One day Introductory Workshop on Big Data Methods (on HPC)

- MORNING
- Introduction of San Diego Supercomputer Center Data Science (and HPC)
- Introduction to SDSC HPC Systems Comet and Gordon hardware (including simple hands-on job submission)
- Introduction to Python
- Big Picture of Data Science Approaches and Tools
- Description of Hadoop (including hands on with Hadoop)
- AFTERNOON
- Introductory Spark for Scientific Computing (including hands on with Spark)
- Introduction of MongoDB with Pymongo
- Introduction of neo4j **
- Brief Discussion of Advanced Spark for Scientific Computing
- ** remote presentation

In pioneering efforts in drug design, Paul Bash, et. al., using SDSC supercomputers, determine free energies

of solvation for proteins and nucleic acids, and relative free energies for binding, published in Science.

1582

Atmospheric Carbon Dioxide from **Fossil Fuels**

Beginning in the late 1950s, Charles Keeling from UC San Diego's Scripps Institution of Oceanography (SIO) continuously collected data on the distribution of carbon dioxide around the globe. In 1989, Keeling-with SIO colleagues Stephen Piper and Robert Bacastow, using SDSC resources-constructed a three-dimensional computer model of the terrestrial carbon cycle that took advantage of the data collected by Keeling. The model was the first to confirm the importance of fossil fuel combustion in loading

ושפו

UC receives a 3-year, \$15 million grant from DEC to develop an advanced information and data management

system to increase the productivity of researchers studying global change - called Project Sequoia.

1558

With large-scale computer simulations run at SDSC, researchers led by J. Andrew McCammon at UCSD show how one of the fastest enzymes in the world, acetylcholinesterase, does its work; results are published in the *Proceedings of the*

Science and Computing at SDSC

computationally efficient

Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning

Fast construction of nanosecond level snapshots of financial markets

Jiading Gai¹, Dong Ju Choi², David O'Neal³, Mao Ye¹ and Robert S. Sinkovits²,*,[†]

Symbol	Wall time (s) original code	Wall time (s) modified code	Speedup	
SWN	8400	128	66x	
AMZN	55,200	437	126×	
AAPL	129,914	1145	113×	

San Diego Supercomputer Center's Quake Research Wins

\$150,000 Global Impact Award

By Tonie Hansen on March 16, 2015

Multi-GPU Implementation of a 3D Finite Difference Time Domain Earthquake Code on Heterogeneous Supercomputers

Jun Zhou^{a,b,*}, Yifeng Cui^a, Efecan Poyraz ^{a,b}, Dong Ju Choi ^a, Clark C. Guest ^b

Group-based variant calling leveraging next-generation supercomputing for large-scale whole-genome sequencing studies

Kristopher A. Standish¹², Tristan M. Carland², Glenn K. Lockwood³, Wayne Pfeiffer³, Mahidhar Tatineni³, C Chris Huang⁴, Sarah Lamberth⁴, Yauheniya Cherkas⁴, Carrie

Step	Tool	Memory per command (GB)	Cores per command	Commands per node		
Мар	BWA	32	8	2		
Bam	Samtools	4	1	16		
Merge	Samtools	4	1	16		
Sort	Samtools	4	1	16		
MarkDuplicates	PicardTools	7	2	8		
TargetCreator	GATK	7	2	8		
IndelRealigner*	GATK	12	3	5		
BaseRecalibrator	GATK	30	8	2		
PrintReads*	GATK	30	8	2		
HaplotypeCaller	GATK	60	16	1		
*Smaller memory allocation and more samples per node may prove more						

Definition of Data Science is Evolving

Allows for data-enabled decision making at scale

Many current and future applications with dynamic and measurable impact!

APPLICATION-SPECIFIC KNOWLEDGE and QUESTIONS

Allows for data-enabled decision making at scale, using data management, statistics, data mining, graph analytics, etc.

Requires support for experimental work by a multidisciplinary group of experts and dynamic scalability on many platforms!

"Big" Data Engineering

Computational "Big" Data Science

Center for Large-scale Data Systems Research

Sensing Health for Treatment Effectiveness

Lidar Point Cloud

Job

Recommendations

Large-Scale Data Infrastructure

- Real-time Data Management
- Multimedia Data Acquisition
- Dense Data (e.g., LIDAR)
 Management with DBMS
- Data Warehousing
- Systems Integration

DELPHI

Workflows for Data Science (WorDS) Center at SDSC

- Programmable, Reusable and Reproducible Scalability -

Drug Discovery
nbcr.ucsd.edu

Big Data

Monitoring Visualization Fire Modeling

wifire.ucsd.ed

AWESOME: A Workbench for Exploration of Social Media

- A Polystore-Based Big Data Platform for Social Media Data -

more engine less trunk

AQP.sdsc.edu/AWESOME

Advanced Query Processing Lab

- Heterogeneous Data Integration
- Large-Scale Ontology Processing
- Knowledge-based Search Engine
- Query Processing on Graph Data
- Event Modeling with Spatiotemporal Data

Information Discovery using Domain Knowledge www.neuinfo.org

Big Data Benchmarking

- Initiated via an NSF Clue grant
 - Spinoff from the NSF Open Topography project
 - Test idea of storing all data in a scientific data archive in Hadoop, while "caching" working set data in a relational database
- New TPC benchmarks are introduced
 - BigBench a new big data benchmarking effort with the industry
- Initiated new ideas
 - Deep Analytics Pipeline model for benchmarking Big Data/Data Science workloads
 - Creation of a BigData Top100 List
 - Referenced in NSF solicitation on Benchmarks of Realistic Scientific Application Performance of Large-Scale Computing Systems (BRAP)
- Collaborations
 - Open to collaboration in this area, e.g. identifying applications scenarios and defining corresponding benchmarks
 - Designing challenges and competitions—perhaps with industry collaboration

December 14-15, 2015, New Delhi, India

SEVENTH WORKSHOP ON BIG DATA BENCHMARKING

Chaitan Baru, baru@sdsc.edu

Convergence of Big Data and HPC - Research

May be you will have your own research ideas on this topic of convergence of Big Data and HPC

■ Infiniband HPC clusters RDMA based Apache Hadoop, Spark

- Co-processors (eg GPU, Intel MIC)

 Big data platforms needs faster processing for complex analytics
- Big Data leads to public Cloud HPC Cloud
- New mathematical, statistical algorithms for Big Data

 Will need to be implemented on HPC
 - High energy physics, astronomy, genomics Doing big data + HPC for a long time
 - How to inject analytics intensive workload into

 HPC systems
- Hadoop and HPC Lustre and HDFS

Thank you