

Modulation Techniques for Mobile Radio

Here is a picture of the overall wireless transmission and receiving system:

- ☐ Last few weeks:
- Properties of cellular radio systems
 - Reuse by using cells
 - Clustering and system capacity
 - Handoff strategies
 - Co-Channel Interference
 - Adjacent Channel Interference
 - Trunking and grade of service (GOS)
 - Cell splitting
 - Sectoring

- ☐ Electromagnetic propagation properties and hindrances
 - Free space path loss
 - Large-scale path loss Reflections, diffraction, scattering
 - Multipath propagation
 - Doppler shift
 - Flat vs. Frequency selective fading
 - Slow vs. Fast fading

□ Now what are we studying?

■ We are looking at modulation and demodulation.

- ☐ Modulation: Encoding information in a baseband signal and then translating (shifting) signal to much higher frequency prior to transmission
 - Message signal is detected by observing baseband to the amplitude, frequency, or phase of the signal.
 - Our focus is modulation for mobile radio.
 - The primary goal is to transport information through the MRC with the best quality (low BER), lowest power & least amount of frequency spectrum
 - ☐ Must make tradeoffs between these objectives.

- ☐ Must overcome difficult impairments introduced by MRC:
 - Fading/multipath
 - Doppler Spread
 - ACI & CCI
- ☐ Challenging problem of ongoing work that will likely be ongoing for a long time.
 - Since every improvement in modulation methods increases the efficiency in the usage of highly scarce spectrum.

I. Analog Amplitude and Frequency Modulation

☐ A. Amplitude Modulation

 $m(t) \rightarrow \text{information signal}$

 $A_c \cos[2\pi f_c t] \rightarrow \text{carrier}$

 $f_c \rightarrow \text{carrier frequency}$

 $S_{AM}(t) = A_c [1 + m(t)] \cos[2\pi f_c t] \rightarrow \text{transmitted signal}$

Figure 6.1 (a) A sinusoidal modulating signal and (b) the corresponding AM signal with modulation index 0.5.

Spectrum of AM wave

$$S(f) = \frac{A_c}{2} [\delta(f - f_c) + \delta(f + f_c)] + \frac{k_a A_c}{2} [M(f - f_c) + M(f + f_c)]$$

Spectrum of baseband signal.

Spectrum of AM wave.

- ☐ B. Frequency Modulation
 - Most widely used form of Angle modulation for mobile radio applications
 - \square AMPS
 - □ Police/Fire/Ambulance Radios
 - Generally one form of "angle modulation"
 - ☐ Creates changes in the time varying phase (angle) of the signal.
 - Many unique characteristics

Unlike AM, the amplitude of the FM carrier is kept constant (constant envelope) & the *carrier* frequency is varied proportional to the modulating signal m(t):

$$S_{FM}(t) = A_c \cos[\theta(t)]$$

 $\omega(t) = \text{instatantaneous angular frequency}$
 $= \frac{d\theta}{dt} = 2\pi f_c + 2\pi k_f m(t) \leftarrow \text{desired}$

- \blacksquare f plus a deviation of $k_f m(t)$
- k_f : frequency deviation constant (in Hz/V) defines amount magnitude of allowable frequency change

- (a) Carrier wave.
- (b) Sinusoidal modulating signal.
- (c) Amplitude-modulated signal.

(d) Frequency-modulated signal.

$$S_{FM}(t) = A_c \cos \left(2\pi f_c t + 2\pi k_f \int_{-\infty}^{t} m(\eta) d\eta \right)$$

☐ FM signal spectrum → carrier + Message signal frequency # of sidebands

- \square Frequency Deviation: $\Delta f = k_f \max |m(t)|$
 - Maximum deviation of f_i from f_c : $f_i = f_c + k_f m(t)$
- Carson's Rule:

$$B \approx 2\Delta f + 2B_m$$

- B depends on maximum deviation from f_c and how fast f_i changes
- \square Narrowband FM: $\Delta f << B_m \Rightarrow B \approx 2B_m$
- □ Wideband FM: $\Delta f >> B_m \Rightarrow B \approx 2\Delta f$

- Example: AMPS
 - poor spectral efficiency
 - \square allocated channel BW = 30 kHz
 - □ actual standard uses threshold specifications:

- □ *SNR* vs. BW tradeoff
 - in FM one can increase RF BW to improve SNR:

 $SNR_{out} = SNR$ after FM detection

 $\approx \Delta f^3 SNR_{in: FM}$

 Δf : peak frequency deviation of Tx the frequency domain

- \square rapid non-linear, Δf^3 improvement in output signal quality (SNR_{out}) for increases in Δf
 - "capture effect": FM Rx rejects the weaker of the two FM signals (one with smaller SNR_{in}) in the same RF BW $\rightarrow :$ resistant to CCI
 - Increased Δf requires increasing the bandwidth and spectral occupancy of the signal
 - must exceed the threshold of the FM detector, which means that typically $SNR_{in} \ge 10$ dB (called the capture threshold)

- □ Better performance and more cost effective than analog modulation methods (AM, FM, etc.)
- ☐ Used in modern cellular systems
- ☐ Advancements in VLSI, DSP, etc. have made digital solutions practical and affordable

□ Performance advantages:

- 1) Resistant to noise, fading, & interference
- 2) Can combine multiple information types (voice, data, & video) in a **single** transmission channel
- 3) Improved security (e.g., encryption) → deters phone cloning + eavesdropping
- 4) Error coding is used to detect/correct transmission errors
- 5) Signal conditioning can be used to combat hostile MRC environment
- 6) Can implement mod/dem functions using DSP software (instead of hardware circuits).

- Choice of digital modulation scheme
 - Many types of digital modulation methods → subtle differences
 - Performance factors to consider
 - 1) low Bit Error Rate (BER) at low S/N
 - 2) resistance to interference (ACI & CCI) & multipath fading
 - 3) occupying a minimum amount of BW
 - 4) easy and cheap to implement in mobile unit
 - 5) efficient use of battery power in mobile unit

- No existing modulation scheme simultaneously satisfies all of these requirements well.
- Each one is better in some areas with tradeoffs of being worse in others.

- Power Efficiency $\rightarrow \eta_p$: ability of a modulation technique to preserve the quality of digital messages at low power levels (low SNR)
 - Specified as E_b/N_o @ some BER (e.g. 10^{-5}) where E_b : energy/bit and N_o : noise power/bit
 - Tradeoff between fidelity and signal power \rightarrow BER \uparrow as $E_b/N_o \downarrow$

- Bandwidth Efficiency $\rightarrow \eta_B$: ability of a modulation technique to accommodate data in a *limited BW*

 - Tradeoff between data rate and occupied BW
 - \rightarrow as $R \uparrow$, then BW \uparrow
 - For a digital signal :

$$\square$$
 $R \propto \frac{1}{T_s} \propto B \rightarrow \text{so as } R \uparrow, T_s \downarrow \text{ and } B \uparrow$

- □ each pulse or "symbol" having m finite states represents $n = \log_2 m$ bits/symbol →
 - e.g. m = 0 or 1 (2 states) \rightarrow 1 bit/symbol (binary)
 - e.g. $m = 0, 1, 2, 3, 4, 5, 6, \text{ or } 7 \text{ (8 states)} \rightarrow 3$ bits/symbol

- ☐ Implementation example: A system is changed from binary to 2-ary.
 - Before: "0" = 1 Volt, "1" = 1 Volt
 - Now

"0" = -1 Volt, "1" = -0.33 volts, "2" = 0.33 Volts, "3" = 1 Volt

- What would be the new data rate compared to the old data rate if the symbol period where kept constant?
- ☐ In general, called M-ary keying

- Maximum BW efficiency → Shannon's Theorem
 - Most famous result in communication theory.
 - $\eta_{B_{\text{max}}} = \frac{C}{B} = \log_2\left(1 + \frac{S}{N}\right)$ where
 - \square B: RF BW
 - ☐ C: channel capacity (bps) of real data (not retransmissions or errors)
 - ☐ To produce error-free transmission, some of the bit rate will be taken up using retransmissions or extra bits for error control purposes.
 - As noise power *N* increases, the bit rate would still be the same, but max $\eta_{B_{max}}$ decreases.

- So $C_{\text{max}} = B \log_2 \left(1 + \frac{S}{N} \right)$
- note that $C \propto B$ (expected) but also $C \propto S/N$
 - ☐ an increase in signal power translates to an increase in channel capacity
 - □ lower bit error rates from higher power → more real data
 - □ large $S/N \rightarrow$ easier to differentiate between multiple signal states (m) in one symbol $\therefore n \uparrow$
- max $\eta_{B_{\text{max}}}$ is fundamental limit that **cannot** be achieved in practice

- People try to find schemes that correct for errors.
- People are starting to refer to certain types of codes as "capacity approaching codes", since they say they are getting close to obtaining C_{max} .
 - ☐ More on this in the chapter on error control.

Example 6.6

If the SNR of a wireless communication link is 20 dB and the RF bandwidth is 30 kHz, determine the maximum theoretical data rate that can be transmitted.

Solution

Given:

$$S/N = 20 \text{ dB} = 100$$

RF Bandwidth B = 30000 Hz

Using Shannon's channel capacity formula (6.37), the maximum possible data rate

$$C = B\log_2(1 + \frac{S}{N}) = 30000\log_2(1 + 100) = 199.75 \text{ kbps}$$

Example 6.7

What is the theoretical maximum data rate that can be supported in a 200 kHz channel for SNR = 10 dB, 30 dB. How does this compare to the GSM standard described in Chapter 1?

Solution

For SNR = 10 dB = 10, B = 200 kHz.

Using Shannon's channel capacity formula (6.37), the maximum possible data rate

$$C = B\log_2(1 + \frac{S}{N}) = 200000\log_2(1 + 10) = 691.886 \text{ kbps}$$

The GSM data rate is 270.833 kbps, which is only about 40% of the theoretical limit for 10 dB SNR conditions.

For SNR = 30 dB = 1000, B = 200 kHz.

The maximum possible data rate

$$C = B\log_2(1 + \frac{S}{N}) = 200000\log_2(1 + 1000) = 1.99 \text{ Mbps.}$$

- \square Fundamental tradeoff between η_B and η_p (in general)
 - If η_B improves then η_P deteriorates (or vice versa)
 - ☐ May need to waste more power to get a better data rate.
 - ☐ May need to use less power (to save on battery life) at the expense of a lower data rate.
 - \blacksquare η_p vs. η_B is not the only consideration.
 - Use other factors to evaluate → complexity, resistance to
 MRC impairments, etc.

☐ Bandwidth Specifications

Many definitions depending on application → all use
 Power Spectral Density (PSD) of modulated bandpass signal

$$S_{W}(f) = \lim_{T \to \infty} \left(\frac{\overline{\left| W_{T}(f) \right|^{2}}}{T} \right)$$

Many signals (like square pulses) have some power at all frequencies.

- ☐ Effective radiation of EM waves requires antenna dimensions comparable with the wavelength:
 - Antenna for 3 kHz would be ~100 km long
 - Antenna for 3 GHz carrier is 10 cm long
- ☐ Sharing the access to the telecommunication channel resources

Modulation Process

$$f = f(a_1, a_2, a_3, ... a_n, t) \text{ (= carrier)}$$

$$a_1, a_2, a_3, ... a_n \text{ (= modulation parameters)}$$

$$t \text{ (= time)}$$

- Modulation implies varying one or more characteristics (modulation parameters $a_1, a_2, \dots a_n$) of a carrier f in accordance with the information-bearing (modulating) baseband signal.
- ☐ Sinusoidal waves, pulse train, square wave, etc. can be used as carriers

Continuous Carrier

Carrier: $A \sin[\omega t + \varphi]$

- \blacksquare A = const
- $\omega = const$
- $\phi = const$
- ☐ Amplitude modulation (AM)
 - $\mathbf{A} = \mathbf{A}(\mathbf{t})$ carries information
 - $\omega = const$
 - $\phi = const$

- ☐ Frequency modulation (FM)
 - $\mathbf{A} = \mathbf{const}$
 - $\omega = \omega(t)$ carries information
 - $\phi = const$
- ☐ Phase modulation (PM)
 - $\mathbf{A} = \mathbf{const}$
 - $\omega = const$
 - $\phi = \phi(t)$ carries information

- ☐ The basic form of 3 different digital modulation methods used for transmitting digital signals methods are:
 - Amplitude Shift Keying
 - Frequency Shift Keying
 - Phase Shift Keying

- ☐ Amplitude Shift Keying (ASK)
 - The amplitude of the carrier is varied in accordance with the amplitude of the modulating signal

Amplitude Shift Keying (ASK)

- □ Pulse shaping can be employed to remove spectral spreading
- ASK demonstrates poor performance, as it is heavily affected by noise, fading, and interference

ASK

☐ Frequency Shift Keying

Frequency of the carrier is varied in accordance with the amplitude of the modulating signal and the carrier amplitude remains constant.

- Example: The ITU-T V.21 modem standard uses FSK
- FSK can be expanded to a M-ary scheme, employing multiple frequencies as different states

FSK

PHASE SHIFT KEYING

- ☐ The phase of the carrier is varied in accordance with the information.
- □ PSK is divided into two level and multilevel systems (M-ary schemes).

Phase Shift Keying (PSK)

- Major drawback rapid amplitude change between symbols due to phase discontinuity, which requires infinite bandwidth. Binary Phase Shift Keying (BPSK) demonstrates better performance than ASK and BFSK
- BPSK can be expanded to a M-ary scheme, employing multiple phases and amplitudes as different states

PSK

Differential Modulation

- In the transmitter, each symbol is modulated relative to the previous symbol and modulating signal, for instance in BPSK 0 = no change, $1 = +180^{\circ}$
- ☐ In the receiver, the current symbol is demodulated using the previous symbol as a reference.
- ☐ The previous symbol serves as an estimate of the channel. A no-change condition causes the modulated signal to remain at the same 0 or 1 state of the previous symbol.

DPSK

- □ Differential modulation is theoretically 3dB poorer than coherent. This is because the differential system has 2 sources of error: a corrupted symbol, and a corrupted reference (the previous symbol)
- \square DPSK = Differential phase-shift keying:
 - In the transmitter, each symbol is modulated relative to
 - ☐ (a) the phase of the immediately preceding signal element and
 - □ (b) the data being transmitted.

PSK Generalities--Symbols Bits & Bauds

Bit – Refers to the unit of information.

Bit rate is the frequency of a system bit stream.

Symbol – Refers to the unit of transmission energy.

- --Representation of bits that the medium transmits to convey information.
- -- A symbol can contain one or more bits

 Bits are transmitted in the form of Symbols.

Symbol rate = bit rate

the number of bits transmitted with each symbol

Baud – Rate of change of symbols is known as Baud Rate.

- \square B': half-power (-3 dB) BW
- \square B": null-to-null BW
- \square B'": absolute BW
 - \rightarrow range where PSD > 0
- FCC definition of occupied BW → BW contains 99% of signal power

III. Geometric Representation of Modulation Signal

- ☐ Geometric Representation of Modulation Signals Constellation Diagrams
 - Graphical representation of complex ($A \& \theta$) digital modulation types
 - ☐ Provide insight into modulation performance
 - Modulation set, S, with M possible signals

$$S = \left\{ S_1(t), S_2(t), \cdots S_M(t) \right\}$$

- □ Binary modulation \rightarrow $M = 2 \rightarrow$ each signal = 1 bit of information
- \square *M*-ary modulation \rightarrow *M* > 2 \rightarrow each signal > 1 bit of information

☐ Example: Binary Phase Shift Keying (BPSK)

$$S_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t)$$

$$S_2(t) = -\sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t)$$
for $0 \le t \le T_b$

- Phase change between bits → Phase shifts of 180° for each bit.
- Note that this can also be viewed as AM with +/amplitude changes
- Let $\phi_1(t) = \sqrt{\frac{2}{T_b}}\cos(2\pi f_c t) \rightarrow \text{basis signal}$

$$S_{BPSK} = \left\{ \sqrt{E_b} \phi_1(t), -\sqrt{E_b} \phi_1(t) \right\}$$

■ Dimension of the vector space is the # of basis signals required to represent *S*.

■ Plot amplitude & phase of *S* in vector space :

two states with $A = \sqrt{E_b}$ that are 180° out of phase

Actual received values as influenced by additive noise

- ☐ Constellation diagram properties :
 - 1) Distance between signals is related to differences in modulation waveforms
 - □ Large distance \rightarrow "sparse' \rightarrow easy to discriminate \rightarrow good BER @ low SNR (E_b/N_o)
 - □ From above, noise of $-2\sqrt{E_b}$ added to $\sqrt{E_b}$ would make the received signal look like $s_2(t) \rightarrow \text{error}$.
 - From $\sqrt{E_b}$, noise of $> -\sqrt{E_b}$ would make the result closer to $-\sqrt{E_b}$ and would make the decoder choose $s_2(t) \rightarrow \text{error}$.
 - ∴ Above example is **Power Efficient** (related to density with respect to # states/N)

- 2) Occupied BW ↓ as # signal states ↑
 - If we can represent more bits per symbol, then we need less BW for a given data rate.
 - Small separation → "dense" → more signal states/symbol → more information/Hz!!
 - : Bandwidth Efficient

IV. Linear Modulation Methods

- ☐ In linear modulation techniques, the amplitude of the transmitted signal varies linearly with the modulating digital signal.
- \square Performance is evaluated with respect to E_b/N_o

$$E_b = \underset{T_b}{\text{signal energy per bit}}$$

$$= \int power \, dt = \int s^2(t) \, dt$$
over one out time

where s(t) is the transmitted signal (assuming voltage across a 1Ω resistor)

If
$$s(t) = A_c$$
 for $0 \le t \le T_b$, then $E_b = {A_c}^2 T_b$.
If $s(t) = A_c \cos(2\pi \frac{1}{T_b} t)$ for $0 \le t \le T_b$, then $E_b = \frac{1}{2} {A_c}^2 T_b$ so $A_c = \sqrt{\frac{2E_b}{T_b}}$

BPSK

□ BPSK → Binary Phase Shift Keying

$$S_{BPSK} = \pm A_{c} \cos(2\pi f_{c} t + \theta_{0}) = \pm \sqrt{\frac{2E_{b}}{T_{b}}} \cos(2\pi f_{c} t + \theta_{0})$$

$$or = \sqrt{\frac{2E_{b}}{T_{b}}} \cos(2\pi f_{c} t + \theta_{0} + i\pi), i = \{0,1\}$$

$$S_{BPSK} = \pm \sqrt{E_{b}} \phi_{1}(t) \text{ where } \phi_{1}(t) = \sqrt{\frac{2}{T_{b}}} \cos(2\pi f_{c} t + \theta_{0})$$
"+" = "1" and "-" = "0"
$$\phi_{1}(t) = \text{basis function}$$

- □ Phase transitions force carrier **amplitude** to change from "+" to "-".
 - Amplitude varies in time

BPSK RF signal BW

Figure 6.22 Power spectral density (PSD) of a BPSK signal.

- Null-to-null RF BW = $2 R_b = 2 / T_b$
- 90% BW = $1.6 R_b$ for rectangular pulses

- ☐ Probability of Bit Error is proportional to the distance between the closest points in the constellation.
 - A simple upper bound can be found using the assumption that noise is additive, white, and Gaussian.

Prob{bit error}
$$\leq Q\left(\frac{d}{\sqrt{2N_0}}\right)$$

d is distance between nearest constellation points.

Q(x) is the Q-function, the area under a normalized Gaussian function (also called a Normal curve or a bell curve)

$$Q(z) = \int_{z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy$$

- Appendix F, Fig. F.1
- Fig. F.2, plot of Q-function
- Tabulated values in Table F.1.
- Here

$$d = 2\sqrt{E_b} \quad \text{so} \quad \text{Prob}\{\text{bit error}\} \le Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

- Demodulation in Rx
 - Requires reference of <u>Tx signal</u> in order to properly determine phase
 - carrier must be transmitted along with signal
 - Called Synchronous or "Coherent" detection
 - ☐ complex & costly Rx circuitry
 - \square good BER performance for low $SNR \rightarrow$ power efficient

Figure 6.23 BPSK receiver with carrier recovery circuits.

DPSK

- □ DPSK → Differential Phase Shift Keying
 - Non-coherent Rx can be used
 - a easy & cheap to build
 - no need for coherent reference signal from Tx
 - Bit information determined by **transition** between two phase states
 - \square incoming bit = 1 \rightarrow signal phase stays the same as previous bit
 - \square incoming bit = $0 \rightarrow$ phase switches state

 \square If $\{m_k\}$ is the message, the output $\{d_k\}$ is as shown below.

Table 6.1 Illustration of the Differential Encoding Process

$\{m_k\}$		1	0	0	1	0	1	1	0
$\{d_{k-1}\}$		1	1	0	1	1	0	0	0
$\{d_k\}$	1	1	0	1	1	0	0	0	1

- \square can also be described in modulo-2 arithmetic $d_k = \overline{m_k \oplus d_{k-1}}$
- Same BW properties as BPSK, uses same amount of spectrum
- Non-coherent detection → all that is needed is to compare phases between successive bits, not in reference to a Tx phase.
- power efficiency is 3 dB worse than coherent BPSK (higher power in E_b/N_o is required for the same BER)

Figure 6.24 Block diagram of a DPSK transmitter.

Figure 6.25 Block diagram of DPSK receiver.

QPSK

- □ QPSK → Quadrature Phase Shift Keying
 - **Four** different phase states in **one** symbol period
 - **Two** bits of information in each symbol

Phase: $0 \pi/2 \pi 3\pi/2 \rightarrow \text{possible phase values}$

Symbol: 00 01 11 10

- □ Note that we choose binary representations so an error between two adjacent points in the constellation only results in a single bit error
 - For example, decoding a phase to be π instead of $\pi/2$ will result in a "11" when it should have been "01", only one bit in error.

$$S_{QPSK} = \sqrt{\frac{2E_S}{T_S}} \cos\left(2\pi f_c t + (i-1)\frac{\pi}{2}\right)$$
 for $i = 1, 2, 3, 4$

- ☐ Constant amplitude with four different phases
- □ remembering the trig. identity

$$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

$$S_{QPSK} \ = \ \left\{ \sqrt{\frac{2E_s}{T_S}} \cos(2\pi \, f_c \, t) \cos[(i-1)\frac{\pi}{2}] - \sqrt{\frac{2E_s}{T_S}} \sin(2\pi \, f_c \, t) \sin[(i-1)\frac{\pi}{2}] \right. \ \, \left. \right\}$$

Then we can make the following definition:

$$S_{QPSK} = \left\{ \sqrt{E_s} \cos[(i-1)\frac{\pi}{2}]\phi_I(t) - \sqrt{E_s} \sin[(i-1)]\frac{\pi}{2}\phi_Q(t) \right\} \text{ for } i = 1, 2, 3, 4$$

where
$$\phi_I(t) = \sqrt{\frac{2}{T_s}}\cos(2\pi f_c t)$$
 and $\phi_Q(t) = \sqrt{\frac{2}{T_s}}\sin(2\pi f_c t)$

$$E_s$$
 = signal energy per symbol
$$= \int \begin{array}{r} T_s \\ \int power \ dt = \int s^2(t) \ dt \\ \text{over one} \\ \text{symbol time} \end{array}$$

- Now we have two basis functions
- $\underline{E}_s = 2 E_b$ since 2 bits are transmitted per symbol
- I = in-phase component from $s_t(t)$.
- \blacksquare Q = quadrature component that is $s_0(t)$.

Figure 6.27 Power spectral density of a QPSK signal.

- null-to-null RF BW = $R_b = 2R_S$ (2 bits / one symbol time) = 2 / T_s
- double the BW efficiency of BPSK → or **twice** the data rate in same signal BW

☐ BER is once again related to the distance between constellation points.

Prob{bit error}
$$\leq Q \left(\frac{d}{\sqrt{2N_0}} \right)$$

- d is distance between nearest constellation points.
- Here $d = \sqrt{2E_s}$ so Prob{bit error} $\leq Q \left(\sqrt{\frac{E_s}{N_0}} \right)$

But
$$E_s = 2 E_b$$
 so Prob{bit error} $\leq Q \left(\sqrt{\frac{2E_b}{N_0}} \right)$

Figure 6.26 (a) QPSK constellation where the carrier phases are 0, $\pi/2$, π , $3\pi/2$; (b) QPSK constellation where the carrier phases are $\pi/4$, $3\pi/4$, $5\pi/4$, $7\pi/4$.

- ☐ How does BER performance compare to BPSK?
 - Why? same # of states per number of basis functions for both BPSK and QPSK (2 states per one function or 4 states per 2 functions)
 - same power efficiency (same BER at specified E_b/N_o)
 - twice the bandwidth efficiency (sending 2 bits instead of 1)

QPSK Transmission and Detection Techniques

Figure 6.28 Block diagram of a QPSK transmitter.

Figure 6.29 Block diagram of a QPSK receiver.

OQPSK

☐ Offset QPSK

- The occasional phase shift of π radians can cause the signal envelope to pass through zero for just in instant.
- Any kind of hard limiting or nonlinear amplification of the zero-crossings brings back the filtered sidelobes
 - □ since the fidelity of the signal at small voltage levels is lost in transmission.
- OQPSK ensures there are fewer baseband signal transitions applied to the RF amplifier,
 - ☐ helps eliminate spectrum regrowth after amplification.

- □ Example above: First symbol (00) at 0°, and the next symbol (11) is at 180°. Notice the signal going through zero at 2 microseconds.
 - This causes problems.

- ☐ Using an offset approach: First symbol (00) at 0°, then an intermediate symbol at (10) at 90°, then the next full symbol (11) at 180°.
 - The intermediate symbol is used halfway through the symbol period.
 - It corresponds to allowing the first bit of the symbol to change halfway through the symbol period.
 - The figure below does have phase changes more often, but no extra transitions through zero.
 - IS-95 uses OQPSK, so it is one of the major modulation schemes used.

- ☐ In QPSK signaling, the bit transitions of the even and odd bit streams occur at the same time instants.
- but in OQPSK signaling, the even and odd bit Streams, $m_I(t)$ and $m_Q(t)$, are offset in their relative alignment by one bit period (half-symbol period)

the maximum phase shift of the transmitted signal at any given time is limited to $\pm 90^{\circ}$

Figure 6.30 The time offset waveforms that are applied to the in-phase and quadrature arms of an OQPSK modulator. Notice that a half-symbol offset is used.

☐ The spectrum of an OQPSK signal is identical to that of a QPSK signal, hence both signals occupy the same bandwidth

π/4 QPSK

- \square $\pi/4$ QPSK
 - The $\pi/4$ shifted QPSK modulation is a quadrature phase shift keying technique
 - offers a compromise between OQPSK and QPSK in terms of the allowed maximum phase transitions.
 - It may be demodulated in a coherent or noncoherent fashion.
 - ☐ greatly simplifies receiver design.
 - In $\pi/4$ QPSK, the maximum phase change is limited to $\pm 135^{\circ}$
 - in the presence of multipath spread and fading, $\pi/4$ QPSK performs better than OQPSK

Table 6.2 Correspondence between input dibit and phase change for $\pi/4$ -shifted DQPSK

Gray-Encoded Input Dibit	Phase Change, Δθ (radians)	
00	$\pi/4$	
01	$3\pi/4$	
11	$-3\pi/4$	
$-\pi/4$		

■ TABLE 6.3 π/4-shifted DQPSK results for Example 6.2

Step k	Phase θ_{k-1} (radians)	Input Dibit	Phase Change $\Delta\theta_k$ (radians)	Transmitted Phase θ _k (radians)
1	π/4	00	π/4	π/2
2	$\pi/2$	10	$-\pi/4$	$\pi/4$
3	$\pi/4$	10	$-\pi/4$	0
4	0	01	$3\pi/4$	$3\pi/4$

Figure 6.31 Constellation diagram of a $\pi/4$ QPSK signal: (a) possible states for θ_k when $\theta_{k-1} = n\pi/4$; (b) possible states when $\theta_{k-1} = n\pi/2$; (c) all possible states.