logistic-regression

August 14, 2020

1 Logistic Regression

Hello again! You are going to implement a logistic regression classifer in this Jupyter notebook using scikit-learn and predict using it. We will also see a technique which is useful for visualizing the data.

1.1 Before you start

- In order for the notebooks to function as intended, modify only between lines marked "### begin your code here (__ lines)." and "### end your code here.".
- The line count is a suggestion of how many lines of code you need to accomplish what is asked.
- You should execute the cells (the boxes that a notebook is composed of) in order.
- You can execute a cell by pressing Shift and Enter (or Return) simultaneously.
- You should have completed the previous Jupyter notebooks before attempting this one as
 the concepts covered there are not repeated, for the sake of brevity.

1.2 Loading the appropriate packages

Nothing new here. We will import logistic regression class along with some helpers from scikit-learn.

```
[1]: import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
import pandas as pd
import plotly.express as px
import plotly.graph_objs as go
```

Let's turn off the scientific notation for floating point numbers.

```
[2]: np.set_printoptions(suppress=True)
```

1.3 Loading and examining the data

We will load our data from a CSV file and put it in a pandas an object of the DataFrame class.

This dataset is the breast cancer Wisconsin (diagnostic) dataset which contains 30 different features computed from a images of a fine needle aspirate (FNA) of breast masses for 569 patients with each example labeled as being a *benign* or *malignant* mass.

• This was taken and modified from the Machine Learning dataset repository of School of Information and Computer Science of University of California Irvine (UCI):

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

[3]: df_30 = pd.read_csv('data_logistic_regression.csv')

Let's take a look at the data:

[4]:		df_30					
[4]:	_	mean radius	mean texture	mean perimeter	mean area	mean smoothness	\
	0	17.990	10.38	122.80	1001.0	0.11840	
	1	20.570	17.77	132.90	1326.0	0.08474	
	2	19.690	21.25	130.00	1203.0	0.10960	
	3	11.420	20.38	77.58	386.1	0.14250	
	4	20.290	14.34	135.10	1297.0	0.10030	
	5	12.450	15.70	82.57	477.1	0.12780	
	6	18.250	19.98	119.60	1040.0	0.09463	
	7	13.710	20.83	90.20	577.9	0.11890	
	8	13.000	21.82	87.50	519.8	0.12730	
	9	12.460	24.04	83.97	475.9	0.11860	
	10	16.020	23.24	102.70	797.8	0.08206	
	11	15.780	17.89	103.60	781.0	0.09710	
	12	19.170	24.80	132.40	1123.0	0.09740	
	13	15.850	23.95	103.70	782.7	0.08401	
	14	13.730	22.61	93.60	578.3	0.11310	
	15	14.540	27.54	96.73	658.8	0.11390	
	16	14.680	20.13	94.74	684.5	0.09867	
	17	16.130	20.68	108.10	798.8	0.11700	
	18	19.810	22.15	130.00	1260.0	0.09831	
	19	13.540	14.36	87.46	566.3	0.09779	
	20	13.080	15.71	85.63	520.0	0.10750	
	21	9.504	12.44	60.34	273.9	0.10240	
	22	15.340	14.26	102.50	704.4	0.10730	
	23	21.160	23.04	137.20	1404.0	0.09428	
	24	16.650	21.38	110.00	904.6	0.11210	
	25	17.140	16.40	116.00	912.7	0.11860	
	26	14.580	21.53	97.41	644.8	0.10540	
	27	18.610	20.25	122.10	1094.0	0.09440	
	28	15.300	25.27	102.40	732.4	0.10820	
	29	17.570	15.05	115.00	955.1	0.09847	

	• • •	• • •			
539	7.691	25.44	48.34	170.4	0.08668
540	11.540	14.44	74.65	402.9	0.09984
541	14.470	24.99	95.81	656.4	0.08837
542	14.740	25.42	94.70	668.6	0.08275
543	13.210	28.06	84.88	538.4	0.08671
544	13.870	20.70	89.77	584.8	0.09578
545	13.620	23.23	87.19	573.2	0.09246
546	10.320	16.35	65.31	324.9	0.09434
547	10.260	16.58	65.85	320.8	0.08877
548	9.683	19.34	61.05	285.7	0.08491
549	10.820	24.21	68.89	361.6	0.08192
550	10.860	21.48	68.51	360.5	0.07431
551	11.130	22.44	71.49	378.4	0.09566
552	12.770	29.43	81.35	507.9	0.08276
553	9.333	21.94	59.01	264.0	0.09240
554	12.880	28.92	82.50	514.3	0.08123
555	10.290	27.61	65.67	321.4	0.09030
556	10.160	19.59	64.73	311.7	0.10030
557	9.423	27.88	59.26	271.3	0.08123
558	14.590	22.68	96.39	657.1	0.08473
559	11.510	23.93	74.52	403.5	0.09261
560	14.050	27.15	91.38	600.4	0.09929
561	11.200	29.37	70.67	386.0	0.07449
562	15.220	30.62	103.40	716.9	0.10480
563	20.920	25.09	143.00	1347.0	0.10990
564	21.560	22.39	142.00	1479.0	0.11100
565	20.130	28.25	131.20	1261.0	0.09780
566	16.600	28.08	108.30	858.1	0.08455
567	20.600	29.33	140.10	1265.0	0.11780
568	7.760	24.54	47.92	181.0	0.05263
	mean compactness	mean concavity	mean conc	ave points	mean symmetry \
0	0.27760	0.300100		0.147100	0.2419
1	0.07864	0.086900		0.070170	0.1812
2	0.15990	0.197400		0.127900	0.2069
3	0.28390	0.241400		0.105200	0.2597
4	0.13280	0.198000		0.104300	0.1809
5	0.17000	0.157800		0.080890	0.2087
6	0.10900	0.112700		0.074000	0.1794
7	0.16450	0.093660		0.059850	0.2196
8	0.19320	0.185900		0.093530	0.2350
9	0.23960	0.227300		0.085430	0.2030
10	0.06669	0.032990		0.033230	0.1528
11	0.12920	0.099540		0.066060	0.1842
12	0.24580	0.206500		0.111800	0.2397
13	0.10020	0.099380		0.053640	0.1847

14	0.22930	0.212800	0.080250	0.2069
15	0.15950	0.163900	0.073640	0.2303
16	0.07200	0.073950	0.052590	0.1586
17	0.20220	0.172200	0.102800	0.1360
18	0.10270	0.147900	0.094980	0.2104
19	0.08129	0.066640	0.047810	0.1885
20	0.12700	0.045680	0.031100	0.1967
21	0.06492	0.029560	0.020760	0.1815
22	0.21350	0.207700	0.097560	0.2521
23	0.10220	0.109700	0.086320	0.1769
24	0.14570	0.152500	0.091700	0.1995
25	0.22760	0.222900	0.140100	0.3040
26	0.18680	0.142500	0.087830	0.2252
27	0.10660	0.149000	0.077310	0.1697
28	0.16970	0.168300	0.087510	0.1926
29	0.11570	0.098750	0.079530	0.1739
539	0.11990	0.092520	0.013640	0.2037
540	0.11200	0.067370	0.025940	0.1818
541	0.12300	0.100900	0.038900	0.1872
542	0.07214	0.041050	0.030270	0.1840
543	0.06877	0.029870	0.032750	0.1628
544	0.10180	0.036880	0.023690	0.1620
545	0.06747	0.029740	0.024430	0.1664
546	0.04994	0.010120	0.005495	0.1885
547	0.08066	0.043580	0.024380	0.1669
548	0.05030	0.023370	0.009615	0.1580
549	0.06602	0.015480	0.008160	0.1976
550	0.04227	0.000000	0.000000	0.1661
551		0.048240	0.022570	0.1001
	0.08194			
552 553	0.04234	0.019970	0.014990	0.1539
553	0.05605	0.039960	0.012820	0.1692
554	0.05824	0.061950	0.023430	0.1566
555	0.07658	0.059990	0.027380	0.1593
556	0.07504	0.005025	0.011160	0.1791
557	0.04971	0.000000	0.00000	0.1742
558	0.13300	0.102900	0.037360	0.1454
559	0.10210	0.111200	0.041050	0.1388
560	0.11260	0.044620	0.043040	0.1537
561	0.03558	0.00000	0.000000	0.1060
562	0.20870	0.255000	0.094290	0.2128
563	0.22360	0.317400	0.147400	0.2149
564	0.11590	0.243900	0.138900	0.1726
565	0.10340	0.144000	0.097910	0.1752
566	0.10230	0.092510	0.053020	0.1590
567	0.27700	0.351400	0.152000	0.2397
568	0.04362	0.000000	0.000000	0.1587

	mean	fractal	dimension	 worst texture	worst perimeter	worst area \
0			0.07871	 17.33	184.60	2019.0
1			0.05667	 23.41	158.80	1956.0
2			0.05999	 25.53	152.50	1709.0
3			0.09744	 26.50	98.87	567.7
4			0.05883	 16.67	152.20	1575.0
5			0.07613	 23.75	103.40	741.6
6			0.05742	 27.66	153.20	1606.0
7			0.07451	 28.14	110.60	897.0
8			0.07389	 30.73	106.20	739.3
9			0.08243	 40.68	97.65	711.4
10			0.05697	 33.88	123.80	1150.0
11			0.06082	 27.28	136.50	1299.0
12			0.07800	 29.94	151.70	1332.0
13			0.05338	 27.66	112.00	876.5
14			0.07682	 32.01	108.80	697.7
15			0.07077	 37.13	124.10	943.2
16			0.05922	 30.88	123.40	1138.0
17			0.07356	 31.48	136.80	1315.0
18			0.05395	 30.88	186.80	2398.0
19			0.05766	 19.26	99.70	711.2
20			0.06811	 20.49	96.09	630.5
21			0.06905	 15.66	65.13	314.9
22			0.07032	 19.08	125.10	980.9
23			0.05278	 35.59	188.00	2615.0
24			0.06330	 31.56	177.00	2215.0
25			0.07413	 21.40	152.40	1461.0
26			0.06924	 33.21	122.40	896.9
27			0.05699	 27.26	139.90	1403.0
28			0.06540	 36.71	149.30	1269.0
29			0.06149	 19.52	134.90	1227.0
539)		0.07751	 31.89	54.49	223.6
540)		0.06782	 19.68	78.78	457.8
541	-		0.06341	 31.73	113.50	808.9
542	2		0.05680	 32.29	107.40	826.4
543	3		0.05781	 37.17	92.48	629.6
544	<u> </u>		0.06688	 24.75	99.17	688.6
545	5		0.05801	 29.09	97.58	729.8
546	5		0.06201	 21.77	71.12	384.9
547	,		0.06714	 22.04	71.08	357.4
548	3		0.06235	 25.59	69.10	364.2
549)		0.06328	 31.45	83.90	505.6
550)		0.05948	 24.77	74.08	412.3
551	-		0.06552	 28.26	77.80	436.6
552	2		0.05637	 36.00	88.10	594.7

553	0.	06576		25.05		62.86	295.8
554	0	05708		35.74		88.84	595.7
			•••				
555		06127	• • •	34.91		69.57	357.6
556	0.	06331		22.88		67.88	347.3
557	0.	06059		34.24		66.50	330.6
558		06147	• • •	27.27		105.90	733.5
559	0.	06570		37.16		82.28	474.2
560	0.	06171		33.17		100.20	706.7
561		05502		38.30		75.19	439.6
			•••				
562	0.	07152	• • •	42.79		128.70	915.0
563	0.	06879		29.41		179.10	1819.0
564	0.	05623		26.40		166.10	2027.0
565		05533		38.25		155.00	1731.0
			• • •				
566	0.	05648	• • •	34.12		126.70	1124.0
567	0.	07016		39.42		184.60	1821.0
568	0	05884		30.37		59.16	268.6
000	٥.	00001	•••	00.01		00.10	200.0
	worst smoothness	worst	compactness	worst	concavity	\	
0	0.16220		0.66560		0.71190		
1	0.12380		0.18660		0.24160		
2	0.14440		0.42450		0.45040		
3	0.20980		0.86630		0.68690		
4	0.13740		0.20500		0.40000		
5							
	0.17910		0.52490		0.53550		
6	0.14420		0.25760		0.37840		
7	0.16540		0.36820		0.26780		
8	0.17030		0.54010		0.53900		
9	0.18530						
			1.05800		1.10500		
10	0.11810		0.15510		0.14590		
11	0.13960		0.56090		0.39650		
12	0.10370		0.39030		0.36390		
13	0.11310		0.19240		0.23220		
14	0.16510		0.77250		0.69430		
15	0.16780		0.65770		0.70260		
16	0.14640		0.18710		0.29140		
17	0.17890		0.42330		0.47840		
18	0.15120		0.31500		0.53720		
19	0.14400		0.17730		0.23900		
20	0.13120		0.27760		0.18900		
21	0.13240		0.11480		0.08867		
22	0.13900		0.59540		0.63050		
23	0.14010		0.26000		0.31550		
24	0.18050		0.35780		0.46950		
25	0.15450		0.39490		0.38530		
26	0.15250		0.66430		0.55390		
27	0.13380		0.21170		0.34460		
28	0.16410		0.61100		0.63350		
20	0.10410		0.01100		0.03300		

29	0.12550	0.28120	0.24890	
539	0.15960	0.30640	0.33930	
540	0.13450	0.21180	0.17970	
541	0.13400	0.42020	0.40400	
542	0.10600	0.13760	0.16110	
543	0.10720	0.13810	0.10620	
544	0.12640	0.20370	0.13770	
545	0.12160	0.15170	0.10490	
546	0.12850	0.08842	0.04384	
547	0.14610	0.22460	0.17830	
548	0.11990	0.09546	0.09350	
549	0.12040	0.16330	0.06194	
550	0.10010	0.07348	0.00000	
551	0.10870	0.17820	0.15640	
552	0.12340	0.10640	0.08653	
553	0.11030	0.08298	0.07993	
554	0.12270	0.16200	0.24390	
555	0.13840	0.17100	0.20000	
556	0.12650	0.12000	0.01005	
557	0.10730	0.07158	0.00000	
558	0.10260	0.31710	0.36620	
559	0.12980	0.25170	0.36300	
560	0.12410	0.22640	0.13260	
561	0.09267	0.05494	0.00000	
562	0.14170	0.79170	1.17000	
563	0.14070	0.41860	0.65990	
564	0.14100	0.21130	0.41070	
565	0.11660	0.19220	0.32150	
566	0.11390	0.30940	0.34030	
567	0.16500	0.86810	0.93870	
568	0.08996	0.06444	0.00000	
300	0.00990	0.00444	0.0000	
	worst concave points	worst symmetry	worst fractal dime	nsion type
0	0.26540	0.4601	0.	11890 malignant
1	0.18600	0.2750	0.	08902 malignant
2	0.24300	0.3613	0.	08758 malignant
3	0.25750	0.6638	0.	17300 malignant
4	0.16250	0.2364	0.	07678 malignant
5	0.17410	0.3985		12440 malignant
6	0.19320	0.3063		08368 malignant
7	0.15560	0.3196		11510 malignant
8	0.20600	0.4378		10720 malignant
9	0.22100	0.4366		20750 malignant
10	0.09975	0.2948		08452 malignant
11	0.18100	0.3792		10480 malignant
12	0.17670	0.3176		10230 malignant
	3.1.010	0.0110	٠.	

13	0.11190	0.2809	0.06287	malignant
14	0.22080	0.3596	0.14310	malignant
15	0.17120	0.4218	0.13410	malignant
16	0.16090	0.3029	0.08216	malignant
17	0.20730	0.3706	0.11420	malignant
18	0.23880	0.2768	0.07615	malignant
19	0.12880	0.2977	0.07259	benign
20	0.07283	0.3184	0.08183	benign
21	0.06227	0.2450	0.07773	benign
22	0.23930	0.4667	0.09946	malignant
23	0.20090	0.2822	0.07526	malignant
24	0.20950	0.3613	0.09564	malignant
25	0.25500	0.4066	0.10590	malignant
26	0.27010	0.4264	0.12750	malignant
27	0.14900	0.2341	0.07421	malignant
28	0.20240	0.4027	0.09876	malignant
29	0.14560	0.2756	0.07919	malignant
		• • •		
539	0.05000	0.2790	0.10660	benign
540	0.06918	0.2329	0.08134	benign
541	0.12050	0.3187	0.10230	benign
542	0.10950	0.2722	0.06956	benign
543	0.07958	0.2473	0.06443	benign
544	0.06845	0.2249	0.08492	benign
545	0.07174	0.2642	0.06953	benign
546	0.02381	0.2681	0.07399	benign
547	0.08333	0.2691	0.09479	benign
548	0.03846	0.2552	0.07920	benign
549	0.03264	0.3059	0.07626	benign
550	0.00000	0.2458	0.06592	benign
551	0.06413	0.3169	0.08032	benign
552	0.06498	0.2407	0.06484	benign
553	0.02564	0.2435	0.07393	benign
554	0.06493	0.2372	0.07242	benign
555	0.09127	0.2226	0.08283	benign
556	0.02232	0.2262	0.06742	benign
557	0.00000	0.2475	0.06969	benign
558	0.11050	0.2258	0.08004	benign
559	0.09653	0.2112	0.08732	benign
560	0.10480	0.2250	0.08321	benign
561	0.00000	0.1566	0.05905	benign
562	0.23560	0.4089	0.14090	malignant
563	0.25420	0.2929	0.09873	malignant
564	0.22160	0.2060	0.07115	malignant
565	0.16280	0.2572	0.06637	malignant
566	0.14180	0.2218	0.07820	malignant
567	0.26500	0.4087	0.12400	malignant
				5

568 0.00000 0.2871 0.07039 benign

[569 rows x 31 columns]

For this example to be educational, we need to be able to visualize our data, so our data has to be 2-dimensional. However, our data here is 30 dimensional. Let us use a trick (that we can use for many things including visualizations) to get 2-dimensional data out of this dataset.

Remember we talked about *unsupervised learning* in course 1. We said that *representation learning*, the methods use to create representations of the data (which are hopefully helping us to dod machine learning more efficiently) are a subclass of unsupervised learning methods. Specifically, we said that *dimensionality reduction* are a set of representation learning algorithms aimed at, as the name suggests, reducing the dimensionality of our data. We are going to use a very popular dimensionality reduction technique, called the *Principal Components Analysis* (*PCA*) to reduce the dimensionality of our feature space down to 2, so we can visualize our data in 3D plots.

Note that we can not only expand our feature space by adding features, for exmample, non-linear feature expansions, but also transform features and get new ones and we are doing exactly that with PCA. We are taking all of the features and constructing the two features that are a. a linear combination of our features; and b. are most informative in spreading out the data. In other words, with PCA, we construct two features from our original features where in these new features, the data points are most spread out and varied, among all features we can construct out of linearly combining our original features.

To do that we first need to extract our data, from the dataframe, in NumPy arrays:

```
[5]: X_30 = df_30.drop('type', axis=1).to_numpy()
y_text = df_30['type'].to_numpy()
```

As a sanity check, let's check X_30:

```
[6]: X_30
[6]: array([[ 17.99
                          10.38
                                   , 122.8
                                                         0.2654,
                                                                     0.4601 ,
               0.1189],
            [ 20.57
                          17.77
                                   , 132.9
                                                         0.186
                                                                     0.275
               0.08902],
            [ 19.69
                          21.25
                                   , 130.
                                                         0.243
                                                                     0.3613 ,
               0.08758],
            . . . ,
            [ 16.6
                          28.08
                                   , 108.3
                                                         0.1418,
                                                                     0.2218 ,
               0.0782],
            [ 20.6
                          29.33
                                                         0.265
                                                                     0.4087,
                                   , 140.1
               0.124
             7.76
                          24.54
                                      47.92
                                                         0.
                                                                     0.2871 .
               0.07039]])
```

...and the size:

- [7]: X_30.shape
- [7]: (569, 30)

Let's do the same thing for y_text:

[8]: y_text

```
[8]: array(['malignant', 'malignant', 'malignant', 'malignant', 'malignant',
          'malignant', 'malignant', 'malignant', 'malignant',
          'malignant', 'malignant', 'malignant', 'malignant',
          'malignant', 'malignant', 'malignant', 'malignant', 'benign',
          'benign', 'benign', 'malignant', 'malignant', 'malignant',
          'malignant', 'malignant', 'malignant', 'malignant',
          'malignant', 'malignant', 'malignant', 'malignant', 'malignant',
          'malignant', 'malignant', 'benign', 'malignant', 'malignant',
          'malignant', 'malignant', 'malignant', 'malignant', 'malignant',
          'malignant', 'benign', 'malignant', 'benign', 'benign', 'benign',
          'benign', 'benign', 'malignant', 'malignant', 'benign',
          'malignant', 'malignant', 'benign', 'benign', 'benign', 'benign',
          'malignant', 'benign', 'malignant', 'malignant', 'benign',
          'benign', 'benign', 'malignant', 'benign', 'malignant',
          'malignant', 'benign', 'malignant', 'benign', 'malignant',
          'malignant', 'benign', 'benign', 'benign', 'malignant',
          'malignant', 'benign', 'malignant', 'malignant', 'malignant',
          'benign', 'benign', 'malignant', 'benign', 'benign',
          'malignant', 'malignant', 'benign', 'benign', 'benign',
          'malignant', 'malignant', 'benign', 'benign', 'benign', 'benign',
          'malignant', 'benign', 'benign', 'malignant', 'benign', 'benign',
          'benign', 'benign', 'benign', 'benign', 'benign',
          'malignant', 'malignant', 'benign', 'malignant',
          'malignant', 'benign', 'benign', 'benign', 'malignant',
          'malignant', 'benign', 'malignant', 'benign', 'malignant',
          'malignant', 'benign', 'malignant', 'malignant', 'benign',
          'benign', 'malignant', 'benign', 'benign', 'malignant', 'benign',
          'benign', 'benign', 'malignant', 'benign', 'benign',
          'benign', 'benign', 'benign', 'benign', 'benign',
          'benign', 'malignant', 'benign', 'benign', 'benign', 'benign',
          'malignant', 'malignant', 'benign', 'malignant', 'benign',
          'benign', 'malignant', 'malignant', 'benign', 'benign',
          'malignant', 'malignant', 'benign', 'benign', 'benign', 'benign',
          'malignant', 'benign', 'benign', 'malignant', 'malignant',
          'malignant', 'benign', 'malignant', 'benign', 'malignant',
          'benign', 'benign', 'malignant', 'benign', 'benign',
          'malignant', 'malignant', 'benign', 'malignant', 'malignant',
          'malignant', 'malignant', 'benign', 'malignant', 'malignant',
          'malignant', 'benign', 'malignant', 'benign', 'malignant',
          'benign', 'benign', 'malignant', 'benign', 'malignant',
          'malignant', 'malignant', 'malignant', 'benign', 'benign',
          'malignant', 'malignant', 'benign', 'benign', 'benign',
          'malignant', 'benign', 'benign', 'benign', 'benign', 'benign',
          'malignant', 'malignant', 'benign', 'benign', 'malignant',
          'benign', 'benign', 'malignant', 'malignant', 'benign',
          'malignant', 'benign', 'benign', 'benign', 'benign', 'malignant',
          'benign', 'benign', 'benign', 'benign', 'malignant',
```

```
'benign', 'malignant', 'malignant', 'malignant',
'malignant', 'malignant', 'malignant', 'malignant',
'malignant', 'malignant', 'malignant', 'malignant',
'benign', 'benign', 'benign', 'benign', 'benign',
'malignant', 'benign', 'malignant', 'benign', 'benign',
'malignant', 'benign', 'benign', 'malignant', 'benign',
'malignant', 'malignant', 'benign', 'benign', 'benign', 'benign',
'benign', 'benign', 'benign', 'benign', 'benign',
'benign', 'benign', 'malignant', 'benign', 'benign',
'malignant', 'benign', 'malignant', 'benign', 'benign', 'benign',
'benign', 'benign', 'benign', 'benign', 'benign',
'benign', 'benign', 'benign', 'benign', 'malignant',
'benign', 'benign', 'benign', 'malignant', 'benign', 'malignant',
'benign', 'benign', 'benign', 'malignant', 'malignant',
'malignant', 'benign', 'benign', 'benign', 'benign', 'malignant',
'benign', 'malignant', 'benign', 'malignant', 'benign', 'benign',
'benign', 'malignant', 'benign', 'benign', 'benign', 'benign',
'benign', 'benign', 'malignant', 'malignant',
'malignant', 'benign', 'benign', 'benign', 'benign', 'benign',
'benign', 'benign', 'benign', 'benign', 'benign',
'malignant', 'malignant', 'benign', 'malignant', 'malignant',
'malignant', 'benign', 'malignant', 'malignant', 'benign',
'benign', 'benign', 'benign', 'malignant', 'benign',
'benign', 'benign', 'benign', 'malignant', 'benign',
'benign', 'benign', 'malignant', 'benign', 'benign', 'malignant',
'malignant', 'benign', 'benign', 'benign', 'benign', 'benign',
'benign', 'malignant', 'benign', 'benign', 'benign', 'benign',
'benign', 'benign', 'malignant', 'benign', 'benign',
'benign', 'benign', 'malignant', 'benign', 'benign',
'malignant', 'benign', 'benign', 'benign', 'benign', 'benign',
'benign', 'benign', 'benign', 'benign', 'benign',
'benign', 'malignant', 'benign', 'malignant', 'malignant',
'benign', 'malignant', 'benign', 'benign', 'benign', 'benign',
'benign', 'malignant', 'benign', 'benign', 'malignant', 'benign',
'malignant', 'benign', 'benign', 'malignant', 'benign',
'malignant', 'benign', 'benign', 'benign', 'benign', 'benign',
'benign', 'benign', 'malignant', 'malignant', 'benign',
'benign', 'benign', 'benign', 'benign', 'malignant',
'benign', 'benign', 'benign', 'benign', 'benign',
'benign', 'benign', 'benign', 'malignant', 'benign',
'benign', 'benign', 'benign', 'benign', 'benign',
'malignant', 'benign', 'malignant', 'benign', 'benign',
'malignant', 'benign', 'benign', 'benign', 'benign', 'benign',
'malignant', 'malignant', 'benign', 'malignant', 'benign',
'malignant', 'benign', 'benign', 'benign', 'benign', 'benign',
'malignant', 'benign', 'benign', 'malignant', 'benign',
'malignant', 'benign', 'malignant', 'malignant', 'benign',
```

```
'benign', 'benign', 'malignant', 'benign', 'benign', 'benign',
'benign', 'benign', 'benign', 'benign', 'benign',
'benign', 'benign', 'malignant', 'benign', 'malignant',
'malignant', 'benign', 'benign', 'benign', 'benign', 'benign',
'benign', 'benign', 'malignant', 'malignant', 'malignant',
'malignant', 'malignant', 'malignant', 'benign'], dtype=object)
```

...and for shape of y_text:

```
[9]: y_text.shape
```

[9]: (569,)

[12]: (569, 2)

1.3.1 Reducing dimensionality

```
[10]: pca = PCA(n_components=2)
pca.fit(X_30)
X = pca.transform(X_30)
```

See how now we can find the proper transformation from the X_30 and specify that we want our transformation to produce data with 2 features for us in the output by letting n_components=2? Also, see how PCA does not get the labels, in fit? It's unsupervised learning after all and it does not use the labels!

Let's check this new X:

Now we can generate a data frame from this two dimesional data X that we generated:

```
[13]: df = pd.DataFrame(data=np.c_[X, y_text], columns=['Feature 1', 'Feature 2', ∪ → 'Label'])
```

Let's take a look at our new 2-dimensional data as a table. We have to construct a data frame from our new 2-dimensional data as well as our labels:

```
[14]: df
```

[14]:		Feature 1	Feature 2	Label
	0	1160.14	-293.918	malignant
	1	1269.12	15.6302	malignant
	2	995.794	39.1567	malignant
	3	-407.181	-67.3803	malignant
	4	930.341	189.341	malignant
	5	-211.591	-79.8774	malignant
	6	821.211	-47.1497	malignant
	7	-25.09	-74.186	malignant
	8	-191.293	-42.1265	malignant
	9	-238.293	-65.3865	malignant
	10	304.688	-17.7251	malignant
	11	424.361	-109.22	malignant
	12	634.514	167.205	malignant
	13	63.0427	111.678	malignant
	14	-196.441	29.6579	malignant
	15	56.0047	-29.1483	malignant
	16	235.858	-108.426	malignant
	17	447.393	-102.152	malignant
	18	1615.09	-270.333	malignant
	19	-191.621	12.2592	benign
	20	-285.051	14.5574	benign
	21	-683.584	-32.5761	benign
	22	112.56	-9.16055	malignant
	23	1873.73	-260.196	malignant
	24	1273.73	-479.321	malignant
	25	634.88	-79.9317	malignant
	26	8.59184	-16.9844	malignant
	27	677.785	104.825	malignant
	28	373.72	-135.335	malignant
	29	453.678	77.4	malignant
	539	-815.98	-74.3364	benign
	540	-493.648	3.93097	benign
	541	-60.7825	38.5607	benign
	542	-39.6621	39.8148	benign
	543	-276.258	30.4219	benign
	544	-201.254	39.8182	benign
	545	-171.841	8.35606	benign
	546	-597.225	-25.3103	benign
	547	-623.076	-14.5232	benign
	548	-635.064	-48.2346	benign
	549	-473.473	-56.5534	benign
	550	-554.764	-9.01713	benign
	551	-524.66	-6.2808	benign
	552	-322.054	22.3741	benign
	553	-704.967	-31.3012	benign
				-

```
554
     -317.926
                 27.3694
                              benign
555
     -622.215
                -14.2743
                              benign
556
     -636.046
                -17.0436
                              benign
557
     -670.677
                 -43.207
                              benign
     -125.245
558
                 78.4234
                              benign
559
     -479.336
                -4.37787
                              benign
     -177.243
560
                 43.7231
                              benign
561
     -518.012
                -1.53085
                              benign
562
      61.9408
                 35.2648
                           malignant
563
                           malignant
      1167.14
                 105.597
564
      1414.13
                 110.222
                           malignant
565
      1045.02
                 77.0576
                           malignant
566
      314.502
                 47.5535
                           malignant
567
      1124.86
                 34.1292
                           malignant
568
     -771.528
                -88.6431
                              benign
```

[569 rows x 3 columns]

Let's also do a scatter plot of our data:

```
[15]: fig = px.scatter(df, x='Feature 1', y='Feature 2', color='Label')
fig.show()
```

We can also create $\{-1, +1\}$ labels for our data from y_text and assign it to (vector) variable y. We use LabelEncoder from scikit-learn again to transform labels into -1s or +1s:

```
[16]: y = (2 * LabelEncoder().fit_transform(y_text)) - 1
```

As usual let's check our y:

```
[17]: y
```

```
[17]: array([ 1,
                          1,
                              1,
                                  1,
                                      1,
                                           1,
                                               1,
                                                   1,
                                                       1,
                 1, -1, -1,
                                  1,
                                               1,
                                                   1,
                                                                    1,
                                      1,
                                           1,
                                                       1,
                                                           1.
                                                                1.
             1,
                            -1,
                                                                        1.
                      1, -1,
                              1,
                                  1,
                                      1,
                                           1,
                                               1,
                                                   1,
                                                       1,
                                                           1,
                                                              -1,
                                                                    1,
                                                                       -1,
                          1, -1,
                                  1,
                                      1, -1, -1,
                                                  -1,
                                                     -1,
                                                           1,
                                                              -1.
                                                                    1.
                                  1, -1,
                                           1, -1,
                                                   1,
                                                       1, -1, -1, -1,
                      1, -1,
                              1,
                                      1, -1, -1,
                                                   1,
                      1, -1, -1, -1,
                                                       1, -1, -1, -1,
                                      1, -1, -1, -1, -1, -1, -1, -1,
                          1, -1, -1,
                          1, -1, -1, -1,
                                          1,
                                               1, -1,
                                                       1, -1,
                                 1, -1, -1, -1, -1,
                                                       1, -1, -1,
                     1, -1, -1,
                          1, -1, -1, -1, -1,
                                                   1, -1,
                                                           1, -1, -1,
                                               1,
                     1, -1, -1, -1, -1,
                                          1, -1, -1,
                                                       1,
                                                           1,
            -1, -1, -1,
                          1, -1, -1,
                                      1,
                                          1, -1,
                                                   1,
                                                       1,
                                                           1,
                                                                1, -1,
                          1, -1, -1,
                                      1, -1,
                                                   1,
                                                       1,
                                                           1, -1, -1,
                                               1,
                                                   1, -1, -1,
                      1, -1, -1, -1, -1,
                                               1,
                                                                1, -1, -1,
                 1, -1, -1, -1, -1,
                                      1, -1, -1, -1, -1,
                                                                1, -1,
                             1,
                                 1,
                                      1, 1,
                                               1,
                                                  1,
                                                      1, -1, -1, -1, -1, -1,
                    1, -1, -1,
                                 1, -1, -1,
                                               1, -1,
                                                      1,
                                                           1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1,
                                               1, -1, -1,
                                                           1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                                                           1, -1, -1, -1,
```

... and its shape:

```
[18]: y.shape
```

[18]: (569,)

Now, we can plot our training data in 3D with a 3D scatter plot (we are going to use surface plots afterwards and the new interface of plotly cannot do surface plots yet, so we are using the older style rather than plotly express):

```
[19]: points colorscale = [
                           [0.0, 'rgb(239, 85, 59)'],
                           [1.0, 'rgb(99, 110, 250)'],
                          1
     layout = go.Layout(scene=dict(
                                    xaxis=dict(title='Feature 1'),
                                    yaxis=dict(title='Featrue 2'),
                                    zaxis=dict(title='Label')
                                   ),
                        )
     points = go.Scatter3d(x=df['Feature 1'],
                            y=df['Feature 2'],
                            z=y,
                            mode='markers',
                            text=df['Label'],
                            marker=dict(
                                        size=3,
                                        color=y,
                                        colorscale=points_colorscale
                                  ),
                           )
```

```
fig2 = go.Figure(data=[points], layout=layout)
fig2.show()
```

1.4 Splitting data

Now, let's split our data into training, validation and test sets. We don't need validation data in this example and we won't be doing model selection here. So, let's use 70% and 30% for training test data, repectively.

```
[20]: (X_train, X_test, y_train, y_test) = train_test_split(X, y, test_size=0.3, ⊔ →random_state=0)
```

1.5 Building and visualizing a logistic regression model

Let's build our logistic regression model then by creating an object of the LogisticRegression class and assign the name logreg to the resulting object.

You can see the documentation for LogisticRegression here:

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html Go ahead and do that now:

```
[22]: ### begin your code here (1 line).
logreg = LogisticRegression()
### end your code here.
```

Now, fit logreg to X_train and y_train:

```
[23]: ### begin your code here (1 line).
logreg.fit(X_train, y_train)
### end your code here.
```

You will get a summary for the model:

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=None, solver='warn', tol=0.0001, verbose=0, warm_start=False)

• You may also get a warning because you have not explicitly set a solver and that is going to change in newer versions of scikit-learn. Nothing you should be worried about here.

Let's visualize the surface generated by our logistic regression model. First, we need to generate a number of points required for creating a visualization of the decision surface:

```
[24]: detail_steps = 100
    (x_vis_0_min, x_vis_1_min) = X_train.min(axis=0)
    (x_vis_0_max, x_vis_1_max) = X_train.max(axis=0)
```

```
x_vis_0_range = np.linspace(x_vis_0_min, x_vis_0_max, detail_steps)
x_vis_1_range = np.linspace(x_vis_1_min, x_vis_1_max, detail_steps)

(XX_vis_0, XX_vis_1) = np.meshgrid(x_vis_0_range, x_vis_0_range)

X_vis = np.c_[XX_vis_0.reshape(-1), XX_vis_1.reshape(-1)]
```

We need to predict the proability associated with points in this generated data in order to visualize it. You can get the probabilities associated with belonging to classes by predict_probamethod. Let's use that to calculate probabilities for points in X_vis. Use predict_probajust like predict to predict probabilities instead of actual classes. Go ahead and do that now, and assign the result to variable probs:

```
[25]: ### begin your code here (1 line).
probs = logreg.predict_proba(X_vis)
### end your code here.
```

Let's check the shape of this variable probs:

```
[26]: probs.shape
```

[26]: (10000, 2)

As you can see, it has two column, because it gives the probability of belonging to each of the two classes. However, we care only about the probability of belonging to the positive class, so we can only choose the cloumn with index 1. Also, the probabilities will be in [0,1] while our labels are $\{+1,1\}$, so we will transform the probabilities to be in range [-1,+1]:

```
[27]: yhat_vis = (2 * probs[:, 1]) - 1
```

Now, we can transfrom yhat_vis into the shape required for a surface plot and plot away:

We can see that logistic regression has fit a surface to our data that is has the logistic (or Sigmoid) function as its intersection.

1.6 Assessing the performance

Let's check our accuracies next. First, the training accuracy. For that let's get the predictions of training data. Predict yhat_train by logreg on X_train:

```
[29]: ### begin your code here (1 line).
yhat_train = logreg.predict(X_train)
### end your code here.
```

Let's measure the accuracy:

```
[30]: accuracy_score(yhat_train, y_train)
```

[30]: 0.9195979899497487

We got 91.95%. Let's check accuracy on the test data. Predict yhat_test:

```
[31]: ### begin your code here (1 line).
yhat_test = logreg.predict(X_test)
### end your code here.
accuracy_score(yhat_test, y_test)
```

[31]: 0.9532163742690059

95.32%. We have better performance on test data than on training data! But that's just random and it does not mean that we have perfectly generalized and have no overfitting: that is theoretically impossible!

That's it for now.