Университет ИТМО Факультет ПИиКТ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

I CEMECTP

Лектор: Трифанова Екатерина Станиславовна

Автор: Александр Калиев

Содержание

1	$2023-09-10 \; ({ m NAL})$		
	1.1	De Morgan laws	2
	1.2	Distribution laws	2
	1.3	Injection, surjection and biection	3
	1.4	Properties of images and prototypes	3
	1.5	Superposition of mapping	4
2	2023-09-11		4
	2.1	Defining $\mathbb R$	4
	2 2	Corrolaries	5

1 2023-09-04

1.1 Intro

Lecturer: Trifanova Ekaterina Stanislavovna

Telegram: @estrifanova

The whole semester is splitted by 3 parts, each of them contains:

- 1. control test
- 2. theory test (on GeoLin)
- 3. hometask
- 4. colloquium

Summary: 100 p.

The course is linked to A. Boytsev's course.

1.2 Logical symbolic

Определение 1.1. A statement is a sentence that is either true or false.

- $\triangleright \forall$ for all
- $\triangleright \exists exists$
- \triangleright ! single
- $ightarrow \Box let$

Пример. $\forall a \in \mathbb{N} \exists ! b \in \mathbb{N} : a + b = 0$

$$A \Rightarrow B, A \Leftarrow B, A \Leftrightarrow B$$

$$A = a : 6B = a : 3A \implies B$$

 \wedge - conjunction, \vee - dis junction.

$$A \iff B \lor C$$

Лемма 1.1. A is true $\iff \neg A$ is false

1.3 Sets

Определение 1.2. A set is a group of an objects, with defined rule which can define, is object in a set or not

Парадокс Рассела (множество множеств, которое не содержит себя в качестве элемента)

$$a \in A$$

$$b \notin A \iff \neg (b \in A)$$

Определение 1.3. $A \subset B \iff \forall a \in A \implies a \in B$

Определение 1.4. $A = B \iff A \subset B \land B \subset A$

1.4 Operations between sets

- 1. Union $A \cup B = \{x : x \in A \lor x \in B\}$
- 2. Intersection $A \cap B = \{x : x \in A \land x \in B\}$

Let A be a set of indexes. $\alpha \in A$. $\alpha \mapsto G_{\alpha}$. We want do define a union of n sets.

Определение 1.5.

$$\bigcup_{\alpha \in A} G_{\alpha} = \{x : \exists \alpha : x \in G_{\alpha}\} = G_{A_1} \cup G_{A_2} \cup G_{A_3} \cup \dots \cup G_{A_n}\}$$

Определение 1.6.

$$\bigcap_{\alpha \in A} G_{\alpha} = \{x : \forall \alpha : x \in G_{\alpha}\} = G_{A_1} \cap G_{A_2} \cap G_{A_3} \cap \dots \cap G_{A_n}$$

Определение 1.7.

$$A \setminus B = \{x : x \in A \land x \notin B\}$$

We define U is an universal set: $\forall x : x \in U$.

 $U \setminus A = A^c$ – complement ion.

 $A \times B$ – desert multiplication of sets. $A \times B = \{(x, y) : x \in A, y \in B\}$

Лемма 1.2 (Свойства операций). $\forall A, B, C$:

- 1. $A \cup B = B \cup A$ (коммутативность)
- 2. $A \cap B = B \cap A$ (коммутативность)
- 3. $A \cup (B \cup C) = (A \cup B) \cup C$ (ассоциативность)
- 4. $A \cap (B \cap C) = (A \cap B) \cap C$ (accoquamus ность)

5.
$$A \cup A = A \cup \emptyset = A$$

6.
$$A \cap \emptyset = \emptyset$$

7.
$$A \cap A = A$$

8.
$$A \cup A^c = U$$

9.
$$A \cap A^c = \emptyset$$

10.
$$(A^c)^c = A$$

Упражнение. Доказать верхние 10 свойств. Доказательство достаточно тривиально.

Замечание. Доказательство следует из определения.

Теорема 1.1 (великая теорема Ферма). $\forall x,y,z \in \mathbb{Z} : x,y,z > 2 : x^n + y^n = z^n$ не имеет решений.

2 2023-09-10 (NAL)

(not a lecture)

2.1 De Morgan laws

Утверждение 2.1 (De Morgan laws).

$$A \setminus \bigcup_{i \in I} X_i = \bigcap_{i \in I} (A \setminus X_i)$$

$$A \setminus \bigcap_{i \in I} X_i = \bigcup_{i \in I} (A \setminus X_i)$$

Доказательство. Let's proof the first formula. Using the definition:

$$A \setminus \bigcup_{i \in I} X_{\alpha} = A \setminus \{x \in U : \exists i \in I : x \in X_i\}$$

$$= \{x : x \in A \& \forall i \in I : x \notin X_i\}$$

$$= \{x : \forall i \in I : x \in A \& x \notin X_i\}$$

$$= \bigcap_{i \in I} (A \setminus X_i)$$

Similarly, proving the second formula, but with a little bit different approach:

$$A \setminus \bigcap_{i \in I} X_i = A \setminus \{x \in U : X_1 \cap X_2 \cap \dots \cap X_n\}$$
$$= \{x \in U : x \in A \land x \notin (X_1 \cap X_2 \cap \dots \cap X_n)\}$$
$$= \{\}$$

It's enough for x to not be in any of X_i (this statement is trivial). Then, the set is: $\{x \in U : \exists i \in I : x \in A \land x\}$

This is equal to:

$$\bigcup_{i\in I} (A\setminus X_i)$$

2.2 Distribution laws

Утверждение 2.2 (Distribution).

$$Y \cap \bigcup_{i \in I} X_i = \bigcup_{i \in I} (Y \cap X_i)$$

$$Y \cup \bigcap_{i \in I} X_i = \bigcap_{i \in I} (Y \cup X_i)$$

Доказательство. Proving the first law:

$$Y \cap \bigcup_{i \in I} X_i = \{x \in U : x \in Y \land x \in (X_1 \cup X_2 \cup \dots \cup X_N)\}$$

$$= \{x \in U : x \in Y \land \exists i \in I : x \in X_i\}$$

$$= \{x \in U : \exists i \in I : x \in Y \cap X_i\}$$

$$= \bigcup_{i \in I} (Y \cap X_i)$$

Similarly, proving the second law:

$$Y \cup \bigcap_{i \in I} X_i = \bigcap_{i \in I} (Y \cup X_i)$$

$$= \{x \in U : x \in Y \lor \forall i \in I : x \in X_i\}$$

$$= \{x \in U : \forall i \in I : x \in (Y \cup X_i)\}$$

$$= \bigcap_{i \in I} (Y \cup X_i)$$

2.3 Injection, surjection and biection

Определение 2.1 (mapping). A mapping is a rule $f: \forall x \in X \exists ! y \in Y: f(x) = y$.

Определение 2.2 (injection). A mapping $f: X \mapsto Y$ is called **an injection**, if $\forall x_1, x_2 \in X: x_1 \neq x_2 \land f(x_1) \neq f(x_2)$

Определение 2.3 (surjection). A mapping $f: X \mapsto Y$ is called a surjection, if $\forall y \in Y: \exists x \in X: f(x) = y$

Определение 2.4 (biection). We call f a biection if f is both an injection and a surjection.

2.4 Properties of images and prototypes

We define $A,B \in X, A',B' \in Y$.

Определение 2.5 (an image). $f^{-1}(Y) = \{x \in X : f(x) \in Y\}$

- 1. $A \subset B \Rightarrow f(A) \subset f(B)$. It's obvious.
- 2. $f(A \cup B) = f(A) \cup f(B)$.

Доказательство. Let
$$y \in f(A \cup B) \Rightarrow \exists x \in A \cup B : f(x) = y \Rightarrow x \in A \lor x \in B \Rightarrow f(x) \in f(A) \lor f(x) \in f(B) \Rightarrow f(x) \in f(A) \cup f(B)$$
.

3. $f(A \cap B) = f(A) \cap f(B)$.

Доказательство. Let
$$y \in f(A \cap B) \Rightarrow \exists x \in A \cap B : f(x) = y \Rightarrow f(x) \in f(A) \land f(x) \in f(B) \Rightarrow y \in A \land y \in B \Rightarrow f(x) \in A \land f(x) \in B \Rightarrow f(A \cap B) = f(A) \cap f(B)$$

- 4. $A' \subset B' \Rightarrow f^{-1}(A') \subset f^{-1}(B')$. Obviously, true.
- 5. $f^{-1}(A' \cup B') = f^{-1}(A') \cup f^{-1}(B')$.

Доказательство. Let
$$x \in f^{-1}(A' \cup B') \Rightarrow y \in A' \lor y \in B' \Rightarrow x \in f^{-1}(A') \lor x \in f^{-1}(B') \Rightarrow f^{-1}(A' \cup B') \in f^{-1}(A) \cup f^{-1}(B)$$

6.
$$f^{-1}(A' \cap B') = f^{-1}(A') \cap f^{-1}(B')$$

Let $f: X \mapsto Y$ be a biection. Then:

Определение 2.6 (reverse map). $f^{-1}: Y \mapsto X$ is called **reverse map** if $\forall y \in Y \exists ! x \in X: f^{-1}(y) = x$

2.5 Superposition of mapping

Теорема 2.1 (associativity). $f \circ (g \circ h) = (f \circ g) \circ h$

Доказательство. Left side: $f \circ g(h) = f(g(h))$. Right side: $f(g) \circ h = f(g(h))$

3 2023-09-11

⊲ talked about mappings (and will be in the 1st semester)

3.1 Defining \mathbb{R}

Мы выбираем аксиоматический подход.

Определение 3.1 (\mathbb{R}). We call a set an \mathbb{R} if:

▶ Addition

def " + " : $\mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ is satisfied:

- 1. (commutativity): a + b = b + a
- 2. (associativity): a + (b + c) = (a + b) + c
- 3. $\exists 0 : \forall a + 0 = a$. We call 0 a **neutral** element.
- 4. $\forall a \in \mathbb{R} : \exists (-a) : a + (-a) = 0$
- ▶ Multiplication

def " \cdot ": $\mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ is satisfied:

- 1. (commutativity): $a \cdot b = b \cdot a$
- 2. (associativity): $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 3. $\exists 1 \neq 0 : \forall a \in A : a \cdot 1 = a$
- 4. $\forall a \in A : \exists a^{-1} \in A : a \cdot a^{-1} = 1$
- \triangleright (distributivity): $\forall a,b,c \in \mathbb{R} : a \cdot (b+c) = a \cdot b + a \cdot c \& (a+b) \cdot c = a \cdot c + b \cdot c$
- \triangleright (axioms of order) $\forall a,b \in \mathbb{R}$ mapping of order \leqslant set if:
 - 1. $x \leqslant x$
 - 2. $(x \le y \land y \le x) \Rightarrow x = y$
 - 3. (transitivity) $x \le y \land y \le z \Rightarrow x \le z$
 - 4. $\forall x, y \in \mathbb{R} : x \leq y \vee y \leq x$
- \triangleright (Connection between \leq , +) $\forall x,y,z \in \mathbb{R} : x \leq y \Rightarrow x+z \leq y+z$ (this is not implied by previous conditions)

- \triangleright (Connection betwen \cdot and \leqslant): $0 \leqslant x \land 0 \leqslant y \Rightarrow 0 \leqslant x \cdot y$
- ightharpoonup (Axiom of continuity (completeness)): Let $X,Y\subset\mathbb{R}: \forall x\in X: \forall y\in Y: x\leqslant y$. Then $\exists c\in\mathbb{R}: x\leqslant c\leqslant y$

Пример (This axiom doesn't work on \mathbb{Q}). Let $X = \{x \in \mathbb{Q} : x \cdot x \leq 2\}$, $Y = \{y \in \mathbb{Q} : y \cdot y \geqslant 2\}$. Then, $\exists ! a \notin \mathbb{Q} \ (a = \sqrt{2}) :$ satisfies this axiom.

Замечание. Definition of \mathbb{R} just contains the conditions that satisfy the **field**.

3.2 Corrolaries

Следствие (Corrolaries on Axioms 1-3).

1. $\exists !0, \exists !1.$

Доказательство для θ . Let there be $0_1, 0_2$. Then:

$$0_1 = 0_1 + 0_2 = 0_2$$

- $2. \exists !(-x) \forall x$
- 3. $\forall x \neq 0 \exists ! x^{-1}$

Доказательство. Let there be $-x_1$ and $-x_2$. Then:

$$(-x_1) = (-x_1) + (x + (-x_2)) = (x + (-x_1)) + (-x_2) = (-x_2)$$

- 4. $\forall a,b \in \mathbb{R}$ an equality x+a=b is set. Then there is only one solution x=b+(-a).
- 5. $x \cdot a = b(a, b \in \mathbb{R})$. Then, $\exists ! x = b \cdot a^{-1}$
- 6. $\forall x : x \cdot 0 = 0$

Доказательство.
$$x \cdot 0 = x \cdot (0+0) = 0 \cdot x + 0 \cdot x = 0 \Rightarrow 0 = x \cdot 0$$

7. $x \cdot y = 0 \Leftrightarrow x = 0 \lor y = 0$

Доказательство. \Leftarrow is proven.

$$\Rightarrow : x \neq 0 \Rightarrow \exists x^{-1} : x \cdot y \cdot x^{-1} = 0 \Rightarrow y = 0$$
. Proof for y is similar.

8. $-x = -1 \cdot x$

Доказательство.
$$-1 \cdot x + x = -1 \cdot x + 1 \cdot x = x(-1+1) = x \cdot 0 = 0$$

9. $-1 \cdot (-x) = x$. Proof is trivial based on previous)

10. $(-x) \cdot (-x) = x \cdot x$. Proof is also trivial.

Определение 3.2.

$$x \leqslant y \Leftrightarrow \geqslant x$$

$$x < y \Leftrightarrow x \leqslant y \land x \neq y$$

$$x > y \Leftrightarrow y \geqslant x \land y \neq x$$

Следствие (Corrolaries on axioms 4-6).

1. $\forall x,y \in \mathbb{R}$: the only one statement is true

$$\triangleright x < y$$

$$\triangleright x = y$$

$$\triangleright x > y$$

2.
$$x < y \land y \leqslant z \Rightarrow x < z$$

3. ...

4. $x > 0 \Leftrightarrow -x < 0$. The proof is obvious.

5.
$$x < 0 \land y < 0 \Rightarrow xy > 0$$

6. Can add to strict inequality.

7.
$$x \le y \land z \le w \Rightarrow x + z \le y + w$$

8.
$$0 < x \land 0 < y \Rightarrow 0 < xy$$

9.
$$0 < x \land y < z \Rightarrow xz < yz$$

10. 1 > 0

Доказательство. Let $1 \leq 0 \Rightarrow 1 < 0 \Rightarrow 1 \cdot 1 > 0$!?. Then, 1 > 0.