TOPOLOGÍA. Examen del Tema 6

Nombre:

- 1. Dar un ejemplo de un espacio topológico y un subconjunto suyo que sea compacto pero no cerrado. Lo mismo, pero que sea cerrado y no sea compacto.
- 2. Se considera $(\mathbb{R}, \tau(\beta))$, $\beta = \{(a, \infty), a \in \mathbb{R}\}$. Encontrar dos subconjuntos compactos cuya intersección no lo es.
- 3. Estudiar la compacidad local del siguiente espacio topológico: $(\mathbb{R}^2, \tau(\beta))$, donde $\beta = \{B_a; a \in \mathbb{R}\}$ y $B_a = \{(x, y) \in \mathbb{R}^2; x \geq a\}$.
- 4. Hallar f para que ([0,2],f) sea una compactificación de [0,1). Estudiar si es la compactificación de Alexandrov.

- Dar un ejemplo de un espacio topológico y un subconjunto suyo que sea compacto pero no cerrado. Lo mismo, pero que sea cerrado y no sea compacto. Solución.
 - (a) (El espacio no puede ser T_2) Sea $(X; \tau_{in})$ siendo $p \in X$ el "punto incluido". Entonces $A = \{p\}$ es compacto pues es finito, pero no es cerrado ya que su complementario no es abierto (ya que no contiene a p).
 - (b) Se toma $X = \mathbb{R}$ y $A = [0, \infty)$: A es cerrado, pero no es compacto al no ser acotado.
- 2. Se considera $(\mathbb{R}, \tau(\beta))$, $\beta = \{(a, \infty), a \in \mathbb{R}\}$. Encontrar dos subconjuntos compactos cuya intersección no lo es.

Solución. Sea $A = \{0\} \cup (2, \infty)$ y $B = \{1\} \cup (2, \infty)$. Entonces tanto A como B son compactos. Por ejemplo, si $A \subset \bigcup_{i \in I} B_i$, con $B_i \in \beta$, entonces existe $i_0 \in I$ tal que $0 \in B_{i_0}$. Pero como $B_{i_0} = (a, \infty)$, para un cierto a (en particular, a < 0) entonces $B_{i_0} \supset A$.

Sin embargo $A \cap B = (2, \infty)$ no es compacto, ya que $(2, \infty) = \bigcup_{n \in \mathbb{N}} (2 + \frac{1}{n}, \infty)$ y no se puede extraer un subrecubrimiento finito, ya que en tal caso, su unión es de la forma $(2 + \frac{1}{m}, \infty)$ para un cierto $m \in \mathbb{N}$.

3. Estudiar la compacidad local del siguiente espacio topológico: $(\mathbb{R}^2, \tau(\beta))$, donde $\beta = \{B_a; a \in \mathbb{R}\}$ y $B_a = \{(x, y) \in \mathbb{R}^2; x \geq a\}$.

Solución. Sea $(x_0, y_0) \in \mathbb{R}^2$. Una base de entornos de dicho punto es $\beta_{(x_0, y_0)} = \{B_{x_0}\}$. Veamos que cualquier conjunto B_a es compacto. Sea $B_a \subset \cup_{i \in I} B_{c_i}$. Sea $(a, 0) \in B_a$. Entonces existe $i_0 \in I$ tal que $(a, 0) \in B_{c_{i_0}} = [c_{i_0}, \infty) \times \mathbb{R}$. En particular, $c_{i_0} \leq a$. Por tanto, $B_{c_{i_0}} \supset B_a$.

4. Hallar f para que ([0,2],f) sea una compactificación de [0,1). Estudiar si es la compactificación de Alexandrov.

Solución. Sea $f:[0,1)\to [0,2]$ el homeomorfismo f(x)=2x. Entonces $[0,1)\cong f([0,1)),\ 2\in \overline{[0,2]}=[0,2]$ y [0,2] es compacto. Como card $\Big([0,2]-f([0,1))\Big)=1$, es una compactificación por un punto.

Por otro lado, [0,1) es T_2 (por ser un espacio métrico) y es localmente compacto, al ser intersección de un abierto y de un cerrado ($[0,1)=[0,1]\cap(-1,1)$). Por otro lado [0,2] es T_2 . Como conclusión, es la compactifación de Alexandrov.