

Mathématiques

Classe: 4ème Mathématiques

Devoir de contrôle N°2

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

5 50 min 5 pts

Soit F la fonction définie sur]0, $+\infty$ [par : F(x) = $\int_{1}^{x} \frac{\cos^{2}t}{t^{2}} dt$.

- (1) (a) Montrer que F est dérivable sur]0, +∞[.
 - (b) Montrer que F est croissante sur $]0, +\infty[$, puis déduire le signe de F(x) pour x > 0.
- (2) (a) Montrer que pour tout réel $x \ge 1$, $F(x) \le 1 \frac{1}{x}$.
 - **(b)** Montrer que F possède une limite finie ℓ lorsque x tend vers $+\infty$. (On ne cherchera pas à déterminer la valeur de l)
- 3 a Soit g la fonction définie sur $[0, +\infty[$ par : $g(x) = \frac{\sin^2 x}{x^2}$ si $x \neq 0$ et g(0) = 1.

Montrer que q possède une primitive G sur $[0, +\infty[$ qui s'annule en 1.

- **b** Montrer que pour tout réel x > 0, $F(x) = 1 \frac{1}{x} \int_{1}^{x} g(t)dt$.
- (c) Déterminer lim F(x).

Exercice 2

(5) 75 min

7 pts

Dans le plan orienté, on donne le triangle ABC tel que AB = 2; $AC = 1 + \sqrt{5}$ et $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{2}[2\pi]$

- Soit S la similitude directe qui transforme B en A et A en C. Déterminer le rapport et une mesure de l'angle de S.
- On appelle Ω le centre de S. Montrer que Ω appartient au cercle de diamètre [AB] et à la droite (BC). Construire Ω .
- On note D l'image du point C par la similitude S.
 - Montrer que les points A, Ω et D sont alignés ainsi que les droites (CD) et (AB) sont parallèles. Construire le point D .
 - Montrer que CD = $3 + \sqrt{5}$
- Soit E le projeté orthogonal du point B sur la droite (CD).
 - (a) Construire le point F image du point E par S.
 - (b) Montrer que BFDE est un carré.
- Soit O le centre du carré BFDE et f l'antidéplacement tel que f(B) = D et f(F) = E.
 - Montrer que f est une symétrie glissante.
 - Montrer que $f = S_O \circ S_{(BF)}$. En déduire la forme réduite de f.
- On pose $g = f \circ S$ et on noté B' le symétrique de B par rapport à E.
 - Montrer que B' est l'image de C par g.
 - Donner la nature de g. Préciser son centre et son rapport.
 - Déterminer l'axe de g.

Exercice 3

(S) 80 min

8 pts

Soit f la fonction définie sur]0; $+\infty[$ par $f(x)=x^2-2\ln(x)-1$ et on désigne par $\mathscr C$ sa courbe représentative dans un repère orthonormé $(O,\overrightarrow{\iota},\overrightarrow{\jmath})$.

Partie A-

- 1 Dresser le tableau de variation de f.
 - **b** Tracer & .
- Soit λ un réel de l'intervalle]0;1[et $\mathscr{A}(\lambda)$ la mesure de l'aire de la partie du plan limitée par \mathscr{C} et les droites d'équations respectives : $x=\lambda$, x=1 et y=0.
 - (a) Calculer $\mathcal{A}(\lambda)$.
 - **b** Déterminer $\lim_{\lambda \to 0^+} \mathscr{A}(\lambda)$.

Partie B-

- Soit n un entier naturel tel que $n \ge 2$.
 - (a) Montrer que pour tout entier naturel k tel que $1 \le k \le n-1$, on a :

$$\frac{1}{n}f\left(\frac{k+1}{n}\right) \leqslant \int_{\frac{k}{n}}^{\frac{k+1}{n}}f(t)dt \leqslant \frac{1}{n}f\left(\frac{k}{n}\right).$$

- On pose pour tout $n \ge 2$, $S_n = \frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right)$.
 - **a** Montrer que : $\mathscr{A}\left(\frac{1}{n}\right) \leqslant S_n \leqslant \frac{1}{n} f\left(\frac{1}{n}\right) + \mathscr{A}\left(\frac{1}{n}\right)$
 - **b** En déduire que : $\lim_{n \to +\infty} S_n = \frac{4}{3}$.
- (3) (a) Montrer, par récurrence que, pour tout entier naturel n tel que $n \ge 2$, on a :

$$\sum_{n=1}^{n-1} k^2 = \frac{n(n-1)(2n-1)}{6}.$$

- **c** En déduire que : $\lim_{n \to +\infty} \frac{n}{\sqrt[n]{n!}} = e$.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000