# ALKOL DIŞI YAĞLIKARACİĞER HASTALIĞI

#### I.Giriş

Bu projede, tıbbi veri kümesi kullanılarak alkole bağlı olmayan yağlı karaciğer hastalığının sınıflandırılması amaçlanmıştır. Hangi hastaların bu hastalığa sahip olabileceğini öngörmek, tıbbi müdahaleleri erken aşamada planlamak ve hastalıkların erken teşhisini sağlamak amacıyla hastaların veri setindeki test değerleri kullanılarak bir makine öğrenimi modeli geliştirilmiştir. Biz projemizde hastaların değerleri sonucunda "Hastalık Türü" nün 1 hafif hastalık, 2 ağır hastalık olacak şekilde nasıl etkilendiğini inceledik.

#### Veri Setinin Temel Özellikleri:

Veri kümesi 605 hastadan alınan biyokimyasal ve fiziksel ölçümlerden oluşmaktadır. 605 satır ve 62 sütun bulunmaktadır. Veri seti integer ve float olmak üzere nümerik değişkenlerden oluşuyor. Ayrıca bazı eksik değerler bulunmakta. Hangi ölçümlerin kullanıldığı aşağıdaki tabloda verilmiştir:

| İngilizce             | Türkçe               |
|-----------------------|----------------------|
| Patient No.           | Hasta No.            |
| Age                   | Yaş                  |
| Gender (Female=1,     | Cinsiyet (Kadın=1,   |
| Male=2)               | Erkek=2)             |
| Height                | Boy                  |
| Weight                | Kilo                 |
| Body Mass Index       | Vücut Kitle İndeksi  |
| Waist Circumference   | Bel Çevresi          |
| Hip Circumference     | Kalça Çevresi        |
| Systolic Blood        |                      |
| Pressure              | Sistolik Kan Basıncı |
| Diastolic Blood       | Diyastolik Kan       |
| Pressure              | Basıncı              |
| Diyabetes Mellitus    | Diyabet Mellitus     |
| (No=0, Yes=1)         | (Hay1r=0, Evet=1)    |
| Hypertension (No=0,   | Hipertansiyon        |
| Yes=1)                | (Hay1r=0, Evet=1)    |
| Hyperlipidemia (No=0, | Hiperlipidemi        |
| Yes=1)                | (Hay1r=0, Evet=1)    |
| Metabolic syndrome    | Metabolik Sendrom    |
| (No=0, Yes=1)         | (Hay1r=0, Evet=1)    |
| Smoking Status        | Sigara Durumu        |
| AST                   | AST                  |
| ALT                   | ALT                  |
| ALP                   | ALP                  |
| GGT                   | GGT                  |
| LDH                   | LDH                  |
| Total Bilirubin       | Toplam Bilirubin     |

| Direct Bilirubin       | Direkt Bilirubin     |  |  |
|------------------------|----------------------|--|--|
|                        |                      |  |  |
| Total Protein Albumin  | Toplam Protein       |  |  |
|                        | Albümin              |  |  |
| Total Cholesterol      | Toplam Kolesterol    |  |  |
| Triglycerides          | Trigliserit          |  |  |
| HDL                    | HDL                  |  |  |
| LDL                    | LDL                  |  |  |
| Microalbumin Spot      | Mikroalbumin Spot    |  |  |
| Urine                  | Idrar                |  |  |
| Microalbumin/Creatini  | Mikroalbumin/Kreatin |  |  |
| ne Ratio               | in Oranı             |  |  |
| TSH                    | TSH                  |  |  |
| CK                     | CK                   |  |  |
| Leukocyte              | Lökosit              |  |  |
| Hemoglobin             | Hemoglobin           |  |  |
| Trombosit              | Trombosit            |  |  |
| Mean Corpuscular       | Ortalama Eritrosit   |  |  |
| Volume                 | Hacmi                |  |  |
|                        | Ortalama Trombosit   |  |  |
| Mean Platelet Volume   | Hacmi                |  |  |
| PT                     | PT                   |  |  |
| INR                    | INR                  |  |  |
| Vitamin D              | Vitamin D            |  |  |
| Ferritin               | Ferritin             |  |  |
| Ceruloplasmin          | Seruloplazmin        |  |  |
| C Peptide              | C-Peptid             |  |  |
| Glucose                | Glukoz               |  |  |
| Insulin                | İnsülin              |  |  |
| HOMA                   | HOMA                 |  |  |
| Insulin resistance     | HOMA'ya Göre         |  |  |
| according to HOMA      | İnsülin Direnci      |  |  |
| Uric Acid              | Ürik Asit            |  |  |
| BUN                    | BUN                  |  |  |
| Creatinine             | Kreatinin            |  |  |
| Hemoglobin - A1C       | Hemoglobin A1C       |  |  |
| Steatosis              | Steatoz              |  |  |
|                        | Aktivite             |  |  |
| Activity<br>Fibrosis   | Fibrozis             |  |  |
|                        | Kleiner'a Göre NAS   |  |  |
| NAS score according    |                      |  |  |
| to Kleiner             | Skoru                |  |  |
| NAS score>=4 and       | NAS Skoru>=4 ve      |  |  |
| Fibrosis>=2            | Fibrozis>=2          |  |  |
| Fibrosis status        | Fibrozis Durumu      |  |  |
| Significant Fibrosis   | Belirgin Fibrozis    |  |  |
| Advanced Fibrosis      | İleri Fibrozis       |  |  |
| Cirrhosis              | Siroz                |  |  |
| Diagnosis according to |                      |  |  |
| SAF                    | SAF'ye Göre Tanı     |  |  |
| Type of Disease        | Hastalık Türü        |  |  |

Kodda değişkenlerin veri seti üzerindeki dağılımları şekildeki gibi görselleştirilmiştir ve bunların ortalama, standart sapma gibi istatistiksel özellikleri açıklanmıştır.



Microalbumin/Creatinine Ratio
Type of Disease (Mild illness=1, Severe illness=2)
1 59.790
2 94.237

Değerler ile hafif veya ağır hastalığa yakalanma arasındaki ilişki araştırılmıştır. Örneğin yukarıdaki çıktıda görüldüğü üzere hastalığı hafif geçirenlerde Mikroalbumin/Keratinin oranı 59.7 iken ağır hastalık geçirenlerde bu oran 94.2.

#### II.GELİŞME

#### VERİ ÖNİŞLEME VE SINIFLANDIRMA

Öncelikle eksik verileri ve bunların veri setindeki oranını tespit ettik. Eksik değer sayısı 300'den fazla olan sütunları kaldırdık. Daha sonra kalan eksik değerleri sütunun dağılımını bozmamak için her sütunun modunu kullanarak doldurduk. Bu sayede veri setinde artık eksik değer kalmadı.



Daha sonra sütun bazında alt ve üst sınırları hesaplayarak aykırı değerleri tespit ettik ve bunları kutu grafikleriyle görselleştirdik. Varsayılan olarak %10 ve %90'lık çeyreklik değerlerini kullandık. Aykırı değerlerin yerine sınır değerlerini koyduk. Yani alt sınırdan küçük olan değerleri alt sınıra, üst sınırdan büyük olan değerleri üst sınıra eşitledik.

Standartlaştırma: Verisetinde bulunan özelliklerin (özellikle sayısal olanların) aynı ölçekte olmasını sağlamak için normalizasyon işlemi gerçekleştirildi. Çünkü bazı makine öğrenimi algoritmaları, farklı ölçeklere sahip verilerle çalışırken zorluk yaşar. Örneğin, bir sütun 0-1 arasında, diğer sütun 0-1000 arasında değer alıyorsa, büyük değerlere sahip sütun modele daha fazla ağırlık verebilir.

**Eğitim ve Test Verisi:** Daha sonra modelin performansını değerlendirmek için veri setini %70 eğitim ve %30 test seti olmak üzere ikiye ayırdık. Eğitim seti, modeli eğitmek için kullanılır. Test seti, eğitilen modeli bağımsız bir veriyle değerlendirmek için kullanılır.

Makine Öğrenmesi Alogritmaları: K-Nearest Neighbors (KNN), Bayes, Decision Tree, Random Forest, Gradient Boosting (XGBoost) makine öğrenimi modellerini kullanarak problemdeki model performanslarını Accuracy, Precision, Recall, F1 Score, ROC-AUC sonuçlarıyla değerlendirdik.

|                              | Accuracy | Precision | Kecall | FI Score | KUC-AUC |
|------------------------------|----------|-----------|--------|----------|---------|
| Decision Tree                | 1.000    | 1.000     | 1.000  | 1.000    | 1.000   |
| Random Forest                | 1.000    | 1.000     | 1.000  | 1.000    | 1.000   |
| Gradient Boosting (XGBoost)  | 1.000    | 1.000     | 1.000  | 1.000    | 1.000   |
| Support Vector Machine (SVM) | 0.989    | 1.000     | 0.988  | 0.994    | 0.998   |
| K-Nearest Neighbors (KNN)    | 0.984    | 0.994     | 0.988  | 0.991    | 0.998   |
| Naive Bayes                  | 0.978    | 1.000     | 0.976  | 0.988    | 1.000   |

Sonuçlar kullanılarak algoritmaların karşılaştırılması:

Accuracy (Doğruluk): Tüm veri üzerinden yapılan doğru tahminlerin oranını ifade eder. Karar Ağacı, Random Forest ve XGBoost modelleri %100 doğruluk (accuracy) elde etmiştir. Bu, bu modellerin test verisinde hiç hata yapmadığını gösterir.

Precision (Kesinlik): Pozitif olarak tahmin edilen sınıfların ne kadarının doğru olduğunu ölçer. Tüm modellerde precision %99.4 ile %100 arasında değişmektedir. Bu değer, yanlış pozitif (False Positive) sayısının oldukça düşük olduğunu ifade eder.

**Recall (Duyarlılık):** Gerçek pozitiflerin ne kadarının doğru tahmin edildiğini ölçer. Recall da %98.8 ve %100 arasında değişiyor, bu da modellerin pozitif sınıfları iyi bir şekilde tespit ettiğini gösterir.

**F1 Score:** Precision ve Recall'un harmonik ortalamasıdır. Dengesiz veri setlerinde özellikle

önemlidir. Burada Karar Ağacı, Random Forest ve XGBoost modelleri %100 F1 Score ile diğerlerinden daha iyi performans göstermektedir.

ROC-AUC: Modelin sınıflandırma performansını olasılık dağılımına dayalı olarak ölçer. Karar Ağacı, Random Forest ve XGBoost modelleri bu metrikte de mükemmel sonuç (%100) elde etmiştir.

Modeller çok yüksek doğruluk oranlarına ulaştı. Bu, modellerin veri seti üzerinde mükemmel performans gösterdiğini işaret ediyor. Bu durumun sıra dışı olduğunu düşünüp sorunları kontrol etmek için cross validation uyguladım. Sonuçlar aşağıdaki görselde:

|                              | Mean F1 Score | F1 Score Std Dev |
|------------------------------|---------------|------------------|
| Naive Bayes                  | 1.000         | 0.000            |
| Decision Tree                | 1.000         | 0.000            |
| Random Forest                | 0.997         | 0.005            |
| Gradient Boosting (XGBoost)  | 0.997         | 0.005            |
| Support Vector Machine (SVM) | 0.995         | 0.005            |
| K-Nearest Neighbors (KNN)    | 0.987         | 0.006            |

#### Naive Bayes ve Decision Tree:

Mean F1 Score: 1.000, yani mükemmel bir performans sergilemişler.

F1 Score Std Dev: 0.000, yani bu modeller her bir katmanda tamamen tutarlı sonuçlar üretmiş. Bu durum, verisetiyle uyumlarının çok yüksek olduğunu gösterir. Ancak, bu kadar yüksek performans aşırı öğrenmeye (overfitting) işaret edebilir.

## Random Forest ve Gradient Boosting (XGBoost):

Mean F1 Score: 0.997, yani çok yüksek bir performans.

F1 Score Std Dev: 0.005, sonuçlar arasında düşük bir değişkenlik var, bu da modellerin tutarlı olduğunu gösterir.

Random Forest ve XGBoost, genellikle güçlü genel modellerdir. Burada da veriyle oldukça uyumlu çalıştıkları görülüyor.

#### **Support Vector Machine (SVM):**

Mean F1 Score: 0.995, yüksek performans.

F1 Score Std Dev: 0.005, sonuçlar oldukça tutarlı.

SVM'nin performansı, Random Forest ve XGBoost'a yakın. Ancak belki biraz daha düşük esneklik sergileyebilir.

#### K-Nearest Neighbors (KNN):

Mean F1 Score: 0.987, diğer modellere göre bir miktar daha düşük.

F1 Score Std Dev: 0.006, diğer modellere kıyasla biraz daha fazla değişkenlik var. Bu, modelin bazı katmanlarda performansının daha az tutarlı olduğunu gösterebilir.

#### Genel Değerlendirme:

Naive Bayes ve Decision Tree mükemmel sonuçlar göstermiş olsa da, bu sonuçlar aşırı öğrenme riskini işaret ediyor olabilir.

Random Forest, Gradient Boosting (XGBoost), ve SVM modelleri hem yüksek performans göstermiş hem de tutarlı çalışmış, bu da genelleme kabiliyetlerinin yüksek olabileceğini gösterir.

KNN ise göreceli olarak daha düşük performans sergilemiş, bu da bu veri setine diğer modeller kadar iyi uyum sağlayamadığını gösterebilir.

Sonuç olarak: Eğer genelleme kabiliyeti önemliyse, Random Forest veya Gradient Boosting gibi ensembel yöntemler tercih edilebilir.

#### Random Forest ve XGBoost Algoritmaları

Veri setinde 62 değişken bulunmakta. Bunlar arasında biyokimyasal ölçümler, demografik bilgiler, tanılar ve klinik sonuçlar yer alıyor. Random Forest ve XGBoost, yüksek boyutlu veri setlerinde etkili şekilde çalışabilir. Bu algoritmalar, özellikler arasında önemli olanları seçerek modelin karmaşıklığını ve hesaplama maliyetini azaltır. Özellikle, karar ağaçları temelli yapılar, önemli değişkenleri otomatik olarak belirleme yeteneğine sahiptir.

Veri setindeki değişkenler arasında güçlü etkileşimler ve doğrusal olmayan ilişkiler olabilir (örneğin, Bel Çevresi, Vücut Kitle İndeksi, Glikoz gibi değişkenlerin birlikte çalışarak Hastalık Şiddetini belirlemesi). Random Forest ve XGBoost, doğrusal olmayan ilişkileri iyi öğrenebilir ve değişkenler arasındaki etkileşimleri modele entegre edebilir.

Örneğin Type of Disease (Hafif Hastalık=1, Şiddetli Hastalık=2) sınıfındaki dağılım dengesiz olabilir. XGBoost ve Random Forest, ağırlıklı öğrenme yöntemlerini kullanarak azınlık sınıfını dikkate alabilir ve bu sınıfta da yüksek performans gösterebilir.

Her iki algoritma da Accuracy, Precision, Recall, F1 Score ve ROC-AUC gibi metriklerde maksimum performans sergilemiştir. Özellikle Precision ve Recall gibi metriklerde yüksek puanlar, yanlış pozitif ve yanlış negatif oranlarının düşük olduğunu gösterir. Bu, kritik hastalık sınıflandırmalarında hayati öneme sahiptir. ROC-AUC skorunun 1.000

olması, modellerin sınıflar arasında mükemmel ayrım gücüne sahip olduğunu gösterir.

Random Forest, değişken önemini kolayca çıkarabilir, bu da doktorların veya sağlık çalışanlarının hangi özelliklerin daha önemli olduğunu anlamalarına yardımcı olur (örneğin, Bel Çevresi, LDL, Glikoz, Fibrozis Seviyesi gibi değişkenler hastalık şiddetini etkileyebilir).

XGBoost, SHAP değerleri aracılığıyla her bir özelliğin bireysel bir tahmin üzerindeki etkisini açıklayabilir. Örneğin, bir hasta için modelin tahmin ettiği "şiddetli hastalık" kararına hangi değişkenlerin ne kadar katkıda bulunduğunu görmek mümkündür.

Makine öğrenimi modelinin hangi özelliklere daha fazla ağırlık verdiğini (yani hangi özelliklerin tahmin üzerinde daha etkili olduğunu) analiz etmek için özellik önemlerini görsellestirdik.

#### Random Forest Özellik Önemi:



Yukarıdaki tablo random forest modelinin hangi özelliklere ne kadar önem verdiğini gösteriyor. En önemli özellikler sırasıyla: "Diagnosis according to SAF" (NASH veya NAFL ayrımı), "Activity" "NAS score according to Kleiner". Diğer özellikler, öneme göre azalarak sıralanmış: Ferritin, Direkt Bilirubin, ve Bel Çevresi. Özellik önemleri açıkça görüldüğü için, doktorlar teşhislerde en önemli özelliklere daha fazla odaklanabilir.

#### XGBoost Özellik Önemi:



Activity özelliği, model için en yüksek öneme sahiptir. Bu, modelin tahmin yaparken en fazla bu özelliğe dayandığını gösteriyor. Yani aktivite seviyesinin hedef değişkenle güçlü bir ilişki içinde olduğu söylenebilir. Kişinin aktivite seviyesi ile hastalığı ağır geçirme üzerinde belirleyici bir faktör var. Özellikler arasındaki önem farkı oldukça belirgin. Örneğin, Activity'nin önem değeri diğerlerinden çok daha yüksek, bu da bu özelliğin veri setindeki hedef değişkeni (y) açıklamada kilit bir rol oynadığını gösteriyor.

#### **SONUC**

Sonuç Karşılaştırma:

|   | Model         | Accuracy | Precision | Recall | F1 Score | ROC-AUC |
|---|---------------|----------|-----------|--------|----------|---------|
| 0 | Random Forest | 1.000    | 1.000     | 1.000  | 1.000    | 1.000   |
| 1 | XGBoost       | 1.000    | 1.000     | 1.000  | 1.000    | 1.000   |

Her iki model de çok yüksek doğruluk oranlarına ulaştı. Yani modeller veri seti üzerinde kusursuz çalışıyor. Ancak bunun aşırı öğrenme ya da başka herhangi bir problem teşkil etmediğini cross validation uygulayarak doğruladık. Sonuçların doğruluğu sayesinde özellik önemlerini kullanarak hangi test değerlerinin hastalığın "hafif" ya da "ağır" olduğunu belirlemede kritik rol oynadığı ortaya çıkabilir. "Hafif" hastalık durumundaki hastalar erken teşhis edilerek yaşam tarzı değişiklikleri veya tedavilerle "ağır" hastalık durumuna geçişleri önlenebilir. "Ağır" hastalık durumundaki hastalar için algoritmalar, bu grupta öne çıkan özellikleri inceleyerek daha yoğun tedavi gerektiren hasta gruplarını belirleyebilir.

### Kaynakça

 $\frac{https://www.youtube.com/playlist?list=PLK8LlaNi}{WQOuTQisICOV6kAL4uoerdFs7}$ 

https://www.veribilimiokulu.com/

 $\frac{https://www.purestorage.com/knowledge/what-is-}{data-preprocessing.html}$ 

https://www.kaggle.com/hakankocakk/code/

 $\frac{\text{https://github.com/RegaipKURT/Machine-}}{\text{Learning-Python}}$