>>> IF013 - Fundamentos Teóricos de Informática
>>> Licenciatura de Sistemas - UNPSJB - Sede Trelew

Name: Celia Cintas † , Pablo Navarro ‡ , Samuel Almonacid $^\$$

Date: December 11, 2017

[1/16]

[†]cintas@cenpat-conicet.gob.ar, cintas.celia@gmail.com, @RTFMCelia

[‡]pnavarro@cenpat-conicet.gob.ar, pablo1n7@gmail.com

[§]almonacid@cenpat-conicet.gob.ar, almonacid.samuel.tw@gmail.com

>>> Análisis de Algoritmos

¿en función de qué elegirías un programa?: ¿de su elegancia?, ¿de la legibilidad?, ¿de su usabilidad?, ¿de su velocidad de ejecución?, ¿de la memoria que consume? Nosotros consideraremos aquí criterios basados en la eficiencia.

- * El coste o complejidad espacial, la cantidad de memoria que consume.
- * El coste o complejidad temporal, la cantidad de tiempo que necesita para resolver un problema.

>>> Aproximación Empírica a Análisis de Algoritmos

Dado un valor n, retornar la suma de los valores entre 0 y n.

```
Basado en \sum_{i=0}^{n} i = \frac{n(n+1)}{2}:
Solución iterativa:
def first sum(n):
                                   def second sum(n):
    final sum = 0
                                       return (n * (n + 1))/2
    for x in range(n + 1):
        final sum += x
    return final sum
assert(first sum(1000) == second sum(1000))
%timeit first_sum(1000)
best of 3: 45 µs per loop
```

%timeit second_sum(1000)
best of 3: 170 ns per loop

>>> Aproximación Empírica a Análisis de Algoritmos (Cont.)

Algunos problemas ...

- * Dependiente del lenguaje, difícil análisis relativo entre distintos lenguajes de programación.
- * La implementación del benchmarking depende del lenguaje elegido y por cada implementación debe agregarse código de medidas de tiempo.
- * Difícil de analizar cuando tenemos variación de n.
- * Dependiente del hardware y SO utilizado para realizar corridas.

¿Podemos prescindir de estos experimentos y seguir obteniendo resultados que nos permitan comparar algoritmos? ¿es posible estimar el tiempo de ejecución sin necesidad de implementar y

ejecutar los programas?

>>> Abstracción del costo de operaciones elementales.

No nos interesa que nuestros estudios dependan del coste concreto de cada operación elemental. Bastará con que sepamos cuántas operaciones elementales ejecuta un programa y cómo depende ese número del n del problema a resolver.

Definición

Un paso es un segmento de código cuyo tiempo de proceso no depende del n del problema considerado y está acotado por alguna constante.

- * operaciones aritméticas.
- * operaciones lógicas.
- * comparación entre escalares.
- * acceso a variables escalares.
- * acceso a un elemento de un arreglo.
- * asignaciones.
- * lectura/escritura de escalar.

```
>>> Abstracción del costo de operaciones elementales. (Cont.)
```

Ejemplo

```
def sumatorio(n):
  s = 0 \# 1 paso
  for i in range(n): # n veces
    s = s + i # 1 paso
  return s # 1 paso
T(n) = 1n + 1 + 1 = 1n + 2
int sumatorio(int n)
  int s, i;
  s = 0; // 1 paso
  for (i=1; i<=n; i++)// 2n + 2 veces
    s = s + i; // 1 paso
 return s; // 1 paso
```

Cómo evoluciona el coste de un algoritmo con el n de entrada, más allá del lenguaje de programación o de los detalles de implementación. ¿Es el costo constante?, ¿crece linealmente con n? ¿o crece con el cuadrado de n?.

>>> Complejidad temporal: Análisis Asintótico

- * Mejor Caso.
- * Peor Caso.
- * Caso Promedio.

Existen varias aproximaciones para el Análisis Asintótico:

- * Cota superior asintótica (O()).
- * Cota inferior asintótica $(\Omega())$.
- * Cota ajustada asintótica (Z()).

Figura de

http://web.engr.oregonstate.edu/~huanlian/teaching/cs570/

>>> Notación
$$O()$$

Sean f y g dos funciones definidas sobre \mathbb{R} :

$$f(n) = O(g(n)) \text{ con } n \to \infty$$
 (1)

Si solo si existe un valor c>0 para una gran cantidad de valores de n y un valor n_0 talque:

$$|f(n)| \le c|g(n)|$$
 para todo $n \ge n_0$ (2)

>>> Tiempos de ejecución clásicos O() (Cont.)

Coste	n = 1	n=5	n = 10	n = 50	n = 100
Constante	$1 \mu \mathrm{s}$	$1\mu\mathrm{s}$	$1\mu\mathrm{s}$	$1\mu\mathrm{s}$	$1\mu\mathrm{s}$
Logarítmico	$1\mu\mathrm{s}$	$1.7\mu\mathrm{s}$	$2\mu\mathrm{s}$	$2.7\mu\mathrm{s}$	$3\mu\mathrm{s}$
Lineal	$1\mu\mathrm{s}$	$5\mu\mathrm{s}$	$10\mu\mathrm{s}$	$50\mu\mathrm{s}$	$100\mu\mathrm{s}$
$n \log n$	$1\mu\mathrm{s}$	$4.5\mu\mathrm{s}$	$11\mu\mathrm{s}$	$86\mu\mathrm{s}$	$201\mu\mathrm{s}$
Cuadrático	$1\mu\mathrm{s}$	$25\mu\mathrm{s}$	$100\mu\mathrm{s}$	$2.5\mathrm{ms}$	$10\mathrm{ms}$
Cúbico	$1\mu\mathrm{s}$	$125\mu\mathrm{s}$	$1\mathrm{ms}$	$125\mathrm{ms}$	1s
Exponencial (2^n)	$1\mu\mathrm{s}$	$32\mu\mathrm{s}$	$1\mathrm{ms}$	1 año y 2 meses	40 millones de eones

Coste	n = 1000	n = 10000	n = 100000
Constante	$1\mu\mathrm{s}$	$1\mu\mathrm{s}$	$1 \mu \mathrm{s}$
Logarítmico	$4\mu\mathrm{s}$	$5\mu\mathrm{s}$	$6\mu\mathrm{s}$
Lineal	$1\mathrm{ms}$	$10\mathrm{ms}$	$100\mathrm{ms}$
$n \log n$	$3\mathrm{ms}$	$40\mathrm{ms}$	$500\mathrm{ms}$
Cuadrático	1 s	$100\mathrm{s}$	16 minutos y medio
Cúbico	16 minutos y medio	1 día y medio	casi 32 años

Tabla de Andrés Marzal e Isabel Gracia, Lenguajes y Sistemas, Universitat Jaume I.

```
>>> Tiempos de ejecución clásicos O() (Cont.)
 * Orden Constante:
                            * Orden Cuadrático: O(n^2)
   O(1)
                              def func quad(lst):
   def func o const(lst):
                                  for item 1 in 1st:
       print(lst[0])
                                      for item 2 in 1st:
                                          print(item 1, item 2)
   func o const([1, 2, 3, 4])
                              func quad([0, 1, 2, 3])
 * Orden Lineal: O(n)
                            * Orden Logarítmico: O(\log n)
   def print list(lst):
                              Ejemplos de algoritmos divide y
       for val in 1st:
                              vencerás.
            print(val)
```

print list([1, 2, 3])

```
a=5
b=6
for i in range(n):
   for j in range(n):
      x = i * i
      y = j * j
      z = i * j
for k in range(n):
   w = a*k + 45
   v = b*b
d = 33
```

>>> Ejemplo: Notación O() (Cont.)

```
a=5
b=6
c = 10
for i in range(n):
   for j in range(n):
                             T(n) = 3 + 3n^2 + 2n + 1 = 3n^2 + 2n + 4
       x = i * i
       y = j * j
       z = i * j
for k in range(n):
   \overline{w} = a*k + 45
   v = b*b
d = 33
```

>>> Notación O() (Cont.)

>>> Notación O() (Cont.) $T(n)=3+3n^2+2n+1=3n^2+2n+4$ a=5 b=6

Ejercicios con Notación O()

>>> Gracias!

Bibliografía

- Think Complexity: Complexity Science and Computational Modeling. Allen Downey - O'Reilly 2012.
- 2. Problems on Algorithms. Second Edition. Ian Parberry and William Gasarch, July 2002.
- Cormen, Leiserson, Rivest, Stein. Introduction to Algorithms, MIT Press.
- Dasgupta, Papadimitriou, Vazirani. Algorithms, McGraw-Hill Press.
- 5. Fotakis. Course of Algorithms and Complexity at the National Technical University of Athens.

[3. The End]\$ _