You have 2 free stories left this month. Sign up and get an extra one for free.

Optimize your Investments using Math and Python

Using Linear Optimization in Python's PuLP

Create PDF in your applications with the Pdfcrowd HTML to PDF API

Source

D uring the MBA, we learned all about predictive modeling techniques using Excel and University of Waikato's free software, <u>WEKA</u>. We

learned the foundational concepts but never ventured into the hard skills required for advanced calculation. After some time studying python, I thought it would be fun to rework one of my linear optimization projects I originally did in Excel's solver. The goal of this article is to recreate the project in python's PuLP, share what I learn along the way, and compare python's results to Excel's.

The real world benefits /applications of linear optimization are endless. I would highly recommend following along closely, at least on a conceptual level, and making an effort to learn this skill if you are not already familiar with it.

. . .

Table of Contents

- 1. What is Linear Optimization?
- 2. The Assignment / Review
- 3. Data Upload and Clean
- 4. Linear Optimization using PuLP

. . .

What is Linear Optimization?

According to <u>Wikipedia</u>, linear programming is "a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships." These <u>lecture notes</u> from Carnegie Mellon University were very helpful in my own understanding of the topic.

In my own words, I would describe it as being a way to solve minimum / maximum solutions for a particular variable (decision variable), intertwined with other linear variables, to an extent that it would be very difficult to solve the problem with a pen and paper.

. . .

The Assignment / Review:

This is a linear optimization problem with regard to risk and return of a portfolio. Our objective is to minimize portfolio risk while simultaneously satisfying 5 constraints:

- 1. The sum of the investments will be \$100,000
- 2. The portfolio has an annual return of at least 7.5%
- 3. At least 50% of the investments are A-rated
- 4. At least 40% of the investments are immediately liquid
- 5. No more than \$30,000 are in savings accounts and certificates of deposit

The detailed instructions are below:

Source: pg 127

To review the process in solving a linear optimization problem, there are 3 steps:

- 1. **Decision Variables:** Here, there are 8 decision variables. They are our investment options.
- 2. **Objective Function:** We want to **minimize** the risk for the 8 investments. Below are the investments multiplied by their respective risk coefficients.

3. **Constraints:** Lastly, we want to define exactly what our constraints are. These are algebraically expressed below in the same order as we listed the constraints previously:

In case you are confused about the "7,500" in constraint #2, that would be the 7.5% annual return we are looking for multiplied by our \$100,000 investment.

. . .

Data Upload and Clean:

Now that we have the problem set up, let's upload the data into pandas and import pulp:

```
from pulp import *
import pandas as pd
df = pd.read_excel(r"C:\Users\Andrew\Desktop\Fin_optimization.xlsx")
df
```


Looking good. There are a few formatting changes that must be made in order to move forward, however.

1. Turn the "Liquidity" and "Ratings" columns into binary values. This is in regard to constraints #3 and #4. The relevant string values in these columns are "Immediate" for Liquidity and "A" for Rating. Distinguishing these string values from the others is necessary for further calculation.

- 2. Create a new binary column for Investment Type. Constraint #5 focuses on the savings and CD investment types, so distinguishing them from the other investment types will help later.
- 3. Create a column of all 1's for Amt_invested. This will be useful for constraint #1: the \$100,000 total portfolio constraint.

```
#1a
df['Liquidity'] = (df['Liquidity']=='Immediate')
df['Liquidity'] = df['Liquidity'].astype(int)

#1b
df['Rating'] = (df['Rating']=='A')
df['Rating']= df['Rating'].astype(int)

#2
savecd = [1,1,0,0,0,0,0,0]
df['Saving&CD'] = savecd

#3
amt_invested = [1]*8
df['Amt_Invested'] = amt_invested
df
```

Perfect. Let's move on.

. . .

Linear Optimization using PuLP:

The first step using PuLP is to define the problem. The code below simply defines our problem as minimization (with regard to risk) and gives it the title, "Portfolio_Opt". We will add more to this 'prob' variable later.

```
prob = LpProblem("Portfolio_Opt", LpMinimize)
```

Next we will create a list of our decision variables (investments options). Then we will use that list to create dictionaries for each feature:

```
#Create a list of the investment items
inv items = list(df['Potential Investment'])
#Create a dictionary of risks for all inv items
risks = dict(zip(inv items, df['Risk']))
#Create a dictionary of returns for all inv items
returns = dict(zip(inv items,df['Expected Return']))
#Create dictionary for ratings of inv items
ratings = dict(zip(inv items, df['Rating']))
#Create a dictionary for liquidity for all inv items
liquidity = dict(zip(inv items,df['Liquidity']))
#Create a dictionary for savecd for inve items
savecd = dict(zip(inv items,df['Saving&CD']))
#Create a dictionary for amt as being all 1's
amt = dict(zip(inv items, df['Amt Invested']))
risks
```


Next, we are defining our decision variables as investments and are adding a few parameters to it,

- Name: To label our decision variables
- **Lowbound** = **0**: To make sure there is no negative money in our solution
- Continuous: Because we are dealing with cents to the dollar.

```
inv_vars = LpVariable.dicts("Potential
Investment",inv_items,lowBound=0,cat='Continuous')
```

Finally, we add the modified decision variable to our problem variable we made earlier and additionally enter the constraints. We are iterating over dictionaries using "for loops" for each investment item.

```
#Setting the Decision Variables
prob += lpSum([risks[i]*inv vars[i] for i in inv items])
#Constraint #1:
prob += lpSum([amt[f] * inv vars[f] for f in inv items]) == 100000,
"Investments"
Constraint #2
prob += lpSum([returns[f] * inv vars[f] for f in inv items]) >= 7500,
"Returns"
Constraint #3
prob += lpSum([ratings[f] * inv vars[f] for f in inv items]) >=
50000, "Ratings"
Constraint #4
prob += lpSum([liquidity[f] * inv vars[f] for f in inv items]) >=
40000, "Liquidity"
```

```
Constraint #5
prob += lpSum([savecd[f] * inv_vars[f] for f in inv_items]) <= 30000,
"Save and CD"
prob</pre>
```

Below is the problem:

Result:

```
prob.writeLP("Portfolio_Opt.lp")
print("The optimal portfolio consists of\n"+"-"*110)
for v in prob.variables():
    if v.varValue>0:
        print(v.name, "=", v.varValue)
```

This is exactly the same outcome Excel's solver gave.

Refer to my <u>Github</u> to see the full notebook file.

. . .

Please subscribe if you found this helpful. If you enjoy my content, below are some projects I've worked on:

<u>Uber Reviews Text Analysis</u>

Excel vs SQL: A Conceptual Comparison

<u>Simple Linear vs Polynomial Regression</u>

Is Random Forest better than Logistic Regression? (a comparison)

Gini Index vs Information Entropy

Predicting Cancer with Logistic Regression in Python

Bivariate Logistic Regression Example (python)

<u>Calculating R-squared from scratch (using python)</u>

By Towards Data Science

Hands-on real-world examples, research, tutorials, and cutting-edge techniques delivered Monday to Thursday. Make learning your daily ritual. <u>Take a look</u>

Your email

By signing up, you will create a Medium account if you don't already have one. Review our <u>Privacy Policy</u> for more information about our privacy practices.

Data Science

Portfolio

Optimization

Python

Guides And Tutorials

354

WRITTEN BY

Andrew Hershy

LinkedIn:https://www.linkedin.com/in/andrew-hershy-a7779199/

Follow

Towards Data Science

Follow

A Medium publication sharing concepts, ideas, and codes.

More From Medium

Amazon Wants to Make You an ML Practitioner— For Free Anthony Agnone in Towards Data Science	Stop persisting pandas data frames in CSVs Vaclav Dekanovsky in Towards Data Science
You're living in 1985 if you don't use Docker for your Data Science Projects Sohaib Ahmad in Towards Data Science	Here is What I've Learned in 2 Years as a Data Scientist Admond Lee in Towards Data Science
How I'd start learning machine learning again (3-years in) Daniel Bourke in Towards Data Science	Full Stack Data Science: The Next Gen of Data Scientists Cohort Jay Kachhadia in Towards Data Science
The Best Data Science Certification You've Never Heard Of Nicole Janeway Bills in Towards Data Science	Perfectly Pythonic Python Stuff That You Should Definitely Know Krupesh Raikar in Towards Data Science

Discover Medium

Welcome to a place where words matter. On Medium, smart voices and original ideas take center stage - with no ads in sight. <u>Watch</u>

Make Medium yours

Follow all the topics you care about, and we'll deliver the best stories for you to your homepage and inbox. <u>Explore</u>

Become a member

Get unlimited access to the best stories on Medium — and support writers while you're at it. Just \$5/month. <u>Upgrade</u>

Medium

About

Help

Legal