9	.+0 CON	exo pes	iado con	MAN	(X)] =	quasi-minimo
Todos	os pes	sos sov	distint	5		
ه (ا	lione o	al manas	ر المراد	bol QM: Ve	ecladasa	
α, σ	HEVIE C	u meno;	S OVI ON	GOT GIT! VE	a boder o	
Sea T	un AG	M de G	. Como	ManyT	tiene solo	n-1 aristas, existe
alguna	arista	x e qu	ie no e	stá en T.		
•					Sea e' la	arista de mayor
peso gi	ue esta	i en el	ciclo y	también e	n T (por lo	tanto e' x e).
•						
Sea T	'= T+e	-e1 o	ro AG	(intercambi	amos z ari	stas de un ciclo).
Como la	as arist	as tien	en toda	ટાંડ રવ્યક્વ ટ	tintos, w(T	')≠w(T).
			> W(T)			
ľ						
T'≠ T	(di Fie	ren en	una a	rista), T'	es AG. Pro	bamos que existe
				'		bamos que existe al menos
al Mer	nos un	AG qu	e no es	AGM. Ento	nces existe	al menos
al Mer	los un	AG qu entre	e no es	AGM. Ento	nces existe	_ • •
al Mer	nos un	AG qu entre	e no es	AGM. Ento	nces existe	al menos
al Mer	los un	AG qu entre	e no es	AGM. Ento	nces existe	al menos
al Mer	los un	AG qu entre	e no es	AGM. Ento	nces existe	al menos
al Mer	los un	AG qu entre	e no es	AGM. Ento	nces existe	al menos
al Mer	los un	AG qu entre	e no es	AGM. Ento	nces existe	al menos
al Mer	los un	AG qu entre	e no es	AGM. Ento	nces existe	al menos
al Mer	los un	AG qu entre	e no es	AGM. Ento	nces existe	al menos
al Mer	los un	AG qu entre	e no es	AGM. Ento	nces existe	al menos

c) Tr AGM de G, Tz AG QM de G

> T, y Tz difieren en exactamente una arista

Sea $D = E(T_1) \Delta E(T_2)$ la diferencia simétrica entre las aristas de T_1 y T_2 . En D tenemos las aristas que están en T_1 o (exclusivo) en T_2 .

Sea e e D la arista de peso mínimo en D. Hay z opciones:

AGM QM

 $e \in E(T_1)$, $e \notin E(T_2)$

Hay un ciclo en Tz+e. Sea e'≠e una arista de ese ciclo tal que e' no esta en T, (pues sino habría un ciclo en T,).

Entonces e' \in D. Como todas las aristas tienen pesos distintos, y \in D es la mínima en D: \vee (e) < \vee (e').

Sea Tz' = Tz + e - e'. w(Tz') = w(Tz) + w(e) - w(e') < w(Tz).

Tz es QM y al intercambiar una ariste con T, AGM mejoramos su costo. Por def de QM, Tz es el AG de segundo costo minimo, por lo tanto al mejorar su costo necesariamente es AGM. Luego T, y Tz difieren en exactamente una arista.

efE(Tz) , eEE(Tz)

Análogamente, Tite tiene un ciclo. Sea e'xe la arista del ciclo que no esta en Tz.

e es la mínima en D: w(e) < w(e').

Sea T,'= T, +e-e'. w(T,') = w(T,) + w(e) - w(e') < w(T,).

Absurdo pues T, es AGM. Necesariamente se cumple el otro caso si e es la arista de peso mínimo en D.

11			,	_												1			
					M »	n 1	10 b	ode	Mos	α /	irMa	አ ୮	que	ha	ya	algu	MR	aris	ta
tue	Π)λ	del	AG'	Μ.															
e.)	۲.	las	aris	. ا د	Nu c	/ مار	مد ۱	Nor	امرا	mic	MAC	0.4	2505	No.	احزمه	1 h	her		
																		A6s	
	•		Y										4		,,,,,			,,,,	
	. , ,	_		-				- •											