Statistical Investigation of Organizational Responses on Twitter Online Firestorm

Jocelyn Tan

Abstract

A statistical investigation on an online firestorm of JPMorgan in 2013 was conducted in this study in order to examine the effectiveness of the response provided by the company. Sentiment analysis was utilized to extract the sentiment from tweets and sentiment difference before and after the response was tested by statistical tests. Two sentiment analysis tools were used to compare the results. After observing significant increase in negative sentiments and decrease in positive sentiment from the two different tools, the study concluded that the response was not very effective.

Introduction

Twitter has been a great platform for word-of-mouth propagation, which makes it one of the major social media for marketing campaign and communication. However, the speed of propagation sometimes can make the brand image of a company in jeopardy by bringing huge waves of negative comments and complaints with outrage in a short period of time. In the study of Pfeffer et al. (2014)¹, it defined the sudden influx of messages with huge amount of negative word-of-mouth and complaints towards companies in social media as online firestorm. In this paper, through a study of an online firestorm case of JPMorgan, the consequences of online firestorm have been revealed and the effectiveness of the organizational response of the company has been examined using statistical tests.

Case Study

At 2:41 PM, November 6th, 2013, the JPMorgan sent a tweet from its corporate account to announce a live Twitter Q&A about leadership and career advice hosted by one of its executives. It created a hashtag "#AskJPM" and encouraged participants to submit questions using this hashtag.

One day later, November 7th, 2013, it posted a second tweet related to #AskJPM as a reminder.

¹ Pfeffer, Zorbach, Carley. (2014). Understanding Online Firestorms: Negative word-of-mouth dynamics in social media networks Journal of Marketing Communications. Vol. 20, Nos. 1–2, 117–128, http://dx.doi.org/10.1080/13527266.2013.797778

On November 8th, 2013, it revealed the executive who hosted the Q&A session:

One week later, it sent out a reminder tweet:

While hardly any retweet or attention on the original tweet, on November 13th, the hashtag started to be used by Twitter users frequently to post questions related to the ethic of the bank. JPMorgan had been negotiating an agreement with the U.S. over bad mortgages and two ex-employees were indicted for their attempt to cover up a huge trading loss. Some of the questions asked by Twitter users:

Hours later, JPMorgan realized the Q&A session had turned into an online firestorm which might be out of their control and they called it off at 4:29 PM, Nov 13th, 2013.

Methodology

Twitter Mining Framework

In general, hashtags are used in tweets before a keyword or phrases relevant to the topic of the user, with no space between the hashtags and the phrases, in order to categorize the content, help user keep track of the content and updates the relevant topic.² To identify the tweets related to this online firestorm, the hashtag #AskJPM created only for this event is used.

Data Collection

Twitter data can be accessed by using Twitter API which has rate limit and limitation on fetching historical data³. The size of the data was anticipated to be huge based on the nature of online firestorm and tweets in 2013 were needed for this particular case.

To avoid the limitations of Twitter API and obtain the completeness of the dataset, an advanced search option in Twitter was used⁴. After carefully analysing the hashtags used for people to comment on the event, #AskJPM is chosen as the only hashtag to use during the data retrieval process to avoid collecting noisy data.

Related tweets (searched by #AskJPM) were collected from November, 6^{th} , 2013 to February, 4^{th} , 2014. The initial size of the collected tweets was 13,634. Some of the tweets

² S. Das, et al., Extracting patterns from Twitter to promote biking, IATSS Research (2018), https://doi.org/10.1016/j.

³ Twitter. Consuming streaming data. Retrived from: https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data#overview

⁴ Historical tweet Access, https://github.com/Jefferson-Henrique/GetOldTweets-python Accessed Apr 29, 2019.

were deleted because they contained empty content after data cleaning. For the final analysis, 11,024 relevant tweets were analysed.

The response was posted by the company on 4:29 pm, November 13, 2013. There were 492 tweets before the responses and 10,532 tweets after the responses.

From figure 1, it can be observed that majority of the tweets related to the events were posted within three months of the start of the event. The high volume and quick speed confirmed the features of an online firestorm.

Figure 1 Histogram for Tweets Frequency - Three Months

From figure 2 which mainly focus on the frequency within the first two weeks (10275 tweets, 93.2% of total tweets in the final dataset). The peaks located on November 13th, 2013 which was the same day the company posted their response to the online firestorm.

Figure 2Histogram for Tweets Frequency - Two Weeks

From figure 3 which mainly focus on the frequency within the 5 days of the response (9348 tweets, 84.8% of the final dataset). The peaks located between 4 pm to 5 pm on November 13th, 2013 which within 1 hour when the company posted their response to the online firestorm.

Figure 3Histogram for Tweets Frequency - 5 days

From figure 4 which mainly focus on the frequency within the day of the response (4654 tweets, 42.2% of the final dataset). The peaks located between 4 pm to 5 pm on November 13th, 2013 which within 1 hour when the company posted their response to the online firestorm. Interestingly, the volume was much smaller before the response was posted.

Figure 4 Histogram for Tweets Frequency - 1 day

Data Cleaning

The collected tweets contains some noisy data such as web links, redundant contents, non-ASCII and handles. To avoid affecting the sentiment analysis in later stage, those noisy contents were all removed using R base package. For hashtags, only the number sign "#" has been removed due to the fact that Twitter users tended to use hashtags to express their feelings and some of them wrote the whole content with "#" in front of each word.

Sentiment Analysis

Two different approaches were used to compare the results.

LIWC

LIWC (Linguistic Inquiry and Word Count) is a text analysis software that provides evaluation of emotion, cognition and structure of a given text based on the dictionary consisting of words and categories. ⁵ Among the results given by LIWC output, all the sentiments and outputs were analysed to compare with tidytext results.

NRC from Tidytext

NRC lexicon is used for extracting the sentiment for each tweet. The NRC Emotion Lexicon is a list of English words and their associations with eight basic emotions (anger, fear, anticipation, trust, surprise, sadness, joy, and disgust) and two sentiments (negative and positive). After utilizing the functions provided in this package, the term frequency table of 10 sentiments were generated. Total negative sentiment and total positive sentiment were calculated from those 10 sentiments to compare with LIWC results.

Statistical Test

Independent t-tests were conducted to examine whether there was significant change in sentiment before and after the response.

There were 492 tweets before the response and 10,532 tweets after the response. Thus, the sample size for tweets before the response ('before' dataset) was 492 and the sample size for after response ('after dataset') was 10,532.

First, normality of the 'before' dataset has been tested using Shapiro-Wilk test⁶ for it contains much fewer tweets. For the 'after' dataset, the number of observation violated the limitation of the Shapiro-Wilk test in the stats packages in R. The limitation is used to avoid the fact that for large amounts of data even very small deviations from normality can be detected, leading to rejection of the null hypothesis even though for practical purposes the data is normal. Thus, it was assumed that it was close to normal distribution by central limit theorem. Further investigation can be conducted if needed.

F-test to compare the variance was also conducted in order to use the right t-test for different sentiment.

⁵ Goncelves et al. (2014). Comparing and Combining Sentiment Analysis Method. Retrievd from: https://arxiv.org/pdf/1406.0032.pdf

⁶ Shapiro-Wilk Test. Retrieve from: https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test

Tests were conducted using the stats packages in R for Tidytext results and Python for LIWC results.

Results and Discussion

LIWC

Among 93 sentiments generated by the LIWC software, the categories in LIWC output in the table below had significant changes before and after the response. The mean of sentiment score of 'Negative emotion', 'Anxiety', 'Affiliation', 'Risk', and 'Leisure' increased significantly after response. Most of the sentiments were negative sentiments. The dictionary words decreased significantly while the punctuation and netspeak increased. Further investigation of the sentiments for different punctuations can be conducted due to the fact that the exclamation has increased significantly after response which might be a sign of surprise or anger.

Sentiments	Category / Examples	Diff	Sentiments	Category / Examples	Diff
Analytic	Analytical Thinking	Increase	Dic	Dictionary words	Decrease
Sixltr	Words > 6 letters	Increase	Function	It, to, no, very	Decrease
affect	Affective processes: happy, cried	Increase	Pronoun	I, them, itself	Decrease
negemo	Negative Emotion	Increase	Ppron	I, them, her	Decrease
anx	Anxiety	Increase	You	Second person	Decrease
drives	drives	Increase	Shehe	Third pers singular	Decrease
affiliation	Ally, friend, social	Increase	Auxverb	Am, will, have	Decrease
risk	risk	Increase	Adverb	Very, really	Decrease
leisure	leisure	Increase	Conj	And, but, whereas	Decrease
informal	Informal language	Increase	Verb	Common verbs	Decrease
netspeak	Btw, lol, thx	Increase	Interrog	How, when what	Decrease
Colon		Increase	Quant	Few, many, much	Decrease
Exclam		Increase	Cogproc	Cause, know, ought	Decrease
Apostro		Increase	Discrep	Should, would	Decrease
OtherP	Other punctuation	Increase	Tentat	Maybe, perhaps	Decrease
			Differ	Hasn't, but, else	Decrease
			focuspresent	Today, is, now	Decrease

Table 5 LIWC Output Significant T Test Results

Note: Diff (Significant mean difference (After - Before)

NRC from Tidytext

Among 10 sentiments generated by the 'nrc' lexicon and the 2 sentiments calculated representing the total negative and total positive sentiments, only 'positive' and 'trust' were significantly different before and after response. For 'positive', the mean decreased from 0.99 to 0.88. For 'trust', the mean dropped from 0.63 to 0.53. Both of them were positive sentiments and decreased significantly after response.

Although two different methods generated different sentiments due to the default of the software or library, the implication of the results were the same. The response did not effectively resolve the outrages of the Twitter users.

Discussion

Apart from the statistical test, the organizational strategy can be categorized as 'respond' according to the paper of Thomas et al (2012). ⁷ It was defined as strategy involving listening to, acknowledging, and resolving the negative feedback through social media potentially. If the response was effective, this strategic option could be used to quickly react to their clients or even convert them into loyal customers. However, one disadvantage could be the requirement of appropriate time of response. Also, the paper pointed that in situations where companies were unfairly and inaccurately attacked and the response was not well-received, using this option will not be effective. In this case, the number of comments grew rapidly after the response could be a sign of ineffective response.

Conclusion

By investigating the #AskJPM case, the study has examined the effectiveness of this particular response provided by JPMorgan in term of sentiment difference before and after the response by using statistical tests. Both NRC lexicon and LIWC software provided similar results that the response was not very effective regarding soothing the tension and quell the negative word of mouth.

 $^{^7}$ Thomas, Jane B.; Peters, Cara O.; Howell, Emelia G.; and Robbins, Keith (2012) "Social Media and Negative Word of Mouth: Strategies for Handing Unexpecting Comments," Atlantic Marketing Journal: Vol. 1: No. 2, Article 7. Retrieved from: https://digitalcommons.kennesaw.edu/amj/vol1/iss2/7

Appendix

Table 1 NRC Result

NRC

						Result
	Normal	Equal				(Significant
Emotion	Dist	Variance	Mean (before)	Mean (after)	P-Value	Diff)
Anger	No	Yes	0.38655462	0.3859515	0.98573095	No
Anticipation	No	Yes	0.45658263	0.4777778	0.56627838	No
Disgust	No	Yes	0.28571429	0.2817369	0.88850988	No
Fear	No	Yes	0.40896359	0.4252874	0.63681392	No
Joy	No	Yes	0.40896359	0.3720307	0.25900493	No
Negative	No	No	0.78151261	0.8598978	0.08703644	No
Positive	No	Yes	0.99159664	0.8777778	0.02033461	Yes
Sadness	No	Yes	0.37815126	0.3661558	0.71231887	No
Surprise	No	Yes	0.2605042	0.250447	0.70894894	No
Trust	No	Yes	0.6302521	0.5320562	0.01380497	Yes
Total						
Negative	No	Yes	2.24089636	2.3190294	0.58095592	No
Total Positive	No	Yes	2.74789916	2.5100894	0.08748104	No

Table 2 LIWC T Test Results

Significant Increase/Decrease in Sentiment

Sentiment s	Before_Norm ality	After_Norm ality	Equal_Varia	Before_Mean	After_Mean	Diff	T-test_P	Signific ant
Analytic	No	No	Yes	58.2855691056 909	65.9509048613 758	Increas e	7.9381021649643 2E-07	Yes
Sixltr	No	No	No	15.8744105691 057	18.9198604253 702	Increas e	1.7275584009635 E-08	Yes
Dic	No	No	No	73.1655487804 877	70.3299164451 193	Decrea se	7.6209798827058 9E-05	Yes
function	No	No	No	43.2573577235 773	38.8381418533 991	Decrea se	1.7768823068113 8E-12	Yes
pronoun	No	No	Yes	11.6935975609 756	9.65092100265 839	Decrea se	5.7356886011646 E-07	Yes
ppron	No	No	Yes	7.73615853658 537	5.96161033042 153	Decrea se	4.1687251167675 4E-08	Yes
you	No	No	No	4.71817073170 732	3.07353304215 723	Decrea se	4.9791746905427 2E-09	Yes
shehe	No	No	No	0.43191056910 5691	0.23365362704 1398	Decrea se	0.0253432288666 305	Yes
auxverb	No	No	No	9.47101626016 261	7.59562856057 715	Decrea se	1.7381544168077 2E-10	Yes
adverb	No	No	Yes	4.95768292682 927	4.41157045195 59	Decrea se	0.0424746069920 561	Yes
conj	No	No	No	4.48002032520 325	3.59914736042 534	Decrea se	0.0007281538035 79778	Yes
verb	No	No	Yes	16.1182520325 203	13.4534058108 619	Decrea se	1.6133510292315 3E-09	Yes
interrog	No	No	No	3.33886178861 788	2.55326623623 24	Decrea se	0.0002310167289 37805	Yes
quant	No	No	No	1.86209349593 496	1.50029434105 584	Decrea se	0.0393132092513 737	Yes
affect	No	No	No	5.44532520325 204	6.86136251424 223	Increas e	1.9723942156603 5E-05	Yes
negemo	No	No	No	2.12123983739 837	3.14223224458 789	Increas e	6.4754729038361 6E-06	Yes
anx	No	No	No	0.14235772357 7236	0.49065324724 6488	Increas e	4.9334452862530 2E-12	Yes
cogproc	No	No	Yes	11.0504471544 716	9.44086213444 723	Decrea se	0.0001071271179 45445	Yes
discrep	No	No	No	1.81260162601 626	1.24745442461 072	Decrea se	0.0019071325180 9469	Yes
tentat	No	No	No	3.35548780487 805	2.08751044436 003	Decrea se	1.7966599699174 5E-06	Yes
differ	No	No	No	2.85447154471 545	2.12118401063 424	Decrea se	0.0013304909448 2078	Yes
drives	No	No	No	7.32867886178 862	9.45724933535 872	Increas e	4.06330727597E- 09	Yes
affiliation	No	No	No	1.80504065040 65	3.64926129889 855	Increas e	3.5678818228826 8E-23	Yes
risk	No	No	No	0.91825203252 0325	1.31425370300 039	Increas e	0.0268758605214 3	Yes

focuspres ent	No	No	Yes	10.7989430894 309	9.69432491454 592	Decrea se	0.0037988906736 6329	Yes
leisure	No	No	No	0.68619918699 187	2.12966388150 398	Increas e	1.1548488563556 9E-35	Yes
informal	No	No	No	3.11315040650 406	3.93024971515 377	Increas e	0.0067696912442 2486	Yes
netspeak	No	No	No	2.09764227642 276	2.97511203949 865	Increas e	0.0002485832840 67875	Yes
Colon	No	No	No	0.61735772357 7236	1.05760634257 501	Increas e	0.0005662799416 99644	Yes
Exclam	No	No	No	0.42004065040 6504	1.30896315989 366	Increas e	1.3203709012044 5E-12	Yes
Apostro	No	No	No	1.89020325203 252	2.51846372958 6	Increas e	0.0004338136085 04916	Yes
OtherP	No	No	No	0.99815040650 4065	1.90956703380 174	Increas e	7.0518063326825 8E-09	Yes

Insignificant Increase/Decrease in Sentiment

Sentime nts	Before_Norm ality	After_Norm ality	Equal_Varia	Before_Mean	After_Mean	Diff	T-test_P	Signific ant
wc	No	No	Yes	14.92682926829 27	14.54984808203 57	Decrea se	0.181852266334 321	No
Clout	No	No	No	69.24674796747 96	69.45734428408 71	Increas e	0.884893873741 208	No
Authenti c	No	No	Yes	31.41424796747 97	29.66012438283 37	Decrea se	0.267041388214 001	No
Tone	No	No	Yes	42.37436991869 94	39.95247626282 02	Decrea se	0.157114524459 071	No
WPS	No	No	Yes	8.585792682926 83	9.033749525256 37	Increas e	0.051792712786 6307	No
i	No	No	Yes	1.530650406504 07	1.476440372199 02	Decrea se	0.763245234224 388	No
we	No	No	Yes	0.461544715447 154	0.613982149639 197	Increas e	0.159984012724 52	No
they	No	No	Yes	0.593943089430 894	0.564483478921 386	Decrea se	0.763671336533 796	No
ipron	No	No	Yes	3.926382113821 14	3.683540638055 41	Decrea se	0.328449300426 041	No
article	No	No	Yes	5.290020325203 25	5.342772502848 41	Increas e	0.842971929595 447	No
prep	No	No	Yes	9.935487804878 06	10.24708602354 7	Increas e	0.384702623846 87	No
negate	No	No	Yes	1.078556910569 11	1.258705848841 63	Increas e	0.208587262434 085	No
adj	No	No	Yes	3.794735772357 72	3.965321876186 82	Increas e	0.527344335347 187	No
compare	No	No	Yes	2.214430894308 94	1.881669198632 74	Decrea se	0.093758419112 4655	No
number	No	No	Yes	1.394369918699 19	1.187456323585 27	Decrea se	0.227073507427 783	No
posemo	No	No	Yes	3.232560975609 75	3.686334979111 25	Increas e	0.119709689015 342	No
anger	No	No	Yes	0.754491869918 699	0.950004747436 388	Increas e	0.159060250016 324	No

sad	No	No	Yes	0.603516260162 602	0.706215343714 399	Increas e	0.405780410070 03	No
social	No	No	Yes	10.90103658536 59	10.69793961260 9	Decrea se	0.622387172322 361	No
family	No	No	Yes	0.112418699186 992	0.178838777060 387	Increas e	0.277694302228 667	No
friend	No	No	Yes	0.273983739837 398	0.233872958602 355	Decrea se	0.534690180445 451	No
female	No	No	Yes	0.140101626016 26	0.097862704139 7645	Decrea se	0.317074836444 582	No
male	No	No	Yes	0.614979674796 748	0.438422901633 12	Decrea se	0.061086155189 7677	No
insight	No	No	Yes	2.426890243902 44	2.259574629699 95	Decrea se	0.418414648455 222	No
cause	No	No	Yes	2.348109756097 56	2.067073680212 68	Decrea se	0.133823657851 99	No
certain	No	No	Yes	1.045873983739 84	1.169811052031 91	Increas e	0.389869155597 423	No
percept	No	No	Yes	1.988882113821 14	1.816040638055 45	Decrea se	0.354823610318 167	No
see	No	No	Yes	0.780264227642 276	0.801869540448 163	Increas e	0.857191773803 658	No
hear	No	No	Yes	0.616382113821 138	0.528518799848 084	Decrea se	0.398005809974 584	No
feel	No	No	Yes	0.489268292682 927	0.374803456133 689	Decrea se	0.182305256572 36	No
bio	No	No	Yes	1.445995934959 35	1.356027345233 58	Decrea se	0.608937844415 694	No
body	No	No	Yes	0.447479674796 748	0.473587162932 019	Increas e	0.790334303760 869	No
health	No	No	Yes	0.406483739837 398	0.273208317508 546	Decrea se	0.078404846000 8932	No
sexual	No	No	Yes	0.211666666666 667	0.228588112419 294	Increas e	0.827547113796 424	No
ingest	No	No	Yes	0.412256097560 975	0.354343904291 683	Decrea se	0.523338067219 453	No
achieve	No	No	Yes	1.545406504065 04	1.600311431826 82	Increas e	0.765826914261 544	No
power	No	No	Yes	2.847784552845 53	3.118929927838 94	Increas e	0.253894818880 014	No
reward	No	No	Yes	1.594756097560 97	1.666037789593 62	Increas e	0.693498877923 222	No
focuspa st	No	No	Yes	2.773556910569 1	2.460936194454 98	Decrea se	0.135636384510 475	No
focusfut ure	No	No	Yes	1.231849593495 93	1.093537789593 62	Decrea se	0.332885752280 71	No
relativ	No	No	Yes	10.34912601626 02	10.15130744398 01	Decrea se	0.640755415758 571	No
motion	No	No	Yes	1.437581300813 01	1.509230915305 74	Increas e	0.654198810562 757	No
space	No	No	Yes	5.333617886178 87	5.083470375996 92	Decrea se	0.382769428888 127	No
time	No	No	Yes	3.548943089430 89	3.709958222559 79	Increas e	0.535479607911 85	No
work	No	No	Yes	3.629268292682 93	3.637545575389 26	Increas e	0.974521081709 406	No

home	No	No	Yes	0.355386178861 789	0.290573490315 23	Decrea se	0.367702510338 057	No
money	No	No	Yes	2.570040650406 5	2.490952335738 69	Decrea se	0.714417915641 713	No
relig	No	No	Yes	0.192703252032 52	0.233393467527 535	Increas e	0.569097616972 014	No
death	No	No	Yes	0.219593495934 959	0.192353778959 362	Decrea se	0.701870456347 191	No
swear	No	No	Yes	0.541504065040 65	0.441621724268 896	Decrea se	0.362855153340 719	No
assent	No	No	Yes	0.830284552845 529	0.687382263577 673	Decrea se	0.207593389113 874	No
nonflu	No	No	No	0.402073170731 707	0.236315039878 466	Decrea se	0.143293014087 421	No
filler	Yes	No	Yes	0	0.013929927838 967	Increas e	0.397434552726 709	No
AllPunc	No	No	Yes	19.07851626016 26	25.48010729206 23	Increas e	0.367863492105 563	No
Period	No	No	Yes	5.231565040650 41	5.797833270034 17	Increas e	0.258172100446 47	No
Comma	No	No	Yes	2.240711382113 82	2.091348271933 15	Decrea se	0.484346465879 738	No
SemiC	No	No	Yes	0.050813008130 0813	0.117939612609 191	Increas e	0.333033697754 82	No
QMark	No	No	Yes	6.657174796747 98	9.191160273452 23	Increas e	0.713656300656 557	No
Dash	No	No	Yes	0.609329268292 683	1.066633118116 22	Increas e	0.175571779465 134	No
Quote	Yes	No	Yes	0	0.005397835169 00874	Increas e	0.562418670915 346	No
Parenth	No	No	Yes	0.363373983739 837	0.415315229775 921	Increas e	0.689083697548 909	No

R Scripts Histogram

```
#time series graph
library(ggplot2)
library(scales)
library(lubridate)
setwd("~/Desktop/Research/Sentiment Analysis")
tw<-read.csv("AskJPM_cleaned.csv")
tw$date.2<-with(tw,ymd h(paste(year,month,day,hour,sep="-")))
tw$ymd<- with(tw,ymd(paste(year,month,day,sep='-')))
tw 11<-
subset(tw,tw$month=="11"&(tw$day=="11"|tw$day=="12"|tw$day=="13"|tw$day=="
14"|tw$day=="15"|tw$day=="16"|tw$day=="17"|tw$day=="18"|tw$day=="19"|tw$day
=="20"|tw$day=="21"|tw$day=="22"|tw$day=="23"|tw$day=="24"|tw$day=="25")&t
w$year=="2013")
tw 12<-
subset(tw,tw$month=="11"&(tw$day=="12"|tw$day=="13"|tw$day=="14"|tw$day=="
15"|tw$day=="16")&tw$year=="2013")
tw_13<-subset(tw,tw$month=="11"&(tw$day=="13")&tw$year=="2013")
gra1<-ggplot(tw,aes(tw$date.2))+
geom histogram(stat="count")+
scale_x_datetime(breaks=date_breaks("2 weeks"),minor_breaks=date_breaks("1
day"),labels=date format("%y-%m-%d"))+
 theme bw()+
 theme(axis.text.x = element text(angle = 70, hjust = 1))
gra1+
 ggtitle("Histogram for Tweets Frequency - Three Months")+
 labs(y='Number of Tweets',x="Dates")
gra2<-ggplot(tw_11,aes(tw_11$date.2))+
  geom histogram(stat="count")+
  scale x datetime(breaks=date breaks("24 hour"),minor breaks=date breaks("1
hour"),labels=date_format("%m-%d%H:%M"))+
  theme bw()+
  theme(axis.text.x = element text(angle = 70, hjust = 1))
 ggtitle("Histogram for Tweets Frequency - Two weeks")+
 labs(y='Number of Tweets',x="Dates")
gra3 <- ggplot(tw_12,aes(tw_12$date.2))+
 geom histogram(stat="count")+
 scale x datetime(breaks=date breaks("6 hour"),minor breaks=date breaks("1
hour"),labels=date_format("%m-%d%H:%M"))+
 theme bw()+
 theme(axis.text.x = element_text(angle = 70, hjust = 1))
 ggtitle("Histogram for Tweets Frequency - 5 days")+
 labs(y='Number of Tweets',x="Dates")
gra4 <- ggplot(tw_13,aes(tw_13$date.2))+
 geom_histogram(stat="count")+
```

```
scale_x_datetime(breaks=date_breaks("1 hour"),minor_breaks=date_breaks("1
hour"),labels=date_format("%m-%d%H:%M"))+
 theme bw()+
 theme(axis.text.x = element text(angle = 70, hjust = 1))
gra4+
 ggtitle("Histogram for Tweets Frequency - 1 day")+
 labs(y='Number of Tweets',x="Dates")
Data Cleaning and Sentiment Analysis in R (Using NRC lexicon)
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
import library
```{r}
library(tidyverse)
                     # data manipulation & plotting
                   # text cleaning and regular expressions
library(stringr)
library(tidytext)
                    # provides additional text mining functions
library(lubridate)
library(psych)
library(dplyr)
library(textclean)
"\fr read file}
jpm <- read_csv("AskJPM.csv")</pre>
typeof(jpm$date)
ipm$date<-as.character(jpm$date)</pre>
ipm <- jpm %>% mutate(Date=as.POSIXct(date, format = "%m/%e/%Y %R"))
jpm$response<- ifelse(jpm$Date <= as.POSIXct("2013-11-13 16:29:00"),0,1)
ipm text<-as.data.frame(ipm$text)</pre>
"\fr Data Clean-up}
# clean the text by removuing the hashtag
jpm_text$text_clean <- gsub("#", "", jpm_text$`jpm$text`)</pre>
ipm text$date=ipm$Date
jpm_text$year=jpm$Year
ipm text$month=ipm$Month
ipm_text$day=jpm$Day
jpm_text$hour=jpm$Hour
jpm_text$minutes=jpm$Minutes
jpm text$response<- ifelse(jpm text$date <= as.POSIXct("2013-11-13 16:29:00"),0,1)
\#jpm_text < -jpm_text[,c(3,1,2,4)]
#removing the @ all together
jpm_text$text_clean <- gsub("@", "@", jpm_text$text_clean)</pre>
jpm_text$text_clean <- gsub('@\\S+', '', jpm_text$text_clean) # Remove Handles</pre>
```

```
# remove the url
jpm_text$text_clean <- gsub('http\\S+\\s*', '', jpm_text$text_clean) # Remove URLs
jpm_text$text_clean<-gsub("pic.twitter..*","",jpm_text$text_clean)
# remove non-ascii
\#s<-jpm_text[4,2]
#Encoding(s)<-"latin1"
#s<-iconv(s,"latin1","ASCII",sub="")</pre>
library(dplyr)
jpm_text <- jpm_text %>% mutate(text_clean = iconv(text_clean, from = "latin1", to =
"ASCII")) %>% filter(!is.na(text clean))
# remove whitespaces
jpm_text$text_clean <- gsub("^[[:space:]]*","", jpm_text$text_clean) ## Remove leading
whitespaces
jpm_text$text_clean <- gsub("[[:space:]]*$","", jpm_text$text_clean) ## Remove trailing</pre>
whitespaces
write_csv(jpm_text,"AskJPM_cleaned.csv")
```{r}
colnames(jpm_text)[2] <- "text"
max(which(jpm_text$response==1))
nrow(jpm_text)
before_tidy_data<- jpm_text[c(10533:11024),] %>%
 group by(date) %>%
 unnest_tokens(word,text_clean)%>%
 ungroup()
after_tidy_data<-jpm_text[c(1:10532),] %>%
 group_by(date) %>%
 unnest_tokens(word,text_clean)%>%
 ungroup()
sentiment_before <- before_tidy_data %>%
 inner_join(get_sentiments("nrc")) %>%
 count(date,text,sentiment)%>%
 spread(sentiment, n, fill = 0)
sentiment_after<-after_tidy_data %>%
 inner_join(get_sentiments("nrc")) %>%
 count(date,text,sentiment)%>%
 spread(sentiment, n, fill = 0)
```

```

```

```
```{r t test}
s<-shapiro.test(sentiment_before$anger)</pre>
sentiment_before$anger
s$p.value
# data is not normal
# Mann-Whitney U test
# provided the sample size is not too small, we should not be overly concerned if the
data appear to violate the normal assumption
v<-var.test(sentiment_before$anger,sentiment_after$anger)
# equality of two variances
v$p.value
res_anger<-t.test(sentiment_before$anger,sentiment_after$anger,var.equal=TRUE)</pre>
res_anger
res anger$p.value
# no difference
e_bf<-sentiment_before[,3]
emotion.1<-colnames(sentiment_before[3])
typeof(sentiment_before[3])
sentiment before$anger
as.numeric(unlist(sentiment_before[3]))
```{r}
sentiment_before$total_negative <- rowSums(sentiment_before[,c(3,5,6,8,10)])</pre>
sentiment_before$total_positive <- rowSums(sentiment_before[,c(4,7,9,11,12)])
sentiment_after$total_negative <- rowSums(sentiment_after[,c(3,5,6,8,10)])
sentiment_after$total_positive <- rowSums(sentiment_after[,c(4,7,9,11,12)])
"\fr for loop}
library(magicfor)
magic_for(print, silent = TRUE)
x < -c(3:14)
for (val in x) {
 emotion<-colnames(sentiment_before[val])</pre>
 e bf<-as.numeric(unlist(sentiment before[val]))
 e_af<-as.numeric(unlist(sentiment_after[val]))</pre>
 cat("\nThe Emotion:",emotion,"\n")
 s.before<-shapiro.test(e_bf)
 p_normal<-s.before$p
 #s.after<-shapiro.test(e_af)
 #s.after
 if (s.before$p.value < 0.05){
 cat("The distribution for",emotion,"is not normal\n")}
 v<-var.test(e_bf,e_af)
```

```
p_var<-v$p.value
 if (v$p.value>0.05) {
 cat ("The variance for before/after response of",emotion,"is equal\n")
 res<-t.test(e_bf,e_af,var.equal=TRUE)
 }else{
 cat ("The variance for before/after response of", emotion, "is not equal\n")
 res<-t.test(e_bf,e_af,var.equal=FALSE)
 mean est<-res$estimate
 p_test<-res$p.value
 if (res$p.value < 0.05){
 cat("The average", emotion, "before response is significantly different from after
response\n")
 }else{
 cat("The average", emotion, "before response is NOT significantly different from after
response\n")
 }
 #put(emotion,s.before$p.value,v$p.value,res$estimate,res$p.value)
 put(emotion,p_normal,p_var,mean_est,p_test)
```{r}
write csv(sentiment before,"before term freq.csv")
write_csv(sentiment_after,"after_term_freq.csv")
***
```{r}
colnames(jpm_text)[2] <- "text"</pre>
#tokenization of words into tidy dataframe
#group by id,each text is split into words in new colomn 'word'
tidy_data<- jpm_text %>%
 group by(date) %>%
 unnest_tokens(word,text_clean)%>%
 ungroup()
#write_csv(tidy_data,'/Users/xiaotonghe/Documents/research/tw_data/tidy_data.csv')
#nrc dict
lexi<- get_sentiments('nrc')%>%filter(sentiment %in% c("positive","negative"))
```

```
#get sentiments for each word
abc_nrc<-tidy_data_stop%>%
inner_join(get_sentiments("nrc"),by='word')%>%
 ungroup()
#sentiments counts
sentiments_count<-abc_nrc%>%
 filter(sentiment %in% c("positive","negative"))%>%
 group by(sentiment)%>%
 count(sentiment)
sentiment nrc <- tidy data stop %>%
 inner_join(get_sentiments("nrc")) %>%
 count(date,text,sentiment)%>%
spread(sentiment, n, fill = 0)
#observation 13085 (inclusive) after are after response tweets
```{r}
#after
after<-jpm_text[c(1:13084),]
write_csv(after,"JPMafter.csv")
#before
before<-jpm_text[c(13085:13634),]
write.csv(before,"JPMbefore.csv")
...
"``{r dataset with dummy variable}
jpm_text$rowID<-1:nrow(jpm_text)</pre>
jpm_text$response<-ifelse(jpm_text$rowID<=13084,1,0)
jpm_text$rowID<-NULL
write_csv(jpm_text,"AskJPM_Jocelyn.csv")
Statistical test on LIWC
"``{r setup, include=FALSE}
knitr::opts chunk$set(echo = TRUE)
```{r}
library(tidyverse)
 # data manipulation & plotting
 # text cleaning and regular expressions
library(stringr)
library(tidytext)
 # provides additional text mining functions
library(lubridate)
library(psych)
library(dplyr)
```

```
library(textclean)
```{r}
liwc <- read csv("LIWC.csv")</pre>
before <- subset(liwc,liwc$C == 0)
after <- subset(liwc,liwc$C == 1)
describe(liwc)
```{r}
library(magicfor)
magic_for(print, silent = TRUE)
x < -c(34:38)
for (val in x) {
 emotion <- colnames (before [val])
 e_bf<-as.numeric(unlist(before[val]))
 e af<-as.numeric(unlist(after[val]))
 cat("\nThe Emotion:",emotion,"\n")
 s.before<-shapiro.test(e_bf)
 p_normal<-s.before$p
 #s.after<-shapiro.test(e af)
 #s.after
 if (s.before p.value < 0.05)
 cat("The distribution for",emotion, "before the res is not normal\n")}
 v<-var.test(e_bf,e_af)
 p_var<-v$p.value
 if (v$p.value>0.05) {
 cat ("The variance for before/after response of",emotion,"is equal\n")
 res<-t.test(e_bf,e_af,var.equal=TRUE)
 }else{
 cat ("The variance for before/after response of", emotion, "is not equal\n")
 res<-t.test(e_bf,e_af,var.equal=FALSE)
 mean_est<-res$estimate
 p_test<-res$p.value
 if (res$p.value < 0.05){
 cat("The average", emotion, "before response is significantly different from after
response\n")
 }else{
 cat("The average", emotion, "before response is NOT significantly different from after
response\n")
 #put(emotion,s.before$p.value,v$p.value,res$estimate,res$p.value)
 put(emotion,p_normal,p_var,mean_est,p_test)
}
Python codes for LIWC Results
import pandas as pd
```

```
from scipy import stats
liwc = pd.read_csv('LIWC.csv',sep=',')
liwc.describe()
pd.set_option('display.max_columns', None)
liwc.head()
after= liwc[liwc.C==1]
after.shape
before= liwc[liwc.C==0]
before.shape
before_emo = before.iloc[:,3:]
before_emo.head()
after_emo = after.iloc[:,3:]
testresult=[]
columnnames =
['Sentiments','Before_Normality','After_Normality','Equal_Variance','Before_Mean','After
_Mean','Diff','T-test_P','Significant']
for col in before_emo: # for each emotion
 tempresult=[col] # get the name of the emo
 # perform normality test for before
 before_nol_p = stats.shapiro(before[col])[1]
 if before_nol_p <= 0.05:
 tempresult.append('No')
 else:
 tempresult.append('Yes')
```

```
perform normality test for after
after_nol_p = stats.shapiro(after[col])[1]
if after_nol_p \leq 0.05:
 tempresult.append('No')
else:
 tempresult.append('Yes')
perform variance test
var_test_p = stats.levene(before[col],after[col]).pvalue
if var_test_p > 0.05: # can not reject the null
 tempresult.append('Yes')
else:
 tempresult.append('No')
bef_mean = before[col].mean()
aft_mean = after[col].mean()
tempresult.append(bef_mean)
tempresult.append(aft_mean)
if bef_mean > aft_mean:
 tempresult.append('Decrease')
elif bef_mean == aft_mean:
 tempresult.append('Same')
else:
 tempresult.append('Increase')
```

```
perform t test
 if var_test_p > 0.05: # equal variance
 t_test_p = stats.ttest_ind(before[col],after[col])[1] # get the p value
 tempresult.append(t_test_p)
 if t_test_p <= 0.05: # significantly different
 tempresult.append('Yes')
 else:
 tempresult.append('No')
 else: # not equal variance
 t_test_p = stats.ttest_ind(before[col],after[col],equal_var=False)[1] # get the p value
 tempresult.append(t_test_p)
 if t_test_p <= 0.05: # significantly different
 tempresult.append('Yes')
 else:
 tempresult.append('No')
 testresult.append(tempresult)
 # perform the equal variance test
df = pd.DataFrame(testresult, columns = columnnames)
df
df.to_csv("LIWC_t_test.csv",index=False)
```