Self-supervised learning (for videos)

Computer Vision (SJK02)

Universitat Jaume I

The issues with labelling

Annotation cost Annotation bias

(Lack of domain generalisation) (Lack of robustness)

Pre-training ≠ self-training ≠ self-

supervision

Pre-training

Transfer learning Fine-tuning

Self-training

Labeled + Pseudo-labeled datasets

Self-supervised learning (SSL) in a nutshell

Alternative to pretraining a model

- Large dataset (without labels!)
- Results in higher generalisation

Downstream tasks

Action **recognition**

Temporal action segmentation

Temporal Action Step Localization

Video retrieval

Text-to-Video Retrieval

Video Captioning

Approaches

Pretext

Generative

Contrastive

Multimodal*

(*) Not seen here

Pretext tasks

Why is this approach more specific to videos?

Other pretext task: your turn

Think of other pretext task for SSL for videos

www.socrative.com

Room 219986

Main hypothesis of SSL

True or false?

The idea of SSL is that if the model can solve a complicated task that requires high-level understanding of the input, then it will learn more generalisable features

(a) Binary Classification Task

(b) Sequence Sorting

Do different pretext tasks make any

difference?

Are time-related pretext tasks more helpful?

Generative approaches

GANs (Generative Adversarial Networks)
Masked Autoencoders (MAEs)

Predicting next frame

Masked modelling

(a) Two key factors to recognize a high jump action.

(b) Appearance reconstruction vs. motion trajectory reconstruction.

Contrastive learning

(*) Not seen here

Contrastive loss

$$\mathbf{L} = (\mathbf{1} - \mathbf{Y}) * ||\mathbf{x_i} - \mathbf{x_j}||^2 + \mathbf{Y} * \mathbf{max}(\mathbf{0}, \mathbf{m} - ||\mathbf{x_i} - \mathbf{x_j}||^2)$$

Y=0 if x_i and x_i have the same labels (and 1 otherwise)

Triplet loss

$$\mathbf{L} = \mathbf{max}(\mathbf{0}, ||\mathbf{x} - \mathbf{x}^+||^2 - ||\mathbf{x} - \mathbf{x}^-||^2 + \mathbf{m})$$

Do the contrastive loss and the triplet loss require the same data at the same time?

Noise Contrastive Estimation Loss (NCE)

Uses a pair of positive and a set of negative examples

View augmentation

(a) View Augmentation

— Anchor — Positive — Negative

Temporal augmentation

Spatio-temporal augmentation

(c) Spatio-Temporal Augmentation

— Anchor — Positive — Negative

Multimodal

(d) Cross-Modal Agreement

Comparison of constrastive approaches

