## Chapter 15 Oscillations

23. The maximum force that can be exerted by the surface must be less than  $\mu_s F_N$  or else the block will not follow the surface in its motion. Here,  $\mu_s$  is the coefficient of static friction and  $F_N$  is the normal force exerted by the surface on the block. Since the block does not accelerate vertically, we know that  $F_N = mg$ , where m is the mass of the block. If the block follows the table and moves in simple harmonic motion, the magnitude of the maximum force exerted on it is given by

$$F = ma_m = m\omega^2 x_m = m(2\pi f)^2 x_m$$

where  $a_m$  is the magnitude of the maximum acceleration,  $\omega$  is the angular frequency, and f is the frequency. The relationship  $\omega = 2\pi f$  was used to obtain the last form. We substitute  $F = m(2\pi f)^2 x_m$  and  $F_N = mg$  into  $F < \mu_s F_N$  to obtain  $m(2\pi f)^2 x_m < \mu_s mg$ . The largest amplitude for which the block does not slip is

$$x_m = \frac{\mu_s g}{(2\pi f)^2} = \frac{(0.50)(9.8 \text{ m/s}^2)}{(2\pi \times 2.0 \text{ Hz})^2} = 0.031 \text{ m}.$$

A larger amplitude requires a larger force at the end points of the motion. The surface cannot supply the larger force and the block slips.

24. We wish to find the effective spring constant for the combination of springs shown in the figure. We do this by finding the magnitude F of the force exerted on the mass when the total elongation of the springs is  $\Delta x$ . Then  $k_{\rm eff} = F/\Delta x$ . Suppose the left-hand spring is elongated by  $\Delta x_{\ell}$  and the right-hand spring is elongated by  $\Delta x_{r}$ . The left-hand spring exerts a force of magnitude  $k\Delta x_{\ell}$  on the right-hand spring and the right-hand spring exerts a force of magnitude  $k\Delta x_{r}$  on the left-hand spring. By Newton's third law these must be equal, so  $\Delta x_{\ell} = \Delta x_{r}$ . The two elongations must be the same, and the total elongation is twice the elongation of either spring:  $\Delta x = 2\Delta x_{\ell}$ . The left-hand spring exerts a force on

650 *CHAPTER 15* 

the block and its magnitude is  $F = k\Delta x_{\ell}$ . Thus  $k_{\text{eff}} = k\Delta x_{\ell}/2\Delta x_{r} = k/2$ . The block behaves as if it were subject to the force of a single spring, with spring constant k/2. To find the frequency of its motion, replace  $k_{\text{eff}}$  in  $f = (1/2\pi)\sqrt{k_{\text{eff}}/m}$  with k/2 to obtain

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{2m}}$$

With m = 0.245 kg and k = 6430 N/m, the frequency is f = 18.2 Hz.

25. (a) We interpret the problem as asking for the equilibrium position; that is, the block is gently lowered until forces balance (as opposed to being suddenly released and allowed to oscillate). If the amount the spring is stretched is x, then we examine force-components along the incline surface and find

$$kx = mg \sin \theta \implies x = \frac{mg \sin \theta}{k} = \frac{(14.0 \text{ N}) \sin 40.0^{\circ}}{120 \text{ N/m}} = 0.0750 \text{ m}$$

at equilibrium. The calculator is in degrees mode in the above calculation. The distance from the top of the incline is therefore (0.450 + 0.075) m = 0.525 m.

(b) Just as with a vertical spring, the effect of gravity (or one of its components) is simply to shift the equilibrium position; it does not change the characteristics (such as the period) of simple harmonic motion. Thus, Eq. 15-13 applies, and we obtain

$$T = 2\pi \sqrt{\frac{14.0 \text{ N/9.80 m/s}^2}{120 \text{ N/m}}} = 0.686 \text{ s.}$$

26. To be on the verge of slipping means that the force exerted on the smaller block (at the point of maximum acceleration) is  $f_{\text{max}} = \mu_s \, mg$ . The textbook notes (in the discussion immediately after Eq. 15-7) that the acceleration amplitude is  $a_m = \omega^2 x_m$ , where  $\omega = \sqrt{k/(m+M)}$  is the angular frequency (from Eq. 15-12). Therefore, using Newton's second law, we have

$$ma_m = \mu_s mg \Rightarrow \frac{k}{m+M} x_m = \mu_s g$$

which leads to

$$x_m = \frac{\mu_s g(m+M)}{k} = \frac{(0.40)(9.8 \text{ m/s}^2)(1.8 \text{ kg} + 10 \text{ kg})}{200 \text{ N/m}} = 0.23 \text{ m} = 23 \text{ cm}.$$

- (a) Momentum conservation readily yields v' = mv/(m + M). With m = 9.5 g, M = 5.4 kg, and v = 630 m/s, we obtain v' = 1.1 m/s.
- (b) Since v' occurs at the equilibrium position, then  $v' = v_m$  for the simple harmonic motion. The relation  $v_m = \omega x_m$  can be used to solve for  $x_m$ , or we can pursue the alternate (though related) approach of energy conservation. Here we choose the latter:

$$\frac{1}{2}(m+M)v'^{2} = \frac{1}{2}kx_{m}^{2} \implies \frac{1}{2}(m+M)\frac{m^{2}v^{2}}{(m+M)^{2}} = \frac{1}{2}kx_{m}^{2}$$

which simplifies to

$$x_m = \frac{mv}{\sqrt{k(m+M)}} = \frac{(9.5 \times 10^{-3} \text{kg})(630 \text{ m/s})}{\sqrt{(6000 \text{ N/m})(9.5 \times 10^{-3} \text{kg} + 5.4 \text{kg})}} = 3.3 \times 10^{-2} \text{ m}.$$

34. We note that the spring constant is

$$k = 4\pi^2 m_1/T^2 = 1.97 \times 10^5 \text{ N/m}.$$

It is important to determine where in its simple harmonic motion (which "phase" of its motion) block 2 is when the impact occurs. Since  $\omega = 2\pi/T$  and the given value of t (when the collision takes place) is one-fourth of T, then  $\omega t = \pi/2$  and the location then of block 2 is  $x = x_m \cos(\omega t + \phi)$  where  $\phi = \pi/2$  which gives  $x = x_m \cos(\pi/2 + \pi/2) = -x_m$ . This means block 2 is at a turning point in its motion (and thus has zero speed right before the impact occurs); this means, too, that the spring is stretched an amount of 1 cm = 0.01 m at this moment. To calculate its after-collision speed (which will be the same as that of block 1 right after the impact, since they stick together in the process) we use momentum conservation and obtain v = (4.0 kg)(6.0 m/s)/(6.0 kg) = 4.0 m/s. Thus, at the end of the impact itself (while block 1 is still at the same position as before the impact) the system (consisting now of a total mass M = 6.0 kg) has kinetic energy

$$K = \frac{1}{2} (6.0 \text{ kg})(4.0 \text{ m/s})^2 = 48 \text{ J}$$

and potential energy

$$U = \frac{1}{2}kx^2 = \frac{1}{2}(1.97 \times 10^5 \text{ N/m})(0.010 \text{ m})^2 \approx 10 \text{ J},$$

meaning the total mechanical energy in the system at this stage is approximately E = K + U = 58 J. When the system reaches its new turning point (at the new amplitude X) then this amount must equal its (maximum) potential energy there:  $E = \frac{1}{2}(1.97 \times 10^5 \text{ N/m}) X^2$ .

Therefore, we find

$$X = \sqrt{\frac{2E}{k}} = \sqrt{\frac{2(58 \text{ J})}{1.97 \times 10^5 \text{ N/m}}} = 0.024 \text{ m}.$$

45. From Eq. 15-28, we find the length of the pendulum when the period is T = 8.85 s:

$$L = \frac{gT^2}{4\pi^2}.$$

The new length is L' = L - d where d = 0.350 m. The new period is

$$T' = 2\pi \sqrt{\frac{L'}{g}} = 2\pi \sqrt{\frac{L}{g} - \frac{d}{g}} = 2\pi \sqrt{\frac{T^2}{4\pi^2} - \frac{d}{g}}$$

which yields T' = 8.77 s.

46. We require

$$T = 2\pi \sqrt{\frac{L_o}{g}} = 2\pi \sqrt{\frac{I}{mgh}}$$

similar to the approach taken in part (b) of Sample Problem – "Physical pendulum, period and length," but treating in our case a more general possibility for I. Canceling  $2\pi$ , squaring both sides, and canceling g leads directly to the result;  $L_0 = I/mh$ .

47. We use Eq. 15-29 and the parallel-axis theorem  $I = I_{\rm cm} + mh^2$  where h = d. For a solid disk of mass m, the rotational inertia about its center of mass is  $I_{\rm cm} = mR^2/2$ . Therefore,

$$T = 2\pi \sqrt{\frac{mR^2/2 + md^2}{mgd}} = 2\pi \sqrt{\frac{R^2 + 2d^2}{2gd}} = 2\pi \sqrt{\frac{(2.35 \text{ cm})^2 + 2(1.75 \text{ cm})^2}{2(980 \text{ cm/s}^2)(1.75 \text{ cm})}} = 0.366 \text{ s.}$$

48. (a) For the "physical pendulum" we have

$$T = 2 \pi \sqrt{\frac{I}{mgh}} = 2\pi \sqrt{\frac{I_{com} + mh^2}{mgh}}.$$

660 *CHAPTER 15* 

If we substitute r for h and use item (i) in Table 10-2, we have

$$T = \frac{2\pi}{\sqrt{g}} \sqrt{\frac{a^2 + b^2}{12r} + r}$$
. 把g, a, b的值代入作图

In the figure below, we plot T as a function of r, for a = 0.35 m and b = 0.45 m.



(b) The minimum of T can be located by setting its derivative to zero, dT/dr = 0. This yields

$$r = \sqrt{\frac{a^2 + b^2}{12}} = \sqrt{\frac{(0.35 \text{ m})^2 + (0.45 \text{ m})^2}{12}} = 0.16 \text{ m}.$$

- (c) The direction from the center does not matter, so the locus of points is a circle around the center, of radius  $[(a^2 + b^2)/12]^{1/2}$ .
- 49. Replacing x and v in Eq. 15-3 and Eq. 15-6 with  $\theta$  and  $d\theta/dt$ , respectively, we identify 4.44 rad/s as the angular frequency  $\omega$ . Then we evaluate the expressions at t=0 and divide the second by the first:

$$\left(\frac{d\theta/dt}{\theta}\right)_{\text{at }t=0} = -\omega \tan \phi.$$

(a) The value of  $\theta$  at t = 0 is 0.0400 rad, and the value of  $d\theta/dt$  then is -0.200 rad/s, so we are able to solve for the phase constant:

$$\phi = \tan^{-1}[0.200/(0.0400 \times 4.44)] = 0.845 \text{ rad.}$$

(b) Once  $\phi$  is determined we can plug back in to  $\theta_0 = \theta_m \cos \phi$  to solve for the angular amplitude. We find  $\theta_m = 0.0602$  rad.

662 *CHAPTER 15* 

52. Consider that the length of the spring as shown in the figure (with one of the block's corners lying directly above the block's center) is some value L (its rest length). If the (constant) distance between the block's center and the point on the wall where the spring attaches is a distance r, then  $r\cos\theta = d/\sqrt{2}$ , and  $r\cos\theta = L$  defines the angle  $\theta$  measured from a line on the block drawn from the center to the top corner to the line of r (a straight line from the center of the block to the point of attachment of the spring on the wall). In terms of this angle, then, the problem asks us to consider the dynamics that results from increasing  $\theta$  from its original value  $\theta_0$  to  $\theta_0 + 3^\circ$  and then releasing the system and letting it oscillate. If the new (stretched) length of spring is L' (when  $\theta = \theta_0 + 3^\circ$ ), then it is a straightforward trigonometric exercise to show that

$$(L')^2 = r^2 + (d/\sqrt{2})^2 - 2r(d/\sqrt{2})\cos(\theta_0 + 3^\circ) = L^2 + d^2 - d^2\cos(3^\circ) + \sqrt{2}Ld\sin(3^\circ)$$

since  $\theta_0 = 45^\circ$ . The difference between L' (as determined by this expression) and the original spring length L is the amount the spring has been stretched (denoted here as  $x_m$ ). If one plots  $x_m$  versus L over a range that seems reasonable considering the figure shown in the problem (say, from L = 0.03 m to L = 0.10 m) one quickly sees that  $x_m \approx 0.00222$  m is an excellent approximation (and is very close to what one would get by approximating  $x_m$  as the arc length of the path made by that upper block corner as the block is turned through 3°, even though this latter procedure should in principle overestimate  $x_m$ ). Using this value of  $x_m$  with the given spring constant leads to a potential energy of  $U = \frac{1}{2}k x_m^2 = 0.00296$  J. Setting this equal to the kinetic energy the block has as it passes back through the initial position, we have

$$K = 0.00296 \text{ J} = \frac{1}{2} I \omega_m^2$$

where  $\omega_m$  is the maximum angular speed of the block (and is not to be confused with the angular frequency  $\omega$  of the oscillation, though they are related by  $\omega_m = \theta_0 \omega$  if  $\theta_0$  is expressed in radians). The rotational inertia of the block is  $I = \frac{1}{6}Md^2 = 0.0018 \text{ kg} \cdot \text{m}^2$ . Thus, we can solve the above relation for the maximum angular speed of the block:

$$\omega_m = \sqrt{\frac{2K}{I}} = \sqrt{\frac{2(0.00296 \text{ J})}{0.0018 \text{ kg} \cdot \text{m}^2}} = 1.81 \text{ rad/s}.$$

Therefore the angular frequency of the oscillation is  $\omega = \omega_m/\theta_0 = 34.6$  rad/s. Using Eq. 15-5, then, the period is T = 0.18 s.

53. If the torque exerted by the spring on the rod is proportional to the angle of rotation of the rod and if the torque tends to pull the rod toward its equilibrium orientation, then the rod will oscillate in simple harmonic motion. If  $\tau = -C\theta$ , where  $\tau$  is the torque,  $\theta$  is the

angle of rotation, and C is a constant of proportionality, then the angular frequency of oscillation is  $\omega = \sqrt{C/I}$  and the period is

$$T = 2\pi / \omega = 2\pi \sqrt{I/C},$$

where I is the rotational inertia of the rod. The plan is to find the torque as a function of  $\theta$  and identify the constant C in terms of given quantities. This immediately gives the period in terms of given quantities. Let  $\ell_0$  be the distance from the pivot point to the wall. This is also the equilibrium length of the spring. Suppose the rod turns through the angle  $\theta$ , with the left end moving away from the wall. This end is now  $(L/2) \sin \theta$  further from the wall and has moved a distance  $(L/2)(1-\cos \theta)$  to the right. The length of the spring is now

$$\ell = \sqrt{(L/2)^2(1-\cos\theta)^2 + [\ell_0 + (L/2)\sin\theta]^2} .$$
 不用这么复杂,  
一开始就用小角近似

If the angle  $\theta$  is small we may approximate  $\cos \theta$  with 1 and  $\sin \theta$  with  $\theta$  in radians. Then the length of the spring is given by  $\ell \approx \ell_0 + L\theta/2$  and its elongation is  $\Delta x = L\theta/2$ . The force it exerts on the rod has magnitude  $F = k\Delta x = kL\theta/2$ . Since  $\theta$  is small we may approximate the torque exerted by the spring on the rod by  $\tau = -FL/2$ , where the pivot point was taken as the origin. Thus  $\tau = -(kL^2/4)\theta$ . The constant of proportionality C that relates the torque and angle of rotation is  $C = kL^2/4$ . The rotational inertia for a rod pivoted at its center is  $I = mL^2/12$ , where m is its mass. See Table 10-2. Thus the period of oscillation is

$$T = 2\pi \sqrt{\frac{I}{C}} = 2\pi \sqrt{\frac{mL^2/12}{kL^2/4}} = 2\pi \sqrt{\frac{m}{3k}}$$

With m = 0.600 kg and k = 1850 N/m, we obtain T = 0.0653 s.

54. We note that the initial angle is  $\theta_0 = 7^\circ = 0.122$  rad (though it turns out this value will cancel in later calculations). If we approximate the initial stretch of the spring as the arclength that the corresponding point on the plate has moved through  $(x = r\theta_0)$  where r = 0.025 m) then the initial potential energy is approximately  $\frac{1}{2}kx^2 = 0.0093$  J. This should equal to the kinetic energy of the plate  $(\frac{1}{2}I\omega_m^2)$  where this  $\omega_m$  is the maximum angular speed of the plate, not the angular frequency  $\omega$ ). Noting that the maximum angular speed of the plate is  $\omega_m = \omega\theta_0$  where  $\omega = 2\pi/T$  with T = 20 ms = 0.02 s as determined from the graph, then we can find the rotational inertial from  $\frac{1}{2}I\omega_m^2 = 0.0093$  J. Thus,  $I = 1.3 \times 10^{-5}$  kg·m<sup>2</sup>.

100. (a) The potential energy at the turning point is equal (in the absence of friction) to the total kinetic energy (translational plus rotational) as it passes through the equilibrium position:

$$\frac{1}{2}kx_{m}^{2} = \frac{1}{2}Mv_{\text{cm}}^{2} + \frac{1}{2}I_{\text{cm}}\omega^{2} = \frac{1}{2}Mv_{\text{cm}}^{2} + \frac{1}{2}\left(\frac{1}{2}MR^{2}\right)\left(\frac{v_{\text{cm}}}{R}\right)^{2}$$
$$= \frac{1}{2}Mv_{\text{cm}}^{2} + \frac{1}{4}Mv_{\text{cm}}^{2} = \frac{3}{4}Mv_{\text{cm}}^{2}$$

which leads to  $Mv_{\rm cm}^2 = 2kx_m^2/3 = 0.125$  J. The translational kinetic energy is therefore  $\frac{1}{2}Mv_{\rm cm}^2 = kx_m^2/3 = 0.0625$  J.

- (b) And the rotational kinetic energy is  $\frac{1}{4}Mv_{\rm cm}^2 = kx_m^2/6 = 0.03125 \,\rm J \approx 3.13 \times 10^{-2} \,\rm J$ .
- (c) In this part, we use  $v_{cm}$  to denote the speed at any instant (and not just the maximum speed as we had done in the previous parts). Since the energy is constant, then

$$\frac{dE}{dt} = \frac{d}{dt} \left( \frac{3}{4} M v_{\rm cm}^2 \right) + \frac{d}{dt} \left( \frac{1}{2} k x^2 \right) = \frac{3}{2} M v_{\rm cm} a_{\rm cm} + k x v_{\rm cm} = 0$$

which leads to

$$a_{\rm cm} = -\left(\frac{2k}{3M}\right)x.$$

Comparing with Eq. 15-8, we see that  $\omega = \sqrt{2k/3M}$  for this system. Since  $\omega = 2\pi/T$ , we obtain the desired result:  $T = 2\pi\sqrt{3M/2k}$ .