Árvores-B: Remoção

Cristina Dutra de Aguiar Ciferri Thiago A. S. Pardo

Desempenho da Árvore-B

Baseado em suas propriedades

- 2 cada página, exceto a raiz e as folhas, possui no mínimo [m/2] descendentes → taxa de ocupação
- 5 uma página interna com k descendentes contém k-1 chaves
- 6 uma folha possui no mínimo [m/2] 1 chaves e no máximo m 1 chaves → taxa de ocupação

habilidade de garantir que a árvore seja "larga e rasa" ao invés de "estreita e profunda"

Desempenho da Árvore-B

Split

 garante a manutenção das propriedades da árvore-B durante a inserção de novas chaves

Remoção

- também deve garantir as propriedades durante a remoção de chaves
- underflow
 - ocorre quando o número de chaves em uma página fica abaixo do número mínimo de chaves permitido pela árvore-B

- Remoção de uma chave em um nó folha, sem causar underflow
 - situação mais simples possível
- Solução
 - eliminar a chave da página
 - rearranjar as chaves remanescentes dentro da página para fechar o espaço liberado

Remoção de J

• árvore-B de ordem 6

- Remoção de J
 - página 5 garante a taxa de ocupação

- Remoção de uma chave em um nó não folha
- Solução
 - sempre remover chaves somente nas folhas
- Passos
 - trocar a chave a ser removida com a sua chave sucessora imediata (que está em um nó folha)
 - remover a chave diretamente do nó folha

Remoção de M

- Remoção de M
 - troca-se M com N

- Remoção de M
 - elimina-se M
 - página 6 garante a taxa de ocupação

- Remoção de uma chave em um nó, causando underflow
- Solução: Redistribuição
 - procurar uma página irmã (i.e., que possui o mesmo pai) adjacente que contenha mais chaves do que o mínimo
 - se encontrou
 - redistribuir as chaves entre as páginas
 - reacomodar a chave separadora, modificando o conteúdo do nó pai

Remoção de R

Remoção de R

para evitar underflow na página 7, redistribuise as chaves entre as páginas 7 e 8 por meio

da página 2

ON

A C E F I K

OP

RSUV

XYZ

- Remoção de R
 - páginas 7 e 8 garantem a taxa de ocupação

- Remoção de uma chave em um nó, causando underflow e a redistribuição não pode ser aplicada
- Solução: Concatenação
 - combinar para formar uma nova página
 - o conteúdo do nó que sofreu underflow
 - o conteúdo de um nó irmão adjacente
 - a chave separadora no nó pai
 - tratar o underflow no nó pai, caso necessário

Concatenação

- Processo inverso do split
- Características
 - reverte a promoção de uma chave
 - pode causar underflow no nó pai
 - ⇒ concatenação pode ser propagada em direção ao nó raiz

ocorre a redução no número total de nós da árvore

Remoção de A

- Remoção de A
 - concatena-se as páginas 3 e 4 por meio da página 1

- Remoção de A
 - gera-se underflow na página 1, o qual precisa ser tratado

- Underflow no nó pai causado pela remoção de uma chave em um nó filho
- Solução
 - utilizar redistribuição ou concatenação,
 dependendo da quantidade de chaves que a página irmã adjacente contém

Propagação do underflow

- Propagação do underflow
 - concatena-se as páginas 1 e 2 por meio da página 0

Propagação do underflow

- Diminuição da altura da árvore
- Característica
 - o nó raiz possui uma única chave
 - a chave é absorvida pela concatenação de seus nós filhos
- Solução
 - eliminar a raiz antiga
 - tornar no nó resultante da concatenação dos nós filhos a nova raiz da árvore

Remoção em Árvore-B

- se a chave a ser removida não estiver em um nó folha, troque-a com sua sucessora imediata, que está em um nó folha
- 2. remova a chave
- 3. após a remoção, se o nó satisfaz o número mínimo de chaves, nenhuma ação adicional é requerida

Remoção em Árvore-B

- 4. após a remoção, caso ocorra *underflow*, verifique o número de chaves nos nós irmãos adjacentes à esquerda e à direita
 - a. se algum nó irmão adjacente possui mais do que o número mínimo de chaves, aplique a redistribuição
 - b. se nenhum nó irmão adjacente possui mais do que o número mínimo de chaves, aplique a concatenação

Remoção em Árvore-B

- 5. se ocorreu concatenação, repita os passos 3 a 5 para o nó pai
- 6. se a última chave da raiz for removida, a altura da árvore é diminuída

Redistribuição

- Representa uma idéia inovadora
 - diferente do split ou da concatenação
- Não se propaga para os nós superiores
 - apenas efeito local na árvore
- Baseada no conceito de nós irmãos adjacentes
 - dois nós logicamente adjacentes, mas com pais diferentes não são irmãos

Redistribuição

- Não fixa a forma na qual as chaves devem ser redistribuídas
 - possibilidade 1: mover somente uma chave, mesmo que a distribuição das chaves entre as páginas não seja uniforme
 - possibilidade 2: mover k chaves
 - possibilidade 3: distribuição uniforme das chaves entre os nós

mais comum

Redistribuição durante Inserção

- Funcionalidade
 - permite melhorar a taxa de utilização do espaço alocado para a árvore

X

- split
 - divide uma página com overflow (i.e., working page) em duas páginas semivazias (i.e., page e newpage)

- redistribuição
 - a chave que causou overflow (além de outras chaves) pode ser colocada em outra página

Redistribuição durante Inserção

- Opção interessante
 - a rotina de redistribuição já está codificada para prover suporte à remoção
 - a redistribuição evita, ou pelo menos adia, a criação de novas páginas
 - tende a tornar a árvore-B mais eficiente em termos de utilização do espaço em disco
 - garante um melhor desempenho na busca, desde que um número menor de nós pode reduzir a altura da árvore, por exemplo

Split x Redistribuição

- Somente split na inserção
 - no pior caso, a utilização do espaço é de cerca de 50%
 - em média, para árvores grandes, o índice de ocupação é de ~69%
- Com redistribuição na inserção
 - em média, para árvores grandes, o índice de ocupação é de ~86%