

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/32

Paper 3 Theory (Core)

May/June 2020

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 ((a)	A list	of	symbols	and	formulae	is shown.
-----	-----	--------	----	---------	-----	----------	-----------

CH₄
C*l*⁻
CO₂
Cr³⁺
Cu²⁺
Fe²⁺
H₂
K⁺
N₂
O₂
SO₂

Answer the following questions about these symbols and formulae. Each symbol or formula may be used once, more than once or not at all.

Which symbol or formula represents:

(i)	a compound produced by the thermal decomposition of calcium carbonate	
		[1]
(ii)	an element which is used as a fuel	
		[1]
(iii)	a gas which forms 78% of clean dry air	
		[1]
(iv)	an ion which forms a blue precipitate when added to aqueous sodium hydroxide	
		[1]
(v)	an ion formed when an atom gains an electron?	
		[1]

(b) Complete the table to show the relative charge and approximate relative mass of a proton, a neutron and an electron.

type of particle	relative charge	approximate relative mass
proton		1
neutron		
electron	-1	

[3]

(c)	Deduce the number of electrons and neutrons in an atom of the isotope of potassium shown.
	⁴¹ ₁₉ K
	number of electrons
	number of neutrons

[Total: 10]

[2]

2 A solution is obtained by filtering a mixture of soil and water. The table shows the mass of some of the ions in 1000 cm³ of this solution.

name of ion	formula of ion	mass of ion in 1000 cm ³ of soil solution/mg	
aluminium	Al ³⁺	0.2	
	NH ₄ ⁺	22.0	
calcium	Ca ²⁺	0.2	
iron(II)	Fe²+	79.0	
magnesium	Mg ²⁺	0.1	
nitrate	NO ₃ -	28.0	
phosphate	PO ₄ 3-	14.0	
potassium	K ⁺	39.0	
	SO ₄ ²⁻	5.1	

a)	Ans	swer these questions using the information in the table.
	(i)	Which negative ion has the lowest concentration?
		[1]
	(ii)	State the name of the SO ₄ ²⁻ ion.
		[1]
	(iii)	Calculate the mass of nitrate ions in 200 cm ³ of this solution.
		mass = mg [1]
	(iv)	Name the compound that contains $\mathrm{NH_4}^+$ ions and $\mathrm{NO_3}^-$ ions.
		[1]
h)	Des	scribe a chemical test for calcium ions.
IJ,		
	test	·

[2]

(c) The names and formulae for some compounds are shown.

aluminium nitrate, $Al(NO_3)_3$ magnesium nitrate, $Mg(NO_3)_2$ sodium nitrate, $NaNO_3$

Deduce the formula for calcium nitrate.	
	[1]
	[Total: 7]

3 Many compounds have important uses.

(a) Complete the table to show the name, number of atoms in the formula and use.

name of compound	number of atoms in the formula	formula	use
water	hydrogen = 2 oxygen = 1	H ₂ O	
	sulfur = 1 oxygen = 2	SO ₂	
calcium hydroxide (slaked lime)	calcium = oxygen = hydrogen =	Ca(OH) ₂	

[5]

(b) The table compares the reactions of four metals with steam.

metal	reaction with steam
copper	does not react
magnesium	reacts rapidly
sodium	reacts explosively
zinc	reacts slowly when warmed

Put the four metals in order of their reactivity. Put the least reactive metal first.

least reactive	 	most reactive

[2]

(c) Sodium reacts with molten sodium hydroxide.

Complete the chemical equation for this reaction.

$$2Na +NaOH \rightarrowNa2O + H2$$
 [2]

[Total: 9]

4 The properties of the first four Group I elements are shown in the table.

element	density in g/cm³	melting point /°C	boiling point /°C
lithium	0.53	181	1342
sodium	0.97	98	883
potassium	0.86	63	760
rubidium		39	686

(a)	Answer these	auestions	usina	only	the	information	in	the	table
(a)	Allowel these	questions	using	OHILL	เมเต	IIIIOIIIIalioii	111	เมเต	labic.

(i)	Describe the general trend in the boiling points of the Group I elements.	
(ii)	Explain why it is difficult to predict the density of rubidium.	[1]
(iii)	Deduce the state of rubidium at 45°C. Explain your answer.	[1]
(,		

- **(b)** When sodium reacts with carboxylic acids, hydrogen is produced.
 - (i) Describe a test for hydrogen.

test

[2]

[2]

 $\begin{tabular}{ll} \textbf{(ii)} & The structure of a carboxylic acid is shown. \\ \end{tabular}$

Deduce the formula of this carboxylic acid to show the number of atoms of carbon, hydrogen and oxygen.

[1]

(c)	Un	iversal indicator is added to an aqueous solution of sodium oxide.	
	•	What colour change is observed?	
	fro	m green to	
	•	Give a reason for your answer.	
			[2]

[Total: 9]

5 Molten magnesium bromide is electrolysed.

The incomplete apparatus is shown.

- (a) (i) Complete the diagram by:
 - labelling the anode and cathode
 - adding the power supply and connecting wires.

(ii) Predict the products of this electrolysis at the:

positive electrode

negative electrode.

[2]

(b) The electrodes must be able to conduct electricity.

(i) Give one other property that the electrodes must have.

[1]

(ii) Name a suitable element that can be used as an electrode.

......[1]

(c) Aqueous chlorine reacts with aqueous magnesium bromide.

		$Cl_2 + MgBr_2 \rightarrow Br_2 + MgCl_2$	
	(i)	How does this reaction show that chlorine is more reactive than bromine?	
			[1]
	(ii)	What colour is bromine in aqueous solution?	
			[1]
/al\	Cor	mulate the chamical equation for the reaction of chloring with phoenhorus	
(u)	COI	mplete the chemical equation for the reaction of chlorine with phosphorus.	
		$Cl_2 + 2P \rightarrowPCl_5$	[2]

[Total: 10]

6	Acids	have	characteristic	properties.
---	-------	------	----------------	-------------

(a)	Hydrochloric acid reacts with magnesium carbonate.
	Name the products of this reaction and give the observations.

(b) The rate of reaction of iron with sulfuric acid can be determined by measuring the time taken to produce 20 cm³ of hydrogen.

A student measured the time taken to produce 20 cm³ of hydrogen using three different concentrations of sulfuric acid.

In each experiment the student used:

- 1g of iron powder
- the same temperature
- the same volume of sulfuric acid.

The results are shown in the table.

concentration of acid in mol/dm³	time /s
0.1	33
0.2	17
0.5	8

(i)	Use the information in the table to de concentration of sulfuric acid.	escribe how t	the rate	of reaction	changes	with	the
							[1]

	(ii)	Describe the effect of each of the following on the rate of this reaction with 0.5 mol/dm sulfuric acid.	³ of
		Larger pieces of iron are used.	
		All other conditions stay the same.	
		The temperature is increased.	
		All other conditions stay the same.	
			[2]
(c)	Hea	at is given out when iron reacts with sulfuric acid.	
	Wh	nat term describes a reaction which gives out heat?	
			[1]
(d)	The	e reaction of iron with steam is shown.	
		$3Fe + 4H2O \rightarrow Fe3O4 + 4H2$	
	Ho	w does this equation show that iron gets oxidised?	
			[1]
(e)	Rus	st contains hydrated iron(III) oxide.	
(-,		scribe and explain one method of preventing iron from rusting.	
	De	scribe and explain one method of preventing from from rusting.	
			[2]
		[Total:	
		[Total.	

7 The structure of nerol is shown.

(a)	Dra	w a circle around the alcohol functional group on the structure of nerol.	1]
(b)	Wh	at feature of the nerol molecule shows that it is an unsaturated compound?	
		[´	1]
(c)	Ner	rol can be extracted from some plants.	
	Cru	shed plant leaves containing nerol are mixed with an organic solvent called octane.	
	Ner	rol dissolves in octane.	
	(i)	Describe how you would separate the crushed plant leaves from the solution of nerol i octane.	n
		[1]
	(ii)	The boiling point of nerol is 224 °C. The boiling point of octane is 126 °C.	
		Explain how distillation separates nerol from the octane.	
		[2	2

(d) The mixture of coloured compounds in plant leaves can be separated by chromatography.

The apparatus is shown.

On the diagram:

- draw an 'X' to show where the mixture of coloured compounds is placed at the start of the experiment
- draw a line to show the level of the solvent at the start of the experiment.

[2]

- (e) Ethanol is a solvent.
 - (i) Draw the structure of ethanol to show all of the atoms and all of the bonds.

[2]

(ii) Complete the sentences about the manufacture of ethanol using words from the list.

	catalyst hydrocarbon		hydrogen				
	oxygen	plastic	steam				
Ethanol is manufactured by the reaction of ethene with							
this reaction is	s increased by	the use of a		[2]			

(f)	Ethene and propene are in the same homologous series of organic compounds.												
	Which two statements about ethene and propene are correct.												
	Tick two boxes.												
	They have the same physical properties.												
	They have the same number of carbon atoms.												
	They have similar chemical properties.												
	They have the same number of hydrogen atoms.												
	They have the same functional group.	[2]											
		[Total: 13]											

8 The diagram shows part of the structures of caesium chloride and carbon dioxide.

 $\begin{array}{c|c} \hline Cl^{-} & Cl^{-} & Cl^{-} \\ \hline Cs^{+} & Cs^{+} & Cs^{+} \\ \hline Cl^{-} & Cl^{-} & Cl^{-} \\ \hline \end{array}$

caesium chloride

carbon dioxide

(a) Describe both caesium chloride and carbon dioxide in terms of:

	• bonding
	solubility in water
	arrangement of particles.
	[5]
(b)	Caesium oxide is a compound.
	What is meant by the term compound?
	[1]
(c)	Explain why caesium is not extracted from caesium oxide by heating with carbon.
(0)	Explain why sassiam is not extracted from sassiam extractly multiplication.

(d)	Ca	esium is a metal.	
	Des	scribe two properties that are characteristic of most metals.	
	1		
	2		
			[2]
(e)	Cai	rbon dioxide is a gas.	
	(i)	Which one of these processes does not produce carbon dioxid	de?
		Tick one box.	
		the reaction of hydrochloric acid with calcium carbonate	
		respiration in animals and plants	
		the reaction of hydrochloric acid with magnesium	
		the thermal decomposition of calcium carbonate	[1]
	(ii)	Carbon dioxide is a greenhouse gas.	
		Give one effect of an increase in the concentration of greenhous	e gases in the atmosphere.
			[1]
			[Total: 11]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	\equiv	² He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Ru	radon			
	=			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	П	iodine 127	85	¥	astatine			
	>			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъо	molod –	116	^	livermorium -
	>			7	Z	nitrogen 14	15	ட	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Bi	bismuth 209			
	≥			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Fl	flerovium -
	≡			2	Ω	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
										30	Zn	zinc 65	48	g	cadmium 112	80	Рg	mercury 201	112	S	copernicium -
										59	D C	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
Group	-									28	Z	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -
ָ ס				1						27	ပိ	cobalt 59	45	格	rhodium 103	77	٦	iridium 192	109	Ĭ	meitnerium -
		- I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium
							1			25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186			bohrium
				_	loq	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	⊐	tantalum 181	105		dubnium -
					atc	rel				22	F	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿆	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium
	_			က	<u>'</u>	lithium 7	1	Na	sodium 23	19	×	potassium 39	37	Rb	rubidium 85	55	S	caesium 133	87	ъ	francium

71 Lu	lutetium 175	103	ב	lawrencium	I
vo Yb	ytterbium 173	102	8	nobelium	ı
e9 Tm	thulium 169	101	Md	mendelevium	ļ
₆₈ Г	erbium 167	100	Fm	ferminm	ı
67 Ho	holmium 165	66	Es	einsteinium	I
°6 Dy	dysprosium 163	86	ర	californium	ı
65 Tb	terbium 159	26	Ř	berkelium	I
Gd Gd	gadolinium 157	96	Cm	curium	I
63 Eu	europium 152	92	Am	americium	ı
62 Sm	samarium 150	94	Pn	plutonium	I
e1 Pm	promethium -	93	ď	neptunium	I
	neodymium 144		\supset	uranium	238
59 Pr	praseodymium 141	91	Ра	protactinium	231
Se Ce				thorium	232
57 La	lanthanum 139	68	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).