Refinement of visual connections

Two major principles of sensory map formation

- Activity-independent processes to establish overall connectivity. Molecular gradients.
- 2. Activity-dependent processes to refine local connectivity.

Models may help inform relative contributions of each mechanism.

Willshaw and von der Malsburg (1976): architecture

Principles of topographic map formation

Key elements of map formation, demonstrated by Willshaw & von der Malsburg (1976):

- 1. Neighbouring presynaptic neurons fire in synchrony (retinal waves).
- 2. Cells that fire together wire together.
- 3. Neighbouring postsynaptic neurons should develop similar connections.
- 4. Constraints on synaptic growth (normalisation).
- Map polarity.

Item 1 proposed before discovery of retinal waves.

2. Cells that fire together wire together

Output is a weighted function of input activity.

3. Correlated output

Short-range excitatory (green); longer-range inhibitory (red). Additional growth rules.

4. Normalisation

Sum of weights synapsing onto one target neuron (j, blue) is constant.

5. The problem of map polarity

How many ways are there to map one rectangle onto another?

5. Polarity markers in the model

Results: systems matching

- (a) $6 \times 6 \Rightarrow 6 \times 6$. (b) $6 \times 6 \Rightarrow 9 \times 6$.
- (c) $8 \times 8 \Rightarrow 6 \times 6$. (d) $8 \times 8 \Rightarrow 9 \times 6$.

Role of polarity information

Limitation of activity model

Cannot account for tectal rotation experiments, as model regenerates normal map.

Gradient-based models

- Marker induction model (Willshaw & von der Malsburg 1979).
- Before discovery of Eph and ephrins.
- Updated to include knowledge of Ephs (Willshaw 2006).
- How are matching gradients established? Assume that retinal labels are fixed, and target labels are induced.
- Weak polarity information (via synapses or gradients) still required.
- Key results:
 - 1. Account for Eph KI family (Brown et al 2000; Reber et al 2004).
 - 2. Growing domains.

Methods

A: updating synaptic connections (Eph B pathway).

B: inducing postsynaptic markers.

EphA3 simulations

Reber et al (2004): EphA3/EphA4

Xenopus: continuous retinal and tectal growth

Summary

- Neural activity can make maps, but needs extra polarity information.
- Molecular gradients can equally solve problem and account for surgical manipulations.
- Open questions:
 - 1. Are gradients inducible?
 - 2. What is interplay between activity and gradients do they work on separate temporal scales, or are they mechanistically linked (e.g. Landmesser)?