Deep Learning for Robots

Raia Hadsell www.raiahadsell.com

End-to-end Deep Learning for robots?

2010: Speech Recognition

ullet Audio ullet Acoustic Model ullet Phonetic Model ullet Language Model ullet Text

2012: Computer Vision

Pixels \rightarrow Key Points \rightarrow SIFT features \rightarrow Deformable Part Model \rightarrow Labels

2014: Machine Translation

Text → Reordering → Phrase Table/Dictionary → Language Model → Text

2017: Robotics?

Sensors \rightarrow Perception \rightarrow World Model \rightarrow Planning \rightarrow Control \rightarrow Action

End-to-end Deep Learning for robots?

2010: Speech Recognition

Robotics is different

Robotics is different

SENSORS ACTIONS

Reinforcement Learning

Deep Reinforcement Learning

Could deep RL allow robots to learn end-to-end?

• Sensorimotor control?

Space Invaders

https://www.youtube.com/watch?v=wHDxF5N700Q

[Mnih et al, Playing Atari with Deep Reinforcement Learning, 2014]

General Atari Player

https://www.youtube.com/watch?v=Erkt7HelEco

9DOF Random reacher

https://youtu.be/u0M3PvTgTcE

Could deep RL allow robots to learn end-to-end?

Sensorimotor control

Could deep RL allow robots to learn end-to-end?

Sensorimotor control

• Exploration of complex spaces ?

Maze navigation

https://youtu.be/zHhbypmKaj0

Could deep RL allow robots to learn end-to-end?

Sensorimotor control

Exploration of complex spaces

Could deep RL allow robots to learn end-to-end?

Sensorimotor control

Strategy and decision making?

Policy Network

Value Network

Lesson: use supervised learning when possible

Could deep RL allow robots to learn end-to-end?

Sensorimotor control

• Exploration of complex spaces

Strategy and decision making

So, where are the superhuman robots?

Not so fast ...

 Deep RL is very data inefficient how can it learn on real robots?

24 hours in simulation with 16 threads 55 days on the real Jaco arm

Two methods to speed up Deep RL for robots

- 1. Train in simulation, then transfer to real robot
 - Benefit is obvious.
 - Hard to do in practice

Sim-to-Real

Sim-to-Real

Sim-to-Real: 3d reacher

https://www.youtube.com/watch?v=YZz5lo_ipi8

Sim-to-Real: 2d reacher with moving target

SIM-TO-Real ROBOT Learning From PIXels

arxiv.org/abs/1606.04671 arxiv.org/abs/1610.04286v1

Andrei Rusu

Neil C. Rabinowitz

Guillaume Desjardins

Hubert Soyer

Kirkpatrick

Koray

Razvan Kavukcuoglu Pascanu

Nicolas Heess

Raia Hadsell

Two methods to speed up Deep RL for robots

2. Learn with auxiliary tasks

Accelerate and stabilise reinforcement learning

Navigation mazes

Game episode:

- 1. Random start
- 2. Find the goal (+10)
- 3. Teleport randomly
- 4. Re-find the goal (+10)
- 5. Repeat (limited time)

10

Nav agent ingredients:

- 1. Convolutional encoder and RGB inputs
- 2. Stacked LSTM
- 3. Additional inputs (reward, action, and velocity)
- 4. RL: Asynchronous advantage actor critic (A3C)
- 5. Auxiliary task 1: Depth predictor
- 6. Auxiliary task 2: Loop closure predictor

Variations in architecture

Results: Auxiliary tasks speed up RL ten-fold!

https://youtu.be/INoaTyMZsWI

Learning to navigate in

arxiv.org/abs/1611.03673

Piotr Mirowski, Razvan Pascanu, Raia Hadsell

- 1. Deep Learning is the future of robotics
- 2. There are very significant challenges
- 3. But some solutions emerging, as well.

Thank you!

We are hiring! joinus@deepmind.com, raia@google.com