### Problemas de minimização

Existem duas alternativas:

1. Maximizar o simétrico da função objetivo:

Min 
$$z = c'x$$
  $\Leftrightarrow$  Max  $z' = -c'x$ 

2. Mudar o teste de otimalidade e o critério de entrada na base

Nesta unidade curricular optou-se por utilizar a primeira alternativa

### **Exemplo**

Min z = 3 
$$x_1 + 2 x_2$$
  
sujeito a  
 $x_1 + x_2 \ge 5$   
 $2 x_1 + x_2 \ge 7$   
 $x_1 \ge 0, x_2 \ge 0$ 



Em primeiro lugar transforma-se a função objetivo numa maximização:

Min 
$$z = 3 x_1 + 2 x_2 \Leftrightarrow \text{Max } z' = -3 x_1 - 2 x_2$$

Em seguida, aplica-se o método Simplex (usando a técnica das "Duas Fases"):

#### 1<sup>a</sup> Fase

### **Quadro Inicial** (da 1ª fase)

| $\mathbf{c_i}$             | 0          | 0          | 0          | 0          | -1         | -1         |     |
|----------------------------|------------|------------|------------|------------|------------|------------|-----|
| $x_B c'_B^{X_i}$           | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 | <b>X</b> 4 | <b>X</b> 5 | <b>X</b> 6 | b   |
| X5 -1                      | 1          | 1          | -1         | 0          | 1          | 0          | 5   |
| <b>←</b> x <sub>6</sub> -1 | <u>2</u> * | 1          | 0          | -1         | 0          | 1          | 7   |
| Zj - Cj                    | -3         | -2         | 1          | 1          | 0          | 0          | -12 |
|                            | <b>^</b>   |            |            |            |            |            | ı   |

PONTO O → não admissível

PONTO A → não admissível

| ci                | 0          | 0          | 0          | 0         | -1         | -1         |   |
|-------------------|------------|------------|------------|-----------|------------|------------|---|
| $x_B c'_B^{X_i}$  | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 | <b>X4</b> | <b>X</b> 5 | <b>X</b> 6 | b |
| X4 0              | 0          | 1          | -2         | 1         | 2          | -1         | 3 |
| $\mathbf{x_1}  0$ | 1          | 1          | -1         | 0         | 1          | 0          | 5 |
| Zj - Cj           | 0          | 0          | 0          | 0         | 1          | 1          | 0 |

Quadro ótimo da  $1^a$  fase porque não existem valores negativos na linha  $z_j$ - $c_j$  e as variáveis artificiais foram removidas da base e são nulas.

Solução ótima da 1ª fase:

| VBs       | VNBs      |
|-----------|-----------|
| $x_1 = 5$ | $x_2 = 0$ |
| $x_4 = 3$ | $x_3 = 0$ |
|           | $x_5 = 0$ |
|           | $x_6 = 0$ |

x<sub>5</sub> e x<sub>6</sub> são VNBs → solução básica admissível para o problema inicial → PONTO B

#### 2ª Fase

Max z' = -3 
$$x_1$$
 -2  $x_2$ 

### **Quadro Inicial** (da 2ª fase)

| $c_{\mathbf{i}}$                | -3         | -2         | 0          | 0          |     |
|---------------------------------|------------|------------|------------|------------|-----|
| $x_B c'_B^{X_i}$                | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 | <b>X</b> 4 | b   |
| <b>←</b> x <sub>4</sub> 0       | 0          | <u>1</u> * | -2         | 1          | 3   |
| <b>x</b> <sub>1</sub> -3        | 1          | 1          | -1         | 0          | 5   |
| Zj - Cj                         | 0          | -1         | 3          | 0          | -15 |
|                                 |            | <b>↑</b>   |            |            |     |
| $c_{\mathbf{i}}$                | -3         | -2         | 0          | 0          |     |
| $x_B c'_B^{X_i}$                | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 | <b>X4</b>  | b   |
| <b>x</b> <sub>2</sub> -2        | 0          | 1          | -2         | 1          | 3   |
| <b>x</b> <sub>1</sub> -3        | 1          | 0          | 1          | -1         | 2   |
| z <sub>j</sub> - c <sub>j</sub> | 0          | 0          | 1          | 1          | -12 |

Quadro ótimo da  $2^a$  fase porque não existem valores negativos na linha  $z_j$ - $c_j$ .

Solução ótima do problema:

#### VBs VNBs

$$x_1 = 2 \qquad \qquad x_3 = 0$$

$$x_2 = 3 \qquad \qquad x_4 = 0$$

A solução ótima obtida corresponde ao PONTO **x\***.

Como se esteve a maximizar z', o valor ótimo que se obtém do quadro Simplex é z'\*. O valor ótimo de z será obtido da seguinte forma:

$$z'* = -12 \implies z^* = 12$$

# Casos particulares do método Simplex

### Situações que podem ocorrer:

- Empate na escolha do valor mais negativo da linha zi ci
  - → qualquer um pode ser selecionado
     (a única diferença reside no "trajeto" seguido até ao ótimo)
- Existe zj cj negativo, mas apenas existem elementos não positivos na coluna "pivot"
  - → solução não limitada
- Variável artificial aparece na solução ótima
  - → solução inexistente → problema impossível
     (não há região admissível)
- Empate nos quocientes, ou seja, na escolha da variável que vai sair da base
  - → qualquer uma pode sair, mas conduz a solução degenerada (variável básica igual a zero)
- Valor de zj cj nulo sendo xj uma variável não básica
  - → soluções ótimas alternativas

### Empate na escolha do valor mais negativo da linha zj - cj

### **Exemplo**

Max  $z = x_1 + x_2$  sujeito a

$$x_1 \le 3$$

$$x_2 \le 3$$

$$x_1 + 2 x_2 \le 8$$

$$x_1 \ge 0, x_2 \ge 0$$



#### Resolução pelo método Simplex:

Max 
$$z=x_1 + x_2$$
  
sujeito a  
 $x_1 + x_3 = 3$   
 $x_2 + x_4 = 3$   
 $x_1 + 2 x_2 + x_5 = 8$   
 $x_i \ge 0; i = 1, 2, ..., 5$ 

#### **Quadro Inicial**

| $c_i$            | 1                     | 1          | 0          | 0          | 0          |   |                    |
|------------------|-----------------------|------------|------------|------------|------------|---|--------------------|
| $x_B c'_B^{X_i}$ | <b>x</b> <sub>1</sub> | <b>X</b> 2 | <b>X</b> 3 | <b>X</b> 4 | <b>X</b> 5 | b |                    |
| <b>X3</b> 0      | 1                     | 0          | 1          | 0          | 0          | 3 | $\mathbf{x}_1 = 0$ |
| <b>x</b> 4 0     | 0                     | 1          | 0          | 1          | 0          | 3 | $\mathbf{X2} = 0$  |
| <b>X</b> 5 0     | 1                     | 2          | 0          | 0          | 1          | 8 | X3 = 3             |
| Zj - Cj          | -1                    | -1         | 0          | 0          | 0          | 0 | $\mathbf{X4} = 3$  |
|                  | <b>^</b>              | <b>↑</b>   |            |            |            | 1 | X5 = 8             |

Quer  $x_1$ , quer  $x_2$ , pode entrar na base

 $\mathbf{Z} = \mathbf{0}$ 

PONTO O

- Se entrar x1 sai x3 da base e a próxima solução básica admissível corresponde ao ponto A
- Se entrar x2 sai x4 da base e a próxima solução básica admissível corresponde ao ponto **D**

Colocando x<sub>1</sub> na base (e retirando x<sub>3</sub>) obtém-se:

| $C_{i}$                                                  | 1                     | 1          | 0          | 0         | 0          |     |   |
|----------------------------------------------------------|-----------------------|------------|------------|-----------|------------|-----|---|
| x <sub>B</sub> c' <sub>B</sub> <sup>X</sup> <sub>i</sub> | <b>x</b> <sub>1</sub> | <b>X</b> 2 | <b>X</b> 3 | <b>X4</b> | <b>X</b> 5 | b   |   |
| <b>x</b> <sub>1</sub> 1                                  | 1                     | 0          | 1          | 0         | 0          | 3   |   |
| <b>X</b> 4 0                                             | 0                     | 1          | 0          | 1         | 0          | 3   | 2 |
| <b>E</b> X5 0                                            | 0                     | <u>2</u> * | -1         | 0         | 1          | 5   | 7 |
| Zj - Cj                                                  | 0                     | -1         | 1          | 0         | 0          | 3   |   |
| ŭ ŭ                                                      |                       | <b>^</b>   |            |           |            |     | 3 |
|                                                          |                       |            |            |           |            |     | 7 |
|                                                          |                       |            |            |           | PO         | NTO | A |

| Ci                      | 1          | 1          | 0          | 0          | 0          |      |             |
|-------------------------|------------|------------|------------|------------|------------|------|-------------|
| $x_B c'_B^{X_i}$        | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 | <b>X</b> 4 | <b>X</b> 5 | b    |             |
| <b>x</b> <sub>1</sub> 1 | 1          | 0          | 1          | 0          | 0          | 3    | $x_1 = 3$   |
| <b>X</b> 4 0            | 0          | 0          | 1/2        | 1          | -1/2       | 1/2  | $X_2 = 5/2$ |
| $\mathbf{x_2}  1$       | 0          | 1          | -1/2       | 0          | 1/2        | 5/2  | X3 = 0      |
| Zj - Cj                 | 0          | 0          | 1/2        | 0          | 1/2        | 11/2 | $X_4 = 1/2$ |
|                         |            |            |            |            |            |      | X5 = 0      |
|                         |            |            |            |            |            |      | z = 11/2    |

Solução ótima **→** PONTO B

PONTO D

Colocando x<sub>2</sub> na base (e retirando x<sub>4</sub>) obtém-se:

| c <sub>i</sub>            | 1          | 1          | 0          | 0          | 0          |   |                   |
|---------------------------|------------|------------|------------|------------|------------|---|-------------------|
| $x_B c'_B^{X_i}$          | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 | <b>X</b> 4 | <b>X</b> 5 | b |                   |
| x <sub>3</sub> 0          | 1          | 0          | 1          | 0          | 0          | 3 | $x_1 = 0$         |
| $\mathbf{x_2}  1$         | 0          | 1          | 0          | 1          | 0          | 3 | $\mathbf{X2} = 3$ |
| <b>←</b> x <sub>5</sub> 0 | <u>1</u> * | 0          | 0          | -2         | 1          | 2 | X3 = 3            |
|                           | -1         | 0          | 0          | 1          | 0          | 3 | $\mathbf{X4} = 0$ |
| ŭ ŭ                       | <b>1</b>   |            |            |            |            | 1 | X5 = 2            |
|                           |            |            |            |            |            |   | Z = 3             |

| Ci                        | 1          | 1          | 0          | 0          | 0          |   |                   |
|---------------------------|------------|------------|------------|------------|------------|---|-------------------|
| $x_B c'_B^{X_i}$          | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 | <b>X</b> 4 | <b>X</b> 5 | b |                   |
| <b>←</b> x <sub>3</sub> 0 | 0          | 0          | 1          | <u>2</u> * | -1         | 1 | $x_1 = 2$         |
| $\mathbf{x_2}  1$         | 0          | 1          | 0          | 1          | 0          | 3 | $\mathbf{X2} = 3$ |
| $\mathbf{x_1}  1$         | 1          | 0          | 0          | -2         | 1          | 2 | X3 = 1            |
| Zj - Cj                   | 0          | 0          | 0          | -1         | 1          | 5 | $\mathbf{X4} = 0$ |
|                           |            |            |            | <b>^</b>   |            | • | X5 = 0            |
|                           |            |            |            |            |            |   | Z = 5             |

### PONTO C

Solução ótima → PONTO B

# Solução não limitada

# **Exemplo**

Max 
$$z = x_1 + x_2$$
  
sujeito a  
 $x_1 - x_2 \le 2$   
 $-x_1 + x_2 \le 2$   
 $x_1 \ge 0, x_2 \ge 0$ 



### Resolução pelo método Simplex:

Max 
$$z = x_1 + x_2$$
  
s.a  
 $x_1 - x_2 + x_3 = 2$   
 $-x_1 + x_2 + x_4 = 2$   
 $x_i \ge 0$ ;  $i = 1, 2, 3, 4$ 

### **Quadro Inicial**

| $\mathbf{c_i}$            | 1          | 1          | 0          | 0          |   |                    |
|---------------------------|------------|------------|------------|------------|---|--------------------|
| $x_B c'_B^{X_i}$          | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 | <b>X</b> 4 | b |                    |
| <b>←</b> x <sub>3</sub> 0 | <u>1</u> * | -1         | 1          | 0          | 2 | $\mathbf{x}_1 = 0$ |
| $\mathbf{x_4}  0$         | -1         | 1          | 0          | 1          | 2 | $\mathbf{X2} = 0$  |
| Zj - Cj                   | -1         | -1         | 0          | 0          | 0 | $\mathbf{X3} = 2$  |
|                           | <b>↑</b>   |            |            |            |   | X4 = 2             |
|                           |            |            |            |            |   | Z = 0              |

PONTO O

| $\mathbf{c_i}$                                | 1          | 1          | 0          | 0          |   |            |
|-----------------------------------------------|------------|------------|------------|------------|---|------------|
| x <sub>B</sub> c' <sub>B</sub> <sup>X</sup> i | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 | <b>X</b> 4 | b |            |
| (?) <b>X</b> <sub>1</sub> 1                   | 1          | -1         | 1          | 0          | 2 | <br>X1     |
| (?) <b>X4</b> 0                               | 0          | 0          | 1          | 1          | 4 | <b>X</b> 2 |
| Zj - Cj                                       | 0          | -2         | 1          | 0          | 2 | X3         |
| 0 0                                           |            | <b>^</b>   |            | !          |   | <b>X4</b>  |
|                                               |            |            |            |            |   | <b>Z</b> = |

PONTO A

Como  $x_2$  é uma variável candidata a entrar na base, mas na coluna pivot só existem valores  $\leq 0$ , pode concluir-se que o problema tem solução ótima não limitada!

# Solução inexistente

# **Exemplo**

Min 
$$z = 3 x_1 + 4 x_2$$
  
sujeito a  
 $x_1 - 2x_2 \ge 4$   
 $x_1 + x_2 \le 3$   
 $x_1 \ge 0, x_2 \ge 0$ 



### Resolução pelo método Simplex (com técnica das "Duas Fases"):

#### 1<sup>a</sup> Fase

Max 
$$z_{1^a fase} = -x_4$$
  
sujeito a  
 $x_1 - 2 x_2 - x_3 + x_4 = 4$   
 $x_1 + x_2 + x_5 = 3$   
 $x_i \ge 0; i = 1, 2, ..., 5$ 

#### **Quadro Inicial**

| $c_{\mathbf{i}}$          | 0          | 0          | 0          | -1         | 0          |    |
|---------------------------|------------|------------|------------|------------|------------|----|
| $x_B c'_B^{X_i}$          | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 | <b>X</b> 4 | <b>X</b> 5 | b  |
| X4 -1                     | 1          | -2         | -1         | 1          | 0          | 4  |
| <b>←</b> x <sub>5</sub> 0 | <u>1</u> * | 1          | 0          | 0          | 1          | 3  |
| Zj - Cj                   | -1         | 2          | 1          | 0          | 0          | -4 |
| o o                       | <b>1</b>   |            |            |            |            | 1  |

| ci                | 0                     | 0          | 0          | -1         | 0          |    |
|-------------------|-----------------------|------------|------------|------------|------------|----|
| $x_B c'_B^{X_i}$  | <b>x</b> <sub>1</sub> | <b>X</b> 2 | <b>X</b> 3 | <b>X</b> 4 | <b>X</b> 5 | b  |
| X4 -1             | 0                     | -3         | -1         | 1          | -1         | 1  |
| $\mathbf{x_1}  0$ | 1                     | 1          | 0          | 0          | 1          | 3  |
| Z <b>j - C</b> j  | 0                     | 3          | 1          | 0          | 1          | -1 |

Quadro ótimo da 1ª fase porque todos os valores da linha  $z_j$ - $c_j$  são  $\geq 0$ . No entanto, a variável artificial,  $x_4$ , está na base (tem valor diferente de zero) e, consequentemente,  $z_{1^a\text{fase}} = -1 < 0$ Nesta situação pode concluir-se que **o problema não tem solução (é impossível)!** 

Se tivesse sido utilizada a técnica do "Grande M", obter-se-ia um quadro ótimo (sem valores negativos na linha zj-cj) com variáveis artificiais na base e a conclusão a retirar seria idêntica à da resolução anterior.

<u>Sugestão</u>: Experimente resolver o mesmo problema utilizando a técnica do "Grande M".

### Solução degenerada

### **Exemplo**

Max 
$$z = 5 x_1 + 2 x_2$$
  
sujeito a  
 $x_1 \le 3$   
 $x_2 \le 4$   
 $4 x_1 + 3 x_2 \le 12$   
 $x_1 \ge 0, x_2 \ge 0$ 

Em termos gráficos, as soluções degeneradas podem ser identificadas pelo facto de o ponto que as traduz ser definido por mais do que duas restrições.



### Pelo método Simplex:

Max 
$$z = 5 x_1 + 2 x_2$$
  
sujeito a  
 $x_1 + x_3 = 3$   
 $x_2 + x_4 = 4$   
 $4 x_1 + 3 x_2 + x_5 = 12$   
 $x_i \ge 0; i = 1, 2, ..., 5$ 

### **Quadro Inicial**

| $c_i$            | 5                     | 2          | 0          | 0          | 0          |    |                    |
|------------------|-----------------------|------------|------------|------------|------------|----|--------------------|
| $x_B c'_B^{X_i}$ | <b>x</b> <sub>1</sub> | <b>X</b> 2 | <b>X</b> 3 | <b>X</b> 4 | <b>X</b> 5 | b  |                    |
| (?) <b>X3</b> 0  | 1                     | 0          | 1          | 0          | 0          | 3  | $\mathbf{x_1} = 0$ |
| <b>X4</b> 0      | 0                     | 1          | 0          | 1          | 0          | 4  | $\mathbf{X2} = 0$  |
| (?) $X5 = 0$     | 4                     | 3          | 0          | 0          | 1          | 12 | X3 = 3             |
| zj - cj          | -5                    | -2         | 0          | 0          | 0          | 0  | $\mathbf{X4} = 4$  |
| <i>.</i>         | <b>^</b>              |            |            |            |            | 1  | X5 = 12            |
|                  |                       |            |            |            |            |    | Z = 0              |

### Pode retirar-se $x_3$ ou $x_5$ da base:

- Se for retirada  $x_3$  então  $x_5$  vai tornar-se zero
- Se for retirada x<sub>5</sub> então x<sub>3</sub> vai tornar-se zero

 $\rightarrow$  em ambas as situações  $x_3 = x_5 = 0$ 

Retirando x<sub>3</sub> da base obtém-se:

| $\mathbf{c_i}$            | 5                     | 2          | 0          | 0          | 0          |    |                    |
|---------------------------|-----------------------|------------|------------|------------|------------|----|--------------------|
| $x_B c'_B^{X_i}$          | <b>x</b> <sub>1</sub> | <b>X</b> 2 | <b>X</b> 3 | <b>X</b> 4 | <b>X</b> 5 | b  |                    |
| x <sub>1</sub> 5          | 1                     | 0          | 1          | 0          | 0          | 3  | $\mathbf{x_1} = 3$ |
| <b>X</b> 4 0              | 0                     | 1          | 0          | 1          | 0          | 4  | $\mathbf{x}_2 = 0$ |
| <b>←</b> x <sub>5</sub> 0 | 0                     | <u>3</u> * | -4         | 0          | 1          | 0  | $\mathbf{X3} = 0$  |
| Zj - Cj                   | 0                     | -2         | 5          | 0          | 0          | 15 | $\mathbf{X4} = 4$  |
| • •                       |                       | <b>1</b>   |            |            |            | 1  | X5 = 0             |
|                           |                       |            |            |            |            |    | Z = 15             |

PONTO A

Pelo quadro anterior verifica-se que a solução ainda não é a ótima  $\Rightarrow$  tem que se colocar  $x_2$  na base. No entanto, pelo gráfico vê-se que a solução já é a ótima (PONTO A). Colocando  $x_2$  na base obtém-se:

| $\mathbf{c_i}$                                          | 5          | 2          | 0          | 0          | 0          |    |
|---------------------------------------------------------|------------|------------|------------|------------|------------|----|
| x <sub>B</sub> c' <sub>B</sub> <sup>X<sub>i</sub></sup> | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 | <b>X</b> 4 | <b>X</b> 5 | b  |
| x <sub>1</sub> 5                                        | 1          | 0          | 1          | 0          | 0          | 3  |
| <b>X</b> 4 0                                            | 0          | 0          | 4/3        | 1          | -1/3       | 4  |
| $\mathbf{x_2}$ 2                                        | 0          | 1          | -4/3       | 0          | 1/3        | 0  |
| Zj - Cj                                                 | 0          | 0          | 7/3        | 0          | 2/3        | 15 |
| •                                                       |            |            |            |            |            | I  |
|                                                         |            |            |            |            |            |    |

Solução ótima → PONTO A

Uma das variáveis básicas (x<sub>2</sub>) tem valor zero! Solução ótima degenerada

Neste caso particular pode acontecer a situação que se verificou atrás, ou seja, pelo gráfico observar-se que se está no ponto ótimo, mas o quadro Simplex não ser ótimo e haver necessidade de iterar. Além disso, existe a possibilidade de o método entrar em ciclo, sendo necessário usar um método próprio para o evitar.

Retirando x<sub>5</sub> da base obtém-se:

| $\mathbf{c_i}$                  | 5          | 2          | 0          | 0          | 0          |    |                    |
|---------------------------------|------------|------------|------------|------------|------------|----|--------------------|
| $x_B c'_B^{X_i}$                | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 | <b>X</b> 4 | <b>X</b> 5 | b  |                    |
| <b>X</b> 3 0                    | 0          | -3/4       | 1          | 0          | -1/4       | 0  | $\mathbf{x}_1 = 3$ |
| <b>X</b> 4 0                    | 0          | 1          | 0          | 1          | 0          | 4  | $\mathbf{x}_2 = 0$ |
| $\mathbf{x_1}$ 5                | 1          | 3/4        | 0          | 0          | 1/4        | 3  | $\mathbf{X3} = 0$  |
| z <sub>j</sub> - c <sub>j</sub> | 0          | 7/4        | 0          | 0          | 5/4        | 15 | X4 = 4             |
| ŭ ŭ                             |            |            |            |            |            | I  | $\mathbf{x}_5 = 0$ |
|                                 |            |            |            |            |            |    | Z = 15             |

Solução ótima → PONTO A

Uma vez mais se verifica que a solução é degenerada já que a variável básica x3 tem valor zero.

### Soluções ótimas alternativas

# **Exemplo**

Min 
$$z = x_1$$
  
sujeito a  
 $-2 x_1 + x_2 \le 4$   
 $x_1 + x_2 \le 6$   
 $x_2 \le 5$   
 $x_1 \ge 0, x_2 \ge 0$ 



#### Resolução pelo método Simplex:

$$\begin{array}{llll} \text{max } z' = - \ x_1 \\ \text{sujeito a} \\ & -2 \ x_1 + \ x_2 \ + x_3 & = 4 \\ & x_1 + \ x_2 \ + x_4 \ = 6 \\ & x_2 \ + x_5 \ = 5 \\ & x_i \ge 0; \ i = 1, \, 2, \, ..., \, 5 \end{array}$$

#### **Quadro Inicial**

| $c_i$                           | -1         | 0          | 0          | 0          | 0          |   |   |
|---------------------------------|------------|------------|------------|------------|------------|---|---|
| $x_B c'_B^{X_i}$                | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 | <b>X</b> 4 | <b>X</b> 5 | b |   |
| <b>←</b> x <sub>3</sub> 0       | -2         | <u>1</u> * | 1          | 0          | 0          | 4 | _ |
| <b>X</b> 4 0                    | 1          | 1          | 0          | 1          | 0          | 6 |   |
| X5 0                            | 0          | 1          | 0          | 0          | 1          | 5 |   |
| z <sub>j</sub> - c <sub>j</sub> | 1          | <u>0</u>   | 0          | 0          | 0          | 0 | _ |
| <b>C</b>                        |            | <b>^</b>   |            |            |            | , |   |
|                                 |            |            |            |            |            |   |   |

Solução ótima → PONTO O

Mas se a variável x<sub>2</sub> entrar na base, o valor de **z** não aumenta nem diminui!

### → soluções ótimas alternativas

Colocando  $x_2$  na base, obtém-se a outra solução ótima alternativa:

| $\mathbf{c_i}$            | -1                    | 0          | 0          | 0          | 0          |   |                   |
|---------------------------|-----------------------|------------|------------|------------|------------|---|-------------------|
| $x_B c'_B^{X_i}$          | <b>x</b> <sub>1</sub> | <b>X</b> 2 | <b>X</b> 3 | <b>X</b> 4 | <b>X</b> 5 | b |                   |
| <b>←</b> x <sub>2</sub> 0 | -2                    | 1          | <u>1</u> * | 0          | 0          | 4 | $x_1 = 0$         |
| $\mathbf{X4}  0$          | 3                     | 0          | -1         | 1          | 0          | 2 | $\mathbf{X2} = 0$ |
| <b>X</b> 5 0              | 2                     | 0          | -1         | 0          | 1          | 1 | $\mathbf{X3} = 0$ |
| Zj - Cj                   | 1                     | 0          | <u>o</u>   | 0          | 0          | 0 | <b>X4</b> = 1     |
|                           |                       |            |            |            |            | ı | X5 = 1            |
|                           |                       |            |            |            |            |   | $\mathbf{z}^* =$  |

Solução ótima → PONTO D

São soluções ótimas do problema os pontos **O** e **D**, e todos os que estão sobre o segmento de reta que os une (os quais são combinação linear convexa desses dois pontos).