Final Presentation Gesture-Controlled Speaker

Isabel Holtan, Dale Kercorian, Renee Li, Kevin Pere, Eli Smith, Teddy Withey

Agenda

- 1. Introduction
- 2. Motivation
- 3. Work Breakdown
- 4. System Architecture
 - a. Data acquisition
 - b. Data processing
 - c. Decision and actuation
- 5. Demo
- 6. Design Expo
- 7. Future Work

Introduction

Speaker that responds to five hand gestures

- Raise & Lower Volume
- Play & Pause
- Skip Song
- Go Back a Song

Motivation

Hygiene

- No physical contact
- Possibility of social distancing

Accessibility

Voice control can be difficult to use with an accent or speech impediment

Adaptability

Technology can be applied to other products

Work Breakdown

	Isabel	Dale	Renee	Kevin	Eli	Theo
Team Lead					X	
System Integration	X	x	x	x	X	х
IR/other sensor selection and integration		x		x		X
Image feature extraction	x		x		X	
Machine learning model selection and training			x		x	
Speaker integration	X	x		X		х
Lighting system integration				x		
Music selection		x		x		

System Architecture

Three main phases: data acquisition, data processing, decision and actuation

Data Acquisition

Raspberry Pi Camera

- Used to send image data to RPi to be processed
- Camera continuously captures images
 - Sent to gesture decision making RPi (RPi 1)
- Could run up to 30fps

Data Acquisition

IR Sensor

- Was going to be used to limit processing/active time of system
- Decided not to include in final design due to unreliability
 - Sensors either didn't have a sufficient range or their data transmission was inconsistent
- Inconsistencies could be due to lack of ground-ground between RPis
 - o By the time this issue was discovered, we found the IR was unnecessary anyway

Data Processing - Goal

Hand Localization

- Given a camera frame, find and isolate relevant hands
- Return hand data

Gesture Classification

- Given hand data, determine which hand gesture is being made
- Return identified gesture

Hand Localization - Process

Tensorflow + transfer learning

- Slow training process
- Required lots of data
- Low fps

Hand Localization - Result

MediaPipe (Google's open-source ML pipelines)

- Palm detection model operates on full image, returns a hand bounding box
- Hand landmark model operates on cropped image, returns 21 hand keypoints
- Fastest option

- 0. WRIST
- 1. THUMB_CMC
- 2. THUMB_MCP
- 3. THUMB_IP
- 4. THUMB_TIP
- 5. INDEX FINGER MCP
- 6. INDEX_FINGER_PIP
- 7. INDEX_FINGER_DIP
- 8. INDEX_FINGER_TIP
- 8. INDEX_FINGER_TIP
- MIDDLE_FINGER_MCP
- 10. MIDDLE_FINGER_PIP

- 11. MIDDLE_FINGER_DIP
- 12. MIDDLE_FINGER_TIP
- 13. RING_FINGER_MCP
- 14. RING_FINGER_PIP
- 15. RING_FINGER_DIP
- 16. RING FINGER TIP
- 10. KING_FINGEK_I
- 17. PINKY_MCP
- 18. PINKY_PIP
- 19. PINKY_DIP
- 20. PINKY_TIP

Gesture Classification - Process

Classification based on images

- CNN is slow, heavyweight
- Implementation with 10 gestures: ~50% misclassification

Classification based on keypoints

- Fast, accurate
- Lighting invariant

Gesture Classification Results

Detect and respond to five gestures with ~92% accuracy

Play/Pause

Volume Up

Volume Down

Skip Song

Go Back a Song

Decision and Actuation - Goal

Command Speaker

- Assign each gesture a number, which corresponds to a speaker function
- Gesture number passed to speaker program, perform function

LED Feedback

- Light up an LED to let user know that their gesture was detected
- Each gesture would correspond to a different color on the LED

Decision and Actuation - Process

VLC Media Player with AUX speaker

 Pause/play, set volume functions for playlist of pre-downloaded songs

Double RPi Setup

- One RPi does not have the power to perform gesture detection and actuation
- Send detected gesture to second RPi via GPIO

Decision and Actuation - Result

Demo

Design Expo

Future Work

- Second sensor that is more robust than original IR sensor
- Second LED to show user if there hand is being fully detected
- Code starts up with Raspberry Pi
- Encasing around entire system

Contact

Isabel Holtan Kevin Pere

<u>iholtan@umich.edu</u> <u>kpere@umich.edu</u>

Dale Kercorian Eli Smith

<u>dkercori@umich.edu</u> <u>erssmith@umich.edu</u>

Renee Li Teddy Withey

reneeli@umich.edu witheyth@umich.edu