D18

In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [10]: df=pd.read_csv(r"C:\Users\user\Downloads\21_cities.csv")
df

Out[10]:

	id	name	state_id	state_code	state_name	country_id	country_code	country
0	52	Ashkāsham	3901	BDS	Badakhshan	1	AF	Afgh
1	68	Fayzabad	3901	BDS	Badakhshan	1	AF	Afgh
2	78	Jurm	3901	BDS	Badakhshan	1	AF	Afgh
3	84	Khandūd	3901	BDS	Badakhshan	1	AF	Afgh
4	115	Rāghistān	3901	BDS	Badakhshan	1	AF	Afgh
150449	131496	Redcliff	1957	MI	Midlands Province	247	ZW	Zin
150450	131502	Shangani	1957	MI	Midlands Province	247	ZW	Zin
150451	131503	Shurugwi	1957	MI	Midlands Province	247	ZW	Zin
150452	131504	Shurugwi District	1957	MI	Midlands Province	247	ZW	Zin
150453	131508	Zvishavane District	1957	MI	Midlands Province	247	ZW	Zin
150454 rows × 11 columns								
4								•

In [11]: df.head(10)

Out[11]:

	id	name	state_id	state_code	state_name	country_id	country_code	country_name	
0	52	Ashkāsham	3901	BDS	Badakhshan	1	AF	Afghanistan	_;
1	68	Fayzabad	3901	BDS	Badakhshan	1	AF	Afghanistan	:
2	78	Jurm	3901	BDS	Badakhshan	1	AF	Afghanistan	;
3	84	Khandūd	3901	BDS	Badakhshan	1	AF	Afghanistan	;
4	115	Rāghistān	3901	BDS	Badakhshan	1	AF	Afghanistan	;
5	131	Wākhān	3901	BDS	Badakhshan	1	AF	Afghanistan	;
6	72	Ghormach	3871	BDG	Badghis	1	AF	Afghanistan	;
7	108	Qala i Naw	3871	BDG	Badghis	1	AF	Afghanistan	;
8	54	Baghlān	3875	BGL	Baghlan	1	AF	Afghanistan	;
9	140	Ḥukūmatī Dahanah- ye Ghōrī	3875	BGL	Baghlan	1	AF	Afghanistan	;
4									•

In [12]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150454 entries, 0 to 150453
Data columns (total 11 columns):

```
#
    Column
                  Non-Null Count
                                    Dtype
     _____
 0
     id
                  150454 non-null
                                    int64
 1
    name
                  150454 non-null object
 2
    state_id
                  150454 non-null
                                    int64
 3
    state_code
                  150129 non-null object
 4
    state name
                  150454 non-null object
 5
    country_id
                  150454 non-null int64
 6
    country_code 150406 non-null object
 7
     country_name 150454 non-null object
 8
    latitude
                  150454 non-null float64
 9
     longitude
                  150454 non-null
                                    float64
 10 wikiDataId
                  147198 non-null object
dtypes: float64(2), int64(3), object(6)
```

```
memory usage: 12.6+ MB
```

In [13]: |dff=df.dropna()

In [14]: dff.describe()

Out[14]:

	id	state_id	country_id	latitude	longitude
count	146959.000000	146959.000000	146959.000000	146959.000000	146959.000000
mean	74815.628618	2664.711124	139.865929	32.037738	2.043877
std	43408.845239	1351.363226	70.916362	22.701273	68.681166
min	1.000000	1.000000	1.000000	- 75.000000	-179.121980
25%	37448.500000	1452.000000	82.000000	19.521795	-61.751760
50%	74428.000000	2131.000000	142.000000	40.896880	8.837560
75%	112849.500000	3904.000000	207.000000	47.349195	27.623705
max	153528.000000	5116.000000	247.000000	73.508190	179.466000

```
In [15]: dff.columns
```

In [16]: sns.pairplot(dff)

Out[16]: <seaborn.axisgrid.PairGrid at 0x200742a23d0>

In [18]: | sns.distplot(dff['longitude'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[18]: <AxesSubplot:xlabel='longitude', ylabel='Density'>


```
In [19]: df1=dff[['id', 'state_id', 'country_id', 'latitude', 'longitude']]
```

In [20]: sns.heatmap(df1.corr())

Out[20]: <AxesSubplot:>


```
In [22]: x=df1[['id', 'state_id', 'country_id', 'latitude']]
y=df1['longitude']
```

```
In [23]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Out[24]: LinearRegression()

```
In [25]: print(lr.intercept_)
```

26.554827312825697

```
In [26]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[26]:

	Co-efficient
id	0.000137
state_id	0.002126
country_id	-0.268305
latitude	-0.095711

```
In [27]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[27]: <matplotlib.collections.PathCollection at 0x2007a04cfa0>


```
In [28]: print(lr.score(x_test,y_test))
```

0.06430737704117473

In [29]: from sklearn.linear_model import Ridge,Lasso

```
In [30]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[30]: Ridge(alpha=10)
In [31]: |rr.score(x_test,y_test)
Out[31]: 0.06430737699183875
In [32]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[32]: Lasso(alpha=10)
In [33]: la.score(x_test,y_test)
Out[33]: 0.06424871179274771
In [34]: | from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[34]: ElasticNet()
In [35]: print(en.coef )
         In [36]:
        print(en.intercept_)
         26.520863096742467
In [37]: | print(en.predict(x train))
         [ -3.61407417 12.96329353 -21.18210423 ... -6.54037993 -29.26722618
            3.96603652]
In [38]: |print(en.score(x_train,y_train))
         0.0647900381273504
In [39]: | from sklearn import metrics
In [40]: print("Mean Absolytre Error:",metrics.mean_absolute_error(y_test,prediction))
         Mean Absolytre Error: 52.200460709817506
In [41]: print("Mean Square Error:",metrics.mean_squared_error(y_test,prediction))
         Mean Square Error: 4392.054654493994
```

```
In [42]: print("Root Mean Square Error:",np.sqrt(metrics.mean_absolute_error(y_test,pre-
Root Mean Square Error: 7.224988630428252

In [43]: import pickle
In [44]: f3="prediction"
   pickle.dump(lr,open(f3,'wb'))
In []:
```