Kapitel 3: Aritmetik

Kasper K. S. Andersen

23 september 2021

Division med rest

Exempel 1. Vi har $\frac{23}{4} = 5 + \frac{3}{4}$. Ekvivalent gäller (multiplicera med 4)

$$23 = \underbrace{5}_{\text{kvot}} \cdot 4 + \underbrace{3}_{\text{rest}}$$

Observera att resten uppfyllar $0 \le 3 < 4$.

Sats 3.1: Om $a,b\in\mathbb{Z},\,b\neq 0$ finns unikatal $k,r\in\mathbb{Z}$ så att

$$a = \underbrace{k}_{\text{kvot}} \cdot b + \underbrace{r}_{\text{rest}} \quad \text{och } 0 \le r < |b|.$$

Anmärkning: Observera att vi skriver |b| och inte b då vi tillåter b < 0.

Delare i \mathbb{Z}

Om man får resten 0 vid division prater vi om delare.

Definition 1. Låt $a, b \in \mathbb{Z}$. Vi säger att b delar a eller b är delare i a om det finns heltal k så att $a = k \cdot b$. Detta skrivas $b \mid a$. Om inte det finns ett sådant k skrivs $b \nmid a$, i ord: b delar inte a.

Exempel 2. Vi har

- $3 \mid 12, 3 \text{ delar } 12, \text{ ty } \underbrace{12}_{a} = \underbrace{4}_{k} \cdot \underbrace{3}_{b}$
- \bullet -3 | 12
- 2|-6

- 5∤6
- Delarne i 30: $\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30$

Anmärkning:

- Uppenbart gäller $\pm 1 \mid a$ och $\pm a \mid a$ för alla heltal a.
- Dessutom gäller $b \mid 0$ för alla heltal b.
- Det gäller att $0 \mid 0$ ty $\underbrace{0}_a = \underbrace{k}_k \cdot \underbrace{0}_b$ för alla heltal k (observera att definitionen inte involverar $\frac{0}{0}$). Dessutom gäller $0 \nmid a$ för $a \neq 0$ ty det finns inga heltal k så att $\underbrace{a}_a = \underbrace{k}_k \cdot \underbrace{0}_b$

Definition 2. Ett heltal p > 1 som endast har delarne ± 1 och $\pm p$ kallas ett primtal, tex. $2, 3, 5, 7, 11, 13, 17, 19, \dots$

Ett heltal n > 1 kallas sammansatt om det inte är ett primtal, dvs. om det har andra delare än ± 1 och $\pm n$.

Exempel 3. • 7 är ett primtal då det endast har delarne ± 1 och ± 7 .

- 91 är sammansatt då 7|91.
- Talen $x^2 x + 41$ ett primtal för $x = 0, \dots, 40$ (Leonhard Euler 1707–1783).
- Det största kända primtal i nuläget är $2^{82,589,933} 1$ (december 2018) men det finns oändligt många (Euklides från Alexandria ca. 325–265 f.Kr.).

Moduloräkning

Når man bara intresserar sig för resterna och inte bryr sig om kvoten, pratar man om *moduloräkning* (också kallad *klockaritmetik*, jmf. figuren i Exempel 3.6, s. 55).

Definition 3. Två heltal a och b kallas kongruenta modulo <math>n om de ger samma rest vid division med n. Detta skrivs: $a \equiv b \pmod{n}$.

Anmärkning: Det gäller $a \equiv b \pmod{n} \iff n \mid a - b$.

Exempel 4. Vi sätter oss på tåget kl. 21. När kommer vi fram om resan tar 35h?

Lösning: Vi utför division med 24 och kollar på resten.

$$21 + 35 = 56 = \underbrace{2}_{\text{kvot}} \cdot 24 + \underbrace{8}_{\text{rest}} \equiv 8 \pmod{24}.$$

Anmärkning: Om man räknar med resterna vid $division \ med \ n$ så räknar man $modulo \ n$.

Exempel 5. (a) $5 \equiv 14 \pmod{3}$, ty

$$5 = 1 \cdot 3 + 2 \equiv 2 \pmod{3}$$

$$14 = 4 \cdot 3 + 2 \equiv 2 \pmod{3}$$
 samma rest

Alternativ: 5 - 14 = -9 och 3 | -9.

(b) $25 \equiv -3 \pmod{7}$, ty

$$25 = 3 \cdot 7 + 4 \equiv 4 \pmod{7}$$
$$-3 = -1 \cdot 7 + 4 \equiv 4 \pmod{7}$$
 samma rest

Alternativ: -3 - 25 = -28 och 7 | -28.

• Läs Exempel 3.4, s. 53, Exempel 3.5, s. 54 och Exempel 3.6, s. 55...

Exempel 6. Beräkna $16 + 43 \pmod{3}$.

Lösning:

Alternativ 1: $16 + 43 = 59 = 19 \cdot 3 + 2 \equiv 2 \pmod{3}$.

Alternativ 2: $16 = 5 \cdot 3 + 1 \equiv 1 \pmod{3}$ och $43 = 14 \cdot 3 + 1 \equiv 1 \pmod{3}$ varför

$$16 + 43 \equiv 1 + 1 = 2 \pmod{3}$$
.

Exempel 7. Beräkna $16 \cdot 43 \pmod{3}$.

Lösning:

Alternativ 1: $16 \cdot 43 = 688 = 229 \cdot 3 + 1 \equiv 1 \pmod{3}$.

Alternativ 2: $16 \equiv 1 \pmod{3}$ och $43 \equiv 1 \pmod{3}$ varför

$$16 \cdot 43 \equiv 1 \cdot 1 = 1 \pmod{3}.$$

Restklasser

Definition 4. Om a och n är heltal, $n \neq 0$, definieras restklassen

$$[a]_n = \{b \mid b \equiv a \pmod{n}\} = \{\dots, a - 2n, a - n, a, a + n, a + 2n, \dots\}$$

som mängden av alla tal som är kongruenta med a modulo n.

Anmärkning: Observera att $a \equiv b \pmod{n} \iff [a]_n = [b]_n$.

Exempel 8. För n = 6 fås de 6 restklasserna

$$\begin{split} &[0]_6 = \{\ldots, -18, -12, -6, 0, 6, 12, 18, 24, \ldots\}, \\ &[1]_6 = \{\ldots, -17, -11, -5, 1, 7, 13, 19, 25, \ldots\}, \\ &[2]_6 = \{\ldots, -16, -10, -4, 2, 8, 14, 20, 26, \ldots\}, \\ &[3]_6 = \{\ldots, -15, -9, -3, 3, 9, 15, 21, 27, \ldots\}, \\ &[4]_6 = \{\ldots, -14, -8, -2, 4, 10, 16, 22, 28, \ldots\}, \\ &[5]_6 = \{\ldots, -13, -7, -1, 5, 11, 17, 23, 29, \ldots\}, \end{split}$$

Sats: For n > 0 ger de n restklasserna

$$[0]_n, [1]_n, \ldots, [n-1]_n$$

en partition av \mathbb{Z} , dvs. de är disjunkta och unionen är \mathbb{Z} .

Definition 5. För n > 0 betecknar

$$\mathbb{Z}_n = \{ [a]_n | a \in \mathbb{Z} \} = \{ [0]_n, [1]_n, \dots, [n-1]_n \}$$

mängden av möjliga restklasser modulo n. Vi har $|\mathbb{Z}_n| = n$.

Exempel 9. Vi har $\mathbb{Z}_6 = \{[0]_6, [1]_6, [2]_6, [3]_6, [4]_6, [5]_6\}, \quad |\mathbb{Z}_6| = 6.$