

Claim 2

Line 2, replace "claim 1" with --claim 21--

Claim 4

Line 2, replace "claim 3" with --claim 21--

Line 3, after "dye" insert --of formula [I]--

Line 4, replace "[III]" with --[II]--

Claim 5

Line 2, replace "claim 3" with --claim 21--

Claim 6

Line 2, replace "claim 3" with --claim 21--

Claim 7

Line 2, replace "claim 3" with --claim 4--

Claim 8

Line 2, replace "claim 3" with --claim 21--

Claim 9

Line 2, replace "claim 3" with --claim 21--

Claim 11

Line 2, replace "claim 10" with --claim 23--

Claim 12

Line 2, replace "claim 10" with --claim 23--

Claim 13

Line 2, replace "claim 10" with --claim 23--

Claim 15

Line 2, replace "claim 10" with --claim 23--

Claim 16

Line 2, replace "claim 10" with --claim 23--

Claim 17

Line 2, replace "claim 10" with --claim 23--

Claim 18

Line 2, replace "claim 10" with --claim 23--

Claim 19

Line 2, replace "claim 10" with --claim 23--

Please add the following new claims:

A
S
C2

--21. A silver halide color photographic light-sensitive material for movie, comprising a support having thereon at least one yellow color-forming light-sensitive silver halide emulsion layer, at least one cyan color-forming light-sensitive silver halide emulsion layer, at least one magenta color-forming light-sensitive silver halide emulsion layer, and at least one light-insensitive non-color forming hydrophilic colloid layer, wherein at least one cyan color-forming silver halide emulsion layer contains at least one cyan dye-forming coupler selected from the compounds represented by the following formula [C-1], and at least one light-insensitive non-color forming hydrophilic colloid layer is positioned between the support and a light-sensitive silver halide emulsion layer most adjacent to the support:

wherein

Z^a and Z^b each represents -C(R³)= or -N=, provided that either one of Z^a and Z^b is -N= and another is -C(R³)=,

R¹ and R² each represents an electron attractive group having a Hammett's substituent constant σ_p value of 0.20 or more, provided that the sum of σ_p values of R¹ and R² is 0.65 or more,

R³ represents hydrogen atom or a substituent,

X represents hydrogen atom or a group capable of splitting off upon coupling reaction with an oxidation product of an aromatic primary amine color developing agent, and

the group represented by R¹, R², R³ or X may assume a divalent group and combine with a divalent or greater polymer or a polymer chain to form a homopolymer or a copolymer,

wherein at least one non-color forming hydrophilic colloid layer positioned between said support and a light-sensitive silver halide emulsion layer most adjacent to the support contains a solid fine particle dispersion of a dye represented by formula [I] :

wherein

D represents a compound residue having a chromophore,

X represents a dissociative hydrogen atom or a group having a dissociative hydrogen atom, and

y represents an integer of from 1 to 7.--

9 --22. The silver halide color photographic light-sensitive material for movies as claimed in claim 21, wherein the solid fine particle dispersion of the dye is one which has been heat-treated at 40°C after the dispersion.--

10 --23. A silver halide color photographic light-sensitive material for movie, comprising a transparent support having thereon at least three kinds of light-sensitive hydrophilic colloid layers each containing any one of yellow, magenta and cyan dye-forming couplers and containing silver halide emulsion grains different from each other in the color sensitivity, and at least one light-insensitive hydrophilic colloid layer, wherein any one layer contains at least one compound represented by formula [XI], at least one light-insensitive hydrophilic colloid layer contains a solid fine particle dispersion of a dye represented by formula [I], and said silver halide color photographic light-sensitive material has a film pH of form 4.6 to 6.4:

wherein

R₁ and R₄ each independently represents hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, -NR₇R₈, -NR₇CONR₇R₈, -NR₈COR₉ or -NR₈SO₂R₉,

R₂ and R₅ each independently represents hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, a sulfo group, -NR₇R₈, -NR₈COR₉, -NR₈SO₂R₉, -NR₇CONR₇R₈, -CO₂R₇, -CONR₇R₈, -COR₉, -SO₂R₉ or -SO₂NR₇R₈,

R₃ and R₆ each independently represents -OR₇, -CO₂R₇, -COR₉, -CONR₇R₈, -NR₇R₈, -NR₈COR₉, -NR₈SO₂R₉, -NR₇CONR₇R₈, -SO₂R₉, -SO₂NR₇R₈ or a cyano group,

R₇ and R₈ each independently represents hydrogen atom, an aliphatic group or an aromatic group,

R₉ represents an aliphatic group or an aromatic group,

R₇ and R₈ or R₈ and R₉ may be combined with each other to form a 5- or 6-membered ring,

L₁, L₂ and L₃ each independently represents a methine group,

m represents 0, 1 or 2,

Mⁿ⁺ represents a n-valence cation, and

n represents 1, 2 or 3:

D-(X)_y

[I]

wherein

D represents a compound residue having a chromophore,

X represents a dissociative hydrogen atom or a group having a dissociative hydrogen atom, and