Evaluating triple integrals

Aim: Evaluating triple integrals (Cartesian, Cylindrical and Spherical coordinates) and visualizing regions using Matlab.

MATLAB Syntax used

WIATEAD Sylicax used	
int(f,v)	uses the symbolic object v as the variable of integration, rather than the variable determined by symvar
fill(X,Y,C)	fill(X,Y,C) creates filled polygons from the data in X and Y with vertex color specified by C.
fliplr(A)	If A is a row vector, then fliplr(A) returns a vector of the same length with the order of its elements reversed. If A is a column vector, then fliplr(A) simply returns A.
fsurf(<u>f</u>)	fsurf(\underline{f}) creates a surface plot of the function $z = f(x,y)$ over the default interval [-5 5] for x and y.
fsurf(<u>f</u> , <u>xyinterval</u>)	fsurf(<u>f</u> ,xyinterval) plots over the specified interval. To use the same interval for both x and y, specify xyinterval as a two-element vector of the form [min max]. To use different intervals, specify a four-element vector of the form [xmin xmax ymin ymax].

Note: We invite your suggestions for the improvement of the topic triple integrals (Matlab codes and contents). mail id: kaliyappan.m@vit.ac.in

Example 1

Evaluate the iterated integral

$$\int_{0}^{1} \int_{0}^{z} \int_{0}^{x+z} 6xz \, dy \, dx \, dz$$

Matlab code

syms x y z

sol = int(int(int(x+z,y,0,x+z),x,0,z),z,0,1)

Command window

sol = 7/12

Example 2

Evaluate the triple integral $\iiint_E 6xy \ dV$, where E lies under the plane z =1+x+y and above the region in the xy-pane bounded by the curves $y = \sqrt{x}$, y=0 and x=1.

Sol

Here
$$E = \{(x,y,z) | 0 \le x \le 1, 0 \le y \le \sqrt{x}, 0 \le z \le 1 + x + y\}$$

$$\iiint_E 6xy dV = \iint_0^1 \iint_0^{\sqrt{x}} \int_0^{1+x+y} 6xy dz dy dx$$

Matlab code

```
syms x y z
sol = int(int(6*x*y,z,0,1+x+y),y,0,sqrt(x)),x,0,1)
viewSolid(z,0+0*x*y,1+x+y,y,0+0*x,sqrt(x),x,0,1);
axis equal; grid on;
```

Command window

sol = 65/28

The region E is shown below (between two surfaces)

Example 3

Evaluate the triple integral $\iiint_E y \, dV$, where E is bounded by the planes x =0, y = 0, z=0, and 2x+2y+z=4. Sol:

$$\iint_{E} y dV = \int_{0}^{2} \int_{0}^{2-x} \int_{0}^{4-2x-2y} y dz dy dx$$

Matlab code

viewSolid(z,0+0*x*y,4-2*x-2*y,y,0+0*x,2-x,x,0,2); axis equal; grid on;

Output in the command window

sol = 4/3

The region E is shown below

Example 4

A solid E lies within the cylinder $x^2 + y^2 = 1$, below the plane z = 4, and above the paraboloid $z = 1 - x^2 + y^2$. The density at any point is proportional to its distance from the axis of the cylinder. Find the mass of E.

Sol

In cylindrical coordinates the cylinder is r = 1 and the paraboloid is $z = 1 - r^2$, so we can write

$$E = \{ (r, \theta, z) \mid 0 \le \theta \le 2\pi, \ 0 \le r \le 1, \ 1 - r^2 \le z \le 4 \}$$

Since the density at (x, y, z) is proportional to the distance from the z-axis, the density function is $f(x, y, z) = K\sqrt{x^2 + y^2} = Kr$ where is the proportionality constant. The mass of E is

$$m = \iiint_E K\sqrt{x^2 + y^2} \, dV$$
$$= \int_0^{2\pi} \int_0^1 \int_{1-r^2}^4 (Kr) \, r \, dz \, dr \, d\theta$$

Matlab code

syms r z theta K

Ma= $int(int(int((K*r)*r, z, 1-r^2,4), r, 0, 1), theta, 0,2*pi)$ % integration

x = r*cos(theta), y = r*sin(theta), s = sym(4)

```
fsurf(x,y,1-r^2, [0 1 0 2*pi], 'g', 'EdgeColor', 'none'); % plotting paraboloid hold on fsurf(1*cos(theta), 1*sin(theta), r, 'y', [0 4 0 2*pi], 'EdgeColor', 'none') % plotting % cylinder of radius 1 with height z = 4 fsurf(x,y,s, [0 1 0 2*pi], 'b', 'EdgeColor', 'none'); % plotting circular plane z=4. hold on axis equal; xlabel('x'); ylabel('y'); zlabel('z'); alpha 0.5
```

Output; In the command window

Ma = (12*pi*K)/5

In the figure window

The region E is shown below(above the paraboloid and below the surface z=4 inside the cylinder)

Example 5

Use Matlab to draw the solid enclosed by the paraboloids $z = x^2 + y^2$ and $z = 5 - x^2 - y^2$

Matlab code

```
syms r z theta x = r*cos(theta); y = r*sin(theta); fsurf(x,y,5-r^2,[0 \ sqrt(5) \ 0 \ 2*pi], 'g', 'EdgeColor', 'none'); hold on fsurf(x,y,r^2,[0 \ sqrt(5) \ 0 \ 2*pi], 'y', 'EdgeColor', 'none'); axis\ equal; xlabel('x'); ylabel('y'); zlabel('z'); alpha\ 0.5
```

Output: In the figure window

Example 6

Evaluate $\iiint_E e^z \, dV$, where E is enclosed by the paraboloid $z=1+x^2+y^2$, the cylinder $x^2+y^2=5$, and the xy-plane. Sol

By Converting Cartesian to Cylindrical coordinates we get

$$\iiint_E e^z dV = \int_0^{2\pi} \int_0^{\sqrt{5}} \int_0^{1+r^2} e^z r dz dr d\theta$$

Matlab code

clc

clear all

syms x y r z theta

Sol= $int(int(int(exp(z)*r,z,0,1+r^2),r,0,sqrt(5)),theta,0,2*pi)$ % integration

 $f=1+(x^2+y^2);$

 $fsurf(f,[-sqrt(5) \ sqrt(5) \ -sqrt(5) \ sqrt(5)])$

hold on

 $fsurf(sqrt(5)*cos(theta), sqrt(5)*sin(theta), r, 'y', [0\ 8\ 0\ 2*pi], 'EdgeColor', 'none') \\ alpha \ 0.5$

Output

In the command window

Sol =

$$-pi*(exp(1) - exp(6) + 5)$$

The region E is shown below

Example 7
Draw a sphere of radius 5 with centre at (0,0,0)
Matlab code

syms r z phi rho theta rho=5 x= rho*sin(phi)*cos(theta), y = rho*sin(phi)*sin(theta), z= rho*cos(phi); fsurf(x,y,z, [0 pi 0 2*pi], 'g', 'MeshDensity', 20);

Example 8 Draw a hemisphere of radius 3 with centre at (0,0,0) Matlab code

syms r z phi rho theta rho=3 x= rho*sin(phi)*cos(theta), y = rho*sin(phi)*sin(theta), z= rho*cos(phi); fsurf(x,y,z, [0 pi/2 0 2*pi], 'g', 'MeshDensity', 20);

Example 9

Evaluate $\iiint_E e^{\sqrt{x^2+y^2+z^2}} dV$, where E is enclosed by the sphere $x^2 + y^2 + z^2 = 9$ in the first octant.

Sol: By Changing Cartesian to Spherical coordinates we can get

$$\iiint_{E} e^{\sqrt{\sum_{x=+y=2}^{2} \frac{2}{x^{2}}}} dV = \iint_{0}^{\pi/2} \int_{0}^{\pi/2} \rho^{2} e^{\rho} \sin \phi \, d\rho \, d\phi \, d\theta$$

Matlab code

syms r phi rho theta

Sol=int(int(int((exp(rho))*(rho)^2*sin(phi), rho,0,3), phi ,0,
pi/2),theta,0,pi/2)
rho=3
x = rho*sin(phi)*cos(theta), y = rho*sin(phi)*sin(theta), z =
rho*cos(phi);
fsurf(x,y,z, [0 pi/2 0 pi/2], 'g', 'MeshDensity', 20);

Output: In the command window

Sol = (pi*(5*exp(3) - 2))/2

In the Figure window

Example 10

Evaluate $\iiint_E z \, dV$, where E is enclosed by the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$ in the first octant.

Sol: By Changing Cartesian to Spherical coordinates we can get

$$\iiint_{E} z dV = \iint_{0}^{\pi/2} \iint_{0}^{\pi/2} (\rho \cos \phi) \rho^{2} \sin \phi \, d\rho \, d\theta \, d\phi$$

Matlab code

clc

clear all

syms r phi rho theta

Sol=int(int(int((rho*cos(phi))*(rho)^2*sin(phi), rho,1,2), phi ,0, pi/2),theta,0,pi/2)

rho=1;

x = rho*sin(phi)*cos(theta), y = rho*sin(phi)*sin(theta), z = rho*cos(phi);

fsurf(x,y,z, [0 pi/2 0 pi/2], 'g', 'MeshDensity', 20);

hold on

rho=2;

 $x = rho*sin(phi)*cos(theta), \ y = rho*sin(phi)*sin(theta), \ z = rho*cos(phi) \ ;$

fsurf(x,y,z, [0 pi/2 0 pi/2], 'b', 'MeshDensity', 20);

Output: In the command window

Sol = (15*pi)/16

In the figure window

Exercise

- 1. Find the volume of the solid that lies within the sphere $x^2 + y^2 + z^2 = 4$, above the xy -plane, and below the cone $z = \sqrt{x^2 + y^2}$.
- 2. Sketch the solid whose volume is given by the integral and evaluate the integral $\int_0^{2\pi} \int_{\pi/2}^{\pi} \int_1^2 \rho^2 \sin(\varphi) \, d\rho d\varphi d\theta$

3. Evaluate $\iiint_E \sqrt{x^2 + y^2} \ dV$, where E is the region that lies inside the cylinder $x^2 + y^2 = 16$ and between the planes z = -5 and z = 4.