

Mahatma Gandhi Mission's College of Engineering and Technology Kamothe, Navi Mumbai

Branch: FE (ALL) Academic Year: 2020-2021

Course Code: FEC 201 Course Name: Engineering Mathematics II [Choice Based]

Tutorial 6

Ques. No.	Question	Module	Level*	PI	СО
1	Evaluate $\int_0^{\pi} \frac{dx}{a - cosx}$, a>0. Hence, find $\int_0^{\pi} \frac{dx}{(a - cosx)^2}$	3	2	1.1.1	3
2	Evaluate $\int_0^{\pi/2} \frac{dx}{(a^2 \sin^2 x + b^2 \cos^2 x)}$, a>0. Hence, find $\int_0^{\pi/2} \frac{dx}{(a^2 \sin^2 x + b^2 \cos^2 x)^2}$	3	3	1.1.1	3
3	Evaluate $\frac{\int_0^{\pi} \frac{\log{(1+\alpha cosx)}dx}{cosx}$, $ \alpha < 1$,	3	3	1.1.1	3
4	Prove that $\int_0^1 \frac{(x^a - x^b)dx}{\log x} = \log(\frac{a+1}{b+1})$	3	3	1.1.1	3
5	Find the length of the curve $x = \frac{y^3}{3} + \frac{1}{4y}$ from $y = 1$ to $y = 2$	3	3	1.1.1	3
6	Find the length of the arc of the parabola $y^2 = 8x$ cut off by the latus rectum.	3	2	1.1.1	3

^{*}As per Bloom's Taxonomy