

Key topics to be discussed

Introduction & Context

LPWAN
Communication
technologies

loT architecture
&
Vertical solutions

Industrial IoT

Devices for Industrial IoT and the rest for general public usage

5%

The percentage of revenue related to connectivity by 2025

68%

The percentage of revenue induced by platforms, application and services

27%

The remaining value is related to System
Integration, consulting, and managed services

75 Billions

IoT connexions by 2025 Against 6,3 Billions in 2016

25,2 Billions

IoT connexions by 2025 Against 6,3 Billions in 2016 13,8 Billions

Devices for industrial IoT and 11,4 for aeneral public usage

5%

The percentage of revenue related to connectivity by 2025

68%

The percentage of revenue induced by platforms, application and services

27%

The remaining value is related to System
Integration, consulting, and managed services

25,2 Billions

IoT connexions by 2025 Against 6,3 Billions in 2016 13,8 Billions

Devices for Industrial IoT and 11,4 for general public usage

5%

The percentage of revenue related to connectivity by 2025

68%

The percentage of revenue induced by platforms, application and services

27%

The remaining value is related to System
Integration, consulting, and managed services

13,8 Billions

Devices for Industrial IoT and 11,4 for general public usage

5%

The percentage of revenue related to connectivity by 2025

68%

The percentage of revenue induced by platforms, application and services

27%

The remaining value is related to System
Integration, consulting, and managed services

25,2 Billions

IoT connexions by 2025 Against 6,3 Billions in 2016

13,8 Billions

Devices for Industrial IoT and 11,4 for general public usage

5%

The percentage of revenue related to connectivity by 2025

68%

The percentage of revenue induced by platforms, application and services

27%

The remaining value is related to System
Integration, consulting, and managed services

25,2 Billions

IoT connexions by 2025 Against 6,3 Billions in 2016

What are IoT levers in the "new world"?

9

What are IoT levers in the "new world"?

Introduction & Context

LPWAN
communication
technologies

loT architecture
&
Vertical solutions

LPWAN technologies: LoRa

LPWAN

- Low power wide area networks Sigfox, LoRa, NB-IoT
- Low data rate, Long range

LoRaWAN

- Created in 2009 by a French start –up Cycleo
- Long range wide area network

Low Power, small data rate and long range

LPWAN technologies comparison

Sigfox	LoRaWAN	NB-IOT
BPSK	CSS	QPSK
unlicensed	unlicensed	licensed
100Hz	250kHz & 125kHz	200kHz
No	Yes	No
100bps	50kbps	200kps
Limited/ Half duplex	Yes/Half duplex	Yes/Half duplex
140 – 12 bytes (UL) 4 – 8 bytes (DL)	Unlimited-243 bytes	Unlimited
[10, 40] km	[5, 20] km	[1, 10] km
	BPSK unlicensed 100Hz No 100bps Limited/ Half duplex 140 – 12 bytes (UL) 4 – 8 bytes (DL)	BPSK CSS unlicensed unlicensed 100Hz 250kHz & 125kHz No Yes 100bps 50kbps Limited/ Half duplex Yes/Half duplex 140 – 12 bytes (UL) 4 – 8 bytes (DL) Unlimited-243 bytes

LoRa modulation

Chirp spread modulation technique $y(t) = A \cos(\omega t + \delta(t))$ $\delta(t)$:polynomial function, A, ω : constant Linear frequency variation

LoRaWAN message structure

Advantages:

- Tolerance to interferences, noise, Doppler effect
- Long range communications
- Low cost

ISM Band Used for LoRaWAN

EU868 ISM Band

- Split in 5 sub bands (G, G1, G3)
- 3 required channel frequency 868.10, 868.30 868.50
- 8 channels for UL and DL and one additional channel for RX2 DL(869.525 MHz)
- Duty cycle (1 to 10%)
- Maximum EIRP value of +16 dBm

LoRaWAN protocol

Class A device is the minimal/required implementation Class B, beacon, reachable at define time slot Class C, continuous, can be almost continuously reached

MAC commands are used for configurations

CID	Command	Transmitted by		Brief Description	
		End-	Network	· ·	
		device	Server		
0x02	LinkCheckReq	X		Used by an end-device to validate its	
				connectivity to a network.	
0x02	LinkCheckAns		X	Answers LinkCheckReq.	
				Contains the received signal power	
				estimation, which indicates the quality of	
				reception (link margin) to the end-device.	
0x03	LinkADRReq		X	Requests the end-device to change data	
				rate, TX power, redundancy, or channel	
				mask.	
0x03	LinkADRAns	X		Acknowledges LinkADRReq.	
0×04	DutyCycleReq		X	Sets the maximum aggregated transmit duty	
				cycle of an end-device.	
0×04	DutyCycleAns	X		Acknowledges DutyCycleReq.	
0x05	RXParamSetupReq ⁷		X	Sets the reception slot parameters.	
0x05	RXParamSetupAns	X		Acknowledges RXParamSetupReq.	
0x06	DevStatusReq		X	Requests the status of the end-device.	
0x06	DevStatusAns	X		Returns the status of the end-device, namely	
				its battery level and its radio status.	
0x07	NewChannelReq		X	Creates or modifies the definition of a radio	
				channel.	
0x07	NewChannelAns	X		Acknowledges NewChannelReq.	
0x08	RXTimingSetupReq ⁷		X	Sets the timing of the reception slots.	
0x08	RXTimingSetupAns	X		Acknowledges RXTimingSetupReq.	
0x09	TXParamSetupReq ⁷		X	Used by a Network Server to set the	
1				maximum allowed dwell time and MaxEIRP	
				of end-device, based on local regulations.	
0x09	TXParamSetupAns	X		Acknowledges TXParamSetupReq.	

LoRaWAN class A device

RECEIVE-DELAY1= 1s RECEIVE-DELAY2= 2s

JOIN_ACCEPT_DELAY1=5s JOIN_ACCEPT_DELAY2=6s Transmit data in an optimized manner:

- Go on idle after transmission and receive response windows
- Adaptative Data Rate (ADR): Use of fastest DR with minimum TX power
- Long battery life

Example of a device activation

Over the air activation (OTAA)

Network settings with MAC commands and utile payload

Size (octets)	8	8	2	
Join-Request payload	JoinEUI	DevEUI	DevNonce	

Size (octets)	3	3	4	1	1	(16) optional
Join-Accept payload	JoinNonce	NetID	DevAddr	DLSettings	RXDelay	CFList

NwkSKey = aes128_encrypt(AppKey, 0x01 | JoinNonce | NetID | DevNonce | pad16)

AppSKey = aes128_encrypt(AppKey, 0x02 | JoinNonce | NetID | DevNonce | pad16)

Introduction & context

L DWAN

LPWAN
communication
technologies

IoT architecture

&

Vertical solutions

Industrial IoT

LPWAN IoT architecture

^{*}Can also be vendors or enterprises

^{**} Data exposure

LoRaWAN device implementation example

We have received the data, what next?

Example of AWS IoT MQTT client

MQTT : Client server publish subscribe messaging transport protocol

Subscribe → Message reception from IoT device

Publish → Message sending to IoT device

Vertical solutions

What about your IoT project

Is security critical for your use case?

Is latency critical for you? Do you need real time data and response

How much data do you need to send? How often?

3

What is the budget dedicated to the project? How much time do you have?

Introduction & context

LPWAN communication

technologies

loT architecture
&
Vertical solutions

Industrial IoT

IoT and AI

- Boost operational efficiency
- Increase IoT scalability
- IoT devices as nervous system and Al acting like the brain

IoT and Blockchain

- Blockchain: shared ledger with no central authority
- Smart contract
- Monitoring of contract requirements with IoT
- Blockchain used to store those information in a centralized ledger

Conclusion

- Game changer
- Revolutionizing the world
- Trending new technologies are building our future
- Social impact

Q&A

