JONATHAN WAPMAN

Phone: (925) 548-9038

Email: jdwapman@ucdavis.edu
Website: https://jdwapman.github.io

Address: 2250 Kemper Hall

One Shields Ave Davis, CA 95616

RESEARCH INTERESTS

Parallel Computer Architectures, GPU Programming, Graph Analytics, Machine Learning, Autonomous Systems, Robotics, Control Systems

EDUCATION

University of California, Davis

Master of Science, Electrical Engineering

Advisor: Professor John Owens

Research Focus: GPU-Accelerated Graph Algorithms

GPA: 4.00/4.00

University of California, Davis

Bachelor of Science, Electrical Engineering

GPA: 3.96/4.00

RESEARCH EXPERIENCE

University of California, Davis: Owens Laboratory

Graduate Student Researcher

PI: Professor John Owens (Dept. of Electrical and Computer Engineering)

- Currently researching methods to map GPU graph algorithms and load-balancing methods to a dataflow programming model in collaboration with Nvidia as part of DARPA's Software-Defined Hardware program.
- Implemented the HITS graph ranking algorithm in the Gunrock open-source parallel graph analytics library.

NASA Jet Propulsion Laboratory

Guidance & Control Intern

- Developed control algorithms and software drivers to enable automated position and attitude control of a planar air-bearing platform used for CubeSat formation flying, pointing, and rendezvous experiments.
- Formulated and executed a series of laboratory tests to fully characterize the planar platform's physical properties, software performance, and position-control capabilities. Extensive data analysis performed using MATLAB.
- Planned publication covering the platform's design, performance capabilities, and applications to future CubeSat missions.

Expected June 2020

Mar. 2018

Dec. 2018 - Present

June 2018 - Sept. 2018

JONATHAN WAPMAN PAGE 2

Lawrence Livermore National Laboratory

Computational Engineering Intern

 Researched and simulated decentralized signal detection algorithms, informationexchange schemes, and motion strategies for chemical plume identification and localization using fully-autonomous robotic swarms.

 Created a Python module to enable development and analysis of collaborative, autonomous swarm scenarios, which was used by LLNL scientists and for a 3D visualization collaboration with UCSD.

University of California, Davis: Yankelevich Laboratory

Jan. 2017 - Mar. 2018

Mar. 2018 - June 2018

Research Assistant

PI: Professor Diego Yankelevich (Dept. of Electrical Engineering)

- Developed low-cost, automated hardware and software systems to capture, analyze, and display data for fluorescence lifetime imaging applications to guided surgery, using C++ and Python on a Raspberry Pi.
- Presented at the 2018 Undergraduate Student Research Showcase to UC Regents, CA lawmakers, CEOs, and alumni.

PROFESSIONAL EXPERIENCE

Eclipse Rocketry Design Team

Nov. 2017 - Mar. 2018

Software Developer

- Designed object-detection algorithms to identify ground-level targets from onboard a rocket during launch. Algorithm executed using C++, OpenCV, and the Yolo v2 neural network running on an Nvidia TX1.
- Worked with a team of seven other students to set project goals, coordinate logistics, and prepare regular presentations and reports.

University of California, Davis: Silva Laboratory

Sept. 2016 – June 2017

Software Developer

- Designed circuitry and programmed an Arduino for a digitally-controlled syringe with a team of three students. Used as a low-cost alternative for microfluidic educational and research projects.
- Achieved performance comparable to a \$2000 industrial digitally-controlled syringe for less than \$150.

Lawrence Livermore National Laboratory: National Ignition Facility

June 2017 - Sept. 2017

Engineering Intern

 Created a sensor and LabView virtual instrument used to measure and track the capacitance of over 4000 high energy density capacitors for preventative maintenance. Achieved accuracy within 3% and repeatability within 1%.

Varian Medical Systems

June 2016 - Sept. 2016

Engineering Intern

• Designed PCBs and software used to validate Multi-Leaf Collimator (MLC) motors for radiation therapy machines.

JONATHAN WAPMAN PAGE 3

 Programmed a GUI-based application to allow engineers to interface with MLC motor test equipment. Features include telemetry data visualizations, command sequence entry, and debugging tools.

UC Davis C-STEM Center Jan. 2016 – June 2016

Technical Volunteer

- Created teaching materials for middle-school students to learn basic coding and robotics concepts.
- Developed code examples for Arduino robotic platforms such as line-following and maze-solving procedures.

TEACHING EXPERIENCE

University of California, Davis

Mar. 2018 - Sept. 2019

2017

2017

2014

2013

2014 - 2018

Teaching Assistant – Senior Capstone Design (EEC 136 A/B)

Fred Fuchslin Memorial Scholarship (1 per year)
Robert Murdoch Memorial Scholarship (1 per year)

Dean's List – 10 Quarters

Eagle Scout with Bronze Palm

Pedrozzi Scholarship

• Assisted students and project teams with circuit design/layout, embedded device programming, project management, and quarterly written reports.

CONFERENCES

UNFERENCES	
"Gunrock GPU Graph Analytics," UC Davis Industrial Affiliates Conference. Poster	May 2019
	Way 2019
"Chemical Plume Detection with Collaborative, Autonomous Sensor Networks," 2018 Signal and Image Sciences Workshop at the Lawrence Livermore National Laboratory.	
Poster	May 2018
"Rocket Imaging Payload: Identification of Ground-Based Targets using Contour Detection and Neural Networks with Bluetooth-Enabled Inertial Measurement Unit," UC Davis Industrial Affiliates Conference.	
Award: Best Undergraduate Poster Poster	May 2018
"Multichannel solid state photodetection system for low-cost fluorescence lifetime spectroscopy," Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XVI.	
Contributed Slides, Presentation by Dr. Diego Yankelevich	Apr. 2018
"Low-Cost Data Collection Systems for Fluorescence Lifetime Spectroscopy Imaging," <i>UC Undergraduate Research Ambassador Showcase"</i> .	
Presentation	Feb. 2018
WARDS	
Outstanding Senior in Electrical Engineering (1 per year)	2018

JONATHAN WAPMAN PAGE 4

SKILLS

Languages

Fluent English, Beginning Spanish, Beginning German

Programming Languages

C, C++, CUDA, Python, MATLAB, LaTeX, Verilog, Bash

Tools & Frameworks

OpenCV, NumPy, Numba, Git, Gunrock, Googletest, Jekyll

Programs

LabView, Simulink, Eagle, Linux, MacOS, Windows, Microsoft Office

COURSEWORK

Graduate

- Computer Architecture (EEC 270)
- Embedded Computing Systems (EEC 284)
- Linear Systems (EEC 250)
- Nonlinear Systems (EEC 251)
- Optimal Control (MAE 298)
- Reinforcement Learning (EEC 289A)
- VLSI Digital Signal Processing (EEC 281)

Undergraduate

- Computer Architecture (EEC 170)
- Control Systems (EEC 157A)
- Design of Coffee (ECM 1)
- Differential Equations (MAT 22B)
- Digital Systems I/II (EEC 180 A/B)
- Discrete Math (ECS 20)
- Electromagnetics I/II (EEC 130 A/B)
- Linear Algebra (MAT 22A)
- Parallel Computer Architectures (EEC 171)
- Probabilistic Analysis (EEC 161)
- Signals & Systems (EEC 150A)