National University of Computer and Emerging Sciences, Lahore Campus

THE PRESENTAND TO THE PARTY OF	Course Name:	Discrete Structures	Course Code:	CS-211
	Program:	Computer Science	Semester:	Fall 2018
	Duration:	3 Hrs	Total Marks:	90
	Paper Date:	December 26, 2018.	Weight	
	Section:	ALL	Page(s):	6
	Exam Type:	Final		

Student : Name:	Roll No.	Section:

Instruction/Notes:

- Solve the exam on this question paper. You can get extra sheets for rough work but they will NOT be marked or graded.
- 2. Sharing calculators is strictly NOT allowed.
- 3. 1 A4 handwritten cheat sheet is allowed in the exam.

Question 1 (Marks: 10)

Prove using mathematical induction: $\sum_{k=0}^n \binom{n}{k} = 2^n$. Also, write down all identities you use.

Roll number:	Section:
Question 2	(Marks: 5+5)
	types of animals having integral weights less than 100 kg (starting from one kg) concept of Pigeon hole principle, prove that there is a pair whose sum of weights is
100 kg.	oncept of the general provide that there is a pair whose same the gints is
<u> </u>	
Q2, ii. For section A,C,D,E,F,G	
_	50 blue, 60 orange, and 20 green ones. If socks are taken out one at a time, what is
	t draw from the bag to ensure that at least 20 of them are of the same color.
Show working/formula.	
O2 ii For costion P (Dr. Kholid)	
Q2, ii For section B (Dr. Khalid) Three cards are selected from a har ser	ntaining 3 non-identical red, 4 non-identical white and 5 non-identical green cards.
What are the possible number of ways	
a. All three have the same color?	of selecting cards if.
a. All tillet have the same color:	
b. All three have a different color?	
Question 3	(Marks: 4+4)
i. It is required that a number plate ha	as three English capital letters, followed by four digits. In how many ways can a
policeman trace a car whose number s	tarts from L and ends with digit 5 if: (for each part give formula/reasoning)
a. Letters and digits both can be rep	peated.
b. Letters and digits both are distinct	t.
	have to be surface.
c. Letters can be repeated but digits	nave to be unique.
d. Letters are distinct but digits can	he reneated
a. Letters are distinct but digits call	ve repeated.

Roll number: ii. How many arrangements of the letters A,S,T,I,O,N,M can be made with no repetition formula/reasoning)	Section: n if: (for each part give
a. A is to be first letter in each arrangement	
b. A and T is fixed at first and last place respectively	
c. MAS appears as a string at any place	
d. A is fixed at second place and MT, NS appear as strings	
Question 4 (Marks: 10) Prove that $\sqrt{7}$ is an irrational number by giving a proof by contradiction.	

Question 5 (Marks: 3+3+3+3+3)

i. Is the following graph isomorphic to W_4 (wheel of order 4). If yes, transform the given graph to W_4 or show mapping. If not, then explain why?

ii. Are the following graphs G_1 and G_2 isomorphic? If yes, show their mapping. If not, then explain why?

iii. Is the following graph bi-partite? If yes prove it by redrawing the graph, otherwise explain why it isn't?

iv. Name the following simple graphs:

v. Write down all the simple paths from 1 to 6.

Roll number:	Section:
Question 6 FOR SECTIONS A & C (Miss Masooma) (Marks: 10)	
Find the total number of bit strings of length 10 that satisfy:	
. Begin and end with a bit 1	
i. Begin with two 0s or end with three 1s	
ii. Three consecutive 0s and two consecutive 1s	
v. Begin with two 1s or have four consecutive 0s	
v. Begin with two 0s and end with three 1s and contain the string 101	
Question 6 FOR SECTIONS B, D, E, F & G (Marks: 2+8). Suppose the roots of the characteristic equation of the associated linear for some constants c_1 , c_2 , c_3 , c_4 . The recurrence relation is given by: $a_n = c_1 \ a_{n-1} + c_2 \ a_{n-2} + c_3 \ a_{n-3} + c_4 \ a_{n-4} + n2^n$ What is the form of the particular solution for the above recurrence? Yo	

ii. Solve the following recurrence relation and give the final solution for initial conditions: $a_0=3, a_1=6$

 $a_n = 6a_{n-1} - 9a_{n-2}$ NOTE: Clearly write down the final answer also.

Roll number:	Section:
Question 7 (Marks: 4+2+2+4+3+2+5+5)	
d. C(5000,100) = C(100,90)*C(4900,10) □ true	□ false □ false □ false
ii. GCD(100,190) =	
iii. Give the smallest positive integer x that satisfies the following cong $3x \equiv 2 \pmod{8}$	ruence:
iv. Tick the correct option? a. {apples, oranges, bananas} b. $\{x \mid 0 \le x \le 1 \text{ and } x \text{ is a real number with } 100 \text{ digits after the } c. 2.2222 <= x <= 0.2223 \text{ and } x \text{ is a real number } d. \{2^x \mid x \in Z\}$ v. Find the transitive closure of the following relation R defined on $\{a,b\}$ R = $\{(a,b),(a,d),(c,b),(d,b),(d,c),(c,a)\}$	□ countable □ uncountable □ uncountable
vi. Find the inverse of the following function $f: Z \rightarrow Z$ f(x) = x + 5	
vii. Given the following knowledge base cat(mano); cat(chotto); puppy(kalu); puppy(ragy); puppy(goldy); color(mano,black); color(chotto,black); color(kalu,black); color(ragy,brown); color(goldy,black)	
Tick the correct option given the above facts. a. $\forall x \ (\neg \text{color}(x,\text{black}) \to \neg \text{cat}(x) \)$ b. $\forall x \ (\text{ puppy}(x) \land (\text{color}(x,\text{brown}) \lor \text{color}(x,\text{black}) \))$ c. $\forall x \ (\text{ color}(x,\text{black}) \to \text{cat}(x) \)$ d. $\exists x \ (\text{ puppy}(x) \land \text{color}(x,\text{brown}) \)$ e. $\forall y \ \exists x \ (\text{ puppy}(y) \to \text{color}(y,x) \)$	☐ true ☐ false

viii. Use modular exponentiation algorithm to calculate the value of 4²⁸¹ mod 11. No marks without proper working.