11) Veröffentlichungsnummer:

0 139 076

A2

12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 84104063.7

22 Anmeldetag: 11.04.84

(3) Int. Cl.4: C 12 N 15/00 C 12 P 21/02, C 12 N 5/00 //(C12N5/00, C12R1:91), (C12P21/02, C12R1:91)

30 Priorität: 11.04.83 DE 3312928

(4) Veröffentlichungstag der Anmeldung: (52.05.85) Patentblatt 85/18

Benannte Vertragsstaaten:
AT BE CH DE FR GB IT LI SE

(1) Anmelder: Gesellschaft für Biotechnologische Forschung mbH (GBF) Mascheroder Weg 1 D-3300 Braunschweig-Stöckheim(DE)

(72) Erfinder: Mayer, Hubert, Dr. Grosser Zimmerhof 10 D-3340 Wolfenbüttel(DE)

(74) Vertreter: Boeters, Hans Dietrich, Dr. et al, Boeters, Bauer & Partner Thomas-Wimmer-Ring 14 D-8000 München 22(DE)

⁴ Human-Parathyroidhormon (Human-PTH) produzisrende Hybridvektoren, Human-Parathyroidhormongen, eukaryotische Zellen mit dem Hybridvektor und deren Verwendung.

⁽⁵⁾ Die Erfindung betrifft Human-Parathormon produzierende Hybridvektoren sowie Human-Parathormongen.

BOETERS, BAUER & PARTNER

PATENTANWÄLTE EUROPEAN PATENT ATTORNEYS

THOMAS-WIMMER-RING 14 D-8000 MÜNCHEN 22 0139076

PA® BOETERS, BAUER & PARTNER
THOMAS-WIMMER-RING 14, D-8000 MÜNCHEN 22

DIPLOMENT DR. HANS D. BOETERS DIPLOMD. ROBERT BAUER MÜNCHEN

DIPL-INGL VINCENZ V. RAFFAY DIPL-CHEM. DR. THOMAS FLECK HAMBURG

TELEFON: (000) 22 78 87
TELEX: 5 24 878 mm
TELEGRAMME: PROVENTION, MÜNCHEN

11. April 1983

Anmelderin: Gesellschaft für Biotechnologische Forschung mbH (GBF), Mascheroder Weg 1, D-3300 Braunschweig-Stöckheim

Human-Parathormon produzierende Hybridvektoren und Human-Parathormongen

Human-Parathormon reguliert u.a. den Einbau und Ausbau von 5 Calcium in Knochen.

Aufgabe der Erfindung ist es, biologisches Material zur Verfügung zu stellen, mit dem Human-Parathormon technisch hergestellt werden kann.

10

Gemäß einer Ausführungsform wird diese Aufgabe durch einen in prokaryotischen Zellen klonierbaren Hybridvektor gelöst, der Human-Parathormon produziert und durch folgende Merkmale gekennzeichnet ist:

15

- (a) einen Promotor,
- (b) einen sich an den Promotor anschließenden DNA-Bereich von 0 bis 1000 und insbesondere 0 bis 200 Basenpaaren,
- 20 (c) eine sich an den DNA-Bereich gemäß (b) anschließende ribosomale Bindungsstelle,

- (d) einen sich an die ribosomale Bindungsstelle anschließenden DNA-Bereich von 4 bis 15 Basenpaaren,
- (e) ein sich an den DNA-Bereich gemäß (d) anschließendes Startcodon und
- (f) die folgende Human-Parathormon kodierende DNA-Sequenz:

. 0139076

(84AA)

Ser Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His TCT GTG AGT GAA ATA CAG CTT ATG CAT AAC CTG GGA AAA CAT AGA CAC TCA CTT TAT GTC GAA TAC GTA TTG GAC CCT TTT GTA

Leu Asn Ser Met Glu Arg Val Glu Trp Leu Arg Lys Leu CTG AAC TCG ATG GAG AGA GTA GAA TGG CTG CGT AAG AAG CTG GAC TTG AGC TAC CTC TCT CAT CTT ACC GAC GCA TTC TTC GAC

Gln Asp Val His Asn Phe Val Ala Leu Gly Ala Pro Leu Ala CAG GAT GTG CAC AAT TTT GTT GCC CTT GGA GCT CCT CTA GCT GTC CTA CAC GTG TTA AAA CAA CGG GAA CCT CGA GGA GAT CGA

Pro Arg Asp Ala Gly Ser Gln Arg Pro Arg Lys Lys Glu Asp CCC AGA GAT GCT GGT TCC CAG AGG CCC CGA AAA AAG GAA GAC GGG TCT CTA CGA CCA AGG GTC TCC GGG GCT TTT TTC CTT CTG

ASN VAL Leu Val Glu Ser His Glu Lys Ser Leu Gly Glu Ala AAT GTC TTG GTT GAG AGC CAT GAA AAA AGT CTT GGA GAG GCA TTA CAG AAC CAA CTC TCG GTA CTT TTT TCA GAA CCT CTC CGT

Asp Lys Ala Asp Val Asn Val Leu Thr Lys Ala Lys Ser Gln GAC AAA GCT GAT GTG AAT GTA TTA ACT AAA GCT AAA TCC CAG T CTG TTT CGA CTA CAC TTA CAT AAT TGA TTT CGA TTT AGG GTC A

- 4 -

Als prokaryotische Zellen kommen alle Zellen in Betracht, in denen sich Hybridvektoren mit den angegebenen Merkmalen in technischem Maßstab unter Sildung von Human-Parathormon klonieren lassen. Insbesondere kommt Escherichia coli in Betracht. Beispiele für geeignete Promotoren für E. coli finden sich beispielsweise bei Sengbusch, P. von, Molekular- und Zellbiologie, Springer-Verlag, Heidelberg etc. 1979. Bei E. coli kann die ribosomale Bindungsstelle beispielsweise die folgende DNA-Sequenz aufweisen:

10

AGGA oder GGAG
TCCT CCTC

Ein Beispiel für ein bei E. coli verwendbares Startcodon 15 hat die DNA-Sequenz

ATG

TAC

- 20 Gemäß einer weiteren Ausführungsform wird die der Erfindung zugrundeliegende Aufgabe durch einen in eukaryotischen Zellen klonierbaren und Human-Parathormon produzierenden Hybridvektor gelöst,
- (A) der dadurch herstellbar ist, daß man 25
 - (a) aus Schweine-Nebenschilddrüsen mRNA isoliert,
 - (b) die isolierte mRNA als ds-cDNA mit Hilfe eines Vektors in E. coli kloniert,
- (c) aus Pools erhaltener Klone Hybridvektor-DNA isoliert, 30
 - (d) isolierte Hybridvektor-DNA an einen für jeden Pool eigenen Träger fixiert, gemäß (a) isolierte mRNA anlagert und wieder entfernt, entfernte mRNA in Schweine-Prä-Pro-Parathormon oder Schweine-Parathormon zu übersetzen versucht, gebildetes Schweine-Prä-Pro-Parathormon oder Schweine-Parathormon

- 5 -

durch Antikörperfällung nachweist und damit gemäß (b) erhaltene Klone ermittelt, die Schweine-Parathormongen-Sequenzen aufweisen, Hybridvektor-DNA ermittelter und Schweine-Parathormongen-Sequenzen aufweisende Klone sequenziert und den oder die Klone identifiziert, die Hybridvektor-DNA mit Schweine-Parathormon kodierender DNA-Sequenz aufweisen,

- (e) Hybridvektor-DNA der gemäß (d) identifizierten Klone radioaktiv markiert,
- (f) mit erhaltener radioaktiv markierter Hybridvektor-DNA 10 eine Human-Genbank screent und
 - (g) das ermittelte Human-Parathormon in einen in eukaryotischen Zellen klonierbaren Hybridvektor überführt,
- (B) und der dadurch gekennzeichnet ist, daß er eine zwischen
 15 zwei RI-Schnittstellen liegende DNA-Sequenz, die die folgende
 DNA-Sequenz umfaßt, oder einen Unterbereich der zwischen
 den RI-Schnittstellen liegenden DNA-Sequenz aufweist:

-(-, -

0139076

TGTCTTTAGTTTACTCAGCATCAGCTACTAACATACCTGAACGAAGATCTTGTTCTAAGAACAGAAATCAAATGAGTCGTAGTCGATGATTGTATGGACTTGCTTCTAGAACAAGATTCT

CATTGTAT GTAACATA	Intron II ca. 400 bp						
Met Ile Pro	Ala Lys Asp Met Ala Lys Val Met						
GTG AAG ATG ATA CCT	GCA AAA GAC ATG GCI AAA GII AIG						
	CGT TTT CTG TAC CGA TTT CAA TAC						
The Val Met Leu Ala Ile Cvs	Phe Leu Thr Lys Ser Asp Gly Lys						
APP OTO ATC TTC CCA ATT TGT	TIT CIL ACA AAA ICU UMI CUU AAA						
TAA CAG TAC AAC CGT TAA ACA	AAA GAA TGT TTT AGC CTA CCC TTT						
Ser Val Lys TCT GTT AAG	•						
AGA CAA TTC							
tue tee See Val	Ser Glu Ila Gln Leu Het His Asn						
Intron I LAG AGA TOT GTG	AGT GAA ATA CAG CTT ATG CAT AAC						
ca. 80 bp TTC TCT AGA CAC	TCA CTT TAT GTC GAA TAC GTA TTG						
Leu Gly Lys His Leu Asn Ser	Het Glu Arg Val Glu Trp Leu Arg						
ATA ARA CAT CTG AAC TCG	E ATE GAG AGA GTA GAA TOO OTO OOT						
GAC CCT TIT GTA GAC TTG AGC	TAC CTC TCT CAT CTT ACC GAC GCA						
Lys Lys Leu Gln Asp Val His	Asn Phe Val Ala Leu Gly Ala Pro						
ALO ALO OTO CAG GAT GTG CAG	AAT TIT GIL GCC CIL GGA GC COL						
TTC TTC GAC GTC CTA CAC GTG	S TTA AAA CAA CGG GAA CCT CGA GGA						
i Dec Ang Ach Ala Gly	Ser Sin Ard Pro Arg Lys Lys Glu						
OTA COT CCC AGA GAT GCT GGT	FICE CAG AGG CCC CGA AAA AAG GAA						
GAT CGA GGG TCT CTA CGA CCA	AGG GTC TCC GGG GCT TTT TTC CTT						
A A Wal Law Wal Glu Ser	His Glu Lys Ser Leu Gly Glu Ala						
OAO AAT CTC TTG GTT GAG AGD	CAT GAA AAA AGI CII GGA GAG GCA						
CTG TTA CAG AAC CAA CTC TCG	G GTA CTT TTT TCA GAA CCT CTC CGT						
Alle Ace Vol Ace Val	L Leu Thr Lys Ala Lys Ser Gln.						
ASP LYS ATA ASP VAL ASH VAL	TTA ACT AAA GCT AAA TCC CAG TGA						
CTC TTT CGA CTA CAC TTA CAT	AAT TGA TTT CGA TTT AGG GTC ACT						
CIG TIT COF STA SAS TO	DIE TEC TEC TET AGA CAG TET AGG						
AAA TGA AAA CAG ATA TTG ICA	A GAG TTC TGC TCT AGA CAG TGT AGG T CTC AAG ACG AGA TCT GTC ACA TCC						
GCA ACA ATA CAT GCT GCT AAT	T TCA AAG CTC TAT TAA GAT TTC CAA						
CGT TGT TAT GTA CGA CGA TTA	A AGT TTC GAG ATA ATT CTA AAG GTT						
GTG CCA ATA TTT CTG ATA TAA	CAA ACT ACA TGT AAT CCA TCA CTA						
CAC GGT TAT AAA GAC TAT ATT	T GTT TGA TGT ACA TTA GGT AGT GAT						
CCC ATC ATA ACT GCA ATT TTA	A ATT GAT TAT TOT GAT TOO ACT TIT						
CCC TAC TAT TGA CGT TAA AAT	T TAA CTA ATA AGA CTA AGG TGA AAA						
. ATT CAT TTG AGT TAT TTT AAT	T TAT CTT TTC TAT TGT TTA TTC TTT A ATA GAA AAG ATA ACA AAT AAG AAA						
TTA AAG TAT GTT ATT GCA TAA	A TIT ATA AAA GAA TAA AAT TCG ACT						
AAT TTC ATA CAA TAA CGT ATT	T AAA TAT TTT CTT ATT TTA AGC TGA						
TTT AAA CCT CTC TTC TAC CTT	T AAA ATG TAA AAC AAA AAT GTA ATG						
AAA TTT GGA GAG AAG ATG GAA	A TIT TAC ATT TTG TTT TTA CAT TAC						
ATC ATA AGT CTA AAT AAA TGA							
TAG TAT TCA GAT TTA TTT ACT	T TCA TAA AGA GTG AGT TT						
IND INI IOM ON THE TTE	•						

-

- 7 -

Reispiele für eukaryotische Zellen, in denen der Hybridvektor klonierbar ist und Human-Parathormon produzieren kann, sind Humanzellen oder Affenzellen, beispielsweise Affennieren-zellen.

Schließlich wird die der Erfindung zugrundeliegende Aufgabe durch Human-Parathormongen gelöst,

- (a) das gemäß den vorstehenden Ausführungen und Anspruch 3
- (A) herstellbar ist und
- (b) durch die zwischen zwei RI-Schnittstellen liegende DNA-Sequenz gemäß den vorstehenden Ausführungen und gemäß Anspruch 3 (B) oder einen Unterbereich davon gekennzeichnet ist.
- Zur Produktion von Human-Parathormon ist es auch möglich, das erfindungsgemäße Human-Parathormongen direkt in eukaryotische Zellen zu transformieren.
- Nachstehend wird die Herstellbarkeit der erfindungsgemäßen Hybridvektoren und des erfindungsgemäßen Human-Parathormongens an einem Beispiel und drei Schemata näher erläutert.

Aus frisch geschlachteten Schweinen wurden die Nebenschild25 drüsen operiert. Aus diesem Drüsengewebe wurde mRNA isoliert.
Die isolierte mRNA wurde als doppelstrangige komplementäre
DNA (ds-cDNA) mit Hilfe eines Plasmids in E. coli kloniert.
Aus den erhaltenen Hybridklonen wurde die Hybridplasmid-DNA
isoliert. Aus den Nebenschilddrüsen isolierte mRNA wurde in
30 einem In-Vitro-Translationssystem in das Schweine-Prä-ProParathormon oder Schweine-Parathormon übersetzt. Das Schweinene-Prä-Pro-Parathormon oder Schweine-Parathormon wurde durch
Antikörperfällung nachgewiesen. Mit Hilfe einer "HybridArrested-Translation" konnten die Klone aufgefunden werden,
35 die Schweine-Parathormonsequenzen enthielten. Aus den ermit-

telten Hybridklonen wurde Hybridplasmid-DNA, die das Schweine-Parathormongen (Schema 1) umfaßte, radioaktiv markiert (nick-translatiert) und zum Screenen von Humangenbänken verwendet. Auf diese Weise ermitteltes Human-Parathormongen wurde durch Subklonieren in einem Plasmid angereichert. Ein auf diese Weise angereichertes Human-Parathormongen wurde sequenziert. Die Sequenz des für die Expression von Human-Parathormon relevanten Abschnittes ist dem Schema 2 zu entnehmen. Die ermittelte Sequenz stimmte mit der bekannten cDNA
Sequenz und mit der bekannten Aminosäuresequenz des Human-Parathormons überein.

Im folgenden wird Schema 3 ærläutert. (1) In das weitere Verfahren wurde die zwischen zwei RI-Schnittstellen liegende 15 DNA-Sequenz eingesetzt. die die DNA-Sequenz des Schemas 2 umfaßt. (2) Es wurde nun mit Hilfe der Restriktionsendonuklease Sau3A das Prä-Pro-PTH-Gen (PTH = Parathormon) vom Gen des reifen 1-84-PTH getrennt. (3) Durch Auffüllen von dATP und dGTP mit dem "Large fragment" der E.-coli-DNA-Polymerase-I und (4) anschließenden Abbau mit S1-Nuklease wurde der verbleibende Einzelstrangrest (GA) der klebrigen Enden (sticky ends) beseitigt, die vom Sau3A-Schnitt herrührten (GATC); dadurch wurde das Codon "TCT" für die Aminosäure 1 (Serin) des Human-PTH rekonstituiert. (5) An dieses in der 25 angegebenen Weise behandelte PTH-DNA-Fragment wurde ein DNA-Adaptor ligiert. Dadurch wurde dem Serin ein Methionin-Codon "ATG" direkt vorgeschaltet. Dieses Codon ist eines der wichtigen Signale für den Start der Synthese von PTH im Mikroorganismus. (6-7) Das in der angegebenen Weise konstru-30 ierte PTH-Fragment wurde in die ClaI-Spaltstelle von pBR322 subkloniert. Ausgewählt wurde ein Klon. dessen PTH-Gen vor der HindIII-Spaltstelle des pBR322 im Uhrzeigersimmorientiert war. Dieser PTH-Klon wurde mit HindIII gespalten. (8) Die "sticky ends" dieser Spaltstelle ließen Auffüllreaktionen mit

- 9 -

vier verschiedenen Nukleotiden zu. In Kombination mit dem Abbau durch S1-Nuklease gelangte man zu Fragmenten mit aufgefüllten Enden (flush ends), deren Entfernung vom ATG-Codon 4 bis 10 Basenpaare betrug. (9) Vor diese Variation an Fragmenten wurden zwei synthetische DNA-Adaptoren ligiert, und zwar /TCCCTAGGGA/+/TCCCTAGGGA/. Diese Linker enthielten die Sequenz der ribosomalen Bindungsstelle, ein weiteres wichtiges Signal für die Expression im Mikroorganismus. Dadurch entstand weiter eine BamHI-Spaltstelle. Diese war für die 0 Klonierung hinter verschiedenen Promotoren (wie trp, tac, T5) beschriebener Vektoren geeignet.

Die E. coli-Zellen wurden im LB-Vollmedium in Gegenwart von Ampicillin (50 /ug/ml) bis zur mittleren logarithmi5 schen Phase angezogen und abzentrifugiert. Das Pellet wurde in einem Suspensionspuffer mit Guanidiniumhydrochlorid (3 M) suspendiert (ungefähr 10 dellen/ml); danach wurde mit Ultraschall (Sonifier) bis zu einer optischen Dichte (OD 650) aufgeschlossen, die etwa 1/3 der optischen Dichte zu Beginn ohn entsprach. Dieser Zellaufschluß wurde abzentrifugiert. Der Überstand enthielt PTH. Das Protein wurde mit 5-prozentigem TCA gefällt und in 0,02 n Salzsäure gelöst. TCA-Reste wurden mit Äther ausgewaschen. Das aus Rohextrakt und nach Extraktion gewonne PTH war immunologisch gegen Antikörper 1-34, 5 28-48 und 48-68 wirksam (RIA) und war im Adenylcyclase-Test biologisch aktiv.

Das Human-Parathormongen wurde mit einem Vektor verknüpft (pBR322/SV40-Derivat) und mit Hilfe einer Calciumphosphat-O Fällung in Affennierenzellen transformiert. Aus 10⁹ Zellen wurde PTH durch Extraktion gewonnen und im RIA getestet.

Außerdem wurde das Human-Parathormongen (lambda-Humanhybrid-DNA) mit dem Thymidinkinasegen von Herpes simplex durch 5 Co-Fransformation in T3-Zellen transformiert; aus den Tk⁺-Klonen wurde durch DNA-Hybridisieren die Integration des Human-PTH-Gens identifiziert.

Schema 1

Asp Thr Val Lys Val Het Val Val Met Leu Ala Ile Cys Phe GAC ACA GTT AAA GTA ATG GTT GTC ATG CTT GCA ATT TGT TTT CTG TGT CAA TTT CAT TAC CAA CAG TAC GAA CGT TAA ACA AAA Leu Ala Arg Ser Asp Gly Lys Pro Val Lys Lys Arg Ser Val CTT GCA AGA TCA GAT GGG AAG CCT GTT AAG AAG AGA TCT GTG GAA CGT TCT AGT CTA CCC TTC GGA CAA TTC TTC TCT AGA CAC Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His Leu Ser AGT GAA ATA CAG CTT ATG CAT AAC CTG GGC AAA CAC CTG AGC TCA CTT TAT GTC GAA TAC GTA TTG GAC CCG TTT GTG GAC TCG Ser Leu Glu Arg Val Glu Trp Leu Arg Lys Leu Gln Asp TCT CTG GAG AGA GTG GAA TGG CTG CGA AAG AAG CTG CAG GAT AGA GAC CTC TCT CAC CTT ACC GAC GCT TTC TTC GAC GTC CTA Val His Asn Phe Val Val Leu Gly Ala Ser Ile Val His Arg GTG CAC AAC TTT GTT GTT CTC GGA GCT TCT ATA GTT CAC AGA CAC GTG TTG AAA CAA CAA GAG CCT CGA AGA TAT CAA GTG TCT Asp Gly Gly Ser Gln Arg Pro Pro Lys Lys Glu Asp Asn Val GAT GGT GGT TCC CAG AGA CCC CCA AAA AAG GAA GAC AAT GTC CTA CCA CCA AGG GTC TCT GGG GGT TTT TTC CTT CTG TTA CAG Leu Val Glu Ser His Gln Lys Ser Leu Gly Glu Ala Asp Lys CTA GTT GAG AGC CAT CAA AAA AGT CTC GGA GAA GCA GAT AAA GAT CAP CTC TCG GTA GTT TTT TCA GAG CCT CTT CGT CTA TTT Ala Ala Val Gly GCT GCT GTG GGG

completed

CGA CGA CAC CCC

-1111-

0139076

TGTCTTTAGTTTACTCAGCATCAGCTACTAACATACCTGAACGAAGATCTTGTTCTAAGAACAGAATCAAATGAGTCGTAGTCGATGATTGTATGGACTTGCTTCTAGAACAAGATTCT

CATTGTAT Intron II ca. 400 bp GTAACATA L Met Ile Pro Ala Lys Asp Met Ala Lys Val Met GTG AAG ATG ATA CCT GCA AAA GAC ATG GCT AAA GTT ATG -CAC TTC TAC TAT GGA CGT TTT CTG TAC CGA TTT CAA TAC Ile Val Met Leu Ala Ile Cys Phe Leu Thr Lys Ser Asp Gly Lys ATT GTC ATG TTG GCA ATT TGT TTT CTT ACA AAA TCG GAT GGG AAA TAA CAG TAC AAC CGT TAA ACA AAA GAA TGT TTT AGC CTA CCC TTT Ser Val Lys TCT GTT AAG AGA CAA TTC |Lys Arg Ser Val Ser Glu Ila Gln Leu Met His Asn AAG AGA TOT GTG AGT GAA ATA CAG CTT ATG CAT AAC Intron I ca. 30 bp TTC TCT AGA CAC TCA CTT TAT GTC GAA TAC GTA TTG Leu Gly Lys His Leu Asn Ser Net Glu Arg Val Glu Trp Leu Arg CTG GGA AAA CAT CTG AAC TCG ATG GAG AGA GTA GAA TGG CTG CGT GAC CCT TTT GTA GAC TTG AGC TAC CTC TCT CAT CTT ACC GAC GCA Lys Lys Leu Gln Asp Val His Asn Phe Val Ala Leu Gly Ala Pro AAG AAG CTG CAG GAT GTG CAC AAT TTT GTT GCC CTT GGA GCT CCT TTC TTC GAC GTC CTA CAC GTG TTA AAA CAA CGG GAA CCT CGA GGA Leu Ala Pro Arg Asp Ala Gly Ser Gln Arg Pro Arg Lys Lys Glu CTA GCT CCC AGA GAT GCT GGT TCC CAG AGG CCC CGA AAA AAG GAA GAT CGA GGG TCT CTA CGA CCA AGG GTC TCC GGG GCT TTT TTC CTT Asp Asn Val Leu Val Glu Ser His Glu Lys Ser Leu Gly Glu Ala GAC AAT GTC TTG GTT GAG AGC CAT GAA AAA AGT CTT GGA GAG GCA CTG TTA CAG AAC CAA CTC TCG GTA CTT TTT TCA GAA CCT CTC CGT Asp Lys Ala Asp Val Asn Val Leu Thr Lys Ala Lys Ser Gln. GAC AAA GCT GAT GTG AAT GTA TTA ACT AAA GCT AAA TCC CAG TGA CTG TTT CGA CTA CAC TTA CAT AAT TGA TTT CGA TTT AGG GTC ACT AAA TGA AAA CAG ATA TTG TCA GAG TTC TGC TCT AGA CAG TGT AGG TTT ACT TTT GTC TAT AAC AGT CTC AAG ACG AGA TCT GTC ACA TCC GCA ACA ATA CAT GCT GCT AAT TCA AAG CTC TAT TAA GAT TTC CAA CGT TOT TAT GTA CGA CGA TTA AGT TTC GAG ATA ATT CTA AAG GTT GTG CCA ATA TTT CTG ATA TAA CAA ACT ACA TGT AAT CCA TCA CTA CAC GGT TAT AAA GAC TAT ATT GTT TGA TGT ACA TTA GGT AGT GAT GCC ATG ATA ACT GCA ATT TTA ATT GAT TAT TCT GAT TCC ACT TTT CGG TAC TAT TGA CGT TAA AAT TAA CTA ATA AGA CTA AGG TGA AAA ATT. CAT TTG AGT TAT TTT AAT TAT CTT TTC TAT TGT TTA TTC TTT TAA GTA AAC TCA ATA AAA TTA ATA GAA AAG ATA ACA AAT AAG AAA TTA AAG TAT GTT ATT GCA TAA TTT ATA AAA GAA TAA AAT TCG ACT AAT TTC ATA CAA TAA CGT ATT AAA TAT TTT CTT ATT TTA AGC TGA TTT AAA CCT CTC TTC TAG CTT AAA ATG TAA AAC AAA AAT GTA ATG AAA TTT GGA GAG AAG ATG GAA TTT TAC ATT TTG TTT TTA CAT TAC ATC ATA AGT CTA AAT AAA TGA AGT ATT TCT CAC TCA ÂA TAG TAT TCA GAT TTA TTT ACT TCA TAA AGA GTG AGT TT

- 12 -

Schema 3:

Klonierungsschema für eine Human-PTH-Genexpression in E. coli

1) Lambda-Humanhybrid

DNA-Sequenz innerhalb dieses mit RI herausgeschnittenen Bereichs: (folgendes Blatt) -15 -

0139076

TGTCTTTAGTTTACTCAGCATCAGCTACTAACATACCTGAACGAAGATCTTGTTCTAAGA ACAGAAATCAAATGAGTCGTAGTCGATGATTGTATGGACTTGCTTCTAGAACAAGATTCT

CATTGTAT GTAACATA		Intr	on II ca.	400 bp	
,	Het Ile	Pro Ala Ly	s Asp Met	: Ala Lys	Val Met
	AAG ATG ATA				
	Leu Ala Ile TTG GCA ATT				
	AAC CGT TAA				
Ser Val Lys TCT GTT AAG				•	. :
AGA CAA TTC	•	Well Con Cl.	. 71- 61-	1 011 1100	uia taa
Intron I ca. 80 bp	Lys Arg Ser	GTG AGT GA	A ATA CAG	CTT ATG	CAT AAC
	TTC TCT AGA His Leu Asn				
CTG GGA AAA	CAT CTG AAC	TCG ATG GA	G AGĂ GTA	GAA TGG	CTG CGT
GAC CCT TTT	GTA GAC TTG	AGC TAC CT	C TCT CAT	CTT ACC	GAC GCA
	Gln Asp Val CAG GAT GTG				
	GTC CTA CAC				
	Arg Asp Ala				
CTA GCT CCC	AGA GAT GCT	GGT TCC CA	AGG CCC	CGA AAA	AAG GAA
GAT CGA GGG	TCT CTA CGA	CCA AGG GTO	C TCC GGG	GCT TTT	TTC.CTT
	Leu Val Glu				
CTG TTA CAG	TTG GTT GAG AAC CAA CTC				
	Asp Val Asn				_
GAC AAA GCT	GAT GTG AAT	GTA TTA ACT	T AAA GCT	AAA TCC	CAG TGA
CTG TTT CGA	CTA CAC TTA	CAT AAT TGA	TTT CGA	TTT AGG	GTC ACT
AAA TGA AAA TTT ACT TTT	CAG ATA TTG GTC TAT AAC				
GCA ACA ATA	CAT GCT GCT	AAT TCA AAG	CTC TAT	TAA GAT	TTC CAA
CGT TGT TAT	GTA CGA CGA	TTA AGT TTO	GAG ATA	ATT CTA	AAG GTT
GTG CCA ATA					
GCC ATG ATA	ACT GCA ATT	TTA ATT GAT	TAT TCT	GAT TCC	ACT TTT
CGG TAC TAT	TGA CGT TAA	AAT TAA CTA	ATA AGA	CTA AGG	TGA AAA
ATT CAT TTG TAA GTA AAC					
TTA AAG TAT					-
TTT AAA CCT		•			•
AAA TTT GGA	-				
ATC ATA AGT TAG TAT TCA					

·0139076

- 14 -

2) erneuter Schnitt (Sau 3A)

G AGGAG A AG A
CTCCTCTTCTAG

GATCTGTG.....

3) Auffüllen mit dG und dA

Ser Val
GATCTGTG
AGACAC

4) Abbau mit S1-Nuklease

TCTGTG

5) Ligation mit DNA-Adaptor

Met Ser Val

CATCGATGICTGTG

GTAGCTACAGACAC

6) erneuter Schnitt (ClaI)

Mel Ser Val CGATGTCTGTG.....

- 15 -

7) Subklonieren in die ClaI-Spaltstelle von pBR322 und erneuter Schnitt (HindIII)

> Met Ser Val AGCTTCATCGATGTCTGTG AGTAGCT ACAGACAC

8) verschiedene Auffüllreaktionen

46-855400322<u>=A</u>STRA AB

Met TCATCGATG AGTAGCTAC ······

Met TICATCGATG AAGTAGCTAC

Met CTTCATCGATG GAAGTAGCTAC

Met GCTTCATCGATG CGAAGTAGCTAC ·····

Mel AGCTTCATCGATG TCGA AGT AGC TAC

- 16 -

9) Ligation mit DNA-Adaptoren (2 identischen Linkern)

TCCCT AGGGAT CCCT AGGG AGCTT CAT CG AT GT CT GT G.....
AGGGAT CCCT AGGGAT CCCT CGAAGT AGCT AC AG AC AC.....

10) erneuter Schnitt (BamI)

GATCCCTAGGGAGCTTCATCGATGTCTGTG.....

GGATCCCTCGAAGTAGCTACAGACAC.....

11) Insertion in ein Plasmid nach einem starken Promotor

BOETERS, BAUER & PARTNER PATENTANWÄLTE ELIROPEAN PATENT ATTORNEYS

THOMAS-WIMMER-RING 14 D-8000 MÜNCHEN 22

0139076

THOMAS-WIMMER-FING 14, D-8000 MUNCHEN 22

DIPLICHEM OR HANS D. BOETERS DIPLING ROBERT BAUER MÜNCHEN

DIFL-ING. VINCENZ V. RAFFAY DIFLICHEM DR THOMAS FLECK HAMBLEG

TELEFON: (080) 22 00 92 TELEX: 524 578 mm TELEGRAMME: PROVENTION, MÜNCHEN

Änderungen

- 1. Seite 1 Zeilen 1 bis 2 sollen lauten: "Human-Parathyroidhormon (Human-PTH) produzierende Hybridvektoren, Human-Parathyroidhormongen, eukaryotische Zellen mit dem Hybridvektor und deren Verwendung.
- 2. Seite 1 Zeile 4 und fortlaufend in den Anmeldungsunterlagen: "Human-Parathyroidhormon" statt "Human-Parathormon".
- 3. Seite 1 Zeile 5 soll lauten: "Calcium in Knochen. Die Wirkungen und Funktionen von Human-Parathyroidhormon und seinen Agonisten und Antagonisten werden von Dambacher, Praktische Osteologie, Thieme Verlag Stuttgart / New York 1982; Reeve et al, British Medical J. 1340 (1980) 1 -11; und Potts et al, Advances in Protein Chemistry 35 (1982) 323 - 395 beschrieben.
- 4. Seite 4 Zeile 4 lautet: "klonieren lassen. Einzelheiten

001-049

zum Klonieren und zur Expression von Genen unter der Steuerung von E.-coli-Promotoren beispielsweise in Streptomyces lassen sich bei Chater, Nature 299 (1982) 10 ff finden. Insbesondere kommt Escherichia coli in Be-*.

5. Seite 7 Zeilen 3 bis 4 lauten: "Tierzellen, insbesondere Wirbeltierzellen, beispielsweise Froschzellen (vgl. Wickens et al, Nature 285 (1980) 628 bis 634), Säugetierzellen, Affenzellen, z.B. Affennierenzellen und Humanzellen."

- 6. Seite 7 Zeile 19 ist der folgende neue Absatz einzusetzen: "Schließlich betrifft die Erfindung
- eukaryotische Zellen, wie Tierzellen, insbesondere Wirbeltierzellen, wie Froschzellen, Säugetierzellen, Affenzellen und Humanzellen, die Human-Parathyroidhormon mit dem Hybridvektor gemäß den Ansprüchen 5, 6, 7 oder 8 produzieren, und
- die Verwendung der vorstehend angeführten Zellen bei Organismen mit mangelhaften Wirkungen und Funktionen des Parathyroidhormons, beispielsweise bei Säugetieren, insbesondere Menschen.

Bezüglich der Wirkungen und Funktionen eines spezifischen Parathyroidhormons in Organismen verschiedener Spezie wird auf Goltzman et al, Pept. Chem. Struct. Biol., Proc. Am. Pept. Symp. 4th, 1975, p. 571 - 577, 574, verwiesen.

Die im Detail angegebene DNA-Sequenz (Anspruch 1; Anspruch 5 = Schema 2; Schema 1) kann durch DNA-Sequenzen ersetzt werden, deren Einzelstränge sich mit den Einzelsträngen der im Detail angegebenen DNA-Sequenz hybridisieren lassen. Ferner kann jedes Basentriplett durch ein Synonym ersetzt werden."

7. Seite 5 Zeile 12: "Human-Parathyroidhormongen" anstelle von "Human-Parathormon".

46-8 4426118=PRV InterPa

- 8. Seiten 6, 11, 13 und 20: "Intron II ca. 4 000 bp" anstelle von "Intron II ca. 400 bp"; und "Intron I 103 bp" anstelle "Intron I ca. 80 bp".
 - 9. Seite 8 drittletzte Zeile: "entgegengesetzten Uhrzeigersinn" statt "Uhrzeigersinn".
 - 10. Seite 9 Zeile 10: "tac, T5" statt "tac T5".
 - 11. Seite 5 Zeilen 12 bis 13 und Seite 19 Zeilen 28 bis 29: "(g) das ermittelte Human-Parathyroidhormongen (die DNA-Sequenz zwischen den EcoRI-Schnittstellen gemäß (B)) isoliert und in einen Expressionshybridvektor überführt, der in eukaryotischen Zellen kloniert werden kann,"
 - 12. Seite 5 Zeile 15, Seite 7 Zeile 11, Seite 8 Zeile 14 und Seite 19 Zeile 30: "EcoRI-Schnittstellen" statt "RI-Schnittstellen".
 - 13. Seite 5 letzte Zeile und Seite 19 Zeilen 32 bis 33:
 "EcoRI-Schnittstellen liegenden DNA-Sequenz aufweist, insbesondere einen Unterbereich, der Human-Parathyroidhormon
 oder dessen Agonisten oder Antagonisten exprimiert:" statt
 "RI-Schnittstellen liegenden DNA-Sequenz /aufweist/:".
 - 14. Seite 1 Zeilen 17 bis 21 und Anspruch 1 Zeilen 10 bis 13 sollen lauten: "(b) gegebenenfalls einen sich an den Promotor anschließenden DNA-Bereich von 1 bis 1000 oder 1 bis 200 Basenpaaren, (c) eine ribosomale Bindungsstelle, die sich an den DNA-Bereich gemäß (b) oder, sofern (b) fehlt, an den Promotor gemäß (a) anschließt,".

- 15. Seite 4 Zeile 32: "hybridisiert" statt "anlagert".
- 16. Entfällt.
- 17. Seite 7 Zeilen 28 bis 29 lauten: "Aus den erhaltenen Hybridklonen wurden die Hybrid-Plasmid-DNAs isoliert und in ihrer Einzelstrangform an einen Träger fixiert. Aus den Nebenschilddrüsen isolierte mRNA wurde mit fixierter Einzelstrang-DNA hybridisiert und entfernt und in".
- 18. Seite 7 Zeile 34: "und DNA-Sequenzanalyse konnten" statt "konnten".
- 19. Seite 8 Zeile 2: "ne-cDNA-Parathyroidhormongen" statt "ne-Parathormongen".
- 20. Seite 8 Zeile 17 soll lauten: "klease Sau3A der Prä-Pro-Teil des PTH-Gens vom Gen"
- 21. Seite 8 Zeile 16: "(2)" zu streichen.
- 22. Seite 8 Zeile 18: "getrennt (2)". statt "getrennt. (3)".
- 23. Seite 8 Zeile 20: "(3) und" statt "und (4)".
- 24. Seite 8 Zeilen 24, 29 und 33: ". (5)", ". (6 bis 7)" und ". (8)" werden "(4).", "(5)." bzw. "(7).".
- 25. Seite 8 Zeile 32: "pBR322 (6 bis 7) gegen den Uhrzeigersinn" statt "pBR322 im Uhrzeigersinn".
- 26. Seite 9 Zeile 4: "(8)." statt ". (9)".

- 27. Seite 9 Zeile 6: "/TCCCTAGGGA/ (9)." statt "/TCCCTAGGGA/
- 28. Seite 9 Zeile 9: "BamHI-Spaltstelle (10)" statt "BamHI-Spaltstelle".
- 29. Seite 9 Zeile 11: "geeignet (11)" statt "geeignet".
- 30. Seite 8 Zeile 30: "PTH-Genfragment" statt "PTH-Fragment".
- 31. Seite 9 Zeile 13: "Die transformierten E." statt "Die E.".
- 32. Seite 9 Zeilen 24 bis 25: "Antikörper (spezifisch zu PTH-Fragmenten AS1-34, AS28-48 und AS48-68) wirksam" statt "Antikörper 1-34, 28-48 und 48-68 wirksam".
- 33. Seite 9 Zeile 31 soll lauten: "wurde PTH durch Extraktion gewonnen; es war im RIA positiv gegen Antikörper (spezifisch zu den PTH-Fragmenten AS28-48 und AS44-68)."
- 34. Seite 16: "RI" bedeutet "EcoRI", "BamI" bedeutet "BamHI" und "RS" bedeutet "ribosomale Bindungsstelle".
- 35. Die folgenden Ansprüche 3 bis 4 sind hinzuzufügen:
- "3. Hybridvektor nach Anspruch 1 oder 2, dadurch ge-kennzeich net, daß die spezifische DNA-Sequenzgemäß Anspruch 1 (f) durch eine DNA-Sequenzersetzt ist, deren Einzelstränge mit den Einzelsträngen der spezifischen DNA-Sequenz hybridisiert werden können, wobei die ersetzende DNA-Sequenz gewünschte Produkte exprimieren kann.

· 0139076

- LL-

- 4. Hybridvektor nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß ein oder mehrere Basentripletts durch Synonyme ersetzt sind."
- 35. Der bisherige Anspruch 3 wird Anspruch 5.
- 36. Auf Seite 21 sollen die bisherigen Ansprüche 4 bis 8 durch die folgenden Ansprüche ersetzt werden:
- "6. Hybridvektor nach Anspruch 5, dadurch gekennzeichnet, daß er in Tierzellen, insbesondere Wirbeltierzellen, Säugetierzellen, Affenzellen, beispielsweise
 Affennierenzellen und Humanzellen klonierbar ist.
- 7. Hybridvektor nach Anspruch 5 oder 6, dadurch ge-kennzeich chnet, daß die spezifische DNA-Sequenz gemäß Anspruch 5 (B) durch eine DNA-Sequenz ersetzt ist, deren Einzelstränge sich mit den Einzelsträngen der spezifischen DNA-Sequenz hybridisieren lassen, wobei die ersetzende DNA-Sequenz gewünschte Produkte exprimieren kann.
- 8. Hybridvektor nach Anspruch 5, 6 oder 7, dadurch $\,g\,e\,-\,$ k e n n z e i c h n e t , daß ein oder mehrere Basentrip-letts durch Synonyme ersetzt sind.
- 9. Human-Parathyroidhormongen:
- (a) herstellbar gemäß Anspruch 5 (A) und
- (b) gekennzeichnet durch die zwischen zwei EcoRI-Schnittstellen liegende DNA-Sequenz gemäß Anspruch 5 (B) oder einen Unterbereich davon.

- 10. Eukaryotische Zellen, insbesondere Tierzellen, beispielsweise Wirbeltierzellen, Säugetierzellen, Affenzellen und Humanzellen, die Human-Parathyroidhormon mit dem Hybridvektor gemäß Anspruch 5, 6, 7 oder 8 produzieren.
- 11. Verwendung der Zellen gemäß Anspruch 10 für Organismen (beispielsweise Säugetiere, insbesondere Menschen) mit Parathyroid-Mangelwirkungen oder Parathyroid-Mangelfunktionen."

Sur

g (**14** 1 . •

- 1 -

BOETERS, BAUER & PARTNER

PATENTANWÄLTE EUROPEAN PATENT ATTORNEYS

THOMAS-WIMMER-RING 14 D-8000 MÜNCHEN 22 0139076

PAS BOSTERS, BAUER & PARTNER
THOMAS-WIMMER-RING 14, D-8000 MÜNCHEN 22

DIPLICHEM DR HANS D. SOETERS DIPLING. ROBERT BAUER MÜNCHEN

DELING VINCENZ V. RAFFAY DELICHEM DR THOMAS FLECK HAMBLEG

TELEFON: (089) 22 78 87
TELEO: 8 24 878 rm
TELEGRAMME: PROVENTION, MÜNCHEN

Patentansprüche

- 5 1. In prokaryotischen Zellen klonierbarer und Human-Parathormon produzierender Hybridvektor, gekeπnzeich n et durch folgende Merkmale:
 - (a) einen Promotor,
- 10 (b) einen sich an den Promotor anschließenden DNA-Bereich von 0 bis 1000 oder 0 bis 200 Basenpaaren,
 - (c) eine sich an den DNA-Bereich gemäß (b) anschließende ribosomale Bindungsstelle,
- (d) einen sich an die ribosomale Bindungsstelle anschließen-15 den DNA-Bereich von 4 bis 15 Basenpaaren,
 - (e) ein sich an den DNA-Bereich gemäß (d) anschließendes Startkodon und
 - (f) die folgende Human-Parathormon kodierende DNA-Sequenz:

20

··· 0139076

- J. -

Ser Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His TCT GTG AGT GAA ATA CAG CTT ATG CAT AAC CTG GGA AAA CAT AGA CAC TCA CTT TAT GTC GAA TAC GTA TTG GAC CCT TTT GTA

Leu Asn Ser Met Glu Arg Val Glu Trp Leu Arg Lys Leu CTG AAC TCG ATG GAG AGA GTA GAA TGG CTG CGT AAG AAG CTG GAC TTG AGC TAC CTC TCT CAT CTT ACC GAC GCA TTC TTC GAC

Gln Asp Val His Asn Phe Val Ala Leu Gly Ala Pro Leu Ala CAG GAT GTG CAC AAT TTT GTT GCC CTT GGA GCT CCT CTA GCT GTC CTA CAC GTG TTA AAA CAA CGG GAA CCT CGA GGA GAT. CGA

Pro Arg Asp Ala Gly Ser Gln Arg Pro Arg Lys Lys Glu Asp CCC AGA GAT GCT GGT TCC CAG AGG CCC CGA AAA AAG GAA GAC GGG TCT CTA CGA CCA AGG GTC TCC GGG GCT TTT TTC CTT CTG

Asn Val Leu Val Glu Ser His Glu Lys Ser Leu Gly Glu Ala AAT GTC TTG GTT GAG AGC CAT GAA AAA AGT CTT GGA GAG GCA TTA CAG AAC CAA CTC TCG GTA CTT TTT TCA GAA CCT CTC CGT

Asp Lys Ala Asp Val Asm Val Leu Thr Lys Ala Lys Ser Glm GAC AAA GCT GAT GTG AAT GTA TTA ACT AAA GCT AAA TCC CAG T CTG TTT CGA CTA CAC TTA CAT AAT TGA TTT CGA TTT AGG GTC A

- 3: -

- 2. Hybridvektor nach Anspruch 1, dadurch gekennzeichnet, daß er in E. coli klonierbar ist.
- 3. In eukaryotischen Zellen klonierbarer und Human-Parathor-5 mon produzierender Hybridvektor,
 - (A) dadurch herstellbar, daß man
 - (a) aus Schweine-Nebenschilddrüsen mRNA isoliert,
- (b) die isolierte mRNA als ds-cDNA mit Hilfe eines Vektors 10 in E. coli kloniert,
 - (c) aus Pools erhaltener Klone Hybridvektor-DNA isoliert,
 - (d) isolierte Hybridvektor-DNA an einem für jeden Pool eigenen Träger fixiert, gemäß (a) isolierte mRNA anlagert und
- 15 wieder entfernt, entfernte mRNA in Schweine-Parathormon zu übersetzen versucht, gebildetes Schweine-Parathormon durch Antikörperfällung nachweist und damit gemäß (b) erhaltene Klone ermittelt, die Schweine-Parathormongen-Sequenzen aufweisen, Hybridvektor-DNA ermittelter und Schweine-Parathormon-
- 20 gen-Sequenzen aufweisende Klone sequenziert und den oder die Klone identifiziert, die Hybridvektor-DNA mit Schweine-Parathormon kodierender DNA-Sequenz aufweisen,
 - (e) Hybridvektor-DNA der gemäß (d) identifizierten Klone radioaktiv markiert,
- 25
 (f) mit erhaltener radioaktiv markierter Hybridvektor-DNA
 eine Human-Genbank screent und
 - (g) das ermittelte Human-Parathormongen in einen in eukaryotischen Zellen klonierbaren Hybridvektor überführt,
- 30(8) und gekennzeichnet durch eine zwischen zwei RI-Schnittstellen liegende DNA-Sequenz, die die folgende DNA-Sequenz umfaßt, oder einen Unterbereich der zwischen den RI-Schnittstellen liegenden DNA-Sequenz:

TGTCTTTAGTTTACTCAGCATCAGCTACTAACATACCTGAACGAAGATCTTGTTCTAAGA ACAGAAATCAAATGAGTCGTAGTCGATGATTGTATGGACTTGCTTCTAGAACAAGATTCT

CATTGTAT

إير أن عول العدال

Intron II ca. 400 bp GTAACATA -|Met Ile Pro Ala Lys Asp Met Ala Lys Val Met GTG AAG ATG ATA CCT GCA AAA GAC ATG GCT AAA GTT ATG -CAC TTC TAC TAT GGA CGT TTT CTG TAC CGA TTT CAA TAC Ile Val Met Leu Ala Ile Cys Phe Leu Thr Lys Ser Asp Gly Lys ATT GTC ATG TTG GCA ATT TGT TTT CTT ACA AAA TCG GAT GGG AAA TAA CAG TAC AAC CGT TAA ACA AAA GAA TGT TTT AGC CTA CCC TTT Ser Val Lys TCT GTT AAG AGA CAA TTC Lys Arg Ser Val Ser Glu Ila Gln Leu Met His Asn Intron I AAG AGA TCT GTG AGT GAA ATA CAG CTT ATG CAT AAC ca. 30 bp_ TTC TCT AGA CAC TCA CTT TAT GTC GAA TAC GTA TTG Leu Gly Lys His Leu Asn Ser Net Glu Arg Val Glu Trp Leu Arg CTG GGA AAA CAT CTG AAC TCG ATG GAG AGA GTA GAA TGG CTG CGT GAC CCT TTT GTA GAC TTG AGC TAC CTC TCT CAT CTT ACC GAC GCA Lys Lys Leu Gln Asp Val His Asn Phe Val Ala Leu Gly Ala Pro AAG AAG CTG CAG GAT GTG CAC AAT TTT GTT GCC CTT GGA GCT CET TTC TTC GAC GTC CTA CAC GTG TTA AAA CAA CGG GAA CCT CGA GGA Leu Ala Pro Arg Asp Ala Gly Ser Gln Arg Pro Arg Lys Lys Glu CTA GCT CCC AGA GAT GCT GGT TCC CAG AGG CCC CGA AAA AAG GAA GAT CGA GGG TCT CTA CGA CCA AGG GTC TCC GGG GCT TTT TTC CTT Asp Asn Val Leu Val Glu Ser His Glu Lys Ser Leu Gly Glu Ala GAC AAT GTC TTG GTT GAG AGC CAT GAA AAA AGT CTT GGA GAG GCA CTG TTA CAG AAC CAA CTC TCG GTA CTT TTT TCA GAA CCT CTC CGT Asp Lys Ala Asp Val Asn Val Leu Thr Lys Ala Lys Ser Gln. GAC AAA GCT GAT GTG AAT GTA TTA ACT AAA GCT AAA TCC CAG TGA CTG TTT CGA CTA CAC TTA CAT AAT TGA TTT CGA TTT AGG GTC ACT AAA TGA AAA CAG ATA TTG TCA GAG TTC TGC TCT AGA CAG TGT AGG TTT ACT TTT GTC TAT AAC AGT CTC AAG ACG AGA TCT GTC ACA TCC GCA ACA ATA CAT GCT GCT AAT TCA AAG CTC. TAT TAA GAT TTC CAA CGT TGT TAT- GTA CGA CGA TTA AGT TTC GAG ATA ATT CTA AAG GTT GTG CCA ATA TTT CTG ATA TAA CAA ACT ACA TGT AAT CCA TCA CTA CAC GGT TAT AAA GAC TAT ATT GTT TGA TGT ACA TTA GGT AGT GAT GCC ATG ATA ACT GCA ATT TTA ATT GAT TAT TCT GAT TCC ACT TTT CGG TAC TAT TGA CGT TAA AAT TAA CTA ATA AGA CTA AGG TGA AAA ATT CAT TTG AGT TAT TTT AAT TAT CTT TTC TAT TGT TTA TTC TTT TAA GTA AAC TCA ATA AAA TTA ATA GAA AAG ATA ACA AAT AAG AAA TTA AAG TAT GTT ATT GCA TAA TTT ATA AAA GAA TAA AAT TCG ACT AAT TTC ATA CAA TAA CGT ATT AAA TAT TTT CTT ATT TTA AGC TGA TTT AAA CCT CTC TTC TAC CTT AAA ATG TAA AAC AAA AAT GTA ATG AAA TTT GGA GAG AAG ATG GAA TTT TAC ATT TTG TTT TTA CAT TAC

ATC ATA AGT CTA AAT AAA TGA AGT ATT TCT CAC TCA AA TAG TAT TCA GAT TTA TTT ACT TCA TAA AGA-GTG AGT TT

013907B

-5.-

- 4. Hybridvektor nach Anspruch 3, dadurch gekennzeichnet, daß er in Humanzellen oder Affenzellen, wie Affennierenzellen, klonierbar ist.
- 5. Human-Parathormongen,
- (a) herstellbar gemäß Anspruch 3 (A) und
- (b) gekennzeichnet durch die zwischen zwei RI-Schnittstellen liegende DNA-Sequenz gemäß Anspruch 3 (B) oder einen Unterbereich davon.
- 6. Human-Parathormongen nach Anspruch 5, gekennzeich net durch direkte Klonierbarkeit in Humanzellen oder Affenzellen.
- 7. Eukaryotische Zellen, insbesondere Tierzellen (wie Affenzellen) und Humanzellen, die mit dem Human-Parathormongen gemäß Anspruch 6 oder 7 Human-Parathormon produzieren.
- 8. Verwendung der Zellen gemäß Anspruch 7 zum Einsatz bei parathormondefekten Lebewesen (wie Menschen).