Arithmetic and Logic Instructions

Thorne: Chapter 6, 7, 9

(Irvine, Edition IV: 4.1, 4.2, 6.2, 7.2, 7.3, 7.4)

SYSC3006

Breakdown of Intel 8086 Assembly Instructions

- **1. Data transfer**: copy data among state variables (registers, memory and I/O ports)
 - Their execution do not modify FLAGS
 - eg. MOV instruction
- 2. Data manipulation: modify state variable values
 - Executed within the ALU data path
 - Their execution do modify the FLAGS
 - eg. Arithmetic : ADD, SUB, CMP
 - eg. Logical: AND, OR, NOT, XOR
 - eg. Shift, Rotate: SHL, SAR, RCL, ROL
- 3. Control-flow: determine "next" instruction to execute
 - Their execution allow non-sequential execution
 - eg. JMP and JE

Data Manipulation Instructions

Compute new value ... modify flags

Some common flag results:

$$ZF = zero flag$$
 set iff result = 0

$$set = 1$$
, $clear = 0$

$$SF = sign flag$$
 set iff result < 0

assumes 2's complement encoding! iff == If-and-only-if

specific use of "**overflow**" – not the same as the general concept!

Signed versus Unsigned Arithmetic

- These operations perform a bitwise add/subtract of values of width n to give a result of width n
- <u>8-bit Unsigned Integer Examples:</u>

$$\begin{array}{rcl}
117_{10} &=& 0111 \ 0101_2 \\
+& 99_{10} &=& 0110 \ 0011_2 \\
\hline
216_{10} &=& 1101 \ 1000_2
\end{array}$$

$$\begin{array}{rcl}
133_{10} &=& 1000 \ 0101_2 \\
- & 51_{10} &=& 0011 \ 0011_2 \\
\hline
82_{10} &=& 0101 \ 0010_2
\end{array}$$

Arithmetic Operations: Binary Addition and Subtraction

8-bit Signed Integer Examples:

• The computer does exactly the same thing for 2's complement signed integers! ©

Signed is now being used to mean 2's complement signed
$$-117_{10} = 1000 \ 1011_{2} + 99_{10} = +0110 \ 0011_{2}$$
$$-18_{10} = 1110 \ 1110_{2} \ (0001 \ 0001_{2} + 1 = 12h = 18d)$$

$$-32_{10} = 1110\ 0000_{2}$$

$$-5_{10} = -0000\ 0101_{2}$$

$$-37_{10} = 1101\ 1011_{2}(\ 0010\ 0100_{2} + 1 = 25h = 37d)$$

Arithmetic Operations: Binary Addition and Subtraction

Computers often implement subtraction using "negate and add"

$$X - Y = X + (-Y)$$

Example: 32-65 = 32 + (-65)

$$32_{10} = 0010\ 0000_{2}$$

$$+ -65_{10} = +1011\ 1111_{2} (\ 0100\ 0000_{2} + 1 = 41h = 65d)$$

$$-33_{10} = 1101\ 1111_{2} (\ 0010\ 0000_{2} + 1 = 21h = 33d)$$

Overflow: The Concept

Overflow: Result of operation **outside the range** that can be represented

- Problem arising due to limited range of fixed-width representation.
- Result is still produced; the result is just meaningless.
- <u>8-bit Unsigned Integer Example:</u>

We need 9 bits to represent the result

$$255_{10} = 1111 1111_{2}$$

$$+ 1_{10} = 0000 0001_{2}$$

$$256 ?? 0_{10} = (1) 0000 0000_{2}$$
CARRY

What is the range of an 8-bit unsigned number?

- In this case (with fixed 8-bits): OVERFLOW OCCURRED!
- In this case (unsigned): A carry @ MSB is important in the INTERPRETATION of the result.

Addition and Subtraction Overflow

Is that the only interpretation of the example?

$$\begin{array}{r}
1111 \ 1111_{2} (=-1_{10}) \\
+ 0000 \ 0001_{2} (=+1_{10}) \\
\hline
(1) 0000 \ 0000_{2} (=0_{10})
\end{array}$$

Same binary pattern!

- What if the values are interpreted as 8-bit signed integers?
 - The result is correct (-1 + 1 = 0). There is no overflow. OF=0 (CF=1)
 - In this case (signed), the carry at MSB still occurs but is not important to the interpretation!
 - ZF = ? SF = ?

Overflow:

- Carry flag (CF) for unsigned numbers
- Overflow flag (OF) for singed numbers

Addition and Subtraction Overflow

Another example: With Borrow

8-bit result
$$32_{10} = 0010\ 0000_2$$
 8-bit result $-65_{10} = 0100\ 0001_2^2$ $-33_{10} = 1\ 1101\ 1111_2 (= +223_{10}: unsigned)$ $(= -33_{10}: signed)$

- If the values are interpreted as unsigned, the borrow implies overflow (actually, underflow): the result is WRONG.
- If the value are interpreted as signed, there is no overflow; ignore the borrow: the result is $\frac{\text{CORRECT}}{\text{CF}}$.

$$OF = 0
SYSC3006
SF = 1
ZF = 0$$

Addition and Subtraction Overflow

Overflow depends on the interpretation of the values.

Another example:	unsigned	signed	
$0111\ 1111_2$	127	127	
$+\ 0000\ 0001_2$	+ 1	+ 1	
1000 0000 ₂	128	-128	
	CORRECT	WRONG	

CF = 0 ($CF \rightarrow unsigned number$) OF = 1 ($OF \rightarrow signed number$) SF = 1 over though there is no carry outside of fixed width!

Overflow Cookie Cutters

Unsigned: Carry or borrow means overflow

```
borrow

Signed: Ignore carry or borrow

Overflow possible if:

positive + positive = negative

(positive - negative = negative)

negative + negative = positive

(negative - positive = positive)

Overflow impossible if:

positive + negative

negative + positive

(negative - positive)
```

Data Manipulation : ADD

Example: Suppose that AL contains 73H, when it is executed :

execute: ADD AL, 40H

73 H + 40 H

= **B3**H carry?

results: $AL := B3H (= 1011 \ 0011 \ B)$

 $\mathbf{ZF} := 0 \quad \text{result} \neq 0$

SF := 1 result is negative (signed)

 $\mathbf{CF} := 0$ (no carry out of msbit)

 $\mathbf{OF} := 1 + ve + ve = -ve$

Correct result for unsigned number (CF = 0) Wrong result for signed number (OF = 1)

SYSC3006

Problem: Write a program to perform the following operation:

$$z = x + y$$
 where $x = 55667788h$ and $y = 99669988h$

Solution:

```
.data
x DW 7788h
  DW 5566h
y DW 9988h
                                     1 111
  DW 9966h
                                  5566 7788
                                                  5566 7788
                                + 9966 9988 + 9966 9988
z DW ?
  DW ?
                                  EECD 1110
                                                  EECC 1110
                                                   (BX)(AX)
.code
  MOV AX, x
  MOV BX, x+2
  ADD AX, y \rightarrow CF=1
  ADD BX, y+2 \rightarrow ADC BX, y+2 \Rightarrow BX := BX + (y+2) + CF
  MOVz, AX
  MOV z+2, BX
END
                         SYSC3006
                                                        13
```

Control Flow: JMP instructions

Four types of JUMP instructions:

Unary (unconditional) jumps: always execute

JMP target

Conditional

Jumps

Simple jumps: jump is taken when a specific status flag is set

JC target (Jump if CF=1)

Unsigned jumps: jumps are taken when a comparison or test of unsigned numbers results in a specific combination of status flag

JA target (Jump if above)

Implication : Preceded by an instruction that alters the appropriate flags

Signed jumps: jumps are taken when a comparison or test of signed quantities results in a specific combination of status flags

JG target (Jump if greater than)

Signed and Unsigned Conditional Instructions

- The processor provides status flags to reflect results of (binary) manipulation under both signed and unsigned interpretations
- For this reason, there are separate conditional jump instructions for signed and unsigned
 - Semantically equivalent but implementation tests the flags appropriate to the data type.

Unsigned		Sign	ned
JA	Above	JG	Greater
JAE	Above or Equal	JGE	Greater or Equal
JB	Below	JL	Less
JBE	Below or Equal	JLE	Less or Equal

• There are also instructions for Not conditions too!

Example: Conditional Branches

Suppose AL contains 7FH:

<u>Unsigned Scenario</u> <u>Signed Scenario</u>

CMP AL, 80h CMP AL,80h

JA Bigger JG Bigger

In each scenario, is the jump taken? Why?

<u>Programmer MUST know</u> how binary values are to be interpreted! (e.g. value in AX above)

Limitation of J* Instructions

Conditional jump are restricted to 8-bit signed relative offset!

IP := IP + (offset sign-extended to 16-bits)

- Can't jump very far! $-128 \leftarrow \rightarrow +127$ bytes

• Example: JL Less maximum possible

 \dots distance = 127 bytes

Less: MOV ...

• One possible workaround if distance is greater than 127 bytes (but not the only one!):

JNL Continue JMP can have 16-bit relative offset

JMP Less distance can now be > 127

Continue:

Less: MOV ...

Example Write a code fragment showing how you would implement the following pseudocode

```
boolean done = FALSE;
      while (! done)
      { .... }
Solution: TRUE equ 1
        FALSE equ 0
        .code
        MOV AL, FALSE ; AL= register variable done
        notDone: CMP AL, TRUE
                 JE
                        amDone
                  ; ....; Somewhere : MOV AL, TRUE
                 JMP
                        not.Done
        amDone: ...
```

LOOP Instruction

- Useful when you have an action repeated a given number of times
- C++ analogy for (int i=max; i > 0; i--)

```
MOV CX, max
DoLoop:
...
SUB CX, 1
JNZ DoLoop
```

Functionally equivalent

Different performance & code size

```
MOV CX, max
DoLoop: . . .
LOOP DoLoop
```

- LOOP automatically decrements CX
- Only works with CX

Data Manipulation : DIV

Unsigned Integer Division

- Syntax: DIV src
- Semantics: Performs an integer division: Accumulator / src
 - The size of *divisor* (8-bit or 16-bit) is determined by size of src
 - src may be specified using register, direct or indirect mode but not immediate mode **16**-bit dividend

8-bit divisor

- 8-bit division: DIV src where src = 8-bit operand
 - Semantics divide *src* into 16-bit value in AX

Two 8-bit $- AL := AX \div src$ (unsigned divide) results

Integer result

AH := AX mod src (unsigned modulus) Integer remainder

 The flags are undefined after DIV (values may have changed, no meaning)

> **SYSC3006** 20

Data Manipulation : DIV

32-bit dividend 16-bit divisor

- <u>16-bit division</u>: DIV src where src = 16-bit operand
 - Semantics divide src into 32-bit value obtained by
 concatenating DX and AX (written DX:AX)

Two 16-bit results

Integer result

```
AX := DX:AX \div src (unsigned divide)
```

Integer remainder

 $DX := DX:AX \mod src \pmod{unsigned \mod ulus}$

 The flags are undefined after DIV (values may have changed, no meaning)

Question: In either case, what if the result is too big to fit in destination?

- $eg : AX \div 1 ?? AL = ??$
- overflow trap more later!

Data Manipulation : Logical Operations

Syntax: LOGICAL MNEUMONIC dest, src

Semantics: dest = dest LOGICAL MNEUMONIC src

Example: AND AL, 80h

Example : .data

control DB?

.code

OR control, BH

(where BH=02h)

Example: XOR AX, AX

XOR AX, 0FFh

		AND	OR	XOR
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

Operation bit by bit!

Data Manipulation: Shift

• Versions for : Left/Right and Arithmetic/Logical

SHR AL, 1

Arithmetic Shift Right

MOV CL, 2

SAR AL, CL

Logical or Arithmetic Shift Left

SHL AL, 1 SAL AL, 1

Data Manipulation: Rotate

• Versions for : Left/Right and with/out carry

Rotate-Carry-Left

RCL AL, 1

Rotate Left

MOV CL, 4
ROL AL, CL

Example Write a code fragment to test whether a variable is divisible by 4, leaving the boolean result in AX.

Solution: A number divisible by 4 would have the least significant two bits equal 0s.

FALSE	equ	0	
TRUE	equ	1	
.data			
variable	dw	1922h	
.code			
MOV	AX, varia	ıble	Alterative :
AND	AX, 03h	<u> </u>	Alterative.
JZ	yes	}	TEST variable, 03h
MOV	AX, FAL	SE J	1201 (4114016, 0011
JMP	continue		
yes: MOV	AX, TRU	Έ	
continue:			

SYSC3006

Example Suppose a robot has four motors, each of which can be off, on in forward direction or on in reverse direction. The status of these motors are written by the robot into a status word, say called "motors" in the following bitmap formation.

7 6	5	4	3	2	1	0
Motor	1 M	otor2	Mo	otor3	Mo	otor4

where the two bits for each motor are set according

01 forward

10 reverse

off off

Write a code fragment that waits until motor1 is off before continuing on.

• • •

Solution: .data

motors db ?

.code

waiting: MOV AL, motors

AND AL, 0C0h

CMP AL, 0C0h

JNZ waiting

. . .