Let $\Delta_1^{\tau}=E[Y_1(1,M(1))-Y_1(0,M(0))|\tau]$ denote the ATE conditional on $\tau\in$ $\{a,c,de,n\};\ \theta_1^{\tau}(d)$ and $\delta_1^{\tau}(d)$ denote the corresponding direct and indirect effects. Because M(1) = M(0) = 0 for any never-taker, the indirect effect for this group is by definition zero $(\delta_1^n(d) = E[Y_1(d,0) - Y_1(d,0)|\tau=n] = 0)$ and $\Delta_1^n = E[Y_1(1,0) - Y_1(d,0)|\tau=n] = 0$ $Y_1(0,0)|\tau=n]=\theta_1^n(1)=\theta_1^n(0)=\theta_1^n$ equals the direct effect for never-takers. Correspondingly, because M(1) = M(0) = 1 for any always-taker, the indirect effect for this group is by definition zero $(\delta_1^a(d) = E[Y_1(d,1) - Y_1(d,1)|\tau = a] = 0)$ and $\Delta_1^a = E[Y_1(1,1) - Y_1(0,1)|\tau = a] = \theta_1^a(1) = \theta_1^a(0) = \theta_1^a$ equals the direct effect for always-takers. For the compliers, both direct and indirect effects may exist. Note that M(d) = d due to the definition of compliers. Accordingly, $\theta_1^c(d) = E[Y_1(1,d) - Y_1(0,d)|\tau = c]$ equals the direct effect for compliers, $\delta_1^c(d) = E[Y_1(d,1) - Y_1(d,0)|\tau = c]$ equals the indirect effect for compliers, and $\Delta_1^c = E[Y_1(1,1) - Y_1(0,0)|\tau=c]$ equals the total effect for compliers. In the absence of any direct effect, the indirect effects on the compliers are homogeneous, $\delta_1^c(1) = \delta_1^c(0) = \delta_1^c$, and correspond to the local average treatment effect. Analogous results hold for the defiers. As already mentioned, we will also consider direct effects conditional on specific values D = d and mediator states M = M(d) = m, which are denoted by $\theta_1^{d,m}(d) = E[Y_1(1,m) - Y_1(0,m)|D = d, M(d) = m]$. These parameters are identified under weaker assumptions than strata-specific effects, but are also less straightforward to interpret, as they refer to mixtures of two strata. For instance, $\theta_1^{1,0}(1) = E[Y_1(1,0) - Y_1(0,0)|D = 1, M(1) = 0]$ is the effect on a mixture of nevertakers and defiers, as these two groups satisfy M(1) = 0. Likewise, $\theta_1^{0,0}(0)$ refers to never-takers and compliers satisfying M(0) = 0, $\theta_1^{0,1}(0)$ to always-takers and defiers satisfying M(0) = 1, and $\theta_1^{1,1}(1)$ to always-takers and compliers satisfying M(1) = 1.

0.1 Quantile effects

We denote by $F_{Y_t(d,m)}(y) = \Pr(Y_t(d,m) \leq y)$ the cumulative distribution function of $Y_t(d,m)$ at outcome level y. Its inverse, $F_{Y_t(d,m)}^{-1}(q) = \inf\{y : F_{Y_t(d,m)}(y) \geq q\}$, is the quantile function of $Y_t(d,m)$ at rank q. The total QTE are denoted by