Manifolds

November 15, 2023

Rozdziały

1	Topology	1
2	Tangent Space	1
	2.1 Definition	1
	2.2 Operations on tangent space	2
	2.2.1 Bijectivity	2
	2.2.2 Basis	2
	2.3 Differential	2
	2.4 Cotangent Space	3
	2.4.1 Basis of Cotangent Space	3
3	Submersion	3
4	Tangent bundle	3
	4.0.1 Natural projection	3
5	Metric Tensor	3
6	Riemann semi-maniofld	4
	6.1 Riemann norm	4
	6.2 Curve length	4

1 Topology

TODO: add

2 **Tangent Space**

Definition 2.1

Let (M,τ) be a C^k differentiable manifold, (U,ϕ) chart on M and $p\in U$. Let $\gamma_1,\gamma_2:(-1,1)\to U$ be two curves such that $\gamma_1(0) = \gamma_2(0) = p$ and $D_{\phi \circ \gamma_1}(x), D_{\phi \circ \gamma_2}(x) \in C^k[(-1,1), R^n]$. Let $_{\sim}$ T be an equivalence relation on the set of curves meeting the above conditions s.t. $\gamma_1 _{\sim} \gamma_2 \iff$

 $D_{\phi \circ \gamma_1}(\phi \circ \gamma_1)(0) = D_{\phi \circ \gamma_2}(\phi \circ \gamma_2)(0).$

Finally, a tangent space T_pM is defined as a set of equivalence classes of curves meeting the above

conditions.

$$[\gamma]_{\sim} = \{ \gamma' : (-1, 1) \to U \text{ s.t. } \gamma_{\sim} \gamma' \}$$
 (1)

$$T_p M = \{ [\gamma]_{\sim} : (-1, 1) \to U, \phi \circ \gamma \in C^k[(-1, 1), \mathbb{R}^n], \gamma(0) = p \}$$
 (2)

Since $\gamma_1(0) = \gamma_2(0) = p \implies D_{\phi \circ \gamma_1}(0) = D_{\phi \circ \gamma_2}(0) \iff [\gamma_1]_{\sim} = [\gamma_2]_{\sim}$, it follows that SHOW INDEPENDENCE FROM CHART.

2.2 Operations on tangent space

To define operations on the elements of T_pM , if (U,ϕ) is a chart with $p \in U$, one may define a map:

$$h_*: T_p M \to T_{\phi(p)} \mathbb{R}^n = \mathbb{R}^n, \tag{3}$$

$$h_*([\gamma]_{\sim}) := D_{\phi \circ \gamma}(0). \tag{4}$$

(5)

Note that $D_{\phi \circ \gamma}(0)$ is a well defined $\phi \circ \gamma : \mathbb{R} \to \mathbb{R}^n$.

Then the operations on T_pM are defined as follows:

for
$$u, v \in T_p M$$
 and $\lambda \in \mathbb{R}$ (6)

$$u + v := h_*^{-1}(h_*(u) + h_*(v)), \tag{7}$$

$$\lambda v := h_*^{-1}(\lambda h_*(v)). \tag{8}$$

(9)

2.2.1 Bijectivity

By the definition of a chart, it has to be a homeomorphism (continuous, bijective) map. Thus T_pM is a vector space isomorphic to \mathbb{R}^n .

2.2.2 Basis

If $B = \{e_1, e_2, ...e_n\}$ is a basis of \mathbb{R}^n , then $B_{T_pM} = \{h_*^{-1}(e_1), h_*^{-1}(e_2), ...h_*^{-1}(e_n)\}$ is a basis of T_pM .

2.3 Differential

Let $(M_1, \tau_1)(M_2, \tau_2)$, be C^k differentiable manifolds, $f: M_1 \to M_2$ be a smooth map and $p \in U \in \tau_1$. We define a differential (or pushforward) as a map between tangent spaces as follows:

$$df: T_p M_1 \to T_{f(p)} M_2 \tag{10}$$

$$df([\gamma]_{\sim}) := [f \circ \gamma]_{\sim} \in T_{f(p)}M_2 \tag{11}$$

Note that $[f \circ \gamma]_{\sim}$ is a equivalence class of all curves $f \circ \gamma : (-1,1) \to M_2$, with $(f \circ \gamma)(0) = f(p)$ and $(f \circ \gamma_1)_{\sim}(f \circ \gamma_2) \iff D_{\psi \circ (f \circ \gamma_1)}(0) = D_{\psi \circ (f \circ \gamma_2)}(0)$, for some ψ being a chart of M_2 on neighbourhood of f(p).

2.4 Cotangent Space

Let M be a C^k differentiable manifold, $p \in M$.

If T_pM is a tangent space, then its dual space T_p^*M is called a cotangent space.

2.4.1 Basis of Cotangent Space

If $B_{T_pM} = \{b_1, b_2, ..., b_n\}$ is a basis of tangent space, then basis of its dual space $B_{T_pM}^* = \{b_1^*, b_2^*, ..., b_n^*\}$ can be found as follows:

$$b_i^* \in \mathcal{L}(T_pM \to \mathbb{R}), b_j \in B_{T_pM}$$
 (12)

$$b_i^*(b_j) := \delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$
 (13)

3 Submersion

Let M, N be manifolds and $f: M \to N$ be a smooth map.

Its pushforward $df: T_pM \to T_{f(p)}N$ is called an immersion if it is a bijective map.

4 Tangent bundle

Let M be a C^k differentiable manifold. We define a Tangent bundle as a set consisting of all tangent spaces defined as: $TM := \bigcup_{p \in M} \{p\} \times T_pM$

4.0.1 Natural projection

Natural projection $\pi: TM \to M$ is defined as: $\pi(p, T_pM) := p$

5 Metric Tensor

Let M be a C^k differentiable manifold and $p \in M$.

A metric tensor $g_p: T_pM \times T_pM \to \mathbb{R}$ is a map that is:

- Bilinear:
 - $-g_{p}(u, \lambda v) = g_{p}(\lambda u, v) = \lambda g_{p}(u, v),$
 - $-g_p(u+w,v) = g_p(u,v) + g_p(w,v),$
 - $-g_p(u, v + w) = g_p(u, v) + g_p(u, w).$
- Symmetric: $g_p(u, v) = g_p(v, u)$.
- Nondegenerate: $\forall v \in T_pM : v \neq 0 \implies \exists u \in T_pM : g_p(u,v) \neq 0$
- If $g_{u,v}: M \to \mathbb{R}$, with $g_{u,v}(p) := g_p(u,v)$, then $g_{u,v}$ is a smooth function.

6 Riemann semi-maniofld

Let M be a C^k smooth manifold and $g_p: T_pM \times T_pM \to \mathbb{R}$ be its metric tensor. We say that a tuple (M,g_p) is called a Riemann semi-manifold. g_p is also called a Riemann Metric.

6.1 Riemann norm

For a given metric tensor g_p , Riemann norm is defined as $\|\cdot\|:T_pM\to\mathbb{R}$, with $\|v\|:=\sqrt{g_p(v,v)}$

6.2 Curve length

Let $\gamma:(a,b)\subseteq\mathbb{R}\to M$ be a parametrized smooth map. We define the length of this curve as: $L(\gamma):=\int_a^b\|[\gamma]_\sim\|dt=\int_a^b\sqrt{g_p([\gamma]_\sim,[\gamma]_\sim)}dt$