Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica

Seconda prova di accertamento - 18/07/2023 - Canale 1 - Prof. Meneghesso

COGNOME: NOME: MATRICOLA:

DA LEGGERE CON ATTENZIONE PRIMA DI INIZIARE LA PROVA

- 1) Scrivere cognome e nome anche su tutti i fogli protocollo
- 2) Bisogna consegnare il testo del compito anche in caso di ritiro
- 3) Risposte non chiare o non adequatamente giustificate saranno penalizzate
- 4) Nei conti e nei risultati, i valori numerici **DEVONO** essere accompagnati dalla **relativa unità di misura**.
- 5) L'elaborato deve essere scritto e consegnato in forma ORDINATA e COMPRENSIBILE.
- 6) Il tempo a disposizione è di 2 ore

Problema 1

DATI: $R_1 = 300k\Omega$, $R_2 = 200k\Omega$, $R_4 = 16~k\Omega$, $R_5 = 1.5k\Omega$, $R_i = 40k\Omega$, $R_L = 1.2k\Omega$, $V_{DD} = 5V$

Parametrati dei MOS: M_1 : $k_{n1} = 2mA/V^2$, $V_{TN1} = 0.5V$, $\lambda_{n1} = 0$

$$M_2$$
: $k_{n2} = 6mA/V^2$, $V_{TN2} = 0.5V$, $\lambda_{n2} = 0$

Dato il circuito in figura, calcolare:

- 1. Il valore delle resistenze R_3 sapendo che la corrente attraverso il MOSFET M_1 è I_{DS1} = 0.25mA.
- 2. La polarizzazione di tutti i transistor identificando la regione di funzionamento e i valori delle tensioni V_{GS} e V_{DS} e della corrente I_{DS} .
- 3. Disegnare il modello ai piccoli segnali e calcolare la transconduttanza g_{m1} e g_{m2} di M_1 e M_2 . Dal modello ai piccoli segnali calcolare:
- 4. La resistenza di ingresso R_{IN}
- 5. La resistenza di uscita R_{OUT}
- 6. Il guadagno di tensione da v_i a v_o.

Problema 2

DATI: $R_1 = 100k\Omega$, $C_1 = 1\mu F$, $R_2 = 90k\Omega$, $R_3 = 10k\Omega$, $C_3 = 1nF$, $R_4 = 990k\Omega$, $R_5 = 1k\Omega$, $C_5 = 1nF$ Dato il filtro in figura realizzato con un amplificatore operazionale ideale:

- 1. Trovare la funzione di trasferimento del filtro $W(\omega) = v_0 / v_s$.
- 2. Tracciare il diagramma asintotico di Bode del modulo e della fase
- 3. Stimare modulo e fase della funzione di trasferimento dal <u>diagramma asintotico di bode</u> per ω =0 e ω = 10^5 rad/s

Problema 3

DATI: $R_1 = 30k\Omega$, $R_2 = 150k\Omega$

Sia dato il circuito in figura realizzato con un amplificatore operazionale reale con una tensione di offset $V_{OS} = 2mV$ e correnti di bias $I_{BP} = 100$ nA e $I_{BN} = 80$ nA.

- 1. Assumendo $R_3 = 100 \text{ k}\Omega \text{ e } v_S = 20 \text{mV}$, calcolare la tensione v_0 .
- 2. Quanto deve valere R₃ per annullare l'effetto delle correnti di bias?
- 3. Esiste un valore di R₃ che permette di annullare sia le correnti di bias che la tensione di offset? Se si calcolarlo.

