

Formulario Teoremi

Formulario in preparazione del secondo (e ultimo) esonero di Calcolo Differenziale

author Valerio Fontana

Indice

1 S	ni Compito	
1	vvertenze	
1	ezione 1 (V/F)	
	.2.1 Teorema de l'Hopital	
1	ezione 2 (V/F)	
	.3.1 Teorema di Rolle	
	.3.2 Rapporto Incrementale	
	.3.3 Teorema di Lagrange	
1	ezione 3 (V/F)	
	.4.1 Andamento di una Funzione	
	.4.2 Tipi di Monotonie	
	.4.3 Teorema dei Valori Intermedi	
1	ezione 4 (V/F)	
	.5.1 Polinomio di Taylor e MacLaurin	
1	ezione 5 (domande aperte)	
	.6.1 Teorema di Weierstrass	
1	ezione 6 (domande aperte)	
	.7.1 Punti Stazionari	
	.7.2 Massimi e Minimi (Relativi e Assoluti)	

Capitolo 1

Sezioni Compito

1.1 Avvertenze

Indipendentemente dal tipo di quesito, è utile avere a portata un formulario rispettivamente per le derivate (come ad esempio https://www.matematika.it/public/allegati/33/11_44_Derivate_2_3.pdf) e per i limiti notevoli (come ad esempio https://www.matematika.it/public/allegati/18/Limiti%20Notevoli.pdf, oppure il formulario che ho realizzato per l'esonero precedente).

1.2 Sezione 1 (V/F)

1.2.1 Teorema de l'Hopital

Dato il limite $\lim_{x\to x_0} \frac{f(x)}{g(x)}$ il quale rientra nelle forme indeterminate $\frac{0}{0}$ o $\frac{\infty}{\infty}$

- $\bullet\,$ Se f(x)e g(x)risultano derivabili in un intorno di x_0 (eccetto eventualmente in $x_0)$
- Se $g'(x) \neq 0$ nell'intorno di x_0 (eccetto eventualmente in x_0)
- Se $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ esiste (finito o infinito che sia)

allora
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

1.3 Sezione 2 (V/F)

1.3.1 Teorema di Rolle

Sia
$$f(x):[a,b]\to\mathbb{R}$$

- Se f è continua in [a, b]
- Se f è derivabile in (a, b)
- Se f(a) = f(b)

allora
$$\exists x_0 \in (a, b) \mid f'(x_0) = 0$$

1.3.2 Rapporto Incrementale

Per verificare se una funzione sia derivabile in un punto x_0 bisogna calcolare il limite del rapporto incrementale

$$\lim_{h \to x_0^-} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$\lim_{h \to x_0^+} \frac{f(x_0 + h) - f(x_0)}{h}$$

se i due limiti sono uguali, allora la funzione è derivabile in x_0

1.3.3 Teorema di Lagrange

Sia $f(x): [a,b] \to \mathbb{R}$

- Se f è continua in [a, b]
- Se f è derivabile in (a, b)

allora
$$\exists x_0 \in (a, b) \mid f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

1.4 Sezione 3 (V/F)

1.4.1 Andamento di una Funzione

- Se $f'(x) > 0 \,\forall x \in (a,b)$ allora f è crescente in (a,b)
- Se $f'(x) < 0 \forall x \in (a,b)$ allora f è decrescente in (a,b)
- Se $f'(x) = 0 \,\forall x \in (a,b)$ allora f è costante in (a,b)

1.4.2 Tipi di Monotonie

- Monotona Crescente: cresce sempre
- Monotona Decrescente: decresce sempre
- Monotona non Decrescente: cresce o rimane costante
- Monotona non Crescente: decresce o rimane costante

1.4.3 Teorema dei Valori Intermedi

Sia $f(x): I \subset \mathbb{R}$, (con I intervallo generico), se f(x) assume due valori distinti $f(x_1)$ e $f(x_2)$ (con $x_2 > x_1$), allora f(x) assume tutti i valori compresi tra $f(x_1)$ e $f(x_2)$

$$\forall y \in [f(x_1), f(x_2)] \exists x_0 \in I \mid f(x_0) = y$$

1.5 Sezione 4 (V/F)

1.5.1 Polinomio di Taylor e MacLaurin

Un formulario come https://www.matematika.it/public/allegati/33/Sviluppo_serie_funzioni_elementari_ 1_6.pdf può essere più che sufficente

1.6 Sezione 5 (domande aperte)

1.6.1 Teorema di Weierstrass

Una funzione f(x) continua in un intervallo chiuso e limitato [a,b] ha un valore minimo $m=f(x_1)$ e massimo $M=f(x_2)$ tali che $f(x_1) \leq f(x) \leq f(x_2) \ \forall x \in [a,b]$

1.7 Sezione 6 (domande aperte)

1.7.1 Punti Stazionari

Per le funzioni di una variabile, un punto stazionario è un punto interno al dominio della funzione che annulla la sua derivata prima

$$\forall x_0 \in (a,b) \mid f'(x_0) = 0$$

1.7.2 Massimi e Minimi (Relativi e Assoluti)

Sia y = f(x) una funzione con dominio Dom(f)

- viene definito $x_0 \in Dom(f)$ punto di massimo assoluto per la funzione se $f(x) \leq f(x_0) \, \forall x \in Dom(f)$
- viene definito $x_0 \in Dom(f)$ punto di minimo assoluto per la funzione se $f(x) \ge f(x_0) \, \forall x \in Dom(f)$
- viene definito $x_0 \in Dom(f)$ punto di massimo relativo per la funzione se dato un intorno $B(x_0, \delta)$ (con $\delta > 0$), risulta che $f(x) \leq f(x_0) \, \forall x \in B(x_0, \delta) \subset Dom(f)$
- viene definito $x_0 \in Dom(f)$ punto di minimo relativo per la funzione se dato un intorno $B(x_0, \delta)$ (con $\delta > 0$), risulta che $f(x) \ge f(x_0) \, \forall x \in B(x_0, \delta) \subset Dom(f)$