LQR:

Lineares, zeit-invariantes Reglergesetz	Formulierung und Lösung eines Optimierungsproblems über ein Kostenfunktional
Zustandsraummodell, Übertragungsfunktion	Reglerauslegung im Zustandsraum mit Zustandsrückführung
beobachtbar	Zustandsrückführung, Zustände muss man kennen
steuerbar	Beliebigen Polvorgabe über optimales K_opt (Vorgabe eines optimalen Stellgesetzes)
Totzeit vorhanden (keine rein gebrochen rationalen Übertragungsfunktionen)	System nicht im Zustandsraum als zeitkontinuierliches Modell darstellbar
Verschiedene Aktoren mit versch. Kosten	Gewichtung von Regelabweichung und Stellgrößen getrennt und einzeln möglich
Hardware mit beschränkter Rechenzeit	P_opt muss nur einmal vorher berechnet werden, sonst einfache Matrixmultiplikation
+ LQR kann vor Lösung des Optimierungsproblems z.B. über Polvorgabe das System stabilisieren	 - Keine Zielgebiete, Eine Systemdynamik kann nicht vollständig beeinflusst werden, - kein Überschwingen vermeidbar - Messrauschen ist ggf. kritisch für Wahl der Beobachterdynamik
MIMO	Über die Auslegung der Matrizen Q und R können alle Zustände und alle Stellgrößen einzeln gewichtet werden, Zustandsraummodell auch für MIMO aufstellbar

WOK:

Zeitdiskret oder Zeitkontinuierliches System	WOK benötigt Pol und Nullstellen des aufgeschnittenen Regelkreises G0
Keine Totzeit	Totzeit im Pol-Nst-Diagramm nicht darstellbar
Lineare Systeme	→ Übertragungsfunktion G0 nötig, nur im Linearen Fall aufstellbar
Nicht für MIMO	→ Nur eine Übertragungsfunktion G0 übertragbar
Nicht beobachtbar	Nur Ausgangsrückführung, keine Zustandsrückführung
Steuerbar	Beliebige Polplatzierung gewollt

Instabil	Polplatzierung oder Verschiebung der Polstellen über Wahl von K in das stabile Zielgebiet
Dämpfung vorgegeben, Dynamik, Zielgebiete	Zielgebiete können im Pst/Nst Bild eingezeichnet werden, sodass die Polstellen in diesem Gebiet liegen und der geschlossene Kreis die vorgegebene Dynamik besitzt
	für bestimmte Frequenzbereiche keine exakten Zielvorgaben möglichoptimale Polvorgabe möglich nach Kriterium

Open-Loop-Shaping

Stabil, keine instabilen Pole	Vereinfachtes Nyquist im Bodediagramm anwenden könne
Nicht zeitdiskret	Ist Frequenzgangverfahren im Bodediagramm
Messrauschen, stationäre Genauigkeit	Auslegung von Zielgebieten und und verbotenen Gebieten im Bodediagramm und entsprechende Regelersysthese zur Vermeidung dieser Zonen
Totzeit	Totzeit möglich, Berücksichtigung über Phasengang und Anwendung des Nyquist weiterhin möglich
Linear, kein MIMO	Frequenzgangverfahren
steuerbar	Gezielte Platzierung der Polstellen im Bodediagramm muss möglich sein
Zustandsraum	Überführung in Übertragungsfunktion
beobachtbar	Ausgangsrückführung, keine Zustandsrückführung
Frequenzabhängige Vorgaben, Rauschunterdrückung, stationäre Genauigkeit, keine Verstärkung bestimmter Frequenzen	Frequenzgangverfahren im Bode-Diagramm, Vorgabe Amplitude von S und T und Abschätzung von G0
Stör- und Führungsverhalten getrennt auslegen	Vorsteuerung ermöglicht 2 Freiheitsgrade- Struktur

Closed Loop Shaping

lineares, zeitkontinuierliches Modell des Systems im Zustandsraum vor	CLS kann genutzt werden, um lineare, zeitkontinuierliche Systeme zu regeln. Aus dem Zustandsraummodell kann die Generalized Plant konstruiert werden. Das Verfahren ist ein Frequenzgangverfahren, für welches Bode-Diagramm und Nyquist-Ortskurve benutzt werden können.
Das System besitzt 2 Eingänge und 3 Ausgänge.	Über die Generalized Plant können mehrere Ein- und Ausgänge (MIMO-Systeme) in Betracht gezogen werden.
Das System ist nicht beobachtbar.	Keine Zustandsrückführung, nur Ausgangsrückführung
Einer der Sensoren zum Erfassen der Regelgrößen ist mit einem Messrauschen größer 50 Hertz belegt.	Beim CLS kann durch die Wahl der Parameter S und T (unter Beachtung des Dilemmas der Regelungstechnik) das Frequenzverhalten des geschlossenen Kreises beeinflusst werden. Konkret kann hier mit hinreichend kleinem T das Messrauschen gedämpft werden.
Einer der Ausgänge soll möglichst kleine Werte annehmen, die anderen beiden sollen den sprungförmigen Sollwertänderungen möglichst gut folgen können.	Im Generalized Plant-Modell können externe Eingänge und Zielgrößen gewichtet werden. Über die Festlegung der Matrizen W_p und C_w bzw. D_w kann das beschriebene Verhalten der Ausgänge erreicht werden.
instabil	→ Stabilisierung vor Anwendung und Auslegung der Filter möglich
+ Formulierung als Generalized Plant	Solange es in einer Generalized Plant beschrieben werden kann, kann es in der Reglersysthese berücksichtigt werden
Beliebige Wahl und Gewichtung von Zielgrößen	
Totzeit	Beeinflusst Reglersysthese nicht

ILR:

Siehe Voraussetzungen	
Wiederholende Prozessabläufe	Lernen anhand von Zyklen und Steuerung
Nicht kontinuierlich	Messtechnische Begrenzung, zeitdiskrete Auslegung, siehe Methodik
Steurbarkeit	Immer gegeben
Keine Beobachtbarkeit	Nur Ausgangsrückführungen

Exakte Linearisierung:

Nichtlineares System	
Keine Approximation durch Linearisierung	Exakte Dynamik kann ohne Approximation exakt beschrieben werden
System muss flach sein	Ohne Flachheit → interne Dynamik, also nicht exakt linearisierte Gleichungen bleiben zurück

Backstepping:

Flach	Es bleibt sonst interne Dynamik zurück, die beim Reglerentwurf nicht beeinflusst werden kann
Nichtlinear	
+ geeignete Nichtlinearitäten der Strecke für Regelung nutzbar + Robustheit der Regelung gegenüber Ungenauigkeiten des Streckenmodells	
Robustheit	Über Wahl von U = u_wunsch + Fehlerterm

Sliding-Mode:

Strukturvariables Reglerentwurfsverfahren mit Gleitzustand	
Es gibt 2 Reglergesetze → Sliding-Regler schaltet in Abhängigkeit des Zustandsvektors zwischen ihnen hin und her	
Beobachtbarkeit im Linearen	Zustand x kennen
Es treten Gleitzustände auf → robust gegenüber Parameteränderungen der Regelstrecke	
Eingangsaffine Darstellung	
Solltrajektorie kann vorgegeben werden	
Unsicherheit muss abschätzbar sein Hochfrequentes Chattern durch Hysterese und Begrenzungsglieder oder stetige Begrenzungsfunktionen reduzierbar SlidingSurface muss in endlicher Zeit erreichbar sein Zustandsgrössen müssen messbar sein	→ Dynamik des Sliding Surface muss entsprechend gewählt werden

MPR:

Modell muss bekannt sein	Ausgangsverlauf kann vorhergesagt werden → braucht man für Optimierung
Nichtlineare und lineare Systeme möglich	Modell bekannt
Stellgrößen und Zustandsabweichungen sollen gewichtet werden können	Werden im Kostenfunktional vorgegeben
Beobachtbar nötig	Zustandsabweichung geht in Optimierung ein
Totzeit möglich	Kann durch Wahl von N1 kompensiert werden
Optimierung der Stellfolge erlaubt Reaktion auf Prozessstörungen	
Anfangszustand muss bekannt sein	Kann aber über Beobachter geschätzt werden
Nur zeitdiskret	Akausales System nötig; nur zeitdiskret möglich
Gut für MIMO	Matrizen von beliebigem Rang
Nebenbedingungen und Beschränkungen im Optimierungsproblem erfassbar	
Echtzeitproblematik	Für nichtlineare Fälle evtl sehr rechenaufwendig → Streckendynamik nicht zu hoch

Beschreibungsfunktionen

Strecke muss hinreichendes Tiefpassverhalten besitzen	Dämpfung von Oberschwingungen
Strecke stabil und linear	Zwei-OK-Verfahren muss anwendbar sein
Nichtlineare Reglerkennlinie muss nullpunktsymmetrisch sein	Sonst keine harmonische Balance im Regelkreis möglich
Nur diskrete Stellgrößen verfügbar	Kann durch Beschreibungsfunktion modelliert werden
Totzeit	Kann über Ortskurve bei Analyse der Arbeitsbewegungen berücksichtigt werden → keine instabilen Arbeitsbewegungen zulässig