Теорвер. ДЗ 1.

ПРОХОРОВ ЮРИЙ, 776

Задача 1

Без ограничения общности будем считать, что ни у кого нет билета на место под номером 1, второй в очереди пассажир имеет билет на место #2, третий — на место #3 и так далее (всегда можно перенумеровать).

Пусть p_n — искомая вероятность. Легко видеть, что $p_2 = \frac{1}{2}$. Получим рекуррентную формулу для p_n . Расписывая по полной системе событий:

$$p_n = \sum_{k=1}^n \mathbb{P}\{$$
заяц $\to \#k\} \cdot \mathbb{P}\{$ место $\#n$ свободно $|$ заяц $\to \#k\}$

Что будет, если заяц сел на место #k $(2 \le k \le n-1)$? Тогда пассажиры $2,3,\ldots,k-1$ сядут все на свои места, а k-ый пассажир будет выбирать случайное место из $\{1,k+1,\ldots,n\}$. Эта ситуация эквивалентна случаю, когда в очереди всего n-k+1 пассажиров, а (бывший) k-ый пассажир — новый заяц. Тогда

$$p_n = \frac{1}{n} \cdot 1 + \sum_{k=2}^{n-1} \frac{1}{n} \cdot p_{n-k+1} + \frac{1}{n} \cdot 0 = \frac{1}{n} + \sum_{k=2}^{n-1} \frac{p_{n-k+1}}{n}$$

По индукции докажем, что $p_n=2 \ \forall n\geq 2$. База (n=2) очевидна. Пусть верно до n-1 включительно. Тогда

$$p_n = \frac{1}{n} + \sum_{k=2}^{n-1} \frac{p_{n-k+1}}{n} = \frac{1}{n} + \frac{n-2}{2n} = \frac{1}{2}.$$

Задача 2

Пусть A_1, \ldots, A_n — выбранные точки. Назовем точку A крайней, если все оставшиеся точки лежат на полуокружности против часовой стрелки от A. Из этого определения следует, что

точки лежат на одной полуокружности 👄 ровно одна из точек крайняя

точки не лежат на одной полуокружности 👄 нет крайних точек

Обозначим искомую вероятность через p. Тогда

$$p = \sum_{k=1}^{n} \mathbb{P}\{A_k - \text{ крайняя}\},$$

так как события вида $[A_k$ — крайняя] несовместны (потому что более одной крайней точки быть не может). Вычислим вероятность этого события:

$$\mathbb{P}\{A_k$$
 — крайняя $\}=\prod_{j\neq k}\mathbb{P}\{A_j$ на нужной полуокружности $\}=\left(\frac{1}{2}\right)^{n-1}$

Отсюда искомая вероятность:

$$p = \sum_{k=1}^{n} \frac{1}{2^{n-1}} = \frac{n}{2^{n-1}}.$$

Задача 3

 $(\Omega, \mathcal{F}, \mathbb{P})$ — вероятностное пространство $\Rightarrow \mathcal{F} - \sigma$ -алгебра, а $\mathbb{P} - \sigma$ -аддитивная (вероятностная) мера. Требуется доказать, что из счетной аддитивности следует конечная субаддитивность.

$$\forall$$
 дизъюнктных $\{B_k\}_{k=1}^\infty\subseteq\mathcal{F}\ \longrightarrow\ \mathbb{P}\left\{igcup_{k=1}^\infty B_k
ight\}=\sum_{k=1}^\infty\mathbb{P}\{B_k\}$

Возьмем произвольное дизъюнктное семейство $\{B_k\}_1^n$. Положим $B_k = \emptyset \ \forall k > n$. Тогда получим, что \mathbb{P} — конечно-аддитивная мера.

Пусть $A \subseteq B$. Тогда, по конечной аддитивности

$$\mathbb{P}{A} = \mathbb{P}{B} - \mathbb{P}{B \setminus A} \le \mathbb{P}{B}.$$

Отсюда следует, что \mathbb{P} — монотонная мера.

Теперь возьмем произвольное семейство $\{A_k\}_1^n$. Положим

$$B_1 = A_1, \qquad B_k = A_k \setminus \bigcup_{j=1}^{k-1} A_j$$

Все $B_k \in \mathcal{F}$, так как $\mathcal{F} - \sigma$ -алгебра, и образуют дизъюнктное семейство. По построению:

$$\bigcup_{k=1}^{n} A_k = \bigcup_{k=1}^{n} B_k.$$

По конечной аддитивности и монотонности:

$$\mathbb{P}\left\{\bigcup_{k=1}^n A_k\right\} = \mathbb{P}\left\{\bigcup_{k=1}^n B_k\right\} = \sum_{k=1}^n \mathbb{P}\left\{A_k \setminus \bigcup_{j=1}^{k-1} A_j\right\} \leq \sum_{k=1}^n \mathbb{P}\{A_k\}$$

 $\implies \mathbb{P}-$ конечно-субаддитивная мера.