形式变换	傅里叶变换	拉普拉斯变换	z变换
左边线性	$af_1(t) + bf_2(t) \leftrightarrow aF_1(jw) + bF_2(jw)$	一样,收敛域取交集	一样,收敛域取交集
左边尺度	$f(at) \leftrightarrow \frac{1}{ a } F(j\frac{w}{a})$	$f(at) \leftrightarrow rac{1}{a} F(rac{s}{a}), Re[s] > a \sigma_0$	$f(-k) \leftrightarrow F(z^{-1}), \frac{1}{\beta} < z < \frac{1}{\alpha}$
左边时移	$f(t\pm t_0) \leftrightarrow e^{\pm jwt_0} F(jw)$	$f(t-t_0)\epsilon(t-t_0) \leftrightarrow e^{-st_0}F(s)$	$f(k-m) \leftrightarrow z^{-m} F(z) + \sum_{k=0}^{m-1} f(k-m) z^{-k}$
			$f(k+m) \leftrightarrow z^m F(z) - \sum_{k=0}^{m-1} f(k) z^{m-k}$
频移	$e^{\mp j w_0 t} f(t) \leftrightarrow F[j(w\pm w_0)]$	$f(t)e^{s_nt} \leftrightarrow F(s-s_n), Re[s] > \sigma_0 + \sigma_a$	$a^k f(k) \leftrightarrow F(rac{z}{a}), a lpha < z < a eta$
卷积	$f_1(t) * f_2(t) \longleftrightarrow F_1(j\omega)F_2(j\omega)$	一样	一样,收敛域取交集
时域微分	$f^{(n)}(t) \longleftrightarrow (j\omega)^n F(j\omega)$	$f'(t) \leftrightarrow sF(s) - f(0^-) \ f''(t) \leftrightarrow s^2F(s) - sf(0^-) - f'(0^-)$	
时域积分	$\int_{-\infty}^{t} f(x) dx \longleftrightarrow \pi F(0) \delta(\omega) + \frac{F(j\omega)}{j\omega}$	$\int_{0^-}^t f(x) dx \leftrightarrow rac{1}{s} F(s) \ (\int_{0^-}^t)^n f(x) dx \leftrightarrow rac{1}{s^n} f(s)$	
频域微分	$(-jt)^n f(t) \longleftrightarrow F^{(n)}(j\omega)$	$(-t)^n f(t) \leftrightarrow rac{d^n F(s)}{ds^n}$	$kf(k) \leftrightarrow (-z)rac{d}{dz}F(z)$
频域积分	$\pi f(0)\delta(t) + \frac{f(t)}{-jt} \longleftrightarrow \int_{-\infty}^{\infty} F(jx) \mathrm{d}x$		
频域尺度			$a^kf(k) \leftrightarrow F(\frac{z}{a}), a \alpha < z < a \beta$
频域卷积	$f_1(t) * f_2(t) \longleftrightarrow F_1(j\omega)F_2(j\omega)$		
部分和			$\sum_{i=-\infty}^k f(i) \leftrightarrow rac{z}{z-1} F(z)$
初值定理		$f(0^+)=\lim_{t-0^+}f(t)=\lim_{s->\infty}sF(s)$	$f(0) = \lim_{z o \infty} F(z)$
终值定理		$f(\infty) = \lim_{s - > 0} s F(s)$	$f(\infty) = \lim_{z o 1} (z-1) F(z)$
正变换	$F(jw)=\int_{-\infty}^{+\infty}f(t)e^{-jwt}dt$	$F_b(s) = \int_{-\infty}^{+\infty} f(t) e^{-st} dt$	$F(z) = \sum_{k=-\infty}^{+\infty} f(k) z^{-k}$
逆变换	$f(t)=rac{1}{2\pi}\int_{-\infty}^{+\infty}F(jw)e^{jwt}dw$	部分分式展开	部分分式展开
系统分析	只能求Yzi	可,零极点分析,包含虚轴且所有极点	可,零极点分析所有极点在单位圆内