Practical Time-Series Clustering for Messy Data in R

Jonathan Page University of Hawaii Economic Research Organization uhero.hawaii.edu

16 February, 2018

Problem Definition

GoFundMe-like company in Kenya needs to understand the typical activity patterns in campaign contributions.

Creating a list of campaign archetypes will allow them to reason about the effects of changes to their platform and campaign-specific interventions.

Outline

- 1. Messy data -> Matrix of trajectories
- 2. Dynamic Time Warping (DTW) clusters
- 3. k-Shape (or Shape-based) clusters

Messy Data

Data Cleaning Plan

- 1. Select tables and columns necessary for analysis
- 2. Remove test campaigns and users
- 3. Produce long table of features
- 4. Create trajectory matrix for each feature

Raw Data

Transactions

campaign_id	contributor_id	amount	payment_time	
1	1	64	2016-01-01 00:00:01	
1	2	128	2016-01-01 06:00:02	
1	3	256	2016-01-02 12:34:56	
1	3	512	2016-01-03 06:54:32	
1	2	1024	2016-01-05 07:53:10	
2	2	2048	2016-01-07 23:59:59	

Campaigns

campaign_id	start_time
1	2016-01-01 00:00:00
2	2016-01-05 12:00:00

Intermediate Data

Combined and aggregated (in-time)

campaign_id	balance	amount	contributors	day_of_campaign
1	192	192	2	1
1	448	256	1	2
1	960	512	1	3
1	1984	1024	1	5
2	2048	2048	1	3

Matrix of trajectories

Balance trajectories

 b_{it}

192	448	960	960	1984
0	0	2048	2048	2048

Amount trajectories

a_{it}

100	25.6	F10		1004
192	256	512	U	1024
0	0	2048	0	0

Data Cleaning

```
library(tidyverse)
transactions <- read csv("transactions.csv")</pre>
end of time <- max(transactions$payment date)
campaigns <- read csv(
    "campaigns.csv",
    na = c("", "0000-00-00 00:00:00")
  ) %>%
  mutate(
    days old = as.numeric(difftime(
      end_of_time,
      date_created,
      units = "days"
    ))
```

Data Cleaning

```
transactions <- transactions %>%
  inner join(
    campaigns %>%
      select(campaign id, date created)
  ) %>%
  mutate(
    day_of_campaign = as.numeric(difftime(
      payment_date,
      date_created,
      units = "days"
    ))
  ) %>%
  select(-date_created)
```

Data Cleaning

```
clean_transactions <- campaigns %>%
  filter(days old >= 30) %>%
  select(campaign id) %>%
  left join(transactions) %>%
  group by (campaign id) %>%
  summarize(
    transaction_count = n(),
    contributors = length(unique(contributor))
  ) %>%
  filter(contributors > 1) %>%
  select(campaign_id) %>%
  left_join(transactions) %>%
  group_by(campaign_id) %>%
  arrange(payment_date) %>%
  mutate(campaign_balance = cumsum(amount))
```

Daily Series

```
daily_series <- clean_transactions %>%
  mutate(day_of_campaign = floor(day_of_campaign) + 1) %>%
  filter(day_of_campaign <= 30) %>%
  group_by(campaign_id, day_of_campaign) %>%
  arrange(id) %>%
  summarise(
    balance = last(campaign balance),
    amount = sum(amount),
   transactions = n(),
  ) %>%
  filter(day of campaign > 0)
```

Long-form Balance Trajectories

Campaign Balance (log-scale)

From sparse series to full matrix

```
balance_traj <- daily_series %>%
  filter(day_of_campaign %in% 1:30) %>%
  select(campaign_id, day_of_campaign, balance) %>%
  spread(day_of_campaign, balance) %>%
  mutate(`1` = coalesce(`1`, 0)) %>%
  remove_rownames() %>%
  column_to_rownames("campaign_id") %>%
  apply(1, FUN=zoo::na.locf) %>%
  t()
```

From sparse series to full matrix

```
amount_traj <- daily_series %%

filter(day_of_campaign %in% 1:30) %>%

select(campaign_id, day_of_campaign, amount) %>%

spread(day_of_campaign, amount, fill = 0) %>%

remove_rownames() %>%

column_to_rownames("campaign_id")
```

Balance Trajectories

Campaign Balance (log-scale)

Dynamic Time Warping

Dynamic Time Warping

Sakoe-Chiba Window

Local Cost Matrix

DTW Code

Results, k=4

Results, k=9

Campaign Balance partitional clusters, dtw_basic distance, pam centroids, k = 9 1 569 campaigns 2 321 campaigns 3 219 campaigns 100.000 -1,000 -10-4 138 campaigns 5 124 campaigns 6 118 campaigns 7 108 campaigns 8 95 campaigns 9 49 campaigns

Results, k=16

Campaign Balance partitional clusters, dtw_basic distance, pam centroids, k = 16 1 274 campaigns 2 171 campaigns 3 170 campaigns 136 campaigns 100,000 -1.000 -5 115 campaigns 7 108 campaigns 6 115 campaigns 8 102 campaigns 100.000 -1,000 -10-9 101 campaigns 10 91 campaigns 11 85 campaigns 12 67 campaigns 100.000 -1,000 -10 -13 60 campaigns 14 53 campaigns 15 49 campaigns 16 44 campaigns

k-Shape Clustering

Shape-based distance

Cross-correlation with shift

$$SBD(\vec{x}, \vec{y}) = 1 - \max_{s} \left(\frac{\vec{x}_{(s)} \cdot \vec{y}}{\sqrt{\|\vec{x}\|^2 \|\vec{y}\|^2}} \right)$$

$$\vec{x}_{(s)} = \begin{cases} \underbrace{(0, \dots, 0, x_1, x_2, \dots, x_{m-s}), & s \ge 0 \\ (x_{1-s}, \dots, x_{m-1}, x_m, \underbrace{0, \dots, 0}_{|s|}), & s < 0 \end{cases}$$

Paparrizos J, Gravano L (2015). "k-Shape: Efficient and Accurate Clustering of Time Series." In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, {SIGMOD '15}, pp. 1855-1870. ACM, New York, NY, USA. ISBN 978-1-4503-2758-9. doi:10.1145/2723372.2737793.

SBD Code

```
pc_sbd4 <- tsclust(
  balance_traj,
  type = "p",
  k = 4L,
  seed = 1234,
  distance = "sbd"
)</pre>
```

Results for k=4

Results for k=9

Results for k=16

Resources

${\sf R}\ {\sf packages} :$

- ▶ dtwclust
- ▶ tidyverse

Handout Answers

1.21e+06	1.43e+07	2.56e+06	1.87e+06	1.21e-01	2.78e-02	1.89e-01	3.76e-02
2.29e+07	9.23e+06	2.74e+07	2.66e+07	1.76e-02	1.24e-01	7.08e-02	8.60e-03
4.18e+06	1.73e+07	1.96e+04	7.96e+05	 3.47e-02	2.36e-01	1.06e-03	8.44e-02
3.33e+06	1.64e+07	8.08e+05	1.39e+05	 1.01e-02	1.84e-01	4.07e-02	3.86e-02
4.19e+06	1.73e+07	2.64e+04	8.04e+05	 1.14e-02	2.10e-01	1.61e-02	6.39e-02
4.18e+06	1.73e+07	1.84e+04	7.96e+05	3.44e-01	9.05e-02	4.06e-01	2.34e-01
4.13e+06	1.72e+07	3.10e+04	7.43e+05	 3.47e-02	2.36e-01	1.06e-03	8.44e-02
4.18e+06	1.73e+07	1.89e+04	7.97e+05	4.34e-02	1.65e-01	1.02e-01	3.32e-02