COORDINATION IN SOCIAL NETWORKS

Chun-ting Chen

November 22, 2014

MOTIVATION

- How to "solve" the problem of collective action in the presence of incomplete information?
 - Example of collective action
 - Revolution
 - · Raising fund for start-ups

MOTIVATION

- How to "solve" the problem of collective action in the presence of incomplete information?
 - Example of collective action
 - Revolution
 - · Raising fund for start-ups
 - This presentation will be in terms of Revolution.

NOVEMBER 22, 2014

BACKGROUND

- Collective action is not static
 - Protest leads revolution. (East Germany 1989-1990).
- Information is transmitted within social networks:
 - Church networks (1989 Berlin Uprising).

Dynamics of collective action on networks.

- Dynamics of collective action on networks.
- How people obtain sufficient information over time to coordinate their actions.

• Players linked in a fixed and exogenous network.

- Players linked in a fixed and exogenous network.
- Players of two types (Rebel,Inert). They can observe own/neighbor's type.

- Players linked in a fixed and exogenous network.
- Players of two types (Rebel,Inert). They can observe own/neighbor's type.
- Type-contingent action.

- Players linked in a fixed and exogenous network.
- Players of two types (Rebel,Inert). They can observe own/neighbor's type.
- Type-contingent action.
- Pay-off contingent on global type distribution.

- Players linked in a fixed and exogenous network.
- Players of two types (Rebel,Inert). They can observe own/neighbor's type.
- Type-contingent action.
- Pay-off contingent on global type distribution.
- Players choose simultaneously and repeatedly. They can observe own/neighbor's actions.

NOVEMBER 22, 2014

Look for

 An equilibrium, in which the global type distribution becomes commonly known in finite time.

Look for

 An equilibrium, in which the global type distribution becomes commonly known in finite time.

Result

Such equilibrium can be constructed under some assumptions.

• Public good provision.

- Public good provision.
 - One strand: [Chwe 2000], [Lohmann, 1993,1994], etc

- Public good provision.
 - One strand: [Chwe 2000], [Lohmann, 1993,1994], etc
 - This paper adds network-monitoring

- Public good provision.
 - One strand: [Chwe 2000], [Lohmann, 1993,1994], etc
 - This paper adds network-monitoring
- · Repeated game in networks.

- Public good provision.
 - One strand: [Chwe 2000], [Lohmann, 1993,1994], etc
 - This paper adds network-monitoring
- · Repeated game in networks.
 - This paper consider incomplete information and imperfect monitoring

Network

- Let $N = \{1, ..., n\}$ be the set of players.
- G_i is i's neighborhood, G_i is a subset of N and $i \in G_i$.
- $G = \{G_i\}_i$ is the network.

ASSUMPTION

G is fixed (not random), finite, connected, commonly known, and undirected.

Static k-threshold game [Chwe 2000]

•
$$1 \le k \le n$$

- $\theta_i \in \Theta_i = \{Rebel, Inert\}$: i's type
- $\Theta = \times_{i \in N} \Theta_i$; $\theta \in \Theta$

Static k-threshold game [Chwe 2000]

•
$$1 \le k \le n$$

•
$$\theta_i \in \Theta_i = \{Rebel, Inert\}$$
: i's type

•
$$\Theta = \times_{i \in N} \Theta_i$$
; $\theta \in \Theta$

 $\bullet \ \textit{A}_{\textit{Rebel}_i} = \{\textit{revolt}, \textit{stay}\}; \textit{A}_{\textit{Inert}_i} = \{\textit{stay}\}$

Static *k*-threshold game [Chwe 2000], **In this presentation**,

• Static game payoff for player $i: u_{\theta_i}(a_{\theta_i}, a_{-\theta_i})$

$$u_{Inert_i}(a_{Inert_i}, a_{-\theta_i})$$
 = 1 if $a_{Inert_i} = stay$

NOVEMBER 22, 2014

Static k-threshold game [Chwe 2000], In this presentation,

• Static game payoff for player $i: u_{\theta_i}(a_{\theta_i}, a_{-\theta_i})$

$$u_{Inert_i}(a_{Inert_i}, a_{-\theta_i}) = 1$$
 if $a_{Inert_i} =$ stay

$$u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 1$$
 if $a_{Rebel_i} = \text{revolt}$ and $\#\{j : a_{\theta_j} = \text{revolt}\} \ge k$

$$u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = -1$$
 if $a_{Rebel_i} = \text{revolt}$ and $\#\{j : a_{\theta_i} = \text{revolt}\} < k$

NOVEMBER 22, 2014

Static k-threshold game [Chwe 2000], In this presentation,

• Static game payoff for player $i: u_{\theta_i}(a_{\theta_i}, a_{-\theta_i})$

$$u_{Inert_i}(a_{Inert_i}, a_{- heta_i}) = 1$$
 if $a_{Inert_i} = \mathbf{stay}$
$$u_{Rebel_i}(a_{Rebel_i}, a_{- heta_i}) = 1$$
 if $a_{Rebel_i} = \mathbf{revolt}$ and $\#\{j: a_{ heta_j} = \mathbf{revolt}\} \geq k$
$$u_{Rebel_i}(a_{Rebel_i}, a_{- heta_i}) = -1$$
 if $a_{Rebel_i} = \mathbf{revolt}$ and $\#\{j: a_{ heta_j} = \mathbf{revolt}\} < k$
$$u_{Rebel_i}(a_{Rebel_i}, a_{- heta_i}) = 0$$
 if $a_{Rebel_i} = \mathbf{stay}$

Static k-threshold game [Chwe 2000], In this presentation,

• Static game payoff for player $i: u_{\theta_i}(a_{\theta_i}, a_{-\theta_i})$

$$u_{Inert_i}(a_{Inert_i}, a_{-\theta_i}) = 1$$
 if $a_{Inert_i} = \mathbf{stay}$ $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 1$ if $a_{Rebel_i} = \mathbf{revolt}$ and $\#\{j : a_{\theta_j} = \mathbf{revolt}\} \ge k$ $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = -1$ if $a_{Rebel_i} = \mathbf{revolt}$ and $\#\{j : a_{\theta_j} = \mathbf{revolt}\} < k$ $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 0$ if $a_{Rebel_i} = \mathbf{stay}$

• stay is a safe arm; revolt is a risky arm.

Static k-threshold game [Chwe 2000], In this presentation,

• Static game payoff for player $i: u_{\theta_i}(a_{\theta_i}, a_{-\theta_i})$

$$u_{Inert_i}(a_{Inert_i}, a_{- heta_i}) = 1$$
 if $a_{Inert_i} = \mathbf{stay}$
$$u_{Rebel_i}(a_{Rebel_i}, a_{- heta_i}) = 1$$
 if $a_{Rebel_i} = \mathbf{revolt}$ and $\#\{j: a_{\theta_j} = \mathbf{revolt}\} \geq k$
$$u_{Rebel_i}(a_{Rebel_i}, a_{- heta_i}) = -1$$
 if $a_{Rebel_i} = \mathbf{revolt}$ and $\#\{j: a_{\theta_j} = \mathbf{revolt}\} < k$
$$u_{Rebel_i}(a_{Rebel_i}, a_{- heta_i}) = 0$$
 if $a_{Rebel_i} = \mathbf{stay}$

- stay is a safe arm; revolt is a risky arm.
- Ex-post (Pareto) efficient outcome:
 - Inerts play stay.
 - If there are more than k Rebels, all Rebels play revolt.
 - Otherwise, all Rebels play stay.

Time line

- Time is infinite, discrete.
- Nature choose θ at 0 period according to π .
- Players play the static k-threshold game infinitely repeatedly.

ASSUMPTION

- Players know their neighbors' types.
- Players perfectly observe their neighbors' actions.
- π has full support
- Common δ .

Notations:

- [Rebels](θ) = { $j : \theta_i = Rebel$ } for all $\theta \in \Theta$.
- θ_{G_i} : *i*'s private information about the state. $(\theta_{G_i} \in \Theta_{G_i} = \prod_{i \in G_i} \Theta_i)$
- $h_{G_i}^m$: the history observed by i up to period m. ($h_{G_i}^m \in H_{G_i}^m = \prod_{s=1}^m \prod_{j \in G_i} A_{\theta_j}$)
- $h \in H = \prod_{s=1}^{\infty} \prod_{j \in N} A_{\theta_j}$: a infinite sequence of players' actions
- $\tau_i:\Theta_{G_i}\times\bigcup_1^\infty H_{G_i}^m\to A_{\theta_i}$, *i*'s strategy.
- $\tau = (\tau_1, ..., \tau_i, ..., \tau_n)$: a strategy profile
- $\beta_i^{\pi,\tau}(\theta|h_{G_i}^m)$: *i*'s belief for a θ at period m given τ .

APEX

Notations:

- h_{θ}^{τ} : a realized h generated by τ given θ .
- Call h_{θ}^{τ} a τ_{θ} -path.
- Call $\{\tau_{\theta}\}_{\theta\in\Theta}$ the τ -path

DEFINITION

The τ -path is approaching ex-post efficient (APEX) \Leftrightarrow

 $\forall \theta$, there is a finite time T^{θ}

such that the actions after T^{θ} in τ_{θ} repeats the static ex-post efficient outcome.

APEX

DEFINITION

 $h_{G_i}^m$ is reached by τ -path

 $\exists \theta$ such that $h_{G_i}^m$ is in τ_{θ} -path.

LEMMA

If the τ -path is APEX \Rightarrow

 $\forall \theta \ \forall i$, there is a finite time T_i^{θ}

such that $\sum_{\theta:\#[Rebels](\theta)\geq k} \beta_{G_i}^{\pi,\tau}(\theta|h_{G_i}^s)=1$ or =0 if $s\geq T_i^\theta$ and if $h_{G_i}^s$ reached by τ -path.

APEX

DEFINITION (APEX)

A sequential equilibrium (τ^*, β^*) is APEX $\Leftrightarrow \tau^*$ -path is APEX, and β^* is the belief system consistent with τ^* .

If pay-off is observable, an Apex Equilibrium for k = n = 3 in

At 1st period

- At 1st period
 - All Rebels choose revolt.

- At 1st period
 - All Rebels choose revolt.
- After 1st period

- At 1st period
 - All Rebels choose revolt.
- After 1st period
 - If the pay-off is observed as 1, choose revolt afterwards.

- At 1st period
 - All Rebels choose revolt.
- After 1st period
 - If the pay-off is observed as 1, choose revolt afterwards.
 - Otherwise, choose stay afterwards.

If pay-off is observable, an Apex Equilibrium for k = n = 3 in

- At 1st period
 - All Rebels choose revolt.
- After 1st period
 - If the pay-off is observed as 1, choose revolt afterwards.
 - Otherwise, choose stay afterwards.
- Any deviation ⇒

If pay-off is observable, an Apex Equilibrium for k = n = 3 in

- At 1st period
 - All Rebels choose revolt.
- After 1st period
 - If the pay-off is observed as 1, choose revolt afterwards.
 - Otherwise, choose stay afterwards.
- Any deviation ⇒
 - Choosing stay forever.

If pay-off is hidden, an Apex Equilibrium for k = n = 3 in

At 1st period

If pay-off is hidden, an Apex Equilibrium for k = n = 3 in

- At 1st period
 - Rebel 2 chooses **revolt** if he observes $\theta = (Rebel, Rebel, Rebel)$; Otherwise, chooses **stay** forever.

NOVEMBER 22, 2014

- At 1st period
 - Rebel 2 chooses **revolt** if he observes $\theta = (Rebel, Rebel, Rebel)$; Otherwise, chooses **stay** forever.
 - Rebel 1 (or Rebel 3) choose stay.

If pay-off is hidden, an Apex Equilibrium for k = n = 3 in

- At 1st period
 - Rebel 2 chooses **revolt** if he observes $\theta = (Rebel, Rebel, Rebel)$; Otherwise, chooses **stay** forever.
 - Rebel 1 (or Rebel 3) choose stay.
- After 1st period

NOVEMBER 22, 2014

If pay-off is hidden, an Apex Equilibrium for k = n = 3 in

- At 1st period
 - Rebel 2 chooses **revolt** if he observes $\theta = (Rebel, Rebel, Rebel)$; Otherwise, chooses **stay** forever.
 - Rebel 1 (or Rebel 3) choose stay.
- After 1st period
 - If Rebel 2 chooses revolt in the last period, then Rebel 1 (or Rebel 3) chooses revolt forever;

NOVEMBER 22, 2014

- At 1st period
 - Rebel 2 chooses **revolt** if he observes $\theta = (Rebel, Rebel, Rebel)$; Otherwise, chooses **stay** forever.
 - Rebel 1 (or Rebel 3) choose stay.
- After 1st period
 - If Rebel 2 chooses revolt in the last period, then Rebel 1 (or Rebel 3) chooses revolt forever;
 - If Rebel 2 chooses stay in the last period, then Rebel 1 (or Rebel 3) chooses stay forever.

- At 1st period
 - Rebel 2 chooses **revolt** if he observes $\theta = (Rebel, Rebel, Rebel)$; Otherwise, chooses **stay** forever.
 - Rebel 1 (or Rebel 3) choose stay.
- After 1st period
 - If Rebel 2 chooses revolt in the last period, then Rebel 1 (or Rebel 3) chooses revolt forever;
 - If Rebel 2 chooses stay in the last period, then Rebel 1 (or Rebel 3) chooses stay forever.
- Any deviation ⇒

- At 1st period
 - Rebel 2 chooses **revolt** if he observes $\theta = (Rebel, Rebel, Rebel)$; Otherwise, chooses **stay** forever.
 - Rebel 1 (or Rebel 3) choose stay.
- After 1st period
 - If Rebel 2 chooses revolt in the last period, then Rebel 1 (or Rebel 3) chooses revolt forever;
 - If Rebel 2 chooses stay in the last period, then Rebel 1 (or Rebel 3) chooses stay forever.
- Any deviation ⇒
 - Choosing stay forever.

GOAL

Goal

Can we generalize the above result?

ASSUMPTION

Payoff is hidden (or noisy).

RESULTS

Results

- k = n: we can.
- k < n: with additional assumptions,
 - · acyclic networks: we can .
 - all networks: open question.

k = n: RESULT

THEOREM (k = n)

In any network, if the prior has full support, then for repeated k = n Threshold game, there is a δ such that a sequential equilibrium which is APEX exists.

Proof:

- Some Inerts neighbors ⇒ play stay forever.
- No Inert neighbor ⇒ play revolt until stay is observed, and then play stay forever.
- Any deviation ⇒ play stay forever.
- There is a finite time T^{θ} such that ex-post efficient outcome repeats afterwards.

k = n: RESULT

Comments for k = n:

- stay means "some Inerts are out there."
- revolt means "some Inerts may not be there."
- Any deviation ⇒ punished by shifting to stay forever by single player
 - Group punishment is not necessary.

k < n: Result and Conjecture

Since a Inert always play stay, define

DEFINITION

Strong connectedness⇔ for every pair of Rebels, there is a path consisting of Rebels to connect them.

DEFINITION

Full support on strong connectedness⇔

 $\pi(\theta) > 0$ if and only if θ has strong connectedness.

to not reduce the game to incomp. info. game without communication.

NOVEMBER 22 2014

k < n: Result and Conjecture

Theorem $(k \le n)$

In any acyclic network, if π has full support on strong connectedness, then for repeated $1 \le k \le n$ Threshold game, there is a δ such that a weak sequential equilibrium which is APEX exists.

Conjecture $(k \le n)$

In any cyclic network, ...[same as above]...

k < n: Equilibrium Construction

OUTLINE

Outline

- Communication by actions
- Communication in the equilibrium
 - Communication protocol
 - Reporting and coordination messages in the protocol
 - Information hierarchy in communication
 - In-the-path belief updating
 - Off-path belief
 - Sketch of proof

COMMUNICATION BY ACTIONS

COMMUNICATION BY BINARY ACTIONS

• Indexing each node i as a distinct prime number x_i . For instance,

COMMUNICATION BY ACTIONS

COMMUNICATION BY BINARY ACTIONS

• Indexing each node i as a distinct prime number x_i . For instance,

Then, If

Rebel 3 report $x_1 \times x_7 \times x_3$ to Rebel 1 by sending a finite sequence

stay, ..., stay,
$$\underbrace{\text{revolt}, \text{stay}, ..., \text{stay}}_{x_1 \times x_7 \times x_3}$$

COMMUNICATION PHASES

Two phases, RP and CD, alternate in time horizontal line

$$\underbrace{\langle \text{coordination period} \rangle}_{0-\textit{block}} \underbrace{\langle \text{reporting period} \rangle \langle \text{coordination period} \rangle}_{1-\textit{block}} \dots$$

- Reporting period (RP): talking about θ
 - Cheap talking: θ will be revealed.

COMMUNICATION PHASES

Two phases, RP and CD, alternate in time horizontal line

$$\underbrace{\langle \text{coordination period} \rangle}_{0-\textit{block}} \underbrace{\langle \text{reporting period} \rangle \langle \text{coordination period} \rangle}_{1-\textit{block}} \dots$$

- Reporting period (RP): talking about θ
 - Cheap talking: θ will be revealed.
- Why do I need coordination period (CD) ?

COORDINATION PERIOD

Why do I need coordination period?

- Ans: Since higher-order belief is hard to track.
 - APEX: to find T^{θ} for all θ .
 - When is T^{θ} ?.

COORDINATION PERIOD

Why do I need coordination period?

- Ans: Since higher-order belief is hard to track.
 - APEX: to find T^{θ} for all θ .
 - When is T^{θ} ?.
- Sol: Let CD be long enough

$$\begin{array}{c}
RP & CD \\
\hline
\langle ... \rangle & \langle \langle \cdot \rangle \langle \cdot \rangle ... \langle \cdot \rangle \rangle
\end{array}$$

COORDINATION PERIOD

Why do I need coordination period?

- Ans: Since higher-order belief is hard to track.
 - APEX: to find T^{θ} for all θ .
 - When is T^{θ} ?.
- Sol: Let CD be long enough

$$\begin{array}{c}
RP & CD \\
\hline
\langle ... \rangle & \langle \langle \cdot \rangle \langle \cdot \rangle ... \langle \cdot \rangle \rangle
\end{array}$$

• If a Rebel i knows relevant info,

COORDINATION PERIOD

Why do I need coordination period?

- Ans: Since higher-order belief is hard to track.
 - APEX: to find T^{θ} for all θ .
 - When is T^{θ} ?.
- Sol: Let CD be long enough

$$\overbrace{\langle \ldots \rangle}^{RP} \overbrace{\langle \langle \cdot \rangle \langle \cdot \rangle \ldots \langle \cdot \rangle \rangle}^{CD}$$

• If a Rebel *i* knows relevant info, \Rightarrow *i* sends msg to inform G_i

COORDINATION PERIOD

Why do I need coordination period?

- Ans: Since higher-order belief is hard to track.
 - APEX: to find T^{θ} for all θ .
 - When is T^{θ} ?.
- Sol: Let CD be long enough

$$\overbrace{\langle \ldots \rangle}^{RP} \overbrace{\langle \langle \cdot \rangle \langle \cdot \rangle \ldots \langle \cdot \rangle \rangle}^{CD}$$

• If a Rebel i knows relevant info, $\Rightarrow i$ sends msg to inform $G_i \Rightarrow j \in G_i$ sends msg. to inform $G_j \Rightarrow ...$ all Rebels are informed

In coordination period,

- At least "three" messages to coordinate Rebels
 - to revolt
 - to stay
 - to continue to next block
- Create these distinguishable messages by binary actions

• CD^t: the CD in t-block

• $CD_{p,q}^t$: the p sub-block in q division.

• CD^t: the CD in t-block

- $CD_{p,q}^t$: the p sub-block in q division.
- $\langle CD_{p,q}^t \rangle$: the messages in $CD_{p,q}^t$ are distinguishable

$$\langle stay \rangle$$
 $s, ..., s, s, s, ..., s$
 $\langle x_i \rangle$ $s, ..., s, \underbrace{r, s, ..., s}_{x_i}$

• CD^t: the CD in t-block

- $CD_{p,q}^t$: the p sub-block in q division.
- $\langle CD_{p,q}^t \rangle$: the messages in $CD_{p,q}^t$ are distinguishable

$$\langle stay \rangle$$
 $s, ..., s, s, s, ..., s$
 $\langle x_i \rangle$ $s, ..., s, \underbrace{r, s, ..., s}_{x_i}$

- 1st division: sending message to stay; otherwise continue
- 2nd division: sending message to revolt; otherwise continue

1st division in CD

Message to stay:

• Whenever a Rebel *i* knows $\#[Rebels](\theta) < k$, he plays **stay** afterward.

Message to stay:

• Whenever a Rebel *i* knows $\#[Rebels](\theta) < k$, he plays **stay** afterward.

• ... then nearby Rebel j plays stay afterward

1st division in CD

Otherwise

•

• Message to **revolt**: Whenever a Rebel *i* know $\#[Rebels](\theta) \ge k$, he play

in the first sub-block.

· Otherwise,

NOVEMBER 22, 2014

2ND DIVISION IN CD

• Message to **revolt**:... then nearby Rebel j play $\langle x_i \rangle$ to inform nearby Rebels, etc

• Otherwise,

After coordination period,

- Either stopping or continuing communication
 - Stopping: if relevant info. is revealed ⇒ messages will be sent ⇒ all Rebels play the ex-post eff. outcome afterward.
 - Ontinuing: otherwise, go to the next block.

OBSERVATION

Either stopping or continuing belief updating.

COORDINATION PERIOD AND MESSAGES

After coordination period,

- Either stopping or continuing communication
 - Stopping: if relevant info. is revealed ⇒ messages will be sent ⇒ all Rebels play the ex-post eff. outcome afterward.
 - Continuing: otherwise, go to the next block.

OBSERVATION

Either stopping or continuing belief updating.

• "a grim-trigger" (protocol-grim-trigger)

COORDINATION PERIOD AND MESSAGES

LEMMA

Before a Rebel knows $\#[Rebels](\theta) < k$ or $\#[Rebels](\theta) \ge k$, he will not send **Message to stay** or **Message to revolt** if δ is high enough.

• If he send, then information updating stops (a grim-trigger).

COORDINATION PERIOD AND MESSAGES

LEMMA

Before a Rebel knows $\#[Rebels](\theta) < k$ or $\#[Rebels](\theta) \ge k$, he will not send **Message to stay** or **Message to revolt** if δ is high enough.

- If he send, then information updating stops (a grim-trigger).
- If he does not send, he can learn the relevant information.

- No expected cost to send Message to stay or Message to revolt
- The player who knows the relevant info. is willing to send messages.

NOVEMBER 22, 2014

- No expected cost to send Message to stay or Message to revolt
- The player who knows the relevant info. is willing to send messages.

- However, sending message to reveal information in RP is costly.
- A free rider problem in PR may occur.

- 0 k = 5
- Only one block (RP and then CD).
- No expected cost in CD.

- 0 k = 5
- Only one block (RP and then CD).
- No expected cost in CD.
- Free riders:

- 0 k = 5
- Only one block (RP and then CD).
- No expected cost in CD.
- Free riders:

Why? By backward induction,

- No expected cost to send Message to stay or Message to revolt in CD.
- If RB₅ report truthfully, RB₄ can wait for that.
- If RB_4 report truthfully, RB_5 can wait for that.

REPORTING PERIOD AND MESSAGES

• RP^t : the reporting period at t block

REPORTING PERIOD AND MESSAGES

• RP^t: the reporting period at t block

$$\overrightarrow{\langle\langle\langle\cdot\rangle\rangle\rangle}$$

• $\langle RP^t \rangle$: the reporting message

Burning moneys	$\neg \langle \text{stay} \rangle$	$\boldsymbol{s},,\boldsymbol{s},\boldsymbol{r},\boldsymbol{s},,\boldsymbol{s}$
Not burning money	$\langle {\sf stay} \rangle$	s,, s, s, s,, s

REPORTING PERIOD AND MESSAGES

• RPt: the reporting period at t block

$$RP^t$$
 $\langle\langle\langle\cdot\rangle\rangle\rangle$

• $\langle RP^t \rangle$: the reporting message

Burning moneys	$\neg \langle \text{stay} \rangle$	$\boldsymbol{s},,\boldsymbol{s},\boldsymbol{r},\boldsymbol{s},,\boldsymbol{s}$
Not burning money	⟨stay⟩	s,, s, s, s,, s

- Burning moneys+message to revolt:
 - coordination to revolt
- Otherwise,
 - no coordination

How much money should a Rebel burn?

• Information Hierarchy characterize that.

Information Hierarchy

• Characterizing Rebels' incentives in money burning. Lother reason

Ex: k = 4,

Information Hierarchy

• Characterizing Rebels' incentives in money burning. Pother reason

Ex: k = 4,

• Rebel 1 has less incentive: Rebel 1's information can be reported by Rebel 2.

Information Hierarchy

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

• At **0**-block, let $\mathbb{R}^0 = \{2, 3, 4, 5, 6\}$

Information Hierarchy

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

$$0 - 1 - RB_2 \cdot \frac{RB_3}{RB_4} \cdot \frac{RB_5}{RB_5} \cdot RB_6 - 7$$

- **1** At 0-block, let $\mathbb{R}^0 = \{2, 3, 4, 5, 6\}$
- ② At 1-block, let $\mathbb{R}^0 = \{ 3, 4, 5 \}$

Information Hierarchy

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

$$0 - 1 - RB_2 \cdot \frac{RB_3}{RB_4} \cdot \frac{RB_5}{RB_5} \cdot RB_6 - 7$$

$$0 - 1 - RB_2 \cdot RB_3 \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

- **1** At 0-block, let $\mathbb{R}^0 = \{2, 3, 4, 5, 6\}$
- ② At 1-block, let $\mathbb{R}^0 = \{ 3, 4, 5 \}$
- **3** At 2-block, let $R^0 = \{$ 4

Theorem

Given θ , if

- the network is acyclic
- the state has strong connectedness
- $\Rightarrow \exists t^{\theta} \text{ and } \exists i \in R^{t^{\theta}} \text{ such that } I_i^{t^{\theta}} \supset [Rebels](\theta).$

Thus, ideally, APEX can be attained by

At t block

THEOREM

Given θ , if

- the network is acyclic
- the state has strong connectedness
- $\Rightarrow \exists t^{\theta} \text{ and } \exists i \in R^{t^{\theta}} \text{ such that } l_i^{t^{\theta}} \supset [Rebels](\theta).$

Thus, ideally, APEX can be attained by

At t block

However, "Pivotal Rebels" will deviate.

PIVOTAL PLAYERS

DEFINITION (PIVOTAL PLAYER IN RP^t)

 $i \in R^t$ and i will know relevant info **before** I_i^{t-1} is reported **given** others' truthful reporting.

PIVOTAL PLAYERS

Ex. k = 5.

- Rebel 4 and Rebel 5 are pivotal (Free Rider problem)
- They will manipulate their reporting to save costs.
 - By reporting some other number.

▶ Go to discussion

PIVOTAL PLAYERS

Ex.
$$k = 6$$
,

- Rebel 4 is pivotal (given Rebel 5's reporting)
- He will manipulate his reporting to save costs.
 - By reporting some other number.

STEP 1.

DEFINITION (FREE RIDER IN RP^t)

- o i is pivotal in RPt
- **a** *i* will know $\#[Rebels](\theta)$ before I_i^{t-1} is reported.

DEFINITION (FREE RIDER PROBLEM IN RP^t)

There are more than 2 free riders in RP^t .

STEP 1.

LEMMA

If networks are acyclic, then

- there is a unique PRt where Free Rider Problem may occur.
- there are only two free riders i, j are involved. Moreover $i \in G_i$.
- Moreover, before PR^t and after CD^{t-1} , i, j both know that they will be involved

Thus, before RP^t and after CD^{t-1} , pick one of them as a free rider.

STEP 2.

			$\prod_{\substack{j \in I_i^{t-1} \\ x_j}}$
Non-pivotal R ^t Rebels	play	$\langle I_i^{t-1} \rangle$	$s,, s, \widetilde{r, s}, \widetilde{, s}$
Pivotal R ^t Rebels	may play	(1)	$\boldsymbol{s},,\boldsymbol{s},\boldsymbol{s},\boldsymbol{s},,\boldsymbol{r}$
non-R ^t Rebels	play	$\langle {\sf stay} \rangle$	s,, s, s, s,, s

I.e. Add $\langle 1 \rangle$ into the equilibrium path.

STEP 3.

In the equilibrium path,

LEMMA

If networks are acyclic,

i is pivotal but i is not free rider

 \Rightarrow

i knows that $\#[Rebels](\theta) \ge k-1$

LEMMA

If networks are acyclic,

i play
$$\langle 1 \rangle$$

 \Leftrightarrow

i knows that $\#[Rebels](\theta) \ge k-1$

STEP 3.

Consequently, if *i* play $\langle 1 \rangle$ in the path

	i plays	is <i>i</i> a free rider?	$j \in G_i$ plays	i knows
•	⟨1⟩	yes	$\langle \cdot \rangle$	$\#[Rebels](\theta) \ge k$

STEP 3.

Consequently, if i play $\langle 1 \rangle$ in the path

i plays	is <i>i</i> a free rider?	$j \in G_i$ plays	i knows
$\langle 1 \rangle$	yes	$\langle \cdot \rangle$	$\#[Rebels](\theta) \ge k$
$\langle 1 \rangle$	no	$\langle 1 \rangle$	$\#[\textit{Rebels}](heta) \geq k$

STEP 3.

Consequently, if *i* play $\langle 1 \rangle$ in the path

<i>i</i> plays	is <i>i</i> a free rider?	$j \in G_i$ plays	i knows
(1)	yes	$\langle \cdot \rangle$	$\#[Rebels](\theta) \ge k$
$\langle 1 \rangle$	no	⟨1⟩	$\#[\textit{Rebels}](heta) \geq k$
(1)	no	$\langle {\sf stay} \rangle$	#[Rebels](heta) < k

 \Rightarrow *i* can tell the relevant info. after RP^t .

Consequently, pivotal *i* has to play message to revolt or message to revolt

TABLE : Equilibrium path if i played $\langle 1 \rangle$

In <i>RP</i> ^t	In $CD_{1,1}^t$	In $CD_{1,2}^t$	After CD ^t
i plays	<i>i</i> plays	i plays	
<u> </u>	⟨stay⟩	⟨stay⟩	stay
$\langle 1 \rangle$	$\langle \mathbf{x}_i \rangle$	$\langle stay \rangle$	revolt

BELIEF UPDATING IN EQUILIBRIUM PATH

Table : Belief updating after CD^t , t>0

In RP ^t	In $CD_{1,1}^t$	In $CD_{1,2}^t$	
i plays	<i>i</i> plays	<i>i</i> plays	The events $j \in G_i$ believes with probability one
$\langle I_i^{t-1} \rangle$	$\langle {\sf stay} \rangle$	$\langle {\sf stay} \rangle$	#[Rebels](heta) < k
$\langle I_i^{t-1} \rangle$	$\langle \mathbf{x}_i angle$	$\langle {\sf stay} \rangle$	$\#[\textit{Rebels}](heta) \geq k$
$\langle 1 \rangle$	$\langle \text{stay} \rangle$	$\langle {\sf stay} \rangle$	$\#[\textit{Rebels}](\theta) < k$
$\langle 1 \rangle$	$\langle \mathbf{x}_i angle$	$\langle {\sf stay} \rangle$	$\#[\textit{Rebels}](\theta) \geq k$

BELIEF UPDATING IN EQUILIBRIUM PATH

TABLE: Belief updating after CD^t , t > 0

In RP ^t	In $CD_{1,1}^t$	In $CD_{1,2}^t$	
i plays	i plays	i plays	The events $j \in G_i$ believes with probability one
⟨stay⟩	$\langle \mathbf{x}_i \rangle$	⟨stay⟩	$i \notin R^t$
$\langle I_i^{t-1} \rangle$	$\langle \mathbf{x}_i angle$	$\langle \mathbf{x}_i angle$	$i \in R^t$

BELIEF UPDATING IN EQUILIBRIUM PATH

TABLE : Belief updating after CD^t , t > 0

In RP ^t	In $CD_{1,1}^t$	In $CD_{1,2}^t$	
i plays	<i>i</i> plays	<i>i</i> plays	The events $j \in G_i$ believes with probability one
√stay⟩	$\langle \mathbf{x}_i \rangle$	⟨stay⟩	$i otin R^t$
$\langle I_i^{t-1} \rangle$	$\langle {\it stay} \rangle$	$\langle {\sf stay} \rangle$	#[Rebels](heta) < k
$\langle I_i^{t-1} \rangle$	$\langle \mathbf{x}_i angle$	$\langle {\sf stay} \rangle$	$\#[\textit{Rebels}](heta) \geq k$
$\langle I_i^{t-1} \rangle$	$\langle \mathbf{x}_i angle$	$\langle \mathbf{x}_i angle$	$i \in R^t$
$\langle 1 \rangle$	$\langle {\it stay} \rangle$	$\langle {\sf stay} \rangle$	#[Rebels](heta) < k
$\langle 1 \rangle$	$\langle \mathbf{x}_i angle$	$\langle {\sf stay} \rangle$	$\#[\textit{Rebels}](\theta) \geq k$

OFF-PATH BELIEF

OFF-PATH BELIEF

Whenever i detects a deviation, he believes that

for all
$$j \notin G_i$$
, $\theta_j \neq Rebel$

• If he has less than k Rebel-neighbors, he will play **stay** forever.

OFF-PATH BELIEF

OFF-PATH BELIEF

Whenever i detects a deviation, he believes that

for all
$$j \notin G_i$$
, $\theta_j \neq Rebel$

- If he has less than k Rebel-neighbors, he will play **stay** forever.
- This off-path belief then also serve as another "grim trigger" (belief-grim-trigger).

SKETCH OF PROOF

- The equilibrium path is APEX.
- APEX outcome gives maximum ex-post continuation pay-off after some T.
- Undetectable deviation ⇒ protocol-grim-trigger. Protocol-grim-trigger
- Any deviation will let APEX fail in a positive probability.
- **o** Sufficiently high δ will impede deviation.

DISCUSSION

CYCLIC NETWORK

- From the above steps, an APEX equilibrium for **acyclic** networks is constructed.
 - At most 2 free riders will occur. Pexample
- Solving Pivotal-player problem for cyclic networks need more elaboration.
 - More than 3 free riders will occur.

- payoff is perfectly observed
 - Play revolt in the first period, then the relevant information revealed.
- payoff is noisy
 - With full support assumption, the existing equilibrium is APEX.
 - Ex.

$$p_{1s} = \Pr(y = y_1 | \# \text{revolt} \ge k)$$

$$p_{1f} = \Pr(y = y_1 | \# \text{revolt} < k)$$

$$p_{2s} = \Pr(y = y_2 | \# \text{revolt} \ge k)$$

$$p_{2f} = \Pr(y = y_2 | \# \text{revolt} < k)$$

$$1 > p_{1s} > 0, 1 > p_{2s} > 0, p_{1f} = 1 - p_{1s}, p_{2f} = 1 - p_{2s}$$
 (1)

FURTHER WORKS

- Cyclic networks.
- **a** A general model in which players can communicate only by their actions to learn the relevant information in finite time when $\delta < 1$, while the communication protocol itself is an equilibrium.
- Equilibrium selection.

APPENDIX-ALT. MODEL

OR, Static *k*-threshold game [Chwe 2000]

• Static game payoff for player i: $u_{\theta_i}(a_{\theta_i}, a_{-\theta_i})$

$$u_{Inert_i}(a_{Inert_i}, a_{-\theta_i}) = 1$$
 if $a_{Inert_i} =$ stay

$$u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 1$$
 if $a_{Rebel_i} = \mathbf{revolt}$ and $\#\{j : a_{\theta_j} = \mathbf{revolt}\} \ge k$

$$u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = -1$$
 if $a_{Rebel_i} = \mathbf{revolt}$ and $\#\{j : a_{\theta_j} = \mathbf{revolt}\} < k$

$$u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 1$$
 if $a_{Rebel_i} =$ stay and $\#\{j : a_{\theta_j} =$ revolt $\} \ge k$

$$u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 0$$
 if $a_{Rebel_i} =$ stay and $\#\{j : a_{\theta_j} =$ revolt $\} < k$

APPENDIX-GOAL OF INFORMATION HIERARCHY

Main goal of Information Hierarchy

Easing the punishment scheme when monitoring is imperfect.

Ex: k = 4,

- Rebel 1 can only be monitored by Rebel 2.
- Suppose Rebel 2,3,4,5 can coordinate at period T and play revolt forever.
- ullet If Rebel 1 did not burn money at period T-1, Rebel 2 has no incentive to punish him.

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

At 1-block, first let

$$G_i^0 \equiv G_i$$

 $I_i^0 \equiv G_i \cap R^0$

For instance,

$$I_2^0 = \{2,3\}$$
 $G_2^0 = \{1,2,3\}$

$$I_3^0 = \{2,3,4\} \quad G_3^0 = \{2,3,4\}$$

$$0 - 1 - RB_2 \cdot RB_3 \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

Then define

$$\leq^0$$

by

$$i \in \leq^0 \Leftrightarrow \exists j \in \bar{G}_i (I_i^0 \subseteq G_j^0 \cap R^0)$$

• For instance,

$$2\in\leq^0,3\notin\leq^0$$

Since

$$\textit{I}_{2}^{0} = \{2,3\} \qquad \textit{G}_{2}^{0} \cap \textit{R}^{0} = \{2,3\}$$

$$\textit{I}_{3}^{0} = \{2,3,4\} \hspace{0.5cm} \textit{G}_{3}^{0} \cap \textit{R}^{0} = \{2,3,4\}$$

$$0 - 1 - RB_2 \cdot RB_3 \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

At 1-block, let

$$R^1 \equiv \{i \in R^0 | i \notin \leq^0 \} = \{ 3, 4, 5 \}$$

$$0 - 1 - RB_2 \cdot RB_3 \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

At 2-block, let

$$egin{array}{lll} G_i^1 & \equiv & igcup_{k \in I_i^0} G_k \ & & & & igcup_{k \in G_i \cap R^1} I_k^0 \end{array}$$

For instance,

$$I_3^1 = \{2, 3, 4, 5\}$$
 $G_3^1 = \{1, 2, 3, 4, 5\}$

$$0 - 1 - RB_2 \cdot \frac{RB_3}{RB_3} \cdot \frac{RB_4}{RB_4} \cdot \frac{RB_5}{RB_5} \cdot RB_6 - 7$$

Then define

$$\leq^1$$

by

$$i \in \leq^1 \Leftrightarrow \exists j \in \bar{G}_i (I_i^1 \subseteq G_j^1 \cap R^0)$$

• For instance,

$$3\in\leq^1, 4\notin\leq^0$$

Since

$$I_3^1 = \{2, 3, 4, 5\}$$
 $G_3^1 \cap R^0 = \{2, 3, 4, 5\}$
 $I_4^1 = \{2, 3, 4, 5, 6\}$ $G_4^1 \cap R^0 = \{2, 3, 4, 5, 6\}$

$$0 - 1 - RB_2 \cdot RB_3 \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

At 2-block, let

$$\mathbf{R}^2 \equiv \{i \in \mathbf{R}^1 | i \notin \leq^1\} = \{ 4 \}$$

▶ Go back to IH

APPENDIX-≥ 3 FREE RIDERS

More than 3 free riders will occur at a block in cyclic network.

We may pick one of free riders.

▶ Go to discussion

APPENDIX-≥ 3 FREE RIDERS

More than 3 free riders will occur at a block in cyclic network.

We may pick one of free riders. How to pick?

Go to discussion