Coordinates Cilindricus.
$$(r, p, t), (r, p, t)$$

$$Lightords:$$

Park
$$r$$
:

 $\frac{d}{dt} \left(\frac{\partial L}{\partial r} \right) - \frac{\partial L}{\partial r} = 0$
 $\frac{\partial L}{\partial r} = (m_1 + m_2) \dot{r} \csc^2 t$
 $\frac{d}{dt} \left(\frac{\partial L}{\partial r} \right) = (m_1 + m_2) \dot{r} \csc^2 t$
 $\frac{d}{dt} = m_1 r \dot{p} - m_1 g (o t d - m_2 g \csc t)$
 $(m_1 + m_2) \dot{r} (sc^2 d - m_1 r \dot{q}^2 + m_1 g \cos t + m_2 g \cos d) = 0$
 $\frac{d}{dt} \left(\frac{\partial L}{\partial \rho} \right) - \frac{\partial L}{\partial \rho} = 0$
 $\frac{\partial L}{\partial r} = m_1 r^2 \dot{\rho}$
 $\frac{\partial L}{\partial r} = m_1 r^2 \dot{\rho}$
 $\frac{\partial L}{\partial r} = m_1 r^2 \dot{\rho}$
 $\frac{\partial L}{\partial r} = m_1 r \dot{\rho}$
 $\frac{\partial$

r= my j coto + mzy coch // PTA.

4)
$$\frac{1}{\lambda} = \frac{1}{\lambda}$$

$$\lambda = \frac{1}{\lambda}$$

$$\lambda$$

Thesa =
$$\frac{1}{2}$$
 m $v^2 = \frac{1}{2}\lambda(L-x(+))\dot{x}(+)$

$$T = \frac{1}{2}\lambda(L-x)\dot{x}^2 + \frac{1}{2}\lambda x\dot{x}^2$$
Toucing $a = \frac{1}{2}$ m $v^2 = \frac{1}{2}\lambda x\dot{x}^2$

$$T = \frac{1}{2}\lambda L\dot{x}^2$$

Twelga =
$$\frac{1}{2}$$
 m $v^2 = \frac{1}{2} \lambda x (e) \cdot x (d)$

$$T = \frac{1}{2} \lambda L \lambda^2$$

$$\int_{-\frac{1}{2}}^{-\frac{1}{2}} \frac{1}{2} \lambda x^{2} d = \frac{1}{2} \left(L x^{2} - 9 x^{2} \right)$$

Ewación de Euler-Lagunye:

$$\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}}\right) - \frac{\partial \mathcal{L}}{\partial \dot{x}} = 0$$

$$\frac{\partial \mathcal{L}}{\partial \dot{x}} = \lambda L \dot{x}$$

$$\frac{d}{dx}\left(\frac{\partial \mathcal{L}}{\partial x}\right) = \lambda L \ddot{x} + \lambda L \ddot{x} - (\lambda gx) = 0$$

$$\frac{\partial \mathcal{L}}{\partial x} = -\lambda g x \qquad \qquad X + \frac{g}{L} x = 0 \qquad \Rightarrow Se \quad \text{Pue de Solucion ar.}$$

$$\dot{\chi} + \dot{\omega} \dot{\chi}(t) = 0$$
, $\dot{\omega} = \frac{9}{4}$, $\dot{\omega} = \sqrt{\frac{9}{4}}$
 $\dot{\chi}(t) = A \cos(\omega t) + B \sin(\omega t)$

x(t) = L cos (3 +) / RTA.

X(t) = A cos (5 t) + B sen (5 t) x(0)=L

X(0) = 0