### Logic for Knowledge Representation

willie

### **Announcements**

Assignment 0

outputlog.txt

Get started on Assignment 1

Assignment 2

**Extends Assignment 1** 

Some code will not be released until after the late period of Assignment 1

Instructions will be released on Monday, as scheduled

### Wumpus World

### Performance measure

• Gold +100, Death -100

### Environment

- Squares next to Wumpus are smelly
- Squares next to Pit are breezy

### Actuators

- Move up, down, left, or right
- Grab

### Sensors

Breeze, Glitter, Smell



4

3

2

| ок      |    |  |
|---------|----|--|
| OK<br>A | ОК |  |

| В | OK<br>A<br>Å |    |  |
|---|--------------|----|--|
|   | OK<br>A      | ок |  |













### Tight Spots





### Entailment

Entailment: One thing follows from another

a ⊨ b

a entails b: in every model where a is true, b is also true

### For example

If a is x>4 and b is x>3, then a  $\models$  b

If a is "when it rains it is cloudy" and "it is raining" and b is "it is cloudy" then a ⊨ b

### **Propositional Logic**

Let's start to formalize this

Symbols to represent elements of the world

Each proposition

A possible condition of the world that may be true of false

Atomic sentences, single proposition:

is\_raining
have\_umbrella
feel\_breeze

### Representing Wumpus World



128 in total, 8 optional symbols per square (16 squares)

| Symbol           | Meaning           |  |
|------------------|-------------------|--|
| a <sub>1,1</sub> | Agent is at (1,1) |  |
| k <sub>1,1</sub> | (1,1) is OK       |  |
| e <sub>1,1</sub> | Stench at (1,1)   |  |
| Z <sub>1,1</sub> | Breeze at (1,1)   |  |
| g <sub>1,1</sub> | Glitter at (1,1)  |  |
| W <sub>1,1</sub> | Wumpus at (1,1)   |  |
| P <sub>1,1</sub> | Pit at (1,1)      |  |
| d <sub>1,1</sub> | Gold at (1,1)     |  |

Repeat for each position in Wumpus World

### Complex sentences

Use operators to turn simple sentences into complex sentences

## Operators: Not $\neg \sim$ And $\land$ Or $\lor$ Implies $\Rightarrow \rightarrow$ Biconditionals $\Leftrightarrow \leftrightarrow$

# It is not raining ¬raining It is raining and I have an umbrella raining ∧ umbrella It is raining or it is sunny raining ∨ sunny If it is raining, then I am wet raining ⇒ wet It is sunny if and only if it is not cloudy sunny ⇔ ¬cloudy

Examples

### Syntax

```
S := <Sentence> ;
<Sentence> := <AtomicSentence> | <ComplexSentence> ;
<AtomicSentence> := "TRUE" | "FALSE" | <Symbol>;
<Symbol> := "P" | "Q" | "R" | ... ;
<ComplexSentence> := "(" <Sentence> ")" |
      <Sentence> <Connective> <Sentence> |
      "¬" <Sentence> ;
<Connective> := "∧" | "∨" | "⇒" | "⇔" ;
```

### Complex sentences for Wumpus World

If no stench at (1,1) then adjacent areas do not have the Wumpus

$$\neg e_{1,1} \Rightarrow \neg w_{1,1} \land \neg w_{2,1} \land \neg w_{1,2}$$

Similarly, if no stench at (2,2)...

$$\neg e_{2,2} \Rightarrow \neg w_{2,2} \land \neg w_{2,3} \land \neg w_{3,2} \land \neg w_{2,1} \land \neg w_{1,2}$$

Also

$$e_{1,2} \Rightarrow w_{1,3} \lor w_{1,2} \lor w_{1,1} \lor w_{2,2}$$



### Logical Entailment



KB entails a : in every model where all sentences in KB are true, a is also true

### Model

### 4 possible models b/c S V P uses both s & p, while s can be T/F and p can be T/F

Assignment of a truth value (true/false) to every atomic sentence



A Model m is a model of KB iff it is a model of all sentences in the KB

All sentences in KB are true in m

### Satisfiability

A KB is satisfiable iff it admits at least one model

Otherwise it is unsatisfiable

KB1 is  $\{P, \neg Q \land R\}$ . Satisfiable? Unsatisfiable?

yes

KB2 is {¬P V P}. Satisfiable? Unsatisfiable?

no

KB3 is {P, ¬P}. Satisfiable? Unsatisfiable?

KB ⊨ a iff every model of KB is also a model of a

KB entails a iff {KB, ¬a} is unsatisfiable

### Sound and Complete

Sentence a is derived from KB by algorithm i.

An algorithm *i* is **sound** (truth preserving) if it derives only entailed sentences

Highly desirable property

Doesn't make up facts

An algorithm *i* is **complete** if it derives all entailed sentences

Also desirable

### Entailment in Wumpus World

Nothing detected in [1,1],

Move right, breeze in [2,1]

What are the possible worlds for the ?'s

(assuming only pits)

3 Boolean choices

8 models (possible worlds)



















| [1,2] | [2,2] | [3,1] |
|-------|-------|-------|
|       |       |       |
|       |       | pit   |
|       | pit   |       |
|       | pit   | pit   |
| pit   |       |       |
| pit   |       | pit   |
| pit   | pit   |       |
| pit   | pit   | pit   |



Nothing detected in [1,1],

Move right, breeze in [2,1]

Which of these is a model of the KB?



Is it safe to move up to [1, 2]?

Let a represent "[1, 2] is safe"

Does  $KB \models a$ ?

a entails b: in every model where a is true, b is also true

Prove by model checking



Is it safe to move up to [1, 2]?

Let a represent "[1, 2] is safe"

Does  $KB \models a$ ?

a entails b: in every model where a is true, b is also true

Prove by model checking

| [1,2] | [2,2] | [3,1] | КВ | a |
|-------|-------|-------|----|---|
|       |       |       | F  | Т |
|       |       | pit   | Т  | Т |
|       | pit   |       | Т  | Т |
|       | pit   | pit   | Т  | Т |
| pit   |       |       | F  | F |
| pit   |       | pit   | F  | F |
| pit   | pit   |       | F  | F |
| pit   | pit   | pit   | F  | F |

Is [2, 2] safe?

Let a represent "[2, 2] is safe"

Does  $KB \models a$ ?



Is [2, 2] safe?

Let a represent "[2, 2] is safe"

Does  $KB \models a$ ? No

| [1,2] | [2,2] | [3,1] | КВ | a |
|-------|-------|-------|----|---|
|       |       |       | F  | Т |
|       |       | pit   | Т  | Т |
|       | pit   |       | Т  | F |
|       | pit   | pit   | Т  | F |
| pit   |       |       | F  | F |
| pit   |       | pit   | F  | F |
| pit   | pit   |       | F  | F |
| pit   | pit   | pit   | F  | F |

### Inference in Wumpus World

Enumerate all combinations of seven symbols (128 possibilities)

To see if  $KB \models a$ , for all cases where KB is true, a should be true

| Does | KB | F | P <sub>1,1</sub> | ? |
|------|----|---|------------------|---|
|------|----|---|------------------|---|

### **Model Checking**

Sound

Complete

Complexity O(2<sup>n</sup>)

| $B_{1,1}$ | $B_{2,1}$ | $P_{1,1}$ | $P_{1,2}$ | $P_{2,1}$ | $P_{2,2}$ | $P_{3,1}$ | $R_1$ | $R_2$ | $R_3$ | $R_4$ | $R_5$ | KB    |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------|-------|-------|-------|-------|-------|
| false     | true  | true  | true  | true  | false | false |
| false     | false     | false     | false     | false     | false     | true      | true  | true  | false | true  | false | false |
| :         | ÷         | 1         | 1         | :         | - 1       | :         | :     | 1     | 1     | :     | 1     | :     |
| false     | true      | false     | false     | false     | false     | false     | true  | true  | false | true  | true  | false |
| false     | true      | false     | false     | false     | false     | true      | true  | true  | true  | true  | true  | true  |
| false     | true      | false     | false     | false     | true      | false     | true  | true  | true  | true  | true  | true  |
| false     | true      | false     | false     | false     | true      | true      | true  | true  | true  | true  | true  | true  |
| false     | true      | false     | false     | true      | false     | false     | true  | false | false | true  | true  | false |
| ÷         | ÷         | :         | :         | :         | :         | 1         | :     | :     | :     | ÷     | 1     | :     |
| true      | false | true  | true  | false | true  | false |

### Problems with Propositional Logic

Impossible to make general assertions

"Pits cause breezes in adjacent squares"

$$B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$$

$$P_{3,1} \Leftrightarrow (B_{2,1} \lor B_{3,2} \lor B_{4,1})$$

Propositional logic has very limited expressive power (unlike natural language)

E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

| SS SSSS<br>Stench S  |                              | Breeze | PIT    |
|----------------------|------------------------------|--------|--------|
| 12. J                | Breeze<br>\$5555<br>Stench 5 | PIT    | Breeze |
| SS SSS S<br>Stench S |                              | Breeze |        |
| START                | Breeze                       | PIT    | Breeze |

### Logics

```
Propositional logic
    Is simple
    Illustrates important points:
         Model, soundness, completeness, satisfiability
    Is restrictive: world is a set of facts
    Lacks expressiveness (world contains FACTS)
First-Order Logic
    More symbols (objects, properties, relations)
    More connectives (quantifiers)
```

### First-order Logic

Whereas propositional logic assumes the world contains facts,

First-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, colors, baseball games, wars, ...
- Properties: red, round, prime, ...
- **Relations**: brother of, bigger than, part of, comes between, ...
- Functions: width, best friend, one more than, plus, ...

### Objects

Objects in the world: people, places

Not just physical things: number, events, time

### Constants

Table, BlockR, BlockB

### Variables

x, y, z, a, b, c, etc.

?x, ?y



### Properties

BlockB, BlockG, BlockR

(blue BlockB) blue(BlockB)

(green BlockG)

(red BlockR)

(six\_sided Cube)

(clear BlockG)



### Relations

(inst BlockB Block)

(isa Block PhysicalObject)

(isa PhysicalObject Thing)

(on BlockG BlockR)

(on BlockR Table)

(above BlockG Table)



### **Functions**

(mass BlockB) = 200g

(width BlockB) = 40mm

(width BlockB) = (width BlockG)

(price BlockB) = 1\_million



### Quantifiers

$$\forall x,y (on x y) \Rightarrow (above x y)$$

$$\forall x,y,z \text{ (on } x \text{ y) } \land \text{ (on } y \text{ z)} \Rightarrow \text{(above } x \text{ z)}$$

$$\forall x \exists y \text{ (isa PhysicalObject } x) \Rightarrow$$
 (color x y)

$$\forall x \exists y (on x y) is not the same as$$
  
 $\exists y \forall x (on x y)$ 



### **Assertions and Queries**

ASSERT(KB, (inst BlockB Block))

ASSERT(KB, (inst BlockG Block))

ASSERT(KB, (inst BlockR Block))

ASSERT(KB,  $\forall x,y \text{ (on } x y) \Rightarrow \text{ (under } y x))$ 

ASK(KB, (inst BlockB Block)): returns True

ASK(KB,  $\exists$  x (inst x Block)) : returns {x/BlockB}, {x/BlockG}, {x/BlockR}

### FOL for Wumpus World

Objects Wump

Wumpus, Gold, Glitter, Breeze, Stench, 1, 2, 3, 4

**Properties** 

(glitters Gold) (smells Wumpus) (hasPit x)

Relations

(cell 11) (adjacent (cell 11) (cell 12))

**Functions** 

 $\forall$  s (breezy s)  $\Rightarrow$   $\exists$  r (adjacent r s)  $\land$  (hasPit r)

| SS SSSS<br>Stench S                     |                               | Breeze | PIT    |
|-----------------------------------------|-------------------------------|--------|--------|
| (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | Breeze<br>\$5 \$555<br>Stench | PIT    | Breeze |
| SS SSSS<br>Stench                       |                               | Breeze | •      |
| START                                   | Breeze                        | PIT    | Breeze |

2

### Next time

Friday

More work in logic

Truth tables

Resolution

Knowledge representation with FOL

Monday

Inference