Modeling Preference Formation of Risky Decisions via Eye Tracking

Orian Sharoni Moshe Glickman* Dino Levy & Marius Usher

*Equally contributed

Introduction

- Cognitive accumulation models assume that information (sensory input) is sampled rapidly in small portions until a threshold is reached and the competition is decided.
- We aspire to create integrated models that take into account both the perceptual process and the value of attributes in decisions.
- The eye-tracker is a significant research tool for this purpose as it allows monitoring the participant's visual attention at high temporal resolution (300 Hz).

Method

- 31 Participants
- 104 Trials
- Free response
- Incentive compatible

Results

Individual Differences

Models

$$\begin{split} & \textbf{Model Types} \\ & \textbf{Descriptive } f(EU_{regression}) = \frac{1}{1+e^{-\beta(x_1^2p_1 - x_2^2p_2)}} \\ & \textbf{Multiplicative models } f(EUT_{regression}) = \frac{1}{1+e^{-\beta(x_1^2p_1 + x_2^2p_2)}} \\ & \textbf{Additive models } f(EU_T_{regression}) = \frac{1}{1+e^{-(\beta_1(x_1^2p_1 + x_2^2p_2) + \beta_2(t_1 - t_2))}} \\ & \textbf{Multiplicative & Additive } (EUT_T_{regression}) = \frac{1}{1+e^{-(\beta_1(x_1^2p_1 + t_1^2 - x_2^2p_2) + \beta_2(t_1 - t_2))}} \end{split}$$

BIC

Cumulative Process Model

a	b	
$A1 = Leak \cdot A1 + x_1^{\alpha} \cdot p_1 - \theta \cdot x_2^{\alpha} \cdot p_2$	$A2 = Leak \cdot A2 + x_2^{\alpha} \cdot p_2 - \theta \cdot x_1^{\alpha} \cdot p_1$	
$A2 = Leak \cdot A2$	A1 = Leak·A1	
c	d	
$A1 = Leak \cdot A1 + x_1^{\alpha} \cdot p_1 - \theta \cdot x_2^{\alpha} \cdot p_2$	A1 = Leak·A1	
$A2 = Leak \cdot A2 + x_2^{\alpha} \cdot p_2 - \theta \cdot x_1^{\alpha} \cdot p_1$	A2 = Leak · A2	

Model Comparison

Averaged Fit (and standard dev.)

Model	BIC*	Accuracy
\mathbf{EU}	2623.74	76.4% (.06)
EUT	2440.27	80.3%
Cumulative EU-based transitions model	2266.07	83%

Conclusions

- \bullet Eye scanning patterns (proportion of within transitions) are associated with EV choice.
- Using dwell time/number of fixations can improve the accuracy of prediction.
- Processes models can further improve the accuracy of prediction, and elucidate the dynamics of preference formation

orian.sharoni@gmail.com +972-545715309