Other Units Acceptable with SI

Symbol	Name	Quantity	Conversion
Bq	becquerel	decay rate or activity	<u>1</u>
			S
С	coulomb	electric charge	1 A•s
°C	degree Celsius	temperature	1 K
dB	decibel	relative intensity (sound)	(unitless)
eV	electron volt	energy	$1.60 \times 10^{-19} \mathrm{J}$
F	farad	capacitance	$1\frac{A^2 \cdot s^4}{kg \cdot m^2} = 1\frac{C}{V}$
Н	henry	inductance	$1\frac{\mathrm{kg} \cdot \mathrm{m}^2}{\mathrm{A}^2 \cdot \mathrm{s}^2} = 1\frac{\mathrm{J}}{\mathrm{A}^2}$
h	hour	time	$3.600 \times 10^3 \text{ s}$
Hz	hertz	frequency	1_
			s
J	joule	work and energy	$1\frac{\mathrm{kg} \cdot \mathrm{m}^2}{\mathrm{s}^2} = 1 \mathrm{N} \cdot \mathrm{m}$
kW∙h	kilowatt-hour	energy	$3.60 \times 10^6 \text{J}$
L	liter	volume	$10^{-3} \mathrm{m}^3$
min	minute	time	$6.0 \times 10^{1} \text{ s}$
N	newton	force	$1\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^2}$
Pa	pascal	pressure	$1\frac{\mathrm{kg}}{\mathrm{m} \cdot \mathrm{s}^2} = 1\frac{\mathrm{N}}{\mathrm{m}^2}$
rad	radian	angular displacement	(unitless)
Т	tesla	magnetic field strength	$1\frac{kg}{A \cdot s^2} = 1\frac{N}{A \cdot m} = 1\frac{V \cdot s}{m^2}$
u	unified mass unit	mass (atomic masses)	$1.660538782\times10^{-27}\mathrm{kg}$
V	volt	electric potential difference	$1\frac{\mathrm{kg} \cdot \mathrm{m}^2}{\mathrm{A} \cdot \mathrm{s}^3} = 1\frac{\mathrm{J}}{\mathrm{C}}$
W	watt	power	$1\frac{\mathrm{kg} \cdot \mathrm{m}^2}{\mathrm{s}^3} = 1\frac{\mathrm{J}}{\mathrm{s}}$
Ω	ohm	resistance	$1\frac{\mathrm{kg} \cdot \mathrm{m}^2}{\mathrm{A}^2 \cdot \mathrm{s}^3} = 1\frac{\mathrm{V}}{\mathrm{A}}$