Fundamentos de los Sistemas Operativos (FSO)

Departamento de Informática de Sistemas y Computadoras (DISCA) *Universitat Politècnica de València*

Part 4: Memory management

Seminar 12
Virtual memory exercises (II)

- Exercise S10-1: 2nd chance replacement algorithm
 - Exercise S10-1.1: 2nd chance basic
 - Exercise S10-1.2: 2nd chance complete
- Exercise S10-2: Working set
 - Exercise S10-2.1: Getting the working set

• In a **demand paging** system with **global replacement** policy, **5 frames** are allocated to all **processes**. Pages (and frames) have a size of **16K pages**. The initial state of the system and the page sequence generated by the CPU is detailed below.

Page Sequence	P1,0	P1,3	P2,3	P2,4	P1,3	P2,1	P1,4	P1,0	P2,2
Time	21	22	23	24	25	26	27	28	29

Initial frame allocation	
0	P1,1
1	P2,2
2	P1,2
3	P1,3
4	

Obtain what pages are allocated on every frame when the next global scope algorithms are applied

- a) LRU based on Counters considering the initial counters state
- b) LRU based on stack considering the initial stack state
- c) LRU based in bit reference and 2nd oportunity considering the initial bit state

- In a **demand paging** system with **local replacement** policy, **5 frames** are allocated to all **processes**. Pages (and frames) have a size of **16K pages**. The initial state of the system and the page sequence generated by the CPU is detailed below.
- Obtain what pages are allocated on every frame when the next global scope algorithms are applied
- a) LRU based on Counters
- b) LRU based on stack
- c) LRU based in bit reference and 2nd opportunity.

		Inicio	P1,0	P1,3	P2,3	P2,4	P1,3	P2,1	P1,4	P1,0	P2,2
	tiempo	20	21	22	23	24	25	26	27	28	29
	0	(P1,1)	P1,1	P1,1	P2,3	P2,3	P2,3	P2,3	P2,3	P1,0	P1,0
	1	P2,2	P2,2	P2,2	P2,2	P2,4	P2,4	P2,4	P2,4	P2,4	P2,2
	2	P1,2	P1,2	P1,2	P1,2	P1,2	P1,2	P2,1	P2,1	P2,1	P2,1
	3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3
Country of	4		P1,0	P1,0	P1,0	P1,0	P1,0	P1,0	P1,4	P1,4	P1,4
Counter of page in											
frame	_ 0	10	10	10	23	23	23	23	23	28	28
	1	11	11	11	11	24	24	24	24	24	29
	2	12	12	12	12	12	12	26	26	26	26
	3	13	13	22	22	22	25	25	25	25	25
	4		21	21	21	21	21	21	27	27	27

Faults: 7 Replacements: 6

- In a **demand paging** system with **local replacement** policy, **5 frames** are allocated to all **processes**. Pages (and frames) have a size of **16K pages**. The initial state of the system and the page sequence generated by the CPU is detailed below.
- Obtain what pages are allocated on every frame when the next global scope algorithms are applied
- a) LRU based on Counters
- b) LRU based on stack
- c) LRU based in bit reference and 2nd opportunity.

		Inicio	P1,0	P1,3	P2,3	P2,4	P1,3	P2,1	P1,4	P1,0	P2,2
	tiempo	20	21	22	23	24	25	26	27	28	29
	0	P1,1	P1,1	P1,1	P2,3	P2,3	P2,3	P2,3	P2,3	P1,0	P1,0
	1	P2,2	P2,2	P2,2	P2,2	P2,4	P2,4	P2,4	P2,4	P2,4	P2,2
	2	P1,2	P1,2	P1,2	P1,2	P1,2	P1,2	P2,1	P2,1	P2,1	P2,1
	3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3
	4		P1,0	P1,0	P1,0	P1,0	P1,0	P1,0	P1,4	P1,4	P1,4
	head	P1,3	P1,0	P1,3	P2,3	P2,4	P1,3	P2,1	P1,4	P1,0	P2,2
		P1,2	P1,3	P1,0	P1,3	P2,3	P2,4	P1,3	P2,1	P1,4	P1,0
Stack -	4	P2,2	P1,2	P1,2	P1,0	P1,3	P2,3	P2,4	P1,3	P2,1	P1,4
		P1,1	P2,2	P2,2	P1,2	P1,0	P1,0	P2,3	P2,4	P1,3	P2,1
	tail		P1,1	P1,1	P2,2	P1,2	P1,2	P1,0	P2,3	P2,4	P1,3
		 1		7 D-	7			•			

Faults: 7 Replacements: 6

- In a **demand paging** system with **local replacement** policy, **5 frames** are allocated to all **processes**. Pages (and frames) have a size of **16K pages**. The initial state of the system and the page sequence generated by the CPU is detailed below.
- Obtain what pages are allocated on every frame when the next global scope algorithms are applied
- a) LRU based on Counters
- b) LRU based on stack
- c) LRU based in bit reference and 2nd opportunity.

		Inicio	P1,0	P1,3	P2,3	P2,4	P1,3	P2,1	P1,4	P1,0	P2,2
	tiempo	20	21	22	23	24	25	26	27	28	29
	0	P1,1	P1,1	P1,1	P2,3	P2,3	P2,3	P2,3	P2,3	P2,3	P2,2
	1	(P2,2)	P2,2	P2,2	P2,2	P2,4	P2,4	P2,4	P2,4	P2,4	P2,4
	2	P1,2	P1,2	P1,2	P1,2	P1,2	P1,2	P2,1	P2,1	P2,1	P2,1
	3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,0	P1,0
	4		P1,0	P1,0	P1,0	P1,0	P1,0	P1,0	P1,4	P1,4	P1,4
Reference bit of											
page in frame	0	1	1	1	1	1	1	1	1	0	1
	_ 1	1	1	1	0	1	1	1	1	0	0
	2	1	1	1	0	0	0	1	1	0	0
Pointer to	3	1	1	1	0	0	1	1	0	1	1
the page	4		1	1	0	0	0	0	1	1	0

Faults: 7 Replacements: 6

Comparative

LRU based on Counters

	Inicio	P1,0	P1,3	P2,3	P2,4	P1,3	P2,1	P1,4	P1,0	P2,2
tiempo	20	21	22	23	24	25	26	27	28	29
0	P1,1	P1,1	P1,1	P2,3	P2,3	P2,3	P2,3	P2,3	P1,0	P1,0
1	P2,2	P2,2	P2,2	P2,2	P2,4	P2,4	P2,4	P2,4	P2,4	P2,2
2	P1,2	P1,2	P1,2	P1,2	P1,2	P1,2	P2,1	P2,1	P2,1	P2,1
3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3
4		P1,0	P1,0	P1,0	P1,0	P1,0	P1,0	P1,4	P1,4	P1,4

LRU based on stack

	Inicio	P1,0	P1,3	P2,3	P2,4	P1,3	P2,1	P1,4	P1,0	P2,2
tiempo	20	21	22	23	24	25	26	27	28	29
0	P1,1	P1,1	P1,1	P2,3	P2,3	P2,3	P2,3	P2,3	P1,0	P1,0
1	P2,2	P2,2	P2,2	P2,2	P2,4	P2,4	P2,4	P2,4	P2,4	P2,2
2	P1,2	P1,2	P1,2	P1,2	P1,2	P1,2	P2,1	P2,1	P2,1	P2,1
3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3
4		P1,0	P1,0	P1,0	P1,0	P1,0	P1,0	P1,4	P1,4	P1,4

LRU based on reference bit and 2nd opportunity

Inicio	P1,0	P1,3	P2,3	P2,4	P1,3	P2,1	P1,4	P1,0	P2,2
20	21	22	23	24	25	26	27	28	29
P1,1	P1,1	P1,1	P2,3	P2,3	P2,3	P2,3	P2,3	P2,3	P2,2
P2,2	P2,2	P2,2	P2,2	P2,4	P2,4	P2,4	P2,4	P2,4	P2,4
P1,2	P1,2	P1,2	P1,2	P1,2	P1,2	P2,1	P2,1	P2,1	P2,1
P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,3	P1,0	P1,0
	P1,0	P1,0	P1,0	P1,0	P1,0	P1,0	P1,4	P1,4	P1,4
	P1,1 P2,2 P1,2 P1,3	20 21 P1,1 P1,1 P2,2 P2,2 P1,2 P1,2 P1,3 P1,3	20 21 22 P1,1 P1,1 P1,1 P2,2 P2,2 P2,2 P1,2 P1,2 P1,2 P1,3 P1,3 P1,3	20 21 22 23 P1,1 P1,1 P1,1 P2,3 P2,2 P2,2 P2,2 P2,2 P1,2 P1,2 P1,2 P1,2 P1,3 P1,3 P1,3 P1,3	20 21 22 23 24 P1,1 P1,1 P1,1 P2,3 P2,3 P2,2 P2,2 P2,2 P2,2 P2,4 P1,2 P1,2 P1,2 P1,2 P1,2 P1,3 P1,3 P1,3 P1,3 P1,3	20 21 22 23 24 25 P1,1 P1,1 P1,1 P2,3 P2,3 P2,3 P2,2 P2,2 P2,2 P2,4 P2,4 P1,2 P1,2 P1,2 P1,2 P1,2 P1,3 P1,3 P1,3 P1,3 P1,3	20 21 22 23 24 25 26 P1,1 P1,1 P1,1 P2,3 P2,3 P2,3 P2,3 P2,2 P2,2 P2,2 P2,4 P2,4 P2,4 P2,4 P1,2 P1,2 P1,2 P1,2 P1,2 P1,2 P2,1 P1,3 P1,3 P1,3 P1,3 P1,3 P1,3 P1,3	20 21 22 23 24 25 26 27 P1,1 P1,1 P2,3 P2,3 P2,3 P2,3 P2,3 P2,3 P2,2 P2,2 P2,2 P2,4 P2,4 P2,4 P2,4 P2,4 P1,2 P1,2 P1,2 P1,2 P1,2 P1,2 P2,1 P2,1 P1,3 P1,3 P1,3 P1,3 P1,3 P1,3 P1,3 P1,3	20 21 22 23 24 25 26 27 28 P1,1 P1,1 P1,1 P2,3 P2,4 P2,1 P1,0 P1,0 P1,3 P1,3 P1,3 P1,0 P1,0 <t< th=""></t<>

• In a **demand paging** system with **local replacement** policy, **4 frames** are allocated to **every process**. The **maximum logical size** of a process is de **4K pages** (3 hexadecimal digits), page size is **64Kbyte**. Suppose that the following table contains all the information related to process P3 at a given time t.

Process P3 information at time t

	Process P3 information at time t													
Frame (Hexadecimal)	Page (Hexadecimal)	Loading time	Last reference time	Reference bit	Modified bit									
E7	B72	60	161	1	0									
E8	B71	130	160	1	1									
E9	B70	26	162	0	0									
EA	B73	20	163	1	1									

Then process P3 generates the logical address **B745A7C**. Obtain **the physical address** corresponding to this logical address supposing a replacement policy based on 2nd chance replacement algorithm.

• In a demand paging system with local replacement policy, 4 frames are allocated to every process. The maximum logical size of a process is de 4K pages (3 hexadecimal digits), page size is 64Kbyte. Suppose that the following table contains all the information related to process P3 at a given time t=164.

	Process P3 information at time t													
Frame (Hexadecimal)	Page (Hexadecimal)	Loading time	Last reference time	Reference bit	Modified bit									
E7	B72	60	161	1	0									
E8	B71	130	160	1	1									
E9	B70	26	162	0	0									
EA	B73	20	163	1	1									

Then process P3 generates the logical address **B745A7C**. Obtain **the physical address** corresponding to this logical address supposing a replacement policy based on 2nd chance replacement algorithm.

4K pages => 12 bits; Page size 64K => 16 bits; L. address 12 + 16 = 28 bits.

0xB745A7C => Page: 0xB74 Offset: 0x5A7C

Page B74 => page fault; Assuming that pointer => E7

	Process P3 information at time t													
Frame (Hexadecimal)	Page (Hexadecimal)	Loading time	Last reference time	Reference bit	Modified bit									
E7	B72	60	161	0	0									
E8	B71	130	160	0	1									
E9	B74	164	164	1	0									
EA	B73	20	163	1	1									

- Suppose a virtual memory system based on demand paging, where logical addresses are 24 bit wide and page size is 1 KByte. The system can handle up to 1MB of main memory. The replacement algorithm used is local 2nd opportunity
 - a) Get the **physical and logical address formats** in this system, indicating the bit number and name of every field
 - b) Suppose that at time t = 0 a user requests the execution of process A and the system allocates to it frames 0, 1, 2 and 3. The frames are initially empty and they are allocated in increasing order. Show the evolution of the physical memory content and how many page faults would generate the following sequence of logical addresses:

1000, 3000, 5000, 6000, 7000, 2900, 4900, 900

- Suppose a virtual memory system based on demand paging, where logical addresses are 24 bit wide and page size is 1 KByte. The system can handle up to 1MB of main memory. The replacement algorithm used is local 2nd opportunity
 - a) Get the **physical and logical address formats** in this system, indicating the bit number and name of every field

Logical Address size: 24 bits

Page size = frame size: 1KB => 10 bits

Logical Address: 14 bits (page) + 10 bits (offset)

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Main memory size: 1MB => 20 bits

Physical Address: 10 bits (frame) + 10 bits (offset)

- Suppose a virtual memory system based on demand paging, where logical addresses are 24 bit wide and page size is 1 KByte. The system can handle up to 1MB of main memory. The replacement algorithm used is local 2nd opportunity
 - b) Suppose that at time t = 0 a user requests the execution of process A and the system allocates to it frames 0, 1, 2 and 3. The frames are initially empty and they are allocated in increasing order. Show the **evolution of the physical memory content and how many page faults** would generate the following sequence of logical addresses:

7000

nnac

/ann

 $\Omega \Omega \Omega$

5000

1000

Dec	1000	3000	5000	6000	7000	2900	4900	900
Hex	3E8	BB8	1388	1770	1B58	B54	1324	384
Page	0	2	4	5	6	2	4	0
offset	1000	952	904	880	856	852	804	900
t	0	1	2	3	4	5	6	7
Page	0	2	4	5	6	2	4	0
0	0	0	0	0	6	6	6	6
1		2	2	2	2	2	2	2
2			4	4	4	4	4	4
3				5	5	5	5	0
0	1	1	1	1	1	1	1	1
1		1	1	1	0	1	1	0
2			1	1	0	0	1	0
3				1	0	0	0	1

- Exercise S10-1: 2nd chance replacement algorithm
 - Exercise S10-1.1: 2nd chance basic
 - Exercise S10-1.2: 2nd chance complete
- Exercise S10-2: Working set
 - Exercise S10-2.1: Getting the working set

- In a virtual memory system has been decided to use a working set model to control physical memory allocation. There are 3 processes A, B y C in execution. Every memory access is encoded in two characters that represent the process and the page accessed, respectively.
 - Supposing that the working set window size (Δ) is 4, obtain the working set for every process at the instant when the last reference happens in the following reference string:

A0,B2,C3,A0,A1,A5,B2,C4,C2,A2,B1,B3,C0,A1 C1,B0,A1,C0,B1,B2,C4,A0,B3,B3, C3,A1,C4

b) Considering that the system has **6 frames**, are they enough to allocate the working sets of all processes till the end?

- In a virtual memory system has been decided to use a **working set model** to control physical memory allocation. There are **3 processes A, B y C** in execution. Every memory access is encoded in two characters that represent the process and the page accessed, respectively.
 - a) Supposing that the working set window size (Δ) is 4, obtain the working set for every process at the instant when the last reference happens in the following reference string:

A0,B2,C3,A0,A1,A5,B2,C4,C2,A2,B1,B3,C0,A1 C1,B0,A1,C0,B1,B2,C4,A0,B3,B3, C3,A1,C4

A	ю в	2 C3	A0	A1	A5	B2	C4	C2	A2	B1	В3	CO	A1	C1	В0	A1	co	B1	B2	C4	A0	В3	В3	C3	A1	C4
A A	0		A0	A1	A5				A2				A1			A1					A0				A1	
Α					{0,1,5}				{0,1,2,5}				{1,2,5}			{1,2,5}					{0,1,2}				{0, 1}	
В	В	2				В2				B1	В3				В0			B1	B2			В3	В3			
В											{1,2,3}				{0,1,2,3}			{0,1,2,3}	{0,1,2,3}			{0,1,2,3}	{1,2,3}			
С		C3	T				C4	C2				CO		C1			CO			C4				СЗ		C4
С												{0,2,3,4}		{0,1,2,4}			{0,1,2}			{0,1,4}				{0,1,3,4}		{0,3,4}

• In a virtual memory system has been decided to use a **working set model** to control physical memory allocation. There are **3 processes A, B y C** in execution. Every memory access is encoded in two characters that represent the process and the page accessed, respectively.

Α	A0			Α0	A1	A5				A2				A1			A1					A0				A1	
Α	\					{0,1,5}				{0,1,2,5}				{1,2,5}			{1,2,5}					{0,1,2}				{0, 1}	
В	3	В2					B2				B1	В3				В0			B1	B2			В3	В3			
В	3											{1,2,3}				{0,1,2,3}			{0,1,2,3}	{0,1,2,3}			{0,1,2,3}	{1,2,3}			
	;		СЗ					C4	C2				СО		C1			СО			C4				C3		C4
													{0,2,3,4}		{0,1,2,4}			{0,1,2}			{0,1,4}				{0,1,3,4}		{0,3,4}
						3	3	3	3	4	4	4	4	3	3	3	3	3	3	3	3	3	3	3	3	2	2
												3	3	3	3	4	4	4	4	4	4	4	4	3	3	3	3
													4	4	4	4	4	3	3	3	3	3	3	3	4	4	3
													11	10	10	11	11	10	10	10	10	10	10	9	10	9	8

b) Considering that the system has **6 frames**, are they enough to allocate the working sets of all processes till the end?

NO. The sum of the Working Set of the 3 processes when the last reference is raised is higher than 6.

The sum of all WSSs is always higher than 6.