IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application of: Dugan et al.

Group No.:

1614

Serial No.:

10/083,283

Atty. Docket No.: 53047-31628

Filed:

February 23, 2002

For:

Carboxyfullerenes and

Methods of Use Thereof

Examiner:

Henley III, Raymond J..

DECLARATION OF DR. LAURA L. DUGAN

UNDER 37 C.F.R. §1.132

- I, Dr. Laura L. Dugan, declare and state as follows:
- 1. All of the statements made herein of my own knowledge are true and all statements made on information and belief are believed to be true.
- 2. I am the first-named inventor of U.S. Patent Application No. 10/083,283 for Carboxyfullerenes and Methods of Use Thereof filed February 23, 2002 ("Patent Application"). I am also a co-inventor on U.S. Patent 6,265,443 for Methods of Treating Neuronal Injury with Carboxyfullerene (Choi et al).
- 3. My current position is Professor, Larry L. Hillblom Chair in Geriatric Medicine in the Division of General Medicine and Geriatrics at the Department of Medicine, University of California, San Diego.

- 4. The Patent Application incorporates in it's entirety U.S. Patent 6,265,443 for Methods of Treating Neuronal Injury with Carboxyfullerene (Choi et al). Choi et al shows that C60(C(COOH)₂)₃ compounds are effective free radical scavengers (i.e. can eliminate superoxide radicals) and can reduce neuronal cell death in cultured cells treated with AMPA or NMDA. Choi et al also correctly states that other water soluble C60(C(COOH)₂)_n compounds with n=1 or n=2 are effective free radical scavengers.
- 5. Prior to the February 23, 2002 filing date of the Patent Application, I demonstrated that the carboxyfullerene derivatives " C_3 " (C60(C(COOH)2)3; malonic acid groups at the e,e,e positions), "Penta-1,2" (two stereoisomers of C60(C(COOH)2)2(C(CHCOOH); groups at the e,e,e positions), "Tetra's" (four stereoisomers of C60(C(COOH)2)(C(CHCOOH))2; groups at the e,e,e positions), and "C3-lite" (four isomers of C60(C(CHCOOH))3; groups are in the e,e,e positions) exhibited comparable superoxide dismutase SOD activity (Exhibit A1 to A3). The demonstration of superoxide dismutase activity of the " C_3 ", "Penta", "Tetra's" and " C_3 -lite" derivatives of carboxyfullerene was accomplished using methods that are fully disclosed in the Patent Application. The " C_3 ", "Penta", and " C_3 -lite" derivatives of carboxyfullerene were also shown to reduce NMDA receptor toxicity, a form of neuronal cell death mediated by mitochondrial superoxide production (Exhibit A4 to A11) prior to the February 23, 2002 filing date of the Patent Application. The demonstration of reduced NMDA receptor toxicity of neuronal cells by the " C_3 ", "Penta", "Tetra's" and " C_3 -lite" derivatives of carboxyfullerene was accomplished using methods that are fully disclosed in the Patent Application, which incorporates by reference US Patent No. 6,265, 443 to Choi et al. Since the carboxyfullerene derivatives "C3", "Penta", "Tetras" and "C3-lite" all exhibited SOD activity, since "C3", "Penta", and " C_3 -lite" all reduced NMDA receptor toxicity, and since " C_3 " was shown in the Patent Application to increase lifespan when administered to mice, one skilled in the art would have expected that all of these carboxyfullerene derivatives would also have had similar lifespanextending capabilities as "C₃" at comparable in vivo doses. It is therefore my belief that additional carboxyfullerene derivatives other than "C3" could have been used at the time of February 23, 2002 filing date of the Patent Application to obtain lifespan increases.

3094240 - 2 -

5. I further declare that all statements herein made by my own knowledge are true and all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the above-identified application.

Dr.	Laura	L.	Dugan	

July ____, 2005

Characterization of superoxide dismutase (SOD) activity and neuroprotection against NMDA excitotoxicity for the *e,e,e* series of C60 malonic acid and acetic acid derivatives

Explanation of terms:

"Hexa" = C_3 ($C_{60}(C(COOH)_2)_3$ where the malonic acid groups are all at the e,e,e positions (1)

"Penta's" = $(C_{60}(C(COOH)_2)_2(C(CHCOOH)))$ where the groups are at the e,e,e positions. There are two stereoisomers (2)

"Tetra's" = $(C_{60}(C(COOH)_2)(C(CHCOOH))_2$ where all groups are in the e,e,e positions. There are four steroisomers (3)

" C_3 -lite" = $(C_{60}(C(CHCOOH))_3)$ where all groups are in the *e,e,e* positions. There are 4 isomers.

- 1. $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = COOH(C_3)$
- 2. $R_1 = H, R_2 = R_3 = R_4 = R_5 = R_6 = COOH$ (Penta Pair)
- 3. $R_1=R_3=H$, $R_2=R_4=R_5=R_6=COOH$ (Tetra Quartet)
- 4. $R_1 = R_3 = R_5 = H$, $R_2 = R_4 = R_6 = COOH$ (C_3 -lite)
- 5. $R_1=R_2=COOBu$, $R_3=R_4=R_5=R_6=COOMe$
- 6. $R_1=R_2=R_3=R_4=COOBu$, $R_5=R_6=COOMe$
- 7. $R_1 = R_2 = COOH$, $R_3 = R_4 = R_5 = R_6 = COOMe$
- 8. $R_1 = R_2 = R_3 = R_4 = COOH$, $R_5 = R_6 = COOMe$
- 9. $R_1=H, R_2=COOH, R_3=R_4=R_5=R_6=COOMe$
- 10. $R_1 = R_3 = H$, $R_2 = R_4 = COOH$, $R_5 = R_6 = COOMe$

11-14-99 NMDA 200 x 10 min Penta-1 C₃ (3)

EXHIBIT

A8

11-14-99 NMDA 200 x 10 min Penta-2 C₃ (5)

PowerDesk - Z:\laura_neuron folder\C60 Projects\Structure-Function\Raw Data\LDH Toxicity as of 01-14-03\Old SPW Files

Name	Size Date	Time	Attr	Type		
HX-PTA%.SPW PNT1NMDA.SPV PNT2NMDA.SPV			11/15/1999 11/14/1999 11/14/1999	8:20 PM	а а а	SPW File SPW File SPW File

Comparison of various properties of compounds and relationship to neuroprotective efficacy. The IC50 values are for SOD activity, and show that bisE, C3, C3-lite and P2 all have very good SOD activity (note scales are different for graph in A and graph in B).

