

Bioinformatics Summer School Long-reads Transcriptomics

Eamon McAndrew

Ipmc - Institute of Molecular and Cellular Pharmacology

LongTREC - The Long-reads TRanscriptome European Consortium Marie Skłodowska-Curie grant agreement No 101072892

Section 4

Long Read Single Cell Transcriptomics

So after this week we know all about Long Read Bulk Transcriptomics:

• But what about complex tissue?

Why Single Cell?

In complex tissue the signal we generate with bulk assays is a linear combination derived from many cell types.

In complex tissue the signal we generate with bulk assays is a linear combination derived from many cell types (subtypes, states, diseased affected/healthy)

Why Single Cell?

Cells don't exist or operate in Isolation.

Mouse Coronal Brain Section

Bronchial COPD biopsy

Preserving cellular heterogeneity

Long Read single Cell Transcriptomics

Long-read full-length sequencing

Cell-X-Gene matrix

Individual reads assigned to individual cells

Why Single Cell?

The challenges of Single Cell Long Reads

- High per-cell sequencing cost and lower throughput vs. short-read platforms.
- Higher raw read error rates complicate accurate isoform identification.
- Sparse coverage per cell limits detection of low-abundance transcripts -> SR Gene Level Single Cell is already sparse.
- Barcode/UMI assignment inefficiencies and cDNA length biases.
- Demanding compute + storage requirements for long-read datasets.
- Limited mature analysis tools.

What about spatial context?

The promise of single cell long reads

Full Gene Body Coverage

A -> I RNA-Editing

Individual A-to-I editing site editing ratio per region

Allele Specific Expression

And more - All at once*!

Question Time

What does single cell offer over bulk transcriptomic approaches?

What are the challenges of long read single cell approaches?

Section 4 Tertiary Analysis

What do we need to begin tertiary analysis of Isoforms at Single Cell Resolution?

Cell X Isoform Matrix

Annotation

Removing Low Quality Cells If necessary

Normalization and why it matters

Selecting the most Informative Features

Reducing Dimensionality

Do I define my clusters on Gene or Isoform Features?

21

Same cells, two feature spaces.

Long-reads Transcriptomics (Shi et al., 2023)

Putting it all together to Annotate Cell Types

What is Pseudobulk Analysis?

- Aggregates single-cell or spatial counts into group-level profiles.
- Treats groups as "bulk samples" → improves statistical power.
- Allows plug and play with existing bulk methods.
- Reduces false positives compared to cell-level models (at least a gene-level*)

Finding the optimal Resolution

Downstream Analysis/Visualization (eg. Percent-Spliced-In)

Percent spliced in as a metric for Isoform changes

Isoform Usage/Percent Spliced in = $\frac{Individual\ Count}{Total\ Gene\ Count}$

Detecting Differential Isoform Usage across Cell Types

Isoform switching Across a differentiation trajectory

Cells are then grouped into sliding windows (here 30 cells per window, 15-cell step) so that PSI and gene counts are smoothed along pseudo time.

Why cell type context matters?

Question Time

- Why is normalisation a crucial step of single cell analysis?
- Should I do dimensionality reduction and clustering on gene or Isoform features?
- When aggregating cells (psuedobulk, metacells etc.) What do we trade-off as we increase the number of cells aggregated into a single unit?

Practical session : Exploring Differential Isoform Usage in the Mouse Brain

Article Open access | Published: 12 August 2020

High throughput error corrected Nanopore single cell transcriptome sequencing

Kevin Lebrigand ☑, Virginie Magnone, Pascal Barbry ☑ & Rainer Waldmann ☑

Nature Communications 11, Article number: 4025 (2020) | Cite this article

44k Accesses | 182 Citations | 64 Altmetric | Metrics

Practical session: Exploring Differential Isoform Usage in the Mouse Brain

- 1) Connect to VM
- 2) download new notebook from git
- 3) conda activate Single_cell
- 4) cd longTREC/day4
- 5) jupyter lab/ Jupyter Notebook
- 6) Open Notebook

Thank You!

For more information about the LongTREC Summer School:

https://longtrec.eu