NEUTRINO-ELECTRON ELASTIC SCATTERING RECO VS TRUE VARIABLES REVISITED AND FURTHER CUTS

Bruno Zamorano - University of Granada

21 October 2022

INTRODUCTION

- Main update since last meeting: found bug in MC energy, now things look a lot more sensible
- Showing how the selection would benefit from a better reconstruction
- Estimated resolution needs for a good energy reconstruction

INTRODUCTION

Caveat:

Measuring the incoming neutrino energy requires an **excellent** precision measuring both the energy and direction of the electron shower

SHOWER ENERGY (SIGNAL)

No cuts

SHOWER ENERGY (BACKGROUND)

No cuts

SHOWER DIRECTION (SIGNAL, ZOOM)

No cuts

SHOWER DIRECTION (BACKGROUND)

No cuts

HOW GOOD DO WE NEED THE RECONSTRUCTION TO BE?

Using all the true information in

$$E_{\nu} = \frac{m_e T_e}{p_e \cos \theta_{\nu e} - T_e}$$

Smearing energy reconstruction by a gaussian 10% (unbiased)

We can absorb this with unfolding (reco-to-true matrix)

Smearing the angle by I° (unbiased)

Improving the direction reconstruction is the priority

ABOUT THE KINEMATIC CUT

In the relativistic limit:

$$1 - \cos \theta = \frac{m_e (1 - y)}{E_e}$$
, where $y = \frac{T_e}{E_\nu}$

$$E_e \theta^2 \simeq 2m_e (1 - y) \le 2m_e = 0.001 \text{ GeV}$$

SELECTION (TRUE VARIABLES)

Optimum is at E θ^2 <0.0011 GeV rad², very close to the theoretical boundary

SELECTION (RECO VARIABLES)

Signal

Background

Optimum is at E θ^2 <0.0029 GeV rad²

Checked linear cut and we gain nothing (~same efficiency and purity)

ADDITIONAL VARIABLES?

Cut < 30 MeV/cm

Cut < 0.5

Preliminary cuts (i.e., eyeballed), on top of previous cuts Underlying idea: what's left is events where a hadronic shower is collinear

ADDITIONAL VARIABLES?

Cut > 10 cm

Cut > 0.2

Preliminary cuts (i.e., eyeballed), on top of previous cuts

CUTFLOW

Cut	Efficiency	Purity
No cut	100%	0.8%
One shower	68.5%	1.4%
No tracks	59.0%	4.3%
$E\Theta^2 < 0.003$	32.7%	68.9%
All remaining	30.4%	74.3%

CONCLUSIONS

- In order to reconstruct the energy of the incoming neutrino with good precision, the main goal lies in improving the reconstruction (particularly direction)
- Event selection would also greatly benefit from such improvement
 - Next step, test out using Marina's direction reconstruction algorithm
- There seems to be some room form improvement in the selection but most of the low-hanging fruit has already been picked