Voronoi and Delaunay Diagrams

Siu-Wing Cheng

Room 3514
Phone: 2358-6973
scheng@cse.ust.hk
http://www.cse.ust.hk/faculty/scheng

Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong

Examples

www.amath.washington.edu/~dnlennon/voronoi/

Examples

www.amath.washington.edu/~dnlennon/voronoi/

Examples

www.amath.washington.edu/~dnlennon/voronoi/

Delaunay Triangulation

Dual of the Voronoi diagram:

Voronoi edge V_{pq} Delaunay edge pq Voronoi vertex V_{pqr} Delaunay triangle pqr

Equivalent definition: given k vertices, $2 \le k \le 3$, they form a Delaunay simplex iff they have an empty circumcircle.

Dual of the Voronoi diagram:

Voronoi edge V_{pq} Delaunay edge pq

Voronoi vertex V_{pqr} Delaunay triangle pqr

Equivalent definition: given k vertices, $2 \le k \le 3$, they form a Delaunay simplex iff they have an empty circumcircle.

Dual of the Voronoi diagram:

 $\begin{array}{ll} \text{Voronoi facet } V_{pq} & \text{Delaunay edge } pq \\ \text{Voronoi edge } V_{pqr} & \text{Delaunay triangle } pqr \\ \text{Voronoi vertex } V_{pqrs} & \text{Delaunay tetrahedron } pqrs \end{array}$

Equivalent definition: given k vertices, $2 \le k \le 4$, they form a Delaunay simplex iff they have an empty circumsphere.

Always defined, always a valid 3D triangulation, efficient implementation (e.g., CGAL http://www.cgal.org).

Dual of the Voronoi diagram:

 $\begin{array}{ll} \mbox{Voronoi facet V_{pq}} & \mbox{Delaunay edge pq} \\ \mbox{Voronoi edge V_{pqr}} & \mbox{Delaunay triangle pqr} \\ \mbox{Voronoi vertex V_{pqrs}} & \mbox{Delaunay tetrahedron $pqrs$} \end{array}$

Equivalent definition: given k vertices, $2 \le k \le 4$, they form a Delaunay simplex iff they have an empty circumsphere.

Always defined, always a valid 3D triangulation, efficient implementation (e.g., CGAL http://www.cgal.org).

Dual of the Voronoi diagram:

 $\begin{array}{ll} \mbox{Voronoi facet V_{pq}} & \mbox{Delaunay edge pq} \\ \mbox{Voronoi edge V_{pqr}} & \mbox{Delaunay triangle pqr} \\ \mbox{Voronoi vertex V_{pqrs}} & \mbox{Delaunay tetrahedron $pqrs$} \end{array}$

Equivalent definition: given k vertices, $2 \le k \le 4$, they form a Delaunay simplex iff they have an empty circumsphere.

Always defined, always a valid 3D triangulation, efficient implementation (e.g., CGAL http://www.cgal.org).

Restricted Delaunay Triangulation in \mathbb{R}^2

- Given a curve S and points on S, a Delaunay edge e is restricted Delaunay if V_e intersects S.
- ullet The restricted Delaunay triangulation T is the set of vertices and restricted Delaunay edges.

Restricted Delaunay Triangulation in \mathbb{R}^3

- Given a surface S and points on S, a Delaunay edge or triangle σ is restricted Delaunay if V_{σ} intersects S.
- The restricted Delaunay triangulation T is the set of vertices, restricted Delaunay edges, and restricted Delaunay triangles.

Topological Ball Property

Topological ball property:

- For any triangle $pqr \in T$, $V_{pqr} \cap S$ is a single point.
- For any edge $pq \in T$, $V_{pq} \cap S$ is a single arc.
- For any vertex $p \in T$, $V_p \cap S$ is a topological disk.

Theorem (Edelsbrunner & Shah)

Given the topological ball property, T has the same topology as S.