24. Uneigentliche Integrale

In diesem Paragraphen gelte stets: Ist $I \subseteq \mathbb{R}$ ein Intervall und $\varphi : I \to \mathbb{R}$ eine Funktion, so gelte $\varphi \in R[a,b]$ für jedes Intervall $[a,b] \subseteq I$.

(I) 1. Typ uneigentlicher Integrale Sei $a \in \mathbb{R}$, $\beta \in \mathbb{R} \cup \{\infty\}$, $a < \beta$ und $f : [a, \beta) \to \mathbb{R}$. Existiert der Grenzwert $\lim_{t\to\beta} \int_a^t f(x) \mathrm{d}x$ und ist dieser Grenzwert reell, so heißt das **uneigentliche** Integral $\int_a^\beta f(x) \mathrm{d}x$ konvergent und $\int_a^\beta f(x) \mathrm{d}x := \lim_{t\to\beta} \int_a^t f(x) \mathrm{d}x$. Ist das Integral $\int_a^\beta f \mathrm{d}x$ nicht konvergent, so heißt es **divergent**.

Beispiele:

(1)

$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx \quad (a=0, \beta=1)$$

Für $t \in (0,1): \int_0^t \frac{1}{\sqrt{1-x^2}} \mathrm{d}x = \arcsin|_0^t = \arcsin t \to \frac{\pi}{2} \ (t \to 1)$. Das heißt: $\int_0^1 \frac{1}{\sqrt{1-x^2}} \mathrm{d}x$ konvergiert und hat den Wert $\frac{\pi}{2}$.

(2)

$$\int_0^\infty \frac{1}{1+x^2} \mathrm{d}x \quad (a=0, \beta=\infty)$$

Für t > 0: $\int_0^t \frac{1}{1+x^2} dx = \arctan x|_0^t = \arctan t \to \frac{\pi}{2} \ (t \to \infty)$. Also: $\int_0^\infty \frac{1}{1+x^2} dx$ konvergiert und hat den Wert $\frac{\pi}{2}$.

(3) (wichtiq) Sei $\alpha > 0$. Übung:

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx \text{ konvergient } \iff \alpha > 1$$

(II) 2. Typ uneigentlicher Integrale Sei $\alpha \in \mathbb{R} \cup \{-\infty\}$, $a \in \mathbb{R}$, $\alpha < a$ und $f : (\alpha, a] \to \mathbb{R}$ eine Funktion. Entsprechend zum 1. Typ definiert man die Konvergenz bzw. Divergenz des uneigentlichen Integrals $\int_{\alpha}^{a} f(x) dx$ (nämlich $\lim_{t \to \alpha} \int_{t}^{a} f(x) dx$).

Beispiele:

(1)

$$\int_{-\infty}^{0} \frac{1}{1+x^2} \mathrm{d}x$$

Für t < 0: $\int_t^0 \frac{1}{1+x^2} dx = \arctan x|_t^0 = -\arctan t = \arctan(-t) \to \frac{\pi}{2} \ (t \to -\infty)$

(2) (wichtig) Sei $\alpha > 0$. Übung:

$$\int_0^1 \frac{1}{x^{\alpha}} dx \text{ konvergient} \iff \alpha < 1$$

(III) 3. Typ uneigentlicher Integrale Sei $\alpha \in \mathbb{R} \cup \{-\infty\}, \beta \in \mathbb{R} \cup \{-\infty\}, \alpha < \beta$ und $f:(\alpha,\beta)\to\mathbb{R}$ eine Funktion. Das uneigentliche Integral $\int_{\alpha}^{\beta}f(x)\mathrm{d}x$ ist **konvergent**, genau dann wenn es ein $c \in (\alpha, \beta)$ gibt mit: $\int_{\alpha}^{c} f(x) dx$ konvergiert und $\int_{c}^{\beta} f(x) dx$ konvergiert. In diesem Fall gilt: $\int_{\alpha}^{\beta} f dx := \int_{\alpha}^{c} f dx + \int_{c}^{\beta} f dx$ (Übung: diese Definition ist unabhängig von c)

- (1) $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ konvergiert und hat den Wert π .
- (2) $\int_0^\infty \frac{1}{r^2} dx$ divergiert, denn $\int_0^1 \frac{1}{r^2} dx$ divergiert.

Das Folgende formulieren wir nur für den Typ (I) (sinngemäß gilt alles auch für Typ (II), (III)):

 $\int_a^\beta f dx$ heißt **absolut konvergent** : $\iff \int_a^\beta |f| dx$ ist konvergent.

Sei $g:[a,\beta)\to\mathbb{R}$ eine weitere Funktion.

- (1) $\int_a^\beta f dx$ konvergiert $\iff \exists c \in (a, \beta) : \int_c^\beta f dx$ konvergiert. In diesem Fall gilt: $\int_a^\beta f dx = \int_a^c f dx + \int_c^\beta f dx$.
- (2) Cauchykriterium: $\int_a^\beta f dx$ konvergiert $\iff \forall \varepsilon > 0 \ \exists c = c(\varepsilon) \in (a, \beta) : |\int_u^v f dx| < c(\varepsilon)$ $\varepsilon \ \forall u, v \in (c, \beta)$
- (3) Ist $\int_a^\beta f dx$ absolut konvergent, dann gilt: $\int_a^\beta f dx < \int_a^\beta |f| dx$ und $|\int_a^\beta f dx| < \int_a^\beta |f| dx$.
- (4) Majorantenkriterium: Ist $|f| \leq g$ auf $[a, \beta)$ und $\int_a^\beta g dx$ konvergent, dann konvergiert $\int_{a}^{\beta} f dx$ absolut.
- (5) Minorantenkriterium: Ist $f \geq g \geq 0$ auf $[a, \beta)$ und $\int_a^\beta g dx$ divergent, dann divergiert

Beispiele: (1)
$$\int_{1}^{\infty} \underbrace{\frac{x}{1+x^2}}_{=:f(x)} dx$$
, $g(x) := \frac{1}{x} \cdot \frac{f(x)}{g(x)} = \frac{x^2}{1+x^2} \to 1 \ (x \to \infty)$.

$$\implies \exists c \in (1,\infty) : \frac{f(x)}{g(x)} \ge \frac{1}{2} \ \forall x \ge c \implies f(x) \ge \frac{1}{2x} \ \forall x \ge c. \ \int_c^\infty \frac{1}{2x} \mathrm{d}x \ \mathrm{divergiert} \\ \implies \int_c^\infty f(x) \mathrm{d}x \ \mathrm{divergiert} \implies \int_1^\infty f(x) \mathrm{d}x \ \mathrm{divergiert}.$$

(2) $f(x) = \frac{1}{\sqrt{x}}$. $\int_0^1 f(x) dx$ konvergiert, $\int_0^1 f^2(x) dx$ divergiert.