Étude de faisabilité d'un moteur de classification automatique

Présenté par Gabriel Chehade

Introduction

Contexte:

<u>Place de marché</u> souhaite automatiser l'attribution de la catégorie des articles mis en ligne par les vendeurs.

Objectif:

Réaliser une étude de faisabilité d'un moteur de classification des articles.

Méthodes:

- Effectuer un prétraitement des données.
- Extraire les features (texte et image)
- Faire une réduction de dimension T-SNE pour visualiser les données en 2D.
- Faire un clustering sur les données de dimension réduite.
- Effectuer un calcul de similarité entre catégories réelles et clusters

Présentation du jeu de données

- 1050 lignes x 15 colonnes (chaque ligne représente 1 article)
- Variables importantes: product_name et description pour les données textuelles, image pour importer les images, et product_category_tree pour les extraire les catégories.

product_name		description	image	product_category_tree	
Ele	gance Polyester Multicolor Abstract Eyelet	Key Features of Elegance Polyester Multicolor	55b85ea15a1536d46b7190ad6fff8ce7.jpg	["Home Furnishing >> Curtains & Accessories >>	
	Sathiyas Cotton Bath Towel	Specifications of Sathiyas Cotton Bath Towel (7b72c92c2f6c40268628ec5f14c6d590.jpg	["Baby Care >> Baby Bath & Skin >> Baby Bath T	
E	turospa Cotton Terry Face Towel Set	Key Features of Eurospa Cotton Terry Face Towe	64d5d4a258243731dc7bbb1eef49ad74.jpg	["Baby Care >> Baby Bath & Skin >> Baby Bath T	
	SANTOSH ROYAL FASHION Cotton Printed King size	Key Features of SANTOSH ROYAL FASHION Cotton P	d4684dcdc759dd9cdf41504698d737d8.jpg	["Home Furnishing >> Bed Linen >> Bedsheets >>	
	Jaipur Print Cotton Floral King sized Double B	Key Features of Jaipur Print Cotton Floral Kin	6325b6870c54cd47be6ebfbffa620ec7.jpg	["Home Furnishing >> Bed Linen >> Bedsheets >>	

Extraction des catégories

	product_category_tree	
0	["Home Furnishing >> Curtains & Accessories >>	0
1	["Baby Care >> Baby Bath & Skin >> Baby Bath T	1
2	["Baby Care >> Baby Bath & Skin >> Baby Bath T	2
3	["Home Furnishing >> Bed Linen >> Bedsheets >>	3
4	["Home Furnishing >> Bed Linen >> Bedsheets >>	4

In [14]:	1 df_text['category'].value	_counts()		
	executed in 5ms, finished 11:32:32 2022-10-23			
Out[14]:	Home Furnishing	150		
	Baby Care	150		
	Watches	150		
	Home Decor & Festive Needs	150		
	Kitchen & Dining	150		
	Beauty and Personal Care	150		
	Computers	150		
	Name: category, dtype: int64			

- 7 catégories
- 150 échantillons par catégorie (jeu de données équilibré)

Analyse des données textuelles

Preprocessing

- Document = nom produit + description
- Mise en minuscule du texte
- Tokenization
- Suppression des mots uniques
- Suppression des mots courts (< 3 lettres)
- Tokens alphabétiques uniquement
- Suppression des mots fréquents communs à toutes les catégories
- Création de 2 corpus : un sur lequel on a appliqué le stemming, un autre sur lequel on a appliqué la lemmatization.

Extraction des Features

Extraction des features texte avec :

- deux approches de type "bag-of-words", comptage simple de mots et Tf-idf;
- une approche de type word/sentence embedding classique avec **Word2Vec**;
- une approche de type word/sentence embedding avec BERT;
- une approche de type word/sentence embedding avec USE.

Remarque : Pour les modèles de Deep Learning (BERT et USE) aucun prétraitement n'a été effectué.

Cluestering et mesure de similarité

La mesure de similarité s'effectue de la manière suivante :

- 1. Extraction des features
- 2. Réduction dimensionnelle dans un espace 2D par T-SNE
- 3. Clustering sur les données projetées (KMeans)
- 4. Mesure de l'ARI entre les catégories réelles et les clusters

Comptage simple

Représentation par catégories réelles

Représentation par clusters

ARI = 0.45

TF-IDF

Représentation par catégories réelles

Categories

- Home Furnishing
- Baby Care
- Watches
- Home Decor & Festive Needs
- Kitchen & Dining
- Beauty and Personal Care
- Computers

Représentation par clusters

ARI = 0.60

Word2Vec

Représentation par catégories réelles

Représentation par clusters

BERT

Représentation par catégories réelles

Représentation par clusters

USE

Représentation par catégories réelles

- Home Decor & Festive Needs
- Beauty and Personal Care

Représentation par clusters

ARI = 0.52

Synthèse des résultats

	Comptage	TF-IDF	Word2Vec	BERT	USE
ARI	0.45	0.60	0.59	0.42	0.52
Temps d'exécution	5 s	5 s	11 s	64 s	5 s
Accuracy sur le test set	92.4%	85.7%	85.7%	91.4%	86.7%

Obtenu avec un modèle de régression logistique

Analyse des images

Extraction des Features

Extraction des features image avec :

- un algorithme **SIFT**;
- un algorithme de type CNN Transfer Learning.

Pour le Transfer Learning j'ai utilisé le **VGG-16** fourni par Keras et pré-entrainé sur ImageNet.

Extraction des features avec SIFT

- Création des descripteurs :
 - sift_keypoints_all: matrice dont chaque ligne représente un descripteur.
- Estimation du nombre de clusters k :

$$k = Int(\sqrt{nombre\ de\ descripteurs}) = 719$$

- Constructions des histogrammes (nb de descripteurs par cluster) → matrice (1050, 719)
- Réduction dimensionnelle par ACP : 719 → 495 features (99% de la variance)
- Réduction 2D avec T-SNE

Extraction des features avec SIFT

Représentation par catégories réelles

Les catégories ne sont pas du tout séparées (ARI < 0.1)

CNN Transfer Learning

- Utilisation du modèle VGG-16 privé de sa dernière couche (couche qui sert à la classification)
- Chargement des images au format (224, 224, 3)
- Conversion en tableau numpy
- Pré-traitement des images
- Extraction des features avec model.predict → X.shape = (1050, 4096)
- Réduction dimensionnelle par ACP : 4096 → 803 features (99% de la variance)
- Réduction 2D avec T-SNE

CNN Transfer Learning

Représentation par catégories réelles

Categories

- Home Furnishing
- Baby Care
- Watches
- Home Decor & Festive Needs
- Kitchen & Dining
- Beauty and Personal Care
- Computers

Représentation par clusters

ARI = 0.45

accuracy = 85.7%

Conclusion

- Le modèle le plus adapté pour extraire les features texte est le bag-of-words.
- Le modèle le plus adapté pour extraire les features image est le CNN Transfer Learning.
- Les résultats d'un modèle simple d'apprentissage supervisé (régression logistique) et non optimisé ont été très bons, à la fois sur les données textuelles (accuracy > 92%) et les images (accuracy > 85%).
- Il est possible de créer un moteur de classification automatique des articles.

MERCI POUR VOTRE ATTENTION