ME/AER 676 Robot Modeling & Control Spring 2023

Forward Kinematics & Jacobians

Hasan A. Poonawala

Department of Mechanical Engineering University of Kentucky

Email: hasan.poonawala@uky.edu Web: https://www.engr.uky.edu/~hap

Introduction

- ▶ We consider robots modeled as links joined in series.
- ▶ The degrees of freedom at the joints form the joint variables q.
- ► Task variables *X* capture quantities describing what the robot must do.
- Traditional robot control focuses on the conversion of joint variables to task variables (forward kinematics) and back (inverse kinematics)

$$X = f(q); \quad q = f^{-1}(X)$$

Forward Kinematics as Homogenous Transformations

- ► This problem involves composing a number of relative link (homogenous) transformations
- ► It may be solved numerically, with the specific details depending on how these link transformations are parametrized
- \blacktriangleright The transformation (d, R) may be represented by
 - origin and Euler angles (URDF)
 - D-H Parameters
 - Twist (Screw Theory)
 - etc. . . .

Serial Kinematic Chains

- ▶ We look at serial kinematic chains where all joints are simple.
- ▶ We number links as 0 for base to *n* in sequence.
- ► The assumption of single-parameter joints means we can use basic transformations to handle coordinate transformations.
- ▶ These basic transformation are denoted $A_i(q_i)$, where $q_i \in \mathbb{R}$ is the joint variable.
- $ightharpoonup q_i$ is either an angle θ_i (revolute joints) or a distance d_i (prismatic joints).

Example: Planar3R

Example: Planar3R

Example: Planar3R

$$o_6^2 = \begin{bmatrix} \operatorname{Rot}_{z,q_1} & \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \operatorname{Rot}_{z,q_2} & \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \operatorname{Rot}_{z,q_3} & \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} I_3 & \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Forward Kinematics of Serial Chains

Given link i and i-1,

$$A_i = \begin{bmatrix} R_i^{i-1} & o_i^{i-1} \\ 0 & 1 \end{bmatrix} \tag{1}$$

Transformations between links i and j is T_j^i , where we are expressing frame j in frame i.

$$T_{j}^{i} = \begin{cases} A_{i+1}A_{i+2} \cdots A_{j-1}A_{j} & i < j \\ I & i = j \\ \left(T_{j}^{i}\right)^{-1} & i > j \end{cases}$$
 (2)

Forward Kinematics of Serial Chains

- ► For an *n*-link serial chain manipulator, the task variables are a combination of
 - Origin of frame n (end-effector or tool frame)
 - Orientation of frame n

$$T_n^0(q) = \begin{bmatrix} R_n^0(q) & d_n^0(q) \\ 0 & 1 \end{bmatrix}$$

X is derived from $R_n^0(q)$ and/or $d_n^0(q)$ i.e. X = f(q)

Modern Robotics

- ► The book "Modern Robotics" uses exponential coordinates (twists) to represent homogenous transformations.
- ▶ It does not follow the D-H convention (next slide).
- ► The main difference to D-H is that in MR frame i fixed to link i is at joint i, not joint i + 1.
- Videos on FK in this course follow MR's convention of locating frame i at joint i.
- Universal Robot Description Formats (URDFs) also follow this approach

Denavit-Hartenberg Convention

In this convention

- All motion happens along the z axis
- ► Four numbers are enough to define relative link transformations (instead of 6 or 12).

The D-H convention is based on two restrictions:

- (DH1) The x_1 axis intersects the z_0 axis.
- (DH2) The x_1 axis is orthogonal to the z_0 axis.

This restriction makes the transformation matrix between link i and i-1 given in (1) reduce to

$$A_i = \text{Rot}_{z,\theta_i} \text{Trans}_{z,d_i} \text{Trans}_{x,a_i} \text{Rot}_{x,\alpha_i}$$
 (3)

This convention is more common in earlier robotics texts, and is used in many systems.

We assign coordinates – aka rigid body pose – (d, R) to frame, relative to reference. $d \in \mathbb{R}^3$, $R \in SO(3)$

▶ We assign coordinates – aka rigid body pose – (d, R) to frame, relative to reference. $d \in \mathbb{R}^3$, $R \in SO(3)$

▶ If the rigid body pose tells us where a frame is located, its position, what is the **rate-of-change of the position**?

- ▶ We assign coordinates aka rigid body pose (d, R) to frame, relative to reference. $d \in \mathbb{R}^3$, $R \in SO(3)$
- ▶ If the rigid body pose tells us where a frame is located, its position, what is the **rate-of-change of the position**?
- For a position vector in \mathbb{R}^n , we know that the rate of change of position is another vector in \mathbb{R}^n , called the **velocity**

- We assign coordinates aka rigid body pose (d, R) to frame, relative to reference. $d \in \mathbb{R}^3$, $R \in SO(3)$
- ▶ If the rigid body pose tells us where a frame is located, its position, what is the rate-of-change of the position?
- For a position vector in \mathbb{R}^n , we know that the rate of change of position is another vector in \mathbb{R}^n , called the **velocity**
- ► However, the orientation coordinate (d, R) is not a vector! What is $\frac{d}{dt}R(t)$?

It turns out that

$$\dot{R}(t) = SR$$

where S satisfies $S + S^T = 0$

▶ It turns out that

$$\dot{R}(t) = SR, \label{eq:Ratio}$$
 where S satisfies $S + S^T = 0$

▶ *S* is a skew-symmetric matrix, and has the form

$$S = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix},$$

for any three numbers ω_1 , ω_2 , ω_3

It turns out that

$$\dot{R}(t) = SR,$$

where S satisfies $S + S^T = 0$

▶ S is a skew-symmetric matrix, and has the form

$$S = \left[egin{array}{cccc} 0 & -\omega_3 & \omega_2 \ \omega_3 & 0 & -\omega_1 \ -\omega_2 & \omega_1 & 0 \end{array}
ight],$$

for any three numbers ω_1 , ω_2 , ω_3

Physically, the vector $\omega = \begin{bmatrix} \omega_1 & \omega_2 & \omega_3 \end{bmatrix}^T$ defines the instantaneous angular velocity in base/space frame $\{0\}$

- ▶ The angular velocity $\omega \in \mathbb{R}^3$ can be represented using two different sets of numbers:
 - As a vector in 3D indicating the instantaneous axis of rotation in a frame and speed of rotation.

- ▶ The angular velocity $\omega \in \mathbb{R}^3$ can be represented using two different sets of numbers:
 - As a vector in 3D indicating the instantaneous axis of rotation in a frame and speed of rotation.
 - As the three derivatives of the three numbers used to parametrize SO(3) (not a physical vector).

Jacobians and Forward Velocity Kinematics

X is derived from R_n^0 and/or d_n^0 , where $T_n^0 = \begin{bmatrix} R_n^0 & d_n^0 \\ 0 & 1 \end{bmatrix}$

Jacobians and Forward Velocity Kinematics

$$X$$
 is derived from R_n^0 and/or d_n^0 , where $T_n^0 = \begin{bmatrix} R_n^0 & d_n^0 \\ 0 & 1 \end{bmatrix}$

Forward Kinematics:
$$X = f(q)$$
 (4)

Forward Velocity Kinematics:
$$\dot{X} = ?$$
 (5)

Jacobians and Forward Velocity Kinematics

$$X$$
 is derived from R_n^0 and/or d_n^0 , where $T_n^0 = \begin{bmatrix} R_n^0 & d_n^0 \\ 0 & 1 \end{bmatrix}$

Forward Kinematics:
$$X = f(q)$$
 (4)

Forward Velocity Kinematics:
$$\dot{X} = J(q)\dot{q}$$
 (5)

- \triangleright J(q): Jacobian matrix
- ightharpoonup Size of J(q) depends on joint and task space dimensions
- ▶ Derivation of J(q) depends on type of coordinates for joint and task spaces
 - ► Geometric Jacobians : when representing derivative of task frame orientation as an angular velocity
 - Analytic Jacobians: when representing derivative of task frame orientation as derivative of task orientation variables

▶ Forward Kinematics provides $X \rightarrow \xi = f(q)$

- ▶ Forward Kinematics provides $X \rightarrow \xi = f(q)$
- ▶ The relationship between ξ and \dot{q} is linear:

$$\xi = J(q)\dot{q}$$

- Forward Kinematics provides $X \to \xi = f(q)$
- ▶ The relationship between ξ and \dot{q} is linear:

$$\xi = J(q)\dot{q}$$

When the orientation of X is given by a vector of three numbers α , then $\xi = \dot{X}(t)$, and the Jacobian is analytic, and given by $J_a(q) = \frac{\partial f}{\partial q}$.

- Forward Kinematics provides $X \to \xi = f(q)$
- ▶ The relationship between ξ and \dot{q} is linear:

$$\xi = J(q)\dot{q}$$

- When the orientation of X is given by a vector of three numbers α , then $\xi = \dot{X}(t)$, and the Jacobian is analytic, and given by $J_a(q) = \frac{\partial f}{\partial q}$.
- When orientation is not three numbers, J(q) is geometric, and $\xi \neq \dot{X}(t)$

- Forward Kinematics provides $X \to \xi = f(q)$
- ▶ The relationship between ξ and \dot{q} is linear:

$$\xi = J(q)\dot{q}$$

- When the orientation of X is given by a vector of three numbers α , then $\xi = \dot{X}(t)$, and the Jacobian is analytic, and given by $J_a(q) = \frac{\partial f}{\partial q}$.
- ▶ When orientation is not three numbers, J(q) is geometric, and $\xi \neq \dot{X}(t)$
- Columns of J(q) of geometric Jacobian are derived geometrically

Example: Planar3R Geometric Jacobian

Example: Planar3R Geometric Jacobian

$$T_{1}^{0} = \begin{bmatrix} \operatorname{Rot}_{z,q_{1}} & \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_{1}^{0} & o_{1}^{0} \\ 0 & 1 \end{bmatrix}$$

$$T_{2}^{0} = \begin{bmatrix} \operatorname{Rot}_{z,q_{1}} & \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \operatorname{Rot}_{z,q_{2}} & \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_{2}^{0} & o_{2}^{0} \\ 0 & 1 \end{bmatrix}$$

$$T_{3}^{0} = \begin{bmatrix} \operatorname{Rot}_{z,q_{1}} & \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \operatorname{Rot}_{z,q_{2}} & \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \operatorname{Rot}_{z,q_{3}} & \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_{3}^{0} & o_{3}^{0} \\ 0 & 1 \end{bmatrix}$$

$$T_{4}^{0} = \begin{bmatrix} \operatorname{Rot}_{z,q_{1}} & \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \operatorname{Rot}_{z,q_{2}} & \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \operatorname{Rot}_{z,q_{3}} & \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} I_{3} & \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \\ 0 & 1 \end{bmatrix}$$

Uses of the Jacobian

- ▶ Forward Velocity Kinematics: Compute end-effector velocity ξ given joint angle derivatives \dot{q}
- Inverse Velocity Kinematics: Compute \dot{q} given ξ
- ▶ Relates end-effector forces F to joint torques τ at equilibrium: $\tau = J(q)^T F$
- ▶ Defines the manipulability μ and the manipulability ellipsoid (next slide)

Manipulability

1. The manipulability μ is then given by

$$\mu = \prod_{i=1}^{m} \sigma_i \tag{6}$$

where σ_i are the singular values of $J \in \mathbb{R}^{m \times n}$; $J = U \Sigma V$.

Manipulability

1. The manipulability μ is then given by

$$\mu = \prod_{i=1}^{m} \sigma_i \tag{6}$$

where σ_i are the singular values of $J \in \mathbb{R}^{m \times n}$; $J = U \Sigma V$.

2. Let rank(J) = m, and $w = U^T \xi$. Then

$$\dot{q} = J^{+}\xi \implies ||\dot{q}||^{2} = \xi^{T}(JJ^{T})^{-1}\xi$$
, where

$$\xi^{T}(JJ^{T})^{-1}\xi = (U^{T}\xi)^{T}\Sigma_{m}^{-2}(U^{T}\xi) = w^{T}\Sigma_{m}^{-2}w = \sum_{i=1}^{m} \frac{w_{i}^{2}}{\sigma_{m_{i}}^{2}}$$

and Σ_m is a square diagonal matrix formed from the m largest singular values of J

Manipulability

1. The manipulability μ is then given by

$$\mu = \prod_{i=1}^{m} \sigma_i \tag{6}$$

where σ_i are the singular values of $J \in \mathbb{R}^{m \times n}$; $J = U \Sigma V$.

2. Let rank(J) = m, and $w = U^T \xi$. Then

$$\dot{q} = J^+ \xi \implies ||\dot{q}||^2 = \xi^T (JJ^T)^{-1} \xi$$
, where

$$\xi^{T}(JJ^{T})^{-1}\xi = (U^{T}\xi)^{T}\Sigma_{m}^{-2}(U^{T}\xi) = w^{T}\Sigma_{m}^{-2}w = \sum_{i=1}^{m} \frac{w_{i}^{2}}{\sigma_{m_{i}}^{2}}$$

and Σ_m is a square diagonal matrix formed from the m largest singular values of J

3. If $\|\dot{q}\|^2 = 1 = \xi^T (JJ^T)^{-1}\xi$ then corresponding ξ form an ellipsoid in space of task velocities ξ .

▶ The manipulability μ is related to the volume of the ellipsoid formed by unit norm q mapped under $J \in \mathbb{R}^{m \times n}$.

- The manipulability μ is related to the volume of the ellipsoid formed by unit norm q mapped under $J \in \mathbb{R}^{m \times n}$.
- ▶ When J is close to losing full-rank, μ is close to zero, and *vice* versa.

- The manipulability μ is related to the volume of the ellipsoid formed by unit norm g mapped under $J \in \mathbb{R}^{m \times n}$.
- ▶ When J is close to losing full-rank, μ is close to zero, and *vice* versa.
- ▶ When J is full-rank, the ellipsoid has non-zero volume

- The manipulability μ is related to the volume of the ellipsoid formed by unit norm g mapped under $J \in \mathbb{R}^{m \times n}$.
- ▶ When J is close to losing full-rank, μ is close to zero, and *vice* versa.
- ▶ When J is full-rank, the ellipsoid has non-zero volume
- ► This ellipsoid has two physical interpretations:

- The manipulability μ is related to the volume of the ellipsoid formed by unit norm q mapped under $J \in \mathbb{R}^{m \times n}$.
- ▶ When J is close to losing full-rank, μ is close to zero, and *vice* versa.
- ▶ When J is full-rank, the ellipsoid has non-zero volume
- ► This ellipsoid has two physical interpretations:
 - When there's no contact, this ellipsoid describes achievable task velocities given unit-size joint velocities.

- The manipulability μ is related to the volume of the ellipsoid formed by unit norm q mapped under $J \in \mathbb{R}^{m \times n}$.
- ▶ When J is close to losing full-rank, μ is close to zero, and *vice* versa.
- ▶ When J is full-rank, the ellipsoid has non-zero volume
- ► This ellipsoid has two physical interpretations:
 - ▶ When there's no contact, this ellipsoid describes achievable task velocities given unit-size joint velocities.
 - During static contact, this ellipsoid describes achievable task forces given unit-size joint torques.