

DebiasedDTA: Model Debiasing to Boost **Drug-Target Affinity Prediction**

Rıza Özçelik¹, Alperen Bağ^{1,+} Berk Atıl^{1,+}, Arzucan Özgür¹, Elif Özkırımlı²
¹Department of Computer Engineering, Bogazici University ²Data and Analytics Chapter, Pharma International Informatics, F. Hoffmann-La Roche AG, Switzerland + Equal Contribution

Motivation

Figure 1: Warm Biomolecules Figure 2: Cold Ligands

Figure 3: Cold Proteins Figure 4: Cold Biomolecules Warm Biomolecules Cold Ligand Cold Protein ⊗ 😥 😵

Figure 5: Machine Learning Models on Each Case

Bias in Affinity Prediction

Cold Biomolecules

Figure 6: Example Biases in the Datasets [1, 3]

DebiasedDTA

Weak Learners

- ID-DTA
 - In order to avoid "chemical identifier" biases
 - Biomolecules are represented with one-hot encoding
- BoW-DTA
 - In order to avoid "chemical word" biases
 - Biomolecules are represented with bag-of-biomolecule-words representation

Strong Learners

- DeepDTA [4]
 - Character-level convolutions over SMILES and amino-acid sequences
- BPE-DTA
 - Convolutions over Byte-Pair-Encoding (BPE) [2] tokens of SMILES and amino-acid sequences
- LM-DTA
 - Pre-trained language-model embeddings

Results

	Warm		Cold Ligand		Cold Protein		Cold Both		
	Model	CI	R^2	CI	R^2	CI	R^2	CI	R^2
BDB	DeepDTA							10.289%	0.062
	BPE-DTA	0.906%	0.007	5.327%	0.098	6.891%	0.325	8.812%	0.108
	LM-DTA	0.913%	0.017	1.890%	0.043	0.513%	0.011	2.448%	0.044
KIBA	DeepDTA	1.718%	0.019	1.062%	0.013	0.834%	0.003	0.917%	-0.003
	BPE-DTA	1.362%	0.017	1.088%	0.004	0.588%	-0.006	0.000%	-0.031
	LM-DTA	0.816%	0.013	1.602%	0.032	0.842%	0.019	2.154%	0.052

Table 1: The percentile improvement in CI and absolute increase in R². The statistics are computed by comparing the best DebiasedDTA score with the nondebiased counterpart. Negative statistics are reported if the non-debiased model outperform every DebiasedDTA model.

Conclusions

- To the best of our knowledge, DebiasedDTA is the first model debiasing approach to boost drug-target affinity prediction performance.
- DebiasedDTA can improve affinity prediction performance both on known and novel biomolecules.
- DebiasedDTA can boost drug-target affinity prediction models of different architectures.
- DebiasedDTA is applicable to almost every prediction model.

References

- [1] R. Özçelik, H. Öztürk, A. Özgür, and E. Ozkirimli. Chemboost: A chemical language based approach for protein - ligand binding affinity prediction. formatics, 40(5):2000212, 2021. doi: https://doi.org/10.1002/minf.202000212. https://onlinelibrary.wiley.com/doi/abs/10.1002/minf.202000212.
- [2] R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words with subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715-1725, Berlin, Germany, Aug. 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https://aclanthology.org/P16-1162.
- V. Sundar and L. Colwell. The effect of debiasing protein-ligand binding data on generalization
- [5] v. Sumar and L. Coiweii. The effect of debiasing protein-ligand binding data on generalization. Journal of Chemical Information and Modeling, 60(1):56-62, 2019.
 [4] H. Öztürk, A. Özgür, and E. Ozkirimli. DeepDTA: deep drug-target binding affinity prediction. Bioinformatics, 34(17):i821-i829, 09 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/bty593. URL https://doi.org/10.1093/bioinformatics/bty593.

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey [Grant number 119E133; 2211-A to R.O.; 2247-C to B.A.]; and Turkish Science Academy [TUBA-GEBIP