Chapter 27

The Cartan-Dieudonné Theorem

In this chapter the structure of the orthogonal group is studied in more depth. In particular, we prove that every isometry in $\mathbf{O}(n)$ is the composition of at most n reflections about hyperplanes (for $n \geq 2$, see Theorem 27.1). This important result is a special case of the "Cartan-Dieudonné theorem" (Cartan [33], Dieudonné [50]). We also prove that every rotation in $\mathbf{SO}(n)$ is the composition of at most n flips (for $n \geq 3$).

Affine isometries are defined, and their fixed points are investigated. First, we characterize the set of fixed points of an affine map. Then we show that the Cartan-Dieudonné theorem can be generalized to affine isometries: Every rigid motion in $\mathbf{Is}(n)$ is the composition of at most n affine reflections if it has a fixed point, or else of at most n + 2 affine reflections. We prove that every rigid motion in $\mathbf{SE}(n)$ is the composition of at most n affine flips (for $n \geq 3$).

27.1 The Cartan–Dieudonné Theorem for Linear Isometries

The fact that the group $\mathbf{O}(n)$ of linear isometries is generated by the reflections is a special case of a theorem known as the Cartan-Dieudonné theorem. Elie Cartan proved a version of this theorem early in the twentieth century. A proof can be found in his book on spinors [33], which appeared in 1937 (Chapter I, Section 10, pages 10–12). Cartan's version applies to nondegenerate quadratic forms over \mathbb{R} or \mathbb{C} . The theorem was generalized to quadratic forms over arbitrary fields by Dieudonné [50]. One should also consult Emil Artin's book [6], which contains an in-depth study of the orthogonal group and another proof of the Cartan-Dieudonné theorem.

Theorem 27.1. Let E be a Euclidean space of dimension $n \geq 1$. Every isometry $f \in \mathbf{O}(E)$ that is not the identity is the composition of at most n reflections. When $n \geq 2$, the identity is the composition of any reflection with itself.