

Unit 12

——Design Sequential Circuits with Flip Flops 张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

利用触发器设计时序逻辑_构造原始状态图和状态表

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 触发器特征 → 触发器激励表
- (5) 卡诺图化简 → ∫ 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关项

例3: 序列检测——给出同步Mealy型101序列检测器的状态表

X: 0 1 0 1 0 1 0 1 1 不可重 Z: 0 0 0 1 0 0 0 1 0

(1) 状态设定

 S_0 —初始状态,表示收到1位数据: 只标记感兴 −表示收到1位数据: 趣的子串

-表示收到2位数据: "10"

S₃——表示收到3位数据: "101",此时输出标志 Z=1.

	X/Z	
0/0	1/0	7.
(S_0)	0/0 S ₁	<u>)1/0</u>
1)
0/0	10	<mark>/0/0</mark>
S_3	0/0 (S ₂	可重叠 检测
3	0/0	检测

现态	Q ⁿ⁺¹ / Z	
Qn	X=0	X=1
S ₀	S ₀ /0	S ₁ / 0
S ₁	S ₂ / 0	S ₁ /0
S ₂	S ₀ /0	S ₃ / 1
S ₃	S ₀ /0	S ₁ / 0

现态	Q ⁿ⁺¹ / Z	
Qn	X=0	X=1
S ₀	S ₀ /0	S ₁ / 0
S ₁	S ₂ / 0	S ₁ /0
S ₂	S ₀ /0	S ₃ / 1
S ₃	S ₂ /0	S ₁ /0

序列检测的原始状态图构造方法总结 ------

- (1)检测器输入端收到1位数据时,有两种可能: 0或1,分别用 S_0 和 S_1 标记这两个状态,通常用 S_0 表示初始状态。
- (2) 收到2位数据时,只标记我们感兴趣的子串,用 S_2 表示(例如 10)
- (3) 同理,收到3位数据时,只标记我们感兴趣的子串,用S₃表示(例如 101)……,直到把我们感兴趣的完整子串也已标记为止。
- (4) 从初始状态开始,采用直接构图法,将每一个当前状态在 所有取值下的次态转换及输出情况已都考虑到,并且没有 遗漏为止。