CS1231(S) Tutorial 8: Relations

National University of Singapore

2020/21 Semester 1

Questions for discussion on the LumiNUS Forum

Answers to these questions will not be provided.

- D1. Let A be a nonempty set.
 - (a) Why is \emptyset a relation on A?
 - (b) Is \varnothing reflexive as a relation on A?
 - (c) Is \varnothing symmetric as a relation on A?
 - (d) Is \varnothing transitive as a relation on A?
 - (e) Is \varnothing antisymmetric as a relation on A?
- D2. Do you agree with the claim and its proof below? Why?

Claim. If R is a symmetric and transitive relation on a set A, then R is reflexive.

Proof.

- 1. Let $x \in A$. The aim is to show x R x.
- 2. Take $y \in A$ such that x R y.
- 3. Then y R x by line 2, as R is symmetric.
- 4. So x R x by line 2 and line 3, as R is transitive.
- D3. For each of the following relations, either prove that it is an equivalence relation or prove that it is not an equivalence relation.
 - (a) R is the relation on \mathbb{Z} such that x R y if and only if x + y is even for all $x, y \in \mathbb{Z}$.
 - (b) R is the relation on \mathbb{Z} such that x R y if and only if x + y is odd for all $x, y \in \mathbb{Z}$.
 - (c) R is the relation on $\mathbb{Q} \setminus \{0\}$ such that x R y if and only if $x/y \in \mathbb{Z}$ for all $x, y \in \mathbb{Q} \setminus \{0\}$.
- D4. Draw Hasse diagrams for
 - (a) the partial order $\{(a,b),(b,c),(a,c),(a,d)\}$ on $\{a,b,c,d\}$; and
 - (b) the subset relation \subseteq on $\mathcal{P}\{a, b, c\}$,

where a, b, c, d are mutually distinct.

Background

Definition. Let R be a relation from a set A to a set B. Define the relation R^{-1} from B to A by setting

$$y R^{-1} x \Leftrightarrow x R y$$

for each $y \in B$ and each $x \in A$.

Tutorial questions

1. Let $A = \{1, 2, \dots, 10\}$ and $B = \{2, 4, 6, 8, 10, 12, 14\}$. Define a relation R from A to B by setting

$$x R y \Leftrightarrow x \text{ is prime and } x \mid y$$

for each $x \in A$ and each $y \in B$. Write down the sets R and R^{-1} in roster notation. Do not use ellipses (\dots) in your answers.

- 2. Let R be a relation on a set A. Show that R is symmetric if and only if $R = R^{-1}$.
- 3. For each of the following relations on \mathbb{Q} , determine if it is (i) reflexive, (ii) symmetric, (iii) transitive, (iv) antisymmetric, (v) an equivalence relation.
 - (a) R is defined by setting x R y if and only if $xy \ge 0$ for all $x, y \in \mathbb{Q}$.
 - (b) S is defined by setting x S y if and only if xy > 0 for all $x, y \in \mathbb{Q}$.
 - (c) T is defined by setting x T y if and only if $|x y| \le 2$ for all $x, y \in \mathbb{Q}$.
- 4. Define a relation R on \mathbb{Q} as follows: for all $x, y \in \mathbb{Q}$,

$$x R y \Leftrightarrow x - y \in \mathbb{Z}.$$

- (a) Show that R is an equivalence relation.
- (b) Find an element a in the equivalence class $\left[\frac{37}{7}\right]$ that satisfies $0 \le a < 1$.
- (c) Devise a general method to find, for each given equivalence class [x], where $x \in \mathbb{Q}$, an element $a \in [x]$ such that $0 \le a < 1$. Justify your answer.

(Hint: you may find the Division Theorem helpful.)

5. Let A, B be nonempty sets and f be a surjection $A \to B$. Show that $\mathscr C$ is a partition on A, where

$$\mathscr{C} = \big\{ \{ x \in A : f(x) = y \} : y \in B \big\}.$$

- 6. Consider the "divides" relation on each of the following sets of integers. For each of these, draw a Hasse diagram, find all largest, smallest, maximal and minimal elements, and a linearization.
 - (a) $A = \{1, 2, 4, 5, 10, 15, 20\}.$
 - (b) $B = \{2, 3, 4, 6, 8, 9, 12, 18\}.$
- 7. **Definition.** Let \leq be a partial order on a set P, and $a, b \in P$.
 - We say a, b are *comparable* if $a \leq b$ or $b \leq a$.
 - We say a, b are *compatible* if there exists $c \in P$ such that $a \leq c$ and $b \leq c$.
 - (a) Is it true that, in all partially ordered sets, any two comparable elements are compatible? Justify your answer.
 - (b) Is it true that, in all partially ordered sets, any two compatible elements are comparable? Justify your answer.