Week 13: Graph Mining (Communities)

Instructor: Daejin Choi (djchoi@inu.ac.kr)

Learned so far & Lecture for today

- Understanding Graph Mining!
- Graph Modeling & Applications
- Graph Properties
- Motif Analysis (building blocks)
- Node Analysis (Structural Roles + Centrality)
- Community Analysis

Community Analysis: Motivation

Roles and Communities: Example

Past Lecture: Roles

This Lecture: Communities

Henderson, et al., KDD 2012

Clauset, et al., Phys. Rev. E 2004

Networks & Communities

• We often think of networks "looking" like this:

• What led to such a conceptual picture?

Granovetter's Theory

- Granovetter makes a connection between the social and structural role of an edge
- First point: Structure
 - Structurally embedded edges are also socially strong
 - Long-range edges spanning different parts of the network are socially weak
- Second point: Information
 - Long-range edges allow you to gather information from different parts of the network and get a job
 - Structurally embedded edges are heavily redundant in terms of information access

Edge Strength in Real Data

For many years Granovetter's theory was not tested

- But, today we have large who-talks-to-whom graphs:
 - Email, Messenger, Cell phones, Facebook
- Onnela et al. 2007:
 - Cell-phone network of 20% of EU country's population
 - Edge weight: # phone calls

Edge Overlap

$$O_{ij} = \frac{|(N(i) \cap N(j)) \setminus \{i, j\}|}{|(N(i) \cup N(j)) \setminus \{i, j\}|}$$

N(i) ... the set of neighbors of node i

 Note: Overlap = 0 when an edge is a local bridge

Real Network, Real Edge Strengths

- Real edge strengths in mobile call graph
 - Strong ties are more embedded (have higher overlap)

Link Removed by Overlap

Conceptual Picture of Networks

 Granovetter's theory leads to the following conceptual picture of networks

Lessons from Granovetter's and Onnela's Work

- In real-world, the shape of network (or graph) is **NOT** homogeneous!
 - Homogeneous: all nodes have equal #edges
- Heterogeneity (opposite to homogeneity) means:
 - Some edges are skewed to a few nodes
 - Local clusters (=communities) exist

-> It is valuable to analyze network community!

Computing Communities: Overview

Network Communities

 Sets of nodes with lots of internal connections and few external ones (to the rest of the network).

Communities, clusters, groups, modules

Finding Network Communities

 How do we automatically find such densely connected groups of nodes?

 Ideally such automatically detected clusters would then correspond to real groups

Communities, clusters, groups, modules

Modularity and Network Communities

 Communities: sets of tightly connected nodes

- Define: Modularity Q
 - A measure of how well a network is partitioned into communities
 - Given a partitioning of the network into groups disjoint $s \in S$:

$$Q \propto \sum_{s \in S} [(\# \text{ edges within group } s) - (\text{expected } \# \text{ edges within group } s)]$$

Need a null model

Null Network Configuration Model

- Given real G on n nodes and m edges, construct
 rewired network G'
 - Same degree distribution but uniformly random connections
 - Consider G' as a multigraph

- The expected number of edges between nodes i and j of degrees k_i and k_j equals: $k_i \cdot \frac{k_j}{2m} = \frac{k_i k_j}{2m}$
 - The expected number of edges in (multigraph) G':

$$= \frac{1}{2} \sum_{i \in N} \sum_{j \in N} \frac{k_i k_j}{2m} = \frac{1}{2} \cdot \frac{1}{2m} \sum_{i \in N} k_i \left(\sum_{j \in N} k_j \right)$$

$$= \frac{1}{4m} 2m \cdot 2m = m \text{ Same!}$$
Note:
$$\sum_{u \in N} k_u$$

Modularity

Modularity of partitioning S of graph G:

 $Q \propto \sum_{s \in S} [$ (# edges within group s) – (expected # edges within group s)]

$$Q(G,S) = \underbrace{\frac{1}{2m} \sum_{s \in S} \sum_{i \in s} \sum_{j \in s} \left(A_{ij} - \frac{k_i k_j}{2m} \right)}_{\text{Normalizing const.: } -1 \leq Q \leq 1} A_{ij} = 1 \text{ if } i \rightarrow j, \\ 0 \text{ otherwise}$$

- Modularity values take range [-1,1]
 - It is positive if the number of edges within groups exceeds the expected number
 - Q greater than 0.3-0.7 means significant community structure

Modularity (Cont'd)

$$Q(G,S) = \frac{1}{2m} \sum_{s \in S} \sum_{i \in s} \sum_{j \in s} \left(A_{ij} - \frac{k_i k_j}{2m} \right)$$

Equivalently modularity can be written as:

$$Q = rac{1}{2m} \sum_{ij} igg[A_{ij} - rac{k_i k_j}{2m} igg] \delta(c_i, c_j)$$

- A_{ij} represents the edge weight between nodes i and j;
- k_i and k_j are the sum of the weights of the edges attached to nodes i and j, respectively;
- $\bullet 2m$ is the sum of all of the edge weights in the graph;
- ullet c_i and c_j are the communities of the nodes; and
- δ is an indicator function $\delta(c_i, c_j) = 1$ if $c_i = c_j$ else 0

Idea: We can identify communities by maximizing modularity

Computing Communities: Newman Method

Newman Method: Intuition

- Considering Edge Betweenness!
 - #shortest paths passing over the edge

Edge strengths (call volume) in a real network

Edge betweenness in a real network

Newman Method: An Overview

 Divisive hierarchical clustering based on the notion of edge betweenness

- Works on undirected unweighted networks
- Steps:
 - 1. Calculate betweenness of edges
 - 2. Remove edges with highest betweenness
 - 3. Connected components are communities
 - 4. Gives a hierarchical decomposition of the network
 - 5. Repeat 1-5
 - → Find the best clusters based on threshold of modularity

Newman Method: Illustration

Need to re-compute betweenness at every step

Newman Method: Illustration (Cont'd)

Step 2:

Hierarchical network decomposition:

How to Compute Edge Betweenness? (1/4)

 Starting from a randomly selected node (e.g., A), conduct breath first search (BFS)

How to Compute Edge Betweenness? (2/4)

 Count the #shortest paths from A to all other nodes of the network

How to Compute Edge Betweenness? (3/4)

- Compute betweenness by working up the tree from the lowest layers of the tree
 - If there are multiple paths, count them fractionally

The algorithm:

-- node flow =

Add edge flows:

• Repeat the BFS procedure for each starting node *U*

How to Compute Edge Betweenness? (4/4)

- Compute betweenness by working up the tree from the lowest layers of the tree
 - If there are multiple paths, count them fractionally

The algorithm:

- Add edge **flows**:
 - -- node flow = 1+∑child edges
- -- split the flow up based on the parent value
- Repeat the BFS procedure for each starting node *U*

Results: Hierarchical network decomposition

How to find this line? (i.e., What #communities are the best?)

Finally Deciding Clusters

 Compute modularity for each steps, then decide clusters with the highest modularity!

Newman Method: An Example Graph

Communities in physics collaborations

Computing Communities: Louvain Algorithm

Louvain Algorithm

- Greedy algorithm for community detection
 - $O(n \log n)$ run time
- Supports weighted graphs
- Provides hierarchical communities
- Widely used to study large networks because:
 - Fast
 - Rapid convergence
 - High modularity output (i.e., "better communities")

Network and communities:

Dendrogram:

"Fast unfolding of communities in large networks" Blondel et al. (2008)

Louvain Algorithm: At High Level

- Louvain algorithm greedily maximizes modularity
- Each pass is made of 2 phases:
 - Phase 1: Modularity is optimized by allowing only local changes to node-communities memberships
 - Phase 2: The identified communities are aggregated into super-nodes to build a new network

Goto Phase 1

Louvain Algorithm: 1st Phase (Partitioning)

- Put each node in a graph into a distinct community (one node per community)
- For each node i, the algorithm performs two calculations:
 - Compute the modularity delta (ΔQ) when putting node i into the community of some neighbor j
 - Move i to a community of node j that yields the largest gain in ΔQ
- Phase 1 runs until no movement yields a gain

This first phase stops when a local maxima of the modularity is attained, i.e., when no individual node move can improve the modularity.

Note that the output of the algorithm **depends on the order in which the nodes are considered.** Research indicates that the ordering of the nodes does **NOT** have a significant influence on the overall modularity that is obtained.

Louvain Algorithm: Modularity Gain

What is \(\Delta Q\) if we move node \(\ilde{\ell}\) to community \(\Cappa\)?

$$\Delta Q(i \to C) = \left[\frac{\sum_{in} + k_{i,in}}{2m} - \left(\frac{\sum_{tot} + k_i}{2m} \right)^2 \right] - \left[\frac{\sum_{in}}{2m} - \left(\frac{\sum_{tot}}{2m} \right)^2 - \left(\frac{k_i}{2m} \right)^2 \right]$$

where:

 Σ_{in} ... sum of link weights <u>between</u> nodes in C Σ_{tot} ... sum of <u>all</u> link weights of nodes in C $k_{i,in}$... sum of link weights <u>between</u> node i and C k_i ... sum of <u>all</u> link weights (i.e., degree) of node i

Louvain Algorithm: Modularity Gain (cont'd)

More in detail

Modularity contribution **after merging** node *i*

Modularity contribution **before merging** node *i*

$$\Delta Q(i \to C) = \left[\frac{\sum_{in} + k_{i,in}}{2m} - \left(\frac{\sum_{tot} + k_i}{2m} \right)^2 \right] - \left[\frac{\sum_{in}}{2m} - \left(\frac{\sum_{tot}}{2m} \right)^2 - \left(\frac{k_i}{2m} \right)^2 \right]$$

Self-edge weight

Edge weight of the resulting supernode from merging C and i

rest of the graph (modeled as a single node) By applying the Modularity definition:

$$Q = rac{1}{2m} \sum_{ij} igg[A_{ij} - rac{k_i k_j}{2m} igg] \delta(c_i, c_j)$$

Louvain: 2nd Phase (Reconstructing)

- The communities obtained in the first phase are contracted into super-nodes, and the network is created accordingly:
 - Super-nodes are connected if there is at least one edge between the nodes of the corresponding communities
 - The weight of the edge between the two supernodes is the sum of the weights from all edges between their corresponding communities
- Phase 1 is then run on the super-node network

Louvain Algorithm

1ST PASS

2ND PASS

Summary: Network Communities

- Modularity:
 - Overall quality of the partitioning of a graph into communities
 - Used to determine the number of communities
- Newman method based on edge betweenness
- Louvain modularity maximization:
 - Greedy strategy
 - Great performance, scales to large networks
- There are many other methods!
 - Considering time complexity, graph types, ...

The more important thing is WHAT the communities indicate (mean) in your model!

Thank you!

Instructor: Daejin Choi (djchoi@inu.ac.kr)