# 《计算机组成原理》

(第三讲习题答案)

厦门大学信息学院软件工程系 曾文华 2023年3月27日

# 第3章 运算方法与运算器

- 3.1 计算机中的运算
- 3.2 定点加减法运算
- 3.3 定点乘法运算
- 3.4 定点除法运算
- 3.5 浮点运算
- 3.6 运算器

# 习题(P92-94)

- 3.1
- 3.2
- 3.4 (3)
- 3.5 (3)
- 3.6 (2)
- 3.7 (2)
- 3.8 (2)
- 3.9 (2)
- 3.10 (2)
- 3.11

- 例3.1: x=0.1010, y=0.0101, 求[x+y]<sub>补</sub>
- 解:  $[x]_{\uparrow \downarrow}$ =0.1010, $[y]_{\uparrow \downarrow}$ =0.0101; $[x+y]_{\uparrow \downarrow}$ = $[x]_{\uparrow \downarrow}$ + $[y]_{\uparrow \downarrow}$

• [x+y]<sub>\*/</sub>=0.1111

- 例3.2: x=-0.1010, y=-0.0100, 求[x+y]<sub>补</sub>和 x+y
- $M: [x]_{\uparrow}=1.0110, [y]_{\uparrow}=1.1100; [x+y]_{\uparrow}=[x]_{\uparrow}+[y]_{\uparrow}$

 $[x]_{\stackrel{?}{\uparrow}}$  1.0110 +  $[y]_{\stackrel{?}{\uparrow}}$  1.1100

[x+y]<sub>\*|</sub> 11.0010

最高位1去掉

取反加1

1010取反得到0101,加1得到0110

0100取反得到1011,加1得到1100

• [x+y]<sub>\*/</sub>=1.0010 x+y=-0.1110

取反加1

0010取反得到1101,加1得到1110

- 例3.3: x=0.1001, y=0.0110, 求[x-y]<sub>补</sub>
- $M: [x]_{\uparrow h} = 0.1001, [y]_{\uparrow h} = 0.0110, [-y]_{\uparrow h} = 1.1010, [x-y]_{\uparrow h} = [x]_{\uparrow h} + [-y]_{\uparrow h}$

[x]<sub>补</sub> 0.1001 + [-y]<sub>补</sub> 1.1010 [x-y]<sub>补</sub> 10.0011

• [x-y]<sub>补</sub> =0.0011 最高位1去掉

取反加1

0110取反得到1001,加1得到1010

- 例3.4: x=-0.1001, y=-0.0110, 求[x-y]<sub>补</sub>和 x-y
- $\mathbf{M}$ :  $[x]_{\uparrow h} = 1.0111$ ,  $[y]_{\uparrow h} = 1.1010$ ,  $[-y]_{\uparrow h} = 0.0110$ ;  $[x-y]_{\uparrow h} = [x]_{\uparrow h} + [-y]_{\uparrow h}$

•  $[x-y]_{\nmid k} = 1.1101$  x-y = -0.0011

#### 取反加1

1001取反得到0110,加1得到0111 0110取反得到1001,加1得到1010

#### 取反加1

1101取反得到0010,加1得到0011

- 例3.5: (1) 设[x]<sub>补</sub>=0.1011, [y]<sub>补</sub>=0.1100, 求[x+y]<sub>补</sub>
  - (2) 设[x]<sub>补</sub>=1.0101, [y]<sub>补</sub>=1.0100, 求[x+y]<sub>补</sub>
- 解:

最高位1去掉

- 第(1)种情况:两个正数相加,结果为负数(1.0111),出错
- 第(2)种情况:两个负数相加,结果为正数(0.1001),出错
- 原因:
  - 第(1)种情况,x+y=11/16+12/16=23/16的值大于等于1,超出了定点小数的表示范围,发生溢出
  - 第(2)种情况,x+y=(-11/16)+(-12/16)=(-23/16)的值小于-1,也超出了定点小数的表示范围,发生溢出
  - 补码定点小数表示范围: [-1,1)

- 例3.6: x=-0.1011, y=0.1100, 求[x-y]<sub>补</sub>
- $\mathbf{M}$ :  $[x]_{\uparrow\uparrow}$ =1.0101,  $[y]_{\uparrow\uparrow}$ =0.1100,  $[-y]_{\uparrow\uparrow}$ =1.0100

• 负数-正数=负数+负数,结果是正数,溢出了

- 例3.7: x=-111, y=110, 求[x-y]<sub>补</sub>
- 解: [x]<sub>补</sub>=1,001, [y]<sub>补</sub>=0,110, [-y]<sub>补</sub>=1,010
- $C_f = 1$ ;  $C_d = 0$
- 溢出标志V=1⊕0=1,溢出(-7-6=-13;超出-8~+7的范围)



$$V = C_f \oplus C_d$$

- 例3.8: x=-011, y=100, 求[x-y]<sub>补</sub>
- 解: [x]<sub>补</sub>=1,101, [y]<sub>补</sub>=0,100, [-y]<sub>补</sub>=1,110
- $C_f = 1$ ;  $C_d = 1$
- 溢出标志V=1⊕1=0,没有溢出(-3-4=-7;没有超出-8~+7的范围)



 $V = C_f \oplus C_d$ 

• 例3.9: (1) 设[x]<sub>补</sub>=00.1011, [y]<sub>补</sub>=00.0111, 求[x+y]<sub>补</sub>

(2) 设[x]<sub>补</sub>=11.0101, [y]<sub>补</sub>=11.0011, 求[x+y]<sub>补</sub>

(3) 设[x]<sub>补</sub>=00.1011, [y]<sub>补</sub>=11.0011, 求[x+y]<sub>补</sub>

 $V = S_{f1} \oplus S_{f2}$ 

• 解:

- 第(1)情况,运算结果的符号位为01,正溢出(11/16+7/16=18/16)
- 第(2)情况,运算结果的符号位为10,负溢出(-11/16-13/16=-24/16)
- 第(3)情况,运算结果的符号位为11,没有溢出(11/16 13/16 = -2/16)

• 例3.10: x = 0.1101, y = -0.1011,用原码一位乘法求[x·y]<sub>原</sub>

#### • 解:

- 乘积的符号P₀= x₀⊕y₀=1
- 乘积的绝对值=0.1000 1111 (具体见下面的计算过程)
- 乘积: [x·y]<sub>原</sub>=1.1000 1111, x·y = -0.1000 1111

|               | 部分积     | 乘数 y               | 说明                     |
|---------------|---------|--------------------|------------------------|
|               | 00.0000 | 1011               | P=0                    |
| +             | 00.1101 |                    | y <sub>n</sub> =1, + x |
|               | 00.1101 | 1011               |                        |
| $\rightarrow$ | 00.0110 | 110 <mark>1</mark> | 逻辑右移一位                 |
| +             | 00.1101 |                    | y <sub>n</sub> =1, + x |
|               | 01.0011 | 1101               |                        |
| $\rightarrow$ | 00.1001 | 111 <mark>0</mark> | 逻辑右移一位                 |
| +             | 00.0000 |                    | y <sub>n</sub> =0, +0  |
|               | 00.1001 | 1110               |                        |
| $\rightarrow$ | 00.0100 | 111 <mark>1</mark> | 逻辑右移一位                 |
| +             | 00.1101 |                    | y <sub>n</sub> =1, + x |
|               | 01.0001 | 1111               |                        |
| $\rightarrow$ | 00.1000 | 1111               | 右移一位                   |

乘数|y|为y(-0.1011)的数 值位(1011),部分积为0( 双符号位小数)

根据|y|的最后一位是1还是0 ,执行+|x|或+0的操作 • 例3.11: [x]<sub>补</sub>=1.0111, [y]<sub>补</sub>=1.0011, 用补码一位乘法求[x·y]<sub>补</sub>

그서 머디

- 解:
  - [-x]<sub>补</sub> = 0.1000 + 0.0001 = 0.1001(取反加1)

立た人士口

- $[x \cdot y]_{*} = 0.0111 0101 (具体见下面的计算过程)$
- 验证: x = -0.1001, y = -0.1101, x · y = 0.0111 0101

|               | 部分枳     | 来数y    | 说明                                                      |
|---------------|---------|--------|---------------------------------------------------------|
|               | 00.0000 | 100110 | P=0 y <sub>n+1</sub> =0                                 |
| +             | 00.1001 |        | y <sub>n</sub> y <sub>n+1</sub> =10, +[-x] <sub>补</sub> |
|               | 00.1001 | 100110 |                                                         |
| $\rightarrow$ | 00.0100 | 110011 | 算术右移一位                                                  |
| +             | 00.0000 |        | y <sub>n</sub> y <sub>n+1</sub> =11, +0                 |
|               | 00.0100 | 110011 |                                                         |
| $\rightarrow$ | 00.0010 | 011001 | 算术右移一位                                                  |
| +             | 11.0111 |        | y <sub>n</sub> y <sub>n+1</sub> =01,+[x] <sub>补</sub>   |
|               | 11.1001 | 011001 |                                                         |
| $\rightarrow$ | 11.1100 | 101100 | 算术右移一位                                                  |
| +             | 00.0000 |        | y <sub>n</sub> y <sub>n+1</sub> =00, +0                 |
|               | 11.1100 | 101100 |                                                         |
| $\rightarrow$ | 11.1110 | 010110 | 算术右移一位                                                  |
| +             | 00.1001 |        | y <sub>n</sub> y <sub>n+1</sub> =10,+[-x] <sub>补</sub>  |
|               | 00.0111 | 0101   | 最后一步不移位                                                 |

乘数y为补码值(1.0011), 去掉小数点(10011),最后 增加一位y<sub>n+1</sub>=0(100110); 部分积为0(双符号位小数)

根据y的最后二位是01、10、 00或11,执行+[x]<sub>补</sub>、+[-x]<sub>补</sub> 、+0的操作

#### Booth算法

• 例3.12: [x]<sub>原</sub>=1.1001,[y]<sub>原</sub>=0.1011,求[x÷y]<sub>原</sub>

#### • 解:

- |x|=0.1001, |y|=0.1011,  $[-|y|]_{\frac{1}{2}h}=1.0101$
- 计算过程见下页
- 商的符号=x的符号⊕y的符号=1⊕0=1
- 余数的符号=x的符号=1
- 商|Q|=0.1101, [Q]<sub>原</sub>=1.1101
- 余数|R|=0.0000 0001,[R]<sub>原</sub>=1.0000 0001

#### - 验证:

- x = -9/16, y = 11/16
- » 商Q = -0.1101 = -13/16,余数R = -0.0000 0001 = -1/256
- $x = Q \cdot y + R = (-13/16) \cdot (11/16) + (-1/256) = -144/256 = -9/16$

|                      | 余数R                          | 商Q                | 说明                    |
|----------------------|------------------------------|-------------------|-----------------------|
| +[- y ] <sub>补</sub> | 0 0. 1 0 0 1<br>1 1. 0 1 0 1 | 0.0000            | 初始余数R= x ,商Q=0<br>减 y |
|                      | 11.1110                      | 0.0000            | 余数为负,商0               |
| + y                  | 0 0. 1 0 1 1                 |                   | 加 y 恢复余数              |
|                      | 00.1001                      |                   |                       |
| ←                    | 01.0010                      | 0.000             | 左移1位                  |
| +[- y ] <sub>补</sub> | 11.0101                      |                   | 减[y]                  |
|                      | 00.0111                      | 0.0001            |                       |
| $\leftarrow$         | 00.1110                      | 0.001             | 左移1位                  |
| +[- y ] <sub>补</sub> | 11.0101                      |                   | 减 y                   |
|                      | 00.0011                      | 0.0011            |                       |
| $\leftarrow$         | 01.0110                      | 0.011             | 左移1位                  |
| +[- y ] <sub>补</sub> | 11.0101                      |                   | 减 y                   |
|                      | 11.1011                      | 0.0110            |                       |
| + y                  | 00.1011                      |                   | 加 y 恢复余数              |
|                      | 00.0110                      |                   |                       |
| $\leftarrow$         | 00.1100                      | 0.110             | 左移1位                  |
| +[- y ] <sub>补</sub> | 11.0101                      |                   | 减 y                   |
|                      | 00.0001                      | 0. 1 1 0 <b>1</b> | 余数为正,商1               |
| 余数 R =0              | 0.0000 0001                  | 商 Q =0.1101       |                       |

余数R的初始值为x的绝 对值(双符号位小数)

余数为负,商0,加|y| 恢复余数,左移1位, 减|y|

余数为正,商1,左移1 位,减|y|

原码恢复余数法

- 例3.13: [x]<sub>原</sub>=1.1001, [y]<sub>原</sub>=0.1011, 求[x÷y]<sub>原</sub>
  - 计算过程见下页
  - 运算结果中的C为进位标志,并且商位与进位相同,q=C
  - 运算结果同例3.12

- 不恢复余数法的规则:
  - 余数为正,商1,余数左移1位,减去除数
  - 余数为负,商0,余数左移1位,加上除数
- 一会儿做加法运算,一会儿做减法运算,也称为加减交替法

|                        | C 余数R          | 商Q               | 说明                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------|----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                | 0.0000           | 初始余数R= x ,商Q=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| of 15-13               |                | 0.000            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| +[- y ] <sub>补</sub>   | 11.0101        |                  | 减 y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | 0 11.1110      | 0.0000           | 余数为负,商0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ←                      | 11.1100        | 0.000            | 左移1位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| + y                    | 0 0. 1 0 1 1   |                  | 加 <b>lyl</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| . 1 7 1                | 00.1011        |                  | ж <b>н гут</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                        | 1 00 01 1      | 0.0004           | 人祭上丁 玄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | 1 0 0. 0 1 1 1 |                  | 余数为正,商1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ←                      | 00.1110        | 0.001            | 左移1位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| +[- y ] <sub>*</sub> i | 11.0101        |                  | 减 y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - 17 15 (p)            |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | 1 0 0. 0 0 1 1 | 0.0011           | 余数为正,商1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                |                  | 左移1位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                | 0.011            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| +[- y ] <sub>补</sub>   | 11.0101        |                  | 减 <b> y </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | 0 11.1011      | 0.0110           | 余数为负,商0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| _                      |                | 0.110            | 左移1位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ı lul                  |                | J. 1 1 0         | ——————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| + y                    | 0 0. 1 0 1 1   |                  | 加 <b> y </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                |                  | A state of the sta |
|                        | 1 0 0. 0 0 0 1 | 0.1101           | 余数为正,商1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <del>余数</del> IRI      | =0.0000 0001   | 商 Q =0.1101      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 41/2×11/1              | 0.0000 0001    | 150 C C - 0.1101 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

原码不恢复余数法

余数R的初始值为x的绝 对值(双符号位小数)

余数为负,商0,左移1位,加|y|

余数为正,商1,左移1 位,减|y|

- 例3.14: 设x=2<sup>-101</sup>·(-0.101011), y= 2<sup>-010</sup>·(0.001110), 数的阶码为3位, 尾数为6位(均不含符号位),且都用补码表示,按照补码浮点数运算步骤计算x+y
- 解:
  - 首先用补码形式表示浮点数x和y(采用双符号位)
    - $[x]_{\frac{1}{2}h}$  = 11 011 , 11.010101  $[y]_{\frac{1}{2}h}$  = 11 110 , 00.001110
  - (1)对阶:小阶向大阶对齐,x(阶码=-5)向y(阶码=-2)对齐,x的尾数右移3位
    - 对阶后的[x]<sub>补</sub>=11 110, 11.111010(101)
  - (2) 尾数运算(求和):

[x]<sub>\*|</sub> 11 110 , 11.111010 (101) +[y]<sub>\*|</sub> 11 110 , 00.001110

[x+y]\* 11 110, 00.001000 (101)

- (3) 尾数规格化处理:运算结果的尾数=00.001000(101),为非规格化数(尾数的绝对值太小),需要左规,左移2次,变为规格化数00.100010(1),阶码减2,阶码变为11 100
- (4) 舍入处理: 舍入处理后的尾数为: 00.100011(0舍1入法, 末位恒置1法)
- (5)溢出判断:阶码的双符号位相同(11),没有溢出
- 运算结果: [x+y]<sub>\*</sub> =11 100 , 00.100011 , x+y= 2<sup>-100</sup>·(0.100011)
- 验证:
  - x=(1/32)\*(-43/64), y=(1/4)\*(14/64), x+y=(-43/2048)+(112/2048)=69/2048
  - x+y= 2<sup>-100</sup>·(0.100011)=(1/16)\*(35/64)=70/2048,相差1/2048,原因是舍入处理引起的误差

- 例3.15:设x=2<sup>7</sup>·(25/32),y= 2<sup>6</sup>·(-23/32),数的阶码为5位,尾数为7位(均含2位符号位),按照补码浮点数运算步骤计算x-y(采用0舍1入法)
- 解:
  - 首先用补码形式表示浮点数x和y(采用双符号位)

•  $x = 2^{111} \cdot (0.11001)$  [x]<sub> $\uparrow \uparrow$ </sub> =00 111, 00.11001

•  $y=2^{110}\cdot(-0.10111)$  [-y]<sub> $\uparrow \downarrow$ </sub>=00 110 , 00.10111

- (1)对阶:小阶向大阶对齐,y(阶码=6)向x(阶码=7)对齐,y的尾数右移1位
  - 对阶后的[-y]\*\*=00 111,00.01011(1)
- (2) 尾数运算(求和):

[x]<sub>\*|</sub> 00 111, 00.11001 + [-y]<sub>\*|</sub> 00 111, 00.01011(1)

 $[x-y]_{\nmid \mid }$  00 111, 01.00100(1)

- (3) 尾数规格化处理:运算结果的尾数=01.00100(1),为非规格化数(尾数的绝对值太大),需要右规,右移1次,变为规格化数00.10010(01),阶码加1,阶码变为01 000
- (4) 舍入处理: 舍入处理后的尾数为: 00.10010(0舍1入法)
- (5)溢出判断:阶码的双符号位为01,故发生溢出
- 运算结果: [x-y]<sub>秒</sub> =01 000, 00.10010
- 验证:
  - x=(128)\*(25/32)=100, y=(64)\*(-23/32)=-46, x-y=100-(-46)=146(超出-128~+127范围)
  - x-y= 28·(18/32)=144, 误差为2, 是舍入处理导致的, 误差为28\*(0.0000001)=2

- 例3.16: 两个IEEE754单精度浮点数机器码X=00C0 0000H,Y=0080 0000H,求 X-Y
- 解:
  - IEEE754单精度浮点数: 32位 32浮点数 float



- E=阶码的真值+127, 阶码的真值=E-127=1-127=-126; 尾数=1.M
- (1)对阶: X、Y的阶码相同,不需要对阶
- (2) 尾数相减: 1.1-1.0=0.1
- (3)结果规格化:尾数相减后的0.1为非规格化数,需要左移1次,尾数变为1.0, 阶码减1, 阶码变为0000000 (全0)
- (4)舍入处理:没有舍入处理
- (5)溢出判断:阶码全0时为非规格化数据,表示发生了规格化下溢
- IEEE754单精度非规格化浮点数: (-1)<sup>S</sup>\*0.M\*2<sup>-126</sup>,这里: S=0,E=0,M=1

#### 习题3

| 3.1 | 解释   | 下列   | 名词    |
|-----|------|------|-------|
| 3.1 | 用十十十 | 1 フリ | TIMIC |

| 全加器 | 半加器 | 进位 | 位生成函数 | 进位传递 | 函数 | 算术 | 移位 | 逻辑移位 | 阵列乘法器 | 原码恢复全 |
|-----|-----|----|-------|------|----|----|----|------|-------|-------|
|     |     |    |       |      |    |    |    |      | 保留附加位 | 200   |

- 3.2 选择题(考研真题)。
- (1) [2009] 一个 C 语言程序在一台 32 位机器上运行,程序中定义了 3 个变量 x、y、z,其中 x 和 z  $\xi$  int 型,y 为 short 型。当 x = 127,y = -9 时,执行赋值语句 z = x + y 后,x、y、z 的值分别是
  - A. x = 0000007FH, y = FFF9H, z = 00000076H
  - B. x = 0000007FH, y = FFF9H, z = FFFF0076H
  - C. x = 0000007FH, y = FFF7H, z = FFFF0076H
  - D. x = 0000007FH, y = FFF7H, z = 00000076H
- (2) [2010] 假定有 4 个整数用 8 位补码分别表示  $r_1$ = FEH,  $r_2$ = F2H,  $r_3$ = 90H,  $r_4$ = F8H, 若将运算 果存放在一个 8 位的寄存器中,则下列运算会发生溢出的是 \_\_\_\_\_。
  - A.  $r_1 \times r_2$
- B.  $r_2 \times r_3$
- C.  $r_1 \times r_4$
- D.  $r_2 \times r_4$
- (3) [2013] 某字长为 8 位的计算机中,已知整型变量 x、y 的机器数分别为 [x]  $_{\uparrow \uparrow}$  = 11110100, [y]  $_{\downarrow \uparrow}$  = 10110000。若整型变量  $z=2\times x+y/2$ ,则 z 的机器数为 \_\_\_\_\_\_。
  - A. 11000000
- B. 00100100
- C. 10101010
- D. 溢出
- (4) [2018] 假定带符号整数采用补码表示,若 int 型变量 x 和 y 的机器数分别是 FFFF FFDFH x 0000 0041H,则 x、y 的值以及 x-y 的机器数分别是 \_\_\_\_\_。
  - A. x = -65, y = 41, x y 的机器数溢出
  - B. x = -33, y = 65, x y 的机器数为 FFFF FF9DH
  - C. x = -33, y = 65, x y 的机器数为 FFFF FF9EH
  - D. x = -65, y = 41, x y 的机器数为 FFFF FF96H
- (5) [2018] 整数 x 的机器数为 1101 1000,分别对 x 进行逻辑右移 1 位和算术右移 1 位操作,得赖机器数各是 \_\_\_\_\_。
  - A. 1110 1100, 1110 1100

B. 0110 1100, 1110 1100

C. 1110 1100, 0110 1100

- D. 0110 1100, 0110 1100
- (6) [2009] 浮点数加减运算过程一般包括对阶、尾数运算、规格化、舍入和判断溢出等步骤设浮点数的阶码和尾数均采用补码表示,且位数分别为 5 位和 7 位(均含 2 位符号位)。若有两个 $X=2^7\times29/32$ , $Y=2^5\times5/8$ ,则用浮点加法计算 X+Y的最终结果是\_\_\_\_\_\_。
  - A. 0011111100010
- B. 001110100010
- C. 010000010001
- D. 发生溢出
- (7) [2015] 下列有关浮点数加减运算的叙述中,正确的是\_\_\_\_。
  - I. 对阶操作不会引起阶码上溢或下溢
- Ⅱ. 右规和尾数舍入都可能引起阶码上
- Ⅲ. 左规时可能引起阶码下溢

Ⅳ. 尾数溢出时结果不一定溢出

A. 仅II、II

B. 仅I、II、IV

C. 仅I、II、IV

D. I , II , III , IV

- 3.3 回答下列问题。
- (1) 为什么采用并行进位能提高加法器的运算速度?
- (2) 如何判断浮点数运算结果是否发生溢出?
- (3)如何判断浮点数运算结果是否为规格化数?如果不是规格化数,如何进行规格化?
- (4) 为什么阵列除法器中能用 CAS 的进位 / 借位控制端作为上商的控制信号?
- (5)移位运算和乘法及除法运算有何关系?
- 3.4 已知 x 和 y, 用变形补码计算 x + y, 并判断结果是否溢出。
- (1) x = 0.11010, y = 0.10111
- $(2) x = 0.11101, y = -0.10100_{\circ}$
- $(3) x = -0.10111, y = -0.11000_{\circ}$
- 3.5 已知 x 和 y, 用变形补码计算 x-y, 并判断结果是否溢出。
- $(1) x = 0.11011, y = 0.11101_{\circ}$
- $(2) x = 0.10111, y = 0.11110_{\circ}$
- (3) x = -0.11111, y = -0.11001
- 3.6 用原码一位乘法计算 $x \times y$ 。
- $(1) x = -0.11111, y = 0.11101_{\circ}$
- (2) x = -0.11010, y = -0.01011<sub>o</sub>
- 3.7 用补码一位乘法计算 x×y。
- (1) x = 0.10110, y = -0.00011
- (2) x = -0.011010, y = -0.011101
- 3.8 用原码不恢复余数法计算 x y。
- (1) x = 0.10101, y = 0.11011<sub>o</sub>
- (2) x = -0.10101, y = 0.11000<sub>o</sub>
- 3.9 设数的阶码为 3 位,尾数为 6 位(均不包括符号位),按机器补码浮点运算规则完成下列  $[x+y]_*$  运算。
- (1)  $x = 2^{011} \times 0.100100$ ,  $y = 2^{010} \times (-0.011010)$ 
  - (2)  $x = 2^{-101} \times (-0.100010), y = 2^{-100} \times (-0.010110)_{\odot}$
  - 3.10 采用 IEEE754 单精度浮点数格式计算下列表达式的值。
  - (1) 0.625 + (-12.25) (2) 0.625 (-12.25)
  - 3.11 假定在一个 8 位字长的计算机中运行如下 C 语言程序段。

unsigned int x=134;

unsigned int y=246;

int m=x; int n=y;

unsigned int z1=x-y;

unsigned int z2=x+y; int k1=m-n;

int k2=m+n.

若编译器编译时将 8 个 8 位寄存器 R1  $\sim$  R8 分别分配给变量 x、y、m、n、z1、z2、k1 和 k2。请回答下列问题(提示:带符号整数用补码表示)。

(1) 执行上述程序段后,寄存器 R1、R5 和 R6 中的内容分别是什么?(用十六进制表示)

#### 计算机组成原理 (微课版)

- (2) 执行上述程序段后,变量 m 和 k1 的值分别是多少? (用十进制表示)
- (3)上述程序段涉及带符号整数加减、无符号整数加减运算,这4种运算能否利用同一个加法器。 辅助电路实现?简述理由。
- (4) 计算机内部如何判断带符号整数加减运算的结果是否发生溢出?上述程序段中,哪些带符号数运算语句的执行结果会发生溢出?
- 3.12 如果全加器采用图 3.2 (b) 所示的方案实现,尝试分析图 3.3 ~图 3.8 所示电路的时间延迟和版本开销,你认为与图 3.2 (a) 所示方案相比哪个方案更好,为什么?

### 实践训练

- (1)在 Logisim 中构建 8 位可控加减法电路、4 位先行进位电路、4 位快速加法器、16 位组内并行组间并行加法器。
  - (2) 在 Logisim 中设计 5 位无符号阵列乘法器,并利用该乘法器构造补码乘法器。
  - (3)在Logisim中设计8位原码一位乘法和补码一位乘法器。
  - (4)在 Logisim 中设计能满足 MIPS 指令系统功能的 32 位多功能运算器。

# 习题答案(P92-94)

- 3.1 解释下列名词:
  - (1) 全加器: 带进位的一位加法器

全加器(Full Adder,FA)

| 加数Xi | 加数Yi | 低位进位Ci | 和数S <sub>i</sub> | 进位C <sub>i+1</sub> |
|------|------|--------|------------------|--------------------|
| 0    | 0    | 0      | 0                | 0                  |
| 0    | 0    | 1      | 1                | 0                  |
| 0    | 1    | 0      | 1                | 0                  |
| 0    | 1    | 1      | 0                | 1                  |
| 1    | 0    | 0      | 1                | 0                  |
| 1    | 0    | 1      | 0                | 1                  |
| 1    | 1    | 0      | 0                | 1                  |
| 1    | 1    | 1      | 1                | 1                  |

$$S_i = X_i \oplus Y_i \oplus C_i$$

$$C_{i+1} = X_i Y_i + (X_i \oplus Y_i) C_i$$

或者  $C_{i+1} = X_i Y_i + (X_i + Y_i) C_i$ 



(2) 半加器:没有进位输入的一位加法器

半加器(Half Adder,HA)

• 
$$S_i = X_i \oplus Y_i$$

| X <sub>i</sub> | Yi | S <sub>i</sub> | C <sub>i+1</sub> |
|----------------|----|----------------|------------------|
| 0              | 0  | 0              | 0                |
| 0              | 1  | 1              | 0                |
| 1              | 0  | 1              | 0                |
| 1              | 1  | 0              | 1                |

- (3) 进位生成函数:  $G_i = X_i Y_i$  当 $G_i = 1$ , $C_i + 1$ 一定为1,所以称之为进位生成函数。
- (4)<mark>进位传递函数:  $P_i = X_i \oplus Y_{i,}$  当 $P_i = 1$ 时,进位输入信号 $C_i$ 才能传递到进位输出 $C_i + 1$ 处,所以称之为进位传递函数。</mark>
  - (5) 算术移位:对有符号数的移位称之为算术移位,包括算术左移、算术右移。
- (6)<mark>逻辑移位:</mark>对于无符号数的移位称之为逻辑移位,包括逻辑左移、逻辑右移。逻辑左移和算术左移是一样的。

- (7) <mark>阵列乘法器</mark>:采用类似手动乘法运算的方法,用大量与门阵列同时产生手动乘法中的各乘积项,同时将大量一位全加器按照手动乘法运算的需要构成全加器阵列。
- (8) 原码恢复余数除法:原码除法中当余数为负时,需加上除数,将其恢复成原来的余数,即为原码恢复余数法。
  - (9) 原码不恢复余数法: 又称为加减交替法。

当 $R_i > 0$ , 商上1, 做2 $R_i - y^*$ 的运算。

当 $R_i < 0$ ,商上0,做 $2R_i + y^*$ 的运算。

(10) <mark>阵列除法</mark>:利用一个可控加减CAS单元组成的流水阵列,有四个输出,四个输入。P=0时,做加法,P=1时,做减法。

#### (11) 串行进位: 并行加法器中的进位采用串行传递。



图3.3 多位串行加法器

#### (12) 先行进位:并行加法器中的进位信号是同时产生的,也称跳跃进位、并行进位。





图3.6(下) 4位进位生成/进位传递电路

- (13) 对阶: 浮点加减运算的第一步,使参与运算的两个浮点数的阶码相同(小阶向大阶对齐)。
- (14) 规格化:为增加有效数字的位数,提高运算精度,需将运算结果的尾数规格化。浮点加减运算、浮点乘除运算,都需要对结果进行规格化。
- (15) 保留附加位:浮点加减运算时,对阶操作要对阶码小的尾数进行右移,保留附加位即保留右移后的若干位,这样在进行尾数求和与规格化处理时不会损失精度,只有在舍入处理时才丢掉附加位。
  - 例3.14: 设x=2<sup>-101</sup>·(-0.101011), y= 2<sup>-010</sup>·(0.001110), 数的阶码为3位, 尾数为6位(均不含符号位), 且都用补码表示,按照补码浮点数运算步骤计算x+y
  - 解:
    - 首先用补码形式表示浮点数x和y(采用双符号位)
      - [x]<sub>3b</sub>=11 011, 11.010101 [y]<sub>3b</sub>=11 1

[y]<sub>\*</sub>=11 110 , 00.001110

- (1)对阶:小阶向大阶对齐,x(阶码=-5)向y(阶码=-2)对齐,x的尾数右移3位
  - 对阶后的[X]\*=11 110, 11.111010(101)
- (2)尾数运算(求和):

- (3) 尾数规格化处理:运算结果的尾数=00.001000(101),为非规格化数(尾数的绝对值太小),需要左规,左移2次,变为规格化数00.100010(1),阶码减2,阶码变为11 100
- (4) 舍入处理: 舍入处理后的尾数为: **00.100011**(**0**舍**1**入法,末位恒置**1**法)
- (5)溢出判断: 阶码的双符号位相同(11),没有溢出
- 运算结果: [x+y]<sub>+</sub>=11 100, 00.100011, x+y= 2<sup>-100</sup>·(0.100011)
- 验证:
  - x=(1/32)\*(-43/64), y=(1/4)\*(14/64), x+y=(-43/2048)+(112/2048)=69/2048
  - x+y= 2-100-(0.100011)=(1/16)\*(35/64)=70/2048,相差1/2048,原因是舍入处理引起的误差

```
(1) [2009] 一个 C 语言程序在一台 32 位机器上运行,程序中定义了 3 个变量 x、y、z,其中 x 和 z int 型, y 为 short 型。当 x = 127, y = -9 时,执行赋值语句 z = x + y 后, x、y、z 的值分别是____。

A. x = 0000007FH, y = FFF9H, z = 00000076H

B. x = 0000007FH, y = FFF7H, z = FFFF0076H

C. x = 0000007FH, y = FFF7H, z = FFFF0076H

D. x = 0000007FH, y = FFF7H, z = 00000076H
```

① D: x=127=0000 007FH; y=-9=FFF7H; z=x+y=118=0000 0076H。

(2) [2010] 假定有 4 个整数用 8 位补码分别表示  $r_1$ = FEH,  $r_2$ = F2H,  $r_3$ = 90H,  $r_4$ = F8H, 若将运算 果存放在一个 8 位的寄存器中,则下列运算会发生溢出的是\_\_\_\_。

A.  $r_1 \times r_2$  B.  $r_2 \times r_3$  C.  $r_1 \times r_4$  D.  $r_2 \times r_4$ 

② B: r1=FEH=-2; r2=F2H=-14; r3=90H=-112; r4=F8H=-8; r2xr3=1568,溢出了。

3 A: x=1,0001011+1=1,0001100=-12; y=1,1001111+1=1,1010000=-80; z=-24+(-40)=-64=1100 0000 o

(4) [2018] 假定带符号整数采用补码表示,若 int 型变量x和y的机器数分别是 FFFF FFDFH © 0000 0041H,则x、y的值以及x-y的机器数分别是 \_\_\_\_\_\_。

A. x=-65, y=41, x-y的机器数溢出

B. x = -33, y = 65, x - y 的机器数为 FFFF FF9DH

**C:** x=FFFF FFDFH=-33; y=0000 0041H=65; x-y=-98=FFFF FF9EH.

(5) [2018] 整数 x 的机器数为 1101 1000,分别对 x 进行逻辑右移 1 位和算术右移 1 位操作,得疑机器数各是 \_\_\_\_\_。

A. 1110 1100 , 1110 1100

B. 0110 1100, 1110 1100

C. 1110 1100, 0110 1100

D. 0110 1100, 0110 1100

⑤ B: 逻辑右移1位: x=0110 1100; 算术右移1位: x=1110 1100。

(6) [2009] 浮点数加减运算过程一般包括对阶、尾数运算、规格化、舍入和判断溢出等步息 设浮点数的阶码和尾数均采用补码表示,且位数分别为 5 位和 7 位(均含 2 位符号位)。若有两个  $X=2^7\times29/32$ , $Y=2^5\times5/8$ ,则用浮点加法计算 X+Y 的最终结果是 \_\_\_\_\_。

A. 001111100010 B. 001110100010 C. 010000010001 D. 发生逐步

⑥ D: X+Y=2<sup>7\*</sup>((29/32)+(5/32))=2<sup>7\*</sup>(01.00010B); 规格化: 右移并且尾数舍入,尾数00.10001B, 阶码8,补码的表示范围: -8~+7,11,000~00,111,因此阶码发生溢出。

## • 3.2 选择题

(7) D:

I: 正确。

Ⅱ: 正确: 右规时,阶码增大,尾数舍入过程需要右规调整,因此可能出现阶码上溢。

Ⅲ: 正确: 左规时,尾数增大,阶码减小,有可能下溢。

Ⅳ: 正确: 因为浮点数中以阶码作为溢出判断的标准。

## 3.3 回答下列问题

① 为什么采用并行进位能提高加法器的运算速度?

答:并行进位也就是先行进位,可以同时产生各个进位;而串行进位,高位的进位必须等到低位的进位得到后,才能产生;因此并行进位能够提高加法器的运算速度。例如,4位并行进位加法器,时间延迟为8T,而4位串行加法器的时间延迟为(2n+4)T=(2\*4+4)T=12T。



图3.6 4位先行进位加法器

**S**<sub>2</sub>8T

四位先行进位电路 (2T)

与门异或门电路(3T)

**S**<sub>0</sub> 6T

- ② 如何判断浮点数运算结果是否发生溢出?
- 答: 浮点数运算结果是否溢出是由阶码决定的,阶码采用双符号位时,如果符号位=01或10,则表示浮点数溢出了。

- 1、阶码和尾数采用补码表示的浮点加减运算
  - (1) 对阶: 小阶向大阶对齐
  - (2) 尾数运算: 定点数的补码加减运算
  - (3) 结果规格化: 尾数的绝对值大于1, 需要进行右规, 尾数只需要右移1次, 阶码加1; 尾数的绝对值小于0.5, 需要进行左规, 尾数需要左移若干次, 直到尾数的绝对值大于0.5(尾数每左移1次, 阶码减1)
  - (4) 舍入: 尾数进行右规时(尾数右移), 尾数的末尾会被丢掉, 从而产生误差。舍入方法: 末位恒置1法; 0舍1入法
  - (5) 溢出判断: 阶码的符号位为01或10时,表示浮点数溢出了

- ③ 如何判断浮点数运算结果是否为规格化数?如果不是规格化数,如何进行规格化?
- 答:如果浮点数的尾数采用原码表示,当尾数的最高有效位=1,则为规格化数。如果浮点数的尾数采用补码表示,当尾数为正数且尾数的最高有效位=1,则为规格化数;当尾数为负数且尾数的最高有效位=0,则为规格化数。
- 如果不是规格化数,则可以通过左规(浮点数的绝对值小于0.5)或右规(浮点数的绝对值大于1),使浮点数的尾数变为规格化的数。

- 1、阶码和尾数采用补码表示的浮点加减运算
  - (1) 对阶: 小阶向大阶对齐
  - (2) 尾数运算: 定点数的补码加减运算
  - (3) 结果规格化: 尾数的绝对值大于1, 需要进行右规, 尾数只需要右移1次, 阶码加1; 尾数的绝对值小于0.5, 需要进行左规, 尾数需要左移若干次, 直到尾数的绝对值大于0.5(尾数每左移1次, 阶码减1)
  - (4) 舍入: 尾数进行右规时(尾数右移), 尾数的末尾会被丢掉, 从而产生误差。舍入方法: 末位恒置1法; 0舍1入法
  - (5)溢出判断:阶码的符号位为01或10时,表示浮点数溢出了

- ④ 为什么阵列除法器中能用CAS的进位/借位控制端作为上商的控制信号?
- 答:上商位决定了下一步是进行加法还是进行减法,因此可用上一步的商(最左侧CAS的进位/借位输出)控制下一行串行进位加减法电路的运算,即商上1,下一步减除数;而商上0,下一步加除数,故将上一步的商与下一行的CAS电路的P输入相连。



#### ⑤ 移位运算和乘法及除法运算有何关系?

答:乘法是由加法和右移实现的;除法是由减法(减法也将通过加法实现)和左移实现的。因此计算机中只有加法器和移位运算部件,就可以完成加减乘除四则运算。





- 3.4 已知x和y,用变形补码计算x+y,并判断结果是否溢出。
- (1) x = 0.11010, y = 0.10111
- 答:
  - $[x+y]_{\dot{k}} = [x]_{\dot{k}} + [y]_{\dot{k}}$
  - 变形补码: [x]<sub>补</sub>=00.11010, [y]<sub>补</sub>=00.10111
  - [x+y]<sub>补</sub>=01.10001,符号位为01,表示正溢出

- (2) x = 0.11101, y = -0.10100
- 答:
  - [x]<sub> $\uparrow \downarrow$ </sub>=00.11101, [y]<sub> $\uparrow \downarrow$ </sub>=11.01100

- (3) x = -0.10111, y = -0.11000
- 答:
  - $[x]_{\frac{1}{4}}$ =11.01001,  $[y]_{\frac{1}{4}}$ =11.01000

[x]<sub>补</sub> 00.11010 + [y]<sub>补</sub> 00.10111

 $[x+y]_{\begin{subarray}{ll} \begin{subarray}{ll} \begin{subarray}{ll}$ 

- 3.5 已知x和y,用变形补码计算x-y,并判断结果是否溢出。
- (1) x = 0.11011, y = 0.11101
- 答:
  - $[x-y]_{\dot{a}h} = [x]_{\dot{a}h} + [-y]_{\dot{a}h}$
  - 变形补码: [x]<sub>补</sub>=00.11011, [-y]<sub>补</sub>=11.00011
  - [x-y]<sub>补</sub>=11.11110,符号位为11,没有溢出

- (2) x = 0.10111, y = 0.11110
- 答:
  - $[x]_{\dot{a}\dot{b}}$ =00.10111,  $[-y]_{\dot{a}\dot{b}}$ =11.00010

- (3) x = -0.11111, y = -0.11001
- 答:
  - $[x]_{\frac{1}{2}}=11.00001, [-y]_{\frac{1}{2}}=00.11001$

[x]<sub>补</sub> 00.11011 + [-y]<sub>补</sub> 11.00011

[x-y]<sub>ネ∤</sub> 11.11110

## • 3.6 用原码一位乘法计算x·y。

- (1) x = -0.111111, y = 0.11101
- 答:
  - 乘积的符号P<sub>0</sub>= x<sub>0</sub>⊕y<sub>0</sub> = 1⊕0=1
  - 乘积的绝对值=0.11100 00011(具体计算过程如下)
  - 乘积: [x·y]<sub>原</sub> = 1. 11100 00011,x·y = -0. 11100 00011

 $x \times y = -0.1110000011$ 

|               | 部分积      | 乘数 y  | 说明                     |
|---------------|----------|-------|------------------------|
|               | 00.00000 | 11101 | P=0                    |
| +             | 00.11111 |       | y <sub>n</sub> =1, + x |
|               |          |       |                        |
|               | 00.11111 | 11101 |                        |
| $\rightarrow$ | 00.01111 | 11110 | 逻辑右移一位                 |
| +             | 00.00000 |       | y <sub>n</sub> =0, +0  |
|               |          |       |                        |
|               | 00.01111 | 11110 |                        |
| $\rightarrow$ | 00.00111 | 11111 | 逻辑右移一位                 |
| +             | 00.11111 |       | y <sub>n</sub> =1, + x |
|               |          |       |                        |
|               | 01.00110 | 11111 |                        |
| $\rightarrow$ | 00.10011 | 01111 | 逻辑右移一位                 |
| +             | 00.11111 |       | y <sub>n</sub> =1, + x |
|               |          |       |                        |
|               | 01.10010 | 01111 |                        |
| $\rightarrow$ | 00.11001 | 00111 | 逻辑右移一位                 |
| +             | 00.11111 |       | y <sub>n</sub> =1, + x |
|               |          |       |                        |
|               | 01.11000 | 00111 |                        |
| $\rightarrow$ | 00.11100 | 00011 | 逻辑右移一位                 |
|               |          |       |                        |

乘数|y|为y(0.11101)的数 值位(11101),部分积P为0 (双符号位小数)

根据|y|的最后一位是1还是0 ,执行+|x|或+0的操作

- 3.6 用原码一位乘法计算x·y。
- (2) x = -0.11010, y = -0.01011
- 答:
  - 乘积的符号P<sub>0</sub>= x<sub>0</sub>⊕y<sub>0</sub> = 1⊕1=0
  - 乘积的绝对值=0.01000 11110(具体计算过程如下)
  - 乘积: [x·y]<sub>原</sub> = 0. 01000 11110,x·y = 0. 01000 11110

|               | 部分积      | 乘数lvl   | 说明                     |
|---------------|----------|---------|------------------------|
|               | 00.00000 |         | P=0                    |
| +             | 00.11010 |         | y <sub>n</sub> =1, + x |
|               |          |         |                        |
|               | 00.11010 |         |                        |
| $\rightarrow$ | 00.01101 | 00101   | 逻辑右移一位                 |
| +             | 00.11010 |         | y <sub>n</sub> =1, + x |
|               | 01.00111 | 0.01.01 |                        |
|               |          |         | <b>温格士牧</b> —. 6       |
| $\rightarrow$ | 00.10011 | 10010   | 逻辑右移一位                 |
| +             | 00.00000 |         | y <sub>n</sub> =0, +0  |
|               | 00.10011 | 10010   |                        |
| $\rightarrow$ | 00.01001 | 11001   | 逻辑右移一位                 |
| +             | 00.11010 |         | $y_n=1, + x $          |
|               | 01.00011 | 11001   |                        |
| $\rightarrow$ | 00.10001 |         | 逻辑右移一位                 |
| +             | 00.00000 | 11100   | $y_n=0, +0$            |
| •             | 00.0000  |         | y <sub>n</sub> -0, 10  |
|               | 00.10001 | 11100   |                        |
| $\rightarrow$ | 00.01000 | 11110   | 逻辑右移一位                 |

 $x \times y = 0.01000111110$ 

乘数|y|为y(-0.01011)的数 值位(01011),部分积P为0 (双符号位小数)

根据|y|的最后一位是1还是0 ,执行+|x|或+0的操作

## • 3.7 用补码一位乘法计算x·y。

- (1) x = 0.10110, y = -0.00011
- 答:
  - $[x]_{\frac{1}{4}} = 0.10110; [y]_{\frac{1}{4}} = 1.11101$
  - 双符号位: [x]<sub>补</sub> = 00.10110; [-x]<sub>补</sub> = 11.01010
  - [x·y]<sub>补</sub>=11.11101 11110(具体计算过程如下)
  - 验证: x = 0.10110, y = -0.00011,  $x \cdot y = -0.00010\,00010$ ,  $[x \cdot y]_{\begin{subarray}{c} x \cdot y = -0.00010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0010$

|               | 部分积      |         | 说明                                                     |
|---------------|----------|---------|--------------------------------------------------------|
|               | 00.00000 | 1111010 | P=0 y <sub>n+1</sub> =0                                |
| +             | 11.01010 |         | y <sub>n</sub> y <sub>n+1</sub> =10,+[-x] <sub>补</sub> |
|               | 11.01010 | 1111010 |                                                        |
| $\rightarrow$ | 11.10101 | 0111101 | 算术右移一位                                                 |
| +             | 00.10110 |         | y <sub>n</sub> y <sub>n+1</sub> =01,+[x] <sub>补</sub>  |
|               | 00.01011 | 0111101 |                                                        |
| $\rightarrow$ | 00.00101 | 1011110 | 算术右移一位                                                 |
| +             | 11.01010 |         | y <sub>n</sub> y <sub>n+1</sub> =10,+[-x] <sub>补</sub> |
|               | 11.01111 | 1011110 |                                                        |
| $\rightarrow$ | 11.10111 | 1101111 | 算术右移一位                                                 |
| +             | 00.0000  |         | y <sub>n</sub> y <sub>n+1</sub> =11, +0                |
|               | 11.10111 | 1101111 |                                                        |
| $\rightarrow$ | 11.11011 | 1110111 | 算术右移一位                                                 |
| +             | 00.00000 |         | y <sub>n</sub> y <sub>n+1</sub> =11, +0                |
|               | 11.11011 | 1110111 |                                                        |
| $\rightarrow$ | 11.11101 | 1111011 | 算术右移一位                                                 |
| +             | 00.00000 |         | y <sub>n</sub> y <sub>n+1</sub> =11, +0                |
|               | 11.11101 | 1111011 | 最后一步不移位                                                |

乘数y为y的补码值(1.11101) ,去掉小数点(111101),最 后增加一位y<sub>n+1</sub>=0(1111010) ;部分积为0(双符号位小数)

 $[x \times y]_{\uparrow \uparrow} = 1.11101111110$ 

根据y的最后二位是01、10、 00或11,执行+[x]<sub>补</sub>、+[-x]<sub>补</sub>、 +0的操作

- 3.7 用补码一位乘法计算x·y。
- (2) x = -0.011010, y = -0.011101
- 答:
  - $[x]_{\lambda} = 1.100110; [y]_{\lambda} = 1.100011$
  - 双符号位: [x]<sub>补</sub> = 11.100110; [-x]<sub>补</sub> = 00.011010
  - [x·y]<sub>\*</sub> = 00.001011 110010(具体计算过程如下)
  - 验证: x=-0.011010, y=-0.011101,  $x\cdot y=0.001011$ 110010,  $[x\cdot y]_{\stackrel{.}{=}}=0.001011$ 110010

|               | 部分积                                     | 乘数v      | 说明                                                    |
|---------------|-----------------------------------------|----------|-------------------------------------------------------|
|               | 00.00000                                |          | P=0 y <sub>n+1</sub> =0                               |
| +             | 00.011010                               |          | $y_n y_{n+1} = 10, +[-x]_{\frac{1}{2}}$               |
|               | *************************************** |          | 1010+1 -01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1          |
|               | 00.011010                               | 11000110 |                                                       |
| $\rightarrow$ | 00.001101                               | 01100011 | 算术右移一位                                                |
| +             | 00.000000                               |          | y <sub>n</sub> y <sub>n+1</sub> =11, +0               |
|               |                                         |          | 2                                                     |
|               | 00.001101                               | 01100011 |                                                       |
| $\rightarrow$ | 00.000110                               | 10110001 | 算术右移一位                                                |
| +             | 11.100110                               |          | y <sub>n</sub> y <sub>n+1</sub> =01,+[x] <sub>补</sub> |
|               |                                         |          |                                                       |
|               | 11.101100                               |          | Anto D. Lander D.                                     |
| $\rightarrow$ | 11.110110                               | 01011000 | 算术右移一位                                                |
| +             | 00.000000                               |          | y <sub>n</sub> y <sub>n+1</sub> =00, +0               |
|               | 11.110110                               | 01011000 |                                                       |
| →             | 11.110110                               | 0-0-00   | 算术右移一位                                                |
| +             | 00.000000                               | 00101100 | $y_n y_{n+1} = 00, +0$                                |
| <u> </u>      | 00.00000                                |          | y <sub>n</sub> y <sub>n+1</sub> =00, 10               |
|               | 11.111011                               | 00101100 |                                                       |
| $\rightarrow$ | 11.111101                               | 10010110 | 算术右移一位                                                |
| +             | 00.011010                               |          | $y_n y_{n+1} = 10, +[-x]_{\frac{1}{2}h}$              |
|               |                                         |          |                                                       |
|               | 00.010111                               | 10010110 |                                                       |
| $\rightarrow$ | 00.001011                               | 11001011 | 算术右移一位                                                |
| +             | 00.000000                               |          | y <sub>n</sub> y <sub>n+1</sub> =11, +0               |
|               |                                         |          | <b>-</b>                                              |
|               | 00.001011                               | 11001011 | 最后一步不移位                                               |
|               |                                         |          |                                                       |

乘数y为y的补码值(1.100011 ),去掉小数点(1100011), 最后增加一位y<sub>n+1</sub>=0(11000110 );部分积为0(双符号位小数 )

 $[x \times y] \approx 0.0010111110010$ 

根据y的最后二位是01、10、 00或11,执行+[x]<sub>补</sub>、+[-x]<sub>补</sub>、 +0的操作

- 3.8 用原码不恢复余数法计算x÷y。
- (1) x = 0.10101, y = 0.11011
- 答:
  - |x|=00.10101, |y|=00.11011,  $[-|y|]_{\frac{1}{2}}=11.00101$
  - 结果:商Q=0.11000,余数R=0.00000 11000

验证:

x=0.10101=21/32; y=0.11011=27/32

商Q=0.11000=24/32; 余数R=0.000000 11000=24/1024

x=Q\*y+R=(24/32)\*(27/32)+24/1024=672/1024=21/32

|                      | 余数R            | 商Q                    | 说明              |
|----------------------|----------------|-----------------------|-----------------|
|                      | 00.10101       | 0.0000                | 初始余数R= x ,商Q=0  |
| +[- y ] <sub>补</sub> | 11.00101       |                       | 减[y]            |
|                      |                |                       |                 |
|                      | 11.11010       | 0.0000                | 余数为负,商0         |
| $\leftarrow$         | 11.10100       | 0.00000               | 左移1位            |
| + y                  | 00.11011       |                       | 加[y]            |
|                      |                |                       |                 |
|                      | 00.01111       | 0.0000 <u>1</u>       | 余数为正,商1         |
| _                    | 00.11110       | 0.00010               | 左移1位            |
| +[- y ] <sub>补</sub> | 11.00101       |                       | 减[y]            |
|                      |                |                       |                 |
| _                    | 00.00011       | 0.0001 <u>1</u>       | 余数为正,商1         |
|                      | 00.00110       | 0.00110               | 左移1位            |
| +[- y ] <sub>补</sub> | 11.00101       |                       | 减[y]            |
|                      |                |                       |                 |
| <b>←</b>             | 11.01011       | 0.0011 <mark>0</mark> | 余数为负,商0         |
|                      | 10.10110       | 0.01100               | 左移1位            |
| + y                  | 00.11011       |                       | 加 <b>[y]</b>    |
|                      |                |                       | A SHEAT AND AND |
|                      | 11.10001       | 0.01100               | 余数为负,商0         |
|                      | 11.00010       | 0.11000               | 左移1位            |
| + y                  | 00.11011       |                       | 加lyl            |
|                      | 444464         | 0.11000               | 人 <u>幣</u> 北及   |
| . 1 1                | 11.11101       | 0.11000               | 余数为负,商 <b>0</b> |
| + y                  | 0 0. 1 1 0 1 1 |                       | 加lyl 🔸          |
|                      | 00.11000       | 0.11000               |                 |
|                      | 00.11000       | 0.11000               |                 |
|                      |                |                       |                 |

余数R的初始值为x的绝对 值(双符号位小数)

余数为负,商0,左移1位 ,加|y|

余数为正,商1,左移1位 ,减|y|

因为余数为负数,需要加|y|恢复为正余数,余数的符号必须与x的符号相同

商Q=0.11000(商的符号为x和y符号的异或); 余数R=0.00000 11000(余数的符号与x的符号相同)

- 3.8 用原码不恢复余数法计算x÷y。
- (2) x = -0.10101, y = 0.11000
- 答:
  - |x|=00.10101, |y|=00.11000,  $[-|y|]_{\frac{1}{7}}=11.01000$
  - 结果: 商Q=1.11100, 余数R=0.00000 00000

验证:

x = -0.10101 = -21/32; y = 0.11000 = 24/32

商Q = -0.11100=-28/32; 余数R = 0

x=Q\*y+R=(-28/32)\*(24/32)=-21/32

| +[- y ] <sub>补</sub>      | 余数R<br>00.10101<br>11.01000      | 商Q<br>0.00000                 | 说明<br>初始余数R= x ,商Q=0<br>减 y                                |
|---------------------------|----------------------------------|-------------------------------|------------------------------------------------------------|
| <b>+</b>  y  ←            | 11.11101<br>11.11010<br>00.11000 | 0.0000<br>0.0000              | 余数为负,商 <b>0</b><br>左移1位<br>加 y                             |
| ←<br>+[- y ] <sub>补</sub> | 00.10010<br>01.00100<br>11.01000 | 0.00001<br>0.00010            | 余数为正,商1<br>左移1位<br>减 y                                     |
|                           |                                  | 0.00011<br>0.00110            | 余数为正,商1<br>左移1位<br>减 y                                     |
| <b>←</b>                  |                                  | 0.00111<br>0.01110<br>0.11100 | 余数为 <b>0</b> ,商 <b>1</b><br>左移 <b>1</b> 位<br>左移 <b>1</b> 位 |
|                           | 00.00000                         | 0.11100                       |                                                            |

余数R的初始值为x的绝对 值(双符号位小数)

余数为负,商0,左移1位 ,加|y|

余数为正,商1,左移1位 ,减|y|

商Q=1.11100; 余数R=0.00000 00000

商的符号为x和y符号的异或

- 3.9 设数的阶码为3位、尾数为6位(均不包含符号位),按机器补码浮点运算规则完成下列 [x+y]<sub>补</sub>。
- (1)  $x=2^{011}x0.100100$ ,  $y=2^{010}x(-0.011010)$
- 答:
- 第0步: 阶码用4位补码表示(含1位符号位),尾数用7位补码表示(含1位符号位)
- x=0,011 0.100100 y=0,010 1.100110
- 第1步:对阶。小阶向大阶对齐,y向x看齐
- · 对阶后的y=0,011 1.110011
- 第2步: 尾数求和
- [x+y]<sub>\*k</sub>=0.010111

- [x]<sub>补</sub> 0.100100 + [y]<sub>补</sub> 1.110011
- $[x+y]_{k}$  0.010111
- 第3步:尾数规格化。0.010111为非规格化的尾数(绝对值小于0.5),需要左规,即左移1次,尾数变为0.101110, 阶码减1,阶码=0,010
- 第4步: 舍入。不需要舍入
- 第5步:溢出判断。没有溢出
- 结果: [x+y]<sub>补</sub>=0,010 0.101110
- 验证: x=2<sup>3</sup>·(36/64)=4.5, y=2<sup>2</sup>·(-26/64)=-1.625; x+y=2.875
- $[x+y]_{\frac{1}{2}}=0.010 \ 0.101110 = 2^2 \cdot (46/64)=2.875$

- 3.9 设数的阶码为3位、尾数为6位(均不包含符号位),按机器补码浮点运算规则完成下列 [x+y]<sub>补</sub>。
- (2)  $x=2^{-101}x(-0.100010)$ ,  $y=2^{-100}x(-0.010110)$
- 答:
- 阶码用4位补码表示(含1位符号位),尾数用7位补码表示(含1位符号位)
- 第0步: 阶码用4位移码表示(含1位符号位),尾数用7位补码表示(含1位符号位)
- x=1,011 1.011110 y=1,100 1.101010
- 第1步:对阶。小阶向大阶对齐,x向y看齐
- 对阶后的x=1,100 1.101111
- 第2步: 尾数求和
- [x+y]<sub>\*|</sub>=1.011001
- 第3步:尾数规格化。1.011001已经是规格化的数
- 第4步: 舍入。不需要舍入
- 第5步:溢出判断。没有溢出
- 结果: [x+y]<sub>补</sub>=1,100 1.011001
- 验证: x=2<sup>-5</sup>·(-34/64)=-17/1024, y=2<sup>-4</sup>·(-22/64)=-22/1024; x+y=-39/1024
- $[x+y]_{\frac{1}{2}h}=1,100 \ 1.011001=2^{-100}\cdot(-0.100111)=2^{-4}\cdot(-39/64)=-39/1024$

[x]<sub>ネḥ</sub> 1.101111 + [y]<sub>ネḥ</sub> 1.101010

[x+y]<sub>\*|</sub> 1.011001

- (1) 0.625+(-12.25)
- 答:
- x=0.625=0.101B=1.01x2-1

https://www.23bei.com/tool/15.html#



- 第1步:对阶。x向v对齐,x的尾数右移4位。对阶后,x的尾数=0.000101
- 第2步:尾数求和。 0.000101<sub>真值</sub> + (-1.10001)<sub>真值</sub> = 00.000101<sub>补码</sub> + 10.011110<sub>补码</sub> = 10.100011<sub>补码</sub> = -1.011101<sub>真值</sub>
  - 如何计算 (-1.1<mark>♥</mark>001)<sub>真值</sub> 的补码? 1.10001 先右移1位得到 -0.110001,其对应的补码=1.001111,再左移1位,得到:10.011110
  - 如何计算 10.1<mark>0</mark>0011<sub>补码</sub> 的真值? 10.100011先右移1位得到 1.0100011,其对应的真值=-0.1011101,再左移1位,得到:-1.011101
- 第3步:结果规格化。-1.011101已经是规格化的数(1.X形式)
- 第4步: 舍入处理。不需要进行舍入处理
- 第5步:溢出判断。没有溢出
- 验证: z=x+y=0.625+(-12.25)=-11.625=-1011.101=-1.011101x2<sup>11</sup>



#### • 3.10 采用IEEE754单精度浮点数格式计算表达式的值:

- (2) 0.625-(-12.25)
- 答
- x=0.625=0.101B=1.01x2<sup>-1</sup>

https://www.23bei.com/tool/15.html#



- y=12.25=1100.01=1.10001x2<sup>11</sup>
- E=3+127=130=1000 0010 M=100 0100 0000 0000 0000
- 第1步:对阶。x向y对齐,x的尾数右移4位。对阶后,x的尾数=0.000101
- 第2步:尾数求和。 0.000101<sub>真值</sub> + 1.10001<sub>真值</sub> = 00.000101<sub>补码</sub> + 01.100010<sub>补码</sub> = 01.100111<sub>补码</sub> = 1.100111<sub>真值</sub>
- 第3步:结果规格化。1.100111已经是规格化的数(1.X形式)
- 第4步: 舍入处理。 不需要进行舍入处理
- 第5步:溢出判断。没有溢出
- 验证: z=x+y=0.625-(-12.25)=12.875=1100.111=1.100111x2<sup>11</sup>

3.11 假定在一个 8 位字长的计算机中运行如下 C 语言程序段。

unsigned int x=134; unsigned int y=246; int m=x; int n=y; unsigned int z1=x-y; unsigned int z2=x+y; int k1=m-n; int k2=m+n;

若輸译器编译时将 8 个 8 位寄存器 R1 ~ R8 分别分配给变量 x、y、m、n、z1、z2、k1 和 k2。请回答下列问题(提示:带符号整数用补码表示)。

- (1) 执行上述程序段后,寄存器 R1、R5 和 R6 中的内容分别是什么?(用十六进制表示)
- (2) 执行上述程序段后, 变量 m 和 k1 的值分别是多少? (用十进制表示)
- (3)上述程序段涉及带符号整数加减、无符号整数加减运算,这4种运算能否利用同一个加法数 辅助电路实现?简述理由。
- (4) 计算机内部如何判断带符号整数加减运算的结果是否发生溢出?上述程序段中,哪些带存号数运算语句的执行结果会发生溢出?
- 答
- (1) 寄存器R1、R5、R6中的内容分别是什么?
  - x=134=86H (R1=86H) y=246=F6H (R2=F6H)
  - m=x=86H=1,000 0110= -111 1010= -122 (R3=86H) n=y=F6H=1,111 0110= -000 1010= -10 (R4=F6H)
  - z1=x-y=86H-F6H=90H (R5=90H) z2=x+y=86H+F6H=7CH (R6=7CH)
  - k1=m-n=-122-(-10)= -112 (R7=90H) k2=m+n=-122+(-10)=-132 (R8=7CH)
  - 所以,R1=86H,R5=90H,R6=7CH
- (2) m = -122, k1 = -112
- (3)能。因为可控加减法器既可以完成无符号数的加减运算,也可以完成有符号数的加减运算。
- (4)判断带符号整数加减运算有3种方法,第2种方法是"根据运算过程中最高数据位的进位与符号位的进位是否一致进行检测"。上述程序中"int k2=m+n"会发生溢出,因为运算结果=-132,超出了8位二进制数补码的表示范围-128~+127。

- 3.12 如果全加器采用图3.2(b)所示的方案实现,尝试分析图3.3~图3.8所示电路的时间 延迟和成本开销,你认为与图3.2(a)所示方案相比,哪个方案更好,为什么?
- 答:
- 图3.2(a) 的全加器方案1,产生进位信号需要5T。
- 图3.2(b) 的全加器方案2,产生进位信号只需要2T。
- 方案2与方案1相比,虽然产生进位信号的延迟减少了3T,但是增加了1个与门。



图3.2(a) 全加器方案1

图3.2(b) 全加器方案2



图3.3



全加器采 用方案2 时间延迟减少3T ,但是,硬件成 本增加n个与门





时间延迟减少3T

全加器采 用方案2



没有全加器

进位生成函数: G<sub>i</sub>= X<sub>i</sub>Y<sub>i</sub>

进位传递函数: P<sub>i</sub>= X<sub>i</sub>⊕Y<sub>i</sub> = X<sub>i</sub>Y<sub>i</sub> + X<sub>i</sub>Y<sub>i</sub>

时间延迟减少2T ,但是,硬件成 本增加16个与门 、8个或门(减 少8个异或门)

全加器采 用方案2



图3.6



时间延迟减少2T ,但是,硬件成 本增加8x16个与 门、4x8个或门 (减少4x8个异 或门)

全加器采 用方案2



图3.7



时间延迟减少2T ,但是,硬件成 本增加8x16个与 门、4x8个或门 (减少4x8个异 或门)

全加器采 用方案2



## 图3.8



# Thanks