\* Current Transport by Diffusion  $\overline{J_{drift}} = (\mu_n n + \mu_p ) E_q$   $\eta_p = n_i^2$ \* pn junction - Applications - Basic structure - Behaviour in Equilibrium Drift -> electric field is required Diffusion: voltage | E' not required. \* Diffusion -) it's like ink molecules in water. -> movement of charge corriers from a region of high concentration to a region of lower concentration. n-type semi. Doving down net dient gradient or slope = 0, no diffusion. J & dn -> slope of concentration

 $J = D_n \frac{dn}{dx}$ Tiffusivity current ty In general both c-concent gradient &  $J_{totol} = \left( \frac{J_n}{dx} \frac{dn}{dx} - \frac{J_p}{dx} \frac{dp}{dx} \right)_h^2$   $\frac{34 \text{ cm}^2/\text{sec}}{34 \text{ cm}^2/\text{sec}}$ Example: n-type semi ~) J





\* The P-N Junction

 $\bigcirc$ 



Applications:

- Chargers and Adapters (Diode)

- Voltage multipliers

Quick experiment:



|                                                    |                    | $\longrightarrow \bigvee_{\chi}$ |
|----------------------------------------------------|--------------------|----------------------------------|
| Difference is:  1. It has different behaviour for  |                    |                                  |
| 2. When Vistors: Two Ouestions:  (1) How do charge | ; it's an expone   | ute themselve                    |
| - Equilibrico<br>- Reversa I<br>- Forward          | im<br>bios<br>bias |                                  |
| Some Observation                                   | ns:                | ρ                                |





i, e junction reached equilibrium.