



# $\begin{array}{c} {\bf Type 977 \ fitting \ for \ heat \ pump} \\ {\bf SINK-11TE} \end{array}$

## Parametric Heat Pump calculation

Dani Carbonell

dani.carbonell@spf.ch

2019/03/12 at: 16:07:34 h





Table 1: Fitted coefficients for the heat pump.

| Coefficient            | Description                                      |                |
|------------------------|--------------------------------------------------|----------------|
|                        |                                                  | [kW]           |
| $P_{Q_1}$              | 1 <sup>st</sup> condenser polynomial coefficient | 1.0793e+01     |
| $P_{Q_2}$              | $2^{st}$ condenser polynomial coefficient        | 7.0469e+01     |
| $P_{Q_3}$              | $3^{st}$ condenser polynomial coefficient        | 2.7052e+01     |
| $P_{Q_4}$              | $4^{st}$ condenser polynomial coefficient        | 1.2193e+02     |
| $P_{Q_5}$              | $5^{st}$ condenser polynomial coefficient        | 2.5138e+01     |
| $P_{Q_6}$              | $6^{st}$ condenser polynomial coefficient        | -1.2707e+02    |
| $P_{COP_1}$            | 1 <sup>st</sup> COP polynomial coefficient       | 5.4973e+00     |
| $P_{COP_2}$            | $2^{st}$ COP polynomial coefficient              | $3.0554e{+01}$ |
| $P_{COP_3}$            | 3 <sup>st</sup> COP polynomial coefficient       | 3.1564e+00     |
| $P_{COP_4}$            | 4 <sup>st</sup> COP polynomial coefficient       | 8.3585e+00     |
| $P_{COP_5}$            | 5 <sup>st</sup> COP polynomial coefficient       | 3.2462e+00     |
| $P_{COP_6}$            | $6^{st}$ COP polynomial coefficient              | -8.7923e+01    |
| $\dot{m}_{cond}$       | $2000.00 \ [kg/h]$                               |                |
| $\dot{m}_{evap}$       | $2000.00 \ [kg/h]$                               |                |
| $COP_{nom}$ (A0W35)    | 4.34                                             |                |
| $Q_{cond,nom}$ (A0W35) | $11.44 \ [kW]$                                   |                |
| $Q_{evap,nom}$ (A0W35) | 8.80 [kW]                                        |                |
| $W_{comp,nom}$ (A0W35) | 2.64 [kW]                                        |                |
| $RMS_{COP}$            | 3.46e - 02                                       |                |
| $RMS_{Q_{cond}}$       | 9.50e - 02                                       |                |
| $RMS_{W_{comp}}$       | 4.90e - 02                                       |                |
| Fit model              | Average Temperature                              |                |





Table 2: Differences between experiments and fitted data for the heat pump.  $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$  and  $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$  where  $n_p$  is the number of data points.

| $T_{cond,out}$   | $T_{evap,in}$ | COP  | $COP_{exp}$ | error | $Q_{cond}$ | $Q_{cond,exp}$ | error | $W_{comp}$ | $W_{comp,exp}$ | error |
|------------------|---------------|------|-------------|-------|------------|----------------|-------|------------|----------------|-------|
| $^{o}C$          | ${}^{o}C$     | [-]  | [-]         | [%]   | [kW]       | [kW]           | [%]   | [kW]       | [kW]           | [%]   |
| 35.00            | -5.00         | 3.82 | 3.81        | 0.4   | 10.11      | 9.90           | 2.2   | 2.65       | 2.60           | 1.80  |
| 35.00            | 0.00          | 4.39 | 4.40        | 0.2   | 11.56      | 11.70          | 1.2   | 2.63       | 2.66           | 0.96  |
| 35.00            | 5.00          | 4.94 | 4.94        | 0.0   | 13.01      | 13.10          | 0.7   | 2.63       | 2.65           | 0.70  |
| 50.00            | -5.00         | 2.60 | 2.57        | 1.3   | 9.50       | 9.70           | 2.1   | 3.65       | 3.77           | 3.30  |
| 50.00            | 0.00          | 3.16 | 3.13        | 1.1   | 11.05      | 10.97          | 0.7   | 3.49       | 3.51           | 0.40  |
| 50.00            | 5.00          | 3.74 | 3.67        | 1.7   | 12.61      | 12.57          | 0.4   | 3.38       | 3.42           | 1.30  |
| 45.00            | -5.00         | 3.06 | 3.07        | 0.4   | 9.77       | 9.80           | 0.3   | 3.19       | 3.19           | 0.12  |
| 45.00            | 0.00          | 3.63 | 3.68        | 1.3   | 11.29      | 11.33          | 0.4   | 3.11       | 3.08           | 0.90  |
| 45.00            | 5.00          | 4.20 | 4.23        | 0.7   | 12.82      | 12.83          | 0.1   | 3.05       | 3.04           | 0.64  |
| 55.00            | 0.00          | 2.64 | 2.70        | 2.0   | 10.74      | 10.60          | 1.3   | 4.06       | 3.93           | 3.39  |
| 55.00            | 5.00          | 3.22 | 3.23        | 0.3   | 12.34      | 12.30          | 0.3   | 3.83       | 3.81           | 0.60  |
| 35.00            | 10.00         | 5.50 | 5.49        | 0.2   | 14.47      | 14.50          | 0.2   | 2.63       | 2.64           | 0.38  |
| 35.00            | 15.00         | 6.06 | 6.05        | 0.3   | 15.94      | 15.90          | 0.3   | 2.63       | 2.63           | 0.01  |
| 50.00            | 10.00         | 4.31 | 4.25        | 1.5   | 14.19      | 14.17          | 0.2   | 3.29       | 3.33           | 1.28  |
| 50.00            | 15.00         | 4.89 | 4.86        | 0.7   | 15.78      | 15.77          | 0.1   | 3.23       | 3.25           | 0.64  |
| 45.00            | 10.00         | 4.77 | 4.80        | 0.7   | 14.36      | 14.33          | 0.2   | 3.01       | 2.99           | 0.87  |
| 45.00            | 15.00         | 5.34 | 5.39        | 1.0   | 15.91      | 15.83          | 0.5   | 2.98       | 2.94           | 1.47  |
| 55.00            | 10.00         | 3.81 | 3.80        | 0.1   | 13.96      | 14.00          | 0.3   | 3.67       | 3.68           | 0.40  |
| 55.00            | 15.00         | 4.39 | 4.42        | 0.5   | 15.58      | 15.70          | 0.8   | 3.55       | 3.56           | 0.23  |
| Sum              |               |      |             | 14.3  |            |                | 12.0  |            |                | 19.40 |
| $RMS_{COP}$      | 3.46e - 02    |      |             |       |            |                |       |            |                |       |
| $RMS_{O}$        | 9.50e - 02    |      |             |       |            |                |       |            |                |       |
| $RMS_{W_{comp}}$ | 4.90e - 02    |      |             |       |            |                |       |            |                |       |





### ${\it Meier/SINK-11TE/SINK-11TE-Qcond.pdf}$



Figure 1:  $Q_{cond}$  differences between experiments and fitted data





### ${\it Meier/SINK-11TE/SINK-11TE-Qcomp.pdf}$



Figure 2:  $W_{comp}$  differences between experiments and fitted data





### ${\it Meier/SINK-11TE/SINK-11TE-COP.pdf}$



Figure 3: COP differences between experiments and fitted data