FORMALISMO DE ARTIN

ROCÍO BELÉN SEPÚLVEDA MANZO

Tras haber visto un breve resumen de teoría de representaciones para grupos finitos, volvemos a estudiar las series L Artin. Recordemos que dos representaciones (ρ, V) y (ρ', V') son equivalentes si y solo si sus caracteres χ y χ' coinciden, por lo tanto, podemos escribir

$$L(F/K, \chi, s) = \prod_{\mathfrak{p}} \frac{1}{\det(1 - \rho(\varphi_{\mathfrak{P}}) \mathbf{N}(\mathfrak{p})^{-s}; V^{I_{\mathfrak{P}}})}$$

en vez de $L(F/K, \rho, s)$. Estas series L poseen las siguientes propiedades funtoriales:

Proposición 1. (I) Para el caracter trivial $\chi = 1$, uno tiene

$$L(F/K, 1, s) = \zeta_K(s).$$

(II) Si χ , χ' son dos caracteres de Gal(F/K), entonces

$$L(F/K, \chi + \chi', s) = L(F/K, \chi, s)L(F/K, \chi', s).$$

(III) Si M es un campo intermedio, $L \supseteq M \supseteq K$, y χ es un caracter Gal(F/K), entonces $L(F/M, \chi, s) = L(F/M, Ind(\chi), s)$.

Demostración. Pendiente, NEUKIRCH [1, p. 522-523].

Corolario 2. $\zeta_F(s) = \zeta_K(s) \prod L(F/K, \chi, s)^{\chi(1)}$.

REFERENCIAS

1. Neukirch, J. Algebraic number theory (Springer-Verlag, 1999). Correo electrónico: rseplveda@uc.cl

Fecha: 15 de febrero de 2024.