Understanding strong and weak topological phases

A glimpse of groupoids and coarse geometry in topological insulators

Yuezhao Li

Mathematical institute, Leiden university

Uni Greifswald, 15-01-2025

Topological phases of matter

Topological phases

Examples

- the quantum Hall effect;
- (symmetry-protected) topological insulators;
- Chern insulators;
- **>**....

Example: the Su-Schrieffer-Heeger model

$$H = \sum_{m \in \mathbb{Z}} \left(-v | m, A \rangle \langle m, B | -w | m+1, A \rangle \langle m, B | -v^* | m, B \rangle \langle m, A | -w^* | m, B \rangle \langle m+1, A | \right)$$

$$\Rightarrow \widehat{H} = \int_{k \in \mathbb{T}} \widehat{H}_k dk, \quad \widehat{H}_k = -\begin{pmatrix} 0 & v + w \exp(-ik) \\ v + w \exp(ik) & 0 \end{pmatrix}.$$

- ▶ Chiral symmetry $\implies \widehat{H}_k$ is off-diagonal.
- $ightharpoonup \widehat{H}_k$ invertible for all $k \implies v \neq w$.
- \triangleright v > w and v < w characterises different topological phases.

Example: quantum Hall effects

Nobel prizes from QHE (and friends):

- Von Klitzing (1985): Integer QHE.
- Störmer-Tsui-Laughlin (1998): Fractional QHE.

The NCG framework of topological phases

- 1. We assume to work with free fermions. This allows us to apply the single-particle approximation.
- 2. The dynamics of the (single-particle) physical system is therefore be described by a (one-body) Hamiltonian H.
- The observable C*-algebra is a C*-algebra A containing (the resolvent of) H, which describes the symmetries of the system.
- 4. A topological phase is represented by a K-theory class of A. Depending on the choice of A and the symmetry type, there are different versions of topological phases.
- 4'. If the system has anti-unitary symmetries to be preserved, then we must work with real K-theory. In many cases (e.g. the periodic model or the Roe C*-algebra model), this can be simplified to KO-theory or quaternionic K-theory.

Numerical index of topological phases

A numerical index (topological invariant / topological index / generalised Chern number / ...) is a map

$$K_*(A) \to \mathbb{Z}$$
 or \mathbb{R}

sending the topological phase to a number.

Different sources of numerical indices:

Kasparov theory index pairing with a Fredholm module / spectral triple;

Semi-finite index theory index pairing with a semi-finite spectral triple;

Cyclic homology pairing with cyclic cocycles;

Coarse homology pairing with coarse cohomology classes [Ludewig–Thiang];

.

Robustness of topological phases

- A priori, topological phases and their numerical indexs should be robust under disorder.
- Which disorder?
- "Old-school" approach: study the continuity of certain numerical invariants;
- ⇒ automatic constancy if the range is quantised.
- "Modern" approach? Factors through Roe C*-algebras.

2. Topological phases of "generic" aperiodic systems

Modelling QHE systems

- ► Space (\mathbb{R}^2 , dx \(\lambda\) dy) electromagnetic potential A, dA = θ dx \(\lambda\) dy.
- ⇒ 2-cocycle $\sigma: \mathbb{Z}^2 \times \mathbb{Z}^2 \to \mathbb{T}$, $\sigma((m, n), (m', n')) := \exp(-2\pi i \theta m' n)$.
- ▶ The Hamiltonian

$$H_{A,V} = \frac{1}{2} (d + iA)^* (d + iA) + V, \quad V \in L^{\infty}(\mathbb{R}^2)$$

▶ If V is translation-invariant for \mathbb{Z}^2 , and λ lies in a spectral gap. Then the Fermi projection p_{λ} defines a K_0 -class:

$$\rho_{\lambda} := \chi_{(-\infty,\lambda)}(H_{A,V}) \in (\mathbb{C} \rtimes_{\sigma} \mathbb{Z}^2) \otimes \mathbb{K}(L^2[0,1]).$$

- ▶ If V is aperiodic, then Bellissard describes the system by a crossed product $C^*(\Omega) \rtimes_{\sigma} \mathbb{Z}^2$.
- ▶ This still requires a \mathbb{Z}^2 -labelling of the sites.

Emergence of generic aperiodic systems

We would like to have a general description for these materials:

quasi-crystal

liquid crystal

glass

Definition Let 0 < r < R. A discrete infinite set $\Lambda \subseteq \mathbb{R}^d$ is called an (r, R)-Delone set if for all $x \in \mathbb{R}^d$:

$$\#(B(x,r)\cap\Lambda) \le 1$$
 and $\#(B(x,R)\cap\Lambda) \ge 1$.

i.e. Λ is "uniformly discrete" and "relatively dense".

Observable C*-algebras: two approaches

How to model an observable C*-algebra from a Delone set Λ ? It should be:

- large enough to contain all possible Hamiltonians;
- small enough to have useful homotopy theory (K-theory).
- "Dynamical" approach describes a crossed product C*-algebra, covariant for the groupoid actions on the aperiodic point pattern;
 - ⇒ groupoid C*-algebras of Delone sets. (Bellissard, Prodan, Bourne, Mesland, . . .)
- "Universal" approach describes a C*-algebra which is stable under all "local" perturbations;
 - ⇒ uniform or non-uniform Roe C*-algebras. (Kubota, Ewert, Meyer, Ludewig, Thiang, ...)

Topological groupoids

Definitions

▶ A groupoid is a small category \mathcal{G} whose all arrows are isomorphisms. Equivalently, it is given by a set of arrows \mathcal{G} and a set of objects \mathcal{G}^0 , together with structure maps

$$s, r: \mathcal{G} \to \mathcal{G}^0, \quad \Box^{-1}: \mathcal{G} \to \mathcal{G}, \quad id: \mathcal{G}^0 \to \mathcal{G}$$

satisfying a collection of properties.

- ▶ A (locally compact) topological groupoid is a groupoid \mathcal{G} , such that \mathcal{G} is locally compact, \mathcal{G}^0 is Hausdorff, and all structure maps are continuous.
- An étale groupoid is a topological groupoid whose range and source maps are local homeomorphisms.

Dynamics of Delone sets

Delone set $\Lambda \Rightarrow$ atomic measure $\sum_{x \in \Lambda} \delta_x$.

Equip the set of (r, R)-Delone set $Del_{(r,R)}(\mathbb{R}^d) \subseteq C_c(\mathbb{R}^d)'$ with the weak*-topology.

Theorem $Del_{(r,R)}(\mathbb{R}^d)$ is a compact, metrisable space, which carries a continuous action of \mathbb{R}^d by translations.

This yields a topological dynamical system

$$\mathsf{Del}_{(r,R)}(\mathbb{R}^d) \cap \mathbb{R}^d$$
 or $\Omega_{\Lambda} \cap \mathbb{R}^d$.

where Ω_{Λ} is the closure of the orbit of Λ .

- ► Every $ω ∈ Ω_Λ$ may be viewed as a "limit configuration".
- ► It generates the action groupoid

$$\Omega_{\Lambda} \rtimes \mathbb{R}^d \rightrightarrows \Omega_{\Lambda}.$$

$$s(\omega, x) := \omega - x, \qquad r(\omega, x) := \omega.$$

Tight-binding by restricting to the transversal

Let \mathcal{G} be a groupoid and $X, Y \subseteq \mathcal{G}^0$. Denote:

$$\mathcal{G}_X := s^{-1}(X), \quad \mathcal{G}^Y := r^{-1}(Y), \quad \mathcal{G}^Y_X := \mathcal{G}_X \cap \mathcal{G}^Y.$$

Definition A closed subset $X \subseteq \mathcal{G}^0$ is called a transversal, if X meets every orbit of \mathcal{G}^0 under the translations by \mathcal{G} , and the restrctions of r and s to \mathcal{G}^X are local homeomorphisms.

Lemma If $X \subseteq \mathcal{G}^0$ is a transversal, then \mathcal{G} is Morita equivalent to \mathcal{G}_X^X , the restriction of \mathcal{G} to X.

► For $\Omega_{\Lambda} \rtimes \mathbb{R}^d \rightrightarrows \Omega_{\Lambda}$, there is an abstract transversal

$$\Omega_0 := \{ \omega \in \Omega_{\Lambda} \mid 0 \in \omega \}.$$

Tight-binding: Restricts to a transversal gives an étale groupoid

$$\mathcal{G}_{\Lambda} \rightrightarrows \Omega_0, \qquad \mathcal{G}_{\Lambda} := \Omega_{\Lambda} \rtimes \mathbb{R}^d \Big|_{\Omega_0}^{\Omega_0}.$$

C*-algebra of an étale groupoid

Let \mathcal{G} be an étale groupoid.

- ▶ The convolution groupoid *-algebra $C_c(\mathcal{G})$ consists compactly supported functions on \mathcal{G} , equipped with
 - $(f_1 * f_2)(\eta) = \sum_{\gamma \in \mathcal{G}^{\eta}} f(\gamma) g(\gamma^{-1} \eta);$
 - $f^*(\gamma) := \overline{f(\gamma^{-1})}.$
- ► $C_c(\mathcal{G})$ can be completed into a right Hilbert $C_0(\mathcal{G}^0)$ -module, denoted by $L^2(\mathcal{G})$:
 - $(f \cdot \phi)(\gamma) := f(\gamma)\phi(s(\gamma))$, for $f \in L^2(\mathcal{G})$ and $\phi \in C_0(\mathcal{G}^0)$;
 - $\langle f_1, f_2 \rangle(x) := \sum (f_1^* * f_2)|_{\mathcal{G}^0}(x), \text{ for } f_1, f_2 \in L^2(\mathcal{G}).$
- ► $C_c(\mathcal{G}) \cap C_c(\mathcal{G})$ extends to $C_c(\mathcal{G}) \cap L^2(\mathcal{G})$. This completes $C_c(\mathcal{G})$ into the reduced groupoid C*-algebra $C^*(\mathcal{G})$. $x \in \Lambda$.

C*-algebra of a Delone set

- $ightharpoonup C^*(\mathcal{G}_{\Lambda}) =:$ the C*-algebra of the Delone set Λ.
- It consists of copies of the Hamiltonians on the sites of Λ, which are distinguished in transversal Ω₀.
- Morita equivalent topological groupoids give Morita–Rieffel equivalent C*-algebras.

Example

- $ightharpoonup \Omega_0$ can be chosen to be any point in \mathbb{T}^d .
- ► The Morita equivalence and *-isomorphism

$$C^*(\mathbb{T}^d \rtimes \mathbb{R}^d) \simeq C(\mathbb{T}^d) \rtimes \mathbb{R}^d \sim C(\mathsf{pt}) \rtimes \mathbb{R}^d / \mathbb{T}^d \simeq C(\mathbb{T}^d).$$

This is a special case of the Connes-Thom isomorphism, which plays a special role in noncommutative T-duality. Cf. work of Mathai, Rosenberg and Thiang.

Numerical indices of the groupoid model

- $ightharpoonup K_*(C^*(\mathcal{G}_{\Lambda}))$ is in general very complicated.
- Instead: [Bourne-Mesland] defines an unbounded Kasparov module, which represents a class

$$_{d}\lambda_{\Omega_{0}}\in\mathsf{KK}_{d}(\mathsf{C}^{*}(\mathcal{G}_{\Lambda}),\mathsf{C}(\Omega_{0})),$$

henceforth induces a map

$$K_*(C^*(\mathcal{G}_{\Lambda})) \to K_{*-d}(C(\Omega_0)).$$

- ▶ Maps $K_{*-d}(C(\Omega_0)) \to \mathbb{Z}$ or \mathbb{R} can be constructed from:
 - ▶ point evaluation at a limit configuration $\omega \in \Omega_0$;
 - "trace" map on $C(\Omega_0) \iff \mathcal{G}_{\Lambda}$ -invariant measure on Ω_0 .
- Composition yields a numerical index

$$K_*(C^*(\mathcal{G}_{\wedge})) \to \mathbb{Z}$$
 or \mathbb{R} .

Question Are these invariants robust under disorder?

The coarse-geometric approach

- $ightharpoonup \Lambda \subseteq \mathbb{R}^d$ as a discrete metric space with bounded geometry.
- ⇒ coarse-geometric C*-algebras.

Definitions

- ► The uniform Roe C*-algebra $C_{u,Roe}^*(\Lambda)$ consists of all operators on $\ell^2(\Lambda)$ with finite propagation.
- ► The Roe C*-algebra $C_{Roe}^*(\Lambda)$ consists of operators on $\ell^2(\Lambda, \mathcal{K})$, which are locally compact and has finite propagation.

Remark

- K can be chosen as any separable Hilbert space. But we should consider them as the "fundamental domain".
- It was explained in [Ewert–Meyer] why non-uniform Roe C*-algebras are better models.

Numerical invariants of Roe C*-algebras

Noe C*-algebras and uniform Roe C*-algebras are coarsely invariant. So for any Delone set Λ ⊆ ℝ^d:

$$C_{Roe}^*(\Lambda) \simeq C_{Roe}^*(\mathbb{R}^d).$$

▶ As opposed to $C^*(\mathcal{G}_{\Lambda})$, K-theory of $C^*_{Roe}(\Lambda)$ is very simple:

Theorem

$$K_i(C^*_{Roe}(\Lambda)) = \begin{cases} \mathbb{Z} & \text{if } i-d \text{ is even;} \\ 0 & \text{if } i-d \text{ is odd.} \end{cases}$$

- This can be computed using either a Mayer–Vietoris argument, or using the position operator to build a spectral triple ξ_{Λ} .
- Topological phases in C^{*}_{Roe}(Λ) are considered strong in [Ewert–Meyer]. They are "universally robust".

Groupoid C*-algebras VS Roe C*-algebras

- We wish to compare the topological phases in $C^*(\mathcal{G}_{\Lambda})$ and $C^*_{Roe}(\Lambda)$.
- This comes from a family of *-homomorphisms

$$\pi_{\omega} : C^*(\mathcal{G}_{\Lambda}) \to C^*_{Roe}(\omega) \simeq C^*_{Roe}(\Lambda), \qquad \omega \in \Omega_0.$$

► K-theory implies that topological phases in $C^*(\mathcal{G}_{\Lambda})$ are not always "strong".

Question What are the strong topological phases / indices in the groupoid model?

Strong phases in the groupoid model

Theorem (L) For every $\omega \in \Omega_0$, The following diagram commutes:

$$\begin{array}{ccc}
\mathsf{K}_{*}(\mathsf{C}^{*}(\mathcal{G}_{\Lambda}) \, \hat{\otimes} \, \mathsf{C}\ell_{0,d}) & \xrightarrow{d^{\lambda}\Omega_{0}} & \mathsf{K}_{*-d}(\mathsf{C}(\Omega_{0})) \\
& \pi_{\omega} \otimes \mathsf{id} \downarrow & \downarrow (\mathsf{ev}_{\omega})_{*} \\
\mathsf{K}_{*}(\mathsf{C}^{*}_{\mathsf{Roe}}(\omega) \, \hat{\otimes} \, \mathsf{C}\ell_{0,d}) & \xrightarrow{\sim} & \mathbb{Z}.
\end{array}$$

Strong topological phases of the groupoid model all come from "point evaluations" at a single "limit configuration".

3. Understanding the robustness of topological phases

A first comparison in the periodic case

Let $\Lambda = \mathbb{Z}^d$, considered as a group and a discrete metric space. Then there is an injective *-homomorphism

$$C^*(\Lambda) \rightarrow C^*_{Roe}(\Lambda)$$

which induces group homomorphisms in K-theory:

$$\mathsf{K}_{i}(\mathsf{C}^{*}(\Lambda)) \to \mathsf{K}_{i}(\mathsf{C}^{*}_{\mathsf{Roe}}(\Lambda))$$

$$= \begin{cases} \mathbb{Z}^{2^{d-1}} \to \mathbb{Z} & \text{if } i-d \text{ is even;} \\ \mathbb{Z}^{2^{d-1}} \to 0 & \text{if } i-d \text{ is odd.} \end{cases}$$

Question How shall we understand these maps?

Stacked topological phases are weak

Theorem (Ewert–Meyer) If $\varphi: \mathbb{Z}^{d-1} \to \mathbb{Z}^d$ is an injective group homomorphism. Then the map

$$K_i(C^*(\mathbb{Z}^d)) \to K_i(C^*_{Roe}(\mathbb{Z}^d))$$

vanishes on the image of

$$\varphi_*: \mathsf{K}_i(\mathsf{C}^*(\mathbb{Z}^{d-1})) \to \mathsf{K}_i(\mathsf{C}^*(\mathbb{Z}^d)).$$

- The theorem says that "stacking" lower-dimensional topological phases along a direction always gives weak invariants.
- The proof of Ewert and Meyer is based on the fact that φ_* factors through the K-theory of a flasque space.
- This can be understood in a physical way.

Equivariant Roe C*-algebras

- ▶ The equavariant Roe C*-algebra $C^*_{Roe}(\mathbb{R}^d)^{\mathbb{Z}^d}$ consists of operators in $C^*(\mathbb{R}^d)$ that are equivariant for the \mathbb{Z}^d -action.
- ▶ It is isomorphic to the stablised group C*-algebra:

$$C_{\text{Roe}}^*(\mathbb{R}^d)^{\mathbb{Z}^d} \simeq C^*(\mathbb{Z}^d) \otimes \mathbb{K}(L^2[0,1) \times \cdots \times [0,1))$$
fundamental domain

▶ Let $m = (m_1, ..., m_d) \in \mathbb{N}^d$. Then

$$m\mathbb{Z}^d := m_1\mathbb{Z} \times \cdots \times m_d\mathbb{Z} \subseteq \mathbb{Z}^d$$

is a subgroup which also acts properly on \mathbb{R}^d .

 \Rightarrow forgetful / descent map $\phi_m : C^*_{Roe}(\mathbb{R}^d)^{\mathbb{Z}^d} \to C^*_{Roe}(\mathbb{R}^d)^{m\mathbb{Z}^d}$.

Question What is its induced map in K-theory?

Renormalising-invariant phases are strong

Theorem (L-Thiang)

- ▶ d = 1: the map is multiplication with m on K_0 , and identity on K_1 .
- ▶ $d \ge 1$, the map is multiplication by a number (depending on the generator itself and m), on each generator of

$$K_*(C_{\mathsf{Roe}}^*(\mathbb{R}^d)^{\mathbb{Z}^d}) \simeq K_*(C^*(\mathbb{Z}^d)) \simeq \mathbb{Z}^{2^{d-1}}.$$

- ► There is only one generator in $K_0 \oplus K_1$ for each d, that is invariant under ϕ_m (the "Bott" generator).
- In other words: there is a unique topological phase in the periodic lattice model, invariant under "lattice renormalisation".

"Symmetry-breaking" Roe C*-algebras

- We may take the direct limit over all these forgetful maps.
- The resulting C*-algebra is a C*-subalgebra of C^{*}_{Roe}(ℝ^d), which embodies both "strong" and "weak" topological phases and distinguishes them.

Definition

$$C^*_{Roe}(\mathbb{R}^d)^{\mathfrak{S}} := \underline{\lim} C^*(\mathbb{R}^d)^{m\mathbb{Z}^d}.$$

Theorem (L-Thiang)

$$K_i(C_{Roe}^*(\mathbb{R}^d)^{\mathfrak{S}}) \simeq \begin{cases} \mathbb{Q}^{2^{n-1}-1} \oplus \mathbb{Z} & \text{if } i-d \text{ is even;} \\ \mathbb{Q}^{2^{n-1}} & \text{if } i-d \text{ is odd.} \end{cases}$$

In particular, the natural map $K_*(C^*_{Roe}(\mathbb{R}^d)^{\mathfrak{S}}) \to K_*(C^*_{Roe}(\mathbb{R}^d))$ survives on the unique \mathbb{Z} -factor.