

Universidade Estadual do Rio Grande do Sul

PROF. DR. ÉDER JULIO KINAST <eder-kinast@uergs.edu.br>

MÉTODOS NUMÉRICOS – APONTAMENTOS DE AULA

04. Método da Posição Falsa

Versão 02 - 22/09/2020

Método da Posição Falsa

Planilha MetNum04

Algoritmo POSFALS

Programa C-posfals

Esta é uma modificação do Método da Bissecção na tentativa de torná-lo mais eficiente.

A ideia é tentar dividir o intervalo que contem a raiz em um ponto mais próximo da raiz.

Exemplo, com a = 1 e b = 5.

Como |f(1)| < |f(5)|, espera-se que a raiz esteja mais próxima de 1 do que de 5.

Para isto, é usada uma média entre a e b ponderada pelos pesos |f(b)| e |f(a)|, respectivamente. Assim:

$$x = \frac{a \cdot |f(b)| + b \cdot |f(a)|}{|f(b)| + |f(a)|} \stackrel{b>a}{\Longrightarrow} x = \frac{a \cdot f(b) - b \cdot f(a)}{f(b) - f(a)}$$

O restante do método é igual ao Método da Posição Falsa, com os mesmos critérios de parada.

Algoritmo POSFALS

- 1) Dados f(x), a, b, ε_1 , ε_2
- 2) Para k de 1 até 100 com passo 1

$$\begin{cases} x = \frac{a \cdot f(b) - b \cdot f(a)}{f(b) - f(a)} \\ \text{se } f(a) \cdot f(x) > 0 \end{cases} \begin{cases} \text{então } a = x \\ \text{senão } b = x \end{cases}$$
$$\text{se } (b - a) < \varepsilon_1 \text{ ou } |f(x)| < \varepsilon_2 \text{ então PARAR}$$

3) Raiz $\cong x$

Exemplo – estime a raiz de $f_2(x) = x^3 - 9 \cdot x + 3$ contida no intervalo [0; 1] com $\varepsilon_1 = \varepsilon_2 = 10^{-5}$, utilizando o programa Excel com macro para definição da função e linguagem C.

Fazer "a mão" o início deste exemplo, explicitando as colunas

k	χ	f(a)	f(x)	а	b	b-a	f(x)	Continuar?

Planilha **MetNum04.xlsm** (localização e algoritmo):

	Α	В	С	D	Е	F	G	Н	1	J
1	k	x	f(a)	f(x)	а	b	b-a	f(x)	Continuar?	ε ₁
2	início				0	1				1,00E-05
3	1	0,375	3	-0,32227	0	0,375	0,375	0,322266	Continuar	٤2
4	2	0,338624339	3	-0,00879	0	0,338624	0,338624	0,00879	Continuar	1,00E-05
5	3	0,337635046	3	-0,00023	0	0,337635	0,337635	0,000226	Continuar	Passos
6	4	0,337609625	3	-5,8E-06	0	0,33761	0,33761	5,8E-06	Parar	4
7										Raiz
8										0,3376096
9			·	·		·	·			

Rotina C/C++ para o Método da Posição Falsa

```
#include<iostream>
#include<math.h>
double f(double x) { // Esta é a função f
    return(pow(x,3)-9*x+3);}
int main()
    double a=0,b=1,eps1=1e-5,eps2=1e-5,x;
    int k;
    for(k=1;k<=100;k++) {
        x=(a*f(b)-b*f(a))/(f(b)-f(a));
        if(f(a)*f(x)>0) a=x;
        else b=x;
        if( (b-a)<eps1 || fabs(f(x))<eps2 ) break;</pre>
        printf("Passo k = %2d, raiz x = %14.10lf(n",k,x);
    printf("A raiz vale %14.10lf com %d passos.\n\n",x,k);
    system("PAUSE");
    return 0;
```


Exercícios

1) Estime a primeira raiz negativa de $f_8(x) = \frac{\operatorname{sen}\left(0,11 \cdot x - \frac{\pi}{7}\right)}{4} \operatorname{com} \varepsilon_1 = \varepsilon_2 = 10^{-4}$, utilizando o programa Excel com macro para definição da função e linguagem C (**MetNum04b**).

DICAS: a função seno é sin em VBA; a constante π é definida pela função Application. WorksheetFunction. Pi () em VBA.

2) Estime o ponto em que $x = \cos(x)$ com $\varepsilon_1 = \varepsilon_2 = 10^{-6}$. DICA: determinar a raiz da função $f_9(x) = x - \cos(x)$ (**MetNum04c**).