$?
- 10) Функция f(x) имеет период 2π , равна 0 при $-\pi < x < 1$ и x при $1 < x < \pi$. К какому значению сходится ее ряд Фурье в точке x = 1?

- 11) Найдите частную производную функции $\sin(x2^y)$ по x.
- 12) Найдите смешанную частную производную функции $\sin(x2^y)$ второго порядка.
- 13) Составьте уравнение плоскости, касающейся графика функции $z = x^2 + 2y^2 xy$ в точке (1,2).
- 14) Найдите точки экстремума квадратичной функции $z = x^2 + y^2 + 4xy x 2y$.
- 15) Найдите стационарные точки функции $(x-2y)e^{2xy}$.
- 16) Определите тип стационарной точки (0,0) функции $z=x^2+4y^2+2xy+y^3+xy^2$ (варианты: min,max,седло).
- 17) Укажите наибольшее значение, которое принимает функция $z=x^2+2xy-2y^2$ на единичной окружности $x^2+y^2=1$.
- 18) Укажите точки, в которых функция $z = x^2 + 2xy 2y^2$, рассматриваемая на единичной окружности $x^2 + y^2 = 1$, принимает наименьшее значение.
- 19) Вычислите интеграл

$$\iint\limits_T xydxdy$$

по треугольнику T с вершинами (0,0),(2,0),(0,1).

20) Вычислите интеграл

$$\iint\limits_{T} xydxdy$$

по кругу $x^2 + y^2 + 4y < 8$.