#### IFT 615 – Intelligence artificielle

#### Processus de décision markoviens (MDP)

Hugo Larochelle

Département d'informatique

Université de Sherbrooke

http://www.dmi.usherb.ca/~larocheh/cours/ift615.html

#### Sujets couverts

- Processus de décision de Markov (MDP)
- Algorithme d'itération par valeurs (value-iteration)
- Algorithme d'itération par politiques (policy-iteration)



## Incertitude dans le contexte d'une décision

- Soit A<sub>t</sub> l'action d'aller à l'aéroport t minutes avant le départ de l'avion
- $A_t$  me permettra-t-il d'arriver à temps?
- Problèmes:
  - observabilité partielle (conditions routières, etc.)
  - senseurs bruités (annonces du trafic, etc.)
  - incertitude dans l'effet des actions (crevaisons, pannes, etc.)
  - immense complexité pour modéliser les actions et le trafic

## Grille (occupancy grid)



#### **Actions aux effets incertains**



IFT 615

Hugo Larochelle

#### Processus de décision markovien

- Un processus de décision markovien (Markov decision process, ou MDP)
   est défini par:
  - $\diamond$  un **ensemble d'états** S (incluant un étant initial  $s_0$ )
  - un ensemble d'actions possibles Actions(s) lorsque je me trouve à l'état s
  - $\diamond$  un **modèle de transition** P(s'|s, a), où  $a \in A(s)$
  - une fonction de récompense R(s) (utilité d'être dans l'état s)
- Un MDP est donc un modèle général pour un environnement stochastique dans lequel un agent peut prendre des décisions et reçoit des récompenses
- On y fait une supposition markovienne (de premier ordre) sur la distribution des états visités
- Requière qu'on décrive un objectif à atteindre à partir d'une fonction de récompense basée seulement sur l'état courant

## Grille (occupancy grid)



#### **Actions aux effets incertains**



#### **Décision**

- Une décision est un choix d'une action dans un état
- C'est une règle « if state then action »



#### **Exemples:**

$$(21,12) \rightarrow W$$
ou
$$(21,12) \rightarrow E$$

## Plan (politique)

- Un plan est une stratégie: choix d'une action (décision) pour chaque état
- Un plan est également appelé une politique (policy)
- C'est un ensemble de règles if state then action



```
Exemples:
Plan π1
   \{(21,12) \to W,
     (20,13) \to S,
     (21,13) \rightarrow S,
     (20,11) \to N,
```

## Plan (politique)

- Un plan est une stratégie: choix d'une action (décision) pour chaque état
- Un plan est également appelé une politique (policy)
- C'est un ensemble de règles if state then action



```
Exemples:
Plan π1
   \{(21,12) \to W,
     (20,13) \to S,
     (21,13) \to S,
     (20,11) \to N,
Plan π2
   \{(21,12) \to S,
     (20,11) \rightarrow S,
     (21,10) \to E,
     ....}
```

## Exécution d'un plan (politique)

- Un plan est un ensemble de règles if state then action
- Notons  $\pi(s)$  l'action désignée par le plan  $\pi$  dans l'état s
- Voici un algorithme d'exécution ou d'application d'un plan

```
    While (1)
{

            1. s = état courant du système;
            2. a = π(s);
            3. execute a;
            }
```

- L'étape 1 peut impliquer de la détection (sensing) et de la localisation
- L'état résultant de l'exécution de l'action à l'étape 3 est imprévisible

#### Interprétation/application d'un plan

L'application d'un plan dans un MDP résulte en une chaîne de Markov sur

les états, avec une matrice de transition dont les entrées sont données par  $P(s'|s, \pi(s))$ 

La chaîne se déroule en un arbre potentiellement infini



## Exemples: Plan π1

```
Plan π1

{ (21,12) \rightarrow W,

(20,13) \rightarrow S,

(21,13) \rightarrow S,

(20,11) \rightarrow N,

...

}

Plan π2

{ (21,12) \rightarrow S,

(20,11) \rightarrow S,
```

 $(21,10) \to E$ ,

## Valeur d'un plan

- R(s): récompense pour l'état s, c-à-d. l'utilité de l'état s
- $V(\pi,s)$ : **valeur** du plan  $\pi$  à l'état s
  - $V(\pi,s) = R(s) + \gamma \sum_{s' \in S} P(s'|s, \pi(s)) V(\pi, s')$ 
    - »  $\gamma$ : facteur d'escompte (0 <  $\gamma$  <= 1), indique l'importance des récompenses futures
    - » S: espace d'états
    - »  $\pi(s)$ : action du plan à l'état s
    - »  $P(s'|s, \pi(s))$ : probabilité de la transition du MDP

## Plan optimal

- Un plan  $\pi$  domine un plan  $\pi'$  si les deux conditions suivantes sont réunies:
  - ♦  $V(\pi,s) >= V(\pi',s)$  pour tout état s
  - ♦  $V(\pi,s) > V(\pi',s)$  pour au moins un s
- Un plan est optimal s'il n'est pas dominé par un autre
- Il peut y avoir plusieurs plans optimaux, mais ils ont tous la même valeur
- On peut avoir deux plans incomparables (aucun ne domine l'autre)
  - la dominance induit une fonction d'ordre partiel sur les plans
- Deux algorithmes différents pour le calcul du plan optimal:
  - itération par valeurs (value iteration)
  - itération par politiques (policy iteration)

# Équations de Bellman pour la valeur optimale

 Les équations de Bellman nous donnent une condition qui est garantie par la valeur V\* des plans optimaux

$$V^*(s) = R(s) + \max_{a} \gamma \sum_{s' \in S} P(s'|s,a) V^*(s') \quad \forall s \in S$$

- Si nous pouvons calculer V\*, nous pourrons calculer un plan optimal aisément:
  - il suffit de choisir dans chaque état s l'action qui maximise V\*(s)
     (c.-à-d. le argmax)

## **Algorithme Value Iteration**

- 1. Initialiser V(s) à 0 pour chaque état s.
- 2. Répéter (jusqu'à ce que le changement en V soit négligeable).
  - I. pour chaque état s calculer:

$$V'(s) = R(s) + \max_{\alpha} \gamma \sum_{s' \in S} P(s'|s,a) \ V(s')$$

- II. si  $|V V'| \le$  tolérance, quitter
- |||.  $V \leftarrow V'$
- 3. Le plan optimal est obtenu en choisissant pour chaque état s l'action a telle que la valeur  $\gamma \sum_{s' \in S} P(s'|s,a) V(s')$  est la plus élevée
- En mots, on choisit l'action qui maximise l'espérance des valeurs des successeurs
- Converge au plan optimal en O(|S|³)

#### Démonstration de Value Iteration

http://planiart.usherbrooke.ca/~eric/ift615/demos/vi/

## **Algorithme Policy Iteration**

- 1. Choisir un plan arbitraire  $\pi'$
- 2. Répéter jusqu'à ce que π devienne inchangée:
  - $\pi:=\pi'$
  - II. pour tout s dans S, calculer  $V(\pi,s)$  en résolvant le système de |S| équations et |S| inconnues  $V(\pi,s) = R(s) + \gamma \sum_{s' \in S} P(s'|s, \pi(s)) V(\pi,s')$
  - III. pour tout s dans S, s'il existe une action a telle que  $[R(s) + \gamma \sum_{s' \in S} P(s'|s,a) \ V(\pi,s')] > V(\pi,s)$  alors  $\pi'(s) := a$  sinon  $\pi'(s) := \pi(s)$
- 3. Retourne  $\pi$
- Converge au plan optimal en O(|S|³)

## **Exemple (policy iteration)**



- MDP à 3 états:  $S = \{s_0, s_1, s_2\}$
- But:  $s_2$

#### **Exemple (policy iteration)**



- MDP à 3 états:  $S = \{s_0, s_1, s_2\}$
- Le but (atteindre  $s_2$ ) est exprimé par une fonction de récompense:
  - $R(s_0) = 0, R(s_1) = 0, R(s_2) = 1$
- Le facteur d'escompte est γ=0.5

#### Rappel: équation de la valeur d'un plan



- $V(\pi,s)$ : valeur du plan  $\pi$  dans l'état s
  - $V(\pi,s) = R(s) + \gamma \sum_{s' \in S} P(s'|s, \pi(s)) V(\pi, s')$
- Notons  $r_i = R(s_i)$  et  $v_i = V(\pi, s_i)$ :
  - $\bullet$   $v_i = r_i + \gamma \Sigma_i P(s_i | s_i, \pi(s_i)) v_i$

#### Policy iteration: initialisation



Plan initial choisi arbitrairement:

$$\pi' = \{ s_0 \rightarrow a_2, \\ s_1 \rightarrow a_2, \\ s_2 \rightarrow a_4 \}$$

#### Policy iteration: itération #1



- I.  $\pi = \pi'$
- II. Équations:  $v_0$ =0+0.5\*(1\* $v_0$ );  $v_1$ =0+0.5\*(1\* $v_0$ );  $v_2$ =1+0.5\*(1\* $v_1$ )

Solution:  $v_0 = 0$ ,  $v_1 = 0$ ,  $v_2 = 1$ 

III. 
$$s_0 \rightarrow a_1$$
: 0+0.5\*(0.2\*0+0.8\*0)=0;  
 $s_1 \rightarrow a_3$ : 0+0.5\*(1\*1)=0.5 > 0;  
 $s_2 \rightarrow a_5$ : 1+0.5\*(1\*1)=1.5 > 1;  
 $\pi' = \{ s_0 \rightarrow a_2 , s_1 \rightarrow a_3 , s_2 \rightarrow a_5 \}$ 

ne change pas change change

25

## Policy iteration: itération #2



- $\pi = \pi'$
- II. Équations:  $v_0$ =0+0.5\*(1\* $v_0$ );  $v_1$ =0+0.5\*(1\* $v_2$ );  $v_2$ =1+0.5\*(1\* $v_2$ )

Solution:  $v_0 = 0$ ,  $v_1 = 1$ ,  $v_2 = 2$ 

III. 
$$s_0 o a_1$$
: 0+0.5(0.2\*0+0.8\*1)=0.4 > 0; **change**  $s_1 o a_2$ : 0+0.5(1\*0)=0 < 1; ne change pas  $s_2 o a_4$ : 1+0.5(1\*1)=1.5 < 2; ne change pas  $\pi' = \{ s_0 o a_1, s_1 o a_3, s_2 o a_5 \}$ 

## Policy iteration: itération #3



- I.  $\pi = \pi'$
- II. Équations:  $v_0=0+0.5*(0.2*v_0+0.8*v_1);$   $v_1=0+0.5*(1*v_2);$   $v_2=1+0.5*(1*v_2)$

Solution:  $v_0=4/9$ ,  $v_1=1$ ,  $v_2=2$ 

- III.  $s_0 \rightarrow a_{2:}$  0+0.5(1\*0.4)=0.2 < 4/9; ne change pas  $s_1 \rightarrow a_{2:}$  0+0.5(1\*0.4)=0.2 < 1; ne change pas  $s_2 \rightarrow a_{4:}$  1+0.5(1\*1)=1.5 < 2; ne change pas  $\pi' = \{ s_0 \rightarrow a_1 , s_1 \rightarrow a_3 , s_2 \rightarrow a_5 \}$ , c-à-d.  $\pi$
- Solution finale: π

## Rappel: systèmes d'équations linéaires

Soit le système d'équations:

```
v_0 = 0 + 0.5 * (0.2*v_0 + 0.8*v_1);

v_1 = 0 + 0.5 * (1*v_2);

v_2 = 1 + 0.5 * (1*v_2)
```

En mettant toutes les variables à droite, on peut l'écrire sous la forme:

$$0 = -0.9 v_0 + 0.4 v_1$$
 (1)  

$$0 = -v_1 + 0.5 v_2$$
 (2)  

$$-1 = -0.5 v_2$$
 (3)

- De l'équation (3), on conclut que  $v_2 = -1 / -0.5 = 2$
- De l'équation (2), on conclut que  $v_1 = 0.5 v_2 = 1$
- De l'équation (1), on conclut que  $v_0 = 0.4 v_1 / 0.9 = 4/9$

## Rappel: systèmes d'équations linéaires

Soit le système d'équations:

$$v_0 = 0 + 0.5 * (0.2*v_0+0.8*v_1);$$
  
 $v_1 = 0 + 0.5 * (1*v_2);$   
 $v_2 = 1 + 0.5 * (1*v_2)$ 

En mettant toutes les variables à droite, on peut l'écrire sous la forme:

$$0 = -0.9 v_0 + 0.4 v_1$$
 (1)  

$$0 = -v_1 + 0.5 v_2$$
 (2)  

$$-1 = -0.5 v_2$$
 (3)

Approche alternative: on écrit sous forme matricielle b = A v, où

$$A = \begin{pmatrix} -0.9 & 0.4 & 0 \\ 0 & -1 & 0.5 \\ 0 & 0 & -0.5 \end{pmatrix} \qquad b = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \qquad v = \begin{pmatrix} v_0 \\ v_1 \\ v_2 \end{pmatrix}$$

## Rappel: systèmes d'équations linéaires

Soit le système d'équations:

```
v_0 = 0 + 0.5 * (0.2*v_0 + 0.8*v_1);

v_1 = 0 + 0.5 * (1*v_2);

v_2 = 1 + 0.5 * (1*v_2)
```

En mettant toutes les variables à droite, on peut l'écrire sous la forme:

```
0 = -0.9 v_0 + 0.4 v_1  (1)

0 = -v_1 + 0.5 v_2  (2)

-1 = -0.5 v_2  (3)
```

- Suffit alors d'inverser A pour obtenir v = A-1 b
  - on peut utiliser une librairie d'algèbre linéaire (ex.: Numpy en Python):

#### Value iteration: initialisation



Valeurs initiales fixées à 0:

$$v_0 = 0$$

$$v_1 = 0$$

$$v_2 = 0$$



Mise à jour droite-gauche des valeurs

$$v_0 \leftarrow 0 + 0.5 \max\{0.2 \ v_0 + 0.8 \ v_1, v_0\} = 0 + 0.5 \max\{0, 0\} = 0$$
  
 $v_1 \leftarrow 0 + 0.5 \max\{v_0, v_2\} = 0 + 0.5 \max\{0, 0\} = 0$   
 $v_2 \leftarrow 1 + 0.5 \max\{v_1, v_2\} = 1 + 0.5 \max\{0, 0\} = 1$ 

• Les nouvelles valeurs sont  $v_0 = 0$ ,  $v_1 = 0$ ,  $v_2 = 1$ 



Mise à jour droite-gauche des valeurs

$$v_0 \leftarrow 0 + 0.5 \max\{0.2 \ v_0 + 0.8 \ v_1, v_0\} = 0 + 0.5 \max\{0, 0\} = 0$$
  
 $v_1 \leftarrow 0 + 0.5 \max\{v_0, v_2\} = 0 + 0.5 \max\{0, 1\} = 0.5$   
 $v_2 \leftarrow 1 + 0.5 \max\{v_1, v_2\} = 1 + 0.5 \max\{0, 1\} = 1.5$ 

• Les nouvelles valeurs sont  $v_0 = 0$ ,  $v_1 = 0.5$ ,  $v_2 = 1.5$ 



Mise à jour droite-gauche des valeurs

$$v_0 \leftarrow 0 + 0.5 \max\{0.2 \ v_0 + 0.8 \ v_1, v_0\} = 0 + 0.5 \max\{0.8 * 0.5, 0\} = 0.2$$
  
 $v_1 \leftarrow 0 + 0.5 \max\{v_0, v_2\} = 0 + 0.5 \max\{0, 1.5\} = 0.75$   
 $v_2 \leftarrow 1 + 0.5 \max\{v_1, v_2\} = 1 + 0.5 \max\{0.5, 1.5\} = 1.75$ 

• Les nouvelles valeurs sont  $v_0 = 0.2$ ,  $v_1 = 0.75$ ,  $v_2 = 1.75$ 



Si on arrêtait à la 3<sup>e</sup> itération, le plan retourné serait

$$\pi(s_0) = \operatorname{argmax}\{\ 0.2\ v_0 + 0.8\ v_1,\ v_0\ \} = \operatorname{argmax}\{\ 0.2^*0.2 + 0.8^*0.75,\ 0.2\} = a_1$$

$$\pi(s_1) = \operatorname{argmax}\{\ v_0,\ v_2\ \} = \operatorname{argmax}\{\ 0.2,\ 1.75\ \} =\ a_3$$

$$\pi(s_2) = \operatorname{argmax}\{\ v_1,\ v_2\ \} = \operatorname{argmax}\{\ 0.75,\ 1.75\ \} = a_5$$

- Même si les valeurs n'ont pas tout à fait convergé, on a déjà le plan optimal
  - ça aurait pu ne pas être le cas, seulement garanti si on boucle infiniment

## Fonctions de récompenses complexes





- Notons:
  - ightharpoonup R = i le fait que le robot est dans le local numéro i
  - $\bullet$   $G=\{i,..,k\}$  le but spécifiant que le robot doit visiter les locaux  $\{1,...,k\}$
- Ainsi G={1,2} signifie que le robot doit visiter le local 1 (c-à-d., R=1) et visiter le local 2 (c-à-d., R=2)
- Ce genre de but nécessite d'étendre au préalable l'espace d'états de manière à attribuer des récompenses à des comportements (pas seulement à un état)
- Une façon élégante de le faire est d'attribuer les récompenses à des formules de logique temporelle satisfaisant les comportements désirés [Thiébaux et al., JAIR 2006]

#### Un peu plus loin ...

- Les algorithmes value-iteration et policy-iteration sont lents sur des grands espaces d'état
  - Améliorations:
    - » Real-Time Dynamic Programming (RTPD)
    - » Labeled RTDP
- Les MDP supposent une observation complète
  - Partially Observable MDP (PoMDP)
- Les MDP sont limités à des décisions séquentielles
  - pour des actions simultanées:
    - » Concurrent MDP (CoMPD)
    - » Concurrent Probabilistic Temporal Planning (CPTP)

#### Résumé

- L'approche Markovienne est très attrayante parce qu'elle combine raisonnement probabiliste et optimisation avec élégance
- C'est une des approches les plus étudiées actuellement pour:
  - la planification (cours IFT 702)
  - l'apprentissage par renforcement (qu'on verra bientôt)
- Elle est notamment populaire dans les applications de robots mobiles