Assessment - 3

Question-1:

(10) 01 problem: Calculate Spearman's coefficient of correlation between marks assigned to students by three judges in a competition and determine which pain of Judges has the nearest approach to common tastes.

lst Judge	-98	79	83	57	88	95	86	62	76	67
2nd judge	75	68	56	72	58	50	89	94	62	52
3rd judge	12	67	52	55	89	78	.75	49	65	59
Site of the state										

solution:

	7 . 6	120	0 "		3 7 5	- Q	MA ST		1 - V	
lst	98	79	83	57	88	95	86	62	76	67
2nd	75	68	56	72	58	50	89	94	62	5V
3rd	61	67	52	55	89	78	75	49	65	59
RI	1	E	51 12	18	h 3lt m	2	4)	19	1027 F	8
R ₂	3	5	8 / 2	4	ant mo	10[- 52	lat.	e C	9
R_3	6	4	1 19 1	8	booklypr	2	163	10	5	7
912	4	1	9	36	16	64	4	64	l	l
d23	9		1	16	36	64	1	81	1	4
913	25	4	1.6	4	4	0	X	1	4	1

$$\sum_{12}^{2} = 200$$

$$\sum_{13}^{2} = 214$$

$$\sum_{13}^{2} = 60$$

Code & Japal in & remove :

$$e_{12} = 1 - \frac{6 \times 200}{n(n^2 - 1)} = 1 - \frac{6 \times 200}{10(99)} = 1 - 1.2121$$

$$e_{23} = 1 - \frac{6 \times 200}{n(n^2 - 1)} = 1 - \frac{6 \times 214}{10(99)} = 1 - 1.2969$$

$$= -0.2969$$

$$e_{13} = 1 - \frac{6 \times 60}{n(n^2-1)} = 1 - \frac{6 \times 60}{10(99)} = 1 - 0.3636$$

i. We take the decision prevented by Judges 1 2 3 as: $e_{13} > e_{12} > e_{23}$

Code 2 Input in R-console:

7 J1 = c (98, 79, 83, 57, 88, 95, 86, 62, 76, 67)
7 J2 = c (78, 68, 56, 72, 58, 50, 89, 94, 62, 52)
7 J3 = c (61, 67, 52, 55, 89, 78, 75, 49, 65, 59)
7 cor. text (J1, J2, method = "spearman")
7 cor. text (J2, J3, method = "spearman")
7 cor. text (J1, J3, method = "spearman")

0

15 1 43 35 31 1 1

3. !

F 22

Question - 2 !

problem: Calculate the 2 regression equations and estimate the

(i) productivity index of a worker whose test score
is 92.; (ii) test score of a worker whose productivity
index is 75.

Solution:

1	-	1	1							
×	60	62	65	70	72	48	53	73	65	82
Y	68	60	62	80.	85	40	52	62	60	81
XY	4080	3720	4030	5600	6120	1920	2758	4526	3900	6642
X ²	3600	3844	4225	4900	5180	230		9 532	9 4225	6724
Y^2	4624	3600	3844	6400	722	160	0 27	04 381	14 3600	(62.9)
				-	_	_	-			

y = 96.509

E MARIND Code & Input in R congole:

> x = c (60, 62, 65; 70, 72, 48, 53, 7,3, 65, 82) 7y = c (68, 60, 62, 80, 85, 40, 52, 62, 60, 81)> 9 = lm (y~x) in ? 1 = not de que 7 summany (g) 7 K = wlm (x~y)
7 Summany (k) for feming nefficial 0.6 $\frac{1}{2} \frac{\partial x_{0}}{\partial x_{0}} = \frac{81}{2} \frac{x_{0}}{2} \frac{x_{0}}{2} \frac{\partial x_{0}}{\partial x_{0}} = \frac{81}{2} \frac{x_{0}}{2} \frac{x_{0}}{2} \frac{x_{0}}{2} \frac{x_{0}}{2} = \frac{81}{2} \frac{x_{0}}{2} \frac$ 9.9 = OF × 9.0 = 20.0 (1-4) prd = (= 0) (ubs-y) ad.0 = (u2-s) on 600 (y - 200) 2 + 1000 = 8 1 =

(05-x) J.D

(x-x) xx = (x-1)

Question-3

problem: A research company summarised advertising expenditure and sales. Karl Pearson's coefficient: 0.6. Derive the 2 regression equations. Estimate the sale if advertising expenditure is 15 crore.

Solution:

Karl Pearson's coefficient: 0.6

$$b_{xy} = \pi \cdot \frac{\sigma_{x}}{\sigma_{y}} = 0.6 \times \frac{18}{170} = 0.06$$

$$b_{yx} = \pi \cdot \frac{\sigma_{y}}{\sigma_{x}} = 0.6 \times \frac{170}{18} = 5.6$$

$$(\alpha - \overline{\alpha}) = b_{xy} (y - \overline{y})$$

$$(\alpha - 20) = 0.06 (y - 200)$$

$$\alpha = 0.06(y - 200)$$

$$\alpha = 0.06(y + 8)$$

$$(Y-\bar{Y}) = byx (x-\bar{x})$$

 $(Y-200) = 5.6 (x-20)$

At
$$\alpha = 15$$
 for $\alpha = 172$.

Code & Input in R-comole:

$$\frac{c(20,18)}{7} = \frac{c(20,65,40,42,48,53,42,65,87)}{6} = \frac{c(200,170)}{6}$$
7 $y = \frac{c(30,66,62,80,85,40,52,62,60,81)}{6} = \frac{c(200,170)}{6}$

7 $y = \frac{c(30,66,62,80,85,40,52,62,62,60,81)}{6} = \frac{c(200,170)}{6}$

7 $y = \frac{c(30,66,62,80,85,40,52,62,62,60,81)}{6} = \frac{c(200,170)}{6}$

if ne ie nt b. If ill o in

135 = P2

Problem: Determine the relation using multiple regrenions and interpret the result.

Solution				119049.1	7 105 4	
	2	12	14	15	16	18
	7	32	35	45	50	6.5
	Z	34	44	43	45	3-6
	Ry	384	490	675	800	1170
	yz		1540	1935	22 50	2340
	er Z	408	616	6 45	720	648
	n 2	144	196	225	256	324
	72	1024	1225	2025	2500	4225

$$\Sigma xy = 3519$$
 $\Sigma yz = 9153$
 $\Sigma xz = 3037$
 $\Sigma x^2 = 1145$
 $\Sigma y^2 = 10999$

$$202 = 5a_0 + 75a_1 + 227a_2$$

$$3037 = 75a_0 + 1145a_1 + 3519a_2$$

$$9153 = 227a_0 + 351a_1 + 10999a_2$$

7.
$$a_0 = -18.16$$

$$a_1 = 7.928$$

$$a_3 = -1.329$$

Code & Input in R-connole:

> input-dolla

> regnardel

$$z = -18.163 + 7.298 \times - 1.329 \text{ yr}$$