Maths: Endomorphismes d'un espace euclidien

Contents

T	Adjoint d'un endomorphisme						
	1.1	Adjoin	nt	3			
		1.1.1	Définition (Endomorphisme adjoint)	3			
		1.1.2	Propriété (Linéarité de l'adjoint)	3			
		1.1.3	Propriétés	3			
		1.1.4	Proposition (stabilité)	3			
		1.1.5	Proposition (lien avec les matrices)	3			
	1.2	Endon	norphisme autoadjoint	4			
		1.2.1	Définition (Endomorphisme autoadjoint)	4			
		1.2.2	Caractérisation matricielle	4			
		1.2.3	Corollaire	4			
		1.2.4	Théorème spectral	4			
		1.2.5	Définition (autoadjoint positif, défini positif)	5			
		1.2.6		5			
		1.2.7	-	5			
2	Mat	atrices orthogonales					
	2.1	Défini	tions	5			
		2.1.1	Définition	5			
		2.1.2	Définition (matrice positive, définie positive)	6			
		2.1.3	Propriété	6			
	2.2	Matrio	ces orthogonales	6			
		2.2.1	Définition (matrice orthogonale)	6			
		2.2.2	Caractérisation des matrices orthogonales	6			
		2.2.3	Corollaire	7			
		2.2.4	Caractérisation (par les matrices de passage)	7			
	2.3	Group	e orthogonal	7			
		2.3.1	Définition (groupe spécial orthogonal)	7			
		2.3.2	Propriété	7			
		2.3.3	Définition (matrice directe, indirecte)	8			
		2.3.4	Proposition (morphisme de $[\mathbb{R}, +]$ dans $[SO(2), \times]$)	8			
		2.3.5		8			
	2.4	Orient		8			
		2.4.1		8			
		2.4.2	•	9			
	2.5			9			
			-				

		2.5.1	Définition (matrices orthogonalement semblables)	Ĝ
		2.5.2	Théorème spectral matriciel	Ö
3	Isor	métries	s vectorielles	10
	3.1	Défini	tions	10
		3.1.1	Définition (isométrie vectorielle)	10
		3.1.2	Propriété (symétries orthogonales)	10
	3.2	Carac	térisation	10
	3.3	Group	oe orthogonal	10
		3.3.1	Propriété (déterminant d'une isométrie)	10
		3.3.2	Définition	11
		3.3.3	Propriété (structure de groupe)	11
		3.3.4	Définition (isométrie directe, indirecte)	11
		3.3.5	Propriété	11
		3.3.6	Propriété (rotation vectorielle d'un plan euclidien)	11
	3.4	Réduc	etion	12
		3.4.1	Propriété (stabilité)	12
		3.4.2	Théorème de réduction d'une matrice orthogonale	12
		3.4.3	Théorème de réduction des isométries	12

Dans tout ce qui suit, on pose $[E, \langle \cdot | \cdot \rangle]$ un espace euclidien.

1 Adjoint d'un endomorphisme

1.1 Adjoint

1.1.1 Définition (Endomorphisme adjoint)

Soit $u \in \mathcal{L}_{\mathbb{R}}(E)$.

Alors

$$\exists! u^* \in E^E \mid \forall x, y \in E, \ \langle u(x) \mid y \rangle = \langle x \mid u^*(y) \rangle$$

On appelle alors u^* l'(endomorphisme) adjoint de u.

1.1.2 Propriété (Linéarité de l'adjoint)

Soit $u \in \mathcal{L}_{\mathbb{R}}(E)$.

Alors

$$u^* \in \mathcal{L}_{\mathbb{R}}(E)$$

1.1.3 Propriétés

• L'application

$$\begin{array}{ccc} \mathcal{L}_{\mathbb{R}}(E) & \longrightarrow & \mathcal{L}_{\mathbb{R}}(E) \\ u & \longmapsto & u^* \end{array}$$

est linéaire et involutive (i.e $\forall u \in \mathcal{L}_{\mathbb{R}}(E), (u^*)^* = u$)

- $\forall u, v \in \mathcal{L}_{\mathbb{R}}(E), (v \circ u)^* = u^* \circ v^*$
- $id_E^* = id_E$
- $\forall u \in GL_{\mathbb{R}}(E), \ u^* \in GL_{\mathbb{R}}(E), \ \text{et} \ (u^*)^{-1} = (u^{-1})^*$

1.1.4 Proposition (stabilité)

Soit F un sous espace vectoriel de E, et $u \in \mathcal{L}_{\mathbb{R}}(E) \mid u(F) \subset F$.

Alors

$$u^*(F^\perp) \subset F^\perp$$

1.1.5 Proposition (lien avec les matrices)

Soit \mathcal{B} une base orthonormée de E, et $u \in \mathcal{L}_{\mathbb{R}}(E)$.

Alors:

$$\operatorname{Mat}_{\mathcal{B}}(u^*) = (\operatorname{Mat}_{\mathcal{B}}(u))^{\top}$$

1.2 Endomorphisme autoadjoint

1.2.1 Définition (Endomorphisme autoadjoint)

Soit $u \in \mathcal{L}_{\mathbb{R}}(E)$.

Alors u est dit autoadjoint si et seulement si

$$u = u^*$$

i.e si et seulement si

$$\forall x, y \in E, \ \langle u(x) \mid y \rangle = \langle x \mid u(x) \rangle$$

On note alors

$$\mathscr{S}(E) = \{ u \in \mathcal{L}_{\mathbb{R}}(E) \mid u = u^* \}$$

1.2.2 Caractérisation matricielle

Soit \mathcal{B} une base orthonormée de E, et $u \in \mathcal{L}_{\mathbb{R}}(E)$.

Alors

$$u \in \mathscr{S}(E) \iff \operatorname{Mat}_{\mathcal{B}}(u) = \operatorname{Mat}_{\mathcal{B}}(u)^{\top}$$

1.2.3 Corollaire

 $\mathscr{S}(E)$ est un sous espace vectoriel de $\mathcal{L}_{\mathbb{R}}(E)$, avec :

$$\dim(\mathscr{S}(E)) = \frac{(\dim E)(1 + \dim E)}{2}$$

1.2.4 Théorème spectral

Soit $u \in \mathcal{L}_{\mathbb{R}}(E)$, et $n = \dim E$.

$$\begin{split} u &\in \mathscr{S}(E) \\ \Leftrightarrow & E = \bigoplus_{\lambda \in \operatorname{Sp}_{\mathbb{R}}(u)}^{\perp} E_{\lambda}(u) \\ \Leftrightarrow & \exists \mathcal{B} = (e_k)_{k \in \llbracket 1 \ ; \ n \rrbracket} \subset \operatorname{Sp}_{\mathbb{R}}(u) \mid \mathcal{B} \text{ base orthonormée de } E \end{split}$$

1.2.5 Définition (autoadjoint positif, défini positif)

Soit $u \in \mathcal{S}(E)$.

Alors u est dit:

• positif si il vérifie

$$\forall x \in E, \ \langle u(x) \mid x \rangle \geqslant 0$$

• défini positif si il vérifie

$$\forall x \in E \setminus \{0\}, \ \langle u(x) \mid x \rangle > 0$$

$$\Leftrightarrow \quad \forall x \in E, \ \begin{vmatrix} \langle u(x) \mid x \rangle \geqslant 0 \\ \langle u(x) \mid x \rangle = 0 \Rightarrow x = 0 \end{vmatrix}$$

On définit alors les ensembles suivants :

1.2.6 Proposition

Les ensembles $\mathscr{S}^+(E)$ et $\mathscr{S}^{++}(E)$ sont convexes (mais ne sont pas des espaces vectoriels).

1.2.7 Caractérisation spectrale

Soit $u \in \mathcal{S}(E)$.

Alors:

$$\begin{array}{ccc} u \in \mathscr{S}^+(E) & \Leftrightarrow & \operatorname{Sp}_{\mathbb{R}}(u) \subset \mathbb{R}_+ \\ u \in \mathscr{S}^{++}(E) & \Leftrightarrow & \operatorname{Sp}_{\mathbb{R}}(u) \subset \mathbb{R}_+^* \end{array}$$

2 Matrices orthogonales

2.1 Définitions

2.1.1 Définition

Soit $n \in \mathbb{N}^*$.

On note alors

$$\mathscr{S}_n(\mathbb{R}) = \left\{ A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^\top \right\}$$

l'ensemble des matrices symétriques.

2.1.2 Définition (matrice positive, définie positive)

Soit $n \in \mathbb{N}^*$, et $A \in \mathscr{S}_n(\mathbb{R})$.

On dit alors que A est :

• positive si elle vérifie

$$\forall X \in \mathbb{R}^n \simeq \mathcal{M}_{n,1}(\mathbb{R}), \ \underbrace{X^{\top}AX}_{\in \mathcal{M}_{1,1}(\mathbb{R}) \simeq \mathbb{R}} \geqslant 0$$

• définie positive si elle vérifie

$$\forall X \in \mathbb{R}^n \setminus \{0\}, \ X^{\top}AX > 0$$

On définit alors les ensembles suivants :

$$\mathscr{S}_{n}^{+}(\mathbb{R}) = \{A \in \mathscr{S}_{n}(\mathbb{R}) \mid A \text{ positive}\}\$$

 $\mathscr{S}_{n}^{++}(\mathbb{R}) = \{A \in \mathscr{S}_{n}(\mathbb{R}) \mid A \text{ définie positive}\}\$

2.1.3 Propriété

Soit \mathcal{B} une base orthonormée de E, $n = \dim E$, et $u \in \mathscr{S}(E)$.

Alors:

$$u \in \mathscr{S}^{+}(E) \quad \Leftrightarrow \quad \operatorname{Mat}_{\mathcal{B}}(u) \in \mathscr{S}_{n}^{+}(\mathbb{R})$$
$$u \in \mathscr{S}^{++}(E) \quad \Leftrightarrow \quad \operatorname{Mat}_{\mathcal{B}}(u) \in \mathscr{S}_{n}^{++}(\mathbb{R})$$

2.2 Matrices orthogonales

2.2.1 Définition (matrice orthogonale)

Soit $n \in \mathbb{N}^*$, et $A \in \mathcal{M}_n(\mathbb{R})$ (carrée!).

Alors A est dite orthogonale si et seulement si

$$A^{\top}A = I_n$$

On note alors

$$O_n(\mathbb{R}) = O(n) = \left\{ A \in \mathcal{M}_n(\mathbb{R}) \mid A^{\top} A = I_n \right\}$$

2.2.2 Caractérisation des matrices orthogonales

Soit $n \in \mathbb{N}^*$, et $A \in \mathcal{M}_n(\mathbb{R})$.

On note $(C_k)_{k \in [\![1\ ;\ n]\!]}$ les colonnes de A, et $(L_k)_{k \in [\![1\ ;\ n]\!]}$ ses lignes.

On a:

$$\begin{split} A \in O(n) & \Leftrightarrow & A^\top A = I_n \\ & \Leftrightarrow & AA^\top = I_n \\ & \Leftrightarrow & \begin{cases} A \in \operatorname{GL}_n(\mathbb{R}) \\ A^{-1} = A^\top \end{cases} \\ & \Leftrightarrow & (C_k)_{k \in \llbracket 1 \ ; \ n \rrbracket} \text{ famille (base) libre orthonormée de } \mathbb{R}^n \simeq \mathcal{M}_{n,1}(\mathbb{R}) \\ & \Leftrightarrow & (L_k)_{k \in \llbracket 1 \ ; \ n \rrbracket} \text{ famille (base) libre orthonormée de } \mathbb{R}^n \simeq \mathcal{M}_{1,n}(\mathbb{R}) \end{split}$$

2.2.3 Corollaire

Soit $n \in \mathbb{N}^*$, et $A \in O(n)$. Alors

$$det(A) \in \{\pm 1\}$$

2.2.4 Caractérisation (par les matrices de passage)

Soit \mathcal{B} une base de E.

Alors:

$$\forall A \in O(\dim E), \ \exists ! \mathcal{B}' \text{ base orthonorm\'ee de } E \mid A = \mathcal{P}_{\mathcal{B}}^{\mathcal{B}'} = \operatorname{Mat}_{\mathcal{B}}(\mathcal{B}')$$

2.3 Groupe orthogonal

2.3.1 Définition (groupe spécial orthogonal)

On définit, $\forall n \in \mathbb{N}^*$,

$$SO(n) = SO_n(\mathbb{R}) = \{ A \in O_n(\mathbb{R}) \mid \det(A) = 1 \}$$

2.3.2 Propriété

Soit $n \in \mathbb{N}^*$.

- O(n) est un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$, appelé groupe orthogonal ;
- SO(n) est un sous-groupe de O(n), appelé groupe spécial orthogonal.

2.3.3 Définition (matrice directe, indirecte)

Soit $A \in O(n)$.

Alors A est dite :

• directe si et seulement si

$$A \in SO(n)$$

• indirecte si et seulement si

$$A \in O(n) \setminus SO(n)$$

2.3.4 Proposition (morphisme de $[\mathbb{R}, +]$ dans $[SO(2), \times]$)

L'application

$$\varphi : \mathbb{R} \longrightarrow SO(2)$$

$$t \longmapsto R_t = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$$

est un morphisme de groupes de $[\mathbb{R},+]$ dans $[SO(2),\times]$ surjectif, et

$$\ker \varphi = 2\pi \mathbb{Z}$$

2.3.5 Corollaires

- Le groupe SO(2) est commutatif.
- L'application

$$\begin{array}{cccc} \psi & : & \mathbb{U} & \longrightarrow & SO(2) \\ & z & \longmapsto & \begin{pmatrix} \Re(z) & -\Im(z) \\ \Im(z) & \Re(z) \end{pmatrix} \end{array}$$

est un isomorphisme de groupes de $[\mathbb{U}, \times]$ dans $[SO(2), \times]$.

2.4 Orientation d'un espace vectoriel réel de dimension finie

2.4.1 Définition (cas général)

Soit E' un \mathbb{R} -espace vectoriel de dimension finie.

Alors $Orienter\ E'$ signifie choisir une base $\mathcal B$ de E' qui servira de référence : $\mathcal B$ définit le $sens\ direct$.

De plus, $\forall \mathcal{B}'$ base de E',

ullet soit \mathcal{B}' est directe, lorsqu'elle vérifie

$$\det\left(\mathcal{P}_{\mathcal{B}}^{\mathcal{B}'}\right) = \det_{\mathcal{B}}(\mathcal{B}') > 0$$

• sinon, i.e si

$$\det\!\left(\mathcal{P}_{\mathcal{B}}^{\mathcal{B}'}\right) = \det_{\mathcal{B}}\!\left(\mathcal{B}'\right) < 0$$

alors \mathcal{B}' est dite indirecte.

2.4.2 Propriétés (orientation d'un espace euclidien)

• Soient \mathcal{B} , \mathcal{B}' deux bases de E (espace euclidien), et $n = \dim E$. Alors \mathcal{B} et \mathcal{B}' définissent la même orientation de E si et seulement si

$$\mathcal{P}_{\mathcal{B}}^{\mathcal{B}'} \in SO(n)$$

• Soient \mathcal{B} et \mathcal{B}' deux bases directes de E.

Alors

$$\det_{\mathcal{B}} = \det_{\mathcal{B}'}$$

On note parfois Det cette application.

 \bullet Soit H un hyperplan de E.

Alors on peut orienter H en choisissant une normale \vec{n} de H, i.e un $\vec{n} \in E \mid \{\vec{n}\}^{\perp} = H$. Une base \mathcal{B}_H de H est directe si et seulement si la base (\mathcal{B}_H, \vec{n}) de E est directe.

2.5 Théorème spectral matriciel

2.5.1 Définition (matrices orthogonalement semblables)

Soit $n \in \mathbb{N}^*$, et $A, B \in \mathcal{M}_n(\mathbb{R})$.

Alors A et B sont dites orthogonalement semblables si, et seulement si

$$\exists P \in O(n) \mid A = P^{-1}BP = P^{\top}BP$$

Remarques:

- Comme O(n) est un groupe, la relation « être semblable » définit une relation d'équivalence.
- Deux matrices sont orthogonalement semblables si et seulement si elles représentent le même endomorphisme dans deux bases orthonormées.

2.5.2 Théorème spectral matriciel

Soit $n \in \mathbb{N}^*$, et $A \in \mathcal{M}_n(\mathbb{R})$.

$$A \in \mathscr{S}_n(\mathbb{R}) \iff \exists P \in O(n) \mid P^{-1}AP = P^{\top}AP \text{ diagonale}$$

3 Isométries vectorielles

3.1 Définitions

3.1.1 Définition (isométrie vectorielle)

Soit $f \in \mathcal{L}_{\mathbb{R}}(E)$.

Alors f est une $isométrie\ vectorielle\ si$ et seulement si elle conserve la norme, i.e si et seulement si

$$\forall x \in E, \|f(x)\| = \|x\|$$

3.1.2 Propriété (symétries orthogonales)

Les symétries orthogonales de E, donc en particulier les réflexions de E (symétries orthogonales par rapport à un hyperplan) sont des isométries vectorielles.

3.2 Caractérisation

Soit $u \in \mathcal{L}_{\mathbb{R}}(E)$, et $n = \dim E$.

Alors:

$$\forall x \in E, \ \|u(x)\| = \|x\| \quad \Leftrightarrow \quad \forall x,y \in E, \ \langle u(x) \mid u(y) \rangle = \langle x \mid y \rangle$$

$$\Leftrightarrow \quad \exists \mathcal{B} \text{ base orthonorm\'ee de } E \mid u(\mathcal{B}) \text{ base orthonorm\'ee}$$

$$\Leftrightarrow \quad \forall \mathcal{B} \text{ base orthonorm\'ee de } E, \ u(\mathcal{B}) \text{ base orthonorm\'ee}$$

$$\Leftrightarrow \quad \begin{cases} u \in \operatorname{GL}(E) \\ u^{-1} = u^* \end{cases}$$

$$\Leftrightarrow \quad u^* \circ u = \operatorname{id}_E$$

$$\Leftrightarrow \quad u^* \circ u = u \circ u^* = \operatorname{id}_E$$

$$\Leftrightarrow \quad \exists \mathcal{B} \text{ base orthonorm\'ee de } E \mid \operatorname{Mat}_{\mathcal{B}}(u) \in O(n)$$

$$\Leftrightarrow \quad \forall \mathcal{B} \text{ base orthonorm\'ee de } E \mid \operatorname{Mat}_{\mathcal{B}}(u) \in O(n)$$

3.3 Groupe orthogonal

3.3.1 Propriété (déterminant d'une isométrie)

Soit $u \in \mathcal{L}_{\mathbb{R}}(E)$ une isométrie. Alors

$$\det(f) \in \{\pm 1\}$$

3.3.2 Définition

On définit les ensembles :

$$O(E) = \{ f \in \mathcal{L}_{\mathbb{R}}(E) \mid \forall x \in E, \ ||f(x)|| = ||x|| \}$$

 $SO(E) = \{ f \in O(E) \mid \det(f) = 1 \}$

3.3.3 Propriété (structure de groupe)

- \bullet L'ensemble O(E) est un sous-groupe de $\operatorname{GL}(E)$, appelé groupe orthogonal de E.
- L'ensemble SO(E) est un sous-groupe de O(E), appelé groupe spécial orthogonal.

3.3.4 Définition (isométrie directe, indirecte)

Soit $u \in O(E)$.

Alors u est dite :

• directe (on dit aussi que u est une rotation) si et seulement si

$$\det(u) = 1 \iff u \in SO(E)$$

• indirecte sinon, i.e si et seulement si

$$\det(u) = -1 \iff u \in O(E) \setminus SO(E)$$

3.3.5 Propriété

Soit $\theta \in \mathbb{R}$, et $R_{\theta}, S_{\theta} \in \mathcal{M}_2(\mathbb{R})$ définies par :

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

$$S_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$$

Alors on a:

$$SO(2) = \{R_{\theta} \mid \theta \in \mathbb{R}\}\$$

 $O(2) \setminus SO(2) = \{S_{\theta} \mid \theta \in \mathbb{R}\}\$

3.3.6 Propriété (rotation vectorielle d'un plan euclidien)

Soit $[P, \langle \cdot | \cdot \rangle]$ un plan euclidien (donc dim P = 2), et $r \in SO(P)$, *i.e* r est une rotation de P.

Alors

 $\forall \mathcal{B}, \mathcal{B}'$ bases orthonormées de P, $\mathrm{Mat}_{\mathcal{B}}(r) = \mathrm{Mat}_{\mathcal{B}'}(r)$

et, avec \mathcal{B} une base orthonormée de P,

$$\exists \theta \in \mathbb{R} \mid \operatorname{Mat}_{\mathcal{B}}(r) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

avec θ unique modulo 2π .

3.4 Réduction

3.4.1 Propriété (stabilité)

Soit F un sous espace vectoriel de E, et $u \in O(E)$ une isométrie. Alors :

$$u(F) \subset F \Rightarrow u(F^{\perp}) \subset F^{\perp}$$

3.4.2 Théorème de réduction d'une matrice orthogonale

Soit $n \in \mathbb{N}^*$.

$$\forall A \in O(n), \quad \begin{vmatrix} \exists P \in O(n) \\ \exists r, p, q \in \mathbb{N} & \text{tels que} \\ \exists (\theta_k)_{k \in \llbracket 1 \ ; \ q \rrbracket} \in (\mathbb{R} \setminus \pi \mathbb{Z})^q \end{vmatrix}$$

$$A = P^{-1} \begin{pmatrix} \frac{I_r & 0 & 0 & 0 \\ \hline 0 & -I_p & 0 & 0 \\ \hline & & R_{\theta_1} & (0) \\ 0 & 0 & \ddots & \\ & & & (0) & R_{\theta_q} \end{pmatrix} P$$

où $\forall \theta \in \mathbb{R}$,

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

3.4.3 Théorème de réduction des isométries

Soit $u \in O(E)$ une isométrie.

$$\exists \mathcal{B}$$
 base orthonormée de $E \mid \exists r, p, q \in \mathbb{N}$ $\exists (\theta_k)_{k \in [1 : q]} \in (\mathbb{R} \setminus \pi \mathbb{Z})^q$ tels que

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} I_r & 0 & 0 & \\ \hline 0 & -I_p & 0 & \\ \hline & & R_{\theta_1} & & (0) \\ 0 & 0 & & \ddots & \\ & & (0) & & R_{\theta_q} \end{pmatrix}$$

où
$$\forall \theta \in \mathbb{R}$$
,

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

