Neural Networks

Data Visualization and PCA

CSCI 4850/5850

Pattern Recognition

- The classification problem involves assigning one of a discrete set of category labels to an object, based on a collection of measurements (i.e features) of that object.
- The statistical pattern recognition problem involves finding a function which does a good job of classifying objects, based on a combination of prior knowledge and a data set of labeled objects (i.e. feature vectors).
 - Goodness is formalized in terms of a performance measure, typically a loss/error function.
 - The main goal is **generalization**: good classification performance on objects **not** used to find the classification function (i.e. "heldout" feature vectors).

Features Reside in a Vector Space

• The vector space in which the features reside is often called the input space or object feature space. Finding a classification function can be thought of as assigning category labels to regions in this space.

Classification is Related to Projection

Separating regions involves finding the decision boundary between data points with different class labels

Individual pattern details are lost

Similarly, a regression can result in a projection along a vector where a decision boundary is plain to see

Individual pattern details are lost

Function Approximation

• If we would like to use the same techniques to study functions with continuous outputs (unlike the discrete outputs of the classification problem), then we are solving the **function approximation** or **regression** problem.

$$y_k = y_k(\vec{x} ; \vec{w})$$

Low-dimensional Projection

- Generalization involves throwing information away
- In many cases, we can visualize this process as projecting out variance(s) in the data that doesn't help us generalize

Principal Component Analysis

- In future lectures we will see how high-dimensional projections make hard problems easier to solve, but low-dimensional projections help with generalization
 - In some sense, this is the "throwing information away for learning" idea that we discussed before
- Normally, we perform PCA after we have standardized our data
 - PCA is sensitive to large magnitude features
 - We won't perform any standardization in the lab assignment because:
 - The Iris/MNIST data sets (see the lab) contains similar kinds of features
 - I already did that for you on the cancer data we were using
 - We will study standardization in future lectures

How do we do that?

- Singular value decomposition (rectangular)
 - The singular value decomposition of a matrix is: $A = U\Sigma V^{T}$

Where Σ is a rectangular diagonal matrix of singular values, and U and V are the left-singular and right-singular vectors of A, respectively.

What is this used for?

- Most common uses of PCA:
 - Visualization (top 2-3)
 - Noise Reduction (bottom)
 - Dimensionality Reduction (tradeoff efficiency)
- We only used the first two in the homework because we were interested only in visualization...
- Removing noise may (or may not) improve generalization...
- Reducing dimensions may (or may not) improve generalization or training time...

Remember to run PCA on your *entire data set* before transforming it into train/validation/test sets!