VITALINUX Y SOFTWARE LIBRE PARA EL PROFESORADO DE MATEMÁTICAS

Pablo Beltrán Pellicer y Carlos Rodríguez Jaso

pabelpe@gmail.com carlos.rodriguez.jaso@gmail.com

3 y 4 de febrero de 2017

ÍNDICE

- Introducción
- 2 ¿Qué es el software libre?
- 3 Linux en educación. El caso de Vitalinux
- 4 Algunas aplicaciones libres
 - Geogebra
 - Una suite ofimática libre: LibreOffice
 - El sistema de composición de textos LaTeX
 - Pensamiento computacional y programación (Scratch)
 - SageMath, un peso pesado
 - Modelado e impresión libres en 3D
 - Otros programas: Inkscape y Audacity
- 5 Reflexiones finales

Las TIC - Tecnologías de la Información y la Comunicación

¿Nuevas tecnologías?

- Formación del profesorado
- Recurso didáctico
- Herramienta de uso cotidiano (gestión, programación, etc.)

- 2 ¿Qué es el software libre?
- - Geogebra
 - Una suite ofimática libre: LibreOffice
 - El sistema de composición de textos LaTeX
 - Pensamiento computacional y programación (Scratch)
 - SageMath, un peso pesado
 - Modelado e impresión libres en 3D
 - Otros programas: Inkscape y Audacity

LIBRE NO ES LO MISMO QUE GRATIS

Las cuatro libertades

Un software será libre (FSF) si los usuarios tienen:

- La libertad de ejecutar el programa como se desea, con cualquier propósito.
- La libertad de estudiar cómo funciona el programa, y cambiarlo para que haga lo que usted quiera.
- La libertad de redistribuir copias para ayudar a su prójimo.
- La libertad de distribuir copias de sus versiones modificadas a terceros.

El acceso al código fuente es una condición necesaria para ello.

Richard Stallman. Fuente: Rubén Ojeda, CC BY-SA 4.0

Estas son solamente una muestra

- GPL Mediante el *copyleft* se protege de apropiaciones que restringen las libertades originales a los nuevos usuarios cada vez que la obra es distribuida, modificada o ampliada.
- LGPL La diferencia con la GPL es que puede enlazarse o ser utilizada por un programa no-GPL (libre o privativo).
- MPL Cumple con las definiciones de la OSI y con las cuatro libertades de la FSF. Como la LGPL, deja abierto el camino a una posible reutilización no libre del software.
- Creative Commons Orientadas a proporcionar cobertura legal no solamente al software, sino a cualquier tipo de creación.

- 2 ¿Qué es el software libre?
- 3 Linux en educación. El caso de Vitalinux
- - Geogebra
 - Una suite ofimática libre: LibreOffice
 - El sistema de composición de textos LaTeX
 - Pensamiento computacional y programación (Scratch)
 - SageMath, un peso pesado
 - Modelado e impresión libres en 3D
 - Otros programas: Inkscape y Audacity

SISTEMAS OPERATIVOS

Integración del software libre en los centros educativos de Aragón

http://soporte.vitalinux.educa.aragon.es/ http://wiki.vitalinux.educa.aragon.es/

OBJETIVOS

Objetivos del Programa de Software Libre:

- Reutilizar equipos antiguos o de bajas prestaciones
- 2. Alternativa a Windows 7/8 (MS deja de dar soporte a WXP)
- Evitar el "pirateo" de Software privativo
- Reducir los costes de licencias de Software
- Fomentar el uso del Software Libre en Educación
- 6. Poder Inventariar todo el Software y Hardware
- Facilitar labores de Gestión de Software

- 2 ¿Qué es el software libre?
- ALGUNAS APLICACIONES LIBRES
 - Geogebra
 - Una suite ofimática libre: LibreOffice
 - El sistema de composición de textos LaTeX
 - Pensamiento computacional y programación (Scratch)
 - SageMath, un peso pesado
 - Modelado e impresión libres en 3D
 - Otros programas: Inkscape y Audacity

Geogebra

GEOGEBRA

Geometría dinámica

Aplicación en la que confluyen un procesador geométrico y otro algebraico. Existe muchísima literatura al respecto, así como investigaciones y experiencias didácticas (Hohenwarter, Hohenwarter y Lavicza, 2009; Hohenwarter y Preiner, 2007)

- Ejes cartesianos.
- Vista algebraica.
- Hoja de cálculo.

Fuente: https://www.geogebra.org

Una suite ofimática libre: LibreOffice

Una suite ofimática libre: LibreOffice

LibreOffice es la suite ofimática por defecto en Linux. En Windows también puede instalarse.

- Procesador de textos: Writer.
- Hoja de cálculo: Calc.
- Elaboración de presentaciones: Impress.
- Gestor de bases de datos: Base.
- Editor de gráficos vectoriales: Draw.
- Editor de fórmulas matemáticas: Math.

HOJA DE CÁLCULO

Para la enseñanza y para el día a día

- Recurso ampliamente utilizado.
- Experiencias didácticas que incluyen la resolución (algebraica) de problemas (Arnau y Puig, 2013)
- Cuaderno del profesor:
 - Sustituye al tradicional de papel.
 - Interesante el realizado en Excel por Antonio J. Calvillo, compatible con LibreOffice (http://www.musikawa.es/cuadernodel-profesor-en-excel-muy-facil-manual-musikawa)

El sistema de composición de textos LaTeX

ESTO NO ES WYSIWYG

What You See Is What You Get (lo que ves es lo que obtienes)

EL SISTEMA LATEX

¿Qué se necesita para utilizar este sistema?

LaTeX requiere de la instalación de un sistema de programas, fuentes tipográficas y paquetes:

- TEXLive es uno de los más populares.
- En sistemas Windows se suele utilizar MikTex

A este entorno hay que añadir un editor:

- Cualquiera, como Notepad++ (https://notepad-plus-plus.org)
- Opciones específicas: TeXstudio (http://www.texstudio.org) y Texmaker (http://www.xm1math.net/texmaker).

LyX

LyX (https://www.lyx.org) está a medio camino entre WYSIWYG y LaTeX.

SI TENEMOS CURIOSIDAD Y QUEREMOS PROBAR...

Code Cogs (https://www.codecogs.com/latex/eqneditor.php)

Click here to Download Image (GIF)

PENSAMIENTO COMPUTACIONAL

Logo

Se crea en 1967, diseñado por Bobrow, Feurzeig y Papert.

- Dibujar en la pantalla moviendo una tortuga y programas más sofisticados.
- Traducido a diferentes idiomas.
- Investigaciones y propuestas didácticas acerca del impacto en los procesos de resolución de problemas, en los patrones de interacción de los alumnos, etc. (Nastasi, Clements y Battista, 1990; Godino y Batanero, 1986; Pea, 1983).
- Siguen existiendo diversos intérpretes libres, como MSWLogo (http://www.softronix.com/logo.html).

Reflexiones finales

Pensamiento computacional y programación (Scratch)

PENSAMIENTO COMPUTACIONAL

Definición de Wing (2006)

El pensamiento computacional engloba los procesos de pensamiento implicados en la formulación de problemas y representación de sus soluciones, de forma que dichas soluciones puedan ser procesadas por un agente, bien sea humano o tecnológico. Es lo que precede a cualquier forma de programación, el pensamiento que lleva a cabo una persona conocedora de los mecanismos y de la potencia de cálculo de la automatización.

SCRATCH

Una forma visual de programar

Scratch (https://scratch.mit.edu) retoma el testigo que dejara Logo.

- Lenguaje de programación visual libre.
- Diseñado en el MIT Media Lab con fines didácticos.
- Ligado al desarrollo del pensamiento computacional.

¿Qué se puede programar?

- Cualquier cosa.
- Escenas de dibujos animados.
- Videojuegos.
- Trabajar con sensores reales y robots basados en Arduino o en otras plataformas.

Pensamiento computacional y programación (Scratch)

SCRATCH POR DENTRO

SAGEMATH

Sistema de álgebra computacional (CAS)

SageMath (http://www.sagemath.org), formado por:

- NumPy y Sympy, de largo recorrido en Python.
- PARI/GP, un CAS avanzado escrito en C y con su propio lenguaje de script.
- Maxima, otro CAS especializado en la manipulación simbólica de expresiones.
- R, muy conocido para realizar tratamiento estadístico de datos.

Iniciado por William A. Stein (Stein y Joyner, 2005), se ejecuta de forma nativa sobre Linux.

Hay una implementación de SageMath en la nube, *SageMathCloud* (https://cloud.sagemath.com).

SAGEMATH, UN "PESO PESADO"

FUNCIONALIDAD

- Hojas de trabajo interactivas.
- Editor de LaTeX.
- Terminal Linux.
- Sistema de gestión de cursos virtuales (Croucher, Stein, Hawke, Jeng y Furnass, 2016).
- Muy orientado hacia la docencia e investigación universitaria.
- Hay otras alternativas más apropiadas para primaria y secundaria.
- SageMath podría resultar interesante en bachillerato para la manipulación de matrices o cálculo simbólico.

Tutorial: en la web de Sagemath, *Cómo hacer matemáticas elementales con Sage* (Tábara, 2009).

SageMath, un peso pesado

Así es el editor Latex de SageMath online

TECNOLOGÍA 3D

¿3D y Matemáticas?

- Interesantes aplicaciones en torno al modelado y la impresión en 3D (Eisenberg, 2013, 2008).
- Aplicaciones libres, no es necesaria una gran inversión.
- El proyecto RepRap nació para ser compartido (Jones, Haufe, Sells, Iravani, Olliver, Palmer y Bowyer, 2011).

APLICACIONES QUE INTERVIENEN

Una para cada tarea

- Aplicaciones de diseño y modelado 3D:
 - Freecad (http://www.freecadweb.org)
 - Openscad (http://www.openscad.org)
 - Blockscad (https://www.blockscad3d.com/editor/)
- Aplicaciones de fileteado (generación de G-Code).
- Entorno de programación de Arduino.

Y SI NO QUEREMOS MODELAR?

- Repositorios de objetos:
 - Thingiverse (http://www.thingiverse.com/)
 - YouMagine (https://www.youmagine.com/)

BLOCKSCAD

EXPERIENCIAS REALES (I)

EXPERIENCIAS REALES (II)

TIPOS DE TAREAS O PROYECTOS

- Proyectos interdisciplinares (Tecnología, Informática, etc.)
- Actividad concreta: modelado y posterior fabricación de un dado.
 - Competencias propias del bloque de geometría.
 - Reflexionar sobre el propio diseño para que sea un buen dado.
 - El dado se prueba de verdad, con series de tiradas largas.

APLICACIONES LIBRES MUY UTILIZADAS

Un programa de dibujo vectorial

Inkscape (https://inkscape.org/es/)

- Los dibujos se guardan en función de sus atributos matemáticos.
- Pueden ampliarse a voluntad sin perder calidad.
- Tan sencillo de utilizar como el clásico Paint.
- Más funcionalidad. Diagramas, figuras, capas, etc.

Edición de audio libre

Audacity (http://www.audacityteam.org)

- Tareas muy sugerentes en el bloque de funciones.
- Grabar sonidos naturales, silbatos, una pelota rebotando en el suelo, etc.

- 2 ¿Qué es el software libre?
- - Geogebra
 - Una suite ofimática libre: LibreOffice
 - El sistema de composición de textos LaTeX
 - Pensamiento computacional y programación (Scratch)
 - SageMath, un peso pesado
 - Modelado e impresión libres en 3D
 - Otros programas: Inkscape y Audacity
- REFLEXIONES FINALES

PARA CONCLUIR, PARA SABER MÁS...

- Libertad para compartir el conocimiento. Gracias a herramientas como Git (control de versiones).
- Muchos recursos, sí. Pero hay que valorar la adecuación.
- Para aprender más:
 - Segunda convocatoria de cursos y minicursos de Aularagon (http://aularagon.catedu.es/). Hasta el 15 de febrero.
 - Cursos del INTEF (http://formacion.educalab.es/). Dos convocatorias por año, inscripciones en enero y junio o septiembre.

FIN DE LA PRESENTACIÓN

GRACIAS POR LA ATENCIÓN

VITALINUX Y SOFTWARE LIBRE PARA EL PROFESORADO DE MATEMÁTICAS

Pablo Beltrán Pellicer y Carlos Rodríguez Jaso

pabelpe@gmail.com carlos.rodriguez.jaso@gmail.com

3 y 4 de febrero de 2017

