

FCC Radio Test Report

FCC ID: 2AHLZ-CWI535

FCC 47 CFR Part 15 Subpart C RSS 247 Issue 1:2016

Product	:	Notebook
Trade Name	:	CHUWI
Model No.	:	CWI535
Serise Model No.	:	CWI535, CWI538, CWI533, CWI534, CWI549, CWI539, CWI540, CWI541, CWI542, CWI543, CWI544, CWI545, CWI546, CWI547, CWI548

Issued for

CHUWI TECHNOLOGY (ShenZhen) CO., LIMITED

2 Floor Building 3 LiJinCheng Industrial park the east of Gongye road LongHua Shenzhen China

Issued by

Shenzhen ATL Testing Technology Co., Ltd.

F/4, Building 10, Dayuan Industrial Zone, Xili Town, Nanshan District, Shenzhen, China

Tel.: +86-0755-26909822 Fax.: +86-0755-61605504 Website: www.atllab.org

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen ATL Testing Technology Co., Ltd.. This document may be altered or revised by Shenzhen ATL Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

TEST RESULT CERTIFICATION

Product	:	Notebook						
			CHUWI TECHNOLOGY (ShenZhen) CO., LIMITED					
Address	:	2 Floor Building 3 LiJin road LongHua Shenzh	iCheng Ir en China	idustri	al park the east of Gongye			
		CHUWI TECHNOLOG						
Address	:	2 Floor Building 3 LiJinCheng Industrial park the east of Gongye road LongHua Shenzhen China						
Model No								
	Standards							
		een lested by Shenzhe ne requirements set fo			g Technology Co., Ltd.			
mentioned above.	The result	s of testing in this repo	ort apply	only	to the product/system, roduce the same results			
due to production	tolerance a	and measurement unc	ertaintie	S.				
Test		.						
Date of receipt of tes	t item	2017-06-18						
Date(s) of performan	ice of test	2017-06-19	to 2017-0	6-28				
Test Result		Pass						
Testing by	:	Sifeifei	Date	: _	2017-06-19			
		(Si feifei)						
Check by	:	Xielingling	Date	:	2017-06-27			
		(Xie Lingling)		_				
Approved by	:	Xu Perg	Date	:	2017-06-28			
		(Xu Peng)		_				

Table of Contents	Page
1 . TEST SUMMARY	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
PIFA Antenna (Max. Gain: 0.85 dBi)	7
2.2 DESCRIPTION OF TEST MODES	9
2.3 DESCRIPTION OF TEST SETUP	10
2.4 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL	11
2.5 EUT EXERCISE SOFTWARE	11
3 . CONDUCTED EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT (Frequency Range 150KHz-	30MHz)12
3.2 TEST PROCEDURE	12
3.3 TEST SETUP	13
3.4 TEST INSTRUMENTS	13
3.5 EUT OPERATING CONDITIONS	13
3.6 TEST RESULTS	14
RADIATED EMISSION MEASUREMENT	16
3.7 RADIATED EMISSION LIMIT (Frequency Range 9KHz-1000MHz)	16
3.8 TEST PROCEDURE	16
3.9 TEST SETUP	17
3.10 TEST INSTRUMENTS	18
3.11 EUT OPERATING CONDITIONS	18
3.12 TEST RESULTS	19
4 . MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT	33
4.1 LIMITS	33
4.2 TEST PROCEDURE	33
4.3 TEST SETUP	33
4.4 TEST INSTRUMENTS	33
4.5 EUT OPERATING CONDITIONS	33
4.6 TEST RESULTS	33
5 . OCCUPIED BANDWIDTH MEASUREMENT	35
5.1 LIMITS	35

Table of Contents	Page
5.2 TEST PROCEDURE	35
5.3 TEST SETUP	35
5.4 TEST INSTRUMENTS	35
5.5 EUT OPERATING CONDITIONS	35
5.6 TEST RESULTS	35
6 . POWER SPECTRAL DENSITY	44
6.1 LIMITS	44
6.2 TEST PROCEDURE	44
6.3 TEST SETUP	44
6.4 TEST INSTRUMENTS	44
6.5 EUT OPERATING CONDITIONS	44
6.6 TEST RESULTS	44
7 . BAND EDGE AND OUT-OF-BAND EMISSION	53
7.1 LIMITS	53
7.2 TEST PROCEDURE	53
7.3 TEST SETUP	53
7.4 TEST INSTRUMENTS	54
7.5 EUT OPERATING CONDITIONS	54
7.6 TEST RESULTS	54
8 . ANTENNA REQUIREMENT	67
8.1 REQUIREMENT	67
8.2 ANTENNA CONNECTOR CONSTRUCTION	67

1. TEST SUMMARY

Test procedures according to the technical standards:

FCC Part 15 Subpart C (15.247)/RSS 247 Issue 1: 2015					
Standard Section		Test Item	li i dana ant	Damani	
FCC	IC	rest item	Judgment	Remark	
15.203	1	Antenna Requirement	PASS		
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS		
15.205/ 15.209	RSS-GEN 7.2.2	Restricted Bands	PASS		
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS		
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	PASS		
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS		
15.247(d)	RSS 247 5.5	Band Edge/Out-of-band Emission	PASS		

NOTE:

- (1)" N/A" denotes test is not applicable in this Test Report
- (2)The test results of this report relate only to the tested sample(s) identified in this report.

Version: ATL-ICRF-15V01.00

1.1 TEST FACILITY

Shenzhen ATL Testing Technology Co., Ltd.

Add.: F/4, Building 10, Dayuan Industrial Zone, Xili Town, Nanshan District, Shenzhen, China

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 %.

A. Conducted Emission:

The measurement uncertainty is evaluated as \pm 3.2 dB.

B. Radiated Measurement:

The measurement uncertainty is evaluated as \pm 3.7 dB.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Notebook
Model Name	CWI535
Additional Model	CWI538, CWI533, CWI534, CWI549, CWI539, CWI540,
Number(s)	CWI541, CWI542, CWI543, CWI544, CWI545, CWI546, CWI547, CWI548
Model Difference	All these models are identical in the same PCB layout and electrical circuit, the only difference is model name for commercial.
Frequency Range	802.11b/g/n(HT20):2412~2462 MHz 802.11n(HT40):2422~2452 MHz Bluetooth V4.0: 2402~2480 MHz (Note 2)
Modulation Type	802.11b: DSSS (BPSK/QPSK/CCK) 802.11g/n: OFDM
Data Rate	802.11b: 1/2/5.5/11 Mbps 802.11g: 6/9/12/18/24/36/48/54 Mbps 802.11n: 150 Mbps
RF Output Power	802.11b: 9.32 dBm 802.11g: 9.19 dBm 802.11n(HT20): 9.09 dBm 802.11n(HT40): 9.01 dBm
Antenna Type	PIFA Antenna (Max. Gain: 0.85 dBi)
Power Source	DC Powered by AC/DC Adapter . DC Powered by Li-ion Battery .
Power Rating	AC/DC Adapter: Input: AC 100-240V,0.8A Max. Output: DC 12, 2A. DC 7.6V from Li-ion Battery.
Remark	More details EUT technical specifications, please refer to the User's Manual.

Note:

- (1) This Test Report is FCC Part 15 Subpart C, 15.247 for IEEE 802.11b/g/n. And the Test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v03r05.
- (2) The EUT has also been tested and complied the FCC 15C for Bluetooth, and recorded in the separate test report.

(3) Transmitting mode with antennas

Mode	TX Antenna (s)
802.11b	1
802.11g	1
802.11n(HT20)	1
802.11n(HT40)	1

(4) Channel List.

2.4 GHz Band						
Frequency Band	Channel No.	Frequency	Channel No.	Frequency		
	1	2412 MHz	7	2442 MHz		
	2	2417 MHz	8	2447 MHz		
	3	2422 MHz	9	2452 MHz		
2400~2483.5MHz	4	2427 MHz	10	2457 MHz		
	5	2432 MHz	11	2462 MHz		
	6	2437 MHz				

For 802.11b/g/n(HT20), use channel 1~11

For 802.11n(HT40), use channel 3~9

Version: ATL-ICRF-15V01.00

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

standarda teopeenterj.				
Pretest Mode	Description			
Mode 1	WiFi TX Mode			
Mode 2	WiFi TX 802.11b Mode			
Mode 3	WiFi TX 802.11g Mode			
Mode 4	WiFi TX 802.11n(HT20)Mode			
Mode 5	WiFi TX 802.11n(HT40) Mode			

For Conducted Test				
Final Test Mode Description				
Mode 1	WiFi TX Mode			

For Radiated Test				
Final Test Mode	Description			
Mode 1	WiFi TX Mode			
Mode 2	WiFi TX 802.11b Mode			
Mode 3	WiFi TX 802.11g Mode			
Mode 4	WiFi TX 802.11n(HT20)Mode			
Mode 5	WiFi TX 802.11n(HT40) Mode			

Note:

- (1) Software used to control the EUT for staying in continuous transmitting mode was programmed. After verification, all tests were carried out with the worst case test modes as shown below.
- (2) IEEE 802.11b Mode: Channel (2412/2437/2462 MHz) with 1Mbps data rate were chosen for full testing.
- (3) IEEE 802.11g Mode: Channel (2412/2437/2462 MHz) with 6 Mbps data rate were chosen for full testing.
- (4) IEEE 802.11n(HT20) Mode:
 Channel (2412/2437/2462 MHz) with MCS 0 data rate were chosen for full testing.
- (5) IEEE 802.11n(HT40) Mode: Channel (2422/2437/2452 MHz) with MCS 0 data rate were chosen for full testing.
- (6) By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.

Version: ATL-ICRF-15V01.00

2.3 DESCRIPTION OF TEST SETUP

Conducted Emission

Radiated Emission

2.4 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Notebook	N/A	CWI535	N/A	EUT
E-2	Adapter	N/A	ZX241202000	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note
1	NO	NO	2m	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.
- (3) "YES" means "shielded" "with core"; "NO" means "unshielded" "without core".

2.5 EUT EXERCISE SOFTWARE

Power Parameters for Testing							
Test Software Version	n N/A						
Mode		Frequency/ Parameters					
	2412 MHz	2437 MHz	2462 MHz				
802.11b	DEF	DEF	DEF				
	2412 MHz	2437 MHz	2462 MHz				
802.11g	DEF	DEF	DEF				
	2412 MHz	2437 MHz	2462 MHz				
802.11n(HT20)	DEF	DEF	DEF				
	2422 MHz	2437 MHz	2452 MHz				
802.11n(HT40)	DEF	DEF	DEF				

Version: ATL-ICRF-15V01.00

3. CONDUCTED EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT (Frequency Range 150KHz-30MHz)

	Quasi-peak	Average
FREQUENCY (MHz)	dBuV	dBuV
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Version: ATL-ICRF-15V01.00

Note: 1. Support units were connected to second LISM. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.4 TEST INSTRUMENTS

Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
LISN	R&S	NSLK81	8126466	Jul. 04, 2016	Jul. 03. 2017	1 year
LISN	R&S	NSLK81	8126487	Jul. 04, 2016	Jul. 03. 2017	1 year
50Ω Switch	ANRITSU CORP	MP59B	6200983704	Jul. 04, 2016	Jul. 03. 2017	1 year
Test Cable	N/A	C01	N/A	Jul. 04, 2016	Jul. 03. 2017	1 year
Test Cable	N/A	C02	N/A	Jul. 04, 2016	Jul. 03. 2017	1 year
Test Cable	N/A	C03	N/A	Jul. 04, 2016	Jul. 03. 2017	1 year
EMI Test Receiver	R&S	ESCI	1166.595	Jul. 04, 2016	Jul. 03. 2017	1 year
Passive Voltage Probe	ESH2-Z3	R&S	100196	Jul. 04, 2016	Jul. 03. 2017	1 year

3.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

3.6 TEST RESULTS

EUT:	Notebook	Model Name. :	CWI535
Temperature:	26 ℃	Relative Humidity:	56%
Pressure :	1010hPa	Test Date :	2017-06-23
Test Mode:	WIFI TX Mode (B 2412MHz)	Phase :	Line

Test Voltage : AC 120V/ 60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1*	0.1780	38.70	9.50	48.20	64.58	-16.38	QP
2	0.1780	21.59	9.50	31.09	54.58	-23.49	AVG
3	0.2380	35.83	9.50	45.33	62.17	-16.84	QP
4	0.2420	21.05	9.50	30.55	52.03	-21.48	AVG
5	0.2820	33.51	9.50	43.01	60.76	-17.75	QP
6	0.2878	14.31	9.50	23.81	50.59	-26.78	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

EUT: Notebook Model Name. : CWI535

Temperature: 26 °C Relative Humidity: 56%

Pressure: 1010hPa Test Date: 2017-06-23

Test Mode: WIFI TX Mode (B 2412MHz) Phase: Neutral

Test Voltage : AC 120V/ 60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	0.1820	38.35	9.50	47.85	64.39	-16.54	QP
2	0.1820	21.25	9.50	30.75	54.39	-23.64	AVG
3*	0.2460	36.02	9.50	45.52	61.89	-16.37	QP
4	0.2420	19.01	9.50	28.51	52.03	-23.52	AVG
5	0.3060	32.30	9.50	41.80	60.08	-18.28	QP
6	0.3060	17.04	9.50	26.54	50.08	-23.54	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

RADIATED EMISSION MEASUREMENT

3.7 RADIATED EMISSION LIMIT (Frequency Range 9KHz-1000MHz)

20 dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a) and RSS-210 Section 2.2&A8.5, then the 15.209(a) and RSS-General limit in the table below has to be followed.

FREQUENCY (MHz)	Field Strength	Measurement Distance	
PREQUENCT (WITZ)	(uV/m at meter)	(meters)	
0.009 -0.490	2400/F(KHz)	300	
0.490 -1.705	24000/F(KHz)	30	
1.705 -30.0	30	30	
30 -88	100	3	
88 -216	150	3	
216~960	200	3	
Above 960	500	3	

RADIATED EMISSION LIMITS (Above 1000MHz)

FREQUENCY (MHz)	Distance of 3m (dBuV/m)		
FREQUENCY (MINZ)	Peak	Average	
Above 1000	74	54	

Note:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

The following table is the setting of the receiver

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency~ Stop Frequency	9kHz~150kHz/ RB 200Hz for QP
Start Frequency~ Stop Frequency	150kHz~30MHz/ RB 9kHz for QP
Start Frequency~ Stop Frequency	30MHz~1000MHz/ RB120kHz for QP

The following table is the setting of the spectrum

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10 th carrier harmonic	
RB/ VB (emission in restricted band)	1MHz/ 3 MHz for Peak, 1MHz/ 10Hz for Average	

3.8 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.

Version: ATL-ICRF-15V01.00

- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured, above 1G Average detector mode will be instead.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested.

And performed pretest to three orthogonal axis. The worst case emissions were reported.

3.9 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 30MHz

(B) Radiated Emission Test Set-Up Frequency Below 1 GHz

(C) Radiated Emission Test Set-Up Frequency Above 1GHz

3.10 TEST INSTRUMENTS

0.10 1201	INOTIVONILIN					Calibration
Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
Broadband Antenna	R&S	VULB 9168	VULB 9168-456	Jul. 04, 2016	Jul. 03. 2017	1 year
Test Cable	N/A	R-01	N/A	Jul. 04, 2016	Jul. 03. 2017	1 year
Test Cable	N/A	R-02	N/A	Jul. 04, 2016	Jul. 03. 2017	1 year
EMI Test Receiver	R&S	ESCI	101324	Jul. 04, 2016	Jul. 03. 2017	1 year
Antenna Mast	EM	SC100_1	N/A	N/A	N/A	N/A
Turn Table	EM	SC100	060531	N/A	N/A	N/A
50Ω Switch	Anritsu Corp	MP59B	6200983705	Jul. 04, 2016	Jul. 03. 2017	1 year
Spectrum Analyzer	R&S	FSP40	100154	Jul. 04, 2016	Jul. 03. 2017	1 year
Horn Antenna	R&S	HF906	10029	Jul. 04, 2016	Jul. 03. 2017	1 year
Amplifier	EM	EM-30180	060538	Jul. 04, 2016	Jul. 03. 2017	1 year

3.11 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

3.12 TEST RESULTS

3.12.1 TEST RESULTS (9KHz-30MHz)

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

3.12.2 TEST RESULTS (Bellow 1GHz)

EUT:	Notebook	Model Name. :	CWI535
Temperature :	26 ℃	Relative Humidity:	56%
Pressure :	1010 hPa	Test Date :	2017-06-23
Test Mode :	WIFI TX Mode (B 2412MHz)	Polarization :	Horizontal

Test Power : AC 120V/ 60Hz

Remark: Only show the worse case.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	47.4918	28.55	-10.55	18.00	40.00	-22.00	peak
2	100.9339	36.32	-11.51	24.81	43.50	-18.69	peak
3	143.8295	41.68	-14.86	26.82	43.50	-16.68	peak
4	275.1570	39.43	-9.64	29.79	46.00	-16.21	peak
5	350.4768	37.04	-8.80	28.24	46.00	-17.76	peak
6	560.6928	39.43	-5.74	33.69	46.00	-12.31	peak

Remark:

Factor = Antenna Factor + Cable Loss.

EUT: Notebook Model Name. : CWI535

Temperature: 26 °C Relative Humidity: 56%

Pressure: 1010 hPa Test Date: 2017-06-23

Test Mode: WIFI TX Mode (B 2412MHz) Polarization: Vertical

Test Power : AC 120V/ 60Hz

Remark: Only show the worse case.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	39.1616	42.04	-13.25	28.79	40.00	-11.21	peak
2	47.9940	40.20	-12.32	27.88	40.00	-12.12	peak
3	99.8777	37.25	-11.43	25.82	43.50	-17.68	peak
4	135.0319	37.14	-14.53	22.61	43.50	-20.89	peak
5	578.6699	28.72	-5.22	23.50	46.00	-22.50	peak
6	945.4399	27.52	2.09	29.61	46.00	-16.39	peak

Remark:

Factor = Antenna Factor + Cable Loss.

Version: ATL-ICRF-15V01.00

3.12.3 TEST RESULTS (Above 1GHz)

EUT:	Notebook	Model Name. :	CWI535
Temperature:	26 ℃	Relative Humidity:	56%
Test Power:	AC 120V/ 60Hz	Pressure:	1010 hPa
Test Mode:	WIFI TX Mode (B 2412MHz)	Test Date :	2017-06-23

Remark: Only show the worse case.

Kemark.	Offing Show the	WUISE Case.					
Freq.	Deceiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Margin
MHz	dBuV	Peak/Avg	H/V	dB	dBuV /m	dBuV /m	dB
4824	59.68	Peak	Н	-3.62	56.06	74	-17.94
4824	46.39	Avg	Н	-3.62	42.77	54	-11.23
7236	56.06	Peak	Н	-0.48	55.58	74	-18.42
7236	42.94	Avg	Н	-0.48	42.46	54	-11.54
		Peak	Н			74	
		Avg	Н			54	
	·		-				
4824	60.63	Peak	V	-3.62	57.01	74	-16.99
4824	47.59	Avg	V	-3.62	43.97	54	-10.03
7236	54.05	Peak	V	-0.48	53.57	74	-20.43
7236	40.83	Avg	V	-0.48	40.35	54	-13.65
		Peak	V			74	
		Avg	V		•	54	

Remark:

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

The testing has been conformed to 10th harmonics(1G~25G)
Other harmonics emission are lower then 20dB below the allowable Limit

 EUT :
 Notebook
 Model Name.
 :
 CWI535

 Temperature :
 26 °C
 Relative Humidity :
 56%

 Test Power :
 AC 120V/ 60Hz
 Pressure :
 1010 hPa

 Test Mode :
 WIFI TX Mode (B 2437MHz)
 Test Date :
 2017-06-23

Remark : Only show the worse case.

Freq.	Deceiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Margin
MHz	dBuV	Peak/Avg	H/V	dB	dBuV /m	dBuV /m	dB
4874	59.62	Peak	Н	-3.6	56.02	74	-17.98
4874	46.86	Avg	Н	-3.6	43.26	54	-10.74
7311	54.93	Peak	Н	-0.46	54.47	74	-19.53
7311	41.92	Avg	Н	-0.46	41.46	54	-12.54
		Peak	Н			74	
		Avg	Н			54	
4874	59.06	Peak	V	-3.6	55.46	74	-18.54
4874	45.93	Avg	V	-3.6	42.33	54	-11.67
7311	53.34	Peak	V	-0.46	52.88	74	-21.12
7311	40.79	Avg	V	-0.46	40.33	54	-13.67
		Peak	V			74	
		Avg	V			54	

Remark:

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

The testing has been conformed to 10th harmonics(1G~25G)

Other harmonics emission are lower then 20dB below the allowable Limit

Version: ATL-ICRF-15V01.00

 EUT :
 Notebook
 Model Name.
 :
 CWI535

 Temperature :
 26 °C
 Relative Humidity :
 56%

 Test Power :
 AC 120V/ 60Hz
 Pressure :
 1010 hPa

 Test Mode :
 WIFI TX Mode (B 2462MHz)
 Test Date :
 2017-06-23

Remark : Only show the worse case.

Freq.	Deceiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Margin
MHz	dBuV	Peak/Avg	H/V	dB	dBuV /m	dBuV /m	dB
4924	59.74	Peak	Н	-3.59	56.15	74	-17.85
4924	47.27	Avg	Н	-3.59	43.68	54	-10.32
7386	55.00	Peak	Н	-0.43	54.57	74	-19.43
7386	42.40	Avg	Н	-0.43	41.97	54	-12.03
		Peak	Н			74	
		Avg	Н			54	
4924	59.57	Peak	V	-3.59	55.98	74	-18.02
4924	45.14	Avg	V	-3.59	41.55	54	-12.45
7386	54.10	Peak	V	-0.43	53.67	74	-20.33
7386	40.81	Avg	V	-0.43	40.38	54	-13.62
		Peak	V			74	
		Avg	V			54	

Remark:

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

The testing has been conformed to 10th harmonics(1G~25G)

Other harmonics emission are lower then 20dB below the allowable Limit

Version: ATL-ICRF-15V01.00

EUT:NotebookModel Name.:CWI535Temperature:26 °CRelative Humidity:56%Test Power:AC 120V/ 60HzPressure:1010 hPaTest Mode:WIFI TX Mode (G 2412MHz)Test Date:2017-06-23

Remark : Only show the worse case.

Freq.	Deceiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Margin
MHz	dBuV	Peak/Avg	H/V	dB	dBuV /m	dBuV /m	dB
4824	60.08	Peak	Н	-3.62	56.46	74	-17.54
4824	47.19	Avg	Н	-3.62	43.57	54	-10.43
7236	55.24	Peak	Н	-0.48	54.76	74	-19.24
7236	42.14	Avg	Н	-0.48	41.66	54	-12.34
		Peak	Н			74	
		Avg	Н			54	
4824	59.09	Peak	V	-3.62	55.47	74	-18.53
4824	45.88	Avg	V	-3.62	42.26	54	-11.74
7236	54.10	Peak	V	-0.48	53.62	74	-20.38
7236	40.56	Avg	V	-0.48	40.08	54	-13.92
		Peak	V			74	
		Avg	V			54	

Remark:

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

The testing has been conformed to 10th harmonics(1G~25G)

Other harmonics emission are lower then 20dB below the allowable Limit

Version: ATL-ICRF-15V01.00

EUT:NotebookModel Name.: CWI535Temperature:26 °CRelative Humidity:56%Test Power:AC 120V/ 60HzPressure:1010 hPaTest Mode:WIFI TX Mode (G 2437MHz)Test Date:2017-06-23

Remark : Only show the worse case.

Freq.	Deceiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Margin
MHz	dBuV	Peak/Avg	H/V	dB	dBuV /m	dBuV /m	dB
4874	60.77	Peak	Н	-3.6	57.17	74	-16.83
4874	48.17	Avg	Н	-3.6	44.57	54	-9.43
7311	53.02	Peak	Н	-0.46	52.56	74	-21.44
7311	40.68	Avg	Н	-0.46	40.22	54	-13.78
		Peak	Ι			74	
		Avg	Ι			54	
4874	60.28	Peak	V	-3.6	56.68	74	-17.32
4874	46.96	Avg	V	-3.6	43.36	54	-10.64
7311	55.03	Peak	V	-0.46	54.57	74	-19.43
7311	42.01	Avg	V	-0.46	41.55	54	-12.45
		Peak	V			74	
		Avg	V			54	

Remark:

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

The testing has been conformed to 10th harmonics(1G~25G)

Other harmonics emission are lower then 20dB below the allowable Limit

Version: ATL-ICRF-15V01.00

 EUT :
 Notebook
 Model Name.
 :
 CWI535

 Temperature :
 26 °C
 Relative Humidity :
 56%

 Test Power :
 AC 120V/ 60Hz
 Pressure :
 1010 hPa

 Test Mode :
 WIFI TX Mode (G 2462MHz)
 Test Date :
 2017-06-23

Remark : Only show the worse case.

Freq.	Deceiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Margin
MHz	dBuV	Peak/Avg	H/V	dB	dBuV /m	dBuV /m	dB
4924	60.14	Peak	Н	-3.59	56.55	74	-17.45
4924	46.70	Avg	Н	-3.59	43.11	54	-10.89
7386	54.66	Peak	Н	-0.43	54.23	74	-19.77
7386	41.89	Avg	Н	-0.43	41.46	54	-12.54
		Peak	Н			74	
		Avg	Н			54	
4924	59.16	Peak	V	-3.59	55.57	74	-18.43
4924	44.83	Avg	V	-3.59	41.24	54	-12.76
7386	54.96	Peak	V	-0.43	54.53	74	-19.47
7386	42.48	Avg	V	-0.43	42.05	54	-11.95
		Peak	V			74	
		Avg	V			54	

Remark:

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

The testing has been conformed to 10th harmonics(1G~25G)

Other harmonics emission are lower then 20dB below the allowable Limit

Version: ATL-ICRF-15V01.00

 EUT :
 Notebook
 Model Name.
 :
 CWI535

 Temperature :
 26 °C
 Relative Humidity :
 56%

 Test Power :
 AC 120V/ 60Hz
 Pressure :
 1010 hPa

 Test Mode :
 WIFI TX Mode (N20 2412MHz)
 Test Date :
 2017-06-23

Remark : Only show the worse case.

Freq.	Deceiver Reading	Detector	Polar	Correcte d Factor	Emission Level	Limit	Margin
MHz	dBuV	Peak/Avg	H/V	dB	dBuV /m	dBuV /m	dB
4824	58.19	Peak	Н	-3.62	54.57	74	-19.43
4824	45.08	Avg	Н	-3.62	41.46	54	-12.54
7236	52.94	Peak	Н	-0.48	52.46	74	-21.54
7236	40.16	Avg	Н	-0.48	39.68	54	-14.32
		Peak	Н			74	
		Avg	Н			54	
		•		•	•		٠
4824	58.69	Peak	V	-3.62	55.07	74	-18.93
4824	46.26	Avg	V	-3.62	42.64	54	-11.36
7236	53.91	Peak	V	-0.48	53.43	74	-20.57
7236	40.76	Avg	V	-0.48	40.28	54	-13.72
		Peak	V			74	
		Avg	V			54	

Remark:

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

The testing has been conformed to 10th harmonics(1G~25G)

Other harmonics emission are lower then 20dB below the allowable Limit

Version: ATL-ICRF-15V01.00

 EUT :
 Notebook
 Model Name.
 CWI535

 Temperature :
 26 °C
 Relative Humidity :
 56%

 Test Power :
 AC 120V/ 60Hz
 Pressure :
 1010 hPa

 Test Mode :
 WIFI TX Mode (N20 2437MHz)
 Test Date :
 2017-06-23

Remark: Only show the worse case .

Freq.	Deceiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Margin
MHz	dBuV	Peak/Avg	H/V	dB	dBuV /m	dBuV /m	dB
4874	58.25	Peak	Н	-3.6	54.65	74	-19.35
4874	45.46	Avg	Н	-3.6	41.86	54	-12.14
7311	53.78	Peak	Н	-0.46	53.32	74	-20.68
7311	37.04	Avg	Н	-0.46	36.58	54	-17.42
		Peak	Η			74	
		Avg	Ι			54	
4874	57.27	Peak	V	-3.6	53.67	74	-20.33
4874	44.03	Avg	V	-3.6	40.43	54	-13.57
7311	51.82	Peak	V	-0.46	51.36	74	-22.64
7311	38.82	Avg	V	-0.46	38.36	54	-15.64
		Peak	V			74	
		Avg	V			54	

Remark:

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

The testing has been conformed to 10th harmonics(1G~25G)

Other harmonics emission are lower then 20dB below the allowable Limit

Version: ATL-ICRF-15V01.00

 EUT :
 Notebook
 Model Name.
 CWI535

 Temperature :
 26 °C
 Relative Humidity :
 56%

 Test Power :
 AC 120V/ 60Hz
 Pressure :
 1010 hPa

 Test Mode :
 WIFI TX Mode (N20 2462MHz)
 Test Date :
 2017-06-23

Remark: Only show the worse case.

Freq.	Deceiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Margin
MHz	dBuV	Peak/Avg	H/V	dB	dBuV /m	dBuV /m	dB
4924	59.24	Peak	Н	-3.59	55.65	74	-18.35
4924	46.03	Avg	Н	-3.59	42.44	54	-11.56
7386	53.98	Peak	Н	-0.43	53.55	74	-20.45
7386	41.49	Avg	Н	-0.43	41.06	54	-12.94
		Peak	Н			74	
		Avg	Н			54	
4924	57.76	Peak	V	-3.59	54.17	74	-19.83
4924	44.85	Avg	V	-3.59	41.26	54	-12.74
7386	52.89	Peak	V	-0.43	52.46	74	-21.54
7386	39.79	Avg	V	-0.43	39.36	54	-14.64
		Peak	V			74	
		Avg	V			54	

Remark:

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

The testing has been conformed to 10th harmonics(1G~25G)

Other harmonics emission are lower then 20dB below the allowable Limit

Version: ATL-ICRF-15V01.00

 EUT :
 Notebook
 Model Name.
 CWI535

 Temperature :
 26 °C
 Relative Humidity :
 56%

 Test Power :
 AC 120V/ 60Hz
 Pressure :
 1010 hPa

 Test Mode :
 WIFI TX Mode (N40 2422MHz)
 Test Date :
 2017-06-23

Remark: Only show the worse case.

Freq.	Deceiver Reading	Detector	Polar	Correcte d Factor	Emission Level	Limit	Margin
MHz	dBuV	Peak/Avg	H/V	dB	dBuV /m	dBuV /m	dB
4844	59.08	Peak	Н	-3.62	55.46	74	-18.54
4844	44.98	Avg	Н	-3.62	41.36	54	-12.64
7266	54.02	Peak	Н	-0.48	53.54	74	-20.46
7266	41.24	Avg	Н	-0.48	40.76	54	-13.24
		Peak	Н			74	
		Avg	Н			54	
			-				
4844	58.3	Peak	V	-3.62	54.68	74	-19.32
4844	45.09	Avg	V	-3.62	41.47	54	-12.53
7266	53.95	Peak	V	-0.48	53.47	74	-20.53
7266	41.79	Avg	V	-0.48	41.31	54	-12.69
		Peak	V			74	
		Avg	V		-	54	

Remark:

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

The testing has been conformed to 10th harmonics(1G~25G)

Other harmonics emission are lower then 20dB below the allowable Limit

Version: ATL-ICRF-15V01.00

 EUT :
 Notebook
 Model Name.
 :
 CWI535

 Temperature :
 26 °C
 Relative Humidity :
 56%

 Test Power :
 AC 120V/ 60Hz
 Pressure :
 1010 hPa

 Test Mode :
 WIFI TX Mode (N40 2437MHz)
 Test Date :
 2017-06-23

Remark: Only show the worse case.

,							
Deceiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Margin	
dBuV	Peak/Avg	H/V	dB	dBuV /m	dBuV /m	dB	
58.96	Peak	Н	-3.6	55.36	74	-18.64	
47.29	Avg	Н	-3.6	43.69	54	-10.31	
54.03	Peak	Н	-0.46	53.57	74	-20.43	
41.7	Avg	Н	-0.46	41.24	54	-12.76	
	Peak	Н			74		
	Avg	Н			54		
58.17	Peak	V	-3.6	54.57	74	-19.43	
46.28	Avg	V	-3.6	42.68	54	-11.32	
52.92	Peak	V	-0.46	52.46	74	-21.54	
40.09	Avg	V	-0.46	39.63	54	-14.37	
	Peak	V			74		
	Avg	V			54		
	Reading dBuV 58.96 47.29 54.03 41.7 58.17 46.28 52.92 40.09	Reading Detector dBuV Peak/Avg 58.96 Peak 47.29 Avg 54.03 Peak 41.7 Avg Peak Avg 58.17 Peak 46.28 Avg 52.92 Peak 40.09 Avg Peak	Reading Detector Polar dBuV Peak/Avg H/V 58.96 Peak H 47.29 Avg H 54.03 Peak H 41.7 Avg H Peak H 58.17 Peak V 46.28 Avg V 52.92 Peak V 40.09 Avg V Peak V	Reading Detector Polar Factor dBuV Peak/Avg H/V dB 58.96 Peak H -3.6 47.29 Avg H -3.6 54.03 Peak H -0.46 41.7 Avg H -0.46 Peak H -0.46 Avg H -3.6 58.17 Peak V -3.6 46.28 Avg V -3.6 52.92 Peak V -0.46 40.09 Avg V -0.46 Peak V -0.46	Reading Detector Polar Back Factor Level dBuV /m 58.96 Peak H -3.6 55.36 47.29 Avg H -3.6 43.69 54.03 Peak H -0.46 53.57 41.7 Avg H -0.46 41.24 Peak H -3.6 54.57 46.28 Avg V -3.6 54.57 46.28 Avg V -3.6 42.68 52.92 Peak V -0.46 52.46 40.09 Avg V -0.46 39.63 Peak V -0.46 39.63	Reading Detector Polar Factor Level Limit dBuV Peak/Avg H/V dB dBuV /m dBuV /m dBuV /m 58.96 Peak H -3.6 55.36 74 47.29 Avg H -3.6 43.69 54 54.03 Peak H -0.46 53.57 74 41.7 Avg H -0.46 41.24 54 Peak H -0.46 41.24 54 54 Avg H -3.6 54.57 74 46.28 Avg V -3.6 42.68 54 52.92 Peak V -0.46 52.46 74 40.09 Avg V -0.46 39.63 54 Peak V -0.46 39.63 54	

Remark:

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

The testing has been conformed to 10th harmonics(1G~25G)

Other harmonics emission are lower then 20dB below the allowable Limit

Version: ATL-ICRF-15V01.00

 EUT :
 Notebook
 Model Name.
 :
 CWI535

 Temperature :
 26 °C
 Relative Humidity :
 56%

 Test Power :
 AC 120V/ 60Hz
 Pressure :
 1010 hPa

 Test Mode :
 WIFI TX Mode (N40 2452MHz)
 Test Date :
 2017-06-23

Remark: Only show the worse case.

Freq.	Deceiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Margin
MHz	dBuV	Peak/Avg	H/V	dB	dBuV /m	dBuV /m	dB
4904	59.14	Peak	Н	-3.59	55.55	74	-18.45
4904	46.05	Avg	Н	-3.59	42.46	54	-11.54
7356	53.89	Peak	Н	-0.43	53.46	74	-20.54
7356	42.05	Avg	Н	-0.43	41.62	54	-12.38
		Peak	Н			74	
		Avg	Н			54	
4904	59.13	Peak	V	-3.59	55.54	74	-18.46
4904	45.55	Avg	V	-3.59	41.96	54	-12.04
7356	54.54	Peak	V	-0.43	54.11	74	-19.89
7356	42.98	Avg	V	-0.43	42.55	54	-11.45
		Peak	V			74	
		Avg	V			54	

Remark:

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

The testing has been conformed to 10th harmonics(1G~25G)

Other harmonics emission are lower then 20dB below the allowable Limit

Version: ATL-ICRF-15V01.00

Page 33 of 67 Report No.: ATL-FCC20170614784

4. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT

4.1 LIMITS

FCC Part 15.247, subpart C/ RSS 247 Section 5.4(4)					
Frequency Range (MHz)	2400~2483.5				
Limits	30				

4.2 TEST PROCEDURE

The measurement is according to section 9.1.2 of FCC KDB 558074 D01 DTS Meas Guidance

The EUT was directly connected to the power meter and antenna output port as show in the block diagram as bellow.

4.3 TEST SETUP

4.4 TEST INSTRUMENTS

Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
P-Series Power Meter	Agilent	N1911A	MY45100482	Jul. 04, 2016	Jul. 03. 2017	1 year
Wideband Power Sensor	Agilent	N1921A	MY51200145	Jul. 04, 2016	Jul. 03. 2017	1 year

4.5 EUT OPERATING CONDITIONS

The EUT was set to continuously transmitting in the maximum power during the test.

4.6 TEST RESULTS

2.4 G Band Conducted Power							
		802.11b Power					
Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)				
1	2412 MHz	9.32					
6	2437 MHz	9.21	30				
11	2462 MHz	9.25					
		802.11g Power					
Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)				
1	2412 MHz	9.18					
6	2437 MHz	9.19	30				
11	2462 MHz	9.17					
		802.11n(HT20) Power					
Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)				
1	2412 MHz	9.03					
6	2437 MHz	9.05	30				
11	2462 MHz	9.09					
	802.11n(HT40) Power						
Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)				
3	2422 MHz	9.01					
6	2437 MHz	8.99	30				
9	2452 MHz	8.97					

Page 35 of 67 Report No.: ATL-FCC20170614784

5. OCCUPIED BANDWIDTH MEASUREMENT

5.1 LIMITS

FCC Part 15.247, subpart C/ RSS 247 Section 5.2(1)				
Frequency Range (MHz)	2400~2483.5			
Limits	6 dB Bandwidth>500 KHz			

5.2 TEST PROCEDURE

The EUT was directly connected to the power meter and antenna output port as show in the block diagram as bellow.

Spectrum Parameters	Setting
Attenuation	Auto
Span	>6 dB Bandwidth
RBW	100 kHz
VBW	≥3RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.3 TEST SETUP

5.4 TEST INSTRUMENTS

Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
Spectrum Analyzer	R&S	FSP40	100154	Jul. 04, 2016	Jul. 03. 2017	1 year
Spectrum Analyzer	Agilent	E4407B	MY41440432	Jul. 04, 2016	Jul. 03. 2017	1 year

5.5 EUT OPERATING CONDITIONS

The EUT was set to continuously transmitting in the maximum power during the test.

5.6 TEST RESULTS

801.11b Mode 99% OBW Frequency 6dB Bandwidth Limit (MHz) (MHz) (MHz) 2412 9.101 14.5285 2437 8.586 13.9003 >=500 kHz 2462 8.063 13.4579

B Mode 2412 MHz

B Mode 2437 MHz

B Mode 2462 MHz

801.11g Mode						
Frequency (MHz)	6dB Bandwidth (MHz)	99% OBW (MHz)	Limit			
2412	16.413	16.4593				
2437	16.489	16.4842	>=500 kHz			
2462	16.456	16.4490				

G Mode 2412 MHz

G Mode 2437 MHz

G Mode 2462 MHz

801.11n(HT20) Mode 99% **OBW** Frequency 6dB Bandwidth Limit (MHz) (MHz) (MHz) 2412 17.706 17.6051 2437 17.776 17.6262 >=500 kHz 2462 17.723 17.6084

N20 Mode 2412 MHz

N20 Mode 2437 MHz

N20 Mode 2462 MHz

801.11n(HT40) Mode 99% **OBW** Frequency 6dB Bandwidth Limit (MHz) (MHz) (MHz) 2422 35.700 35.7883 2437 36.488 35.9824 >=500 kHz 2452 35.256 35.7727

N40 Mode 2422 MHz

N40 Mode 2437 MHz

N40 Mode 2452 MHz

6. POWER SPECTRAL DENSITY

6.1 LIMITS

FCC Part 15.247, Subpart C/ RSS 247 Section 5.2(2)					
Frequency Range (MHz)	2400~2483.5				
99% Occupied Bandwidth	8 dBm in any 3 kHz				

6.2 TEST PROCEDURE

The EUT was directly connected to the power meter and antenna output port as show in the block diagram as bellow.

Spectrum Parameters	Setting
Attenuation	Auto
Span	Set the span to 1.5 times the DTS channel bandwidth
RBW	3 kHz
VBW	≥3RBW
Detector	Reak
Trace	Max Hold
Sweep Time	Auto

6.3 TEST SETUP

6.4 TEST INSTRUMENTS

Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
Spectrum Analyzer	R&S	FSP40	100154	Jul. 04, 2015	Jul. 03. 2017	1 year
Spectrum Analyzer	Agilent	E4407B	MY41440432	Jul. 04, 2016	Jul. 03. 2017	1 year

6.5 EUT OPERATING CONDITIONS

The EUT was set to continuously transmitting in the maximum power during the test.

6.6 TEST RESULTS

Version: ATL-ICRF-15V01.00

801.11b Mode						
Frequency (MHz)	Power Density (3 kHz/dBm)	Limit (dBm/3KHz)	Result			
2412	-10.64					
2437	-10.48	8	Pass			
2462	-11.38					

B Mode 2412 MHz

B Mode 2462 MHz

801.11g Mode						
Frequency (MHz)	Power Density (3 kHz/dBm)	Limit (dBm/3KHz)	Result			
2412	-9.949					
2437	-10.89	8	Pass			
2462	-8.549					

G Mode 2412 MHz

801.11 n(HT20) Mode						
Frequency (MHz)	Power Density (3 kHz/dBm)	Limit (dBm/3KHz)	Result			
2412	-11.93					
2437	-12.80	8	Pass			
2462	-13.46					

N (HT20) 2462 MHz

801.11 n(HT40) Mode						
Frequency (MHz)	Power Density (3 kHz/dBm)	Limit (dBm/3KHz)	Result			
2422	-14.54					
2437	-15.07	8	Pass			
2452	-10.03					

N (HT40) Mode 2422 MHz

N (HT40) 2452 MHz

7. BAND EDGE AND OUT-OF-BAND EMISSION

7.1 LIMITS

FCC Part 15.247, Subpart C/ RSS 247 Section 5.5					
Frequency Range (MHz)	2400~2483.5				
	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the desired power, based on either an RF conducted measurement, provide the transmitter demonstrates compliance with the peak conducted power limits.				

7.2 TEST PROCEDURE

The EUT was directly connected to the power meter and antenna output port as show in the block diagram as bellow.

- Set frequency range to capture low band-edge from 2310 MHz up to 2390 MHz, and for up band-edge from 2483.5 MHz up to 2500 MHz
- b. For low band-edge set the equipment transmit at the lowest channel, and for up band-edge set the equipment transmit at the highest channel
- c. Set the VBW≥3 RBW (100kHz/ 300kHz) for conducted measurement
- d. For radiated measurements the RBW set to 1 MHz, and the VBW set to 1 MHz for peak measurements and 10 Hz for average measurement

7.3 TEST SETUP

(A) Radiated Emission Test Set-Up

(B) Conducted Emission Test Setup

Version: ATL-ICRF-15V01.00

7.4 TEST INSTRUMENTS

Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
Broadband Antenna	R&S	VULB 9168	VULB 9168-456	Jul. 04, 2016	Jul. 03. 2017	1 year
Test Cable	N/A	R-01	N/A	Jul. 04, 2016	Jul. 03. 2017	1 year
Test Cable	N/A	R-02	N/A	Jul. 04, 2016	Jul. 03. 2017	1 year
EMI Test Receiver	R&S	ESCI	101324	Jul. 04, 2016	Jul. 03. 2017	1 year
Spectrum Analyzer	Agilent	E4407B	MY41440432	Jul. 04, 2016	Jul. 03. 2017	1 year
Antenna Mast	EM	SC100_1	N/A	N/A	N/A	N/A
Turn Table	EM	SC100	060531	N/A	N/A	N/A
50Ω Switch	Anritsu Corp	MP59B	6200983705	Jul. 04, 2016	Jul. 03. 2017	1 year
Spectrum Analyzer	R&S	FSP40	100154	Jul. 04, 2016	Jul. 03. 2017	1 year
Horn Antenna	R&S	HF906	10029	Jul. 04, 2016	Jul. 03. 2017	1 year
Amplifier	EM	EM-30180	060538	Jul. 04, 2016	Jul. 03. 2017	1 year

7.5 EUT OPERATING CONDITIONS

The EUT was set to continuously transmitting in the maximum power during the test.

7.6 TEST RESULTS

Version: ATL-ICRF-15V01.00

Bandedge(Radiated Emission) EUT: Model Name. : WiFi Module CWI535 Temperature: 26 ℃ Relative Humidity: 56% Test Power: AC 120V/ 60Hz Pressure: 1010 hPa Test Mode: TX B Mode 2412MHz Test Date : 2017-06-23 Remark: Only show the worse case-Vertical 107.0 dBuV/m Limit1: 97 87 77 67 57 47 37 27 17 7.0 2310.0000 2322.00 2418.00 2430.00 MH 2334.00 2346.00 2358.00 2370.00 2382.00 2394.00 2406.00 No. Frequency Reading Correct Result Limit Margin Remark (dBuV/m) dB/m (dBuV/m) (dBuV/m) (MHz) (dB) 2310.000 33.95 -4.4229.53 54.00 -24.47 Average Detector 1 2310.000 44.98 -4.42 40.56 -33.44 74.00 Peak Detector 2390.000 34.34 -3.7230.62 54.00 -23.382 Average Detector 2390.000 45.43 -3.7241.71 74.00 -32.29Peak Detector 3 2400.000 52.53 -3.6448.89 54.00 -5.11 Average Detector 2400.000 58.48 -3.6454.84 74.00 -19.16Peak Detector / 2412.840 90.97 -3.5487.43 4 / Average Detector

Remark:

Emission Level= Read Level+ Correct Factor

95.80

Margin= Emission Level-Limit

2413.080

No report for the emission which more than 10 dB below the prescribed limit.

-3.54

92.26

Version: ATL-ICRF-15V01.00

Peak Detector

EUT: WiFi Module Model Name. : CWI535 Temperature: Relative Humidity: 26 ℃ 56% Test Power: AC 120V/ 60Hz Pressure: 1010 hPa Test Mode: TX B Mode 2462MHz 2017-06-23 Test Date :

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2462.750	91.97	-3.17	88.80	/	/	Average Detector
	2463.050	96.99	-3.16	93.83	/	/	Peak Detector
2	2483.500	34.58	-3.01	31.57	54.00	-22.43	Average Detector
	2483.500	46.43	-3.01	43.42	74.00	-30.58	Peak Detector
3	2500.000	34.03	-2.88	31.15	54.00	-22.85	Average Detector
	2500.000	45.70	-2.88	42.82	74.00	-31.18	Peak Detector

2475.00

2480.00

2485.00

2490.00

2495.00 2500.00 MHz

Remark:

Emission Level= Read Level+ Correct Factor

2460.00

2465.00

2470.00

Margin= Emission Level-Limit

No report for the emission which more than 10 dB below the prescribed limit.

Version: ATL-ICRF-15V01.00

EUT: WiFi Module Model Name. : CWI535 Temperature: 26 ℃ Relative Humidity: 56% Test Power: AC 120V/ 60Hz Pressure: 1010 hPa Test Mode: TX G Mode 2412MHz 2017-06-23 Test Date : Remark: Only show the worse case-Vertical

2010.00	00 2322.00	2334.00 234	2330.	00 2510.00	2302.00	2007.00	2400.00 2410.00 2430.00 MITE
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	34.03	-4.42	29.61	54.00	-24.39	Average Detector
	2310.000	45.73	-4.42	41.31	74.00	-32.69	Peak Detector
2	2390.000	34.44	-3.72	30.72	54.00	-23.28	Average Detector
	2390.000	46.55	-3.72	42.83	74.00	-31.17	Peak Detector
3	2400.000	43.16	-3.64	39.52	54.00	-14.48	Average Detector
	2400.000	72.22	-3.64	68.58	74.00	-5.42	Peak Detector
4	2415.360	82.79	-3.52	79.27	/	/	Average Detector
	2415.240	94.51	-3.52	90.99	/	/	Peak Detector

Remark:

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

No report for the emission which more than 10 dB below the prescribed limit.

EUT: WiFi Module Model Name. : CWI535

Temperature : 26 ℃ Relative Humidity : 56%

 Test Power :
 AC 120V/ 60Hz
 Pressure :
 1010 hPa

 Test Mode :
 TX G Mode 2462MHz
 Test Date :
 2017-06-23

Remark: Only show the worse case-Vertical

	000 2433.00	2400.00 24	00.00 2710	5.00 2415.00	2400.00	2400.00	2430.00 2433.00 2300.00 MIZ
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2465.300	83.97	-3.15	80.82	/	/	Average Detector
	2465.100	95.79	-3.15	92.64	/	/	Peak Detector
2	2483.500	34.58	-3.01	31.57	54.00	-22.43	Average Detector
	2483.500	47.33	-3.01	44.32	74.00	-29.68	Peak Detector
3	2500.000	34.13	-2.88	31.25	54.00	-22.75	Average Detector
	2500.000	46.58	-2.88	43.70	74.00	-30.30	Peak Detector

Remark:

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

No report for the emission which more than 10 dB below the prescribed limit.

Version: ATL-ICRF-15V01.00

EUT: WiFi Module Model Name. : CWI535 Temperature: Relative Humidity: 26 ℃ 56% Test Power: AC 120V/ 60Hz Pressure: 1010 hPa Test Mode: TX N20 Mode 2412MHz 2017-06-23 Test Date : Remark: Only show the worse case-Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	33.94	-4.42	29.52	54.00	-24.48	Average Detector
	2310.000	46.11	-4.42	41.69	74.00	-32.31	Peak Detector
2	2390.000	34.35	-3.72	30.63	54.00	-23.37	Average Detector
	2390.000	46.19	-3.72	42.47	74.00	-31.53	Peak Detector
3	2400.000	43.02	-3.64	39.38	54.00	-14.62	Average Detector
	2400.000	71.95	-3.64	68.31	74.00	-5.69	Peak Detector
4	2415.120	81.33	-3.52	77.81	/	/	Average Detector
	2415.240	92.00	-3.52	88.48	/	/	Peak Detector

2370.00

2382.00

2394.00

2406.00

2418.00 2430.00 MHz

Remark:

-3.0

2310.0000 2322.00

Emission Level= Read Level+ Correct Factor

2334.00

2346.00

2358.00

Margin= Emission Level-Limit

No report for the emission which more than 10 dB below the prescribed limit.

Test Power:

EUT: WiFi Module Model Name. : CWI535

Pressure:

Temperature: 26 ℃ Relative Humidity: 56%

Remark: Only show the worse case-Vertical

AC 120V/ 60Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2465.150	82.62	-3.15	79.47	/	/	Average Detector
	2458.850	93.69	-3.19	90.50	/	/	Peak Detector
2	2483.500	34.51	-3.01	31.50	54.00	-22.50	Average Detector
	2483.500	47.39	-3.01	44.38	74.00	-29.62	Peak Detector
3	2500.000	34.06	-2.88	31.18	54.00	-22.82	Average Detector
	2500.000	45.37	-2.89	42.48	74.00	-31.52	Peak Detector

Remark:

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

No report for the emission which more than 10 dB below the prescribed limit.

Version: ATL-ICRF-15V01.00

Report No.: ATL-FCC20170614784

1010 hPa

EUT: WiFi Module Model Name. : CWI535 Temperature: 26 ℃ Relative Humidity: 56% Test Power: AC 120V/ 60Hz Pressure: 1010 hPa Test Mode: Test Date : TX N40 Mode 2422MHz 2017-06-23

Remark : Only show the worse case-Vertical

2310.00	<u>UU 2324.UU </u>	2330.00 2332	<u> </u>	JU 230U.UU	2334.00	2400.00	Z4ZZ.UU Z430.UU Z43U.UU MITZ
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	34.05	-4.42	29.63	54.00	-24.37	Average Detector
	2310.000	45.99	-4.42	41.57	74.00	-32.43	Peak Detector
2	2390.000	34.99	-3.72	31.27	54.00	-22.73	Average Detector
	2390.000	47.98	-3.72	44.26	74.00	-29.74	Peak Detector
3	2400.000	46.68	-3.64	43.04	54.00	-10.96	Average Detector
	2400.000	59.64	-3.64	56.00	74.00	-18.00	Peak Detector
4	2413.460	78.26	-3.53	74.73	/	/	Average Detector
	2412.620	88.65	-3.54	85.11	/	/	Peak Detector

Remark:

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

No report for the emission which more than 10 dB below the prescribed limit.

EUT: WiFi Module Model Name. : CWI535 Temperature: 26 ℃ Relative Humidity: 56% Test Power: AC 120V/ 60Hz Pressure: 1010 hPa Test Mode: TX N40 Mode 2452MHz 2017-06-23 Test Date :

Remark: Only show the worse case-Vertical dBuV/m 97.0 Limit1: 87 77 67 47 37 27 17

2430.0	000 2437.00	2444.00 24	51.00 2458	3.00 2465.00	2472.00	2479.00	2486.00 2493.00 2500.00 MHz
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2465.000	79.69	-3.15	76.54	/	/	Average Detector
	2458.350	90.17	-3.19	86.98	/	/	Peak Detector
2	2483.500	45.15	-3.01	42.14	54.00	-11.86	Average Detector
	2483.500	60.65	-3.01	57.64	74.00	-16.36	Peak Detector
3	2500.000	34.62	-2.88	31.74	54.00	-22.26	Average Detector
	2500.000	46.72	-2.88	43.84	74.00	-30.16	Peak Detector

Remark:

-3.0

Emission Level= Read Level+ Correct Factor

Margin= Emission Level-Limit

No report for the emission which more than 10 dB below the prescribed limit.

Version: ATL-ICRF-15V01.00

N(40) Mode High CH

8. ANTENNA REQUIREMENT

8.1 REQUIREMENT

Antenna Requirement (15.203)	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
Antenna Requirement	If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

8.2 ANTENNA CONNECTOR CONSTRUCTION

The EUT antenna is a PIFA Antenna. And the maximum gain of this antenna is 0.85 dBi. It complies with the standard requirement.

----END OF REPORT-----

Version: ATL-ICRF-15V01.00