```
In [135]:
           import pandas as pd
           import pandas as pd
           import numpy as np
           import seaborn as sns
           import plotly.express as px
           import plotly.graph objects as go
           from sklearn.model_selection import train_test_split
           from sklearn.ensemble import RandomForestClassifier
           from sklearn.linear model import LogisticRegression
           from sklearn.metrics import f1_score, recall_score,precision_score,confusion_matrix,classif
           from sklearn import tree
           from sklearn.metrics import roc_auc_score
In [136]: loan_data=pd.read_csv("loan_data.csv")
In [137]: loan_data.head()
Out[137]:
                               Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome Loa
               Loan_ID Gender
            0 LP001002
                                               0
                                                   Graduate
                                                                                   5849
                                                                                                     0.0
                          Male
                                   No
                                                                     No
            1 LP001003
                          Male
                                  Yes
                                               1
                                                   Graduate
                                                                                   4583
                                                                                                   1508.0
                                                                     No
            2 LP001005
                          Male
                                  Yes
                                               0
                                                   Graduate
                                                                     Yes
                                                                                   3000
                                                                                                     0.0
                                                       Not
                                                                                                  2358.0
            3 LP001006
                          Male
                                               0
                                                                                   2583
                                  Yes
                                                                     No
                                                   Graduate
            4 LP001008
                                                                                   6000
                                                                                                     0.0
                          Male
                                   No
                                               0
                                                   Graduate
                                                                     No
In [138]: loan data.isnull().sum()
Out[138]: Loan ID
                                  0
           Gender
                                 13
           Married
                                  3
                                 15
           Dependents
           Education
                                  0
           Self_Employed
                                 32
           ApplicantIncome
                                  0
           CoapplicantIncome
                                  0
           LoanAmount
                                 22
           Loan Amount Term
                                 14
           Credit_History
                                 50
           Property_Area
                                  0
           Loan Status
                                  0
           dtype: int64
```

```
In [139]:
          loan_data.dtypes
Out[139]: Loan_ID
                                 object
          Gender
                                 object
          Married
                                 object
          Dependents
                                 object
          Education
                                 object
          Self Employed
                                 object
          ApplicantIncome
                                  int64
          CoapplicantIncome
                                float64
          LoanAmount
                                float64
          Loan Amount Term
                                float64
          Credit_History
                                float64
          Property_Area
                                 object
          Loan Status
                                 object
          dtype: object
In [140]: loan_data.nunique()
Out[140]: Loan_ID
                                614
          Gender
                                  2
          Married
                                  2
                                  4
          Dependents
                                  2
          Education
                                  2
          Self_Employed
          ApplicantIncome
                                505
          CoapplicantIncome
                                287
                                203
          LoanAmount
          Loan_Amount_Term
                                 10
          Credit History
                                  2
                                  3
          Property_Area
                                  2
          Loan Status
          dtype: int64
In [141]: loan_data.isnull().sum()
Out[141]: Loan ID
                                 0
          Gender
                                13
          Married
                                 3
                                15
          Dependents
                                 0
          Education
                                32
          Self_Employed
          ApplicantIncome
                                 0
          CoapplicantIncome
                                 0
                                22
          LoanAmount
          Loan Amount Term
                                14
          Credit_History
                                50
          Property_Area
                                 0
          Loan_Status
                                 0
          dtype: int64
In [142]: loan_data['Loan_Status'].value_counts()
Out[142]: Y
                422
                192
          Name: Loan_Status, dtype: int64
```

```
In [143]: loan_data['Credit_History'].value_counts()
Out[143]: 1.0
                  475
          0.0
                   89
          Name: Credit_History, dtype: int64
In [144]: loan_data['Dependents'].value_counts()
Out[144]: 0
                 345
          1
                 102
          2
                 101
          3+
                  51
          Name: Dependents, dtype: int64
In [145]: loan_data['Gender'].value_counts()
Out[145]: Male
                     489
          Female
                     112
          Name: Gender, dtype: int64
In [146]: loan_data['Loan_Amount_Term'].value_counts()
Out[146]: 360.0
                    512
          180.0
                     44
          480.0
                     15
          300.0
                     13
          240.0
                      4
          84.0
                      4
          120.0
                      3
          60.0
                      2
                      2
          36.0
          12.0
          Name: Loan_Amount_Term, dtype: int64
In [147]: loan_data['Self_Employed'].value_counts()
Out[147]: No
                  500
                   82
          Yes
          Name: Self_Employed, dtype: int64
In [148]: loan_data['Gender'].value_counts()
Out[148]: Male
                     489
                     112
          Name: Gender, dtype: int64
  In [ ]:
```

```
In [149]: fig = px.bar(data_frame=loan_data, x=loan_data['Gender'].value_counts().index, y=loan_data[
fig.update_layout(title='Number of Males and Females',xaxis_title='Gender',yaxis_title='Counting.show()
```

Number of Males and Females


```
In [150]: fig = px.bar(data_frame=loan_data, x=loan_data['Married'].value_counts().index, y=loan_data
fig.update_layout(title='Number of Married and Unmarried',xaxis_title='Marital status',yaxis
fig.show()
```

Number of Married and Unmarried


```
In [151]: fig = px.bar(data_frame=loan_data, x=loan_data['Self_Employed'].value_counts().index, y=loan
fig.update_layout(title='Number of Self_Employed or Not',xaxis_title='Employed',yaxis_title=
fig.show()
```

Number of Self_Employed or Not

In [152]: fig = px.bar(data_frame=loan_data, x=loan_data['Credit_History'].value_counts().index, y=loan_data['update_layout(title='Number of Credit_History',xaxis_title='Credit_History',yaxis_title=fig.show()

Number of Credit_History


```
In [154]: fig = px.bar(data_frame=loan_data, x=loan_data['Dependents'].value_counts().index, y=loan_data['update_layout(title='Number of Dependents',xaxis_title='Dependents',yaxis_title='Count' fig.show()
```

Number of Dependents


```
In [155]: fig = px.bar(data_frame=loan_data, x=loan_data['Education'].value_counts().index, y=loan_dar
fig.update_layout(title='Number of Graduate and Not Graduate',xaxis_title='Graduation',yaxis
fig.show()
```

Number of Graduate and Not Graduate


```
In [156]: fig = px.bar(data_frame=loan_data, x=loan_data['Property_Area'].value_counts().index, y=loan
fig.update_layout(title='Number of Property Areas',xaxis_title='Property Areas',yaxis_title=
fig.show()
```

Number of Property Areas


```
In [157]: fig=px.histogram(data_frame=loan_data,x='ApplicantIncome',text_auto=True,nbins=20)
    fig.update_layout(width=900,height=500)
    fig.show()
```



```
In [158]: fig=px.box(data_frame=loan_data,x='ApplicantIncome')
fig.update_layout(width=800,height=500)
fig.show()
```


In [159]: fig=px.box(data_frame=loan_data,x='ApplicantIncome',y='Education',orientation='h', color='Education',orientation='h', color='education',orien

Applicant Income

In [160]: fig=px.histogram(data_frame=loan_data,x='CoapplicantIncome',text_auto=True,nbins=20)
fig.update_layout(title='Coapplicant Income',width=800,height=500)
fig.show()

Coapplicant Income


```
In [161]: fig=px.box(data_frame=loan_data,x='CoapplicantIncome')
fig.update_layout(width=800,height=400)
fig.show()
```


localhost:8889/notebooks/Loan Approval Prediction.ipynb

```
In [162]: fig=px.histogram(data_frame=loan_data,x='LoanAmount',text_auto=True,nbins=20)
fig.update_layout(title='Loan Amount',width=800,height=500)
fig.show()
```

Loan Amount


```
In [163]: fig=px.box(data_frame=loan_data,x='LoanAmount',orientation='h', )
    fig.update_layout(title='Loan Amount',width=800,height=500)
    fig.show()
```

Loan Amount

In [164]: fig=px.box(data_frame=loan_data,x='LoanAmount',y='Gender',orientation='h', color='Education
fig.update_layout(title='Loan Amount',width=800,height=500)
fig.show()

Loan Amount

In [165]: Gender_vise_Loan_Status= loan_data.groupby(['Gender', 'Loan_Status']).size().reset_index(name)
Gender_vise_Loan_Status

Out[165]:

	Gender	Loan_Status	Count
0	Female	N	37
1	Female	Υ	75
2	Male	N	150
3	Male	Υ	339

Out[166]:

	Married	Loan_Status	Count
 0	No	N	79
1	No	Υ	134
2	Yes	N	113
3	Yes	Υ	285

```
In [167]:
           loan_data.dtypes
Out[167]:
                                   object
           Loan_ID
           Gender
                                   object
           Married
                                   object
           Dependents
                                   object
           Education
                                   object
           Self Employed
                                   object
           ApplicantIncome
                                    int64
           CoapplicantIncome
                                  float64
           LoanAmount
                                  float64
           Loan Amount Term
                                  float64
           Credit_History
                                  float64
                                   object
           Property_Area
           Loan Status
                                   object
           dtype: object
           Dependents_vise_Loan_Status= loan_data.groupby(['Dependents', 'Loan_Status']).size().reset_
In [168]:
           Dependents_vise_Loan_Status
Out[168]:
               Dependents Loan Status
                                     Count
                                        107
            0
                       0
                                   Ν
            1
                       0
                                   Υ
                                        238
            2
                       1
                                   Ν
                                        36
            3
                       1
                                   Υ
                                        66
            4
                       2
                                   Ν
                                        25
            5
                       2
                                   Υ
                                         76
            6
                      3+
                                   Ν
                                         18
            7
                      3+
                                   Υ
                                         33
           Education_vise_Loan_Status= loan_data.groupby(['Education', 'Loan_Status']).size().reset_in
In [169]:
           Education_vise_Loan_Status
Out[169]:
                Education Loan_Status Count
            0
                 Graduate
                                   Ν
                                        140
            1
                 Graduate
                                   Υ
                                        340
            2 Not Graduate
                                   Ν
                                         52
            3 Not Graduate
                                   Υ
                                         82
           Self Employed_vise_Loan_Status= loan_data.groupby(['Self_Employed', 'Loan_Status']).size().
In [170]:
           Self Employed vise Loan Status
Out[170]:
               Self_Employed
                            Loan_Status
                                       Count
            0
                        No
                                     Ν
                                          157
            1
                                     Υ
                        No
                                          343
            2
                        Yes
                                     Ν
                                           26
            3
                                     Υ
                                           56
                        Yes
```

Out[171]:

	Credit_History	Loan_Status	Count
0	0.0	N	82
1	0.0	Υ	7
2	1.0	N	97
3	1.0	Υ	378

In [172]: Property_Area_vise_Loan_Status= loan_data.groupby(['Property_Area', 'Loan_Status']).size().
Property_Area_vise_Loan_Status

Out[172]:

	Property_Area	Loan_Status	Count
0	Rural	N	69
1	Rural	Υ	110
2	Semiurban	N	54
3	Semiurban	Υ	179
4	Urban	N	69
5	Urban	Y	133

In [173]: bins=[0,2500,4000,6000,81000]
 group=['Low','Average','High','Very high']
 loan_data['Income_Group']=pd.cut(loan_data['ApplicantIncome'],bins=bins,labels=group,include
 Income_Group_vise_Loan_Status= loan_data.groupby(['Income_Group', 'Loan_Status']).size().resultance_Group_vise_Loan_Status

Out[173]:

	Income_Group	Loan_Status	Count
0	Low	N	34
1	Low	Υ	74
2	Average	N	67
3	Average	Υ	159
4	High	N	45
5	High	Υ	98
6	Very high	N	46
7	Very high	Υ	91

```
In [174]: fig = px.bar(Income_Group_vise_Loan_Status,x='Income_Group',y='Count',color='Loan_Status',bafig.update_layout(xaxis_title='Income Group',yaxis_title='Count',width=800,height=500)
fig.show()
```


In [175]: bins=[0,1000,3000,42000]
group=['Low','Average','High']
loan_data['CoapplicantIncome_Group']=pd.cut(loan_data['CoapplicantIncome'],bins=bins,labels=
CoapplicantIncome_Group_vise_Loan_Status= loan_data.groupby(['CoapplicantIncome_Group', 'LocCoapplicantIncome_Group_vise_Loan_Status

Out[175]:

	CoapplicantIncome_Group	Loan_Status	Count
0	Low	N	99
1	Low	Υ	196
2	Average	N	61
3	Average	Υ	161
4	High	N	32
5	High	Υ	65

```
In [176]: fig = px.bar(CoapplicantIncome_Group_vise_Loan_Status,x='CoapplicantIncome_Group',y='Count'
fig.update_layout(xaxis_title='CoapplicantIncome_Group',yaxis_title='Count',width=800,height
fig.show()
```


In [177]: loan_data['Total_Income']=loan_data['ApplicantIncome']+loan_data['CoapplicantIncome']
bins=[0,2500,4000,6000,81000]
group=['Low','Average','High','Very high']
loan_data['Total_Income_Group']=pd.cut(loan_data['Total_Income'],bins=bins,labels=group,inc.
Total_Income_Group_vise_Loan_Status= loan_data.groupby(['Total_Income_Group', 'Loan_Status'
Total_Income_Group_vise_Loan_Status

Out[177]:

	Total_Income_Group	Loan_Status	Count
0	Low	N	14
1	Low	Υ	10
2	Average	N	32
3	Average	Υ	87
4	High	N	65
5	High	Υ	159
6	Very high	N	81
7	Very high	Υ	166

```
In [178]: fig = px.bar(Total_Income_Group_vise_Loan_Status,x='Total_Income_Group',y='Count',color='Log
fig.update_layout(xaxis_title='Income_Group',yaxis_title='Count',width=800,height=500)
fig.show()
```


In [179]: bins=[0,100,200,700]
 group=['Low','Average','High']
 loan_data['LoanAmount_group']=pd.cut(loan_data['LoanAmount'],bins,labels=group)
 LoanAmount_group_vise_Loan_Status= loan_data.groupby(['LoanAmount_group', 'Loan_Status']).s.
 LoanAmount_group_vise_Loan_Status

Out[179]:

	LoanAmount_group	Loan_Status	Count
0	Low	N	47
1	Low	Υ	107
2	Average	N	103
3	Average	Υ	255
4	High	N	31
5	High	Υ	49

```
In [180]: fig = px.bar(LoanAmount_group_vise_Loan_Status,x='LoanAmount_group',y='Count',color='Loan_Status,x='LoanAmount_group',y='Count',color='Loan_Status,x='LoanAmount_group',y='Count',color='Loan_Status,x='LoanAmount_group',y='Count',color='Loan_Status,x='LoanAmount_group',y='Count',color='Loan_Status,x='LoanAmount_group',y='Count',color='Loan_Status,x='LoanAmount_group',y='Count',color='Loan_Status,x='LoanAmount_group',y='Count',color='Loan_Status,x='LoanAmount_group',y='Count',color='Loan_Status,x='LoanAmount_group',y='Count',color='Loan_Status,x='LoanAmount_group',y='Count',color='Loan_Status,x='LoanAmount_group',y='Count',color='Loan_Status,x='LoanAmount_group',y='Count',width=800,height=500) fig.show()
```


	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	Loa
0	LP001002	Male	No	0	Graduate	No	5849	0.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	
4									•

In [184]: Correlation=loan_data.corr(method='pearson')
print(Correlation)

	ApplicantIncome	CoapplicantIncome	e LoanAmount	\
ApplicantIncome	1.000000	-0.116605	0.570909	
CoapplicantIncome	-0.116605	1.000000	0.188619	
LoanAmount	0.570909	0.188619	1.000000	
Loan_Amount_Term	-0.045306	-0.059878	0.039447	
Credit_History	-0.014715	-0.002056	-0.008433	
Loan_Status	-0.004710	-0.059187	-0.037318	
	Loan_Amount_Term	Credit_History	Loan_Status	
ApplicantIncome	-0.045306	-0.014715	-0.004710	
CoapplicantIncome	-0.059878	-0.002056	-0.059187	
LoanAmount	0.039447	-0.008433	-0.037318	
Loan_Amount_Term	1.000000	0.001470	-0.021268	
Credit_History	0.001470	1.000000	0.561678	
Loan_Status	-0.021268	0.561678	1.000000	

C:\Users\Suyash\AppData\Local\Temp\ipykernel_25672\4188836588.py:1: FutureWarning:

The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to s ilence this warning.

In [185]: fig=go.Figure(go.Heatmap(x=Correlation.columns,y=Correlation.columns,z=Correlation.values.to
fig.update_layout(title='Correlation Heatmap',xaxis_title='Variables',yaxis_title='Variables
fig.show()

Correlation Heatmap


```
In [186]: loan data.isnull().sum()
Out[186]: Loan_ID
                                 0
          Gender
                                13
          Married
                                 3
          Dependents
                                15
          Education
                                 0
          Self Employed
                                32
          ApplicantIncome
                                 0
          CoapplicantIncome
                                 0
          LoanAmount
                                22
          Loan Amount Term
                                14
          Credit_History
                                50
                                 0
          Property_Area
                                 0
          Loan Status
          dtype: int64
          loan data['Gender'].fillna(method='ffill', inplace=True)
In [187]:
In [188]:
          loan_data['Dependents'].fillna( loan_data['Dependents'].mode()[0], inplace=True)
In [189]:
          loan_data['Married'].fillna(loan_data['Married'].mode()[0], inplace=True)
          loan data['Self Employed'].fillna(method='ffill', inplace=True)
In [190]:
In [191]:
          loan_data['Credit_History'].fillna(method='bfill', inplace=True)
          loan_data['LoanAmount'].fillna(loan_data['LoanAmount'].median(), inplace=True)
In [192]:
In [193]:
          loan data['Loan Amount Term'].fillna( loan data['Loan Amount Term'].mode()[0], inplace=True
In [194]: loan_data.isnull().sum()
Out[194]: Loan ID
                                0
          Gender
                                0
          Married
                                0
          Dependents
                                0
          Education
                                0
          Self_Employed
                                0
          ApplicantIncome
                                0
          CoapplicantIncome
                                0
          LoanAmount
                                a
          Loan_Amount_Term
                                0
          Credit_History
                                0
          Property_Area
                                0
          Loan_Status
                                0
          dtype: int64
```

In [195]: loan_data.describe()

Out[195]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Loan_Status
count	614.000000	614.000000	614.000000	614.000000	614.00000	614.000000
mean	5403.459283	1621.245798	145.752443	342.410423	0.84202	0.687296
std	6109.041673	2926.248369	84.107233	64.428629	0.36502	0.463973
min	150.000000	0.000000	9.000000	12.000000	0.00000	0.000000
25%	2877.500000	0.000000	100.250000	360.000000	1.00000	0.000000
50%	3812.500000	1188.500000	128.000000	360.000000	1.00000	1.000000
75%	5795.000000	2297.250000	164.750000	360.000000	1.00000	1.000000
max	81000.000000	41667.000000	700.000000	480.000000	1.00000	1.000000

In [196]: loan_data

Out[196]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	Ŀ
0	LP001002	Male	No	0	Graduate	No	5849	0.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	
				•••					
609	LP002978	Female	No	0	Graduate	No	2900	0.0	
610	LP002979	Male	Yes	3	Graduate	No	4106	0.0	
611	LP002983	Male	Yes	1	Graduate	No	8072	240.0	
612	LP002984	Male	Yes	2	Graduate	No	7583	0.0	
613	LP002990	Female	No	0	Graduate	Yes	4583	0.0	

614 rows × 13 columns

In [197]: loan_data['NormLoanAmount']=np.log(loan_data['LoanAmount'])

In [198]: loan data Out[198]: Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome L 0 LP001002 0 No Graduate No 5849 0.0 Male LP001003 Graduate 4583 1508.0 Male Yes No LP001005 Male Yes 0 Graduate Yes 3000 0.0 Not LP001006 0 2583 2358.0 3 Male Yes No Graduate LP001008 0 6000 Male No Graduate No 0.0 609 LP002978 0 Graduate 2900 0.0 Female No No 610 LP002979 Male Yes 3 Graduate No 4106 0.0 LP002983 Graduate 8072 240.0 611 Male Yes 1 No LP002984 Male Yes 2 Graduate No 7583 0.0 **613** LP002990 Female 0 Graduate 4583 0.0 No Yes 614 rows × 14 columns In [199]: loan_data=loan_data.drop('Loan_ID',axis=1) In [200]: X = loan_data.drop(labels='Loan_Status',axis=1) Y = loan_data['Loan_Status'] In [201]: Out[201]: Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount 0 Male No 0 Graduate 5849 0.0 128.0 No 1 Male Yes 1 Graduate No 4583 1508.0 128.0 2 0 Graduate 3000 0.0 66.0 Male Yes Yes Not 3 Male Yes 0 No 2583 2358.0 120.0 Graduate 0 6000 0.0 4 Male No Graduate No 141.0 0 2900 609 Female No Graduate No 0.0 71.0 610 Male Yes 3 Graduate 4106 0.0 40.0 No 611 Male Yes 1 Graduate No 8072 240.0 253.0 612 2 7583 187.0 Male Yes Graduate No 0.0 Female Graduate 4583 0.0 133.0 613 No Yes 614 rows × 12 columns

```
In [202]:
Out[202]: 0
                   1
           1
                   0
            2
                   1
           3
                   1
           4
                   1
           609
                   1
           610
                   1
           611
                   1
                   1
           612
           613
                   0
           Name: Loan_Status, Length: 614, dtype: int64
In [203]: columns = X.columns
           cat_col= [col for col in X.columns if X[col].dtypes=='0']
           cat_col
Out[203]: ['Gender',
             'Married',
             'Dependents',
             'Education',
             'Self_Employed',
             'Property_Area']
In [204]:
           dummy = pd.get_dummies(X[cat_col])
           dummy.shape
Out[204]: (614, 15)
In [205]:
           dummy
Out[205]:
                 Gender_Female Gender_Male Married_No Married_Yes Dependents_3 Dependents_0 Dependents_1 Depen
              0
                             0
                                          1
                                                     1
                                                                 0
                                                                               0
                                                                                             1
                                                                                                           0
              1
                             0
                                          1
                                                     0
                                                                  1
                                                                               0
                                                                                             0
                                                                                                           1
              2
                             0
                                          1
                                                     0
                                                                  1
                                                                               0
                                                                                                           0
                             0
                                                     0
                                                                               0
                                                                                                           0
              3
                                          1
                                                                  1
                                                                                             1
                             0
                                                                 0
                                                                               0
              4
                                          1
                                                     1
                                                                                             1
                                                                                                           0
                                                                 ...
             ...
                                         ...
            609
                                          0
                                                                 0
                                                                               0
                                                                                                           0
                             1
                                                     1
                                                                                             1
            610
                             0
                                          1
                                                     0
                                                                  1
                                                                                             0
                                                                                                           0
                                                                               1
            611
                             0
                                          1
                                                     0
                                                                  1
                                                                               0
                                                                                             0
                             0
                                                                                                           0
            612
                                          1
                                                     0
                                                                               0
                                                                                             0
                                                                  1
            613
                                          0
                                                                  0
                                                                                             1
```

614 rows × 15 columns

```
In [206]: final = pd.concat([X,dummy],axis=1)
final.shape

Out[206]: (614, 27)

In [207]: final.drop(cat_col,inplace=True,axis=1)

In [208]: final.shape

Out[208]: (614, 21)

In [209]: final
Out[209]:
```

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	NormLoanAmount	G
0	5849	0.0	128.0	360.0	1.0	4.852030	
1	4583	1508.0	128.0	360.0	1.0	4.852030	
2	3000	0.0	66.0	360.0	1.0	4.189655	
3	2583	2358.0	120.0	360.0	1.0	4.787492	
4	6000	0.0	141.0	360.0	1.0	4.948760	
609	2900	0.0	71.0	360.0	1.0	4.262680	
610	4106	0.0	40.0	180.0	1.0	3.688879	
611	8072	240.0	253.0	360.0	1.0	5.533389	
612	7583	0.0	187.0	360.0	1.0	5.231109	
613	4583	0.0	133.0	360.0	0.0	4.890349	

614 rows × 21 columns

localhost:8889/notebooks/Loan Approval Prediction.ipynb

```
In [210]: X=final X
```

Out[210]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	NormLoanAmount	G
0	5849	0.0	128.0	360.0	1.0	4.852030	_
1	4583	1508.0	128.0	360.0	1.0	4.852030	
2	3000	0.0	66.0	360.0	1.0	4.189655	
3	2583	2358.0	120.0	360.0	1.0	4.787492	
4	6000	0.0	141.0	360.0	1.0	4.948760	
609	2900	0.0	71.0	360.0	1.0	4.262680	
610	4106	0.0	40.0	180.0	1.0	3.688879	
611	8072	240.0	253.0	360.0	1.0	5.533389	
612	7583	0.0	187.0	360.0	1.0	5.231109	
613	4583	0.0	133.0	360.0	0.0	4.890349	

614 rows × 21 columns

LogisticRegression

```
In [213]: clf = LogisticRegression()
In [214]: x_train.shape,x_test.shape
Out[214]: ((491, 21), (123, 21))
```

In [212]: x_train,x_test,y_train,y_test = train_test_split(X,Y, test_size = 0.2)

```
In [215]: clf.fit(x_train,y_train)
          D:\New folder\Lib\site-packages\sklearn\linear_model\_logistic.py:460: ConvergenceWarning:
          lbfgs failed to converge (status=1):
          STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
          Increase the number of iterations (max iter) or scale the data as shown in:
              https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/s
          table/modules/preprocessing.html)
          Please also refer to the documentation for alternative solver options:
              https://scikit-learn.org/stable/modules/linear model.html#logistic-regression (http
          s://scikit-learn.org/stable/modules/linear_model.html#logistic-regression)
Out[215]:
          ▼ LogisticRegression
           LogisticRegression()
In [216]: pred = clf.predict(x_test)
In [217]: pred
Out[217]: array([1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1,
                 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1,
                 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1,
                 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
                 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
                 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0], dtype=int64)
In [218]: | accuracy_score(y_test,pred)
Out[218]: 0.7560975609756098
In [219]: |f1_score(y_test,pred)
Out[219]: 0.8295454545454545
In [220]: precision_score(y_test,pred)
Out[220]: 0.73
In [221]: | recall_score(y_test,pred)
Out[221]: 0.9605263157894737
In [222]: confusion_matrix(y_test,pred)
Out[222]: array([[20, 27],
                 [ 3, 73]], dtype=int64)
In [223]: from sklearn.metrics import roc_curve, auc
          import matplotlib.pyplot as plt
```

```
In [224]:
          fpr, tpr, thresholds = roc_curve(y_test,pred)
In [225]:
          roc_auc = auc(fpr, tpr)
          print("ROC AUC:", roc_auc)
          ROC AUC: 0.6930291153415453
In [226]: plt.figure()
          lw = 2
          plt.plot(fpr, tpr, color='darkorange',
                   lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)
          plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
          plt.xlim([0.0, 1.0])
          plt.ylim([0.0, 1.05])
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Receiver Operating Characteristic (ROC) Curve')
          plt.legend(loc="lower right")
          plt.show()
```

Receiver Operating Characteristic (ROC) Curve

Dicision_Tree

```
In [229]: | pred = dct.predict(x_test)
In [230]: pred
Out[230]: array([1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1,
                 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1,
                 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1,
                 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1,
                 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1,
                 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0], dtype=int64)
In [231]: | accuracy_score(y_test,pred)
Out[231]: 0.6422764227642277
In [232]: f1_score(y_test,pred)
Out[232]: 0.725
In [233]: precision_score(y_test,pred)
Out[233]: 0.6904761904761905
In [234]: recall_score(y_test,pred)
Out[234]: 0.7631578947368421
In [235]: confusion_matrix(y_test,pred)
Out[235]: array([[21, 26],
                 [18, 58]], dtype=int64)
In [236]: roc_auc_score(y_test,pred)
Out[236]: 0.6049832026875699
In [237]: import matplotlib.pyplot as plt
          from sklearn.metrics import RocCurveDisplay
```

```
In [238]:
          fpr, tpr, thresholds = roc_curve(y_test,pred)
          roc_auc = auc(fpr, tpr)
          print("ROC AUC:", roc_auc)
          plt.figure()
          lw = 2
          plt.plot(fpr, tpr, color='darkorange',
                   lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)
          plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
          plt.xlim([0.0, 1.0])
          plt.ylim([0.0, 1.05])
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Receiver Operating Characteristic (ROC) Curve')
          plt.legend(loc="lower right")
          plt.show()
```

ROC AUC: 0.6049832026875699

Random Forest

```
In [239]: rfc=RandomForestClassifier()
```

```
In [240]:
          rfc.fit(x_train,y_train)
Out[240]:
           ▼ RandomForestClassifier
           RandomForestClassifier()
In [241]:
          pred=rfc.predict(x_test)
In [242]: | accuracy_score(y_test,pred)
Out[242]: 0.7398373983739838
In [243]: precision_score(y_test,pred)
Out[243]: 0.72
In [244]: recall_score(y_test,pred)
Out[244]: 0.9473684210526315
In [245]: f1_score(y_test,pred)
Out[245]: 0.8181818181818181
In [246]: confusion_matrix(y_test,pred)
Out[246]: array([[19, 28],
                 [ 4, 72]], dtype=int64)
```

```
In [247]:
          fpr, tpr, thresholds = roc_curve(y_test,pred)
          roc_auc = auc(fpr, tpr)
          print("ROC AUC:", roc_auc)
          plt.figure()
          lw = 2
          plt.plot(fpr, tpr, color='darkorange',
                   lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)
          plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
          plt.xlim([0.0, 1.0])
          plt.ylim([0.0, 1.05])
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Receiver Operating Characteristic (ROC) Curve')
          plt.legend(loc="lower right")
          plt.show()
```

ROC AUC: 0.6758118701007838


```
In [ ]:
In [ ]:
In [ ]:
In [ ]:
```