Spatio-temporal statistics (MATH4341)

Michaelmas term, 2023

Homework 1: Geostatistics (building concepts)

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

As formative assessment 1, submit the solutions to all the Exercises

Exercise 1. (*) Let $Z = (Z_s)_{s \in \mathbb{R}^d}$ be an intrinsically stationary stochastic process, and let $\gamma : \mathbb{R}^d \to \mathbb{R}$ be its semivariogram. Assume $a \in \mathbb{R}^n$ s.t. $\sum_{i=1}^n a_i = 0$.

(1) Let $a \in \mathbb{R}^n$ be a vector of constants. Show that

$$\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} Z\left(s_{i}\right)\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} c_{Y}\left(s_{i}, s_{j}\right)$$

where $c_Y(s,t) = E(Y(s)Y(t))$, and $Y_s = Z_s - Z_0$.

(2) Show that

$$c_Y(s,t) = \gamma(s) + \gamma(t) - \gamma(s-t)$$

(3) Show that for all $\forall \{s_1, ..., s_n\} \subseteq S$ it is

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \gamma \left(s_i - s_j \right) \le 0$$

Exercise 2. (**) Consider the zero-mean geostatistical process $Z = (Z_s)_{s \in \mathbb{R}^d}$ with a weakly stationary and isotropic covariance function given by

$$c(h) = \begin{cases} \xi^{2} (1 + \rho \|h\|) \exp(-\rho \|h\|), & h > 0 \\ \nu^{2} + \xi^{2}, & h = 0 \end{cases}$$

- (1) Compute the semi-variogram for the geostatistical process Z
- (2) What are the nugget, sill and partial sill for this covariance model? Justify your answer.
- (3) Would the slightly altered covariance function defined below be a good model for spatial data for $\phi > 0$? Justify your answer.

$$c(h) = \begin{cases} \xi^{2} (1 + \rho \|h\|) \exp(-\rho \|h\|) + \phi, & h > 0 \\ \nu^{2} + \xi^{2} + \phi, & h = 0 \end{cases}$$