PHY2005 Atomic Physics

Lecturer: Dr. Stuart Sim

Room: 02.019

E-mail: s.sim@qub.ac.uk

(5) Single-electron atoms: spin, total angular momentum and spectroscopic notation

Learning goals

- 1. To formally introduce the spin part of the wavefunction.
- 2. To appreciate that spin has many similarities to orbital angular momentum, and has analogous compatible observables.
- 3. To introduce the total angular momentum J.
- 4. To introduce spectroscopic notation as used in atomic physics.
- 5. To conclude discussion of one-electron atoms with relativistic results.

Electron spin

Spin is a fundamental (observed) property of the electron

E.g. the Stern Gerlach experiment

Not accounted for in the Schrödinger equation: needs to be considered as a separate part of the wavefunction:

complete eigenfunction =
$$\psi(\mathbf{r}) \times \sigma(\mathbf{S})$$

Space part

Spin part

Electron spin

"Coordinates" for electron spin are discreet:

- Spin is an angular momentum vector
- For 1 electron, specified by two quantum numbers (magnitude and z-component):

Physical	Eigenvalue	Quantum	Quantization
quantity		number	
$\overline{ \mathbf{S} }$	$\sqrt{s(s+1)}\hbar$	S	$s = \frac{1}{2}$
S_Z	$m_s\hbar$	$m_{\scriptscriptstyle S}$	$m_s = -\frac{1}{2} \text{ or } \frac{1}{2}$

Total angular momentum

Can sum orbital and spin parts

$$J = L + S$$

noting that this is a vector sum.

Result, J, also an angular momentum: also described by two quantum numbers j, m_i

$$|\mathbf{J}| = \sqrt{j(j+1)}\hbar;$$

$$J_z=m_j\hbar$$

Total angular momentum: allowed quantum numbers

For single electron atom, allowed values are

$$j = l + 1/2, \ l - 1/2$$

and then

$$m_j = -j, -j + 1, ..., j - 1, j$$

Reminder: vector addition

Specifying states using J

For single electron atom, state fully specified by the quantum numbers in Table:

Physical	Eigenvalue	Quantum	Quantization
quantity		number	
E	$-\frac{\mu Z^2 e^4}{(4\pi\epsilon_0)^2 2\hbar^2 n^2}$	п	n > 0
$ \mathbf{L} $	$\sqrt{l(l+1)}\hbar$	1	$0 \le l < n$
S	$\sqrt{s(s+1)}\hbar$	S	$s = \frac{1}{2}$
J	$\sqrt{j(j+1)}\hbar$	j	$j = l \pm 1/2 \text{ or } j = 1/2 \text{ for } l = 0$
J_z	$m_j\hbar$	m_j	-j, -j+1,, j-1, j

Spectroscopic notation: terms

Conventional to use standard notation to specify the angular momentum quantum numbers:

Single-electron:

$$2s+1$$
 l_j

I identified by "spectroscopic" letter:

0	S	sharp
1	P	<u> </u>
1	ľ	principal
2	D	diffuse
3	F	fundamental
4	G	alphabetical
5	Н	

Spectroscopic notation: terms

For single-electron atom, only additional information needed is *n*

Often written before term as an integer...e.g.:

$$1^{2}S_{1/2}$$

Identifies the ground state of hydrogen atom

$$2^{2}S_{1/2}$$
 , $2^{2}P_{1/2}$ and $2^{2}P_{3/2}$

are the sub-states of first excited energy level.

Hydrogen atom: Dirac theory

Dirac's theory of relativistic quantum mechanics predicts energy levels of the hydrogen atom:

$$E = -\frac{\mu e^4}{(4\pi\epsilon_0)^2 2\hbar^2 n^2} \left[1 + \frac{\alpha^2}{n} \left(\frac{1}{j+1/2} - \frac{3}{4n} \right) \right]$$

where

$$\alpha = e^2/4\pi\epsilon_0\hbar c \approx 1/137$$

Summary/Revision

- Spin (**S**) must be included in the theory atomic physics. It behaves just like an angular momentum vector in quantum mechanics.
- The spin properties of a single electron are specified by two quantum numbers: s and m_s .
- *s* specifies the magnitude of the spin: $|\mathbf{S}| = \sqrt{s(s+1)}\hbar$; for a single electron s = 1/2.
- m_s gives the z-component of the spin: $S_z = m_s \hbar$. For a single electron, $m_s = -1/2$ or +1/2.
- The total angular momentum, J = L + S is widely used in identifying states.
- **J** is also defined by two quantum numbers, j and m_j . These specify the magnitude $|\mathbf{J}| = \sqrt{j(j+1)}\hbar$ and z-component $J_z = m_j\hbar$.
- For a single-electron atom, the allowed values of j are l-1/2 and l+1/2.
- For given j, allowed values of m_i form a sequence:

$$m_j = -j, -j + 1, ..., j - 1, j$$

- For the simple one-electron Hamiltonian we considered in Section 4, the energy of a state is independent of l, s, j and m_j . However, in Dirac theory, the energy levels are shifted and split by their j values. These effects are small ($\sim 10^{-4} \, \mathrm{eV}$) but accurately match observed fine structure in hydrogen lines.
- In spectroscopic notation, the quantum numbers for orbital, spin and total angular momenta of a complete atom are indicated by the *term*.