ES704 – Instrumentação Básica

03 – Análise de incertezas

Eric Fujiwara

Unicamp – FEM – DSI

Índice

Índice:

- 1) Amostragem;
- 2) Análise de incertezas;
- Questionário;
- Referências;
- · Exercícios.

1.1. Amostragem:

- Experimentos s\(\tilde{a}\) o sujeitos a fonte de erro, fazendo com que o valor medido \(x\) de uma vari\(\tilde{a}\) velo diferente do valor real \(x'\);
- O valor real pode ser estimado com probabilidade P:

$$x' \cong \bar{x} \pm u_{\bar{x}} \ (P\%) \tag{3.1}$$

- \bar{x} : média;
- $u_{\bar{x}}$: intervalo de incertezas (aleatórias e sistemáticas);
- A aproximação depende do número de medições realizadas N: se N → ∞, x̄ ± u_{x̄} inclui todos os valores possíveis para a variável medida x.

1.2. Histograma:

- As ocorrências das N medições podem ser distribuídas em K intervalos $x_k \Delta x \le x_k \le x_k + \Delta x$. O gráfico da contagem de ocorrências n_k por intervalo é o **histograma** da amostra;
 - Normalizando a contagem em termos de frequência, f_k = n_k/N;
 - Geralmente, os valores são distribuídos em torno de uma tendência central, que é o valor médio x̄.

- 1.3. Função densidade de probabilidade:
 - Reduzindo os intervalos a $\Delta x \to 0$, o histograma é aproximado por uma **função densidade de probabilidade (PDF)** contínua:

$$p(x) = \lim_{\Delta x \to 0} \frac{n_k/N}{2\Delta x}$$
 (3.2)

 Variáveis contínuas sujeitas a efeitos aleatórios podem ser modeladas por uma distribuição normal (Gaussiana):

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2} \frac{(x-\bar{x})^2}{\sigma^2}\right]$$
 (3.3)

- 1.3. Função densidade de probabilidade:
 - Média:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 (3.4)

Variância:

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
 (3.5)

Desvio padrão:

$$\sigma = \left[\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 \right]^{1/2}$$
 (3.6)

1.4. Comportamento de uma população:

• Suponha $N \to \infty$. A probabilidade de ocorrer uma medição no intervalo $\bar{x} - \Delta x \le x \le \bar{x} + \Delta x$ é:

$$P = \int_{\bar{x} - \Delta x}^{\bar{x} + \Delta x} p(x) dx$$
 (3.7)

• Definindo as variáveis $\beta = (x - \bar{x})/\sigma$ e $z_1 = (x_1 - \bar{x})/\sigma$, dado que a PDF é simétrica em torno de \bar{x} , a probabilidade P se torna

$$P = 2P(z_1) = \frac{2}{\sqrt{2\pi}} \int_0^1 \exp\left(-\frac{\beta^2}{2}\right) d\beta$$
 (3.8)

1.4. Comportamento de uma população:

• Tabela de $P(z_1)$:

				` 1,						
$z_1 = \frac{x_1 - x'}{\sigma}$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1809	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2794	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4292	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4758	0.4761	0.4767
2.0	0.4772	0.4778	0.4803	0.4788	0.4793	0.4799	0.4803	0.4808	0.4812	0.4817

•
$$z_1 = 1 \rightarrow P = 68.26\%;$$

• $z_1 = 2 \rightarrow P = 95.45\%;$
• $z_1 = 3 \rightarrow P = 99.73\%.$

- 1.5. Comportamento de uma amostra:
 - Para uma amostra com N finito, o desvio padrão é:

$$s_{x} = \left[\frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}\right]^{1/2}$$
 (3.9)

- v = N 1 é o número de graus de liberdade;
- O desvio padrão da média corrige a distorção do tamanho da amostra N:

$$s_{\bar{\chi}} = \frac{s_{\chi}}{\sqrt{N}} \tag{3.10}$$

1.5. Comportamento de uma amostra:

 Estimativa para o valor real da variável com probabilidade P (ignorando as incertezas sistemáticas):

$$x' = \bar{x} \pm t_{v,P} s_{\bar{x}} \ (P\%)$$
 (3.11)

v = N - 1

• onde $t_{v,P}$ é a variável **t de Student**:

ν	t ₅₀	t ₉₀	t ₉₅	t99	ν	t ₅₀	t ₉₀	t ₉₅	t99
1	1.000	6.314	12.706	63.657	14	0.692	1.761	2.145	2.977
2	0.816	2.920	4.303	9.925	15	0.691	1.753	2.131	2.947
3	0.765	2.353	3.182	5.841	16	0.690	1.746	2.120	2.921
4	0.741	2.132	2.770	4.604	17	0.689	1.740	2.110	2.898
5	0.727	2.015	2.571	4.032	18	0.688	1.734	2.101	2.878
6	0.718	1.943	2.447	3.707	19	0.688	1.729	2.093	2.861
7	0.711	1.895	2.365	3.499	20	0.687	1.725	2.086	2.845
8	0.706	1.860	2.306	3.355	21	0.686	1.721	2.080	2.831
9	0.703	1.833	2.262	3.250	30	0.683	1.697	2.042	2.750
10	0.700	1.812	2.228	3.169	40	0.681	1.684	2.021	2.704
11	0.697	1.796	2.201	3.106	50	0.680	1.679	2.010	2.679
12	0.695	1.782	2.179	3.055	60	0.679	1.671	2.000	2.660
13	0.694	1.771	2.160	3.012	∞	0.674	1.645	1.960	2.576

- 1.5. Comportamento de uma amostra:
 - O intervalo de confiança de uma amostra é:

$$CI = \pm t_{v,P} s_{\bar{x}} = \pm t_{v,p} \frac{s_x}{\sqrt{N}} (P\%)$$
 (3.12)

 Assim, o número de amostras N necessário para atender o intervalo de confiança desejado deve ser calculado recursivamente.

1.6. Replicatas:

- Sejam M replicatas de um conjunto de N dados experimentais;
- Média:

$$\langle \bar{x} \rangle = \frac{1}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} x_{nm}$$
 (3.13)

Desvio padrão:

$$\langle s_x \rangle = \left[\frac{1}{M(N-1)} \sum_{m=1}^{M} \sum_{n=1}^{N} (x_{nm} - \bar{x}_m)^2 \right]^{1/2}$$
 (3.14)

$$\langle s_{\bar{\chi}} \rangle = \frac{\langle s_{\chi} \rangle}{\sqrt{MN}} \tag{3.15}$$

- 1.6. Detecção de dados espúrios:
 - Dados espúrios (outliers) deslocam a média da amostra;
 - O critério de Chauvenet estabelece meios de detectar dados espúrios;
 - Seja um número N de medidas, o dado x_i pode ser considerado espúrio quando z₀ excede o valor máximo aceitável, de acordo com a tabela ao lado.

Medições N	$z_0 = x_i - x' /s_x$
3	1,38
4	1,54
5	1,65
6	1,73
7	1,80
10	1,96
15	2,13
25	2,33
50	2,57
100	2,81
300	3,14
500	3,29
1000	3,48

2.1. Erro e incerteza:

- Erro é a diferença entre o valor medido e o valor real de uma variável → característica da medição;
- Incerteza é o intervalo que quantifica valores possíveis para uma variável -> característica dos resultados;
- Incertezas podem ser aleatórias $s_{\bar{x}}$ ou sistemáticas $b_{\bar{x}}$;
- O valor real de uma variável é estimado com base na **incerteza** combinada $u_{\bar{x}}$:

$$x'\cong \bar{x}\pm u_{\bar{x}}\ (P\%)$$

$$u_{\bar{x}} = t_{\nu,P} \sqrt{s_{\bar{x}}^2 + b_{\bar{x}}^2} \tag{3.16}$$

2.2. Fontes de erro:

- Erros de calibração: introduzidos no sistema de medição durante a sua calibração;
 - 1.1) Padrão ou referência empregado na calibração;
 - 1.2) Instrumento ou sistema em calibração;
 - 1.3) Processo de calibração;
 - 1.4) Ajuste de dados na calibração.

2.2. Fontes de erro:

- Erros de aquisição de dados: introduzidos durante a medição.
 Incluem erros na instalação e utilização dos instrumentos, bem como nas estatísticas associadas a aquisição das medições.
 - 2.1) Condições de operação do sistema de medição ou do processo;
 - 2.2) Estágio sensor-transdutor; estágio de condicionamento de sinais; ou estágio de saída (erros do instrumento);
 - 2.3) Instalação do sensor;
 - 2.4) Efeitos do ambiente;
 - 2.5) Erros de variação espacial ou temporal.

2.2. Fontes de erro:

- Erros de redução de dados: introduzidos durante a interpolação, ajuste de curvas e truncamento dos dados.
 - 3.1) Erro de ajuste de curva;
 - 3.2) Erro de truncamento;
 - 3.3) Erro de modelagem.

2.3. Incertezas sistemáticas:

- Incerteza de ordem zero b_0 : definida como metade da resolução do instrumento;
- Incertezas
 instrumentais b_c:
 inclui efeitos de
 sensibilidade, histerese,
 linearidade, etc. São
 geralmente fornecidas
 pelo fabricante do
 instrumento.

Operation	
Input range	$0-1000 \text{ cm H}_2\text{O}$
Excitation	$\pm 15 \text{ V DC}$
Output range	0–5 V
Performance	
Linearity error	$\pm 0.5\%$ FSO
Hysteresis error	Less than $\pm 0.15\%$ FSO
Sensitivity error	$\pm 0.25\%$ of reading
Thermal sensitivity error	±0.02%/°C of reading
Thermal zero drift	±0.02%/°C FSO
Temperature range	0–50 °C

 Table 1.1 Manufacturer's Specifications: Typical Pressure Transducer

FSO, full-scale operating range.

2.4. Incerteza total:

 O método para cálculo da incerteza total envolve identificar e combinar os elementos de incerteza aleatória e sistemática, para então combiná-los na incerteza total.

- 2.4. Incerteza total:
 - · Incertezas aleatórias:

$$s_{\bar{x}} = \left[s_{\bar{x},1}^2 + s_{\bar{x},2}^2 + \dots + s_{\bar{x},k}^2 \right]^{1/2} \quad (3.17)$$

· Incertezas sistemáticas:

$$b_{\bar{x}} = \left[b_{\bar{x},1}^2 + b_{\bar{x},2}^2 + \dots + b_{\bar{x},k}^2\right]^{1/2} \quad (3.18)$$

Incerteza total:

$$u_{\bar{x}} = t_{v,P} \sqrt{s_{\bar{x}}^2 + b_{\bar{x}}^2} \ (P\%)$$

Número de GLs:

$$v = \frac{\left[\sum_{k=1}^{K} \left(s_{\bar{x},k}^{2} + b_{\bar{x},k}^{2}\right)\right]^{2}}{\sum_{k=1}^{K} \frac{s_{\bar{x},k}^{4}}{v_{k}} + \sum_{k=1}^{K} \frac{b_{\bar{x},k}^{4}}{v_{k}}}$$
(3.19)

$$v_k = N_k - 1$$

2.5. Propagação de incertezas:

• Seja $R = f(x_1, x_2, ..., x_K)$ o resultado da função de variáveis $x'_k = \bar{x}_k + u_{\bar{x},k}$. O valor real de R é estimado como

$$R' \cong \bar{R} \pm u_{\bar{R}} \ (P\%) \tag{3.20}$$

- \bar{R} e $u_{\bar{R}}$ dependem das médias e incertezas de x_k , respectivamente;
- Propagação de incertezas:

$$u_{\bar{R}} = \left[\sum_{k=1}^{K} (\theta_k u_{\bar{x},k})^2 \right]^{1/2} \qquad \theta_k = \frac{dR}{dx_k} \Big|_{x=\bar{x}}$$
 (3.21)

 Note que incertezas aleatórias e sistemáticas devem ser combinadas separadamente antes de propagar ao resultado.
 Verifique sempre se as unidades são compatíveis!

Questionário

• Questionário:

- 1) Por que é praticamente impossível medir o valor real de uma variável?
- 2) Qual é a diferença entre erro e incerteza?
- 3) Por que incertezas aleatórias são propriedades do experimento, enquanto que incertezas sistemáticas são propriedades do instrumento?
- 4) Toda PDF é uma distribuição normal? Quais são os outros modelos? (binomial, Poisson, etc.) Quando utilizá-los?

Referências

Referências:

- R.S. Figliola, D.E. Beasley, Theory and Design for Mechanical Measurements, Wiley, 2011.
- A.S. Morris, Measurement & Instrumentation Principles, Butterworth Heinemann, 2001.
- J.G. Webster, H. Eren (Ed.) Measurement, Instrumentation, and Sensors Handbook, CRC Press, 2014.

■ Ex. 3.1) As tabelas abaixo apresentam os valores de massa m e diâmetro D de uma esfera. A massa é aferida por uma balança (resolução de 0,02 g, incerteza de 1%), enquanto que o diâmetro é medido por um paquímetro (resolução de 0,1 mm). Determine uma estimativa para o valor real da densidade ρ para um nível de probabilidade de 95%.

Massa (g)					
7,46	7,47				
7,51	7,52				
7,61	7,47				
7,52	7,56				
7,59	7,51				

Diâmetro (mm)					
2,21	2,22				
2,22	2,19				
2,19	2,24				
2,23	2,19				
2,31	2,14				

Ex. 3.1) Massa / balança

- Média: $\overline{m} = \frac{1}{10} \sum_{i=1}^{10} m_i = 7.52 \text{ g};$
- Desvio padrão: $s_m = \left[\frac{1}{9}\sum_{1}^{10}(m_i \overline{m})^2\right]^{1/2} = 0.05 \text{ g};$
- Desvio padrão da média: $s_{\overline{m}} = \frac{s_m}{\sqrt{N}} = \frac{0.05}{\sqrt{10}} = 0.02$ g;
- Incerteza de ordem zero: $b_{m0} = \frac{0.01}{2} = 0.01 \text{ g};$
- Incerteza instrumental: $b_{m1} = 7.52 \cdot 1\% = 0.08 \text{ g}.$

Ex. 3.1) Diâmetro / paquímetro

- Média: $\overline{D} = \frac{1}{10} \sum_{i=1}^{10} D_i = 2.21 \text{ mm};$
- Desvio padrão: $s_D = \left[\frac{1}{9}\sum_{1}^{10}(D_i \overline{D})^2\right]^{1/2} = 0.04 \text{ mm};$
- Desvio padrão da média: $s_{\overline{m}} = \frac{s_m}{\sqrt{N}} = \frac{0.04}{\sqrt{10}} = 0.01$ mm;
- Incerteza de ordem zero: $b_{D0} = \frac{0.1}{2} = 0.05$ mm.

■ Ex. 3.1) Densidade / propagação de incertezas

- Densidade: $\rho = \frac{m}{V} = \frac{6}{\pi} \frac{m}{D^3}$;
- Média: $\bar{\rho} = \frac{6}{\pi} \frac{7.52}{2.21^3} = 1.32 \text{ g/mm}^3$
- Massa: $\theta_m = \frac{d}{dm} \rho \Big|_{\bar{m},\bar{D}} = \frac{6}{\pi D^3} \Big|_{\bar{m},\bar{D}} = 0.18 \text{ mm}^{-3};$
- Diâmetro: $\theta_D = \frac{d}{dD} \rho \Big|_{\overline{m}, \overline{D}} = -3 \frac{6m}{\pi} D^{-4} \Big|_{\overline{m}, \overline{D}} = 1.79 \text{ g/mm}^4.$

- Ex. 3.1) Densidade / propagação de incertezas
 - Propagação de incertezas aleatórias: $s_{\overline{\rho}} = [(\theta_m s_{\overline{m}})^2 + (\theta_D s_{\overline{D}})^2]^{1/2} = 0.03 \text{ g/mm}^3;$
 - Propagação de incertezas sistemáticas: $b_{\overline{\rho}} = [(\theta_m b_{m0})^2 + (\theta_m b_{m1})^2 + (\theta_D b_{D0})^2]^{1/2} = 0.09 \text{ g/mm}^3;$
 - Incerteza total combinada: $u_{\overline{\rho}} = \sqrt{s_{\overline{\rho}} + b_{\overline{\rho}}} = 0.10 \text{ g/mm}^3$.

- Ex. 3.1) Densidade / propagação de incertezas
 - Variável t-Student: para v = N 1 = 9 e P = 95%, $t_{v,P} = 2.262$;
 - Estimativa do valor real da densidade: $\rho' = \bar{\rho} \pm t_{v,P} u_{\bar{\rho}} = 1.32 \pm 0.23 \text{ g/mm}^2 (95\%).$

■ Ex. 3.2) Os valores abaixo apresentam a resposta de um sensor de força. Obtenha uma estimativa para o valor real da força *F* para um nível de probabilidade de 95%. Ignore as incertezas sistemáticas.

Força (N)									
51,9	50,0	51,3	50,5	51,9	48,8	49,4	52,1		
51,0	48,9	50,7	50,7	48,7	52,5	50,3	49,3		
50,3	50,5	52,0	49,4	51,1	51,7	50,3	50,7		
49,6	50,9	49,4	49,9	51,7	51,3	50,2	50,5		
51,0	52,4	49,7	49,3	49,9	52,6	50,9	49,7		

Ex. 3.2)

- Estatística dos dados:
 - Número de pontos: N = 40;
 - GLs: v = 39;
 - Média: $\bar{F} = 50.58 \text{ N}$;
 - Desvio padrão: $s_F = 1.07 \text{ N}$;
 - Desvio padrão da média: $s_{\overline{F}} = 0.17 \text{ N}$

```
mF = mean(F); % Media
sF = std(F,1); % Desvio padrao
hist(F) % Histograma
```


(Distribuição normal?)

- **Ex. 3.2)**
 - Estimativa do valor real:
 - Variável t: $t_{v,P} = t_{39,95\%} \approx 2.02$ (da tabela);
 - Valor real: $F' = \bar{F} \pm t_{v,P} s_{\bar{F}} = 50.58 \pm 0.34 \text{ N } (95\%).$

 Ex. 3.3) Um multímetro é utilizado para medir a saída de um sensor de pressão. A pressão nominal é de 3 psi. Determine as incertezas sistemáticas.

Voltmeter

Resolution: 10 μV

Accuracy: within 0.001% of reading

Transducer

Range: $\pm 5 \text{ psi } (\sim \pm 0.35 \text{ bar})$

Sensitivity: 1 V/psi

Input power: $10 \text{ VDC} \pm 1\%$

Output: $\pm 5 \text{ V}$

Linearity error: within 2.5 mV/psi over range within 2 mV/psi over range

Resolution: negligible

- **Ex. 3.3)**
 - Transdutor:
 - Função de transferência: V = Kp;
 - Tensão nominal: $\bar{V} = K\bar{p} = 1 \cdot 3 = 3 \text{ V}$;
 - Incertezas do multímetro:
 - Resolução: $b_0 = \frac{1}{2}10 \times 10^{-6} = 5 \times 10^{-6} \text{ V};$
 - Instrumento: $b_c = 3 \cdot 0.001\% = 3 \times 10^{-5} \text{ V}$;

Ex. 3.3)

- Incertezas do transdutor:
 - Linearidade: $b_L = 2.5 \times 10^{-3}$ V/psi;
 - Sensibilidade: $b_K = 2 \times 10^{-3}$ V/psi;
- Propagação de incertezas:

•
$$\theta = \frac{dV}{dK}\Big|_{p=\bar{p}} = 3$$
 psi;

• Incerteza sistemática combinada:

•
$$b = [b_0^2 + b_c^2 + (\theta b_L)^2 + (\theta b_S)^2]^{1/2} = 9.6 \text{ mV}$$

■ Ex. 3.4) Durante ensaios para medir as tensões em uma viga, foram identificados os seguintes valores de incerteza:

$$(b_{\overline{\sigma}})_1 = 0.5 \text{ N/cm}^2$$
 $(b_{\overline{\sigma}})_2 = 1.05 \text{ N/cm}^2$ $(b_{\overline{\sigma}})_3 = 0 \text{ N/cm}^2$ $(s_{\overline{\sigma}})_1 = 4.6 \text{ N/cm}^2$, $v_1 = 14$ $(s_{\overline{\sigma}})_2 = 10.3 \text{ N/cm}^2$, $v_2 = 37$ $(s_{\overline{\sigma}})_3 = 1.2 \text{ N/cm}^2$, $v_3 = 8$

Se a tensão média é de 223,4 N/cm², estimar o valor de tensão com probabilidade de 95%.

- **Ex. 3.4)**
 - Incertezas aleatórias:

•
$$s_{\overline{\sigma}} = (s_{\overline{\sigma},1}^2 + s_{\overline{\sigma},2}^2 + s_{\overline{\sigma},3}^2)^{1/2} = 11.3 \text{ N/cm}^2;$$

Incertezas sistemáticas:

•
$$b_{\overline{\sigma}} = \left(b_{\overline{\sigma},1}^2 + b_{\overline{\sigma},2}^2 + b_{\overline{\sigma},3}^2\right)^{1/2} = 1.2 \text{ N/cm}^2;$$

Incerteza combinada:

•
$$u_{\overline{\sigma}} = (s_{\overline{\sigma}}^2 + b_{\overline{\sigma}}^2)^{1/2} = 11.4 \text{ N/cm}^2$$
;

- **Ex. 3.4)**
 - Graus de liberdade:
 - De (3.16): $\nu \approx 49 \rightarrow N = 50$;
 - Estimativa do valor real (N = 50):
 - $\sigma' = \bar{\sigma} \pm t_{\nu,P} u_{\bar{\sigma}} = 223.4 \pm 22.7 \text{ N/cm}^2 (95\%);$
 - Obs: assumindo $N \to \infty$:
 - $\sigma' = \bar{\sigma} \pm t_{\nu,P} u_{\bar{\sigma}} = 223.4 \pm 22.3 \text{ N/cm}^2 (95\%).$

■ Ex. 3.5) Seja um transdutor com resposta de tensão E proporcional à pressão aplicada p. Resultados experimentais e especificações do fabricante são apresentados abaixo.

Supondo um experimento com $\bar{E}=0.40$ mV, $s_E=0.12$ mV, N=100, estime o valor real de pressão para um nível de probabilidade de 95%.

E[mV]:	0.004	0.399	0.771	1.624	2.147	4.121
<i>p</i> [psi]:	0.1	10.2	19.5	40.5	51.2	99.6

- Erro de calibração: ±0,5 psi (0 − 100 psi);
- Erro do multímetro: ±10 μV (resolução: 1 μV);
- Erros operacionais: ±0,5 psi.

- **Ex. 3.5**)
 - Estimativa do valor real:
 - Curva de calibração:
 - Sensibilidade:

$$K = \frac{p}{E} = 24.03 \pm 0.62 \text{ psi/mV};$$

• Incerteza aleatória:

$$-\theta = \frac{dp}{dE}\Big|_{K=\overline{K}} = 24.03 \text{ psi/mV};$$

$$- s_{\bar{E}} = 0.01 \text{ mV};$$

$$- s_{\bar{p}} = 0.24 \text{ psi.}$$

- **Ex. 3.5)**
 - Estimativa do valor real:
 - Incertezas sistemáticas:
 - Calibração: $b_1 = \pm 0.5$ psi;
 - Operacional: $b_2 = \pm 0.5$ psi;
 - Propagação de incertezas (multímetro):
 - Calibração: $b_3 = 24.03 \times 0.01 = 0.24$ psi;
 - Resolução: $b_4 = 24.03 \times 0.0005 = 0.01$ psi.
 - Incerteza sistemática combinada:
 - $-b = \sqrt{b_1^2 + \dots + b_4^2} = 0.75 \text{ psi}$

- **Ex. 3.5)**
 - Estimativa do valor real:
 - Variável t (v = 99, P = 95%):

$$-t_{99,95\%} = 1.96$$

Incerteza total combinada:

$$-u_p = \pm t_{99,95\%} \sqrt{b_p^2 + s_p^2} = \pm 1.53 \text{ psi};$$

- Estimativa do valor real:
 - $p = 9.61 \pm 1.53$ psi (95%).

■ Ex. 3.6) A temperatura média no interior de um forno é aferida com um sensor de temperatura (incerteza de ±0,6°C). A temperatura é medida em 8 posições diferentes com coleta de 10 pontos experimentais (vide tabela abaixo). A resolução do instrumento é de 0,1°C.

Obtenha uma estimativa para o valor real da temperatura com um nível de probabilidade de 95%.

Table 5.4 Example 5.15: Oven Temperature Data, N = 10

Location	\overline{T}_m	S_{T_m}	Location	\overline{T}_m	S_{T_m}
1	342.1	1.1	5	345.2	0.9
2	344.2	0.8	6	344.8	1.2
3	343.5	1.3	7	345.6	1.2
4	343.7	1.0	8	345.9	1.1

- **Ex. 3.6)**
 - Valor real da temperatura (95%):
 - Temperatura média (8 réplicas, 10 medidas):

$$-\langle \bar{T} \rangle = \frac{1}{8} \sum_{m=1}^{8} \bar{T}_m = 344.4$$
°C;

Incerteza aleatória (8 réplicas, 10 medidas):

$$-\langle s_T \rangle = \frac{1}{\sqrt{8}} \sqrt{s_1^2 + \dots + s_8^2} = 1.09^{\circ}\text{C};$$

Desvio padrão da média:

$$-\langle s_{\overline{T}}\rangle = \frac{\langle s_T\rangle}{\sqrt{80}} = 0.12$$
°C

- **Ex. 3.6)**
 - Valor real da temperatura (95%):
 - Incertezas sistemáticas:
 - Incerteza instrumental: $b_1 = 0.6$ °C;
 - Resolução: $b_0 = 0.05$ °C;
 - Incerteza sistemática combinada: $b_T = \sqrt{b_1^2 + b_0^2} = 0.6$ °C;
 - Incerteza total combinada:

$$-u_T = \sqrt{b_T^2 + s_{\bar{T}}^2} = 0.61^{\circ}$$
C

- **Ex. 3.6)**
 - Valor real da temperatura (95%):
 - Estimativa do valor real:
 - Número de graus de liberdade: usar (3.19) $\rightarrow v = 17$;
 - Variável t: $t_{17,95\%} = 2.11$;
 - Valor real; $T' = \overline{T} \pm t_{v,P} u_T = 344.4 \pm 1.29$ °C (95%);
 - Obs:
 - Assumindo v → ∞ $\rightarrow t_{\infty,95\%} = 1.96$;
 - Valor real: $T' = 344.4 \pm 1.19$ °C (95%).

- **Ex. 3.6)**
 - Valor real da temperatura (95%):
 - Função densidade de probabilidade:

