#### Red-Black Trees



2/22/2018 4:19 PM

## (2,4) Trees

- Good
  - O(log n) worst case performance for search/insert/delete
- Bad
  - Non-standard trees (i.e., "not binary trees")
  - Implementation complexity

## Improvement to (2,4) Trees

Currently, we perform constant time "tree-correction" operations that maintain the O(log n) tree height

So, can we perform constant time "tree-correction" operations on a standard binary tree and maintain O(log n) tree height?

#### Ideas?





"we want stuff like this"

Welcome to the world of Red-Black trees...

### From (2,4) to Red-Black Trees

- A red-black tree is a representation of a (2,4) tree by means of a binary tree whose nodes are colored red or black
- ◆ In comparison with its associated (2,4) tree, a red-black tree has
  - same logarithmic time performance
  - simpler implementation with a single (binary-tree-like) node type



2/22/2018 4:19 PM

#### Red-Black Tree

- A red-black tree can also be defined as a binary search tree that satisfies the following properties:
  - Root Property: the root is black
  - External Property: every leaf is black
  - Internal Property: the children of a red node are black
  - Depth Property: all leaves have the same black depth



2/22/2018 4:19 PM

## Height of a Red-Black Tree

Theorem: A red-black tree storing n items has height  $O(\log n)$ 

#### Proof:

- The height of a red-black tree is at most twice the height of its associated (2,4) tree, which is  $O(\log n)$
- (Why?)
- Since a red-black tree is a binary tree, the search algorithm for a red-black search tree is the same as that for a binary search tree
- lacktriangle By the above theorem, searching in a red-black tree takes  $O(\log n)$  time

## Red-Black Tree Operations

- Search
  - Depends on height of tree, thus searching with n items takes  $O(\log n)$
- ◆Insert
  - Coming up next...
- Delete
  - Coming up next next...

#### Insertion

- To perform operation insertItem(k, o), we execute the insertion algorithm for binary search trees
- $\bullet$  ...and color red the newly inserted node z unless it is the root

## (Insertion for binary trees)

- To perform operation insertItem(k, o), we search for key k
- Assume k is not already in the tree, and let w be the leaf reached by the search
- We insert k at node w and expand w into an internal node
- Example: insert 5





#### Insertion

- To perform operation insertItem(k, o), we execute the insertion algorithm for binary search trees
- $\bullet$  ...and color red the newly inserted node z unless it is the root
  - We preserve the root, external, and depth properties
  - If the parent v of z is black, we also preserve the internal property and we are done
  - Else (v is red ) we have a double red (i.e., a violation of the internal property), which requires a reorganization of the tree
- Example where the insertion of 4 causes a double red:



#### What can we do?

Example where the insertion of 4 causes a double red:



## Remedying a Double Red

Consider a double red with child z and parent v, and let w be the sibling of v

#### Case 1: w is black

- The double red is an incorrect replacement of a 4-node
- Solution:
  - we change the 4-node replacement = "restructuring"



#### Case 2: w is red

- The double red corresponds to an overflow
- Solution:
  - we perform the equivalent of a split = "recoloring"



### Restructuring

- A restructuring remedies a child-parent double red when the parent red node has a black sibling
- ◆ It is equivalent to restoring the correct replacement of a 4-node

The internal property is restored and the other properties are preserved



2/22/2018 4:19 PM

# Restructuring (cont.)

- There are several restructuring configurations depending on whether the double red nodes are left or right children
  - How many?



(2) (6)

i.e., four possible "rotations" of the 4-node

# Restructuring (cont.)

Note: sometimes restructuring operations are refered to as "rotation operations"

## Remedying a Double Red

lacktriangle Consider a double red with child z and parent v, and let w be the sibling of v

#### Case 1: w is black

- The double red is an incorrect replacement of a 4-node
- Solution:
  - we change the 4-node replacement = "restructuring"



#### Case 2: w is red

- The double red corresponds to an overflow
- Solution:
  - we perform the equivalent of a split = "recoloring"



2/22/2018 4:19 PM

## Recoloring

- A recoloring remedies a child-parent double red when the parent red node has a red sibling
- ◆ The parent v and its sibling w become black and the grandparent u becomes red, unless it is the root
- It is equivalent to performing a split on a 5-node
- $\bullet$  The double red violation may propagate to the grandparent u



2/22/2018 4:19 PM

#### **Analysis of Insertion**

#### Algorithm insertItem(k, o)

- 1. We search for key *k* to locate the insertion node *z*
- 2. We add the new item (k, o) at node z and color z red
- 3. while doubleRed(z)
  if isBlack(sibling(parent(z)))
  z ← restructure(z)
  return

 $z \leftarrow recolor(z)$ 

**else** { *sibling*(*parent*(*z*) is red }

- Recall that a red-black tree has  $O(\log n)$  height
- Step 1 takes
  - $O(\log n)$  time because we visit  $O(\log n)$  nodes
- Step 2 takes
  - *O*(1) time
- Step 3 takes
  - $O(\log n)$  time
  - Because we perform  $O(\log n)$  recolorings, each taking O(1) time, and
  - at most one restructuring taking O(1) time
- $\bullet$  Thus, an insertion in a redblack tree takes  $O(\log n)$  time

# Deletion

To perform operation remove(k), we first execute the deletion algorithm for binary search trees

# (Deletion for binary trees)

- Three cases:
  - Zero children
  - One child
  - Two children

# (Deletion: zero children)

Must be a leaf node – simple (e.g., remove 5)

> Assume key k is in tree, and let v be the node storing k

- We search for key *k*
- Remove node



## (Deletion: one child)

- To perform operation, we search for key k (e.g., remove 4)
- lacktriangle Assume key k is in tree, and let v be the node storing k
- If node v has one leaf child u, we remove v and u from the tree with operation removeAboveExternal(u)



## (Deletion: two children)

- What if the key k to be removed has two internal nodes as children, e.g. "remove 3"
  - we find the internal node w that follows v in an inorder traversal
  - we copy key(w) into node v
  - we remove node w and its left child z (which must be a leaf) by means of operation removeAboveExternal(z)



#### Deletion

- lacktriangle To perform operation remove(k), we first execute the deletion algorithm for binary search trees
- lacktriangle Let v be the internal node removed, w the external node removed, and r the sibling of w
  - If either v or r was red, we color r black and we are done
  - Else (v and r were both black) we color r double black, which is a violation of the internal property requiring a reorganization of the tree
- Example where the deletion of 8 causes a double black:



2/22/2018 4:19 PM

#### What can we do?

Example where the deletion of 8 causes a double black:



# Remedying a Double Black

The algorithm for remedying a double black node with sibling y considers three cases

Case 1: y is black and has a red child

 We perform a restructuring, equivalent to a transfer, and we are done

Case 2: y is black and its children are both black

 We perform a recoloring, equivalent to a fusion, which may propagate up the double black violation

Case 3: y is red

- We perform an adjustment, equivalent to choosing a different representation of a 3-node, after which either Case 1 or Case 2 applies
- Deletion in a red-black tree takes  $O(\log n)$  time

# Red-Black Tree Reorganization

| Insertion remedy double red |                                 |                                     |
|-----------------------------|---------------------------------|-------------------------------------|
| Red-black tree action       | (2,4) tree action               | result                              |
| restructuring               | change of 4-node representation | double red removed                  |
| recoloring                  | split                           | double red removed or propagated up |

| Deletion              | remedy double black             |                                       |  |
|-----------------------|---------------------------------|---------------------------------------|--|
| Red-black tree action | (2,4) tree action               | result                                |  |
| restructuring         | transfer                        | double black removed                  |  |
| recoloring            | fusion                          | double black removed or propagated up |  |
| adjustment            | change of 3-node representation | restructuring or recoloring follows   |  |

2/22/2018 4:19 PM Red-Black Trees 28

#### Demo

https://www.cs.usfca.edu/~galles/visua lization/RedBlack.html