1. Find the metric that minimizes any of the errors, by calculus.

A.
$$(MSE) - \sum (actual - predicted)^2$$

Set y_i as the actual data

Predicted data base on the simplest Econometrics Model, which is $\hat{y}_i = \beta_0$ So our goal is:

min
$$\sum$$
(actual – predicted)²

which also is:

$$\min \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

$$\min \sum_{i=1}^{n} (y_i - \beta_0)^2$$

For solve this function, we need make first order derivative of the function to be zero, so:

$$\frac{d}{d\beta_0} (\sum_{i=1}^n (y_i - \beta_0)^2) = \sum_{i=1}^n -2(y_i - \beta_0) = 0$$

$$\sum_{i=1}^n (y_i - \beta_0) = 0$$

$$n\beta_0 = \sum_{i=1}^n y_i$$

$$\beta_0 = \frac{\sum_{i=1}^n y_i}{n}$$

Therefore, we can see that the β_0 is actually the average of the y.

According to our data, we have

y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	y_{10}
165	160	175	180	155	150	110	195	160	185

So, the β_0 will be:

$$\beta_0 = \frac{\sum_{i=1}^{10} y_i}{10} = \frac{165 + 160 + 175 + 180 + 155 + 150 + 110 + 195 + 160 + 185}{10} = 163.50$$

Therefore, our simplest Econometrics Model $\hat{y}_i = 163.50$

B.
$$MSPE - \sum \left(\frac{actual-predicted}{actual}\right)^2$$

Set y_i as the actual data

Predicted data base on the simplest Econometrics Model, which is $\widehat{y}_i = \beta_0$ So our goal is:

min
$$\sum \left(\frac{\text{actual-predicted}}{\text{actual}}\right)^2$$

which also is:

$$\min \sum_{i=1}^{n} \left(\frac{y_i - \hat{y_i}}{y_i} \right)^2$$

$$\min \sum_{i=1}^{n} \left(\frac{y_i - \beta_0}{y_i} \right)^2$$

For solve this function, we need make first order derivative of the function to be zero, so:

$$\begin{split} \frac{d}{d\beta_0} (\sum_{i=1}^n \left(\frac{y_i - \beta_0}{y_i}\right)^2) &= \sum_{i=1}^n -\frac{2(y_i - \beta_0)}{y_i^2} = 0 \\ -2 \sum_{i=1}^n \frac{y_i - \beta_0}{y_i^2} &= -2 \sum_{i=1}^n \left(\frac{1}{y_i} - \frac{\beta_0}{y_i^2}\right) = 0 \\ -2 (\sum_{i=1}^n \frac{1}{y_i} - \sum_{i=1}^n \frac{\beta_0}{y_i^2}) &= 0 \\ \sum_{i=1}^n \frac{1}{y_i} - \sum_{i=1}^n \frac{\beta_0}{y_i^2} &= 0 \\ \beta_0 \sum_{i=1}^n \frac{1}{y_i^2} &= \sum_{i=1}^n \frac{1}{y_i} \\ \beta_0 &= \frac{\sum_{i=1}^n \frac{1}{y_i}}{\sum_{i=1}^n \frac{1}{y_i}} \end{split}$$

According to our data, we have

y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	y_{10}
165	160	175	180	155	150	110	195	160	185

So, the β_0 will be:

$$\beta_0 = \frac{\sum_{i=1}^n \frac{1}{y_i}}{\sum_{i=1}^n \frac{1}{y_i^2}} = \frac{0.0625725}{0.0004026} = 155.42191$$

Therefore, our simplest Econometrics Model $\hat{y}_i = 155.42$

C. MAE - $\sum |actual - predicted|$

Set y_i as the actual data

Predicted data base on the simplest Econometrics Model, which is $\widehat{y}_i = \beta_0$ So our goal is:

min
$$\sum |actual - predicted|$$

which also is:

$$\min \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

$$\min \sum_{i=1}^{n} |y_i - \beta_0|$$

Since this function include the absolute symbol, we have to move it for to do first order derivative. So,

$$\min \sum_{i=1}^n \sqrt{(y_i - \beta_0)^2}$$

Then we make the first order derivative of this function to be zero:

$$\frac{d}{d\beta_0} \left(\sum_{i=1}^n \sqrt{(y_i - \beta_0)^2} \right) = \sum_{i=1}^n \left(-\frac{y_i - \beta_0}{\sqrt{(y_i - \beta_0)^2}} \right) = 0$$

For $-\frac{y_i-\beta_0}{\sqrt{(y_i-\beta_0)^2}}$, we just have to possible result, which is

$$\begin{cases} -\frac{y_{i}-\beta_{0}}{\sqrt{(y_{i}-\beta_{0})^{2}}} = -1, & when \ y_{i} > \beta_{0} \\ -\frac{y_{i}-\beta_{0}}{\sqrt{(y_{i}-\beta_{0})^{2}}} = 1, & when \ y_{i} < \beta_{0} \\ -\frac{y_{i}-\beta_{0}}{\sqrt{(y_{i}-\beta_{0})^{2}}} = \frac{0}{0} = 0, when \ y_{i} = \beta_{0}, \ (L'Hospital's \ rule) \end{cases}$$

In order to satisfy $\sum_{i=1}^{n} \left(-\frac{y_i - \beta_0}{\sqrt{(y_i - \beta_0)^2}}\right) = 0$, when n is even, we should guarantee $\frac{n}{2}$ of $-\frac{y_i - \beta_0}{\sqrt{(y_i - \beta_0)^2}}$

should be -1, and $\frac{n}{2}$ of $-\frac{y_i - \beta_0}{\sqrt{(y_i - \beta_0)^2}}$ should be 1. Therefore, if we set the data with ascending order,

the solution will be the range, which is between $\frac{n}{2}th$ number's value and $\frac{n+2}{2}th$ number's value.

On the other hand, when n is odd, one of them should be 0, and $\frac{n-1}{2}$ of $-\frac{y_i-\beta_0}{\sqrt{(y_i-\beta_0)^2}}$ should

be -1, and $\frac{n-1}{2}$ of $-\frac{y_i-\beta_0}{\sqrt{(y_i-\beta_0)^2}}$ should be 1. Base on this concept, we assume the **median** of data is the optimal solution.

According to our data, we have

y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	y_{10}
165	160	175	180	155	150	110	195	160	185

In order to obtain the median, we have to rearrange the data.

1	2	3	4	5	6	7	8	9	10
y_7	y_6	y_5	y_9	y_2	y_1	y_3	y_4	y_{10}	y_8
110	150	155	160	160	165	175	180	185	195

Therefore, as the result n is even, the $\, \beta_0 \,$ should be: $\, 160 \, \leq \, \beta_0 \leq 165 \,$

D. MAPE -
$$\sum \left| \frac{(actual-predicted)}{actual} \right|$$

Set y_i as the actual data

Predicted data base on the simplest Econometrics Model, which is $\hat{y}_i = \beta_0$ So our goal is:

$$\min \sum |\frac{(actual-predicted)}{actual}|$$

which also is:

$$\min \sum_{i=1}^{n} \left| \frac{(y_i - \hat{y}_i)}{y_i} \right|$$

$$\min \sum_{i=1}^{n} \left| \frac{(y_i - \beta_0)}{y_i} \right|$$

Since this function include the absolute symbol, we have to move it for to do first order derivative. So,

$$\min \sum_{i=1}^n \sqrt{\left(\frac{(y_i - \beta_0)}{y_i}\right)^2}$$

Then we make the first order derivative of this function to be zero:

$$\frac{d}{d\beta_0} \left(\sum_{i=1}^n \sqrt{\left(\frac{(y_i - \beta_0)}{y_i} \right)^2} \right) = \sum_{i=1}^n - \frac{\sqrt{y_i^2} (y_i - \beta_0)}{y_i^2 \sqrt{(y_i - \beta_0)^2}} = 0$$

As the result of y is height, which always positive, $\sqrt{{y_i}^2} = y_i$. So,

$$\begin{split} \sum_{i=1}^{n} -\frac{(y_{i}-\beta_{0})}{y_{i}\sqrt{(y_{i}-\beta_{0})^{2}}} &= 0 \\ \\ -\frac{(y_{i}-\beta_{0})}{y_{i}\sqrt{(y_{i}-\beta_{0})^{2}}} &= -\frac{1}{y_{i}}, \quad when \ y_{i} > \beta_{0} \\ -\frac{(y_{i}-\beta_{0})}{y_{i}\sqrt{(y_{i}-\beta_{0})^{2}}} &= \frac{1}{y_{i}}, \quad when \ y_{i} < \beta_{0} \\ -\frac{(y_{i}-\beta_{0})}{y_{i}\sqrt{(y_{i}-\beta_{0})^{2}}} &= \frac{0}{0} &= 0, when \ y_{i} = \beta_{0}, \ (L'Hospital's \ rule) \end{split}$$

According to this, we cannot to make sure the derivative will be to zero, because it depends on the value of y_i . For this reason, we cannot get the estimation of MAPE by calculus.