

Test report No. : 12212627S-H-R1
Page : 1 of 67
Issued date : October 31, 2018
FCC ID : 2ACZS-R02010

RADIO TEST REPORT

Test Report No.: 12212627S-H-R1

Applicant: **RICOH IMAGING COMPANT LTD.**

Type of Equipment : DIGITAL CAMERA

Model No. : R02010

FCC ID : 2ACZS-R02010

Test regulation : FCC Part 15 Subpart C: 2018

Test Result : Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 6. The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- 7. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 8. This report is a revised version of 12212627S-H. 12212627S-H is replaced with this report.

Date of test: April 17 to May 16, 2018

Representative test engineer:

Makoto Hosaka Engineer

Consumer Technology Division

Approved by: _____// 04/

Toyokazu Imamura Leader

Consumer Technology Division

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

 Test report No.
 : 12212627S-H-R1

 Page
 : 2 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

REVISION HISTORY

Original Test Report No.: 12212627S-H

Revision	Test report No.	Date	Page revised	Contents
- (Original)	12212627S-H	June 5, 2018	-	-
1	12212627S-H-R1	October 31, 2018	4	Correction of antenna type from "Pattern" to "λ/4 Monopole"
			8	Correction of tested rate of 11n-20 from "MCS 0" to "MCS 1"
				Correction of power setting of 11b, 11g, 11n-20 from "9.5 dBm (Specified setting), 11.5 dBm (Reference setting only for Average output power)" to "9.5 dBm"
			9, 14, 16-18	Correction of model No. and serial No. of USB Power Adapter: from "AC-U1" to "AC-U2" from "U1-10" to "U2-11"
			32 (12212627S-H)	Deletion of data page: Average Output Power (Reference: power setting 11.5 dBm)
			59	Correction of Reading at 175.00 MHz in table from "-78.0" to "-80.5"

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. Page Issued date FCC ID

: 12212627S-H-R1 : 3 of 67

: October 31, 2018 : 2ACZS-R02010

CONTENTS PAGE SECTION 1: SECTION 2: SECTION 3: Operation of E.U.T. during testing......8 **SECTION 4: SECTION 5: SECTION 6: SECTION 7:** Conducted Emission 14 6 dB Bandwidth and 99 % Occupied Bandwidth......22 Maximum Peak Output Power 27 Radiated Spurious Emission 34 Power Density 60 **APPENDIX 2: APPENDIX 3:** Conducted Emission65 Radiated Spurious Emission66

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 4 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

SECTION 1: Customer information

Company Name : RICOH IMAGING COMPANT LTD.

Address : 1-3-6 Nakamagome Ohta-ku Tokyo, 143-8555, Japan

Telephone Number : +81-50-3534-5408 Facsimile Number : +81-3-3775-8531 Contact Person : Takafumi Okuma

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : DIGITAL CAMERA

Model No. : R02010

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC 5 V (USB)

DC 3.6 V (Battery)

Receipt Date of Sample : April 17, 2018 Country of Mass-production : Vietnam

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: R02010 (referred to as the EUT in this report) is a DIGITAL CAMERA.

Radio Specification

WLAN

Radio Type : Transceiver

Frequency of Operation : 2412 MHz - 2462 MHz

Bluetooth Low Energy

Radio Type : Transceiver

Frequency of Operation : 2402 MHz – 2480 MHz

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 5 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on March 12, 2018 and effective April 11, 2018

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928MHz,

2400-2483.5MHz, and 5725-5850MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods	FCC: Section 15.207	QP	Camariia I	
Conducted Emission	IC: RSS-Gen 8.8	IC: RSS-Gen 8.8	24.0 dB, 0.15000 MHz, N Tx 11g 2462 MHz	Complied	-
6dB Bandwidth	FCC: KDB 558074 D01 DTS Meas Guidance v04	FCC: Section 15.247(a)(2)		Complied	Conducted
	IC: -	IC: RSS-247 5.2(a)			
Maximum Peak Output Power	FCC: KDB 558074 D01 DTS Meas Guidance v04	FCC: Section 15.247(b)(3)	See data.	Complied	Conducted
	IC: RSS-Gen 6.12	IC: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01 DTS Meas Guidance v04	FCC: Section 15.247(e)		Complied	Conducted
	IC: -	IC: RSS-247 5.2(b)			
	FCC: KDB 558074 D01 DTS Meas Guidance v04	FCC: Section15.247(d)	3.7 dB		Conducted
Spurious Emission Restricted Band Edges	IC: RSS-Gen 6.13	IC: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	2390.000 MHz, AV, Vert. Tx 11g 2412 MHz	Complied#	(below 30 MHz)/ Radiated (above 30 MHz) *1)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF part regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} Also the EUT complies with FCC Part 15 Subpart B.

^{*1)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 DTS Meas Guidance v04 12.2.7.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

Test report No. : 12212627S-H-R1 Page : 6 of 67

Issued date : October 31, 2018 FCC ID : 2ACZS-R02010

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks	
99% Occupied	IC: RSS-Gen 6.6	IC: -	N/A	Complied	Conducted	
Bandwidth						
Symbols:	Symbols:					
Complied Th	Complied The data of this test item has enough margin, more than the measurement uncertainty.					
	8 8 7					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2. Shonan EMC Lab.

Item	Frequency range	Uncertainty (+/-)				
		No. 1 SAC / SR	No. 2 SAC / SR	No. 3 SAC / SR	No. 4 SAC / SR	No. 5,6,8 SR
Conducted emission (AC Mains) LISN	150 kHz-30 MHz	2.5 dB	2.5 dB	2.5 dB	2.6 dB	2.6 dB
Radiated emission	9 kHz-30 MHz	3.2 dB	3.2 dB	3.3 dB	-	-
(Measurement distance: 3 m)	30 MHz-200 MHz	4.9 dB	4.8 dB	4.9 dB	-	-
	200 MHz-1 GHz	6.1 dB	6.1 dB	6.1 dB	-	-
	1 GHz-6 GHz	4.7 dB	4.7 dB	4.7 dB	-	-
	6 GHz-18 GHz	5.3 dB	5.3 dB	5.3 dB	-	-
	18 GHz-40 GHz	5.6 dB	5.6 dB	5.6 dB	-	-
Radiated emission	1 GHz-18 GHz	5.6 dB	5.6 dB	5.6 dB	-	-
(Measurement distance: 1 m)	18 GHz-40 GHz	5.9 dB	5.9 dB	5.9 dB	-	-

SAC=Semi-Anechoic Chamber

SR= Shielded Room is applied besides radiated emission

Antenna terminal test	Uncertainty (+/-)
Power Measurement above 1 GHz (Average Detector)_SPM-06	0.48 dB
Power Measurement above 1 GHz (Peak Detector)_SPM-06	0.66 dB
Power Measurement above 1 GHz (Average Detector)_SPM-07	0.47 dB
Power Measurement above 1 GHz (Peak Detector)_SPM-07	0.64 dB
Spurious emission (Conducted) below 1GHz	1.8 dB
Spurious emission (Conducted) 1 GHz-3 GHz	1.7 dB
Spurious emission (Conducted) 3 GHz-18 GHz	2.5 dB
Spurious emission (Conducted) 18 GHz-26.5 GHz	2.5 dB
Spurious emission (Conducted) 26.5 GHz-40 GHz	2.7 dB
Bandwidth Measurement	1.01 %
Duty cycle and Time Measurement	0.012 %

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1
Page : 7 of 67

Issued date : October 31, 2018 FCC ID : 2ACZS-R02010

3.5 Test Location

UL Japan, Inc. Shonan EMC Lab.

1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone: +81 463 50 6400, Facsimile: +81 463 50 6401

JAB Accreditation No. RTL02610

FCC Test Firm Registration Number: 839876

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	M aximum measurement distance
No.1 Semi-anechoic chamber	2973D-1	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.2 Semi-anechoic chamber	2973D-2	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.3 Semi-anechoic chamber	2973D-3	12.7 x 7.7 x 5.35	12.7 x 7.7	5 m
No.4 Semi-anechoic chamber	-	8.1 x 5.1 x 3.55	8.1 x 5.1	-
No.1 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	1-
No.2 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	1-
No.3 Shielded room	-	6.3 x 4.7 x 2.7	6.3 x 4.7	-
No.4 Shielded room	-	4.4 x 4.7 x 2.7	4.4 x 4.7	1-
No.5 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.6 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.8 shielded room	-	3.45 x 5.5 x 2.4	3.45 x 5.5	-
No.1 Measurement room	-	2.55 x 4.1 x 2.5	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 8 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

SECTION 4: Operation of E.U.T. during testing

4.1 **Operating Mode(s)**

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing - Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009.

Mode	Remarks*
IEEE 802.11b (11b)	11 Mbps, PN9
IEEE 802.11g (11g)	6 Mbps, PN9
IEEE 802.11n 20 MHz BW (11n-20)	MCS 1, PN9
Bluetooth Low Energy (BT LE)	PRBS9

^{*}The worst condition was determined based on the test result of Maximum Peak Output Power (Mid Channel)

Power settings: 11b, 11g, 11n-20 : 9.5 dBm

BT LE : Fixed

Software: CPU Ver.00.21.00.05

DSP Ver.00.93.21.02

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*The details of Operating mode(s)

Test Item	Operating Mode	Tested frequency
Conducted Emission	11g Tx	2462 MHz
	BT LE Tx	2402 MHz
		2440 MHz
		2480 MHz
Spurious Emission	11b Tx	2412 MHz
	11g Tx	2437 MHz
	11n-20 Tx	2462 MHz
	BT LE Tx	2402 MHz
		2440 MHz
		2480 MHz
6dB Bandwidth	11b Tx	2412 MHz
Maximum Peak Output Power	11g Tx	2437 MHz
Power Density	11n-20 Tx	2462 MHz
99% Occupied Bandwidth		
	BT LE Tx	2402 MHz
		2440 MHz
		2480 MHz

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*}Power of the EUT was set by the software as follows;

 Test report No.
 : 12212627S-H-R1

 Page
 : 9 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

4.2 Configuration and peripherals

Conducted Emission

Conducted Emission

^{*} The core is a standard ferrite core attached to DC and USB cable and not used to reduce the noise from the EUT. The core is equivalent to the one which is attached to the DC and USB cable of host device the EUT is installed.

Radiated Spurious Emission, Antenna terminal conducted

^{*} During Radiated Spurious Emission test, ferrite core attached to USB cable is not used to reduce the noise from the EUT. Therefore, that does not affect the emission level of the EUT.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	DIGITAL CAMERA	R02010	0000010 *1) 0000031 *2) 0000020 *3)	RICOH IMAGING COMPANY, LTD.	EUT
В	SDHC Memory Card	SD-K08G	1422UL3928T	TOSHIBA	-
C	LI-ION BATTERY PACK	DB-110	-	RICOH IMAGING COMPANY, LTD.	-
D	USB Power Adapter	AC-U2	U2-11	RICOH IMAGING COMPANY, LTD.	-
Е	AC Adapter	D-AC166	PP-11	RICOH IMAGING COMPANY, LTD.	-

^{*1)} Used for Antenna Terminal conducted test (Wireless LAN)

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	USB	0.7	Shielded	Shielded	-
2	DC	1.0	Shielded	Shielded	-
3	AC	1.8	Unshielded	Unshielded	-

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

^{*2)} Used for Antenna Terminal conducted test (Bluetooth LE)

^{*3)} Used for Conducted Emission test and Radiated Emission test

Test report No. : 12212627S-H-R1
Page : 10 of 67
Issued date : October 31, 2018
FCC ID : 2ACZS-R02010

SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT was aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80 cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

Each EUT current-carrying power lead, except the ground (safety) lead, was individually connected through a LISN / (AMN) to the input power source.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.

The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV
Measurement range : 0.15 MHz - 30 MHz

Test data : APPENDIX

Test result : Pass

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1
Page : 11 of 67
Issued date : October 31, 2018
FCC ID : 2ACZS-R02010

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "11.0 Emissions in non-restricted frequency bands" of "KDB 558074 D01 DTS Meas Guidance v04".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(IC) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (IC).

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analy	zer	Spectrum Analyzer
Detector	QP	PK	AV *1)	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	Average Power Method:	RBW: 100 kHz
		VBW: 3 MHz	12.2.5.2	VBW: 300 kHz
			RBW: 1 MHz	
			VBW: 3 MHz	
			Detector:	
			Power Averaging (Linear	
			voltage)	
			Trace: 100 traces	
			Duty factor was added to	
			the results.	
Test Distance	3 m	3.95 m *2) (1 GHz – 13 GHz),		3.95 m *2) (1 GHz – 13 GHz)
		1 m *3) (13 GHz	z – 26.5 GHz)	

^{*1)} Average Power Measurement was performed based on 6. 0 & 12.2.5 of "KDB 558074 D01 DTS Meas Guidance v04".

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*2)} Distance Factor: $20 \times \log (3.95 \text{ m} / 3.0 \text{ m}) = 2.39 \text{ dB}$

^{*3)} Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$

 Test report No.
 : 12212627S-H-R1

 Page
 : 12 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Combinations of the worst case

AntennaFrequency	Carrier	Spurious			
polarization		Below 1 GHz	1 GHz - 13 GHz	13 GHz – 18 GHz	18 GHz – 26.5 GHz
Horizontal	X	Y	X	X	X
Vertical	Y	X	Y	X	X

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 MHz - 26.5 GHz

Test data : APPENDIX

Test result : Pass

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 13 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
6dB Bandwidth	50 MHz (WLAN) 10 MHz (BT LE)	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	9.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted Spurious Emission *4)	9kHz to 150kHz 150kHz to 30MHz	200 Hz 10 kHz	620 Hz 30 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

^{*1)} Peak hold was applied as Worst-case measurement.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

(9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz)

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*2)} Reference data

^{*3)} Section 10.2 Method PKPSD (peak PSD) of "KDB 558074 D01 DTS Meas Guidance v04".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

: 12212627S-H-R1 Test report No. : 14 of 67 Page **Issued date** : October 31, 2018 FCC ID : 2ACZS-R02010

APPENDIX 1: Test data

DATA OF CONDUCTED EMISSION TEST

UL Japan,Inc. Shonan EMC Lab. No.2 Shielded Room Date: 2018/04/22

: Tx 11g 2462 MHz Mode ..

Power Temp./Humi. : AC 120 V / 60 Hz : 24 deg.C / 41 %RH

: (AC Adapter) M/N: AC-U2, S/N: U2-11 Remarks

 $\begin{array}{l} Limit1: FCC \ 15C \ (15.207) \ QP \\ Limit2: FCC \ 15C \ (15.207) \ AV \end{array}$

Engineer : Yasumasa Owaki

		Read	ding		Res	ults	Lim	nit I	Mar	gin		
No.	Freq.	<qp></qp>	<av></av>	C.Fac	<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.31157	16.00	5.80	12.53	28.53	18.33	59.93	49.93	31.4	31.6	N	
2	0.34723	17.20	5.60	12.54	29.74	18.14	59.03	49.03	29.2	30.8	N	
3	0.61654	10.10	1.70	12.57	22.67	14.27	56.00	46.00	33.3	31.7	N	
4	0.79449	11.80	2.20	12.61	24.41	14.81	56.00	46.00	31.5	31.1	N	
5	1.36798	10.10	0.10	12.66	22.76	12.76	56.00	46.00	33.2	33.2	N	
6	1.89881	9.20	-0.70	12.72	21.92	12.02	56.00	46.00	34.0	33.9	N	
7	2.30334	8.20	-1.00	12.77	20.97	11.77	56.00	46.00	35.0	34.2	N	
8	0.30992	13.20	5.60	12.53	25.73	18.13	59.97	49.97	34.2	31.8	L1	
9	0.35162	15.20	7.60	12.54	27.74	20.14	58.92	48.92	31.1	28.7	L1	
10	0.60780	8.30	0.70	12.56	20.86	13.26	56.00	46.00	35.1	32.7	L1	
11	0.79141	8.80	1.60	12.61	21.41	14.21	56.00	46.00		31.7	L1	
12	1.36270	8.00	0.80	12.66	20.66	13.46	56.00	46.00	35.3	32.5	L1	
13	1.89680	6.90	0.10	12.72	19.62	12.82	56.00	46.00		33.1	L1	
14	2.30142	6.00	-0.80	12.77	18.77	11.97	56.00	46.00	37.2	34.0	L1	
							l					
							I					
							I					
							I					
							I					
							I					

 $\begin{tabular}{ll} Calculation: Result [dBuV] = Reading [dBuV] + C.Fac (LISN (AMN) + Cable + ATT) [dB] \\ LISN (AMN) = SLS - O2 \\ \end{tabular}$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 12212627S-H-R1 Test report No. Page : 15 of 67 **Issued date** : October 31, 2018 FCC ID : 2ACZS-R02010

DATA OF CONDUCTED EMISSION TEST

UL Japan,Inc. Shonan EMC Lab. No.2 Shielded Room Date: 2018/04/22

Mode : Tx 11g 2462 MHz

: AC 120 V / 60 Hz : 24 deg.C / 41 %RH Power Temp./Humi.

Remarks : (AC Adapter) M/N: D-AC166, S/N: PP-11

Limit1 : FCC 15C (15.207) QP Limit2 : FCC 15C (15.207) AV **Engineer** : Yasumasa Owaki

	Freq.	Read		C.Fac	Res		Lir		Mar			
No.		<qp></qp>	<av></av>		<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15000	29.60	17.30	12.40	42.00	29.70	66.00	56.00	24.0	26.3	N	
2	0.17303	25.80	12.20	12.41	38.21	24.61	64.81	54.81	26.6	30.2	N	
3	0.19871	22.20	7.10	12.38	34.58	19.48	63.66	53.66	29.0	34.1	N	
4	0.26292	16.50	4.00	12.41	28.91	16.41	61.34	51.34	32.4	34.9	N	
5	0.33121	11.80	2.10	12.42	24.22	14.52	59.42	49.42	35.2	34.9	N	
6	0.38803	15.20	8.00	12.45	27.65	20.45	58.11	48.11	30.4	27.6	N	
7	0.41694	12.00	4.40	12.45	24.45	16.85	57.51	47.51	33.0	30.6	N	
8	0.15000	29.50	17.00	12.40	41.90	29.40	66.00	56.00	24.1	26.6	L1	
9	0.17272	25.90	12.10	12.42	38.32	24.52	64.83	54.83	26.5	30.3	L1	
10	0.19832	22.50	7.10	12.38	34.88	19.48	63.68	53.68	28.8	34.2	L1	
11	0.26197	16.30	4.00	12.40	28.70	16.40	61.37	51.37	32.6	34.9	L1	
12	0.33216	11.50	2.10	12.42	23.92	14.52	59.40	49.40	35.4	34.8	L1	
13	0.38819	15.00	7.90	12.45	27.45	20.35	58.10	48.10	30.6	27.7	L1	
14	0.41758	12.00	4.40	12.45	24.45	16.85	57.50	47.50	33.0	30.6	L1	
		I										
		I										
		I										
		i										
	l l	l										
	l l	i										

 $\begin{tabular}{ll} Calculation: Result [dBuV] = Reading [dBuV] + C.Fac (LISN (AMN) + Cable + ATT) [dB] \\ LISN (AMN) = SLS - O2 \\ \end{tabular}$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 12212627S-H-R1 Test report No. Page : 16 of 67 **Issued date** : October 31, 2018 FCC ID : 2ACZS-R02010

DATA OF CONDUCTED EMISSION TEST

UL Japan,Inc. Shonan EMC Lab. No.3 Shielded Room Date : 2018/05/15

Mode : Tx_BLE_2402MHz

Power Temp./Humi. AC 120 V / 60 Hz 25 deg.C / 43 %RH

: AC Adapter: AC-U2 Remarks

Limit1 : FCC 15C (15.207) QP Limit2 : FCC 15C (15.207) AV Engineer : Makoto Hosaka

 $\label{eq:calculation:Result [dBuV] = Reading [dBuV] + C.Fac (LISN (AMN) + Cable + ATT) [dB] \\ LISN (AMN) : SLS - 02$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1 : 17 of 67 Page **Issued date** : October 31, 2018 FCC ID : 2ACZS-R02010

DATA OF CONDUCTED EMISSION TEST

UL Japan,Inc. Shonan EMC Lab. No.3 Shielded Room Date : 2018/05/15

Mode : Tx_BLE_2440MHz

Power Temp./Humi. AC 120 V / 60 Hz 25 deg.C / 43 %RH

: AC Adapter: AC-U2 Remarks

Limit1 : FCC 15C (15.207) QP Limit2 : FCC 15C (15.207) AV Engineer : Makoto Hosaka

						1						
No.	Freq.	<qp></qp>	ding <av></av>	C.Fac	<qp></qp>	ults <av></av>	<qp></qp>	AV>	<qp></qp>	gin <av></av>	Pha se	Comment
NO.	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]	Pilase	Comment
1	0.31064	12.20	6.30	12.52	24.72	18.82	59.95	49.95	35.2	31.1	N	
2	0.55123	6.90	-1.30	12.54	19.44	11.24	56.00	46.00	36.5	34.7	N	
3	0.61440	7.30	-1.60	12.56	19.86	10.96	56.00	46.00	36.1	35.0	N	
4	0.69365	8.60	-0.70	12.59	21.19	11.89	56.00	46.00	34.8	34.1	N	
5	0.95688	5.70	-1.90	12.60	18.30	10.70	56.00	46.00	37.7	35.3	N	
6	1.06745	4.40	-3.00	12.60	17.00	9.60	56.00	46.00	39.0	36.4	N	
7	3.53777	6.40	-0.80	12.88	19.28	12.08	56.00	46.00	36.7	33.9	N	
8	0.31064	11.30	5.00	12.52	23.82	17.52	59.95	49.95	36.1	32.4	L1	
9	0.55123	6.10	-2.50	12.54	18.64	10.04	56.00	46.00	37.3	35.9	L1	
10	0.61440	7.20	-2.20	12.56	19.76	10.36	56.00	46.00	36.2	35.6	L1	
11	0.69365	7.30	-1.70	12.59	19.89	10.89	56.00	46.00	36.1	35.1	L1	
12	0.95688	5.50	-2.70	12.60	18.10	9.90	56.00	46.00	37.9	36.1	L1	
13	1.06745	4.60	-3.20	12.60	17.20	9.40	56.00	46.00	38.8	36.6	L1	
14	3.53777	4.00	-2.60	12.88	16.88	10.28	56.00	46.00	39.1	35.7	L1	
				ļ								

 $\label{eq:calculation:Result [dBuV] = Reading [dBuV] + C.Fac (LISN (AMN) + Cable + ATT) [dB] \\ LISN (AMN) : SLS - 02$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 12212627S-H-R1 Test report No. Page : 18 of 67 **Issued date** : October 31, 2018 FCC ID : 2ACZS-R02010

DATA OF CONDUCTED EMISSION TEST

UL Japan,Inc. Shonan EMC Lab. No.3 Shielded Room Date : 2018/05/15

Mode : Tx_BLE_2480MHz Power Temp./Humi. AC 120 V / 60 Hz 25 deg.C / 43 %RH

: AC Adapter: AC-U2 Remarks

Limit1 : FCC 15C (15.207) QP Limit2 : FCC 15C (15.207) AV **Engineer** : Makoto Hosaka

 $\label{eq:calculation:Result [dBuV] = Reading [dBuV] + C.Fac (LISN (AMN) + Cable + ATT) [dB] \\ LISN (AMN) : SLS - 02$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 12212627S-H-R1 Test report No. Page : 19 of 67 **Issued date** : October 31, 2018 FCC ID : 2ACZS-R02010

DATA OF CONDUCTED EMISSION TEST

UL Japan,Inc. Shonan EMC Lab. No.3 Shielded Room Date : 2018/05/15

Mode : Tx_BLE_2402MHz

Power Temp./Humi. AC 120 V / 60 Hz 25 deg.C / 43 %RH

: AC Adapter: D-AC166 Remarks

Limit1 : FCC 15C (15.207) QP Limit2 : FCC 15C (15.207) AV **Engineer** : Makoto Hosaka

 $\label{eq:calculation:Result [dBuV] = Reading [dBuV] + C.Fac (LISN (AMN) + Cable + ATT) [dB] \\ LISN (AMN) : SLS - 02$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1 : 20 of 67 Page **Issued date** : October 31, 2018 FCC ID : 2ACZS-R02010

DATA OF CONDUCTED EMISSION TEST

UL Japan,Inc. Shonan EMC Lab. No.3 Shielded Room Date : 2018/05/15

Mode : Tx_BLE_2440MHz Power Temp./Humi. AC 120 V / 60 Hz 25 deg.C / 43 %RH

: AC Adapter: D-AC166 Remarks

Limit1 : FCC 15C (15.207) QP Limit2 : FCC 15C (15.207) AV Engineer : Makoto Hosaka

		Read	ding	0.5	Res	ults	Lin	nit	Mar	gin		
No.	Freq.	<qp></qp>	<av></av>	C.Fac	<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Pha se	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15000	12.00	-1.20	12.40	24.40	11.20	66.00	56.00	41.6	44.8	N	
2	0.19191	5.20	-3.00	12.38	17.58	9.38	63.95	53.95	46.3	44.5	N	
3	0.31046	7.40	3.70	12.42	19.82	16.12	59.96	49.96	40.1	33.8	N	
4	0.39128	5.70	-3.70	12.44	18.14	8.74	58.04	48.04	39.9	39.3	N	
5	0.63786	2.50	-3.80	12.46	14.96	8.66	56.00	46.00	41.0	37.3	N	
6	3.33568	1.90	-4.00	12.59	14.49	8.59	56.00	46.00	41.5	37.4	N	
7	5.49345	2.00	-3.90	12.71	14.71	8.81	60.00	50.00	45.2	41.1	N	
8	0.15000	12.30	-1.20	12.40	24.70	11.20	66.00	56.00	41.3	44.8	L1	
9	0.19191	4.90	-2.90	12.38	17.28	9.48	63.95	53.95	46.6	44.4	L1	
10	0.31046	7.20	3.50	12.42	19.62	15.92	59.96	49.96	40.3	34.0	L1	
11	0.39128	5.80	-3.60	12.44	18.24	8.84	58.04	48.04	39.8	39.2	L1	
12	0.63786	2.50	-3.80	12.46	14.96	8.66	56.00	46.00	41.0	37.3	L1	
13	3.33568	2.00	-4.00	12.59	14.59	8.59	56.00	46.00	41.4	37.4	L1	
14	5.49345	2.00	-3.90	12.71	14.71	8.81	60.00	50.00	45.2	41.1	L1	
			İ									
			1									
			1									
			1									

 $\label{eq:calculation:Result [dBuV] = Reading [dBuV] + C.Fac (LISN (AMN) + Cable + ATT) [dB] \\ LISN (AMN) : SLS - 02$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 21 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

DATA OF CONDUCTED EMISSION TEST

UL Japan,Inc. Shonan EMC Lab. No.3 Shielded Room Date : 2018/05/15

Mode : Tx_BLE_2480MHz

Power : AC 120 V / 60 Hz Temp./Humi. : 25 deg.C / 43 %RH

Remarks : AC Adapter: D-AC166

Limit1 : FCC 15C (15.207) QP Limit2 : FCC 15C (15.207) AV Engineer : Makoto Hosaka

 $\label{eq:calculation:Result [dBuV] = Reading [dBuV] + C.Fac (LISN (AMN) + Cable + ATT) [dB] \\ LISN (AMN) : SLS - 02$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 22 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

6 dB Bandwidth and 99 % Occupied Bandwidth

Report No. 12212627S-H-R1

Test placeShonan EMC Lab. No.1 Measurement RoomNo.5 Shielded roomDateApril 17, 2018May 15, 2018Temperature / Humidity26 deg. C / 31 % RH25 deg. C / 37 % RHEngineerYosuke IshikawaMakoto Hosaka

Mode Tx

Mode	Frequency	99% Occupied	6dB Bandwidth	Limit for
Wiode	Trequency	Bandwidth	oab banawaan	6dB Bandwidth
	DATE-1		D.(III-I	
	[MHz]	[kHz]	[MHz]	[MHz]
11b	2412	11362.9	8.466	> 0.5000
	2437	11494.2	9.024	> 0.5000
	2462	11515.6	8.595	> 0.5000
11g	2412	16931.0	16.318	> 0.5000
	2437	17006.2	16.348	> 0.5000
	2462	16891.7	16.102	> 0.5000
11n-20	2412	17889.7	17.166	> 0.5000
	2437	18010.3	17.000	> 0.5000
	2462	17897.9	15.743	> 0.5000
BT LE	2402	1066.0	0.715	> 0.5000
	2440	1065.0	0.736	> 0.5000
	2480	1068.6	0.734	> 0.5000

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 23 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

6dB Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 122126278-H-R1

 Page
 : 24 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

6dB Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 122126278-H-R1

 Page
 : 25 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

99%Occupied Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 122126278-H-R1

 Page
 : 26 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

99% Occupied Bandwidth

Transmit Freq Error x dB Bandwidth -20.590 kHz 601.140 kHz

UL Japan, Inc. Shonan EMC Lab.

Transmit Freq Error x dB Bandwidth -17.249 kHz 17.174 MHz

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 27 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

Maximum Peak Output Power

Report No. 12212627S-H-R1

Test place Shonan EMC Lab. No.1 Measurement Room
Date April 17, 2018 April 18, 2018
Temperature / Humidity 26 deg. C / 31 % RH 23 deg. C / 44 % RH
Engineer Yosuke Ishikawa Yosuke Ishikawa

Mode Tx 11b

					Conducted Power					
Freq.	Reading	Cable	Atten.	Re	sult	Liı	Margin			
		Loss	Loss							
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]		
2412	1.64	1.48	9.86	12.98	19.86	30.00	1000	17.02		
2437	1.87	1.48	9.86	13.21	20.94	30.00	1000	16.79		
2462	1.58	1.49	9.85	12.92	19.59	30.00	1000	17.08		

Sample Calculation:

 $Result = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supplied) + Attenuator\ Loss\ e.i.r.p.\ Result = Conducted\ Power\ Result + Antenna\ Gain$

2437 MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
1	0.95	
2	1.65	
5.5	1.66	
11	1.87	*

^{*:} Worst Rate

All comparison were carried out on same frequency and measurement factors.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

: 12212627S-H-R1 Test report No. Page : 28 of 67 : October 31, 2018 **Issued date** FCC ID : 2ACZS-R02010

Maximum Peak Output Power

Report No. 12212627S-H-R1

Test place Shonan EMC Lab. No.1 Measurement Room Date April 17, 2018 April 18, 2018 23 deg. C / 44 % RH Temperature / Humidity 26 deg. C / 31 % RH Yosuke Ishikawa Yosuke Ishikawa Engineer

Mode Tx 11g

					Con	ducted Po	ower	
Freq.	Reading	Cable	Atten.	Re	sult	Liı	Margin	
		Loss	Loss					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	10.47	1.48	9.86	21.81	151.71	30.00	1000	8.19
2437	10.61	1.48	9.86	21.95	156.68	30.00	1000	8.05
2462	10.64	1.49	9.85	21.98	157.76	30.00	1000	8.02

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain
*The equipment and cables were not used for factor 0 dB of the data sheets.

2437 MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
6	10.61	*
9	9.99	
12	9.31	
18	9.31	
24	9.46	
36	8.65	
48	10.51	
54	8.07	

^{*:} Worst Rate

All comparison were carried out on same frequency and measurement factors.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 12212627S-H-R1 Test report No. Page : 29 of 67 : October 31, 2018 **Issued date** FCC ID : 2ACZS-R02010

Maximum Peak Output Power

Report No. 12212627S-H-R1

Test place Shonan EMC Lab. No.1 Measurement Room Date April 17, 2018 April 18, 2018 23 deg. C / 44 % RH Temperature / Humidity 26 deg. C / 31 % RH Yosuke Ishikawa Yosuke Ishikawa Engineer

Mode Tx 11n-20

					Con	ducted Po	ower	
Freq.	Reading	Cable	Atten.	Re	sult	Liı	Margin	
		Loss	Loss					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	10.48	1.48	9.86	21.82	152.05	30.00	1000	8.18
2437	10.62	1.48	9.86	21.96	157.04	30.00	1000	8.04
2462	10.45	1.49	9.85	21.79	151.01	30.00	1000	8.21

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain
*The equipment and cables were not used for factor 0 dB of the data sheets.

2437 MHz

MCS	Reading	Remark
Number		
	[dBm]	
0	10.30	
1	10.62	*
2	10.22	
3	9.62	
4	9.95	
5	10.56	
6	9.99	
7	9.71	

^{*:} Worst Rate

All comparison were carried out on same frequency and measurement factors.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1 Page : 30 of 67 **Issued date** : October 31, 2018 FCC ID : 2ACZS-R02010

Maximum Peak Output Power

Report No. 12212627S-H-R1

Test place Shonan EMC Lab. No.5 Shielded Room

Date May 15, 2018 25 deg. C / 37 % RH Temperature / Humidity Makoto Hosaka Engineer Mode Tx BT LE

						Con	ducted Po	ower	
I	Freq.	Reading	Cable	Atten.	Res	sult	Liı	mit	Margin
			Loss	Loss					
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
ſ	2402	-5.56	1.48	10.18	6.10	4.07	30.00	1000	23.90
I	2440	-5.45	1.48	10.18	6.21	4.18	30.00	1000	23.79
Ī	2480	-6.15	1.49	10.18	5.52	3.56	30.00	1000	24.48

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain
*The equipment and cables were not used for factor 0 dB of the data sheets.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1
Page : 31 of 67
Issued date : October 31, 2018
FCC ID : 2ACZS-R02010

Average Output Power (Reference data for RF Exposure / SAR testing)

Report No. 12212627S-H-R1

Test placeShonan EMC Lab. No.1 Measurement RoomNo.5 Shielded roomDateApril 17, 2018May 15, 2018Temperature / Humidity26 deg. C / 31 % RH25 deg. C / 37 % RHEngineerYosuke IshikawaMakoto Hosaka

Mode Tx

11b **1 Mbps**

-									
	Freq.	Reading	Cable	Atten.	Re	sult	Duty	Re	esult
			Loss	Loss	(Time average)		factor	(Burst pov	ver average)
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
	2412	-2.36	1.48	9.86	8.98	7.91	0.04	9.02	7.98
	2437	-2.48	1.48	9.86	8.86	7.69	0.04	8.90	7.76
	2462	-2.85	1.49	9.85	8.49	7.06	0.04	8.53	7.13

11g **6 Mbps**

ĺ	Freq.	Reading	Cable	Atten.	Result		Duty	Re	esult
			Loss	Loss	(Time average)		factor	(Burst pov	ver average)
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
ĺ	2412	-1.76	1.48	9.86	9.58	9.08	0.30	9.88	9.73
	2437	-1.66	1.48	9.86	9.68	9.29	0.30	9.98	9.95
ĺ	2462	-1.78	1.49	9.85	9.56	9.04	0.30	9.86	9.68

11n-20 MCS 0

1111 20	111000							
Freq.	Reading	Cable	Atten.	Re	sult	Duty	Re	esult
		Loss	Loss	(Time a	verage)	factor	(Burst pov	ver average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	-2.60	1.48	9.86	8.74	7.48	0.31	9.05	8.04
2437	-1.88	1.48	9.86	9.46	8.83	0.31	9.77	9.48
2462	-2.21	1.49	9.85	9.13	8.18	0.31	9.44	8.79

BT LE

Freq.	Reading	Cable	Atten.	Result		Duty	Re	esult
		Loss	Loss	(Time average)		factor	(Burst pov	ver average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2402	-7.79	1.48	10.18	3.87	2.44	1.93	5.80	3.80
2440	-7.67	1.48	10.18	3.99	2.51	1.93	5.92	3.91
2480	-8.42	1.49	10.18	3.25	2.11	1.93	5.18	3.30

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

 Test report No.
 : 122126278-H-R1

 Page
 : 32 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

Burst rate confirmation (for Average Output Power)

Report No. 12212627S-H-R1

Test placeShonan EMC Lab. No.1 Measurement RoomNo.5 Shielded roomDateApril 17, 2018May 15, 2018Temperature / Humidity26 deg. C / 31 % RH25 deg. C / 37 % RHEngineerYosuke IshikawaMakoto Hosaka

Mode Tx

11b 1 Mbps 11g 6 Mbps

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 33 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

Burst rate confirmation (for Radiated Spurious Emission)

Report No. 12212627S-H-R1

Test placeShonan EMC Lab. No.1 Measurement RoomNo.5 Shielded roomDateApril 17, 2018May 15, 2018Temperature / Humidity26 deg. C / 31 % RH25 deg. C / 37 % RHEngineerYosuke IshikawaMakoto Hosaka

Mode Tx

11b 11 Mbps

11g 6 Mbps

11n-20 MCS 1 BT LE

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1
Page : 34 of 67
Issued date : October 31, 2018
FCC ID : 2ACZS-R02010

Radiated Spurious Emission

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber 3 2

Mode Tx 11b 2412 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	2390.000	PK	49.38	27.26	14.15	44.13	2.39	49.05	73.90	24.8	200	223	
Hori.	4824.000	PK	44.23	31.19	6.56	36.88	2.39	47.49	73.90	26.4	100	0	
Hori.	7236.000	PK	44.56	36.53	7.61	37.30	2.39	53.79	73.90	20.1	100	0	
Hori.	9648.000	PK	46.10	38.28	8.72	38.52	2.39	56.97	73.90	16.9	100	0	
Vert.	2390.000	PK	50.03	27.26	14.15	44.13	2.39	49.70	73.90	24.2	366	315	
Vert.	4824.000	PK	44.71	31.19	6.56	36.88	2.39	47.97	73.90	25.9	100	0	
Vert.	7236.000	PK	45.43	36.53	7.61	37.30	2.39	54.66	73.90	19.2	100	0	
Vert.	9648.000	PK	45.62	38.28	8.72	38.52	2.39	56.49	73.90	17.4	100	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.95 m/3.0 m) = 2.39 dB13 GHz - 40 GHz : 20log(1.0 m/3.0 m) = -9.54 dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2390.000	AV	39.92	27.26	14.15	44.13	0.89	2.39	40.48	53.90	13.4	*1)
Hori.	4824.000	AV	34.91	31.19	6.56	36.88	0.89	2.39	39.06	53.90	14.8	
Hori.	7236.000	AV	36.28	36.53	7.61	37.30	0.89	2.39	46.40	53.90	7.5	
Hori.	9648.000	AV	37.60	38.28	8.72	38.52	0.89	2.39	49.36	53.90	4.5	
Vert.	2390.000	AV	39.95	27.26	14.15	44.13	0.89	2.39	40.51	53.90	13.4	*1)
Vert.	4824.000	AV	35.15	31.19	6.56	36.88	0.89	2.39	39.30	53.90	14.6	
Vert.	7236.000	AV	36.38	36.53	7.61	37.30	0.89	2.39	46.50	53.90	7.4	
Vert.	9648.000	AV	37.77	38.28	8.72	38.52	0.89	2.39	49.53	53.90	4.4	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor : 1 GHz - 13 GHz : $20\log(3.95 \text{ m} / 3.0 \text{ m}) = 2.39 \text{ dB}$ $13 \text{ GHz} - 40 \text{ GHz} : <math>20\log(1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$

Duty factor refer to "Duty factor Calculation chart" sheet.

20 dBc Data Sheet (RBW 100 kHz, VBW 300 kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.000	PK	95.15	27.33	14.16	44.14	2.39	94.89	-	-	Carrier
Hori.	2400.000	PK	44.55	27.29	14.15	44.14	2.39	44.24	74.89	30.7	
Vert.	2412.000	PK	95.56	27.33	14.16	44.14	2.39	95.30	-	-	Carrier
Vert.	2400.000	PK	45.45	27.29	14.15	44.14	2.39	45.14	75.30	30.2	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.95 m/3.0 m) = 2.39 dB13 GHz - 40 GHz : 20log(1.0 m/3.0 m) = -9.54 dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*1)} Not out of band emission (Leakage Power)

 Test report No.
 : 12212627S-H-R1

 Page
 : 35 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 12212627S-H-R1
Test place Shonan EMC Lab.

Semi Anechoic Chamber

Date April 25, 2018
Temperature / Humidity 25 deg. C / 48 % RH
Engineer Kazuya Noda
(1 GHz – 2.8 GHz)

Mode Tx 11b 2412 MHz

^{*} Final result of restricted band edge was shown in tabular data.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1
Page : 36 of 67
Issued date : October 31, 2018
FCC ID : 2ACZS-R02010

Radiated Spurious Emission

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber 3 2 2

 Date
 April 25, 2018
 April 21, 2018
 April 22, 2018

 Temperature / Humidity
 25 deg. C / 48 % RH
 23 deg. C / 50 % RH
 21 deg. C / 51 % RH

 Engineer
 Kazuya Noda
 Yosuke Ishikawa
 Yasumasa Owaki

 (1 GHz - 2.8 GHz)
 (2.8 GHz - 13 GHz)
 (13 GHz - 26.5 GHz)

Mode Tx 11b 2437 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4874.000	PK	42.95	31.30	6.54	36.90	2.39	46.28	73.90	27.6	100	0	
Hori.	7311.000	PK	44.12	36.63	7.62	37.42	2.39	53.34	73.90	20.5	100	0	
Hori.	9748.000	PK	45.28	38.48	8.77	38.64	2.39	56.28	73.90	17.6	100	0	
Vert.	4874.000	PK	43.04	31.30	6.54	36.90	2.39	46.37	73.90	27.5	100	0	
Vert.	7311.000	PK	43.95	36.63	7.62	37.42	2.39	53.17	73.90	20.7	100	0	
Vert.	9748.000	PK	45.58	38.48	8.77	38.64	2.39	56.58	73.90	17.3	100	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : $20log\,(3.95\,m\,/\,3.0\,m) = \,2.39\,dB$ 13 GHz - 40 GHz : $20log\,(1.0\,m\,/\,3.0\,m) = \,-9.54\,dB$

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4874.000	AV	34.84	31.30	6.54	36.90	0.89	2.39	39.06	53.90	14.8	
Hori.	7311.000	AV	36.05	36.63	7.62	37.42	0.89	2.39	46.16	53.90	7.7	
Hori.	9748.000	AV	37.18	38.48	8.77	38.64	0.89	2.39	49.07	53.90	4.8	
Vert.	4874.000	AV	35.12	31.30	6.54	36.90	0.89	2.39	39.34	53.90	14.6	
Vert.	7311.000	AV	35.58	36.63	7.62	37.42	0.89	2.39	45.69	53.90	8.2	
Vert.	9748.000	AV	37.15	38.48	8.77	38.64	0.89	2.39	49.04	53.90	4.9	

 $Result = Reading + Ant.Fac. + Loss (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Antenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Balletin) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Balletin) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Balletin) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Balletin) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Balletin) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Balletin) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Balletin) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Balletin) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Balletin) (below 18 \ GHz)) - Gain (Balletin) (below 18 \ G$

Distance factor : 1 GHz - 13 GHz : 20log(3.95 m/3.0 m) = 2.39 dB13 GHz - 40 GHz : 20log(1.0 m/3.0 m) = -9.54 dB

Duty factor refer to "Duty factor Calculation chart" sheet.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 37 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

Radiated Spurious Emission

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber 3 2

 Date
 April 25, 2018
 April 21, 2018
 April 22, 2018

 Temperature / Humidity
 25 deg. C / 48 % RH
 23 deg. C / 50 % RH
 21 deg. C / 51 % RH

 Engineer
 Kazuya Noda
 Yosuke Ishikawa
 Yasumasa Owaki

 (1 GHz - 2.8 GHz)
 (2.8 GHz - 13 GHz)
 (13 GHz - 26.5 GHz)

Mode Tx 11b 2462 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	2483.500	PK	49.53	27.55	14.25	44.16	2.39	49.56	73.90	24.3	193	232	
Hori.	4924.000	PK	43.98	31.40	6.53	36.92	2.39	47.38	73.90	26.5	100	0	
Hori.	7386.000	PK	42.97	36.73	7.62	37.54	2.39	52.17	73.90	21.7	100	0	
Hori.	9848.000	PK	44.47	38.68	8.83	38.76	2.39	55.61	73.90	18.2	100	0	
Vert.	2483.500	PK	49.84	27.55	14.25	44.16	2.39	49.87	73.90	24.0	393	313	
Vert.	4924.000	PK	43.12	31.40	6.53	36.92	2.39	46.52	73.90	27.3	100	0	
Vert.	7386.000	PK	43.09	36.73	7.62	37.54	2.39	52.29	73.90	21.6	100	0	
Vert.	9848.000	PK	44.77	38.68	8.83	38.76	2.39	55.91	73.90	17.9	100	0	

 $Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 \ GHz)) - Gain(Amprifier) + Distance factor Distance factor : 1 \ GHz - 13 \ GHz : 20log (3.95 \ m / 3.0 \ m) = 2.39 \ dB$

Distance factor: 1 GHz - 13 GHz: $20\log(3.95 \text{ m}/3.0 \text{ m}) = 2.39 \text{ dB}$ $13 \text{ GHz} - 40 \text{ GHz}: <math>20\log(1.0 \text{ m}/3.0 \text{ m}) = -9.54 \text{ dB}$

Average measurement value with duty factor

	neusurement vi		,									
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2483.500	AV	39.80	27.55	14.25	44.16	0.89	2.39	40.72	53.90	13.2	*1)
Hori.	4924.000	AV	34.73	31.40	6.53	36.92	0.89	2.39	39.02	53.90	14.9	
Hori.	7386.000	AV	35.35	36.73	7.62	37.54	0.89	2.39	45.44	53.90	8.5	
Hori.	9848.000	AV	37.06	38.68	8.83	38.76	0.89	2.39	49.09	53.90	4.8	
Vert.	2483.500	AV	39.72	27.55	14.25	44.16	0.89	2.39	40.64	53.90	13.3	*1)
Vert.	4924.000	AV	35.18	31.40	6.53	36.92	0.89	2.39	39.47	53.90	14.4	
Vert.	7386.000	AV	35.58	36.73	7.62	37.54	0.89	2.39	45.67	53.90	8.2	
Vert.	9848.000	AV	36.91	38.68	8.83	38.76	0.89	2.39	48.94	53.90	5.0	

 $Result = Reading + Ant.Fac. + Loss (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Authority of Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter)) - Gain (Cable + (Attenuator or Filter)) - Gain (Cable + (Attenua$

Distance factor : 1 GHz - 13 GHz : 20log(3.95 m / 3.0 m) = 2.39 dB13 GHz - 40 GHz : 20log(1.0 m / 3.0 m) = -9.54 dB

Duty factor refer to "Duty factor Calculation chart" sheet.

*1) Not out of band emission (Leakage Power)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1
Page : 38 of 67
Issued date : October 31, 2018
FCC ID : 2ACZS-R02010

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber

Mode

Date April 25, 2018

Temperature / Humidity 25 deg. C / 48 % RH Engineer Kazuya Noda

(1 GHz – 2.8 GHz) Tx 11b 2462 MHz

^{*} Final result of restricted band edge was shown in tabular data.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1
Page : 39 of 67
Issued date : October 31, 2018
FCC ID : 2ACZS-R02010

Radiated Spurious Emission

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber 3 2 2

 Date
 April 25, 2018
 April 21, 2018
 April 22, 2018

 Temperature / Humidity
 25 deg. C / 48 % RH
 23 deg. C / 50 % RH
 21 deg. C / 51 % RH

 Engineer
 Kazuya Noda
 Yosuke Ishikawa
 Yasumasa Owaki

 (1 GHz - 2.8 GHz)
 (2.8 GHz - 13 GHz)
 (13 GHz - 26.5 GHz)

Mode Tx 11g 2412 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	2390.000	PK	66.70	27.26	14.15	44.13	2.39	66.37	73.90	7.5	201	220	
Hori.	4824.000	PK	42.98	31.19	6.56	36.88	2.39	46.24	73.90	27.6	100	0	
Hori.	7236.000	PK	44.41	36.53	7.61	37.30	2.39	53.64	73.90	20.2	100	0	
Hori.	9648.000	PK	45.76	38.28	8.72	38.52	2.39	56.63	73.90	17.2	100	0	
Vert.	2390.000	PK	66.69	27.26	14.15	44.13	2.39	66.36	73.90	7.5	365	312	
Vert.	4824.000	PK	43.25	31.19	6.56	36.88	2.39	46.51	73.90	27.3	100	0	
Vert.	7236.000	PK	44.64	36.53	7.61	37.30	2.39	53.87	73.90	20.0	100	0	
Vert.	9648.000	PK	45.70	38.28	8.72	38.52	2.39	56.57	73.90	17.3	100	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor: 1 GHz - 13 GHz : 20log (3.95 m / 3.0 m) = 2.39 dB 13 GHz - 40 GHz : 20log (1.0 m / 3.0 m) = -9.54 dB

Average measurement value with duty factor

			_									
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2390.000	AV	48.66	27.26	14.15	44.13	0.59	2.39	48.92	53.90	5.0	*1)
Hori.	4824.000	AV	35.19	31.19	6.56	36.88	0.59	2.39	39.04	53.90	14.9	
Hori.	7236.000	AV	36.36	36.53	7.61	37.30	0.59	2.39	46.18	53.90	7.7	
Hori.	9648.000	AV	37.77	38.28	8.72	38.52	0.59	2.39	49.23	53.90	4.7	
Vert.	2390.000	AV	49.93	27.26	14.15	44.13	0.59	2.39	50.19	53.90	3.7	*1)
Vert.	4824.000	AV	35.28	31.19	6.56	36.88	0.59	2.39	39.13	53.90	14.8	
Vert.	7236.000	AV	36.33	36.53	7.61	37.30	0.59	2.39	46.15	53.90	7.8	
Vert.	9648.000	AV	37.72	38.28	8.72	38.52	0.59	2.39	49.18	53.90	4.7	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.95 m/3.0 m) = 2.39 dB

13 GHz - 40 GHz : $20\log(1.0 \text{ m}/3.0 \text{ m}) = -9.54 \text{ dB}$

Duty factor refer to "Duty factor Calculation chart" sheet.

20 dBc Data Sheet (RBW 100 kHz, VBW 300 kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.000	PK	91.71	27.33	14.16	44.14	2.39	91.45	-	-	Carrier
Hori.	2400.000	PK	62.37	27.29	14.15	44.14	2.39	62.06	71.45	9.4	
Vert.	2412.000	PK	92.45	27.33	14.16	44.14	2.39	92.19	-	-	Carrier
Vert.	2400.000	PK	64.32	27.29	14.15	44.14	2.39	64.01	72.19	8.2	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.95 m / 3.0 m) = 2.39 dB13 GHz - 40 GHz : 20log(1.0 m / 3.0 m) = -9.54 dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*1)} Not out of band emission (Leakage Power)

 Test report No.
 : 12212627S-H-R1

 Page
 : 40 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 12212627S-H-R1
Test place Shonan EMC Lab.

Semi Anechoic Chamber

Date April 25, 2018
Temperature / Humidity 25 deg. C / 48 % RH
Engineer Kazuya Noda
(1 GHz – 2.8 GHz)

Mode Tx 11g 2412 MHz

^{*} Final result of restricted band edge was shown in tabular data.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 12212627S-H-R1 Test report No. Page : 41 of 67 **Issued date** : October 31, 2018 FCC ID : 2ACZS-R02010

Radiated Spurious Emission

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber 3 2

April 25, 2018 April 22, 2018 April 21, 2018 23 deg. C / 50 % RH 21 deg. C / 51 % RH Temperature / Humidity 25 deg. C / 48 % RH Engineer Kazuya Noda Yosuke Ishikawa Yasumasa Owaki (1 GHz - 2.8 GHz)(2.8 GHz - 13 GHz)(13 GHz – 26.5 GHz)

Mode Tx 11g 2437 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4874.000	PK	43.00	31.30	6.54	36.90	2.39	46.33	73.90	27.5	100	0	
Hori.	7311.000	PK	44.53	36.63	7.62	37.42	2.39	53.75	73.90	20.1	100	0	
Hori.	9748.000	PK	45.55	38.48	8.77	38.64	2.39	56.55	73.90	17.3	100	0	
Vert.	4874.000	PK	43.12	31.30	6.54	36.90	2.39	46.45	73.90	27.4	100	0	
Vert.	7311.000	PK	43.58	36.63	7.62	37.42	2.39	52.80	73.90	21.1	100	0	
Vert.	9748.000	PK	45.34	38.48	8.77	38.64	2.39	56.34	73.90	17.5	100	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor: 1 GHz - 13 GHz: $20 \log (3.95 \text{ m} / 3.0 \text{ m}) = 2.39 \text{ dB}$ 13 GHz - 40 GHz : 20log(1.0 m / 3.0 m) = -9.54 dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4874.000	AV	35.04	31.30	6.54	36.90	0.59	2.39	38.96	53.90	14.9	
Hori.	7311.000	AV	35.83	36.63	7.62	37.42	0.59	2.39	45.64	53.90	8.3	
Hori.	9748.000	AV	37.39	38.48	8.77	38.64	0.59	2.39	48.98	53.90	4.9	
Vert.	4874.000	AV	34.84	31.30	6.54	36.90	0.59	2.39	38.76	53.90	15.1	
Vert.	7311.000	AV	35.74	36.63	7.62	37.42	0.59	2.39	45.55	53.90	8.4	
Vert.	9748.000	AV	37.24	38.48	8.77	38.64	0.59	2.39	48.83	53.90	5.1	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor: 1 GHz - 13 GHz: $20\log(3.95 \text{ m}/3.0 \text{ m}) = 2.39 \text{ dB}$

 $13 \text{ GHz} - 40 \text{ GHz} : 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$

Duty factor refer to "Duty factor Calculation chart" sheet.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 42 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

Radiated Spurious Emission

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber 3 2

Mode Tx 11g 2462 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	200.000	QP	32.00	11.33	5.67	31.78	0.00	17.22	43.50	26.2	160	22	
Hori.	324.001	QP	29.50	13.92	6.63	31.68	0.00	18.37	46.00	27.6	100	357	
Hori.	377.999	QP	31.30	15.03	7.00	31.66	0.00	21.67	46.00	24.3	100	4	
Hori.	400.001	QP	29.30	15.49	7.14	31.67	0.00	20.26	46.00	25.7	100	18	
Hori.	432.001	QP	34.90	16.14	7.36	31.67	0.00	26.73	46.00	19.2	100	3	
Hori.	600.000	QP	35.70	19.06	8.24	31.64	0.00	31.36	46.00	14.6	152	23	
Hori.	999.999	QP	31.90	22.38	10.12	30.11	0.00	34.29	53.90	19.6	153	36	
Hori.	2483.500	PK	55.57	27.55	14.25	44.16	2.39	55.60	73.90	18.3	194	229	
Hori.	4924.000	PK	43.70	31.40	6.53	36.92	2.39	47.10	73.90	26.8	100	0	
Hori.	7386.000	PK	44.07	36.73	7.62	37.54	2.39	53.27	73.90	20.6	100	0	
Hori.	9848.000	PK	45.67	38.68	8.83	38.76	2.39	56.81	73.90	17.0	100	0	
Vert.	200.000	QP	38.00	11.33	5.67	31.78	0.00	23.22	43.50	20.2	100	84	
Vert.	432.000	QP	34.50	16.14	7.36	31.67	0.00	26.33	46.00	19.6	217	30	
Vert.	600.000	QP	35.80	19.06	8.24	31.64	0.00	31.46	46.00	14.5	100	16	
Vert.	999.999	QP	29.60	22.38	10.12	30.11	0.00	31.99	53.90	21.9	113	84	
Vert.	2483.500	PK	56.43	27.55	14.25	44.16	2.39	56.46	73.90	17.4	390	320	
Vert.	4924.000	PK	43.38	31.40	6.53	36.92	2.39	46.78	73.90	27.1	100	0	
Vert.	7386.000	PK	43.61	36.73	7.62	37.54	2.39	52.81	73.90	21.0	100	0	
Vert.	9848.000	PK	45.06	38.68	8.83	38.76	2.39	56.20	73.90	17.7	100	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor: 1 GHz - 13 GHz: 20log (3.95 m / 3.0 m) = 2.39 dB 13 GHz - 40 GHz: 20log (1.0 m / 3.0 m) = -9.54 dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2483.500	AV	41.77	27.55	14.25	44.16	0.59	2.39	42.39	53.90	11.5	*1)
Hori.	4924.000	AV	35.30	31.40	6.53	36.92	0.59	2.39	39.29	53.90	14.6	
Hori.	7386.000	AV	35.32	36.73	7.62	37.54	0.59	2.39	45.11	53.90	8.8	
Hori.	9848.000	AV	37.03	38.68	8.83	38.76	0.59	2.39	48.76	53.90	5.1	
Vert.	2483.500	AV	41.91	27.55	14.25	44.16	0.59	2.39	42.53	53.90	11.4	*1)
Vert.	4924.000	AV	35.57	31.40	6.53	36.92	0.59	2.39	39.56	53.90	14.3	
Vert.	7386.000	AV	35.67	36.73	7.62	37.54	0.59	2.39	45.46	53.90	8.4	
Vert.	9848.000	AV	36.73	38.68	8.83	38.76	0.59	2.39	48.46	53.90	5.4	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor: 1 GHz - 13 GHz: $20 \log (3.95 \text{ m} / 3.0 \text{ m}) = 2.39 \text{ dB}$

 $13 \text{ GHz} - 40 \text{ GHz} : 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$

Duty factor refer to "Duty factor Calculation chart" sheet.

*1) Not out of band emission (Leakage Power)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1
Page : 43 of 67
Issued date : October 31, 2018
FCC ID : 2ACZS-R02010

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber

Date April 25, 2018

Temperature / Humidity
Engineer

25 deg. C / 48 % RH
Kazuya Noda
(1 GHz – 2.8 GHz)

Mode Tx 11g 2462 MHz

^{*} Final result of restricted band edge was shown in tabular data.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1
Page : 44 of 67
Issued date : October 31, 2018
FCC ID : 2ACZS-R02010

Radiated Spurious Emission

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber 3 2

 Date
 April 25, 2018
 April 21, 2018
 April 22, 2018

 Temperature / Humidity
 25 deg. C / 48 % RH
 23 deg. C / 50 % RH
 21 deg. C / 51 % RH

 Engineer
 Kazuya Noda
 Yosuke Ishikawa
 Yasumasa Owaki

 (1 GHz - 2.8 GHz)
 (2.8 GHz - 13 GHz)
 (13 GHz - 26.5 GHz)

Mode Tx 11n-20 2412 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	2390.000	PK	65.18	27.26	14.15	44.13	2.39	64.85	73.90	9.0	199	223	
Hori.	4824.000	PK	42.64	31.19	6.56	36.88	2.39	45.90	73.90	28.0	100	0	
Hori.	7236.000	PK	44.38	36.53	7.61	37.30	2.39	53.61	73.90	20.2	100	0	
Hori.	9648.000	PK	45.17	38.28	8.72	38.52	2.39	56.04	73.90	17.8	100	0	
Vert.	2390.000	PK	65.28	27.26	14.15	44.13	2.39	64.95	73.90	8.9	371	314	
Vert.	4824.000	PK	43.15	31.19	6.56	36.88	2.39	46.41	73.90	27.4	100	0	
Vert.	7236.000	PK	44.74	36.53	7.61	37.30	2.39	53.97	73.90	19.9	100	0	
Vert.	9648.000	PK	45.55	38.28	8.72	38.52	2.39	56.42	73.90	17.4	100	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.95 m / 3.0 m) = 2.39 dB13 GHz - 40 GHz : 20log(1.0 m / 3.0 m) = -9.54 dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2390.000	AV	45.94	27.26	14.15	44.13	1.19	2.39	46.80	53.90	7.1	*1)
Hori.	4824.000	AV	35.42	31.19	6.56	36.88	1.19	2.39	39.87	53.90	14.0	
Hori.	7236.000	AV	36.48	36.53	7.61	37.30	1.19	2.39	46.90	53.90	7.0	
Hori.	9648.000	AV	37.54	38.28	8.72	38.52	1.19	2.39	49.60	53.90	4.3	
Vert.	2390.000	AV	46.55	27.26	14.15	44.13	1.19	2.39	47.41	53.90	6.5	*1)
Vert.	4824.000	AV	35.24	31.19	6.56	36.88	1.19	2.39	39.69	53.90	14.2	
Vert.	7236.000	AV	36.50	36.53	7.61	37.30	1.19	2.39	46.92	53.90	7.0	
Vert.	9648.000	AV	37.77	38.28	8.72	38.52	1.19	2.39	49.83	53.90	4.1	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor : 1 GHz - 13 GHz : $20\log (3.95 \text{ m}/3.0 \text{ m}) = 2.39 \text{ dB}$ 13 GHz - 40 GHz : $20\log (1.0 \text{ m}/3.0 \text{ m}) = -9.54 \text{ dB}$

Duty factor refer to "Duty factor Calculation chart" sheet.

*1) Not out of band emission (Leakage Power)

20 dBc Data Sheet (RBW 100 kHz, VBW 300 kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.000	PK	91.56	27.33	14.16	44.14	2.39	91.30	-	-	Carrier
Hori.	2400.000	PK	59.33	27.29	14.15	44.14	2.39	59.02	71.30	12.3	
Vert.	2412.000	PK	92.72	27.33	14.16	44.14	2.39	92.46	-	-	Carrier
Vert.	2400.000	PK	61.09	27.29	14.15	44.14	2.39	60.78	72.46	11.7	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor: 1 GHz - 13 GHz: 20log (3.95 m / 3.0 m) = 2.39 dB 13 GHz - 40 GHz: 20log (1.0 m / 3.0 m) = -9.54 dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 45 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 12212627S-H-R1
Test place Shonan EMC Lab.

Semi Anechoic Chamber

Date April 25, 2018
Temperature / Humidity Engineer Samuel
(1 GHz – 2.8 GHz) Mode Tx 11n-20 2412 MHz

^{*} Final result of restricted band edge was shown in tabular data.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1
Page : 46 of 67
Issued date : October 31, 2018
FCC ID : 2ACZS-R02010

Radiated Spurious Emission

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber 3 2

 Date
 April 25, 2018
 April 21, 2018
 April 22, 2018

 Temperature / Humidity
 25 deg. C / 48 % RH
 23 deg. C / 50 % RH
 21 deg. C / 51 % RH

 Engineer
 Kazuya Noda
 Yosuke Ishikawa
 Yasumasa Owaki

 (1 GHz - 2.8 GHz)
 (2.8 GHz - 13 GHz)
 (13 GHz - 26.5 GHz)

Mode Tx 11n-20 2437 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4874.000	PK	43.71	31.30	6.54	36.90	2.39	47.04	73.90	26.8	100	0	
Hori.	7311.000	PK	43.87	36.63	7.62	37.42	2.39	53.09	73.90	20.8	100	0	
Hori.	9748.000	PK	44.74	38.48	8.77	38.64	2.39	55.74	73.90	18.1	100	0	
Vert.	4874.000	PK	43.43	31.30	6.54	36.90	2.39	46.76	73.90	27.1	100	0	
Vert.	7311.000	PK	44.22	36.63	7.62	37.42	2.39	53.44	73.90	20.4	100	0	
Vert.	9748.000	PK	45.27	38.48	8.77	38.64	2.39	56.27	73.90	17.6	100	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.95 m / 3.0 m) = 2.39 dB13 GHz - 40 GHz : 20log(1.0 m / 3.0 m) = -9.54 dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4874.000	AV	34.95	31.30	6.54	36.90	1.19	2.39	39.47	53.90	14.4	
Hori.	7311.000	AV	35.78	36.63	7.62	37.42	1.19	2.39	46.19	53.90	7.7	
Hori.	9748.000	AV	37.49	38.48	8.77	38.64	1.19	2.39	49.68	53.90	4.2	
Vert.	4874.000	AV	35.21	31.30	6.54	36.90	1.19	2.39	39.73	53.90	14.2	
Vert.	7311.000	AV	35.81	36.63	7.62	37.42	1.19	2.39	46.22	53.90	7.7	
Vert.	9748.000	AV	37.27	38.48	8.77	38.64	1.19	2.39	49.46	53.90	4.4	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log (3.95 m / 3.0 m) = 2.39 dB13 GHz - 40 GHz : <math>20log (1.0 m / 3.0 m) = -9.54 dB

Duty factor refer to "Duty factor Calculation chart" sheet.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1
Page : 47 of 67
Issued date : October 31, 2018
FCC ID : 2ACZS-R02010

Radiated Spurious Emission

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber 3 2

 Date
 April 25, 2018
 April 21, 2018
 April 22, 2018

 Temperature / Humidity
 25 deg. C / 48 % RH
 23 deg. C / 50 % RH
 21 deg. C / 51 % RH

 Engineer
 Kazuya Noda
 Yosuke Ishikawa
 Yasumasa Owaki

 (1 GHz - 2.8 GHz)
 (2.8 GHz - 13 GHz)
 (13 GHz - 26.5 GHz)

Mode Tx 11n-20 2462 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	2483.500	PK	60.05	27.55	14.25	44.16	2.39	60.08	73.90	13.8	223	227	
Hori.	4924.000	PK	43.31	31.40	6.53	36.92	2.39	46.71	73.90	27.1	100	0	
Hori.	7386.000	PK	43.89	36.73	7.62	37.54	2.39	53.09	73.90	20.8	100	0	
Hori.	9848.000	PK	45.27	38.68	8.83	38.76	2.39	56.41	73.90	17.4	100	0	
Vert.	2483.500	PK	59.07	27.55	14.25	44.16	2.39	59.10	73.90	14.8	356	317	
Vert.	4924.000	PK	44.39	31.40	6.53	36.92	2.39	47.79	73.90	26.1	100	0	
Vert.	7386.000	PK	43.79	36.73	7.62	37.54	2.39	52.99	73.90	20.9	100	0	
Vert.	9848.000	PK	45.01	38.68	8.83	38.76	2.39	56.15	73.90	17.7	100	0	

 $Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 \ GHz)) - Gain(Amprifier) + Distance factor Distance factor : 1 \ GHz - 13 \ GHz : 20log (3.95 \ m / 3.0 \ m) = 2.39 \ dB$

Distance factor: 1 GHz - 13 GHz: $20\log(3.95 \text{ m}/3.0 \text{ m}) = 2.39 \text{ dB}$ 13 GHz - 40 GHz: $20\log(1.0 \text{ m}/3.0 \text{ m}) = -9.54 \text{ dB}$

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2483.500	AV	41.09	27.55	14.25	44.16	1.19	2.39	42.31	53.90	11.6	*1)
Hori.	4924.000	AV	35.19	31.40	6.53	36.92	1.19	2.39	39.78	53.90	14.1	
Hori.	7386.000	AV	35.66	36.73	7.62	37.54	1.19	2.39	46.05	53.90	7.9	
Hori.	9848.000	AV	36.95	38.68	8.83	38.76	1.19	2.39	49.28	53.90	4.6	
Vert.	2483.500	AV	41.01	27.55	14.25	44.16	1.19	2.39	42.23	53.90	11.7	*1)
Vert.	4924.000	AV	35.20	31.40	6.53	36.92	1.19	2.39	39.79	53.90	14.1	
Vert.	7386.000	AV	35.45	36.73	7.62	37.54	1.19	2.39	45.84	53.90	8.1	
Vert.	9848.000	AV	36.80	38.68	8.83	38.76	1.19	2.39	49.13	53.90	4.8	

 $Result = Reading + Ant.Fac. + Loss (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Authority of Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Amprifier) + Duty factor + Distance factor (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter) (below 18 \ GHz)) - Gain (Cable + (Attenuator or Filter)) - Gain (Cable + (Attenuator or Filter)) - Gain (Cable + (Attenua$

Distance factor: 1 GHz - 13 GHz: $20\log(3.95 \text{ m}/3.0 \text{ m}) = 2.39 \text{ dB}$

 $13~GHz - 40~GHz:~20log~(1.0~m\,/\,3.0~m) =~-9.54~dB$ Duty factor refer to "Duty factor Calculation chart" sheet.

*1) Not out of band emission (Leakage Power)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1
Page : 48 of 67
Issued date : October 31, 2018
FCC ID : 2ACZS-R02010

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber

Date April 25, 2018

Temperature / Humidity
Engineer

25 deg. C / 48 % RH
Kazuya Noda
(1 GHz – 2.8 GHz)

Mode Tx 11n-20 2462 MHz

^{*} Final result of restricted band edge was shown in tabular data.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1
Page : 49 of 67
Issued date : October 31, 2018
FCC ID : 2ACZS-R02010

Radiated Spurious Emission

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber 3

Mode Tx BT LE 2402 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

				r : Quasi-r cak									
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	240.000	QP	25.50	11.57	8.49	32.03	0.00	13.53	46.02	32.4	387	0	
Hori.	324.000	QP	25.00	13.82	9.05	31.98	0.00	15.89	46.02	30.1	340	308	
Hori.	360.000	QP	25.80	14.57	9.27	31.95	0.00	17.69	46.02	28.3	200	1	
Hori.	378.000	QP	28.20	14.94	9.35	31.96	0.00	20.53	46.02	25.4	100	336	
Hori.	432.000	QP	33.00	16.06	9.57	31.97	0.00	26.66	46.02	19.3	228	335	
Hori.	600.000	QP	24.00	19.03	10.21	31.95	0.00	21.29	46.02	24.7	152	1	
Hori.	2390.000	PK	48.50	27.26	14.14	44.13	2.39	48.16	73.97	25.8	206	208	
Hori.	4804.000	PK	48.89	31.40	6.71	44.45	2.39	44.94	73.97	29.0	150	0	
Hori.	7206.000	PK	48.62	36.56	8.33	43.99	2.39	51.91	73.97	22.0	150	0	
Vert.	210.991	QP	21.80	11.53	8.29	32.06	0.00	9.56	43.52	33.9	100	355	
Vert.	432.004	QP	29.30	16.06	9.57	31.97	0.00	22.96	46.02	23.0	148	211	
Vert.	540.003	QP	26.50	18.09	9.98	32.00	0.00	22.57	46.02	23.4	152	338	
Vert.	2390.000	PK	49.25	27.26	14.14	44.13	2.39	48.91	73.97	25.0	148	282	
Vert.	4804.000	PK	49.78	31.40	6.71	44.45	2.39	45.83	73.97	28.1	150	0	
Vert.	7206.000	PK	47.35	36.56	8.33	43.99	2.39	50.64	73.97	23.3	150	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log (3.95 m / 3.0 m) = 2.39 dB13 GHz - 40 GHz : 20log (1.0 m / 3.0 m) = -9.54 dB

Average measurement value with duty factor

	neasurement vi											
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2390.000	AV	38.70	27.26	14.14	44.13	3.86	2.39	42.22	53.97	11.8	*1)
Hori.	4804.000	AV	38.68	31.40	6.71	44.45	3.86	2.39	38.59	53.97	15.4	
Hori.	7206.000	AV	38.08	36.56	8.33	43.99	3.86	2.39	45.23	53.97	8.7	
Vert.	2390.000	AV	38.77	27.26	14.14	44.13	3.86	2.39	42.29	53.97	11.7	*1)
Vert.	4804.000	AV	38.57	31.40	6.71	44.45	3.86	2.39	38.48	53.97	15.5	
Vert.	7206.000	AV	38.07	36.56	8.33	43.99	3.86	2.39	45.22	53.97	8.8	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor: 1 GHz - 13 GHz: 20log (3.95 m / 3.0 m) = 2.39 dB

 $13~GHz - 40~GHz:~20log~(1.0~m\,/~3.0~m) =~-9.54~dB$ Duty factor refer to "Duty factor Calculation chart" sheet.

*1) Not out of band emission (Leakage Power)

20 dBc Data Sheet (RBW 100 kHz, VBW 300 kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.000	PK	96.16	27.29	14.15	44.14	2.39	95.85	-	-	Carrier
Hori.	2400.000	PK	42.15	27.29	14.14	44.14	2.39	41.83	75.85	34.0	
Vert.	2402.000	PK	97.71	27.29	14.15	44.14	2.39	97.40	-	-	Carrier
Vert.	2400.000	PK	44.14	27.29	14.14	44.14	2.39	43.82	77.40	33.6	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : $20\log(3.95 \text{ m}/3.0 \text{ m}) = 2.39 \text{ dB}$ 13 GHz - 40 GHz : $20\log(1.0 \text{ m}/3.0 \text{ m}) = -9.54 \text{ dB}$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 12212627S-H-R1 Test report No. Page : 50 of 67 **Issued date** : October 31, 2018 FCC ID : 2ACZS-R02010

Radiated Spurious Emission (Reference Plot for band-edge)

Report No. 12212627S-H-R1 Test place Shonan EMC Lab. Semi Anechoic Chamber

May 16, 2018

22 deg. C / 51 % RH Temperature / Humidity Makoto Hosaka Engineer (1 GHz - 2.8 GHz)Mode Tx BT LE 2402 MHz

^{*} Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. **Shonan EMC Lab.**

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 12212627S-H-R1 Test report No. Page : 51 of 67 **Issued date** : October 31, 2018 FCC ID : 2ACZS-R02010

Radiated Spurious Emission

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber 3

May 15, 2018 May 16, 2018 22 deg. C / 51 % RH 25 deg. C / 43 % RH Temperature / Humidity Engineer Makoto Hosaka Makoto Hosaka (30 MHz - 1 GHz)(1 GHz - 26.5 GHz)

Tx BT LE 2440 MHz Mode

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	240.000	QP	25.60	11.57	8.49	32.03	0.00	13.63	46.02	32.3	384	0	
Hori.	324.000	QP	24.20	13.82	9.05	31.98	0.00	15.09	46.02	30.9	350	333	
Hori.	360.000	QP	25.90	14.57	9.27	31.95	0.00	17.79	46.02	28.2	199	1	
Hori.	378.000	QP	29.50	14.94	9.35	31.96	0.00	21.83	46.02	24.1	100	339	
Hori.	432.000	QP	32.90	16.06	9.57	31.97	0.00	26.56	46.02	19.4	226	341	
Hori.	600.000	QP	23.60	19.03	10.21	31.95	0.00	20.89	46.02	25.1	156	0	
Hori.	4880.000	PK	48.66	31.61	6.79	44.48	2.39	44.97	73.97	29.0	150	0	
Hori.	7320.000	PK	47.57	36.76	8.44	44.03	2.39	51.13	73.97	22.8	150	0	
Vert.	210.991	QP	21.80	11.53	8.29	32.06	0.00	9.56	43.52	33.9	100	350	
Vert.	432.000	QP	32.40	16.06	9.57	31.97	0.00	26.06	46.02	19.9	190	328	
Vert.	539.999	QP	25.70	18.09	9.98	32.00	0.00	21.77	46.02	24.2	144	350	
Vert.	4880.000	PK	48.83	31.61	6.79	44.48	2.39	45.14	73.97	28.8	150	0	
Vert.	7320.000	PK	47.55	36.76	8.44	44.03	2.39	51.11	73.97	22.8	150	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor: 1 GHz - 13 GHz: 20log (3.95 m / 3.0 m) = 2.39 dB $13 \text{ GHz} - 40 \text{ GHz} : 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4880.000	AV	38.31	31.61	6.79	44.48	3.86	2.39	38.48	53.97	15.5	
Hori.	7320.000	AV	37.10	36.76	8.44	44.03	3.86	2.39	44.52	53.97	9.4	
Vert.	4880.000	AV	38.30	31.61	6.79	44.48	3.86	2.39	38.47	53.97	15.5	
Vert.	7320.000	AV	36.78	36.76	8.44	44.03	3.86	2.39	44.20	53.97	9.8	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor: 1 GHz - 13 GHz: $20\log(3.95 \text{ m}/3.0 \text{ m}) = 2.39 \text{ dB}$ $13 \text{ GHz} - 40 \text{ GHz} : 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$

Duty factor refer to "Duty factor Calculation chart" sheet.

*1) Not out of band emission (Leakage Power)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 52 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

Radiated Spurious Emission

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber 3

Mode Tx BT LE 2480 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

	_			1 . Quasi-i cak									n 1
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	240.000	QP	25.40	11.57	8.49	32.03	0.00	13.43	46.02	32.5	384	0	
Hori.	324.000	QP	24.30	13.82	9.05	31.98	0.00	15.19	46.02	30.8	345	338	
Hori.	360.000	QP	26.20	14.57	9.27	31.95	0.00	18.09	46.02	27.9	192	1	
Hori.	378.000	QP	29.70	14.94	9.35	31.96	0.00	22.03	46.02	23.9	100	336	
Hori.	432.000	QP	32.60	16.06	9.57	31.97	0.00	26.26	46.02	19.7	228	338	
Hori.	600.000	QP	23.50	19.03	10.21	31.95	0.00	20.79	46.02	25.2	153	0	
Hori.	2483.500	PK	49.37	27.55	14.24	44.16	2.39	49.39	73.97	24.5	249	232	
Hori.	4960.000	PK	48.93	31.83	6.87	44.51	2.39	45.51	73.97	28.4	150	0	
Hori.	7440.000	PK	48.64	36.97	8.56	44.08	2.39	52.48	73.97	21.4	150	0	
Vert.	210.991	QP	21.80	11.53	8.29	32.06	0.00	9.56	43.52	33.9	100	358	
Vert.	432.000	QP	32.30	16.06	9.57	31.97	0.00	25.96	46.02	20.0	193	314	
Vert.	539.999	QP	25.90	18.09	9.98	32.00	0.00	21.97	46.02	24.0	114	169	
Vert.	2483.500	PK	49.15	27.55	14.24	44.16	2.39	49.17	73.97	24.8	181	310	
Vert.	4960.000	PK	49.19	31.83	6.87	44.51	2.39	45.77	73.97	28.2	150	0	
Vert.	7440.000	PK	48.00	36.97	8.56	44.08	2.39	51.84	73.97	22.1	150	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log (3.95 m / 3.0 m) = 2.39 dB13 GHz - 40 GHz : 20log (1.0 m / 3.0 m) = -9.54 dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2483.500	AV	38.80	27.55	14.24	44.16	3.86	2.39	42.68	53.97	11.3	*1)
Hori.	4960.000	AV	38.75	31.83	6.87	44.51	3.86	2.39	39.19	53.97	14.8	
Hori.	7440.000	AV	37.54	36.97	8.56	44.08	3.86	2.39	45.24	53.97	8.7	
Vert.	2483.500	AV	38.97	27.55	14.24	44.16	3.86	2.39	42.85	53.97	11.1	*1)
Vert.	4960.000	AV	38.72	31.83	6.87	44.51	3.86	2.39	39.16	53.97	14.8	
Vert.	7440.000	AV	37.55	36.97	8.56	44.08	3.86	2.39	45.25	53.97	8.7	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor: 1 GHz - 13 GHz: $20\log(3.95 \text{ m}/3.0 \text{ m}) = 2.39 \text{ dB}$

 $13~GHz - 40~GHz:~20log\,(1.0~m\,/\,3.0~m) =~-9.54~dB$ Duty factor refer to "Duty factor Calculation chart" sheet.

*1) Not out of band emission (Leakage Power)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 53 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 12212627S-H-R1
Test place Shonan EMC Lab.

Semi Anechoic Chamber 3

Date May 16, 2018

Temperature / Humidity
Engineer

22 deg. C / 51 % RH
Makoto Hosaka
(1 GHz – 2.8 GHz)

Mode Tx BT LE 2480 MHz

^{*} Final result of restricted band edge was shown in tabular data.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1
Page : 54 of 67
Issued date : October 31, 2018
FCC ID : 2ACZS-R02010

Radiated Spurious Emission (Plot data, Worst case)

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber 3 2

April 25, 2018 April 21, 2018 April 22, 2018 Date 23 deg. C / 50 % RH 21 deg. C / 51 % RH Temperature / Humidity 25 deg. C / 48 % RH Yosuke Ishikawa Engineer Kazuya Noda Yasumasa Owaki (1 GHz - 2.8 GHz)(2.8 GHz - 13 GHz)(30 MHz - 1 GHz) (13 GHz - 26.5 GHz)

Mode Tx 11g 2462 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 55 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

Radiated Spurious Emission (Plot data, Worst case)

Report No. 12212627S-H-R1 Test place Shonan EMC Lab.

Semi Anechoic Chamber 3

Mode Tx BT LE 2440 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 56 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

Conducted Spurious Emission

Report No. 12212627S-H-R1

Test place Shonan EMC Lab. No.1 Measurement Room

Date April 17, 2018
Temperature / Humidity Engineer Yosuke Ishikawa
Mode Tx 11g 2462 MHz

	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
L	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	14.67	-87.7	0.01	9.83	2.0	1	-75.9	300	6.0	-14.6	44.2	58.8	
	15000.54	-74.1	0.05	9.84	2.0	1	-62.2	30	6.0	19.0	29.5	10.5	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \ log \left(Distance \ [m] \right) + Ground \ bounce \ [dB] + 104.8 \ [dBuV/m]$

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

 Test report No.
 : 12212627S-H-R1

 Page
 : 57 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

Conducted Spurious Emission

Report No. 12212627S-H-R1

Test place Shonan EMC Lab. No.5 Shielded Room

Date May 15, 2018
Temperature / Humidity Engineer Makoto Hosaka
Mode Tx BT LE 2402 MHz

ſ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
L	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	13.46	-90.9	0.01	10.11	2.0	1	-78.8	300	6.0	-17.5	45.0	62.5	
	225.00	-78.0	0.01	10.11	2.0	1	-65.8	300	6.0	-4.6	20.5	25.1	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \ log \left(Distance \ [m] \right) + Ground \ bounce \ [dB] + 104.8 \ [dBuV/m]$

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

 Test report No.
 : 12212627S-H-R1

 Page
 : 58 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

Conducted Spurious Emission

Report No. 12212627S-H-R1

Test place Shonan EMC Lab. No.5 Shielded Room

Date May 15, 2018
Temperature / Humidity 25 deg. C / 37 % RH
Engineer Makoto Hosaka
Mode Tx BT LE 2440 MHz

	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
I	9.70	-91.3	0.01	10.11	2.0	1	-79.2	300	6.0	-17.9	47.8	65.7	
I	150.00	-79.3	0.01	10.11	2.0	1	-67.2	300	6.0	-5.9	24.0	29.9	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10*log \ (N)$

N: Number of output

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*2.0} dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

 Test report No.
 : 12212627S-H-R1

 Page
 : 59 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

Conducted Spurious Emission

Report No. 12212627S-H-R1

Test place Shonan EMC Lab. No.5 Shielded Room

Date May 15, 2018
Temperature / Humidity 25 deg. C / 37 % RH
Engineer Makoto Hosaka
Mode Tx BT LE 2480 MHz

Frequ	uency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kI	Hz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	12.17	-91.5	0.01	10.11	2.0	1	-79.4	300	6.0	-18.1	45.8	63.9	
1	75.00	-80.5	0.01	10.11	2.0	1	-68.4	300	6.0	-7.1	22.7	29.8	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \log \left(Distance \left[m \right] \right) + Ground \ bounce \left[dB \right] + 104.8 \left[dBuV/m \right]$

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 $^{*2.0 \}text{ dBi}$ was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

 Test report No.
 : 12212627S-H-R1

 Page
 : 60 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

Makoto Hosaka

Power Density

Report No. 12212627S-H-R1

Test place Shonan EMC Lab. No.1 Measurement Room No.5 Shielded room Date April 17, 2018 May 15, 2018
Temperature / Humidity 26 deg. C / 31 % RH 25 deg. C / 37 % RH

Engineer Yosuke Ishikawa

Mode Tx

11b

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2412.00	-25.01	1.48	9.86	-13.67	8.00	21.67
2437.00	-24.73	1.48	9.86	-13.39	8.00	21.39
2462.00	-25.37	1.49	9.85	-14.03	8.00	22.03

11g

8						
Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2412.00	-25.64	1.48	9.86	-14.30	8.00	22.30
2437.00	-25.89	1.48	9.86	-14.55	8.00	22.55
2462.00	-25.86	1.49	9.85	-14.52	8.00	22.52

11n-20

Γ	Freq.	Reading	Cable	Atten.	Result	Limit	Margin
			Loss	Loss			
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
Г	2412.00	-26.71	1.48	9.86	-15.37	8.00	23.37
	2437.00	-26.15	1.48	9.86	-14.81	8.00	22.81
	2462.00	-25.40	1.49	9.85	-14.06	8.00	22.06

BT LE

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2402.00	-19.70	1.48	10.18	-8.04	8.00	16.04
2440.00	-19.67	1.48	10.18	-8.01	8.00	16.01
2480.00	-20.60	1.49	10.18	-8.93	8.00	16.93

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

 Test report No.
 : 12212627S-H-R1

 Page
 : 61 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

Power Density

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 62 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

Power Density

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12212627S-H-R1 Page : 63 of 67 **Issued date** : October 31, 2018 : 2ACZS-R02010 FCC ID

APPENDIX 2: Test instruments

Control No.	nts (WLAN test) Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date *
						Interval(month)
SRENT-09	Spectrum Analyzer	Agilent	E4440A	MY46186392	AT	2017/11/08 * 12
SPM-07	Power Meter	Agilent	8990B	MY5100272	AT	2017/05/01 * 12
SPSS-04	Power sensor	Agilent	N1923A	MY5326009	AT	2017/05/01 * 12
SCC-G12	Coaxial Cable	Suhner	SUCOFLEX 102	30790/2	AT	2018/03/19 * 12
SAT10-12	Attenuator	Weinschel Corp.	54A-10	81601	AT	2018/03/22 * 12
SOS-13	Humidity Indicator	Custom	CTH-202	Q.C.17	AT	2017/12/21 * 12
SAEC-01(NSA)	Semi-Anechoic	TDK	SAEC-01(NSA)	1	RE	2017/06/09 * 12
STILE OT(INSTI)	Chamber	IDK	Sittle or(ivsit)		KL	2017/00/07 12
SAF-05	Pre Amplifier	TOYO Corporation	TPA0118-36	1440490	RE	2018/02/15 * 12
SCC-G41	Coaxial Cable	Junkosha	MWX221-01000	1612S006	RE	2018/01/29 * 12
			NFSNMS/B			
SCC-G43	Coaxial Cable	HUBER+SUHNER	SUCOFLEX_10 4 E	SN MY 13406/4E	RE	2017/07/10 * 12
SCC-G44	Coaxial Cable	HUBER+SUHNER	SUCOFLEX 104	800070/4A	RE	2018/03/28 * 12
SHA-02	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-726	RE	2017/08/14 * 12
SOS-03	Humidity Indicator	A&D	AD-5681	4063325	RE	2017/10/30 * 12
STR-07	Test Receiver	Rohde & Schwarz	ESU26	100484	RE,CE	2017/09/26 * 12
SJM-09	Measure	PROMART	SEN1935	-	RE,CE	-
COTS-SEMI-1	EMI Software	TSJ	TEPTO-DV(RE, CE,RFI,MF)	-	RE,CE	-
STS-02	Digital Hitester	Hioki	3805-50	080997819	RE,CE	2018/03/08 * 12
SSA-02	Spectrum Analyzer	Agilent	E4448A	MY48250106	RE,CE	2018/03/05 * 12
SFL-18	Highpass Filter	MICRO-TRONICS	HPM50111	119	RE	2018/04/20 * 12
SAF-09	Pre Amplifier	TOYO Corporation	HAP18-26W	00000018	RE	2017/09/22 * 12
SHA-05	Horn Antenna	ETS LINDGREN	3160-09	LM4210	RE	2018/03/20 * 12
SCC-G33			MWX241-01000	LW14210	RE	2018/04/20 * 12
	Coaxial Cable	Junkosha	KMSKMS			
SCC-G45	Coaxial Cable	HUBER+SUHNER	SUCOFLEX 102 E	800137/2EA	RE	2018/03/28 * 12
SAF-02	Pre Amplifier	SONOMA	310N	290212	RE	2018/02/16 * 12
SAT6-02	Attenuator	JFW	50HF-006N	-	RE	2018/02/16 * 12
SAT3-11	Attenuator	JFW	50HF-003N	-	RE	2018/02/22 * 12
SBA-02	Biconical Antenna	Schwarzbeck	BBA9106	91032665	RE	2017/11/23 * 12
SCC-B1/B3/B5/ B7/B8/B13/SRS E-02	Coaxial Cable&RF Selector	Fujikura/Fujikura/Suhn er/Suhner/Suhner/Suhn er/TOYO	8D2W/12DSFA/ 141PE/141PE/14 1PE/141PE/NS4 906	-/0901-270(RF Selector)	RE	2018/04/07 * 12
SCC-B2/B4/B6/ B7/B8/B13/SRS E-02	Coaxial Cable&RF Selector	Fujikura/Fujikura/Suhn er/Suhner/Suhner/Suhn er/TOYO	8D2W/12DSFA/ 141PE/141PE/14 1PE/141PE/NS4 906	-/0901-270(RF Selector)	RE	2018/04/07 * 12
SLA-06	Logperiodic Antenna	Schwarzbeck	VUSLP9111B	195	RE	2018/01/30 * 12
SAEC-02(NSA)	Semi-Anechoic Chamber	TDK	SAEC-02(NSA)	2	RE	2017/06/08 * 12
SAF-06	Pre Amplifier	TOYO Corporation	TPA0118-36	2046104	RE	2017/09/22 * 12
SCC-G06	Coaxial Cable	Junkosha	J12J102207-00	MAY-23-16-091	RE	2017/06/13 * 12
SCC-G23	Coaxial Cable	Suhner	SUCOFLEX 104	297342/4	RE	2017/05/08 * 12
SHA-03	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-739	RE	2017/08/23 * 12
SOS-05	Humidity Indicator	A&D	AD-5681	4062518	RE	2017/10/30 * 12
KSA-08	Spectrum Analyzer	Agilent	E4446A	MY46180525	RE	2017/10/10 * 12
SJM-02	Measure	KOMELON	KMC-36	-	RE	-
SAEC-03(SVS	Semi-Anechoic	TDK	SAEC-03(SVSW	3	RE	2017/07/17 * 12
WR)	Chamber		R)		1	
STS-03	Digital Hitester	Hioki	3805-50	080997823	RE	2017/10/16 * 12
SAT10-05	Attenuator(above1 GHz)	Agilent	8493C-010	74864	RE	2017/11/22 * 12
SCC-G40	Coaxial Cable	Junkosha	MWX221-01000 NFSNMS/B	1612S005	RE	2018/01/29 * 12

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12212627S-H-R1

 Page
 : 64 of 67

 Issued date
 : October 31, 2018

 FCC ID
 : 2ACZS-R02010

Test Instruments (BT LE test)

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
KPM-08	Power meter	Anritsu	ML2495A	6K00003356	AT	2017/09/19 * 12
KPSS-04	Power sensor	Anritsu	MA2411B	012088	AT	2017/09/19 * 12
KSA-08	Spectrum Analyzer	Agilent	E4446A	MY46180525	AT	2017/10/10 * 12
SAT10-15	Attenuator	Weinschel Corp.	54A-10	83406	AT	2017/12/08 * 12
SCC-G12	Coaxial Cable	Suhner	SUCOFLEX 102	30790/2	AT	2018/03/19 * 12
SOS-09	Humidity Indicator	A&D	AD-5681	4061484	AT	2017/12/21 * 12
SCC-C9/C10/S	Coaxial Cable&RF	Suhner/Suhner/TOYO	RG223U/141PE/NS	-/0901-271(RF	CE	2018/04/09 * 12
RSE-03	Selector		4906	Selector)		
SLS-02	LISN	Rohde & Schwarz	ENV216	100512	CE	2018/02/26 * 12
SAT3-10	Attenuator	JFW	50HF-003N	-	CE	2017/08/24 * 12
SOS-06	Humidity Indicator	A&D	AD-5681	4062118	CE	2017/12/21 * 12
STR-08	Test Receiver	Rohde & Schwarz	ESW44	101581	CE,RE	2017/11/24 * 12
SJM-02	Measure	KOMELON	KMC-36	-	CE,RE	-
COTS-SEMI-1	EMI Software	TSJ	TEPTO-DV(RE,CE, RFI,MF)	-	CE,RE	-
STS-03	Digital Hitester	Hioki	3805-50	080997823	CE,RE	2017/10/16 * 12
SAEC-03(NSA)	Semi-Anechoic Chamber	TDK	SAEC-03(NSA)	3	RE	2017/06/11 * 12
SBA-03	Biconical Antenna	Schwarzbeck	BBA9106	91032666	RE	2017/10/02 * 12
SLA-07	Logperiodic Antenna	Schwarzbeck	VUSLP9111B	196	RE	2018/01/30 * 12
SAT6-08	Attenuator	HIROSE ELECTRIC CO.,LTD.	AT-406(40)	-	RE	2017/08/24 * 12
SCC-C1/C2/C3/ C4/C5/C10/SRS E-03	Coaxial Cable&RF Selector	Fujikura/Fujikura/Suhne r/Suhner/Suhner/Suhner/ TOYO	8D2W/12DSFA/141 PE/141PE/141PE/14 1PE/NS4906	-/0901-271(RF Selector)	RE	2018/04/09 * 12
SAF-03	Pre Amplifier	SONOMA	310N	290213	RE	2018/02/16 * 12
SOS-05	Humidity Indicator	A&D	AD-5681	4062518	RE	2017/10/30 * 12
SAF-06	Pre Amplifier	TOYO Corporation	TPA0118-36	2046104	RE	2017/09/22 * 12
SCC-G06	Coaxial Cable	Junkosha	J12J102207-00	MAY-23-16-09	RE	2017/06/13 * 12
SCC-G23	Coaxial Cable	Suhner	SUCOFLEX 104	297342/4	RE	2018/05/11 * 12
SCC-G40	Coaxial Cable	Junkosha	MWX221-01000NF SNMS/B	1612S005	RE	2018/01/29 * 12
SHA-03	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-739	RE	2017/08/23 * 12
SAT10-05	Attenuator(above1GHz)	Agilent	8493C-010	74864	RE	2017/11/22 * 12
SFL-02	Highpass Filter	MICRO-TRONICS	HPM50111	051	RE	2017/11/16 * 12
SSA-02	Spectrum Analyzer	Agilent	E4448A	MY48250106	RE	2018/03/05 * 12
SAEC-03(SVS WR)	Semi-Anechoic Chamber	TDK	SAEC-03(SVSWR)	3	RE	2017/07/17 * 12
SHA-04	Horn Antenna	ETS LINDGREN	3160-09	LM9861	RE	2017/07/11 * 12
SAF-08	Pre Amplifier	TOYO Corporation	HAP18-26W	00000019	RE	2018/03/27 * 12
SCC-G45	Coaxial Cable	HUBER+SUHNER	SUCOFLEX 102 E	800137/2EA	RE	2018/03/28 * 12
SCC-G33	Coaxial Cable	Junkosha	MWX241-01000K MSKMS	-	RE	2018/04/20 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN