Project 7

Juwon Lee, Economics and Statistics, UCLA

2023-05-10

```
tinytex::install tinytex()
a.
hw <- read.csv("/Users/user/Desktop/Yonsei/Junior/3-2/Statistical Models in Finance/stockData.csv",sep=
r_hw7 \leftarrow (hw[-1, 3:ncol(hw)] - hw[-nrow(hw), 3:ncol(hw)])/hw[-nrow(hw), 3:ncol(hw)]
covmat_hw7 <- cov(r_hw7)</pre>
beta_hw7 <- covmat_hw7[1,-1] / covmat_hw7[1,1]
r_tech <- data.frame(r_hw7$AAPL, r_hw7$IBM, r_hw7$GOOGL, r_hw7$META, r_hw7$NFLX, r_hw7$AMZN, r_hw7$TSLA
r_custom <- data.frame(r_hw7$BABA, r_hw7$NKE, r_hw7$MCD, r_hw7$WMT, r_hw7$KO, r_hw7$PEP, r_hw7$XOM, r_h
                        r_hw7$SHEL, r_hw7$GE, r_hw7$JNJ, r_hw7$PFE, r_hw7$PKX, r_hw7$BIDU)
r_finance <- data.frame(r_hw7$BRK.A, r_hw7$BRK.B, r_hw7$V, r_hw7$JPM, r_hw7$MA, r_hw7$C.PJ, r_hw7$MS, r
                         r hw7$BA)
Tech group (7) = AAPL, IBM, GOOGL, META, NFLX, AMZN, TSLA
Customer Item group (14) = BABA, NKE, MCD, WMT, KO, PEP, XOM, CVX, SHEL, GE, JNJ, PFE,
PKX, BIDU
Financial group (9) = BRK.A, BRK.B, V, JPM, MA, C.PJ, MS, HSBC, BA
r_group <- cbind(r_hw7$X.GSPC, r_tech, r_custom, r_finance)</pre>
rrr_hw7 <- r_group[,-c(1,which(beta_hw7<0)+1)]</pre>
b_hw7 < rep(0, 7)
tech <- (rrr_hw7[,1] + rrr_hw7[,2] + rrr_hw7[,3] + rrr_hw7[,4] +rrr_hw7[,5] + rrr_hw7[,6] + rrr_hw7[,7]
lm_tech <- lm(data=r_hw7, formula=tech~r_hw7[,1])</pre>
b_tech <- lm_tech$coefficients[2]</pre>
custom <- (rrr_hw7[,8] + rrr_hw7[,9] + rrr_hw7[,10] + rrr_hw7[,11] +rrr_hw7[,12] + rrr_hw7[,13] + rrr_h
           + rrr_hw7[,15] + rrr_hw7[,16] + rrr_hw7[,17] + rrr_hw7[,18] + rrr_hw7[,19] + rrr_hw7[,20] + :
lm_custom <- lm(data=r_hw7, formula=custom~r_hw7[,1])</pre>
b_custom <- lm_custom$coefficients[2]</pre>
```

```
finance <- (rrr_hw7[,22] + rrr_hw7[,23] + rrr_hw7[,24] + rrr_hw7[,25] +rrr_hw7[,26] + rrr_hw7[,27] + rr
             + rrr_hw7[,29] + rrr_hw7[,30]) / 9
lm_finance <- lm(data=r_hw7, formula=finance~r_hw7[,1])</pre>
b_finance <- lm_tech$coefficients[2]</pre>
b_tech ; b_custom ; b_finance
## r_hw7[, 1]
##
      1.19856
## r_hw7[, 1]
## 0.9369151
## r_hw7[, 1]
##
      1.19856
cov(tech, custom) ; cov(tech, finance) ; cov(custom, finance)
## [1] 0.001214162
## [1] 0.0013123
## [1] 0.001017524
Thus, b_t = 1.19856, b_c = 0.9369151, b_f = 1.19856. And we know correlation between group. Then if we know
about beta, then we can know A and C (N1 = 7, N2 = 14, N3 = 9, sigma_i = for stock, rho_ii = for
industry), then we can figure phi, then z i can be computed. Then we can find mean and sd, and add it to
plot of project 6.
cor_11 <- (sum(cor(r_tech)) - length(r_tech)) / (length(r_tech) * (length(r_tech) - 1))</pre>
cor_22 <- (sum(cor(r_custom)) - length(r_custom)) / (length(r_custom) * (length(r_custom) - 1))
cor_33 <- (sum(cor(r_finance)) - length(r_finance)) / (length(r_finance) * (length(r_finance) - 1))</pre>
A1 <- c(1 + 7 * cor_11) / (1 - cor_11), 14 * cor(custom, tech) / (1 - cor_22), 9 * cor(finance, tech) / (1 - cor_22)
A2 \leftarrow c(7 * cor(tech, custom) / (1 - cor_11), 1 + (14 * cor_22) / (1 - cor_22), 9 * cor(finance, custom)
A3 <- c(7 * cor(tech, finance) / (1 - cor_11), (14 * cor(custom, finance) / (1 - cor_22)), 1 + (9 * cor_21)
length(r_tech)
## [1] 7
mean_tech <- rep(0, length(r_tech))</pre>
sd_tech <- rep(0, length(r_tech))</pre>
for (i in 1:length(r_tech)) {
  mean_tech[i] <- mean(r_tech[,i])</pre>
  sd_tech[i] <- sd(r_tech[,i])</pre>
}
mean_custom <- rep(0, length(r_custom))</pre>
sd_custom <- rep(0, length(r_custom))</pre>
for (i in 1:length(r_custom)) {
  mean_custom[i] <- mean(r_custom[,i])</pre>
```

```
sd_custom[i] <- sd(r_custom[,i])</pre>
}
mean_finance <- rep(0, length(r_finance))</pre>
sd_finance <- rep(0, length(r_finance))</pre>
for (i in 1:length(r_finance)) {
 mean_finance[i] <- mean(r_finance[,i])</pre>
  sd_finance[i] <- sd(r_finance[,i])</pre>
rf_hw7 <- 0.001
c_tech <- sum((mean_tech - rf_hw7) / (sd_tech * (1 - cor_11)))</pre>
c_custom <- sum((mean_custom - rf_hw7) / (sd_custom) * (1 - cor_22))</pre>
c_finance <- sum((mean_finance - rf_hw7) / (sd_finance) * (1 - cor_33))</pre>
A \leftarrow cbind(A1, A2, A3)
C <- c(c_tech, c_custom, c_finance)</pre>
phi <- solve(A) %*% C
phi
##
            [,1]
## A1 -0.7292934
## A2 0.4445712
## A3 0.4516039
C_tech <- t(c(cor_11, cor(tech, custom), cor(tech, finance))) %*% phi
C_custom <- t(c(cor(custom, tech), cor_22, cor(custom, finance))) %*% phi
C_finance <- t(c(cor(finance, tech), cor(finance, custom), cor_33)) %*% phi
z_tech <- 1 / (sd_tech * (1 - cor_11)) * ((mean_tech - rf_hw7) / sd_tech - C_tech)
## Warning in (mean_tech - rf_hw7)/sd_tech - C_tech: Recycling array of length 1 in vector-array arithm
## Use c() or as.vector() instead.
z_custom <- 1 / (sd_custom * (1 - cor_22)) * ((mean_custom - rf_hw7) / sd_custom - C_custom)
## Warning in (mean_custom - rf_hw7)/sd_custom - C_custom: Recycling array of length 1 in vector-array
     Use c() or as.vector() instead.
z_finance <- 1 / (sd_finance * (1 - cor_33)) * ((mean_finance - rf_hw7) / sd_finance - C_finance)
## Warning in (mean_finance - rf_hw7)/sd_finance - C_finance: Recycling array of length 1 in vector-arr
     Use c() or as.vector() instead.
sumofz <- sum(z_tech, z_custom, z_finance)</pre>
x_tech <- z_tech / sumofz</pre>
x_custom <- z_custom / sumofz</pre>
x_finance <- z_finance / sumofz</pre>
```

Thus, we find the percentage of investment.

```
x <- c(x_tech, x_custom, x_finance)
meanofmodel <- t(colMeans(r_group)[-1]) %*% x
varofmodel \leftarrow t(x) %*% cov(r_group[-1]) %*% x
Now, if we plot this,
## Warning in C2_plot_hw6 * x_plot_hw6: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in 2 * A2_plot_hw6 * x_plot_hw6: Recycling array of length 1 in array-vector arithmetic is d
## Use c() or as.vector() instead.
## Warning in C2_plot_hw6 * x_plot_hw6 * x_plot_hw6 - 2 * A2_plot_hw6 * x_plot_hw6 + : Recycling array
    Use c() or as.vector() instead.
## Warning in (C2_plot_hw6 * x_plot_hw6 * x_plot_hw6 - 2 * A2_plot_hw6 * x_plot_hw6 + : Recycling array
    Use c() or as.vector() instead.
## [1] 17 18 20 11 8 27 7 15 16 14 28 23 25 24 29 26 30
plot(sigma_squared_hw6^0.5, x_plot_hw6, type='l', ylab="Portfolio expected return", xlab="Portfolio st
points(variances_hw6^0.5, means_hw6)
points(var(r_hw6$X.GSPC)^0.5, mean(r_hw6$X.GSPC), col='blue', pch=15)
points(var_with_short_hw6^0.5, mean_with_short_hw6, col='red', pch=15)
points(var_no_short_hw6^0.5, mean_no_short_hw6, col='red', pch=15)
points(var_no_short_ccm_hw6^0.5, mean_no_short_ccm_hw6, col='orange', pch=15)
points(var_with_short_ccm_hw6^0.5, mean_with_short_ccm_hw6, col='orange', pch=15)
text(0.03, 0.045, "(CCM) NOT \n Allowed", col='orange')
text(0.065, -0.03, "(CCM) Allowed", col='orange')
text(0.037, -0.012, "S&P 500", col='blue')
text(0.057, 0.06, "Allowed", col='red')
text(0.042, 0.045, "NOT \n Allowed", col='red')
points(varofmodel^0.5, meanofmodel, col='purple', pch=15)
text(0.028, -0.01, "Multi- \n group", col='purple')
```



```
b.
х
1.
##
   [1] -0.0098907522 -0.0596325069 -0.0067588022 -0.0086729077 -0.0024577277
   [6] 0.0131392321 -0.0180147001 0.0178304756 0.0535193494 0.1089227552
       0.0308468204 0.0654208387 0.0600563004 -0.0119424255 0.0194469902
       0.0120731400 -0.0191072748 0.0574045269 0.0304320917 -0.0065240156
## [16]
## [21] -0.0115923411 0.0594126947 0.0595053921 0.1463714271 0.0807237583
## [26] 0.1486643923 0.1288632308 0.0227583263 0.0007115743 0.0384901372
x_short_hw6
       0.297016862 0.035138516 0.063938097 0.446916117 0.068021331
## [6] 0.401806800 0.152961167 0.101763286 0.201319172 0.115733013
## [11] 0.078989914 0.149730809 0.088305173 0.092541568 0.054263273
## [16] 0.040250236 0.037221152 -0.003435238 -0.091747468 -0.097041021
## [21] -0.036853616 -0.063986891 -0.084155621 -0.054486457 -0.063831010
## [26] -0.236946025 -0.098618806 -0.304682916 -0.149341739 -0.140789677
x_no_short_hw6
## [1] 0.280812095 0.031000551 0.040878374 0.275329947 0.038492745 0.196668269
## [7] 0.050778414 0.020061146 0.037821624 0.020760467 0.007396367
x_with_short_ccm_hw6
  [1] -0.093059110 -0.003840417 -0.121156110 -0.079273322 -0.024540984
   [6] -0.078613259  0.034238891  0.028983448 -0.050787526 -0.168779438
## [11] 0.021862820 -0.058652449 -0.032749741 0.137979205 0.074114766
## [16] 0.096489733 0.001666268 0.010075507 -0.126902240 0.018572175
## [21] -0.091769058 -0.085834891 0.169048916 0.208369206 0.155033852
## [26] 0.272719238 0.091321699 0.164007909 0.259532611 0.271942302
x_no_short_ccm_hw6
## [1] 0.02452945 0.01369970 0.07678845 0.08596666 0.04208463 0.13481408
## [7] 0.17564721 0.08843561 0.08812549 0.07654005 0.08755993 0.09208872
## [13] 0.01372001
par(mfrow=c(3,2))
plot(as.matrix(r_group[-1]) %*% x, type='l', main='Time Plot', xlab='Time (Months)', ylab='Return')
plot(as.matrix(rrr_hw6[,table2_hw6[,1]]) ** x_no_short_hw6, type='l', main='Time Plot (Short sales are
plot(as.matrix(r_hw6[,-1]) %*% x_with_short_ccm_hw6, type='l', main='Time Plot (CCM, Short sales are al
plot(as.matrix(rrr_hw6[,table_ccm_4_hw6[1:13,1]]) %*% x_no_short_ccm_hw6, type='l', main='Time Plot (CC
```

Time Plot

US 0 10 20 30 40 50 60 Time (Months)

Time Plot (Short sales are allowed)

Time Plot (Short sales are NOT allowed)

Time Plot (CCM, Short sales are allowed)

Time Plot (CCM, Short sales are NOT allowed)

2. 1. Multi-group Model.

$$(1+r_g)^{59} = (1+r_1)(1+r_2)...(1+r_{59})$$
, so that $r_g = [(1+r_1)(1+r_2)...(1+r_{59})]^{\frac{1}{59}} - 1$.

[1] 0.01530617

Thus, $r_g = 0.01530617$.

2. General model when short sales are allowed.

```
prod(as.matrix(rrr_hw6[,table1_hw6[,1]]) %*% x_short_hw6 + 1)^(1/60) - 1
```

[1] 0.03812507

Thus, $r_q = 0.03812507$.

3. General model when short sales are NOT allowed.

```
prod(as.matrix(rrr_hw6[,table2_hw6[,1]]) %*% x_no_short_hw6 + 1)^(1/60) - 1
```

[1] 0.01899447

Thus, $r_g = 0.01899447$.

4. Constant Correlation Model when short sales are allowed.

[1] -0.01271573

Thus, $r_g = -0.01271753$.

5. Constant Correlation Model when short sales are NOT allowed. prod(as.matrix(rrr_hw6[,table_ccm_4_hw6[1:13,1]]) %*% x_no_short_ccm_hw6 + 1)^(1/60) - 1 ## [1] 0.01794777 Thus, $r_g = 0.01794777$. 3. Sharpe ratio $=\frac{\bar{R_p}-R_F}{\sigma_p}$, suppose $r_f = 0.001$. 1. Multi-group model. rf_3 <- 0.001 $(\text{mean}(\text{as.matrix}(\text{r_group}[-1]) \%*\% x) - \text{rf_3}) / \text{sd}(\text{as.matrix}(\text{r_group}[-1]) \%*\% x)$ ## [1] 0.5070449 Thus, $S_1 = 0.5070449$. 2. General model when short sales are allowed. (mean(as.matrix(rrr_hw6[,table1_hw6[,1]]) %*% x_short_hw6) - rf_3) / sd(as.matrix(rrr_hw6[,table1_hw6[, ## [1] 0.6178993 Thus, $S_2 = 0.6178993$. 3. General model when short sales are NOT allowed. (mean(as.matrix(rrr_hw6[,table2_hw6[,1]]) %*% x_no_short_hw6) - rf_3) / sd(as.matrix(rrr_hw6[,table2_hw ## [1] 0.5430201 Thus, $S_3 = 0.5430201$. 4. Constant Correlation Model when short sales are allowed. (mean(as.matrix(r_hw6[,-1]) %*% x_with_short_ccm_hw6) - rf_3) / sd(as.matrix(r_hw6[,-1]) %*% x_with_short_short_ccm_hw6) ## [1] -0.1305454 Thus, $S_4 = -0.1305454$. 5. Constant Correlation Model when short sales are NOT allowed. (mean(as.matrix(rrr_hw6[,table_ccm_4_hw6[1:13,1]]) %*% x_no_short_ccm_hw6) - rf_3) / sd(as.matrix(rrr_h ## [1] 0.4744805 Thus, $S_5 = 0.4744805$. to find Differential Excess Return, we have to find market index, so-called the point M. mean(r_hw7\$X.GSPC) ; sd(r_hw7\$X.GSPC) ## [1] 0.008791199 ## [1] 0.03446065

 $(mean(r_hw7\$X.GSPC) - rf_3) / sd(r_hw7\$X.GSPC)$

[1] 0.2260897

```
Thus, the regression line is
```

```
\bar{R} = 0.2260897\sigma + 0.001
```

```
 (\text{mean}(r_h\text{w}7\$\text{X}.\text{GSPC}) - \text{rf}_3) / \text{sd}(r_h\text{w}7\$\text{X}.\text{GSPC}) * \text{sd}(r_h\text{w}7\$\text{X}.\text{GSPC}) + 0.001 
## [1] 0.008791199
Thus, the point M is (0.03446065, 0.008791199).
1. Multi-group model
mean(as.matrix(r_group[-1]) %*% x); sd(as.matrix(r_group[-1]) %*% x)
## [1] 0.0157153
## [1] 0.02902169
 (\text{mean}(r_h\text{w}7\$\text{X}.\text{GSPC}) - \text{rf}_3) / \text{sd}(r_h\text{w}7\$\text{X}.\text{GSPC}) * \text{sd}(\text{as}.\text{matrix}(r_g\text{roup}[-1]) %*% x) + 0.001 
## [1] 0.007561506
mean(as.matrix(r_group[-1]) \% *\% x) - ((mean(r_hw7\$X.GSPC) - rf_3) / sd(r_hw7\$X.GSPC) * sd(as.matrix(r_group[-1]) \% *\% x) - ((mean(r_hw7\$X.GSPC) - rf_3) / sd(r_hw7\$X.GSPC) * sd(as.matrix(r_group[-1]) % *\% x) - ((mean(r_hw7\$X.GSPC) - rf_3) / sd(r_hw7\$X.GSPC) * sd(as.matrix(r_group[-1]) % *\% x) - ((mean(r_hw7\$X.GSPC) - rf_3) / sd(r_hw7\$X.GSPC) * sd(as.matrix(r_group[-1]) % *\% x) - ((mean(r_hw7\$X.GSPC) - rf_3) / sd(r_hw7\$X.GSPC) * sd(as.matrix(r_group[-1]) % *\% x) - ((mean(r_hw7\$X.GSPC) - rf_3) / sd(r_hw7\$X.GSPC) * sd(as.matrix(r_group[-1]) % *\% x) - ((mean(r_hw7\$X.GSPC) - rf_3) / sd(r_hw7\$X.GSPC) * sd(as.matrix(r_group[-1]) % * 
## [1] 0.008153795
Thus, D_1 = 0.008153795.
2. General model when short sales are allowed.
(mean(r_hw7$X.GSPC) - rf_3) / sd(r_hw7$X.GSPC) * sd(as.matrix(rrr_hw6[,table1_hw6[,1]]) %*% x_short_hw6
## [1] 0.01554601
## [1] 0.02520799
Thus, D_2 = 0.02520799.
3. General model when short sales are NOT allowed.
(mean(r_hw7$X.GSPC) - rf_3) / sd(r_hw7$X.GSPC) * sd(as.matrix(rrr_hw6[,table2_hw6[,1]]) %*% x_no_short_
## [1] 0.008871575
## [1] 0.0110343
Thus, D_3 = 0.0110343.
4. Constant Correlation Model when short sales are allowed.
(\text{mean}(r_hw7\$X.GSPC) - \text{rf}_3) / \text{sd}(r_hw7\$X.GSPC) * \text{sd}(as.matrix}(r_hw6[,-1]) %*% x_with_short_ccm_hw6) + 0
## [1] 0.01939804
mean(as.matrix(r_hw6[,-1]) %*% x_with_short_ccm_hw6) - ((mean(r_hw7$X.GSPC) - rf_3) / sd(r_hw7$X.GSPC)
## [1] -0.02902117
Thus, D_4 = -0.02902117.
```

5. Constant Correlation Model when short sales are NOT allowed.

```
(mean(r_hw7$X.GSPC) - rf_3) / sd(r_hw7$X.GSPC) * sd(as.matrix(rrr_hw6[,table_ccm_4_hw6[1:13,1]]) %*% x_:
## [1] 0.00955168
mean(as.matrix(rrr_hw6[,table_ccm_4_hw6[1:13,1]]) %*% x_no_short_ccm_hw6) - ((mean(r_hw7$X.GSPC) - rf_3
## [1] 0.009395201
Thus, D_5 = 0.009395201.
Treynor Measure
                                          =\frac{\bar{R_B}-R_F}{\beta_B}
1. Multigroup Model
lm_treynor_1 <- lm(r_hw7$X.GSPC~as.vector(as.matrix(r_group[-1]) %*% x))</pre>
beta_treynor_1 <- lm_treynor_1$coefficients[2]</pre>
(mean(as.matrix(r_group[-1]) %*% x) - rf_3) / beta_treynor_1
## as.vector(as.matrix(r_group[-1]) %*% x)
Thus, T_1 = 0.01450103.
2. General Model when short sales are allowed.
lm_treynor_2 <- lm(r_hw7$X.GSPC~as.vector(as.matrix(rrr_hw6[,table1_hw6[,1]]) %*% x_short_hw6))</pre>
beta_treynor_2 <- lm_treynor_2$coefficients[2]</pre>
(mean(as.matrix(rrr_hw6[,table1_hw6[,1]]) %*% x_short_hw6) - rf_3) / beta_treynor_2
## as.vector(as.matrix(rrr_hw6[, table1_hw6[, 1]]) %*% x_short_hw6)
##
                                                              0.3388127
Thus, T_2 = 0.3388127.
3. General Model when short sales are NOT allowed.
lm_treynor_3 <- lm(r_hw7$X.GSPC~as.vector(as.matrix(rrr_hw6[,table2_hw6[,1]]) %*% x_no_short_hw6))</pre>
beta_treynor_3 <- lm_treynor_3$coefficients[2]</pre>
(mean(as.matrix(rrr_hw6[,table2_hw6[,1]]) %*% x_no_short_hw6) - rf_3) / beta_treynor_3
## as.vector(as.matrix(rrr_hw6[, table2_hw6[, 1]]) %*% x_no_short_hw6)
Thus, T_3 = 0.02408695.
4. Constant Correlation Model when short sales are allowed.
lm_treynor_4 <- lm(r_hw7$X.GSPC~as.matrix(r_hw6[,-1]) %*% x_with_short_ccm_hw6)</pre>
beta_treynor_4 <- lm_treynor_4$coefficients[2]</pre>
(mean(as.matrix(r_hw6[,-1]) %*% x_with_short_ccm_hw6) - rf_3) / beta_treynor_4
```

```
## as.matrix(r_hw6[, -1]) %*% x_with_short_ccm_hw6
##
                                  -0.04284463
Thus, T_4 = -0.04284463.
5. Constant Correlation Model when short sales are NOT allowed.
lm_treynor_5 <- lm(r_hw7$X.GSPC~as.matrix(rrr_hw6[,table_ccm_4_hw6[1:13,1]]) %*% x_no_short_ccm_hw6)</pre>
beta_treynor_5 <- lm_treynor_5$coefficients[2]</pre>
(mean(as.matrix(rrr_hw6[,table_ccm_4_hw6[1:13,1]]) %*% x_no_short_ccm_hw6) - rf_3) / beta_treynor_5
## as.matrix(rrr_hw6[, table_ccm_4_hw6[1:13, 1]]) %*% x_no_short_ccm_hw6
##
Thus, T_5 = 0.02435349.
to find Jensen differential performance index, we have to check market.
Because \beta_M = 1, M is on (1, 0.008791199).
Thus,
                              \bar{R} = 0.007791199\beta + 0.001
1. Multigroup Model.
mean(as.matrix(r_group[-1]) %*% x) - (0.007791199 * beta_treynor_1 + 0.001)
## as.vector(as.matrix(r_group[-1]) %*% x)
##
                           0.006808975
Thus, J_1 = 0.006808975.
2. General Model when short sales are allowed.
## as.vector(as.matrix(rrr hw6[, table1 hw6[, 1]]) %*% x short hw6)
##
                                                   0.03883983
Thus, J_2 = 0.03883983.
3. General Model when short sales are NOT allowed.
## as.vector(as.matrix(rrr hw6[, table2 hw6[, 1]]) %*% x no short hw6)
                                                     0.01279055
Thus, J_3 = 0.01279055.
4. Constant Correlation Model when short sales are allowed.
mean(as.matrix(r_hw6[,-1]) \%*\% x_with_short_ccm_hw6) - (0.007791199 * beta_treynor_4 + 0.001)
## as.matrix(r_hw6[, -1]) %*% x_with_short_ccm_hw6
                                   -0.01255492
Thus, J_4 = -0.01255492.
5. Constant Correlation Model when short sales are NOT allowed.
```

```
## as.matrix(rrr_hw6[, table_ccm_4_hw6[1:13, 1]]) %*% x_no_short_ccm_hw6
##
                                                               0.01220529
```

Thus, $J_5 = 0.01220529$.

4. 3. General Model when short sales are NOT allowed.

```
x \leftarrow seq(-0.3, 4, by=0.001)
y \leftarrow 0.001 + 0.007791199 * x
plot(x, y, type='l', xlab='beta', ylab='expected return', main='Fama\'s decomposition')
points(1, mean(r_hw7$X.GSPC), pch=16, col='darkgreen')
points(beta_treynor_3, mean(as.matrix(rrr_hw6[,table2_hw6[,1]]) %*% x_no_short_hw6), pch=16)
points(beta_treynor_3, 0.007791199 * beta_treynor_3 + 0.001, pch=16)
abline(v=beta_treynor_3, lty='dashed')
abline(h=0.007791199 * beta_treynor_3 + 0.001, lty='dashed')
abline(h=mean(as.matrix(rrr_hw6[,table2_hw6[,1]]) %*% x_no_short_hw6), lty='dashed')
abline(h=0.001 + 0.007791199 * 1, lty='dashed', col='green')
text(0.63, 0.022, 'A')
text(0.68, 0.01, 'Market', col='darkgreen')
text(0.63, 0.005, 'A\'')
```

Fama's decomposition


```
diversification_3 <- (0.001 + 0.007791199 * 1) - (0.007791199 * beta_treynor_3 + 0.001)
selectivity_3 ; net_selectivity_3 ; diversification_3
```

```
## as.vector(as.matrix(rrr_hw6[, table2_hw6[, 1]]) %*% x_no_short_hw6)
                                                             0.01279055
##
```

[1] 0.01111468

```
## 0.001675877 Thus, 0.01279055 = 0.01111468 + 0.001675877. 5. Constant Correlation Model when short sales are NOT allowed.
```

as.vector(as.matrix(rrr_hw6[, table2_hw6[, 1]]) %*% x_no_short_hw6)

```
plot(x, y, type='l', xlab='beta', ylab='expected return', main='Fama\'s decomposition')
points(1, mean(r_hw7$X.GSPC), pch=16, col='darkgreen')
points(beta_treynor_5, mean(as.matrix(rrr_hw6[,table_ccm_4_hw6[1:13,1]]) %*% x_no_short_ccm_hw6), pch=1
points(beta_treynor_5, 0.007791199 * beta_treynor_5 + 0.001, pch=16)
abline(v=beta_treynor_5, lty='dashed')
abline(h=0.007791199 * beta_treynor_5 + 0.001, lty='dashed')
abline(h=mean(as.matrix(rrr_hw6[,table_ccm_4_hw6[1:13,1]]) %*% x_no_short_ccm_hw6), lty='dashed')
abline(h=0.001 + 0.007791199 * 1, lty='dashed', col='green')
text(0.63, 0.021, 'B')
text(0.68, 0.01, 'Market', col='darkgreen')
text(0.63, 0.005, 'B\'')
```

Fama's decomposition


```
## [1] 0.01015568
## as.matrix(rrr_hw6[, table_ccm_4_hw6[1:13, 1]]) %*% x_no_short_ccm_hw6
## 0.002049611
```

Thus, 0.01220529 = 0.01015568 + 0.002049611.