SM261 Final Examination

02 May 2014 / 0755

.....

- 1. (16 pts) Let $\vec{v} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$.
 - a. Find a vector of length 9 parallel to \vec{v} .
 - b. Find the cosine of the angle between \vec{v} and \vec{w} .

c. Show that the Cauchy-Schwarz Inequality is valid for \vec{v} and \vec{w} .

d. Find $proj_L(\vec{w})$, where L is the line through the origin and parallel to \vec{v} .

- 2. (14 pts) Let \vec{v} be the vector in the previous problem.
 - a. Define: "T is a linear transformation from \mathbb{R}^m to \mathbb{R}^n ."
 - b. Show that the mapping T on R^3 given by $T(\vec{x}) = proj_L(\vec{x})$ is a linear transformation.

c. Find the matrix A that satisfies $T(\vec{x}) = A\vec{x}$ for all \vec{x} in R^3 .

3. (12 pts) Write the system below as a matrix equation and use Gaussian elimination techniques to find all solutions.

$$x + 2y - z = 2$$

$$3x + 0y + z = 4$$

4. (15 pts) Let
$$A = \begin{bmatrix} 1 & 2 & 2 & -5 & 6 \\ -1 & -2 & -1 & 1 & -1 \\ 4 & 8 & 5 & -8 & 9 \\ 3 & 6 & 1 & 5 & -7 \end{bmatrix}$$
.

b. Find a basis for the kernel of *A*.

c. Find a basis for the image of A.

- 5. (14 pts) Let A be an invertible $n \times n$ matrix. What can you say about each of the following?
 - a. The rank of A.
 - b. rref(A).
 - c. The kernel of A.
 - d. The image of A.
 - e. The column vectors of A.
 - f. The number of solutions to the system $A\vec{x} = \vec{b}$, where \vec{b} is any fixed vector.
 - g. det(A).
- 6. (12 pts) Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2 \end{bmatrix}$.
 - a. Use row operation techniques to find A^{-1} .

b. Use your answer in a. to solve the matrix equation $A\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$.

7. (10 pts) Consider the linear transformation T on R^2 whose matrix is given by the product $\begin{bmatrix} \cos(\frac{\pi}{3}) & -\sin(\frac{\pi}{3}) \\ \sin(\frac{\pi}{3}) & \cos(\frac{\pi}{3}) \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}.$ Describe $T(\vec{x})$ geometrically. Hint: describe what each matrix does separately to a vector.

8. (15 pts) Let
$$B = \{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix} \}$$
.

a. Prove that ${\cal B}$ is a basis for ${\it R}^2$.

b. Let
$$\vec{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
. Find $[\vec{v}]_B$.

c. Let T be the linear transformation on R^2 whose matrix is $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Find the matrix of T with respect to the basis \mathcal{B} .

- 9. (12 pts) Consider a reflection matrix A and a vector \vec{x} in R^2 . Define $\vec{v} = \vec{x} + A\vec{x}$ and $\vec{w} = \vec{x} A\vec{x}$. (Recall that $A(A\vec{x}) = \vec{x}$.)
 - a. Express $A\vec{v}$ in terms of \vec{v} .
 - b. Express $A\overrightarrow{w}$ in terms of \overrightarrow{w} .
 - c. If the vectors \vec{v} and \vec{w} are both nonzero, show that they are orthogonal.
 - d. If the vector \vec{v} is nonzero, what is the relationship between \vec{v} and the line L of reflection?

- 10. (12 pts) A 2×2 matrix A is called nilpotent if $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.
 - a. Show that there is a nonzero vector in ker(A). (Hence $\lambda = 0$ is an eigenvalue of A.)

b. Show that 0 is the <u>only</u> eigenvalue of A.

11. (12 pts) Let
$$M = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 0 \\ 2 & 0 & 2 & 3 \end{bmatrix}$$
. Use row operation methods to find $\det(M)$.

12. (16 pts) Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 7 & 14 & 7 \\ 1 & 2 & 2 \\ 7 & 14 & 7 \end{bmatrix}$$
.

- a. Find a basis for im(A).
- b. Find an orthonormal basis for im(A).

c. Find $proj_{im(A)} \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$. Hint: use the orthonormal basis from b.

- 13. (12 pts) Let A be a square matrix.
 - a. Define "A is a symmetric matrix".
 - b. Define "A is an orthogonal matrix".

c. Find all symmetric orthogonal 2×2 matrices. Hint: first determine what orthogonal 2×2 matrices look like.

14. (15 pts) Let
$$A = \begin{bmatrix} -1 & 0 & 1 \\ -3 & 0 & 1 \\ -4 & 0 & 3 \end{bmatrix}$$
.

a. Show that 1 and 0 are the eigenvalues of A.

b. Find a basis of each eigenspace.

c. Can the matrix A be diagonalized? Explain.

15. (13 pts) (Calculators okay) Use Least Squares techniques to find the coefficients c_0, c_1 , and c_2 to the quadratic polynomial $y=c_0+c_1t+c_2t^2$ that best fits the data points in the table below. Hint: first set up the problem as an (inconsistent) system $A\vec{x}=\vec{b}$.

Independent variable t	Dependent variable y
0	1
1	2
2	2
3	4