Afternoon Afternoon

手机关机或静音放包/兜里

Deterministic Finite Automata

- Definition
- Notation
- **♦** Construction
- Regular Language

Formal Definition

Deterministic finite automaton is a five-tuple,

such as
$$M = (Q, \Sigma, \delta, q_0, F)$$

Where Q is a finite set of states,

 Σ is a finite set of input symbols,

 q_0 is a start state,

F is a set of final state,

 δ is transition function , which is a mapping

from $Q \times \Sigma$ to Q.


```
Input symbols: {0,1} State: {Closed, Open}
State transition:
```

```
\{ (Closed, 0) \Rightarrow Closed \ (Closed, 1) \Rightarrow Open \ (Open, 1) \Rightarrow Open \ (Open, 0) \Rightarrow Closed \ (Open
```

Start state: (Closed)

Final state: Closed \bar{x}

多为农

Input symbols : $\{0,1\}$ State : $\{q,p\}$

State transition function:

$$\delta(q, 0) = q$$

$$\delta(q, 1) = p$$

$$\delta(p,1) = p$$

$$\delta(p,0) = q$$

Start state: (q

Final state : (q)

Automa

可式化

DFA for Auto-Door

```
M = (Q, \Sigma, \delta, q_0, F)
         Q = {closed, open}, \Sigma = \{n,y\}
         q_0 = closed, F = \{ closed \}
  \delta:
         \delta (closed, n) = closed
         \delta (closed, y) = open
         \delta (open , n) = closed
         \delta (open , y) = open
```

DFA for Auto-Door

formal ox press von

$$M = (Q, \Sigma, \delta, q_0, F)$$

$$Q = \{p, q\}, \Sigma = \{0, 1\}$$

$$q_0 = q$$
, $F = \{q\}$

 δ :

$$\delta(q,0)=q$$

$$\delta$$
 (q, 1) = p

$$\delta(p,0) = q$$

$$\delta(p, 1) = p$$

Diagram Notation

$$M = (\{q_0, q_1\}, \{0,1\}, \delta, q_0, \{q_0\})$$

 δ :

$$\delta(q_0, 0) = q_0, \ \delta(q_0, 1) = q_1$$

 $\delta(q_1, 0) = q_0, \ \delta(q_1, 1) = q_1$

Table Notation

$$M = (\{q_0, q_1\}, \{0,1\}, \delta, q_0, \{q_0\})$$

 δ :

$$\delta(q_0, 0) = q_0, \ \delta(q_0, 1) = q_1$$

 $\delta(q_1, 0) = q_0, \ \delta(q_1, 1) = q_1$

Partition Strings

M partitions all strings into two groups:

$$L_1 = \{ w \in \{0,1\}^* \mid w \text{ end with } 0 \} \cup \{ \varepsilon \}$$

 $L_2 = \{ w \in \{0,1\}^* \mid w \text{ end with } 1 \}$

DFA as a recognizer of language

M "recognize" the following language:

 $L = \{ w \in \{0,1\}^* \mid w \text{ end with } 0 \} \cup \{ \varepsilon \}$

With the language L, and a string $w \in \{0,1\}^*$

M tell us whether w belongs to L, or not

Decision problem

Given a language L, and a string w

Is w belong to L?

```
L = \{w \in \{0,1\}^* \mid w \text{ has both an even number of } 0's 
and an even number of 1's \}
```

- Partition strings into four groups
 - 00: even 0 and even 1
 - 01: even 0 and odd 1
 - 10: odd 0 and even 1
 - 11: odd 0 and odd 1

 $L = \{w \in \{0,1\}^* \mid w \text{ has both an even number of } 0's$ and an even number of 1's \}

> Set states corresponding to partitions

 $L = \{w \mid w \text{ has both an even number of 0's}$ and an even number of 1's \}

> Put transition arcs between states

 $L = \{w \mid w \text{ consists of 0's and 1's , and contains }$ sub-string 01} $\{x01y \mid x \text{ and } y \text{ are consists of any number of 0's and 1's } \}$

Problem:

or

How to decide whether a given string w belongs to L?

 $L = \{x01y \mid x \text{ and } y \text{ are consists of any number of 0's and 1's }$

How to start our work?

- > What is the meaning "w belongs to L"
- > Partition strings by properties of L
- > Set states which correspond to the partitions
- > Put transition arcs between states

```
L = \{x01y \mid x \text{ and } y \text{ are consists of any number of 0's and 1's }
```

Partition strings by properties of L

```
\{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 100, 011, 101, 110, 111 \}
\{ 0000, 0001, 0010, 0100, 1000, 0011, 0101, 1001, \dots \}
\delta(q, 1) = p \qquad 11100011001
11100011001
```

 $L = \{x01y \mid x \text{ and } y \text{ are consists of any number}$ of 0's and 1's \}

> Set states which correspond to the partitions

 $L = \{ \underline{x}01\underline{y} \mid x \text{ and } y \text{ are consists of any number of 0's and 1's } \}$

> Put transition arcs between states

Extending δ to string

<u>BASIS</u>

$$\hat{\delta}(q,\varepsilon) = q.$$

$$\delta(q, a) = p$$

has

INDUCTION 11 + S/ch

Suppose w is a string of the form xa, that is, a is the last symbol of w, and x is the string consisting of all but the last symbol. Then

$$\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$$

生的 即(计算)

Definition The language of a DFA \underline{A} is denoted $\underline{L}(A)$, and defined as

$$L(A) = \{ \underline{w} \mid \hat{\delta}(q_0, w) \text{ is in } \underline{F} \}$$

Regular language

Definition

If L is L(A) for some DFA A, then we say L is a regular language.

 $RegL = \{ L \mid There is a DFA accepting L \}$

Note: a kind of languages accepted by DFA's

L (A) 1 - \$ 18 = 3

Exersizes

Construct DFA for following languages:

- a) $\{0\}^*$
- b) $\{w \mid w \in \{0,1\}^* \text{ and begin with } 0\}$
- c) $\{w \mid w \text{ consists of any number of 0's followed}$ by any number of 1's $\}$

FIND THE MISSING NUMBER

Good good stilly day day up