Statement problem Supersum

Let A be an array of N integers. We define green a process applied on array A in two steps:

- Step 1: Let B be an array of integers named B. Initially, the array B is empty. For all the subsets of the array A, including the void set, the sum of each subset is calculated, and the resulted number is added to the array B.
- Step 2: A is replaced by B. After that, B becomes empty again.

Your task is to calculate the sum of the elements of the array A modulo M after the *green* process is applied K times.

Input

The input will be read from stdin which contains on the first line the numbers N, K and M. The next line contains N numbers, the numbers of the initial array A.

Output

The output will be written to stdout, which contains a single number, the sum of the elements of the array A, modulo M after the green is applied K times.

Restrictions

- $1 \le N \le 50$
- $1 \le K \le 10^9$
- $1 \le M \le 10^9 + 7$
- $0 \le A_i \le M$
- \bullet M is odd
- For 20 points: $M = 10^9 + 7$, K = 1
- For another 10 points: $M = 10^9 + 7$, K = 2
- For another 10 points: K=1
- For another 20 points: $M \le 500, \ K \le 50000$
- For another 20 points: $M = 10^9 + 7$, $K \le 50000$

Example

stdin	stdout
3 1 9999	24
1 2 3	
3 4 29	26
0 23 0	
4 50000 49999	43310
2 0 2 3	

Explanation

In the first example, final array after the green operation is: 0, 1, 2, 3, 3, 4, 5, 6, therefore, the sum is 24.