| W1   | Learning Area | MATHEMATICS     | Grade Level | 9 |
|------|---------------|-----------------|-------------|---|
| VV I | Quarter       | 3 <sup>RD</sup> | Date        |   |

| I. LESSON TITLE                                  |                        | PARALLELOGRAMS        |                                                                            |                      |                                                                                              |  |  |  |
|--------------------------------------------------|------------------------|-----------------------|----------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------|--|--|--|
| II. MOST ESSENTIAL LEARNING COMPETENCIES (MELCs) |                        | M9GE-IIIa-2           |                                                                            |                      |                                                                                              |  |  |  |
|                                                  |                        |                       | lelograms. M9GE-IIIL                                                       |                      | and ontol quantinos                                                                          |  |  |  |
| III. CONTENT/CORE CO                             | ONTENT                 |                       | quadrilateral with tw                                                      |                      |                                                                                              |  |  |  |
|                                                  |                        | Any two consecutive   | congruent. Any two<br>ve angles are supple<br>onal forms two cong          | ementary. Its diag   | ngles are congruent.<br>yonals bisect each                                                   |  |  |  |
| IV. LEARNING<br>PHASES                           | Suggested<br>Timeframe |                       | Learning Activities                                                        |                      |                                                                                              |  |  |  |
| A. Introduction                                  |                        | properties, and diffe | rent theorems rego<br>eed to remember th                                   | arding relationshi   | e parallelograms, their ps about its sides and amily tree. From this, we the quadrilaterals. |  |  |  |
| 1                                                | 7                      |                       |                                                                            | Quadrilateral        |                                                                                              |  |  |  |
| 7 /2                                             |                        | Para                  | allelogram                                                                 | Trapezoid            | I Trapezium                                                                                  |  |  |  |
|                                                  | ь л                    | Rectangle Ri          | nombus Rhom                                                                | boid Isosce<br>Trape |                                                                                              |  |  |  |
|                                                  | V                      | Square                |                                                                            |                      |                                                                                              |  |  |  |
| Charles and Company                              | _                      | Figure                | Description                                                                | Figure               | Description                                                                                  |  |  |  |
|                                                  | 40 minutes             |                       | Quadrilaterals -Four-sided polygon and sum of all angles is equal to 360°  |                      | Rectangles<br>-All angles are<br>equal                                                       |  |  |  |
| A LIB                                            | 07.7 10                |                       | Parallelograms -2 pairs of parallel sides                                  |                      | Rhombus<br>-All sides are<br>equal                                                           |  |  |  |
| 80                                               |                        |                       | Trapezoids -1 pair of parallel sides                                       |                      | Squares -All sides and all angles are equal                                                  |  |  |  |
|                                                  |                        |                       | Trapeziums  -No pair of parallel sides  -same properties as quadrilaterals |                      | Isosceles Trapezoids -a pair of legs are congruent                                           |  |  |  |
|                                                  |                        |                       | Rhomboids -same properties as parallelograms                               |                      | -2 pairs of non-opposite congruent                                                           |  |  |  |

| IV. LEARNING<br>PHASES | Suggested<br>Timeframe | Learning Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Development         |                        | We need to define a parallelogram. A parallelogram is a quadrilateral with two pairs of parallel sides. When naming quadrilaterals like this parallelogram in the right, we can call this Parallelogram LIVE or Parallelogram LVIE or Parallelogram LVIE or Parallelogram IEVL. They need to be named either clockwise or counterclockwise starting at any vertex sequentially.  Properties of Parallelogram  In a parallelogram, any two opposite sides are congruent. |
|                        |                        | <ul> <li>In a parallelogram, any two opposite angles are congruent.         ∠L ≅ ∠V and ∠I ≅ ∠E     </li> <li>In a parallelogram, any two consecutive angles are supplementary         m∠L + m∠I = 180°, m∠L + m∠E = 180°, m∠V + m∠I = 180°, and m∠V +</li></ul>                                                                                                                                                                                                        |
| 7 10                   | -                      | Conditions for Parallelograms  • If one pair of opposite sides of a quadrilateral are parallel and congruent, then that quadrilateral is a parallelogram  If $\overline{LE} \cong \overline{IV}$ and $\overline{LE}//\overline{IV}$ , then Quadrilateral LIVE is a parallelogram.                                                                                                                                                                                       |
| CL                     | V                      | Solving Problems on the Properties of  Parallelograms  Below is a parallelogram ABCD. Consider each given information and answer the questions that follow  1. Given mAB = (3x - 5) cm, mBC = (2y)                                                                                                                                                                                                                                                                      |
|                        | 60 minutes             | -7) cm, $m\overline{CD} = (x + 7)$ cm and $m\overline{AD}$ D C = $(y + 3)$ cm.<br>a. How long is $m\overline{AB}$ ?                                                                                                                                                                                                                                                                                                                                                     |
| OUT.                   | AL                     | $\overline{AB} \cong \overline{CD}$ In a parallelogram, any two opposite sides are congruent.<br>3x - 5 = x + 7 Substitution Property $3x - x - 5 + 5 = x - x + 7$ Addition Property of Equality                                                                                                                                                                                                                                                                        |
|                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        |                        | $m\overline{AB} = (3x - 5) \text{ cm}$ Given<br>$m\overline{AB} = (3(6) - 5) \text{ cm}$ Substitution Property<br>$m\overline{AB} = (18 - 5) \text{ cm}$ Multiplication Property                                                                                                                                                                                                                                                                                        |
|                        |                        | $m\overline{AB} = 13 \text{ cm}$ Subtraction Property  b. How long is $m\overline{AD}$ ?                                                                                                                                                                                                                                                                                                                                                                                |
|                        |                        | $\overline{BC} \cong \overline{AD}$ In a parallelogram, any two opposite sides are congruent. $2y - 7 = y + 3$ Substitution Property                                                                                                                                                                                                                                                                                                                                    |
|                        |                        | 2y-y-7+7=y-y+ Addition Property of Equality<br>3+7                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                        | y = 10 Subtraction and Addition Property                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |                        | $m\overline{AD} = (y + 3) \text{ cm}$ Given                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                        | $m\overline{AD} = (10 + 3) \text{ cm}$ Substitution Property $m\overline{AD} = 13 \text{ cm}$ Addition Property                                                                                                                                                                                                                                                                                                                                                         |
|                        |                        | c. What is the perimeter of Parallelogram ABCD?                                                                                                                                                                                                                                                                                                                                                                                                                         |

| IV. LEARNING<br>PHASES | Suggested<br>Timeframe |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Learning Activities                                                                             | S                         |
|------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------|
|                        |                        | Perimeter = $\overline{AB}$ + $\overline{B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\overline{BC} + \overline{CD} + \overline{AD}$                                                 | Given                     |
|                        |                        | Perimeter = $(3x - 5) + (y+3)$ cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2y - 7) +(x +7) +                                                                              | Substitution Property     |
|                        |                        | Perimeter = (3(6) - 5) + (<br>+ ((10+3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2(10) - 7) +((6) +7)                                                                            | Substitution Property     |
|                        |                        | Perimeter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                 | Addition Property         |
|                        |                        | 2. ∠BAD measures (2a + 25) <sup>0</sup><br>a. What is the value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | res (3a – 15)°.           |
|                        | Participant .          | $\angle BAD \cong \angle BCD$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 | , any two opposite angles |
|                        |                        | $(2a + 25)^0 = (3a - 15)^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Substitution Proper                                                                             | rty                       |
|                        |                        | $(2a - 2a + 25 + 15)^0 =$<br>$(3a - 2a - 15 + 15)^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Addition Property                                                                               | of Equality               |
|                        |                        | $a = 40^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Subtraction and A                                                                               | ddition Property          |
|                        |                        | b. What is m∠BAD?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |                           |
|                        |                        | $m\angle BAD = (2\alpha + 25)^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Given                                                                                           |                           |
| 10.00                  | C-07 13*               | $m\angle BAD = (2(40) + 25)^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Substitution Proper                                                                             |                           |
| 1000                   | 100                    | $m \angle BAD = (80 + 25)^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Multiplication Prop                                                                             | perty                     |
| 6.0                    |                        | $m \angle BAD = 105^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Addition Property                                                                               |                           |
|                        | /                      | c. What is m∠CBA?<br>m∠CBA = 1800 –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | le e e evelle le evele                                                                          | and the analysis of       |
| -30-1                  |                        | $m \angle CBA = 180^{\circ} - $<br>$m \angle BAD$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | angles are suppler                                                                              | , any two consecutive     |
| J. Park                |                        | $m \angle CBA = 180^{\circ} - 105^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Substitution Proper                                                                             |                           |
| 1- 10                  |                        | $m \angle CBA = 75^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subtraction Proper                                                                              |                           |
| C. Engagement          | VI<br>—                | each other  Learning Activity 1: Directions: the right and answer the follow Given: Parallelogram POWE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Refer to the figure                                                                             |                           |
|                        | - A T.                 | <ol> <li>PO ≅</li> <li>∠O ≅</li> <li>m∠W + m∠E =</li> <li>PR ≅</li> <li>ΔOPE ≅</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 | E W                       |
|                        | 60 minutes             | <b>Learning Activity 2:</b> Direction the figure on the right and of following: Given: Parallelogram ABCD  1. If $m\overline{AB} = 13$ cm, then $m\overline{DC}$ 2. If $m\angle B = 42^{\circ}$ , then $m\angle D = 3$ . If $m\angle B = 58^{\circ}$ , then $m\angle C = 4$ . If $m\overline{AE} = 7$ cm, then $m\overline{CE} = 5$ . If $m\overline{BD} = 24$ cm, then $m\overline{BB} = 24$ c | = D                                                                                             | A B C                     |
|                        | oc minores             | Learning Activity 3: Directions on the right and answer the for Given: Parallelogram QRST  1. If mQR = 3x - 5 cm and m what is mQR and mTS?  2. If m∠Q = (6x + 12)° and m what is m∠Q and m∠S?  3. If m∠T = (8x + 11)° and m what is m∠T and m∠S?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | following: $\overline{TS} = 2x + 5 \text{ cm, ther}$ $10 - 2S = (7x - 1)^{\circ}, \text{ ther}$ |                           |

| IV. LEARNING<br>PHASES                                                                                          | Suggested<br>Timeframe | Learning Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                 |                        | 4. If $m\overline{Q}\overline{U} = 2x - 8$ cm and $m\overline{U}\overline{S} = x + 3$ cm, then what is $m\overline{Q}\overline{S}$ ?<br>5. If $\overline{R}\overline{U} = 5x - 6$ cm, and $\overline{R}\overline{T} = 6x$ cm, then what is $m\overline{U}\overline{T}$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D. Assimilation                                                                                                 | 20 minutes             | Directions: Refer to the figure on the right and answer the following: Given: Parallelogram WXYZ  1. If $m\overline{WX} = 6x$ cm, $m\overline{XY} = 5y - 4$ cm, $m\overline{YZ} = x + 35$ cm and $m\overline{WZ} = y + 17$ cm, then what is the perimeter of parallelogram WXYZ?  2. If $m\angle XWY = (3x + 11)^\circ$ and $m\angle ZYW = (7x - 1)^\circ$ , when $m\angle ZWY = (2y + 2)^\circ$ and $m\angle XYW = (3x - 2)^\circ$ , then what is $m\angle W$ and $m\angle Y$ ?                                                                                                                                                                                                                                                                                                                                                                                       |
| V. ASSESSMENT (Learning Activity Sheets for Enrichment, Remediation or Assessment to be given on Weeks 3 and 6) | 20 minutes             | For numbers 1 – 5, choose the letter of the best answer.  1. Which of the following is sufficient to guarantee that a quadrilateral is a parallelogram?  A. The diagonals are perpendicular C. Pair of adjacent sides are congruent  B. Two consecutive angles are D. The diagonals bisect each other congruent  2. What values of x and y guarantee that Quadrilateral ABCD is a parallelogram?  A. x = 64°, y = 116° B. x = 32°, y = 116° C. x = 64°, y = 64° D. x = 32°, y = 64°  3. In the same figure above, If AD = 2x - 10 cm and BC = x + 30 cm, then BC = A. 50 cm B. 60 cm C. 70 cm D. 80 cm  4. Quadrilateral ABCD is a parallelogram. If m∠B = (x + 40)° and m∠D = (2x + 20)°, what is m∠B? A. 50° B. 60° C. 70° D. 80°  5. Quadrilateral ABCD is a parallelogram. If m∠A = (3x - 10)° and m∠D = (2x + 40)°, what is m∠A? A. 50° B. 60° C. 70° D. 80°  A B |
| VI. REFLECTION                                                                                                  | 20 minutes             | <ul> <li>The learner communicates the explanation of their personal assessment as indicated in the Learner's Assessment Card.</li> <li>The learner, in their notebook, will write their personal insights about the lesson using the prompts below.  I understand that</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Prepared by: Wilson Ro                                                                                          | ay G. Anzures          | Checked by: Ma. Filipina M. Drio/<br>Reymark R. Queaño                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### Personal Assessment on Learner's Level of Performance

Using the symbols below, choose one which best describes your experience in working on each given task. Draw it in the column for Level of Performance (LP). Be guided by the descriptions below.

- I was able to do/perform the task without any difficulty. The task helped me in understanding the target content/lesson. - I was able to do/perform the task. It was quite challenging but it still helped me in understanding the target content/lesson.

- I was not able to do/perform the task, It was extremely difficult. I need additional enrichment activities to be able to do/perform this task.

| Learning Task | LP |
|---------------|----|---------------|----|---------------|----|---------------|----|
| Number 1      |    | Number 3      |    | Number 5      |    | Number 7      |    |
| Number 2      |    | Number 4      |    | Number 6      |    | Number 8      |    |



| W2  | Learning Area | MATHEMATICS     | Grade Level | 9 |
|-----|---------------|-----------------|-------------|---|
| VVZ | Quarter       | 3 <sup>RD</sup> | Date        |   |

| I. LESSON TITLE                                  | RECTANGLES, RHOMBI and SQUARES                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| II. MOST ESSENTIAL LEARNING COMPETENCIES (MELCs) | Proves theorems on the different kinds of parallelogram (rectangle, rhombus, square). M9GE-IIIc-1                                                                                                                                                                                                                                                                |
| III. CONTENT/CORE CONTENT                        | Rectangle – an equiangular parallelogram. All angles are right angles, and its diagonals are congruent.  Rhombus – an equilateral parallelogram. All sides are equal. Its diagonals are perpendicular. Each diagonal bisects opposite angles.  Square - an equiangular and equilateral quadrilateral. All the properties of parallelogram, rectangle and rhombus |

| IV. LEARNING PHASES | Suggested<br>Timeframe |                                                                                                                                                                                                                                                   | Learning Activities                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |
|---------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. Introduction     | 10 minutes             | In this lesson, we sho parallelograms that are rhombus, and squo properties, and different regarding relationships sides and angles. We remember is that rectange and squares have all the parallelogram that a discussed in the previous sheets. | rectangle, ares, their t theorems about their need to gles, rhombi, properties of have been                                                                                                                                                                                                                                                                                                   | Parallelogram  Rhombus  Square                                                                                                                                                                                                                    |
| B. Development      | 60 minutes             | and the parallelatine diagonals of The diagonals of Given: Rectangle WINS with diagonals \overline{WN} and \overline{SI}  Prove: \overline{WN} \cong \overline{SI}  Properties of Rhombus  All the properties  Diagonals of a rh                  | has one right angle, the gram is a rectangle. a rectangle are congruer Statements  1. Rectangle WINS with diagonals $\overline{WN}$ and $\overline{SI}$ 2. $\overline{WS} \cong \overline{IN}$ 3. $\angle WSN$ and $\angle INS$ are right angles  4. $\angle S \cong \angle N$ 5. $\overline{SN} \cong \overline{NS}$ 6. $\Delta WSN \cong \Delta INS$ 7. $\overline{WN} \cong \overline{SI}$ | In a parallelogram, any two opposite sides are congruent.  If a parallelogram has one right angle, then it has four right angles and the parallelogram is a rectangle.  All right angles are congruent.  Reflexive Property  SAS Postulate  CPCTC |

| IV. LEARNING PHASES | Suggested<br>Timeframe |                                            |    | Learning Activities                        |                       |
|---------------------|------------------------|--------------------------------------------|----|--------------------------------------------|-----------------------|
|                     |                        | Prove: $\overline{RS} \perp \overline{OE}$ | 2. | $\overline{OS} \cong \overline{RO}$        | Definition of a       |
|                     |                        | R O                                        |    |                                            | Rhombus               |
|                     |                        |                                            | 3. | $\overline{RS}$ and $\overline{OE}$ bisect | The diagonals of a    |
|                     |                        |                                            |    | each other                                 | parallelogram bisect  |
|                     |                        | \                                          |    |                                            | each other.           |
|                     |                        | 1 / " \ 1                                  | 4. | H is the midpoint of                       | Definition of a       |
|                     |                        |                                            |    | $\overline{RS}$ and $\overline{OE}$        | midpoint              |
|                     |                        | E S                                        | 5. | $\overline{OH} \cong \overline{OH}$        | Reflexive Property    |
|                     |                        |                                            | 6. | $\Delta ROH \cong \Delta SOH$              | SSS Postulate         |
|                     | Elitaria.              |                                            | 7. | $\angle RHO \cong \angle SHO$              | CPCTC                 |
|                     | 33-4                   |                                            | 8. | ∠RH0 and ∠SH0                              | ∠RH0 and ∠SH0 form    |
|                     | -                      | Dec.                                       |    | are right angles                           | a linear pair and are |
| 200                 |                        |                                            |    |                                            | congruent             |
|                     |                        | 1000                                       | 9. | $\overline{RS} \perp \overline{OE}$        | Perpendicular lines   |
|                     |                        | 1000                                       |    |                                            | meet to form a right  |
|                     |                        | 1800                                       |    |                                            | angle                 |
|                     |                        | 1894                                       |    |                                            |                       |
|                     |                        | Properties of Square                       |    |                                            | Q R                   |

- All the properties of Parallelogram
- All the properties of Rectangle
- All the properties of Rhombus



On the right is a rectangle QRST. Consider each given information and answer the questions that follow.

1. If  $m \angle QRT = 25^{\circ}$ , find  $m \angle TRS$ ,  $m \angle QSR$ , and  $m \angle RTS$ .

|   | 1. If $\Pi \angle Q R I = 25^{\circ}$ , $\Pi \cap \Pi \angle I R I$       | s, mzęsk, and mzkrs.                       |
|---|---------------------------------------------------------------------------|--------------------------------------------|
|   | $m \angle QRT = 25^{\circ}$                                               | Given                                      |
|   | $m \angle QRS = 90^{\circ}$                                               | Definition of a Rectangle                  |
|   | $m \angle QRS = m \angle QRT + m \angle TRS$                              | Angle Addition Postulate                   |
|   | $90^{\circ} = 25^{\circ} + \text{m} \angle TRS$                           | Substitution                               |
|   | $90^{\circ} - 25^{\circ} = 25^{\circ} - 25^{\circ} + \text{m} \angle TRS$ | Addition Property of Equality              |
|   | $m \angle TRS = 65^{\circ}$                                               | Subtraction Property                       |
|   | $\overline{QS}\cong \overline{RT}$                                        | The diagonals of a rectangle are congruent |
|   | $\overline{US}\cong \overline{UR}$                                        | The diagonals of a parallelogram bisect    |
|   |                                                                           | each other                                 |
|   | $\angle URS \cong \angle USR$                                             | Converse of Isosceles Triangle Theorem     |
|   | $m \angle TRS = 65^{\circ}$                                               | Base angles of an isosceles triangles are  |
|   |                                                                           | congruent.                                 |
| ľ | $\angle QRT \cong \angle RTS$                                             | Alternate Interior Angle Theorem           |
|   | $m \angle RTS = 65^{\circ}$                                               | Substitution                               |
|   |                                                                           |                                            |

2. If  $m\overline{QS} = 5x - 14$  cm, and  $m\overline{RT} = 4x + 6$  cm, then what is x,  $m\overline{QS}$  and  $m\overline{RT}$ ?

| $\overline{QS} \cong \overline{RT}$           | The diagonals of a rectangle are congruent |
|-----------------------------------------------|--------------------------------------------|
| 5x - 14 = 4x + 6 cm                           | Substitution Property                      |
| 5x - 4x - 14 + 14 = 4x - 4x + 6               | Addition Property of Equality              |
| + 14                                          |                                            |
| x = 20                                        | Division Property                          |
| $m\overline{QS} = (5x - 14) \text{ cm}$       | Given                                      |
| $m\overline{QS} = (5(20) - 14) \text{ cm}$    | Substitution Property                      |
| $m\overline{QS} = (100 - 14) \text{ cm}$      | Multiplication Property                    |
| $m\overline{QS}$ and $m\overline{RT}$ = 86 cm | Subtraction Property                       |

On the right is a rhombus ABCD. Consider each given information and answer the questions that follow

3. If  $m \angle ABD = 25^{\circ}$ , find  $m \angle DBC$ ,  $m \angle BCD$ , and  $m \angle BCA$ .



| IV. LEARNING PHASES | Suggested<br>Timeframe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Learning Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                           |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m∠ <i>ABD</i> = 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Given                                                                                                                                                                                                     |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\angle ABD \cong \angle CBD$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Each diagonal of a rhombus bisects opposite angles                                                                                                                                                        |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m∠ <i>DBC</i> = 25 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Substitution                                                                                                                                                                                              |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $m \angle ABC = m \angle ABD + m \angle CBD$                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Angle Addition Postulate                                                                                                                                                                                  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $m\angle ABC = 25^{\circ} + 25^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Addition Property of Equality                                                                                                                                                                             |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m∠ <i>ABC</i> = 50°                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Addition Property                                                                                                                                                                                         |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m∠ <i>ABC</i> + m∠ <i>BCD</i> = 180°                                                                                                                                                                                                                                                                                                                                                                                                                                                         | In a parallelogram, any two consecutive angles are supplementary                                                                                                                                          |  |
|                     | TO 100 at 110 at | 50° + m∠ <i>BCD</i> = 180°                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Substitution                                                                                                                                                                                              |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $m \angle BCD = 130^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Transposition                                                                                                                                                                                             |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $m \angle BCD = 65^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Each diagonal of a rhombus bisects                                                                                                                                                                        |  |
| 100                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | opposite angles                                                                                                                                                                                           |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4. If $\overline{MAE} = x + 2$ cm, $\overline{MBE} = m\overline{AE}$ , $\overline{MBE}$ and $\overline{MAE}$ ? $(\overline{MAB})^2 = (\overline{MAE})^2 + (\overline{MBE})^2$                                                                                                                                                                                                                                                                                                                | $4x + 4$ cm, and $m\overline{AB} = 5x$ cm then what is x,  Diagonals of a rhombus are perpendicular                                                                                                       |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(5x)^2 = (x + 2)^2 + (4x + 4)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Substitution Property                                                                                                                                                                                     |  |
|                     | 11/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $25x^2 = x^2 + 4x + 4 + 16x^2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Square of a binomial                                                                                                                                                                                      |  |
|                     | 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $32x + 16$ $25x^2 = 17x^2 + 36x + 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Combining like terms                                                                                                                                                                                      |  |
|                     | - 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $25x^2 - 17x^2 + 36x + 20$ $25x^2 - 17x^2 - 36x - 20 = 17x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                | Addition Property of Equality                                                                                                                                                                             |  |
| - A 7               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-17x^2 + 36x - 36x + 20 - 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · , , , ,                                                                                                                                                                                                 |  |
| and the second      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $8x^2 - 36x - 20 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Subtraction Property                                                                                                                                                                                      |  |
| 1 100               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4(x-5)(2x+1)=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Factoring                                                                                                                                                                                                 |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zero product property (x = -1/2 is not considered)                                                                                                                                                        |  |
|                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $m\overline{AE} = 7$ cm, $m\overline{BE} = 24$ cm and $m\overline{AB} = 25$ cm                                                                                                                                                                                                                                                                                                                                                                                                               | Substitution Property                                                                                                                                                                                     |  |
| C. Engagement       | 60 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | square, name all parallelograr  1. All sides and angles are co 2. All sides are congruent. 3. Diagonals are equal. 4. Diagonals are perpendicu 5. Opposite sides are congru  Learning Activity 2: Direction: I Sometimes True, or Never True 1. A square is an equiangular r 2. A rectangle is a rhombus. 3. All rhombi are squares. 4. All rectangles are parallelograms are squar  Learning Activity 3: Direction: sides of the given parallelogras solution.  P  Rectangle PSAL has a Rho | Determine if the statement is Always true, thombus.  Grams. Tes.  Find the measure of the unknown angles and tram as shown in the figure below. Show your thombus SAMT with STM = 60°.  Square FGHI Find: |  |

| IV. LEARNING PHASES                                                                                             | Suggested<br>Timeframe | Learning Activities                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D. Assimilation                                                                                                 |                        | Direction: Find the measure of the unknown angles and sides of the given                                                                                                                                                                                                                           |
|                                                                                                                 |                        | parallelogram as shown in the figure below. Show your solution.                                                                                                                                                                                                                                    |
|                                                                                                                 | 30 minutes             | P S T E A F G                                                                                                                                                                                                                                                                                      |
|                                                                                                                 |                        | Rectangle PSAL has a Rhombus SAMT with Square FGHI                                                                                                                                                                                                                                                 |
|                                                                                                                 |                        | diagonal m $\overline{PA}$ = 5x - $\text{m} \angle STM$ = (3x + 11)°. Find: 5. $\text{m} \angle JFG$ =                                                                                                                                                                                             |
|                                                                                                                 |                        | 14 cm and $m\overline{LS} = 4x +   Find:$ 5. $m\angle JFG =  $ 6 cm. Find: 3. $m\angle MTA =  $                                                                                                                                                                                                    |
| ~                                                                                                               |                        | 1. $m\overline{PM} =$ 4. $m\angle TSM =$ 2. $m\overline{SL} =$                                                                                                                                                                                                                                     |
| V. ASSESSMENT (Learning Activity Sheets for Enrichment, Remediation or Assessment to be given on Weeks 3 and 6) |                        | Directions: Read each of the following carefully. Choose the letter that corresponds to the correct answer.  1. Square FGHI. If m∠FJG = (5x + 10)°, find the value of x.  A. 7 B. 8 C. 16 D. 20                                                                                                    |
| Z La                                                                                                            | 30 minutes             | 2. In rhombus SAMT, what is the measure of $\angle$ ASM, if m $\angle$ SAT = 35°? A. 35° B. 55° C. 70° D. 110° T. A. 35° B. 55° C. 70° D. 110°                                                                                                                                                     |
| 100 H 100                                                                                                       |                        | 4. In a rectangle PSAL, the length of diagonal $m\overline{PA} = P$ S 30 cm. Find the length of side $m\overline{SM}$ .                                                                                                                                                                            |
| Z S II IN                                                                                                       |                        | A. 15 cm B. 20 cm C. 25cm D. 30cm                                                                                                                                                                                                                                                                  |
|                                                                                                                 |                        | 5. If m∠PLS = 60°, what is m∠ALS?                                                                                                                                                                                                                                                                  |
|                                                                                                                 |                        | A. 30° B. 45° C. 60° D. 65° L A                                                                                                                                                                                                                                                                    |
| VI. REFLECTION                                                                                                  | 20<br>minutes          | <ul> <li>The learner communicates the explanation of their personal assessment as indicated in the Learner's Assessment Card.</li> <li>The learner, in their notebook, will write their personal insights about the lesson using the prompts below. <ul> <li>I understand that</li></ul></li></ul> |
| Propared by: Wilson Pay C                                                                                       |                        | I need to learn more about  Chacked by: Ma. Filiping M. Drio/                                                                                                                                                                                                                                      |

| Prepared by: | Wilson Ray G. Anzures | Checked by: | Ma. Filipina M. Drio/ |
|--------------|-----------------------|-------------|-----------------------|
|              |                       |             | Reymark R. Queño      |
|              |                       |             |                       |

#### Personal Assessment on Learner's Level of Performance

Using the symbols below, choose one which best describes your experience in working on each given task. Draw it in the column for Level of Performance (LP). Be guided by the descriptions below.

**≯**-I

- I was able to do/perform the task without any difficulty. The task helped me in understanding the target content/lesson.

 $\hbox{-}\ I\ was\ able\ to\ do/perform\ the\ task.}\ It\ was\ quite\ challenging\ but\ it\ still\ helped\ me\ in\ understanding\ the\ target\ content/lesson.}$ 

5

- I was not able to do/perform the task. It was extremely difficult. I need additional enrichment activities to be able to do/perform this task.

| Learning Task | LP | 1 |
|---------------|----|---------------|----|---------------|----|---------------|----|---|
| Number 1      |    | Number 3      |    | Number 5      |    | Number 7      |    | l |
| Number 2      |    | Number 4      | •  | Number 6      |    | Number 8      |    | ĺ |



| W3 | Learning Area | MATHEMATICS     | Grade Level | 9 |
|----|---------------|-----------------|-------------|---|
|    | Quarter       | 3 <sup>RD</sup> | Date        |   |

| I. LESSON TITLE                               |                                                                      | MIDLINE THEOREM, TRAPEZOIDS and KITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                    |  |
|-----------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| II. MOST ESSENTIAL LEARN COMPETENCIES (MELCs) | •                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                    |  |
| III. CONTENT/CORE CONTENT                     |                                                                      | Midline Theorem – The segment that joins the midpoints of two sides of a triangle is parallel to the third side and half as long.  Trapezoid – a quadrilateral with one pair of parallel sides. Where the median of a trapezoid is parallel to each base and its length is one-half the sum of the lengths of the bases.  Isosceles Trapezoid – a trapezoid with a pair of legs that are congruent. The base angles are congruent. Opposite angles are supplementary. Diagonals are congruent.  Kite – a quadrilateral with two pairs of adjacent sides that are congruent, a rhombus is a special kind of kite. The perpendicular bisector of at least one is the other diagonal. The area is half the product of the lengths of its diagonals. |                                                                                                                                                                    |  |
| IV. LEARNING PHASES                           | Suggested<br>Timeframe                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g Activities                                                                                                                                                       |  |
| A. Introduction                               | A. Introduction  In this lesson start the discution theorem. It will |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er forms of quadrilaterals, but before we bout the proof of the triangle midline sing the median of a trapezoid and its proofs of different special quadrilaterals |  |
| B. Development                                | VΠ                                                                   | <b>Midline Theorem</b> – The segment that triangle is parallel to the third side an Given: $\Delta HNS$ , O is the midpoint of $\overline{HN}$ midpoint of $\overline{NS}$ Prove: $\overline{OE}//\overline{HS}$ and $\overline{OE}=\frac{1}{2}\overline{HS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d half as long.<br>and E is the                                                                                                                                    |  |
|                                               |                                                                      | <ol> <li>ΔHNS, O is the midpoint of HN and E is the midpoint of NS</li> <li>In OE, there is a point T such</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reasons Given Line Postulate                                                                                                                                       |  |
|                                               |                                                                      | that $\overline{OE} \cong \overline{ET}$ 3. $\overline{NE} \cong \overline{ES}$ 4. $\angle 2 \cong \angle 3$ 5. $\triangle NEO \cong \triangle SET$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Definition of a midpoint  Vertical Angles Theorem  SAS Postulate                                                                                                   |  |
|                                               |                                                                      | 6. $\angle 1 \cong \angle 4$ 7. $\overline{HN}//\overline{ST}$ 8. $\overline{OH} \cong \overline{ON}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CPCTC Converse of Alternate Interior Angles Theorem Definition of a midpoint                                                                                       |  |
|                                               | 60 minutes                                                           | 9. $\overline{ON} \cong \overline{TS}$ 10. $\overline{OH} \cong \overline{TS}$ 11. Quadrilateral HOTS is a parallelogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CPCTC Transitive Property If opposite sides of a quadrilateral are congruent and parallel, then it is a parallelogram.                                             |  |
|                                               |                                                                      | 12. $\overline{OE}//\overline{HS}$<br>13. $\overline{OE} + \overline{ET} = \overline{OT}$<br>14. $\overline{OE} + \overline{OE} = \overline{OT}$<br>15. $2\overline{OE} = \overline{OT}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Definition of a parallelogram Segment Addition Postulate Substitution Property Addition Property                                                                   |  |
|                                               |                                                                      | 16. $\overline{HS} \cong \overline{OT}$ 17. $2\overline{OE} = \overline{HS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | In a parallelogram, any two opposite sides are congruent.  Substitution Property                                                                                   |  |

| IV. LEARNING PHASES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Suggested<br>Timeframe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                         |                                                           |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Midsegment Theorem of Trapezoid – The median of a trapezoid is parallel to each base and its length is one half the sum of the lengths of the bases.                                                                    |                                                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Given: Trapezoid MINS with median $\overline{TR}$ that intersects the diagonal $\overline{IS}$ at P.  Prove: $\overline{MS}//\overline{TR}//\overline{IN}$ and $\overline{TR}=\frac{1}{2}(\overline{MS}+\overline{IN})$ |                                                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Statements                                                                                                                                                                                                              | Reasons                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trapezoid MINS with median     TR that intersects the diagonal     IS at P.                                                                                                                                             | Given                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s | $2.  \overline{TP} + \overline{PR} = \overline{TR}$                                                                                                                                                                     | Segment Addition Postulate                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. $\overline{TP}//\overline{MS}$ and $\overline{TP} = \frac{1}{2}\overline{MS}\overline{RP}//\overline{IN}$ and $\overline{RP} = \frac{1}{2}\overline{IN}$                                                             | Midline Theorem                                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $4. \overline{MS}/\overline{IN}$                                                                                                                                                                                        | Definition of Trapezoid                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. $\overline{MS}//\overline{TP} + \overline{RP}//\overline{IN}$                                                                                                                                                        | Transitive Property                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. $\overline{MS}//\overline{TR}//\overline{IN}$                                                                                                                                                                        | Addition Property                                         |  |  |
| 15000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. $\overline{TR} = \frac{1}{2}\overline{MS} + \frac{1}{2}\overline{IN}$                                                                                                                                                | Substitution Property                                     |  |  |
| No. of the last of | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8. $\overline{TR} = \frac{1}{2}(\overline{MS} + \overline{IN})$                                                                                                                                                         | Factoring                                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>The base angles of an isosceles to congruent.</li> <li>Given: Isosceles Trapezoid AMOR with Prove: ∠A ≅ ∠R and ∠AMO ≅ ∠O</li> </ul>                                                                            | $1 \overline{MO} / / \overline{AR}$                       |  |  |
| 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Statements                                                                                                                                                                                                              | Reasons                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V.I. L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. Isosceles Trapezoid AMOR with $\overline{MO}/\overline{AR}$ .                                                                                                                                                        | Given                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2.  \overline{AM} \cong \overline{OR}$                                                                                                                                                                                 | Definition of Isosceles Trapezoid                         |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3. From M, draw $\overline{ME}//\overline{OR}$ where E lies on $\overline{AR}$                                                                                                                                          | Two points determine a line                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4. Quadrilateral MORE is a parallelogram                                                                                                                                                                                | Definition of Parallelogram                               |  |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5.  \overline{ME} \cong \overline{OR}$                                                                                                                                                                                 | In a parallelogram, any two opposite sides are congruent. |  |  |
| 101120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. $\overline{MA} \cong \overline{ME}$                                                                                                                                                                                  | Transitive Property                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7. ΔAME is an isosceles triangle                                                                                                                                                                                        | Definition of Isosceles Triangle                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8. ∠A ≅ ∠1                                                                                                                                                                                                              | Base angles of an isosceles triangles are congruent.      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9. ∠1 ≅ ∠ <i>R</i>                                                                                                                                                                                                      | Corresponding Angles Theorem                              |  |  |
| 4.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. ∠A ≅ ∠R                                                                                                                                                                                                             | Transitive Property                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11. ∠A and ∠AMO are supplementary angles. ∠O and ∠R are supplementary angles.                                                                                                                                           | Same Side Interior Angle Theorem                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12. ∠ <i>AMO</i> ≅ ∠ <i>O</i>                                                                                                                                                                                           | Supplements of congruent angles are also congruent        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul><li>Opposite angles of an isosceles tr</li><li>Diagonals of an isosceles trapezo</li></ul>                                                                                                                          |                                                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Definition of Kite</b> – a quadrilateral with congruent, a rhombus is a special kind                                                                                                                                 |                                                           |  |  |

| IV. LEARNING PHASES | Suggested<br>Timeframe |                                                                                                                                                                    | Learning                                         | y Activities                            |                                                          |
|---------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|----------------------------------------------------------|
|                     |                        | Properties of Kite  In a kite, the perpend the other diagonal.  The area of a kite is hits diagonals.  Given: Kite ROPE with diapoint W.  Prove: Area of kite ROPE | alf the produgonals $\overline{PR}$ and          | uct of the lent $\overline{OE}$ interse | gths of W                                                |
|                     | All Stewares           | Statements                                                                                                                                                         | -                                                | Reasons                                 |                                                          |
|                     | Ph.                    | 1. Kite ROPE with diag and $\overline{OE}$ intersect at                                                                                                            |                                                  | Given                                   |                                                          |
|                     |                        | $2.  \overline{PR} \perp \overline{OE}$                                                                                                                            | poini W.                                         |                                         | of a kite are<br>Ular to each other.                     |
|                     |                        | 3. Area of kite ROPE = $\Delta OPE$ + Area of $\Delta OR$                                                                                                          |                                                  | Area Addit                              | ion Postulate                                            |
|                     |                        | 4. Area of $\triangle OPE = \frac{1}{2}(\overline{OPE})$                                                                                                           |                                                  | Formula for                             | Area of Triangles                                        |
|                     | 0100                   | Area of $\triangle ORE = \frac{1}{2}(\overline{ORE})$                                                                                                              | $\overline{E}$ )( $\overline{WR}$ )              |                                         |                                                          |
| 1                   |                        | 5. Area of kite ROPE = $= \frac{1}{2} (\overline{OE}) (\overline{PW} + \overline{WR})$                                                                             |                                                  | Factoring                               |                                                          |
|                     |                        | $6.  \overline{PW} + \overline{WR} = \overline{PR}$                                                                                                                | 1 — —                                            |                                         | ddition Postulate                                        |
|                     |                        | 7. Area of Kite ROPE =                                                                                                                                             | $\frac{1}{2}(UE)(PR)$                            | Substitution CPCTC                      | 1                                                        |
| C. Engagement       |                        | 8. $\overline{CX} \cong \overline{TX}$ Learning Activity 1: Direc                                                                                                  | tions: Compl                                     |                                         | column proof                                             |
| C. Engagemeni       |                        | <ul> <li>Opposite angles of a</li> </ul>                                                                                                                           | n isosceles tr                                   | apezoid are                             | supplementary.                                           |
|                     | 1 /1                   | Given: Isosceles Trapezoid ARTS with                                                                                                                               | Statements 1. (1)                                | S                                       | Reasons<br>Given                                         |
|                     | V/I -                  | $\overline{RT}//\overline{AS}$                                                                                                                                     | 2. $\overline{AR} \cong \overline{S}$            |                                         | (2)                                                      |
|                     | VIII                   | Prove: $\angle ARS$ and $\angle S$ are supplementary. $\angle A$ and $\angle T$ are                                                                                | 3. (3) and                                       | $d \angle ART \cong \angle S$           | The base angles of an isosceles trapezoid are congruent. |
| 1                   | 60 minutes             | supplementary.                                                                                                                                                     |                                                  | $ART = 180^{0}$ $S + \angle T =$        | Same Side Interior<br>Angle Theorem                      |
|                     |                        | A B S                                                                                                                                                              |                                                  | $T = 180^{0}$ $S + \angle ART =$        | (4)                                                      |
| WI AC               | 1 1 1                  | 39                                                                                                                                                                 | 6. (5)                                           |                                         | Definition of<br>Supplementary Angles                    |
|                     |                        | Learning Activity 2: Direc  Diagonals of an isoso                                                                                                                  |                                                  |                                         |                                                          |
|                     |                        | Given: Isosceles                                                                                                                                                   | Statement                                        |                                         | Reasons                                                  |
|                     |                        | Trapezoid ROMA with diagonals $\overline{RM}$ and $\overline{AO}$ Prove: $\overline{RM} \cong \overline{AO}$                                                       | with di                                          | oid ROMA<br>agonals                     | (1)                                                      |
|                     |                        | ° M                                                                                                                                                                | 2. (2)                                           | $d\overline{A0}$ .                      | Definition of Isosceles<br>Trapezoid                     |
|                     |                        | R                                                                                                                                                                  | -                                                | $\cong \angle MAR$                      | (3)<br>(4)                                               |
|                     |                        |                                                                                                                                                                    | $4.  \overline{RA} \cong \overline{A}$ $5.  (5)$ | π                                       | (4)<br>SAS Postulate                                     |
|                     |                        |                                                                                                                                                                    | $6.  \overline{RM} \cong \overline{R}$           | 40                                      | CPCTC                                                    |
|                     |                        | Learning Activity 3: Direc                                                                                                                                         |                                                  |                                         |                                                          |
|                     |                        | A alagonal of a kite i                                                                                                                                             | s an angle b<br>Statements                       |                                         | pair of opposite angles.  Reasons                        |

| IV. LEARNING PHASES                                                                                             | Suggested<br>Timeframe |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                 |                        | Given: Kite WORD with diagonals $\overline{OD}$ and $\overline{WR}$ . Prove: $\overline{WR}$ is angle bisector of $\angle OWD$ and $\angle ORD$ .                                                                                                                   | <ol> <li>Kite WORD with diagonals \$\overline{OD}\$ and \$\overline{WR}\$.</li> <li>\$\overline{WO} \approx \overline{WD}\$ and \$\overline{RO} \approx \overline{RD}\$ and \$\overline{RO}\$ and \$\o</li></ol> | (1)  (2)  Reflexive Property SSS Postulate (5)  Definition of Angle Bisector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D. Assimilation                                                                                                 | 20 minutes             | Directions: Complete the Given: Kite CUTE with diagonals $\overline{UE}$ and $\overline{CT}$ intersect at point X. Prove: $\overline{UE}$ is the perpendicular bisector of $\overline{CT}$ .                                                                        | and ∠ORD. two-column proof.  Statements  1.  2.  3.  4.  5.  6.  7.  8.  9.  10.  11.  12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| V. ASSESSMENT (Learning Activity Sheets for Enrichment, Remediation or Assessment to be given on Weeks 3 and 6) | 20 minutes             | sides of a triangle is p A. Similarity Theorem B. Triangle Midline The 2. According to the med to one-half of the A. sum B. differe 3. A property of an isoso is the same property of A. kite B. rectan 4. Given kite WORD, wh congruent? A. ∠W and ∠R B. ∠W and ∠O | the following carefully. Cat answer. that, "The segment that arallel to the third side are C. Pythagorea corem D. Alternate Indian theorem of a trapez of the bases. The core C. product celes trapezoid in which it of gle C. rhombus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | joins the midpoints of two nd half as long"? In Theorem Iterior Angles Iterior Angles Iterior Angles Iterior Ite |
| VI. REFLECTION                                                                                                  | 20 minutes             | The learner communi<br>as indicated in the Le                                                                                                                                                                                                                       | cates the explanation of carner's Assessment Card otebook, will write their papts below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f their personal assessment<br>l.<br>personal insights about the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Prepared by:Wilson Ray G. AnzuresChecked by:Ma. Filipina M. Drio/Reymark R. Queaño

#### Personal Assessment on Learner's Level of Performance

Using the symbols below, choose one which best describes your experience in working on each given task. Draw it in the column for Level of Performance (LP). Be guided by the descriptions below.

- I was able to do/perform the task without any difficulty. The task helped me in understanding the target content/lesson.

- I was able to do/perform the task. It was quite challenging but it still helped me in understanding the target content/lesson.

- I was not able to do/perform the task. It was extremely difficult. I need additional enrichment activities to be able to do/perform this task.

| Learning Task | LP | l |
|---------------|----|---------------|----|---------------|----|---------------|----|---|
| Number 1      |    | Number 3      |    | Number 5      |    | Number 7      |    |   |
| Number 2      |    | Number 4      |    | Number 6      |    | Number 8      |    |   |



| W4 | Learning Area | Mathematics | Grade Level | Nine |
|----|---------------|-------------|-------------|------|
|    | Quarter       | Third       | Date        |      |

| I. LESSON TITLE                              |                         | Solving Problems Involving Parallelogran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ms, Trapezoids, and Kites                                  |  |  |  |
|----------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|
| II. MOST ESSENTIAL LEARN COMPETENCIES (MELC: |                         | Solves problems involving parallelogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |  |  |  |
| III. CONTENT/CORE CON                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |  |  |  |
| IV. LEARNING PHASES                          | Suggested<br>Time Frame |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |  |  |  |
| A. Introduction 5 minutes                    |                         | In this lesson, we shall focus on solving problems involving the relationship of sides and angles in parallelograms, trapezoids, and kites using their properties and different theorems. We need to remember all the definitions, properties, and theorems that we have already discussed regarding parallelograms, trapezoids, and kites in the previous lessons.  Steps in Geometric Problem Solving:  1. Read the problem carefully. 2. Recognize the relationship of the given figure. 3. Pay attention to the labels. 4. Use appropriate definition, property, postulate, or theorem. |                                                            |  |  |  |
| B. Development                               | 90 minutes              | 5. Answer the question.  SOLVING PROBLEMS INVOLVING PAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALLELOGRAMS, TRAPEZOIDS, AND KITES                         |  |  |  |
| CX L                                         |                         | 1. Given: Quadrilateral WISH is a po<br>a. If $m \angle W = (x + 15)^0$ and m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | arallelogram<br>n∠S = (2x + 5)°, what is m∠W?              |  |  |  |
| 7- 40                                        |                         | $m \angle W = m \angle S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | In a parallelogram, any two opposite angles are congruent. |  |  |  |
|                                              |                         | $(x + 15)^0 = (2x + 5)^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Substitution                                               |  |  |  |
|                                              | 1 1                     | $(x-x+15-5)^0 = (2x-x+5-5)^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Addition Property of Equality                              |  |  |  |
|                                              | 1 M                     | $x = 10^{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Subtraction and Addition Property                          |  |  |  |
| 11//                                         |                         | $m \angle W = ((10) + 15)^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Substitution                                               |  |  |  |
|                                              |                         | m∠ <i>W</i> = 25 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Addition Property                                          |  |  |  |
|                                              |                         | b. If $\overline{WI} = 3y + 3$ and $\overline{HS} = y$ $\overline{WI} \cong \overline{HS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + 13, how long is <del>HS</del> ?                          |  |  |  |
|                                              |                         | $\overline{WI} \cong \overline{HS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | In a parallelogram, any two                                |  |  |  |
|                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | opposite sides are congruent.                              |  |  |  |
|                                              |                         | 3y + 3 = y + 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Substitution                                               |  |  |  |
|                                              |                         | 3y - y + 3 - 3 = y - y + 13 - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Addition Property of Equality                              |  |  |  |
|                                              |                         | 2y = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Subtraction and Addition Property                          |  |  |  |
|                                              | - B                     | y = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dividing both sides by 2                                   |  |  |  |
|                                              |                         | $\overline{HS} = (5) + 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Substitution                                               |  |  |  |
|                                              |                         | $\overline{HS} = 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Addition Property                                          |  |  |  |
|                                              |                         | One side is 5 cm less that dimensions and how large                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |  |  |  |
|                                              | 100                     | Perimeter of Rectangle = 2L + 2W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Formula for Perimeter of Rectangle                         |  |  |  |
|                                              |                         | 56 = 2L + 2(2L - 5) cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Substitution                                               |  |  |  |
|                                              |                         | 56 = 2L + 4L - 10  cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Distributive Property                                      |  |  |  |
|                                              |                         | 56 + 10 = 6L - 10 + 10  cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Addition Property of Equality                              |  |  |  |
|                                              |                         | 6L = 66 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Addition Property                                          |  |  |  |
|                                              |                         | L = 11 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dividing both sides by 6                                   |  |  |  |
|                                              |                         | 56 = 2(11) + 2W cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Substitution                                               |  |  |  |
|                                              |                         | 56 = 22 + 2W cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Multiplication Property                                    |  |  |  |
|                                              |                         | 56 – 22 = 22 – 22 + 2W cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Addition Property of Equality                              |  |  |  |
|                                              |                         | 2W = 34 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Subtraction Property                                       |  |  |  |
|                                              |                         | W = 17 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dividing both sides by 2                                   |  |  |  |
|                                              |                         | Area of Rectangle = LW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Formula for Area of Rectangle                              |  |  |  |
|                                              |                         | Area of Rectangle = 11 cm * 17 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |  |  |  |
|                                              | İ                       | Area of Rectangle = 187 cm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Multiplication Property                                    |  |  |  |

| IV. LEARNING PHASES                             | Suggested<br>Time Frame | Learning                                                                                                                | g Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 |                         |                                                                                                                         | d the area of the largest square that tangle WISH from the previous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                 |                         | L = 11 cm                                                                                                               | Determine the smaller number from the length and width of the rectangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                 |                         | Area of Square = s <sup>2</sup>                                                                                         | Formula for Area of Square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                 |                         | Area of Square = (11 cm) <sup>2</sup>                                                                                   | Substitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 | Para Para               | Area of Square = 121 cm <sup>2</sup> 2. Given: Isosceles trapezoid POST v                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 |                         | a. If $\overline{OS} = 3x - 2$ , $\overline{PT} = 2x + 10$ $\overline{ER} = \frac{1}{2}(\overline{OS} + \overline{PT})$ | ) and $\overline{ER}$ = 14, how long is each base?<br>Formula for length of median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                 |                         | $14 = \frac{1}{2}((3x - 2) + (2x + 10))$                                                                                | Substitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10.10                                           |                         | 28 = 5x + 8                                                                                                             | Combining like terms and simplifying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| - 1 / E. S. | 2000                    | 28 - 8 = 5x + 8 - 8                                                                                                     | Addition Property of Equality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16.11                                           | 79217                   | 5x = 20                                                                                                                 | Subtraction Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                 |                         | x = 4                                                                                                                   | Dividing both sides by 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                 |                         | $\overline{OS} = 3(4) - 2$                                                                                              | Substitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| The                                             |                         | $\overline{OS} = 10$                                                                                                    | Multiplication and Subtraction Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                 |                         | $\overline{PT} = 2(4) + 10$                                                                                             | Substitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 |                         | $\frac{\overline{PT} = 18}{\overline{PT}}$                                                                              | Multiplication and Addition<br>Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                 | 1/1                     | b. If $m \angle P = (2x + 5)^0$ and $m \angle P = (2x + 5)^0$                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 | VII I                   | m∠P and m∠0 are supplementary                                                                                           | Same Side Interior Angles are<br>Supplementary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                         | $(2x + 5)^0 + (3x - 10)^0 = 180^0$                                                                                      | Substitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 |                         | $(5x - 5)^0 = 180^0$                                                                                                    | Addition and Subtraction Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                               |                         | $(5x - 5 + 5)^0 = (180 + 5)^0$                                                                                          | Addition Property of Equality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                 |                         | $5x = 185^{\circ}$                                                                                                      | Addition Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 | 17.7                    | $x = 37^{\circ}$                                                                                                        | Divide both sides by 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                 |                         | m∠P and m∠T are congruent                                                                                               | In a isosceles trapezoid, base angles are congruent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                 |                         | $m \angle T = (2(37) + 5)^0$                                                                                            | Substitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 |                         | m $\angle T = 79^{\circ}$ c. One base is twice the oth is 27 cm, how long is eac                                        | Simplify Si |
|                                                 |                         | $\overline{ER} = \frac{1}{2}(\overline{OS} + \overline{PT})$                                                            | Formula for length of median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 |                         | $6 = \frac{1}{2}((x) + (2x))$                                                                                           | Substitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 |                         | 12 = 3x                                                                                                                 | Combining like terms and simplifying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                 |                         | x = 4                                                                                                                   | Dividing both sides by 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                 |                         | Perimeter of Isosceles Trapezoid =                                                                                      | Formula of Perimeter of Isosceles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                         | $2L + B_1 + B_2$                                                                                                        | Trapezoid Substitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                 |                         | 27 = 2L + 4 + 2(4) $27 = 2L + 12$                                                                                       | Substitution  Multiplication and Addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 |                         | 27 12 - 21 + 12 12                                                                                                      | Property Addition Property of Equality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                 |                         | 27 - 12 = 2L + 12 - 12 $2L = 15$                                                                                        | Addition Property of Equality  Multiplication and Addition  Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                 |                         | 1 - 7 5 000                                                                                                             | Property Dividing both sides by 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                         | L = 7.5 cm                                                                                                              | Dividing both sides by 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| IV. LEARNING PHASES     | Suggested<br>Time Frame | Learning                                                                                           | g Activities                                                                 |
|-------------------------|-------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                         |                         |                                                                                                    |                                                                              |
|                         |                         |                                                                                                    | one leg measures 9 inches. What is its ases is 3 inches more than the other? |
|                         |                         | 1                                                                                                  | Formula for length of median                                                 |
|                         |                         | $\overline{ER} = \frac{1}{2}(\overline{OS} + \overline{PT})$                                       | _                                                                            |
|                         |                         | $8.5 = \frac{1}{2}((x) + (x+3))$                                                                   | Substitution                                                                 |
|                         |                         | 17 = 2x + 3                                                                                        | Combining like terms and                                                     |
|                         |                         | 17 - 3 = 2x + 3 - 3                                                                                | simplifying  Addition Property of Equality                                   |
|                         |                         | 2x = 14                                                                                            | Addition 1 topenty of Equality                                               |
|                         | 188                     | x = 7                                                                                              | Dividing both sides by 2                                                     |
| 8                       |                         | Perimeter of Isosceles Trapezoid =<br>2L + B <sub>1</sub> + B <sub>2</sub>                         | Formula of Perimeter of Isosceles Trapezoid                                  |
|                         |                         | Perimeter of Isosceles Trapezoid = 2(9) + 7 + (7 + 3)                                              | Substitution                                                                 |
|                         |                         | Perimeter of Isosceles Trapezoid = 18 + 7 + 10                                                     | Multiplication and Addition<br>Property                                      |
|                         |                         | Perimeter of Isosceles Trapezoid = 35 inches                                                       | Addition Property                                                            |
|                         |                         | 3. Given: Quadrilateral LIKE is a kite a. $\overline{LE}$ is twice $\overline{LI}$ . If its perime |                                                                              |
| 100                     |                         | Perimeter of Kite = $2S_1 + 2S_2$                                                                  | Formula of Perimeter of Kite                                                 |
| 7-120-                  |                         | $21 = 2\overline{L}I + 2(2\overline{L}I)$                                                          | Substitution                                                                 |
|                         |                         | $21 = 2S_1 + 4\overline{L}I$                                                                       | Multiplication Property                                                      |
|                         |                         | $21 = 6\overline{L}I$                                                                              | Combining like terms                                                         |
|                         | A 600                   | $\overline{LI}$ = 3.5 cm $\overline{LE}$ = 7 cm                                                    | Dividing both sides by 6 $\overline{LE}$ is twice $\overline{LI}$            |
|                         |                         | and $\overline{IE} + \overline{LK} = 16$ inches?                                                   | f the diagonals is 4 more than the other  Given                              |
|                         |                         | x + (x + 4) = 16                                                                                   | Substitution                                                                 |
|                         |                         | 2x + 4 = 16                                                                                        | Combining like terms                                                         |
|                         |                         | 2x + 4 - 4 = 16 - 4                                                                                | Addition Property of Equality                                                |
|                         |                         | 2x = 12                                                                                            | Subtraction Property                                                         |
|                         |                         | x = 6                                                                                              | Dividing both sides by 2                                                     |
|                         | 950 3                   | Area of Kite = $\frac{1}{2}D_1D_2$                                                                 | Formula of Area of Kite                                                      |
| 700                     |                         | Area of Kite = $\frac{1}{2}(\overline{IE})(\overline{LK})$                                         | Substitution                                                                 |
|                         |                         | Area of Kite = $\frac{1}{2}$ (6)(10)                                                               | Substitution                                                                 |
|                         |                         | Area of Kite = 30 inches <sup>2</sup>                                                              | Multiplication Property                                                      |
| 50                      |                         | c. $\overline{IE} = (x - 1)$ ft and $\overline{LK} = (x - 1)$ ft and $\overline{LK} = (x - 1)$     | + 2) ft. If its area is 44 ft², how long are                                 |
| All market and a second |                         | Area of Kite = $\frac{1}{2}D_1D_2$                                                                 | Formula of Area of Kite                                                      |
|                         |                         | Area of Kite = $\frac{1}{2}(\overline{IE})(\overline{LK})$                                         | Substitution                                                                 |
|                         |                         | $44 = \frac{1}{2}(x-1)(x+2)$                                                                       | Substitution                                                                 |
|                         |                         | $88 = x^2 + x - 2$                                                                                 | Simplifying                                                                  |
|                         |                         | $x^2 + x - 2 - 88 = 0$                                                                             | Transposition                                                                |
|                         |                         | $x^2 + x - 90 = 0$                                                                                 | Subtraction Property                                                         |
|                         |                         | (x-9)(x+10)=0                                                                                      | Factoring                                                                    |
|                         |                         | x = 9 or -10                                                                                       | Zero Product Rule but only                                                   |
|                         |                         |                                                                                                    | consider 9 since there is no                                                 |
|                         |                         |                                                                                                    | negative measure.                                                            |
|                         |                         | $\overline{IE} = ((9) - 1)$ ft and $\overline{LK} = ((9) + 2)$ ft                                  | Substitution                                                                 |
|                         |                         | $\overline{IE}$ = 8 ft and $\overline{LK}$ = 11 ft                                                 | Addition and Subtraction Property                                            |

| IV. LEARNING PHASES                                                       | Suggested<br>Time Frame | Learning Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C. Engagement                                                             | 30 minutes              | Directions: Illustrate and solve the following problems:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                           |                         | <ol> <li>Two consecutive sides of a parallelogram measure 4 m and 9 m, respectively. What is the perimeter of the parallelogram?</li> <li>One diagonal of a square measure (2x + 4) in. If the other diagonal measures 16 in, what is x?</li> <li>Given trapezoid QRST with QR//TS and UV as the median. If mQR = 12 cm and mUV = 24 cm, what is mUV?</li> <li>An isosceles trapezoid with a diagonal that measures 42 cm and one leg measures 23 cm. What is the length of the other diagonal?</li> <li>Given kite HOPE with diagonals mHP = 10 cm and mOE = 18 cm. What is the area of the kite?</li> </ol>                                                                                                                                                                                                                                                                                                                             |
| D. Assimilation                                                           | 30 minutes              | Directions: Solve the following problems. Show your complete solutions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                           |                         | <ol> <li>A table cloth is cut into a parallelogram in which two opposite angles measure (8x - 33)° and (5x + 15)°? Find the measures of all the angles.</li> <li>One lateral face of the roof of the school building is trapezoid in shape. One of the bases of this trapezoid is 6 m longer than the other base. Find the length of the two bases if the median measures 19 m.</li> <li>A rectangular garden has a perimeter of 56 ft. Its length is 5 ft less than twice the width. What is the area of the garden?</li> <li>A tabletop is an isosceles trapezoid in shape. The median is 5.5 dm, and one of its legs measures 2.5 dm. If one of the tabletop bases is 1 dm more than the other, find its perimeter.</li> <li>The area of the paper used by William in the making of his kite is 60 square inches, and one of its diagonals is 2 inches less than the other diagonal. Find the lengths of the two diagonals.</li> </ol> |
| V. ASSESSMENT<br>(Learning Activity Sheets for                            | 30 minutes              | Directions: Illustrate the following and solve for what is required. Show your complete solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Enrichment, Remediation or<br>Assessment to be given on<br>Weeks 3 and 6) |                         | <ol> <li>One side of a rectangle is 3 m more than the other. If the perimeter of the rectangle is 30 m, what are its dimensions?</li> <li>a. L = 4 m and W = 7 m</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VI. REFLECTION                                                            | 20 minutes              | <ul> <li>The learners communicate the explanation of their personal assessment as indicated in the Learner's Assessment Card.</li> <li>The learner will write their personal insights about the lesson in their notebook using the prompts below: <ul> <li>I understand that</li></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Prepared by: Wilson Ray G                                                 | . Anzures               | Checked by: Ma. Filipina M. Drio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| \A/ <i>E</i> | Learning Area | Mathematics | Grade Level | Nine |
|--------------|---------------|-------------|-------------|------|
| <b>W5</b>    | Quarter       | Third       | Date        |      |

| I. LESSON TITLE                             |                         | Proportion and Application of Fundamental Theorems of Proportionality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|---------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| II. MOST ESSENTIAL LEA<br>COMPETENCIES (MEL |                         | Lesson 1: Describes a proportion M9GE-IIIf-1 Lesson 2: Applies the fundamental theorems of proportionality to solve problems involving proportions M9GE-IIIf-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| III. CONTENT/CORE CONTENT                   |                         | Describing a proportion and solving problems involving proportion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| IV. LEARNING<br>PHASES                      | Suggested<br>Time Frame | Learning Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| A. Introduction                             | 30 minutes              | Let's find out what you already know about proportion.  Answer the following.  A. Which of the following pair of pictures is an example of proportion?  Pair No. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                             |                         | B. There are different sets of ingredients in preparing buko pie. Given below are the ingredients for pie filling which is good for eight persons.  Pie Filling  1/3 cup cornstarch  1/2 cup coconut water  1/2 cup all-purpose cream  3/4 cup sugar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| CL                                          | M                       | If you are asked to prepare for 24 persons, how much coconut water is needed in preparing the filling?  C. Is there a possible way to find the height of the flag of the Philippines raised at San Pablo City Plaza without directly measuring it?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| B. Development                              | 60 minutes              | PROPORTION  When we recall the definition of ratio of two numbers, it is the comparison of two quantities. For any two numbers, $x$ and $y$ , $y \neq 0$ the ratio is the quotient obtained by dividing $x$ and $y$ . The two numbers are called the terms. The ratio can be written in the following form: $\frac{x}{y}$ (fraction form), $x:y$ (read as " $x$ is to $y$ "), $x$ to $y$ .  The following ratios can be reduced to the same value: $\frac{6}{9}$ , $\frac{30}{45}$ , $4:6$ . Their simplest form is $2:3$ or $\frac{2}{3}$ . Ratios that can be reduced to the same value are called equivalent ratios.  Example  Given: $x = 6$ , $y = 18$ , $z = 15$ .  Give each ratio in simplest form.  a. $\frac{x}{y}$ b. $y$ to $z$ c. $x + z:y$ Solution  a. $\frac{x}{y} = \frac{6}{18} = \frac{1}{3}$ b. $y$ to $z$ is $18$ to $15$ or $6$ to $5$ c. $x + z:y$ is $21:18$ or $7:6$ The equation stating that two ratios are equal is called a proportion. In symbols, $\frac{a}{b} = \frac{c}{d}$ , where $b$ and $d \neq 0$ , or $a:b=c:d$ (read as " $a$ is to $b$ as $c$ is to $d$ "). |  |  |

| Example 1    So 2 out 5 is equal to 4 out 10. They are in proportion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IV. LEARNING | Suggested  | Learnina Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{2}{s} = \frac{4}{10}$ So 2 out 5 is equal to 4 out 10. They are in proportion. Example 2 When four meters of cable wire casts 90 peass, then:  • 10 meters of that cable wire casts 270 peass. • 12 meters of that cable wire casts 270 peass. • 12 meters of that cable wire casts 270 peass. • 12 meters of that cable wire casts 270 peass. • 13 meters of that cable wire casts 270 peass. • 14 meters of that cable wire casts 270 peass. • 18 meters of that cable wire casts 270 peass. • 19 meters of that cable wire casts 270 peass. • 19 meters of that cable wire casts 270 peass. • 19 meters of that cable wire casts 270 peass. • 19 meters of the cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that cable wire casts 270 peass. • 10 meters of that casts 270 peass. • 10 meters of that casts 270 peass. • 10 meters of the casts 270 p | PHASES       | Time Frame |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| b. $x:6 = 15: 18 \to 6 \cdot 15 = 18 \cdot x \to 90 = 18x \to \left(\frac{1}{18}\right)90 = \left(\frac{1}{18}\right)18x \to 5 = x \text{ or } x = 0$<br>c. $\frac{x+3}{4} = \frac{9}{2} \to 4 \cdot 9 = 2(x+3) \to 36 = 2x + 6 \to 36 - (6) = 2x + 6 - (6) \to 30 = 2x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |            | So 2 out 5 is equal to 4 out 10. They are in proportion. Example 2  When four meters of cable wire costs 90 pesos, then:  • 10 meters of that cable wire costs 270 pesos  • 12 meters of that cable wire costs 270 pesos  All these ratios: $\frac{1}{90}$ , $\frac{10}{222}$ , and $\frac{12}{270}$ can be simplified as $\frac{2}{45}$ . Thus, the following are proportions:  • $\frac{4}{90} = \frac{10}{222} = \frac{12}{270}$ The ratio and proportion have many uses or relationship in our everyday life such as dealing with the measures of the ingredients in cooking recipes, the amount of profit earned per sale, enlarging or reducing the size of a drawing, measuring the height of an object without directly measuring it, and so many others.  APPLICATION OF FUNDAMENTAL THEOREMS OF PROPORTIONALITY In geometry, we used proportion to compare lengths of segments. To solve for unknown length, we often used the properties of proportion. Properties of Proportion  If $a:b=c:d$ or $\frac{b}{a}=\frac{c}{a}$ , and $a,b,c$ and $d\neq 0$ , then each of the following is true:  • $ad=cb$ • $a=\frac{b}{a}$ or $a=\frac{b}{a}$ and $a=\frac{b}{a}$ and $a=\frac{c}{a}$ and $a=$ |
| 1 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            | b. $x:6 = 15: 18 \to 6 \cdot 15 = 18 \cdot x \to 90 = 18x \to \left(\frac{1}{18}\right)90 = \left(\frac{1}{18}\right)18x \to 5 = x \text{ or } x = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\rightarrow \left(\frac{1}{2}\right) 30 = \left(\frac{1}{2}\right) (2x) \rightarrow 15 = x \text{ or } x = 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |            | C. $\frac{1}{4} = \frac{1}{2} \rightarrow 4 \cdot 9 = 2 (x + 3) \rightarrow 36 = 2x + 6 \rightarrow 36 - (6) = 2x + 6 - (6) \rightarrow 30 = 2x$<br>$\rightarrow \left(\frac{1}{2}\right) 30 = \left(\frac{1}{2}\right) (2x) \rightarrow 15 = x \text{ or } x = 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| IV. LEARNING<br>PHASES | Suggested<br>Time Frame | Learning Activities                                                                                                                                                                |
|------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TIMOLO                 | Time Traine             | d. $\frac{x+2}{3} = \frac{4x}{6} \rightarrow 3 \cdot 4x = 6(x+2) \rightarrow 12x = 6x + 12 \rightarrow 12x - 6x = 6x - 6x + 12 \rightarrow 6x = 12$                                |
|                        |                         | $\rightarrow \left(\frac{1}{6}\right) 6x = \left(\frac{1}{6}\right) 12 \rightarrow x = 2$                                                                                          |
|                        |                         | Example 3                                                                                                                                                                          |
|                        |                         | Determine the value/s of indicated quantities from the given proportions.<br>a. If $u: v=3:2$ , find $4u-3v:4u+v$ .                                                                |
|                        |                         | b. Find the ratio $a : b$ , if $2a^2 - ab - 3b^2 = 0$ where $a$ and $b \ne 0$ .<br>c. If $x : y : z = 1 : 3 : 5$ where $x, y$ and $z > 0$ , find the values of $x, y$ and $z$ when |
|                        | Difference .            | $x^2 - y^2 + z^2 = 68$ .  Solution                                                                                                                                                 |
|                        |                         | $a. \frac{u}{v} = \frac{3}{2} \rightarrow u = \frac{3v}{2}$                                                                                                                        |
| 200                    |                         | In the ratio $\frac{4u - 3v}{4u + v}$ , plug in the value of $u$ in terms of $v$ .                                                                                                 |
|                        |                         |                                                                                                                                                                                    |
|                        |                         | $\frac{4\left(\frac{3v}{2}\right) - 3v}{4\left(\frac{3v}{2}\right) + v} = \frac{6v - 3v}{6v + v} = \frac{3v}{7v} = \frac{3}{7}$                                                    |
| 4383                   | clint                   | Thus, $4u - 3v : 4u + v = 3 : 7$ .                                                                                                                                                 |
| 1333                   | -5.0                    | b. $2a^2 - ab - 3b^2 = 0$<br>(2a - 3b)(a+b) = 0                                                                                                                                    |
| 1                      |                         | 2a-3b=0 ; $a+b=02a-3b+3b=0+3b$ ; $a+b-b=0-b$                                                                                                                                       |
| -X X-                  |                         | 2a = 3b ; $a = -b$ $2a = 3b$ $a = -b$                                                                                                                                              |
| 7- 10                  |                         | $\frac{2a}{2b} = \frac{3b}{2b} \qquad ;  \frac{a}{b} = \frac{-b}{b}$ $\frac{a}{b} = \frac{3}{2} \qquad ;  \frac{a}{b} = \frac{-1}{1}$                                              |
| 1,040,040              |                         | $\frac{-}{b} = \frac{-}{2}$ Therefore, a: b = 3: 2 or -1: 1.                                                                                                                       |
|                        | R //I                   | c. Let $\frac{x}{1} = \frac{y}{3} = \frac{z}{5} = k, \ k \neq 0.$                                                                                                                  |
|                        | $\Delta II$             | Hence, $x = k$ , $y = 3k$ , and $z = 5k$ .                                                                                                                                         |
|                        | 100                     | Plug in the obtained value of $x$ , $y$ and $z$ in $x^2 - y^2 + z^2 = 68$ .<br>$(k)^2 - (3k)^2 + (5k)^2 = 68$                                                                      |
| Charles and the same   | _                       | $k^2 - 9k^2 + 25k^2 = 68$<br>$26k^2 - 9k^2 = 68$                                                                                                                                   |
|                        |                         | $17k^2 = 68$ $17k^2 = 68$                                                                                                                                                          |
| VX                     |                         | $\frac{17}{17} = \frac{17}{17}$ $k^2 = 4k^2 = 2^2 \text{ or } (-2)^2$                                                                                                              |
|                        |                         | k = 2 or -2 Disregard -2 since the $x$ , $y$ , and $z > 0$ .                                                                                                                       |
| P. D.                  | 01.35                   | So, $x = 2$ ; $y = 3k = 3(2) = 6$ ; and $z = 5k = 5(2) = 10$ .                                                                                                                     |
| C. Engagement          | 60 minutes              | Learning Task 1 Directions: Answer the following accordingly.                                                                                                                      |
|                        |                         | 1. How can you say that the enlarged piece of drawing is proportional to its                                                                                                       |
| (5)                    |                         | original size?  2. How can we relate the number of liters of fuel we put in the car tank and the                                                                                   |
|                        | 200                     | cost we will pay? If 1L of gas costs 44 pesos, how much do you think is 4.5L?  3. Four out of 18 male students and three out of 21 female students failed on one                   |
|                        |                         | of the weekly online tests. Are the ratios of male and female students who failed this test proportional? Why or why not?                                                          |
|                        |                         | Learning Task 2                                                                                                                                                                    |
|                        |                         | Directions: Solve the following.                                                                                                                                                   |
|                        |                         | 1. Use the proportion $\frac{v}{t} = \frac{9}{4}$ to complete each                                                                                                                 |
|                        |                         | proportion.  a. $\frac{v}{9} = $ b. $\frac{4}{t} = $ c. $\frac{t}{v} = $ d. $\frac{v-t}{t} = $                                                                                     |
|                        |                         | 2. Find the value of y in the following proportions.                                                                                                                               |

| IV. LEARNING<br>PHASES                                                                                          | Suggested<br>Time Frame | Learning Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                 |                         | a. $\frac{y}{21} = \frac{28}{49}$ b. $\frac{y+5}{12} = \frac{9}{4}$ c. $\frac{y+4}{6} = \frac{7y}{18}$ d. $\frac{2y-3}{3} = \frac{3y-7}{2}$<br>3. If $m:n=5:3$ , find $3m+4n:6m-2n$ .<br>4. Find the ratio $e:f$ , if $5e^2-13ef-6f^2=0$ where $e$ and $f\neq 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| D. Assimilation                                                                                                 | 20 minutes              | Directions: Answer the following accordingly.  1. How would you describe proportion?  2. Cite an example where you can apply proportion in your everyday life. Describe how you can you apply the proportion in that situation.  3. If $a:b:c=5:3:2$ where $a,b$ and $c>0$ , find the values of $a,b$ and $c$ when $a^2-b^2-c^2=108$ .                                                                                                                                                                                                                                                                                                                                                |  |
| V. ASSESSMENT (Learning Activity Sheets for Enrichment, Remediation or Assessment to be given on Weeks 3 and 6) | 20 minutes              | Directions: Choose the letter of the correct answer.  1. The following describe a proportion EXCEPT letter  a. $3:7=18:42$ b.  c.  c.  d.  2. If $\frac{m}{n} = \frac{k}{k}$ , which of the following is not true?  a. $\frac{m}{n} = \frac{k}{k}$ b. km = hn  d. $\frac{m}{n} = \frac{n}{k}$ b. km = hn  d. $\frac{m}{n} = \frac{n}{k}$ 3. Find the value of $x$ in $\frac{5x+4}{10} = \frac{3x}{5}$ .  a. $5$ b. $4$ c. $3$ d. $2$ 4. Find the ratio $x: y$ if $4x^2 - 8xy - 5y^2 = 0$ where $x$ and $y \ne 0$ .  a. $-1: 2$ or $-5: 2$ d. $1: 1$ or $-5: 4$ 5. The length and width of a rectangle whose perimeter is 60 cm are in the $3: 2$ . What is the area of the rectangle? |  |
| VI. REFLECTION                                                                                                  | 20 minutes              | <ul> <li>a. 108 sq. cm</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |

**Prepared by:** Edgar V. Tuico

Checked by: MA. FILIPINA M. DRIO

#### Personal Assessment on Learner's Level of Performance

Using the symbols below, choose one which best describes your experience in working on each given task. Draw it in the column for Level of Performance (LP). Be guided by the descriptions below.



 $\hbox{-} I\,was\,able\,to\,do/perform\,the\,task\,without\,any\,difficulty.\,The\,task\,helped\,me\,in\,understanding\,the\,target\,content/lesson.}$ 

- I was able to do/perform the task. It was quite challenging but it still helped me in understanding the target content/lesson.

- I was not able to do/perform the task. It was extremely difficult. I need additional enrichment activities to be able to do/perform this task.

| Learning Task | LP | Learning Task | LP | Learning Task | LP | Learning Task | LP |
|---------------|----|---------------|----|---------------|----|---------------|----|
| Number 1      |    | Number 3      |    | Number 5      |    | Number 7      |    |
| Number 2      |    | Number 4      |    | Number 6      |    | Number 8      |    |

| W4-7  | Learning Area | Mathematics | Grade Level | Nine |
|-------|---------------|-------------|-------------|------|
| VVO-/ | Quarter       | Third       | Date        |      |

| IV. LEARNING Suggested PHASES Time Frame |     | Learning Activities                                                                                                                                  |  |
|------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| III. CONTENT/CORE CONTENT                |     | Similar Figures and the Proof of Triangle Similarity Theorems                                                                                        |  |
|                                          |     | <ul><li>1.3 AA Similarity Theorem</li><li>1.4 Right Triangle Similarity Theorem</li><li>1.5 Special Right Triangle Theorem (M9GE-IIIg-h-1)</li></ul> |  |
|                                          |     | 1.2 SSS Similarity Theorem                                                                                                                           |  |
| COMIL LIENCIES (MIEL                     | Coj | 1.1 SAS Similarity Theorem                                                                                                                           |  |
| COMPETENCIES (MEL                        |     | Lesson 2: Proves the conditions for similarity of triangles.                                                                                         |  |
| II. MOST ESSENTIAL LEARNING              |     | Lesson 1: Illustrates similarity of figures (M9GE-IIIg-1)                                                                                            |  |
| I. LESSON TITLE                          |     | Similarity and Triangle Similarity Theorem                                                                                                           |  |

|                        |                         | 1.4 Right Triangle Similarity Theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| III CONTENT/CORE CO    | AITFAIT                 | 1.5 Special Right Triangle Theorem (M9GE-IIIg-h-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| III. CONTENT/CORE CO   |                         | Similar Figures and the Proof of Triangle Similarity Theorems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IV. LEARNING<br>PHASES | Suggested<br>Time Frame | Learning Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A. Introduction        | 15 minutes              | a.  C.  The small and big triangles  b.  d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| B. Development         | 180 minutes             | How can you say that the pair of figures or image are similar?<br>Similarity  In this lesson, you will learn that there are triangles and other polygons that have the same shape but do not necessarily have the same size. The illustrative example below will give you an idea on how we can say that the given figures are similar. $ \begin{array}{cccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                         | Another thing is that the ratios of the measure of the lengths of their corresponding sides are equal. Thus, in EFGH to ABCD, $\frac{EF}{AB} = \frac{3}{6} = \frac{FG}{BC} = \frac{5}{10} = \frac{GH}{CD} = \frac{6}{12} = \frac{EH}{AD} = \frac{4}{8} = \frac{1}{2}$ . Here, the scale factor $k$ is $^1/_2$ . We could also turn it around as ABCD to EFGH where $\frac{AB}{EF} = \frac{6}{3} = \frac{BC}{FG} = \frac{10}{5} = \frac{CD}{GH} = \frac{12}{6} = \frac{AD}{EH} = \frac{8}{4} = \frac{2}{1} = 2$ . Now here, the scale factor $k$ is 2.  Based on the illustrative example, two polygons are similar (the symbol is $\sim$ ) if their vertices can be paired so that corresponding angles are congruent and the lengths of their corresponding sides are proportional.  To indicate that trapezoid ABCD is similar to trapezoid EFGH, you can write ABCD $\sim$ EFGH. If you use this notation, write the corresponding vertices on the same order. |

|                                         | uggested             | Learning                                                                                                                           | Activities                                                                       |
|-----------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| PHASES Tin                              | ne Frame             |                                                                                                                                    |                                                                                  |
|                                         |                      | Example:                                                                                                                           |                                                                                  |
|                                         |                      |                                                                                                                                    |                                                                                  |
|                                         |                      | <u>C</u>                                                                                                                           | 1                                                                                |
|                                         |                      | B D G                                                                                                                              |                                                                                  |
|                                         |                      | 5 3 t                                                                                                                              | 6                                                                                |
|                                         |                      | A E F                                                                                                                              | J                                                                                |
|                                         | Charles and a second | Complete the following statement.                                                                                                  |                                                                                  |
|                                         |                      | a. If ABCDE ~ FGHIJ, then                                                                                                          |                                                                                  |
|                                         |                      | $\angle B \cong \underline{\hspace{1cm}} ; \ \angle J \cong \underline{\hspace{1cm}} ; \ \frac{CD}{HI} = \underline{\hspace{1cm}}$ | ; t=                                                                             |
|                                         |                      | b. The scale factor of FGHIJ $\sim$ ABC                                                                                            |                                                                                  |
|                                         |                      |                                                                                                                                    |                                                                                  |
|                                         |                      | Solution                                                                                                                           | 7 2 1                                                                            |
|                                         |                      | a. $\angle B \cong \angle G$ ; $\angle J \cong \angle E$ ; $\frac{CD}{HI} = \frac{DE}{IJ}$                                         | $\frac{1}{1} = \frac{3}{6} = \frac{1}{2}$ ;                                      |
|                                         |                      | $\frac{AB}{FG} = \frac{DE}{IJ} \to \frac{5}{t} = \frac{3}{6} \to 3t = 30 \to \left(\frac{1}{3}\right)$                             | $\frac{1}{2t-(\frac{1}{2})}$ 20 $t=10$                                           |
|                                         | 45.00                | $\frac{FG}{FG} = \frac{IJ}{IJ} \rightarrow \frac{1}{t} = \frac{1}{6} \rightarrow 3t = 30 \rightarrow \frac{1}{3}$                  | $\int St = \left(\frac{1}{3}\right) SO \to t = 10$                               |
|                                         | / 74                 | b. The scale factor of FGHIJ ~ ABC                                                                                                 | DE IS 2.                                                                         |
|                                         |                      | Triangle Similarity Theorems                                                                                                       |                                                                                  |
| - A / F                                 |                      |                                                                                                                                    | ocus on the similarity of two triangles. We                                      |
| 7- 120                                  |                      | will apply our prior knowledge on the de<br>the postulates and theorems in proving                                                 | efinition of similar polygons to understand                                      |
| 27780 353                               |                      |                                                                                                                                    | s using the definition of similarity, we must                                    |
| and the same                            |                      | establish that the three corresponding of                                                                                          | angles are congruent and that the three                                          |
|                                         | - 17                 | ratios of the lengths of corresponding sid                                                                                         |                                                                                  |
| 100                                     | V // II              | conclude that the triangles are similar.                                                                                           | wo triangles are congruent, then we can  Ve call this as AAA Similarity Theorem. |
|                                         | W. II                |                                                                                                                                    | N V                                                                              |
|                                         |                      | <b>Illustration</b> Given: $\triangle MNP \leftrightarrow \triangle XYZ$ , $\angle M \cong \angle X$ , $\angle N$                  | ~ ^ 1                                                                            |
| 13011                                   |                      | $\triangle Y$ and $\triangle P \cong \angle Z$                                                                                     | = /\                                                                             |
|                                         |                      | <i>Prove:</i> $\triangle$ MNP $\sim \triangle$ XYZ                                                                                 | / \ / \                                                                          |
| ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |                      | Proof:                                                                                                                             | A/B X/Z                                                                          |
| No.                                     |                      | F TOOI.                                                                                                                            | MP                                                                               |
| VI 10 - 7                               | TO 3                 | Statement                                                                                                                          | Reason                                                                           |
| 77.70                                   |                      | Construct $\overline{AB}$ , such that $\overline{AN} \cong \overline{XY}$ ;                                                        |                                                                                  |
|                                         |                      | $\overline{NB} \cong \overline{YZ}$ .                                                                                              | By construction                                                                  |
|                                         |                      | $\angle N \cong \angle Y$                                                                                                          | Given                                                                            |
|                                         |                      | △ANB ≅ △XYZ                                                                                                                        | SAS Congruence Theorem  Corresponding parts of congruent                         |
|                                         |                      | $\angle NAB \cong \angle X, \angle NBA \cong \angle Z$                                                                             | triangle are congruent. (CPCTC)                                                  |
|                                         |                      | $\angle NAB \cong \angle M, \angle NBA \cong \angle P$                                                                             | Transitive Property                                                              |
|                                         |                      | m∠MNP = m∠ANB                                                                                                                      | Reflexive Property                                                               |
|                                         |                      | ∠MNP ≅ ∠ANB                                                                                                                        | Definition of congruent angles  If two lines are cut by a transversal,           |
|                                         |                      | ADII MD                                                                                                                            | the corresponding angles are                                                     |
|                                         |                      | $\overline{AB}$ II $\overline{MP}$                                                                                                 | congruent and the two lines are                                                  |
|                                         |                      | $\frac{NA}{NA} = \frac{NB}{NB}$                                                                                                    | parallel.                                                                        |
|                                         |                      | $\frac{NN}{NM} = \frac{ND}{NP}$                                                                                                    | Basic Proportionality Theorem                                                    |
|                                         |                      | NA = YX ; NB = YZ                                                                                                                  | Congruent segments have equal measures.                                          |
|                                         |                      | ΔANB ~ ΔMNP                                                                                                                        | Definition of similar triangles                                                  |
| I I                                     |                      | ∴ △MNP ~ △XYZ                                                                                                                      | Transitive Property                                                              |

| IV. LEARNING<br>PHASES | Suggested<br>Time Frame | Learning Activities                                                                                                                                     |                                                                                     |  |
|------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
|                        |                         | Here are the other Triangle Similarity The  1.1 <u>SAS Similarity Theorem</u>                                                                           | eorems.                                                                             |  |
|                        |                         |                                                                                                                                                         | ngruent to an angle of another triangle cluding these angles are proportional,      |  |
|                        |                         | Illustration                                                                                                                                            |                                                                                     |  |
|                        |                         | Given: $\triangle$ XYZ $\leftrightarrow$ $\triangle$ ABC, $\angle$ Y $\cong$ $\angle$ B and $\frac{1}{B}$ Prove: $\triangle$ XYZ $\sim$ $\triangle$ ABC | $\frac{YX}{BA} = \frac{YZ}{BC}$                                                     |  |
|                        |                         | X $Z$ $M$                                                                                                                                               |                                                                                     |  |
| N. S. S.               | 3.0                     | Proof:                                                                                                                                                  | N C                                                                                 |  |
|                        | / -                     | Statements                                                                                                                                              | Reasons                                                                             |  |
| - A ' N-               |                         | Draw $\overline{MN}$ such that $\overline{BM} \cong \overline{YX}$ and $\overline{BN} \cong \overline{YZ}$ .                                            | By construction                                                                     |  |
| 130                    |                         | $BN \cong YZ$ .<br>$\angle Y \cong \angle B$                                                                                                            | Given                                                                               |  |
| 15%                    |                         | $\triangle XYZ \cong \triangle MBN$                                                                                                                     | SAS Congruence Theorem                                                              |  |
|                        |                         | $\overline{BM} \cong \overline{YX}$ and $\overline{BN} \cong \overline{YZ}$                                                                             | CPCTC                                                                               |  |
|                        | R //                    | $\frac{YX}{BA} = \frac{YZ}{BC}$                                                                                                                         | Given                                                                               |  |
| 70.75                  | 11//1                   | $\frac{BM}{BA} = \frac{BN}{BC}$                                                                                                                         | By substitution                                                                     |  |
|                        | L W. II                 | MN II AC                                                                                                                                                | Converse of Basic Proportionality Theorem                                           |  |
|                        |                         | ∠BMN ≅ ∠BAC and ∠BNM ≅ ∠BCA                                                                                                                             | If two parallel lines are cut by a transversal, corresponding angles are congruent. |  |
| V->\                   |                         | ∠B ≅∠B                                                                                                                                                  | Reflexive Property                                                                  |  |
|                        |                         | △ABC ~ △MBN ∴ △XYZ ~ △ABC                                                                                                                               | AAA Similarity Theorem Transitive Property                                          |  |
| W. T.                  | 07.183                  | Example 1                                                                                                                                               | A A                                                                                 |  |
|                        |                         | Show that the triangles ABC and ADE in the figure on the right are similar.                                                                             | D 6 2 E                                                                             |  |
|                        |                         | 39"                                                                                                                                                     | 15 5                                                                                |  |
|                        |                         | Solution  • ∠BAC ≅ ∠DAE by Reflexive                                                                                                                    |                                                                                     |  |
|                        | 250                     | Property                                                                                                                                                | B Z                                                                                 |  |
|                        |                         |                                                                                                                                                         | gths of the sides are given, calculate the $AB$ 21 7 $AC$ 7                         |  |
|                        |                         | ratios of the corresponding side                                                                                                                        | es. $\frac{1}{AD} = \frac{1}{6} = \frac{1}{2}$ and $\frac{1}{AE} = \frac{1}{2}$     |  |
|                        |                         |                                                                                                                                                         | g side of the two triangles are proportional ongruent, therefore, ∠ABC ~ ∠ADE.      |  |
|                        |                         | Example 2                                                                                                                                               | В                                                                                   |  |
|                        |                         | Given $\frac{AE}{DE} = \frac{BE}{CE}$ , prove that $\triangle$ BEA                                                                                      |                                                                                     |  |
|                        |                         | DE CE                                                                                                                                                   | , n                                                                                 |  |
|                        |                         |                                                                                                                                                         | AZE E                                                                               |  |
|                        |                         |                                                                                                                                                         | C                                                                                   |  |

| IV. LEARNING PHASES | Suggested<br>Time Frame | Learning Activities                                                                                    |                                                                                                                                                                                   |  |
|---------------------|-------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                     |                         | Solution<br>Proof:                                                                                     |                                                                                                                                                                                   |  |
|                     |                         | Statements                                                                                             | Reasons                                                                                                                                                                           |  |
|                     |                         | $\frac{AE}{DE} = \frac{BE}{CE}$                                                                        | Given or by hypothesis                                                                                                                                                            |  |
|                     |                         | ∠BEA and ∠CED are vertical angles.                                                                     | Definition of vertical angles                                                                                                                                                     |  |
|                     |                         | ∠BEA ≅ ∠CED                                                                                            | Vertical angles are congruent.                                                                                                                                                    |  |
|                     | (Felh Donner,           | ΔBEA ~ ΔCED                                                                                            | SAS Similarity Theorem                                                                                                                                                            |  |
|                     |                         | 1.2 <u>SSS Similarity Theorem</u> If the three corresponding sides the two triangles are similar.      | of two triangles are proportional, then  R  E                                                                                                                                     |  |
|                     |                         | Illustration  AR RM AM                                                                                 |                                                                                                                                                                                   |  |
|                     |                         | Given: $\triangle ARM \leftrightarrow \triangle LEG$ , $\frac{AR}{LE} = \frac{RM}{EG} = \frac{AM}{LG}$ |                                                                                                                                                                                   |  |
| 1000                | 59.77                   | Prove: ΔARM ~ ΔLEG                                                                                     | $A \longrightarrow M X / Y$                                                                                                                                                       |  |
| 1                   | 73                      |                                                                                                        | $_{ m L}$                                                                                                                                                                         |  |
| - A . X             |                         | Proof:                                                                                                 |                                                                                                                                                                                   |  |
| 7-130               |                         | Statements                                                                                             | Reasons                                                                                                                                                                           |  |
| 7 1990 30           |                         | Draw $\overline{XY}$ such that $\overline{XE} \cong AR$ and $\overline{EY} \cong \overline{RM}$ .      | By construction                                                                                                                                                                   |  |
|                     | R //                    | XE = AR and EY = RM                                                                                    | Congruent segments have equal measures.                                                                                                                                           |  |
|                     | M                       | $\frac{AR}{LE} = \frac{RM}{EG} = \frac{AM}{LG}$                                                        | Given                                                                                                                                                                             |  |
|                     | 1.00                    | $\frac{XE}{LE} = \frac{EY}{EG}$                                                                        | By substitution                                                                                                                                                                   |  |
|                     |                         | ∠E ≅ ∠E                                                                                                | Reflexive Property                                                                                                                                                                |  |
| -\                  |                         | △LEG ~ △XEY                                                                                            | SAS Similarity Theorem                                                                                                                                                            |  |
|                     |                         | $\frac{XY}{LG} = \frac{XE}{LE}$                                                                        | Definition of similar triangles                                                                                                                                                   |  |
| (O)                 | 1                       | $\frac{XY}{LG} = \frac{AR}{LE}$                                                                        | By substitution (XE = AR)                                                                                                                                                         |  |
| WITH                | 17 T F .                | $XY = LG\left(\frac{AR}{LE}\right)$ ; AM = $LG\left(\frac{AR}{LE}\right)$                              | Multiplication Property                                                                                                                                                           |  |
|                     |                         | XY = AM                                                                                                | Transitive Property                                                                                                                                                               |  |
|                     |                         | △ARM ≅ △XEY ∴ △ARM ~ △LEG                                                                              | SSS Congruece Theorem Transitive Property                                                                                                                                         |  |
|                     |                         | Example 1 Show that the triangles MNP and G                                                            |                                                                                                                                                                                   |  |
|                     |                         | 10 M P                                                                                                 | $Q = \frac{5}{4}$ $R$                                                                                                                                                             |  |
|                     |                         | <ul> <li>Since the measures of the lengt ratios of the corresponding side</li> </ul>                   | ths of the sides are given, calculate the s. $\frac{MN}{QR} = \frac{10}{5} = \frac{2}{1} = 2$ ; $\frac{MP}{QS} = \frac{8}{4} = 2$ ; $\frac{NP}{RS} = \frac{6}{3} = \frac{10}{10}$ |  |
|                     |                         | <ul> <li>The ratios of the lengths of the t<br/>triangles are equal, thus ΔMNP</li> </ul>              | hree corresponding sides of the two $\sim \Delta QRS$ .                                                                                                                           |  |

| IV. LEARNING<br>PHASES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Suggested<br>Time Frame | Learnir                                                                                                                                                                           | ng Activities                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FRASES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nine rrame              | Example 2  a. Given: ΔCAR and ΔPET. State                                                                                                                                         | the proportions that must be true if $\triangle$ CAR with the proportionality of the three of triangles, $\frac{DO}{KE} = \frac{ON}{EY} = \frac{DN}{KY}$ , name the two tree congruent respectively to two angles of angles are Gimilar. |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | Proof:                                                                                                                                                                            | A                                                                                                                                                                                                                                        |
| 7- 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                       | Statements $\angle A \cong \angle O$ ; $\angle C \cong \angle D$                                                                                                                  | Reasons Given                                                                                                                                                                                                                            |
| 7. 17.00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | $m \angle A \cong m \angle O$ ; $m \angle C \cong m \angle D$                                                                                                                     | Definition of Congruent Angles                                                                                                                                                                                                           |
| and the same of th |                         | $m\angle A + m\angle C = m\angle O \cong m\angle D$                                                                                                                               | Addition Property                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100. 170                | $m\angle A + m\angle C + m\angle T = 180$                                                                                                                                         | The sum of the measures of the                                                                                                                                                                                                           |
| 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.71                   | $m\angle O + m\angle D + m\angle G = 180$                                                                                                                                         | interior angles of a triangle is 180.                                                                                                                                                                                                    |
| سا ان                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IVI                     | mzA + mzC + mzT= mzO + mzD + mzG                                                                                                                                                  | Transitive Property                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | m∠T = m∠G                                                                                                                                                                         | Addition Property                                                                                                                                                                                                                        |
| Charles and the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                       | ∠T = ∠G                                                                                                                                                                           | Definition of congruent angles                                                                                                                                                                                                           |
| · 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                       | ∴∆CAT ~ ∆DOG                                                                                                                                                                      | AAA Similarity Theorem                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OALS                    | Example 1 Given: $\overline{UV} \parallel \overline{BC}$ Prove: $\triangle ABC \sim \triangle AUV$ by AA Similarity Theorem Solution                                              | U V C                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Proof:                                                                                                                                                                            | _                                                                                                                                                                                                                                        |
| 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | Statements Statements                                                                                                                                                             | Reasons                                                                                                                                                                                                                                  |
| Maria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | <u>ŪV</u> ∥ <u>BC</u>                                                                                                                                                             | Given                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 250                     | ∠AUV ≅ ∠ABC                                                                                                                                                                       | If two parallel lines are cut by a transversal, corresponding angles are congruent.                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | $m \angle BAC \cong m \angle UAV$                                                                                                                                                 | Reflexive Property                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ∠BAC ≅ ∠UAV                                                                                                                                                                       | Definition of congruent angles                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ∴ △ABC ~ △AUV                                                                                                                                                                     | AA Similarity Theorem                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Example 2 Given: $\overline{AB} \parallel DC$ . Name at least pairs of corresponding angles that congruent to prove that $\triangle AOB \sim \triangle DC$ AA Similarity Theorem. | t two A 0                                                                                                                                                                                                                                |

| IV. LEARNING<br>PHASES | Suggested<br>Time Frame | Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g Activities                                                                                                   |  |  |
|------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
|                        |                         | <ul> <li>Solution <ul> <li>If AB and DC are parallel and cut by transversal AD, then the conditernate interior angles are ∠BAO and ∠CDO.</li> <li>If AB and DC are parallel and cut by transversal BC, then the conditernate interior angles are ∠ABO and ∠DCO.</li> <li>Vertical angles are congruent, hence ∠AOB and ∠DOC are cordital.</li> <li>Right Triangle Similarity Theorem In a right triangle, the altitude to the hypotenuse divides the trians similar triangles, each similar to the original triangle.</li> </ul> </li> <li>Illustration <ul> <li>Given: ΔGRA is a right triangle with ∠GRA as right angle, GA as the hypotenuse and RY is the altitude to the hypotenuse of ΔGRA.</li> <li>Prove: ΔGRA ~ ΔRYG ~ ΔRYA</li> </ul> </li> <li>Prove: ΔGRA ~ ΔRYG ~ ΔRYA</li> </ul> |                                                                                                                |  |  |
|                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                          |  |  |
|                        | 1                       | Statements GRA is a right triangle with ∠GRA as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reasons                                                                                                        |  |  |
| 1                      | 3.0                     | right angle, $\overline{GA}$ as the hypotenuse and $\overline{RY}$ as the altitude to the hypotenuse of $\triangle GRA$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Given                                                                                                          |  |  |
|                        |                         | $\overline{RY} \perp \overline{GA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Definition of Altitude                                                                                         |  |  |
| 4 12                   |                         | ∠RYG and ∠RYA are right angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Definition of Perpendicular Lines                                                                              |  |  |
| 1 100                  |                         | ∠RYG ≅ ∠RYA ≅ ∠GRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Definition of Right Angles                                                                                     |  |  |
| 1- 45                  |                         | ∠YGR ≅ ∠RGA; ∠YAR ≅ ∠RAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reflexive Property                                                                                             |  |  |
|                        |                         | ∴ △GRA ~ △RYG ~ △RYA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AA Similarity Theorem                                                                                          |  |  |
|                        | 0.110                   | triangles.  Solution  • $\triangle$ ABC, $\triangle$ ACH and $\triangle$ CBH  • $\frac{AB}{AC} = \frac{BC}{CH} = \frac{AC}{AH}$ ; $\frac{AC}{CB} = \frac{CH}{BH} = \frac{AH}{CH}$ ; $\frac{AC}{CH} = \frac{AH}{CH} = \frac{AH}{CH}$ 1.5 Special Right Triangle Theorem  We have two theorems under the sp  1.5.1 The Isosceles Right Triangle Theorem  • The length of the hypoter                                                                                                                                                                                                                                                                                                                                                                                                             | ecial triangle:  ngle Theorem or the 45°-45°-90° Right  nuse of a 45°-45°-90° triangle is $\sqrt{2}$ times the |  |  |
|                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ch leg is $\frac{\sqrt{2}}{2}$ times the hypotenuse.                                                           |  |  |
|                        |                         | Illustration Given:△ABC is a 45°-45°-90° trians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ale.                                                                                                           |  |  |
|                        |                         | Prove: $c = a\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b 45° c c 45° B                                                                                                |  |  |
|                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Using the Pythagorean Theorem follows that $c^2 = 2a^2$ , $c = \sqrt{2a^2}$ , and $c = a\sqrt{2}$ .            |  |  |

| IV. LEARNING<br>PHASES | Suggested<br>Time Frame | Learning Activities                                                                                                                                                                                                                                                                                                                                  |
|------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                         | 1.5.2 The 30°-60°-90° Right Triangle Theorem  • In a 30°-60°-90° triangle, the length of the hypotenuse is 2 times the length of the shorter leg and the length of the longer leg is $\sqrt{3}$ times the length of the shorter leg.On the other hand, the shorter leg is $\frac{1}{2}$ the hypotenuse or $\frac{\sqrt{3}}{3}$ times the longer leg. |
|                        |                         | Illustration                                                                                                                                                                                                                                                                                                                                         |
|                        |                         | Given: $\triangle$ ABC is a 30°-60°-90° triangle.                                                                                                                                                                                                                                                                                                    |
|                        |                         | Prove:c = 2a and b = $a\sqrt{3}$                                                                                                                                                                                                                                                                                                                     |
| 4                      |                         | P 60°                                                                                                                                                                                                                                                                                                                                                |
|                        |                         | Proof:  a C a                                                                                                                                                                                                                                                                                                                                        |
| 30.3                   | -                       | Draw $\triangle$ ADC so that $\triangle$ ABC $\cong$ $\triangle$ ADC. m $\angle$ BAC + m $\angle$ DAC = m $\angle$ BAD = 60°. m $\angle$ B = m $\angle$ D = m $\angle$ BAD = 60°. This shows that $\triangle$ ABDis equiangular, and hence, equilateral. It follows that c = 2a. Using Pythagorean Theorem, $a^2 + b^2 = (2a)^2 = 4a^2$ .            |
| C. Engagement          | 60 minutes              | When simplified, $b^2 = 3a^2$ or $b = a\sqrt{3}$ .<br><b>Learning Task</b>                                                                                                                                                                                                                                                                           |
|                        | 1                       | Directions: Answer each of the following.                                                                                                                                                                                                                                                                                                            |
|                        |                         | How do you find the scale factor of similar polygons?                                                                                                                                                                                                                                                                                                |
| 130                    |                         | 2. Illustrate or draw: △ART ~△PEN. Then, complete each statement: ∠A ≅;                                                                                                                                                                                                                                                                              |
| 2 1000 30              |                         | $\angle R \cong \underline{\hspace{1cm}}; \angle T \cong \underline{\hspace{1cm}}; \frac{AR}{PE} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$                                                                                                                                                                                              |
|                        | R /1                    | 3. Complete the following statement.                                                                                                                                                                                                                                                                                                                 |
|                        |                         | R G Q V X U                                                                                                                                                                                                                                                                                                                                          |
| NO.                    | 1                       | a. If PQRS~ TUVW, then $\angle R \cong \underline{\hspace{1cm}} ; \angle Q \cong \underline{\hspace{1cm}} ; \frac{PS}{TW} = \underline{\hspace{1cm}} ; x = \underline{\hspace{1cm}}$                                                                                                                                                                 |
| WITH                   | 07 N P 3                | b. The scale factor of PQRS $\sim$ TUVW is                                                                                                                                                                                                                                                                                                           |
|                        |                         | 4. In the given figure, $\triangle$ ADE $\sim$ $\triangle$ ABC. Which triangle similarity theorem justifies this similarity? Show proof toyour answer.                                                                                                                                                                                               |
| ξ)                     |                         | B                                                                                                                                                                                                                                                                                                                                                    |
|                        |                         | A C                                                                                                                                                                                                                                                                                                                                                  |
|                        |                         | 5. a. Using the figure below, name the three similar triangles. b. Write the proportions that exist among corresponding parts of similar triangles.                                                                                                                                                                                                  |
|                        |                         | C B U                                                                                                                                                                                                                                                                                                                                                |

| IV. LEARNING<br>PHASES                                                                                     | Suggested<br>Time Frame | Learnii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng Activities                                          |  |
|------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| D. Assimilation                                                                                            | 60 minutes              | Directions: Answer each of the following accordingly.  1. How do you find similar polygons?  2. Are all squares similar? Explain your answer.  3. Using the figure on the right, are the two triangles similar?  If so, state the triangle similarity theorem and justify your answer.  4. a. Given: $\triangle$ CUP and $\triangle$ JAR. State the proportions that must be true if $\triangle$ CUP $\sim$ $\triangle$ JAR by SSS Similarity.  b. Given the statement that shows the proportionality of the three corresponding sides of the two triangles, $\frac{TR}{OU} = \frac{RY}{UT} = \frac{TY}{OT}$ , name the two similar triangles. |                                                        |  |
|                                                                                                            |                         | 5. How do you solve a 30°-60°-90° right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |  |
| (Learning Activity Sheets for<br>Enrichment, Remediation<br>or Assessment to be given<br>on Weeks 3 and 6) |                         | Directions: Answer each of the following accordingly.  1. Complete each statement.  a. If for two polygons corresponding angles are and corresponding sides a, then the polygons are similar.  b. If the scale factor between two similar triangles is one, then the triang are  c. To find the length of the hypotenuse of a 45°-45°-90° triangle, multiply the length of one of the legs by  2. Fill in the statements and reasons that are left blank in proving the proportional of the given triangles.  Given: ΔABC is isosceles with base BC. DE 1 BC, FG 1 BC.  Prove: DE FG = BE CG                                                   |                                                        |  |
|                                                                                                            | 0.500.00                | Statements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reasons                                                |  |
| Charles                                                                                                    |                         | 1. AABC is isosceles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.                                                     |  |
|                                                                                                            |                         | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2. Base angles of an isosceles triangle are congruent. |  |
| (A) (T)                                                                                                    |                         | 3. $\overline{DE} \perp \overline{BC}$ , $\overline{FG} \perp \overline{BC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.                                                     |  |
| V(I)                                                                                                       |                         | 4. ∠BED and ∠CGF are right angles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.                                                     |  |
|                                                                                                            |                         | 5. ΔBED and ΔCGF are right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.                                                     |  |
| N V J A                                                                                                    | 01.1.50                 | triangles. 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6. Right Triangle Similarity Theorem                   |  |
|                                                                                                            | Section in the last     | _ DE BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.                                                     |  |
|                                                                                                            |                         | $7. \therefore \frac{1}{FG} = \frac{1}{CG}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                  |  |
| SQ                                                                                                         |                         | 3. The following pairs of triangles are similar. State a theorem that supports you answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |  |
|                                                                                                            |                         | a. b. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C. 8 10 12                                             |  |
|                                                                                                            |                         | 4. Given: p    q  Which of the following is not necessari  a. AB: AC = AE: AD  b. ∠ACD ≅ ∠ABE  c. AB: BC = AE: ED  d. AB: ED = AE = BC  e. m∠BED + m∠CDA = 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ly true?                                               |  |

| IV. LEARNING<br>PHASES | Suggested<br>Time Frame | Learning Activities                                                                                                                                                                                                                                                                               |
|------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VI. REFLECTION         | 20 minutes              | <ul> <li>The learners communicate the explanation of their personal assessment as indicated in the Learner's Assessment Card.</li> <li>The learners will write their personal insights about the lesson in their notebook using the prompts below: <ul> <li>I understand that</li></ul></li></ul> |

 Prepared by:
 Edgar V. Tuico

 Checked by:
 MA. FILIPINA M. DRIO

#### Personal Assessment on Learner's Level of Performance

Using the symbols below, choose one which best describes your experience in working on each given task. Draw it in the column for Level of Performance (LP). Be guided by the descriptions below.

✨

- $\hbox{-}\ I\,was\,able\,to\,do/perform\,the\,task\,without\,any\,difficulty.\,The\,task\,helped\,me\,in\,understanding\,the\,target\,content/lesson.}$
- I was able to do/perform the task. It was quite challenging but it still helped me in understanding the target content/lesson.
- I was not able to do/perform the task. It was extremely difficult. I need additional enrichment activities to be able to do/perform this task.

| Learning Task | Ъ | Learning Task | LP | Learning Task | Ŀ | Learning Task | LP |
|---------------|---|---------------|----|---------------|---|---------------|----|
| Number 1      |   | Number 3      |    | Number 5      |   | Number 7      |    |
| Number 2      |   | Number 4      |    | Number 6      |   | Number 8      |    |



| \A/O      | Learning Area | Mathematics | Grade Level | Nine |
|-----------|---------------|-------------|-------------|------|
| <b>W8</b> | Quarter       | Third       | Date        |      |

| I. LESSON TITLE             | The Application of Similar Triangles Theorems and Proof of Pythagorean Theorem, |
|-----------------------------|---------------------------------------------------------------------------------|
|                             | and Solving Related Problems.                                                   |
| II. MOST ESSENTIAL LEARNING | Lesson 1: Applies the theorems to show that given triangles are similar (M9GE-  |
| COMPETENCIES (MELCs)        | IIIi-1)                                                                         |
|                             | Lesson 2: Proves the Pythagorean Theorem (M9GE-IIII-2)                          |
|                             | Lesson 3: Solves problems that involve triangle similarity and right triangles  |
|                             | (M9GE-IIIj-1)                                                                   |
| III. CONTENT/CORE CONTENT   | Applying the Similar Triangles Theorems and the Proof of Pythagorean Theorem    |
|                             | in Solving Related Problems.                                                    |

| .S)                     | Lesson 2: Proves the Pythagorean Theorem (M9GE-IIII-2) Lesson 3: Solves problems that involve triangle similarity and right triangles (M9GE-IIIJ-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NTENT                   | Applying the Similar Triangles Theorems and the Proof of Pythagorean Theorem in Solving Related Problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Suggested<br>Time Frame | Learning Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 10 minutes              | By observing the photo of Casa San Pablo, can you identify some geometric figures? Can you identify figures with the same shape but different in sizes?  The concept of similarity has a wide range of applications such as in engineering, architecture, surveying, visual arts like painting, photography, and many others.  In photography, when a photograph is taken, the image formed on the digital sensor is similar to the object being photographed. The illustration below will explain to us how similar triangles are being formed. This will also give us an idea on how we can apply the triangle similarity theorems in solving real-life mathematical problems that are related to this lesson.  Here, ΔΑCB ≅ ΔΕCD. |  |
|                         | Suggested<br>Time Frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

| IV. LEARNING<br>PHASES | Suggested<br>Time Frame | e Learning Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |  |  |  |  |
|------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|
| B. Development         | 80 minutes              | Follow these examples on how                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to apply similar triangle theorems.  |  |  |  |  |
|                        |                         | Application of similar triangle the 1. Given $\Delta BRY \sim \Delta ANT$ . What is the second state of the second stat |                                      |  |  |  |  |
|                        |                         | a. Solving for $\overline{BR}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |  |  |  |  |
|                        |                         | $\frac{\overline{NT}}{\overline{RY}} = \frac{\overline{AN}}{\overline{BR}}$ Formula for Proportionality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |  |  |  |  |
|                        | Etter                   | $\Box$ 30 BR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bstitution                           |  |  |  |  |
|                        |                         | $\overline{BR} = \frac{15(30)}{10}$ M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aultiplication Property of Equality  |  |  |  |  |
|                        |                         | $\overline{BR} = 45$ Mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ultiplication and Division Property  |  |  |  |  |
|                        | _                       | b. Solving for $\overline{BY}$ $\overline{NT}  \overline{AT}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |  |  |  |  |
|                        | 01.7                    | $\frac{\overline{RY}}{\overline{RY}} = \frac{\overline{RY}}{\overline{BY}} \qquad \text{Fo}$ 10 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rmula for Proportionality            |  |  |  |  |
|                        |                         | $\frac{10}{30} = \frac{13}{\overline{BY}} \qquad \text{SU}$ $18(30)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bstitution                           |  |  |  |  |
|                        |                         | $BY = \frac{10}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ultiplication Property of Equality   |  |  |  |  |
|                        |                         | $\overline{BY} = 54$ Multiplication and Division Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |  |  |  |  |
|                        | VI                      | Bisector Theorem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |  |  |  |  |
| 1                      |                         | A D E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |  |  |  |  |
|                        |                         | a. Solving for set 1 value of $\overline{HE}$ ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\overline{AD}$                      |  |  |  |  |
|                        | -                       | $\overline{AD} + \overline{DE} = \overline{AE}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Segment Addition Postulate           |  |  |  |  |
|                        | 07 7 7 5                | $\overline{AD} + 25 = 40$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Substitution                         |  |  |  |  |
|                        |                         | $\overline{AD} + 25 - 25 = 40 - 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Addition Property of Equality        |  |  |  |  |
|                        |                         | $\overline{AD} = 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Subtraction                          |  |  |  |  |
|                        |                         | $\frac{\overline{AH}}{\overline{AD}} = \frac{\overline{HE}}{\overline{DE}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Triangle Bisector Theorem            |  |  |  |  |
|                        |                         | $\frac{18}{15} = \frac{\overline{HE}}{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Substitution                         |  |  |  |  |
|                        |                         | $\overline{HE} = \frac{18(25)}{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Multiplication Property of Equality  |  |  |  |  |
|                        |                         | $\overline{HE} = 30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Multiplication and Division Property |  |  |  |  |
|                        |                         | b. Solving for set 3 values of $\overline{HE}$ c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and $\overline{DE}$                  |  |  |  |  |
|                        |                         | $\frac{\overline{AH}}{\overline{AD}} = \frac{\overline{HE}}{\overline{DE}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Triangle Bisector Theorem            |  |  |  |  |
|                        |                         | $\frac{8}{\frac{9}{2}} = \frac{y-2}{\frac{y}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Substitution                         |  |  |  |  |

| IV. LEARNING<br>PHASES | Suggested<br>Time Frame |                                                                                                                         | Learning Activities                            |                                                  |       |            |            |          |              |     |
|------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|-------|------------|------------|----------|--------------|-----|
|                        |                         | $8(\frac{y}{2}) = \frac{9}{2}(y-2)$                                                                                     | ٨                                              | Multipl                                          | cat   | ion Prop   | perty of I | =qualit  | y            |     |
|                        |                         | 8y = 9(y-2)                                                                                                             |                                                | laitluN                                          | y ba  | oth sides  | by two     |          |              | -   |
|                        |                         | 8y = 9y - 18                                                                                                            |                                                | Multiply both sides by two Distributive Property |       |            |            |          |              |     |
|                        |                         | 8y - 8y + 18 = 9y - 8y - 18 +                                                                                           | 18 A                                           | Additic                                          | n P   | roperty    | of Equa    | lity     |              |     |
|                        |                         | <i>y</i> = 18                                                                                                           | A                                              | Additic                                          | n a   | nd Subt    | raction    | Proper   | ty           |     |
|                        |                         | $\overline{HE} = (18) - 2$                                                                                              | S                                              | Substitu                                         | utioi | n          |            |          |              |     |
|                        |                         | $\overline{HE} = 16$                                                                                                    | Subtraction Property                           |                                                  |       |            |            |          |              |     |
|                        |                         | $\overline{DE} = \frac{(18)}{2}$ Substitution                                                                           |                                                |                                                  |       |            |            |          |              |     |
|                        |                         | $\overline{DE} = 9$                                                                                                     |                                                |                                                  |       | perty      |            |          |              |     |
|                        |                         | 3. Given: $\overline{DL}//\overline{KM}$ . Complet Proportionality Theorem.                                             | e the                                          | e foll                                           | owir  | ng tab     | le belo    | w usi    | ng Trianç    | gle |
|                        | -                       | Set $\overline{AD}$ $\overline{AK}$ $\overline{AL}$                                                                     |                                                |                                                  |       |            | ĀM         |          |              |     |
|                        | CONTRACTOR              |                                                                                                                         |                                                |                                                  |       | 4          | 10         | x        | <i>x</i> + 9 |     |
| 1000                   |                         | D/3 1                                                                                                                   |                                                | 2                                                | 2     | 12         | 30         | x        | x + 30       |     |
| 10/1                   | /                       | K 4                                                                                                                     | $\searrow_{M}$                                 |                                                  |       |            |            |          |              |     |
|                        |                         | 1:A                                                                                                                     | k                                              |                                                  |       |            |            |          |              |     |
| 1- 120                 |                         | a. Solving for set 1 value of $\overline{AL}$                                                                           | and Al                                         | М                                                |       |            |            |          |              |     |
|                        | 10                      | $\frac{\overline{A}\overline{D}}{\overline{A}\overline{K}} = \frac{\overline{A}\overline{L}}{\overline{A}\overline{M}}$ | Triangle Proportionality Theorem  Substitution |                                                  |       |            |            |          |              |     |
|                        | R /                     | $\frac{4}{10} = \frac{x}{x+9}$                                                                                          |                                                |                                                  |       |            |            |          |              |     |
|                        | 11/1/11                 | 4(x+9) = 10x                                                                                                            | Multip                                         | plicati                                          | on F  | Property   | of Equa    | Equality |              |     |
|                        |                         | 4x + 36 = 10x                                                                                                           | Distrik                                        | outive                                           | Pro   | perty      |            |          |              |     |
|                        |                         | 4x - 4x + 36 = 10x - 4x                                                                                                 | Addit                                          | tion Pr                                          | ope   | erty of E  | quality    |          |              |     |
|                        |                         | 6x = 36                                                                                                                 | Subtr                                          | actior                                           | Pro   | perty      |            |          |              |     |
|                        | -                       | x = 6                                                                                                                   | Divid                                          | ing bo                                           | th s  | ides by    | 6          |          |              |     |
|                        |                         | $\overline{AL} = 6$                                                                                                     | Subst                                          | itutior                                          | ı     |            |            |          |              |     |
|                        |                         | $\overline{AM} = (6) + 9$                                                                                               | Subst                                          | itutior                                          | l     |            |            |          |              |     |
|                        | W-75 W.                 | $\overline{AM} = 15$                                                                                                    |                                                | tion Pr                                          | ope   | erty       |            |          |              |     |
| - 2/                   | 21. 01. 1               | b. Solving for set 2 values of $\overline{AL}$                                                                          | and $\overline{A}$                             | М.                                               |       |            |            |          |              |     |
|                        |                         | $\frac{\overline{A}\overline{D}}{\overline{A}\overline{K}} = \frac{\overline{A}\overline{L}}{\overline{A}\overline{M}}$ | Triang                                         | gle Pro                                          | por   | rtionality | / Theore   | m        |              |     |
|                        |                         | $\frac{12}{30} = \frac{x}{x+30}$                                                                                        | Substitution                                   |                                                  |       |            |            |          |              |     |
|                        |                         | 12(x+30) = 30x                                                                                                          | Multip                                         | plicati                                          | on F  | Property   | of Equa    | ality    |              |     |
|                        |                         | 12x + 360 = 30x                                                                                                         | Distrik                                        | outive                                           | Pro   | perty      |            |          |              |     |
|                        |                         | 12x - 12x + 360 = 30x - 12x                                                                                             | 2x Addition Property of Equality               |                                                  |       |            |            |          |              |     |
|                        |                         | 18x = 360                                                                                                               | Subtr                                          | action                                           | Pro   | perty      |            |          |              |     |
|                        |                         | x = 20                                                                                                                  | Divid                                          | ing bo                                           | th s  | ides by    | 18         |          |              |     |
|                        |                         | $\overline{AL} = 20$                                                                                                    | Subst                                          | itutior                                          |       |            |            |          |              |     |
|                        |                         | $\overline{AM} = (20) + 30$                                                                                             | Subst                                          | itutior                                          | ı     |            |            |          |              |     |
|                        |                         | $\overline{AM} = 50$                                                                                                    | Addit                                          | tion Pr                                          | ope   | ertv       |            |          |              |     |

| PHASES   | Suggested<br>Time Frame |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |  |  |
|----------|-------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|--|--|
| 111/1020 |                         | Proof of Pythagorean The  The square of the squares of the le | e hypotenuse of a right trian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gle is equal             | to the sum of the                       |  |  |
|          |                         | Given: Right $\Delta MER$                                     | Statements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | Reasons                                 |  |  |
|          |                         |                                                               | Right ΔMER with altitud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Given                    |                                         |  |  |
|          |                         |                                                               | 2. ΔMER~ΔEYR~ΔMYE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | Right Triangle<br>Similarity<br>Theorem |  |  |
|          |                         | M Y                                                           | 3. $\frac{\overline{MY}}{\overline{ME}} = \frac{\overline{ME}}{\overline{MR}}$ and $\frac{\overline{YR}}{\overline{ER}} = \frac{\overline{ER}}{\overline{MR}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | Special Properties of Right Triangle    |  |  |
| A SEL    | di.                     |                                                               | 4. $(ME)^2 = (MY)(MR)$ and $(ER)^2 = (YR)(MR)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | Cross<br>Multiplication                 |  |  |
| 2/       |                         |                                                               | 5. $(ME)^2 + (ER)^2 = (MY)(MR)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $+(ER)^2$                | Addition Property of Equality           |  |  |
|          |                         |                                                               | 6. $(ME)^2 + (ER)^2 = (MY)(MR)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + (YR)(MR)               | Substitution                            |  |  |
| ノレ       | IVI                     |                                                               | 7. $ (ME)^2 + (ER)^2 = (MR)((MY)^2 + (ER)^2)^2 = (MR)((MY)^2 + (MR)^2)^2 = (MR)((MY)^2 + (MY)^2 + (MY)^2 + (MY)^2 = (MR)((MY)^2 + (MY)^2 + (MY)^2 + (MY)^2 = (MY)^2 + (MY)^2$ | Y') + (YR))              | Factoring                               |  |  |
| 1        | -                       | 23/                                                           | 8. $(ME)^2 + (ER)^2 = (MR)(R)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MR)                      | Segment Addition Postulate              |  |  |
| 0        | 0/10                    |                                                               | 9. $(MR)^2 = (ME)^2 + (ER)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Product Law of Exponents |                                         |  |  |
|          |                         | 1. A 12-meter fire truck la                                   | g Similar Triangles and Right<br>adder leaning on a vertical for<br>three-storey building. How h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ence also le             |                                         |  |  |
|          | 2350                    | 12 m                                                          | $\frac{4}{3} = \frac{12}{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | Given                                   |  |  |
|          |                         | 4 m 3 m                                                       | $x = \frac{(3)12}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                        | ation Property of<br>Equality           |  |  |
|          |                         |                                                               | x = 9 meters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                        | tion and Division<br>Property           |  |  |

| IV. LEARNING<br>PHASES | Suggested Time Frame Learning Activities |                                                                |                      |                                    |                                                                          |  |  |
|------------------------|------------------------------------------|----------------------------------------------------------------|----------------------|------------------------------------|--------------------------------------------------------------------------|--|--|
|                        |                                          | 2. Solve for the distance across                               | s the lak            | ke.                                |                                                                          |  |  |
|                        |                                          |                                                                | 21<br>18             | $\frac{21+36}{x}$                  | Given                                                                    |  |  |
|                        |                                          | 18 m                                                           | x                    | $=\frac{(18)57}{21}$               | Multiplication Property of<br>Equality                                   |  |  |
|                        | etteres.                                 | 21 m                                                           | x = 4                | 48.86 meters                       | Multiplication and Division Property                                     |  |  |
|                        |                                          | 3. Determine the height of a powhile at the same time, a 6ft p |                      |                                    |                                                                          |  |  |
| 1383                   | 1000                                     | <u></u>                                                        |                      | $\frac{6}{8} = \frac{x}{80}$       | Given                                                                    |  |  |
| 1                      | 78                                       | A                                                              |                      | $x = \frac{(6)80}{8}$              | Multiplication Property of<br>Equality                                   |  |  |
| 7 Da                   |                                          | MI                                                             | N                    | x = 60 feet                        | Multiplication and Division Property                                     |  |  |
|                        |                                          | 4. Solve for the distance across                               | s the rive           | er.                                |                                                                          |  |  |
|                        | N/I                                      | o carpenter's                                                  | 1118                 | $\frac{1.5}{4.5} = \frac{4.5}{KP}$ | Geometric Mean                                                           |  |  |
|                        | I.V.I                                    | 4.5 ft                                                         | KP                   | $P = \frac{(4.5)4.5}{1.5}$         | Multiplication Property of<br>Equality                                   |  |  |
|                        | -                                        | M 1.5 ft/K                                                     | KP                   | e = 13.5 feet                      | Multiplication and Division Property                                     |  |  |
| 0                      | 1                                        |                                                                | $(M0)^2 =$           | $= (MK)^2 + (OK)$                  | Pythagorean Theorem                                                      |  |  |
| 613                    | 07.3 5                                   |                                                                | $(MO)^2$             | $= (1.5)^2 + (4.5)^2$              | Substitution                                                             |  |  |
|                        |                                          |                                                                | МО                   | ) = 4.73 feet                      | Square root of the sum of the squares of the legs                        |  |  |
|                        | 262                                      |                                                                | $(MP)^2$             | $= (MO)^2 + (OP)^2$                | Pythagorean Theorem                                                      |  |  |
|                        |                                          |                                                                | $(15)^2 =$           | $= (4.73)^2 + (OP)^2$              | Substitution                                                             |  |  |
|                        |                                          |                                                                | MN                   | = 14.23 feet                       | Square root of the difference of the squares of the hypotenuse and a leg |  |  |
|                        |                                          | http://www.agusta.kl<br>766/chap06%20Geom                      | 2.va.us/<br>netrv.pd | /cms/lib01/VAI                     | 01000173/Centricity/Domain/                                              |  |  |

| IV. LEARNING<br>PHASES          | Suggested<br>Time Frame |                                                        | Learning Activities                                                                  |                                                    |
|---------------------------------|-------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------|
|                                 |                         | 5. Solve for the height of the sk                      |                                                                                      | reflected on the mirror.                           |
|                                 |                         |                                                        | $\frac{x}{87.6} = \frac{1.92}{0.4}$                                                  | Given                                              |
|                                 |                         | 1.92 m                                                 | $x = \frac{(1.92)87.6}{0.4}$                                                         | Multiplication Property of<br>Equality             |
|                                 |                         | B 0.4 m C 87.6 m D                                     | x = 420.48  meters                                                                   | Multiplication and Division Property               |
|                                 |                         | http://www.agusta.k1<br>766/chap06%20Geon              |                                                                                      | 01000173/Centricity/Domain/                        |
| 10.5                            | -                       | 7 007 CHQD0070200 CCH                                  | <del>тепу.раг</del>                                                                  |                                                    |
| C. Engagement                   | 40 minutes              | Learning Task 1                                        |                                                                                      |                                                    |
| , and an analysis of the second | /                       | Directions: Solve the following                        | Given Δ <i>BRY</i> ~Δ <i>ANT</i>                                                     | 3. Solve for s.                                    |
| -X X                            |                         | with $AN = 4$ , $NT = 3$ ,                             | with BY = $10x + 5$ ,                                                                | 3. Solve for 5.                                    |
| 1 40                            |                         | and RY = 15. What is the measure of BR?                | BR = $10x + 2$ ,<br>AT= $4x - 3$ and<br>AN= $3x + 3$ . What is<br>the value of $x$ ? |                                                    |
| SL                              | VI                      | B                                                      | Z P Y                                                                                | 15<br>15<br>10                                     |
|                                 |                         | 4. Solve for the value 5. of r.                        | Given $\triangle ADL \sim \triangle AKM$<br>AL = 15. What is the                     | with $AD = 14$ , $DK = 21$ , and measure of $LM$ ? |
| 3                               | OTATE A                 | 20 r 15                                                | D 3                                                                                  | 1 L 2 M                                            |
|                                 |                         | Learning Task 2 Directions: Solve the following below. | using Pythagorean Th                                                                 | eorem given the figure                             |
|                                 |                         |                                                        | 2. If <i>HW</i> is 41                                                                | DW is 27, what is DH?<br>, DW is 40, what is DH?   |
|                                 |                         | H                                                      |                                                                                      | DH is 35, what is HY?                              |
|                                 |                         | W                                                      |                                                                                      | HYis 15, what is WY? , HY is 21, what is WY?       |
|                                 |                         | D                                                      | J. II HW 15 ZU                                                                       | , 111 13 Z1, WHOH 13 W I Y                         |

Checked by: MA. FILIPINA M. DRIO

#### LEARNER'S PACKET (LeaP)

| IV. LEARNING<br>PHASES                                                                                          | Suggested<br>Time Frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Learning Activities                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| D. Assimilation                                                                                                 | Directions: Solve the following problems.  1. If the hypotenuse of a right triangle measures 25 memeters, what is the measure of the other leg?  2. A tower casts a shadow 7m long. A vertical stick continuous the stick is 1.2m high, how high is the tower?  3. The length of the shadow of your 1.6-meter height in time in the afternoon. How high is an electrical post in length of its shadow is 20 meters?  4. The size of a TV screen is given by the length of its da TV screen is eight inches by 15 inches, what is the size of a TV screen is leaning against a vertical was five meters away from the wall, how high does the last |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| V. ASSESSMENT (Learning Activity Sheets for Enrichment, Remediation or Assessment to be given on Weeks 3 and 6) | 30 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Directions: Answer each of the following accordingly.  1. Complete each statement.  a. $\frac{AE}{EC} = $ b. $\frac{AB}{AC} = $ c. If BD = 3, DC = 4, and AB = 6, then AC = 2. Find the length x, y, and z.  3. The figure describes a camera with digital sensor width $xy$ that is 35mm and with focal length 50mm. What is the width of the scene AB? |  |  |  |  |
| VI. REFLECTION                                                                                                  | 10 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The learners communicate the explanation of their personal assessment as indicated in the Learner's Assessment Card.  The learners will write their personal insights about the lesson in their notebook using the prompts below:  I understand that  I realize that  I need to learn more about                                                         |  |  |  |  |

#### Personal Assessment on Learner's Level of Performance

Using the symbols below, choose one which best describes your experience in working on each given task. Draw it in the column for Level of Performance (LP). Be guided by the descriptions below.



Prepared by: Wilson Anzures and Edgar V. Tuico

- I was able to do/perform the task without any difficulty. The task helped me in understanding the target content/lesson.
- I was able to do/perform the task. It was quite challenging but it still helped me in understanding the target content/lesson.
- I was not able to do/perform the task. It was extremely difficult. I need additional enrichment activities to be able to do/perform this task.

| Learning Task | В | Learning Task | LP | Learning Task | LP | Learning Task | LP |
|---------------|---|---------------|----|---------------|----|---------------|----|
| Number 1      |   | Number 3      |    | Number 5      |    | Number 7      |    |
| Number 2      |   | Number 4      |    | Number 6      |    | Number 8      |    |