СТРУКТУРНОЕ РЕДУЦИРОВАНИЕ МОДЕЛИ НЕФТЯНОГО КОЛЛЕКТОРА ПО УСЛОВИЯМ СИММЕТРИИ

Р. В. Распопов, И. Г. Соловьев

(Тюменский государственный нефтегазовый университет)

Ключевые слова: нефтяной коллектор, идентификация, устойчивое оценивание, редукция модели, регуляризация

Key word: oil reservoir, identification, robust estimation, model reduction, regularization

Эффективность избирательных схем разработки и обустройства месторождений [1] со сложной анизотропной структурой строения коллекторов во многом зависит от уровня информационной обеспеченности процессов эксплуатации скважин [2] с одной стороны, а с другой надежной работой алгоритмов сопровождения ПДГТМ (постоянно действующих геолого-технологических моделей) [3]. Масштабное внедрение систем наземной и глубинной телеметрии [4], [5] создает основу для качественного развития технологий контроля и сопровождения фильтрационно-емкостных параметров коллекторов в режиме реального времени.

В рамках избирательных схем разработки особое значение начинает приобретать задача сопровождения гидродинамики локальных участков. Методы оценки параметров коллекторов на основе технологий группового гидропрослушивания скважин [6] ограничены в применении условиями стационарности краевых состояний и специальными режимами возмушений.

Рассмотренный ниже алгоритм оценки фильтрационных параметров участка залежи не накладывает жестких ограничений на стационарность и режимы возмущений скважин, что позволяет реализовывать стратегию сопровождения гидродинамической модели участка в режиме реального времени.

Известно, что задача оценки параметров распределенных сред по контролю процессов в конечном наборе точек является плохо обусловленной [7] и требует применения адекватных методов регуляризации решений [8].

Первый этап регуляризации – переход к осредненной динамике давлений конечных элементов. Предельный уровень огрубления закладывается схемой дренирования продуктивного горизонта сеткой скважин. Приведена геометрическая схема пространственного представления участка коллектора с трехрядной схемой заводнения (рис. 1).

Рис. 1. Трехрядная сетка скважин с выделенным локальным участком

Соответствующая конечномерная модель (см. рис. 1) с принятой нумерацией скважин, имеет вид

$$\tau_0 \dot{p}_0(t) = w_1(p_1(t) - p_0(t)) + \dots + w_6(p_6(t) - p_0(t)) - q_0(t) + \delta p_0, \tag{1}$$

где $p_i(t)$ — среднезональные давления выделенных сегментов, приведенные к единой горизонтали, $q_0(t)$ — объемный расход жидкости в скважине (q(t)>0 — добыча, q(t)<0 — нагнетание), w_i — гидропроводность перехода между центральной и i-й зоной окаймления, $\tau_0=\beta_n m V_0$ — гидроупругий объем вмещающих пустот центральной зоны (β_n — коэффициент гидроупругости, m — пористость, V_0 — пространственный объем продуктивной части центральной зоны), δp_0 — возможная ошибка приведения данных контроля,

$$I_p = \langle p_i(k), q_i(k), k = \overline{1,N}; i \in \{0,1,...,6\} \rangle$$
 к единой горизонтали, $p_i(k) = p_{iu}(k) - \gamma_i \Delta H_i$, $p_{iu}(k)$ – регистрируемые в

 t_k моменты времени ($t_{k+1} = t_k + \Delta t$) данные о среднезональном давлении, γ_i – удельный вес пластового флюида, ΔH_i – расстояние от среднего уровня i -й зоны до проекционной горизонтали.

В предположении, что параметр au_0 известен, а ошибка приведения δp_0 равна нулю, перейдем от (1) к модели вида

$$q_0(t) - \tau_0 \dot{p}_0(t) = w_1(p_1(t) - p_0(t)) + \dots + w_6(p_6(t) - p_0(t)), \tag{2}$$

тогда алгоритм МНК-оценивания вектора неизвестных параметров:

 $\mathbf{c}^T = [w_1 \ w_2 \ w_3 \ w_4 \ w_5 \ w_6] \in \mathbb{R}^6$ объекта (2), представленного в регрессионной форме, для дискретных временных моментов измерений:

$$y(k) = \mathbf{c}^T \mathbf{v}(k) + \xi(k), \ k \in K = \{1, ..., N\}$$
 (3)

сводится к решению системы линейных уравнений:

$$\widetilde{F} \, \widetilde{\mathbf{c}} = \widetilde{\mathbf{b}} \,\,\, \tag{4}$$

где $\tilde{\mathbf{c}}$ – искомые оценки вектора \mathbf{c} , $\tilde{F} = \sum\limits_{k=1}^{N} \mu(k) \mathbf{v}(k) \mathbf{v}(k)^T$, $\tilde{\mathbf{b}} = \sum\limits_{k=1}^{N} \mu(k) y(k) \mathbf{v}(k)$, $\mu(k) \geq 0$, $\sum\limits_{k=1}^{N} \mu(k) = \mu_0$ – весовые (нормирующие) коэффициенты, $\xi(k)$ – приведенная ошибка измерений \mathbf{c} нулевым средним, вектор регрессоров имеет вид

 $\mathbf{v}(k)^T = [p_1(k) - p_0(k) \mid \dots \mid p_6(k) - p_0(k)]$. Результаты решения задачи идентификации в исходном виде (1),

(3), (4) оказываются крайне неустойчивыми, особенно в условиях малой информативности выборки из-за спорадических возмущений.

Одним из приемов повышения устойчивости результатов оценивания является редуцирование модели из-за использования априорной информации. Для этого ставится задача выявления симметрии фильтрационно-емкостных свойств коллектора с равномерно-непрерывной анизотропной структурой.

Для введенной ранее геометрической схемы участка (см. рис. 1) очевидное множество симметрий сведено в табл. 1, где пунктирами обозначены изолинии равновеликих фильтрационных свойств среды.

Возможные симметрии равномерно-непрерывных свойств идентифицируемого участка Таблица 1

j	Изолинии равных свойств	Из условий симметрии	j	Изолинии равных свойств	Из условий симметрии	
1		w_1 $w_2 = w_6$ $w_3 = w_5$ w_4	4		$w_2 = w_3$ $w_1 = w_4$ $w_5 = w_6$	
2		$w_1 = w_2$ $w_3 = w_6$ $w_4 = w_5$	5		w_3 $w_2 = w_4$ $w_1 = w_5$ w_6	
3		w_2 $w_1 = w_3$ $w_4 = w_6$ w_5	6		$w_1 = w_6$ $w_2 = w_5$ $w_3 = w_4$	

Предположим, что пространственное распределение фильтрационных свойств среды W_i представляет наклонную плоскость, описываемую уравнением

$$z(x, y) = ax + by + d \text{ или } z(x, y) = l \cdot \cos \alpha \cdot x + l \cdot \sin \alpha \cdot y + d,$$
 (5)

где l — коэффициент угла наклона плоскости относительно горизонтали xy, α — угол поворота плоскости вокруг оси z, d — средняя высота, x и y — координаты скважин в пределах локального участка. Перепишем (5) в виде

$$z(x,y) = l(\beta \cdot x + \sigma \cdot y) + d, \qquad (6)$$

где β и σ – коэффициенты угла поворота, значения которых известны и соответствуют номерам образов симметрий (см. табл. 1).

Учитывая (6), перейдем от исходной модели

(3) к модели вида

$$y(k) = l((\beta_j x_1 + \sigma_j y_1)v_1(k) + ... + (\beta_j x_6 + \sigma_j y_6)v_6(k)) + d(\sum_{i=1}^6 v_i(k))$$
, в которой неизвестные параметры l и d

определяются по методу наименьших квадратов.

Пересчет полученных оценок параметров редуцированной модели в исходные параметры W_i осуществляется по формуле

 $w_i = l(\beta_j \cdot x_i + \sigma_j \cdot y_i) + d$.После вычисления для каждого образа симметрии параметров w_i определяются критерий отклонений по выходу:

$$J_{y}(j) = \frac{1}{N} \sum_{k=1}^{N} (y(k) - \widetilde{\mathbf{w}}(j)^{T} \mathbf{v}(k))^{2}$$
 и критерий отклонений по параметрам:

$$\rho(\widetilde{\mathbf{w}}(j)) = \sqrt{\frac{1}{6}\sum_{i=1}^{6} \left(\frac{\widetilde{\mathbf{w}}(j) - \mathbf{w}_{i}}{\overline{\mathbf{w}}_{i}}\right)^{2}} \cdot 100\% \text{ , где } \overline{\mathbf{w}}_{i} = \frac{1}{6}\sum_{i=1}^{6} \mathbf{w}_{i} \text{ .Численный эксперимент на модели с параметрами (табл. 2)}$$

(номер варианта симметрии j=2 (см. табл. 1) проводился в предположении, что параметр $\tau_0=600$ нам известен и ошибка приведения δp_0 равна нулю. Режимы возбуждений скважин приведены на рис. 2, где цифрами отмечены номера зон. По условиям эксперимента возбуждается центральная нагнетательная скважина (с номером 0), остальные работают в квазистатическом режиме постоянного отбора или нагнетания (см. рис. 1).

Параметры модели в эксперименте при номере варианта симметрии j=2

Параметр	w_1	w_2	w_3	w_4	w_5	w_6
Значение	62,12	62,12	50	37,88	37,88	50

Рис. 2. Графики исходных данных

Задача оценивания решалась на двух выборках: незашумленной ($\|\xi\|=0$) и с шумом $\|\xi\|=80$ (в табл. 3 приведены результаты для случая $\|\xi\|=80$).

Оценки параметров при зашумленной выборке данных

Таблица 3

_	Истинные значения	Номера симметрий						
Параметры		j = 1	j = 2	<i>j</i> = 3	j = 4	<i>j</i> = 5	<i>j</i> = 6	
l	14	-4,775	12,238	3,498	2,311	2,136	2,613	
d	50	49,686	49,964	49,862	49,828	49,803	49,773	
w_1	62,124	44,911	60,562	51,611	49,828	48,736	47,51	
w_2	62,124	47,299	60,562	53,36	51,829	50,871	49,773	
w_3	50	52,074	49,964	51,611	51,829	51,939	52,036	
w_4	37,876	54,462	39,365	48,113	49,828	50,871	52,036	
w_5	37,876	52,074	39,365	46,364	47,826	48,736	49,773	
w_6	50	47,299	49,964	48,113	47,826	47,668	47,51	
$\rho(\widetilde{\mathbf{w}}(j))$	-	6,696	0,062	2,469	3,381	4,013	4,79	
J_{y}	-	10,351	9,256	9,584	9,724	9,826	9,958	

После решения, согласно рассмотренному алгоритму, для разных номеров симметрий j получены оценки $\tilde{\mathbf{c}}$ и $\tilde{\mathbf{w}}$, а также значения критериев. На графиках критериев отклонений по выходу и по параметрам (рис. 3) отчетливо фиксируется минимум при j=2 (см. табл. 3).

Рис. 3. Графики критериев точности J_{v} и $\rho(\widetilde{\mathbf{w}}(j))$ для $\|\xi\| = 0$ и $\|\xi\| = 80$

Результаты экспериментов, представленные в виде графиков (см. рис. 3) для примера локального участка коллектора с параметрами (см. табл. 2) и режимами возбуждения (см. рис. 2), свидетельствуют:

- критерий среднеквадратичных отклонений J_y фиксирует правильный образ симметрии j=2 в диапазоне действия помехи $|\xi(k)| \le 80$;
- оптимальный выбор образа симметрии по точности выхода при заданном уровне шума соответствует минимальной ошибке оценивания по параметрам $\rho(\tilde{\mathbf{w}}(j))$, однако, при действии шума чувствительность критерия по выходу вблизи экстремума очень мала;
- априорное предположение о симметрии фильтрационных свойств позволяет сократить порядок модели и увеличить устойчивость оценок.

Список литературы

- 1. Лысенко В. Д., Грайфер В. И. Рациональная разработка нефтяных месторождений. М.: ООО «Недра-Бизнесцентр», 2005. 607 с.
- 2. Жильцов В. В., Дударев А. В., Демидов В. П., Шитов Г. В., Чувикова В. В. Решения и развитие интеллектуальных технологий мониторинга и управления механизированным фондом скважин // Нефтяное хозяйство 2006. № 10. С. 128-130.
- 3. Ведерникова Ю. А., Соловьев И. Г. Оценивание локальных гидродинамических характеристик нефтяных коллекторов // НТЖ «Автоматизация, телемеханика и связь в нефтяной промышленности». 2005. № 12. С. 16-20.
- 4. Соловьев И. Г., Говорков Д. А. Факторы устойчивости МНК-оценок параметров притока вертикальной скважины // НТЖ «Автоматизация, телемеханика и связь в нефтяной промышленности». 2009, № 9. С. 31-35.
- 5. Руководство по эксплуатации УЭЦН 468154.002 РЭ. Блок погружной БП для отслеживания текущих параметров в забое скважины. Ижевск: ОАО «Ижевский радиозавод», 2001.
- 6. Соловьев И. Г. Гидродинамическая модель и идентификация локальных участков нефтяных коллекторов в режиме нормальной эксплуатации // Известия вузов. Нефть и газ. 2005. № 1. С. 42.
 - 7. Форсайт Дж., Молер К. Численное решение систем линейных алгебраических уравнений. М.: Мир, 1969. 168 с.
 - 8. Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М.: Наука, 1979. 288 с.

Сведения об авторах

Располов Р. В., аспирант, Институт криосферы Земли СО РАН, тел.: (3452) 30-55-83, e-mail: romanraspopov@gmail.com

Соловьев И. Г., к.т.н., старший научный сотрудник, Институт проблем освоения Севера СО РАН, тел.: (3452)-68-99-08, e-mail: solovyev@ikz.ru

Raspopov R. V., postgraduate student, Institute of Earth Cryosphere, Siberian Division of the Russian Academy of Sciences, phone: (3452) 30-55-83, e-mail: romanraspopov@gmail.com

Solovyev I. G., PhD, senior scientist, Institute of Northern Development, Siberian Division of the Russian Academy of Sciences, phone: (3452)68-99-08, e-mail: solovyev@ikz.ru