Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

1 (Canceled)

- 1 2. (Currently Amended) The method for automatically determining 2 awareness settings among people in a distributed working environment recited in claim † 11, wherein the step of automatically adjusting a 3 4 distance is performed by a multi-agent system that automatically and 5 selectively provides perceived information to others based on perceived 6 events or status associated with others. 1 3. (Original) The method for automatically determining awareness settings 2 among people in a distributed working environment recited in claim 2, 3 wherein the elastic spring energy model governs reaction of an information 4 system in real time when events or status changes. 1 4. (Original) The method for automatically determining awareness settings 2 among people in a distributed working environment recited in claim 2, 3 wherein each agent acts on its user's behalf to adjust an awareness level 4 among different users. 1 5. (Currently Amended) The method for automatically determining 2 awareness settings among people in a distributed working environment 3 recited in claim + 11, further comprising the step of dividing 4 communications between different users into different channels and 5 specifying a clearness level for each channel.
- 6. (Currently amended) The method for automatically determining
- 2 awareness settings among people in a distributed working environment
- recited in claim † 11, wherein the elastic spring energy model is a

4	dynamic model so that the step of automatically adjusting a distance takes
5	into consideration events which happen at each user's site.
1	7. (Currently amended) A [The] method for automatically determining
2	awareness settings among people in a distributed working environment
3	[recited in claim 1] comprising the steps of:
4	receiving real-time data produced by an event; and
5	automatically adjusting a distance according to how clear a receiver
6	can receive a corresponding signal from another party desired by
7	individual users and a need of a collaborative project to have some shared
8	information about individual user activities using an elastic spring energy
9	model, wherein the elastic spring energy model takes into consideration a
10	user's frustration level if information about the user is revealed to another
11	on the occurrence of a particular event.
1	8. (Currently amended) The method for automatically determining
2	awareness settings among people in a distributed working environment
3	recited in claim 1 11, wherein the elastic spring energy model determines
4	potential energy vectors which encode a user's preference on distances.
1	9. (Currently amended) \underline{A} [The] method for automatically determining
2	awareness settings among people in a distributed working environment
3	[recite in claim 1] comprising the steps of:
4	receiving real-time data produced by an event; and
5	automatically adjusting a distance according to how clear a receiver
6	can receive a corresponding signal from another party desired by
7	individual users and a need of a collaborative project to have some shared
8	information about individual user activities using an elastic spring energy
9	model, wherein the elastic spring energy model determines potential
10	energy vectors which encode awareness requirements for a collaborative
11	task.

1 10. (Currently amended) A [The] method for automatically determining 2 awareness settings among people in a distributed working environment 3 [recited in claim 1] comprising the steps of: 4 receiving real-time data produced by an event; and 5 automatically adjusting a distance according to how clear a receiver 6 can receive a corresponding signal from another party desired by 7 individual users and a need of a collaborative project to have some shared 8 information about individual user activities using an elastic spring energy 9 model, wherein the elastic spring energy model determines potential 10 energy vectors which encode a user's preference on distances and 11 awareness requirements for a collaborative task. 11. (Currently amended) A [The] method for automatically determining 1 2 awareness settings among people in a distributed working environment 3 [recited in claim 1] comprising the steps of: 4 receiving real-time data produced by an event; and 5 automatically adjusting a distance according to how clear a receiver 6 can receive a corresponding signal from another party desired by 7 individual users and a need of a collaborative project to have some shared 8 information about individual user activities using an elastic spring energy 9 model, wherein a matrix and vector look up model is used to determine the 10 distances among distributed users, the values of the matrix and the vector 11 encoding the preferences of the a user and the preference requirements of 12 the other another user. 1 12. (Currently Amended) The method for automatically determining 2 awareness settings among people in a distributed working environment 3 recited in claim 11, wherein the matrix and vector additionally encode the 4 preferences of the a task and the preferences of the an organization.