

OVERVIEW

- 1. Definisi graf
- 2. Jenis-jenis graf
- 3. Terminologi graf
- 4. Representasi graf menggunakan matriks
- 5. Graf isomorfik
- 6. Graf planar
- 7. Graf bidang

PENGANTAR

 Graf: representasi suatu permasalahan menggunakan sekumpulan lingkaran (simpul/node) yang dimungkinkan untuk terhubung dengen sekumpulan garis (sisi/edge)

PENGGUNAAN GRAF

DEFINISI GRAF

- Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut.
- Penulisan Graf G = (V, E) memiliki makna bahwa Graf G terdiri atas:
 - V = himpunan tidak kosong dari simpul-simpul (vertices)= $\{v_1, v_2, v_3, \dots, v_n\}$
 - E = himpunan dari sisi (edges) yang menghubungkan sepasang simpul = $\{e_1, e_2, e_3, ..., e_n\}$

CONTOH GRAF

 G_1

 $G_1 \text{ adalah graf dengan} \\ V = \{1, 2, 3, 4\} \\ E = \{(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)\} \\$

 G_2

 G_2 adalah graf dengan $V = \{1, 2, 3, 4\}$ $E = \{(1,2), (2,3), (1,3), (1,3), (2,4), (3,4), (3,4)\}$ $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$ $E = \{0, 2, 3, 4\}$ $E = \{(1,2), (2,3), (1,3), (2,4), (3,4), (3,4), (3,3)\}$ $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$

 G_3

$$\begin{split} G_3 & \text{ adalah graf dengan} \\ V &= \{1,2,3,4\} \\ E &= \{(1,2),(2,3),(1,3),(1,3),(2,4),\\ (3,4),(3,4),(3,3)\} \\ &= (e_1,e_{2,}e_{3,}e_{4,}e_{5,}e_{6,}e_{7,}e_{8}) \end{split}$$

VARIASI GRAF

 G_1

Graf sederhana

Graf yang tidak mengandung graf ganda maupun graf semu

 G_2

Graf ganda

Pada G2, sisi $e_3 = (1,3)$ dan $e_4 = (1,3)$ dinamakan sisi-ganda (multiple edge atau parallel edge) karena kedua sisi ini menghubungkan dua buah simpul yang sama, yaitu 1 dan 3

 G_3

Graf semu

Pada G3, sisi $e_8 = (3,3)$ dinamakan gelang (loop) karena berawal dan berakhir pada simpul yang sama.

JENIS-JENIS GRAF (1)

- Berdasarkan ada tidaknya gelang atau sisi ganda pada suatu graf, maka graf digolongkan menjadi 2 jenis:
- 1. Graf sederhana (simple graph): graf yang tidak mengandung gelang maupun sisi-ganda
- 2. Graf tak-sederhana (unsimple graph): graf yang mengandung sisi atau gelang

 G_1 Graf sederhana

 G_2

G₃

Graf ganda

Graf semu

JENIS-JENIS GRAF (2)

- Berdasarkan orientasi arah pada sisi, maka secara umum graf dibedakan atas 2 jenis:
- 1. Graf tak-berarah (undirected graph): graf yang sisinya tidak mempunyai orientasi arah.
- 2. Graf berarah (directed graph atau digraph): graf yang setiap sisinya diberikan orientasi arah.

G₄
Graf berarah

 $G_{\scriptscriptstyle 5}$ Graf ganda berarah

RESUME JENIS GRAF

Jenis	Sisi	Sisi ganda diperbolehkan?	Sisi gelang dibolehkan?
Graf sederhana	Tak-berarah	Tidak	Tidak
Graf ganda	Tak-berarah	Ya	Tidak
Graf semu	Tak-berarah	Ya	Ya
Graf berarah	Berarah	Tidak	Ya
Graf ganda berarah	Berarah	Ya	Ya

CONTOH PENERAPAN GRAF (1)

1. Rangkaian listrik

2. Isomer senyawa kimia karbon

CONTOH PENERAPAN GRAF (2)

3. Rantai makanan

CONTOH PENERAPAN GRAF (3)

4. Pengujian program

```
read(x);
while x <> 9999 do
begin
   if x < 0 then
       writeln('Masukan tidak boleh negatif')
   else
       x:=x+10;
   read(x);
  end;
writeln(x);</pre>
```



```
Keterangan: 1 : read(x) 5 : x := x + 10

2 : x < 9999 6 : read(x)

3 : x < 0 7 : writeln(x)
```

4 : writeln('Masukan tidak boleh negatif');

CONTOH PENERAPAN GRAF (3)

4. Vending Machine

Keterangan:

a: 0 rupiah dimasukkan

b: 5 ribu rupiah dimasukkan

c:10 ribu dimasukkan

d: 15 ribu rupiah atau lebih dimasukkan

TERMINOLOGI GRAF (1)

Ketetanggaan (Adjacent)

Dua buah simpul dikatakan beretangga bila keduanya terhubung langsung. Tinjau graf G_1 : simpul 1 bertetangga dengan simpul 2 dan 3 simpul 1 tidak bertetangga dengan simpul 4

TERMINOLOGI GRAF (2)

2. Bersisian (Incidency)

Untuk sembarang sis $e = (v_j, v_k)$ dikatakan e bersisian dengan simpul v_j , atau e bersisian dengan simpul v_k .

Tinjau Graf G_1 : sisi (2,3) bersisian dengan simpul 2 dan simpul 3, sisi (2,4) bersisian dengan simpul 2 dan simpul 4, tetapi sisi (1,2) tidak bersisian dengan simpul 4.

TERMINOLOGI GRAF (3)

3. Simpul terpencil

Merupakan simpul yang tidak mempunyai sisi yang bersisian dengannnya. Tinjau graf G_3 : simpul 5 adalah simpul terpencil.

TERMINOLOGI GRAF (4)

4. Graf kosong (null graph atau empty graph)

Graf yang himpunan sisinya merupakan himpunan kosong (N_n)

1 4 • • 2 5

TERMINOLOGI GRAF (5)

5. Derajat (Degree)

Derajat suatu simpul adalah jumlah sisi yang bersisian dengan simpul tersebut.

Notasi: d(v)

$$G_1: d(1) = d(4) = 2$$

 $d(2) = d(3) = 3$

$$G_3: d(5) = 0 \rightarrow simpul terpencil$$

 $d(4) = 1 \rightarrow simpul anting-anting$
(pendant vertex)

CONTOH DERAJAT SIMPUL

DERAJAT SIMPUL GRAF BERARAH

2 4 3

 G_4

Tinjau graf G₄:

$$d_{in}(1) = 2; d_{out}(1) = 1$$

$$d_{in}(2) = 2; d_{out}(2) = 3$$

$$d_{in}(3) = 2; d_{out}(3) = 1$$

$$d_{in}(4) = 1; d_{out}(4) = 2$$

 G_5

HUKUM DERAJAT SIMPUL

Lemma Jabat Tangan: Jumlah derajat semua simpul pada suatu graf adalah genap, yaitu dua kali jumlah sisi pada graf tersebut.

Dengan kata lain, jika G = (V,E), maka

$$\sum_{v \in V} d(v) = 2|E|$$

Tinjau graf G_1 : =d(1)+d(2)+d(3)+d(4) =2+3+3+2 = 10 = 2 x jumlah sisi = 2 x 5 = 10

Tinjau graf G_2 : =d(1)+d(2)+d(3) =3+3+4 = 10 = 2 x jumlah sisi = 2 x 5 = 10

Tinjau graf G_3 : =d(1)+d(2)+d(3)+d(4)+d(5)=2+2+3+1+1=8= 2 x jumlah sisi = 2 x 4 = 8

SOAL PENGGUNAAN HUKUM DERAJAT SIMPUL

- Diketahui graf dengan lima buah simpul. Dapatkah kita menggambar graf tersebut jika derajat masing-masing sbb:
- a) 2, 3, 1, 1, 2
- **b**) 2, 3, 3, 4, 4

Jawab:

- a) $2+3+1+1+2=9 \rightarrow tidak dapat, karena derajat semua simpul adalah ganjil$
- b) $2+3+3+4+4=16 \rightarrow$ dapat, karena jumlah derajat simpulnya adalah genap

LATIHAN

- Mungkinkah dibuat graf sederhana 5 simpul dengan derajat masing-masing simpul sbb:
- a) 5, 2, 3, 2, 4
- **b)** 4, 4, 3, 2, 3
- c) 3, 3, 2, 3, 2
- d) 4, 4, 1, 3, 2

JAWABAN LATIHAN

a) 5, 2, 3, 2, 4: Tidak mungkin.

Alasan: Karena ada simpul 5.

Ingat: Pada graf sederhana, tidak dimungkinkan terdapat sisi ganda ataupun sisi gelang. Artinya, dalam graf sederhana yang terdisi atas 5 simpul, 1 buah simpul hanya boleh memiliki derajat simpul maksimum 4

b) 4, 4, 3, 2, 3: Mungkin

JAWABAN LATIHAN

c) 3, 3, 2, 3, 2 : Tidak mungkin
Alasan: Karena jumlah derajat simpul adalah ganjil

c) 4, 4, 1, 3, 2: Tidak mungkin

TERMINOLOGI GRAF (6)

6. Lintasan (Path)

Lintasan yang panjangnya n dari simpul awal v_0 ke simpul tujuan v_n di dalam graf G ialah barisan berselang-seling simpul-simpul dan sisi-sisi berbentuk v_0 , e_1 , v_1 , e_2 , v_{n-1} , e_n sedemikain sehingga:

 $e_1 = (v_0, v_1), e_2 = (v_1, v_2), \dots, e_n = (v_{n-1}, v_n)$ adalah sisi-sisi dari graf.

Tinjau graf G_1 : lintasan 1, 2, 3, 4 adalah lintasan dengan baris sisi (1,2), (2,4), (4,3)

Panjang lintasan adalah semua sisi dalam lintasan tersebut. Lintasan 1, 2, 3, 4 pada G1 memiliki Panjang 3

TERMINOLOGI GRAF (7)

7. Siklus atau sirkuit

Lintasan yang berawal dan berakhir pada simpul yang sama.

Tinjau graf G₁: 1, 2, 3, 1 adalah sebuah sirkuit.

Panjang sirkuit adalah semua sisi dalam sirkuit tersebut. Lintasan 1, 2, 3, 4 pada G1 memiliki Panjang 3

TERMINOLOGI GRAF (8)

8. Terhubung (Connected)

Dua buah simpul v_1 dan simpul v_2 disebut terhubung jika terdapat lintasan dari dari v_1 ke v_2 .

G disebut graf terhubung (connected graph) jika untuk setiap pasang simpul v_i dan v_j dalam himpunan V terdapat lintasan dari v_i ke v_j . Jika tidak, maka G disebut graf tak terhubung (disconnected graph).

REPRESENTASI GRAF WENGGUNAKAN MATRIKS (1)

1. Matriks Ketetanggaan (Adjacency matrix)

$$A = [a_{ij}],$$

$$a_{ij} = \{$$

$$0, \text{ jika simpul } i \text{ dan } j \text{ bertetangga}$$

$$0, \text{ jika simpul } i \text{ dan } j \text{ tidak bertetangga}$$

LATIHAN

DERAJAT SIMPUL DALAM MATRIKS KETETANGGAN

Derajat tiap simpul *i*:

(a) Untuk graf tak-berarah

$$d(v_i) = \sum_{j=1}^n a_{ij}$$

(b) Untuk graf berarah,

$$d_{in}(v_j) = \text{jumlah nilai pada kolom } j = \sum_{i=1}^n a_{ij}$$

$$1 \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$d_{out}(v_i) = \text{jumlah nilai pada baris } i = \sum_{i=1}^n a_{ij}$$
(a)

(a)

(b)

(c)

REPRESENTASI MATRIKS BERBOBOT

REPRESENTASI GRAF MENGGUNAKAN MATRIKS (2)

2. Matriks Bersisian (Incidency matrix)

$$A = [a_{ij}],$$

1, jika simpul *i* bersisian dengan sisi *j* $a_{ij} = \{$ 0, jika simpul *i* tidak bersisian dengan sisi *j*

REPRESENTASI GRAF MENGGUNAKAN MATRIKS (3)

3. Senarai Ketetanggan (Adjency list)

Simpul	Simpul Tetangga
1	2, 3
2	1, 3, 4
3	1, 2, 4
4	2, 3

Simpul	Simpul Tetangga
1	2, 3
2	1, 3
3	1, 2, 4
4	3
5	-
	(b)

Simpul	Simpul Terminal
1	2
2	1, 3, 4
3	1
4	2, 3

(a)

(c)

GRAF ISOMORFIK (1)

Secara sederhana, suatu graf A dikatakan isomorfik dengan graf B apabila kedua graf tersebut dapat dituliskan dengan nilai matrik ketetanggan yang sama.

Contoh:

Diketahui matriks ketetanggan dari sebuah grag tak berarah. Gambarkan dua buah graf yang bersesuain dengan matriks tersebut.

L0	1	0	0	1٦
1	0	1	1	1
0	1	1	1 1	0
$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$	1	1	0	1 1 0 1 0
L_1	1	0	1	0]

SYARAT GRAF ISOMORFIK

- 1. Mempunyai jumlah simpul yang sama
- 2. Mempunyai sisi yang sama
- 3. Mempunyai jumlah simpul yang sama berderajat tertentu

Namun ketiga syarat ini ternyata belum cukup terjamin, harus dilakukan pemeriksaan secara visual.

LATIHAN GRAF ISOMORFIK

(a) G_1

(b) G_2

(c) G_3

GRAF PLANAR

- Graf Plaanr adalah graf yang dapat digambarkan pada bidang datar dengan sisisisi tidak saling memotong (bersilang).
- Jika tidak, maka disebut graf tak-planar

LATIHAN GRAF PLANAR

GRAF BIDANG

• Graf bidang adalah graf planar yang digambarkan dengan sisi-sisi yang tidak saling berpotongan.

TUGAS

1. Apakah pasangan graf di bawah ini isomorfik? Buktikan!

TUGAS

2. Apakah pasangan graf di bawah ini isomorfik? Buktikan!

TUGAS

3. Gambarkan graf planar berikut sehingga menjadi graf bidang.

TERIMA KASIH

