Работа 3.4.1

Диа- и парамагнетики

Цель работы: измерение магнитной восприимчивости диа- и парамагнитного образцов.

В работе используются: электромагнит, аналитические весы, милливеберметр, амперметр постоянного тока, реостат, образцы.

Экспериментальная установка

Рис. 1: Схема экспериментальной установки

Обработка результатов Построим график B(I) (Рисунок 2, таблица 1), чтобы определять величину магнитной индукции по току. Будем считать B по формуле

$$B = \frac{\Phi}{SN}, \quad \sigma_b = \sqrt{\left(\frac{\sigma_\Phi}{SN}\right)^2 + \left(\frac{\Phi}{SN}\frac{\sigma_{SN}}{SN}\right)^2}.$$

Найдем зависимость $\Delta P(B^2)$, чтобы найти магнитную восприимчивость веществ.

Таблица 1: Зависимость B(I)

accomme it submemmeets b				
Ф, мВб	I, A	B, м T л		
0.0	0.00	0.0000		
0.7	0.12	0.0097		
1.7	0.24	0.0236		
2.5	0.36	0.0347		
3.5	0.48	0.0486		
4.5	0.60	0.0625		
5.2	0.72	0.0722		
6.1	0.84	0.0847		
6.9	0.96	0.0958		
7.5	1.08	0.1042		

$$\sigma_{B^2} = 2B\sigma_B$$

$$k_{Al} = \left(-\frac{\chi s}{2\mu_0}\right)_{Al} = -4.30 \pm 0.08 \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}^2 \cdot \text{M}\text{T}\pi^2}, \quad k_{Cu} = 2.24 \pm 0.08 \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}^2 \cdot \text{M}\text{T}\pi^2}$$
$$\chi = -\frac{2k\mu_0}{s}, \quad \sigma_{\chi} = \frac{2k\mu_0}{s^2}\sigma_s, \quad s = \pi \frac{d^2}{4}, \quad \sigma_s = \frac{\pi d\sigma_d}{2}$$
$$\chi_{Al} = (0.16 \pm 0.03) \cdot 10^{-6}, \quad \chi_{Cu} = (-0.073 \pm 0.007) \cdot 10^{-6}$$

Полученные значения сходятся с табличными по порядку величины.

Вывод: В ходе работы мы нашли магнитные восприимчивости алюминия и меди.

Зависимость B(I)

Рис. 2: Зависимость B(I)

Таблица 2: Зависимость $\Delta P(B^2)$

raconinga 2. Sabirenis eerb =1 (b)				
B^2 , м T л 2	σ_{B^2}	ΔP_{Al} , мН	ΔP_{Cu} , мН	
0.0000	0.0000	0	0	
0.0003	0.0001	9.8	9.8	
0.0009	0.0001	9.8	29.4	
0.0019	0.0001	39.2	49.0	
0.0038	0.0002	147.0	88.2	
0.0058	0.0003	242.0	125.2	
0.0081	0.0003	350.1	205.8	
0.0144	0.0005	588.0	313.6	

Рис. 3: Зависимость $|\Delta P|(B^2)$