

Árbol

Considera un **árbol** formado por N **vértices**, enumerados de 0 a N-1. El vértice 0 es llamado vértice **raíz**. Todos los vértices, a excepción del vértice raíz, tienen un solo **padre**. Para todo i, tal que $1 \le i < N$, el padre del vértice i es el vértice P[i], donde P[i] < i. También asumimos que P[0] = -1.

Para todo vértice i ($0 \le i < N$), el **subárbol** de i es el conjunto formado por los siguientes vértices:

- vértice i,
- cualquier vértice cuyo padre sea i,
- cualquier vértice que tenga como padre del padre al vértice i,
- cualquier vértice que tenga como padre del padre del padre al vértice i,
- etc.

La imagen de abajo muestra un árbol de ejemplo que consiste de N=6 vértices. Las flechas muestran la conexión de un vértice con su padre, a excepción de la raíz, que no tiene vértice padre. El subárbol del vértice 2 contiene a los vértices 2,3,4 y 5. El subárbol del vértice 0 contiene a los 00 vértices del árbol y el subárbol del vértice 00 contiene 00 vértices del árbol y el subárbol del vértice 00 contiene 00 vértices del árbol y el subárbol del vértice 00 contiene 00 vértices del árbol y el subárbol del vértice 00 contiene 00 vértices del árbol y el subárbol del vértice 00 contiene 00 vértices del árbol y el subárbol del vértice 00 contiene 00 vértices del árbol y el subárbol del vértice 00 contiene 00 vértices del árbol y el subárbol del vértice 00 contiene 00 vértices del árbol y el subárbol del vértice 00 contiene 00 vértices del árbol y el subárbol del vértice 00 contiene 00 vértices del árbol y el subárbol del vértice 00 contiene 00 vértices del árbol y el subárbol del vértice 00 contiene 00 vértices del árbol y el subárbol del vértice 00 contiene 00 vértices 00 vértices

A todos los vértices se les asigna un **peso**, el cual es un número entero no negativo. Denotamos al peso del vértice i ($0 \le i < N$) por W[i].

Tu tarea es escribir un programa que responda Q consultas, cada una de las consultas contendrá dos números enteros positivos (L,R). La respuesta a cada consulta debe ser calculada de la siguiente forma.

Considera: Asignamos un numero entero a cada vértice del árbol, a este número lo llamamos **coeficiente**. Tal asignación esta descrita por la secuencia $C[0], \ldots, C[N-1]$, donde C[i] $(0 \le i < N)$ es el coeficiente asignado al vértice i. Denominemos a esta secuencia como

secuencia de coeficientes. Es importante notar que los elementos de la secuencia de coeficientes pueden ser negativos, 0, o positivos.

Para una consulta con los valores (L,R), una secuencia de coeficientes es considerada **valida** si, para todo vértice i ($0 \le i < N$), las siguientes condiciones se cumplen: la suma de los coeficientes de los vértices presentes en el subárbol del vértice i es no menor a L y no mayor a R.

Para una secuencia de coeficientes $C[0], \ldots, C[N-1]$, el **costo** de un vértice i es $|C[i]| \cdot W[i]$, donde |C[i]| es igual al valor absoluto de C[i]. Finalmente, el **costo total** es la suma de los costos de todos los vértices. Tu tarea es calcular, para cada consulta, el **mínimo costo total** que se puede obtener con alguna secuencia de coeficientes valida.

Se puede demostrar que para cada consulta existe al menos una secuencia de coeficientes valida.

Detalles de implementación

Debes implementar las dos siguientes funciones:

```
void init(std::vector<int> P, std::vector<int> W)
```

- P, W: arreglos de números enteros con tamaño N especificando los padres y los pesos de los vertices.
- Esta función es llamada exactamente una vez al inicio de la interacción entre el evaluador y tu programa en cada caso de prueba.

```
long long query(int L, int R)
```

- *L*, *R*: números enteros que describen una consulta.
- ullet Esta función será llamada Q veces luego de la llamada a la función init en cada caso de prueba.
- Esta función debe devolver la respuesta a la consulta dada.

Limites

- $1 \le N \le 200\,000$
- $1 \le Q \le 100000$
- P[0] = -1
- $0 \le P[i] < i$ para todo i tal que $1 \le i < N$
- $0 \leq W[i] \leq 1\,000\,000$ para todo i tal que $0 \leq i < N$
- $1 \le L \le R \le 1\,000\,000$ en cada consulta

Subtareas

Subtarea	Puntaje	Restricciones adicionales	
1	10	$Q \leq 10$; $W[P[i]] \leq W[i]$ para todo i tal que $1 \leq i < N$	
2	13	$Q \leq$ 10; $N \leq$ 2 000	
3	18	$Q \leq$ 10; $N \leq$ 60 000	
4	7	$W[i] = 1$ para todo i tal que $0 \leq i < N$	
5	11	$W[i] \leq 1$ para todo i tal que $0 \leq i < N$	
6	22	L=1	
7	19	Limites originales.	

Ejemplos

Considera las siguientes llamadas:

El árbol en este caso consiste de 3 vértices, el vértice raíz y sus 2 hijos. Todos los vértices tienen un peso igual a 1.

En esta consulta L=R=1, lo que significa que la suma de coeficientes en cada subárbol debe ser igual a 1. Considera la secuencia de coeficientes [-1,1,1]. El árbol y sus correspondientes coeficientes (en rectángulos sombreados) están ilustrados en la siguiente imagen.

Para todo vértice i ($0 \le i < 3$), la suma de los coeficientes de todos los vértices en el subárbol de i es igual a 1. Por lo tanto, esta secuencia de coeficientes es válida. El costo total es calculado de la siguiente forma:

Vértice	Peso	Coeficiente	Costo
0	1	-1	$ -1 \cdot 1=1$
1	1	1	$ 1 \cdot 1 = 1$
2	1	1	1 ·1 = 1

Por lo tanto, el costo total es igual a 3. Esta es la única secuencia de coeficientes valida, entonces la función debe devolver 3.

```
query(1, 2)
```

El costo mínimo para esta consulta es igual a 2, y esta se consigue cuando la secuencia de coeficientes es [0,1,1].

Evaluador

Formato de entrada:

```
N
P[1] P[2] ... P[N-1]
W[0] W[1] ... W[N-2] W[N-1]
Q
L[0] R[0]
L[1] R[1]
...
L[Q-1] R[Q-1]
```

donde L[j] y R[j] (para $0 \le j < Q$) son los argumentos de entrada en la j-esima llamada a la función query. Nota que la segunda línea de la entrada contiene **solo** N-1 **enteros**, porque el evaluador no lee el valor de P[0].

Formato de salida:

```
A[0]
A[1]
...
A[Q-1]
```

donde A[j] (para $0 \leq j < Q$) es el valor devuelto por la j-esima llamada a la función query.