Question	Answer		Mark
11a	Use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$ Use of $n = c/v$ with $c = 3.00 \times 10^8$ (m s ⁻¹)	(1) (1)	
	$v = 1.4 \times 10^8 \text{ (m s}^{-1)} \text{ so material is cubic zirconia}$	(1)	3
	(For MP1, allow use of $n = \sin i / \sin r$) (All marks can be achieved if candidate calculates n for all of the		
	gemstones and compares to value calculated in MP1)		
	Example of calculation		
	$n_1 \sin \theta_1 = n_2 \sin \theta_2$, 1.00 sin (50°) = $n_2 \sin (21^\circ)$, $n_2 = 2.14$ $n = c/v$, so $v = (3.00 \times 10^8 \text{ m s}^{-1}) / 2.14 = 1.4 \times 10^8 \text{ m s}^{-1}$		
11bi	Use of sin $C = 1/n$ where $n = c/v$	(1)	
	Critical angle for diamond is 24° (40.5° > 24°) so diagram shows reflection at the boundary Ray completed showing TIR in correct direction by eye	(1) (1) (1)	
	OR	, ,	
	Use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$	(1)	
	$n_1 \sin \theta_1 = 1.57$	(1) (1)	
	(sin θ_2 > 1) so diagram shows reflection at the boundary Ray completed showing TIR in correct direction by eye	(1)	4
	(Only allow MP3 if TIR is drawn on the diagram, not just stated)		
	34.0°		
	Example of calculation		
	$\sin C = 1/n = (1.24 \times 10^8 \text{ ms}^{-1}) / (3.00 \times 10^8 \text{ ms}^{-1}) = 0.41.$ $C = \sin^{-1} (0.41) = 24^\circ$		
11bii	Silicon carbide has a greater refractive index (than diamond) Or silicon carbide has a smaller critical angle (than diamond) Or critical angle for silicon carbide is 23°		
	Or critical angle is still less than the angle of incidence Or sin θ_2 is still > 1	(1)	
	So total internal reflection (TIR) would (still) take place (MP2 dependent on MP1)	(1)	2

9

Total for question 11