Hajee Mohammad Danesh Science and Technology University, Dinajpur B.Sc. (Engineering) in Computer Science and Engineering Semester Final Examination (Online) 2019 (July-December)

Level: 2 Semester: II, Credit: 3.0

Course Code: CSE 259, Course Title: Computer Architecture and Organization (Theoretical)

Time: 1 hour and 30 minutes Full Marks: 90

[N.B. The figure in the right margin indicates the marks for respective question, answer any 3 (Three) questions from each section, and split answer to any question is unacceptable.]

Section-A

		Section-A	
1.	a)	Explain the basic performance equation of a processor with proper example.	6
	b)	The sharing of a processor by a user program and OS routines – illustrates it. An output	9
		device and disk storage must be included in the discussion.	
2.	a)	An <i>n</i> -bit integer needs to store in <i>m</i> -bit location (here $m > n$). Using the twos complement	6
		representation, mathematically validate its range extension procedure.	
	b)	Explain the multiplication procedure of $7 \times (-3)$ by using the Booth's algorithm.	9
3.	a)	Data hazard can be handled by the software – justify your answer.	6
	b)	Define structural hazard and explain it with proper example.	9
4.	a)	Apply all 6 kinds of shift and rotate operations (3-bits) on the input stream 10100010.	6
	b)	Compare between one address and three address instructions that could be used to compute	9
		the equation: $Y = (P + Q/R)/(S - T)$.	
		Section-B	
5.	a)	Point out the difference between the CISC and RISC architecture.	6
	b)	Explain indirect addressing mode and displacement addressing mode.	9
6.	a)	Mention the control sequence for the instruction Add R1,R2,R3 for the three-bus organization.	6
	b)	Explain the register transfer operation with the aid of suitable example and appropriate	9
		figure (here, the processor's datapath has the facility of single-bus organization).	
7.	a)	Design a static RAM cell by using the inverter circuits and introduce its basic operation.	6
	b)	Explain the internal organization of a $1K \times 1$ semiconductor RAM memory chip and	9
		calculate number of external connections also.	
8.	a)	If a system enters in infinite loop during the execution of multiple interrupts, then what are	6
		the techniques to overcome from such situation?	_
	b)	Design a multiple-priority scheme for interrupts, where each device has a separate interrupt-request and interrupt-acknowledge line. Briefly explain it also.	9