

Zavod za elektroakustiku

ELEKTROAKUSTIKA

Rezultati mjerenja i izvještaj o obavljenoj laboratorijskoj vježbi

Vježba 8

Mjerenje rezonantnih karakteristika piezokeramičkih elemenata i prijenosne karakteristike kvarcnog filtra

Student:

Asistent na vježbi:

Doc. dr. sc. Antonio Petošić

Vrijeme održavanja vježbe:

1. Odgovori na pitanja

Zadatak 1 : Izlaz iz BODE 100 je spojen na E&I2100L pojačalo s ulaznim otporom 50 Ω . Izlazni otpor uređaja BODE 100 je 50 Ω . Ako je razina snage koju BODE 100 daje na teretu od 50 Ω , -27 dB (mW) odrediti razinu snage, napona i struje na ulazu pojačala E&I2100L. Ako je pojačanje snage pojačala 50dB odrediti snagu na opteretnom teretu 50 Ω (izlazni otpor pojačala je 50 Ω). Pretpostaviti da se ulazna snaga poveća za 50 dB te da se disipira na teretu pojačala. Kolika bi bila razina izlaznog napona na teretu ?

Ako *BODE 100* daje na teretu od 50Ω razinu snage od -27db(mW) tada će i na ulazu pojačala *E&I2100L* dati istu razinu snage (iz razloga što ulazni otpor pojačala i teret imaju jednak otpor tj. 50Ω).

Iz opće formule
$$P[dBmW] = 10 \log(\frac{P_w[W]}{10^{-3}[W]})$$

$$slijedi:$$

$$-27[dBmW] = 10 \log(\frac{P_w[W]}{10^{-3}[W]})$$

$$P_w = 1.995262315 * 10^{-6}W$$

$$iz P_w = U * I = I^2 * R = \frac{v^2}{R}$$

$$uz R = 50\Omega, slijedi:$$

$$I = 0.199762975 \text{ mA}$$

$$U = 9.988148765 \text{ mV}$$

Zadatak 2 : Izračunati frekvenciju radijalnog i debljinskog moda titranja ako su zadane frekvencijske konstante ova dva moda prema slici 8 (tanki disk). (debljina 5mm i promjer 50mm, a frekvencijske konstante za radijalni mod odabrane keramike PIC Nr = 2270~Hz*m~i~za~debljinski~mod~su~Nt = 1670~Hz*m).

Rješenje:

$$f_{radijal} = \frac{N_r}{OD} = \frac{2270}{50 * 10^{-3}} = 45,400 \text{ kHz}$$

$$f_{thickness} = \frac{N_t}{TH} = \frac{1670}{5 * 10^{-3}} = 334 \, kHz$$

2. Rezultati mjerenja

a) Radijalni mod titranja

Nananala		£ [1-11_1	7 [0]	V [C:]	£ [1-11-1	7 [0]	V [C:]
Naponska	Impedancija	$f_s[kHz]$	$Z_{min}[\Omega]$	$Y_{max}[Si]$	$f_p[kHz]$	$Z_{max}[\Omega]$	$Y_{min}[Si]$
razina	izvan		$Re(Z_{min})$	$Re(Y_{max})$		$Re(Z_{max})$	$Re(Y_{min})$
izvan	rezonancije		R_1 (pri				
rezonancije	na		rezonanciji)				
[V]	12.78kHz						
	Pod kutem						
	(-88.433°)						
4	2982.25Ω	45.313	2.77	361.099m	52.250	364.298k	2.745μ
27.5	2982.25Ω	44.988	20.682	48.351m	52.250	245.098k	4.080μ

b) Debiljnski mod titranja

Naponska	Impedancija	$f_s[kHz]$	$Z_{min}[\Omega]$	$Y_{max}[Si]$	$f_p[kHz]$	$Z_{max}[\Omega]$	$Y_{min}[Si]$
razina	izvan		$Re(Z_{min})$	$Re(Y_{max})$		$Re(Z_{max})$	$Re(Y_{min})$
izvan	rezonancije		R_1 (pri				
rezonancije	na		rezonanciji)				
[V]	12.78kHz						
	Pod kutem						
	(-88.433°)						
4	2982.25Ω	426.375	0.9768	1.0237	456.375	17.351k	57.635μ
28.22	2982.25Ω	425.5	2.1877	457.082m	456.375	14.923k	67.012μ

Rad nakon vježbe:

1. dio

Iz izmjerenih karakteristika oko radijalnog i debljinskog moda odrediti elemente nadomjesnog modela RO, CO, R1, L1 i C1 prema uputama za pripremu te faktor dobrote određenog ekvivalentnog RLC kruga prema izrazu za serijski titrajni krug jer on dominantno određuje ponašanje oko rezonancije.

$$Z_{izvan_rezonancije} = 2982.25 < -88.433^{\circ} \rightarrow 81.5523 - j * 2981.13473$$

 R_0 jednak je realnom dijelu $Z_{izvan_rezonancije}$, pa je prema tome

$$R_0 = 81.5523\Omega$$

$$\frac{1}{\omega * C_0} = 2981.14373$$

pri čemu je f = 12.78kHz, a
$$\omega = 2 * \pi * f$$

slijedi

$$C_0 = \frac{1}{2981.14373 * 2 * \pi * f} = 4.18723 \ pF$$

Prema pripremi za laboratorijsku vježbu (str. 11) vrijednost otpora R1 se odredi iz impedancije na serijskoj rezonantnoj frekvenciji (R_1 =1/Ymax = Zmin)

Slijedi (u ovisnosti o naponskoj razini izvan rezonancije četiri su moguća rješenja u našem slučaju za R_1 u ovisnosti o debljinskom tj. radijalnom modu titranja)

$$R_{1.1} = 2.77\Omega$$

$$R_{1.2} = 20.682\Omega$$

$$R_{1,3} = 0.9768\Omega$$

$$R_{1.4} = 2.1877\Omega$$

Iz formula (3) i (4) na stranici 12. pripreme, pripadne jednadžbe za L_1 i C_1 su

$$L_1 = \frac{1}{4\pi^2 f_s^2} * \frac{1}{\left(\frac{f_p}{f_s}\right)^2 - C_0} [H]$$

$$C_1 = (\frac{f_p}{f_s})^2 - C_0 [F]$$

Također iz razloga zbog kojega imamo četiri iznosa otpornika R_1 tako imamo i po četiri vrijednosti za vrijednosti kapaciteta i induktiviteta.

Prema tome pripadni iznosi kapaciteta su:

$$C_{1.1} = 1.3296 \,\mathrm{F}$$

$$C_{1.2} = 1.3488 \text{ F}$$

$$C_{1.3}$$
=1.1456 F

$$C_{1,4} = 1.150 \text{ F}$$

, a iznosi induktiviteta :

$$L_{1.1} = 9.278 \text{ pH}$$

$$L_{1.2}$$
 = 9.279 pH

$$L_{1.3} = 0.121 \text{ pH}$$

$$L_{1.4} = 0.122 \text{ pH}$$

Vidljivo je da su iznosi kapaciteta C_1 u odnosu na kapacitet C_0 iznimno veliki. Zapravo posljedica toga je što otpor R_0 nije izrazito velik te je vrlo moguće da formule (3) i (4) iz pripreme ne vrijede pošto one vrijede u slučaju kad je R_0 velikog iznosa.

Konačno, potrebno je odrediti iznose faktora kvalitete \mathcal{Q}_{mt} po formuli iz pripreme.

$$Q_{mt1} = 9.536 * 10^{-7}$$

$$Q_{mt2} = 1,268 * 10^{-7}$$

$$Q_{mt3} = 3.318 * 10^{-7}$$

$$Q_{mt4} = 1.491 * 10^{-7}$$

2.dio:

Za izmjerene gornje i donje granične frekvencije te centralnu frekvenciju pojasno propusnog filtra na pločici odrediti faktor kvalitete.

Prema formuli s predmeta Električni Krugovi (predavanje 19-Električni filtri, slajd 43).

$$B = \frac{f_c}{o} [Hz]$$

I također po definiciji, pojas propuštanja je definiran kao

$$B = f_{gornja} - f_{donja}$$
 [Hz]

određuje se faktor kvalitete za zadanu centralnu frekvenciju f_c i pojas širine B.

U tablici su dana mjerenja na vježbi.

$f_{donja}[{ m MHz}]$	$f_{centralna}[{ m MHz}]$	$f_{gornja}[exttt{MHz}]$
11.996937	11.997116	11.997296
11.996472	11.996875	11.997325

jednostavnim računom slijedi

$$B_1 = 359 \, Hz \rightarrow Q_1 = 33.418 * 10^3$$

$$B_2 = 853 \, Hz \, \rightarrow Q_2 = 14.064 * 10^3$$

Komentar: Vidljivo je da su faktori kvalitete u drugom dijelu vježbe (na pločici) izrazito veći od faktora kvalitete u prvom dijelu vježbe kod keramičkog diska, što ukazuje na različite mogućnosti primjene piezokeramičkih elemenata poput mjerenja pomaka (prvi dio vježbe, malo pokazano na vježbi) ili korištenja elementa kao pojasno propusnog filtra (u drugom dijelu vježbe).