$$P_{\text{seen}}(w|d) = \frac{c(w,d) + h. p(w|c)}{|d| + h}$$

$$= \frac{121}{121+11} \cdot \frac{c(w,2)}{121} + \frac{1}{121+11} \cdot p(w)c)$$

Let,

$$\frac{u}{1d1+ll} = x_d = \frac{\text{controls}}{\text{probability mans that we}}$$

assign to reference compus

That means we assign o weight(1) to MLE, neference composand all weight(1) to MLE.

The complete function for kate-Bockobk

Smoothing is: $\begin{pmatrix} (w_i | w_{i-2} w_{i-1}) & \text{if } C(w_{i-2} w_{i-1} w_{i}) \\ (w_{i+1} w_{i-2} w_{i-1}) & \text{if } C(w_{i-2} w_{i-1} w_{i}) \\ (w_{i+1} w_{i-2} w_{i-1}) & \text{if } C(w_{i-2} w_{i-1} w_{i}) \\ (w_{i+1} w_{i-2} w_{i-1}) & \text{otherwise}
\end{pmatrix}$

Katz back-off is a generative smoothing technique for n-gram language model. The main idea is! - If there are no examples of a particular Ingram, wn-2 wn, wn, to compute P(wn | wn-2 wn-1), we can estimate its
probability by using the bigram probability P (wn 1 wn-1) - If there are no examples of the bigram to compute P(ws) ws.i), we can me the unigram probability P(wn, Problems with Katz-Back off Probability estimates can change suddenly on adding more tata when the back-off algorithm Selects a different order of n-gram model on which to base the estimate. for example, We want to compute P(C/ab) but & c("a b c") =0 so the method will back off to the bignam and estimate P(c1b), which may be too high. But this doesn't happen in Jelinek-Mencer smoothing as a certain amount of a signed to reference conpus if the count is zeno in document.

Document: d and |d| = 11

Word	Count	P _{MLE} (w d)	
the	3	3/11	
sun	1	1/11	
rises	1	1/11	
in	2	2/11	
east	1	1/11	
and	1	1/11	
sets	1	1/11	
west	1	1/11	
а	0	0	
from	0	0	
retrieval	0	0	
BM25	0	0	

a. Unigram LM with dirichlet smoothing and μ = 4:

$$P(w|d) = \frac{c(w,d) + \mu \cdot p(w|c)}{|d| + \mu}$$

P(the | d) =
$$\frac{3+4*0.17}{11+4}$$
 = 0.245

$$P(sun \mid d) = \frac{1 + 4 * 0.05}{11 + 4} = 0.08$$

P(rises | d) =
$$\frac{1+4*0.04}{11+4}$$
 = 0.077

$$P(in \mid d) = \frac{2+4*0.16}{11+4} = 0.176$$

$$P(\text{east} \mid d) = \frac{1+4*0.02}{11+4} = 0.072$$

P(sets | d) =
$$\frac{1+4*0.04}{11+4}$$
 = 0.0773333333333333

$$P(west | d) = \frac{1+4*0.02}{11+4} = 0.072$$

$$P(a \mid d) = \frac{0+4*0.18}{11+4} = 0.048$$

P(from | d) =
$$\frac{0+4*0.13}{11+4}$$
 = 0.0346

P(retrieval | d) =
$$\frac{0+4*0.02}{11+4}$$
 = 0.0053

$$P(BM25 | d) = \frac{0+4*0.01}{11+4} = 0.002667$$

b. Unigram LM with dirichlet smoothing and μ = 0.01:

$$P(w|d) = \frac{c(w,d) + \mu \cdot p(w|c)}{|d| + \mu}$$

P(the | d) =
$$\frac{3+0.01*0.17}{11+0.01}$$
 = 0.2726

$$P(sun \mid d) = \frac{1 + 0.01 * 0.05}{11 + 0.01} = 0.09087$$

P(rises | d) =
$$\frac{1+4*0.04}{11+0.01}$$
 = 0.1053

$$P(in | d) = \frac{2+0.01*0.16}{11+0.01} = 0.1818$$

P(east | d) =
$$\frac{1+0.01*0.02}{11+0.01}$$
 = 0.0908

$$P(\text{and} \mid d) = \frac{1 + 0.01 * 0.16}{11 + 0.01} = 0.09097$$

$$P(\text{sets} \mid d) = \frac{1 + 0.01 * 0.04}{11 + 0.01} = 0.09086$$

$$P(\text{west} \mid d) = \frac{1 + 0.01 * 0.02}{11 + 0.01} = 0.0908$$

$$P(a \mid d) = \frac{0 + 0.01 * 0.18}{11 + 0.01} = 0.000163$$

P(from | d) =
$$\frac{0+0.01*0.13}{11+0.01}$$
 = 0.000118

P(retrieval | d) =
$$\frac{0+0.01*0.02}{11+0.01}$$
 = 0.0000181

$$P(BM25 \mid d) = \frac{0 + 0.01 * 0.01}{11 + 0.01} = 0.00000908$$

a. Unigram LM with dirichlet smoothing and μ = 100:

$$P(w|d) = \frac{c(w,d) + \mu \cdot p(w|c)}{|d| + \mu}$$

P(the | d) =
$$\frac{3+100*0.17}{11+100}$$
 = 0.18018

$$P(sun | d) = \frac{1+100*0.05}{11+100} = 0.054054$$

P(rises | d) =
$$\frac{1+100*0.04}{11+100}$$
 = 0.045045

$$P(in \mid d) = \frac{2+100*0.16}{11+100} = 0.162162$$

P(east | d) =
$$\frac{1+100*0.02}{11+100}$$
 = 0.027027

$$P(\text{and} \mid d) = \frac{1 + 100 * 0.16}{11 + 100} = 0.153153$$

$$P(\text{sets} \mid d) = \frac{1 + 100 * 0.04}{11 + 100} = 0.045045$$

$$P(\text{west} \mid d) = \frac{1 + 100 * 0.02}{11 + 100} = 0.027027$$

$$P(a \mid d) = \frac{0+100*0.18}{11+100} = 0.162162$$

P(from | d) =
$$\frac{0+100*0.13}{11+100}$$
 = 0.117117

P(retrieval | d) =
$$\frac{0+100*0.02}{11+100}$$
 = 0.018018

$$P(BM25|d) = \frac{0+100*0.01}{11+100} = 0.009$$

Comparison:

P(w d)	μ = 0.01	μ = 4	μ = 100
P(the d)	0.2726	0.245	0.18018
P(sun d)	0.09087	0.08	0.054054
P(rises d)	0.1053	0.077	0.045045
P(in d)	0.1818	0.176	0.162162
P(east d)	0.0908	0.072	0.027027
P(and d)	0.09097	0.1093333333333333	0.153153
P(sets d)	0.09086	0.07733333333333333	0.045045
P(west d)	0.0908	0.072	0.027027
P(a d)	0.000163	0.048	0.162162
P(from d)	0.000118	0.0346	0.117117
P(retrieval d)	0.0000181	0.0053	0.018018
P(BM25 d)	0.0000908	0.002667	0.009

From the comparison, we can see that when μ is higher P(w|d) is close to the probability of the word in the collection. On the other hand, when μ is lower P(w|d) is close to the MLE of the word from the document. That matches with our intuition.

c. Unigram LM with Jelinek Mercer smoothing and λ = 0.01:

$$P(w|d) = (1 - \lambda) \frac{c(w,d)}{|d|} + \lambda p(w|c)$$

P(the|d) =
$$(1-0.01)\frac{3}{11} + 0.01 * 0.17 = 0.2717$$

P(sun|d) =
$$(1-0.01)\frac{1}{11} + 0.01 * 0.05 = 0.0905$$

P(rises | d) =
$$(1-0.01)\frac{1}{11} + 0.01 * 0.04 = 0.0904$$

$$P(in | d) = (1-0.01) \frac{2}{11} + 0.01 * 0.16 = 0.1816$$

P(east | d) =
$$(1-0.01)\frac{1}{11} + 0.01 * 0.02 = 0.0902$$

P(and | d) =
$$(1-0.01)\frac{1}{11} + 0.01 * 0.16 = 0.0916$$

P(sets | d) =
$$(1-0.01)\frac{1}{11} + 0.01 * 0.04 = 0.0904$$

P(west|d) =
$$(1-0.01)\frac{1}{11} + 0.01 * 0.02 = 0.0902$$

$$P(a|d) = (1-0.01) \frac{0}{11} + 0.01 * 0.18 = 0.0018$$

P(from | d) =
$$(1-0.01)\frac{0}{11} + 0.01 * 0.13 = 0.0013$$

P(retrieval|d) =
$$(1-0.01)\frac{0}{11} + 0.01 * 0.02 = 0.0002$$

$$P(BM25|d) = (1-0.01)\frac{0}{11} + 0.01 * 0.01 = 0.0001$$

Unigram LM with Jelinek Mercer smoothing and $\lambda = 0.5$:

$$P(w|d) = (1 - \lambda) \frac{c(w,d)}{|d|} + \lambda p(w|c)$$

P(the|d) =
$$(1-0.5)\frac{3}{11} + 0.5 * 0.17 = 0.221363636363636364$$

$$P(sun | d) = (1-0.5) \frac{1}{11} + 0.5 * 0.05 = 0.07045$$

P(rises | d) =
$$(1-0.5)\frac{1}{11} + 0.5 * 0.04 = 0.0654545454545455$$

$$P(in | d) = (1-0.5) \frac{2}{11} + 0.5 * 0.16 = 0.170909$$

P(east|d) =
$$(1-0.5)\frac{1}{11} + 0.5 * 0.02 = 0.0554545$$

P(and|d) =
$$(1-0.5)\frac{1}{11} + 0.5 * 0.16 = 0.12545$$

P(sets | d) =
$$(1-0.5)\frac{1}{11} + 0.5 * 0.04 = 0.06545$$

$$P(\text{west}|d) = (1-0.5)\frac{1}{11} + 0.5 * 0.02 = 0.0554545$$

$$P(a|d) = (1-0.5) \frac{0}{11} + 0.5 * 0.18 = 0.09$$

P(from | d) =
$$(1-0.5)\frac{0}{11} + 0.5 * 0.13 = 0.065$$

P(retrieval|d) =
$$(1-0.5)\frac{0}{11} + 0.5 * 0.02 = 0.01$$

$$P(BM25|d) = (1-0.5)\frac{0}{11} + 0.5 * 0.01 = 0.005$$

Unigram LM with Jelinek Mercer smoothing and $\lambda = 0.9$:

$$P(w|d) = (1 - \lambda) \frac{c(w,d)}{|d|} + \lambda p(w|c)$$

P(the | d) =
$$(1-0.9)\frac{3}{11} + 0.9 * 0.17 = 0.1802727$$

$$P(sun | d) = (1-0.9) \frac{1}{11} + 0.9 * 0.05 = 0.05409$$

P(rises | d) =
$$(1-0.9)\frac{1}{11} + 0.9 * 0.04 = 0.04509$$

$$P(in|d) = (1-0.9) \frac{2}{11} + 0.9 * 0.16 = 0.1621818$$

P(east | d) =
$$(1-0.9)\frac{1}{11} + 0.9 * 0.02 = 0.02709$$

P(and | d) =
$$(1-0.9)\frac{1}{11} + 0.9 * 0.16 = 0.1530909$$

P(sets | d) =
$$(1-0.9)\frac{1}{11} + 0.9 * 0.04 = 0.0450909$$

$$P(\text{west}|d) = (1-0.9) \frac{1}{11} + 0.9 * 0.02 = 0.02709$$

$$P(a|d) = (1-0.9) \frac{0}{11} + 0.9 * 0.18 = 0.162$$

P(from | d) =
$$(1-0.9)\frac{0}{11} + 0.9 * 0.13 = 0.117$$

P(retrieval | d) = $(1-0.9)\frac{0}{11} + 0.9 * 0.02 = 0.018$
P(BM25 | d) = $(1-0.9)\frac{0}{11} + 0.9 * 0.01 = 0.009$

Comparison:

P(w d)	λ = 0.01	λ = 0.5	λ = 0.9
P(the d)	0.2717	0.2213	0.1802727
P(sun d)	0.0905	0.07045	0.05409
P(rises d)	0.0904	0.065454	0.04509
P(in d)	0.1816	0.170909	0.1621818
P(east d)	0.0902	0.0554545	0.02709
P(and d)	0.0916	0.12545	0.1530909
P(sets d)	0.0904	0.06545	0.0450909
P(west d)	0.0902	0.0554545	0.02709
P(a d)	0.0018	0.09	0.162
P(from d)	0.0013	0.065	0.117
P(retrieval d)	0.0002	0.01	0.018
P(BM25 d)	0.0001	0.005	0.009

From the comparison, we can see that when λ is higher P(w|d) is close to the probability of the word in the collection. On the other hand, when λ is lower P(w|d) is close to the MLE of the word from the document. That matches with our intuition. Also, both λ and μ resolves the sparsity problem where $\lambda \in [0,1]$ and $\mu \in [0,\infty]$

Score
$$(B, D) = \frac{P(R=1|Q,D)}{P(R=0|Q,D)}$$

$$P(R=0|Q,D)$$

$$P(D|Q,R=1)$$

$$P(D|Q,R=1)$$

$$P(D|Q,R=1)$$

$$P(w; |Q,R=1)$$

$$P(w; |Q,R=0)$$

Pocument D contains

The words , such that $|D|=k$

$$P(w; |Q,R=1)$$

$$P(w; |Q,R=0)$$

In the Score bunction, we have a sum over all the possible words in the vocaleulary v. and itenate through each word in the Document Essentially, we are only considering the word the documents because il a word is not in the document, ity contribution to the sum would be zero. Courts of parameter: c(w, D) -> IVI times P(w10, R=1) -> 11) times p(w10, 220) -> 111 times 31VI limes total

Hene, P(w|c) is the probability of the word in the collection the word in the collection γ is a smoothing parameter and γ is a smoothing

So, the Jelinek-Mencen smoothing function will be; $P(w|a, R=1) = (1-\lambda) P_{MLE}(w|a, R=1) + \lambda P(w|c)$ $= (1-\lambda) \frac{c(w, a, R=1)}{c(a, R=1)} + \lambda P(w|c)$

(e) scone
$$(Q,D) = \sum_{N \in V} c(\omega,D) \log \frac{P(\omega|Q,R=1)}{P(\omega|Q,R=0)}$$

$$\frac{P(\omega|Q,R=0)}{P(\omega|Q,R=0)}$$

=
$$\frac{1}{N \in V}$$
 c(w, p) log $\frac{1}{N} + \frac{1-\lambda}{N}$ $\frac{P_{MLE}(w_{1}Q, R=1)}{P(w_{1}Q)}$

The value of the logarithm term is non-negative. We see very clearly the TF weighting in the numerator IDF weighting, which is p(wie) term in the denominator