БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

Лопатин Павел Юрьевич

Методы численного анализа

Отчёт по лабораторной работе №1

студента 2 курса 3 группы

Преподаватель: Полещук Максим Игоревич

1. Исходное уравнение

$$x^2 \arctan\left(\frac{7x}{13}\right), [-3;3]$$

2. Условие задачи

Произвести табулирование заданной функции, используя чебышевскую сетку с m узлами, где $m \in \{3,4,5,6,7,8,9,10\}$. Для каждого m построить интерполяционный многочлен Ньютона на чебышевской сетке.

Дополнительно представить значения аргумента x_n , приближённые значения функции $P(x_n)$, точные значения функции и оценку погрешности $|r_m(x_n)|$ в 3m точках исходного отрезка, распределённых равномерно.

3. Теория

Интерполяционные полиномы в форме Ньютона удобно использовать, если точка интерполирования находится вблизи начала (прямая формула Ньютона) или конца таблицы (обратная формула Ньютона).

Интерполяционный член в форме Ньютона имеет вид:

$$P_n(x) = A_0 + A_1(x - x_0) + A_2(x - x_0)(x - x_1) + \dots + A_n(x - x_0) + \dots + A_n(x - x_{n-1}).$$

Преимуществом этой формы является простота нахождения коэффициентов:

$$A_0 = f(x_0), \,\, A_1 = rac{f(x_1) \, - f(x_0)}{x_1 - x_0}$$
 , а также тот факт, что

$$P_k(x) = P_{k-1}(x) + A_k(x - x_0) \cdots (x - x_{k-1}).$$

Если узлы интерполирования x_0, x_1, \ldots, x_n выбраны в порядке близости к точке интерполирования x, то можно утверждать, что многочлен любой степени $P_0(x), P_1(x), \ldots, P_n(x)$ обеспечивает минимум погрешности $|f(x)-P_i(x)|$ среди всех многочленов данной степени, построенных по данной таблице узлов.

Разделенные разности вычисляются по формулам:

р.р. 1-го пор.
$$f(x_i,x_{i+1})=\dfrac{f(x_{i+1})-f(x_i)}{x_{i+1}-x_i},$$
 р.р. 2-го пор. $f(x_i,x_{i+1},x_{i+2})=\dfrac{f(x_{i+1},x_{i+2})-f(x_i,x_{i+1})}{x_{i+2}-x_i},$ р.р. n-го пор. $f(x_0,x_1,\ldots,x_n)=\dfrac{f(x_1,\ldots,x_n)-f(x_0,\ldots,x_{n-1})}{x_n-x_0}.$

Формула оценки погрешности интерполяции:

$$|r_n(x)| \le \frac{M_{n+1}}{(n+1)!} \frac{(b-a)^{n+1}}{2^{2n+1}}$$

Узлы чебышевской сетки вычисляются по следующей формуле:

$$x_i = \frac{1}{2} \left[(b+a) + (b-a) \cos \frac{2i+1}{2n+2} \pi \right], \ i = \overline{0, n}.$$

4.Выполнение

m=3, n=2

	Xn	$f(x_n)$	$P(x_n)$
<i>X</i> ₀	2,598	6.41	6.41383
X1	0	0	8.88178*10^-16
X ₂	-2,598	-6.41	-6.41383

m=4, n=3

	Xn	$f(x_n)$	$P(x_n)$
<i>X</i> ₀	2,772	7.53	7.53182
X ₁	1,148	0.73	0.729762
X ₂	-1,148	-7.30	-0.729762
X 3	-2,772	-7.53	-7.53182

m=5, n=4

	Xn	$f(x_n)$	$P(x_n)$
X0	2,853	8.09	8.08998
X1	1,763	2,362	2.36161
X2	0	0	-8.88178*10^-16
X 3	-1,763	-2,362	-2.36161
X4	-2,853	-8.09	-8.08998

m=6, n=5

	Xn	$f(x_n)$	$P(x_n)$
<i>X</i> ₀	2,898	8.40	8.4043
X1	2,121	3,833	3.83266
X 2	0.7765	0.2387	0.238746
X 3	-0.7765	-0.2387	-0.238746
X4	-2,121	-3,833	-3.83266
X 5	-2,898	-8.40	-8.4043

m=7, n=6

	Xn	$f(x_n)$	$P(x_n)$
<i>X</i> ₀	2,942	8.72	8.72471
X1	2,494	5.79	5.79157
X ₂	1,667	2,032	2.0318
<i>X</i> ₃	0.5853	0.1046	0.104576
X4	-0.5853	-0.1046	-0.104576
X 5	-1,667	-2,032	-2.0318
<i>X</i> ₆	-2,494	-5.79	-5.79157
X 7	-2942	-8.72	-8.72471

m=8, n=7

	Xn	$f(x_n)$	$P(x_n)$
X0	2,963	8.88	8.87571
X1	2,673	6.88	6.88486
X2	2,121	3,833	3.83266
X3	1,362	1,174	1.20654
X4	0.4693	0.0545	0.174356
X 5	-0.4693	-0.0545	0.213457
<i>X</i> ₆	-1,362	-1,174	-0.711106
X 7	-2,121	-3,833	-3.45174
X8	-2,673	-6.88	-7.21819
X 9	-2,963	-8.88	-10.0718

5. Оценка погрешности в 3m точках на заданном отрезке при равномерном распределении.

Рассмотрим случай при m=4. Получим шаг интерполирования h=6/11 и 12 узлов интерполирования.

	Xn	$R_3(x_0)$
<i>X</i> ₀	-3,000	0.297459
X ₁	-2,455	0.221832
X2	-1,909	0.246239
<i>X</i> ₃	-1,364	0.0693811
X 4	-0.8182	0.0686908
X 5	-0.2727	0.0515622
X6	0.2727	0.0515622
X 7	0.8182	0.0686908
X8	1,364	0.0693811
X 9	1,909	0.246239
X ₁₀	2,455	0.221832
X11	3,000	0.297459