Supporting Information

- 2 Preferred Reporting Items for Systematic reviews and
- 3 Meta-Analyses in ecology and evolutionary biology: A
- 4 PRISMA extension

5

- 6 Rose E. O'Dea¹, Malgorzata Lagisz¹, Michael D. Jennions², Julia Koricheva³, Daniel W.A.
- Noble^{1,2}, Timothy H. Parker⁴, Jessica Gurevitch⁵, Matthew J. Page⁶, Gavin Stewart⁷, David
- 8 Moher⁸, Shinichi Nakagawa¹
- Evolution & Ecology Research Centre and School of Biological and Environmental
 Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
- ²Research School of Biology, 46 Sulivans Creek Road, Australian National University,
- 12 Canberra, 2600, Australia.
- ³ School of Biological Sciences, Royal Holloway University of London, Egham, Surrey,
- 14 TW20 0EX, U.K.
- ⁴ Department of Biology, Whitman College, Walla Walla, WA 99362, U.S.A.
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York
 11794-5245, U.S.A.
- School of Public Health and Preventative Medicine, Monash University, Melbourne, VIC,
 3004, Australia
- ⁷ School of Natural and Environmental Sciences, Newcastle University, Newcastle upon
 Tyne, NE1 7RU, U.K.
- ⁸ Centre for Journalology, Clinical Epidemiology Program, Ottawa Hospital Research
- 23 Institute, General Campus, 501 Smyth Road, Room L1288, Ottawa, ON K1H 8L6, Canada.

24 ORCID IDs

- 25 Rose E. O'Dea: 0000-0001-8177-5075
- 26 Malgorzata Lagisz: 0000-0002-3993-6127
- 27 Michael D. Jennions: 0000-0001-9221-2788
- 28 Julia Koricheva: 0000-0002-9033-0171
- 29 Daniel W.A. Noble: 0000-0001-9460-8743
- 30 Timothy H. Parker: 0000-0003-2995-5284
- 31 Jessica Gurevitch: 0000-0003-0157-4332
- 32 Matthew J. Page: 0000-0002-4242-7526
- 33 Gavin Stewart: 0000-0001-5684-1544
- 34 David Moher: 0000-0003-2434-4206
- 35 Shinichi Nakagawa: 0000-0002-7765-5182

37 Contents

38	METHODS: DEVELOPMENT OF PRISMA-ECOEVO	9
39	Formation of the PRISMA-EcoEvo working group	9
40	Selection of items	9
41	Consensus on checklist items	10
12	REFERENCES	11
43	EXAMPLES FOR EACH ITEM	12
14	ITEM 1: TITLE AND ABSTRACT	13
45	Estimated reporting quality across the literature: High	13
46	Example: Kettenring & Adams (2011)	13
1 7	ITEM 2: AIMS AND QUESTIONS	14
48	Estimated reporting quality across the literature: High	14
19	Example: Breed et al. (2015)	15
50	ITEM 3: REVIEW REGISTRATION	17
51	Estimated reporting quality across the literature: Very low	17
52	Example: Merkling et al. (2018)	17
53	ITEM 4: ELIGIBILITY CRITERIA	18
54	Estimated reporting quality across the literature: High	18
55	Example: De Boeck et al. (2018)	18
56	ITEM 5: FINDING STUDIES	19
57	Estimated reporting quality across the literature: Moderate	19
58	Example: Davidson et al. (2017)	19
59	ITEM 6: STUDY SELECTION	20
50	Estimated reporting quality across the literature: Very low	20

61	Example: Merkling et al. (2018)	20
62	ITEM 7: DATA COLLECTION PROCESS	21
63	Estimated reporting quality across the literature: Low	21
64	Example: O'Dea et al. (2019)	21
65	ITEM 8: DATA ITEMS	22
66	Estimated reporting quality across the literature: High	22
67	Example: Bateman & Bishop (2017)	22
68	ITEM 9: ASSESSMENT OF INDIVIDUAL STUDY QUALITY	23
69	Estimated reporting quality across the literature: Very low	23
70	Example: Ord et al. (2011)	24
71	ITEM 10: EFFECT SIZE MEASURES	24
72	Estimated reporting quality across the literature: High	24
73	Example: Gorné & Díaz (2017)	24
74	ITEM 11: MISSING DATA	25
75	Estimated reporting quality across the literature: Low	25
76	Example: Pearson et al. (2016)	25
77	ITEM 12: META-ANALYTIC MODEL DESCRIPTION	26
78	Estimated reporting quality across the literature: High	26
79	Example: Thomsen et al. (2018)	26
80	ITEM 13: SOFTWARE	27
81	Estimated reporting quality across the literature: Moderate	27
82	Example: Uller et al. (2013)	27
83	ITEM 14: NON-INDEPENDENCE	27
84	Estimated reporting quality across the literature: Moderate	27
85	Example: Jiang et al. (2013)	28
86	ITEM 15: META-REGRESSION AND MODEL SELECTION	29

87	Estimated reporting quality across the literature: High	29
88	Example: Des Roches et al. (2018)	29
89	ITEM 16: PUBLICATION BIAS AND SENSITIVITY ANALYSES	30
90	Estimated reporting quality across the literature: Moderate	30
91	Example: Kornder et al. (2018)	30
92	ITEM 17: CLARIFICATION OF POST HOC ANALYSES	31
93	Estimated reporting quality across the literature: Very low	31
94	Example: Chaplin-Kramer et al. (2011)	31
95	ITEM 18: METADATA, DATA, AND CODE	31
96	Estimated reporting quality across the literature: Moderate	31
97	Example: Kinlock et al. (2018)	31
98	ITEM 19: RESULTS OF STUDY SELECTION PROCESS	32
99	Estimated reporting quality across the literature: Low	32
100	Example: Kinlock et al. (2018)	33
101	ITEM 20: SAMPLE SIZES AND STUDY CHARACTERISTICS	34
102	Estimated reporting quality across the literature: Moderate	34
103	Example: Des Roches et al. (2018)	34
104	Example: Ord et al. (2011)	35
105	ITEM 21: META-ANALYSIS	35
106	Estimated reporting quality across the literature: Very high	35
107	Example: Jiang et al. (2013)	36
108	ITEM 22: HETEROGENEITY	36
109	Estimated reporting quality across the literature: Moderate	36
110	Example: Thomsen et al. (2018)	36
111	ITEM 23: META-REGRESSION	36
112	Estimated reporting quality across the literature: High	36

113	Example: Moatt et al. (2016)	<i>37</i>
114	ITEM 24: OUTCOMES OF PUBLICATION BIAS AND SENSITIVITY ANALYSES	37
115	Estimated reporting quality across the literature: Moderate	37
116	Example: Kornder et al. (2018)	37
117	ITEM 25: DISCUSSION	38
118	Estimated reporting quality across the literature: High	38
119	Example: Wood et al. (2016)	38
120	ITEM 26: CONTRIBUTIONS AND FUNDING	40
121	Estimated reporting quality across the literature: High	40
122	Example: Dunn et al. (2018)	40
123	ITEM 27: REFERENCES	41
124	Estimated reporting quality across the literature: High	41
125	Example: Li et al. (2010)	41
126	REFERENCE LIST FOR EXAMPLES	41
127	ESTIMATED AND PERCEIVED REPORTING QUALITY OF META-ANALYSES IN EC	COLOGY
128	AND EVOLUTION	44
129	SURVEY METHODS	44
130	ESTIMATING REPORTING QUALITY	44
131	Protocol for estimating reporting quality	44
132	Design of search strategy	44
133	Database search	45
134	List of journals	45
135	Finding studies	45
136	Reducing the number of journals and studies	48
137	Taking a sample of studies	50
138	Files for processing <i>Scopus</i> exports	50

139	Abstract screening	50
140	Inclusion and exclusion criteria	51
141	Addresses a question in the fields of ecology and evolutionary biology	_ 51
142	Claims to present results from a meta-analysis	_ 52
143	Performed a search for data available from primary literature, and collected data from	
144	primary literature	_ 52
145	The same type of effect size is extracted or calculated from multiple studies, and effect size	S
146	are analysed in a statistical model	_ 52
147	Full text screening	52
148	Deviation from protocol: papers assigned 'prefer not to use'	_ 56
149	Assigning papers for assessment	56
150	List of assessed publications	56
151	Training papers	57
152	Deviation from protocol: changes made to Google Form after training	_ 57
153	DATA EXTRACTION GOOGLE FORM	57
154	Paper-level information	58
155	Item-level information	59
156	Q questions	_ 59
157	NA questions	_ 59
158	SI questions	_ 59
159	Notes	_ 59
160	Processing of Google Form answers	60
161	Data extraction spreadsheet	61
162	Data checks	62
163	MEASURED OUTCOMES	63
164	SURVEYING THE META-ANALYSIS COMMUNITY	64
165	Identifying survey participants	64

166	Recruiting survey participants65
167	Survey content
168	What experiences had survey respondents had with meta-analyses in ecology and evolution?
169	66
170	How does the community's perception of reporting standards compare to actual reporting
171	standards?66
172	What is the community's current perception of reporting guidelines?66
173	How are reporting guidelines currently being used?67
174	Opinions on pre-registration of meta-analyses (a PRISMA item) 67
175	Awareness and opinions on assessment of individual study quality in meta-analyses (a
176	PRISMA item) 67
177	Will PRISMA-EcoEvo be useful?67
178	General comments about PRISMA-EcoEvo68
179	Processing survey results
180	Ethics approval
181	RESULTS 68
182	Assessment results68
183	1. For each item, what percentage of papers met the whole item, partially met the item, did not meet the
184	item, or the item was not applicable?68
185	2. The frequency with which components of each item were met
186	3. The distribution of average scores across the assessed papers
187	4. The subset of papers that referenced a reporting guideline showed higher standards of reporting than
188	those which did not
189	5. Which components of items were reported in the supplementary information, and how frequently did
190	this occur?

191	6. How frequently were PRISMA, or other reporting guidelines/checklists, referenced, and in what way
192	were they referenced?73
193	7. How frequently were PRISMA-style flowcharts reported, and what did they look like?74
194	8. How frequently were data, meta-data, and code made publicly available?74
195	9. Was there a correlation between reporting standards of published papers and the impact factor of the
196	journals they were published in?75
197	COMMUNITY RESULTS
198	10. What experiences had survey respondents had with meta-analyses in ecology and evolution?76
199	11. How does the community's perception of reporting standards compare to actual reporting standards?
200	77
201	12. What is the community's current perception of reporting guidelines?
202	13. How are reporting guidelines currently being used?80
203	14. Opinions on pre-registration of meta-analyses (a PRISMA item)
204	15. Awareness and opinions on assessment of individual study quality in meta-analyses (a PRISMA
205	item)
206	16. Will PRISMA-EcoEvo be useful?80
207	17. General comments about PRISMA-EcoEvo, registration, and critical appraisal
208	Comments on reporting quality and PRISMA-EcoEvo81
209	Comments on registration82
210	Comments on assessment of individual study quality 84
211	REFERENCES: SURVEYS 102

Methods: Development of PRISMA-EcoEvo

213	Formation of the PRISMA-EcoEvo working group
214	The process of extending PRISMA for ecology and evolutionary biology began with a
215	meeting between D.M. [lead author of PRISMA 2009 (Moher et al., 2009)] and S.N., at the
216	Ottawa Hospital Research Institute on 4 April 2018, and a virtual meeting between S.N., J.G.,
217	and T.H.P. on 25 April 25, 2018. After initial discussions (including one at the July 2018
218	meeting of the Society for Research Synthesis Methodology), S.N. assembled a working
219	group with expertise in ecology and evolution systematic reviews and meta-analyses (M.L.,
220	M.D.J., J.K., D.W.A.N., T.H.P., J.G., and G.S.) to be led by his PhD student (R.E.O.). The
221	PRISMA-EcoEvo project was formalised in an email invitation on 23 September 2018. On
222	27 September 2018, R.E.O. met with D.M. to discuss the development of PRISMA-EcoEvo.
223	After the meeting with D.M., M.J.P. (lead author of the PRISMA 2020 update; Page et al.,
224	2021b) was invited to join the project on 4 October 2018. At UNSW, Sydney, M.J.P. visited
225	R.E.O. and S.N. on 6 December 2018, and D.M. visited on 28 February 2019. Discussions
226	with all members of the working group occurred remotely.
227	
228	Selection of items
229	R.E.O. began drafting the PRISMA-EcoEvo checklist in August 2018. First, R.E.O. created a
230	checklist of previous reporting guidelines which were, in order of publication date:
231	QUOROM (Moher et al., 1999); PRISMA (Moher et al., 2009); PRISMA for Abstracts
232	(Beller et al., 2013); PRISMA for Protocols (Shamseer et al., 2015); PRISMA for Network
233	Meta-analyses (Hutton et al., 2015); PRISMA for Individual Participant Data (Stewart et al.,
234	2015); PRISMA for health inequity (Welch et al., 2016); PRISMA for harms outcomes
235	(Zorzela et al., 2016); TTEE – Tools for Transparency in Ecology and Evolution (Parker et

al., 2016b); and ROSES – RepOrting standards for Systematic Evidence Syntheses (Haddaway *et al.*, 2018). Previous reporting checklists were used to create a longlist of potentially relevant items, which R.E.O. used as inspiration for the first draft of the PRISMA-EcoEvo checklist and manuscript outline.

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

236

237

238

239

Consensus on checklist items

From the initial draft of PRISMA-EcoEvo, the items were modified with iterative feedback from S.N., M.L., M.D.J., J.K., D.W.A.N., T.H.P., J.G., and G.S. After receiving comments from all members of the working group by 29 October 2018, R.E.O. prepared a second draft for approval. On 29 January 2019, RO invited members of the working group to complete a Google Form that presented each item of the revised PRISMA-EcoEvo checklist. The survey asked co-authors to select whether or not they approved each item and, if not, to indicate what about the item should be changed and why. All suggested changes were implemented. For the next six months, R.E.O. used the PRISMA-EcoEvo checklist to complete an assessment of reporting quality of meta-analyses published in ecology and evolutionary biology journals (methods detailed later in this supplementary information), along with S.N., M.L., M.D.J., D.W.A.N., J.K., and T.H.P. While developing this assessment we chose to separate components of each item into sub-items, as implemented in M.J.P.'s PRISMA update (Page et al., 2021b), as this granularity made it easier to assess reporting quality. While piloting the assessment process we made small modifications to the checklist, clarifying items where necessary. After the assessment of reporting quality, the checklist was sent back to all co-authors on the PRISMA-EcoEvo project, before opening it to comments from authors, reviewers, and editors of meta-analyses in ecology and evolutionary biology (details of this survey appear later in this supplementary information).

References

261	BELLER, E.M., GLASZIOU, P.P., ALTMAN, D.G., HOPEWELL, S., BASTIAN, H., CHALMERS, I.,
262	GØTZSCHE, P.C., LASSERSON, T., TOVEY, D. & FOR THE PRISMA FOR ABSTRACTS
263	GROUP (2013). PRISMA for abstracts: reporting systematic reviews in journal and
264	conference abstracts. PLoS Medicine 10, e1001419.
265	HADDAWAY, N.R., MACURA, B., WHALEY, P. & PULLIN, A.S. (2018). ROSES RepOrting
266	standards for Systematic Evidence Syntheses: pro forma, flow-diagram and descriptive
267	summary of the plan and conduct of environmental systematic reviews and systematic
268	maps. Environmental Evidence 7, 7.
269	HUTTON, B., SALANTI, G., CALDWELL, D.M., CHAIMANI, A., SCHMID, C.H., CAMERON, C.,
270	IOANNIDIS, J.P.A., STRAUS, S., THORLUND, K., JANSEN, J.P., MULROW, C., CATALÁ-
271	LÓPEZ, F., GØTZSCHE, P.C., DICKERSIN, K., BOUTRON, I., ET AL. (2015). The PRISMA
272	extension statement for reporting of systematic reviews incorporating network meta-
273	analyses of health care interventions: checklist and explanations. Annals of Internal
274	Medicine 162 , 777.
275	Moher, D., Cook, D.J., Eastwood, S., Olkin, I., Rennie, D. & Stroup, D.F. (1999).
276	Improving the quality of reports of meta-analyses of randomised controlled trials: the
277	QUOROM statement. The Lancet 354, 1896–1900.
278	Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G. & The PRISMA Group (2009).
279	Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA
280	statement. PLoS Medicine 6, e1000097.
281	PAGE, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D.
282	SHAMSEER, L., TETZLAFF, J.M., AKL, E.A., BRENNAN, S.E., CHOU, R., GLANVILLE, J.,
283	GRIMSHAW, J.M., HRÓBJARTSSON, A., LALU, M.M., ET AL. (2021b). The PRISMA 2020
284	statement: an undated guideline for reporting systematic reviews. <i>BMJ</i> 372 , n71

285	PARKER, T.H., NAKAGAWA, S., GUREVITCH, J. & IIEE (IMPROVING INFERENCE IN
286	EVOLUTIONARY BIOLOGY AND ECOLOGY) WORKSHOP PARTICIPANTS (2016b). Promoting
287	transparency in evolutionary biology and ecology. Ecology Letters 19, 726-728.
288	SHAMSEER, L., MOHER, D., CLARKE, M., GHERSI, D., LIBERATI, A., PETTICREW, M.,
289	SHEKELLE, P., STEWART, L.A. & THE PRISMA-P GROUP (2015). Preferred reporting
290	items for systematic review and meta-analysis protocols (PRISMA-P) 2015:
291	elaboration and explanation. BMJ 349, g7647.
292	STEWART, L.A., CLARKE, M., ROVERS, M., RILEY, R.D., SIMMONDS, M., STEWART, G. &
293	TIERNEY, J.F. (2015) Preferred Reporting Items for a Systematic Review and Meta-
294	analysis of Individual Participant Data: The PRISMA-IPD statement. JAMA 313, 1657.
295	WELCH, V., PETTICREW, M., PETKOVIC, J., MOHER, D., WATERS, E., WHITE, H., TUGWELL, P.,
296	ATUN, R., AWASTHI, S., BARBOUR, V., BHUTTA, Z.A., CUERVO, L.G., GROVES, T.,
297	KOEHLMOOS-PEREZ, T., KRISTJANSSON, E., ET AL. (2016). Extending the PRISMA
298	statement to equity-focused systematic reviews (PRISMA-E 2012): explanation and
299	elaboration. Journal of Clinical Epidemiology 70, 68–89.
300	ZORZELA, L., LOKE, Y.K., IOANNIDIS, J.P., GOLDER, S., SANTAGUIDA, P., ALTMAN, D.G.,
301	MOHER, D., VOHRA, S. & PRISMA HARMS GROUP (2016). PRISMA harms checklist:
302	improving harms reporting in systematic reviews. BMJ 352, i157.
303	Examples for each item
304	For each sub-item of the PRISMA-EcoEvo checklist (see main text, Table 1), we here
305	describe current reporting practices and provide an example from a published meta-analysis
306	on an ecological or evolutionary topic. Most examples were found during our assessment of
307	reporting quality (described later in this supplementary information). Each example

308	(italicised) is listed alongside the corresponding sub-item number, or numbers, from Table 1
309	in bold. Some examples have been edited for the sake of brevity.
310	
311	Item 1: Title and abstract
312	Estimated reporting quality across the literature: High
313	Nearly every assessed abstract summarised the aims and scope of the review (97%), the
314	results of the primary outcome (96%), and conclusions (94%). Most described the data set
315	(74%), and all identified the review as a meta-analysis (100%; although our sample of papers
316	is biased towards this sub-item — details of the sample are provided below). The exception
317	to high reporting quality was the reporting of limitations (only 17% of assessed papers
318	mentioned limitations in the abstract).
319	Example: Kettenring & Adams (2011)
320	[Title: Lessons learned from invasive plant control experiments: a systematic review and
321	meta-analysis: Invasive plant control experiments (1.1)]
322	Abstract:
323	[Invasive plants can reduce biodiversity, alter ecosystem functions and have considerable
324	economic impacts. Invasive plant control is therefore the focus of restoration research in
325	invader-dominated ecosystems In a systematic review and meta-analysis of invasive plant
326	control research papers, we asked: (i) what control efforts have been most successful; and (ii)
327	what invasive plant control research best translates into successful restoration application?

(1.2, 1.3)] [The literature evaluated typically described experiments that were limited in

one growing season or less) and few species and ecosystems (predominantly grasslands)

were studied throughout much of the literature. The scale at which most experiments were

scope. Most plot sizes were small ($<1~m^2$), time frames were brief (51% evaluated control for

328

329

330

conducted potentially limits relevance to the large scales at which restorations typically occur. Most studies focused on invasive species removal and lacked an evaluation of native revegetation following removal. Few studies (33%) included active revegetation even though native species propagule limitation was common. Restoration success was frequently complicated by re-invasion or establishment of a novel invader. Few studies (29%) evaluated the costs of invasive species control. Additionally, control sometimes had undesirable effects, including negative impacts to native species. (1.6)] [Despite a sizeable literature on invasive plant control experiments, many large-scale invasive plant management efforts have had only moderate restoration success. We identified several limitations to successful invasive species control including: minimal focus on revegetation with natives after invasive removal, limited spatial and temporal scope of invasive plant control research, and incomplete evaluation of costs and benefits associated with invasive species management actions (1.4)]. [We suggest that information needed to inform invasive plant management can be better provided if researchers specifically address these limitations. Many limitations can be addressed by involving managers in research, particularly through adaptive management (1.5)].

Item 2: Aims and questions

Estimated reporting quality across the literature: High

All papers provided a rationale for the study (100%), and nearly all stated the primary aims and questions (96%), described the scope of the study (91%), and (where applicable) referenced previous reviews (93%). The exception to high reporting quality was that only 57% of assessed papers described whether effect sizes were derived from experimental and/or observational comparisons.

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

375

376

377

[Habitat fragmentation is a globally pervasive problem that continues to drive changes to woody plant ecosystems. As most species of woody plants are animal-pollinated, studying the impacts of fragmentation on woody plant–pollinator interactions seems particularly important, especially because significant amounts of biodiversity rely on these plant pollinator interactions. ... Pollen diversity should decline with lower conspecific density because as density declines the number of different pollen sources received into a given canopy is also expected to decline. This relationship is due to reduced numbers of pollen donors in the landscape and the fact that animal pollinators are less likely to shift from one plant to another because of the imposed costs of movement. As a consequence of reduced numbers of pollen sources, the correlated paternity within a given progeny array should *increase* (2.1)]. [A recent review of outcrossing rates in undisturbed versus disturbed plant populations across 27 species confirmed the expectation of decreased outcrossing rate in disturbed plant populations (Eckert et al., 2010). ... The effect of pollinator mobility on mating-pattern shifts in fragmented systems has been highlighted as a research gap (Ghazoul, 2005; Lowe et al., 2005; Eckert et al., 2010), but to the best of our knowledge no previous study has comprehensively explored this topic. ... No previous review has performed a quantitative

374 assessment of habitat fragmentation or density effects on mating patterns of plants.

Furthermore, previously published qualitative reviews have focussed on outcrossing rates of

Neotropical trees, despite other mating-pattern data, taxa and regions being well represented

(for example, pollen diversity, shrubs, southern Australia and east Asia) (2.2)].

379	[we examine the relationships between habitat fragmentation and mating patterns in
380	animal-pollinated woody plants. We present an in-depth study of mating patterns of three
381	closely related eucalypt species that vary in the mobility of their pollinators We then
382	investigate the generality of habitat fragmentation—mating-pattern relationships of animal-
383	pollinated woody plants with a meta-analysis (2.3)].
384	
385	[Pollinator mobility:
386	species with less mobile pollinators should theoretically be more sensitive to the drivers of
387	these fitness effects One factor that may mitigate against decreased outcrossing in
388	fragmented systems is mobile pollinators. Consequently, the generic expectation of decreased
389	outcrossing with increased habitat fragmentation may need refining to be a function of
390	pollinator mobility. In cases where pollinators have limited mobility (for example, small
391	insects), these pollinators will tend to shift from plant to plant less freely than mobile
392	pollinators, increasing the degree of pollen discounting and reducing the diversity of
393	available pollen.
394	Selfing rate:
395	Pollen diversity (often measured by correlated paternity, rp) is a parameter that also
396	describes the mating patterns of plants Pollen diversity should decline with lower
397	conspecific density because as density declines the number of different pollen sources
398	received into a given canopy is also expected to decline The effect of density on correlated
399	paternity should again be a function of pollinator mobility, as more mobile pollinators should
400	overcome greater distances between canopies more easily than less mobile pollinators,
401	resulting in larger pollination neighbourhoods. (2.4)]
402	

page 16

403	[We sampled 199 progeny arrays from 13 groups of maternal plants within a single
404	landscape in southern Australia across a habitat fragmentation gradient (2.5)].
405	
406	Item 3: Review registration
407	Estimated reporting quality across the literature: Very low
408	Only 3% of assessed papers provided a registration, and none of those papers reported or
409	justified all deviations from registered aims or methods.
410	Example: Merkling et al. (2018)
411	[In line with the recent push for more transparent and credible research, our literature
412	search and subsequent analyses were preregistered on the Open Science Framework website
413	to avoid post-hoc interpretation of our results
414	(https://osf.io/vfnhg/register/565fb3678c5e4a66b5582f67) (3.1)]
415	
416	[although not originally pre-registered, we also tested for the effects of the timing of sex-
417	ratio measure (primary or secondary) and the origin of animals (captive/wild). (3.2)]
418	
419	[Yolk hormones have also been suggested to influence sex determination and a few studies
420	have tested this hypothesis. To provide a more complete view of the influence of testosterone
421	on sex determination, we included an exploratory meta-analysis investigating the correlation
422	between yolk testosterone and offspring sex that was not part of the initial preregistration.
423	(3.3)]
424	

Item 4: Eligibility criteria

Estimated reporting quality across the literature: High

- 427 Eligibility criteria were usually reported (84%), and justifications were given for around half
- 428 of the eligibility criteria (54%).
- 429 Example: De Boeck *et al.* (2018)
- 430 Supplement:

425

426

431 [Studies had to meet six specific criteria to be included in the meta-analysis. (1) Community-432 level above-ground biomass was measured in plots of different plant species richness. We 433 excluded studies that only considered functional diversity, genetic diversity or a diversity 434 index to avoid skewed comparisons. (2) The climate event had a return time of one in ten 435 years (or more extreme). For studies with natural events, this meant a z-value of at least 1.28. 436 Imposed droughts in all but one case involved complete removal of precipitation, leading to 437 atmospheric droughts that would (if natural) be record-breaking in many cases, and 438 substantially surpassing one in ten year return times in all cases. In the only study with an 439 imposed wet event1, precipitation was experimentally manipulated in line with the wettest 440 year in a local 17-year dataset (a similar method was used regarding the dry-year treatment 441 in this study). (3) The climate event followed a non-extreme year. (4) Baseline data was 442 available for a 'normal' reference year present before the first reported event or a control 443 was available in the case of imposed events. (5) No post-event recovery period was included 444 in the first biomass harvest after the extreme event. (6) Species composition was not 445 confounded with species richness in artificially assembled communities. We further excluded 446 studies where the artificial diversity gradient was compromised by invasion of species from 447 the surrounding area at the moment of the climatic event. Studies were separated according to type of precipitation extreme (dry or wet). (4.1)] 448

449	
450	[We refrained from further separation into subgroups (e.g. according to the manner of
451	assembly) as the number of studies was deemed insufficient. (4.2)]
452	
453	Item 5: Finding studies
454	Estimated reporting quality across the literature: Moderate
455	Most papers stated the sources of information that were sought (89%), around half provided
456	the Boolean search strings (49%), a quarter defined whether the search was comprehensive
457	(25%), and very few provided sufficient information to repeat the equivalent search (14%).
458	Example: Davidson et al. (2017)
459	[We comprehensively searched published literature using standard techniques (detailed in
460	Appendix S1, Supporting Information). (5.1)]
461	
462	[Keyword searches in Scopus and Web of Science were used to identify peer-reviewed
463	literature quantifying the effects of livestock grazing on the EPs of salt marshes
464	Additionally, the doctoral thesis repository EThOS was searched in November 2015 for PhD
465	theses containing these termsOnly papers published in English, or with a comprehensive
466	English summary, were included. (5.2)]
467	
468	[(saltmarsh OR salt marsh OR salt-marsh OR salt meadow OR coastal marsh) AND (graz
469	OR herbivor OR livestock OR cow OR cattle OR sheep OR horse OR deer) in their title,
470	abstract or keywords. (5.3)]
471	
472	[We retrieved papers published from 1950 to November 2015 (5.4)]

473

475	Estimated reporting quality across the literature: Very low
476	Only 13% of assessed papers reported how studies were selected for inclusion during
477	screening, and only 3% reported who was involved in screening.
478	Example: Merkling et al. (2018)
479	[Two authors independently duplicate-screened 350 article abstracts with an 80% agreement
480	rate, using AbstrackR software. The screening of the remaining abstracts was shared
481	between the same two persons and in unclear cases both persons screened the abstract
482	Inclusion criteria applied to the 194 full-texts were: (i) maternal testosterone (not yolk
483	testosterone) was measured or manipulated before or shortly after the eggs were
484	laid/offspring were conceived, (ii) offspring sex-ratio of mothers with known testosterone
485	levels/subject to the testosterone manipulation was measured and (iii) suitable information
486	about statistics and sample sizes ($N > = 5$) were reported in the paper or there was
487	indication that the needed information could be provided by the authors. After applying these
488	criteria, 16 studies with suitable data remained. (6.1)]
489	
490	[Two authors independently duplicate-screened 350 article abstracts with an 80% agreement
491	rate, using AbstrackR software. The screening of the remaining abstracts was shared
492	between the same two persons and in unclear cases both persons screened the abstract. (6.2)]

Item 7: Data collection process

493

494	Estimated reporting quality across the literature: Low
495	Just over half of the assessed papers described the construction of moderator variables from
496	other data (56%), under half described how data were collected (42%) and where they were
497	collected from (44%), and very few described who collected data (10%) or whether data were
498	checked for errors (1%).
499	Example: O'Dea et al. (2019)
500	[Data were extracted from text, tables, or figures. (7.1)]
501	[To extract data from figures, we used the metaDigitise package in R To minimize errors,
502	data were entered into a relational database, built using Filemaker Pro software (7.2)]
503	
504	[Phenotypic traits were grouped into four broad categories: (a) behaviour (behaviour); (b)
505	life history (growth); (c) morphology (bone number, condition, morphology, scale number,
506	size); and (d) physiology (heart, metabolism, muscle fibre, swim performance). (7.3)]
507	
508	[Where sample sizes or variance was missing, we attempted to contact authors for this
509	information. All contacted authors $(n = 8)$ were asked whether they could provide additional
510	data that could be used in our meta-analysis. Five authors replied to requests for data, and
511	two provided data used in analysis For each species represented in the database, we
512	gathered information on thermal tolerance and life history from the websites Fishbase and
513	Animal Diversity Web (when information from these two sources was conflicting, we took the
514	average of the two values). (7.4)]

516	[All data were extracted by one author (RO) (7.5)] [but to verify these extractions half of
517	the data (50% of papers) were checked by other authors. (7.6)]
518	
519	Item 8: Data items
520	Estimated reporting quality across the literature: High
521	Nearly every paper described the key data that were extracted (96%), the majority described
522	main assumptions or simplifications (62%) and the type of replication unit (73%), but less
523	than half described additional data extractions (42%).
524	Example: Bateman & Bishop (2017)
525	[studies reporting the individual or total abundances of associated invertebrate taxa,
526	and/or associated invertebrate species density (i.e. species richness per unit area) in
527	otherwise similar habitat with (experimental) and without bivalves (control) were considered.
528	To be included in analyses, papers also needed to include (1) means, (2) estimates of
529	variation about the means and (3) sample sizes or raw data contrasts were categorised
530	according to bivalve taxon (mussel, oyster or pinnid) and the density of bivalves
531	communities were categorised according to their habit, or mode of life, and the broader
532	habitat context in which they were found Habitats were categorised as soft sediment or
533	rocky shore we compared ecosystem engineering across environmental gradients of
534	known stressors to intertidal invertebrates, including tidal elevation and latitude, over which
535	abiotic stressors such as temperature and humidity may vary. (8.1)]
536	
537	[High intertidal elevations could not be included due to insufficient data. (8.2)]
538	

539	[Habitats were (1) infaunal — living in sediment under the bivalve matrix or in sediment
540	trapped in the interstices of the bivalve matrix, (2) mobile epifaunal — living on the surface
541	of the bivalve matrix or bare substratum with a mobile adult life-history stage, or (3) sessile
542	epifaunal — also living on the surface but with a non-mobile adult life-history stage
543	Three tidal elevations were considered: mid intertidal (aerially exposed for ≥ 4 h but no more
544	than 8 h per semi-diurnal tidal cycle), low intertidal (aerially exposed on every tidal cycle,
545	but for <4 h per semi-diurnal tidal cycle) and subtidal elevations (permanently
546	submerged)
547	Analyses examining relationships between ecosystem engineering and latitude utilised only
548	data collected from the intertidal zone of either sedimentary or rocky shores, as this is where
549	invertebrates are exposed to the greatest variations in climatic factors, such as temperature
550	and humidity, that can induce stress (8.3)]
551	
552	[Within phyla, individual taxa were not considered as replicates due to issues of spatial non-
553	independence arising from these being sampled from the same plots Hence, for all other
554	analyses, we used total invertebrate abundance or species density as our metric for analysis.
555	(8.4)]
556	
557	Item 9: Assessment of individual study quality
558	Estimated reporting quality across the literature: Very low
559	Very few papers described whether the quality of studies included in the meta-analysis was
560	assessed (7%) or how study quality was incorporated into analyses (6%).

561	Example: Ord et al. (2011)
562	[for every robust study we examined, we found an almost equal number of experiments (25
563	of 55; Table 4) that were poorly designed (10 of 55), lacked statistical power (13 of 55
564	experiments tested \leq 10 subjects) or authors concluded species discrimination based on a
565	subset of significant tests out of a larger set of nonsignificant results (2 of 55; Table 4) (9.1)]
566	
567	[To assess the impact of these studies on our hypothesis tests, we excluded them from a
568	second series of meta-analyses and obtained virtually identical results to those reported in
569	Table 1 (see Table S3). (9.2)]
570	
571	Item 10: Effect size measures
572	Estimated reporting quality across the literature: High
573	Nearly every study described which effect size was used to synthesise results (97%) and the
574	majority provided a reference to that effect size (63%), but very few studies that used a non-
575	conventional effect size derived the equations and stated the assumed sampling distribution
576	(7%).
577	Example: Gorné & Díaz (2017)
578	Section 1.2: Derived effect sizes
579	[in our database the log transformation of the unbiased SMD approximates well to a
580	normal distribution. Therefore, it is reasonable to assume that meta-analysis assumptions are
581	being met with use of the $log10(g)$ (LG hereafter). (10.3)]
582	[Here we propose a new ES, called "LG" and its variance " V_{LG} " calculated according to the
583	propagation errors theory: (10.1)]
584	$LG = \log_{10}(g)$

$$585 = \frac{\ln(|g|)}{\ln(10)}$$

$$586 = \frac{1}{\ln(10)} \times \ln(|g|)$$

587
$$\sigma_{LG}^2 = \ln^{-2}(10) \times \frac{\sigma_g^2}{g^2} \approx 0.1886 \times \frac{V_g}{g^2}$$

- 588 ...we computed SMD as in equations 2, 3, and 18 ... When available, we used means,
- 589 standard deviations (or standard error or variance), and sample size to compute the
- 590 unbiased standardized mean difference (Hedges' g), as detailed above, and its variance (Vg)
- 591 as follows (Nakagawa & Cuthill, 2007):

$$592 \qquad V_g = V_d = \frac{\mathbf{n_1} + \mathbf{n_2}}{\mathbf{n_1} \times \mathbf{n_2}} + \frac{d^2}{2 \times (\mathbf{n_1} + \mathbf{n_2} - 2)} \left(\mathbf{10.2} \right)]$$

594

Item 11: Missing data

- 595 Estimated reporting quality across the literature: Low
- Less than half of studies with missing data described (37%) or justified (21%) how the
- 597 missing data were analysed.
- 598 Example: Pearson et al. (2016)
- 599 [For the 8% of studies included in our meta-analysis that did not report variance metrics
- 600 necessary for calculation of d, we used the method of Wolf and Guevara (2001) to estimate
- on that reported in other relevant studies. Specifically, for each response
- one of the variable and abundance metric, we doubled the largest reported standard deviation and
- 603 assigned this value to all missing standard deviation data. (11.1)]

- [This conservative procedure ensured that all cases reporting valid means were utilized while
- 606 ensuring that estimated values were down-weighted in the meta-analysis. (11.2)]

608

609	Estimated reporting quality across the literature: High
610	Almost every paper stated the type of model used to synthesise effect sizes (97%). Among
611	papers that used a non-conventional model ($n = 40$), only half provided justification (50%).
612	Example: Thomsen et al. (2018)
613	[Prior to meta-analyses, non-independent within-study effect sizes were averaged (1) across
614	repeated measurements, (2) for multiple densities of the primary or secondary FS, (3) for
615	multiple FS and inhabitants, (4) for multiple responses per inhabitant, and (5) across nested
616	and orthogonal experimental designs, for example across seasons and water depth level
617	We used weighted random-effects models In addition, we carried out a full set of matching
618	unweighted analyses based on the log response ratio (ln(co-occurring primary and
619	secondary FS/primary FS alone)), including studies that reported effects without associated
620	data dispersion (using a unit variance of 1 and bootstrapped confidence intervals). (12.1)]
621	
622	[These analyses were important because more primary studies could be included (104 papers
623	for abundance and 57 for richness), increasing the taxonomic and spatio-temporal generality
624	of our conclusions. However, unweighted analyses are less statistically robust than weighted
625	analyses and should be interpreted more cautiously. Nevertheless, the ecological conclusions
626	derived from the unweighted analyses fully support the conclusions based on the weighted
627	analyses (12.2)]

Item 13: Software

630	Estimated reporting quality across the literature: Moderate			
631	Almost every paper described the statistical platform (92%) and the majority described what			
632	packages were used (74%), but only a minority described functions (22%), version numbers			
633	(33%), and arguments that differed from the default settings (29%).			
634	Example: Uller et al. (2013)			
635	[the statistical environment R (version 2.15, R Core Team, 2013) (13.1)]			
636				
637	[using the library MCMCglmm (version 2.16, Hadfield, 2010) (13.2, 13.3, 13.5)]			
638				
639	[For the random effects, we used an inverse Wishart prior with $V = 0.002$ and $nu = 1$, which			
640	is widely used in the statistical literature (Gelman & Hill, 2007). For each statistical model,			
641	we ran three MCMC chains (i.e. three independent runs of MCMCglmm models) to test for			
642	convergence of model parameters among the chains. For every chain, we used the same			
643	settings for sampling: (i) the number of iterations of 2 000 000, (ii) the thinning interval of			
644	500 and (iii) the number of burn-in of 1 500 000. (13.4)]			
645				
646	Item 14: Non-independence			
647	Estimated reporting quality across the literature: Moderate			
648	The majority of studies described how non-independence had been handled (74%), just under			
649	half justified this decision (47%), and only a third provided a complete description of the			
650	types of non-independence present in the data set (32%).			

651	Example: Jiang et al. (2013)			
652	[A confounding factor in any meta-analysis of assortative mating is nonindependence (or			
653	pseudoreplication) in the data. There are several possible sources. The most obvious comes			
654	from multiple studies of the same trait in the same species A second source of			
655	pseudoreplication can arise from using separate estimates of assortment for multiple traits in			
656	the same species. These estimates will not be independent when the traits are phenotypically			
657	correlated A third source of pseudo-replication comes from phylogenetic relationships.			
658	Clearly, two sibling species that have recently diverged are likely to share similar patterns of			
659	assortative mating for purely historical reasons. The same effect occurs to different degrees			
660	at all levels of phylogenetic relationship. (14.1)]			
661				
662	[We controlled for [nonindependence from multiple studies of the same trait in the same			
663	species] by analyzing the mean values across studies for species-trait combinations. (14.2)]			
664				
665	[We were unable to correct for [separate estimates of assortment for multiple traits in the			
666	same species] because we lack data on correlations between traits tested for assortment.			
667	Further, most studies in our database include results for only a single trait In principle, it			
668	is possible to correct for phylogenetic dependencies using a phylogeny for all species in the			
669	database and a plausible null model for how assortative mating evolves. Since we lack both			
670	of those ingredients, we treated species as independent observations. In any event, we know			
671	of no reason why these possible causes of non-independence in our data might bias our			
672	general conclusions. (14.3)]			
673				

page 28

Item 15: Meta-regression and model selection

675	Estimated reporting quality across the literature: High			
676	The majority of applicable papers provided a reason for the inclusion of moderators (81%)			
677	and described model selection when it was used (80%). Only one in five described whether			
678	sample sizes were sufficient to justify the choice of moderators (20%).			
679	Example: Des Roches et al. (2018)			
680	[a thorough understanding of the ecological effects of intraspecific variation will be			
681	critical for predicting how rapid, widespread changes in biodiversity within species will			
682	impact communities and ecosystems Our analysis generalizes across diverse response			
683	variables, such as population abundance, rates of ecological processes and community			
684	composition at different trophic levels. In addition, we incorporate both direct (consumption			
685	or excretion) and indirect interactions (mediated through another organism or nutrient).			
686	(15.1)]			
687				
688	[The limited sample size of studies meant that we did not have sufficient degrees of freedom			
689	to test the effect of different experimental design moderators on different response variables.			
690	(15.2)]			
691				
692	[Our base model specified focal species and study (by publication) as nested random effects			
693	(focal species (study)) to account for heterogeneity and non-independence of results from the			
694	same study or using the same focal species. We used this base random-effects model to			
695	estimate an overall Hedges' g and 95% CIs. We then included attributes of study design and			
696	characteristics of the ecological response variables as moderators in two separate mixed-			
697	effects models. Aspects of study design that we could consistently determine included habitat			

(aquatic or terrestrial) and experimental setting (natural, laboratory or field). We also
recorded focal species' trophic level (primary producer, primary consumer or secondary
consumer) and whether the species treatment was replacement or removal; however, given
that all removal studies used consumer species and most replacement studies used producer
species, these two moderators were largely confounded. In an additive model, no aspects of
study design explained significant variation in the effect size ($P > 0.05$). Our final mixed-
effects model therefore only included the following two moderators and their interaction:
relationship with the focal species (direct or indirect) and type of ecological response
(abundance, rate or composition). We excluded a third response characteristic (trophic level
nutrient, producer or consumer) through model selection (glmulti package version 1.0.7.
using the Akaike information criterion). (15.3)]

710

708

698

699

700

701

702

703

704

705

706

707

Item 16: Publication bias and sensitivity analyses

- 711 Estimated reporting quality across the literature: Moderate
- Over half the assessed papers described publication bias tests (65%). When authors reported
- evidence of publication bias (in 30 papers), only half described steps taken to investigate the
- effect of that bias on the results (47%). A minority of papers described other assessments of
- 715 the robustness of results (e.g. sensitivity analyses) (35%).
- 716 **Example: Kornder** *et al.* **(2018)**
- 717 [...(b) funnel plots were investigated to assess distribution properties and potential for
- 718 publication bias; ... (d) meta-regression with publication year as independent variable was
- 719 *used to assess whether time-related factors have influenced outcomes...* (16.1)]

720

721 [...(c) fail-safe analysis was performed to address robustness against publication bias; (16.2)]

722				
723	[(a) a random permutation test was designed to estimate the likelihood of committing type			
724	I errors; and (e) an exclusion comparison as described by Kroeker et al. (2013) was			
725	performed to assess individual contributions of the most significant outcomes. (16.3)]			
726				
727	Item 17: Clarification of post hoc analyses			
728	Estimated reporting quality across the literature: Very low			
729	Among papers where it seemed that hypotheses were formed after data collection ($n = 28$), 14%			
730	of papers included a <i>post-hoc</i> acknowledgement.			
731	Example: Chaplin-Kramer <i>et al.</i> (2011)			
732	[Representational bias was investigated in post hoc analyses. (17.1)]			
733				
734	Item 18: Metadata, data, and code			
735	Estimated reporting quality across the literature: Moderate			
736	The majority of papers provided data that produced the results presented in the manuscript			
737	(77%). Less than half of papers included meta-data (44%), or additional data beyond what			
738	was presented in the results of the main text (39%). Few studies provided code to reproduce			
739	the analyses (11%).			
740	Example: Kinlock et al. (2018)			
741	[Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.rg5rd.			
742	(18.1, 18.2, and 18.3)]			
743				

744	[All R code used in this study can be accessed at https://github.com/ nlkinlock/LDGmeta-
745	analysis. (18.4)]
746	
747	Item 19: Results of study selection process
748	Estimated reporting quality across the literature: Low
749	Less than half of papers reported the number of studies that were screened for inclusion
750	(37%), and fewer reported the number of studies excluded (22%) and reasons for their
751	exclusion (27%). In total, 19% of papers included a PRISMA-style flowchart.

752 Example: Kinlock *et al.* (2018)

753

754

755

[Appendix S2 Figure S2.1 | Prisma diagram. Explanation of the literature search and the subsequent elimination process of studies and cases used in the meta-analysis. (19.1, 19.2, 19.3, 19.4)]

758

Item 20: Sample sizes and study characteristics

759	Estimated reporting quality across the literature: Moderate			
760	Nearly every paper reported sample sizes for the meta-analysis (number of included studies			
761	and effect sizes; 96%), but just over half reported sample sizes for the subsets of data			
762	included in subgroup analyses or meta-regressions (57%). A minority of papers summarised			
763	the limitations of included moderator variables (22%). Among the small subset of papers that			
764	assessed individual study quality (risk of bias; $n = 5$), a majority provided a summary of this			
765	assessment (60%).			
766	Example: Des Roches et al. (2018)			
767	[Our results summarize data from 25 different studies, which together focus on 12 genera at			
768	3 trophic levels (20.1)]			
769				
770	[Fig. 2 Hedges' g values (\pm 95% cis) grouped by focal species (polygons) and studies for			
771	which intraspecific effects are larger ($g < -0.3$), similar to ($-0.3 < g < 0.3$) or smaller than			
772	(g > 0.3) species effects. (20.2)]			
773				
774	[Fig. $I \mid$ Summary of studies used in the meta-analysis and the standardized intraspecific and			
775	species ecological effects. a, Focal species grouped by trophic level and showing the number			
776	of independent experiments. Focal species were placed in the lowest trophic level that they			
777	occupy. b, Standardized (mean and standard deviation) intraspecific versus species effects			
778	for each study with colour representing the trophic level, point size representing the number			
779	of responses measured and fill representing direct (filled) and indirect (unfilled) ecological			
780	effects. Points falling in the top left half of the graph represent larger intraspecific effects,			

781	while points falling on the bottom right represent larger species effects. c, Intraspecific			
782	versus species effects for all response variables with colour representing the trophic level, fill			
783	representing the direct (filled) and indirect (unfilled) ecological effects and shapes			
784	representing whether the response is a change in abundance (circle), process (triangle) or			
785	composition (square). Box plots show the interquartile range of the data.			
786				
787	Table 1 characteristics of studies (by author) included in our meta-analysis, including focal			
788	species, species ('replacement' versus 'removal') and intraspecific treatments, and			
789	categorization of all response variables measured as 'direct' or 'indirect' and as			
790	'abundance', 'rate' or 'composition'. (20.3)]			
791				
792	[given that all removal studies used consumer species and most replacement studies used			
793	producer species, these two moderators were largely confounded. (20.4)]			
794	Example: Ord et al. (2011)			
795	[Table S3. Predictors of species recognition based on analyses in which data was excluded			
796	from those studies that suffered methodological problems (20.5)]			
797				
798	Item 21: Meta-analysis			
799	Estimated reporting quality across the literature: Very high			
800	Nearly all assessed papers provided the overall meta-analytic mean with its corresponding			
801	confidence interval (94%).			

802	Example: Jiang et al. (2013)				
803	[The mean value of r is 0.28 with a 95% confidence interval of 0.25–0.31, based on a				
804	random effects model with no fixed effects and species-trait means as the unit of replication.				
805	(21.1)]				
806					
807	Item 22: Heterogeneity				
808	Estimated reporting quality across the literature: Moderate				
809	Around half of assessed papers reported an indicator of heterogeneity (52%).				
810	Example: Thomsen <i>et al.</i> (2018)				
811	Supplemen	nt:			
812	[Heterogeneity				
813	tau^2	Q(d.f.=205)	Het. P	I^2	
814	0.887	846.830	< 0.001	81.541	
815	(22.1)]				
816					
817	Item 23	: Meta-regressi	on		
818	Estimated reporting quality across the literature: High				
819	Most papers provided estimates and confidence intervals for meta-regressions (78%) and				
820	outcomes from model selection (where applicable) (81%), and a smaller majority showed				
821	complete r	reporting for all moder	ators and interac	etions (59%).	

822	Example: Moatt et al. (2016)
823	[Fig. 3 Forest plots showing effect sizes (Cohen's d, standardised mean difference in
824	reproduction between the control and restricted groups (see Methods and Additional file 1:
825	Dialog S1)) of key moderators for the effect of dietary restriction (DR) on reproduction. Each
826	point represents the Cohen's d value with the 95% credible intervals (CIs). (23.1, 23.2)]
827	
828	[Restriction:Model, represents the interaction between degree of restriction (%) and model
829	or non-model species. (23.3)]
830	
831	[Although the model including phylogenetic signal was a better fit by AIC score
832	(phylogenetic AIC=577.33, non-phylogenetic = 579.86), the improvement was small and was
833	not true for the model including all moderators (see below). (23.4)]
834	
835	Item 24: Outcomes of publication bias and sensitivity analyses
836	Estimated reporting quality across the literature: Moderate
837	Over half of assessed papers provided results for an assessment of publication bias (60%),
838	and just under half gave results for other assessments of the robustness of the results (44%).
839	Example: Kornder et al. (2018)
840	[Our overall effect sizes were robust to both publication bias and significant contributions of
841	individual studies; that is, exclusion of the most significant studies did not change any of the
842	results. Further, meta regression revealed no significant trend between response ratios and
843	year of publication, suggesting that the datasets were not influenced by changes in
844	methodology or assumptions (Appendix S1: Table S3). (24.1, 24.2)]
845	

Item 25: Discussion

846

847	Estimated reporting quality across the literature: High
848	Nearly every discussion touched on biological or practical relevance of the effect (98%),
849	most papers discussed previous reviews, when they were available (88%), and most
850	considered the magnitude of the effect (73%) and limitations of the review (72%). Over half
851	of papers discussed the precision of effects (57%), and less than half of assessed papers
852	summarised the main results in terms of their heterogeneity (47%).
853	Example: Wood et al. (2016)
854	[Moreover, our results did not support that the magnitude, direction or form of selection
855	systematically differs in small and large natural populations: it appears that natural
856	populations of varying sizes experience a variety of environmental conditions, without
857	consistently differing habitat quality at small population size. (25.1)]
858	
859	[CI of the magnitude of linear coefficients overlapped for all N bins, N had no effect on
860	directional selection, and N had little effect on the form of quadratic selection acting on
861	different trait classes and taxa. While the direction of linear selection decreased weakly with
862	increasing N across different trait classes, the effect was only significant for life-history traits
863	and the effect size of the relationship was small. (25.2)]
864	
865	[Our meta-analysis found little evidence for consistent, directional differences in h^2 or the
866	extent of natural selection across a wide gradient of N in nature. (25.3)]
867	
868	[If these results are not exceptional, response to selection at small N might be more extensive
869	than previously assumed in evolutionary and conservation biology. Collectively, species

870 conservation initiatives and priority setting should consider that (i) the evolutionary 871 trajectories of some small populations appear to be very much affected by natural selection; 872 (ii) different small and large populations of the same species may contain variation that is 873 adaptive in a wide range of circumstances; and (iii) minimum viable population sizes for 874 some species – genetically, strictly speaking – may not need to be as high as previously 875 *discussed*... (25.4)] 876 877 [these are notable results given our very large databases and the general lack of research 878 investigating patterns of selection in relation to population size in wild species....long-term 879 fluctuating spatial and temporal environmental conditions may have resulted in complex 880 fluctuating selective pressures leading to a lack of relationship between h^2 and N in our 881 meta-analysis ... Another possibility is that for some traits, phenotypic plasticity or fitness 882 trade-offs might help to buffer loss of VA at small N (Rollinson and Rowe 2015; Wood and 883 Fraser 2015). (25.5)] 884 [... data are heavily biased towards estimates of h^2 for morphology ... responses to selection 885 886 will likely depend on the nature of the selection pressures acting on particular traits, but information was not available for traits in the h^2 analysis to explore this. ... N and not Ne 887 888 was used as the population size metric in our analyses as Ne was rarely estimated on the 889 same populations as selection, but it is Ne that dictates rates of genetic drift and 890 inbreeding. ... multiyear N data were available for only a proportion of meta-analysis 891 populations, so we cannot confirm long-term N for most populations. Fluctuating N could 892 affect our conclusions by altering the relationship between h^2 and N.... more studies are 893 required which measure selection and N for very large populations ... there might be a 894 systematic bias in the types of populations/taxa chosen for selection or h^2 studies. (25.6)]

895

Item 26:	Contributions	and	fun	ding

897	Estimated reporting quality across the literature: High
898	Names, affiliations, funding sources and contact details were well reported (92%), but a
899	contributions statement was given in only 31% of papers. For most assessed papers authors
900	declared no conflict of interest or we did not have reason to believe there one was (92%). In
901	the 8% of cases where it was ambiguous whether a conflict of interest was present, none was
902	declared. All papers provided contact details for a corresponding author.
903	Example: Dunn et al. (2018)
904	[Ruth E. Dunn ¹ , Craig R. White ² and Jonathan A. Green ¹
905	1School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK
906	2Centre for Geometric Biology, School of Biological Sciences, Monash University,
907	Melbourne, Victoria 3800, Australia Funding. R.E.D. is supported by a NERC PhD
908	studentship. C.R.W. is supported by the Australian Research Council (project nos
909	FT130101493, DP180103925). (26.1)]
910	
911	[Authors' contributions. R.E.D. participated in the study design, data collection, analyses
912	and writing of the manuscript; J.A.G. conceived the study, participated in data analysis and
913	helped draft the manuscript; C.R.W. participated in the design of the study and provided
914	essential guidance with the analyses. All authors contributed critically to the drafts, gave
915	final approval for publication and agree to be held accountable for the content herein. (26.2)]
916	
917	[Author for correspondence:
918	Ruth E. Dunn

919	e-mail: ruth.dunn@liverpool.ac.uk (26.3)]
920	
921	[Competing interests. We declare we have no competing interests. (26.4)]
922	Item 27: References
923	Estimated reporting quality across the literature: High
924	Nearly every assessed paper provided a list of all studies included in the meta-analysis (92%)
925	but only 18% cited these studies in the reference list.
926	Example: Li <i>et al.</i> (2010)
927	[Page 6-9: References to works included in the database (27.1, 27.2)]
928	Reference list for examples
929	BATEMAN, D.C. & BISHOP, M.J. (2017). The environmental context and traits of
930	habitat-forming bivalves influence the magnitude of their ecosystem engineering. Marine
931	Ecology Progress Series 563 , 95–110.
932	Breed, M.F., Ottewell, K.M., Gardner, M.G., Marklund, M.H.K., Dormontt, E.E. &
933	LOWE, A.J. (2015). Mating patterns and pollinator mobility are critical traits in forest
934	fragmentation genetics. <i>Heredity</i> 115 , 108–114.
935	CHAPLIN-KRAMER, R., O'ROURKE, M.E., BLITZER, E.J. & KREMEN, C. (2011). A meta-
936	analysis of crop pest and natural enemy response to landscape complexity. Ecology
937	letters 14, 922–932.
938	DAVIDSON, K.E., FOWLER, M.S., SKOV, M.W., DOERR, S.H., BEAUMONT, N. & GRIFFIN, J.N.
939	(2017). Livestock grazing alters multiple ecosystem properties and services in salt
940	marshes: a meta-analysis. Journal Of Applied Ecology 54 , 1395–1405.

941 DE BOECK, H.J., BLOOR, J.M.G., KREYLING, J., RANSIJN, J.C.G., NIJS, I., JENTSCH, A. & 942 ZEITER, M. (2018). Patterns and drivers of biodiversity-stability relationships under 943 climate extremes. Journal Of Ecology 106, 890–902. 944 DES ROCHES, S., POST, D.M., TURLEY, N.E., BAILEY, J.K., HENDRY, A.P., KINNISON, M.T., SCHWEITZER, J.A. & PALKOVACS, E.P. (2018). The ecological importance of intraspecific 945 946 variation. Nature Ecology & Samp; Evolution 2, 57–64. DUNN, R.E., WHITE, C.R. & GREEN, J.A. (2018). A model to estimate seabird field metabolic 947 948 rates. Biology Letters 14, 20180190. 949 GORNÉ, L.D. & DÍAZ, S. (2017). A novel meta-analytical approach to improve systematic 950 review of rates and patterns of microevolution. *Ecology and evolution* 7, 5821–5832. 951 JIANG, Y., BOLNICK, D.I. & KIRKPATRICK, M. (2013). Assortative mating in animals. The 952 American Naturalist 181, E125–E138. 953 KETTENRING, K.M. & ADAMS, C.R. (2011). Lessons learned from invasive plant control 954 experiments: a systematic review and meta-analysis: invasive plant control experiments. 955 Journal of Applied Ecology 48, 970–979. 956 KINLOCK, N.L., PROWANT, L., HERSTOFF, E.M., FOLEY, C.M., AKIN-FAJIYE, M., BENDER, N., 957 UMARANI, M., RYU, H.Y., SEN, B. & GUREVITCH, J. (2018). Explaining global variation in the latitudinal diversity gradient: Meta-analysis confirms known patterns and uncovers 958 959 new ones. Global Ecology And Biogeography 27, 125–141. 960 KORNDER, N.A., RIEGL, B.M. & FIGUEIREDO, J. (2018). Thresholds and drivers of coral 961 calcification responses to climate change. Global change biology 24, 5084–5095. 962 LI, F.-R., PENG, S.-L., CHEN, B.-M. & HOU, Y.-P. (2010). A meta-analysis of the responses of 963 woody and herbaceous plants to elevated ultraviolet-B radiation. Acta Oecologica 36, 1– 9. 964

965	MERKLING, T., NAKAGAWA, S., LAGISZ, M. & SCHWANZ, L.E. (2018). Maternal testosterone
966	and offspring sex-ratio in birds and mammals: A meta-analysis. Evolutionary Biology 45
967	96–104.
968	MOATT, J.P., NAKAGAWA, S., LAGISZ, M. & WALLING, C.A. (2016). The effect of dietary
969	restriction on reproduction: a meta-analytic perspective. BMC evolutionary biology 16,
970	401.
971	O'DEA, R.E., LAGISZ, M., HENDRY, A.P. & NAKAGAWA, S. (2019). Developmental
972	temperature affects phenotypic means and variability: A meta-analysis of fish data. Fish
973	and Fisheries 12 , 523–18.
974	ORD, T.J., KING, L. & YOUNG, A.R. (2011). Contrasting theory with the empirical data of
975	species recognition. Evolution 65, 2572–2591.
976	PEARSON, D.E., ORTEGA, Y.K., RUNYON, J.B. & BUTLER, J.L. (2016). Secondary invasion:
977	The bane of weed management. <i>Biological Conservation</i> 197 , 8–17.
978	THOMSEN, M.S., ALTIERI, A.H., ANGELINI, C., BISHOP, M.J., GRIBBEN, P.E., LEAR, G., HE, Q
979	SCHIEL, D.R., SILLIMAN, B.R., SOUTH, P.M., WATSON, D.M., WERNBERG, T. & ZOTZ, G.
980	(2018). Secondary foundation species enhance biodiversity. Nature Ecology & amp;
981	Evolution 2, 634–639.
982	ULLER, T., NAKAGAWA, S. & ENGLISH, S. (2013). Weak evidence for anticipatory parental
983	effects in plants and animals. Journal of Evolutionary Biology 26, 2161–2170.
984	WOOD, J.L.A., YATES, M.C. & FRASER, D.J. (2016). Are heritability and selection related to
985	population size in nature? Meta-analysis and conservation implications. Evolutionary
986	Applications 9 , 640–657.
987	

988	Estimated and Perceived Reporting Quality of Meta-
989	Analyses in Ecology and Evolution
990	Survey Methods
991	Estimating Reporting Quality
992	To estimate current reporting quality, we sought a representative sample of meta-analyses
993	published in ecology or evolutionary biology journals, which we then used to assess reporting
994	quality. Below we provide detailed descriptions of how the representative sample was
995	selected, and the methods used to assess reporting quality reliably.
996	Protocol for estimating reporting quality
997	The study protocol for our assessment of reporting quality is available at https://osf.io/8zkxt
998	(click through to the 'files' page). We registered the study protocol prior to abstract screening
999	(deviations from this protocol are described below, under subheadings beginning with
1000	'Deviation from protocol').
1001	Design of search strategy
1002	The search strategy was influenced by previous papers that sought representative samples of
1003	meta-analyses in ecology and/or evolutionary biology (Fraser et al., 2018; Koricheva &
1004	Gurevitch, 2014; Nakagawa & Santos, 2012; Senior et al., 2016). After developing a search

string (detailed below), we decided upon the minimum number of papers we wished to

include in the representative sample (n = 100), and then used pilot screening to estimate the

number of titles and abstracts that would be required to meet this target. We performed two

rounds of pilot abstract and full-text screening (screening 40 full-text papers in total). Just

1005

1006

1007

1009 under half of screened papers met our inclusion criteria, so we aimed to screen approximately 1010 n = 300 studies, to ensure enough full-texts would meet our inclusion criteria. 1011 **Database search** 1012 List of journals 1013 We exported a list of all 'Ecology' and 'Evolutionary Biology' journals and their ISSN 1014 (International Standard Serial Number), classified according to the 2017 rankings published 1015 by the ISI InCites Journal Citation Reports. Journals that appeared in both the ecology and 1016 evolution lists were classified as 'Both'. We combined the lists, removed duplicates, and 1017 searched for studies published in these journals by including journal ISSNs in the search 1018 strings. We also manually searched for each journal's ISSN to account for missing or 1019 erroneous information from the ISI export. Where a journal had both a print and online ISSN 1020 (i.e. eISSN), we included both in the search. 1021 Finding studies 1022 On 25 March 2019 we searched the *Scopus* database with the following search string: 1023 TITLE-ABS-KEY ("meta-analy*" OR "meta-analy*" OR "meta-regression") AND 1024 PUBYEAR AFT 2009 AND ISSN("13652486" OR "14610248" OR "01678809" OR 1025 "16000706" OR "14668238" OR "00063207" OR "14321939" OR "14712954" OR 1026 "15231739" OR "20457758" OR "13652664" OR "09218009" OR "13652745" OR 1027 "16161599" OR "1365294X" OR "14209101" OR "19395582" OR "13652435" OR "17264189" OR "2041210X" OR "15585646" OR "13652656" OR "21508925" OR 1028 "15375323" OR "17517370" OR "16000587" OR "13652699" OR "1744957X" OR 1029 1030 "14657279" OR "15731464" OR "15577015" OR "22120416" OR "14350629" OR "15738477" OR "13652427" OR "14712148" OR "15729710" OR "09258574" OR 1031 1032 "03043800" OR "14724642" OR "17524571" OR "16541103" OR "1526100X" OR

1033	"10958312" OR "15749541" OR "23519894" OR "15735052" OR "01695347" OR
1034	"14391791" OR "14320762" OR "21619549" OR "16171381" OR "0022541X" OR
1035	"15729761" OR "14338319" OR "14429993" OR "09123814" OR "17083087" OR
1036	"17545048" OR "01401963" OR "01692046" OR "15371719" OR "2397334X" OR
1037	"14726785" OR "15733017" OR "15409309" OR "1432184X" OR "10968644" OR
1038	"1654109X" OR "16161564" OR "19360592" OR "13652540" OR "17550998" OR
1039	"00314056" OR "1438390X" OR "15507424" OR "00652504" OR "17596653" OR
1040	"10959513" OR "14691795" OR "15891623" OR "20511434" OR "11769343" OR
1041	"19342845" OR "22132244" OR "22244662" OR "00220981" OR "14657333" OR
1042	"19413300" OR "14697831" OR "01106465" OR "13653008" OR "24501395" OR
1043	"15731642" OR "10353712" OR "0003455X" OR "15452069" OR "17447429" OR
1044	"11645563" OR "03672530" OR "00472484" OR "17529921" OR "08000395" OR
1045	"16083334" OR "1076836X" OR "19385455" OR "13652028" OR "17279380" OR
1046	"20412851" OR "10301887" OR "02757540" OR "14230445" OR "10960031" OR
1047	"15882756" OR "22145753" OR "15735133" OR "14390574" OR "15220613" OR
1048	"19339747" OR "13504509" OR "15731561" OR "14321432" OR "08858608" OR
1049	"21996881" OR "14753057" OR "10369872" OR "23524855" OR "02497395" OR
1050	"15482324" OR "19968175" OR "18741746" OR "10960325" OR "13991183" OR
1051	"19436246" OR "18094392" OR "1146609X" OR "24108200" OR "00030031" OR
1052	"13488570" OR "15735125" OR "18185487" OR "03051978" OR "00030090" OR
1053	"0079032X" OR "1065657X" OR "19954263" OR "1432041X" OR "2073106X" OR
1054	"16423593" OR "1476945X" OR "14427001" OR "19399170" OR "11956860" OR
1055	"20419139" OR "1525142X" OR "21553874" OR "1876312X" OR "03781844" OR
1056	"14455226" OR "17513758" OR "00220930" OR "15525015" OR "1944687X" OR
1057	"02705060" OR "14645262" OR "14772019" OR "14390469" OR "1860188X" OR

1058	"17451019" OR "20513933" OR "00280712" OR "19385307" OR "0029344X" OR
1059	"16181077" OR "19385331" OR "0340269X" OR "14421984" OR "14322056" OR
1060	"18739652" OR "01380338" OR "19385293" OR "18397263" OR "07176317" OR
1061	"19385412" OR "00384909" OR "13653113" OR "05643295" OR "02408759" OR
1062	"15270904" OR "09096396" OR "14636409" OR "13541013" OR "1461023X" OR
1063	"00301299" OR "1466822X" OR "477525" OR "00298549" OR "09628452" OR "08888892"
1064	OR "00218901" OR "00220477" OR "01718630" OR "09621083" OR "1010061X" OR
1065	"10510761" OR "02698463" OR "17264170" OR "00143820" OR "00218790" OR
1066	"00030147" OR "17517362" OR "09067590" OR "03050270" OR "17449561" OR
1067	"10452249" OR "13873547" OR "2818182" OR "14329840" OR "02697653" OR
1068	"00465070" OR "09603115" OR "13669516" OR "11009233" OR "10612971" OR
1069	"00244066" OR "13850237" OR "03405443" OR "09212973" OR "14429985" OR
1070	"07374038" OR "09639292" OR "15409295" OR "00953628" OR "2769667" OR
1071	"14022001" OR "09483055" OR "19360584" OR "0018067X" OR "1755098X" OR
1072	"14383896" OR "10557903" OR "13679430" OR "00713260" OR "15659801" OR
1073	"00221503" OR "00224561" OR "02664674" OR "00306053" OR "15052249" OR
1074	"10838155" OR "1543592X" OR "623257" OR "10674136" OR "10635157" OR "00840173"
1075	OR "01416707" OR "10220119" OR "09377409" OR "07483007" OR "15858553" OR
1076	"22145745" OR "03781909" OR "16124642" OR "00980331" OR "00222844" OR
1077	"03782697" OR "00322474" OR "03636445" OR "00400262" OR "18741738" OR
1078	"00405809" OR "21933081" OR "02775212" OR "00445967" OR "24107220" OR
1079	"09187960" OR "13862588" OR "17986540" OR "19954255" OR "0949944X" OR
1080	"2833888" OR "1520541X" OR "19344392" OR "1399560X" OR "15525007" OR
1081	"00222933" OR "09475745" OR "18601871" OR "17451000" OR "10926194" OR

1082	"14396092" OR "00948373" OR "0913557X" OR "07224060" OR "00973157" OR
1083	"0370047X" OR "0716078X" OR "15287092" OR "03076970" OR "03003256")
1084	
1085	The search string above was designed to identify studies that mentioned meta-analysis or
1086	meta-regression within the title, abstract, or key words, and were published since the
1087	beginning of 2010 in our list of ecology and evolution journals. Performing this search on 25
1088	March 2019 yielded 1,668 papers from 134 journals.
1089	We exported all citation, abstract, and serial identifier information from the 1,668 search
1090	results as a .csv file. After importing this information into R (v. 3.5.1) (R Core Team, 2018)
1091	we corrected small formatting differences in journal names, and matched each journal to the
1092	subject classification from our list of journals (either 'Ecology', 'Evolution', or 'Both').
1093	Reducing the number of journals and studies
1094	Our aim was to find meta-analyses on questions in the primary fields of ecology or
1095	evolutionary biology, and to this end we manually excluded some journals in more applied
1096	sub-fields (e.g. ecological economics). We arranged the remaining journals in descending
1097	order of the number of times the journal was returned in the search results, and then took the
1098	top 10 journals from ecology, the top 10 journals from evolutionary biology, and the top 11
1099	from both (because the 10th and 11th journals had the same number of hits). This left us with
1100	the 31 journals that had published the most meta-analyses in their fields (Table S1).
1101	

Table S1.

Journals publishing the majority of meta-analyses in ecology and evolutionary biology. Journals classified as 'Both' are listed under both 'Ecology' and 'Evolutionary Biology' in the ISI InCites Journal Citation Reports. 'N hits' shows the number of studies returned from the search of *Scopus* (described above), out of the 1,668 total hits. 'N screened' shows the number of studies taken as a random sample, for a total of 300 abstracts to screen. '5-year IF' is the five-year impact factor of the journal (this metric was not available for 'Nature Ecology & Evolution', as the journal was less than five years old at the time of the search).

ISI classification	Full journal title	5-year IF	N hits	N screened
Both	Proceedings of the Royal Society of London B: Biological Sciences	5.611	47	17
Both	Ecology and Evolution	2.788	43	17
Both	Molecular Ecology	6.885	35	17
Both	Journal of Evolutionary Biology	2.946	32	17
Both	Evolution	4.268	25	17
Both	American Naturalist	4.33	20	17
Both	Biology Letters	3.556	17	17
Both	Evolutionary Ecology	2.223	14	14
Both	Nature Ecology & Evolution	Not Available	7	7
Both	Heredity	3.92	5	5
Both	Molecular Ecology Resources	6.073	5	5
Ecology	Global Change Biology	9.791	135	9
Ecology	Ecology Letters	11.775	98	9
Ecology	Oikos	3.728	65	9
Ecology	Global Ecology and Biogeography	7.315	51	9
Ecology	Biological Conservation	4.995	49	9
Ecology	Oecologia	3.409	47	9
Ecology	Conservation Biology	5.755	43	9
Ecology	Journal of Applied Ecology	6.16	42	9
Ecology	Journal of Ecology	6.525	35	9
Ecology	Marine Ecology Progress Series	2.682	35	9
Evolution	BMC Evolutionary Biology	3.628	12	12
Evolution	Evolutionary Applications	5.063	10	10
Evolution	Biological Journal of the Linnean Society	2.322	9	9
Evolution	Molecular Biology and Evolution	14.479	7	7
Evolution	Genome Biology and Evolution	4.171	4	4
Evolution	Molecular Phylogenetics and Evolution	4.294	4	4
Evolution	Evolutionary Bioinformatics	1.71	3	3

Evolution	Evolutionary Biology	2.335	3	3	
Evolution	Journal of Heredity	2.475	3	3	
Evolution	Systematic Biology	14.501	2	2	
Taking a sample of studies					

To select approximately 300 studies to undergo screening, we took a random sample of up to

17 studies from the journals classified as 'Evolutionary Biology' or 'Both', and up to 9

studies from journals classified as 'Ecology' (because ecology journals contained more meta-

analyses). This procedure provided us with 297 studies to undergo screening, of which 90

were classified as Ecology, 57 as Evolutionary Biology, and 150 as 'Both'.

Files for processing Scopus exports

The folder "Systematic Search" at https://osf.io/2xpfg/files/ contains the original .csv export from *Scopus*, the code used to process this file, and the sample of studies exported for abstract screening.

Abstract screening

Two contributors (R.E.O. and M.L.) independently screened all titles and abstracts to select studies for full-text screening (i.e. parallel abstract screening), using Rayyan software and following the decision tree in Fig. S1. This decision tree was first tested on two rounds of pilot screening (each round contained 20 randomly selected studies). Abstracts were excluded when they indicated that a study was unlikely to present results from a meta-analysis that had been conducted on data from multiple studies, in the fields of ecology or evolutionary biology. Meta-analyses based on existing data sets (e.g. results from a long-term experiment) were excluded. Conflicting decisions were resolved by discussion between R.E.O. and M.L. Included abstracts were exported as a RefMan file and imported into a reference manager to download the full texts. In total, 64% of screened abstracts were included for full-text screening (n = 189).

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

Figure S1.

Decision tree for abstract screening.

Inclusion and exclusion criteria

We assessed reporting standards of meta-analyses published in ecology and evolutionary biology journals that met the following criteria:

Addresses a question in the fields of ecology and evolutionary biology

In pilot screening, we found a number of studies that were predominantly in different fields (e.g. soil chemistry). Because the target audience for PRISMA-EcoEvo is researchers working primarily in the fields of ecology and evolutionary biology, we excluded, at the full-text stage, studies that did not clearly address an ecological or evolutionary question.

Uncertainty over this distinction was resolved by discussion among three contributors

1145 (R.E.O., M.L., and S.N.).

1146	Claims to present results from a meta-analysis
1147	This criterion excluded studies that merely mentioned meta-analysis without conducting one,
1148	such as methods papers, narrative reviews, or commentaries.
1149	Performed a search for data available from primary literature, and collected data from
1150	primary literature
1151	Because many of the items on PRISMA-EcoEvo relate to reporting standards of how
1152	literature was found and data collected, we wanted to ensure a sufficient sample size of meta-
1153	analyses to assess these items. Consequently, we excluded 44 studies that did not perform a
1154	literature search followed by data extraction (e.g. studies that analysed data sets that were
1155	downloaded without reference to the original studies, such as gene sequences or gene
1156	expression profiles).
1157	The same type of effect size is extracted or calculated from multiple studies, and effect sizes
1158	are analysed in a statistical model
1159	The included meta-analyses combined results from multiple primary studies using at least
1160	one effect size metric. Included studies could use more than one effect size on different
1161	subsets of the data or to address different questions.
1162	
1163	Full text screening
1164	Each full-text Portable Document Format (PDF) was given a unique identifier (full-text ID),
1165	and assigned to two reviewers (R.E.O. and M.L.) for independent screening. The full-text IDs
1166	were randomly assigned by first shuffling the order of the PDF documents using the sample
1167	function in R, before re-naming each file with a sequential ID. A Google Form (containing
1168	the decision tree shown in Fig. S2) was used to record the screening decisions, exclusion
1169	reasons, whether or not included papers contained supplementary information, and (for

papers containing a supplement) the URL of the paper (to expedite downloading of
supplements for included papers). Both the decision tree and <i>Google</i> Form were tested with
two rounds of pilot screening (on 12 and 10 full-texts, respectively). Agreement rate after
full-text screening was 80%. Conflicted decisions were discussed between M.L. and R.E.O.,
after which 17 decisions (9%) were still unresolved; the funding contributor, S.N., made
decisions in these cases. After full-text screening, 125 papers were assigned as 'include',
although some were marked as 'prefer not to be used' (described below). The sample sizes at
different stages of the screening process are shown in Fig. S3.

1179 **Figure S2.**

1178

1180 Decision tree for full-text screening.

1181

1182

1183

1184

1185

Figure S3.

PRISMA-style flowchart showing the process of collecting and screening studies, to obtain a representative sample of meta-analyses recently published in journals from the fields of ecology and evolutionary biology.

1187 Deviation from protocol: papers assigned 'prefer not to use'

During full-text screening we assigned some included papers the label 'prefer not to use', to indicate papers that might technically meet our inclusion criteria but would be difficult to compare to the majority of the data set (e.g. use of very unusual effect sizes, uncertainty over whether the field was too applied). In total, 21 out of 125 papers received these labels. As we were aiming to screen at least 100 meta-analyses, we elected not to include the papers labelled as 'prefer not to use'. The remaining papers were evenly divided between assessors, so that two papers were 'left over' and not assessed (see Fig. S3).

Assigning papers for assessment

The lead contributor (R.E.O.) divided the included full texts between seven contributors participating in assessment (D.W.A.N., J.K., M.D.J., M.L., R.E.O., S.N., T.H.P.; hereafter known as 'assessors'). First, R.E.O. recorded when an assessor was a co-author on one of the included papers, so that they could be excluded from assessing their own paper. Papers were then evenly divided between assessors, roughly aligned to the assessor's fields of interest or areas of expertise. Each assessor was assigned 14 papers to be assessed individually, with an additional 4 papers to be assessed by multiple people (as part of data extraction training – see below). In total, therefore, 102 papers were assigned for data extraction. From these papers we extracted information necessary to assess the reporting standards of meta-analyses in ecology and evolutionary biology over the past nine years, as well as the current use of reporting checklists and guidelines.

List of assessed publications

References for the 102 assessed publications are provided in the main text reference list.

1212	Training papers
1213	To reduce subjectivity and clarify interpretation differences among the assessors, each
1214	assessor underwent training. First, four papers were assessed in person by a small group
1215	(R.E.O., M.L., and S.N.). During this time, ambiguity and interpretations were discussed and
1216	the assessment form was amended. From these four papers, three were chosen as 'training'
1217	material for the other assessors (the three papers were chosen as exemplars of 'easy',
1218	'medium', and 'hard').
1219	For each training paper that an assessor completed, the lead assessor (R.E.O.) created a
1220	document comparing the answers provided by the assessor with the 'consensus answers',
1221	including notes on the reasons for differences. In instances where the assessor had noticed
1222	something that the consensus team missed, the consensus answer was updated.
1223	Deviation from protocol: changes made to Google Form after training
1224	After assessor training, R.E.O. identified the questions with the lowest 'agreement rate'.
1225	Additional instructions were then added to the Google Form to clarify interpretation of these
1226	questions, including the addition of 'caution' images to highlight tricky questions.
1227	
1228	Data extraction Google Form
1229	We created a custom Google Form that could be used to assess each paper, to increase
1230	efficiency and minimise errors during data extraction. The Google Form stored answers for
1231	each paper in one row of a .csv file, which was then processed using a customised R script.
1232	The form contained instructions and examples to help increase consensus across different
1233	reviewers. The <i>Google</i> Form and <i>R</i> script underwent two rounds of piloting with four
1234	contributors before data extraction began.

1235	Paper-level information	
1236	For each paper we recorded:	
1237	• Whether or not a registration existed, whether that registration was public, and the	
1238	URL for any public registration	
1239	• Whether or not the paper presented a PRISMA-style flow diagram and, if so, a link to	
1240	a screenshot of the figure stored in Google Drive	
1241	• Whether or not the paper referenced PRISMA, or any reporting guideline (if so,	
1242	which one), and the wording of this reference	
1243	• Where PRISMA was referenced (methods, results, or SI) and how it was referenced	
1244	(as a reporting guideline, methodological guideline, or flow-chart template; multiple	
1245	answers could be selected)	
1246	• Where the list of all studies included in the meta-analysis was reported, if at all (main	
1247	reference list, a table in the main text, or the supplementary information)	
1248	• Which tests of publication bias were presented in the paper from the following list of	
1249	options:	
1250	Funnel plots (including contour-enhanced funnel plots)	
1251	Normal quantile (QQ) plots (Wang & Bushman, 1998)	
1252	Correlation-based tests (e.g. rank correlation; Begg & Mazumdar, 1994)	
1253	Regression-based tests (e.g. Egger et al., 1997, and its variants)	
1254	File drawer numbers or fail-safe N (methods described in Rosenthal, 1979;	
1255	Orwin, 1983; and Rosenberg, 2005)	
1256	➤ Trim-and-fill tests (Duval & Tweedie, 2000 <i>a</i> , <i>b</i>)	
1257	> P-curve, P-uniform or its variants (reviewed in McShane et al., 2016; van Aere	
1258	et al., 2016)	

1259	> Selection (method) models (e.g. Copas & Li, 1997; Hedges, 1984; Iyengar &	
1260	Greenhouse, 1988)	
1261	> Time-lag bias tests (e.g. regression or correlation on the relationship between	
1262	effect size and time or cumulative meta-analysis)	
1263	> Other (specify)	
1264	Item-level information	
1265	Each of the 27 PRISMA-EcoEvo items was given their own section within the form, and	
1266	subdivided into one or more components. For each item, the form asked:	
1267	Q questions	
1268	These compulsory questions were labelled Q01,, Q27. They recorded all the components	
1269	that a paper (or the supplementary information) reported. Three asterisks (***) at the end of	
1270	the component indicated that the component may potentially be not applicable.	
1271	NA questions	
1272	The NA questions (NA01,, NA27) recorded reasons for some components being	
1273	'not applicable'.	
1274	SI questions	
1275	The SI questions (SI01, \dots , SI27) recorded when a component was met solely because of the	
1276	existence of the supplementary information. Assessors were asked to select which	
1277	components would not have been selected in the Q questions had the SI not existed.	
1278	Data and code were <i>not</i> considered part of the SI in most circumstances (the only exception	
1279	being when data were hosted as supplementary information to the online version of the	
1280	article).	
1281	Notes	

1282	The notes questions (notes_item01,, notes_item27) were used to record information that
1283	could be useful if we needed to re-evaluate the paper, or to record when a paper contained a
1284	particularly useful example of satisfying an item.
1285	Processing of Google Form answers
1286	Custom R functions were written to process the .csv file that was exported from the Google
1287	Form into component-level, item-level, and paper-level information. The script used a file
1288	("Google Form Items.xlsx") containing the weighting of components within an item, and
1289	details of not-applicable items. First, the script extracted all paper-level information for each
1290	paper. Next, the script recorded whether a component was recorded in the supplementary
1291	information, and assessed the component following this basic algorithm:
1292	• Was the component of the item met? yes/no
1293	• Was the component of the item applicable? yes/no
1294	• If the component of the item was not met, and if it was not applicable, then it received
1295	a penalty (yes), otherwise it received no penalty (no)
1296	If the component received a penalty, then:
1297	Was every item of the component weighted equally (according to the weighting
1298	information found in "Google Form Items.xlsx")? yes/no
1299	➤ If yes, then the deduction was equal to the inverse of the number of applicable
1300	items multiplied by 100 (so that if every applicable item were not met, the
1301	penalty equalled 100%).
1302	➤ If no, then:
1303	• Were some components not applicable?
1304	➤ If no, then the deduction was equal to the inverse of the pre-
1305	specified weight

1306	➤ If yes, then the pre-specified weights were updated so that the
1307	weight of the not-applicable item was absorbed by the applicable
1308	item with the highest pre-specified weight
1309	Based on the assessment of each component, the following columns were generated:
1310	• A 'score' for each component that was equal to 100 minus any deduction that the
1311	component received
1312	• Whether or not the whole item was met [either yes (if 100), partial (if > 0 and < 100),
1313	no (if 0) or not applicable (if none of the components of the item were applicable)]
1314	Data extraction spreadsheet
1315	The results of the Google Form were stored in a database as two related sheets: one for the
1316	paper-level information, and one for the component-level information.

Table S2.

1317

1318

Paper-level meta-data for the variables we extracted from each paper that was assessed.

The meta-data for these sheets are shown in Tables S2 and S3.

Column name	Description
unique_extraction	unique ID for the <i>Google</i> Form (combination of paper_ID and who extracted)
paper_ID	ID for the paper that data were extracted from
paper_title	title of the paper that data were extracted from, as a back-up in case there is a typo in the paper_ID
timestamp	date and time the Google Form was submitted
who_extracted	reviewer who completed the data extraction
general_paper_comments	any general comments that were made about the paper
online_data_exists	whether or not data for the paper are available online
data_link	link to online data
registration_exists	whether or not a registration for the paper exists
registration_accessible	if a registration exists, whether or not it is readily available
registration_link	link to the online registration
flow_diagram_exists	whether or not the paper presents a PRISMA-style flow diagram
flow_link	link to a screenshot of the PRISMA-style flow diagram on <i>Google</i> Drive (password protected)
references_provided_in	where the paper reports a list of all studies included in the meta- analysis, if at all (main reference list, a table in the main text, or the supplementary information)

paper_references_PRISMA	whether the paper references PRISMA
prisma_referenced_where	where PRISMA is referenced (methods, results, or SI)
prisma_referenced_how	how PRISMA is referenced (as a reporting guideline, methodological guideline, or flow-chart template; multiple options are allowed)
prisma_referenced_wording	wording of the PRISMA reference, copy-pasted
other_guidelines_referenced	wording of any other guideline referenced, copy-pasted

1320

1321

1322

Table S3.

Component-level meta-data for the variables we extracted for each item and each paper that

was assessed.

- C.1	D 1.4
Column name	Description
row_ID	unique ID for the row number of the data
unique_extraction	ID for the Google Form (combination of paper_ID and who_extracted)
paper_ID	ID for the paper that data were extracted from
deduction	percentage to subtract from 100 if the component was penalised
equal_weight	whether or not the components in the item are weighted equally
item_met	whether or not the component was met (yes or no)
item_notes	any general notes for the item
item_number	item number
item_question	the component of the item, in the form of a question
not_applicable_allowed	whether or not the component could potentially be not applicable
not_applicable_explanation	the reason why the component could be not applicable
not_applicable_met	whether or not the component was not applicable
penalise	whether or not the component was penalised for not being met (yes, no, or not applicable)
reported_in_si	if the component was reported, whether this was due to the existence of supplementary information (yes; otherwise, blank)
score	the percentage score of the overall item
unequal_split	if the components of the item were not weighted equally, this shows the weight each item received (otherwise, blank)
weight	how the item was weighted
whole_item_met	whether or not the whole item was met (yes, partial, no, or not applicable)

1324

1325

1326

1327

1328

1329

Data checks

During data extraction, assessors were encouraged to note if they were unsure of their answers. After submitting the form, assessors saved the link to edit the form in a shared spreadsheet. During data processing, R.E.O. read these comments, and marked ones that required checking. In addition, items were flagged for checking if they met any of the

following criteria: (1) the paper was recorded as reporting an item that was reported in < 10% of all papers; (2) a record was made of a publication bias test, but the item 'assessments of the risk of bias due to missing results (e.g. publication, time-lag, and taxonomic biases)' was not selected; (3) 'none' was selected in addition to another component (because if 'none' were selected, then no other component should have been selected). Each assessor received a record of the items they should check, along with the link to edit the submitted answers.

Assessors either modified their answers or confirmed that the selected answers were correct. After each assessor had finished this task, the results were re-exported and the final results were processed.

Measured outcomes

Using the processed data, we estimated the following outcomes: (1) for each item, the percentage of papers that met the whole item, partially met the item, did not meet the item, or where the item was not applicable; (2) the frequency with which components of each item were met; (3) the distribution of average scores across the assessed papers; (4) whether the subset of papers that referenced a reporting guideline showed higher standards of reporting than those which did not; (5) which components of items were reported in the supplementary information, and how frequently this occurred; (6) how frequently PRISMA, or other reporting guidelines/checklists, were referenced, and the way in which they were referenced; (7) how frequently PRISMA-style flowcharts were reported, and what these flowcharts looked like; (8) how frequently data, meta-data, and code were made publicly available; and (9) whether there was a correlation between reporting standards of published papers and the impact factor of the journals they were published in.

Surveying the meta-analysis community

Following the assessment of reporting standards, we conducted a survey of the ecology and evolution meta-analysis community to see whether their perception of reporting quality was congruent with our results.

Identifying survey participants

We aimed for a minimum of 100 responses to the survey. We sought responses from members of editorial boards of ecology and evolution journals (i.e. the gatekeepers), and authors of meta-analyses that have been published in these journals after 2009 (i.e. the users). First, we collected the details of editorial board members of ecology and evolution journals that were represented among the 102 papers included in the reporting quality assessment. The included journals were: *American Naturalist, Biological Conservation, Biological Journal of the Linnean Society, Biology Letters, BMC Evolutionary Biology, Conservation Biology, Ecology and Evolution, Ecology Letters, Evolutionary Applications, Evolutionary Biology, Evolutionary Ecology, Global Change Biology, Global Ecology and Biogeography, Heredity, Journal of Applied Ecology, Journal of Ecology, Journal of Evolutionary Biology, Marine Ecology Progress Series, Molecular Ecology, Nature Ecology & Evolution, Oecologia, and Oikos. On 11 July 2019 we obtained the list of editorial board members, and their affiliations, from each journal's website, and made a list of the email addresses of these editors (either from the website directly, or from Google searches; addresses that could not be found were ignored). In total we obtained 1,393 unique email addresses.*

Second, we collected the email addresses of corresponding authors from the *Scopus* database on 5 August 2019, using the search string "TITLE-ABS-KEY ("meta-analy*" OR "meta-analy*" OR "meta-regression") AND PUBYEAR AFT 2009 AND ISSN("0003-0147" OR "477525" OR "0024-4066" OR "1744-9561" OR "1471-2148" OR "0888-8892" OR

1379	"2045-7758" OR "1461-023X" OR "0014-3820" OR "1752-4571" OR "0071-3260" OR
1380	"0269-7653" OR "1354-1013" OR "1466-822X" OR "0018-067X" OR "0021-8901" OR
1381	"0022-0477" OR "1010-061X" OR "0171-8630" OR "0962-1083" OR "2397-334X" OR
1382	"0029-8549" OR "0030-1299" OR "0962-8452")". This search yielded 854 results. We then
1383	exported a .csv file containing the 'Correspondence address' for each of the papers, imported
1384	this file into the software program R , and then extracted email addresses (where available).
1385	After removing duplicates, we were left with 660 email addresses.
1386	
1387	We combined the email addresses from both types of searches (editors and authors), removed
1388	duplicates, and removed authors of the PRISMA-EcoEvo project. This left a total of 2,017
1389	prospective participants.
1390	Recruiting survey participants
1391	The funding contributor (S.N.) emailed participants through his university email addresses,
1392	inviting them to complete an anonymous online survey. The email specified the aim of the
1393	survey and why the potential participant was contacted. Potential participants were contacted
1394	through blind carbon copy (Bcc) so that they could not access the emails of other invitees.
1395	Two invitations were sent within one month. The first email stated that a reminder email
1396	would be sent within 3-4 weeks, and gave participants an opportunity to withdraw their email
1397	from the mailing list to avoid receiving the second email.
1398	
1399	As an incentive to participate in the survey, participants were given the opportunity to enter a
1400	random draw to win one of five copies of the textbook Handbook of Meta-analysis in
1401	Ecology and Evolution (Koricheva, Gurevitch & Mengersen, 2013) (valued at \$152 AUD,
1402	with free shipping to their nominated address). To retain the anonymity of survey answers, at
1403	the end of the survey participants could enter their email address into a separate Google sheet

1404	(thus the email addresses were not linked to the survey answers). The five winners were
1405	randomly drawn from this list of email addresses (using the 'sample' function in the base
1406	package of <i>R</i> , with a pre-specified 'set.seed(336)'), and were notified on 21 October, 2019.
1407	Survey content
1408	We created an anonymous online survey as a Google Form. The survey was open to
1409	responses between 29 August 2019 and 21 October 2019, and collected the following
1410	information:
1411	What experiences had survey respondents had with meta-analyses in ecology and evolution?
1412	We asked survey participants for their career stage, prior experience with meta-analysis (as
1413	an author, reviewer, or editor), and whether they plan to author a meta-analysis in the future.
1414	How does the community's perception of reporting standards compare to actual reporting
1415	standards?
1416	Participants were asked to evaluate current levels of reporting, on a Likert scale of 1 to 5
1417	(where 1 was 'very poor' and 5 was 'excellent'), in the following categories: (1) Systematic
1418	search; (2) Study selection; (3) Model description; (4) Data description; (5) Results
1419	description; (6) Bias assessment; (7) Availability of metadata, data, and code. We also asked
1420	for general comments about reporting standards. We kept this question succinct and therefore
1421	restricted the categories to only a subset of items that were covered by our assessment; the
1422	chosen categories were deemed particularly important for understanding how a systematic
1423	meta-analysis was conducted.
1424	What is the community's current perception of reporting guidelines?
1425	We asked survey participants whether they had heard of reporting guidelines prior to being
1426	invited to complete the survey, and whether they thought guidelines improve reporting
1427	standards.

1428	How are reporting guidelines currently being used?
1429	Survey participants with previous experience of reporting guidelines were asked whether they
1430	had used reporting guidelines: (1) as an author, to help conduct the study; (2) as an author, to
1431	help write the study; (3) as a reviewer/editor, to assess manuscripts; and (4) other (with
1432	explanation).
1433	For questions 5–8, survey respondents were asked whether they wanted to view the
1434	PRISMA-EcoEvo checklist and answer a longer survey. If they answered yes, then the
1435	following additional questions were posed.
1436	Opinions on pre-registration of meta-analyses (a PRISMA item)
1437	Our assessment of reporting standards found that almost no meta-analyses in ecology and
1437	
1438	evolutionary biology were registered in advance. To help understand why this practice was so
1439	uncommon, we asked the respondents: (1) whether they had considered or tried pre-
1440	registration for any type of study; (2) why they thought pre-registration was uncommon; and
1441	(3) if they had general comments to make about pre-registration of meta-analyses.
1442	Awareness and opinions on assessment of individual study quality in meta-analyses (a
1443	PRISMA item)
1444	Compared to medical fields, it is extremely rare for meta-analyses in ecology and evolution
1445	to conduct and report an assessment of the quality of the evidence that is aggregated in the
1446	review (i.e. 'critical appraisal'). We asked survey participants whether they thought this
1447	practice should be encouraged ('Yes', 'No', or 'Don't understand what this means'), and
1448	whether they had comments to make about this practice in general.
1449	Will PRISMA-EcoEvo be useful?

1450	To gauge the level of interest in PRISMA-EcoEvo, we asked survey participants if they
1451	would consider using PRISMA-EcoEvo in the future, and in what format it would be most
1452	useful to them.
1453	General comments about PRISMA-EcoEvo
1454	Respondents had the opportunity to make free-form, general comments on PRIMSA-EcoEvo.
1455	Processing survey results
1456	After the survey closed, the results were downloaded as a .csv file and processed using a
1457	customised R script.
1458	Ethics approval
1459	The survey methods were approved by the Human Research Ethics Committee of
1460	The University of New South Wales, Sydney. HC No: HC190648.
1461	Results
1462	Assessment results
1463	1. For each item, what percentage of papers met the whole item, partially met the item,
1464	did not meet the item, or the item was not applicable?
1465	The scores for each item are shown in the main text, Table 1, and the ranking of average item
1466	scores is shown in Fig. S4. The items with the lowest reporting quality (<50% average score)
1467	were, starting with the lowest: review registration (also called 'pre-registration'); assessment
1468	of individual study quality; study selection (i.e. reporting how studies were screened for
1469	inclusion); clarification of post hoc analyses; results of the study selection process (e.g. a
1470	
14/0	PRISMA flow-diagram); data collection process; description of steps taken to deal with

description of the systematic search); and descriptions of publication bias assessments and sensitivity analyses.

Figure S4.

The average score across the 27 reporting items included in PRISMA-EcoEvo. For each paper, items received a maximum score of 100. Those scores are then averaged across all applicable papers that were assessed (sample sizes shown in the main text, Table 1).

2. The frequency with which components of each item were met.

The percentage of papers meeting the component of each item is shown in Table 1 of the main text. In total, 89 reporting components were assessed, encompassing the full range of reporting (from 0 to 1). The average proportion across the components was 0.53 (SD = 0.32). Three components were never reported in those, albeit rare, instances when they were deemed applicable: disclosing conflicts of interest, acknowledging deviations from registered methods, and justifying deviations from registered methods. The other least-reported components (<10% of applicable papers) were, in increasing order of reporting frequency: the number of extractions that were checked for accuracy by a co-author (n = 1/102 reported); a registration (i.e. link to descriptions of study aims, hypotheses, and methods in a time-stamped and publicly accessible archive; n = 3/102 reported); the number of people involved in screening studies, and how they contributed (n = 3/102 reported); how information about study quality was incorporated into analyses (n = 6/102 reported); whether the quality of studies included in the meta-analyses were assessed (i.e. critical appraisal; n = 7/102 reported); the derivation of effect size and sampling variance equations, when none already existed (n = 2/28 reported); and who collected data (n = 10/102 reported).

The three components that were reported in every paper were in the title or abstract, administrative information, and introduction: (1) providing contact details for the corresponding author (unsurprisingly, as this is a journal requirement); (2) providing a rationale for the study; and (3) identifying the review in the title or abstract as a systematic review, meta-analysis, or both. It is important to note, however, that our systematic search required studies to mention some variation of meta-analysis or meta-regression in the title or abstract, so for this particular component we have an extremely unrepresentative sample. The other most-reported components (reported in greater than 95% of applicable papers) were

1505 reporting: sample sizes (number of independent groups, e.g. studies) for data included in 1506 meta-analyses (n = 87/91 reported); the results of the primary outcome (n = 98/102 reported); 1507 primary aims and questions (n = 98/102 reported); the key data sought for each study (n = 98/102 reported). 1508 98/102 reported); the aims and scope of the review (n=99/102 reported); effect size(s) used (n = 99/102 reported); the models used for synthesis of effect sizes (n = 99/102 reported); and 1509 1510 a discussion of the main findings in terms of their biological/practical relevance (n = 100/1021511 reported). 1512 3. The distribution of average scores across the assessed papers 1513 The histogram of total scores is shown in the main text, Fig. 1. The average score was 1514 55% (n = 102; SD = 10%; range = 33-77%). 1515 1516 4. The subset of papers that referenced a reporting guideline showed higher standards 1517 of reporting than those which did not 1518 The small subset of papers that referenced a reporting guideline tended to have higher 1519 reporting scores than the majority of papers that did not reference a guideline (Guideline subset: mean = 65%; SD = 7%, range = 53-77%, n = 16; No guideline subset: mean = 54%, 1520 1521 SD = 10%, range = 33–74%, n = 86; see Fig. 1 of main text). All papers that referenced a reporting guideline included supplementary information. Papers that referenced a guideline 1522 1523 also reported a higher proportion of information in the supplementary information, compared to papers that did not (guideline: mean = 0.15; SD = 0.11; n = 16; no guideline: mean = 0.09; 1524 SD = 0.09; n = 86; Fig. S5). 1525

5. which components of items were reported in the supplementary information, and		
how frequently did this occur?		
Components of 20/27 items on PRISMA-EcoEvo were reported in the supplementary		
information at least once, and 90/102 assessed papers made use of a supplement. Sub-items		
that relied on the supplementary information most heavily were components of: Item 27		
(providing a reference list); Item 24 (providing results for the assessments of the risks of bias		
and the robustness of the review's results); Item 16 (subitem 16.3: describing other analyses		
of robustness of the results); Item 23 (subitem 23.1: providing estimates of meta-regression		
slopes and confidence/credible intervals); Item 8 (subitem 8.3: describing main assumptions		
or simplifications that were made during data extraction); Item 19 (presenting a PRISMA-		
style flowchart, alongside the number of studies excluded during each stage of screening);		
and Item 4 (eligibility criteria used during screening). The proportion of components reported		
in the supplementary information for each paper is shown in Fig. S5. There was a trend for		
the use of the supplementary information to slightly increase over time (linear regression:		
slope of z-scaled publication year = 0.02 , t-value = 1.92 ; df = 100).		

Paper used guideline? o no yes

Figure S5.

The proportion of sub-items reported in the supplementary information (SI) across time, for the 102 assessed papers. Green points represent papers that reported using a reporting guideline and/or checklist. The year of publication is shown on the *x*-axis (with random error added to prevent overlapping datapoints), while the *y*-axis shows the proportion of components that were reported in the supplementary information rather than the main text (the components are shown in Table 1 of the main text).

6. How frequently were PRISMA, or other reporting guidelines/checklists, referenced, and in what way were they referenced?

86 papers mentioned no reporting guidelines/checklists, 15 papers referenced PRISMA, and one paper that did not reference PRIMSA referenced a different reporting guideline: Koricheva & Gurevitch (2014). PRISMA was most-often referenced as a flow-chart template (n = 14), followed by a methodological guideline (n = 6), and a reporting guideline (n = 2).

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

7. How frequently were PRISMA-style flowcharts reported, and what did they look like? Figures for PRISMA-style flowcharts were reported in 18.6% of assessed papers (n = 19). Only one figure followed 'best practice' by splitting the number of identified sources into specific sources, listing sample sizes for different reasons for exclusion at the full-text stage, and listing the number of included studies and effect sizes. Nearly half of the figures used the flowchart template available from PRISMA (n = 9/19). The remaining figures varied in style and level of detail. n = 9 figures split the number of identified studies into specific sources (e.g. Scopus and Web of Science), n = 5 split identified studies into general sources (e.g. 'database searching' and 'other sources'), and n = 5 figures merely listed the number of identified sources. A minority of figures (n = 5) provided the number of papers excluded for specific reasons. It was most common for the total number of excluded papers to be listed without reasons (n = 13; e.g. one figure that followed the PRISMA flowchart template listed "Full-text articles excluded, with reasons (n = 12)", but did not list any reasons). One figure did not distinguish between papers excluded at early and late screening stages. For papers included in the meta-analysis, 5 figures included the number of effect sizes and included studies, while 14 figures only listed the number of included studies. 8. How frequently were data, meta-data, and code made publicly available? Most assessed papers shared the data required to reproduce results presented in the manuscript (77% of studies). Data were not always accompanied by data descriptions (44% of studies shared metadata), and often excluded additional data beyond what was presented in the paper (39% of studies included additional data, such as the raw data used to calculate effect sizes). The code for analysis (or full descriptions for GUI software) was available for 11% of studies.

9. Was there a correlation between reporting standards of published papers and the impact factor of the journals they were published in?

As shown in Fig. S6, meta-analyses with relatively high standards of reporting were published in journals across the spectrum of impact factors, but the lowest standards of reporting were limited to the lower-impact factor journals. This pattern was reflected by a weak positive correlation (r = 0.20) between 5-year impact factor and reporting score, and a slight trend for reporting scores to increase by less than 1% with a one-point increase in the five-year impact factor (linear regression: slope of 5-year impact factor: 0.78, t-value = 2.00; df = 96).

Paper used guideline? o no ves

Figure S6.

The relationship between the impact factor of the journal the meta-analysis was published in, and its reporting score, for n = 98 meta-analyses (four papers were published in a recent

1593 journal that did not yet have a 5-year impact factor). Green points represent papers that 1594 reported using a reporting guideline and/or checklist. **Community results** 1595 1596 In total, 208 people responded to the survey, of whom 5% were students, 44% were early-1597 career researchers (up to 10 years since PhD), 30% were mid-career (up to 20 years since 1598 PhD), 20% were senior researchers (>20 years since PhD), and less than 1% were emeritus. 1599 58% of survey participants identified solely as ecologists, while 36% listed both ecology and 1600 evolution as their research fields. Only 6% listed their sole field as evolution. Free-text 1601 comments are shown in Table S5. 1602 10. What experiences had survey respondents had with meta-analyses in ecology and 1603 evolution? 1604 Of the 208 people who responded to the survey, 87% had previous experience as a meta-1605 analysis author, 55% had been a reviewer, and 29% had handled a meta-analysis as an editor. 1606 A smaller subset of respondents had experience with systematic reviews as an author, 1607 reviewer, or editor (49%, 32%, and 17% respectively; note that the definition of a 'systematic 1608 review' was at the discretion of the survey respondent). 1609 First authors were the most common survey participants (67% have been first author of a 1610 meta-analysis, and 36% had been first author of a systematic review). Middle and senior 1611 authors were represented at similar rates (36% and 34% for meta-analyses; 19% and 20% for 1612 systematic reviews). 1613 Among the smaller subset of responses from people who only identified with the research 1614 field of evolution (i.e. not ecology; n = 13), there was a smaller distinction between meta-1615 analysis and systematic reviews; 62% of sole-evolution respondents identified as having 1616

authored both a meta-analysis and a systematic review.

11. How does the community's perception of reporting standards compare to actual
reporting standards?
Survey respondents were asked to assess current standards of reporting for seven aspects of
meta-analyses that were conducted following a systematic search, on a scale of 1 to 5 (where
1 was 'very poor' and 5 was 'excellent'). Descriptive statistics of responses are shown in
Table S4, along with the number of extreme assessments (1 or 5). Note that the number of
responses is smaller than the number of people who took the survey, because the questions
were optional.
To compare this perceived quality from our estimated quality, we multiplied the mean score
by 20 to give a percentage mean score (with 'very poor' = 20%, and 'excellent' = 100%), and
compared these scores to the average reporting scores found in our earlier assessment (the
relevant items are listed in Table S4). Fig. S7 shows the comparison of estimated and
perceived scores. The largest discrepancy between perceived and estimated reporting quality
was seen for study selection; the perceived reporting quality for study selection was
reasonably high, while the actual reporting quality we estimated from the literature was very
low. Estimated reporting qualities for the systematic search, bias assessment, and
computational reproducibility were also markedly lower than the perception. The perceived
reporting scores were not noticeably different between people who chose to access the full
descriptions of items on PRISMA-EcoEvo by taking a longer survey, and those who took the
shorter survey.

Figure S7.

A comparison of estimated reporting scores from the assessment of reporting quality ('Mean reporting score %' in Table S4; top grey bars) with the average of the community's perceived reporting scores. The *y*-axis labels reflect the survey questions (see column 5 in Table S4). Perceived reporting scores were calculated by multiplying the mean score (from 1 to 5, where 1 was 'very poor' and 5 was 'excellent') by 20 (sample sizes shown in Table S4). Black bars show the scores for those who took the longer survey (which gave the opportunity to read the items on PRISMA-EcoEvo; 57% of responses), whereas the red bars show the scores for those who chose to take the shorter survey (43% of responses).

Table S4. 1650 Mean estimated reporting score (%) for relevant items from PRISMA-EcoEvo with the 1651 average score estimated by survey respondents. The survey asked for a rating of reporting 1652 quality on a scale of 1 to 5, with 1 being 'Very poor' and 5 being 'Excellent'.

PRISMA-EcoEvo Reporting items	Mean reporting score %	Survey field	N	Survey question	Mean score (1–5)	SD score	'Very poor' %	'Excellent' %
		Ecology	116	Systematic	3.44	0.75	0	6
T' 1' . 1'	40	Evol B.	11	search	3.64	0.67	0	9
Finding studies	48	Both	70	(finding	3.46	0.83	1	6
		Total	197	studies)	3.46	0.77	1	6
		Ecology	115	Study	3.22	0.79	0	5
G. 1 1 .:	0	Evol B.	11	selection	3.27	0.65	0	0
Study selection	9	Both	70	(screening	3.17	0.85	1	3
		Total	196	studies)	3.20	0.80	1	4
Meta-analytic		Ecology	116	Model	3.41	0.90	0	10
model description;	6.4	Evol B.	11	description	3.18	0.87	0	0
Non-independence; Meta-regression and	64	Both	70	(statistical	3.37	0.84	0	7
model selection		Total	197	methods)	3.39	0.87	0	9
		Ecology	116	Data	3.41	0.90	0	9
Data items; Effect	7.1	Evol B.	11	description	3.36	0.67	0	0
size measures	74 Both Total	71	(what was collected and	3.31	0.73	0	3	
		198	calculated)	3.37	0.83	0	7	
		Ecology	113		3.75	0.74	0	16
Meta-analysis;	Evol B.	11	Results	3.64	0.81	0	9	
Heterogeneity; Meta-regression	68	68 Both	71	description	3.63	0.76	0	10
Wieta-Tegression	Total	Total	195		3.70	0.75	0	13
Assessment of		Ecology	116		2.72	0.99	6	6
individual study		Evol B.	11	Bias	3.09	0.70	0	0
quality; Publication bias and sensitivity	36	Both	71	assessment (e.g.	2.80	0.89	3	4
analysis; Outcomes of publication bias & sensitivity analysis			198	publication bias, study quality)	2.77	0.94	5	5
		Ecology	116		2.72	0.99	5	7
Metadata, data,	Evol	Evol B.	11	Availability of	2.91	0.54	0	0
code, and materials	43	43 Both	70	metadata, data, and code	2.76	0.92	6	4
	Tot	Total	197		2.74	0.94	5	6

1654	12. What is the community's current perception of reporting guidelines?
1655	A total of 69% of survey participants had heard of reporting guidelines prior to completing
1656	the survey, while 62% had previous experience using a reporting guideline. People generally
1657	thought the use of a reporting guideline would improve the quality of reporting (87% thought
1658	they would improve reporting quality and only one person thought reporting guidelines
1659	would not improve reporting quality; the remaining responses were 'Don't know').
1660	13. How are reporting guidelines currently being used?
1661	Among the 129 people who had previously used a reporting guideline, 71% had used them
1662	'as an author, to help conduct the study' (i.e. as a methodological guideline), 66% had used
1663	them 'as an author, to help write the study' (i.e. as a reporting guideline), and 36% had used
1664	them 'as a reviewer/editor, to assess manuscripts').
1665	14. Opinions on pre-registration of meta-analyses (a PRISMA item)
1666	A total of 116 people selected a reason why meta-analyses are rarely registered in advance.
1667	'Lack of awareness' was the most common reason (66%), with 'Too time consuming' and
1668	'Too few incentives' both being selected 48% of the time.
1669	15. Awareness and opinions on assessment of individual study quality in meta-analyses
1670	(a PRISMA item)
1671	When asked if 'critical appraisal' should be encouraged in ecology and evolution meta-
1672	analyses, 72% of the 116 respondents said 'Yes', and 17% said 'Don't understand what this
1673	means'.
1674	16. Will PRISMA-EcoEvo be useful?
1675	When asked 'Would you or your students use PRISMA-EcoEvo?', 69% of 113 respondents
1676	said 'Yes', 29% said 'Maybe', and 2% said 'No'. Among respondents who identified with
1677	both Ecology and Evolution (45 people), 76% said they would use PRISMA-EcoEvo. 54% of

1678 respondents selected a static table being a useful format, while an interactive online form was 1679 selected by 35% of respondents (10% listed 'Other' formats). 1680 17. General comments about PRISMA-EcoEvo, registration, and critical appraisal 1681 Seventy-six respondents provided general comments in the form of free text (longer than 5 1682 characters in length), which are shown below in Table S5. To adhere to ethics approval 1683 requirements, we have redacted potential identifying comments (deletions and insertions are 1684 indicated with square brackets). Obvious spelling errors have also been corrected. 1685 Comments on reporting quality and PRISMA-EcoEvo 1686 There were 38 comments on reporting quality and/or PRISMA-EcoEvo. The comments 1687 regarding PRISMA-EcoEvo were generally positive, with the view that reporting quality is 1688 highly variable and would benefit from systematic guidance (e.g. s29: "Current reporting 1689 quality is very low. Many people doing meta-analyses don't seem aware of existing reporting 1690 guidelines"; s42: "The use of these reporting metrics is really bi-modal. Some papers do this 1691 extremely well while others fail to do this at all"; s52: "would be great if journals had 1692 published guidelines referred to on their website that one could access before submission"; 1693 s61: "Many studies seem still not to be using such a systematic approach. It clearly is a good 1694 idea"). One respondent was a notable exception, and expressed their opinion that reporting 1695 guidelines could worsen research quality rather than improve it (e.g. s16: "If you want better 1696 quality research, teach people to think. Making them follow detailed instructions has the 1697 opposite effect."). Multiple respondents expressed frustration with meta-analyses that do not 1698 cite the primary studies included in the analysis (i.e. sub-item 27.2; Table 1 in the main text), 1699 and make it difficult to obtain the data (e.g. s36: "I am frustrated that many authors claim 1700 data used in meta-analysis is "already published" and hence they are under no obligation to 1701 publish it"; s45: "Most meta-analyses do not include the reference in a format that allows the 1702 source paper to be properly cited (e.g. list of paper cited in electronic appendix). This is

1703

1704

1705

1707

1708

1711

1715

1716

1717

1719

1721

1722

1723

1725

1726

1727

problematic."). Two respondents noted practical differences between ecology and evolution and medicine (s26: "It is hard to meet PRISMA guidelines as a single author, since many require multiple reviewers of included manuscripts"; s27: "Decent, but likely far below 1706 medicine, for example."). One respondent expressed the view that reporting quality was a bigger issue for empirical studies than meta-analyses, which was also raised as a barrier to assessing individual study quality (s43: "The main issue I have is not doing meta-analysis but 1709 the reporting standards of empirical studies that I tried to use in a meta-analysis"). 1710 Comments on registration Registration of meta-analyses received comments from 34 respondents, most of whom were 1712 sceptical. Some respondents were unfamiliar with registering meta-analysis methods in advance (e.g. s09: "Why one should do this?"; s17: "Honestly I was not aware that pre-1713 1714 registration (as explained in the PRISMA xlsx file) is a necessary step in meta-analysis"; s45: "I am not sure what it really means"), and others saw registration as a protection against being scooped by other researchers (s12: "Can pre-registration really stop other people from publishing a paper on my ideas before me, if they are working faster???"; s76: "useful to 1718 make sure there is no duplication"). 1720 Multiple respondents were unconvinced by the benefits of registration (e.g. s36: "Not clear to me that it is needed"; s43: "I'm not sure it really helps"; s10: "I think the scope for p-hacking a meta-analysis by fine-tuning its methods is pretty minor"), or thought registration was better suited to empirical studies (e.g. s47: "I think it would be more difficult than for typical 1724 empirical studies"). Two respondents expressed general reservations about registration (s38: "In general, I do not agree with the notion of pre-registration as it interferes with the potential for adjusting to surprises during the study and to evolution of your ideas"; s52: "I'm not a huge fan of preregistration. Half the fun of any study is in exploring the data").

Two barriers for registration identified in the comments were a lack of reward for the required effort (e.g. s08: "no incentives according to current personal evaluations"), and concerns over constraining scientific creativity (e.g. s58: "Needs to be done sensibly – i.e. allowing for new ideas & hypotheses as the study progresses"). It was identified that registration would be difficult for people with little experience (e.g. s51: "would be very challenging for researchers performing their first or second meta-analysis"; s60 "The process can be very iterative, meaning that you don't quite know what you're going to do until you see the papers and data that it is possible to acquire. For researchers with a lot of experience or expertise this might not be an issue, but researchers often do a meta-analysis when entering a new field because it's a good way to get on top of the literature and identify questions. In these cases preregistration can be inhibitive.").

There was tentative interest among some respondents for registration (e.g. s24: "if implemented in an ecology-specific way (as detailed in the PRISMA-EcoEvo document), this could work"; s70: "It might be a good idea. I will consider it in the future."). Three people thought registration was already being conducted, without necessarily being made public (s25: "we have in our lab a detailed process to describe and register electronic documents describing each project"; s41: "I don't understand how it could be done without preregistration (though have not heard use of this term to describe outlining goals ahead of time)"; s59: "This place is typically filled by the time investment in research proposals?"). Notably, responses from the three people who claimed prior registration experience were all positive (s35: "it was a very useful exercise, and increased the transparency of the whole process"; s44: "I find it very convenient"; s53: "I found it very useful to have to think about

1752	my hypotheses, data collection and statistical analyses ahead of the study. It made the whole
1753	process much easier, even if it seemed like I 'lost' time at the start").
1754	Comments on assessment of individual study quality
1755	The topic of assessing individual study quality (i.e. critical appraisal) received the most
1756	feedback, with 51 free-text comments. The predominant response was that the quality of
1757	ecology and evolution studies is hard to assess, and subjective judgements could introduce,
1758	rather than protect from, biases (e.g. s20: "Hard. Quality can be many different things
1759	You should be very precise when defining quality and selection criteria"; s34: "In my
1760	experience individual study quality is very hard to assess in an objective way- some
1761	evidence-based guidelines would be very useful"; s37: "Studies on rare species or rare events
1762	often have a few data points, but the value of these studies should not be evaluated by
1763	statistical approach."). A smaller number of people thought bias assessments were already
1764	being carried out (e.g. s16: "The idea that you would not assess this is appalling"; s21: "I
1765	would expect it is done but not reported on in the methods"; s45: "Well I thought everyone
1766	was checking the quality of the study included in meta-analysis").
1767	

Table S5.

Free-text comments given in response to the survey questions "Do you have comments about reporting quality of meta-analyses or PRIMSA-EcoEvo?", "Do you have general comments to make about pre-registration of meta-analyses?", and "Comments about critical appraisal/assessment of individual study quality?". Each row represents a different respondent to the survey. Only responses of length 6 characters or greater are shown. Some information has been redacted to retain anonymity.

Respondent ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta- analyses	Comments on critical appraisal of included studies
s01	_	_	It is obviously difficult to do this if there are many papers involved. It is difficult enough evaluating the quality of any one study.
s02	-	Most studies evolved as data are collected so preregistration is impractical	-
s03	error checking and taxonomic correction are seldom reported, but are critical steps.	_	I think some degree of filtering is important - but formally assessing every one of hundreds or thousands of source papers is prohibitive. For some variables (easy things like how tall is a plant), it is less important than for other more variably measured traits.
s04	relatively new in field, some unfamiliarity	I think you should not consider meta-analysis and systematic review separately. The former is a sub-case of the latter. E.g. below – there is no such thing as "systematic meta-analysis".	See comment above. Critical appraisal, in my view, is part of the selection criteria

Respondent ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta- analyses	Comments on critical appraisal of included studies
s05	I think the general reporting quality has room to improve	We need to remove barriers such as time- consuming processes for greater adoption of pre-registration	This creates room for people to subjectively choose which studies they want to include in their analysis and which they want to leave out.
s06	The items list in the title, abstract and introduction sections are not necessary, which could make meta-analysis papers to be too boring to read.	-	-
s07	Fulfilling all these requirements may sometimes be impossible, if data come from very heterogeneous sources and refer to very many taxa and/or studies	_	Critical appraisal is necessary, but always introduces some 'subjective' component. This is not 'bad' but authors as well as readers must be aware of that.
s08	-	no incentives according to current personal evaluations (no IF)	-
s09	-	Why one should do this?	-
s10	_	I think the scope for p-hacking a meta-analysis by fine-tuning its methods is pretty minor. The danger comes in things like how you extract the results from the literature: there are usually multiple results per paper you *could* pick, and some support your hoped-for result more than others.	Yes in principle, though in practice there are usually relatively few primarily studies to pick from, and most of them are somewhat flawed (e.g. good luck including only 'blind' experiments!)
s11	Reasons for search terms often poorly justified	What are the advantages?	Comparing results with study quality as a weighting factor would be interesting

Respondent ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta- analyses	Comments on critical appraisal of included studies
s12	-	Can pre-registration really stop other people from publishing a paper on my ideas before me, if they are working faster???	-
s13		I think this would be more urgent for experimental studies than meta-analyses, but in generally a good idea. However, a change in attitude is needed and scientists should appreciate exploratory studies better. These studies are essential and are currently often disguised as planned experiments. Development of preregistration systems should be accompanied with good outlets for exploratory work.	It is a bit arbitrary of course (although more objective quality assessments exist; e.g. sample sizes, standard errors etc.), but generally a good idea. I think researchers are generally good in categorising studies into quality categories, particularly if this is done by multiple researchers independently.
s14	_	_	Study quality should (in ecology) always be factored into calculations, using the sample size and standard deviations of reported results. Further, studies should be screened at least briefly for major flaws in the approaches that could bias results.
s15	Many studies do not describe how they have dealt with missing error values associated to the study (e.g. SE, SD, CI) and that is an important caveat.	_	_

Table S5 continued

Respondent ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta-analyses	Comments on critical appraisal of included studies
s16	Listen, making a meta-analysis into a controlled series of steps that could practically be carried out by a computer is not the answer to improving research quality. Any intelligent person who has judgement and suitable knowledge will make appropriate choices about inclusion of data and possible biases. Sometimes, in fact, bias is just a negative way of saying expert judgement. For example, I may judge that due to the methods used in Experiment A, it is actually not comparable to Experiments B and C. This is because I have done similar research and I realize that there is a critical but subtle difference between them that in my judgement means that A is not actually measuring the same thing (this happens all the time in ecology). If I can't include such judgements in my process, then ipso facto all my results will be meaningless (in my judgement). If you want better quality research, teach people to think. Making them follow detailed instructions has the opposite effect. You will quickly erode people's ability to think critically about meta-analysis, as well as remove any basis for them to have a critical discussion about methods during peer review, as it will all be reduced to "did you follow the instructions or not?" Analysis, which is about how we think and make sense of things, can never be reduced to a lab procedure or a computer programme. I hate this direction that science is taking. I understand you are probably thinking about an issue like replicability of the method. Guess what, anything that involves (1) expert judgement (2) a huge subsampled data-set, can never be 100% replicable. What we need here are opinion pieces explaining the different logical basis for having an argument about what those non-replications mean. Lets make science smarter, not stupider.	The only reason to preregister is to prove you didn't "cheat" by having a new idea about what you should be doing halfway through. The stakes are also too low, frankly, for me to care whether other people initially thought they would include experiments of type X but then changed their mind. Fine. That's normal.	If you're just dumping results into the study without appraising if they make sense and actually mean what they say they mean, your results will be based on a bunch of incomparable things and will be shite. I always do this. Studies can be valid on their own and claim to address issue X but not, for your purposes, do so in the way you need them to. This VERY COMMON. The idea that you would not assess this is appalling.

Table S5 continued

Respondent ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta-analyses	Comments on critical appraisal of included studies
s17		Honestly I was not aware that pre- registration (as explained in the PRISMA xlsx file) is a necessary step in meta- analysis	I am not sure I understand what critical appraisal means here. If critical appraisal means to list data sources analysed in the meta-analysis and their main characteristics in order to determine study quality, then I would say that this practice needs to be encouraged because it helps the authors of the meta-analysis to have an idea of the quality of primary studies they are dealing with. I do this for my meta-analyses as well, but I do not normally report study quality in the paper or SI because I think it is not necessary for the reader.
s18	-	-	Although I see the merits, I can imagine it being subjective, and prohibitively timeconsuming.
s19	-	-	It shouldn't be related to the impact factor of a journal
s20	-	-	Hard. Quality can be many different things. It can be confused with relevance or up-to-dateness. You should be very precise when defining quality and selection criteria.
s21	-	-	I would expect it is done but not reported on in the methods

Table S5 continued

Respondent ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta-analyses	Comments on critical appraisal of included studies
s22	_	_	It's difficult to standardise critical appraisal beyond appropriate sample sizes etc.
s23	_	-	I am not sure how to operationalize it in studies including hundreds of individual experiments.
s24		I think if implemented in an ecology-specific way (as detailed in the PRISMA-EcoEvo document), this could work. In a sort of related case, the number of studies with published data has greatly increased only in the last few years. This seems to me like a consequence of editors/journals requiring published data.	I don't know of any cases of quality assessment in ecological meta-analysis, but I could see it being relevant. Not sure exactly how one would define quality in ecology, this may be even more discipline specific than ecology (e.g., quality in a controlled experiment with plants may differ from other subfields).
s25	-	I had not considered it before though we have in our lab a detailed process to describe and register electronic documents describing each project	-
s26	It is hard to meet PRISMA guidelines as a single author, since many require multiple reviewers of included manuscripts.	-	-
s27	Decent, but likely far below medicine, for example.	-	Potential to introduce additional bias
s28	In my view, most papers today are not clear enough in respect with items number 3, 4, 6, and 18 of PRISMA-EcoEvo.	-	-

Table S5 continued

Respondent ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta- analyses	Comments on critical appraisal of included studies
s29	Current reporting quality is very low. Many people doing meta-analyses don't seem aware of existing reporting guidelines.	_	In some fields this an be done in a reasonably straight forward way based on the type of study design. In ecology and evolution there is so much variation in the way studies are designed and implemented that this would need to be done on a case-by-base basis. The result would be very subjective. I suggest weighting by sample size rather than conducting quality assessments
s30	Cite properly the studies included in the MA (not merely in an appendix)	-	-
s31	_	I think it will fall to journals to require pre- registration if we as a field want to see this implemented on a large scale.	I'm ambivalent about 'critical appraisal' because this could introduce bias for the final selection of studies. Unless there is a set of standard objective criteria to follow, I don't know that I would be comfortable with 'critical appraisal' of studies.
s32	Many authors do not understand the models (e.g., fixed v. random effects) and/or results	I view this as analogous to experimental design and power considerations which is often neglected in research	Appraisal also must be viewed in the context of study bias and number of studies incorporated into the analysis
s33	_	-	But this will increase the time taken to do an analysis, needs to be balanced and appropriate
s34	-	-	In my experience individual study quality is very hard to assess in an objective way- some evidence-based guidelines would be very useful

Respondent ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta- analyses	Comments on critical appraisal of included studies
s35	Reporting quality should be improved as much as possible, for the syntheses to be valuable for future studies. Standardizing reporting will be extremely helpful.	I have used in for a systematic map protocol published in Environmental Evidence it was a very useful exercise, and increased the transparency of the whole process.	
s36	Filling out this survey because I am frustrated that many authors claim data used in meta-analysis is "already published" and hence they are under no obligation to publish it. No requirement, even from top journals (Nature, Science) to do so. And yet, it's impossible to verify whether data have been correctly extracted without seeing the meta-analysis dataset. Currently fighting with an author of a paper in Science because his methods are insufficient for me to understand what data he has extracted from our papers. He has sent me the effect size he got but I have no idea how he got it. I can point to many other similar examples. I've been sent papers to review that don't even give any identification of the studies that they extracted data from.	Not clear to me that it is needed.	My field tests for methodological effects (eg differences between different experimental facilities, different pot sizes). Not sure what else could be done to assess study quality?
s37	_	-	It depends. Studies on rare species or rare events often have a few data points, but the value of these studies should not be evaluated by statistical approach.

ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta-analyses	Comments on critical appraisal of included studies
s38	Very thorough.	In general, I do not agree with the notion of pre-registration as it interferes with the potential for adjusting to surprises during the study and to evolution of your ideas. Rather, I would prefer a change in the way that we write papers so that we can describe our process of discovery, rather than writing a paper as if the outcome were preordained. Such a change would be much truer to how science actually happens.	Critical appraisal can be very useful, as long as it is done so that bias can be minimized and assessed. A clear description of exclusion criteria and a citation for each excluded paper, along with the reason for exclusion, should be part of the reported supplementary material of the study.
s39		_	I do not know how to include this critical appraisal in the meta-analysis, I use to include some methodological moderators in the analysis to account for different types of studies however this is not strictly an assessment of quality.
s40		_	Unless the study is an outlier driving the results it seems unnecessary to single out individual papers

Respondent ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta- analyses	Comments on critical appraisal of included studies
s41		I don't understand how it could be done without pre-registration (though have not heard use of this term to describe outlining goals ahead of time)	If it was published and meets criteria of inclusion, I am not sure if it is the role of a M-A to analyse the study quality? Wouldn't/shouldn't meeting both publication standards and pre-identified inclusion standards for the M-A at hand already make the study quality meet a threshold of acceptability?
s42	The use of these reporting metrics is really bi-modal. Some papers do this extremely well while others fail to do this at all.	-	-
s43	The main issue I have is not doing meta-analysis but the reporting standards of empirical studies that I tried to use in a meta-analysis. Often key data like N or SD/SE are missing, and some times any data that can be used for doing a meta-analysis is absent. More rarely, data presented or conclusions inferred don't match the data given in figures or supplementary information	There is not much incentive to do so. If it's for curbing bias, I'm not sure it really helps given that if journals force authors to provide a PRISMA diagram/information prior to peer review, that will solve issues of bias. So what's the point of preregistering?	As mentioned before, there is some really poor reporting practises for empirical studies in ecology/evolution. To the point, I'm always frustrated over the proportion of studies I look at closely when doing a meta-analysis about how badly statistical inference is being made and how frequently data is not available in its raw form or presented appropriately in figures/tables. I see this for papers published in top journals!
s44	-	I find it very convenient	-
s45	Most meta-analyses do not include the reference in a format that allows the source paper to be properly cited (e.g. list of paper cited in electronic appendix). This is problematic.	I am not sure what it really means	Well I thought everyone was checking the quality of the study included in meta-analysis

Respondent ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta- analyses	Comments on critical appraisal of included studies
s46	In general, the quality is mid-low, but I think it is improving with time	-	-
s47		I think it would be more difficult than for typical empirical studies.	My answer above is more of "it depends." If the theory and methods for incorporating quality-based weights was more developed or accessible, then using "critical appraisal" would be fine. If it is not done in a systematic manner though, by definition critical appraisal does not seem appropriate for a systematic review.
s48	_	_	I think that Ecology has so diverse study designs, that I fear that a study quality assessment could be a subjective criteria to exclude potential useful studies (which could be better included at the analyses with a moderator coding its difference from the others).
s49	_	_	Sample size is often used. But study quality, not so much i suppose.
s50	_	_	This is a fairly vague phrase - would need a concrete definition.

Respondent ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta- analyses	Comments on critical appraisal of included studies
s51		This seems like a potentially large additional workload, and would be very challenging for researchers performing their first or second meta-analysis. In the meta-analyses I've performed, data quality was worse than I had hoped, and I had to adapt my questions somewhat based on available information. Eligibility criteria in particular evolved over time as we saw the range of issues with existing studies.	I have discussed this with colleagues, and a barrier to critical appraisal of individual studies is that it feels subjective and it isn't clear how to implement this in the meta-analysis - should I weight studies based on study quality? If so, how much? It can also be difficult to systematically compare study quality when reporting quality is so variable. The closest I've come to this is experimenting with weighting by sample size in my analysis.
s52	totally varies depending on authors and reviewers. would be great if journals had published guidelines referred to on their website that one could access before submission	I'm not a huge fan of preregistration. half the fun of any study is in exploring the data	It depends. Lots of meta- analyses have some standards for including a study, which usually include some basic minimum design and data standards. I think lots of meta-analyses also report some measure of study quality (e.g. this many studies assessed lifetime fitness vs other variables). In my experience applying standards that are too high reduces the sample size to useless, but I think authors should always discuss how the limitations of the literature affect their results

Table S5 continued

Respondent ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta- analyses	Comments on critical appraisal of included studies
s53	_	I found it very useful to have to think about my hypotheses, data collection and statistical analyses ahead of the study. It made the whole process much easier, even if it seemed like I 'lost' time at the starts	_
s54	highly variable	-	often "critical appraisal" of individual studies is subjective. Methods are designed to deal with spurious results objectively and statistically.
s55	I have not read that many meta- analytical paper to be able to rate the current quality responsibly	-	-
s56	In the field of cooperative breeding studies, there is very little attention paid to the quality of the data being reported or how it was collected.	-	-
s57	-	-	Difficult to base this on objective criteria
s58	-	Needs to be done sensibly - i.e. allowing for new ideas & hypotheses as the study progresses	-
s59	The fear and disincentives to report non-significant results is a difficult hurdle for the peer process.	This place is typically filled by the time investment in research proposals?	With some interest in the development of FAIR principles, it is evident that semantics imbedded in peer articles of many studies mislead readers - intentionally or not. This is a difficult phenomenon to control for.

Respondent ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta- analyses	Comments on critical appraisal of included studies
s60		The process can be very iterative, meaning that you don't quite know what you're going to do until you see the papers and data that it is possible to acquire. For researchers with a lot of experience or expertise this might not be an issue, but researchers often do a metanalysis when entering a new field because it's a good way to get on top of the literature and identify questions. In these cases preregistration can be inhibitive.	I said no but actually I'm undecided. I can see pros and cons to both. If studies are done and reported properly in the first place it shouldn't be necessary. Any variation in quality will just add a bit of error. Also I feel we'd have to be careful how it's done because it could be very subjective and therefore introduce unwanted bias. But given we know that there is a lot of variation in the quality of studies then somehow incorporating this into methods and analyses could be helpful. It could also go a long way to improving awareness about what a good study is
s61	Many studies seem still not to be using such a systematic approach. It clearly is a good idea.	-	-
s62	It seems to me that the reporting quality is very variable. I have seen MA that even do not report on the number of studies screened, or even included in the analysis. On the other side of the spectrum, some MA have excellent reporting standards (still, a minority). And it seems that this varies between eco evo fields	_	I have done this for my first MA. I have used a three-levels of trust into the study, but it was challenging to construct these subjectively and consistently. I guess it would be extremely useful if Eco Evo would have some kind of a list of evaluation points to quickly determine the quality of individual studies (I would be very interested to participate in this)

Table S5 continued

Respondent ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta- analyses	Comments on critical appraisal of included studies
s63	I've seen a number of studies that are actually meta-analyses (but perhaps called systematic reviews or some other name), but never actually mention the word meta-analysis in the paper. As a result of this mislabelling, the editor perhaps does not recognize that the study at hand is a meta-analysis, the result being that these studies often do not include appropriate bias assessment methods perhaps because they are not sent to reviewers familiar with bias assessment methods. I think this could be remedied with familiarizing editors (and scientists in general) about what separates a meta-analysis from systematic reviews.		
s64	It's a very good one.	-	-
s65	I feel it is very mixed		
s66	-	-	I found very difficult to calculate this in EcoEvo.
s67	For the models, it would be good to recommend that authors report the model structure explicitly. As written, your guidelines suggest to mention whether the model is a "random effects" or "hierarchical" model, which is good. But I see many meta-analysis that just say that and don't say what the model structure was. A better description is to state, in sentence or equation form, what the response variable was, what the data model was, what the predictors were, and whether there were interactions.	I don't think the actual scientific approach is orderly enough to produce pre-registration in many cases. There's art to science. Clarity in procedures and questions often takes years, particularly for grad students, at which point it's too late to "pre-register". I don't mean that science proceeds in a biased way per se, just in a messier way than is reasonable for pre-registration.	

Respondent ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta- analyses	Comments on critical appraisal of included studies
s68	_	_	I feel like most meta- analyses in our field now account for sample size or standard error in the actual analyses. If you mean that we should account for more than that, then I think I would agree and answer "yes". But if not, I'm sure I agree with the premise.
s69	The quality of meta-analysis is staggered, we have high quality reportings, with critical assessment of individual studies and standardised data analysis methods, and could give us more systematic conclusions for this research area. However, we also have low quality parts, with poor systematic search and data description, and the conclusion of reporting is unbelievable.	If we recoding our study plan in advance, we could have systematic understanding on the research area, know more about the development of this field, understand what is the most cutting-edge research and what is lacking in this field.	Sometimes, an individual study could influence the results or conclusion of a meta-analysis, a critical assessment of individual study quality is needed.
s70	Having read the PRISMA-EcoEvo, my ranking is based on what I think I did so far, or what I have seen as a co-author.	It might be a good idea. I will consider it in the future.	It might be difficult to develop unambiguous tools to qualitatively estimate primary study quality. I thought that weighting effect sizes aimed at accounting for differences in primary data quality. If you ask, either it is not enough, either I am wrong.
s71	It should be mandatory to publish.	-	-
s72	I think availability of data and metadata could definitely improve.	-	-

Table S5 continued

Respondent ID	Comments on reporting quality and/or PRISMA-EcoEvo	Comments on registration of meta- analyses	Comments on critical appraisal of included studies
s73	Although I read a fair few meta- and systematic analyses I have not perhaps read enough to be confident in assigning a rating to each of these metrics. In my experience, some studies do all of these things very well while others report these things in an unsatisfactory way. For the latter, those studies could be improved in their reporting across the board.	-	If clear and unbiased criteria can be set that enhances the confidence in the quality of studies included in a given meta-analysis then that would be a positive thing - but I think that considerable challenges might await decisions regarding quantifying quality in terms of individual studies.
s74	-	-	Only if criteria for critical appraisal are very clear and not prone to bias
s75	It has gotten better over past decade as journals require data publication and authors become more aware of reporting standards	I co-authored 10+ meta-analyses since 2007 but was not aware of this option while analysing, writing (last published 2017)	This is challenging. Data science is making it easier to assimilate data without critical appraisal, or with code alone to check data quality.
s76	-	it would be useful to make sure there is no duplication	should be based on extremely simple decision rules

1776 References: Surveys

1777 VAN AERT, R.C.M., WICHERTS, J.M. & VAN ASSEN, M.A.L.M. (2016). Conducting meta-1778 analyses based on p values: reservations and recommendations for applying p-uniform 1779 and p-curve. *Perspectives on Psychological Science* **11**, 713–729. 1780 BEGG, C.B. & MAZUMDAR, M. (1994). Operating characteristics of a rank correlation test for 1781 publication bias. *Biometrics* **50**, 1088–1101. 1782 COPAS, J.B. & LI, H.G. (1997). Inference for non-random samples. Journal of the Royal Statistical Society: Series B-Methodological **59**, 55–95. 1783 1784 DUVAL, S. & TWEEDIE, R. (2000a). A nonparametric 'trim and fill' method of accounting for 1785 publication bias in meta-analysis. Journal of the American Statistical Association 95, 89– 98. 1786 1787 DUVAL, S. & TWEEDIE, R. (2000b). Trim and fill: a simple funnel-plot-based method of 1788 testing and adjusting for publication bias in meta-analysis. *Biometrics* **56**, 455–463. 1789 EGGER, M., SMITH, G.D., SCHNEIDER, M. & MINDER, C. (1997). Bias in meta-analysis 1790 detected by a simple, graphical test. BMJ 315, 629–634. 1791 FRASER, H., PARKER, T., NAKAGAWA, S., BARNETT, A. & FIDLER, F. (2018). Questionable research practices in ecology and evolution. PLOS ONE 13, e0200303. 1792 1793 HEDGES, L.V. (1984). Estimation of effect size under nonrandom sampling: the effects of 1794 censoring studies yielding statistically insignificant mean differences. Journal of 1795 Educational Statistics 9, 61–85. IYENGAR, S. & GREENHOUSE, J.B. (1988). Selection models and the file drawer problem. 1796 1797 Statistical Science 3, 109–117. 1798 KORICHEVA, J., GUREVITCH, J & MENGERSEN, K. (2013). Handbook of Meta-analysis in 1799 Ecology and Evolution. Princeton University Press, Princeton and Oxford.

KORICHEVA, J. & GUREVITCH, J. (2014). Uses and misuses of meta-analysis in plant ecology. 1800 1801 Journal of Ecology 102, 828-844. 1802 MCSHANE, B.B., BÖCKENHOLT, U. & HANSEN, K.T. (2016). Adjusting for publication bias in 1803 meta-analysis: an evaluation of selection methods and some cautionary notes. 1804 Perspectives on Psychological Science 11, 730–749. 1805 NAKAGAWA, S. & SANTOS, E.S.A. (2012). Methodological issues and advances in biological 1806 meta-analysis. Evolutionary Ecology 26, 1253–1274. 1807 ORWIN, R.G. (1983). A fail-safe N for effect size in meta-analysis. *Journal of Educational* 1808 Statistics 8, 157–159. 1809 R CORE TEAM. (2018). R: A language and environment for statistical computing. 1810 ROSENBERG, M.S. (2005). The file-drawer problem revisited: a general weighted method for 1811 calculating fail-safe numbers in meta-analysis. Evolution 59, 464–468. 1812 ROSENTHAL, R. (1979). The file drawer problem and tolerance for null results. *Psychological* 1813 Bulletin 86, 638-641. 1814 SENIOR, A.M., GRUEBER, C.E., KAMIYA, T., LAGISZ, M., O'DWYER, K., SANTOS, E.S.A. & 1815 NAKAGAWA, S. (2016). Heterogeneity in ecological and evolutionary meta-analyses: its 1816 magnitude and implications. *Ecology* **97**, 3293–3299. 1817 WANG, M.C. & BUSHMAN, B.J. (1998). Using the normal quantile plot to explore meta-1818 analytic data sets. Psychological Methods 3, 46–54.