Evaluating Public Health Interventions through Interrupted Time Series Analysis: A Comprehensive Tutorial

Riley Rizzo Texas A&M University February 28, 2024

Abstract

Interrupted Time Series (ITS) analysis is an essential method for evaluating the effectiveness of public health interventions, highlighting its application, methodological considerations, and statistical analysis techniques through a practical example.

Introduction

Interrupted Time Series (ITS) analysis is a robust alternative for evaluating public health interventions when randomized controlled trials are not feasible, offering a detailed guide on its application and methodology. (Content generated using PlusMind ChatGPT. Editable on www.plusmind.ai)

Data

The dataset from Barone-Adesi et al.'s study examines the effect of Italy's 2005 smoking ban on hospital admissions for acute coronary events in Sicily between 2002 and 2006 for those aged 0-69, serving as an example to illustrate ITS analysis methods.

Interrupted Time-Series Design Discussion/Findings

1. Appropriateness: Assess if ITS is suitable based on intervention type, outcome interest, and data availability. 2. Impact Model: Hypothesize expected intervention impact on the outcome, considering immediate or gradual changes. 3. Descriptive Analysis: Analyze data for trends, seasonal patterns, and outliers to understand the intervention's effect. 4. Regression Analysis: Perform segmented regression to analyze the intervention's impact on the outcome. 5. Methodological Issues: Address issues like seasonality, autocorrelation, and confounders to ensure analysis robustness. 6. Model-Checking and Sensitivity Analyses: Validate the model's robustness through residual checks and sensitivity analyses.

Interrupted Time Series (ITS) analyses can be used in evaluating interventions without randomization, highlighting their real-world applicability and cautioning against potential validity threats, while underscoring the necessity of methodological rigor for credible evidence.

Mothodological Issues

1. Seasonality: Implements strategies to mitigate seasonal effects in data, ensuring results aren't skewed by predictable fluctuations. 2. Time-varying Confounders: Controls for variables that change over time and could influence outcomes independently of the intervention. 3. Use of Controls and Other More Complex ITS Designs: Enhances analysis robustness by incorporating control groups or outcomes and employing more sophisticated ITS designs. 4. Over-dispersion: Adjusts for cases where data variance exceeds the mean, crucial for accurate standard error estimation. 5. Autocorrelation: Corrects for the non-independence of observations in time series, ensuring model residuals are independent.