Théorie de l'information :

EX. 1:

Une liaison numérique (voir figure ci-dessus) fonctionne en binaire, transmettant des 0 et des 1. Le bruit de cette liaison induit une confusion, ce qui conduit à interpréter un 1 comme un 0 et réciproquement. Soit respectivement A_0 et A_1 les événements "transmission d'un 0" et "transmission d'un 1"; soit B_0 et B_1 les événements "réception d'un 0" et "réception d'un 1". En faisant l'hypothèse $P(A_0) = 0.5$, $P(B_1|A_0) = 0.1$ et $P(B_0|A_1) = 0.2$.

- a) Evaluer $P(B_0)$ et $P(B_1)$
- b) Si l'on reçoit un 0, quelle est la probabilité d'émission d'un 0 ?
- c) Si l'on reçoit un 1, quelle est la probabilité d'émission d'un 1?
- d) Calculer la probabilité d'erreur Pe.
- e) Calculer la probabilité pour que le signal transmis soit correctement reçu par le récepteur.
- f) On suppose maintenant que $P(A_0) = p$ et $P(A_1) = (1 p)$. Calculer la self-information moyenne de la source binaire et représenter son évolution en fonction de p. Conclure.

EX.2:

Soit une source discrète sans mémoire. On donne r = 10 symboles/sec.

Symbole	P(xi)
A	1/2
В	1/4
С	1/8
D	1/8

- a) Calculer H(X)
- b) Calculer R = r.H(X)
- c) Que se passe-t-il si P(A) = P(B) = P(C) = P(D)? Quelle est la valeur de R dans ce cas ?
- d) On associe le code suivant aux symboles précédents :

Code	Li
0	1
01	2
011	3
0111	4

Calculer \overline{L} la longueur moyenne du code. Vérifier que $\overline{L} \ge H(X)$.

e) Calculer le rendement de ce code.

EX. 3:

Compression de données. Codage d'Huffmann.

Concevoir un code d'Huffmann pour la source $\chi = \{x_1, x_2, \dots x_9\}$ dont les probabilités respectives sont données par p = $\{0.2, 0.15, 0.13, 0.12, 0.1, 0.09, 0.08, 0.07, 0.06\}$. Déterminer \overline{L} et H(X) pour ce code.

EX. 4:

Soit un canal téléphonique dont la bande passante est donnée par BP = [300, 3400] Hz. Tracer le graphe de C en fonction du SNR avec 0 < SNR < 60dB. En déduire le débit maximal sur une ligne téléphonique dont le SNR est de 30dB.

EX. 5:

A l'aide de Matlab, retracer le tracé du troisième théorème de Shannon (diapositive 21).

$$A: 1/2$$
 $B: 1/4$
 $C: 1/8$
 $A: 10$
 $A: 0$
 $C: 1/8$
 $A: 0$
 $A:$

$$0 \quad \overline{Z} = \frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{8} \times 4 = 1, 875 + \frac{1}{2} \times 4 \times 5 = 1, 875$$

$$H(x) = -\frac{2}{5} \left[r_{3} \cdot l_{3} \cdot 2 \cdot l_{1} \right]$$

$$= -\left[0, 2 \cdot l_{1} \cdot (0, 2) + 0, 15 \cdot l_{1} \cdot (0, 15) + 0, 13 \cdot l_{1} \cdot (0, 15) + 0, 12 \cdot l_{1} \cdot (0, 12) + 0, 1 \cdot l_{1$$

