Repeating the same with normalization of feature

- We must see that the values of data don't vary much in sale and magnitude.
- Ex: The age can range from 18 to 70, but the income range:1lac to 9lac
- The gap in the two are huge, which may effect the model preparation
- To treat them equally we need to do scaling of features

Here features are normalized

Repeating the same with normalization of feature

from sklearn.preprocessing import StandardScaler

Here features are normalized

Create Clusters Using Normalized Feature Set

```
from sklearn.cluster import KMeans
clusters_new = KMeans(3, random_state=42)
clusters_new.fit(scaled_customers_df)
customers_df["clusterid_new"] = clusters_new.labels_
```

)s	0	#Display	the	sample	data	after	clustering	operation
		customers						

\supseteq		income	age	clusterid	clusterid_new	Ħ
	0	41100.0	48.75	2	0	1
	1	54100.0	28.10	0	1	
	2	47800.0	46.75	2	0	
	3	19100.0	40.25	1	2	
	4	18200.0	35.80	1	2	

Observe that previous cluster and this clustering Differs, it is due to normalization of features

Scatter plot after normalization

```
#Plotting the customers with their segments
sn.lmplot( data=customers_df,x="age",y="income",hue="clusterid_new");
plt.title( "Fig 3: Customer Segments Based on Income and Age with clusterid_new");
```

Fig 3: Customer Segments Based on Income and Age with clusterid new

