

第四部分: 多Agent决策

章宗长 2023年5月9日

内容安排

4.1	多Agent交互
4.2	制定群组决策
4.3	形成联盟
4.4	分配稀缺资源
4.5	协商
4.6	辩论
4.7	分布式规划

2023/5/7

协商

- 概览
- 对资源分割的协商
- 对任务分配的协商

面向任务领域的协商 (Task-Oriented Domain, TOD)

■ 考虑下面的例子:

假设你有三个孩子,每天早晨需要把每个孩子送到不同的学校,你的邻居有四个孩子,也需要把他们送到学校。

每送一个孩子可以建模成一个不能再分解的任务。你和你的邻居可以进行协商,并且达成一致,这样对双方都有利(例如捎上另一个人的孩子到同一个目的地,节省他的路程)。

最坏的情况是你和你的邻居不能就送孩子建立汽车统筹达成一致,那么对自己来说并没有损失。

假设,你的一个孩子和邻居的一个孩子上同一所学校。显然,同时送两个孩子是合理的(即只有你的邻居或者你去送孩子,来完成这两个任务)。

通过这个例子可以看到,通过重新分配任务,Agent 能有比仅执行自己的任务做得更好的潜力

面向任务领域的协商(TOD)

- 一个TOD是一个三元组<T,Ag,c>
 - □ *T*: 可能任务的(有限)集合
 - □ $Ag = \{1, ..., n\}$: 参与协商的Agent的(有限)集合
 - □ $c: 2^T \to \mathbb{R}^+: 费用函数, 定义了执行每个T的子集的费用$
 - 满足单调性: 如果 $T_1, T_2 \subseteq T$,并且 $T_1 \subseteq T_2$,则 $c(T_1) \leq c(T_2)$
 - 满足什么都不做的费用为零: $c(\emptyset) = 0$
- TOD的一次相遇是一个任务集合 $< T_1, T_2, ..., T_n >$
 - 对每个 $i \in Ag$,有 $T_i \subseteq T$
 - Agent之间通过重新分配任务来达成交易(deal)

交易

- 假设参与协商的两个Agent是{1,2}
 - □ 给定相遇< T_1 , T_2 >,交易把任务 T_1 ∪ T_2 分配给Agent 1 和Agent 2
 - □ 一个纯交易是< D_1 , D_2 >, 其中 D_1 ∪ D_2 = T_1 ∪ T_2
 - □ 交易 $\delta = \langle D_1, D_2 \rangle$ 的语义: Agent 1承诺执行任务 D_1 , Agent 2承诺执行任务 D_2
- 假设参与协商的n个Agent是 $\{1,2,...,n\}$
 - □ 给定相遇 $< T_1, T_2, ..., T_n >$,交易把任务 $T_1 \cup T_2 ... \cup T_n$ 分配给n个Agent

交易中的效用

■ 对Agent i而言,交易 δ 的效用

$$utility_i(\delta) = c(T_i) - cost_i(\delta)$$

交易 δ 的费用 $c(D_i)$

- 一项交易的效用表示了Agent从这个交易中获得 收益的多少
 - □ 正效用表示Agent从交易中获益; 负效用表示与Agent单 独完成在相遇中最初分配的任务相比, 它将遭受损失
- 如果没有达成交易,那么执行最初分配的任务
 - □ 冲突交易 Θ : 最初分配的任务 $< T_1, T_2 >$

仅讨论有两个 Agent的情形

交易中的优势 (Dominance)

- 如果下列条件成立,则称 δ_1 优势于(dominate) δ_2 ($\delta_1 > \delta_2$):
 - □ 对任意一个Agent, δ_1 至少和 δ_2 一样好
 - $\forall i, utility_i(\delta_1) \ge utility_i(\delta_2)$
 - □ 至少存在一个Agent,使得 δ_1 比 δ_2 好
 - \exists i, utility_i(δ ₁) > utility_i(δ ₂)
- = 当 δ_1 优势于 δ_2 ,那么所有理性的Agent都会偏好 δ_1
 - \square 如果没有任何一个交易优势于 δ_1 ,则称 δ_1 是帕累托最优的
- 如果一个交易 δ_1 弱优势于冲突交易 ($\delta_1 \ge \Theta$),那么这个交易是个体理性(individual rational)的

如果至少第一个 条件成立,则称 δ_1 弱优势于 δ_2

协商集合

- 协商集合由交易组成,这些交易具有以下性质:
 - □ 个体理性: Agent不会选择比冲突交易更差的交易
 - □ 帕累托最优:不存在另一个交易使得某个Agent在不损害别的Agent的情况下获得更高的效用

- ❖ 线段BD以左的交易对于 Agent j来说不是个体理 性的
- ❖ 线段AC以下的交易对于 Agent *i*来说不是个体理 性的
- ❖ 弧BC上的交易是个体理 性且帕累托最优的,因 此属于协商集合

一般来说,Agent i通过提出B点的交易开始协商,而Agent j通过提出C点的交易开始协商

单调让步协议(Monotonic Concession Protocol)

- ■协商进行多轮
- \blacksquare 在第u轮协商中:
 - □两个Agent分别从协商集合中提出一项提议
 - □ 如果Agent发现另一个Agent提出的交易(弱)优势于他 提出的交易,则达成一致
 - □ 如果没有达成一致,那么协商进入到下一轮
- 在第u + 1轮协商中:
 - □ Agent不能提出比第u轮的提议对另一个Agent更差的提 议
 - □ 如果没有Agent作出让步,则协商以交易冲突结束

单调让步协议(续)

- 使用单调让步协议,在有限轮的协商之后,可以 保证协商结束
 - □ 最后一轮中,两个Agent达成一致或互不让步(产生交 易冲突)
 - □ 不保证快速达成一致
 - 可能的交易数量为*O*(2^{|T|}),协商可能会进行的轮数与分配的任务数量呈指数关系

Zeuthen策略

协商的参与者在使用单调让步协议的时候应该如何工作?

- Agent的第一个提议应该是什么?
 - □ Agent最偏好的交易
- 在给定的一轮协商中, 谁应该让步?
 - □ 度量Agent冒冲突风险的意愿,应该是最不愿意冒冲突风险的Agent进行让步
- 如果一个Agent让步,它应该让步多少?
 - □足够改变风险平衡的让步

如何度量冒风险的意愿

- 如果一个Agent当前提议的效用和冲突交易的效用 差别小,则它更愿意冒冲突的风险
- Agent i在第t轮冒冲突风险的意愿:

$$risk_i^t = \frac{$$
由于让步并接受 j 的提议导致 i 的效用损失
由于没有让步并导致冲突致使 i 的效用损失

- □ 值在0~1之间
- □ 值越大(越接近1),表示Agent *i* 由冲突遭受的损失越小, 因此更愿意冒冲突风险
- □ 反之亦然

• Agent i在第t轮冒冲突风险的意愿:

$$risk_i^t = \frac{\text{由于让步并接受}j$$
的提议导致 i 的效用损失
由于没有让步并导致冲突致使 i 的效用损失

■ 形式地,有:

$$risk_{i}^{t} = \begin{cases} 1 & \text{如果utility}_{i}(\delta_{i}^{t}) = 0 \\ \frac{utility_{i}(\delta_{i}^{t}) - utility_{i}(\delta_{j}^{t})}{utility_{i}(\delta_{i}^{t})} & \text{其他情况} \end{cases}$$

- 当 $utility_i(\delta_i^t) = 0$ 时, $risk_i^t$ 的值为1:
 - □ *i*完全愿意冒冲突风险,而不愿意做出让步

Zeuthen策略达到纳什均衡

- 让步多少?
 - □ 做出足够的让步即可,即一个Agent应该做最小的必要的 让步,来改变风险的平衡
- 如果遇到风险相同的情况
 - □ 可以通过一个Agent"投掷硬币"决定谁应该让步
- 使用Zeuthen策略能达到纳什均衡

这对于自动Agent的设计者是特别有意义的。它消除了所有程序员对于保密部分的要求。一个Agent的策略可以公开,并且其他Agent的设计者无法通过选择不同的策略利用这个信息。事实上,为了避免不小心引起的冲突,公开策略的行为对于设计者来说是所希望的。

协商中的欺骗 (Deception)

- 在面向任务领域的协商中,Agent可能通过两种类型的欺骗行为来获利:
 - □谎报任务
 - □隐瞒任务

■谎报任务

- 假装已经被分配到了一个任务,而它并没有分配到这个任务
- □ 一种解决办法:保证分配给Agent执行的任务是可验证的

■隐瞒任务

□ 假装并没有分配到一个已经被分配到了的任务

小结

- 协商是就共同关心的问题达成一致的过程
 - □ 协商参数: 协商集合、协议、策略、规则
 - □ 通常进行多轮,每个Agent每一轮都给出提议
- 对资源分割的协商
 - □ 轮流出价模型: 一对一的协商协议
 - □ 切蛋糕的例子: 固定/不固定轮数、玩家有耐心/耐心有限
 - □协商决策函数
- 对任务分配的协商
 - □ 形式化定义、交易、(弱)优势、协商集合
 - □ 单调让步协议、Zeuthen策略

内容安排

4.1	多Agent交互
4.2	制定群组决策
4.3	形成联盟
4.4	分配稀缺资源
4.5	协商
4.6	辩论
4.7	分布式规划

2023/5/7

不一致性

- 在多Agent系统中,Agent应该如何就相信什么达成一致?
 - 工法庭上,律师的立场应该是理性且有根据的,能够通过论证(argument)得到
 - 如果所有的证据是一致的,那 么不会有争论
 - 通常会有不一致

- 不同Agent的不一致观点
 - □ 显式的情况: Agent 1相信p, Agent 2相信¬p
 - □ 隐式的情况: Agent 1相信p和 $p \mapsto q$, Agent 2相信¬q

辩论

- 辩论提供了解决不一致的原则性技术
 - 至少,提供了在面对不一致的时候,如何选择观点的 合乎情理的规则
- 在面对观点p和¬p时,应该相信哪个观点?
 - □ 选择ø作为观点
 - □ 选择接受其中一个观点,放弃另一个

可能有多个理性的观点,选择哪个最好呢?

辩论的种类

■逻辑模式

□ 同数学证明类似,倾向于自然演绎

■情感模式

- □ 当呼吁带有情感和态度等情况时
- 例子:如果这件事发生在你身上,你会感觉怎么样?

■ 本能模式

- □ 人类辩论的自然和社会的方面
- □ 参与辩论的一方跺着脚表示其感觉的强烈程度

■ 神秘模式

▶ 借助于直觉、隐秘现象、宗教等

辩论的方法

- 抽象辩论(Abstract Argumentation)
 - □ 检查论证如何共存
- 演绎辩论 (Deductive Argumentation)
 - □ 利用逻辑演绎推理

区别

- 抽象辩论的论证具有原子性
 - 没有结构,是不可分割的实体
- □ 演绎辩论的论证具有逻辑结构
 - 能通过逻辑演绎进行推理

抽象辩论

不关心每个论证的内部结构,关心其整体结构

几个论证的例子:

- p: 由于天晴, 我决定骑车出去
- q: 由于今天是工作日并且我要工作,我不能骑车出去
- r: 由于今天是节假日,我不用工作
- s: 由于我今天请假了,我不用工作
- 抽象辩论由一些论证的集合和关系组成
 - □ 称这种形式的论证系统为Dung式抽象辩论系统
 - □ 论证由抽象符号表示
 - □ 不需要关注论证的具体意义

Dung式抽象辩论系统

- 用二元组 $< \Sigma$, >>表示Dung式抽象辩论系统
 - \square Σ : 论证集合,由不同的论证组成
 - □ ▷: 论证集合∑中论证之间攻击关系的集合
 - □ (φ,ψ) ∈⊳, 读作:
 - 论证 φ 攻击论证 ψ , φ 是 ψ 的反例, φ 是 ψ 的攻击者
- 例: $\langle \{p,q,r,s\},\{(r,q),(s,q),(q,p)\} \rangle$
 - □ 共有四个论证: p,q,r,s
 - □ 共有三个攻击
 - 论证r攻击论证q
 - \bullet 论证s攻击论证q
 - 论证q攻击论证p

立场(Position)

■ 例: $\langle \Sigma, \rangle \rangle = \langle \{p,q,r,s\}, \{(r,q),(s,q),(q,p)\} \rangle$

p: 由于天晴, 我决定骑车出去

q: 由于今天是工作日并且我要工作,我 不能骑车出去

r: 由于今天是节假日, 我不用工作

s: 由于我今天请假了,我不用工作

问题:给定 $<\Sigma$,>>,我应该相信哪些论证呢?

- 立场 $S \subseteq \Sigma$ 为一些论证构成的集合
 - □ 立场可以是不一致的,它只是选择了一些论证

无冲突(Conflict Free)的立场

- 如果立场*S*中没有论证攻击*S*中的其他论证,那么*S* 是无冲突的
 - □ 如果论证a被论证a′攻击了,那么如果存在a′′攻击a′,则a获得了a′′的辩护

一个无冲突的立场中各 个论证之间没有不一致

- 右图: 无冲突的立场为
 - \bigcirc \emptyset , $\{q\}$, $\{p\}$, $\{r\}$, $\{s\}$, $\{r,s\}$, $\{p,r\}$, $\{p,s\}$, $\{r,s,p\}$
 - □ p获得了r和s的辩护

互相辩护(Mutually Defensive)的立场

- 如果S的每一个被攻击的论证被S中的一些论证辩护,那么S是互相辩护的
 - □论证可以自己辩护自己
- 右图: 互相辩护的立场为
 - \bigcirc \emptyset , $\{r\}$, $\{s\}$, $\{r,s\}$, $\{p,r\}$, $\{p,s\}$, $\{r,s,p\}$
 - □ 例子: $\{p,r\}$ 是互相辩护的,因为如果加入论证p的攻击论证q,那么论证r会为它辩护
- ■下列立场不是互相辩护的
 - □ {*p*}, {*q*}

例子: $\{p\}$ 不是互相辩护的,因为如果加入论证p的攻击论证q,那么没有论证会为它辩护

S

可采纳的(Admissible)立场

- 如果一个立场是无冲突并且互相辩护的,那么这个 立场是可采纳的
 - □ 无冲突:没有一个论证攻击另一个论证
 - □ 互相辩护: 如果一个论证被攻击,那么这个论证被另一个论证辩护
- ■下列立场是可采纳的
 - \bigcirc \emptyset , $\{r\}$, $\{s\}$, $\{r,s\}$, $\{p,r\}$, $\{p,s\}$, $\{r,s,p\}$

- ■可采纳性是合理立场的最小限度
 - □ 内部一致,并且自己能对攻击进行辩护

偏好拓展(Preferred Extension)

- 偏好拓展是最大的可采纳集合
 - □ 加入另一个论证会使得这个立场变得不可采纳
- 如果立场S是可采纳的,并且任何S的超集都不是可
 - 采纳的,那么S是一个偏好拓展
 - □ {*p*,*r*,*s*}是偏好拓展
 - 加入q会使得立场变得不可采纳

- 一个论证集合必定有一个偏好拓展
 - □ Ø是一个可采纳的立场
 - □ 如果没有别的可采纳的立场,那么Ø将是最大的可采纳集合

示例:偏好拓展

两个论证互相攻击 有两个偏好拓展,分别为{a},{b}

奇数个论证,呈环形互相攻击 偏好拓展为Ø

a和b互相攻击,由于他们都攻击c,d受到了辩护有两个偏好拓展,分别为 $\{a,d\},\{b,d\}$

示例:偏好拓展

- 随着论证数量的增加,找到偏好拓展的难度呈指数增长
 - \Box 大小为n的论证集合拥有 2^n 个可能的立场

- $\{a,b,d,f\}$ 和 $\{c,e,g,h\}$ 为偏好拓展
 - □ *d*和*e*互相攻击,因此最多有两个偏好拓展,由*d*和*e*的 攻击关系决定

示例:偏好拓展

■ e不攻击d的情况

- 仅有 $\{a,b,d,f\}$ 为偏好拓展
 - □ 当c和e受到d攻击时,没有论证为它们辩护
 - □ c和e都不会出现在可采纳的集合中

轻信的(Credulous)和怀疑的(Sceptical) 接受

- 如果一个论证是每一个偏好拓展的元素,那么这个论证是被怀疑接受的
- 如果一个论证是至少一个偏好拓展的元素,那么 这个论证是被轻信接受的
- 任何一个被怀疑接受的论证都是被轻信接受的
 - □ {*p*,*r*,*s*}是偏好拓展
 - □ *p、r、s*是被怀疑接受的
 - □ q既不被轻信接受也不被怀疑接受

理性拓展(Grounded Extension)

- 理性拓展是最不可能被质疑(Least Questionable) 的论证的集合
 - □ 只接受无法避免接受的论证
 - □ 只拒绝无法避免拒绝的论证
- ■理性拓展的构造
 - □ 如果论证没有被攻击,那么它会被接受
 - □ 如果论证被接受的论证攻击,那么它不能够被接受
 - □ 删除不被接受的论证,直到接受的论证集合不再变化
- 理性拓展是最终被接受的论证集合
 - □ 右图: 理性拓展为{*r*,*s*,*p*}

示例: 理性拓展

■ 求右图所示的Dung 式抽象辩论系统的 理性拓展

- h没有被攻击,因此h会被接受
 - □ h攻击了a, a不被接受
 - \square h攻击了p,p不被接受
 - □ h攻击了e, e不被接受

示例:理性拓展

- p没有被接受,并且q只受到了p的攻击,所以q会被接受
- g没有被攻击,所以g会被接受
 - □ *g*攻击*d*, *d*不被接受
 - □ *g* 攻击*p* (*p* 也被h攻 击了),所以*p*不被 接受

■ *b*不再被攻击,因此 *b*会被接受

示例:理性拓展

- 不能确定是否接受 以下论证
 - □ *m* 、 *k* 、 *l* : 它们以 环形互相攻击对方
 - □ *i、j*: 它们互相攻击
 - □ *n*: 不确定*i*、*j*的状态
 - □ *f*: 不确定*n*的状态

■ 理性拓展为{b,g,h,q}

小结

- 辩论提供了解决不一致的原则性技术
 - □ 种类:逻辑模式、情感模式、本能模式、神秘模式
 - □ 方法: 抽象辩论、演绎辩论
 - 抽象辩论的论证具有原子性
 - 演绎辩论的论证具有逻辑结构

■抽象辩论

- □ 不关心每个论证的内部结构,关心其整体结构
- □ Dung式抽象辩论系统:二元组< ∑, ▷>
 - Σ : 论证集合,由不同的论证组成
 - ▷: 论证集合∑中论证之间攻击关系的集合
 - 立场: 无冲突的立场、互相辩护的立场、可采纳的立场
 - 拓展:偏好拓展、理性拓展

内容安排

4.1	多Agent交互
4.2	制定群组决策
4.3	形成联盟
4.4	分配稀缺资源
4.5	协商
4.6	辩论
4.7	分布式规划

分布式规划

- 规划的基础知识
- 分布式规划的决策模型
- 分布式规划的离线算法
- 分布式规划的在线算法

规划

■ 研究源于20世纪60年代前后,是人工智能的一个重要领域

■ 两大任务

□ 问题描述: 如何方便地表示规划问题

□ 问题求解: 如何高效地求解规划问题

■ 应用:智能机器人、后勤调度、自动驾驶等领域

经典规划

- 经典规划的基本假设
 - □ (A0)有限系统:问题只涉及有限的状态、动作、事件等
 - □ (A1) 完全可观察: 总知道当前所在的状态
 - □ (A2)确定性:每个动作只会导致一种确定的影响
 - □ (A3) 静态性:不存在外部动作,环境所有的改变都来自Agent的动作
 - □ (A4) 状态目标:目标是一些需要达到的目标状态
 - □ (A5)序列规划:规划结果是一个线性动作序列
 - □ (A6) 隐含时间: 不考虑时间连续性
 - □ (A7) 离线规划:规划求解器不考虑执行时的状态

经典规划

■ 典型的问题: 积木世界

■ 问题描述

□ 集合描述: 使用有限的命题符号集合

□ 经典描述: 使用一阶逻辑符号

- 求解方法分为状态空间的求解和规划空间的求解
- 状态空间搜索
 - □ 在状态转移图中搜索从初始状态到目标状态的一条路径
 - □ 前向搜索、后向搜索、启发式搜索
- 规划空间搜索
 - □ 用找缺陷的方法对规划求精,直到规划可执行
 - □ 偏序规划

A*算法

- 一种启发式搜索方法
- 存储两张表
 - □ OPEN表:保存所有已生成而未访问过的节点
 - □ CLOSE表:记录已访问过的节点

■ 特点: OPEN表中的每个节点n都有一个优先值f(n)

越小优先级越高

$$f(n) = g(n) + h(n)$$

起始节点到节点n的成本函数

节点*n*到目标节点的启发式函数

■ 可容纳最优: 启发式函数满足 $0 \le h(n) \le h^*(n)$

节点*n*到目标 节点的最优值

概率规划

- 基于概率模型和效用函数,制定一系列的理性决策
 - □ 使用最大化期望效用原则
 - □ 多步决策: 在计算理性决策时,要求推理未来的动作和观察序列

■ 问题描述

- □ 马尔可夫决策过程(Markov Decision Process, MDP)
- □ 部分可观察的MDP(Partially Observable MDP, POMDP)
- □ 分布式POMDP (Decentralized POMDP, Dec-POMDP)
- MDP/POMDP/Dec-POMDP规划问题的求解方法
 - □ 离线规划: 动态规划
 - □ 在线规划:蒙特卡洛树搜索

MDP模型

- ■一个MDP问题可以形式化地建模为
 - 有限的状态集合S
 - □ 有限的动作集合A
 - □ 状态转移函数T(s'|s,a)
 - Agent在状态s执行动作a转移到新的状态s'的概率
 - □ 奖励函数*R*(*s*, *a*)
 - Agent在状态s执行动作a所能得到的即时奖励
- MDP模型的特点
 - □考虑了状态转移的不确定性
 - □ Agent可以直接获得环境的状态信息

POMDP模型

- ■一个POMDP问题可以形式化地建模为
 - □ 有限的状态集合S

MDP

- □ 有限的动作集合*A*
- □ 状态转移函数*T*(*s*′|*s*, *a*)
- □ 奖励函数*R*(*s*, *a*)
- 有限的观察集合の
- □ 观察函数Ω(o|s',a)
 - Agent执行动作a转移到新的状态s'后,获得观察o的概率
- POMDP模型的特点

□ Agent不能直接获得环境的状态信息,其对于状态的观察 来源于传感器收集到的带噪声的局部信息

一个简单的POMDP问题:老虎问题

- 老虎问题:通过听老虎的叫声判断它的位置,尽可能打开没有关老虎的那扇门
 - 状态集合 $S = \{Tiger_{Left}, Tiger_{Right}\}$
 - 动作集合 $\mathcal{A} = \{Open_{Left}, Open_{Right}, Listen\}$
 - 观察集合 $0 = \{Roar_{Left}, Roar_{Right}\}$

■ 状态转移规则

- □ Agent执行动作Listen后,老虎的位置不变
- □ Agent执行其他动作后,老虎会等概率地放置在两扇门后

状态转移函数

$$T(\text{Tiger}_{\text{Left}} \mid \text{Tiger}_{\text{Left}}, \text{Listen}) = 1.0, T(\text{Tiger}_{\text{Right}} \mid \text{Tiger}_{\text{Right}}, \text{Listen}) = 1.0$$

$$T(* \mid *, \text{Open}_{\text{Left}}) = 0.5, T(* \mid *, \text{Open}_{\text{Right}}) = 0.5$$

- 叫声是老虎在哪扇门后的有噪声的信号
 - □ 当老虎在左边门后时,Agent会有85%的概率观察到Roar_{Left},还有15%的概率会观察到Roar_{Right};反之亦然

观察函数


```
\begin{split} \varOmega(\text{Roar}_{\text{Left}} \mid \text{Tiger}_{\text{Left}}, \text{Listen}) &= 0.85, \varOmega(\text{Roar}_{\text{Right}} \mid \text{Tiger}_{\text{Left}}, \text{Listen}) = 0.15 \\ \varOmega(\text{Roar}_{\text{Right}} \mid \text{Tiger}_{\text{Right}}, \text{Listen}) &= 0.85, \varOmega(\text{Roar}_{\text{Left}} \mid \text{Tiger}_{\text{Right}}, \text{Listen}) = 0.15 \\ \varOmega(* \mid *, \text{Open}_{\text{Left}}) &= 0.5, \varOmega(* \mid *, \text{Open}_{\text{Right}}) = 0.5 \end{split}
```

- 听一次的惩罚为-1
- 打开有财宝的门的奖励为10,打开有老虎的门的惩罚为—100

奖励函数

$$R(*, Listen) = -1$$

$$R(Tiger_{Left}, Open_{Right}) = 10, R(Tiger_{Right}, Open_{Left}) = 10$$

$$R(Tiger_{Left}, Open_{Left}) = -100, R(Tiger_{Right}, Open_{Right}) = -100$$

信念状态

- Agent需要依赖过去动作和观察序列的完整历史信息来选择 理想的动作
- 信念状态: 表征与决策有关的、过去动作和观察序列的完整历史信息
- 信念状态b: 定义在状态集合S上的向量
 - $b_t(s)$: 在t时刻,Agent在状态s的概率

$$b_t(s) = P(s_t = s \mid o_t, a_{t-1}, o_{t-1}, ..., a_0, b_0)$$

- □ 初始信念状态 b_0 : Agent在时刻t=0的初始状态概率分布
- 对所有状态 $s \in S$,均有 $b(s) \in [0,1]$,且 $\sum_{s \in S} b(s) = 1$

MDP vs. POMDP

策略: 状态s到动作a的映射

策略:信念状态b到动作a的映射

值函数 $V^{\pi}(s)$: 由状态s开 始,执行策略π所能获得的 期望折扣回报

值函数 $V^{\pi}(b)$: 由信念状态b开 始, 执行策略π所能获得的期望 折扣回报

$$\mathbb{E}_{\pi}\left[\sum_{t=0}^{T-1} \gamma^t R(s_t, \pi(s_t)) \mid s_0 = s\right]$$

$$\mathbb{E}_{\pi} \left[\sum_{t=0}^{T-1} \gamma^{t} R(s_{t}, \pi(s_{t})) \mid s_{0} = s \right] \qquad \mathbb{E}_{\pi} \left[\sum_{t=0}^{T-1} \gamma^{t} R(b_{t}, \pi(b_{t})) \mid b_{0} = b \right]$$

开环规划

- 开环规划: 不考虑未来状态信息
 - □ 如: 很多路径规划算法
 - □ 得到静态的动作序列
 - □ 计算开销较小,仅能获得次优解
- 示例: 开环规划的次优性
 - 9个状态,起始状态 s_0
 - □ 两个决策步,每步决定向上走(up)还是向下走(down)
 - □ 有4个开环序列:
 - (up, up), (up, down), (down, up), (down, down)
 - 期望效用:
 - \bullet 在 s_0 处的最优动作是down

• $U(\text{up, down}) = 0.5 \times 0 + 0.5 \times 30 = 15$

- U(down, up) = 20
- U(down, down) = 20

闭环规划

- 闭环规划: 考虑未来状态信息
 - □ 如: 动态规划
 - □ 得到反应式的策略,能对动作的不同结果做出不同反应
 - □ 计算开销较大,能获得近似最优解
 - □ 在行动效果不确定的序贯决策问题中,闭环规划更有优势
- 示例: 闭环规划的最优性
 - 根据执行第一个动作后所观察到的 结果来选择下一个动作
 - □ 在 s_0 处往上走,根据是到了 s_1 还是 s_2 来选择向上还是向下,从而保证 得到30的奖励

动态规划

- ■动态规划是一种通用的技术
 - □ 计算斐波那契数列
 - □ 计算两个字符串的最长子串匹配
 - □ 计算隐马尔可夫模型的最可能状态序列
 - □ 求解MDP/POMDP/Dec-POMDP规划问题的最优策略

■要素

- □ 最优子结构:将原问题分解成多个子问题,如果知道了子问题的解,就很容易知道原问题的解
- □ 重叠子问题: 分解得到的多个子问题中,有很多子问题是相同的,不需要重复计算

■ 假设一个资源的价值为1,两个Agent通过轮流出价的协商协议把它分成两份,每份的价值在0到1之间,这两份的价值总和为1。如果协商的轮数不固定,那么Agent 1在第0轮应该如何出价?并解释为什么。请分两个Agent都是有耐心的玩家和耐心有限的玩家这样两种情况分别讨论。

■ 简述轮流出价协议的规则,单调让步协议的规则。

- 简述在使用单调让步协议进行协商时,使用 Zeuthen策略的协商参与者是如何解决下面三个问 题的:
 - (1) Agent的第一个提议应该是什么?
 - (2) 在给定的一轮协商中, 谁应该让步?
 - (3) 如果一个Agent让步,它应该让步多少?

■ 给定如下图所示的Dung式抽象辩论系统。

请写出以下内容:

- □ 无冲突的立场
- □互相辩护的立场
- □可采纳的立场
- □偏好拓展
- □ 轻信接受的论证集合
- □ 怀疑接受的论证集合
- □理性拓展

■ 给定如下图所示的Dung式抽象辩论系统。

请写出以下内容:

- □可采纳的立场
- □偏好拓展
- □ 轻信接受的论证集合
- □ 怀疑接受的论证集合
- □理性拓展