

LEARNING TO SMILE(S)

Stanislaw Jastrzebski, Damian Lesniak, Wojciech Marian Czarnecki Jagiellonian University, Cracow, Poland

Drug discovery + Deep Learning

Drug development can take **10 years** and consume over **2B\$**. Computer methods are **fundamental** in modern drug discovery, but **DL** has had limited **success**. Why?

Virtual Screening

Virtual Screening is a vital part of computer aided drug discovery. It is used to filter drug candidates before doing actual very expensive and long tests in laboratory.

- Here binary classification:
 Does the molecule
 bind to the target?
- Input is a small graph.

Target is usually a protein found in human body, for instance responsible for transfering electrical signal to cell.

Fig. 2: Docked compound

Molecules

Input is a small molecule (usually ≤ 100 atoms).

Most methods can't take graph as input, standard approach is to convert it to a constant sized vector: a "fingerprint".

keys		\bigcirc	N —	N ≥ 3	 N-N
fingerprint	1	0	1	1	 1

Hand-crafted representations are often bad.

Text classifiers on molecules

Molecules are normally stored in databases in **SMILES** format - a string of characters forming the compound. Example:

Fig. 4: N(c1)ccc1N

This is a raw representation, it shouldn't perform better than hand-crafted ones... or **maybe**?

Turn out there are **analogies** to sentiment classification:

main clause 1. We treat main walk as the **main** clause and branches as subclauses.

3. "I like the movie" vs "I don't like the movie". Similarly as in sentiment classification, activity is very sensitive to local changes.

Experiments

We evaluate against state of the art **substructural** fingerprints on 5 fairly small binary datasets. Models are selected to cover popular choices in traditional virtual screening approaches and NLP.

- Traditional models: SVM, Random Forest, Naive Bayes.
- NLP models: RNN (GRU), one hot CNN, Recurrent Neural Language Model (RNNLM).

CNN on molecules

Best model: one hot CNN.

It can be interpreted as automatically learning representation.

Results

Models ranks by log-loss (RNNLM and NB were omitted for clarity).

Conclusions & future directions

- This is **work in progress**. Stronger hand-crafted fingerprints and more models have to be tested.
- Very promising direction for **semi-supervised learning**

Acknowledgments: First author was supported by Grant No. DI 2014/016644 from Ministry of Science and Higher Education, Poland.