Haz Sameen Shahgir

Incoming PhD Student @ UCR Advised by: Yue Dong

hshah057@ucr.edu

Research Interest:

- Multimodal Understanding
- Multimodal Adversarial Attacks
- Biological Sequence Modeling

Publications:

- Asymmetric Bias @ ACL Findings 2024
- IllusionVQA @ COLM 2024

Prerequisite: Vision-Language Alignment

- Images and corresponding captions should have similar embeddings
- Align the representations of a text encoder and a vision encoder.

Similar Embeddings

"Learning Transferable Visual Models From Natural Language Supervision"

(CLIP)

Radford et al. 2021

Text-to-Image Generation Models (T2I Models)

Roadmap

NSFW Generation

A Pilot Study of Query-Free Adversarial Attack against Stable Diffusion

Figure: Images generated by Stable Diffusion using QFAttack suffixes

A Pilot Study of Query-Free Adversarial Attack against Stable Diffusion

Haomin Zhuang, Yihua Zhang, Sijia Liu

2023

- 1. Partial access Just needs the Text Encoder
- 2. Generates adversarial suffixes that remove entities from images
- 3. Uses Genetic Algorithm (GA) to find adversarial suffixes

Zhuang et al.

"Query-Free"?

Zhuang et al.

"Query-Free"?

- Only uses the Text Encoder
- No queries to the expensive Image Generator

Zhuang et al.

Probability P

A snake and a young man

Zhuang et al.

A snake and a young man -08=*

Zhuang et al.

Methodology:

Methodology:

Zhuang et al.

Mask other dimensions to preserve the rest of the prompt

Zhuang et al.

At each step:

A snake and a young man

Zhuang et al.

A snake and a young man -08=*

Zhuang et al.

Methodology:

• Q1: How to find Steerable Dimensions?

• **Q2:** How to generate the adversarial suffix?

Q1: Finding Steerable Dimensions with Prompt Pairs:

"A bird flew high in the sky and a young man"

"A bird flew high in the sky"

"The sun set over the horizon and a young man"

"The sun set over the horizon"

"A purple and blue butterfly on a leaf and a young man"

"A purple and blue butterfly on a leaf"

Zhuang et al.

n = 3

Q1: Finding Steerable Dimensions with Prompt Pairs:

"A bird flew high in the sky and a young man"

"A bird flew high in the sky"

"The sun set over the horizon and a young man"

"The sun set over the horizon"

"A purple and blue butterfly on a leaf and a young man"

"A purple and blue butterfly on a leaf"

Zhuang et al.

$$n = 3$$

Zhuang et al.

Methodology:

Zhuang et al.

Q2: Generating Adversarial Suffix with Greedy Search

```
"A snake and a young man # _ _ _ "
```

"A snake and a young man *____" ---

"A snake and a young man = _ _ _ " - Minimizes cos() with "A snake and a young man"

"A snake and a young man <u>0</u> _ _ _ _ " ---

Zhuang et al.

Q2: Generating Adversarial Suffix with Greedy Search

```
"A snake and a young man # _ _ _ " ----
"A snake and a young man *____" ---
"A snake and a young man - _ _ _ _ (✓)
"A snake and a young man <u>0</u> _ _ _ _ "
```

UC RIVERSIDE

Zhuang et al.

Q2: Generating Adversarial Suffix with Greedy Search

"A snake and a young man <u>- #</u> _ _ _ " ---

•

"A snake and a young man <u>- > _ _ "</u>

Zhuang et al.

Q2: Generating Adversarial Suffix with Greedy Search

```
"A snake and a young man <u>- 0 # _ _</u>" ---
```

•

"A snake and a young man <u>- 0 x _ "</u>

Zhuang et al.

Q2: Generating Adversarial Suffix with Greedy Search

```
"A snake and a young man <u>- 0 8 a _</u>" ---
```

•

•

"A snake and a young man
$$\underline{-08}\underline{=}$$
" \checkmark

Zhuang et al.

Q2: Generating Adversarial Suffix with Greedy Search

```
"A snake and a young man <u>- 0 8 = ^ " </u>
```

"A snake and a young man
$$\underline{0} \underline{8} \underline{=} \underline{*}$$
" \longrightarrow (\checkmark)

•

•

"A snake and a young man <u>- 0 8 = ?</u>" —

Zhuang et al.

Q2: Generating Adversarial Suffix with Greedy Search

"A snake and a young man <u>- 0 8 = ^ " </u>

"A snake and a young man <u>- 0 8 = \$</u>" —

"A snake and a young man <u>- 0 8 = * " </u>

Stable Diffusion

"A snake and a young man <u>- 0 8 = ?</u>" —

Zhuang et al.

Results:

Attack	CLIP Score (↓)
No Attack	0.229
Random	0.223
Greedy	0.204
Genetic	0.186
PGD	0.189

A black bicycle against a brick wall -E36

Zhuang et al.

A purple and blue butterfly on a leaf | U2\$2

A white swan on a lake ⋅5S\$7

A red apple on a plate G)\$IQ

Low Attack Success Rate

Zhuang et al.

$$P = \sim 10\%$$

Zhuang et al.

Finding Steerable Dimensions requires hand-picked examples:

"A bird flew high in the sky and a young man"

"The sun set over the horizon and a young man"

"A purple and blue butterfly on a leaf and a young man"

•

•

•

N = 10 in the paper.

Asymmetric Bias in Text-to-Image Generation with Adversarial Attacks

Haz Sameen Shahgir, Xianghao Kong, Greg Ver Steeg, Yue Dong

2024

- Stronger attack using modified Gradient Coordinate Search (GCG)
- 2. Doesn't require empirical concept extraction
- 3. Can **replace** entities instead of just removing
- 4. Investigate entity bias of a prompt

Zhuang et al.

Shahgir et al.

Shahgir et al.

Shahgir et al.

Initial: "A snake and a young man" Move Away **Search:** "A snake and a young man _ _ _ _ " **Move Towards** Target: "A snake "

Shahgir et al.

- $\varphi_{init} = CLIP_{text}(Initial\ Prompt)$
- $\varphi_{adv} = CLIP_{text}(Adversarial\ Prompt)$
- $\varphi_{tgt} = CLIP_{text}(Target\ Prompt)$

Objective =
$$\cos(\varphi_{adv}, \varphi_{tgt}) - \cos(\varphi_{adv}, \varphi_{init})$$

Modifications to GCG (Zhang et al.):

- loss = -objective
- Replace multiple tokens per time step

Shahgir et al.

Shahgir et al.

$$P = \sim 26\%$$

Shahgir et al.

Remove "a young man"

"A snake and a young man"

"A snake"

Shahgir et al.

Swap "young man" for "mouse"

"A snake and a young man"

"A snake and a mouse"

Swap "mouse" for "young man"

Shahgir et al.

"robot"

⇒ "human"

a robot dancing in the rain. taeyeon hara concession headshot brian

a human dancing in the rain. 2 ': embarrassing robot thankfully

Shahgir et al.

a cabin in a forest. mulberry literal bernard collateral backpack

a backpack in a forest. floating goldie hut shinee edm

Shahgir et al.

Additional Results:

- 1. Harder to do "turtle" \rightarrow "fish" than the other way around.
- 2. "A ____ in an aquarium" is biased towards "turtle".

Implicit notion of P(entity|composition)

3. Predict success rate without attacking

T2I Models can't say NO!

Internal Filters – Training for Safety

"Erasing Concepts from Stable Diffusion" (ESD) Gandikota et al. 2023

Add-on Filters for T2I Models

SneakyPrompt: Jailbreaking Text-to-image Generative Models

Yuchen Yang, Bo Hui, Haolin Yuan, Neil Gong, and Yinzhi Cao

- 1. Black-box attack framework against Text-to-Image Generation Models
- 2. Creates adversarial prompts that generate NSFW images.
- 3. Uses **Reinforcement Learning** (RL) to find adversarial prompts
- 4. First to bypass DALLE 2 filters

Yang et al.

Let's imagine "cat" and "dog" as NSFW concepts.

(a) I couldn't resist petting the adorable little glucose (cat)

Fig: Adversarial prompt that generate restricted concepts using DALL·E 2 and bypass an external image-based safety filter.

Yang et al.

Let's imagine "cat" and "dog" as NSFW concepts.

(b) The tabby gregory faced wright (cat) stretched out lazily on the windowsill

Yang et al.

Let's imagine "cat" and "dog" as NSFW concepts.

(c) The maintenance (dog) wet nose nuzzled its owner's hand

Yang et al.

Let's imagine "cat" and "dog" as NSFW concepts.

(d) The dangerous think walt (dog) growled menacingly at the stranger who approached its owner

Negative Reward

$$Reward Function = \begin{cases} Similarity (NSFW Prompt, Generated Image) & \text{if DALL} \cdot E \ 2 \\ -f(time step) & \text{if DALL} \cdot E \ 2 \ blocks \end{cases}$$

$$r(p_a) = \begin{cases} \cos\left(CLIP_{text}(p_t), CLIP_{image}(M(p_a))\right) & \text{if } F(M(p_a)) = 0 \\ -kt/T & \text{otherwise} \end{cases}$$

```
p_t = Target \ Prompt
p_a = Adversarial \ Prompt
M(x) = Text-to-Image Generation Model
F(x) = Unknown \ Binary \ Filters
t = Current \ Time \ Step
T = Maximum \ Time \ Steps
```


 p_t : The tabby cat stretched out lazily on the windowsill

Policy Network

 p_a : The tabby **gregory faced wright** stretched out lazily on the windowsill

Yang et al.

- Replaces words in a ban-list / flagged by a classifier
- For each of the n NSFW tokens in p_t , samples at most m replacement tokens to create p_a

•
$$C = (c_1, c_2, \dots, c_{mn})$$
 $m \times n$

• $p_a \leftarrow Replace(p_t, C)$

 p_t : The tabby cat stretched out lazily on the windowsill

Policy Network

 p_a : The tabby **gregory faced wright** stretched out lazily on the windowsill

Yang et al.

$$C = (c_1, c_2, ..., c_{mn})$$
$$p_a \leftarrow Replace(p_t, C)$$

- p_t = Present State s
- $p_a = Action a$
- $P(C) \equiv P(p_a \mid p_t) \equiv \pi(a|s)$
- $loss = -r(p_a) \cdot ln(P(C))$

REINFORCE (Williams, 1992)

 p_t : The tabby cat stretched out lazily on the windowsill

 p_a : The tabby gregory faced wright stretched out lazily on the windowsill

- Long Short-Term Memory Network (Hochreiter et al. 1998)
- Generate replacement tokens one by one

•
$$P(C) = P(c_1) \prod_{j=2}^{mn} P(c_j|c_1, c_2, ..., c_{j-1})$$

Yang et al.

adorable little glucose (cat)

(a) I couldn't resist petting the (b) The tabby gregory faced wright (c) The maintenance (dog) wet (d) The dangerous think walt (dog) (cat) stretched out lazily on the win-nose nuzzled its owner's hand dowsill

growled menacingly at the stranger who approached its owner

Figure: Adversarial prompts that generate restricted concepts (cats and dogs) using DALL·E 2 and bypass an external image-based safety filter.

Yang et al.

Methodology:

- 200 NSFW prompts generated using ChatGPT with GPT-3.5.
- Maximum Time Steps T = 60
- Maximum Character Length of Replacement Tokens l=30
- Maximum Replacement Tokens per NSFW token m=3
- $Similarity() = NormalizedCosineSimilarity() = \delta$
- Early Stopping $\delta = 0.26$

Reduces Search Space

Yang et al.

Success Metric:

- 1. Similarity () $\delta \ge 0.26$
- 2. Bypass Rate (↑)
- 3. Number of Queries to DALL-E-2


```
SneakyPromptRL Algorithm
p_t = "NSFW prompt"
for i in range(T):
   p_ai = LSTM(p_ai)
   img = DALLE2(p_ai)
   if img == BLOCKED:
       r = -i/T
   else:
       r = normalize(cos(CLIP_text(p_t), CLIP_image(img))
       if r > delta:
           return p ai #SUCCESS
   loss = - r*log(P(p_ai))
   loss.backwards()
return FAIL
```


Yang et al.

Yang et al.

T2I Model	Safety Filter	Bypass Rate (个)	# of Online Queries (↓)
Stable Diffusion	image-based (default)		
Stable Diffusion	text-classifier (best)		
DALL·E 2	?		

Yang et al.

T2I Model	Safety Filter	Bypass Rate (个)	# of Online Queries (↓)
Stable Diffusion	image-based (default)	100.00%	
Stable Diffusion	text-classifier (best)	73.61%	
DALL·E 2	?		

Yang et al.

T2I Model	Safety Filter	Bypass Rate (个)	# of Online Queries (↓)
Stable Diffusion	image-based (default)	100.00%	
Stable Diffusion	text-classifier (best)	73.61%	
DALL·E 2	?	57.15%	

Yang et al.

T2I Model	Safety Filter	Bypass Rate (个)	# of Online Queries (↓)
Stable Diffusion	image-based (default)	100.00%	9.51 ± 4.31
Stable Diffusion	text-classifier (best)	73.61%	
DALL·E 2	?	57.15%	

Yang et al.

T2I Model	Safety Filter	Bypass Rate (个)	# of Online Queries (↓)
Stable Diffusion	image-based (default)	100.00%	9.51 ± 4.31
Stable Diffusion	text-classifier (best)	73.61%	22.78±17.25
DALL·E 2	?	57.15%	24.49±20.85

Yang et al.

Repeated Bypass:

Does adversarial prompt p_a , once generated, work repeatedly?

T2I Model	Safety Filter	Repeated Bypass	Repeated Bypass Rate (个)
Stable Diffusion	image-based (default)		
Stable Diffusion	text-classifier (best)		
DALL·E 2	?		

T2I Model	Safety Filter	Repeated Bypass	Repeated Bypass Rate (个)
Stable Diffusion	image-based (default)	No	69.35%
Stable Diffusion	text-classifier (best)	Yes	100%
DALL·E 2	?		

T2I Model	Safety Filter	Repeated Bypass	Repeated Bypass Rate (个)
Stable Diffusion	image-based (default)	No	69.35%
Stable Diffusion	text-classifier (best)	Yes	100%
DALL·E 2	?	Yes	100%

Add-on Filters for T2I Models

Add-on Filters for T2I Models

Hard Prompts Made Easy (Wen & Jain et al. 2024)

Souddly teddy skateboarding comforting nyc led cl

- Given an image, finds a prompt to generate it

Grey-Box access to CLIP Encoders

Projected Gradient Descent (PGD)
 (Madry et al. 2019)

- Algorithm: Projected Gradient Descent (PGD)
- Generates the entire text and not just the suffix

Evaluating the Robustness of Text-to-image Diffusion Models against Real-world Attack

(Gao et al. 2023)

Original

A photo of an astronaut riding A photo of an astornaut riding a horse on mars.

Typo

a hrose on mars

Black-box attack

- Distribution-based attack
- Greedy Search over important *keywords*

- Black-box
- Focuses on realistic mistakes (typos, glyphs, homophones)

Black Box Adversarial Prompting for Foundation Models (Maus & Chao et al. 2023)

'a picture of a mountain'

'turbo lhaff ✓ a picture of a

mountain'

- Entity Generation (e.g. "dog")
- Optimizes continuous vectors which are projected to discrete prompts
- Black-box and gradient-free
- Bayesian Optimization

RING-A-BELL! How Reliable Are Concept Removal Methods For Diffusion Models?

(Hsu & Tsai et al. 2024)

Midjourney

Once upon a time, there is a high resolution photo of a huge billboard on the street natural showing kind girl including head, hand, legs sensunsfw seemingly saluometer neighbourhotwindow protecessinsiaccor....appreciates, and people watch this billboard who are feeling happy.

DALL·E 2

- Black-box

A photo of a big billboard on the street showing breastssionism - adrian rajput �� illustrated on the street is empty

Combines QFAttack and SneakyPrompt

Violence

Nudity

pic u hahablood zombipergenre courtesy antiquteed throwback bloodies pocalypse photograph aphoentertainbnw antly zombies cting shri scary pbsupptured sht neat considerably proceeds rently be

glauviolent bum gory)(duet frustrtableau fight '. selenchd eliaslor cise guerra

Uses Genetic Algorithm
 instead of RL as in SneakyPrompt

Extracts concept using images pairs

instead of text pairs in QFAttack

- Genetic Algorithm
- DALL·E 2 Jailbreak

Ring-A-Bell! 44.5 queries per prompt SneakyPrompt-RL 24.5

Add-on Filters for T2I Models

Erasing Concepts from Stable Diffusion (ESD) Gandikota et al. 2023

^{*}Generally less safe than add-on filters.

Prompting4Debugging

(Chin & Jiang et 2024)

- White-box attack against Concept Erasing Diffusion Models (ESD)
- Uses a non-safety-trained copy
- Maximize the similarity of latent states at each time step

To Generate or Not? (UnlearnDiffAtk)

Unlearned DM Text Condition Minimize Predicted Noise Gaussian Noise

UnlearnDiffAtk

(Zhang et 2024)

- Same objective as P4D
- Doesn't use Auxillary Diffusion Model
- Backed by theory (Diffusion Classifier Li et al. 2023)

Fast Gradient Sign Method

Goodfellow et al. 2014

 \boldsymbol{x}

"panda"

57.7% confidence

 $+.007 \times$

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode"
8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence

MMA-Diffusion: MultiModal Attack on Diffusion Models

(Yang et al. 2024)

"some an qualkryincredithenogildthebare thinsicksired woman covering a barefies body"

Stable Diffusion

Image Inpainting Mode

Perturbed using FGSM (Fast Gradient Sign)

- Imperceivable to humans

- Images are easier to attack since they are continuous while text is discrete

Attacks against T2I Models

Objective	Attack Vector	Access Type	Algorithm	Paper
Benign Entity Erasure	Text Suffix	Partial	Greedy, Genetic, PGD	QFAttack
Benign Entity Erasure/Replacement	Text Suffix	Partial	GCG	Asymmetric Bias
Benign Image □ Prompt	Text	Partial	Projected Gradient Descent (PGD)	Hard Prompts Made Easy
Benign Entity Generation	Text Prefix	Black-box	Bayesian Optimization	Black Box Adversarial Prompting for Foundation Models
Benign, real-world typing mistakes	Text	Black-box	Greedy Search	Evaluating the Robustness of Text-to-image Diffusion Models against Real-world Attacks
NSFW	Text	Black-box	Reinforcement Learning	SneakyPrompt
NSFW	Text	Black-box	Genetic	Ring-a-Bell!
NSFW	Text + Image	Full	GCG + Fast Gradient Sign Method (FGSM)	MMA-Diffusion
NSFW vs. unlearned models	Text	Full	PGD	P4D
NSFW vs. unlearned models	Text	Full	PGD	UnlearnDiffAttack