ДОМАШНЕЕ ЗАДАНИЕ 5

Вычислите время $t_{\rm KH}$, за которое Солнце излучит всю свою внутреннюю тепловую энергию, если продолжит излучать с той же светимостью, что и сейчас — тепловое время (оно же время Кельвина-Гельмгольца).

Считайте, что Солнце это самогравитирующий газовый шар с политропным уравнением состояния $P = K \rho^{\gamma}$, где K = const, а $\gamma = 5/3$ (что соответствует одноатомному идеальному газу). Формулу для $t_{\rm KH}$ необходимо вывести (подсказка: воспользуйтесь уравнением гидростатического равновесия).

Для расчёта Вам понадобятся:

- ightharpoonup Масса Солнца $M_{\odot}=2\cdot 10^{33}~{
 m r}$
- ightharpoonup Радиус Солнца $R_{\odot}=7\cdot 10^{10}~{
 m cm}$
- ightharpoonup Светимость Солнца $L_{\odot} = 4 \cdot 10^{33} \; {
 m эрг/c}$

ИЗЛУЧЕНИЕ В АСТРОФИЗИКЕ

ДОМАШНЕЕ ЗАДАНИЕ 6

Для того, чтобы обеспечить светимость Солнца, в его недрах должно происходить $N\sim 10^{38}$ реакций образования ядер гелия каждую секунду. Считая, что эти реакции идут в области радиусом $R_{\rm nuc}\sim 0.1R_{\odot}$ и что вещество в недрах Солнца находится в равновесии с излучением, оцените длину пути, который приходится пройти фотону*, рождённому в термоядерных реакциях, прежде чем он покинет пределы Солнца. Ответ выразите в радиусах Солнца.

* Фотон, разумеется, при этом испытывает множественные рассеяния, поглощения и переизлучения. Поэтому, технически, на выходе из Солнца появляется уже не «тот самый» фотон.

ИЗЛУЧЕНИЕ В АСТРОФИЗИКЕ 9