igti

RELATÓRIO

PROJETO APLICADO

Instituto de Gestão e Tecnologia da Informação Relatório do Projeto Aplicado

Modelo arquitetural para refatoração da camada de back-end do processo de checkout em uma aplicação global

Luiz Victor Stefani Tinini

Orientador: Professor Ricardo Brito Alves

Março de 2022

LUIZ VICTOR STEFANI TININI

INSTITUTO DE GESTÃO E TECNOLOGIA DA INFORMAÇÃO

RELATÓRIO DO PROJETO APLICADO

Modelo arquitetural para refatoração da camada de back-end do processo de checkout em uma aplicação global

Relatório de Projeto Aplicado desenvolvido para fins de conclusão do curso MBA em Arquitetura de software e soluções.

Orientador: Professor Ricardo Brito Alves

CAMPINAS

Março de 2022

Sumário

1. CANVAS do Projeto Aplicado	5
1.1 Desafio	6
1.1.1 Análise de Contexto	6
1.1.2 Personas	7
1.1.3 Benefícios e Justificativas	8
1.1.4 Hipóteses	9
1.2 Solução	10
1.2.1 Objetivo SMART	10
1.2.2 Premissas e Restrições	11
1.2.3 Backlog de Produto	12
2. Área de Experimentação	13
2.1 Sprint 1	15
2.1.1 Solução	15
 Evidência do planejamento: 	15
 Evidência da execução de cada requisito: 	15
• 20	
2.1.2 Lições aprendidas	15
2.2 Sprint 2	16
2.2.1 Solução	16
 Evidência do planejamento: 	16
 Evidência da execução de cada requisito: 	16
 Evidência dos resultados: 	16
2.2.2 Lições aprendidas	16
2.3 Sprint 3	17
2.3.1 Solução	17
 Evidência do planejamento: 	17
 Evidência da execução de cada requisito: 	17
Evidência dos resultados:	17
2.3.2 Lições aprendidas	17
3. Considerações Finais	18

3.1 Resultados Finais	18
3.2 Contribuições	18
3.3 Próximos passos	18

1. CANVAS do Projeto Aplicado

1.1 Desafio

1.1.1 Análise de Contexto

Uma empresa possui um produto global que escalou de um para mais de catorze países em um tempo muito curto. Apesar de ainda estar funcionando, o processo de checkout é um gargalo enorme no processo de uma venda. Ocorrem lentidões e falhas com uma certa frequência. A forma de mitigar esse cenário até agora foi investindo em hardware, porem hoje uma refatoração do back-end se faz necessária.

Esse projeto irá focar no modelo arquitetural base para que essa refatoração ocorra.

Matriz CSD

	Certezas	Suposições	Duvidas
Atores	 O time de produto sabe que a arquitetura atual é ultrapassad a O time de engenharia tem muita vontade de focar na refatoração 		
Cenários	 Novos clientes têm que ser integrados sem colocar a saúde da plataforma em risco 		
Regras	 É preciso criar um plano de refatoração É preciso cria um 	 A refatoração não pode causar impacto negativos 	

desenho da	nos clientes	
nova	atuais	
arquitetura		

POEMS

Pessoas	Objetos	Ambiente	Mensagem	Serviços	
Quem está	Que objetos	Quais são as	Que	Quais serviços	
envolvido no	fazem parte	características	mensagens são	são	
contexto em	do	do ambiente?	comunicadas?	oferecidos?	
análise?	ambiente?				
Desenvolvedores	Computador	Home office	Atuando no	Desenvolvimen	
	, teclado e	ou escritório	desenvolvimen	to das	
	mouse		to das	funcionalidade	
			demandas da	s e correção	
			empresa	de bugs	
Pessoas de	Computador	Home office	Atuando no	Desenho de	
produto	, teclado e	ou escritório	desenho das	funcionalidade	
	mouse		novas	s e protótipos.	
			funcionalidade	Validar as	
			s do sistema	funcionalidade	
				S	
				desenvolvidas.	
Pessoas de	Computador	Home office	Atuando na	Organização	
projeto	, teclado e	ou escritório	organização	de pessoas e	
	mouse		dos processos	processos.	
			da empresa		
Alta gerencia	Computador	Home office	Negociando	Proporcionand	
	, teclado e	ou escritório	novos	o novos	
	mouse		contratos com	negócios para	
			novos clientes	a empresas.	

Registros	Insights
As informações iniciais foram obtidas	- Envolver bastante os
através de entrevista com	desenvolvedores e arquitetos no
desenvolvedores, Product owner e	desenho da solução
diretores	- Envolver o produto, projeto
	engenharia e gerencia para que
	todos saibam a necessidade do
	projeto.

1.1.2 Personas

João Silva

- Arquiteto de Sistemas
- 38 anos
- 5 anos de empresa

O que ele pensa e sente?

- Fica feliz por conta da expansão constante da empresa.
- Frustação por conta da quantidade de débitos técnicos.
- Tem medo que o sistema de checkout pare inesperadamente por conta de sobrecarga.

O que ele escuta?

- O sistema está lento para finalizar novas ordens de compra
- Nosso processo de checkout não é escalável e não vai suportar a expansão

O que fala e faz?

- Orienta os arquitetos de software para os rumos que a empresa está indo
- Negocia com o time de produto tempo para melhorias tecnicas

O que ele vê?

- Grandes possibilidades de melhora no sistema

Quais são suas necessidades?

 Precisa de apoio do time de negócio para poder corrigir problemas da arquitetura legada.

José Carlos

- Desenvolvedor
- 26 anos
- 2 anos de empresa

O que ele pensa e sente?

- Deseja virar arquiteto de software em alguns anos
- Está sobrecarregado por conta de ter que ajudar em war rooms decorrentes do legado

O que ele escuta?

- Temos mais 11 clientes para implantar o sistema esse ano

O que fala e faz?

- Ajuda no desenho de soluções técnicas
- É desenvolvedor Java
- Estuda tecnologias novas e quer trabalhar com novidades

O que ele vê?

- Grandes possibilidades de melhora no sistema
- Oportunidades de emprego em outras empresas

Quais são suas necessidades?

- Precisa trabalhar com novas tecnologias para poder acelerar o processo de sua mudança de carreira.

Ana Maria

- Product Manager
- 29 anos
- 3 anos de empresa

O que ela pensa e sente?

- Vê grandes possibilidades de expansão do negocio

O que ela escuta?

- Que a empresa tem que integrar mais 11 clientes na plataforma

O que fala e faz?

- Entende as necessidades dos clientes
- Ajuda os PO's a fazerem os epicos
- Negocia com o time de engenharia prioridades

O que ela vê?

- Grandes possibilidades para a plataforma no futuro

Quais são suas necessidades?

- Precisa que os débitos técnicos sempre sejam desenhados no backlog para que possamos encaixar com o tempo nas sprints

1.1.3 Benefícios e Justificativas

Itens	Checkout Service	Order Service	Order Notification	Post Order Service
Objetivos	Verificar dados da compra e finalizar pedido	Armazenar os dados da ordem	Notificar cliente sobre sua compra	Consumir estoque e dar pontos.
Atividades	Remover chamadas assíncronas Remover e- mail Criar uma integração via fila	Salvar uma ordem	Mandar email de atualização de uma ordem	Consumir estoques e bonificar os clientes

			I			
Questões	Quais os domínios que esse serviço deve ter?	Quais os domínios que esse serviço deve ter?	Quais os domínios que esse serviço deve ter?	Quais os domínios que esse serviço deve ter?		
Barreiras	Manter o legado funcionando	Manter o legado funcionando	Manter o legado funcionando	Manter o legado funcionando		
Ações do cliente	Fechar um pedido	N/A - Ação automática do sistema	Receber um e- mail ou notificação	N/A - Ação automática do sistema		
Funcionalidades	Finalizar Compras	Salvar as ordens	Notificar o Executar usuário chamadas assíncronas checkout			
Interação	Front end manda uma request para o checkout	Lê uma fila e processa a informação	Lê uma fila e manda e-mail de acordo com o status	Lê uma fila e executa chamadas de acordo com o status		
Mensagem	Compra efetuada com sucesso	200 - OK	N/A	N/A		
Onde ocorre	Após a seleção de produtos no carrinho de compra	Após os cálculos do checkout	Após a criação ou atualização de uma ordem de compra	Após a criação de uma ordem de compra		
Tarefas aparentes	Remover grande parte do código e repassar para os outros microsserviç os	Remover grande parte do código e repassar para os outros microsservi ços	Criar microsserviço	Criar microsserviço		

Tarefas	N/A	N/A	Criar os	N/A
escondidas			templates de e-	
			mail	
Processos de	Dashboards,	Dashboards,	Dashboards, logs	Dashboards,
suporte	logs e	logs e	e telemetria dos	logs e
	telemetria	telemetria	serviços	telemetria dos
	dos serviços	dos serviços		serviços
Saída desejável	Compra	Ordem	Mandar um e-	Executar
	finalizada	integrada	mail	chamadas
				assíncronas

1.1.4 Hipóteses

Matriz de observações para hipóteses

Observação	Hipótese
Devemos remover componentes	Podemos criar serviços menores para
assíncronos do checkout service	cada processo assíncrono.
Devemos usar mais o padrão de	Integrações entre o serviço de ordens e
mensageria nas integrações entres os	checkout deveria ser feito por
microsserviços	mensageria, para garantir que
	instabilidades no microsserviço
Devemos manter a versão legada	Podemos criar um fork dos
funcionando enquanto a nova está em	microsserviços e trabalhar no fork
desenvolvimento	durante a refatoração
Devemos usar tecnologias que garantam	Podemos usar dois clusters em regiões
99.99% de uptime	diferentes para garantir que ele sempre
	esteja online.
	Os serviços de mensageria podem ser
	contratados por vendors externos para
	não ter a necessidade de cuidar da infra
	de um cluster.

I	Ideias	В	Α	S	Т	С	0	Somatório	Priorização
---	--------	---	---	---	---	---	---	-----------	-------------

Integração entre serviço de checkout e de ordens feita usando Kafka	5	4	5	5	3	3	25	2
Integração entre os ERP's e o consumer de ordens feitas usando Kafka	5	4	4	4	2	2	21	5
Centralizar todos os emails de ordens em um único microsserviço	4	3	5	4	3	3	22	3
Criar um serviço com todas as baixas necessárias nos outro microsserviços	4	3	4	3	4	3	21	
Criar um tópico Kafka com todas as ordens criadas e atualizadas	5	5	5	3	5	2	25	1
Usar o mongoDB online archive no cluster de orders	3	3	3	5	3	5	22	4
Implementar HPA nos serviços de ordens	3	3	4	5	2	3	20	6

Escala	B - Benefícios	A - Abrangência	S - Satisfação	I - Investimentos	C - Cliente	O - Operacionalidade
5	De vital importância	Total (de 70% a 100%)	Muito grande	Pouquissimo investimento	Nenhum impacto	Muito fácil
4	Significativo	Muito grande (de 40% a 70%)	Grande	Algum investimento	Pequeno impacto	Fácil
3	Razoável	Razoável (de 20% a 40%)	Média	Médio investimento	Médio impacto	Média facilidade
2	Poucos benefícios	Pequena (de 5% a 20%)	Pequena	Alto investimento	Grande impacto	Difícil
1	Algum beneficio	Muito pequena	Quase não é notada	Altíssimo investimento	Impacto muito grande no cliente	Muito difícil

1.2 Solução

1.2.1 Objetivo SMART

Criar um projeto arquitetural utilizando o C4 model visando a refatoração do backend do processo de checkout de um sistema global de e-commerce que hoje não é escalável devido a quantidade de débitos técnicos acumulados. Esse projeto deve ser executado em dois meses e tem como objetivo final o redesenho do sistema para que ele se adeque melhor nos conceitos de microsserviços, fique mais modularizado, escalável, utilizando conceitos como: arquitetura SAGA e CQRS.

1.2.2 Premissas e Restrições

Premissas:

- O time de produto irá priorizar as demandas dessa refatoração
- Processo de refatoração vai acontecer de forma faseada.
- Todos os microsserviços serão analisados e modificados se caso necessário

Restrições

- Esse projeto apenas contemplará a quarta parte do C4 Model se todas os processos foram feitos previamente.
- Os contratos com os Front end e ERP's externos devem ser mantidos
- Os sistemas legados deverão permanecer rodando enquanto a refatoração acontece
- Os sistemas deverão respeitar minimamente as tecnologias da empresa

Riscos do projeto:

- R001 Ser necessário a mudança de contrato com o front end.
- R002 Ser necessário a mudança de contrato com os ERP's
- R003 Novas demandas chegarem e despriorizarem o projeto
- R004 Manter o legado e o novo ao mesmo tempo até ser possível a migração.

	Alta	Media	Alta R001 R002	Alta R003
	Media	Baixa	Media R004	Alta
Probabilidade	Baixa	Baixa	Baixa	Media
		Insignificante II	Moderado mpacto	Catastrófico

1.2.3 Backlog de Produto

18

2. Área de Experimentação

2.1 Sprint 1

2.1.1 Solução

• Evidência do planejamento:

• Evidência da execução de cada requisito:

Evidencia da codificação do C4 Model (Legado) - Level 1: System Context diagram

Desenvolvido em visual studio code com o plugin do plantUML

Código disponível em: GitHub: https://github.com/lvictor05/IGTI-ProjetoFinal/blob/master/Legado/Legado-C1.plantuml

Evidencia da codificação do C4 Model (Legado) - C4 Model (Legado)- Level 2: Container diagram

Desenvolvido em visual studio code com o plugin do plantUML

Código disponível em: **GitHub**: https://github.com/lvictor05/IGTI-ProjetoFinal/blob/master/Legado/Legado-C2.plantuml

```
Taylor Collection (18) Service (18) No. 1 | Service Collection (18) |
```

• Evidência dos resultados:

Obs: Para facilitar a visualização, segue abaixo os diagramas completos e o diagrama C2 completo e separados em duas partes com zoom.

Visto que nessa parte do projeto iremos apenas demonstrar os problemas atuais, o diagrama C3 não se tornou um requisito.

Arquitetura atual - C4 Model (Legado) - Level 1: System Context diagram

C4 Model (Legado) - C4 Model (Legado)- Level 2: Container diagram

Zoom Checkout Services:

Zoom E-commerce Services

Lista de problemas na arquitetura atual:

• Checkout Service

- o Mover chamadas assíncronas para outro microsserviço
- o Enviar novas ordens diretamente para o order consumer

Order Service

- Remover criação de ordens
- o Apontar para um nó de banco de dados analítico (read only)

• Order Consumer

- o Remover consumo do RabbitMQ
- o Criar Consumer de Kafka

• Order Publisher

- o Descontinuar microsserviço
- ERP
 - o Remover integração via rest, fazer atualizações via kafka
 - o Pegar novas ordens via Kafka

2.1.2 Lições aprendidas

- O C4 model é um diagrama muito simples e completo. Demorei um tempo para entender como ele funciona, porem desenvolver o projeto é mais rápido do que eu havia planejado. Talvez eu consiga desenvolver mais diagramas do que esperava até o final do projeto.
- O próprio criador do C4 model sugere que os diagramas sejam feitos por scripts em ferramentas que geram automaticamente o desenho e que não seja usado ferramentas gráficas como o Luccid Charts. Porém, a organização dos diagramas não fica com uma fácil visualização.

2.2 Sprint 2

2.2.1 Solução

• Evidência do planejamento:

• Evidência da execução de cada requisito:

Diagramas do legado (Correções da Sprint 1)

Correção - Evidencia da codificação do C4 Model (Legado) - Level 1: System Context diagram

Desenvolvido em Visual Studio Code com o plugin do plantUML

Código disponível em: **GitHub**: https://github.com/lvictor05/IGTI-ProjetoFinal/blob/master/Legado/Legado-C1.plantuml

Correção - Evidencia da codificação do C4 Model (Legado) - Level 2: Container diagram

Desenvolvido em Visual Studio Code com o plugin do plantUML

Código disponível em: **GitHub**: https://github.com/lvictor05/IGTI-ProjetoFinal/blob/master/Legado/Legado-C2.plantuml

Diagramas da solução proposta

Evidencia da codificação do C4 Model - Level 1: System Context diagram

Desenvolvido em Visual Studio Code com o plugin do plantUML

Código disponível em: GitHub: https://github.com/lvictor05/IGTI-ProjetoFinal/blob/master/Novo/Novo-C1.plantuml

Evidencia da codificação do C4 Model - Level 2: Container diagram

Desenvolvido em Visual Studio Code com o plugin do plantUML

Código disponível em: GitHub: https://github.com/lvictor05/IGTI-ProjetoFinal/blob/master/Novo/Novo-C2.plantuml

• Evidência dos resultados:

Diagramas do legado (Correções da Sprint 1)

Correção C4 Model (Legado) - Level 1: System Context diagram

Correção C4 Model (Legado) - Level 2: Container diagram

Diagramas da solução proposta

C4 Model - Level 1: System Context diagram

C4 Model - Level 2: Container diagram

Detalhes da solução proposta

As mudanças propostas na nova arquitetura buscaram reduzir o escopo dos microsserviços existentes e trabalhando melhor com processos assíncronos. O Kafka foi muito usado pois é capaz de gerenciar e trafegar grandes volumes de dados de forma constante e segura.

Order ETL e ETL Orders Message Broker: Na arquitetura legada tinhamos a necessidade de chamar outros microsserviços no order-consumer. Na arquitetura atual segregamos essa responsabilidade para um microsserviço e um topico kafka dedicados.

Debezium Orders e Orders Message Broker: Uma necessidade constante da plataforma é alertar outros sistemas da criação e atualizações de uma ordem. Usando o Debezium todas as alterações ocorridas na base de dados são publicadas em um tópico Kafka.

Order Notification Service: todos os e-mails que eram enviados pelo microsserviço de checkout foram repassados para esse novo serviço. Ele consome as atualizações do Order Message Broker, gera layout e repassa para o serviço de comunicação da plataforma. Foi necessário um microsserviço só para este fim, pois o time de produto já vê a necessidade de layouts mais modulares e customizáveis por pais e status de uma ordem.

Checkout Async Service: todas as validações, consumos e atualizações que aconteciam de forma assíncrona no microsserviço de chackout foram repassados para esse novo serviço. Ele consome as atualizações do Order Message Broker e executa as ações.

New Orders Message Broker: Foi substituído o processo de geração de uma ordem, agora ele é complemente assíncrono e possui um tópico Kafka que traz uma segurança maior na integração entre os sistemas, já que é possível consumir novamente as mensagens em caso de alguma instabilidade.

Integration Orders Message Broker: Foi substituído o processo integração de uma ordem, agora ele é complemente assíncrono e possui um tópico Kafka que traz uma segurança maior na integração entre os sistemas, já que é possível consumir novamente as mensagens em caso de alguma instabilidade.

Cold Database: O MongoDB possibilita criar nós de somente leitura chamado nós analíticos. Seguindo os conceitos de CQRS (Command Query Responsibility Segregation) podemos usar a base principal apenas para criação e atualização de orders e o nó analítico (cold database) para leitura.

2.2.2 Lições aprendidas

- Estudando um pouco mais os conceitos do C4 model percebi que usei de forma incorreta as separações de sistemas, descobri novos tipos de containers (Externos e filas) e a possibilidade de geração de legenda. Após essas descobertas resolvi corrigir os diagramas já feitos na sprint 1 e também consegui cumprir as tasks antes planejadas para essa sprint.
- C4 model tem se mostrado cada dia melhor e mais simples. Seus containers padrão já abrangem muitos senários e ainda existe a possibilidade de customiza-los se caso necessário.

• Como o projeto é focado em melhorar uma arquitetura atual, pude aproveitar muito dos diagramas do legado nos diagramas da nova arquitetura proposta.

2.3 Sprint 3

2.3.1 Solução

• Evidência do planejamento:

Evidência da execução de cada requisito:

Evidencia do desenvolvimento da elaborar estratégia de implementação e refatoração: A estratégia de refatoração é apenas um guia simples do passo a passo que deve ser tomado para que o processo de refatoração seja concluído. Ele teve como ideia principal sempre criar o novo e logo após remover o processo legado.

Evidencia da codificação do C4 Model Checkout Service - Level 3: Component diagram

Desenvolvido em Visual Studio Code com o plugin do plantUML

Código disponível em: GitHub: https://github.com/lvictor05/IGTI-ProjetoFinal/blob/master/Novo/Novo-C3-Checkout-Service.plantuml

Evidencia da codificação do C4 Model Orders ETL - Level 3: Component diagram

Desenvolvido em Visual Studio Code com o plugin do plantUML

Código disponível em: **GitHub**: https://github.com/lvictor05/IGTI-ProjetoFinal/blob/master/Novo/Novo-C3-Order-ETL.plantuml

Evidencia da codificação do C4 Model Order Consumer - Level 3: Component diagram

Desenvolvido em Visual Studio Code com o plugin do plantUML

Código disponível em: **GitHub**: https://github.com/lvictor05/IGTI-ProjetoFinal/blob/master/Novo/Novo-C3-Order-Consumer.plantuml

Evidencia da codificação do C4 Model Order Service - Level 3: Component diagram

Desenvolvido em Visual Studio Code com o plugin do plantUML

Código disponível em: **GitHub**: https://github.com/lvictor05/IGTI-ProjetoFinal/blob/master/Novo/Novo-C3-Order-Service.plantuml

Evidencia da codificação do C4 Model Order Notification - Level 3: Component diagram

Desenvolvido em Visual Studio Code com o plugin do plantUML

Código disponível em: **GitHub**: https://github.com/lvictor05/IGTI-ProjetoFinal/blob/master/Novo/Novo-C3-Order-notification.plantuml

Evidencia da codificação do C4 Model Checkout Async Service - Level 3: Component diagram

Desenvolvido em Visual Studio Code com o plugin do plantUML

Código disponível em: GitHub: https://github.com/lvictor05/IGTI-
ProjetoFinal/blob/master/Novo/Novo-C3-Checkout-Async-Service.plantuml

Evidência dos resultados:

Diagramas:

A arquitetura interna dos microsserviços abaixo tem como premissa ser simples e de fácil manutenção. Foi utilizado um pattern muito comum em projetos, o MVC (Model view controller). As camadas entrada, processamento e saída são bem definidas seguindo os conceitos de SOLID e trazendo uma fácil manutenção até mesmo para desenvolvedores mais inexperientes.

C4 Model Checkout Service - Level 3: Component diagram

C4 Model Orders ETL - Level 3: Component diagram

C4 Model Order Consumer - Level 3: Component

external person

C4 Model Order Service - Level 3: Component

C4 Model Order Notification - Level 3: Component

C4 Model Checkout Async Service - Level 3: Component

Elaborar estratégia de implementação e refatoração

O processo de implementação e refatoração vai seguir a seguinte estratégia. Primeiro vamos criar os serviços e integrações novas e depois começar a modificar os serviços já existentes. Essa lista é apenas uma sequência lógica high level da melhor forma de começar o processo de refatoração.

- 1. Implementar Debezium Orders e Orders Message Broker.
- 2. Criar integração entre ERP e Order Message Broker.
- 3. Criar serviço de Order Notification.
- 4. Remover envio de e-mail do Checkout Service.
- 5. Criar serviço Checkout Async Service.
- 6. Remover serviços assíncronos do Checkout Service.
- 7. Criar Integration Orders Message Broker e plugar ERP ao tópico.
- 8. Criar Serviços de Order ETL e ETL Order Message Broker
- 9. Plugar ETL Order Message Broker ao Order Consumer
- 10. Criar Integração entre checkout e criar topico New Order Message Broker
- 11. Criar integração entre New Order Message Broker e Orders ETL
- 12. Criar nó analítico para a base de ordens.
- 13. Remover criação de ordens do serviço order-service
- 14. Conectar Order-Service ao nó analítico do banco de dados
- 15. Remover implementações do RabbitMQ do order-consumer
- 16. Remover enriquecimentos do order-consumer
- 17. Desativar microsserviço order-publisher

2.3.2 Lições aprendidas

Acredito que ao final dessa sprint pude concluir o muito bem essse projeto. O C4 Model se mostrou realmente muito simples de ser implementado. Com a pratica pude entender melhor o framework e utiliza-lo da forma correta. Preferi manter as cores e layouts padrão do framework, apesar de ser possível modifica-lo.

Acredito que a única camada que seria bom chegar ao nivel 4 do framework seria o Checkout Service - Rules. Essa camada é responsavel por manter cada uma das regas de negócio do serviço de checkout e por esse motivo é muito importante ser bem detalhada.

3. Considerações Finais

3.1 Resultados

Considero esse projeto concluído com sucesso. Pude abordar todos os pontos que havia planejado anteriormente. Restringi o escopo focando apenas na refatoração do sistema de checkout para justamente para que eu pudesse abordar com um pouco mais de detalhes todos os passos do processo.

A maior lição aprendida durante esse projeto foram todos os benefícios que um projeto bem organizado e dividido pode trazer. Pude dividir muito bem cada parte do trabalho em uma sprint diferente. A Sprint 1 foi mais focada em apresentar a arquitetura atual e suas falhas. Na Sprint 2 comecei a desenhar a nova arquitetura, utilizando o primeiro e segundo nível do C4 model. Por fim na Sprint 3 fui mais afundo na nova arquitetura e desenvolvi o terceiro nível do C4 model para a arquitetura proposta.

Não houveram grandes dificuldades durante todo o processo de desenvolvimento desse projeto. O mais trabalhoso foi aprender um padrão de documentação que apensar de muito conhecido no mercado, era uma novidade para mim. O C4 model tem uma documentação muito bem descrita e com exemplos, portanto com um pouco de esforço é possível entender todo o framework.

Esse trabalho proporcionou uma serie de ganhos para minha carreira profissional. Durante sua construção pude utilizar conceitos de design thinking, design patterns, SOLID, C4 Model, entre outros. Com certeza usei muitos conceitos abordados nos cursos de Arquitetura de Software e Arquitetura de Solução.

A única desvantagem que posso levantar agora no momento é o tempo curto do projeto, gostaria de ao menos ter tido a oportunidade de documentar o início da refatoração na pratica. Depois da implementação certamente vamos conseguir um sistema mais organizado, de simples manutenção, escalável e até mesmo mais barato de se manter.

3.2 Contribuições

O projeto propunha uma completa reformulação do sistema de checkout de um sistema já existente. Era necessário criar o novo, mantendo o existente ainda funcionando. Com o passar do tempo os microsserviços legados foram ganhando cada dia mais funcionalidades e acabaram fugindo do seu papel inicial. Esse projeto em buscou desacoplar componentes, restringir e centralizar responsabilidades para que cada microsserviço fosse capaz de fazer uma pequena parte do todo. Em resumo a nova arquitetura se divide em:

Checkout Service: Validar produtos e submeter uma ordem.

Order ETL: Fazer transformações nas ordens atualizadas.

Order Consumer: Salvar ordens no banco de dados.

Order Service: Prover ordens para os clientes.

Checkout Async Service: Executar pequenos Jobs após uma ordem ser submetida.

Order Notification: Avisar o cliente sobre atualizações de ordens.

Para garantir estabilidade e segurança, toda a comunicação entre os microsserviços foi migrada para o Kafka, uma ferramenta de mensageria mais robusta e até mesmo mais segura que a usada anteriormente. Usamos muito das vantagens da comunicação assíncrona e com frameworks e ferramentas que já tem grandes cases de sucesso em projetos que demandam até mais performance que esse.

Como se trata de um sistema crítico, quanto mais simples a implementação melhor. Já que a grande maioria dos colaboradores possui experiencia em Java, inicialmente todos os microsserviços ainda se manterão em Java e só serão reescritos caso haja necessidade. A empresa e os times sempre estão em constantes mudanças, portanto o padrão MVC será usado na arquitetura interna dos microsserviços.

Considero esse projeto muito inovador sim. Certamente poderia ter sido abordado tecnologias que estão na "hipe" do momento, porem estamos falando de um sistema que suporta vários países e transaciona uma quantia financeira considerável. A inovação nesse caso se deu na forma de usar tecnologias mais consolidadas no mercado, uma inovação considerando riscos e trazendo confiabilidade.

3.3 Próximos passos

Todos os diagramas e ideias geradas nesse projeto serão utilizados para de fato começar o processo de refatoração do processo de checkout no qual esse trabalho foi baseado. Porem antes terei que desenvolver mais algumas etapas.

Acredito que terei que ir para o nível quatro do C4 model nos seguintes containers: C4 Model Checkout Service - Level 3: Component diagram container Checkout Rules e C4 Model Order Notification - Level 3: Component Container Template Factory.

Depois criar todos os épicos e user stories do Scrum para que essa demanda possa ser devidamente priorizada e iniciada pelo time de desenvolvimento.