CMPS 411

Software Project Estimation

Dr. Abdelkarim Erradi

Dept. of Computer Science & Engineering

QL

Outline

- Project Estimation
- Use Case Point Estimation method

Project Estimation

Estimating Methods We Can Use

Analogy - Compare the proposed project to previously completed similar projects where project development information is known.

Bottom-up - Identify and estimating each individual component separately, then combining the results to produce an estimate of the entire project.

Top-down - Project is partitioned into lower-level components and life cycle phases beginning at the highest level.

Expert Judgement - Human 'experts' consulted to provide an estimate based upon their experience and understanding of a proposed project.

Algorithmic - Use of equations from research and historical data to perform software estimates.

Estimating Software Project Size from Use Cases

- Estimating Software Projects (Size in Source Lines of Code (SLOC) and Effort (Person-Hours)) is difficult and often more art than science.
- The tools/methods that do exist require expert knowledge or experience
- Using Use Cases (UC) as a base for estimates
 - They represent the functional requirements of the to-bedeveloped software
 - In a a use case driven development process, UC provide a good base for top-down estimation
 - Allow obtaining estimates early for planning purposes, and then refine them iteration by iteration

Best practices for estimation

- 1. Combine estimates from different experts and estimation strategies.
- 2. Estimate top-down and bottom-up independently.
- 3. Justify and criticize estimates.
- → Use method based estimates to improve expert estimates.

Use Case Point Estimation method

Use Case Point Estimation

- Each actor and use case is categorized according to complexity and assigned a weight.
 - The complexity of a use case is measured in number of transactions.
- The unadjusted use case points are calculated by adding the weights for each actor and use case.
- The unadjusted use case points are adjusted based on the values of 13 technical factors and 8 environmental factors.
- Finally the adjusted use case points are multiplied with a productivity factor.

Use Case Point Estimation – Process

Actor Type	Description	Weight
Simple	The actor represents another system with a defined Application Programming Interface (API)	1
Average	The actor represents another system interacting through a protocoldriver Interface	2
Complex	The actor is a person interacting via a Graphical User Interface (GUI)	3

Unadjusted Actor Weight

•Actor initiates an interaction with the system to accomplish some goals.

•Does not represent the *physical* people or systems, but their *role*.

Weight Actors (AW)

Use Case Type	Description	Weight
Simple	Less than 3 transactions	5
Average	4 to 7 transactions	10
Complex	More than 7 transactions	15

Unadjusted Use Case Weight

•Based on the total number of activities contained in all the use case scenarios

Product Complexity and Size

Weight Use Cases (UCW)

Adjust Based on Technical Factors

Factor number	Factor description	Weight
T1	Distributed system	2
T2	Response or	1
	throughput	
	performance objective	
T3	End-user efficiency	1
T4	Complex internal	1
	processing	
T5	Code must be reusable	1
T6	Easy to install	0.5
T7	Easy to use	0.5
T8	Portable	2
T9	Easy to change	1
T10	Concurrent	1
T11	Includes special	1
	security features	
T12	Provides direct access	1
	for third parties	
T13	Special user training	1
	facilities are required	

- Each factor is
 assigned a value
 from o to 5 based on
 importance and how
 it is supported by the
 technology used.
- Technical Complexity Factor (TCF):

Apply Technical Factors (TCF)

Environment Factor	Description	Weight
F1	Familarity with Life-Cycle model used	1.5
	Application domain	
F2	experience Experience with development	0.5
F3	methodologies used	1
F4	Analyst capability	0.5
F5	Team motivation	1
F6	Stability of requirements	2
F7	Use of part-time team members	-1
F0	Use of difficult programming	
F8	language	-1

Environment Complexity Factor - ECF

- Each factor is assigned a value from o to 5
- Environment Total
 Factor is the sum of each factor weight multiplied
 by the perceived value
- Reflects the development team's experience

Assigning values to the Environmental Factors

F1 Familiar with Development Method: Score o if none of the team members are familiar with the development method to 5 if all the team has experience from using the method on several projects.

F2 Application experience: Score o if none of team members has experience with similar application domains to 5 if all the team has more than 5 years experience.

F3 Object-Oriented experience: Score o if the team is totally unfamiliar with OOAD to 5 if all the developers been trained in OOAD and have more than 5 years experience with it.

F4 Lead analyst capability: Score o if the lead analyst is a novice to 5 if he/she has more than 5 years experience from similar projects

F5 Motivation: Score o if the project members lack motivation to 5 if the team is very motivated.

F6 Stable requirements: Score o if the requirements are likely to undergo constant changes to 5 if no changes in the requirements are expected.

F7 Part-time workers: Score o if there are no part-time workers to 5 if all are part-time workers.

F8 Experience with the tools: Score o if all the team members have been trained and have experience with the tools to 5 if they are all novices.

Apply Environmental Factors (ECF)

Productivity Factor

- The adjusted UseCase points are multiplied with a productivity factor (hours per UseCase point).
- The value may range from 16 to 30 manhour/UCP

Producing an Estimate

- The unadjusted actor weight, UAW, is calculated adding the weights for each actor.
- The unadjusted use case weights, UUCW, is calculated correspondingly.
- The unadjusted use case points, UUCP, = UAW + UUCW.
- The technical factor, TCF, = .6 + (.01* $\Sigma_{1...13}$ T_n*Weight_n).
- The environmental factor, EF, = 1.4 + (-.03* $\Sigma_{1..8}$ F_n*Weight_n).
- UCP = UUCP*TCF*EF
- Estimate = UCP * Productivity factor

Calculate Effort and Schedule

Improving Estimation Practices

- It is beneficial to combine estimates from different experts and estimation strategies.
 - The company's expert estimates are made bottom-up, the use case points method provides a top-down estimate.
- A supplementary use case based estimate provides a basis for adjusting the expert estimate.
- An estimation method may make more people competent to take part in estimation.

Summary

