2 Properties of Vector Spaces, Intro to Subspaces

Theorem 1

In any vector space, the zero vector is unique. That is if $0, z \in V$ have property where v + 0 = v and v + z = v, then z = 0.

Theorem 2

In any vector space, the additive inverse of a vector is unique. That is, $\forall v \in V$, if there exists vectors $y, x \in V$ such that v + y = 0 and v + x = 0, then y = x.

Definition 1: Subtraction of vectors

Let V be a vector space, suppose $v, w \in V$. The difference of these two vectors, denoted v - w, is simply that sum v + (-w), that is the sum of v and the additive inverse of w.

Lemma 1

Let V be a vector space. The following properties hold for V:

- 1. $\forall \mathbf{v} \in V, 0 \in \mathbb{F}, 0 \cdot \mathbf{v} = \mathbf{0}.$
- 2. $\forall c \in \mathbb{F}, c \cdot \mathbf{0} = \mathbf{0}.$
- 3. Given $c \in \mathbb{F}$, $\mathbf{v} \in V$, if $c \cdot \mathbf{v} = \mathbf{0}$, then c = 0 or $\mathbf{v} = \mathbf{0}$.

Lemma 2

Let V be a vector space. The following properties hold for V:

- 1. $\forall v \in V, (-1) \cdot v = -v$. (The additive inverse of v)
- 2. $\forall c \in \mathbb{F}, v \in V, c \cdot (-v) = (-c) \cdot v = -(c \cdot v).$
- 3. $\forall c \in \mathbb{F}, v, w \in V, c(v w) = cv cw.$