

Université Libre de Bruxelles

Synthèse

Éléments d'optique physique PHYS-H-302

Auteur:

Nicolas Englebert

Professeur:

Marc Haelterman

Année 2015 - 2016

Appel à contribution

Synthèse Open Source

Ce document est grandement inspiré de l'excellent cours donné par Marc Haelterman à l'EPB (École Polytechnique de Bruxelles), faculté de l'ULB (Université Libre de Bruxelles). Il est écrit par les auteurs susnommés avec l'aide de tous les autres étudiants et votre aide est la bienvenue! En effet, il y a toujours moyen de l'améliorer

surtout que si le cours change, la synthèse doit être changée en conséquence. On peut retrouver le code source à l'adresse suivante

https://github.com/nenglebert/Syntheses

Pour contribuer à cette synthèse, il vous suffira de créer un compte sur *Github.com*. De légères modifications (petites coquilles, orthographe, ...) peuvent directement être faites sur le site! Vous avez vu une petite faute? Si oui, la corriger de cette façon ne prendra que quelques secondes, une bonne raison de le faire!

Pour de plus longues modifications, il est intéressant de disposer des fichiers : il vous faudra pour cela installer LATEX, mais aussi git. Si cela pose problème, nous sommes évidemment ouverts à des contributeurs envoyant leur changement par mail ou n'importe quel autre moyen.

Le lien donné ci-dessus contient aussi le README contient de plus amples informations, vous êtes invités à le lire si vous voulez faire avancer ce projet!

Licence Creative Commons

Le contenu de ce document est sous la licence Creative Commons : Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). Celle-ci vous autorise à l'exploiter pleinement, compte- tenu de trois choses :

- 1. Attribution; si vous utilisez/modifiez ce document vous devez signaler le(s) nom(s) de(s) auteur(s).
- 2. Non Commercial; interdiction de tirer un profit commercial de l'œuvre sans autorisation de l'auteur
- 3. Share alike; partage de l'œuvre, avec obligation de rediffuser selon la même licence ou une licence similaire

Si vous voulez en savoir plus sur cette licence :

http://creativecommons.org/licenses/by-nc-sa/4.0/

Merci!

Chapitre 1

Introduction à la transformée de Fourier

1.1 Dirac

Nous allons commencer par l'étude de la distribution de Dirac, dernier grand physicien théoricien du 20^e siècle, notamment en découvrant le positron, . . .Ici on va insister sur la distribution que l'on peut voir comme une généralisation de la notion de fonction. Afin de l'introduire, étudions la fonction carrée (ou fenêtre) :

$$f_a(x) = \begin{cases} a & \text{si } |x| \le \frac{1}{2a} \\ 0 & \text{si } |x| > \frac{1}{2a} \end{cases}$$
 (1.1)

Figure 1.1

donnant un carré de hauteur a et de largeur 1/a, sa surface vaut dès lors l'unité.

$$\int_{-\infty}^{\infty} f_a(x) \ dx = 1 \tag{1.2}$$

La distribution de dirac peut etre définie à partir de cette fonction en prenant la limite de a tendant vers l'infini : sa hauteur tend vers l'infini tandis que sa largeur tend vers zéro.

$$\delta(x) = \lim_{a \to \infty} f_a(x) \tag{1.3}$$

On va appeler cette distribution $\delta(x)$ qui représente un pic placé en zéro, l'origine est le seul point ou l'on trouve une valeur particulière. On peut néanmoins dire que la surface sous la courbe vaut l'unité. Cela se voit à partir de (1.2): la surface sous la courbe ne dépend pas du paramètre a, d'où la surface unitaire :

$$\int_{-\infty}^{\infty} \delta(x) \ dx = 1 \tag{1.4}$$

L'intérêt de cette distribution ne se remarque que par combinaison avec d'autres fonction. Considérons le produit d'une fonciton quelconque avec la fonction de Dirac. La seule fonction qui sera considérée est celle qui se trouve en zéro :

FIGURE 1.2
$$f(x)\delta(x) = f(0)\delta(x) \tag{1.5}$$

Toutes les valeurs autres que celle de x n'entre pas en ligne de compte. En intégrant ce produit

$$\int_{-\infty}^{\infty} f(x)\delta(x) \ dx = \int_{-\infty}^{\infty} f(0)\delta(x) \ dx = f(0)\int_{-\infty}^{\infty} \delta(x) \ dx = f(0)$$
 (1.6)

On voit que cette intégrale comme le "produit-scalaire" de f avec δ qui sélectionne la valeur de la fonction à l'origine. En résumé

$$\delta(x) = \begin{cases} \infty & \text{si } x = 0\\ 0 & \text{si } x \neq 0 \end{cases}$$
 (1.7)

Cette notion peut être généralisée en déplaçant la distribution par translation en changeant l'argument x en $x-x_0$:

$$\delta(x - x_0) = \begin{cases} \infty & \text{si } x = x_0 \\ 0 & \text{si } x \neq x_0 \end{cases}$$
 (1.8)

Figure 1.3

Cette distribution translatée multipliée par f sélectionnera dès lors $f(x_0)$. La distribution de Dirac peut être définie par une infinité

de fonction, tendant vers cette fameuse distribution lorsque le paramètre a tend vers zéro. On peut par exemple prendre la distribution gaussienne

$$\delta_a(x) = \frac{1}{a\sqrt{\pi}}e^{-x^2/a^2} \tag{1.9}$$

Lorsque a tend vers zéro, on obtient un pic tendant vers l'infini. On peut montrer que cette gaussienne, pour cette limite, tend bien vers la distribution de Dirac. Dans le cadre de ce cours, consacré à l'optique de Fourier, la distribution intéressante est la suivante

$$\delta_a(x) = \frac{1}{\pi x} \sin\left(\frac{x}{a}\right) = \frac{1}{2\pi} \int_{-1/a}^{1/a} \cos(kx) \ dk \tag{1.10}$$

Il s'agit d'une définition particulière, la suite du cours justifiera pleinement l'utilisation de celleci (les transformées de Fourier impliquent les fonction harmoniques). On va pouvoir trouver la distribution de Dirac à partir de

$$f(\alpha) = \int_{-\infty}^{\infty} \cos(\alpha x) \ dx \tag{1.11}$$

La résultat dépendra de α , ce résultat pourrait bien être une fonction de α qui se rapprochera très fortement de la distribution recherchée. Par intégration

$$f(\alpha) = \int_{-\infty}^{\infty} \cos(\alpha x) \ dx = \frac{1}{\alpha} \left[\sin(\alpha x) \right]_{-\infty}^{\infty} = \frac{1}{a} \left[\sin(\infty) - \sin(-\infty) \right]$$
 (1.12)

Nous sommes face ici à une indétermination, cette intégrale généralisée n'est pas directement calculable. Il est préférable de travailler avec la fonction d'intégrale de Riemann aux bornes réelles pour ensuite faire tendre celle ci vers l'infini

$$f(\alpha) = \int_{-L}^{L} \cos(\alpha x) dx = \frac{1}{\alpha} [\sin(\alpha L) - \sin(-\alpha L)]$$
$$= \frac{1}{\alpha} [\sin(\alpha L) + \sin(+\alpha L)]$$
$$= 2 \frac{\sin(\alpha L)}{\alpha}$$
 (1.13)

Considérons l'artifice mathématique suivant, permettant de faire apparaître le sinus cardinal ($\equiv \sin x/x$) :

$$f(\alpha) = 2L \frac{\sin(\alpha L)}{\alpha L}$$

$$= 2L \operatorname{sinc}(\alpha L)$$
(1.14)

La fonction sinus cardinal tend vers zéro à l'infini, il s'agit d'une fonction paire dont la valeur à l'origine vaut l'unité (valeur donnée par la levée de l'indétermination). Cette fonction à des zéros multiples que l'on retrouve à chaque multiple de π .

Figure 1.4

Revenons à nos moutons. Notre fonction sinus cardinal à pour argument αL : les zéros de la fonction d'origines se voient tous divisés par L et l'ordonnée à l'origine vaut 2L. Une fois que α n'est plus nul, on redescend brusquement vers un premier zéro (les oscillations se comprennent très facilement en interprétant l'aire sous la courbe en faisant augmenter α).

FIGURE 1.5

Intéressons nous ce qui se passe lorsque $L \to \infty$. Remarquons premièrement qu'une diminution de L correspond à un aplatissement et élargissent du graphe. Inversement, lorsque L augmente elle gagne en hauteur et les zéros se rapprochent de l'origine. Que devient cette fonction pour $L \to \infty$? Montrons que l'on obtient, à un facteur près, la distribution de Dirac

FIGURE 1.6

$$f(a) = \lim_{L \to \infty} \int_{-L}^{L} \cos(\alpha x) \ dx = \lim_{L \to \infty} [2L \operatorname{sinc}(\alpha L)]$$
 (1.15)

Cette limite n'est pas facile à appréhender, l'étude du graphe n'est pas fort utile. A défaut, on peut s'itnéresser à la surface du graphe de cette fonction en étudiant l'aire sous la courbe du sinus cardinal :

$$\int_{-\infty}^{\infty} \operatorname{sinc}(\alpha x) \, dx = \int_{-\infty}^{\infty} \frac{\sin(\alpha x)}{\alpha x} \, dx = \frac{\pi}{a}$$
 (1.16)

 $\underline{\wedge}$ Il ne faut pas confondre la variable α avec celle d'intégration, x. Nous montrons ici que $f(\alpha)$ peut être associée à la distribution. Dans (1.16) remplaçons x par α par "l'ancien α jouera le rôle du paramètre L:

$$\int_{-\infty}^{\infty} \operatorname{sinc}(L\alpha) \, d\alpha = \int_{-\infty}^{\infty} \frac{\sin(L\alpha)}{L\alpha} \, d\alpha = \frac{\pi}{L}$$
 (1.17)

En multipliant par 2L (pouvant directement rentrer dans l'intégrale) :

$$\int_{-\infty}^{\infty} 2L \operatorname{sinc} (L\alpha) \ d\alpha = \int_{-\infty}^{\infty} \frac{\sin(L\alpha)}{L\alpha} \ d\alpha = 2\pi$$
 (1.18)

Cette surface vaut 2π , mais ce qui est important est que celui-ci est indépendant du paramètre L exactement comme on l'avait pour la fonction fenêtre avec l'aire unitaire; faire tendre L vers l'infini ne change dès lors rien. Les caractéristiques sont celles de la fonction de Dirac. Pour retrouver cette distribution, il nous suffit de diviser par 2π .

$$\int_{-\infty}^{\infty} \lim_{L \to \infty} \left[\frac{2L}{2\pi} \operatorname{sinc}(\alpha L) \right] d\alpha = \frac{2\pi}{2\pi} = 1$$
 (1.19)

On peut ainsi assimiler ce résultat à la distribution de Dirac :

Distribution de Dirac :
$$\delta(\alpha) = \lim_{L \to \infty} \left[\frac{L}{\pi} \operatorname{sinc}(\alpha L) \right]$$
 (1.20)

Cette fonction est *piquée* à l'origine et une largeur tendant vers zéro dont l'aire sous la courbe faut bien 1. On peut dès lors écrire

$$f(a) = \lim_{L \to \infty} \int_{-L}^{L} \cos(\alpha x) \ dx = \lim_{L \to \infty} [2L \operatorname{sinc}(\alpha L)] = 2\pi \delta(\alpha)$$
 (1.21)

Sous la forme d'une intégrale généralisée, résultat pratique pour l'étude des transformées de Fourier.

$$\int_{-\infty}^{\infty} \cos(\alpha x) \ dx = 2\pi \delta(\alpha) \tag{1.22}$$

Notons qu'il n'est pas nécessaire de déterminer précisément ce que vaut α , la "définition" cidessous est auto-suffisante

$$\int_{-\infty}^{\infty} f(\alpha)\delta(\alpha) \ d\alpha = f(0) \tag{1.23}$$

Généralisons quelque peu ce que nous venons de faire en vue de passer à la transformée de Fourier. La notion de phaseur, exponentielle imaginaire est fondamentale :

$$\int_{-\infty}^{\infty} e^{i\alpha x} dx = \int_{-\infty}^{\infty} \cos(\alpha x) dx + i \int_{-\infty}^{\infty} \sin(\alpha x) dx$$
 (1.24)

Cette exponentielle imaginaire cache la fonction $cos(\alpha x)$ que nous venons d'étudier avec en plus une partie imaginaire. Que vaut la contribution de la partie imaginaire?

$$\int_{-L}^{L} \sin(\alpha x) \ dx = -\frac{1}{\alpha} \left[\cos(\alpha x) \right]_{-L}^{L} = 0 \tag{1.25}$$

Il n'est même pas ici nécessaire de faire tendre $L \to \infty$, le cosinus étant une fonction paire cela donne tout simplement zéro (directement visible, car l'intégration d'une fonction impaire aux bornes centrées sur zéro est identiquement nulle).

En conclusion:

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\alpha x} dx = \delta(\alpha)$$
 (1.26)

1.2 Transformée de Fourier : introduction