Vectores

Problemas de Vectores

Departamento de Física y Química http://selectividad.intergranada.com

1.- Indicar cuales de las siguientes magnitudes son escalares y cuales vectoriales:

Presión	Velocidad	Fuerza
Densidad	Potencia	Aceleración
Masa	Peso	Temperatura
Volumen	Posición	Calor

- **2.-** Siendo el vector $\overrightarrow{AB} = (3, -1)$ hallar:
 - a) El extremo B sabiendo que A(1,4)
 - b) El origen A sabiendo que B(-2,5)

Sol: a) B(4,3); b) A(5,-6)

3.- Del triángulo ABC conocemos un vértice C(6,8), el vector $\overrightarrow{AB} = (-6,4)$ y el vector $\overrightarrow{BC} = (4,2)$. Hallar los vértices A y B y el vector \overrightarrow{AC} .

Sol: A(8,2), B(2,6) $\overrightarrow{AC} = (-2,6)$

4.- Sean los puntos A(-2,1), B(3,-2) y C(1,4), hallar el punto D, sabiendo que los vectores \overrightarrow{AB} y \overrightarrow{CD} son iguales.

Sol: D(6,1)

5.- Hallar el valor del número k sabiendo que el vector $\vec{A} = (2,k)$ tiene módulo 3.

Sol: $k = \pm \sqrt{5}$

6.- Halla la distancia entre los siguientes pares de puntos: a) (3, 1) y (5, 3); b) (-1, -2) y (-5, 3); c) (-1, 2) y (5, 2)

Sol: a) $\sqrt{8}$; b) $\sqrt{41}$; c) 6

7.- Los puntos A(2,1), B(4,-1) C(0,4) y D son los vértices consecutivos de un paralelogramo. Hallar las coordenadas del punto D.

Sol: D(-3,6)

- **8.-** Representa los siguientes vectores y halla su resultante en los siguientes casos:
- **a)** Vectores de la misma dirección y sentido contrario de módulos 5 y 12.
- **b)** Vectores concurrentes perpendiculares de módulos 8 y 6.

9.- Calcula la resultante de los siguientes vectores:

10.- Dos vectores concurrentes de módulos 3 y 6 forman un ángulo de 40°. **a)** Representa gráficamente ambos vectores y su resultante y calcula el módulo de esta. **b)** Si el ángulo aumenta hasta los 65°, ¿cuál sería el módulo de la resultante ahora?

Sol.: a) 8,52; b) 7,8.

11.- Dados los vectores $\vec{a}(3,-2)$, $\vec{b}(-1,2)$ y $\vec{c}(0,-5)$ calcula m y n de modo que: $\vec{c} = m\vec{a} + n\vec{b}$

Sol: m = -5/4 y n = -15/4.

12.-. Un vector de módulo 14 forma 35° con la horizontal y se quiere descomponer en otros dos perpendiculares, uno horizontal y otro vertical. Calcula las componentes de dichos vectores y el módulo de las dos fuerzas perpendiculares sus módulos.

Sol.: Módulos 8 y 11,5.

13.- Sabiendo que los módulos de los vectores $\vec{a}, \vec{b}, \vec{c}$ y \vec{d} son respectivamente 10, 8, 3 y 9, calcula la resultante de todos ellos.

Sol:

14.- Calcular el vector resultante de dos fuerzas de 9 y 12 Newton aplicados en el punto O, formando un ángulo de: A) 30°, B) 45°, C) 90°.

Sol

- **15.-** El vector resultante de dos fuerzas de direcciones perpendiculares vale 10N. Si una de las fuerzas es de 8N, ¿Cuál es el valor de la otra?
- **16.-** Descomponer un vector fuerza de 100N en dos componentes rectangulares de igual módulo.

Sol

17.- Halla el vector \vec{b} tal que $\vec{c} = 3\vec{a} - \frac{1}{2}\vec{b}$, siendo $\vec{a}(-1,3)$ y $\vec{c}(7,-2)$.

Sol: b(-20.22)

18.- Dados los vectores $\vec{a}(3,-2)$, $\vec{b}(-1,2)$ y $\vec{c}(0,-5)$ calcula m y n de modo que: $\vec{c} = m\vec{a} + n\vec{b}$

Sol: m = -5/4 y n = -15/4.

19.- Dado el vector \vec{u} (–5, k) calcula k de modo que su módulo sea igual a $\sqrt{34}$.

Sol- k-+3

20.- Calcula m para que los vectores $\vec{v}(7,-2)$ y $\vec{u}(m,6)$ **a)** Sean paralelos. **b)** Tengan el mismo módulo.

Sol: a) m=-21; b) $m = \pm \sqrt{17}$

21.- Si A(3,1), B(5,7) y C(6,4) son tres vértices consecutivos de un paralelogramo, ¿cuál es el cuarto vértice?

Sol: D(4,-2)

22.- Determina si el triángulo de vértices A(12,10), B(20,16) y C(8,32) es rectángulo.

Sol: Si, porque verifica Pitágoras.

23.- Dados los puntos A(3,0) y B(-3,0), obtén un punto C sobre el eje de ordenadas, de modo que el triángulo que determinan sea equilátero. ¿Hay una solución única? Halla el área de los triángulos que resultan.

Sol: $C_1(0,3\sqrt{3})$ y $C_2(0,-3\sqrt{3})$ $A = 9\sqrt{3} u^2$

24.- Determina el valor de a, sabiendo que la distancia entre Q(-6,2) y P(a,7) es 13. Escribe también las coordenadas y el módulo del vector \overline{PQ} .

Sol: $a_1=6$ y $a_2=-18$ $||\overrightarrow{PQ}||=13$