

Exercise 1

ID	Timestamp	Activity	Age	Express
1	01.06.20 - 18:00:42	order placed	16	true
2	01.06.20 - 18:00:50	order placed	32	false
1	01.06.20 - 18:01:02	decline order	16	true
1	01.06.20 - 18:01:12	inform customer	16	true
1	01.06.20 - 18:01:12	order closed	16	true
2	01.06.20 - 18:02:20	accept order	32	false
3	01.06.20 - 22:01:27	order placed	15	true
3	01.06.20 - 22:33:57	accept order	15	true
2	02.06.20 - 08:43:44	pack order	32	false
2	02.06.20 - 13:22:53	Ship by air	32	false
3	02.06.20 - 13:41:02	Ship by ground	15	true
2	02.06.20 - 13:50:00	Order closed	32	false
3	02.06.20 - 13:50:01	Order closed	15	true

ID	Timestamp	Activity	Age	Express
1	01.06.20 - 18:00:42	order placed	16	true
1	01.06.20 - 18:01:02	decline order	16	true
1	01.06.20 - 18:01:12	inform customer	16	true
1	01.06.20 - 18:01:12	order closed	16	true

σ_1	order placed	decline order age = 16	inform customer	order closed
N				

ID	Timestamp	Activity	Age	Express
1	01.06.20 - 18:00:42	order placed	16	true
1	01.06.20 - 18:01:02	decline order	16	true
1	01.06.20 - 18:01:12	inform customer	16	true
1	01.06.20 - 18:01:12	order closed	16	true

σ_1	order placed	decline order age = 16	inform customer	order closed
N	order placed	decline order age < 18	inform customer	order closed

$$C_1 = 0$$

ID	Timestamp	Activity	Age	Express
2	01.06.20 - 18:00:50	order placed	32	false
2	01.06.20 - 18:02:20	accept order	32	false
2	02.06.20 - 08:43:44	pack order	32	false
2	02.06.20 - 13:22:53	Ship by air	32	false
2	02.06.20 - 13:50:00	Order closed	32	false

σ_2		
N		

Exercise 1

ID	Timestamp	Activity	Age	Express
2	01.06.20 - 18:00:50	order placed	32	false
2	01.06.20 - 18:02:20	accept order	32	false
2	02.06.20 - 08:43:44	pack order	32	false
2	02.06.20 - 13:22:53	Ship by air	32	false
2	02.06.20 - 13:50:00	Order closed	32	false

σ_2	order placed	accept order age = 32	pack order	ship by air express = false	order closed
N	order placed	accept order $age \ge 18$	pack order	ship by air express = true	order closed

$$C_2 = 1$$

ID	Timestamp	Activity	Age	Express
3	01.06.20 - 22:01:27	order placed	15	true
3	01.06.20 - 22:33:57	accept order	15	true
3	02.06.20 - 13:41:02	Ship by ground	15	true
3	02.06.20 - 13:50:01	Order closed	15	true

σ_3		
N		

Exercise 1

ID	Timestamp	Activity	Age	Express
3	01.06.20 - 22:01:27	order placed	15	true
3	01.06.20 - 22:33:57	accept order	15	true
3	02.06.20 - 13:41:02	Ship by ground	15	true
3	02.06.20 - 13:50:01	Order closed	15	true

σ_3	order placed	accept order age = 15	>>	ship by ground express = true	order closed
N	order placed	accept order $age \ge 18$	pack order	ship by air express = true	order closed

$$C_3 = \infty$$

ID	Timestamp	Activity	Age	Express
3	01.06.20 - 22:01:27	order placed	15	true
3	01.06.20 - 22:33:57	accept order	15	true
3	02.06.20 - 13:41:02	Ship by ground	15	true
3	02.06.20 - 13:50:01	Order closed	15	true

σ_3	order placed	accept order age = 15	>>	ship by ground express = true	order closed
N	order placed	accept order $age \ge 18$	pack order	ship by ground express = false	order closed

$$C_3 = 3$$

True or False Exercise 2a

For a successful process mining project it is not essential to have a common understanding of the objective.

False

Before a process mining project is started, a concrete use case and a clear purpose of the project has to be identified.

True or FalseExercise 2b

The terms "Multi-Perspective Alignments" and "Multiple Trace Alignments" describe the same thing and can be used synonymous.

False

Multi-Perspective Alignment

Compared to the simple alignment method the multi-perspective alignment takes additional attributes into account.

Multiple Trace Alignment

Is not only optimising the alignment cost for a single trace but attempts to minimise the overall alignment cost.

Exercise is based on the paper:

Quality Dimensions in Process Discovery: The Importance of Fitness, Precision, Generalization and Simplicity

by:

J. C. A. M. Buijs, B. F. van Dongen and W. M. P. van der Aalst

What is quantified by simplicity and how is it measured?

The complexity of the model is quantified by the simplicity and is measured by comparing the size of the tree with the number of activities in the log.

Transform the process model into a process tree

Calculate the simplicity Q_S of the resulting process tree.

Trace	#
ABCDEG	6
ABCDFG	38
ABDCEG	12
ABDCFG	26
ABCFG	8
ACBEG	1
ADBCFG	1
ADBCEG	1
ADCBFG	4
ACDBFG	2
ACBFG	1

$$Q_S = 1 - \frac{\# duplicate \ activities + \# missing \ activities}{\# nodes \ in \ process \ tree + \# event \ class \ in \ event \ log}$$

Calculate the simplicity Q_S of the resulting process tree.

"Duplication of activities is measured by counting the number of times the activity is repeated in the process model." Bujis (2014)

A: 1 Duplicate activities According to *Bujis*

B: 2 Duplicate activities

Calculate the simplicity Q_S of the resulting process tree.

0 - 1 -	# duplicate activties + # missing activties
$Q_S = 1 -$	# nodes in process tree + # event class in event log

"An activity is missing from the process model if it is not included in the process model while it is present in the event log." Bujis (2014)

Trace	#
ABCDEG	6
ABCDFG	38
ABDCEG	12
ABDCFG	26
ABCFG	8
ACBEG	1
ADBCFG	1
ADBCEG	1
ADCBFG	4
ACDBFG	2
ACBFG	1

Calculate the simplicity Q_S of the resulting process tree.

0 - 1	# duplicate activties + # missing activties
$Q_S = 1 -$	# nodes in process tree + # event class in event log

"...normalized by the total number of nodes in the process tree..."

Bujis (2014)

A: 3 nodes in process tree According to *Bujis*

B: 4 nodes in process tree

C: 5 nodes in process tree

Trace ABCDEG ABCDFG 38 **ABDCEG** 12 **ABDCFG** 26 **ABCFG** 8 **ACBEG ADBCFG ADBCEG ADCBFG** 4 **ACDBFG ACBFG**

Calculate the simplicity Q_S of the resulting process tree.

$Q_S = 1 -$	# nodes in process tree + # event class in event log
0 1	# duplicate activties + # missing activties

"...event classes (or activities) in the event log..."

Bujis (2014)

A: 7 event classes in event log According to *Bujis*

B: 11 event classes in event log

Trace	#
ABCDEG	6
ABCDFG	38
ABDCEG	12
ABDCFG	26
ABCFG	8
ACBEG	1
ADBCFG	1
ADBCEG	1
ADCBFG	4
ACDBFG	2
ACBFG	1

Calculate the simplicity Q_S of the resulting process tree.

0 - 1	# duplicate activties + # missing activties
$Q_S = 1 -$	# nodes in process tree + # event class in event log

$$Q_S = 1 - \frac{1+5}{3+7} = 0.4$$

Trace	#
ABCDEG	6
ABCDFG	38
ABDCEG	12
ABDCFG	26
ABCFG	8
ACBEG	1
ADBCFG	1
ADBCEG	1
ADCBFG	4
ACDBFG	2
ACBFG	1

According to the approach off by *Buijs et al.*, how does a process tree look like with **Excellent simplicity**

$$Q_S = 1 - \frac{\text{\# duplicate activities} + \text{\# missing activities}}{\text{\# nodes in process tree} + \text{\# event class in event log}}$$

To achieve excellent simplicity, the number of duplicate activities and the number of missing activities has to be equal to zero.

Can a good simplicity still be achieved, even if the number of duplicate activities or missing activities are not zero?

Yes.

If the denominator is much greater than the numerator.

Then either the number of nodes in the process tree has to be very high, or the event log has to consist of a high number of different activities

According to the approach off by *Buijs et al.*, how does a process tree look like with **Very poor simplicity**

$$Q_S = 1 - \frac{\# duplicate \ activities + \# missing \ activities}{\# nodes \ in \ process \ tree + \# event \ class \ in \ event \ log}$$

If most of the nodes in the process tree are duplicates or many activities are missing in the process tree, then the simplicity of the process tree will be very poor.