1.7 Grupos cíclicos

Definição 1.7.1. Um grupo gerado por um elemento diz-se cíclico.

Nota 1.7.2. Os elementos de um grupo cíclico $G = \langle g \rangle$ são as potências g^k , $k \in \mathbb{Z}$. Um grupo cíclico é comutativo.

Exemplos 1.7.3. (i) O grupo aditivo \mathbb{Z} é cíclico. Tem-se $\mathbb{Z} = \langle 1 \rangle$.

- (ii) Para cada numero natural n > 0, \mathbb{Z}_n é cíclico, gerado por $[1]_n = 1 + n\mathbb{Z}$.
- (iii) Por 1.5.9, qualquer grupo de ordem prima é cíclico.
- (iv) O grupo simétrico S_3 não é cíclico.

Proposição 1.7.4. Sejam $G = \langle g \rangle$ um grupo cíclico $e \{e\} \neq H \subseteq G$ um subgrupo. Seja m o menor número natural positivo tal que $g^m \in H \setminus \{e\}$. Então $H = \langle g^m \rangle$.

Demonstração: É claro que $\langle g^m \rangle \subseteq H$. Seja $n \in \mathbb{Z}$ tal que $g^n \in H$. Então existem $k \in \mathbb{Z}$ e $0 \le r < m$ tais que n = km + r. Portanto $g^n = g^{km}g^r$. Como $g^{km} \in \langle g^m \rangle \subseteq H$, temos $g^r = g^n g^{-km} \in H$. Então $g^r = e$ e portanto $g^n = g^{km} \in \langle g^m \rangle$.

Corolário 1.7.5. Qualquer subgrupo de um grupo cíclico é cíclico.

Corolário 1.7.6. Os subgrupos de \mathbb{Z} são os conjuntos $m\mathbb{Z}$, $m \in \mathbb{N}$.

Corolário 1.7.7. (Lema de Bézout) Sejam $a, b \in \mathbb{Z}$, não ambos iguais $a \ 0$, $e \ d = \operatorname{mdc}(a, b)$. Então existem $u, v \in \mathbb{Z}$ tais que au + bv = d.

Demonstração: Como $d = \operatorname{mdc}(a,b)$, existem números primos entre si $a',b' \in \mathbb{Z}$ tais que a = da' e b = db'. Por 1.7.6, o subgrupo $\langle a',b' \rangle$ de \mathbb{Z} é gerado por um elemento $m \in \mathbb{N}$, que então é um divisor comum de a' e b'. Como a' e b' são primos entre si, m = 1. Segue-se que $\langle a',b' \rangle = \mathbb{Z}$ e então que existem $u,v \in \mathbb{Z}$ tais que a'u+b'v=1. Multiplicando por a' obtém-se au+bv=d.

Teorema 1.7.8. Seja $G = \langle g \rangle$ um grupo cíclico. Se G é infinito, então um isomorfismo $\mathbb{Z} \to G$ é dado por $k \mapsto g^k$. Se G é finito, então um isomorfismo $\mathbb{Z}_{|g|} \to G$ é dado por $k + |g|\mathbb{Z} \mapsto g^k$.

Demonstração: Consideremos o epimorfismo $\phi \colon \mathbb{Z} \to G$ dado por $\phi(k) = g^k$. Por 1.7.6, existe $n \in \mathbb{N}$ tal que $\operatorname{Ker}(\phi) = n\mathbb{Z}$. Pelo Teorema do homomorfismo, um isomorfismo $f \colon \mathbb{Z}/n\mathbb{Z} \to G$ é dado por $k + n\mathbb{Z} \mapsto g^k$. Se G é finito, f é o isomorfismo procurado pois, neste caso, $n = |\mathbb{Z}/n\mathbb{Z}| = |g| \in \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_{|g|}$. Se G é infinito, então n = 0 e $\operatorname{Ker}(\phi) = n\mathbb{Z} = \{0\}$, pelo que o epimorfismo ϕ é um isomorfismo.

Corolário 1.7.9. Seja $G = \langle g \rangle$ um grupo cíclico finito. Então

- (i) $G = \{e, g, \dots, g^{|g|-1}\};$
- (ii) para todo o $m \in \mathbb{Z}$, $g^m = e$ se e só se $m \in |g|\mathbb{Z}$;
- (iii) a ordem de G é o menor inteiro positivo m tal que $g^m = e$.

Demonstração: Seja $f: \mathbb{Z}_{|g|} \to G$ o isomorfismo dado por $f(k+|g|\mathbb{Z}) = g^k$.

- (i) Tem-se $G = Im(f) = \{f(\overline{0}), \dots, f(|\overline{g}| 1)\} = \{e, g, \dots, g^{|g|-1}\}.$
- (ii) Para todo o $m \in \mathbb{Z}$,

$$g^m = e \Leftrightarrow f(m + |g|\mathbb{Z}) = f(|g|\mathbb{Z}) \Leftrightarrow m + |g|\mathbb{Z} = |g|\mathbb{Z} \Leftrightarrow m \in |g|\mathbb{Z}.$$

(iii) segue imediatamente de (ii).

Proposição 1.7.10. Sejam $G = \langle g \rangle$ um grupo cíclico finito.

- (a) Para todo o $k \in \mathbb{Z} \setminus \{0\}$, $|g^k| = \frac{|g|}{\text{mdc}(|g|, k)}$. Em particular, $G = \langle g^k \rangle$ se e só se a ordem de G e k são primos entre si.
- (b) Para cada divisor $d \geq 1$ da ordem de G existe exactamente um subgrupo de G de ordem d. Este subgrupo é $\langle g^{\frac{|g|}{d}} \rangle$.

Demonstração: Seja n = |g| = |G|.

- (a) Seja $d = \operatorname{mdc}(k, n)$. Escrevemos n = n'd e k = k'd onde $\operatorname{mdc}(n', k') = 1$. Por 1.7.9 (ii), $|g^k|$ é o menor inteiro positivo m tal que $g^{km} = e$. Por 1.7.9 (ii), isto implica que $|g^k|$ é o menor inteiro positivo m tal que $km \in n\mathbb{Z}$. Como $n' \geq 1$ e $g^{kn'} = g^{k'n} = e$ temos $|g^k| \leq n'$. Como n = n'd divide $|g^k|k = |g^k|k'd$ obtemos que n' divide $|g^k|k'$. Como $\operatorname{mdc}(n', k') = 1$ podemos concluir que n' divide $|g^k|$ e portanto que $|g^k| = n' = \frac{n}{\operatorname{mdc}(n, k)}$.
- (b) O único subgrupo de G de ordem 1 é o subgrupo trivial $\{e\} = \langle g^{|g|} \rangle$. Seja d > 1 um divisor de |g|. Seja $k = \frac{|g|}{d}$. Então $\langle g^k \rangle$ é um subgrupo de G e tem-se $|g^k| = \frac{|g|}{\mathrm{mdc}(|g|,k)} = \frac{|g|}{k} = d$. Seja $H \leq G$ com |H| = d. Seja m o menor número natural positivo tal que $g^m \in H \setminus \{e\}$. Por 1.7.4, $H = \langle g^m \rangle$. Por 1.7.9(i), 0 < m < |g|. Tem-se $d = |g^m| = \frac{|g|}{\mathrm{mdc}(|g|,m)} = \frac{|g|}{m}$ e portanto $m = \frac{|g|}{d} = k$. Segue-se que $H = \langle g^k \rangle$. Logo existe exactamente um subgrupo de G de ordem d e este é $\langle g^k \rangle$.

Corolário 1.7.11. Os subgrupos de um grupo cíclico finito $G = \langle g \rangle$ são os grupos da forma $\langle g^{\frac{|g|}{d}} \rangle$, onde $d \geq 1$ é um divisor de |g|.

Definição 1.7.12. O produto directo dos grupos G_1, \ldots, G_n é o grupo cujo conjunto subjacente é o produto cartesiano $G_1 \times \cdots \times G_n$ e cuja operação é dada por

$$(g_1, \ldots, g_n) \cdot (h_1, \ldots, h_n) = (g_1 h_1, \ldots, g_n h_n).$$

Verifica-se facilmente que o produto directo dos grupos G_1, \ldots, G_n é de facto um grupo. Este grupo é denotado por $\prod_{i=1}^n G_i$ ou por $G_1 \times \cdots \times G_n$.

Exemplo 1.7.13. O exemplo $\mathbb{Z}_2 \times \mathbb{Z}_2$ mostra que o produto directo de dois grupos cíclicos não é, em geral, um gupo cíclico. Com efeito, $\mathbb{Z}_2 \times \mathbb{Z}_2$ tem dois subgrupos diferentes de ordem 2, nomeadamente $\mathbb{Z}_2 \times \{[0]_2\}$ e $\{[0]_2\} \times \mathbb{Z}_2$, e um grupo cíclico não pode ter mais do que um subgrupo de uma dada ordem.

Proposição 1.7.14. Sejam $n_1, \ldots n_k \geq 1$ inteiros. Então o produto directo $\prod_{i=1}^k \mathbb{Z}_{n_i}$ é cíclico se e só os inteiros $n_1, \ldots n_k$ são dois a dois primos entre si. Neste caso um isomorfismo $\mathbb{Z}_{n_1 \cdots n_k} \to \prod_{i=1}^k \mathbb{Z}_{n_i}$ é dado por $m + n_1 \cdots n_k \mathbb{Z} \mapsto (m + n_1 \mathbb{Z}, \ldots, m + n_k \mathbb{Z})$.

Demonstração: Suponhamos primeiramente os inteiros $n_1, \ldots n_k$ são dois a dois primos entre si. Consideremos o homomorfismo $f: \mathbb{Z} \to \prod_{i=1}^k \mathbb{Z}_{n_i}$ definido por

$$f(m) = (m + n_1 \mathbb{Z}, \dots, m + n_k \mathbb{Z}).$$

É claro que $n_1 \cdots n_k \mathbb{Z} \subseteq \operatorname{Ker}(f)$. Por outro lado, seja $m \in \operatorname{Ker}(f)$. Então existem $u_1, \ldots, u_k \in \mathbb{Z}$ tais que $m = n_1 u_1 = \cdots = n_k u_k$, ou seja, cada n_i divide m. Como os n_i são dois a dois primos entre si, o produto $n_1 \cdots n_k$ divide m. Logo $m \in n_1 \cdots n_k \mathbb{Z}$ e $\operatorname{Ker}(f) = n_1 \cdots n_k \mathbb{Z}$. Pelo teorema 1.6.13, $\bar{f} : \mathbb{Z}_{n_1 \cdots n_k} \to \prod_{i=1}^k \mathbb{Z}_{n_i}$, $\bar{f}(m + n_1 \cdots n_k \mathbb{Z}) = (m + n_1 \mathbb{Z}, \ldots, m + n_k \mathbb{Z})$ é um monomorfismo. Como $|\mathbb{Z}_{n_1 \cdots n_k}| = n_1 \cdots n_k = |\prod_{i=1}^k \mathbb{Z}_{n_i}|$, \bar{f} é de facto um isomorfismo e $\prod_{i=1}^k \mathbb{Z}_{n_i}$ é cíclico.

Suponhamos agora que os inteiros $n_1, \ldots n_k$ não são dois a dois primos entre si. Então existem $i \neq j \in \{1, \ldots, k\}$ tais que n_i e n_j têm um divisor comum d > 1. Como \mathbb{Z}_{n_i} e \mathbb{Z}_{n_j} são cíclicos, existem subgrupos $U_i \leq \mathbb{Z}_{n_i}$ e $V_j \leq \mathbb{Z}_{n_j}$ de ordem d. Pomos $U_l = \{n_l \mathbb{Z}\}$ para $l \neq i$ e $V_l = \{n_l \mathbb{Z}\}$ para $l \neq j$. Então $\prod_{l=1}^n U_l$ e $\prod_{l=1}^n V_l$ são dois subgrupos diferentes de ordem d de $\prod_{i=1}^k \mathbb{Z}_{n_i}$. Logo $\prod_{i=1}^k \mathbb{Z}_{n_i}$ não é cíclico.

1.8 Grupos simétricos

Recorde que para um conjunto $X \neq \emptyset$, $S(X) = \{f : X \to X : f \text{ bijeção}\}$ é um grupo relativamente à composição, chamado grupo simétrico. Recorde ainda que S_n designa o grupo simétrico $S(\{1, 2, ..., n\})$.

Teorema 1.8.1. (Teorema de Cayley) Cada grupo G é isomorfo a um subgrupo do grupo simétrico S(G).

Demonstração: Para $g \in G$ seja $\lambda_g \colon G \to G$ a função definida por $\lambda_g(x) = gx$. Para quaisquer $g, h, x \in G$, $\lambda_{gh}(x) = ghx = g\lambda_h(x) = \lambda_g(\lambda_h(x)) = \lambda_g \circ \lambda_h(x)$. Segue-se que cada λ_g é bijectiva com função inversa $\lambda_{g^{-1}}$ e que a função $f \colon G \to S(G)$, $f(g) = \lambda_g$ é um homomorfismo. Seja $g \in Ker(f)$. Então $f(g) = \lambda_g = id_G$. Logo $g^2 = \lambda_g(g) = g = eg$. Pelas leis do corte, g = e e temos $Ker(f) = \{e\}$. Segue-se que f é um monomorfismo e portanto que $G \cong Im(f)$.

Corolário 1.8.2. Cada grupo finito G de ordem n é isomorfo a um subgrupo de S_n .

Demonstração: Seja $\alpha: G \to \{1, 2, \dots n\}$ uma bijeção. Verifica-se que $\Psi: S(G) \to S_n$ dada por $\Psi(f) = \alpha \circ f \circ \alpha^{-1}$ é um isomorfismo de grupos (nota: isto não utiliza a estrutura de grupo de G, tal isomorfismo existe para qualquer conjunto com n elementos). Como, pelo Teorema de Cayley, G é subgrupo de S(G) e como Ψ é um isomorfismo de grupos, podemos concluir que G é isomormorfo a um subgrupo de S_n .

Notação 1.8.3. Uma permutação $\sigma \in S_n$ é muitas vezes representada sob a forma

$$\left(\begin{array}{cccc} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{array}\right).$$

Observação 1.8.4. Um monomorfismo $S_n \to S_{n+1}$ é dado por

$$\sigma \mapsto \begin{pmatrix} 1 & \cdots & n & n+1 \\ \sigma(1) & \cdots & \sigma(n) & n+1 \end{pmatrix}.$$

Por conseguinte, S_n é isomorfo ao subgrupo de S_{n+1} das permutações α com $\alpha(n+1) = n+1$.

Proposição 1.8.5. $|S_n| = n!$

Definição 1.8.6. Uma permutação $\sigma \in S_n$ diz-se um $c\acute{i}clo$ se existem $k, i_1, \ldots, i_k \in \{1, \ldots, n\}$ tais que $\sigma(i_j) = i_{j+1}$ para $1 \leq j < k$, $\sigma(i_k) = i_1$ e $\sigma(i) = i$ para $i \notin \{i_1, \ldots, i_k\}$. O cíclo assim definido é denotado por (i_1, \ldots, i_k) . Aos cíclos da forma (i, j) com $i \neq j \in \{1, \ldots, n\}$ chama-se também $transposiç\~oes$. Dois cíclos (i_1, \ldots, i_k) e (j_1, \ldots, j_l) dizem-se disjuntos se $\{i_1, \ldots, i_k\} \cap \{j_1, \ldots, j_l\} = \emptyset$.

Observações 1.8.7. (i) A identidade de $\{1, \ldots, n\}$ é um cíclo. Para cada $i \in \{1, \ldots, n\}$, $id_{\{1,\ldots,n\}} = (i)$.

- (ii) Para quaisquer k números distintos $i_1, \ldots i_k \in \{1, \ldots, n\}, |(i_1, \ldots, i_k)| = k$.
- (iii) Se $\alpha, \beta \in S_n$ são cíclos disjuntos, então $\alpha\beta = \beta\alpha$. Logo se $\alpha_1, \ldots \alpha_l \in S_n$ são cíclos dois a dois disjuntos, então $|\alpha_1 \cdots \alpha_l| = \text{mmc}(|\alpha_1|, \ldots, |\alpha_l|)$.
 - (iv) Para cada transposição $\tau \in S_n$, $\tau^2 = id$.

Proposição 1.8.8. Cada permutação $\sigma \in S_n \setminus \{id\}$ pode ser factorizada em cíclos dois a dois disjuntos de $S_n \setminus \{id\}$.

Demonstração: Seja $\sigma \in S_n \setminus \{id\}$. Para $i \in \{1, \dots, n\}$, seja

$$k_i = \min \{ k \in \{1, \dots, n!\} \mid \sigma^k(i) = i \}.$$

Note-se que este mínimo existe pois $\sigma^{n!} = id$ pelo Exercício 2 da Folha 5. Definimos os números $j_1, \ldots, j_m \in \{1, \ldots, n\}$ recursivamente como se segue: Enquanto tal i existe, j_l é o menor

$$i \in \{1, \dots, n\} \setminus \{j_1, \sigma(j_1), \dots, \sigma^{k_{j_1}-1}(j_1), \dots, j_{l-1}, \sigma(j_{l-1}), \dots, \sigma^{k_{j_{l-1}}-1}(j_{l-1})\}$$

tal que $\sigma(i) \neq i$. Como $\sigma \neq id$, j_1 existe. Como $\{1, \ldots, n\}$ é finito, o processo pára depois de um número finito, m, de iterações. Para cada $l \in \{1, \ldots, m\}$, $(j_l, \sigma(j_l), \ldots, \sigma^{k_{j_l}-1}(j_l))$ é um cíclo em $S_n \setminus \{id\}$. Sejam $l, r \in \{1, \ldots, m\}$, $0 \leq k < k_{j_l}$ e $0 \leq s < k_{j_r}$ tais que $\sigma^k(j_l) = \sigma^s(j_r)$. Então $j_r = \sigma^{k_{j_r}}(j_r) \in \{j_l, \sigma(j_l), \ldots, \sigma^{k_{j_l}-1}(j_l)\}$, pelo que $r \leq l$. Do mesmo modo temos $l \leq r$ e então r = l. Segue-se que os cíclos $(j_l, \sigma(j_l), \ldots, \sigma^{k_{j_l}-1}(j_l))$ são dois a dois disjuntos. Seja

$$\psi = (j_1, \sigma(j_1), \dots, \sigma^{k_{j_1}-1}(j_1)) \cdots (j_m, \sigma(j_m), \dots, \sigma^{k_{j_m}-1}(j_m)).$$

Temos $\psi(\sigma^k(j_l)) = \sigma^{k+1}(j_l)$ e $\sigma(i) = i = \psi(i)$ para

$$i \notin \{j_1, \sigma(j_1), \dots, \sigma^{k_{j_1}-1}(j_1), \dots, j_m, \sigma(j_m), \dots, \sigma^{k_{j_m}-1}(j_m)\}.$$

Logo $\sigma = \psi$.

Corolário 1.8.9. S_n é gerado pelos cíclos.

Exemplo 1.8.10. Consideremos a permutação $\sigma \in S_6$ dada por

$$\sigma = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 2 & 6 & 3 & 4 \end{array}\right).$$

Tem-se $\sigma = (2, 5, 3)(4, 6)$.

Nota 1.8.11. É possível mostrar que a factorização de uma permutação $\sigma \in S_n \setminus \{id\}$ em cíclos dois a dois disjuntos de $S_n \setminus \{id\}$ é única a menos da ordem dos factores (exercício).

Proposição 1.8.12. Sejam $i_1, \ldots, i_k \in \{1, \ldots, n\}$ número distintos com $k \geq 3$. Então $(i_1, \ldots, i_k) = (i_1, i_k) \cdots (i_1, i_2)$.

Demonstração: Tem-se

$$(i_{1}, i_{k}) \cdots (i_{1}, i_{2})(i_{1}) = (i_{1}, i_{k}) \cdots (i_{1}, i_{3})(i_{2}) = i_{2},$$

$$(i_{1}, i_{k}) \cdots (i_{1}, i_{2})(i_{k}) = (i_{1}, i_{k})(i_{k}) = i_{1},$$

$$(i_{1}, i_{k}) \cdots (i_{1}, i_{2})(i_{l}) = (i_{1}, i_{k}) \cdots (i_{1}, i_{l})(i_{l})$$

$$= (i_{1}, i_{k}) \cdots (i_{1}, i_{l+1})(i_{1})$$

$$= (i_{1}, i_{k}) \cdots (i_{1}, i_{l+2})(i_{l+1})$$

$$= i_{l+1}$$

para $1 < l < k \ e \ (i_1, i_k) \cdots (i_1, i_2)(i) = i \ para \ i \notin \{i_1, \dots, i_k\}.$

Corolário 1.8.13. S_n é gerado pelas transposições.

Definição 1.8.14. Seja $\sigma \in S_n$ uma permutação. Uma *inversão* em σ é um par $(i, j) \in \{1, \ldots, n\} \times \{1, \ldots, n\}$ tal que i < j e $\sigma(i) > \sigma(j)$. O *sinal* de σ , $\operatorname{sgn}(\sigma)$, é 1 se existe um número par de inversões em σ e -1 caso contrário. Uma permutação diz-se *par (impar)* se tem sinal 1 (-1).

Observações 1.8.15. (i) Se m é o numéro de inversões em $\sigma \in S_n$, então $sgn(\sigma) = (-1)^m$. (ii) O sinal de qualquer transposição é -1.

Proposição 1.8.16. O sinal é um homomorfismo de S_n para o grupo multiplicativo $\{1, -1\}$.

Demonstração: Sejam $\alpha, \beta \in S_n$, k o número de inversões em α e l o número de inversões em β . Um par $(i, j) \in \{1, ..., n\} \times \{1, ..., n\}$ com i < j é uma inversão em $\alpha\beta$ se e só se satisfaz uma das condições seguintes:

- (a) (i, j) é uma inversão em β mas $(\beta(j), \beta(i))$ não é uma inversão em α ;
- (b) (i, j) não é uma inversão em β mas $(\beta(i), \beta(j))$ é uma inversão em α .

Seja r o número de pares (i,j) com i < j que satisfazem a condição (a) e seja s o número de pares (i,j) com i < j que satisfazem a condição (b). Então $\operatorname{sgn}(\alpha\beta) = (-1)^{r+s}$. Seja m o número de inversões (i,j) em β tais que $(\beta(j),\beta(i))$ é uma inversão em α . Então l=r+m. Também temos k=s+m. Com efeito, os pares (i,j) com i < j que satisfazem a condição (b) estão em correspondência bijectiva com as inversões (x,y) em α com $\beta^{-1}(x) < \beta^{-1}(y)$, pelo que o número destas inversões em α é s. E as inversões (i,j) em β tais que $(\beta(j),\beta(i))$ é uma inversão em α estão em correspondência bijectiva com as inversões (x,y) em α com $\beta^{-1}(y) < \beta^{-1}(x)$, pelo que o número destas inversões em α é m. Segue-se que $\operatorname{sgn}(\alpha\beta) = (-1)^{r+s} = (-1)^{l+k-2m} = (-1)^{l}(-1)^{k}(-1)^{-2m} = (-1)^{l}(-1)^{k} = (-1)^{l}(-1)^{l} = \operatorname{sgn}(\alpha)\operatorname{sgn}(\beta)$.

Observação 1.8.17. Pela proposição precedente, um produto de um número par de transposições tem sinal 1 e um produto de um número ímpar de transposições tem sinal -1. Segue-se que uma permutação não pode ao mesmo tempo ser factorizada num número par e num número ímpar de transposições e que uma permutação é par se e só se ela pode ser factorizada num número par de transposições. Em particular, pela Proposição 1.8.12, um cíclo de ordem par é ímpar e um cíclo de ordem ímpar é par.

Proposição 1.8.18. Sejam $i_1, \ldots, i_k \in \{1, \ldots, n\}$ k números distintos e seja σ o cíclo (i_1, \ldots, i_k) . Tem-se $\operatorname{sgn}(\sigma) = (-1)^{k-1}$.

Observação 1.8.19. Em geral, para uma permutação qualquer $\sigma \in S_n$, não temos $\operatorname{sgn}(\sigma) = (-1)^{|\sigma|-1}$. Por exemplo, a permutação $\sigma = (1,2)(3,4,5,6,7,8)$ de S_8 têm ordem 6 mas $\operatorname{sgn}(\sigma) = 1 \neq (-1)^5$.