Institution Oregon State University

Vehicle Properties		
Total Length (in)	100	
Diameter (in)	6.25	
Gross Lift Off Weigh (lb)	54.9	
Airframe Material(s)	Carbon Fiber, Fiberglass	
Fin Material and Thickness (in)	Carbon Fiber	
Coupler Length(s)/Shoulder Length(s) (in)	12.5 / 6.25	

Motor Properties		
Motor Brand/Designation	Cesaroni L2375-WT	
Max/Average Thrust (lb)	586.3 / 533.7	
Total Impulse (Ibf-s)	1102.67	
Mass Before/After Burn (lb)	9.71 / 4.06	
Liftoff Thrust (lb)	553.5	
Motor Retention Method	Threaded Retainer	

Stability Analysis		
Center of Pressure (in. from nose)	72.051	
Center of Gravity (in. from nose)	58.548	
Static Stability Margin (on pad)	2.1	
Static Stability Margin (at rail exit)	2.1	
Thrust-to-Weight Ratio	9.77	
Rail Size/Type and Length (in)	1515 / 144	
Rail Exit Velocity (ft/s)	84.6	

Ascent Analysis		
Maximum Velocity (ft/s)	596	
Maximum Mach Number	0.54	
Maximum Acceleration (ft/s^2)	322	
Target Apogee (ft)	4500	
Predicted Apogee (From Sim.) (ft)	4797	

Recovery System Properties - Overall	
Total Descent Time (s)	71 (fore), 72 (aft)
Total Drift in 20 mph winds (ft)	2092 (fore), 2113 (aft)

Recovery System Properties - Energetics		
Ejection System Energetics (ex. Black Powder)		Black Powder
Energetics Mass - Drogue	Primary	2.12
Chute (grams)	Backup	3
Energetics Mass - Main Chute (grams)	Primary	0.33
	Backup	0.33
Energetics Mass - Other	Primary	5.5
(grams) - If Applicable	Backup	8.25

Milestone PDR

Recovery System Properties - Recovery Electronics			
Primary Altimeter Make/Model		PerfectFlite, StratoLoggerCF	
Secondary Altimeter Mal	ke/Model	Missleworks, RRC3	
Other Altimeters (if app	olicable)	Jolly Logic, AltimeterThree	
Rocket Locator (Make/	Model)	X-Bee Pro 900HP	
Additional Locators (if applicable)		Sparkfun Venus GPS	
Transmitting Frequencies (all - vehicle and payload)		CC1200: 433 MHz Xbee PRO 900HP: 900 MHz	
Describe Redundancy Plan (batteries, switches, etc.)	Two altimeters for each section, separate batteries for each altimeter, separate charges for each altimeter, two chute releases per main chute		
Pad Stay Time (Launch Configuration)	Altimeters: 8+ hours Tracking Unit: 3 hours		

Recovery System Properties - Drogue Parachute				
Ma	anufacturer/Mo	del	Top Flight Recovery / XTEAR-18	
Size	or Diameter (in	or ft)	18 in. (fore) / 18 in. (aft)	
Main Altir	neter Deployme	ent Setting	Apogee	
Backup Alt	imeter Deploym	ent Setting	Apogee +1 s	
Veloci	ty at Deploymer	nt (ft/s)		1.7
Terminal Velocity (ft/s)		146 (fore) /127 (aft)		
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		1 in. Nylon Web		
Recovery Harness Length (ft)		30 (fore) / 30 (aft)		
Harness/Airfra	s/Airframe Interfaces 3/8 in. forged ste			
Kinetic Energy	Section 1	Section 2	Section 3	Section 4
of Each Section (Ft-lbs)	5137 (fore)	3444 (aft)	419.3 (nosecone)	N/A

Recovery System Properties - Main Parachute					
Ma	anufacturer/Mo	del	Fruity Chutes Toroidal		
Size	or Diameter (in	or ft)	10 ft (fore) / 8 ft (aft)		
Main Altime	eter Deploymen	t Setting (ft)	525		
Backup Altim	neter Deployme	nt Setting (ft)	!	500	
Veloci	ty at Deploymer	nt (ft/s)	146 (fore	146 (fore) / 127 (aft)	
Terminal Velocity (ft/s)		12.02 (fore) / 12.95 (aft)			
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		1 in. Nylon Web			
Recovery Harness Length (ft)			15		
Harness/Airfra	ame Interfaces	3/8 in. forged steel eyebolts connected to altimeter bulkheads			
Kinetic Energy	Section 1	Section 2	Section 3	Section 4	
of Each Section (Ft-Ibs)	60.20 (fore)	52.40 (aft)	4.913 (nosecone)	N/A	

Institution	Oregon State University	Milestone	PDR

	Payload
	Overview
Payload 1 (official payload)	The rover will be contained within the fore section of the airframe. Upon landing, the rover will be ejected from the airframe using black powder charges. The rover will have two coaxial, independently driven wheels with a chassis suspended between them. A spring-loaded stabilizer arm will act as a third point of contact with the ground. An Arduino Teensy 3.6 development board will autonomously control the motors to move the rover, receiving input from a sensor array including active sonar, passive sonar, and a nine-degree-of-freedom IMU. An auger will be mounted in the center of the chassis. When the rover is deployed the auger will periodically gather soil samples and store them in an internal containment unit. After collection, the rover will autonomously drive to a Scientific Base Station where it will perform an additional scientific experiment.
	Overview
Payload 2 (non- scored payload)	None

	Test Plans, Status, and Results
Ejection Charge Tests	Sub-Scale Test Plan: After final launch vehicle assembly with bulkheads and recovery system, a remote ignition system will be used to ensure proper seperation and parachute ejection with selected amount of black powder. Full-Scale Test Plan: After final launch vehicle assembly with bulkheads and recovery system, a remote ignition system will be used to ensure proper seperation and parachute ejection with selected amount of black powder.
Sub-scale Test Flights	Test Plan: Sub-scale launch vehicle will be constructed with the same stability margin as the full scale launch vehicle. The same ejection controllers will be used in sub-scale flights as the full scale launch vehicle. Status: Planned test flight November 17th, 2018 & December 15th, 2018. Results: N/A
Vehicle Demon- stration Flights	Test Plan: The full scale launch vehicle will be manufactured from final design choices. Altitude and decent calculations will be calculated and verfied with simulations. The full scale launch vehicle will be flown multiple times in January and February 2019 before NASA Student Launch competition launch day April 6th, 2019. Status: Preliminary design of launch vehicle is complete. Results: N/A
Payload Demon- stration Flights	Test Plan: The competition payload is planned to fly in all full scale flights. The payload demonstration flights will be the same flights as the vehicle demonstration flights. Status: Preliminary design of launch vehicle is complete. Results: N/A

Institution Oregon State University Milestone PDR

	Transmi	tter #1	
Location of transmitter:	Nosecone		
Purpose of transmitter:	Tracking/Telemetry		
Brand	Digi	RF Output Power (mW)	250
Model	Xbee PRO 900HP	Specific Frequency used by team (MHz)	900
Handshake or frequency hopping? (explain)	Frequency hopping, 400KHz wide channels		
Distance to closest e-match or altimeter (in)	6		
Description of shielding plan:	Conductive spray paint RF shielding around recovery electronics to ensure no interference with recovery electronics and to ensure that ejection takes place at the correct altitude.		

Transmitter #2			
Location of transmitter:	Nosecone		
Purpose of transmitter:	Long Range Tracking/Telemetry		
Brand	Texas Instruments	RF Output Power (mW)	40
Model	CC1200	Specific Frequency used by team (MHz)	433
Handshake or frequency hopping? (explain)	Frequency hopping		
Distance to closest e-match or altimeter (in)	6		
Description of shielding plan:	Conductive spray paint RF shielding around recovery electronics to ensure no interference with recovery electronics and to ensure that ejection takes place at the correct altitude.		

Transmitter #3			
Location of transmitter:	Aft section of airframe directly above the motor		
Purpose of transmitter:	Tracking/Telemetry		
Brand	Digi	RF Output Power (mW)	250
Model	Xbee PRO 900HP	Specific Frequency used by team (MHz)	900
Handshake or frequency hopping? (explain)	Frequency hopping, 400KHz wide channels		
Distance to closest e-match or altimeter (in)	4		
Description of shielding plan:	Conductive spray paint RF shielding around recovery electronics to ensure no interference with recovery electronics and to ensure that ejection takes place at the correct altitude.		

Transmitter #4			
Location of transmitter:	Aft section of airframe directly above the motor		
Purpose of transmitter:	Long Range Tracking/Telemetry		
Brand	Texas Instruments	RF Output Power (mW)	40
Model	CC1200	Specific Frequency used by team (MHz)	433
Handshake or frequency hopping? (explain)	Frequency hopping		
Distance to closest e-match or altimeter (in)	4		
Description of shielding plan:	Conductive spray paint RF shielding around recovery electronics to ensure no interference with recovery electronics and to ensure that ejection takes place at the correct altitude.		

Institution	on state university	Millestone	PDR
	Transmitte	r #5	
Location of transmitter:		Fore section above payload bay	
Purpose of transmitter:		Payload Ejection	
Brand	Digi	RF Output Power (mW)	250
Model	Xbee PRO 900HP	Specific Frequency used by team (MHz)	900
Handshake or frequency hopping? (explain)	Fre	equency hopping, 400KHz wide channels	
Distance to closest e-match or altimeter (in)		6	
Description of shielding plan:	Conductive spray paint RF shielding around recovery electronics to ensure no interference with recovery electronics and to ensure that ejection takes place at the correct altitude.		with recovery electronics and to
	Transmitte	r #6	
Location of transmitter:			
Purpose of transmitter:			
Brand		RF Output Power (mW)	
Model		Specific Frequency used by team (MHz)	
Handshake or frequency hopping? (explain)		-	
Distance to closest e-match or altimeter (in)			
Description of shielding plan:			
	J		
	Additional Con	ıments	
	None		
	None		