Juha Im

LinkedIn | Github | United Kingdom

Professional Summary

Graduate Software Engineer (MSc Advanced Computer Science, University of Manchester-Distinction predicted) with hands-on experience in Python, SQL, and data engineering. Skilled in building ETL pipelines, optimising databases, and applying deep learning models (BERT, CNN, VAE) to real-world NLP and computer vision tasks. Strong interpersonal and communication skills developed through 5 years of teaching, with proven ability to explain complex concepts clearly and work effectively in collaborative environments.

Education

MSc Advanced Computer science, *University of Manchester*

September 2024-September 2025

Result: Distinction(predicted)

- Advanced knowledge of ML and AI: linear models, neural networks, transformers, variational autoencoders.
- Applied NLP techniques: tokenisation, POS tagging, embeddings, NER, relation extraction.
- Experience in computer vision and cognitive robotics: CNNs, OpenCV, edge/object detection.
- MSc Thesis: "Unsupervised Representation Learning for Spatial Transcriptomics" Applied generative models (VAE, transformers) to spatial omics data for classification and imputation tasks using Scanpy and CellPLM.

BSc Computer science, Korea National Open University

March 2021-February 2023

Result: 3.6/4.5 GPA, equivalent to a U.K 2:1 honours degree

 Developed a strong foundation in Computer Science, including Database Systems, Algorithms, Data Structures, Linear Algebra, Machine Learning, Cloud Computing, as well as Python and R.

Technical Skills

- Languages: Python, SQL, Git, C++, Java
- Machine Learning: Supervised & Unsupervised Learning, Deep Neural Networks, Generative AI, CNNs
- Data Engineering: ETL pipelines, JSON, XML, RDF/SPARQL, SQLite optimisation
- Other: OpenCV, SLURM, SCANPY, HPC

Projects

- ETL Pipeline for Ad Data Developed an ETL solution transforming Twitter ad impressions (JSON) into a structured SQLite DB using Python, demonstrating skills in real-world data ingestion and transformation.
- Object Recognition Systems -Developed object recognition systems using both CNNs and traditional feature extraction methods (Harris corner detection and SIFT), and evaluated their performance on both CIFAR-10, STL-10.(Github)
- Manifold Learning Implemented manifold learning methods such as cMDS, stress-based MDS, ISOMAP and LLE.
- Relation Extraction (NLP) Compared the performance of BERT and LSTM models on the SemEval-2008 dataset for relation extraction, analyzing their effectiveness based on F1-score.

Experience

Jeonghyun Elementary School, South Korea-Elementary school teacher

September 2019-September 2024

- Managed responsibilities in high-pressure settings with strong multitasking and time management.
- Delivered lessons to classes of 30+ students, demonstrating clear communication and adaptability.
- Built stakeholder-facing skills through regular communication with parents, students, and staff.
- Consistently received high performance evaluations (4.5+/5).