# Applications of Information Complexity II

David Woodruff IBM Almaden

#### Outline

New Types of Direct Sum Theorems

Direct Sum with Aborts

2. Direct Sum of Compositions



Can't we fix the private randomness?



- Distribution μ on inputs (x, y)
- Correctness:  $Pr_{(X,Y) \sim \mu, \text{ private randomness}} [\Pi(X,Y) = f(X,Y)] \ge 1-\delta$
- Communication:  $\max_{x,y, \text{ private randomness}} |\Pi(x,y)|$

## Distributional Communication Complexity vs. Information Complexity

- By averaging, there is a good fixing of the randomness:  $D_{\mu, \delta}(f) = \min_{\text{correct deterministic }\Pi} \max_{x,y} |\Pi(x,y)|$
- However, we'll use the notion of information complexity:  $IC^{ext}_{\mu, \delta}(f) = min_{correct \Pi} I(X, Y; \Pi) = H(X, Y) H(X, Y | \Pi)$

Can't fix private randomness of  $\Pi$  and preserve I(X, Y;  $\Pi$ )

Input X Randomness R



$$X \oplus R$$





- Distribution  $\mu^k$  on inputs  $(x,y) = (x_1, y_1), \dots, (x_k, y_k)$
- Correctness:  $Pr_{(X,Y) \sim \mu^k, \; private \; randomness} [\Pi(X,Y) = f^k(X,Y)] \geq 1-\delta$
- $D_{\mu^k, \delta}(f^k) = \min_{\text{correct }\Pi} \max_{x,y, \text{ private randomness}} |\Pi(x,y)|$



# How Hard is Solving all k Copies?

**Main question:** Is solving instances independently the best we can do?

$$D_{\mu^k,\delta}(f^k) \stackrel{?}{\geq} \Omega(k).D_{\mu,\frac{\delta}{k}}(f)$$

Direct sum theorems

$$- D_{\mu^{k},\delta}(f^{k}) \ge \Omega(\sqrt{k}).D_{\mu,\delta}(f)$$

$$- D_{\mu^{k},\delta}^{r}(f^{k}) \ge \Omega(k).\left(D_{\mu,\delta}^{r}(f) - r - \sqrt{r.D_{\mu,\delta}^{r}(f)}\right)$$

$$- \dots$$
[BBCR 10]
$$- D_{\mu^{k},\delta}(f^{k}) \ge \Omega(k).\left(D_{\mu,\delta}^{r}(f) - r - \sqrt{r.D_{\mu,\delta}^{r}(f)}\right)$$

Direct product theorems

$$- D_{\mu^{k}, 1 - \left(1 - \frac{1}{3}\right)^{k}}(f^{k}) \ge \Omega(\sqrt{k}) D_{\mu, \frac{1}{3}}(f)$$

[BRWY]

Jain et al (bounded rounds)

# How Hard is Solving all k Copies?

**Main question:** Is solving instances independently the best we can do?

$$D_{\mu^k,\delta}(f^k) \stackrel{?}{\geq} \Omega(k).D_{\mu,\frac{\delta}{k}}(f)$$

Direct

 $-D_{\mu}$ 

 $-D_{\mu}^{r}$ 

None attains above bound!

Impossible for general problems [FKNN95]

BCR 10]

[BR 11]

**However, general** but relaxed statement (with aborts) is true for information complexity

μ, 1 (1 3)



- When protocol aborts, it "knows it is wrong"
- $IC^{ext}_{\mu, \alpha, \beta, \delta}(f) = min I(X, Y; \Pi)$ , over  $\Pi$  that  $(\mu, \alpha, \beta, \delta)$ -compute f

#### **Direct Sum with Aborts**

Main result: Stronger direct sum for every communication problem via protocols with abortion

solving k instances with error  $\delta$  is as hard as solving each instance with error  $\frac{\delta}{k}$  and constant **abortion** 

- Formally,  $IC^{\text{ext}}_{\mu^k, \delta}(f^k) = \Omega(k) \cdot IC^{\text{ext}}_{\mu, 1/10, \delta/k}(f)$
- Number r of communication rounds is preserved  $IC^{\text{ext, r}}_{\mu^{k}, \delta}(f^{k}) = \Omega(k) \cdot IC^{\text{ext, r}}_{\mu, 1/10, \delta/k}(f)$

#### Proof Idea

• 
$$I(X^{1}, Y^{1}, ..., X^{k}, Y^{k}; \Pi) = \sum_{i} I(X^{i}, Y^{i}; \Pi \mid X^{

$$= \sum_{i} \sum_{X, y} I(X^{i}, Y^{i}; \Pi \mid X^{
•  $Pr[X^{

B
$$1 - \delta \leq Pr(\text{all } k \text{ correct})$$

Create
•  $R$ 
•  $R$ 
•  $R$ 

$$Pr(i \text{ correct} \mid \text{correct up to } i - 1)$$
•  $R$$$$$$

Check if Π's output is correct on first i-1 instances

i = 1..k

- If correct, then  $\Pi_{x,v}(A,B)$  outputs the i-th output of  $\Pi$
- Else, Abort

• R

and

#### т,

#### Application: Direct Sum for Equality

• For strings x and y, EQ(x,y) = 1 if x = y, else EQ(x,y) = 0

$$x_1, \, ..., \, x_k \in \{0,1\}^n$$





$$y_1, \, ..., \, y_k \in \{0,1\}^n$$

- $EQ^k = (EQ(x_1, y_1), EQ(x_2, y_2), ..., EQ(x_k, y_k))$
- Standard direct sum:

$$\begin{array}{l} {\rm IC^{ext,\; 1}}_{\;\; \mu^{k},\; 1/3}({\rm EQ^{k}}) = \Omega({\rm k}) \cdot {\rm IC^{ext,\; 1}}_{\;\; \mu,\; 1/3} \, ({\rm EQ}) \\ {\rm For\; any}\; \mu, \; {\rm IC^{ext,\; 1}}_{\;\; \mu,\; 1/3} \, ({\rm EQ}) = {\rm O}(1), \; {\rm so\; LB\; is}\; \Omega({\rm k}) \end{array}$$

Direct sum with aborts:

$$IC^{\text{ext, 1}}_{\ \mu^{k},\ 1/3}(EQ^{k}) = \Omega(k) \cdot IC^{\text{ext, 1}}_{\ \mu,\ 1/10,\ 1/(3k)}(EQ) = \Omega(k \ log \ k)$$

## **Sketching Applications**

Optimal lower bounds (improve by a log k factor)

- Sketching a sequence  $u_1, ..., u_k$  of vectors, and sequence  $v_1, ..., v_k$  of vectors in a stream to  $(1+\epsilon)$ -approximate all distances  $|u_i v_j|_p$
- Sketching matrices A and B in a stream so that for all i, j,  $(A \cdot B)_{i,j}$  can be approximated with additive error  $\epsilon |A_i|^*|B_j|$

#### м

## Set Intersection Application

$$S \subseteq [n]$$
  
 $|S| = k$ 



$$T \subseteq [n]$$
  
 $|T| = k$ 

Each party should locally output S ∩ T

- Randomized protocol with O(k) bits of communication.
- In O(r) rounds, obtain O(k ilog<sup>(r)</sup> k) communication [WY]
  - $ilog^{(1)} k = log k$ ,  $ilog^{(2)} k = log log k$ , etc.
- Combining [BCK] and direct sum with aborts, any r-round protocol w. pr.  $\geq$  2/3 requires  $\Omega(k \text{ ilog}^{(r)} k)$  communication

#### м

#### Outline

New Types of Direct Sum Theorems

1. Direct Sum with Aborts

2. Direct Sum of Compositions

## v

## Composing Functions

- 2-Party Communication Complexity
  - Alice has input x. Bob has input y
- Consider  $x = (x^1, ..., x^r)$  and  $y = (y^1, ..., y^r) \in (\{0,1\}^n)^r$
- $f(x,y) = h(g(x^1, y^1), ..., g(x^r, y^r))$  for Boolean function g



Given information complexity lower bounds for h and g, when is there an information complexity lower bound for f?

# Composing Functions

- ALL-COPIES =  $(g(x^1, y^1), ..., g(x^n))$
- DISJ(x,y) =  $\bigvee_{i=1}^r (x^i \wedge y^i)$
- TRIBES(x,y) =  $\wedge_{i=1}^r DISJ(x^i, y^i)$
- Key to information complexity lower be embedding step
  - Lower bound  $I(X, Y; \Pi) = \Sigma_i I(X)$ protocol for each i to solve the
  - Lower bound I(X<sup>i</sup>, Y<sup>i</sup>; Π | X<sup><i</sup>, Y<sup><i</sup>)
  - Combining function h needs to be sensitive to individual coordinates (under appropriate distribution)

OR function sensitive to individual coordinates

his an

of g

AND function sensitive to individual instances of DISJ

## Composing Functions

What if outer function h is not sensitive to individual coordinates?

Can we use IC<sup>ext</sup>(Gap-Thresh(AND)) to bound IC<sup>ext</sup>(Gap-Thresh(g)) for other functions g?

- No obvious
   Inresn!
- For specific choices of inner function [BGPW, CR]:

 $IC^{ext}_{\mu, \delta}(Gap\text{-Thresh}(a^1 \wedge b^1, \ldots, a^r \wedge b^r)) = \Omega(r)$  for  $\mu$  a product uniform distribution on  $a=(a^1, \ldots, a^r)$ ,  $b=(b^1, \ldots, b^r)$ 



# Analyzing

X<sup><i</sup>, Y<sup><i</sup> determines A<sup><i</sup>, B<sup><i</sup> given **P, S** 

Let Π be protoco.

Chain rule

Now let's look at the information cost

, /<i

By che

- Condition...
- Maximum likelih a predictor θ y
  - Holds for
- I(Π; X¹,...,

Normally we would look at information cost.

Here we look at an intermediate measure

 $\mathbf{P}^{<i}$ ,  $\mathbf{P}$ ,  $\mathbf{S}$ , there is  $\Omega(1)$ 

X<i, Y<i, P, S) X<i, Y<i, A<i, B<i, P, S)

 $\geq \sum_{i=1}^{n} (i, Y^i \mid A^{i}, B^{i}, P, S)$ 

# Guessing Game

Protocol  $\Psi$  is correct if can guess (A,B) w. pr.  $1/4 + \Omega(1)$  given  $\Psi(U,V)$ , S, P

CIC<sup>ext</sup>(Guessing Game) = min<sub>correct Ψ</sub> I (Π; U, V | S, P)

• = |

ius... soordinate

• Consider a protocol Time S

- Embed random

bits A, B on S

Lower bounds for this problem imply lower bound for DISJ

psing distribution µ:

| <b>D</b> | 1 |   | A | 0 | 9 | 0 | 0 | 0 | 1 |  |
|----------|---|---|---|---|---|---|---|---|---|--|
|          |   |   |   |   |   |   |   |   |   |  |
| 0        | 0 | 0 | В | 1 | 1 | 0 | 0 | 1 | 0 |  |



Show CIC<sup>ext</sup>(Guessing Game) =  $\Omega(n)$ 

Proof related to DISJ lower bound

= S)

- $= \Omega(r) \cdot CIC^{ext}(Guessing Game)$
- Embedding Step
  - Create a protocol Π<sub>i,a,b,p,s</sub> for Guessing Game on inputs (U,V)
  - Use private randomness, a, b, p, s to sample X<sup>j</sup>, Y<sup>j</sup> for j ≠ i
  - Set  $(X^i, Y^i) = (U, V)$
  - Let the transcript of Π<sub>i,a,b,p,s</sub> equal the transcript of Π
  - Use predictor  $\theta$ , given a, b, p, s,  $P^i$ ,  $S^i$ , and the transcript  $\Pi$ , to guess  $A^i$ ,  $B^i$  w. pr.  $\frac{1}{4} + \Omega(1)$ , so solve Guessing Game

### м

## Distributed Streaming Model



- Each  $x^i \in \{-M, -M+1, ..., M\}^n$
- Problems on  $x = x^1 + x^2 + ... + x^k$ : sampling, p-norms, heavy hitters, compressed sensing, quantiles, entropy
- Direct Sum of Compositions (generalized to k players): tight bounds for approximating  $|x|_2$  and additive  $\epsilon$  approx. to entropy

## Open Questions

Direct Sum with Aborts:

$$D_{\mu, \delta}(f^{k}) = \Omega(k) \cdot IC^{ext}_{\mu, 1/10, \delta/k}(f)$$

Instead of f<sup>k</sup>, when can we improve the standard direct sum theorem for combining operators such as MAJ, OR, etc.?

- Direct Sum of Compositions: for which functions g is  $IC^{ext}(Gap\text{-Thresh}(g(x^1, y^1), ..., g(x^r, y^r))) = \Omega(r \cdot n)$ ?
- See Section 4 of <a href="http://arxiv.org/abs/1112.5153">http://arxiv.org/abs/1112.5153</a> for work on a related Gap-Thresh(XOR) problem (a bit different than Gap-Thresh(DISJ))
- Gap-Thresh(DISJ) problem in followup work [WZ]