

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

Library

of the

University of Wisconsin

PRESENTED BY

C.W.Bender. Cleveland, Ohio

Only a limited edition of these books has been printed. Copies are not for sale, but can be obtained by steam railway employees who are interested in electric train lighting and illumination, when request is made through the chief official of a railway department

RAILWAY ELECTRICAL ENGINEERS' HANDBOOK ELECTRIC LIGHT AND ILLUMINATION

C. W. BENDER

SECOND EDITION
REVISED AND ENLARGED

EDITED AND PUBLISHED BY
ENGINEERING DEPARTMENT OF
National Electric Lamp Association
CLEVELAND, OHIO
1912

. •

6418115

177972 OCT -6 1913 SSPT

. ;

PREFACE

THE First Edition of the Railway Electrical Engineers' Handbook was received with such favor that the Engineering Department of the National Electric Lamp Association has found the labor of its revision a pleasure rather than a task. The original matter has been revised and enlarged, to such an extent that this may be considered practically a new book.

The many recent and important developments in electrical apparatus and in illuminating media for train lighting have necessitated this wholesale revision in producing the Second Edition. New data on the lighting of railroad shops, yards and offices have been added.

It is the intention of the Engineering Department to publish revised editions of this work from time to time, as may be made advisable by reason of changes in the art.

Readers will confer a favor by notifying us of any errors that may be discovered, as in this way it will be possible to rectify them in future editions.

C. W. BENDER.

建氯化 有数值

A supplied to the supplied of the

A section of the description of the description of the description of the description of the description.

The National Electric Lamp Association

This Association does not engage in commerce. It has for its objects the advancement of the art of incandescent lamp manufacture, and the development of the science and art of illumination. It is sustained by the following works of the National Quality Lamp Division of General Electric Co. which have adopted as their motto, "National Quality."

AMERICAN ELECTRIC LAMP WORKS. . Central Falls, R. I. BANNER ELECTRIC WORKS......Youngstown, Ohio BRILLIANT ELECTRIC WORKS......Cleveland, Ohio BRYAN-MARSH ELECTRIC WORKS....Central Falls, R. I. BRYAN-MARSH ELECTRIC WORKS......Chicago, Ill. THE BUCKEYE ELECTRIC WORKS Cleveland, Ohio COLONIAL ELECTRIC WORKS......Warren, Ohio THE COLUMBIA INC. LAMP WORKS......St. Louis. Mo. ECONOMICAL ELECTRIC LAMP WORKS... New York City ELUX MINIATURE LAMP WORKS......New York City FEDERAL MINIATURE LAMP WORKS......Chicago. III. THE FOSTORIA INC. LAMP WORKS......Fostoria, Ohio GENERAL INC. LAMP WORKS......Cleveland, Ohio MONARCH INCANDESCENT LAMP WORKS. Chicago, Ill. MUNDER ELECTRIC WORKS......Central Falls, R. I. THE PEERLESS LAMP WORKS......Warren, Ohio SHELBY LAMP WORKS......Shelby, Ohio STANDARD ELECTRIC WORKS......Warren, Ohio THE STERLING ELECTRIC LAMP WORKS.. Warren, Ohio SUNBEAM INCANDESCENT LAMP WORKS...Chicago, Ill. SUNBEAM INCANDESCENT LAMP WORKS. New York City

granik di padili masili di sa

(a) Fig. (a) Applied to the solution of the

A transport of the control of the co

And the second of the second o

and the second of the second o

the section of the contract of the

And the district of the state o

and the second second

CONTENTS	7
CONTENTS	
Preface	i.ĢZ
National Electric Lamp Association Member works	
Section I	
Straight storage battery system	18
Section 1	
Hand-and systems	
Straight engine generator system	19
Generator in baggage car with batteries on one or	
more cars	20
Baltimore & Ohio	25
Gould Booster system	26
General Electric system	
Standard train lines and battery connections as recommended by the Association of Railway Electrical Engineers	3 0
Section III	
Axle Generators	
Adams & Westlake—Newbold system	37
Buttner system	42
Brown & Boveri	48
Consolidated	
Туре "А"	44
Double equipment	48
Type "D" and Kennedy regulator	48
Gould Simplex system	58
Leitner	61
	65
Mather and Platt	99
Safety Type "F" system	68
Type "D" system	78
Stone system	75
** ** * * * * **	

Type "F" system.....

Type S-1 system....

79

80 80

88

United States

NATIONAL ELECTRIC LAMP ASSOCIATION

Section (IV)	
Cost of equipping and operating electrically lighted cars	AGE
Equipment	95
Maintenance	1.04
Accounts	00
Accounts	20
Section V	
Storage batteries	
Description	
Types	
Theory	
Capacity	
Charge and discharge curves	110
Troubles and remedies	121
	198
• • •	120
Operation	190
The second secon	
Section William Lines and the section with the section of the section with the section of the se	
Incandescent lamps	
Filament data	141
Ratings	149
Performance curves	143
Distribution curves the actions	151
g plant state	
Section (VII)	
Hiumination	
Measurement of light	155
Measurement of light	157
O 111 A 11-3-4	161
	163
mer 12	164
	179
Distribution curves	184
Parabolic reflector data	211
Section VIII	•
	,
Hlumination of passenger equipment and stations	
Raggage and express cars	215
Postal cars	215
Postal cars Coach cars	217
Dining cars	221
Dowlon core	240
Steening cars	231
Ruffet cars	231
Dietforme and stations	232

CONTENTS

Section IX

Conduit and wire data

Gauges Weather-proof wire Rubber-covered wire Magnet wire Carrying capacity Resistance Insulation Melting points and conductivity of alloys. Current required to fuse wire. Wiring formulæ	239 241 244 244 245 246 246 247
Methods of measuring current and resistance Conduit	253
Conduit	260
Section X	
General data	
Gears Belting Pulleys Shafting Rope drive Bearings Friction Angular velocity Centrifugal force	269 271 273 273 277 281 281
Section XI	
Tables	
Weights and measures Specific gravity Multiples Decimals of an inch. Areas and circumferences of circles Logarithms Trigonometric functions Squares Cubes Square root Cube root Reciprocals	287 293 294 295 298 301 309 309 309
Section XII	
Definitions	881

.

.

.

10

MA HOUSE

- 1

SECTION I

STRAIGHT STORAGE SYSTEM

INCLUDING DESCRIPTION OF SYSTEM WITH PHOTOGRAPHS OF INSTALLATION AND WIRING DIAGRAMS OF SAME

LHONGSE

WETRYS DOAGOTS OF SIGNASTS

राजा करते. एक भारता संस्थापक तथा प्रधानक स्व संचार कर्मा कर्मा एक से मान्यू एक राज्यान स्वास्थ्य संचारक करता प्रदेश क्रमांक करता स्वास्थ्य

STRAIGHT STORAGE BATTERY Lighting System

The straight storage battery system was one of the earliest methods of securing the necessary current for the electrically lighting of steam railway passenger equipment. As now adopted, this method generally consists of suspending either 16 or 32 cells of storage batteries from the under the constant of the constant side of the car, the cells being placed in specially constructed boxes, Fig. 3. These cells are charged at the terminals and are discharged while the car is in service, furnishing the necessary current for the operation of the electric lighting equipment.

Straight Storage System-Wiring Arranged for Charging and Discharging Batteries in Series

Two battery or service wires are carried in conduit along the underside of the car to the end and then run up to the distributing panel, located inside. From this point the current is distributed to the different lamp circuits through various fuses and switches.

Underneath and on each side of the car are located charging receptacles for charging the batteries. For this purpose the cars are placed at some convenient point at

the end of each run, or as often as the service runs demand, where direct current of the proper voltage is available for charging the batteries. Adjustable resistances are placed in series with the batteries upon charge for adjusting the

current to the proper amount.

The current for charging is generally obtained from a standard 110-volt direct current generator. In case only alternating current is available it is necessary to convert

this to direct current, either by means of a mercury arc rectifier or a motor-generator set. In using the straight storage system the method most generally employed is to connect 32 cells of 300 ampere-

Fig. 2. Straight Storage System-Wiring Arranged for Charging Batteries in Series and Discharging in Parallel

hour batteries in series, using 63-volt Mazda lamps for lighting. This method insures the cells charging and discharging evenly. Fig. 1 shows the wiring diagram of con-

nections with such an arrangement.

Under certain conditions it may be advisable to use a 32-volt system, and should not 300 ampere-hour batteries 32-voit system, and should not 300 ampere-hour batteries afford sufficient capacity, two sets of batteries of 16 cells each can be connected in multiple for discharging at 32 volts. Upon charging, they are connected in series by means of a d. p. d. t. switch and are then charged from the regular power or lighting 110-volt circuit. A wiring diagram of such an arrangement is shown in Fig. 2. This method of operation should be used only for special reasons and then only as a last resort as the hetteries when conductions. and then only as a last resort, as the batteries, when con-

Fig. 3. Storage Battery Mounted on Car

nected in multiple, will neither charge nor discharge evenly.

Compared with the other methods of car lighting, the advantages of the straight storage system are its simplicity and reliability. There is no complicated mechanism to get out of order, and as long as the battery charge lasts, there is a positive source of current. It has one great disadvantage in that it requires that the cars be "spotted" at the terminal points for charging, thereby interfering with the vardmaster's schedule in congested vards the yardmaster's schedule in congested yards.

nne yardmaster's schedule in congested yards. The straight storage system also requires an elaborate and expensive system of yard wiring, together with a large generator capacity at terminal points. In estimating the costs of such a system, account must be taken of the interest and depreciation upon this wiring, generators, etc., together with the power losses in wiring, rheostats, and battery efficiency, all of which items probably make the straight storage system the most expensive in the long run.

run.

Tark to the control of the design of the control of

SECTION II

HEAD-END SYSTEMS

INCLUDING STRAIGHT ENGINE GENERATOR SYSTEM, GENERATOR IN BAGGAGE CAR WITH BATTERIES ON ONE OR MORE CARS, BALTIMORE & OHIO, GOULD BOOSTER, AND GENERAL ELECTRIC SYSTEMS

. 1

THE STRAIGHT ENGINE GENERATOR SYSTEM

The Straight Engine Generator System as generally used consists of a 110-volt generator direct connected to a reciprocating engine or turbine, the generator set being located in the baggage car, while steam at about 90 lbs. pressure is furnished by the locomotive for operating.

To insure the lamps burning at a uniform brilliancy

To insure the lamps burning at a uniform brilliancy in the various cars, it is customary to run an equipotential or third wire system in conduit over the car roof, while connection between cars is made in the vestibule by passing the train-line wires through the roof near the end of car, thence through an opening over the vestibule to a fenale connector at the end of the car from which connection to the adjoining car is made with flexible wire cables.

As will be noted from Fig. 1, the system is entirely devoid of wiring complications, but has been very little used

Fig. 1. Straight Electric Lighting Wiring Diagram-No Batteries

by reason that when the engine or turbine is shut off by reason of steam hose bursting, low steam, or break-down, the electric lights are extinguished and some other form of illuminant must be resorted to. A similar condition will obtain at division points when locomotives are changed. This objectionable feature has been overcome in a way by the use of a throw-over switch connecting the train circuit to a local lighting plant, but it is obvious that such an arrangement can only be a make-shift, as when a car is cut out of a train, which is common practice, some auxiliary method of lighting must be available until such time as the car is again coupled to the electrically lighted train. It can be readily seen that the Straight Engine System, while of comparatively low first cost, can be only used for through trains when run solid, from terminal to terminal, with throw-over switches at division points, and cars equipped with an expensive auxiliary lighting system of some kind, should a breakdown occur en route, while with suburban cars the same conditions hold as for through runs, except the throw-over switches are not necessary for lighting the cars at division points.

HEAD-END SYSTEM WITH GENERATOR SET IN BAG-GAGE CAR WITH BATTERIES ON ONE OR MORE CARS

This is by far the most generally adopted of all head-end systems, being used by one eastern railway and a number of roads in the western part of the United States where

Fig. 2. 15-Kw. Curtis Steam Turbine Train Lighting Set Installed in Composite Car

the train runs are some 2,000 miles long, with practically no splitting of the train from one terminal to end of run. This method of lighting originated in 1887 on one of the eastern roads and as installed at that time consisted of an 8-hp., three-cylinder steam engine direct connected to an 80-volt dynamo—one set of 120 ampere-hour batteries

were used but the excessive current consumption of the carbon filament lamp soon compelled the placing of batteries on each car. Later on 300 ampere-hour batteries were used, while turbine generators replaced the reciprocating engine and dynamo.

The general practice at the present time is to use three

Fig. 3. 15-Kw. Curtis Steam Turbine Train Lighting Set Installed in Composite Car

١

or more sets of 32-cell batteries of 300 ampere-hours capacity. When smaller capacity batteries are used each car on the train is generally equipped with a set. This allows of the train being split at any time and the cars are not required to have an expensive auxiliary system of

lighting.

The generator used is generally of the Curtis-Turbine noncondensing type of 18 to 35-kw. capacity and for oper-

ating at a pressure of 90 or 100 lbs., steam pressure being supplied by the locomotive through the regular steam heat

The Turbo-generator is of an interesting construction. A cross-section of the 18-kw. size is shown in Fig. 5. It is designed to operate at a speed of 4500 r. p. m. at 90 lbs. steam pressure and rated at 225 amperes at 80 volts.

The turbine wheel is fitted to the shaft with a taper fit, and held in position by a key and the back of the governor which screws on the end of the shaft. There are three sets of vanes on the wheel while the intermediates, two in number, are placed on the openings between the rows of vanes.

Bearings: The bearings are two in number, both being of spherical cast bronze and ball seated in pillow blocks, the commutator end bearing being of one solid plece and

Fig. 4. 35-Kw. Train Lighting Turbine-Baggage Car Type

the main bearing split, oil chains or rings being used for conveying the oil from oil chambers to bearings.

Valve: The main valve is of the piston type operated by a fly ball governor while the emergency valve is merely a spherical or clock-wise spring which is tripped at approximately 10% over speed which forces a small brass plate to come forward closing the steam opening.

Governor: The main governor is of the fly ball throttling type and is screwed on the end of the generator or turbine shaft. It depends upon the action of a pair of interlocked weights being thrown out by centrifugal force which action is opposed by a heavy steel spring. The inner end of spring is fastened to a spindle on the end of which is screwed a small ball set in an adjustable seat or what is known as

Fig. 6. Diagram of Standard Train Line and Battery Connections as Recommended by the Association of Rallway Electrical Engineers, October 5, 1909

a valve lever which is fulcrumed at the center, while the other end engages the valve stem. As the governor weights are thrown out the governor spindle is drawn back, pulling the valve lever forward for proper position of load, the action of the governor depending upon the relation of the displacement pressure characteristic of the spring to that of the weights.

Car Wiring: Train line wire for this system is generally of 3/0 size; the wires on each car necessarily being transof 3/0 size; the wires on each car necessarily being transposed on each by reason of maintaining the proper voltage for battery charging. A wiring diagram as recommended by the Railway Electrical Engineers' Association is shown in Fig. 6. One of the objectionable features of this system is that the generator capacity cannot be obtained when the lamps are burning, without raising the voltage to a point where it is almost instantly destructive to the lamps. This is due to the back e. m. f. of the batteries, which rises on charge from about 2 volts at the beginning to approximately 2.5 volts per cell at end of charge. This acts automatically in reducing the flow of the current. As 63-volt lamps should burn at approximately normal voltage when the batteries are discharging or when the cells give about lamps should burn at approximately normal voltage when the batteries are discharging or when the cells give about 2 volts, it is obvious that to increase the generator voltage, in order to fully charge the batteries, the lamps would be burned at approximately 30% over voltage. In order, satisfactorily, to operate this system it is customary when lamps are burning to adjust the generator voltage to 73 volts. This voltage is reduced at the lamps (due to drop in train line on a seven car train) to about 66 volts. During the day time, and late at night when few lamps are burning, the generator voltage is raised to 78 volts which insures the batteries at the terminals in a fairly well charged condition, without subjecting many lamps to a destructive over-voltage. over-voltage.

A number of railways using the head-end system have adopted a resistance for use in the lamp circuit to overcome the objectionable feature just pointed out, one of these methods of which is described in the following Baltimore & Ohio system.

BALTIMORE & OHIO HEAD-END SYSTEM ...

This system possesses the special feature of using auto-This system possesses the special feature of using automatic, lamp regulators on each car to maintain constant lamp voltage. The generating equipment consists of 20-kw., 100-yolt compound wound Curtis turbines, operating at a speed of 4,500 r. p. m. at 80 lbs. steam pressure. Switchboards, with necessary instruments and overload, no-yoltage, reverse current circuit breakers are, provided which, with the generating equipment, are located in separate compartments at one end of the baggage cars.

Steam pining is so arranged that either and of the turbine

Steam piping is so arranged that either end of the turbine car may be operated towards the locomotive. Batteries consisting of 32 cells of 300 ampere-hours capacity are carried on all cars of the train, except coaches and express cars, which generally average five batteries on a seven or eight car train.

eight car train.

Each car is provided with an automatic lamp regulator, the Gould, Safety Car Heating & Lighting Co., or U. S. Light & Heating Co. standard lamp voltage regulators, as used with their axle generator systems being used, with slight modification to adapt them to the larger voltage range met within this service. The regulators are adjusted to maintain 68 volts on the lamp circuits, 63-volt tungsten lamps being used! lamps being used!

The generators are operated at voltages varying from the lamp voltage to 90 volts, depending upon the amount of charging the batteries require. Normally, train line voltage is maintained between 70 and 85 volts, thus interest are in charged condition, or are being that the batteries are in charged condition, or are being charged at all times. When turbines are operating during charged at all times. When turbines are operating during lighting hours with batteries in fully charged condition the voltage is reduced to about floating point, thus carrying the lamp load entirely on the generators and at the same time preventing overcharge of the batteries. Fig. 7 shows the wiring diagram of this system.

Fig. 7. Wiring Diagram-Baltimore & Ohio Head-end System

GOULD BOOSTER SYSTEM

The Gould Booster Head-end system was designed by the Gould Coupler Company to overcome the objectionable features of practically all head-end systems, viz., operating at a compromise voltage with a resultant variable candle-power and short life of lamps.

Turbine Generator: The Curtis Turbine generator of the 15-kw. type was used, the capacity of which was increased to 18-kw. by increasing the speed of the turbine from 4,000 r. p. m. to 4,500 r. p. m., while the steam nozzle was designed for 160 lbs. steam pressure in order to obtain the advantage of high pressure steam direct from locomo-

Generator: The generator was of the inter-pole type, over-compounded to give 67 volts at one-quarter load, to 73 volts at full load. This rising voltage characteristic was necessary in order to take care of the voltage drop in the return negative main from the rear of the train.

Location of Turbine: As will be noted from the accom-Location of Turbine: As will be noted from the accompanying views of the equipment, the turbine generator was located on top of the locomotive between the sand and steam domes on the Atlantic type of locomotive. On the smaller types the set was located crosswise on the boiler and in front of the stack, as no other available space was

and in front of the stack, as no other available space was to be had without changing the sand or steam domes. The booster was located on the locomotive tender and consisted of three machines, viz., a differentially wound battery booster with a series lamp booster direct connected on the same shaft to a compound wound motor.

*The battery booster furnished the increased voltage necessary to charge the batteries, it being wound in such a manner that when the lamps were not burning the combined e. m. f. of this booster and of the generator furnished the necessary e. m. f. to bring the batteries up to a maximum state of charge; the magnetic characteristics of the booster being such that, as the conditions of charge approach a maximum value, the current entering the battery was automatically reduced. The series winding on this booster through which all of the lamp circuits passed acted to reduce

Fig. 8. Front View of Curtis Turbine Generator Mounted on Engine Class "L" Penna, Locomotive

the booster voltage upon an increase of lamp load. This tended to maintain a predetermined load on the main generator by reducing the battery charging current in about the same proportion as the lamp current increases; the action, in fact, being such that if the lamp load represented a greater value than the normal load desired to be carried by the generator, the booster would deliver a voltage in such a direction as to cause the battery to take that portion of the load representing the overload. When the lamp load equaled the normal output of the generator, the battery booster voltage would be zero, and the batteries would be simply floating across the system. On the other hand, if no lamps were burning, the generator output would enter the battery as a charge, reducing gradually as the battery back pressure rises.

^{*}Note.—This system not now in service.

Fig. 9. Side View of Curtis Turbine Generator Mounted on Engine. Class E-3 Type, Penna. Locomotive

The lamp booster was connected in series with the lighting line to obtain a substantially regular distribution of voltage regardless of varying train lengths and load distribution.

The operation of starting and stopping the generator and booster consisted of opening or closing a steam valve in the locomotive cab. Assuming that the turbine generator was not in operation, the batteries maintained the lighting on the cars on which they are located, or in case of a broken battery connection, the current would flow through the train line wires and maintain the lighting on any particular car, provided, of course, the train line couplers were connected.

Assuming that the turbine was started by opening the steam valve in the locomotive cab, the booster motor starts up concurrently with the rise in generator voltage. When the generator reached a normal voltage, such as 60, the automatic switch on the locomotive tender would close and the current would pass through the train line wires, closing transfer switches on the various cars. The turbine gen-

Fig. 10. Booster Mounted on Tender

Fig. 11. View of Couplings Between Cars

erator would then maintain the lighting load, the current passing through the lamp booster, train line wires and automatic switches to lamps and rear of train, returning through train line jumper and coils on car transfer switches to negative side of generator. The path of the battery charging current is from the generator through the battery booster and automatic switch and train line wires to the positive side of the batteries, to rear of train, and returning through the train line jumper and coils on car transfer switch to the negative side of the generator.

GOULD BOOSTER SYSTEM

Fig. 12

Upon shutting down the turbine the reverse action takes place, the transfer switches on all cars dropping out at some minimum current value, placing each set of lamps across its own batteries. Upon a slight reversal of current the main switch opens and prevents further flow of current from the batteries into the generator or booster.

GENERAL ELECTRIC HEAD-END SYSTEM

This system consists of a Curtis Turbine generator located on the locomotive or in baggage car. The lamp voltage is maintained practically constant at the generator while a booster is connected in series with the battery, the voltage of which is adjusted to give a constant line voltage irrespective of battery voltage and load.

For automatically closing the circuit when the turbine is

*Fig. 13. G. E. Booster

shut down, a reverse current relay is connected in one side of the line. This relay is operated by a potential coil connected across the generator terminals and closes the contacts when the normal voltage is reached. When the steam is shut off, the current from the batteries tends to reverse the flow back into the generator which causes the series coil to oppose the potential coil and allow the relay contacts to one by grayity

to_open by gravity

to open by gravity.

The voltage regulator consists of an electromagnet, and a small coil arranged to move in the field of the former, the two being connected in series, and excited from the lamp lines through a rheostat, so that a contact carried by the small coil shunts a portion of this field rheostat. The motion of this coil is resisted by a spring which is adjusted so that the desired potential applied to the regulator coils will open the contacts. The closing of these contacts will cause a rise in voltage and vice versa, the opening of the contact causes it to fall. Therefore to maintain equilibrium, the contacts rapidly open and close, making the average the contacts rapidly open and close, making the average

^{*}Note.—This system not now in service.

Fig. 14

field current just sufficient to maintain the desired line voltage.

Car Equipment: A booster set is located under each car, and consists of a motor driven booster which is connected in series with the battery to boost the voltage for battery charging. A regulator for controlling the booster is located in a cast iron box underneath each car, and tends to control the booster field in order to maintain constant lamp voltage on discharge and to control the battery current on charge. This control box also contains the relay which automatically starts the booster set when it is desired for regulation and shuts it down when required.

Fig. 15. 15-Kw. Train Lighting Turbine. Locomotive Type
Open for Inspection

Form "A" Regulator: When the car is disconnected from the turbine generator, the lamps are fed from the batteries and constant voltage maintained by means of the regulator controlling the booster field in the same manner as the generator control. However, the centacts do not shunt a portion of the field rheostat, but open the field completely. When the turbine generator is connected, the lamp load is shifted from the batteries to the generator, the contact in car regulator is held open, and the booster field is out down to a small value which reduces the counter e.m. f. of the booster and allows the current to flow from the line to charge the battery.

counter e.m.f. of the booster and allows the current to flow from the line to charge the battery.

To properly control the charging current and boost the input to car, the total current passes through a series coll on the regulator in such a direction that the incoming current tends to raise the counter e.m.f. of the booster and reduce the charging current. The coil is so proportioned that when no lamps are burning it will give a slight tapering effect on the battery charging current until the gassing point is reached where it will taper off more rap;

idly until practically zero current flows at the end of charge. When lamps are burning, the maximum charging current is reduced sufficiently to keep the car input down to the predetermined maximum current. If the steam pressure is reduced or the total load is greater than the generator capacity, the line voltage will tend to drop, and allow the car regulators to come into action, giving the booster sufficient field current to cause the batteries to discharge and help out the generator.

Fig. 16. G. E. Train Lighting Connectors

Form "B" Regulator: This regulator is the same as the form "A" regulator with the exception of an additional contact which closes the circuit of the second booster field, which is wound in an opposite direction to that of the first. This field comes into action when the battery voltage on discharge is higher than the desired lamp voltage. This causes the booster to "buck" instead of "boost," and on charge it also causes the booster to boost the line voltage sufficiently to charge the battery.

The following following the enterior of the following file of the enterior of

Control of the second of the control of the control

If the property of the propert

SECTION III

AXLE GENERATOR SYSTEMS

INCLUDING BUTTNER, BROWN & BOVERI, CONSOLIDATED, GOULD, MATHER & PLATT, LEITNER, NEWBOLD, SAFETY, STONE AND UNITED STATES SYSTEMS

.

ADAMS-WESTLAKE NEWBOLD SYSTEM

Generator: The generator is of the four-pole shunt wound type with cast steel field frame. The field coils are held in place by brass retainer shoes bolted to the frame with through bolts, provided with nuts, the ends of which are peined over.

The bearings are of the ring oiling type and are covered by heads which are fastened to the frame by cap screws. These heads are provided with large oil wells and over-

flow pipes.

The armature coils are form wound, and the armature shaft is removable. The brushes, of which there are four sets, are carried in cast bronze brush holders—which are supported by a plate attached to the generator frame.

Pole Changer: The pole changer consists of a worm or screw thread on the end of the armature shaft; the thread

Fig. 1. Newbold 80-Amp. Dynamo, Assembled, with Inspection Plate Removed

meshes with a gear on which are mounted four contacts arranged in a circle. Pivoted in the center of this gear is a pole-changing switch which is rotated through the action of the worm and gear into position to maintain the proper polarity.

Drive: The generator is driven by a belt from a pulley on the car axie to the pulley mounted on the end of the armature shaft.

Suspension: The generator frame is provided with two lugs through which a pivot bar passes. The pivot bar is carried by two bale shoes supported by a wrought iron cradle mounted on the truck.

Belt Tension: The proper belt tension is maintained by a helical spring, tension rod, and adjustable weighted nut.

Regulator: The regulator, main fuse and automatic switch are mounted on a panel placed inside the car. The regulator consists of a solenoid, the core of which is attached to a chain; this chain passing over a sprocket wheel is secured to a weight enclosed in a cast iron box which

acts as a dash-pot. The chain is made fast to the wheel at one point so that any movement of the chain will cause a movement of the wheel.

Attached to the wheel is an arm to which are fastened two sets of carbon brushes, the outer one of which makes

Fig. 2.: Outside Suspension of Newbold Axle Generator as Applied to a Standard Four or Six-Wheel Truck

the connection in the field circuit and the inner one of which is in the lamp circuit.

The solenoid has two windings; the first is a series winding through which all of the generator current passes, and the second is a differential winding through which only the lamp current passes, but in a direction opposed to the effect of the series coil. The object of this is to have the gen-

*BUTTNER SYSTEM WITH ROSENBERG GENERATOR

This system consists of an axle generator designed on the Rosenberg plan, a diagrammatic scheme of which is shown

in Fig. 6.

There are two sets of brushes on the armature, which does not differ in any respect from the ordinary armature with a single commutator. The horizontal set of brushes corresponds, so to speak, to the armature of the imaginary exciter. The current flowing through these brushes is induced by a very weak field from the magnet poles, and serves to produce a magnetic field in the armature at right angles to the original field. angles to the original field.

As this auxiliary current is dependent on the direction of rotation, it follows that the main field will also change in direction of rotation. The main supply current, which is collected from the vertical set of brushes, tends to pro-duce a field which directly opposes the original flux from

the field magnets.

The field coils have therefore only sufficient ampere turns to counteract this latter flux and give a small flux in excess capable of generating the current for creating the main cross-field. At full speed, when the machine is giving out its maximum current, the ampere turns of the armature and field coils almost exactly balance one another. On the speed being reduced, the voltage and likewise the current have tendency to fall. As soon as the current drops slightly, there is a considerable excess of the field ampere turns, which strengthens the main flux in the armature and maintains normal voltage. It Fig. 6. is therefore possible for the speed to vary within fairly

-handddachidd

Rosenberg Axle Generator. Wiring Diagram

wide limits with practically no effect on the supply current. In order to prevent the excitation from varying with changes of battery voltage, iron wire resistance is inserted in the field circuit which prevents an excessive rise of voltage. The resistance will fuse at very high speeds, thus reducing the generator voltage to zero. This serves as a protection to the lamps:

In order to protect the lamps, each one is in series with a special type of resistance which is known as the Buttner lamp resistance. This is a lamp which consists of an iron filament inside a glass bulb, containing gas, the characteristics of which are such that any attempt to increase the current will cause the resistance to rise very rapidly, thus absorbing the voltage fluctuations and maintaining a steady

^{*}Note.-Used in Europe.

pressure on the lamps. This obviates any perceptible fluctuations of light. A reversal in direction of current when the generator voltage falls below that of the battery is prevented by a cut-out device consisting of either an automatic switch or an aluminum cell. The latter is of simple design and consists of aluminum and iron plates in an electrolytic alkall which possesses the property of only allowing a current to flow in one direction; when the current is flowing in the correct direction, hydrogen is evolved on the aluminum plate and no resistance is offered to the current. In the reverse direction oxygen is evolved on this plate which immediately becomes coated with a film of oxide which entirely stops the flow of current.

Fig. 7. Method of Suspending Buttner, Generator

*BROWN BOVER! SYSTEM

This system is of the axle generator type, the generator being shunt wound and so designed as to generate current of the same direction regardless of the direction of rotation. Fig. 8 shows the wiring diagram for this system. The three magnet windings, I, II, III, are so arranged that I and II act in the same direction while III acts in the opposite direction. The movable coil O acts on a contact arm A, which short-circuits or connects to the circuit the different positions of the rheostat G and the winding P of the automatic switch C.

when the train starts the generator is excited and current passes through O, I, and U, the position of the brushes being automatically additisted according to the direction of running of the train. When the generator voltage has risen to a point sufficient for charging the batteries and supplying current to the lamps, the coil O is moved so that the contact arm A releases the first contact. The armature of the contact switch C is now attracted and the generator is connected to the battery.

nected to the pattery. Current passes now through winding II to the battery and strengthens the magnetic flux of the regulator R so that the contact arm A is moved farther. This happens with increasing speed of the train and in the reversing direction with decreasing speed of the train, while with increasing charge of the battery the voltage at its terminals and at the terminals of the generators is increased and the charge-

^{*}Note.—Used in England.

ing current is decreased. When the battery is fully charged the electromagnet U, which operates at a certain voltage, acts on H and produces a reduction of the voltage at the

terminals of the generator so that an overcharge of the battery is prevented. When the speed of the train decreases, the contact arm A is moved gradually into position shown in the diagram in which the winding of P of the automatic switch C is without current, so that the generator is disconnected from the hatter without current, so that the generator is disconnected from the battery. When the speed of the train falls below a certain value, the armature of the electromagnet U returns to its position at rest whereby the shunt resistor at H is disconnected. During the night the main switch S is closed. The current of the lamos passes

rent of the lamps passes through the coil Q so that its armature is attracted,

When the car stops the lamp Fig. 8. Diagram of Connections resistor J—and winding III.

are short-circuited by the switch C, so that the lamps receive energy directly from the battery. When the train starts the voltage at the terminals of the generator increases and at a certain voltage the regulator R causes the switch C to act, whereby the generator is connected to the network. The lamps receive energy from the generator through the winding III and the lamp resistor J, while at the same time there is a charging current into the battery, its size depending on the condition of charge and the intensity of the current of the lamps. To obtain constant voltage at the lamps while the number of lamps lighted is changed, the voltage at the terminals of the generator must vary with the current of the lamps; this variation is obtained by the demagnetizing action of the windings of III. ings of III.

CONSOLIDATED SYSTEM

TYPE "A"

The generator is of the bipolar shunt wound Generator: type with laminated field poles. The field frame and pedestals are bolted to a cast iron base and the entire generator

is enclosed in a sheet and cast iron frame.

The bearings are of the ring oiling type and are carried by the pedestals. The armature is hand wound. Two sets of brushes are carried in cast brass brush holders which are supported by the cast iron frame.

Pole Changer: The armature shaft carries a worm operating a cam, which throws a switch when the direction of rotation of the armature is reversed, as is the case when car is run in a reversed direction. The proper polarity is thus maintained for charging the batteries regardless of the direction in which the car may be moving.

Drive: The generator is belt driven from a pulley on the car axle, the proper belt tension being maintained by means of a helical spring, tension rod and weighted adjusting nut.

Suspension: The generator on its cast iron sub-base is supported by a rocker bar about which the generator oscillates as a pivot, this rocker bar being supported by two bale shoes which in turn are carried by a wrought iron cradle secured to the truck frame.

Regulator: The regulator consists of a solenoid with a spring balanced plunger to control its operation; the generator field rheostat which is operated by an electric motor connected by means of a worm gear and ratchet mechan-

Fig. 9. Consolidated Axle Generator

ism; and an automatic switch which connects the generator with the lamps and battery at the critical speed, as the car accelerates and for disconnecting it at the same speed as the car decelerates, and a variable lamp resistance operated by the same mechanism that controls the field rheostat.

Operation: The automatic switch has four coils as shown at "C" in the wiring diagram. The shunt coils are wound with fine wire, and the series coils are wound with heavy wire to carry the main generator current. The shunt coils always remain connected across the generator terminals. When the generator becomes operative and the voltage begins to build up, current flows through the shunt coils, and their cores become magnetized as the voltage rises. When the voltage of the generator reaches the point where it equals that of the battery, the magnetic pull of these coils overcomes their weight and that of the lever and the resistance of the spring, thereby closing the switch and resistance of the spring, thereby closing the switch and connecting the generator with the battery and lamps. As the speed of the train increases, the current increases until it reaches the point where the magnetic pull on the solenoid core belances the pull of the spring. A further increase of train speed, tending to increase the current generated

will cause the solehold spring to be overbalanced and throw the upper pawl into gear. The first six teeth of the ratchet wheel are intended to throw into action the cam "W" which through a roller operates the reach rod connected to the arm of the lamp resistance switch "A" and also the solehold spring lever "Y." At the starting point the tension has been reduced so that the current necessary in salegoid "S" to overbalance the spring would only be about one-

Fig. 10. Consolidated System Type "A" Wiring Diagram

third (1-3) of the required output. When this point is reached the upper pawl operates and switches in part of the lamp resistance "E," and at the same time the lever is moved, thus increasing the tension of the spring. It now requires more current to overbalance the spring. Consequently, the speed has to increase before further action takes place. If the speed continues to increase, the current will rise until the spring is again overbalanced and allows the pawl to repeat the same operation. This continues until the lamp resistance "E" is all switched in. At this point the lever "Y" has reached a position giving the required tension to the spring. A still further increase in

speed will act in the same manner and will cut resistance into the field "G." A decrease in speed will cause a reversal of the above operation, throwing the gear into the lower pawl, engaging with the front ratchet wheel and cutting out resistance from the field circuit of the generator. The generator current is thus maintained constant at all speeds above the critical. A wiring diagram of this system is shown in Fig. 10.

Fig. 11. Wiring Diagram of Double Equipment Kennedy and Type "A" Regulator

CONSOLIDATED SYSTEM DOUBLE EQUIPMENT

This system is of the usual Consolidated type, but with two distinct axle generators, two regulators, and the usual complement of storage batteries. One regulator is of the "A" type for controlling the current of one of the generators and the other is a Kennedy regulator for controlling

Fig. 12. Consolidated Generator Mounted on Truck

the current of the second generator and regulating the voltage of the lamps. Both of these regulators are placed under the car body.

Operation: When the car is at rest, the regulating motor Operation: When the car is at rest, the regulating motor does not rotate and the lamp current is supplied directly by the batterles through a resistance and the reverse winding of the series windings. When the automatic switch closes, due to the generator picking up at normal voltage, Dynamo "D" supplies current to the lamp fuses, series coils and lamp resistance. When dynamo "D" is connected, it also supplies current to lamps through the same circuit. While running, both generators will supply current to the batterles whether the automatic switch "SW" is closed or not. The regulating motor "M" will rotate whenever the lights are on, for the purpose of regulating the voltage, it being immaterial whether the car is in motion or not. A wiring diagram of the double equipment is shown in Fig. 11.

CONSOLIDATED SYSTEM

TYPE "D"

Generator: The generator is of the four-pole, interpole, shunt wound type, with cast steel frame, and has a rated continuous capacity of 45 amperes at 60 volts.

The bearings are of the ring oiling type and are carried in the heads which are secured to field frame by cap screws. Large oil wells are provided which are fitted with overflow places to prevent excelling. overflow pipes to prevent overfilling.

Fig. 18. Kennedy Regulator

Fig. 14. Kennedy Regulator

The armature coils are form wound, and the armature shaft is removable. The brushes, of which there are four sets, are carried in cast brass holders, which in turn are supported by the generator frame.

Pole Changer: Similar to Type "A" but of a larger size.

Drive: Similar to Type "A."

Suspension: Similar to Type "A."

Belt Tension: Similar to Type "A."

Fig. 15. Wiring Diagram of Single Type "D" Equipment and Kennedy Regulator

Regulator: The "Kennedy" regulator is used with Type "D" generator. This regulator is a combination of a motor, worm and gear, shafts, levers, pawl and ratchet, electromagnets, spring and rheostat. Its function is to regulate the current to the generator fields, so as to have the generator deliver the desired output and also to introduce into the lamp circuit the resistance necessary to give normal voltage at the lamps whether the battery be charging or discharging. This regulator is incased in a dust-proof box suspended underneath the car.

Automatic Switch: Similar to that used with Type "A" equipment.

Operation of Regulator: When the generator voltage reaches a predetermined point, the automatic switch closes; the generator then supplying current to the lamp and battery circuits. If the lamps are turned on and the speed of the generator is sufficient to generate a current of the normal voltage to supply the system the regulating motor will rotate and by means of several shafts, gears, ratchets and pawls, will cause the rheostat arm to be moved step by step until the proper amount of resistance is inserted in the circuits for supplying the normal current and voltage. A wiring diagram of Type "D" system, together with "Kennedy" regulator, is shewn in Fig. 15, while the general arrangement of the generator on the truck is shown in Fig. 12.

CONSCIDATED AUTOMATIC RECORDING DEVICE

The Consolidated Company also furnish an automatic recording device which indicates on a roll of paper the amount of current generated, etc., for a period of thirty days. The regulator controls the output of the dynamo in such a way that the battery will be charged at its normal rate up to

Fig. 16. .. Showing the : Wiring for Connecting the Consolidated Azle: Light System Type. "D" Dynamo with "L7: Regulator.

52 NATIONAL ELECTRIC LAMP ASSOCIATION

CONSOLIDATED TYPE "L" REGULATOR

The Type "L" regulator consists of a solenoid connected in series with the generator. The solenoid core operating

Fig. 17. Wiring Diagram of Complete Equipment with "Pullman" Switchboard. Type "D!h Dynamo with Type "E" Regulator

a rocking contact arm, the contact operating over a series of

hars connected to a continuous resistance consisting of metallic grids proportioned to suit the field of the generator.

An adjustable shunt is provided by varying which the amount of current from the generator to lamps can be set at any desired value within the range of one-third to full sampled. A stop plants grid to generator to full sampled. lamp load. A stop charge switch is also employed for cutting of the generator current when the battery is fully charged.

The stop charge switch may be adjusted by varying the air gap between the armature and its magnet by means of a graduated cam. The winding of the switch coil being connected across the generator leads, while a second shunt coll is added to the governing solenoid, that when the first coll closes the switch at some predetermined value the second shunt coll adds additional strength toward drawing up the solenoid core and inserting additional resistance in the generator field, thereby reducing the generator output.

GOULD SIMPLEX SYSTEM

Generator: The generator is a multipolar shunt wound machine of the enclosed type, having a cast steel field frame with laminated pole pieces. The bearings are of bronze, the oiling being accomplished by packed oil waste or rings as desired. The commutator end of the generator is provided with hand holes and covers so that the branches

are readily accessible.

The leads to the generator brushes and fields and the external leads from the generator are brought to a terminal block in the top casing of the commutator end of the generator. The pole changer is mounted on the shaft directly water the terminal block in under the terminal block.

Pole Changer: The pole changer, a phantom view of which is shown in Fig. 18, is of the mechanical operated type, comprising a double pole, double throw switch inter-

posed between the brush leads and the external leads of the generator. The switch throwmechanism comprises an ex-centrically drilled weight pivotally mounted on a car-rier and the latter mounted on the armature shaft. The weights have forward and rear projections to engage corresponding projections on front and rear switch blades when direction of rotation is reversed. When the switch is tipped the throw is com-pleted by a spring

Fig. 18. Gould Pole Changer

toggle preventing further contact with the tipping mechanism while the direction of rotation is again reversed. In the illustration form In a

Cenerator: The menutation is a militionary about would

Fig. 19. Gould Drop Type Suspension

Fig. 18, the rear projection of the weight is about to throw the switch to a position corresponding to right hand rotation, should the direction be reversed, the front projection of the weight coming in contact with the lug on front switch blade, will throw the switch in the opposite direction, thereby maintaining the proper polarity of the generator leads. H. A. de all J. te britein

Generator Suspension: This generator is suspended by means of the Link Type or the Drop Type Suspension. Views of these are shown in Figs. 19 and 20, in either of which provision is made for alignment of the generator shaft with the car axle and the generator and axle pulleys; while the tension of the chain or belt drive after being set is regulated by springs.

Automatic Switch: The automatic switch is of the laminated copper contact type with auxiliary carbon brake and is closed against the action of gravity by the lifting of its solenoid core. There are two windings on the solenoid, one a shunt coil across the generator mains, the other a heavy

well-angled. Fig. 20. Gould Link: Type Suspension of the profession

series coil connected in series with generator mains. When the generator voltage reaches the proper value the shunt. coil becomes sufficiently energized to raise the plunger and close the switch. The series coil is then energized and reinforces

the action of the shunt coil, assisting in holding the contacts, or switch, closed. Should the generator speed be decreased and the voltage drops to that of Battery Voltage the latter tends to discharge through the series coil in an opposite directhereby neutralizing the fall of the solenoid and gravity reinforced by the switch springs causes the switch blades and generator current to open. top of the solenoid plunger is a metal disk and laminated copper brushes which serve to short circuit the series coil of the regulator simultaneously with operation of the switch. This prevents the current due to the lamp load from exerting an effort to raise the solenoid plunger of the series coil of the regulator and increasing the resistance in the field circuit, which would tend to prevent the building up of the generator.

Regulator: Generator generator regulator is affected through the compression of carbon pile disks in the generator field circuit. A variable compression of the disks is obtained by the movement of two lever arms, one of which is actuated by the solenoid plunger of a series coil in the battery branch circuit, the other being actuated by the plunger of a shunt coil connected across the generator mains. So long as the battery is not fully charged the variable compression on the carbon disks obtained through the lever actuated by the plunger of the series coil, main! tains the generator current practically constant, by increasing or decreasing the resistance of the carbon pile should the current tend to increase or decrease from normal.

When the battery becomes fully charged, as determined by its attaining a definite limiting voltage, the shunt coil of the Fig. 21. Simplex Regulator energized to lift its plunger, and Distributing Panel thus decreasing the compression of the carbon pile resistance through the movement of the other lever arm. Under this condition the plunger of the series coil is no longer sustained, as the current to the battery is reduced. The control of the field strength, and consequently the voltage, then results from the shunt coil. The current output of the generator is reduced to the value of the current required for the lamps that are burning, the voltage thus corresponding to that of the fully charged battery.

The shunt coil also acts as a prevention against excessive generator voltage, should the battery circuit be broken

Fig. 22. Type "B" Gould Lamp Regulator and Multiplier

for any reason. In this event the generator would supply current for the lamps when the speed of the car is at or above the minimum limiting speed.

The solenoid plungers are restrained from oscillation by means of dash-pots, while to ensure the building up of the generator in case of loss of residual magnetism a resistance unit is connected between the battery and armature circuit, which permits a small amount of current to flow across the armature, breaking down any resistance that may exist.

Lamp Regulator: Lamp regulation is obtained by pressure being exerted upon a series of carbon disks; this pressure being varied inversely with the voltage of the generator. The variable pressure is obtained by a lever arm actuated by a solenoid plunger, the current in the solenoid coil being controffled by an auxiliary regulator, also of the carbon pile type, acting as a multiplier. Thus a very slight increase in voltage of the lamp circuit results in a decided increase in lifting effort on the main plunger, thereby maintaining the lamp voltage and candle-power at approximately constant values regardless of savy variation in gen mately constant values regardless of any variation in generator and battery voltage. The regulator is always in the circuit when the lamps are burning, but the carbon pile resistance is shunted gradually as the battery discharge proceeds.

Fig. 23. Wiring Diagram Gould System

Fig. 24. Wiring Diagram for Panel Type Regulators married to employed in the second

Fig. 24A. Gould Connector for Connecting Car Wiring and Generator

NATIONAL ELECTRIC LAMP ASSOCIATION

Fig. 25. Sections Showing all Parts of a Series 6 Machine. Leitner Generator

LEITNER SYSTEM-ENGLAND

Generator: This axle generator is belt driven, and is suspended underneath the car at an angle with the vertical, the weight of the machine tending to keep the belt tight. In the wiring diagram it is shown as a bi-polar machine but as actually constructed it has four poles and four sets of brushes, two of which are for the variable excitation. The frame of the dynamo is of cast steel, two large doors being provided for access to the brushes. The pole pieces are laminated. All terminals are brought out to a specially fitted board outside the frame. The bearings are of the ring oiling type. The commutator segments are of:

ring oiling type. The commutator segments are of:

Fig. 26. The "Auto-Switch" or Cut-Out

Pole Pole Changer: The pole changer is composed of the reverser and brush rocker which together act to automatically give the angle correct lead to the brushes depending on the direction of rota-tion. The action of the reverser is positive although an anti-shock device transmits the power from the shaft. It is only brought into action momentarily upon a reversal of the direction of the train.
The brush rock-

er is composed of the brush holders and reversing trol-

ley mounted on a cast iron ring. The brush holders are brass boxes with depressing levers controlled by adjustable springs in connection with toothed adjusting wheels. Elec-trical connections are made through spring collecting plus and rings.

Auto-Switch: The auto-switch, or cut-out, has the function of automatically disconnecting the storage battery from the dynamo whenever the voltage of the latter falls below that of the former. It also has the function of connecting

the battery and the dynamo when the generator voltage is greater than that of the battery.

It consists of a pivoted H armature carrying a switch arm, which is free to rotate through an angle of 30°. The rotation of this arm is produced by the attraction of the two redor protections.

polar projections The whole sw The whole switch, together with the main fuse, is enclosed in a cast iron box.

Operation: As shown in the diagram of connections, the output is adjusted by means of a series of resistances connected in the shunt field circuit, and its function is teregulate the generator output in steps of 45, 30, 25 and 20 amperes.

As shown in the wiring diagram there is an extra pair of brushes in the shunt field circuit which bear upon the

These brushes are so lecated that when the armature. These brushes are so located that when the armature first starts to revolve one brush is positive and the other is negative and they assist the main brushes an sending the exciting current through the field colls, builded ing the field up rapidly. As the speed of the armature increases the field flux is distorted, gradually reducing the voltage between the auxiliary brushes to zero and it is then reversed. With increased speed this difference in potential in a direction opposed to that of the main brushes gradually chokes down the current in the shunt field. It is claimed. chokes down the current in the shunt field. It is claimed that this keeps the dynamo voltage practically constant in-asmuch as the voltage of a generator depends upon the field strength and speed of rotation.

Wiring Diagram of Leitner System

The other set of field coils are in series with the lamp load and do not carry current until the lamp circuit is closed by the main switch. They are not strictly necessary but add in assisting the content of the cont but aid in assisting the excitation of the dynamo independently of the residual magnetism.

In a bi-polar machine the auxiliary brushes form an angle of about 20° with the vertical, and about 10° in a four pole

machine.

As stated above the cut-out has the function of automatleally cutting in and cutting out the generator. Its opera-tion is dependent upon the difference of voltage between the

battery and generator.

The coils of the small relay shown at the left of the cut-out The coils of the small relay shown at the left of the cut-out switch are across the dynamo terminals. When the voltage of the generator reaches a certain point, say 15 volts, this relay attracts its armature, thereby permitting the battery current to flow through the shuttle armature helding the contact arm and also through the fine windings on the pole pieces. This causes the magnetism of both the armature and pole pieces to be such that the contact arm is fearthly held out. forcibly held out.

As the voltage of the dynamo rises the current through the fine windings diminishes until finally, when the voltage of the battery and generator is equal, this current becomes

· a .

zero. A further rise of generator voltage reverses the direction of this current, and, as the battery current through the shuttle armature always remains in the same direction, the reversed magnetism of the pole pieces causes the arma-ture to rotate and the arm to close the circuit.

The fine windings on the pele pieces are now short-circuited. The hearier series windings then come into action. They are would in the same direction as the fine windings

Fig. 28. Leitner Regulator

and as they carry practically all the generator current they tend to hold the contact arm and keep the circuit closed as long as the dynamo voltage remains above that of the battery. When it drops these series coils allow and somewhat assist the spring attached to the contact arm to open the circuit, after which the fine windings on the pole pieces come into action and assist the spring.

The regulator consists of what is termed as a "voltage balance" and a small reversible motor actuating a contact arm cover three sets of resistance study thereby theoriting

balance and a small reversible motor actuating a contact arm over three sets of resistance studs, thereby inserting or withdrawing resistance in three separate circuits. The following action is claimed for this regulator. When the lamps are burning the voltmeter or controlling coll is in multiple with the lamp circuit. The motor is then actuated by this coll and rotates the contact arm to

64 NATIONAL ELECTRIC LAMP ASSOCIATION

10

Fig. 89. Regulator on Base

such a position on the outside ring of studs that the resistance controlled by these studs, which is in the lamp circuit, will absorb the difference between the lamp voltage to which it is adjusted and the battery or generated voltage. The contact arm of the voltmeter is then in equilibrium. An increase or decrease of voltage will cause this arm to make one of two contacts and this will cause the motor to drive

the regulator to a correcting position.

If the dynamo is in circuit the strength of one-half the field is altered at the same time that the resistance of the lamp circuit is changed. This is accomplished by the additional the strength of the country of the cou tion or withdrawal of resistance in the field circuit through

tion or withdrawal of resistance in the field circuit through the inner ring of studs. The two actions effect a double regulation, the generator voltage being altered simultaneously with the resistance of the lamp circuit.

If the lamps are not burning and the generator has only the battery load, the voltmeter coil is in parallel with the battery instead of the lamps. As this controlling coil causes the motor to rotate the regulator, the action of the contact arm on the middle ring of studs inserts resistance into controlling or voltmeter circuit. Thus, as the battery voltage rises during charge, the voltmeter, by its own action, raises the voltage to which it will respond and at the same time raises the dynamo voltage to meet the requirements of charging the battery. As the battery nears a fully charged condition, the regulator opens the field circuits upon which the cut-out acts and the dynamo is put on open circuit. If lamps are then switched on, the added resistance in the voltmeter circuit is short-circuited, the regulator is in the voltmeter circuit is short-circuited, the regulator is brought to lamp voltage adjustment, and the dynamo is cut in, providing its speed is high enough.

*MATHER AND PLATT SYSTEM

This system is of the axle generator type, consisting of the generator mounted for axle drive, an accumulator, switches and regulator. Fig. 32 gives a diagram showing

the wiring connections.

When the train is at rest the solenoid switch, SS, is in the lower position and the batteries, BB, feed the lamps through the main switch, ES. The generator is cut

direct through the main switch, ES. The generator is cut out of the circuit at the point D.

As the speed of the generator rises there is a gradual increase in the current flowing in the shunt winding of the solenoid switch, SS, until, when the generator voltage equals that of the bettern the purpose of the solenoid in swiled. that of the battery, the plunger of the solenoid is pulled up, closing the circuit at DC and breaking it at LR. This takes place at a train speed of six to eight miles per hour. The generator at this point is supplying only a very small current, thus preventing the burning of the switch contacts.

The output of the generator rises after "cutting in" until at about 18 miles per hour it is giving practically its maximum output. The output remains practically constant

above this speed.

As the speed decreases the generator output decreases until at about five miles per hour it reaches zero. Any decrease below this point tends to reverse the current through the generator, the series coil of the solenoid demagnetizes the solenoid and the generator is "cut out;" at the same moment the resistance LR is short-circuited and the batteries are connected directly to the lamp circuit.

^{*}Note.-Used in England.

The output of the generator is controlled by the insertion of resistance into the shunt field. This resistance is controlled by the same switch that controls the lights and the amount is dependent upon the number of lamps burning.

The regulation is controlled entirely in the generator itself.
The arrangement of the generator is shown in Figs. 31a and 31b. 'The armature and commutator are similar to the

Fig. 30. Dynamo Fitted Under Coach

ordinary drum wound machine. The brushes, bb, which in a normal machine would supply current to the external a normal machine would supply current to the external circuit are short-circuited and a second pair of brushes, BB, at right angles to the first pair, constitute the main working brushes, supplying current to the external circuit. The generator is of the shunt wound type, the shunt field ff being connected across the armature terminals in the diagram.

The field windings establish a flux in the field magnets passing vertically through the armature as indicated by the letters, SS, NN, Fig. 31. The rotation of the armature in this magnetic field induces currents in its conductors which circulate through the aid brushes bb. The field windings fi are relatively small since a very small flux is sufficient to produce a large short-circuit or aid current.

These short-circuit or aid currents produce a flux through the armature, at right angles to the primary flux, which circulates around the pole pieces and armature as indicated by SS, NN, and does not traverse either the pole limbs or yoke which carry the primary flux. The rotation of the armature in this secondary flux induces a difference of potential between the brushes, BB, and sends current into the external circuit.

If, for the sake of clearness, the currents flowing in the armature be considered as existing in two independent windings, it will be observed that whereas the currents flowing through the aid brushes bb produce a flux at right angles to the primary flux, and therefore producing no effect on this latter flux as regards magnitude, the currents flowing through the main brushes, BB, produce a flux exactly opposed to the primary flux and accordingly diminishing it in exact proportion to the strength of the current in the external circuit.

It follows, therefore, that for a certain value of the external current the ampere-turns of the armature will exactly correspond to the ampere-turns of the primary exciting winding, and, being equal and opposite, the resultant flux will be zero. As without a primary flux the dynamo would cease to generate current, it is clear that the limiting value to the external circuit which the dynamo can produce is that current which makes the armature ampereturns equivalent to the field ampere-turns. Further, as a very small excess of field ampere-turns over armature ampere-turns is necessary to produce the current in the aid pere-turns is necessary to produce the current in the aid brushes which set up the working field, a very small diminu-tion in the current in the external circuit is sufficient to produce this working flux. A variation of 12% in current is obtained through a range of train speed of from 21 to 65

is obtained through a range of train speed of from 21 to 65 miles per hour.
Reversal of the direction of rotation of the armature reverses the direction of the aid current, but leaves the current in the primary exciting windings unchanged. The horizontal armature flux is, therefore, reversed in direction and this, together with the change in direction of rotation of the armature, causes the direction of the current in the external circuit to be the same as before.

The efficiency of this generator is approximately the same as that of an ordinary generator of the same output, the commutation losses being slightly larger while the excitation losses are smaller. Both sets of brushes work sparklessly when the machine is running in either direction and over any range of speed within the bounds of mechanical safety.

SAFETY TYPE "F" SYSTEM

Generator: The generator, which is made in 2.6 and 4-kw. size, is a multipolar shunt wound machine, with one flece steel magnet frame and interchangeable cast iron heads for bolting to commutator or pulley ends of magnet frame. The bearings are of the bushing type, made of bronze, and alike for both ends of the generator. The bearings are obtainable in either the waste packed or ring oiling type, the oil being added through a filling tube in the side of the head and which acts as an overflow, the low lip of the filling tube determining the proper level of the oil.

bronze, and alike for both ends of the generator. The bearings are obtainable in either the waste packed or ring oiling type, the oil being added through a filling tube in the side of the head and which acts as an overflow, the low lip of the filling tube determining the proper level of the oil. The armature is form wound with fireproof insulated wire, the coils being held in slots by hard fibre wedges. The brushes are eight in number (two to each holder), each having separate trigger with spring tension to maintain the contact with the commutator. Each brush has the usual copper shunt to maintain a good contact with the brush holders.

Pole Changer: The current direction is maintained constant by rotating the brushes through an angle of about 90° whenever the direction of rotation of the armature is changed. The four brush holders are mounted on an insulated supporting ring which acts as an outer race of a ball bearing, which is slipped over a finished hub on commutator head and held in place by a snap spring ring. The brush rocker has two stops about 90° apart, with luggage projections cast on head. While running the friction of the brushes on the commutator holds the rocker firmly against one of those stops. Reversing the direction of rotation causes the brush rocker to be turned over against the other stop, changing the position of the brushes, but maintaining the same polarity as before.

Generator Suspension: The generator is supported as shown in Fig. 33. The horizontal shafts by which the generator is suspended pass through holes in the projections cast on the field frame, these shafts in turn being supported by links carried by movable pieces resting on heavy, horizontal bars. The bars in the case of steel trucks are passed through holes in end of truck frame and then bolted. The dynamo is mounted on the car truck outside the end sill and is driven by a belt from a pulley on the car axle. Fig. 33 shows the general arrangement as applied to a standard form of cast steel truck. The heavy horizontal

Fig. 33. Dynamo Suspended on Six-wheel Steel Truck

steel bars from which the dynamo is suspended pass through holes in the end of the steel frame of the truck and are boited to the frame. The ends of these bars are turned

down and securely clamped together by an angle iron, which serves a brace and supports the sion rod. ten-. These hars are further strengthened to prevent lateral motion by braces bolted to the end of the truck. The dynamo is suspended on two horizontal shafts passing through two lugs on each side of the dynamo frame, the two lugs having a long bushing bet ween These them. shafts are supported on each end by links carried by

movable pieces resting on top of the horizontal Fig. 34. Type "F" Dynamo Regulator Panel bars. These pieces are adjusted by means of screw bolts, to give proper alignment with the car axie, and are held securely, after being

adjusted, by means of bolts passing through plates bolted to the supporting bars. A safety chain is attached to the dynamo and the end of the truck, and another safety chain to the dynamo and the angle iron which serves as a brace to the dynamo and the angle iron which serves as a brace for the ends of the suspension bars. When the tension spring which surrounds tension rod is compressed by the nut, it tends to pull the horizontal bars and generator away from the truck and give the required tension to the belt. As the vertical center line of the dynamo remains vertical with any movement of the dynamo, the belt tension is the same with either direction of drive.

Automatic Switch: The automatic switch is of the closed magnetic type, having a fine or shunt winding connected across the generator circuit, and having windings connected in series with circuit. When the generator voltage rises to the proper value the shunt winding is energized sufficiently to raise the solenoid and close the heavy laminated contact when the series coil there maintains a firmly closed contact. When the generator voltage drops to that near Battery Voltage, the Battery Current, being in the reverse direction, causes the switch to "kick out."

Generator Regulator: The regulation is by the Carbon Pile Resistance Method, the dynamo regulator having two

coils, one a voltage connected di-ly across the rectly across generator leads and a series coil connected in the main circuit. Each coil acting independently on a separate arm. The pull exerted on the plunger of the voltage coil at the maximum voltage which it is desired to impress upon the storage battery is balanced by a The pull on the spring. exerted plunger of the secoil at the ries maximum dynamo current desired is the pull of a spring. The voltage coil controls the pres-sure on a series of carbon discs in the and

Fig. 35. Type "F" Lamp Regulator Panel

neid circuit varies their field circuit and varies their resistance, as may be necessary, to prevent the voltage from rising above the maximum for which it is set, as the train speed changes. The series coil comes into action only if the output tends to exceed that for which the regulator is set, when a projection on the lever engages with a second lever and the series coil then assists the voltage coil in controlling the carbon pressure. When the dynamo is at rest, the arm connected with the plunger of the series coil rests against a stop at the top of the coil and the field resistance carbons are tightly com-

Fig. 86. Type F Wiring Diagram Lamp Regulator in Car

pressed by the pull of the spring, so that their resistance is low. As the armature begins to revolve current flows through the field coils and builds up a voltage which energizes the lifting coil of the main switch.

As soon as this voltage is the same as the battery voltage

As soon as this voltage is the same as the battery voltage the main switch closes, cutting into circuit the series coil of the main switch which holds the switch firmly closed. Current now flows from the positive dynamo terminal, through the series coil of the main switch and the series regulating coil to the lamps and storage battery and back

regulating coil to the lamps and storage battery and back to the negative dynamo terminal.

As the train speed increases and the dynamo is able to give its full output, the control is by means of the series coil provided the full output of the dynamo can be used for charging the storage battery or for the lamps. As the storage battery becomes charged and its voltage rises, the current tapers off so that the full output of the dynamo is no longer required, and the series coil arm moves out of engagement with the voltage coil arm and rests against its stop. The voltage coil then prevents the voltage from rising above the voltage for which the regulator is set.

If a lead battery is charged at a constant voltage of 2.5

If a lead battery is charged at a constant voltage of 2.5 per cell, the charge will start at a high rate and automatically taper to nearly zero as the battery becomes full corresponding to a stop charge. In a thirty-volt equipment, corresponding to a stop charge. In a thirty-voit equipment, having sixteen cells, the battery will be protected from overcharge if the dynamo gives 40 volts and the battery will be charged in the shortest possible time. If, however, the battery is almost discharged and there is a heavy lamp load, the demand on the dynamo would be greater than its safe capacity, so that the series coil is necessary to limit the current the dynamo can give. The action of the generator regulator is to cause the dynamo to give its full capacity at all times if it can be used, and to protect the battery from overcharge

capacity at all times if it can be used, and to protect the battery from overcharge.

Lamp Regulator: The lamp regulator is shown in Figs. 34 and 35, the general idea being to maintain the voltage on the lamps constant by varying in the proper amount a carbon resistance in series with the lamps.

The carbons are compressed by an adjustable spring connected to a link acting through a toggle. The pull of the spring is opposed by the pull of the electro-magnet, which is connected directly across the lamp mains and is so designed that the armature will stay in any position throughout its stroke when the lamp voltage is right.

When the lamp voltage is high the magnet becomes stronger and pulls the armature down against the pull of the spring and reduces the pressure upon the carbons, increasing their resistance and bringing the lamp voltage back to normal. If the lamp voltage is low, the magnet becomes weakened and the spring pulls the armature back until the toggle exerts sufficient pressure on the carbon discs to decrease their resistance and bring the voltage to normal. crease their resistance and bring the voltage to normal.

Fig. 37. Type "D". Dynamo Regulator Panel

SAFETY

TYPE "D" SYSTEM

Dynamo Regulator: When the dynamo is at rest the carbon discs in the field are tightly compressed by the pull of a spring so that the resistance is very low. As soon as the armature revolves, current is generated which flows through the field coils which energizes the lifting coil of the main switch. When the voltage is the same as the battery voltage, the main switch closes, connecting into the circuit a series coil, which holds the switch firmly closed. As the current rises a pull is exerted on the plunger of a solenoid magnet and the pressure on the carbons is decreased, thereby increasing the resistance in the field circuit.

Lamp Regulator with Relay: The regulator keeps the voltage on the lamps constant, by varying the pressure on

草ig. 38. Type "D" Lamp Regulator Panel 学with Belay

a carbon disc resistance in series with the lamps, the pressure on the discs being varied by an electromagnet working through a toggle. The electromagnet being operated by a relay.

This company also manufactures another lamp regulator, the action of which is to keep the voltage on the lamps constant by varying in the proper amount a carbon resistance in series with the lamps, the pressure on the disc being varied by an electromagnet working through a toggle. The solenoid connected across the lamp circuit acts as a master controller or pilot, and varies the pressure on another set of small carbons connected in series with the windings of the large electromagnet.

Fig. 89. Wiring Diagram Lamp Regulator with Relay Under Car

STONE SYSTEM STONE AXLE DYNAMO

Generator: The generator is of the two-pole shunt wound type with a rated continuous capacity of 18 amperes at 25 volts.

The bearings are of the ring oiling type and are carried by supports secured to generator frame. The oil wells have an overflow pipe. The armature is of the old Gramme ring hand wound type.

Two sets of brushes are carried in cast brass holders secured to the generator frame.

The polarity is changed by means of a rocking arm and friction gear. To change over the direction of the rocking arm, two plungers press against lignum-vitae blocks on rear end of the rocking arm by means of a spring engaging it and carrying it around to slots. These plungers fly out

Fig. 40. Stone Axle Dynamo-Longitudinal Section

free from the rocker arm when the centrifugal force, due to the rotation of the armature shaft, is great enough after the arm is pushed home into the contacts.

The generator is suspended by means of an adjustable link in such a manner as to leave the generator free to swing. The belt is then adjusted to pull the generator out of the vertical position in which it would naturally hang, thus putting a tension on the belt sufficient to absorb power equivalent to the amount of current required at the speed for which the belt tension is adjusted. It is obvious, therefore, that increasing the speed will cause the belt to slip. No regulator is used as it is supposed that the cushioning effect of the batteries in connection with a small resistance

effect of the batteries in connection with a small resistance inserted in the lamp circuit and the slipping of the belt is sufficient to maintain the voltage within such limits that the variation of the candle-power of the lamps is not an noying.

The automatic switch is of the fly-ball type and is fastened on the generator shaft. As the speed is increased to a predetermined point, the weights are thrown out due to the centrifugal force and the contacts are made by "knife blades" being forced into the proper contacts.

Fig. 42. Wiring Diagram

The car having attained the "cutting-in" speed the centrifugal force on the governor weights will throw the pole changer to the proper position, and cut in the automatic switch. The generator is then supplying the current, any excess above that required for the lights going to the batteries. If the speed increases above the point at which he automatic switch is thrown in, the belt, if properly adjusted, will begin to slip as the generator is loaded, thus causing the voltage to drop; consequently decreasing the

Fig. 41. Stone Axle Dynamo-Method of Suspending Dynamo

UNITED STATES LIGHT AND HEATING CO.

The generators are made in several sizes known as L, M, and O types. Each generator is provided with four supporting lugs or feet, made in the form of split bearings, which latter are provided with bushings which may be replaced when worn. These four bearings permit the generator to be placed upon and secured to the large "U"-shaped links of the suspension. The generators are made with solid bronze bearings or with ball bearings, the former being lubricated by ring chain oiler and the latter by grease forced into the bearing by a standard gun.

Pole Changer: The brush holders are mounted on a carrier which is carried on ball bearings, which enable it to rotate freely within the casing of the generator. The friction between the brushes and the commutator is sufficient to cause the brushes, and with them the carrier, to be dragged around as the commutator revolves. The angular motion of the carrier is arrested by means of a movable stop. When the armature revolves to a right-hand direction the brushes and carrier are rotated to the right and arrested by the stop in the correct position for commutation, and vice versa. As the rotation of the armature having been reversed, and also the position of the brushes, it is obvious that the actual polarity of the generator terminals is preserved.

Fig. 43. Narrow Non-adjustable Parallel Link Suspension

Suspension: (For use on steel trucks and especially under cars having deep center sills, the suspension shown in Fig. 44 is applicable.) For use on wood trucks, some steel trucks, but especially with cars with deep center sills, the suspension shown in Fig. 43 is applicable. This has become known as the narrow style, because the side bars are relatively close together, forming a narrow frame. The "U"-shaped links upon which the generator is mounted are non-adjustable so far as their pivotal or vertical length is concerned. The side bars are usually fastened by means of bolts by means of wheel guards to a point in the transit.

Automatic Switch: The connection between the generator and the rest of the system is controlled by a generator

Fig. 44. Type M-3 Generator Mounted on Wide Non-Adjustable Parallel Link Suspension, Applied to Steel Truck

switch, consisting of a solenoid composed of two coils, one the lifting or closing coil and the other the releasing or opening coil. These coils act upon a plunger, which is drawn up by the lifting coil. When so drawn up, a metal brush attached to the plunger connects two terminals, thus connecting the generator to the battery. The solenoid switch closes the connection between the main feed wires when the generator has attained sufficient speed for normal voltage, and opens automatically when the generator drops below the operating speed.

Fig. 45. Diagram of Bliss System Type F. Constant Current Regulation

U. S. L. TYPE "F" SYSTEM

Regulator: The regulator consists of two solenoids which are wound with heavy wire and connected in series with the main generator circuit. Soft iron plungers are used which are connected with a system of levers, and are free to move vertically. Each plunger has mounted on the upper end a carbon electrode which is normally in contact with a stationary carbon electrode. These electrodes normally short-circuit a fixed resistance connected in series with the generator field and these resistances are "unshorted" by sepa-

rating the carbon electrodes, and the machine is, so to speak, practically killed. The rheostat consists of two steps, one of which contains three times the resistance of the other. Both resistances are cut out normally by the carbon electrodes which are forced together by the action of retractile springs.

Operation: The tension of the springs is so adjusted that when a predetermined current flows through the solenoids, the plungers are pulled down, just breaking the short circuit which has normally kept the resistance out of the field circuit. When the short circuit is broken, the field current is immediately reduced, and the generator voltage drops, decreasing the pull on the solenoid plungers. The retractile springs cause the carbons to short circuit the field resistance, the generator voltage rises, and the cycle of operation is repeated, the result being that the main current oscillates or pulsates with high frequency between two narrow limits.

A wiring diagram of this system is shown in Fig. 45.

U. S. L. TYPE "C" SYSTEM

Generator Regulator: The generator regulation is maintained by a solenoid having a shunt winding connected directly across the generator circuit, which actuates a lever exerting a pressure on a carbon pile disk resistance. As the speed of the machine increases the pressure on the disks is decreased, thereby inserting a resistance in the field circuit and reducing the generator voltage.

Lamp Regulator: The lamp regulator is similar to the generator regulator, the carbon pile resistance being in series with the lamp circuit. In order, however, to obtain a more delicate adjustment a reed vibrator is used to cut in and out a resistance across the carbon pile, thus maintaining the lamp voltage practically constant.

U. S. L. TYPE "P" SYSTEM

Generator: This generator is of the multipolar type with a cast steel field frame. The armature is form wound. The bearings are of the ring oiling type. There are two brush holders which are accessible through a hand-hole with removable cover.

Pole Changer: The pole changer consists of a movable wrought iron ring carrying its current contacts, stationary contacts and steel plunger which is attached to the armature shaft. The function of the plunger is to engage the movable ring under a train speed of three (3) miles per hour, and rotate it so as to maintain the generator in proper relation with the battery. Above a speed of three miles per hour the plunger is disengaged by centrifugal force.

Drive: The generator is belt driven, the proper tension being maintained by the use of helical springs attached to the under side of the generator and made adjustable with the suspension.

Suspension: An overhung suspension is employed. The generator is supported from a 2-5/16" shaft which passes through two lugs, the latter being integral parts of the generator frame. Alignment of the machine may be made by shifting the bearings carrying the above mentioned shaft. The weight of the generator is taken directly by spring

bars, bolted to the truck. Cushion and recoil springs are inserted between these spring bars, and a rigid "angle" which is also bolted to the truck.

Regulation: The regulator consists of an automatic switch, a carbon disc pile actuated by a series solenoid, and

Fig. 47. U. S. L. Type "P" Generator

a dash pot. The carbon pile is connected in shunt with a resistance and the combination connected in series with the generator field which is protected against sudden severe fluctuations of pressure by a dash pot filled with glycerine. The generator is made to "pick up" by exciting the field from the battery through a resistance.

Lamp Regulation: The lamp regulation is accomplished by means of a fixed resistance in the lamp circuit,

Operation: Assuming the car to be standing still, the

fields of the generator will be excited through a high resistance (to insure picking up). When the car has reached an approximate speed of five (5) miles per hour the pole changer has produced the proper relation between generator and battery voltage. to the time of the closing of the automatic switch, which makes the generator voltage slightly in excess of the battery excess voltage, the carbon pile shunted across the generator fields has been inactive. The sudden flow of the battery and lamp current ener-

gizes the solenoid fig. 48. U. S. L. Type "P" Panel connected with the carbon pile; the latter is compressed, shunting the current around the field, thus reducing the generator output to a predetermined value.

U. S. L. TYPE S-1

The Type S-1 Panel consists of: 1. The generator current regulator. 2. The generator potential regulator. 3. The standard automatic switch. 4. The lamp regulator relay. In addition, it has mounted upon it the generator armature fuse and the generator field fuse. The lamp regulator, which is an independent piece of apparatus controlled by the lamp regulator relay (4), may be mounted, preferably inside the car, or underneath the floor of same, as the owner may elect.

The distinguishing features of the S-1 panel are the generator, current regulator and the generator potential regulator.

Fig. 50. U. S. L. 13 Type "P" System

GENERATOR CURRENT REGULATOR

Construction: The current regulator consists of an iron-clad solenoid having a single heavy winding of edgewise wound copper bar directly in series with the armature of the generator, and through which the total armature cur-rent of the generator flows. The plunger of this solenoid

is free to move in a vertical direction through a distance of about % inch. To the lower end of the plunger is attached a graphite piston, which fits a cylinder or dash pot which, in turn, forms a part of and is cast integrally with the frame of the solenoid. This dash pot is nearly air-tight and contains no liquid of any kind, the entrapped air and the small clearance between the piston and the walls of the cylinder affording all the damping action necessary to prevent sudden or jerky movements of the plunger. The upper end of the plunger engages a roller, which is attached to the forked end of the horizontal arm of a bell crank lever mounted upon a hub post attached to the panel. The end of the vertical arm of said lever is attached to a thrust plate and carbon terminal block, which latter engages one end of a horizontal pile of carbon disks. The other end of the pile abuts against a solid support. The pile of carbon disks constitutes a variable resistance under the control of the solenoid and is connected directly in series with the field of the generator. The arbor upon which the bell crank lever is mounted is carried through the hollow hub post and slate panel and then bent at right angles, behind the panel. The initial pressure on the carbon pile is produced by a weight mounted on the rear horizontal arm of the bell crank. This weight is fixed in value, and its location on the horizontal arm determined in the factory and neither can be altered, but its effectiveness may be altered by changing the angular position of the rear arm of the bell crank lever, by means of a knurled nut which, being directly pinned to the arbor passing through the panel and attached to the bell crank by a removable screw, enables one to rotate the arbor and engage the bell crank at different angles by shifting the screw in the knurled nut from one hole to the other.

Operation: The current regulator serves two purposes:

Operation: The current regulator serves two purposes: First. It maintains the current delivered by the generator constant at all speeds above the full load speed, and thus insures constant load and prevents excessive load upon the generator due to high speeds. Second. It prevents excessive loads upon the generator due to the fact that the generator may at times cut in on an exhausted battery which, having little or no counter E. M. F., would permit an abnormally high current to flow from the generator at the cutting-in speed.

THE POTENTIAL REGULATOR

Construction: The construction of the potential regulator consists of an iron-clad solenoid of the same dimensions as the Type K-1 lamp regulator relay. It is provided with a single high resistance coil or winding wound on a copper a single high resistance coil or winding wound on a copper tube, connected directly across the generator terminals which, after the automatic switch has closed, are the same as the battery terminals. Within the tube is an upper or fixed plunger and also a lower or movable plunger, the latter being mounted on a pair of parallel motion reeds, which permit of a frictionless vertical movement of said plunger within the tube. An air dash pot is formed integrally with the lower portion of the solenoid frame and a small graphite piston fitted therein, which is connected to the lower end of the movable plunger by means of a self-aligning connection. The dash pot serves to prevent sudden or jerky movements of the movable plunger. The bottom of the dash pot is made of molded insulating material, threaded and fitted into the dash pot. This insulating cover is provided with a carbon block terminal mounted on a screw, which is threaded through the cover and provided with a lock nut. The frame of the solenoid forms one terminal and the insulated carbon contact attached to the cover forms the other terminal of the resistance which is included in the field circuit of the generator and normally short-circuited by the contact between the graphite piston and the lower carbon terminal. A brass tail rod is attached to the movable plunger and passes upward through a clearance hole in the stationary plunger and carries on its upper end a cross bar, one end of which forms a rigid finger for the attachment of the helical adjusting spring, while the other is formed into a tappet, which engages a roller on the end of a small multiplying lever. This lever is fulcrumed on a rigid support attached to the upper part

Fig. 49. Type S-1 Generator Regulator Panel with Type B-1 Lamp Regulator Panel Mounted Underseath

of the solenoid frame. The lever engages a short vertical stud which passes up through the support, to which the lever is attached, and supports the lower contact plate on which rests a vertical pile of carbon discs. The discs are confined within a cage whose vertical rungs are attached to the above mentioned support. The rungs are insulated with lava tubes and thus the carbon pile is insulated from all metal parts with the exception of its lower carbon plate. A bonnet is attached to, and insulated from, the solenoid frame and covers and conceals the carbon pile and its operating mechanism. In the top of the bonnet is mounted, by means of a steel adjusting screw provided with a lock nut, a carbon contact block which may engage the upper end of the carbon pile. A pressed cap fits over the top of the bonnet and covers and conceals the upper part of the carbon pile and the upper carbon contact.

The action of the small lever provided with a roller is

The action of the small lever provided with a roller is simply to increase the pressure exerted by the movable plunger of the solenoid upon the carbon pile, the dimensions of the lever being such that a multiplying effect of 2 to 1 is secured. The adjusting spring above mentioned is attached, as was stated, to one end of the cross bar fastened to the brass tail rod and is enclosed within a brass tube mounted in lugs which are cast integrally with the frame of the solenoid. The magnetic pull of the coll is opposed by the weight of the carbon pile, the multiplying lever, and the movable plunger, and also by the tension of the adjusting spring.

Operation: The carbon pile is connected as shunt to the field winding of the generator, but the contact between the top of the carbon pile and the upper contact block is normally broken or open. The tension on the adjusting spring is so regulated that the movable plunger remains in its lower position until a voltage of 42 is impressed upon the coil of the regulator. This voltage is sufficient to cause the plunger to move upward, thus breaking the connection between the graphite piston of the dash pot and the lower carbon contact block, which motion throws into series with the field of the generator the fixed resistance mentioned above. The movable plunger moves instantly to its upper position and raises the carbon pile up into contact with the upper contact block, thus establishing a variable shunt around the field winding of the generator. The regulator now operates to maintain the voltage of the generator at 35 volts, by varying the resistance of the shunt across the field winding. An increase in voltage above 35 decreases the resistance of the carbon pile and deflects or shunts current from the generator field winding, thus tending to lower its voltage. A similar, though opposite action takes place with a decrease of generator voltage.

Three adjustments of the potential regulator are neces-

Three adjustments of the potential regulator are necessary, but when once made no further adjustments should be necessary for long periods.

First. The lower carbon contact must be adjusted until a definite contact is secured.

Second. The tension spring must be adjusted until 42 volts just raises the movable plunger.

Third. The upper carbon contact must be adjusted until the generator voltage is held to 35 volts.

The potential regulator performs primarily two functions: First. It responds to and prevents a rise of voltage beyond that value which is assumed to represent a condi-

U. S. L. Type S-1 Panel C-4 or 5 Lamp Regulator

tion of full charge in the battery. In the 30-volt system this is assumed to be 42 volts, and is undoubtedly very nearly correct. A voltage of 42 may be produced in a number of ways, some normal and others abnormal.

The normal manner of obtaining 42 volts in the system is by allowing or causing the battery to charge at some reasonable rate or near the normal charging rate until the battery voltage gradually rises to 42 volts. This action may be fairly continuous or decidedly intermittent, depending upon the train schedule.

On the other hand, a voltage of 42 will appear abnormally and without representing full charge in the batteries when, for any reason, the resistance of the battery circuit becomes abnormally high. This may occur either through sulphatation, loss of electrolyte or the battery circuit actually opening.

As an abnormal rise of voltage is more or less proportional to the resistance introduced into the battery circuit, it is seen that the most violent upward rush of voltage must occur when the battery circuit is opened, for under these conditions the resistance approaches infinity and it requires an infinite voltage to force a finite current through an infinite resistance. The tendency of the voltage to rise with the increase of battery resistance is due to the characteristics of the current regulator, the tendency of which is really, as was previously explained, to maintain its ampere-turns constant, or, what is the same thing, its current constant. In trying to maintain constant current through an abnormally high battery resistance, the current regulator requires and permits an abnormally high voltage to develop. This is no reflection, however, upon the current regulator. Actual opening of the battery circuit is not likely to occur with modern batteries and wiring, but it is a favorite condition introduced into most specifications as a test of the ultimate ability of the potential regulator to prevent damage and to maintain, if possible, an operating system without a battery.

The first function of the potential regulator is essentially protective, preventing an increase in voltage above 42. It is assumed that when 42 volts appears, it has been developed under normal conditions, viz., due to charging the battery. At 42 volts, the potential regulator responds, and throws into the field circuit of the generator a fixed preventive resistance, but one not having a value sufficiently high to appreciably weaken the field. At the same instant, a small carbon pile under the control of the same solenoid of the potential regulator is bridged across the shunt field of the generator. The function of this resistance is to prevent the carbon pile from short-circuiting the generator, as obviously a shunt upon a shunt winding would. The tension spring of the potential regulator is so adjusted that as soon as the same has come into play, the tendency is to regulate the generator as a strictly constant potential machine at exactly 35 volts, which is the floating voltage of 16 cells of Plante battery. The result is that no matter what the speed of the generator may be at the time the potential regulator acts, the voltage of the same is instantly brought to 35 volts, at which value it remains over all speeds above the cutting-in speed and thereby maintains the battery current at zero. There is an abrupt reduction of the battery current to zero and no lower, the generator voltage simply falling to 35, where it is held as long as the

U. S. L. Type S-1 Panel B-1 Lamp Regulator

generator runs above cutting-in speed. Any lamp load thrown on or existing at this time will be carried by the generator, as the voltage of the latter is held constant, notthrown on or existing at this time will be carried by the generator, as the voltage of the latter is held constant, not-withstanding the tendency of such a lamp load to lower the system voltage. If, however, an abnormal lamp load heavy enough to reduce the voltage of the system to 33 volts, in spite of the efforts of the potential regulator to maintain 35 volts but still not as great as the full load capacity of the generator, is thrown on, the battery would naturally be caused to discharge and the generator would carry only a portion of such lamp load. But such a reduction in voltage would restore the plunger of the potential regulator to its initial position, which would short-circuit the fixed resistance and remove the carbon pile shunt from the field winding of the generator, and instantly the current regulator would come into play and permit the generator to put out its full load current, which now being divided between the battery and the lamps, the lamps presumably receiving the greater portion, the charging of the batteries at a low rate would begin again and the battery voltage would ultimately work up to 42, depending upon how much discharge had taken place previous to the restoration of the potential regulator. ation of the potential regulator.

THE TYPE K-1 LAMP RELAY

THE TYPE K-1 LAMP HELAY

The Type K-1 lamp relay is of more recent design and construction. It consists of an ironclad solenoid, whose frame is of exactly the same dimensions as that of the potential regulator and whose single high resistance coil is connected across the lamp mains. Thus the coil measures and is responsive to variations in lamp voltage. The coil is wound up on a copper tube and inside the tube is an upper or stationary plunger, reaching about half way down the tube and a lower or movable plunger, supported on a pair of parallel motion reeds which permit of a frictionless vertical movement of the lower or movable plunger within the tube. Attached to the movable plunger is a brass tail rod, which extends and carries upon its upper end a cage containing a vertical pile of small carbon disks. The carbons are insulated from the rungs of the cage by lava tubes but are connected with the metallic bottom of The carbons are insulated from the rungs of the cage by lava tubes but are connected with the metallic bottom of same. A rigid finger extends forward in a horizontal direction from the bottom of the cage, and to its end is attached a helical spring enclosed within a vertical brass tube mounted in lugs, which are cast upon the solenoid frame. a helical spring enclosed within a vertical brass tuce mounted in lugs, which are cast upon the solenoid frame. The magnetic pull of the coil is opposed by the weight of the movable plunger tail rod and cage, and also by the tension of the adjusting spring. Mounted upon but insulated from the solenoid frame is a bonnet which covers and conceals the cage, carbon pile and tension spring, and which carries at its top a fixed contact consisting of a small carbon block mounted upon the end of a steel screw, which is threaded into the open top of the bonnet and provided with a lock nut. Over the top of the bonnet is fitted a pressed cap, which covers and conceals the carbon block and its mounting screw. The carbon block is adjusted in the factory to make proper contact with the top of the carbon pile. The normal pressure on the pile is secured by adjusting the tension spring in connection with the carbon block, and this pressure is made such that when normal voltage is applied to the coil, the resistance of the carbon pile is just sufficient to allow the correct current to pass through the carbon pile and the operating solenoid of the lamp regulator which, in turn, is so adjusted that the

_ .

correct pressure is exerted on the carbon pile of the lamp regulator, and thereby the correct resistance is inserted in the lamp circuit, producing normal voltage on the lamps. A slight rise in lamp voltage causes an increased pressure on the carbon pile of the relay and a multiplied increase of current in the lamp regulator solenoid which, causing a decreased pressure on the carbon pile of the lamp regulator, increases the resistance in the lamp circuit and restores the lamp voltage to normal or very nearly normal. As an actual matter of fact, the lamp voltage does not increase and then decrease as the above description would naturally lead one to suppose. Undoubtedly the chain of reasoning is logical, but it is the tendency of the lamp voltage to rise that is checked in its inciplency. Conversely, and by the same process of reasoning, it can readily be understood how a tendency toward reduced lamp voltage is checked. how a tendency toward reduced lamp voltage is checked.

TYPE B-1 LAMP REGULATOR

Construction: The Type B-1 lamp regulator consists of an iron-clad solenoid of the same dimensions and size as the frames of the solenoids used in the automatic switch and the generator current regulator. This solenoid is provided with a single coil of a high resistance, connected in series with the carbon pile of the Type K-1 lamp relay. The action of the relay upon the lamp regulator has already been described. The solenoid frame is mounted upon a slate, similar in character to the slate forming the base of the Type S-1 panel. Mounted upon the slate is a single cast bracket which forms a support for the operating lever and for the rods which hold the large carbon pile in position. The main operating lever is of bell crank form, the long end being attached to a movable plunger in the solenoid. The lower end of the plunger in the solenoid is attached to a graphite piston which works in a dash pot cast integrally with the frame of the solenoid. The piston fits the dash pot almost air tight and affords all the damping action necessary. The multiplying lever is a short bar pivoted on the same casting which supports the main lever and provided with a small roller at its upper end which engages a tappet formed upon the vertical portion of the bell crank lever. gages a tappet formed upon the vertical portion of the bell crank lever.

The Type B-1 lamp regulator is mounted upon a slate of the same width as the Type S-1 panel and is provided with similar feet and frame for ready mounting. When mounted directly under the S-1 panel, all the wiring is carried from the panel to the regulator by copper strips, which obviate the necessity of wiring more than one piece of apparatus.

The Type B-1 lamp regulator may be made for mounting underneath the car body, if so specified.

•

SECTION IV

COST OF EQUIPPING AND OPERATING ELECTRICALLY LIGHTED CARS

INCLUDING TABLES OF COST OF EQUIPPING AND MAINTAINING ELECTRICALLY LIGHTED CARS WITH DIFFERENT SYSTEMS ė

• ÷

COST OF EQUIPPING AND OPERATING ELECTRICALLY LIGHTED CARS

While direct comparison of costs of electric car lighting While direct comparison of costs of electric car lighting with different systems is possible, such comparison would be valueless without an exact description of apparatus, methods of keeping records and items included. A comparison, for example, of the costs of lighting, by a straight storage system with a head end or axle generator system would be inaccurate and useless without definite knowledge of all the items upon which it is based. Moreover, a comparison between the costs for the same type of systems on different roads would be of no use when the same items are not considered or radically different methods of cost keeping are in vogue. keeping are in vogue.

The following are the variables which directly affect the

cost of train lighting:

System:

Straight Storage—Make, capacity and number of batteries.

Straight Storage—Make, capacity and number of batteries. Yard and repair facilities. Labor cost.

Head End—Make, capacity and number of batteries per train. Make and capacity of generator. Yard and repair facilities. Labor cost. Method of operating, viz. Time operative. Reliability of service.

Axle Generator—Make, capacity and number of batteries. Make, capacity and generator. Yard and repair facilities.

Make, capacity and generator. Labor cost.

There apparently is a tendency by some roads to charge certain Train Lighting Repair Costs against car or shop repair, thereby reducing the electric lighting costs at the expense of other accounts. It can be readily seen that where such practice is in vogue a true cost of electric lighting cannot be obtained, and it would be unfair to attend to company such records against those of other residence. lighting cannot be obtained, and it would be unfair to attempt to compare such records against those of other railroads where accurate accounts are kept. Neither is it fair to compare the cost of operation and maintenance of cars which are very poorly lighted or where lighting reliability is a second consideration against the costs on those roads which insist upon properly lighted cars and absolute continuity of the lighting service at all times.

The following pages show the cost of operation and maintenance of electrically lighted cars and are taken from averages of several different roads that endeavor to properly illuminate their cars, insist upon continuity of service, and it is believed have first class cost keeping systems.

AVERAGE COST PER CAR FOR EQUIPPING EIGHTEEN 60-FOOT WOOD COACHES WITH ELECTRIC LIGHTS Straight Storage System with Pullman Head-end Wiring

Batteries, 32 cells, 280 ampere-hours capacity, in lead-lined tanks	600.00
Fixtures, 5 four-light clusters or single 50-watt "Mazda" fixtures	125.00
Receptacles, 8 Wire	2.80 39.14
Conduit	19.80
Distributing Panel	5.45 5. 8 5
Lumber (Battery Boxes)	10.79 2.52
Labor	78.99 6.60
Miscellaneous, Including Gibbs No. 3 Train Line Connectors	86.16
Connectors	-0.10

AVERAGE COST PER CAR FOR EQUIPPING TWELVE 10-TABLE DINING CARS WITH ELECTRIC LIGHTS

Axle Generating System

Batteries, 16 cells, 280 ampere-hours capacity, double compartment, lead-lined tanks	300.00
compartment, lead-lined tanks. Fixtures, 7 four-light clusters, or single 50-watt "Mazda" fixtures	
Receptacles. 14	4.55
Wire (No Train Line Wires)!	26.18 18.60
Distributing Panel Junction Boxes	6.50 10.20
Lumber (Battery Box)	10.90
Panel	2.95 550.00
Labor Freight	98.65 12.15
	94.30
\$1	,309.98

COST OF OPERATING 32-VOLT AXLE GENERATOR SYSTEM

Average cost per car per month for maintaining 950 electrically lighted sleepers operating 11,000 miles per month. Averaged from one year's record.

Labor and Supervision		
Current		
Battery Renewals		 . 3.73
Separator		 36
Acid		
Tanks		 47
Lamps		 . 2.11
Axle Generator		
Miscellaneous Material		
General Charge		 28
	,	

No interest or depreciation included in the above. No charge for power en route. Equipment four years old (averaged).

Note: No record of operating costs for head-end systems are given as the figures vary considerably with different methods and systems, as for instance, it would be an unfair comparison to attempt to compare a system using one set of batteries per train with the same system using batteries on each car.

12-section sleeping cars for twelve months having tw hour all-night runs:	
Labor	5.93 1.16
Battery Acid	5.81
Lead Linings	
Tanks Lamps	
General Charge	.66
Total\$2	7.07

interest on Car Equipment should include all apparatus on car used in connection with producing light, say at 5%. Depreciation on Car Equipment could be divided as fol-

lows: Conduit .
 Wiring
 5%

 Batteries
 ...

 Battery Boxes
 ...

 Generator
 10%

 Generator Regulator
 10%

 Lamp Régulator
 10%

Note: The battery depreciation will vary with the various types of batteries and methods of operation, but a fair

when possible this figure should be disregarded and a figure as obtained by maintenance in actual service extending over a sufficient number of years to obtain a true average value should be used.

Maintenance should include the following items: Conduit.

Wiring.

Batteries (see note under depreciation).

Battery Boxes.

Generator.

Generator Regulator.

Lamp Regulators.

Lambs. Fuses.

Labor:

)

2

6

5

t

General Supervision. Yard Supervision.
Accounting. Yard Labor.

Train Labor.

Traveling Expenses.

Power en route, and at Terminals.

Transportation Expenses: Moving apparatus over road at.....per ton mile.

Terminal Facilities:
Interest on Yard Wiring Investment.
Depreciation of Yard Wiring Investment.
Maintenance on Yard Wiring.

T'-

Ballond - Statement encoting prescribated and cost of Hardwinds Electric Lighting - Statement and als described for scott of the cost - Statement and also be the cost of Lighting of Lighting - Statement and Lighting of Lighting.								
GLASS OF CARS								
	COAC				DIBE		MAIL CARS	
	Material	Labor	Material	Leber	Material	Labor	Material	Labor
INTEREST Bated ()				<u> </u>				
DEPENCETATION Bates ()					 			
PATES PASS S ()	 		-					
THEURANCE Rates ()	├							
PATELON Bate ()	 							~
PORTE ROSe ()	 		·					
POLESTER	—				 			
MOTERIA					-			
GENERATIVE DELTS	1							
MATTE (Belte, feateners and chaire)	†							
PULLETS AND SPROCERTS								
EARDS.	—							-
CRANCING CURRENT								
SELECTION CONTROL	<u> </u>							
STRIM.								
STEE BEDATES		_						
STORY CHARGE PROPATES								ļ
20246							<u> </u>	L
CREATE SCHAP MATERIAL		Ī		L	L		L	I
TRY SOUNT						L	<u> </u>	
HET TOTAL GOST PER GAR				L			<u></u>	
THE SOULT COME SEE GARD					ــــــ	L	L	ļ
STREET OF CARS BOSTPTED							<u> </u>	
POPAL HITERACE					L			<u> </u>
AVVIDAGE WILLS PER CAR						├ ──		
AVERAGE COST PER 1000 GAR MILES			L			├	 	
ATTRACE CREE PER 1000 CAR MILES		L				↓	 	
POPAL NO. OF PAILUTERS				<u> </u>	 		 	├
PATLIFIES PER CAR MORTE	<u> </u>	<u> </u>				 	 	
ATTRACE MILES PER PATLINE					 	-		
AVERAGE WILES PER PATTERNAL			 	├	 			
AVERAGE AGE OF EQUIPMENT	<u> </u>	Ь—		 	 		 	├
AVERAGE GOST OF BATTERY						├		
AVERAGE COST OF GENERATING DQUIPMENT ACCRESORIES AND REGULATORS							ļ	
AGAIN HOSTI YEAR PREVIOUS	<u> </u>			L	<u> </u>	ــــنا	نـــنا	L

STANDARD FORM FOR CAR LIGHTING COST ACCOUNTING

Note: Cost of power at terminal should include all interest, depreciation and maintenance on power plants through power plant switchboard.

General Expense, such as charging cables, tools, boots, etc.

The preceding page shows a proposed standard form for car lighting cost and accounting that has been recommended by the Railway Electrical Engineers' Association Committee on Accounts and Reports for the year 1911. It will be noted that the proposed form covers all materials and information likely to be used or required in Electrical Train Lighting.

The Committee recommends à 5% annual interest rate for the entire electrical investment per car and 5% per annum for depreciation or rather obsolescence, as it is believed that while the apparatus may not be completely worn out at the end of 20 years' service, nevertheless, it would undoubtedly be replaced by later type apparatus.

The proposed form is very complete and unquestionably would be of much value to operating engineers to check their costs against those of other roads, nevertheless, it is a question if the officials having the deciding of such matter would agree to some one form of reports.

. .

.

SECTION V

STORAGE BATTERIES

INCLUDING CONSTRUCTION, TYPES, THEORY, CAPACITY, CHARGE AND DIS-CHARGE CURVES, TROUBLES AND REM-EDIES, PUTTING INTO COMMISSION, OPERATION

STORAGE BATTERIES

The accumulator or storage battery most generally used for Electric Train Lighting purposes in the United States has been of the Lead, Lead Planté or "formed" type, although the Faure or "pasted" type and the nickel steel battery as manufactured by the Edison Storage Battery Company have received no little attention from the Railway Companies furing the next two or three years. While Companies during the past two or three years. While many claims of superiority are made by the advocates of each type of battery, it is not within the province of this book to attempt in any way to discuss their relative merits.

The following information pertaining to various types of batteries, their care and operation may be of value to those readers who are interested in this particular apparatus.

Plante-Batteries:

Positive plates, one or more. Negative plates, one more than the number of positive plates.

A solution in which the plates are submerged, known as electrolyte.

Separators for preventing the positive and negative plates from coming in contact with each other.

A containing vessel.

Connectors for joining electrically the positive and negative plates of adjoining cells.

Positive: The positive plate may be either of the Planté or "formed" type, or the Faure or "pasted" type. The Planté or "formed" type of positive plate consists essentially of a sheet of lead, the surface of which, by chemical or electro-chemical means has been converted into lead peroxide (PbO₂), which is of a rich chocolate brown color. The body of the lead sheet serves as a support for the lead peroxide or "active material," as a conductor for the current and as reserve material to be converted into lead peroxide as the original "active material" is lost by reason of becoming loose from lead sheet and falling to the bottom of the containing vessel. of the containing vessel.

Negative: The negative, like the positive, may be either of the Planté or Faure type.

Similarly the surface of the negative plate is converted into "active material," but in this case it is spongy lead (Pb) or lead which is very porous. This spongy lead is of a slate gray color.

Electrolyte: The electrolyte consists of dilute sulphuric acid (H₂SO₄) of a normal specific gravity ranging from 1.220 to 1.250 when the battery is fully charged.

Separators: The separators must prevent the positive and negative plates from coming into contact, but they must not prevent the electrolyte from reaching the plates, must not prevent the electrolyte from reaching the plates, must not be affected by the electrolyte, and must not contain any substance injurious to the battery. Hard rubber is generally used for this purpose. It is made up in the form of a thin sheet having numerous small perforations, and with several vertical ribs extending the length of the sheet to give the proper separation between the adjacent positive and negative plates.

Containing Vessel: The containing vessel is generally a double compartment wooden tank, lead lined, resting on four porcelain rollers and provided with porcelain buffer blocks at the ends and sides. These porcelain rollers and buffer blocks are for the purpose of insulating the tanks

and preventing "grounds" which would result in electrolytic action and thus destroy the lead linings. The rollers also serve to make the tanks easier to handle. Fig. 2 shows the same general arrangement of tank but with hard rubber jar in place of the lead lining.

Fig. 1. Standard Types of Double Tanks and Elements Hardwood tank coated with acid proof paint. Lead lining, set in petrolyte or similar compound and paraffine.

As will be seen in Fig. 2 each compartment contains a positive and negative group of plates, the several plates being burned to their respective cross-straps or bridges with a terminal post projecting through a soft rubber bushing set in hard rubber cover.

The groups of plates are supported on porcelain bottom rests, which provide space for the "active material" which

sloughs off and which would otherwise "short-circuit" the plates, thereby causing the battery to become inoperative or __"dead".

or "dead".

When lead-lined tanks are used, thin sheets of hard rubber are slipped between the plates and the walls of the lead lining at both sides and ends to prevent short-circuiting of plates. The top edges of the lead lining are burned to a frame, cast from an alloy of lead and antimony, and recessed. A hard rubber cover lies in this, leaving an open space around all four sides. This space is then filled with

Cable Connections Fig. 2

a sealing compound to stop leakage of the electrolyte, for, if this is not prevented, the tanks become acid soaked and "grounded" with results as mentioned above. In addition, the acid attacks and corrodes all adjacent metal work.

However, as gases are evolved during the process of charging, which must be allowed to escape, a plug which has a small vent hole is provided in the center of the cover. By removing this plug the electrolyte may be inspected and the height and specific gravity corrected.

Connectors: The terminals of adjacent cells are connected together, positive to negative, by means of No. 6 rubber-covered single braid wire. The ends of this wire are soldered into special copper or brass terminal lugs, which in turn are soldered into the terminal posts of the battery, a special low-melting solder being used for this purpose.

Manufacture: The capacity of a battery is dependent upon the amount of "active material" exposed to the action of the electrolyte. It is advisable to make the "active material" in a thin layer and obtain volume by increasing the area exposed. There are several reasons for this, but the principal one is that, were the "active material" of any considerable thickness, that is, ¼-inch or more, the gas which is evolved during charge would dislodge the "active material," causing it to fall to the bottom of the cell. Also, the thicker the layer of "active material" the smaller the amount exposed to the action of the electrolyte, which action cannot penetrate to any considerable depth. For these reasons, manufacturers resort to various means in order to increase the superficial area, or area in contact with the electrolyte, as, for example, by casting the plate so that it is of cellular construction, or by corrugating the surface with tools, by rolling, spinning, plowing or swedging processes.

However, while increasing the exposed surface of the

Fig. 3. Gould Plate

Fig. 4. Willard Plate

"active material" is beneficial in one way, it is detrimental in another, as the life of a battery is dependent upon the amount of reserve lead that is available to be converted into "active material". Now, assuming several plates have the same weight of lead, it is obvious that the plate having the greatest area will also have the least reserve lead. The design of the battery plate as manufactured is therefore a compromise between these conflicting conditions.

Gould Plate: This plate, shown in Fig. 3, is formed by stamping the blank plate from rolled lead and then placing in a steel frame which reciprocates between two rapidly revolving mandrels on which steel discs and spacing washers are placed. The width and shape of grooves are varied by varying the gauge and form of spinning disks, while the length of the section spun is determined by adjusting the travel of the frame.

Willard Battery: This plate, shown in Fig. 4, is stamped from rolled lead, then placed in a machine similar to a "shaper," while the tool is passed over the plate turning up the ribs much in the same manner as a plow; hence it is known as the plowing process.

Electric Storage Battery: The positive plate is of the Tudor cast type consisting of a single integral piece of lead having a number of fine vertical ribs, with spaces between, which extend from one face of the plate to the other. The vertical ribs are tied together at short intervals by horizontal ribs, the whole being surrounded by a frame, integral with the plate.

١,

Fig. 5. Tudor Positive Plate, Type E P Rolled Negative Plate
Type E P—Electric Storage Battery Co.

The negative plate is stamped from rolled lead and the ribs are formed by placing the plate in a frame and reciprocating back and forward while pressing thin circular disks into the lead. These plates are shown in Fig. 5.

The Manchester positive plate, as made by the Electric Storage Battery Company, and shown in Fig. 6, is made by rolling lead ribbon into spirals and inserting the resulting buttons into circular holes which are cast in the antimony-

108 NATIONAL ELECTRIC LAMP ASSOCIATION

lead plate. When the plate is formed the expansion of the active buttons causes them to firmly wedge themselves in the hole.

Manchester Positive Group Box Negative Group Fig. 6. Electric Storage Battery Co.

The Shelf negative plate consists of an unoxidizable alloy grid with vertical ribs and finely divided cross-ribs, or shelves, for holding the active material, which is locked into place by the tapered form of the shelves and ribs.

Fig. 7. National

National: This plate is of the rolled lead type, and ribs are formed by the reciprocating rocking action of a series of segmental knives or cutters forced into the lead, which produces what is known as a swedged rib. shown in Fig. 7. This plate is

Forming: The plates having been mechanically developed by the above process, so as to give the desired amount of superficial area, must now be electrically formed to produce the desired depth of active material on their surfaces. In the forming process the plates are immersed in a dilute solution of sulphuric acid to which is added a forming

dilute solution of sulphuric acid to which is added a forming reagent which consists of a lead-dissolving acid or salt such as nitric acid, acetic acid or perchloric acid. Plain sheets of pure lead, known as "dummies," are placed on each side of the plates to be formed and a current from an external source passed through the solution from the dummies to the plates. The forming acid dissolves the lead from the plates to be formed, and the action of the electrolyte and the current is to re-deposit the dissolved lead in the form of a lead peroxide on the plate which is being formed. formed.

This process converts all the plates into negatives.

This process converts all the plates into negatives. Such of these plates as are intended for positive are then "set up" in the regular way with those which are intended to be negatives, after each has been burned to its respective cross-strap or bridge. Electrolyte is then added and current from an external source is passed through the cell from the former to the latter plates.

The action of the current converts the spongy lead of

Filled Plate Grid Fig. 8. Faure or "Pasted" Type

the former plates into positive active material or lead per-oxide, that of the latter remaining unchanged.

FAURE OR "PASTE" BATTERIES The general method of making "paste" batteries is to

stamp the plate from a sheet of rolled lead or to cast from molten lead. The plate before pasting resembles a grid or frame with intersecting vertical and horizontal cross-bars, the edges of which are so shaped as to tend to hold the "active material" to the plate.

Faure or "Paste" Positive Plates: The "active material" for positive plates consists of red lead mixed with a solution of dilute acid to form a plastic "paste." The plate or grid is then pasted with this mixture and allowed to stand for several days to dry; or to hasten the drying the plate is placed in an oven.

The plates are then immersed in an acid bath of electrolyte, and current is passed through them at a low rate for several days, causing the lead "paste" to be converted into peroxide of lead.

Faure or "Paste" Negative Plates: The negative plate is made similarly to the positive plate, the "paste," however, being made of Litharge only. After drying the plate is placed in an acid bath, current being passed through the plate at a low rate reducing the "paste" to "active material" or spongy lead.

The chief advantages of the "pasted" battery over the Planté type are its low first cost and light weight. The chief disadvantage in the "paste" has been its much shorter life, although improved generator regulating apparatus, together with lower discharge current required, due to the use of Mazda high efficiency lamps, have been the means of reviving this particular type of battery for Train Lighting Service.

EDISON STORAGE BATTERY

The Edison Storage Battery differs materially from all other types in theory and characteristics in that it theory and characteristics in that it has an alkaline instead of an acid electrolyte and nickel oxide and iron for active materials instead of lead peroxide and spongy lead. The absence of acid permits the cell to be contained in a steel can instead of a rubber jar or lead lining. Its chief rubber jar or lead lining. Its chief value lies in its light weight, rugged construction and freedom from ordinary storage battery diseases. It may be subjected to vibration, concussion and remain in a charged or discharged condition indefinitely without injury.

Positive Plate: Each positive plate type "A" is composed of thirty perforated nickeled steel tubes, each reinforced by equidistantly spaced steel rings and filled with seven hundred alternate layers of nickel oxide and pure metallic nickel flakes. They are mounted on a nickeled steel grid in two rows of fifteen tubes each.

Negative Plate: Twenty-four rectangular pockets of perforated nick-eled steel, containing iron oxide, each secured to nickeled steel grid compose a negative plate of type "A" cell.

Fig. 9. Type A-8H Cell, Completely As-sembled Ready to be Туре А-8Н Connected. Up

Fig. 10. One of the Positive Electrodes

Fig. 11. One of the Negative Electrodes

Electrolyte: The electrolyte is a 21% solution of potassium hydrate (caustic potash) to which is added a small amount of lithium hydrate. The normal specific gravity, which does not change over a long period, is 1.210° at 60° Fahrenheit.

Insulation: The alternate positive and negative plates are insulated from each other by vertical hard rubber pins or rods, equidistantly placed. Molded hard rubber "ladders" secure the plates at their edges and insulate the whole from the containing can. A sheet of hard rubber is placed between the end negatives and can. A molded hard rubber "stool" forms the bottom support for the plates.

Containing Can: The containing can is of nickeled steel, all seams being welded by the autogenous process, "oxygen-acetylene flame." After the elements have been placed in the can, the top is welded on. The poles are insulated from the can and the mechanical joint made gas and liquid tight by special stuffing boxes.

Fig. 12. Type A-8H Cell, Assembled but Entirely Re. moved from Container

Filling Aperture and Gas Vent: The top of the can supports a combination filling aperture and gas valve, the construction of which is apparent from the cut, Fig. 13.

Connectors: The poles are tapered to fit the terminal lugs and are brought to intimate contact with same by setting up on the nuts or top of the poles.

Trays: The cells are assembled in wooden trays, each cell being supported by a steel cradle secured to the tray. Steel hold-down straps maintain the cells in position even when subjected to violent concussion.

Charging: The normal charging rate of the standard car lighting cell Type

Fig. 13. Top of Edison Com. Filling Aperture and Check Valve Open for Adding Dis-tilled Water

ard car lighting cell Type
A-8H, 300 ampere-hour capacity is 60 amperes for
seven hours. The cells may be "boosted" for an hour at
120 amperes, for one-half hour at 180 amperes or for fifteen
minutes at 240 amperes if necessary. They may be charged
at any point of discharge, or discharged at any point of
charge without detriment. The maximum P. D. at the cell
poles on charge at normal rate is 1.85 volts, although in
car lighting practice a cell terminal voltage of 1.8 is generally found to prevail. Therefore the treminal charging
voltage for a 32-volt set consisting of 25 cells will be 45
volts and for a 64-volt set with 50 cells, 90 volts.

Discharge: The normal discharge rate for eight hours is 37% amperes, and for five hours 60 amperes. The average voltage per cell at the eight-hour rate of discharge is 1.24 volts per cell and for a five-hour rate of discharge is 1.2 volts per cell.

The Edison Company recommend the following:

- Addition of distilled water at intervals to keep the electrolyte above the tops of the plates.
- 2. Renewal of electrolyte every eighteen months to two years.
- 3. Keeping the cells externally clean and battery compartment clean and dry. The Edison Company advise that the plates do not shed active material or buckle, and further, there are no separators to renew. The cell does not sulphate under any condition of service and nothing approximating sulphate can exist.

Weight: The weight of a car lighting cell, 300 ampere-hour capacity, Type A-8H is 35 pounds.

Characteristic Curves: Typical charge and discharge curves of the Edison cell are shown in Fig. 14.

Chemical Reaction: Starting with iron oxide in the negative, green nickel hydrate in the positive, and potassium

Fig. 14

hydrate in solution, the first charging of a cell reduces the iron oxide to metallic iron while converting the nickel hydrate to a very high oxide black in color. On discharge

Fig. 15. Three A-8H Cells in Tray Complete

the metallic iron goes back to iron oxide and the high nickel oxide goes to a lower oxide, but not to its original form of green hydrate. On every cycle thereafter, the negative charges to metallic iron and discharges iron oxide, while the positive charges to a high nickel oxide. Current passing in direction of either charge or discharge, decomposes the potassium hydrate of the electrolyte, and the oxide the next reduction and reduction at the electrodes are brought about oxidation and reduction at the electrodes are brought about by the action of its elements. An amount of potassium hydrate equal to that decomposed is always reformed at one of the electrodes by a secondary chemical reaction, and the consequence is there is none of it lost and its density remains practically constant

The eventual result of charging, therefore, is a transference of oxygen from the iron to the nickel electrode, and that of discharging is a transference back again. This is why the Edison is sometimes called the "oxygen lift" cell.

THEORY OF LEAD STORAGE BATTERIES

The following explanation is given by some authorities in describing the chemical reactions that take place in discharging and charging a lead storage battery.

Electrolysis of water or the decomposition of water into Electrolysis of water or the decomposition of water into its component elements, hydrogen and oxygen, is accomplished by slightly acidifying the water and then passing current through it. This is what happens in a storage battery. Upon discharge the current passing through the battery decomposes the water of the electrolyte, liberating hydrogen at the positive and oxygen at the negative pole. In this case the positive pole is the peroxide of lead plate and the negative pole is the spongy lead plate.

At the moment of liberation the elements oxygen and hydrogen are chemically very active and combine readily with other substances. The hydrogen combines with the peroxide of lead (PbO₂), reducing the degree of oxidization of this plate and forming lead oxide and water.

Thus

$$PbO_2 + 2H = PbO + H_2O$$

The oxygen at the negative plate combines with the spongy lead also to form lead oxide.

Thus

$$Pb + O = PbO$$

Complete discharge would therefore change both the positive and the negative elements into the same compound, lead oxide, the voltaic couple would no longer exist and no further discharge could be obtained from the cell.

When a charging or regenerating current is sent through the cell in the opposite direction to that above, electrolysis of the water again takes place but in the opposite direction, the oxygen being formed at the positive and the hydrogen at the negative plate. Being chemically active the oxygen at the positive plate combines with the lead oxide to form peroxide of lead and the hydrogen at the negative plate combines with the oxygen of this compound of lead oxide to form water and free lead.

The chemical equations representing these actions are

The chemical equations representing these actions are $PbO + O = PbO_2$

and

$PbO + 2H = Pb + H_{\bullet}O$

When fully charged the battery again becomes an active voltaic couple, one plate of lead peroxide and the other of spongy lead. Lead oxide (PbO) cannot exist as such in the presence of sulphuric acid. As fast as either plate is changed into lead oxide (PbO) by the process described above the sulphuric acid in the electrolyte turns them into lead sulphate (PbSO₄), the SO₅ radical in the sulphuric acid combining with the lead oxide. This process is called sulphatation. The chemical reaction itself is independent of the passage of current and will take place whenever lead oxide is imof current and will take place whenever lead oxide is immersed in sulphuric acid, lead and lead peroxide being very slightly affected by it.

very slightly affected by it.

In his book on Storage Battery Engineering Mr. Lamar Lyndon states that while the foregoing may be a very simple attractive theory, it is upset by thermodynamic considerations, since lead oxide cannot be changed chemically to lead sulphate without the liberation of heat. This heat represents all or a large portion of the energy in a storage battery and since this energy is returned it is clearly impossible that the simple chemical combinations take place. It is now generally conceded that the change from spongy lead and lead peroxide to lead sulphate is direct and does not pass through any intermediate stage. The rest of the theory advanced, however, is quite true.

Lead sulphate is white in color and possesses such a high electrical resistance as to be practically useless as a conductor. If the battery should become completely discharged and the elements turned to lead sulphate, it would be practically useless, as the reduction from lead sulphate to either pure lead or lead peroxide is especially difficult if not impossible. A battery should therefore never be discharged below a certain limit governed by the amount of sulphate formed. This should be very small as enough spongy lead or lead peroxide must remain to keep down the resistance and permit the passage of current for the regeneration of the cell. Furthermore, the formation of too much sulphate is likely to cause breaking or buckling of the plates or the forcing off of the active material due to increase in its volume caused by the change from Pb or PbO₂ to PbO₃. PbOs to PbSOs.

Chemical changes take place in the electrolyte during charge and discharge causing variations in its density. During charge, the SO₂ in combination with the active material is given up to the liquid forming sulphuric acid and increasing the density of the electrolyte. On discharge, the converse action takes place, the SO₂ is taken up by the Pb and PbO₂ to form PbSO₄, decreasing the weight and density of the electrolyte than decreasing the selectrolyte. sity of the electrolyte.

The following reversible chemical equation explains these chemical reactions:

$$\begin{array}{ccc} & & & & & & & & \\ \text{(a)} & & \text{PbO}_2 + \text{H}_3\text{SO}_4 = \text{PbSO}_4 + \text{H}_3\text{O} + \text{O} \\ \text{(b)} & & \text{Pb} & + \text{H}_3\text{SO}_6 = \text{PbSO}_4 + \text{H}_3 \\ \text{(c)} & \text{(a)} + \text{(b)} = \text{PbO}_3 + \text{Pb} + 2\text{H}_3\text{SO}_4 = \text{PbSO}_4 + \text{H}_3\text{O} \\ & & & & & & & & & \\ \text{discharge} & & & & & & \\ \end{array}$$

Equation (a) and (b) show the chemical reactions at the positive and negative plates respectively and (c) the com-bined effect. Equation (c) is the fundamental equation of the lead storage battery.

The above equations show that on charge both the negative and positive plates start as lead sulphate (PbSO₂) and are turned to lead and lead peroxide by combination with the dissociated gases of the water in the electrolyte. The SO₂ liberated combines with the water in the electrolyte to

Fig. 16. Variation of Specific Gravity upon Charge and Discharge

form sulphuric acid (H_2SO_4) . Reading the above equation from left to right shows the action upon discharge, the lead (Pb) and lead peroxide (PbO_2) combining with the sulphuric acid and forming lead sulphate $(PbSO_4)$ and water (H_2Q) .

There are many other intermediate reactions and byproducts of decomposition than those given by the foregoing equation but they strictly belong to the chemistry of storage batteries and are therefore outside the scope of this book.

The voltage of any battery is dependent upon the character of the metals or metallic compounds forming the plates and upon the density or concentration of the electrolyte. The voltage of the lead storage battery is that of spongy lead against lead peroxide as long as any particles

Fig. 17: Variation of Capacity with Rate of Discharge at 70° F

of these materials are on their respective plates. If the elements only are considered and the density be maintained elements only are considered and the density be maintained constant, the e.m.f. of a battery should theoretically remain constant up to the point of reduction to sulphate of the last traces of spongy lead or lead peroxide, and it should then fail suddenly to zero. In reality the voltage falls gradually from the beginning to the end of the discharge, due to several causes, the chief of which is the variation in acid density. Fig. 16 shows this variation of density with normal charge and discharge rates.

The area of the plates upon which the electrolyte acts determines the rate of current at which a battery may safely be discharged. The active area in any cell is equal to the sum of both sides of the positive plates, both sides

determines the rate of current at which a battery may safely be discharged. The active area in any cell is equal to the sum of both sides of the positive plates, both sides of the plates being active.

The unit of storage battery capacity is the ampere-hour. The total capacity is designated by the product of the rate of discharge in amperes by the time during which the discharge lasts, the battery being considered completely discharge when a minimum of 1.3 volts per cell is reached. There is a considerable variation, however, with the rate of discharge, as is shown in Fig. 17, being less at rapid than at slow rates. When referring to train-lighting batteries the eight-hour discharge rate is generally considered normal. For example, a fully charged battery having a capacity of 280 ampere-hours will discharge 35 amperes continuously for eight hours without the voltage falling below 1.3 volts per cell.

As shown above SO₂ is abstracted from the electrolyte upon discharge. If it was all taken from the sulphuric acid water only would be left, in which case the voltaic couple would show an e.m.f. of only, about 1.46 volts. If, after discharge has taken place, the battery is allowed to stand on open circuit for a few minutes, it will recuperate to some extent and its voltage will rise. This can be explained by the fact that the SO₂ is taken up from the acid only at those points and surfaces where the acid is in contact with the plates. As the SO₂ is removed the density

plained by the fact that the SO₃ is taken up from the acid only at those points and surfaces where the acid is in contact with the plates. As the SO₃ is removed the density of the acid is decreased, causing a circulation of the electrolyte, fresh acid taking the place of that which is exhausted. The chemical action, however, is slowest in the hausted. The chemical action, however, is slowest in the minute pores of the plates, where circulation is most difficult. When the cell is allowed to stand on open circuit time is allowed for the water or highly dilute acid in the pores to diffuse out into the denser acid, and the latter to enter. It is evident that the more porous the active material and the better the circulation of the electrolyte, the less will be the drop in voltage as discharge proceeds.

Fig. 18 shows the voltage changes upon charge and discharge of the ordinary type of cell. It is seen that the voltage during charge stays reasonably constant around 2.3 volts for a considerable period of time, a continuous and relatively rapid rise to about 2.6 volts occurring toward the end of charge. It is probable that intermediate chemi-

the end of charge. It is probable that intermediate chemical changes begin to take place at the point where the curve begins to rise rapidly, and also that gas is produced

curve begins to rise rapidly, and also that gas is produced and the effects of polarization become more marked.

Upon discharge the voltage curve shows like form to that of charge except in the reverse direction. It drops rapidly at the beginning of discharge to about 2 voits, at which point it remains very nearly constant until near the end; of discharge, when it begins to fall rapidly, and if the discharge be continued, would drop quickly to zero. This sudden that in voltage is due to a number of causes, the most important of which is the formation of lead submate. most important of which is the formation of lead sulphate

Fig. 18. Voltage Curves of Charge and Discharge

on the surface of the plate, preventing access of the electrolyte to the inner pores of the active material. The electrolyte which is enclosed in these pores rapidly turns to water by reason of the abstraction of SO_3 from the H_2SO_4 .

H₂SO₄. The maintenance of the voltage, and consequently the capacity of the cell, is dependent upon the condition of both the positive and negative plates. If one be fully charged or fully reduced and the other only partially charged, the capacity of the cell would equal only that of the least efficient plate; the battery would be quickly discharged and the voltage curve would fall off rapidly. It is necessary, therefore, that both the positive and negative plates be completely charged in order that the cell have its full capacity. The voltage of the cell is not always an indication of the state of the charge and in order to determine the condition of the two plates, it is necessary to test them independently. For this purpose a place of metal, either zinc or cadmium, For this purpose a piece of metal, either zinc or cadmium, preferably the latter, is immersed in the electrolyte and the voltage observed between it and both the positive and negative elements.

The cadmium used must be free from impurities and its surface should never be scraped bright. It should rather be "aged," that is, slightly oxidized, for the reason that there is a difference of potential between bright cadmium and cadmium oxide. The bright surface oxidizes so quickly and cadmium oxide. The bright surface oxidizes so quickly that it would be necessary to scrape the test piece clean after each reading, if comparable results were to be obtained by the use of the bright metal.

In making this test care should be taken to see that the cadmium does not come into contact with either of the

Fig. 19. Cadmium Curves on Discharge

plates or connections. The best method to prevent this is to cover the test piece with rubber in which a number of holes have been punched to admit the electrolyte. Upon discharging a cell down to 1.8 volts the voltage between the cadmium test piece and the positive plate should

Upon discharging a cell down to 1.8 voits the voltage between the cadmium test piece and the positive plate should not be lower than 1.98 and between the cadmium and negative plate not higher than .18, the cadmium being positive to both elements in the voltaic sense. When both readings are in the same direction the cadmium negative reading of .18 is subtracted from the cadmium positive reading of 1.98 giving 1.80, the voltage of the cell.

The above readings must be made while the cell is discharging at the normal rate. When fully charged and with

The above readings must be made while the cell is discharging at the normal rate. When fully charged and with the normal charging current still passing, the voltage between the cadmium and the positive plate should be about 2.35 and between the cadmium and the negative element from .18 to .20. The cadmium is positive to the positive plate and negative to the negative element. In other words, voltaically considered, the negative becomes more highly electro-positive, and instead of being positive to the cadmium, as it is when discharging, it becomes negative

Fig. 20. Cadmium Curves on Charge

to it. - Figs. 19 and 20 show the conditions between the cadmium test piece and the two plates, Fig. 19 being that of discharge and Fig. 20 being that of charge.

At the end of charge, Fig. 20, the cadmium is still positive to the peroxide plate, and the potential difference between them has increased. The cadmium, however, is no longer positive to the spongy lead element, but negative, as shown, and the voltage between them reads in the opposite direction. Whenever the voltage readings in the opposite direction. Whenever the voltage readings in the cadmium test are in the opposite directions, these readings should be added to obtain the total voltage of the cell. When both cadmium readings are in the same direction and it is not necessary after making one reading to reverse

and it is not necessary after making one reading to reverse the voltage of the cell is equal to their difference. In making all these readings, the sum or difference of the two cadmium readings should equal the observed volt-age of the cell. It is somewhat difficult in actual practice, however, to check these readings exactly, due to the small voltmeter deflection obtainable between the cadmium test place and the negative element.

piece and the negative element.

Factors Influencing Voltage: In addition to the condition of the two elements, the voltage of a cell is dependent on the density of the electrolyte, the internal resistance and the temperature.

PERCENTAGE OF H_SO_IN ELECTROLYTE Fig. 21

Fig. 21 is a curve showing the variation of voltage with variation in electrolyte density.

Change of the internal resistance varies the internal drop and consequently changes the voltage of the cell. The effect, however, is always so small as to be negligible in The practice.

Influence of Temperature: The changes in ampere-hour capacity, voltage on charge and discharge, internal resistance and efficiency with variation in temperature are surprisingly great.

Experiments show that the charging voltage decreases, and on discharging the voltage increases with rise in temperature.

The internal resistance decreases with rise of temperature

The explanation of these heat phenomena seems to lie in the increased porosity of the active material due to expansion under the action of heat, and the increased circulation of the electrolyte giving a more efficient use of the active material and the combining SOs.

The decrease in the charging voltage may be due to reduction of pelarization e. m. f. by the driving off of the adherent and occluded gases. Possibly other causes may contribute to the decrease.

The capacity varieties that will take place will depend.

The capacity variations that will take place will depend for their absolute values on the thickness of the layer of the active material, its character, and its disposition, and the discharge rate. It is evident that the more porous the active material at normal and the lower the discharge rate, the less will be the increase in capacity for higher temperature.

Fig. 22 shows the variation in capacity with temperature in a standard 280 ampere-hour train-lighting battery.

Diseases of Batteries and Their Remedies: Lead storage batteries are subject to various diseases. It is most important that the storage battery man have a definite working knowledge of each of these together with the proper remedies in order that the proper life and capacity be efficiently obtained.

The principal diseases to which such a battery is subject are:

Loss of capacity.

Corrosion of plates. Fracture and buckling. 2.

- 8.
- Shedding of active material. Sulphatation.

6.

Reversal of negative plates. Internal discharge. 7.

Hardening of negatives in air. Loss of voltage.

(1) Loss of capacity may arise from several causes, such as clogging of the pores of the lead sponge with sulphate or impurities, contraction of the pores, loss of active material from the plate, formation of a layer of sulphate between the plate and the active material, or insufficient amount of electrolyte.

When the negative plate shows a decreased capacity, and exhibits no sign of sulphatation or no loss of material, it will be generally found that the material has shrunk or the pores are clogged with sulphate and impurities. This

the pores are clogged with sulphate and impurities. This seldom happens on train-lighting batteries, but when it does, the plates must be rejuvenated by reversing.

When the plates are to be rejuvenated the battery is first discharged, the negative elements removed and placed in a bath of sulphuric acid of 1.200 density. They are then connected up for the passage of current in the reverse manner to that in which they were normally intended to be connected. "Dummy" plates of plain sheet lead about is passed through the plates the spongy lead is first turned to lead oxide (PbO), and then as the action continues, to peroxide of lead (PbO). When this final change is accomplished the bath is renewed by the substitution of fresh acid and the current is again reversed. Fresh acid is used in order that the impurities may not be deposited on the negative plates. When the plates are finally converted back to spongy lead and reassembled with the positive plates it will be found that the capacity of the battery has increased and been brought up to nearly its original condition. If dummies can be secured the positive plates should not be used for this purpose and reversal of both sets of plates should be avoided.

(2) Corrosion of plates may occur from either of the

(2) Corrosion of plates may occur from either of the

two following causes:

(a) The chemical action resulting from electrolytic decomposition of highly dilute acid in the pores of the active material, or (b) the presence of lead dissolving acids or their salts in the electrolyte.

There is no remedy for the first condition, which occurs in every cell if the discharge be carried too far or if the plates have a thick layer of active material when the discharge rate is high. The presence of lead dissolving action in the electrolyte will be manifested by a continuous increase in capacity, showing the forming process is still going on attacking the plates. The obvious remedy is to change the electrolyte, and substitute fresh acid free from injurious substances. In addition to these effects, there is a normal slow disintegration due to the action of the acid and products of decomposition. It cannot be entirely stopped as it is the natural deprecation to which the plates are substituted. natural depreciation to which the plates are subject. It can

be partly remedied, however, by decreasing the density of

the electrolyte.

Corrosive action of liquids upon solid substances immersed in them takes place with the greatest rapidity at the surin them takes place with the greatest rapidity at the surface of the liquid. Battery plates which project above the electrolyte go to pieces at its surface before the submerged parts have greatly depreciated. This effect can be greatly reduced by keeping the plates covered with liquid and making the lugs, which pass from the plates out to the terminals, of thick, dense lead.

(3) Fracturing and buckling are due to excessive or unequal expansion. They indicate that the discharge was carried too far, that the rate was too rapid, or that the current distribution over the plate was not uniform and certain portions were too far or too rapidly discharged. It will be seen that the buckling can take place even at normal current rates if the formation of active material, or its application, be not uniform over the exposed surface. Should brekling occur under these conditions it would indicate a buckling occur under these conditions it would indicate a defective plate.

defective plate.

Buckling on rapid rates of discharge may be due to slight inequalities of distribution of active material, together with differences in electrolytic densities which occur in deep tanks. Discharge at high temperature may also cause buckling, due to the increase in capacity and the consequent formation of sulphate, the bulk of the active material being more greatly changed than if the discharge had taken place at a low temperature, and less capacity had been delivered.

There is no remedy for troubles due to defective plates save to keep the electrolyte circulating, refrain from discharging too far and keep excluded from light and air.

(4) Shedding of active material cannot be prevented if

charging too far and keep excluded from light and air.

(4) Shedding of active material cannot be prevented if it is improperly formed or applied, or if it is of such a character that it easily disintegrates or loosens from the grid. With good active material shedding occurs, however, due to expansion and contraction which the grid cannot follow, to the rapid release of gases when charging at high rate, or upon overcharging. When shedding takes place in a greater degree than ordinary usage and depreciation call for, the following rules should be observed:

Charge at low rates; do not overcharge, i. e., do not go above 2.6 voits; do not discharge down too far, say below 1.8 voits.

1.8 volts.

(5) Sulphatation of the injurious kind differs from the normal sulphatation of charge and discharge, in that it is almost irreducible, causes shedding of active material, buck-ling, loss of capacity, increase of internal resistance with consequent reduction of efficiency, and increase of temperature with passage of current.

The causes of over-sulphatation are over-discharge or rapid discharge, either of the entire mass of active material or only certain portions of it, and the injurious effects are those which rise from great increase in resistance and excessive expansion and contraction, which are mentioned

above.

The causes of over-discharge are: (a) Intentional, through external circuit; (b) local action and leakage; (c) loosening of active material which discharges but is not traversed by current on charge and consequently becomes over-discharged; (d) short circuits between plates.

Excessive discharge rates also tend to form a layer of sulphate on the plate preventing the electrolyte from reaching the inner recesses of the active material. This causes the discharge action to take place only on the outer layer

, and results in an over-discharge of this surface and the

formation of non-reducible sulphate.

When for any reason the active material is not in close contact with the grid, the electrolyte is able to penetrate between the two. Obviously the action on discharge will take place most rapidly at this point and a layer of sulphate will be formed on the surface of the active material next to the grid. When the lead or lead peroxide is sufficiently reduced, this layer of sulphate becomes non-conducting and current cannot be forced between the plates except at high voltage. The above process of sulphatetion is sugmented. voltage. The above process of sulphatation is augmented if either the acid density or the temperature is high. In addition to these injurious effects, those previously mentioned, due to change of volume of the active material, and buckling, generally result.

Local action and short circuit between the positive and negative elements will both cause over-discharge and the consequent injurious sulphatation

consequent injurious sulphatation.

Lead sulphate is white in color and the manifestation of its presence is the gradual lightening in color of the affected parts. If the process is continued eventually fakes of pure white sulphate will be formed over the plates or those por-

white sulphate will be formed over the plates or those portions affected by the action.

The best remedy for sulphated plates is a charge and discharge, the rate depending on the degree of sulphatation. When the plates are only slightly affected they should be subjected to a long slow charge and discharge, at a rate of about one-half normal. When the plates are badly sulphated they should be subjected to a long heavy charge and discharge at a rate not to exceed twice the normal rate. Care must be taken that the temperature of the cells does not exceed 105° F.

In case only one cell is affected it should be taken out

In case only one cell is affected it should be taken out of the set and treated separately. If either the positive or negative plates alone are affected they should be removed from the cell, set up with dummy plates of lead and treated

as above.

as above.

The electrolytic dénsity and the temperature should also be within the prescribed limits. While neither of these factors directly cause sulphatation, they greatly assist the real causes and accelerate and augment this injurious action. Short circuits should be prevented by keeping the cells cleaned out and never allowing the sediment, which is a conductor, to accumulate in the bottom or between the plates on the separators. Also, the separators and spacing of the plates should be given occasional attention.

When an excess of sulphate once forms, several cycles of charge and discharge are necessary to bring the battery up to its normal capacity. The first charge should always be a prolonged overcharge.

up to its normal capacity. be a prolonged overcharge.

be a prolonged overcharge.

(6) The reversal of negative plate occurs on account of loss of capacity of one cell, or because some cell or cells are not in the same charged condition as the balance of the set, the defective cell or cells being overpowered by the large capacity cells, and reversed. The remedy for this is the removal of the defective cells in order that they may separately be brought to the proper charged condition. The cause of the loss of capacity of these particular cells must be ascertained and corrected as otherwise the reversal will again occur.

A cell in series with other cells may be overcharged by cutting it in on charge and out on charge.

(7) "Local Action" is the term applied to the internal discharge that takes place between the active material and the grid or between the active material and metallic im-

purities on the same plats. It occurs most frequently at the negative or spongy lead plate and is frequently due to impurities in the electrolyte.

The negative plate, when charged, should never be permitted to become dry or exposed to the action of the atmosphere. Oxidization of the sponge lead will take place very quickly, with the result that the plates become very much heated and harden rapidly and it is then very difficult to reduce the active material to sponge lead. The remedy is to use pure electrolyte and keep the plates well covered. Local action often results in filling up the pores of the sponge lead with deposited impurities and sulphate, thereby reducing the capacity. reducing the capacity.

If the negatives are of such character as to stand reversal they may be revitalized by the method described under the heading "Loss of Capacity."

heading

(8) Hardening of negatives in air proceeds from oxidization and heating and leaves the spongy lead in a difficult condition to reduce to its proper form. The only method is by a continued overcharge. If possible this should be done, using dummy positives as the battery positives would very likely be injured if subjected to the amount of overcharge necessary to remedy this condition. If, however, conditions are such as to require an immediate remedy and no dummy positives are available, the battery positives would probably be used without serious injury, providing the overcharging is done at not more than one-half the normal rate.

(9) Loss of voltage is of frequent occurrence. In a battery of any size there are generally one or more cells that show an e. m. f. less than normal and at times they may reverse their polarity. This diminished e. m. f. is due to the abnormal amount of sulphate in the active material, which must be reduced and its cause ascertained and corrected a correlated in the active material.

which must be reduced and its cause ascertained and corrected as explained in the above paragraph on sulphatation.

Electrolyte: The electrolyte used on storage batteries of the lead lined type consists of diute sulphuric acid having a specific gravity of from 1.200 to 1.300, depending on the amount of electrolyte and the construction of the cell. It should be free from all impurities such as hydrochloric, nitric or acetic acids, iron, arsenic, antimony, copper and mercury, or the slightest trace of platinum, and by analysis must not exceed the following: must not exceed the following:

Arsenic	 	Trace
Manganese	 	Trace
Iron	 	0.003%
Chlorine	 	0.001%
Nitrogen, any form	 	0.01%
Copper	 	0.002%
Sulphurous acid	 	None
Organic matter		

The following is a description by one of the leading battery authorities of the test for the various impurities which are liable to be found and which are injurious to the

are name to be town.

battery:

Iron: The impurity causing the most trouble in car lighting work is iron, and when batteries are cleaned the acid removed should be tested to ascertain whether or not it should be used again. Test should be made as follows:

Commercial acid to be mixed with an EQUAL VOLUME of a 50% solution of ammonia sulphocyanide which can be

of a 5% solution of ammonia sulphocyanide which can be obtained from druggists and should be made as follows:

Ammonia	sulphocyanate	cryst	. 1 oz.
Water			.20 oz.

If iron is present the solution will turn a red color, the shade of same being dependent upon the percentage of iron present. This should be compared with two sealed test tubes, one containing electrolyte with .01% of iron and equal portion of reagent and one containing electrolyte with .005% of iron and equal portion of reagent. Of the sealed test tubes, that having the .01% of iron will be the darker color and if the color of the acid and reagent under test is darker in color than this, the acid should not be used. Copper: Add a solution of ammonia to a portion of the electrolyte. If a bluish-white precipitate appears copper is present in the electrolyte.

electrolyte. If a bluish-wi present in the electrolyte.

present in the electrolyte.

When an excess of ammonia is added and the liquid becomes alkaline, the precipitate disappears and the liquid becomes a dark blue color.

Mercury: The presence of mercury in the electrolyte is indicated by a black precipitate when lime water is added, or by an olive green precipitate when a solution of potasium iodide is added.

Arsenic: Pass sulphuretted hydrogen (H₂S) through a warm dilute solution of electrolyte. If a yellow precipitate forms, it is probably arsenic but may be sulphur, caused by oxidation of H₂S by ferric salts or nitrates. Take two test tubes and put a portion of the yellow liquid in each. test tubes and put a portion of the yellow liquid in each.
Add to one ammonium sulphide, to the other ammonium
carbonate. If the yellow precipitate is an arsenic compound
it will be dissolved by ammonium sulphide, but not by ammonium carbonate.

Nitric Acid. Tests: (1) Make in a test tube a solution of ferrous sulphate (Fe_2SO_4) and add sulphuric acid (H_2SO_4) . Shake well and allow to stand until cool; then without mixing, carefully pour in the solution to be tested and lightly tap the side of the tube. If nitric acid or nitrates are present, a brown ring will be formed where the liquids meet,

present, a brown ring will be formed where the induces meet, and which disappears upon shaking.

(2) A solution of a nitrate with sulphuric acid and a few bits of copper will give off reddish fumes.

Hydrochloric Acid. Test: To the solution add silver nitrate (AgNO₂). This gives a white precipitate, silver chloride (AgCl), insoluble in nitric acid but soluble in ammonia.

Acetic Acid. Test: Add ammonia (NH,OH) to the solution until it becomes neutral; then add ferric chloride (Fe₂Cl₆). If the solution turns red and is afterwards bleached by the addition of hydrochloric acid (HCI) there

Inspection: A pint bottle for test should be made up from each shipment of acid and contain a portion of acid from

each shipment of acid and contain a portion of acid from each carboy; this should be sent to some competent chemist for test and none of the consignment used until a report of its acceptance has been received from the chemist. Specific Gravity: The density of the electrolyte is dependent upon the proportions of acid and water; in other words, it depends upon the degree of dilution of the acid, and is measured by means of an hydrometer.

The hydrometer consists of three parts: (1) The upper part—a graduated stem or fine tube of uniform diameter; (2) a built or enlargement of the tube, containing air; (3) a small bulb at the bottom, containing shot or mercury, which acts as a ballast and causes the tube to float in an upright nostition. position.

The density is expressed in terms of specific gravity; i. e., the ratio of the density of the liquid to pure water, or in terms of some arbitrary scale such as the Baume, Twaddles, etc. For car lighting service this must be maintained at from 1210 to 1225; a specific gravity of 1220 being

considered the best.

When testing a cell for the specific gravity of the electrolyte with a view to correcting same, the following method should be pursued: Fill the cell with water and place on charge; when fully charged test the specific gravity, and add as much acid or distilled water as may be necessary to bring the specific gravity of the electrolyte to 1220.

to bring the specific gravity of the electrolyte to 1220.

As explained in preceding paragraphs, the electrolyte must be kept above the tops of the plates and as much higher as the construction of the tank will permit. As it is essential that the electrolyte be free from all impurities only distilled water should be used in diluting the acid.

Water obtained by condensing steam from a steam boiler should not be used, as it is liable to contain oil or chemicals used in purifying the water for boiler purposes. The water should be condensed in a copper still, and a copper or lead pipe or a rubber hose should be used for the purpose.

Whenever the electrolyte is found to be impure due to the presence of any metal other than lead or of any acid other than sulphuric, it must be immediately drawn off and new electrolyte applied.

The purchase of an acid of low concentration, say 1200

The purchase of an acid of low concentration, say 1200 specific gravity, is much more convenient than an acid of higher specific gravity and diluting, and it is claimed that it is superior to that obtained by dilution on account of

it is superior to that obtained by dilution on account or being more carefully prepared.

When diluting an acid, the acid should always be slowly poured into the water, and not the water into the acid. The reason for this is that a chemical combination is formed which liberates heat, thus raising the temperature of the electrolyte, and if the water is poured into the acid the action is more rapid than if the acid be poured into the water.

Fig. 23. Resistance of Sulphuric Acid per Cu. Cm.

After dilution the electrolyte must be allowed to cool before using. It will be found that upon cooling the specific gravity is greater than when hot, but this can be lowered to the proper value by the addition of a little distilled water.

The density of the electrolyte governs to a great extent the operation of the battery. If too dense, the electrolyte

tends to evaporate more readily, sulphatation is facilitated and the plates are liable to rapid depreciation.

The specific resistance of sulphuric acid is least at a density of about 1260, rising if the density be either increased or decreased. A curve showing the variation of resistance with specific gravity is shown in Fig. 23.

General Instructions: Batteries must never be allowed to stand in a discharged condition, but should be put on charge

stand in a discharged condition, but should be put on charge as quickly as possible after discharge.

Reading of the voltage of individual cells should be taken every two weeks with a voltmeter having a three-volt scale, such readings being taken with the battery on discharge, subsequent to a full charge. Each cell should read at least two volts. If any cell reads below this, action should be taken at once to determine the cause of the trouble and to correct same. correct same.

correct same.

Keep the plates covered with electrolyte.
Readings of the specific gravity of the electrolyte of the individual cells should be taken once a month, when each cell is in a fully charged condition. The electrolyte should then have a specific gravity of 1215 to 1225. If the specific gravity of the electrolyte is outside these limits it should be corrected by adding acid or water as may be required to bring it to 1220 degrees.

Never allow charged negative plates to become heated by standing in air; submerge or sprinkle them with water until they show no tendency to heat.

In setting up batteries, after cleaning or repairing, see that all separators, bottom insulators, and hard rubber insulating sheets are in place. Particular attention should be paid to connecting the battery up properly, positive to negative.

Use distilled water only.

Wait until the electrolyte cools before using. Keep the covers of the tank clean.

Keep the connections clean and tight.

Keep the connections clean and tight.
When cleaning battery, paint all tanks.
The foregoing article treats to some extent on the theoretical side of the battery and the reader must not form the idea that a storage battery is a very delicate piece of apparatus and that all of the tests and suggestions given are absolutely necessary and must be strictly adhered to in order to obtain a satisfactory life out of a battery. While "laboratory conditions" undoubtedly tend to lengthen the life, such conditions cannot exist in practical operation; nevertheless, a little intelligence and care in handling batteries will go a long way toward obtaining satisfactory service. For this reason the following instructions for the care and maintenance of batteries, by one of the leading storage battery manufacturers, are given.

PUTTING THE BATTERY INTO COMMISSION

Treatment of Batteries Received Assembled: Batteries in lead-lined tanks are usually shipped fully charged ready for service. Before being placed in commission each battery should be thoroughly inspected and any loss of electrolyte replaced with acid of 1225 specific gravity. The battery should then be given a freshening charge at the finish rate, until the voltage and specific gravity have remained at a maximum point for two hours. At this time all the cells should be gassing freely and the battery is ready for service.

Assembling: If the batteries are received knocked down, they should be carefully unpacked and assembled. Place the elements on edge on a convenient bench or table with the face of the plates at right angles with the surface of the table. Put in the separators between each plate, after which the elements should be carefully inspected to see that no separators have been omitted. Place the hard rubber sheet linings and the porcelain rests in the lead lining. Four pieces of sheet tin are bent down six inches over the hard rubber lining. These pleces will prevent breakage of the hard rubber linings when the element is slipped into position, and are removed after the cell is assembled. The element, including the separators, is lifted up by taking hold of the connecting straps, and carefully placed in the tank. tank.

In order to prevent the separators from sliding down it is advisable to encircle the element with a strap, which can be pulled out after the element is placed in position.

When placing the elements in the tanks, it is very essential that they all be placed so that the positive post is on the right-hand side when facing the front end of the tank.

initial Charge: Connect the cells in series by means of temporary connections, always connecting the positive post temporary connections, always connecting the positive post of one element to the negative post of the adjacent element. Fill the cells with electrolyte of 1210 specific gravity, covering the plates by about one inch. Connect the positive terminal of the battery to the positive terminal of the charging source, and the negative terminal of the battery to the positive terminal of the battery. to the negative terminal of the charging source, after which the initial charge can be started at a rate equal to the finish rate. After the battery has been on charge for two hours, it is advisable to go over all the individual cells with a voltmeter in order to ascertain that the cells are connected properly and not in a reverse direction.

The charging is continued at the above rate until the specific gravity in all the cells has reached a maximum and remains at this point for at least six hours. This will take approximately from 40 to 50 hours, but the length of time should not determine the end of the charge.

The initial charge does not need to be continuous, but can be discontinued over night if necessary; but the battery should not be put into service until it has received a com-plete initial charge.

The specific gravity of the electrolyte at the end of the initial charge is in the neighborhood of 1225. If the cells show uneven specific gravity, the same should be adjusted and evened up at the end of the initial charge.

The temperature should be watched very carefully, and should not be allowed to exceed 110° F. When the temperature approaches this point, the charge should be discontinued until the cells have cooled down.

It is good practice to give each cell one or two discharges before putting into service.

Sealing: After the cells have been given their initial charge, they should be thoroughly inspected to see that the plates have the proper color and are in the proper condition. After this, the crown of the lead lining should be thoroughly wiped off and dried with a fiame. The bushings are inserted in the hole of the cover. The holes of the bushings are painted with vaseline and the cover is placed in position, the bushings being so adjusted that they hold the cover down on the ledge provided for the same. A weight is placed in the center of the cover and the cover is sealed in. Care should be taken not to get the sealing compound too warm, as it will flow down into the cell. The

recess in the cover is filled with compound, the excess being

cut off with a heated putty knife.

After the cover is sealed in the connectors are soldered into place or bolted on, depending upon what type is used, and the battery is ready for service.

OPERATION

General Rules: In order that the best life may be obtained from a battery it is necessary to exercise the greatest care in the daily operation of the same. The following rules should be carefully followed:

Give the battery the proper amount of charge.

Do not undercharge the battery.

Do not discharge the battery excessively.

Do not discharge the battery beyond safe limits.

Do not allow the battery to remain discharged.

INVESTIGATE AS SOON AS THERE ARE ANY SYMP-TOMS OF TROUBLE.

Pilot Cell Operation: In order to determine the state of charge and discharge of a battery, the pilot method of operation is most reliable, as it is not to any great extent dependent upon the condition of the battery and operating conditions.

The pilot method of operation consists in taking the specific gravity of one cell in the battery and comparing the reading obtained with previous readings, thus determining the state of charge and discharge and the condition of the battery. The cell of which the specific gravity is taken is called the pilot cell and should be properly marked for identification.

In case the batteries are operated, two halves in parallel, it is necessary to have one pilot cell in each half.

In the pilot cell, the level of the electrolyte should be maintained as nearly constant as possible by the frequent addition of distilled water, the water being added after the specific gravity readings have been taken, but before the charge is started.

At the time that the battery is given the reforming charge At the time that the battery is given the reforming charge, the specific gravity of the pilot cell and the temperature of the electrolyte should be taken; likewise at the end of the reforming charge. This specific gravity reading is called the maximum gravity and is used as a standard for judging the state of the charge and discharge of the cells.

Upon the arrival of the car in the yards, the specific gravity of the pilot cell, together with the temperature of the electrolyte, should be taken and properly recorded. The specific gravity reading should be corrected to 70° F. This reading compared with the maximum gravity and with previous readings will give the condition of the battery, and the same can be taken care of according to the conditions of the service. of the service.

If the battery is used in connection with the axle or the head-end systems, the pilot cell reading will show whether the battery needs an extra charge at the terminal, and it will also show whether the regulator on the machine is

set properly.

Before the car leaves the terminal a second pilot cell reading can be taken, serving as a check on the amount of charge given the battery. This reading should also be recorded.

Voltage Operation: In addition to the specific gravity of the pilot cell, the terminal voltage of the battery should

257

be taken with all the lamps burning, and after they have

and the state of the second

been burning for at least five minutes.

This voltage reading serves as a check on the gravity reading. If it is lower than should be expected from the gravity reading, the voltage of each individual cell should be taken in order to detect those that are low. If any of these are found, the cause of the trouble should be investigated and remedied immediately.

In operating the battery the voltage alone should preferably not be used as a guide, as it will vary with the temperature, the age of the battery and the amount of current flowing from the battery.

Charging: In regular service the current at the beginning of the charge should be double the eight-hour discharge rate of the battery. If, for any reason, it is not practical to use this rate, any rate between the starting rate and the finishing rates can be used. The charge should be continued at this rate until the voltage rises to 2.55 volts per cell at a normal temperature, the rate then being reduced to the finish rate. Continue the charge at the lower rate until the voltage has ceased to rise and has reached a maximum. This point is determined by taking one-half hour readings toward the end of the charge.

The maximum voltage is not a fixed quantity but will

The maximum voltage is not a fixed quantity but will vary to a great extent with the temperature, the age of the battery and the charging current.

If the temperature of the battery at any time during the charge rises to 110° F., the charging rate should be reduced or the battery should be allowed to rest until cool.

Reforming Charge: Regular charging in service may not completely reduce the sulphate in the plates, and it is, therefore, necessary to give the battery a reforming charge at regular intervals, the object being to reduce all sulphate and to even up the cells. The best time to give the battery this charge is when it is removed from the car for inspection, as the specific gravity should be used as a guide in bringing up the cells. Give the battery the regular service charge, then continue the charge at the finish rate until the gravity has ceased rising in every cell for at least one hour. If the battery is badly sulphated, this might take several days, in which case it will be necessary to take the battery out of service. Enough emphasis cannot be put on the necessity of doing this, as the life of the plates will be greatly shortened if the battery is allowed to continue in service in a sulphated condition. Reforming Charge: Regular charging in service may not

At the end of the reforming charge, the voltage reading of each individual cell should be taken with the finish current flowing. This, together with the specific gravity reading of each cell, should be recorded.

Replacing Evaporation: Notwithstanding the fact that the cells are practically sealed, a certain amount of evaporation cells are practically sealed, a certain amount of evaporation takes place. The evaporation is replaced at regular intervals with water, not acid, the object being to keep the plates always covered with electrolyte. The cells should be filled before charging. The water will then be properly mixed in the electrolyte by the gassing of the cell. In filling the cells the utmost care should be taken to see that the water is strictly pure. A convenient time for refilling the cells is when the battery is removed from the car for inspection and reforming charge. Batteries need filling oftener in summer than in winter, the amount of evaporation varying largely according to temperature. according to temperature.

Replacing Loss of Electrolyte: The proper height for the electrolyte is % inch from the under side of the cover. It will be noticed that there is a slight and gradual loss of electrolyte. When this loss has become such that the highest reading that can be obtained is, say, 20 points below the standard (1220), or what it was when put into regular service, then the loss should be replaced by adding dilute acid. Before doing so, be sure the battery is completely charged and the specific gravity has remained constant for some time. some time.

Concentrated acid should not be added to the electrolyte of a battery. An approximate density for this purpose is 1400 specific gravity. It is absolutely essential that pure acid be used. Commercial acid should not ordinarily be used unless it has been submitted to the battery company for a test and approval. Under ordinary circumstances it will not be found necessary to fill the cells with electrolyte between the cleanings. It is only in cases where slopping

has taken place that this is necessary.

Batteries in Parallel: Charging batteries in parallel should be avoided, as different sets, as a rule, do not get equal loads, and after some time in service will become uneven. If the batteries are discharged in parallel it is advisable to charge them in series and always give the battery enough charge to bring up the lower set. If it is found tery enough charge to bring up the lower set. If it is found necessary to charge the two sets in parallel, great care should be taken to see that both halves get the same amount of current and that both are brought up to normal. Parallel charging should not be used if there is any possible way by which it can be avoided,

Readings: For the proper operation of the battery the following readings should be taken and recorded:

Daily Readings Upon Arrival of Car in the Yard: Specific gravity of pilot cell. Temperature of electrolyte in pilot cell.

Terminal voltage of battery with all lamps burning.

Daily Readings at End of Charge: Charging current and voltage every half hour toward the end of the charge. Specific gravity of pilot cell.

Temperature of pilot cell.

Monthly Readings: Maximum gravity of pilot cell. Specific gravity of each individual cell at the end of reforming charge.

Voltage reading of each individual cell at the end of the reforming charge with the current flowing.

Inspection: In order to get the best results from the battery it is essential that it be thoroughly inspected at least once a month. At the time of inspection the battery should also be given a reforming charge. The points to inspect and note are as follows:

The height of the electrolyte in the cell should be investigated as soon as the battery is removed from the car and, if necessary, the cells should be refilled with pure water to within % inch below the inside of the cover before the battery is nut on charge.

battery is put on charge.

Inspect and clean all connectors and tighten them if necessary. Give all exposed metal parts on the connectors a coating of vaseline.

Inspect the gassing of the cells at the end of the charge.

If any cell does not gas as freely as the balance the cause should be investigated.

Take the gravity readings of all the cells at the end of

the charge.

Take the voltage readings of all the cells at the end of the charge with the charging current flowing. If any cells show low gravity or low voltage, the cause should be investigated.

Removal of Battery for Cleaning: In order to remove the sediment which accumulates in the bottom of the tank the battery should be removed from the car once a year for overhauling. This is preferably done when the car is being shopped for general repairs.

TAKING BATTERY OUT OF COMMISSION

TAKING BATTERY OUT OF COMMISSION

If the battery is taken out of service for a short time it should be properly charged and stored away in a dry, cool place. It should be inspected at least once every month and refilled with water if necessary. At this time it should also be given a freshening charge at the finish rate.

If the battery is taken out of commission for more than six months the cells should be dismantled. Before doing this the battery should be fully charged and all the cells put into good condition. After dismantling, all the material except the groups should be thoroughly cleaned. The positive groups can be stored away and allowed to dry. The negative groups will heat as soon as they are exposed to the air. When they get warm they should be immersed in water until cooled off. They should then be allowed to dry, and can then be stored away.

When again put into service it should be treated as a

When again put into service it should be treated as a new battery, as given under the heading, "Assembling and Initial Charge."

Battery boxes, battery tanks and connectors should be kept clean and dry. All parts liable to corrode should be painted with vaseline at regular intervals. Battery boxes and tanks should be painted with acid-proof paint every time the battery is removed for cleaning. Matches or exposed fiames should not be allowed near the battery boxes, as the gases given off when the battery is charging are explosive.

TROUBLES AND THEIR REMEDIES

Indication of Troubles: The following symptoms indicate trouble in a cell and it is of the greatest importance to investigate the cause of the same and to remedy the trouble before it has injured the battery:

The cells show lack of capacity in service.

The voltage and specific gravity to not come up on charge.

The voltage and specific gravity are falling unusually low on discharge.

The cells are not gassing freely on charge.
Unusual heating on charge.
Color of plates is unhealthy.

Causes of Troubles: If a cell shows any of the above indications of trouble it can usually be traced to one of the following causes:

Impure electrolyte, the impurities having been introduced into the cell by using impure acid or water, or by allowing metal parts to enter into the cell.

Sulphate caused by the battery remaining in a discharged condition or being operated at high temperatures.

Short circuits caused by material lodging between the plates or sediment accumulating high enough to touch the bottom of the plates.

Positive plates worn out.

1..

Negative plates low in capacity or worn out.

Remedies: If inspection of cells is properly followed out, and the troubles remedied as soon as found, the battery usually will give satisfactory service without great operation and maintenance cost or labor. If the battery is allowed to remain in service after showing indications of trouble the trouble will very soon develop seriously, and in time completely ruin the battery. A battery should, therefore, receive immediate attention when it shows that it is not operating along the regular lines. operating along the regular lines.

Treatment of Cells With Impure Electrolyte: If the electrolyte is suspected to contain impurities, a one-quart bottle of the same should be sent immediately to a competent

chemist to be analyzed.

chemist to be analyzed.

If the electrolyte contains enough impurities to injure the plates it should be changed immediately. The battery should be discharged until the voltage of each cell reaches zero, the old electrolyte emptied out and the cells refilled with new electrolyte of the same density as the old. The battery should then be charged as stated under the heading, "Charging." If the cells contain a large amount of impurities it is advisable to repeat this operation two or three times. If the battery is allowed to continue in service when the electrolyte contains impurities, the plates will be injured, and in many cases completely ruined.

Treatment of Sulphated Cells: If a cell is allowed to sulphate to any extent the positive plates will corrode and deteriorate quickly. The remedy for sulphated cells is a complete charge until all the sulphate has been reduced. In case the whole battery is in a sulphated condition the charge should be started in the regular way, as given under the heading, "Charging," but in a case of this kind extreme care should be taken that the battery is not overheated. It is advisable in this case that the temperature does not exceed 100° F. In case this temperature is exceeded the charge should be discontinued until the battery has cooled down. The charge should then be continued at the finish rate until the gravity has reached a maximum and has remained at that point for at least six hours. If the cells are badly sulphated this may take several days.

are badly sulphated this may take several days.

If only one or two cells are found to be in a sulphated condition the simplest method of bringing them up is to charge the whole battery at the finish rate, until the gravity and the voltage have reached a maximum. If it is found that by this method the low cells cannot be brought up in a reasonable length of time, it is advisable to remove them from the car and replace them with fresh cells. The sulphated cells should then be charged separately until they are brought up, after which they should be put; back in the car where they belong.

Treatment of Short-Circuited Cells: A short circuit usually starts from some small conducting particle lodging between the plates and will gradually develop if the particle is allowed to remain. The positive plates in the short-circuited cell will corrode quickly, and in a very short time will be absolutely destroyed. Short circuits should; therefore, be removed immediately. Short circuits from material lodging between the plates are part representations. between the plates are not very liable to take place in service, on account of the jarring and jolting of the train. If they occur, the cell should be completely dismantled, the short circuit removed, the separators replaced, and the cell again assembled. It should be filled with the old electrelyte or of new of the same density. It should then be thoroughly charged at the finish rate.

Cleaning: As stated under the heading "Removal of Battery for Cleaning," the battery should be cleaned once every year, or when the car is being shopped. Give the battery a thorough charge before cleaning.

The sealing compound, after being heated by a flame, is removed by a chisel or a screwdriver. Then remove the covers and lift the elements out from the tanks.

Remove the separators and rinse both the positive and negative groups and separators in running water. Great care should be taken to remove any loose particles which

care should be taken to remove any loose particles which might cause a short circuit.

The old electrolyte is emptied from the tank, the sediment is removed, and the tank thoroughly rinsed with water. The element is then placed in the tank and the cell filled with new electrolyte of the same density as the electrolyte thrown away. The old solution should preferably be thrown away in order to get rid of possible impurities. The same operation is then performed with the next cell.

If the cells cannot be assembled immediately, the positive group can be left in the air, but the negative groups, as mentioned before, should be immersed in water or acid, preferably the latter. This will keep the negative plates in a charged condition and will decrease the amount of charge necessary after the cleaning is done. Any material, such as separators or rubber linings, found broken, should be replaced with new material,

After the whole battery has been assembled it should be put on charge as soon as possible and charged at the finish

The specific gravity in the various cells should be evened up, after which the battery is ready to be put back into service.

When the battery is being cleaned, the battery compartment in the car and the tanks should be thoroughly washed with a solution of bicarbonate of soda and, when dry, painted with acid-proof paint.

Test Discharge: Before the battery is put back into service it is advisable to give it a test discharge in order to determine whether it is still maintaining its capacity or

is dropping behind.

The necessary instruments for running this test are an ammeter calibrated to 100 amperes, a low reading voltmeter, a hydrometer springe, a thermometer and a rheostat. A water-rheostat is preferably used for this purpose, as it is very easily arranged and allows very close regulation of the circuit. It is made up of a crock or tub of about 10 or 15 gallons capacity and two lead or iron plates about 1 foot square and 1/2 inch thick.

square and ¼ inch thick.

Connect one terminal of the battery to one of the plates of the rheestat, the other terminal to the ammeter and then its the second plate of the rheestat. Fill the crock with water and immerse the plates in the same. Pour a small quantity of sulphuric acid into the water until the desired current is obtained. Readings should be taken of the cell voltage every hour until the lowest cell has dropped to 1.8 volts, thus limiting the discharge and the capacity of the battery.

A convenient form of water-rheostat is a tub or crock filled with a very dilute solution of sulphuric acid or salt. One plate, mentioned above, is placed in the bottom of the tub while the other is suspended in the water from a pulley. The amount of current flowing can then be ad-justed by the depth of suspension of this second plate.

Justed by the depth of suspension of this second plate. The general practice in running a test as outlined above seems to be to take the terminal voltage of the whole battery instead of the voltage of individual cells and to discharge until a terminal voltage is reached equivalent to an average voltage per cell of 1.8 volts. This method will give the capacity of the battery under service conditions, but does not tell its actual condition, as there might be one or more cells considerably lower than the average, while the rest of them are above the average.

A battery with some high and some low cells is naturally

A battery with some high and some low cells is naturally not as good as one with all cells even, the average voltage for all being the same, as the low cells will continually be over-discharged and gradually ruined.

Cadmium Readings: If the entire battery is low in capacity, or if some low cells are found, it is necessary to know whether the trouble lies in the positive or negative plates. This can be determined by taking cadmium readings.

If a piece of metallic cadmium is immersed in the electrolyte directly above the plates, and is connected to the negative terminal of the voltmeter, while the positive terminal is connected to the positive pillar post by means of a pointed copper rod, a reading is obtained on the voltmeter.

The voltage between the positive post and the cadmium is approximately 2.20 volts at the beginning of the discharge. As the discharge is continued it gradually drops, and when it reaches 1.95 volts the positive plate is considered completely discharged.

The voltage between the negative post and the cadmium is approximately .14 volt at the beginning of the discharge. As the discharge is continued it gradually rises. The negative plate is considered completely discharged when the voltage has risen to .30.

In a new battery the negative plates are never completely discharged, as they have considerable excess capacity over the positive; therefore, the negative to cadmium reading in a new battery should not be higher than .20 at the end of discharge. It should be noted that the lower the reading obtained for the negative plates, the better the plates.

obtained for the negative plates, the better the plates.

An example will show the use of cadmium readings in determining the condition of the plates. Assume that the voltage of a cell while being discharged at the eight-hour rate has dropped to 1.80 volts at the end of five hours, and that the cadmium reading for the positive plates is 1.95 volts and for the negative plates 15 volt. In this case the reading for the negative plates is considerably under the limit, while the positive plates are exhausted. This indicates either natural wear, or that all the sulphate has not yet been driven out from the plates. It is, therefore, advisable to take a second discharge. If the capacity is still the same, and too low for practical purposes, it will be necessary to renew the positive plates. to renew the positive plates.

If the voltage of the cell is 1.80 at the end of five hours, and the cadmium reading for the positive plates is 2.12 volts, while for the negative plates it is .32 volt, this indicates that the positive plates are good and that the negative plates are short in capacity. In case the negative plates are of the Planté type, this can be cured by rejuvenating (reversing).

Rejuvenating Negative Plates: The negative plates are so designed as to initially have an excess capacity, so that at the end of the life of the positive plates the negative plates will still give their rated capacity. If the cells have frequently been allowed to become sulphated, however, or if the electrolyte has been impure, the pores of the active material become clogged, causing a drop in capacity. It is advisable, therefore, to rejuvenate the negative plates whenever the positive plates are renewed, in order to obtain the most satisfactory results from the old negative groups during the life of the second set of positives. The rejuvenation in this case can be done with the old positive plates. Charge up the battery, and if any indications of short circuits are found, remove the same. Discharge the battery until the voltage of each cell reaches zero, and then charge in the reverse direction at two-thirds of the eight-hour rate until the gravity ceases to rise, which will probably take approximately 48 to 60 hours. Discharge the battery again, and then charge at two-thirds of the eight-hour rate in the right direction until the gravity again stops rising. The negative groups will then be ready to be assembled with new positives.

. . . . • , 90.30

i aj · } . : :

SECTION VI

MAZDA INCANDESCENT LAMPS

LIFE PERFORMANCE CURVES AND AP-PURTENANT DATA; LIGHT DISTRIBU-TION CURVES. TRAIN LIGHTING AND REGULAR LAMPS

1

11/24/19 33

Carry Control of the

Section 1. Section 2. Section 3. Section 3

TRAIN LIGHTING LAMPS

Train lighting lamps used in good railway practice today resolve themselves substantially into one class, i.e., High Efficiency Mazda lamps. The Carbon, Gem and Tantalum fill so small a place in this field that their consideration is unnecessary.

At the present time the above lamps are listed in two voltages: 32 and 63 which have been adopted as standard by train lighting engineers throughout the country.

The general characteristics of these lamps are similar to those of the regular lamps of similar type used on standard commercial voltages such as 110 and 220 volts. Technical and other data relative to these types of train lighting lamps will be included according to the following outline:

Technical Data Life Performance Average Life Curves Effect of Voltage Variation upon Candle-power Current Wattage Candle-power Distribution Curves.

The Mazda lamp, as is well known, is an improved tungstent filament lamp having embodied in it the most recent science and developments in incandescent lamp manufacture. It has outclassed the other mentioned types of incandescent lamps due to its greater efficiency, its durability and the color quality of its light. These are the points of greatest moment, although it stands superior to the others in many other necessary qualifications.

Mazda (Improved Tungeten) Lamps (Manufacture and Properties): The ingenuity of investigators was taxed to the extreme when Tungsten was first used as a lamp filament, as one of its characteristics was non-ductility or brittleness. Later is was discovered that with the proper brittleness. Later is was discovered that with the proper treatment Tungsten became ductile and could be drawn into wire. Today it is being drawn into all sizes ranging in diameter from less than one-thousandth of an inch for the low current lamps up to one-hundredth of an inch for some types of series lamps. One-thousandth of an inch is smaller than the diameter of a hair. Tungsten wire is stronger than the strongest steel. The smaller sizes show a tensile strength of 600,000 pounds per square inch. While considerable of the strength is lost the first time the filament is heated to the working temperature, it is even then materially stronger than the filaments made by the squirting process. Also, the drawn filaments allow of a method of support which renders the lamps much more rugged. The spans are short and no welds are necessary. The carbon filament incandescent train lighting lamp has

been, up until approximately two years ago, in general use for this class of service since the introduction of railway electric lighting. Due to the fact that in practically all train lighting systems the lamps upon circuits are subject at regular or occasional intervals to much fluctuation in

at regular or occasional intervals to indeed indicated in voltage, the carbon lamps of low efficiency were required. The satisfactory operation of the electric lighting system with carbon filament lamps required large generator and battery equipment. The capacity, however, being somewhat limited by the available space on the car, with the larger cars, such as sleepers and diners, the allowable margin of safety was comparatively small, and resulted in numerous

4 4

lighting failures, which retarded considerably the universal

inguing failures, which retarded considerably the universal adoption of electric lighting systems on steam roads.

The development of the high efficiency Mazda lamp which requires approximately but one-third the amount of current of the carbon filament tamp, has been the means of over-coming the foregoing trouble, making the electric lighting of cars ideally practical.

B-19-C 10 - 15 - 20 - 25 - 40 Watts (25 - 34) Volts 15 - 20 - 25 - 40 Watta (57 - 65) Volts

Fig. 1. Mazda-Train Lighting Lamps (Illustrations one-quarter size)

The most important item in the successful and economical operation of electric train lighting systems, is the effi-ciency of the lighting unit. Upon this depends directly the fixed charges and operating cost. From the hands of the electrical engineers as an experiment, the practical use of Mazda lamps has emanated as a necessary requirement. Their ruggedness in both the adopted standard voltages has been proven sufficient to withstand all reasonable shock and jar encountered in service. In candle-power maintenance through life, the following curves, Fig. 2, illustrate the superfority of the Mazda lamp. The decrease in efficiency is also much less than other incandescent lamps formerly used.

Fig. 2. Average Candlepower Life Curves.

It is of interest to note the change in current, watts per candle and resistance through life as shown in Fig. 3.

Current

Fig. 3. Hours Life Performance Curves -

At present train lighting lamps are made with two types of bulbs, the straight side and round. The first being divided in size into the S-17, S-19 and S-21, the second into G-18½ and G-30, having the wide range from 8 to 40 candle-power. There is little doubt but that the Mazda lamp has established electric train-lighting, and the increased economy coupled with its satisfaction as a lighting unit has begotten the endorsement of electric train-lighting engineers.

Regular Mazda Lamps: For standard multiple lighting of station train sheds, roundhouses, yards, etc., the Mazda lamp has also established itself as a successful and

economical unit.

Base, Ins.l

	Length Over All Micdium Screw Park Ang		21/8	35%	3,4%	4 N	4.2 2.2	7,50 7,4%
	q.	Diameter Inches 14	77	\$ 2	33,	25.55	23,8	23.8	25%
VOLTS)	Bulb	Style 13	G-12 G-12	G-18½-B	9-30-C	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・			S-19 C S-21·E
50-65	Э.	Standa Z Packag Quanti	88	33 8	8 2	8 8	8	001	88
COMPENSATOR (25-34 AND		Average Hours I IsloI	88	558	<u> </u>	8 8	90	1000	900
(25-34	331 S	Z Luman S per Wa	4.32	88.07 0.07 0.07	8.07	8.07	8,07	8.07	8.07
TOR		Total Lumen	86.4 64.8	8 <u>8</u> 9	33.28	£ 61	139	199	397
EN\$A	ri- Iot	% Spho to table to specific specifi specifi specific specific specific specific specific specific specific specific specific spec	22. 23.	233	9.6 9.0 9.0	73:0 73:0	0.66	0.62	25.0 0.00
CÓMP	.10I	Mesn I Zandle Power	8.1 6.1	8.21.8 0.00 0.00	88	12.0	16.0	20.0	32.0 40.0
AND	1	lautoA c strs W	83.	9.8 14.8 19.7	2.2 6.2.	9.8 8. 8.	19.7	24.6	39.4
LIGHTING	Efficiency	X.P. C.P. S.	2;2 34 54	25.52	22.2	1.23	1.23	1.23	1.23
LIGH	Effic	Rating 4	Single	: ::	::	: ::	·	:	::
TRAIN		w Rated Watts	873	5758	ผห	3 X	8	23	88
-	Voltage Class		25 25 25 25 25 25 25 25 25 25 25 25 25 2	2	8 3 8		2	88 5 83	
•	- Class		GEM		,,,	VZV	N.,		

Round buib Mazda train lighting lamps are regularly made with standard Medium Screw base but can be supplied in a longer base, which will allow their use in sockets with long hasks. These lamps are regularly fitted with the Medium Screw base, except Gem, which is supplied with the Candelabra Screw base.

MAZDA—STRAIGHT SIDE TYPE (100-130 VOLTS)

.ч. Т.	
	tual atts
	Ŋ
	15.0
	14
	8
	50
	ដូ
	7.5
	33
	8
	ઝક
	88
	೫೬
	6
	\$ 5
	3
	¥§
	35

Specify clearly when lamps are ordered frosted, whether they are to be entitely irosted or powl irosted. To intusting a consistent of sheet. The Lamps Works will always ship high efficiency lamps where the Sales members specify only one voltage on their orders. Unskirted medium screw base; if skirted base, fly long. The 40 wait skirted base lamp when ordered in quantities of 100 can be shipped in two packages of 30 each.

; 250 Watts G-64-A 500 Watta Fig. 4. "MAZDA" REGULAR LAMPS—100-130 VOLT\$ One-quarter actual size

0 VOLTS)	
>	ı
8	۱
5	
LAR AND CONCENTRATED FILAMENT TYPES	
¥	I
Ę	ŀ
N N	ĺ
₹	ŀ
L D	ł
ΞĽ	l
NTRA	١
Ш	I
Š	ı
ŏ	ı
Z	I
ď	۱
Ž	l
TUBU	l
F	l
ULE	l
Ď	١
Z	ł
ğ	I
ļ	۱
0	ı

VOLTS)	Э	Length Over All Screw Bas	14	8 3%	~~~		\$ 514	<u>*</u>	} 10¾°	1134	**************************************	51/4
(100-130 V	1916	Bulb, Stylo	13	G-18½-B	G-25-C	G-25-C	G-30-C	G-35-A	G-56-A	G-64-A	T-10-B	9.38 3.48
TYPES (100	,	Standard Package Quantity	21	01 ~~~	ନ୍ଧ ~~~	SS .~~~	\$ ~~~	.~~ **	* ~~	∞	39.1be	*
	:sj	Average Life Life	=	888	<u> </u>	288	585 585	888	9 <u>65</u> 5	988	888	230
FILAMENT		Lumens Per Watt	2	7.2.2	7883	88.5 78.8	8.8.7 7.0.5	8.45 8.45	10. 9.78 8.78	.0.18 9.78 8.85 4.78		9.76
1		Total anamu.I		21 21 21 21 21 22 23	255 255 255	333	7844	283	\$%\ \$\$\	8.5.4 8.6.8	25.2	926
CONCENTRATED	al tal tal	siradq& % nosiroH lo oq əlbüsƏ	-	₹ 2 2	~~~ ~~~	28	2,2	<u>۾</u> ~~		8		95.5
1	19W	Mean Hor. Candle Po	7	11 00 5 50 50 50 50 50 50 50 50 50 50 50 50 50 5	2282	255 2400 2400 2400	12.8.4 17.4	388 1686	3 666	500.0 467.5 57.5	282 4.03	81.3
TUBULAR AND		Actual 811sW	9	15.0 14.6	1848 1067	€%¢	887 6 6 6 6	62.23 0.23	\$86 00.8	0.25 0.25 0.25 0.25 0.25	72.2 0.6.0	100.0
	ncy	M. P. M.	S	06.1.3 08.1.3 08.1.3	1111	7227	11.15	11.11	828	882	22.1	1.23
MAZDA-ROUND BULB,	Efficiency	Rating	4	High	High	High Medium	High Medfum	High	High	High Medium	High Medium Low	-Single
AZDA-		Rated Watts	7	15	8	***************************************	8	81	400	\$ 00 <u>\$</u>	, S	4100
₹	Bas	Voltage C	` T= ₹				ÓE1	t ot 00	e	· · ·	ī e	

** Skirted Mogul Screw Base. - Orders should specify whether "bowl" frosted, "full" frosted, or plain lamps are desired. † Concentrated Filament. * Can be supplied in G-184; B bulb but it is not recommended.

Fig. 5. 200-260 VOLT CLASS One-quarter actual size

Fig. 6. Distribution Curves 10-15-25-50 Watt "Mazda" Train Lighting Lamps (25-34 Volt Class)

MAZDA-STRAIGHT SIDE (200-260 VOLTS)

		1 4
π	Length Over Al Screw Base	\$\$\$\$\$\$\$
nd 19:	Bulb, Style a Diamet	S-19-F-2% S-24/7-B-34 S-30-A-3% S-35-A-4% S-35-A-4%
9	Standar Packag Quanti	000 000 000 000 000 000 000 000 000 00
	Average Total I	9999999
111	Lumens Per Wa	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
s	Total Lumen	173 203 1137 1137 1137
ı	% Sphe al of H contal Candle Power	22222
qje J•	Mean Horizon tal Can Power	0.5.8.4.2.0. 0.5.8.4.2.0.
Efficiency	C.P. W.E.	45.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.
Effic	anitaA ∾	Single
pue	Rated Metusl Watts	25.55
,	Voltage Class	85520

** Regularly supplied with Unskirted Medium Screw Base.
Spetify clearly, when lamps are ordered frosted, whether they are to be entirely frosted or bowl frosted.
Only frosted "Mazda" lamps should be used when the lamp is to be so used that it can be seen.
The watage of individual lamps of any one shipment may vary within these limits. The c. p. will also vary, but the w. p. c. will be constant within the usual limits of commercial error.

_	
- S	ļ
5	
ō	
>	
9	l
8	ı
ġ	
8	ļ
_	į
q	į
5	Ì
Ø	
۵	I
ž	
5	
õ	i
Ť	ļ
¥	ĺ
Õ	
Ŋ	
Ì	
Ξ.	
7	٠

		Length Over A Screw Base	12	****	201	11%
	nd 19:	Bulb, Style a Diamet	Ħ	**G-25-C-33/6"	9-35-0-38-0-9-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	G-64-A-8"
	p. Q.	Standaı Packag Quantif	2	ଜନ	**	œ
,	Average Hours Total Life		6	9001	38	1000
	s ttt	Lumen Per Wa	œ	7.09 7.58	888	8.28
	Total Lumens		_	303	\$ 50	4140
	% Spheric- al of Hor. Candle Power		9	ድድ፤	28	81
		Mean Hor. Candle Power	ĸ	30.05 0.55	8.75 8.4.8	407.0
	DCT.	W.P.	•	3.5		1.23
,	Efficien	Rating	100	Single	: •3.	:
	put	Rafed : Actual State	8	% 3:	85	•500
		Voltage Class		500	% 20	<i>-</i>

* Skirited Mogul Screw Base.

** Regularly supplied with Unskirted Medium Screw Base.

** Regularly supplied with Unskirted Medium Screw Base.

Specify clearly, wholl amps are ordered frosted, whether they are to be entirely frosted or bowl frosted.

Percent Amperes, Ohms, Volts and Watts. Characteristic Curves for Mazda Drawn Wire Lamps

Fig. 7

The above figure may be of service in locating trouble since an idea may be obtained from it as to just what extent the voltage variation affects the other functions.

Fig. 8. Bare Lamp Distribution Curves 10-15-25-50 Watt "Mazda"
Train Lighting Lamps (57-65 Volt Class)

Fig. 9. Bare Lamp Distribution Curves 25-40-60 Watt...
"Mazda" Lamps (100-180 Volt Class)

Fig. 10. Bare Lamp Distribution Curves 100-150-250 Watt . "Mazda" Lamps (100-130 Volt Class)

The distribution curves given for the different wattage lamps of the 100-130 voit class are representative of that obtained from the 200-260 voit class which consequently have not been shown.

Fig. 11. Bare Lamp Distribution Curves 250-500 Watt "Manda" Lamps (100-120 Volt Class)

The above illustrations show the distribution curves of the various lamps mentioned. These are known as bare lamp distribution curves which are modified greatly by the use of proper reflectors.

SECTION VII

LIGHT AND ILLUMINATION

INCLUDING LIGHT, PHOTOMETRY, ILLUMINATION AND APPURTENANT DATA

HV HOLLO A

duration and all the second

MEASUREMENT OF LIGHT

Rapid vibrations of the ether striking the retina of the eye produce a sensation commonly known as light. The intensity of light is measured in terms of candle-power on an instrument termed a photometer. In principle this instrument is based on the law of inverse squares, viz., that the intensity of light varies inversely with the square of the distance from the light source. Thus in Fig. 1, a surface C, twice the distance from A that B is, will be il-luminated by the same number of light rays, but as the area is four times as great, Fig. the illumination will be only one-fourth that on B. Likewise, D, which is three times the distance and nine times the area of A, will have only one-ninth the illumination.

Fig. 1. Law of Inverse Squares Graphically

The Photometer: Photometry is a process of comparison. A standard light source whose candle-power has previously been determined is balanced against the light source of unknown candle-power by comparing the relative intensities produced on a sensitized screen. Generally the light sources are stationary 60" or 100" apart (thus designating the size of the photometer) and the screen movable. When a balance is secured the candle-powers of the two sources are in direct proportion to the squares of their respective distances from the screen. Accurate means of determining required voltage and current on standard and tested lamps is as necessary a requirement as a sensitive screen. This screen consists of a disk of white opaque material of high

Fig. 2. Wiring Diagram of Modern Movable Screen Photometer

reflecting and diffusing power. Such screens are conveniently prepared by compressing into a circular hole in a metal plate either magnesium oxide, plaster paris or barium sulphate. An accumulation of dirt generally reduces the reflecting power of such screens and may render the two sides so dissimilar that a considerable change in the bal-

ance point is caused by a reversal of the screen.

In the plan view of Fig. 3, light from the lamps compared falls upon the sides of the diffusing screens S₁ and S₂. M₁ and M₂ are mirrors reflecting this light to prisms P₁ and P₂.

Fig. 3. Plan of Lummer Brodhun Sight Box

These prisms have their hypotenusal faces in contact in the central plane of the screen. Part of the face of P₁ is ground away leaving a circular area in contact with P₂ of the light which enters P₁ from M₁ that which falls upon the area of contact passes through into the eyepiece and the remainder is turned aside by total reflection. P₁ reflects to the eyepiece the light which falls upon its outer portion, but that which meets the area of contact passes through and is absorbed in the blackened walls of the box. In the field of view the inner ellipse is thus illuminated by light from S₁ and the outer ellipse by light from S₂. If the face of P₁ is ground with care, the dividing line between the two ellipses may be made very sharp. With the field of view uniformly illuminated the boundary line disappears if the lights compared are of the same tint. If not, the balance must be obtained by the appearance of equal brightness.

uniformly liuminated the boundary line disappears it the lights compared are of the same tint. If not, the balance must be obtained by the appearance of equal brightness. The intensity in different directions can be measured by placing the lamp under test in different angular positions on the photometer. The distribution of light in a vertical plane

Fig. 4. Vertical Distribution 25-Watt MAZDA Lamp

can be graphically represented by plotting the results as shown in Fig. 4, which shows the distribution in a vertical plane about a bare 25-watt MAZDA lamp, hanging in a vertical position. The distance from the distribution curve to the center is directly proportional to the intensity of light in that direction, and this is indicated by the equally spaced concentric circles drawn on the figure.

When globes, shades or reflectors are used, as is generally the case, the distribution of light is materially modified, and, therefore, in order to make proper calculations, the photometric curves of the lamp with its reflector must be obtained. Inasmuch as nearly one-half of the light from a bare lamp is thrown above the horizontal and largely lost, reflectors of various designs are used to direct the light where it is

Inasmuch as nearly one-half of the light from a bare lamp is thrown above the horizontal and largely lost, reflectors of various designs are used to direct the light where it is desired. Some of the vertical distribution curves, not only of the lamps themselves but also with reflectors of good design, are shown in this book.

ILLUMINATION

The term illumination may be defined as denoting the density of light flux falling upon a surface. The unit em-

Fig. 5. Illumination is Likewise Measured by Comparison

ployed in America is the foot-candle denoting an illumination of one lumen per
square foot, or further defined, represents the illumination received by a surface at every point one foot
distant from a light source
of one candle-power. Thus
at point B in Fig. 5 an illumination of 1 ft. candle
is received on the plane C,
1 ft. from the 1 candlepower, source A.

Two standard portable photometers, known as the Weber and the Sharp-Millar, are excellent for making such measurements.

The Weber Photometer: Structurally considered, the Weber photometer consists of two cylindrical tubes of blackened interior as shown in Fig. 6, one of which, T, is firmly clamped to an upright standard and the other, T₂, is

Fig. 6. Plan View of Weber Photometer

to P2.

attached to one end of T, by a friction sleeve which permits T₃ to be turned to any desired angle in a vertical plane. The instrument as a whole may be turned to any desired angle about its standard as an axis, thus permitting the pointing of T₂ at any angle. Optically considered, the Weber instrument is a modification of the Lummer Brodhum photometer, the essential change being the substitution for the opaque screen of two glass diffusing plates, P₁ and P₂, placed between the prisms and the lamps to be compared. In a suitable chamber at the end of the lamp tube is mounted a comparison lamp L₁, preferably a miniature Mazda (Tungsuitable chamber at the end of the lamp une is mounted a comparison lamp L₁, preferably a miniature Mazda (Tungsten) lamp operated by a storage battery. This lamp should be well aged before use to insure its constancy. The diffusing plate P₁ is movable along the axis of the tube by means of an external milled head carrying an index

to indicate its position. At P₂ any one of more of a number of absorbing glass plates of different known transmission coefficients may be used interchangeably when needed in order to measure a high candle-power source.

Light from the test lamp L₂ falls upon the glass screen P₂ and light from the comparison lamps L₁ falls upon glass

screen P1 with a certain definite proportion of the light being

screen P₁ with a certain definite proportion of transmitted in each case. By carefully adjusting the position of P₁ a balance between the two screens can be obtained when observed through the sight tube S. A device is provided which can be attached at P₁ and which enables the observer to obtain the horizontal illumination with the tube T₂ in a horizontal position. This device is shown in Fig. 7, where R is a diffusing plate in a horizontal position and M is a mirror directing the light Fig. 7.

for Illumination

*The Sharp-Millar Photometer: This instrument is designed to apply the same principles upon which the Weber

Sectional View Sharp-Millar Photometer

photometer is constructed; however, a somewhat wider range of measurements is obtained. A compartment at one end of a box of blackened interior contains a Lummer Brodhun

^{*}Note.--"Illumination and Photometry," Wickenden.

prism set, which may be observed through an eyeplece E on the side of the box. The adjacent end of the box carries a collar upon which an elbow T may be turned so as to expose its end at any desired inclination. Upon this end may be fitted a diffusing cap of special milk glass or an open diaphragm. At the elbow of the tube is a circular reversible diaphragm. At the efbow of the tube is a circular reversible plate, one side of which is a mirror for use with the diffusing test plate in the measurement of illumination. The other side is a white matte surface for use in connection with the diaphragm above referred to for measurements of candle-power. The end of the prism compartment opposite the elbow tube contains a milk glass window illuminated by the comparison lamp L₁ at the further end of the box. This lamp is mounted upon a carriage which may be drawn along the interior of the box by turning the knurledhead H. Between the lamp and the window is a series of screens to cut off from the window all but the direct beams of the lamp. The photometric balance is secured by drawing the comparison lamp along the interior of the box. When a balance is obtained the reading is taken by exposing a

a balance is obtained the reading is taken by exposing a translucent scale on the side of the box by raising a shutter. This scale is made direct reading for comparing lamps

of definite candle-power.

For measurements of illumination the elbow tube is fitted with its diffusing cap and its mirrored elbow plate. If the illumination is moderate in intensity it may be read direct from the scale. If intense illumination is measured a smoked-glass absorbing plate is required between the elbow tube and the prisms to equalize the two fields and bring the balance point within the limits of the scale. The scale readings must then be multiplied by the reciprocal of the transmission coefficient of this plate. For measurements of transmission to the absorbing plate is required between weak illumination the absorbing plate is required between the milk-glass window and the prism, and the readings of the milk-glass window and the prism, and the readings of the scale are multiplied by the transmission coefficient of this plate. The instrument is provided with two such plates, which are so mounted that either may be turned by a milled head to a position in front of the elbow tube or before the window, or may be turned entirely out of the path of the beams. Convenient values for the transmission coefficients of these plates are 0.01 and 0.10, respectively, giving the instrument a range of from 0.004 foot-candles to 2000 footcandles.

GENERAL CONDITIONS

Before going into the calculation and method of illumination, a discussion of the general conditions surrounding good illumination will be given. In order to see clearly and easily without eye strain the following conditions must pre-

- There should be sufficient illumination, i. e., enough (1) There should be sufficient illumination, i. e., enough light must be reflected from the object to the eye so that it can be clearly and easily seen. For example, much more light must be thrown on a dark object than on a light one in order to see it clearly, since less light is reflected from a dark object than from a light one. Too little light should be avoided, as the retina is strained in its effort to see clearly. This is a matter of common knowledge and example of the common control of the common control of the common control of the common knowledge and example of the common control of the control o perience.
- (2) Too much light should likewise be avoided. The condition produced by this is somewhat the same as that produced by too little light. To shield the excess light from the eye the iris naturally closes and with too intense

a light it closes to such an extent that the image on the retina is dim. If this condition continues for some time the iris weakens, thereby allowing the strong light to enter the eye. The strong light dims the image on the retina and at the same time produces a very harmful strain.

(3) Bright lights in the field of vision should be avoided as a picture of the light itself will be found on the retina and other objects will in comparison seem dim. This is the reason one is not able to see past a bright light and why a bright light is so dazzling in its effect. Therefore it is required that the intrinsic brilliancy or the candle-power per square inch of surface be as low as possible. The eye ordinarily can stand without fatigue a brilliancy of from

TABLE No. 1

Intrinsic Brilliancy of Light Sources

Candle-power

	Per sq. in.
36	
Moore tube	0.3- 1.75
Frosted incandescent	2- 5
Candle	3- 4
Gas flame	
Oil lamp	3- 8
Cooper Hewitt lamp	
Welsbach gas mantle	20- 50
Acetylone	
Acetylene	75-100
Enclosed A. C.	75-200
Enclosed D. C.	100-500
Incandescent lamps—	•
Carbon 3.5 watts per candle	875
Carbon 3.1 watts per candle	
Metallized carbon 2.5 watts per candle	
Tantalum 2.0 watts per candle	
MAZDA 1.25 watts per candle	
MAZDA 1.15 watts per candle	
Nernst 1.5 watts per candle	2200
Sun on horizon	2000
Flaming arc	
Open arc lamp10,	
Open arc crater	
Sun 30° above horizon	
	200,000
Sun at zenith	600,000

four to six candle-power per square inch of surface. Table No. 1 shows the intrinsic brilliancy of several sources of light from which it will be noted that the incandescent lamp filament has an intrinsic brilliancy of from 300 to 1000 candle-power per square inch. For this reason frosted bulbs are often used, as the whole surface of the bulb is made the light emitting area instead of the filament area.

- (4) Flickering sources of light are hard on the eye for the reason that the iris and retina of the eye are unable to adjust themselves with sufficient rapidity to follow the varying light intensity. Therefore, lamps should not be placed on circuits where the voltage fluctuates, as the candle-power of the lamps will vary with the rise or fall in voltage impressed upon the lamps.
- (5) Lamps should be placed so that the light falling on a glazed or polished surface is not regularly reflected to the eye. This direct reflection is commonly known as glare, which besides being very annoying renders almost futile the effort to see clearly.

- (6) Sources of light which cast streaks or striations are bad because the source frequently vibrates and the eye is unable to adjust itself to the different intensities produced. Thus in the case of lights covered by reflectors with a polished white interior surface frosted lamps should invariably be used.
- (7) A sharp contrast between a light surface and dark surroundings is harmful, such as a brilliantly lighted desk with the rest of the room in darkness. A slight contrast is restful while a sharp contrast should be avoided.

Quality of Light: The "quality of light" of the MAZDA lamp is a subject upon which there has been considerable discussion. Results show that color comparisons can be made with the light of MAZDA lamps which compare very favorably with actual daylight. In comparing the effects of the color of various artificial sources of light-and the

TABLE No. 2

Illuminant	Color
Acetylene	Nearly white
Arc Light (enclosed)	White
Carbon Incandescent (below voltage	Orange yellow
Carbon Incandegent (normal voltage	(a) Vollowich white
Gas Light (open flame)	Yellowish white to pale orange
Gem Metallized Filament Lamps	Nearly white, slightly
Kerosene Lamp	yellowish Orange, slightly yel- lowish
Nernst Lamp	Nearly white
Mantle Burner	Greenish white Bluish white
Sun (high in sky)	White
Sun (near horizon)	Nearly white
"MAZDA"	Nearly white

change in the appearance of colored objects when illuminated by them, it has been conclusively shown that if there is a proper proportion of the red, green and blue fundamental colors in any given light source, all colors with their various shades of color can be accurately distinguished. The MAZDA lamp is a complete success from this standpoint. The proportions of the fundamental colors (red, green and blue) are such that colors and shades of colors appear in their proper relationship with each other.

The MAZDA lamp is now developed to cover all gent eral and special lighting service. It has been generally adopted and recommended from a practical and economical standpoint where a white light is desired for displaying colors in their true value.

TABLE No. 3

Color Values in Comparison With "MAZDA" Light

	1.	\mathbf{Red}	Green	Blue
MAZDA	 	 100	100	100
Tantalum .	 	 . 100	96.8	73.6
Gem	 	 : 100	92.6	72.8
Carbon	 	 . 100	90.6	70.2

TABLE 4

Effect of Colored Lights on Various Colors from Dr. Bell's "Art of lilumination"

Color of Light Falling Upon Fabrics							
Original Color of Fabric	Red	Orange	Yellow	Green	Blue	Violet	
Black	Purplish- Black	Deep Maroon	Yellow- Olive	Greenish- Brown	Blue Black	Faint Violet Black	
White	Red	Orange	Light Yellow	Green	Blue	Violet	
Red	Intense Red	Scarlet	Orange	Brown _.	Violet	Red-Violet Purple	
Orange	Orange Red	Intense Orange	Yellow- Orange	Faint Yellow, slightly Greenish	Brown slightly Violet	Light Red	
Yellow	Orange	Yellow- Orange	Orange- Yellow	Yellowish- Green	Green	Brown tinged with Faint Red	
Light Green	Reddish Gray	Yellow- Green	Greenish Yellow	Intenser Green	Biue- Green	Light Purple	
Deep Green	Reddish Black	Rusty Green	Yellowish Green	Intenser Green	Greenish Blue		
Light Blue	Violet	Orange- Gray	Yellowish- Green	Green Blue	Vivid Blue		
Deep Blue		Gray slightly on Orange	Green- Slate	Blue- Green	Intenser Blue	Bright Blue- Violet	
Indigo Blue		Orange- Maroon	Orange- Yellow (very dull)	Duil Green	Dark Blue- Indigo	Deep Blue- Violet	
Violet	Purple	Red Maroon	Yellow- Maroon	Bluish Green- Brown	Deep Bluish Violet	Deep Violet	

Reflection: The effect of the color of side walls and celling is one which must be considered in designing thumination. There is always some reflected illumination in a room and every object assumes that color due to the combination of the colors, the rays of which it reflects. An object appears light when it reflects those rays which make up white light and dark when it absorbs them: Thus light walls will give more useful reflected illumination than dark walls. The following table gives approximate coefficients of reflection from wall papers, i. e., the amount of reflected light expressed as a proportion of the total light received by the surface, the figures being based on the use of incandescent lamps.

TABLE No. 5

Kind	Color	Coefficient of Reflection, K	1 1-K
Plain ceiling-	Faint greenish		2.13
I latit celling			1.96
	Light yellow		
	Faint pinkish	43	1.75
	Pale bluish white		1.45
	Light gray green	23	1.30
Crepe—	Medium green	19	1.23
	Medium red	08	1.09
	Deep green		1.06
Cartridge—	Medium light buff	44	1.79
	Light blue	20	1.25
	Pale pink		1.23
- 1 M - 1 - 1 - 1 - 1 - 1	Light green		1.22
Striped-	Daniel green	1 2 2	2.32
	Deep cream silvery	57	
("Two-toned")	Light strawberry pink	43	1.75
	Light green	26	1.35
	Medium red	., .08	1.09
Miscellaneous-	Light gray	38	1.61
* ***	Light green and gold		1.39
. '	(minute figuring, much go		

The following table is likewise included as it contains some very interesting data:

TABLE No. :6 Reflection Coefficients

White blotting paper White cartridge paper Ordinary foolscap	82 80
Ordinary newspaper	50 to 70
Chrome yellow paper	62
Orange paper	50
Plain hoards (clean)	45
Yellow wall paper	40
renow painted wan (clean)	2 U
Light pink paper	36
Tracing cloth	85
Blue paper	20
Plain boards (dirty)	20
Yellow painted wall (dirty)	20
Emerald green	18
Emerald green Park brown paper Vermilion paper	18
Vermilion paper	12
Blue green paper	
Cobalt blue paper	12
French ultramarine blue paper	3.5
Black cloth	1.2
Black paper	0.5 0.4
Deep chocolate paper Black velvet	0.4
DIACK TOTAL	U. 1

-For Practical Problems the increase in illumination over that calculated from the distribution curve or illumination table for the unit considered is about as indicated in Table No. 6. These data are deduced from tests reported by Messrs. Lansingh and Rolph before the Illuminating Engineering Society.

This table applies only to rooms of medium size and average height of ceilings. The total amount of illumination or age height of ceilings. The total amount of illumination or effective illumination in rooms of various colored walls is obtained by multiplying the illumination given directly by the lamp by the factor given in the last column, due to the fact that the bulbs of the lamps become dirty, thus lowering the candle-power while the walls become dirty, thus decreasing the amount of light reflected.

The amount of light absorbed by totally enclosing globes is an interesting matter as shown by the following table:

TABLE No. 7 Absorption Coefficients

METHODS OF ILLUMINATION

The proper lighting of a room depends on the style, character and desired effect. Common methods of lighting are by ceiling lights, stud or frieze lights, chandeller or wall bracket lights, indirect lights including cove and indirect reflectors.

reflectors.

Ceiling lighting requires lamps of high candle-power near the ceiling, with globes or reflectors to throw the light downward. In some cases a greater number of lamps of low candle-power are used in reflectors or in enclosing bowls. A reflector should be used inside the bowl.

A reflector should be used inside the bowl. Stud or frieze lighting requires that the sockets into which the lamps are screwed shall be imbedded in the ceiling or frieze. The lamps are seldom shaded and should be frosted if they are in the field of vision. An objection to this form of lighting is that it requires a large number of outlets and that unless some form of reflector is used it is inefficient and expensive to operate.

that unless some form of reflector is used it is inemicient and expensive to operate.

Chandeliers and wall brackets are often used for their decorative value. Various shapes and sizes of lamps are used on chandeliers and wall brackets so as to carry out and contribute to a desired decorative design. Except in cases where concentrating reflectors are required the lamps should not be placed at an angle, but should be hung vertically and either frosted or else covered with diffusing globes or shades, giving a wide distribution of light. Over

dining room tables, reading tables, etc., the lights should be placed vertically and equipped with concentrating reflectors.

Table or desk lights are employed for local illumination for reading, writing, or for attractive decorative effects in residence lighting. The lamps are usually clear, of medium candle-power and covered by some useful artistic shade.

Cove lighting requires lamps of medium candle-power concealed in troughs. The light is thus thrown directly on the ceiling and then diffused throughout the room. Cove lighting is not economical, since more than 50% of the light is lost by absorption.

Indirect lighting commonly known employs silvered reflectors inverted to throw the light toward the ceiling from which it is diffused and deflected. The scheme is likewise inefficient, though rendering effective a somewhat greater percentage of light than the cove system.

Basis of Illumination Calculation: As before given, the amount of light received by an object, per unit area, is measured in terms of foot-candles. This intensity varies inversely as the square of the distance of the light source from the plane when the ray strikes the plane normally as AB on CD in Fig. 9. If the surface is not normal to the rays as above the value of the illumination obtained as above must be multiplied by a correction factor dependent upon the snyle at

above must be multiplied by a correction factor dependent upon the angle at which the ray is incident. A beam of light coming in the direction AB falls upon the plane CD illuminating it to an intensity of 1 foot-candle. Thus the illumination on DE, which intercepts or candle as the light is spread over a greater area. The ratio of the area would be as CD to DE, which represents the cosine of angle CDE. Thus the illumination effective on the plane at the given point will be

$$I = \frac{CP}{\frac{1}{A}R} \times \cos\theta$$

When θ is the angle between the direction of the ray and a perpendicular AF to the plane

$$\begin{split} & AF = AB \, \cos \theta \\ & AB = \frac{AF}{\cos \theta} \text{ and } AB = \frac{2}{AB} \left(\frac{AF}{\cos \theta}\right)^2 \\ & I = \frac{CP}{AB^2} \times \cos \theta \quad \text{or} \quad \frac{CP}{AF^2} \times \cos^3 \theta \end{split}$$

AF is the height of lamp above plane and if designated by H the general formula is obtained for any point.

$$I = \frac{CP}{H^2} \times \cos^3\theta = CP \times \frac{\cos^3\theta}{H^2}$$

166 NATIONAL ELECTRIC LAMP ASSOCIATION

As this computation for each point is extremely tedious the Table 8 has been computed for a one candle-power source in all directions. The constant computed in each rectangle representing

 $\frac{\cos^3\theta}{\mathrm{H}^2}$

for each foot out and down to the limit of 54 and 48 ft.

The basis of calculation on this method is the distribution curve of the lighting unit, which includes the reflector or globe. To find the illumination at any point the constant is found in the rectangle with the angle of the light ray to the chosen point. If the value of the candle-power of the source at this angle is multiplied by the constant the value of illumination is obtained.

of course of all in the many assembles and

The illumination at a point 6 ft. out and 11 ft. down from a light source of 100-watts (Mazda) equipped with a metal reflector is desired. On the table accompanying trace out to 6 ft., then down to 11 ft., where the constant .06590 is found with the angle 28° 37′ indicating the angle of the light ray to the chosen point. The distribution curve page 306 represents the light unit given; the candle-power along the angle 29° is found, as 155. Multiplying this candle-power, 155, by the constant .00559 results in an illumination of .866 foot-candle at the chosen point.

Limits 18 Feet Out 28 Feet Down

FEET.	0		2	10	٧	10	9		00	0	9	1	7	2			0	100	
4	003500	W.L.	36,34	34.72	031/00	51.7.0	94.95	60700	43.26	. 00 Wife	Charge	802.470	31.00	20/000	34.5	75.4	31.16	75.70	77*30
9	O WO BOO		37.48	30.78		Who widing	40.44	.rv*16	12425	60'57	43.460	\$6.24.00 \$63.830	67555	03/1/00			71.29	75.27	Nº 25
9	027750	9.53.0	72.81	36.94:	10.3	3946	45.00	48.40	29.50	30.474		4, 2 1 3' no and a	25,4400				66.17		
Þ	00000	608610	15.67	211.11	39.45	31,56	40.37	MC*0!	40.49°	00-170	0038/00	27.31	59.43'	Crass So		64.76	30/3/0	600130	ence lo
0	0636.00	015370	014170		16 34'	31.0	See See	#1") 8" BOSWOO	40.00	W# LE		33079	50.00	Spirio		00/4/0 00/6/0	65,16	34.43	20,000
ø	944350	6,10	12.33	7144/	-	19.3.	33-41.	37.52	4/* M	45.00	003700	50 4x	50.00	13. F. 53. F.	57.50	27.5	60,38	63.6	63,26
10	0.00	20000	.blatt	A. 42.		36.34	30 V VO	15.00	38.40	41. var	41.00	#7"43'	10.16.30	P. 12. C.	500.00	977.00		39"31	Cost.
14.	00000	3.4.60		-		14".4" 34"37"	28*37			39.17	42.16	016100	45'0' 47'30'	- 44°44.	11°00	27,00	75.30	17.60	Ser. 30
12	000000	7700	40.00	·40.		20 (440	36.34	30*15	January OO		39.45	41.34	46.00	4747		30.1690		50,200	061100
13	010,00		26.75		1300	Tant		Selection Doubles	3/2000	Jews.	37.34	40*14	43.44	43,44, 47,01		099,000	10'W.	35,00	24,100
64	900		14.8 15.40 00.000 00.000	71.6.	1000	19439	2572	26.34	39*45	31"44"	35.41	18.4.60	18*4 40*97'	43078	10.54	DO/430		70°31°	001180
5)	000		7405		June Co	34.60	. *** a	34.46	SP 41	30.78	Sort Satte		34"16" 34"46"					46'34'	10,01
910	50	3435	112	10.01	14.15.	74" 17" 17" 17" 17" 17" 17" 17" 17" 17" 17	30*33	W. 4.6	36.34	29723	19725 32°C"		.CAN						#1"34
- 42	20	3,22	37.5	10,00	1350	1624	40.00	23425	17.75	27474	27404 - ME28"		37.76	47.60					
10	0,0	3.11	6.70	Page A	12.35	15.27		74.17	DATE OF	36.34	3973		Mary Mary				-	W. P. 13.	
19	0,0			1.10		7	14.0	20,14	0.00	15.32	300	30*	4.0				-	brito	72,50
20	0,0	16.2		1.00	Argan	A. A.		11.0			35,70								40.00
1.5	0,0	7.					The Co.							77.76		-			60.00
22	of a	E'M.	7			80.17	21.24	17.39		1475				-		-	15.78		41,51
2.3	000	F24		No.	No to		14"87"	.44.00	.00,100					-	_	_	_		15.1
2.4	000	17.73		74.9	4797.00	30.70	14.8.	No. 4	00,450	-			100			-	-		36.50
2.5	0.0	41.2	7.5	-	18 11 11 14 14	31.00 13.50	137.20	,de_70	170.300	30.01	- E/4 W.F.		-	1				44.70	10.00

Table No. 8—Continued Limits 18 Feet Out 48 Feet Down

FEET	0	-	2	6	4	0	9	7	00	a	10	11	12	13		4	14 15	-	15
26	0.0	2014/00	20100	004100	A	104100	18'00	001831	47.50	18.00	80/100	35.44	W.W.	35.35		26.30	24"30 14"74	-	. 20000
27	do.	054100	W. 260	20 10	827	W. Je	12,34	Carried Con	16.40	001170	201190	23.11	2577	. SA" 14	40	37.55	29.4 29.4'	-	74.65
28	96 1374	201230	372,00	001103	2000	1007	124.5	T. Sec. Co.	100		W. P.	34.74	34.15	14.00		33	-	11.000	7000 71.87
29	000	95.00	P.C.	21.20	10.00	6.49	1641	15'341	"Wall				91,10	74.6			-	27.77	27.41 22.72
30	30	144	P. 10	5043		64.00	10.00	2000	. Com	16.42	.72.4	8,00	37.70	32,25		1	-	36,37	7636 262
34	90,000	-	100	250000		40,00	10.00	15.03	18.00	11.31	17.00	18.45	21.000	\$2,00	. N. M.		15.00	-	27.4
32	0,0	26.83	9.55		T. P.	51.5	10,33	000000	200		17.22	****	10,33	62.7	17,24		15.7	-	66.97
n	000	-	J'EL		_	11.5	1000	W. 16			14", 000 fes	000784	10,00			-	E4" 27	_	85.00
34	000	F41	J. 12	P.S.	14.7	f.11.	10,00	11,31	13.14	W. W.	/423' OGB764		19.17			- 4	13"45	-	15,43,
35	00	N.J.	-	26.00	600 600	6000	F 44	H-11	17.000	14,77			77.20				26/3	-	100000
36	0,0	1	11.7	200	£ 20.	70.00	9.24	10.00	2000	2001		17.0	74.11				23.37	_	2000
37	00	-	36	-	0.00		47.4	10000	.8.78				15.21	19.50			.6,78	-	3250
38	0,0	-	1.8	_	0.3		F.14	10,000	11,11				17.93	.6.21	7.00	30	\$1.93		22.00
30	200		27.50	170	17.000	7000	F.45	000 (3)	W.4000			15.424	1000	. 41.3/		400	24.5000		22.19
40	000	44.	27.2	"The	549	00000	F.34	N.4	64,000	18.41	10000	000560	16.43	16.000		000	10,38	13. 21"48"	37,46,
4	000	-	TATE	1100	2000	6.5	F.20°	487.000	17.000	-	1000	11.11	16.91	17.36	-	200	30,00	-	3/*30
42	0	-		ord Ch.)	38,5	Course	0000170	9"24"	.000627	_	11,000	14.41	15.00	17000		19.99	19.99		20000
43	000	P.40	2.46	0.00	\$1.50	6.30	756	2000	T'5000	TO SO	5.80	14.80 COO	78,57	W. 10	A		18,41	77.00 JA	77.00
44	000	31.10	Z M	157	27.000	62.000	70.000	Sec. 27.000	10.18 000man	_		/4°5'	3/000	14.3V	-	_	44.2/	-	10.00
40	00	7.16	26.15	F.40	-	G. Bo	78.40	\$2,000	10.00			13.44	M. M.	0000038	-	100		-	14.46
4	90		N'ES	3 day	_	C.1.	7 4	F19.	. C. d	20000		1,527	16.000	11.07		2 80	******		19*11
47	90	-	37.80	-	A PAR	7,000	Server.	65.50	95 a 3 a		1,871	13811	140 A/A	-	14.77	1.00	17.43	-	18.000
48	0,0	_	17.5	10.00	76.0	18.8	77		22.00	10.01	7	12.27	, 40 m	16.51	1,01	_		18.37	18.37

Table No. 8—Continued Limits 36 Feet Out 25 Feet Down

-	61	20	ē	22	23	24	25	2.6	27	88	2.0	8	ñ	32	33	4	35	36
4	75.70	10000	74.13	74.41.	- A. 000	14.32	\$8.67	Separa De	191000	\$7.00	300/69	20000	82.00	61.63	839.5	8128	\$3719	F3.40
10	yen.	75.56	74.17	17.12	77.000	76.74	74.47	79.7	.A.41		20000	F6.93	05,00	E177	84.000	\$1.000	81.000	20000
9	77.77	7187	74.00	JAMAN!	ACC 844	-		77.00	17.25			75.000	19.3	7933	79.66		800,000	11,000
~	77.47	70.43	71.034	2000	73.4		70,3/	N.T.		1000		76.00	77"17	17.40	18/000		75.71	14.00
00	67.10	61.12	600000	70000	17.00	-	32,15	73.44				-	75.32		76.37. GGO 3.37.	N. W.	17*8.	77.25
on	64 740	\$5.4K.	17.77 age	47*47	47.39	69027		70.55		71717	72.000	73.78	\$1.000	Neil	35.00	37,70	18/000	75.500
0	61.010	78.47	160.00	6.5'23	46,30	67-13	-	17.47			30.00	71.36	73.7	71.36	75.9	73817	200.000	191905
-	37,65	67.479	44.73	61.16	25.45	114,79	_	47.4	47.00				Tarlo 7	3101	71.34	71-5	73.73	701000
53	57.64	57.5	274.03	6/425	63437	98.69	. C		-	174.55		20000	64.59	65.17	75.000	70.34		3794
1.3	16.55	60.90	76.50		14.09	20.00	-		.64.99	95.59	10000		67.67		4,17			13.6
2	11.00	1000	4.34	17"37"		-		_	36,19			1600			405,000			18.45
45	11.43	3,05	31,00					-	-		65.57	75.65	-	14,000	65"33		16.39	
ê	100,64	07.00	17.00		19.17	-	-	ic.	4		17.77	20000	63,43	68,14	-			
12	.11.34		0.0		14,0	-		4	_				-	43.4	30.00			2000
18	W. 34	9.70	44.69	To all	LL.LS	1.60		31.35						\$6.09			11.45	
60	O. P.	10.70	16.74		d'a par	M. It	_	STAIN SOUTH			J. 18.			11.14	20000	W. W.	16.34	
20	84,35	1	11,74	27.000	46.54	13.00	474000	31,000			55°54	ACOVA37	5770	5000	Theater	35.47	77.59	1000
12	42.4	-	0.50	94,30	-35.4A	10000	-24,000	17,5000		15.6	\$4.45	7.55 Cabobo	55.78	56.45	5000	55.000	-	-
22	4636	41,10	45.00	.000734	46.17	100		0000377		(Trees	27*40	100417	Sec. 25.	300 376	Sec. 9.	17.50	-	Line's
23	39.34	47474	44.30	43*43	41.00		SELCOV	48.30			STANK	Salah.	37,25	3600376	55.8.	3534	34-44	2000
2.4	36,13	ANANA CANA	Service Contract	45° 20'		40000	-	47*17			40° 5 V	F1'64'	25,50	_	53°14'	NWF.	25.35	36019
2.5	3740	30.00	.C. 00+	. 76.10	-	-		100	· As. to		100,00		6.0	-	33.85	35.40	25,05	.81.35

	Down
	Feet
5	48
ĺ	Out
94	Feet
2	36 F
•	Limits

FEET	19	50	21	27	63	24	23	56	12	28	62	30	5	35	23	34	33	36
2.6	16"10	27.17	36.000	40,000	#	Wards.	*57.500	47.B.	76.76	47*7	1884	49.4	60.00	45.05	5/446	36.00	51,23	94.00
27	AC. 91	16.37	47.40.	39.4.	Artono.	West Constitution	35,55	17.00	10.00 P	15.000	47.5°	W. 1.	145.000	49.50	20°42°	5/282	57.53	28.7
.28	100,000	15.55	36.03	W.10'	35.65	40.27	37.00	447.73	45.CF	45.00	0.77	200000	3460	48,000	39.43	76.05	5/20	20000
20	1371	34.46	3,7,75	37.10	3636	34.34	3/2000	. L	42,00	P. 44.79	44"e"	W. CT.	96.5W	47.44	47.41.	4931	36,30	260000
30	27.37	43,400	04047	36.14	-97°4	M.46.	Met.	40,414	35,000	45.9	. T	45.000	45.000	17.77	47044	48.34	49.24	16000
51	31-31	11500	\$40.7°	35.23	34,34	11.11	34.00	40.00	70,000	41.7	70,000	A	45.00	W. 14.	46.47	16.000		27.60
32	April	36,000	30017	34"40"	1000	16.43	M*0.	130000	96,000	44.11	W. 1. 11.	9,000	7,500	- 6.7	\$2,500	000000		VE-33
3.5	245,000	31.18	12.46	44,44	Secretary.	16.71	797000	Second	34,000	10.00	\$1.74	412.7	755 500	000340	45.0.	12,50	44.46.	67.49
8.0	26,77	Ju-ut-	11,43	31,52	347	W.W.	36.30	17. Tr. 000	11.50	39*19	40.76	35.75	11,11	43"16"	94.99	45.00	45.70	W.76
36	arie.	75.68	10.00	18.85	1998	35,55	44.53	36.37	37.39	35.46	59.95	36.00	44.33	43.27	4379	11.40	9,54	45.54
36	and a	7.62	7/,00	31427	33,33	19,50	The state		36.00	37.00	31'0	39.26	40.00	07.4	43.37	40.83	1 - 7	0.74
37	23011	21.15	No. le	30.47	30.00	25,75	34.67	.74.77	306	1.10	36.7	. 5.66	W.40	40.07	-	N. 9	A8.66	
38	46.34	47.44	15.4	10.3	Hall.	31.17	37.00	34.54	35.34	34.23	37.21	36.7	35.4	7.04		.670 ch	41.34	4.00
NO.	20.00	bela	. bio.27	39.25		75.00	17.20	33.45	34462	100	36.95	37.95	. 68.25	.8706e		1000	_	45.43
4	27.50	10.00kg	El'uk	36,000	29°04	10.0F	94.0	23.7	1/000	We'de	N.44	36-52	14.10		-	40,00	3	
*	Trape	100000	270 6	28,49	10.00	10.00	07. 13	2000	19.42	34,30	25.55	W. ()	1.46	-	-	39 4:	40.30	
42	24.27	60.4	24,34	27.99	14.41	24.45	34.46	74.76	20.000	3341	14.0)	35.35	771,76	37.4	36.70.	29.00	39.00	14.00
43	33,71	17.000	46.000	27.7	17.4	39.94	34.44	31.10	34.46	33.57	30,000	34.57	37.47	36.41	1	M.W.	39.9	
44	43.44	40.27	ACTON ON	24.34	17.15	28.82	M. H.	.W. 06	000000	41.18	41.35 DOG 35.4	34.75	27.11	_	-	17.71	W. N	36.77
4.6	13.74 300 374	31.74	25.47	15.77	£7°5'	21.7	19.3	90.00	10.00 10.00	31.74	32.44	33.67	36.34	-	-	37.6	17.00	-
46	000333	-	E4.43	25,13	M.M.	27*32	. or 17	27.52	10, 25	3/4/8	#3"15 Doo 186	33.60	0/1000	000 363	-	34.000	37.40	-
47	000000	-	24.00	2000937	3,97	27.4.	4.8.7.	No. 000	200191	30"47	37*46	33.83		A4000	-	35.54	18.75	
AB	.90.17	60,77	40.07	100.57	45.54	36,37	.00,00	27.48	17.43	.51,00		0.74		10.00	-		M. 2'	

Table No. 8—Continued Limits 54 Feet Out 25 Feet Down

FEET-	37	38	39	40	4	42	43	4	45	46	47	48	49	20	ō	52	22	24
4	83.70	\$35991 360007£	N-Y-	A.S.T.	\$4.36	\$4.34	W.W.	10,000	Second Second	SIN	27.8	.N'-18	45.0000	A00931	16.21	Moois	F0003.7	30,000
in	F27.8	F1.36		71.57	1,0000	414000	11,12		P3.46.	44.44	FA 'S.	Fu'3.	-01-42 00000	##"/7" Goode	74"24"	660035	(4.9)	10000
9	#0.W.V.	6/02		11,18	81.40	6/20/2	13.3'		1350	Pr. 24'	12.43	F17.73	1.40	D. 9	\$3"17" 000044	\$4.13 9000 4 b	63,31	63.40
N	790.7	79996	Server.	20.000	10000	40°42	Party.	15-57	_	Berry.	\$1,35	Birds.	France	A. T. C.		#3*26' Doco.47		
0	27.45	767.	74%	17.000	27.46	7993	74.24	Tary.	-	Fo-F.	70,20	Array Construction	Fo. 10.	100000		71.16	-	_
on	76.37	76.41		97.47		37274		75'16		78.27	79090	74,23	79.36	39.48	10.00	11,000	-	
9	74.45	25.675		W.W.		76.37				77.44	770000	38.4	7676.	71.000	76.000	7947	790,9	79"31
=	73.27	73.50	7494	36.74		75.20	NºVa'	Jr.ce	76%	76.33	16,000	27.6	77*20	75066	77250	24.3.	24.77	36.38
24	73.67		72.00	73.14		7000	7496		75.56		77.44			X'30'	74.48	77.0'		77728
2	76.07		36.16	72.00	75.02	32.00	. Med		73.52		74.24				75.43	W. C.		
2	. 94.69				4.16	74.44	. Br. 14	72.21	72.48			73.44	74.37		N. 39"	74.27		
15	51.15	11/17			47.73	10,000	30000	3/4/1	74.34	3501		72"89"	111000	73.16		73.75		74"24
9	16.31	67"10			JA.F	0.69		70.00	14 TEST 15000	70,000	7,4,5			71676	72.36	mort.	7513	
12	100	P. San		.0.99	.61.79	23.60	3747	67.19		2000	76,36			71.010	71.04	77.60		
0		\$6.49		.70.77	11.77	.27.77		17.00		.16,29	7.67					25.00		77.44
9	41.70	91.19	100	75.00	16.5	66.34	4.77	.64.79	67.7	47.03	45.45	35,19	14.19	. 11.59		10.69		70737
20	36.78	2/40	49.77	48.36	175000	64.7	15.3	25.59	27/000			6723		6172	U-31.		64.20	19.00
2.1	40'22		\$1744.	11.77	62.53	44.36	13,13	181000			A.1000	£6.037.		000183	16-19	61,000	46.23	74.59
22	3976	-	_		70000	41,21	43.24	43,24		75,000	CALCOO.	65/000	Sen.43	24,99	64.70	127.000	17.73	67.10
2.5	57.8	-	_		£4.43	61.18	15.000	42,24.	41. J.	63.26	13.27	64733	2000	45,000	67.77	.6.35	66,33	71.37
24	375	57,73			59.46	. N. 03	68,44	000140	. 15.000	63*28	63.67'	35,000	£3.25	14,000	-	61-13	.N. 17	7// 000
2.5	16.55	St. 40.		-	35.35		29.50	40 3K	(5.07	65.07	6.0	62,29	25.09	75,69	.57.57	.64.45	17.73	6.59

TOWN TO SEE SEW. D. WIG.

Table No. 8—Continued Limits 54 Feet Out 48 Feet Down

26	25	38	39	40	4	42	7	**	45	46	47	48	49	20	21	25	23	40
1	26,00	M.C	\$1.75	61.30	10.60	38.95	18-35	57°55	11.17	60.31	61.3	20000	63.3	64995	63.00	4376	63.62	64.17
	13.50	76.00	27.75		-	31.6	1	50.40	77.60	1	1.01	.60,00		.75.79	.9,19		1300	25.65
101	ONO 1 FG	951000	620000	-3	9	3/1000	Cot 000.	0000198	2000/87		0000100	90000	000110	C04/#7	10000	A61000	000/18	000/13
28	50,10	53.37	31.15	1,55	34. Wo	31.00	17.77	20,000	725	Sec. 79	59'13'	.000.63	20000	40.4C	C. 14.	000/37	000/30	A00 / 14
00	30.00	. 2.	30,00	.6.75	34.44	S.C. 11.	15.15	.76.35	Mals	37.15		.15.45	39*31.	29.65	15.03		.60.17	.57.75
200	000079	-	474000	000340	644000	\$11000	904 300	000199	00000	14/900	23	3	800/59	Choose.	4000	.Door 27	AF/000	000/16
20	Line	51.40	34.65	1.00	4.00	35.000	3,15	2000	66,000	1000	000174	000/67	000160	Den John	Danie 7	000/39	000/33	Dames 13
	10.0	10,43	21.63.15	53.45	.23.26.	53.34	54.75	dr. No.	17.84.15		36.35		37:46	88.48	35.00	\$1.65	54.45	6.49
0	1/1000	Coppes	Opene.	94000	44000	CO00217	000000	22/000	26,000	31	451000	-	09/000	500,00d	75/000	5000/41	467000	641100
32	49.6	49-53	2000	31.77	37.7	42.45	53"36' 000346	50,000	500190	De 14.	AC. 200	54/000	000 160	000057	2000148	500 141	561.000	000000
33	14.37		78.6r	10.01		21.55	7.45		3345	Table.	.M.M.	37*50	14,000	35.534	27.50	19.5M	12.00	26.17
1	35.46	1		16.54			27.40		2000	.0.00		***		CONT		26.00	10.60	10.60
5	00014	2		460335		9/4000	901000	26/1000	ONO NO	20000	5000174	19,000	14.26	2000	75.35	.0.00	70.37	.00
35	46.36 adents	A0000	0000344	4000	900334	P.7000	000105		000/89	.0001	00017V	54/000	09/000	Denied.	0000/48	0000 m	40004	000/31
36	+55.77		4757	.0.19	71.10	A5.60	10.0	30,00	01,10	Cres.	57.43	13.57	100	100	10.00	\$4.50	37.77	
1	275,000		CRO MAY	556131	400 111	0000119	900 704	0000/76	2000	2/000	2000	1000	200000	2000		44/000	10000	20000
37	Sec. of	74.54	44.70	47.00	0000110	0000	000303	26,000	000/82	Cont fo	000.74	77/000	000/60	000016	000/47	DOM/ V.	0000137	000/33
	" Various"	-			.01.60	,c./*		11.44	drade.	71.0	57.5	11.11	33.17	30.25	1.0	13.0		5.5
0	0003/4	31.	200100	91	000 P/E	000000	1000000	2000 174	000/100		564.0	1000	23.00				100	01.87
39	00000	2000	600131	000114	DOUBLE.	- 7	000000	. Dog/ft	DE0185	000178	000/21	29/000	aback?	67/000	141000	. 000 14 x	000/37	461.000
2	30,00	43"32"	-Ciana		45.45	46.70	***	A10.44	.K	4.0	36.65	20.00	10	.01.0	N. W.	17.00		1.8.7
10	2000347	200 1 M	000111	000011	24400	200000	46/000	Con 1 70	4754		. 67. IN	-	10.00	30.00	11.10	270.00	20.00	1
+	One sets	_	225000	3.9	900 310	000000	26,000	68/000	000 / 83	~	951000	-7	000/03	20,000	שמטייוני.	O09/47	251.000	26000
42	45.55	.6.474	. 62.64		den.	200000	20.00	We are	0000180	0000174	24.000	47,000	2000	Coast	JA1000	1746	000 136	00000
1	1/0/4	62.15			W. 00	100,00	.0.74	.bE. 77	.61.30	22.30	.56,60	,01 . Jr.	10.20	.61.64	A1.64	10,00	15.05	OF all
43	75000	000017	OCC SAC	- 1	200000	000/92	16/000	20,000	000/78	0000172	77/200	090000	20000	00000	-	3	2000/37	1000/3/
44	90000	46.70	000317	00000	0.000	35/000	0007.89	68/000	000.17	000071	24/000	000159	2000/14	000/47	-	000,39	261000	000130
4.0	35.60	40.75	12,000	300000	000.44	000193	1344	200787	\$5.00	447.000	_	000 / ST	47*17	000/48	000/43	96100	D.04/24	06/000
9	35.41	39.33	Geo s. o	40.000	11.000	41.14	Sec. 16.		#4"x3"	0000	77,000	000157		47.47	14,000	46.200	66,000	000/29
47	20,00	35.00	WW.	46.73	. 9 4/9	440.00	41.000	13.64	70,000	277000	Coorte	17.	4674	Deg : Vi	000.40	000/12	.000/8h	000723
1	15.16	15.55				11.11	Areste.		D' . E.		-	Days	A1.34	0.70	***		ar.tm	

As the table is given in even feet only, it may be desired to figure the illumination for fractional parts of a foot, in which case the formula $I = \frac{C.P.}{v} \cos^3 \theta$ will be used with H² the following values of $\cos^2\theta$:

I = Illumination.

I \equiv Illumination.

C. P. \equiv Candle-power in the direction of the investigated point.

H \equiv Height of lamp above plane in which point lies θ \equiv Angle made by perpendicular dropped from lamp and light ray to point.

TABLE No. 9

Table of Cosines Cubed

Table	of.	Cosini	es Ci	bed

```	1			T	1. 1
Angle Degrees	Cos	Angle Degrees	Cos*	Angle Degrees	Cos
1	1.000	29	.668	57	161
2	.998	30		58,	.149
	.995	31	630	59	187
<b>34</b>	.998	32	610	60	125
5	.988	33	.590	61	
6	.983	34	.570	62	.103
7	978	35	.550	63	9936
8	.971	36	.529	64	.0842
9		37	509	65	. 0754
10		38	.489	66	.0671
11		39		67	.0596
12	.985	40	. 449	68	.0526
13	.925	41	.429	69	.0460
14		42	.410	70	.0400
15	.901	43	.391	71	.0345
16	.888	44	.372	72	.0295
17	.874	45		73	.0250
18	.860	46	.335	74	.0209
19	.845	47	.317	75	.0173
20	.829	48	.300	76	.0142
, 21		49	282	77	.0114
22	.797	50	. 265	78	.00900
23	.780	51	.249	79	.00695
24,	.762	52	.233	80	.00523
25	.744	53	.218	81	.00383
26	.726	54	.203	82	.00270
27	.707		.189	83	.00181
28		55	.175	84	00114
48		56	.110	04	.00144
•			5 8 4		. 1
•			and the second		, ' ;
1	٠.	1 1 1 1 1			
				•	· i
•					
		5.0			1 1
		and the second second			





With the table above given and the formula it is possible to find the illumination at any point in a room. If there are a number of units all supplying the illumination in a room, the illumination at some particular point would be the sum of the values produced by each lamp. The same operation can be repeated for as many points as desired in the room including all units within such radius that computed results affect materially the resultant value. The illumination in foot-candles at all the points taken should equal as nearly as possible a constant value. This value may be raised by different spacing of units and different types of reflectors.

types of reflectors.

The importance and value of correctly figuring the proper the importance and value of correctly lighting the proper tiliamination is not to be underestimated. If a certain light source flickered with a certain maximum and minimum value it would be easier to see by a light that gave the minimum value constantly. If this minimum value were constantly produced in all probability the power consumption would be less. This is analogous to uneven distribution. A uniform system of illumination is more economical because

the intensity may be less.

The intensity of illumination required in various places under different conditions is very necessary to the successful working out of illumination problems. This table of intensities is a matter of experience and treats with the consequent recommendations regarding foot-candle intensity and watts per square foot.

Table No. 10 TABLE OF FOOT-CANDLE INTENSITIES RECOM-MENDED FOR VARIOUS CLASSES OF SERVICE

Average Conditions.

	Intensity.	Watts per Prismatic Glass.	Sq. Ft. Steel.
Arcade (in addition to light from			
show windows)		.240	• • • • •
Armory	. 2.0	.480	.440
Art gallery (walls)	. 5.0	1.200	1.100
Auditoriums	. 2.0	.480	.440
Automobile—			
Garage, large	2.0	.480	.440
Garage, small	, 2.0	.480	.440
Showroom	. 5.0	1.200	1.100
Storage room	1.0	.240	.220
Ball room	2.0	.480	,
Bank (general)	3.0	.720	• • • • •
Bar room	. 2.5	600	
Barber shop, general (localize	ed		٧.
lighting provided)		.480	
Barber shop, general (no location)	al		
lighting provided)		.960	
Both (Public)-		• •	
Dressing rooms	1.0	.240	.220
Dressing rooms Swimming pool	2.0	.480	.440
Billboard	8.0		1.760
Billiard Room— General	. 1.0		
Table	. 5.0	1.200	1.100

# Table No. 10-Gontinued

Average Conditions.
Foot-Candle Watts per Sq. Ft.
Intensity. Prismatic Steel. Glass. 1.100 5.0 1.200 Bowling Alley-Alley . .... 1.0 ·.... 4.0 .880 .360 1.5 . . . . . ,600 Cafe . ..... 2.5 Card room (tables) ..... 3.0 .720 Carpenter Shop-General . ..... 2.5 .550 . . . . . .880 .220 1.0 2.5 .600 .720 . . . . . 3.0 1.440 6.0 1.320 ,600 Pullman . ..,.... 2.5 Street . ...... 2.5 .600 .144 .6 Courts-7.0 1.680 1 540 7.0 1.680 1.540 1.680 1.540 Courtroom (local lighting for stenographer) . ..... 2.0 .480 2.0 .480 Dance hall ..... 2.0 .480 Depot-.220 Baggage room ....... 1.0 .240 Train sheds ..... 1.0 .220 .480 Waiting room ..... 2.0 Drafting room ..... 8.0 1.920 1.760 2.400 2.200 Factoryactory—
General lighting (where individual
drop lights are provided)......
General lighting (where no individual drop lights are provided)
Local bench illumination...... 1.5 .360 .330 4.0 .960 .880 .960 4.0 .880 Fire Stations-.720 3.0 .240 ,220 1.0 Foundry . ..... 2.0 .440 . . . . . 440 2.0 .480 2.5 .600 .550 .6 .144 . . . . . Hospital-:5 120 2.640 12.0 2.880 supplied . 1.5 .860 . ...... Wards (with local illumination supplied) .120

### Table No. 19—Continued

Average Conditions.
Foot-Candle Watts per Sq. Ft.
Intensity. Prismatic Steel.
Glass.

. /			
Hotels—			
Bed room	2.0	.480	
Corridor ,	1.0	.240	
Dining room	$2.0 \\ 2.0$	.480 .480	, <b></b>
Lobby	3.0	.720	
Lavatory	2.0	.480	.440
Laboratory	3:0	.720	.660
Laundry	2.0	.480	.440
Library—			
Stock room	1.5	.360	.330
Reading room (with no local illum- ination supplied)	3.5	.849	
Reading room (with local illumina-	9.9		•••••
tion supplied)	1.0	.240	E
Lodge room	2:5	.600	
Lunch room	2.0	480	معضي رأ
Market	3.0	.720	660
Mechanical work (fine)	5.5	1.320	1.210
Moving picture theatre (bright)	1.5	.360	
Moving picture theatre (dim)	.5	.120	4
Museum	3.0	.720	
Office—			
File room	3.0	.720	.660
Desk	4.0	.960	• • • • • •
General (no drop lights)	4.0	.960	
General (with drop lights) Vault (safe)	1.5 3.0	.360 .720	.660
Vault (sare)	1.0	.240	.220
Pattern shops	4.0 .	.960	.880
Pool room (general)	1.0	.240	
Pool table	5.0	1.200	1.100
Power house	2.5	.600	.550
Postal service	7.0	1.680	1.540
Press room	4.0	.960	.880
Reading (ordinary print)	2.5	.600	
Reading (fine print)	3.0	.720	: 1
Domidonoo			1 -
Thomas	.2	.048	
Porch (reading light local)	2.0	480	
Hall (entrance)	.7 1.5	.168	
Parlor	1.5	.360 .360	
Living room	1.5	.360	.:
Library	3.0	.720	
Library	3.0	.720	
Dining room	1.5	.360	
Pantry	2.0	.480	
Kitchen	2.0 1.5	.480 .360	.330
Hall (upstairs)	.5	.120	
(mbn.m.m)	:-		

### Table No. 10-Continued

Average Conditions.
Foot-Candle Watts per Sq. Ft.
Intensity. Prismatic Steel.
Glass.

		Olass.	
Residence—			i
Bed room	1.5	.360	
Bath room	2.0	.480	
Furnace room	1.0	.240	.220
Store room	.5	.120	.110
Restaurant	2.0	.480	.440
Rink (skating)	2.0	.480	,440
Rug rack	6.0	1.440	1.320
Saloon	3.0	.720	
School—			
Assembly room	2.0	.480	
Class room	3.0	.720	,' ••••
Cloak room	.8	$\begin{array}{c} .192 \\ .192 \end{array}$	••••
Drawing	5.0	1 900	1.100
Laboratory	3.0	.720	.660
Manual training			.660
Office	3.0	.720	
	, <b>3.0</b> ,	.720	• • • •, •
Sewing (light goods)	4.0	.960	.880
Sewing (dark goods)	8.0	1.920	1.760
Shipping room	1.5	.360	.330
Show Window-			
Dark goods		4.800	4.400
Light goods	8.0	1.920	1.760
Medium goods		3.840	
Sign	8.0	1.920	1.760
Spinning Mills	2.0		440
Stable	1.0	.240	.220
Stereotyping	4.0	.960	880
Stock room	1.0		.220
Store—		: :: . f	1 1
Art	4.0	<b>-960</b>	i
Baker	3.0 3.5	.720 .840	
Book Butcher	8.5	840	
China	2.5		
Cigar	5.0	1.200	
Clothing	6.0	1.440	
Cloak and suit	6.0	1.440	1.5.5
Confectionery Decorator	4.0 3.0	.960 .720	
Department (see each department)	<b>3.0</b>	.120	
Drugs	4.0	,960·	
Dry goods	4.0	.960	
Florist (with case lighting)	2.0	.480	
Florist (general—no case lighting)	3.0	.720	• • • • •
Furniture	3.5 5.0	.840 1.200	
Grocery	4.0	.960	
Haberdasher	6.5	1.560	
Hardware	3.5	.840	.770

#### Table No. 10—Continued

	Foot Candle	erage Condit Watts per Prismatic Glass.	Sa. Ft.
٠, ١	· 4.0·	.960	
	6.5 4.0	1.560 .960	770

Store-			
	4.0	.960	
Jewelry	4,0 6.5	1.560	• • • • •
Lace	4.0	.960	
Leather	3.5	.840	.770
Meat	3.5	.840	
Men's furnishings	5.5	1.320	• • • •
Millinery	5.0	1.200	
Music		1.080	
Notions	3.0	.720	
Piano	4.5	1.080	
Post cards	4.0	.960	;, • • • • •
Shoes	4.0	.960	1
Stationery	4.0	.9.60	••••
Tailor	6.0	1.440	• • • • •
Tobacco		1.200	*****
Street-	,		
Business (not including light from	•		
windows and signs)	.5	120	.110
	.05	.012	.011
Prominent (in residence district).	. 2	048	044
Residence	.1.	024	.022
	4.0	.960	
Stúdio	2.0	.900	
Telephone exchange (with board		2	
lighting)	1.5	.360	.330
Theatre-			
Auditorium	2.0 .	.480	
Foyer	2,0	.480	
Lobby	5.0	1.200	
Typesetting	8.0	1.920	1.760
Warehouse	1:0	.240	.220
		.240	.220
	1.0	.240	.420
Weaving-			:
Cotton, light colors	2.5	.600	.550
Cotton, dark colors	4.0	.960	.880
Wool, light colors	3.0	.720	.660
Wool, dark colors	5.0	1.200	1.100
Silk, light colors	4.0	.909	.880
Silk, dark colors	6.0	1.440	1.320

#### RAPID CALCULATION OF ILLUMINATION

The method of determining illumination as previously described is excessively tedious and takes considerable time. Upon the basis of the lumen (which is the quantity of light flux emanating from a light source required to illuminate a square foot area equally to an intensity of one foot-candle) a method has been developed for quickly determining the wattage required to illuminate a certain area to a given intensity and the reverse.

An incandescent lamp has a certain number of lumens for each watt of power, the number being determined by 12.57 times the mean spherical candle-power per watt. A unit source of one mean spherical candle-power emits 12.57 lumens. However, only a certain portion of the total lumens of the source are useful in producing illumination due to the absorption of the reflector or directing medium the lumens effective on the plane of illumination to the total light from the unit may be termed for convenience "the utilization factor." The most useful of these are embodied in the table given below.

#### Table No. 11

	1.5	UTILIZ	ATION	F.	ACTOR	S Walls	
	Unit			• • • •	Light	Medium	Dark
Opal or Decorati	Milk Glave or A	ass Art Glass			. 50 . 30 . 40	50 · · · · · · · · · · · · · · · · · · ·	40 38 20 30
*Steel .			 :.::	: : : .	Wide . 58	<b>N</b>	Jarrow 50

The quantity of light effective in producing illumination is known as the effective lumens from the light source.

To find the illumination in a given room with a certain number of units, the effective lumens of which you know, the procedure would be to multiply the number of units by the effective lumens per lamp and divide by the area. This would give the number of lumens per square foot or the foot-candle intensity.

On the curve sheets following the effective lumens given have been computed for condition of dark walls and ceiling. For average conditions 15% may be added to the value given and for light walls and ceiling 20% should be added. To find the number of units required to give a certain intensity the reverse operation is made, i. e., multiply the area in square feet by the intensity desired and divide by the effective lumens per lamp.

the effective lumens per lamp.

As it is quite out of the question to include the effectors and lumens obtained from every combination of reflectors and lamps, the method of obtaining the wattage or intensity has been further simplified by obtaining average effective humens for different classes of lighting and with the two principal materials, glass and steel. This has been reduced principal materiais, giass and steel. This has been reduced in terms of watts per square foot as a definite number of lumens is emitted from any certain lamp, per watt. These values can be found in the above table in connection with the intensity produced. These values, however, are for awerage conditions, and in cases where extreme light or dark conditions prevail they should be modified according to the following:

For light conditions subtract 10% from the value of watts

per square foot given.

For dark conditions add 10% to the value of watts per square foot given.

square foot given.

In considering illumination there is a definite plane upon which this light is desired which is very seldom the plane of the floor. This: "reference plane" or "plane of illumination" is usually the height above the floor at which work is carried on; the plane of desk tops, benches, counters, layout tables, etc. Im most cases this is approximately 2 feet 6 inches above the floor. All values as to mounting height of reflectors should be taken from this as a basis.

^{*}Values for steel will vary 10% either way depending upon conditions. They hold only when ratio of mounting height to smallest dimension of room is not greater than 1:2.

Spacing and mounting height of reflectors are interdependent. There are two cases which must be dealt with, one when outlets are already located and the other where outlets must be located. The first has only to do with the proper mounting height while the second has to do with the proper placing of outlets as well as the proper suspension of the units.

Table No. 12

Prismatic Glass				cent or Glass	Steel		
Ext.	Int.	Foc.	Flat	Bowl	Dome	Bowl	
.5D	.8D	1.3D	.6D	.8D-	.67D	.8D	

There is no definite rule that can be laid down relative to the spacing of lighting units. A few general rules governing this may be given however.

- The area should be divided as nearly as possible into squares with units located at the center of each. The size of square depends upon architectural restrictions and the size of the illuminating unit.
- (b) Units should be systematically located around posts in order to avoid shadows.
- (c) Units should be systematically located with regard to
- deep beams in order that awkward shadows may be avoided.

  The mounting height, as before stated, depends upon the spacing of the units and their distribution curves. The correct mounting height and allowable variation is given as a proportional part of the spacing on each of the distribution curves following.

  In general reflectors may be classified as prismatic.

In general, reflectors may be classified as prismatic, translucent or opal glass, and steel; and the mounting heights shown above are to be recommended.

In some cases it will be found impossible to adhere to the mounting heights given, in which case they may be varied by .1D without materially affecting the resulting illumination. illumination.

As a matter of convenience distribution curves of reflectors of various manufacturers are shown. It is obvious that no comparison of the different makes can be shown in a book

of this character.

On each * distribution curve will be found the effective lumens per lamp, efficiency of the reflector, its value in directing light in the lower hemisphere and the mounting height given in a fractional part of the spacing.

Sept on the

. . .

^{*}The curves with the accompanying data will change from time to time as the efficiency of the lamp changes. The magnitude of the change will be in the ratio of the mean horizontal candle-powers.





Fig. 11

To figure filumination at Q from the light sources represented by A, B, C, etc., each unit to consist of one 100-watt bowl-frosted Mazda lamp, fitted with prismatic reflector as shown on page 186. Units hanging 10½ ft. above the floor of the plane of illumination. Light Conditions or 8 ft. above the plane of illumination. Light Conditions.

By the illumination Table: By scaling the diagram we find that Q is approximately 17 ft. from A, and as the plane of illumination is 8 ft. below the lamps, the constant desired will be found 17 ft. out and 8 ft. down, which is .001210, the angle of the light ray 64° 48° or 65° (the nearest degree can be taken). By referring to the distribution curve, page 186, the candle-power at 65° is found to be 55.0, which, when multiplied by .0012100, gives the illumination, .066, from A at point Q. But I, D, and L produce the same illumination, being the same distance away, consequently this value must be multiplied by four, which is .267 foot-candles. Again, B is approximately 7 ft. from Q and the value at 7 ft. out and 8 ft. down when multiplied by the candle-power at the given angle, then will represent the Illumination from B, C, J, and K. So the illumination is calculated for each point and the sum of all values obtained is the resultant illumination at Q from all lamps.

By the Formulæ: Suppose the scale distance from M to

By the Formulæ: Suppose the scale distance from M to Q to be 24½ ff., Q being 8 ft. below the light source. This is the same at 4 and 12½ ft.; looking up the angle on the chart, page 174, it is found to be 72°. The candle-power corresponding to this angle on page 186 is 42. The  $\cos^3\theta$ Substituting in the formula of the nearest angle is .0295. CP 42

 $- \times \cos^2 \theta$ , the illumination is  $- \times .0295 = .0195$  foot-can-H² 62

dles. This may be followed out as many times as is necessary to obtain the resulting illumination.

Lumen Method of Determining Illumination: The area considered is 80 × 20 or 1600 sq. ft. The effective lumens per unit considered is 395. Multiplying the effective lumens per unit by the number of units (16) gives the total lumens delivered to preduce illumination (6320), which, when divided by the area (1600 sq. ft.), results in lumens per sq. ft. or a foot-candle intensity of 3.95, plus 20% of which equals approximately 4.75 foot-candles.

The reverse can be followed out if the area and intensity

are known with the number of units to be decided.

Method Using Watts Per Square Foot: This may be used in determining quickly the intensity in a given room. It is seen from the table that under light conditions .216 watts per square foot produces one foot-candle intensity. Given the area and the wattage as 1600, it is simple to estimate the intensity at approximately 4.75 foot-candles. This is, as

before stated, an approximation only.

The subject of mounting height would be the same for all problems. From the drawing it is seen that the spacing of the lamps is 10 ft., the height of ceiling 15 ft. It is desired to find the best type of prismatic reflector. The intensive type with a mounting height of 8D is chosen for 5D would bring the units too low and 1.3D would place the units above the celling height. D is the spacing, in this case 10 ft.; therefore the units would be placed 8 ft. above the plane of illumination, or 101/2 ft. above the floor.

Acres :

### CANDLE-POWER DISTRIBUTION CURVES FOR HOLO-PHANE PRISMATIC REFLECTORS



No. of Curve	20 XE-20	25	40	
Efficiency of Reflector (%) $\left\{ \frac{MSCP(R)}{MSCP(L)} \right\}$				
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP (R)}}{\text{MLHCP (L)}} \right\}$	134.8	181.6	133.7	140.8
Mounting Height	.5D	.5D	.5D	.5D
Allowable variation in mounting height	.1D	±.1D	±.1D	±.1D

### CANDLE-POWER DISTRIBUTION CURVES FOR HOLO-PHANE PRISMATIC REFLECTORS-(Continued)



1 11 11 1			.y (('))	30 0%
No. of Curve	<b>A</b> .	· <b>B</b> /1	11. C	Ð
Size of Lamp (Watts)	100	150: ·	250 i	590
No. of Reflector	.XE-100	XE-150	XE-250	XE:500
Effective Lumens per Lamp	. 367	540	1020	2000
Efficiency of Reflector (%) $ \frac{\text{MSCP (R)}}{\text{MSCP (L)}} $ Value as a Reflector (%) $ \frac{\text{MLHCP (R)}}{\text{MLHCP (L)}} $	87.1	88.8	86.5	86.1
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP(R)}}{\text{MLHCP(L)}} \right\}$	185.6	189.0	142.0	137.0
Mounting Height D—Average spacing of outlets	5D	:i <b>5D</b>	.5D	.50
Allowable variation in mount				

### CANDLE POWER DISTRIBUTION CURVES FOR HOLO PHANE PRISMATIC REFLECTORS (Continued)



No. of Curve					
Size of Lamp (Watts)	20.	25 .	40	- 160 h	100
No. of Reflector	XI-20	XI-25	XI-40	XI-60 G	XI~180
Effective Lumens per Lamp	71.4	102.0	158.0	246.0	395.0
Efficiency of Reflector (%). $\left\{ \frac{MSCP(R)}{MSCP(L)} \right\}$	82.2	.847	84.5	87.5 _;	87: <b>5</b>
Value as a Reflector(%) $\left\{ \frac{\text{MLHCP (R)}}{\text{MLHCP (L)}} \right\}$	L <b>86</b> .0	139.0	186.0	144.0	186.0
Mounting Height	. <b>8D</b>	.8D´	. <b>8</b> D	.8D	. <b>8</b> D
Allowable variation in mounting height					

### CANDLE POWER FOR TRIBUTION CURVES POR HOLD PHANE PRISMATIC REFLECTORS—(Continued)



No. of Curve	′250: XII-250	C 500 X1-500 2090
Efficiency of Reflector (%) $\left\{ \frac{\text{MSCP (R)}}{\text{MSCP (L)}} \right\}$ 85.7		
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP}(R)}{\text{MLHCP}(L)} \right\}$ 143.0	144.2	140.0
Mounting Height8D D-Average spacing of outlets.	. <b>8</b> D	<b>81</b> D
Allowable variation in mount-	±.1D	****

### CANDLE-ROWER, DISTRIBUTION: CURYES, FOR HOLO: PHANE PRISMATIC REFLECTORS-(Continued)



No. of Curve,;	20 XF-20	B 25 XF-25 99.0	XF-40
Efficiency of Reflector (%), $\left\{ \frac{MSCP(R)}{MSCP(L)} \right\}$	81.5	82.3	, 86,8
Value as a Reflector (%).: $\left\{ \frac{\text{MLHCP}(R)}{\text{MLHCP}(L)} \right\}$	137.4	138,5	141.2
Mounting Height, D—Average spacing of outlets,			, 1.88D
Allowable variation in mount- ing height	±.1D	±.1D	±,1D

### CANDLE POWER DISTRIBUTION: CURVES, FOR HOLOS PHANE PRISMATIC REFLECTORS: (Continued)



No. of Curve	<b>A</b>	, <b>B</b>
Size of Lamp (Watts)		
No. of Reflector	XF-60	XF-100
Effective Lumens per Lamp	,246·	425
Efficiency of Reflector (%) $\left\{ \frac{\text{MSCP}(R)}{\text{MSCP}(L)} \right\}$	: 86,5	85.0
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP}(R)}{\text{MLHCP}(L)} \right\}$	145.0	. <b>148.5</b> 7
Mounting Height D—Average spacing of outlets,	1.33D	. 1.33D
Allowable, variation in mounting height		

### CANDLE POWER DISTRIBUTION CURVES POR HOLO PHANE PRISMATIC REFLECTORS (Continued)



No. of Curve.         A           Size of Lamp (Watts)         150           No. of Reflector.         XF-150           Effective Lumens per Lamp.         649	250 XF- <b>2</b> 50
Efficiency of Reflector (%) $\left\{ \frac{\text{MSCP}(R)}{\text{MSCP}(L)} \right\}$ 86.1	. 84.6 i
Value as a Reflector $(\%) \dots \left\{ \frac{\text{MLHCP (R)}}{\text{MLHCP (L)}} \right\}$ 142.0	148.8 ′
Mounting Height 1.33D D—Average spacing of outlets.	1.83D
Allowable variation in mounting height $\pm .1D$	±.1D

### CANDLE-POWER DISTRIBUTION CURVES FOR FQS-TORIA VELURIA REFLECTORS



No. of Curve	5″ 67	5″ 92.5	7" 176.0	7" 2885
Efficiency of Reflector (%) $\epsilon \dots \left\{ \frac{\text{MSCP}(R)}{\text{MSCP}(L)} \right\}_i$	91.3	82.3	84.3	84.0
Value as a Reflector (%) $\left\{ \frac{MLHCP(R)}{MLHCP(L)} \right\}$				
Mounting: Height D—Average spacing of outlets.				
Allowable variation in mount-	٠.	•••	, , ,	

### CANDLE-POWER DISTRIBUTION CURVES FOR FOS-TORIA VELURIA REFLECTORS-(Continued)



No. of Curve A	· · <b>B</b>	'c '	<b>D</b> '
Size of Lamp (Watts)         25           No. of Reflector         0112	40	60	100
No. of Reffector 0112	9 01129	01129	01129
Size of Reflector (Inches dia.) 7"	7"	9″	9"
Effective Lumens per Lamp 70.			
Efficiency of Reflector (%) $\left\{ \frac{\text{MSCP (R)}}{\text{MSCP (L)}} \right\}$ 84.1			
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP (R)}}{\text{MLHCP (L)}} \right\}$ 146.0	1,50.5	136.3	135.1
Mounting Height			
Allowable variation in mount-	: .*	1.7	•
' ing height ±.11	D ±.1D	±.1D	±.1D

### CANDLE-POWER DISTRIBUTION CURVES FOR FOS-TORIA VELURIA REFLECTORS—(Continued)



No, of Curve	A.	В
Size of Lamp (Watts)	100	150
No. of Reflector		01141
Size of Reflector (Inches dia.)		11"
Effective Lumens per Lamp	863	497
Efficiency of Reflector (%) $\left\{ \frac{\text{MSCP}(R)}{\text{MSCP}(L)} \right\}$	79.0	84:8
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP}(R)}{\text{MLHCP}(L)} \right\}$	146.0	155.3
Mounting Height	<b>6</b> ID	.6D.
Allowable variation in mounting height	±.1D	′ ±.1D

### CANDLE-POWER DISTRIBUTION CURVES FOR FOS-TORIA VELURIA REFLECTORS—(Continued)



No.: of Curve	A	В
Size of Lamp (Watts)		250 -
No. of Reflector	01140	01140
Size of Reflector (Inches dia.)	11"	·11″
Effective Lumens per Lamp	438	762
Efficiency of Reflector (%) $\left\{ \frac{\text{MSCP (R)}}{\text{MSCP (L)}} \right\}$	87.4	88.5
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP (R)}}{\text{MLHCP (L)}} \right\}$	126.1	181.5
Mounting Height	.8D	.8D
Allowable variation in mounting height	±.1D	±.1D

### CANDLE-POWER DISTRIBUTION CURVES FOR FOG? TORIA VELURIA REFLECTORS-(Continued)



No. of Curve	250	B 400 01140 12" 1178
Efficiency of Reflector (%) $\left\{ \frac{\text{MSCP}(R)}{\text{MSCP}(L)} \right\}$	81.7	79.4
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP}(R)}{\text{MLHCP}(L)} \right\}$	117.5	114.6
Mounting Height		
Allowable variation in mounting height	±,1D	±.1D

### CANDLE-POWER DISTRIBUTION CURVES FOR FOS-TORIA VELURIA REFLECTORS—(Continued)



No. of Curve	A	В	C
Size of Lamp (Watts)	400	400	500
No. of Reflector	01141	*01141	*01141
Size of Reflector (Inches dia.)	15"	14"	14"
Effective Lumens per Lamp	1240	1210	1510
Efficiency of Reflector (%) $\left\{ \frac{\text{MSCP (R)}}{\text{MSCP (L)}} \right\}$	83.0	72.4	70.3
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP (R)}}{\text{MLHCP (L)}} \right\}$	134.3	101.3	102.0
Mounting Height	. <b>6</b> D	.8D	. <b>8</b> D
Allowable variation in mounting height*  *Heavy weight.		±.1 <b>D</b>	±.1D

### CANOLE-POWER DISTRIBUTION CURVES FOR HOLD. PHANE ENAMELED STEEL REFLECTORS



No. of Curve A	. <b>B</b>	. <b>c</b>
Size of Lamp (Watts) 25	40	60
No. of Reflector SEE-40	SEE-40	SEE-60
Size of Reflector (Inches dia.) 64/"	61/4"	71/4"
Effective Lumens per Lamp 114.2	167.5	260.0 .
Efficiency of Reflector (%) $\left\{ \frac{\text{MSCP (R)}}{\text{MSCP (L)}} \right\}$ 63.5	67.0	59.5
Value as a Reflector (%) $\left\{\frac{\text{MLHCP (R)}}{\text{MLHCP (L)}}\right\}$ 121.0	132.8	116.3
Mounting Height	. <b>8</b> D	. <b>8</b> D
Allowable variation in mounting height $\pm .1D$	±.1D	± 1D

### CANDLE-POWER DISTRIBUTION CURVES FOR WOLO -- PHANE ENAMELED STEEL REFLECTORS (Continued)



No. of Curve		В	C
Size of Lamp (Watts)	100	150	250
No. of Reflector:		SEE-150	
Size of Reflector (Inches dia.)	81/4"	1014"	101/4"
Effective Lumens per Lamp	457	695	1260
Efficiency of Reflector (%) $\left\{ \frac{\text{MSCP (R)}}{\text{MSCP (L)}} \right\}$	64.0	63.8	68.1
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP (R)}}{\text{MLHCP (L)}} \right\}$	125.5	124.2	125.4
Mounting Height	.8D	. <b>83</b> D	. <b>3</b> D
Allowable variation in mounting height	±.1D	±.1D	±.1D

### CÂNDLE-POWER DISTRIBUTION CURVES FOR ASYMMETRICAL REFLECTORS



No. of Curve	arallel	'30°	60°	Perpen.
Efficiency of Reflector (%) $\left\{ \frac{\text{MSCP (R)}}{\text{MSCP (L)}} \right\}$	••••	••••	· · · · · ·	
Value as a Reflector (%). $\left\{ \frac{\text{MLHCP}(R)}{\text{MLHCP}(L)} \right\}$	···•	· ·····		·
Mounting Height		.33D	.33D	.33D
Allowable variation in mounting height	±.1D	±.1D	±.1D	±.1D

### CANDLE-POWER DISTRIBUTION CURVES FOR ASYMMETRICAL REFLECTORS—(Continued)



No. of Curve	400 arallel	400 30°	400 60°	D 400 Perpen.
Effective Lumens per Lamp	• • • •		• • • •	:,••••
Efficiency of Reflector (%) $\left\{ \frac{\text{MSCP (R)}}{\text{MSCP (L)}} \right\}$	••••	•••••		, ,
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP (R)}}{\text{MLHCP (L)}} \right\}_{\text{A}}$	••••			
Mounting Height			.88D	,33D
Allowable variation in mounting height ±	.1D	±.1D	±.1D	±.1D

### ILLUMINATION

### CANDLE-POWER DISTRIBUTION CURVES FOR ASYMMETRICAL REFLECTORS—(Continued)



No. of Curve			500 Perpen.
Efficiency of Reflector (%) $\left\{ \frac{MSCP(R)}{MSCP(L)} \right\}$	••••	••••	• • • •
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP (R)}}{\text{MLHCP (L)}} \right\}$	• • • •	·	••••
Mounting Height	.33D ·	.33D	. <b>33</b> D
Allowable variation in mounting height ± 1D	±.1D	±.1D	±.1D

### CANDLE-POWER DISTRIBUTION CURVES FOR: DOME TYPE REFLECTORS



No. of Curve	A	В	C	D
Size of Lamp (Watts)	25	40 .	60	100
Size of Reflector (Inches dia.)			15"	18"
Effective Lumens per Lamp	112	, <b>168</b> ,	261 .	497
Efficiency of Reflector (%) $\left\{ \frac{MSCP(R)}{MSCP(L)} \right\}$	72.6	75.8	74.0	73.1
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP (R)}}{\text{MLHCP (L)}} \right\}$	L39.9	150.0	146.0	141.5
Mounting Height	.67D	.67D	.67D	.67D
Allowable variation in mounting height	±.1D	±.1D	±,1D	±.1D

### GANDLE/ROWER: DISTRIBUTION: CURVES: FOR DOME (TYPE: REPLECTORS-(Continued)



No. of Curve	250 18″	.C 400 20" 2280	500 20"
Efficiency of Reflector (%) $\left\{ \frac{MSCP(R)}{MSCP(L)} \right\}$ 79.5	74.3	80.1	81.8
Value as a Reflector (%).: $\left\{ \frac{\text{MLHCP (R)}}{\text{MLHCP (L)}} \right\}$ 158.0	142.7	154.8.	160.1
Mounting Height			. 1
Allowable variation in mounting height ±.1D	±.1D	±.10	±.1D

### CANDLE-POWER DISTRIBUTION CURVES FOR BOWL TYPE REFLECTORS



No. of Curve	A	В	С
Size of Lamp (Watts)	25	40	60
Size of Reflector (Inches dia.)	7"	7"	8"
Effective Lumens per Lamp	100	160.5	260
Efficiency of Reflector (%) $\left\{ \frac{MSCP(R)}{MSCP(L)} \right\}$	62.1	52.5	58.8
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP}(R)}{\text{MLHCP}(L)} \right\}$	100.0	104.0	114.9
Mounting Height	.8D	. <b>\$</b> D	.\$D
Allowable variation in mounting height	±.1D	±.1D	±.1D

# BANDLE FOWER DISTRIBUTION SURVES FOR BUNL TYPE REFLECTURE—(Distribusely



NIA HE CHANA (MARIA) (MARIA) (MARIA) (MARIA) (MARIA) (MARIA) HE STATE HE ST	A. 1 hdy 4" 454	#4 1 4 hr 1 p // Marsi	/ : ሄሐት 11// 1866
the state of Mattiller	44 4	87 Å	b#.b
Matthe as a Minter the Minter the		11# <b>(</b> )	114.1
Mountaine Marget .	.ktr	.htr	.###
Attenuable survivible to themet.	+ 1f1	+ 1tr	+ 111

### CANDLE-POWER DISTRIBUTION CURVES FOR DOME REFLECTORS



No. of Curve	150	B 250 18" 1360	C 400 18" 2020	D 500 18" 2450
Efficiency of Reflector (%) $\left\{ \frac{\text{MSCP}(R)}{\text{MSCP}(L)} \right\}$	82.4	81.5	73.7	74.0
$ \begin{array}{c} \text{Value as a} \\ \text{Reflector (\%)} \left\{ \frac{\text{MLHCP (R)}}{\text{MLHCP (L)}} \right\} \end{array} $	157.3	162.0	141.9	145.9
Mounting Height			. <b>67</b> D	
Allowable variation in mount- ing height	±.1D	±.1D	±.1D	±.1D

### ILLUMINATION

### CANDLE-POWER DISTRIBUTION GURVES FOR FLAT REFLECTORS



No, of Curve	<b>A</b>	в '
Size of Lamp (Watts)	100	
Size of Reflector (Inches dia.)	16" .	
Effective Lumens per Lamp	349	530
Efficiency of Reflector (%) $\left\{ \frac{\text{MSCP}(R)}{\text{MSCP}(L)} \right\}$	85.2	88.4
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP}(R)}{\text{MLHCP}(L)} \right\}$	155.0	151.0
Mounting Height	•	.67D
Allowable variation in mounting height	±.iD	±.1D

## CANDLE-POWER DISTRIBUTION CURVES FOR FLAT REFLECTORS—(Continued)



No. of Curve	A 250 20" 1152	B 400 20″ 1750	C 500 20" 2025
Efficiency of Reflector (%) $\left\{ \frac{\text{MSCP (R)}}{\text{MSCP (L)}} \right\}$	89.0	83.1	83.8
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP (R)}}{\text{MLHCP (L)}} \right\}$	172.5	151.8	148.0
Mounting Height D—Average spacing of outlets.	.67D	.67D	.67D
Allowable variation in mounting height	±.1D	±.1D	±.1D

### • ILLUMINATION

### CANDLE-POWER DISTRIBUTION CURVES FOR FLAT REFLECTORS—(Continued)



No. of Curve	A	В
Size of Lamp (Watts)	400	500
Size of Reflector (Inches dia.)	22"	22"
Effective Lumens per Lamp	1670	1915
Efficiency of Reflector (%) $\left\{ \frac{\text{MSCP (R)}}{\text{MSCP (L)}} \right\}$	74.4	76.9
Value as a Reflector (%) $\left\{ \frac{\text{MLHCP (R)}}{\text{MLHCP (L)}} \right\}$	140.0	145.0
Mounting Height	.67D	.67D
Allowable variation in mounting height	±.1D	±.1D





#### PARABOLIC REFLECTORS

All reflectors for headlight service for use with a point source of light are designed with a parabolic cross-section. Theoretically all rays of light emanating from the focal point of a parabola are reflected from the surface of the para-bola in straight lines, parallel to the axis of the parabola. This makes a reflector of parabolic design most efficient for reflecting light in a narrow intense beam.

Incandescent electric lamps for headlight service are made

Incandescent electric lamps for headlight service are made with a small source of light for use with parabolic reflectors. The distance from the edge of the base of the parabola next to the bulb to the center of the source of light is called the focal length of the lamp. The focal length of the reflector should bear such relation to the focal length of the lamps that by means of an adjustable socket the two can be made the same. This precludes the use of a reflector having a shorter focal length than the lamp, as the bulb will prevent the proper adjustment of the lamp for focusing. The focal length of reflectors having true parabolic cross section can be obtained by the use of the formula:

$$y^2 = 4px$$

where y = one-half the opening, x = depth from opening to rear of reflector, P = focal length.

The curves of Fig. 12 have been accurately drawn to facilitate the finding of the focal length. Measure the opening of the reflector in inches and its depth from the opening to the bottom of the reflector. For this purpose use a scale and straightedge. Lay the straightedge across the opening and measure perpendicular to it. Having these measurements, inspection of the table will determine the length.

.

•



### SECTION VIII

# ILLUMINATION OF PASSENGER EQUIPMENT AND STATIONS

### THE POST OF

BUT 147 TATE BY PORT MODERN.

### ILLUMINATION-PASSENGER TRAINS, STATIONS 215

### CAR ILLUMINATION

The proper illumination of passenger equipment and railroad equipment in general has become a very important question with Railway Electrical Engineers. Manufacturers have supplied a much felt want in the way of accessories and information concerning good practice is becoming more and more standardized.

Baggage and Express Cara: In Fig. 1 is shown the cross section of a baggage car showing the center fixture which supports a 50 watt Mazda lamp with G-30 bulb. A substantial reflector for this use is the aluminum finish on steel or enamel steel, similar to that shown in Fig. 2. The distribution of light from the unit is of great importance also, as upon it depends the satisfaction received from the system.



Fig. 1. Section of Baggage Car Showing Position of Lighting Unit





Fig. 2
HOLOPHANE-D'OLIER REFLECTOR
No. 18470
(One-third Scale)

Fig. 8

HOLOPHANE-D'OLIER
REFLECTOR No. 18460
(One-third Scale)

Postal Car Lighting: The proper directing and distribution of light in a postal car is very important. Shadows must be minimized and an intensity produced which will be ample for continued reading: Fig. 2 illustrates a reflector developed especially for this service which will prove a very satisfactory unit. The distribution curve of candle-power is shown in Fig. 4 on page 216.



Fig. 4

Unit	Lamp recommended	Position
18470	50-watt, clear bulb, tungsten, train lighting	w
18460	50-watt, clear bulb, tungsten, train lighting	w

Candle-power distribution curve given by Reflector No. 18460.

The location of units depends upon the size and spacing.

### ILLUMINATION—PASSENGER TRAINS, STATIONS 217



Fig. 5. Baggage Car Equipment

Passenger or Day Coach: The illumination of passenger cars presents greater difficulties than are met with in ordinary problems, due to the peculiar construction and interior finish. The general form of the car makes it necessary to locate lamps (contrary to accepted rules of illuminating engineering) within the range of vision of the passengers.

At the present time numerous experiments are being conducted to standardize on a unit which eliminates objectionable glare and produces a pleasing form of lighting for day coaches. On page 218 is illustrated a number of designs which, with the proper distributing and diffusing glassware, lend themselves to coach lighting very harmoniously.

The following show the distribution curves on the above types of reflectors.



HOLOPHANE REFLECTOR
No. 18226 S. F.
Shown with Fixture Made by John
Williams, Inc. (1/6 Scale). Especially Designed for Day Coach
Lighting



Fig. 8. Interior of Passenger Coach, Showing Lighting Units



Fig. 9

HOLOPHANE REFLECTOR FOR 18236 PLAIN EDGE
Shown with Fixture Made by Adams & Westlake Company
(3/16 Scale) Especially Designed for Day Coach Lighting

### ILLUMINATION-PASSENGER TRAINS, STATIONS 219



Fig. 6

Unit	Lamp recommended	Position
18226	50-watt, clear bulb, tungsten, train lighting	w
18236 plain edge	50-watt, clear bulb, tungsten, train lighting	¥



Fig. 16

Light Distribution Given by the No. 18221 and No. 18226 S. F. Reflectors

Unit	Lamp recommended	Position
18221	25-watt, clear bulb, train lighting tungsten	R
18226 S.F.	25-watt, clear bulb, train lighting tungsten	w

### ILLUMINATION-PASSENGER TRAINS, STATIONS 221

The two principal methods of arranging lamps as now followed by the majority of railroads are to adopt the center fixture scheme with either four candle-

power lamps or one large 40 candle-power lamp; or to use what is known as the semi-concealed method. The first method has been most generally adopted and is shown in section in Fig. 11.

The recommended intensities for the

illumination of cars will be found in the table under the heading of Illumination

and Photometry.

Dining Cars: In dining cars, in addition to the utilitarian, a little of the esthetic is looked for, consequently fixtures in cars of this nature are more ornamental. The lighting for this type of car has unquestionably been given more consideration than has any other type. However, the requirements are such that but very few of the methods have so far proven entirely satisfactory. tirely satisfactory.



Fig. 12

Illustrations of other fixtures found of value in dining car lighting are show in Figs. 14 and 15. The distribution curves of these units have likewise been included.



Fig. 18

HOLOPHANE REFLECTOR PLATE UNIT No. 18371 Shown with Fixture Made by Safety Car H. & L. Company (2/5 Scale)



Fig. 14
HOLOPHANE REFLECTOR PLATE
UNIT No. 18371
(2/5 Scale)
Especially Designed for Dining Car
Lighting (Half Deck Service)





HOLOPHANE-D'OLIER
REFLECTOR 18454
(1/8 Scale)
Especially Designed for Dining Car, Kitchen and Pantry Lighting





Fig. 16
Light Distribution Given by the No. 18371 Reflector Plate Unit

Unit	Lamp recommended	Position
18371	25-watt, clear bulb, tungsten, train lighting	¾ inch*

^{*}Distance end contact of lamp above top of reflector. . . .



Fig. 17 Light Distribution Given by the No. 18372 Unit

Unit	Lamp recommended	Position
18372	25-watt, clear bulb, train lighting	% inch*

### ILLUMINATION—PASSENGER TRAINS, STATIONS 225



Light Distribution Given by No. 18540 and No. 18454
Reflectors

Unit	Lamp recommended	Position
18540	15-watt, or 25-watt, clear bulb, train lighting, tungsten	R
18454	15-watt, or 25-watt, clear bulb, train lighting, tungsten	R

The lighting of the kitchen and pantry on dining cars is of importance as it affects naturally the service that can be rendered. Glass or steel is adaptable to this class of lighting choice being greatly a matter of personal like or dislike. The foregoing illustration and distribution curves show some types of units for this class of lighting.



Fig. 18

Parior Cars: Here, too, the lighting scheme should lend itself to artistic treatment. A pleasant adequate light should be produced which is devoid of sharp shadows.

### ILLUMINATION—PASSENGER TRAINS, STATIONS 227



Fig. 20

The half deck and ceiling deck light are both used, the combination of the two being the more common.

### 228 - NATIONAL ELECTRIC LAMP ASSOCIATION ...



Fig. 21

HOLOPHANE UNIT No. 18310
Shown with Fixture Made by Pullman
Company
(1/4 Scale)
Especially Designed for Sleeping Car and
Parlor Car Lighting



Fig. 22
HOLOPHANE UNIT
No. 18305
Shown with Fixture Made
by Pullman Company
(1/4 Scale)



Fig. 23
HOLOPHANE PLATFORM LIGHTING
UNIT No. 59922
(1/4 Scale)



Fig. 24
HOLOPHANE PLATFORM
LIGHTING UNIT No. 56134
(1/4 Scale)
Especially Designed for Platform Lighting



Light Distributions Given by the No. 18305 and No. 18310 Units

Unit	Lamp recommended	Position .
18305	15-watt or 25-watt, clear bulb, train lighting tungsten	Ŕ
18310	50-watt, clear bulb, train lighting	<b>X</b> .,-
°gle ≠e g (e +e g	menoral care of provide the Alexander of	16.01

The above fixtures are but indicative of many pleasing and efficient designs for car lighting.



Light Distribution Given by the No. 59922 and No. 56184 Units

Unit	Lamp recommended	Position
59922	25-watt, clear bulb, 110-volt, tungster	¼ in. below

^{*}Distance end contact of lamp to top of reflector.

### ILLUMINATION-PASSENGER TRAINS, STATIONS 281



Fig. 26

Marie Control

Sleeping, Buffet, Parlor and Club cars come all under somewhat the same head. Something out of the ordinary is desired and yet the harmony of the whole car and the efficiency must not guifer.



Fig. 27

Platform and Station Lighting: This branch of railway lighting is as vital a factor to be considered for proper lighting as any branch heretofore mentioned. On platforms a light is desired, while being fairly wide in distribution, must at the same time be shielded from the eyes of approaching engineers. Serious accidents have happened from bright lights in the direct field of vision destroying a clear view of objects ahead.

A pleasing waiting room helps greatly to dispel the long minutes between trains. A waiting room properly lighted will permit of reading at any place in it and likewise combines the artistic in just the right proportion.

### ILLUMINATION-PASSENGER TRAINS, STATIONS .283



Fig. 28

# HOLOPHANE REALITE UNIT No. 18812

Especially Suitable for Station Waiting Room Lighting



Fig. 30 No. 18312 Realite Unit

Unit	Lam	p recon	nmended	Position
18312			tungsten, tungsten,	1% inch* 2 inch*

^{*}Distance end contact of lamp above top of reflector.



### SECTION IX

### WIRE

INCLUDING GAUGES, WEATHER-PROOF WIRE, RUBBER COVERED WIRE, MAGNET WIRE, CARRYING CAPACITY, RESISTANCE, INSULATORS, MELTING POINTS AND CONDUCTIVITIES OF ALLOYS, CURRENT REQUIRED TO FUSE WIRE, RUBBER INSULATION, WIRING TABLES, WIRING FORMULAE, METHODS OF MEASURING VOLTAGE, CURRENT, AND RESISTANCE

CONDUIT
SIZE AND SPECIFICATIONS

### and the state of the

### 18 3 11 11

TUESTICAL SERVICES CONTROL OF THE CO

. 16. ver

### SOUND CHASSIFICATION OF GAUGES VILLE

In addition to the confusion taused by a multiplicity of wire gauges, several of them are known by various names. For example:

Brown and Sharpe  $(B, \&, \S) = American$  Wire Gauge  $(A, W, G_*)$ 

New British Standard (N. B. S.) — British Imperial, English Legal Standard Wire Gauge and is variously abbreviated as S. W. G. and L. W. G.

Birmingham Gauge (B. W. G.) = Stubs Old English Standard and Iron Wire Gauge.

Roebling = Washburn Moen, American Steel & Wire Co.'s Iron Wire Gauge.

London = Old English (not Old English Stad.)

As a further complication:
Birmingham or Stubs Iron Wire Gauge is not the same
as Stubs Steel Wire Gauge.

### BROWN & SHARPE'S GAUGE

Brown and Sharpe's gauge, or as it is commonly known, the B. & S. gauge, is standard for copper wire. It is understood to apply in all cases where the size of copper wire is mentioned by its wire gauge number.

Reference to the following tables will show that for all practical purposes the area in circular mils is doubled for every third size heavier by gauge number and halved for every third size lighter by gauge number.

Every tenth size larger by gauge number has ten times the area in curcular mils. No. 10 B. & S. gauge has an area of approximately 10,000 circular mils, and from this basis the other sizes can be figured, if a table should not be handy.

### GENERAL USES OF GAUGES

B. & S.—All forms of round wire used for electrical conductors. Sheet copper, Brass and German silver.

U. S. S. G.—Sheet iron and steel. Legalized by act of Congress, March 3, 1893.

B. W. G.-Galvanized iron wire. Norway iron wire.

American Screw Co.'s Wire Gauge.—Numbered sizes of machine and wood screws, particularly up to No. 14 (.2421 inch).

Stubs Steel Wire Gauge.-Drill rod.

Roebling & Trenton—Iron and steel wire. Telephone and telegraph wire.

N. B. S.—Hard drawn copper. Telephone and telegraph wire.

London Gauge-Brass wire.

### 238 NATIONAL ELECTRIC LAMP ASSOCIATION

### EQUIVALENTS; OF WIRES: (B) 4. 9. GAUGE

	0000 = 2	2-0 ==	4-8	== :	8-6	=	16-9	=	32-1	2 ==	64-15	
	900 = 2											
	00 = 2	2-2 =	4-5	=	8-8	=	16-1	1=	32-1	1 =	64-17	
	0=2	2-3 =	4-6	= :	8-9	=	16-1	2=	32-1	5		
٠ ١ ، الم		2-4 =										
	2 = 2	2-5 =	4-8	=	8-11	=	16-1	4 =	32-1	7	• • • •	
	3 = 2										• • • • •	
	4 = 2	8-7 ±	: 4-10	=	8-18	=	16 - 1	6	refre	•		
		2-8 =							die		• • • •	
٠.		2-9 =							• • • •	•		٠.
		2-10 =					• • • •			•	• • • •	
	8 = 3							•		•	• • • • •	
		2-12 =							• • • •	•!	• • • • • • • • • • • • • • • • • • • •	
		2-18 =			• • • •				• • • •	•	• • • • •	
		B-14 =			• • • •			•	• • • •	•	• • • • •	
		2-15 =			• • • •			•	••••		••••	
		2-16 =			• • • •				• • • •			* •
	14 =		• • • •		• • • •		• • • •		• • • •			•
	15 = 3		• • • •		• • • •			•	• • • •		• • • • •	
	16 = 3	z-13			• • • •		• • • •	•	• • • •	•	• • • • •	

and the second s

tera december 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997

The second of the second

## WIRE AND CONDUIT

WIRE DATA
Weatherproof Wires—Solid Conductors

ire	Diameter Over All	次 · · · · · · · · · · · · · · · · · · ·
Slow Burning Wire	Weight per Mile	88.45.25.25.25.25.25.25.25.25.25.25.25.25.25
Slov	Weight per 1,000 Feet	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
oof Wire	Diameter Over Ail	では、日本の日本の日本の一日本の日本の日本の一日本の一日本の一日本の一日本の一日本の一
Slow Burning Weatherproof Wire	Weight per Mile	455 3730 3730 2737 2737 2730 2730 2730 2730
Slow Burnin	Weight per 1,000 Feet	858888888888888 858888888888888
ā	Diameter Over All	Care and use of the contract o
Weatherproof Wire	Weight per Mile	25.55.55.55.55.55.55.55.55.55.55.55.55.5
Wea	Weight per 1,000 Fect	2882882255888441
	Size B. & S.	8880

Contraction Contraction

blander officials where

# WIRE DATA—Continued

# Stranded Conductors

į	W	Weatherproof Wire	/ire	Slow Burnir	Slow Burning Weatherproof Wire	proof Wire	Slov	Slow Burning Wire	Vire
B. & S.	Weight per 1,000 Ft.	Weight per Mile	Diameter Over All	Weight per 1,000 Feet	Weight per Mile	Diameter Over All	Weight per 1,000 Feet	Weight per Mile	Diameter Over All
230500000000000000000000000000000000000	2500 2500 2500 2500 2500 2500 2500 2500	37700 22756 22756 22866 22866 22866 11666 2766 2766 2766 2766 2766 2766 2	CO THE THE THE THE THE THE STREET THE THE THE THE THE THE THE THE THE	688.8888888888888888888888888888888888	3888 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480 112480	Compared to the compared to th	28.88.88.88.88.88.88.88.88.88.88.88.88.8	25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50	Chi to the company of the production of the company

WIRE DATA—Continued Rubber Covered Wire—Solid Conductors

		•	
	Double Braid	Weight per 1,000 Feet	8888888888888888
	Dout	Diameter Over All	and the second of the second o
Solid Colladerors	Single Braid	Weight per 1,000 Feet	888888888888888888888888888888
A	Sing	Diameter Over All	the to the property of the total to the total to the total to the total total to the total total total total to
rapper covered	Cross Section Circular Mils.		211.60 167863 167863 165867 26567 2657 2657 2657 2657 2657 2657 2
	Diameter of Conductors Mils.		<b>අ</b> ප්තීතිම්ක්තුව් කියල් සිටු සිට
	Size B. & G.		8880-444400001473558

# WIRE DATA—Continued Rubber Covered Wire—Stranded Conductors

	Weight per 1,000 Feet	25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25
Double Braid	Weig 1,000	
Dout	Diameter Over All	Settle we was been weed to be to be well and the set of
Single Braid	Weight per 1,000 Feet	\$\$%\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$
Single	Diameter Over All	Comment of the state of the sta
Diameter of	Conductors Mils.	2002587575288888888888888888888888888888
Concentric Strands	Diameter Each. Mils.	#\$####################################
Concenti	No. Wires	<b>22223338338888888888888888888888888888</b>
	B. & S.	2800000 2800000000000000000000000000000

WIRE DATA—Continued
Rubber Covered Wire—Stranded Conductors

	•	WIRE AN	ID (	COI	VDU:	IT	•		243
Double Braid	Weight per 1,000 Feet	222 227 227 227 228 252 252 252 252 252 252 252 252 252			Weight per 1,000 Feet	S10	375 307 203	143 107 78	
Doubl	Diameter Over All	also programmy of the open of		Stranded	Wè 1.0				
Single Braid	Weight per 1,000 Feet	<b>25271</b>				7 <u>7</u> 24	ध्याप्तकारमञ्जूष्टा स्ट्राप्ट इन्ह्राप्टाम्स्ट्रस्य व्यक्त	Section Sectio	are approximate but are exact enough for all practical purposes
	Diameter Over All	野野野野野野野野	d Duplex				,	· · ·	for all prac
Diameter of	Conductors -	%%%%%% ###############################	Rubber Covered Duplex		Weight per 1,000 Feet			3¥E	mact enough
Strands	Diameter - Each, Mils	88283888 883	Œ.	Solid	Diameter Over All			- ,	te but are e
Concentric Strands	No. Wires	\$				:::		#7.#	approxima
Size	B. & S.	9w4w6w8777		Sis	B. & S.	<b></b> 0400	41V1000	· 554.	All weights are
; .	í		'		٠.		٠.		1

### WIRING TABLES

### Table of Carrying Capacity of Wires

Below is a table showing the allowable carrying capacity of wires containing 98 per cent pure copper, which must be followed in placing interior conductors:

### RUBBER COVERED WIRES

B. & S. Gauge	Amperes	Circular Mils.	Amperes
18	3	200,000	200
16	6	300,000	
14	12	400,000	
12	17	500,000	390
10		600,000	
8	83	700,000	
6	46	800,000	
5		900,000	
4	65	1,000,000	
3		1,100,000	
2		1,200,000	
1		1,300,000	
		1,400,000	
00		1,500,000	
000		1,600,000	
0000	210	1,700,000	
		1,800,000	
	:	1,900,000	1,010
		2,000,000	1.0 <b>50</b>

The low limit is specified for rubber covered wires to prevent gradual deterioration of the high insulations by the heat of the wires, but not from fear of igniting the insulation. The question of drop is not taken into consideration in the above tables.

### FINE MAGNET WIRE

No.		Ohms, p	er Pound	Feet, per	Pound
B. & S. Gauge	Diameter	Single Cotton	Double Cotton	Single Cotton	Double Cotton
20 21 22 23 24 25 26 27 28 29 30 31 32 33	.0319 .0284 .0253 .0225 .0201 .0179 .0159 .0142 .0126 .0112 .0100 .0089 .0079	3.15 4.97 7.87 12.45 19.65 30.9 48.5 76.5 120. 190.5 294.5 461. 717.	3.02 4.72 7.44 11.7 18.25 28.45 44.3 68.8 106.5 164. 252. 384.5 585.	311 389- 491 624 778 958 1188 1632 1908 2461 2893 3483 4414 5688	298 \$70 461 584 903 1118 1422 1759 2207 2534 2768 3787 4697
34 35 36 37 38 39 40	.0063 .0056 .005 .0044 .0039 .0035	1715. 2640. 4070. 6180. 9430. 14200. 21300.	1315. 1960. 2890. 4230. 6150. 8850. 12500.	6400 8393 9846 11636 13848 18286 24381	6168 6737 7877 9309 10666 11907 14222

. 7

TABLE OF DIMENSIONS, WEIGHTS AND RESISTANCES OF PURE COPPER WIRE Based on Dr. Matthiesen's Standard of Conductivity

de 3

0

4		T. V	Area	WEIGHT	ar Te	Length	Kesist	Resistance at 75° F.
Gauge	Inches	Circular Mile	Square Mils	Pounds per 1,000 Ft.	Feet per Pound	Feet per Ohm	Ohms per 1,000 Ft.	Ohms per Pound
0000	460000	211600.00	166190.0	639.33	99.1	20383.0	04906	2.0
000	364890	133079.40	104520.0	402.09	40	12820.0	07801	.00019423
-	289300	83694.20	65733.0	252.88	18	8062.3	12404	.00048994
09 00	257630	52634.00	41339.0	200.54	4.99	5070.2	19723	.00078045
4	204310	41742.00	32784.0	126,12	7.93	4021.0	24869	1276100.
0.00	162020	26250 50	25998.0	100.01	12.61	3188.7	39546	0031361
7	.144280	20816.00	16349.0	62.90	15.90	2005.2	.49871	.0079294
<b>20</b> 07.	114430	13094 00	10284.0	(A)	25.28	1590.3	18282	020042
10	101890	10381.00	8153.2	31.37	31.38	1000.0	1.0000	.031380
119	080742	8234.00	6467.0	24.88	20.20	793.18	1.2607	050682
13	196120.	5178.40	1.7904	15,65	63.91	498,83		12841
14	064048	4106.70	3225.4	12.44	86.58	395.60	25.5278	20322
16	.020820	2582.9	2028.6	7.81	128.14	248.81		10213
17	.040303	1624.3	1608.6	4.91	203.76	197.30	5.0683	.81900

### Data on Solid Wires Larger than 4/0

No. B. & S. Gauge	Diameter Mils.	Circular Mils.	Feet, per Pound	Pounds per - Foot	Ohms per Mile
5/0 6/0 7/0 8/0 9/0 10/0 11/0 12/0	515 575 640 710 785 865 950	265,225 330,625 409,600 504,100 616,225 748,225 902,500 1,081,600	1.29 1.00 .81 .66 .54 .44 .87	1.00 1.24 1.53 1.86 2.25 2.73	206 165 ,183 ,108 ,089 ,078 ,060

### INSULATORS IN ORDER OF THEIR VALUE"

Dry air Shellac Paraffin Amber Resins Sulphur	Mica Ebonite Gutta-percha	
Sulphur	India-rubber	Oils

### MELTING ROINT AND RELATIVE ELECTRICAL CON-DUCTIVITY OF DIFFERENT METALS AND ALLOYS

•	Relative	Melting
<b>M</b> etals	Conductivity	Point * F.
Pure silver	100,	1878
Pure copper	100.	2550
Refined and crystallized copper	99.9	***
Telegraphic silicious bronze	98.	
Alloy of copper and silver (50%)	86.65	
Pure gold	78	2016
Silicide of copper, 4% Si		
Silicide of copper, 12% Si	54.7	
Pure aluminum	54.2	1160
Tin with 12% of sodium	46.D	
Telephonic silicious bronze	85.	- S
Telephonic silicious bronze	30.	
Pure zinc	29.9	778
Pure zinc	29.	
Silicious brass 25% zinc		· 3
Silicious brass, 25% zinc	21.5	
Phoenhor tin	17.7	
Phosphor tin  Alloy of gold and silver (50%)  Swedish iron	16.12	
Swedish iron	16.	2000
Pure Banca tin	15.45	7442
Antimonial copper		٠ <u>٠</u>
Aluminum brongo (10%)	12.6	
Aluminum bronze (10%) Siemens steel Pure platfium	12.6	¥
Dura mattern	10.6 ≛	žióo
Conner with 10% of morel	10.6	13
Copper with 10% of nickel	10.2	<u>.                                    </u>
Dronier mercurial bronze	10.14	<b></b>
Arsenical copper (10%)		٠٠٠ و
Pure lead		466
Ture tent origin the second state of the second sec	·/ 0.04	.630
Bronze with 20% of tin	7.00	4600
	7.89	2800
Phosphor-bronze, 10% tin	6.5	• • • •
Phosphor-copper, 9% phosphorus .	4.9	***
Antimony	3.88	840

CURRENT REQUIRED TO FUSE WIRES OF COPPER. GERMAN SILVER AND IRON TO A SECOND STATE OF THE SECOND SEC

B. & S.		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Gauge	Copper	German Silver Iron Amperes Amperes
Gauge	Amperes	Anness Amperes Amperes
10	333	169. 101.
11	284:	146.
12	235.	120.7
13	200.	102.6
14	166.	Att 85.2 1 6 1 1 4 6 27 50.2 36
45 45 45	139.	71.2 42.1
16	117.	60. • 85.5
17	$\overline{99}$ .	50.4
18	82.8	42.8: 25.1
19	66.7	34.2 1 20.2
20	58.6	17.7
21	49.3	25.31
22	41.2	21.1
28	34.5	1000 17.70 / Let / 33.10.9 / /
24	28.9	14.80 10 10 10 10 18.78
25	24.6	12.6
26	20.6	10.6
27	17.7	9.1
. 28	14.7 12.5	6.41 (10.00) 14245.37 (10.00) 14245.37 (10.00)
20	10.25	5.2681 1 1 16 ti 31100
31	8.75	4.49
5 32 C	7.26	3.73
38	6.19	3:18° 0 la 6/2 ta P.38 3.11
2001 1 <b>84</b> 1	5.12	2.64
35	4.37	2.24
36	8.62	1.86
87	3.08	1.58 7
38	2.55	1.31
39	2.20	1.13 .67 (1)
40	1.86	.5 <b>6</b>

# RUBBER COVERED WIRE

Too much stress cannot be laid on the importance of Too much stress cannot be laid on the importance of properly wiring the car. While no two railroads follow the same methods in wiring the different classes of cars, there are several general rules that should be rigidly followed. All wiring should be in fron pipe conduit, and as near watertight as it is possible to make it. Whenever taps or

watertight as it is possible to make it. Whenever taps or connections are made junction boxes should be used, so located that in case of a short circuit or ground the replacement of a wire would be an easy matter.

Only rubber covered wire should be used. This does not mean the ordinary code wire. Some engineers appear to think that all wire is satisfactory if it conforms to the National Code or Board of Fire Underwriter's Rules. They will examine carefully all the other features of the lighting system but will pass carelessly over the duestion or wire, apparently considering all wires alike. They labor under the mistaken assumption that the common identity of copper establishes a relationship of equality.

The wiring is just as important as any other detail and badly insulated wire is not only a menace but a peril to the success of any lighting system. The wires should be properly tested and installed and the insulation must be perfect.

Much wire passes under the misleading name of "Rubber Covered" when, as a matter of fact, there is not one ounce of rubber in its composition. It is composed of rubber substitutes and cheap ingredients, and as one writer aptly states, bears as much relation to pure rubber as a burnt cinder to a lump of coal. Such insulation fails an easy prey to temperature variations and climatic conditions and soon disintegrates, as, having no rubber, it possesses no vitality, no dislectric strength and no capacity for work. Consequently it is entirely worthless and should under no conditions be used. The fault lies, not with the manufacturers, but with the rules which require a certain thickness of insulation and do not specify whether this insulation shall be composed of clay or rubber.

On the other hand, rubber by itself is worthless as an insulating material-for the reason that in its natural condition it absorbs more or less moisture and when exposed to the air rapidly oxidizes. This naturally precludes its use for insulating material, but, in conjunction with the proper ingredients and when properly vulcanized, it becomes not only waterproof but almost indestructible under normal

not only waterproof but almost indestructible under normal

conditions.

Vulcanization, when properly done, does not alter the constitution of rubber but it can be made to adversely affect or deceptively modify its behavior. When over-vulcanized it becomes hard and brittle, and when under-vulcanized it becomes fiabby and inert. In the one case, under a tensile test, the insulation will break and in the other it will stretch

test, the insulation will break and in the other it will stretch but not recover.

Good insulation is indicated by its ability to withstand a tensile test of 800 lbs. per square inch without exceeding its elastic limit. This test can be approximated by stretching the insulation several times to three or four times its original length. While the insulation may be considered satisfactory, if it recovers and jumps back to its original form with a vigor similar to a magnetic pull after the elongation test, nevertheless the tensile test outlined above is much preferable in weeding out the cheaper grades of rubber. rubber.

rubber. This tensile test is easily obtained where there is 30 per cent Fine Para in the insulation. It can also be satisfactorily fulfilled where there is a less amount of Para and from 40 to 50 per cent of a cheaper grade of rubber. This is, of course, a serious drawback where the best results are desired. The test, however, if it does not assure the best, nevertheless wipes out the cheaper substitute and assures an insulation that if not equal in durability to 30 per cent of Para is immeasurably superior to anything that can be obtained short of a chemical analysis.

### WIRING FORMULÆ

Ohm's Law: The Electrical Units-volt, ohm and amperewhich are most frequently used, have fortunately been established so as to bear simple but important relations to one another, based upon the current increasing and decreasing with the voltage, but increasing when the resistance decreases, and decreasing when the resistance increases. Using the symbols mentioned above, this is expressed in the following equation:

the following equations:

$$I = \frac{E}{R} \quad E = IR \quad R = \frac{E}{I} \quad EI \text{ (or watts)} = I^a R$$

$$EI \text{ (or watts)} = \frac{E^a}{R}$$

Kirchhoff's Laws: Kirchhoff's Laws, of which there are two, are of especial value in dealing with a network of conductors.

First Law: The algebraic sum of all the currents at any point is equal to zeró. From Fig. 1

$$+ I - i_1 - i_2 - i_3 = 0$$
  
or  $I = i_1 + i_2 + i_3$ 

Second Law: In any, closed circuit the algebraic sum of the ir drops is equal to the e.m. fs.



Fig. 1

From Fig. 1

$$\begin{aligned}
 i_1 \mathbf{r_1} - i_2 \mathbf{r_2} &= 0 \\
 i_2 \mathbf{r_2} - i_3 \mathbf{r_3} &= 0 \\
 i_1 \mathbf{r_1} + \mathbf{Ir} &= \mathbf{e}
 \end{aligned}$$

Shunt Circuit: In any shunt circuit the sum of the reciprocals of the individual resistance equals the reciprocal of the effective or equivalent resistance.

From Fig. 1

$$\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$$

Series Circuit: In series circuits the resistances are added arithmetically, while the e, m, fs, are added algebraically.

#### WIRING FORMULA FOR DIRECT CURRENT

Wiring Formula: From Ohm's Law, the proper size of wire that should be used to carry a current any distance with a given loss in volts can be readily determined.

1 = Distance (one way) in feet. I = Current in amperes.

ن بنایهٔ داد

CM = Circular mils—cross sectional area of wire.

Volts lost 
$$= \frac{1 \times 21.5 \times I}{\frac{CM}{1 \times 21.5 \times I}}$$
Circular mils 
$$= \frac{1 \times 21.5 \times I}{\text{volts lost}}$$

In above, the number of feet must be measured one way, not both sides of the circuit; volts lost should be taken as the drop allowed in volts, and circular mils show the size of wire to use.

Example: What size wire should be used on a 250-volt circuit where it is necessary to carry 200 amperss a distance of 350 feet to a center of distribution with a loss of 3 per cent under full load?

3 per cent of 250 = 7.5 volts lost.

= 200667 circular mils, or No. 0000 B. & S. gauge, which is the next size heavier. 350 x 200'x 21.5

In using this or any other formula to determine the size of copper to use, care should be taken to see that the size adopted is not smaller than allowed in the Underwriters' table of safe carrying capacities, which are fixed without considering the loss in line.

The general practice in balanced 3-wire direct current systems with a central neutral wire is to figure the line loss on the same basis as a 2-wire system of the voltage between the two outside wires with the amount of current carried in the outside wires. The central neutral wire should be made the same size as either of the others.

Reason Why: For the benefit of those who care to know the reason why, the above wiring formula is based upon one foot of copper wire, with a cross sectional area of one circular mil, having a resistance very close to 10.75 ohms; or upon one feet of copper wire, with a cross sectional area of 10.75 circular mils, having a resistance very close to 1 ohm. Hence the resistance of any copper wire.

Length in feet x 10.75

circular mils

Substituting this expression for R in Ohm's Law:

Ix length in feet x 10.75  $\mathbf{E} = \cdot$ 

circular mils

Ix length in feet x 10.75

and circular mils =

E:

In the wiring formula, however, the length in feet is considered the "run," or one side of the circuit, hence the resistance is doubled and the term 10.75 must be multiplied by 2.

#### WIRING FORMULA FOR ALTERNATING CURRENT-

I = current in line in amperes.

W = energy delivered in watts. E = voltage between mains.

P.F. = power factor.

Then

 $I = \frac{W}{E \times P.F.}$  for single phase circuit.

 $I = \frac{1}{E \times P.F.}$  W  $E \times P.F.$  for two-phase circuit.

 $\frac{1}{E \times P.F}$  for three-phase circuit. I = 0.58 x -

When the power factor cannot be accurately determined it may be assumed as follows: Lighting load with no motors, 0.95; lighting and motors, 0.85; motors only, 0.80. From the above formula, if W, E and P.F. are the same, it will be seen that:

The current in each wire two-phase equals 0.5 the circuit

The current in each was the current in each wire single-phase.

The current in each wire three-phase equals 0.58 the current in each wire single phase.

The current in each wire three-phase equals 1.16 the current in each wire two-phase.

In alternating current systems of wiring, single-phase or 4-wire two-phase, that carry non-inductive loads, such as incandescent lamps, the printed formula should be used. When the load is inductive, such as motors or are lamps, an addition of 25% to the number of circular mile obtained. by the wiring formula is recommended if the size of wise-required has been figured on the same basis as used for direct current, to compensate for the power factor. Staglephase 3-wire circuits, if non-inductive, may be figured on

phase 3-wire circuits, if non-inductive, may be figured on the same basis as direct current 3-wire systems.

Three-Phase Wiring: In a 3-wire balanced three-phase systems, which is later idivided into three single-phase systems, the current in each wire, up to the point where the 3-wire system is divided in 2-wire, is  $\sqrt{3}$  (1.732) times the amount it would be if three separate single-phase circuits were used, owing to each wire having to carry current for each phase.

For example in carrying 600 incondescent lamps of 5 amounts of 5

For each phase. For example, in carrying 600 incandescent lamps of .5 amperes each, 200 on each phase, each phase would carry 100 amperes. The current in each of the three wires, however, would be  $100 \times \sqrt{3} \pm 173.2$  amperes, and this quantity should be used in the wiring formula. In other respects the three-phase 3-wire system may be figured the same as a 2-wire system, and each of the three wires made the same as  $2 \times 10^{-1}$  system, and each of the three

wires made the same size.

Three-phase motors generally bear the manufacturer's name plate showing the amperes per phase, which represents the total current in each live wire, so the factor 3 should not be used to obtain the size of copper. In general;

h.p. = 
$$\frac{\text{Amps. per phase } \pm \text{ volts } \times \sqrt{3} \times \text{P.F.}.}{\frac{746}{\text{h.p.} \times 746}}$$
Amps per phase = 
$$\frac{\text{volts } \times \sqrt{3} \times \text{P.F.}}{\text{volts } \times \sqrt{3} \times \text{P.F.}}$$

The term P.F. is less than unity and varies approximately from 0.65 for 1 h.p. to 0.90 for 50 h.p. motors.

From switchboard voltmeters and ammeters the total load equals:

Watts = amps. per phase x volts  $x \sqrt{3} \times P.F.$ 

# IMPORTANCE OF HIGH RESISTANCE FOR ' A CARLON AND A COLTMETERS AND A STATE OF THE STATE OF THE

43. 1 44 . 19 It is highly important, as reducing the error in measure-ment, that the internal registance of a voltmeter be as high as practicable, as is shown in the following example:

Let E in the figure be a dynamo; battery, or other source of electric energy, sending current through the resistance rand vm. be a voltmeter indicating the pressure in volts between the terminals A and sure in volts between the terminals A and B. Before the vm. is connected to the terminals A and B there will be a certain difference of potential, which will be less when the voltmeter is connected, owing to the lessening of the total resistance between the two points; if the resistance between the two points; if the resistance of the vm. be high, this difference will be very small, and the higher it is the less the error. Following are the formulæ and computations for determining the error.

In Fig. 2 let E be the e.m.f. of the dynamo, r the resistance of the circuit as shown between A and B, and r, be the resistance of the leads A and B plus that of the dynamo, and let R be the resistance of the voltmeter; then before the vm. is connected the difference between A and B will be



Martiners of the market

14.1

$$e = \frac{1}{r + r} \times E$$

and after connecting the voltmeter it will be

$$z_1 = \frac{R \times r}{R \times r + r \times r_1 + r_2 \times R} \times E,$$

The difference between the two results e and  $e_1$  is then

$$e-e_1=\frac{1}{R}\times\frac{r\times r_1}{r+r_1}\times e_1,$$

and this difference will be smaller the greater the resistance R of the vm. is.

Example—

Let

$$E = 10 \text{ volts}$$
  
 $r = 10 \text{ ohms}$   
 $r_1 = 2 \text{ ohms}$   
 $R = 500 \text{ ohms}$ 

$$1 = \frac{500 \times 10}{500 \times 10 + 10 \times 2 + 2 \times 500} \times 10 = 8.3056;$$

$$e - e_1 = \frac{1}{500} \times \frac{10 \times 2}{10 + 2} \times 10 = .0333.$$

If R be made 1000 ohms, then

$$e_1 = \frac{1000 \times 10}{1000 \times 10 + 10 \times 2 + 2 \times 1000} \times 10 = 8.32,$$

$$e - e_1 = \frac{1}{1000} \times \frac{10 \times 2}{10 + 2} \times 10 = .0166$$

or just one half of the error; it may be said that the error is therefore in inverse proportion to the resistance of the

If the error of measurement is not to exceed a stated per cent p, then

r and  $r_1$  must be such that  $\frac{r \times r_1}{r + r_1}$  is smaller than  $\frac{p \times R}{100}$  ohms.

If the circuit is not closed by a resistance r, then with vm connected between A and B

$$e_1 = \frac{R}{R+r} \times E_r$$

connected  $e_1 = \frac{K}{R + r_1} \times E,$  and the error between the true value and that shown on the vm is  $E - e_1 = \frac{r_1}{R} \times e_1$ 

$$E-e_1=\frac{n_1}{D}\times e_1$$

and this error decreases in inverse proportion to the increase of the ratio between R and the internal resistance of the current generator r.

If the error is not to exceed 'p per cent, then the internal

resistance  $r_1$  must be less than  $\frac{p \cdot \triangle A}{100}$  ohms.

The e.m.f. of high-resistance cells cannot be correctly measured by the above method, even with voltmeters of

relatively high resistance, but it is better done by one of the methods mentioned below.

COMPARISON OF E. M. F. OF BATTERIES Wheatstone's Method: To compare e.m. f. of two batteries A and X, with low-reading voltmeters, let E be the e.m. f. of A, and E, the e.m. f. of X.

First connect battery A in



First connect battery A in series with the voltmeter and a resistance r, switch B being closed, and note the deflection V; then open the switch B, and throw in the "resistance r, and note the deflection  $V_1$ . Now connect battery X in place of A, and

ris. 3 close the switch B, and vary the resistance r until the resistance r₂; next open the switch B, or otherwise add to the resistance r₃ until the deflection V₁ of the voltmeter is produced; call Chis added resistance r₃. Then

 $E: E_1:: r_1: r_2$ If E be smaller than  $E_1$ , the voltmeter resistance R may be taken as r, and it is better to have  $r_1$  about twice as large as the combined resistance of r and the resistance

It is not necessary that the internal resistance of the cells be small as compared with R.

#### MEASURING CURRENT STRENGTH WITH A VOLTMETER

If the resistance of a part of an electric circuit be known, taking the drop in potential around such resistance will determine the current flowing by Ohm's Law, viz.,

$$a : I = \frac{E}{R}$$

In the figure let r be a known resistance between the points A and B of the circuit, and I the strength of current to be determined; then if the voltmeter, connected as shown, gives a deflection of V voits, the

current flowing in r will be I = -

For the corrections to be applied in certain cases, see the section on Importance of High Resistance for Voltmeters.

Always see that the resistance r has enough carrying



capacity to avoid a rise of temperature which would change its resistance. i

. If the reading is exact to --- volt the measurement of cur-rent will be exact to-- amperes. If r = .5 ohm. and the

feadings are taken on a low-reading voltmeter, say ranging from 0 to 5 volts, and that can be read to 100 volt, then the possible error will be

and

$$\frac{1}{300 \times .5} = \frac{1}{150}$$
 ampere.

If r be made equal to 1 ohm, then the volts read also mean amperes.

Measurement of Very Heavy Currents with a Millivoltmeter: For this purpose the method outlined above is most generally used with the substitution of a millivoltmeter for the voltmeter.

Where portable instruments are used, there must be a calibrated shunt for the millivoltmeter, the shunt being made up of a metal that does not vary in resistance with change of temperature, and which is placed in series in the circuit, the millivoltmeter simply giving the drop around this shunt, its scale being graduated in amperes.

For switchboard instruments the method is the same, being varied sometimes by using as a shunt a measured part of a conductor or bus bar in place of a special resistance,

#### MEASURING RESISTANCE WITH A VOLTMETER ...

General Methods: In the figure, let X = the unknown resistance that is to be measured, r = a known resistance, E the dynamo or other steady source of e m. f.

When connected as shown in the figure, let the voltmeter reading be  $V_1$ ; then connect the voltmeter terminals to r in the same manner and let the reading be  $V_1$ ; then.



If, for instance, r=2 ohms and V=3 volts and  $V_1=4$  volts, then



Fig. 5

$$X = \frac{2 \times 3}{4} = 1.5$$
 ohms.

If readings can be made to  $\frac{1}{160}$  wolt, the error of resistance measurement will then be

$$100 imes \frac{1}{100} \left( \frac{1}{\nu} + \frac{1}{\nu_1} \right)$$
 per cent.

and for the above example would be  $1(\frac{1}{2} + \frac{1}{4}) = 0.58\%$ .

Should there be a considerable difference between the magnitudes of the two resistances X and r, it might be better to read the drop across one of them from one scale, and to read the drop across the other on a lower scale.

Resistance Measurement with Voltmeter and Ammeter:

The most common modification of the above method is to insert an ammeter in place of the resistance r in the last

figure, in which case  $X = \frac{V}{I}$  where I is the current flow-

ing in amperes as read from the ammeter.

If the readings of the voltmeter be correct to 100 and the

animater readings be correct to the same degree, the yes-sible error becomes:

$$100 imes \left( rac{1}{100 \ V} + rac{1}{100 \ I} 
ight)$$
 per cent.

Measurement of Very Small Resistances with a Millivoltmeter and Ammeter: By using a millivoltmeter in connection with an expense of very



g a millivoltmeter in connection with an ammeter, very small resistance, such as those of bars of copper, armature resistance, etc., can be accurately measured.

In order to have a reasonable degree of accuracy in measured. In order to have a reasonable degree of accuracy in meastring resistance by the "drop!" method, as this is called, it is necessary that as heavy currents as may be available be! used. Then, if E be the dynamo or other source of steady e. m. f., X be the required resistance of a portion of the bar, V be the

a portion of the bar, V be the drop in potential between the points a and b, and I be the current flowing in the circuit as indicated by the ammeter, then

$$X = \frac{v}{l}$$

The applications of this method are endless, and but a few, to which it is especially adapted, need be mentioned here. They are the resistance of armatures, the drop being taken from opposite commutator bars and not from the brush holders, as then the brush contact resistance is taken in; the resistance of station instruments and all switchboard appliances, such as the resistance of switch contacts; the resistance of bonded joints on electric railway work.

Measurement of High Resistances: With the ordinary voltmeter of high internal resistance, let R be the resistance of the voltmeter, X be the resistance to be measured. Connect them up in series with some source of electro-motive force as in the following figure:

Close the switch b, and read the voltage V with the resistance of the voltmeter alone in circuit; then open the switch, thus cutting in the resistance X, and take another reading of the voltmeter,  $V_1$ .



## MEASURING THE INSULATION OF LIGHTING AND POWER CIRCUITS WITH A VOLTMETER

For rough measurements, where the exact insulation resistance is not required, but it is wished to determine if such resistance exceeds some stated figure or rate, then the method above given will do, when applied as follows:

Let X = Insulation resistance to ground as in figure, X = Insulation resistance to ground of opposite lead. R = Resistance of voltmeter.

V =Potential of dynamo E.

 $V_{=}$  Reading of voltmeter, as connected in figure.  $V_{=}$  Reading of voltmeter, when connected to opposite

Then 
$$X = R \left( \frac{V}{V_{\prime}} - 1 \right)$$
 and  $X_i = R \left( \frac{V}{V_{\prime\prime}} - 1 \right)$ .

Fig. 8

The above formula can be modified to give results more nearly correct by taking into account the fact that the path through the resistance R of the voltmeter is in parallel with the leak to ground on the side to which it is connected as shown in the following figure:



In this case the voltage V of the circuit will not only send current through lamps, but through the lamps, the leaks e f to ground, and through the ground to d and c, thence through d to b, and c to a, these two last being baths in parallel. therefore having less resist-

ance than if one alone was used; thus if r be the resistance of the ground leak b d, and r, be the resistance of the total resistance by way of the ground, between the conductors, would be

and if 
$$V = \text{voltage of the circuit,}$$

$$v = \text{reading of voltmeter from } a \text{ to } c,$$

$$v_t = \text{reading of voltmeter from } g \text{ to } c,$$

$$r = R \left( \frac{V - (v + v_t)}{v_t} \right).$$
and 
$$r_1 = R \left( \frac{V - (v + v_t)}{v_t} \right).$$
The sum of the resistance  $r + r_1$  will be  $R \left( \frac{(v + v_t)(V - (v + v_t))}{v_t} \right)$ 

#### MEASURING THE INSULATION OF DYNAMOS

The same formula as that used for measuring high resistances (see Fig. 7) applies equally well to determining the insulation of dynamo conductors from the iron body of the machine.

body of the machine.
Connect as in Fig. 10 all symbols having the same meaning as before.

meaning as before. Let r = insulation resistance of dynamo, then



Fig. 10

# $r = R\left(\frac{1}{V_i} - 1\right)$

# MEASURING THE INSULATION RESISTANCE OF MOTORS

Where motors are connected to isolated plant circuits with known high insulation, the formula used for insulation of dynamos applies; but where the motors are connected to public circuits of questionable insulation it is necessary to first determine the circuit insulation, which can be done by using the connections shown in Fig. 8. Fig. 11 shows the connections to motor for determining its insulation by current from an operating circuit.



Fig. 11

Here, as before, the insulation r of the total connected devices =

$$R\left(\frac{V}{V_{i}}-1\right)$$

If r = total resistance of circuit and motor in multiple to ground, and r, is the insulation of the circuit from ground, then X, the insulation of the motor, will be

$$X = \frac{r_i \times r}{r_i - r}$$

# MEASUREMENT OF THE INTERNAL RESISTANCE OF

In the following figure (No. 12), let E be the cell or battery whose resistance is to be measured, K be a switch, and r, a suitable resistance.

Let V = the reading of voltmeter with the key, K, open (this is the e.m. f. of the battery), and  $V_I$  = the reading of voltmeter with key, K, closed (this is the drop across the resistance r). Then the battery resistance



Fig. 12

$$r_i = r \times \frac{V - V_i}{V}$$
 ohms.

WROUGHT IRON WELDED STEAM, GAS AND WATER PIPE—Table of Standard Dimensions

Number	per Inch of Screw		2 x x 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Nominal	Weight per o	Pounds	2-1885:3848:888:888:888:888:888:888:888:888:88
Leagth of Pipe		Peet	<u> </u>
Pipe per Poot of	Internal	Feet	43-0-4-8-0-0-1-1-1 #\$\table 83.48228.886.026.0888888888828867 0-1-
Length of Pipe per Square Foot of	External Surface	Peet	2502029898888288282888888888882822555
. 2	Metal	S. Ins.	23.55.55.55.55.55.55.55.55.55.55.55.55.55
fransverse Areas	Interpal	So fre.	<u> </u>
Tra	External	Sq Ins.	59843845944400755248486855755524288 59843845945383838545446586868595444
erence	Internal	Inches	######################################
Circumference	External	Inches	
Thickness		Inches	3882555445444444444444444444444444444444
	Actual	Inches	r¥ŧġġśw≘z&ægg≫&ggben nunnun
Dispreter	Actual External	Inches	\$\$\text{27.57.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$\tag{27.57.58827}\$\$
	Nominal Internal	Inches	**************************************

# TABLE OF EQUATION OF PIPES (Standard Steam and Gas Pipes.)

5 3 3

Dia	The Tourse or was or sing two
17	282428 486 588 288 484 588 888 1
16	28.50.20.20.20.20.20.20.20.20.20.20.20.20.20
12	28.58.28.28.28.29.29.29.29.29.29.29.29.29.29.29.29.29.
14	2522821-1800-04-001-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
13	\$25000000000000000000000000000000000000
12	8878 21 5885 04 494 1 1 1 499 8 6 5 5 KB
1	#8460-00110888E12
10	\$700-574004014   1-1-000044047754
6	5558588 4-0-1
20	のできた。まであるので、またことではなるできればいません。 であるともよるのでは、 多部でいるができるできる。
7	24228以び04411 - 144444448 2017以42 1044844 48222以2以は20142244
9	名に記述で1-04-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
in	282525   12
4	804 wowd
60	**************************************
27%	821-4-1 -400572848888 044-80 3050-0000-10088741888-857
2	#4-0-1 6-0-8-2 8-1-20-4-5-1-8-4-5-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2
142	824. 244.7.88.845 824. 244.7.88.845 824. 244. 244. 244. 244. 244. 244. 244.
Ţ	25.25.25.25.25.25.25.25.25.25.25.25.25.2
35	25.25.25.25.25.25.25.25.25.25.25.25.25.2
1/2	27.7.2. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.3.8. 28.7.8. 28.7.8. 28.7.8. 28.7.8. 28.7.8. 28.7.8. 28.7.8. 28.7.8. 28.7.8. 28.7.8. 28.7.8. 28.7.8. 28.7.8. 28.7.8. 28.7.8.
Dia	724 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Actual Internal Diameters

# 260 NATIONAL ELECTRIC LAMP ASSOCIATION

# CONDUIT SIZES FOR DIFFERENT SIZE WIRES

				Size of Pipe	:
No. B, & S.	Circular Mils	Amperes Rubber	1 Wire	Wire	3 Wire
18	1,624	3 6	3/2	1/2	1/2
16	2,583	6	1/2	1/2	1/2
14	4,107	12	1/2	1/2	3/4
12	6,530	17	1/2	3/4	3/4
10	10,380	24	1/2	3/4	1
8	16,510	33	1/2	1	1
5	26,250	46 54	24	11/	11/4
5	33,100 41,740	65	74	174	11/4
3	52,630	76	34	11/4	17
8 6 5 4 3 2	66,370	90	34	114	2"
ĩ	83,690	107	1 24	11/2	2
· 0	105,500	127	î	2 /2	2
- 00	133,100	150	1	2	2
000	167,800	177	11/4	2	21/
0000	211,600	210	134	2	21/2
<i>έ</i>	200,000	200	11/4	2	21/2
	250,000	235	11/2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21/2
	300,000	270	11/2	21/2	3
••••	350,000	300	11/2	2½ 3 3	3
• • • • •	400,000	330 380	11/2	3	3
*** • •	450,000	390	2	3	91/
	500, <b>000</b> 550,000	420	2	31/4	A 72
	600,000	450	2 2 2 2 2 2 2	314	ā
	650,000	475 -	2	314	â
	700,000	500	2	31/4	4
	750,000	525	2	31/2	4
	800,000	550	2	31/2	4
	850,000	575	21/2	4	4
	900,000	600	21/2	4	41/
	950,000	625	21/2	4	41/
	1,000,000	650	21/2	4	41/2
	1,100,000	690	21/2	4	5
	1,200,000 1,300,000	730 770	21/4	414	5 6
	1,400,000	810	3	41/2	6
	1,500,000	850	3	5 72	6
}	1,600,000	890	3	5	6
	1,700,000	930	3	5	6
	1,800,000	970	3	5	7
1	1,900,000	1,010	3	6	7 7 7
	2,000,000	1,050	3	6	7



Fig. 18

The table of Equation of Pipes, page 259, gives the number of pipes of one size required to equal in delivery larger pipes of equal length and conditions. That portion of the table above the diagonal line pertains to "standard" steam and gas pipes. That part below this line refers to pipes of the "actual" given internal diameters. The intersection of any two sizes gives the number of the smaller size of pipe required to equal one of the larger size in delivery. Thus it requires 8 five-inch pipes to equal 1 eleven-inch pipe.

In laying out a conduit job, first ascertain the size and number of wire required, then take the proper size of conduit from table on page 260. One half inch is the smallest size conduit permitted by the National Electric Code and is generally used for branches. One pull box will take the place of several elbows and will be found most conomical for making turns in running several conduits together.

Wire should never be pulled through conduit with block and takle; as it will not only injure the insulation but is likely to so wedge the wires that they cannot be removed to so wedge the wires that they cannot be removed readily. 1. S. 10.

Use no other lubricants than Ivory soap or soapstone to facilitate pulling wires in conduit.

Wherever conduit is cut ream out the end, as otherwise the burr may cut through the insulation on the wires. Plug all exposed ends of conduit in new buildings to prevent plaster and dirt from falling into it.

Securely fasten all conduit by pipe straps or better.

Following are specifications for fron pipe conduit used by one of the largest railroad systems in this country. They are given as a matter of information to those who, while not having anything to do with writing specifications, are, nevertheless, more or less interested.

# SPECIFICATIONS FOR IRON PIPE CONDUIT

General: Conduit for electric train-lighting purposes should be wrought iron or steel pipe, galvanized both outside and inside, and should conform to the following table of weights and dimensions, a maximum variation of five (5) per cent below the respective weights being allowed.

	Diameter of Con-	duit	Thickness	Weight pe Foot Pounds	
Nominal	External	Internal	of Metal Inches		
½ in.	.840 in.	.620 in.	.110	.85	
34 in.	1.05 in.	.824 in.	.113	1.115	
1 / in.	1.315 in.	1.047 in.	.134	1.668	
1% in.	1.660 in.	1.380 in.	.140	2.244	
1% in.	1.900 in.	1.610 in.	.145	2.670	
2 in.	2.375 in.	2.067 in.	.154	3,609	
21/2 in.	2.875 in.	2.467 in.	.204	5.739	
3 in.	3.500 in.	3,066 in.	.217	7.536	

Lengths: The conduit should be furnished in lengths of ten (10) feet, each end being threaded with a standard pipe thread, and with each length should be furnished one coupling; provided, however, that, if desired, the conduit may be ordered cut to specified lengths.

Galvanizing: The interior of the conduit must be free from burrs and fins and the ends of the conduit should be cut square and reamed smooth. Pipe and couplings should be galvanized separately.

All bends of the radius given in the following table or smaller should be galvanized after bending.

Size o																			of Ber	ađ
1/2	in.	٠.															 	4.25	in.	
3/4																		5.50		
1	in.					٠.											 	5.75	in.	
11/4	in.									 					٠.	٠.	 	7.25	in.	
11/2	in.		٠.							 							 	8.50	in.	

All blistered or defective pieces of conduit should be rejected.

Tests: Two samples, not less than one foot in length, of each size of conduit should be selected at random from each one thousand (1000) feet or fraction thereof of conduit ordered, and tested as follows:

ordered, and tested as follows:
The sample should be immersed in a standard solution of copper sulphate for one (1) minute, then removed and immediately washed thoroughly in water and wiped dry. This process to be repeated twice. If after the second (2) immersion, there should be a copper-colored deposit on the sample or the zinc should have been removed the sample to be considered as failing to pass the test.

Standard Solution Cu SO₄: The standard solution of copper sulphate (Cu SO₄) consists of a solution of commercial copper sulphate crystals in water. This solution should have a specific gravity of 1.185 at 70° Fahr. While the sample is being tested the temperature of the standard solution should at no time be less than 60° or more than 80° Fahr.

•

.

e de la companya de l 

•



# SECTION X

# **GENERAL DATA**

INCLUDING GEARS, BELTING, PULLEYS, SHAFTING, ROPE DRIVE, BEARINGS AND FRICTION ing the state of t

.

#### 1216 La L 622 15 62 **GEARING**

The circular pitch of a gear wheel is the distance in inches measured on the pitch circle from the center of one tooth to the center of the next tooth.

If the distance of the teeth of a gear thus measured were 2½ inches, we would say that the circular pitch was 2½ inches.

Let P = Circular pitch.

D = Diameter of pitch circle, in inches.

C = Circumference of pitch circle, in inches.

N = Number of teeth.

14432 2000

 $\pi = 3.1416.$ 

$$P = \frac{C}{N} \text{ or } \frac{\pi D}{N} \quad N = \frac{C}{P} \text{ or } \frac{\pi D}{P}$$

$$C = PN \text{ or } \pi D, D = \frac{PN}{\pi} \text{ or } \frac{C}{\pi}$$

Addendum = 3 P. Root = .4 P.

Thickness of teeth for cut gear = .5 P; for cast gear .48 P. The diametral pitch of a gear wheel is the number of teeth in the wheel divided by the diameter of the pitch circle in inches, or, it is the number of teeth on the circumference of the gear wheel for one inch diameter of pitch circle.

A gear with a pitch diameter of 5 inches and having 40 teeth is 3 pitch; one with the same pitch diameter and having 70 teeth is 14 pitch.

In the gear of 8 pitch there are 8 teeth on the circum-ference for each inch of the diameter of the pitch circle; and in one of 14 pitch there are 14 teeth on the circum-ference for each inch of the diameter of the pitch circle.

Let P = Diametral pitch.

D = Diameter of pitch circle, in inches.

N = Number of teeth.

d = Outside diameter.

l = Length of tooth.

t = Thickness of tooth.

$$P = \frac{N}{D}$$
  $D = \frac{N}{P}$   $N = PD$   $d = \frac{N+2}{P}$   $I = \frac{2.157}{P}$   $t = \frac{1.57}{P}$ 

The circular pitch corresponding to any diametral pitch may be found by dividing 3.1416 by the diametral pitch; and the diametral pitch corresponding to any circular pitch may be found by dividing 3.1416 by the circular pitch.

- (a) If the diametral pitch of a gear is 6, the correspond-8.1416 ing circular pitch is -- = .5236 in.
- (b) If the circular pitch is 1.5708 inches, the correspond-**3.1416** . ing diametral pitch is -

# PITCH Inch of the Pitch Diameter GEAR TABLE—DIAMETRAL Diametral Pitch is the Number of Teeth to Each I

To Get	Having	Rule
Diametral pitch Diametral pitch Diametral pitch Pitch diameter	Circular pitch Pitch diameter and number of teeth Outside diameter and number of teeth. Number of teeth and diametra pitch Number of teeth and outside diameter.	Divide 3.1416 by the circular pitch. Divide number of teeth by pitch diameter. Divide number of teeth plus 2 by outside diameter. Divide number of teeth plus 2 by outside diameter. Divide number of teeth by the diameteral pitch.
itch diameter	Pitch diameter Outside diameter and diametral pitch	teeth by number of teeth plus 2. Subtract from outside diameter the quotient of 2 di-
Pitch diameter Outside diameter Outside diameter	Addendum and number of teeth Number of teeth and diametral pitch Pitch diameter and diametral pitch	Nultiply addendum by the number of teeth. Divide number of teeth plus 2 by the diametral pitch. Add to the pitch diameter the quotient of 2 divided by
Outside diameter	Pitch diameter and number of teeth	Divide product of number of teeth plus 2 and pitch
Outside diameter Number of teeth	Number of teeth and addendum Etch diameter and diametral pitch Outside diameter and diametral pitch	dameter by the number of teeth.  Mutiply the number of teeth plus 2 by addendum.  Multiply pitch diameter by the diametral pitch.  Multiply outside diameter by the diametral pitch and
Thickness of teeth Diametral pitch	Diametral pitch	Subtract 2. Divide 1.5708 by the diametral pitch.
Addendum	Diametral pitch	Divide 1 by the diametral pitch, or s =
Root Working depth Whole depth	Diametral pitch Diametral pitch Diametral pitch Diametral pitch Thickness of control	Divide 1.157 by the diametral pitch.  Divide 2.157 by the diametral pitch.  Divide 2.157 by the diametral pitch.  Divide 1.157 by the diametral pitch.  Divide thickness of tooth at mirch line by 10

#### Diametral Pitches With Their Corresponding Circular Pitches

Diametral Pitch, or Teeth per inch in Diameter	Corresponding Circular Pitch	Diametral Pitch, or Teeth per inch in Diameter	Corresponding Circular Pitch
1 2 3 4 5	3.1416 1.5708 1.0472 .7854 .6283 .5236	8 9 10 12 14 16	.3927 .8491 .3142 .2618 .2244 .1963

#### BELTING

D = Diameter of larger pulley in inches.
d = Diameter of smaller pulley in inches.
N = Revolutions per minute of larger pulley.
n = Revolutions per minute of smaller pulley.
W = Wfith of double belt in inches.
w = Width of single belt in inches.
H = Horsepower that can be transmitted by the belt.

The above rules are for open belts and pulleys having the same diameter, the arc of contact being, in this case, half the circumference, or 180°. For open belts and pulleys of different diameters, the arc of contact is less than 180° on the smaller pulley, and a different constant, to be taken from the following table, must be substituted in the formulæ. To find the arc of contact, let 1 be the distance in D-d

inches between the centers of the pulleys. Then -

cosine of half the angle. Find this half angle from a table of natural cosines, and multiply by 2. The result is the a of contact in degrees. Find the number in the first colunt of the table which is nearest to this result, and use the constant corresponding to that number. If a table of natural cosines is not at hand, measure the length of the arc

of contact on the smaller pulley and divide it by the circumference of the pulley. Find the fraction in the second column which corresponds nearest to this result, and opposite this, its corresponding constant.

Degrees	Fraction of Circumference	Single Belt Constant	Double Belt Constant
90	<del>1</del> ⁄ ₄ = .25	6080	4250
1121/2	$f_{8} = .3125$	4730	3310
120	$\frac{1}{8} = .3333$	4400	3080
135	3% = .375	3850	2700
150	$\frac{12}{12} = .4167$	· 3410	2390
1571/2	$\frac{7}{16} = 4375$	3220	2250
180 to 270	$\frac{1}{2}$ to $\frac{3}{4} = .5$ to .75	ž 2750	1925

For example, what must be the width of a single belt to transmit 12 horsepower, when the diameter of the larger pulley is 42 inches, of the smaller pulley 20 inches, distance between their centers 14 feet = 168 inches, and r. p. m. of smaller pulley 150?

42 -- 20

.06548 = cosine of half the arc of contact, which  $2 \times 168$ 

 $2\times168$  thus = 86° 15′, nearly; 86° 15′  $\times$  2 = 172½° = the arc of contact; the nearest number in the table is 180° and the cor- 2,750  $\times$  12

responding constant is 2,750: hence - = 11 w = $20 \times 150$ inches.

Oak-tanned leather makes the best belts. When belts are run with the hair side over the pulley, they have greater adhesion.

The ordinary thickness of leather belts is 3/16 inch, and weight about 60 pounds per cubic foot.

Ordinarily, four-ply cotton belting is considered equivalent to single leather belting.

#### RULES FOR CALCULATING THE SPEED OF GEARS OR . PULLEYS

In calculating for gears, multiply or divide by the diameter or the number of teeth, as may be required. In calculating for pulleys, multiply or divide by their diameter in inches.

The driving wheel is called the driver, and the driven wheel

the driven.

Problem 1 The revolutions of driver and driven, and the diameter of

driven being given, required the diameter of driver.

Rule: Multiply the diameter of driven by its number of revolutions, and divide by the number of revolutions of the driver.

Problem 2 The diameter and revolutions of the driver being given, required the diameter of the driven to make a given number

of revolutions in the same time.

Rule: Multiply the diameter of the driver by its number of revolutions, and divide the product by the required number of revolutions.

# Problem 3

The diameter or number of teeth, and number of revolutions of the driver, with the diameter or number of teeth of the driven being given, required the revolutions of the driven.

Rule: Multiply the diameter or number of teeth of the driver by its number of revolutions, and divide by the diameter or number of teeth of the driven.

#### Problem 4

The diameter of driver and driven, and the number of revolutions of driven being given, required the number of revolutions of the driver.

Rule: Multiply the diameter of driven by its number of revolutions, and divide by the diameter of the driver.

#### PULLEYS

#### To Find Size of Pulley

D = Diameter of driver, or number of teeth in gear. d = Diameter of driven, or number of teeth in pinion. Rev = Revolutions per minute of driver. rev = Revolutions per minute of driven.

$$D = \frac{d \times rev}{Rev} \qquad Rev = \frac{d \times rev}{D}$$

$$d = \frac{D \times Rev}{Rev} \qquad rev = \frac{D \times Rev}{Rev}$$

# BELTING Horsepower of a Beit One Inch Wide, Arc of Contact 180

# Comparison of Different Formulae

ity in per	ity in per te	re Ft. It per te	h. p.—	Form. 2 h. p.=	Form. 3 h. p.—	Form. 4 h. p.—		Nag Form Single	33
Velocity Feet per Second	Velo Minu	Squar of Bel Minut	$\frac{wv}{550}$ .	1100	1000	733	h. p.—  wv  513	Lac'd	Riv- eted
10 20 30 40 50 60 70	600 1200 1800 2400 3000 3600 4200	50 100 150 200 250 300 350	1.09 2.18 3.27 4.36 5.45 6.55 7.63	.55 1.09 1.64 2.18 2.73 3.27 3.82	.60 1.20 1.80 2.40 3.00 3.60 4.20	.82 1.64 2.46 3.27 4.09 4.91 5.73	1.17 2.34 3.51 4.68 5.85 7.02 8.19	.73 1.54 2.25 2.90 3.48 3.95 4.29	1.14 2.24 3.31 4.33 5.26 6.09 6.78
80 90 100 110 120	4800 5400 6000 6600 7200	400 450 500 550 600	8.78 9.82 10.91	4.36 4.91 5.45	5.40 6.00	6.55 7.37 8.18	9.36 10.53 11.70	4.50 4.55 4.41 4.05 3.49	7.26 7.24 7.96 7.97 7.75

#### Width of Belt for a Given Horsepower

The width of belt required for any given horsepower may be obtained by transposing the formulæ for horsepower so as to give the value of w. Thus:

From formula (1),  $w = \frac{550 \text{ h.p.}}{v} = \frac{9.17 \text{ h.p.}}{v} = \frac{2101 \text{ h.p.}}{d \times rpm} = \frac{275 \text{ h.p.}}{L \times rpm}$ 

#### 272 NATIONAL ELECTRIC LAMP ASSOCIATION

From formula (2), 
$$w = \frac{1100 \text{ h.p.}}{v} = \frac{18.33 \text{ h.p.}}{V} = \frac{4202 \text{ h.p.}}{d \times rpm} = \frac{530 \text{ h.p.}}{L \times rpm}$$

From formula (3),  $w = \frac{1000 \text{ h.p.}}{v} = \frac{16.67 \text{ h.p.}}{V} = \frac{38.20 \text{ h.p.}}{d \times rpm} = \frac{500 \text{ h.p.}}{L \times rpm}$ 

From formula (4),  $w = \frac{733 \text{ h.p.}}{v} = \frac{12.22 \text{ h.p.}}{V} = \frac{2800 \text{ h.p.}}{d \times rpm} = \frac{360 \text{ h.p.}}{L \times rpm}$ 

From formula (5),  $v = \frac{513 \text{ h.p.}}{v} = \frac{8.56 \text{ h.p.}}{V} = \frac{1960 \text{ h.p.}}{d \times rpm} = \frac{257 \text{ h.p.}}{L \times rpm}$ 

* For double belts.

#### Length of Belt

Approximate rule; two pulleys  $\left[ \left( \frac{Dia_1 + Dia_2}{2} \right) \times 3.1416 \right] + [2 \times distance between centers] = length of belt.$ 

#### Length of Belt in Roll

Outside diameter roll in inches + diameter hole  $\times$  number turns  $\times$  .1309 = length of belt in inches for double belt.

## Weight of Belt (approximate)

 $\frac{\text{Length in feet} \times \text{width in inches}}{13} = \text{weight of single belt.} \quad \text{Qi-vide by 8 for double belts.}$ 

# Horsepower Transmitted by Light, Double Endless Leather Belting

#### (Buckley)

Width, Inches	4	6	8	10	12	14	16	18	20	22	24
2000 2400 2800 3000 3500 4000 4500 6000 6000	14 17 20 22 25 29 32 36 40 44	22 26 30 33 38 43 49 55 60 65	29 35 40 44 50 58 65 73 80	36 44 51 54 63 73 82 91 100	43 52 61 65 76 87 98 109 120 130	50 60 71 76 89 401 114 127 140 153	58 70 81 87 101 116 131 145 160	65 78 91 98 114 131 147 163 180 200	72 88 102 108 127 145 163 182 200 218	80 96 112 120 140 160 200 220 240	87 105 122 131 153 174 196 218 240 260

(Speed  $\times$  width  $\div$  550 = horsepower, light, double.) (Horsepower  $\times$  550  $\div$  speed = width, light, double.)

## Horsepower Transmitted by Heavy, Double Endless Leather Beiting

Wid	th, les 4	6	8	10	12	14	16	18	20	22	24
ed in feet per 1	000 18 000 21 000 27 000 30 000 35 000 48 000 48	31 36 40 45 52 59 66 72	36 42 48 53 60 70 78 87 96 104	43 53 61 65 75 88 98 110 120 122	51 62 73 78 91 104 118 130 144 153	60 72 85 90 106 121 137 152 168 183	70 83 96 104 121 139 157 174 192 210	80 94 109 118 137 157 176 196 216 240	86 105 122 129 152 174 196 218 240 262	96 115 135 144 168 192 216 240 264 288	104 120 146 157 184 209 235 262 288 312

(Speed  $\times$  width  $\div$  460 = horsepower, heavy, double.) (Horsepower  $\times$  460  $\div$  speed = width, heavy, double.)

#### SHAFTING, PULLEYS, BELTING, ROPE-DRIVING

#### Shafting

Thurston gives the following formulæ for calculating power and size of shafting:

h.p. =horsepower transmitted d =diameter of shaft in inches.

r = revolutions per minute.

For head shafts well supported against springing

For cold-r'll'd iron, 
$$h. p. = \frac{d^3r}{125}$$
:  $d = \sqrt[3]{\frac{125 \ h. p.}{r}}$ 

For cold-r'll'd iron,  $h. p. = \frac{d^3r}{75}$ :  $d = \sqrt[3]{\frac{75 \ h. p.}{r}}$ 

For line shafting hangers 8 feet apart.

For cold-r'll'd iron,  $h. p. = \frac{d^3r}{90}$ :  $d = \sqrt[3]{\frac{90 \ h. p.}{r}}$ 

For transmission simply, no pulleys.

For cold-r'll'd iron,  $h. p. = \frac{d^3r}{62.5}$ :  $d = \sqrt[3]{\frac{55 \ h. p.}{r}}$ 

For cold-r'll'd iron,  $h. p. = \frac{d^3r}{35}$ :  $d = \sqrt[3]{\frac{62.5 \ h. p.}{r}}$ 

Jones & Laughlin use the same formulæ, with the following exceptions:

For line shafts, cold-rolled iron, 
$$h p = \frac{d^3r}{50}$$
;  $d = \sqrt[8]{\frac{50 h p}{r}}$ 

#### 274 NATIONAL ELECTRIC LAMP ASSOCIATION

Pulleys should be placed as near to bearings as practicable, but care should be taken that oil does not drip from the box into the pulley.

The diameter of a shaft safe to carry the main pulley at the center of a bay may be found by multiplying the fourth power of the diameter obtained by the formulæ above given, by the length of the bay, and dividing the product by the distance between centers of bearings. The fourth root of the quotient will be the required diameter.

The following table is based upon the above rule, and is substantially correct:

kiven For- for Shafts			Shaft nee which is					
Dian Shaft by th mula Head	21 2 ft	3 ft.	31 2 ft.	4 ft.	5 ft.	6 ft.	8 ft.	10 ft.
In. 2 2 ½ 3 3 ½ 4 4 5 5 ½	In. 2 1/8 2 1/2 3	In. 21/4 25/8 31/8 31/2 4	In. 2 % 2 % 3 ¼ 3 ½ 4 ½ 5	In. 2½ 2% 3% 3% 4¼ 4% 5%	In. 25% 3 8½ 4 ½ 4 ½ 5 % 5 % 4	In. 2% 3% 4% 4% 5% 6	In. 2% 8% 4 4 4 4 4 4 5 1 4 6 1 4 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 6	In. 3 % 4 ¼ 4 % 5 % 6 ½ 6 %

Should the load be placed near one end of the bay, multiply the fourth power of the diameter of shaft necessary to safely carry the load at the center of the bay (see above table) by the product of the two ends of the shaft, and divide this product by the product of the two ends of the shaft where the pulley is placed in the center. The fourth root of this quotient will be the required diameter.

A shaft carrying both receiving and driving pulleys should be figured as a head-shaft.

#### Deflection of Shafting

As the deflection of steel and iron is practically alike under similar conditions of dimensions and loads, and as shafting is usually determined by its transverse stiffness rather than its ultimate strength, nearly the same dimensions should be used for steel as for iron.

For continuous line shafting it is considered good practice to limit the deflection to a maximum of 1-100 of an inch per foot of length. The weight of bare shafting in pounds = 2.6  $d^3L = W$ , or when as fully loaded with pulleys as is customary in practice, and allowing 40 pounds per inch of width for the vertical pull of the belts, experience shows the load in pounds to be about 13  $d^3L = W$ .

Taking the modulus of transverse elasticity at 26,000,000 pounds, we derive from authoritative formulas; the follow-

$$L = \sqrt[3]{873 \ d^2}, \ d = \sqrt{\frac{L^3}{873}}$$
, for bare shafting:  
 $L = \sqrt[3]{175 \ d^2}, \ d = \sqrt{\frac{L^3}{175}}$ , for shafting carrying pulleys, etc.:

L being the maximum distance in feet between bearings for continuous shafting subjected to bending stress alone,  $d=\operatorname{diam}$  in inches.

The torsional stress is inversely proportional to the velocity of rotation, while the bending stress will not be reduced in the same ratio. It is therefore impossible to write a formula covering the whole problem and sufficiently simple for practical application, but the following rules are correct within the range of velocities usual in practice.

For continuous shafting so proportioned as to deflect not more than 1-100 of an inch per foot of length, allowance being made for the weakening effect of key-seats,

Action to the

$$d = \sqrt[3]{\frac{50 \ h \ f}{r}}, \quad L = \sqrt[3]{\frac{700 \ d^2}{100 \ d^2}} \text{ for bare shafts;}$$

$$d = \sqrt[8]{\frac{70 \ h \ f}{r}}, \quad L = \sqrt[3]{\frac{140 \ d^3}{100 \ d^2}} \text{ for shafts carrying pulleys, etc.}$$

d = diameter in inches: L = length in feet: r = revolutions per minute.

The following table (by J. B. Francis) gives the greatest admissible distances between the bearings of continuous shafts subject to no transverse strain, except from their own weight.

Diameter		Between in Feet	Diameter	Distance Between Bearings in Feet		
of Shaft in Inches	Wrought Iron Shafts	Steel Shafts	of Shaft in Inches	Wrought . Iron Shafts	Steel Shafts	
.2 3 4 5	15.46 17.70 19.48 20.99	15.89 18.19 20.02 21.57	6 7 8 9	22.30 23.48 24.55 25.58	22,92 24,13 25,23 26,24	

The writer prefers to apply a formula in all cases rather than use tables, as shafting is nearly always 1/16 inch less in diameter than the sizes quoted. The following tables are made up from the formulæ first given in this chapter.

# 276 NATIONAL ELECTRIC LAMP ASSOCIATION

## Horsepower Transmitted by Turned Iron Shafting As Prime Mover or Head Shaft Well Supported by Bearings

Ė	Revolutions per Minute										
Diam.	60	80	100	125	150	175	200	225	250	275	300
Ins.	h. p.	h. p.	h.p.	h. p.	h. p.	h.p.	h.p.	h.p.	h.p.	h.p.	h.p.
1% 2 1/2 2 1/2 3 3/4 4 1/3 5 1/4	2.6 3.8 5.4 7.5 10 18 16 20 25 30 43 60 80		6.4 8.1 12.5 16 20 27 84 42 51 72 100	8 10 15 20 25 84 42 52 64 90 125	9,6 12 18 24 30 40 51 63 76 108 150	126 175		14.4 18 28 36 45 61 76 94 115 162 225	16 20 31 40 50 67 85 105 127 180 250	17.6 22 34 44 55 74 93 115 140 198	

# Approximate Centers of Bearings for Wrought Iron Line Shafts Carrying a Fair Proportion of Pulleys

Shaft, Diameter Inches		134	2	21/4	21/2	234	3	31/2	4	41/2
c. to c. Bearings-Feet	7	71/2	8	8%	9	91/2	10	11	12	13
Shaft, Diameter Inches	5		5%	6	634	7	73/2	8	9	10
c. to c. Bearings—Feet	135	٤	14	15	151/2	16	17	18	19	20

# Horsepower Transmitted by Cold-rolled Iron Shafting As Prime Mover or Head Shaft Well Supported by Bearings

ġ	Revolutions per Minute										
Diam.	60	80	100	125	150	175	200	225	250	<b>27</b> 5	300
Ins.	h.p.	h.p.	h.p.	h.p.	h.p.	h.p.	h.p.	h.p.	h.p.	h. p.	h.p.
1% 1% 2% 2% 3% 4%	2.7 4.3 6.4 9 12 16 21 27 84 42 51	3.6 5.6 8.5 12 17 22 29 86 45 56 69	4.5 7.1 10.7 15 21 27 86 45 57 70 85 121	8.9	10.6 16 23 31 41 54 68 86 105	19 26 36 48 63 80 100 123	9.0 14.2 21 30 41 55 72 91 114 140 170 243		11 18 26 38 52 70 90 114 142 174 212 302	12 19 29 42 57 76 98 126 157 193 244 333	13 21 32 46 62 82 108 136 172 210 256 364

# Revolutions of Wheels Per Minute and Per Second at Various Speeds

	Wheels		For Revolu- tions per	For Revolu- tions per		
Diameter in Inches	Circumference in Feet	Revolutions per Mile .	Minute Multiply Miles per Hour by	Second Multiply Miles per Hour by		
18 20 22 24 26 28 30 33 34 37 38 40 42 44 46 46 45 52 54 66 66 67 72 78 89 90 96	4.712 5.236 5.759 6.283 6.81 7.85 8.377 8.64 8.901 9.42 9.686 9.95 10.47 11.52 12.04 12.57 13.00 13.61 14.14 14.66 15.71 16.75 17.28 17.28 17.28 17.28 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36 18.36	1119.76 1008.4 916.8 838.4 775.3 720.3 6672.6 630.3 611.1 593.2 560.5 545.1 530.6 504.2 480.0 403.4 237.9 373.4 360.2 347.8 336.1 325.3 3315.2 305.5 296.6 288.1 280.1 288.1 288.6	18.66 16.81 15.28 13.27 12.90 11.21 10.50 10.18 9.89 9.34 9.09 8.40 8.00 7.31 7.00 6.72 6.46 7.31 7.00 6.72 6.46 6.22 6.46 6.22 6.46 6.22 6.90 5.69 5.69 4.94 4.80 4.67 4.31 4.00 3.73 3.50	.3110 .2801 .2547 .2329 .2153 .2000 .1868 .1751 .1696 .1648 .1556 .1514 .1440 .1401 .1363 .1273 .1218 .1166 .1120 .1073 .1033 .1000 .0965 .0933 .0933 .0875 .0848 .0822 .0778 .0778 .0778		

# Bearings—Ratio of Length to Diameter:

<b>d</b> (7)	Length		
Type of Bearing	- Diameter		
Marine engine SMain bearings Crank pins	1-1.5 1-1.5		
Stationary engines	1.5-2.5 1- 1-1.5		
Heavy shafting with fixed bearings	23		
Ordinary shafting—self-adjusting bearings	3-4		
Generator bearings	3		







Friction: There are two main divisions under the heading of friction:

- A. Friction of rest, occurring when a body is about to start.
- B. Friction of motion, less than the friction of rest and occurring when two bodies are in relative motion. This kind of friction consists of
  - 1. Sliding friction:
    - (a) Bodies sliding on a surface.
    - (b) Axles or journals revolving in boxes.
    - (c) Pivots turning on steps.
  - 2. Rolling friction:
    - (a) One body rolling on a plane.
    - (b) One body rolling on another not plane.
    - a = angle of inclination of plane.
  - $\phi =$ angle of friction.
  - $\theta =$ arc of contact of journal.
  - $\beta$  = inclination of force with plane.
  - N = normal force on a plane.
    - f = coefficient of friction.
  - r = radius of journal.
  - 1 = length of journal.
  - n = r. p. m.
  - V = velocity of rubbing surface in feet per min.
  - p = intensity of pressure per sq. in.
  - P = total pressure.
  - W = weight of body.

### USEFUL FORMULÆ FOR UNIFORM MOTION

#### On a Plane:

Force of friction

 $F = fN - N \tan \alpha = N \tan \phi$ 

Coefficient of friction

$$f = \tan \alpha = \tan \phi = \sqrt{W^2 - N^2} \div N$$

Loose-fitting Journal:

Weight on journal (squared)

$$W^2 = N^2 + F^2 = N^2 (1 + f^2) = F^2 (1 + f^2) \div f^2$$

Work of friction per min.

 $U = FV - 2\pi nrW \sin \phi = 2\pi nrfW \div \sqrt{1+f^2}$ 

#### ANGULAR VELOCITY

The number of degrees per second through which a body revolves about a center.

 $w=2~\pi$  m. Where

w =angular velocity. n =revolutions per second. Perfectly-fitting Journal:

Pressure per sq. in.

 $p = 0.64 \text{ W } \cos\theta \div 1\text{r}$ 

'Maximum pressure per sq. in.

 $pm = 0.64W \div 1r$ 

· Total force of friction

F = fP = 1.27 fW

Work of friction per minute.

U - FV - 1.27 fWV = 2.54  $\pi fnrW$ 

#### CENTRIFUGAL FORCE

 $F={
m centrifugal}$  force in pounds.  $W={
m weight}$  in pounds.  $v={
m velocity}$  in feet per second.  $r={
m radius}$  of circle in feet.

n = revolutions per minute.

Then

 $F = \frac{W r n^2}{-}$ 2933



## **SECTION XI**

### **TABLES**

INCLUDING TABLES OF WEIGHTS AND MEASURES, SPECIFIC GRAVITY, MULTIPLES, DECIMALS OF AN INCH, AREAS AND CIRCUMFERENCES OF CIRCLES, LOGARITHMS, TRIGONOMETRIC FUNCTIONS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS AND RECIPROCALS

# ATTEMPT OF THE

#### 7 1. . . . . Y

TO THE CONTRACT OF STATE OF ST

### WEIGHTS AND MEASURES

Troy Weight: 24 grains = 1 pwt.; 20 pwts. = 1 ounce; 12 ounces = 1 pound. Used for weighing gold, silver, and jewels.

Apothecaries' Weight: 20 grains = 1 scruple; 3 scruples = 1 dram, 8 drams = 1 ounce; 12 ounces = 1 pound. The ounce and pound in this are the same as in Troy Weight.

Avoirdupois Weight: 27 11-32 grains = 1 dram; 16 drams = 1 ounce; 16 ounces = 1 pound; 100 pounds = 1 cwt.; 2,000 pounds = 1 short ton; 2,240 pounds = 1 long ton.

1 oz. Troy = 480 gr.; 1 oz. Av. = 437½ gr.; 1 lb. Troy = 5,760 gr.; 1 lb. Av. = 7,000 gr.

Dry Measure: 2 pints = 1 quart; 8 quarts = 1 peck; 4 pecks = 1 bushel.

Liquid Measure: 4 gills = 1 pint; 2 pints = 1 quart; 4 quarts = 1 gallon;  $31\frac{1}{2}$  gallons = 1 barrel; 2 barrels = 1 hogshead. Barrels and hogsheads vary in size.

Time Measure: 60 seconds = 1 minute; 60 minutes = 1 hour; 24 hours = 1 day; 7 days = 1 week. 28, 29, 80 or 31 days = 1 calendar month (30) days = 1 month in computing interest); 365 days = 1 year; 366 days = 1 leap year.

Circular Measure: 60 seconds = 1 minute; 60 minutes = 1 degree; 30 degrees = 1 sign; 90 degrees = 1 quadrant; 4 quadrants = 12 signs, or 360 degrees = 1 circle.

Long Measure: 12 inches = 1 foot; 3 feet = 1 yard;  $5\frac{1}{2}$  yards = 1 rod; 40 rods = 1 furlong; 8 furlongs = 1 stat. mile; 3 miles = 1 league.

Mariners' Measure: 6 feet = 1 fathom; 120 fathoms = 1 cable length;  $7\frac{1}{2}$  cable lengths = 1 mile; 5,280 feet = 1 stat. mile; 6,085 feet = 1 naut. mile.

Miscellaneous: 4 inches = 1 hand; 18 inches = 1 cubit; 21.8 inches = 1 Bible cubit;  $2\frac{1}{2}$  feet = 1 military pace.

Square Measure: 144 sq. inches = 1 sq. foot; 9 sq. feet = 1 square yard; 30 $\frac{1}{4}$  sq. yards = 1 sq. rod; 40 sq. rods = 1 rood; 4 roods = 1 acre; 640 acres = 1 sq. mile.

Surveyors' Measure: 7.92 inches = 1 link; 25 links = 1 rod; 4 rods = 1 chain; 10 sq. chains or 160 sq. rods = 1 acre; 640 acres = 1 sq. mile or section; 36 sq. miles (6 miles square) = 1 township.

Cubic Measure: 1,728 cubic inches = 1 cubic foot; 27 cubic feet = 1 cubic yard; 2,150.42 cubic inches = 1 standard bushel; 231 cubic inches = 1 standard gallon; 1 cubic foot = about four-fifths of a bushel; 128 cubic feet = 1 cord (wood); 40 cubic feet = 1 ton (shipping).

Metric Equivalents: Linear—1 centimeter = 0.8987 inches; 1 decimeter = 3.937 inches = 0.328 ft.; 1 meter = 39.37 inches = 1.0936 yards; 1 dekameter = 1.9884 rods; 1 kilometer = 0.62137 mile.

Square—1 sq. centimeter = 0.1550 sq. in.; 1 sq. decimeter = 0.1076 sq. ft.; 1 sq. meter = 1.196 sq. yds.; 1 are = 3.954 sq. rds.; 1 hektar = 2.47 acres; 1 sq. kilometer = 0.386 sq. mile.

Volume-1 cubic centimeter = 0.061 cubic in.; 1 cubic decivolume = 0.0353 cubic ft; 1 cubic meter, 1 ster = 1.308 cubic yds., 0.2759 cd.; 1 liter = 0.908 qt. dry, 1.0567 qts. liq; 1 dekaliter = 2.6417 gals., .135 peck; 1 hektoliter = 3.8375 bus. Weights: 1 gram = 0.03527 ounce; 1 kilogram = 2.2046 lbs.; 1 metric ton = 1.1023 English tons.

Approximate Metric Equivalents: 1 decimeter = 4 inches; 1 meter = 1.1 yards; 1 kilometer = 5 of mile; 1 hektar = 2½ acres; 1 ster, or cubic meter = ½ of a cord; 1 liter = 1.06 qts. liquid, 0.9 qt. dry; 1 hektoliter = 2% bushels; 1 kilogram = 21-5 lbs.; 1 metric ton = 2,200 lbs.

### THE METRIC SYSTEM

The metric system is used in scientific work in all countries, and in business by all civilized nations except the English-speaking peoples.

The meter is the base of the system, being (nearly) one ten-millionth of the distance from the equator to the pole. A gram is the weight of a cube of water at its greatest density, having an edge of .01 meter.

A liter is the contents of a cube having an edge of .1 meter.

Are, 100 sq. meters; and stere, 1 cu. meter, are seldom used.

### Table of Length

1 mikron .	 	<b>.</b>	 = .000001	of a meter
1 millimeter				
1 centimeter				of a meter
1 decimeter				of a meter

### Meter (m)

1.	dekameter	,	10 meters
1	hektometer		100 meters
1	kilometer .	····· =	1,000 meters
т	myriameter		10,000 meters

### Table of Square Measure

		= .000001	
1 sq.	centimeter	= .0001	of a sq. meter
1 sq.	decimeter	., = .01	of a sq. meter
			, , ,

### Square meter

1 80	hektometer kilometer	(hektare)	=	

### Table of Cubic Measure

1 cu. millimeter	= .000000001	of a cu. meter
1 cu. centimeter	= .000001	of a cu. meter
1 cu. decimeter		of a cu. meter.

#### Cubic meter (stere)

		dekameter	1,000 cu. meters
1	cu.	hektometer =	1,000,000 cu. meters
		kilometer =	1,000,000,000 cq. meters
1	ĊIJ.	myriameter - 1	.000.000.000.000 cm meters

Table of Weight  mikrogram (mg)  centigram (cg)  decigram (dg)	. = .01	of a gram of a gram of a gram of a gram
Gram (g)		
1 dekagram 1 hektogram 1 kilogram (kg) 1 myriagram 1 quintal (q) 1 metric ton (t) A metric ton is the weight of one cubi	= 1, = 10, = 100, . = 1,000, c meter of	10 grams 100 grams 000 grams 000 grams 000 grams 000 grams water.
Table of Capacity		
1 mikroliter 1 milliliter (mi) 1 centiliter 1 deciliter	·· = .001 ·· = .01	of a liter of a liter of a liter of a liter
Liter (1)		
1 dekaliter = 10 liters 1 hektoliter  SPECIFIC GRAVITIES AND WEIGHT SUBSTANCES	. 1	
The Basis for Specific Gravities is Pure Water at 62 Degrees Fah., Barometer 30 inches Weight of One Cubic Foot. 62,355 Pounds	Gravity	Average Weight of 1 Cu. Ft. Pounds
Air, atmospheric at 60 degrees F., under pressure of one atmosphere, or 14.7 pounds per square inch, weighs 1-315th as much as water.  Aluminum Anthracite, 1.3 to 1.84; of Penn., 1.3 to 1.7 Anthracite, broken, of any size, loose. Anthracite, broken, moderately shaken. Anthracite, broken, heaped bushel, loose, 77 to 83 pounds.  Anthracite, broken, a ton loose occupies 40 to 43 cubic feet.	.00123 2.6 1.5	.0765 162 93.5 52—56 56—60
40 to 43 cubic feet. Antimony, cast Antimony, native Ash, perfectly dry (see note) Ash, American white dry (see note) Ashes of soft coal, solidiy packed Asphaltum, 1 to 1.8. Brass (copper and zinc) cast 7.8 to 8.4. Brass, rolled Brick, best pressed Brick, common and hard Brick, soft inferior	6.70 6.67 .752 .61 1.4 8.1 8.4	418 416 47 88 40 45 87.3 504 524 150 125 100

Note-Green timbers usually weigh from one-fifth to nearly one-half more than dry; ordinary building timbers, tolerably seasoned, one-sixth more.

### 288 NATIONAL ELECTRIC LAMP ASSOCIATION

### SPECIFIC GRAVITIES AND WEIGHTS OF VARIOUS SUBSTANCES—Continued

The Basis for Specific Gravities is Pure Water at 62 Degrees Fah., Barometer 30 Inches Weight of One Cubic Foot, 62,355 Pounds	Average Specific	Average
at 62 Degrees Fah., Barometer 30 Inches	Specific	
Weight of One Cubic Foot, 62,355 Pounds		Weight
Weight of One Cubic Foot, 62,555 Founds	Gravity	1 Cu. Ft.
=	Water=1	
Brickwork, pressed brick, fine joints		140
" medium quality		125
" coarse inferior soft		100
" coarse, inferior, soft	]	100
oubic word equals 1 507 tons and	1	i .
cubic yard equals 1.507 tons, and 17.92 cubic feet equal 1 ton		į.
Proper copper 9 tim 1 (com motel)		
Bronze, copper 8, tin 1 (gun metal)	0.5	529
Cement, nydraune, American, Rosendaie, ground	1	
and loose		56
nydraulic, American, Rosendale, U. S.	ļ .	1
struck bush, 70 pounds		
" hydraulic, American, Rosendale, Louis-	,	Į.
ville bushel 62 pounds		ļ <b></b>
"hydraulic, American, Cumberland,		
ground, loose	1	65
nydraulic, American, Cumberland,	i i	1 .
ground, thoroughly shaken	1	85
" hydraulic, English Portland (U. S.	1	
"hydraulic, English Portland (U. S. struck bushel 100 to 128)	1 !	81—102
" hydraulic, English Portland, a barrel	1	
400 to 430 pounds		
" hydraulic, American Portland, loose		88
" hydraulic, American Portland, thor-		00
aughlu shekem		110
oughly shaken	[ ]	
Charcoal of pines and oaks		1530
Chalk	2.5	156
Cherry, perfectly dry (see note)	.0/2	42
Chestnut, perfectly dry (see note)	.000	41
Clay, potters', dry, 1.8 to 2.1	1.9	119
" dry in lump, loose		63 .
Cherry, perfectly dry (see note)	1.35	84
Coal, bituminous, solid, 1.2 to 1.5solid, Cambria Co., Pa., 1.27-	ł	i
1.34	l	79-84
" broken, of any size, loose	l	47—52 51—56
" moderately shaken		5156
" a heaped bushel, loose, 70		1
to 78		Í
" 1 ton occupies 43 to 48 cubic		1
Coke loose good quality		23—32
Coke, loose, good quality  " loose, a heaped bushel, 35 to 42  " 1 ton occupies 80 to 97 cubic feet  Corundum, pure, 3.8 to 4  Copper, cast, 8.6 to 8.8  rolled, 8.8 to 9  Çork, dry (see note)		23-32
" 1 Ann animalia 00 An 07 aubic fact		
ton occupies 80 to 97 cubic feet		
Corundum, pure, 3.8 to 4	3.7	
Copper, cast, 8.6 to 8.8	0.4	344
rolled, 8.8 to 9	8.9	222
Cork, dry (see note)	.24	15
Cypress. American (see note)	.55	] 64
Earth, common loam, perfectly dry, loose	1 1	72-80
		8292
" perfectly dry, shaken		90-100
" perfectly dry, shaken " perfectly dry, rammed	1 1	90100
" " perfectly dry, shaken" " perfectly dry, rammed" " slightly moist. loose		
" " perfectly dry, shaken " perfectly dry, rammed " slightly moist, loose " more moist loose		70-76
" " perfectly dry, shaken" " perfectly dry, rammed " " slightly moist. loose		70-76

Nors—Green timbers usually weigh from one-fifth to nearly one-half more than dry; ordinary building timbers, tolerably seasoned, one-sixth more.

TABLES

## SPECIFIC GRAVITIES AND WEIGHTS OF VARIOUS SUBSTANCES—Continued

The Basis for Specific Gravities is Pure Water	Average	Average
at 62 Degrees Fah., Barometer 30 Inches	Specific	Weight
Weight of One Cubic Foot, 62-355 Pounds	Gravity	1 Cu. Ft.
Weight of One Cable Foot, 02:333 Founds	Water=1	Pounds_
Earth, common loam, more moist, packed		90100
" as soft flowing mud		104-112
" as soft flowing mud well		
pressed		110120
Elm, perfectly dry (see note)	.56	35
Flint	2.6	162
Glass, 2.5 to 3.45	2.98	186
" common window	2.52	157
Gneiss, common, 2.62 to 2.76	2.69	168
" in loose piles		96
Gold, cast, pure or 24 karat	19.258	1204
" pure, hammered		1217
" pure, hammered	2 72	170
Greenstone, trap. 28 to 32	3.00	187
Greenstone, trap, 2.8 to 3.2	2.27	141.6
Hemlock, perfectly dry (see note)	.4	25
Hickory perfectly dry (see note)	.85	53
Hickory, perfectly dry (see note)	.92	57.4
Iron, cast, 6.9 to 7.4	7.15	446
" gray foundry, cold	7.21	450
" gray foundry, molten	6.94	433
wrought	7.69	480
Tood commercial	11 29	709:6
Lead, commercial Lignum vitæ (dry)	65 1 22	41-83
Limestone and marbles	2.6	164.4
	1.5	95
Lime, quick	1.3	73
" quick, ground, well shaken, per struck	, ' ,	64
bushel 80 pounds		04
"quick, ground, thoroughly shaken, per struck bushel 93¾ pounds		75
struck busnel 9334 pounds		44
Locust, dry (see note)	./1	53
Manogany, Spanish, dry (see note)	.63	35
Honduras, dry (see note)	.30 .	
Maple, dry (see note)	/9	49
Marbles (see Limestone)		165
Masonry of granite or limestone, well-dressed. " of granite, well-scabbled mortar rub-		165
of granite, well-scappled mortar rub-		1.00
ble, about 1.5 of mass will be mortar		
or granite, well-scappied dry rubble.		138
or granite, roughly scaobled mortar	'	
rubble, about 1/4 to 1-3 of mass will		
be mortar		150
of granite, scabbled dry rubble		125
" of brickwork (see Brickwork) Mercury, at 32 degrees Fahr		"
Mercury, at 32 degrees Fahr	13.62	849
Mica, 2.75 to 3.1	2.93	183
Mortar, hardened, 1.4 to 1.9	1.65	103
Mud, dry, close		80—110
Mortar, hardened, 1.4 to 1.9		110-130
" wet, fluid		104-120
Oak, live, perfectly dry, .88-1.02 (see note)	.95	59.3

Note—Green timbers usually weigh from one-fifth to nearly one-half more than dry; ordinary building timbers, tolerably seasoned, one-sixth more.

### SPECIFIC GRAVITIES AND WEIGHTS OF VARIOUS SUBSTANCES—Continued

m 5 1 1 0 10 5 11 1 5 5	Average .	Average
The Basis for Specific Gravities is Pure Water		
at 62 Degrees Fah., Barometer 30 Inches.	Specific	Weight
	Gravity	1 Cu. Ft.
Weight of One Cubic Foot, 62.355 Pounds	Water=1	Pounds
Oak, white, perfectly dry, .66 to .88 (see note)	1 .77	48
" red, black, perfectly dry	1	32-45
Petroleum Pine, white, perfectly dry, .35 to .45 (see note	-878	54.8
Pine, white, perfectly dry 35 to 45 (see note	1	
below)	40	25
	.40	. 23 :
" yellow, Northern, perfectly dry, .48 to		· .,
.62 (see note below)	-55	34.3
se mallam Cambridge (1)		
yenow, Southern, perfectly dry, .04 to .8		1 4
"yellow, Southern, perfectly dry, .64 to .8 (see note below)	.72	45
Pitch	1.15	71.7
Thenland day (and the first terms)	1 1 1	
Poplar, dry (see note below)	.47	29
Platinum	21.5	1342
Quartz	2.65	165
Guarte • · · · · · · · · · · · · · · · · · ·		
Rosin	1.10	68.6
Salt, coarse (per struck bushel, Syracuse, N. Y.,		<b>'</b>
56 pounds)	1	45
Jo pounds)		
Sand, of pure quartz, perfectly dry and loose		90—106
" " words full of water		118-129
" voids full of water		
very large and sman	!	·
grains, dry		117
Sandstone, 2.1 to 2.73, 131 to 171	2.41	151
" quarried and piled, 1 measure solid		
quatricu and pincu, i measure sond	1	11)
makes 134 (about) piled		86
Snow, fresh fallen	1	512
" moistened, compacted by rain		1550
Customers senfortly due (see that heless)	.59	37
Sycamore, perfectly dry (see note below)	. 39	
Shales, red or black, 2.4 to 2.8	2.6	162
Silver	10.5	655 ·
Slate. 2.7 to 2.9		175
	2.8	
Soapstone, 2.65 to 2.8	2.73	170
Spruce, perfectly dry (see note below)	.4	25
Steel	7.85	490
C 1-1		
Sulphur	2.00	125
Tallow	.94	58.6
Tar		62.355
	1	
Tin. cast, 7.2 to 7.5	7.35	459
Walnut, black, perfectly dry (see note below).	.61	38
Water nurs rain distilled at 22 decrees 12		
Water, pure rain, distilled, at 32 degrees F.,		
Bar. 30 inches		62.417
" pure rain, distilled, at 62 degrees F.,	1	
Bar. 30 inches		62.355
Mai. SV INCHES		02.333
pure rain, distilled, at 212 degrees F.,		
Bar. 30 inches	1	59.7
" sea. 1.026 to 1.030		64.08
Zinc or spelter, 6.8 to 7.2	7.00	437.5
	- 4 -	

Note—Green timbers usually weigh from one-fifth to nearly onebalf more than dry; ordinary building timbers, tolerably seasoned, one-sixth more. - 東京 (1965年) 12<u>27 - 日</u> (1977年) 7 (2017年) 7

ear AT do Do

per at the second state of the ex-

## WEIGHT OF WATER IN POUNDS PER CUBIC FOOT ATT



Structure production of a section of a secti

Again the second of the second

### USEFUL TABLES

### Equivalent Value of Units

	Equivalent value of Onice
1° <b>tap:</b>	746 watts. 746 kilowatts. 38,000 ftlbs. per minute. 550 ftlbs. per second. 2,545 heat-units per hour. 42.4 heat-units per minute. 707 heat-unit per second. 2.64 lbs. water evaporated per hour from and at 212° F.
1 h.phr,	746 kwhrs. 1,980,000 ftlbs. 2.545 heat-units. 2.64 lbs. water evaporated from and at 212° F. 17.0 lbs. water raised from 62° to 212° F.
1 Watt—	1 joule per second00134 h.p. 3,412 heat-units per hour7373 ftlb. per second0035 lb. water evaporated per hour. 44.24 ftlbs. per minute.
1 Kw.—	1,000 watts. 1.34 h.p. 2,654,200 ftlbs. per hour. 44,250 ftlbs. per minute. 737.3 ftlbs. per second. 3,412 heat-units per hour. 56.9 heat-units per minute948 heat-unit per second. 3.53 lbs. water evaporated per hour from and at 212° F.
1 kwhr.—	1,000 watt-hours. 1.34 h.phours. 2,654,200 ftlbs. 3,600,000 joules. 3,412 heat-units. 3.53 lbs. water evaporated from and at 212° F. 22.75 lbs. of water raised from 62° to 212° F.
1 Heat-unit-	-1,055 watt seconds. 778 ft. lbs. 107.6 kilogram meters. .000293 kwhrs. .000893 h.phr. .001036 lb. water evaporated from and at 212° F.
1 Heat-unit	.122 watts per sq. in.
per sq. ft.	.0176 kw. per sq. ft.
per minute -	-0-236 h.p. per sq. ft,
1 Joule—	1 watt second00000278 kwhr0009477 heat-units7873 ftlb.
1 ftlb.—	1.856 joules. .000000377 Kwhrs. .001285 heat-units. .0000005 h.phour,

#### TABLE OF MULTIPLES

Diameter of a circle  $\times$  3.1416 = Circumference. Radius of a circle  $\times$  6.283185 = Circumference. Square of the radius of a circle  $\times$  3.1416 = Area. Square of the diameter of a circle  $\times$  0.7854 = Area. Square of the circumference of a circle  $\times$  0.07958 = Area. Half the circumference of a circle  $\times$  half its diameter = Area.

Circumference of a circle  $\times$  0.159155  $\Rightarrow$  Radius. Square root of the area of a circle  $\times$  0.56419  $\Rightarrow$  Radius. Circumference of a circle  $\times$  0.31831  $\Rightarrow$  Diameter. Square root of the area of a circle  $\times$  1.12838  $\Rightarrow$  Diameter. Diameter of a circle  $\times$  0.86  $\Rightarrow$  Side of inscribed equilateral triangle.

Diameter of a circle  $\times$  0.7071 = Side of an inscribed square. Circumference of a circle  $\times$  0.225 = Side of an inscribed square.

Circumference of a circle  $\times$  0.282 = Side of an equal square. Diameter of a circle  $\times$  0.8862 = Side of an equal square. Base of a triangle  $\times$   $\frac{1}{2}$  the altitude = Area.

Multiplying both diameters and .7854 together  $\Rightarrow$  Area of an ellipse.

ellipse.

Surface of a sphere × 1/6 of its diameter = Solidity.

Circumference of a sphere × its diameter = Surface.

Square of the diameter of a sphere × 3.1416 = Surface.

Square of the circumference of a sphere × 6.3183 = Surface.

Cube of the diameter of a sphere × 0.5236 = Solidity.

Cube of the radius of a sphere × 4.1888 = Solidity.

Cube of the circumference of a sphere × 0.016887 = Solidity.

Square root of the surface of a sphere × 0.56419 = Diameter,

Square root of the surface of a sphere × 1.772454 = Circumference.

Cube root of the solidity of a sphere  $\times$  1.2407 = Diameter. Cube root of the solidity of a sphere  $\times$  3.8978 = Circumference.

Radius of a sphere  $\times 1.1547 = \text{Side}$  of inscribed cube.

Square root of (1-3 of the square of) the diameter of a sphere = Side of inscribed cube.

Area of its base  $\times$  1-3 of its altitude = Solidity of a cone or pyramid, whether round, square or triangular.

Area of one of its sides  $\times$  6 = the surface of a cube.

Altitude of trapezoid  $\times \frac{1}{2}$  the sum of its parallel sides = Area.

294- NATIONAL ELECTRIC LAMP ASSOCIATION
DECIMALS OF AN INCH FOR EACH 1-64TH

₃kds	ths	Decimal	Frac-	₃¹₂ds	ths	Decimal	Frac- tion
1	1 2 3	.015625 .03125		17	33 34	.515625 .53125	
2	* <b>3</b>	.046875 .0625	1/8	18	35 36	.546875 .5625	*
3	5 6	.078125 .09375		19	37 38	.578125 .59375	
4	· 8	.109375 .125	1/8	20	39	.609878 .625	.56-
5.	9 10 11	.140625 .15625 .171875		21	41 42 43	.640625 .65625 .671875	
.6	12	.1875	18	22	44	.6875	111
7	18 14 15	.203125 .21875 .234375		23 24	45 46 47 48	.703125 .71875 .734375	34
8	16	.25	*	24		.765625	74
9	17 18 19	.265625 ,28125 .296875		25	49 50 51	.78125 .796875	
10	20	.3125	18	26	52	.8125	18
11 '	21 22 23	.328125 .34375 .359375		27	53 54 55	.828125 .84375 .859 <b>37</b> 5	,
12	24	.375	-3%	28	56	.875	- 7/8 .
13	25 26 27	.390625 .40625 .421875		29	57 58 59	.890625 .90625 .921875	
14	28	.4375	175	30	6ŏ	.9375	·· 18
15	29 30 31	.453125 .46875 .484375	•	31	61 62 63	.953125 .96875 .984375	
16	82	5	1/2:	32	64	1.	1 .

### CIRCUMFERENCES AND AREAS OF CIRCLES FROM 1-64th TO 42

Diam.	Circum.	Area.	Diam.	Circum.	Area
ا برا _ح	.04909	.000192	1 6. 1	18.8496	28.2744
3.	.09818	.000767	1 74	19.2423	29.4648
- X 1	.19635	.003068	1 12	19.635	30.6797
茲(	.3927	.012272	1 32 1	20.0277	31.9191
3	, 589	.027612	1 .21	20.4204	33.1831
52 I	.7854	.049087	56	20.8131	34.4717
4 1	.98175	.076699	32	21.2058	35.7848
\$2.1	1.1781	.110447	1 3%	21.5985	37.1224
33	1.37445	.15033	7. "	21.9912	38.4846
33.1	1.5708	.19635	16	22.3839	39.8713
(X)	1.76715	.248505	1 2	22.7766	41.2826
52 1	1.9635	.306796	32	23.1693	42.7184
- #	2.15985	.371224	1 121	23.562	44.1787
32 l	2.3562	.441787	56	23.9547	45.6636
- ## I	2.55255	.518487	34	24.3474	47.1731
22.1	2.7489	.601322	1/8	24.7401	48.7071
11 1	2.94525	.690292	8.7	25.1328	50.2656
1. **	3.1416	.7854	1.4	25.5255	51.8487
	3.5343	.99402	12	25.9182	53.4563
. 12 i	3.927	1.2272	1 32	26.3109	55.0884
132	4.3197	1.4849	1 72	26.7036	56.7451
121	4.7124	1.7671	5/8	27.0963	58.4264
32	5.1051	2.0739	. 78	27.489	60.1322
· 12 i	5.4978	2.0739 2.4053	32	27.8817	61.8625
. 32	5.8905	2.7612	0 78	28.2744	63.6174
2. 1	6.2832	3.1416	7. 14	28.6671	65.3968
~ 'w	6.6759	3.5466	1 78	29.0598	67.2008
12	7.0686	3.9761	1 74	29.4525	69.0293
32	7.4613	4.4301		29.8452	70.8823
32	7.854	4.9087		30.2379	72.7599
32	8.2467	5.4119	78	30.6306	74.6621
32	8.6394	5.9396	32	31.0233	76.5888
72	9.0321	6.4918	10.78	31.416	78.54
3.70	9.4248	7.0686	10.72	31.8087	80.5158
" ₁₄	9.8175	7.6699	1 .78	32.2014	82.5161
· 12	10.2102	8.2958	72	32.5941	84.5409
22	10.6029	8.9462	1 .72	32.9868	86.5903
32	10.9956	9.6211	1 .23	33.3795	88.6643
12	11.3883	10.3206	1 72	33.7722	90.7628
32	11.781	11.0447	72	34.1649	92.8858
72	12.1737	11.7933	11.78	34.5576	95.0334
4.70	12.5664	12.5664	11.14	34.9503	97.2055
36	12.9591	13.3641		35.343	99.4022
.34	13.3518	14.1863	74	35.735Z	101.6234
	13.7445	15.033	73	36.1284	f03.8691
· 3/8	14.1372	15.9043	23	36.5211	106.1394
5/6	14.5299	16.8002	78	36.9138	
	14.9226	17.7206	32	37.3065	108.4343
· 3/4 · 7/8	15.3153	18.6655	12. 78	37.6992	113.098
6. 28	15.708	19.635	14. 7	38.0919	
3.44	16.1007	20.629	28	30.0919	115.466
:36	16.4934	21.6476	39.	38.4846	117,859
. 74	16.8861		9/8	38.8773	120.277
. 72	17.2788	22.6907	1 2/2	39.27	122./19
. 73		23.7583	1 .25	39.6627	125.185
. 78	17.6715	24.8505	24	40.0554	127.677
• 22	18.0642	25.9673	/8	40.4481	130,192
. 36	18.4569	27.1086	¹ 13.	40.8408	132.733

#### PROPERTIES OF LOGARITHMS

The exponent of the power to which a fixed number, called the Base, must be raised in order to produce a given number is called the Logarithm of the given number.

When 10 is the base, the logarithm of 100 is 2, for  $100 = 10^2$ ; the logarithm of 1000 is 3, for  $1000 = 10^3$ .

Any number except unity may be used as the base of a system of logarithms, but 10 is the base of the Common or Briggs system.

Another or modified system is frequently employed in the mathematics and is known as the Natural, Hyperbolic or Naplerian system. The base of this system is 2.7183, designated as "e."

The following relation holds between the Common and Napierian systems:

$$\log_{\mathbf{e}} \mathbf{x} = 2.3026 \log_{10} \mathbf{x}$$

The integral part of a logarithm is called the Characteristic; the fractional or decimal part, the Mantiesa.

The characteristic of the logarithm of a number greater than 1 is positive and 1 less than the number of digits in its integral part.

Thus, 
$$\log 4580 = 3.6609$$
  
That is.  $4580 = 10^{3.6609}$ 

The characteristic of the logarithm of a decimal is negative and numerically 1 greater than the number of ciphers immediately following the decimal point.

Thus, 
$$\log .00458 = 3.6609$$
  
That is,  $.00458 = 10^{-3} + .6609$ 

To avoid writing a negative characteristic before a positive mantissa, it is customary to add 10 to the characteristic and indicate that this number is to be subtracted from the whole logarithm.

Thus 
$$\log .00458 = \bar{3}.6609 = 7.6609 - 10$$

(1) The logarithm of the product of any number of factors is equal to the sum of the logarithms of the individual factors.

$$\log MN = \log M + \log N$$

(2) The logarithm of the quotient of any two numbers is equal to the logarithm of the numerator diminished by the logarithm of the denominator.

$$\log \frac{M}{N} = \log M - \log N$$

(3) The logarithm of the  $r^{th}$  power of a number is equal to r times the logarithm of the number.

$$\log M^{r} = r \log M.$$

(4) The logarithm of the rth root of a number is equal to 1 of the

ogarithm of the number.

$$\log \sqrt[2]{M} = \frac{1}{r} \log M.$$

**TABLES** 299

### LOGARITHMS OF NUMBERS, FROM 9 TO 1000

No.	0	1	. 2	. 3	4	5	6	7	8	9
0	0	00000	30103	47712	60206	69897	77815	84510	90309	9542
10	100000	00432 04532	00860	01283	01703	02118	02530	02938	03342	0374
íí	04139	04532	04921	05307	05690	06069	06445	06818	07188	075
12	107010	100770	ነስይሊ ፕሌ	<b>10000</b> 0	100347	ロウムウモ	110037	10380	110721	1110
13	111204	111777	112057	12385	112710	1 30 3 3	11.3.35.31	136/2	11398/	11431
14	14613	14921	15228	15533	15836	16136	16435	167,31	17026	173
15	17609	17897	18184	18469	18752	19033	19312	19590	19865	201
16 .	20412	20682	20951	21218	21484	21748	22010	22271	22530	257
17	23045	20682 23299 25767	23552	23804	24054	243031	24551	24/9/	123042	232
18	25527	25767	26007	26245	20481	20/1/	20931	20146	70666	270
19	1	28103			1 '		' "		ľ	r.
20	30103	30319	30535	30749.	30963	31175	31386	31597	31806	320
21										
22	34242	34439 36361	34635	34830	35024	33218	27201	37474	37657	378
23 - 24	36173 138021	38201	38381	38560	138739	38916	39093	39269	39445	
		39967								
25.	141407	141664	41020	4 1 DO 5'	1/2160	117771	I A 7 A X X	47671	146/XI3	1427
26	142126	1122061	12156	43616	113775	43933	44090	44248	144404	1440
27 28	144716	1 A A Q 7 A	145(174)	45178	45331	1454X4	145656	145/88	143939	400
29 29	46240	46389	46538	46686	46834	46982	47129	47275	47421	475
30	47713	47856 49276	48000	48144	  48287	48430	48572	48713	48855	489
3 l	49136	49276	49415	49554	49693	49831	49968	501.05	50242	503
32	150515	しちのんちのし	SOVE	50920	131034	121199	131341	131434	131367	1311
33	LELOPI	E 1002	162112	52244	157374	152504	152633	152703	152691	1530.
34 .	53148	53275	53403	53529	53655	53781	53907			
35	54407  55630  56820	54530	54654	54777	54900	55032	55145	55266	55388	555
36	155630	55750	55870	55990	56110	56229	56348	56466	56584	567
37	56820	56937	57054	57170	57287	57403	57518	57634	57749	578
38 .										
39	59106								ı	
40	60206	60314 61384	60422	60530	60638	60745	60852	60959	61066	611
41	61278	61384	61489	61595	61700	61804	91949	62013	63144	632
42										
43	63347	63447 64443	03548	03048	61710	64974	64033	65030	65127	1655
44 1									1	
45	65321	65417 66370	65513	65609	65705	65801	65896	65991	66086	661
46	166276	67302	67704	67484	67577	67660	67760	67851	67942	0831
47	(20134	140214	402304	PDLAS	1684X4	6X574	しんさいひょ	68752	68842	689
48 49	69020	69108	69196	69284	69372	69460	69548	69635	69722	698
50	69897	69981	70070	70156	70243	70329	70415	70500	70586	706
51	70757	69983 70842	70927	71011	71096	71180	71265	71349	71433	715
52	71600	70842 71683 72509	71767	71850	71933	72015	72098	72181	72263	7234
53	72428	72509	72591	72672	72754	72835	72916	72997	73078	731
54	177770	73319	71100	73480	73550	73639	73719	73798	173878	17395

### 300 NATIONAL ELECTRIC LAMP ASSOCIATION

### ÆLOGÄRITHMS OF NUMBERS,>FROM 6° 7€ 1000 (Continued)

No.,	0	1	2	3	4	5	6	7 .	8	9
55	74036	74115	74193	74272	74351	74429	74507	74585	74663	74741
56	74818	74896	74973	75050	75127	75204	75281	75358	75434	75511
57	75587	75663	75739	75815	75891	75966	76042	76117	76192	76267
58	76342	76417		76566			76789		76937	
59	77085	77158	77232	77305	77378	77451	77524	77597	77670	79742
60	77815	77887	77959	78031	78103	78175	78247	78318	78390	78461
61	78533	78604	70270	70440	70510	70500	70457	70724	20206	14107
62 63	79239	90002	90071	90140	60308	90277	80345	20413	80482	79169 79865 80550
64	80618	80685	80753	80821	80888	80956	81023	81090	81157	81224
65	21 201	81358	81424	81491	81557	81624	81690	81756	81822	81888
66	81054	82020	82085	82151	82216	82282	82347	82412	82477	B2542
67	82607	82672	82736	82801	82866	82930	82994	83058	83123	83187
68	83250	83314	83378	83442	83505	83569	83632	83695	83758	83821
69	83884	83947	84010	84073	84136	84198	84260	84323	84385	84447
70	84509	84571	84633	84695	84757	84818	8.4880	84941	85003	85064
71	185125	85187	185248	85309	185369	85430	185491	85551	185612	85672
72	85733	85793	85853	85913	85973	86033	86093	86153	86213	86272
73	86332	86391	86451	86510	86569	86628	86687	86746	86805	86864
74	86923	86981	87040	87098	87157	87215	87273	87332	87390	87448
75	87506	87564	87621	87679	87737	87794	87852	87909	87966	88024
76	88081	88138	88195	88252	88309	88366	88422	88479	88536	88592
77 .	88649	88138 88705	88761	88818	88874	88930	88986	89042	89098	89153
:78	189209	189265	189320	89376	189431	89487	89542	189597	189652	189707
79	89762	89817	89872	89927	89982	90036	90091	90145	90200	90254
80	90309	90363	90417	90471	90525	90579	90633	90687	90741	90794
81	90848	90902	90955	91009	91062	91115	91169	91222	91275	91328
82	91381	91434 91960	91487	91540	91592	91645	91698	91750	91803	91855
83	91907	91960	92012	92064	92116	92168	92220	92273	92324	92376
84		92479		i	1	ĺ				
85	92941	92993 93500	93044	93095	93146	93196	93247	93298	93348	93399
86	93449	93500	93550	93601	93651	93701	93751	93802	93852	93902
87	193951	194001	94051	94101	194151	194200	94250	94300	94349	94398
88	94448	94497	94546	94596	94645	94694	94743	94792	94841	94890
89	94939	94987	95036	95085	95133	95182	95230	A28\A	95327	93376
90	95424	95472	95520	95568	95616	95664	95712	95760	95808	95856
91	95904	95951	95999	96047	96094	96142	96189	96236	96284	96331
92	96378	96426	96473	96520	96567	96614	196661	96708	96754	96801
93	96848	96895	96941	96988	97034	97081	97137	97174	97220	97266
94	97312	97359	9/403	7/431	7/47/	7/343	2/307	X/025	3/ <b>9</b> 00	3//60
<b>9</b> 5	97772	97818	97863	97909	97954	98000	98045	98091	98136	98181
96	98227	98272	98317	98362	98407	98452	98497	98542	98587	98632
97	98677	98721	98766	98811	98855	98900	98945	98989	99033	99078
98	199122	99166	99211	99255	92299	99343	99387	99481	00012	33213
99	99563	199607	1 COKK	77074	77/38	77/22	ANGES	AOSKK	2 ז געגו	77730

### TRIGONOMETRIC FUNCTIONS OF ACUTE ANGLES

In any right-angled triangle AMP (Fig. 1), M being the right angle, with reference to the angle A let MP be denoted as the opposite side, and AM the adjacent side. AP is the hypotenuse.



Then

$$sin A = \frac{Opposite side}{Hypotenuse} = \frac{MP}{AP} = \frac{1}{cosec A}$$

$$cos A = \frac{Adjacent side}{Hypotenuse} = \frac{AM}{AP} = \frac{1}{sec A}$$

$$tan A = \frac{Opposite side}{Adjacent side} = \frac{MP}{AM} = \frac{sin A}{cos A} = \frac{1}{cot A}$$

$$cot A = \frac{Adjacent side}{Opposite side} = \frac{AM}{MP} = \frac{cos A}{sin A} = \frac{1}{tan A}$$

$$sec A = \frac{Hypotenuse}{Adjacent side} = \frac{AP}{AM} = \frac{1}{cos A}$$

$$cosec A = \frac{Hypotenuse}{Opposite side} = \frac{AP}{AM} = \frac{1}{cos A}$$

$$cosec A = \frac{Hypotenuse}{Opposite side} = \frac{AP}{AM} = \frac{1}{cos A}$$

A 100

$$\begin{array}{lll} \sin A \csc A = 1 & \sin^3 A + \cos^3 A = 1 \\ \cos A \sec A & = 1 & \tan^2 A + 1 & = \sec^2 A \\ \tan A \cot A & = 1 & 1 + \cot^2 A & = \csc^3 A \end{array}$$

### 302 NATIONAL ELECTRIC LAMP ASSOCIATION

### NATURAL SINES, COSECANTS, TANGENTS, ETC.

	1	1	i	<del>Ì</del>	1	1		. 1	1
<u>°</u>	′	Sine	Cosecant	Tangent	Cotangent	Secant	Cosine		٠
0	0			.000000	Infinite 343.77371		1.000000	0 50	90
	20	.005818	171.88831	.905818	171.88540	1.00002	.999983	40	
	30 40		114.59301 85.945 <b>6</b> 09		114.58865 85.939791		.999962 .999932	30 20	
	50		68.757360				.999894	10	
1	0	.017452		.017455	57.289962	1.00015	.999848	0 50	89
	10 20		49.114062 42.975713	.023275	49.103881	1.00021	.999793 .999729		
	30 40				38.188459 34.367771	1.00034	.999657 .999577	30 20	
	50			.032009	31.241577		.999488		
2	0	.034899		.034921			.999391	0	88
	10 20	.037806	26.450510 24.562123	.037834			.999285	50 40	
	30	.043619	22.925586	.043661	22.903766	1.00095	,999048	30	
	40 50	.046525	21.493676 20.230284	.046576	21.470401 20.205553		.998917 .998778	20 10	
3	١	.052336	19.107323	.052408	19.081137	1.00137	.998630	0	87
•	10	.055241	18.102619	.055325	18.074977	1.00153	.998473	50 40	
	20 30		17.198434 16.380408		16.349855		.998135	30	
	40 50		15.636793 14.957882	.064083			.997357	20 10	
4	0		1	.069927		1 00244	.997564		86
. 1	10	.072658	13.763115	.072851	13.726738	1.00265	.997357	50	-
•	20 30	.078459	13.234717 12.74549 <b>5</b>	.078702			.996917	40 30	
	40 50		12.291252 11.868370			1.00333	.996685 .996444		
5			}						06
•	10	.090053	11.473713 11.104549	.087489 .090421	11.059431		.996195	50	85
	20		10.758488 10.433431	.093354	10.711913 10.385397	1.00435	.995671 :995396	40	
	40	.098741	10.127522	.099226	10:078031	1.00491	.995113	20	
	50	101635	9.8391227		9.7881732		.994822		
6	10		9.5667722 9.3091699	105104	9.5143645 9.2553035	1.00551	.994522 .994214	0 50	84
	20	.110313	9.0651512	.110990	9.0098261	1.00614	.993897	40	
	30 40		8.8336715 8.6137901	.116883	8.7768874 8.5555468	1.00681	.993238	30 20	
	50		8.4045586	. 119833	8.3449558	1.00715	.992896	10	83
۰	,	Cosine	Secant	Cotangent	Tangent	Josecant	Sine	-	•
		COSINE	Secant	Chentant	Tankent	-	Sille		L

For functions from 83°-10' to 90°-0' read from bottom of table upward.

## NATURAL SINES, COSECANTS, TANGENTS, ETC. (Continued)

•	,	Sine	Cosecant	Tangent	Cotangent	Secant	Cosine	-,	·
7	0 10 20 30 40 50	.121869  .124756  .127642  .130526  .133410  .136292	8.2055090 8.0156450 7.8344335 7.6612976 7.4957100 7.3371909	.122785 .125738 .128694 .131653 .134613 .137576	8.1443464 7.9530224 7.7703506 7.5957541 7.4287064 7.2687255	1.00751 1.00787 1.00825 1.00863 1.00902 1.00942	.991820 .991445 .991061	0 50 40 30 20	83
8	0 10 20 30 40 50	.139173 .142053 .144932 .147809 .156686 .153561	7.1852965 7.0396220 6.8997942 6.7654691 6.6363293 6.5120812	.146478 .149451 .152426	7.1153697 6.9682335 6.8269437 6.6911562 6.5605538 6.4348428	1.00983 1.01024 1.01067 1.01111 1.01155 1.01200	.989442 .989016 .988582	.0 50 40 30 20	82
9'	0 10 20 30 40 50	.156434 .159307 .162178 .165048 .167916	6.3924532 6.2771933 6.1660674 6.0588980 5.9553625 5.8553921	.158384 .161368 .164354 .167343 .170334 .173329	6.0844381 5.9757644	1.01247 1.01294 1.01342 1.01391 1.01440 1.01491	.986762 .986286 .985801	0 50 40 30 20 10	81
10	0 10 20 30 40 50	.173648 .176512 .179375 .182236 .185095 .187953	5.7587705 5.6653331 5.5749258 5.4874043 5.4026333 5.3204860	.176327 .179328 .182332 .185339 .188359 .191363	5.4845052 5.3955172 5.3092793	1.01543 1.01595 1.01649 1.01703 1.01758 1.01815	.983781 .983255 .982721	0 50 40 30 20 10	80 ·
11	0 10 20 30 40 50	.190809 .193664 .196517 .199368 .202218 .205065	5.2408431 5.1635924 5.0886284 5.0158317 4.9451687 4.8764907	.194380 .197401 .200425 .203452 .206483 .209518		1.01872 1.01930 1.01989 1.02049 1.02110 1.02171	.980500 .979925 .979341	50 40 30 20 10	79
İS	0 10 20 30 40 50	.207912 .210756 .213599 .216440 .219279 .222116	4.8097343 4.7448206 4.6816748 4.6202263 4.5604080 4.5021565	.212557 .215599 .218645 .221695 .224748 .227806	4.7046301 4.6382457 4.5736287 4.5107085 4.4494181 4.3896940		.978148 .977539 .976921 .976296 .975662 .975020	30 20	78
13	0 10 20 30 40 50	.224951 .227784 .230616 .233445 .236273 .239098	4.4454115 4.3901158 4.3362150 4.2836576 4.2323943 4.1823785	.243158	4.3314759 4.2747066 4.2193318 4.1652998 4.1125614 4.0610700	1.02914	.971687	0 50 40 30 20	77 76
٠.	7	Cosine	Secant	Cotangent	Tangent	Cosecant	Sine	,	•

For functions from 76°-10' to 83°-0' read from bottom of table upward.

304 NATIONAL ELECTRIC LAMP ASSOCIATION
NATURAL SINES, COSECANTS, TANGENTS, ETC.
(Continued)

•	′	Sine	Cosecant	Tangent	Cotangent	Secant	Cosine	1	c
14	0 10 20 30 40 50	.247563 .250380 .253195	4.1335655 4.0859130 4.0393804 3.9939292 3.9495224 3.9061250	.249328 .252420 .255517 .258618 .261723 .264834	4.0107809 3.9616518 3.9136420 3.8667131 3.8208281 3.7759519	1.03061 1.03137 1.03213 1.03290 1.03363 1.03447	.970296 .969588 .968872 .968148 .967415	40 30 20	76
15	0 10 20 30 40 50	.264434 .267238 .270040	3.8637033 3.8222251 3.7816596 3.7419775 3.7031506 3.6651518	.267949 .271069 .274195 .277325 .280460 .283600	3.73205Q8 3.6890927 3.6470467 3.6058835 3.5655749 3.5260938	1.03528 1.03609 1.03691 1.03774 1.03858 1.03944	.965926 .965169 .964404 .963630 .962849 .962059	50 40 30 20	75
16	140	.278432 .281225 .284015 .286803	3.6279553 3.5915363 3.5558710 3.5209365 3.4867110 3.4531735		3.4874144 3.4495120 3.4123626 3.3759434 3.3402326 3.3052091	1.04295	.961262 .960456 .959642 .958820 .957990 .957151	40 30 20	74
17	10 20 30 40	.295152  .297930  .3007 <b>0</b> 6   .3034 <b>7</b> 9	3.4203036 3.3880820 3.3564900 3.3255095 3.2951234 3.2653149	.318500	3.2708526 3.2371438 3.2040638 3.1715948 3.1397194 3.1084210	1.04757 1.04853 1.04950	.956305 .955450 .954588 .953717 .952838 .951951	40 30 20	73
18	40	.311782 .314545 .317305 .320062	3.2360680 3.2073673 3.1791978 3.1515453 3.1243959 3.0977363	.328139 .331364 .334595 .337833	3.0474915 3.0178301 2.9886850	1.05146 1.05246 1.05347 1.05449 1.05552 1.05657	.951057 .950154 .949243 .948324 .947397 .946462	40 30 20	72
19	10 20	.328317 .331063 .333807 .336547	3.0715535 3.0458352 3.0205693 2.9957443 2.9713490 2.9473724	.347585 .350848 .354119 .357396	2.9042109 2.8769970 2.8502349 2.8239129 2.7980198 2.7725448	1.06085 1.06195	.945519 .944568 .943609 .942641 .941666	40 30 20	71
20	20 30 40	.344752 .347491 .350207 .352931	2.9238044 2.9006346 2.8778532 2.8554510 2.8334185 2.8117471	.367268 .370573 .373885 .377204	2.7474774 2.7228076 2.6985254 2.6746215 2.6510867 2.6279121	1.06531 1.06645 1.06761 1.06878	.939693 .938694 .937687 .936672 .935650		70 69
•	•	Cosine	Secant	Cotangent	Tangent	Cosecant	Sine	,	•

For functions from  $69^{\circ}-10'$  to  $76^{\circ}-0'$  read from bottom of table upward.

## NATURAL SINES, COSECANTS, TANGENTS, ETC. (Continued)

•	,	Sine	Cosecant	Tangent	Cotangent	Secant	Cosine '	•
21	30 40	.366501 .369206	2.7285038 2.7085139	. <b>3</b> 93711 . <b>3</b> 97275	2.6050891 2.5826094 2.5604649 2.5386479 2.5171507	1.07479	.930418 30 .929348 20	9
22	0 10 20 30 40	.374607 .377302 .379994 .382683 .385369	2.6694672 2.6503962 2.6316180 2.6131259 2.5949137	.404026; .407414; .410810; .414214;	2.4959661 2.4750869 2.4545061 2.4342172 2.4142136 2.3944889 2.3750372	1.07853 1.07981 1.08109 1.08239	.924989 40 .923880 30	ĸ
23	0 10 20 30 40	.390731 .393407 .396080 .398749 .401415	2.5593047 2.5418961 2.5247440 2.5078428 2.4911574	.424475 .427912 .431358 .434812 .438276	2.3558524 2.3369287 2.3182606	1.08636 1.08771 1.08907 1.09044 1.09183	.9205051 0 6 .919364 50 .918216 40 .917060 30 .915896 20 .914725 10	7
24	20 30 40	.409392 .412045 .414693 .417338	2.4426448 2.4269222 2.411421) 2.3961367	.449719 .452219 .455726 .459244		1.09696) 1.09750 1.098951 1.10041	.913545 0 6 .912358 50 .911164 49 .999961 30 .998781 2 .997523 10	6
	10° 120  30  40	.425253 .427884 .437511 .433135	2.3515424 2.3370533 2.3226205 2.3087501	.469854 (47341) .476976 .480551	2.1445069 2.1283213 2.1123349 2.1965436 2.0969438 2.1655318	1.16488 1.16641 1.11793 1.11947	.996316	5
	10 20 30 49	.440984 .443593 .446193 .448793	2.2674573	.491333 .494953 .496552	2.0036697 1.9913637	1.11260 1.11419, 1.11579 1.11741 1.11971 1.112167	.698794	1
	10 (20 (30 (40	456587	2.1901947 2.1777595 2.1656866 2.1536553	.513135	1.9626175 1.9465772 1.9367762 1.937762 1.937767			:, :
•	.—`	Cosine	ا جيني	Catalograph	T≈.···	Cerant .	C	_

For functions from 625-17 to 67 9 r all from burnin of 1675-

### 306 NATIONAL ELECTRIC LAMP ASSOCIATION

## NATURAL SINES, COSECANTS, TANGENTS, ETC. (Continued)

•	•	Sine	Cosecant	Tangent	Cotangent	Secant	Cosine	•	•
28	0 10 20 30 40 50	.469472 .472038 .474600 .477159 .479713 .482263	2.1300545 2.1184737 2.1070359 2.0957385 2.0845792 2.0735556	.531709 .535547 .539195 .542956 .546728 .550515	1.8807265 1.8676003 1.8546159 1.8417409 1.8290628 1.8164892	1.13257 1.13433 1.13610 1.13789 1.13970 1.14152	.882948 .881578 .880201 .878817 .877425 .876026	40 30 20	62
29	0 10 20 30 40 50	.484810 .487352 .489890 .492424 .494953 .497479	2.0626653 2.0519061 2.0412757 2.0307720 2.0203929 2.0101362	.554309 .558118 .561939 .565773 .569619 .573478	1.8040478 1.7917362 1.7795524 1.7674940 1.7555590 1.7437453	1.14335 1.14521 1.14707 1.14896 1.15085 1.15277	.874620 .873206 .871784 .870356 .868920 .867476	40 30 20	61
30	0 10 20 30 40 50	.500000 .502517 .505030 .507538 .510043 .512543	2.0000000 1.9899822 1.9800810 1.9702944 1.9606206 1.9510577	.577350 .581235 .585134 .589045 .592970 .596908	1.7320508 1.7204736 1.7090116 1.6976631 1.6864261 1.6752988	1.15470 1.15665 1.15861 1.16059 1.16259 1.16460	.866025 .864567 .863102 .861629 .860149 .858662	40 30 20	60
31	0 10 20 30 40 50	.515038 .517529 .520016 .522499 .524977 .527450	1.9416040 1.9322578 1.9230173 1.9138809 1.9048469 1.8959138	.600861 .604827 .608807 .612801 .616809 .620832	1.6642795 1.6533663 1.6425576 1.6318517 1.6212469 1.6107417	1.16663 1.16868 1.17075 1.17283 1.17493 1.17704	.857167 .855665 .854156 .852640 .851117 .849586	40 30 20	59
<b>3</b> 2	0 10 20 30 40 50		1.8870799 1.8783438 1.8697040 1.8611590 1.8527073 1.8443476	.624869 .628921 .632988 .637079 .641167 .645280	1.6003345 1.5900238 1.5798079 1.5696856 1.5596552 1.5497155	1.17918 1.18133 1.18350 1.18569 1.18790 1.19012	.848048 .846503 .844951 .843391 .841825 .840251	0 50 40 30 20 10	58
33	0 10 20 30 40 50	.551937 .554360	1.8360785 1.8278985 1.8198065 1.8118010 1.8038809 1.7960449	. 649408 . 653531 . 657710 . 661886 . 666077 . 670285	1.5398650 1.5301025 1.5204261 1.5108352 1.5013282 1.4919039	1.19236 1.19463 1.19691 1.19920 1.20152 1.20386	.838671 .837083 .835488 .833886 .832277 .830661		57
34	0 10 20 30 40 50	.559193 .561602 .564007 .566406 .568801	1.7882916 1.7806201 1.7730290 1.7655173 1.7580837 1.7507273	.674509 .678749 .683007 .687281 .691573	1.4825610 1.4732983 1.4641147 1.4550090 1.4459801 1.4370268	1.21099 1.21341 1.21584	.829038 .827407 .825770 .824126 .822475 .820817	0 50 40 30 20	56 55
•	<u> </u>	Cosine	Secant	Cotangent	Tangent	Cosecant	Sine		•

For functions from 55°-10' to 62°-0' read from hottom of table upward.

TABLES

## NATURAL SINES, COSECANTS, TANGENTS, ETC. (Continued)

•	1	Sine	Cosecant		Cotangent	Secant	Cosine		•
35		.575957 .578332 .580703 .583069	1.7434468 1.7362413 1.7291096 1.7220508 1.7150639 1.7081478	.704552 .708913 .713293 .717691	1.4281480 1.4193427 1.4106098 1.4019483 1.3933571 1.3848355	1.22327 1.22579 1.22833	.819152 .817480 .815801 .814116 .812423 .810723	30 20	55
36	10 20	.590136 .592482 .594823	1.7013016 1.6945244 1.6878151 1.6811730 1.6745970 1.6680864	.730996 .735469 .739961	1.3763810 1.3679959 1.3596764 1.3514224 1.3432331 1.3351075	1.23869 1.24134 1.24400	.803857 .802123	0 50 40 30 20	54
37	30 40	.604136 .606451 .608761	1.6616401 1.6552575 1.6489376 1.6426796 1.6364828 1.6303462	.753554 .758125 .762716 .767627 .771959 .776612	1.3270448 1.3190441 1.3111046 1.3032254 1.2954057 1.2876447	1.25489 1.25767	.798636 .796882 .795121 .793353 .791579 .789798	30 20	53
38	10 20 30 40 50	.615661 .617950 .620235 .622315 .624789 .627057		.785981 .790698 .795436 .800196	1.2799416 1.2722957 1.2647062 1.2571723 1.2496933 1.2422685	1.27191 1.27483 1.27778 1.28075	.788011 .786217 .784416 .782608 .780794 .778973	30 20	52
39	0 10 20 30 40 50	633831	1.5890157 1.5833318 1.5777077 1.5721337 1.5666121 1.5611424	.809784 .814612 .819463 .824336 .829234 .834155	1.2130970 1.2059327	1.29287 1.29597 1.29909	.777146 .775312 .773472 .771625 .769771 .767911	0 50 40 30 20 10	51
^` 40	0 10 20 30 40 50	.642788 .645013 .647233 .649448 .651657 .653861	1.5345491	.839100 .844069 .849062 .854081 .859124 .864193	1.1917536 1.1847376 1.1777698 1.1708496 1.1639763 1.1571495	1.31183	.766044 .764171 .762292 .760406 .758514 .756615	40 30 20	50
41	0 10 20 30 40 50	.658252 .660439 .662620 .664796			1.1503684 1.1436326 1.1369414 1.1302944 1.1236909 1.1171305	1.32838 1.33177 1.33519 1.33864	.754710 .752798 .750880 .748956 .747025 .745088	40 30 20	49
•	•	Cosine	Secant	Cotangent	Tangent	Cosecant	Sine	1	•

For functions from  $48^{\circ}-10'$  to  $55^{\circ}-0'$  read from bottom of table upward.

### NATURAL SINES, COSECANTS, TANGENTS, ETC. (Continued)

 $\mathcal{H} = \{ x_1, \dots, x_n \in \mathcal{X} \mid x_n \in \mathcal{X} \mid x_n \in \mathcal{X} \}$ 

۰	'	Sine	Cosecant	Tangent	Cotangent	Secant	Cosine	,	•
42	0 10 20 30 40 50	.671289 .673443 .675590 .677732	1.4944765 1.4896703 1.4849073 1.4801872 1.4755095 1.4708736	.905685 .910994 .916331 .921697		1.34917 1.35274 1.35634 1.35997	.741195 .739239 .737277 .735309	50 40 30 20	48
43	0 10 20 30 40 50	.684123 .686242 .688355 .690462	1.4662792 1.4617257 1.4572127 1.4527397 1.4483063 1.4439120	.937968 .943451 .948965 .954508	1.0723687 1.0661341 1.0599381 1.0537801 1.0476598 1.0415767	1.37105 1.37481 1.37860 1.38242	.729367 .727374 .725374 .723369	50 40 30 20	47
44	0 10 20 30 40 50	.696748 .698832 .700909 .702981	1.4395565 1.4352393 1.4309602 1.4267182 1.4225134 1.4183454	.971326 .976996 .982697 .988432	1.0355303 1.0295203 1.0235461 1.0176074 1.0117088 1.0058348	1.39409 1.39804 1.40203 1.40606	717316 .715286 .713251 .711209	50 40 30 20	46
45	0	.707107	1.4142136	1.00000	1.0000000	1.41421	.707107	0	45
•	'	Cosine	Secant	Cotangent	Tangent	Cosceant	Sine	•	•

For functions from 45° C' to 48°-0' read from bottom of table upward.

TABLES \$09

### SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS AND RECIPROCALS

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
1 2 3 4 5 6 7 8 9	1 4 9 16 25 36 49 64	1 8 27 64 125 216 343 512 729	1.0000000 1.4142136 1.7320508 2.0000000 2.2360680 2.4494897 2.6457513 2.8284271 3.0000000	1.0000000 1.2599210 1.4422496 1.5874011 1.7099759 1.8171206 1.9129312 2.0000000 2.0800837	1.000000000 .500000000 .33333333 .25000000 .20000000 .166666667 .142857143 .125000000
10 11 12 13 14 15 16 17 18	100 121 144 169 196 225 256 289 324 361	1000 1331 1728 2197 2744 3375 4096 4913 5832 6859	3.1622777 3.3166248 3.4641016 3.6055513 3.7416574 3.8729833 4.0000000 4.1231056 4.2426407 4.3588989	2.1544347 2.2239801 2.2894286 2.3513347 2.4101422 2.4662121 2.5198421 2.5712816 2.6207414 2.6684016	.10000000 .09090901 .083333333 .076923077 .071428571 .066666667 .062500000 .058823529 .055555556
20	400	8000	4.4721360	2.7144177	.050000000
21	441	9261	4.5825757	2.7589243	.047619048
22	484	10648	4.6904158	2.8020393	.045454545
23	529	12167	4.7958315	2.8438670	.043478261
24	576	13824	4.8989795	2.8844991	.0411666667
25	625	15625	5.0000000	2.9240177	.040000000
26	676	17576	5.0990195	2.9624960	.038461538
27	729	19683	5.1961524	3.0000000	.037037037
28	784	21952	5.29150.26	3.0365889	.035714286
29	841	24389	5.3851648	3.0723168	.034482759
30	900	27000	5.4772256	3.1072325	.033333333
31	961	29791	5.5677644	3.1413806	.032258065
32	1024	32768	5.6568542	3.1748021	.031250000
33	1089	35937	5.744562	3.2075343	.030303030
34	1156	39304	5.8309519	3.2396118	.029411765
35	1225	42875	5.9160798	3.2710663	.028571429
36	1296	46656	6.0000000	3.3019272	.027777778
37	1369	50653	6.0827625	3.3322218	.027027027
38	1444	54872	6.1644140	3.3619754	.026315789
39	1521	59319	6.2449980	3.3912114	.025641026
40	1600	64000	6.3245553	3.4199519	.025000000
41	1681	68921	6.4031242	3.4482172	.024390244
42	1764	74088	6.4807407	3.4760266	.023809524
43	1849	79507	6.5574385	3.5033981	.023255814
44	1936	85184	6.6332496	3.5303483	.022727273
45	2025	91125	6.7082039	3.5568933	.022222222
46	2116	97336	6.7823300	3.5830479	.021739130
47	2209	103823	6.8556546	3.6088261	.021276600
48	2304	110592	6.9382032	3.6342411	.020833333
49	2401	117649	7.0000000	3.6593057	.020408163
50	2500	125000	7.0710678	3.6840314	.020000000
51	2601	132651	7.1414284	3.7084298	.019607843
52	2704	140608	7.2111026	3.7325111	.019230769

310 NATIONAL ELECTRIC LAMP ASSOCIATION

53 54 55 56	2809				
55		148877	7.2801099	3.7562858	.018867925
55	2916	157464	7.3484692	3.7797631	.018518519
	3025 3136	166375 175616	7.4161985 7.4833148	3.8029525 3.8258624	.018181818 .017857143
57	3249	185193	7.5498344	3.8485011	.017543860
58	3364	195112	7.6157731	3.8708766	.017241379
59	3481	205379	7.6811457	3.8929965	.016949153
60	3600	216000	7.7459667	3.9148676	.016666667
61 62	3721	226981	7.8102497	3.9364972	.016393443
63	3844 3969	238328 250047	7.8740079 7.9372539	3.9578915 3.9790571	.015873016
64	4096	262144	8.0000000	4.0000000	.015625000
65	4225	274625	8.0622577	4.0207256	.015384615
66	4356	287496	8.1240384	4.0412401	.015151515
67	4489	300763	8.1853528	4.0615480	.014925373
68	4624 4761	314432 328509	8.2462113 8.3066239	4.0816551 4.1015661	.01470 <b>58</b> 82 .01449 <b>27</b> 54
70	4900	343000	8.3666003	4.1212853	.014285714
71	5041	357911	8.4261498	4.1408178	.014084507
72	5184	373248	8.4852814	4.1601676	.013888889
73	5329 5476	389017	8.5440037	4.1793390	.013698630
74	5476	405224	8.6023253	4.1983364	.013513514
75 76	5625 5776	421875	8.6602540	4.2171633	-013333333
77	5929	438976 456533	8.7177979 8.7749644	4.2358236 4.2543210	.013157895 .012987013
78	6084	474552	8.8317609	4.2726586	.012820513
79	6241	493039	8.8881944	4.2908404	.012658228
80	6400	512000	8.9442719	4.3088695	.012500000
81	6561	531441	9.0000000	4.3267487	.012345679
82	6724 6889	551368	9.0553851	4.3444815	.012195122
83 84	7056	571787 592704	9.1104336 9.1651514	4.3795191	.012048193 .011904762
85	7225	614125		4.3968296	.011764706
86	7396	636056	9.2195445 9.2736185	4.4140049	.011627907
87	7569	658503	9.3273791	4.4310476	.011494253
88 89	7744 7921	681472 704969	9.3808315 9.4339811	4.4479602 4.4647451	.011363636 .011235955
90	8100	729000	9.4868330	4.4814047	.011111111
91	8281	753571	9.5393920	4.4979414	.010989011
92	8464	778688	9.5916630	4.5143574	.010869565
93	8649	804357	9.6436508	4.5306549	.010752688
94	8836	830584	9.6953597	4.5468359	.010638298
95 96	9025 9216	857375 884736	9.7467943 9.7979590	4.5629026 4.5788570	.010526316 .010416667
97	9409	912673	9.8488578	4.5947009	.010309278
98	9604	941192	9.8994949	4.6104363	.010204082
99	9801	970299	9.9498744	4.6260650	.010101010
100	10000	1000000	10.0000000	4.6415888	.010000000
101	10201	1030301	10.0498756	4.6570095	.009900990
102 103	10404 10609	1061208 1092727	10.0995049 10.1488916	4.6723287 4.6875482	.009803922 .009708738

TABLES

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
104 105 106 107 108 109	10816 11025 11236 11449 11664 11881	1124864 1157625 1191016 1225043 1259712 1295029	10.1980390 10.2469508 10.2956301 10.3440804 10.3923048 10.4403065	4.7026694 4.7176940 4.7326235 4.7474594 4.7622032 4.7768562	.009615385 .009523810 .009433962 .009345794 .009259259 .009174312
110 111 112 113 114 115 116 117	12100 12321 12544 12769 12996 13225 13456 13689 13924	1331000 1367631 1404928 1442897 1481544 1520875 1560896 1601613 1643032	10.4880885 10.5356538 10.5830052 10.6301458 10.6770783 10.7238053 10.7703296 10.8166538 10.8627805	4.7914199 4.8058955 4.8202845 4.8345881 4.8488076 4.8629442 4.8769990 4.8909732 4.9048681	.009090909 .009009009 .008928571 .008849558 .008771930 .008695652 .008620690 .008547009
119 120 121 122 123 124 125 126 127 128 129	14161 14400 14641 14884 15129 15376 15625 15876 16129 16384 16641	1728000 1771561 1815848 1860867 1906624 1953125 2000376 2048383 2097152 2146689	10.9087121 10.9544512 11.0000000 11.0453610 11.0905365 11.1355287 11.1803399 11.2249722 11.2694277 11.3137085	4.9186847 4.9324242 4.9460874 4.9596757 4.9731898 4.9866310 5.0000000 5.0132979 5.0265257 5.0396842 5.0527743	.008403361 .008333333 .008264463 .008196721 .008130081 .008064516 .00800000 .007936508 .007874016 .007812500
130 131 132 133 134 135 136 137 138	16900 17161 17424 17689 17956 18225 18496 18769 19044 19321	2197000 2248091 2299968 2352637 2406104 2460375 2515456 2571353 2628072 2685619	11. 4017543 11. 4457231 11. 4891253 11. 5758366 11. 5758369 11. 6619038 11. 7046999 11. 7473401 11. 7898261	5.0657970 5.0787531 5.0916434 5.1044687 5.1172299 5.1299278 5.1425632 5.1551367 5.1676493 5.1801015	.00769308 .007633588 .007575758 .007518797 .007462687 .007407407 .007352941 .007299270 .0072946377
140 141 142 143 144 145 146 147 148 149	19600 19881 20164 20449 20736 21025 21316 21609 21904 22201	2744000 2803221 2863288 2924207 2985984 3048625 3112136 3176523 3241792 3307949	11.8321596 11.8743421 11.9163753 11.9582607 12.000000 12.0415946 12.0830460 12.1243557 12.1655251 12.2065556	5.1924941 5.2048279 5.2171034 5.2293215 5.2414828 5.2535879 5.2656374 5.2776321 5.2895725 5.3014592	.007142857 .007092199 .007042254 .006993007 .00694444 .006896552 .006802721 .006756757
150 151 152 153 154	22500 22801 23104 23409 23716	3375000 3442951 3511808 3581577 3652264	12.2474487 12.2882057 12.3288280 12.3693169 12.4096736	5.3132928 5.3250740 5.3368033 5.3484812 5.3601084	.006666667 .006622517 .006578947 .006535948 .006493506

312 NATIONAL ELECTRIC LAMP ASSOCIATION

SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS AND

RECIPROCALS—(Continued)

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
155	24025	3723875	12,4498996	E 2716054	006451612
156				5.3716854	.006451613
157	24336	3796416	12.4899960	5.3832126	.006410256
158	24649	3869893	12.5299641	5,3946907	.006369427
	24964	3944312	12.5698051	5.4061202	.006329114
159	25281	4019679	12.6095202	5.4175015	.006289308
160	25600	4096000	12.6491106	5.4288352	.006250000
161	25921	4173281	12.6885775	5.4401218	.006211180
162	26244	4251528	12.7279221	5.4513618	-006172840
163	26569	4330747	12.7671453	5.4625556	.006134969
164	26896	4410944	12.8062485	5.4737037	.006097561
165	27225	4492125	12.8452326	5.4848066	.006060606
166	27556	4574296	12.8840987	5.4958647	.006024096
167	27889	4657463	12.9228480	5.5068784	.005988024
168	28224	4741632	12.9614814	5.5178484	.005952381
169	28561	4826809	13.0000000	5.5287748	.005917160
170	20000	4012000	12 0204040	E #20/500	00500253
170 171	28900 29241	491300Q 5000211	13.0384048	5.5396583	.005882353
172				5.5504991	.005847953
	29584 29929	5088448	13.1148770	5.5612978	.005813953
173 174		5177717	13.1529464	5.5720546	.005780347
	30276	5268024	13.1909060	5.5827702	.005747126
175	30625	5359375	13.2287566	5.5934447	.005714286
176	30976	5451776	13.2664992	5.6040787	.005681618
177	31329	5545233	13.3041347	5.6146724	.005649718
178	31684	5639752	13.3416641	5.6252263	.005617978
179	32041	5735339	13.3790882	5.6357408	.005586592
180	32400	5832000	13.4164079	5.6462162	.00555556
181	32761	5929741	13.4536240	5.6566528	.005524862
182	33124	6028568	13.4907376	5.6670511	.005494505
183	33489	6128487	13.5277493	5.6774114	.005464481
184	33856	6229504	13.5646600	5.6877340	.005434783
185	34225	6331625	13.6014705	5.6980192	.005405405
186	34596	6434856	13.6381817	5.7082675	.005376344
187	34969	6539203	13.6747943	1 5.7184791	.005347594
188	35344	6644672	13.7113092	5.7286543	.005319149
189	35721	6751269	13.7477271	5.7387936	.005291005
190 -	36100	6859000	13.7840488	5,7488971	.005263158
191	36481	,6967871	13.8202750	5.7589652	.005235602
192	36864	7077888	13.8564065	5.7689982	.005208333
192	37249	7189057	13.8924440	5.7789966	.005181347
193	37636	7301384	13.9283883	5.7889604	.005154639
195	38025	7414875	13.9642400	5.7988900	.005128205
195	38025	7529536	14.0000000	<b>5.8</b> 087857	.005102041
196	38809	7645373	14.0356688	5.8186479	.005076142
198	39204	7762392	14.0712473	5.8284767	.005050505
199	39601	7880599	14.1067360	5.8382725	.005025126
	1				1
200	40000	8000000	14.1421356	5.8480355	.005000000
201	40401	8120601	14.1774469	5.8577660	.004975124
202	40804	8242408	14.2126704	5.8674643	.004950495
203	41209	8365427	14.2478068	5.8771307	.004926108
204	41616	8489664	14.2828569	5.8867653	004901961
205	42025	8615125	14.3178211	5.8963685	.004878049

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
206	42436	8741816	14.3527001	5.9059406	.004854369
207	42849	8869743	14.3874946	5.9154817	.004830918
208	43264	8998912	14.4222051	5.9249921	.004807692
209	43681	9129329	14.4568323	5.9344721	.004784689
210	44100	9261000	14.4913767	5.9439220	.004761905
211	44521	9393931	14.5258390	5.9533418	.004739336
212	44944	9528128	14.5602198	5.9627320	.004716981
213	45369 45796	9663597	14.5945195	5.9720926	.0046 <b>94836</b> .0046 <b>7</b> 289 <b>7</b>
214 215	46225	9800344 9938375	14.6287388 14.6628783	5.9814240 5.9907264	.004672897
216	46656	10077696	14.6969385	6.0000000	.004629630
217	47089	10218313	14.7309199	6.0092450	.004608295
218	47524	10360232	14.7648231	6.0184617	.004587156
219	47961	10503459	14.7986486	6.0276502	.004566210
220	48400	10648000	14.8323970	6.0368107	.004545455
221	48841	10793861	14.8660687	6.0459435	.004524887
222	49284	10941048	14.8996644	6.0550489	.004504505
223	49729	11089567	14.9331845	6.0641270	.004484305
224	50176	11239424	14.9666295	6.0731779	.004464286
225 226	5062 <b>5</b> 510 <b>76</b>	11390625 11543176	15.0000000 15.0332964	6.0822020 6.0911994	.004444444
227	51529	11697083	15.0665192	6.1001702	.004424779
228	51984	11852352	15.0996689	6.1091147	.004385965
229	52441	12008989	15.1327460	6.1180332	.004366812
230	52900	12167000	15.1657509	6.1269257	.004347826
231	53361	12326391	15.1986842	6.1357924	.004329004
232	53824	12487168	15.2315462	6.1446337	.004310345
233	54289	12649337	15.2643375	6.1534495	.004291845
234 235	54756	12812904 12977875	15.2970585 15.3297097	6.1622401 6.1710058	.004273504
236	55225 55696	13144256	15.3622915	6.1797466	.004237288
237	56169	13312053	15.3948043	6.1884628	.004219409
238	56644	13481272	15.4272486	6.1971544	.004201681
239	57121	13651919	15.4596248	6.2058218	.004184100
240	57600	13824000	15.4919334	6.2144650	.004166667
241	58081	13997521	15.5241747	6.2230843	.004149378
242	58564	14172488	15.5563492	6.2316797	.004132231
243	59049	14348907	15.5884573	6.2402515	.004115226
244	59536	14526784	15.6204994	6.2487998	.004098361
245	60025	14706125	15.6524758	6.2573248	.004081633
246 247	60516 61009	14886936 15069223	15.6843871 15.7162336	6,2658266 6,2743054	004065041
248	61504	15252992	15.7480157	6.2827613	004032258
249	62001	15438249	15.7797338	6.2911946	004016064
250	62500	15625000	15.8113883	6.2996053	004000000
251	63001	15813251	15.8429795	6.3079935	.003984064
252	63504	16003008	15.8745079	6.3163596	.003968254
253	64009	16194277	15.9059737	6.3247035	.003952569
254	64516	16387064	15.9373775	6.3330256	.003937008
-255	65025	16581375	15.9687194	6.3413257	.003921569

### 814 NATIONAL ELECTRIC LAMP ASSOCIATION

256	1051 5969 1004 6154 1418 6794 2281 7879 3585 3585 3585 343 7472 3704 0037 6471
258         66564         17173512         16.0623784         6.3660968         .00387           259         67081         17373979         16.0934769         6.3743111         .00386           260         67600         17576000         16.1245155         6.3825043         .00388           261         68121         17779581         16.1554944         6.3906765         .00383           262         68644         17984728         16.1864141         6.3988279         .00381           263         69169         18399744         16.2480768         6.4150687         .00378           265         70225         18609625         16.2788206         6.4231583         .00377           266         70756         18821096         16.3095064         6.4312276         .00378           267         71289         19034163         16.3401346         6.4392767         .00374           268         71281         19248832         16.3707055         6.4473052         .00373           269         72361         19465109         16.4012195         6.4533041         .00371           270         72900         19683000         16.4316767         6.47122736         .00367           271 <td>5969 1004 6154 1418 6794 2281 7879 3585 9398 5318 1343 7472 3704 0037 6471</td>	5969 1004 6154 1418 6794 2281 7879 3585 9398 5318 1343 7472 3704 0037 6471
259         67081         17373979         16.0934769         6.3743111         .00386           260         67600         17576000         16.1245155         6.3825043         .00384           261         68121         17779581         16.1554944         6.3908279         .00381           262         68644         17984728         16.1864141         6.3988279         .00381           263         69169         18191447         16.2172747         6.4069585         .00380           265         70225         18609625         16.2788206         6.4231583         .00377           266         70756         18821096         16.3095064         6.4312276         .00375           267         71289         19034163         16.3401346         6.4322767         .00374           268         71824         19248832         16.3707055         6.4473052         .00373           269         72361         19465109         16.4012195         6.453344         .00370           270         72900         19683000         16.4316767         6.4633041         .00370           271         73441         19902511         16.4520776         6.4712736         .00360           273	1004 6154 1418 6794 2281 7879 3585 9398 5318 1343 7472 3704 0037 6471
260         67600         17576000         16.1245155         6.3825043         .00384           261         68121         17779581         16.1554944         6.3906765         .00383           262         68644         17984728         16.1864141         6.3908765         .00383           264         69696         18399744         16.2480768         6.4150687         .00378           265         70225         18609625         16.278206         6.4231583         .00377           266         70756         18821096         16.3095064         6.4312276         .00375           267         71289         19034163         16.3401346         6.4392767         .00375           268         71824         19248832         16.3707055         6.4473057         .00372           269         72361         19465109         16.4012195         6.4533148         .00371           270         72900         19683000         16.4012195         6.4533041         .00370           271         73441         19902511         16.4620776         6.4712736         .00369           273         74529         20346417         16.5227116         6.4871541         .00366           274	6154 1418 6794 2281 7879 3585 9398 5318 1343 7472 3704 0037 6471
261 68121 17779581 16.1554944 6.3906765 00383 262 68644 17984728 16.1864141 6.398279 00381 263 69169 18191447 16.2172747 6.4069585 00380 264 69696 18399744 16.2480768 6.4150687 00378 265 70225 18609625 16.278206 6.4231583 00378 266 70756 18821096 16.3095064 6.4312276 00375 267 71289 19034163 16.3401346 6.4312276 00375 268 71824 19248832 16.3707055 6.4473057 00374 268 71824 19248832 16.3707055 6.4473057 00374 269 72361 19465109 16.4012195 6.4553148 00371 270 72900 19683000 16.4316767 6.45633041 00370 271 73441 19902511 16.4620776 6.4712736 00369 272 73984 20123648 16.4924225 6.4712736 00369 273 74529 20346417 16.5227116 6.4871541 00366 274 75076 20570824 16.5529454 6.4950653 00367 275 75625 20796875 16.5831240 6.5029572 00363 276 76176 21024576 16.6132477 6.5108300 00362 277 776729 21253933 16.6433170 6.5108300 00362 278 77234 21484952 16.6733320 6.5265189 00359 279 77841 21717639 16.7032931 6.5343351 00358 280 78400 21952000 16.7332005 6.5421326 00359 279 77841 21717639 16.7032931 6.5343351 00358 280 78400 21952000 16.7332005 6.5421326 00359 279 77841 22188041 16.7630546 6.5599116 00355 281 78961 22188041 16.7630546 6.5599116 00355 282 79524 22425768 16.9228556 6.5576722 00354 283 88089 22665187 16.8226038 6.5654144 00353 284 80656 22906304 16.8522995 6.5731385 00359 285 81225 23149125 16.8819430 6.5808443 00330 286 81796 23393656 16.9115345 6.5808434 00358 286 81796 23393656 16.9115345 6.5808434 00358 287 82369 23639903 16.9410743 6.5808434 00358 288 82944 23887872 16.9705627 6.5638354 00348 288 82944 23887872 16.9705627 6.5638354 00348 288 82944 23887872 16.9705627 6.6638545 00348	1418 6794 2281 7879 3585 9398 5318 1343 7472 3704 0037 6471
262         68644         17984728         16.1864141         6.3988279         .00381           263         69169         18191447         16.2172747         6.4069585         .00380           264         69696         18399744         16.2480768         6.4150687         .00378           265         70225         18609625         16.2788206         6.431583         .00370           266         70756         18821096         16.3095064         6.4312276         .00375           267         71289         19034163         16.3401346         6.43922767         .00374           268         71824         19248832         16.3707055         6.4473052         .00372           269         72361         19465109         16.4012195         6.4553148         .00371           270         72900         19683000         16.4316767         6.4633041         .00370           271         73441         19902511         16.4620776         6.4712736         .00369           273         74529         20346417         16.5227116         6.4871541         .00369           274         75076         20570824         16.5529454         6.4950653         .00364           275 <td>6794 2281 7879 3585 9398 5318 1343 7472 3704 0037 6471</td>	6794 2281 7879 3585 9398 5318 1343 7472 3704 0037 6471
263         69169         18191447         16.2172747         6.4069585         .00380           264         69696         18399744         16.2480768         6.4150687         .80378           265         70225         18609625         16.2788206         6.4231583         .00377           266         70756         18821096         16.3095064         6.4312276         .00375           267         71289         19034163         16.3401346         6.4322767         .00374           268         71824         19248832         16.3707055         6.4473057         .00373           269         72361         19465109         16.4012195         6.4553148         .00371           270         72900         19683000         16.4316767         6.4633041         .00370           271         73944         20123648         16.4924225         6.4792236         .00367           272         73984         20123648         16.5227116         6.4871541         .00366           273         74529         20346417         16.5227116         6.4871541         .00366           275         75625         20796875         16.5831240         6.5029572         .00363           276 <td>2281 7879 3585 9398 5318 1343 7472 3704 0037 6471</td>	2281 7879 3585 9398 5318 1343 7472 3704 0037 6471
264         69696         18399744         16.2480768         6.4190687         .00378           265         70225         18609625         16.2788206         6.4231583         .00377           266         70756         18821096         16.3095064         6.4312276         .00375           267         71289         19034163         16.3401346         6.4392767         .00373           269         72361         19465109         16.4012195         6.4533148         .00371           270         72900         19683000         16.4316767         6.4633041         .00370           271         73441         19902511         16.4620776         6.4712736         .00367           273         74529         20346417         16.5227116         6.4871541         .00369           274         75076         20570824         16.5529454         6.5029572         .00363           275         75625         20796875         16.5831240         6.5029572         .00363           276         76176         21024576         16.6132477         6.5108300         .00362           278         77234         21484952         16.6733320         6.5365189         .00362           278 <td>7879 3585 9398 5318 1343 7472 3704 0037 6471</td>	7879 3585 9398 5318 1343 7472 3704 0037 6471
265         70225         18609625         16.2788206         6.4231583         .00377           266         70756         18821096         16.3095064         6.4312276         .00375           267         71289         19034163         16.3401346         6.4392767         .00374           268         71824         19248832         16.3707055         6.4473057         .00373           269         72361         19465109         16.4012195         6.4533148         .00371           270         72900         19683000         16.4316767         6.4633041         .00370           271         73941         19902511         16.4620776         6.4712736         .00369           272         73944         20123648         16.4924225         6.4972236         .00367           273         74529         20346417         16.5227116         6.4871541         .00362           274         75076         20570824         16.5529454         6.5929572         .00364           275         75625         20796875         16.5831240         6.5929572         .00362           277         76729         21253933         16.6733170         6.5186839         .00361           277 <td>3585 9398 5318 1343 7472 3704 0037 6471</td>	3585 9398 5318 1343 7472 3704 0037 6471
266         70756         18821096         16.3095064         6.4312276         00375           267         71289         19034163         16.3401346         6.4392767         00374           268         71824         19248832         16.3707055         6.4473057         00373           269         72361         19465109         16.4012195         6.453148         00371           270         72900         19683000         16.4316767         6.4633041         00370           271         73441         19902511         16.4820776         6.4712736         00367           272         73984         20123648         16.4924225         6.4792236         00367           273         74529         20346417         16.5227116         6.4871541         00366           274         75076         20570824         16.55259454         6.5029572         00363           275         75625         20796875         16.5831240         6.5029572         00363           276         76176         21024576         16.6132477         6.5108300         00362           277         76729         21253933         16.6733240         6.5343351         00359           278 <t< td=""><td>9398 5318 1343 7472 3704 0037 6471</td></t<>	9398 5318 1343 7472 3704 0037 6471
267         71289         19034163         16.3401346         6.4392767         .00374           268         71824         19248832         16.3707055         6.4473057         .00373           269         72361         19465109         16.4012195         6.4533148         .00371           270         72900         19683000         16.4316767         6.4633041         .00370           271         73441         19902511         16.4620776         6.4712736         .00369           272         73934         20123648         16.4924225         6.4792236         .00369           273         74529         20346417         16.5227116         6.4871541         .00366           274         75076         20570824         16.5529454         6.4950653         .00364           275         75625         20796875         16.5831240         6.5029572         .00363           276         76176         21024576         16.6132477         6.518300         .00362           277         76729         21253933         16.6433170         6.5186839         .00361           278         77841         21717639         16.7032931         6.53421326         .00357           280 <td>5318 1343 7472 3704 0037 6471</td>	5318 1343 7472 3704 0037 6471
268         71824         19248832         16.3707055         6.4473052         .00373           269         72361         19465109         16.4012195         6.4553148         .00371           270         72900         19683000         16.4316767         6.4633041         .00369           271         73944         19902511         16.4620776         6.4792736         .00369           272         73984         20123648         16.4924225         6.4792236         .00367           273         74529         20346417         16.5227116         6.4871541         .00366           275         75625         20796875         16.5831240         6.5029572         .00363           276         76176         21024876         16.6132477         6.5108300         .00362           277         7629         21253933         16.6433170         6.5186839         .00361           278         77284         21484952         16.673320         6.5421326         .00359           279         77841         21717639         16.7032931         6.5449116         .00359           280         78400         21952000         16.7332005         6.5421326         .00357           281	1343 7472 3704 0037 6471
269         72361         19465109         16.4012195         6.4553148         .00371           270         72900         19683000         16.4316767         6.4633041         .00370           271         73441         19902511         16.4620776         6.4712736         .00369           272         73984         20123648         16.4924225         6.4792236         .00367           273         74529         20346417         16.5227116         6.4871541         .00369           274         75076         20570824         16.5529454         6.5029572         .00363           275         75625         20796875         16.5831240         6.5029572         .00363           276         76176         21024576         16.6132477         6.5108300         .00362           277         76729         21233933         16.6433170         6.510830         .00362           278         77284         21484952         16.6733320         6.5265189         .00359           280         78400         21952000         16.733203         6.5421326         .00357           281         78961         22188041         16.7930546         6.5499116         .00355           282	7472 3704 0037 6471
270         72900         19683000         16.4316767         6.4633041         .00370           271         73441         19902511         16.4620776         6.4712736         .00369           272         73934         20123648         16.4924225         6.4792236         .00367           273         74529         20346417         16.5227116         6.4871541         .00366           274         75076         20570824         16.5529454         6.4950653         .00364           275         75625         20796875         16.5831240         6.5029572         .00363           276         76176         21024576         16.6132477         6.5108300         .00362           277         76729         21253933         16.6433170         6.5186839         .00361           278         77284         21484952         16.6733320         6.5265189         .00359           280         78400         21952000         16.7332005         6.5421326         .00357           281         78961         22188041         16.7630546         6.5499116         .00358           282         79524         22425768         16.792856         6.5576722         .00354           285	3704 0037 6471
271	0037 6471
271	0037 6471
272         73944         20123648         16.4924225         6.4792236         .00367           273         74529         20346417         16.5227116         6.4871541         .00366           274         75076         20570824         16.5529454         6.4950653         .00364           275         75625         20796875         16.5831240         6.5029572         .00364           276         76176         21024576         16.6132477         6.5108300         .00362           277         76729         21253933         16.6433170         6.5186839         .00361           279         77284         21484952         16.6733320         6.5265189         .00359           279         77841         21717639         16.7032931         6.5421326         .00357           280         78400         21952000         16.7332005         6.5421326         .00357           281         78961         22188041         16.7630546         6.5499116         .00352           283         80089         22665187         16.8226038         6.554144         .00353           284         80656         22906304         16.8226038         6.554144         .00353           285	6471
273         74529         20346417         16.5227116         6.4871541         .00366           274         75076         20570824         16.5529454         6.5029572         .00363           275         75625         20796875         16.5831240         6.5029572         .00363           276         76176         21024576         16.6132477         6.5108300         .00362           277         76729         21233933         16.6433170         6.5186839         .00361           278         77284         21484952         16.6733320         6.5265189         .00359           280         78400         21952000         16.7332005         6.5421326         .00357           281         78861         22188041         16.7630546         6.5499116         .00355           282         79524         22425768         16.7928556         6.5547122         .00354           283         80089         22665187         16.8226038         6.555144         .00353           284         80656         22906304         16.8522995         6.5531385         .00342           285         81225         23149125         16.8819430         6.5808443         .00350           286	
274         75076         20570824         16.5529454         6.4950653         .00364           275         75625         20796875         16.5831240         6.5029572         .00363           276         76176         21024576         16.6132477         6.5108300         .00362           277         76729         21253933         16.6433170         6.5186839         .00361           278         77284         21484952         16.6733320         6.5265189         .00359           280         78400         21952000         16.7032931         6.5421326         .00357           281         78961         22188041         16.7630546         6.5499116         .00357           282         79524         22425768         16.7928556         6.5576722         .00354           283         8089         22665187         16.8226038         6.5554144         .00353           284         80656         22906304         16.8522995         6.5731385         .00352           285         81225         23149125         16.8819430         6.5808443         .00335           286         81796         23393656         16.9115345         6.58885323         .00349           287 <td></td>	
275         75625         20796875         16.5831240         6.5029572         .00363           276         76176         21024576         16.6132477         6.5108300         .00362           277         76729         21253933         16.6433170         6.5186839         .00361           278         77284         21484952         16.6733320         6.5265189         .00359           279         77841         21717639         16.7032931         6.5343351         .00358           280         78400         21952000         16.7332005         6.5421326         .00357           281         78961         22188041         16.7630546         6.5499116         .00355           282         79524         22425768         16.7928556         6.55676722         .00354           283         80089         22665187         16.8226038         6.5654144         .00353           284         80656         22906304         16.8522995         6.5731385         .00342           285         81225         23149125         16.8819430         6.5808443         .00350           286         81796         23393656         16.9115345         6.5885323         .00349           287 <td></td>	
276         76176         21024576         16.6132477         6.5108300         .00362           277         76729         21253933         16.6433170         6.5186839         .00361           278         77284         21484952         16.6733320         6.5265189         .00359           279         77841         21717639         16.7032931         6.5343351         .00358           280         78400         21952000         16.7332005         6.5421326         .00357           281         78961         22188041         16.7630546         6.599116         .00357           282         79524         22425768         16.7928556         6.5576722         .00334           283         80089         22665187         16.8226038         6.5654144         .00353           284         80656         22906304         16.8522995         6.5731385         .00352           285         81225         23149125         16.8819430         6.5808443         .00350           286         81796         23393656         16.9115345         6.58685323         .00349           287         82369         23639903         16.9410743         6.5962023         .00348           288 <td></td>	
277         76729         21253933         16.6433170         6.5186839         .00361           278         77284         21484952         16.6733320         6.5265189         .00359           279         77841         21717639         16.7032931         6.5343351         .00358           280         78400         21952000         16.7332005         6.5421326         .00357           281         78961         22188041         16.7630546         6.5499116         .00355           282         79524         22425768         16.7928556         6.5576722         .00354           283         80089         22665187         16.8226038         6.5654144         .00335           284         80656         22906304         16.8522995         6.5731385         .00352           285         81225         23149125         16.8819430         6.5808443         .00350           286         81796         23393656         16.9115345         6.5885323         .00349           287         82369         23639903         16.9410743         6.5962023         .00348           288         82944         23887872         16.9705627         6.6038545         .00347	
278         77.84         21484952         16.6733320         6.5265189         .00359           279         77.841         21717639         16.7032931         6.5343351         .00358           280         78400         21952000         16.7332005         6.5421326         .00357           281         78961         22188041         16.7630546         6.5499116         .00355           282         79524         22425768         16.7928556         6.5567122         .00354           283         80089         22665187         16.8226038         6.5654144         .00335           284         80656         22906304         16.8522995         6.5731385         .00352           285         81225         23149125         16.8819430         6.5808443         .00350           286         81796         23393656         16.9115345         6.5885323         .00349           287         82369         236339903         16.9410743         6.5038545         .00347           288         82944         23887872         16.9705627         6.6038545         .00347	
280 78400 21952000 16.7332005 6.5421326 .00357 281 78961 22188041 16.7630546 6.5499116 .00355 282 79524 22425768 16.7928556 6.5576722 .00354 283 80089 22665187 16.8226038 6.5654144 .00353 284 80656 22906304 16.8522995 6.5731385 .00352 285 81225 23149125 16.8819430 6.5808443 .00350 286 81796 23393656 16.9115345 6.5885323 .00349 287 82369 23639903 16.9410743 6.5962023 .00348 288 82944 23887872 16.9705627 6.6038545 .00347	7122
282     79524     22425768     16.7928556     6.5576722     .00354       283     80089     22665187     16.8226038     6.5654144     .00353       284     80656     22906304     16.8522995     6.5731385     .00352       285     81225     23149125     16.8819430     6.5808443     .00350       286     81796     23393656     16.9115345     6.5885323     .00349       287     82369     23639903     16.9410743     6.5962023     .00348       288     82944     23887872     16.9705627     6.6038545     .00347	4229
282     79524     22425768     16.7928556     6.5576722     .00354       283     80089     22665187     16.8226038     6.5654144     .00353       284     80656     22906304     16.8522995     6.5731385     .00352       285     81225     23149125     16.8819430     6.5808443     .00350       286     81796     23393656     16.9115345     6.5885323     .00349       287     82369     23639903     16.9410743     6.5962023     .00348       288     82944     23887872     16.9705627     6.6038545     .00347	1420
282     79524     22425768     16.7928556     6.5576722     .00354       283     80089     22665187     16.8226038     6.5654144     .00353       284     80656     22906304     16.8522995     6.5731385     .00352       285     81225     23149125     16.8819430     6.5808443     .00350       286     81796     23393656     16.9115345     6.5885323     .00349       287     82369     23639903     16.9410743     6.5962023     .00348       288     82944     23887872     16.9705627     6.6038545     .00347	
283         80089         22665187         16.8226038         6.5654144         .00353           284         80656         22906304         16.8522995         6.5731385         .00352           285         81225         23149125         16.8819430         6.5808443         .00350           286         81796         23393656         16.9115345         6.5885323         .00349           287         82369         23639903         16.9410743         6.5962023         .00348           288         82944         23887872         16.9705627         6.6038545         .00347	
284 80656 22906304 16.8522995 6.5731385 .60352 285 81225 23149125 16.8819430 6.5808443 .00350 286 81796 23393656 16.9115345 6.5885323 .00349 287 82369 23639903 16.9410743 6.5962023 .00348 288 82944 23887872 16.9705627 6.6038545 .00347	
285 81225 23149125 16.8819430 6.5808443 .00350 286 81796 23393656 16.9115345 6.5885323 .00349 287 82369 23639903 16.9410743 6.5962023 .00348 288 82944 23887872 16.9705627 6.6038545 .00347	
286 81796 23393656 16.9115345 6.5885323 .00349 287 82369 23639903 16.9410743 6.5962023 .00348 288 82944 23887872 16.9705627 6.6038545 .00347	
287   82369   23639903   16.9410743   6.5962023   .00348 288   82944   23887872   16.9705627   6.6038545   .00347	
288   82944   23887872   16.9705627   6.6038545   .00347	
	2222
	0208
200 24100 24100000 17 0000004 6 6101060 00244	0076
290   84100   24389000   17.0293864   6.6191060   .00344 291   84681   24642171   17.0587221   6.6267054   .00343	
291   84681   24642171   17.0587221   6.6267054   .00343 292   85264   24897088   17.0880075   6.6342874   .00342	
293 85849 25153757 17.1172428 6.6418522 .00341	
294   86436   25412184   17.1464282   6.6493998   .00340	
295   87025   25672375   17.1755640   6.6569302   .00338	
296   87616   25934336   17,2046505   6.6644437   .00337	
297   88209   26198073   17.2336879   6.6719403   .00336	
298   88804   26463592   17.2626765   6.6794200   .00335	
299   89401   26730899   17.2916165   6.6868831   .00334	
300 90000 27000000 17.3205081 6.6943295 .00333	1111
	<b>აააა</b>
301   90601   27270901   17.3493516   6.7017593   .00332 302   91204   27543608   17.3781472   6.7091729   .00331	
303   91809   27818127   17.4068952   6.7165700   .00330	2259
304   92416   28094464   17.4355958   6.7239508   .00328	2259 1258
305   93025   28372625   17.4642492   6.7313155   .00327	2259 1258 0330
306   93636   28652616   17.4928557   6.7386641   .00326	2259 1258 0330 9474

TABLES

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
307	94249	28934443	17.5214155	6.7459967	.003257329
308	94864	29218112	17.5499288	6.7533134	.003246753
309	95481	29503629	17.5783958	6.7606143	.003236246
310 311 312 313 314 315 316 317 318 319	96100 96721 97344 97969 98596 99225 99856 100489 101124 101761	29791000 30080231 30371328 30664297 30959144 31255875 31554496 31855013 32157432 32461759	17.6068169 17.6351921 17.6635217 17.6918060 17.7200451 17.7482393 17.7763888 17.8044938 17.832554\$ 17.8605711	6.7678995 6.7751690 6.7824229 6.7896613 6.7966844 6.8040921 6.8112847 6.8184620 6.8256242 6.8327714	.003225806 .003215434 .003205128 .003194888 .003184713 .003174603 .003164557 .003154574 .003134796
320	102400	32768000	17.8885438	6.8399037	.003125000
321	103041	33076161	17.9164729	6.8470213	.003115265
322	103684	33386248	17.9443584	6.8541240	.003105590
323	104329	33698267	17.9722008	6.8612120	.003095975
324	104976	34012224	18.000000	6.8682855	.003086420
325	105625	34328125	18.0277564	6.8753443	.003076923
326	106276	34645976	18.0554701	6.8823888	.003067485
327	106929	34965783	18.0831413	6.8894188	.003058104
328	107584	35287552	18.1107703	6.8964345	.003048780
329	108241	35611289	18.1383571	6.9034359	.003039514
330	108900	35937000	18.1659021	6.9104232	.00303033
331	109561	36264691	18.1934054	6.9173964	.003021148
332	110224	36594368	18.2208672	6.9243556	.003012048
333	110889	36926037	18.2482876	6.9313008	.003003003
334	111556	37259704	18.2756669	6.9382321	.002994012
335	112225	37595375	18.3030052	6.9451496	.002985075
336	112896	37933056	18.3303028	6.9520533	.002976190
337	113569	38272753	18.3575598	6.9589434	.002967359
338	114244	38614472	18.3847763	6.9658198	.002958580
339	114921	38958219	18.4119526	6.9726826	.002949853
340 341 342 343 344 345 346 347 348 349	115600 116281 116964 117649 118336 119025 119716 120409 121104 121801	39304000 39651821 40001688 40353607 40707584 41063625 41421736 41781923 42144192 42508549	18.4390889 18.4661853 18.4932420 18.5202592 18.57472370 18.5741756 18.6010752 18.6279360 18.6547581 18.6815417	6.9795321 6.9863681 6.9931906 7.0000000 7.0067962 7.0135791 7.0203490 7.0271058 7.0338497 7.0405806	.002941176 .002932551 .002923977 .002915452 .002906977 .002898551 .002890173 .002881844 .002873563
350	122500	42875000	18.7082869	7.0472987	.002857143
351	123201	43243551	18.7349940	7.0540041	.002849003
352	123904	43614208	18.7616630	7.0606967	.002840909
353	124609	43986977	18.7882942	7.0673767	.002832861
354	125316	44361864	18.8148877	7.0740440	.002824859
355	126025	4473887	18.8414437	7.080698	.002816901
356	126736	45118016	18.8679623	7.0873411	.002808989
357	127449	45499293	18.8944436	7.0939709	.002801120

316 NATIONAL ELECTRIC LAMP ASSOCIATION
SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS AND
RECIPROCALS—(Continued)

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
358 359	128164 128881	45882712 46268279	18.9208879 18.9472953	7.1005885 7.1071937	.002793296 .002785515
360	129600	46656000	18.9736660	7.1137866	.002777778
361 362	130321	47045881 47437928	19.0000000 19.0262976	7.1203674	.002770083
363	131769	47832147	19.0525589	7.1334925	.002754821
364	132496	48228544	19.0787840	7.1400370	.002747253
365 366	133225	48627125 49027896	19.1049732	7.1465695 7.1530901	.002739726
367	134689	49430863	19.1572441	7.1595988	.002724796
368	135424	49836032	19.1833261	7.1660957	.002717391
369	136161	50243409	19.2093727	7.1725809	.002710027
370 371	136900	50653000	19.2353841	7.1790544	.002702703
	137641	51064811	19.2613603	7.1855162	.002695418
372 373	138384	51478848 51895117	19.2873015 19.3132079	7.1919663 7.1984050	.002688172
374	139876	52313624	19.3390796	7.2048322	.002673797
375	140625	52734375	19.3649167	7.2112479	.002666667
376 377	141376 142129	53157376 53582633	19.3907194	7.2176522 7.2240450	.002659574
378	142884	54010152	19.4422221	7.2304268	.002645503
379	143641	54439939	19.4679223	7.2367972	.002638522
380	144400	54872000	19.4935887	7.2431565	.002631579
381	145161	55306341	19.5192213	7.2495045	.002624672
382	145924 146689	55742968 56181887		7.2558415 7.2621675	.002617801
383 384	147456	56623104	19.5703858	7.2684824	.002604167
385	148225	57066625	19.6214169	7.2747864	.002597403
386	148996	57512456	19.6468827	7.2810794 7.2873617	.002590674 .002583979
387 388	149769 150544	57960603 58411072	19.6723156	7.2936330	.002577320
389	151321	58863869	19.7230829	7.2998936	.002570694
390	152100	.59319000	19.7484177	7.3061436	.002564103
391	152881	59776471	19.7737199	7.3123828	.002557545 .002551020
392	153664	60236288	19.7989899	7.3186114	.002551020
393 394	154449 155236	60698457 61162984	19.8242276 19.8494332	7.3248295	.002544529
395	156025	61629875	19.8746069	7.3310369 7.3372339	.002531646
396	156816	62099136	19.8997487	7.3434205	.002525253
397 398	157609 158404	62570773 63044792	19.9248588 19.9499373	7.3495966 7.3557624	.002518892
399	159201	63521199	19.9749844	7.3619178	.002506266
400	160000	64000000	20.0000000	7.3680630	882500088
401	160801	6448120 ³	20.0249844	7.3741979	.002500000 .002493766 .002487562
402	161604	64964808	20.0499377	7.3803227	.002487562
403	162409 163216	65450827 65939264	20.0748599	7.3864373 7.3925418	.062481396 .002475248
404 405	164025	66430125	20.0997512 20.1246118	7.3925418	.002469136
406	164836	66923416	20.1494417	7.4047206	.002463054
407	165649	67419143	20.1742410	7.4107950	.002457002
408	166464	67917312	20.1742410	7.4107950 7.41685 <del>95</del>	.00245/002

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
409	167281	68417929	20.2237484	7.4229142	.002444988
410	168100	68921000	20,2484567	7.4289589	.002439024
411	168921	69426531	20.2731349	7.4349938	.002433090
412	169744	69934528	20.2977831	7.4410189	.002427184
413	170569	70444997	20.3224014	7.4470342	.002421308
414	171396	70957944	20.3469899	7.4530399	.002415459
415 416	172225	71473375	20.3715488	7.4590359	.002409639
417	173056 173889	71991296 72511713	20.3960781	7.4650223 7.4709991	.002403846
418	174724	73034632	20.4450483	7.4769664	.002392344
419	175561	73560059	20.4694895	7.4829242	.002386635
420	176400	74088000	20.4939015	7.4888724	.002380952
421	177241	74618461	20.5182845	7.4948113	.002375297
422	178084	75151448	20.5426386	7.5007406	.002369668
423	178929	75686967	20.5669638	7.5066607	.002364066
424	179776	76225024	20.5912603	7.5125715	.002358491
425 426	180625 181476	76765625 77308776	20.6155281	7.5184730 7.5 <del>2</del> 43652	.002352941
427	182329	77854483	20.6639783	7.5302482	.002341920
428	183184	78402752	20.6881609	7.5361221	.002336449
429	184041	78953589	20.7123152	7.5419867	.002331002
480	184900	79507000	20.7364414	7.5478423	.002325581
431	185761	80062991	20.7605395	7.5536888	.002320186
432	186624	80621568	20.7846097	7.5595263	.002314815
433	187489	81182737	20.8086520	7.5653548	.002309469
434 435	188356 189225	81746504 82312875	20.8326667	7.5711743 7.5769849	.002304147
436	190096	82881856	20.8806130	7.5827865	.002298851
437 .	190969	83453453	20.9045450	7.5885793	.002288330
438	191844	84027672	20.9284495	7.5943633	.002283105
439	192721	84604519	20.9523268	7.6001385	.002277904
440	193600	85184000	20.9761770	7.6039049	.002272727
441	194481	85766121	21.0000000	7.6116626	.002267574
442 443	195364	86350888	21.0237960	7.6174116	.002262443
443 444	196249 197136	86938307 87528384	21.0475652	7.6231519	.002257336
445	198025	88121125	21.0950231	7.6288837 7.6346067	.002252252
446	198916	88716536	21.1187121	7.6403213	.002247151
447	199809	89314623	21.1423745	7.6460272	.002237136
448	200704	89915392	21.1660105	7.6517247	.002232143
449	201601	90518849	21.1896201	7.6574138	.002227171
450	202500	91125000	21.2132034	7.6630943	.002222222
451	203401	91733851	21.2367606	7.6687665	.002217295
452	204304	92345408	21.2602916	7.6744303	.002212389
453 454	205209	92959677 93576664	21.2837967	7.680085 <b>7</b> 7.685732 <b>8</b>	.002207506
455	207025	94196375	21.3307290	7.6913717	.002197802
456	207936	94818816	21.3541565	7.6970023	.002192982
457	208849	95443993	21.3775583	7.7026246	.002188184

### NATIONAL ELECTRIC LAMP ASSOCIATION

318

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
458 459 :-	209764 210681	96071912 96702579	21.4009346 21.4242853	7.7082388 7.7138448	.002183406
460	211600				
461	212521	97336000 97972181	21.4476106 21.4709106	7.7194426 7.7250325	.002173913 .002169197
462	213444	98611128	21.4941853	7.7306141	.002164502
463 . 464	214369 215296	99252847 99897344	21.5174348 21.5406592	7.7361877 7.7417532	.002159827
465.	216225	100544625	21.5638587	7.7473109	.002150538
466 467	217156 218089	101194696	21.5870331	7.7528606	.002145923
468	219024	101847563 102503232	21.6101828	7.7584023	.002141328 .002136752
469	219961	103161709	21.6564078	7.7694620	.002132196
470	220900	103823000	21.6794834	7.7749801	.002127660
471	221841	104487111	21.7025344	7.7804904	.002123142
472 473	222784 223729	105154048 105823817	21.7255610 21.7485632	7.7859928 7.7914875	.002118644 .002114165
474	224676	106496424	21.7715411	7.7969745	.002109705
475 476	225625 226576	107171875	21.7944947	7.8024538	.002105263
477	227529	107850176 108531333	21.8174242	7.8079254 7.8133892	.002100840 .002096436
478	228484	109215352	21.8632111	7.8188456	.002092050
479	229441	109902239	21.8860686	7.8242942	.002087683
480	230400	110592000	21.9089023	7.8297353 7.8351688	.002083333
481 482	231361 232324	111284641 111980168	21.9317122	7.8351688 7.8405949	.002079002 .002074689
483	233289	112678587	21.9772610	7.8460134	.002070393
484	234256	113379904	22.0000000	7.8514244	.002066116
485 486	235225 236196	114084125 114791256	22.0227155	7.8568281 7.8622242	.002061856 .002057613
487	237169	115501303	22.0680765	7.8676130	.002053388
488 4 <b>89</b>	238144 239121	116214272 116930169	22.0907220 22.1133444	7.8729944 7.8783684	.002049180
					002044990 [,]
490 491	240100 241081	117649000 118370771	22.1359436 22.1585198	7.8837352	.002040816
492	242064	119095488	22.1810730	7.8890946 7.8944468	.002036660
493	243049	119823157	22.2036033	7.8997917	.002028398
494 495	244036 245025	120553784 121287375	22.2261108	7.9051294	.002024291
496	246016	122023936	22.2710575	7.9104599 7.9157832	.002020202 ⁰ .002016129
497	247009	122763473	22.2934968	7.9210994	.002012072
·498 499	248004 249001	12350599 <b>2</b> 124251499	22.3159136 22.3383079	7.9264085 7.9317104	.002008032 .002004008
500	1		1	l .	
500 501	250000 251001	125000000 125751501	22.3606798 22.3830293	7.9370053 7.9422931	.002000000
502	252004	126506008	22.4053565	7.9475739	.001992032
503 5 <b>04</b>	25 <b>3</b> 009 254016	127263527 128024064	22.4276615	7.9528477	.001988072
505	255025	128787625	22.4499443 22.4722051	7.9581144 7.9633743	.001984127 .001980198
506	256036	129554216	22.4944438	7.9686271	.001976285
507 508	257049 258064	130323843 131096512	22.5166605 22.5388553	7.9738731	.001972387 .001968504

TABLES

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
509	259081	131872229	22.5610283	7.9843444	.001964637
510	260100	132651000	22.5831796	7.9895697	.001960784
511	261121	133432831	22.6053091	7.9947883	.001956947
512	262144	134217728	22.6274170	8.0000000	.001953125
513	263169	135005697	22.6495033	8.0052049	.001949318
514	264196	135796744	22.6715681	8.0104032	.001945525
515	265225	136590875	22.6936114	8.0155946	.001941748
516	266256	137388096	22.7156334	8.0207794	.001937984
517	267289	138188413	22.7376340	8.0259574	.001934236
518	268324	138991832	22.7596134	8.0311287	.001930502
519	269361	139798359	22.7815715	8.0362935	.001926782
520	270400	140608000	22.8035085	8.0414515	.001923077
\$21	271441	141420761	22.8254244	8.0466030	.001919386
522 523	272484 273529	142236648	22.8473193	8.0517479	.001915709
523 524	274576	143055667 143877824	22.8691933	8.0568862	.001912046 .001908397
525	275625	144703125	22.8910463	8.0620180 8.0671432	.001908397
526	276676	145531576	22.9346899	8.0722620	.001904762
527	277729	146363183	22.9564806	8.0773743	.001897533
528	278784	147197952	22.9782506	8.0824800	.001893939
529	279841	148035889	23.0000000	8.0875794	.001890359
530	280900	148877000	23.0217289	8.0926723	.001886792
531	281961	149721291	23.0434372	8.0977589	.001883239
532	283024	150568768	23.0651252	8.1028390	.001879699
533	284089	151419437	23.0867928	8.1079128	.001876173
534	285156	152273304	23.1084400	8.1129803	.001872659
535	286225	153130375	23.1300670	8.1180414	.001869159
536	287296	153990656	23.1516738	8.1230962	.001865672
537 538	288369	154854153	23.1732605	8.1281447	.001862197
539	289444 290521	155720872 156590819	23.1948270	8.1331870	.001858736
				8.1382230	.001855288
540	291600	157464000	23.2379001	8.1432529	.001851852
541	292681	158340421	23.2594067	8.1482765	.001848429
542	293764	159220088	23.2808935	8.1532989	.001845018
543 544	294849	160103007	23.3023604	8.1583051	.001841621
545	295936 297025	160989184	23.3238076	8.1633102	.001838235
546	297023	161878625 162771336	23.3452351	8.1683092	.001834862
547	299209	163667323	23.3666429	8.1733020 8.1782888	.001831502
548	300304	164566592	23.4093998	8.1832695	.001828154 .001824818
549	301401	165469149	23.4307490	8.1882441	.001821494
550	302500	166375000	23.4520788	8.1932127	.001818182
551	303601	167284151	23.4733892	8.1981753	.001814882
552 553	304704	168196608	23.4946802	8.2031319	.001811594
553	305809	169112377	23.5159520	8.2080825	.001808318
554	306916	170031464	23.5372046	8.2130271	.001805054
555	308025	170953875	23.5584380	8.2179657	.001801802
556	309136	171879616	23.5796522	8.2228985	.001798561
557 558	310249	172808693	23.6008474	8.2278254	.001795332
559	311364 312481	173741112 174676879	23.6220236	8.2327463	.001792115
JJ7	1 217401	1/40/08/9	23.6431808	8.2376614	.001788909

320 NATIONAL ELECTRIC LAMP ASSOCIATION

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
560	313600	175616000	23.6643191	8.2425706	.001785714
561	314721	176558481	23.6854386	8.2474740	.001782531
562	315844	177504328	23.7065392	8.2523715	.001779359
563	316969	178453547	23.7276210	8.2572633	.001776199
564 565	318096 319225	179406144	23.7486842	8.2621492	.001773050
566	320356	180362125 181321496	23.7697286     23.7907545	8.2670294 8.2719039	.001769912
567	321489	182284263	23.8117618	8.2767726	.001763668
568	322624	183250432	23.8327506	8.2816355	.001760563
569	323761	184220009	23.8537209	8.2864928	.001757469
570	324900	185193000	23.8746728	8.2913444	.001754386
571	326041	186169411	23.8956063	8.2961903	.001751343
572 573	327184	187149248	23.9165215	8.3010304	.001748252
574	328329 329476	188132517 189119224	23.9374184	8.30\$8651 8.3106941	.001745201
575	330625	190109375	23.9791576	8.3155175	.001739130
576	331776	191102976	24.0000000	8.3203353	.001736111
577	332929	192100033	24.0208243	8.3251475	.001733102
578	334084	193100552	24.0416306	8.3299542	.001730104
579	335241	194104539	24.0624188	8.3347553	.001727116
580	336400	195112000	24.0831891	8.3395509	.001724138
581 582	337561 338724	196122941 197137368	24.1039416	8.3443410	.001721170
583	339889	198155287	24.1246762 24.1453929	8.3491256 8.3539047	.001718213
584	341056	199176704	24.1660919	8.3586784	.001712329
585	342225	200201625	24.1867732	8.3634466	.001709402
.586	343396	201230056	24.2074369	8.3682095	.001706485
587	344569	202262003	24.2280829	8.3729668	.001703578
588	345744	203297472	24.2487113	8,3777188	.001700680
589	346921	204336469	24.2693222	8.3824653	.001697793
590	348100	205379000	24.2899156	8.3872065	.001694915
591	349281	206425071	24.3104916	8.3919423	.001692047
592 593	350464 351649	207474688 208527857	24.3310501 24.3515913	8.3966729 8.4013981	.001689189
594	352836	209584584	24.3721152	8.4061180	.001686341
595	354025	210644875	24.3926218	8.4108326	.001680672
596	355216	211708736	24.4131112	8.4155419	.001677852
597	356409	212776173	24.4335834	8.4202460	.001675042
598	357604	213847192	24.4540385	8.4249448	.001672241
599	358801	214921799	24.4744765	8.4296383	.001669449
,600	360000	216000000	24.4948974	8.4343267	.001666667
601	361201	217081801	24.5153013	8.4390098	.001663894
602	362404	218167208 219256227	24.5356883	8.4436877	.001661130
603 604	363609 364816	219230227	24.5560583 24.5764115	8.4483 <b>6</b> 05 8.45 <b>3</b> 0 <b>2</b> 81	.001658375
605	366025	221445125	24.5967478	8.4576906	.001652893
606	367236	222545016	24.6170673	8.4623479	.001650165
607	368449	223648543	24.6373700	8.4670001	.001647446
608	369664	224755712	24.6576560	8.4716471	.001644737
609	370881	225866529	24.6779254	8.4762892	.001642036
610	372100	226981000	24.6981781	8.4809261	.001639344

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
611	373321	220000121	24 7104140	0 4055570	001/1////
		228099131	24.7184142	8.4855579	.001636661
612	374544	229220928	24.7386338	8.4901848	.001633987
613	375769	230346397	24.7588368	8.4948065	.001631321
614	376996	231475544	24.7790234	8.4994233	.001628664
615	378225	232608375	24.7991935	8.5040350	.001626016
616	379456	233744896	24.8193473	8.5086417	.001623377
617	380689	234885113	24.8394847	8.5132435	.001620746
618	381924	236029032	24.8596058	8.5178403	.001618123
619	383161	237176659	24.8797106	8.5224321	.001615509
620	384400	238328000	24.8997992	8.5270189	.001612903
621	385641	239483061	24.9198716	8.5316009	.001610306
622	386884	240641848	24.9399278	8.5361780	.001607717
623	388129	241804367	24.9599679	8,5407501	.001605136
624	389376	242970624	24.9799920	8.5453173	.001602564
625	390625	244140625	25.0000000	8.5498797	.001600000
626	391876	245314376	25.0199920	8.5544372	.001597444
627	393129	246491883	25.0399681	8.5589899	.001594896
628	394384	247673152	25.0599282	8.5635377	.001592357
629	395641	248858189	25.0798724	8.5680807	.001589825
029	333041	240030109	23.0736724	8.3000004	.001309023
630	396900	250047000	25.0998008	8.5726189	.001587302
631	398161	251239591	25.1197134	8.5771523	.001584786
632	399424	252435968	25, 1396102	8.5816809	.001582278
633	400689	253636137	25.1594913	8.5862047	.001579779
634	401956	254840104	25.1793566	8.5907238	.001577287
635	403225	256047875	25.1992063	8,5952380	.001574803
636	404496	257259456	25.2190404	8.5997476	.001572327
637	405769	258474853	25.2388589	8.6042525	.001569859
638	407044	259694072	25.2586619	8.6087526	.001567398
639	408321	260917119	25.2784493	8.6132480	.001564945
033	400321	200917119	23.27.04493	0.0132460	.00130 <del>11</del> 343
640	409600	262144000	25.2982213	8.6177388	.001562500
641	410881	263374721	25.3179778	8.6222248	.001560062
642	412164	264609288	25.3377189	8.6267063	.001557632
643	413449	265847707	25.3574447	8.6311830	.001555210
644	414736	267089984	25.3771551	8.6356551	.001552795
645	416025	268336125	25.3968502	8.6401226	.001550388
646	417316	269586136	25.4165301	8.6445855	.001547988
647	418609	270840023	25.4361947	8.6490437	.001545595
648	419904	272097792	25.4558441	8.6534974	.001543210
649	421201	273359449	25.4754784		
047	461601.	413339449	43.4/34/84	8.6579465	.001540832
650	422500	274625000	25.4950976	8.6623911	.001538462
651	423801	275894451	25.5147016	8.6668310	.001536098
652	425104	277167808	25.5342907	8.6712665	.001533742
653	426409	278445077	25.5538647	8.6756974	.001531394
654	427716	279726264	25.5734237	8.6801237	.001529052
655	429025	281011375	25.5929678	8.6845456	.001526718
656	430336	282300416	25.6124969	8.6889630	.001524390
657	431649	283593393	25.6320112	8.6933759	.001522070
658	432964	284890312	25.6515107	8.6977843	.001519757
659	434281	286191179	25.6709953	8.7021882	-001517451
032	1027201	400171177	23.070733	0.7021002	.001317431
660	435600	287496000	25.6904652	8.7065877	.001515152
661	436921	288804781	25.7099203	8.7109827	.001512859

322 NATIONAL ELECTRIC LAMP ASSOCIATION

SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS AND

RECIPROCALS—(Continued)

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
662	438244	290117528	25.7293607	8.7153734	.001510574
663	439569	291434247	25.7487864	8.7197596	.001508296
664	440896	292754944	25.7681975	8.7241414	.001506024
665	442225	294079625	25.7875939	8.7285187	.001503759
666 667	443556 444889	295408296 296740963	25.8069758 25.8263431	8.7328918 8.7372604	.001501502 .001499250
668	446224	298077632	25.8456960	8.7416246	.001497006
669	447561	299418309	25.8650343	8.7459846	.001494768
670	448900	300763000	25.8843582	8.7503401	.001492537
671	450241	302111711	25.9036677	8.7546913	.001490313
672	451584	303464448	25.9229628	8.7590383	.001488095
673 674	452929 454276	304821217 306182024	25.9422435 25.9615100	8.7633809 8.7677192	.001485884
675	455625	307546875	25.9807621	8.7720532	.001483680
676	456976	308915776	26.0000000	8.7763830	.001479290
677	458329	310288733	26.0192237	8.7807084	.001477105
678	459684	311665752	26.0384331	8.7850296	.001474926
679	461041	313046839	26.0576284	8.7893466	.001472754
680	462400	314432000	26.0768096	8.7936593	.001470588
681	463761	315821241	26.0959767	8.7979679	.001468429
682 683	465124	317214568	26.1151297	8.8022721	.001466276
684	466489 467856	318611987 320013504	26.1342687 26.1533937	8.8065722 8.8108681	.001464129
685	469225	321419125	26.1725047	8.8151598	.001459854
686	470596	322828856	26.1916017	8.8194474	.001457726
687	471969	324242703	26,2106848	8.8237307	.001455604
688	473344	325660672	26.2297541	8.8280099	.001453488
689	474721	327082769	26.2488095	8.8322850	.001451379
690	476100	328509000	26.2678511	8.8365559	.001449275
691	477481	329939371	26.2868789	8.8408227	.001447178
692 693	478864	331373888	26.3058929 26.3248932	8.8450854	.001445087
694	480249 481636	332812557 334255384	26.3438797	8.8493440 8.8535985	.001443001
695	488025	335702375	26.3628527	8.8578489	.001438849
696	484416	337153536	26.3818119	8.8620952	.001436782
697	485809	338608873	26.4007576	8.8663375	.001434720
698	487204	340068392	26.4196896	8.8705757	.001432665
699	488601	341532099	26.4386081	8.8748099	.001430615
700	490000	343000000	26.4575131	8.8790400	.001428571
701	491401	344472101	26.4764046	8.8832661	.001426534
702	492804	345948408	26.4952826	8.8874882	.001424501
703	494209	347428927	26.5141472	8.8917063	.001422475
704	495616	348913664	26.5329983	8.8959204	.001420455
705	497025	350402625 351895816	26.5518361 26.5706605	8.9001304	.001418440
706 707	498436 499849	353393243	26.5894716	8.9043366 8.9085387	.001416431
707 708	501264	354894912	26.6082694	8.9127369	.001412429
709	502681	356400829	26.6270539	8.9169311	.001410437
710	504100	357911000	26.6458252	8.9211214	.001408451
711	505521	359425431	26.6645833	8.9253078	.001406470
712	506944	360944128	26.6833281	8.9294902	.001404494

# SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS AND RECIPROCALS—(Continued)

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
713 714 715 716 717 718	508369 509796 511225 512656 514089 515524	362467097 363994344 365525875 367061696 368601813 370146232	26.7020598 26.7207784 26.7394839 26.7581763 26.7768557 26.7955220	8.9336687 8.9378433 8.9420140 8.9461809 8.9503438 8.9545029	.001402525 .001400560 .001398601 .001396648 .001394700
719	516961	371694959	26.8141754	8.9586581	.001390821
720 721 722 723 724	518400 519841 521284 522729 524176	373248000 374805861 376367048 377933067 979503424 381078125	26.8328157 26.8514432 26.8700577 26.8886593 26.9072481	8.9628095 8.9669570 8.9711007 8.9752406 8.9793766	.001388889 .001386963 .001385042 .001383126
725 72 <del>6</del> 727 728 729	525625 527076 528529 529984 531441	3826\$7176 384249583 385828352 387420489	26.9258240 26.9443872 26.9629375 26.9814751 27.0000000	8.9835089 8.9876373 8.9917620 8.9958829 9.0000000	.001379310 .001377410 .001375516 .001373626 .001371742
730 731 732 733 734 735 736 737 738	532900 534361 535824 537289 538756 540225 541696 543169 544644 546121	389017900 390617891 392223168 393832837 395446904 397065375 398688256 400315553 401947272 403583419	27.0185122 27.0370117 27.0554985 27.0739727 27.0924344 27.1108834 27.1293199 27.1477439 27.1661554 27.1845544	9.0041134 9.0082229 9.0123288 9.0164309 9.0205293 9.0246239 9.0287149 9.0328021 9.0368857 9.0409655	.00136986; .00136798; .001366122; .001364239; .00136054; .00135869; .00135501; .00135318;
740 741 742 743 744 745 746 747 748 749	547600 549081 550564 552049 553536 555025 556516 558009 559504 561001	405224000 406869021 408518488 410172407 411830784 413493625 415160936 416832723 418508992 420189749	27.2029410 27.2213152 27.2396769 27.2580263 27.2763634 27.2946881 27.3130006 27.3313007 27.3495887 27.3678644	9.0450417 9.0491142 9.0531831 9.0572482 9.0613097 9.0653677 9.0694220 9.073472 9.0775197 9.0815631	.00135135 .00134525 .00134770 .00134589 .00134408 .00134228 .00133688 .00133868 .00133511
750 751 752 753 754 755 756 757 758 759	562500 564001 565504 567009 568516 570025 571536 573049 574564 576081	421875000 423564751 425259008 426957777 428661064 430368875 432081216 433798093 435519512 437245479	27.3861279 27.4043792 27.4226184 27.4408455 27.4590604 27.4772633 27.4954542 27.5136330 27.5317998 27.5499546	9.0856030 9.0896392 9.0936719 9.0977010 9.1017265 9.1057485 9.1137818 9.1177931 9.1218010	.00133333 .00133155; .00132978; .00132802 .00132626; .00132450; .00132275; .00132100 .00131752;
760 761 762 763	577600 579121 580644 582169	438976000 440711081 442450728 444194947	27.5680975 27.5862284 27.6043475 27.6224546	9.1258053 9.1298061 9.1338034 9.1377971	.00131578 .00131406 .00131233 .00131061

# SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS AND RECIPROCALS—(Continued)

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
764	583696	445943744	27.6405499	9.1417874	.001308901
765	585225	447697125	27.6586334	9.1457742	.001307100
766	586756	449455096	27.6767050	9.1497576	.001305483
767	588289	451217663	27.6947648	9.1537375	.001303781
768	589824	452984832	27.7128129	9.1577139	.001302083
769	591361	454756609	27.7308492	9.1616869	.001300390
770	592900	456533000	27.7488739	9.1656565	.001298701
771	594441	458314011	27.7668868	9.1696225	.001297017
772 773	595984 597529	460099648 461889917	27.7848880 27.8028775	9.1735852 9.1775445	.001295337
774	599076	463684824	27.8208555	9.1815003	.001291990
775	600625	465484375	27.8388218	9.1854527	.001290323
776	602176	467288576	27.8567766	9.1894018	.001288660
777	603729	469097433	27.8747197	9.1933474	.001287001
778 .	605284	470910952	27.8926514	9.1972897	.001285347
779	606841	472729139	27.9105715	9.2012286	.001283697
780	608400	474552000	27.9284801	9.2051641	.001282051
781	609961	476379541	27.9463772	8.2090962	.001280410
782	611524	478211768	27.9642629	9.2130250	.001278772
783	613089	480048687	27.9821372	9.2169505	.001277139
784	614656	481890304	28.0000000	8.2208726	.001275510
785	616225	483736625	28.0178515	9.2247914	.001273885
786	617796	485587656 487443403	28.0356915	9.2287068 9.2326189	.001272265
787 788	620944	489303872	28.0713377	9.2365277	.001269036
789	622521	491169069	28.0891438	9.2404333	.001267427
790	624100	493039000	28.1069386	9.2443355	.001265823
791	625681	494913671	28.1247222	9.2482344	.001264223
792	627264	496793088	28.1424946	9.2521300	.001262626
793	628849	498677257	28.1602557	9.2560224	.001261034
<b>794</b> -	630436	500566184	28.1780056	9.2599114	.001259446
795	632025	502459875	28.1957444	9.2637973	.001257862
796	633616	504358336	28.2134720	9.2676798	.001256281
797	635209	506261573	28.2311884 28.2488938	9.2715592 9.2754352	.001254705
798 799	636804	508169592 510082399	28.2665881	9.2793081	.001253133
	1	E12000000	28.2842712	9.2831777	.001250000
800	640000	512000000 513922401	28.2842/12	9.2831///	.001230000
801 802	641601	515849608	28.3196045	9.2909072	.001246883
803	644809	517781627	28.3372546	9.2947671	.001245330
804	646416	519718464	28.3548938	9.2986239	.001243781
805	648025	521660125	28.3725219	9.3024775	.001242236
806	649636	523606616	28.3901391	9.3063278	.001240695
807	651249	525557943	28.4077454	9.3101750	.001239157
808	652864	527514112	28.4253408	9.3140190	.001237624
809	654481	529475129	28.4429253	9.3178599	.001236094
810	656100	531441000	28.4604989	9.3216975	.001234568
811	657721	533411731	28.4780617	9.3255320	.001233046
812	659344	535387328	28.4956137	9.3293634	.001231527
813	1 660969 1	537367797	28.5131549	9.3331916	.001230012
814	662596	539353144	28.5306852	9.3370167	.001228501

# SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS AND RECIPROCALS—(Continued)

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
815	664225	541343375	28.5482048	9.3408386	.001226994
816	665856	543338496	28.5657137	9.3446575	.001225490
. 817	667489	545338513	28.5832119	9.3484731	.001223990
818	669124	547343432	28.6006993	9.3522857	.001222494
819	670761	549353259	28.6181760	9.3560952	.001221001
820	672400	551368000	28.6356421	9.3599016	.001219512
821	674041	553387661	28.6530976	9.3637049	.001218027
822	675684	555412248	28.6705424	9.3675051	.001216545
823	677329	557441767	28.6879766	9.3713022	.001215067
824	678976	559476224	28.7054002	9.3750963	.001213592
825	680625	561515625	28.7228132	9.3788873	.001212121
826	682276	563559976	28.7402157	9.3826752	.001210654
827 828	683929 685584	565609283	28.7576077	9.3864600	.001209190
829	687241	567663552 569722789	28.7749891	9.3902419	.001207729
	1 1	309/22/89	28.7923601	9.3940206	.001206273
830	688900	571787000	28.8097206	9.3977964	.001204819
831	690561	573856191	28.8270706	9.4015691	.001203369
832	692224	575930368	28.8444102	9.4053387	.001201923
833	693889	578009537	28.8617394	9.4091054	.001200480
834	695556	580093704	28.8790582	9.4128690	.001199041
835	697225	582182875	28.8963666	9.4166297	.001197605
836	698896	584277056	28.9136646	9.4203873	.001196172
837 838	700569	586376253	28.9309523	9.4241420	.001194743
	702244	588480472	28.9482297	9.4278936	.001193317
839	703921	590589719	28.9654967	9.4316423	.001191895
840	705600	592704000	28.9827535	9.4353880	.001190476
841	707281	594823321	29.0000000	9.4391307	.001189061
842	708964	596947688	29.0172363	9.4428704	.001187648
843	710649	599077107	29.0344623	9.4466072	.001186240
844	712336	601211584	29.0516781	9.4503410	.001184834
845	714025	603351125	29.0688837	9.4540719	.001183432
846	715716	605495736	29.0860791	9.4577999	.001182033
847	717409	607645423	29.1032644	9.4615249	.001180638
848	719104	609800192	29.1204396	9.4652470	.001179245
849	720801	611960049	29.1376046	9.4689661	001177856
850	722500	614125000	29.1547595	9.4726824	001176471
851	724201	616295051	29.1719043	9.4763957	.001175088
852	725904	618470208	29.1890390	9.4801061	.001173709
853	727609	620650477	29,2061637	9.4838136	.001172333
854	729316	622835864	29.2232784	9.4875182	.001170960
855	731025	625026375	29,2403830	9,4912200	.001169591
856	732736	627222016	29.2574777	9.4949188	.001168224
857	734449	629422793	29.2745623	9.4986147	.001166861
858	736164	631628712	29.2916370	9.5023078	.001165501
859	737881	633839779	29.3087018	9,5059980	.001164144
860	739600	636056000	29.3257566	9.5096854	.001162791
861	741321	638277381	29.3428015	9.5133699	.001161440
862	743044	640503928	29.3598365	9.5170515	.001160093
863	744769	642735647	29.3768616	9.5207303	.001158749
864	746496	644972544	29.3938769	9.5244063	.001157407
865	1 748225	647214625	29.4108823	9.5280794	.001156069

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
866	749956	649461896	29.4278779	9.5317497	.001154734
867	751689	651714363	29.4448637	9.5354172	.001153403
. 868	753424	653972032	29.4618397	9.5390818	.001152074
869	755161	656234909	29.4788059	9.5427437	.001150748
870 · 871	756900 758641	658503000 660776311	29.4957624 29.5127091	9.5464027	.001149425
872	760384	663954848		9.5500589 9.5537123	.001148106 .001146789
873	762129	665338617	29.5465734	9.5573630	.001145475
874	763876	667627624	29.5634910	9.5610108	.001144165
875	765625	669921875	29.5803989	9.5646559	.001142857
876	767376	672221376	29.597.2972	9.5682982	.001141553
877 878	769129 770884	674526133 676 <del>8</del> 36152	29.6141858 29.6310648	9.5719377 9.5755745	.001140251
879	772641	679151439	29.6479342	9.5792085	.001138952
880	774400	681472000	29.6 <del>6</del> 47939	9.5828397	.001136364
881	776161	683797841	29.6816442	9.5864682	.001135074
882	777924	686128968	29.6984848	9.5900939	.001133787 .001132503
883	779689	688465387	29.7153159	9.5937169	.001132503
884 885	781456 783225	690807104 693154125	29.7321375 29.7489496	9.59733 <b>73</b> 9.6009548	.001131222
886	784996	695506456	29.7657521	9.6045696	.001129944
887	786769	697864103	29.7825452	9.6081817	.001127396
888	788544	700227072	29.7993289	9.6117911	.001126126
889	790321	702595369	29.8161030	9.6153977	.001124859
890	792100	704969000	29.8328678	9.6190017	.001123596
891 892	793881 795664	707347971 709732288	29.8496231	9.6226030	-001122334
893	797449	712121957	29.8663690 29.8831056	9.6262016 9.6297975	.001121076
894	799286	714516984	29.8998328	9.6333907	.001118568
895	801025	716917375 719323136	29.9165506	9.6369812	001117318
896	802816	719323136	29.9332591	9.6405690	-001116071
897 898	804609 806404	721734273 724150792	29.9499583	9.6441542	.001114827
899	808201	726572699	29.9666481 29.9833287	9.6477367 9.6513166	.001113586
900	810000	729000000	30.0000000	9.6548938	.001111111
901	811801	731432701	30.0166620	9.6584684	.001109878
902		7,33870808	30.0333148	9.6620403	.001108647
903	815409	736314327	30.0499584	9.6656096	.001107420
904	817216	738763264	30.0665928	9.6691762	.001106195
905 906	819025 820836	741217625 743677416	30.0832179	9.6727403	.001104972
907	822649	746142643	30.1164407	9.6763017	.001103753
908	824464	748613312	30.1330383	9.6834166	.001101322
909	826281	751089429	30.1496269	9.6869701	.001100110
910	828100	753571000	30.1662063	9.6905211	.001098901
911	829921	756058031	30,1827765	9.6940694	.001097695
912	831744	758550528	30.1993377	9.6976151	.001096491
913 : 914 :	833569 835396	761048497 763551944	30.2158899 30.2324329	9.7011583 9.7046989	.001095290
915	837225	766060875	30,2489669	9.7082369	.001094092
916	839056	768575296	30.2654919	9.7117723	.001091703

TABLES

# SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS AND RECIPFOCALS—(Continued)

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
917 918 919	840889 842724 844561	77109\$213 773620632 776151\$59	30.2820079 30.2985148 30.3150128	9.7153051 9.7188354 9.7223631	.001090513 .001089325 .001088139
920 921 922 923 924 925 926	846400 848241 850084 851929 853776 855625 857476	7.78688000 781229961 783777448 786330467 788889024 791453125 794022776	30.3315018 30.3479818 30.3644529 30.3809151 30.3973683 30.4138127 30.4302481	9.7258883 9.7294109 9.7329309 9.7364484 9.7399634 9.7434758 9.7469857	.001086957 .001085776 .001084599 .001083424 .001082251 .001081081
927 928 929	859329 861184 863041	796597983 799178752 801765089	30.4466747 30.4630924 30.4795013	9.7504930 9.7539979 9.7575002	.00107974 .001078749 .001077586 .001076426
930 931 932 933 934 935 936 937 938 939	864900 866761 868624 870489 872356 874225 876096 877969 879844 881721	804357000 806954491 809557568 812166237 814780504 817400375 820025856 822656953 825293672 827936019	30.4959014 30.5122926 30.5286750 30.5450487 30.5614136 30.5777697 30.5941171 30.6104557 30.6267857 30.6431069	9.7610001 9.7644974 9.7679922 9.77148743 9.7789616 9.7819466 9.7854288 9.7889087 9.7923861	.001075269 .001074114 .001072961 .001071811 .001070664 .001069519 .001068376 .001066098 .001066098
940 941 942 943 944 945 946 947 948 949	883600 885481 887364 889249 891136 893025 894916 896809 898704 900601	830584000 833237621 835896888 838561807 841232384 843908625 846590536 849278133 851971392 854670349	30.6594194 30.6757233 30.6920185 30.7083051 30.7245830 30.7408523 30.7571130 30.7733651 30.7896086 30.8058436	9.7958611 9.7993336 9.8028036 9.8062711 9.8097362 9.8131989 9.8166591 9.8201169 9.8235723 9.8270252	.001063830 .001062699 .001061571 .0010509322 .0010559322 .001057082 .001057082 .001054852 .001053741
950 951 952 953 954 955 956 957 958 <b>9</b> 59	902500 904401 906304 908209 910116 912025 913936 915849 917764 919681	857375000 860085351 862801408 865523178 868250664 870983875 873722816 876467493 879217912 881974079	30 .8220700 30 .8382879 30 .8544972 30 .8706981 30 .8868904 30 .9030743 30 .9192497 30 .9354166 30 .9515751 30 .9677251	9.8304757 9.8339238 9.8373695 9.8408127 9.8442536 9.8476920 9.8511280 9.8545617 9.8579929 9.8614218	.001052632 .001051525 .001050420 .001049318 .001048218 .001047120 .001046025 .001044932 .001043841
960 961 962 963 964 965 966 967	921600 923521 925444 927369 929296 931225 933156 935089	884736000 887503681 890277128 893056347 895841344 898632125 901428696 904231063	30.9838668 31.0000000 31.0161248 31.0322413 31.0483494 31.0644491 31.0805405 31.0966236	9.8648483 9.8682724 9.8716941 9.8751135 9.8785305 9.8819451 9.8853574 9.8887673	.001041667 .001040583 .001039501 .001038422 .001037344 .001036269 .001035197 .001034126

# SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS AND RECIPROCALS—(Continued)

No.	Squares	Cubes	Square roots	Cube roots	Reciprocals
968	937024	907039232	31.1126984	9.8921749	.001033058
969	938961	909853209	31.1287648	9.8955801	.001031992
707	330301	303033203	31.120/040	9.0933001	.001001
970	940900	912673000	31.1448230	9.8989830	.001030928
971	942841	915498611	31.1608729	9.9023835	.001029866
972	944784	918330048	31.1769145	9.9057817	.001028807
973	946729	921167317	31.1929479	9.9091776	.001027749
974	948676	924010424	31.2089731	9.9125712	.001026694
975	950625	926859375	31.2249900	9.9159624	.001025641
976	952576	929714176	31.2409987	9.9193513	.001024590
977	954529	932574833	31.2569992	9.9227379	.001023541
978	956484	935441352	31.2729915	9.9261222	.001022495
979	958441	938313739	31.2889757	9.9295042	.001021450
	1	1			i
980	960400	941192000	31.3049517	9.9328839	.001020408
981	962361	944076141	31.3209195	9.9362613	.001019368
982	964324	946966168	31.3368792	9.9396363	.001018330
983	966289	949862087	31.3528308	9.9430092	.001017294
984	968256	952763904	31.3687743	9.9463797	.001016260
985	970225	955671625	31.3847097	9.9497479	.001015228
986	972196	958585256	31.4006369	9.9531138	.001014199
987	974169	961504803	31.4165561	9.9564775	.001013171
988	976144	964430272	31.4324673	9.9598389	.001012146
989	978121	967361669	31.4483704	9.9631981	.001011122
000	000100	07000000	1	0 000000	
990° 991	980100	970299000	31.4642654	9.9665549	.001010101
992	982081 984064	973242271	31.4801525	9.9699095	.001009082
993	986049	976191488 979146657	31.4960315	9.9732619 9.9766120	.001008065
994	988036	982107784	31.5277655	9.9799599	.001007049
995	990025	985074875	31.5436206	9.9833055	.001005025
996	992016	988047936	31.5594677	9.9866488	.001004016
997	994009	991026973	31.5753068	9.9899900	.001003009
998	996004	994011992	31.5911380	9.9933289	.001002004
999	998001	997002999	31.6069613	9.9966656	.001001001
	1	1	1	7.7700000	
1000	1000000	1000000000	31.6227766	10.0000000	001000000
1001	1002001	1003003001	31.6385840	10.0033322	.0009990010
1002	1004004	1006012008	31.6543836	10.0066622	0009980040
1003	1006009	1009027027	31.6701752	10.0099899	.0009970090
1004	1008016	1012048064	31.6859590	10.0133155	.0009960159
1005	1010025	1015075125	31.7017349	10.0166389	.0009950249
1006	1012036	1018108216	31.7175030	10.0199601	.0009940358
1007	1014049	1021147343	31.7332633	10.0232791	.0009930487
1008	1016064	1024192512	31.7490157	10.0265958	.0009920635
1009	1018081	1027243729	31.7647603	10.0299104	.0009910803
1010	1,000,00		21 7004070	10 00000	
1010	1020100	1030301000	31.7804972	10.0332228	.0009900990
1011	1022121	1033364331	31.7962262	10.0365330	.0009891197
1012	1024144	1036433728	31.8119474	10.0398410	.0009881423
1013	1026169	1039509197 1042590744	31.8276609	10.0431469	.0009871668
1014 1015	1028196	1042590744	31.8433666	10.0464506	.0009861933
1015	1030225	1048772096	31.8590646 31.8747549	10.0497521	.0009852217
1017	1034289	1051871913	31.8904374	10.0530514 10.0563485	.0009842520
1018	1036324	1054977832	31.9061123	10.0596435	.0009832842
1019	1038361	1058089859	31.9217794	10.0596435	.0009823183
4017	1 -000001	1 -000000000	1 31.761//74	10.0047304	.0009813543



# SECTION XII DEFINITIONS

• • •

## DEFINITIONS

### •

, A. G.; Abbreviation for alternating current.

. Accumulator: Storage battery.

Alternating Current: Current which flows alternately in opposite directions in a circuit.

Alternator: A machine for generating alternating current.

Ammeter: An instrument for measuring electric current (amperes).

Ampere: The unit of electric current. The rate of flow of electricity in a circuit is measured in amperes. An ampere is such a rate of flow as will deposit 0.001118 grams of silver per second from a standard solution of silver nitrate.

Ampere-Hour: A unit of quantity of electric flow. One ampere flowing for one hour is a quantity of flow equal to one ampere-hour. One ampere-hour is equal to 3600 coulombs.

Ampere-Turn: A unit of magnetizing force. It is that magnetizing force which is given by one turn of a coll carrying one ampere.

Angle of Incidence: The angle which a ray of light striking a surface makes with the normal to that surface.

Angle of Reflection: The angle at which a ray of light leaves a surface where it has been reflected, with respect to the normal.

Armature: One of the two main circuits which compose the windings of a generator or motor (the rotating winding on a D. C. machine; the distributed winding which may be either stationary or rotating, on an A. C. machine.)

Auto-Transformer: A transformer with a single winding where the secondary circuit consists of a part of the winding of the primary circuit.

в.

Battery: A cell or cells which develop an electromotiveforce and are used for converting chemical energy into electrical energy.

Booster: A low voltage direct current generator which is connected in series with feeders in order to raise the voltage.

British Thermal Unit: A unit of heat energy. It is equivalent to the heat required to raise the temperature of one pound of water one degree Fahrenheit.

B. T. U.: Abbreviation for British Thermal Unit.

Bus-Bars: The bars on the back of a switchboard which may be connected by means of switches to any or all the incoming and outgoing circuits.

С

C.: The abbreviation which was formerly used instead of I, to represent the current in a circuit.

It is also the abbreviation for Centigrade.

C.-P.: The abbreviation for candle-power.

Candle-Power: The luminous intensity of a light giving source in a particular direction.

Cathode: The negative electrode of an electrolytic cell or of a vapor lamp.

Centigrade: The system of temperature graduation designed by the French. Zero on the Centigrade scale is the freezing temperature of water and 100 degrees is the boiling point. Degree Centigrade equals degrees Fahrenheit less 32 and multiplied by 5/9.

C. g. s.: Abbreviation for centimeter-gram-second, which is the name applied to the system of units built up from these as fundamentals.

Circuit: A complete conductive path for electric flow.

Circuit-Breaker: A device which automatically opens an electric circuit when certain limits of current are exceeded.

Circular Mil: A unit of cross sectional area of wires. A cylindrical conductor one thousandth of an inch in diameter has a cross section of one circular mil. The cross section in circular mils of any cylindrical conductor is equal to its diameter, in thousandths of an inch, squared.

Color: The sensation in the eye is affected by the wave length or the combination of wave lengths of the light falling upon the retina.

Commutator: Any mechanical device for quickly changing the direction of flow in an electric circuit.

Compound Electrical Machines: Those having in addition to the shunt field circuit a field circuit connected in series with the line taking current from, or supplying current to the machine.

Conductivity: The property of a material which enables it to conduct electrical current. It is measured by the reciprocal of the resistance and the unit has been called the "mho."

Conductor: A body which carries electric current.

Conduit: An iron duct or pipe through which wires may be run.

Constant Current: A current whose value does not vary with changes of conditions in the circuit. A system having a "constant current."

Constant Voltage: A term applied to an electric system which is maintained at a state of constant electrical pressure.

Continuous Current: Current which flows in only one direction in a circuit. Direct current.

Copper Loss: The term applied to the power lost in the conductors of electric machinery; also called the 12R loss.

Cosine: A function of an angle. It is the ratio of the shorter to the longer of its bounding lines when a right triangle is formed by drawing a line from any point on one side and perpendicular to the other side.

Coulomb: The unit of quantity of electric flow. One ampere flowing for one second is a coulomb of electric flow.

Current: The rate of flow of electricity. Current is commonly measured in amperes.

D

Depreciation: The falling off in value of a piece of apparatus as it is used. Depreciation charges are usually made so that the apparatus may be paid for by the time it has to be replaced.

Diffusion: Light is said to be diffused when by process of reflection and refraction it reaches the eye from many directions rather than from the one direction of the source. Diffusion of light is therefore a process of reducing the intrinsic brilliancy of the source.

Direct Current: Current which flows continually in one direction. Continuous current.

Distribution: The variation of the mean zonal candle-power of a source, in the various angles with respect to the

Distribution Curve: A polar diagram showing graphically the distribution of a light giving source.

Drop: The fall in voltage in a current carrying conductor.

Edison Three-Wire System: A three-wire system supplied by two machines connected in series, or their equivalent. The so-called neutral wire is connected to the junction of the two machines, thereby rendering two voltages available, one twice the other, and furnishing the advantage of transmission at double the voltage of the receiver.

Electrode: A terminal of an electric circuit, as the metallic plates of batteries and the carbons of arc lamps.

Electrolysis: The separation of a chemical compound into its elements by means of an electric current.

**Electrolyte:** A liquid which is used as a conductor of electric current: The liquid of an electric cell.

Electromotive Force: Difference of potential or electric pressure. Voltage.

Farad: A unit of electric capacity. A condenser is said to have a capacity of one farad when 1 volt produces on it a charge of 1 coulomb.

Flux: A flow of radiant energy from a source. emanation of light is called the total flux of light.

The lines of strain present in a magnetic field.

Foot-Candle: A unit of illumination and equal to that received by a surface every point of which is one foot distant from a source of one candle-power intensity; that is to say, one lumen per square foot gives an average intensity of one foot candle.

Generator: A machine which produces electromotive force by the rotation of a number of conductors in a magnetic field; used to convert mechanical energy into electrical energy.

Ground: A contact, usually accidental, between an electric circuit and its supporting frame work.

The connection of an electric circuit to the earth.

## н

Horse-power: A unit of power. The ability to raise 550 pounds one foot in one second or the equivalent thereof. Equivalent, therefore, to 550 ft. lbs. per second or 33,000 ft. lbs. per minute.

ı

illumination: A measure of the light received per unit of area on any given surface. The unit of illumination most frequently used is the foot-candle.

insulation: Material which has so low a conductivity as to be practically a non-conductor.

Intensity: See Luminous Intensity.

Intrinsic Brilliancy: The flux of light per unit of emitting surface, expressed as lumens per square inch; very often expressed as candle-power per projected area in a given direction.

J

Joule: The work done by a current of one ampere flowing through a resistance of one ohm for one second. One watt acting for one second.

ĸ

Kllowatt: 1000 Watts.

Kilowatt-Hour: The energy expended when one kilowatt of power is used for one hour.

,

Useful Life: The period of time an incandescent lamp will operate before the mean horizontal c. p. drops to 75% of its initial value.

Light: That form of radiant energy which produces visual sensation.

Luminous intensity: The intensity with which light flux is emitted in a certain direction.

Luminosity: A term expressing the brightness of a surface from which light arises as a result of either diffusion or emission.

Lux: A unit of illumination, equal to one lumen per square meter.

м

"Mazda": The trade name for the incandescent lamp representing the highest development in the art of lamp making; at present a tungsten filament lamp.

Mean Horizontal Candle-Power: The average intensity of a light in all the directions lying in a horizontal plane.

Mean Lower Hemispherical Candie-Power: The average of the intensities of a given light source in all directions of the lower hemisphere. Equal to the total flux (lumens) in the lower hemisphere divided by 2.

Mean Spherical Candle-Power: The mean spherical candle-power of a lamp is the average of its intensities in all directions and is equal to the total flux (lumens) emitted by the lamp divided by 4.

Mean Upper Hemispherical Candie-Power: The average of the intensities of a given light source in all directions of the upper hemisphere. The total flux (lumens) emitted within the upper hemisphere divided by 2.

Microfarad: One millionth of a farad.

Most Economical Efficiency: The efficiency at which a lamp should be operated so as to give the least total cost, taking into consideration both renewals and cost of energy.

a

Ohm: The unit of electrical resistance. The resistance of a column of mercury one square millimeter in cross-sectional area and 106 centimeters in length.

Ohm's Law: The fundamental law of flow of electricity in a circuit. The rate of flow (amperes) is equal to the electric pressure (volts) divided by the resistance (ohms).

Opalescent: The property of certain kinds of glass which renders it a diffuser of light by reason of its containing small white particles which deflect the rays of light as they pass through.

P

Performance: The performance of lamps or a class of lamps is the information as to their operation under different conditions. This information is usually put in the form of curves showing the variation of voltage, current, resistance, power consumption, efficiency and life, with candle-power; all expressed in percentage of normal efficiency values.

Polarity: Direction of difference of potential. A distinction between the positive and negative terminals of a piece of electric apparatus.

Potential: Difference of electric pressure. Voltage.

Power: Rate of doing work. Units of power are the horse-power and the watt (or kilowatt). 1 horse-power = 746 watts.

R

Radiation: The propagation of energy in the form of ether waves. A small part of the radiation from an incandescent body is visible, that is, is capable of producing a sensation in the eye.

Reflector: A device for modifying the distribution of light giving sources. Often called a shade.

Regulation: The rise of voltage from full load to no load expressed as per cent of the full load voltage. Electrical supply apparatus is said to have good regulation when its voltage is comparatively constant under varying conditions of load.

Regulator: A device which automatically keeps the voltage nearly constant.

Resistance: The property of a material by reason of which opposition to the flow of electric current is offered. It is measured in ohms.

s

Series. A system of connection whereby the same current flows through each of several pieces of apparatus.

Shade: An opaque or translucent body used to keep the direct rays of a light from falling upon the eye.

Shunt: A by-path in a circuit.

Specific Consumption: The power consumption per unit of light output. Usually expressed in watts per horizontal candle-power.

Standard Lamp: A lamp of known intensity used in photometering other lamps.

Storage Battery: One or more electrolytic cells which during a process of charging accumulate energy which is recoverable at a later time when discharging.

Tip Candle-Power: The candle-power of an incandescent lamp measured in the direction of its tip.

Transformer: An induction device for changing the voltage of an alternating current supply.

Tungsten: A rare metal used in the production of the present "Mazda" lamp filaments.

Useful Life: The time an incandescent lamp should be operated for best economy of light production.

Visual Aculty: The ability of the eye to distinguish fine details.

Voit: A unit of electric pressure. A voit is that degree of electric pressure which will cause one ampere of current to flow through a resistance of one ohm.

Voltage: Pressure expressed in volts.

Watt: A unit of power. The rate of energy transformation when a current of one ampere flows at a pressure of one volt.

Watt-Hour: The energy consumed when one watt of power is maintained for one hour.

## INDEX

Table of percentage of		PAGE
Adams-Westlake, Newbold system	Table of percentage of	164
Automatic switch		•
Drive		
Lamp regulator	Belt tension	37
Operation         41           Pole changer         37           Regulator         37           Suspension         37           Alloys, conductivity of         246           Areas of circles         295-297           Armature speeds         278-280           Automatic switch (see separate systems)         35           Axle generator systems         35           B         B           Baggage and express car illumination         215           Reflectors and distribution curves for         215, 216           Baggage car generator system         20           Baltimore & Ohio head-end system         25           Bearings         277           Belt tension device (see different systems)           Butter system with Rosenberg generator         42           Booster—Gould system         26           G. E. head-end         30           Brown & Boveri system         43           C         C           Capacity of storage battery         106           Effect of time on         121           Effect of discharge rate on         116           Celling lighting         164           Centrifugal force, formulæ for         282	Drive	
Pole changer   37   Regulator   37   Regulator   37   Suspension   37   Alloys, conductivity of   246   Areas of circles   295-297   Armature speeds   278-280   Automatic switch (see separate systems)   Axle generator systems   35	Lamp regulator	
Regulator         37           Suspension         37           Alloys, conductivity of         246           Areas of circles         295-297           Armature speeds         278-280           Automatic switch (see separate systems)         35           Axle generator systems         35           B         B           Baggage and express car illumination         215           Reflectors and distribution curves for         215, 216           Baggage car generator system         20           Baltimore & Ohio head-end system         25           Bearings         277           Belting         269-273           Horsepower transmitted         271           Travel of         278-280           Belt tension device (see different systems)           Buttner system with Rosenberg generator         42           Booster—Gould system         26           G. E. head-end         30           Brown & Boveri system         43           C         C           Capacity of storage battery         106           Effect of time on         121           Effect of discharge rate on         116           Celling lighting         164	Operation	
Suspension   37	Pole Changer	
Alloys, conductivity of	Sugnension	
Areas of circles		
Armature speeds Automatic switch (see separate systems)  Axle generator systems		
Automatic switch (see separate systems)  Axle generator systems		
B   B   B   B   B   B   B   B   B   B		-280
B   Baggage and express car illumination   215   Reflectors and distribution curves for   215, 216   Baggage car generator system   20   Battimore & Ohio head-end system   25   Bearings   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   27	Automatic switch (see separate systems)	
B   Baggage and express car illumination   215   Reflectors and distribution curves for   215, 216   Baggage car generator system   20   Battimore & Ohio head-end system   25   Bearings   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   271   27	Axle generator systems	35
Baggage and express car illumination         215           Reflectors and distribution curves for         215, 216           Baggage car generator system         20           Baltimore & Ohio head-end system         25           Bearings         277           Belting         269-273           Horsepower transmitted         271           Travel of         278-280           Belt tension device (see different systems)           Buttner system with Rosenberg generator         42           Booster—Gould system         26           G. E. head-end         30           Brown & Boveri system         43           C         C           Capacity of storage battery         106           Effect of time on         121           Effect of discharge rate on         121           Celling lighting         164           Centrifugal force, formulæ for         282           Chandeliers         164           Characteristic curves for Mazda lamps         156           Circular pitch of gears         267           Circular pitch of gears         267           Circumference and areas of circles         295-297           Color values in illuminants, table of         161 <t< td=""><td></td><td></td></t<>		
Reflectors and distribution curves for       215, 216         Baggage car generator system       20         Baltimore & Ohio head-end system       25         Bearings       277         Belting       269-273         Horsepower transmitted       271         Travel of       278-280         Belt tension device (see different systems)         Buttner system with Rosenberg generator       42         Booster—Gould system       26         G. E. head-end       30         Brown & Boveri system       43         C         Capacity of storage battery       106         Effect of time on       121         Effect of discharge rate on       116         Celling lighting       164         Centrifugal force, formulæ for       282         Chandeliers       164         Characteristic curves for Mazda lamps       150         Circular mils       332         Circular pitch of gears       267         Color values in illuminants, table of       161         In comparison with Mazda light       162         Comparison lamp for       Weber photometer       157         Sharp Millar photometer       158         Compar	В	
Reflectors and distribution curves for       215, 216         Baggage car generator system       20         Baltimore & Ohio head-end system       25         Bearings       277         Belting       269-273         Horsepower transmitted       271         Travel of       278-280         Belt tension device (see different systems)         Buttner system with Rosenberg generator       42         Booster—Gould system       26         G. E. head-end       30         Brown & Boveri system       43         C         Capacity of storage battery       106         Effect of time on       121         Effect of discharge rate on       116         Celling lighting       164         Centrifugal force, formulæ for       282         Chandeliers       164         Characteristic curves for Mazda lamps       150         Circular mils       332         Circular pitch of gears       267         Color values in illuminants, table of       161         In comparison with Mazda light       162         Comparison lamp for       Weber photometer       157         Sharp Millar photometer       158         Compar	Doggood and annual can illumination	015
Baggage car generator system	Reflectors and distribution curves for 915	210 216
Baltimore & Ohio head-end system         25           Bearings         277           Belting         269-273           Horsepower transmitted         271           Travel of         278-280           Belt tension device (see different systems)           Buttner system with Rosenberg generator         42           Booster—Gould system         26           G. E. head-end         30           Brown & Boveri system         43           C         C           Capacity of storage battery         106           Effect of time on         121           Effect of discharge rate on         116           Celling lighting         164           Centrifugal force, formulæ for         282           Chandeliers         164           Characteristic curves for Mazda lamps         150           Circular mils         332           Circular pitch of gears         267           Circumference and areas of circles         295-297           Circumference and areas of circles         295-297           Color values in illuminants, table of         161           In comparison with Mazda light         162           Comparison lamp for         Weber photometer         157	· · · · · · · · · · · · · · · · · · ·	
Bearings   277   Beiting   269-273     Horsepower transmitted   271-1     Travel of   278-280     Belt tension device (see different systems)     Buttner system with Rosenberg generator   42     Booster—Gould system   26     G. E. head-end   30     Brown & Boveri system   43     C   Capacity of storage battery   106     Effect of time on   121     Effect of discharge rate on   116     Celling lighting   164     Centrifugal force, formulæ for   282     Chandeliers   164     Characteristic curves for Mazda lamps   150     Circular mils   332     Circular pitch of gears   267     Color values in illuminants, table of   161     In comparison with Mazda light   162     Comparison lamp for   157     Sharp Millar photometer   157     Sharp Millar photometer   158     Conductivity of metals   246     Conductivity of metals   246     Conductivity of metals   226     Conductivity of metals   260     Conductivity of met		
Belting		
Horsepower transmitted   271		
Horsepower transmitted   271	Belting	-273
Belt tension device (see different systems)   Buttner system with Rosenberg generator	Horsepower transmitted	271
Buttner system with Rosenberg generator		-280
Booster—Gould system   26   G. E. head-end   30   Brown & Boveri system   43	Belt tension device (see different systems)	
Booster—Gould system   26   G. E. head-end   30   Brown & Boveri system   43	Buttner system with Rosenberg generator	42
G. E. head-end		26
C   Capacity of storage battery.   106     Effect of time on.   121     Effect of discharge rate on   116     Celling lighting   164     Centrifugal force, formulæ for   282     Chandellers   164     Characteristic curves for Mazda lamps   150     Circular mils   332     Circular pitch of gears   267     Circunference and areas of circles   295-297     Color matching   162     Color values in illuminants, table of   161     In comparison with Mazda light   162     Comparison lamp for   157     Sharp Millar photometer   157     Sharp Millar photometer   158     Comparison of E. M. F.   253     Conductivity of metals   246     Conductivity of metals   246     Conductivity of metals   266     Conductivity of metals		30
Capacity of storage battery       106         Effect of time on       121         Effect of discharge rate on       116         Celling lighting       164         Centrifugal force, formulæ for       282         Chandeliers       164         Characteristic curves for Mazda lamps       150         Circular mils       332         Circular pitch of gears       267         Circumference and areas of circles       295-297         Color matching       162         Color values in illuminants, table of       161         In comparison with Mazda light       162         Comparison lamp for       Weber photometer       157         Sharp Millar photometer       158         Comparison of E. M. F.       253         Conductivity of metals       246         Conductivity sizes for different size wire       260		43
Capacity of storage battery       106         Effect of time on       121         Effect of discharge rate on       116         Celling lighting       164         Centrifugal force, formulæ for       282         Chandeliers       164         Characteristic curves for Mazda lamps       150         Circular mils       332         Circular pitch of gears       267         Circumference and areas of circles       295-297         Color matching       162         Color values in illuminants, table of       161         In comparison with Mazda light       162         Comparison lamp for       Weber photometer       157         Sharp Millar photometer       158         Comparison of E. M. F.       253         Conductivity of metals       246         Conductivity sizes for different size wire       260	·	
Effect of time on       121         Effect of discharge rate on       116         Celling lighting       164         Centrifugal force, formulæ for       282         Chandeliers       164         Characteristic curves for Mazda lamps       150         Circular mils       332         Circular pitch of gears       267         Circumference and areas of circles       295-297         Color values in illuminants, table of       161         In comparison with Mazda light       162         Comparison lamp for       162         Weber photometer       157         Sharp Millar photometer       158         Comparison of E. M. F.       253         Conductivity of metals       246         Conductivit sizes for different size wire       260	C	
Effect of time on       121         Effect of discharge rate on       116         Celling lighting       164         Centrifugal force, formulæ for       282         Chandeliers       164         Characteristic curves for Mazda lamps       150         Circular mils       332         Circular pitch of gears       267         Circumference and areas of circles       295-297         Color values in illuminants, table of       161         In comparison with Mazda light       162         Comparison lamp for       162         Weber photometer       157         Sharp Millar photometer       158         Comparison of E. M. F.       253         Conductivity of metals       246         Conductivit sizes for different size wire       260	Cananity of storage hatteny	106
Effect of discharge rate on         116           Celling lighting         164           Centrifugal force, formulæ for         282           Chandeliers         164           Characteristic curves for Mazda lamps         150           Circular mils         332           Circular pitch of gears         267           Circumference and areas of circles         295-297           Color values in illuminants, table of         162           In comparison with Mazda light         162           Comparison lamp for         weber photometer         157           Sharp Millar photometer         158           Comparison of E. M. F         253           Conductivity of metals         246           Conduit sizes for different size wire         260	Effect of time on	121
Ceiling lighting       164         Centrifugal force, formulæ for       282         Chandeliers       164         Characteristic curves for Mazda lamps       150         Circular mils       332         Circular pitch of gears       267         Circumference and areas of circles       295-297         Color matching       162         Color values in illuminants, table of       161         In comparison with Mazda light       162         Comparison lamp for       Weber photometer       157         Sharp Millar photometer       158         Comparison of E. M. F.       253         Conductivity of metals       246         Conduit sizes for different size wire       260	Effect of discharge rate on	116
Centrifugal force, formulæ for         282           Chandeliers         164           Characteristic curves for Mazda lamps         150           Circular mils         332           Circular pitch of gears         267           Circumference and areas of circles         295-297           Color matching         162           Color values in illuminants, table of         161           In comparison with Mazda light         162           Comparison lamp for         Weber photometer         157           Sharp Millar photometer         158           Comparison of E. M. F.         253           Conductivity of metals         246           Conductivit sizes for different size wire         260		
Chandeliers         164           Characteristic curves for Mazda lamps         150           Circular mils         332           Circular pitch of gears         267           Circumference and areas of circles         295-297           Color matching         162           Color values in illuminants, table of         161           In comparison with Mazda light         162           Comparison lamp for         157           Sharp Millar photometer         158           Comparison of E. M. F.         253           Conductivity of metals         246           Conduit sizes for different size wire         260	Centrifugal force, formulæ for	282
Characteristic curves for Mazda lamps.         150           Circular mils         332           Circular pitch of gears.         267           Circumference and areas of circles         295-297           Color matching         162           Color values in illuminants, table of         161           In comparison with Mazda light         162           Comparison lamp for         157           Weber photometer         157           Sharp Millar photometer         158           Comparison of E. M. F.         253           Conductivity of metals         246           Conduit sizes for different size wire         260		
Circular mils         332           Circular pitch of gears         267           Circumference and areas of circles         295-297           Color matching         162           Color values in illuminants, table of         161           In comparison with Mazda light         162           Comparison lamp for         157           Weber photometer         157           Sharp Millar photometer         158           Comparison of E. M. F.         253           Conductivity of metals         246           Conduit sizes for different size wire         260	Characteristic curves for Mazda lamps	150
Circular pitch of gears.       267         Circumference and areas of circles       295-297         Color matching       162         Color values in illuminants, table of       161         In comparison with Mazda light       162         Comparison lamp for       157         Sharp Millar photometer       158         Comparison of E. M. F.       253         Conductivity of metals       246         Conduit sizes for different size wire       260		
Circumference and areas of circles         .295-297           Color matching         .162           Color values in illuminants, table of         .161           In comparison with Mazda light         .162           Comparison lamp for         .157           Weber photometer         .158           Comparison of E. M. F.         .253           Conductivity of metals         .246           Conduit sizes for different size wire         .260		
Color matching         162           Color values in illuminants, table of         161           In comparison with Mazda light         162           Comparison lamp for         **           Weber photometer         157           Sharp Millar photometer         158           Comparison of E. M. F.         253           Conductivity of metals         246           Conduit sizes for different size wire         260		
Color values in illuminants, table of In comparison with Mazda light         161           In comparison with Mazda light         162           Comparison lamp for Weber photometer         157           Sharp Millar photometer         158           Comparison of E. M. F         253           Conductivity of metals         246           Conduit sizes for different size wire         260		
In comparison with Mazda light	Color values in illuminants, table of	161
Weber photometer         157           Sharp Millar photometer         158           Comparison of E. M. F.         253           Conductivity of metals         246           Conduit sizes for different size wire         260	In comparison with Mazda light	162
Snarp Millar photometer.         158           Comparison of E. M. F.         253           Conductivity of metals.         246           Conduit sizes for different size wire         260	Comparison lamp for	
Snarp Millar photometer.         158           Comparison of E. M. F.         253           Conductivity of metals.         246           Conduit sizes for different size wire         260	Weber photometer	157
Conductivity of metals	Snarp Millar photometer	158
Conduit sizes for different size wire 260		
Conduit sizes for different size wire		
	Conduit sizes for different size wire	260

## 338 NATIONAL ELECTRIC LAMP ASSOCIATION

Consolidated systems	PAGE
Type "A" system	
DriveGenerator	45 44
Operation	
Pole-changer	44
Regulator Suspension	45 45
Double equipment	30
Operation	48
Regulators	48
Type "D"	E 1
Automatic recording device	
Belt tension	
Drive	
Generator	
Operation of regulatorPole-changer	
Regulator	50
Suspension	50
Contents	
Cosine law	165
Cost of equipment and operation of	173
Axle generator system	96
Head-end system	96
Straight storage	97
Cubes and cube roots of numbers309	-328
Current strength measurement	253
Curtis turbine train lighting set	
D	
_	
Decimals of an inch	294
Decimals of an inch	294 -336
Decimals of an inch	294 -336
Decimals of an inch.  Definitions, arranged alphabetically	294 -336 97 268 158
Decimals of an inch  Definitions, arranged alphabetically	294 -336 97 268 158 258
Decimals of an inch.  Definitions, arranged alphabetically	294 -336 97 268 158 258 221
Decimals of an inch  Definitions, arranged alphabetically	294 -336 97 268 158 258 221
Decimals of an inch.  Definitions, arranged alphabetically	294 -336 97 268 158 258 221 224
Decimals of an inch.  Definitions, arranged alphabetically	294 -336 97 268 158 258 221 224
Decimals of an inch.  Definitions, arranged alphabetically	294 -336 97 268 158 258 221 224
Decimals of an inch.  Definitions, arranged alphabetically	294 -336 97 268 158 258 221 224
Decimals of an inch.  Definitions, arranged alphabetically	294 -336 97 268 158 258 221 224
Decimals of an inch.  Definitions, arranged alphabetically	294 -336 97 268 158 258 221 224 156 156 -209
Decimals of an inch.  Definitions, arranged alphabetically	294 -336 97 268 158 221 224 156 -209
Decimals of an inch.  Definitions, arranged alphabetically	294 -336 268 158 258 221 224 156 156 -209
Decimals of an inch.  Definitions, arranged alphabetically	294 -336 268 158 221 224 156 -209
Decimals of an inch.  Definitions, arranged alphabetically	294 -336 97 268 158 221 156 -209 162 249 249 249 249 249
Decimals of an inch.  Definitions, arranged alphabetically	294 -336 97 268 158 221 224 1566 -209 162 249 249 249 248 248
Decimals of an inch.  Definitions, arranged alphabetically	294 -336 97 268 158 258 221 224 156 -209 162 249 249 248 249 249 131
Decimals of an inch.  Definitions, arranged alphabetically	294 -336 97 268 158 221 224 156 -209 162 249 249 249 249 249 249 131
Decimals of an inch.  Definitions, arranged alphabetically	294 -336 97 268 258 221 224 156 1-209 162 249 249 248 249 249 249 241 131 126 125

INDEX	<b>38</b> 9
, F	
•	PAGE
Field of view, Lummer Brodhun sight box	. 156
Friction, general discussion of	. 281
Fusing points of metals	
Foot-candle, definition of	222
root-candie, definition of	. 000
. <b>G</b>	
Gauges, wire, classification of	. 237
Gearing	. 267
Speed of	270
General Electric head-end system	
• •	. 50
Generator—(see different system)	
Glare	. 160
Gould booster system	
Operation	. 28
Gould simplex system	
Asstance de arritab	. 54
Generator	. 53
Generator	. 55
Lamp regulator	. 56
Pole changer	
Gould storage battery	. 107
1	
. н	
Head-end systems	. 17
Horsepower of	
Belting	0_972
Shafting	3-276
Bilditing	
ı	
Illuminants, color of	
Calculation of	
Constants for calculation of	. 166
Contrast	. 160
Definition of	157
Example of using constants of	166
Foot-candle unit of	. 157
Foot-candle, unit of.  General condition and requirements  Intensities of for various service	. 159
Intensities of for various service	5-179
In terms of watts per square foot	. 180
Lumens, explanation of	. 179
Measurement by comparison	. 157
Methods of	. 104
Theory of	. 101
Theory of	180
Insulating materials	246
	. 470
Intrinsic brilliancy	100
Definition of	. 160
Table of, for light sources	. 100
Inverse square law	. тоо

κ .	
	AGE 50
Kirchoff's laws	249
. <b>L</b>	
Lamps, Mazda for train lighting service.  Average candle-power life curves for.  Bare, candle-power distribution curves for.  Characteristic curves for.  Compensator, technical data on.  General properties.  Hours life at normal efficiency.  Technical data concerning.  144, 145, 147,  Lamps, regular Mazda.  Average candle-power life curves for.  Bare, candle-power distribution curves for.  Characteristic curves for.  General properties.  Hours life at normal efficiency.  Technical data concerning.	148 152 150 144 141 143 149 141 145 152 150
Technical data concerning	145
Absorption of	155 161 298 300
	0.77
Maintenance and depreciation  Proposed form for lighting cost accounting	97 98
Manchester type storage battery	
Mather & Platt system	65
Measurements of Current strength E. M. F. Heavy currents Insulation of electrical machinery Internal resistance of battery Resistance Melting point of metals. Metric system Methods of lighting. Millivoltmeter, measurements of heavy currents. Mounting height and spacing of units Mils, circular	253 254 256 257 255 246 286 164 254 181
N	
National storage batteries	

	FAGE
Ohm's law	
Operation of car lighting system, cost of	
The second section of the second seco	
P	
Demohalla medantam	
Parabolic reflectors	911
Curves to determine focal length of	211
Theory of	. 411
Passenger and day car illumination	. 217
Location of lighting unit	. 221
Photometer	
Lummer-Brodhun	. 156
Manipulation of	
Sharp-Millar	. 158
Weber	. 157
Wiring diagram for	. 155
Pilot cell, use of	
Pipes, dimensions of	. Z58
Equation of	
Platform and station illumination	. 231
Fixtures and distribution curves for22	3 <b>, 23</b> 0
Pole-changers (see different systems)	
Postal car illumination	215
Reflectors and distribution curves for21	
Proper use of light fixtures	. 164
Pulleys, speed of	. 270
Q	
Quality of light	161
Quality of light	. 161
Quality of light	. 161
R ·	
Reciprocals of numbers30	9-328
Reciprocals of numbers30	9-328
Reciprocals of numbers	9-328 . 163 . 163
Reciprocals of numbers	9-328 . 163 . 163 . 181
Reciprocals of numbers	9-328 . 163 . 163 . 181
Reciprocals of numbers	9-328 . 163 . 163 . 181
Reciprocals of numbers	9-328 . 163 . 163 . 181 . 211
Reciprocals of numbers	9-328 . 163 . 163 . 181 . 211
Reciprocals of numbers	9-328 . 163 . 163 . 181 . 211 . 37 . 41
Reciprocals of numbers	9-328 . 163 . 163 . 181 . 211 . 37 . 41
Reciprocals of numbers	9-328 . 163 . 163 . 181 . 211 . 37 . 41 . 25 . 80 . 79
Reciprocals of numbers	9-328 . 163 . 163 . 181 . 211 . 37 . 41 . 25 . 80 . 79
Reciprocals of numbers	9-328 . 163 . 163 . 181 . 211 . 37 . 41 . 25 . 80 . 79
Reciprocals of numbers	9-328 . 163 . 181 . 211 . 37 . 41 . 25 . 80 . 79 . 81 . 32
Reciprocals of numbers	9-328 . 163 . 181 . 211 . 37 . 41 . 25 . 80 . 79 . 81 . 32
Reciprocals of numbers	9-328 . 163 . 163 . 181 . 211 . 37 . 41 . 25 . 80 . 7 . 81 . 83 . 32 . 48
Reciprocals of numbers	9-328 . 163 . 163 . 181 . 211 . 37 . 41 . 25 . 80 . 7 . 81 . 83 . 32 . 48
Reciprocals of numbers	9-328 . 163 . 163 . 181 . 211 . 37 . 41 . 25 . 80 . 79 . 81 . 83 . 45 . 48 . 52
Reciprocals of numbers	9-328 . 163 . 163 . 181 . 211 . 37 . 41 . 25 . 80 . 79 . 81 . 83 . 45 . 48 . 52
Reciprocals of numbers	9-328 . 163 . 163 . 181 . 211 . 37 . 41 . 25 . 80 . 79 . 81 . 83 . 45 . 48 . 52
Reciprocals of numbers	9-328 . 163 . 163 . 181 . 211 . 37 . 25 . 80 . 81 . 83 . 45 . 48 . 52 . 30 . 33
Reciprocals of numbers	9-328 . 163 . 181 . 211 . 37 . 411 . 25 . 80 . 79 . 813 . 32 . 45 . 32 . 45 . 32 . 32 . 32 . 32 . 32 . 32 . 35 . 35

F	AGE
Codeter terms (CDV) memorates memolates	70
Safety type "D" lamp regulator. Safety type "F" generator regulator. Safety type "F" generator regulator. Safety type "F" lamp regulator. United States type "F".	78
Safety type "F" generator regulator	70
Safety type "F" lamp regulator	70
United States type "F"	79
Rejuvenation of negative plates	137
Relays	
Booster control General Electric head-end	30
Safety type "D" Wiring diagram of Gould panel type	73
wiring diagram of Gould panel type	58
Resistance, measurements of	254
Reversal of sight box screen	155
Revolutions per minute of car wheels	277
Of armatures278-	280
Rosenberg axle generator system (see Buttner system)	
,	
S	
Safety car heating and lighting axle light system	
Generator regulator	73
Generator regulator Lamp regulator and relay Safety system Type "F"	73
Safety system Type "F"	
Automatic switch	` 70
Generator	68
Generator regulator	
Lamp regulator	72
Pole changer	60
Series circuit, theory of	940
Shafting	273
Shafting	273
Deflection of	274
Shunt circuit, theory of	249
Sight box, Sharp-Millar	
Sines, table of	
Sleeping and parlor car illumination	221
Spacing of units	
Specific gravities of various substances287-	290
Squares, square roots of numbers309-	328
Stone axle dynamo system	
Automatic switch	75
Generator	75 75
Storage batteries	
Cadmium tests of	118
Diseases of	d 21
Edison	
Care of	110
Characteristics of	112
Charging	112
Discharging	111
Insulation	111
Plates	110
Theory	112
Weight of	112
Factors influencing voltage of	120
Temperature of	121

General instructions	PAGE
Assembly	127
Initial charge	129
Sealing	. 128
Treatment of batteries received assembled	
Impurities	125
Acetic acid	. 126
Arsenic	
Copper	. 126 . 126
Hydrochloric acid	
Mercury .	
Nitric acid	
Operation	
Charging	
Cleaning	
General rules	130
In parallel	
Inspection of	
Pilot cell	
Readings	
Reforming charge	. 131
Removal from service	. 132
Replacing electrolyte	. 132
Replacing evaporation	. 131
Voltage variation	
Plante	. 103
Plates for	
Electric storage	107
Faure or pasted	109
Gould	107
National	109
Willard	107
Specific gravity of	
Sulphuric acid, resistance of	
Theory of, lead	
Troubles and their remedies for	. 133
Variation in lead	
Capacity with rate of charge and discharge at	t .
Capacity with rate of charge and discharge at 70° F	. 116
Specific gravity	. 116
Voltage on charge and discharge	. 118
Straight engine generator system	. 19
Straight storage system	. 13
Striations of light sources	
Stud and frieze lighting	. 164
Switch, automatic (see separate systems)	
<u>_</u>	
T	
Tangents, table of	2-308
Train and station illumination	211
Transmission coefficient	
Trigonometric functions	. 301
Turbine generator	
Gould system	26
General Electric head-end system	. 30
Gould system	0, 25
Steam consumption of	. 22

# 344 NATIONAL ELECTRIC LAMP ASSOCIATION

U

	PAGE
Uniform motion, theory of	281
United States Lighting and Heating systems Type "F" system	
Type "F" system	79 80
Operation	80
Generator regulator	- 8ŏ
Lamp regulator Type "P" system	80
Type "P" system	80 80
Drive	80
Generator regulator	81
Lamp regulator	82
Operation	82
Pole changer Suspension	80 80
Type S-1 system	83
Type S-1 system	83
Potential regulator	84
Type K-1 lamp relay Type B-1 lamp regulator	90
Units, equivalent values of	
Utilization factors, table of	180
· . <b>v</b>	
Voltage, train line (see different systems)	
Voltmeters	252
Measurements with258	-257
Resistance of	251
W	
Weight of water at various temperatures	291
Weights and measures	285
Wheatstone method of e. m. f. comparison	
Wheels, r. p. m. at various speeds	
Willard Storage Battery	
Wire	10.
Canacity of conduit for	260
Dimensions and weights of	-244
Equivalent of B. & S	238
Magnet	244
Pure copper	-243
Table of carrying capacities	244
Wire gauges	
Brown & Sharpe's	237
Classification of	237
General use of	237
Wiring diagrams Charging and discharging in series, straight storage.	13
CHARRING AND DISCHARRING IN SECRES, STRAIGHT STORAGE.	
Charging in series discharging in narallel	
Charging in series, discharging in parallel	14
Charging in series, discharging in parallel Wiring formulæ	14 248
Charging in series, discharging in parallel Wiring formulæ Alternating current Direct current	14 248 250 249
Charging in series, discharging in parallel Wiring formulæ Alternating current Direct current Three phase alternating current	14 248 250 249 251
Charging in series, discharging in parallel Wiring formulæ Alternating current Direct current	14 248 250 249 251

. . ~ 











b89090511353a

