A interface hardware / software

Arquitetura de Computadores III

Arquiteturas paralelas, classificações, clusters e supercomputadores

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

277

277

Arquiteturas monoprocessadas

- Os processos compartilham o mesmo processador.
- S.O. pode ser implementado com o conceito de monoprogramação ou multiprogramação.

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

Arquiteturas monoprocessadas

- Monoprogramação: recursos do computador alocados para uma única tarefa até o seu término.
- Multiprogramação: processador alterna a execução de vários processos.

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

279

279

Arquiteturas multiprocessadas

- Multiprocessada: vários elementos de processamento.
- Tipos de arquiteturas multiprocessadas:
 - Memória compartilhada
 - Memória distribuída

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

Classificações de Flynn

Classificação de Flynn (Flynn, 1972) segundo o fluxo de instruções e fluxo de dados.

	SD (Single Data)	MD (Multiple Data)		
	SISD	SIMD		
SI (Single Instruction)	Máquinas von Neumann	Máquinas Array		
	MISD	MIMD		
MI (Multiple Instruction)	Sem representante até agora	Multiprocessadores e multicomputadores		

De Rose, Navaux, Arquiteturas Paralelas (2003)

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

281

281

Classificações de Flynn

SISD

De Rose, Navaux, Arquiteturas Paralelas (2003)

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

282

Classificações de Flynn

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

283

283

Classificações de Flynn

Processadores vetoriais:

- Vetor é um conjunto de dados escalares do mesmo tipo, armazenados em memória.
- Processamento vetorial ocorre quando executamos operações aritméticas ou lógicas sobre vetores.
- Um processador escalar opera sobre um ou um par de dados.

SIMD

De Rose, Navaux, Arquiteturas Paralelas (2003)

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

284

Classificações de Flynn

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

285

285

Subdivisão da classe MIMD

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

286

Classificações segundo compartilhamento de memória

- UMA: Uniform Memory Access
- NUMA: Non-Uniform Memory Access
- CC-NUMA: Cache-Coherent NUMA
- NCC-NUMA: Non-Cache-Coherent NUMA
- SC-NUMA: Software-Coherent NUMA
- COMA: Cache-Only Memory Architecture
- NORMA: Non-Remote Memory Access

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

287

287

Classificações segundo compartilhamento de memória

De Rose, Navaux, Arquiteturas Paralelas (2003)

A linha tracejada indica que através de um software que implemente coerência de *cache*, as máquinas NCC-NUMA e NORMA podem se transformar em máquinas SC-NUMA.

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

288

Memória Compartilhada

- Elementos de processamento compartilham a mesma memória.
- Programação realizada através de variável compartilhada. Maior facilidade na construção de programas paralelos.
- Neste tipo de arquitetura existe uma limitação de número de nós.
- Escalabilidade não é total. Por que?
- Programação em memória compartilhada é realizada com threads.
- Exemplos:
 - Pthreads
 - OpenMP

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

289

289

Memória Compartilhada

- O desempenho neste tipo de sistema é maior se consideramos no seu projeto o uso de memória cache.
- Surge o problema de coerência de cache.
- Solução em software ou em hardware.

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

290

UMA vs. NUMA

EP: Elemento de Processamento

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

291

291

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

292

Qual a vantagem de usar uma máquina NUMA?

- Restrições existentes em relação à memória (M) centralizada que podem afetar o desempenho e o consumo de energia:
 - Escalabilidade
 - Tempo de acesso
 - Concorrência

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

293

293

Uso compartilhado da memória

- A maioria dos processadores atuais possuem múltiplos núcleos
- Diversos núcleos compartilham o acesso a dados em uma mesma unidade de memória
- Outro problema: garantir a coerência do dado, o que é resolvido com algoritmos específicos para este fim

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

Problema da coerência

- Multicores: Múltiplos processadores e caches
- Múltiplas cópias dos mesmos dados em caches diferentes

Souza, M. A., Way-Replacement Algorithms for Multicore Processors Based on Coherence and Sharing States with Reinforcement Learning, Tese, PUC Minas, 2021

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

295

295

Problema da coerência

- Multicores: Múltiplos processadores e caches
- Múltiplas cópias dos mesmos dados em caches diferentes

Souza, M. A., Way-Replacement Algorithms for Multicore Processors Based on Coherence and Sharing States with Reinforcement Learning, Taga, PLIC Mings, 2021

2024

Tese, PUC Minas, 2021 Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

Problema da coerência

- Multicores: Múltiplos processadores e caches
- Múltiplas cópias dos mesmos dados em caches diferentes

Souza, M. A., Way-Replacement Algorithms for Multicore Processors Based on Coherence and Sharing States with Reinforcement Learning, Tese, PUC Minas, 2021

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

297

297

Problema da coerência

- Multicores: Múltiplos processadores e caches
- Múltiplas cópias dos mesmos dados em caches diferentes

Souza, M. A., Way-Replacement Algorithms for Multicore Processors Based on Coherence and Sharing States with Reinforcement Learning, Tesp PUC Minas 2021

2024

Tese, PUC Minas, 2021 Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

Problema da coerência

Souza, M. A., Way-Replacement Algorithms for Multicore Processors Based on Coherence and Sharing States with Reinforcement Learning, Tese, PUC Minas, 2021

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

299

299

Coerência de cache (Snooping)

Coerência de cache com snooping. Um método para manter coerência de cache em que todos os controladores de cache monitoram o barramento para determinar outras caches sejam invalidadas antes de se possuem ou não uma cópia do bloco desejado.

Write-invalidate. Um tipo de protocolo de snooping em que o processador de escrita faz com que todas as cópias em mudar sua cópia local, o que permite atualizar os dados locais até que outro processador os solicite.

Write-update. Um tipo de protocolo de snooping em que o processador de escrita faz com que todas as cópias em outras caches sejam atualizadas.

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

300

Coerência de cache (Diretório)

- Cada módulo de memória possui um diretório local que armazena as informações sobre onde as cópias dos blocos estão residentes.
- Os protocolos baseados em diretório enviam comandos de consistência seletivamente para aquelas caches que possuem uma cópia válida do bloco de dados compartilhado.

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

301

301

Coerência de cache (Diretório)

Computer Architecture A Quantitative Approach

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

302

Coerência de cache (MSI, MESI, MOESI)

- Estados que cada bloco na memória cache possui:
 - Inválido (I): bloco inválido na memória cache.
 - Shared (S) ou Compartilhado: bloco só foi lido e pode haver cópias em outras memórias cache.
 - Modificado (M): apenas essa cache possui cópia do bloco e a memória principal não está atualizada.
 - Exclusivo (E): Apenas essa cache possui cópia do bloco e a memória principal está atualizada.
 - Owner (O): Essa cache supre o dado em caso de leitura com falha no barramento uma vez que a memória não está atualizada. Outras caches podem ter cópia do dado.

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

303

303

Protocolo MESI

Souza, M. A., Way-Replacement Algorithms for Multicore Processors Based on Coherence and Sharing States with Reinforcement Learning, Tese, PUC Minas, 2021

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

304

Protocolo MESI

305

Memória Distribuída

- Grupo de computadores autônomos (nós) que trabalham juntos como um recurso único.
- Os nós são interconectados através de redes de alto desempenho.

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

306

Memória Distribuída

- Escalabilidade absoluta e incremental.
- Alta disponibilidade.
- Excelente custo benefício.
- Comunicação realizada através de passagem de mensagens.
 - · MPI (Message Passing Interface) ou
 - PVM (Parallel Virtual Machine).

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

307

307

Memória Distribuída

- Cluster ou aglomerado de computadores.
 - São usados em gerenciadores de bancos de dados, com servidores WEB.
 - São usados principalmente com processamento paralelo.
- Grids ou grades computacionais.

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

308

Cluster de Computadores

https://hpcf.umbc.edu/system-description-maya/

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

309

309

Cluster Parallella Board

 $\underline{https://www.parallella.org/2013/08/21/parallella-hardware-update/}$

https://www.parallella.org/2014/04/30/cases-and-cooling/

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

310

Cluster Raspberry Pi 4

https://magpi.raspberrypi.org/articles/build-a-raspberry-pi-cluster-computer

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

311

311

Cluster Raspberry Pi 2 Model B

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

312

Jaguar – Cray XT5-HE Opteron Six Core 2.6 GHz

https://phys.org/news/2009-11-oak-ridge-jaguar-supercomputer-world.html

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

313

313

Clusters de Computadores (top500.org)

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R_{peak}	Power	
1	Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz // 2009 Cray Inc.	224162	1759.00	2331.00	6950.60	MPP
2	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2009 IBM	122400	1042.00	1375.78	2345.50	Cluster
3	National Institute for Computational Sciences/University of Tennessee United States	Kraken XT5 - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.	98928	831.70	1028.85		MPP
4	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution / 2009 IBM	294912	825.50	1002.70	2268.00	MPP
5	National SuperComputer Center in Tianjin/NUDT China	Tianhe-1 - NUDT TH-1 Cluster, Xeon E5540/E5450, ATI Radeon HD 4870 2, Infiniband / 2009 NUDT	71680	563.10	1206.19		Cluster
6	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0 GHz/Nehalem EP 2.93 Ghz / 2009 SGI	56320	544.30	673.26	2348.00	MPP
7	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38	2329.60	MPP
8	Argonne National Laboratory United States	Blue Gene/P Solution / 2007 IBM	163840	458.61	557.06	1260.00	MPP
9	Texas Advanced Computing Center/Univ. of Texas United States	Ranger - SunBlade x6420, Opteron QC 2.3 Ghz, Infiniband / 2008 Sun Microsystems	62976	433.20	579.38	2000.00	Cluster
10	Sandia National Laboratories / National Renewable Energy Laboratory United States	Red Sky - Sun Blade x6275, Xeon X55xx 2.93 Ghz, Infiniband / 2009 Sun Microsystems	41616	423.90	487.74		Cluster

Novembro de 2009

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

314

Clusters de Computadores (top500.org)

Rank	Site	Computer
1	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu
2	National Supercomputing Center in Tianjin China	Tianhe-1A - NUDT TH MPP, X5670 2.93Ghz 6C, NVIDIA GPU, FT-1000 8C NUDT
3	DOE/SC/Oak Ridge National Laboratory United States	Jaguar - Oray XT5-HE Opteron 6-core 2.6 GHz Cray Inc.
4	National Supercomputing Centre in Shenzhen (NSCS) China	Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU Dawning
5	GSIC Center, Tokyo Institute of Technology Japan	TSUBAME 2.0 - HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows NEC/HP
6	DOE/NNSA/LANL/SNL United States	Cielo - Cray XE6 8-core 2.4 GHz Cray Inc.
7	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX/8400EX, Xeon HT QC 3.0/Xeon 5570/5670 2.93 Ghz, Infiniband SGI
8	DOE/SC/LBNL/NERSC United States	Hopper - Cray XE6 12-core 2.1 GHz Cray Inc.
9	Commissariat a l'Energie Atomique (CEA) France	Tera-100 - Bull bullx super-node S6010/S6030 Bull SA
10	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband IBM

Junho de 2011

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

315

315

Cluster de Computadores

https://www.riken.jp/en/news_pubs/news/2020/20200623_1/

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

316

Supercomputador Fugaku (Fujitsu, Japão)

317

Clusters de Computadores (top500.org)

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)		
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,299,072	415,530.0	513,854.7	28,335		
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM	2,414,592	148,600.0	200,794.9	10,096		
	DOE/SC/Oak Ridge National Laboratory United States				TOP	500 LIST - JUNE 2	202
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.16Hz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438		
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.456Hz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371		
5	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482		318

318

Clusters de Computadores (top500.org) - Brasil

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
56	Atlas - Bull 4029GP-TVRT, Xeon Gold 6240 18C 2.6GHz, NVIDIA Tesla V100, Infiniband EDR, Atos Petróleo Brasileiro S.A Brazil	91,936	4,376.0	8,848.5	547
82	Fênix - Bull 4029GP-TVRT, Xeon Gold 5122 4C 3.6GHz, NVIDIA Tesla V100, Infiniband EDR, Atos Petróleo Brasileiro S.A Brazil	60,480	3,161.0	5,371.8	390
240	Santos Dumont (SDumont) - Bull Sequana X1000, Xeon Gold 6252 24C 2.16Hz, Mellanox InfiniBand EDR, NVIDIA Tesla V100 SXM2. Atos	33,856	1,849.0	2,727.0	
	Laboratório Nacional de Computação Científica Brazil			TOP	500 LIST - JUNE 2020
395	Ogbon Cimatec/Petrobras - Bull Sequana X1000, Xeon Gold	27,768	1,605.0	2,323.3	
	6240 18C 2.6GHz, Mellanox InfiniBand EDR, NVIDIA Tesla V100 SXM2, Atos SENAI CIMATEC Brazil		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

319

319

Clusters de Computadores

Santos Dumont Supercomputer

https://sdumont.lncc.br/

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

320

Clusters de Computadores (top500.org)

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)	
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899	
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM	2,414,592	148,600.0	200,794.9	10,096	
	DOE/SC/Oak Ridge National Laboratory United States				TOP50	00 LIST - NOVEMBER 2
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438	
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371	
5	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE D0E/SC/LBNL/NERSC	761,856	70,870.0	93,750.0	2,589	321

321

Clusters de Computadores (top500.org) - Brasil

55	Dragão - Supermicro SYS-4029GF 26C 2.1GHz, NVIDIA Tesla V100, In Petróleo Brasileiro S.A Brazil		188,224	8,983.0	14,006.5	943			
107	Atlas - Bull 4029GP-TVRT, Xeon G NVIDIA Tesla V100, Infiniband EDF Petróleo Brasileiro S.A Brazil		91,936	4,376.0	8,848.5	547			
125	IARA - NVIDIA DGX A100, AMD EPV NVIDIA A100 SXM4 40 GB, Infinibar SiDi Brazil		24,800	3,657.0	4,130.4				
146	Fênix - Bull 4029GP-TVRT, Xeon G NVIDIA Tesla V100, Infiniband EDR Petróleo Brasileiro S.A Brazil		60,480	3,161.0	5,371.8 TO	³⁹⁰ P500 LIS	T - NOVEM	BER 202	1
388	Santos Dumont (SDumont) - Bull S Gold 6252 24C 2.16Hz, Mellanox In Tesla V100 SXM2, Atos Laboratório Nacional de Computaç Brazil Arquitetura de Comp	finiBand EDR, NVIDIA	33,856 Ciência da Com _l	1,849.0 outação - PUC N	2,727.0 1inas			322	

322

Lei de Amdahl

- O ganho ideal é limitado pela fração do Código não melhorada.
- O ganho real é a razão dos tempos de execução:

$$Speedup_{overall} = \frac{Execution \ time_{old}}{Execution \ time_{new}} = \frac{1}{(1 - Fraction_{enhanced}) + \frac{Fraction_{enhanced}}{Speedup_{enhanced}}}$$

 Suponha que nós queremos melhorar o processador usado para serviço Web. O nome processador é 10 vezes mais rápido em computação do que o processador original. Assumindo que o processador está 40% do tempo ocupado com computação e outros 60% esperando por I/O. Qual é o ganho obtido pelo melhoramento?

Fraction_{enhanced} = 0.4; Speedup_{enhanced} = 10; Speedup_{overall} =
$$\frac{1}{0.6 + \frac{0.4}{10}} = \frac{1}{0.64} \approx 1.56$$

HENNESSY, John L., PATTERSON, David A., Computer Architecture A Quantitative Approach

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

323

323

Lei de Amdahl

 A escalabilidade da paralelização é limitada pela fração serial do código. Esta fração é a parte não paralelizada.

PACHECO, Peter S., An introduction to parallel programming

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

324

Lei de Amdahl

 Mesmo quando ganhos são possíveis, a eficiência pode facilmente ser ruim em função do trecho não paralelizado.

PACHECO, Peter S., An introduction to parallel programming

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

325

325

Lei de Gustafson-Barsis'

 Se o tamanho do problema aumenta em P enquanto o trecho serial cresce lentamente ou se mantém fixo, o ganho cresce se os nós de processamento aumentam em quantidade.

PACHECO, Peter S., An introduction to parallel programming

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

326

Strong and Weak Scalability (escalabilidade forte e fraca)

- Strong scalability: uma forma de escalabilidade que mede como o desempenho aumenta quando se faz uso de nós adicionais, mas com o tamanho do problema fixo.
 - A lei de Amdahl considera o ganho variando número de nós e problema fixo.
- Weak scalability: uma forma de escalabilidade que mede como o desempenho aumenta quando se faz uso de nós adicionais ao mesmo tempo que se aumenta o tamanho do problema, em taxas iguais.
 - A lei de Gustafson-Barsis' Law assume que o tamanho do problema cresce conforme aumenta-se o número de nós.

PACHECO, Peter S., An introduction to parallel programming

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

327

327

Eficiência e Ganho

 Duas importantes métricas relacionadas ao desempenho e paralelismo são ganho e eficiência. O ganho compara o tempo para resolver um problema computacional idêntico em uma unidade de processamento versus P unidades:

speedup =
$$S_P = \frac{T_1}{T_P}$$

 onde T1 é o tempo de um programa com uma unidade de processamento e TP é o tempo em P unidades. Eficiência é o ganho dividido pelo número de unidades de processamento utilizadas:

efficiency =
$$\frac{S_P}{P} = \frac{T_1}{PT_P}$$

PACHECO, Peter S., An introduction to parallel programming

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

328

Ganho Linear Superlinear

- Um algoritmo que executa P vezes mais rápido em P processadores possui ganho linear.
- Ganho Superlinear: uma eficiência maior do que 100%.
 - Como isso é possível?
 - · Utilização de cache?

PACHECO, Peter S., An introduction to parallel programming

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

329

329

Desempenho de uma aplicação paralela

- O que pode impactor o desempenho de uma aplicação paralela reduzindo sua escalabilidade?
 - Rede. Por que?
 - Carga de trabalho desabalanceada. Por que?
 - Regiões sequencies de códigos paralelos. Por que?

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

Avaliação de desempenho

Resultados de Desempenho

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

331

331

Grid Computacional

- Uma plataforma para execução de aplicações paralelas
 - · Amplamente distribuída
 - Heterogênea
 - · Compartilhada
 - · Sem controle central
 - Com múltiplos domínios administrativos
- Diferença para computação em nuvem (cloud computing)?
- O que é fog computing?

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

332

Grid Computacional

• Analogia com rede elétrica

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

333

333

Grid Computacional

- SMPs † acoplamento
- MPPs
- NOWs
- Grids distribuição
- SMP: Symmetric Multiprocessor (memória compartilhada)
- MPP: Massively Parallel Processors
- NOW: Network of Workstations

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

Grid Computacional

- TeraGrid (de 2001 a 2011)
 - 4 centros de supercomputação norte-americanos
 - Cada centro com milhares de processadores dedicados ao TeraGrid
 - Canais de altíssima velocidade (40 GBits/s)
 - Poder agregado de 13,6 TeraFlops
- SETI@home (desde 1999)
 - Ciclos ociosos de 1.6 milhões de processadores espalhados em 224 países
 - Computa a uma taxa superior a 10 Teraflops
- Grid5000 (desde 2003)
 - Instrumento científico para estudo de sistemas paralelos e distribuídos de larga escala.
 - O objetivo inicial era alcançar 5000 processadores, atualizado para núcleos e alcançado no inverno de 2008-2009.
 - São 9 sites na França (Grenoble, Lille, Luxembourg, Lyon, Nancy, Nantes, Rennes, Sophia-Antipolis, Toulouse).

2024

Arquitetura de Computadores III - Engenharia e Ciência da Computação - PUC Minas

335