Parametricity and semi-cubical types

Hugo Moeneclaey

21 April 2021, Budapest-Nottingham Type Theory Seminar

Summary

Introduction to type theory

Introduction to parametricity

Constructing semi-cubical models

A semantical point of view [Dybjer 95]

Definition

A model of type theory consists of:

- ► A collection of contexts.
- \triangleright For any context Γ, a collection of types over Γ.
- For any type A over Γ, a collection of terms in A.

with a lot of structure (substitutions, Π , Σ , \top and \mathcal{U}).

A semantical point of view [Dybjer 95]

Definition

A model of type theory consists of:

- ► A collection of contexts.
- For any context Γ , a collection of types over Γ .
- For any type A over Γ, a collection of terms in A.

with a lot of structure (substitutions, Π , Σ , \top and \mathcal{U}).

In type theory	In set theory	In logic	Notation
Context Γ	Set Γ	Hypothesis	Г⊢
Type A	Family of sets $(A_{\gamma})_{\gamma \in \Gamma}$	Proposition	Γ ⊢ <i>A</i>
Term a	Sections $(a_{\gamma} \in A_{\gamma})_{\gamma \in \Gamma}$	Proof	Γ ⊢ <i>a</i> : <i>A</i>

A semantical point of view [Dybjer 95]

Definition

A model of type theory consists of:

- A collection of contexts.
- For any context Γ , a collection of types over Γ .
- For any type A over Γ, a collection of terms in A.

with a lot of structure (substitutions, Π , Σ , \top and \mathcal{U}).

In type theory	In set theory	In logic	Notation
Context Γ	Set Γ	Hypothesis	Г⊢
Type A	Family of sets $(A_{\gamma})_{\gamma \in \Gamma}$	Proposition	Γ ⊢ <i>A</i>
Term a	Sections $(a_{\gamma} \in A_{\gamma})_{\gamma \in \Gamma}$	Proof	Γ ⊢ <i>a</i> : <i>A</i>

Such a model can be considered as a mathematical universe.

$$x,y:\mathbb{N} \vdash ? : \exists (q,r:\mathbb{N}). (x = qy + r) \times (0 \leq r < y)$$

$$x,y: \mathbb{N} \vdash ? : \exists (q,r:\mathbb{N}). (x = qy + r) \times (0 \leq r < y)$$

Elementary models:

- ▶ The set model is the usual mathematical universe.
- The initial model has syntactic objects as terms.

$$x, y : \mathbb{N} \vdash ? : \exists (q, r : \mathbb{N}). (x = qy + r) \times (0 \le r < y)$$

Elementary models:

- ▶ The set model is the usual mathematical universe.
- The initial model has syntactic objects as terms.

And many more:

- Sheaf models.
- ► Realizability models.
- ► Homotopic models (e.g. Kan cubical sets).
- **.**..

$$x, y : \mathbb{N} \vdash ? : \exists (q, r : \mathbb{N}). (x = qy + r) \times (0 \le r < y)$$

Elementary models:

- ▶ The set model is the usual mathematical universe.
- The initial model has syntactic objects as terms.

And many more:

- Sheaf models.
- ► Realizability models.
- ► Homotopic models (e.g. Kan cubical sets).
- **.**...

Slogan

The abundance of models makes the strength of type theory.

Using this in practice

Proof assistants like Coq and Agda implement an initial model.

Using this in practice

Proof assistants like Coq and Agda implement an initial model.

So there is a rich interaction between models and proof assistants:

A formal proof \Rightarrow One theorem per model.

A model \Rightarrow An extension of the proof assistant.

Summary

Introduction to type theory

Introduction to parametricity

Constructing semi-cubical models

Parametricity for the initial model [Bernardy et al. 2010]

We can define operations _* in the initial model:

```
\begin{array}{lll} \Gamma \vdash & \text{gives} & \Gamma_0, \Gamma_1 \vdash \Gamma_* \\ \Gamma \vdash A & \text{gives} & \Gamma_0, \Gamma_1, \Gamma_*, A_0, A_1 \vdash A_* \\ \Gamma \vdash a : A & \text{gives} & \Gamma_0, \Gamma_1, \Gamma_* \vdash a_* : A_*(a_0, a_1) \end{array}
```

by induction using equations (E) summarized next slide.

Parametricity for the initial model [Bernardy et al. 2010]

We can define operations _* in the initial model:

```
\Gamma \vdash  gives \Gamma_0, \Gamma_1 \vdash \Gamma_*

\Gamma \vdash A gives \Gamma_0, \Gamma_1, \Gamma_*, A_0, A_1 \vdash A_*

\Gamma \vdash a : A gives \Gamma_0, \Gamma_1, \Gamma_* \vdash a_* : A_*(a_0, a_1)
```

by induction using equations (E) summarized next slide.

```
Application: Theorems for free! [Wadler 89]
```

For t a term, t_* gives information on its behavior.

Parametricity for the initial model [Bernardy et al. 2010]

We can define operations _* in the initial model:

```
\begin{array}{lll} \Gamma \vdash & \text{gives} & \Gamma_0, \Gamma_1 \vdash \Gamma_* \\ \Gamma \vdash A & \text{gives} & \Gamma_0, \Gamma_1, \Gamma_*, A_0, A_1 \vdash A_* \\ \Gamma \vdash a : A & \text{gives} & \Gamma_0, \Gamma_1, \Gamma_* \vdash a_* : A_*(a_0, a_1) \end{array}
```

by induction using equations (*E*) summarized next slide.

Application: Theorems for free! [Wadler 89]

For t a term, t_* gives information on its behavior.

Definition

An extension of type theory by unary operations defined inductively in the initial model is called an interpretation.

Equations (E) summarized

$$(A \times B)_{*}((x_{0}, y_{0}), (x_{1}, y_{1})) = A_{*}(x_{0}, x_{1}) \times B_{*}(y_{0}, y_{1})$$

$$(s.1)_{*} = s_{*}.1$$

$$(s.2)_{*} = s_{*}.2$$

$$(s, t)_{*} = (s_{*}, t_{*})$$

Equations (E) summarized

$$(A \times B)_{*}((x_{0}, y_{0}), (x_{1}, y_{1})) = A_{*}(x_{0}, x_{1}) \times B_{*}(y_{0}, y_{1})$$

$$(s.1)_{*} = s_{*}.1$$

$$(s.2)_{*} = s_{*}.2$$

$$(s, t)_{*} = (s_{*}, t_{*})$$

$$(A \to B)_*(f_0, f_1) = \Pi(x_0, x_1 : A). A_*(x_0, x_1) \to B_*(f_0(x_0), f_1(x_1))$$

$$(s(t))_* = s_*(t_0, t_1, t_*)$$

$$(\lambda x. t)_* = \lambda x_0, x_1, x_*. t_*$$

Equations (E) summarized

$$(A \times B)_{*}((x_{0}, y_{0}), (x_{1}, y_{1})) = A_{*}(x_{0}, x_{1}) \times B_{*}(y_{0}, y_{1})$$

$$(s.1)_{*} = s_{*}.1$$

$$(s.2)_{*} = s_{*}.2$$

$$(s, t)_{*} = (s_{*}, t_{*})$$

$$(A \to B)_{*}(f_{0}, f_{1}) = \Pi(x_{0}, x_{1} : A). A_{*}(x_{0}, x_{1}) \to B_{*}(f_{0}(x_{0}), f_{1}(x_{1}))$$

$$(s(t))_{*} = s_{*}(t_{0}, t_{1}, t_{*})$$

$$(\lambda x. t)_{*} = \lambda x_{0}, x_{1}, x_{*}.t_{*}$$

$$U_{*}(A_{0}, A_{1}) = A_{0} \to A_{1} \to U$$

Parametricity for any model of type theory

Definition

A parametricity for a model of type theory consists of operations $_*$ obeying equations (E).

A parametricity means terms treat type inputs uniformly. The initial model is parametric.

Parametricity for any model of type theory

Definition

A parametricity for a model of type theory consists of operations $_*$ obeying equations (E).

A parametricity means terms treat type inputs uniformly. The initial model is parametric.

Goal

We want to build models with parametricity from arbitrary ones.

Summary

Introduction to type theory

Introduction to parametricity

Constructing semi-cubical models

Parametricity and cubes

When defining internal parametricity, cubical structures arise:

- ► [Bernardy, Coquand, Moulin 2015]
- ► [Cavallo, Harper 2018]

Parametricity and cubes

When defining internal parametricity, cubical structures arise:

- ► [Bernardy, Coquand, Moulin 2015]
- ► [Cavallo, Harper 2018]

Claim

There is a general procedure:

```
\{Interpretations \ of \ type \ theory\} \rightarrow \{Structures \ on \ types\}
```

sending (external) parametricity to semi-cubical structures.

A semi-cubical set consists of:

A set of points

For any two points a set of paths between them

For any square S a set of surfaces with border S

. .

A semi-cubical set consists of:	Starting from a context and applying parametricty we get:
A set of points	Г⊢
For any two points a set of paths between them	$\Gamma_0,\Gamma_1 \vdash \Gamma_*$
For any square S a set of surfaces with border S	$ \begin{array}{c c} \Gamma_{00}, \Gamma_{01}, \Gamma_{0*}, \Gamma_{10}, \Gamma_{11}, \Gamma_{1*}, \Gamma_{*0}, \Gamma_{*1} \\ & \vdash \Gamma_{**} \end{array} $

A semi-cubical set consists of:	Starting from a context and applying parametricty we get:
A set of points	Г⊢
For any two points a set of paths between them	$\Gamma_0,\Gamma_1\vdash \Gamma_*$
For any square S a set of surfaces with border S	$ \Gamma_{00}, \Gamma_{01}, \Gamma_{0*}, \Gamma_{10}, \Gamma_{11}, \Gamma_{1*}, \Gamma_{*0}, \Gamma_{*1} \\ \vdash \Gamma_{**} $
	•••

So we guess semi-cubes model parametricity.

Main result

Theorem

The functor forgetting parametricity:

```
U: \{ \textit{Models with parametricity} \} \rightarrow \{ \textit{Models of type theory} \}
```

has a right adjoint:

Cube : $\{Models \ of \ type \ theory\} \rightarrow \{Models \ with \ parametricity\}$

Main result

Theorem

The functor forgetting parametricity:

```
U: \{ \textit{Models with parametricity} \} \rightarrow \{ \textit{Models of type theory} \}
```

has a right adjoint:

```
Cube : \{\textit{Models of type theory}\} \rightarrow \{\textit{Models with parametricity}\}
```

Indeed Cube(C) is the model of semi-cubes in C.

Sketch of proof

Let T be a finitary essentially algebraic theory, I_T its initial algebra.

Lemma

Let O a set of unary operations inductively defined on I_T by equations E. Then the forgetful functor:

$$U: Alg_{T,O,E} \rightarrow Alg_T$$

has a right adjoint.

Sketch of proof

Let T be a finitary essentially algebraic theory, I_T its initial algebra.

Lemma

Let O a set of unary operations inductively defined on I_T by equations E. Then the forgetful functor:

$$U: Alg_{T,O,E} \rightarrow Alg_T$$

has a right adjoint.

We use colimits in Alg_T defined as QIITs. Then U commutes with:

- Initial objects almost by hypothesis.
- ▶ Pushouts because *O* is unary.
- \blacktriangleright Filtered colimits as T, O, E are finitary.

So U has a right adjoint.

The hypothesis of the previous lemma are often satisfied.

The hypothesis of the previous lemma are often satisfied.

Example

The forgetful functor from groups to monoids has a right adjoint:

Cube:
$$M \mapsto M^{\times}$$

The hypothesis of the previous lemma are often satisfied.

Example

The forgetful functor from groups to monoids has a right adjoint:

Cube:
$$M \mapsto M^{\times}$$

Example

The forgetful functor from $\{X : Set \mid f : X \to X\}$ to sets has a right adjoint:

Cube :
$$X \mapsto (\mathbb{N} \to X \text{ with } (u_n) \mapsto (u_{n+1}))$$

The hypothesis of the previous lemma are often satisfied.

Example

The forgetful functor from groups to monoids has a right adjoint:

Cube:
$$M \mapsto M^{\times}$$

Example

The forgetful functor from $\{X : Set \mid f : X \to X\}$ to sets has a right adjoint:

Cube :
$$X \mapsto (\mathbb{N} \to X \text{ with } (u_n) \mapsto (u_{n+1}))$$

Many other right adjoints can be constructed the same way.

Semi-cubes

Let C be a model of type theory.

Let I_X be the parametric model freely generated by X a context.

Semi-cubes

Let C be a model of type theory.

Let I_X be the parametric model freely generated by X a context.

Adjunction equation

$$Ctx_{Cube(\mathcal{C})} = Hom_{param}(I_X, Cube(\mathcal{C})) = Hom(U(I_X), \mathcal{C})$$

Semi-cubes

Let C be a model of type theory.

Let I_X be the parametric model freely generated by X a context.

Adjunction equation

$$Ctx_{Cube(\mathcal{C})} = Hom_{param}(I_X, Cube(\mathcal{C})) = Hom(U(I_X), \mathcal{C})$$

But $U(I_X)$ is freely generated by:

Conclusion and further work

Summary:

- We build semi-cubical models from parametricity.
- ▶ The method works for any interpretation.

Conclusion and further work

Summary:

- We build semi-cubical models from parametricity.
- ▶ The method works for any interpretation.

Further work:

Applications to other interpretations for type theory.

Conclusion and further work

Summary:

- We build semi-cubical models from parametricity.
- ▶ The method works for any interpretation.

Further work:

Applications to other interpretations for type theory.

For specialists, I intend to:

- Find an interpretation giving Kan cubical types, starting in low dimension (i.e. with setoids).
- Build definitionally univalent models from univalent ones using [Tabareau, Tanter, Sozeau 2017].