Dodle Moles Endo/Exothermic Reactions

By Jadyn Thone

Resource Explanation

A brief description of the resource and teacher preparation instructions, including suggestions for classroom use.

Doodle Notes Graphic Organizer

3 levels of the graphic organizer, completed for differentiation (fully completed, fill-in-the-blanks and "empty") + extra note-taking pages!

Teacher "Answer Key"

Stuck for design ideas? Show students the answer key first (only quickly), so they can gain an idea of what the finished product will look like.

Thank you!

I hope this resource is useful in your classroom. Please don't hesitate to email me with questions at jadynthone@outlook.com

By Jadyn Thone

Description

This is a Newton's First Law of Motion graphic organizer that allows students to compile their knowledge and understanding in a doodle notes style! Give your students a welcome change of pace by leading them through the ideas and concepts behind Newton's First Law of Motion (Inertia) and then gift them with time to doodle and make those connections! This graphic organizer would be great for an interactive notebook, too!

Teacher Preparation Instructions

Simply print off as many copies as necessary, provide students with colored pencils, textas or crayons and watch them engage the creative side of their brain! This single-sided sheet doodle notes could be used as an introduction to Newton's First Law of Motion or as independent/group review of inertia/friction/gravity/Newton's Laws.

ENDOTHERMIC REACTIONS take in [OR absorb]
ENERGY FROM THE SURROUNDINGS. THE REACTION IS cold.

IN AN endothermic reaction, THE ENERGY increases OVER TIME AS HEAT IS absorbed INTO THE SYSTEM.

THEREFORE, THE OVERALL TEMPERATURE DECREASES HEAT ENERGY INCREASES

IN AN <u>exothermic</u>
reaction, THE ENERGY
decreases OVER TIME AS
HEAT IS released
FROM THE SYSTEM.
THEREFORE, THE OVERALL
TEMPERATURE DECREASES
HEAT ENERGY INCREASES

EXOTHERMIC REACTIONS give out [OR release] ENERGY TO THE SURROUNDINGS. THE REACTION IS NOT .

REACTANTS + Heat → PRODUCTS

ENDOTHERMIC REACTIONS take in (OR absorb) ENERGY FROM THE SURROUNDINGS. THE REACTION IS cold.

IN AN endothermic reaction, THE ENERGY increases OVER TIME AS HEAT IS absorbed INTO THE SYSTEM. THEREFORE, THE OVERALL heat energy increases.

ENDOTHERMIC

in, absorb

heat energy

out, release

heat energy

IN AN exothermic reaction,
THE ENERGY decreases
OVER TIME AS HEAT IS
released FROM THE
SYSTEM. THEREFORE, THE
OVERALL heat energy
decreases.

EXOTHERMIC REACTIONS give out (OR release) ENERGY TO THE SURROUNDINGS. THE REACTION IS hot.

REACTANTS → PRODUCTS + Heat

© Jadyn Thone, 2017

REACTANTS + Heat → PRODUCTS

ENDOTHERMIC REACTIONS take in (OR absorb) ENERGY FROM THE SURROUNDINGS. THE REACTION IS cold.

IN AN endothermic reaction, THE ENERGY increases OVER TIME AS HEAT IS absorbed INTO THE SYSTEM. THEREFORE, THE OVERALL temperature decreases.

ENDOTHERMIC

in, absorb

heat energy

out, release

heat energy

IN AN exothermic reaction,
THE ENERGY decreases
OVER TIME AS HEAT IS
released FROM THE
SYSTEM. THEREFORE, THE
OVERALL temperature
increases.

EXOTHERMIC REACTIONS give out (OR release) ENERGY TO THE SURROUNDINGS. THE REACTION IS hot.

REACTANTS \rightarrow Products + Heat

ENDOTHERMIC REACTIONS _____ (OR _____)
ENERGY FROM THE SURROUNDINGS. THE REACTION IS

IN AN _____, THE ENERGY
_____OVER TIME
AS HEAT IS ____
INTO THE SYSTEM.
THEREFORE, THE OVERALL
INCREASES.

ENDOTHERMIC

,	A
IN AN, THE ENERGY, THE ENERGY, OVER TIME AS HEAT IS FROM THE SYSTEM. THEREFORE, THE OVERALLDECREASES.	ΔH < 0
EXOTHERMIC REACTIONS _ ENERGY TO THE SURROUND	(OR) INGS. THE REACTION IS
REACTANTS → PRODUCTS + _	
/ UCOT PULMIPOL DONDS	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

THAN

SURROUNDINGS

© Jadyn Thone, 2017

 $SOLID \leftarrow LIQUID \leftarrow GAS$

ENDOTHERMIC REACTIONS _____ (OR _____)
ENERGY FROM THE SURROUNDINGS. THE REACTION IS _____

IN AN _____, THE ENERGY
_____, OVER TIME
AS HEAT IS ____
INTO THE SYSTEM.
THEREFORE, THE OVERALL
DECREASES.

	.
IN AN	$\Delta H < 0$
, THE ENERGY OVER TIME AS	\bigcap
HEAT IS	├
FROM THE SYSTEM.	
THEREFORE, THE OVERALLINCREASES.	
EXOTHERMIC REACTIONS _ ENERGY TO THE SURROUND	OR (OR) INGS. THE REACTION IS
REACTANTS → PRODUCTS + _	

IN AN _____, THE ENERGY
_____, OVER TIME
AS HEAT IS ____
INTO THE SYSTEM.
THEREFORE, THE OVERALL
INCREASES.

	$\Delta H < 0$
, THE ENERGY OVER TIME AS	
HEAT IS	+ +
FROM THE SYSTEM.	
THEREFORE, THE OVERALL	
DECREASES.	
EVOTUEDAJO DEGOTIONO	(OD)
EXOTHERMIC REACTIONS	(OR)
ENERGY TO THE SURROUN	DINGS. THE REACTION IS
REACTANTS → PRODUCTS +	
	\wedge \wedge
<i></i>	/ / /
(HEAT, CHEMICAL BONDS	TUON
(HEAT, CHEMICAL BONDS	THAN SURROUNDINGS
(HEAT, CHEMICAL BONDS	THAN SURROUNDINGS

IN AN _____, THE ENERGY
_____, THE ENERGY
_____, OVER TIME
AS HEAT IS ____
INTO THE SYSTEM.
THEREFORE, THE OVERALL
DECREASES.

IN HN	$\Delta \Pi \setminus 0$
, THE ENERGY OVER TIME AS	\bigcap
HEAT IS	↑ † − − −
FROM THE SYSTEM.	
THEREFORE, THE OVERALL	
INCREASES.	
EXOTHERMIC REACTIONS _	(OR)
ENERGY TO THE SURROUND	INGS. THE REACTION IS
REACTANTS \rightarrow Products + _	
	\rightarrow
(HERT , CHEMICAL BONDS	200
	THAN THAN
1	SURROUNDINGS
$\$ SOLID \leftarrow LIQUID \leftarrow GAS	
© Jadyn Thone, 2017	

ESSOFMERMIC

IN AN, THE ENERGY, THE ENERGY, OVER TIME AS HEAT IS FROM THE SYSTEM. THEREFORE, THE OVERALLDECREASES.	
EXOTHERMIC REACTIONS _ ENERGY TO THE SURROUND	(OR) INGS. THE REACTION IS
REACTANTS PRODUCTS _	
/ HEAT, CHEMICAL BONDS	THAN SURROUNDINGS
SOLID LIQUID GA	S

IN AN, THE ENERGY, THE ENERGY OVER TIME AS HEAT IS FROM THE SYSTEM. THEREFORE, THE OVERALLINCREASES.	
EXOTHERMIC REACTIONS _ ENERGY TO THE SURROUND	OR (OR) INGS. THE REACTION IS
REACTANTS PRODUCTS _	
/ HEAT, CHEMICAL BONDS	THAN
SOLID LIQUID GA	

IN AN	
, THE ENERGY OVER TIME AS	
HEAT IS	
FROM THE SYSTEM.	
THEREFORE, THE OVERALL	
DECREASES.	
	—
EXOTHERMIC REACTIONS _	(OR)
ENERGY TO THE SURROUND	INGS. THE REACTION IS
REACTANTS PRODUCTS	\Box
/ HEAT , CHEMICAL BONDS	
	THAN
	SURROUNDINGS
! !	
√ SOLID LIQUID GA	
© Jadyn Thone, 2017	

IN AN			
, THE ENERGY OVER TIME AS			
HEAT IS			
FROM THE SYSTEM.			
THEREFORE, THE OVERALL INCREASES.			
INGNEHISES.			-
EXOTHERMIC REACTION	S	(OR]
ENERGY TO THE SURRO	UNDINGS. TH	E REACTION IS	
REACTANTS PRODUCTS	}	7	7
(HEAT, CHEMICAL BONDS	\ \	\mathcal{L}^{\diamond}	
i ! !		SURROU	THAN NDINGS
SOLID LIQUID	GAS		

ESSOFFIERMIC

Who Am I?

My name is Jadyn Thone and I am an Australian Secondary teacher of Science, Technology, Math and English. During my time as a teacher I have taught many age groups of varying skill and ability. I found that I needed to create resources that suited my students. All my resources are tried and tested in authentic school settings. I upload new materials all the time, so don't forget to check back in! All the best!

Terms of Use

Download of this product is for one license for personal classroom or home use by a single educator. Please kindly adhere to the Digital Millennium Copyright Act.

For special permission requests, contact me with the details below.

My Stores

Browse my teaching materials at your favourite educational resource site by clicking the logos!

Looking for more?

