

Exercise Sheet 3

General remarks:

- Due date: November 11th 12:30 (before the exercise class).
- Please submit your solutions via MOODLE. Remember to provide your matriculation number. It is necessary to hand in your solutions in groups of **three**. You may use the MOODLE forum to form groups.
- Solutions must be written in English.
- While we will publish sketches of exercise solutions, we do *not* guarantee that these sketches contain all details that are necessary to properly solve an exercise. Hence, it is recommended to attend the exercise classes.
- If you have any questions regarding the lecture or the exercise, please use the forum in MOODLE.

Exercise 1 (Metropolis-Hastings)

25P

(a) [10P] Write a WEBPPL program that given a function f and a symmetric sampling kernel $g(x_{t+1}|x_t)$, implements the Metropolis-Hastings algorithm.

```
Solution:
var sampler = function(n, func, prop, x_old, samples){
  if(n == 0) return samples;
  var x_new = prop(x_old);
  var alpha = func(x_new) / func(x_old) // symmetric kernel
  var u = uniform({a:0, b:1})
  if(u <= alpha)
    return sampler(n-1, func, prop, x_new, samples.concat(x_new))
  return sampler(n, func, prop, x_old, samples)
}</pre>
```

(b) [10P] Extend the program from task (a) such that you can visualize the histogram for n=20000 samples, starting at $x_0=0.2$ with:

```
1. f(x) = \frac{1}{2}e^{-\frac{(x-2)^2}{2}} + \frac{1}{2}e^{-\frac{(x+2)^2}{2}}, with g(x_{t+1}|x_t) \sim \mathcal{N}(x_t, 0.3).

2. f(x) = \begin{cases} -0.1319x^4 + 1.132x^2 + 0.5, & x \in (-3,3) \\ 0, & \text{o.w.} \end{cases}, with g(x_{t+1}|x_t) \sim \mathcal{N}(x_t, 0.3)
```

```
Solution:
var f1 = function(x){
   return 0.5 * Math.exp(-((x-2)*(x-2))/2) + 0.5 * Math.exp(-((x+2)*(x+2))/2)
}

var f2 = function(x){
   if(x < -3 || x > 3) return 0;
```

```
return -0.1319 * Math.pow(x,4) + 1.132*x*x + 0.5
}

var prop = function(x){
  return gaussian({mu:x, sigma:0.3})
}

var n = 20000
  var x_init = 0.2

viz.auto(sampler(n, f1, prop, x_init, []))
  viz.auto(sampler(n, f2, prop, x_init, []))
```

(c) [5P] Describe what impact the parameter σ^2 of the proposal distribution has.

Solution: If σ^2 is too small: (high acceptance rate, low exploration) \to slow convergence. If σ^2 is too large: (very low acceptance rate, high exploration) \to slow convergence.

Exercise 2 (pGCL)

25P

(a) [10P] Consider the following description of a stochastic process:

You live in the \mathbb{Z}^2 plane and are currently standing on position (x_0, y_0) . You choose a direction (North, South, West, East) uniformly at random and take a step in this direction. You repeat this process until you have reached (0,0).

Design a pGCL program that exactly implements this behavior.

```
Solution:

x:=x0; y:=y0;

while(x != 0 || x != 0) {

{ {x:=x-1} [0.5] {x:=x+1} }

[0.5]

{ {y:=y-1} [0.5] {y:=y+1} }

}
```

(b) [15P] Give the operational semantics of the pGCL program defined in (a) as a Markov chain for one loop iteration.

Solution: Notation: We write [a,b] for the variable valuation s(x) = a, s(x) = b. If $x_0 \neq 0 \lor y_0 \neq 0$, then the initial fragment of the operational semantics Markov chain after one loop iteration looks like this:

If $x_0 = y_0 = 0$, then the result following finite Markov chain: $\langle P, [*,*] \rangle \xrightarrow{1} \langle y := y_0; \dots, [x_0,*] \rangle \xrightarrow{1} \langle \text{while} \dots, [x_0,y_0] \rangle \xrightarrow{1} \langle \downarrow, [0,0] \rangle \xrightarrow{1} \langle \sin k \rangle \nearrow 1$ If $x_0 = y_0 = 0$, then the loop body is never entered and the operational semantics is the

$$\langle P, [*,*] \rangle \xrightarrow{\quad 1 \quad} \langle \mathbf{y} := \mathbf{y} \mathbf{0}; \dots, [x_0,*] \rangle \xrightarrow{\quad 1 \quad} \langle \mathbf{while} \dots, [x_0, y_0] \rangle \xrightarrow{\quad 1 \quad} \langle \downarrow, [0,0] \rangle \xrightarrow{\quad 1 \quad} \langle \sinh \rangle \xrightarrow{\quad 1 \quad} \langle$$

Exercise 3 (Markov chains with rewards)

25P

(a) [15P] Consider a six-sided fair die. Compute the expected number of trials needed to see a six for the first time by modeling the problem with a Markov chain with

Hint: The following variant of the geometric series might be helpful: For 0 < q < 1,

$$\sum_{k>0} kq^k = \frac{q}{(1-q)^2} \ .$$

(b) [10P] Modify your reward Markov chain from part (a) such that it models the conditional expected number of trials needed to see a six for the first time given that the first trial was no six. Indicate the set F of "forbidden" states. You do not have to compute the conditional expected reward.

Solution:

(a) We use the following Markov chain with rewards and goal set $G = \{2\}$:

The idea is to count every trial (= visit to state 1) by assigning it a reward r(1) = 1. The expected number of trials is then given as $ER(1, \Diamond G)$. In order to compute this quantity, we consider all finite paths from 1 to $G = \{2\}$ in our reward Markov chain:

So all these paths are of the form 1^k 2, where 1^k denotes the string $\underbrace{1\dots 1}_{k \text{ times}}$ and $k \geq 1$.

Further, the reward of these paths is $r_G(1^k \ 2) = k$ and they occur with probability $Pr(1^k \ 2) = \left(\frac{5}{6}\right)^{k-1} \frac{1}{6}$. Thus,

$$ER(1, \lozenge G) = \sum_{k \ge 1} k \left(\frac{5}{6}\right)^{k-1} \frac{1}{6}$$

$$= \frac{1}{6} \left(\sum_{k \ge 0} (k+1) \left(\frac{5}{6}\right)^k\right) \quad \text{(index shift)}$$

$$= \frac{1}{6} \left(\sum_{k \ge 0} k \left(\frac{5}{6}\right)^k + \sum_{k \ge 0} \left(\frac{5}{6}\right)^k\right)$$

$$= \frac{1}{6} \left(\frac{5/6}{(1-5/6)^2} + \frac{1}{1-5/6}\right) \quad \text{(formula from hint + standard geom. series)}$$

$$= \frac{1}{6} \left(\frac{5/6}{1/6 \cdot 1/6} + 6\right)$$

$$= 5 + 1 = 6.$$

Remark: It is also possible (and easier) to compute the expected reward by solving a system of linear equations (see lecture).

(b) The following Markov chain "remembers" if the first trial was a six (state 2) or not (state 3):

To express that the first trial was no six, we let the forbidden states be $F = \{2\}$. The desired conditional expected reward is then $ER(1, \lozenge G \mid \neg \lozenge F)$, where $G = \{4\}$.

Exercise 4 (Complete lattices)

25P

Let (D, \sqsubseteq) be a complete lattice. Further, let $D \to D$ be the set of all monotone functions between elements of D. We lift the order \sqsubseteq to the domain $D \to D$ by pointwise application, i.e., we define $(D \to D, \preceq)$ where \preceq is given by:

$$f \leq g \qquad \Longleftrightarrow \qquad \forall d \in D. \quad f(d) \sqsubseteq g(d).$$

- (a) [5P] Show that $(D \to D, \preceq)$ is a partial order.
- (b) [5P] Show that $(D \to D, \preceq)$ is a complete lattice.
- (c) [15P] Now assume that D satisfies the ascending chain condition(ACC, for short), i.e., for all chains $S \subseteq D$, there exists a positive integer n such that $s_n = s_{n+1} = s_{n+2} = \ldots$, or in other words no infinite strictly ascending sequence of elements in D exists.

Prove or disprove that fixed points of chains are continuous, i.e.,

$$\operatorname{lfp}\left(\bigsqcup \ \mathcal{F}\right) \quad = \quad \bigsqcup \left\{\operatorname{lfp}(f) \mid f \in \mathcal{F}\right\}$$

holds for all chains $\mathcal{F} \subseteq (D \to D)$.

Hint: If (D, \sqsubseteq) is a complete lattice satisfying the ACC, $S \subseteq D$ a chain and $\Phi: D \to D$ is a monotone function, then $\Phi(||S) = ||\Phi(S)|$.

Solution:

- (a) In the following let $f, g, h \in (D \to D)$.
 - Reflexivity: By definition $f \leq f$ holds if and only if for all $d \in D$, $f(d) \sqsubseteq f(d)$. This is trivial due to reflexivity of (D, \sqsubseteq) .

• Antisymmetry:

$$\begin{split} f & \preceq g \ \land \ g \preceq f \\ \Longleftrightarrow \forall d \in D \colon \ f(d) \sqsubseteq g(d) \ \land \ g(d) \sqsubseteq f(d) \\ \Longleftrightarrow \forall d \in D \colon \ f(d) = g(d) & \text{(because \sqsubseteq is antisymmetric)} \\ \Longleftrightarrow f = d \ . \end{split}$$

- Transitivity: Assume $f \leq g \leq h$. Then, for all $d \in D$, $f(d) \sqsubseteq g(d) \sqsubseteq h(d)$. Since (D, \sqsubseteq) is transitive, we know for all $d \in D$ that $f(d) \sqsubseteq h(d)$. Hence, $f \leq h$.
- (b) Let $F \subseteq (D \to D)$ be an arbitrary subset of $(D \to D)$. We define $F_d = \{f(d) \mid f \in F\}$. Since $F_d \subseteq D$ and (D, \sqsubseteq) is a complete lattice, $\bigsqcup F_d \in D$ exists. By definition, $f(d) \sqsubseteq \bigsqcup F_d$ holds for all $d \in D$ and $f \in F$. Hence, the function $g \colon D \to D$, $d \mapsto \bigsqcup F_d$ is the least upper bound of F and the greatest lower bound is obtained in a similar manner.
- (c) Let $\mathcal{F} \subseteq (D \to D)$ be a chain. Also let

$$h = \bigsqcup \mathcal{F} \in (D \to D),$$

$$\tilde{f} = \bigsqcup \{ lfp(f) \mid f \in \mathcal{F} \} \in D,$$

Case " \sqsubseteq ": For every $f \in \mathcal{F}$, we have $f \leq h$ by construction. Then (by a straightforward induction on n), $f^n \leq h^n$ for each $n \geq 0$. Moreover, for each $f \in \mathcal{F}$, we have

$$\operatorname{lfp}(f) \ = \ \bigsqcup \left\{ f^n \left(\bigsqcup \emptyset \right) \mid n \geq 0 \right\} \ \sqsubseteq \ \bigsqcup \left\{ h^n \left(\bigsqcup \emptyset \right) \mid n \geq 0 \right\} \ = \ \operatorname{lfp}(h) \ ,$$

where \emptyset denotes the empty chain in $(D \to D)$. Thus, $\tilde{f} \sqsubseteq lfp(h)$.

Case " \sqsubseteq ": We show that $h(\tilde{f}) \sqsubseteq \tilde{f}$. By Park's Lemma, this implies that $lfp(h) \sqsubseteq \tilde{f}$.

$$h(\tilde{f}) = \bigsqcup \left\{ f(\tilde{f}) \mid f \in \mathcal{F} \right\}$$
 (Def. of h)
$$= \bigsqcup \left\{ f\left(\bigsqcup \left\{ lfp(g) \mid g \in \mathcal{F} \right\} \right) \mid f \in \mathcal{F} \right\}$$
 (Def. of \tilde{f})
$$= \bigsqcup \left\{ \bigsqcup \left\{ f\left(lfp(g)\right) \mid g \in \mathcal{F} \right\} \mid f \in \mathcal{F} \right\}$$
 (Using the Hint)
$$\sqsubseteq \bigsqcup \left\{ \bigsqcup \left\{ lfp(g) \mid g \in \mathcal{F} \right\} \mid f \in \mathcal{F} \right\}$$

$$= \bigsqcup \left\{ lfp(g) \mid g \in \mathcal{F} \right\} = \tilde{f} .$$

- (*) Since \mathcal{F} is a chain we know that $f \sqsubseteq g$ or $g \sqsubseteq f$, for $f, g \in \mathcal{F}$.
 - If $f \sqsubseteq g$ then $f(\operatorname{lfp}(g)) \sqsubseteq g(\operatorname{lfp}(g)) = \operatorname{lfp}(g)$.
 - If $g \sqsubseteq f$ then

 $f(\operatorname{lfp}(g)) \subseteq f(||\{g^n(||\emptyset) | n \ge 0\}) \subseteq f(||\{f^n(||\emptyset) | n \ge 0\}) \subseteq \operatorname{lfp}(f).$

Thus, for each $f, g \in \mathcal{F}$ there exists an $h \in \{f, g\}$ such that $f(\text{lfp}(g)) \sqsubseteq \text{lfp}(h)$. Then every upper bound of $\{\text{lfp}(h) \mid h \in \mathcal{F}\}$ is also an upper bound of $\{f(\text{lfp}(g)) \mid g \in \mathcal{F}\}$ regardless of the choice of $f \in \mathcal{F}$.