Reciprocal Hash Tables for Nearest Neighbor Search Xianglong Liu*, Junfeng He^{t,‡}, Bo Lang*

*Beihang University, †Columbia University, ‡Facebook

1. Background

Background

- Nearest Neighbor Search (NNS) is an important problem in domains like information retrieval, classification, and optimization
- Locality-Sensitive Hashing (LSH) gives the paradigm of hash based NNS, which achieves attractive performance than traditional tree based approaches
- **Various scenarios**: unsupervised, supervised, kernelized, multiple feature, multiple probes, multiple bits, etc.
- To improve the search performance, one successful technique is **building multiple hash tables** and returning points in multiple buckets

Main Issues

- Most of state-of-the-art hashing algorithms concentrate on how to generate hash functions for a single hash table
- Random selection as the most widely-used and general strategy faithfully improves the search performance, but usually needs a large number of hash tables

Motivation

- Similar to feature selection, we can select the most informative and independent hash functions, meanwhile considering the relations between tables
- Compatible with any hashing algorithm using different parameter settings or feature types.

2. Problem Formulation

Notations

- A pool of B hash functions $H = \{h_1, h_2, \dots, h_B\}$ $\{h_i: \mathbb{R}^d \to \{-1,1\}\}$ with the index set $V = \{1,2,\dots,B\}$
- N training samples $X = [x_1, x_2, ..., x_N] \in \mathbb{R}^{d \times N}$, encoded by h_i into $Y_i = [h_i(x_1), h_i(x_2), ..., h_i(x_N)]$

Definition

The goal is to build L tables $\{T_l; l = 1, ..., L\}$, each of which consists of K hash functions from $H: T_l = \{h_{l_1}, ..., h_{l_K}; \{l_1, ..., l_K\} \in V\}$.

Function Graph

Vertex and Edge Weighted Graph

$G = (V, E, A, \pi)$

- *V* is the vertex set corresponding to hash functions in *H*
- $\pi = [\pi_1, ..., \pi_B]^T$ are the vertex weights
- $E \subset V \times V$ is the edge set
- $A = (a_{ij})$ are the edge weights

Selection Criteria

- Vertex weight: the accuracy of each hash function: $\pi_i = \exp(\gamma Y_i S Y_i^T)$
- Edge weight: pairwise independence between functions

$$a_{ij} = \exp\left[-\lambda \sum_{v_i, v_i} p(y_i, y_j) \frac{p(y_i, y_j)}{p(y_i)p(y_j)}\right]$$

3. Reciprocal Hash Tables

Informative Tables

Consist of the hash functions preserving neighbor relationships and mutually independent: the dominant set in the graph GTheorem 1 If z^* is a strict local solution of the program

$$\max_{\mathbf{z}, \mathbf{z}} \frac{\frac{1}{2}\mathbf{z}^T \hat{\mathbf{A}}\mathbf{z}}{s.t. \quad \mathbf{z} \geq 0, \mathbf{1}^T \mathbf{z} = 1}$$
Quadratic programming

where $\hat{\mathbf{A}} = \mathbf{\Pi} \mathbf{A} \mathbf{\Pi}$, and $\mathbf{\Pi} = diag(\pi)$, then its support $\sigma(\mathbf{z}^*) = \{i \in \mathcal{V} : z_i^* \neq 0\}$ is the normalized dominant set of graph $G = (\mathcal{V}, \mathcal{E}, \mathbf{A}, \pi)$.

Straightforward table construction strategy: iteratively build hash tables by solving the above problems with respect to the remaining unselected hash functions in the pool H

Reciprocal Tables

- The redundancy among tables: tables should be complementary to each other, so that the nearest neighbors can be found in at least one of them.
- **Reciprocal table construction strategy**: for each table sequentially select the dominant hash functions that well separate the previous misclassified neighbors in a boosting manner
- Predict neighbor relations: current l hash tables on the pair x_i and x_j
- $\mathbf{p}_{ij} = \mathbf{d}_{ij}^l \mu \quad \text{multi-table hamming distance} \\ \mathbf{d}_{ij}^l = \min_{i=1,\dots,l} \sum_{h \in \mathcal{T}_i} \|h(\mathbf{x}_i) h(\mathbf{x}_j)\|_{t=1,\dots,l}$
- Update the similarities: weights on the misclassified neighbor pairs will be amplified to incur greater penalty

4. Experiments

Protocol

- Datasets: SIFT-1M: 1 Million 128-D SIFT and GIST-1M: 1 Million 960-D GIST
- Measure: Precision & recall using Hamming ranking and Hash table lookup

Results

Over basic hashing algorithms

		$ALGORITHMS \rightarrow$	LSH			KLSH			RMMH		
		# Tables \rightarrow	8	12	16	8	12	16	8	12	16
		RAND	16.20	14.42	13.15	19.20	17.46	16.09	26.02	24.87	23.73
	SIFT-1M	DFH	26.88	23.24	16.22	29.97	25.34	18.86	31.87	30.62	28.63
		RDFH	27.60	23.80	16.44	29.40	26.00	19.45	31.23	30.95	29.16
		RAND	8.80	8.51	8.24	11.83	11.20	10.73	11.58	10.96	10.58
	GIST-1M	DFH	9.21	9.30	8.72	14.37	13.63	11.88	13.28	12.68	11.59
		RDFH	9.68	9.67	8.99	14.27	14.00	12.31	13.45	13.03	12.04

Table 2: PH2 (%) of multiple hashing tables over LSH, KLSH, and RMMH on GIST-1M and SIFT-1

Over multiple hashing algorithms

Our proposed method significantly improves the performance of multiple hash tables

Conclusion

- a unified strategy for hash table construction, supporting different hashing algorithms and various scenarios
- a reciprocal strategy in a boosting manner to reduce the redundancy between hash tables