

By Turki Alsaedi for Misk DSI 2022

Table of Contents

01	02	03
What is Computer Vision?	Computer Vision Applications	How do computers see?
04	05	06
Libraries and	Code and	Where to Learn
Packages Used	Live Demo	Computer Vision?

What is Computer Vision?

Computer vision is an interdisciplinary scientific field that deals with how computers can gain high-level understanding from digital images or videos.

Computer vision aims to solve:

- Processing images and extracting information using context
- Making decisions using extracted information

		0	0	0	0		
	0					0	
0		0			0		0
0							0
0		0			0		0
0			0	0			0
	0					0	
		0	0	0	0		

1	1	0	0	0	0	1	1
1	0	1	1	1	1	0	1
0	1	0	1	1	0	1	0
0	1	1	1	1	1	1	0
0	1	0	1	1	0	1	0
0	1	1	0	0	1	1	0
1	0	1	1	1	1	0	1
1	1	0	0	0	0	1	1

1	1	0	0	0	0	1	1
1	0	1	1	1	1	0	1
0	1	0	1	1	0	1	0
0	1	1	1	1	1	1	0
0	1	0	1	1	0	1	0
0	1	1	0	0	1	1	0
1	0	1	1	1	1	0	1
1	1	0	0	0	0	1	1

Vox

1	1	0	0	0	0	1	1
1	0	1	1	1	1	0	1
0	1	0	1	1	0	1	0
0	1	1	1	1	1	1	0
0	1	0	1	1	0	1	0
0	1	1	0	0	1	1	0
1	0	1	1	1	1	0	1
1	1	0	0	0	0	1	1

How to Detect Faces?

Computer Vision problems can be solved either via

Machine Learning
e.g. Viola–Jones object
detection framework

Deep Learning
Convolutional Neural
Network (CNN)

Libraries and Packages for Computer Vision

Machine Learning

Python-supported

- OpenCV
- scikit learn
- Matplotlib

Deep Learning

All ML libraries plus:

- TensorFlow
- Keras
- Pytorch

Traditional Machine Learning Approach

Viola-Jones Framework

- 1. Haar feature selection
- 2. Integral image
- 3. Adaptive boosting
- 4. Cascading classifier

Deep Learning Approach

Convolutional Neural Network (CNN)

- Input layer: matrix shape
- Hidden layers: two types of layers
- Output layer

Deep Learning Approach

Demo

When to use ML or DL?

Machine Learning

Advantages

- Simpler
- faster

Harder to use

Deep Learning

Advantages

- Greater accuracy
- Easier to use
- More flexible

Disadvantages

 Sometimes an overkill

Where to begin?

Computer Vision problems can be solved either via

MSI Lectures

Next Sunday!

Awesome Computer Vision GitHub

Resources

- 1. https://courses.cs.washington.edu/courses/cse576/20sp/
- 2. https://en.wikipedia.org/wiki/Computer_vision
- 3. https://dribbble.com/shots/4605938-Color-mix
- 4. http://www.dbfix.it/cdead1-the-best-places-to-buy-jewelry_maritsapatrinos/can-you-dissect-these-color-combinations
- 5. https://www.youtube.com/watch?v=WSGoMnmUsEY
- 6. https://www.youtube.com/watch?v=eE30rknr7Mo
- 7. https://www.youtube.com/watch?v=p9vq90NYHMs
- 8. https://www.researchgate.net/publication/268348020
- 9. https://www.researchgate.net/publication/330106889
- 10. https://github.com/Ali-Jakhar/Face-detection-using-MTCNN
- 11. https://towardsdatascience.com/face-detection-in-2-minutes-using-opency-python-90f89d7c0f81
- 12. https://arxiv.org/pdf/1910.13796.pdf
- 13. https://github.com/jbhuang0604/awesome-computer-vision

Thanks!

Do you have any questions?