

Course Name: Computer Architecture Lab

Course Number and Section: 14:332:xxx:xx

Experiment: [Experiment # [1] – Intro, git, and number representation]

Lab Instructor: Mengmei Ye

Date Performed: 9/14/2018

Date Submitted: 9/28/2018

Submitted by: [Hyunmin Choi #171008176]

Course Name:		
ırse Number and	d Section:	14:332:xxx:x

! Important: Please include this page in your report if the submission is a paper submission. For electronic submission (email or Sakai) please omit this page.				
	For Lab Instructor Use ONLY			
GRADE:				
COMMENTS:				

Electrical and Computer Engineering Department School of Engineering Rutgers University, Piscataway, NJ 08854 ECE Lab Report Structure

- 1. Purpose / Introduction / Overview describe the problem and provide background information
- 2. Approach / Method the approach took, how problems were solved
- 3. Results present your data and analysis, experimental results, etc.
- 4. Conclusion / Summary what was done and how it was done

	Chai Lab 1 71008176 16)142 128 14 Ox8E	10 11 12 13 14 15 A B C D E F 2 50106 25053 D 0 12526 1 6263 O 10×16°=10 3131 1 11×16'=176 1565 1 11×16'=176 782 1 3×16²=768 391 0 12×16³=49152 195 1
$1 \times 2^7 = 128$ + 142	<u>O</u> x	50106 97 1 BCA1 24 0
81 281 40 1 20 D 10 O 5 O 2 1 1 O	16)81	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{r} Obio0100100 \\ O \times 2^{\circ} = O \\ O \times 2^{\circ} = O \\ I \times 2^{\circ} = 4 \\ O \times 2^{\circ} = O \\ I \times 2^{\circ} = 32 \\ O \times 2^{\circ} = 0 \\ O \times 2^{\circ} = 0 \\ I \times 2^{\circ} = 256 \\ \hline + 292 $	18 R4 16) 292 16 132 128 4 1 R2 16) 18 16 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

OxBAC4

2 47812 4×160= 4 11953 0 12x16'= 192 10 x 162 = 7560 11 x163 = 45056 47812

23906 0

2 1

10

214= 16Ki

$$2^{43} = 2^{3} \cdot 2^{40} = 8 \text{ Ti}$$
 $8^{23} = 2^{3} \cdot 2^{20} = 8 \text{ Mi}$
 $2^{58} = 2^{8} \cdot 2^{50} = 256 \text{ Pi}$
 $2^{64} = 2^{4} \cdot 2^{60} = 16 \text{ Ei}$

2 = 2 2 2 = 4Ti

c)

$$2 k_1 = 2 \cdot 2^{80} = 2^{11}$$

 $5 12 P_1 = 2^9 \cdot 2^{50} = 2^{59}$
 $256 k_1 = 2^9 \cdot 2^{10} = 2^{10}$
 $326 k_2 = 2^5 \cdot 2^{30} = 2^{35}$
 $64 M_1 = 2^6 \cdot 2^{20} = 2^{26}$
 $8 E_1 = 2^3 \cdot 2^{60} = 2^{63}$

061011101011000100

2.2)5970 1 1. 2988 0 two's compliment 1494 0 747 0 largest integer +1 373 1 1861 930 Unsigned integer 461 255 23 0 111 largest integer +1 5 1 256

> 2. two's compliment -3 → 00000011 → 11111100 + 1 → 11111101 00000000 13 -> 11111101 >00000010+1 >0000001 unsigned

-3 -> N/A 0 -> 000000000 3 > 00000011

3. two's compliment -42 > 00101010 > 11010101+1 > 11010110 42 > 20101010 unsigned integer

6.

Hex-Useful for programmer to use it as intermediate form between decimal and binary to send instructions, and data in much readable form

Binary-True machine code, which computers can only process before requiring to translate to either decimal of hex so that user can send instructions.

Decimal-normal representation of numbers, useful to display information at the end-user

3.1)

I)

O > 1 bit

TT > half-precision value - 11-bits, mathematically would be infinite

e > half-precision value - 21 bits, mathematically would be infinite

2. $2 \text{ TiB} \Rightarrow 2.2^{40} \text{ B}$

741

41-bit long address, addressed via bytes.

3, half-precision value - 11-bits, mathematically requires unfinite bits since it is an irrational value