NAOSITE: Nagasaki University's Academic Output SITE

Title	Assessment of (210)Po and (210)Pb in marine biota of the Mallipattinam ecosystem of Tamil Nadu, India.
Author(s)	Suriyanarayanan, S; Brahmanandhan, G M; Samivel, K; Ravikumar, S; Hameed, P Shahul
Citation	Journal of environmental radioactivity, 101(11), pp.1007-1010; 2010
Issue Date	2010-11
URL	http://hdl.handle.net/10069/23464
Right	Copyright © 2010 Elsevier Ltd All rights reserved.

This document is downloaded at: 2020-09-18T01:08:24Z

ASSESSMENT OF ²¹⁰Po AND ²¹⁰Pb IN MARINE BIOTA OF THE MALLIPATTINAM

ECOSYSTEM OF TAMILNADU, INDIA

S.Suriyanarayanan¹, G.M.Brahmanandhan²*, K. Samivel³, S. Ravikumar⁴, P. Shahul

Hameed⁵

¹Center for Water and Health, JSS University, SS Nagara, Mysore-570 015, Karnataka, India

²Nagasaki University Radioisotope Research Center, 1-12-4, Sakamoto, Nagasaki 852-8523,

Japan

³Environmental Research Lab, P.G. Department of Zoology, Jamal Mohamed College,

Tiruchirappalli-620 020, Tamilnadu, India

⁴Faculty of Biotechnology, PRIST University, Thanjavur-613 403, Tamilnadu, India

⁵Director, Environment Research Center, JJ College of Engineering and Technology,

Tiruchirappalli-620 009, Tamilnadu, India

*Corresponding Author:

E-mail: brahma king@yahoo.com

Phone: +81-95-819-7150

Fax: +81-95-819-7153

1

ASSESSMENT OF ²¹⁰Po AND ²¹⁰Pb IN MARINE BIOTA OF THE MALLIPATTINAM

ECOSYSTEM OF TAMILNADU, INDIA

Abstract:

To provide baseline data on background radiation levels for the future assessment of the

impact of nuclear and thermal power stations, a systematic study was carried out in the

Mallipattinam ecosystem of Tamilnadu, India. Mallipattinam is located between the Kudankulam

and Kalpakkam nuclear power plants and near to Tuticorin thermal power plant. Water,

sediments, seaweeds, crustaceans, molluscs, and fish were collected to measure the

concentrations of ²¹⁰Po and ²¹⁰Pb. The concentrations of ²¹⁰Po and ²¹⁰Pb in most samples are

comparable to values reported worldwide. In fish, the concentrations of ²¹⁰Po and ²¹⁰Pb are in the

range of 16-190 Bg.kg⁻¹ and 8-153 Bg.kg⁻¹, respectively. The concentration factors of ²¹⁰Po and

²¹⁰Pb for the biotic components ranges from 10³ to 10⁶.

Keywords: Polonium; Lead; Palk Strait; Biota

1. Introduction:

Numerous sources of radiation (both natural and man made) can lead to internal and

external human exposures. According to Clayton and Bradley (1995), about 18% of the average

internal dose to humans is caused by the ingestion of ²¹⁰Po, along with its precursor ²¹⁰Pb. Lead-

210 forms naturally in sediments and rocks that contain ²³⁸U, as well as in the atmosphere as a

by-product of radon gas. Within 10 days of its creation from radon, ²¹⁰Pb falls out of the

atmosphere (Pietrzak-Flis and Skowronska-Smolak, 1995; Karali et al., 1996). It accumulates on

the surface of the Earth, where it is stored. In general, the concentrations of ²¹⁰Po and ²¹⁰Pb are

relatively low in meat and milk products, intermediate in vegetables and cereals, and much

higher in most marine organisms.

2

The best known high background radiation area in India is the southwest coast, i.e., Kerala. The southeast coast also has some sparse distribution of high levels of radiation. On the east coast, two nuclear power plants are situated: one is functioning at Kalpakkam, and the other is under construction at Kudankulam. Therefore, a systematic study was undertaken to measure the activity of ²¹⁰Po and ²¹⁰Pb in abiotic and biotic components on the east coast. As a continuation of our previous work (Suriyanarayanan et al., 2008), we are now reporting the results from the Mallipattinam ecosystem. The study area, Mallipattinam, is situated in the Palk Strait, about 350 km south of Chennai (Madras). It is a muddy shore that serves as a protective shelter for many invertebrates. Radioactivity studies remain fragmentary at this station, and hence the present investigation was launched to determine the activity of ²¹⁰Po and ²¹⁰Pb.

2. Materials and Methods

Samples of water, sediment, seaweeds, crustaceans, molluses and fish were collected and washed thoroughly with distilled water to free them from attached sand/silt. The soft tissues and muscles were separated from the shells, exoskeletons or bones of animals. The wet weights of the samples were recorded, and the samples were then dried in an oven at 110°C overnight to obtain the dry weights.

2.1. Water:

2.1.1 ²¹⁰Po analysis: Approximately 50 L of water was filtered through Whatman 42 filter paper and acidified with concentrated HCl to pH 1. A Fe³⁺ carrier (500 mg) was added and ²¹⁰Po was collected on Fe(OH)₃ by slow addition of concentrated ammonium hydroxide with rapid stirring until reaching pH 9. Two repeated precipitations were carried out to completely capture ²¹⁰Po. The precipitate was dissolved in 0.5 N HCl, and ²¹⁰Po was deposited on both sides of a polished

silver planchette by electrochemical deposition. Alpha counting was carried out according to the procedure of Flynn (1968) and Iyengar (1983).

2.1.2. ²¹⁰Pb analysis: Water (~100 L) was filtered through Whatman 40 filter paper and passed through Fe(OH)₃ impregnated acrylic fiber (25 g) packed in a glass column at a flow rate of 50-60 ml/min (Krishnaswamy et al., 1972). After complete passage of the water, the column was rinsed with distilled water and the fiber transferred to a 500 ml beaker containing hot 8 N HCl. The fiber was kept immersed until it was bleached white. The leachate was evaporated to dryness on a hot plate, and the residue was dissolved in 2 M HNO₃ and made up to 50 ml. This solution was then used for the determination of ²¹⁰Pb via its beta-emitting daughter (Iyengar, 1983; Kamath et al., 1964).

2.2. Sediment and biological materials:

Five to twenty grams of dry weight sediment and the biological materials were homogenized and transferred to a 400 ml beaker and repeatedly digested with concentrated HNO₃:H₂O₂(1:1) oxidizing mixture until a white ash was obtained.

- 2.2.1. 210 Po analysis: The ash was evaporated repeatedly with concentrated HCl to convert the ash into chloride medium. Then the ash was dissolved in 0.5 N HCl, and the 210 Po electrochemically deposited on a silver planchette (Suriyanarayanan et al., 2008). The deposition efficiency of 210 Po using this method varied from 95-100%, with an average efficiency of 98 ± 2%. A Radiation Counting System (ECIL-RCS 4027-A) was used with an ZnS(Ag) detector (ECIL-SP 647-A) having a background of 0.1-0.2 cpm and a counting efficiency of 25-28% for a 239 Pu standard source.
- 2.2.2. ²¹⁰Pb analysis: One to three grams of ash was leached with 2 N HNO₃, then filtered and made up to 50 ml. Lead-210 determination used the method of Suriyanarayanan et al., (2008).

The counting system comprised a gas flow-type GM counter with argon as the counting gas and isopropyl alcohol vapor as the quenching agent. A coincidence-anticoincidence technique was used to reduce the background (Mishra and Kerala Varma, 1963). A 15 cm thick lead shield substantially reduced background. The background was 1.5-2.0 cpm, with a counting efficiency of 40% for 40 K β -energy. The sample purity was checked by 210 Bi decay over a 120 h period, and the final activity was calculated by applying the necessary corrections for decay, chemical recovery (80 \pm 4%), date of sampling, etc. Spiked experimental recoveries on water and biological samples using this method yielded an overall efficiency of 90%.

3. Results and Discussion:

Table 1 presents the activity concentrations of ²¹⁰Po and ²¹⁰Pb in water, sediments, seaweeds, sea grass, crustaceans and molluscs of the Mallipattinam ecosystem. All the ²¹⁰Po and ²¹⁰Pb results are expressed in Bq.kg⁻¹ (Fresh weight) and the compared results are also in same fresh/wet weight basis. In water, our values are lower than the reported values from the nearby coastal water of Mandapam (Somasundaram et al., 1998), Kalpakkam (Iyengar, 1982), and Point Calimere (Suriyanarayanan et al., 2008). Saito et al. (2003) reported that the ²¹⁰Pb and ²¹⁰Po levels in the Cananeia-Iguape Estuary of Brazil vary from 2.1 to 6.2 mBq.l⁻¹ and from 1.6 to 4.1 mBq.l⁻¹, respectively, and attributed this high activity to the presence of phosphatic rocks in that region. Taken together, it is clear that Mallipattinam coastal water does not possess high activity of ²¹⁰Po and ²¹⁰Pb.

In sediment, our ²¹⁰Po and ²¹⁰Pb activities (Table 1) were less than those of other sites, including Kalpakkam (Iyengar et al., 1983), the Red Sea (Sirelkhatim et al., 2008), the Bay of Ghazaouet on the Algerian coast (Noureddine and Baggoura, 1997), and the Bay of Bengal (Sharif et al., 1994).

The concentrations of ²¹⁰Po in seaweeds *Sargassum wightii* and *Grateloupia filicina* were 26 and 10 Bq.kg⁻¹, respectively, whilst the ²¹⁰Pb concentration was 2 Bq.kg⁻¹ in both. Because seaweeds are rich in protein, a higher activity of ²¹⁰Po was observed rather than ²¹⁰Pb. The observed concentrations of ²¹⁰Po and ²¹⁰Pb in seaweeds of the Mallipattinam ecosystem are comparable with the reported values from the Mandapam (Somasundaram et al., 1998) and Tuticorin (Krishnamookthy et al., 2008) ecosystems. Miura et al. (1999) reported that the ²¹⁰Po value for the seaweed *Gelidium amansii* was 10 Bq.kg⁻¹, which is also comparable with our results. For sea grass (*Cymadocea serrulata*), the activities of ²¹⁰Po and ²¹⁰Pb were 11 and 2 Bq.kg⁻¹, respectively. The former value is lower than that reported by Krishnamookthy et al., (2008) (15.4 Bq.kg⁻¹) from the nearby Mandapam ecosystem.

Among crustaceans, one prawn (*Penaeus indicus*) and three crabs (*Portunus pelagicus*, *Portunus sanguinolentus* and *Ocypoda*) were selected for measurement of ²¹⁰Po and ²¹⁰Pb concentrations. The concentrations in prawns of Mallipattinam were higher than those reported in Kalpakkam (Iyengar et al., 1983), Mumbai (Mishra et al., 2009), Goa (Avadhani et al., 2001) and the Sao Paulo region of Brazil (Saito et al., 2003). In crabs, the ²¹⁰Po activity in muscle and exoskeleton ranged between 265-324 and 55-96 Bq.kg⁻¹, respectively, while the ²¹⁰Pb activity ranged between 3-5 Bq.kg⁻¹ in muscle and 3-10 Bq.kg⁻¹ in exoskeleton. The measured ²¹⁰Po activity was much higher than that recorded on the Kalpakkam coast (Kannan et al., 2001).

In molluscs, five species (*Strombus canarium, Tonna dolium, Sepia elliptica, Scapharca inaequivalvis,* and *Gafrarium dispar*) were taken for measurement of ²¹⁰Po and ²¹⁰Pb activities (Table 1). Among the five species, *G. dispar* possessed the highest ²¹⁰Po activity (415 Bq.kg⁻¹ in soft tissue). In all varieties of crustaceans and molluscs, the ²¹⁰Po activity was higher in soft tissue than in the shell/exoskeleton, whereas the ²¹⁰Pb activity was vice versa. Lead is a bone

seeker and has a long residence time in the skeleton. The higher concentration of lead in the skeleton may be linked to its capacity to replace calcium. Similar results have been reported by Asokan et al., (1992).

Fish play a significant role in the transfer of radionuclides to humans. Nine of the most abundant fish varieties in the Mallipattinam ecosystem were collected; the ²¹⁰Po and ²¹⁰Pb activities are shown in Table 2. Among the varieties, Sardinella longiceps (oil sardine, plankton feeder) recorded the highest ²¹⁰Po activity in its muscle (190 Bq.kg⁻¹), whereas Sphyraena barracuda (ray-finned fish, carnivore) recorded the highest ²¹⁰Pb activity (97 Bq.kg⁻¹) in its bone. Both the ²¹⁰Po and ²¹⁰Pb activities of fish on the Mallipattinam coast are very high compared with values reported in the literature. In Syria, Al-Masri et al., (2000) reported the ²¹⁰Po activity in Sardinella sp. with a range of 10.65-18.45 Bq.kg⁻¹, which is very low compared with those obtained here. However, Khan et al., (2007) reported that the S. longiceps has high natural gamma radiation activity in the coast around Kudankulam of the Gulf of Mannar, which is just 200 km south of Mallipattinam. Plankton feeders tend to accumulate higher ²¹⁰Po than the carnivores, omnivores, and detritus feeders, which is the case in the present study. Polonium-210 levels in the muscles of marine fish samples obtained in the present study were comparable with those obtained by Bangera and Rudran (1995) (520-25,000 mBg.kg⁻¹) and Kannan et al., (2001) (1100-29,600 mBq.kg⁻¹). In all fish, the concentrations of ²¹⁰Po in muscle were higher than in bones. Concentrations of ²¹⁰Po in muscle are important for humans, who consume mostly the muscles of fish. This accounts for the high rate of dose transfer to humans (Iyengar, 1983).

The ²¹⁰Po and ²¹⁰Pb concentration factors for our marine organisms ranged between 10³ and 10⁵. Generally, higher concentration factors were seen in mollusc species than in seaweeds and crustaceans, confirming that they could serve as good indicators of radionuclide pollutants in

a marine environment. Similar results were found by Saito et al., (2003) in Sao Paulo, Brazil, where molluscs were found to have a higher concentration factor. The concentration factors for fish are in the range of 1-50 (x10⁴), which is higher than the range reported for fish by Saito et al., (2003) and the MARDOS Project (1994). From these results, it is clear that the ²¹⁰Po and ²¹⁰Pb concentrations in water, seaweeds, sea grass, crustaceans, and molluscs of the Mallipattinam ecosystem are comparable with those reported elsewhere, except for plankton feeder fish, which had higher concentrations than reported values.

4. Conclusion:

Polonium-210 and Lead-210 concentrations were measured in the biota of the Mallipattinam ecosystem to obtain a better understanding of the regional ingestion dose as well as to provide a baseline to assess any changes that may occur as a consequence of the development of nuclear facilities in this area. The ²¹⁰Po and ²¹⁰Pb activities were found to be low in water, sediments, and biota, except for some varieties of fish such as *S. longiceps*. The soft tissues of crustaceans and molluscs were found to accumulate contaminants at concentrations significantly higher than those of ambient water. The differences in the concentrations of ²¹⁰Po and ²¹⁰Pb in biota are probably due to differences in lifestyle and feeding habits.

References:

- 1. Al-Masri, M.S., Mamish, S., Budeir, Y., Nashwati, A., 2000. ²¹⁰Po and ²¹⁰Pb concentrations in fish consumed in Syria. J. Environ. Radiact., 49, 345-352.
- Asokan, R., Shahul Hameed, P., 1992. Distribution of natural radionuclides ⁴⁰K in biotic and abiotic components of the Cauvery river system, Tiruchirapalli, India. J. Biosci., 17, 491.

- 3. Avadhani, D.N., Mahesh, H.M., Karunakara, N., Narayana, Y., Somashekarappa, H.M., Siddappa, K., 2001. Dietary intake of ²¹⁰Po and ²¹⁰Pb in the environment of Goa of southwest coast of India. Health Physics, 81, 438-445.
- Bangera, V.S., Rudran, K., 1995. Internal radiation dose to the public from polonium-210 dose to consumption of seafood from Bombay Harbour Bay. Bull. Radiat. Prot. 18, 192– 197.
- 5. Clayton, R.F., Bradley, E.J., 1995. A cost effective method for the determination of ²¹⁰Po and ²¹⁰Pb in environmental materials. Sci. Total Environ. 173/174, pp. 23–28.
- 6. Flynn, W.W., 1968. The determination of low levels of polonium-210 in environmental materials. Anal. Chim. Acta 43, 221–227.
- 7. International Atomic Energy Agency (IAEA), 1994. Sources of radioactivity in the marine environment and their relative contributions to overall dose assessment from marine radioactivity (MARDOS Project). (IAEA-MEL-R2/94), IAEA, Vienna.
- 8. Iyengar, M.A.R., 1983. Studies on the Distribution of Natural Radioactivity in Marine Organisms. Ph.D. thesis, University of Bombay, Bombay.
- 9. Iyengar, M.A.R., Kannan, V., Ganapathy, S., Kamath, P.R., 1982. ²¹⁰Po in the coastal waters of Kalpakkam. In: Vohra, K.G., Mishra, U.C., Pillai, K.C., Sadasivan, S., (Ed.), Natural Radiation Environment (Proceedings of the Second Special Symposium Bombay). New Delhi: Wiley Eastern Ltd.; 1982: 227–233.
- 10. Kamath, P.R., Bhat, I.S., Kamala Rudran, Iyengar, M.A.R., Koshy, E., Waingankar, U.S., Khanolkar, V.S., 1964. Recent radiochemical procedures for bioassay studies at Trombay. Proceedings of the Symposium on Assessment of Radioactivity in Man, IAEA, Heidelberg, Vienna, pp. 195–215.

- 11. Kannan, V., Iyengar M.A.R., Ramesh, R., 2001. Dose estimates to the public from ²¹⁰Po ingestion via dietary sources at Kalpakkam (India). Appl. Rad. Isotopes. 54, 663-674.
- 12. Karali, T., Olmez, S., Yener, G., 1996. Study of spontaneous deposition of ²¹⁰Po on various metals and application for activity assessment in cigarette smoke. Appl. Radiat. Isot. 47, 409–411.
- 13. Khan, M.F., Raj, Y.L., Ross, E.M., Wesley, S.G., 2007. Concentration of natural radionuclides (⁴⁰K, ²²⁸Ra and ²²¹Ra) in sea food and their dose to coastal adult inhabitants around Kudankulam, Gulf of Mannar, South India. Inter. J. Low Level Radiat. 4, 217-231.
- 14. Krishnamookthy, R., Masilamani, V., Sadiqbukharp, A, Syed Mohamed, HE., Shahulhameed P, 2008. Comparative study of polonium-210 distributions in sea weeds, sea grass and mangroves in the estuarine and marine ecosystem of south Tamil Nadu. Seaweed Research and Utilisation, 30, 1-2.
- Krishnaswamy, S., Lal, P., Somayajulu, B.L., Dixon, F.S., Stonecipher, S.A., Craig, H.,
 Si, Ra, Th and Pb in sea water: in situ extraction by synthetic fiber. Earth Planet.
 Lett. 16, 84–90.
- 16. Mishra, S., Bhalke, S., Pandit, G.G., Puranik, V.D., 2009. Estimation of ²¹⁰Po and its risk to human beings due to consumption of marine species at Mumbai, India. Chemosphere. 76, 402-406.
- 17. Mishra, U.C., and Kerala Varma, R, 1963. Low-level beta activity measurement of solid samples using plastic scintillator anticoincidence. Nuclear Instruments and Methods. 24, 473-476.

- 18. Noureddine, A., Baggoura, B., 1997. Plutonium isotopes, ¹³⁷Cs, ⁹⁰Sr, and natural radioactivity in marine sediments from Ghazaouet, Algeria. J. Environ. Radioact. 34, 127–138.
- 19. Pietrzak-Flis, Z, Skowronska-Smolak, M., 1995. Transfer of ²¹⁰Pb and ²¹⁰Po to plants via root system and above-ground inception. Sci. Total Environ. 162,139–147.
- 20. Saito, R.T., Cunha, I.I.L., Figueira, R.C.L., Tessler, M.G., 2003. ²¹⁰Pb and ²¹⁰Po levels in sediments, water, and bioindicators in the Cananeia-Iguape estuary Sao Paulo Brazil. Czech. J. Phys. 53, A75-A81.
- 21. Sharif, A.K.M., Bilkis, A.B., Roy, S., Sikder, M.D.H., Idriss Ali, K.M., Safiullah, S., 1994. Concentrations of radionuclides in coastal sediments from the Bay of Bengal. Sci. Total Environ. 153, 57–60.
- 22. Sirelkhatim, D.A., Sam, A.K., Hassona, R.K., 2008. Distribution of ²²⁶Ra-²¹⁰Pb-²¹⁰Po in marine biota and surface sediments of the Red Sea, Sudan. J. Environ. Radioact. 99, 1825-1828.
- 23. Somasundaram, S.S.N., 1998. Studies on the Distribution and Bioaccumulation of Natural Radionuclides in the Ecosystem of Gulf of Mannar, India. Ph.D. thesis, Bharathidasan University, Tiruchirappalli.
- 24. Suriyanarayanan, S., Brahmanandhan, G.M., Malathi, J., Ravi Kumar, S., Masilamani, V., Shahul Hameed, P., Selvasekarapandian, S., 2008. Studies on the distribution of ²¹⁰Po and ²¹⁰Pb in the ecosystem of Point Calimere Coast (Palk Strait), India. J. Environ. Radioact. 99, 766-771.

25. Miura, T., Hayano, K., Nakayama, K. 1999. Determination of ²¹⁰Po and ²¹⁰Pb in Environmental samples by alpha ray spectrometry using an extraction chromatographic resin. Analytical Sciences, 15, 23-28.

Table 1: The 210 Po and 210 Pb activities and concentration factors of biota from the Mallipattinam ecosystem.

Name of samples	Number of	Activity (Bq.kg ⁻¹ F.W)		Concentration factor ^a	
-	samples	²¹⁰ Po	²¹⁰ Pb	²¹⁰ Po	²¹⁰ Pb
Water	12	0.4	0.6	_	-
Sediments	8	4	1	-	-
Seaweeds					
Sargassum wightii	8	26 ± 2	2 ± 1	7×10^4	3×10^{3}
Grateloupia filicina	8	10 ± 1	2 ± 1	3×10^4	3×10^{3}
Sea grass					
Cymadocea serrulata	8	11 ± 1	2 ± 1	3×10^4	3×10^{3}
Crustaceans					
Prawn					
Penaeus indicus	8				
Muscle		119 ± 6	6 ± 1	3×10^{5}	10×10^3
Exoskeleton		77 ± 4	13 ± 2	2×10^{5}	2×10^4
Crabs					
Portunus pelagicus	4				
Muscle		265 ± 9	5 ± 1	7×10^{5}	8×10^{3}
Exoskeleton		55 ± 2	3 ± 1	1×10^{5}	$\frac{8 \times 10^3}{8 \times 10^3}$
Portunus sanguinolentus	4				
Muscle		300 ± 4	3 ± 1	7×10^5	6×10^3
Exoskeleton		96 ± 2	10 ± 2	2×10^5	2×10^5
Ocypoda	4		-		-
Muscle		324 ± 12	3 ± 1	8 x 10 ⁵	6×10^3
Exoskeleton		90 ± 1	5 ± 1	2×10^4	8×10^{3}
Molluscs					
Gastropods					
Strombus canarium	8				
Soft tissue		11 ± 2	2 ± 1	3×10^4	3×10^{3}
Shell		3 ± 1	3 ± 1	8×10^{3}	6×10^3
Tonna dolium	8				
Soft tissue	-	132 ± 16	2 ± 1	3×10^5	3×10^{3}
Shell		4 ± 1	4 ± 1	10×10^3	7×10^{3}
Cephalopod					
Sepia elliptica	8				
Soft tissue		45 ± 2	27 ± 2	1 x 10 ⁵	5×10^4
Shell		31 ± 2	31 ± 2	8×10^4	5×10^4
Scapharca inaequivalvis	8				-
Soft tissue		225 ± 12	9 ± 3	6 x 10 ⁵	2×10^4
Shell		4 ± 1	10 ± 1	$10 \text{ x} 10^3$	2×10^4
Gafrarium dispar	8				-
Soft tissue		415 ± 23	12 ± 6	1×10^6	2×10^4
Shell		3 ± 1	16 ± 1	7×10^{3}	3×10^4
210		1	210		1

^a Concentration factor = 210 Pb activity in biota (Bq.kg⁻¹F.W)/ 210 Pb activity in water (Bq.l⁻¹)

Table 2: The 210 Po and 210 Pb activities and concentration factors in selected fishes of the Mallipattinam ecosystem.

Name of samples	Number	Number Activity (Bq.kg ⁻¹ F.W)		Concentration factor ^a	
	of samples	²¹⁰ Po	²¹⁰ Pb	²¹⁰ Po	²¹⁰ Pb
Argyrosomus amoyensis	12				
Muscle		16 ± 1	5 ± 1	4×10^4	$\frac{8 \times 10^3}{10 \times 10^3}$
Bone		8 ± 1	6 ± 1	2×10^4	10×10^3
Apolectus niger	12				
Muscle		24 ± 1	2 ± 1	6×10^4	3×10^3 5×10^3
Bone		22 ± 2	3 ± 1	6×10^4	5×10^{3}
Synaptura commersoniana	10				
Muscle		38 ± 2	16 ± 1	9 x 10 ⁴	3×10^4
Bone		24 ± 2	17 ± 1	6×10^4	3×10^4 3×10^4
Lutianus johnii	12				
Muscle		38 ± 2	17 ± 2	9×10^4 7×10^4	3×10^4 3×10^4
Bone		26 ± 2	19 ± 2	7×10^4	3×10^4
Liza vaigiensis	12				
Muscle		41 ± 2	1 ± 0.5	1×10^4	$\frac{2 \times 10^3}{7 \times 10^4}$
Bone		21 ± 2	4 ± 1	5×10^4	7×10^4
Sphyraena barracudda	10				
Muscle		44 ± 1	10 ± 1	1×10^{5}	2×10^4
Bone		40 ± 3	97 ± 5	1 x 10 ⁴	2×10^4
Tachysurus jella	10				
Muscle		44 ± 2	3 ± 1	1×10^{4}	5×10^3
Bone		21 ± 2	4 ± 1	5 x 10 ⁴	6×10^3
Eleutheronema	10				
tetradactylum					
Muscle		116 ± 7	1 ± 0.5	3×10^5	2×10^3 2×10^4
Bone		62 ± 4	14 ± 3	2×10^4	2×10^4
Sardinella longiceps	12				
Muscle		190 ± 5	13 ± 1	5×10^5	2×10^4
Bone		153 ± 8	44 ± 5	4×10^{5}	7×10^4

^aConcentration factor = 210 Pb activity in biota (Bq.kg⁻¹ F.W)/ 210 Pb activity in water (Bq.l⁻¹)