Analyse complexe 12/03/2018 - 14/03/2018

TD 5: FONCTIONS HARMONIQUES

Exercices $\hat{\mathbf{n}}$: à préparer à la maison avant le TD, seront corrigés en début de TD.

Exercices : seront traités en classe en priorité.

Exercices : plus difficiles.

Exercice 1:

1. Soient U un ouvert connexe de \mathbb{C} et $f \in H(U)$. On suppose que f ne s'annule pas. Montrer que $\ln |f|$ est harmonique.

2. Montrer que si $u : \mathbb{C}^* \to \mathbb{R}$ est harmonique, alors il existe une fonction holomorphe f sur \mathbb{C}^* et une constante $b \in \mathbb{R}$ telles que $u = \text{Re}(f) + b \ln |z|$.

Exercice 2: Soit U un ouvert connexe de \mathbb{C} .

1. Montrer que, si u est une fonction harmonique telle que u^2 est aussi harmonique, alors u ou u^2 est holomorphe.

2. Soient u et v deux fonctions harmoniques réelles sur U, avec v non constante. Montrer que uv est harmonique si, et seulement si, il existe $c \in \mathbb{R}$ tel que u + icv est holomorphe.

Exercice 3: Soit u une fonction harmonique réelle sur un ouvert U de \mathbb{C} . Montrer que u n'a aucun zéro isolé.

Exercice 4:

1. Soit u une fonction harmonique sur un ouvert U de \mathbb{C} . Soient $a,b\in U$ tels que $[a,b]\subset U$. Montrer que, si u s'annule une infinité de fois sur [a,b], alors $u|_{[a,b]}=0$.

Dans la suite de l'exercice, on se donne un ouvert U de \mathbb{C} , et on suppose que $U \neq \mathbb{C}$. On pose $r(z) = d(z, \partial U)$ pour $z \notin U$ et $r(z) = -d(z, \partial U)$ pour $z \notin U$. Le but de l'exercice est de démontrer que r est harmonique si, et seulement si, U est un demi-plan.

- **2.** Montrer que, si *U* est un demi-plan, alors *r* est harmonique.
- **3.** On suppose maintenant que r est harmonique.
 - (a) Montrer que l'on peut se ramener au cas où U ne contient pas 0 mais contient un point $x_0 \in \mathbb{R}_+$ tel que $r(x_0) = x_0$.
 - (b) En utilisant la question 1, montrer que r(x) = x pour chaque $x \in \mathbb{R}$.
 - (c) En déduire que le demi-plan $\mathcal{H} = \{z \in \mathbb{C} | \text{Re}(z) > 0 \}$ est contenu dans U.
 - (d) Conclure.

Exercice 5:

- 1. Soit D un disque ouvert de $\mathbb C$ de centre a. Soit u une fonction harmonique et intégrable sur D. Montrer que $u(a) = \frac{1}{m(D)} \int_D u dm$ (où m désigne la mesure de Lebesgue).
- **2.** Réciproquement, considérons $a \in \mathbb{C}$ et V un ouvert borné de \mathbb{C} contenant a, et supposons que $u(a) = \frac{1}{m(V)} \int_V u dm$ pour toute fonction u harmonique et intégrable sur V. On veut montrer que V est un disque centré en a.
 - (a) Soit $r = d(a, \partial V)$. Soit $b \in \partial V$ tel que |b a| = r. Montrer que la fonction u définie par :

$$u(z) = \frac{|z - a|^2 - r^2}{|z - b|^2} + 1$$

est harmonique et intégrable sur V.

(b) En déduire que V = D(a, r).

Analyse complexe 12/03/2018 - 14/03/2018

Exercice 6: (pour la semaine du 19 mars)

Soit D=D(0,1). L'objectif de cet exercice est d'étudier le problème de Dirichlet sur D. On rappelle que le noyau de Poisson sur D est la fonction $P_D: D \times \partial D \to \mathbb{R}$ définie par :

$$P_D(z,\zeta) = \frac{1 - |z|^2}{|\zeta - z|^2}.$$

Soit ω une fonction intégrable sur ∂D . L'intégrale de Poisson de ω sur ∂D est par définition la fonction $P\omega:D\to\mathbb{C}$ définie par :

$$P\omega(z) = \int_{\partial D} \omega(\zeta) P_D(z,\zeta) \frac{d\sigma(\zeta)}{2\pi}.$$

- 1. Montrer que $P\omega$ est harmonique.
- **2.** Soit ζ_0 un point de continuité de ω . Montrer que :

$$\lim_{z \to \zeta_0} P\omega(z) = \omega(\zeta_0).$$

3. On suppose que ω est continue. Montrer qu'il existe une unique fonction $u:\overline{D}\to\mathbb{C}$ continue sur \overline{D} et harmonique sur D telle que $u|_{\partial D}=\omega$.

Exercice 7: Soit $V = D(0,1) \setminus \{0\}$. On considère la fonction $\omega : \partial V \to \mathbb{R}$ définie par $\omega(0) = 1$ et $\omega(\zeta) = 0$ pour $\zeta \in \partial D(0,1)$. On veut montrer que le problème de Dirichlet pour ω et V n'a pas de solution.

- **1.** Supposons que $u: \overline{V} \to \mathbb{C}$ soit une telle solution. Montrer que la fonction u est radiale (c'est-à-dire que u(z) ne dépend que de |z|).
- 2. On rappelle que le laplacien s'écrit en coordonnées polaires de la manière suivante :

$$\Delta f = \frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}.$$

Montrer qu'il existe $a, b \in \mathbb{C}$ tels que $u(z) = a + b \ln |z|$. Conclure.

Exercice 8: Partiel 2017

Soit r > 0 et $z \in \mathbb{C}$. Montrer que l'on a :

$$\frac{1}{2\pi} \int_0^{2\pi} \ln \left| \frac{1}{z - re^{i\theta}} \right| d\theta = \begin{cases} \ln \frac{1}{|r|} & \text{si}|z| \le r \\ \ln \frac{1}{|z|} & \text{si}|z| > r. \end{cases}$$

On pourra remarquer que, si |z| > r, alors la fonction $z \mapsto \frac{1}{z-w}$ est holomorphe sur un voisinage de D(0,r).

Exercice 9: Extrait de l'examen 2017

Dans tout le problème, si $a \in \mathbb{C}$ et R > 0, on note D(a, R) (resp. $\overline{D}(a, R)$) le disque ouvert (resp. fermé) centré en a de rayon R. Lorsque a = 0 et R = 1, on écrira simplement D et \overline{D} .

1. Soit $h: \overline{D}(a,R) \to \mathbb{R}$ une fonction continue positive, harmonique en restriction à D(a,R). On rappelle que pour tous $0 \le r < R$ et $\theta \in [0,2\pi]$, on a la formule de Poisson :

$$h(a+re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - r^2}{R^2 - 2rR\cos(\theta - t) + r^2} h(a+Re^{it}) dt.$$

Montrer que:

$$\frac{R-r}{R+r}h(a) \le h(a+re^{i\theta}) \le \frac{R+r}{R-r}h(a).$$

2. Soit U un ouvert connexe de \mathbb{C} et $(h_n)_{n\in\mathbb{N}}$ une suite *croissante* de fonctions harmoniques sur U. Démontrer que soit $\lim_{n\to+\infty}h_n(z)=+\infty$ pour tout $z\in U$, soit $(h_n)_{n\in\mathbb{N}}$ converge uniformément sur les compacts de U vers une fonction harmonique.