Probabilidad

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Probabilidad

Los Del DGIIM, losdeldgiim.github.io
Arturo Olivares Martos

Granada, 2024-2025

Índice general

1. Relaciones de problemas														5													
	1.0.	Preeliminares																									5

Probabilidad Índice general

1. Relaciones de problemas

1.0. Preeliminares

Ejercicio 1. Se estudian las plantas de una determinada zona donde ha atacado un virus. La probabilidad de que cada planta esté contaminada es 0,35.

1. ¿Cuál es el número esperado de plantas contaminadas en 5 analizadas? Sea X la variable aleatoria que representa el número de plantas contaminadas en 5 análisis. Como la probabilidad de que una planta esté contaminada es 0,35, tenemos que sigue una distribución de probabilidad binomial con n=5 y p=0,35. Es decir:

$$X \sim B(5, 0.35)$$

En este caso, como nos piden el número esperado de plantas contaminadas, tenemos que calcular la esperanza:

$$E[X] = n \cdot p = 5 \cdot 0.35 = 1.75$$

2. Calcular la probabilidad de encontrar entre 2 y 5 plantas contaminadas en 9 exámenes.

Sea Y la variable aleatoria que representa el número de plantas contaminadas en 9 análisis. De igual forma que en el apartado anterior, sigue una distribución de probabilidad binomial con n = 9 y p = 0.35. Es decir:

$$Y \sim B(9, 0.35)$$

En este caso, nos piden calcular la probabilidad de encontrar entre 2 y 5 plantas contaminadas. Es decir:

$$P[2 \leqslant Y \leqslant 5] = F_Y(5) - F_Y(1) = P[Y \leqslant 5] - P[Y \leqslant 1] = \stackrel{(*)}{=} 0.9464 - 0.1211 = 0.8253$$

donde en (*) hemos utilizado la tabla de la distribución binomial.

3. Hallar la probabilidad de encontrar 4 plantas no contaminadas en 6 análisis.

Sea Z la variable aleatoria que representa el número de plantas contaminadas en 6 análisis. De igual forma que en los apartados anteriores, sigue una distribución de probabilidad binomial con n = 6 y p = 0.35. Es decir:

$$Z \sim B(6, 0.35)$$

Probabilidad 1.0. Preeliminares

En este caso, nos piden calcular la probabilidad de encontrar 4 plantas no contaminadas. Es decir, la probabilidad de que 2 plantas estén contaminadas. Es decir:

 $P[Z=2] = {6 \choose 2} \cdot 0.35^2 \cdot 0.65^4 = 0.328$

Ejercicio 2. Cada vez que una máquina dedicada a la fabricación de comprimidos produce uno, la probabilidad de que sea defectuoso es 0,01.

- 1. Si los comprimidos se colocan en tubos de 25, ¿cuál es la probabilidad de que en un tubo todos los comprimidos sean buenos?
- 2. Si los tubos se colocan en cajas de 10, ¿cuál es la probabilidad de que en una determinada caja haya exactamente 5 tubos con un comprimido defectuoso?

Ejercicio 3. Un pescador desea capturar un ejemplar de sardina que se encuentra siempre en una determinada zona del mar con probabilidad 0,15. Hallar la probabilidad de que tenga que pescar 10 peces de especies distintas de la deseada antes de:

1. Pescar la sardina buscada.

Sea X la variable aleatoria que representa el número de peces de especies distintas de la deseada que el pescador tiene que pescar antes de pescar la sardina buscada. Como la probabilidad de que la sardina buscada se encuentre en la zona es 0,15, tenemos que sigue una distribución de probabilidad geométrica con p = 0,15. Es decir:

$$X \sim G(0.15)$$

En este caso, nos piden calcular la probabilidad de que tenga que pescar 10 peces de especies distintas de la deseada antes de pescar la sardina buscada. Es decir:

$$P[X = 10] = P[X \ge 10] - P[X \ge 9] = (1 - (1 - 0.15)^{1}1) - (1 - (1 - 0.15)^{1}0)$$

2. Pescar tres ejemplares de la sardina buscada.

Ejercicio 4. Un científico necesita 5 monos afectados por cierta enfermedad para realizar un experimento. La incidencia de la enfermedad en la población de monos es siempre del 30 %. El científico examinará uno a uno los monos de un gran colectivo, hasta encontrar 5 afectados por la enfermedad.

- 1. Calcular el número medio de exámenes requeridos.
- 2. Calcular la probabilidad de que encuentre 10 monos sanos antes de encontrar los 5 afectados.
- 3. Calcular la probabilidad de que tenga que examinar por lo menos 20 monos.

Ejercicio 5. Se capturan 100 peces de un estanque que contiene 10000. Se les marca con una anilla y se devuelven al agua. Transcurridos unos días se capturan de nuevo 100 peces y se cuentan los anillados.

Probabilidad 1.0. Preeliminares

1. Calcular la probabilidad de que en la segunda captura se encuentre al menos un pez anillado.

2. Calcular el número esperado de peces anillados en la segunda captura.

Ejercicio 6. Cada página impresa de un libro tiene 40 líneas, y cada línea tiene 75 posiciones de impresión. Se supone que la probabilidad de que en cada posición haya error es 1/6000.

- 1. ¿Cuál es la distribución del número de errores por página?
- 2. Calcular la probabilidad de que una página no contenga errores y de que contenga como mínimo 5 errores.
- 3. ¿Cuál es la probabilidad de que un capítulo de 20 páginas no contenga errores?

Ejercicio 7. En un departamento de control de calidad se inspeccionan las unidades terminadas que provienen de una línea de ensamble. La probabilidad de que cada unidad sea defectuosa es 0,05.

- 1. ¿Cuál es la probabilidad de que la vigésima unidad inspeccionada sea la segunda que se encuen- tra defectuosa?
- 2. ¿Cuántas unidades deben inspeccionarse por término medio hasta encontrar cuatro defectuosas?
- 3. Calcular la desviación típica del número de unidades inspeccionadas hasta encontrar cuatro defectuosas.

Ejercicio 8. Los números 1, 2, 3, ..., 10 se escriben en diez tarjetas y se colocan en una urna. Las tarjetas se extraen una a una y sin devolución. Calcular las probabilidades de los siguientes sucesos:

- 1. Hay exactamente tres números pares en cinco extracciones.
- 2. Se necesitan cinco extracciones para obtener tres números pares.
- 3. Obtener el número 7 en la cuarta extracción.

Ejercicio 9. Supongamos que el número de televisores vendidos en un comercio durante un mes se distribuye según una Poisson de parámetro 10, y que el beneficio neto por unidad es 30 euros.

- 1. ¿Cuál es la probabilidad de que el beneficio neto obtenido por un comerciante durante un mes sea al menos de 360 euros?
- 2. ¿Cuántos televisores debe tener el comerciante a principio de mes para tener al menos probabilidad 0,95 de satisfacer toda la demanda?