Alliance Participation, Treaty Depth, and Military Spending

Joshua Alley

October 30, 2019

Texas A&M University

How does alliance participation affect military spending?

A Tale of Two Franco-Belgian Alliances

A Tale of Two Franco-Belgian Alliances

France and Belgium 1920

A Tale of Two Franco-Belgian Alliances

France and Belgium 1920

France, Belgium and Company 1925

Does alliance participation

increase military spending?

increase military spending?

Or decrease it?

Does alliance participation

Treaty depth leads to free-riding in alliances by non-major powers.

What Does That Mean?

• **Depth**: The extent of military cooperation an alliance treaty promises.

What Does That Mean?

- **Depth**: The extent of military cooperation an alliance treaty promises.
- Free-riding: Low defense spending by alliance participants.

What Does That Mean?

- **Depth**: The extent of military cooperation an alliance treaty promises.
- Free-riding: Low defense spending by alliance participants.
- Non-major powers: Countries with less capability and ambition in international politics.

Why Should You Care?

Competing Claims and Results

	Decrease	Increase	Null
Most & Siverson 1987			Χ
Conybeare 1994	Χ		
Diehl 1994		X	
Goldsmith 2003			Χ
Morgan & Palmer 2006		X	
Quiroz-Flores 2011		Χ	

Alliance Heterogeneity

• Alliances can increase or decrease military spending.

Alliance Heterogeneity

- Alliances can increase or decrease military spending.
- Depends on alliance characteristics.

Alliance Heterogeneity

- Alliances can increase or decrease military spending.
- Depends on alliance characteristics.
- Treaty depth is a key source of differences between alliances.

Depth reveals a tradeoff between reassurance and free-riding in alliance politics.

I make my claim about alliance participation and military spending in three ways:

I make my claim about alliance participation and military spending in three ways:

1. Argument: Treaty Depth and Non-Major Powers

I make my claim about alliance participation and military spending in three ways:

- 1. Argument: Treaty Depth and Non-Major Powers
- 2. Statistical Analysis

I make my claim about alliance participation and military spending in three ways:

- 1. Argument: Treaty Depth and Non-Major Powers
- 2. Statistical Analysis
- 3. Evidence from US alliances

Argument

Opportunism in Alliances

Alliances are a form of international cooperation. There are two connected forms of opportunism:

Opportunism in Alliances

Alliances are a form of international cooperation. There are two connected forms of opportunism:

1. Abandonment: address with reassurance.

Opportunism in Alliances

Alliances are a form of international cooperation. There are two connected forms of opportunism:

- 1. Abandonment: address with reassurance.
- 2. Free-riding: address with leverage.

Free-riding

Free-riding means alliance members:

Free-riding

Free-riding means alliance members:

1. Rely on partners for protection and

Free-riding

Free-riding means alliance members:

- 1. Rely on partners for protection and
- 2. Reduce defense spending.

Deep alliances lead to more free-riding.

Treaty Depth

Deep treaties stipulate extensive defense cooperation.

Treaty Depth

Deep treaties stipulate extensive defense cooperation.

- 1. Require more policy coordination and defense cooperation among alliance members.
- 2. Formal defense cooperation:

Treaty Depth

Deep treaties stipulate extensive defense cooperation.

- 1. Require more policy coordination and defense cooperation among alliance members.
- 2. Formal defense cooperation:
 - Bases, policy coordination, military aid, side agreements, formal institutions.

Limits on Free-Riding

There are two ways depth increases alliance members ability to free-ride.

Limits on Free-Riding

There are two ways depth increases alliance members ability to free-ride.

1. Greater alliance credibility and less fear of abandonment.

Limits on Free-Riding

There are two ways depth increases alliance members ability to free-ride.

- 1. Greater alliance credibility and less fear of abandonment.
- 2. Reduced leverage over free-riding.

Depth is relevant for non-major powers because they are more prone to free-ride.

Non-Major Powers

• Emphasize immediate security.

Non-Major Powers

- Emphasize immediate security.
- Constraint: Opportunity costs of military spending.

Non-Major Powers

- Emphasize immediate security.
- Constraint: Opportunity costs of military spending.
- Under some conditions, alliance participation decreases military spending.

Hypothesis 1: As treaty depth increases, the impact of alliance participation on percentage changes in non-major power

military spending will decrease.

Empirical Analysis

Research Design

I need two things to test the prediction:

Research Design

I need two things to test the prediction:

1. Measure of treaty depth— measurement model.

Research Design

I need two things to test the prediction:

- 1. Measure of treaty depth— measurement model.
- Connect alliance-level variation with state-level outcomes— multilevel Bayesian analysis.

Measuring Treaty Depth

I use a latent variable model to infer treaty depth from observed promises.

Measuring Treaty Depth

I use a latent variable model to infer treaty depth from observed promises.

My measure of depth for each alliance is the posterior mean of a latent factor.

Details of Measure

- Multiple observed indicators of depth in ATOP alliances with military support:
 - Defense Cooperation: bases, integrated command, military aid, IO formation, defense policy coordination, other military agreements.

Details of Measure

- Multiple observed indicators of depth in ATOP alliances with military support:
 - Defense Cooperation: bases, integrated command, military aid, IO formation, defense policy coordination, other military agreements.
- Semiparametric mixed factor analysis. (Murray et al 2013)

Factor Loadings

Latent Measure of Treaty Depth

Latent Measure of Treaty Depth: Shallow

Latent Measure of Treaty Depth: Typical

Latent Measure of Treaty Depth: Deep

Empirical Analysis: Multilevel Model

• Link alliance-level variation with state-level outcomes.

Empirical Analysis: Multilevel Model

- Link alliance-level variation with state-level outcomes.
- Two connected regressions: alliance and state-level.

Empirical Analysis: Multilevel Model

- Link alliance-level variation with state-level outcomes.
- Two connected regressions: alliance and state-level.
- Alliance characteristics modify the association between alliance membership and percentage changes in spending.

1. Matches the theoretical argument by comparing alliances.

- 1. Matches the theoretical argument by comparing alliances.
- 2. Explicitly model heterogeneous effects of alliances.

- 1. Matches the theoretical argument by comparing alliances.
- 2. Explicitly model heterogeneous effects of alliances.
- 3. States are members of multiple alliances.

- 1. Matches the theoretical argument by comparing alliances.
- 2. Explicitly model heterogeneous effects of alliances.
- 3. States are members of multiple alliances.
- 4. Includes multiple salient alliance characteristics.

$$\%$$
 Change = Varying + State + Alliance Mil. Ex. Intercepts Vars. Participation


```
\begin{tabular}{lll} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &
```

Alliance Characteristics

• Sample: Non-major power states (COW)— 1816-2007.

- Sample: Non-major power states (COW)— 1816-2007.
- 193 Alliances with military support: symmetric and asymmetric.

- Sample: Non-major power states (COW)— 1816-2007.
- 193 Alliances with military support: symmetric and asymmetric.
- **DV**: Percentage change in military spending (COW) = $\frac{\Delta \text{Mil. Expend}_t}{\text{Mil. Expend}_{t-1}}$

- Sample: Non-major power states (COW)— 1816-2007.
- 193 Alliances with military support: symmetric and asymmetric.
- **DV**: Percentage change in military spending (COW) = $\frac{\Delta \text{Mil. Expend}_t}{\text{Mil. Expend}_{t-1}}$
 - Transformed with Inverse Hyperbolic Sine.

- Sample: Non-major power states (COW)— 1816-2007.
- 193 Alliances with military support: symmetric and asymmetric.
- **DV**: Percentage change in military spending (COW) = $\frac{\Delta \text{Mil. Expend}_t}{\text{Mil. Expend}_{t-1}}$
 - Transformed with Inverse Hyperbolic Sine.
- Alliance-Level IV: Mean treaty depth

Controls

 State-Level Controls: Interstate war, civil War, annual MIDs, GDP growth, POLITY, Cold War, rival military expenditures.

Controls

- State-Level Controls: Interstate war, civil War, annual MIDs, GDP growth, POLITY, Cold War, rival military expenditures.
- Alliance-Level Controls: Unconditional military support, economic issue linkages, foreign policy concessions, share of democracies, number of members, wartime, asymmetric obligations, US member (Cold War), USSR member.

Association Between Treaty Depth and Changes in Military Spending

Substantive Importance

Substantive Importance

How Treaty Depth Modifies Alliance Impact

Treaty Depth and Alliance Impact

US Alliances

Reassurance

US Alliances in Context

US Alliances in Context

Implication: What to do with US alliances?

Note: OAS stands for Organization of American States; NATO for North Atlantic Treaty Organization; and ANZUS for Australian, New Zealand, United States Security Treaty.

Conclusion

How alliance participation affects military spending depends on treaty depth.

Deep alliances often reduce non-major

alliances often increase military

power military spending but shallow

spending.

There is a tradeoff between reassurance and free-riding in alliance treaty design.

Looking Ahead

Dissertation

My dissertation articulates and tests a more general theory of alliance participation and military spending.

My Research Agenda

The political economy of security, with a focus on formal institutions.

International Security

- Alliance Participation, Treaty Depth and Military Spending
- Reassessing the Public Goods Theory of Alliances

Intra-State Conflict

- Conflict Management Institutions and FDI
- Sanctioning Terrorist Groups: Can it Work?
- Weapon of the Weak?: Rebel Groups' International Law Talk, 1974-2011

Thank you! jkalley14@tamu.edu

Limitations

- 1. Domestic political economy of military spending.
- 2. Measurement error and missing data.
- 3. Formal depth only in the measure.
- 4. Strategic alliance design

Details of Measurement Model

- Bayesian Gaussian Copula Factor Model: for mixed data.
- Uses copulas to break dependence between latent factors and marginal distributions.
- Treats marginals as unknown and keeps them free of dependence.
- IMH proposal, 10,000 iteration warmup, 20,000 samples, thinned every 20 draws.
- Generalized double Pareto prior for the factor loading flexible generalized Laplace distribution with a spike at zero and heavy tails.

Aside: Benson and Clinton 2016

- Use a measurement model to infer alliance scope, depth and capability.
- Identify three separate dimensions, and use three modelsexplicit constraint.
- I use a different concept, which combines what they call scope and depth.
- Murray et al's model relaxes distributional assumptions in their estimator (Quinn 2004 Factor Analysis).

Depth and First Year of the Alliance

Trace plots: Non-Major

Model Check: Recovering Known Parameters

Another way to check complicated models is simulating fake data with known parameters, then using the model to recover said parameters.

To check my model, I simulated a dataset of 2,000 observations with 50 states, 200 years, 100 alliances and 4 variables: 2 at each level.

The 90% credible intervals contain the known value for all regression parameters. 93 of 100 alliance specific parameter intervals contain the known value.

Simulated Parameters and Credible Intervals

Alliance-Level Regression Table: Non-Major Powers

	mean	sd	5%	95%	n_eff	Ŕ
Constant	-0.025	0.049	-0.109	0.055	2332.133	1.000
Depth	-0.035	0.020	-0.068	-0.002	3566.248	1.000
Uncond Milsup	-0.020	0.038	-0.084	0.041	3369.350	1.001
Econ. Link	0.018	0.041	-0.047	0.084	2597.771	1.002
FP Conc.	0.030	0.021	-0.005	0.063	3251.107	1.000
Number Members	0.001	0.002	-0.001	0.004	4309.891	1.001
FP Similarity	0.017	0.058	-0.078	0.111	2523.621	1.000
Democratic Membership	-0.001	0.004	-0.007	0.005	2843.301	1.002
Wartime	0.047	0.048	-0.030	0.125	3921.848	1.002
Asymmetric	0.039	0.055	-0.048	0.130	3165.178	1.001
US. Mem	-0.044	0.043	-0.110	0.027	2603.217	1.000
USSR Mem.	-0.129	0.091	-0.276	0.021	2826.512	1.001
σ Alliances	0.118	0.050	0.037	0.203	746.918	1.004

Treaty Depth and Other Alliance Characteristics

Priors

4 Chains with 2,000 samples and 1,000 warmup iterations.

$$\begin{split} p(\alpha) &\sim \textit{N}(0,1) \\ p(\sigma) &\sim \text{half-N}(0,1) \\ p(\alpha^{\textit{yr}}) &\sim \textit{N}(0,\sigma^{\textit{yr}}) \\ p(\sigma^{\textit{yr}}) &\sim \textit{N}(0,1) \\ p(\alpha^{\textit{st}}) &\sim \textit{N}(0,\sigma^{\textit{st}}) \\ p(\sigma^{\textit{st}}) &\sim \text{half-N}(0,.5) \\ p(\sigma^{\textit{all}}) &\sim \text{half-N}(0,.5) \\ p(\beta) &\sim \textit{N}(0,.5) \\ p(\gamma) &\sim \textit{N}(0,.5) \\ p(\nu) &\sim \textit{gamma}(2,0.1) \end{split}$$

ML Model Specification

$$y \sim student_t(\nu, \mu, \sigma)$$
 (1)

$$\mu = \alpha + \alpha^{st} + \alpha^{yr} + \mathbf{W}_{n \times k} \gamma + \mathbf{Z}_{n \times a} \lambda$$
 (2)

$$\lambda_a \sim N(\theta_a, \sigma_{all})$$
 (3)

$$\theta_{\mathsf{a}} = \alpha_{\mathsf{a}\mathsf{I}\mathsf{I}} + \beta_1 \mathsf{Treaty} \; \mathsf{Depth} + \mathbf{X}_{\mathsf{a}\times\mathsf{I}}\beta$$
 (4)

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year: Argentina 1955

- 1955 % Change Milex. = Overall mean
- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{OAS} = \alpha_{all} + \beta_1 - 0.11 + \text{Controls}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year: Argentina 1955

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{OAS} = \alpha_{all} + \beta_1 - 0.11 + \text{Controls}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year: Argentina 1955

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{OAS} = \alpha_{all} + \beta_1 - 0.11 + \text{Controls}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year: Argentina 1955

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{OAS} = \alpha_{all} + \beta_1 - 0.11 + \mathsf{Controls}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year: Argentina 1955

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{OAS} = \alpha_{all} + \beta_1 - 0.11 + \mathsf{Controls}$$

Example

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year: Argentina 1955

1955 % Change Milex. = Overall mean

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+ \lambda_{\it OAS} * {\sf OAS}$ Expenditure $+ \lambda_{\it Rio} * {\sf Rio}$ Pact Expenditure

$$\lambda_{OAS} = \alpha_{all} + \beta_1 - 0.11 + \text{Controls}$$

Example

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year: Argentina 1955

1955 % Change Milex. = Overall mean

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{OAS} = \alpha_{all} + \beta_1 - 0.11 + \text{Controls}$$

State-Year	Rio Pact	Warsaw Pact	
Argentina 1954	.347	0	
Argentina 1955	.418	0	
1	:	1	

Choice of Capability in Z

Used leave-one-out cross validation to assess model fit with different codings of ${\bf Z}.$

Allied Capability	elpd_diff	se_diff	elpd_loo	se_elpd_loo
Normalized by Year	0.000	0.000	-1159.513	184.714
Rescaled by Maximum	-3.165	2.643	-1162.679	184.723
Recaled by 2SD	-10.749	6.116	-1170.262	184.741
Total Allied CINC	-12.308	5.576	-1171.821	184.683

Notable Major Power Alliances

Notable Non-Major Power Alliances

Impact of US Alliance on Non-major Power Military Spending

NATO

Alliance Participation and Military Spending: Belgium

Impact of NATO on Belgium

Impact of EU on Belgium

Varying Slopes Model

Within each of the j groups of state capability, for i in $1...n_j$:

$$y_i \sim student_t(\nu_j, \alpha_j + \alpha^{st} + \alpha^{yr} + \mathbf{W}_i \gamma + \mathbf{Z}_{ji} \lambda_j, \sigma_j)$$

$$\lambda_j \sim N(\theta_j, \sigma_j^{all})$$

$$\theta_j = \alpha_j^{all} + \mathbf{X}\beta_j$$

I give β_j a multivariate normal prior with prior scale τ :

$$\beta_j \sim MVN(\mu_{\beta_i}, \Sigma_{\beta})$$

Varying Slopes Results: Depth

Treaty depth and λ : Major Powers

Full Varying Slopes Results

Impact of Alliances on US

Impact of NATO on US

Correlates of War Spending Data

Is messy...

- Converted to standard units (British Pounds prior to 1914, US dollars thereafter).
- Occasionally smoothed with a seven-year moving average.
- Interpolation with stable currency.

Alternative Measure of Military Spending

- Nordhaus et al 2012 data: mix of COW and SIPRI- fully rebased
- 1949 to 2001
- Same model: use changes in spending instead of percentage changes.

Alternative Measure of Military Spending: Results

Single-Level Regression: Average Depth

Single-Level Regression: Deep Alliance Dummy

Bounds Analysis of Single-Level Regression

