Pre-Calculus 11

Lesson 3: Graphing Quadratic Functions

Created by Yi-Chen Lin

June 10, 2025

REVIEW: LINEAR AND QUADRATIC FUNCTIONS

Key Concepts

Linear Functions

- Straight Lines
- General Form: y = mx + b
- Highest degree for "x" is one
- m: Slope
- b: Y-intercept

Quadratic Functions

- Curved, Shape of a "Parabola"
- Highest Degree for "x" is two
- General Form: $y = ax^2 + bx + c$, where a, b, c are real numbers
- Example: $y = x^2 + x 10$ or $y = -x^2 4x + 10$

2/36

I) WHY IS A QUADRATIC FUNCTION U-SHAPED?

Understanding the Parabola Shape

 If we make a Table of Values (TOV), plot the coordinates, and connect the dots, the resulting shape is a Parabola.

Example TOV for $y = x^2$

х	у
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9

(Graph will be on the next page)

3/36

Graph of $y = x^2$

II) COMPONENTS OF A PARABOLA

Key Components

- Vertex: The coordinates at either the top (maximum) or bottom (minimum) of the parabola.
 Always in the middle.
- Axis of Symmetry (AOS): A vertical line that cuts the graph in the middle. Must be an equation (e.g., x = k).
- **X-intercepts:** Intersection points between the parabola and the x-axis (where y = 0). Can have zero, one, or two x-intercepts. Represented as $(x_1, 0)$ and $(x_2, 0)$.
- **Y-intercept:** Intersection point between the parabola and the y-axis (where x = 0). Always one y-intercept. Represented as $(0, y_0)$.

(Insert diagram of a parabola with labeled components: Vertex, Axis of Symmetry, X-intercepts, Y-intercept)

5/36

Ex: Given each parabola, indicate the components

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 10, 2025
 6 / 36

Ex: Given each parabola, indicate the components - Example 1 Details

Example 1 - Components

Parabola 1: (Opening Up)

• Vertex: (1, -3)

• Axis of Symmetry: x = 1

• X-intercepts: (-0.5, 0) and (2.5, 0)

• **Y-intercept:** (0, -2.5)

Ex: Given each parabola, indicate the components

Ex: Given each parabola, indicate the components - Example 2 Details

Example 2 - Components

Parabola 2: (Opening Down)

- Vertex: (-2, 6)
- Axis of Symmetry: x = -2
- X-intercepts: (-4, 0) and (0, 0)
- **Y-intercept:** (0, 0)

9/36

GRAPHING PARABOLAS WITH XAVIER'S METHOD

Xavier's Method Steps

- First find the vertex using X.A.V.
 - **X**: x-intercepts by factoring (set y = 0)
 - **A:** Axis of Symmetry (average of x-intercepts: $x = \frac{x_1 + x_2}{2}$)
 - V: Vertex (substitute AOS x-value into the original equation to find y-coordinate)
- Use the constant "a" from $y = ax^2 + bx + c$ to determine which way the graph opens:
 - If a > 0 (positive), graph Opens Up (U-shape)
 - If a < 0 (negative), graph Opens Down (inverted U-shape)
- Plot a couple of extra points for a better graph (e.g., y-intercept and its symmetric point).
- Note: For Quadratic Functions that do not have x-intercepts, we will learn to graph them in the next section.

10 / 36

EX: FIND THE X INTERCEPTS, AOS, VERTEX, AND GRAPH

$$y = x^2 - 4x - 12$$

Step-by-Step Solution

Given: $y = x^2 - 4x - 12$

1 Find X-intercepts (by factoring): Set y = 0:

$$x^{2} - 4x - 12 = 0$$
$$(x - 6)(x + 2) = 0$$

So,
$$x - 6 = 0 \Rightarrow x = 6$$
 (X-intercept: $(6,0)$) And, $x + 2 = 0 \Rightarrow x = -2$ (X-intercept: $(-2,0)$)

2 Find Axis of Symmetry (AOS) (Equation): Average of x-intercepts:

$$x = \frac{6 + (-2)}{2}$$
$$x = \frac{4}{2}$$
$$x = 2$$

EX: FIND THE X INTERCEPTS, AOS, VERTEX, AND GRAPH

$$y = x^2 - 4x - 12$$

Step-by-Step Solution (Cont.)

Given:
$$y = x^2 - 4x - 12$$

§ Find Vertex (Coordinates): Substitute AOS x = 2 into the original equation:

$$y = (2)^{2} - 4(2) - 12$$

 $y = 4 - 8 - 12$
 $y = -16$

Vertex: (2, -16)

① Determine opening direction: Since a = 1 (positive), the parabola opens UP.

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 10, 2025
 12 / 36

EX: FIND THE X INTERCEPTS, AOS, VERTEX, AND GRAPH

$$y = x^2 - 4x - 12$$

Graph - y

Points to plot:

- \bullet X-intercepts: (-2,0) and (6,0)
- Vertex: (2, -16)
- Y-intercept: Set x = 0, $y = (0)^2 4(0) 12 = -12$. So (0, -12).
- Additional points (symmetric to y-intercept): Since AOS is x = 2, point symmetric to (0, -12) is at x = 4 (distance of 2 from AOS). For x = 4, $y = (4)^2 4(4) 12 = 16 16 12 = -12$. So (4, -12).

(Graph will be on the next page)

Domain and Range:

- **Domain (D):** $x \in \mathbb{R}$ (All real numbers)
- Range (R): $y \ge -16$ (Since it opens up, y-values are greater than or equal to the vertex's y-coordinate)

Created by Yi-Chen Lin Pre-Calculus 11 June 10, 2025

13 / 36

Graph for $y = x^2 - 4x - 12$

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 10, 2025
 14/3

Problem

Find the X-intercepts, Axis of Symmetry, Vertex and Graph the following: $y = 3x^2 + 5x - 2$

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 10, 2025
 15 / 36

PRACTICE: Solution $y = 3x^2 + 5x - 2$ (Part 1)

Detailed Solution

Given:
$$y = 3x^2 + 5x - 2$$

• Find X-intercepts (by factoring): Set y = 0:

$$3x^2 + 5x - 2 = 0$$

$$(3x-1)(x+2)=0$$

So,
$$3x-1=0 \Rightarrow 3x=1 \Rightarrow x=\frac{1}{3}$$
 (X-intercept: $(\frac{1}{3},0)$) And, $x+2=0 \Rightarrow x=-2$ (X-intercept: $(-2,0)$)

16 / 36

PRACTICE: Solution $y = 3x^2 + 5x - 2$ (Part 2)

Detailed Solution (Part 2)

Given:
$$y = 3x^2 + 5x - 2$$

Find Axis of Symmetry (AOS) (Equation): Average of x-intercepts:

$$x = \frac{\frac{1}{3} + (-2)}{2}$$

$$x = \frac{\frac{1}{3} - \frac{6}{3}}{2}$$

$$x = \frac{-\frac{5}{3}}{2}$$

$$x = -\frac{5}{6}$$

AOS:
$$x = -\frac{5}{6}$$

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 10, 2025
 17 / 36

$\overline{\mathsf{PRACTICE}}. \ \mathsf{Solution} \ y = 3x^2 + 5x - 2 \ \mathsf{(Part 3)}$

Detailed Solution (Cont.)

Given:
$$y = 3x^2 + 5x - 2$$

§ Find Vertex (Coordinates): Substitute AOS $x = -\frac{5}{6}$ into the original equation:

$$y = 3\left(-\frac{5}{6}\right)^2 + 5\left(-\frac{5}{6}\right) - 2$$

$$y = 3\left(\frac{25}{36}\right) - \frac{25}{6} - 2$$

$$y = \frac{25}{12} - \frac{50}{12} - \frac{24}{12}$$

$$y = \frac{25 - 50 - 24}{12}$$

$$y = -\frac{49}{12}$$

Vertex:
$$\left(-\frac{5}{6}, -\frac{49}{12}\right)$$

Determine opening direction: Since a = 3 (positive), the parabola opens UP.

Graph - y

Points to plot:

- X-intercepts: (-2,0) and $(\frac{1}{3},0)$
- Vertex: $\left(-\frac{5}{6}, -\frac{49}{12}\right)$
- Y-intercept: Set x = 0, $y = 3(0)^2 + 5(0) 2 = -2$. So (0, -2).
- Additional points (symmetric to y-intercept): Since AOS is $x=-\frac{5}{6}$, point symmetric to (0,-2) is at $x=-\frac{5}{6}+(0-(-\frac{5}{6}))=-\frac{5}{6}+\frac{5}{6}=-\frac{10}{6}=-\frac{5}{3}$. For $x=-\frac{5}{3}$, $y=3(-\frac{5}{3})^2+5(-\frac{5}{3})-2=3(\frac{25}{9})-\frac{25}{3}-2=\frac{25}{3}-\frac{25}{3}-2=-2$. So $(-\frac{5}{3},-2)$.

(Graph will be on the next page)

Domain and Range:

- **Domain (D):** $x \in \mathbb{R}$ (All real numbers)
- Range (R): $y \ge -\frac{49}{12}$ (Since it opens up, y-values are greater than or equal to the vertex's y-coordinate)

Graph for $y = 3x^2 + 5x - 2$

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 10, 2025
 20 / 36

REVIEW: DOMAIN AND RANGE

Definitions

- **Domain:** The collection of all possible X-values (input) that a function can have. Look at the graph horizontally.
- Range: The collection of all possible Y-values (output) that a function can have. Look at the graph vertically.

Example for finding Domain: (Insert image of a graph that starts at x=-2 and continues to the right, e.g., a ray)

- This graph starts at x = -2 and continues to the right.
- Domain: $x \ge -2$

Example for finding Range: (Insert image of a graph with a lowest point at y=0, and then goes up, e.g., an upward opening parabola fragment or a V-shape)

- The lowest point of this graph is at y = 0, and then it goes up.
- **Range:** $y \ge 0$

4 D > 4 A > 4 B > 4 B > B 900

21 / 36

DOMAIN AND RANGE OF PARABOLAS:

Key Rules for Parabolas

- Since a parabola that opens up or down extends infinitely to the left and right, it can take on any x-value.
- So, the **Domain** of a parabola is always: **All Real Numbers** $(x \in \mathbb{R})$.
- The Range of a parabola depends on which way the graph opens and the y-coordinate of its vertex:
 - If it opens **up** (a > 0), range will be: $y \ge$ lowest y-value (vertex y-coordinate)
 - If it opens down (a < 0), range will be: $y \le$ highest y-value (vertex y-coordinate)

(Insert diagram of an upward opening parabola with Domain: $x \in \mathbb{R}$ and Range: $y \geq -3$ labeled)

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 10, 2025
 22/36

drex1: Parabola 1 Graph

Ex: Indicate the domain and range for Parabola 1

Problem

Given the parabola, indicate its domain and range. Parabola 1: (Opening Up, Vertex at (2, -5)) (Refer to previous page for graph)

Ex: Indicate the domain and range for Parabola 1 - Solution

Detailed Solution

For Parabola 1:

• Domain: $x \in \mathbb{R}$

• Range: $y \ge -5$

drex2: Parabola 2 Graph

Ex: Indicate the domain and range for Parabola 2

Problem

Given the parabola, indicate its domain and range. Parabola 2: (Opening Down, Vertex at (3, 7)) (Refer to previous page for graph)

Ex: Indicate the domain and range for Parabola 2 - Solution

Detailed Solution

For Parabola 2:

• Domain: $x \in \mathbb{R}$

• Range: $y \le 7$

drex3: Parabola 3 Graph

Ex: Indicate the domain and range for Parabola 3

Problem

Given the parabola, indicate its domain and range. Parabola 3: (Opening Up, Vertex at (-1, 0)) (Refer to previous page for graph)

Ex: Indicate the domain and range for Parabola 3 - Solution

Detailed Solution

For Parabola 3:

• Domain: $x \in \mathbb{R}$

• Range: $y \ge 0$

Ex: Match each equation with the description

Match the following

Equations:

a)
$$y = x^2 - 9$$

b)
$$y = -2x^2 + 4x + 6$$

c)
$$y = x^2 + 4x + 3$$

Descriptions:

- i) Range is $y \ge -1$, Axis of symmetry is x = -2
- ii) X-intercepts at 3 and -3, Axis of symmetry is the Y-axis
- iii) Range is $y \le 8$, Axis of symmetry is x = 1
- iv) Graph opens up and vertex at (4,-5)

32 / 36

Ex: Match each equation with the description - Solution

Detailed Solutions

- a) $v = x^2 9$
 - Vertex: (0, -9)
 - AOS: x = 0
 - X-intercepts: $x^2 9 = 0 \Rightarrow x^2 = 9 \Rightarrow x = \pm 3$. So (3,0), (-3,0).
 - Range: y > -9 (opens up)
 - Matches ii) X-intercepts at 3 and -3, Axis of symmetry is the Y-axis
- b) $y = -2x^2 + 4x + 6$

 - Opens down (a = -2)• AOS: $x = \frac{-4}{2(-2)} = \frac{-4}{-4} = 1$. So x = 1.
 - Vertex y-coord: $y = -2(1)^2 + 4(1) + 6 = -2 + 4 + 6 = 8$. Vertex: (1,8).
 - Range: $y \le 8$
 - Matches iii) Range is $y \le 8$, Axis of symmetry is x = 1

33 / 36

Ex: Match each equation with the description - Solution (Cont.)

Detailed Solutions (Cont.)

c)
$$y = x^2 + 4x + 3$$

- Opens up (a = 1)
- AOS: $x = \frac{-4}{2(1)} = \frac{-4}{2} = -2$. So x = -2.
- Vertex y-coord: $y = (-2)^2 + 4(-2) + 3 = 4 8 + 3 = -1$. Vertex: (-2, -1).
- Range: $y \ge -1$
- Matches i) Range is $y \ge -1$, Axis of symmetry is x = -2

Description iv) Graph opens up and vertex at (4,-5) does not match any equation provided.

34 / 36

THINGS TO REMEMBER:

Key Reminders

- The **vertex** is always in the middle between the two X-intercepts (if they exist).
- The Axis of Symmetry must always be an equation: x = k, where "k" is the x-coordinate of the vertex.
- The domain of a parabola that opens up or down will always be: $x \in \mathbb{R}$ (All Real Numbers).
- To find the Y-coordinate of the vertex, plug the x-value of the AOS into the original equation and solve for "y".
- The vertex, x-intercepts, and y-intercept should be provided as a pair of coordinates (a,b).
- The y-coordinate of the Vertex will be used for the range of the function.

35 / 36

WHAT DO YOU DO IF YOU CAN'T FACTOR THE TRINOMIAL?

Next Steps

- Answer: Use the Quadratic Formula (next lesson)!
- Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

36 / 36