Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації» «Дослідження рекурсивних алгоритмів»

Варіант<u>27</u>

Виконав студент ___ ІП-11 Савенко Олексій Андрійович

(шифр, прізвище, ім'я, по батькові)

Перевірив Мартинова О. П.

(прізвище, ім'я, по батькові)

Лабораторна робота №6

Дослідження рекурсивних алгоритмів

Мета - дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Варіант 27

Індивідуальне завдання

27. Перетворення значення у двійковій системі числення в шістнадцятирічне значення.

Постановка задачі

Результатом виконання завдання є переведення значення числа з двійкової системи у шістнадцяткову систему числення. Нам потрібно виконати послідовне переведення з однієї системи в іншу, як трансферна система числення буде використана десяткова. Отримання значень у відповідних функціях буде відбуватися за допомогою механізму рекурсії — самовиклику функції. Перша функція **GetCount()** буде підраховувати кількість знаків у числі цілого, після виконання своєї роботи поверне своє значення у головну функцію **main()**, де його отримає змінна **Countofdig**, після цього за рахунок передання цього значення як фактичного параметру до функції **GetDEC()** буде отримано число у десятковій системі числення, його значення отримає змінна **DecNum**, відбудеться передання цієї змінної як фактичного параметру до функції **GetHEX()**, яка надасть нам значення числа в шістнадцятковій системі числення. Після чого її значення буде отримано змінною НехNum та буде виведений відповідний результат значення пієї зміної.

Математична модель

main()

Змінна	Тип	Ім'я	Призначення
Число у	Цілий	Num2	Вхідні дані
двійковому вигляді			
Початкове	Цілий	lCountofdig	Проміжні дані
значення для	Цин	resuntorarg	проміжні дані
підрахунку к-сті			
цифр двійкового			
числа			
Початкове	Цілий	lDecNum	Проміжні дані
значення для			
розрахунку			
десяткового числа			
Початковий рядок	Рядок	lHexNum	Проміжні дані
для застосування			
знаходження			
шістнадцяткового			
числа			
Число, що приймає	Цілий	Countofdig	Проміжні дані
та передає			
результат			
розрахунку к-сті			
цифр двійкового			
числа			
Отримане число	Цілий	DecNum	Проміжні дані
у десятковому			

вигляді для			
розрахунку			
шістнадцяткового			
числа			
Знайдене число у	Рядок	HexNum	Вихідні дані
шістнадцятковому			
вигляді			

GetCount()

Змінна	Тип	Ім'я	Призначення
Число у	Цілий	a	Вхідні дані,
двійковому вигляді			формальний
			параметр функції
Початкове	Цілий	b	Вихідні дані,
значення для			формальний
підрахунку к-сті			параметр функції
цифр двійкового			
числа			

GetDEC()

Змінна	Тип	Ім'я	Призначення
Число у	Цілий	a	Вхідні дані,
двійковому вигляді			формальний
			параметр функції
Кількість цифр у	Цілий	b	Вхідні дані,
числі			формальний

			параметр функції
Початкове	Цілий	С	Вихідні дані,
значення для			формальний
розрахунку			параметр функції
десяткового числа			

GetHEX()

Змінна	Тип	Ім'я	Призначення
К-сть символів	Цілий	a	Вхідні дані,
кожного числа			формальний
			параметр функції
Початковий рядок	Рядок	b	Вихідні дані,
для знаходження			формальний
шістнадцяткового			параметр функції
числа			
Зберігач значення	Цілий	a1	Проміжні дані
десяткового числа			
Проміжна змінна,	Цілий	a3	Проміжні дані
використовується			
для перевірки на			
подільність число			
Отримує	Символ	a4	Проміжні дані
відповідне			
значення символу			
з шістнадцяткової			
системи числення			

Функції

Підпрограма	Тип	Синтаксис	Призначення
GetCount()	Цілий	GetCount(a,b)	Визначення к-сті
			цифр двійкового
			числа
GetDEC()	Цілий	GetDEC(a,b,c)	Перетворення
			двійкового числа на
			десяткове
GetHEX()	Цілий	GetHEX(a,b)	Перетворення
			десяткового число
			на шістнадцяткове

- Крок 1. Визначимо основні дії.
- **Крок 2.** Деталізуємо дію знаходження кількості елементів цілого двійкового числа.
- **Крок 3.** Деталізуємо дію переведення числа з двійкової в десяткову систему числення.
- **Крок 4.** Деталізуємо дію переведення числа з десяткової в шістнадцяткову системи числення.

Псевдокод алгоритму:

Крок 1.

Початок

Введення Num2, lCountofdig = 0, lDecNum = 0, lHexNum, Countofdig, DecNum, HexNum

знаходження кількості елементів цілого двійкового числа переведення числа з двійкової в десяткову системи числення переведення числа з десяткової в шістнадцяткову системи числення

Кінець

Виведення HexNum

Крок 2.

Початок

введення Num2, lCountofdig = 0, lDecNum = 0, lHexNum, Countofdig, DecNum, HexNum

Countofdig= GetCount(Num2, lCountofdig)
переведення числа з двійкової в десяткову системи числення
переведення числа з десяткової в шістнадцяткову системи числення
виведення HexNum

```
Кінець
```

```
GetCount(a, b)
 якщо а>0
   T0
     a = a/10
     b++
   повернути GetCount(a,b)
 все якщо
 інакше
   повернути в
Кінець
Крок 3.
Початок
 введення Num2, lCountofdig = 0, lDecNum = 0, lHexNum, Countofdig, DecNum,
HexNum
   Countofdig = GetCount(Num2, lCountofdig)
   DecNum = GetDEC(Num2, Countofdig - 1, lDecNum)
   переведення числа з десяткової в шістнадцяткову системи числення
```

GetCount(a, b)

Кінець

виведення HexNum

```
якщо a > 0
   TO
     a = a / 10
     b++
   повернути GetCount(a,b)
 все якщо
 інакше
   повернути в
Кінець
GetDEC(a, b, c)
 якщо b >= 0
   T0
     якщо а / pow(10,b) >= 1
       T0
         a = a - pow(10, b)
         c = c + pow(2, b--)
     все якщо
     інакше
       b---
     повернути GetDEC(a, b, c)
 все якщо
 повернути с
Кінець
```

Крок 4.

```
Початок
 введення Num2, lCountofdig = 0, lDecNum = 0, lHexNum, Countofdig, DecNum,
HexNum
    Countofdig = GetCount(sNum, sCountNum)
   DecNum = GetDEC(Num2, Countofdig - 1, <u>IDecNum</u>)
   HexNum = GetHEX(<u>DecNum</u>, <u>1HexNum</u>)
 виведення HexNum
Кінець
GetCount(a, b)
 якщо a > 0
   TO
     a = a / 10
     b++
   повернути GetCount(a,b)
 все якщо
 інакше
   повернути в
Кінець
GetDEC(a, b, c)
 якщо b >= 0
   T0
     якщо а / pow(10,b) >= 1
       T0
         a = a - pow(10, b)
```

```
c = c + pow(2, b--)
      все якщо
     інакше
       b---
     повернути GetDEC (a, b, c)
 все якщо
 повернути с
Кінець
GetHEX(a, b)
 введення а1, а3, а4
 a1 = a
 a3 = 0
 якщо а / 16 >= 1
   T0
     a = a / 16
     a3 = a1 - (16*a)
     якщо а3 < 10
       T0
         b = to\_string(a3) + b
      все якщо
     інакше якщо а3 >= 10
       T0
         якщо а3 == 10
           T0
             a4 = 'A'
         все якщо
         інакше якщо а3 == 11
```

```
TO
```

$$a4 = B$$

все якщо

інакше якщо а3 == 12

T0

$$a4 = 'C'$$

все якщо

інакше якщо а3 == 13

T0

$$a4 = 'D'$$

все якщо

інакше якщо а3 == 14

T0

$$a4 = E'$$

все якщо

інакше якщо а3 == 15

T0

$$a4 = F'$$

все якщо

$$b = a4 + b$$

все якщо

повернути GetHEX(a, b)

все якщо

інакше якщо а >= 10

T0

T0

$$a4 = A$$

```
все якщо
```

інакше якщо а3 == 11

T0

$$a4 = B$$

все якщо

інакше якщо а3 == 12

T0

$$a4 = 'C'$$

все якщо

інакше якщо а3 == 13

T0

$$a4 = 'D'$$

все якщо

інакше якщо а3 == 14

T0

$$a4 = E'$$

все якщо

інакше якщо а3 == 15

T0

$$a4 = F'$$

все якщо

$$b = a4 + b$$

все якщо

інакше

$$b = to_string(a) + b$$

повернути в

Кінець

Блок-схема алгоритму:

Блок-схема основної програми:

Блок-схеми функцій:

GetCount():

GetDEC():

GetHEX():

Код програми на мові С++:

```
#include <iostream>
#include <string>
using namespace std;
int GetCount(int a, int b); //обрахування к-сті елементів числа
int GetDEC(int a, int b, int c); //знаходження десяткового числа
string GetHEX(int a, string b); //знаходження шістнадцяткового числа
int main() {
    setlocale(LC_ALL, "Russian");
    int Num2, 1Countofdig = 0, 1DecNum = 0;
    cout << "Введите, пожалуйста, число в бинарной системе исчисления: ";
    cin >> Num2;
    string lHexNum;
    int Countofdig = GetCount(Num2, lCountofdig);
    int DecNum = GetDEC(Num2, Countofdig - 1, lDecNum);
    string HexNum = GetHEX(DecNum, lHexNum);
    cout << end1 << "Ваше число в шестнадцатичной системе исчисления: " << HexNum;
}
int GetCount(int a, int b) { //обрахування к-сті елементів числа
    if (a > 0) {
        a = a / 10;
        b++;
        return GetCount(a, b); //рекурсія
    return b; //повернення к-сті елементів числа
}
int GetDEC(int a, int b, int c) { //знаходження десяткового числа
    if (b >= 0) {
        if (a / pow(10, b) >= 1) { //перевірка на подільність розряду
            a = a - pow(10, b);
            c = c + pow(2, b--); //десяткове число, за правилом поділу двійкового числа на
розряди
        else b--;
        return GetDEC(a, b, c); //рекурсія
    return с; //повернення десяткового числа
}
string GetHEX(int a, string b) { //знаходження шістнадцяткового числа
    int a1 = a; //ініціалізація дублікату а для зручності зміни числа
    int a3 = 0;
    char a4='0';
    if (a / 16 >= 1) { // перевірка десяткового числа, випливає, що а<16
        a = a / 16;
        a3 = a1 - (16 * a);
        if (a3 < 10) b = to string(a3) + b; //приєднання числа в рядок
        else if (a3 >= 10) {
            if (a3 == 10) a4 = 'A';
            else if (a3 == 11) a4 = 'B';
            else if (a3 == 12) a4 = 'C';
            else if (a3 == 13) a4 = 'D';
```

```
else if (a3 == 14) a4 = 'E';
else if (a3 == 15) a4 = 'F';
b = a4 + b; //приєднання букви, яка заміняє число в шіст. сист. числ., в рядок
}
return GetHEX(a, b); //рекурсія
}
else if (a >= 10) { //перевірка десяткового числа, випливає, що 10<=a<16
    if (a == 10) a4 = 'A';
    else if (a == 11) a4 = 'B';
    else if (a == 12) a4 = 'C';
    else if (a == 13) a4 = 'D';
    else if (a == 14) a4 = 'E';
    else if (a == 15) a4 = 'F';
    b = a4 + b; //приєднання букви, яка заміняє число в шіст. сист. числ., в рядок
}
else b = to_string(a) + b; //приєднання числа в рядок, якщо воно <10
return b; //повернення результуючого числа
}
```

Випробування алгоритму на мові С++:

```
■ X
ВВЕДИТЕ, ПОЖАЛУЙСТА, ЧИСЛО В БИНАРНОЙ СИСТЕМЕ ИСЧИСЛЕНИЯ: 11111

Ваше число в шестнадцатичной системе исчисления: 1F
C:\Users\Oleksii Savenko\source\repos\laba6asd\Debug\laba6asd.exe (процесс 13684) завершил работу с кодом 0.
ЧТОбы автоматически закрывать консоль при остановке отладки, включите параметр "Сервис" ->"Параметры" ->"Отладка" -> "Ав томатически закрыть консоль при остановке отладки".
Нажмите любую клавишу, чтобы закрыть это окно...

У

ОКНОВНЕНИЯ ОТВЕНИЯ О
```

Випробування алгоритму:

Блок	Дія
	Початок
1	введення Num2 = 11111, lCountofdig =
	0, lDecNum = 0, lHexNum = "",

	Countofdig, DecNum, HexNum
2. Функція GetCount() для	b = 5
визначення к-сті елементів числа	Countofdig = 5
3. Функція GetDEC() для	c = 31
перетворення двійкового числа в	DecNum = 31
десяткове	
3. Функція GetHEX() для	b = 1F
перетворення десяткового числа в	HexNum = b = 1F
шістнадцяткове	
4	виведення: HexNum = 1F
	Кінець

Висновок:

Я дослідив особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм. Мною було розроблено алгоритм для переведення бінарного числа у шістнадцяткову систему. Були розроблені постановка задачі та матмодель, де було детально описана логіка алгоритма, зокрема використання функцій у ньому та механізму рекурсії для отримання та повернення до головної функції потрібних значень — кількості цифр числа з функції **GetCount()**, числа у десятковій системі числення з **GetDEC()** та числа у шістнадцятковій системі числення з **GetHEX()**. Було написано псевдокод та блок-схеми алгоритму, застосовано алгоритм для написання програмного коду на мові С++,

після чого було проведено випробування алгоритму на бінарному числі **Num2** = **11111**, було отримано значення знаків **Countofdig** = **5**, перетворено його на число в десятковій системі числення **DecNum** = **31** і у кінці отримано значення у

16-ковій системі числення **HexNum** = **1F** та виведено результат **1F**. Це значення відповідає дійсності, отже мій алгоритм та програмний код ϵ вірними і їх можна використовувати для вирішення завдань даного типу.