CAIM: Cerca i Anàlisi d'Informació Massiva

FIB, Grau en Enginyeria Informàtica

Slides by Marta Arias, José Luis Balcázar, Ramon Ferrer-i-Cancho, Ricard Gavaldá Department of Computer Science, UPC

Fall 2018

http://www.cs.upc.edu/~caim

Searching the Web,

When documents are interconnected

The World Wide Web is huge

- ▶ 100,000 indexed pages in 1994
- ▶ 10,000,000,000's indexed pages in 2013
- Most queries will return millions of pages with high similarity.
- Content (text) alone cannot discriminate.
- ▶ Use the structure of the Web a graph.
- Gives indications of the prestige usefulness of each page.

5. Web Search. Architecture of simple IR systems

How Google worked in 1998

1/44

S. Brin, L. Page: "The Anatomy of a Large-Scale Hypertextual Web Search Engine", 1998

Notation:

Process

File / database

1,44

The inverter (sorter), I

Transforms forward index to inverted index First idea:

for every entry document d
 for every term t in d
 add docid(d) at end of list for t;

Lousy locality, many disk seeks, too slow

▶ URL store: URLs awaiting exploration

Doc repository: full documents, zipped

 Indexer: Parses pages, separates text (to Forward Index), links (to Anchors) and essential text info (to Doc Index)

Text in an anchor very relevant for target page

anchor

Font, placement in page makes some terms extra relevant

▼ Forward index: docid → list of terms appearing in docid

▶ Inverted index: term → list of docid's containing term

The inverter (sorter), II

6/44

Better idea for indexing:

```
create in disk an empty inverted file, ID;
create in RAM an empty index IR;
for every document d
  for every term t in d
  add docid(d) at end of list for t in IR;
  if RAM full
  for each t, merge the list for t in IR;
  into the list for t in ID;
```

Merging previously sorted lists is sequential access Much better locality. Much fewer disk seeks.

α

The above can be done concurrently on different sets of documents:

Searching the Web, I

When documents are interconnected

The internet is huge

- ▶ 100,000 indexed pages in 1994
- ▼ 10,000,000,000 indexed pages at end of 2011

To find content, it is necessary to search for it

- We know how to deal with the content of the webpages
- ▶ But.. what can we do with the structure of the internet?

The inverter (sorter), IV

- ► Indexer ships barrels, fragments of forward index
- Barrel size = what fits in main memory
- Separately, concurrently inverted in main memory
- Inverted barrels merged to inverted index
- 1 day instead of estimated months

Searching the Web, II

10/44

Meaning of a hyperlink

When page A links to page B, this means

- A's author thinks that B's content is interesting or important
- So a link from A to B, adds to B's reputation

But not all links are equal..

- $\,\blacktriangleright\,$ If A is very important, then $A\to B$ "counts more"
- ▶ If A is not important, then $A \to B$ "counts less"

In today's lecture we'll see two algorithms based on this idea

- ► Pagerank (Brin and Page, oct. 98)
- ► HITS (Kleinberg, apr. 98)

Pagerank, I

The idea that made Google great

Intuition:

A page is important if it is pointed to by other important pages

- ▼ Circular definition ...
- ▶ not a problem!

13/44

Pagerank, III Example A set of n+1 linear equations:

$$p_{1} = \frac{p_{1}}{3} + \frac{p_{2}}{2}$$

$$p_{2} = \frac{p_{3}}{2} + p_{4}$$

$$p_{3} = \frac{p_{1}}{3}$$

$$p_{4} = \frac{p_{1}}{3} + \frac{p_{2}}{2} + \frac{p_{3}}{2}$$

$$1 = p_{1} + p_{2} + p_{3} + p_{4}$$

Whose solutions is:

 $\sum_{j \to i} \frac{p_j}{out(j)}$

 $p_i = 1$

$$p_1 = 6/23, p_2 = 8/23, p_3 = 2/23, p_4 = 7/23$$

Pagerank, II

Definitions

The web is a graph G=(V,E)

- $~~ \boldsymbol{V} = \{1,...,n\}$ are the nodes (that is, the pages)
- $lackbox(i,j)\in E$ if page i points to page j
- lacktriangle we associate to each page i, a real value p_i (i's pagerank)
- lacktriangle we impose that $\sum_{i=1}^n p_i = 1$

How are the p_i 's related

 $ightharpoonup p_i$ depends on the values p_i of pages j pointing to i

$$p_i = \sum_{j \to i} \frac{p_j}{out(j)}$$

▶ where *out*(*j*) is *j*'s *outdegree*

Pagerank, IV

Formally

Equations

- $\blacktriangleright \ p_i = \sum_{j:(j,i) \in E} \frac{p_j}{out(j)}$ for each $i \in V$
 - $\sum_{i=1}^n p_i = 1$

where $out(i) = |\{j: (i,j) \in E\}|$ is the outdegree of node i

If |V| = n

- ightharpoonup n+1 equations
- lacktriangle n unknowns

Could be solved, for example, using Gaussian elimination in time ${\cal O}(n^3)$

A set of linear equations:

namely: $\vec{p}=M^T\vec{p}$ and additionally $\sum_i p_i=1$

$$\sum_i p_i = 1$$

Whose solutions is:

 $ec{p}$ is the eigenvector of matrix M^T associated to eigenvalue 1

17/44

Pagerank, VII Example, revisited

Adjacency matrix

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} 1/3 & 0 & 1/3 & 1/3 \\ 1/2 & 0 & 0 & 1/2 \\ 0 & 1/2 & 0 & 1/2 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$M^{T} = \begin{pmatrix} 1/3 & 1/2 & 0 & 0\\ 0 & 0 & 1/2 & 1\\ 1/3 & 0 & 0 & 0\\ 1/3 & 1/2 & 1/2 & 0 \end{pmatrix}$$

(columns add up to 1)

(rows add up to 1)

Pagerank, VI

Example, revisited

What does M^T look like?

$$M^{T} = \begin{pmatrix} \frac{1}{3} & \frac{1}{2} & 0 & 0\\ 0 & 0 & \frac{1}{2} & 1\\ \frac{1}{3} & 0 & 0 & 0\\ \frac{1}{3} & \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

 ${\cal M}^T$ is the $\it transpose$ of the row-normalized adjacency matrix of the graph!

Pagerank, VIII

18/44

Example, revisited

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 2 \end{pmatrix}$$

$$I = \begin{pmatrix} \frac{3}{2} & 0 & 3 & 3\\ \frac{1}{2} & 0 & 0 & \frac{1}{2}\\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$M^T = \begin{pmatrix} 5 & 5 & 5 \\ 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Why do we need to row-normalize and transpose A? Question:

Answer:

 $\sum_{j:(j,i)\in E}\frac{p_j}{out(j)}$ • Row normalization: because $p_i =$

 $\sum_{j:(j,i)\in E}rac{p_j}{out(j)}$, that is, • *Transpose*: because $p_i =$

 p_i depends on i's incoming edges

.. but

How do we know a solution exists?

How do we know it has a single solution?

How can we compute it efficiently?

For example, the graph on the left has no solution.. (check it!) but the one on the right does

Pagerank, XI

Equivalently: the random surfer view

Now assume M is the transition probability matrix between states in G

 $\begin{pmatrix} 1/3 & 0 & 1/3 & 1/3 \\ 1/2 & 0 & 0 & 1/2 \\ 0 & 1/2 & 0 & 1/2 \\ 0 & 1 & 0 & 0 \end{pmatrix}$ M =

Let $\vec{p}(t)$ be the probability over states at time t

ightharpoonup E.g., $p_j(0)$ is the probability of being at state j at time 0

Random surfer jumps from page i to page j with probability m_{ij}

▶ E.g., probability of transitioning from state 2 to state 4 is

Pagerank, X

How do we know a solution exists?

Luckily, we have some results from linear algebra

Definition

A matrix M is stochastic, if

All entries are in the range [0,1]

 $\,\blacktriangleright\,$ Each row adds up to 1 (i.e., M is row normalized)

Theorem (Perron-Frobenius)

If M is stochastic, then it has at least one stationary vector, i.e., one non-zero vector p such that

$$M^T p = p.$$

Pagerank, XII

21/44

The random surfer view

Surfer starts at random page according to probability distribution $\vec{p}(0)$ At time t>0, random surfer follows one of current page's inks uniformly at random

$$\vec{p}(t) := M^T \vec{p}(t-1)$$

▶ In the limit $t \to \infty$:

$$\vec{p}(t) = \vec{p}(t+1) = \vec{p}(t+2) = \dots = 0$$

• $\vec{p}(t)=\vec{p}(t+1)=\vec{p}(t+2)=..=\vec{p}$ • so $\vec{p}(t)=M^T\vec{p}(t-1)$ • $\vec{p}(t)$ converges to a solution p s.t. $p=M^Tp$ (the pagerank solution)!

- $ightharpoonup \vec{p}(0)^T = (1,0,0,0)$
- $\vec{p}(1)^T = (1/3, 0, 1/3, 1/3)$
- $\vec{p}(2)^T = (0.11, 0.50, 0.11, 0.28)$
- :
- $\vec{p}(10)^T = (0.26, 0.35, 0.09, 0.30)$
- $\vec{p} (11)^T = (0.26, 0.35, 0.09, 0.30)$

Pagerank, XV

Convergence of the Power method: aperiodicity required

Try out the power method with $\vec{p}(0)$:

$$\begin{pmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{pmatrix}$$
, or $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, or $\begin{pmatrix} 1/2 \\ 0 \\ 0 \\ 1/2 \\ 0 \end{pmatrix}$

Not being able to break the cycle looks problematic!

- .. so will require graphs to be aperiodic
- lacktriangle no integer k>1 dividing the length of every cycle

Pagerank, XIV

An algorithm to solve the eigenvector problem (find $p \ \mathrm{s.t.} \ p = M^T p$)

The Power Method

- ► Chose initial vector p

 (0) randomly
- Repeat $\vec{p}(t) \leftarrow M^T \vec{p}(t-1)$
- $\,\blacktriangleright\,$ Until convergence (i.e. $\vec{p}(t)\approx\vec{p}(t-1))$

We are hoping that

- The method converges
- The method converges fast
- ▼ The method converges fast to the pagerank solution
- The method converges fast to the pagerank solution regardless of the initial vector

Pagerank, XVI

25/44

Convergence of the Power method: strong connectedness required

26/44

What happens with the pagerank in this graph?

The sink hoards all the pagerank!

- need a way to leave sinks
- ▶ .. so we will force graphs to be strongly connected

ethod: strong of the pager.

A useful theorem from Markov chain theory

If a matrix M is strongly connected and aperiodic, then:

- $lacktriangledow M^Tec p=ec p$ has exactly one non-zero solution such that $\sum_{i} p_i = 1$
- lacktriangleright 1 is the largest eigenvalue of M^T
- the Power method converges to the \vec{p} satisfying $M^T\vec{p}=\vec{p},$ from any initial non-zero $\vec{p}(0)$
- Furthermore, we have exponential fast convergence

To guarantee a solution, we will make sure that the matrices that we work with are strongly connected and aperiodic

Pagerank, XIX

Teleportation in the random surfer view

The meaning of λ

- $\,\blacktriangleright\,$ With probability $\lambda,$ the random surfer follows a link in current page
- ▶ With probability 1λ , the random surfer jumps to a random page in the graph (teleportation)

Pagerank, XVIII

Guaranteeing aperiodicity and strong connectedness

Definition (The Google Matrix)

Given a damping factor λ such that: $0 < \lambda < 1$:

$$G = \lambda M + (1 - \lambda) \frac{1}{n} J$$

where J is a $n \times n$ matrix containing 1 in each entry

Observe that:

▼ G is stochastic

- .. because G is a weighted average of M and $\frac{1}{n}J$, which are also stochastic
- for each integer k>0, there is a non-zero probability path of length k from every state to any other state of ${\cal G}$
- .. implying that G is strongly connected and aperiodic
- and so the Power method will converge on G, and fast!

30/44

Pagerank, XX

Excercise, I

Compute the pagerank value of each node of the following graph assuming a damping factor $\lambda = 2/3$:

 $= p_4$ Hint: solve the following system, using $p_2=p_3$

Exercise, II

Compute the pagerank vector \vec{p} of graph with row-normalized matrix M for damping factor λ in closed matrix form.

Answer:

$$\vec{p} = (I - \lambda M^T)^{-1} \begin{pmatrix} \frac{1 - \lambda}{n} \\ \vdots \\ \frac{1 - \lambda}{n} \end{pmatrix}$$

Topic-sensitive Pagerank, II

Assume there is a small set of K topics (sports, science, politics, ...)

- \blacktriangleright Each topic $k\in\{1,..,K\}$ is defined by a subset of the web pages T_k
- lacktriangle For each k, compute pagerank of node i for topic k:

 $p_{i,k} = \text{``pagerank of node } i \text{ with teleportation reduced to } T_k$ "

 $\,\blacktriangleright\,$ Finally compute ranking score of a page i given query q

$$score(i, q) = \sum_{k=1}^{K} sim(T_k, q) \cdot p_{i,k}$$

Topic-sensitive Pagerank, I

Observe that pageranks are independent of user's query

- Advantages
- Computed off-line
- Collective reputation
- Disadvantages
- Insensitive to particular user's needs

33/44

HITS, I

Hypertext Induced Text Search

Interest of a web page due to two different reasons

- ▶ page content is insteresting (authority), or
- page points to interesting pages (hub)

HITS main rationale

- hubs are important if they point to important authorities
- authorities are impotant if pointed to by important hubs
- .. but .. circular definition again not a problem!

Associate to each page i an authority value a_i and a hub Definition of authority and hub value $(a_i \text{ and } h_i)$ value h_i

lacktriangleright vector of all authority values is \vec{a}

 $\,\,{}^{\blacktriangleright}\,$ vector of all hub values is \vec{h}

Keep these vectors normalized (notice L2 norm!)

$$\qquad ||\vec{a}|| = \sum_i a_i^2 = 1, \quad \text{and} \quad ||\vec{h}|| = \sum_i h_i^2 = 1$$

For appropriate scaling constants \boldsymbol{c} and \boldsymbol{d}

$$lack a_i = c \cdot \sum_{j o i} h_j, \; ext{ and } \; \; h_i = d \cdot \sum_{i o j} a_j$$

Notice not a linear system anymore!

... but still ok with a variant of the power method

HITS, IV

Example

Adjacency matrix

Our old graph

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

 $h_2 = d \cdot (a_1 + a_4)$ // here we use A's second row

$$h_2 \propto (1,0,0,1) \cdot egin{pmatrix} a_1 \\ a_3 \\ a_4 \end{pmatrix} = (1,0,0,1) \cdot ec{a}$$

HITS, III

Example

Our old graph

Adjacency matrix

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

 $a_1 = c \cdot (h_1 + h_2)$ // here we use A's first column

$$a_1 \propto (1, 1, 0, 0) \cdot \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = (1, 1, 0, 0) \cdot \vec{h}$$

HITS, V

37/44

38/44

Update rule for \vec{a} and \vec{h}

Written in compact matrix form

 \blacktriangleright To update authority values $\blacktriangleright \ \vec{a} := A^T \cdot \vec{h}$

$$\vec{a} := A^T \cdot \vec{h}$$

 $\,\,\,$ normalize afterwards $\vec{a} := \frac{\vec{a}}{\|a\|}$ so that $\|a\| = 1$

▼ To update hub values

$$\vec{h} := \vec{A} \cdot \vec{a}$$

- normalize afterwards $\vec{h} := \frac{\vec{h}}{\|h\|}$ so that $\|h\| = 1$

The power method for finding \vec{a} and \vec{h}

Given adjancecy matrix A

- \blacktriangleright Initialize $\vec{a}=\vec{h}=(1,1,..,1)^T$
- $\,\,\blacksquare\,$ Normalize \vec{a} and \vec{h} so that $\|a\|=\|h\|=1$
- Repeat until convergence
- $\,\,$ normalize \vec{a} so that $\|a\|=1$
- ${\color{red} \bullet}$ normalize \vec{h} so that $\|h\|=1$

41/44

HITS vs. Pagerank

42/44

HITS, VIII

HITS algorithm illustrated

Fig. 1. Expanding the root set into a base set.

HITS, VII

HITS algorithm

Query answering algorithm HITS

- $\,\blacktriangleright\,$ Get query q and run content-based searcher on q
- ► Let RootSet be the top-k ranked pages
- Expand pages to BaseSet by adding all pages pointed to and by pages in RootSet
- compute hub and authority values for the subgraph of web induced by BaseSet
- Rank pages in BaseSet according to $\vec{a}, \vec{h},$ and content

Pros of HITS vs. Pagerank

Sensitive to user queries

Cons of HITS vs. Pagerank

- Compute online, not offline!
- More vulnerable to webspamming