前 言

为贯彻《中华人民共和国环境保护法》和《中华人民共和国海洋环境保护法》,防止和控制海水污染,保护海洋生物资源和其他海洋资源,有利于海洋资源的可持续利用,维护海洋生态平衡,保障人体健康,制订本标准。

本标准从 1998 年 7 月 1 日起实施,同时代替 GB 3097-82。

本标准在下列内容和章节有所改变;

- ——3.1(海水水质分类,由三类改四类);
- 3.2(补充和调整了污染物项目);
- ——4.1(增加了海水水质监测样品的采集、贮存、运输和预处理的规定);
- ——4.2(增加了海水水质分析方法)

本标准由国家环境保护局和国家海洋局共同提出。

本标准由国家环境保护局负责解释。

中华人民共和国国家标准

UCD 551463

GB 3097—1997

代替 GB 3097—82

海水水质标准

Sea water quality standard

1 主顧内容与标准适用范围

本标准规定了海域各类使用功能的水质要求。本标准适用于中华人民共和国管辖的海域。

2 引用标准

下列标准所含条文,在本标准中被引用即构成本标准的条文,与本标准同效。

- GB 12763.4-91 海洋调查规范 海水化学要素观测
- HY 003-91 海洋监测规范
- GB 12763.2-91 海洋调查规范 海洋水文观测
- GB 7467-87 水质 六价铬的测定 二苯碳酰二肼分光光度法
- GB 7485-87 水质 总砷的测定 二乙基二硫代氨基甲酸银分光光度法
- GB 11910-89 水质 镍的测定 丁二酮肟分光光度法
- GB 11912-89 水质 镍的测定 火焰原子吸收分光光度法
- GB 13192-91 水质 有机磷农药的测定 气相色谱法
- GB 11895-89 水质 苯并(a) 花的测定 乙酰化滤纸层析荧光分光光度法
- 当上述标准被修订时,应使用其最新版本。

3 海水水质分类与标准

3.1 海水水质分类

按照海域的不同使用功能和保护目标,海水水质分为四类:

第一类 适用于海洋渔业水域,海上自然保护区和珍稀濒危海洋生物保护区。

第二类 适用于水产养殖区,海水浴场,人体直接接触海水的海上运动或娱乐区,以及与人类食用直接有关的工业用水区。

第三类 适用于一般工业用水区,滨海风景旅游区。

第四类 适用于海洋港口水域,海洋开发作业区。

3.2 海水水质标准

各类海水水质标准列于表1

表 1 海水水质标准 mg/L							
序号	项目		第一类	第二类	第三类	第四类	
1	漂浮物质		海面不得出现油膜、浮沫和其他漂浮物 质		中其他漂浮物	海面无明显油膜、浮沫和其他漂浮物质	
2	色、臭、味		海水不得有异色、异臭、异味		妹	海水不得有令人厌恶和感到不快的色 臭、味。	
3	悬浮物质		人为增加的量≪10		人为增加 的量≪100	人为增加的量≪150	
4	大肠菌群 个/L	€	10 000 供人生食的贝类增养殖水质≤700		质≤700	_	
5	类大肠菌群 个/L	€	2 000 供人生食的贝类增养殖水质≤140		质≪140		
6	病原体		供人生食的 原体	贝类养殖水质	不得含有病		
7	水温		人为造成的海水温升夏 季不超过当时当地 1℃, 人为造成的 其它季节不超过 2℃		人为造成的	海水温升不超过当时当地 4℃	
8	pH		7.8~ 同时不超出 变动范围的	该海域正常	6.8~8.8 同时不超出该海域正常变动范围的 0.5pH 单位		
9	溶解氧	>	6	5	4	3	
10	化学需氧量 (COD)	€	2	3	4	5	
11	生化需氧量 (BOD ₅)	€	1	3	4	5	
12	无机氮 (以 N 计)	€	0. 20	0. 30	0.40	0. 50	
13	非离子氨(以N计)	<			0. 020		
14	活性磷酸盐 (以 P 计)	€	0. 015	0. 030		0. 045	
15	汞		0.000 05	0.0	00 2	0.000 5	
16	镉	€	0. 001	0. 005		0. 010	
17	铅	€	0.001	0.005	0. 010	0. 050	
18	六价铬	\left\	0.005	0, 010	0. 020	0. 050	
19	总铬	€	0. 05	0. 10	0. 20	0.50	
20	砷	€	0. 020	0. 030		0. 050	
21	铜	€	0.005	0.010	0.050		
22	锌	\left\	0. 020	0. 050	0. 10	0.50	
23	硒	€	0. 010	0.	020 0. 050		
24	镍	€	0. 005	0. 010	0. 020	0. 050	
2 5	氰化物	€	0.	005	0. 10 0. 20		

	表 1 (完) mg/					mg/L
序号	项目		第一类	第二类	第三类	第四类
26	硫化物 (以S计)	€	0.02	0.05	0.10	0. 25
27	挥发性酚	` \le	0. (005	0. 010	0.050
28	石油类	€	0.	05	0.30 0.50	
29	六六六	<	0. 001	0. 002	0, 003	0.005
30	滴滴涕	<	0. 000 05	0.000 1		
31	马拉硫磷	€	0.000 5	5 0,001		
32	甲基对硫磷	€	0.000 5	0.001		
33	苯并(a)芘 μg/L	€	0. 002 5			
34	1	阴离子表面活性剂 0.03 0.10			0. 10	
	放射性核素。 Bq/L	⁶⁰ Со			0.	03
		90Sr	4			
35		106Rn	0. 2			
		¹³⁴ Cs	0. 6			
		¹³⁷ Cs			0.	.7

4 海水水质监测

- 4.1 海水水质监测样品的采集、贮存、运输和预处理按 GB 12763.4—91 和 HY 003—91 的有关规定执行。
- 4.2 本标准各项目的监测,按表2的分析方法进行。

表 2 海水水质分析方法

序号	项目	分析方法	检出限,mg/L	引用标准
1	漂浮物质	目測法		
2	色、臭、味	比色法感官法		GB 12763. 2—91 HY 003. 4—91
3	悬浮物质	重量法	2	HY 003.4-91
4	大肠菌群	(1) 发酵法 (2) 滤膜法		HY 003.9—91
5	类大肠菌群	(1) 发酵法 (2) 滤膜法		HY 003.9-91
6	病原体	(1) 微孔滤膜吸附法 ^{1*} (2) 沉淀病毒浓聚法 ^{1*} (3) 透析法 ^{1*}		
7	水温	(1) 水温的铅直连续观测 (2) 标准层水温观测		GB 12763. 2—91 GB 12763. 2—91
8	pН	(1) pH 计电测法 (2) pH 比色法		GB 12763. 4—91 HY 003. 4—91
9	溶解氧	碘量滴定法	0.042	GB 12763. 4—91

表 2 (续)

序号	项目	分析方法	检出限,mg/L	引用标准
10	化学需氧量 (COD)	碱性高锰酸钾法	0. 15	HY 003. 4—91
11	生化需氧量 (BOD ₅)	五日培养法		HY 003. 4—91
		氮:(1) 靛酚蓝法	0.7×10 ⁻³	GB 12763. 4—91
	无机氮2)	(2) 次溴酸钠氧化法	0.4×10 ⁻³	GB 12763.4—91
12	UNH)	亚硝酸盐:重氮-偶氮法	0.3×10 ⁻³	GB 12763. 4—91
}	(WNH)	硝酸盐:(1) 锌-镉还原法	0.7×10 ⁻³	GB 12763. 4—91
		(2) 铜镉柱还原法	0. 6×10 ⁻³	GB 12763. 4—91
13	非离子氨3)	按附录 B 进行换算		
1,1	活性磷酸盐	(1) 抗坏血酸还原的磷钼兰法	0. 62×10 ⁻³	GB 12763. 4—91
14	(以PH)	(2) 磷钼兰萃取分光光度法	1.4×10 ⁻³	HY 003.4—91
15	汞	(1) 冷原子吸收分光光度法	0.008 6×10 ⁻³	HY 003. 4-91
13		(2) 金埔集冷原子吸收光度法	0.002×10 ⁻³	HY 003. 4—91
1	辐	(1) 无火焰原子吸收分光光度法	0.014×10 ⁻³	HY 003. 4-91
16		(2) 火焰原子吸收分光光度法	0.34×10^{-3}	HY 003. 4—91
10		(3) 阳极溶出伏安法	0.7×10^{-3}	HY 003. 4—91
		(4) 双硫腙分光光度法	1. 1×10 ⁻⁸	HY 003. 4-91
		(1) 无火焰原子吸收分光光度法	0. 19×10 ⁻³	HY 003.4-91
17	铅	(2) 阳极溶出伏安法	4. 0×10 ⁻³	HY 003. 4-91
		(3) 双硫腙分光光度法	2. 6×10 ⁻³	HY 003.4—91
18	六价铬	二苯碳酰二肼分光光度法	4. 0×10 ⁻³	GB 7467—87
10	总铬	(1) 二苯碳酰二肼分光光度法	1. 2×10 ⁻³	HY 003. 4-91
19		(2) 无火焰原子吸收分光光度法	0. 91×10 ⁻³	HY 003. 4-91
1	砷	(1) 砷化氢-硝酸银分光光度法	1.3×10 ⁻³	HY 003. 4-91
20		(2) 氢化物发生原子吸收分光光度法	1. 2×10 ⁻³	HY 003.4-91
		(3) 二乙基二硫代氨基甲酸银分光光度法	7. 0×10 ⁻³	GB 7485—87
	铜	(1) 无火焰原子吸收分光光度法	1. 4×10 ⁻³	HY 003.4—91
21		(2) 二乙氨基二硫代甲酸钠分光光度法	4. 9×10 ⁻³	HY 003.4-91
		(3) 阳极溶出伏安法	3. 7×10 ⁻³	HY 003. 4—91
1	锌	(1) 火焰原子吸收分光光度法	16×10 ⁻³	HY 003. 4—91
22		(2) 阳极溶出伏安法	6. 4×10 ⁻³	HY 003.4-91
		(3) 双硫腙分光光度法	9. 2×10 ⁻³	HY 003.4—91
23	硒	(1) 荧光分光光度法	0.73×10 ⁻³	HY 003.4—91
		(2) 二氨基联苯胺分光光度法	1.5×10 ⁻³	HY 003. 491
		(3) 催化极谱法	0.14×10 ⁻³	HY 003. 4—91
		(1) 丁二酮肟分光光度法	0. 25	GB 11910—89
24	镍	(2) 无火焰原子吸收分光光度法16	0.03×10 ⁻³	
1		(3) 火焰原子吸收分光光度法	0. 05	GB 11912—89

表 2(完)

序号	,	项目 分析方法		检出限,mg/L	引用标准
25			(1) 异烟酸-吡唑啉酮分光光度法(2) 吡啶-巴比土酸分光光度法	2. 1×10 ⁻³	HY 003. 4—91
				1.0×10 ⁻³	HY 003.4—91
26	26		(1) 亚甲基蓝分光光度法 (2) 离子选择电极法	1. 7×10 ⁻³ 8. 1×10 ⁻³	HY 003.4-91 HY 003.4-91
27	 -	と	4-氨基安替比林分光光度法	4. 8×10 ⁻³	HY 003. 4—91
		Z IJ. AV			
••	_	· 3.4. 346	(1) 环己烷萃取荧光分光光度法	9. 2×10 ⁻³	HY 003. 4—91
28	1 4	油类	(2) 紫外分光光度法	60.5×10 ⁻³	HY 003. 4-91
	 -			0. 2	HY 003. 4—91
	大	六大 ⁽⁾ 	气相色谱法 	1.1×10 ⁻⁶	HY 003.4—91
30	滴滴涕()		商涕い 气相色谱法		HY 003.4—91
31	马拉硫磷		气相色谱法	0.64×10^{-3}	GB 13192—91
32	甲基对硫磷		气相色谱法	0. 42×10 ⁻³	GB 13192—91
33	苯并(a)芘		乙酰化滤纸层析-荧光分光光度法	2.5×10 ⁻⁶	GB 11895—89
34	阴离子表面 活性剂 (以 LAS 计)		亚甲基兰分光光度法	0. 023	HY 003.4—91
	放射性核素 Bq/L	⁶⁰ Co	离子交换-萃取-电沉积法	2.2×10 ⁻³	HY/T 003.8-91
			(1) HDEHP 萃取-β 计数法	1.8×10 ⁻³	HY/T 003.8-91
			(2) 离子交换-β 计数法	2. 2×10 ⁻³	HY/T 003.8-91
35		106Ru	(1) 四氯化碳萃取-镁粉还原-β计数法	3. 0×10 ⁻³	1137 /T. 002 0 01
			(2) 7 能谱法 ^{1 c}	4.4×10 ⁻³	HY/T 003.8—91
		¹³⁴ Cs	7 能谱法,参见 ¹³⁷ Cs 分析法		
	Juq/L	137Cs	(1) 亚铁氰化铜-硅胶现场富集-7 能谱法	1.0×10 ⁻³	HY/T 003.8-91
			(2) 磷钼酸铵-碘铋酸铯-β计数法	3.7×10 ⁻³	HY/T 003.8-91

- 注,1 暂时采用下列分析方法,待国家标准发布后执行国家标准。
 - a 《水和废水标准检验法》,第15版,中国建筑工业出版社,805~827,1985。
 - b 环境科学,7(6):75~79,1986。
 - c 《辐射防护手册》,原子能出版社,2:259,1988。
 - 2 见附录 A。
 - 3 见附录B。
 - 4 六六六和 DDT 的检出限系指其四种异物体检出限之和。

5 混合区的规定

污水集中排放形成的混合区,不得影响邻近功能区的水质和鱼类回游通道。

附录A

(标准的附录)

无机氨的计算

无机氮是硝酸盐氮、亚硝酸盐氮和氨氮的总和,无机氮也称"活性氮",或简称"三氮"。

在现行监测中,水样中的硝酸盐、亚硝酸盐和氮的浓度是以 μ mol/L 表示总和。而本标准规定无机 氮是以氮(N)计,单位采用 mg/L,因此,按下式计算无机氮:

$$c(N) = 14 \times 10^{-3} (c(NO_3 - N) + c(NO_2 - N) + c(NH_3) - N))$$

式中: c(N) —— 无机氮浓度,以 N 计, mg/L;

 $c(NO_3-N)$ ——用监测方法测出的水样中硝酸盐的浓度, $\mu mol/L$;

 $c(NO_2-N)$ ——用监测方法测出的水样中亚硝酸盐的浓度, $\mu mol/L$;

 $c(NH_3-N)$ ——用监测方法测出的水样中氨的浓度, $\mu mol/L$ 。

附录B

(标准的附录)

非离子氨换算方法

按靛酚蓝法,次溴酸钠氧化法(GB 12763.4—91)测定得到的氨浓度(NH₃-N)看作是非离子氨与离子氨浓度的总和,非离子氨在氨的水溶液中的比例与水温、pH 值以及盐度有关。可按下述公式换算出非离子氨的浓度。

$$c(NH_3) = 14 \times 10^{-5} c(NH_3 - N) \cdot f$$

$$f = 100/(10^{pK_3^S \cdot T} - pH + 1)$$

$$pK_3^S \cdot T = 9.245 + 0.002949 S + 0.0324(298 - T)$$

式中: f——氨的水溶液中非离子氨的摩尔百分比;

 $c(NH_3)$ — 现场温度、pH、盐度下,水样中非离子氨的浓度(以 N 计),mg/L;

 $c(NH_3-N)$ ——用监测方法测得的水样中氨的浓度, μ mol/L;

T---海水温度,K;

S---海水盐度;

pH---海水的 pH;

 $pK_*^{S \cdot T}$ —— 温度为 T(T=273+t), 盐度为 S 的海水中的 NH_*^+ 的解离平衡常数 $K_*^{S \cdot T}$ 的负对数。

附加说明:

本标准由国家海洋局第三海洋研究所和青岛海洋大学负责起草。

本标准主要起草人:黄自强、张 克、许昆灿、隋永年、孙淑媛、陆贤昆、林庆礼。