SWIN BUR * NE *

Unit Outline

COS30019

Introduction to Artificial Intelligence

Semester 1 2023

Please read this Unit Outline carefully. It includes:

PART A Unit summary

PART B Your Unit in more detail

PART C Further information

PART A: Unit Summary

Unit Code(s)		COS30019		
Unit Title		Introduction to Artificial Intelligence		
Duration		One semester or equivalent		
Total Contact Hours		48 hours		
Requisites:				
Pre-requisites		COS20007 Object Oriented Programming OR COS30008 Data Structures and Patterns		
	Co-requisites	Nil		
Concurrent pre-requisites		Nil		
Anti-requisites		Nil		
	Assumed knowledge	Object oriented programming at an intermediate level		
Credit	Points	12.5 credit points		
Campi	us/Location	Hawthorn		
Mode	of Delivery	Live Online AND Face to Face		
Assessment Summary		Assignment 1 (Individual) 30% Assignment 2 (Group) 20% Mid-Semester Test (Individual) 25% Final Assessment Questionnaire (Individual) 25%		

Aims

This unit is designed to give students a broad outline of algorithmic problem solving and the basic concepts of artificial intelligence. It is assumed that students already have good programming skills in at least one of the programming languages Java/C#/C++.

Unit Learning Outcomes

Students who successfully complete this unit can:

- 1. Describe and interpret the fundamental concepts of Artificial Intelligence (AI) and generic problem solving techniques
- 2. Apply advanced algorithms and data structures to solve common problems
- 3. Design software that implements AI concepts

Graduate Attributes

This unit may contribute to the development of the following Swinburne Graduate Attributes:

- Communication 1 Verbal communication
- Communication 2 Communicating using different media
- Teamwork 1 Collaboration and negotiation
- Teamwork 2 Teamwork roles and processes

- Digital literacies 1 Information literacy
- Digital Literacies 2 Technical literacy

Content

- Introduction to Artificial Intelligence and Intelligent Agents
- Introduction to Logic and Reasoning
- Uninformed and Informed Search
- Knowledge Representation
- Expert Systems
- Al Planning
- Uncertain Knowledge and Reasoning
- Decision Making with Uncertainty
- Adaptation and Machine Learning
- Philosophical Aspects of Al

PART B: Your Unit in more detail

Unit Improvements

Feedback provided by previous students through the Student Survey has resulted in improvements that have been made to this unit. Recent improvements include:

- The weight for Assignment 1 has been increased (from 20% to 30%) to better reflect the effort required to complete it.
- The Final Exam has been structured into two separate assessments: Mid-term Test (25%) and Final Exam (25%)

Unit Teaching Staff

Name	Role	Room	Phone	Email	Consultation Tin
Bao Quoc Vo	Unit Convenor	EN514a	9214 4756	bvo@swin.edu.au	By appointment
Hy Nguyen	Tutor			hynguyen@swin.edu.au	By appointment
Anika Kanwal	Tutor			akanwal@swin.edu.au	By appointment

Learning and Teaching Structure

Category	Activity	Total Hours	Hours per Week	Teaching Period Weeks
Live Online	Lectures	24 hours	2 hour	Weeks 1 to 12
In person	Tutorial	24 hours	2 hours	Weeks 1 to 12
Online	Self-paced learning activities	102 hours	8.5 hours	Weeks 1 to 12

Week by Week Schedule

Week	Week Beginning	Teaching and Learning Activity	Student Task or Assessment
1	February 27	Lecture: Introduction & the foundations of Al	Introduction & the foundations of AI - online discussion
		Online materials: Introduction & the foundations of Al Tutorial: The foundations of Al	Readings < Textbook Chapter 1 >
2	March 6	Lecture: Intelligent Agents Online materials: Intelligent Agents	Intelligent Agents Readings < Chapter 2 >
3	March 13	Lecture: Search – Uninformed Online materials: Search - Uninformed	Search - Uninformed

		Tutorial: Search – Uninformed	Search – Informed and Uninformed – Assignment 1 released
			Readings < Chapter 3 >
4	March 20	Lecture: Search – Informed Online materials: Search - Informed	Search – Informed Readings < Chapters 3 & 4 >
		Tutorial: Search – Informed	
5	March 27	Lecture: Adversarial Search	Adversarial Search
		Online materials: Adversarial Search	Readings <chapter 5=""></chapter>
		Tutorial: Adversarial Search	
6	April 3	Lecture: Logic & Knowledge Representation	Logic & Knowledge Representation Readings < Chapter 7>
		Online materials: Logic & Knowledge Representation	Readings Chapter 17
		Tutorial: Logic & Knowledge Representation	
break	April 10	Mid-Semester Break/Easter Thursday 6 April to Wednesday 12 April (inclusive)	
7	April 17	Lecture: Propositional Logic	Propositional Logic Search – Informed and Uninformed –
		Online materials: Propositional Logic	Assignment 1 submission
		Tutorial: Propositional Logic	Mid-Semester Test
			Readings < Chapters 7>
			Propositional Logic – Assignment 2 released
8	April 24	Lecture: First-Order Logic	First-Order Logic
		Online materials: First-Order Logic	Readings <chapters 8&9=""></chapters>
		Tutorial: First-Order Logic	
9	May 1	Lecture: Planning	Planning
		Online materials: Planning Tutorial: Planning	Readings <chapter 10=""></chapter>
10	May 8	Lecture: Probabilistic Reasoning and Bayesian Networks	Probabilistic Reasoning and Bayesian Networks
		Online materials: Probabilistic Reasoning and Bayesian Networks	Readings < Chapters 13& 14>
		Tutorial: Probabilistic Reasoning and Bayesian Networks	
11	May 15	Lecture: Machine Learning and Adaptation	Machine Learning and Adaptation - online discussion
		Online materials: Machine Learning and Adaptation	Readings < Chapters 18 & 19>

		Tutorial: Machine Learning and Adaptation	
12	May 22	Lecture: Summary and Review Online materials: Summary and review	Propositional Logic – Assignment 2 submission
		Tutorial: Reviews of tutorial material & Practice exam questions	
	May 29 – June 16	Exam Period	Final Assessment Questionnaire (to be announced by the university)

Assessment

a) Assessment Overview

[List assessment tasks. These must be consistent with the accredited Unit Details in Atlas]

Tasks and Details	Individual or Group	Weighting	Unit Learning Outcomes that this assessment task relates to	Assessment Due Date
1. Assignment 1	Individual	30%	2, 3	End of Week 7
2. Assignment 2	Group	20%	2, 3	End of Week 12
3. Mid-Semester Test	Individual	25%	1,2	Week 7
Final Assessment Questionnaire	Individual	25%	1,2	Formal Exam Period

b) Minimum requirements to pass this Unit

To pass this unit, you must achieve an overall mark for the unit of 50% or more.

Note: There are no hurdles in this unit.

c) Examinations

If the unit you are enrolled in has an official examination, you will be expected to be available for the entire examination period including any Special Exam period.

d) Submission Requirements

- The programming assignments will be submitted via the ESP system provided by the university CSO (at https://esp.swin.edu.au/).
- Submission details will be provided on the subject Canvas site.
- Please ensure you keep a copy of all assessments that are submitted.
- An Assessment Cover Sheet must be submitted with your assignment. The standard Assessment Cover Sheet is available from the Current Students web site (see Part C).

e) Extensions and Late Submission

Late Submissions - Unless an extension has been approved, late submissions will result in a penalty. You will be penalised 10% of your achieved mark for each working day the task is late, up to a maximum of 5 working days. After 5 working days, a zero result will be recorded.

f) Referencing

To avoid plagiarism, you are required to provide a reference whenever you include information from other sources in your work. Further details regarding plagiarism are available in Section C of this document.

Referencing conventions required for this unit are:

Anderson, J. & Poole, M. (2001). Assignment and thesis writing 4th Edn. Brisbane: John Wiley & Sons

Helpful information on referencing can be found at http://www.swinburne.edu.au/library/referencing/

g) Groupwork Guidelines

A group assignment is the collective responsibility of the entire group, and if one member is temporarily unable to contribute, the group should be able to reallocate responsibilities to keep to schedule. In the event of longer-term illness or other serious problems involving a member of group, it is the responsibility of the other members to immediately notify the Unit Convenor or relevant tutor.

Group submissions must be submitted with an Assignment Cover Sheet, signed by all members of the group.

All group members must be satisfied that the work has been correctly submitted. Any penalties for late submission will generally apply to all group members, not just the person who submitted.

Required Textbook(s)

The required textbook(s) are available from Swinburne Bookshop: http://bookshop.swin.edu.au

Course Notes:

Lecture Notes, 2023 (Available from the subject website during the teaching period)

Text Book:

Russell, S.J. and Norvig, P., "*Artificial Intelligence: A Modern Approach*," 3rd edition, Prentice-Hall, 2010.

Recommended Reading Materials

The Library has a large collection of resource materials, both texts and current journals. Listed below are some references that will provide valuable supplementary information to this unit. It is also recommended that you explore other sources to broaden your understanding.

- B. Coppin, "Artificial Intelligence Illuminated" Jones and Bartlett Publishers, 2004
- Nilsson, "Artificial Intelligence: A New Synthesis" Morgan Kaufman Pub. 1998

PART C: FURTHER INFORMATION

For further information on any of these topics, refer to Swinburne's Student webpage http://www.swinburne.edu.au/student/

Student behaviour and wellbeing

All students are expected to: act with integrity, honesty and fairness; be inclusive, ethical and respectful of others; and appropriately use University resources, information, equipment and facilities. All students are expected to contribute to creating a work and study environment that is safe and free from bullying, violence, discrimination, sexual harassment, vilification and other forms of unacceptable behaviour.

The <u>Student Charter</u> describes what students can reasonably expect from Swinburne in order to enjoy a quality learning experience. The Charter also sets out what is expected of students with regards to your studies and the way you conduct yourself towards other people and property.

You are expected to familiarise yourself with University regulations and policies and are obliged to abide by these, including the <u>Student Academic Misconduct Regulations</u>, <u>Student General Misconduct Regulations</u> and the <u>People, Culture and Integrity Policy</u>. Any student found to be in breach of these may be subject to disciplinary processes.

Examples of expected behaviours are:

- conducting yourself in teaching areas in a manner that is professional and not disruptive to others
- following specific safety procedures in Swinburne laboratories, such as wearing appropriate footwear and safety equipment, not acting in a manner which is dangerous or disruptive (e.g. playing computer games), and not bringing in food or drink
- following emergency and evacuation procedures and following instructions given by staff/wardens in an emergency response

Canvas

You should regularly access the Swinburne learning management system, Canvas, which is available via the Current Students webpage or https://swinburne.instructure.com/ Canvas is updated regularly with important unit information and communications.

Communication

All communication will be via your Swinburne email address. If you access your email through a provider other than Swinburne, then it is your responsibility to ensure that your Swinburne email is redirected to your private email address.

Academic Integrity

Academic integrity is about taking responsibility for your learning and submitting work that is honestly your own. It means acknowledging the ideas, contributions and work of others; referencing your sources; contributing fairly to group work; and completing tasks, tests and exams without cheating.

Swinburne University uses the Turnitin system, which helps to identify inadequate citations, poor paraphrasing and unoriginal work in assignments that are submitted via Canvas. Your Unit Convenor will provide further details.

Plagiarising, cheating and seeking an unfair advantage with regards to an exam or assessment are all breaches of academic integrity and treated as academic misconduct.

Plagiarism is submitting or presenting someone else's work as though it is your own without full and appropriate acknowledgement of their ideas and work. Examples include:

• using the whole or part of computer program written by another person as your own

- using the whole or part of somebody else's written work in an essay or other assessable
 work, including material from a book, journal, newspaper article, a website or database, a set
 of lecture notes, current or past student's work, or any other person's work
- poorly paraphrasing somebody else's work
- using a musical composition or audio, visual, graphic and photographic work created by another
- using realia created by another person, such as objects, artefacts, costumes, models
- submitting assessments that have been developed by another person or service (paid or unpaid), often referred to as contract cheating
- presenting or submitting assignments or other work in conjunction with another person or
 group of people when that work should be your own independent work. This is regardless of
 whether or not it is with the knowledge or consent of the other person(s). Swinburne
 encourages students to talk to staff, fellow students and other people who may be able to
 contribute to a student's academic work but where an independent assignment is required,
 the work must be the student's own
- enabling others to plagiarise or cheat, including letting another student copy your work or by giving access to a draft or completed assignment

The penalties for academic misconduct can be severe, ranging from a zero grade for an assessment task through to expulsion from the unit and, in the extreme, exclusion from Swinburne.

Student support

Swinburne offers a range of services and resources to help you complete your studies successfully. Your Unit Convenor or studentHQ can provide information about the study support and other services available for Swinburne students.

Special consideration

If your studies have been adversely affected due to serious and unavoidable circumstances outside of your control (e.g. severe illness or unavoidable obligation), you may be able to apply for special consideration (SPC).

Applications for Special Consideration will be submitted via the SPC online tool normally <u>no later than 5.00pm</u> on the third working day after the submission/sitting date for the relevant assessment component.

Accessibility needs

Sometimes students with a disability, a mental health or medical condition or significant carer responsibilities require reasonable adjustments to enable full access to and participation in education. Your needs can be addressed by Swinburne's AccessAbility Services by negotiating and distributing an 'Education Access Plan'. The plan makes recommendations to University teaching and examination staff. You must notify AccessAbility Services of your disability or condition within one week after the commencement of your unit to allow the University to make reasonable adjustments.

Review of marks

An independent marker reviews all fail grades for major assessment tasks. In addition, a review of assessment is undertaken if your final result is between 45 and 49 or within 2 marks of any grade threshold

You can ask the Unit Convenor to check the result for an assessment item or your final result. Your request must be made in writing within 10 working days of receiving the result. The Unit Convenor can discuss the marking criteria with you and check the aggregate marks of assessment components to identify if an error has been made. This is known as local resolution.

If you are dissatisfied with the outcome of the local resolution, you can lodge a formal complaint.

Feedback, complaints and suggestions

In the first instance, discuss any issues with your Unit Convenor. If your concerns are not resolved or you would prefer not to deal with your Unit Convenor, then you can complete a feedback form. See https://www.swinburne.edu.au/corporate/feedback/

Advocacy

Should you require assistance with any academic issues, University statutes, regulations, policies and procedures, you are advised to seek advice from an Independent Advocacy Officer at Swinburne Student Life.

For an appointment, please call 03 9214 5445 or email advocacy@swin.edu.au For more information, please see https://www.swinburne.edu.au/current-students/student-services-support/advocacy/