Software Tools for UNIX/Linux Systems

Part 10: Visualization- Using Matplotlib

C.Hasse

From: matplotlib.org

Agenda

- 1. Introduction
- 2. Basics
- 3. Example
- 4. What should you have learned

What is matplotlib?

Matplotlib

- Open source python library
- Very popular in scientific community
- ► A lot of possibilities
- High level of customization possible
- Mastermind behind:
 - ▶ John D. Hunter
- Started 2002
- ► License: Python Software Foundation (PSF) license
- Issue: Documentation sometimes redundant –> confusing

From: matplotlib.org

Why do we use matplotlib?

Competitors:

- Matlab
- gnuplot (very common)
- tecplot

- graphpad-prism
- mathematica
- ▶ labplot

Advantages:

- high level of customization
- open source
 - can be shared
 - can be installed everywhere
 - platform independent
- community support
- close to matlabsyntax

- Disadvantages:
- documentation is an issue
 - (projects derived out of this for automatic documentation)
- animation of plots is rather complicated
- many ways to get to the solution

What is possible?

... and many more....!!!!

5 | **(STFS**

How to get started

Installation:

- Python/Conda installation
- (Create environment)
- **Execute:**
 - pip install matplotlib
- It is recommended to use pandas for data acquisition:
 - pip install pandas
- Get an IDE (e.g. spyder, PyCharm...)
- Use jupyter-notebook
 - pip install jupyter

From: https://pandas.pydata.org/

From: https://docs.spyder-ide.org/

From: https://de.wikipedia.org/wiki/PyCharm

From: https://jupyter.org/

Basics

Matplotlib.pyplot as plt:

- Pyplot is the module of matplotlib that we will focus on most
- Important functions:
 - plt.plot(*args, scalex=True, scaley=True, data=None, **kwargs)
 - plt.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, *, plotnonfinite=False, data=None, **kwargs)

Basics: Simple example

Basics:

- Import libraries
- Use simple plot() function
- Show the plot

#import important libraries import matplotlib.pyplot as plt import numpy as np

#create data
x = np.linspace(0, 2, 100)
#actual plotting
plt.plot(x,x**2)
plt.show()

Basics: Simple example

Basics:

- Import libraries
- Use subplots()
- Show the plot

#import important libraries import matplotlib.pyplot as plt import numpy as np

#create data
x = np.linspace(0, 2, 100)
create figure
fig, ax = plt.subplots()
#actual plotting
ax.plot(x,x**2)
plt.show()

Basics: Simple example

80

100

Basics:

- Import libraries
- Use subplots()
- Show the plot

#import importan import matplotlib import numpy as

#create data
x = np.linspace(0
create figure

fig, ax = plt.subplots()
#actual plotting

 $ax.plot(x,x^{**}2)$

plt.show()

10000

Real life example

Real life example:

- Download data from moodle
- Install matplotlib, pandas, jupyter-notebook
- Open notebook:
 - ► Go to folder containing data and notbook
 - Execute:
 - ▶ "jupyter-notebook linuxTutoriumNotebook"

Literature

- https://realpython.com/pythonmatplotlib-guide/
- https://matplotlib.org/Matplotlib.pdf