

Introduction

Définition

- Une bascule est un circuit logique capable, dans certaines circonstances, de maintenir les valeurs de ses sorties malgré les changements de valeurs d'entrées, c'est-à-dire comportant un état « mémoire ».
- Il s'agit de l'élément qui permet le passage de la logique combinatoire à la logique séquentielle.

Types

- On distingue deux types de bascules :
 - les bascules asynchrones: sorties évoluent dès qu'une entrée évolue,
 - les bascules synchrones: sorties synchronisées par une horloge « clk »:
 - Horloge active sur niveaux (1: ▷ ou 0: ○▷): verrou, « latch »,
 - Horloge active sur fronts (↑: ▷ ou ↓: ○▷): « flip flop » ou « edge triggered »,
 - Horloge active sur impulsions:
 - · Le 1^{er} front synchronise les entrées,
 - · Le 2^{me} front synchronise les sorties,
 - · Exemple: bascules *Maître Esclave*, *JK pulse triggered*.

Bascules asynchrones (verrous) (1)

Bascule R S:

- Reset (remise à 0, active à R = 1) Set (mise à 1, active à S = 1)

- Symbole:

- Logigramme:

- Tables de vérité:

a	b	a+b
0	0	1
0	1	0
1	0	0
1	1	0

R	S	Q _t	\overline{Q}_{t}	fonction
0	0	Q_{t-1}	\overline{Q}_{t-1}	mémoire
0	1	1	0	Set
1	0	0	1	Reset
1	1	0	0	ambiguïté

Bascules asynchrones (2)

• Bascule R S:

- Reset (remise à 0, active à $\overline{R} = 0$) Set (mise à 1, active à $\overline{S} = 0$)

- Symbole:

- **R** Q - - **S Q** ○ -

- Logigramme:

- Tables de vérité:

a	b	a⋅b
0	0	1
0	1	1
1	0	1
1	1	0

\overline{R}	S	\overline{Q}_{t}	Q _t	fonction	
0	0	1	1	ambiguïté	
0	1	1	0	Reset	
1	0	0	1	Set	
1	1	$\overline{Q_{t-1}}$	Q_{t-1}	mémoire	

sur niveaux: les verrous, « latches » ou « level triggered » (1)

- Bascule RST (RSH)
 - T = 0 ⇒ mémoire: Q(t) = Q (t-1),
 - T = 1 ⇒ fonctionne comme une RS,
 - Reset (remise à 0, active à $R = 1 \Rightarrow Q = 0$),
 - Set (mise à 1, active à $S = 1 \Rightarrow Q = 1$),
 - Symboles : niveau haut (1)

Logigramme RST (RSH) niveaux hauts:

niveau bas (0)

- Table de vérité:

	RST (RSH) niveau haut						
Т	T R S Q _t Q _t fonction						
0	X	X	Q _{t-1}	$\overline{Q_{t-1}}$	mémoire		
1	0	0	Q_{t-1}	$\overline{Q_{t-1}}$	mémoire		
1	0	1	1	0	Set		
1	1	0	0	1	Reset		
1	1	1	1	1	ambiguïté		

sur niveaux: les verrous, « latches » ou « level triggered » (2)

- Bascule D (Data): latch
 - H (clock) = 0 ⇒ mémoire: Q(t) = Q (t-1),
 - H (clock) = 1 ⇒ échantillonnage: Q(t) = D(t),
 - Symboles : niveau haut (1)

niveau bas (0)

LogigrammeD niveau haut:

- Table de vérité:

	D niveau haut					
clk	$CIK D Q_t \overline{Q_t}$ fonction					
0 X Q_{t-1} $\overline{Q_{t-1}}$ mémoire						
1	0	0	1	copie		
1	1	1	0	copie		

Exemple: D-latch (niveau haut)

Regular D-latch response

	D niveau haut					
clk	$CIk D Q_t \overline{Q_t}$ fonction					
0	0 $X Q_{t-1} \overline{Q_{t-1}}$ mémoire					
1	0	0	1	copie		
1	1 1 1 0 copie					

sur fronts: les «flip flop» ou «edge triggered» (1)

- Les entrées prioritaires de forçage asynchrone (EPFA)
 - Leurs actions sont indépendantes de clk et des entrées,
 - Leurs actions sont *prioritaires* sur clk et sur les entrées,
 - Elles sont actives sur niveau BAS,
 - 2 actions:
 - La mise à 1, MAU, SET, PRESET:

$$\overline{PRE} = 0 \Rightarrow Q_i = 1 \text{ et } \overline{Q_i} = 0$$

- La remise à 0, RAZ, RESET, CLEAR: $\overline{CLR} = 0 \ \Rightarrow \ Q_i = 0 \ \text{et} \ \overline{Q_i} = 1$
- Symboles pour la D sur fronts (edge trigged D):
 - clk = \uparrow = rising edge :

8/18

Bascule D sur fronts, «D flip flop» ou «D edge triggered» (1)

• Fonctionnement:

- La bascule recopie l'entrée de donnée D sur la sortie Q uniquement pendant la durée du front actif (\uparrow ou \downarrow), de l'horloge «clk»: $Q(t + \Delta t) = D(t)$
- De même pour son complément: $\overline{Q(t+\Delta t)}=\overline{D(t)}$
- ∆t est le temps de propagation (décalage, delay time) entre le front d'horloge (clk) et l'information (Q) valide.

Symboles pour la D sur fronts:

• clk = \uparrow = rising edge: • clk = \downarrow = falling edge:

Bascules synchrones
Bascule D sur fronts, «D flip flop» ou «D edge triggered» (2)

Table de vérité:

	D sur fronts montants (1)					
clk	Ik $D(t)$ $Q(t+\Delta t)$ $\overline{Q}(t+\Delta t)$ fonction					
\	X	Q (t)	Q (t)	mémoire		
↑	0	0	1	copie		
↑	1	1	0	copie		

Exemple1:

Elaborer le chronogramme de la sortie Q :

Logigramme de la bascule D sur front ↑:

10/18

Exemple 2 : (D sur fronts montants (\^)

Elaborer le chronogramme de la sortie Q :

Bascule D sur fronts, «D flip flop» ou «D edge triggered» (3)

- Conditions de fonctionnement
 - Pour que l'échantillonnage logique soit correct, il faut respecter les spécifications temporelles du constructeur:
 - Temps de pré-positionnement «Setup time»: temps minimum pendant lequel la donnée d'entrée (D) doit être maintenue avant le front actif de l'horloge clk: t_{pp},
 - Temps de maintien «Hold time»: temps minimum pendant lequel la donnée d'entrée (D) doit être maintenue après le front actif de l'horloge clk: t_m,
 - Temps de propagation «Propagation time»: temps minimum avant lequel la donnée de sortie Q n'est pas encore valide: Δt ou t_p,
 - Chronogramme d'une bascule D sur fronts montants: clk = ↑

Bascule D sur fronts, «D flip flop» «D edge triggered» (4)

- Application: le diviseur de fréquence
 - Bascule D sur fronts montants: clk = ↑,
 - $\overline{PRE} = \overline{CLR} = 1$: EPFA inhibées (inactives),
 - Conditions initiales (CI): $Q(0) = 1 \Rightarrow D(0) = \overline{Q}(0) = 0$
 - Logigramme: $\mathbf{D} = \overline{\mathbf{Q}}$ (mode changement d'état ou «toggle»),

- Chronogramme:

Bascule JK sur fronts, «JK flip flop» ou «JK edge triggered» (1)

Fonctionnement:

- Les conditions temporelles (t_{pp}, t_m et t_p) sont du même type que celles des bascules D (diapositive 10),
- Sur les fronts de clk (↑ ou ↓) la sortie Q de la bascule JK : mémorise (JK = 00), suit J (JK = 01 ⇒ Q = 0; JK = 10 ⇒ Q = 1),
- Change d'état (Toggle) (JK = 11) : ainsi il n'y a plus d'ambiguïté,
- La bascule JK comporte le même type d'entrées prioritaires de forçage asynchrone que la bascule D.

Symbole pour la JK sur fronts:

• clk =
$$\uparrow$$
 = rising edge:

Bascule JK sur fronts, «JK flip flop» ou «JK edge triggered» (2)

Table de vérité:

	JK sur fronts montants (↑)						
clk	J	K	Q (t)	$\overline{\mathbf{Q}}$ (t)	fonction		
\	X	X	$\mathbf{Q}_{t ext{-}\Deltat}$	$\overline{\mathbf{Q}_{t-\Deltat}}$	Mémoire		
↑	0	0	$\mathbf{Q}_{t ext{-}\Deltat}$	$\overline{\mathbf{Q}_{t-\Deltat}}$	Mémoire		
↑	0	1	Q=J=0	Q=K=1	J (Reset)		
\uparrow	1	0	Q=J=1	Q=K=0	J (Set)		
↑	1	1	$\overline{\mathbf{Q}_{t-1}}$	Q _{t-1}	Toggle		

Table des transitions:

Q(t)	Q(t+1)	J	K	
0	0	0	Φ	
0	1	1	Φ	
1	0	Φ	1	
1	1	Φ	0	
$\Phi = 0$ ou 1				

Logigramme de la JK sur front ↑:

Bascule JK sur fronts, «JK flip flop» ou «JK edge triggered» (4)

- Exemple de fonctionnement (1)
 - Bascule JK sur fronts descendants: $clk = \downarrow$,
 - $\overline{PRE} = \overline{CLR} = 1$: EPFA inhibées,
 - Conditions initiales (CI): Q = 0,

- Chronogramme:

Bascule JK sur fronts, «JK flip flop» ou «JK edge triggered» (5)

- Exemple de fonctionnement (2)
 - Bascule JK sur fronts montants: clk = ↑,
 - $J = K = 1 \Rightarrow$ mode Toggle,
 - Conditions initiales (CI): Q = 0,

- Chronogramme:

17/18

Les bascules

Applications

- Les registres,
- Les compteurs synchrones et asynchrones,
- Les Machines à États,
- Étudiés dans les prochains chapitres.