

PROPOSAL PROGRAM KREATIFITAS MAHASISWA

"Sistem Komunikasi Dalam Air Dengan Sinar Infrared Untuk Pengiriman Teks Dua Arah"

BIDANG KEGIATAN PKM PENELITIAN

Diusulkan Oleh:

hInes Sastre Umayya 171331018/2017

Shelvia Ayu Putri 161331062/2016

Rasendriya Rizq Noor Adli 181331056/2018

POLITEKNIK NEGERI BANDUNG

BANDUNG

2019

PENGESAHAN PKM Penelitian

1. Judul Kegiatan : Sistem Komunikasi dalam Air Sinar Infrared untuk dengan Pengiriman Teks Dua Arah 2. Bidang Kegiatan : PKM-P Ketua Pelaksana Kegiatan Nama Lengkap : Ines Sastre Umayya b. NIM : 171331018 c. Jurusan : Teknik Elektro : Politeknik Negeri Bandung d. Perguruan Tinggi e. Alamat Rumah dan No Tel./HP: Perum Bumi Gandasari, blok 6 No.10, RT 25/07, Ds.Cigelam Kec.Babakan Cikao, Purwakarta. Email : Inesumayya9@gmail.com 4. Anggota Pelaksana Kegiatan/Penulis : 2 Orang 5. Dosen Pendamping a. Nama Lengkap dan Gelar : T.B Utomo, S.T, M.T b. NIDN/NIDK : 0004086104 c. Alamat Rumah dan no Tel/HP : Komp Taman Mutiara Blok D2 No.34, Cimahi 6. Biaya Kegiatan Total a. Kemenristekdikti : Rp 11.695.500,-: 5 Bulan 7. Jangka Waktu Pelaksanaan Bandung, Januari 2019 Menyetujui Wakil/Pembantu Dekan atau Ketua Ketua Pelaksana Kegiatan, Jurusan/Departemen/Program Studi (Ines Sastre Umayya) NIP 195401011984031001 NIM. 171331018 Wakil Rektor Bidang Kemahasiswaan/ Dosen Pendamping, Direktur Politeknik, (Angki Apriliandi Rachmat, SST., M.T) (T.B Utomo, S.T, M.T)

NIDN.0004086104

NIP 198104252005011002

DAFTAR ISI

LEMBAR PENGESAHAN	ii
DAFTAR ISI	iii
DAFTAR TABEL	iv
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Tujuan	2
1.3 Ruang Lingkup	2
1.4 Luaran	
BAB II TINJAUAN PUSTAKA	3
2.1Tinjauan Pustaka	3
BAB III METODE PENELITIAN	4
3.1 Tahapan Penelitian	4
3.2 Luaran	4
3.3 Indikator Capaian yang Terukur Di Setiap Tahapan	4
3.4. Teknik Pengumpulan Data dan Analisis Data	5
3.4.1 Teknik Pengumpulan Data	5
3.4.2 Analisis Data	
3.5 Penyimpulan hasil penelitian	
BAB IV BIAYA DAN JADWAL KEGIATAN	
4.1 Anggaran Biaya	
4.2 Jadwal kegiatan	
DAFTAR PUSTAKA	7
LAMPIRAN- LAMPIRAN	9
Lampiran 1 Biodata Ketua, Anggota, dan Dosen Pembimbing	
Lampiran 2 Justifikasi Anggaran Kegiatan	17
Lampiran 3 Susunan Organisasi Tim Kegiatan dan Pembagian Tugas	20
Lampiran 4 Surat Pernyataan Ketua Pelaksana	21
Lampiran 5 Gambaran Teknologi yang Hendak Dikembangkan	22

DAFTAR TABEL

Tabel 4.1 Rekapitulasi Rencana Anggaran Biaya PKM P
17
Tabel 4.2 Susunan Organisasi Tim Kegiatan dan Pembagian Tugas
20

BAB I PENDAHULUAN

1.1 Latar Belakang

Komunikasi di dalam air menjadi kebutuhan komunikasi modern yang mendunia. Seperti komunikasi antar kapal selam, satelit dengan kapal selam,kapal biasa dengan kapal selam (Vikran,2012).komunikasi dalam air nirkabel memiliki peran penting dalam pengaplikasian eksplorasi minyak dan gas, pengawasan pada lingkungan,navigasi,mengontrol polusi di dalam laut (Camila M,dkk.,2016). selain itu dapat digunakan untuk mendeteksi dan peringatan awal bencana di dalam laut serta untuk kepentingan keamanan dan pertahanan nasional (XI Zhang, dkk.,2015).

Pada komunikasi didalam air, membutuhkan beberapa persyaratan. Seperti distance error, time error, speed error (Menying jiang, 2011). Hal ini disebabkan bahwa komunikasi di air dengan di darat sangatlah berbeda. Air memiliki massa jenis yang berbeda dengan udara. Di darat, kita dapat menggunakan udara sebagai media transmisi. Namun di dalam air,contohnya dilaut, sangat dipengaruhi oleh konsentrasi air laut (komunikasi di dalam laut), tekanan,suhu,kuantitas cahaya,angin, dan gelombang air (Camila M,dkk.,2016). Ada beberapa teknologi komunikasi di dalam air, 3 diantaranya pengaplikasian gelombang elektromagnetik, penggunaan laser, dan komunikasi nirkabel menggunakan inframerah sebagai media transmisi. Komunikasi di dalam air biasanya menggunakan frekuensi rendah,dan dalam hal ini teknologi nirkabel dapat digunakan untuk pengukuran yang akurat dalam air saat memiliki komunikasi bandwidth tinggi(Vikran, 2012). menurut sebuah riset yang dilakukan oleh jaime Lloret, dkk menyatakan bahwa propagasi gelombang elektromagnetik pada frekuensi tinggi di dalam air mungkin terjadi (Carruthers dan Jeffrey B.,2002). Namun dikarenakan komunikasi dalam air kebanyakan menggunakan frekuensi rendah sehingga menyebabkan komunikasi dalam air yang bekerja pada frekuensi tinggi jarang. Teknologi Elektromagnetik ini memiliki tingkat kesulitan yang tinggi yang belum menjadi ranah kami dalam mengerjakan proyek besar menggunakan teknologi ini. Adapun solusi lain adalah komunikasi nirkabel dalam air menggunakan laser.blue – green laser dapat melakukan propagasi dari ratusan hingga beberapa kilometer di dalam laut (Vikran, 2012). Laser dapat diaplikasikan dalam komunikasi antar kapal selam dan untuk keperluan navigasi. Laser dapat digunakan pada ruang lingkup yang besar/ lebih luas. Solusi selanjutnya adalah komunikasi dalam air menggunakan inframerah. Sistem ini lebih murah namun hanya dapat digunakan pada jarak yang dekat (Vikran, 2012).

Penelitian ini akan mendalami tentang penggunaan inframerah sebagai media transmisi komunikasi dalam air. Berdasarkan sumber yang telah kami dapat ,sistem komunikasi dengan media transmisi infra merah dapat diterapkan frekuensi pada 40 KHz, 0.5 W dengan jarak dibawah 3m (Menying jiang,2012). Namun kami

perlu menguji coba kinerja sistem tersebut pada penelitian ini. Rencana kami, penggunaan sistem ini akan digunakan oleh penyelam untuk melakukan komunikasi. Kelemahan dalam penggunaan inframerah adalah jangkauan nya yang dekat. Sehingga kami akan mengaplikasikannya pada kedalaman air dengan jarak kurang dari 10 m. Kekurangan lainnya adalah pada keadaan air yang tidak tenang, memungkinkan terjadinya gangguan pada pengiriman informasi, seperti pembelokan sinyal atau sinyal yang tidak tersampaikan kepada penerima.sehingga dibutuhkan pengujian terlebih dahulu pada kedalaman air tertentu, medan air, dan hal – hal lain yang mempengaruhi komunikasi di dalam air,sehingga pada penelitian ini kami mengaplikasikan *prototype* yang akan di buat pada air danau atau sungai yang memiliki kondisi air yang tenang. Pengimplementasiannya adalah menggunakan display pengirim dan penerima serta *keyboard* untuk memungkinkan mengetik teks yang hendak dikirim kepada penerima.

1.2 Tujuan

- a. Penyelam dapat mendapat berbagai informasi di air dan menyampaikan kendala yang di dapat.
- b. Penyelam juga dapat berkomunikasi dengan penyelam lainnya di dalam air

1.3 Ruang Lingkup

Batasan yang membatasi masalah dalam realisasi proyek ini adalah :

- a. Pemancar dan penerima yang memungkinkan berkomunikasi teks dua arah
- b. Air yang digunakan yaitu air jernih
- c. Mengetahui hambatan yang terjadi pada air jernih, air tanah dan air garam
- d. Sistem komunikasi data untuk aplikasi pengiriman teks.

1.4 Luaran

Target luaran yang diharapkan dalam program ini:

- a. Mampu membuat *prototype* sebagai system komunikasi data dua arah antara dua penyelam.
- b. *Prototype* yang dibuat berhasil mengirim dan menerima teks pada jarak tertentu.

BAB II TINJAUAN PUSTAKA

2.1Tinjauan Pustaka

Ada beberapa teknologi komunikasi di dalam air, 3 diantaranya pengaplikasian gelombang elektromagnetik, penggunaan laser, dan komunikasi nirkabel menggunakan inframerah sebagai media transmisi. Komunikasi di dalam air biasanya menggunakan frekuensi rendah,dan dalam hal ini teknologi nirkabel dapat digunakan untuk pengukuran yang akurat dalam air saat memiliki komunikasi bandwidth level tinggi (Vikran, 2012). menurut sebuah riset yang dilakukan oleh jaime Lloret ,dkk menyatakan bahwa propagasi gelombang elektromagnetik pada frekuensi tinggi di dalam air mungkin terjadi (Carruthers dan Jeffrey B.,2002). Namun dikarenakan komunikasi dalam air kebanyakan menggunakan frekuensi rendah sehingga menyebabkan komunikasi dalam air yang bekerja pada frekuensi tinggi jarang. Teknologi Elektromagnetik ini memiliki tingkat kesulitan yang tinggi yang belum menjadi ranah kami dalam mengerjakan proyek besar menggunakan teknologi ini. Solusi lain adalah komunikasi nirkabel dalam air menggunakan laser. Blue – green laser dapat melakukan propagasi dari ratusan hingga beberapa kilometer di dalam laut (Vikran, 2012). Laser dapat diaplikasikan dalam komunikasi antar kapal selam dan untuk keperluan navigasi. Penggunaan laser digunakan pada proyek yang lebih besar.

Selain menggunakan laser, komunikasi dalam air juga bisa menggunakan sinar infra merah. Gelombang sinar infra merah termasuk dalam gelombang elektromagnetik yang berada dalam rentang frekuensi 300 GHz sampai 40.000 GHz. Sinar infra merah dihasilkan oleh proses di dalam molekul dan benda panas. Getaran atom dalam molekul-molekul benda yang dipanaskan merupakan sumber gelombang inframerah. Oleh karena itu, sinar inframerah sering disebut radiasi panas. Infra merah sangat rentan terhadap cahaya, ketika cahaya yang dimasuk bukan hanya dari cahaya infra merah (dalam keadaan dibawah terik matahari), maka cahaya infrared tidak akan bekerja dengan maksimal dikarenakan gangguan dari cahaya yang lain. Oleh karena itu, sinar infra merah lebih baik digunakan pada saat gelap(tidak ada cahaya lain yg masuk) agar dapat bekerja dengan sempurna.

Sehingga pada penelitian ini, kami memilih sistem komunikasi data dalam air dengan media sinar infra merah yang termodulasi untuk aplikasi pengiriman teks dua arah yang cocok berdasarkan tingkat keilmuan yang kami miliki saat ini.

BAB III METODE PENELITIAN

3.1. Tahapan Penelitian yang akan dilaksanakan:

- a. Menguji karakteristik air terhadap cahaya infra merah
- b. Mendapatkan hubungan antara daya pancar cahaya infra merah dan jarak transmisi dalam air
- c. Menginventarisir cahaya cahaya pengganggu dalam air
- d. Menentukan teknik pengolahan cahaya yang tepat untuk mengatasi gangguan cahaya pengganggu dalam air tersebut, misalnya: teknik modulasi dalam protokol
- e. Membuat komunikasi data satu arah
- f. Mengembangkan komunikasi dua arah
- g. Merancang pengemasan system kedap air
- h. Melakukan uji coba kinerja system

3.2 Luaran:

- a. Prototype alat komunikasi teks dua arah antara dua penyelam
- b. Seminar nasional

3.3 Indikator capaian yang terukur di setiap tahapan:

- a. Mendapatkan kurva redaman cahaya dalam air
- b. Mendapatkan grafik hubungan antara daya pancar cahaya dan jarak transmisi dalam air
- c. Mendapatkan daftar dari cahaya pengganggu dalam air
- d. Mendapatkan jenis modulasi dan protocol apa yang tepat
- e. Mendapatkan satu alat pemancar dan penerima yang memungkinkan komunikasi data satu arah saja
- f. Mendapatkan satu alat pemancar dan penerima yang memungkinkan komunikasi data dua arah
- g. Mendapatkan kemasan yang kedap air
- h. Prototype berhasil mengirim dan menerima teks pada jarak tertentu

3.4 Teknik Pengumpulan Data dan Analisis Data

3.4.1 Teknik pengumpulan data

Dalam hal ini terdapat du acara yaitu:

a. Analog

Mengumpulkan data kuat sinyal yang diterima di berbagai kondisi lingkungan air, lalu mengamati apa yang mempengaruhi kuat sinyal sinar infra merah yang dikirim.

b. Digital

Menerima data – data berbagai kode ASCII yang dikirimkan, lalu mengamati konsistensi huruf – huruf yang diterima.

3.4.2 Analisis data

- a. Redaman cahaya dalam air dapat di analisis dari kurva yang telah di dapat.
- b. Dalam komunikasi data perlu diuji daya pancar cahaya dan jarak transmisi yang dapat dilihat hubungannya dari grafik.
- c. Cahaya cahaya penggangu perlu di teliti karena dapat menghambat komunikasi data.
- d. modulasi dan protokol yang tepat perlu diketahui untuk mengatasi gangguan cahaya.
- e. Pembuatan komunikasi data satu arah merupakan tahap awal untuk pembuatan komunikasi data dua arah yang kemudian perlu di dapat pemancar dan penerima yang memungkinkan dalam komunikasi data dua arah ini.
- f. Mendapatkan kemasan yang kedap air perlu diuji materialnya yang tepat dan tahan dalam kedalaman air tertentu serta mampu mengatasi gangguan - gangguan dari luar yang mungkin terjadi.
- g. Untuk keberhasilan mengirim dan menerima teks pada jarak tertentu, perlu perlu dilakukan ujicoba kinerja sistem berdasarkan parameter parameter yang telah ditentukan.

3.5 Penyimpulan Hasil Penelitian

Keberhasilan penelitian ini dipengaruhi hal – hal berikut:

- a. Redaman cahaya di dalam air
- b. Daya pancar cahaya
- c. jarak transmisi data
- d. modulasi dan protokol yang tepat
- e. Penggunaan pemancar dan penerima yang memungkinkan untuk komunikasi 2 arah di dalam air

BAB IV BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Tabel 4.1. Ringkasan Anggaran Biaya PKM-P

No	Pengeluaran	Harga (Rp)
1	Peralatan Penunjang	5.572.500
2	Bahan Habis Pakai	4.513.000
3	Perjalanan	300.000
4	Lain-Lain	1.310.000
	Total (Keseluruhan)	11.695.500

4.2 Jadwal Kegiatan

Tabel 4.2. Jadwal Kegiatan PKM-P

Rancangan Kegiatan		Bulan														
A. PERANCANGAN	1	1	1	1	2	2	2	2	3	3	3	3	4	4	5	5
Merancang Inkubator																
2. Membuat Skema rangkaian																
3. Membeli material dan komponen																
B. REALISASI																
Menginstal aplikasi arduino dan aplikasi penunjang lainnya. Membuat program receiver dan transmitter Menguji ulang dan																
menganalisis keberhasilan program yang sudah dibuat																
Penyempurnaan program dan membuat rangkaian pada protoboard																
4. Uji coba alat dengan jarak tertentu(uji kemampuan infrared di darat)																
5. Uji coba alat didalam air pada jarak kurang lebih 1 m																
6. Uji coba alat antara receiver dan transmitter didalam air																

DAFTAR PUSTAKA

Vikran, Anjesh Kumar, Dr. R. S Jha (2012,Oktober). "comparison off underwater laser communication system with underwater acoustic sensor network"

Camila M,dkk.(2016) " A survey of underwater wireless communication technologies". Dipetik Mei 20,2018, dari website: https://jcis.sbrt.org.br

XI Zhang, dkk. (2015). "Underwater wireless communication and network theory and application part 1". Dipetik Mei,19,2018, dari jurnal: IEEE Communication Magazine

Menying jiang et al(2011). "Simple Underwater wireless communication system sciverse science direct"

Carruthers, Jeffrey B. (2002) . "Wireless Infrared Communications". Dipetik Mei,20,2018, dari website : wireless_ir_com

Maya Erna (2013). "BAGIAN 13 : SINAR INFRARED" Dipetik Januari,03,2019, dari blogspot : http://mayaerna.blogspot.com/2013/06/sinar-inframerah.html

Annu Cigema (2013). "Sinar Infra merah" Dipetik Januari,03,2019, dari website : http://annucigema.blogspot.com/2013/06/sinar-infra-merah.html

Sukirman OMAN, dkk. (2010). "STUDI PERANCANGAN 'PROTOKOL' DALAM SISTEM KOMUNIKASI BAWAH AIR DI INDONESIA DENGAN MENGGUNAKAN METODE EKSPERIMEN AKUSTIK". Dipetik Januari,2019, dari Seminar Nasional Teknologi dan aplikasi kelautan.

LAMPIRAN-LAMPIRAN

Lampiran 1 Biodata Ketua, Anggota, dan Dosen Pendamping

1. Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Ines Sastre Umayya
2	Jenis Kelamin	Perempuan
3	Program Studi	D4 Teknik Telekomunikasi
4	NIM	171331018
5	Tempat dan Tanggal Lahir	Purwakarta, 25 November 1998
6	E-mail	Inesumayya9@gmail.com
7	Nomor Telepon/HP	089664274417

B. Riwayat Pendidikan

		SD	SMP	SMA
Nama Institusi		SDN	ON MTS Negeri SMAN	
		Mulyamekar Purwakarta		Purwakarta
Jurusan		-	-	IPA
Tahun	Masuk-	2004-2010	2010-2013	SMAN 2
Lulus				Purwakarta

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	-	-	-

D. Penghargaan dalam 5 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "Sistem Komunikasi dalam Air dengan Sinar infrared Untuk Pengiriman Teks Dua Arah"

Bandung, Januari 2019 Pengusul,

Ines Sastre Umayya

2. Biodata Anggota 1

A. Identitas Diri

1	Nama Lengkap	Shelvia Ayu Putri
2	Jenis Kelamin	Perempuan
3	Program Studi	D3 Teknik Telekomunikasi
4	NIM	161331062
5	Tempat dan Tanggal Lahir	Purwakarta, 05 Desember 1998
6	E-mail	shlviaap@gmail.com
7	Nomor Telepon/HP	+6285723862897

B. Riwayat Pendidikan

	SD	SMP	SMA	
Nama Institusi	SDN 2	SMPN 4	SMAN 2	
	SUKAJAYA PURWAKARTA		PURWAKARTA	
Jurusan	-	-	IPA	
Tahun Masuk-	2004 -2010	2010-2013	2013-2016	
Lulus				

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat

D. Penghargaan dalam 5 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "Sistem KomunikasI dalam Air dengan Sinar infrared Untuk Pengiriman Teks Dua Arah

Bandung, Januari 2019 Pengusul,

Shelvia Ayu Putri

Biodata Anggota 2

A. Identitas Diri

1	Nama Lengkap	Rasendriya Rizq Noor Adli
2	Jenis Kelamin	Laki- laki
3	Program Studi	D3 Teknik Telekomunikasi
4	NIM	181331056
5	Tempat dan Tanggal Lahir	Subang, 8 Oktober 2000
6	E-mail	rasendriyarizq@gmail.com
7	Nomor Telepon/HP	089646641477

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	SDN	SMPN 1	SMAN 1
	Kamarung II	Subang	Subang
Jurusan	-	-	IPA
Tahun Masuk- Lulus	2006-2012		

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No	Nama Pertemuan/Seminar Ilmiah	Judul Artikel	Waktu dan
·		Ilmiah	Tempat
1	-	-	-

D. Penghargaan dalam 5 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Sertifikat peserta Galaksi KSR 9 UPI	UPI	2016
4.	Sertifikat Sosialisasi 4 Pilar MPR RI	UPI	2018

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "Sistem Komunikasi dalam Air dengan Sinar infrared Untuk Pengiriman Teks Dua Arah"

Bandung, Januari 2019

Pengusul,
Rasendriya Rizq Noor Adli

A. Biodata DosenPembimbing Identitas Diri

1	Nama Lengkap	T.B Utomo, S.T,. M.T	
2	Jenis Kelamin	Laki-laki	
3	Program Studi	Teknik Telekomunikasi	
4	NIP	196108041989031003	
5	5 Tempat dan Tanggal Lahir Cilacap, 4 Agustus 1961		
6	E-mail	tebeutomo@yahoo.com	
7	Nomor Telepon/HP	<u>08122384767</u>	

B. Riwayat Pendidikan

	S1	S2	S3
Nama Institusi	Institut Teknologi	Institut Teknologi	
	Nasional	Bandung	
		Teknik	
		Telekomunikasi	
Jurusan	Teknik Elektro	Sistem Informasi	
Tahun Masuk-	1995-1999	1992-1994	

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No	Nama Pertemuan/Seminar Ilmiah	Judul Artikel	Waktu dan
·		Ilmiah	Tempat
1	-	-	-

D. Penghargaan dalam 5 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu

persyaratan dalam pengajuan PKM-KC.

Bandung, Januari 2019

Dosen Pembimbing,

(T.B Utomo S.T,. M.T)

Lampiran 2 Penggunaan dana

1. Peralatan Penunjang

		Justifikasi		Harga	Harga Total
No.	Komponen	Pemakaian	Volume	Satuan (Rp)	_
110.				Satuali (Kp)	(Rp)
	Akrilik	Bahan untuk	_		
1	2 x 3	pembuatan kotak uji	2 meter	1.050.000	2.100.000
	2 11 0	coba			
		Bahan untuk			
2	Lem Kaca	menyambungkan	1 kaleng	20.000	20.000
2		case			
	Lem	Bahan untuk	1 11.	17.500	17.500
4	waterproof	menempelkan case	1 buah	17.500	17.500
	NA 1.	Mengukur tegangan	1.1 1	200,000	200,000
5	Multimeter	dan arus	1 buah	200.000	200.000
		Tempat penempatan			
6	PCB	rangkaian	5 buah	20.000	100.000
	W-4				
	Waterproof	Tempat menyimpan	0.1 1	500,000	1 000 000
7	case	alat anti air	2 buah	500.000	1.000.000
	custom				
	Solder	Alat untuk membuat	1 buah	85.000	85.000
9		case			
	Laptop	Untuk membuat	1 buah	2.300.000	2.000.000
10		program	1 00011	2.300.000	2.000.000
	Isi lem	Bahan untuk lem	10 buah	5.000	50.000
11	tembak	tembak	10 ouall	3.000	50.000
	Sub Total (R	5.572.500			
	,				

2. Bahan Habis Pakai

No	Komponen	Justifikasi Pemakaian	Volume	Harga Satuan(Rp)	Harga Total (Rp)
1	Arduino MEGA	Pengolahan data	2 buah	450.000	900.000
2	Arduino Uno	Pengolahan data	2 buah	175.000	350.000
2	TSOP 1738 receiver	Untuk mengirim data	10 buah	17.500	175.000
3	IR LED CCTV	Untuk mengetahui hambatan dalam air	4 buah	180.000	720.000

4	LCD	Menampilkan komunikasi berupa teks	2 buah	75.000	150.000
7	Keypad 8 pin	Untuk menuliskan teks yang akan ditampilkan pada lcd	2 buah	40.000	80.000
8	Toolkit Elektronik	Untuk alat perancangan dan pembangunan komponen	1 buah	500.000	500.000
9	Protoboard	Untuk merangkai rangkaian	4 buah	35.000	150.000
10	Function generator	Untuk menampilkan gelombang sinyal	1 buah	350.000	350.000
11	Kabel Jumper	Bahan untuk membuat rangkaian	75 buah	1.000	75.000
12	Baterai 12V	Bahan untuk daya pada IR LED	20 buah	13.500	270.000
13	Modul RX dan TX	Bahan untuk membuat rangkaian	4 buah	47.500	300.000
14	Adaptor	Bahan untuk daya pada IR LED	3 buah	85.000	255.000
15	Foto transistor	Untuk menerima cahaya pada IR LED	6 buah	25.000	150.000
16	Resistor	Bahan untuk membuat rangkaian	20 buah	100	2000
17	IR LED	Bahan untuk percobaan pada rangkaian	6 buah	3.500	21.000
18	IR 34 LED	Bahan untuk percobaan pada air	1 buah	45.000	45.000
19	Kabel- kabel	Bahan untuk menyambungkan IR LED	20 meter	1.000	20.000
		4.513.000			

1. Perjalanan

No .	Kompon en	Justifikasi Pemakaian	Volum e	Harga satuan	Harga (Rp)
1	Perjalanan ke toko- toko di Bandung	Survey, pencarian dan pembelian alat serta komponen	10 liter	9.000	90.000
2	Perjalanan ke toko- toko di Jakarta	Survey, pencarian dan pembelian alat serta komponen	30 liter	9.000	210.000
3	Kendaraa n untuk survey	Survey, pencarian dan pembelian alat serta komponen	3 kali	Pribadi	Pribadi
Sub Total (Rp)					300.000

2. Lain-lain

No	Komponen	Justifikasi Pemakaian	Volume	Harga satuan	Harga (Rp)
1	Penggandaa n dan jilid laporan	Penyusunan Proposal	4 eksemplar	45.000	180.000
2	Materai 6000	Penyusunan Proposal	4 buah	7.500	30.000
3	Print dan jilid laporan	Penyusunan laporan	5 eksemplar	70.000	350.000
4	Seminar Workshop	Melatih skill	3 orang	250.000	250.000
Subtotal (Rp)					1.310.000

3. Harga Total

No	Pengeluaran	Harga (Rp)
1	Peralatan Penunjang	5.572.500
2	Bahan Habis Pakai	4.513.000
3	Perjalanan	300.000
4	Lain-Lain	1.310.000
	Total (Keseluruhan)	11.695.500

Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas

No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Ines Sastre Umayya (171331018)	D3 Teknik Telekomunikasi	Teknik Elektro	30 minggu	Membuat program untuk pengirim dan penerima
2	Shelvia Ayu Putri S (161331062)	D3 Teknik Telekomunikasi	Teknik Elektro	30 minggu	Membuat rangkaian pengirim
3	Rasendriya Rizq Noor Adli 181331056	D3 Teknik Telekomunikasi	Teknik Elektro	30 minggu	Membuat rangkaian penerima

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA PENELITI/PELAKSANA

Yang bertanda tangan di bawah ini: Nama : Ines Sastre Ummaya

NIM : 171331018

Program Studi : D4 Teknik Telekomunikasi Fakultas /Jurusan : Teknik Elektro

Dengan ini menyatakan bahwa usulan (**Isi sesuai dengan bidang PKM**) saya dengan judul :

Sistem Komunikasi Data dalam Air dengan Media Sinar infra merah Termodulasi Untuk Aplikasi Pengiriman Teks

yang diusulkan untuk tahun anggaran 2018 adalah **asli karya kami dan belum** pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Mengetahui, Bandung, Januari 2019 Yang menyatakan,

Sekretaris Jurusan II

Meterai Rp6.000 Tanda tangan

Ir. Usma B. Hanafi, M.Eng. Ines Sastre Ummaya NIP. 196301031991031002 NIM.171331018

Lampiran 5 Gambaran Teknologi yang Hendak Diterapkembangkan

5.1 Gambaran umum sistem

Gambar 1 Ilustrasi penggunaan alat pada air tawar yang dilakukan oleh 2 penyelam

Pada ilustrasi diatas, kedua penyelam memegang sebuah wadah transparan anti air yang berisi keypad lcd dan mikrokontroler . inframerah adalah media transmisi dalam komunikasi dua penyelam diatas. Dalam kehidupan nyata, inframerah tidak terlihat dengan kasat mata, namun dengan ilustrasi tersebut, kami berusaha menunjukan bahwa komunikasi tersebut menggunakan bantuan inframerah.

Gambar 2. Gambar *prototype* yang akan di buat dilihat dari sisi depan

Gambar 3. Gambar prototype yang akan di buat dilihat dari sisi samping

Gambar 4. ilustrasi prototype di air

5.2 Blok Diagram Sistem

Gambar 3. Blok diagram sisi pengirim dan penerima

Seluruh komponen memerlukan *power supply*, kecuali komponen pasif. *LCD* berfungsi untuk menampilkan teks yang akan dikirim oleh pengirim. *Keyboard* untuk mengetik teks. IR TX adalah media untuk mengirim data melalui kedipan cahaya inframerah. Sedangkan IR RX (TSOP) akan menerima data.

Saat IR RX (TSOP) masuk ke arah mikrokontroler menunjukan bahwa TSOP menerima data lalu mengirim data tersebut ke mikrokontroller. Lalu IR TX meneruskan data dari mikrokontroller ke led infra merah untuk selanjutnya dikedipkan oleh led infra merah. Secara keseluruhan proses yang terjadi dalam sistem ini adalah mengirim data oleh IR TX lalu data diterima oleh IR RX (TSOP). setelah itu, data di olah oleh mikrocontroller selanjutnya keluaran akan ditampilkan di LCD.

Gambar 4. Diagram blok secara keseluruhan

5.3 Diagram alir proses pengiriman teks

