

consulting - testing - certification >>>

TEST REPORT

Test report no.: 1-0147/15-01-06-A

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 – 90 75
Internet: http://www.cetecom.com
ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-00

Applicant

pro-micron GmbH & Co. KG

Innovapark 20

87600 Kaufbeuren / GERMANY Phone: +49 834 191 – 64 10 Fax: +49 834 191 – 64 20 Contact: Daniel Uhlemann

e-mail: daniel.uhlemann@pro-micron.de

Phone: +49 834 191 - 64 35

Manufacturer

pro-micron GmbH & Co. KG

Innovapark 20

87600 Kaufbeuren / GERMANY

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Sensory Tool Holder

Model name: SPIKE

FCC ID: 2AGNQSTH24AA01A1

Frequency: DTS band 2400 MHz to 2483.5 MHz

Technology tested: ZigBee

Radio Communications & EMC

Antenna: Integrated antenna

Power supply: 5.0 V DC by battery

Temperature range: 0°C to +50°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:		
Marco Bertolino	Christoph Schneider		
Lab Manager	Testing Manager		

Radio Communications & EMC

Table of contents

1	Table of contents2					
2	Genera	ıl information	3			
	2.1	Notes and disclaimer	3			
		Application details				
3	Test st	andard/s	3			
		Measurement guidance				
4		nvironment				
5		em				
		General description				
		Additional information				
6	Test la	boratories sub-contracted	4			
7	Descri	otion of the test setup	5			
	7.1	Shielded semi anechoic chamber	6			
	7.2	Shielded fully anechoic chamber	7			
		Radiated measurements > 12.75 GHz				
	7.4	Conducted measurements C.BER system	9			
8	Measu	rement uncertainty	.10			
9	Seque	nce of testing	.11			
	9.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	.11			
		Sequence of testing radiated spurious 30 MHz to 1 GHz				
		Sequence of testing radiated spurious 1 GHz to 12.75 GHz				
	9.4	Sequence of testing radiated spurious above 12.75 GHz	.14			
10	Sum	mary of measurement results	.15			
11	Addi	tional comments	.16			
12	Mea	surement results	.17			
	12.1	Antenna gain				
	12.1	Maximum output power				
	12.3	Power spectral density				
	12.4	DTS bandwidth				
	12.5	Occupied bandwidth - 99% emission bandwidth	.27			
	12.6	Band edge compliance radiated	.30			
	12.7	Spurious emissions conducted	.33			
	12.8	Spurious emissions radiated below 30 MHz				
	12.9	Spurious emissions radiated 30 MHz to 1 GHz	.40			
	12.10	Spurious emissions radiated above 1 GHz	.45			
13	Obs	ervations	.51			
Anr	ex A	Document history	.51			
Anr	ex B	Further information	.51			
۸nr	ov C	Accreditation Cartificate	53			

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-0147/15-01-06 and dated 2015-12-07

2.2 Application details

Date of receipt of order: 2015-09-26
Date of receipt of test item: 2015-09-17
Start of test: 2015-09-23
End of test: 2015-12-04

Person(s) present during the test: -/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

3.1 Measurement guidance

Guidance	Version	Description
DTS: KDB 558074 D01	v03r03	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature : T ₁		T_{nom} T_{max} T_{min}	+20 °C during room temperature tests +50 °C during high temperature tests 0 °C during low temperature tests
Relative humidity content	:		55 %
Barometric pressure : not relevant for this kind of testing		not relevant for this kind of testing	
Power supply : V _{nom} V _{max} V _{min}		V_{max}	5.0 V DC by battery 5.5 V 4.5 V

5 Test item

5.1 General description

Kind of test item	:	Sensory Tool Holder
Type identification		SPIKE
S/N serial number	:	-/-
HW hardware status	:	WEPO31101D03
SW software status		BTKaBlue V13.5
Frequency band	:	DTS band 2400 MHz to 2483.5 MHz (lowest channel 2405 MHz; highest channel 2475 MHz)
Type of modulation	:	OQPSK
Number of channels	:	15
Antenna	:	Integrated antenna
Power supply	:	4.5 V to 5.5 V DC by battery
Temperature range	:	0°C to +50°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-0147/15-01-11_AnnexA

1-0147/15-01-11_AnnexB 1-0147/15-01-11_AnnexD

6 Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	26.01.2015	26.01.2016
2	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
3	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
4	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
5	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5290	300000212	k	13.08.2015	13.08.2017
2	А	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	22.01.2015	22.01.2016
3	А	Band Reject Filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	26	300003792	ne	-/-	-/-
4	Α	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22050	300004482	ev	-/-	-/-
5	А	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
6	А	NEXIO EMV- Software	BAT EMC	EMCO	MY50000032	300004682	ne	-/-	-/-

7.3 Radiated measurements > 12.75 GHz

Measurement distance: horn antenna 50 cm

 $FS = U_R + CA + AF$

(FS-field strength; U_R-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	14.08.2015	14.08.2017
2	Α	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	8205	300002442	NK!	-/-	-/-
3	Α	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
4	Α	Signal Analyzer 40 GHz	FSV40	R&S	101353	300004819	k	24.08.2015	24.08.2016
5	Α	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
6	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-

7.4 Conducted measurements C.BER system

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch / Control Unit	3488A	HP		300000929	ne	-/-	-/-
2	Α	Temperature Test Chamber	VT 4002	Heraeus Voetsch	5856604682001 0	300003019	ev	03.09.2015	03.09.2017
3	Α	Power Supply	NGSM 32/10	R&S	3939	400000192	vIKI!	22.01.2015	22.01.2017
4	Α	USB/GPIB interface	82357B	Agilent Technologies	MY52103346	300004390	ne	-/-	-/-
5	А	Labormessplatzrech ner 19" Servergehäuse	Intel Core i3 3225/3,3 GHz, Prozessor	Agilent Technologies	35230157A037 0	300004646	ne	-/-	-/-
6	А	Signal Analyzer 20Hz-26,5GHz-150 to + 30 DBM	FSIQ26	R&S	835540/018	300002681	k	30.01.2014	30.01.2016
7	Α	USB-GPIB-Interface	82357B	Agilent Technologies	103170	300004852	ne	-/-	-/-
8	Α	Power Sensor	NRP-Z81	R&S	100010	300003780	k	08.12.2014	08.12.2016

8 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Antenna gain	± 3 dB					
Power spectral density	± 1.5 dB					
DTS bandwidth	± 100 kHz (depends on the used RBW)					
Occupied bandwidth	± 100 kHz (depends on the used RBW)					
Maximum output power	± 1.5 dB					
Detailed spurious emissions @ the band edge - conducted	± 1.5 dB					
Band edge compliance radiated	± 3 dB					
Spurious emissions conducted	± 3 dB					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB					

9 Sequence of testing

9.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

9.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9.4 Sequence of testing radiated spurious above 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15	See table!	2015-12-09	-/-

Test specification clause	Test case	Guideline	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4)	Antenna gain	-/-	Nominal	Nominal	MC	\boxtimes				-/-
§15.247(e)	Power spectral density	KDB 558074 DTS clause: 10.6	Nominal	Nominal	MC	\boxtimes				Added from main test report 1-0147/15-01-05
§15.247(a)(2)	DTS bandwidth	KDB 558074 DTS clause: 8.1	Nominal	Nominal	MC	\boxtimes				Added from main test report 1-0147/15-01-05
§15.247(b)(3)	Maximum output power	KDB 558074 DTS clause: 9.2.2.5	Nominal	Nominal	МС	\boxtimes				Added from main test report 1-0147/15-01-05
§15.205	Band edge compliance radiated	KDB 558074 DTS clause: 13.3.2	Nominal	Nominal	МС	\boxtimes				-/-
§15.247(d)	TX spurious emissions conducted	KDB 558074 DTS clause: 11.1 & 11.2 11.3	Nominal	Nominal	МС	\boxtimes				Added from main test report 1-0147/15-01-05
§15.209(a)	TX spurious emissions radiated below 30 MHz	-/-	Nominal	Nominal	МС	\boxtimes				-/-
§15.247(d)	TX spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	Nominal	МС	\boxtimes				-/-
§15.247(d)	TX spurious emissions radiated above 1 GHz	-/-	Nominal	Nominal	МС	\boxtimes				-/-
§15.109	RX spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	Nominal	RX / idle	\boxtimes				-/-
§15.109	RX spurious emissions radiated above 1 GHz	-/-	Nominal	Nominal	RX / idle	\boxtimes				-/-
§15.107(a) §15.207	Conducted emissions < 30 MHz	-/-	Nominal	Nominal	МС			\boxtimes		-/-

Note: C = Complies; NC = Not complies; NA = Not applicable; NP = Not performed

11 Additional comments

Reference documents:	Ceteco	om test report 1-0147/15-01-05
Special test descriptions:	None	
Configuration descriptions:	None	
Test mode:		No test mode available. Iperf was used to ping another device with the largest support packet size
	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit operating modes:		Operating mode 1 (single antenna) - Equipment with 1 antenna, - Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, - Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

12 Measurement results

12.1 Antenna gain

Measurement:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal WLAN devices, the DSSS mode is used.

Measurement parameters:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	3 MHz		
Video bandwidth:	3 MHz		
Trace mode:	Max hold		
Test setup:	See sub clause 7.2 A		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC		
6 dBi			

Results:

T _{nom}	V_{nom}	2405 MHz	2440 MHz	2475 MHz
Conducted power [dBm]		3.0	2.5	1.7
Radiated power [dBm]		-3.89	-2.68	-2.43
Gain [dBi] Calculated		-6.89	-5.18	-4.13

12.2 Maximum output power

Description:

Measurement of the maximum output power conducted and radiated. The measurements are performed using the data rate producing the highest conducted output power.

Measurement:

Measurement parameter			
According to DTS clause: 9.2.2.5			
Detector:	RMS		
Sweep time:	Auto		
Resolution bandwidth:	1 – 5 % of the OBW		
Video bandwidth:	≥ 3x RBW		
Span:	Depends on the signal		
Integration bandwidth:	99 % power - bandwidth (OBW)		
Trace mode:	Max hold (allow trace to fully stabilize)		
Measurement function:	Channel power with OBW		
Test setup:	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC
Conducted: 1.0 W – A	ntenna gain max. 6 dBi

Results:

	Maxim	um Output Power [di	Bm]
Frequency	2405 MHz	2440 MHz	2475 MHz
Output power conducted	1.94	1.62	2.15

Plots:

Plot 1: TX mode, lowest channel

Plot 2: TX mode, middle channel

Plot 3: TX mode, highest channel

12.3 Power spectral density

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated for both modulations at the lowest, middle and highest channel.

Measurement:

Measurement parameter			
According to DTS clause: 10.6			
Detector:	RMS		
Sweep time:	3s		
Resolution bandwidth:	3 kHz		
Video bandwidth:	10 kHz		
Span:	40 MHz		
Trace mode:	Max hold (allow trace to fully stabilize)		
Test setup:	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC			
8 dBm / 3kHz (conducted)				

Results:

Modulation	Powe	er Spectral density [c	dBm]
Frequency	2405 MHz	2440 MHz	2475 MHz
Power spectral density	-12.06	-13.50	-12.25

Plots:

Plot 1: TX mode, lowest channel

Plot 2: TX mode, middle channel

Plot 3: TX mode, highest channel

12.4 DTS bandwidth

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement:

Measurement parameter			
According to DTS clause: 8.1			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	100 kHz		
Video bandwidth:	300 kHz		
Span:	40 MHz		
Measurement procedure:	Measurement of the 75% bandwidth using the integration function of the analyzer		
Trace mode:	Max hold (allow trace to stabilize)		
Test setup:	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC
	s may operate in the 2400–2483.5 MHz band. dth shall be at least 500 kHz.

Results:

	6 dB bandwidth [kHz]		
Frequency	2405 MHz	2440 MHz	2475 MHz
	1560	1660	1610

Plots:

Plot 1: TX mode, lowest channel

Plot 2: TX mode, middle channel

Plot 3: TX mode, highest channel

12.5 Occupied bandwidth - 99% emission bandwidth

Description:

Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	30 kHz	
Video bandwidth:	100 kHz	
Span:	40 MHz	
Measurement procedure:	Measurement of the 99% bandwidth using the integration function of the analyzer	
Trace mode:	Max hold (allow trace to stabilize)	
Test setup:	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 8	

<u>Usage:</u>

-/-	IC
OBW is necessary fo	r Emission Designator

Results:

Modulation		99% bandwidth [kHz]	
Frequency	2405 MHz	2440 MHz	2475 MHz
	2465	2604	2584

Plots:

Plot 1: TX mode, lowest channel

Plot 2: TX mode, middle channel

Plot 3: TX mode, highest channel

12.6 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to channel 1 for the lower restricted band and to channel 11 for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3 m.

Measurement:

Measurement parameter for peak measurements		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	1 MHz	
Video bandwidth:	1 MHz	
Span:	See plot!	
Trace mode:	Max Hold	
Test setup:	See sub clause 7.2 A	
Measurement uncertainty	See sub clause 8	

Measurement parameter for average measurements		
According to DTS clause: 13.3.2		
Detector:	RMS	
Sweep time:	Auto	
Resolution bandwidth:	100 kHz	
Video bandwidth:	300 kHz	
Span:	2 MHz	
Trace mode:	RMS Average over 101 sweeps	
Test setup:	See sub clause 7.2 A	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

74 dBµV/m Peak 54 dBµV/m AVG

Results:

Scenario	Band edge compliance radiated [dB]
Lower band edge	> 20 dB (Peak, blue graph) > 20 dB (AVG, purple graph)
Upper band edge	> 20 dB (Peak, blue graph) > 20 dB (AVG, purple graph)

Plots:

Plot 1: TX mode, lower band edge, vertical & horizontal polarization

Plot 2: TX mode, upper band edge, vertical & horizontal polarization

12.7 Spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode.

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	100 kHz	
Video bandwidth:	500 kHz	
Span:	9 kHz to 25 GHz	
Trace mode:	Max Hold	
Test setup:	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC
-----	----

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

Results:

TX Spurious Emissions Conducted						
f [MHz]		amplitu emiss [dBi	sion	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2405		-3.0	42	30 dBm		Operating frequency
No peaks detected. All detected emissions are below the -30 dBc criteria.			-20 dBc (peak) -30 dBc (average)		complies	
2440		-3.9	14	30 dBm		Operating frequency
No peaks detected. All detected emissions are below the -30 dBc criteria.			-20 dBc (peak) -30 dBc (average)		complies	
2475		-3.147		30 dBm		Operating frequency
No peaks detected. All detected emissions are below the -30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		complies		
				1 , , , ,		
Measi	urement uncertaint	ty			± 3 dB	

Plots:

Plot 1: TX mode, lowest channel, up to 25 GHz

The peak at the beginning of the plot is the LO from the SA.

Plot 2: TX mode, middle channel, up to 25 GHz

The peak at the beginning of the plot is the LO from the SA.

Plot 3: TX mode, highest channel, up to 25 GHz

The peak at the beginning of the plot is the LO from the SA.

12.8 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to channel 6. This measurement is representative for all channels and modes. If peaks are found channel 1 and channel 11 will be measured too. The measurement is performed with the data rate producing the highest output power. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

Measurement:

Measurement parameter							
Detector:	Peak / Quasi Peak						
Sweep time:	Auto						
Resolution bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz						
Video bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz						
Span:	9 kHz to 30 MHz						
Trace mode:	Max Hold						
Test setup:	See sub clause 7.2 A						
Measurement uncertainty	See sub clause 8						

Limits:

FCC			IC		
Frequency (MHz)	Field Strength (dBµV/m)		Field Strength (dBµV/m)		Measurement distance
0.009 – 0.490	2400/	F(kHz)	300		
0.490 – 1.705	24000/	/F(kHz)	30		
1.705 – 30.0	3	0	30		

Results:

TX Spurious Emissions Radiated < 30 MHz [dBµV/m]							
F [MHz] Detector Level [dBµV/m]							
All detected peaks are more than 20 dB below the limit.							

Plots:

Plot 1: 9 kHz to 30 MHz, low channel

Plot 2: 9 kHz to 30 MHz, mid channel

Plot 3: 9 kHz to 30 MHz, high channel

12.9 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

Measurement:

Measurement parameter						
Detector:	Peak / Quasi Peak					
Sweep time:	Auto					
Resolution bandwidth:	F < 1 GHz: 120 kHz					
Video bandwidth:	3 x RBW					
Span:	30 MHz to 1 GHz					
Trace mode:	Max Hold					
Test setup:	See sub clause 7.1 A					
Measurement uncertainty	See sub clause 8					

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC	IC
-----	----

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10

Plot:

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, low channel

Final Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
39.867150	13.83	30.00	16.17	1000.0	120.000	101.0	V	4	14.0
99.727800	9.61	33.50	23.89	1000.0	120.000	101.0	V	4	12.1
232.798650	21.40	36.00	14.60	1000.0	120.000	98.0	V	302	12.8
554.403600	16.10	36.00	19.90	1000.0	120.000	98.0	V	265	19.4
761.351400	19.29	36.00	16.71	1000.0	120.000	170.0	V	265	22.7
925.742400	21.00	36.00	15.00	1000.0	120.000	170.0	Н	250	24.2

Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, mid channel

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.843900	10.26	30.00	19.74	1000.0	120.000	101.0	V	104	13.9
50.503200	9.40	30.00	20.60	1000.0	120.000	170.0	V	132	12.6
69.273900	7.62	30.00	22.38	1000.0	120.000	101.0	V	320	8.6
99.579900	19.54	33.50	13.96	1000.0	120.000	98.0	V	292	12.1
307.642650	10.87	36.00	25.13	1000.0	120.000	101.0	Н	320	14.7
537.090600	15.50	36.00	20.50	1000.0	120.000	170.0	V	11	19.1

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, high channel

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
33.525000	9.88	30.00	20.12	1000.0	120.000	101.0	V	2	13.7
44.370150	10.07	30.00	19.93	1000.0	120.000	170.0	V	23	13.9
99.769950	19.93	33.50	13.57	1000.0	120.000	101.0	V	2	12.1
232.789800	19.09	36.00	16.91	1000.0	120.000	98.0	V	359	12.8
415.851900	13.20	36.00	22.80	1000.0	120.000	170.0	V	36	17.1
682.168350	18.14	36.00	17.86	1000.0	120.000	101.0	Н	164	21.4

Plot: RX / Idle mode

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization

Final_Result:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.458100	10.19	30.00	19.81	1000.0	120.000	170.0	V	39	13.4
99.765750	24.85	33.50	8.65	1000.0	120.000	98.0	V	15	12.1
232.782600	28.77	36.00	7.23	1000.0	120.000	98.0	V	182	12.8
263.979150	18.96	36.00	17.04	1000.0	120.000	98.0	V	23	13.7
298.739850	23.79	36.00	12.21	1000.0	120.000	98.0	V	150	14.4
399.127050	23.81	36.00	12.19	1000.0	120.000	98.0	V	202	16.9

12.10 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions above 1 GHz in transmit mode and receiver / idle mode.

Measurement:

Measurement parameter						
Detector:	Peak / RMS					
Sweep time:	Auto					
Resolution bandwidth:	F > 1 GHz: 1 MHz					
Video bandwidth:	3 x RBW					
Span:	1 GHz to 26 GHz					
Trace mode:	Max Hold					
Test setup:	See sub clause 7.2 A / 7.3 A					
Measurement uncertainty See sub clause 8						

Limits:

FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance		
Above 960	54.0	3		

Results:

TX Spurious Emissions Radiated [dBμV/m]										
2405 MHz			2440 MHz			2475 MHz				
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
4810	Peak	54.0	4878	Peak	52.7	4950	Peak	54.2		
	AVG	46.9		AVG	45.6		AVG	47.1		
	Peak			Peak			Peak			
	AVG			AVG			AVG			

Plots:

Plot 1: Lowest channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Lowes channel, 12.75 GHz to 18 GHz, vertical & horizontal polarization

Date: 30.NOV.2015 13:41:49

Plot 3: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 30.NOV.2015 14:20:33

Plot 4: Middle channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 5: Middle channel, 12.75 GHz to 18 GHz, vertical & horizontal polarization

Date: 30.NOV.2015 13:45:12

Plot 6: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 30.NOV.2015 14:10:46

Plot 7: Highest channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 8: Highest channel, 12.75 GHz to 18 GHz, vertical & horizontal polarization

Date: 30.NOV.2015 13:47:36

Plot 9: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 30.NOV.2015 14:08:25

13 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release	
	Initial release	2015-12-07	
А	Updated photo annex number	2015-12-09	

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

PMN Product marketing name
HMN Host marketing name

HVIN Hardware version identification number FVIN Firmware version identification number

Annex C Accreditation Certificate

Front side of certificate

Back side of certificate

Deutsche Akkreditierungsstelle GmbH

Bellehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, IIAC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Orarhsgebundene Kommunikation einschileßlich xDSL
Vol? und DECT
Akustik
Funk einschließlich WLAN
Short Range Devices (SRD)
RFID
WIMAX und Richtfunk
Mobiltunk (GSM / DCS, Over the Air (OTA) Performance)
Elektromagnetische Verträglichkeit (EMV) einschließlich Automotive
Produktsicherheit
SAR und Hearing Aid Compatibility (MAC)
Umweltsmulation
Smart Card Terminals
Bluetooth

Bluetooth Wi-Fi- Services

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheld vom 07.03.2014 mit der Akkreditierungsnormmen D-PI-17076-01 uns ist gillig 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblat, is und der folgenden Anlage mit Insgesamt 77 Seiten.

Registrierungsnummer der Urkunde: D-PL-12076-01-00

Frankfurt am Main, 07.03.2014

Deutsche Akkreditierungsstelle GmbH

Standort Frankfurt am Main Gartenstraße 6 60594 Frankfurt am Main

Standort Braunschweig Bundesallee 100 38116 Braunschweig

Die auszugsweise Veröffentlichung der Akkredicierungsurlaunde bedanf der vorherigen schriftlischen Zusämmung der Deutsche Akkredicierungsstelle Gribbt (DAIAS). Ausgenommen diesen ist die separate Weiserverseitung des Deutschaftes durch die umseitig genennie Kunformillitisbewertungszeitle in unweißhotzer State.

Es darf nicht der Anscheln erweckt werden, dass sich die Akkred literung auch auf Bereichs erstreckt, die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen.

Die Akkreditierung erfolgte gemöß des Gesetzes über din Akkreditierungsstells (AkStelleG) vom 31. Juli 2009 (BoBi, I. S. 2675) sowie der Verordrung (BoJ) Nr. 7657-2008 des Europäischen Parlament und des Britss vom S. 1s. 12008 (Bob der Verordrung) (BoJ) Nr. 7657-2008 des Europäischen Parlament im Zusarmenhang mit der Vermanklung von Produkten (Abl. L. 218 vom S. 1ull 2008, S. 30). Die Dakk Sit Utterer übersi der Wildlichsellun Akkremmen uns gegenst begen Arestherung der Europen un operation for Auszeitstein (EA, des Hebrastiens) Acceptiation (EA, des Hebrastiens) Acceptiation (EA, des Hebrastiens) (EA, des Hebrastiens) Acceptiation (EA, des Hebrastiens) Acceptiation (EA, des Hebrastiens) (E

Der aktue is Stund der Migliedschaft kann folgenden Webselten ertnommen werden: FA: www.mropusm-accord tation.org IAAC www.discurrg IAAC www.discurrg

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

https://www.cetecom.com/en/cetecom-group/europe/germany-saarbruecken/accreditations.html