Shankovski's Older on IN.

Claim: in R2, the set of extreme points of a convex body is closed Challenge: is 1+ true in R3?

1D-HJ \Longrightarrow 2D-HJ by sust replacing alphabet A by A2.

IP VdW Theorem: If $N = \bigcup_{i=1}^{\infty} C_i$ and $A = FS(n_i)_{i=1}^{\infty}$, one of C_i contains arbitrarily lung $\{x, x+d, \dots, x+nd\}$ with $d \in A$.

IP Szemeredi: IF ECIN and d'(A)>0, then YKEN, {d: 3x: fx, x+d,...,x+kd3 < E} is Ip*.

(Ex: Also, {d: J(En(E-1)n...n(E-kd))>0} is IP*

show this
from IP sz

If A,B are IP* then AnBane IP*.

Since N(AnB) = (N,A) v (IN B). (Apply Hindman's Theorem).

Remark: any IPX set A intersects any IP set C along a sub-IP of C.

EX: HJ >> IP vIW

"Thick sets have shifts of orbitrarily large "neighborhoods of 0"".

{n: |m²x|| < E} is IP* using 2D-IP van der Waerden (recall proof that n²x is dense).

Color (n,m) by the q-subinterval that $nm \propto falls , who <math>(mod 1)$ $(m+1)(n+1) - n(m+1) - m(n+d) + nm = d^2$

Cordlary: Y polynomial $p(t) \in |R(t)|^{r}$ the set $\S n: ||p(n)|| < \xi \S$ is $|P^{*}|$ Proof: $\S n: ||n^{r} \propto || < \frac{\varepsilon}{m} \S$ is $|P^{*}|$. Take intersections $(m = \deg p)$.

Any set $A \subset \mathbb{N}$ with J(A) > 0 contains "many" sets of the form $Q(t, x_1, ..., x_n) = t + \{Z_i : x_i : x_i = 0 \text{ or } 1\}.$

Fact: $\forall t \in \mathbb{R}$, $\exists x,y \in \mathbb{R}$ s.t. $x \mod 1$ & $y \mod 1$ are base-2 normal f = x - y.

DE Co-mll sets intersect. N, (N+t) \$\pm\$.