

SEQUENCE LISTING

<110> Hu, Yi
Kieke, James Alvin
Olson, Andrew
Turner, C. Alexander Jr.

<120> Novel Human Protease and Polynucleotides Encoding the Same

<130> LEX-0176-USA

<150> US 60/205,275
<151> 2000-05-18

<160> 3

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1041
<212> DNA
<213> homo sapiens

<400> 1
atggccctg ctggctgtgc cttcacgctg ctccttctgc tggggatctc agtgtgtggg 60
caacaccttat actccagccg cgtttaggtt ggccaggatg ctgctgcagg gcgctggcct 120
tggcagggtca gcctacactt tgaccacaac tttatctatg gaggttccct cgtcagttag 180
agggttatac tgacagcagc acactgcata caaccgaccc ggactacttt ttcatataact 240
gtgtggctag gatcgattac agtaggtgac tcaaggaaac gtgtgaagta ctacgtgtcc 300
aaaatcgta tccatcccaa gtaccaagat acaacggcag acrtcgccctt gttgaaactg 360
tcctctcaag tcacccatc ttctgccatc ctgccttattt gcttgcctt gtcacaaag 420
cagttggcaa ttccaccctt ttgtgggtt accggatggg gaaaagttaa ggaaagttca 480
gatagagatt accattctgc cttcaggaa gcagaagttt ccattattga cccggcaggct 540
tgtgaacaggc tctacaatcc catcggtatc ttcttgccag cactggagcc agtcatcaag 600
gaagacaaga tttgtgctgg tgataactcaa aacatgaagg atagttgcaa gggtgattct 660
ggagggccctc tgtcggtca cattgatggt gtatggatcc agacaggagt agtaagctgg 720
ggattagaat gtggtaaatc tcttccttggta gtctacacca atgtaatcta ctacaaaaaa 780
tggattaatg ccactatttc aagagccaaac aatcttagact tctctgactt cttgttccct 840
attgtccttac tctcttggc tctcctgygt ccctccgtg ccttggacc taacactata 900
cacagagtagt gcactgttgc tgaagctgtt gcttgcatac agggtctggga agagaatgca 960
tggagattta gtcccagggg cagagaactc acaggagagc cactgctaac cctgggtgac 1020
tttatttaca atttggaaatg a 1041

<210> 2
<211> 346
<212> PRT
<213> homo sapiens

<400> 2
Met Gly Pro Ala Gly Cys Ala Phe Thr Leu Leu Leu Leu Gly Ile
1 5 10 15
Ser Val Cys Gly Gln Pro Val Tyr Ser Ser Arg Val Val Gly Gly Gln
20 25 30
Asp Ala Ala Ala Gly Arg Trp Pro Trp Gln Val Ser Leu His Phe Asp
35 40 45

His Asn Phe Ile Tyr Gly Gly Ser Leu Val Ser Glu Arg Leu Ile Leu
 50 55 60
 Thr Ala Ala His Cys Ile Gln Pro Thr Trp Thr Thr Phe Ser Tyr Thr
 65 70 75 80
 Val Trp Leu Gly Ser Ile Thr Val Gly Asp Ser Arg Lys Arg Val Lys
 85 90 95
 Tyr Tyr Val Ser Lys Ile Val Ile His Pro Lys Tyr Gln Asp Thr Thr
 100 105 110
 Ala Asp Val Ala Leu Leu Lys Leu Ser Ser Gln Val Thr Phe Thr Ser
 115 120 125
 Ala Ile Leu Pro Ile Cys Leu Pro Ser Val Thr Lys Gln Leu Ala Ile
 130 135 140
 Pro Pro Phe Cys Trp Val Thr Gly Trp Gly Lys Val Lys Glu Ser Ser
 145 150 155 160
 Asp Arg Asp Tyr His Ser Ala Leu Gln Glu Ala Glu Val Pro Ile Ile
 165 170 175
 Asp Arg Gln Ala Cys Glu Gln Leu Tyr Asn Pro Ile Gly Ile Phe Leu
 180 185 190
 Pro Ala Leu Glu Pro Val Ile Lys Glu Asp Lys Ile Cys Ala Gly Asp
 195 200 205
 Thr Gln Asn Met Lys Asp Ser Cys Lys Gly Asp Ser Gly Gly Pro Leu
 210 215 220
 Ser Cys His Ile Asp Gly Val Trp Ile Gln Thr Gly Val Val Ser Trp
 225 230 235 240
 Gly Leu Glu Cys Gly Lys Ser Leu Pro Gly Val Tyr Thr Asn Val Ile
 245 250 255
 Tyr Tyr Gln Lys Trp Ile Asn Ala Thr Ile Ser Arg Ala Asn Asn Leu
 260 265 270
 Asp Phe Ser Asp Phe Leu Phe Pro Ile Val Leu Leu Ser Leu Ala Leu
 275 280 285
 Leu Cys Pro Ser Cys Ala Phe Gly Pro Asn Thr Ile His Arg Val Gly
 290 295 300
 Thr Val Ala Glu Ala Val Ala Cys Ile Gln Gly Trp Glu Glu Asn Ala
 305 310 315 320
 Trp Arg Phe Ser Pro Arg Gly Arg Glu Leu Thr Gly Glu Pro Leu Leu
 325 330 335
 Thr Leu Gly Asp Phe Ile Tyr Asn Leu Lys
 340 345

<210> 3
 <211> 1286
 <212> DNA
 <213> homo sapiens

<400> 3
 ctgcagctgc acttctgaag tctggccct tcaggatctg gcagcgggtg aagaccaaag 60
 gagaggaggg ggtgaagcag aggaatccat ctaggagaag ctagttctgg cagctcccc 120
 ttggcctctt cctggagcc tgagtccagg aagcaggaag cgctcaactgg ctctgaggac 180
 agagacatgg gccctgctgg ctgtgccttc acgctgctcc ttctgctggg gatctcagtg 240
 tgtggcaac ctgtatactc cagccgcgtt gttagtggcc aggatgctgc tgcagggcgc 300
 tggccttggc aggtcagcct acactttgac cacaacctta tctatggagg ttccctcgtc 360
 agtgagaggt tgataactgac agcagcacac tgcatacaac cgacctggac tacttttca 420
 tatactgtgt ggcttaggatc gattacagta ggtgactcaa ggaaacgtgt gaagtactac 480
 gtgtccaaa tcgtcatcca tcccaagtac caagataca cggcagacrt cgccttgtt 540
 aaactgtcct ctcaagtca cttcaacttct gccatctgc ctatggctt gcccagtgtc 600
 acaaaggcagt tggcaattcc accctttgt tgggtgaccg gatggggaaa agttaaggaa 660

agttcagata gagattacca ttctgccctt caggaaggcag aagtacccat tattgaccgc	720
caggcttgtg aacagctcta caatcccattc ggttatcttct tgccagcact ggagccagtc	780
atcaaggaag acaagatgg tgctggtgat actcaaaaaca tgaaggatag ttgcaagggt	840
gattctggag ggcctctgtc gtgtcacatt gatgggttat ggatccagac aggagtagta	900
agctggggat tagaatgtgg taaatctctt cctggagatct acaccaatgt aatctactac	960
caaaaaatgga ttaatgcac tatttcaaga gccaacaatc tagacttctc tgacttcttg	1020
ttcccttattt tcctactctc tctggctctc ctgygtccct cctgtgcctt tggacctaac	1080
actatacaca gagtaggcac tgttagctgaa gctgttgctt gcatacaggg ctgggaagag	1140
aatgcatgga gatttagtcc cagggcaga gaactcacag gagagccact gctaaccctg	1200
ggtgacttta tttacaattt gaaatgattt tgtttttaag gtttttgatt ttggaagttt	1260
tgggttgaa aagtgaagag ttaaga	1286