Course Name: Digital Hardware Design

Course Code: 17B1NEC741

Finite State Machine-5

Dr. Arti Noor
Dean, Academic Affairs
Electronics and Communication Engineering,
Jaypee Institute of Information Technology, Noida

State Minimization in FSM

- It is the process of finding and eliminating the redundant states.
- Redundant states are also referred to as equivalent states.
- Eliminating equivalent states reduces the number of flip-flops.
- Simplify combinational logic of the finite-state machine.

Approaches:

- 1. Row Equivalence Method
- 2. Implication Table Approach
- 3. Partitioning Approach

State Minimization in FSM

Row Equivalence Method

- Check that rows of a state table which are equivalent.
- Condition for equivalence:
 - Same O/P for both the states.
 - K successors must be same for all the input conditions.

Present State	Next	State	Output
	x = 0	x = 1	Output
S_0	S_1	S_2	0
S_1	S_3	S_4	0
S_2	S_5	S_6	0
S_3	S_3	S_4	1
S_4	S_5	S_6	0
S_5	S_3	S_4	0
S_6	S_5	S_6	0

State Minimization in FSM Row Equivalence Method

- S1 & S5 are same
- Combine S1 and S5. Define as S1* Reduced Table

	Next S		
Present State	x=0	x=1	Output
S0	S1*	S2	0
S1*	S 3	S4	0
S2	S5(S1*)	S6	0
S3	S 3	S4	1
S4	S5(S1*)	S6	0
S6	S5(S1*)	S6	0

Present State	Next	State	Output
	x = 0	x = 1	Output
S_0	S_1	S_2	0
S_1	S_3	S_4	0
S_2	S_5	S_6	0
S_3	S_3	S_4	1
S_4	S_5	S_6	0
S_5	S_3	S_4	0
S_6	S_5	S_6	0

State Minimization in FSM Row Equivalence Method

- S2,S4 and S6 are same.
- Combine all Define as S2*

Reduced Table

	Next		
Present State	x=0	x=1	Output
S0	S1*	S2*	0
S1*	S 3	S4(S2*)	0
S2*	S5(S1*)	S4(S2*)	0
S3	S 3	S4(S2*)	1

	Next S		
Present State	x=0	x=1	Output
S0	S1*	S2	0
S1*	S 3	S4	0
S2	S5(S1*)	S6	0
S 3	S 3	S4	1
S4	S5(S1*)	S6	0
S6	S5(S1*)	S6	0

Final Reduced Table

	Next		
Present State	x=0	x=1	Output
SO	S1*	S2*	0
S1*	S3	S4(S2*)	0
S2*	S5(S1*)	S4(S2*)	0
S3	S 3	S4(S2*)	1

Present State	Next	State	Output
Tresent State	x = 0	x = 1	Output
S_0	S_1^*	S_2^*	0
S_1^*	S_3	S_2^*	0
S_2^*	S_1^*	S_2^*	0
S_3	S_3	S_2^*	1

- A chart is prepared to find the equivalent steps.
- A square Xij contains the equivalent states between Xi and Xj.
- It can be modified as Xij=Xji and thus the triangle above the diagonal can be removed.
- Also, the diagonal can be removed.

Minimize the following state table:

NS				
PS	x=0	x=1	z	
А	D	С	0	
В	F	Н	0	
С	E	D	1	
D	Α	Е	0	
Е	С	Α	1	
F	F	В	1	
G	В	Н	0	
н	С	G	1	

AN-DHD-FSM5-JIIT

NS				
PS	x=0	x=1	z	
А	D	С	0	
В	F	Н	0	
С	E	D	1	
D	Α	Ε	0	
Ε	С	Α	1	
F	F	В	1	
G	В	Н	0	
Н	С	G	1	

Fill the State table in the Chart. First step

NS				
PS	x=0	x=1	z	
Α	D	С	0	
В	F	Н	0	
С	Е	D	1	
D	Α	Е	0	
Е	С	Α	1	
F	F	В	1	
G	В	Н	0	
Н	С	G	1	

Fill the State table in the Chart.

First step

Second step

- Remove self implied pairs
 - A-D in cell A-D
 - C-E in cell C-E
- Remove same state pairs
 - H-H in cell B-G
 - C-C in cell H-E

Second step

State Minimization Implication Table Approach- Example 1

Third step

One column (or row) at a time, eliminate implied pairs

Searching for equivalent states:

- Start top to the bottom starting from the left side of the chart.
- Check the possibility of combining the state.
- Rrepeat the step until no further combination is possible.

Combine equivalent states (based on coordinates of cells, not contents)

- $A \equiv D$, $C \equiv E$ in example
- Equivalence is pairwise
 - □ $A \equiv B$, $B \equiv C$ implies $A \equiv C$ (transitive)

Construct reduced state table

	NS				
PS	x=0	x=1	z		
А	D	С	0		
В	F	Н	0		
С	E	D	1		
D	Α	E	0		
Ε	С	Α	1		
F	F	В	1		
G	В	Н	0		
Н	С	G	1		

PS	x=0	x=1	z
Α	A*	С	0
В	F	Н	0
С	C*	A*	1
F	F	В	1
G	В	н	0
н	С	G	1

State Minimization Partitioning Approach

State Minimization through Partitioning:

- Form an initial partition (P1) that includes all states.
- Form a second partition (P2) by separating the states into two blocks based upon their output values.
- Form a third partition (P3) by separating the states into blocks corresponding to the next state values.
- Continue partitioning until two successive partitions are the same (i.e. $P_{N-1} = P_N$).
- All states in any one block are equivalent.

 Equivalent states can be combined into a single state.

NS				
PS	x=0	x=1	z	
Α	D	С	0	
В	F	Н	0	
С	E	D	1	
D	Α	Е	0	
Е	С	Α	1	
F	F	В	1	
G	В	Н	0	
Н	С	G	1	

- $P_0 = (ABCDEFGH)$
- P₁ is obtained by splitting states having different outputs
 - \square P₁ =(ABDG)(CEFH)
 - Block 1 = ABDG, Block 2 = CEFH

	NO		
PS	x=0	x=1	z
А	D	С	0
В	F	н	0
С	Ε	D	1
D	А	E	0
Е	С	А	1
F	F	В	1
G	В	н	0
н	С	G	1

- Obtain P₂
 - □ Block 1 = ABDG, Block 2 = CEFH

NS				
PS	x=0	x=1	z	
А	D	С	0	
В	F	н	0	
С	E	D	1	
D	А	Ε	0	
Ε	С	А	1	
F	F	В	1	
G	В	н	0	
н	С	G	1	

- Obtain P₂ (cont)
 - □ Block 1 = ABDG, Block 2 = CEFH

F (2)	C (2)
F	H G (1)

PS	x=0	x=1	z	
А	D	С	0	
В	F	н	0	
С	E	D	1	
D	А	Ε	0	
E	С	А	1	
F	F	В	1	
G	В	н	0	
н	С	G	1	

- $P_2 = (ADG)(B)(CEFH)$
 - Block 1 = ADG
 - Block 2 = B
 - □ Block 3 = CEFH

- $P_3 = (AD)(G)(B)(CEH)(F)$
 - Block 1 = AD, block 2 = G, block 3 = B,
 - block 4 = CEH and block 5 = F

$$P_4 = (AD)(G)(B)(CE)(H)(F)$$

Block 1 = AD, block 2 = G, block 3 = B,
 block 4 = CEH, block 5 = H and block 6 = F

- Obtain P₅
 - \square P₄ = (AD)(G)(B)(CE)(H)(F)

NS .			
PS	x=0	x=1	z
Α	D	С	0
В	F	н	0
С	E	D	1
D	А	Е	0
Ε	С	А	1
F	F	В	1
G	В	н	0
н	С	G	1

- Obtain P₅ (cont)
 - No blocks split from P₅

NS				
PS	x=0	x=1	z	
Α	D	С	0	
В	F	Н	0	
С	E	D	1	
D	Α	Е	0	
Ε	С	Α	1	
F	F	В	1	
G	В	Н	0	
Н	С	G	1	

States A and D; C and E will be combined.

	NS				
PS	x=0	x=1	z		
Α	A*	С	0		
В	F	Н	0		
С	C*	A*	1		
F	F	В	1		
G	В	Н	0		
Н	С	G	1		