

	(Date
	Straya-53 Willes Papers
	vorkx edges/(degree of the vorkx
	Q-2
	b-9 C-4
	d-4
	e-4
	f-2
	Since the degree of each vulex is even, so the given graph has
4	An cularian circuit on the given graph is a befdba.ca.
John	to an = 5an-1-69n-2+7n.
	9n - 59n - 1 + 69n - 2 - 79 - 6
	Chanacteratic equation of \mathbb{D} . $2^2 - 5 + 6 = 2$ $\approx = 2,3$.
	Therefore the homogeneous solution is
	The general form of particular
	$+$ $\Delta U (W (0))$.
	an: A37"-3

Shrya-B

 $\left[A(z) - Q_0 - Q_2 - Q_3 z^2 \right] - 6 \left[z A(z) - 9 \delta Q_1 z \right] + 11 \left[z^2 A(z) - 4 \right] - 6 \left[z A(z) - 9 \delta Q_1 z \right] + 11 \left[z^2 A(z) - 4 \right] - 6 \left[z A(z) - 9 \delta Q_1 z \right] + 11 \left[z^2 A(z) -$

 $= [A(z) - Q_0 - Q_1 z - Q_2 z^2] - 6^2 [A(z) - 00 - Q_1 z] + 1/2^2 (A(z) - 8)$ $- 6z^3 [A(z)] = 00 - (2).$

Putting 00=2 & 9,=+ & 02=1 in (2).

 $[A(z)-2-52-z^2]-6z[A(z)-z-5z]+112^2[A(x)-3]-6z^3[A(z)]=00$

 $= A(z)[1-6z+112^2-6z^3] =$ $= -7z^2-7z+2$

 $A(z) = -7z^2 - 7z + 2$ $-6z^3 + 11z^2 - 6z + 1$

 $A(z) = \frac{7z^2 + 7z - 2}{6z^3 - 11z^2 + 6z - 1}$

 $= \frac{7z^2 + 7z - 2}{(z-1)(3z-1)}$

2A = 14 - 2 B(-1)(1) = 7 + 7 - 2

A = 6 $= -\frac{1}{4}B = \frac{7+14-8}{4}$ $B = -\frac{1}{3}$

Sq Wing generaling function, u · + = (3)"(2) * On = -6+132"-530