Transfer of Thermal Energy

Learning Outcomes

Candidates should be able to:

- (a) show understanding that thermal energy is transferred from a region of higher temperature to a region of lower temperature
- (b) describe, in molecular terms, how energy transfer occurs in solids
- (c) describe, in terms of density changes, convection in fluids
- (d) explain that energy transfer of a body by radiation does not require a material medium and that the rate of energy transfer is affected by:
 - (i) colour and texture of the surface
 - (ii) surface temperature
 - (iii) surface area
- (e) apply the concept of thermal energy transfer to everyday applications

Direction of transfer of thermal energy

- A and B are two objects at different temperatures, insulated from their surroundings but in contact with each other.
- There will be a **net transfer** of thermal energy from the hotter object (A) to the colder object (B).
- As the temperature difference between the two objects get smaller, the rate of thermal transfer decreases.
- This is shown in the graph above where the slopes become gentler as the temperature of A and B become similar.
- When the temperatures of **A** and **B** stop changing, they are at the same temperature, they are said to be in **thermal equilibrium**.
- Thermal energy always flows from a region of **higher temperature** to a region of **lower** temperature. Net flow of thermal energy occurs only when there is a **difference in temperature**.

He	at is t	ransferred by conduction, convection and radiation.
(a)	(i)	State which of the three methods is responsible for the transfer of heat from the Sun to the Earth.
	(ii)	Explain why the other two methods cannot be involved in this transfer.
		[2]
(b)		and feels hot when placed above a lighted match, as shown in Fig. 2.1. Plain in detail how convection causes this to happen.
		Fig. 2.1 [2]
(c)		2.2 shows a layer of fibreglass placed between the ceiling of a room and the roof of buse.
		roof
		ceiling fibreglass
		Fi 0.0
		Fig. 2.2
	Exp	lain how the layer of fibreglass helps to keep the room warm when it is cold outside.
		roa

	Conduction	Convection	Radiation
Description	Particles in solids vibrate about an	When a fluid is heated, it expands,	Transfer of thermal energy in the form of
	equilibrium position; as particles at one	becomes less dense than the	electromagnetic radiation like infrared
	end get heated up, their temperature	surroundings and rises. Cooler, denser	radiation.
	rises and the speed of vibration	fluid is displaced and sinks where the	(all objects radiate energy continuously in
	increases. They collide more vigorously	process is repeated. This sets up a	the form of electromagnetic waves due to
	with neighbouring particles, passing on	convection current, which heats up all the	thermal vibrations of their molecules.)
	their energy from particle to particle,	fluid eventually.	
	eventually heating up the solid.		
		(vice versa for cooling)	
Need medium	Yes	Yes	No. Can occur in vacuum
	Metals have many free electrons, which		
	speed up on gaining thermal energy.		
	They move rapidly and collide with		
	particles in the cooler parts of the solid,		
	passing on their energy through electron		
	diffusion.		
Characteristics	Good conductors/poor insulators –	Heating element must be placed at the	Black and rough surfaces are good
	metals (due to electron diffusion)	bottom in a water heater tank	emitters and absorbers of heat
	Speed up rate of thermal conduction	Cooling element must be placed at the	
		top in a refrigerator	White and shiny/silvered surfaces are
	Poor conductors/Good insulators – air	Involves bulk movement of the medium	poor absorbers and emitters of
	and water.	due to density differences	heat/good reflectors of heat.
	Air: Particles are far apart so collisions	Works in fluids (liquids and gases)	

do not take place regularly and frequently therefore thermal conduction does not occur efficiently

Water: Particles do not stay in fixed positions long enough for collisions to occur regularly and frequently. The intermolecular forces are also slightly weaker than in solids hence the amount of energy transferred through collisions is reduced.

Insulators reduce the **rate** of thermal conduction

- The larger the temperature difference, the higher the rate of radiation
- The larger the surface area, the higher the rate of radiation

*Rate of thermal radiation

$$P = e\sigma A(T^4 - T_C^4)$$

- e = emissivity of surface
- $\sigma = \text{constant} (5.67 \times 10^{-8} \text{ W/m}^2\text{K}^4)$
- A = surface area
- T = temperature of radiator
- T_C = surrounding temperature

Fig. 4.1 shows a computer chip fitted with a heat sink with black metal fins.

Fig. 4.1

The heat sink keeps the computer chip cool. Thermal energy (heat) is transferred away from the chip by conduction, convection and radiation.

(a)	Explain the difference between conduction and convection.				
	[2]				
(b)	Explain the features of the heat sink that allow thermal energy to be transferred easily away from the chip.				
	A series of the				

	[3]				

4 Fig. 4.1 shows food being cooked in an electric grill.

Fig. 4.1

There are red-hot heating elements above the food and thermal energy (heat) is transmitted to the food by radiation.

(a)	Exp	Explain what is meant, in this case, by <i>radiation</i> .		
			.[2]	
(b)	Exp	plain why very little thermal energy is transmitted to the food by		
	(i)	conduction,		
			 .[1]	
	(ii)	convection.		
			[1]	