AprèsSQI: A Pretty Rad Extension to Signing in SQIsign

Maria Corte-Real Santos, Jonathan Komada Eriksen, Michael Meyer, Krijn Reijnders

Goals

- SQIsign:
 - Tiny signature + pk
 - Fast and easy verification
 - Slow signing
- Perfect for applications where signatures are verified many times.
- This work:
 - Accept that signing is going to be slow.
 - Make verification as fast as possible.

SQIsign Signature - Key Generation

SQIsign Signature - Commitment

SQlsign Signature - Challenge

SQIsign Signature - Response

• Verifying a signature on *m*:

$$Ver(m, \sigma, pk)$$

$$\sigma = (\varphi_{resp}, E_1)$$

- $\log(p) \approx 256$
- $2^{75} | | p + 1$
- $deg(\varphi_{\mathsf{resp}}) \approx 2^{975}$
- $\varphi_{\mathsf{resp}}: K_1, K_2, ..., K_{13}$

• $\varphi_{\mathsf{resp}}: K_1, K_2, ..., K_{13}$

• $\varphi_{\mathsf{resp}}: K_1, K_2, ..., K_{13}$

• $\varphi_{\mathsf{resp}}: K_1, K_2, ..., K_{13}$

• $\varphi_{\mathsf{resp}}: K_1, K_2, ..., K_{13}$

•
$$K_{\mathsf{chall}} := H(E_1, m)$$

• $\varphi_{\text{chall}}: E_1 \to E_2'$

$$deg(\varphi_{chall}) = 2^{75}3^{36} > 2^{128}$$

- $\varphi_{\mathsf{resp}}: K_1, K_2, ..., K_{13}$
- $\lceil e/f \rceil = \lceil 975/75 \rceil = 13$ points in total

 Observation: Bigger f leads to smaller signatures.

• E.g. f = 250 gives 4 points.

Compressing the Response

- $\varphi_{\text{resp}}: s_1, s_2, ..., s_{13}$
- $s_i \in \mathbb{Z}/2^f\mathbb{Z}$
- Each step:
 - Deterministically gen. $\langle P_i, Q_i \rangle = E^{(i-1)}[2^f]$
 - $K_i = P_i + [s_i]Q_i$
- Bigger $f \Rightarrow$ Faster

Compressing the Commitment

- Replace E_1 by (r, s_{chall})
- Deterministically gen.

$$\langle P, Q \rangle = E_2[D_{chall}]$$

• $\widehat{\varphi_{chall}}$, generated by

$$P + [s_{chall}]Q$$

Verify:

$$\widehat{\varphi_{chall}}(Q) = [r]H(E_1, m)$$

Effect of larger f

Effect of larger f

Other Optimisations

- Several low-level optimisations.
 - Faster basis generation.
 - Faster kernel point computation.
- Example: Given a curve

$$E: y^2 = (x - \lambda_1)(x - \lambda_2)(x - \lambda_3)$$

- $Q \in [2]E$ iff. $x_Q \lambda_i$ are square for all i.
- $Q \in E \setminus [2]E$ "above" $(\lambda_i, 0) \in E[2]$ iff $x_Q \lambda_i$ square

Size-speed trade-offs

- Re-introduce seeds.
 - Smaller and fewer seeds.
- Uncompressed signatures.
 - Compressed NIST-signatures: 177 B
 - Uncompressed NIST (f = 75): 896 B
 - Uncompressed f = 246: 322 B

Effect of larger f

All Results

All Results

- Increasing f:
 - 1.68x faster
- Optimised:
 - 2.65x faster
- Seeded (+10 B)
 - 3.04x faster
- Uncomp. (2x B)
 - 4.40x faster

Current restrictions on f?

- SQlsign:
 - $2^f | p + 1$
 - $T \mid (p^2 T)T^2$ odd, smooth and $T \approx p^{5/4}$

Changing the requirement on T

- Signing: Ideals of norm $T \Rightarrow$ isogenies of degree T.
 - Finding the kernel: Linear algebra + a few additions.
 - Computing isogeny from kernel points.
- SQIsign: All computations happen in $\mathbb{F}_{\!p^2}$
 - Hence $T \mid (p^2 1)/2$
- Allow kernel points to live in bigger extension-fields?
 - A few additions.
 - Computing rational isogeny from irrational generator.

Example prime

7-block verification

$$p_7 = 2^{145} \cdot 3^9 \cdot 59^3 \cdot 311^3 \cdot 317^3 \cdot 503^3 - 1.$$
 T is 997-smooth

4-block verification

$$p_4 = 2^{242} \cdot 3 \cdot 67 - 1$$

T is 2293-smooth

$E(\mathbb{F}_{p^{2k}})$	Torsion group
k = 1	$E[3^7], E[53^2], E[59^3], E[61], E[79], E[283], E[311^3]$ $E[317^3], E[349], E[503^2], E[859], E[997]$
k = 3	E[13], E[109], E[223], E[331]
k = 4	E[17]
k = 5	E[11], E[31], E[71], E[241], E[271]
k = 6	E[157]
k = 7	$E[7^2], E[29], E[43], E[239]$
k = 8	E[113]
k = 9	$E[19^2]$
k = 10	$E[5^4], E[41]$
k = 11	E[23], E[67]
k = 12	E[193]
k = 13	E[131]
k = 15	E[181]
k = 18	E[37], E[73]
k = 23	E[47]

Sage-Math Implementation

- Implementation available at <u>github.com/TheSICQ/ApresSQI</u>
- Builds on
 - NIST-documentation (thanks SQIsign-team!)
 - Learning to SQI (thanks Giacomo!)
 - Deuring for the People (thanks Lorenz, Jana and Mattia!)
- Proof-of-Concept SageMath implementation for comparison:

Table 1: Comparison between estimated cost of signing for three different primes.

p	largest $\ell \mid T$	largest $\mathbb{F}_{p^{2k}}$	SigningCost _p (T)	Adj. Cost	Timing
p_{1973}	1973	k = 1	8371.7	1956.5	15m, 53s
p_7	997	k = 23	4137.9	-	10m, 06s
p_{4}	2293	k = 53	9632.7	-	16m, 13s

Optimised AprèsSQI signing competitive with current SQIsign signing?

New Prime Search Techniques?

- Change in requirement
 - $T \mid (p^2 1)/2$
 - $T \mid N$, where

$$N = \prod_{n=1}^{k} \Phi_n(p^2)/2$$

and Φ_n denotes the *n*-th cyclotomic polynomial.

- N grows quickly with k, intuitively, a lot easier
 - How to best exploit this?

