# Session 2: Steps involved in Genome-wide association studies

Teresa Ferreira and Nilufer Rahmioglu

Wellcome Centre for Human Genetics/Big Data Institute

### Learning objective

- Have a working knowledge of the different steps involved in the conduct of genome-wide association studies, including:
  - Study design
  - Quality control
  - Basic analyses
  - Replication/meta-analysis

#### **Genome-wide Association Study (GWAS) Recipe**

Genotype 100,000s **common** SNPs in 1000s of cases+controls



Quality-control analyses: e.g. genotype calling, population biases



At each SNP test for allele frequency difference between cases& controls (chi<sup>2</sup>, logistic regression)



Identify significant associations, nominal p-value (5x 10<sup>-8</sup>)



Assess genomic info: genes, SNP density, regulatory regions, etc



Genotype selected SNPs in different case+control samples of same population: replication/meta-analysis









#### Important steps

- Define the case phenotype in adequate detail
  - > At least sufficient for replication studies.....
  - ➤ In practice.... paid variable attention to in GWAS 'Lumpers' vs. 'Splitters'!

#### 'Lumpers':

Very large case sets result in ↑ power that outweighs ↓ power due to (a degree of) misclassification and genetic heterogeneity of disease

#### 'Splitters':

Lack of accurate phenotypic definitions result in need for much greater sample sizes, but also hide differential heterogeneity of 'subtypes'

#### Important steps

- Define the case phenotype in adequate detail
  - > At least sufficient for replication studies.....
  - ➤ In practice.... paid variable attention to in GWAS 'Lumpers' vs. 'Splitters'!

#### 'Lumpers':

Very large case sets result in ↑ power that outweighs ↓ power due to (a degree of) misclassification and genetic heterogeneity of disease

#### 'Splitters':

Lack of accurate phenotypic definitions result in need for much greater sample sizes, but also hide differential heterogeneity of 'subtypes'

- Impact of definition accuracy likely disease/trait-specific
- Well-phenotyped datasets including sub-types disease/correlated traits are useful to dissect differential genetic origins (e.g. CAD and cholesterol levels, endometriosis and surgical stage of the disease)

#### **GWAS** in Endometriosis (Sub-types)



- Define the case phenotype in adequate detail
- [Check the heritability of the disease in question]
  - Most diseases are 'heritable'

- Define the case phenotype in adequate detail
- [Check the heritability of the disease in question]
- Consider whether a population-based study is the appropriate design for the research question
  - > Are you interested in a disease sub-type that looks to be highly familial?

- Define the case phenotype in adequate detail
- [Check the heritability of the disease in question]
- Consider whether a population-based study is the appropriate design for the research question
- Select appropriate controls
  - > Same ethnic population from which cases arose
  - ➤ 'Common controls' principle: publicly available genomic datasets on large numbers of individuals of a certain ancestry (e.g. WTCCC sets of blood donors and 1958BC members; many such datasets now available).
  - Female controls for female-specific conditions? Not necessary for analysis of autosomes (chromosomes 1-22)!

- Define the case phenotype in adequate detail
- [Check the heritability of the disease in question]
- Consider whether a population-based study is the appropriate design for the research question
- Select appropriate controls
- Calculate required sample size
  - > Previous GWAS: allow for allelic ORs in the 1.1-1.5 range
  - > Typically you need at least 2,000 cases (and 1:1 to 1:3 control ratio)

### GWAS Marker (Chip) Selection

#### Considerations

- Many different genotyping arrays/chips on the market
- Evolved from increasingly large tagSNP panels (LD based), at ever decreasing cost
- To include supplements specific to certain analyses, as knowledge of the genomic aspects of these analyses increases
  - > Low frequency and exome SNPs (following 1000G)
  - ➤ Disease-specific chips (e.g. Illumina Psych-chip/Metabo-chip)
  - Combination panels for Biobanking (e.g. Affymetrix UKBiobank Axiom 800K)

### **UK Biobank Axiom array**

820,967 SNPs and indel markers, covering areas:



### **GWAS Marker (Chip) Selection**

#### Considerations

- Many different genotyping arrays/chips on the market
- Evolved from increasingly large tagSNP panels (LD based), at ever decreasing cost
- To include supplements specific to certain analyses, as knowledge of the genomic aspects of these analyses increases
  - ➤ Low frequency and exome SNPs (following 1000G)
  - ➤ Disease-specific chips (e.g. Illumina Psych-chip/Metabo-chip)
  - > Combination panels for Biobanking (e.g. Affymetrix UKBiobank Axiom 800K)
- Make sure cases and controls are genotyped on the same platform, and together (randomly distributed over chips, to avoid batch effects)

### **GWAS Quality Control (QC)**

#### Important steps

The most important part of GWAS analysis.

### **GWAS Quality Control (QC)**

#### Important steps

- The most important part of GWAS analysis.
- Per-Individual QC:
  - Discordant sex information (comparing homozygosity rates for X chromosome)
  - Outlying missing genotypes (typically >5%) or heterozygosity rates
  - Duplicated or related individuals
  - > Divergent ancestry:

Using multivariate methods (e.g. principal component analysis). PCs each absorb decreasing amount of variance. Implemented in software to produce graphical representation of

population stratification.

Remove population outliers



### **GWAS Quality Control (QC)**

#### Important steps

- THE most important part of GWAS analysis.....
- Per-Individual QC:
  - Discordant sex information (comparing homozygosity rates for X chromosome)
  - Outlying missing genotypes (typically >5%) or heterozygosity rates
  - Duplicated or related individuals
  - Divergent ancestry

#### Per-SNP QC:

- Excessive missing genotype rates (call rates < 95%)</p>
- $\triangleright$  Deviation from HWE (significance thresholds vary, most commonly 5 x  $10^{-7}$  combined with post-analysis checks of genotype cluster plots)
- > Different missing genotype rates between cases and controls
- ➤ MAF < 1%

#### Important steps

• Select genotypic disease models to test. Multiplicative model most powerful under most disease models!

#### Genetic Data Analysis – Models

'per-allele' assumes an additive genetic model, i.e. an effect for each allele copy

Control

| Allele Counts |      |      |  |
|---------------|------|------|--|
|               | С    | Т    |  |
| Case          | 2a+b | b+2c |  |

2d+e

e+2f

looks for an incremental effect across the genotype groups

| Cochran Armitage Test for Trend |      |               |             |
|---------------------------------|------|---------------|-------------|
|                                 | CC = | <b>→</b> CT - | <b>→</b> TT |
| Case                            | а    | b             | С           |
| Control                         | d    | е             | *           |

| Full Data – Genotype Counts |    |    |    |
|-----------------------------|----|----|----|
|                             | CC | СТ | TT |
| Case                        | а  | b  | С  |
| Control                     | d  | е  | f  |

'per genotype' looks for any difference across the genotype groups without making any assumptions about the direction of the effect

| Dominant Model (T risk) |    |          |  |
|-------------------------|----|----------|--|
|                         | CC | CT or TT |  |
| Case                    | a  | b+c      |  |
| Control                 | d  | e+f      |  |

| Recessive Model (T risk) |          |    |  |
|--------------------------|----------|----|--|
|                          | CC or CT | TT |  |
| Case                     | a+b      | С  |  |
| Control                  | d+e      | f  |  |

# Statistical Analysis

- Logistic regression (SNPTEST/PLINK): Binary Traits
- Linear regression (SNPTEST/PLINK):
   Continuous Traits
- Firth-test (EPACTS): Datasets with case/control imbalance.
- Linear Mixed Model (BOLT-LMM): Datasets with related individuals

#### Important steps

- Select genotypic disease models to test (e.g. multiplicative, recessive, dominant). Multiplicative model most powerful under most disease models!
- Post-analysis QC: QQ plots and lambda inflation score



Lambda >1: population structure

#### Important steps

- Select genotypic disease models to test (e.g. multiplicative, recessive, dominant). Multiplicative model most powerful under most disease models!
- Need to adjust for confounders?
   Principal components related to ancestry



Q-Q plot of GWAS of Crohn's Disease before (**black**) and after (**blue**) adjusting for principal components relating to ancestry (population stratification)

WTCCC, Nature 2007

- Select genotypic disease models to test (e.g. multiplicative, recessive, dominant). Multiplicative model most powerful under most disease models!
- Need to adjust for confounders? In the absence of indicators for ancestry-based population stratification: rarely....
   Other types of confounding difficult to argue



- Select genotypic disease models to test (e.g. multiplicative, recessive, dominant). Multiplicative model most powerful under most disease models apart from recessive!
- Need to adjust for covariates? In the absence of indicators for ancestry-based population stratification: rarely....
- Adjustment for non-confounding covariates to 'absorb phenotypic noise'? See: Pirinen et al., Nature Genetics 2012; 44: 848-850
  - In case-control setting (logistic regression models):
    - Will reduce power when disease prevalence is < 2% (many diseases!)
    - Will only gain power when disease prevalence is > ~20%

- Select genotypic disease models to test (e.g. multiplicative, recessive, dominant). Multiplicative model most powerful under most disease models apart from recessive!
- Need to adjust for covariates? In the absence of indicators for ancestry-based population stratification: rarely....
- Adjustment for non-confounding covariates to 'absorb phenotypic noise'? See: Pirinen et al., Nature Genetics 2012; 44: 848-850
  - In case-control setting (logistic regression models):
    - Will reduce power when disease prevalence is < 2% (many diseases!)
    - Will only gain power when disease prevalence is > ~20%
  - Can be of value:
    - In linear regression models of quantitative traits
    - In individual studies prior to meta-analyses, to avoid effect-size heterogeneity
    - Where interaction effects between genetic variants and covariate exist (e.g. gender effects)
    - Conclusion: think very carefully about adjustments...!

- Select genotypic disease models to test (e.g. multiplicative, recessive, dominant). *Multiplicative model most powerful under most disease models!*
- Need to adjust for covariates? In the absence of indicators for ancestry-based population stratification: rarely....
- Visualisation and interpretation of results

#### Manhattan Plots



#### **Manhattan Plots**

Before and after QC....





#### Regional association plots (e.g. Locuszoom)



- Select genotypic disease models to test (e.g. multiplicative, recessive, dominant). Multiplicative model most powerful under most disease models!
- Need to adjust for covariates? In the absence of indicators for ancestry-based population stratification: rarely....
- Visualisation and interpretation of results
- What is 'significant'? 'Multiple testing'?

### GWAS Analysis – reducing false positives

 Adjustment of 'genome-wide significance' threshold for # tests conducted?

### GWAS Analysis – reducing false positives

- Adjustment of 'genome-wide significance' threshold for # tests conducted?
- **Much more complex....** WTCCC paper: factor determining the threshold is not the number of tests performed, but the a-priori probability that there is likely to be a true association at any specified location in the genome ('Bayesian' statistical theory)
- Different significance thresholds proposed, converging on the one most commonly used now: 5 x 10<sup>-8</sup> (independent of # SNPs tested)

- Select genotypic disease models to test (e.g. multiplicative, recessive, dominant). Multiplicative model most powerful under most disease models!
- Need to adjust for confounders? In the absence of indicators for ancestry-based population stratification: rarely....
- Visualisation and interpretation of results
- What is 'significant'? 'Multiple testing'?
- Replication replication (and meta-analysis....)

### Replication

### Replicating genotype-phenotype associations

What constitutes replication of a genotype-phenotype association, and how best can it be achieved?

NCI-NHGRI Working Group on Replication
in Association Studies

NATURE| Vol 447 | 7 June 2007

- Same study population as original finding
- Same/similar case definition
- Same marker (with supporting evidence from others in high LD)
- Good study design practices, including sufficiently large sample size

### Genome-wide Association Meta-analysis

#### Aims:

- Assess the strength of evidence of association across multiple GWAS and replication datasets
- Leverage maximum power of detection
- Check for heterogeneity of results

### Genome-wide Association Meta-analysis

#### Aims:

- Assess the strength of evidence of association across multiple GWAS and replication datasets
- Leverage maximum power of detection
- Check for heterogeneity of results
- Methodology and QC (Winkler et al., Nat Prot 2014).
  - Typically, now many different studies/datasets involved
  - Central analysis plan shared
  - Often, QC + imputation + analyses performed by the individual centres (to comply with data sharing policies)
  - Association statistics for each SNP calculated and shared:
     (effect size, SE/CIs, allele freqs, sample size, p-values)
  - Specific analysis tools to detect errors from aggregated data

### Genome-wide Association Meta-analysis

#### • Aims:

- Assess the strength of evidence of association across multiple GWAS and replication datasets
- Leverage maximum power of detection
- Check for heterogeneity of results
- Methodology and QC (Winkler et al., Nat Prot 2014).
  - Typically, now many different studies/datasets involved
  - Central analysis plan shared
  - Often, QC + imputation + analyses performed by the individual centres (to comply with data sharing policies)
  - Association statistics for each SNP calculated and shared:
     (effect size, SE/Cis, allele freqs, sample size, p-values)
  - Specific analysis tools to detect errors from aggregated data

#### Important steps (beyond GWAS-specific QC):

- 1. File-level QC (cleaning and checks)
- 2. Meta-level QC: comparison study-specific results (Identification of analytical issues by SE-N and P-Z plots; allele frequency or strand problems; population stratification through lambda-N plots)
- 3. Meta-analysis QC (identifying analytical issues)

### Fixed-effects Meta-analysis

- Let  $\beta_i$  denote the allelic effect (aligned to a fixed baseline allele) of the *i*th study, with variance denoted  $v_i$ .
- Estimate of the allelic effect over all N studies is then given by

$$B = \frac{\sum_{i} w_{i} \beta_{i}}{\sum_{i} w_{i}}$$

where  $w_i = 1/v_i$ , with variance given by  $V = \left[\sum_i w_i\right]^{-1}$ .

• Test for association over all studies given by  $X^2 = B^2/V$ , having an approximate chi-squared distribution with one degree of freedom.

### Assessing heterogeneity

- Fixed effects meta-analysis assumes the same odds ratio (allelic effect) over all studies.
- We can test for heterogeneity between effects using the statistic  $Q = \sum_i w_i (B \beta_i)^2$ , which has an approximate chi-squared distribution with N-1 degrees of freedom.
- An alternative statistic,  $I^2=[Q-(N-1)]/Q$ , quantifies the extent of heterogeneity from a collection of allelic effect sizes.
- Important to investigate source of potential heterogeneity.

### Example: sporadic amyotrophic lateral sclerosis



### Random-effects Meta-analysis

- Random effect meta-analysis often utilised when a SNP demonstrates significant evidence of heterogeneity in allelic effects between studies.
  - Random-effects meta-analysis: assume distribution of true allelic effects instead of a single underlying true effect size.
  - Random-effects variance component given by

$$\tau^{2} = \max \left(0, \frac{Q - (N - 1)}{\sum_{i} w_{i} - \left(\sum_{i} w_{i}^{2} / \sum_{i} w_{i}\right)}\right)$$

Weight assigned to ith study then given by

$$w_i^* = (\tau^2 + v_i)^{-1}$$
.

#### A comment on random effects

 Important to investigate the source of heterogeneity between studies: variability may be due to phenotype definition, population background, interaction with exposure to environmental risk factor.

### Strand alignment

- Study 1: OR of 1.1 for allele A relative to allele G (aligned to + strand).
- Study 2: OR of 1.3 for allele C relative to allele T (aligned to – strand).
- Effect in study 2 is in opposite direction to study 1 since A is not complementary to C.
- It is straightforward to overcome this issue for non-AT or non-GC SNPs: otherwise rely on correct strand information or matching of allele frequencies (possibly with reference to HapMap or 1000 Genomes data).

#### Software

- Fixed- and random-effects meta-analysis can be performed for individual SNPs in standard statistical software packages such as R.
- Specialised software for genome-wide association meta-analysis that can handle large numbers of SNPs and studies, and can incorporate checks for strand alignment:
  - METAL: http://genome.sph.umich.edu/wiki/METAL\_Program
  - GWAMA: http://www.geenivaramu.ee/en/tools/gwama
  - METASOFT: http://genetics.cs.ucla.edu/meta/

## Summary

- Define the case phenotype in adequate detail.
- Select appropriate control group.
- The larger the sample size, the more power to identify variants of smaller effects. Typically at least 2000 cases needed with 1:1 or 1:3 control ratio.
- Quality control is the most important part of GWAS analysis: Sample QC and variant QC.
- Choose appropriate statistical test for association dependent on your phenotype (binary vs. linear, case/control imbalance, related individuals?)
- Post-GWAS: QQ plots and lambda to check for population stratification. Consider adjustment for any additional covariates?
- Replication and meta-analysis for strengthening of evidence for findings.