Notation: $\hat{\Gamma} \vdash \delta_1, ..., \delta_n$ means $\hat{\Gamma} \vdash \delta_1$ and $\hat{\Gamma} \vdash \delta_2$ and ... and $\hat{\Gamma} \vdash \delta_n$, where each δ_i is a judgement.

Lemma 1 (Narrowing 1 (Subtypes)). If $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2 \text{ and } \hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau} \text{ then } \hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2$

Proof. By induction on $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2$. The tricky cases are S-TypePoly and S-TypeVar; the others follow by routine application of the inductive hypothesis to subderivations.

Case: S-Reflexive. Then $\hat{\tau}_1 = \hat{\tau}_2$, and $\hat{\tau}_1 <: \hat{\tau}_2$ holds in any context, including $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}$.

Case: S-Transitive. Let $\hat{\tau}_1 = \hat{\tau}_A$ and $\hat{\tau}_2 = \hat{\tau}_C$. By inversion, there is some $\hat{\tau}_B$ such that $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_A <: \hat{\tau}_B$ and $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_B <: \hat{\tau}_C$. Applying the inductive assumption, we get the judgements $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}_A <: \hat{\tau}_B$ and $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}_B <: \hat{\tau}_C$. Then by S-Transitive, $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}_A <: \hat{\tau}_C$, which is the same as $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2$.

Case: S-RESOURCESET. Follows immediately, since the premises of this rule have nothing to do with the context. That is, if $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \{\overline{r_1}\} <: \{\overline{r_2}\}$, then by inversion, $r \in \overline{r_1} \implies r \in \overline{r_2}$. Then by S-RESOURCESET, $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \{\overline{r_1}\} <: \{\overline{r_2}\}$.

Case: S-TypePoly. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash (\forall Y <: \hat{\tau}_A.\hat{\tau}_B) <: (\forall Z <: \hat{\tau}_A'.\hat{\tau}_B')$. By inversion, we have the following two judgements:

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}'_A <: \hat{\tau}_A$
- 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}, Y <: \hat{\tau}'_A \vdash \hat{\tau}_B <: \hat{\tau}'_B$

Using (1) and the assumption $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$, the inductive hypothesis can be used to obtain (3).

3. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}'_A <: \hat{\tau}_A$

Let $\Delta' = \Delta, Y <: \hat{\tau}'_A$. With this, and the assumption $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$, we shall apply the inductive hypothesis to obtain (4),

4. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}' \vdash \hat{\tau}_B <: \hat{\tau}'_B$

Expanding the definition of Δ' , we get (5),

5. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}, Y <: \hat{\tau}'_A \vdash \hat{\tau}_B <: \hat{\tau}'_B$

From (3) and (5), we can use S-TypePoly to obtain (6), which is the theorem conclusion.

6. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash (\forall Y <: \hat{\tau}_A.\hat{\tau}_B) <: (\forall Z <: \hat{\tau}'_A.\hat{\tau}'_B)$

Case: S-TypeVar. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash Y <: \hat{\tau}_B$. There are two cases, depending on whether X = Y.

Subcase 1. X = Y. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash X <: \hat{\tau}$. It is also true that (1) $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash X <: \hat{\tau}'$, by use of S-TypeVar. The assumption $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$ can be widened to (2) $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}' <: \hat{\tau}$. Then by (1) and (2), we can apply S-Transitive to get $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash X <: \hat{\tau}$.

Subcase 2. $X \neq Y$. Then $X <: \hat{\tau}$ is not used in the derivation of $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash Y <: \hat{\tau}_B$, so the judgement can be strengthened to $\hat{\Gamma}, \hat{\Delta} \vdash Y <: \hat{\tau}_B$. Then the judgement can be weakened to $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash Y <: \hat{\tau}_B$.

Lemma 2 (Narrowing 2 (Effects)). If $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \varepsilon_1 \subseteq \varepsilon_2 \text{ and } \hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}, \text{ then } \hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \varepsilon_1 \subseteq \varepsilon_2$.

Proof. By induction on $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \varepsilon_1 \subseteq \varepsilon_2$.

Lemma 3 (Narrowing 3 (Types)). If $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e} : \hat{\tau}_A$ with ε and $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$ then $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e} : \hat{\tau}_A$ with ε_A

Proof. By induction on the derivation of $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e} : \hat{\tau}_A$ with ε_A . ε -ABS, ε -POLYTYPEABS, ε -POLYTYPEAPP, ε -POLYFXAPP are the tricky cases; they require the use of the inductive hypothesis in a slightly more tricky way. The other cases follow by routine induction.

[Case: ε-VAR.] Then $\hat{\Gamma}$, $X <: \hat{\tau}$, $\hat{\Delta} \vdash x : \hat{\tau}_A$ with Ø, where $\hat{e} = x$. Since $X <: \hat{\tau}$ is not used in the derivation, we can strengthen the context to get $\hat{\Gamma}$, $\hat{\Delta} \vdash x : \hat{\tau}_A$ with Ø. Then by weakening, $\hat{\Gamma}$, $X <: \hat{\tau}'$, $\hat{\Delta} \vdash x : \hat{\tau}_A$ with Ø.

Case: ε -RESOURCE. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash r : \{\bar{r}\}$ with \varnothing , where $\hat{e} = r$. Since $X <: \hat{\tau}$ is not used in the derivation, we can strengthen the context to get $\hat{\Gamma}, \hat{\Delta} \vdash r : \{r\}$ with \varnothing . Then by weakening, $\hat{\Gamma}, x <: \hat{\tau}', \hat{\Delta} \vdash r : \{r\}$ with \varnothing .

Case: ε -OPERCALL. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1.\pi$: Unit with $\varepsilon_1 \cup \{r.\pi \mid r \in \overline{r}\}$, and $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1$: $\{\overline{r}\}$ with ε_1 . To this second judgement we apply the inductive hypothesis, giving $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1 : \{\overline{r}\}$ with ε_1 . With this new judgement, apply ε -OPERCALL to get $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1.\pi$: Unit with $\varepsilon_1 \cup \{r.\pi \mid r \in \overline{r}\}$.

Case: ε -Subsume. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e} : \hat{\tau}_A$ with ε_A . By inversion, $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_A <: \hat{\tau}_B, \varepsilon \subseteq \varepsilon'$. By applying Narrowing Lemma 1 to the first judgement, $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau} <: \hat{\tau}'$. By applying the Narrowing Lemma for effects¹, $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \varepsilon \subseteq \varepsilon'$. With these two judgements, ε -Subsume can be used to obtain the judgement $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e} : \hat{\tau}_A$ with ε_A .

Case: ε -ABS. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \lambda x : \hat{\tau}_1.\hat{e}_2 : \hat{\tau}_1 \rightarrow_{\varepsilon_2} \hat{\tau}_2$ with \varnothing , where $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}, x : \hat{\tau}_1 \vdash \hat{e}_2 : \hat{\tau}_2$ with ε_2 . By letting $\hat{\Delta}' = \hat{\Delta}, x : \hat{\tau}_1$, this second judgement can be rewritten as (1),

1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}' \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2.$

Using (1) and the assumption that $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$, apply the inductive hypothesis to obtain (2),

2. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}' \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2.$

Using the definition of $\hat{\Delta}'$, this can be simplified,

3. $\hat{\Gamma}$, $X <: \hat{\tau}'$, $\hat{\Delta}$, $x : \hat{\tau}_1 \vdash \hat{e}_2 : \hat{\tau}_2$ with ε_2 .

Then with (3) we can use ε -ABS to get (4),

 $4. \ \hat{\varGamma}, X <: \hat{\tau}', \hat{\varDelta} \vdash \lambda x : \hat{\tau}_1.e_2 : \hat{\tau}_1 \to_{\varepsilon_2} \hat{\tau}_2 \text{ with } \varnothing$

Case: ε -APP. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 \ \hat{e}_2 : \hat{\tau}_3$ with $\varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$, where the following judgements are true from inversion:

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 : \hat{\tau}_2 \rightarrow_{\varepsilon_3} \hat{\tau}_3$ with ε_1
- 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2$

By applying the inductive assumption to (1) and (2), we get (3) and (4),

3.
$$\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1 : \hat{\tau}_2 \rightarrow_{\varepsilon_3} \hat{\tau}_3$$
 with ε_1

¹ This has yet to be proven

4. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2$

Then by ε -APP, we get $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1 \ \hat{e}_2 : \hat{\tau}_3 \text{ with } \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$.

Case: ε -PolyTypeAbs. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \lambda Y <: \hat{\tau}_1.\hat{e}_2 : \forall Y <: \hat{\tau}_1.\hat{\tau}_2 \text{ caps } \varepsilon_2 \text{ with } \emptyset$. From inversion, we have $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}, Y <: \hat{\tau}_1 \vdash \hat{e}_2 : \hat{\tau}_2$ with ε_2 . By letting $\Delta' = \Delta, Y <: \hat{\tau}_1$, the second judgement can be

1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}' \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2$

By applying the inductive hypothesis to (1), we get judgement (2), which further simplifies to (3) by simplifying Δ' ,

- $\begin{array}{ll} 2. & \hat{\varGamma}, X <: \hat{\tau}', \hat{\varDelta}' \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2 \\ 3. & \hat{\varGamma}, X <: \hat{\tau}', \hat{\varDelta}, Y <: \hat{\tau}_1 \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2 \end{array}$

Then by ε -PolyTypeAbs, we get $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \lambda Y <: \hat{\tau}_1.\hat{e}_2 : \forall Y <: \hat{\tau}_1.\hat{\tau}_2 \text{ caps } \varepsilon_2 \text{ with } \emptyset$.

Case: ε -PolyFxAbs. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \lambda \phi \subseteq \varepsilon. \hat{e}_1 : \forall \phi \subseteq \varepsilon. \hat{\tau}_1 \text{ caps } \varepsilon_1 \text{ with } \varnothing$. By inversion, $\hat{\Gamma}, X <: \hat{\tau}_1 \in \mathcal{E}_1$ $\hat{\tau}, \hat{\Delta}, \phi \subset \varepsilon \vdash \hat{e}_1 : \hat{\tau}_1$ with ε_1 . By letting $\hat{\Delta}' = \hat{\Delta}, \phi \subset \varepsilon$, the second judgement can be rewritten as (1),

1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}' \vdash \hat{e}_1 : \hat{\tau}_1 \text{ with } \varepsilon_1$

Using (1) and the assumption that $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$, the inductive hypothesis gives judgement (2), which further simplifies to (3) by expanding the definition of $\hat{\Delta}'$,

- $\begin{array}{ll} 2. & \hat{\varGamma}, X <: \hat{\tau}', \hat{\varDelta}' \vdash \hat{e}_1 : \hat{\tau}_1 \text{ with } \varepsilon_1 \\ 3. & \hat{\varGamma}, X <: \hat{\tau}', \hat{\varDelta}, \phi \subseteq \varepsilon \vdash \hat{e}_1 : \hat{\tau}_1 \text{ with } \varepsilon_1 \end{array}$

Then from (2), we can apply ε -PolyFxABS, giving the judgement $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \lambda \phi \subseteq \varepsilon. \hat{e}_1 : \forall \phi \subseteq \varphi$ $\varepsilon.\hat{\tau}_1$ caps ε_1 with \varnothing .

Case: ε -PolyTypeApp. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_A \ \hat{\tau}_1' : [\hat{\tau}_1'/Y]\hat{\tau}_2$ with $[\hat{\tau}_1'/Y]\varepsilon_1 \cup \varepsilon_2$, where the following judgements are from inversion:

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_A : \forall Y <: \hat{\tau}_1.\hat{\tau}_2 \text{ caps } \varepsilon_1 \text{ with } \varepsilon_2$
- 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}'_1 <: \hat{\tau}_1$

With the assumption that $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}' <: \hat{\tau} \text{ and } (1)$, we can apply the inductive hypothesis to get (3). With the same assumption and (2), we can apply Narrowing Lemma 1 (Subtypes) to get (4),

- 3. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_A : \forall Y <: \hat{\tau}_1.\hat{\tau}_2 \text{ caps } \varepsilon_1 \text{ with } \varepsilon_2$ 4. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}'_1 <: \hat{\tau}_1$

From (3) and (4), ε -POLYTYPEAPP gives the judgement $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_A \hat{\tau}'_1 : [\hat{\tau}'_1/Y]\hat{\tau}_2$ with $[\hat{\tau}'_1/Y]\varepsilon_1 \cup \varepsilon_2$.

Case: ε -PolyFxApp. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_A \varepsilon' : [\varepsilon'/\phi]\hat{\tau}_2$ with $[\varepsilon'/\phi]\varepsilon_1 \cup \varepsilon_2$, where the following are true by inversion:

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_A : \forall \phi \subseteq \varepsilon. \hat{\tau}_2 \text{ caps } \varepsilon_1 \text{ with } \varepsilon_2$ 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \varepsilon' \subseteq \varepsilon$

With the assumption that $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}' <: \hat{\tau}$ and (1), we can apply the inductive hypothesis to obtain (3). With the same assumption and (2), we can apply the Narrowing Lemma for Effect Judgements² to get (4),

- 3. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_A : \forall \phi \subseteq \varepsilon. \hat{\tau}_2 \text{ caps } \varepsilon_1 \text{ with } \varepsilon_2$
- 4. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \varepsilon' \subseteq \varepsilon$

With (3) and (4) we can apply ε -PolyFxAPP to get $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_A \varepsilon' : [\varepsilon'/\phi]\hat{\tau}_2$ with $[\varepsilon'/\phi]\varepsilon_1 \cup \varepsilon_2$.

Case: ε -IMPORT. (We prove for a single import). Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \mathsf{import}(\varepsilon_s) \ x_1 = \hat{e}_1 \ \mathsf{in} \ e$: annot (τ, ε_s) with $\varepsilon_s \cup \varepsilon_1$. By inversion, $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 : \hat{\tau}_1$ with ε_1 . By inductive hypothesis, $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 : \hat{\tau}_1$ $\hat{\tau}', \hat{\Delta} \vdash \hat{e}_1 : \hat{\tau}_1$ with ε_1 . This, together with the other premises obtained by inversion, gives the judgement $\widetilde{\Gamma}, X <: \hat{\tau}', \widetilde{\Delta} \vdash \mathtt{import}(arepsilon_s) \ x_1 = \hat{e}_1 \ \mathtt{in} \ e : \mathtt{annot} \ (au, arepsilon_s) \ \mathtt{with} \ arepsilon_s \cup arepsilon_1.$

² Doesn't actually exist yet