3)	Betch 1	Batch 2	Batch 3	Batch Y	Batch 5
	23.46	23.59	23.51	23.28	23,29
	23.48	23, 46	23.64	23.40	23.46
Ų.	23.56	23,42	23.46	23.37	23.37
	23.39	23.49	23.52	23,46	23.32
1	23.40	23,50	23.49	23.39	23.38

a) Ils this a random effects model. There is no determistic decision made by the statistician in selecting the batches. Il they were no take a bunch of batches from the night shift, this would be a fixed effects model where all results can only be translated to the results of night shift. With them being randomly selected, this is a random effects model.

b) Is there a significant variation in Calcium content from batch to batch? F / P- Value 55 Tr = 1/2 yi2 - (You)2 (x = 0,05. df Source SS IMS $=\frac{1}{5}(68701)-\frac{343501.5}{25}$ 0.035 17.5 2.5779x10 0.14 = 137402 -13740.06 0.002 20 0.04 24 = 0.14 0.18 With a prudue less than 0.05 there is endence

With a p-value less than 0.05, there is enidence $SS_{Tot} = \frac{2}{5} \frac{2}{5} \frac{y^2}{10} - \frac{(y.)^2}{N_{343501.5}}$ to refect the null hypothesis that all the means are = $13740.24 - \frac{13740.24}{25}$ the same. There is evidence to suggest that at least = $13,740.24 - \frac{13740.06}{25}$ one mean is different.

C) Estimate the variance components for this model.

$$\hat{\sigma}^{2} = MS_{E} = 0.002$$

$$\hat{\sigma}^{2} = MS_{Tot} - MS_{E} = 0.035 - 0.002 = 0.033 = 0.0066$$