

New Zealand Mathematical Olympiad Committee

A Test for Orthogonality

Heather Macbeth

1 Introduction

These notes outline a useful theorem in geometry. It provides a method for proving that two lines intersect at right angles without explicitly calculating the lines' point of intersection.

Theorem 1. Two coplanar line segments AC and BD are perpendicular if and only if $AB^2 + CD^2 = AD^2 + CB^2$.

2 A proof using lengths

Proof. Let X and Y be the feet of the perpendiculars from B and D respectively to AC, and let x and y be the lengths of these perpendiculars. By Pythagoras, $AB^2 = (x^2 + AX^2)$, etc., so $AB^2 + CD^2 = AD^2 + CB^2$ if and only if $AX^2 + CY^2 = AY^2 + CX^2$.

If $AX^2 + CY^2 = AY^2 + CX^2$, then

$$(AX - AY)(AX + AY) = (CX - CY)(CX + CY).$$

Let XY = d, AX = a, CX = c. There are three possibilities for the positioning of A:

- A lies past X on the ray YX, and (AX AY)(AX + AY) = -d(d + 2a).
- A lies between X and Y, and (AX AY)(AX + AY) = (2a d)d.
- A lies past Y on the ray XY, and (AX AY)(AX + AY) = d(2a + d).

The equivalent is true of C, and so, swapping A and C if necessary, we have six cases:

- 1. A far side of X, C far side of X. -d(d+2a) = -d(d+2c).
- 2. A far side of X, C between X and Y. -d(d+2a) = (2c-d)d.
- 3. A far side of X, C far side of Y. -d(d+2a) = d(2c+d).
- 4. A between X and Y, C between X and Y. (2a-d)d = (2c-d)d.

- 5. A between X and Y, C far side of Y. (2a-d)d = d(2c+d).
- 6. A far side of Y, C far side of Y. d(2a+d)=d(2c+d).

Suppose $AX^2 + CY^2 = AY^2 + CX^2$ but AC and BD are not perpendicular. Then d > 0, so we can divide through by d in whichever of the six equations is valid. It immediately follows that cases 1, 4, 6 are degenerate since they imply AX = CX and A and C on the same side of X, and hence that A and C coincide.

Case 3 implies -(d+2a) = 2c + d, a contradiction since $-(d+2a) \le -d < 0 < d \le 2c + d$. Case 2 implies a = -c, a contradiction unless we have the degenerate case of A and C coinciding at X. Case 5 implies that d = -d and hence d = 0, contrary to assumption.

It follows that if $AX^2 + CY^2 = AY^2 + CX^2$ then AC and BD are perpendicular. Conversely, if AC and BD are perpendicular, then X and Y coincide, so $AX^2 + CY^2 = AY^2 + CX^2$.

(This pure-geometry proof can be shortened somewhat by treating AC, AX etc. as directed rather than undirected line segments.)

3 A proof using vectors

Proof. Choose some arbitrary origin O. AC and BD are perpendicular if and only if $(\overrightarrow{OA} - \overrightarrow{OC}) \cdot (\overrightarrow{OB} - \overrightarrow{OD}) = 0$; that is,

$$\overrightarrow{OA} \cdot \overrightarrow{OB} + \overrightarrow{OC} \cdot \overrightarrow{OD} = \overrightarrow{OA} \cdot \overrightarrow{OD} + \overrightarrow{OC} \cdot \overrightarrow{OB}.$$

 $AB^2 + CD^2 = AD^2 + CB^2$ if and only if

$$||\overrightarrow{OA} - \overrightarrow{OB}||^2 + ||\overrightarrow{OC} - \overrightarrow{OD}||^2 = ||\overrightarrow{OA} - \overrightarrow{OD}||^2 + ||\overrightarrow{OC} - \overrightarrow{OB}||^2;$$

that is,

$$(\overrightarrow{OA} - \overrightarrow{OB}) \cdot (\overrightarrow{OA} - \overrightarrow{OB}) + (\overrightarrow{OC} - \overrightarrow{OD}) \cdot (\overrightarrow{OC} - \overrightarrow{OD}) = (\overrightarrow{OA} - \overrightarrow{OD}) \cdot (\overrightarrow{OA} - \overrightarrow{OD}) + (\overrightarrow{OC} - \overrightarrow{OB}) \cdot (\overrightarrow{OC} - \overrightarrow{OB}),$$
or
$$-2\overrightarrow{OA} \cdot \overrightarrow{OB} - 2\overrightarrow{OC} \cdot \overrightarrow{OD} = -2\overrightarrow{OA} \cdot \overrightarrow{OD} - 2\overrightarrow{OC} \cdot \overrightarrow{OB}.$$

These are clearly equivalent.

4 Examples

Example 1. Let ABC be any triangle. Two squares BAEP and CAFR are constructed externally to ABC. Let M be the midpoint of BC. Show that AM is perpendicular to EF.

Solution: We want to prove that $ME^2 + AF^2 = MF^2 + AE^2$.

The Cosine Rule gives

$$\begin{array}{rcl} ME^2 & = & MB^2 + BE^2 - 2MB \cdot BE \cos \angle CBE \\ & = & \frac{1}{4}a^2 + 2c^2 - 2 \cdot \frac{1}{2}a \cdot \sqrt{2}c \cdot \frac{1}{\sqrt{2}}(\cos \angle CBA - \sin \angle CBA). \end{array}$$

Hence

$$ME^{2} + AF^{2} = \frac{1}{4}a^{2} + 2c^{2} - ac\cos\angle CBA + ac\sin\angle CBA + b^{2}$$

$$= -\frac{1}{4}a^{2} + \frac{3}{2}c^{2} + \frac{1}{2}(a^{2} + c^{2} - 2ac\cos\angle CBA) + 2(\frac{1}{2}ac\sin\angle CBA) + b^{2}$$

$$= -\frac{1}{4}a^{2} + \frac{3}{2}c^{2} + \frac{3}{2}b^{2} + 2\triangle ABC.$$

By symmetry, $MF^2 + AE^2$ is equal to the same value, so the orthogonality holds.

Example 2. Let ω_1 and ω_2 be two circles with centres O_1 and O_2 respectively. Show that the set of all points which have equal powers with respect to ω_1 and ω_2 (known as the *radical axis* of ω_1 and ω_2) is a straight line perpendicular to O_1O_2 .

Solution: It suffices to prove that for any two such points P and Q, PQ is perpendicular to O_1O_2 .

For this, let r_1 and r_2 be the radii of ω_1 and ω_2 respectively. Then the powers of P and Q with respect to ω_1 and ω_2 are $O_1P^2-r_1^2$, $O_2P^2-r_2^2$, $O_1Q^2-r_1^2$, $O_2Q^2-r_2^2$.

$$\begin{split} O_1P^2 + O_2Q^2 &= (O_1P^2 - r_1^2) + (O_2Q^2 - r_2^2) + r_1^2 + r_2^2 \\ &= (O_2P^2 - r_2^2) + (O_2Q^2 - r_2^2) + r_1^2 + r_2^2 \\ &= O_2P^2 + O_1Q^2. \end{split}$$

It follows that PQ and O_1O_2 are perpendicular.

March 11, 2007

http://www.mathsolympiad.org.nz