# PRACTICUM DIGITAL SYSTEM MODUL 7 DIGITAL SYSTEM



# By : Donny Rizal Adhi Pratama L200183161

INFORMATION TECHNOLOGY
FACULTY OF COMMUNICATION AND INFORMATIC
MUHAMMADIYAH UNIVERSITY OF SURAKARTA

## **Experiment 1 (NOR Latch)**



Picture 1.1 NOR Latch

|   | C (Cat) | D (Deset) | Output |    |
|---|---------|-----------|--------|----|
|   | S (Set) | R (Reset) | Q      | Q' |
| 1 | 0       | 1         | 0      | 1  |
| 2 | 0       | 0         | 0      | 1  |
| 3 | 1       | 0         | 1      | 0  |
| 4 | 0       | 0         | 1      | 0  |
| 5 | 1       | 1         | 0      | 0  |

#### Answer the question below!

- a. What will happen if we give the condition S = R = 0?
  - ⇒ The same as before, basically NOR Latch as the storage from output before.
- b. Why the condition for S = R = 1, it is prohibited?
  - $\Rightarrow$  Because it can't be the same and it will gives the output 0

#### **Experiment 2. (NAND Latch)**



Picture 2.1 NAND Latch

|   | C (Cat) | D (Daget) | Output |    |
|---|---------|-----------|--------|----|
|   | S (Set) | R (Reset) | Q      | Q' |
| 1 | 0       | 1         | 1      | 0  |
| 2 | 1       | 1         | 1      | 0  |
| 3 | 1       | 0         | 0      | 1  |
| 4 | 1       | 1         | 0      | 1  |
| 5 | 0       | 0         | 1      | 1  |

Answer the question below!

- a. What will happen if we give the condition for S = R = 1?
  - ⇒ As the data storage before, I mean it will give the output the same as before.
- b. Why the condition S = R = 0 is prohibited?
  - ⇒ Because it can be the same and will give the output 1

Based on the Circuit flip-flop above, what is your opinion about the statement "Flip-flop and latch use for an Element Storage data"?

⇒ Yes, it is true. Latch as the storage data that use in Electronics that has two stable states to store state Information.

#### **Experiment 3 (Flip Flop RS)**



Picture 3.1 Flip – Flop RS

|   | S (Sat) | P (Paget) | Clock | Output |             |
|---|---------|-----------|-------|--------|-------------|
|   | S (Set) | R (Reset) | Clock | Q      | $Q_{(t+1)}$ |
| 1 | 0       | 0         | 0     | 1      |             |
| 2 | 0       | 0         | 1     |        |             |
| 3 | 0       | 1         | 0     | I      |             |
| 4 | 0       | 1         | 1     | 0      | 1           |
| 5 | 1       | 0         | 0     | 0      | 1           |
| 6 | 1       | 0         | 1     | 1      | 0           |
| 7 | 1       | 1         | 0     | 1      | 0           |
| 8 | 1       | 1         | 1     | 0      | 0           |

#### Answer the question below!

- a. What will happen if we give the condition S = R = 1 and the clock changes from 1 into 0?
  - ⇒ Simulation Error. "Logic race condition detected during transient system"

#### How that's possible?

 $\Rightarrow$  Because S = R = 1 and clock changes from 1 into 0. And it is prohibited the clock in 0 condition.

#### Explain how Flip – Flop RS Works?

 $\Rightarrow$  RS = 00 So it will lock the output before RS = 01 it will changes the output Q to  $Q_{(t+1)}$ 

RS = 10 it changes the output Q became 0

RS = 11 the prohibited one and error will occurs.

For the most Clock Has to Not 0 first, When you need to know the result in Flip-Flop RS without error your Clock has to 1 First then change the Set and Reset.

## **Experiment 4 (Flip – Flop D)**



Picture 4.1 Flip Flop D

|   | D | Clock | Output |             |  |
|---|---|-------|--------|-------------|--|
|   | D |       | Q      | $Q_{(t+1)}$ |  |
| 1 | 0 | 0     | 1      | 1           |  |
| 2 | 0 | 1     | 0      | 1           |  |
| 3 | 1 | 0     | 0      | 1           |  |
| 4 | 1 | 1     | 1      | 0           |  |
| 5 | 0 | 0     | 1      | 0           |  |
| 6 | 0 | 1     | 0      | 1           |  |
| 7 | 1 | 0     | 0      | 1           |  |
| 8 | 1 | 1     | 1      | 0           |  |

Explain How Flip – Flop D work!

⇒ If Clock Output is 0 so it could be as Latch and lock the Output before If Clock Output is 1 so it could change the Output Q

What is the Function of NOT gate in Flip – Flop D compared with Flip – Flop RS!

⇒ To solve the Prohibited condition in Flip – Flop RS

#### **Experiment 5 (Flip – Flop JK)**



Picture 5.1 Flip – Flop JK

|   | T | K | Clock | Output |             |
|---|---|---|-------|--------|-------------|
|   | J | K |       | Q      | $Q_{(t+1)}$ |
| 1 | 0 | 0 | 0     | 0      | 1           |
| 2 | 0 | 0 | 1     | 0      | 1           |
| 3 | 0 | 1 | 0     | 0      | 1           |
| 4 | 0 | 1 | 1     | 0      | 1           |
| 5 | 1 | 0 | 0     | 1      | 0           |
| 6 | 1 | 0 | 1     | 1      | 0           |
| 7 | 1 | 1 | 0     | 1      | 0           |
| 8 | 1 | 1 | 1     | 1      | 1           |

What will happen if J = K = 0 and Clock rise up (Change from 0 to 1)?

- $\Rightarrow$  Clock output will change overtime but doesn't change the output Q and  $Q_{(t+1)}$  What will happen if J=K=1, and Clock Rise Up?
  - $\Rightarrow$  If the Clock 1 so Output Q and  $Q_{(t+1)}$  will be changed too.
  - $\Rightarrow$  If the Clock 0 so it will store the Output Q and  $Q_{(t+1)}$

Explain how Flip – Flop Works!

 $\Rightarrow$  How it works it is same as Flip – Flop RS just the prohibited condition ( J=K=1, Clock Up) can be done ( Solved) .