Interaction Design & Computer Vision Techniques

Liwei chan 詹力韋 Assistant Prof.

2016.09.13

Interaction Design & Computer Vision Techniques

Liwei chan 詹力韋 Assistant Prof.

Interaction Design & Virtual Reality

Liwei chan 詹力韋 Assistant Prof. who I am

2005

2010 phd., ntu on human computer interaction (acm chi, uist ...)

2011 postdoc, HPI, germany 2012 military service, taiwan 2013 postdoc, academia sinica 2014 assistant researcher, ntu intel 2015 assistant prof, kmd., japan 2016 assistant prof., here

Tabletop UI

BodyUI

(2008 - 2011)

(2011-2014)

(2013-2015)

Tabletop UI

Tangible UI

BodyUI

SpatialUI HapticUI

(2008 - 2011) (2011-2014)

(2013-2015)

(2016 KMD)

embodied interaction

superhuman sport

who you are

this course

Interaction Design & Computer Vision Techniques

Interaction Design & Virtual Reality

Interaction Design

- Iterative Design Process
- Sketching / Visual Design
- Lo/Hi-Fi Prototyping
- Ramesh's Invention Box

Tools

- Arduino
- Unity
- Unity and its friends
- HMD-related toys

HCI Topics

- Touch/Tangible/Body UI
- Muscle IO (invited speaker)
- Goods and Bads in Virtual Reality

Term project

- Proposal
- Proposal Revised
- Final w/ Demo

grade on project

- No exam
- Team work (3-person team)
 - Personal proposal (next lecture)
 - Team Project proposal
 - Lo-Fi Prototype Presentation
 - Team project proposal Revised
 - Final demo (w/ poster design)

Emerging Technology Hype Cycle

VR/AR機器の出荷台数の見通し

VR/AR

in VR. You can do anything.

in VR. You can be anyone.

VR = experience player

Ivan sutherland ultimate display 1965

what VR applications exactly are we going to create?

1. Realistic Experience

2. Beyond Reality

3. New Utility

Realistic Experience

Surreal Experience

Birdly

Enabling New Utility

Problem solving

- Input modality
- Output modality
- Information access
- Rapid prototyping

FOVE: The World's First Eye Tracking Virtual **Reality Headset**

Pupil-Lab

HTC Vive Binocular Add-on

Add binocular eye tracking to your HTC Vive VR Headset. Includes binocular 120hz eye tracking cameras, clip-on attachment rings with IR illuminators and USB connector clip. No tools required!

€ 1400

https://pupil-labs.com/

Virtuix Omni

http://www.virtuix.com/ x Omni is now available for Pre-Order at Virtuix.com

To build up new VR experience, sometimes (advanced) skills that this course will not cover are required.

Tip:

find an idea that drives you hard to learn on your own

If you decide to take this course, here is the assignment due next Monday for you.

assignment

- 1. Create an idea from 1 of the 3 categories.
- 2. Prepare a slide (2 pages) to visualize your idea with sketches or images.
 - Page 1: who you are. what you are good at. hobby. anything you want to share.
 - Page 2: your crazy idea
- 3. Add your slide to google slide page by 12 pm on Sep. 19th.
 - Google presentation
- 4.Present your idea on Sep. 20th in the lecture.
- 5. Team-build in the lecture.

Google presentation

https://docs.google.com/presentation/d/1j5m-Ggczoc59JVTujj6lbl3t2-ARNrlen5_Bk12GQe8/edit

> Novelty – no one did before. (70 %) Feasibility – can it be implemented? (30 %)