

Synthetic Linking Functions

Gorney (2021)

Backgrou

Durnoso

Metho

Discussion

Differences in Test Form Difficulties Differences in Group

Conclusion

Reference

When to Use Synthetic Linking Functions in Small-Sample Equating

Kylie N. Gorney

University of Wisconsin-Madison

National Council on Measurement in Education (NCME)
Annual Meeting · 2021

Random Equating Error

Synthetic Linking Functions

Gorney (2021)

Backgr

Durne

Metho

Results

Differences in Test Form Difficulties

Form Difficulties

Differences in Ground Abilities

Conclusion

- Whenever samples are used to estimate an equating relationship, random equating error is present
- Especially concerning in small-sample situations
- Minimize by using the identity function, which is analogous to not equating at all
 - The standard error of equating (SEE) is zero
 - Produces very biased results when test forms differ markedly in difficulty

Synthetic Linking Functions

Synthetic Linking Functions

Gorney (2021)

Васкgr

Purpo

Metho

Results

Differences in Te

Form Difficulties

Differences in Gro

Conclusio

Reference

A **synthetic linking function** computes a weighted average of the identity function and a second equating function (Kim, von Davier, & Haberman, 2008).

$$syn_Y(x) = we_Y(x) + (1 - w)id_Y(x)$$
 (1)

where w is a weight between 0 and 1, e is an equating function other than the identity function, and id is the identity function.

Purpose

Synthetic Linking Functions

Gorney (2021)

The purpose of this study was to identify which, if any, small-sample situations are best handled by synthetic equating.

- Treated the difference in test form difficulties as a random effect
- Treated the difference in group abilities as a random effect
- Used weights that satisfy the symmetry property of equating (Holland & Strawderman, 2011)

Data

Synthetic Linking Functions

Gorney (2021)

Backgroun

Purpose

ivietno

Results

Differences in Test Form Difficulties Differences in Grou

Conclusion

Reference

• Simulated a 100-item test containing 30 anchor items

 $\bullet \ \ \mathsf{Sample \ sizes:} \ \ N=10,25,50,100$

1,000 replications

Equating Design and Methods

Synthetic Linking Functions

Gorney (2021)

Backgroun

.

Method

Results &

Differences in Tes Form Difficulties

Differences in Gro

Conclusion

- Common-item nonequivalent groups design
- Equating methods
 - Nominal weights mean (NM)
 - 2 Tucker mean (TM)
 - 3 Tucker linear (TL)
 - 4 Chained linear (CL)

Differences in Test Form Difficulties

Bias

Synthetic Linking Functions

Gorney (2021)

Backgroun

D.....

Method

Results &

Differences in Te

Abilities

C---I....

Reference

 Identity and synthetic equating were very biased when the test forms differed even slightly in difficulty

 Traditional equating displayed small amounts of bias overall

Differences in Test Form Difficulties

Root Mean Squared Error (RMSE)

Synthetic Linking Functions

Gorney (2021)

Background

D.....

Method

Results &

Differences in Te

Difference in (

Reference

 Synthetic equating preferred when the test forms were similar in difficulty and sample sizes were small

- Traditional equating preferred in all other cases
- NM and TM equating tended to yield the lowest RMSEs

Differences in Group Abilities

Bias

Synthetic Linking Functions

Gorney (2021)

Background

Purpose

ivietnoa

Discussion

Differences in Test

Difference

Canalusian

References

 When groups were similar in ability, all equating types yielded similar amounts of bias

- Traditional equating displayed more bias in the extreme cases
- NM equating was the least biased, on average

Differences in Group Abilities

Root Mean Squared Error (RMSE)

Synthetic Linking Functions

Gorney (2021)

Backgroung

Басквтоип

D 1: 0

Discussion

Differences in Test Form Difficulties

Abillties

- Synthetic equating preferred when the sample size was 10
- Traditional equating preferred for larger sample sizes
- NM and TM equating tended to yield the lowest RMSEs

Conclusion

Synthetic Linking Functions

Gorney (2021)

Backgroun

Purpose

IVIELIIO

Discussion

Differences in Test Form Difficulties Differences in Grou

Abilities

- Synthetic equating may be considered when the sample size is 25 or smaller <u>and</u> when it is known that the test forms do not differ markedly in difficulty
- In all other cases, use traditional equating functions
- For very small samples, NM and TM equating tended to be the most effective
- Future research: different test or group characteristics, weights, and equating methods

Thank you!

Synthetic Linking Functions

Gorney (2021)

Backgroun

D

Method

Danilla (

Differences in Test Form Difficulties

Differences in Grou Abilities

Reference

For more information, please contact kyliengorney@gmail.com. \\

References

Synthetic Linking Functions

Gorney (2021)

Backgrou

Metho

Roculte

Differences in Tes Form Difficulties

Form Difficulties
Differences in Grou
Abilities

Conclusio

- Holland, P. W., & Strawderman, W. E. (2011). How to average equating functions, if you must. In A. A. von Davier (Ed.), Statistical methods for test equating, scaling, and linking (pp. 89–107). Springer. https://doi.org/10.1007/978-0-387-98138-3_6
- Kim, S., von Davier, A. A., & Haberman, S. (2008).
 Small-sample equating using a synthetic linking function.
 Journal of Educational Measurement, 45(4), 325–342.