В случае, когда условия адиабатичности не соблюдаются, электроны неблагоприятной фазы начинают оседать на основание. Это иллюстрирует рис. 2, где приведена зависимость доли электронов, оседающих на электродах, от параметра $\omega_{\rm c}/\omega D$, который изменялся при расчетах как за счет D, так и за счет ω_c/ω . Видно, что при малых значениях $\omega_c/\omega D$ число электронов, оседающих на основание, может достичь значительной величины, и использование адиабатических уравнений приведет к значительным погрешностям.

Необходимо также отметить, что авторы работы [2] считали в адиабатическом приближении нагрузку пучком волноведущей цепи малой и полагали $\vartheta(q) = 0$. Расчет показывает, что даже при больших значениях $\omega_c/\omega D$ ϑ достигает значительной величины (рис. 3).

Таким образом, использование адиабатического приближения и пренебрежение изменением θ позволяют рассчитывать с допустимой погрешностью лишь интегральные характеристики ЛБВМ (коэффициент усиления, кпд). Для полного решения задачи (определения характера движения электронов и электронной настройки скорости волны), что важно, например, при анализе многочастотного взаимодействия или модуляционных характеристик прибора, необходимо проводить учет $\vartheta(q)$ и использовать неадиабатические уравнения движения.

ЛИТЕРАТУРА

1. Дж. Роу, Теория нелинейных явлений в приборах СВЧ, Изд. Советское радио, 1969, стр. 615.

2. М. Б. Цейтлин, И. Т. Цицонь, Изв. вузов МВССО СССР (Радиоэлектроника), 1969, 12, 9, 976.

А. А. Кураев, Сверхвысокочастотные приборы с периодическими электронными потоками, Изд. Наука и техника, Минск, 1971, стр. 312.
 Г. Ф. Филимонов, Изв. вузов МВССО СССР (Радиоэлектроника), 1971, 14, 9, 1042.
 Д. И. Трубецков, Ю. П. Шараевский, Радиотехника и электроника, 1971, 16, 2, 442.

Поступила в редакцию 6 III 1973

УДК 621.385.633

ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ МОЩНОСТИ СУБМИЛЛИМЕТРОВОЙ ЛАМПЫ ОБРАТНОЙ ВОЛНЫ ОТ ЧАСТОТЫ

В. А. Андреев, С. П. Белов, А. В. Буренин, Л. И. Герштейн, А. Ф. Крупнов

Лампы обратной волны (ЛОВ) в настоящее время являются основными электронными генераторами в субмиллиметровом диапазоне. Поэтому представляет большой интерес исследование их характеристик, в частности, исследование зависимости мощности ЛОВ от частоты *. Необходимо отметить, что на данную зависимость в субмиллиметровом диапазоне часто накладываются искажения, связанные с интерференцией в элементах СВЧ-тракта, что приводит к неопределенности в интерпретации результатов измерений.

Нами проведено детальное исследование зависимости мощности субмиллимет-овой ЛОВ типа [1] от частоты, когда влияние интерференционных эффектов в СВЧ-трактах по возможности ослаблено. Для этого использовалась запись вращательного спектра сернистого газа SO_2 , полученная при помощи радиоспектроскопа с акустическим детектором (РАД) [2]. Для малой оптической толщи газа в ячейке РАД ($\gamma l \ll 1$, где γ — коэффициент поглощения газа на единицу длины, l — длина ячейки) поглощаемая мощность равна

$$P = \gamma l P_{(\text{JIOB})}$$
.

Величина выходного сигнала спектроскопа пропорциональна P и, следовательно,

$$P_{(\text{JIOB})} = K \frac{A}{\gamma},$$

где А - величина выходного сигнала; К - константа, определяемая характеристиками РАД, не зависящая от частоты.

ДЛЯ ния тра pacc любе

зави

^{*} Типовые зависимости мощности ЛОВ от частоты, снятые с малым разрешением, приведены в [1].

Рис. 1. Участок записи спектра в диапазоне 297—299 Γ ги. Рядом с линиями указаны: цифрами I, II — принадлежность к спектру $^{32}\mathrm{S}^{16}\mathrm{O}_2$, $^{34}\mathrm{S}^{16}\mathrm{O}_2$ соответственно; частота перехода в Γ ги; идентификация перехода; значение коэффициента поглощения в cм $^{-1}$

Рис. 2. График зависимости мощности ЛОВ от частоты в диапазоне 267,— 336 Γ ец

В диапазоне частот от 267 до 336 Γ г ψ было идентифицировано и использовано для определения зависимости $P_{({\rm ЛОВ})}(f)$ более 100 спектральных линий, т. е. измерения проводились в среднем через 0,5 Γ г ψ . На рис. 1 приведена запись участка спектра ${\rm SO}_2$ от 321 до 324 Γ г ψ . Частоты и интенсивности (коэффициенты поглощения) рассчитывались нами при помощи ${\rm ЭВM}$; использовались также таблицы спектра ${\rm SO}_2$, любезно предоставленные д-ром Γ . Стеенбеккельерсом.

Полученная при помощи записи спектра и расчета коэффициентов поглощения у зависимость $P_{({
m TOB})}(f)$ приведена на рис. 2. Зависимость представляется довольно

плавной, что несколько неожиданно для каждого практически работавшего с субмиллиметровыми ЛОВ при наличии СВЧ-тракта и СВЧ-детектора. Наблюдающиеся в этих условиях крутые зависимости обусловлены, по-видимому, интерференцией в СВЧ-элементах, а не собственно ЛОВ. Максимальная отмеченная на графике крутизна зависимости мощности от частоты (вблизи 313 $\Gamma z \mu$) составляет 10^{-2} $Mz \mu^{-1}$ (т. е. при изменении частоты на 1 $Mz \mu$ мощность меняется на 1%); для большинства участков крутизна меньше примерно на порядок.

В заключение отметим, что для получения графика, приведенного на рис. 2, по-

требовался всего 1 час работы ЛОВ.

ЛИТЕРАТУРА

1. М. Б. Голант, Р. Л. Виленкин, Е. А. Зюлина, З. Ф. Каплун, А. А. Негирев, В. А. Парилов, Т. Б. Реброва, В. С. Савељев, Приборы и техника эксперимента, 1965, 4, 136; М. Б. Голант, З. Т. Алексеенко, З. С. Короткова, Л. А. Лункина, А. А. Негирев, О. П. Петрова, Т. Б. Реброва, В. С. Савељев, Приборы и техника эксперимента, 1969, 3, 231.

2. А. Ф. Крупнов, Л. И. Герштейн, В. Г. Шустров, С. П. Белов, Изв. вузов МВССО СССР (Радиофизика), 1970, 13, 1403; А. Ф. Крупнов, 2-й Международный семинар по инфракрасной спектроскопии высокого разрешения, Тезисы докладов, Прага,

1972.

Поступило в редакцию 31 VIII 1973

УДК 621.373.5

ри пр

BO <. X-,

тр

МЕЖДОЛИННЫЙ ПЕРЕНОС И ДРЕЙФОВАЯ СКОРОСТЬ ЭЛЕКТРОНОВ в ${\rm GaAs}_{1-x} {\rm P}_x$

Э. Д. Прохоров, Н. Н. Белецкий

Развитие геператоров на основе эффекта Ганна требует поиска новых полупроводниковых материалов, которые пригодны для разработок диодов Ганна и которые по каким-либо параметрам могли бы превосходить наиболее широко применяемый в настоящее время материал — арсенид галлия. В этом плане целесообразно исследовать и $GaAs_{1-x}P_x$, на диодах из которого экспериментально наблюдалась генерация Ганна [1], но оценок основных характеристик — зависимости дрейфовой скорости электронов от напряженности электрического поля с изменением состава — проведено до настоящего времени не было. Ниже приведен теоретический анализ таких ха-

рактеристик $GaAs_{1-x}P_x$.

Структура зоны проводимости $GaAs_{1-x}P_x$ показана на рис. 1. С увеличением содержания фосфора в сплаве X-минимум смещается относительно Γ -минимума. Состав сплава, при котором положения Γ - и X-минимумов по энергии равны, соответствует 44% фосфора [2]. При больших концентрациях фосфора X-минимумы наименьшие по энергии. Поскольку в расчетах величина энергетического зазора определяется как $\Delta_{\Gamma X} = \Delta_X - \Delta_{\Gamma}$ (рис. 1, Δ_{Γ} и Δ_X — энергии минимумов Γ - и X-долин, отсчитанные от произвольного уровня), то при x < 0.44 $\Delta_{\Gamma X} > 0$ и при x > 0.44 $\Delta_{\Gamma X} < 0$ (см. таблицу). Что касается остальных величин, то их значения взяты из литературы [3, 4]. Значения константы взаимодействия и деформационного потенциала для GaP неизвестны, поэтому они взяты для переходных сплавов примерно равными значениями для GaAs. Что касается долин в направлениях [111] — L-долин —, то в GaAs они находятся по энергии выше X-долин, в переходных сплавах они также оказываются по энергии выше X-долин и обладают меньшим коэффициентом связи с центральной доли-