Scalable Joint Modeling of Longitudinal and Point Process Data: Disease Trajectory Prediction and Improving Management of Chronic Kidney Disease

Joseph Futoma 1 , Mark Sendak 2,3 , C. Blake Cameron MD 3,4 , Katherine Heller 1

¹Dept. of Statistical Science, ² Institute for Health Innovation, ³ School of Medicine, ⁴ Division of Nephrology $Duke\ University$

Figure 1: 15-year course of patient who experienced CKD rapid progression, other serious health events.

Motivation

- Chronic Kidney Disease (CKD): progressive loss of kidney function; high morbidity.
- Diagnosed using eGFR: extremely noisy estimate of kidney function.
- Systematically underdiagnosed; progression can be slowed/halted if detected early.
- < 10% with moderate CKD, < 50% with advanced CKD aware of illness.
- Most CKD patients die from heart disease before kidney failure.
- Goal: jointly model risk of future loss of kidney function, cardiac complications.

Electronic Health Records (EHRs)

- Stores information captured about patients during encounters with health system.
- ICD-9 diagnosis codes: structured, hierarchical, primarily for billing, subjective.
- Laboratory test results: objective clinical data.
- Many inherent limitations and problems to working with live EHR data.

Figure 2: Monthly counts for different lab names for Serum Creatinine, 1996-2015.

Proposed Joint Model

- Hierarchical latent variable model: capture dependencies between trajectory, events.
- $\vec{y_i}$: observed eGFRs at times $\vec{t_i}$; $\vec{u_i}$: times of cardiac events (may be none).
- Assume independence in conditional likelihood $(z_i, b_i, f_i, v_i \text{ latents for person } i)$:

$$p(\vec{y_i}, \vec{u_i}|z_i, b_i, f_i, v_i; x_i) = p(\vec{y_i}|z_i, b_i, f_i; x_i)p(\vec{u_i}|z_i, b_i, f_i, v_i; x_i).$$

• Longitudinal Submodel:

• Likelihood further factorizes: $p(\vec{y_i}|z_i, b_i, f_i) = \prod_{j=1}^{N_i} p(y_i(t_{ij})|z_i, b_i, f_i)$.

$$y_i(t) = m_i(t) + \epsilon_i(t), \ \epsilon_i(t) \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2)$$

$$m_i(t) = \Phi_p(t)^{\top} \Lambda x_{ip} + \Phi_z(t)^{\top} \beta_{z_i} + \Phi_l(t)^{\top} b_i + f_i(t).$$

$$(1)$$

- Population component: Fixed intercept, slope from baseline covariates.
- Subpopulation component: Latent subpopulation $z_i \in \{1, \ldots, G\}$, unique B-spline trajectory.
- Individual component: Random intercept, slope.
- Structured noise component: Transient trends in trajectory, GP with OU kernel.

Point Process Submodel:

• Poisson process model, with Cox proportional hazards rate function:

$$p(\vec{u_i}|z_i, b_i, f_i, v_i) = \prod_{k=1}^{K_i} r_i(u_{ik}) \exp\{-\int_{T_i^-}^{T_i^+} r_i(t)dt\}$$
(3)

$$r_i(t) = r_0(t) \exp\{\gamma^{\top} x_{ir} + \alpha m_i(t) + \delta m_i'(t) + v_i\}$$

- γ, α, δ : association between risk for events and baseline covariates, $m_i(t), m'_i(t)$ in (2).
- Inference: Fit joint model with stochastic variational inference.
- Mean field variational distribution; sparse GPs for f_i (pseudo-inputs $\vec{t_i}$).
- Lower bound has closed form; automatic differentiation for gradients.

Results

- 23,450 patients with at least moderate stage CKD, 10+ eGFR readings.
- Fit joint models to eGFR trajectory and heart attack (AMI), stroke (CVA) events.
- Longitudinal submodel evaluation: MSE/MAE on held-out eGFR values.
- Point Process submodel evaluation: AUROC, AUPR predicting future events.

Longitudinal Submodels	MSE	MAE				
Joint Model (CVA)	147.31	9.01				
Joint Model (AMI)	152.78	9.15				
[Schulam, 2015]	155.80	9.27				
		1 yr.	2 yr.	3 yr.	4 yr.	5 yr.
CVA: AUROCs	Joint Model	0.786	0.746	0.727	0.742	0.740
	Cox	0.574	0.597	0.602	0.606	0.587
	Time-varying Cox	0.576	0.557	0.563	0.593	0.566
AMI: AUROCs						
AMI: AUROCs	Joint Model	0.755	0.704	0.737	0.654	0.663
AMI: AUROCs	Joint Model Cox	0.755 0.704	0.704 0.676	0.737 0.617	0.654 0.599	0.663 0.640
AMI: AUROCs						0.640
AMI: AUROCs CVA: AUPRs	Cox	0.704	0.676	0.617	0.599 0.663	0.640
	Cox Time-varying Cox	0.704 0.640	0.676	0.617 0.647	0.599 0.663	0.640
	Cox Time-varying Cox Joint Model	0.704 0.640 0.423	0.676 0.652 0.389	0.617 0.647 0.370	0.599 0.663 0.405	0.640 0.655 0.400
	Cox Time-varying Cox Joint Model Cox	0.704 0.640 0.423 0.065	0.676 0.652 0.389 0.101	0.617 0.647 0.370 0.123	0.599 0.663 0.405 0.137	0.640 0.655 0.400 0.134 0.130
CVA: AUPRs	Cox Time-varying Cox Joint Model Cox Time-varying Cox	0.704 0.640 0.423 0.065 0.062	0.676 0.652 0.389 0.101 0.086	0.617 0.647 0.370 0.123 0.114	0.599 0.663 0.405 0.137 0.157	0.640 0.655 0.400 0.134 0.130

Table 1: Top: Longitudinal submodel results. Bottom: Point Process submodel results.

Figure 3: Dynamic predictions of disease trajectory from longitudinal submodel.

Figure 4: Dynamic predictions of disease trajectory, risk of CVA event from joint model.

Conclusion

- Novel joint model for longitudinal, point process data.
- First scalable stochastic variational inference algorithm for this model class.
- Future work: multivariate in longitudinal, point process data; more flexible models.