Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

VİTMO

ЛАБОРАТОРНАЯ РАБОТА №А ПРЕДМЕТ «ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ» ТЕМА «ЛИНЕЙНО-КВАДРАТИЧНЫЕ РАДОСТИ»

Вариант №2

Преподаватель: Пашенко А. В.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ТАУ R22 бак 1.1.1

Содержание

1	Зад	ание 1. Исследование LQR
	1.1	Стабилизируемость системы
	1.2	Схема моделирования системы
	1.3	Набор пар матриц для исследования
	1.4	Синтез регулятора
	1.5	Минимизированное значение функционала качества
	1.6	Компьютерное моделирование
	1.7	Сравнение результатов
2	Вывод	
3	Прі	иложение А

Задание 1. Исследование LQR

Рассмотрим систему

$$\dot{x} = Ax + Bu, \ x(0) = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \ A = \begin{bmatrix} 5 & 2 & 7\\2 & 1 & 2\\-2 & -3 & -4 \end{bmatrix}, \ B = \begin{bmatrix} 3\\1\\-1 \end{bmatrix};$$

Стабилизируемость системы

Проверим систему на стабилизируемость. Найдем собственные числа матрицы A. Ранее мы это делали в лабораторной работе №2 «Модальные регуляторы и наблюдатели». Код матлаб представлен в приложении A на листинге 1

$$\sigma(A) = \{-2, 2 \pm i\}$$

Собственное число $\lambda_1 = -2$ асимптотически устойчивое, может быть неуправляемым. Комплексная пара $\lambda_{2,3} = 2 \pm i$ неустойчива, нужна управляемость. Разложим A в ЖНФ в вещественном виде, найдем B в базисе собственных векторов A

$$A_{J_{re}} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix}, \ B_{J_{re}} = \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix};$$

Система не полностью управляема, стабилизируема (собственному значению -2 соответствует ноль в матрице $B_{J_{re}}$).

Схема моделирования системы

Построим схему моделирования системы, замкнутой регулятором u=Kx, используя SIMULINK

Рис. 1: Схема моделирования системы, замкнутой регулятором

Снимаем осциллограммы $u(t), x(t), J_{exp}(t)$.

Набор пар матриц для исследования

Зададим значения матриц Q=I, R=1 (время процесса и затраты на управление принимаем одинаково значимыми) и параметр $\alpha=4$. Таким образом, сформируем набор

$$\circ (Q = I, R = 1),$$

 $\circ (Q = 4I, R = 1),$
 $\circ (Q = I, R = 4),$
 $\circ (Q = 4I, R = 4):$

Синтез регулятора

Для каждой из пар значений матриц (Q,R) синтезируем регулятор, минимизирующий функционал качества

$$J = \int_{0}^{\infty} \left(x^{T}(t)Qx(t) + u^{T}(t)Ru(t) \right) dt$$

путем решения соответствующего матричного уравнения Риккати при $\nu=1$

$$A^{T}P + PA + Q - \nu PBR^{-1}B^{T}P = 0, K = -R^{-1}B^{T}P;$$

Воспользуемся icare и получим

$$\begin{aligned} &(Q=I,R=1)\,,\; K_{I,1} = \begin{bmatrix} -1.7473 & -5.4627 & -1.4004 \end{bmatrix}\,,\\ &(Q=4I,R=1)\,,\; K_{4I,1} = \begin{bmatrix} -2.0000 & -6.9630 & -0.9630 \end{bmatrix}\,,\\ &(Q=I,R=4)\,,\; K_{I,4} = \begin{bmatrix} -1.6433 & -4.9797 & -1.5454 \end{bmatrix}\,,\\ &(Q=4I,R=4)\,,\; K_{4I,4} = \begin{bmatrix} -1.7473 & -5.4627 & -1.4004 \end{bmatrix}\,; \end{aligned}$$

Убедимся, что спектры замкнутых систем принадлежат левой комплексной полуплоскости

$$\sigma (A + BK_{I,1}) = \{-2, -1.4413, -3.8630\},$$

$$\sigma (A + BK_{4I,1}) = \{-2, -1, -7\},$$

$$\sigma (A + BK_{I,4}) = \{-2, -2.1821 \pm 0.6216i\},$$

$$\sigma (A + BK_{4I,4}) = \{-2, -1.4413, -3.8630\};$$

Получили отрицательные действительные части собственных чисел и наличие в спектрах неуправляемого $\lambda_1 = -2$. Следовательно, регуляторы синтезированы корректно.

Минимизированное значение функционала качества

Вычислим минимизированное значение функционала качества

$$J_{min} = x_0^T P x_0$$

для каждой пары (Q,R). P_i получили при решении матричного уравнения типа Риккати

$$P_{I,1} = \begin{bmatrix} 2.4681 & -3.5514 & 2.1055 \\ -3.5514 & 13.4136 & -2.7033 \\ 2.1055 & -2.7033 & 2.2129 \end{bmatrix}, \ P_{4I,1} = \begin{bmatrix} 4.0000 & -7.3333 & 2.6667 \\ -7.3333 & 24.9904 & -3.9726 \\ 2.6667 & -3.9726 & 3.0645 \end{bmatrix},$$

$$P_{I,4} = \begin{bmatrix} 8.2455 & -10.2978 & 7.8656 \\ -10.2978 & 41.3731 & -9.4392 \\ 7.8656 & -9.4392 & 7.9761 \end{bmatrix}, \ P_{4I,4} = \begin{bmatrix} 9.8723 & -14.2056 & 8.4221 \\ -14.2056 & 53.6545 & -10.8133 \\ 8.4221 & -10.8133 & 8.8515 \end{bmatrix};$$

Получаем

$$Q = I, R = 1$$
: $J_{min} = 9.7962,$
 $Q = 4I, R = 1$: $J_{min} = 14.7764,$
 $Q = I, R = 4$: $J_{min} = 33.8518,$
 $Q = 4I, R = 4$: $J_{min} = 39.1846;$

Компьютерное моделирование

Выполним компьютерное моделирование замкнутых систем и для каждого случая построим график управления u(t), вектора состояния замкнутой системы x(t) и экспериментального значения функционала качества $J_{exp}(t)$. Моделирование u(t) и x(t) для случая

$$Q = 4I, R = 4, K_{4I,4} = \begin{bmatrix} -1.7473 & -5.4627 & -1.4004 \end{bmatrix}$$

делать не будем, так как регулятор для этой пары совпал с регулятором для случая

$$Q = I, R = 1, K_{I,1} = \begin{bmatrix} -1.7473 & -5.4627 & -1.4004 \end{bmatrix},$$

собственные числа тоже одинаковые. Результаты представлены на рис. 2–11

Рис. 2: График управления u(t) при $K_{I,1}, K_{4I,4}$

Рис. 3: График управления u(t) при $K_{4I,1}$

Рис. 4: График управления u(t) при $K_{I,4}$

Рис. 5: График вектора состояния x(t) при $K_{I,1}, K_{4I,4}$

Рис. 6: График вектора состояния x(t) при $K_{4I,1}$

Рис. 7: График вектора состояния x(t) при $K_{I,4}$

Рис. 8: График экспериментального значения функционала качества J(t) при $K_{I,1}$

Рис. 9: График экспериментального значения функционала качества J(t) при $K_{4I,1}$

Рис. 10: График экспериментального значения функционала качества J(t) при $K_{I,4}$

Рис. 11: График экспериментального значения функционала качества J(t) при $K_{4I,4}$

Сравнение результатов

Когда нам важнее время процесса, чем затраты на управление (Q>R), то ожидаемо управления применяется больше (сравн. рис. 3, 4), при этом координаты $x_2(t), x_3(t)$ вектора состояния объекта быстрее сходятся к нулю (сравн. рис. 6, 7; примечание: координата $x_1(t)$ сравнительно быстрее бы сошлась к нулю при большем коэффициенте α). При Q<R ситуация обратная – время процесса не так важно, как затраты на управление (сравн. те же графики). При равнозначных (равносильных) значениях Q,R результат усредненный между временем процесса и затратами на управление. Результаты $J_{exp}(t)$ примерно совпадают с вычисленными J_{min} . При этом

 $J_{min,I,1} = \frac{J_{min,4I,4}}{4}, \ 9.7962 \approx \frac{39.1846}{4} = 9.79615,$

то есть при увеличении Q, R в один и тот же коэффициент α , минимизированное значение функционала качества увеличится в α раз.

Вывод

...

Приложение А

```
% plant parameters
A = [5 \ 2 \ 7; \ 2 \ 1 \ 2; \ -2 \ -3 \ -4];
B = [3; 1; -1];
x0 = [1;1;1];
% A matrix eigenvalues
eig_A = eig(A)
% Jordan matrix
[P_J, A_J] = jordan(A);
P_{Jre}(:,1) = P_{J}(:,1);
P_{Jre}(:,2) = imag(P_{J}(:,2));
P_Jre(:,3) = real(P_J(:,3));
A_Jre = P_Jre^-1 * A * P_Jre
B_jre = P_Jre^-1 * B
% solving Riccati
a = 4;
Q = a * e y e (3);
R = a*1;
% a1
[P,K,e]=icare(A,B,Q,R);
K = -inv(R)*B*P
e = eig(A+B*K)
% quality functional
J_min = x0,*P*x0
```

Листинг 1: Программа для задания 1