Boosting Image Restoration via Priors from Pre-trained Models

Xiaogang Xu^{1,2,3} Shu Kong^{5,6,7} Tao Hu^{3,8} Zhe Liu^{1*} Hujun Bao^{1,4}

¹ Zhejiang Lab ² CUHK ³ RealityEdge ⁴ Zhejiang University ⁵ University of Macau

⁶ Institute of Collaborative Innovation ⁷ Texas A&M University ⁸ National University of Singapore

xiaogangxu00@gmail.com, skong@um.edu.mo, yihouxiang@gmail.com zhe.liu@zhejianglab.com, bao@cad.zju.edu.cn

CVPR 2024

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

Outline

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Outline

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Introduction

• Present a novel and general method that **leverages pre-trained models** to enhance various restoration tasks.

• propose a novel paradigm that leverages **pre-trained priors** to formulate effective **neural operation ranges** and **attention mechanisms**.

• We validate our method through extensive experiments on different datasets, networks, and tasks, and show **remarkable improvements** over prior methods.

Outline

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Framework

Using a pre-trained model G to boost image restoration

Outline

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Overview of Refinement Module

$$\hat{I}_c = \mathcal{F}(I_d)$$
 $f = \mathcal{R}_e(\hat{I}_c \oplus I_d)$ $g = \mathcal{G}(I_d)$ $ar{f} = \mathcal{C}(\mathcal{A}(f,g),g)$ $ar{I}_c = \mathcal{R}(\hat{I}_c,I_d,g)$ $[I_m,I_r] = \mathcal{R}_d(\hat{f})$ $ar{I}_c = I_d + (\hat{I}_c - I_d) \times I_m + I_r$

Pre-Train-Guided Spatial-Varying Operations

$$M=\mathcal{R}_m(f\oplus \mathcal{T}_m(g)\oplus \mathcal{S}_m).$$
 $f_s=\mathcal{R}_s(f),\, f_l=\mathcal{R}_l(f)$ $\hat{f}=M imes f+(1-M) imes f_s$

$$\hat{f} = M \times f_s + (1 - M) \times f_l.$$

- R_s Short range
 - CNN
- R₁ Long range
 - Transformer

Enhanced

Feature

Spatial Attention Map

Pre-Train-Guided Attention

channel-attention

(a) Pre-Train-Guided Spatial-Varying Enhancement \mathcal{A}

(b) Pre-Train-Guided Channel-Spatial Attention $\mathcal C$

$$M_c = \mathcal{R}_c(\mathcal{O}(\hat{f}) \oplus \mathcal{T}_c(g))$$

$$\mathcal{M}_c \in \mathbb{R}^c$$

$$\hat{f}_c = \hat{f} \times M_c,$$
(4)

Pre-Train-Guided Attention

• spatial-attention

• similar condition for neighboring features, limiting the elimination of spatial artifacts.

(a) Pre-Train-Guided Spatial-Varying Enhancement $\mathcal A$

(b) Pre-Train-Guided Channel-Spatial Attention $\mathcal C$

$$\mathcal{C}_p = \mathcal{R}_p(\hat{f}, \mathcal{T}_c(g), \mathcal{S}_c)$$
 $\hat{M}_s = \hat{f} * \mathcal{C}_p$

$$\mathcal{C}_p \in \mathbb{R}^{h \times w \times (k_h \times k_w \times c)}$$
 $M_s = \mathcal{R}_o(\hat{M}_s) \cdot \text{maps the feature channel } c \text{ to } 1$

$$\hat{f}_s = \hat{f} \times M_s$$

Fusion module

(a) Pre-Train-Guided Spatial-Varying Enhancement \mathcal{A}

(b) Pre-Train-Guided Channel-Spatial Attention $\mathcal C$

12

$$ar{f} = \mathcal{R}_f(\hat{f}_c \oplus \hat{f}_s)$$

$$[I_m, I_r] = \mathcal{R}_d(\hat{f})$$

$$\bar{I}_c = I_d + (\hat{I}_c - I_d) \times I_m + I_r$$

Loss function

$$\mathcal{L}_g(\hat{I}_c, \mathcal{I}_c) + \lambda_1 \mathcal{L}_g(\bar{I}_c, \mathcal{I}_c)$$

- R can be jointly trained with the model F
- Loss
 - reconstruction loss in the pixel level
 - perceptual loss

Outline

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Result

Result (low-light enhancement)

Dotos	ota Mathada	Original		inal +Ours-c		+Ours-b		+Ours-s		+Ours-r		+Ours-f		
Datasets Methods		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	
	UHD	19.87	0.706	22.91 (+3.04)	0.767 (+6.1)	21.83 (+1.96)	0.732 (+2.6)	22.35 (+2.48)	0.758 (+5.2)	21.71 (+1.84)	0.737 (+3.1)	22.74 (+2.87)	0.764 (+5.8)	
LOL	URetinex	21.16	0.840	24.70 (+3.54)	0.878 (+3.8)	23.57 (+2.41)	0.869 (+2.9)	24.23 (+3.07)	0.866 (+2.6)	23.99 (+2.83)	0.862 (+2.2)	24.56 (+3.40)	0.870 (+3.0)	
	SNR	21.48	0.849	25.50 (+4.02)	0.892 (+4.3)	25.61 (+4.13)	0.891 (+4.2)	25.19 (+3.71)	0.874 (+2.5)	25.24 (+3.76)	0.887 (+3.8)	24.90 (+3.42)	0.888 (+3.9)	
	UHD	20.46	0.614	20.99 (+0.53)	0.616 (+0.2)	21.06 (+0.60)	0.619 (+0.5)	22.34 (+1.88)	0.625 (+1.1)	21.11 (+0.65)	0.618 (+0.4)	21.08 (+0.62)	0.619 (+0.5)	
SID	URetinex	21.56	0.619	22.34 (+0.78)	0.623 (+0.4)	22.02 (+0.46)	0.621 (+0.2)	22.21 (+0.65)	0.623 (+0.4)	22.17 (+0.61)	0.625 (+0.6)	22.40 (+0.84)	0.626 (+0.7)	
	SNR	22.87	0.625	23.34 (+0.47)	0.630 (+0.5)	23.15 (+0.28)	0.627 (+0.2)	23.08 (+0.21)	0.631 (+0.6)	23.06 (+0.19)	0.632 (+0.7)	23.17 (+0.30)	0.636 (+1.1)	

- Comparisons on LOL-real and SID dataset.
 - -c, using CLIP
 - -b, using BLIP2
 - –s, using Stable Diffusion
 - -r, using restoration models trained on SDSD
 - -f, denotes applying refinement on the features of F

Result (low-light enhancement)

Result

• Comparison with Other Priors

Methods	SNR	+SKF	+SMG	+SMG(dep)	+Ours-c
PSNR	21.48	23.05	24.84	24.12	25.50
SSIM	0.849	0.853	0.880	0.851	0.892
Methods	URetinex	+SKF	+SMG	+SMG(dep)	+Ours-c
PSNR	21.16	23.51	23.74	23.25	24.70
SSIM	0.840	0.856	0.852	0.849	0.878
+Params	0	2.15M	16.76M	16.76M	0.67M

- SKF and SMG, utilize additional information, requiring supervision with paired multi-modal information
 - semantic maps
 - edge maps
 - depth maps to enhance
- Better performance and lesser parameter

Result (Deraining)

Method	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑	
	Test	100	Rain	100H	Rain100L		
SPAIR	30.35	0.909	30.95	0.892	36.93	0.969	
SPAIR+Ours-c	30.62	0.917	31.20	0.901	37.26	0.973	
Restormer	32.00	0.923	31.46	0.904	38.99	0.978	
Restormer+Ours-c	32.30	0.934	31.77	0.913	39.27	0.985	
	Test	2800	Test	1200	Average		
SPAIR	33.34	0.936	33.04	0.922	32.91	0.926	
SPAIR+Ours-c	33.58	0.942	33.35	0.924	33.16	0.932	
Restormer	34.18	0.944	33.19	0.926	33.96	0.935	
Restormer+Ours-c	34.47	0.951	33.48	0.929	34.24	0.943	

Result (Deraining)

Result (Motion Deblurring)

Mothod	Go	Pro	HI	DE	RealB	lur-R	RealBlur-J		
Method	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	
MPRNet	32.66	0.959	30.96	0.939	35.99	0.952	28.70	0.873	
MPRNet+Ours-c	32.87	0.964	31.19	0.943	36.25	0.960	28.98	0.881	
Restormer	32.92	0.961	31.22	0.942	36.19	0.957	28.96	0.879	
Restormer+Ours-c	33.18	0.966	31.51	0.950	36.47	0.962	29.21	0.883	

Result (Motion Deblurring)

Input

Restormer

Ground-truth

Restormer+Ours

Result (Defocus Deblurring)

Mathad	Ind	oor Sc	enes	Out	door So	cenes	Combined		
Method	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS
$\overline{ ext{IFAN}_S}$	28.11	0.861	0.179	22.76	0.720	0.254	25.37	0.789	0.217
IFAN _S +Ours-c	28.32	0.870	0.171	23.08	0.727	0.248	25.72	0.795	0.213
$Restormer_S$	28.87	0.882	0.145	23.24	0.743	0.209	25.98	0.811	0.178
Restormer _S +Ours-c	29.17	0.890	0.141	23.43	0.749	0.206	26.13	0.816	0.165
$GRL_S ext{-}B$	29.06	0.886	0.139	23.45	0.761	0.196	26.18	0.822	0.168
GRL _S -B +Ours-c	29.30	0.894	0.133	23.67	0.768	0.189	26.45	0.828	0.161
$\overline{ ext{IFAN}_D}$	28.66	0.868	0.172	23.46	0.743	0.240	25.99	0.804	0.207
IFAN _D +Ours-c	28.94	0.875	0.167	23.70	0.748	0.235	26.20	0.811	0.203
$Restormer_D$	29.48	0.895	0.134	23.97	0.773	0.175	26.66	0.833	0.155
Restormer $_D$ +Ours-c	29.79	0.902	0.131	24.23	0.778	0.155	26.89	0.840	0.153
$GRL_D ext{-}B$	29.83	0.903	0.114	24.39	0.795	0.150	27.04	0.847	0.133
GRL_D -B+Ours-c	29.96	0.911	0.110	24.62	0.803	0.145	27.27	0.855	0.128

Result (Defocus Deblurring)

Result (Gaussian Denoising)

Method		Set12			BSD68		Urban100			
Method	$\sigma=15$	σ =25	$\sigma=50$	$\sigma=15$	σ =25	$\sigma=50$	σ =15	σ =25	$\sigma=50$	
DRUNet	33.25	30.94	27.90	31.91	29.48	26.59	33.44	31.11	27.96	
DRUNet+Ours-c	33.51	31.18	28.27	32.20	29.73	26.84	33.65	31.34	28.16	
Restormer	33.35	31.04	28.01	31.95	29.51	26.62	33.67	31.39	28.33	
Restormer+Ours-c	33.57	31.28	28.36	32.11	29.78	26.91	33.96	31.67	28.58	
Restormer	33.42	31.08	28.00	31.96	29.52	26.62	33.79	31.46	28.29	
Restormer+Ours-c	33.70	31.29	28.35	32.24	29.81	26.86	33.97	31.73	28.58	
GRL-B	33.47	31.12	28.03	32.00	29.54	26.60	34.09	31.80	28.59	
GRL-B+Ours-c	33.74	31.30	28.37	32.29	29.76	26.91	34.22	31.95	28.74	

Result (Gaussian Denoising)

Input

GRL

Ground-truth

GRL+Ours

Result (Real Denoising)

Dataset	Method	MPRNet	MPRNet + Ours-c	Uformer	Uformer + Ours-c	Restormer Restormer + Ours-c	
SIDD	PSNR↑ SSIM↑		39.93 0.961	39.77 0.959	39.94 0.962	40.02 0.960	40.22 0.965

Result (User Study)

Ablation study

		LOL	-real		SID			
	URe	tinex	SN	IR	URe	inex	SNR	
	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
w/o SP, with CA and SA	23.45	0.868	24.25	0.886	21.98	0.619	23.02	0.620
with SP, w/o CA, with SA	22.10	0.856	24.05	0.875	22.05	0.623	22.93	0.624
with SP and CA, w/o SA	23.76	0.850	23.86	0.879	21.92	0.620	23.07	0.621
Large \mathcal{R} w/o SP/CA/SA	22.74	0.857	24.51	0.881	22.06	0.621	23.04	0.627
w/o Position Embedding ${\cal S}$	23.66	0.843	24.13	0.874	22.13	0.620	22.92	0.622
SNR Value as Mask	22.66	0.855	24.77	0.887	22.01	0.617	22.94	0.627
Use 1D Priors via Con.	23.01	0.853	23.83	0.878	22.07	0.622	22.93	0.628
Use 2D Priors via Con.	22.68	0.862	24.11	0.880	22.08	0.618	23.06	0.625
Full Setting	24.70	0.878	25.50	0.892	22.34	0.623	23.34	0.630

Outline

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Conclusion

• Explore the utilization of **features from a pre-trained model** to enhance the performance of a restoration model.

• Introduce a novel refinement module **PTG-RM** that employs PTG-SVE and PTG-CSA mechanisms, which focus on formulating **optimal operation ranges** and **attention strategies** guided by the pre-trained features.

• Demonstrate the effectiveness and generalization ability of this approach.