Министерство образования и науки Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к магистерской диссертации

«Децентрализованный алгоритм управления конвейерной системой с использованием методов мультиагентного обучения с подкреплением»

Автор: Мухутдинов Дмитрий Вадимович				
Направление подготовки (специальность):	01.04.02	Прикладная	математика	И
	информа	тика		
Квалификация: Магистр				
Руководитель: Фильченков А.А., канд. физ.	-мат. наук			
К защите допустить				
Зав. кафедрой Васильев В.Н., докт. техн. на	ук, проф.			
		« »	20	Γ.

Студент	Мухутди	нов Д	Į.В.	Группа	M4239	Кафедра	компьютерн	НЫХ	технологи	ιй
Факульте	ет информа	ационні	ых те	хнологий	и програм	имирования				
-	е нность (ного обесп			специализ	зация То	ехнологии	проектировані	ия и	разработи	ки
Консульт	анты:									
а) Вя	ткин В.В.,	докт. те	ехн. н	аук, проф.			_			
Квалифик	ационная ј	работа	выпол	лнена с оц	енкой					
Дата защи	ИТЫ						,	«15» и	юня 2019	г.
Секретарн	ь ГЭК Павл	10ва О.	Н.			Прі	»		20	г.
Листов хр	анения									
Демонстр	ационных	матери	алов/	Чертежей	хранения					_

Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ»

УТВЕРЖДАЮ

Зав. каф. комі	пьютерн	ых технолог	гий
	докт. те	хн. наук, пр	оф.
		Васильев В	Ы.
«	»	20	г.

ЗАДАНИЕ НА МАГИСТЕРСКУЮ ДИССЕРТАЦИЮ

M4239 Студент Мухутдинов Д.В. Группа Кафедра компьютерных технологий Факультет информационных технологий и программирования Руководитель Фильченков А.А., канд. физ.-мат. наук, кафедра КТ

1 Наименование темы: Децентрализованный алгоритм управления конвейерной системой с использованием методов мультиагентного обучения с подкреплением

Направление подготовки (специальность): 01.04.02 Прикладная математика и информатика Направленность (профиль): Технологии проектирования и разработки программного обеспечения

Квалификация: Магистр

- **2 Срок сдачи студентом законченной работы:** «31» мая 2019 г.
- 3 Техническое задание и исходные данные к работе.

Требуется разработать децентрализованный алгоритм управления конвейерной системы для транспортировки багажа. Алгоритм должен позволять контроллерам конвейерной сети динамически изменять свое поведение в целях адаптации под изменившиеся условия работы, такие как поломка одного из конвейеров или изменение интенсивности потока багажа. Алгоритм должен обеспечивать своевременную доставку багажных единиц до пунктов назначения, в то же время минимизируя энергопотребление всей системы в целом.

4 Содержание магистерской диссертации (перечень подлежащих разработке вопросов)

Пояснительная записка должна содержать обзор существующих результатов в сфере управления конвейерными системами, а также в сферах, имеющих непосредственное отношение к предложенному алгоритму (таких как обучение с подкреплением). Также записка должна содержать подробное изложение предложенного алгоритма и данные экспериментального сравнения его производительности с производительностью существующих методов управления конвейерной системой, проведенного с помощью виртуальной имитационной модели конвейерной сети.

5 Перечень графического материала (с указанием обязательного материала)

Не предусмотрено

6 Исходные материалы и пособия

- a) Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, 2012
- б) Mnih et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

7 Календарный план

	/ Календарный план		
№№ пп.	Наименование этапов магистерской диссертации	Срок выпол-	Отметка о
		нения этапов	выполне-
		работы	нии, подпись
			руков.
1	Ознакомление с предметной областью	11.2017	
2	Чтение статей, посвященных алгоритмам	01.2018	
	маршрутизации		
3	Чтение статей, посвященных задаче обучения с	02.2018	
	подкреплением		
4	Чтение статей, посвященных задаче обучения с	03.2018	
	подкреплением		
5	Чтение статей, посвященных задаче управления	05.2018	
	конвейерными системами		
6	Разработка имитационной модели конвейерной	09.2018	
	сети		
7	Реализация существующих алгоритмов	11.2018	
	управления		
8	Разработка алгоритма маршрутизации, проведе-	03.2019	
	ние экспериментов		
9	Написание пояснительной записки	05.2019	

8 Дата выдачи задания: «01» сентября 2017 г.

Руководитель	_
Задание принял к исполнению _	«01» сентября 2017 г.

Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ»

АННОТАЦИЯ МАГИСТЕРСКОЙ ДИССЕРТАЦИИ

Студент: Мухутдинов Дмитрий Вадимович

Наименование темы работы: Децентрализованный алгоритм управления конвейерной систе-

мой с использованием методов мультиагентного обучения с подкреплением **Наименование организации, где выполнена работа:** Университет ИТМО

ХАРАКТЕРИСТИКА МАГИСТЕРСКОЙ ДИССЕРТАЦИИ

1 Цель исследования: Разработка удобного стилевого файла L^AT_EXдля бакалавров и магистров кафедры компьютерных технологий.

2 Задачи, решаемые в работе:

- a) соответствие титульной страницы, задания и аннотации шаблонам, принятым в настоящее время на кафедре;
- б) соответствие содержательной части пояснительной записки требованиям ГОСТ 7.0.11-2011 «Диссертация и автореферат диссертации»;
- в) относительное удобство в использовании указание данных об авторе и научном руководителе один раз и в одном месте, автоматический подсчет числа тех или иных источников.
- 3 Число источников, использованных при составлении обзора: 3
- 4 Полное число источников, использованных в работе: 3
- 5 В том числе источников по годам

Отеч	чественных		Иностранных						
Последние	От 5	Более	Последние	От 5	Более				
5 лет	до 10 лет	10 лет	5 лет	до 10 лет	10 лет				
0	0	0	0	1	2				

6 Использование информационных ресурсов Internet: нет

7 Использование современных пакетов компьютерных программ и технологий: Программный код имитационной модели конвейерной сети и алгоритмов управления написан на языке Python 3.6. При разработке имитационной модели конвейерной системы была использована библиотека для дискретно-событийного моделирования SimPy. Программный код алгоритмов управления конвейерной системой использует библиотеки NetworkX, NumPy, SciPy, scikit-learn, PyTorch. Для проведения экспериментальных исследований использовалась система интерактивной разработки Jupyter Lab и библиотеки matplotlib, pandas, tqdm.

8 Краткая характеристика полученных результатов: Разработан алгоритм управления конвейерной системой на основе глубокого мультиагентного обучения с подкреплением. В ходе экспериментального исследования было установлено, что разработанный алгоритм превосходит существующие по качеству работы и способен адаптироваться к изменениям во внешней среде.

9 Гранты, полученные при выполнении работы: ТВD: вписать грант? **10 Наличие публикаций и выступлений на конференциях по теме работы:**

1 Multi-agent deep learning for simultaneous optimization for time and energy in distributed routing system / D. Mukhutdinov [и др.] // Future Generation Computer Systems. — 2019. — Т. 94. — С. 587–600.

Вы	іпускник	: Мухутдин	юв Д	.B		
Pyı	ководите	ль: Фильче	нков	A.A.		
«	»	20	г.			

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	5
1. Первая глава	6
1.1. Таблицы	6
1.2. Рисунки	6
1.3. Листинги	7
2. Проверка сквозной нумерации	8
Выводы по главе 2	8
ЗАКЛЮЧЕНИЕ	S
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	10
ПРИЛОЖЕНИЕ А. Пример приложения	11
ПРИЛОЖЕНИЕ Б. Еще один пример приложения с неимоверно	
длиннющим названием для тестирования переносов	13
ПРИЛОЖЕНИЕ В. Пример огромного листинга	14

введение

В данном разделе размещается введение.

ГЛАВА 1. ПЕРВАЯ ГЛАВА

Пример ссылок в рамках обзора: [1–3]. Вне обзора: [bellman].

1.1. Таблицы

В качестве примера таблицы приведена таблица 1.

Таблица 1 – Таблица умножения (фрагмент)

_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
3	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51
4	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68

Есть еще такое окружение tabu, его можно аккуратно растянуть на всю страницу. Приведем пример (таблица 2).

Таблица 2 – Таблица умножения с помощью tabu (фрагмент)

_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
3	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51
4	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68

1.2. Рисунки

Пример рисунка (с помощью TikZ) приведен на рисунке 1. Под pdflatex можно также использовать *.jpg, *.png и даже *.pdf, под latex можно использовать Metapost. Последний можно использовать и под pdflatex, для чего в стилевике продекларированы номера картинок от 1 до 20.

Рисунок 1 – Пример рисунка

1.3. Листинги

В работах студентов кафедры «Компьютерные технологии» часто встречаются листинги. Листинги бывают двух основных видов — исходный код и псевдокод. Первый оформляется с помощью окружения lstlisting из пакета listings, который уже включается в стилевике и немного настроен. Пример Hello World на Java приведен на листинге 1. Пример большого листинга — в приложении (листинг В.1).

```
Листинг 1 — Пример исходного кода на Java

public class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hello, world!");
    }
}
```

Псевдокод можно оформлять с помощью разных пакетов. В данном стилевике включается пакет algorithmicx. Сам по себе он не генерирует флоатов, поэтому для них используется пакет algorithm. Пример их совместного использования приведен на листинге 2.

```
Листинг 2 – Пример псевдокода
```

```
function IsPrime(N)

for t \leftarrow [2; \lfloor \sqrt{N} \rfloor] do

if N \mod t = 0 then

return false

end if

end for

return true

end function
```

Наконец, листинги из listings тоже можно подвешивать с помощью algorithm, пример на листинге 3.

Листинг 3 – Исходный код и флоат algorithm

```
public class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hello, world!");
    }
}
```

ГЛАВА 2. ПРОВЕРКА СКВОЗНОЙ НУМЕРАЦИИ

Листинг 4 должен иметь номер 4.

Листинг 4 – Исходный код и флоат algorithm

```
public class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hello, world!");
    }
}
```

Рисунок 2 должен иметь номер 2.

Рисунок 2 – Пример рисунка

Таблица 3 должна иметь номер 3.

Таблица 3 – Таблица умножения с помощью tabu (фрагмент)

_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
3	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51
4	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68

Выводы по главе 2

В конце каждой главы желательно делать выводы. Вывод по данной главе — нумерация работает корректно, ура!

ЗАКЛЮЧЕНИЕ

В данном разделе размещается заключение.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Yan J., Vyatkin V. Distributed Software Architecture Enabling Peer to Peer Communicating Controllers // IEEE Transactions on Industrial Informatics. 2013.
 Vol. 9, no. 4. P. 2200–2209.
- 2 *Boyan J. A.*, *Littman M. L.* Packet routing in dynamically changing networks: a reinforcement learning approach // Advances in Neural Information Processing Systems. 1994. No. 6. P. 671–678.
- 3 *Tan M*. Multi-agent reinforcement learning: Independent vs. cooperative agents // Proceedings of the tenth international conference on machine learning. 1993. P. 330–337.

ПРИЛОЖЕНИЕ А. ПРИМЕР ПРИЛОЖЕНИЯ

В приложениях рисунки, таблицы и другие подобные элементы нумеруются по приложениям с соответствующим префиксом. Проверим это.

Листинг А.1 должен иметь номер А.1.

Листинг A.1 – Исходный код и флоат algorithm

```
public class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hello, world!");
    }
}
```

Рисунок А.1 должен иметь номер А.1.

Рисунок А.1 – Пример рисунка

Таблица А.1 должна иметь номер А.1.

Таблица A.1 – Таблица умножения с помощью tabu (фрагмент)

_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
3	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51
4	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68

Заодно проверим нумерованные и ненумерованные перечисления. Ненумерованные:

- пункт A;
- пункт Б;
- пункт В.

Нумерованные списки нескольких уровней:

- а) первый элемент;
- б) второй элемент с подэлементами:
 - 1) первый подэлемент;

- 2) второй подэлемент;
- 3) третий подэлемент.
- в) третий элемент;
- г) четвертый элемент;
- д) пятый элемент;
- е) шестой элемент;
- ж) седьмой элемент;
- и) восьмой элемент;
- к) девятый элемент;
- л) десятый элемент.

ПРИЛОЖЕНИЕ Б. ЕЩЕ ОДИН ПРИМЕР ПРИЛОЖЕНИЯ С НЕИМОВЕРНО ДЛИННЮЩИМ НАЗВАНИЕМ ДЛЯ ТЕСТИРОВАНИЯ ПЕРЕНОСОВ

Проверим на примере таблиц, что нумерация в приложениях — по приложениям. Таблица Б.1 должна иметь номер Б.1.

Таблица Б.1 – Таблица умножения с помощью tabu (фрагмент)

_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
3	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51
4	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68

ПРИЛОЖЕНИЕ В. ПРИМЕР ОГРОМНОГО ЛИСТИНГА

Листинг В.1 – Пример большого листинга

```
import java.util.*;
public class Example {
    static int[] restoreOutgoing(int[] g, int[] outgoing,
                                  int vertex, int mask) {
        int[] rv = new int[1 + Integer.bitCount(mask)];
        int n = g.length;
        int current = rv.length - 1;
        while (true) {
            rv[current] = vertex;
            if (current == 0) {
                if (vertex != 0) {
                     throw new AssertionError();
                return rv;
            }
            mask \wedge = 1 \ll (vertex - 1);
            int prevMask = outgoing[mask] & g[vertex];
            if (prevMask == 0) {
                throw new AssertionError();
            vertex = Integer.numberOfTrailingZeros(prevMask);
            ---current;
        }
    }
    static int[] restoreIncoming(int[] g, int[] incoming,
                                  int vertex, int mask) {
        int[] rv = new int[1 + Integer.bitCount(mask)];
        int n = g.length;
        int current = 0;
        while (true) {
            rv[current] = vertex;
            if (current == rv.length - 1) {
                if (vertex != 0) {
                     throw new AssertionError();
                }
                return rv;
            }
```

```
mask ^= 1 << (vertex - 1);
int nextMask = incoming[mask] & g[vertex];
if (nextMask == 0) {
    throw new AssertionError();
}
vertex = Integer.numberOfTrailingZeros(nextMask);
++current;
}
}</pre>
```