

Time-aware API Popularity Prediction via Heterogeneous Features

Yao Wan¹, Liang Chen¹, Jian Wu¹ and Qi Yu²

¹Zhejiang University, Hangzhou, China

²Rochester Institute of Technology, Rochester, USA

{wanyao, cliang, wujian2000}@zju.edu.cn, qi.yu@rit.edu

June 28, 2015

- Introduction
- Dataset Characteristics
- Popularity Prediction Models
- Experiments
- □ Conclusion & Future Work

The spring up of web APIs

 10634 APIs and 6049 mashups in ProgrammableWeb until Nov. 2014 (www.programmableweb.com)

The advantages of web APIs

- Make web programmable
- Increase ecnomic transactions from web browsers to API-driven interactions

■ eBay, APIs drive over 60% of its sellers; Twitter, 13 billion calls per day through

APIs

Introduction

 Framework of API market: more and more Web sites dedicated to API market are emerging (e.g.Mashape)

Introduction

Motivation

- 1. With the increasing APIs, the need to search and manage APIs becomes urgent
- 2. Programmable manage APIs through the followers number at one monent

Introduction

Challenges

The growth patterns of two APIs

Popularity of Youtube API

Popularity of Twilio API

Note: In our paper, the popularity of API is defined as the number of mashups that are composed of this API.

Heterogeneous features

- Introduction
- Dataset Characteristics
- Popularity Prediction Models
- Experiments
- □ Conclusion & Future Work

Dataset Characterstics

An overview of ProgrammableWeb data

Number of APIs	10,634
Number of mashups	6,049
Number of users	52,512

Top-20 API categories

Popularity Ranking

- 1. Mapping
- 2. Photos
- 3. Video
- 4. Search
- 5. Social

4/25/16

Dataset Characterstics

Statistical analysis

Rank of provider is obtained from Alexa.com

API information integrity means the degree of details providers describe the API

• Observations

- 1. The lower the rank of provider the lower of its popularity
- 2. The provider of API that with a higher information integrity is more prudent to release the API, the API may be of higher quality
- 3. The category of API has an effect on it's popularity

- Introduction
- Dataset Characteristics
- Popularity Prediction Models
- Experiments
- □ Conclusion & Future Work

Popularity Prediction Models

Evaluation metrics

$$mRSE = \frac{1}{|C|} \sum_{a \in C} \left(\frac{\hat{N}(a, t_t | t_r)}{N(a, t_t)} - 1 \right)^2$$

- Szabo-Huberman (S-H) model
 - Szabo and Huberman found a strong linear correlation between the early and future popularity

$$\hat{N}(a, t_t | t_r) = \alpha_{t_r, t_t} \cdot N(a, t_r)$$

$$\alpha_{t_r,t_t} = \frac{\sum_{a \in C} \frac{N(a,t_r)}{N(a,t_t)}}{\sum_{a \in C} \left(\frac{N(a,t_r)}{N(a,t_t)}\right)^2}$$

Popularity Prediction Models

- Linear regression (LR) model
 - Feature vector of API $X_{t_r}(a) = (x_1(a), x_2(a), \dots, x_{t_r}(a))^T$
 - Optimization problem

$$\underset{\Theta_{(t_r,t_t)}}{\operatorname{argmin}} \frac{1}{|C|} \sum_{a \in C} \left(\frac{\Theta_{(t_r,t_t)} \cdot X_{t_r}(a)}{N(a,t_t)} - 1 \right)^2$$

lacksquare Let $X_v^* = rac{X_{tr}(a)}{N(a,t_t)}$

$$\underset{\Theta_{(t_r,t_t)}}{\operatorname{argmin}} \frac{1}{|C|} \sum_{a \in C} \left(\Theta_{(t_r,t_t)} \cdot X_v^* - 1 \right)^2$$

Can be solved by ordinary linear squares

Popularity Prediction Models

- Linear regression with heterogeneous features
 - Heterogeneous features
 - Time features
 - Numerical features
 - Categorical features
 - Textual features
- Optimization problem

$$\underset{\Theta_{(t_r,t_t)}}{argmin} \frac{1}{|C|} \sum_{a \in C} \left(\Theta_{(t_r,t_t)} \cdot X_v^* - 1 \right)^2 + \lambda \left\| \Theta_{(t_r,t_t)} \right\|_2^2$$

where X_v^* is the feature vector and λ is the tunning parameter, $\|\Theta_{(t_r,t_t)}\|_2^2$ is the L₂ penality item.

- Introduction
- Dataset Characteristics
- Popularity Prediction Models
- Experiments
- □ Conclusion & Future Work

Setup

- Dataset extraction
 - \blacksquare The target date t_t varies from 24 months to 48 months.
 - We extract the APIs whose releasing date is between 2005 and Nov. 2010
 - Discard those APIs whose popularity are alway zero
 - We get 613 APIs
- Experimental datasets
 - Full dataset
 - Popular dataset: APIs whose popularities are greater than 5
 - Junk dataset: APIs whose popularities are smaller than 5

- Feature extraction
 - Numerical feagure
 - Normalization
 - Category feature
 - Encoded into binary code
 - Textual feature extraction
 - Case-folding and tokenization: tokenized by white space
 - Pruning: filter stopwords (e.g. is, very, should), keep adjectives using a part-of-speech tagger
 - Stemming: strip word to obtain the stem word
 - Spell correcting
- Training and testing
 - KFold cross validation
 - 50% traing + 25% crossvalidation +25% testing

 Time-aware API popularity prediction

Performance evaluation on full dataset

TABLE II: Model prediction errors (mRSE) with various t_r and t_t on the full dataset.

mRSE	Methods	$t_r = 1$	$t_r = 3$	$t_r = 5$	$t_r = 7$	$t_r = 9$	$t_r = 11$	$t_r = 13$
$t_t = 24$	S-H	0.3987	0.3236	0.2750	0.2283	0.1867	0.1525	0.1183
	LR	0.3944	0.3240	0.2783	0.2320	0.1894	0.1540	0.1195
	LR-HF1	0.3121	0.2684	0.2364	0.2049	0.1698	0.1448	0.1166
	LR-HF2	0.2151	0.2010	0.1886	0.1732	0.1523	0.1326	0.1104
$t_t = 36$	S-H	0.4483	0.3824	0.3404	0.2933	0.2537	0.2214	0.1919
	LR	0.4472	0.3838	0.3434	0.2976	0.2569	0.2217	0.1931
	LR-HF1	0.3792	0.3347	0.3017	0.2679	0.2313	0.2081	0.1875
	LR-HF2	0.2470	0.2366	0.2228	0.2104	0.1933	0.1756	0.1605
$t_t = 48$	S-H	0.4577	0.3990	0.3556	0.3153	0.2785	0.2494	0.2218
	LR	0.4584	0.4005	0.3564	0.3186	0.2835	0.2527	0.2265
	LR-HF1	0.3912	0.3553	0.3195	0.2905	0.2588	0.2377	0.2179
	LR-HF2	0.2607	0.2507	0.2350	0.2241	0.2123	0.1973	0.1858

Performance evaluation on popular dataset

Observations

- 1. Our model has and obviously better performance over S-H and LR model, especially when the reference date is small
- •2. With the reference time becoming closer to the target time, the mRSE decreases for all models
- •3. With the reference time becoming closer to the target time, the advantages of our model shrink, S-H and LR model is enough

Performance evaluation on junk dataset

Observations

- 1. Our LR-HF model still has an better performance
- 2. The improvement is small when just introducing API's textual features
- 3. Our model is particularly suitable for predicting the popularity of APIs that not changes frequently

Impact of lambda

TABLE III: Impact of λ

mRSE	$\lambda = 0.0$	$\lambda = 0.2$	$\lambda = 0.4$	$\lambda = 0.6$	$\lambda = 0.8$	$\lambda = 1.0$
$t_r = 1$	0.25131	0.24748	0.24746	0.24776	0.24812	0.24846
$t_r = 5$	0.23292	0.22910	0.22921	0.22970	0.23026	0.23084
$t_r = 10$	0.19343	0.18926	0.18962	0.19081	0.19226	0.19379

Observations

- •1. The value of lambda really has an impact on the prediction accuracy
- 2. The most appropriate value of lambda is between 0.2 and 0.4

- Introduction
- Dataset Characteristics
- Popularity Prediction Models
- Experiments
- Conclusion & Future Work

Conclusion& Future Work

Conclusion

- Crawl the APIs and mashups until Nov. 2014 from ProgrammableWeb.
- Analyze some factors that may have an effect on the popularities of APIs
- Propose an approach for predicting future popularities of APIs by integrating heterogeneous features

Future work

- Collect more time series records of APIs and find more features that may effect the popularity of APIs
- Discove the popularity trends of APIs
- Infer the impacts of other data sources on APIs, such as social media

Thank you!

wanyao@zju.edu.cn http://www.wanyao.me