

PAINETTAVA ELEKTRONIIKKA

Komponenteista

© Jari Hannu, Oulun yliopisto

JOHTIMET

- Johtimet ovat tärkeimmät komponentit
 - Johtavat sähköä ja mahdollistavat piirit
- Perinteisten johtimien lisäksi johtavia materiaaleja käytetään
 - Elektrodeissa
 - Antenneissa
- Painetut johtimet perustuvat
 - Metallipartikkeleihin
 - Pääasiassa hopea, käytetään myös kuparia ja alumiinia
 - Mikropartikkeleita ja nanopartikkeleita
 - Ioniset metallimusteet
 - Hiilipohjaiset musteet
 - Johtavat polymeerit

Figure 1. Rotary screen printed conductors

JOHTIMET

- Painettujen johtimien ominaisuudet
 - Neliöresistansit muutamia kymmeniä milliohmeja, kun johdinten paksuus on yli 10 µm
 - Resistanssiin vaikuttava 1) painolaitteet, 2) substraatit ja 3) musteet
 - Pääasiallinen vaikutusmekanismi on muste
 - Painolaitteilla tarkoitetaan kuivatussta, painonopeutta ja painomenetelmään liittyviä parametrejä
 - Johtimien suojauksen kanssa pitää olla tarkkana
 - Kupari hapettuu, hopean migraatio

PASSIIVIKOMPONENTIT - VASTUKSET

- Vastuksia voidaan tulostaa erityyppisillä johtavilla musteilla
- Vastuksen arvo määräytyy resistiivisyyden ja dimensioiden mukaan
- Vastuksen suunnittelusäännöt
- Fyysinen koko nykyisillä valmistusmenetelmillä suositellaan pidettävän kohtuu suurena
 - Parempi tuotantosaanto
 - Parempi toleranssi

Figure 2. Printed resistor layout

Table 1. Recommended physical design rules for resistor

	design rules	recommended	special cases
W	resistor width	> 5mm	1mm
L	resistor length	> 5mm	1mm
Α	termination width	>2mm	0,5mm
В	termination / resistor overlap	> 2mm	0,5mm
С	(termination length – resistor width) / 2		

PASSIIVIKOMPONENTIT - KONDENSAATTORIT

- Painettavin menetelmin valmistetaan pääasiassa levykondensaattoreita
- Kondensaattoreiden arvot pikofaradeista jopa mikrofaradiin

$$C = \varepsilon_r \varepsilon_0 \frac{A}{d}$$

Figure 3. Stacked capacitor layout

Table 3. Design limitations to printed capacitors

factor	recommended limits	limits for special cases
А	1 - 25cm ²	0,25 cm ² – no upper limit / set by application
ε_{r}	3 - 10	2 - 50
d	5 μm - 10 μm	50 nm – no upper limit

Table 2. Stacked capacitor layout design rules

rule	insulator	electrode	capacitor size
	enclosure	enclosure	(length/width)
	recommended > 2 mm Special case > 500µm	Recommended >2mm Special case > 500µm	recommended > 2 mm Special case > 500µm

PASSIIVIKOMPONENTIT - KELAT

- Painettavin menetelmin valmistettavat kelat pääasiassa planaarirakenteisia
- Ongelmallista kelojen kanssa on johtimien resistiivisyys
 - Häviöllisiä komponentteja

Figure 5. Different shapes for planar spiral coil (Simple Accurate Expressions for Planar Spiral Inductances (IEEE Journal of Solid-State Circuits, Oct. 1999, pp. 1419-24).

.

PASSIIVIKOMPONENTIT YHTEENVETO

Table 4. General and special case performance of printed passive components

component	recommended value	value in special cases
resistor	no practical limits std dev 5-8%	no practical limits std dev < 1 %
capacitor	< 5nF std dev < 3 %	up to μF-level
inductor (100kHz)	up to few μΗ std dev 10%	tens of µH

MUISTIELEMENTIT - PAINETTAVAT MEMRISTORIT

- Memristori on vastus, jonka vastusarvoa voidaan muuttaa virralla ja se voidaan lukea
 - Positiivisella virralla resistanssia kasvatetaan
 - Negatiivisella virralla resistanssia pienennetään
- Yksinkertainen rakenne
 - Kaksi elektrodia
 - · Välissä memrisistiivistä väliainetta
- Toiminta perustuu oksidivakanssien ja ionien siirtymiseen memrisitiivisessä materiaalissa
- Onnistuttu toteuttamaan täysin painomenetelmillä
 - inkjet

Figure 1. Illustration of the memristor structure

MUISTIELEMENTIT - WORM MUISTI

- WORM write-once-read-many
- Resistiivisiä muisteja
 - 0 korkea resistanssi
 - 1 matala resistanssi
- RES Rapid Electrical Sintering
- Syötetään virta elementtiin, jonka virran avulla sintrautuu hyvin johtavaksi
- Matalajännitteinen kirjoitus (< 6V)
- Resistanssin muutos kilo-ohmeista kymmeniin ohmeihin
- Kirjoitus alle 100 ms

Figure 1. Electronic voting card using WORM memories

NÄYTÖT JA VALAISTUS - OLED

 OLED (Organic light-emitting diode) orgaanisiin materiaaleihin perustuva valonlähde

HARAM

Figure 1. Printed OLED examples

Figure 5. Printed OLED structure.

NÄYTÖT JA VALAISTUS - ECD

- ECD (Electrochomic devices) ovat kaupallisesti hyvin tarjolla olevia painettava elektroniikan tuotteita
- Varauksen vaihtuessa materiaalin väri muuttuu
- Ei säteile, luettavissa vaikkapa auringonvalossa
- Joustavia, läpinäkyviä

Figure 1. Practical example of an Interactive Greeting Card from Ynvisible. The display uses a symmetric configuration and presents two images Image 1 (left) and image 2 (right).

Figure 2. Typical vertical EC structure

VALOKENNOT

- Painettavan elektroniikan menetelmillä pystytään valmistamaan joustavia aurinkokennorakenteita
- Tehon tuotto ei ole vielä lähelläkään piikennojen luokkaa, mutta kehitysaskeleet ovat olleet viime vuosina huimia
- Tällä hetkellä kehitys keskittyy materiaalikehitykseen
 - Kestävämpiä kennoja
 - Tehokkaampia kennoja

Figure 3. Series connected OPV module structure

Figure 2. A leaf-shaped OPV module

Figure 1. Printed organic photovoltaic module and R2R produced foil.

PAINETTAVAT PARISTOT

- Enfucell on kaupallistanut pehmeät paristot
- Elektrokemiallinen takenne
 - Suoja
 - Sinkki (Zn) anodi
 - Paperi ZnCl₂ elektrolyytti
 - Mangaanidioksidi (MnO₂) katodi
 - substraatti

Table 1. Printed battery properties

	SoftBattery	Generic values for a
	Mini 1,5V	1.5 volt cell
Thickness	0.7 mm	0.7 mm
Dimensions	36 x 46 mm	
Weight	0.90 g	~50 mg/cm ²
Nominal voltage	1.5 V	1.5 V
Capacity	18 mAh	~4.0 mAh/cm ²
Сарасну	IOIIIAII	(cell active area)
Nominal current	0.2 mA	0.01 C
Nominal current	0.2 IIIA	(40 μA/cm ²)
Internal resistance	~150 Ω	~600 Ω·cm²

Figure 2. Enfucell SoftBattery structure

SUPERKONDENSAATTORIT

- Superkondensaattori on elektrokemiallinen energianvarastointiväline, joka toimii kuten kondensaattori
 - Tehotiheys kymmenkertainen (kW/kg) suhteessa Li-lon akkuihin
 - Latausaika superkonkalle on sekunteja
 - Energiatiheys (J/kg) on kuitenkin vain noin 10% suhteessa Li-lon akkuihin
 - Eli saa nopeasti virtaa ulos, mutta virtaa ei riitä pitkäksi aikaa
- Superkondensaattorin lataussyklien määrä voi olla yli miljoonan
 - Akuilla tyypillisesti 500-3000 kertaa

Figure *. Supercapacitor functionality principle

Figure **. Printed supercapacitor structure (thickness << 1 mm, length and width e.g. 5 cm).

SUPERKONDENSAATTORIT

- Painetut superkonkat ovat kapasitanssiltaan 0.1...20 F
 - Riippuu suoraan elektrodien koosta
- Kriittisin materiaali on elektrolyytti elektrodien välissä
 - Tällä hetkellä vielä nestettä imeytettynä esim paperiin
- Kehitystyötä vaaditaan vielä paljon materiaalien suoritustason parantamiseen

flat supercapacitor	aqueous electrolytes	organic electrolytes
TRL level	4 - 5	3 - 4
manufacturing	rotary screen	rotary screen
¹ capacitance	0.1 - 20F	0.1 - 20F
max. Voltage	1.2V	2.5V
² power	10mW - 5W	10mW - 5W
manufacturing yield	70 - 90%	70 - 90%
³ lifetime	10 years / 1M cycles	
1 can be scaled; 2 can be scaled; 3 Theoretical value, not enough experience to guarantee		

ANTURIT - KOSTEUSANTURIT

- Kosteusanturit voivat mitata esimerkiksi suhteellista ilmankosteutta (RH sensors)
- Anturit ovat kapasitiivisa planaariantureita, joiden väliaineen suhteellinen permittiivisyys muuttuu ilmankosteuden suhteen
 - Ilman permittiivisyys ~1
 - Veden permittiivisyys ~80
- Väliaineen polymeeri tasapainottaa kosteudensa ilmankosteuden tasolle, joten permittiivisyys muuttuu

Figure 1. Printed capacitive humidity sensor structures

Figure 2. A remote readable RH sensor.

ANTURIT - LÄMPÖTILA-ANTURIT

- Lämpötila-antureita löytyy resistiviisiä, kapasitiivisia ym.
- Painoprosessiin soveltuvin on ollut kapasitiivinen
- Kuten kosteusanturi perustuu dielektrisen väliaineen permittiivisyyden muutokseen lämpötilan suhteen

Figure 1. Sensor (constructed from ASAHI CR18 KT1) capacitance as a function of temperature

ANTURIT - KAPASITIIVISET KOSKETUS JA LÄHESTYMISANTURIT

- Kapasitiivisia antureita, jotka tunnistavat kosketuksen tai lähestymisen
- Yksinkertainen elektrodirakenne riittää kapasitanssin mittaukseen
- Spesifioidut kapasitanssin mittaukseen keskittyvät piirit (CDC) arvioivat kosketuksen tapahtumisen tai etäisyyden elektrodiin

Figure 3. A simple system consisting of 12 electrodes.

Figure 1. Capacitive touch sensor

Figure 2. A simplified equivalent circuit of a hand placed in front of a large projected capacitance electrode.

ANTURIT - RESITIIVISET KOSKETUSANTURIT

 Resistiiviset kosketusanturit perustuvat resistanssin pienentymiseen kosketuksen alla

Table 2. Sensor specifications

Mechanical		
Input method	Touch stylus or finger	
Activation force	Without a graphic label >20g With a graphic label >50g	
Surface hardness	Melinex ST506 3H	
Total light transmission	80% at 500nm, >60% over 400-800nm	
Thickness	Typical 0.100.25mm	
Temperature		
Operating temperature	-20°C - +70°C	
Storage temperature	-30°C - +80°C	
Electrical		
Loop resistance (active area 0.12m ²)	Rx-x / Ry-y ~40-50ohms ± 4ohms	
Insulation resistance	> Mohms	
Durability		
High Temp & High Humidity Storage test	35°C x 85%RH x 240hours	

Figure 2. Resistive touch sensor structure

ANTURIT- KAASUANTURIT

- Kaasuanturit tunnistavat eri kaasumaisten aineiden läsnäolon jollain alueella
- Pääosin resistiivisiä ja kapasitiivisa antureita
 - Myös puolijohtavia

Figure 1. Printed gas sensors

Figure 2. Gas sensor structure

ANTURIT KAASUANTURIT

- Kaasuantureiden ongelmat ovat
 - Tarkkuus kuinka paljon tarvitaan kaasua
 - Selektiivisyys tunnistetaanko pelkkää yhtä kaasua
 - Palautuvuus jos tunnistetaan, voidaanko käyttää useampaan kertaan

- Kehitetyistä antureista:
 - Resistiiviset typpioksidi (NO) -anturit ovat hyvin herkkiä (10 ppm)
 - Kapasitiiviset vety (H2) -anturit ovat hyvin selektiivisiä ja kynnysraja on 100 ppm

ANTURIT. - ELEKTROKEMIALLISET BIOANTURIT

- Bioanturit ovat analyyttisia laitteita, joilla tunnistetaan elimistön toimintaan liittyviä komponentteja
- Eli luettava vaste biologiseen tapahtumaan
- Painettavissa teknologioissa pystytään perusanturi tuottamaan melko hyvin
- Aktiivisten elementtien painaminen haastavampaa
 - · Vasta-aineet yms.

Electrochemical biosensor

16.9.2014

HYBRIDITEKNOLOGIA

- Hybriditeknologia tarkoittaa perinteisemmäksi koetun elektroniikan lisäämistä painettavaan elektroniikkaan
- Edut
 - Puolijohdekomponenttien todennettu tehokkuus
 - Joustavat alustat
 - Halvemmat valmistusmenetelmät
 - Saumaton integrointi
- Tarvitaan
 - Komponenttien liittäminen
 - Ylivalu
 - Kapselointi

1) R2R assembled LED strips with overall thickness less than 300 micrometre

2) 2 m x 0.2 m flexible LED luminaire

8) Disposable healthcare sensor

