ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА» (СП6ГУТ)

Факультет Информационных систем и технологий Кафедра Автоматизации предприятий связи

Системный анализ и принятие решений

Отчет по лабораторной работе №4 Вариант №X

«Решение задачи о коммивояжере с помощью программы «Lindo»»

Выполнил: Студент гр. ИСТ-ХХХ

Проверил:

д.т.н., доцент Бухарин В.В.

Цель выполнения работы

Цель выполнения лабораторной работы — получение навыков применения методологии системного анализа при решении задачи о коммивояжере на примере расчета оптимальной пути с учетом ограничений по условиям отъезда, прибытия и замкнутости маршрута.

Постановка задачи

Пусть имеется п пунктов и задана матрица c={cij} расстояний между ними. Выезжая из одного пункта, коммивояжер должен побывать во всех пунктах по одному и только по одному разу и вернуться в исходный пункт. Требуется определить: в каком порядке следует объезжать пункты, чтобы суммарное пройденное расстояние было бы минимальным (найти минимальный полный замкнутый маршрут).

Математическая модель.

Управляемые переменные. Введем переменные хіј, показывающие истинность или ложность факта переезда из пункта і в пункт ј. Переменные хіј такие, что хіј=1, если коммивояжер переезжает из пункта і в пункт ј, и хіј=0 - в противном случае.

Целевая функция имеет вид:

найти
$$min \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$
, $(i \neq j)$

где сіј - расстояние между пунктами і и ј,

n - количество пунктов.

Система ограничений на значения управляемых переменных имеет вид:

- условия отъезда: $\sum_{j=1}^n x_{ij} = 1$, (i=1,2,...,n)
- условия прибытия: $\sum_{i=1}^n x_{ij} = 1$, (j = 1, 2, ..., n)
- условия, обеспечивающие существование полного замкнутого маршрута:

$$u_i - u_j + nx_{ij} \le n - 1, (i = 2, ..., n; j = 2, ..., n; i \ne j)$$

где иі ,иј - произвольные целые и неотрицательные числа.

Пример (вариант X). Пусть имеется пять пунктов, взаимные расстояния между которыми приведены в таблице.

i∖i

Таблица 1. Расстояние между пунктами

Требуется:

- определить в каком порядке следует объезжать пункты, чтобы суммарное пройденное расстояние было бы минимальным;
- сравнить результат решения поставленной задачи с результатами её решения при условии, что имеет место запрет на коммуникации между пунктами (1-2), (3-8), (2-5) и (8-6), а взаимные расстояния между пунктами (1-6), (3-5) и (6-7) уменьшены на 15 км.

Первый этап задачи.

Построение математической модели оптимизируемой системы:

1. Целевая функция (максимизация прибыли):

Haŭmu min 49x12+40x13+55x14+45x15+52x16+43x17+42x18+49x21+

+40x23+56x24+41x25+55x26+59x27+44x28+40x31+40x32+44x34+ +54x35+59x36+60x37+59x38+55x41+56x42+44x43+49x45+44x46+ +42x47+55x48+45x51+41x52+54x53+49x54+57x56+44x57+44x58+ +52x61+55x62+59x63+44x64+57x65+53x67+54x68+43x71+59x72+ +60x73+42x74+44x75+53x76+48x78+42x81+44x82+59x83+55x84+ 44x85+54x86+48x873.

Система ограничений на значения управляемых переменных:

- условия отъезда:

$$x12+x13+x14+x15+x16+x17+x18=1$$

 $x21+x23+x24+x25+x26+x27+x28=1$
 $x31+x32+x34+x35+x36+x37+x38=1$
 $x41+x42+x43+x45+x46+x47+x48=1$
 $x51+x52+x53+x54+x56+x57+x58=1$
 $x61+x62+x63+x64+x65+x67+x68=1$
 $x71+x72+X73+x74+x75+x76+x78=1$
 $x81+x82+x83+x84+x85+x86+x87=1$

- условия прибытия:

$$x21+x31+x41+x51+x61+x71+x81=1$$

 $x12+x32+x42+x52+x62+x72+x82=1$
 $x13+x23+x43+x53+x63+x73+x83=1$
 $x14+x24+x34+x54+x64+x74+x84=1$
 $x15+x25+x35+x45+x65+x75+x85=1$
 $x16+x26+x36+x46+x56+x76+x86=1$
 $x17+x27+x37+x47+x57+x67+x87=1$
 $x18+x28+x38+x48+x58+x68+x78=1$.

- условия, обеспечивающие существование полного замкнутого маршрута:

 $u4-u7+8x47<=7,\ u4-u8+8x48<=7,\ u5-u2+8x52<=7,\ u5-u3+8x53<=7,\ u5-u4+8x54<=7,\ u5-u6+8x56<=7,\ u5-u7+8x57<=7,\ u5-u8+8x58<=7,\ u6-u2+8x62<=7,\ u6-u3+8x63<=7,\ u6-u4+8x64<=7,\ u6-u5+8x65<=7,\ u6-u7+8x67<=7,\ u6-u8+8x68<=7,\ u7-u2+8x72<=7,\ u7-u3+8x73<=7$ $u7-u4+8x74<=7,\ u7-u5+8x75<=7,\ u7-u6+8x76<=7,\ u7-u8+8x78<=7$ $u8-u2+8x82<=7,\ u8-u3+8x83<=7,\ u8-u4+8x84<=7,\ u8-u5+8x85<=7$ $u8-u6+8x86<=7,\ u8-u7+8x87<=7$

- Все переменные не отрицательны GIN 50

Решение оптимизационной задачи первого этапа

В соответствии с требованиями программы Lindo, задается исходная целевая функция и система ограничений поставленной задачи:

Рисунок 1. Запись математической модели задачи на первом этапе в соответствии с требованиями программы Lindo

Результаты решения первого этапа задачи представлены на рисунке 2.

Рисунок 2. Вид диалогового окна программы Lindo с результатами решения оптимизационной задачи первого этапа

Минимальное значение пройденного расстояния составляет 347 км и, при заданных ограничениях путь будет (1-3)(3-2)(2-5)(5-7)(7-4)(4-6)(6-8)(8-1)

Второй этап задачи.

Запрет на коммуникации между пунктами (1-2), (3-8), (2-5) и (8-6), а взаимные расстояния между пунктами (1-6), (3-5) и (6-7) уменьшены на 15 км.

Решение оптимизационной задачи второго этапа

Задается целевая функция и система ограничений для задачи оптимизации производственной системы на втором этапе:

Рисунок 3. Запись математической модели оптимизационной задачи на втором этапе в соответствии с требованиями программы Lindo

Результаты решения задачи оптимизации производственной системы на втором этапе с помощью программы Lindo представлены на рисунке 4.

OBJECTIVE FUNCTION VALUE		
1)	331.0000	
VARIABLE	VALUE	REDUCED COST
X13	0.000000	40.000000
X14	0.000000	55.000000
X15	0.000000	45.000000
X16	0.000000	37.000000
X17	0.00000	43.000000
X18	1.000000	42.000000
X23	1.000000	40.000000
X24	0.000000	56.000000
X26 X27	0.000000	55.000000 59.000000
X27 X28	0.000000	44.000000
X31	0.000000	40.000000
X32	0.000000	40.000000
X34	0.000000	44.000000
X35	1.000000	39.000000
X36	0.000000	59.000000
X37	0.000000	60.000000
X41	0.000000	55.000000
X42	0.000000	56.000000
X43	0.000000	44.000000
X45	0.000000	49.000000
X46	0.000000	44.000000
X47	1.000000	42.000000
X48	0.000000	55.000000
X51	0.000000	45.000000
X53	0.000000	39.000000
X54 X56	1.000000	49.000000 57.000000
X57	0.000000	44.000000
X58	0.000000	44.000000
X61	1.000000	37.000000
X62	0.000000	55.000000
X63	0.000000	59.000000
X64	0.000000	44.000000
X65	0.000000	57.000000
X67	0.000000	38.000000
X71	0.000000	43.000000
X72	0.00000	59.000000
X73	0.000000	60.000000
X74	0.000000	42.000000
X75 X76	0.000000	44.000000 38.000000
X76 X78	0.000000	48.000000
X81	0.000000	42.000000
X82	1.000000	44.000000
X84	0.000000	55.000000
X85	0.000000	44.000000
X87	0.000000	48.000000
U2	1.000000	0.000000
T3	2.000000	0.000000
U4	4.000000	0.000000
U6	8.00000	0.000000
U7	7.000000	0.000000
T8	0.00000	0.000000
U5	3.000000	0.000000

Рисунок 4. Вид диалогового окна программы Lindo с результатами решения оптимизационной задачи второго этапа

Минимальное значение пройденного расстояния составляет 331 км и, при заданных ограничениях путь будет (1-8)(8-2)(2-3)(3-5)(5-4)(4-7)(7-6)(6-1)

Заключение

В результате проведения расчетов было получено решение задачи коммивояжёра для 8 пунктов с проходом через каждый пункт и последующим возвращением в исходную точку.

При начальных условиях было найдено минимальное значение пройденного расстояния, которое составляет 347 км с путём 1-3-2-5-7-4-6-8-1.

При ограничении коммуникации между пунктами (1-2), (3-8), (2-5) и (8-6), а также уменьшения взаимных расстояний между пунктами в направлении (1-6),

(3-5) и (6-7) на 15, было найдено минимальное значение пройденного расстояния, которое составляет 331 единиц с путём 1-8-2-3-5-4-7-6-1.

Изменение начальных условий задачи привело к уменьшению минимальной возможной длинны пути,