

Universidade de Aveiro

Departamento de Eletrónica, Telecomunicações e Informática

Compiladores

Exame teórico-prático, parte 2

(Ano Letivo de 2022-2023)

Época de recurso, 22/06/2023

Curso:

ALGORITMO do predict:

$$\operatorname{predict}(A \to \alpha) = \left\{ \begin{array}{ll} \operatorname{first}(\alpha) & \text{ss. } \varepsilon \notin \operatorname{first}(\alpha) \\ (\operatorname{first}(\alpha) - \{\varepsilon\}) \cup \operatorname{follow}(A) & \text{ss. } \varepsilon \in \operatorname{first}(\alpha) \end{array} \right.$$

ALGORITMO do first:

$\begin{aligned} & \text{first}(\alpha) \ \{ \\ & \text{if} \ (\alpha = \varepsilon) \ \text{then} \\ & & \text{return} \ \{\varepsilon\} \\ & h = \text{head} \ (\alpha) \qquad \# \ com \ |h| = 1 \\ & \omega = \text{tail} \ (\alpha) \qquad \# \ tol \ que \ \alpha = h \ \omega \\ & \text{if} \ (h \in T) \ \text{then} \\ & & \text{return} \ \{h\} \end{aligned}$

 $(h \rightarrow \beta_1) \in I^*$

first(β, ω)

ALGORITMO do follow

- 1. $\$ \in follow(S)$
- 2. If $(A \to \alpha B \in P)$ then follow(B) \supseteq follow(A)
- 3. If $(A \to \alpha B\beta \in P) \land (\epsilon \notin first(\beta))$ then $follow(B) \supseteq first(\beta)$
- 4. if $(A \to \alpha B\beta \in P) \land (\varepsilon \in \text{first}(\beta))$ then follow $(B) \supseteq ((\text{first}(\beta) \{\varepsilon\}) \cup \text{follow}(A))$
- Sobre o alfabeto T₁ = {a, b, c, d, e, f} considere a gramática G₁ dada a seguir e seja L₁ a linguagem por ela descrita.

$$S \rightarrow A B A$$

- [1,5] (a) Faça a derivação à esquerda da palavra abcdef. Tem de apresentar todos os passos (derivações diretas).
- [2,0] (b) Determine o conjunto predict(S → A B A). Apresente os passos intermédios e/ou o raciocínio adequados para suportar a sua resposta. A simples apresentação da resposta final não será cotada.
 - 2,0] (c) Determine a veracidade da afirmação {a, f} ⊂ follow(B). Apresente os passos intermédios e/ou o raciocínio adequados para suportar a sua resposta. A simples apresentação da resposta final não será cotada.
- (d) Um símbolo não terminal é útil se for simultaneamente acessível e produtivo; é inútil caso contrário. Analisando e apresentando a acessibilidade e a produtividade de D e de E, mostre que, na gramatica G₁, D é útil e E é inútil. Apresente os passos intermédios e/ou o raciocínio adequados para suportar a sua resposta.
 - [2,0] (e) A gramática G₁ é inadequada à implementação de um reconhecedor descendente com lookahead de 1.
 Diga porquê e altere-a de forma a obter uma equivalente que o permita. Basta transcrever as partes alteradas.
 - 2. Sobre o alfabeto $T_2 = \{a, b, c, d, e\}$ considere a linguagem L_2 tal que:

$$L_2 = \{ \ \mathbf{a}^n \mathbf{b}^n (\mathbf{c} | \mathbf{d})^{k-1} (\mathbf{e} \mathbf{e})^{k+1} \ : \ n > 0 \ \land \ k > 0 \ \}$$

- [1,0] (a) Apresente as 2 palavras mais pequenas (em número de letras) que pertencem a L₂.
 - [2,0] (b) Construa uma gramática livre de contexto que represente a linguagem L₂.

 Sobre o alfabeto T₃ = { e ; <> [] }, considere a gramática G₃ dada a seguir, cujo símbolos não terrores. soore o alfabeto $T_3 = \{e : <> [] \}$, considere a gramatica G_3 dans a semi símbolos não terminais seja L_3 a linguagem por ela descrita. Considere ainda os conjuntos follow dos seus símbolos não terminais

R1
$$G \rightarrow N$$

R2 $N \rightarrow *$
R3 $\downarrow * * * L >$
R4 $L \rightarrow B$
 $\downarrow L \downarrow B$
R5 $\downarrow L \downarrow B$
R6 $B \rightarrow \{*\} N$
 $\downarrow N$

A linguagem L_3 representa grafos acíclicos (árvores) com etiquetas nos nós e com etiquetas opcionais $n_{\rm in}$ transições. Por exemplo

é uma árvore com 5 nós e 4 transições, das quais 2 não têm etiquetas. Está árvore é descrita pela palavra

ou

onde os índices nos símbolos terminais e foram acrescentados para tornar clara a correspondência entre a árvore e a palavra.

Considere ainda o conjunto de estados (conjuntos de itens) usado na contrução de um reconhecedor ascendente parcialmente apresentada a seguir, onde $\delta(Z_i,a)$ representa a função de transição de estado. Note que aqui contrariamente ao que acontece no exame modelo, se optou por colocar o marcador de fim de entrada (\$).

$$\begin{split} Z_0 &= \{G \to \cdot N \,\$, \quad N \to \cdot \mathbf{e}, \quad N \to \cdot \mathbf{e} < L > \} \\ \delta(Z_0, N) &= Z_1 = \{G \to N \cdot \$ \} \\ \delta(Z_0, \mathbf{e}) &= Z_2 = \{N \to \mathbf{e} \,\cdot, \quad N \to \mathbf{e} \,\cdot\, C L > \} \\ \delta(Z_2, \mathbf{e}) &= Z_3 = \{N \to \mathbf{e} \,\cdot\, L >, \quad L \to \cdot L \,; \, B, \quad L \to \cdot B, \quad B \to \cdot \{\mathbf{e}\}, \quad B \to \cdot N, \\ N \to \cdot \mathbf{e}, \quad N \to \cdot \mathbf{e} \,<\, L > \} \\ \delta(Z_3, L) &= Z_4 = \{N \to \mathbf{e} \,<\, L \,\cdot\, >, \quad L \to L \,\cdot\, ; \, B\} \\ \delta(Z_3, N) &= Z_5 = \{B \to N \,\cdot\, \} \\ \delta(Z_3, B) &= Z_6 = \{\cdots\} \\ \delta(Z_3, \mathbf{e}) &= Z_2 \\ \delta(Z_3, \mathbf{e}) &= Z_2 \\ \delta(Z_4, \mathbf{e}) &= Z_8 = \{\cdots\} \\ \delta(Z_4, \mathbf{e}) &= Z_9 = \{\cdots\} \end{split}$$

[1,5] (a) Trace a árvore de derivação da palavra e < e < [e] e; e>; [e] e>, que representa o grafo da figura.

[2,0] (b) Determine os conjuntos de itens definidores dos estados Z6 a Z9.

to

(2,0] (c) Preencha as linhas da tabela de reconhecimento (parsing) para um reconhecedor ascendente relativamente aos estados Z₀ a Z₅. O preenchimento não depende da resposta à alínea anterior.

So = whilt

	9	<	3		-		-	CONTRACTOR OF THE PARTY OF		-
2	10		-	1)	1	2	N	L	B
Zo	ANE 70	1						Zi	10000	1
Z_1	0	1	1				accept	-1		
22	- (5.0	D		-	-	AND SECRETARISHMENT OF THE PARTY NAMED IN			
21	1	0	1,5	0	1	X	R2			
23	-12	200	100	31836	1			Zs	Z,	Zo
Z_4	_		151>	0	7 7	(5.)		-	1	-
Zs			0			11	-			1
-			177		100 C	RZ	180		100000	Alvanor .

20 20

[2,0] (d) Sem alterar a gramática e sem introduzir variáveis globais construa uma gramática de atributos que associe ao símbolo inicial G 2 atributos, um que indique o número total de transições e outro o número total de transições com etiqueta que a árvore contém. No exemplo da figura, há 4 transições, 2 com etiquetas. Introduza os atributos auxiliares que necessite. Responda na tabela abaixo.

Produção	Regras semánticas
$G \to N$	ON NEW Suran 2 201 Cx3Nx
N o e	N = null
$N \to e < L >$	Nover= N(x,x)= excea>
$L \to B$	tu to Bu
$L_0 \to L_1$; B	d.x = fxin i Bo
$B \to N$	B N. x
B → [e] N	Bo so [ed] N.x