What is claimed is:

1	1.	An electro-larynx comprising:
2	1.	A. a waveform generator configured to selectively generate an input signal;
3		B. a linear transducer having a throat engagement portion, said linear transducer
4		configured to receive and transform said input signal into a corresponding output
5		vibration of said throat engagement portion, said output vibration being a
6		substantially linear function of said input signal; and
7		C. a power source.
1	2.	An electro-larynx according to claim 1, wherein the linear transducer includes:
2		a. an armature assembly, which receives said input signal and vibrates as a
3		function thereof;
∄ - 4		b. a suspension assembly coupled to said armature assembly; and
<u>.</u> 5		c. a coupler disk, as said engagement portion, coupled to said suspension
		assembly, wherein a vibration in said armature assembly causes a
¹ 6		corresponding vibration of said coupler disk.
		corresponding violation of said coupler disk.
# 1 1 2	3.	An electro-larynx according to claim 2 wherein the suspension assembly is a flexible
<u>.</u> 2		planar membrane.
] 1	•	
1	4.	An electro-larynx according to claim 2 wherein the suspension assembly is a mechanical
2		spring.
	_	
1	5.	An electro-larynx according to claim 2 wherein the armature assembly is substantially
2		disposed within a cylindrical motor assembly that defines an internal void region along a
3		central axis and having an radial magnetic field maintained within said internal void
4		region, and wherein said armature assembly includes:

5		a. a bobbin coupled to said suspension assembly and disposed within said
6		internal void region and along said central axis; and
7		b. a wire coil wrapped around said bobbin and within said magnetic field;
8		whereby when said input signal is applied to said wire coil a corresponding vibration of
9		said bobbin is experienced.
1	6.	An electro-larynx according to claim 2 wherein the armature assembly includes a piezo-
2		electric actuator coupled to said engagement portion, wherein an input signal delivered to
3		said piezo-electric actuator causes a corresponding linear vibration of said engagement
4		portion.
1	7.	An electro-larynx according to claim 2 wherein the armature assembly includes a
<u></u>		magneto-resistive element coupled to said engagement portion, wherein an input signal
∮ 3		delivered to said magneto-resistive element causes a corresponding linear vibration of
		said engagement portion.
. 1	8.	An electro-larynx according to claim 1 wherein the linear transducer has a substantially
는 2 [교급]		flat frequency response over a range of about 20 to 2KHz.
	9.	An electro-larynx according to claim 1 wherein said input signal generated by said
<u>ā</u> 2		waveform generator has a harmonic structure corresponding to a normal glottal
3		excitation, defined over multiple cycles.
1	10.	An electro-larynx according to claim 1 wherein the waveform generator includes:
2		a. glottal sample data stored in an electronic memory;
3		b. a pitch adjuster, configured to add pitch information to said glottal sample
4		data;
5		c. a multiplier, configured to add amplitude information to said glottal
6		sample data;

7

8

1

2

7		d. an equalization filter for generating from said glottal sample data, pitch
8		information, and amplitude information a base digital input signal having
9		a predetermined frequency response; and
10		e. a digital to analog converter, configured to transform said base digital
11		input signal into said input signal.
1	11.	An electro-larynx according to claim 10 wherein the glottal sample data is obtained by
2		inverse filtering and digitally sampling voice data.
1	12.	A linear transducer, for use in an electro-larynx having a waveform generator that
2		produces an input signal and a power source, said linear transducer comprising:
3		A. an armature assembly, which receives said input signal and vibrates as a function
4		thereof;
5		B. a suspension assembly coupled to said armature assembly; and
6		C. a coupler disk, coupled to said suspension assembly, wherein a vibration in said

13. A linear transducer according to claim 12 wherein the suspension assembly is a flexible planar membrane.

armature assembly causes a corresponding vibration of said coupler disk

1 14. A linear transducer according to claim 12 wherein the suspension assembly is a mechanical spring.

according to a linear function of said input signal

1 15. A linear transducer according to claim 12 wherein the armature assembly is substantially
2 disposed within a cylindrical motor assembly that defines an internal void region along a
3 central axis and having a magnetic field maintained with said internal void region, and
4 wherein said armature assembly includes:

5		a. a bobbin coupled to said suspension assembly and disposed within said
6		internal void region and along said central axis; and
7		b. a wire coil wrapped around said bobbin and within said magnetic field;
8		whereby when said input signal is applied to said wire coil a corresponding vibration of
9		said bobbin is experienced.
1	16.	A linear transducer according to claim 12 wherein the armature assembly includes a
2		piezo-electric actuator coupled to said coupler disk, wherein an input signal delivered to
3		said piezo-electric actuator causes a corresponding linear vibration of said coupler disk.
1	17.	A linear transducer according to claim 12 wherein the armature assembly includes a
2		magneto-resistive element coupled to said coupler disk, wherein an input signal delivered
3		to said magneto-resistive element causes a corresponding linear vibration of said coupler
4		disk.
1	18.	A linear transducer according to claim 12 wherein the linear transducer has a substantially
2		flat frequency response over a range of about 20 to 2KHz.
1	19.	A waveform generator, for use as part of an electro-larynx having a transducer and a
2		power supply, wherein said waveform generator includes:
3		A. glottal sample data stored in an electronic memory, wherein said glottal sample
4		data is defined over multiple cycles;
5		B. a pitch adjuster, configured to add pitch information to said glottal sample data;
6		C. a mixer, configured to add amplitude information to said glottal sample data;
7		D. an equalization filter for generating from said glottal sample data, pitch
8		information, and amplitude information a base digital input signal having a
9		predetermined frequency response; and
10		E. a digital to analog converter, configured to transform said base digital input signal
11		into an input signal for use by the transducer

1 20. A waveform generator according to claim 19 wherein the glottal sample data is obtained 2 by inverse filtering and digitally sampling voice data. 1 21. A waveform generator according to claim 19 wherein the glottal sample data is derived 2 from a mathematical model which preserves the harmonic qualities of the voice data. 1 22. An electro-larynx comprising: 2 a waveform generator configured to selectively generate an input signal, wherein A. 3 said input signal has a harmonic structure corresponding to a normal glottal 4 excitation, defined over multiple cycles; 5 B. a transducer having a throat engagement portion, said transducer configured to 日6 47 178 日1 1 receive and transform said input signal into a corresponding output vibration of said throat engagement portion; and C. a power source. 23. An electro-larynx according to claim 22 wherein the waveform generator includes: **| =** 2 glottal sample data stored in an electronic memory; a. IJ 3 ليرا b. a pitch adjuster, configured to add pitch information to said glottal sample data; ₫5 c. a multiplier, configured to add amplitude information to said glottal 6 sample data; an equalization filter for generating from said glottal sample data, pitch 7 d. 8 information, and amplitude information a base digital input signal having 9 a predetermined frequency response; and a digital to analog converter, configured to transform said base digital 10 e.

11

input signal into said input signal.

- 1 24. An electro-larynx according to claim 23 wherein the glottal sample data is obtained by inverse filtering and digitally sampling voice data.
- 1 25. An electro-larynx according to claim 23 wherein the glottal sample data is derived from a mathematical model which preserves the harmonic qualities of the voice data.