

第三章

排序与分治算法

参考材料

«Introduction to Algorithm» Chapter 6, 7, 8, 9

«Introduction to the Design and Analysis of Algorithm» Chapter 4

- 3.1 分治算法的原理
- 3.2 基于分治思想的排序算法
- 3.3 线性时间排序算法
- 3.4 Medians and Order Statistics
- 3.5 最邻近点对
- 3.6 凸包问题
- 3.7 FFT
- 3.8 整数乘法

3.1 Divide-and-Conquer 原理

- · Divide-and-Conquer算法的设计
- · Divide-and-Conquer算法的分析

Divide-and-Conquer算法的设计

- 设计过程分为三个阶段
 - Divide: 整个问题划分为多个子问题
 - 注意:分解的这组子问题 $p_1,p_2,...p_m$ 未必一定是相同的子问题,即 p_i 和 p_j 可以是分别完成不同任务的子问题
 - -Conquer:求解各子问题(递归调用正设计的算法)
 - -Combine:合并子问题的解,形成原始问题的解

Divide-and-Conquer算法的分析

- 分析 过程
 - -建立递归方程
 - 求解
- 递归方程的建立方法
 - -设输入大小为n, T(n)为时间复杂性
 - **当**n < c, $T(n) = \theta(1)$

- Divide阶段的时间复杂性

- 划分问题为a个子问题。
- · 每个子问题大小为n/b。
- 划分时间可直接得到=D(n)
- Conquer 阶段的时间复杂性
 - 递归调用
 - Conquer 射 间 = aT(n/b)
- Combine 阶段的时间复杂性
 - 时间可以直接得到=C(n)

最后得到递归方程:

• $T(n) = \theta(1)$

if *n*≤*c*

• T(n)=aT(n/b)+D(n)+C(n) if n>c

举例:最大最小值问题

输入: 数组A[1,...,n]

输出: A中的max和min

通常,直接扫描需要2n-2次比较操作 我们给出一个仅需3n/2-2次比较操作的算法

基本思想

算法MaxMin(A)

输入: 数组A[i,...,j]

输出:数组A[i,...,j]中的max和min

- 1. If j-i+1 = 1 Then 输出A[i],A[i],算法结束
- 2. If j-i+1 = 2 Then
- 3. If A[i] < A[j] Then 输出A[i], A[j]; else 输出A[j], A[i]; 算法结束
- 4. $k \leftarrow (j+i)/2$
- 5. $m_1, M_1 \leftarrow \operatorname{MaxMin}(A[i:k]);$
- 6. $m_2, M_2 \leftarrow \operatorname{MaxMin}(A[k+1:j]);$
- 7. $m \leftarrow \min(m_1, m_2);$
- 8. $M \leftarrow \max(M_1, M_2)$;
- 9. 输出m,M

算法复杂性分析

$$T(1)=0$$

$$T(2)=1$$

$$T(n)=2T(n/2)+2$$

$$= 2(2T(n/2^{2})+2)+2 = 2^{2}T(n/2^{2})+2^{2}+2$$

$$= ...$$

$$=2^{k-1}T(2)+2^{k-1}+2^{k-2}+...+2^{2}+2$$

$$=2^{k-1}+2^{k}-2$$

$$=n/2+n-2$$

$$=3n/2-2$$

$$n=2^{k}$$

与Naive算法相比,虽然同阶,但系数有所改进

3.2 基于分治的排序算法

- Quicksort Algorithm 排序问题的下界

基于分治思想的排序算法

划分的策略

根据某一策略将数据集合划分成两个部分

Mergesort: 中间点

Quicksort:任选一个划分点x,

利用x的值将数据划分成两部分

合并策略

不同的划分策略对应不同的合并策略

3.2.1 Quicksort

- Idea of Quicksort
- Quicksort Algorithm
- Correctness Proof
- Performance Analysis
- Randomized Quicksort Algorithms

Idea of Quicksort

Divide-and-Conquer

– Divide:

• Partition A[p..r] into A[p..q] and A[q+1..r].

- $\forall x \in A[p...q], x \leq A[q], \forall y \in A[q+1...r], y > A[q].$
- q is generated by partition algorithm.

– Conquer:

• Sort A[p...q-1] and A[q+1...r] using quicksort recursively

- Combine:

• Since A[p...q-1] and A[q+1...r] have been sorted, nothing to do

- 划分A[p..r]
 - 选择元素x作为划分点, x=A[r]
 - -x逐一与其它元素作比较;

算法执行过程中, A被分成4个区域

j				
2 i 2 i 2	8	7	1	4
i	j			
2	8	7	1	4
i		<u>j</u> _		
2	8	7	1	4
i			\boldsymbol{j}	
2	8	7	1	4
	i			j
2	1	7	8	4
	i	i+1		j
2	1	4	8	7

Partition(A, p, r)

$$x \leftarrow A[r];$$

$$i \leftarrow p-1;$$

for
$$j \leftarrow p$$
 to $r-1$

do if
$$A[j] \le x$$

$$i \leftarrow i + 1$$
;

exchange $A[i] \leftrightarrow A[j]$;

exchange $A[i+1] \leftrightarrow A[r]$;

return i+1;

Running time: $\Theta(n)$

Quicksort Algorithm


```
Quicksort(A,p,r)
```

If *p*<*r*

Then q=Partition(A, p, r);

Quicksort (A,p,q-1);

Quicksort (A, q+1, r);

Correctness Proof

• Loop Invariant(循环不变量方法)

证明主要结构是循环结构的算法的正确性

循环不变量:数据或数据结构的关键性质 依赖于具体的算法和算法特点

证明分三个阶段

- (1) 初始阶段:循环开始前循环不变量成立
- (2) 循环阶段:循环体每执行一次,循环不变量成立
- (3) 终止阶段: 算法结束后, 循环不变量保证算法正确

Correctness Proof

定义循环不变量:

At the start of the loop of lines 3-6, for any *k*

- 1. if $p \le k \le i$, then $A[k] \le x$.
- 2. *if* $i+1 \le k \le j-1$, *then* A[k] > x.
- 3. if k=r, then A[k]=x.

- Partition (A, p, r) $x \leftarrow A[r];$ $i \leftarrow p-1;$
- (3) for $j \leftarrow p$ to r-1
- $(4) \quad \text{do if } A[j] \leq x$
- $(5) i \leftarrow i+1;$
- (6) exchange $A[i] \leftrightarrow A[j]$; exchange $A[i+1] \leftrightarrow A[r]$; return i+1;

r

- 初始阶段: j=p

算法迭代前: i=p-1, j=p, 条件1和2为真. 算法第1行使得条件3为真.

i pj

 $oldsymbol{x}$

-保持阶段

设j=k时循环 不变量成立.

往证j=k+1时 不变量成立.

Partition(A, p, r) $x \leftarrow A[r];$ $i \leftarrow p-1;$ $\text{for } j \leftarrow p \text{ to } r-1$ $\text{do if } A[j] \leq x$ $i \leftarrow i+1;$ $\text{exchange } A[i] \leftrightarrow A[j];$ $\text{exchange } A[i+1] \leftrightarrow A[r];$ return i+1;

- 终止阶段

循环结束肘, j=r, 产生三个集合:

- 1. 所有小于等于X的元素构成的集合.
- 2. 所有大于X的元素构成的集合.
- 3. 由元素x构成的集合.

算法结束时

最后一个步骤将A[r]与A[i+1]互换.

Partition(A, p, r) $x \leftarrow A[r];$ $i \leftarrow p-1;$ $for j \leftarrow p \text{ to } r-1$ $do \text{ if } A[j] \leq x$ $i \leftarrow i+1;$ $exchange A[i] \leftrightarrow A[j];$ $exchange A[i+1] \leftrightarrow A[r];$ return i+1;

- Time complexity of PARTITION: $\theta(n)$
- Best case time complexity of Quicksort
 - Array in partition into 2 equal sets
 - $T(n)=2T(n/2)+\theta(n)$
 - $T(n) = \theta(nlogn)$

- Worst case time complexity of Quicksort
 - Worst Case
 - |A[p..q-1]|=0, |A[q+1..r]|=n-1

- The worst case happens in call to Partition Algorithm
- Worst case time complexity
 - $T(n) = T(0) + T(n-1) + \theta(n) = T(n-1) + \theta(n) = \theta(n^2)$

What is the average time complexity?

$$T(n) = O(n \log n)$$

Why?

- •假如第一次划分后产生两个子序列,一个子序列包含s个元素,另一个子序列包含n-1-s个元素
- 一共有n种可能的划分,即 $0 \le s \le n-1$,每种可能划分产生的概率为1/n
- 平均复杂性 $T(n) = \frac{1}{n} \sum_{s=0}^{n-1} (T(s) + T(n-1-s)) + cn$

$$\frac{1}{n}\sum_{s=0}^{n-1} \left(T(s) + T(n-1-s)\right) = \frac{1}{n}\left(T(0) + T(n-1) + T(1) + T(n-2) + \dots + T(n-1) + T(0)\right)$$

由于T(0)=0, 有:
$$T(n) = \frac{1}{n} (2T(1) + 2T(2) + \dots + 2T(n-1)) + cn$$

$$nT(n) = 2T(1) + 2T(2) + \dots + 2T(n-1) + cn^2$$

$$nT(n) = 2T(1) + 2T(2) + \dots + 2T(n-1) + cn^2$$

用n替换为n-1代入上式,有:

$$(n-1)T(n-1) = 2T(1) + 2T(2) + \dots + 2T(n-2) + c(n-1)^{2}$$

两式相减: nT(n) - (n-1)T(n-1) = 2T(n-1) + c(2n-1)

$$nT(n) - (n+1)T(n-1) = c(2n-1)$$

$$\frac{T(n)}{n+1} - \frac{T(n-1)}{n} = c \frac{(2n-1)}{(n+1)n} = c \frac{\left(3n - (n+1)\right)}{(n+1)n} = c \left(\frac{3}{n+1} - \frac{1}{n}\right)$$

遂归地:
$$\frac{T(n-1)}{n} - \frac{T(n-2)}{n-1} = c\left(\frac{3}{n} - \frac{1}{n-1}\right)$$

$$\frac{T(2)}{3} - \frac{T(1)}{2} = c\left(\frac{3}{3} - \frac{1}{2}\right)$$

我们得到:
$$\frac{T(n)}{n+1} - \frac{T(n-1)}{n} = c\left(\frac{3}{n+1} - \frac{1}{n}\right)$$

$$\frac{T(n-1)}{n} - \frac{T(n-2)}{n-1} = c\left(\frac{3}{n} - \frac{1}{n-1}\right)$$

$$\frac{T(2)}{3} - \frac{T(1)}{2} = c\left(\frac{3}{3} - \frac{1}{2}\right)$$

$$\frac{T(n)}{n+1} = 3c\left(\frac{1}{n+1} + \frac{1}{n} + \dots + \frac{1}{3}\right) - c\left(\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{2}\right) + \frac{T(1)}{2}$$

$$= 2c\left(\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{3} + \frac{1}{2} + 1\right) - \frac{7}{2}c + \frac{T(1)}{2} + \frac{3c}{n+1}$$

$$= 2cH_n - \frac{7}{2}c + \frac{T(1)}{2} + \frac{3c}{n+1}$$

$$T(n) = 2cnH_n + 2cH_n + \left(\frac{T(1)}{2} - \frac{7}{2}c\right)n + \left(\frac{T(1)}{2} - \frac{7}{2}c + 3c\right) = O(n\log n)$$

Randomized Quicksort Algorithms

and the first the first that are the first are the first are

• Randomized-Partition(A, p, r)

```
1. i := \text{Random}(p, r)
```

- 2. $A[r] \leftrightarrow A[i]$;
- 3. Return Partition(A, p, r)

• Randomized-Quicksort(A, p, r)

- 1. **If** p < r
- 2. **Then** q := Randomized-Partition(A, p, r);
- 3. Randomized-Quicksort(A, p, q-1);
- 4. Randomized-Quicksort(A, q+1, r).

• 我们可以用树表示算法的计算过程

- 我们可以观察到如下事实:
 - 一个子树的根必须与其子树的所有节点比较
 - 不同子树中的节点不可能比较
 - 任意两个节点至多比较一次

- 基本概念
 - • $x_{(i)}$ 表示A中Rank为<math>i的元素(第i小元素) 例如, $x_{(1)}$ 和 $x_{(n)}$ 分别是最小和最大元素
 - 随机变量 X_{ij} 定义如下: $X_{ij}=1$ 如果 $x_{(i)}$ 和 $x_{(j)}$ 在运行中被比较,否则为0 X_{ii} 是 $x_{(i)}$ 和 $x_{(i)}$ 的比较次数
 - 算法的比较次数为 $\sum_{i=1}^{n} \sum_{j>i} X_{ij}$
 - 算法的复杂性为 $T(n)=E[\sum_{i=1}^{n}\sum_{j>i}X_{ij}]=\sum_{i=1}^{n}\sum_{j>i}E[X_{ij}]$

$$T(n) = E\left[\sum_{i=1}^{n} \sum_{j>i} X_{ij}\right] = \sum_{i=1}^{n} \sum_{j>i} E[X_{ij}]$$

- 计算*E*[X_{ij}]
 - 设 p_{ij} 为 $x_{(i)}$ 和 $x_{(j)}$ 在运行中被比较的概率,则 $E[X_{ij}]=p_{ij}\times 1+(1-p_{ij})\times 0=p_{ij}$

关键问题成为求解 p_{ij}

HITWH SE

随机快速排序复杂性分析

• 求解 p_{ij}

- $Z_{ij} = \{x_{(i)}, x_{(i+1)}, ..., x_{(j)}\}$ 是 $x_{(i)}$ 和 $x_{(j)}$ 之间元素集合, Z_{ii} 在同一棵子树叶, $x_{(i)}$ 和 $x_{(j)}$ 才可能比较.
- • $x_{(i)}$ 和 $x_{(i)}$ 在执行中被比较,需满足下列条件:
 - $\bullet x_{(i)}$ 是 Z_{ij} 中第一个被选择的子树根节点,或者
 - X_(i) 是Z_{ii}中第一个被选择的子树根节点
- •一棵子树所有点等可能地被选为划分点,所以 $x_{(i)}$ 或 $x_{(j)}$ 被选为划分点的概率 = $2/|Z_{ij}|=2/(j-i+1)$.
- $x_{(i)}$ 和 $x_{(j)}$ 被进行比较的概率:

$$p_{ij} = 2/(j-i+1)$$

• 现在我们有

$$\sum_{i=1}^{n} \sum_{j>i} E[X_{ij}] = \sum_{i=1}^{n} \sum_{j>i} p_{ij} = \sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n-i} \frac{2}{k+1} \le \sum_{i=1}^{n} \sum_{k=1}^{n-i} \frac{2}{k}$$

$$\le 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k} = 2nH_n = O(n \log n)$$

定理. 随机排序算法的期望时间复杂性为O(nlogn)

3.2.2 排序问题的下界

问题的下界

- 问题的下界(lower bound of a problem)
 - 是用于解决该问题的任意算法所需要的最小时间复杂度
 - 问题难度的一种度量
 - •如果问题可由一个具有较低时间复杂性的算法解决,则该问题是简单的;否则是困难的
 - 通常指: 最坏情况下界
- 问题的下界是不唯一的
 - 例如. $\Omega(1)$, $\Omega(n)$, $\Omega(n\log n)$ 都是排序的下界
 - 只有 $\Omega(n\log n)$ 是有意义的
 - 下界应尽可能地高, 达到上限
 - 下界的分析都是经过严格理论分析和证明,而非纯粹猜测

问题的下界的意义

- •如果一个问题的最高下界是 $\Omega(n\log n)$ 而当前最好算法的时间复杂性是 $O(n^2)$.
 - 我们可以寻找一个更高的下界.
 - 我们可以设计更好的算法.
 - 下界和算法都是可能改进的.
- 如果一个问题的下界是 $\Omega(n\log n)$ 且算法的时间复杂性是 $O(n\log n)$,那么这个算法是最优的

排序的下界

通常,基本操作是比较和交换的排序算法可以 用一个二叉决策树描述

- 通过忽略比较以外的细节来抽象表示比较排序算法
- 每个内节点表示一个比较操作 $a_i \leq a_i$;
- 所有被排序元素的全排列是树的叶节点;

对于特定输入数据集的 排序过程,对应于从树 的根结点到叶子节点的 一条路径

排序的下界

- n个元素有n!种不同排列
- 其排序过程对应于一个高度为h, 具有n!个叶子节点的二叉决策树.
- · 由于高度为h的二叉树至多有2h个叶子节点
- 则有 $2^h \ge n!$

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

 $\operatorname{Bp}: h \geq \lg(n!) = \Omega(n \lg n)$

排序的下界是: $\Omega(n\log n)$

3.3 Sorting in Linear Time

- Counting Sort Algorithm
- Radix Sort Algorithm
- Bucket Sort Algorithm

Counting Sort

- Input: A[1..n], $0 \le A[i] \le k$ for $1 \le i \le n$
- Output: B[1..n]=sorted A[1..n]
- Idea
 - Use C[0..k] to compute the position of each A[i]
 - Put each A[i] for i=n to 1 into B[C[A[i]]]

Algorithm and Time complexity

for
$$i \leftarrow 0$$
 to k
do $C[i] \leftarrow 0$;
for $j \leftarrow 1$ to $length[A]$
do $C[A[j]] \leftarrow C[A[j]] + 1$;
for $i \leftarrow 1$ to k
do $C[i] \leftarrow C[i] + C[i-1]$;
for $j \leftarrow length[A]$ downto 1
do begin
 $B[C[A[j]]] \leftarrow A[j]$;
 $C[A[j]] \leftarrow C[A[j]] - 1$;
Time Complexity= $O(n+k)$

- Counting Sort算法性质
 - Counting sort doesn't sort in place
 - Counting sort is stable
 - That is, the same values appear in the output array in the same order as they do in the input array.
 - Problems
 - *A[i]* must be integer.
 - k should be small

Radix Sort Algorithm

- Idea of Radix sort algorithm
 - Use stable sort algorithm
 - Sort the *n d*-digit elements from the lowest digit to the highest digit

Radix sort algorithm

```
Input: Array A, each element is a number of d digit. Radix—Sort(A, d) for i \leftarrow 1 to d do use a stable sort to sort array A on digit i;
```

- Time complexity of Radix sort algorithm
 - Using Counting sort algorithm, 0≤A[i]≤k
 - The time complexity is O(d(n+k))
- · Problems

Extension of Radix sort

- Input: *n b*-binary-digit number, any *r*≤*b*
- Radix sort can sort these numbers in $\Theta((b/r)(n+2^r))$
- -Why
 - View each number as $d=\lceil b/r \rceil$ digits of r bits each.
 - Each digit is an integer in the range 0 to 2^r-1
 - Use counting sort with $k=2^r-1$
- How about b=500, r=100?

Bucket Sort

Assumption of Bucket Sort

- Input is elements uniformly distributed in [0, 1) independently

Idea of Bucket Sort

- Divide [0, 1) into *n* equalsized bucket
- Distribute the input into the n bucket
- Sort the numbers in each bucket
- List all the sorted numbers in each bucket in order

Bucket Sort Algorithm

Bucket-Sort(*A*)

- 1. n=length[A];
- 2. For i=1 To n Do
- 3. Insert A[i] into list $B[\lfloor nA[i] \rfloor]$;
- 4. For i=0 To n-1 Do
- 5. Sort list B[i] with insert sort;
- 6. concatenate lists B[0], ..., B[n-1].

Time complexity

- Let the random variable $n_i = |B[i]|$
- The time complexity:

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$

- Since $E[n_i^2] = 2-1/n$

$$E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} E[O(n_i^2)]$$

= $\Theta(n) + O(n(2-1/n)) = \Theta(n)$