• Define **deterministic** and **probabilistic** mathematical models. Give an example of each.

Deterministic models i models doesn't allow earnor in Predicting y as a function of x.

Probabilistic models: model allow Error, Eis R.U War E(E)=0

• Write the general equation for a **simple linear regression** model.

• Describe, in your own words, the overall concept of the **method of least squares**.

To obtain a predictive line that Jo through all Joven Points with Smallest Area formed by Vertical distance between Point and Line. Which is to Minize the error.

 $\bullet~$ State the ${\bf least\text{-}squares~estimators}$ for the simple linear regression model.

$$\beta_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) (Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

Bo = D number, intersection

• State the means and variances of the least-squares estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ in simple linear regression.

$$E(\beta_{1}) = \beta_{1} \quad 7 \quad V(\beta_{1}) = \left(\frac{1}{S_{XX}}\right)^{2} \sum \left(x_{1} - x_{2}\right)^{2} V(\gamma_{1})$$
where
$$V(\gamma_{1}) = \sigma^{2} \quad for \quad i=1,2,3,4,5,...,n$$

$$V(\beta_{1}) = \frac{\sigma^{2}}{S_{XX}} = \frac{\sigma^{2}}{\sum (x_{1} + x_{2})^{2}}$$

$$E(\beta_{0}) = \beta_{0} \quad V(\beta_{0}) = \frac{\sigma^{2}}{n} + x^{2} \left(\frac{\sigma^{2}}{S_{XX}}\right) = \frac{\sigma^{2} \sum x_{1}^{2}}{n S_{XX}}$$

$$= \sigma^{2} \left(\frac{1}{n} + \frac{x_{1}^{2}}{S_{XX}}\right) = \frac{\sigma^{2} \sum x_{1}^{2}}{n S_{XX}}$$

State a pair of null and alternative hypotheses for making inferences about single regression parameters and linear functions of the parameters.

| Single Reglession Parameter |
| Ho:
$$\beta_i = \beta_{i0}$$
 | Test-statistic: $7 = \frac{\beta_i - \beta_{i0}}{S_i C_{ii}}$ |
Has $\beta_i > \beta_{i0}$	Cupper tail Rejection Region
Has $\beta_i < \beta_{i0}$	Conver tail Rejection Region
$\beta_i \neq \beta_{i0}$	Conver tail Rejection Region
Where $\beta_i = \frac{\sum_{i=1}^{i}}{\sum_{i=1}^{i}} = \frac{1}{\sum_{i=1}^{i}} = \frac{1}{\sum_{i=1}^{i$	

Q1 . a) I't mobel :
$$Y = P_0 + \beta_1 x + E$$
 to these data, using least square $S(\text{nie }E[E] = 0 \Rightarrow P = \hat{P}_0 + \hat{\beta}_1 x_1$

$$\hat{\beta}_{i} = \frac{S_{NY}}{S_{NX}} = \frac{C_{NV}(xy)}{V_{NV}(x)} = \frac{\sum_{j=1}^{6} (x_{j} - \bar{x})(y_{j} - \bar{y})}{\sum_{j=1}^{9} (x_{j} - \bar{x})^{2}} = 0.9914$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}, \bar{\chi} = 0.7198$$

$$Y = 0.9914 \times + 0.7198$$

C).
$$SSE = \sum_{j=1}^{10} |y_j - \bar{y}|^2 = 56.85$$

 $S^2 = (\sqrt{10^{-2}}) 56.85 = 7.10625$

d) Ho:
$$M=B=0$$
 $H_A: \mu_1=B_1 \neq 0$ Q-tail

Therefore $\frac{\hat{\beta}_1 - \lambda h_0}{S + C_{11}} = \frac{o.9914}{2.665 \cdot \sqrt{5} + 2.665 \cdot \sqrt{5} + 4} = \frac{o.9914}{2.665 \cdot \sqrt{5} + 4} = 87.016$

(t1)
$$t_{00}$$
 f_{10} f_{10

2. Let β_0 and β_1 be the least-squares estimates for the intercept and slope in a simple linear regression model. Show that the least-squares equation $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ will always go through the point (\bar{x}, \bar{y}) .

$$\hat{\beta}_{i} = \frac{S_{xx}}{S_{xy}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})} = \sum_{i=1}^{n} \frac{(x_{i} - \bar{x})}{(x_{i} - \bar{y})}$$

$$\hat{y} = \bar{y} \Rightarrow \hat{y} = \beta_1 x + \beta_0$$
 go through (\hat{x}, \bar{y})

3. Suppose that the model $y = \beta_0 + \beta_1 x + \epsilon$ is fit to the *n* data points $(y_1, x_1), ..., (y_n, x_n)$. At what value of *x* will the length of the prediction interval for *y* be minimized?

$$\frac{\int \mathcal{S}_{i}^{E}}{\int \mathcal{S}_{i}^{E}} = \frac{\sum_{j=1}^{n} (x_{i} - \bar{x}) \sum_{j=1}^{n} (y_{j} - \bar{y})}{\sum_{j=1}^{n} (x_{i} - \bar{x})^{L}} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{1}{n} \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}\right)^{2}},$$

=> When x;=x the Prediction Interval for y will be Minized.