

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
1 May 2003 (01.05.2003)

PCT

(10) International Publication Number
WO 03/036014 A1

(51) International Patent Classification⁷: E21B 10/32,
29/00

(72) Inventors; and

(75) Inventors/Applicants (for US only): HOWLETT, Paul,
David [GB/GB]; 234 North Deeside Road, Cults, Aberdeen AB15 9PB (GB). TELFER, George [GB/GB]; 19
Grosvenor Place, Aberdeen AB25 2RE (GB).

(21) International Application Number: PCT/GB02/04707

(74) Agent: KENNEDYS PATENT AGENCY LIMITED;
Floor 5, Queens House, 29 St. Vincent Place, Glasgow G1
2DT (GB).

(22) International Filing Date: 17 October 2002 (17.10.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0125306.1 20 October 2001 (20.10.2001) GB

(81) Designated States (national): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EC, EE (utility model), EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK

(71) Applicant (for all designated States except US): SPECIALISED PETROLEUM SERVICES GROUP LIMITED [GB/GB]; Arnhall Business Park, Westhill, Aberdeen AB32 6TQ (GB).

[Continued on next page]

(54) Title: DISENGAGABLE REAMER

(57) Abstract: A downhole tool (10) for use in the removal of burrs or other unwanted material from an inner surface of a pipeline, well casing or other tubular. The toll has a plurality of milling elements (32), which may be biased against the surface or retracted from the surface to disengage the toll from the tubular. A drop ball mechanism with a fluid by-pass is described for disengaging the milling elements.

WO 03/036014 A1

(utility model), SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

- (84) Designated States (regional):** ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

DISENGAGEABLE REAMER

1

2

3 The present invention relates to apparatus and method for
4 use in oil and gas exploration and production, in
5 particular, but not exclusively, to a burr mill for
6 selectively performing milling and/or burr removal within
7 a well.

8

9 When an oil or gas well is drilled it is common to insert
10 a liner or casing into the well in order to support the
11 walls as the depth of the well is increased. In order to
12 access oil or gas containing formation outside the
13 casing, the casing is commonly perforated by means of
14 explosives. As the casing is made of a hardwearing
15 material such as steel, when perforation takes place the
16 steel casing is deliberately damaged to provide access
17 from the wellbore through to the formation and as a
18 result, sections of the casing will be left with exposed
19 metal shards or burrs directed into the wellbore.

20

21 Consequently, the insertion of any other tools into the
22 wellbore are susceptible to damage due to collisions with
23 or scraping against the burrs formed during perforation.
24 In particular, delicate screens used for the filtering of

1 fluids downhole can easily be ruptured on contact with
2 the burrs. It would therefore be advantageous to find a
3 method of removing these burrs to avoid damaging tools
4 downhole.

5

6 It is already known to attach a mill to a drill string
7 and by rotation of the drill string through the wellbore,
8 burrs may be removed. These tools have the disadvantage
9 that once they have successfully milled off the burrs
10 they become redundant within the well and if left in
11 place they can both cause unwanted wear on the casing and
12 be exerted to unwanted wear on the milling surfaces of
13 the tool as they are subjected to continuous buffering on
14 the inside diameter of the casing.

15

16 It is an object of at least one embodiment of the present
17 invention to provide a downhole tool for the removal of
18 burrs or other unwanted debris from inside a wellbore
19 which obviates or mitigates disadvantages in the prior
20 art.

21

22 It is an object of at least one embodiment of the present
23 invention to provide a downhole tool in the form of a
24 burr mill which is disengagable so that the milling
25 elements can be removed from the surfaces on which the
26 burrs occur.

27

28 According to the first aspect of the present invention,
29 there is provided a downhole tool for the removal of
30 burrs and other unwanted material from an inside surface
31 of a pipeline, well casing or other tubular, the tool
32 including a tool body mountable on a work string, the
33 body supporting a plurality of milling elements which
34 mill the surface and retraction means for disengaging the

1 milling elements from the surface when milling is no
2 longer required.

3

4 Thus, the tool is capable of providing a milling action
5 to remove burrs when the tool body is rotated on a drill
6 string as it enters the well and at any location where
7 the string requires to be circulated but no milling is
8 required, the milling elements can be disengaged and
9 retracted back into the tool to stop their contact with
10 the inside surface of the casing or liner.

11

12 Preferably the tool includes biasing means to bias the
13 one or more milling elements in an outward radial
14 direction. Preferably the milling elements are biased
15 into engagement with the inside surface. Advantageously
16 the biasing means comprise springs held under
17 compression. Preferably also the tool includes an outer
18 sleeve, the outer sleeve including one or more apertures
19 through which the milling elements protrude. More
20 preferably the apertures include overhanging portions
21 which engage a part of the milling element and limit the
22 radial movement of the milling element. By limiting the
23 radial movement of the milling elements the springs are
24 held in compression.

25

26 Preferably the retraction means comprises release means
27 to remove the compression on the springs. Advantageously
28 the release means operates by re-positioning the springs
29 relative to the tool body. The release means may comprise
30 an inner sleeve mounted in a central bore of the tool
31 body into which are located ends of the springs. The
32 springs are re-positioned by virtue of movement of the
33 inner sleeve from a first position in which the milling

1 elements are engaged to the inside surface and a second
2 position where the milling elements are disengaged.

3

4 Preferably the inner sleeve is held in the first position
5 by at least one shear pin. More preferably the inner
6 sleeve includes a ball seat into which a drop ball can
7 locate. Once located a pressure build up behind the ball
8 will force the ball against the drop inner sleeve until
9 the shear pin shears and the inner sleeve falls into the
10 second position.

11

12 Preferably the retraction means further includes one or
13 more magnets. Preferably the magnets hold the milling
14 elements against the tool body when disengaged.

15

16 Preferably also the tool includes a by-pass means which
17 maintains fluid flow through the central bore by allowing
18 fluid to by-pass the drop ball when the tool is
19 disengaged. Advantageously the by-pass means comprises
20 one or more radial ports in the inner sleeve and one or
21 more recesses in the tool body. When the inner sleeve is
22 in the second position, the one or more recesses are
23 located adjacent the drop ball and one or more flow paths
24 are created as the one or more ports align with the one
25 or more recesses thereby directing fluid around the drop
26 ball.

27

28 According to a second aspect of the present invention,
29 there is provided a method of removing burrs or other
30 unwanted debris from an inside surface of a pipeline,
31 well casing or other tubular, the method comprising the
32 steps:

33

- 1 a) inserting into the tubular one or more milling
2 elements;
- 3
- 4 b) biasing the one or more milling elements against the
5 surface to provide a milling action when the
6 elements are moved in relation to the surface;
- 7
- 8 c) disengaging the one or more milling elements from
9 the surface to prevent further milling.

10

11 Preferably the method further includes the step of
12 actively retaining the milling elements in a retracted
13 position away from the surface of the tubular.

14

15 Preferably step (c) includes the step of dropping a ball
16 into the tool to cause parts thereof to move in relation
17 to each other and thereby re-position springs within the
18 tool.

19

20 More preferably the method includes the step of
21 magnetically retaining the one or more milling elements
22 against the tool body when disengaged.

23

24 An embodiment of the present invention will now be
25 described by way of example only with reference to the
26 accompanying Figures in which:

27

28 Figure 1 is a schematic cross-sectional view of a
29 downhole tool in both an engaged (LHS) and
30 disengaged (RHS) position in accordance with an
31 embodiment of the present invention;

32

1 Figure 2 is a top view of a milling element of the
2 apparatus of Figure 1; and

3

4 Figure 3 is a sectional view through the line A-A'
5 of Figure 1.

6

7 Reference is initially made to Figure 1 of the drawings
8 which depicts a downhole tool generally indicated by
9 reference numeral 10 according to an embodiment of the
10 present invention. Tool 10 includes a tool body 12
11 through which is axially located a central bore 14 for
12 the passage of fluid through the tool 10. At an upper end
13 of tool body 12 is located a box section 16 and at a
14 lower end of tool body 12 there is located a threaded pin
15 18. Box section 16 and threaded pin 18 allow the tool 10
16 to be connected in a drill string (not shown).

17

18 Within the central bore 14 there is an inner sleeve 20.
19 Inner sleeve 20 includes four ports 22 which when the
20 sleeve is moved can locate across a recess 24 in the tool
21 body 12 and provide an alternative flow path. This is
22 illustrated in Figure 1 at the upper end of the tool
23 where the inner sleeve 20 has been moved by the action of
24 a drop ball 26 being placed in the central bore 14.

25 Inner sleeve 20 is kept initially in place by the use of
26 shear screws 28. When ball 26 is dropped through the
27 central bore 14, it lands on the ball seat at the upper
28 end of inner sleeve 20. A fluid pressure build up behind
29 ball 26 forces the ball 26 downwards with the result that
30 the screws 28 shear under the force. Sleeve 20 then falls
31 until it is prevented from exiting the lower end of the
32 tool 10 by virtue of the lip 30.

33

1 Milling elements 32 are arranged around the tool body 12.
2 In the embodiment shown there are three milling elements
3 arranged equidistantly around the tool body as shown more
4 clearly with the aid of Figure 3.

5

6 Referring to Figure 2, it is seen that each milling
7 element has a milling surface which is arranged with
8 projections to aid the milling action for the removal of
9 burrs and other unwanted debris from the inside walls of
10 the pipeline, liner or casing in use. Consequently, each
11 milling surface 34 has a radial profile to provide a
12 match to the pipeline wall (not shown). The milling
13 elements 32 are not fixed to the tool body 12. The
14 milling elements 32 are free-floating and are held in the
15 extended position against the pipeline walls by virtue of
16 springs 36, 38 and 40 located between the milling
17 elements 32 and the inner sleeve 20. To aid the
18 insertion of these springs 36, 38 and 40 when the tool is
19 assembled, magnets 42 are located in recesses on a back
20 surface 44 of the milling element wherein each spring 36,
21 38 and 40 locates in the recess and is held in place by
22 the magnet 42. The opposing end of each spring 36, 38
23 and 40 is held in a narrow recess 46 on the inner sleeve
24 20. Also located on the back surface 44 of the milling
25 element 32 are additional retraction magnets 48 and 50.
26 Magnets 48 and 50 are located adjacent elongate ports 52
27 and 54 into which are located socket head cap screws 56
28 and 58 whose purpose will be described hereinafter.

29

30

31 Milling element 32 is limited in radial movement by stand
32 off sleeves 60 and 62. Each stand off sleeve 60 and 62
33 has opposite handed threads thus in this embodiment stand
34 off sleeve 60 has a left hand thread while stand off

1 sleeve 62 has a right hand thread. Each sleeve 60 and 62
2 includes a lip 64,66 which engages the corresponding lip
3 68,70 on the milling element 32 to prevent the radial
4 movement. Thus, milling element 32 is biased radially
5 outwards by the use of the springs 36, 38 and 40. As
6 better shown in Figure 3, it will be appreciated that the
7 springs 36 and magnets 42 may be paired up. Although
8 those skilled in the art will appreciate that any number
9 of milling elements may be used and the size and
10 arrangement of the springs may be adjusted, as long as
11 the overall effect is to bias the milling elements and in
12 particular, the milling surfaces 34 outwardly.

13

14 In use the milling elements 32 are arranged on the tool
15 body 12 in the configuration shown to the left hand side
16 of Figure 1. The tool 10 is attached to the drill string
17 and the drill string rotated into the casing or liner.
18 On entering the casing or liner the milling elements are
19 in the expanded position by virtue of the springs 36, 38
20 and 40 radially biasing the milling surface 34 against
21 the inner surface of the casing. The milling element 32
22 may move in relation to the diameter of the casing so
23 that casing inner diameters of various sizes can be used
24 with the tool. As the tool is rotated, burrs present on
25 the inside wall of the casing will be dressed off and
26 removed as will any other debris on the surface of the
27 casing walls. When it is necessary to stop a de-burring
28 or milling process but the drill string still requires to
29 rotate to operate other tools which may be mounted
30 thereon, a drop ball 26 is released into the central bore
31 14 of the tool. The drop ball 26 will typically be
32 released at the surface and travel through the central
33 bore of the drill string to enter the tool 10 at its
34 location in the wellbore. Drop ball 26 will close the

1 central bore 14 as it impacts on the inner sleeve 20.
2 Fluid pressure will build up behind the ball 26 and the
3 resulting force will cause the shear screws 28 to shear
4 thereby allowing the inner sleeve 20 to fall towards the
5 lower end of the tool. In falling the port 22 will
6 locate over recess 24 in the tool body 12 so that flow is
7 maintained through the central bore 14 of the tool 10.
8 At the location of the milling elements 32, movement of
9 the inner sleeve 20 will cause the springs 36, 38 and 40
10 to be re-positioned longitudinally with respect to the
11 tool body 12. Narrow recesses 36 will ensure that the
12 end of the springs 36, 38 and 40 and located in the
13 narrow recess 46 will be forced downwards which will
14 release the opposing end of each spring 36, 38 and 40
15 from the magnet 42. Once the springs 36, 38 and 40 have
16 been re-positioned, the milling element 32 will be pulled
17 radially inwards by the action of the magnets 42 against
18 the re-positioned springs 36, 38 and 40 with the result
19 that the milling element 32 will be pulled to a retracted
20 position away from the walls of the casing. Milling
21 element 32 will be held in the retracted position by
22 virtue of the retraction magnets 48 and 50 remaining
23 attached and attracting the socket head cap screws 56 and
24 58. Thus, in the disengaged position the milling
25 elements 32 are held against the tool body 12 and the
26 milling operation is stopped. In order to prevent
27 passage of fluid into the region where the springs 36, 38
28 and 40 and magnets 42, 48 and 50 are located, the inner
29 sleeve 20 includes a series of 'O' rings 72 and 74.

30

31 The principle advantage of the present invention is that
32 it provides a milling tool where the milling elements can
33 be disengaged to reduce wear on the elements and on the
34 casing walls in use.

1
2 It is a further advantage of the present invention that
3 the milling elements are held against the tool body when
4 the tool is disengaged.

5
6 Various modifications may be made to the invention
7 described hereinbefore without departing from the scope
8 thereof. For instance, the number and arrangement of
9 milling elements may be varied as long as they are
10 mounted around the tool body and have a milling rib or
11 profile to interact with a surface of the inner wall of
12 the casing. Additionally, there may be more than one set
13 of milling ribs located longitudinally which can be
14 operated by a single ball drop. It will also be
15 appreciated by those skilled in the art that a number of
16 these tools may be mounted in relation to each other on a
17 drill string each being operated separately by means of
18 different sized drop balls. Thus, the lowest positioned
19 tool would have a small inner sleeve so that the drop
20 ball would be small enough to fall through the central
21 bore and inner sleeve of the milling tools placed above
22 it.

1 CLAIMS

2
3 1. A downhole tool for the removal of burrs and other
4 unwanted material from an inside surface of a
5 pipeline, well casing or other tubular, the tool
6 including a tool body mountable on a work string,
7 the body supporting a plurality of milling elements
8 which mill the surface and retraction means for
9 disengaging the milling elements from the surface
10 when milling is no longer required.

11
12 2. A downhole tool as claimed in Claim 1 wherein the
13 tool further includes biasing means to bias the
14 plurality of milling elements in an outward radial
15 direction.

16
17 3. A downhole tool as claimed in Claim 2 wherein the
18 biasing means comprise springs held under
19 compression.

20
21 4. A downhole tool as claimed in any preceding Claim
22 wherein the tool further includes an outer sleeve,
23 the outer sleeve including one or more apertures
24 through which the milling elements protrude.

25
26 5. A downhole tool as claimed in Claim 4 wherein the
27 apertures include overhanging portions which engage
28 a part of the milling element and limit the radial
29 movement of the milling element.

30
31 6. A downhole tool as claimed in any one of Claims 3 to
32 5 wherein the retraction means comprises release
33 means to remove the compression on the springs.

34

- 1 7. A downhole tool as claimed in Claim 6 wherein the
2 release means comprises an inner sleeve mounted in a
3 central bore of the tool body into which are located
4 ends of the springs such that the springs are re-
5 positioned by virtue of movement of the inner sleeve
6 from a first position in which the milling elements
7 are engaged to the inside surface and a second
8 position where the milling elements are disengaged.
9
- 10 8. A downhole tool as claimed in Claim 7 wherein the
11 inner sleeve is held in the first position by at
12 least one shear pin.
13
- 14 9. A downhole tool as claimed in Claim 8 wherein the
15 inner sleeve includes a ball seat into which a drop
16 ball can locate such that a pressure build up behind
17 the ball will force the ball against the inner
18 sleeve until the shear pin shears and the inner
19 sleeve falls into the second position.
20
- 21 10. A downhole tool as claimed in any preceding Claim
22 wherein the retraction means further includes one or
23 more magnets to hold the milling elements against
24 the tool body when disengaged.
25
- 26 11. A downhole tool as claimed in Claim 9 or Claim 10
27 wherein the tool includes a by-pass means which
28 maintains fluid flow through the central bore by
29 allowing fluid to by-pass the drop ball when the
30 tool is disengaged.
31
- 32 12. A downhole tool as claimed in Claim 11 wherein the
33 by-pass means comprises one or more radial ports in
34 the inner sleeve and one or more recesses in the

1 tool body such that when the inner sleeve is in the
2 second position, the one or more recesses are
3 located adjacent the drop ball and one or more flow
4 paths are created as the one or more ports align
5 with the one or more recesses thereby directing
6 fluid around the drop ball.

7

8 13. A method of removing burrs or other unwanted debris
9 from an inside surface of a pipeline, well casing or
10 other tubular, the method comprising the steps:

11

12 a) inserting into the tubular one or more milling
13 elements;

14

15 b) biasing the one or more milling elements
16 against the surface to provide a milling action
17 when the elements are moved in relation to the
18 surface;

19

20 c) disengaging the one or more milling elements
21 from the surface to prevent further milling.

22

23 14. A method as claimed in Claim 13 wherein the method
24 further includes the step of actively retaining the
25 milling elements in a retracted position away from
26 the surface of the tubular.

27

28 15. A method as claimed in Claim 13 or claim 14 wherein
29 step (c) includes the step of dropping a ball into
30 the tool to cause parts thereof to move in relation
31 to each other and thereby re-position springs within
32 the tool.

33

1 16. A method as claimed in any one of Claims 13 to 15
2 wherein the method includes the step of magnetically
3 retaining the one or more milling elements against
4 the tool body when disengaged.

INTERNATIONAL SEARCH REPORT

Intern Application No
PCT/GB 02/04707

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 E21B10/32 E21B29/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 E21B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 1 764 373 A (ECKSTEIN OLIVER W ET AL) 17 June 1930 (1930-06-17) page 2, column 1, line 48 -column 2, line 74; figure 3 page 2, column 2, line 120 - line 125	1,2,13, 14
Y	---	3-5,10, 16
Y	US 5 293 945 A (ROSENHAUCH IRWIN ET AL) 15 March 1994 (1994-03-15) column 21, line 56 - line 62; figures 2,3 column 6, line 46 - line 64	3-5
Y	US 5 361 859 A (TIBBITTS GORDON A) 8 November 1994 (1994-11-08) column 7, line 56 - line 61; figure 1 ---	10,16 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

7 February 2003

Date of mailing of the international search report

14/02/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Dantinne, P

INTERNATIONAL SEARCH REPORT

Internal Application No
PCT/GB 02/04707

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 3 105 562 A (SHIRLEY KIRK R ET AL) 1 October 1963 (1963-10-01) column 1, line 42 - line 52; figures 1,2 ---	1,13
A	GB 2 352 747 A (BAKER HUGHES INC) 7 February 2001 (2001-02-07) See abstract figures 1,2 ---	1,13
A	BE 1 012 545 A (SECURITY DBS) 5 December 2000 (2000-12-05) claims 1,3; figures 1,2 -----	1,13

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internat	Application No
PCT/GB	02/04707

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 1764373	A	17-06-1930	NONE		
US 5293945	A	15-03-1994	US	5265684 A	30-11-1993
			AU	659710 B2	25-05-1995
			AU	3221693 A	28-06-1993
			BR	9206822 A	07-11-1995
			CA	2124442 A1	10-06-1993
			EP	0615572 A1	21-09-1994
			GB	2277111 A ,B	19-10-1994
			NO	941943 A	18-07-1994
			WO	9311335 A1	10-06-1993
US 5361859	A	08-11-1994	BE	1010105 A5	02-12-1997
			GB	2275067 A ,B	17-08-1994
			GB	2301386 A ,B	04-12-1996
			US	5560440 A	01-10-1996
US 3105562	A	01-10-1963	NONE		
GB 2352747	A	07-02-2001	AU	4883400 A	01-02-2001
			NO	20003824 A	29-01-2001
			US	2002162659 A1	07-11-2002
BE 1012545	A	05-12-2000	US	6360831 B1	26-03-2002
			BE	1012545 A3	05-12-2000