שעור 11 משפט הפירוק הפרימרי

11.1 הגדרה של חיתוך וסכום של תתי מרחבים

הגדרה 11.1

מוגדר V_1+V_2 מרחב התת מרחב V מעל השדה V_1+V_2 מרחב מרחב של מרחב איריו מעל מרחב יהיו

$$V_1 + V_2 = \{u_1 + u_2 | u_1 \in V_1, u_2 \in V_2\}.$$

משפט 11.1 סכום של תת מרחב שווה לפרישה של האיחוד

יהיו $V_1,V_2\subseteq V$ מעל השדה $V_1,V_2\subseteq V$ יהיו

$$V_1 + V_2 = \operatorname{span}\left(V_1 \cup V_2\right) .$$

הוכחה:

$$:V_1+V_2\subseteq \mathrm{span}\,(V_1\cup V_2)$$
 נוכיח כי

 $.V_1+V_2\subseteq (V_1\cup V_2)$ אזי $u_1+u_2\in {
m span}\,(V_1\cup V_2)$ מתקיים $u_2\in V_2$ -ו $u_1\in V_1$ לכל

$$\operatorname{span}\left(V_1\cup V_2
ight)\subseteq V_1+V_2$$
 נוכיח כי

 $eta_1,\dots,eta_n\in$, $lpha_1,\dots,lpha_k\in\mathbb{F}$ וסקלרים $\mathbf{v}_1,\dots,\mathbf{v}_n\in V_2$ ו ו $u_1,\dots,u_k\in V_1$ אז קיימים $w\in\mathrm{span}\,(V_1\cup V_2)$ יהי \mathbb{F}

$$w = \alpha_1 u_1 + \dots + \alpha_k u_k + \beta_1 \mathbf{v}_1 + \dots + \beta_n \mathbf{v}_n .$$

$$.eta_1\mathbf{v}_1+\cdots+eta_n\mathbf{v}_n\in V_2$$
 וגם $lpha_1u_1+\cdots+lpha_ku_k\in V_1$ אז $.w\in V_1+V_2$ לכן

. כנדרש Span $(V_1 \cup V_2)$ \Leftarrow Span $(V_1 \cup V_2) \subseteq V_1 + V_2$ וגם $V_1 + V_2 \subseteq \operatorname{Span} (V_1 \cup V_2) = \operatorname{Span} (V_1 \cup V_2)$

דוגמה 11.1

 $V_2=$ ו , $V_1=\left\{egin{pmatrix}x\\0\\0\end{pmatrix}ig|x\in\mathbb{R}
ight\}$: \mathbb{R}^3 נקח את המרחב ווקטורי . $V=\mathbb{R}^3$ נקח את המרחב ווקטורי

, קווים ישרים ב \mathbb{R}^3 אז הסכום שלהם הינו , $\left\{ egin{pmatrix} 0 \\ y \\ 0 \end{pmatrix} \,\middle|\, y \in \mathbb{R} \right\}$

$$V_1 + V_2 = \left\{ \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \middle| x, y \in \mathbb{R} \right\} ,$$

 \mathbb{R}^3 ב z=0 ומהווה את המישור

11.2 סכום ישר

הגדרה 11.2 סכום ישר

 \mathbb{F} מעל שדה V מעל וקטורי ע מרחבים של מרחב יהיו אומרים כי התת מרחב ע הוא $W\subseteq V$ מרחב כי התת מרחב אומרים כי התת

$$W = V_1 + V_2$$
 (1

עבורם $u_2 \in V_2$ -ו $u_1 \in V_1$ יחידים וקטורים קיימים $w \in W$ לכל וקטור לכל לכל לכל וקטור אימים וקטורים ו

$$w = u_1 + u_2 .$$

 $.W=V_1\oplus V_2$:סימון

משפט 11.2

 $\mathbb F$ מעל שדה על וקטורי וקטורי מרחב מרחב מרחב אהיי V_1,V_2 יהיי אהיי אס ורק אם אם אס ורק אם $W=V_1\oplus V_2$

$$W=V_1+V_2$$
 (x

$$.V_1 \cap V_2 = \{ar{0}\}$$
 (2

הוכחה:

$$.W = V_1 \oplus \cfrac{:\Leftarrow ext{cinif}}{V_2}$$
נניח כי

$$.W = V_1 + V_2$$
 ,11.2 לפי ההגדרה (1

-ש כך יחיד יחיד ארוף ליניארי לכן היים . $u \in V_1 \cap V_2$ יהי (2

$$u = \alpha_1 u_1 + \alpha_2 u_2$$

. כאשר
$$lpha_1,lpha_2\in\mathbb{F}$$
 -ו $u_1\in V_1,u_2\in V_2$ כאשר

 $u_1 = u, u_2 = 0, \alpha_1 = 1$ הביטוי הזה מסופק על ידי ההשמה

$$.u_1=0, u_2=u, \beta_1=1$$
 ועל ידי ההשמה

הצרוף ליניארי יחיד לכן בהכרח שתי ההשמות זהות.

.u=0 הדרך היחידה לקיים שתיהן היא

 $\dfrac{\mathsf{cvill} \; \Leftrightarrow \; }{\mathsf{ctrn}}$ נניח שמתקיימים

$$W = V_1 + V_2$$
 (1

$$V_1 \cap V_2 = \{\bar{0}\}$$
 (2

אזי התנאי (1) של ההגדרה 11.2 מתקיים.

נותר להוכיח התנאי (2) של ההגדרה 11.2.

 $w=u_1+u_2$ עבורם $u_1\in V_1, u_2\in V_2$ אזי קיימים $W=V_1+V_2$ עבורם $w\in W$ יהי נוכיח כי הווקטורים u_1,u_2 יחידים.

נניח בשלילה ש-

$$w = u_1 + u_2$$
, $w = u_1' + u_2'$

כאשר $(u_2 \neq u_2')$ וקטורים שונים $u_2, u_2' \in V_2$ ו- $(u_1 \neq u_1')$ וקטורים שונים $u_1 \neq u_1' \in V_1$ כאשר

$$u_1 - u_1' = u_2 - u_2' .$$

$$u_1 - u_1' \in V_2$$
 וגם $u_1 - u_1' \in V_1$ לכן

$$.u_1 - u_1' \in V_1 \cap V_2 \Leftarrow$$

 $u_1
eq u_1'$ -ש בסתירה לכך שי $u_1 = u_1'$ אז $V_1 \cap V_2 = \{0\}$ מכיוון ש-

משפט 11.3

 \mathbb{F} מעל שדה V_1,V_2 יהיו V_1,V_2 מעל שדה ערחבים של מרחב וקטורי אם התנאים הבאים מתקיימים:

$$W = V_1 + V_2$$
 (1

לכל $u_1 \in V_1$, ו- $u_2 \in V_1$ הקבוצה $\{u_1, u_2\}$ בלתי תלויה ליניארית (2

$$.W=V_1\oplus V_2$$
 אזי

הוכחה:

נוכיח כי התנאים (1) ו- (2) של משפט 11.2.

. תנאי של משפט אחד מההנחות כי הוא $W=V_1+V_2$ מתקיים אחד מההנחות (1) תנאי

 $V_1 \cap V_2 = \{0\}$ -נותר רק להוכיח שהתנאי (2) מתקיים, כלומר ש

 $.u_2=-u\in V_2$ ונגדיר $u_1=u\in V_1$ נגדיר $.u\in V_1\cap V_2$ יהי

אזי

$$u_1 + u_2 = u + (-u) = 0$$
.

 $u_1=0$ ו- $u_1=0$ בלתי-תלויים ליניארית לכן הדרך היחידה שזה מתקיים היא אם $\{u_1,u_2\}$ $V_1 \cap V_2 = \{0\}$ ולכן u = 0