Homework 4

MATH 301 September 17, 2020

Kevin Evans ID: 11571810

1. (a)
$$A \cup B = \{1, 5, 3, 6, 7, 8\}$$

(b)
$$A \cap (B \cup C) = A \cap \{3, 5, 6, 7, 8\}$$

= $\{3, 5, 6, 7\}$

(c)
$$A - B = \{1, 3\}$$

(d)
$$C - A = \{8\}$$

 $(C - A) \cup B = \{5, 6, 7, 8\}$
 $((C - A) \cup B) \cap A = \{3, 5, 6, 7\}$

(e) \varnothing (as both sets are disjoint)

2. (a)
$$(A \cup C) - B$$

(b)
$$(A \cup C) - (A \cap B)$$

(c)
$$(A \cup B \cup C) - (A \cap B \cap C)$$

(d)
$$(A \cap B) \cup (A \cap C) \cup (B \cap C)$$

(e)
$$(A \cup B \cup C) - (A \cap B) \cup (A \cap C) \cup (B \cap C)$$

3. (a)
$$A \cup B - (A \cap C) - (A \cap B \cap \overline{C})$$

(b)
$$(A \cap \overline{B} \cap \overline{C}) \cup (B \cap C)$$

(c)
$$\overline{(B-(A\cup C))\cup(C-(A\cup B))}$$

(d)
$$\overline{(A \cup C) - B}$$

(e)
$$\overline{B \cup (A \cap \overline{C})}$$

4. **Proposition:** If n is an odd integer, then $n^2 + 4n + 6$ is odd.

Proof. Let n be an odd integer, then n can be expressed as

$$n=2a+1 \qquad \qquad \text{...where } a\in\mathbb{Z}$$

$$n^2+4n+6=(2a+1)^2+4(2a+1)+6 \qquad \qquad \text{Substition for } n$$

$$=4a^2+4a+1+8a+4+6 \qquad \qquad \text{Expanding the terms}$$

$$=2(\underbrace{2a^2+6a+5}_b)+1 \qquad \qquad \text{From closure, } b\in\mathbb{Z}$$

$$=2b+1 \qquad \qquad \text{The result is odd.} \quad \square$$

5. **Proposition:** if two integers have the opposite parity, their product is even. *Proof.* Let a have even parity and b have odd parity, then a and be can be expressed as

$$a=2n$$

$$b=2m+1 \qquad \qquad \text{where } n,m\in\mathbb{Z}$$

The product ab becomes

$$ab=(2n)\,(2m+1)$$

$$=4nm+2n$$

$$=2(\underbrace{2nm+n}_{c})$$
 Closure, $c\in\mathbb{Z}$
$$=2c$$
 The result is always even. \square

Two cases are not needed since multiplication is commutative, i.e. ab = ba.