CORRIGÉ PROBLÈME II (CCP MP 2015, extrait, modifié).

I. Exemples et contre-exemples

1. Supposons qu'il existe une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes qui converge uniformément vers $h: x\mapsto \frac{1}{x}$ sur]0;1]. Vu que les polynômes P_n possèdent tous une limite dans \mathbb{R} lorsque $x\to 0^+$, on peut appliquer le théorème de la double limite, ce qui a pour conséquence que h possède une limite (finie) en 0^+ , et cela est contradictoire. Une telle suite de polynômes n'existe donc pas.

Autre solution possible : on pouvait aussi utiliser le résultat du cours qui affirme que si une suite de fonctions bornées sur I converge uniformément sur I, la fonction limite est bornée sur I.

Ce résultat illustre le fait qu'on ne peut pas se passer de l'hypothèse « fermé » de l'intervalle [a;b] dans le théorème de Weierstrass.

2. Soit $(P_n)_{n\in\mathbb{N}}$ une suite de polynômes qui converge uniformément vers f sur \mathbb{R} . Par définition, on a en particulier :

$$\exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ \|P_n - f\|_{\infty}^{\mathbb{R}} \leqslant \frac{1}{2}$$

Par l'inégalité triangulaire on en déduit, pour $n\geqslant n_0$:

$$||P_n - P_{n_0}||_{\infty} \le ||P_n - f||_{\infty} + ||f - P_{n_0}||_{\infty} \le 1.$$

Les polynômes $P_n - P_{n_0}$ étant bornés sur \mathbb{R} , ils sont constants : pour tout $n \ge n_0$ il existe un réel λ_n tel que $P_n = P_{n_0} + \lambda_n$.

On a alors
$$\lambda_n = P_n(0) - P_{n_0}(0) \underset{n \to +\infty}{\longrightarrow} f(0) - P_{n_0}(0) = \lambda$$
.

En passant alors à la limite dans la relation $P_n = P_{n_0} + \lambda_n$, on obtient $f = P_{n_0} + \lambda$: f est un polynôme.

Ce résultat illustre le fait qu'on ne peut pas se passer de l'hypothèse « borné » de l'intervalle [a;b] dans le théorème de Weierstrass (puisqu'une fonction continue sur $\mathbb R$ qui n'est pas un polynôme ne peut être limite uniforme sur $\mathbb R$ d'une suite de fonctions polynômes d'après ce qui précède).

- 3. a) L'application N_1 est bien définie (car tout polynôme $P \in \mathbb{R}[X]$ est continu, donc borné sur le segment [-2;-1]), et clairement à valeurs positives. De plus :
 - Si $N_1(P) = 0$, alors $\sup_{[-2;-1]} |P| = 0$, ce qui signifie que la fonction positive |P| est nulle sur le segment
 - [-2;-1]. Le polynôme P possède alors une infinité de racines, ce qui entraı̂ne P=0.
 - Pour tout $(\lambda, P) \in \mathbb{R} \times \mathbb{R}[X]$, on a :

$$N_1(\lambda P) = \sup_{x \in [-2, -1]} |\lambda P|(x) = \sup_{x \in [-2, -1]} |\lambda| |P(x)| = |\lambda| \times \sup_{x \in [-2, -1]} |P(x)|$$

(car la constante $|\lambda|$ est positive). Donc $N_1(\lambda P) = |\lambda| N_1(P)$.

- Pour tous polynômes P, Q et pour tout $x \in [-2, -1]$, on a :

$$|P + Q|(x) = |P(x) + Q(x)| \le |P(x)| + |Q(x)| \le N_1(P) + N_1(Q),$$

puisque $|P(x)| \leq N_1(P)$ et $|Q(x)| \leq N_1(Q)$.

Le réel $N_1(P) + N_1(Q)$ est un majorant de l'ensemble $\{|P + Q|(x), x \in [-2; -1]\}$, il est donc plus grand que la borne supérieure de cet ensemble, c'est-à-dire :

$$N_1(P) + N_1(Q) \ge \sup\{|P + Q|(x), x \in [-2; -1]\} = N_1(P + Q).$$

L'application N_1 est donc bien une norme sur l'espace vectoriel $\mathbb{R}[X]$.

b) . Représentation graphique de f sans problème ni intérêt.

La fonction f étant continue sur [-2;2] (vérification facile), il existe, d'après le théorème de Weierstrass, une suite de polynômes $(P_n)_{n\in\mathbb{N}}$ qui converge uniformément vers f sur [-2;2].

Cela signifie que
$$\sup_{x \in [-2;2]} |P_n(x) - f(x)| \underset{n \to +\infty}{\longrightarrow} 0.$$

En outre, en considérant la fonction polynomiale $f_1: x \mapsto x^2$ (qui coincide avec f sur [-2;-1]), on a :

$$N_1(P_n - f_1) = \sup_{x \in [-2; -1]} |P_n(x) - f(x)| \le \sup_{x \in [-2; 2]} |P_n(x) - f(x)|,$$

donc on a aussi $N_1(P_n - f_1) \to 0$, ce qui prouve que dans l'espace normé $(\mathbb{R}[X], N_1)$, la suite (P_n) converge vers le polynôme X^2 .

De faaon similaire, dans l'espace normé $(\mathbb{R}[X], N_2)$, la même suite (P_n) converge vers le polynôme X^3 .

II. Application : un théorème des moments

- **1. a)** Par linéarité de l'intégrale sur un segment, l'hypothèse : $\forall k \in \mathbb{N}, \int_a^b x^k f(x) dx = 0$, entraı̂ne que $\int_a^b P(x) f(x) dx = 0$ pour tout polynôme P.
 - b) Considérons une suite de polynômes $(P_n)_{n\in\mathbb{N}}$ qui converge uniformément vers f sur [a;b] (une telle suite existe d'après le théorème de Weierstrass puisque f est continue).

D'après la question précédente, on a $\int_a^b P_n(x)f(x)dx = 0$ pour tout $n \in \mathbb{N}$.

Or,
$$\int_a^b P_n(x)f(x) dx \xrightarrow[n \to +\infty]{} \int_a^b f^2(x) dx$$
, puisque:

$$\left| \int_{a}^{b} \left(P_{n}(x) f(x) - f^{2}(x) \right) dx \right| \leq \int_{a}^{b} |f(x)| |P_{n}(x) - f(x)| dx \leq (b - a) \|f\|_{\infty}^{[a;b]} \|P_{n} - f\|_{\infty}.$$

On en déduit donc, en faisant tendre $n \to +\infty$, que $\int_a^b f^2(x) dx = 0$. Cela entraı̂ne la nullité de f^2 sur [a;b] (puisque f^2 est continue et positive), et donc la nullité de f.

2. L'ensemble F^{\perp} est formé des fonctions $f \in \mathscr{C}([a;b], \mathbb{R})$ qui vérifient $\int_a^b P(x)f(x)dx = 0$ pour tout fonction polynomiale P.

D'après la question précécédente, seule la fonction nulle f=0 vérifie cette condition. On a donc $F^{\perp}=\{0_E\}$, donc $F\oplus F^{\perp}=F$.

Puisque $F \neq E$ (il existe des fonctions continues non polynomiales), on a donc $F \oplus F^{\perp} \neq E$.

Remarque : cet exemple montre aussi que l'on n'a pas toujours $(F^{\perp})^{\perp} = F$).

3. a) – Soit $n \in \mathbb{N}$. La fonction $x \mapsto x^n \mathrm{e}^{-(1-i)x}$ est continue (à valeurs complexes) sur \mathbb{R}_+ , et on a $|x^n \mathrm{e}^{-(1-i)x}| = x^n \mathrm{e}^{-x}$, donc $\lim_{x \to +\infty} x^2 |x^n \mathrm{e}^{-(1-i)x}| = \lim_{x \to +\infty} x^{n+2} \mathrm{e}^{-x} = 0$ par croissance comparée, ce qui montre que $|x^n \mathrm{e}^{-(1-i)x}|$ est négligeable devant $\frac{1}{x^2}$ au voisinage de $+\infty$, donc intégrable (puisque la fonction positive $x \mapsto \frac{1}{x^2}$ est intégrable au voisinage de $+\infty$).

Ceci montre que l'intégrale I_n est absolument convergente, donc convergente.

– Ensuite, on fait une intégration par parties à partir de I_{n+1} , en dérivant $x \mapsto x^{n+1}$ et en intégrant $x \mapsto e^{-(1-i)x}$:

$$\forall n \in \mathbb{N}, \ I_{n+1} = \int_0^{+\infty} x^{n+1} e^{-(1-i)x} dx = \left[\frac{e^{-(1-i)x}}{-(1-i)} x^{n+1} \right]_0^{+\infty} + \frac{n+1}{1-i} \int_0^{+\infty} x^n e^{-(1-i)x} dx,$$

et cette intégration par parties est justifiée car

$$\lim_{X \to +\infty} \left[\frac{\mathrm{e}^{-(1-\mathrm{i})x}}{-(1-\mathrm{i})} x^{n+1} \right]_0^X = \lim_{X \to +\infty} \frac{\mathrm{e}^{-(1-\mathrm{i})X}}{-(1-\mathrm{i})} X^{n+1} = 0$$

puisque
$$\left| \frac{e^{-(1-i)X}}{-(1-i)} X^{n+1} \right| = \frac{X^{n+1}e^{-X}}{\sqrt{2}} X \underset{X \to +\infty}{\longrightarrow} 0$$
.

On obtient donc la relation de récurrence : $\forall n \in \mathbb{N}, I_{n+1} = \frac{n+1}{1-\mathrm{i}}I_n$.

– On en déduit par récurrence sur n que : $\forall n \in \mathbb{N}, I_n = \frac{n!}{(1-\mathrm{i})^{n+1}}$

En effet, c'est vrai pour n=0 (puisque $I_0=\int_0^{+\infty} \mathrm{e}^{-(1-\mathrm{i})x} dx = \left[\frac{\mathrm{e}^{-(1-\mathrm{i})x}}{-(1-\mathrm{i})}\right]_0^{+\infty} = \frac{1}{1-\mathrm{i}}$), et si pour $n\in\mathbb{N}$ fixé, on a $I_n=\frac{n!}{(1-\mathrm{i})^{n+1}}$, alors

$$I_{n+1} = \frac{n+1}{1-i}I_n = \frac{n+1}{1-i} \times \frac{n!}{(1-i)^{n+1}} = \frac{(n+1)!}{(1-i)^{n+2}}$$

b) Pour tout $k \in \mathbb{N}$, on a :

$$\int_{0}^{+\infty} x^{4k} e^{-x} x^{3} \sin x \, dx = \int_{0}^{+\infty} \mathcal{I}m(x^{4k+3} e^{-(1-i)x}) dx = \mathcal{I}m(I_{4k+3}).$$

Or, d'après les formules établies précédemment, puisque $(1-i)^4 = -4$, $I_{4k+3} = \frac{(4k+3)!}{(-4)^{k+1}}$, et la partie imaginaire de I_{4k+3} est nulle. On en déduit la nullité de l'intégrale considérée.

c) Effectuons le changement de variable $u=x^4$ dans l'intégrale impropre convergente précédente. L'application $x\mapsto x^4$ est une bijection de classe \mathscr{C}^1 de \mathbb{R}_+^* dans \mathbb{R}_+^* , donc

$$\int_0^{+\infty} x^{4k} e^{-x} x^3 \sin x \, dx = \frac{1}{4} \int_0^{+\infty} u^k \sin(u^{1/4}) e^{-u^{1/4}} \, du.$$

En posant $f(u) = \sin(u^{1/4})e^{-u^{1/4}}$ pour tout $u \ge 0$, on définit une fonction $f \in \mathscr{C}(\mathbb{R}_+, \mathbb{R})$ qui est non nulle et dont tous les moments sont nuls.

Remarque : on en conclut que le théorème des moments démontré à la question II.1.. ne se généralise donc pas aux intervalles non compacts.

d) Supposons que f soit limite uniforme sur \mathbb{R}_+ d'une suite de polynômes $(P_n)_{n\in\mathbb{N}}$. Nous avons alors $\|P_n - f\|_{\infty}^{\mathbb{R}_+} \le 1$ pour n supérieur à un certain rang $N \in \mathbb{N}$, ce qui implique

$$\forall n \geqslant N, \ \forall x \in [0; +\infty[, \ |P_n(x)| \leqslant 1 + |f(x)|.$$

Mais la fonction limite f est bornée sur \mathbb{R}_+ (car elle est continue et tend vers 0 en $+\infty$, puisque $|f(u)| \leq e^{-u^{1/4}}$). On en déduit que pour tout $n \geq N$, le polynôme P_n est borné sur \mathbb{R}_+ , donc constant (puisqu'un polynôme de degré ≥ 1 a une limite infinie en $+\infty$).

Ainsi, pour tout $x \in [0; +\infty[$, on a (par convergence simple de $(P_n)_{n \in \mathbb{N}}$ vers f:

$$f(x) = \lim_{n \to +\infty} P_n(x) = \lim_{n \to +\infty} P_n(0) = f(0),$$

ce qui entraı̂ne que f est constante : contradiction.

La fonction f n'est donc pas une limite uniforme de polynômes sur $[0; +\infty[$

III. Une approximation polynomiale de $x \mapsto \sqrt{x}$

1. On développe le second membre de l'égalité et on trouve le premier, en utilisant la relation de récurrence de l'énoncé.

On trouve de même :

$$\forall x \in \mathbb{R}_+, \ \forall n \in \mathbb{N}, \ P_{n+1}(x) + \sqrt{x} = \left(P_n(x) + \sqrt{x}\right) \left(1 - \frac{1}{2}\left(P_n(x) - \sqrt{x}\right)\right).$$

Remarque : cette question est une indication pour la suite ; elle n'était pas notée...

2. Procédons par récurrence sur n.

Pour n = 0 on a bien sûr $0 \le P_n(x) \le \sqrt{x}$ sur [0; 1].

Supposons alors $0 \leq P_n(x) \leq \sqrt{x}$ à un certain rang n. On obtient alors

$$P_{n+1}(x) = P_n(x) + \frac{1}{2} \underbrace{\left(x - P_n^2(x)\right)}_{\geqslant 0} \geqslant P_n(x) \geqslant 0.$$

De plus, on a $\frac{P_n(x) + \sqrt{x}}{2} \le 1$, donc

$$P_{n+1}(x) - \sqrt{x} = (P_n(x) - \sqrt{x})(1 - \frac{P_n(x) + \sqrt{x}}{2}) \le 0.$$

Ainsi, on a par récurrence la double inégalité voulue.

3. Pour $x \in [0;1]$ fixé, on a $P_{n+1}(x) \ge P_n(x)$ puisque $x - (P_n(x))^2 \ge 0$ par la question précédente. Ainsi, la suite $(P_n(x))_{n \in \mathbb{N}}$ est croissante et majorée par \sqrt{x} , elle converge donc; notons f(x) sa limite. En injectant dans la relation de récurrence définissant P_{n+1} , on obtient:

$$f(x) = f(x) + \frac{1}{2}(x - f(x)^2),$$

donc $f^2(x) = x$; or les P_n sont positifs donc f(x) aussi d'où $f(x) = \sqrt{x}$ et on a donc convergence simple sur [0;1] de la suite (P_n) vers la fonction $x \mapsto \sqrt{x}$.

- **4.** Procédons par récurrence sur n pour montrer que chaque fonction φ_n est décroissante et que chaque fonction ψ_n est croissante (on démontre les deux propriétés en même temps).
 - C'est immédiat pour n = 0.
 - Si cette propriété est vérifiée au rang n, alors les relations

$$\psi_{n+1} = \left(1 - \frac{1}{2}\varphi_n\right)\psi_n$$
 et $\phi_{n+1} = \left(1 - \frac{1}{2}\psi_n\right)\phi_n$,

qui résultent de la question 1., permettent de démontrer le résultat à l'ordre n+1 (attention aux signes...)

5. Par décroissance de φ_n , on a :

$$\forall x \in [0; 1], P_n(1) - 1 \leq P_n(x) - \sqrt{x} \leq 0,$$

donc $||P_n - f||_{\infty}^{[0;1]} \leq |P_n(1) - 1|$. Or $P_n(1)$ tend vers 1 quand $n \to \infty$, ce qui montre la convergence uniforme de la suite $(P_n)_{n \in \mathbb{N}}$ vers f sur [0;1].