AdaBoost

One way for a new predictor to correct its predecessor is to pay a bit more attention to the training instances that the predecessor underfitted. This results in new predictors focusing more and more on the hard cases. This is the technique used by Ada-Boost.

For example, to build an AdaBoost classifier, a first base classifier (such as a Decision Tree) is trained and used to make predictions on the training set. The relative weight of misclassified training instances is then increased. A second classifier is trained using the updated weights and again it makes predictions on the training set, weights are updated, and so on (see Figure 7-7).

Figure 7-7. AdaBoost sequential training with instance weight updates

Figure 7-8 shows the decision boundaries of five consecutive predictors on the moons dataset (in this example, each predictor is a highly regularized SVM classifier with an RBF kernel¹⁴). The first classifier gets many instances wrong, so their weights get boosted. The second classifier therefore does a better job on these instances, and so on. The plot on the right represents the same sequence of predictors except that the learning rate is halved (i.e., the misclassified instance weights are boosted half as much at every iteration). As you can see, this sequential learning technique has some similarities with Gradient Descent, except that instead of tweaking a single predictor's

¹⁴ This is just for illustrative purposes. SVMs are generally not good base predictors for AdaBoost, because they are slow and tend to be unstable with AdaBoost.

Download from finelybook www.finelybook.com parameters to minimize a cost function, AdaBoost adds predictors to the ensemble, gradually making it better.

Figure 7-8. Decision boundaries of consecutive predictors

Once all predictors are trained, the ensemble makes predictions very much like bagging or pasting, except that predictors have different weights depending on their overall accuracy on the weighted training set.

There is one important drawback to this sequential learning technique: it cannot be parallelized (or only partially), since each predictor can only be trained after the previous predictor has been trained and evaluated. As a result, it does not scale as well as bagging or pasting.

Let's take a closer look at the AdaBoost algorithm. Each instance weight $w^{(i)}$ is initially set to $\frac{1}{m}$. A first predictor is trained and its weighted error rate r_1 is computed on the training set; see Equation 7-1.

Equation 7-1. Weighted error rate of the jth predictor

Equation 7-1. Weighted error rate by the
$$j$$
 -predictor $r_j = \frac{\sum\limits_{i=1}^m w^{(i)}}{\sum\limits_{i=1}^m w^{(i)}}$ where $\hat{y}_j^{(i)}$ is the j^{th} predictor's prediction for the i^{th} instance.

Download from finelybook www.finelybook.com

The predictor's weight α_j is then computed using Equation 7-2, where η is the learning rate hyperparameter (defaults to 1).¹⁵ The more accurate the predictor is, the higher its weight will be. If it is just guessing randomly, then its weight will be close to zero. However, if it is most often wrong (i.e., less accurate than random guessing), then its weight will be negative.

Equation 7-2. Predictor weight

$$\alpha_j = \eta \log \frac{1 - r_j}{r_j}$$

Next the instance weights are updated using Equation 7-3: the misclassified instances are boosted.

Equation 7-3. Weight update rule

for
$$i = 1, 2, \dots, m$$

$$w^{(i)} \leftarrow \begin{cases} w^{(i)} & \text{if } \widehat{y_j}^{(i)} = y^{(i)} \\ w^{(i)} \exp(\alpha_j) & \text{if } \widehat{y_j}^{(i)} \neq y^{(i)} \end{cases}$$

Then all the instance weights are normalized (i.e., divided by $\sum_{i=1}^{m} w^{(i)}$).

Finally, a new predictor is trained using the updated weights, and the whole process is repeated (the new predictor's weight is computed, the instance weights are updated, then another predictor is trained, and so on). The algorithm stops when the desired number of predictors is reached, or when a perfect predictor is found.

To make predictions, AdaBoost simply computes the predictions of all the predictors and weighs them using the predictor weights α_j . The predicted class is the one that receives the majority of weighted votes (see Equation 7-4).

Equation 7-4. AdaBoost predictions

$$\hat{y}(\mathbf{x}) = \underset{k}{\operatorname{argmax}} \sum_{\substack{j=1 \ \hat{y}_j(\mathbf{x}) = k}}^{N} \alpha_j$$
 where N is the number of predictors.

¹⁵ The original AdaBoost algorithm does not use a learning rate hyperparameter.

Download from finelybook www.finelybook.com

Scikit-Learn actually uses a multiclass version of AdaBoost called SAMME¹⁶ (which stands for Stagewise Additive Modeling using a Multiclass Exponential loss function). When there are just two classes, SAMME is equivalent to AdaBoost. Moreover, if the predictors can estimate class probabilities (i.e., if they have a predict proba() method), Scikit-Learn can use a variant of SAMME called SAMME.R (the R stands for "Real"), which relies on class probabilities rather than predictions and generally performs better.

The following code trains an AdaBoost classifier based on 200 Decision Stumps using Scikit-Learn's AdaBoostClassifier class (as you might expect, there is also an Ada BoostRegressor class). A Decision Stump is a Decision Tree with max depth=1—in other words, a tree composed of a single decision node plus two leaf nodes. This is the default base estimator for the AdaBoostClassifier class:

```
from sklearn.ensemble import AdaBoostClassifier
ada clf = AdaBoostClassifier(
       DecisionTreeClassifier(max_depth=1), n_estimators=200,
       algorithm="SAMME.R", learning_rate=0.5
ada clf.fit(X train, y train)
```


If your AdaBoost ensemble is overfitting the training set, you can try reducing the number of estimators or more strongly regularizing the base estimator.

Gradient Boosting

Another very popular Boosting algorithm is *Gradient Boosting*.¹⁷ Just like AdaBoost, Gradient Boosting works by sequentially adding predictors to an ensemble, each one correcting its predecessor. However, instead of tweaking the instance weights at every iteration like AdaBoost does, this method tries to fit the new predictor to the residual errors made by the previous predictor.

Let's go through a simple regression example using Decision Trees as the base predictors (of course Gradient Boosting also works great with regression tasks). This is called Gradient Tree Boosting, or Gradient Boosted Regression Trees (GBRT). First, let's fit a DecisionTreeRegressor to the training set (for example, a noisy quadratic training set):

¹⁶ For more details, see "Multi-Class AdaBoost," J. Zhu et al. (2006).

¹⁷ First introduced in "Arcing the Edge," L. Breiman (1997).