I. Noțiuni introductive Fibonacci

Numerele Fibonacci sunt constituite ca o secventă definită astfel:

$$fib(i) = \begin{cases} 0 & dacă \ i = 0 \\ 1 & dacă \ i = 1 \\ fib(i-1) + fib(i-2) & dacă \ i > 0 \end{cases}$$

O metodă de a calcula fib(i) este construcția iterativă a funcției de la 0 la un i dorit/specificat.

II. Implementare tradițională Fibonacci în FPGA

Pentru a realiza implementarea circuitului vom folosi pentru intrare/ieșire formatul BCD (a se vedea laboratorul de CN1). Presupunem că intrarea este un semnal de 8 biți în format BCD (vom avea 2 digiți BCD) și ieșirea este afișată ca 4 digiți BCD pe un display 7 segmente.

Mai mult, pe display-ul LED se va afișa "9999" dacă numărul Fibonacci rezultat este mai mare decât 9999 (overflow).

Operația poate fi realizată în 3 pași: conversia intrării către formatul binar, calcularea numărului Fibonacci și conversia rezultatului în format BCD.

Putem urma procedura:

- 1. Implementarea unui circuit de conversie BCD-binar
- 2. Modificarea circuitului Fibonacci pentru a include un semnal de ieșire pentru a indica condiția de overflow
- 3. Proiectarea diagramei bloc top level
- 4. Scrierea codului Verilog/VHDL
- 5. Scrierea unui testbench și utilizarea simulatorului pentru realizarea unei verificări logice
- 6. Sinteza circuitului, programarea FPGA-ului Nexys4 DDR și verificarea funcționării

III. Implementare Fibonacci folosind Microblaze

a). Implementare MICROBLAZE în placa de dezvoltare Nexys4 DDR

Pasul 1 – Crearea unui nou proiect

- Se va selecta locația noului proiect astfel încât în cale să nu avem spații
- Se va selecta opțiunea "Create project subdirectory"

Pasul 2 – Se va selecta opțiunea "RTL Project" și opțiunea "Do not speciffy sources at this time"

Pasul 3 – Se vor selecta parametrii plăcii de dezvoltare Nexys4 DDR conform figurii de mai jos și apoi se selectează opțiunea FINISH.

Pasul 4 – Se va alege opțiunea "Create Block Design" prin dubluclick din fereastra **Flow Navigator**. În noua fereastră vom schimba numele din căsuța de dialog "Design name" cu **system** spre exemplu.

Pasul 5 — În fereastra "Diagram" apăsăm butonul "+" pentru a adăuga un IP. În noua fereastră, îm cîmpul "Search" vom scrie microblaze.

Pasul 6 – Vom selecta opțiunea "Microblaze" care reprezintă implementarea completă a procesorului Microblaze.

Pasul 7 – Vom selecta opțiunea "Run Block Automation" și vom face modificările conform figurii următoare.

Pasul 8 – Selectăm modulul "clk_wiz_1" printr-un dubluclick și facem o modificare pentru semnalul clk_in1. În cîmpul "Source" vom avea: Single ended clock capable pin. Restul opțiunilor rămân nemodificate

Pasul 9 – Vom selecta din nou opțiunea "Run Block Automation". În noua fereastră vom selecta "All Automation" și apoi OK. Acum au apărut 3 semnale noi: "clk_100MHz", "reset_rtl_0" și "reset_rtl_0_0"

Pasul 10 – În fereastra BLOCK DESIGN vom selecta tab-ul "Sources" și vom adăuga fișierul de constrângeri furnizat de producătorul plăcii. Este de dorit să se selecteze opțiunea "Copy constraints files into project"

Pasul 11 – În fișirul de constrângeri vom face modificările prezentate în figura de mai jos.

Pasul 12 – Se va selecta "system (system.bd)" din tab-ul "Sources", click dreapta și alegem opțiunea "Create HDL Wrapper". În noua fereastră vom selecta opțiunea "Let Vivado manage wrapper and auto-update"

Pasul 13 – Se va selecta din nou "system.bd", click dreapta și alegem opțiunea "Generate Output Products". În noua fereastră se va selecta un număr de job-uri cât mai mare și se va apăsa butonul **Generate**.

Pasul 14 – Vom genera fișierul bitstream selectând opțiunea "Generate Bitstream" din fereastra **Flow Navigator**. Şi în acest caz vom selecta un număr de job-uri cât mai mare.

Pasul 15 – Din meniul **File** vom selecta opțiunea Export și apoi opțiunea Export Hardware. Va trebui în noua fereastra selectată opțiunea "Include bitstream file"

Pasul 16 – Tot din meniul File se va selecta opțiunea "Launch SDK"

Pasul 17 – Din meniul **File** vom selecta opțiunea "New" și apoi "Application project". Vom selecta apoi NEXT și sin noua fereastră vom selecta "Hello World"

Fișierul helloworld.c va arăta astfel:

Pasul 18 – Cuplăm plăcuța la calculator, o pornim și punem primul switch pe 1.

Pasul 19 – Din meniul Xilinx selectăm opțiunea Program FPGA

Pasul 20 – Din meniul Run alegem opțiunea Run Configurations și efectăm următoarele setări. Apoi selectăm Apply și Debug.

Pasul 21 – Rezultatul rulării se poate vedea în Consolă

b). Modificați programul "Hello World" astfel încât în consolă să apară numerele din șirul lui Fibonacci

IV. Conținut referat și punctaj

Referatul va trebui să conțină:

- 1). Implementarea funcției Fibonacci în varianta tradițională cu evidențierea numărului de LUT-uri necesare implementării
- 2). Implementarea funcției Fibonacci folosind Microblaze.

Cele 2 implementări vor fi testate folosind placa de dezvoltare Nexys4 DDR aflată în dotarea laboratorului. Fiecare implementare valorează 0.4 puncte, iar termenul de realizare este de 3 săptămâni începând cu săptămâna 22 – 26.10.2018