Sciences physiques et chimiques en laboratoire - classe de 1ère de la série STL Chimie : enjeux sociétaux, économiques et environnementaux

Notions et contenus	Capacités
Champs d'application de la chimie et évolution des	
techniques	- Citer : . l'intervention de la chimie dans divers domaines de la vie
Champs d'application de la chimie.	courante ;
chimie.	l'évolution d'une technique au cours des siècles ;des choix opérés pour répondre à des besoins sociétaux et/ou
Aspects historiques et économiques.	économiques.
ooonomquoo.	- Prendre conscience du lien entre science et technique.
Prise en compte de la sécurité	
en chimie Règles de sécurité au	- Relever dans les recueils de données les grandeurs physico- chimiques caractéristiques d'une espèce chimique.
laboratoire.	- Appliquer les règles de sécurité et respecter les conseils de prudence et de prévention liés aux espèces chimiques et à leurs
Pictogramme des réactifs, des	mélanges.
solvants, des produits et sous- produits.	Adopter une attitude responsable au laboratoire.Développer progressivement une autonomie dans la prévention
produits.	des risques.
	- Analyser les consignes de sécurité proposées dans un protocole.
La chimie face à l'environnement	
Rôle de la chimie dans des problématiques liées à l'environnement.	- Citer des implications de la chimie dans des études menées sur l'environnement ou des actions visant à le préserver.
	- Relever les informations relatives à la toxicité d'espèces chimiques
Toxicité de certaines espèces chimiques.	(classes de danger pour la santé et de danger pour l'environnement) et respecter les conseils de prudence et de prévention associés.
Stockage et recyclage des espèces à risque.	- Adapter le mode d'élimination d'une espèce chimique ou d'un mélange à la tolérance admise dans les eaux de rejet.
ospesso a neque.	- Choisir, parmi plusieurs procédés, celui qui minimise les impacts environnementaux.
Impact environnemental des synthèses et des analyses.	

Synthèses chimiques

Notions et contenus	Capacités
Synthèses et environnement Analyse de l'impact environnemental d'une synthèse. Chimie « verte », Chimie douce.	 Citer les exigences en matière de chimie « verte » ou durable, en ce qui concerne les choix des matières premières, des réactions et des procédés, ainsi que d'éco-compatibilité du produit formé. Comparer les avantages et les inconvénients de différents procédés de synthèse.
	 Réaliser l'extraction d'une espèce naturelle et mettre en œuvre une hémisynthèse à partir de cette espèce. Reconnaître une hémisynthèse dans la description d'un protocole. Citer quelques utilisations importantes des agroressources en

B.O. Bulletin officiel spécial n° 3 du 17 mars 2011		
Alternative à la pétrochimie : chimie des substances naturelles (agroressources et hémisynthéses), synthèses biotechnologiques.	synthèse organique et exploiter des documents pour illustrer leur part croissante en tant que matières premières. - Citer quelques exemples importants de synthèses mettant en œuvre les biotechnologies.	
Séparation et purification Techniques : Distillation Recristallisation Filtration sous vide	- Réaliser une distillation simple, une distillation fractionnée, une recristallisation, une filtration, une filtration sous vide, une chromatographie.	
Chromatographie : couche mince (CCM) et colonne.	 Comparer les influences de la nature de la phase fixe et de la phase mobile sur la séparation des espèces chimiques. Mesurer une température de fusion, un indice de réfraction. 	
Contrôle de pureté.	- Argumenter sur la pureté d'un produit à l'aide d'une observation, d'une série de mesures, d'une confrontation entre une mesure et une valeur tabulée.	
Synthèses organiques Relation structure - réactivité en chimie organique Réactivité des : - alcools (oxydation, élimination, substitution); - aldéhydes et cétones (aldolisation, crotonisation, réduction); - acides et dérivés (estérification, hydrolyse); - composés aromatiques (substitution). Réaction d'addition, élimination, substitution, oxydation, réduction, acide- base.	 Réaliser l'oxydation d'un alcool dans le cadre d'une synthèse. Reconnaître les réactions d'aldolisation, de crotonisation, d'estérification et d'hydrolyse. Réaliser une synthèse mettant en œuvre une aldolisation, une réduction de cétone, une réaction de substitution électrophile aromatique. Déterminer, à l'aide d'un tableau d'avancement, le réactif limitant dans une réaction de synthèse et en déduire le rendement de la synthèse. Distinguer les différents types de réaction parmi les additions, éliminations, substitutions, oxydations, réductions et acide-base. 	
Sites nucléophiles et électrophiles.	- Identifier les sites électrophiles ou nucléophiles des différents réactifs.	
Amélioration des cinétiques de synthèse Facteurs cinétiques. Énergie d'activation d'une réaction. Catalyse homogène et hétérogène.	 Effectuer expérimentalement le suivi temporel d'une synthèse chimique. Décrire l'évolution de l'énergie d'un système à l'aide d'un profil réactionnel. Proposer un protocole pour mettre en évidence les facteurs d'influence lors d'une catalyse homogène ou lors d'une catalyse hétérogène. Interpréter, au niveau microscopique, l'évolution de la vitesse d'une réaction en fonction de la concentration, de la température, et de la présence de catalyseur. 	
Chimie douce, chimie biomimétique.	 Comparer des vitesses de réaction dans différents solvants et discuter du rôle du solvant. Réaliser une synthèse mettant en œuvre une catalyse dans le cadre de la chimie biomimétique. 	

Analyses physico-chimiques

Notions et contenus	Capacités
Analyses physico-chimiques et environnement	- Citer des analyses physico-chimiques mises en œuvre dans le cadre d'études environnementales.
Validité et limites des tests et des mesures effectués en chimie Précision, répétabilité, reproductibilité, fiabilité.	 Apprécier la précision, la répétabilité, la reproductibilité et la fiabilité d'un test ou d'une analyse ou d'un dosage. Utiliser un logiciel de simulation pour rechercher les conditions opératoires optimales d'une analyse
Analyse qualitative : Tests de reconnaissance. Témoin.	 Utiliser une banque de données pour exploiter les résultats d'une analyse qualitative d'ions ou de groupes caractéristiques. Apprécier la pertinence d'un témoin lors d'une analyse qualitative et quantitative. Expliquer le principe des bandelettes-test ou des papiers indicateurs.
Analyse quantitative : seuil de détection.	 Mettre en œuvre un protocole permettant de déterminer une limite de détection d'un test. Citer quelques techniques mises en œuvre dans le cas de très faibles teneurs d'une espèce chimique à détecter.
Instruments d'analyse et de mesure. Propriétés physiques des espèces chimiques.	- Utiliser les principaux dispositifs d'analyse et de mesure : réfractomètre, banc Kofler, thermomètre, verrerie graduée, balance, pHmètre, conductimètre, spectrophotomètre.
Chromatographie : couche mince (CCM) et colonne.	- Utiliser une chromatographie dans le cadre d'une analyse et interpréter le chromatogramme obtenu.
Analyse structurale. Spectroscopie UV, IR, RMN Interaction rayonnement- matière.	 Pour chaque type d'analyse spectroscopique, citer les caractéristiques du rayonnement utilisé et les structures étudiées. Utiliser des banques de données pour confirmer la présence d'un groupe caractéristique (IR) et pour confirmer une formule développée (RMN).
Préparation de solutions Concentration massique et molaire d'une solution.	 Réaliser en autonomie des solutions ioniques et moléculaires de concentration molaire donnée. Écrire l'équation d'une réaction de dissolution. Déterminer la concentration effective d'une espèce chimique dans une solution à partir de la description du protocole de préparation de la solution.
Dosages par étalonnage Échelle de teintes. Spectrophotométrie. Densimétrie. Réfractométrie.	 Concevoir un protocole pour déterminer la concentration d'une solution inconnue par une gamme d'étalonnage. Tracer et exploiter une courbe d'étalonnage. Utiliser la loi de Beer-Lambert.
Chromatographie sur colonne.	- Réaliser et exploiter quantitativement une chromatographie sur colonne.

Dosages par titrage

Équivalence d'un titrage.

Titrages directs et indirects.

Réactions support de titrage :

- oxydation-réduction (espèces colorées en solution) :
- acide-base (suivis conductimétrique et pHmétrique).

- Définir l'équivalence d'un titrage.
- Citer les espèces présentes dans le milieu réactionnel au cours du titrage.
- Déterminer la concentration d'une solution inconnue à partir des conditions expérimentales d'un titrage.
- Suivre et concevoir un protocole de titrage direct et de titrage indirect d'espèces colorées.
- Réaliser des titrages suivis par conductimétrie et par pHmétrie.
- Interpréter qualitativement l'allure des courbes de titrages conductimétriques.
- Citer et écrire les formules chimiques de quelques espèces usuelles :
- . acides (acide nitrique, acide sulfurique, acide phosphorique, acide chlorhydrique, acide éthanoïque) ;
- bases (ion hydroxyde, soude et potasse, ammoniac);
- . oxydants (ion permanganate, ion peroxodisulfate, diiode, dioxygène, eau oxygénée);
- . réducteurs (ion thiosulfate, ion sulfite, ions iodure, métaux courants).