This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

SU 1449095

(51)4 A 23 K 3/03

COHOS COBETCHINX COUNAJINCTIVIECHINX

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

PECTYBJINH

ГОСУДАРСТВЕННЫЙ НОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТНРЫТИЯМ

ПРИ ГКНТ ОСОР

Изобретение относится к кормопроизводству и может быть использовано для консервирования кормов при силосовании.

Целью изобретения является усилеиме фунгицидных и бактерицидных свойств консерванта и повышение качества корма.

Пример 1. Приготовили консер-10 вант на основе агидола в составе, мас. Х: агидол 54; муравьиная кислота 45,5; ортофосфорная кислота 0,5. Действие консерванта проверяли при силосовании зеленой массы кукурузы, в ко-15 торую после скашивания и измельчения добавляли 0,4 мас. Х указанного препарата. Зеленую массу кукурузы плотно укладывали в алюминиевую посуду, загермитизировали полиэтиленовой плен-20 кой.

Пример 2. В процессе закладки зеленой массы кукурузы в нее добавляли 0,4 мас. 7 консерванта следующего состава: агидол 56; муравьиная кислота 42; ортофосфорная 2. Технология консервирования аналогична описанной в примере 1.

Пример 3. В силосуемую массу кукурузы добавляли консервант следующего состава, мас. 2: агидол 59,5; муравьиная кислота 38; ортофосфорная кислота 2,5. Технология консервирования аналогична описанной в примере 1.

Пример4. В зеленую массу кукурузы добавляли консервант следующего состава, мас. 7: агидол 60; муравьиная кислота 38,5; ортофосфорная кислота 1,5. Технология консервирования аналогична описанной в примере 1.

Пример 5. При силосовании кукурузы в зеленую массу добавляли консервант, который содержал, мас. 7: агидол 62; муравьиную кислоту 37; ортофосфорную кислоту 1, Q. Технология консервирования аналогична описанной в примере 1.

Примерб. Для сравнения про- 50 водили контрольный опыт - зеленую мас- су кукурузы закладывали на хранение по технологии, описанной в примере 1, с добавлением агидола. Емкости открывали через три месяца после закладки ку- 55 курузы и проводили химический анализ кормов, заложенных с различными комсервантами.

Результаты изучения химического состава и питательности силосов приведены в табл. 1.

Из табл. 1 следует, что силос более высокого качества с повышенным содержанием питательных веществ получен в примерах 2-4, или при внесении в зеленую массу кукурузы химического состава консерванта, мас. %:

Агидол 56-60 Муравънная кислота 38-42 Ортофосфорная кислота 1.5-2.5

Процесс силосования при использовании предлагаемого консерванта протекает в желаемом направлении, на что указывает повышенное содержание в кормах молочной кислоты и отсутствие масляной кислоты. В 1 кг готового силоса больше содержится в примерах 2-4 по сравнению с примерами 1 и 5: 0.2-0,4 кормовых единиц; 2-18 г сухого вещества; 5-8 г перевариваемого протенна; 1,5-3,5 мг каротина; 0,09-0,26 г фосфора. В примерах 2-4 по сравнению с примером б в 1 кг корма больше сохраняется кормовых единиц на 30 6,3-12,5%; сухого вещества на 4,1-12-1%; перевариваемого протеина на 47,3-68,3%; фосфора на 13,5-36,9%; каротина на 20,8-42,8%.

Пример 7. Приготовили конзь сервант на основе агидола в составе, мас. 7: агидол 56-60; муравьиная кислота 38-42; ортофосфорная кислота 1,5-2,5.

Действие консерванта проверяли при силосовании зеленой массы кукурузы. Для закладки кукурузы на силос вырыта яма размером бх2х2 м. Для лучшей герметизации силосуемой массы на дно и боковые стенки силосной ямы растилались полиэтиленовой пленкой. При силосовании в зеленую массу послойно вносили химический консервант из расчета 0,4 мас. %. Закладываемую массу тщательно трамбовали трактором. Консервант вносили переоборудованным опрыскивателем OBT-1 по расчетной дозе. После заполнения траншен сипосуемую массу кукурузы сверху накрывали полиэтиленовой пленкой и слоем соломы толщиной 40-50 см.

Пример 8. Для сравнения проводили контрольный опыт — зеленую массу кукурузы закладывали в яму размером 6х2х2 м по технологии, опи-

санной на примере 7, с добавлением агидола из расчета 0,4 мас. 7. Вскрытие траншей проводилось через 2,5 мес. После вскрытия из каждой ямы проводили химический анализ образцов силосов на содержание в них пи-

Результаты изучения химического состава силосов, заготовленных с кон- 10 сервантами приводятся в табл. 2.

тательных веществ.

Из табл. 2 видно, что предлагаемый консервант эначительно повышает сохранность питательных веществ в готовом силосе по сравнению с агидолом. Так содер- 15 жание в 1 кг кукурузного силоса, заготовленного с внесением предлагаемого консерванта, больше содержится кормовых единиц на 25%; сухого вещества на 28,9%; переваривариваемого протеина на 37,1%; жира на 9,3%; кальция на 47,2%; фосфора на 15,4; каротина на 4,2%. Консервант не подавляет (задерживает) развитие молочнокислых бактерий, о чем свидетельству- 25 ет достаточно высокое содержание в корме молочной кислоты. В корме небыло обнаружено признаков загнивания, заплесневения, что является проявлением фунгицидных и бактерицидных свойств предлагаемого консерванта. В силосе не было обнаружено наличие масляной кислоты, что свидетельствует об отсутствии маслянокислого брожения, подавлении гнилостных и маслянокислых бактерий.

Полученный корм скармливали молодняку крупного рогатого скота. Для проведения научно-козяйственного опыта сформированы две группы бычков черно-пестрой породы по 17 голов в каждой. Животные в группы подбирались по принципу пар-аналогово по пород-

Животным контрольной группы в рацион включили силос, заготовленный с внесением агидола, а опытной группы – силос, заготовленный с внесением предлагаемого консерванта. Результаты производственной проверки приводятся в табл. 3.

За период производственной проверки прирост живой массы тела у животных опытной группы составил 76,0 против 68,0 кг в контроле. Абсолютный прирост живой массы у животных опытной группы был выше на 11,8%, чем у животных контрольной группы. Среднесуточный прирост живой массы животных при кормлении силосом, заготовленным с предлагаемым консервантом, составил 827 кг, что выше на 11,9%, чем в контрольной группе.

Из приведенных данных табл. 3 видно, что на получение 1 ц прироста в контрольной группе затрачено 7,11 кормовых единиц, а в опытной группе – 6,07 кормовых единиц или меньше на 17,1%.

формупа изобретения

Консервант для силосования кормов, включающий агидол, отличающий агидол, отличающий щийся тем, что, с целью усиления фунгицидных и бактерицидных свойств консерванта и повышения качества корма, он дополнительно содержит ортофосфорную и муравьиную кислоты при следующем соотношении компонентов, мас. %:

Агидол56-60Муравьиная кислота38-42Ортофосфорная кислота1,5-2,5

Таблица

the state of the s							
Показатели	Пример						
	1 ,	2	3	4	5	6	
Кормовые единицы	0,15	0,17	0,18	0,16	0,14	0,16	
Сухое вещество, г/кг.	218	223	236	219	217	210,2	
Перевариваемый протеин, г/кг	9,0	14	16	15	8,0	9,5	
Сырой жир, г/кг	6,9	8,3	8,9	8,7	9,0	8,5	
Сырая клетчатка, г/кг	67,5	70,4	70,0	69,0	70,0	68,9	

Показатели		Пример 👡				
	1	2	3	4	5	. 6
Зона, г/кг	18,0	16,5	19,5	17,8	16,9	17,5
Кальций, г/кг	1,09	1,0	1,10	0,99	0,85	0,90
Φοςφορ, Γ/κΓ	0,74	0,83	1,00	0,98	0,76	0,73
Каротин, мг/кг	9,5	11,0	13,0	12,0	10,0	9,1
рН корма	4,2	4,0	4,3	4,5	4,1	4,4
Сумма кислот	3,33	3,41	3,55	3,28	3,30	2,87
В том числе: молочная, %	47	55	60	50	45	56
уксусная, %	53	45	40	50	55	44
масляная, %	· <u>-</u>	· -	-	-	-	- · ·

		•	Габлица	2e
Показатели	Силос	Процент к контролю		
	С агндолом (контроль)	С предлагаемым консервантом	Konipolio	
Кормовые единицы	0,12	0,15	125,0	
Сухое вещество, г/кг	177,7	229,1	128,9	
Перевариваемый протеин, г/кг	. 8,32	11,41	137,1	
Сырой жир, г/кг	5,4	5,9	109,3	•
Сырая клетчатка, г/кг	56,6	51,2	90,5	
Зола, г/кг	18,2	17,5	96,2	
Кальший, г/кг	1,06	1,56	147,2	
[∫] Фосфор, г/кг	0,78	0;90	115,4	·
Каротин, мг/кг	4,57	4,76	104,2	. :
рН корма	4,0	4,0	•	
Сума учелот	2.87	4,06	- ·	

Продолжение табл.2

Показатели	Силос	Процент к контролю	
	С агидолом (контроль)	С предлагаемым консервантом	, controlle
В том числе: молочная, %	45	47	
уксусная, %	55	53	:
масляная, %	_		

Таблица 3... Предлагаемый. Агидол Показатели (контроль) Количество животных 17 17 в группе, голов Количество кормодней, 1564 1564 Получено валого при-12,94 11,56 роста, ц Среднесуточный при-827 рост на 1 голову, г 111,9 В % к контролю, % Абсолютный прирост 76,0 68,0 массы животных, кг Затраты кормов на 1 ц прироста: 6,07 7,11 кормовых единиц, кг перевариваемого про-636,6 781,8

Редактор Л. Гратилло	Составитель Г. Мазаева Техред А.Кравчук	Корректор А.	Обручар	
Заказ 6893/4 ВНИНПИ Государственного 113035,	Тираж 549 комитета по изобретения Москва, Ж-35, Раушская	Подписное м и открытиям наб., д. 4/5	при ГКНТ	CCCP

Производственно-полиграфическое предприятие, г. Ужгород, ул. Проектная, 4