8. Suppose that A, B, C are three noncollinear points. Prove that there exsits a fourth point D not on \overrightarrow{AB} so that $\triangle ABC \cong \triangle ABD$

Proof. Suppose that A, B, C are three noncollinear points. If D = C, then $\triangle ABC \cong \triangle ABD$ under the correspondence $ABC \leftrightarrow ABD$ trivially, so we may assume that $C \neq D$.

By Ax.S, \overrightarrow{AB} generates a pair of opposite halfplanes H, K with edge \overrightarrow{AB} . Since A, B, C noncollinear, $C \notin \overrightarrow{AB}$. Let K be the halfplane that contains C

Consider the angle measure $\overrightarrow{ABAC} = \angle BAC$. By theorem 12.3, there are two rays j,k with endpoint A and angle measure $\overrightarrow{ABj} = \overrightarrow{ABk} = \overrightarrow{ABAC}$. Let k be one the side that contains C(K), by Theorem 11.6, $k = \overrightarrow{AC}$. Since $k^0 \subseteq K, j^0 \subseteq H$.

Consider the distance AC, by Theorem 8.6, each ray with endpoint A has a unique point X such that AX = AC, on ray \overrightarrow{AC} , X = C. Call the point in ray j D

Since $D \in H$ implies $D \notin \overrightarrow{AB}$, A, B, D are three noncollinear points, and a triangle $\triangle ABD$ is formed.

Consider the correspondence $ABC \leftrightarrow ABD$ between the vertices of triangles $\triangle ABC$ and $\triangle ABD$

Since AD = AC, AB = AB, and $\angle BAD = \angle BAC$, we have $\overline{AD} \cong \overline{AC}$, $\overline{AB} \cong \overline{AB}$, $\underline{\angle BAC} \cong \underline{\angle BAD}$, and Ax.SAS implies that $\triangle ABC \cong \triangle ABD$.

9. Suppose that $\omega < \infty$, that P,Q,R are noncollinear points with $P^* =$ antipode of P, and that $\angle PQR = 30$ and $\angle PRQ = 150$. Prove that $\triangle P^*QR \cong \triangle PRQ$

Proof. Suppose that $\omega < \infty$, that P, Q, R are noncollinear points with $P^* =$ antipode of P, and that $\angle PQR = 30$, and $\angle PRQ = 150$

First, we note that QR = RQ, which implies $\overline{QR} = \overline{RQ} \cong \overline{RQ}$

Next, by Theorem 11.8, we have that $\overrightarrow{RP} \cdot \overrightarrow{RQ} \cdot \overrightarrow{RP}'$. By Coroll. 9.8, $\overrightarrow{RP}' = \overrightarrow{RP}^*$, so $\overrightarrow{RP} \cdot \overrightarrow{RQ} \cdot \overrightarrow{RP}^*$. Thus,

$$\overrightarrow{RP}\overrightarrow{RQ} + \overrightarrow{RQ}\overrightarrow{RP^*} = \overrightarrow{RP}\overrightarrow{RP^*} = 180.$$

Since $\overrightarrow{RP}\overrightarrow{RQ} = \angle PRQ$, and $\overrightarrow{RQ}\overrightarrow{RP}^* = \angle QRP^*$, we have

$$\angle PRQ + \angle QRP^* = 180$$

 $\implies \angle QRP^* = 180 - \angle PRQ = 180 - 150 = 30.$

So, $\angle PQR = \angle P^*RQ$, and thus $\angle PQR \cong \angle P^*RQ$

Similarly \overrightarrow{QP} - \overrightarrow{QR} - \overrightarrow{QP}^* by Theorem 11.8 and Coroll.9.8, so

$$\overrightarrow{QP}\overrightarrow{QR} + \overrightarrow{QR}\overrightarrow{QP^*} = \overrightarrow{QP}\overrightarrow{QP^*} = 180.$$

Since $\overrightarrow{QP}\overrightarrow{QR}=\angle PQR$, and $\overrightarrow{QR}\overrightarrow{QP^*}=\angle RQP^*$, we have that

$$\angle PQR + \angle RQP^* = 180$$

 $\implies \angle RQP^* = 180 - \angle PQR = 180 - 30 = 150.$

Thus, $\angle P^*QR=150$, which means $\angle P^*QR=\angle PRQ=150$, and therefore $\underline{\angle P^*QR}\cong \underline{\angle PRQ}$

So, under the correspondence $PRQ \leftrightarrow P^*QR$ between the vertices of triangles $\triangle PRQ$ and $\triangle P^*QR$, by Theorem 13.1 (ASA), we have that

$$\triangle PRQ \cong \triangle P^*QR.$$