Low-Budget Movies at the Box Office

Project Luther: Revenge of Benson

Directed by: Steven Bierer

Produced in cooperation with Metis Data Science (Seattle Unit)

Released: February 14, 2003

Budget: \$19 million

Box Office: \$22.2 million

Released: February 14, 2003

Budget: \$19 million

Box Office: \$22.2 million

Released: November 15, 2002

Budget: \$100 million

Box Office: \$262.0 million

- Studios must generate revenue to keep producing
- My question: What determines box office success?

- Studios must generate revenue to keep producing
- My question: What determines box office success?
 - → Especially for lower-budget films

- Studios must generate revenue to keep producing
- My question: What determines box office success?
 - → Especially for lower-budget films

→ Using known factors available at release

- Studios must generate revenue to keep producing
- My question: What determines box office success?
 - → Especially for lower-budget films

- → Using known factors available at release
 - → (But not whether Meryl Streep will be in it)

Methods - Scraping and Filtering

• Feature films (2008-2018) from IMDb.com

Data Element	Type	Transformation
Gross Box Office Sales	Numerical	Log
Opening Weekend Sales	Numerical	Log
Budget	Numerical	Log
Release Date	Numerical	Time filtering and averaging
Genre: Family, Comedy	Categorical	Dummy var
	Categorical	

• Removed movies with no budget as ales data 4)

Not used

- Wide variability in box office across all films
- Good prediction with 1storder model
 - Dominated by budget
 - $R^2 = .483$ (log)
 - $R^2 = .421$ (original)
- Same model on lowbudget movies <u>not</u> good

- Seasonal trends for release date are nearly opposite for low-budget (n=1848) and high-budget movies (n=866)
- Normalized "seasonality scores" were added as features

 Competition with high-budget movies was quantified based on opening week ticket sales

High-budget "Competition" Score

Analysis Low-budget data

Cross-validation

 analysis suggested a
 2nd- or 3rd-order model

 Lasso Regularization for 2nd-order model refined feature selection

Conclusions - Low-budget data

- A final R-squared value (untrained, transformed data) of only 0.19 was achieved.
- Important features:

Budget * LB-Season (-)

Budget * Comedy (+)

LB-Season * HB-Competition (-)

Comedy * MPAA-LvI (-)

Future Analysis

- Evaluate influence of genre
 - Genre-specific competition, week-by-week
- Include measure of pre-release "buzz"
 - Early proxy for critical reception??
- Implement as mixed model
 - Random effects of year, genre, etc
- More data!

THE END

A Warner Bros.
PICTURE

Appendix

Residual Error vs IMDb Movie Rating

- Wide variability in box office across all films
- Good prediction with 1storder model

- Wide variability in box office across all films
- Good prediction with 1storder model
 - Dominated by budget

- Wide variability in box office across all films
- Good prediction with 1storder model
 - Dominated by budget
 - $R^2 = .483$ (log)

- Wide variability in box office across all films
- Good prediction with 1storder model
 - Dominated by budget
 - $R^2 = .483$ (log)
 - $R^2 = .421$ (original)

- Wide variability in box office across all films
- Good prediction with 1storder model
 - Dominated by budget
 - $R^2 = .483$ (log)
 - $R^2 = .421$ (original)
- Same model on lowbudget movies <u>not</u> good

