Egzamin licencjacki — 9 września 2011

Z zestawu sześciu zadań (Matematyka I, Matematyka II, Programowanie, Matematyka dyskretna, Algorytmy i struktury danych i Metody numeryczne) poniżej należy wybrać i przedstawić na osobnych kartkach rozwiązania trzech zadań. Za brakujące (do trzech) zadania zostanie wystawiona ocena nieostateczna z urzędu. Egzamin uważa się za zaliczony, jeśli student rozwiąże z oceną dostateczną co najmniej 2 zadania. Wtedy ocena z egzaminu jest średnią arytmetyczną ocen z trzech wybranych zadań. Na rozwiązanie zadań przeznacza się czas 3x40=120 minut. Po wyjściu z sali egzaminacyjnej w czasie egzaminu nie ma możliwości powrotu do tej sali i kontynuowania pisania egzaminu.

Matematyka I — Logika dla informatyków

Rozważmy gramatykę bezkontekstową G z jednym symbolem nieterminalnym S, zbiorem symboli terminalnych $\{(,)\}$, symbolem startowym S i produkcjami

$$S \rightarrow (S)S \mid \varepsilon$$
.

Mówimy, że słowo w nad alfabetem $\{(,)\}$ jest ciągiem poprawnie rozstawionych nawiasów jeśli balance(w)=0 oraz balance $(u)\geq 0$ dla każdego prefiksu u słowa w, gdzie funkcja balance jest zdefiniowana indukcyjnie w następujący sposób:

$$balance(\varepsilon) = 0,$$

 $balance(x) = balance(x) + 1,$
 $balance(x) = balance(x) - 1.$

Dla przykładu ((()())()) jest ciągiem poprawnie rozstawionych nawiasów, zaś (()))(() nim nie jest.

Udowodnij indukcyjnie, że każdy ciąg poprawnie rozstawionych nawiasów jest generowany przez gramatykę G.

Matematyka II — Algebra

- 1. (4p. + 4p.) Z pomocą algorytmu Euklidesa:
 - a) Znaleźć największy wspólny dzielnik dla 13 i 8.
 - b) Znaleźć odwrotność 8 w \mathbb{Z}_{13}^*
- 2. (4p. + 4p.) Rozważamy układ równań postaci Ax = 0, gdzie $A \in \mathbb{R}^{n \times n}$.
 - a) Wykazać, że zbiór rozwiązań tego układu jest podprzestrzenią liniową przestrzeni $\mathbb{R}^n.$
 - b) Podać przykład bazy podprzestrzeni rozwiązań, jeśli

$$A = \left[\begin{array}{rrr} 2 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 1 & 5 \end{array} \right]$$

3. (4p.) Obliczyć macierz odwrotną do macierzy

$$A = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{array} \right].$$

Programowanie

Za zadanie można otrzymać 20 punktów. Aby otrzymać ocenę dostateczną, należy zdobyć 7 punktów, próg dla dst+ to 9p., dla db- 11p., dla db+ 13p., dla bdb- 15p.

Część 1. Gramatyka G_1 z symbolem startowym S nad alfabetem $\{a,b\}$ dana jest za pomocą następującego zbioru produkcji:

$$\{A \rightarrow a, A \rightarrow Aa, B \rightarrow b, B \rightarrow bB, S \rightarrow SS, S \rightarrow ASB, S \rightarrow BSA, S \rightarrow AS, S \rightarrow \epsilon\}$$

Gramatyka G_2 z symbolem startowym S nad alfabetem $\{a,b\}$ dana jest za pomocą następującego zbioru produkcji:

$$\{S \to aSa , S \to bSb, S \to b, S \to a, S \to \varepsilon\}$$

Dla gramatyki G przez L(G) rozumieć będziemy język generowany przez G.

- a) Czy abbbaab należy do $L(G_1)$? Odpowiedź uzasadnij. (1p.)
- b) Wskaż najkrótsze słowo, które zawiera litery a oraz b i nie należy do $L(G_1)$. (1p.)
- c) Co to znaczy, że gramatyka jest jednoznaczna. Czy gramatyka G_1 jest jednoznaczna (odpowiedź uzasadnij)? (2p.)
- d) Czy $L(G_1)$ jest językiem regularnym? Odpowiedź uzasadnij. (3p.)
- e) Niech $A_1 = L(G_1) \cap L(G_2)$. Opisz, jakie słowa należą do A_1 , odpowiedź uzasadnij¹. (3p.)

Część 2. Zadanie to ma dwa warianty, z których musisz wybrać jeden. Jeżeli w odpowiedzi znajdą się oba, to będzie sprawdzany tylko pierwszy.

Wariant funkcjonalny

Możesz używać Haskella albo OCamla. W specyfikacji zadania używamy typów Haskellowych.

- a) Napisz funkcję sort :: [Int] -> [Int], która sortuje rosnąco listę liczb całkowitych. Możesz definiować funkcje pomocnicze, postaraj się by kod był możliwie jak najbardziej czytelny (oczywiście nie możesz korzystać z bibliotecznej funkcji sortującej). (5p.)
- b) Napisz funkcję liczącą długość listy, w której używamy ogonowej rekurencji. Podaj jej typ. (3p.)
- c) Napisz funkcję setSize :: [Int] -> Int, która zwraca liczbę różnych elementów na liście będącej argumentem. Skoncentruj się na zwięzłości kodu. (2p.)

 $^{^{1}}$ W opisie nie powinieneś odwoływać się do nazw G_{1} oraz G_{2} , odpowiedź: "słowa które należą jednocześnie do obu gramatyk" nie będzie uznana

Wariant logiczny

W tym wariancie powinieneś używać Prologa.

- a) Napisz predykat sort(L1,L2), który unifikuje L2 z posortowaną rosnąco listą liczb całkowitych L1. Możesz definiować predykaty pomocnicze, postaraj się by kod był możliwie jak najbardziej czytelny (oczywiście nie możesz korzystać z bibliotecznego predykatu sortującego). (5p.)
- b) Napisz predykat liczącą długość listy, w którym używamy ogonowej rekurencji. Opisz znaczenie argumentów i sposób użycia tego predykatu. (3p.)
- c) Napisz predykat setSize(L,N), który unifikuje N z liczbą **różnych** elementów na liście L. Skoncentruj się na zwięzłości kodu. (2p.)

Matematyka dyskretna

W wyborach wystawiono jedną urnę. Kandydaci A i B otrzymali po n głosów. Każda kolejność wrzucenia głosów do urny jest tak samo prawdopodobna. Oblicz prawdopodobieństwo, że w każdym momencie wyborów w urnie było co najmniej tyle samo głosów na kandydata A co na kandydata B. Możesz wykorzystać powszechnie znane wzory i twierdzenia bez dowodzenia ich.

Algorytmy i struktury danych

Za rozwiązanie wszystkich trzech zadań z tej części można otrzymać do 9 punktów. Skala ocen: poniżej 3 punktów — ocena niedostateczna (egzamin niezdany), 3p. dają ocenę dostateczną, 4p. — dostateczną z plusem, 5p. — dobrą, 6p. — dobrą z plusem, 7p. — ocenę bardzo dobrą.

Zadanie 1: sortowanie punktów w kole (3.0p.)

Danych jest n punktów $\{p_1, p_2, \ldots, p_n\}$ leżących w kole jednostkowym, co oznacza, że dla każdego punktu $p_i = (x_i, y_i)$ jest spełniony warunek $0 < x_i^2 + y_i^2 \le 1$ dla $i = 1, 2, \ldots, n$. Zakładamy, że punkty w tym kole są rozmieszczone jednostajnie, czyli prawdopodobieństwo zdarzenia, że punkt znajduje się w dowolnym ustalonym obszarze wewnątrz koła jednostkowego jest proporcjonalne do pola tego obszaru.

Zaprojektuj algorytm działający średnio w czasie liniowym O(n), sortujący n punktów według ich odległości $d_i = \sqrt{x_i^2 + y_i^2}$ od początku układu współrzędnych.

- Opisz dokładnie twój algorytm (albo zapisz go w pseudokodzie wraz z komentarzami).
- Napisz co to znaczy, że algorytm działa w miejscu. Czy twój algorytm działa w miejscu?
- Oszacuj oczekiwany czas działania algorytmu.

Zadanie 2: problem plecakowy (2.4p.)

Opisz ciągły problem plecakowy:

a) Opisz dokładnie na czym polega ciągły problem plecakowy (co jest dane i jakich oczekujemy wyników). Jaką techniką rozwiązuje się to zadanie? Napisz w pseudokodzie algorytm rozwiązujący to zadanie.

- b) Udowodnij (niewprost) poprawność przedstawionego algorytmu.
- c) Na czym polega różnica między ciągłym a dyskretnym problemem plecakowym? Czy przedstawiony algorytm dla wersji ciągłej będzie działał również dla wersji dyskretnej problemu plecakowego? Odpowiedź uzasadnij.

Zadanie 3: zbiór dynamiczny z medianą (3.6p.)

Zaprojektuj strukturę danych, która umożliwi efektywne wykonywanie następujących operacji na zbiorze dynamicznym:

- a) insert(x) wstawienie elementu x do zbioru,
- b) find-median() wskazanie mediany zbioru,
- c) extract-median() usunięcie mediany ze zbioru.

Wskazanie mediany powinno działać w stałym czasie; pozostałe operacje w czasie logarytmicznym względem aktualnej liczby elementów w zbiorze.

Do rozwiązania tego zadania wykorzystaj jakąś znaną strukturę danych, która efektywnie realizuje operacje kolejki priorytetowej. Krótko ale precyzyjnie opisz działanie wymienionych procedur.

Metody numeryczne

1. Niech dane będą parami różne liczby rzeczywiste x_0, x_1, \ldots, x_n oraz odpowiadające im wartości $y_0, y_1, \ldots, y_n \in \mathbb{R}$. Niech $L_n \in \Pi_n$ oznacza wielomian interpolacyjny dla tych danych, tzn.

$$L_n(x_i) = y_i$$
 $(i = 0, 1, ..., n).$

Zaproponuj algorytm wyznaczania wartości

$$L_n(z_0), L_n(z_1), \ldots, L_n(z_m),$$

gdzie $z_0, z_1, \ldots, z_m \ (m \in \mathbb{N}; m \text{ może być duże})$ są dane. Jaka jest jego złożoność?