浙江工商大学 2015/2016 学年第 2 学期期末考试卷 A

	课程名称: 概率论与数理统计				考试方式: 团卷			完成时限: _120 分钟			
	班级名称:					学 号:			姓名:		
	题	号	_	=	Ξ	四	五	六	七	八	总分
	分	值	20	10	10	12	12	10	12	14	100
	得	分									
	阅礼	人									
	一、填空题(每空 2 分, 共 20 分)										
1. 某人连续向一目标射击, 每次命中目标的概率为 $\frac{3}{4}$, 他连续射击直到命中为止, 则射击											
次数为3的概率是											
2. 己知 $P(A) = 0.5$, $P(B) = 0.6$, $P(B \mid A) = 0.8$, 则 $P(A\overline{B}) =$, $P(A \cup B) =$.											
2. 已知 $P(A) = 0.5$, $P(B) = 0.6$, $P(B A) = 0.8$,则 $P(A\overline{B}) =$, $P(A \cup B) =$. 3. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{3}{8}x^2, & 0 \le x \le c, \\ 0, & \text{其他,} \end{cases}$											
	4. 设随机变量 X 的分布函数为										
$F(x) = \begin{cases} 0, & x < -1, \\ 0.2, & -1 \le x < 0, \\ 0.8, & 0 \le x < 1, \\ 1, & x \ge 1, \end{cases}$											
$F(x) = \begin{cases} 0.8, & 0 \le x < 1, \end{cases}$											
						1,	$x \ge$	1,			
则	E(X)	=	·								
5. 设随机变量 X 与 Y 分别服从正态分布 $N(1,3^2)$ 和 $N(0,2^2)$. 若 $\rho_{XY}=0$, 则 (X,Y) 的											
联	合密度	为									
6. 设 X_1, X_2, \dots, X_n 相互独立且服从相同的分布, $E(X_1) = 1$, $D(X_1) = 3$, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$,											
则						≤					
7. 设随机变量 $T \sim t(n)$, $t_{\alpha}(n)$ 为 $t(n)$ 的上 α 分位点,则 $P\{T > -t_{\alpha}(n)\} =$											
	8. 设 (X_1,\cdots,X_n) 是取自正态总体 $N(\mu,\sigma^2)$ 的样本,其中 σ^2 未知. 检验假设 $H_0:\mu=\mu_0$										

时,可采用的统计量是_____

二、选择题(每小题 2分, 共 10分)

- 1. 对于任意两个随机事件 A, B, 下列选项中一定成立的是()
 - A. 若 $AB = \Phi$,则 A 与 B相互独立
- B. 若 P(AB) = 0, 则 A 与 B 互不相容
- C. 若 P(A) = 0,则A 与 B相互独立
- D. 若 $AB \neq \Phi$, 则 A 与 B 不相互独立
- 2. 任何一个连续型随机变量的概率密度 f(x) 一定满足()
 - A. $\int_{-\infty}^{+\infty} f(x) dx = 1$

B. $0 \le f(x) \le 1$

C. $\lim_{x \to +\infty} f(x) = 1$

- D. 在定义域内单调非减
- 3. 若两个随机变量 X 与 Y 的协方差 cov(X,Y) = 0, 则下列结论必正确的是().
 - A. X 与 Y 相互独立

- B. D(X + Y) = D(X) + D(Y)
- C. D(X Y) = D(X) D(Y)
- D. D(XY) = D(X)D(Y)
- 4. 设总体 $X \sim N(0,1)$, X_1, X_2, \cdots, X_n 是取自该总体的样本,则下列各式正确的是 ().
 - A. $\bar{X} \sim N(0,1)$

B. $n\overline{X} \sim N(0,1)$

C. $\frac{\overline{X}}{S} \sim t(n-1)$

- D. $\sum_{i=1}^{n} X_{i}^{2} \sim \chi^{2}(n)$
- 5. 设总体 X 均值 μ 与方差 σ^2 都存在,且均为未知参数,而 X_1, X_2, \cdots, X_n 是该总体的一个样本, \overline{X} 为样本方差,则总体方差 σ^2 的矩估计量是().
 - A. \overline{X}

B. $\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$

C. $\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

D. $\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})^2$

三、(本题 10 分)

每箱产品有 10 件, 其中次品数从 0 到 2 是等可能的. 开箱检验时, 从中一次抽取 2 件(不重复), 如果发现有次品, 则拒收该箱产品. 试计算:

- (1)一箱产品通过验收的概率;
- (2) 已知该箱产品通过验收,则该箱中有2件次品的概率.

四、(本题 12 分)

设二维随机变量(X, Y)在区域 $D = \{(x,y) | 0 < x < 1, |y| < x\}$ 内服从均匀分布. 求:

- (1) (X, Y)的联合概率密度 f(x, y);
- (2) (X, Y)的边缘概率密度 $f_X(x), f_Y(y)$;
- (3) $P\{X < \frac{1}{2}\}.$

五、(本题 12 分)

设(X,Y)是二维随机变量,已知 $X \sim B(1,0.3)$,在X = 0下Y的条件分布律为

Y	0	1	2
$P\{Y\mid X=0\}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$

在X=1下Y的条件分布律为

Y	0	1	2
$P\{Y \mid X = 1\}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$

求(1) (X,Y) 的联合分布律;(2) Y=1下X 的条件分布律.

六、(本题 10 分)

某车间有同型号机床 200 部,每部开动的概率为 0.7. 假定各机床开动与否互不影响,开动时每部要消耗电能 15 个单位. 问电厂最少要供应这个车间多少单位电能,才能以95%的概率保证不致因供电不足而影响生产?($\Phi(1.65) = 0.95$)

七、(本题 12 分)

设总体 $X\sim B(n,p)$,其中 p 为未知参数, X_1,X_2,\cdots,X_n 为样本. (1) 求参数 p 的最大似然估计量; (2) p 的最大似然估计量是否为 p 的无偏估计?说明理由.

八、(本题 14 分)

两家银行分别对 21个储户和16个储户的年存款余额进行抽样调查, 测得其平均年存款余额分别为 $\overline{x}=2600$ 元和 $\overline{y}=2700$ 元,样本标准差相应地为 $s_1=81$ 元和 $s_2=105$ 元,假设年存款余额服从正态分布,试比较两家银行储户的平均年存款余额有无显著差异?($\alpha=0.10$) ($F_{0.05}(20,15)=2.33$, $F_{0.05}(15,20)=2.20$, $t_{0.05}(35)=1.69$)