Intercepts of the QuadraticGiven a quadratic $u(k) = a k^2 + b k + c$ compute its discriminant \triangle :

 $\triangle = \sqrt{b^2 - 4ac}$ Casel: $\triangle > 0$

Example 2.

 $k_{1,2}=3,3$

Case3: △<0

 $\triangle = -2304 < 0$

no k-intercepts.

 $k_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a}$ computes the k-intercepts of multiplicity 1. u(0) = c computes the single u-intercept.

Example 1.

$$u(k) = -k^2 + k + 56 \text{ compute its discriminant } \triangle:$$

 $\triangle=225>0$ $k_{1,2}=-7,8$ $u\left(0\right)=56$ u-intercept.

 $k_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single k-intercept of multiplicity 2.

$$u\left(k\right)=3\ k^{2}-18\ k+27$$
 compute its discriminant \triangle : $\triangle=0$

u(0) = 27 u-intercept.

800

400

200

k-intercept 1,2

 $u(k) = -9 k^2 + 144 k - 640$ compute its discriminant \triangle :

 $\sqrt{\,\mathsf{b}^2\,_-\,\mathsf{4}\,\mathsf{ac}}$ has no value in Real Numbers. Therefore there are

