

### **Cambridge International Examinations**

Cambridge International General Certificate of Secondary Education

| CANDIDATE<br>NAME  |      |                     |                   |
|--------------------|------|---------------------|-------------------|
| CENTRE<br>NUMBER   |      | CANDIDATE<br>NUMBER |                   |
| PHYSICAL SC        | ENCE |                     | 0652/42           |
| Paper 4 (Extended) |      | Octo                | ber/November 2017 |

Candidates answer on the Question Paper.

No Additional Materials are required.

#### **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

A copy of the Periodic Table is printed on page 20.

Electronic calculators may be used.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.



1 hour 15 minutes

1 A ball falls through the atmosphere of a planet.

Fig. 1.1 shows a graph of the ball's speed against time.



Fig. 1.1

(a) (i) Use the graph to determine the acceleration of the ball in the first 0.50s of its fall.

Show your working.

|                | _        |     | _ |
|----------------|----------|-----|---|
| aaaalaratian   | . unit   | ſΩ  | П |
| acceleration = | : unit = | ר.ו | П |

(ii) The ball has a mass of 0.15kg.

Use your answer from (a)(i) to calculate the downward force on the ball.

force = ...... N [2]

| (iii)   | In the first 0.40s the ball falls through a distance of 4.2m.                              |
|---------|--------------------------------------------------------------------------------------------|
|         | Use your answer from (a)(ii) to calculate the work done on the ball by the downward force. |
|         |                                                                                            |
|         | work done = J [2]                                                                          |
| (b) (i) | Between 0.50s and 0.70s the acceleration decreases.                                        |
|         | State the evidence from the graph that the acceleration decreases.                         |
|         |                                                                                            |
|         | [1]                                                                                        |
| (ii)    | Explain why the acceleration decreases.                                                    |
|         |                                                                                            |
|         | [1]                                                                                        |

2 Chlorine is in Group VII of the Periodic Table.

Fig. 2.1 shows the number of electrons in the shells of an atom of chlorine.



|     |        | Fig. 2.1                                                                                                                                |
|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------|
| (a) | Sta    | ate how Fig. 2.1 shows that chlorine is in Group VII of the Periodic Table.                                                             |
| (b) | <br>Th | e volume of one mole of any gas is 24 dm <sup>3</sup> at room temperature and pressure.                                                 |
|     | Ch     | lorine gas reacts with hydrogen gas to form hydrogen chloride gas.                                                                      |
|     | Th     | e equation shows this reaction.                                                                                                         |
|     |        | $Cl_2 + H_2 \rightarrow 2HCl$                                                                                                           |
|     | (i)    | Calculate the volume of chlorine, measured at room temperature and pressure, that produces 10 dm <sup>3</sup> of hydrogen chloride gas. |
|     |        |                                                                                                                                         |
|     |        |                                                                                                                                         |
|     |        |                                                                                                                                         |
|     |        |                                                                                                                                         |
|     |        | volume of chlorine = dm <sup>3</sup>                                                                                                    |
|     |        | [2]                                                                                                                                     |
|     | (ii)   | This reaction will <b>not</b> take place in the dark.                                                                                   |
|     |        | State why sunlight enables the reaction to take place.                                                                                  |
|     |        | [41]                                                                                                                                    |

|   | (c) | Silve | er bromide, AgBr can be used to make photographic film.                                 |      |
|---|-----|-------|-----------------------------------------------------------------------------------------|------|
|   |     | In p  | hotography, silver bromide is reduced to metallic silver. The other product is bromine. |      |
|   |     | (i)   | Write the balanced symbol equation for this reaction.                                   |      |
|   |     |       |                                                                                         | .[2] |
|   |     | (ii)  | Explain how the reduction of silver bromide to metallic silver is used in photography.  |      |
|   |     |       |                                                                                         |      |
|   |     |       |                                                                                         |      |
|   |     |       |                                                                                         |      |
|   |     |       |                                                                                         | .[2] |
|   |     |       |                                                                                         |      |
| 3 | (a) | Nan   | ne the main process by which energy is produced in the Sun.                             |      |
|   |     |       |                                                                                         | [1]  |
|   | (b) | (i)   | Describe the process by which energy is produced in the Sun.                            |      |
|   |     |       |                                                                                         |      |
|   |     |       |                                                                                         |      |
|   |     |       |                                                                                         |      |
|   |     |       |                                                                                         | .[3] |
|   |     | (ii)  | The mass of the Sun decreases at a rate of $4.0 \times 10^7 \mathrm{kg/s}$ .            |      |
|   |     |       | The speed of electromagnetic waves is $3.0 \times 10^8 \mathrm{m/s}$ .                  |      |
|   |     |       | Calculate the energy released by the Sun in 1.0s.                                       |      |
|   |     |       |                                                                                         |      |
|   |     |       |                                                                                         |      |
|   |     |       |                                                                                         |      |
|   |     |       | energy = J                                                                              | [3]  |
|   |     |       |                                                                                         |      |

4

|     |                  | cane is an organic compound, with the formula $\mathrm{C_{19}H_{40}}$ . It contains only carbon arn atoms. | ıd     |
|-----|------------------|------------------------------------------------------------------------------------------------------------|--------|
| (a) | Sug              | gest the homologous series nonadecane belongs to.                                                          |        |
|     |                  | [                                                                                                          | 1]     |
| (b) | Nor              | nadecane is found in the lubricating fraction of petroleum.                                                |        |
|     | One              | e use of this fraction is to make lubricants.                                                              |        |
|     | Sta              | te one other use for the lubricating fraction.                                                             |        |
|     |                  | ]]                                                                                                         | 1]     |
| (c) | Sor              | ne fractions in petroleum are in greater demand than others.                                               |        |
|     |                  | cking is a process that breaks long chain molecules in petroleum into smaller, more usef ecules.           | ul     |
|     | (i)              | The equation shows the type of reaction that takes place during cracking.                                  |        |
|     |                  | Complete the equation.                                                                                     |        |
|     |                  | $C_{19}H_{40} \rightarrow C_8H_{18} + 3C_3H_6 + \dots$                                                     | 1]     |
|     | (ii)             | State two conditions needed for thermal cracking to occur.                                                 |        |
|     |                  | 1                                                                                                          |        |
|     |                  | 2                                                                                                          | <br>2] |
|     | (iii)            | Cracking can also take place using a catalyst.                                                             | _,     |
|     |                  | Describe the effect catalysts have on a reaction.                                                          |        |
|     |                  |                                                                                                            | 1]     |
| (d) | C <sub>3</sub> F | H <sub>6</sub> is an unsaturated hydrocarbon.                                                              |        |
|     | Sta              | te a chemical test that distinguishes between unsaturated and saturated hydrocarbons.                      |        |
|     | Incl             | ude the results of the test in your answer.                                                                |        |
|     | test             |                                                                                                            |        |
|     |                  |                                                                                                            |        |
|     | resi             | ult for unsaturated hydrocarbon                                                                            |        |
|     | resi             | ult for saturated hydrocarbon                                                                              |        |
|     |                  |                                                                                                            |        |

Question 5 begins over the page

### **5** Fig. 5.1 shows a thermocouple thermometer.



Fig. 5.1

| ( | (a) | Suggest | suitable | materials | for |
|---|-----|---------|----------|-----------|-----|
| ۱ | (u, | Ouggost | Juitable | materials | 101 |

| material <b>1</b> , | <br> | <br> |      |
|---------------------|------|------|------|
| material <b>2</b> , | <br> | <br> | <br> |
| material 3.         | <br> | <br> | <br> |

[2]

## **(b)** Fig. 5.2 shows the thermocouple thermometer used in an experiment.



Fig. 5.2

Junction 1 is placed in a freezing mixture. The test junction is placed in melting ice and then in boiling water. The readings on the voltmeter shown in Fig. 5.2 are recorded.

When the test junction is placed in melting ice, the reading on the voltmeter is 1.1 mV. When the test junction is in boiling water, the reading is 9.2 mV.

Calculate the temperature of the freezing mixture.

temperature = ......°C [3]

© UCLES 2017 0652

| Describe <b>one</b> situation where a thermocouple thermometer is more suitable for use that a liquid-in-glass thermometer. | (i)  | (c) |
|-----------------------------------------------------------------------------------------------------------------------------|------|-----|
| [                                                                                                                           |      |     |
| Explain why the thermocouple thermometer is more suitable in the situation you have described in <b>(c)(i)</b> .            | (ii) |     |
|                                                                                                                             |      |     |

| 6 (a) The properties of a compound are I | ò | are listed | ١. |
|------------------------------------------|---|------------|----|
|------------------------------------------|---|------------|----|

- soluble in organic solvents
- insoluble in water
- low melting point
- low boiling point

| Predict the electrical conductivity and the type of bonding in this compound. |    |
|-------------------------------------------------------------------------------|----|
| electrical conductivity                                                       |    |
| type of bonding                                                               |    |
|                                                                               | [1 |

**(b)** Diamond and graphite are two forms of the element carbon.

Fig. 6.1 shows the structure of graphite.



Fig. 6.1

| (i)  | Describe the structure of diamond.                                                    |
|------|---------------------------------------------------------------------------------------|
|      |                                                                                       |
|      |                                                                                       |
|      |                                                                                       |
|      | [2]                                                                                   |
| (ii) | Graphite is used in pencils but diamond is not.                                       |
|      | Explain in terms of its structure and bonding why <b>graphite</b> is used in pencils. |
|      |                                                                                       |
|      |                                                                                       |
|      |                                                                                       |
|      |                                                                                       |
|      |                                                                                       |
|      | [3]                                                                                   |

| (c) | Carbon can be used as a fuel.                                         |
|-----|-----------------------------------------------------------------------|
|     | Write the <b>word</b> equation for the complete combustion of carbon. |
|     | [1]                                                                   |
| (d) | Combustion is an example of oxidation.                                |
|     | State the meaning of the term oxidation.                              |
|     |                                                                       |
|     | [1]                                                                   |

7 (a) Fig. 7.1 shows a small lamp at the bottom of a swimming pool. Three rays of light are shown coming from the lamp.



Fig. 7.1

On Fig. 7.1, draw the path of ray 2 after it reaches the surface of the water.

[1]

[1]

**(b)** Fig. 7.2 shows two more rays from the same lamp.



Fig. 7.2

(i) Complete Fig. 7.2 to show the critical angle and label it **C**.

(ii) On Fig. 7.2, draw the path of ray 5 after it reaches the surface of the water. [1]

| (c) | A boy stands by the swimming pool and shines a narrow beam of light at the water. |
|-----|-----------------------------------------------------------------------------------|
|     | The angle of incidence at the surface of the water is 38°.                        |
|     | The refractive index of water $n = 1.34$ .                                        |
|     | Calculate the angle of refraction.                                                |
|     |                                                                                   |
|     |                                                                                   |
|     |                                                                                   |
|     |                                                                                   |
|     | angle of refraction = ° [3]                                                       |
|     |                                                                                   |
|     |                                                                                   |

**8** Fig. 8.1 shows part of the reactivity series of metals.



Fig. 8.1

| (a) | Magnesium reacts slowly with cold water to form hydrogen gas and magnesium hydroxide solution.                                             |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
|     | Use the reactivity series to predict what will happen when calcium reacts with cold water.                                                 |
|     |                                                                                                                                            |
|     |                                                                                                                                            |
|     |                                                                                                                                            |
|     | [2]                                                                                                                                        |
| (b) | A student puts a piece of aluminium in one test-tube and a piece of zinc in another. Dilute hydrochloric acid is added to both test-tubes. |
|     | The zinc reacts immediately.                                                                                                               |
|     | Suggest why the aluminium does <b>not</b> react immediately.                                                                               |
|     |                                                                                                                                            |
|     | [1]                                                                                                                                        |
| (c) | Aluminium is used in aircraft parts.                                                                                                       |
|     | State <b>two</b> properties of aluminium that make it suitable for use in aircraft parts.                                                  |
|     | 1                                                                                                                                          |
|     | 2                                                                                                                                          |
|     | [2]                                                                                                                                        |

| (a) | Some metals can be extracted from their ores by reacting them with carbon.                       |
|-----|--------------------------------------------------------------------------------------------------|
|     | Explain why aluminium <b>cannot</b> be extracted from its ore using carbon.                      |
|     |                                                                                                  |
|     | [1                                                                                               |
| (e) | Aluminium oxide reacts with hydrochloric acid. It also reacts with sodium hydroxide solution.    |
|     | Each reaction produces a salt and water.                                                         |
|     | Use this information to state whether aluminium oxide is acidic, alkaline, neutral or amphoteric |
|     | [1                                                                                               |

**9** Fig. 9.1 shows a circuit diagram.

The battery has an e.m.f. of 3.0 V.

Resistor **R** has a resistance of  $2.5 \Omega$ .

**S** is a 50 cm length of resistance wire.



Fig. 9.1

(a) (i) Calculate the current I.

| Ι | Α       | [1 |
|---|---------|----|
| - | <br>, , | ι. |

(ii) Use your answer from (a)(i) to calculate the resistance of branch 2.

resistance = ..... 
$$\Omega$$
 [2]

(iii) Calculate the resistance of resistance wire **S**.

resistance = ..... 
$$\Omega$$
 [1]

| (b) |      | resistance wire ${\bf S}$ is replaced with a wire of the same material but of twice the crossional area.             |
|-----|------|----------------------------------------------------------------------------------------------------------------------|
|     | (i)  | Calculate the length of wire that should be used if it is to have the same resistance as resistance wire ${\bf S}$ . |
|     |      |                                                                                                                      |
|     |      |                                                                                                                      |
|     |      |                                                                                                                      |
|     |      | length = cm [1]                                                                                                      |
|     | (ii) | Calculate the power dissipated by the heater <b>H</b> .                                                              |
|     |      |                                                                                                                      |
|     |      | power = W [2]                                                                                                        |

# **10** Air can become polluted.

Table 10.1 lists some air pollutants released into the atmosphere from car exhausts.

**Table 10.1** 

| pollutant          | source                                                             |
|--------------------|--------------------------------------------------------------------|
| oxides of nitrogen | Nitrogen and oxygen react in the high temperatures in car engines. |
| carbon monoxide    |                                                                    |
| sulfur dioxide     |                                                                    |

| ur dioxide. [2]      |
|----------------------|
| е.                   |
| [1]                  |
| catalytic converter. |
| r exhaust gases.     |
|                      |
|                      |
|                      |
|                      |
| [3]                  |
| lytic converter.     |
|                      |
| [1]                  |
| r                    |

(d) Fig. 10.1 is an incomplete diagram of the outer shell of electrons (a dot-and-cross diagram) in a nitrogen molecule, N<sub>2</sub>.

Complete Fig. 10.1.

You only need to show the outer shell electrons.



Fig. 10.1

[1]

- 11  $^{209}_{84}$ Po is an isotope of polonium.
  - (a) State the number of
    - (i) protons in the nucleus of this isotope, [1]
    - (ii) neutrons in the nucleus of this isotope. [1]
  - **(b)** The isotope decays by  $\alpha$ -emission.

Complete the equation which shows this process.

$$^{209}_{84}$$
Po  $\rightarrow ^{82}$ Pb +  $^{82}$ Pb =  $^{82}$ Pb =

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

|       | <b>=</b> | <sup>2</sup> | helium<br>4   | 10            | Ne           | neon<br>20                   | 18 | Ar | argon<br>40      | 36 | ۲̈      | krypton<br>84   | 54 | Xe       | xenon<br>131     | 98    | R           | radon           |        |           |                    |
|-------|----------|--------------|---------------|---------------|--------------|------------------------------|----|----|------------------|----|---------|-----------------|----|----------|------------------|-------|-------------|-----------------|--------|-----------|--------------------|
|       | =>       |              |               | 6             | ш            | fluorine<br>19               | 17 | Cl | chlorine<br>35.5 | 35 | ğ       | bromine<br>80   | 53 | Н        | iodine<br>127    | 85    | Αţ          | astatine<br>-   |        |           |                    |
|       | 5        |              |               | 8             | 0            | oxygen<br>16                 | 16 | S  | sulfur<br>32     | 34 | Se      | selenium<br>79  | 52 | <u>e</u> | tellurium<br>128 | 84    | Ро          | molouium<br>-   | 116    | _         | livermorium<br>-   |
|       | >        |              |               | 7             | z            | nitrogen<br>14               | 15 | ₾  | phosphorus<br>31 | 33 | As      | arsenic<br>75   | 51 | Sb       | antimony<br>122  | 83    | Ξ           | bismuth<br>209  |        |           |                    |
|       | 2        |              |               | 9             | ပ            | carbon<br>12                 | 14 | Si | silicon<br>28    | 32 | Ge      | germanium<br>73 | 50 | Sn       | tin<br>119       | 82    | Ъ           | lead<br>207     | 114    | F1        | flerovium<br>-     |
|       | =        |              |               | 5             | В            | boron<br>11                  | 13 | Αl | aluminium<br>27  | 31 | Ga      | gallium<br>70   | 49 | I        | indium<br>115    | 81    | 11          | thallium<br>204 |        |           |                    |
|       |          |              |               |               |              |                              |    |    |                  | 30 | Zu      | zinc<br>65      | 48 | р        | cadmium<br>112   | 80    | Нg          | mercury<br>201  | 112    | ပ်        | copernicium<br>-   |
|       |          |              |               |               |              |                              |    |    |                  | 29 | D.      | copper<br>64    | 47 | Ag       | silver<br>108    | 62    | Αu          | gold<br>197     | 111    | Rg        | roentgenium<br>-   |
| dn    |          |              |               |               |              |                              |    |    |                  | 28 | z       | nickel<br>59    | 46 | Pd       | palladium<br>106 | 78    | 凸           | platinum<br>195 | 110    | Ds        | darmstadtium<br>-  |
| Group |          |              |               |               |              |                              |    |    |                  | 27 | ပိ      | cobalt<br>59    | 45 | 格        | rhodium<br>103   | 77    | ŗ           | iridium<br>192  | 109    | Μ̈́       | meitnerium<br>-    |
|       |          | - I          | hydrogen<br>1 |               |              |                              |    |    |                  | 26 | Ьe      | iron<br>56      | 44 | Ru       | ruthenium<br>101 | 9/    | Os          | osmium<br>190   | 108    | Hs        | hassium            |
|       |          |              |               | _             |              |                              |    |    |                  | 25 | Mn      | manganese<br>55 | 43 | ည        | technetium<br>-  | 75    | Re          | rhenium<br>186  | 107    | В         | bohrium<br>–       |
|       |          |              |               |               | loc          | SS                           |    |    |                  | 24 | ပ်      | chromium<br>52  | 42 | Mo       | molybdenum<br>96 | 74    | >           | tungsten<br>184 | 106    | Sg        | seaborgium<br>-    |
|       |          |              | Key           | atomic number | atomic symbo | name<br>relative atomic mass |    |    |                  | 23 | >       | vanadium<br>51  | 41 |          | niobium<br>93    |       | д           | tantalum<br>181 | 105    | Вр        | dubnium<br>–       |
|       |          |              |               | 60            | ato          | rela                         |    |    |                  | 22 | ı=      | titanium<br>48  | 40 | Zr       | zirconium<br>91  | 72    | 茔           | hafnium<br>178  | 104    | 弘         | rutherfordium<br>- |
|       |          |              |               |               |              |                              | •  |    |                  | 21 | Sc      | scandium<br>45  | 39 | >        | yttrium<br>89    | 57-71 | lanthanoids |                 | 89–103 | actinoids |                    |
|       | =        |              |               | 4             | Be           | beryllium<br>9               | 12 | Mg | magnesium<br>24  | 20 | Ca      | calcium<br>40   | 38 | Š        | strontium<br>88  | 56    | Ba          | barium<br>137   | 88     | Ra        | radium             |
|       | _        |              |               | 8             | :=           | lithium<br>7                 | 11 | Na | sodium<br>23     | 19 | $\prec$ | potassium<br>39 | 37 | Rb       | rubidium<br>85   | 55    | Cs          | caesium<br>133  | 87     | μ̈        | francium<br>–      |

| 71<br>Lu         | lutetium<br>175     | 103 | ۲         | lawrencium   | Ι   |
|------------------|---------------------|-----|-----------|--------------|-----|
| δ Y              | ytterbium<br>173    | 102 | 8<br>N    | nobelium     | -   |
| e9<br>Tm         | thulium<br>169      | 101 | Md        | mendelevium  | _   |
| 88<br><b>Ē</b>   | erbium<br>167       | 100 | Fm        | fermium      | -   |
| 67<br>Ho         | holmium<br>165      | 66  | Es        | einsteinium  | _   |
| 66<br>Dy         | dysprosium<br>163   | 86  | Ç         | californium  | _   |
| 65<br>Tb         | terbium<br>159      | 26  | Ř         | berkelium    | -   |
| <sup>64</sup> Gd | gadolinium<br>157   | 96  | Cm        | curium       | 1   |
| 63<br>Eu         | europium<br>152     | 92  | Am        | americium    | _   |
| Sm               | samarium<br>150     | 94  | Pn        | plutonium    | I   |
| e1<br>Pm         | promethium<br>—     | 93  | Ν         | neptunium    | _   |
| °° Z             | neodymium<br>144    | 92  | $\supset$ | uranium      | 238 |
| 59<br>Pr         | praseodymium<br>141 | 91  | Ра        | protactinium | 231 |
| Ce<br>O          | cerium<br>140       | 06  | Ħ         | thorium      | 232 |
| 57<br><b>La</b>  | lanthanum<br>139    | 88  | Ac        | actinium     | ı   |

lanthanoids

actinoids

The volume of one mole of any gas is  $24\,dm^3$  at room temperature and pressure (r.t.p.).