import numpy as np
import pandas as pd

 ${\tt import\ matplotlib.pyplot\ as\ plt}$

import seaborn as sns

df=pd.read_csv("/content/drive/MyDrive/logistic_regression.csv")

Making an copy of dataset
loantap=df.copy()
loantap.head()

₹	10	an_amnt	term	int_rate	installment	grade	sub_grade	emp_title	emp_length	home_ownership	annual_inc	 open_acc	pu
	0	10000.0	36 months	11.44	329.48	В	В4	Marketing	10+ years	RENT	117000.0	 16.0	
	1	8000.0	36 months	11.99	265.68	В	B5	Credit analyst	4 years	MORTGAGE	65000.0	 17.0	
	2	15600.0	36 months	10.49	506.97	В	В3	Statistician	< 1 year	RENT	43057.0	 13.0	
	3	7200.0	36 months	6.49	220.65	Α	A2	Client Advocate	6 years	RENT	54000.0	 6.0	
	4	24375.0	60 months	17.27	609.33	С	C5	Destiny Management Inc.	9 years	MORTGAGE	55000.0	 13.0	

5 rows × 27 columns

Exploratory of Data Analysis

loantap.shape

→ (396030, 27)

#data info
loantap.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 396030 entries, 0 to 396029

Data columns (total 27 columns): # Column Non-Null Count 396030 non-null float64 loan_amnt term 396030 non-null object 396030 non-null float64 int_rate 396030 non-null float6 installment float64 grade 396030 non-null 373103 non-null sub_grade object Long_length 377729 non-null 377729 non-null home_ownership annual_inc 377729 non-null 377729 non-null object object float64 10 verification_status 396030 non-null object 396030 non-null object 11 issue_d loan_status 396030 non-null 12 object 13 purpose 396030 non-null object 14 title 394274 non-null object 396030 non-null float64 15 dti 396030 non-null 16 earliest_cr_line object 396030 non-null 17 open_acc float64 396030 non-null float64 18 pub_rec 19 revol_bal 396030 non-null float64 20 revol_util 395754 non-null float64 396030 non-null float64 22 initial_list_status 396030 non-null object application_type 396030 non-null object 24 mort_acc 358235 non-null float64 25 pub_rec_bankruptcies 395495 non-null float64 396030 non-null object 26 address

dtypes: float64(12), object(15)

memory usage: 81.6+ MB

#Checking Null values
loantap.isnull().sum()

₹	loan_amnt	0
	term	0
	int_rate	0
	installment	0
	grade	0
	sub_grade	0
	emp_title	22927
	emp_length	18301
	home_ownership	0
	annual_inc	0
	verification_status	0
	issue_d	0
	loan_status	0
	purpose	0
	title	1756
	dti	0
	earliest_cr_line	0
	open_acc	0
	pub_rec	0
	revol_bal	0
	revol_util	276
	total_acc	0
	initial_list_status	0
	application_type	0
	mort_acc	37795
	<pre>pub_rec_bankruptcies</pre>	535
	address	0
	dtype: int64	

percentage of null values in each colum
round(loantap.isnull().sum()/len(loantap)* 100,3)

₹	loan_amnt	0.000
	term	0.000
	int_rate	0.000
	installment	0.000
	grade	0.000
	sub_grade	0.000
	emp_title	5.789
	emp_length	4.621
	home_ownership	0.000
	annual_inc	0.000
	verification_status	0.000
	issue_d	0.000
	loan_status	0.000
	purpose	0.000
	title	0.443
	dti	0.000
	earliest_cr_line	0.000
	open_acc	0.000
	pub_rec	0.000
	revol_bal	0.000
	revol_util	0.070
	total_acc	0.000
	initial_list_status	0.000
	application_type	0.000
	mort_acc	9.543
	<pre>pub_rec_bankruptcies</pre>	0.135
	address	0.000
	dtype: float64	

Analysizing Basic Metrics

loantap.describe().T

_	_	_
	7	

	count	mean	std	min	25%	50%	75%	max	
loan_amnt	396030.0	14113.888089	8357.441341	500.00	8000.00	12000.00	20000.00	40000.00	11.
int_rate	396030.0	13.639400	4.472157	5.32	10.49	13.33	16.49	30.99	
installment	396030.0	431.849698	250.727790	16.08	250.33	375.43	567.30	1533.81	
annual_inc	396030.0	74203.175798	61637.621158	0.00	45000.00	64000.00	90000.00	8706582.00	
dti	396030.0	17.379514	18.019092	0.00	11.28	16.91	22.98	9999.00	
open_acc	396030.0	11.311153	5.137649	0.00	8.00	10.00	14.00	90.00	
pub_rec	396030.0	0.178191	0.530671	0.00	0.00	0.00	0.00	86.00	
revol_bal	396030.0	15844.539853	20591.836109	0.00	6025.00	11181.00	19620.00	1743266.00	
revol_util	395754.0	53.791749	24.452193	0.00	35.80	54.80	72.90	892.30	
total_acc	396030.0	25.414744	11.886991	2.00	17.00	24.00	32.00	151.00	
mort_acc	358235.0	1.813991	2.147930	0.00	0.00	1.00	3.00	34.00	
pub_rec_bankruptcies	395495.0	0.121648	0.356174	0.00	0.00	0.00	0.00	8.00	

Insights

Outlier: The significant difference between mean and median and Standard deviation indicate key attribute like loan amount, annual inc, revol_bal has outlier. Loan Duration Preference: A preference for 36-month loan terms among borrowers suggests a balance between manageable installments.

Home Ownership Trends: The prevalence of applicants with mortgaged homes suggests financial stability or a need for substantial, property-secured loans.

Successful Loan Repayment: Most loans being fully paid off reflects positively on borrowers' financial commitment, indicating effective lending criteria

Debt Consolidation Dominance: The primary use of loans for debt consolidation highlights a common strategy to manage or reduce high-interest debt.

Individual Borrowers: The predominance of individual applicants suggests that personal loans are a major market segment.

Application Type: Almost all applications are from individuals, with very few joint applications.

```
#separating float and object columns
n_column=loantap.select_dtypes('float64').columns.tolist()
n_column
→ ['loan_amnt',
      'int_rate',
      'installment',
      'annual_inc',
      'dti',
      'open_acc',
      'pub_rec',
      'revol_bal'
      'revol_util',
      'total_acc',
      'mort_acc',
      'pub_rec_bankruptcies']
n_categorical=['home_ownership', 'verification_status', 'loan_status', 'application_type', 'grade', 'sub_grade', 'term']
for i in n\_column:
 plt.figure(figsize=(12,5))
 sns.histplot(data=loantap,x=i,kde=True,bins=50,color="green")
 plt.xlabel(i)
 plt.ylabel("count")
 plt.title("Distribution of "+i)
 plt.show()
```



```
custom_palette=sns.color_palette("hus1", 7)

for i in n_categorical:
   plt.figure(figsize=(10,4))
   sns.countplot(data=loantap,x=i,palette=custom_palette,hue=i,legend=False)
   plt.xlabel(i)
   plt.ylabel("count")
   plt.title("Distribution of "+i)
   plt.xticks(rotation=90)
   plt.show()
```

🚁 <ipython-input-17-9913e48f2fa0>:3: UserWarning: The palette list has more values (7) than needed (6), which may not be intended. sns.countplot(data=loantap,x=i,palette=custom_palette,hue=i,legend=False)

<ipython-input-17-9913e48f2fa0>:3: UserWarning: The palette list has more values (7) than needed (3), which may not be intended. sns.countplot(data=loantap,x=i,palette=custom_palette,hue=i,legend=False)

<ipython-input-17-9913e48f2fa0>:3: UserWarning: The palette list has more values (7) than needed (2), which may not be intended. $\verb|sns.countplot(data=loantap,x=i,palette=custom_palette,hue=i,legend=False)|\\$

<ipython-input-17-9913e48f2fa0>:3: UserWarning: The palette list has more values (7) than needed (3), which may not be intended. sns.countplot(data=loantap,x=i,palette=custom_palette,hue=i,legend=False)

<ipython-input-17-9913e48f2fa0>:3: UserWarning:
The palette list has fewer values (7) than needed (35) and will cycle, which may produce an uninterpretable plot.
 sns.countplot(data=loantap,x=i,palette=custom_palette,hue=i,legend=False)

<ipython-input-17-9913e48f2fa0>:3: UserWarning: The palette list has more values (7) than needed (2), which may not be intended.
sns.countplot(data=loantap,x=i,palette=custom_palette,hue=i,legend=False)

Bivarient Analysis

```
plt.figure(figsize=(12,10))
plt.subplot(2,2,1)
sns.countplot(data=loantap,x='term',hue='loan_status')
plt.subplot(2,2,2)
sns.countplot(data=loantap,x='home_ownership',hue='loan_status')
plt.subplot(2,2,3)
sns.countplot(data=loantap,x='verification_status',hue='loan_status')
plt.subplot(2,2,4)
sns.countplot(data=loantap,x='application_type',hue='loan_status')
plt.show()
```


grade=sorted(loantap['grade'].unique())
grade

```
plt.figure(figsize=(12,10))
plt.subplot(2,2,1)
grade=sorted(loantap['grade'].unique())
sns.countplot(data=loantap,x='grade',hue='loan_status',order=grade)

plt.subplot(2,2,2)
grade=sorted(loantap['sub_grade'].unique())
g=sns.countplot(data=loantap,x='sub_grade',hue='loan_status',order=grade)
g.set_xticklabels(g.get_xticklabels(),rotation=90)
plt.show()
```

<ipython-input-20-d58c52b94201>:11: UserWarning: FixedFormatter should only be used together with FixedLocator
 g.set_xticklabels(g.get_xticklabels(),rotation=90)

Insights

Loan term: 36 month loan term has high completion rate.

Borrower Situation: Mortgages and rental are the most common borrwer of loan with high completion rate.

Creditworthiness: Borrowers with a credit grade of "B" and a subgrade of "B3" tend to have the highest repayment rates.

Occupations: Managers and teachers are the professions with the highest loan approval rates.

Repayment: Individuals employed for over 10 years demonstrate a strong track record of loan repayment.

Correlation Analysis

loantap.corr(numeric_only=True)

	loan_amnt	int_rate	installment	annual_inc	dti	open_acc	pub_rec	revol_bal	revol_util	total_acc	mo
loan_amnt	1.000000	0.168921	0.953929	0.336887	0.016636	0.198556	-0.077779	0.328320	0.099911	0.223886	0.
int_rate	0.168921	1.000000	0.162758	-0.056771	0.079038	0.011649	0.060986	-0.011280	0.293659	-0.036404	-0.
installment	0.953929	0.162758	1.000000	0.330381	0.015786	0.188973	-0.067892	0.316455	0.123915	0.202430	0.
annual_inc	0.336887	-0.056771	0.330381	1.000000	-0.081685	0.136150	-0.013720	0.299773	0.027871	0.193023	0.
dti	0.016636	0.079038	0.015786	-0.081685	1.000000	0.136181	-0.017639	0.063571	0.088375	0.102128	-0.
open_acc	0.198556	0.011649	0.188973	0.136150	0.136181	1.000000	-0.018392	0.221192	-0.131420	0.680728	0.
pub_rec	-0.077779	0.060986	-0.067892	-0.013720	-0.017639	-0.018392	1.000000	-0.101664	-0.075910	0.019723	0.
revol_bal	0.328320	-0.011280	0.316455	0.299773	0.063571	0.221192	-0.101664	1.000000	0.226346	0.191616	0.
revol_util	0.099911	0.293659	0.123915	0.027871	0.088375	-0.131420	-0.075910	0.226346	1.000000	-0.104273	0.
total_acc	0.223886	-0.036404	0.202430	0.193023	0.102128	0.680728	0.019723	0.191616	-0.104273	1.000000	0.
mort_acc	0.222315	-0.082583	0.193694	0.236320	-0.025439	0.109205	0.011552	0.194925	0.007514	0.381072	1.
pub_rec_bankruptcies	-0.106539	0.057450	-0.098628	-0.050162	-0.014558	-0.027732	0.699408	-0.124532	-0.086751	0.042035	0.
4											

Insigths

Positive Correlation:

- Loan amount and installment has obvious correlation around 0.95
- Negative record of borrower credit profile(pub_rec) correlation with Backruptcy record of borrower(pub_rec_bankruptcies) correlation around 0.7
- Open accunt and Pub_rec have strong correlation around 0.68

Data Processing using Feature Engineering

```
def pub_rec(number):
  if number==0.0:
    return 0
  else:
    return 1
def mort_acc(number):
  if number==0.0:
    return 0
  elif number > 1.0:
    return 1
  else:
    return number
def pub_rec_bankruptcies(number):
  if number==0.0:
    return 0
  elif number > 1.0:
    return 1
  else:
    return number
```

```
#duplicate check
loantap.duplicated().sum()
→ 0
#Missing value
loantap.isnull().sum()
→ loan_amnt
     term
     int_rate
                                 0
     installment
     grade
                                 0
     sub_grade
                                 0
    emp_title
                             22927
     {\tt emp\_length}
                             18301
     home_ownership
                                 a
     annual_inc
                                 0
     verification_status
     issue_d
                                 0
     loan_status
     purpose
                                 0
                              1756
     dti
     earliest_cr_line
     open_acc
                                 0
     pub rec
                                 a
     revol bal
                                 0
     revol_util
                               276
     total_acc
     initial_list_status
                                 0
     application_type
                             37795
     mort_acc
     pub_rec_bankruptcies
     address
    dtype: int64
numeric_columns=loantap.select_dtypes('float64','integer')
total_acc_avg=numeric_columns.groupby('total_acc')['mort_acc'].mean()
# filling mort_acc null value with mean
def fill_mort_acc(total_acc,mort_acc):
 if np.isnan(mort_acc):
   return total_acc_avg[total_acc]
 else:
   return mort acc
loantap['mort_acc']=loantap.apply(lambda x: fill_mort_acc(x['total_acc'],x['mort_acc']) ,axis=1)
# mort_acc null value get filled
loantap.isnull().sum()
→ loan_amnt
                                 0
     term
     int_rate
     installment
                                 0
     grade
                                 0
     sub_grade
                                 0
                             22927
     emp_title
     {\tt emp\_length}
                             18301
     home_ownership
                                 0
     annual_inc
     verification_status
                                 0
     issue_d
     loan_status
                                 0
                                 0
     purpose
     title
                              1756
```

```
dti
                                0
     earliest_cr_line
                                0
     open_acc
                                0
     pub_rec
     revol_bal
                                0
     revol_util
                              276
     total acc
                                0
     initial_list_status
                                0
     application_type
                                0
     mort_acc
                                0
     pub_rec_bankruptcies
                              535
     address
     dtype: int64
loantap.shape
→ (396030, 27)
#Dropping remaining null values
loantap.dropna(inplace=True)
loantap.shape
→ (370621, 27)
```

Outlier Detection

```
loantap.columns
```