19.2 The angular frequency can be computed as $\omega_0 = 2\pi/360 = 0.017453$. Because the data are equispaced, the coefficients can be determined with Eqs. 19.14-19.16. The various summations required to set up the model can be determined as

t	Radiation	$\cos(\omega_0 t)$	sin(<i>∞₀t</i>)	ycos(<i>a</i> ₀t)	ysin(<i>a</i> ₀t)
15	144	0.96593	0.25882	139.093	37.270
45	188	0.70711	0.70711	132.936	132.936
75	245	0.25882	0.96593	63.411	236.652
105	311	-0.25882	0.96593	-80.493	300.403
135	351	-0.70711	0.70711	-248.194	248.194
165	359	-0.96593	0.25882	-346.767	92.916
195	308	-0.96593	-0.25882	-297.505	-79.716
225	287	-0.70711	-0.70711	-202.940	-202.940
255	260	-0.25882	-0.96593	-67.293	-251.141
285	211	0.25882	-0.96593	54.611	-203.810
315	159	0.70711	-0.70711	112.430	-112.430
345	<u>131</u>	0.96593	-0.25882	<u>126.536</u>	<u>-33.905</u>
sum→	2954			-614.175	164.429

The coefficients can be determined as

$$A_0 = \frac{\Sigma y}{N} = \frac{2954}{12} = 246.1667$$

$$A_1 = \frac{2}{N} \Sigma y \cos(\omega_0 t) = \frac{2}{12} (-614.175) = -102.363$$

$$B_1 = \frac{2}{N} \Sigma y \sin(\omega_0 t) = \frac{2}{12} (164.429) = 27.4048$$

Therefore, the best-fit sinusoid is

$$R = 246.1667 - 102.363\cos(0.017453t) + 27.4048\sin(0.017453t)$$

The data and the model can be plotted as

The value for mid-August can be computed as

$$R = 246.1667 - 102.363\cos(0.017453(225)) + 27.4048\sin(0.017453(225)) = 299.1698$$

19.4
$$a_0 = 0$$

$$a_k = \frac{2}{T} \int_{-T/2}^{T/2} -2t \cos(k\omega_0 t) dt$$
$$= -\frac{4}{T} \left[\frac{1}{(k\omega_0)^2} \cos(k\omega_0 t) + \frac{t}{k\omega_0} \sin(k\omega_0 t) \right]_{-T/2}^{T/2}$$

$$\begin{aligned} b_k &= \frac{2}{T} \int_{-T/2}^{T/2} -2t \sin(k\omega_0 t) dt \\ &= -\frac{4}{T} \left[\frac{1}{(k\omega_0)^2} \sin(k\omega_0 t) - \frac{t}{k\omega_0} \cos(k\omega_0 t) \right]_{-T/2}^{T/2} \end{aligned}$$

On the basis of these, all a's = 0. For k = odd,

$$b_k = \frac{2}{k\pi}$$

For k = even,

$$b_k = -\frac{2}{k\pi}$$

Therefore, the series is

$$f(t) = -\frac{2}{\pi} \sin(\omega_0 t) + \frac{1}{\pi} \sin(2\omega_0 t) - \frac{2}{3\pi} \sin(3\omega_0 t) + \frac{1}{2\pi} \sin(4\omega_0 t) + \cdots$$

The first 4 terms are plotted below along with the summation:

19.20 (a) Eighth-order polynomial:

```
>> x=linspace(-1,1,9);

>> y=1./(1+25*x.^2);

>> p=polyfit(x,y,8);

>> xx=linspace(-1,1);

>> yy=polyval(p,xx);

>> yr=1./(1+25*xx.^2);

>> plot(x,y,'o',xx,yy,xx,yr,'--')
```


(b) linear spline:

```
>> x=linspace(-1,1,9);
>> y=1./(1+25*x.^2);
>> xx=linspace(-1,1);
>> yy=interp1(x,y,xx);
>> yr=1./(1+25*xx.^2);
>> plot(x,y,'o',xx,yy,xx,yr,'--')
```


(b) cubic spline:

```
>> x=linspace(-1,1,9);
>> y=1./(1+25*x.^2);
>> xx=linspace(-1,1);
>> yy=spline(x,y,xx);
>> yr=1./(1+25*xx.^2);
>> plot(x,y,'o',xx,yy,xx,yr,'--')
```


19.23 This problem is convenient to solve with MATLAB

(a) When we first try to fit a sixth-order interpolating polynomial, MATLAB displays the following error message

Therefore, we redo the calculation but centering and scaling the x values as shown,

```
>> xs=(x-500)/100;
>> p=polyfit(xs,y,6);
```

Now, there is no error message so we can proceed.

```
>> xx=linspace(0,1000);
>> yy=polyval(p,(xx-500)/100);
>> yc=xx/200.*exp(-xx/200+1);
>> plot(x,y,'o',xx,yy,xx,yc,'--')
```

This results in a decent plot. Note that the interpolating polynomial (solid) and the original function (dashed) almost plot on top of each other:

(b) Cubic spline:

```
>> x=[0 100 200 400 600 800 1000];
>> y=[0 0.82436 1 .73576 .40601 .19915 .09158];
>> xx=linspace(0,1000);
>> yc=xx/200.*exp(-xx/200+1);
>> yy=spline(x,y,xx);
>> plot(x,y,'o',xx,yy,xx,yc,'--')
```

For this case, the fit is so good that the spline and the original function are indistinguishable.

(c) Cubic spline with clamped end conditions (zero slope):

```
>> x=[0 100 200 400 600 800 1000];
>> y=[0 0.82436 1 .73576 .40601 .19915 .09158];
>> ys=[0 y 0];
>> xx=linspace(0,1000);
>> yc=xx/200.*exp(-xx/200+1);
>> yy=spline(x,ys,xx);
>> plot(x,y,'o',xx,yy,xx,yc,'--')
```

For this case, the spline differs from the original function because the latter does not have zero end derivatives.

