Prob 1) Expand the error function

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

in a series by using the exponential series and integrating. Obtain the Taylor series of $\operatorname{erf}(x)$ about zero directly. Are the two series the same? Evaluate $\operatorname{erf}(1)$ by adding four terms of the series and compare with the value $\operatorname{erf}(1) \approx 0.8427$, which is correct to four decimal places.

Hint: Recall from the Fundamental Theorem of Calculus that

$$\frac{d}{dx} \int_0^x f(t)dt = f(x).$$

Prob 2) What is the least number of terms required to obtain π correct up to four decimal places, using the series

$$\pi = 4\left[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots\right].$$

Prob 3) What are the condition numbers of the following functions? Where are they large?

(i)
$$(x-1)^a$$
, where $a > 0$. (ii) $x^{-1}e^x$. (iii) $\cos^{-1} x$.

Prob 4) We consider a classic example given by Wilkinson. Let

$$f(x) = (x-1)(x-2)...(x-20)$$
 and $g(x) = x^{19}$.

The roots of f are obviously the integers 1,2,3,...,20. How is the root r=20 affected by perturbing f to $f+\epsilon g$?

- Prob 5) Let the Bisection algorithm is applied to a continuous function f on an interval [a,b] to solve f(x)=0, where f(a)f(b)<0. Denote the successive intervals that arise in the Bisection method by $[a_0,b_0],[a_1,b_1],...,[a_n,b_n]$ and so on with $a=a_0$ and $b=b_0$. Show that
 - a) $a_0 \le a_1 \le a_2 \le \dots$ and $b_0 \ge b_1 \ge b_2 \ge \dots$
 - b) $b_n a_n = 2^{-n}(b_0 a_0)$.
 - c) After n-steps, an approximate root will have been computed with error at most $(b_0 a_0)/2^{(n+1)}$.

Further, if a=0.1 and b=1.0, how many steps of the Bisection method are required to determine the root with an error of at most $\frac{1}{2} \times 10^{-8}$.

- Prob 6) Using Bisection method, find where the graphs of y = 3x and $y = e^x$ intersect by finding roots of $e^x 3x = 0$ correct to four decimal digits.
- Prob 7) Verify that when Newton's Method is used to compute \sqrt{N} (by solving the equation $x^2 = N$), the sequence of iterates is defined by

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right).$$

Perform three iterations of this scheme for computing $\sqrt{2}$, starting with $x_0 = 1$, and of the Bisection method for $\sqrt{2}$, starting with interval [1, 2]. How many iterations are needed for each method in order to obtain 10^{-6} accuracy?

Lab Exercises

- Ex 1) Write codes for solving the problems in Problems 6 and 7.
- Ex 2) Write a program to solve for a root of the equation $e^{-x^2} = \cos x + 1$ on [0, 4]. What happens in Newton's method if we start with $x_0 = 0$ or with $x_0 = 1$?
- Ex 3) (Circuit Problem) A simple circuit with resistance R, capacitance C in series with a battery of voltage V is given by

$$Q = CV \left(1 - e^{-T/(RC)} \right),\,$$

where Q is the charge of the capacitor and T is the time needed to obtain the charge. We wish to solve for the unknown C. For example, using Bisection method, solve this exercise

$$f(x) = 10x \left[1 - e^{-0.004/(2000x)} \right] - 0.00001.$$

Plot the curve.

Ex 4) In celestial mechanics, **Kepler's Equation** is important. It reads

$$x = y - \epsilon \sin y$$
,

in which x is a planet's mean anomaly, y its eccentric anomaly, and ϵ the eccentricity of its orbit. Taking $\epsilon = 0.9$, construct a table of y for 30 equally spaced values of x in the interval $0 \le x \le \pi$. Use Newton's Method to obtain each value of y. The y corresponding to an x can be used as the starting point for the iteration when x is changed slightly.