## **FUERZAS INTERMOLECULARES**

- SE REFIEREN A LAS FUERZAS ENTRE PARTÍCULAS INDIVIDUALES (ÁTOMOS, MOLÉCULAS, IONES) DE UNA SUSTANCIA
- ESTAS FUERZAS SON LAS RESPONSABLES DE LAS PROPIEDADES FÍSICAS DE LAS SUSTANCIAS COMO, TEMPERATURAS DE EBULLICIÓN, DENSIDAD, PRESIÓN DE VAPOR, ETC
- LA EXISTENCIA DE LAS FUERZAS INTERMOLECULARES PERMITE LA EXISTENCIA DE LOS ESTADOS LÍQUIDOS Y SÓLIDOS DE LA MATERIA
- ESTAS FUERZAS (INTERMOLECULAR/ INTERÁTOMOS) SON MUCHO MÁS DÉBILES QUE LAS FUERZAS DE ENLACE (FUERZAS INTRAMOLECULARES/INTRAATÓMICOS) QUE RESULTAN EN LA FORMACIÓN DEL ENLACE QUÍMICO





## **MOLÉCULAS POLARES**

#### INTERACCIÓN DIPOLO-DIPOLO PERMANENTE

Las interacciones permanentes dipolo-dipolo ocurren entre moléculas polares covalentes debido a la atracción entre átomos (+) de una molécula con los átomos (-) de otra.





BF3, SO2, HCI
Un aumento de temperatura
provoca un incremento del
movimiento de vibración,
traslación y rotación de las
moléculas, lo cual genera más
movimientos aleatorios entre las
moléculas y en consecuencia las
interacciones dipolo-dipolo
disminuyen

#### **MOLECULAS POLARES**

#### **PUENTE HIDRÓGENO**

El puente hidrógeno se presenta entre moléculas covalentes polares que tienen hidrógeno y uno de los tres elementos más electronegativos de tamaño pequeño: F, O o N.

El puente hidrógeno son fuerzas de atracción dipolo-dipolo.

Son las fuerzas dipolo-dipolo más fuertes.

Al puente hidrógeno se deben los altos puntos de fusión y ebullición poco comunes de compuestos como el agua, alcohol etílico y amoníaco comparados con otros compuestas de masas moleculares y geometrías moleculares parecidas.



# VARIACIÓN DE LAS TEMPERATURAS DE EBULLICIÓN DE HIDRUROS NO METÁLICOS ATENCIÓN CON LOS COMPUESTOS QUE PRESENTAN FUERZAS INTERMOLECULARES PUENTE HIDRÓGENO



### **MOLÉCULAS NO POLARES**

## FUERZAS DE DISPERSIÓN O FUERZAS DE LONDON

- ✓ FUERZAS DE ATRACCIÓN MUY DÉBILES
- ✓ SÓLO SON IMPORTANTES A UNA DISTANCIA EXTREMADAMENTE CORTAS (1/d7)
  - ✓ PRESENTE EN TODAS LAS SUSTANCIAS
  - ✓ MÁS DÉBILES CUANTO MÁS PEQUEÑA SEA LA MOLÉCULA
- ✓ PRESENTES ENTRE SUSTANCIAS NO POLARES SIMÉTRICAS (SO2, CO2, O2, N2, BR2, H2, C)
   Y ESPECIES MONOATÓMICAS COMO LOS GASES NOBLES (He, Ar, Ne)
- ✓ RESULTAN DE LA ATRACCIÓN DEL NÚCLEO DE CARGA POSITIVA DE UN ÁTOMO POR LA NUBE ELECTRÓNICA DE UN ÁTOMO DE MOLÉCULAS CERCANAS. ESTA ATRACCIÓN INDUCE DIPOLOS TEMPORALES ENTRE ÁTOMOS O MOLÉCULAS VECINOS



#### ATENCIÓN!!!!!!!!!!!!!!!

La *polarizabilidad aumenta* con el *incremento del número de electrones* y, por tanto, con el aumento de tamaño de las moléculas. En consecuencia. Las fuerzas de dispersión son, en general, más fuertes en las moléculas más grandes o con más electrones.

#### LEE CUIDADOSAMENTE!!!!

Las fuerzas de dispersión son las más débiles de todas y están presentes en todas las sustancias!!!!!!

En las moléculas muy grandes o muy polarizables, puede ser aun mayor que las fuerzas dipolo-dipolo o de puente hidrógeno.



## FUERZAS ION -DIPOLO

Estas fuerzas se manifiestan entre moléculas polares y cationes o aniones.





A menor tamaño del ion mayor capacidad para atraer a las moléculas polares



#### **FUERZAS ION -DIPOLO**

Estas fuerzas se manifiestan entre moléculas polares y cationes o aniones.

Los iones polarizan las moléculas POLARES



#### FUERZAS DIPOLO- DIPOLO INDUCIDO

Estas fuerzas se manifiestan entre átomos, iones, moléculas polares con moléculas no polares.

Los átomos, iones o moléculas polares polarizan a las moléculas no polares



## COMPARACIÓN DE LAS DISTINTAS FUERZAS INTERMOLECULARES



| Comparison of Bonding and Nonbonding (Intermolecular) Forces |                          |                                                          |                    |                                     |
|--------------------------------------------------------------|--------------------------|----------------------------------------------------------|--------------------|-------------------------------------|
| Force                                                        | Model                    | Basis of<br>Attraction                                   | Energy<br>(kJ/mol) | Example                             |
| Bonding                                                      |                          |                                                          | estra 1 a          | legit mad                           |
| Ionic                                                        | + - +                    | Cation-anion                                             | 400-4000           | NaCl                                |
|                                                              | + - +                    |                                                          |                    |                                     |
| Covalent                                                     | 0:0                      | Nuclei-shared<br>e pair                                  | 150-1100           | н—н                                 |
| Metallic                                                     | + + + +                  | Cations—delocalized electrons                            | 75–1000            | Fe                                  |
| Nonbonding (Int                                              | rermolecular)            |                                                          |                    | (Tab)                               |
| Ion-dipole                                                   | +                        | Ion charge—<br>dipole charge                             | 40-600             | Na+···· O H                         |
| H bond                                                       | δ− δ+ δ−<br>−A−H·····:B− | Polar bond to H-<br>dipole charge<br>(high EN of N, O, F | 10–40              | :Ö—н····:Ö—н<br> <br>  н н          |
| Dipole-dipole                                                | <b></b>                  | Dipole charges                                           | 5-25               | I-CIICI                             |
| Ion-induced dipole                                           | +                        | Ion charge— polarizable e cloud                          | 3–15               | Fe <sup>2+</sup> ····O <sub>2</sub> |
| Dipole–induced dipole                                        |                          | Dipole charge—<br>polarizable e cloud                    | 2–10               | H—CI····CI—CI                       |
| Dispersion (London)                                          |                          | Polarizable e clouds                                     | 0.05-40            | F—F····F—F                          |

#### TIPOS DE FUERZAS

## **INTERACCIÓN**

- IÓNICO
- COVALENTE
- ION-DIPOLO
- DIPOLO-DIPOLO
- (PUENTE HIDRÓGENO)
- DIPOLO-DIPOLO
- DIPOLOS TEMPORALES(LONDON)

#### **FUERZA**

- MÁS FUERTE
- FUERTE
- FUERTE
- MODERADA
- DÉBIL
- MÁS DÉBIL

## TEMPERATURA EBULLICIÓN (°C)

- ALTA
- ALTA
- ALTA
- ALTA
- BAJA
- MÁS BAJA

