XYZ Files


```
5
free=-1545.46 (Comment)
C 5.18160188 -0.90711087 -2.80992509
H 0.64223971 0.28323184 1.01144250
H 0.59174445 -1.01258058 -0.19836824
H 0.60046186 0.68235075 -0.71605884
H 0.90046186 0.48235075 -0.21605884
```

Methane

Coulomb Matrix

```
6
free=-3360.46 (Comment)
C 5.18160188 -0.90711087 -2.80992509
C 6.18160188 -2.90711087 -3.80992509
H 0.64223971 0.28323184 1.01144250
H 0.59174445 -1.01258058 -0.19836824
H 0.60046186 0.68235075 -0.71605884
H 0.90046186 0.48235075 -0.21605884
```

$$C_{ij} = \begin{cases} \frac{1}{2}Z_i^{2.4}, & i = j \\ \frac{Z_iZ_j}{\|R_i - R_j\|_2}, & i \neq j. \end{cases}$$

		Н	Н	С	С	Н	Н
	Н	0.5	0.3	2.9	1.5	0:2	0.2
	Η	0:3	0.5	2.9	1.5	0:2	0.2
$\mathbf{C} =$	С	2.9	2.9	36.9	14.3	1.5	1.5
	С	1.5	1.5	14.3	36.9	2.9	2.9
	Н	0:2	0:2	1.5	2.9	0.5	0.3
C =	Н	0:2	0:2	1.5	2.9	0:3	0.5

Given some representation of molecules.

- XYZ files.
- Coulomb Matrices*
- Smiles**

...etc.

Predict some properties.

- Atomization energy
- Highest occupied molecular orbital (HOMO)
- ...
- Energies (Corresponding to Molecular Orbitals)
- Absorption spectrum

^{*} Rupp 2015 Machine learning for quantum mechanics in a nutshell (eq. 26)

^{**}https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system

Given some representation of molecules.

- Smiles*
- Coulomb Matrices**
- XYZ files.

```
4
free=-1545.46
C 5.18160188 -0.90711087 -2.80992509
H 0.64223971 0.28323184 1.01144250
H 0.59174445 -1.01258058 -0.19836824
H 0.60046186 0.68235075 -0.71605884
```

…etc.

Predict some properties.

- Atomization energy
- Highest occupied molecular orbita (HOMO)
- ...
- Energies (Corresponding to Molecular Orbitals)
- Absorption spectrum

Intuition from atoms

Extending to molecules

Target values - HOMO energies

Intuition from Atoms

For each molecule: We want to predict a set of 16 real numbers corresponding to energies of these molecular orbitals.

```
-19.75084 -18.45148 -16.5375 -14.57497 -13.96967 -11.51794 -10.60673 -10.40516 -9.80747 -9.45303 -8.99068 -8.45312 -7.89553 -7.76155 -7.55804 -7.52253 -19.96160 -17.98181 -16.68139 -15.22888 -13.48942 -11.29259 -10.76136 -10.37269 -9.90364 -9.19086 -9.08365 -8.57864 -8.26906 -7.66870 -7.56287 -7.43001 -17.73987 -16.7965 -16.05788 -13.32784 -13.08767 -12.23344 -11.24781 -11.01421 -9.26942 -8.66231 -8.45719 -8.05627 -7.63661 -7.29622 -7.22952 -7.13946 -18.70251 -17.28378 -14.79647 -13.78733 -13.20733 -12.39633 -11.21562 -10.15360 -9.81649 -9.76154 -8.30788 -8.11097 -7.84390 -7.76135 -6.63684 -6.25399 -18.11031 -14.71805 -14.71805 -13.28189 -11.62577 -10.58315 -10.46336 -10.46336 -8.99491 -8.99488 -8.98559 -8.01946 -8.01945 -7.34948 -7.00147 -7.00146 -17.14543 -16.77362 -14.03449 -12.84359 -11.59662 -11.02884 -10.38074 -9.912060 -9.44403 -9.27453 -9.67982 -8.92919 -8.31617 -7.98388 -6.46692 -6.13883 -17.60407 -15.07804 -14.82862 -13.20740 -11.19026 -11.04740 -10.33376 -9.865510 -9.78466 -9.42230 -8.58497 -8.40987 -7.70107 -7.37607 -6.90260 -6.81396
```

Target values - Absorption spectra

For each molecule:

We <u>also</u> want to predict a set of 300 real numbers corresponding to the spectrum discretized at 300 points.

Energy (eV)

Outline

Introduction

Current Methods

Need for Machine Learning

The data

Our work

Results

Conclusion

Outline

Introduction

Current Methods

Need for Machine Learning

The data

Our work

Results

Conclusion

Quantitative Results

Datasets →	6K		132K		
Model (Input) ↓	16 HOMO energies (eV)	Spectrum	16 HOMO energies (eV)	Spectrum (3 run summary)	
MLP (Coulomb matrix)	0.317 ± 0.000	NA	NA	NA	
CNN (Coulomb matrix)	0.304 ± 0.006	0.282 ± 0.002	0.231 ± 0.002	0.199 ± 0.000	
DTNN (XYZ file)	0.251 ± 0.024	0.210 ± 0.000	0.186 ± 0.002	0.145 ± 0.000	

Qualitative Results HOMO - Energies

6K dataset

Energy

132K dataset

Best prediction (HOMO-15)

Worst prediction (HOMO)

Qualitative Results Spectra

Spectra predictions for the first time* using machine learning

6K dataset

132K dataset

Outline

Introduction

Current Methods

Need for Machine Learning

The data

Our work

Results

Conclusion

Conclusion

- Search for novel materials has a significant societal impact.
- Current simulation based methods slow*.
- Machine learning (ML) based methods promising.
- Further work needed to improve ML predictions.

Outline

Introduction

Current Methods

Need for Machine Learning

The data

Our work

Results

Conclusion

Thank You!

https://en.wikipedia.org/wiki/Solar_cell_efficiency

Our work

Deep Tensor Neural Network*

The total energy E for a molecule composed of N atoms can be written as a sum over N atomic energy contributions Ei.

* Quantum-Chemical Insights from Deep Tensor Neural Networks. Schütt et.al 2017

Our work

We make a small change to the network.

Similar Intuition :
Molecular energy vector* = Sum of
Individual atomic
contributions.

* Vector of 16 real values. Similar modification made to predict the spectrum.

Our work

1. Assign initial atomic descriptors.

$$\mathbf{c}_{i}^{(0)} = \mathbf{c}_{Z_{i}} \in R^{B}$$
, $\mathbf{c}_{Z} \sim \mathcal{N}(0, 1/\sqrt{B})$. B = 30

2. Gaussian feature expansion of the interatomic distances (in experiments $\Delta\mu$ = σ = 0.2)

$$\hat{\mathbf{d}}_{ij} = \left[\exp\left(-\frac{(d_{ij} - (\mu_{min} + k\Delta\mu))^2}{2\sigma^2}\right) \right]_{0 \le k \le \mu_{max}/\Delta\mu} \in R^G$$

3. Perform T interaction passes

$$\mathbf{c}_i^{(t+1)} = \mathbf{c}_i^{(t)} + \sum_{j \neq i} \mathbf{v}_{ij}.$$

$$\mathbf{v}_{ij} = \tanh\left(W^{fc}((W^{cf}\mathbf{c}_j + \mathbf{b}^{f_1}) \circ (W^{df}\mathbf{\hat{d}_{ij}} + \mathbf{b}^{f_2}))\right),$$

Why is this model called Deep Tensor neural net?

$$v_{ijk} = \tanh\left(\mathbf{c}_j^{(t)} V_k \hat{\mathbf{d}}_{ij} + (W^c \mathbf{c}_j^{(t)})_k + (W^d \hat{\mathbf{d}}_{ij})_k + b_k\right)$$

Wfc (Wcfcj + bf1)

$$\int_{\mathbb{R}^{30}} xa \int_{\mathbb{R}^{30}} x^{30} \int_{\mathbb{R}^{30}} x^{30}$$

Wfc (Wdfdij + bf2)

 $\int_{\mathbb{R}^{30}} xa \int_{\mathbb{R}^{30}} x^{30} \int_{\mathbb{R}^{30}} x^{30}$

e.g. if $\alpha = 2 \Rightarrow low$ trank factorization

Figure 1

Gaussian feature expansion

Figure 2

Low Rank Factorization To Reduce number of parameters Figure 3

Where is the Tensor?

Qualitative - HOMO energy

