## **Introduction to Deep Learning**

ECE/CS 498 DS U/G

Lecture 21

Ravi K. Iyer

Dept. of Electrical and Computer Engineering

University of Illinois at Urbana Champaign

## **Announcements**

- MP3 Checkpoint 2 due today
  - Remaining Task 3 and Task 4 to be released today
- HW4 on HMM and FGs released today
  - Due on Wednesday, April 24
- ICA 6 on SVM and neural networks next Wednesday, April 24
- Grad projects: Mid-project progress report due on Friday, April
   19
  - Students are encouraged to discuss with the instruction staff during office hours on Wednesday (Apr 17)
- No discussion section on Friday, April 19
  - Additional office hours in place of it in CSL 141 from 4-5pm

## **Perceptron Model**

The core of the neural network is perceptron model

### **Forward** Activation Unit $x = [x_1, x_2, x_3]$ $\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$ (Sigmoid) $z = \mathbf{w}^T \mathbf{x} + \mathbf{b}$ $\hat{y} = R(z) = \max\{0, z\} \text{ (ReLU)}$ ŷ w, b **Predicted** Neuron outcome **Backward**





### **Update Rule (Backward):**

$$w_{t+1} = w_t - \eta \nabla J(w_t)$$

$$\eta : \text{Learning rate}$$

### Loss

$$J(w) = \frac{1}{N} \sum_{i=1}^{N} L(w.x^{(i)}, y^{(i)}) \qquad \nabla J(\mathbf{w}_0) = (\frac{\partial J(\mathbf{w})}{\partial w_0}, \frac{\partial J(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial J(\mathbf{w})}{\partial w_n})_{\mathbf{w}_0}$$

### **Computing Gradient**

$$\nabla J(\mathbf{w}_0) = \left(\frac{\partial J(\mathbf{w})}{\partial w_0}, \frac{\partial J(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial J(\mathbf{w})}{\partial w_n}\right)_{\mathbf{w}_0}$$

N: number of samples  $x^{(i)}$ : feature of  $i^{th}$  sample

### **Neural Network: Forward**

Following neural networks have sigmoid activation function

### Example 1



Forward equation:

$$z_1 = x \cdot w_1 + b_1$$

$$a_1 = \sigma(z_1)$$

$$\hat{y} = a_1 = \sigma(x \cdot w_1 + b_1)$$

Example 2

$$x \xrightarrow{W_1} \bigcirc \xrightarrow{W_2} \bigcirc \xrightarrow{W_2} \hat{y}$$

$$z_1 \to a_1 \quad z_2 \to a_2$$

Forward equation:

$$z_{1} = x. w_{1} + b_{1}$$

$$a_{1} = \sigma(z_{1})$$

$$z_{2} = a_{1}. w_{2} + b_{2}$$

$$a_{2} = \sigma(z_{2})$$

$$\hat{y} = a_{2} = \sigma(a_{1}. w_{2} + b_{2})$$

$$= \sigma(\sigma(x. w_{1} + b_{1}). w_{2} + b_{2})$$

# **Training the model**

- The output of the model should be as close to y (ground truth value for input x) as possible
- Mean squared error (error in output layer):  $(\hat{y} y)^2$
- How to train the model i.e., find the weights that minimize the loss?
  - Apply gradient descent
  - Compute gradient using
     Backpropagation (fancy name for chain rule of derivatives)

### Example 1



Forward equation:

$$z_1 = x \cdot w_1 + b_1$$

$$a_1 = \sigma(z_1)$$

$$\hat{y} = a_1 = \sigma(x \cdot w_1 + b_1)$$

## Refresher on Chain rule for derivatives

$$f(x) = A(B(C(x)))$$

A, B, and C are activation functions at different layers. Using the chain rule we easily calculate the derivative of f(x) with respect to x:

$$f'(x) = f'(A) \cdot A'(B) \cdot B'(C) \cdot C'(x)$$

How about the derivative with respect to B? To find the derivative with respect to B you can pretend B(C(x)) is a constant, replace it with a placeholder variable B, and proceed to find the derivative normally with respect to B.

$$f'(B) = f'(A) \cdot A'(B)$$

# Backpropagation: Computing Partial Derivatives

### Example 1



### Forward equation:

$$z_1 = x \cdot w_1 + b_1$$

$$a_1 = \sigma(z_1)$$

$$\hat{y} = a_1 = \sigma(x \cdot w_1 + b_1)$$

| <b>Function</b>            | Formula                                    | Derivatives                                                                          |
|----------------------------|--------------------------------------------|--------------------------------------------------------------------------------------|
| Weighted input             | $z_1 = x.w_1 + b_1$                        | $\frac{\partial z_1}{\partial w_1} = x \qquad \frac{\partial z_1}{\partial x} = w_1$ |
| Sigmoid                    | $a_1 = \sigma(z_1) = \frac{1}{1 + e^{-z}}$ | $\frac{\partial a_1}{\partial z_1} = \sigma(z_1)\sigma(-z_1)$                        |
| Cost<br>function<br>(loss) | $L = (\hat{y} - y)^2$                      | $\frac{\partial L}{\partial a} = 2(\hat{y} - y)$                                     |

## **Backpropagation: Example 1**

### Example 1



Training the model is equivalent to minimizing the loss  $L = (\hat{y} - y)^2$  using gradient descent. Compute  $\frac{\partial L}{\partial u}$ .

Backpropagation: 
$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial a_1} \frac{\partial a_1}{\partial w_1}$$
 Chain rule – L is directly dependent on  $a_1$  
$$= \frac{\partial L}{\partial a_1} \frac{\partial a_1}{\partial z_1} \frac{\partial z_1}{\partial w_1}$$
 Chain rule – L is directly dependent on  $a_1$  chain rule –  $a_1$  is directly dependent on  $a_2$ 

dependent on  $z_1$ 

= 
$$2(\hat{y} - y)\sigma(z_1)\sigma(-z_1)x$$
 Substituting from table

## **Backpropagation: Example 2**

Compute  $\frac{\partial L}{\partial w_1}$  using backpropagation.



$$= \frac{\partial L}{\partial a_2} \frac{\partial a_2}{\partial z_2} \frac{\partial z_2}{\partial w_1}$$

 $a_2$  is directly dependent on  $z_2$ 

$$= \frac{\partial L}{\partial a_2} \frac{\partial a_2}{\partial z_2} \frac{\partial z_2}{\partial a_1} \frac{\partial a_1}{\partial w_1}$$

 $z_2$  is directly dependent on  $a_1$ 

$$= \frac{\partial L}{\partial a_2} \frac{\partial a_2}{\partial z_2} \frac{\partial z_2}{\partial a_1} \frac{\partial a_1}{\partial z_1} \frac{\partial z_1}{\partial w_1}$$

 $a_1$  is directly dependent on  $z_1$ 

$$= 2(\hat{y} - y) \sigma(z_2) \sigma(-z_2) w_2 \sigma(z_1) \sigma(-z_1) x$$

Each of the above derivates can be easily computed

# Computational cost of backpropagation

$$x \xrightarrow{W_1} \bigcirc \xrightarrow{W_2} \bigcirc \xrightarrow{W_3} \bigcirc \xrightarrow{W_4} \bigcirc \xrightarrow{W_5} \bigcirc \xrightarrow{W_5} \widehat{y}$$

$$z_1 \to a_1 \quad z_2 \to a_2 \quad z_3 \to a_3 \quad z_4 \to a_4 \quad z_5 \to a_5$$

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial a_5} \frac{\partial a_5}{\partial z_5} \frac{\partial z_5}{\partial a_4} \frac{\partial a_4}{\partial z_4} \frac{\partial z_4}{\partial a_3} \frac{\partial a_3}{\partial z_3} \frac{\partial z_3}{\partial a_2} \frac{\partial a_2}{\partial z_2} \frac{\partial z_2}{\partial a_1} \frac{\partial a_1}{\partial z_1} \frac{\partial z_1}{\partial w_1}$$

- The cost of computation increases as the network goes deeper and deeper
- Take advantage of redundancy in the calculation to reduce the overall computational cost

## Training duration of the model

- Data is divided into 3 parts: Training set, validation set, test set
- A large enough neural network will completely fit the training data if trained for long enough
  - Overfitting; will not be generalizable

Dataset

Training set Valida- Test set tion set

How long should the model be trained for?

One solution -

- Also use validation set for evaluating loss
  - Note: Training is done only with training set (not validation set)
- Train the model till the point the validation error starts increasing



## Universal approximation theorem

- Universal approximation theorem states that a feedforward network with a linear output layer and at least one hidden layer with any "squashing" activation function can approximate any function, provided that the network is given enough hidden units
  - Squashing function example: sigmoid function, step function

- The theorem also holds for activation functions like Rectified Linear Unit (ReLU)
  - Note: ReLU is not a squashing function since positive values do not get "squashed"

# Advantage of using more hidden layers

- A feedforward network with a single layer is sufficient to represent any function, but layers may be infeasibly large and may fail to generalize correctly
  - Using deeper models can reduce the number of units and amount of generalization error
- Deep network encodes a general belief that the function we want to learn should involve composition of several simpler functions
  - For example, we can a non-linear function can be approximated by several linear functions (linear functions are simpler)
- (Empirically) greater depth seem to result in better generalization
- Commonly used neural network architecture:
  - Convolutional Neural Networks
  - Recurrent Neural Networks

## **Limitations of Deep Learning**

- Interpretability
- Need large amount of data
- Need computational power

## Frequentist vs Bayesian View

- Frequentist: Assume repetitive sampling from population to find single value of parameter in model
- Bayesian: Assume a probability distribution of parameter and its reliability is increased by sampling data



# Frequentist View of Linear Regression

- Linear model of y from X
- Optimize root mean square error for training data  $x_i$  and  $y_i$

$$y = \beta^T X + \varepsilon$$

Implicit assumption that β can be any value in domain

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - \hat{y})^2 = \sum_{i=1}^{N} (y_i - \beta^T x_i)^2$$

## **Bayesian View of Linear Regression**

What if y described a probability distribution?

$$y \sim N(\beta^T X, \sigma^2 I)$$

By Bayes theorem β describes a distribution

$$P(\beta|y,X) = \frac{P(y|\beta,X) * P(\beta|X)}{P(y|X)}$$

- Can encode initial guess of  $\beta$  with  $P(\beta|X)$
- Can bias model by calculating  $P(\beta|y,X)$  which considers X,Y
- Given all possible value for  $\beta$  in the posterior, we try those values one by one to predict the new data.
- The result is averaged proportionality to the probability of those values, hence we are taking expectation.

## **Bayesian Deep Learning**



## **Bayesian Deep Learning**



## **Transfer Learning**

Prior information give initial "guess" to start training a dog detection network.



# **Fault Injection**



## Validation: Binary Classification Performance

You are solving a Binary Classification Problem, Predict if person has cancer (1) or not (0). You have learnt a model using your training dataset.

How do you test your model?

### **Explanation:**

- Holdout: Divide dataset into 2 parts, learn model on training data and validate on the test data
- 2) K-fold: Divide data into K equal parts, run the following K-times: (hold out one part of the dataset, train on the remaining, test on the holdout). Every data-sample is part of the training data K-1 times and part of the test data 1 time.
- 3) Leave-one-out: For every data sample, leave it out, train the model on the remaining data and predict for the left out data sample.

**Cross Validation:** For a given training iteration, divide the dataset into 2 parts:

- training set (for training the model)
- test set (for validating the model)

Different ways of doing this:

- (1)Holdout
- (2)K-fold
- (3)Leave-one-out



green – training data orange - test data

Computational effort

### What does it mean to **validate** on the test data?



Depending on the **cost of making a mistake**, minimize the number of FN or FP

#### Common issues

Precision =1 if FP=0, but FN may be high
Sensitivity = 1 if predict everything as positive
Specificity = 1 if predict everything as negative
How to strike a balance? Use F1-score!

#### **Metrics**

TP + TN

Accuracy = 
$$\overline{TP + FP + TN + FN}$$

$$TP$$
Precision =  $\overline{TP + FP}$ 

$$TP = \overline{TP}$$
Sensitivity =  $\overline{TP + FN}$ 
(Recall)
$$TN$$
Specificity =  $\overline{TN + FP}$ 

$$TN = \overline{TN + FP}$$
F1-score =  $\overline{Precision * Recall}$ 

**Harmonic mean** of Precision and Recall (when large disparity between the 2 values, the score is closer to the smaller value)

### **ROC** and AUC

Receiver Operating Characteristic curve: A plot of False Positive Rate Vs True Positive Rate



$$TPR = \frac{TP}{TP + FN}$$
  $FPR = \frac{FP}{TN + FN}$ 

An ML model has parameters and for different values of the parameters, the model gives different FPR and TPR.

An ROC (Receiver Operating Characteristic) curve can be plotted for these different settings. A good setting of the parameters i.e. a good classifier, would have a high TPR and low FPR.

#### Area Under Curve (AUC):

A good classifier would have the largest area under the ROC curve.

The random predictor would have an ROC of 0.5 (the curve of the 'worthless' model in fig.)

### AUC value interpretation –

If a pair of data samples are drawn independently, one each from the positive and negative sets, AUC gives the probability that the classifier will predict a lower score for the negative sample as compared to the positive sample

### References

- Deep Learning textbook by Goodfellow et al.
- https://theneural.wordpress.com/2011/07/04/hello-world/
- https://mlcheatsheet.readthedocs.io/en/latest/backpropagation.html