UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL CMP 196 - ONTOLOGY ENGINEERING MATHEUS VINÍCIUS TODESCATO

Modelagem do Domínio

Description of the Domain

Since graduation I have been working with research in the Machine Learning area, so I think it will be interesting to develop an ontology in this domain. Machine Learning is a sub-area of artificial intelligence that deals with an automatic process of searching for better representations of data. Unlike symbolic AI, which is based on rules, Machine Learning works with analytical engineering, performing training with data. This data may or may not be labeled, which can change the type of approach used for learning. Data analysis can be Statistical or Predictive which also changes the approach. Machine Learning can be divided into Unsupervised Learning (unlabeled data and statistical analysis), Supervised Learning (labeled data and predictive analysis) and Reinforcement Learning (works with feedback). For certain researchers, another category also exists, being Semi-Supervised Learning (or Active Learning) where we have labeled and unlabeled data together and a Supervised and with Reinforcement operation at the same time (that's why some researchers prefer to have this category within Reinforcement Learning). Algorithms need to be evaluated with metrics such as Recall, Precision, Accuracy. The main processes are training and testing. The training is for the model learn the rules of the data, while the test is for using these rules by predicting data that has not been seen before.

Modeling

UFO (initial modeling), GUFO (for protege) and OSA (Duarte, Bruno Borlini, et al. "Ontological foundations for software requirements with a focus on requirements at runtime." *Applied Ontology* 13.2 (2018): 73-105.)

Conceito	Supre identida de (O)	Carreg a identida de (I)	Rigidez (R)	Depend ência relacional (DR)	Dependência Existencial (DE1)	Meta-tipo
Machine Learning Algorithm	+	-	+	-	-	Category
Code	+	-	+	-	-	Category
TrainedModel					+	Mode Universal
Supervised Learning	+	+	+	-	-	Kind

Unsupervised Learning	+	+	+	-	-	Kind
Reinforcement Learning	+	+	+	-	-	Kind
Dataset	+	+	+	-	-	Collective
Data	+	+	+	-	-	Kind
Labeled Data	+	+	+	-	-	SubKind
Unlabeled Data	+	+	+	-	-	SubKind
Training					+	Event
Learning					+	Event
Testing					+	Event
Classification					+	Disposition
Regression					+	Disposition
Clustering					+	Disposition
Dimensionality Reduction					+	Disposition
Active Learning	+	+	+	-	-	SubKind
Passive Learning	+	+	+	-	-	SubKind
Algorithm	+	-	+	-	-	Category
Precision					+	Quality
Recall					+	Quality
Accuracy					+	Quality
Support Vector Machine (all other types of algorithms)		+	+	_	_	Instance (Particular)

Relações:

SVM(and all other types of algorithms) Instance-of Algorithm
Data Member-of Dataset
Labeled Data Subclass-of Data
Unlabeled Data Subclass-of Data
Dataset Member-of Machine Learning Algorithm
Active Learning Component-of Reinforcement Learning
Passive Learning Component-of Reinforcement Learning
Supervised Learning SubClass-of Machine Learning
Unsupervised Learning SubClass-of Machine Learning
Reinforcement Learning SubClass-of Machine Learning
Classification Type-of Supervised Learning

Regression Type-of Supervised Learning

Clustering Type-of Unsupervised Learning

Dimensionality Reduction Type-of Unsupervised Learning

Quality domains:

Precision: 0% a 100%

Recall: 0% a 100%

Accuracy: 0% a 100%

Conceitual - UML: OSA:

ML ontology:

Ocorrent Modeling (BFO):

Learning

Occurrent Parts: Training, Testing

Participants of Training: Algorithm, Data. Output of Training: TrainedModel. Algorithm bearer-of LearningCapability Data especializes InformationPattern

Participants of Testing: Trained Model, Unlabeled Data.

Output of Testing: Labeled Data. Trained Model bearer-of Predictivity

Definition of Entities:

Conceito	Definição Semi-formal	Fonte	Exemplos	GUFO
OSA: Code	A sequence of machine instructions	Duarte, Bruno Borlini, et al. "Ontological foundations for software requirements with a focus on requirements at runtime." <i>Applied Ontology</i> 13.2 (2018): 73-105.	Code in Python	Object
OSA: Program Specification	A portion of Code can implement a Program Specification, which, in turn, may intend to satisfy a System Specification	Duarte, Bruno Borlini, et al. "Ontological foundations for software requirements with a focus on requirements at runtime." <i>Applied Ontology</i> 13.2 (2018): 73-105.	Algorithm	Object
OSA: Software Function	Directly related to what a system needs to do, i.e., to the functionalities it needs to provide for its users	Duarte, Bruno Borlini, et al. "Ontological foundations for software requirements with a focus on requirements at runtime." <i>Applied Ontology</i> 13.2 (2018): 73-105.	Classification of flowers	Object
Machine Learning Algorithm	Machine learning is a sub-field of computer science that aims to make computers learn	Duarte, Denio, and Niclas Ståhl. "Machine learning: a concise overview." <i>Data</i> <i>Science in Practice</i> (2019): 27-58.	SVM, Decision Tree	Object
Supervised Learning	Supervised learning can be applied when the dataset contains a set of labels (possibly unitary) for every example.	Niclas Ståhl. "Machine		Object

Unsupervised Learning	When the dataset has no labels, that is, there is no previous classification of the examples, we apply an unsupervised learning algorithm. The goal is to infer classes or groups from the dataset without the help of the labels.	(2019): 27-58.		Object
Reinforcement Learning	Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning. Reinforcement learning differs from supervised learning in not needing labelled input/output pairs be presented, and in not needing sub-optimal actions to be explicitly corrected. Instead the focus is on finding a balance between exploration (of uncharted territory) and exploitation (of current knowledge).	Michael L. Littman, and Andrew W. Moore. "Reinforcement learning: A survey." Journal of artificial intelligence research 4 (1996): 237-285.		Object
Dataset	Is a collection of data. Data sets can also consist of a collection of documents or files.	Snijders, Chris, Uwe Matzat, and Ulf-Dietrich Reips. "" Big Data": big gaps of knowledge in the field of internet science."	Dataset about COVID-19	FixedCollection

		internet science 7.1 (2012): 1-5.		
Data	Data are individual facts, statistics, or items of information, often numeric.	Stern, Roger, Ian Dale, and Sandro Leidi. "Glossary of statistical terms." <i>Google Scholar</i> (2000).	A tuple in a dataset	Object
Labeled Data	labels associated with every data	Duarte, Denio, and Niclas Ståhl. "Machine learning: a concise overview." <i>Data</i> <i>Science in Practice</i> (2019): 27-58.		Object
Unlabeled Data	Data without label	Duarte, Denio, and Niclas Ståhl. "Machine learning: a concise overview." <i>Data</i> <i>Science in Practice</i> (2019): 27-58.		Object
Active Learning	Active learning is a special case of machine learning in which a learning algorithm can interactively query a user (or some other information source) to label new data points with the desired outputs	survey." (2009).		Object
Passive Learning	Learning to act from observational data without active environmental interaction	Ostrovski, Georg, Pablo Samuel Castro, and Will Dabney. "The Difficulty of Passive Learning in Deep Reinforcement Learning." Advances in Neural Information Processing Systems 34 (2021).		Object
Algorithm	Is a finite sequence of well-defined instructions, typically used to solve a class of specific problems or to perform a computation	O/	Algorithm of binary search	Object

	1		, , , , , , , , , , , , , , , , , , , 	
Classification	Classification is similar to a regression; the only difference is the labels that are discrete values	Duarte, Denio, and Niclas Ståhl. "Machine learning: a concise overview." <i>Data</i> <i>Science in Practice</i> (2019): 27-58.	Class of flowers prediction	Object
Clustering	Clustering is about discovering semantically related groups in an unlabeled dataset.	Duarte, Denio, and Niclas Ståhl. "Machine learning: a concise overview." <i>Data</i> <i>Science in Practice</i> (2019): 27-58.	Topics of news prediction	Object
Dimensionality Reduction	Dimensionality reduction plays an essential role in machine learning. Its goal is to decrease the number of features of a dataset.	Duarte, Denio, and Niclas Ståhl. "Machine learning: a concise overview." <i>Data</i> <i>Science in Practice</i> (2019): 27-58.	Features reduction in a dataset	Object
Regression	Regression is a type of supervised machine learning algorithm whose target variables are continuous values.	Duarte, Denio, and Niclas Ståhl. "Machine learning: a concise overview." <i>Data</i> <i>Science in Practice</i> (2019): 27-58.	Coin value prediction	Object
Learning	Learning is concerned with finding a right model, given a set of inputs and outputs.	Duarte, Denio, and Niclas Ståhl. "Machine learning: a concise overview." <i>Data</i> <i>Science in Practice</i> (2019): 27-58.		Event
Training	Its the time to learner with the exemples and build a general model about this space that enables it to produce sufficiently accurate predictions in new cases.	Anzai, Yuichiro. Pattern recognition and machine learning. Elsevier, 2012.		Event
Testing	Time to evaluates the performance of the training model	Anzai, Yuichiro. Pattern recognition and machine learning. Elsevier, 2012.		Event
Trained Model	The model can be used	Duarte, Denio, and		Object

to predict new outputs	Niclas Ståhl. "Machine	
from new examples	learning: a concise	
_	overview." Data	
	Science in Practice	
	(2019): 27-58.	

Relações criadas:

Conceito	Definição Semi-formal	Exemplos
implements	A code implements an algorithm	Python code implementing SVM.
hasData	A Dataset has labeled or unlabeled data	Covid-19 dataset with labeled data
created_by	A trained model is created by an algorithm.	SVM trained model created by SVM algorithm
learn_by	An ML algorithm learns from data	Algorithm applied to Covid-19 dataset
uses	An algorithm type uses only a certain type of data.	Supervised Learning Algorithm Only Uses Labeled Data
functionCompon entOf	Dataset is a functional Component of ML Algorithm	Dataset COVID-19 component of SVM algorithm
hasFunction	Function of the algorithm, of classifying, creating clusters	Algorithm whose function is to classify data
memberOf	Data member of a dataset	A tuple from a dataset

Protege:

Nenhum problema relatado pelo Reasoner!