Név (olvashatóan): Név	(aláírás)	: Neptun kód:	
-------	-------------	--------	-----------	---------------	--

Logika és számításelmélet, számításelmélet zh, Szerda 8:00, A. Megoldások

1. Feladat. (10 pont)

- a) Legyen $f(n) = 2^n$ és $g(n) = 9^{\frac{n}{2}}$. Hogyan viszonyulnak egymáshoz ezek a függvények a növekedési ütemük alapján? A választ indokolja is!
 - **Megoldás:** $g(n) = 9^{\frac{n}{2}} = 3^n = (1.5 \cdot 2)^n = 1.5^n \cdot 2^n$, tehát nincs olyan c konstans amivel megszorozva f(n)-t $cg(n) \leq f(n)$ teljesülne valamely küszöbindextől kezdve. Következik, hogy g(n) gyorsabban nő, mint f(n).
- b) Legyen D_{fin} azon végtelen hosszú bitsztringek (azaz 0-t és 1-et tartalmazó végtelen szavak) halmaza, melyekben véges sok 0 van. Mi a D_{fin} halmaz számossága? A választ indokolja is! **Megoldás:** Vegyük észre, hogy megadható egy bijekció D_{fin} és a következő halmaz között: $A = \{\varepsilon\} \cup \{u0 \mid u \in \{0,1\}^*\}$ (azaz minden D_{fin} -beli szó azonosítható a leghosszabb olyan prefixével, ami nem 1-esre végződik). Mivel az A halmaz számossága megszámlálhatóan végtelen, ezért D_{fin} számossága is az.
- 2. Feladat. (8 pont) Adjon egy olyan egyszalagos determinisztikus Turing-gépet, ami az

$$L = \{a^i b^j a^k \mid 0 \le i \le j \le k\}$$

nyelvet ismeri fel. Ismertesse vázlatosan a megadott Turing-gép működését!

Megjegyzés: A megoldás hasonló lesz, mint a gyakorlaton látott $a^nb^nc^n$ nyelvet eldöntő Turinggép, azzal a különbséggel, hogy két ciklust használunk a betűk "párosításához": egyszer párosítjuk a szó elejei a-kat a szó közepén lévő b-kkel, majd ezeket a b-ket a szó végi a-kal.

Megoldás: Az alábbi Turing-gép (remélhetőleg) a fenti nyelvet dönti el.

Működése:

1. $q_0 - q_5$: Megnézzük, hogy jó alakja ven-e a bemenetnek, közben, ha a^* alakú, el is fogadjuk;

- 2. q_5-q_8 : Ha a-val kezdődik a szó (és ez esetben követni fogja őt néhány b is), akkor leellenőrizzük, hogy legalább annyi b van-e a szóban, mint amennyi a a szó elején; közben kitöröljük a szó elejei a-kat;
- 3. $q_5 q_{11}$: Leellenőrizzük, hogy legalább annyi a van a szó végén, mint amennyi b van benne.
- **3. Feladat.** (8 pont) Milyen nyelvet ismer fel az alábbi (nemdeterminisztikus) Turing-gép (bemenő jelek halmaza: {0,1})? Elfogadja-e a gép a 0100 szót! Ha igen, akkor adja meg a gép egy elfogadó számítását ezen a szón! (Nem kell az egész számítási fát megadni, elég csak magát az elfogadó számítást leírni.)

Megoldás: A gép az $L = \{u10u^{-1} \mid u \in \{0,1\}^*\} \cup \{u0u^{-1} \mid u \in \{0,1\}^*\}$ nyelvet ismeri fel. Ezek alapján elfogadja a 0100 szót.

4. Feladat. (8 pont) Adjon meg egy olyan egyszalagos Turing-gépet, ami az alábbi szófüggvényt számolja ki:

$$f: X^n \mapsto (XY)^n$$
,

ahol $n \geq 0$. (Tehát például f(XXX) = XYXYXY.)

Ismertesse vázlatosan a megadott Turing-gép működését!

Ötlet: A gyakorlaton látott $f: X^n \mapsto X^{2n}$ függvényt kiszámoló Turing-gépet lehetett felírni azzal a módosítással, hogy ha X^{2n} már megvan, akkor elfogadás előtt még minden második X-et Y-ra kellett írni.

5. Feladat. (8 pont) Legyen $L_{\exists halt} = \{\langle M \rangle \mid \text{ Van olyan bemenet amin } M \text{ megáll} \}$ és $L_{\exists accept} = \{\langle M \rangle \mid \text{ Van olyan bemenet amit } M \text{ elfogad} \}$. Vázolja $L_{\exists halt}$ egy lehetséges visszavezetését $L_{\exists accept}$ re! Mit mondhatunk el ez alapján az $L_{\exists accept}$ eldönthetőségéről, ha tudjuk, hogy $L_{\exists halt}$ nem eldönthető?

Megoldás: Tetszőleges M Turing-géphez konstruáljuk meg M' a következő módon. M' annyiban különbözik M-től, hogy M q_n -be vezető átmeneteit q_i -be irányítjuk. Mivel így M akkor és csak akkor áll meg egy u szón, ha M' elfogadja u-t, kapjuk, hogy M pontosan akkor áll meg legalább egy szón, ha M' elfogad legalább egy szót. Azaz a fenti konstrukció egy megfelelő visszavezetés. Ezek alapján $L_{\exists halt}$ eldönthetetlensége implikálja $L_{\exists accept}$ eldönthetetlenségét.

6. Feladat. (8 pont) Legyen kSzin a következő probléma. Adott egy G = (V, E) irányítatlan gráf. Kérdés: kiszínezhetők-e G csúcsai k színnel úgy, hogy a szomszédos csúcsok különböző

színűek? Adja meg a 3Szin probléma egy polinom idejű visszavezetését a 6Szin problémára! Mit tudunk elmondani ezek alapján a 6Szin probléma bonyolultságáról, ha tudjuk, hogy 3Szin NP-teljes?

Megoldás: Legyen G egy tetszőleges gráf. A gyakorlaton látott módon felveszünk három új csúcsot a G csúcsai mellé és ezeket összekötjük G minden csúcsával. Továbbá a három új csúcsot is összekötjük egymással. Legyen G' az így kapott gráf. Látható, hogy G pontosan akkor színezhető három színnel, ha G' színezhető hat színnel. Tehát a fenti konstrukció egy megfelelő polinom idejű visszavezetés. Ezek alapján 3Szin NP-teljessége implikálja 6Szin NP-nehézségét.