Методы машинного обучения. Нейронные сети: обучение без учителя

Bopoнцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: voron@forecsys.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-21-22 орг.вопросы по курсу: ml.cmc@mail.ru

МФТИ • 22 февраля 2022

Содержание

- 🚺 Сети Кохонена для кластеризации и визуализации
 - Задача кластеризации
 - Модели конкурентного обучения
 - Карты Кохонена
- Автокодировщики
 - Задача понижения размерности
 - Регуляризаторы
 - Применение автокодировщиков
- Пазвитие идей частичного обучения
 - Перенос обучения и многозадачное обучение
 - Дистилляция и привилегированное обучение
 - Генеративные состязательные сети (GAN)

Постановка задачи кластеризации (обучения без учителя)

Дано:

$$X^\ell = \{x_i\}_{i=1}^\ell$$
 — обучающая выборка объектов, $x_i \in \mathbb{R}^n$ $ho^2(x,w) = \|x-w\|^2$ — евклидова метрика в \mathbb{R}^n

Найти:

центры кластеров $w_y \in \mathbb{R}^n$, $y \in Y$; алгоритм кластеризации «правило жёсткой конкуренции» (WTA, Winner Takes All):

$$a(x) = \arg\min_{y \in Y} \rho(x, w_y)$$

Критерий: среднее внутрикластерное расстояние

$$Q(w; X^{\ell}) = \sum_{i=1}^{\ell} \rho^{2}(x_{i}, w_{a(x_{i})}) \rightarrow \min_{w_{y}: y \in Y}$$

Сеть Кохонена (сеть с конкурентным обучением)

Структура алгоритма — двухслойная нейронная сеть:

Градиентный шаг в методе SG: для выбранного $x_i \in X^\ell$

$$w_y := w_y + \eta(x_i - w_y) \big[a(x_i) = y \big]$$

Если x_i относится к кластеру y, то w_y сдвигается в сторону x_i

T.Kohonen. Self-organized formation of topologically correct feature maps. 1982.

Алгоритм SG (Stochastic Gradient)

```
Вход: выборка X^{\ell}; темп обучения \eta; параметр \lambda;
Выход: центры кластеров w_1, \ldots, w_K \in \mathbb{R}^n;
инициализировать центры w_v, y \in Y;
инициализировать текущую оценку функционала:
Q := \sum_{i=1}^{\infty} \rho^{2}(x_{i}, w_{a(x_{i})});
повторять
    выбрать объект x_i из X^{\ell} (например, случайно);
    вычислить кластеризацию: y := \arg\min_{y \in Y} \rho(x_i, w_y);
    градиентный шаг: w_{v} := w_{v} + \eta(x_{i} - w_{v});
   оценить значение функционала:
     Q := (1 - \lambda)Q + \lambda \rho^2(x_i, w_v);
\mathbf{пока} значение Q и/или веса w не стабилизируются;
```

Жёсткая и мягкая конкуренция

Правило жёсткой конкуренции WTA (winner takes all):

$$w_y := w_y + \eta(x_i - w_y) [a(x_i) = y], \quad y \in Y$$

Недостатки правила WTM:

- медленная скорость сходимости
- ullet некоторые $w_{\scriptscriptstyle V}$ могут никогда не выбираться

Правило мягкой конкуренции WTM (winner takes most):

$$w_v := w_v + \eta(x_i - w_v) K(\rho(x_i, w_v)), \quad y \in Y$$

где ядро K(
ho) — неотрицательная невозрастающая функция

Теперь центры всех кластеров смещаются в сторону x_i , но чем дальше от x_i , тем меньше величина смещения

Карта Кохонена (Self Organizing Map, SOM)

 $Y=\{1,\ldots,M\} imes\{1,\ldots,H\}$ — прямоугольная сетка кластеров Каждому узлу (m,h) приписан нейрон Кохонена $w_{mh}\in\mathbb{R}^n$ Наряду с метрикой $\rho(x_i,x)$ на X вводится метрика на сетке Y:

$$r((m_i, h_i), (m, h)) = \sqrt{(m - m_i)^2 + (h - h_i)^2}$$

Окрестность (m_i, h_i) :

Teuvo Kohonen. Self-Organizing Maps. 2001.

Обучение карты Кохонена

```
Вход: X^{\ell} — обучающая выборка; \eta — темп обучения;
Выход: w_{mh} \in \mathbb{R}^n — векторы весов, m = 1..M, h = 1..H;
w_{mh} := \text{random}\left(-\frac{1}{2MH}, \frac{1}{2MH}\right) - \text{инициализация весов};
повторять
    выбрать объект x_i из X^\ell случайным образом;
   WTA: вычислить координаты кластера:
    (m_i, h_i) := a(x_i) \equiv \arg\min \rho(x_i, w_{mh});
    для всех (m, h) \in \mathsf{O}крестность(m_i, h_i)
    WTM: сделать шаг градиентного спуска: w_{mh} := w_{mh} + \eta(x_i - w_{mh}) K(r((m_i, h_i), (m, h)));
пока кластеризация не стабилизируется;
```

Интерпретация карт Кохонена

Два типа графиков — цветных карт $M \times H$:

- Цвет узла (m,h) локальная плотность в точке (m,h) среднее расстояние до k ближайших точек выборки
- По одной карте на каждый признак: цвет узла (m,h) значение j-й компоненты вектора $w_{m,h}$

Пример: задача UCI house-votes (US Congress voting patterns) Объекты — конгрессмены

Признаки — результаты голосования по различным вопросам Есть целевой признак «партия» \in {демократ, республиканец}

Задача кластеризации
Модели конкурентного обучения
Карты Кохонена

Интерпретация карт Кохонена (продолжение примера)

Пример: задача UCI house-votes (US Congress voting patterns)

Достоинства и недостатки карт Кохонена

Достоинства:

• Возможность визуального анализа многомерных данных

Недостатки:

- **Субъективность.** Карта зависит не только от кластерной структуры данных, но и от...
 - свойств сглаживающего ядра;
 - (случайной) инициализации;
 - (случайного) выбора x_i в ходе итераций.
- Искажения. Близкие объекты исходного пространства могут переходить в далёкие точки на карте, и наоборот.

Рекомендуется только для разведочного анализа данных.

Построение автокодировщика — задача обучения без учителя

$$X^\ell = \{x_1, \dots, x_\ell\}$$
 — обучающая выборка

 $f: X \to Z$ — кодировщик (encoder), кодовый вектор $z = f(x, \alpha)$

 $g:Z\! o\!X$ — декодировщик (decoder), реконструкция $\hat{x}\!=\!g(z,eta)$

Суперпозиция $\hat{x} = g(f(x))$ должна восстанавливать исходные x_i :

$$\mathscr{L}_{\mathsf{AE}}(\alpha,\beta) = \sum_{i=1}^{\ell} \mathscr{L}(\mathbf{g}(f(\mathbf{x}_i,\alpha),\beta),\mathbf{x}_i) \to \min_{\alpha,\beta}$$

Квадратичная функция потерь: $\mathscr{L}(\hat{x},x) = \|\hat{x} - x\|^2$

Пример 1. Линейный автокодировщик: $x \in \mathbb{R}^n$, $z \in \mathbb{R}^m$

$$f(x, A) = \underset{m \times n}{A} x, \qquad g(z, B) = \underset{n \times m}{B} z$$

Пример 2. Двухслойная сеть с функциями активации σ_f, σ_g :

$$f(x,A) = \sigma_f(Ax + a), \qquad g(z,B) = \sigma_g(Bz + b)$$

Способы использования автокодировщиков

- Генерация признаков (feature generation)
- Снижение размерности (dimensionality reduction)
- Сжатие данных с минимальными потерями точности
- Более эффективное решение задач обучения с учителем в новом признаковом пространстве
- Обучаемая векторизация объектов, встраиваемая в более глубокие нейросетевые архитектуры
- Послойное предобучение многослойных сетей
- Генерация синтетических объектов, похожих на реальные

Rumelhart, Hinton, Williams. Learning Internal Representations by Error Propagation. 1986

David Charte et al. A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines. 2018.

Архитектуры автокодировщиков

однослойный кодировщик/декодировщик

снижение размерности

повышение размерности

многослойный кодировщик/декодировщик

снижение размерности

повышение размерности

Линейный автокодировщик и метод главных компонент

Линейный автокодировщик: f(x,A) = Ax, g(z,B) = Bz,

$$\mathscr{L}_{AE}(A,B) = \sum_{i=1}^{\ell} \| {}^{B}Ax_i - x_i \|^2 \to \min_{A,B}$$

Метод главных компонент: $F=(x_1\dots x_\ell)^{\mathsf{T}},\ U^{\mathsf{T}}U=I_m,\ G=FU,$

$$||F - GU^{\mathsf{T}}||^2 = \sum_{i=1}^{\ell} ||UU^{\mathsf{T}} x_i - x_i||^2 \to \min_{U}$$

Автокодировщик обобщает метод главных компонент:

- ullet не обязательно $B=A^{\mathsf{T}}$ (хотя часто именно так и делают)
- произвольные A, B вместо ортогональных
- ullet нелинейные модели f(x, lpha), g(z, eta) вместо Ax, Bz
- ullet произвольная функция потерь ${\mathscr L}$ вместо квадратичной
- SGD оптимизация вместо сингулярного разложения SVD

Разреживающий автокодировщик (Sparse AE)

Применение L_1 или L_2 -регуляризации к векторам весов α, β :

$$\mathscr{L}_{\mathsf{AE}}(\alpha,\beta) + \lambda \|\alpha\| + \lambda \|\beta\| \to \min_{\alpha,\beta}$$

Применение L_1 -регуляризации к кодовым векторам z_i :

$$\mathscr{L}_{AE}(\alpha,\beta) + \lambda \sum_{i=1}^{\ell} \sum_{j=1}^{m} |f_j(x_i,\alpha)| \to \min_{\alpha,\beta}$$

Энтропийная регуляризация для случая $f_j \in [0,1]$:

$$\mathscr{L}_{AE}(\alpha,\beta) + \lambda \sum_{j=1}^{m} KL(\varepsilon || \bar{f}_{j}) \rightarrow \min_{\alpha,\beta},$$

где $ar f_j=rac{1}{\ell}\sum_{i=1}^\ell f_j(x_i,lpha); \quad arepsilon\in (0,1)$ — близкий к нулю параметр,

$$\mathsf{KL}(arepsilon\|
ho) = arepsilon\lograc{arepsilon}{
ho} + (1-arepsilon)\lograc{1-arepsilon}{1-
ho}$$
 — KL -дивергенция.

D. Arpit et al. Why regularized auto-encoders learn sparse representation? 2015.

Шумоподавляющий автокодировщик (Denoising AE)

Устойчивость кодовых векторов z_i относительно шума в x_i :

$$\mathscr{L}_{\mathsf{DAE}}(\alpha,\beta) = \sum_{i=1}^{\ell} \mathsf{E}_{\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}}|\mathbf{x}_i)} \mathscr{L}\big(g(f(\tilde{\mathbf{x}},\alpha),\beta), x_i \big) \to \min_{\alpha,\beta}$$

Вместо вычисления $\mathsf{E}_{\widetilde{x}}$ в методе SGD объекты x_i сэмплируются и зашумляются по одному: $\widetilde{x} \sim q(\widetilde{x}|x_i)$. Варианты зашумления:

- $\tilde{x} \sim \mathcal{N}(x_i, \sigma^2 I)$ гауссовский шум
- обнуление компонент вектора x_i с вероятностью p_0 :

P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. ICML-2008.

Сжимающий автокодировщик (Contractive AE)

Устойчивость кодовых векторов z_i относительно шума в x_i :

$$\mathscr{L}_{AE}(\alpha,\beta) + \lambda \sum_{i=1}^{\ell} \|J_f(x_i)\|^2 \to \min_{\alpha,\beta}$$

где $\|J_f(x)\|-L_2$ -норма матрицы Якоби отображения $f\colon X o Z$,

$$||J_f(x)||^2 = \sum_{d=1}^n \sum_{j=1}^m \left(\frac{\partial f_j(x,\alpha)}{\partial x_d}\right)^2$$

В случае $z=f(x,A)=\sigma(Ax+a)$, где σ — сигмоида, $A=(lpha_{jd})$

$$||J_f(x)||^2 = \sum_{d=1}^n \sum_{j=1}^m (\alpha_{jd} f_j(x, \alpha) (1 - f_j(x, \alpha)))^2$$

Salah Rifai et al. Contractive auto-encoders: explicit invariance during feature extraction. ICML-2011.

Реляционный автокодировщик (Relational AE)

Наряду с потерями реконструкции объектов минимизируем потери реконструкции отношений между объектами:

$$\mathscr{L}_{\mathsf{AE}}(\alpha,\beta) + \lambda \sum_{i < j} \mathscr{L}\big(\sigma(\hat{x}_i^\mathsf{T} \hat{x}_j), \sigma(x_i^\mathsf{T} x_j)\big) \to \min_{\alpha,\beta}$$

где $\hat{x}_i = g(f(x_i))$ — реконструкция объекта x_i , $x_i^{\mathsf{T}} x_j$ — скалярное произведение (близость) пары объектов, $\sigma(s) = (s-s_0)_+$ — функция активации ReLU с параметром s_0 (незначимые отношения близости не учитываются), $\mathscr{L}(\hat{s},s)$ — функция потерь, например, $(\hat{s}-s)^2$.

Эксперимент: улучшается качество классификации изображений с помощью кодовых векторов на задачах MNIST, CIFAR-10

Qinxue Meng et al. Relational autoencoder for feature extraction. 2018.

Вариационный автокодировщик (Variational AE)

Строится генеративная модель, способная порождать новые объекты x, похожие на объекты выборки $X^\ell = \{x_1, \dots, x_\ell\}$

$$q_{lpha}(z|x)$$
 — вероятностный кодировщик с параметром $lpha$ $p_{eta}(\hat{x}|z)$ — вероятностный декодировщик с параметром eta

Максимизация нижней оценки log-правдоподобия:

$$\mathcal{L}_{VAE}(\alpha, \beta) = \sum_{i=1}^{\ell} \log p(x_i) = \sum_{i=1}^{\ell} \log \int q_{\alpha}(z|x_i) \frac{p_{\beta}(x_i|z)p(z)}{q_{\alpha}(z|x_i)} dz \geqslant$$

$$\geqslant \sum_{i=1}^{\ell} \int q_{\alpha}(z|x_i) \log \frac{p_{\beta}(x_i|z)p(z)}{q_{\alpha}(z|x_i)} dz =$$

$$= \sum_{i=1}^{\ell} \int q_{\alpha}(z|x_i) \log p_{\beta}(x_i|z) dz - \text{KL}(q_{\alpha}(z|x_i) \parallel p(z)) \rightarrow \max_{\alpha, \beta}$$

D.P.Kingma, M. Welling. Auto-encoding Variational Bayes. 2013. C.Doersch. Tutorial on variational autoencoders. 2016.

Вариационный автокодировщик (Variational AE)

Оптимизационная задача для вариационного автокодировщика:

$$\sum_{i=1}^{\ell} \underbrace{\mathsf{E}_{z \sim q_{\alpha}(z|x_i)} \log p_{\beta}(x_i|z)}_{\text{качество реконструкции}} - \underbrace{\mathsf{KL}\big(q_{\alpha}(z|x_i) \bigm\| p(z)\big)}_{\text{регуляризатор по } \alpha} \to \max_{\alpha,\beta}$$

где p(z) — априорное распределение, обычно $\mathcal{N}(0,\sigma^2I)$

Репараметризация $q_{\alpha}(z|x_i)$: $z = f(x_i, \alpha, \varepsilon)$, $\varepsilon \sim \mathcal{N}(0, I)$

Метод стохастического градиента:

- ullet сэмплировать $x_i \sim X^\ell$, $\varepsilon \sim \mathcal{N}(0,I)$, $z = f(x_i,\alpha,\varepsilon)$
- градиентный шаг:

$$\alpha := \alpha + h \nabla_{\alpha} [\log p_{\beta}(x_i | f(x_i, \alpha, \varepsilon)) - \mathsf{KL}(q_{\alpha}(z | x_i) || p(z))];$$

$$\beta := \beta + h \nabla_{\beta} [\log p_{\beta}(x_i | z)];$$

Генерация похожих объектов: $x \sim p_{\beta} \big(x | f(\mathbf{x_i}, \alpha, \varepsilon) \big), \ \varepsilon \sim \mathcal{N}(0, I)$

Автокодировщики для обучения с учителем

Данные: неразмеченные $(x_i)_{i=1}^\ell$, размеченные $(x_i,y_i)_{i=\ell+1}^{\ell+k}$ **Совместное обучение** кодировщика, декодировщика и предсказательной модели (классификации, регрессии или др.):

$$\sum_{i=1}^{\ell} \mathscr{L}\big(g(f(x_i,\alpha),\beta),x_i\big) + \lambda \sum_{i=\ell+1}^{\ell+k} \widetilde{\mathscr{L}}\big(\hat{y}(f(x_i,\alpha),\gamma),y_i\big) \to \min_{\alpha,\beta,\gamma}$$

$$z_i = f(x_i, lpha)$$
 — кодировщик $\hat{x}_i = g(z_i, eta)$ — декодировщик $\hat{y}_i = \hat{y}(z_i, \gamma)$ — предиктор

Функции потерь:

$$\mathscr{L}(\hat{x}_i,x_i)$$
 — реконструкция $\widetilde{\mathscr{L}}(\hat{y}_i,y_i)$ — предсказание

Dor Bank, Noam Koenigstein, Raja Giryes. Autoencoders. 2020

Многослойный автокодировщик (Stacked AE)

Послойное обучение: $x^h = f^h(x^{h-1}, \alpha^h)$, $x \equiv x^0$, $z \equiv x^H$

- ullet каждая пара f^h, g^h обучается по выборке $\{x_1^{h-1}, \dots, x_\ell^{h-1}\}$
- декодировщик *g* ^h отбрасывается
- ullet однослойные f^1,\ldots,f^H соединяются в H-слойный

Тонкая настройка (fine tuning): результат послойного обучения используется как начальное приближение для BackProp

Y. Bengio et al. Greedy layer-wise training of deep networks. NIPS 2007.

Пред-обучение нейронных сетей (pre-training)

Свёрточная сеть для обработки изображений:

- $z = f(x, \alpha)$ свёрточные слои для векторизации объектов
- $y = g(z, \beta)$ полносвязные слои под конкретную задачу

Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson. How transferable are features in deep neural networks? 2014.

Перенос обучения (transfer learning)

 $f(x, \alpha)$ — универсальная часть модели (векторизация) $g(x, \beta)$ — специфичная для задачи часть модели

Базовая задача на выборке $\{x_i\}_{i=1}^\ell$ с функцией потерь \mathcal{L}_i :

$$\sum_{i=1}^{\ell} \mathcal{L}_i(f(x_i,\alpha),g(x_i,\beta)) \rightarrow \min_{\alpha,\beta}$$

 $\emph{Целевая задача}$ на другой выборке $\{x_i'\}_{i=1}^m$, с другими \mathscr{L}_i' , g':

$$\sum_{i=1}^{m} \mathcal{L}_{i}'(\mathbf{f}(\mathbf{x}_{i}',\alpha),\mathbf{g}'(\mathbf{x}_{i}',\beta')) \rightarrow \min_{\beta'}$$

при $m \ll \ell$ это может быть намного лучше, чем

$$\sum_{i=1}^{m} \mathcal{L}'_{i}(f(x'_{i},\alpha),g'(x'_{i},\beta')) \rightarrow \min_{\alpha,\beta'}$$

Sinno Jialin Pan, Qiang Yang. A Survey on Transfer Learning. 2009

Многозадачное обучение (multi-task learning)

 $f(x,\alpha)$ — универсальная часть модели (векторизация) $g_t(x,\beta)$ — специфичная часть модели для задачи $t\in T$

Одновременное обучение модели f по задачам X_t , $t \in T$:

$$\sum_{t \in \mathcal{T}} \sum_{i \in \mathcal{X}_t} \mathscr{L}_{ti}\big(f(x_{ti}, \alpha), g_t(x_{ti}, \beta_t)\big) \ \to \ \min_{\alpha, \{\beta_t\}}$$

Обучаемость (learnability): качество решения отдельной задачи $\langle X_t, \mathscr{L}_t, g_t \rangle$ улучшается с ростом объёма выборки $\ell_t = |X_T|$.

Learning to learn: качество решения каждой из задач $t \in T$ улучшается с ростом ℓ_t и общего числа задач |T|.

Few-shot learning: для решения задачи t достаточно небольшого числа примеров, иногда даже одного.

M. Crawshaw. Multi-task learning with deep neural networks: a survey. 2020 Y. Wang et al. Generalizing from a few examples: a survey on few-shot learning, 2020

Самостоятельное обучение (self-supervised learning)

Модель векторизации $z = f(x, \alpha)$ обучается предсказывать взаимное расположение пар фрагментов одного изображения

Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015

Преимущество: сеть выучивает векторные представления объектов без размеченной обучающей выборки.

Дистилляция моделей или суррогатное моделирование

Обучение сложной модели a(x, w) «долго, дорого»:

$$\sum_{i=1}^{\ell} \mathcal{L}(\mathbf{a}(\mathbf{x}_i, \mathbf{w}), \mathbf{y}_i) \rightarrow \min_{\mathbf{w}}$$

Обучение простой модели b(x, w'), возможно, на других данных:

$$\sum_{i=1}^{k} \mathcal{L}(b(x_i', w'), a(x_i', w)) \rightarrow \min_{w'}$$

Примеры задач:

- замена сложной модели (климат, аэродинамика и др.),
 которая вычисляется на суперкомпьютере месяцами,
 «лёгкой» аппроксимирующей суррогатной моделью
- замена сложной нейросети, которая обучается неделями на больших данных, «лёгкой» аппроксимирующей нейросетью с минимизацией числа нейронов и связей

Обучение с использованием привилегированной информации

V. Vapnik, A. Vashist. A new learning paradigm: Learning Using Privileged Information // Neural Networks. 2009.

Примеры задач с привилегированной информацией x^st

- x первичная (1D) структура белка x^* третичная (3D) структура белка
 - y иерархическая классификация функции белка
- х предыстория временного ряда
 - x^* информация о будущем поведении ряда
 - у прогноз следующей точки ряда
- х текстовый документ
 - x^* выделенные ключевые слова или фразы
 - *у* категория документа
- х пара (запрос, документ)
 - x^* выделенные асессором ключевые слова или фразы
 - у оценка релевантности

Задача обучения с привилегированной информацией

Раздельное обучение модели-ученика и модели-учителя:

$$\begin{array}{ll} \sum\limits_{i=1}^{\ell} \mathscr{L}\big(\mathsf{a}(\mathsf{x}_i,\mathsf{w}),\mathsf{y}_i\big) \to \min_{\mathsf{w}} & \sum\limits_{i=1}^{\ell} \mathscr{L}\big(\mathsf{a}(\mathsf{x}_i^*,\mathsf{w}^*),\mathsf{y}_i\big) \to \min_{\mathsf{w}} \end{array}$$

Модель-ученик обучается повторять ошибки модели-учителя:

$$\sum_{i=1}^{\ell} \mathcal{L}(\mathsf{a}(\mathsf{x}_i, \mathsf{w}), \mathsf{y}_i) + \mu \mathcal{L}(\mathsf{a}(\mathsf{x}_i, \mathsf{w}), \underset{\mathsf{w}}{\mathsf{a}(\mathsf{x}_i^*, \mathsf{w}^*)}) \rightarrow \min_{\mathsf{w}}$$

Совместное обучение модели-ученика и модели-учителя:

$$\sum_{i=1}^{\ell} \mathcal{L}(a(x_i, w), y_i) + \lambda \mathcal{L}(a(x_i^*, w^*), y_i) + \mu \mathcal{L}(a(x_i, w), a(x_i^*, w^*)) \rightarrow \min_{w, w^*}$$

D.Lopez-Paz, L.Bottou, B.Scholkopf, V.Vapnik. Unifying distillation and privileged information. 2016.

Генеративная состязательная сеть (Generative Adversarial Net)

Генератор G(z) учится порождать объекты x из шума z Дискриминатор D(x) учится отличать их от реальных объектов

Antonia Creswell et al. Generative Adversarial Networks: an overview 2017.

Zhengwei Wang, Qi She, Tomas Ward. Generative Adversarial Networks: a survey and taxonomy. 2019.

Chris Nicholson. A Beginner's Guide to Generative Adversarial Networks. https://pathmind.com/wiki/generative-adversarial-network-gan. 2019.

Постановка задачи GAN

Дано: выборка объектов $\{x_i\}_{i=1}^m$ из X

Найти:

вероятностную генеративную модель $G(z,\alpha)$: $x \sim p(x|z,\alpha)$ вероятностную дискриминативную модель $D(x,\beta) = p(1|x,\beta)$

Критерий:

обучение дискриминативной модели D:

$$\sum_{i=1}^{m} \ln D(x_i, \boldsymbol{\beta}) + \ln (1 - D(G(z_i, \alpha), \boldsymbol{\beta})) \rightarrow \max_{\boldsymbol{\beta}}$$

обучение генеративной модели G по случайному шуму $\{z_i\}_{i=1}^m$:

$$\sum_{i=1}^{m} \ln(1 - D(G(z_i, \alpha), \beta)) \rightarrow \min_{\alpha}$$

Ian Goodfellow et al. Generative Adversarial Nets. 2014

Примеры GAN для синтеза изображений и видео

Chuan Li, Michael Wand. Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. 2016.

Xiaoxing Zeng, Xiaojiang Peng, Yu Qiao. DF2Net: A Dense Fine Finer Network for Detailed 3D Face Reconstruction ICCV-2019

Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros. Everybody Dance Now. ICCV-2019

Когда несколько моделей обучаются одновременно:

- Автокодировщики: кодер и декодер
- Автокодировщики для классификации или кластеризации
- Многозадачное обучение
- Обучение с привилегированной информацией
- Состязательные сети (GAN) для генерации фейк-объектов

Когда несколько моделей обучаются последовательно:

- Перенос обучения (transfer learning)
- Предобучение глубоких сетей для векторизации объектов
- Самостоятельное обучение (self-supervised learning)
- Дистилляция и суррогатное моделирование

Обучение без учителя всё чаще используется для оптимизации части модели по большим данным