Travaux dirigés 1 - Phénomènes de diffusion

L2 CUPGE PHYSIQUE

Semestre 4

1 Isolation thermique des maisons

1.1 Question de cours

On rappelle l'expression de la loi élémentaire de Fourier donnant le vecteur densité de courant de chaleur $\overrightarrow{J_Q}$.

$$\overrightarrow{J_Q} = -\kappa \overrightarrow{\nabla} T(M, t) \tag{1}$$

Dans notre situation on peut se ramener à une étude à une dimension, la température ne dépend alors que de x et t: T(x,t). On obtient donc la relation suivante :

$$\overrightarrow{J_Q} = -\kappa \frac{\partial T(x,t)}{\partial x} \overrightarrow{u_x} \tag{2}$$

On réalise ensuite un bilan des échanges de chaleur pendant un intervalle de temps dt sur un petit volume de section dS et d'épaisseur dx.

$$\delta Q = \delta Q_{\text{entrant}} - \delta Q_{\text{sortant}}
= J_Q(x + dx, t) dS dt - J_Q(x, t) dS dt
= [J_Q(x + dx, t) - J_Q(x, t)] dS dt$$

$$\delta Q = \frac{\partial J_Q(x, t)}{\partial x} dx dS dt$$
(3)

On cherche alors à monter que la température T(x,t) vérifie l'quation de Fourier $\frac{\partial T(x,t)}{\partial t} = D \frac{\partial^2 T(x,t)}{\partial x^2}$. On utilise pour cela la chaleur spécifique par unité de volume C. On peut l'exprimer comme :

$$C = \frac{C_v}{V}$$

$$= \frac{1}{V} \cdot \frac{dU}{dT}$$

$$C = \frac{1}{V} \cdot \frac{\delta Q}{dT} \text{ car dans notre cas } \delta W = 0$$
(4)

Ainsi on peut exprimer δQ avec cette nouvelle expression. On obtient :

$$\delta Q = C dT dx dS \tag{5}$$

On obtient donc l'égalité suivante :

$$\delta Q = C dT dx dS = \frac{\partial J_Q(x,t)}{\partial x} dx dS dt$$
 (6)

Or d'après la relation de Fourier, ici à une dimension, on sait que

$$\overrightarrow{J_Q} = -\kappa \frac{\partial T(x,t)}{\partial x} \overrightarrow{u_x} \tag{7}$$

En réinjectant ce résultat dans l'expression ci-dessus et en le simplifiant on obtient alors :

$$\frac{\mathrm{d}T}{\mathrm{d}t} = -\frac{\kappa}{C} \frac{\partial^2 T}{\partial x^2} \tag{8}$$

En posant $D = -\frac{\kappa}{C}$ on obtient le résultat recherché.

Que devient cette équation en régime permanent ? En régime permanent le déséquilibre est créé en continu ainsi on a

$$\frac{\partial^2 T}{\partial x^2} = 0 \tag{9}$$

1.2 Le mur séprare un milieu à la température $T_{\rm int}$ (pour x < 0) d'un autre milieu à l'intérieur à la température $T_{\rm ext}$ (pour x < e).

On détermine, en régime permanent, la répartition de température T(x) à l'intérieur du mur. On suppose $T_{\rm int}$ et $T_{\rm ext}$ constant, donc que le système est en déséquilibre de façon permanente. On a alors

$$\frac{\partial^2 T}{\partial x^2} = 0 \Rightarrow T(x) = Ax + B \tag{10}$$

Sachant $T(0) = T_{\text{int}}$ on a $B = T_{\text{int}}$. Ensuite on a $T(e) = T_{\text{ext}}$ donc on peut calculer A:

$$A = \frac{T_{\text{ext}} - T_{\text{int}}}{e} \tag{11}$$

L'expression de T(x) devient alors

$$T(x) = \frac{T_{\text{ext}} - T_{\text{int}}}{e} x + T_{\text{int}}$$
 (12)

On utilise finalement la loi élémentaire de Fourier :

$$J_Q(x) = -\kappa \frac{\partial T(x)}{\partial x} = -\kappa \frac{T_{\text{ext}} - T_{\text{int}}}{e}$$
 (13)

On peut ensuite calculer la puissance qu'il faut fournir au milieu à la température T la plus élevée afin de compenser les pertes de chaleur à travers le mur. Pour cela on rappelle que la puissance est une énergie par unité de temps :

$$P = \frac{\mathrm{d}U}{\mathrm{d}t} = \frac{\delta Q(t)}{\mathrm{d}t} = J_Q(x, t) \cdot S = -\kappa \frac{\frac{T_{\mathrm{ext}} - T_{\mathrm{int}}}{e} \cdot S \mathrm{d}t}{\mathrm{d}t}$$
(14)

L'expression de la puissance est donc simplement

$$P = -\kappa \frac{T_{\text{ext}} - T_{\text{int}}}{e} \cdot S \tag{15}$$

Application numérique : $P = 1875 \,\mathrm{W}$.

On peut montrer que les formules obtenues peuvent être comparées à celles que l'on obtiendrait en électricité avec le champ électrique \overrightarrow{E} , le champ de potentiel $\overrightarrow{\nabla}V$ et la conductivité électrique σ et ainsi définir une « résistance thermique » du mur.

En électricité on connait la très célèbre relatio U=RI. On définit I comme

$$I = \int_{S} \overrightarrow{J} \cdot \overrightarrow{n} \, \mathrm{d}S = JS \tag{16}$$

avec

$$J = -\sigma \vec{E} = \sigma \vec{\nabla} V \tag{17}$$

On a ici une analogie entre J_Q et J, avec σ la conductivité électrique, κ la conductivité thermique, \overrightarrow{E} ou $-\overrightarrow{\nabla}V$ le champ de potentiel. Ainsi la loi d'ohm peut être utilisé par analogie pour définir $R_{\rm th}$ la résistance thermique. La différence de potentiel analogue à U dans notre cas peut se noter sous la forme d'une différence de température ΔT . Ainsi on obtient :

$$R_{\rm th} = \frac{\Delta T}{I_Q} = \frac{\Delta T}{J_Q S} = \frac{\Delta T}{\kappa \frac{\Delta T}{2} S} = \frac{e}{\kappa S}$$
 (18)

On vérifie la dimension de notre expression. On devrait trouver la dimension

$$[R] = K[P]^{-1} = KM^{-1}L^{-2}T^{3}$$
 (19)

$$[R] = \frac{[e]}{[\kappa][S]} = \frac{L}{ML^{1}T^{-3}K^{-1}L^{2}} = \frac{L}{ML^{3}T^{-3}K^{-1}} = KM^{-1}L^{-2}T^{3}$$
(20)

Application numérique : $R_{\rm th} = 8 \times 10^{-3} \, {\rm K \, W^{-1}}.$

1.3 Application au double vitrage

On détermine maintenant la valeur numérique de la résistance thermique pour une plaque de verre de surface $S=1\,\mathrm{m}^2$ d'épaisseur $e=4\,\mathrm{mm}$ et de conductivité thermique $\kappa=0.8\,\mathrm{W\,m^{-1}\,K^{-1}}$.

Application numérique : $R_{\rm th} = 5 \times 10^{-3} \, \rm K \, W^{-1}$.

Si l'air extérieur est porté à la température de $T_{\rm ext}=20\,^{\circ}{\rm C}$ et s'il règne une température $T_{\rm int}=0\,^{\circ}{\rm C}$ à l'extérieur, on peut évaluer la puissance thermique perdu par cette même vitre. Celle-ci correspond à la chaleur qui traverse la section S de la vitre par unité de temps. On a

$$P = J_O S = -\kappa \Delta T e \cdot S \tag{21}$$

On remarque alors que l'on peut réécrire cette équation avec le terme de résistance thermique et on obtient alors :

$$P = \frac{\Delta T}{R_{\rm th}} \tag{22}$$

Application numérique : $P_{\text{perdue}} = 4 \text{ kW}.$

On peut ensuite déterminer la valeur numérique de la résistance thermique d'un double vitrage constitué de deux vitres identiques à celle définie précedemment mais d'épaisseur $e_2=2\,\mathrm{mm}$ chacune et d'une épaisseur e_2 d'air sec de conductivité thermique $\kappa_2=2.6\times 10^{-2}\,\mathrm{W\,m^{-1}\,K^{-1}}$. Pour cela, toujours par analogie avec l'électrocinétique on, on additionne les résistances, comme s'il s'agissait de résistances électriques en séries. On obtient alors une résistance équivalentes $R_{\rm \acute{e}q}$

$$R_{\text{\'eq}} = 2R_{\text{vitre}} + R_{\text{air}}$$

$$= 2\left(\frac{e_2}{S\kappa}\right) + \frac{e_2}{S\kappa_2}$$

$$R_{\text{\'eq}} = \frac{2e_2}{S\kappa} + \frac{e_2}{S\kappa_2}$$
(23)