APUNTES ARI

(Ariel Nowik: anowik@itba.edu.ar - correcciones, sugerencias, consultas)

Etapa 1

El circuito equivalente simplificado para un analisis sencillo es el siguiente:

Polarización

Despreciando toda las corrientes de base despejamos la corrientes de todos los transistores menos \mathcal{Q}_7

$$I_{c1} = I_{c2} = I_{c3} = I_{c5} = I_{c6} = rac{19 \mu A}{2} = 9.5 \mu A$$

Para despejar Q_7 despreciamos las corrientes de base de $Q_5,\,Q_6$ y calculamos la caida de tensión sobre $R_3.$

$$V_{R3} = IR_2 + V_{BE6} \implies I_{R3} = I_{C7} = rac{I_{C6}R_2 + V_{BE6}}{R_3}$$

Pero necesitamos V_{BE6} . Usamos la ecuación que relaciona V_{BE6} con I_{C6}

$$I_{c6} = I_{s6} e^{V_{BE6}/V_T} \implies V_{BE6} = V_T ln(rac{I_{c6}}{I_s}) = 26 mV ln(rac{9.5 \mu A}{10^{-14} A}) = 517 mA \implies I_{C7} = 10.5 \mu A$$

Modelo incremental

Se utiliza el modelo T.

Arbitrariamente, para respetar los sentidos fisicos, se opto por colocar los modelos de los transistores 2 y 4 al reves de lo usual.

Primero se observa la parte de abajo. Debido a los resultados de la polzarización se puede despreciar I_{b7} incremental, por lo que $I_{e3}=I_{e5}$. Además, como asumimos que $R_1=R_2$ y $r_{e5}=r_{e6}$ entonces debe suceder $I_{e5}=I_{e6}$ (ya que $I_{e5}(r_{e5}+R1)=I_{e6}(r_{e6}+R_2)$) . En resumen

$$I_{e1} = I_{e3} = I_{e5} = I_{e6}$$

En segundo lugar, se observa la parte de arriba. En particular observar que realizando nodos en el transistor 4 se tiene

$$(1-\alpha)I_{e1} + \alpha I_{e4} = I_{e4} \implies I_{e4} = I_{e1}$$

Por lo tanto

$$I_{out} = 2\alpha I_{e1}$$

Por ultimo, se busca la relacion entre I_{e1} y $V_d=V_1-V_2$. Por mallas y la expresion anterior de I_{out} se puede ver que

$$egin{align} V_d = (\underbrace{r_{e1} + r_{e2} + r_{e3} + r_{e4}}_{4r_e})I_{e1} &\Longrightarrow I_{out} = \underbrace{rac{2lpha}{4r_e}}_{G_{m1}}V_d \ \ G_{m1} = rac{2}{4*2.63k\Omega} = rac{1}{5.26}rac{mA}{V} \ \end{aligned}$$

Impedancia de entrada diferencial

Es muy sencillo calcularla ya que como $I_{in}=I_{b1}=(1-lpha)I_{e1}$ y $V_d=4r_eI_{e1}$ entonces

$$R_{id} = rac{V_d}{I_{in}} = rac{4r_eI_{e1}}{(1-lpha)I_E1} = rac{4r_e}{1-lpha} = 4r_e(eta+1) = 4(2.63k\Omega)(201) = 2.1M\Omega$$

Ya que por definición $lpha=rac{eta}{eta+1}$

Impedancia de salida

Se utiliza el modelo hibrido π . Se asume que las bases de los transistores 2,4 y 6 estan a 0v.

Los tres transistores tienen imedancias de salidas que se calculan igual. En Q_2 al estar el colector y la base en masa, su impedancia de salida es r_{o2} .

Por otro lado, tanto en Q_4 como Q_6 se tiene la base en masa y el colector a una resistencia (R_2 y r_o2 correspondientemente) que llamaremos r_e . Utilizando el modelo π planteamos que

$$V_{op} = r_{\pi} \| r_e I_{op} + r_o (I_{op} + g m v_{pi}) \implies R_o = r_{\pi} \| r_e + r_o (1 + g m rac{v_{\pi}}{I_{op}})$$

Como $v_\pi/I_o = r_\pi \| r_o$ finalmente obtenemos

$$R_o = r_\pi \|r_e + r_o(1 + gmr_\pi \|r_o) pprox r_o(1 + gmr_o)$$

Aplicando la formula con la parte de arriba y de abajo del circuito se obtiene

$$R_{out} = R_{o6} || R_{o4} = r_{o4} (1 + gmr_{o2}) || r_{o6} (1 + gmr_{o6}) = 6.7 M\Omega$$

Etapa 2

Polarización

Gracias a la fuente de corriente de arriba

$$I_{c17} = 550 \mu A$$

Por otro lado, para calcular la corriente de Q_{16} , calculamos V_{be17} y con dicha tensión y R_9 , despreciando la corriente de base de Q_{17} obetenemos I_{c16}

$$V_{be17} = V_T ln(rac{I_{c17}}{I_s}) = 618 mV \implies I_{c17} = I_{e17} = rac{I_{e17} R_8 + V_{be17}}{R_9} = 16.2 \mu A$$

Modelo incremental

Impedancia de entrada

Se procederá a calcular la impedancia de entrada ya que su calculo será provechoso para luego conseguir la ganancia de la etapa. Se coloco el modelo del transistor 13b en lugar de la fuente de corriente, no obstante, como la base se encuentra a masa dicho modelo no aporta corriente incremental.

Se utilizará modelo T.

Primero calculamos R_{i17} . Notar que $I_{op}=(lpha-1)I_{e17}$ Por lo que con un pasaje a nivel de corriente podemos ver que

$$R_{i17} = rac{1}{lpha - 1} (r_{e17} + R_8)$$

Como $\alpha-1=rac{1}{\beta+1}$ entonces

$$R_{i17} = (\beta + 1)(r_{e17} + R_8)$$

En segundo lugar calculamos $R_{i16}=R_{in}$ de utilizando exactamente el mismo metodo. Como en este caso $I_{op}=(lpha-1)I_{e16}$ utilizando un pasaje a nivel de corriente

$$R_{i16} = rac{1}{lpha - 1} (r_{e16} + R_9 \| R_{i17})$$

Compactando las dos expresiones anteriores

$$R_{in} = (eta+1)[r_{e16} + R_9\|((eta+1)(r_{e17} + R_8))] = 4M\Omega$$

Ganancia

Procederemos a calcular la ganancia de la etapa, definida como $G_{m2}=rac{I_{out}}{V_{in}}$

Se utilizaran divisores resistivos

$$egin{align} I_{out} &= lpha I_{e17} = rac{v_{e17}}{R_{e17} + R_8} \ & \ v_{e17} = v_{in} rac{R_{i17} \| R_9}{R_{i17} \| R_9 + R_{e16}} \ & \ \end{array}$$

Todos los valores de la ecuación fueron calculados previamente. Reemplazando

$$G_{m2}=6.5rac{mA}{V}$$

Impedancia de salida

Se asume que la base del transistor 17 se encuentra a masa.

El circuito de R_{o17} es el mismo del de la etapa 1. Por lo tanto

$$R_o = r_{o13} \| (r_{o17} [1 + gm(R_8 \| r_{\pi 17})]) = 81 k \Omega$$

Etapa 3

Polarización

En primer lugar asumimos que la fuente de corriente de Q_{13} suministra 180 μA .

Procederemos a calcular las corrientes de colector Q_{19} y Q_{18} .

Suponemos que conocemos V_{be18} . (Por ejemplo $V_{be18}=0.6V$) Entonces I_{c19} , despreciando corrientes de base se puede calcular como

$$I_{C19} = rac{V_{be18}}{R_{10}} = 15 \mu A$$

Como $I_{c19}+I_{c18}=180\mu A$ podemos conseguir $I_{c18}=180\mu A-15\mu A=165\mu A.$

Y con I_{c18} podemos, nuevamente obtener un valor de V_{be18}

$$V_{be18} = V_t ln(rac{I_{c18}}{I_{s18}}) = 588 mV$$

Iterativamente podriamos tomar este valor de V_{be18} y repetir el procedimiento para aumentar la precisión de la respuesta. No obstante, el error debido a no considerar las corrientes de bases es mayor a la precisión que se ganaría iterando varias veces.

Por ultimo conseguimos las corrientes de Q_{14} y Q_{20} . como $V_{be19}=V_tln(rac{I_{c19}}{I_S})=530mV$ entonces como

$$V_{be20} + V_{be14} = V_{be18} + V_{be19} = 1.118V$$

Y además $I_{c14}=I_{C20}$, podemos planterar la ecuación

$$V_t ln(rac{I_{c14}}{I_{s14}}) + V_t ln(rac{I_{c20}}{I_{s14}}) = V_{be20} + V_{be14} = 1.118V$$

Tomando $I_{s14}=I_{s20}=3*10^{-14}$ se obtiene $I_{c14}=I_{c20}=154\mu A$

Observacion 1 necesaria para continuar

A partir de ahora, para resolver el analisis incremental necesitamos simplificar el circuito.

En primer lugar calcularemos la impedancia incremental equivalente de la fracción del circuito compuesta por Q_{19} y Q_{18}

Para ello en primer lugar asumimos que la impedancia vista por Q_{19} es $\frac{1}{gm}$ (lo cual se puede ver utilizando el modelo T o π) y dibujamos el modelo T del transistor Q_{18} .

Realizando un divisor de corriente podemos hacer posible de calcular el paralelo $R_{10} \| r_{e18}$ (provocando que la fuente de corriente dependa de otra ki)

Por ultimo , mediante un pasaje a nivel de corriente podemos ver la impedancia de la fuente de corriente en paralelo a la resistencia. Como la corriente es $(k\alpha-1)$ veces más grande, entonces la impedancia $\frac{1}{gm_{19}}$ se ve $(k\alpha-1)$ veces mas grande.

En conclusión la imepdancia del bloque es aproximandamente r_{e18} que es un numero muy chico, lo cual es importante. A partir de ahora sumiremos que el bloque es un cable.

Observacion 2 necesaria para continuar

Debemos asumir que, por el funcionamiento del dispositivo en algunos instantes Q_{20} se encuentra abierto y en otros Q_{14} se encuentra abierto.

De esta forma, podremos analizar el circuito solo en un estado, que será en el que Q_{20} conduce. El otro estado es análogo y totalmente simetrico

Ganancia

La ganancia de tensión es sencilla. Son dos colector comunes en cascada, ambos con ganancia unitaria

Impedancia de entrada

Calculamos la impedancia de entrada. Para ello analizamos el bloque verde por separado utilizando el modelo T

Realizando un divisor de corriente la resistencia vista en el bloque verde por la base es r_e+R_L incrementada $\beta+1$ veces ya que la corriente que pasa por las resistencias es $\beta+1$ veces más grande. La resolución de la impedancia de entrada del transistor Q_{23} es exactamente la misma que la del bloque verde, solo que con R_{i20} en ulgar de R_L . Es importante considerar que $r_e+R_L\approx R_L$

Impedancia de salida

Calculamos la impedancia de salida. Para ello debemos considerar R_{o2} , la impedancia de salida de la etapa 2 en nuestro analisis. En las etapas anteriores, debido a diversas cosas asumidas no habia sido necesario.

Resolvemos el boque verde planteando el modelo T. La impedancia vista es r_{e23} más R_{o2} con una corriente ($\beta+1$) veces más chica, es decir, por pasaje a nivel de corriente, disminuida en $\beta+1$ veces.

Para resolver la impedancia de el transistor Q_{20} realizamos la misma cuenta pero con R_{o23} en lugar de R_{o2}

$\mathsf{Modelo}\,T$

Se muestra a continuación el modelo T del transistor, utilizado varias veces para la resolució del circuito. Tiene una gran similitud con el modelo π , es totalmente equivalente. Por lo general, salvo en calculos de impedancias de salida, se suele despreciar.

