AEGIS (Application for Epidemiological Geographic Information System)

AEGIS Combat system

The shield used by the god Zeus in Greek Mythology.

OMOP-CDM

Analytics tools

- ATLAS
 - a web-based integrated platform for database exploration, standardized vocabulary browing, cohort definition, and population-level analysis
- ACHILLES
 - Profiling tool for database characterization and data quality assessment
- CaseControl, SelfControlledCaseSeries, etc.
 - R packages for traditional observational study designs
- GIS visualization tools
 - None

AEGIS development

* AEGIS : Application for Epidemiological Geographic Information System

- Tools based on OMOP-CDM
- Semi-automated medical map generation

- Database of Global Administrative Area (GADM)
 - spatial database of the location of the world's administrative areas
- Most administrative areas : level 1-3 (China has level 4 areas)

	Korea	USA	
level 1 : nation	Korea	USA	
level 2 : state	Seoul	Illinois	
level 3 : county	Gangnam-gu	Springfield	

- Database of Global Administrative Area (GADM)
 - RDS file

- Database of Global Administrative Area (GADM)
 - gadm@data : Administrative information table

OBJECTID	ID_0	ISO	NAME_0	ID_Î	NAME_1 [‡]	ID_2	NAME_2	HASC_2 [‡]	CCN_2	CCA_2	TYPE_2
1	244	USA	United States	1	Alabama	1	Autauga	US.AL.AU	NA		County
2	244	USA	United States	1	Alabama	2	Baldwin	US.AL.BD	NA		County
3	244	USA	United States	1	Alabama	3	Barbour	US.AL.BR	NA		County
4	244	USA	United States	1	Alabama	4	Bibb	US.AL.BI	NA		County
5	244	USA	United States	1	Alabama	5	Blount	US.AL.BU	NA		County
6	244	USA	United States	1	Alabama	6	Bullock	US.AL.BL	NA		County
7	244	USA	United States	1	Alabama	7	Butler	US.AL.BT	NA		County
8	244	USA	United States	1	Alabama	8	Calhoun	US.AL.CN	NA		County
9	244	USA	United States	1	Alabama	9	Chambers	US.AL.CM	NA		County
10	244	USA	United States	1	Alabama	10	Cherokee	US.AL.CH	NA		County
11	244	USA	United States	1	Alabama	11	Chilton	US.AL.CI	NA		County
12	244	USA	United States	1	Alabama	12	Choctaw	US.AL.CC	NA		County
13	244	USA	United States	1	Alabama	13	Clarke	US.AL.CK	NA		County
14	244	USA	United States	1	Alabama	14	Clay	US.AL.CY	NA		County
15	244	USA	United States	1	Alabama	15	Cleburne	US.AL.CB	NA		County
16	244	USA	United States	1	Alabama	16	Coffee	US.AL.CF	NA		County
						1					

- Database of Global Administrative Area (GADM)
 - gadm@polygons : Spatial information table (latitude/longitude)
 - Autauga County, AL, United States

```
slot "coords":
             [,1] \qquad [,2]
  [1,] -86.91668 32.66431
  [2,] -86.82678 32.66050
  [3,] -86.71295 32.66214
  [4,] -86.71416 32.70586
  [5,] -86.48744 32.70788
  [6,] -86.48526 32.70788
  [7,] -86.41278 32.70739
 [136,] -86.91207 32.61741
 [137,] -86.91051 32.63336
 [138,] -86.91822 32.64654
 [139,] -86.91496 32.64928
 [140,] -86.92099 32.65609
 [141,] -86.92046 32.65883
 [142,] -86.91668 32.66431
```


I had to create mapping table between GADM database and OMOP-CDM

CDM Location

GA	MD	Location

Location_id	Addres_1	Addres_2	•••
11000	Alabama	Autauga	•••
11100	Alabama	Baldwin	•••
11200	Alabama	Barbour	•••
11300	Alabama	Bibb	•••

NAME_1	ID_1	NAME_2	ID_2	NAME_3	ID_3	•••
USA	244	Alabama	1	Autauga	1	
USA	244	Alabama	1	Baldwin	2	
USA	244	Alabama	1	Barbour	3	
USA	244	Alabama	1	Bibb	4	

Local Arbitrary ID
Different regional classification
Mapping table

Location_id	NASVSte	ems	NAME_2	ID_2	NAME_3	ID_3
11000	USA	244	Alabama	1	Autauga	1
11100	USA	244	Alabama	1	Baldwin	2
11200	USA	244	Alabama	1	Barbour	3
11300	USA	244	Alabama	1	Bibb	4

Processing result

LEVEL 2

NAME_1	ID_1	NAME_2	ID_2	COUNT
South Korea	213	Seoul	16	538
South Korea	213	Gyeonggi-do	8	583

LEVEL 3

NAME_1	ID_1	NAME_2	ID_2	NAME_3	ID_3	COUNT
South Korea	213	Seoul	16	Gang-Seo	207	30
South Korea	213	Seoul	16	Gang-Nam	206	26
South Korea	213	Gyeonggi-do	8	Suwon	100	50
South Korea	213	Gyeonggi-do	8	Goyang	84	59

AEGIS

- Options that visualize patient distribution
 - Considers the target (denominator) cohort and the outcome (numerator) cohort
 - The observation period of the outcome cohort considers only patients within the observation period of the target cohort
 - Number of count (no. of outcome cohort)
 - 1. Distinct patient
 - 2. Total count from cohort
 - Proportion = outcome cohort / target cohort

Patients with specific statin user (Outcome cohort)

Patients with coronary or vascular disease

(Target cohort)

Target cohort

Target: Coronary vascularization (n=7,128)

Coronary vascularization

- Percutaneous transluminal coronary angioplasty
- Off-pump coronary artery bypass
- (Aorto)coronary bypass of one coronary artery
- Percutaneous transcatheter placement of intracoronary stent(s), with coronary angioplasty when performed; single major coronary artery or branch
- Insertion of intravascular stents in artery

Outcome cohort

Outcome: Rosuvastatin users (n=17,439)

Outcome cohort

Outcome: Atorvastatin users (n=84,885)

Result from AEGIS (Lv 2, Proportion)

Result from AEGIS (Lv3, Proportion)

Result from AEGIS (Lv2, count)

Atorvastatin (n=1277)

Result from AEGIS (Lv3, count)

Atorvastatin (n=1277)

AEGIS UI

AEGIS UI

• Example - US

• Administrative areas : level 1 or level 1 - 4

	Vatican City	China
level 1 : nation	Vatican City	China
level 2 : state	-	Shandong
level 3 : countie	-	Qingdao
level 4 : township	-	Huangdao

• Administrative areas : level 1 or level 1 - 4

	Vatican City	China
level 1 : nation	Vatican City	China
level 2 : state	-	Shandong
level 3 : countie	-	Qingdao
level 4 : township	-	Huangdao

Suggestion

- What we're suggesting:
 - Adopting GADM as standard vocabulary for geographical index in CDM
 - ex1) Autauga County, AL, United States (LEVEL 3)

```
nation ID level object ID Vocabulary

'244' + '03' + '0001' = '244030001'
```

ex2) Huangdao, Qingdao, Shandong, China (LEVEL 4)

```
nation ID level object ID Vocabulary

'049' + '04' + '1707' = '049041707'
```

Suggestion

- What we're suggesting:
 - Not in OMOP vocabulary table itself, but via using mapping table
 - Mapping between GADM and CDM location using FACT_RELATIONSHIP table

Future work

- Add for various plot option
- Optimization of UI
- Add functions for counting number of patients according to the care site

Thank you

