

CSE623 - Machine Learning Theory and Practice Section - 1

Weekly Report 6

Identify Hard stop and momentary stop using the vehicle trajectory dataset

Team Name: The Overfitters

Name	Enrolment Number	
Jinil Savaj	AU2240159	
Jay Raval	AU2240151	
Meet Suthar	AU2240198	
Karan Prajapati	AU2240161	
Vishesh Bhatia	AU2240027	

1. Objective

The objective of this week's work was to implement, explore, and compare multiple methods for labeling vehicle behaviors into three categories:

- Moving Vehicle
- Momentary Stop
- Hard Stop

We aimed to evaluate different algorithms to determine the most suitable thresholds and logic for robust classification using both rule-based and unsupervised learning techniques.

2. Methodology

2.1 Dataset

We used a corrected and preprocessed dataset df_corrected containing features such as:

- speed, velocity, acceleration
- Vxy_smoothed (smoothed velocity)
- center_x, center_y (coordinates)
- jerk (rate of change of acceleration)

3. Implementation

3.1 Labeling Methods

We implemented a Python class VehicleLabeler, incorporating five labeling techniques:

3.1.1 Threshold-Based Labeling

A rule-based approach using three speed-related thresholds:

- **Hard Stops**: Detected via sudden drops in speed.
- Momentary Stops: Low-speed states not qualifying as hard stops.
- **Moving**: Vehicles above a speed threshold.

Code snippet:

```
Python
hard_stop = (df['speed'].diff().abs() > hard_stop_thresh) &
  (df['speed'] <= momentary_stop_thresh)</pre>
```

3.1.2 Time-Based Labeling

This method evaluates the **duration** of stopping behavior:

- Short-duration stops → Momentary
- Long-duration stops (above a time threshold) → Hard stop

Code snippet:

```
Python
if duration >= min_hard_stop_frames:
    labels[mask] = 2 # Hard stop
else:
```

```
labels[mask] = 1 # Momentary stop
```

3.1.3 Clustering-Based Labeling (KMeans)

Applies unsupervised learning to identify behavior clusters using:

• velocity, acceleration, Vxy_smoothed Clusters are mapped to labels based on average velocity.

Code snippet:

```
Python
kmeans = KMeans(n_clusters=3)
clusters = kmeans.fit_predict(X)
```

3.1.4 Hidden Markov Model (HMM)

A statistical model that captures time-dependent transitions between hidden behavioral states using velocity and acceleration.

Code snippet:

```
Python
model = hmm.GaussianHMM(n_components=3)
states = model.predict(observations)
```

3.1.5 Change Point Detection

Uses the ruptures library to detect change points in smoothed velocity time series. Each segment's mean velocity is used to label the behavior.

Code snippet:

```
Python
algo = KernelCPD(kernel="rbf").fit(speed)
bkps = algo.predict(n_bkps=n_bkps)
```

3.2 Visualization

Each labeling method was visualized using:

- Spatial distribution of labeled points
- Histogram of velocity across classes
- Class distribution bar charts

4. DBSCAN Clustering (Unsupervised Analysis)

4.1 Approach

We employed **DBSCAN** to identify behavior patterns without a predefined number of clusters.

Steps:

- 1. Selected features: x, y, Vxy_smoothed, acceleration, jerk
- 2. Scaled features using StandardScaler
- 3. Used k-distance graph to determine optimal epsilon

4. Applied DBSCAN with eps = 0.5, min_samples = 5

Code snippet:

```
dbscan = DBSCAN(eps=0.5, min_samples=5)
clusters = dbscan.fit_predict(X_scaled)
```

4.2 Visualization

- 2D and 3D scatter plots showing cluster membership
- Noise points (outliers) highlighted in black
- Cluster-wise summary statistics were computed

5. Results and Observations

- Threshold and time-based methods are interpretable and parameter-dependent.
- Clustering (KMeans) and HMM detected hidden structures in the data.
- Change point detection segmented behavioral shifts effectively.
- DBSCAN showed potential for unsupervised pattern recognition and identified noise/outliers.

Each method produced varying label distributions. Visualization confirmed that spatial and speed-based patterns differ across techniques.

6. Next Steps

- Evaluate method performance using ground truth labels (if available) or expert annotation.
- Optimize hyperparameters for threshold and DBSCAN methods.
- Explore ensemble/hybrid approaches to combine strengths of multiple techniques.
- Investigate supervised models for real-time behavioral classification.

7. Challenges

- Difficulty in choosing the best epsilon value for DBSCAN without domain-specific guidance.
- Lack of ground truth labels to evaluate labeling accuracy.
- High sensitivity of some methods (especially threshold-based) to parameter tuning.

8. Conclusion

This week marked substantial progress in establishing a robust multi-method framework for vehicle behavior classification. The integration of traditional thresholding with modern clustering and probabilistic models has laid the foundation for more accurate and scalable labeling strategies.