

双模键盘 蓝牙 3.0 模组与 USB 芯片通信协议

版本及变更记录

版本	变更内容	作者	日期
V1.0	初版	黄明新	2017-04-14
V1.1	增加蓝牙常用状态协议	黄明新	2017-07-28
V1.2	1、增加蓝牙低电关机协议	黄明新	2017-09-06
	2、增加到 5 台主机		
V1.3	增加重置模组配对信息指令	Lokher	2018-01-05
V1.4	增加查询指令	Lokher	2018-01-08
V1.5	全键无冲键盘报告 Bitmapped keys 字节数由 15 修正为 16	Lokher	2018-03-23
V1.6	1. 增加修改蓝牙设备名指令	王春炜	2018-12-3-
	2. 增加查询设备名指令		29
	3. 增加到 6 台主机		
V1.7	1. 增加 USB 修改蓝牙低电报警值指令	王春炜	2019-01-03
V1.8	1. 增加主机 OS 指令	王春炜	2019-09-17

1 硬件连接

蓝牙模组与 USB MCU 之间采用 SPI 通信,蓝牙模组为主, USB MCU 为从,如下图所示:

SPI 模式: CPOL=0, SPI_CLK 信号空闲时为低电平, 高电平有效

CPHA=0, SPI_DATA 在 SPI_CLK 的第一个时钟沿(上升沿)被采样捕获

速率: 200KHz

INT/IRQ: 默认状态为低电平, 高电平有效

2 通信数据格式

2.1 USB MCU 的数据格式

当 USB MCU 需要向蓝牙模组发送数据时,需要先将 IRQ 信号置为高电平,然后等待蓝牙模组读取数据,数据发送完成后,等待 1 字节的发送空闲后,USB MCU 需将 IRQ 信号置回为低电平。

2.1.1 标准 HID 键盘按键报告

1 octet	1 octet	1 octet	6 octets
0xA1	Modifier	Reserve	Standard HID Usage

应用于发送 Usage Page 为 0x06 的按键报告。

2.1.2 全键无冲键盘报告

1 octet	16 octets
0xA2	Bitmapped keys

每个 bit 代表一个按键,当键盘按键超过 6 个时,超出的按键以 bit 的方式发送,同样 Usage Page 为 0x06。

2.1.3 多媒体按键报告

1 octet	2 octets
0xA3	Consumer key usage

用于发送 Usage Page 为 0x0C 的按键报告。

Usage 的顺序为高位在前,如 Mute 按键数据: 0xA3 0x00 0xE2

2.1.4 系统控制按键报告

1 octet 1 octet		说明
0xA4	0xA8	System Power Down
0xA4	0xA9	System Sleep
0xA4	0xAA	System Wake Up

应用于发送 Usage Page 为 0x01 的系统控制按键报告。

2.1.5 Fn 按键报告

1 octet	1 octet	说明
0xA5	0xA3	Fn 按键按下
0xA5	0x00	Fn 按键弹起

2.1.6 控制指令

主要用来控制蓝牙模组执行相应指令。

1 octet	1 octet	1 octet	说明
0xA6	0x58	0x01	USB MCU 检测到 USB
0xA6	0x51	0x62	USB MCU 进入蓝牙模式
0xA6	0x51	0x70	重置蓝牙模组配对信息
0xA6	0x51	0x89	控制蓝牙模组进入配对
0xA6	0x51	0x81	
0xA6	0x51		分别切换到蓝牙 Host 1 到 6
0xA6	0x51	0x86	
0xA6	0x51	0x74	MAC OS
0xA6	0x51	0x75	Windows OS

2.1.7 修改设备名

1 octet	2 octet	1 octet	小于 32 octet
0xA7	Check sum	Len	Name

Len = strlen(name);

Check sum = name[0] + name[1] + ... +name[len-1];

Name 无 '\0' 结尾

注: 高位在前

2.1.8 修改低电报警电压值

1 octet	1 octet	2 octet	说明
0xA8	0x51	Full Value	设置满电电压值
0xA8	0x52	Low Value	设置低电电压值
0xA8	0x53	ShutDown Value	设置关机电压值

注: 高位在前

2.2 蓝牙模组的数据格式

当蓝牙模组需要向 USB MCU 发送数据时,需要先将 INT 信号置为高电平,然后再发送数据,数据发送完成后,蓝牙模组需将 INT 信号置回为低电平。

2.2.1 LED 状态数据

1 octet	1 octet
0xB1	Led state

主要用于将蓝牙当前的 Num Lock, Caps Lock 和 Scroll Lock 状态传递给 USB MCU。

2.2.2 状态通知

这些指令主要用于通知 USB MCU 蓝牙模组当前的工作状态

1 octet	1 octet	1 octet	说明
0xB6	0x5A	0x06	电池电压低
0xB6	0x5A	0x0A	退出电池电压低模式
0xB6	0x5A	0x07	低电关机
0xB6	0x51	0x76	蓝牙连接成功
0xB6	0x51	0x77	蓝牙进入配对状态
0xB6	0x51	0x78	蓝牙连接断开,进入休眠
0xB6	0x51	0x79	蓝牙模组进入回连状态

需要注意的是蓝牙连接断开的指令,USB MCU 在收到该指令时,需要小心处理,根据当前状态再决定是否需要进入休眠状态。正常情况下,蓝牙进入配对状态超时,或回连超时,

或连接断开的情况下,都会收到该指令,这时可以进入休眠状态。但是,当蓝牙模组在收到 切换主机的指令时,需要先断开当前的蓝牙连接,再进行连接下一个主机,所以也会收到连 接断开的状态,这个时候不应该进入休眠状态。

2.3 查询指令

主要用于查询状态.

2.3.1 USB MCU 工作模式

由蓝牙模组发送.

1 octet	1 octet	1 octet	说明
0xB6	0x5A	0xA0	查询 USB MCU 工作模式

USB MCU 响应:

1 octet	1 octet	1 octet	说明
0xA8	0x5A	mode	Mode = 0, USB 模式
			Mode = 1, 蓝牙模式

2.3.2 蓝牙设备名查询

蓝牙模组发送:

1 octet	1 octet	1 octet	说明
0xB6	0x5A	0xA1	查询蓝牙设备名

USB MCU 响应: 蓝牙设备名称

参考时序

