Proszę wykonać oddzielnie podane niżej zadania dla obrazka "rzeczka.jpg".Nie należy korzystać z gotowych funkcji dokonujących obróbki obrazka.

Teoria dot. filtrów z maską (inaczej nazywany filtrem tablicowym, macierzowym, konwolucyjnym) NxN

Filtry z maską NxN (zwykle o rozmiarze 3x3, 5x5 ...) służą do obróbki obrazu, czyli sygnału 2-wymiarowego. Każdy z kolorów jest obrabiany osobno. Parametrami tego filtru jest tablica, najczęściej kwadratowa, o nieparzystej szerokości. Tablica ta zawiera wartości rzeczywiste. Wartości wyjściowe obrazu liczone są na podstawie wartości wejściowych tego piksela oraz pikseli sąsiednich pomnożonych przez odpowiednie mnożniki brane z maski. W zależności od podanych mnożników można uzyskać bardzo wszechstronne efekty graficzne. Mnożniki te zapisywane są w postaci tablicy maski. Przykładem niech będzie wykorzystanie filtra o rozmiarze 5x5 do obróbki sygnału.

Wejś	Wejście (sygnał wejściowy) :					tabli	ca ma	aski			wyjście					
We=	We=					M					Wy	Wy				
13	14	15	16	17	18	19	0,4	0	0	0	0					
23	24	25	26	27	28	29	0	0	0,5	0	0					
33	34	35	36	37	38	39	0	0	-1.1	0	0			+ 0,4*13	+ 0,4*	
63	64	65	66	67	68	69	0	0	0	0	0			+ 0,5*25 - 1,1*35	+ 0,5*2 - 1,1*3	
73	74	75	76	77	78	79	0	0	0	0	0,6			+ 0,6*77	+ 0,6*	
83	84	85	86	87	88	89								+ 0,4*23 + 0,5*35 - 1,1*65 + 0,6*87	+ 0,4*2 + 0,5*3 - 1,1*6 + 0,6*8	
												•••	•••			
													•••	•••	•••	

Warto zwrócić uwagę, że filtry te nie zwracają normalnie wartości dla wartości wejściowych leżących na obrzeżach sygnału wejściowego.

Można popatrzeć co brane jest pod uwagę do wyliczania wartości piksela (x=4; y=3):

13	14 *	15 *	16 *	17 *	18 *	19
----	------	------	------	------	------	----

	0,4	0	0	0	0	
23	24 * 0	25* 0	26* 0,5	27 * 0	28 * 0	29
33	34 * 0	35 * 0	36 * -1,1	37 * 0	38 * 0	39
63	64 * 0	65 * 0	66 * 0	67 * 0	68 * 0	69
73	74 * 0	75 * 0	76 * 0	77 * 0	78 * 0,6	79
83	84	85	86	87	88	89

Normalizacja maski

Tablica z maską uważana jest za znormalizowaną, jeśli suma jej wartości wynosi 1. Normalizacja maski nie jest konieczna. Oto przykład działania:

Tabl	ica ma	ski prz	ed normalizacją	Tablica z maską znormalizowaną				
0	1	0		W przypadku, kiedy wartości w masce są nieujemne, wtedy w celu normalizacji wystarczy				
1	2	1					-	asce przez sumę starych
0	1	0		warto				
				0	1/6	0		
				1/6	2/6	1/6		
				0	1/6	0		
Tabl	ica ma	ski prz	ed normalizacją	Tablic	a z m	aską	znorma	alizowaną
0	-1	0		W przypadku istnienia w masce wartości ujemny				
-1	2	-1		1		_	_	vanej metody służącej do
0	-1	0						go dokonać na wiele orzykład:
	-1			0	-1	0		nzymud.
						1		
				-1	5	-1		
				0	-1	0		
				albo		!		
				0	-0	,25	0	
				-0,25	5	2	-0,25	
				0	-0	,25	0	

Dodawanie marginesu

Niestety, filtry z maską nie potrafią wprost wyznaczyć wartości wyjściowej dla brzegów. Aby temu zapobiec można dodać margines o szerokości uzależnionej od rozmiaru filtra. Dla filtra 3x3 będzie to margines o rozmiarze 1, dla filtra 5x5 margines 2. Wartości na marginesie można ustalić na różny sposób, najbardziej odpowiednim wydaje się skopiowanie wartości z najbliższego, oryginalnego piksela. Przykład działania:

Wejś	cie (sy	/gnał	wejści	owy)	:		Wyjś	cie, po	o doda	niu m	argine	su o r	ozmia	rze 2 ((dla f
13	14	15	16	17	18	19	13	13	13	14	15	16	17	18	19
23	24	25	26	27	28	29	13	13	13	14	15	16	17	18	19
33	34	35	36	37	38	39	13	13	13	14	15	16	17	18	19
63	64	65	66	67	68	69	23	23	23	24	25	26	27	28	29
73	74	75	76	77	78	79	33	33	33	34	35	36	37	38	39
83	84	85	86	87	88	89	63	63	63	64	65	66	67	68	69
							73	73	73	74	75	76	77	78	79
							83	83	83	84	85	86	87	88	89
							83	83	83	84	85	86	87	88	89
							83	83	83	84	85	86	87	88	89

Zastosowanie filtra z maską i marginesem

W celu zastosowania filtra maskowego również wobec wartości leżących na obrzeżach można tymczasowo dodać możliwie najmniejszy margines, wykonać filtrowanie i usunąć dodany margines. Oto przykład.

Wejście Maska			Dodany margines o rozmiarze 1 (ponieważ filtr jest wielkości 3x3)					Zastosowanie filtra						
23	24	25	0	0,2	0	23	23	24	25	25	n/d	n/d	n/d	n/d
33	34	35	0,3	0,4	0	23	23	24	25	25	n/d	+ 0,2*23	+ 0,2*24	+ 0,2*2
63	64	65	0	0	0,1	33	33	34	35	35		+ 0,3*23 + 0,4*23	+ 0,3*23 + 0,4*24	+ 0,3*2 + 0,4*2
73	74	75		•		63	63	64	65	65		+ 0,1*34	+ 0,1*35	+ 0,1*3
	•					73	73	74	75	75	n/d	+ 0,2*23	+ 0,2*24	+ 0,2*2
						73	73	74	75	75		+ 0,3*33 + 0,4*33 + 0,1*64	+ 0,3*33 + 0,4*34 + 0,1*65	+ 0,3*3 + 0,4*3 + 0,1*6
											n/d	+ 0,2*33 + 0,3*63 + 0,4*63 + 0,1*74	+ 0,2*34 + 0,3*63 + 0,4*64 + 0,1*75	+ 0,2*3 + 0,3*6 + 0,4*6 + 0,1*7
											n/d	+ 0,2*63 + 0,3*73 + 0,4*73 + 0,1*74	+ 0,2*64 + 0,3*73 + 0,4*74 + 0,1*75	+ 0,2*6 + 0,3*7 + 0,4*7 + 0,1*7
											n/d	n/d	n/d	n/d

Zastosowanie filtra z maską dla obrazów kolorowych

Filtry z maską stosuje się wobec sygnałów 2-wymiarowych. W przypadku obróbki obrazów kolorowych (czyli tablic 3-wymiarowych) należy przetwarzać osobno wartości dotyczące poszczególnych kolorów.

Wskazówka odnośnie wydajności

Skrypt realizujący powyższe zadania można napisać w wieloraki sposób. Osoby, które napiszą część odpowiedzialną za użycie maski używając **4 pętli for** powinni zamiast obróbki obrazka w oryginalnej wielkości zdecydować się na obróbkę obrazka pomniejszonego, gdyż proces ten będzie zajmował dużo czasu. Prędkość wykonywania programu może być w niezbyt trudny sposób przyspieszona przez wykonywanie tylko **2 pętli for**. Aby tego dokonać należy najpierw przerobić program tak, by w pętlach zewnętrznych przechodzić po kolejnych wartościach w masce, a w pętlach wewnętrznych po pikselach w obrazku. Kolejnym krokiem jest zrezygnowanie z użycia pętli wewnętrznych.

Zadanie 1.

Proszę napisać skrypt, który wykona operacje przedstawioną w powyższym przykładzie, przy czym skrypt umożliwia pracę z dowolną maską 3x3 i dowolnym sygnałem 2-wymiarowym.

Zadanie 2.

Proszę napisać skrypt, który będzie dokonywał rozmywania obrazu kolorowego za pomocą filtra widocznego poniżej. Przed zastosowanie tej maski proszę ją znormalizować. Proszę napisać funkcję, która będzie umożliwiała pracę w obrazkiem monochromatycznym (dane w postaci tablicy 2-wymiarowej) i kolorowym (dane w postaci tablicy o wymiarze trzecim równym 3).

5	6	5
6	6	6
5	6	5

Zadanie 3.

Proszę napisać skrypt, który będzie dokonywał wyostrzania obrazu kolorowego za pomocą filtra widocznego poniżej. Przed zastosowanie tej maski nie trzeba jej normalizować, a po zastosowaniu tego filtra wartości trzeba przyciąć do przedziału [0; 255] (patrz funkcja *PrzytnijZakres*)

0	-1	0
-1	5	-1
0	-1	0

org

zmieniony

Zadanie 4.

Proszę napisać skrypt, który zmieni obrazek na odcienie szarości (za pomocą funkcji średnia), aby później dokonać wykrywania krawędzi w poziomie za pomocą filtra widocznego poniżej, a na końcu wyliczy moduł z wartości.

0	0	0
-1	0	1
0	0	0

Zadanie 5.

(Filtr 3x3 **Sobel**) Proszę napisać skrypt, który <u>nie zmieni obrazek na odcienie szarości</u> po czym dokona wykrywania krawędzi w pionie za pomocą filtra widocznego poniżej, a na końcu wyliczy moduł z wartości otrzymanych po obróbce tym filtrem.

-1	-2	-1
0	0	0
1	2	1

Zadanie 6.

Proszę napisać skrypt, który <u>zmieni obrazek na odcienie szarości,</u> później zastosuje złożenie przez funkcję maksimum obrazów będących wynikiem działania wartości bezwzględnej z filtrów wykrywających krawędzie w poziomie i pionie. Schemat działania widoczny jest niżej.

• Niech *obr1* to obrazek oryginalny przetworzony przez filtr wykrywający krawędzie w pionie (widoczny poniżej), następnie wartość bezwzględną.

0	-1	0
0	0	0
0	1	0

• Niech *obr2* to obrazek oryginalny przetworzony przez filtr wykrywający krawędzie w poziomie (widoczny poniżej), następnie moduł.

0	0	0
1	0	-1
0	0	0

• Niech obrazek wynikowy to złożenie *obr1* i *obr2* przez funkcję maksimum.

Zadanie 7.

(Efekt **Emboss**) Proszę napisać skrypt, który zmieni obrazek na odcienie szarości, następnie dokona wykrywania krawędzi w skosie (zgodnie z filtrem widocznym poniżej), na końcu wartości zostaną zwiększone o 127.5 (wartość idealnie szara).

-1	-1	0
-1	0	1
0	1	1

Zadanie 8.

(operatory **Frei'a-Chen'a**) Proszę napisać skrypt, który <u>zmieni obrazek na odcienie szarości za pomocą średniej.</u> później zastosuje złożenie przez funkcję $wy = \sqrt{wy _ filtra _ 1^2 + wy _ filtra _ 2^2}$ obrazów powstałych przez dwa filtry wykrywających krawędzie w poziomie i pionie. Schemat działania widoczny jest niżej.

Niech obr1 to kopia obrazka oryginalnego, zamieniona na odcienie szarości i przetworzona
przez filtr wykrywający krawędzie w pionie (widoczny poniżej), bez przycięcia wartości do
[0; 255]

-1	$-\sqrt{2}$	-1
0	0	0
1	+ √2	1

 Niech obr2 to kopia obrazka oryginalnego, zamieniona na odcienie szarości i przetworzona przez filtr wykrywający krawędzie w poziomie (widoczny poniżej), bez przycięcia wartości do [0; 255]

-1	0	1
$-\sqrt{2}$	0	+ √2
-1	0	1

• Niech obrazek wyjściowy img3 powstanie przez złożenie obr1 i obr2 w taki sposób, aby każda wartość w obrazku wyjściowym była liczona jako $img3 = \sqrt{img1^2 + img2^2}$

