CSC343 Worksheet 12 Solution

June 30, 2020

1. • Keys

- {id of molecule}
- {x position, y position, z position}
- Functional Dependencies
 - 1. id of molecule \rightarrow x position, y position, z position, x velocity, y velocity, z velocity
 - 2. x position, y position, z position \rightarrow id of molecule, x velocity, y velocity, z velocity

Notes:

- Function Dependencies
 - Functional Dependency is a relationship between two attributes typically between the key and other non-key attributes within a table.

Example:

 $SIN \rightarrow Name$, Address, Birthdate

Example 2:

 $ISBN \rightarrow Title$

- Key of Relations
 - One or more attributes $\{A_1, A_2, ..., A_n\}$ is a key for a relation R if
 - 1. Those attributes functionally determine all other attributes of the relation
 - 2. No proper subset of $\{A_1, A_2, ... A_n\}$ functionally determines all other attributes of R

Example:

Given relation

R = Movies1(title, year, length, genre, studioName, starName)

i. {title, year, starName } form a key for the relation Movies1

- ii. { year, starName } is not a key. Same star can be in multiple movies per year
- Superkeys
 - * Means a a set of attributes that contains a key
 - * Don't need to be minimal

Example:

Given relation

R = Movies1(title, year, length, genre, studioName, starName)

- · { title, year, starName } is a key and superkey
- { title, year, starName, title, year, length} is a superkey

References:

- 1) OpenTextBC, Chapter 11 Functional Dependencies, link
- 2. a) **Notes:**
 - The Splitting / Combining Rule
 - Combining Rule

*
$$A_1, A_2, \dots, A_n \to B_i$$
 for $i = 1, 2, ..., m$ to $A_1, A_2, \dots, A_n \to B_1, B_2, \dots, B_m$

Example:

Given

title year \rightarrow length title year \rightarrow genre title year \rightarrow studioName

it's combined form is

title year \rightarrow length genre studioName

- Splitting Rule

*
$$A_1, A_2, \cdots A_n \rightarrow B_1, B_2, \cdots B_m$$

to
 $A_1, A_2, \cdots, A_n \rightarrow B_i \text{ for } i = 1, 2, ..., m$

Example:

Given

title year \rightarrow length

It's splitted form is

title \rightarrow length

 $year \rightarrow length$

- Trivial Functional Dependencies
 - A functional dependency $FD: X \to Y$ is **trivial** if Y is a subset of X

Exmaple:

title year \rightarrow title

Example 2:

 $title \rightarrow title$

- Non-trivial Functional Dependencies
 - is a case where some but not all of the attributes on the R.H.S of an FD are also on L.H.S

Example:

title year \rightarrow title movieLength

- Can be simplified using tirivial-dependency rule
 - * The FD $A_1A_2\cdots A_n \to B_1B_2\cdots B_m$ is equivalent to $A_1A_2\cdots A_n \to C_1C_2\cdots C_k$

where C's are all those B's that are not in A's.

Figure 3.3: The trivial-dependency rule

- Computing the Clousre of Attributes
- Why the Closure Algorithm Works
- Transitive Rule
 - Definition

If $A_1A_2 \cdots A_n \to B_1B_2 \cdots B_m$ and $B_1B_2 \cdots B_m \to C_1C_2 \cdots C_k$ hold in relation $R, A_1A_2 \cdots A_n \to C_1C_2 \cdots C_k$ also holds in R.

Example:

Given

title year \rightarrow studioName studioName \rightarrow studioAddr

Transitive rule says the above is equal to the following

title year \rightarrow studioAddr

- Inference Rules
 - Is allso called Armstrong's Axioms
 - Has 3 axioms

1. Reflexivity

* If
$$\{B_1, B_2, ..., B_n\} \subseteq \{A_1, A_2, ..., A_n\}$$
 then $A_1 A_2 \cdots A_n \to B_1 B_2 \cdots B_m$

- * also called **trivial FDs**
- 2. Augmentation

* If
$$A_1 A_2 \cdots A_n \to B_1 B_2 \cdots B_m$$

then $A_1 A_2 \cdots A_n C_1 C_2 \cdots C_k \to B_1 B_2 \cdots B_m C_1 C_2 \cdots C_k$

- * $C_1C_2\cdots C_k$ are any set of attributes
- 3. Transitivity

* If
$$A_1A_2\cdots A_n \to B_1B_2\cdots B_m$$
 and $B_1B_2\cdots B_m \to C_1C_2\cdots C_k$
then $A_1A_1\cdots A_n \to C_1C_2\cdots C_k$