FYZIKÁLNÍ OLYMPIÁDA – STARŠÍ – ZÁVĚREČNÝ DEATH MATCH

Úlohy řešte nejprve obecně, po té případně pro konkrétní hodnoty.

- Mějme ocelovou kuličku o poloměru 1 cm, která je nabitá elektrickým nábojem o velikosti 1 C. Kuličky ostřelujeme protony z urychlovače umístěného ve vzdálenosti 1 km. Spočtěte minimální potřebné elektrické napětí potřebné pro urychlení protonů, aby kuličku zasáhly.
 (12 bodů)
- 2. Těleso (hmotný bod) klouže bez tření po kouli o poloměru R pod vlivem gravitační síly. V nejvyšším bodě koule mělo těleso rychlost v_0 . Určete, v jaké výšce se těleso odtrhne od koule. (8 bodů)
- 3. Energie základního stavu atomu vodíku 1 s je -13,6 eV. Energie prvního excitovaného stavu 2 s je -3,4 eV. Spočtěte poměr zastoupení těchto stavů

a)	při teplotě 298 K	(1 bod)
b)	při teplotě 1 273 K	(1 bod)
c)	při teplotě 10 273 K	(1 bod)
d)	při teplotě 100 273 K	(1 bod)

- 4. Určete bod varu vody na Mount Everestu. Řešte nejprve obecně, po té pro konkrétní hodnoty. Skupenské teplo výparné vody je 2 257 kJ kg⁻¹. (12 bodů)
- 5. Mějme dva dvouhladinové systémy (energie prvního E_{11} a E_{12} , energie druhého E_{21} a E_{22}), které si mohou vyměňovat teplo. Pro danou střední hodnotu celkové energie \bar{E} spočtěte pravděpodobnosti obsazení jednotlivých hladin (13 bodů)
- 6. Mějme vzduchovku pracující s tlakem 1 MPa a rezervoárem vzduchu o objemu 1 cm³. Vzduchovka má hlaveň o průřezu 5 mm² a délce 1 m. Spočtěte úsťovou rychlost střely o hmotnosti 1 g za předpokladu, že plyn expanduje adiabaticky. (9 bodů)
- 7. Pro soubor klasických harmonických oscilátorů $E=\frac{1}{2}mv^2+\frac{1}{2}kx^2$ spočtěte
 a) Entropii (7 bodů)
 b) Tepelnou kapacitu (7 bodů)
- 8. Hrajeme go, jako kameny používáme jednotlivé atomy (nanotechnologie!). Jak se mění entropie gobanu (považujte goban o rozměrech 19x19 s kameny na něj vloženými za mikrokanonický soubor) náhodným zahráním prvních dvou tahů (vložení 2 černých a 2 bílých kamenů) pro pozorovatele, který goban nevidí? A jak se změní entropie pro hráče hrající hru? (9 bodů)

9. Mějme dusík o teplotě 295 K ($M = 28 \text{ g mol}^{-1}$). Spočtěte

a)	Střední velikost rychlosti molekul	(2 body)
b)	Střední vektor rychlosti molekul	(1 bod)
c)	Medián velikosti rychlosti molekul	(2 body)
d)	Medián vektoru rychlosti molekul	(1 body)
e)	Fluktuaci velikosti rychlosti molekul	(1 body)
f)	Fluktuaci vektoru rychlosti molekul	(2 body)

Mediánem rozumíme hodnotu s nejvyšší hustotou pravděpodobnosti.

10. Johny, řečený též Zaříkáváč dešťů, se vratkým krokem vrací z hostince. Okolí hostince je nekonečná rovná plocha. Johny má každou sekundu pravděpodobnost 25 %, že se pohne o 1 m severním směrem; 25 %, že se pohne o 1 m jižním směrem; 25 %, že se pohne o 1 m východním směrem a 25 %, že se pohne o 1 m západním směrem. Spočtete závislost fluktuace Johnyho vzdálenosti od hostince (počátku) na čase. (10 bodů)