Orientation Fields on Closed Surfaces A Discrete Exterior Calculus Primal Dual (DEC-PD) Aproach

Ingo Nitschke

IWR - TU Dresden

September 28, 2015

Content

Surface Discretization (Simplicial Complex)

- Introduction required DEC topics
 - Shopping List

• vertices, edges, (triangle) faces

• vertices, edges, (triangle) faces

е

• vertices, edges, (triangle) faces

- vertices, edges, (triangle) faces
- equipped with an orientation

- vertices, edges, (triangle) faces
- equipped with an orientation
- have circumcenters $c(\sigma) \in Int(\sigma) \Rightarrow$: well-centered)

- vertices, edges, (triangle) faces
- equipped with an orientation
- have circumcenters $c(\sigma) \in Int(\sigma) \Rightarrow$: well-centered)
- are refinable (circumcentric subdivision)

• simplicial complex $\mathcal{K} = \mathcal{V} \cup \mathcal{E} \cup \mathcal{F}$: "like a triangulation"

- simplicial complex $\mathcal{K} = \mathcal{V} \cup \mathcal{E} \cup \mathcal{F}$: "like a triangulation"
- well-centered: faces are well-centered (maximum angle less than 90°)

- simplicial complex $\mathcal{K} = \mathcal{V} \cup \mathcal{E} \cup \mathcal{F}$: "like a triangulation"
- well-centered: faces are well-centered (maximum angle less than 90°)
- oriented: neighboured faces have the same orientation

- simplicial complex $\mathcal{K} = \mathcal{V} \cup \mathcal{E} \cup \mathcal{F}$: "like a triangulation"
- \bullet well-centered: faces are well-centered (maximum angle less than 90°)
- oriented: neighboured faces have the same orientation
- manifold-like: polyhedron $\bigcup_{f \in \mathcal{F}} f$ is a C^0 -manifold

https://commons.wikimedia.org/wiki/File:Icosahedron.svg

PDE for orientation fields

$$\partial_t \mathbf{p}^{\flat} = \left(\mathcal{K}_1 \mathbf{\Delta}^{\mathsf{GD}} + \mathcal{K}_3 \mathbf{\Delta}^{\mathsf{RR}} \right) \mathbf{p}^{\flat} - \mathcal{K}_n \left(\left\lVert \mathbf{p}^{\flat}
ight
Vert^2 - 1
ight) \mathbf{p}^{\flat}$$

We need to discretize

 ${}^{0}\Delta^{RR}$...Vector-Laplace-Beltrami-Operator or Rot-Rot-Laplace

^o**∆**^{GD}...Vector-Laplace-CoBeltrami-Operator or Grad-Div-Laplace

$$\partial_t \mathbf{p}^{\flat} = \left(\mathcal{K}_1 \mathbf{\Delta}^{\mathsf{GD}} + \mathcal{K}_3 \mathbf{\Delta}^{\mathsf{RR}} \right) \mathbf{p}^{\flat} - \mathcal{K}_n \left(\left\| \mathbf{p}^{\flat} \right\|^2 - 1 \right) \mathbf{p}^{\flat}$$

We need to discretize

• the 1-form $\mathbf{p}^{\flat} \in \Lambda^1(M)$

 ${}^{0}\Delta^{RR}$...Vector-Laplace-Beltrami-Operator or Rot-Rot-Laplace DEC-PD

^o**∆**^{GD}...Vector-Laplace-CoBeltrami-Operator or Grad-Div-Laplace

$$\partial_t \mathsf{p}^{\flat} = \left(\mathcal{K}_1 \mathbf{\Delta}^{\mathsf{GD}} + \mathcal{K}_3 \mathbf{\Delta}^{\mathsf{RR}} \right) \mathsf{p}^{\flat} - \mathcal{K}_n \left(\left\lVert \mathsf{p}^{\flat}
ight
Vert^2 - 1
ight) \mathsf{p}^{\flat}$$

We need to discretize

- the 1-form $\mathbf{p}^{\flat} \in \Lambda^1(M)$
- the Laplace-Operators Δ^{GD} and Δ^{RR}

 $^0oldsymbol{\Delta}^{\mathsf{RR}}$...Vector-Laplace-Beltrami-Operator or Rot-Rot-Laplace

⁰**Δ**^{GD}...Vector-Laplace-CoBeltrami-Operator or Grad-Div-Laplace