(19)日本国特許庁(JP)

激別記号

(51)Int.CL3

(12) 公開特許公報(A)

庁内整選番号

FI

(11)特許出類公開番号

特開平5-174810

技術表示箇所

最終頁に続く

(43)公開日 平成5年(1993)7月13日

HOLM 4/ 4/ 10/	62 Z	
		審査請求 未請求 請求項の数4(全 6 頁)
(21)出頻咎号	特類平3-353603	(71)出源人 000001889 三洋電機株式会社
(22)出題日	平成 3 年(1991)12月18日	大阪府守口市京阪本通2丁目18番地
		(72)発明者 大下 竜司
		大阪府守口市京阪本通2丁目18番地 三洋
		驾機株式会社内
		(72)発明者 古川 修弘
		大阪府守口市京阪本通2丁目18番地 三洋
		電機株式会社内
		(72)発明者 吉村 精司
		大阪紹守口市京阪本浦2丁目18番地 三洋

(64)【発明の名称】 電池用電級及び電池

(57)【要約】

【構成】活物質と、導電剤としての炭素粉末と、結着剤 とからなる正拠合剤を集電体に固着させてなる電池用電 極であって、簡記炭素粉末として昇面活性剤を表面に吸 着させた家面改質炭素粉末が使用されてなる。

【効果】 導電剤たる炭素粉末に界面活性剤を吸着させる ととにより、電極の電解液に対する揺れ性が改良されて いるので、優れた電池特性を発現する電池の作製が可能 になる。

電機株式会社内 (74)代理人 弁理士 松尾 智弘 (2)

【特許請求の範囲】

【請求項1】活物質と、導電剤としての炭素粉末と、結 養剤とからなる正極合剤を暴電体に固着させてなる電池 用電極であって、前配炭素粉末として界面活性剤を豪面 に吸着させた表面改質炭素粉末が使用されていることを 特徴とする電池用電極。

1

【請求項2】前記表面改質炭素粉末が、前記炭素粉末1 () () 重量部に前記界面活性剤を1() 重量部未満の割合で 吸着させてなるものである請求項1記載の電池用電極。 【請求項3】前記活物質が、L.CoO,、LiMn, O. LiMnO. LiNiO. MnO. 及びCu Oよりなる群から選ばれた少なくとも一種の金属酸化物 である請求項1記載の電池用電極。

【請求項4】請求項1~3のいずれかに記載の電池用電 極を正極とする電池。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電池用電極に係わり、 詳しくは無池用電極の延解液に対する濡れ性(含液性) の改良に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】リチウ ム電池などの非水系電池の正極の活物質としては、Lェ NiO,、LiCoO,等の金属酸化物の粉末が使用さ れているが、金属酸化物は非導電性物質であるため、と れに適當性を付与すべく導電剤が配合されて正徳合剤と して使用されている。

【0003】すなわち、非水系電池の正極は、先ず粉末 状の活物質と、炭素粉末からなる導電剤とを、フッ素樹 脳等の結着剤と縄線して正極合剤を作製し、次いでこの 30 正極合剤を集留体(芯体)に圧延等の手段により固着さ せるととにより作製されている。との種の電極の場合、 電極反応は活物質と電解液との接触界面で起こるため、 活物質の全表面のうち電解液と直接接触する部分(以 下、「濡れ部」と称する)のみが電極反応に関与すると ととなる。すなわち、その電解液で濡れる部分の面積が 活物質の実効表面滑となる。

【0004】しかしながら、炭素粉末は水系、非水系電 解液を関わず能じて電解液に対する濡れ栓が良くない。 かかる濡れ性の良くない炭素粉末をそのまま導躍剤とし て配合すると、共存する活物質の濡れ性もまた良くない ものとなる。而して、電池容費の小さい電池しか得難く なる。また、活物質の濡れ性が良くないと、正極におけ る電極反応が活物質の表面の一部すなわち上記編れ部で 集中的に起こるようになり、濡れ部の活物質の劣化速度 が遠くなる。このため、二次電池用電極として使用した 場合、サイクル特性の良くない電池しか得難くなる。

【①①05】本発明は、以上の事情に鑑みなされたもの であって、その目的とするところは、優れた電池特性を 発現させ得る電池用電極及びそれを正徳に用いてなる筐 50 これらの活物質は一種単独を用いてもよく、必要に応じ

池を提供するにある。

[0006]

【課題を解決するための手段】上記目的を達成するため の本発明に係る電池用電極は、活物質と、導電剤として の炭素粉末と、結音剤とからなる正極合剤を集電体に固 着させてなる電池用電極であって、前記炭素粉末として 界面活性剤を表面に吸着させた表面改質炭素粉末が使用 されていることを特徴とする。

2

【りり07】本発明に係る電池用電便は、たとえば非水 10 系電解液リチウム電池の正極として好適に使用され得る ものである。

【① 0 0 8 】本発明においては、導電剤たる炭素粉末と して、界面活性剤を吸着させたものが用いられる。

【0009】炭素粉末としては、カーボンブラック、ア セチレンブラック、ケッチンブラックが例示される。と れらの導電性粉末は一種単独を用いてもよく、必要に応 じて二種以上を併用してもよい。

【0010】界面活性剤としては、炭素粉末の電解液に 対する濡れ性を改良し得るものであれば特に制限され 20 ず、たとえば高級脂肪酸エステル、アルキル硫酸塩等の 陰イオン系界面活性剤、高級アミンハロゲン酸塩、第4 アンモニウム塩等の陽イオン系界面活性剤、ポリエチレ ングリコールアルキルエーテル、ポリエチレングリコー ル腊舫酸エステル等の非イオン系界面活性剤など、種々 の界面活性剤を使用することができる。なかでも、ボリ エチレングリコールステアレート、ポリオキシエチレン ノニルフェノールエーテル、高級脂肪酸ペンタエリスリ トール又はそのモノ脂肪酸エステルが好適なものとして 挙げられる。

【()()11】炭素粉末の界面活性剤吸着置は、炭素粉末 100重置部に対して10重置部未満が好ましく。0. 5~6重置部の範囲がより好ました。吸着置が10重置 部以上であると、導電剤の添加量が組対的に減少し、正 極合剤の導電性が低下して電池容置が低下するので好ま しくない。

【()()12】界面活性剤を炭素粉末に吸着させる方法と しては、たとえば昇面活性剤を水やアルコール類等の低 沸点溶媒に分散又は溶解させた液に炭素粉末を浸漬した 後、溶媒を蒸散させる方法が挙げられるが、炭素粉末に 「界面活性剤を有効に吸着させ得る方法であれば特に制限 なく用いることができる。

【0013】界面活性剤を吸着させた炭素粉末は、活物 質及びPTFE(ポリテトラフルオロエチレン)、PV dF (ポリニフッ化ビニリデン)等の結者剤と混錬し て、正極台剤として使用される。

【0014】本発明における活物質としては、特に制限 されないが、たとえば非水系電解液電池の正極活物質と UTA, LICOO, LIMA, O., LIMA O₂ 、LıNiO₂ 、MnO₂ 、CuOが例示される。

(3)

て二種以上を併用してもよい。

[0015]

【作用】本発明に係る電池用電極は、線電剤として界面 活性剤を吸着させた炭素粉末が使用されているので、正 極の電解液に対する濡れ性が良好であり、電極反応にお ける実効表面積が大きい。このため、正極における弩極 反応が活物質の表面で均一に行われるようになり、活物 質の劣化速度が遅くなる。

[0016]

に説明するが、本発明は下記真施例により何ら限定され るものではなく、その要旨を変更しない範囲において適 直変更して実施することが可能なものである。

【① () 17】 (実施例1) 本発明に係る電池用電極を正 極とする円筒型の非水系電解液二次電池を作製した。

〔正極の作製〕炭酸コバルトと炭酸リチウムとをCo: Liの原子比1:1で複合した後、空気中で900°C で20時間熱処理してLiCoO」を得た。このようし て得た活物質としてのLiCoO。に、導電剤としての 登比90:6:4の比率で混合して正極合剤を得た。こ の正極合剤を集留体としてのアルミニウムの箱に圧延 し、250° Cで2時間真空下で熱処理して正極を作製 した。上記表面改質炭素粉末としては、アセチレンブラ ック100重量部に対してポリエチレングリコールステ アレートを1重量部吸着させたものを使用した。

【0018】 (貧極の作製) 400メッシュパスの黒鉛 に、結者削としてのPTFEを、重置比95:5の比率 で混合し、集電体としてのアルミニウムの箱に圧延し、 250°Cで2時間真空下で熱処選して、負極を作製し 30

【0019】(非水系延解液の調製)エチレンカーボネ ートとジメチルカーボネートとの体積混合比1:1の混 台溶媒に、LiPF。を1モル/リットル密かして非水 系電解液を調製した。

【0020】(電池の作製)以上の正負両極及び非水系 電解液を用いて円筒型の二次電池BAI(電池寸法:直 径14.2mm. 高さ:50.0mm) を作製した。な お、ポリプロビレン製の飲孔性薄膜をセパレータとして 用いた。

【①①21】図1は作製した電池BA1の断面図であ り、同図に示す電池BA1は、正極1及び負極2、とれ ら両電極を離隔するセパレータ3、正極リード4. 負極

リード5、正極外部端子6、負極毎7などからなる。正 極1及び負極2は非水電解液が注入されたセパレータ3 を介して過巻き状に巻き取られた状態で負極缶7内に収 容されており、正極1は正極リード4を介して正極外部 蝎子6に、また負極2は負極リード5を介して負極面7 に接続され、電池BA1内部で生じた化学エネルギーを 電気エネルギーとして外部へ取り出し得るようになって いる。

【0022】(実施例2)表面改質炭素粉末として、ア 【実施例】以下、本発明を実施例に基づいてさらに詳細 10 セチレンブラック100重量部に対してポリオキシエチ レンノエルツェノールエーテルを1重量部吸着させたも のを使用したこと以外は、実施例1と同様にして電池B A2を作製した。

> 【0023】(実施例3) 表面改質炭素粉末として、ア セチレンブラック100重量部に対して高級脂肪酸ペン タエリスリトールを1重量部吸着させたものを使用した こと以外は、実施例1と同様にして電池BA3を作製し

【0024】(比較例1)正極合剤の作製において界面 表面改質炭素紛末と、結着剤としてのPTFEとを、重 20 活性剤を吸着させずに表面未改質のアセチレンブラック を用いたこと以外は実施例1と同様にして、比較電池B Clを作製した。

> 【0025】図2は、本発明に係る電極を用いた電池B A1及び比較電池BC1の200mA(定電流放電)に おける初期放電特性を、縦軸に電池電圧(V)を、また 犠軸に放電容量(mAh)をとって表したグラフであ り、同図より、本発明に係る電機を用いた電池BAlは 比較電池BC1に比し、紋電容置が大きいことが分か る。なお、放留は、2.75Vを放留終止端圧とした。 【0026】図3は、本発明に係る電極を用いた電池B A1及び比較電池BC1の200mA(定電流放電)に おけるサイクル特性を、緩軸に電池の放電容置(mA h)を、また横軸にサイクル数(回)をとって表したグ ラフである。同図より、本発明に係る電極を用いた電池 BAIは比較電池BCIに比し、サイクル特性に優れて いることが分かる。なお、充放電は、2、75 Vを放電 終止電圧とし、4、1Vを充電終止電圧とした。

【10027】表1に、本発明に係る電極を用いた電池B A1~BA3及び比較電池BC1の500サイクル経過 40 後の1サイクル当たりのサイクル劣化率(%/サイク ル)を、まとめて示す。

[0028]

【表1】

特関平5-174810

	サイクル劣化率 (%/サイクル)
電池BA1	0.034
電池BA2	0.043
電池BA3	0.044
比較電池BC1	0.046

【0029】表1より、本発明に係る電極を用いた魔池 10 次電池の正極に適用する場合の具体例について説明した BA1~BA3は、比較電池BC1に比し、いずれもサ イクル劣化率が低くサイクル特性に優れていることが分 かる。特に、界面活性剤としてポリオキシエチレングリ コールステアレートを用いた電池BAIは、特に優れた サイクル特性を発現するととが分かる。

【0030】 (実施例4) ポリオキシエチレングリコー ルステアレートの吸着量の異なる6種の表面改賞アセチ レンプラックを作製し、実施例1と同様にして、電池B A4(ポリオキシエチレングリコールステアレート吸着 部数: (). 1), 電池BA5 (同吸着部数: (). 5), 常池BA6(同吸着部数: 2.0)。電池BA7(同吸 着部数:5.0)、電池BA8(同吸着部数:10. 0)、電池BA9 (同吸着函数: 20.0) の6種の電

池を作製した。

【0031】図4は、電池BA4~BA9の各電池の初 期の放電容置(mAh)を縦軸に、また界面活性剤の吸 者量 (重畳部) を構軸にとって表したグラフである。同 グラフ車には、電池BA1及び比較電池BC1のデータ も転記してある。同図より、界面活性剤の吸着量は、初 期の放電容置を大きくするためには、アセチレンブラッ 30 3 セパレータ ク100重量部に対して10重量部未満であるととが好 ましく、0.5~6重置部の範囲がより好ましいことが 分かる。なお、他の炭素粉末や界面活性剤を使用した場 台においても同様の結果が得られる。

【0032】叙上の実施側では本発明を非水系電解液二

が、電解液の水系、非水系、及び、電池の一次、二次は 特に制限されない。

[0033]

【発明の効果】本発明に係る電極は、準電削たる炭素粉 末に界面活性剤を吸着させることにより、活物質の電解 液に対する濡れ性が改良されているので、優れた電池特 性を発現する電池の作製が可能になるなど、本発明は優 れた特有の効果を奏する。

【図面の簡単な説明】

【図1】本発明に係る電極を用いた電池の断面図であ 20

【図2】初期放電特性図である。

【図3】サイクル特性図である。

【図4】界面活性削吸着量と放電容量との関係を示すグ ラフである。

【符号の説明】

BA1 電池

- 1 正極
- 2 貸極
- - 4 正極リード
 - 5 負換リード
 - 6 正極外部端子
 - 7 負極缶

被運管壓 (mAh)

フロントページの続き

(72)発明者 中級 育朗

大阪府守门市京阪本道2丁目18香地 三洋 冤機株式会社內 (72)発明者 高橋 昌利

大阪府守口市京阪本通2丁目18番地 三洋

當機株式会社內

(72)発明者 渡辺 浩志

大阪府守口市京阪本通2丁目18香地 三洋

電機株式会社內