NEC

PNP SILICON TRANSISTOR 2SA992

DESCRIPTION

The 2SA992 is best for use as the middle range amplifier in Hi-Fi stereo control amplifiers, power amplifiers, and etc.

FEATURES

- ◆ High Voltage.
 V_{CEO}: -120 V
- Low Output Capacitance. C_{ob} : 2.0 pF TYP. ($V_{CB} = -30 \text{ V}$)
- High h_{FE}. h_{FE} : 500 TYP. $(V_{CE} = -6.0 \text{ V}, I_{C} = -1.0 \text{ mA})$
- Super Low Noise. NV : 25 mV TYP. (See test circuit.)
- Complementary to 2SC1845.

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures
Storage Temperature55 to +125 °C
Junction Temperature +125 °C Maximum
Maximum Power Dissipation (Ta = 25 °C)
Total Power Dissipation 500 mW
Maximum Voltages and Currents (Ta = 25 °C)
V _{CBO} Collector to Base Voltage120 V
V _{CEO} Collector to Emitter Voltage120 V
V _{EBO} Emitter to Base Voltage5.0 V
I _C Collector Current
I _B Base Current10 mA

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
hFE1	DC Current Gain	150	500		_	V _{CE} = -6.0 V, I _C = -0.1 mA
hFE2	DC Current Gain	200	500	800	_	$V_{CE} = -6.0 \text{ V}, I_{C} = -1.0 \text{ mA}$
fT	Gain Bandwidth Product	50	100		MHz	$V_{CE} = -6.0 \text{ V, } I_{E} = 1.0 \text{ mA}$
Cob	Output Capacitance		2.0	3.0	pF	$V_{CB} = -30 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$
NV	Noise Voltage		25	40	mV	$V_{CE} = -5.0 \text{ V}$, $I_{C} = -1.0 \text{ mA}$, $R_{G} = 100 \text{ k}\Omega$ $G_{V} = 80 \text{ dB}$, $f = 10 \text{ Hz}$ to 1.0 kHz
ICBÓ	Collector Cutoff Current			-50	nΑ	V _{CB} =-120 V, I _E =0
IEBO	Emitter Cutoff Current			-50	nΑ	VEB = -5.0 V, IC = 0
v_{BE}	Base to Emitter Voltage	-0.55	-0.61	-0.65	V	$V_{CE} = -6.0 \text{ V, } I_{C} = -1.0 \text{ mA}$
V _{CE(sat)}	Collector Saturation Voltage		-0.09	-0.30	V	I _C =-10 mA, I _B =-1.0 mA

Classification of h_{FE2}

Rank	Р	· F	E
Range	200 – 400	300 – 600	400 — 800

h_{FE} Test Conditions : $V_{CE} = -6.0 \text{ V}$, $I_{C} = -1.0 \text{ mA}$

TYPICAL CHARACTERISTICS (Ta = 25 °C unless otherwise noted)

NOISE FIGURE MAP.

NOISE VOLTAGE TEST CIRCUIT

 $V_{\mbox{\scriptsize CE}}\!\doteqdot\!-5$ V, $I_{\mbox{\scriptsize C}}\!=\!-1.0$ mA, $R_{\mbox{\scriptsize G}}\!=\!100$ kQ, $G_{\mbox{\scriptsize V}}\!=\!80$ dB, FLAT(f=10 Hz to 1.0 kHz)