Лабораторная работа № 4 «Корреляционный анализ»

студента	Смирнова Да	<u>ниила</u> группы_	<u>Б18-501</u> .	Дата сдачи: 4.12.20	
Ведущий	преподаватель	ь: <u>Трофимов А</u>	<u>Г</u> оценка:	подпись:	

Вариант №6

Цель работы: изучение функций Statistics and Machine Learning Toolbox™ MATLAB / Python SciPy.stats для проведения корреляционного анализа данных.

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, m_i	Дисперсия, σ_i^2	Объем выборки, <i>п</i>
X	chi2	2	2	4	150
Y	N	(3,1)	3	1	130

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, \bar{x}_i	Оценка дисперсии, s_i^2	КК по Пирсону, $\tilde{r}_{\chi\gamma}$	КК по Спирмену, $\tilde{\rho}_{XY}$	КК по Кендаллу, $\tilde{\tau}_{_{XY}}$
X	2.03	4.23	0.026	0.045	0.03
Y	3	1.025	0.020	0.045	0.03

Проверка значимости коэффициентов корреляции:

Статистическая гипотеза, H_0	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения	
H_0 : $r_{XY} = 0$	0.75	Гипотеза верна	Гипотеза Н0 принимается (Решение верно	
H_0 : $\rho_{XY} = 0$	0.58	Гипотеза верна	Гипотеза Н0 принимается (Решение верно	
H_0 : $\tau_{XY} = 0$	0.59	Гипотеза верна	Гипотеза Н0 принимается (Решение верно	

Примечание: для проверки гипотез использовать функцию **corr** (**scipy.stats.pearsonr**)

2. Визуальное представление двумерной выборки Диаграмма рассеяния случайных величин *X* и *Y*:

Примечание: для построения диаграммы использовать функции plot, scatter (matplotlib.pyplot.scatter)

3. Проверка независимости методом таблиц сопряженности

Статистическая гипотеза: $H_0: F_Y(y \mid X \in \Delta_1) = ... = F_Y(y \mid X \in \Delta_k) = F_Y(y)$

Эмпирическая/теоретическая таблицы сопряженности:

	Y	[0.614;	[1.58;	[2.54;	[3.51;	[4.47; 5.44]
X		1.58)	2.54)	3.51)	4.47)	[4.47, 3.44]
$\Delta_1 = [$	0.015;	13	22	39	20	6
2.	146)	9.33		40	21.33	7.33
$\Delta_2 = [$	2.146;	0	5	14	9	41
4.	278)	2.98	7.04	12.8	6.82	2.35
$\Delta_3 = [4.2]$	278; 6.40)	1.12	2.64	4.8	2 2.56	0.88

$\Delta_4 = [6.40; 8.54)$	0 0.28	0.66	1 1.2	0.64	0.22
$\Delta_5 = [8.54; 10.67]$	0 0.28	0.66	2 1.2	0 0.64	0.22

Примечание: для группировки использовать функцию hist3

(matplotlib.pyplot.hist2d)

Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
11.08	0.80		Гипотеза Н0 принимается (Решение верно

Примечание: для проверки гипотезы использовать функцию **crosstab** (scipy.stats.chi2_contingency)

4. Исследование корреляционной связи

Случайная величина $U = \lambda X + (1-\lambda)Y$, $\lambda \in [0; 1]$

Случайная величина $V = \lambda X^3 + (1-\lambda)Y^3$ $\lambda \in [0; 1]$

Графики зависимостей коэффициента корреляции $\tilde{r}_{xU}(\lambda)$, рангового коэффициента корреляции по Спирмену $\tilde{\rho}_{xU}(\lambda)$, по Кендаллу $\tilde{\tau}_{xU}(\lambda)$

Графики зависимостей $\tilde{r}_{_{XV}}(\lambda)$, $\tilde{\rho}_{_{XV}}(\lambda)$, $\tilde{\tau}_{_{XV}}(\lambda)$

Выводы: при увеличении лямбды увеличиваются коэффициенты корреляции. Коэффициент корреляции Пирсона не достигает единицы во втором случае, тк он равен единице при линейной зависимости, а тут кубическая зависимость

Диаграмма рассеяния случайных величин X и V при $\lambda = 0$:

Диаграмма рассеяния **рангов** случайных величин X и V при $\lambda = 0$:

Диаграмма рассеяния случайных величин X и V при $\lambda = 1$:

Диаграмма рассеяния **рангов** случайных величин X и V при $\lambda = 1$:

Осенний семестр 2018/2019. Лабораторный практикум по курсу «Математическая статистика» Примечание: для расчёта рангов использовать функцию tiedrank (scipy.stats.rankdata)

Bыводы: При лямбда равном 0 V не зависит от X, тк ранги распределены равномерно по всей области. При лямбда равном единице есть функциональная зависимость между V и X. Также есть зависимость между рангами этих величин