

Universidad Tecnológica Nacional – Facultad Regional Villa María

Ingeniería en Sistemas de Información

Sintaxis y semántica de los lenguajes

Trabajo Práctico N°1

"Expresiones regulares"

Docentes:

Ing. Rinaldi, Mario
Ing. Palombarini, Jorge

Grupo K

Integrantes:

Alvarez, Darío Joaquín – Bazán, Matías – Berardo, Alan

Año 2020

1.a)

1.b)

Tener en cuenta para cuando se pida AFD

No tiene la estructura de un AFD, que debe tener 2 (cantidad de elementos del alfabeto) transiciones desde cada estado.

1.c)

El diagrama contempla 5 instancias evaluativas, 3 parciales + 2 recuperatorios. En base a eso se define la condición del alumno.

1.d)

Tiene estados repetidos, por lo que resulta ambiguo.

2) Autómata 1

a) Definición formal:

Estados: {q1, q2, q3}
Alfabeto: {0, 1}
Función transición:

	0	1
Q1	Q1	Q2
Q2	Q3	Q2
Q3	Q2	Q2

Estado inicial: {q1}
 Estados finales: {q2}
 Recuerden que el estado inicial es siempre 1, por lo que no se expresa como conjunto con las llaves.

b) El lenguaje regular que reconoce es: {w/w es un string que después de cada 1 contiene una cantidad par de 0} × también puede terminar en 1 sin tener ningún 0

Autómata 2:

a) Definición formal:

- Estados: {q1, q2, s, r1, r2}

Alfabeto: {a, b}Función transición:

	a	b
Q1	Q1	Q2
Q2	Q1	Q2
R1	R2	R1
R2	R2	R1
S	Q1	R1

- Estado inicial: {s}

- Estados finales: {q1, r1}

b) El lenguaje regular que reconoce es: {w/w comienza y termina con a o comienza y termina con b} \Box

Autómata 3:

a) Definición formal:

- Estados: {q0, q1, q2}

Alfabeto: {0, 1, 2, RESET}

- Función transición:

	0	1	2	RESET
Q0	Q0	Q1	Q2	Q0
Q1	Q1	Q2	Q0	Q0
Q2	Q2	Q0	Q1	Q0

- Estado inicial: {q0}
- Estados finales: {q0}
- b) El lenguaje regular que reconoce es: {w/w contiene reset o la suma de sus caracteres es múltiplo de 3}

Autómata 4:

a) Definición matemática:

- Estados: {q1, q2} □

- Alfabeto: {letra, dígito} □

- Función transición:

	Letra	Dígito
Q1	Q2	Q1
Q2	Q2	Q2

Estado inicial: {q1} □Estado final: {q2} □

b) El lenguaje que describe es: {w/w contiene al menos una letra y n canudad de digitos}

Autómata 5:

a) Definición matemática:

- Estados: {q1, q2, q3, q4} □

- Alfabeto: {a, b}

- Función transición:

	А	b
Q1	Q2	Q1
Q2	Q3	Q2
Q3	Q4	Q3
Q4	Q4	Q4

- Estado inicial: {q1}

Estado final: {q3}□

b) El lenguaje que describe es: {w/w contiene como máximo dos a, pudiendo existir no cantidad de o s a ambas iados de cualquiera do ellas}

Autómata 6:

a) Definición matemática:

- Estados: {q0, q1, q2} □

- Alfabeto: {a, b) □

- Función transición:

	А	b
Q0	Q1	Q2
Q1	Q2	Q0
Q2	Q2	Q2

- Estado inicial: {q0}
- Estado final: {q0}
- b) El lenguaje que describe es: {w/w es una secuencia que repite n cantidad de veces el string "ab"}

3)

El funcionamiento del autómata se basa en recibir cadenas conformadas por 0, 1 y 2, y en base a ellas determinar si una cadena es aceptada o no. Una cadena es aceptada cuando la suma de todos los caracteres que conforman la cadena es múltiplo de 3, o cuando dentro de los caracteres se encuentra un RESET, y la suma de ellos da un número que no es múltiplo de 3.

Ejemplos: también acepta 0

Cadenas aceptadas:

00111 = 0 + 0 + 1 + 1 + 1 = 3

 $12\sqrt{=1+2+3=6}$

0011223 = 0 + 0 + 1 + 1 + 2 + 2 + 3 = 9 ×

las cadenas solo pueden contener 0, 1, 2, o (RESET)

11123 = 1 + 1 + 1 + 3 + 3 = 9 ×

Cadenas no aceptadas:

11RESET = 1 + 1 = 2 x

 $12\sqrt{1} = 1 + 2 + 3 + 1 = 7$

001RESET = 0 + 0 + 1 = 1 X

2211RESET = 2 + 2 + 1 + 1 = 6 X

Las cadenas que terminan en (RESET) son aceptadas. una cadena no aceptada es por ej: 1 (RESET) 1

4) Switch on-off:

5.a)

Autómata:

Definición formal:

- Estados: {q1, q2, q3, q4, q5}

- Alfabeto: {0, 1} □

- Función transición:

	0	1
Q1	Q1	Q2
Q2	Q1	Q3
Q3	Q4	Q3
Q3 Q4	Q1	Q5
Q5	Q5	Q5

- Estado inicial: {q1}

- Estados finales: {q5}

5.b)

Autómata:

Definición formal:

- Estados: {q1, q2, q3, q4, q5, q6}

Alfabeto: {0, 1}Función transición:

	0	1
Q1	Q2	Q1
Q2	Q3	Q1
Q3	Q3	Q4
Q4	Q5	Q1
Q5	Q6	Q1
Q6	Q6	Q6

- Estado inicial: {q1}

- Estado final: {q6}

5.c)

Autómata:

Definición formal:

- Estados: {q1, q2, q3, q4, q5}

- Alfabeto: {a, z, c}

		-			-
-	Función t	tra	ns	ici	ón:

	a	Z	С
Q1	Q2	Q1	Q1
Q2	Q3	Q1	Q1
Q3	Q3	Q4	Q1
Q4	Q2	Q1	Q5
Q5	Q5	Q5	Q5

- Estado inicial: {q1}

- Estado final: {q5}

5d)

Autómata:

Definición formal:

- Estados: {q1, q2, q3} □ - Alfabeto: {0, 1} □

- Función transición:

	0	1
Q1	Q2	Q1
Q2	Q3	Q1
Q3	Q3	Q1

- Estado inicial: {q1}

- Estado final: {q3} □

5e)

Autómata:

Definición formal:

- Estados: {q1, q2, q3, q4, q5} —

- Alfabeto: {a, b, c} □

- Función transición:

	Α	В	С
Q1	Q2	Q5	Q5
Q2	Q5	Q3	Q5
Q3	Q5	Q5	Q4
Q4	Q4	Q4	Q4
Q5	Q5	Q5	Q5

- Estado inicial: {q1}

- Estado final: {q4}□

5f)

Autómata:

Definición formal:

- Estados: {q1, q2, q3, q4, q5, q6, q7}

- Alfabeto: {0, 1} □

- Función transición:

	0	1
Q1	Q2	Q4
Q2	Q4	Q3
Q3	Q3	Q5
Q4	Q4	Q4
Q5	Q6	Q3
Q6	Q3	Q7
Q7	Q6	Q5

- Estado inicial: {q1}

- Estado final: {q7} □

5g)

Autómata:

Definición formal:

- Estados: {q1, q2, q3, q4} □

Alfabeto: {a, b} □Función transición:

		L
	a	D
Q1	Q2	Q1
Q2	Q2	Q3
Q3	Q4	Q1
Q4	Q4	Q4

- Estado inicial: {q1}

- Estados finales: {q1, q2, q3}

5h)

Autómata:

Definición formal:

- Estados: {q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12}

- Alfabeto: {0, 1}

- Función transición:

	0	1
Q1	Q2	Q2
Q2	Q3	Q3
Q3	Q4	Q4
Q4	Q5	Q5
Q5	Q6	Q6
Q6	Q7	Q7
Q7	Q8	Q8
Q8	Q9	Q9
Q9	Q10	Q10
Q10	Q11	Q12
Q11	Q11	Q11
Q12	Q12	Q12

- Estado inicial: {q1}

- Estado final: {q12}

5i)

Autómata:

Definición formal:

- Estados: {q1, q2, q3, q4, q5, q6}

- Alfabeto: {0, 1}

- Función transición:

	0	1	
Q1	Q2	Q4	
Q2	Q5	Q3	
Q3	Q3	Q3	
Q4	Q5	Q4	
Q5	Q5	Q6	
Q6	Q4	Q4	

- Estado inicial: {q1}

- Estados finales: {q3, q6}□

5j)

Autómata:

Resuelve el problema, pero puede reducirse a 2 estados

Definición formal:

Estados: {q1, q2, q3}
Alfabeto: {0, 1}
Función transición:

	0	1
Q1	Q2	Q1
Q2	Q3	Q2
Q3	Q2	Q3

- Estado inicial: {q1}

- Estados finales: {q1, q3} □

esta bien planteado, perc acepta algunas cadenas no validas como por ej: 110000, 01000

Autómata:

Estado Inicial?

Definición formal:

- Estados: {q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12}

Alfabeto: {0, 1}□Función transición:

	0	1
Q1	Q6	Q2
Q2	Q8	Q3
Q3	Q9	Q4
Q4	Q10	Q2
Q5	Q6	Q2
Q6	Q7	Q8
Q7	Q6	Q11
Q8	Q11	Q9
Q9	Q12	Q10
Q10	Q5	Q2
Q11	Q6	Q12
Q12	Q6	Q5

- Estado inicial: {q1}

- Estados finales: {q4, q5, q7}

5I)

Autómata:

Definición formal:

- Estados = {q1, q2, q3, q4, q5}
- Alfabeto = {1,0} □
- Función transición:

	0	1
Q1	Q1	Q2
Q2	Q1	Q3
Q3	Q4	Q3
Q4	Q5	Q2
Q5	Q5	Q5

- Estado inicial: {q1} □
- Estados finales: {q1, q2, q3, q4}□

5m)

Autómata:

Definición formal:

- Estados: {q1, q2, q3, q4} □

- Alfabeto: {0, 1} □

- Función transición:

	0	1
Q1	Q1	Q2
Q2	Q1	Q3
Q3	Q3	Q4
Q4	Q4	Q4

- Estado inicial: {q1}

- Estado final: {q3} □

5n)

Autómata:

Definición formal:

- Estados: {q1, q2, q3, q4} □

- Alfabeto: {0, 1}

- Función transición:

	а	b
Q1	Q2	Q1
Q2	Q2	Q3
Q3	Q4	Q3
Q4	Q4	Q1

- Estado inicial: {q1}

- Estado final: {q3}

7)
Se interpreto que comienza con la subcadena "aba", pero en realidad contiene esa subcadena de manera que no acepta cadenas como por ej:aaba, ababa

8)

Diagrama de transición de estados que representa el proceso de subir y bajar la barrera en un peaje. Q1 seria la barrera baja, y Q2 la barrera alta.

Diagrama de transición de estados que muestra las transiciones de estados del agua:

Diagrama de transición de estados que representa el funcionamiento de un reflector que se activa con la detección de oscuridad, y se apaga con la detección de luz.

No tiene tiene la estructura de un ADF, le fintan transiciones

El autómata esta bien, pero necesita una valores del circuito

explicación de que representa cada estado, respecto de los