Some Preliminary Transfer Learning Results for Dynamical Systems

Joshua E. Hammond, Brian A. Korgel, Michael Baldea The University of Texas at Austin

Tyler A. Soderstrom

ExxonMobil Technology and Engineering

Objective: Use limited data from a target system and the model of a similar source system trained on abundant source data to learn an accurate neural-network representation of the target system.

Hypothesis: If $f^S \leftrightarrow f^T$ and $\mathcal{D}^S \leftrightarrow \mathcal{D}^T$:

- 1. The parameter space of Φ^{S} is close to that of Φ^{T} .
- 2. A path exists from the source model parameters to the target model parameters.

Spring-Mass-Damper System

 $m\ddot{x} + c\dot{x} + kx = u$

Given: x_0, \dot{x}_0 Predict: x_1, \dots, x_{20}

Transfer: $m, c, k, u \pm 10\%$

 $\dim(\mathcal{D}^{\mathbf{S}}) = 100$, 000, $\dim(\mathcal{D}^{\mathbf{T}}) = 1$, 000

CSTR System^[1]

 $A \rightarrow B \rightleftharpoons C$

Given: $C_{A,0}$, $C_{B,0}$, $C_{C,0}$, $C_{Af,0...59}$

Predict: $C_{A,1...60}$, $C_{B,1...60}$, $C_{C,1...60}$

Transfer: $\Delta V_{r\times n} - 20\%$

$$\dim(\mathcal{D}^{\mathbf{S}}) = 1$$
 Year, $\dim(\mathcal{D}^{\mathbf{T}}) = 1$ Day

[1] Kumar, P., & Rawlings, J.B. (2023). Structured nonlinear process modeling using neural networks and application to economic optimization.

Small changes to an existing neural-network model can accurately represent a similar system using less data than initial training.

Take a picture or visit bit.ly/TWCCC-Transfer-Learning:

- 1. Full results and presentation
- 2. Previous work updating datadriven models of slowly-evolving dynamical systems

Machine Learning Models of Dynamical Systems

$$\begin{split} \frac{d\mathbf{x}}{dt} &= \mathbf{f}^{S}(\mathbf{x}, \mathbf{u}, \mathbf{p}^{S}) \\ \frac{d\mathbf{x}}{dt} &= \mathbf{f}^{T}(\mathbf{x}, \mathbf{u}, \mathbf{p}^{T}) \\ \mathbf{x}_{k+1} &= \mathbf{\Phi}^{T}(\mathbf{x}_{k}, \mathbf{u}_{k}, \boldsymbol{\pi}^{T}) \end{split}$$

Defining Similarity

We use *cosine similarity* to quantify the similarity of individual NN outputs and the weights of two NNs

cosine_similarity (a, b) $\triangleq \cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} \in [-1, 1]$

The Subset Extended Kalman Filter (SEKF)^[2]

The SEKF reduces the computational cost of EKF operations by only updating a subset of the NN model parameters π at each time step. We use the gradient of the loss function with respect to the parameters $\nabla_{\pi} \mathcal{L}$ to select which subset of parameters to update.

The gradients of the selected parameters along with the corresponding subset of the covariance matrix **P** are used in the EKF update equations.

[2] Hammond et. al "Staying Alive: Online Neural Network Maintenance and Systemic Drift" arXiv:2503.17681

Nomenclature

S Source **T** Target **f** Governing Equations \mathcal{D} Dataset Φ Neural Network **x** States

u Inputs p System Parameters

 π NN parameters $\nabla_{\pi}\mathcal{L}$ Gradient of Loss Function w.r.t. π

