Homework 4 Abstract Algebra Math 320 Stephen Giang

Section 2.1 Problem 14 (a): Prove or disprove: If $ab \equiv 0 \pmod{n}$, then $a \equiv 0 \pmod{n}$ or $b \equiv 0 \pmod{n}$.

Solution 14a.

Disprove:

Let
$$a = 4, b = 3$$

(4)(3) $\equiv 0 \pmod{12}$

But $4 \not\equiv 0 \pmod{12}$ and $3 \not\equiv 0 \pmod{12}$

Section 2.1 Problem 14 (b): Do part (a) when n is prime

Solution 14b. Let $ab \equiv 0 \pmod{n}$ and $a, b, n, q \in \mathbb{Z}$

$$n|(ab-0)$$
$$n|ab$$

By Theorem 1.5: $a \equiv 0 \pmod{n}$ or $b \equiv 0 \pmod{n}$

Section 2.1 Problem 15: If (a, n) = 1, prove that there is an integer b such that $ab \equiv 1 \pmod{n}$.

Solution 15. Let (a, n) = 1

$$ab + n(v) = 1$$

$$ab - 1 = n(-v)$$

$$n|(ab - 1)$$

$$ab \equiv n \pmod{n}$$

Section 2.1 Problem 20 (a): Prove or disprove: If $a^2 \equiv b^2 \pmod{n}$, then $a \equiv b \pmod{n}$ or $a \equiv -b \pmod{n}$.

Solution 20a.

$$5^2 \equiv 1^2 \pmod{24}$$

 $Disprove:$
 $5 \not\equiv 1 \pmod{24}$
 $5 \not\equiv -1 \pmod{24}$

Section 2.1 Problem 20 (b): Do part (a) when n is prime.

Solution 20b. Let n be prime and $a^2 \equiv b^2 \pmod{n}$

$$n|(a^2 - b^2)$$

$$n|(a + b)(a - b)$$
By Thm 1.5: $n|(a - (-b))$ or $n|(a - b)$
Thus $a \equiv b \pmod{n}$ or $a \equiv -b \pmod{n}$

Section 2.1 Problem 21 (a): Show that $10^n \equiv 1 \pmod{9}$ for every positive n.

Solution 21a. let $n \in \mathbb{Z}^+$

$$10^{n} - 1 = (10 - 1)(10^{0} + 10^{1} + 10^{2} + \dots + 10^{n-1})$$

$$= 9(10^{0} + 10^{1} + 10^{2} + \dots + 10^{n-1})$$

$$9|(10^{n} - 1)$$

$$\mathbf{10^{n} \equiv 1 \pmod 9}$$

Section 2.1 Problem 21 (b): Prove that every positive integer is congruent to the sum of its digits (mod 9) [for example, $38 \equiv 11 \pmod{9}$].

Solution 21b. Notice: $\forall n \in \mathbb{Z}$, $n = 10^0 a_0 + 10^1 a_1 + 10^2 a_2 + ... + 10^n a_n$, where a_i are the digits of n with $i \in \mathbb{Z}_{>0}$.

$$n = (1)a_0 + (9+1)a_1 + (99+1)a_2 + \dots + (999\dots99+1)a_n$$

$$= 9a_1 + 99a_2 + \dots + 999\dots99a_n + (a_0 + a_1 + a_2 + \dots + a_n)$$

$$n - (a_0 + a_1 + a_2 + \dots + a_n) = 9(a_1 + 11a_2 + \dots + 111\dots11a_n)$$

$$9|(n - (a_0 + a_1 + a_2 + \dots + a_n))$$

$$n \equiv (a_0 + a_1 + a_2 + \dots + a_n) \pmod{9}$$

So any integer n is congruent to the sum of it digits (mod 9)