산업 제어 시스템 보안 위협 탐지 AI 경진대회

목치

#01 대회 소개 & EDA

#02 1등 솔루션: Conv1D-LSTM-AutoEncoder

#03 4등 솔루션: MLP Mixer + SAM

HAI 보안데이터셋을 활용하여 AI 기반 제어시스템 보안위협 탐지

train.csv

	timestamp	C01 -	C02 v	C03	C04 ·	C05 •
1	2021-07-11 10:00:00	-2.2642	0	12.26196	-0.00087000	12.01019
2	2021-07-11 10:00:01	-2.4923	0	12.26196	0.00058000	12.56714
3	2021-07-11 10:00:02	-2.8460	0	12.26196	-0.00072000	14.48975
4	2021-07-11 10:00:03	-2.1235	0	12.26196	0.00101000	15.93170
5	2021-07-11 10:00:04	-2.9074	0	12.26196	0.00043000	16.10718

validation.csv

	timestamp ▼	~	C83 ▼	C84 ▼	C85 •	C86 •	attack
1	2021-07-10 00:00:01	1	1034.712769	12.0	50	161	0
2	2021-07-10 00:00:02	1	1034.712769	12.0	50	155	0
3	2021-07-10 00:00:03	1	1034.712769	12.0	50	149	0
4	2021-07-10 00:00:04	1	1034.712769	12.0	50	148	0
5	2021-07-10 00:00:05	1	1034.712769	12.0	50	148	0

- Enhanced Time-series Aware Precision (eTaP)
 - 예측 결과가 오탐 없이 이상 징후를 찾아내는가? (점수: 0~1)
- Enhanced Time-series Aware Recall (eTaR)
 - 얼마나 다양한 이상 징후를 찾아내는가? (점수: 0~1)

- 총 4가지 파라미터 $(\alpha, \delta, \pi, \rho)$ 설정 필요
- α (0.0 ~ 1.0)
 - Detection score와 portion score의 비율 조절
 - Partial detection에 대해 두 가지 점수로 계산
 - Detection score: 일부만 맞춰도 다 맞춘 것과 동일하게 간주 (p_3 예: 1.00)
 - Portion score: 맞춘 비율만큼만 점수 부여 (p_3 예: 0.66)
 - 높은 값일수록 detection score를 높게 설정

- δ (0 이상의 정수)
 - 공격을 수행하였을 때, 시스템에 그 영향이 얼마나 남아있는지 모름으로 인해 발생
 - 공격으로 라벨된 이후의 범위를 탐지하여도 어느 정도 점수를 인정
 - 인정할 범위를 결정하는 파라미터

- π (0.0 ~ 1.0)
 - eTaP의 detection score에 필요
 - 각 prediction 중 anomaly와 어느 정도 겹쳐야 점수가 인정될지 설정하는 파라미터
 - p₃의 점수 예: 1점 (π가 0.66 이하) 0점 (π가 0.66 이상)
- ρ (0.0 ~ 1.0)
 - eTaR의 detection score에 필요
 - 각 anomaly 중 어느 정도가 탐지 되어야 점수가 인정될지 설정 하는 파라미터
 - a_3 의 점수 예: 1점 (ρ 가 0.66 이하) 0점 (ρ 가 0.66 이상)

EDA: 데이터 순서와 데이터 분포 확인

```
Valid #1
          START: 2021-07-10 00:00:01
                                       END: 2021-07-11 00:00:00
                                                                  DATA POINT: 86400
          START: 2021-07-11 10:00:00
                                       END: 2021-07-12 12:00:00
                                                                  DATA POINT: 93601
Train #1
          START: 2021-07-13 16:00:01
                                       END: 2021-07-14 15:00:00
                                                                  DATA POINT: 82800
          START: 2021-07-14 17:40:01
                                       END: 2021-07-15 11:00:00
                                                                  DATA POINT: 62400
Test
Test #3
          START: 2021-07-15 12:00:01
                                       END: 2021-07-17 00:00:00
                                                                  DATA POINT: 129600
          START: 2021-07-17 00:00:01
Train #2
                                       END: 2021-07-19 08:00:00
                                                                  DATA POINT: 201600
          START: 2021-07-23 18:00:01
                                       END: 2021-07-25 05:00:00
                                                                  DATA POINT: 126000
Train #3
          START: 2021-07-26 12:00:00
                                       END: 2021-07-27 12:00:00
Train #4
                                                                  DATA POINT: 86401
Train #5
          START: 2021-08-02 15:00:01
                                       END: 2021-08-05 09:00:00
                                                                  DATA POINT: 237600
          START: 2021-08-06 09:00:01
                                       END: 2021-08-09 09:00:00
                                                                  DATA POINT: 259200
Train #6
```

→ 테스트 데이터 전후로 훈련 데이터 분포

#02 1등 솔루션: Conv1D + LSTM + AutoEncoder

#01. 접근 논리 및 개요

- 1. **하나**의 베이스 모델 활용
- 2. 변수 간의 상관계수 분석 -> 4 그룹 단위 분석
- 3. 데이터 전처리
 - (1) Normalization
 - (2) Boundary Check
 - (3) Threshold & Scaling

```
def normalize(df):
    ndf = df \cdot copy()
    for c in df.columns:
        if TAG MIN[c] == TAG MAX[c]:
            ndf[c] = df[c] - TAG_MIN[c]
        else:
            ndf[c] = (df[c] - TAG_MIN[c]) / (TAG_MAX[c] - TAG_MIN[c])
    return ndf
def boundary_check(df):
    x = np.array(df, dtype=np.float32)
    print(x)
    return np.any(x > 1.0), np.any(x < 0), np.any(np.isnan(x))
def flatten(X):
   flattened X = np.empty((X.shape[0], X.shape[2])) # sample x features array.
   for i in range(X.shape[0]):
        flattened_X[i] = X[i, (X.shape[1]-1), :]
    return(flattened_X)
def scale(X, scaler):
   for i in range(X.shape[0]):
       X[i, :, :] = scaler.transform(X[i, :, :])
    return X
```


#02. 속성 간의 상관계수 분석

pandas.DataFrame.corr() Function

```
for col in valid.columns:
    print("========="")
    print(a_val.corr()[col][a_val.corr()[col] > 0.7])
    print("======="")
```

Correlation (상관계수)

$$\rho = \frac{Cov(X, Y)}{\sqrt{Var(X) \ Var(Y)}}, \quad -1 \le \rho \le 1$$

DataFrame.corr(method='pearson', min_periods=1)

[source]

Compute pairwise correlation of columns, excluding NA/null values.

Parameters: **method**: {'pearson', 'kendall', 'spearman'} or callable

Method of correlation:

- pearson: standard correlation coefficient
- kendall : Kendall Tau correlation coefficient
- spearman : Spearman rank correlation
- callable: callable with input two 1d ndarrays

and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior.

min periods : int, optional

Minimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation.

Returns: DataFrame

Correlation matrix

VS

Covariance (공분산)

$$E(X) = \mu, E(Y) = \nu$$

$$Cov(X, Y) = E((X - \mu)(Y - \nu))$$

$$E((X - \mu)(Y - \nu)) = E(XY - \mu Y - \nu X + \mu \nu)$$

$$E(XY) - \mu E(X) - \nu E(Y) + \mu \nu$$

$$E(XY) - \mu \nu$$

$$E(XY) - \mu \nu$$

$$E(XY) - \mu \nu$$

#03. 구현

- 1. TF Layer (1) Bidirectional
- 2. TF Layer (2) RepeatVector
- 3. TF Layer (3) TimeDistributed
- 4. Adam Optimizer / MSE Loss

Layer (type)	Output 5	Shape	Param #
conv1d (Conv1D)	(None,	1, 128)	393344
dense (Dense)	(None,	1, 128)	16512
bidirectional (Bidirectional	(None,	128)	98816
repeat_vector (RepeatVector)	(None,	1, 128)	0
bidirectional_1 (Bidirection	(None,	1, 128)	98816
dense_1 (Dense)	(None,	1, 128)	16512
conv1d_1 (Conv1D)	(None,	1, 128)	786560
time_distributed (TimeDistri	(None,	1, 64)	8256

#04. Conv1D vs LSTM

- 1. Conv1D: 입력 시간의 평활화로 인한 이동 평균값을 입력 feature로 사용할 필요 X
- 2. LSTM: 여러 입력 변수로 모델링 가능

- 비지도 학습 기반 (Auto-Encoder)
 - (1) 초반의 time-series를 통해서 이후 예측
 - (2) RMSE(Ground Truth, Predicted) = Anomaly Score
- 4개의 군집 중 하나라도 "anomal time series"라고 하면 이상치로 간주

```
for i in range(len(submission)):
   if group3_3['attack'][i] == 1 or group4_2['attack'][i] ==1 or group5_1['attack'][i] == 1 or group6_1['attack'][i] == 1:
        pred_y_test[i] = 1
```


#05. Moving Average & Threshold Set

1. 단순 이동 평균 사용

```
#이동평균
mean_window = error_df['Reconstruction_error'].rolling(30, center=True).mean()
window_error = mean_window.fillna(0)
```

: 방향성을 갖고 움직이면서 구해지는 평균 값

• Window size (위에서는 30) 이전 데이터는 평균에 영향 X

2. Threshold를 군집별로 정하기

- auto_threshold에서의 값들을 다 적용
- Accuracy가 높은 threshold를 군집마다 적용

```
def check_graph(xs, att, piece=2, THRESHOLD=None):
   1 = xs.shape[0]
    chunk = 1 // piece
    fig, axs = plt.subplots(piece, figsize=(20, 4 * piece))
    pred y test = []
    for i in range(piece):
        L = i * chunk
       R = min(L + chunk, 1)
       xticks = range(L, R)
        axs[i].plot(xticks, xs[L:R])
        #Threshold 설정
        pred tem = [1 if e > THRESHOLD[i] else 0 for e in list(xs[L:R])]
        pred y test.extend(pred tem)
        #SUBPLOT
       if len(xs[L:R]) > 0:
            peak = max(xs[L:R])
            axs[i].title.set text(i)
           axs[i].plot(xticks, att[L:R] * peak * 0.3)
            axs[i].set ylim(0,0.00005)
        if THRESHOLD!=None:
            axs[i].axhline(y=THRESHOLD[i], color='r')
    plt.show()
    pred y test
   pred y test = np.array(pred y test)
    return pred y test
```

```
auto_threshold = [
0.0000045,0.0000045,0.0000045,0.0000045,
0.0000045,0.0000045,0.0000045,0.0000045,
0.0000045,0.0000045,0.0000045,0.0000045,
0.0000045,0.0000045,0.0000045,0.0000045]
```


#03 4등 솔루션: MLP Mixer + SAM

#03-1 MLP Mixer + SAM

Model Selection

- Bidirectional RNN GRU, LSTM 사용. Valid에서 매우 낮은 점수, 테스트에서 상대적으로 높은 점수를 보임
- CNN 1D CNN을 이용해 만든 VGG style 모델은 전혀 학습을 하지 못함. RNN+CNN도 마찬가지
- Transformer 인코더만 만들어서 사용 (예측하고자 하는 Timestep이 한 개) 점수가 눈에 띄게 상승 (전체 시퀀스를 한 번에 볼 수 있기 때문) 입력 시퀀스의 길이가 길어 시간이 오래 걸림.
- MLP-Mixer Transformer와 같이 한 번에 전체 시퀀스를 다룰 수 있으며, 더 가볍고 빠름

#03-1 MLP Mixer + SAM

MLP Mixer

- DNN의 가장 기본적인 알고리즘인 MLP만을 이용한 이미지 인식.
- 패치의 수가 증가해도 계산량이 선형적으로만 증가.
 - → ViT와 비슷한 성능에도 훨씬 빠른 속도

- 1. 입력받은 이미지를 S개의 Image Patch로 나눔.
- 2. Image Patch를 크기가 C인 token으로 만듦
- 3. token을 Mixer Layer에 넣음
 - a) Token-mixing MLP
 - b) Channel-mixing MLP
- 4. Global Average Pooling
- 5. FC

#03-1 MLP Mixer + SAM

SAM: Sharpness-Aware Minimization Optimizer

- training loss 값을 단순히 줄이는 것만이 아니라 generalization 성능과 관련이 있다고 여겨지는 loss의 sharpness도 고려하여 최적화
- 아래의 이미지와 같이 모델의 학습과정에서 local minima 들이 조금 더 스무스해짐

#03-2 Threshold

<Bayesian Optimization 1> Single Model's Single Model's **Anomaly Score** Prediction 0 Set new value: Apply - Moving Average F1 Score - Threshold 1 0 0 ×2000 times ×16 models

- * Returns : 16 moving average value, 16 thresholds
- * Apply to test set.

<Bayesian Optimization 2>

- * Returns : Softmax(Weight vector with 16 values.)
- * Apply to test set.

THANK YOU

