

IMD0033 - Probabilidade Lesson 26 - Measures of Variability

Ivanovitch Silva December, 2018

Agenda

- The range
- Average distance
- Mean absolute deviation
- Variance and standard deviation
- The sample standard deviation
- Bessel's correction
- Z-Score

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2018_2.git

Ou

git pull

The range

So far we've focused entirely on summarizing distributions using the mean, the weighted mean, the median, and the mode. An interesting distribution property we haven't yet discussed is variability.

The values of the distribution A don't vary

$$A = [4, 4, 4, 4]$$

$$B = [0, 8, 0, 8]$$

What variability value should we assign to distribution B?

The range

$$A = [4, 4, 4, 4]$$

$$B = [0, 8, 0, 8]$$

$$max(A) - min(A) = 4 - 4 = 0$$

$$max(B) - min(B) = 8 - 0 = 8$$

$$range(X) = max(X) - min(X)$$

The average distance

The problem with the **range** is that it considers only two values in the distribution — the **minimum** and the **maximum** value.

$$C = [1, 1, 1, 1, 1, 1, 1, 1, 1, 21]$$

 $max(C) - min(C) = 21 - 1 = 20$

$$average\ distance = rac{distance}{(x_1-\mu)+\overbrace{(x_2-\mu)+\ldots+\overbrace{(x_N-\mu)}}^{distance}}{N} = rac{\sum_{i=1}^{n} \overbrace{(x_i-\mu)}^{distance}}{N}$$

Mean absolute deviation

Values that are
below the mean

$x_i - \mu$	Distance
1 - 3	- 2
1 - 3	- 2
1 - 3	- 2
1 - 3	- 2
1 - 3	- 2
1 - 3	- 2
1 - 3	- 2
1 - 3	- 2
1 - 3	- 2

Total = - 18

Values that are above the mean

mean absolute distance =
$$\frac{|x_1 - \mu| + |x_2 - \mu| + ... + |x_N - \mu|}{N} = \frac{\sum_{i=1}^{N} |x_i - \mu|}{N}$$

$$C = [1, 1, 1, 1, 1, 1, 1, 1, 1, 21]$$

average distance =
$$\frac{-18+18}{10} = \frac{0}{10}$$

Variance and Standard Deviation

mean squared distance =
$$\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_N - \mu)^2}{N} = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

standard deviation =
$$\sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_N - \mu)^2}{N}} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

Average variability around the mean

The sample standard deviation

$$SD = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_N - \mu)^2}{N}} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

$$SD_{sample} = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n}} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$$

The sample standard deviation


```
for i in range(5000):
    sample = houses['SalePrice'].sample(10, random_state = i)
    st_dev = standard_deviation(sample)
    st_devs.append(st_dev)

plt.hist(st_devs)
plt.axvline(standard_deviation(houses['SalePrice']))
```


Bessel's Correction

(<)(:

Bessel's Correction

Z-Score

(1)

Quiz: Quem é mais popular?

Javanildo

Facebook friends

Quiz: Quem é mais popular?

Quiz: Quem é mais popular?

Qual a distância em desvios padrões do número de amigos em relação a média?

Z-Table

http://www.z-table.com/

Facebook example:

$$\mu = 190$$

$$\sigma$$
 = 36

$$Xi = 240$$

Qual a percentagem de pessoas que possuem menos de 240 amigos no facebook?

