Bayesian Learning for Partially-Observed Dynamical Systems Randal DOUC and Sylvain Le Corff

Tutorial 3: Markov chain Monte Carlo.

randal.douc@telecom-sudparis.eu sylvain.le_corff@telecom-sudparis.eu

CHAPITRE 3: MARKOV CHAIN MONTE CARLO

EXERCICE 1 LOIS INVARIANTES ÉTRANGÈRES- Soient π et π' deux probabilités sur $(X, \mathcal{B}(X))$.

- 1. Montrer qu'il existe deux fonctions f, g mesurables et μ une mesure positive telle que $\pi = f\mu$ et $\pi' = g\mu$.
- 2. En déduire l'existence de deux mesures $(\pi-\pi')^+$ et $(\pi-\pi')^-$ satisfaisant $\pi-\pi'=(\pi-\pi')^+-(\pi-\pi')^-$ et telles qu'il existe $B\in\mathcal{B}(\mathsf{X})$ tels que

$$(\pi - \pi')^+(B) = (\pi - \pi')^-(B^c) = 0.$$

Cette dernière propriété caractérise deux mesures étrangères.

- 3. Soit P un noyau de Markov sur $(X, \mathcal{B}(X))$. On suppose que $\pi P = \pi$ et $\pi' P = \pi'$ avec $\pi \neq \pi'$. En déduire l'existence de deux probabilités étrangères invariantes pour P.
- 4. Soit $A \in \mathcal{B}(\mathsf{X})$ tel que $\pi(A) = 1$. Montrer qu'il existe $B \subset A$ tel que P(x,B) = 1 pour tout $x \in B$ (i.e. B est absorbant).

EXERCICE 2 Let P be a Markov kernel with an invariant distribution π . Pour tout f,g de $L_2(\pi)$, on note

$$\langle f; g \rangle = \int \pi(\mathrm{d}x) f(x) g(x)$$

De plus, on notera $L_2^0(\pi) = \{ f \in L_2(\pi) : \pi(f) = 0 \}.$

1. Montrer que pour tout f de $L_2(\pi)$, $Pf \in L_2(\pi)$. Montrer que

$$||P|| = \left(\sup_{f \in L_2(\pi)} \frac{\langle Pf; Pf \rangle}{\langle f; f \rangle}\right)^{1/2} \le 1$$

2. Montrer que P est π -réversible ssi pour tout f,g de $L_2(\pi)$, on a

$$\langle Pf;g\rangle = \langle f;Pg\rangle$$

3. Soit P un noyau de Markov, π -réversible. On suppose que pour un certain $f \in L_2^0(\pi)$,

$$\sum_{k=1}^{\infty} |\langle f; P^k f \rangle| < \infty \tag{1}$$

On pose pour tout $\lambda \in]0,1]$, $v_{\lambda}(f,P) = \pi(f^2) + 2\sum_{k=1}^{\infty} \lambda^k \langle f; P^k f \rangle$. Montrer alors que

$$\lim_{\lambda \uparrow 1} v_{\lambda}(f, P) = v_{1}(f, P)$$

4. Soient P,Q deux noyaux de Markov, π -réversibles, vérifiant (1) pour une certaine fonction $f^* \in L_2^0(\pi)$. On suppose que pour tout $g \in L_2^0(\pi)$,

$$\langle g; Pg \rangle \le \langle g; Qg \rangle \tag{2}$$

Montrer que pour tout $\lambda \in [0,1]$, $v_{\lambda}(f^{\star},P) \leq v_{\lambda}(f^{\star},Q)$ (on pourra poser $\varphi(\alpha) = v_{\lambda}(f^{\star},(1-\alpha)P + \alpha Q)$ et montrer que $\varphi'(\alpha) \geq 0$).

5. En déduire que si $(X_k)_{k\geq 0}$ (resp. $(Y_k)_{k\geq 0}$) est une chaîne de Markov de noyau P (resp. Q) démarrant sous la loi stationnaire $X_0 \sim \pi$ (resp. $Y_0 \sim \pi$), alors

$$\lim_{n\to\infty} \operatorname{Var}_{\pi}\left(\frac{\sum_{k=0}^{n-1} f^{\star}(X_k)}{\sqrt{n}}\right) \leq \lim_{n\to\infty} \operatorname{Var}_{\pi}\left(\frac{\sum_{k=0}^{n-1} f^{\star}(Y_k)}{\sqrt{n}}\right)$$

6. Nous allons enfin donner une condition suffisante pour que (2) soit satisfaite. Soient P,Q deux noyaux de Markov, π -réversibles telles que pour tout $A \in \mathcal{B}(X)$,

$$Q(x, A \setminus \{x\}) \le P(x, A \setminus \{x\})$$

Montrer alors (2).

EXERCICE 3 Soient P,Q deux noyaux de transition sur $(X,\mathcal{B}(X))$ tels que

$$P(x, dy) = Q(x, dy)\alpha(x, y) + (1 - \int Q(x, dz)\alpha(x, z))\delta_x(dz)$$

ou α est une fonction mesurable $\alpha: X^2 \to [0,1]$. Soit π une probabilité sur $(X,\mathcal{B}(X))$. On supposera pour simplifier que $Q(x,\cdot)$ et $\pi(\cdot)$ sont dominées par une même mesure de domination μ pour tout $x \in X$, et par abus de notation, on notera $y \mapsto q(x,y)$ et $y \to \pi(y)$, les densités associées.

- 1. Etablir une condition liant $\alpha(x,y)$ et $\alpha(y,x)$ pour que P soit π -réversible.
- 2. Donner plusieurs expressions de $\alpha(x,y)$ telles que P est π -réversible.
- 3. Montrer que

$$\alpha(x,y) \le \frac{\pi(y)q(y,x)}{\pi(x)q(x,y)} \land 1$$

4. Conclure.