# Experiment 4

# S A Aravind Eswar and Eshan Sharma

#### Аім

To study and analyze the transient response of an LC circuit, determine the natural frequency  $(\Omega_n)$ , and calculate the damping ratio  $(\xi)$  using theoretical and experimental methods.

# 2 MATERIALS AND APPARATUS REQUIRED

- 1) 100  $\mu$ F Capacitor
- 2) Largest available inductor in the lab (denoted as L)
- 3) Resistor (small value for practical considerations)
- 4) DC Power Supply
- 5) Oscilloscope

### 3 Theory

An LC circuit consists of an inductor (L) and a capacitor (C) connected in parallel. When a charged capacitor is connected to an inductor, energy oscillates between the capacitor's electric field and the inductor's magnetic field. This oscillatory behavior is governed by the second-order differential equation:

$$L\frac{d^2q}{dt^2} + \frac{q}{C} = 0,$$

where q(t) is the charge on the capacitor as a function of time.

The natural frequency of oscillation is given by:

$$\Omega_n = \frac{1}{\sqrt{LC}},$$

where: - L is the inductance in henries (H), - C is the capacitance in farads (F).

For an ideal LC circuit (no resistance), the damping ratio ( $\xi = 0$ ) indicates purely oscillatory behavior. However, in practical circuits, resistance (R) introduces damping, and the damping ratio becomes:

$$\xi = \frac{R}{2} \sqrt{\frac{C}{L}}.$$

The transient response of the LC circuit can be classified based on the value of  $\xi$ :

- 1) **Underdamped**  $(0 < \xi < 1)$ : Oscillations decay over time.
- 2) **Critically damped** ( $\xi = 1$ ): Fastest return to equilibrium without oscillation.
- 3) **Overdamped** ( $\xi > 1$ ): Slow return to equilibrium without oscillation.

The voltage across the capacitor during oscillations can be expressed as:

$$V_C(t) = V_0 e^{-\xi \Omega_n t} \cos(\Omega_d t + \phi),$$

1

where:

- $V_0$  is the initial voltage,
- $\Omega_d = \Omega_n \sqrt{1 \xi^2}$  is the damped natural frequency,
- $\phi$  is the phase angle.



For experimental analysis, we monitor voltage waveforms using an oscilloscope. The observed oscillation frequency can be compared with theoretical calculations to validate the model.

In summary:

- For a purely LC circuit:  $R = 0, \xi = 0, \Omega_d = \Omega_n$ .
- For an RLC circuit: R > 0, leading to damping and reduced oscillation frequency.

The energy exchange between components can be calculated as:

- Energy stored in capacitor:  $E_C = \frac{1}{2}CV_C^2$ ,
- Energy stored in inductor:  $E_L = \frac{1}{2}LI^2$ , where  $I = -C\frac{dV_C}{dt}$ .

These equations form the basis for analyzing transient responses.

#### 4 Procedure

- 1) Precharge the Capacitor:
  - Connect the 100  $\mu F$  capacitor to a 5V DC power supply.
  - Once charged, disconnect it carefully without discharging.
- 2) Construct the LC Circuit:
  - Connect the charged capacitor in parallel with the largest available inductor.
  - Ensure minimal resistance in wiring.
- 3) Capture Transient Response:
  - Use an oscilloscope to monitor voltage across the capacitor.
  - Observe natural oscillations.
- 4) Calculate Theoretical Values:
  - Compute natural frequency  $(\Omega_n = 1/\sqrt{LC})$ .
  - Estimate damping ratio  $(\xi = R/2 \sqrt{\frac{C}{L}})$  if resistance is non-negligible.

- 5) Compare with Experimental Results:
  - Extract oscillation frequency from oscilloscope data.
  - Compare with theoretical calculations.

# 5 Observations



Fig. 1: Transient Response of LC