## 数学

試験時間:50分

平成 29 年度筑波大附属高校

大問は 1 から 5 まであります 解答は解答用紙に記入して下さい

| - |          | 1              |
|---|----------|----------------|
|   | 次の① ~ ⑤の | にあてはまる数を求めなさい。 |

(1) A さんの誕生日について次の計算をしてもらった.

生まれた月を 25 倍して 13 を加え、その数を 4 倍して 14 を加える。さらに生まれた日を加え、その数を 3 倍して 15 を加える。

この結果を答えてもらったところ 852 であった. A さんの誕生日は ① である.

(2) さいころを 2 回投げて、出た目の数を順に a、b とする.二次方程式  $ax^2+5x+b=0$  の解が有理数となる確率は ② である.

(3) 右の表は、1 問 1 点で 10 点満点のテストを  $A\sim J$  の 10 人の生徒が受験した結果である.

| 生徒    | A | В | С | D | E | F | G | Н | I | J |
|-------|---|---|---|---|---|---|---|---|---|---|
| 得点(点) | ? | ? | 5 | 9 | 4 | 9 | 2 | 6 | 5 | 7 |

A, B の得点は不明である. 10 人の平均点は 6 点であった. また, 7 点以上合格とすると, 合格者の平均と不合格者の平均に 3.75 点の差があった.

このとき、A、Bの得点の差は 3 である.

(4) 関数  $y=\frac{1}{2}x^2$  のグラフ上の 2 点  $A,\ B$  の x 座標は、それぞれ  $-2,\ 4$  である.

関数  $y=-x^2$  のグラフ上に異なる 2 点  $C,\ D$  を、右 の図のようにとると、四角形 ACDB は平行四辺形となった.

このとき, D の x 座標 4 である.



(5)  $\triangle ABC$  において、AD:DB=1:x となる点 D を辺 AB 上にとる。辺 BC の中点を M とし、2 つの線分 AM、CD の交点を E とする。

 $\triangle ABC$  の面積が  $\triangle ADE$  の面積の 12 倍であるとき,x の値は,x= ⑤ である.

 $|\mathbf{2}|$ 

AB = 6cm, BC = 8cm, CA = 10cm の  $\triangle ABC$  がある.

 $2 \stackrel{\cdot}{=} P$ , Q は, 点 A を同時に出発し,  $\triangle ABC$  の周上をそれぞれ以下の規則にしたがって動く.

 $P: A \rightarrow C \rightarrow B \rightarrow A \rightarrow C \rightarrow B \rightarrow A$  の順に、毎秒 2cm の速さで 2 周する.

 $Q: A \rightarrow B \rightarrow C \rightarrow A$  の順に、毎秒 1cm の速さで 1 周する.

右の図のように、 $\triangle ABC$  が直線 PQ によって三角形 と四角形に分けられるとき、三角形の方の図形を F とする.



(1) F の面積がはじめて  $\triangle ABC$  の面積の半分となるのは, 2 点 P, Q が A を出発してから  $\boxed{ 6 }$  砂後である.

 $oxed{3}$  長さ  $\sqrt{10}\mathrm{cm}$  の線分  $\mathrm{AB}$  を直径とする円の周上に、 $\mathrm{AC}=\mathrm{BC}$  となる点  $\mathrm{C}$ 、 および点  $\mathrm{D}$  を右の図のようにとる. また、 $\mathrm{C}$  を中心として  $\mathrm{D}$  を通る円と  $\mathrm{DA}$  の延長との交点を  $\mathrm{E}$  とすると、 $\mathrm{AE}$ = $\mathrm{3cm}$  であった.



(1) 線分 CD の長さは、 $CD = \boxed{9}$  cm である.

(2) D から線分 BC に垂線 DF を引くと、線分 DF の長さは、DF =  $\boxed{10}$   $\mod$  cm である.

 $oxed{4}$  下の図のように、4 つの二等辺三角形と 5 つの正方形を面とする立体 O-ABCDEFGH が、面 EFGH を底面として平面 P 上に置かれている.

辺 AB の長さは 8cm, O から平面 P までの距離は 24cm である.

辺 BC の中点を M とする. 直線 ME に平行な光線をこの立体にあてたところ, 平面 P 上にこの立体の影ができた.

このとき、次の ①、② の にあてはまる数を求めなさい.



(1) 平面 P 上にできた点 O の影を点 Q とするとき、線分 OQ の長さは、OQ =  $\boxed{\phantom{A}}$  cm である.

(2) この立体から四角すい O – ABCD を取り除くと、影の面積は  $\boxed{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }$  cm $^2$  だけ小さくなる.

| <b>5</b> ある商品           | 品は単価が $a$ 円で, $b$ 個買うごとにもう $1$ 個おまけとしてもらえる $(a,\ b$ は正の整数  | ).        |
|-------------------------|------------------------------------------------------------|-----------|
|                         | 例えば, $a=300,\ b=7$ の場合                                     |           |
|                         | 単価が $300$ 円で、 $7$ 個買うごとにもう $1$ 個おまけとしてもらえる.                |           |
|                         | 30 個購入すると支払金額は $9000$ 円で $,$ おまけ $4$ 個含めて合計 $34$ 個手に入る     |           |
| この商品を購 <i>)</i>         | 、するための支払金額が $1400$ 円のとき $_{ m h}$ おまけを含めて $30$ 個手に入ることができた | . このとき, 次 |
| の <pre>(3), (4) の</pre> | にあてはまる数を求めなさい.ただし,消費税は考えないものとする.                           |           |

(2) この商品を購入するための支払い金額が c 円のとき、1 個以上のおまけを含めて合計 10 個手に入れることができた.

支払い金額として考えられる c の値をすべてを求めると、 $c = \boxed{ \ \ \textcircled{14} \ \ \ }$  である.