Chapter 3. Hilbert Spaces

問題 3.1.

- (1) l^2 空間は Hilbert 空間であることを示せ.
- (2) l^p 空間 $(p \neq 2)$ は内積空間でないことを示せ.

問題 3.2.

- (1) $L^2(X)$ 空間は Hilbert 空間であることを示せ.
- (2) $L^p(X)$ 空間 $(p \neq 2)$ は内積空間でないことを示せ.

問題 3.3. H を内積空間とする. $x, y \in H$ に対し $(1) \sim (3)$ は同値であることを示せ.

- (1) (x,y) = 0
- (2) $\forall \lambda \in \mathbb{C} ||x + \lambda y|| = ||x \lambda y||$
- (3) $\forall \lambda \in \mathbb{C} ||x|| \leq ||x + \lambda y||$

問題 3.4. $g \in C[a,b], g > 0$ とする. $L^2[a,b]$ 上の内積で

$$||f|| = \left(\int_a^b g(t)|f(t)|^2 dt\right)^{1/2}$$

で定まるノルムを誘導するものを求めよ.

問題 3.5. $u,v\in C([a,b])$ に対し $(u,v)=\int_a^b u\overline{v}dx$ で定めると内積になる. しかし Hilbert 空間でないことを示せ.

問題 3.6. H を Hilbert 空間 , X を Banach 空間 , $T:H\to X$ を等長同型とする. このとき X も Hilbert 空間であることを示せ.

問題 3.7. $\lambda=(\lambda_k)_{k=1}^\infty\subset\mathbb{R}$ は $0<\lambda_k<1$, $\sum_{k=1}^\infty\lambda_k<\infty$ を満たす点列とする. l^2 に内積

$$(x,y) = \sum_{k=1}^{\infty} \lambda_k x_k \overline{y_k}$$

を定める. このとき Hilbert 空間にならないことを示せ.

問題 3.8. $X=C[0,1], ||f||=\max_{0\leqslant x\leqslant 1}|f(x)|$ と定める。また $G=\{g\in X\mid g(0)=0,\int_0^1g(x)dx=0\}$ は X の閉部分空間である。

- $(1) d(f,G) \ge 1/2$ を示せ.
- (2) $\exists h_n \in G \text{ s.t. } ||f h_n|| \rightarrow 1/2$ が成立することを示せ.
- (3) ||f h|| = d(f, G) = 1/2 なる $h \in G$ は存在しないことを示せ.

Remark. Hilbert 空間ではこのようなことは起こらない!

問題 3.9. Banach 空間 X と閉部分空間 Y および $x \in X$ で, ||x-y|| = d(x,Y) なる $y \in Y$ が複数ある例を挙げよ.

Remark. Hilbert 空間ではこのようなことは起こらない! 部分空間でなくとも, 閉凸部分集合なら一意に定まる.

問題 3.10. H を Hilbert 空間, $0 \neq h \in H$ と閉部分空間 $M \subset H$ に対し Affine 空間 L = h + M を定める. このとき, $||w|| = \inf\{||z|| \mid z \in L\}$ なる $w \in L$ が存在することを示せ.

問題 3.11. $x \in l^2(\mathbb{Z})$ に対し $y = Tx = (y_k)$ を $y_k = x_{k-1} + x_{k+1} - 2x_k$ で定める. T は $l^2(\mathbb{Z})$ から $l^2(\mathbb{Z})$ への有界線形作用素で, $||T|| \leq 4$ を示せ.

問題 **3.12.** *H* を Hilbert 空間とする.

- $(1) \ X_1, X_2 \subset H$ を部分空間とする. $(X_1 + X_2)^{\perp} = X_1^{\perp} \cap X_2^{\perp}$ を示せ.
- (2) $X_1,X_2\subset H$ を閉部分空間とする. $(X_1\cap X_2)^\perp=\overline{X_1^\perp+X_2^\perp}$ を示せ.

問題 **3.13.** X, Y を Hilbert 空間とする. $(x_1, y_1), (x_2, y_2) \in X \times Y$ に対し,

$$\langle (x_1, y_1), (x_2, y_2) \rangle_{X \times Y} := \langle x_1, x_2 \rangle_X + \langle y_1, y_2 \rangle_Y$$

と定める. この内積を $X \times Y$ に入れると Hilbert 空間になることを示せ.

問題 **3.14.** H を Hilbert 空間, $M \subset H$ を閉部分空間とする. H/M に商ノルムを入れると Hilbert 空間となることを示せ.

問題 3.15. H を Hilbert 空間, $M \subset H$ を閉部分空間とする. $\operatorname{codim} M = 1$ のとき, $\dim M^{\perp} = 1$ を示せ.

問題 **3.16.** $S = \{x = (x_n) \in l^2 \mid x_1 + x_2 = 0, x_n \in \mathbb{R}\}$ に対し、 S^{\perp} を求めよ.

問題 3.17. 実 Hilbert 空間 $H=L^2(0,1)$ に対し, $L=\{f\in H\mid \int_0^1 f(x)dx=0\}$ は H の閉部分空間である. L への正射影作用素を P_L と書くと, 与えられた $f\in H$ に対し, $P_L(f)$ を求めよ.

問題 3.18. $H=L^2(-1,1)$, $D=\{f\in H\mid f(-x)=-f(x)\text{a.e.}\}$, $P=\{f\in H\mid f(-x)=f(x)\text{a.e.}\}$ と定める. D,P は共に閉部分空間である.

- (1) $H = D \oplus P, D \perp P$ を示せ.
- (2) 正射影作用素 π_D, π_P を求めよ.
- (3) D, P の基底を 1 組求めよ.

問題 **3.19.** $h: X \to [0, \infty)$ を可測関数とし、

$$K = \{ u \in L^2(X) \mid |u(x)| \le h(x) \text{ a.e.} \}$$

と定める. K は空でなく、閉凸であることを確かめよ. また P_K を決定せよ.

問題 3.20. $M_1=\{x\in l^2\mid \sum x_n=0\}$, $M_2=\{x\in l^2\mid \sum x_n/n=0\}$, $M_3=\{x\in l^2\mid \sum x_n/\sqrt{n}\}$ と定める. M_1^\perp , M_2^\perp , M_3^\perp をそれぞれ求めよ. (手法がすべて異なる. M_2 が一番簡単)

問題 3.21. H を実 Hilbert 空間 , $L:H\to\mathbb{R}$ を有界線形汎関数とする. $\emptyset\neq K\subset H$ は閉集合で 凸とする. $J:K\to\mathbb{R}$ を $J(x)=\frac{||x||^2}{2}+L(x)$ で定める. このとき,

$$\exists x_0 \in K \quad \text{s.t.} \quad J(x_0) = \inf_K J(x)$$

が成立することを示せ.