

Compte rendu TP

Convection thermique - Echangeurs

Titre:

Simulation numérique avec ANSYS/Fluent d'un échangeur de chaleur coaxial

Réalisé par :

- Anis CHERGUI

- Teiva KERKHOFF

Destiné à :

- Dahia CHIBOUTI

Année universitaire: 2020/2021

Sommaire

1.	Introduction	2
2.	Objectif	2
3.	Etude théorique	2
3.1.	Analogie électrique	4
3.2.	Calcul des coefficients d'échange thermique convectif	4
3.3.	Résultat de calcul analytique	7
3.4.	Comparaison avec les valeurs expérimentales	7
4.	Modélisation et mise en œuvre de l'échange thermique sous fluent	7
4.1.	Géométrie et maillage	7
4.1.	Géométrie et maillage	8
_4.2.	Conditions aux limites	8
_4.3.	Méthode de résolution	9
4.4.	Résultat et discussion	9
5.	Conclusion	15

1. Introduction

Les échangeurs de chaleur transfèrent la chaleur entre deux ou plusieurs fluides qui traversent l'appareil sans les mélanger. Une des principales caractéristiques de la conception d'un échangeur de chaleur est la configuration relative de l'écoulement « contre-courant, co-courant »

Il est important de souligner que l'étude des différentes configurations représentent des idéalisations de ce qui se passe réellement.

2. Objectif

L'objectif de ce TP est d'utiliser le logiciel ANSYS/FLUENT pour simuler les écoulements et les transferts de chaleur dans un échangeur de chaleur coaxial.

Comparer entre les différentes configurations d'écoulement co-courant et contre-courant.

3. Etude théorique

On rappelle que le flux ϕ cédé par le fluide chaud ou gagné par le fluide froid peut s'écrire sous la forme suivante.

$$\phi = \dot{m}C_p\Delta T \tag{3.1}$$

où \dot{m} est le débit massique, C_p la capacité thermique et ΔT un écart de température.

On montre que le flux de chaleur peut s'écrire aussi en fonction du coefficient de transfert global *K* entre l'entrée et la sortie du tube considéré, rapporté à la surface extérieure :

$$\phi = (KS)_e \Delta T_{ml} \tag{3.2}$$

Ou ΔT_{ml} est l'écart de température moyen logarithmique. Il représente un écart de température caractéristique dépendant du sens de circulation.

• A contre-courant, ΔT_{ml} est défini comme suit :

$$\Delta T_{ml} = \frac{\left(T_{c,e} - T_{f,s}\right) - \left(T_{c,s} - T_{f,e}\right)}{\ln\left(\frac{T_{c,e} - T_{f,s}}{T_{c,s} - T_{f,e}}\right)}$$
(3.3)

• A co-courant, ΔT_{ml} est défini comme suit :

$$\Delta T_{ml} = \frac{\left(T_{c,e} - T_{f,e}\right) - \left(T_{c,s} - T_{f,s}\right)}{\ln\left(\frac{T_{c,e} - T_{f,e}}{T_{c,s} - T_{f,s}}\right)}$$
(3.4)

Utilisant des relations (3.2, 3.3 et 3.4), on établit l'expression des température d'eau chaude et froide $(T_{c,s}, T_{f,s})$

a- Contre-courant:

• Température de sortie du fluide froid $(T_{f,s})$

$$T_{f,s} = T_{f,e} + \frac{(T_{c,e} - T_{c,s})}{\beta}$$
 (3.5)

• Température de sortie du fluide chaud $(T_{c,s})$

$$\dot{m}_{c}C_{p}\Delta T = (KS)_{e}\Delta T_{ml} = (KS)_{e}\frac{\left(T_{c,e} - T_{f,s}\right) - \left(T_{c,s} - T_{f,e}\right)}{\ln\left(\frac{T_{c,e} - T_{f,s}}{T_{c,s} - T_{f,e}}\right)}$$

$$\dot{m}_{c}C_{p}\ln\left(\frac{T_{c,e} - T_{f,s}}{T_{c,s} - T_{f,e}}\right)\left(T_{c,e} - T_{c,s}\right) = (KS)_{e}\left[\left(T_{c,e} - T_{f,s}\right) - \left(T_{c,s} - T_{f,e}\right)\right]$$

$$\ln\left(\frac{T_{c,e} - T_{f,s}}{T_{c,s} - T_{f,e}}\right) = \frac{(KS)_{e}}{\dot{m}_{c}C_{p}\left(T_{c,e} - T_{c,s}\right)}\left[\left(T_{c,e} - T_{f,s}\right) - \left(T_{c,s} - T_{f,e}\right)\right]$$

On introduit le facteur de déséquilibre $\beta=rac{T_{c,e}-T_{c,s}}{T_{f,s}-T_{f,e}}=rac{\dot{m}_f c_p}{\dot{m}_c c_p}$

$$\ln\left(\frac{T_{c,e} - T_{f,s}}{T_{c,s} - T_{f,e}}\right) = \frac{(KS)_e}{\dot{m}_c C_p} \left[1 - \frac{1}{\beta}\right]$$

D'où

$$\frac{T_{c,e} - T_{f,s}}{T_{c,s} - T_{f,e}} = \exp\left(\frac{(KS)_e}{\dot{m}_c C_p} \left[1 - \frac{1}{\beta}\right]\right)$$

$$T_{c,s} = T_{f,e} + \left(T_{c,e} - T_{f,s}\right) \exp\left[-\left(\frac{(KS)_e}{\dot{m}_c C_p} \left[1 - \frac{1}{\beta}\right]\right)\right]$$

$$T_{c,s} = \frac{T_{c,e}(\beta - 1) - \beta \left[1 - \exp\left(\frac{(KS)_e(\beta - 1)}{\dot{m}_f C_{p,f}}\right)\right] T_{f,e}}{\beta \exp\left(\frac{(KS)_e(\beta - 1)}{\dot{m}_f C_{p,f}}\right) - 1}$$
(3.6)

b- Co-courant

$$\dot{m}_c C_p \Delta T = (KS)_e \Delta T_{ml} = (KS)_e \frac{\left(T_{c,e} - T_{f,e}\right) - \left(T_{c,s} - T_{f,s}\right)}{\ln\left(\frac{T_{c,e} - T_{f,e}}{T_{c,s} - T_{f,s}}\right)}$$

• Température de sortie du fluide froid $(T_{f,s})$

$$T_{f,s} = T_{f,e} + \frac{(T_{c,e} - T_{c,s})}{\beta}$$
 (3.7)

• Température de sortie du fluide chaud $(T_{c,s})$

$$T_{c,s} = \frac{\left[\beta + \exp\left(\frac{(KS)_{e}(\beta + 1)}{\dot{m}_{f}C_{p,f}}\right)\right]T_{c,e} + \beta\left[\exp\left(\frac{(KS)_{e}(\beta + 1)}{\dot{m}_{f}C_{p,f}} - 1\right)\right]T_{f,e}}{(\beta + 1)\exp\left(\frac{(KS)_{e}(\beta + 1)}{\dot{m}_{f}C_{p,f}}\right)}$$
(3.8)

3.1. Analogie électrique

• Calcul du coefficient d'échange globale *K*

En utilisant la méthode de l'analogie électrique, la résistance totale thermique équivalente R au niveau de la paroi d'acier inoxydable de l'échangeur.

Figure : Configuration de l'échangeur et schéma électrique équivalent

$$K_e = \frac{1}{\frac{r_e}{r_i h_i} + \frac{r_e}{k} \ln\left(\frac{r_e}{r_i}\right) + \frac{1}{h_e}}$$
(3.9)

3.2. Calcul des coefficients d'échange thermique convectifs

- Coefficient d'échange interne h_i :

Pour des écoulements turbulents dans un cylindre, la corrélation de Gnielinski nous permet d'écrire que :

$$Nu_{Di} = \frac{\left(\frac{C_f}{2}\right) \left(R_{e,Di} - 10^3\right) P_r}{1 + 12.7 \left(C_f/2\right)^{\frac{1}{2}} \left(P_r^{\frac{2}{3}} - 1\right)}$$
(3.10)

 C_f : coefficient de frottement, donnée par

$$C_f \approx 0.079 \, R_{eD_i}^{-\frac{1}{4}}$$
 (3.11)

Pr: Est le nombre de Prandtl défini par $P_r = \frac{v}{\alpha}$

 R_{e,D_i} : nombre de Reynolds de la conduite interne, donné par

$$R_{e,D_i} = \frac{\bar{u}_c D_i}{v} = \frac{4.\,\dot{m_e}}{\pi(D_i)\mu}$$
 (3.12)

D'où

$$h_i = \frac{Nu_{D,i} \times k}{D_i} = \frac{k\left(\frac{C_f}{2}\right) \left(R_{e,Di} - 10^3\right) P_r}{D_i \left[1 + 12.7\left(C_f/2\right)^{\frac{1}{2}} \left(P_r^{\frac{2}{3}} - 1\right)\right]}$$
(3.13)

• Coefficient d'échange annulaireh_e

$$Nu_{Deq} = \frac{\left(\frac{C_f}{2}\right) \left(R_{e,Deq} - 10^3\right) P_r}{1 + 12.7 \left(C_f/2\right)^{\frac{1}{2}} \left(P_r^{\frac{2}{3}} - 1\right)}$$
(3.14)

Le nombre de Reynolds et donné en fonction d'un diamètre équivalent

$$R_{e,Deq} = \frac{\bar{u}_c}{\nu} \times \frac{D_e^2 - D_i^2}{D_i} = \frac{4.\,\dot{m}_e}{\pi \left(\frac{D_e^2 - D_i^2}{D_i}\right)\mu}$$
(3.15)

Donc

$$h_i = \frac{Nu_{D,eq} \times k}{D_{eq}} = \frac{k\left(\frac{C_f}{2}\right) \left(R_{e,Deq} - 10^3\right) P_r}{D_{eq} \left[1 + 12,7\left(C_f/2\right)^{\frac{1}{2}} \left(P_r^{\frac{2}{3}} - 1\right)\right]}$$
(3.16)

3.3. Résultat de calcul analytique

Propriété de l'eau	Fluide chaud	fluide froid
T_moyenne	310	300
rho	989,12	997,009
viscosité	0,000577	0,000855
conductivité thermique	0,64	0,613
С-р	4180	4179
diffusité thermique	1,54794E-07	1,47126E-07
Prendtl	3,76853125	5,828784666

fluide froid							
débit volmique (I/mn)	débit m (kg/s)	D_eq (m)	Re_Deq	C_f	Nu_D,eq	h_e(w/m^2K)	
1	0,0165	0,009049398	2712,827	0,01095	17,6069	1192,6767	
2	0,0330	0,009049398	5425,654	0,00920	40,5353	2745,8305	
3	0,0495	0,009049398	8138,48	0,00832	61,0673	4136,6557	
fluide chaud							
débit volmique (I/mn)	débit m (kg/s)	D_i (m)	Re_Di	C_f	Nu_Di	h_i (w/m^2K)	
2	0,0330	0,0083	8765,646	0,00816	55,4737	4277,4903	

On remarque que les corrélations présentées précédemment, sont bien applicables pour notre cas, vu que :

$$0.5 \le Pr \le 10^6$$

$$2300 \leq Re \leq 5.\,10^6$$

On remarque que les coefficients d'échange par convection calculés ont des valeurs comprise dans l'intervalle des coefficients d'échange thermique des fluides en convection forcée $300 \le h \le 12000$ (Transferts thermique par conduction. Xavier NICOLAS)

• Coefficient d'échange thermique globale K

debit fluide froid (I/mn)	r_i	r_e	h_i	h_e	K_e (w/m^2K)
1	0,00415	0,00475	1192,6767	4277,4903	811,1106
2	0,00415	0,00475	2745,8305	4277,4903	1449,1748
3	0,00415	0,00475	4136,6557	4277,4903	1818,5215
k de l'acier (w/m K)					
16,27					

• Température de sortie des deux fluides Pour des températures d'entrées données $T_{f,e}=292~K~et~T_{c,e}=328~K$

T_f,e (K)	292							
T_c,e (K)	328				Contre c	ourant	со-со	urant
debit fluide froid (I/mn)	beta	S_e (m^2)	(KS)_e	(m*C_p)_f	T_c,s (K)	T_f,s (K)	T_c,s (K)	T_f,s (K)
1	0,4999	0,01970	15,9771	68,8922	324,4483	299,1052	324,4751	299,0515
2	0,9998	0,01970	28,5455	137,7844	321,8230	298,1784	321,8952	298,1063
3	1,4996	0,01970	35,8208	206,6766	320,3130	297,1259	320,4064	297,0636

3.4. Comparaison avec les valeurs expérimentales

debit fluide froid (I/mn)	co courant			contre courant		
1	T_c,s (K)	T_c,s exp (K)	erreur relative	T_c,s (K)	T_c,s exp (K)	erreur relative
2	324,4751	324,06	0,1281%	324,4751	323,99	0,1497%
3	321,8952	321,89	0,0016%	321,8952	321,52	0,1167%
	320,4064	320,36	0,0145%	320,4064	320,14	0,0832%
debit fluide froid (I/mn)	T_f,s (K)	T_f,s exp (K)		T_f,s (K)	T_f,s exp (K)	
1	304,87	299,0515	1,9456%	299,0515	305,0300	1,9600%
2	299,65	298,1063	0,5178%	298,1063	299,3800	0,4254%
3	298,04	297,0636	0,3287%	297,0636	297,4500	0,1299%

On remarque que pour le fluide chaud, qui circule à l'intérieur du tube interne, on a des résultats identiques (absence de perte de chaleur avec le milieu ambiant), ce qui n'est pas le cas du fluide froid qui échange de la chaleur avec le milieu ambiant, et comme les équations qu'on a développées sont applicable dans le cas où le milieu est isolé du milieu ambiant, ce qui explique l'écart entre les valeurs théoriques et expérimentales

4. Modélisation et mise en œuvre de l'échange thermique sous FLUENT

Au démarrage de Fluent, nous avons choisir le type de simulation adéquat à notre problème afin d'optimiser le temps de calcul et l'espace mémoire allouer à la résolution du problème.

- On choisit le modèle Simulation 2D.
- Simplification de la géométrie (symétrie)
- Ecoulement stationnaire $(\partial/\partial t = 0)$
- Ecoulement incompressible (ρ = cste)
- Ecoulement visqueux newtonien ($\mu = \mu eau = cste$)

4.1. Géométrie et maillage

L'étude porte sur un échangeur thermique formé de tubes coaxiaux en forme de U pour des raisons de compacité.

Figure : Vue de la coupe 2D et caractéristiques géométriques de l'échangeur coaxial

On rappelle les caractéristiques géométriques de l'échangeur :

- Longueur totale : L = 660 mm

- Tube intérieur

• Diamètre intérieur du tube d'eau chaude : $D_i = 8.3 \ mm$

• Épaisseur intérieure du tube d'acier inoxydable $E_i = 0.6 \ mm$

Tube extérieur

• Diamètre extérieur de l'espace annulaire d'eau froide : $D_{int} = 12 \text{ mm}$

• Épaisseur extérieure de la paroi en acrylique : $E_e = 2 mm$

• Diamètre hydraulique eau froide (espace annulaire) : $D_h = \frac{4S}{P} = 2.5 \ mm$

• Diamètre hydraulique eau chaude $D_h = 8.3 \, mm$

Pour le maillage, on a utilisé un maillage quadratique, cela nous permet de réduire la diffusion numérique tout en s'assurant d'avoir le même nombre de subdivision sur chaque côté.

Pour le nombre de subdivision le long de la longueur de l'échangeur a été choisi de sorte que la taille des mailles sur la longueur ne soit pas trop grand devant les mailles verticales

4.2. Conditions aux limites

Figure : Arêtes porteuses des conditions limites du problème

- Entrée eau froide : (mass flow inlet) \dot{m}_f et un diamètre hydraulique $D_h=2,5$ mm, $T_{f,e}$

- Entrée eau chaude : (mass flow inlet) \dot{m}_c et $T_{f,e}$

- Sortie eau froide : Pressure Outlet

- Sortie eau chaude Pressure Outlet

4.3. Méthode de résolution

La méthode de résolution employée est un solveur explicite couplé (on résout l'équation d'énergie en parallèle avec les équations standards de la mécanique des fluides. On se place en 2D). Ensuite, nous avons défini le modèle physique, dans notre cas on a utilisé deux modèles

- Modèle idéal (échangeur isolé du milieu ambiant)
- Modèle cas réel (on prend en compte les échanges par convection et par rayonnement avec le milieu ambiant)

Afin d'observer la convergence du calcul et l'évolution du système, on fait afficher le résidu au cours des itérations, ainsi que l'évolution de la température.

4.4. Résultat et discussion

a- **Cas réel**: dans cette étude on a pris en compte les échanges radiatifs et convectif entre l'échangeur et le milieu ambiant, tel que on a défini un coefficient d'échange équivalent, qui prend en compte des deux échanges

$$h_{eq} = h_r + h_{conv} = 8,884 \, W/m^2 K$$

Co courant

Sur cette figure, on voit l'évolution de la température des deux fluides

- Le fluide chaud qui se refroidit
- Le fluide froid qui absorbe de la chaleur se réchauffe et voit sa température augmentée.

Variation des températures de sortie en fonction du débit du fluide froid

Sur ces figures on a représenté l'évolution de la température au centre de chaque tube.

A partir des comparaisons des évolutions des températures de chaque fluide en fonction du débit d'eau froide, on remarque que

- Fluide chaud : plus le débit de fluide froid augmente plus la température de sortie du fluide chaud augmente.
- Fluide froid: plus le débit de fluide froid augmente plus la température de sortie du fluide froid diminue

• Résultats numériques des température d'entrée, sortie et au milieu de chaque conduit.

Les températures d'entrée, sortie et au milieu figurants dans le tableau ci-dessous, représentent la moyenne sur la section ou on veut l'obtenir. Car on sait que la température n'est pas uniforme sur une section donnée à cause des couche limites thermiques.

	co courant					
debit fluide froid (I/mn)	T_c,e (K)	T_c,m (K)	T_c,s (K)	T_f,e (K)	T_f,m (K)	T_f,s (K)
1	327,9269	323,1838	320,5093	292,1623	304,3284	306,9332
2	327,9056	321,623	317,7798	292,091	300,4336	302,4336
3	327,8948	320,8015	316,276	292,0617	298,4342	299,728

Comparaison des résultats analytiques et expérimentales

Erreur relative(exp/ numérique)							
debit fluide froid (I/mn)	T_c,m (K)	T_c,s (K)	T_f,m (K)	T_f,s (K)			
1	1,034%	1,096%	1,575%	2,636%			
2	1,045%	1,277%	1,398%	1,452%			
3	1,009%	1,275%	1,034%	0,897%			

Erreur relative(analytique/ numérique)						
debit fluide froid (I/mn)	T_c,s (K)	T_f,s (K)				
1	1,222%	0,672%				
2	1,278%	0,920%				
3	1,289%	0,563%				

On remarque que l'écarte entre les résultats numériques et numérique ainsi qu' entre expérimentales et numérique sans faibles ($\approx 1\%$).

D'où on peut dire que nous résultats sont acceptables

Contre-courant

Sur cette figure, on voit l'évolution de la température des deux fluides

- Le fluide chaud se refroidit
- Le fluide froid qui absorbe de la chaleur se réchauffe et voit sa température augmentée.

On remarque que pour la configuration contre-courant que la température de sortie du fluide froid se rapproche de celle d'entée de fluide chaud. Si on augmente la longueur de l'échangeur, on aura une température de sortie de fluide froid plus élevée. Ce qui nous permet de dire que la configuration contre-courant est plus efficace que la configuration co-courant.

• Variation des températures de sortie en fonction du débit du fluide froid

On remarque que pour le fluide chaud : plus le débit d'eau froid diminue plus la température de sortie est élevée. Tant dit que pour le fluide froid plus sont débit diminue plus sa température de sortie augmente Donc pour une géométrie de l'échangeur donnée (D, L) on peut ajuster les débits afin d'augmenter ou de réduire la température de sortie des fluides selon le besoin.

Résultats numériques des température d'entrée, sortie et au milieu de chaque conduit.

Les températures d'entrée, sortie et au milieu figurants dans le tableau ci-dessous, représentent la moyenne sur la section ou on veut l'obtenir. Car on sait que la température n'est pas uniforme sur une section donnée à cause des couche limites thermiques.

	contre-courant contre-courant					
debit fluide froid (I/mn)	T_c,e (K)	T_c,m (K)	T_c,s (K)	T_f,e (K)	T_f,m (K)	T_f,s (K)
1	327,9655	324,2145	319,9380	292,1623	304,3284	306,9332
2	327,942	322,4431	317,134	292,0503	299,9949	302,7667
3	327,9266	321,4431	315,6647	292,0305	297,9628	300,1059

• Comparaison des résultats analytiques et expérimentales

Erreur relative (exp/ numérique)						
debit fluide froid (I/mn)	T_c,m (K)	T_c,s (K)	T_f,m (K)	T_f,s (K)		
1	0,918%	1,251%	1,660%	0,624%		
2	0,872%	1,364%	1,604%	1,131%		
3	0,884%	1,398%	1,296%	0,893%		

Erreur relative (analytique/ numérique)						
debit fluide froid (I/mn)	T_c,s (K)	T_f,s (K)				
1	1,398%	2,636%				
2	1,479%	1,563%				
3	1,480%	1,024%				

• Comparaison des résultats contre-courant et co-courant :

Erreur relative(analytique/ numérique)							
debit fluide froid (I/mn)	T_c,s (K)	T_f,s (K)					
1	0,178%	0,000%					
2	0,203%	0,110%					
3	0,193%	0,126%					

On remarque que la configuration contre-courant, nous permet de gagner en température de sortie pour la même géométrie de l'échangeur.

b- Cas réel : dans cette étude on a pris l'hypothèse que l'échangeur est parfaitement isolé, et donc que le flux échangé avec l'extérieur est nul.

On constate que les températures aux entrées froides et chaudes sont constantes, elles correspondent à la condition limite d'entrée. Plus on s'avance dans la direction longitudinale, plus les profils sont « aplatis », ce qui correspond au fait que le fluide froid se réchauffe, et le fluide chaud se refroidit.

Figure : Profil de température - Contre courant 31/min

Résultats expérimentaux								
Co-courant	Chaud			Froid				
Température (°C)	Sortie	Milieu	Entrée	Sortie	Milieu	Entrée		
3 l/mn	47,36	51,07	55,27	25,04	22,38	19,18		
2 l/mn	0	0	0	0	0	0		
1 l/mn	0	0	0	0	0	0		
Résultats numériques								
Co-courant	Chaud			Froid				
Température (°C)	Sortie	Milieu	Entrée	Sortie	Milieu	Entrée		
3 l/mn	47,404	51,183	55,27	24,815	22,263	19,181		
2 l/mn	48,757	52,023	55,71	27,383	23,551	19,161		
1 l/mn	35,44	29,765	20,735	35,44	29,765	20,735		
Résultats expérimentaux								
Contre courant	Chaud			Froid				
Température (°C)	Sortie	Milieu	Entrée	Sortie	Milieu	Entrée		
3 l/mn	47,14	51,31	55,32	24,45	21,15	18,07		
2 l/mn	48,52	52,28	55,17	26,38	22,26	18,06		
1 l/mn	50,99	54,22	56,49	32,03	26,36	19,48		
Résultats numériques								
Contre courant	Chaud			Froid				
Température (°C)	Sortie	Milieu	Entrée	Sortie	Milieu	Entrée		
3 l/mn	47,155	51,492	55,32	23,77	20,745	18,07		
2 l/mn	48,031	51,92	55,17	25,546	21,668	18,06		
1 l/mn	51,471	54,388	56,49	30,882	25,072	19,48		

Figure : Comparaison des températures expérimentales et numériques pour les différents échangeurs et débits

5. Conclusion

Dans ce TP, on a simulé les échangeurs thermiques dans les échangeurs tubulaire, contre-courant et co-courant.

Les échangeurs à contre-courant sont plus performants que les échangeurs co-courant, D'où l'utilisation de la configuration contre-courant dans les installations industrielles est toujours conseillée, dans le but de réduire la taille des installations « réduire l'encombrement ».