Linear Algebra 1

Exercise Number 11

- 1) Prove that if $T: V \to W$ is a linear transformation, then T(0) = 0.
- 2) Determine which of the following maps define a linear transformation.
- a) $T: F^2 \to F^2$ defined by T(x,y) = (2x y, ax + by) where $a, b \in F$.
- b) $T: F^2 \to F^2$ defined by T(x,y) = (|x|, y).
- c) $T: P(x) \to P(x)$ defined by T(p) = 2p + 3p' p''.
- d) $T: \mathbb{C}^2 \to \mathbb{C}^2$ defined by T(x, y) = (ix + (2 + i)y, -3ix).
- e) $T: \mathbf{R}^3 \to \mathbf{R}$ defined by T(x, y, z) = ax + by + cz + d where $a, b, c, d \in \mathbf{R}$.
- f) $T: \mathbf{R}^{\infty} \to \mathbf{R}^{\infty}$ defined by $T((x_1, x_2, x_3, \ldots)) = (0, x_1, x_2, x_3, \ldots)$.
- g) Let $A \in Mat_{m \times n}(F)$. Define $T_A : Mat_{n \times p}(F) \to Mat_{m \times p}(F)$ by $T_A(B) = AB$. Is T_A linear?
- 3) Write down all linear transformations $T: F^2 \to F^2$ such that T(1,1) = (3,-2) and T(2,1) = (1,2).
 - 4) Give an example of a linear transformation $T: F^3 \to F^2$ such that $\operatorname{Ker} T = \operatorname{Sp}\{(1,0,1), (0,0,1)\}$.
- **5)** Give an example of a linear transformation $T: P_2(x) \to P_3(x)$ such that $\text{Im} T = \text{Sp}\{x^3+1, x^2, 2x^3+2x^2+3\}$.
- **6)** Give an example of a linear transformation $T: F^3 \to F^3$ such that T(1, -1, 1) = (2, 0, 0).
- 7) Let V denote an n dimensional vector space over the field F. Let $B = \{v_1, \ldots, v_n\}$ be a basis for V. Define the map $T_B : V \to F^n$ as follows. If $v = \alpha_1 v_1 + \ldots + \alpha_n v_n$ then $T_B(v) = (\alpha_1, \ldots, \alpha_n)$. Check that the map T_B is well defined and prove that it is a linear transformation.
- 8) For each of the linear transformations in exercise 2), determine which is one to one, and which is onto. Do the same for the map defined in exercise 7).
 - 9) Give an example for two different isomorphisms between \mathbb{R}^4 and $Mat_{2\times 2}(\mathbb{R})$.
 - 10) For each of the following linear transformations, find KerT and ImT.
- a) $T: \mathbf{Q}^3 \to \mathbf{Q}^3$ defined by T(x, y, z) = (x + y, x + z, y + z).
- b) $T: \mathbf{Z}_2^3 \to \mathbf{Z}_2^3$ defined by T(x, y, z) = (x + y, x + z, y + z).

- c) $T: P(x) \to P(x)$ defined by T(p(x)) = xp(x).
 - 11) Give an example of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that KerT = ImT.
 - 12) a) Give an example of a linear transformation $T: \mathbf{R}^2 \to \mathbf{R}^2$ such that $\mathrm{Ker} T \subsetneq \mathrm{Im} T$.
- b) Give an example of a linear transformation $T: \mathbf{R}^2 \to \mathbf{R}^2$ such that $\text{Im} T \subsetneq \text{Ker} T$.
- 13) a) Let $T: \mathbf{C} \to \mathbf{C}$ be defined by $Tz = \bar{z}$. Prove that T is linear if \mathbf{C} is viewed as a vector space over the field \mathbf{R} , and it is not linear if \mathbf{C} is viewed as a vector space over the field \mathbf{C}
- b) Does the same hold for the map Sz = iz.
- c) In each case where T or S are linear determine their kernel and their image.
- **14)** Let $T: V \to V$ be a linear transformation. Let $W \subset V$ be a subspace of V. Define a map $S: W \to V$ by S(w) = T(w) for all $w \in W$.
- a) Prove that S is linear.
- b) Prove that $Ker S = Ker T \cap W$.
- c) Prove that $\dim T(W) \leq \dim W \leq \dim T(W) + \dim \operatorname{Ker} T$. Here, $T(W) = \{v \in V : \text{there is a } w \in W \text{ such that } T(w) = v\}$.