LECTURE 29

iz= Sinx.

- Not possible for first order autonomous systems to show oscillatory behaviour.

$$\dot{x} = \alpha - \beta x^2$$
. $\rightarrow First points $\dot{x} = 0 = 0 \Rightarrow x^4 = \pm \sqrt{\beta}$.$

$$\dot{x} = a - b x^2, \quad \alpha, b > 0$$

$$=\alpha\left(1-\frac{\chi^2}{\alpha/b}\right).$$

$$\Rightarrow \frac{dx}{dt} = \alpha \left(1 - \frac{\pi^2}{a/b}\right).$$

$$\Rightarrow \frac{dx}{d(at)} = 1 - \frac{x^2}{a/b} = (1 - x^2).$$

$$\Rightarrow \sqrt{\frac{d}{d}} \frac{d(at)}{d(at)} = 1 - x^2$$

$$= \frac{d(\sqrt{ab}t)}{d(\sqrt{ab}t)} = 1 - x^2$$

$$X^{2} = \frac{x^{2}}{(\%)}$$

$$= \frac{x}{(\%)}$$

$$x = \frac{x}{\sqrt{2}}$$

$$3) dx = \frac{dx}{\sqrt{6}}$$

$$3) dx = \sqrt{9/6} dx$$

WIN LINEAR STABILITY ANALYSIS.

$$\dot{x} = f(x).$$

Let xx be a fixed point.

Let $\eta(t) = x(t) - x^*$ be some small deviation from fixed point x^* .

$$\dot{\gamma}(t) = \int (\gamma + x^*)$$
.

$$= f(x_*) + J f_1(x_*) + O(J_5).$$

$$-\eta f'(x^*) + O(\eta^2)$$
.

$$\eta_{\sim} f'(\pi_{*}) \eta$$
 (Linearized).

If $f'(\pi^{*}) > 0$, $\eta(t)$ grows exponentially

If $f'(\pi^{*}) < 0$, $\eta(t)$ decays if .

 $f'(\pi^{*}) < 0 \rightarrow \pi^{*}$ is a stable fixed point

 $f'(\pi^{*}) > 0$, $\to \pi^{*}$ is unstable if .

$$f'(x^{+}=0) = a > 0$$

$$f'(x^{+}=0) = a > 0$$
.
 $f'(x^{+}=0) = a > 0$.
 $f'(x^{+}=0) = a - 2b$. $\frac{a}{b}$ $= a - 2b$. $\frac{a}{b}$ $= a - a < 0$.

Example: (i) $\dot{x} = -x^3$, (ii), $\dot{x} = x^3$, (iii) $\dot{x} = x^2$.

new class of fixed point
"half attractive/reputive"

MI BIFURCATION

r allowed to be tve, or 0.

_ Situation changes qualitatively as r is varied.

- Defn. of bifercation.

_ Saddle - node bifurcation.

$$\dot{x} = r - x^2$$
 (Exercise)

 $E_{x}' - \dot{x} = r - x - e^{-x} \cdot = f(x)$.

$$\frac{d}{dx}(e^{-x}) = \frac{d}{dx}(r-x).$$

Expand
$$x = r - x - e^{-x}$$
 was $x = 0$

$$= (r-x) - \left[1 - x - \frac{x^2}{x^2} \right]$$

$$= (r-i) - \frac{x^2}{2}$$

for saddle-vode bifurcation.