2019학년도 6월 고2 전국연합학력평가 문제지

제 2 교시

수학 영역 (나형)

5지선다형

- **1.** $(\sqrt[3]{3})^3$ 의 값은? [2점]
- ① 1 ② 2 ③ 3 ④ 4 ⑤ 5
- **3.** 방정식 $\sin\left(x \frac{\pi}{6}\right) = \frac{1}{2}$ 의 해는? (단, $0 \le x \le \frac{\pi}{2}$) [2점]

- ① 0 ② $\frac{\pi}{6}$ ③ $\frac{\pi}{4}$ ④ $\frac{\pi}{3}$ ⑤ $\frac{\pi}{2}$

- **2.** 8³×16⁴의 값은? [2점]

- ① 1 ② 2 ③ 4 ④ 8 ⑤ 16
- **4.** $\log_2 \frac{4}{3} + \log_2 12$ 의 값은? [3점]

- ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

5. 다음은 상용로그표의 일부이다.

수	0	1	2	3	
i	:	:	:	:	
3.0	.4771	.4786	.4800	.4814	
3.1	.4914	.4928	.4942	.4955	
3.2	.5051	.5065	.5079	.5092	
_					

③ 2.4942

- 이 표를 이용하여 구한 log 312의 값은? [3점]
- 1.4786

④ 2.5051

- 2 1.4942
- ⑤ 3.5051

- **6.** $1 \le n \le 15$ 인 자연수 n에 대하여 $(\sqrt[3]{7})^n$ 이 자연수가 되도록 하는 모든 n의 개수는? [3점]

- ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

- **7.** 함수 $f(x) = \log_3(x+12) + 2$ 에 대하여 $f^{-1}(5)$ 의 값은? [3점]

- ① 15 ② 16 ③ 17 ④ 18 ⑤ 19

8. $\sin \frac{5}{6}\pi + \cos \left(-\frac{8}{3}\pi\right)$ 의 값은? [3점]

① $-\sqrt{3}$ ② -1 ③ 0 ④ 1 ⑤ $\sqrt{3}$

10. $\sqrt{(-2)^6} + (\sqrt[3]{3} - \sqrt[3]{2})(\sqrt[3]{9} + \sqrt[3]{6} + \sqrt[3]{4})$ 의 값은? [3점]

① 7 ② 9 ③ 11 ④ 13 ⑤ 15

9. $0 \le x \le 4$ 에서 정의된 함수 $f(x) = \log_5(x+1) - 2$ 의 최댓값은? [3점]

 $\bigcirc -2$ $\bigcirc -1$ $\bigcirc 0$ $\bigcirc 1$ $\bigcirc 2$

4

수학 영역 (나형)

11. 함수 $y=2^{x-a}+b$ 의 그래프가 그림과 같을 때, 두 상수 a, b에 대하여 a+b의 값은? (단, 직선 y=3은 그래프의 점근선이다.) [3점]

- 12. $\cos\theta = -\frac{1}{3}$ 일 때, $\tan\theta \sin\theta$ 의 값은? (단, $\pi < \theta < \frac{3}{2}\pi$)
- ① $\frac{5\sqrt{2}}{3}$ ② $2\sqrt{2}$ ③ $\frac{7\sqrt{2}}{3}$ ④ $\frac{8\sqrt{2}}{3}$ ⑤ $3\sqrt{2}$

5

13. 함수 $f(x) = \left(\frac{1}{5}\right)^{x^2 - 4x + 1}$ 은 x = a에서 최댓값 M을 갖는다. a + M의 값은? [3점]

- ① 127
- ② 129
- ③ 131
- ④ 133
- ⑤ 135
- **14.** 함수 $y = a \sin bx + c$ 의 그래프가 그림과 같을 때, 세 상수 a, b, c에 대하여 2a + b + c의 값은? (단, a > 0, b > 0)

6

15. 반지름의 길이가 r인 원형 도선에 세기가 I인 전류가 흐를 때, 원형 도선의 중심에서 수직 거리 x 만큼 떨어진 지점에서의 자기장의 세기를 B라 하면 다음과 같은 관계식이 성립한다고 한다.

$$B = \frac{kIr^2}{2(x^2 + r^2)^{\frac{3}{2}}}$$
 (단, k는 상숙이다.)

전류의 세기가 $I_0(I_0>0)$ 으로 일정할 때, 반지름의 길이가 r_1 인 원형 도선의 중심에서 수직 거리 x_1 만큼 떨어진 지점에서의 자기장의 세기를 B_1 , 반지름의 길이가 $3r_1$ 인 원형 도선의 중심에서 수직 거리 $3x_1$ 만큼 떨어진 지점에서의 자기장의

세기를 B_2 라 하자. $\frac{B_2}{B_1}$ 의 값은? (단, 전류의 세기의 단위는 A, 자기장의 세기의 단위는 T, 길이와 거리의 단위는 m 이다.)

① $\frac{1}{6}$ ② $\frac{1}{4}$ ③ $\frac{1}{3}$ ④ $\frac{5}{12}$ ⑤ $\frac{1}{2}$

16. 두 양수 a, $b(b \neq 1)$ 가 다음 조건을 만족시킬 때, $a^2 + b^2$ 의 값은? [4점]

(7) $(\log_2 a)(\log_b 3) = 0$

 $(\downarrow) \log_2 a + \log_b 3 = 2$

① 3 ② 4

3 5

4 6

⑤ 7

17. 다음은 $0 < \theta < 2\pi$ 에서 $3 + 2\sin^2\theta + \frac{1}{3 - 2\cos^2\theta}$ 의 최솟값을 구하는 과정이다.

 $3+2\sin^2\theta=t$ 로 놓으면 $3 + 2\sin^2\theta + \frac{1}{3 - 2\cos^2\theta} = t + \frac{1}{\boxed{(7)}}$ 이다. $0 < \theta < 2\pi$ 에서 $t \ge 3$ 이므로 (7) > 0 이다. $t + \cfrac{1}{ \boxed{ \left(7 \right\rbrace \right)}} = t - 2 + \cfrac{1}{ \boxed{ \left(7 \right\rbrace \right)}} + 2 \geq 4$ 이다. (단, 등호는 t= (나) 일 때 성립한다.) 따라서 $3 + 2\sin^2\theta + \frac{1}{3 - 2\cos^2\theta}$ 은 $\theta =$ (다) 에서 최솟값 4를 갖는다.

위의 (7)에 알맞은 식을 f(t), (4)와 (4)에 알맞은 수를 각각 p, q라 할 때, $f(p) + \tan^2 \left(q + \frac{\pi}{3}\right)$ 의 값은? [4점]

- ① 4 ② 5 ③ 6 ④ 7 ⑤ 8

- 18. 직선 $y = -\frac{1}{5\pi}x + 1$ 과 함수 $y = \sin x$ 의 그래프의 교점의

- ① 7 ② 8 ③ 9 ④ 10

19. 자연수 n에 대하여 $2^{\frac{1}{n}} = a$, $2^{\frac{1}{n+1}} = b$ 라 하자.

 $\left\{ rac{3^{\log_2 ab}}{3^{(\log_2 a)(\log_2 b)}}
ight\}^5$ 이 자연수가 되도록 하는 모든 n의 값의 합은?

① 14 ② 15 ③ 16 ④ 17

⑤ 18

20. $0 < \theta < \frac{\pi}{4}$ 인 θ 에 대하여 <보기>에서 옳은 것만을 있는 대로 고른 것은? [4점]

 $\neg. \ 0 < \sin \theta < \cos \theta < 1$

 $-.0 < \log_{\sin\theta} \cos\theta < 1$

 \vdash . $(\sin \theta)^{\cos \theta} < (\cos \theta)^{\cos \theta} < (\cos \theta)^{\sin \theta}$

① ¬ ② ¬, ∟ ③ ¬, ⊏ ④ ∟, ⊏

21. 음이 아닌 세 정수 a, b, n에 대하여

$$\left(a^2 + b^2 + 2ab - 4\right)\cos\frac{n}{4}\pi + \left(b^2 + ab + 2\right)\tan\frac{2n + 1}{4}\pi = 0$$

일 때, $a+b+\sin^2\frac{n}{8}\pi$ 의 값은? (단, $a \ge b$) [4점]

- ① 4 ② $\frac{19}{4}$ ③ $\frac{11}{2}$ ④ $\frac{25}{4}$ ⑤ 7

단답형

22. 방정식 $\log_2 x = 4$ 의 해를 구하시오. [3점]

23. $\log_3(6-x)$ 가 정의되도록 하는 모든 자연수 x의 값의 합을 구하시오. [3점]

10

수학 영역 (나형)

24. $\sin\theta-\cos\theta=\frac{1}{2}$ 일 때, $8\sin\theta\cos\theta$ 의 값을 구하시오. [3점]

26. 방정식

$$\left(\log_2 \frac{x}{2}\right) \left(\log_2 4x\right) = 4$$

의 서로 다른 두 실근 lpha, eta에 대하여 64lphaeta의 값을 구하시오. [4
m T]

25. 상수 k에 대하여 함수 $f(x)=2\sqrt{3}\tan x+k$ 의 그래프가 점 $\left(\frac{\pi}{6}\,,\,7\right)$ 을 지날 때, $f\!\left(\frac{\pi}{3}\right)$ 의 값을 구하시오. [3점]

11

27. 두 함수 $f(x) = \log_3 x + 2$, $g(x) = 3\tan\left(x + \frac{\pi}{6}\right)$ 가 있다. $0 \le x \le \frac{\pi}{6}$ 에서 정의된 합성함수 $(f \circ g)(x)$ 의 최댓값과 최솟값을 각각 M, m이라 할 때, M+m의 값을 구하시오.

28. 곡선 $y = \log_2 x$ 를 원점에 대하여 대칭이동한 후 x축의 방향으로 $\frac{5}{2}$ 만큼 평행이동한 곡선을 y = f(x)라 하자. 두 곡선 $y = \log_2 x$ 와 y = f(x)의 두 교점을 A, B라 할 때, 직선 AB의 기울기는 $\frac{q}{p}$ 이다. 10p + q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.) [4점]

12

29. 함수 $y = k \sin \left(2x + \frac{\pi}{3}\right) + k^2 - 6$ 의 그래프가 제1사분면을 지나지 않도록 하는 모든 정수 k의 개수를 구하시오. [4점]

30. 두 양수 a, $k(k \neq 1)$ 에 대하여 함수

$$f(x) = \begin{cases} 2\log_k(x - k + 1) + 2^{-a} & (x \ge k) \\ 2\log_{\frac{1}{k}}(-x + k + 1) + 2^{-a} & (x < k) \end{cases}$$

가 있다. f(x)의 역함수를 g(x)라 할 때, 방정식 f(x)=g(x)의 해는 $-\frac{3}{4}$, t, $\frac{5}{4}$ 이다. 30(a+k+t)의 값을 구하시오. (단, 0 < t < 1) [4점]

※ 확인 사항

○ 답안지의 해당란에 필요한 내용을 정확히 기입(표기) 했는지 확인하시오