

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(2007220 27001 2000 00111100)

Page No: 01/29

SUMMER – 2016 EXAMINATION MODEL ANSWER

Subject: ENGINEERING MATHEMATICS (EMS)

Subject Code: 17216

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Subject Code: (17216) Page No: 02/29 Summer-2016

Que.	Sub.	N. 11.4		Total
No.	Que.	Model Answers	Marks	Marks
1.		Attempt any <u>TEN</u> of the following:		20
	a)	If $3a - 7 + 2bi = 5i + ia - 5b$, find a, b		
	Ans	(3a-7+5b)+(2b-5-a)i=0	1/2	
		$\therefore 3a - 7 + 5b = 0$		
		2b - 5 - a = 0		
		3a + 5b = 7	1/2	
		-a+2b=5		
		$\therefore 3a + 5b = 7$		
		-3a + 6b = 15		
		11b = 22	1/2	
		b = 2	72	02
		a = -1	1/2	0_
	b)	If $z = 1 + i\sqrt{3} \text{ show that } z^2 + 4 = 2z$		
	Ans			
	AllS	$z^2 + 4$		
		$= (1 + i\sqrt{3}) + 4$	1/2	
		$= (1 + i\sqrt{3})^{2} + 4$ $= 1 + 2i\sqrt{3} + 3i^{2} + 4$	1/2	
		$=1+2i\sqrt{3}-3+4$	/2	
		$=2+2i\sqrt{3}$	1/2	
		$=2\left(1+i\sqrt{3}\right)$		02
		=2z	1/2	
		O R		
		$L.H.S. = z^2 + 4$		
		$= \left(1 + i\sqrt{3}\right)^2 + 4$	1/2	
		$= 1 + 2i\sqrt{3} + 3i^2 + 4$	1/2	
		$=1+2i\sqrt{3}-3+4$	1.	
		$=2+2i\sqrt{3}$	1/2	
		R.H.S. = 2z		
		$=2\left(1+i\sqrt{3}\right)$		
		$= 2 + 2i\sqrt{3} = L.H.S.$	1/2	02
				<u> </u>

Subject Code: (17216) Page No: 03/29 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	1.20 001 1.2.10 // 0.20	11241115	Marks
1.	c)	Define even and odd function.		
	Ans	Even function:-		
		If $f(-x)=f(x)$ then function is even function.	1	
		Odd function:-		
		If $f(-x) = -f(x)$ then function is odd function	1	02
	d)	If $f(x) = \sin x$ show that $f(3x) = 3f(x) - 4f^3(x)$		
	Ans	L.H.S. = f(3x)	1/.	
		$= \sin 3x$	1/2	
		$= 3\sin x - 4\sin^3 x$	1	
		$=3f(x)-4f^{3}(x)$	1/2	02
		= R.H.S.		
		OR		
		$R.H.S. = 3 f(x) - 4 f^{3}(x)$	1/2	
		$= 3\sin x - 4\sin^3 x$	1	0.0
		$= \sin 3x$		02
		= f(3x)	1/2	
		=L.H.S.		
	e)	Evaluate: $\lim_{x\to 1} \left(\frac{1}{x-1} - \frac{1}{x^2-x}\right)$		
	Ans	$\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{1}{x^2 - x} \right)$		
		$= \lim_{x \to 1} \left(\frac{1}{x-1} - \frac{1}{x(x-1)} \right)$	1/2	
		$= \lim_{x \to 1} \left(\frac{x - 1}{x(x - 1)} \right)$	1/2	
		$=\lim_{x\to 1} \frac{1}{x}$	1/2	
		$ \begin{array}{ccc} & & & & \\ & x \rightarrow 1 & & \chi \\ & & & \\ & & & & \\ & & & & \\ & & & &$	1/2	02
		$\mathbf{OR} \lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{1}{x^2 - x} \right)$		

Subject Code: (17216) Page No: 04/29 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
1.		$= \lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{1}{x(x - 1)} \right)$	1/2	
		$= \lim_{x \to 1} \frac{1}{x - 1} \left(1 - \frac{1}{x} \right)$		
		$= \lim_{x \to 1} \frac{1}{x - 1} \left(\frac{x - 1}{x} \right)$	1/2	
		$=\lim_{x\to 1} \frac{1}{x}$	1/2	02
		= 1	.1/2	
	f)	Evaluate $\lim_{x\to 0} \frac{\cos 5x - \cos 3x}{x^2}$		
	Ans	$\lim_{x \to 0} \frac{\cos 5x - \cos 3x}{x^2}$		
		$= \lim_{x \to 0} \frac{-2\sin\left(\frac{5x + 3x}{2}\right)\sin\left(\frac{5x - 3x}{2}\right)}{x^2}$	1/2	
		$= \lim_{x \to 0} \frac{-2\sin 4x \sin x}{x^2}$		
		$= \lim_{x \to 0} \frac{-2\sin 4x}{x} \frac{\sin x}{x}$	1/2	
		$= -2\left(\lim_{x\to 0} \frac{\sin 4x}{4x}\right) 4\left(\lim_{x\to 0} \frac{\sin x}{x}\right)$		
		= -2(1)4(1)	1/2	
		=-8	1/2	02
	g)	Evaluate $\lim_{x\to 0} \left(\frac{1+x}{1-x}\right)^{\frac{1}{x}}$		
	Ans	$\lim_{x \to 0} \left(\frac{1+x}{1-x} \right)^{\frac{1}{x}}$		
		$= \lim_{x \to 0} \frac{\left(1+x\right)^{\frac{1}{x}}}{\left(1-x\right)^{\frac{1}{x}}}$	1/2	

Subject Code: (17216) Page No: 05/29 Summer 2016

Que. Sub	Model Answers	Marks	Total Marks
No. Que	$= \frac{\lim_{x \to 0} (1+x)^{\frac{1}{x}}}{\left[\lim_{x \to 0} (1-x)^{-\frac{1}{x}}\right]^{-1}}$ $= \frac{e}{e^{-1}}$ $= e^{2}$ Find $\frac{dy}{dx}$ if $y = \frac{\sin x}{1-\cos x}$	1/2 1/2 1/2 1/2	Marks 02
i) An	$\frac{dy}{dx} = \frac{\cos x - (\cos^2 x + \sin^2 x)}{(1 - \cos x)^2}$ $\frac{dy}{dx} = \frac{\cos x - 1}{(1 - \cos x)^2}$ $\frac{dy}{dx} = \frac{-(1 - \cos x)}{(1 - \cos x)^2}$ $\frac{dy}{dx} = \frac{-1}{1 - \cos x}$ If $y = \log(\sec x + \tan x)$ find $\frac{dy}{dx}$	1½2	02

Subject Code: (17216) Page No: 06/29 Summer-2016

1.	j)	If $\tan^{-1}(x^2)$	$+v^2$) = a^2 fi	nd =	ly_					
	Ana			. ii u	lx					
	Ans	$\tan^{-1}\left(x^2+y\right)$								
		$x^2 + y^2 = \tan \theta$								
		$2x + 2y \frac{dy}{dx} =$	= 0						11/2	
		$\frac{dy}{dx} = \frac{-x}{x}$							1/2	02
		dx y							/ 2	
	k)			····		3	1 0 (
		only)	tion method	find	the ro	ot of $x^3 - x -$	I = 0 (two)	iterations		
	Ans	Let $f(x) = .$	$r^3 - r - 1 = 0$							
		$f\left(1\right) = -1$	x = x = 0						1/2	
		f(2) = 5							1/2	
		: the root is	in $(1, 2)$							
		$x_1 = \frac{a+b}{2} = \frac{a+b}{2}$	$\frac{1+2}{}=1.5$						1/2	
		_	_							
		$f\left(1.5\right) = 0.8$	375 > 0							
		: the root is	in (1,1.5)						1/	02
		$x_2 = \frac{x_1 + b}{2} =$	$= \frac{1+1.5}{2} = 1.2$	25					1/2	
		O R								
		Let f(x) = .	x^3-x-1							
		f(1) = -1							1/2	
		f(2) = 5	. (1.2)						1/2	
		: the root is			Γ		ı	1		
			Iteration	a	b	$x = \frac{a+b}{2}$	f(x)			
			I	1	2	1.5	0.875	-	1/2	
			II	1	1.5	1.25		1	1/2	02
								- 		
	1)					eration only,		llowing		
			-y=9, x	– 5 y	+ z = -	4 , y - 5z = 0	5			
	Ans	$x = \frac{9+y}{5}$								

Subject Code: (17216) Page No: 07/29 Summer-2016

Que.	Sub.	26.114	36.1	Total
No.	Que.	Model Answers	Marks	Marks
1.		$y = \frac{-4 - x - z}{-5}$ $z = \frac{6 - y}{-5}$ Initial approximations: $x_0 = y_0 = z_0 = 0$ $x = \frac{9}{5} = 1.8$ $y = \frac{4}{5} = 0.8$	1	02
		$z = \frac{6}{-5} = -1.2$	1	02
2.		Attempt any <u>FOUR</u> of the following:		16
	a)	Find the complex conjugate of $\frac{(2+i)^2}{2+3i}$		
	Ans	$(2+i)^2$		
		2+3i		
		$=\frac{4+4i+i^2}{2+3i}$	1/2	
		$= \frac{4+4i-1}{3} = \frac{3+4i}{3}$	1/2	
		$2+3i \qquad 2+3i$ $= \frac{3+4i}{2} \times \frac{2-3i}{2}$	1/2	
		2 + 3i 2 - 3i	/ 2	
		$=\frac{6-9i+8i-12i^2}{4-9i^2}$	1/2	
		$=\frac{6-9i+8i+12}{4+9}$		
			1	
		$=\frac{18-i}{13}$		
		$=\frac{18}{13} - \frac{1}{13}i$	1/2	
		Conjugate is $\frac{18}{13} + \frac{1}{13}i$	1/2	04
	b)	Simplify using De-Moiver's theorem		
		$\frac{\left(\cos 3\theta + i\sin 3\theta\right)^4 \left(\cos 5\theta - i\sin 5\theta\right)^5}{2}$		
		$\left(\cos\frac{9}{2}\theta + i\sin\frac{9}{2}\theta\right)^{\frac{2}{3}}\left(\cos\frac{4}{5}\theta - i\sin\frac{4}{5}\theta\right)^{10}$		

Subject Code: (17216) Page No: 08/29 Summer-2016

Que.	Sub.	Model answers	Marks	Total
No.	Que.	Widder answers	Warks	Marks
2.	Ans	$\frac{\left(\cos 3\theta + i\sin 3\theta\right)^{4} \left(\cos 5\theta - i\sin 5\theta\right)^{\frac{4}{5}}}{\left(\cos \frac{9}{2}\theta + i\sin \frac{9}{2}\theta\right)^{\frac{2}{3}} \left(\cos \frac{4}{5}\theta - i\sin \frac{4}{5}\theta\right)^{10}}$		
		$= \frac{\left(\cos\theta + i\sin\theta\right)^{12} \left(\cos\theta + i\sin\theta\right)^{-4}}{\left(\cos\theta + i\sin\theta\right)^{3} \left(\cos\theta + i\sin\theta\right)^{-8}}$	2	
		$= (\cos\theta + i\sin\theta)^{12-4-3+8}$	1	
		$= \left(\cos\theta + i\sin\theta\right)^{13}$	1/2	
		$= \cos 13\theta + \sin 13\theta$	1/2	04
	c)	Using Euler's exponential formula prove that		
		$i) \sin^2 \theta + \cos^2 \theta = 1$ $ii) \cosh^2 \theta - \sinh^2 \theta = 1$		
	Ans	$i) \sin^2 \theta + \cos^2 \theta$		
		$= \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^2 + \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^2$	1/2	
		$= \frac{1}{4i^{2}} \left(e^{i\theta} - e^{-i\theta} \right)^{2} + \frac{1}{4} \left(e^{i\theta} + e^{-i\theta} \right)^{2}$		
		$= \frac{-1}{4} \left(e^{2i\theta} - 2e^{i\theta}e^{-i\theta} + e^{-2i\theta} \right) + \frac{1}{4} \left(e^{2i\theta} + 2e^{i\theta}e^{-i\theta} + e^{-2i\theta} \right)$	1/2	
		$=\frac{1}{4}\left(4e^{i\theta}e^{-i\theta}\right)=\frac{1}{4}\left(4e^{0}\right)$	1/2	
		= 1	1/2	
		$ii)\cosh^2\theta-\sinh^2\theta$		
		$= \left(\frac{e^{\theta} + e^{-\theta}}{2}\right)^2 - \left(\frac{e^{\theta} - e^{-\theta}}{2}\right)^2$	1/2	
		$= \frac{1}{4} \left(e^{\theta} + e^{-\theta} \right)^2 - \frac{1}{4} \left(e^{\theta} - e^{-\theta} \right)^2$		
		$= \frac{1}{4} \left(e^{2\theta} + 2e^{\theta} e^{-\theta} + e^{-2\theta} \right) - \frac{1}{4} \left(e^{2\theta} - 2e^{\theta} e^{-\theta} + e^{-2\theta} \right)$	1/2	
		$= \frac{1}{4} \left(4 e^{\theta} e^{-\theta} \right) = \frac{1}{4} \left(4 e^{0} \right)$	1/2	04
		= 1	1/2	

Subject Code: (17216) Page No: 09/29 Summer-2016

Que.	Sub.	N/ 114	N. 6. 1	Total
No.	Que.	Model Answers	Marks	Marks
2.	d)	Use De-Moiver's theorem to solve the equation $x^3 - 1 = 0$		
	Ans	$x^3 - 1 = 0$		
		$\therefore x^3 = 1$		
		$Put x^3 = z$		
		$\therefore x = z^{\frac{1}{3}}$		
		$\therefore z = 1 + 0i$		
		Re(z) = 1, Im(z) = 0		
		$r = \left z \right = \sqrt{1+0} = 1$	1/2	
		$\theta = \tan^{-1}\left(\frac{0}{1}\right) = 0$	1/2	
		$z = r(\cos\theta + i\sin\theta)$	1/2	
		$z = 1(\cos 0 + i \sin 0)$, -	
		In general polar form, $z = r(\cos(2\pi k + \theta) + i\sin(2\pi k + \theta))$		
		$z = 1(\cos 2\pi k + i\sin 2\pi k)$	1/2	
		$z^{\frac{1}{3}} = (\cos 2\pi k + i \sin 2\pi k)^{\frac{1}{3}}$		
		$z = \cos\left(\frac{2\pi k}{3}\right) + i\sin\left(\frac{2\pi k}{3}\right) ; k = 0,1,2$	1/2	
		w hen k = 0		
		$z_1 = \cos 0 + i \sin 0 = 1$	1/2	
		when $k = 1$ $z_2 = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ when $k = 2$	1/2	
		$z_3 = \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right) = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$	1/2	04
	e)	If $f(x) = \frac{x+3}{4x-5}$ and $t = \frac{3+5x}{4x-1}$ then show that $f(t) = x$		
	,			
	Ans	$f\left(t\right) = \frac{t+3}{4t-5}$	1/2	
		$= \frac{\frac{3+5x}{4x-1} + 3}{4\left(\frac{3+5x}{4x-1}\right) - 5}$	1/2	

Subject Code: (17216) Page No: 10/29 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	1.10 001 1 110 110 110 110 110 110 110 1	11101115	Marks
2.		$= \frac{\frac{3+5x+3(4x-1)}{4x-1}}{\frac{4(3+5x)-5(4x-1)}{4x-1}}$	1	
		$= \frac{3+5x+12x-3}{}$	1	
		$12 + 20x - 20x + 5$ $= \frac{17x}{100}$	1/2	
		17	1/2	04
		= x	/ 2	
	f) Ans	If $f(t) = 50 \sin(50\pi t + 0.04)$, show that $f\left(\frac{2}{100} + t\right) = f(t)$		
		$f\left(\frac{2}{100} + t\right) = 50\sin\left(50\pi\left(\frac{2}{100} + t\right) + 0.04\right)$	1	
		$= 50 \sin \left(\pi + 50 \pi t + 0.04\right)$	1	
		$= -50 \sin (50 \pi t + 0.04)$	1	
		=-f(t)	1	04
3.		Attempt any <u>FOUR</u> of the following:		16
	a)	If $f(x) = x^2 + 3$ then find the value of x for which $f(x) = f(2x + 1)$		
	Ans	f(2x+1)		
		$= (2x+1)^{2} + 3$ $= 4x^{2} + 4x + 1 + 3$	1	
		$= 4x^{2} + 4x + 1 + 3$ $= 4x^{2} + 4x + 4$	1	
		Given $f(x) = f(2x+1)$		
		$\therefore x^2 + 3 = 4x^2 + 4x + 4$	1/2	
		$\therefore -3x^2 - 4x - 1 = 0$	1/2	
		$\therefore 3x^{2} + 4x + 1 = 0$ $(x+1)(3x+1) = 0$		
		$\therefore x = -1, \frac{-1}{3}$	1/2,1/2	
			, 2, / 2	04

Subject Code: (17216) Page No: 11/29 Summer-2016

No.	Sub. Que.	Model Answers	Marks	Total Marks
No. 3.	Que. b) Ans	If $f(x) = 16^x + \log_2 x$ then find the value of $f\left(\frac{1}{4}\right)^2$, $f\left(\frac{1}{2}\right)$ $f(x) = 16^x + \log_2 x$ $\therefore f\left(\frac{1}{4}\right)^2 = f\left(\frac{1}{16}\right)$ $= (16)^{\frac{1}{16}} + \log_2 \left(\frac{1}{16}\right)$ $= -2.811$ $f\left(\frac{1}{2}\right) = (16)^{\frac{1}{2}} + \log_2 \left(\frac{1}{2}\right)$ $= 3$ OR $f(x) = 16^x + \log_2 x$ $\therefore f\left(\frac{1}{4}\right) = (16)^{\frac{1}{4}} + \log_2 \left(\frac{1}{4}\right)$ $= 0$ $\therefore \left[f\left(\frac{1}{4}\right)\right]^2 = 0$ $f\left(\frac{1}{2}\right) = (16)^{\frac{1}{2}} + \log_2 \left(\frac{1}{2}\right)$ $= 3$	Marks 1 1 1 1 1 ½ 1/2 1/2	
	Ans	E valuate: $\lim_{x \to 2} \frac{x^2 - 4}{\sqrt{x + 2} - \sqrt{3x - 2}}$ $= \lim_{x \to 2} \frac{x^2 - 4}{\sqrt{x + 2} - \sqrt{3x - 2}} \times \frac{\sqrt{x + 2} + \sqrt{3x - 2}}{\sqrt{x + 2} + \sqrt{3x - 2}}$ $= \lim_{x \to 2} \frac{(x^2 - 4)(\sqrt{x + 2} + \sqrt{3x - 2})}{x + 2 - (3x - 2)}$	1/2	
		$\lim_{x \to 2} x + 2 - (3x - 2)$ $= \lim_{x \to 2} \frac{(x^2 - 4)(\sqrt{x + 2} + \sqrt{3x - 2})}{-2x + 4}$ $= \lim_{x \to 2} \frac{(x - 2)(x + 2)(\sqrt{x + 2} + \sqrt{3x - 2})}{-2(x - 2)}$ $= \lim_{x \to 2} \frac{(x + 2)(\sqrt{x + 2} + \sqrt{3x - 2})}{-2}$	1	

Subject Code: (17216) Page No: 12/29 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
3.		$= \frac{(2+2)(\sqrt{2+2}+\sqrt{6-2})}{-2}$	1/2	
			1/2	04
		=-8	72	
	d)	Evaluate: $\lim_{x \to 3} \frac{\log x - \log 3}{x - 3}$		
	Ans	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
			1	
		$= \lim_{h \to 0} \frac{\log(3+h) - \log 3}{3+h-3}$		
		$= \lim_{n \to \infty} \frac{\log\left(\frac{3+h}{3}\right)}{n}$		
		$=\lim_{h\to 0}\frac{3}{h}$		
		"	1	
		$= \lim_{h \to 0} \frac{1}{h} \log \left(1 + \frac{h}{3} \right)$		
		$=\lim_{h\to 0}\log\left(1+\frac{h}{3}\right)^{\frac{1}{h}}$	1/2	
		$\begin{bmatrix} - \lim_{h \to 0} \log \left(\frac{1+1}{3} \right) \end{bmatrix}$		
		$\begin{bmatrix} \frac{3}{h} \end{bmatrix}_h^{\frac{1}{3}}$	1/2	
		$= \log \left[\lim_{h \to 0} \left(1 + \frac{h}{3} \right)^{\frac{3}{h}} \right]^{\frac{1}{3}}$	72	
		$= \log e^{-1}$	1/2	
		$= \frac{1}{3} \log e$		
		1 = -	1/2	04
		3		01
	e)	Evaluate: $\lim_{x \to 0} \frac{4^x + 4^{-x} - 2}{x^2 + 4^{-x} - 2}$		
	Ans	Evaluate: $\lim_{x\to 0} \frac{1}{x \sin x}$		
		$4^{x} + \frac{1}{4^{x}} - 2$	1/2	
		$= \lim_{x \to 0} \frac{4^x + \frac{1}{4^x} - 2}{x \sin x}$		
		$(4^x)^2 + 1 - 2.4^x$	17	
		$=\lim \frac{4^x}{}$	1/2	
		$x \to 0$ $x \sin x$		
		$= \lim_{x \to 0} \frac{\left(4^x - 1\right)^2}{x^2} \times \frac{x}{\sin x} \times \frac{1}{4^x}$	1	
		A 51H A 7		

Subject Code: (17216) Page No: 13/29 Summer-2016

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
3.		$= \left(\lim_{x \to 0} \frac{4^{x} - 1}{x}\right)^{2} \left(\lim_{x \to 0} \frac{x}{\sin x}\right) \left(\frac{1}{4^{0}}\right)$	1/2	
		$= (\log 4)^2 (1)$	1	04
		$= \left(\log 4\right)^2$	1/2	
	f)	Evaluate: $\lim_{\pi} \frac{\sin \theta - \cos \theta}{\pi}$		
		$\theta \to \frac{\pi}{4}$ $\theta - \frac{\pi}{4}$		
	Ans	Put $\theta = \frac{\pi}{4} + h$, as $\theta \to \frac{\pi}{4}$, $h \to 0$		
		$= \lim_{h \to 0} \frac{\sin\left(\frac{\pi}{4} + h\right) - \cos\left(\frac{\pi}{4} + h\right)}{\frac{\pi}{4} + h - \frac{\pi}{4}}$	1	
		$= \lim_{h \to 0} \frac{\sin \frac{\pi}{4} \cosh + \cos \frac{\pi}{4} \sinh - \left(\cos \frac{\pi}{4} \cosh - \sin \frac{\pi}{4} \sinh \right)}{h}$	1	
		$= \lim_{h \to 0} \frac{\frac{1}{\sqrt{2}} \cosh + \frac{1}{\sqrt{2}} \sinh - \left(\frac{1}{\sqrt{2}} \cosh - \frac{1}{\sqrt{2}} \sinh \right)}{h}$	1/2	
		$= \lim_{h \to 0} \frac{\frac{1}{\sqrt{2}} \cosh + \frac{1}{\sqrt{2}} \sinh - \frac{1}{\sqrt{2}} \cosh + \frac{1}{\sqrt{2}} \sinh }{h}$	1/2	
		$=\lim_{h\to 0} \frac{\frac{2}{\sqrt{2}}\sinh h}{h}$	1/2	
		$= \sqrt{2} \left(\lim_{h \to 0} \frac{\sinh}{h} \right)$		04
		$=\sqrt{2}$	1/2	
				16
4.		Attempt any <u>FOUR</u> of the following:		
	a)	Using first principal find the derivative of $f(x) = x^n$, $x \in R$		
	Ans	$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
		$\frac{dy}{dx} = \lim_{h \to 0} \frac{\left(x+h\right)^n - x^n}{h}$	1	

Subject Code: (17216) Page No: 14/29 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
4.		$\frac{dy}{dx} = \lim_{h \to 0} \frac{x^{n} + nx^{n-1}h + \frac{n(n-1)}{2!}x^{n-2}h^{2} + \dots + h^{n} - x^{n}}{h}$ $\frac{dy}{dx} = \lim_{h \to 0} \frac{nx^{n-1}h + \frac{n(n-1)}{2!}x^{n-2}h^{2} + \dots + h^{n}}{h}$	1	
		$\frac{dy}{dx} = \lim_{h \to 0} \frac{h}{h} \left(nx^{n-1} + \frac{n(n-1)}{2!} x^{n-2} h + \dots + h^{n-1} \right)$	1/2	
		$\frac{dy}{dx} = \lim_{h \to 0} \left(nx^{n-1} + \frac{n(n-1)}{2!} x^{n-2} h + \dots + h^{n-1} \right)$	1/2	
		$\frac{dy}{dx} = nx^{n-1} + 0 + \ldots + 0$	1/2	04
		$\frac{dy}{dx} = nx^{n-1}$	1/2	04
	b)	If u and v are differentiable functions of x and if $y = uv$, then prove that $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{dy}{dx}$		
	Ans	dx dx dx $Given y = uv$		
		Let $\delta u, \delta v, \delta y$ are small increments in u, v, y respectively corresponding to increment δx in x . $\therefore y + \delta y = (u + \delta u)(v + \delta v)$ $y + \delta y = uv + u\delta v + v\delta u + \delta u\delta v$ $\delta y = uv + u\delta v + v\delta u + \delta u\delta v - y$	1	
		$\delta y = uv + u\delta v + v\delta u + \delta u\delta v - uv$ $\delta y = u\delta v + v\delta u + \delta u\delta v$ $\delta u, \delta v \text{ are very small.}$ $\delta u\delta v \text{ is negligible.}$	1/2	
		$\therefore \delta y = u \delta v + v \delta u$ $\therefore \frac{\delta y}{\delta x} = \frac{u \delta v + v \delta u}{\delta x}$	1/2	
		$\lim_{\delta x \to 0} \frac{\delta y}{\delta x} = u \lim_{\delta x \to 0} \frac{\delta v}{\delta x} + v \lim_{\delta x \to 0} \frac{\delta u}{\delta x}$	1	
		$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$	1	04

Subject Code: (17216) Page No: 15/29 Summer-2016

Que.	Sub.	Model Anguare	Marks	Total
No.	Que.	Model Answers	Marks	Marks
4.	c)	Find $\frac{dy}{dx}$ if $y = \tan^{-1}\left(\frac{2x}{1+35x^2}\right)$		
	Ans	$y = \tan^{-1}\left(\frac{2x}{1+35x^2}\right)$		
		$\therefore y = \tan^{-1}\left(\frac{7x - 5x}{1 + (7x)(5x)}\right)$	1	
		$\therefore y = \tan^{-1}(7x) - \tan^{-1}(5x)$	1	
		$\therefore \frac{dy}{dx} = \frac{1}{1 + (7x)^2} \times 7 - \frac{1}{1 + (5x)^2} \times 5$	1½	
		$\therefore \frac{dy}{dx} = \frac{7}{1+49x^2} - \frac{5}{1+25x^2}$	1/2	04
		If $x^3y^2 = (x + y)^5$ show that $\frac{dy}{dx} = \frac{y}{x}$		
	Ans	$x^3y^2 = (x+y)^5$	1/2	
		$\therefore \log \left(x^3 y^2\right) = \log \left(x + y\right)^5$	1/2	
		$\therefore \log x^3 + \log y^2 = 5\log (x + y)$	1/2	
		$\therefore 3 \log x + 2 \log y = 5 \log (x + y)$	1	
		$\therefore 3\frac{1}{x} + 2\frac{1}{y}\frac{dy}{dx} = 5\left[\frac{1}{x+y}\left(1 + \frac{dy}{dx}\right)\right]$	1	
		$\therefore \frac{3}{x} + \frac{2}{y} \frac{dy}{dx} = \frac{5}{x+y} + \left(\frac{5}{x+y}\right) \frac{dy}{dx}$		
		$\therefore \left(\frac{2}{y} - \frac{5}{x+y}\right) \frac{dy}{dx} = \frac{5}{x+y} - \frac{3}{x}$	1/2	
		$\therefore \left(\frac{2x+2y-5y}{y(x+y)}\right) \frac{dy}{dx} = \frac{5x-3x-3y}{x(x+y)}$		
		$\therefore \left(\frac{2x-3y}{y}\right) \frac{dy}{dx} = \frac{2x-3y}{x}$	1/2	
		$\therefore \frac{dy}{dx} = \frac{y}{x}$	1/2	04
	e)	If $y = \frac{(1-x)^{\frac{1}{2}}}{(x+1)^{\frac{5}{7}}(2x+1)^{\frac{1}{3}}}$ find $\frac{dy}{dx}$		

Subject Code: (17216) Page No: 16/29 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wodel / Ms Wels	With	Marks
4.		$y = \frac{(1-x)^{\frac{1}{2}}}{(x+1)^{\frac{5}{7}}(2x+1)^{\frac{1}{3}}}$		
		$\therefore \log y = \log \left[\frac{(1-x)^{\frac{1}{2}}}{(x-1)^{\frac{5}{7}}(2x+1)^{\frac{1}{3}}} \right]$	1/2	
		$\therefore \log y = \log (1-x)^{\frac{1}{2}} - \log (x-1)^{\frac{5}{7}} - \log (2x+1)^{\frac{1}{3}}$	1	
		$\therefore \log y = \frac{1}{2} \log (1 - x) - \frac{5}{7} \log (x - 1) - \frac{1}{3} \log (2x + 1)$	1/2	
		$\therefore \frac{1}{y} \frac{dy}{dx} = \frac{1}{2(1-x)} (-1) - \frac{5}{7(x-1)} - \frac{1}{3(2x+1)} (2)$	1½	
		$\therefore \frac{dy}{dx} = y \left[\frac{-1}{2(1-x)} - \frac{5}{7(x-1)} - \frac{2}{3(2x+1)} \right]$	1/2	04
		O R		
		$y = \frac{(1-x)^{\frac{1}{2}}}{\frac{5}{2}}$		
		$(x-1)^{\frac{1}{7}}(2x+1)^{\frac{1}{3}}$		
		$\therefore \log y = \log \left[\frac{(1-x)^{\frac{1}{2}}}{(x-1)^{\frac{5}{7}}(2x+1)^{\frac{1}{3}}} \right]$	1/2	
		$\therefore \log y = \log (1-x)^{\frac{1}{2}} - \log (x-1)^{\frac{5}{7}} - \log (2x+1)^{\frac{1}{3}}$	1	
		$\therefore \frac{1}{y} \frac{dy}{dx} = \frac{1}{(1-x)^{\frac{1}{2}}} \frac{1}{2} (1-x)^{\frac{-1}{2}} (-1) - \frac{1}{(x-1)^{\frac{5}{7}}} \frac{5}{7} (x-1)^{\frac{-2}{7}} - \frac{1}{(2x+1)^{\frac{1}{3}}} \frac{1}{3} (2x+1)^{\frac{-2}{3}} (2)$	1½	
		$\therefore \frac{dy}{dx} = y \left[\frac{-1}{2(1-x)} - \frac{5}{7(x-1)} - \frac{2}{3(2x+1)} \right]$	1	04
	f)	If $x = a(\theta - \sin \theta)$ and $y = a(1 - \cos \theta)$ find $\frac{dy}{dx}$		
	Ans	$x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$		
		$\frac{dx}{d\theta} = a\left(1 - \cos\theta\right)$	1½	
		$\therefore \frac{dy}{d\theta} = a \sin \theta$	1½	

Subject Code: (17216) Page No: 17/29 Summer-2016

Que.	Sub.	Model Angruens	Marks	Total
No.	Que.	Model Answers	Marks	Marks
4.		$\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$ $\therefore \frac{dy}{dx} = \frac{a\sin\theta}{a(1-\cos\theta)}$ $\therefore \frac{dy}{dx} = \frac{\sin\theta}{1-\cos\theta}$	1	04
5.		Attempt any <u>FOUR</u> of the following:		16
	a)	Evaluate $\lim_{x\to\infty} \sqrt{x} \left(\sqrt{x+1} - \sqrt{x} \right)$		
	Ans	$\lim_{x \to \infty} \sqrt{x} \left(\sqrt{x+1} - \sqrt{x} \right)$		
		$\lim_{x \to \infty} \sqrt{x} \left(\sqrt{x+1} - \sqrt{x} \right)$ $= \lim_{x \to \infty} \sqrt{x} \left(\sqrt{x+1} - \sqrt{x} \right) \times \frac{\left(\sqrt{x+1} + \sqrt{x} \right)}{\left(\sqrt{x+1} + \sqrt{x} \right)}$	1/2	
		$= \lim_{x \to \infty} \frac{\sqrt{x} (x + 1 - x)}{(\sqrt{x + 1} + \sqrt{x})}$	1/2	
		$= \lim_{x \to \infty} \frac{\sqrt{x} (1)}{\sqrt{x} \left(\sqrt{1 + \frac{1}{x} + 1} \right)}$	1	
		$= \lim_{x \to \infty} \frac{1}{\left(\sqrt{1 + \frac{1}{x} + 1}\right)}$	1	
		$=\frac{1}{\sqrt{1+0}+1}$	1/2	
		$\sqrt{1+0+1} = \frac{1}{2}$	1/2	04
		$\lim_{x \to \infty} \sqrt{x} \left(\sqrt{x+1} - \sqrt{x} \right)$		
		$\lim_{x \to \infty} \sqrt{x} \left(\sqrt{x+1} - \sqrt{x} \right)$ $= \lim_{x \to \infty} \sqrt{x} \left(\sqrt{x+1} - \sqrt{x} \right) \times \frac{\left(\sqrt{x+1} + \sqrt{x} \right)}{\left(\sqrt{x+1} + \sqrt{x} \right)}$	1/2	
		$= \lim_{x \to \infty} \frac{\sqrt{x} (x + 1 - x)}{(\sqrt{x + 1} + \sqrt{x})}$	1/2	

Subject Code: (17216) Page No: 18/29 Summer-2016

Que.	Sub.	Model Angwers	Morlzo	Total
No.	Que.	Model Answers	Marks	Marks
5.		$= \lim_{x \to \infty} \frac{\sqrt{x}}{\left(\sqrt{x+1} + \sqrt{x}\right)}$ $Put \ x = \frac{1}{t} \text{ as } x \to \infty, t \to 0$ $\lim_{t \to 0} \frac{\sqrt{\frac{1}{t}}}{\left(\sqrt{\frac{1}{t} + 1} + \sqrt{\frac{1}{t}}\right)}$ $= \lim_{t \to 0} \frac{\sqrt{\frac{1}{t}}}{\sqrt{\frac{1}{t}}\left(\sqrt{1+t} + 1\right)}$ $= \lim_{t \to 0} \frac{1}{\left(\sqrt{1+t} + 1\right)}$ $= \frac{1}{\sqrt{1+0} + 1}$ $= \frac{1}{2}$	1 1/2 1/2 1/2 1/2	04
	b) Ans	Evaluate $\lim_{\theta \to \frac{\pi}{4}} \frac{2 - \sec^2 \theta}{1 - \tan \theta}$ $\lim_{\theta \to \frac{\pi}{4}} \frac{2 - \sec^2 \theta}{1 - \tan \theta}$ $= \lim_{\theta \to \frac{\pi}{4}} \frac{2 - \left(1 + \tan^2 \theta\right)}{1 - \tan \theta}$ $= \lim_{\theta \to \frac{\pi}{4}} \frac{2 - 1 - \tan^2 \theta}{1 - \tan \theta}$ $= \lim_{\theta \to \frac{\pi}{4}} \frac{1 - \tan^2 \theta}{1 - \tan \theta}$ $= \lim_{\theta \to \frac{\pi}{4}} \frac{\left(1 - \tan \theta\right) \left(1 + \tan \theta\right)}{1 - \tan \theta}$ $= \lim_{\theta \to \frac{\pi}{4}} \frac{\left(1 - \tan \theta\right) \left(1 + \tan \theta\right)}{1 - \tan \theta}$ $= \lim_{\theta \to \frac{\pi}{4}} \left(1 + \tan \theta\right)$	1/2 1/2 1 1/2	04

Subject Code: (17216) Page No: 19/29 Summer-2016

Que.	Sub. Que.	Model Answers	Marks	Total Marks
5.		$_{\cdot}$ π	1/2	
		$=1+\tan\frac{\pi}{4}$	1/2	0.4
		= 1 + 1		04
		= 2	1/2	
	c)	Using bisection method find the approximate value of $\sqrt{10}$ by performing three iterations.		
	Ans	Let $x = \sqrt{10}$		
		$\therefore x^2 = 10$		
		$\therefore x^2 - 10 = 0$		
		$Let f(x) = x^2 - 10$	1/	
		$f\left(3\right) = -1 < 0$	1/2	
		$f\left(4\right) = 16 > 0$	1/2	
		\therefore the root is in $(3,4)$		
		$x_1 = \frac{a+b}{2} = \frac{3+4}{2} = 3.5$	1	
		f(3.5) = 2.25 > 0		
		\therefore the root is in $(3,3.5)$		
		$x_2 = \frac{x_1 + b}{2} = \frac{3 + 3.5}{2} = 3.25$	1	
		$f\left(x_{2}\right) = 0.563 > 0$		
		\therefore the root is in $(3,3.25)$		
		$x_3 = \frac{x_2 + b}{2} = \frac{3 + 3.25}{2} = 3.125$	1	04
		O R		
		$Let x = \sqrt{10}$		
		$\therefore x^2 = 10$		
		$\therefore x^2 - 10 = 0$		
		$\operatorname{Let} f(x) = x^2 - 10$	1/2	
		f(3) = -1 < 0 f(4) = 16 > 0	1/2	
		$\therefore \text{ the root is in } (3,4)$	72	

Subject Code: (17216) Page No: 20/29 Summer-2016

Que.	Sub.			1	Model a	nawara			Morlza	Total
No.	Que.			1	viouei a	iisweis			Marks	Marks
5.			Iteration	a	b	$x = \frac{a+b}{2}$	f(x)			
			I	3	4	3.5	2.25		1	
			II	3	3.5	3.25	0.563		1	04
			III	3	3.25	3.125			1	
								<u></u>		
	d)	Using Regu	ıla-Falsi met	hod,	find the	root of x^2 –	$\log_{10} x = 1$	2		
		(up to thtre	e iterations o	only)						
	Ans	$x^2 - \log_{10} x$								
		$\therefore x^2 - \log_{10}$								
		Let $f(x) =$		- 12					1/2	
		$f\left(3\right) = -3.4$							1/2	
		f(4) = 3.39							, _	
		\therefore the root is		2 20	9) 4(2 477)				
		$x_1 = \frac{af(b)}{f(b)}$	$\frac{bf(a)}{-f(a)} = \frac{30}{}$	3.39	98 + 3.4	$\frac{3.477)}{77} = 3.50$	06		1	
		$f\left(x_{1}\right) = -0.$.253 < 0							
		: the root is								
		$x_2 = \frac{3.5(3.3)}{3}$	$\frac{398) - 4(-0.2)}{398 + 0.253}$	253)	= 3.54				1	
		$f\left(x_{2}\right) = -0$								
		: the root is	s in (3.54,4)							
		$x_3 = \frac{3.53(3)}{2}$	(398) - 4(-0) (398 + 0.017)	.017)	$\frac{0}{1} = 3.542$	2			1	04
		3	.398 + 0.017							
		OR								
		$x^2 - \log_{10} x$	= 12							
		$\therefore x^2 - \log_{10}$	x - 12 = 0							
		Let $f(x) =$		- 12						
		$f\left(3\right) = -3.4$	177 < 0						1/2	
		f(4) = 3.39	98 > 0						1/2	
	<u> </u>								_1	

Subject Code: (17216) Page No: 21/29 Summer-2016

Que.	Sub. Que.				Model A	Answers		Marks	Total Marks
5.		a	b	f(a)	f(b)	$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$	f(x)		
		3	4	- 3.477	3.398	3.506	- 0.253	1	
		3.506	4	- 0.253	3.398	3.54	- 0.017	1	
		3.542	4	- 0.017	3.398	3.542		1	04
	e)					uation $x^3 - 20 = 0$ by N	ewton-		
	Ans	Let $f(x) =$		od (three it	erations				
	ZIIIS	f(2) = -1						1/2	
		f(3) = 7 >						1/2	
		f'(x) = 3x							
		Initial root		= 3				1/2	
		$\therefore f'(3) = 3$	27						
		$x_1 = x_0 - \frac{f}{f}$	$\frac{f(x_0)}{f(x_0)}$	$\frac{1}{1} = 3 - \frac{f(f)}{f(f)}$	$\frac{3}{3}$ = 2.741	I		1	
		$x_2 = 2.74 -$	$\frac{f(f)}{f(f)}$	$\frac{2.741}{2.741} = 2$.715			1	
		$x_2 = 2.71 -$	$-\frac{f(}{f'(}$	$\frac{2.715)}{2.715)} = 2$.714			1/2	04
		O R							
		Let (x) =						1/2	
		$f\left(2\right) = -1$)				1/2	
		f(3) = 7 >							
		f'(x) = 3x Initial root		- 3				1/2	
		$\therefore f'(3) = 3$		- 5					
		$x_{i} = x - \frac{f}{f}$		$= x - \frac{x^3 - 2}{3x^2}$	0				
		$=\frac{3x^3-x}{3x}$	` ′						
		$= \frac{2x^3 + 2}{3x^2}$						1	

Subject Code: (17216) Page No: 22/29 Summer-2016

Que.	Sub.				Model A	nswers		Marks	Total
No.	Que.								Marks
5.		$x_1 = 2.741$						1/2	
		$x_2 = 2.715$						1/2	04
		$x_3 = 2.714$						1/2	
								/2	
	f)	Obtain the	appr	oximate ro	ot of the e	$quation x^3 - 4x + 1 = 0$	using		
		Regula-Fa	lsi m	ethod upto	4 decimal	places.			
	Ans	$x^3 - 4x + 1$	= 0						
		Let $f(x) =$	x^3 –	4x + 1				1/	
		f(0) = 1 >						1/2	
		f(1) = -2	< 0					1/2	
		: the root	is in	(0,1)					
		$x_1 = \frac{af(b)}{f(b)}$	- bf	$\frac{\left(a\right)}{}=\frac{1(1)-}{}$	$\frac{0(-2)}{}$ = (0.3333		1	
					+ 2				
		$f\left(x_{1}\right) = -0$							
		: the root		`	,				
		$x_2 = \frac{0.333}{}$	$\frac{3(1)}{1+0}$	$\frac{-0(-0.296)}{.296}$	= 0.2572			1	
		$f\left(x_{2}\right) = -0$							
		∴ the root							
			1(1) -	0(-0.011)	= 0.2542			1	
		$x_3 = $	1 + 0	.011	= 0.2342				04
		O R							
		Let $f(x) =$	x^3 –	4x + 1					
		f(0) = 1 >						1/2	
		f(1) = -2	< 0					1/2	
		: the root	is in	(0,1)				,,,	
			ı						
		a	b	f(a)	f(b)	$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$	f(x)		
			_					1	
		1	0	- 2	1	0.3333	- 0.296		
		0.3333	0	- 0.296	1	0.2572	- 0.012	1	04
		0.2572	0	- 0.012	1	0.2542		1	

Subject Code: (17216) Page No: 23/29 Summer-2016

Que.	Sub.	Model Agences	Maulza	Total
No.	Que.	Model Answers	Marks	Marks
6.		Attempt any <u>FOUR</u> of the following:		16
	a)	Differentiate $\cos^{-1}\left(2x\sqrt{1-x^2}\right)$ with respect to $\sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)$		
	Ans	Let $u = \cos^{-1}\left(2x\sqrt{1-x^2}\right)$ and $v = \sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)$		
		Put $x = \sin \theta \Rightarrow \sin^{-1} x = \theta$ $u = \cos^{-1} \left(2 \sin \theta \sqrt{1 - \sin^2 \theta} \right)$	1/2	
		,		
		$u = \cos^{-1} (2 \sin \theta \cos \theta)$ $u = \cos^{-1} (\sin 2\theta)$		
		$u = \cos^{-1}\left(\cos\left(\frac{\pi}{2} - 2\theta\right)\right)$	1/2	
		$u = \frac{\pi}{2} - 2\theta$		
		$u = \frac{\pi}{2} - 2\sin^{-1}x$		
		$\frac{du}{dx} = 0 - 2\frac{1}{\sqrt{1 - x^2}}$	1/2	
		$\frac{du}{dx} = -\frac{2}{\sqrt{1-x^2}}$		
		$v = \sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)$		
		$v = \sec^{-1}\left(\frac{1}{\sqrt{1-\sin^2\theta}}\right)$	1/2	
		$v = \sec^{-1}\left(\frac{1}{\sqrt{\cos^2\theta}}\right)$		
		$v = \sec^{-1}\left(\frac{1}{\cos\theta}\right)$	1/2	
		$v = \sec^{-1}(\sec\theta)$		
		$v = \theta$ $v = \sin^{-1} x$		
			1/2	
		$\frac{dv}{dx} = \frac{1}{\sqrt{1-x^2}}$	72	

Subject Code: (17216) Page No: 24/29 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
6.		$\therefore \frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} = \frac{-\frac{2}{\sqrt{1-x^2}}}{\frac{1}{\sqrt{1-x^2}}}$ $\therefore \frac{dy}{dz} = -2$	1/2	04
		OR		
		Let $u = \cos^{-1}\left(2x\sqrt{1-x^2}\right)$ and $v = \sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)$ Put $x = \cos\theta \Rightarrow \cos^{-1}x = \theta$		
		Put $x = \cos \theta \Rightarrow \cos^{-1} \left(2 \cos \theta \sqrt{1 - \cos^{2} \theta} \right)$ $u = \cos^{-1} \left(2 \cos \theta \sqrt{1 - \cos^{2} \theta} \right)$	1/2	
		$u = \cos^{-1} \left(2 \cos \theta \sin \theta \right)$		
		$u = \cos^{-1}\left(\sin 2\theta\right)$ $u = \cos^{-1}\left(\cos\left(\frac{\pi}{2} - 2\theta\right)\right)$	1/2	
		$u = \frac{\pi}{2} - 2\theta$		
		$u = \frac{\pi}{2} - 2\cos^{-1}x$		
		$\frac{du}{dx} = 0 - 2\left(\frac{-1}{\sqrt{1-x^2}}\right)$		
		$\frac{du}{dx} = \frac{2}{\sqrt{1 - x^2}}$	1/2	
		$v = \sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)$		
		$v = \sec^{-1}\left(\frac{1}{\sqrt{1-\cos^2\theta}}\right)$	1/2	
		$v = \sec^{-1}\left(\frac{1}{\sqrt{\sin^2\theta}}\right)$		
		$v = \sec^{-1}\left(\frac{1}{\sin\theta}\right)$		
		$v = \sec^{-1}(\cos ec\theta)$		

Subject Code: (17216) Page No: 25/29 Summer-2016

Que.	Sub.	Model Answers	Marks	Total Marks
6.	Que.	$v = \sec^{-1}\left(\operatorname{s} e c \left(\frac{\pi}{2} - \theta\right)\right)$	1/2	Iviaiks
		$v = \frac{\pi}{2} - \theta$		
		$v = \frac{\pi}{2} - \cos^{-1} x$		
		$\frac{dv}{dx} = \frac{1}{\sqrt{1 - x^2}}$	1/2	
		$\therefore \frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{\frac{2}{\sqrt{1-x^2}}}{\frac{1}{\sqrt{1-x^2}}}$	1/2	
		$\therefore \frac{du}{dv} = 2$	1/2	04
		OR		
		Let $u = \cos^{-1}\left(2x\sqrt{1-x^2}\right)$ and $v = \sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)$		
		$\therefore \frac{du}{dx} = \frac{-1}{\sqrt{1 - \left(2x\sqrt{1 - x^2}\right)^2}} \times \left[\left(2x\frac{1}{2\sqrt{1 - x^2}}\right)(-2x) + 2\sqrt{1 - x^2}\right]$	1	
		$= \frac{-1}{\sqrt{1 - \left(2x\sqrt{1 - x^2}\right)^2}} \left[\frac{-2x^2}{\sqrt{1 - x^2}} + 2\sqrt{1 - x^2} \right]$		
		$= \frac{-1}{\sqrt{1-4x^2(1-x^2)}} \left[\frac{-2x^2+2(1-x^2)}{\sqrt{1-x^2}} \right]$		
		$= \frac{-1}{\sqrt{1 - 4x^2 + 4x^4}} \left[\frac{-2x^2 + 2 - 2x^2}{\sqrt{1 - x^2}} \right]$		
		$= \frac{-1}{\sqrt{(2x^2-1)^2}} \left[\frac{2-4x^2}{\sqrt{1-x^2}} \right]$		
		$= \pm \frac{-1}{(2x^2 - 1)} \left[\frac{-2(2x^2 - 1)}{\sqrt{1 - x^2}} \right]$		
		$\therefore \frac{du}{dx} = \pm \frac{2}{\sqrt{1-x^2}}$	1/2	

Subject Code: (17216) Page No: 26/29 Summer-2016

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
6.		$v = \sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)$ $\therefore v = \cos^{-1}\left(\sqrt{1-x^2}\right)$ $\therefore \frac{dv}{dx} = \frac{-1}{\sqrt{1-\left(1-x^2\right)}} \times \left[\frac{1}{2\sqrt{1-x^2}}(-2x)\right]$	1	
		$= \frac{-1}{x} \times \left[\frac{-x}{\sqrt{1-x^2}} \right]$ $\therefore \frac{dv}{dx} = \frac{1}{\sqrt{1-x^2}}$ $du \qquad \pm 2$	1/2	
		$\therefore \frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{\frac{\pm 2}{\sqrt{1 - x^2}}}{\frac{1}{\sqrt{1 - x^2}}}$	1/2	
		$\therefore \frac{du}{dv} = \pm 2$	1/2	04
	b) Ans	If $y = e^{\tan^{-1} x}$ show that $(1 + x^2) \frac{d^2 y}{dx^2} + (2x - 1) \frac{dy}{dx} = 0$		
	11110	$y = e^{\tan^{-1} x}$ $\therefore \frac{dy}{dx} = e^{\tan^{-1} x} \frac{1}{1+x^2}$	1	
		$\therefore (1+x^2)\frac{dy}{dx} = y$ $\therefore (1+x^2)\frac{d^2y}{dx^2} + \frac{dy}{dx}(2x) = \frac{dy}{dx}$	2	
		$\therefore (1+x^2)\frac{d^2y}{dx^2} + \frac{dy}{dx}(2x) - \frac{dy}{dx} = 0$	1/2	
		$\therefore (1+x^2)\frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} = 0$ OR	1/2	04
		$y = e^{\tan^{-1} x}$ $\therefore \frac{dy}{dx} = e^{\tan^{-1} x} \frac{1}{1+x^2}$	1	
		$\therefore \frac{dy}{dx} = \frac{y}{1+x^2}$		

Subject Code: (17216) Page No: 27/29 Summer-2016

Que.	Sub.	M. 1.1.A	N/ 1	Total
No.	Que.	Model Answers	Marks	Marks
6.		$ \frac{d^2 y}{dx^2} = \frac{\left(1 + x^2\right) \frac{y}{1 + x^2} - y(2x)}{\left(1 + x^2\right)^2} $ $ \frac{d^2 y}{dx^2} = \frac{y - y(2x)}{\left(2x\right)^2} $	1	
		$\therefore \frac{d^2 y}{dx^2} = \frac{y - y(2x)}{(1+x^2)^2}$ $\therefore \frac{d^2 y}{dx^2} = \frac{y(1-2x)}{(1+x^2)^2}$	1	
		$L.H.S. = (1+x^{2})\frac{d^{2}y}{dx^{2}} + (2x-1)\frac{dy}{dx}$ $= (1+x^{2})\frac{y(1-2x)}{(1+x^{2})^{2}} + (2x-1)\frac{y}{1+x^{2}}$	1/2	
		$= -(2x-1)\frac{y}{1+x^2} + (2x-1)\frac{y}{1+x^2}$ $= 0$ $= R.H.S.$	1/2	04
	c)	Solve using Gauss elimination method: x + 2y + 3z = 14, $3x + y + 2z = 11$, $2x + 3y + z = 11$		
	Ans	x + 2y + 3z = 14 $3x + y + 2z = 11$ $2x + 3y + z = 11$ $x + 2y + 3z = 14$ $9x + 3y + 6z = 33$		
		$6x + 2y + 4z = 22 \qquad \text{and} \qquad 2x + 3y + z = 11$ $ $	1	
		+	1 1	04
		z = 3	1	V 1

Subject Code: (17216) Page No: 28/29 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Model This wers	1.141110	Marks
6.		Note: In the above solution, first y is eliminated and then z is eliminated to find the value of x first. If in case the problem is solved by elimination of another unknown i. e., either first x or z, appropriate marks to be given as per above scheme of marking.		
	d)	Solve the following equations by Gauss-Seidel method:		
		x + 7y - 3z = -22, $5x - 2y + 3z = 18$, $2x - y + 6z = 22$		
	Ans	$x = \frac{1}{5} (18 + 2y - 3z)$		
		$y = \frac{1}{7} (-22 - x + 3z)$		
		$z = \frac{1}{6} (22 - 2x + y)$	1	
		Starting with $y_0 = z_0 = 0$		
		$x_1 = 3.6$		
		$y_1 = -3.657$	1	
		$z_1 = 1.857$		
		$x_2 = 1.023$		
		$y_2 = -2.493$	1	
		$z_2 = 2.91$		
		$x_3 = 0.857$		04
		$y_3 = -2.018$	1	
		$z_3 = 3.045$	1	
	e)	Solve the equtions using Jacobi's method (upto three iterations)		
		10x - 2y - 2z = 6, $-x - y + 10z = 8$, $-x + 10y - 2z = 7$		
	Ans	$x = \frac{1}{10} (6 + 2y + 2z)$		
		$y = \frac{1}{10} (7 + x + 2z)$		
		$z = \frac{1}{10}(8 + x + y)$	1	
		Starting with $x_0 = y_0 = z_0 = 0$		
		$x_1 = 0.6$		
		$y_1 = 0.7$		
		$z_1 = 0.8$	1	

Subject Code: (17216) Page No: 29/29 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
6.		$x_2 = 0.9$ $y_2 = 0.92$ $z_2 = 0.93$	1	
		$x_3 = 0.97$ $y_3 = 0.976$ $z_3 = 0.982$	1	04
	f) Ans	Use Gauss-Seidel method to solve following equations (use two iterations) $10x + 2y + z = 9, x + 10y - z = -22, -2x + 3y + 10z = 22$ $x = \frac{1}{10}(9 - 2y - z)$		
		$y = \frac{1}{10} (-22 - x + z)$ $z = \frac{1}{10} (22 + 2x - 3y)$ Starting with $y_0 = z_0 = 0$	1	
		$x_1 = 0.9$ $y_1 = -2.29$ $z_1 = 3.067$	1½	
		$x_2 = 1.051$ $y_2 = -1.998$ $z_2 = 3.009$	1½	04
		Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.		