Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. However, readability is more than just programming style. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. Scripting and breakpointing is also part of this process. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). Many applications use a mix of several languages in their construction and use. Programs were mostly entered using punched cards or paper tape. Following a consistent programming style often helps readability. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Normally the first step in debugging is to attempt to reproduce the problem. Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language.