Some starter notes on trees

James Halverson, Cody Long, Benjamin Sung¹

Department of Physics, Northeastern University

Boston, MA 02115-5000 USA

(Dated: January 31, 2017)

Abstract here.

TECHNICAL CONSIDERATIONS

Let B be a smooth weak Fano toric threefold. Such a variety is naturally associated with a fine regular star triangulation (FRST) of a three-dimensional reflexive polytope Δ . The monomials that may appear in the global sections f and g of the Weierstrass model are in one-to-one correspondence with points in the polytopes

$$P_n := \{ m \in \mathbb{Z}^3 \mid \langle m, v \rangle + n \ge 0 \ \forall v \in \Delta \}, \tag{1}$$

in the cases n=4,6, respectively. Δ is a reflexive polytope because its dual $\Delta^{\circ} := P_1$ is itself a lattice polytope in \mathbb{Z}^3 . Then if x_i is the toric homogeneous coordinate associated with some point $v_i \in \Delta$, the order of vanishing along $x_i = 0$ of some monomial $m_n \in P_n$ is

$$p_{x_i, m_n} = \langle m, v_i \rangle + n, \tag{2}$$

and the overall monomial associated with m_n is $\prod_i x_i^{\langle m_n, v_i \rangle + n}$. From this the order of vanishings of the monomials along various toric divisors and their intersections can be read off.

(JH:) Filler text will be needed here

Consider a toric variety \tilde{B} obtained via a sequence of smooth blowups from the original toric threefold B associated to an FRST of Δ . The vertex associated to any given exceptional divisor is of the form $v_e = \sum a_i v_i$, with non-negative a_i , where the points v_i all lie on some two-face F of Δ . \tilde{B} also has polytopes P_n , which we will call \tilde{P}_n to distinguish them from the P_n associated to B. Due to the structure of the blowups, for fixed n \tilde{P}_n may be obtained by slicing out upper half planes from P_n .

We will now show that if every exceptional divisor satisfies $\sum a_i \leq 6$, then the generic Weierstrass model over \tilde{B} has no (4,6) divisors.

First, note that all vertices of \tilde{B} are of the form $v = \sum a_i v_i$ with a_i non-negative; v corresponds to an exceptional divisor if and only if the vector a_i is not a unit vector. This, together with the definition of Δ° , implies that $\langle m, v \rangle = \sum a_i \langle m, v_i \rangle \geq -\sum a_i \geq -6$ for all v. This implies that any $m \in \Delta^{\circ}$ is also an element of \tilde{P}_6 ; i.e. the associated monomial appears in g of the associated Weierstrass model over \tilde{B} . Second, consider the unique $m \in \Delta^{\circ}$ that is dual to a chosen two-face F; it satisfies $\langle m, v \rangle = -1 \ \forall v \in F$. Then for any $v_e = \sum a_i v_i$ that is the sum of multiple vertices in F,

we have $\langle m, v_e \rangle = -\sum a_i < 0$. By the previous argument, $m \in \tilde{P}_6$, and rewriting in terms of the power in the exponent we have

$$6 > p_{e,m} \ge 0. \tag{3}$$

This implies the monomial m prevents e=0 from being a (4,6) divisor. This m does so for any exceptional divisor built on top of F, and for any F there is such an m. Therefore, none of the exceptional divisors of $\tilde{B} \to B$ are (4,6) divisors. Third, for any $m \in \Delta^{\circ}$ and $v \in \Delta$, $m \in \tilde{P}_6$ by the previous argument and $\langle m,v \rangle = -1$ which implies that g vanishes to order 5 along the associated divisor, and thus it cannot be a (4,6) divisor.

This exhausts the possible types of divisors; therefore any \tilde{B} obtained in this way has no (4,6) divisors.

We will now show that to any \tilde{B} constructed via our method there is a sequence of smooth toric blowups that together give $\check{B} \to \tilde{B}$ were \hat{B} has no (4,6) points, curves, or divisors. This will be criticall for showing that the general Weierstrass model over \tilde{B} is at finite distance in the moduli space using the Weil-Petersson metric.

Consider any toric curve $C = D_s \cdot D_t \subset \tilde{B}$. Take $v_s = \sum_i a_{i,s} v_i$ and $v_t = \sum_i a_{i,t} v_i$ and define $a := \sum_i a_{i,s}$ and $b := \sum_i a_{i,t}$. Let F be a facet on which or above which v_s and v_t sit; let $m \in \Delta^{\circ}$ be the dual to F. As an element of \tilde{P}_4 the associated monomial may be written

$$s^{\langle m, v_s \rangle + 4} t^{\langle m, v_t \rangle + 4} \times \dots,$$
 (4)

and the monomial vanishes to order $\langle m, v_s \rangle + \langle m, v_t \rangle + 8 = -a - b + 8$ along C, which must be ≥ 4 for C to be a (4,6) curve. Therefore $a+b \leq 4$ is necessary for C to be a (4,6) curve. Now suppose C is a (4,6) curve that we blow up via $\hat{B} \to \tilde{B}$ by adding an exceptional divisor $v_e = \sum a_i v_i = v_s + v_t$. Then $\sum a_i = a + b$, which satisfies $\sum a_i \leq 4$ since C is (4,6), but this condition is sufficient to ensure that \hat{B} has no (4,6) divisors! If $2a + b \leq 4$ or $a + 2b \leq 4$ then \hat{B} may still have a (4,6) curve, but this blowup process can be iterated until there are no longer (4,6) curves. So any \tilde{B} in our construction that has (4,6) curves admits a sequence of blowups to a smooth toric threefold with no (4,6) curves or divisors.

We must make a similar argument for (4,6) points. Consider a point $p = D_s \cdot D_t \cdot D_u \subset \tilde{B}$, with v_s and v_t as before and $v_u = \sum_i a_{i,u} v_i$ with $c := \sum_i a_{i,u}$. There is a unique facet F above which or on which $v_{s,t,u}$ all sit,

and again $m \in \Delta^{\circ}$ is the dual to F. As an element of \tilde{P}_4 the associated monomial may be written

$$s^{\langle m, v_s \rangle + 4} t^{\langle m, v_t \rangle + 4} u^{\langle m, v_u \rangle + 4} \times \dots,$$
 (5)

and the monomial vanishes to order -a-b-c+12 at p. Therefore $a+b+c\leq 8$ is a necessary condition for p to be a (4,6) point. If $a+b+c\leq 6$, then the blowup of p with $v_e=v_s+v_t+v_u$ has no (4,6) divisors and this type of blowup can be iterated until either there are no more (4,6) points or there is a (4,6) point with associated a,b,c satisfying $6< a+b+c\leq 8$. In this case the blowup $v_e=v_s+v_t+v_u$ may have a (4,6) divisor. However, a short calculation shows that any positive a,b,c satisfying this bound admits sequences of curve blowups along $D_s\cdot D_t$, $D_t\cdot D_u$, $D_u\cdot D_s$ that leads to a threefold base with no (4,6) points, curves, or divisors.

Together, these arguments imply that any base \tilde{B} in our construction has a sequence of smooth toric blowups to another base \hat{B} (also present in our construction) that has no (4,6) divisors, curves, or points. This means that the elliptic fibration $\hat{X} \to \hat{B}$ has canonical singularities, which in turn implies the general Weierstrass model \tilde{X} over \tilde{B} also has canonical singularities, since the blowup $\hat{B} \to \tilde{B}$ induces a blowup $\hat{X} \to \tilde{X}$. To see that the elliptic fibration \hat{X} has only canonical singularities, we employ a modified version of Nakayama's result as presented in Lemma 3.6 in [1]. Consider a point $b \in \hat{B}$ and S a smooth surface through b. We consider the base change $\hat{X} \times_{\hat{B}} S$ defined by the following pullback diagram.

(JH:) Ben can you give the intuitive sentence about the fiber product, again? The one that made me and Cody happy? I already forgot. We may consider $\hat{X} \times_{\hat{R}} S$ as a Weierstrass model over S, which can be thought of as a restriction within \hat{X} that gives an elliptic threefold over S. By hypothesis, since B has no (4,6) points, it follows that S has no (4,6) points and hence the pullback is a minimal Weierstrass model and has rational singularities. By a result of [2] on the deformations of rational singularities, it follows that \hat{X} has rational singularities, and since \hat{B} is smooth, it follows that \hat{X} has rational Gorenstein singularities and in particular, at worst canonical singularities. This means that there is a smooth resolution (not necessarily Calabi-Yau) $X_s \xrightarrow{\rho} \hat{X}$ such that $K_{X_s} = \rho^*(K_{\hat{X}}) + \sum_i a_i E_i$ with all $a_i \geq 0$ and where E_i is an exceptional divisor of ρ . Then we also have a smooth resolution $X_s \xrightarrow{\rho} \hat{X} \xrightarrow{\phi} \tilde{X}$ so that \tilde{X} also has canonical singularities. To see this, we consider the following diagram

where \hat{B} is a resolution of \tilde{B} and we take \hat{X} to be induced weierstrass model over \hat{B} from the above pullback diagram. It suffices to show that $R^{\bullet}(f \circ \phi)_{\star}(\mathcal{O}_{X_s}) \cong \mathcal{O}_{\tilde{X}}$. By hypothesis, $R^{\bullet}f_{\star}(\mathcal{O}_{X_s}) \cong \mathcal{O}_{\hat{X}}$ and $R^{\bullet}\phi'_{\star}(\mathcal{O}_{\hat{B}}) \cong \mathcal{O}_{\tilde{B}}$. Applying the Grothendieck spectral sequence, we have that $R^{\bullet}(f \circ \phi)_{\star}(\mathcal{O}_{X_s}) \cong R^{\bullet}\phi_{\star}(\mathcal{O}_{\hat{X}})$. Since p' in particular, is a flat morphism, and flatness is stable under base change, p is also a flat morphism, and in particular, we have the induced isomorphism $p'^{\star}R^{\bullet}\phi'_{\star}\mathcal{O}_{\hat{B}} \xrightarrow{\sim} R^{\bullet}\phi_{\star}p^{\star}\mathcal{O}_{\hat{B}}$. It follows that $R^{\bullet}\phi_{\star}(\mathcal{O}_{\tilde{X}}) \cong R^{\bullet}\phi_{\star}p^{\star}(\mathcal{O}_{\hat{B}})$ Any F-theory model on \tilde{X} in our construction therefore has canonical singularities, and by results of Hayakawa [3] and Wang [4] they are all at finite distance from one another in the Weil-Petersson metric on moduli space.

GAUGE CONFIGURATIONS

We now embark on a combinatorial study of locality of non-Higgsable clusters on intersecting divisors. Indeed, we first observe trivially that sufficiently tall trees on one simplex may induce non-Higgsable clusters on another simplex with some relative height difference that could be quantitatively analyzed. Let v_1 , v_2 , and v_3 denote three rays forming a smooth, rational, polyhedral cone, and define $v_e \equiv av_1 + bv_2 + cv_3$ with $(a,b,c) \in \mathbb{Z}^3_{\geq 0}$. Define $H_{n,e}$ to be the hyperplane defined by $\langle m, v_e \rangle = -n$ and define $H_{n,i}$ to be the upper half-planes defined by $\langle m, v_i \rangle \geq -n$ for i = 1, 2, 3. We wish to study the region defined by $H \equiv H_{n,e} \cap H_{n,i}$.

We first show that there exists a finite number of integral points in H. Consider the equation given by $\langle m, v_e \rangle = a \langle m, v_1 \rangle + b \langle m, v_2 \rangle + c \langle m, v_3 \rangle = -n$. As the tuple (a, b, c) are strictly positive, it easily follows from the above inequalities, that $\langle m, v_i \rangle$ are also bounded above. Thus, we consider the integral solution set to the matrix inequality

As the vectors v_i form a basis for \mathbb{Z}^3 by hypothesis, it follows easily that there exists only finitely many integral

solutions to the above matrix inequality, and hence we are done.

We now give a sufficient condition for bounding hyperplanes to eliminate points on the hyperplane $H_{n,e}$. Let v_e and the v_i be as defined above, and define $v_i' \equiv a_i v_1 + b_i v_2 + c_i v_3$ for positive integers a_i , b_i , and c_i such that $v_1' + v_2' + v_3' = v_e$. We construct three smooth torusequivariant blowups along the toric curves given by the edges (v_e, v_i') for i = 1, 2, 3. The resulting hyperplane inequalities given by the vertices $v_e + v_i'$ yield the condition $\langle m, 3v_e + v_1' + v_2' + v_3' \rangle = \langle m, 4v_e \rangle \geq -3n$. Thus, we find that $\langle m, v_e \rangle \geq -\frac{3}{4}n$ and hence there does not exist integral points on the hyperplane $H_{n,e}$.

Minimal Vanishing From Resolution

(CL:) to discuss notation A blow-up on an n-face $F_n \subset \Delta^{\circ}$ (n = 0, 1, 2) will induce a minimal order of vanishing in f and g along the divisors corresponding to the points involved in the blow-up, as well as any of the points interior to any higher codimension faces bounded by F_n . In this section we derive this by consider blow-ups along faces of each dimension.

Points interior to facets

First, we consider a point p interior to a facet F, with corresponding divisor D_p , and homogenous coordinate x_p . To check for non-Higgsable 7-branes on D_p , we check for the absence of any monomials m_n such that $\langle m_n, p \rangle = -n$, for n = 4, 6. Define the lattice polytope corresponding to the sections of degree $\mathcal{O}(-nK_B)$ as Δ_n . We note that all vertices of Δ_n take the form nm_i , where the m_i are the vertices of Δ . Recall that there exists a vertex $m \subset \Delta$ dual to $F: \langle m, F \rangle = -1$. Let the vertices that are not m be \hat{m}_j . Since $\langle m, p \rangle = -1$, and $\langle \hat{m}_i, p \rangle \geq 0$, it is clear that $\langle n m, p \rangle = -n$, and $\langle n \, \hat{m}_i, p \rangle \geq 0$. Therefore the linear function $\langle p, \cdot \rangle$ is minimized at m, and is strictly increasing when moving from m to any other vertex, and therefore strictly increasing when moving away from m in any direction. Therefore, m is the only monomial satisfying $\langle p, \cdot \rangle = -n$. Therefore, before resolution there is a single monomial in f(g), which is degree zero in x_p , and corresponds to a vertex in Δ_4 (Δ_6). The existence of these monomials obstructs the existence of non-Higgsable 7-branes along D_n .

Now let us consider a resolution, with exceptional divisor $D_e = \sum a_i D_i$, where $a_i \in \{0,1\}$, and the D_i correspond to points v_i on F, which can be vertices, points interior to edges that bound F, or points strictly interior to F. For the blow-up to be non-trivial either two or three of the a_i are non-zero. This blow-up introduces a hyperplane that further cuts Δ_n to $\tilde{\Delta}_n$. In particular, we consider the effect on the monomial nm. First, let us note

that if we have an $m \in \Delta$ such that $\langle m,p \rangle = -1$, where p is in the strict interior of a facet F, then $\langle m,v_i \rangle = -1$ for all other $v_i \in F$. To see this, consider a triangulation of F using the vertices of F as vertices in the triangulation. Then all other points lie within the simplices of the triangulation. Let p lie within a simplex generated by the points $\{v_1,v_2,v_3\}$. Then we can write $p=a_1v_1+a_2v_2+(1-a_1-a_2)v_3$, where $0< a_i<1$. Therefore, we have $-1=a_1\langle m,v_1\rangle+a_2\langle m,v_2\rangle+(1-a_1-a_2)\langle m,v_3\rangle$. From the reflexivity of Δ° we have $\langle v_i,m\rangle\geq -1$. Assume that $\langle m,v_1\rangle>-1$. We then have $-1>-a_1+a_2\langle m,v_2\rangle+(1-a_1-a_2)\langle m,v_3\rangle>-a_1-a_2-(1-a_1-a_2)=-1$, which is a contradiction. One can repeat this argument to see that all of the the $\langle m,v_i\rangle=-1$.

Now we take the inner product of nm with $v \equiv \sum_i a_i v_i$, we have $\langle nm,v \rangle = -1$. Then $\langle m,v \rangle - n \sum_i v_i$, which must satisfy $\langle m,v \rangle - n \sum_i v_i \geq -n$ for m to be an allowed point in $\tilde{\Delta}_n$. However, a non-trivial blow-up have $\sum_i v_i > 1$, and therefore the blowup cuts out the point m from $\tilde{\Delta}_n$. Applying this to Δ_f and Δ_g , we can see that after the resolution both f and g will vanish to at least order one along x_p . Therefore any blow-up along any points in F will automatically introduce at least a type II singularity along all divisors corresponding to points in the strict interior of F.

Points interior to edges

We now perform a similar analysis for a divisor D_p corresponding to a point p with homogeneous coordinate x_p , and is interior to an edge E. In this case, the dual to p in Δ under $\langle p, \cdot \rangle = -1$ is an entire edge of points $E_{\Delta} \in \Delta$, bounded by two vertices which we label m_1 and m_2 . m_1 and m_2 are vertices in Δ , and therefore nm_1 and nm_2 are vertices in Δ_n , which bound an edge $E_n \subset \Delta_n$. Every point $m_{E_n}^i \in E_n$ then satisfies $\langle m_{E_n}^i, p \rangle = -n$. Since all other vertices $\hat{m}_j \neq m_1, m_2$ in Δ satisfy $\langle \hat{m}_j, p \rangle \geq 0$, then all vertices $n\hat{m}_j \neq nm_1, nm_2$ of Δ_n satisfy $\langle n\hat{m}_j, p \rangle \geq 0$. The linear function $\langle p, \cdot \rangle$ is then minimized along E_n and strictly increasing when moving away from E_n , and therefore the only points m_n in Δ_n satisfying $\langle p, \cdot \rangle = -n$ are the $m_{E_n}^i$. In a similar fashion to the $p \in F$ case one can show that $\langle m_{E_n}^i, v_i \rangle = -n$ for all points v_i on E.

We now perform a blow-up using two points v_1 and v_2 on E, introducing a new ray $v = v_1 + v_2$ and corresponding exceptional divisor $D_v = D_1 + D_2$, where the D_i correspond to the v_i . Again, this resolution will cut points out of Δ_n by introducing an additional hyperplane constraint. We consider the effect on the points $m_{E_n}^i$, which correspond to the non-trivial monomials in $\mathcal{O}(-nK_B)$ that are degree zero in x_p . We have $\langle m_{E_n}^i, v \rangle = -2n$. However, this violates $\langle m_{E_n}^i, v \rangle \geq -n$, and therefore the resolution cuts out all degree zero monomials in x_p . Therefore any resolution along E will introduce at least

a type II singularity along each divisor corresponding to a point on the strict interior of E. (CL:) stopping here, I don't think there's a direct continuation of this argument to vertices

- N. Nakayama, in Algebraic geometry and commutative algebra, Vol. II (Kinokuniya, Tokyo, 1988), pp. 405–431.
- [2] R. Elkik, Invent. Math. 47, 139 (1978), ISSN 0020-9910,

- URL http://dx.doi.org/10.1007/BF01578068.
- [3] Y. Hayakawa, Degeneration of Calabi-Yau manifold with Weil-Petersson metric (ProQuest LLC, Ann Arbor, MI, 1994), thesis (Ph.D.)—University of Maryland, College Park, URL http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9526336.
- [4] C.-L. Wang, Math. Res. Lett. 4, 157 (1997), ISSN 1073-2780, URL http://dx.doi.org/10.4310/MRL.1997.v4. n1.a14.