

Prepared by Nima Dema

Question time

- 1. What is supervised learning? Why do we called it a supervised learning?
- 1. Given a problem statement, how do you decide whether it is a classification problem or a regression problem?

Regression vs Classification problem

- Supervised learning is used whenever we want to predict a certain outcome from a given input, and we have examples of input/output pairs.
- Our goal is to make accurate predictions for new, never-beforeseen data. Supervised learning often requires human effort to build the training set.

Two major types of supervised learning:

•Regression: A regression problem is when the output variable is a real value, such as "dollars" or "weight".

Regression

Regression searches for relationships among variables.

1. Linear Regression:

Housing Price prediction problem.

Notation:

- n: number of training examples
- X's: input variables/features
- y's: output variable/target variable

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

Training Set:

$$f(x) = w x + b$$

 w and b are the parameters or coefficients or weights

Size in feet² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

- How to choose w and b?

Minimize $\frac{1}{n}\sum_{i=1}^{n}(f(x^{i})-y^{i})^{2}$

J(w,b) = MSE=
$$\frac{1}{n} \sum_{i=1}^{n} (f(x^{i}) - y^{i})^{2}$$

Idea/Goal: Choose w and b so that f(x) is close to y for our training examples (x,y)

Mean Squared Error/ Cost Function/ Squared Error Function

$$\frac{1}{n}\sum_{i=1}^n (f(x^i)-y^i)^2$$

Find Parameters using Normal Equation

$$= \left(\mathbf{X}^T \cdot \mathbf{X}\right)^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$$

Normal Equation to learn parameters

Examples: $\underline{\mathbf{n}} = 4$.

J	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
$\rightarrow x_0$	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	_1	36	178
	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$2104 5 1$ $416 3 2$ $1534 3 2$ $852 2 1$ $M \times (n+1)$	2 30 36	$\underline{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$	460] 232 315 178]

Multiple Linear Regression

	Size in feet ²	Number of bedrooms	Number of floors	Age of home in years	Price (\$) in \$1000's
	Xı	X ₂	Хз	X4	
-	2104	5	1	45	460
i=2	1416	3	2	40	232
	1534	3	2	30	315
	852	2	1	36	178

Multiple Linear Regression Model

Previously: f(x) = wx+b

Function->
$$f(x) = w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 + b$$

Parameters: $w_1, w_2 \dots w_r$ where r is the number of features.

Cost Function: $J(w_1, w_2 \dots w_r, b)$

For multiple linear regression, goal is to choose $w_1, w_2 ... w_r$ such that the cost function or the MSE is minimum

Classification Problem

Problem

- Email: Is this email spam?
- Online Transactions: Fraudulent?
- Is the tumor Malignant?

Answer (y)

YES NO YES NO YES NO

True

y can only be one of two values

"binary classification"

Class = Category

positive class"

!= "good"

Presence

Absence

False

Binary Classification

- Supposed you use Linear Regression for Classification problem with threshold of 0.5,
- If f(x) > 0.5, y = 1
 - If f(x) < 0.5, y = 0

Linear Regression may not get the best result.

Classification should result y = 0 or y = 1 but f(x) can result value greater than 1 or even smaller than 0.

Binary Classification – Logistic Regression

Want outputs between 0 and 1

outputs between 0 and 1

$$g(z) = \frac{1}{1+e^{-z}}$$
 $0 < g(z) < 1$

$$f(x) = g(z) = g(wx+b)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

"logistic regression"

Interpretation of Logistic Regression output

$$f(x) = \frac{1}{1 + e^{-z}}$$

f(x) = estimated probability that y = 1 on input x

Example:

- x is the ""tumor size"
- Y is 0 (not malignant) or 1 (malignant)

If
$$f(x) = 0.7$$

Tell patient that 70% chance of tumor being malignant (70% chance that y is 1)

What is the chance of patient's tumor being not malignant? Or what is the chance of y = 0?

$$P(y = 0) + P(y = 1) = 1$$

Decision Boundary

- The decision boundary is the line that separates the area where y = 0 and where y = 1. It is created by our function or model.

For example, b = 5, w1 = -1

$$Y = 1 \text{ if } w_1x_1+b \ge 0$$

=> -1(x₁) + 5 \ge 0
-x₁ \ge -5
x₁ \ge 5

Decision Boundary

Multiclass Classification – Logistic Regression

Email foldering/tagging: Work, friends, Family, Hobby

Medical diagrams: Not ill, cold, Flu

Weather: Sunny, Cloudy, Rain, Snow

Multiclass Classification – Logistic Regression

Binary classification:

Multi-class classification:

Multiclass Classification – Logistic Regression

Class Exercise

- -Instructions.
- 1. Open Practical 5 Feature engineering lab notebook. Use your all df Dataframe to create Logistic Regression Model.
- 1. Make Prediction for few example.
- 1. Use accuracy score model evaluation metrics to check performance of the model.

