

Tablas y Equivalencias

Productos y servicios para la construcción civi

ArcelorMittal Acindar

Tablas y Equivalencias

Productos y servicios para la construcción civil

Índice

DN A 420 S® I Barras de acero conformadas de dureza	
natural, soldables, para estructuras de hormigón armado	6
AL 220® I Barras de acero lisas para hormigón armado	7
Sima® I Mallas soldadas estándar	8
Soluciones Acindar	
Sima® I Mallas soldadas según especificación	10
Sima® I Mallas plegadas	11
Pasadores	11
Trilogic® I Vigas reticuladas electrosoldadas de acero	12
Acero cortado y doblado	13
Prearmados	14
Fibracero® I Fibra de alambre de acero	16
Alambres de acero de baja relajación para pretensado	17
Alambre de acero indentado APC 1680	17
Cordones de acero para pretensado	18
Cordones de acero engrasados y envainados	19
Perfiles laminados en caliente I Ángulo de alas iguales	20
Perfiles laminados en caliente I Normal U (U.P.N.)	22
Perfiles laminados en caliente I Normal doble T (I.P.N.)	23
Perfiles laminados en caliente I I.P.B. (grey mediano HEB)	24
Perfiles laminados en caliente I I.P.B.I. (grey liviano HEA)	25
Perfiles laminados en caliente I I.P.E.	26
Perfiles laminados en caliente I W	27
Perfiles laminados en caliente I U chicos y T	29
Tablestacas	30
Planchuelas laminadas	31
Planchuelas perforadas	32
Planchuelas de acero microaleado de alto límite de fluencia	33

Barras laminadas en caliente	34
Clavos	35
Alambres recocidos de acero bajo carbono	39
Tejimet® I Alambres tejidos galvanizados	39
Job-Shop I Mallas electrosoldadas para uso no estructural	40
Bagual® I Alambres de púas galvanizados	41
Electrodos I AWS 5.1	42
Alambre continuo para soldar I ER70 S-6	44
Información técnica	
Tabla de conversión de pulgadas a milímetros	46
Conversión de magnitudes físicas	47
Sistema Métrico Legal Argentino (SIMELA)	48
Unidades de base	48
Unidades suplementarias	48
Unidades derivadas	48
Formación de múltiplos y submúltiplos	49
Áreas, baricentros, momentos de inercia y resistencia	50
Reacciones, momentos flectores y flechas	52
Tablas de pesos unitarios y sobrecargas mínimas	54
Diseño por resistencia en hormigón estructural	
Armadura	58
Sección rectangular	60
Sección T	61
Parametrización de curvas para acero para hormigón armado	62

66

Calidad ArcelorMittal Acindar

DN A 420 S®

Barras de acero conformadas de dureza natural, soldables, para estructuras de hormigón armado

Identificación de las barras

	nension ominale		Barra 12 m		Secciones nominales / número de barras					Diám. mandril de doblado mínimo ¹				
Diám.	Perím.	Peso	Peso	1	2	3	4	5	6	7	8	9	10	
mm	cm	kg/m	kg					(:m²					cm
6	1,88	0,222	2,66	0,28	0,56	0,85	1,13	1,41	1,70	1,98	2,26	2,54	2,83	2,40 -4d
8	2,51	0,395	4,74	0,50	1,00	1,51	2,01	2,51	3,01	3,52	4,02	4,52	5,03	3,20-4d
10	3,14	0,617	7,40	0,79	1,57	2,36	3,14	3,93	4,71	5,50	6,28	7,07	7,85	4,00-4d
12	3,77	0,888	10,7	1,13	2,26	3,39	4,52	5,65	6,79	7,92	9,05	10,18	11,31	4,80-4d
16	5,03	1,580	18,9	2,01	4,02	6,03	8,04	10,05	12,06	14,07	16,08	18,10	20,11	6,40-4d
20	6,28	2,470	29,6	3,14	6,28	9,42	12,57	15,71	18,84	21,99	25,14	28,27	31,42	12,00-6d
25	7,85	3,850	46,2	4,91	9,82	14,73	19,64	24,55	29,46	34,37	39,28	44,19	49,10	15,00-6d
32	10,10	6,310	75,7	8,04	16,08	24,13	32,17	40,21	48,26	56,30	64,34	72,38	80,42	25,60-8d
40	12,60	9,860	118,3	12,57	25,13	37,70	50,26	62,83	75,40	87,96	100,53	113,12	125,66	40,00-10d

^{1.} CIRSOC 201.

Propiedades mecánicas

IRAM-IAS U500-207/17	Límite de fluencia característico mínimo	Resistencia a la tracción característica mínima	Alargamiento porcentual de rotura característico mínimo
	MPa	MPa	%
Valores característicos mínimos	420	500	12

Discrepancia en la masa

Diámetro nominal de la barra	Discrepancia		
mm	%	%	
d < 10	± 8	± 5	
d ≥ 10	± 5	± 3	

Carbono equivalente

	Análisis de colada máximo	Análisis de producto máximo
	%	%
Carbono equivalente (CE)	0,50	0,52

Presentaciones

Producto	Presentación	Diám.
Barras de 12 m	a granel	6 a 40
Cortado y doblado	según planilla	6 a 40

El carbono equivalente se debe calcular con la siguiente fórmula:

$$CE \% = C \% + \frac{Mn \%}{6} + \frac{Cr \% + V \% + Mo \%}{5} + \frac{Cu \% + Ni \%}{15}$$

Barras de acero lisas para hormigón armado

Las barras de acero laminadas en caliente, lisas y de sección circular, son fabricadas según la norma IRAM-IAS U500-502/04.

Las barras se entregan en estado natural de laminación y se fabrican con aceros cuya composición química de colada y de producto está controlada en base a norma.

Diámetro nominal	Perímetro nominal	Peso nominal	Peso por barra 12 m	
mm	cm	kg/m	kg	
6	1,88	0,222	2,66	
8	2,51	0,395	4,74	
10	3,14	0,617	7,40	
12	3,77	0,888	10,7	
16	5,03	1,580	18,9	
20	6,28	2,470	29,6	
25	7,85	3,850	46,2	

Propiedades mecánicas

	Límite de fluencia característico mínimo	Resistencia a la tracción característica mínima	Alargamiento porcentual de rotura característico mínimo	
	MPa	MPa	%	
Valores característicos mínimos	220	340	18	

Discrepancias en la masa

Diámetro nominal de la barra	Discrepancias
milímetros	%
6 ≤ d ≤ 8	± 7
10 ≤ d ≤ 20	± 5
d = 25	± 3

Presentaciones

Producto	Presentación
Barras de 12 metros	a granel
Cortado y doblado	según planilla

Sima®

Mallas soldadas estándar

El acero utilizado es de calidad T 500°, es decir conformado en frío y con una tensión de fluencia característica de 500 MPa.

Marca laminada

Cuando compre mallas exija un producto de calidad. Todas nuestras mallas tienen la marca Acindar laminada sobre su superficie.

Plano esquemático

Línea Maxi. Paneles de 2,40 m x 6 m (superficie 14,4 m²)

Modelos	Cuantía	Separ	ación	Diámetro de alambres		Salie	ntes	Peso n	ominal
	Longit.	Longit.	Transv.	Longit.	Transv.	A1= A2	A3= A4	Panel	m²
	cm²/m	cm	cm	mm	mm	cm	cm	kg	kg
Cuadrícula	1								
Q 131	1,31	15	15	5,0	5,0	7,5	7,5	29,59	2,06
Q 188	1,88	15	15	6,0	6,0	7,5	7,5	42,62	2,96
Q 196	1,96	10	10	5,0	5,0	5,0	5,0	44,39	3,08
Q 221	2,21	15	15	6,5	6,5	7,5	7,5	50,01	3,47
Q 257	2,57	15	15	7,0	7,0	7,5	7,5	58,00	4,03
Q 335	3,35	15	15	8,0	8,0	7,5	7,5	75,76	5,26
Q 378	3,78	15	15	8,5	8,5	7,5	7,5	85,53	5,94
Q 524	5,24	15	15	10,0	10,0	7,5	7,5	118,38	8,22
Q 754	7,54	15	15	12,0	12,0	7,5	7,5	170,46	11,84
Disposició	n rectang	ular							
R 131	1,31	15	25	5,0	5,0	12,5	7,5	23,68	1,64
R 188	1,88	15	25	6,0	5,0	12,5	7,5	30,19	2,10
R 221	2,21	15	25	6,5	5,0	12,5	7,5	33,88	2,35
R 257	2,57	15	25	7,0	5,0	12,5	7,5	37,88	2,63
R 335	3,35	15	25	8,0	5,0	12,5	7,5	46,76	3,25
R 378	3,78	15	25	8,5	5,0	12,5	7,5	51,64	3,59
R 524	5,24	15	25	10,0	6,0	12,5	7,5	71,97	5,00
R 754	7,54	15	25	12,0	7,0	12,5	7,5	102,63	7,13

Línea Mini. Paneles de 2,40 m x 3 m (superficie 7,2 m²)

Modelos	Cuantía	Separ	ación	Diámetro de alam		Salie	ntes	Peso nominal		
	Longit.	Longit.	Transv.	Longit.	Longit. Transv.		A3= A4	Panel	m²	
	cm ² /m	cm	cm	mm	mm	cm	cm	kg	kg	
Cuadrícula										
Q 131	1,31	15	15	5,0	5,0	12,5	7,5	14,80	2,06	
Q 188	1,88	15	15	6,0	6,0	7,5	7,5	21,31	2,96	
Disposición	Disposición rectangular									
R 131	1,31	15	25	5,0	5,0	12,5	7,5	11,84	1,64	
R 188	1,88	15	25	6,0	5,0	12,5	7,5	15,09	2,10	

Soluciones Acindar Valor agregado para la construcción

Sima®

Mallas soldadas según especificación

Variables necesarias

- * Largo y ancho del panel
- * Salientes (A1, A2, A3 y A4)
- * Cuantía (diámetros y separaciones)
- * Cantidad de paneles

Salientes A1, A2, A3 y A4: se definirán en función de las dimensiones del panel, diámetros y separaciones entre barras. Consultar con nuestro Servicio de Asistencia Comercial.

Límite	Ancho	Largo	Diámetro
	metros	metros	milímetros
Máximo	3	12	12
Mínimo	1,0	1,0	5

El acero utilizado es de
calidad T 500®, es de-
cir conformado en frío
y con una tensión de
fluencia característica
de 500 MPa.

Marca laminada

Cuando compre mallas exiia un producto de calidad.

Todas nuestras mallas tienen la marca Acindar laminada sobre su superficie.

Plano esquemático

Cuantía

Relación de soldabilidad

d menor (mm) ≥ 0.57 d mayor (mm)

Para obtener una soldadura que garantice la capacidad estructural de la malla y su resistencia en el manipuleo durante el transporte y posicionado en obra, se debe cumplir la relación de soldabilidad detallada a la izquierda.

Combinación de diámetros y separaciones

Diámetro longitudinal (mm)

Separación longitudinal mínima y consecutiva soldable

■ 5 cm ■ 7,5 cm

☐ Diámetros no soldables (consultar)

Diámetro y calidad de acero

5 a 12 mm T 500®

16 mm DN A 420 S®

El empalme de mallas se realizará según CIRSOC 201. Por consultas sobre:

- combinaciones de mallas que incluyan barras DN A 420 S® de diámetro 16 mm
- largos especiales
- · aceros lisos, negros y/o galvanizados
- otra información

contáctese con nuestro Servicio de Asistencia Comercial al +5411 4616-9300 o al 0800-444-2246.

Mallas plegadas

Es un sistema de armaduras de acero diseñado de acuerdo a las especificaciones dadas por el cliente para estructuras de hormigón armado. Se fabrican a partir de mallas especiales, regulares o irregulares bajo la norma IRAM-IAS U500-06/16. El acero utilizado es de calidad T 500°, es decir conformado en frío y con una tensión de fluencia característica de 500 MPa.

Las armaduras se entregan listas para usar, solo hay que colocarlas dentro del encofrado y hormigonar la estructura.

Características

Modelo a pedido							
Largo máximo	Ancho máximo*	Diámetro máximo barras					
metros	metros	milímetros					
6	3	12					

^{*} Por largos especiales, consulte a nuestro Servicio de Asistencia Comercial.

Figuras posibles de doblado de mallas

Pasadores

Descripción del producto

Los pasadores -diámetros 16 mm a 25 mm- se producen con barras de acero liso AL 220®. Estas barras de acero son laminadas en caliente, lisas y de sección circular; fabricadas según la norma IRAM-IAS U500-502/04. Los pasadores de diámetro 32 mm son producidos con barras laminadas SAE 1010 o SAE 1016, según norma IRAM-IAS U500-600/03.

Usos y aplicaciones

Para ser utilizados en pisos y pavimentos de hormigón, los pasadores fueron especialmente diseñados para las juntas de placas donde es necesario transmitir esfuerzos verticales de una placa a otra. Debido a que son perfectamente rectilíneos y no presentan rebabas, los pasadores permiten los movimientos horizontales.

Aplicarlos sobre superficies lisas, libres de óxido y con tratamiento que impida la adherencia al hormigón y ubicarlos paralelos al eje de la calzada, a mitad del espesor de la losa y mitad a cada lado de la junta transversal.

Si su proyecto requiere otro modelo, consulte disponibilidad mediante nuestro Servicio de Asistencia Comercial.

Trilogic®

Vigas reticuladas electrosoldadas de acero

El acero utilizado es de calidad T 500°, es decir conformado en frío y con una tensión de fluencia característica de 500 MPa.

Línea estándar

Modelo	Alturas		Largo de				Armadura				Peso por
	h	base b	corte	diagonal a	Inferior Diagonal		Superior	lineal	elemento		
	cm	cm	m	cm	d _i mm	d _d	d _s	kg/m	kg		
T 8	8	9	6	20	5	3,4	6	0,72	4,31		
T 10	10	9	6	20	5	4,5	7	0,97	5,80		
T 15	15	10	6	20	6	5	8	1,40	8,43		
T 20	20	10	6	20	8	6	10	2,41	14,48		
T 25	25	10	6	20	10	7	12	3,77	22,65		

Línea según especificación

Modelo	Alt	uras		Largo de				1		Peso por	
	h	h1	base b	corte	diagonal a	Inferior	Diagonal	Superior	lineal	elemento	
	cm	cm	cm	m	cm	d _i mm	d _d mm	d _s mm	kg/m	kg	
Variable	7,5 a 25	Variable	10	múltiplos de 0,10	20	4 a 10	3,40 a 7	5 a 12	Variable	Variable	

Largo mínimo: 2 metros.

Largo máximo: 12 metros.

Para otros largos, consulte a nuestro equipo de especialistas del Servicio de Asistencia Comercial.

Usos y aplicaciones: prelosas; separadores; soporte de pasadores.

Trilogic® como separador de mallas

Acero cortado y doblado

Es la manera más rápida y eficaz de resolver las armaduras para estructuras de hormigón armado en cualquier tipo de proyecto.

Según las planillas y/o planos con detalle de dispersión de diámetros, remitidos por el cliente y de acuerdo con los cronogramas de trabajo de la obra, las figuras se entregan en paquetes individualizados e identificados.

El acero utilizado es de calidad DN A 420 S[®] (con características especiales de soldabilidad) fabricado bajo norma IRAM-IAS U500-207/17. Las piezas prearmadas son realizadas con exactitud y la mayor tecnología, cumpliendo con las normas de doblado y armado según reglamento CIRSOC 201.

	Diseño del proyecto	Compra de materiales	Ejecución de la obra	Dirección de la obra	Márgenes de la empresa
	Minimizar merma (aproximadamente 7%).	Cotizar el acero.	Asegurar mano de obra calificada (rendimiento aprox. 30 hh/t).	Se necesita elevado control de calidad.	Consumos y rendimientos inciertos hasta el fin de la obra.
Sistema tradicional	Estimar consumo de acero.	Cotizar el servicio de cortado y doblado.	Prever equipamiento adecuado.	Limitación de la capacidad de producción por el plantel y el equipamiento disponibles.	
	Realizar planillas y/o planos con detalle de armadura.	Programar las compras de barras con 5 semanas de anticipación.	Destinar espacio para acopio y almacenamiento (aprox. 160 m²).	Garantizar rendimientos y mermas según lo presupuestado.	
Soluciones <mark>Acinda</mark> r	Realizar las planillas y/o planos con detalle de armadura. Estimar consumo de acero.	Cotizar el acero y el servicio.	Programar entregas según cronograma de hormigonado.	Posibilidad de modificar el ritmo de la obra, reprogramando las entregas.	Conocimientos de los costos y consumo real del acero procesado desde el primer día.

Tipo de acero	Diámetros
Norma IRAM-IAS U500-207/17	milímetros
DN A 420 S®1	6 - 8 - 10 - 12 - 16 - 20 - 25 - 32 - 40

^{1.} Consultar para otras medidas y tipos de acero.

Rangos de diámetros disponibles

Figuras

Y otras que su proyecto necesite.

Prearmados

Es un sistema de armaduras de acero, diseñado de acuerdo a las especificaciones dadas por el cliente para estructuras de hormigón armado. Las armaduras vienen listas para usar, sólo hay que colocarlas dentro del encofrado y hormigonar la estructura.

El acero utilizado es de calidad DN A 420 S® (con características especiales de soldabilidad) fabricado bajo norma IRAM-IAS U500-207/17. Las piezas prearmadas son realizadas con exactitud y mayor tecnología, cumpliendo con las normas de doblado y armado según reglamento CIRSOC 201.

Jaulas prearmadas y soldadas

Están formadas por barras de acero longitudinales y estribos soldados helicoidalmente en sus puntos de encuentro. Las armaduras se entregan listas para usar, solo hay que colocarlas dentro del encofrado y hormigonar la estructura.

El acero utilizado es de calidad Acindar DN A 420 S® (con características especiales de soldabilidad) fabricado bajo norma IRAM-IAS U500-207/17.

Vista lateral

Vista frontal

Modelo a pedido							
Diámetro máximo	Longitud máxima*	Barras longitudinales d máximo					
metros	metros	milímetros					
2	12	32					

^{*} Por largos especiales, consulte a nuestro Servicio de Asistencia Comercial.

Otros tipos de prearmados

Cabezales

Vigas / Columnas

Cerchas

Muros colados

Consúltenos por otras estructuras según lo requiera su proyecto.

Fibracero®

Fibra de alambre de acero

Las fibras de acero son elementos de reducida dimensión, producidos a partir de alambres de acero SAE 1005 y conformadas en frío. El uso de Fibracero® reduce y controla la retracción del hormigón, actuando como una armadura tridimensional y disminuyendo su tendencia a la fisuración del fraguado. Su aplicación característica se realiza en pavimentos y en pisos industriales.

Dimensiones

Diámetro d	Largo L	Largo del gancho I - I´	Altura del conformado h - h´	Ángulo del doblez α – α΄	Comba de la fibra	Torsión de la fibra β	Fibras por kilogramo
mm	mm	mm		Grados	Máximo	Grados	Unidades (aprox.)
1 ± 0,05	50 ± 5	1-4	≥ 1,80 de Ø	30 - 45	5% de L´	< 30	3.260

Presentación

Modelo	45 cajas/pallet	1 caja
	kg	kg
Fibracero® HE 1/50	675	15

Alambres de acero de baja relajación para pretensado IRAM-IAS 500-517

Designación del alambre ^A	Diámetro nominal	Sección nominal			Resistencia a la tracción		gamiento ual de rotura
					mínima	Mínimo	Longitud de referencia
	mm	mm²	kg/m	Rp 0,2 MPa	R MPa	At %	Lo mm
APL 1700	5 ^B	19,64	0,154	1.500	1.700	5	50
APL 1700	7	38,48	0,302	1.500	1.700	5	70

 A. Los valores de relajación corresponden aproximadamente a la resistencia a la tracción nominal del alambre expresada en MPa.

B. A pedido.

Porcentaje de relajación

Carga inicial	Relajación máxima a 1.000 horas y 20 °C
%	%
60	1
70	2
80	3

Alambre de acero indentado

Fabricado según norma APC 1680 IRAM-IAS U500-245.

Usos y aplicaciones

Para estructuras de hormigón pretensado utilizado en especial para durmientes.

Designación del alambre	Diámetro nominal d	Carga al 1% de alarga- miento total	Carga de rotura mínima		Resistencia a la tracción mínima	Alargamiento porcentual de rotura bajo carga sobre 200 mm mínimo	Dob alter	lado nado
	mm	Q1 KN	Qt KN	Re MPa	R MPa	At %	Nº de doblados	Radio del mandril mm
APC 1680	6	43	47,7	1.521	1.687	2,5	2	15

Medida de la indentación

Designación del alambre	Diámetro nominal d	Profundidad de la indentación h	Ancho a	Paso D
	mm	mm	mm	mm
APC 1680	6	0,14 ≤ h ≤ 0,21	5	8

Cordones de acero para pretensado

Cordones de dos y tres alambres relevado de tensiones

Fabricados según norma IRAM-IAS U500-07/05 Propiedades mecánicas

Propiedades mecánicas

Designación del cordón ¹	Construcción del cordón	Diámetro nominal de los alambres	Área nominal de la sección transversal del cordón²	Peso por unidad de longitud³ a				Alargamiento de rotura bajo carga sobre 200 mm mínima
		mm	Sección metálica mm²	kg/m	Tolerancia %	Q, kN	Q, kN	At %
C 1950	2 x 2,25	2,25	7,95	0,0624	± 8	13,2	15,6	2,5
C 1950	3 x 2,25	2,25	11,93	0,0936	± 8	19,8	23,5	2,5
C 1750	3 x 3,00	3,00	21,21	0,1665	±8	31,5	37,1	2,5

- Los valores de designación corresponden aproximadamente a la resistencia a la tracción nominal del cordón expresada en MPa.
- Son valores teóricos dados a título indicativo.
- 3. Los valores están calculados considerando que la densidad del acero es 7,85 kg/dm³.
- 4. La carga al 1% del alargamiento total, se considera equivalente al 0.2% de deformación permanente.

Cordones de siete alambres baja relajación

Fabricados según norma IRAM-IÁS U5Ó0-03/04*

Propiedades mecánicas

Designación del cordón¹	Construcción del cordón	Diámetro nominal de los alambres	Área nominal de la sección transversal del cordón²	Peso por unidad de longitud³	Carga al 1% del alargamiento total mínima ⁴	Carga de rotura mínima	Alargamiento de rotura bajo carga sobre 200 mm mínima
	Grado	mm	mm²	kg/m	Q ₁ kN	Q, kN	At %
C 1900	270	9,5	54,84	0,434	92	102	3,5
C 1900	270	12,7	98,70	0,778	166	184	3,5
C 1900	270	15,2	140,00	1,134	235	261	3,5
C 1900	270	15,7	150,00	1,200	251	279	3,5

- Los valores de designación corresponden aproximadamente a la resistencia a la tracción nominal del cordón expresada en MPa.
- Son valores teóricos dados a título indicativo.
- Los valores están calculados considerando que la densidad del acero es 7,85 kg/dm³.
- 4. La carga al 1% del alargamiento total, se considera equivalente a la carga al $0,\bar{2}\%$ de deformación permanente.
- El proceso de fabricación garantiza también el cumplimiento de la norma ASTM A 416.

Porcentaje de relajación

Carga inicial	Relajación máxima a 1.000 horas y 20 °C
%	%
60	1,0
70	2,5
80	3,5

^{*} Norma en revisión.

Cordones de acero engrasados y envainados

Son cordones de siete alambres de acero para hormigón pretensado que se deslizan libremente en el interior de una vaina plástica, donde el espacio entre el cordón y la vaina se halla integramente relleno de una grasa anticorrosiva. Con ello se logra reducir las pérdidas de pretensado por fricción y asegurar al mismo tiempo una protección eficaz contra la corrosión.

Fabricados según norma IRAM 5170.

Entre otras, se usan para losas pretensadas, estructuras de edificios, estacionamientos, elementos de enlace y anclaje de cimentaciones, cubiertas en altura, postesados exteriores, refuerzos estructurales, silos, etc.

Propiedades mecánicas

Las características de estos cordones coinciden con las de los cordones de 7 alambres sin plastificar, excepto el diámetro y el peso, que debido a la vaina de plástico y a la grasa aumentan unos 3 mm y 10% respectivamente.

Designación del cordón¹		nominal del	Diámetro del cordón engrasado -envainado	nominal del	de longitud²	Carga al 1% del alargamiento	de	Alargamiento de rotura bajo carga sobre 200 mm mínimo
		mm	mm	mm²	kg/m	kN	kN	%
CEE 1900	Grado 270	12,7	15,7	98,7	0,87	166	184	3,5
CEE 1900	Grado 270	15,2	18,2	140	1,2	235	261	3,5

Los valores de designación corresponden aproximadamente a la resistencia a la tracción nominal del cordón expresada en MPa.

Presentación

Forma de suministro	Diámetro interior	Diámetro exterior	Ancho	Peso máximo
Medidas orientativas	cm	cm	cm	kg
Bobina coreless	80	140	75	3.000

^{2.} Los valores están calculados considerando que la densidad del acero es de 7,85 kg/dm3.

Perfiles laminados en caliente

Ángulo de alas iguales

Usos y aplicaciones

Construcción metálica: elementos estructurales (vigas, columnas, entrepisos, reticulados). Agro: silos, molinos, máquinas e implementos agrícolas. Energía y comunicaciones: elementos estructurales para fabricación de torres.

Estos perfiles admiten uniones tradicionales, bulones normales, bulones de alta resistencia, soldadura, etc.

Ángulo	Lado	Espesor	Rac d acue	e	Área dela sección	Masa nominal por unidad de longitud	Distancias al centro de gravedad		Momentos de inercia			Módulos resistentes		Radios de giro			
	Ь	2	r	r,			fx=fy	w	V ₁	k=ly	lv	lz	Wx=Wy	Wv	ix=iy	İz	İv
pulgadas	mm	mm	m	mm cm²		kg/m		cm			cm⁴		cm³		cm		
1/2 x 1/8	12,7	3,2	4	2	0,71	0,56	0,42	0,95	0,62	0,19	0,08	0,29	0,10	0,08	0,35	0,45	0,24
5/8 x 1/8	15,9	3,2	4	2	0,94	0,74	0,50	1,13	0,71	0,20	0,08	0,31	0,18	0,12	0,46	0,57	0,30
3/4 x 1/8	19,1	3,2	4	2	1,13	0,89	0,58	1,34	0,82	0,35	0,14	0,55	0,26	0,18	0,55	0,70	0,36
7/8 x 1/8	22,2	3,2	4	2	1,32	1,04	0,65	1,56	0,92	0,56	0,23	0,89	0,36	0,25	0,65	0,82	0,42
1 x 1/8	25,4	3,2	4	2	1,51	1,19	0,73	1,77	1,03	0,84	0,34	1,34	0,48	0,34	0,75	0,94	0,48
1 x 3/16	25,4	4,8	4	2	2,19	1,72	0,79	1,77	1,11	1,17	0,50	1,84	0,68	0,45	0,73	0,92	0,48
1 1/4 x 1/8	31,8	3,2	5	2,5	1,97	1,55	0,89	2,26	1,26	1,83	0,72	2,93	0,79	0,57	0,96	1,22	0,61
1 1/4 x 3/16	31,8	4,8	5	2,5	2,87	2,25	0,96	2,26	1,35	2,58	1,06	4,10	1,15	0,78	0,95	1,20	0,61
1 1/2 x 1/8	38,1	3,2	6	3	2,37	1,86	1,03	2,69	1,46	3,11	1,20	5,02	1,12	0,82	1,15	1,46	0,71
1 1/2 x 3/16	38,1	4,8	6	3	3,46	2,71	1,10	2,69	1,56	4,45	1,78	7,12	1,65	1,14	1,13	1,44	0,72
1 1/2 x1/4	38,1	6,4	6	3	4,49	3,53	1,17	2,69	1,65	5,63	2,33	8,93	2,14	1,42	1,12	1,41	0,72
1 3/4 x 1/8	44,5	3,2	7	3,5	2,83	2,22	1,19	3,18	1,68	5,24	1,98	8,50	1,58	1,18	1,36	1,73	0,84
1 3/4 x 3/16	44,5	4,8	7	3,5	4,14	3,25	1,27	3,18	1,79	7,57	2,97	12,17	2,34	1,66	1,35	1,71	0,85
1 3/4 x 1/4	44,5	6,4	7	3,5	5,40	4,24	1,34	3,18	1,88	9,67	3,90	15,43	3,06	2,07	1,34	1,69	0,85
2 x 1/8	50,8	3,2	7	3,5	3,21	2,52	1,34	3,16	1,89	7,76	2,95	12,58	2,07	1,56	1,55	1,98	0,96

Ángulo de alas iguales (continuación)

Ángulo	Lado	Espesor	de a	dios acu- do	Área dela sección	Masa nominal por unidad de longitud	al	Distancias al centro de gravedad		Momentos de inercia			Módulos resistentes		Radios de giro		
	ь	2	r	r,	S	ms	fx=fy	w	V ₁	k=ly	lv	lz	Wx=Wy	W _v	ix=iy	İz	İv
pulgadas	mm	mm	m	m	cm ²	kg/m		cm		cm⁴		cm³		cm			
2 x3/16	50,8	4,8	7	3,5	4,72	3,70	1,42	3,61	2,00	11,26	4,41	18,12	3,06	2,20	1,54	1,96	0,97
2 x 1/4	50,8	6,4	7	3,5	6,17	4,84	1,49	3,61	2,10	14,45	5,80	23,10	4,00	2,77	1,53	1,93	0,97
2 1/4 x 3/16	57,2	4,8	8	4	5,31	4,17	1,56	4,03	2,20	15,88	6,13	25,64	3,84	2,79	1,73	2,20	1,07
2 1/4 x 1/4	57,2	6,4	8	4	6,96	5,46	1,63	4,03	2,30	20,49	8,10	32,87	5,03	3,53	1,72	2,17	1,08
2 1/2 x 3/16	63,5	4,8	9	4,5	6,00	4,71	1,72	4,53	2,43	22,70	8,65	36,76	4,85	3,56	1,95	2,48	1,20
2 1/2 x1/4	63,5	6,4	9	4,5	7,87	6,18	1,80	4,53	2,53	29,43	11,49	47,37	6,39	4,54	1,93	2,45	1,21
3 x 1/4	76,2	6,4	10	5	9,43	7,40	2,09	5,37	2,94	50,39	19,47	81,30	9,14	6,62	2,31	2,94	1,44
3 x 5/16	76,2	7,9	10	5	11,49	9,02	2,15	5,37	3,03	60,74	23,89	97,59	11,15	7,88	2,30	2,91	1,44
3 x 3/8	76,2	9,5	10	5	13,64	10,71	2,22	5,37	3,12	71,15	28,47	113,82	13,21	9,11	2,28	2,89	1,44
3 1/2 x 5/16	88,9	7,9	11	5,5	13,57	10,65	2,47	6,29	3,48	99,66	38,85	160,47	15,49	11,17	2,71	3,44	1,69
3 1/2 x 3/8	88,9	9,5	11	5,5	16,14	12,67	2,53	6,29	3,57	117,20	46,37	188,04	18,41	12,98	2,69	3,41	1,70
4 x 5/16	101,6	7,9	12	6	15,65	12,28	2,78	7,21	3,92	152,41	59,00	245,82	20,54	15,04	3,12	3,96	1,94
4 x 3/8	101,6	9,5	12	6	18,63	14,63	2,85	7,21	4,02	179,81	70,56	289,07	24,47	17,55	3,11	3,94	1,95
4 x 1/2	1016	127	12	6	2445	1919	298	721	420	230.95	9284	26907	3199	2209	307	3.89	195

Parámetro	Normas y medidas
Dimensiones y tolerancias	IRAM-IAS U500-558/17
Características mecánicas	IRAM-IAS U500-503/12 Hasta 2 1/2" grado F-24 y bajo pedido F-26 y F-36 Para 3"-3 1/2"-4" grado F-36 y bajo pedido F-24 y F-36
Largos	6 metros para ángulos de hasta 2 1/2" inclusive 12 metros para ángulos iguales o mayores a 3" Largos especiales consultar
Peso aproximado del paquete	2.000 kg

Normal U (U.P.N.)

Usos y aplicaciones

Se utilizan como vigas o columnas en diversas aplicaciones estructurales.

U.P.N.	Dimensiones					Sección	Masa nominal por unidad de longitud	Valores estáticos						
	h	Ь	s	t	Xg	S	ms	lx	ly	Wx	Wy	İx	iy=ii	
	mm	mm	mm	mm	cm	cm ²	kg/m	cm ⁴	cm ⁴	cm ³	cm ³	cm	cm	
80	80	45	6,0	8,0	1,45	11,0	8,6	106	19,4	26,5	6,4	3,10	1,33	
100	100	50	6,0	8,5	1,55	13,5	10,6	206	29,3	41,2	8,5	3,91	1,47	
120	120	55	7,0	9,0	1,60	17,0	13,3	364	43,2	60,7	11,1	4,62	1,55	
140	140	60	7,0	10,0	1,75	20,4	16,0	605	62,7	86,4	14,8	5,45	1,75	
160	160	65	7,5	10,5	1,84	24,0	18,8	925	85,3	115,6	18,3	6,21	1,89	
180	180	70	8,0	11,0	1,92	28,0	21,9	1.350	114,0	150,0	22,4	6,95	2,02	
200	200	75	8,5	11,5	2,01	32,2	25,2	1.910	148,0	191,0	27,0	7,70	2,14	
220	220	80	9,0	12,5	2,14	37,4	29,3	2690	197,0	244,5	33,6	8,48	2,26	
240	240	85	9,5	13,0	2,23	42,3	33,1	3.600	248,0	300,0	39,6	9,22	2,42	
260	260	90	10,0	14,0	2,36	48,3	37,8	4.820	317,0	370,0	47,7	9,99	2,56	
280	280	95	10,0	15,0	2,53	53,3	41,8	6.280	399,0	448,0	57,2	10,90	2,74	
300	300	100	10,0	16,0	2,70	58,8	46,1	8.030	495,0	535,0	67,8	11,70	2,90	
320	320	100	14,0	17,5	2,60	75,8	59,4	10.870	597,0	679,0	80,6	12,10	2,81	
400	400	110	14,0	18,0	2,65	91,5	71,7	20.350	846,0	1.017,5	102,0	14,90	3,04	

Parámetro	Normas y medidas
Dimensiones y tolerancias	IRAM-IAS U500-509/08
Características mecánicas	IRAM-IAS U500-503/12. Grado F-24
Largos	6 y 12 metros para U.P.N. 80 a 120 12 metros para U.P.N. mayores a 120 Largos especiales consultar
Peso aproximado del paquete	2.000 kg

Normal doble T (I.P.N.)

Usos y aplicaciones

Se utilizan como vigas o columnas en diversas aplicaciones estructurales.

I.P.N.	Dimensiones			Sección	Masa nominal por unidad de longitud	Valores estáticos						
	h	Ь	s	t	S	ms	lx	ly	Wx	Wy	İx	iy=ii
	mm	mm	mm	mm	cm ²	kg/m	cm ⁴	cm ⁴	cm ³	cm³	cm	cm
80	80	42	3,9	5,9	7,6	5,9	77,8	6,29	19,5	3,0	3,20	0,91
100	100	50	4,5	6,8	10,6	8,3	171	12,2	34,2	4,9	4,01	1,07
120	120	58	5,1	7,7	14,2	11,2	328	21,5	54,7	7,4	4,81	1,23
140	140	66	5,7	8,6	18,3	14,3	573	35,2	81,9	10,7	5,61	1,40
160	160	74	6,3	9,5	22,8	17,9	935	54,7	116,9	14,8	6,40	1,55
180	180	82	6,9	10,4	27,9	21,9	1.450	81,3	161,1	19,8	7,20	1,71
200	200	90	7,5	11,3	33,5	26,2	2.140	117	214,0	26,0	8,00	1,87
220	220	98	8,1	12,2	39,6	31,1	3.060	162	278,0	33,1	8,80	2,02
240	240	106	8,7	13,1	46,1	36,2	4.250	221	354,2	41,7	9,59	2,20
260	260	113	9,4	14,1	53,3	41,9	5.740	288	441,5	51,0	10,4	2,32
280	280	119	10,1	15,2	61,0	47,9	7.590	364	542,1	61,2	11,1	2,45
300	300	125	10,8	16,2	69,1	54,2	9.800	451	653,3	72,2	11,9	2,56
320	320	131	11,5	17,3	77,7	61,0	12.510	555	781,9	84,7	12,7	2,67
340	340	137	12,2	18,3	86,7	68,0	15.700	674	923,5	98,4	13,5	2,80
360	360	143	13,0	19,5	97	76,0	19.610	818	1.089,4	114,4	14,2	2,90
400	400	155	14,4	21,6	118	92,4	29.210	1.160	1.460,5	149,7	15,7	3,13
450	450	170	16,2	24,3	147	115	45.850	1.730	2.037,8	203,5	17,7	3,43
500	500	185	18,0	27,0	179	141	68.740	2.480	2.749,6	268,1	19,6	3,72

Consultar stock y entrega antes de rea	ilizar las compras.
Parámetro	Normas y medidas
Dimensiones y tolerancias	IRAM-IAS U500-511/08
Características mecánicas	IRAM-IAS U500-503/12. Grado F-24 I.P.N. 80-100: bajo pedido F-26
Largos	6 y 12 metros 12 metros para mayores a 100 mm Largos especiales consultar
Peso aproximado del paquete	2.000 kg

I.P.B. (grey mediano HEB)

Usos y aplicaciones

Se utilizan como vigas, columnas y canales para diversas aplicaciones estructurales.

I.P.B.	Dimensiones			Sección	Masa nominal por unidad de longitud					
	h	b	s	t	S	Ms	lx	ly	Wx	Wy
	mm	mm	mm	mm	cm²	kg/m	cm ⁴	cm ⁴	cm³	cm³
100	100	100	6,0	10,0	26,0	20,4	450	167	90	34
120	120	120	6,5	11,0	34,0	26,7	864	318	144	53
140	140	140	7,0	12,0	43,0	33,7	1.510	550	216	79
160	160	160	8,0	13,0	54,5	42,6	2.490	889	311	111
180	180	180	8,5	14,0	65,3	51,2	3.830	1.360	426	151
200	200	200	9,0	15,0	78,0	61,3	5.700	2.000	570	200
220	220	220	9,5	16,0	91,0	71,5	8.090	2.840	736	258
240	240	240	10,0	17,0	106,0	83,2	11.260	3.920	938	327
260	260	260	10,0	17,5	118,0	93,0	14.920	5.130	1.150	395
280	280	280	10,5	18,0	131,0	103,0	19.270	6.590	1.380	471
300	300	300	11,0	19,0	149,0	117,0	25.170	8.560	1.680	571
320	320	300	11,5	20,5	161,0	127,0	30.820	9.240	1.930	616
340	340	300	12,0	21,5	171,0	134,0	36.650	9.690	2.160	646
360	360	300	12,5	22,5	181,0	142,0	43.190	10.140	2.400	676
400	400	300	13,5	24,0	198,0	155,0	57.680	10.820	2.880	721
450	450	300	14,0	26,0	218,0	171,0	79.890	11.720	3.550	781
500	500	300	14,5	28,0	239,0	187,0	107.200	12.620	4.290	842
550	550	300	15,0	29,0	254,0	199,0	136.700	13.080	4.970	827

Parámetro	Normas y medidas
Dimensiones y tolerancias	IRAM-IAS U500-215-2/04
Características mecánicas	IRAM-IAS U500-503/12. Grado F-24 Otro grado consultar
Largos	12 metros
Peso aproximado del paquete	2.000 kg para largos de 12 metros

I.P.B.I. (grey liviano HEA)

Usos y aplicaciones

Se utilizan como vigas o columnas para diversas aplicaciones estructurales.

I.P.B.	Dimensiones				Sección	Masa nominal por unidad de longitud				
	h	ь	s	t	S	Ms	lx	ly	W×	Wy
	mm	mm	mm	mm	cm²	kg/m	cm⁴	cm ⁴	cm³	cm³
100	96	100	5,0	8,0	21,2	16,7	349	134	72,8	26,8
120	114	120	5,0	8,0	25,3	19,9	606	231	106	38,5
140	133	140	5,5	8,5	31,4	24,7	1.030	389	155	55,6
160	152	160	6,0	9,0	38,8	30,4	1.670	616	220	76,9
180	171	180	6,0	9,5	45,3	35,5	2.510	925	294	103
200	190	200	6,5	10,0	53,8	42,3	3.690	1.340	389	134
220	210	220	7,0	11,0	64,3	50,5	5.410	1.950	515	178
240	230	240	7,5	12,0	76,8	60,3	7.760	2.770	675	231
260	250	260	7,5	12,5	86,8	68,2	10.450	3.670	836	282
280	270	280	8,0	13,0	97,3	76,4	13.670	4.760	1.010	340
300	290	300	8,5	14,0	113	88,3	18.260	6.310	1.260	421
320	310	300	9,0	15,5	124	97,6	22.930	6.990	1.480	466
340	330	300	9,5	16,5	133	105	27.690	7.440	1.680	496
360	350	300	10,0	17,5	143	112	33.090	7.890	1.890	526
400	390	300	11,0	19,0	159	125	45.070	8.560	2.310	571
450	440	300	11,5	21,0	178	140	63.720	9.470	2.900	631
500	490	300	12,0	23,0	198	155	86.970	10.370	3.550	691
550	540	300	12,5	24,0	212	166	111.900	10.820	4.150	721

Parámetro	Normas y medidas
Dimensiones y tolerancias	IRAM-IAS U500-215-3/04
Características mecánicas	IRAM-IAS U500-503/12. Grado F-24 Otro grado consultar
Largos	12 metros Largos especiales consultar
Peso aproximado del paquete	2.000 kg para largos de 12 metros

I.P.E.

Usos y aplicaciones

Se utilizan como vigas o columnas para diversas aplicaciones estructurales.

I.P.E.	Dimensiones			Sección S	Masa nominal por unidad de longitud	Valores estáticos				
	h	Ь	s	t		ms	Jx	Jу	W×	Wy
	mm	mm	mm	mm	cm ²	kg/m	cm ⁴	cm ⁴	cm³	cm³
80	80	46	3,8	5,2	7,64	6,0	80	8	20	4
100	100	55	4,1	5,7	10,3	8,0	171	16	34	6
120	120	64	4,4	6,3	13,2	10,4	316	28	53	9
140	140	73	4,7	6,9	16,4	12,9	541	45	77	12
160	160	82	5,0	7,4	20,1	15,8	869	68	109	17
180	180	91	5,3	8	23,9	18,8	1.317	101	146	22
200	200	100	5,6	8,5	28,5	22,4	1.943	142	194	29
220	220	110	5,9	9,2	33,4	26,2	2.772	205	252	37
240	240	120	6,2	9,8	39,1	30,7	3.892	284	324	47
270	270	135	6,6	10,2	45,9	36,1	5.790	420	429	62
300	300	150	7,1	10,7	53,8	42,2	8.356	604	557	81
330	330	160	7,5	11,5	62,6	49,1	11.770	788	713	99
360	360	170	8,0	12,7	72,7	57,1	16.270	1.043	904	123
400	400	180	8,6	13,5	84,5	66,3	23.130	1.318	1.160	146
450	450	190	9,4	14,6	98,8	77,6	33.740	1.676	1.500	176
500	500	200	10,2	16,0	116,0	90,7	48.200	2.142	1.930	214
550	550	210	11,1	17,2	134,0	106,0	67.120	2.668	2.440	254
600	600	220	12,0	19,0	156,0	122,0	92.080	3.387	3.070	308

Parámetro	Normas y medidas
Dimensiones y tolerancias	IRAM-IAS U500-215-5/04
Características mecánicas	IRAM-IAS U500-503/12. Grado F-24 Otro grado consultar
Largos	12 metros Largos especiales consultar
Peso aproximado del paquete	2.000 kg para largos de 12 metros

w

Usos y aplicaciones

Se utilizan como vigas o columnas en diversas aplicaciones estructurales.

,	N		Dimen	sione	S	Sección	Masa nominal por unidad de longitud	Valores estáticos					
		h	Ь	s	t	S	Ms	lx	Wx	İx	ly	Wy	İy
pulg. x pulg. x lb/ft	mm x mm x kg/m	mm	mm	mm	mm	mm²	kg/m	cm ⁴	cm³	cm	cm ⁴	cm³	cm
6x4x9	150x100x13,5	150	100	4,3	5,5	1.729	13,5	685,5	91,40	6,29	91,8	18,36	2,30
6x4x12	150x100x18	153	102	5,8	7,1	2.290	18,0	915,9	122,1	6,33	125,9	25,37	2,36
6x6x15	150x150x22,5		152	5,8	6,6	2.858	22,5	1.206	158,6	6,51	386,6	_	3,68
6x6x20	150x150x29,8	157	153	6,6	9,3	3.787	29,8	1.714	218,4	6,73	555,5	72,62	3,83
8x4x10	200x100x15	200	100	4,3	5,2	1.910	15,0	1.280	128,0	8,18	86,89	17,38	2,13
8x4x13	200x100x19,3	203	102	5,8	6,5	2.477	19,3	1.662	163,7	8,17	115,4	22,63	2,15
8x4x15	200x100x22,5		102	6,2	8,0	2.865	22,5	2.004	194,5	8,36	_	27,85	2,22
8x5,25x18	200x135x26,6	207	133	5,8	8,4	3.394	26,6	2.587	250,0	8,72	329,8	49,60	3,11
8x5,25x21	200x135x31,3	210	134	6,4	10,2	3.974	31,3	3.139	298,9	8,87	409,6	61,13	3,20
8x6,5x24	200x165x35,9	201	165	6,2	10,2	4.568	35,9	3.438	342,1	8,67	764,3	92,64	4,09
8x8x31	200x200x46,1	203	203	7,2	11,0	5.890	46,1	4.545	447,8	8,81	1535	151,2	5,12
8x8x35	200x200x52	206	204	7,9	12,6	6.645	52,0	5.268	511,5	8,90	1784	174,9	5,18
10x4x12	250x100x17,9	251	101	4,8	5,3	2.284	17,9	2.252	179,5	9,92	91,34	18,09	2,00
10x4x15	250x100x22,3	254	102	5,8	6,9	2.845	22,3	2.901	228,4	10,06	122,6	24,03	2,07
10x4x17	250x100x25,3	257	102	6,1	8,4	3.219	25,3	3.430	266,9	10,30	149,2	29,25	2,15
10x4x19	250x100x28,4	260	102	6,4	10,0	3.626	28,4	3.998	307,5	10,51	177,5	34,81	2,21
10x5,75x22	250x145x32,7	258	146	6,1	9,1	4.187	32,7	4.895	379,4	10,83	472,6	64,74	3,36
10x5,75x26	250x145x38,5	262	147	6,6	11,2	4.910	38,5	6.014	459,1	11,05	593,7	80,77	3,47
10x5,75x30	250x145x44,8	266	148	7,6	13,0	5.703	44,8	7.118	535,2	11,14	703,5	95,06	3,50
10x10x49	250x250x73	253	254	8,6	14,2	9.290	73,0	11.290	892,1	11,02	3.880	305,5	6,46
12x4x14	310x100x21,0	303	101	5,1	5,7	2.680	21,0	3.708	244,8	11,75	98,31	19,47	1,91
12x4x16	310x100x23,8	305	101	5,6	6,7	3.040	23,8	4.280	280,7	11,87	115,6	22,89	1,95
12x4x19	310x100x28,3	309	102	6,0	8,9	3.590	28,3	5.431	351,5	12,27	158,1	30,99	2,09
12x4x22	310x100x32,7	313	102	6,6	10,8	4.180	32,7	6.507	415,8	12,47	191,9	37,62	2,14
12x6,5x26	310x165x38,7	310	165	5,8	9,7	4.940	38,7	8.527	550,1	13,12	726,8	88,10	3,83
12x6,5x30	310x165x44,5	313	166	6,6	11,2	5.670	44,5	9.934	634,8	13,21	854,7	103,0	3,88
12x6,5x35	310x165x52	317	167	7,6	13,2	6.650	52,0	11.850	747,7	13,32	1.026	122,9	3,92
12x10x53	310x250x79	306	254	8,8	14,6	10.100	79,0	17.670	1.155	13,26	3.990	314,2	6,30
12x12x65	310x310x97	308	305	9,9	15,4	12.300	97,0	22.240	1.444	13,43	7.286	477,8	7,69
12x12x79	310x310x117	314	307	11,9	18,7	15.000	117	27.510	1.753	13,56	9.024	587,9	7,76
14x5x22	360x130x32,9	349	127	5,8	8,5	4.190	32,9	8.258	473,2	14,07	291,0		2,64

W (continuación)

1	N	į (Dimen	sione	S	Sección	Masa nominal por unidad de longitud	Valores estáticos					
		h	ь	s	t	S	ms	lx	Wx	İx	ly	Wy	İy
pulg. x pulg. x lb/ft	mm x mm x kg/m	mm	mm	mm	mm	mm²	kg/m	cm ⁴	cm³	cm	cm ⁴	cm³	cm
14x5x26	360x130x39	353	128	6,5	10,7	4.960	39,0	10.230	579,7	14,33	375,0	58,60	2,74
14x6,75x30	360x170x44,6	352	171	6,9	9,8	5.710	44,6	12.140	690,1	14,57	817,9	95,66	3,78
14x6,75x34	360x170x51	355	171	7,2	11,6	6.450	51,0	14.130	796,3	14,80	968,1	113,2	3,87
14x6,75x38	360x170x58	358	172	7,9	13,1	7.230	58,0	16.040	896,2	14,91	1.113	129,4	3,93
14x8x48	360x200x72	350	204	8,6	15,1	9.100	72,0	20.100	1.149	14,86	2.140	209,8	4,85
14x8x53	360x200x79	354	205	9,4	15,8	10.100	79,0	22.650	1.280	14,98	2.416	235,7	4,89
14x10x82	360x250x122	363	363	13,0	21,7	15.500	122	36.530	2.013	15,35	6.147	478,4	6,30
16x5,5x26	410x140x38,8	399	140	6,4	8,8	4.950	38,8	12.620	632,6	15,93	403,5	57,65	2,85
16x5,5x31	410x140x46,1	403	140	7,0	11,2	5.880	46,1	15.550	771,9	16,26	513,6	73,37	2,95
16x7x36	410x180x53	403	177	7,5	10,9	6.840	53,0	18.600	922,9	16,54	1.009	114,0	3,85
16x7x40	410x180x60	407	178	7,7	12,8	7.610	60,0	21.570	1.060	16,87	1.205	135,4	3,99
16x7x45	410x180x67	410	179	8,8	14,4	8.580	67,0	24.530	1.196	16,91	1.379	154,1	4,01
16x7x57	410x180x85	417	181	10,9	18,2	10.800	85,0	31.530	1.512	17,06	1.803	199,3	4,08
18x6x35	460x150x52	450	152	7,6	10,8	6.650	52,0	21.200	942	17,89	634,0	83,43	3,09
18x6x40	460x150x60	455	153	8,0	13,3	7.610	60,0	25.480	1.120	18,33	796,1	104,1	3,24
18x6x46	460x150x68	459	154	9,1	15,4	8.710	68,0	29.680	1.293	18,44	940,5	122,1	3,28
18x7,5x50	460x190x74	457	190	9,0	14,5	9.480	74,0	33.260	1.456	18,75	1.661	174,8	4,19
18x7,5x60	460x190x97	466	193	11,4	19,0	12.300	97,0	40.960	1.769	18,96	2.093	218,0	4,29
21x6,5x44	530x165x66	525	165	8,9	11,4	8.390	66,0	35.100	1.337	20,47	857,3	103,9	3,20
21x6,5x50	530x165x74	529	186	9,7	13,6	9.480	74,0	41.100	1.554	20,77	1.042	125,5	3,31
21x6,5x57	530x165x85	535	186	10,3	16,5	10.800	85,0	48.580	1.816	21,22	1.264	152,2	3,42
21x8,25x48	530x210x72	524	207	9,0	10,9	9.180	72,0	40.100	1.530	20,90	1.615	156,1	4,20
21x8,25x55	530x210x82	528	206	9,5	13,3	10.500	82,0	47.700	1.807	21,35	2.028	194,1	4,40
21x8,25x62	530x210x92	533	209	10,2	15,6	11.800	92,0	55.240	2.073	21,67	2.379	227,7	4,50
21x8,25x68	530x210x101	537	210	10,9	17,4	12.900	101	61.760	2.300	21,85	2.692	256,4	4,56
24x7x55	610x180x82	599	178	10,0	12,8	10.500	82,0	56.030	1.871	23,17	1.209	135,8	3,40
24x9x68	610x230x101	603	228	10,5	14,9	13.000	101	76.470	2.536	24,27	2.950	258,8	4,77
24x9x76	610x230x113	608	228	11,2	17,3	14.500	113	87.570	2.881	24,62	3.425	300,5	4,87
24x9x84	610x230x125	612	229	11,9	19,6	15.900	125	98.650	3.224	24,86	3.932	343,4	4,96
24x9x94	610x230x140	617	230	13,1	22,2	17.900	140	112.000	3.630	25,05	4.514	392,5	5,03
27x10x84	690x250x125	678	253	11,7	16,3	15.990	125	118.500	3.495	27,22	4.410	348,6	5,25

Parámetro	Normas y medidas
Dimensiones y tolerancias	IRAM-IAS U500-215-6/04
Características mecánicas	IRAM-IAS U500-503/12. Grado F-36
Largos	12 metros
Peso aproximado del paquete	2.000 kg

U chicos

Usos y aplicaciones

Los perfiles U chicos son muy utilizados en herrería e industria metalúrgica en general. Se utilizan como elementos estructurales, guías, canales, soportes, cerramientos, etc.

Medidas	Largo	Peso nominal
cm	m	kg/m
40 x 20	6	2,9
50 x 25	6	3,9
60 x 30	6	5,1
50 x 38	6	5,6
65 x 42	6	7,1

Parámetro	Normas y medidas
Dimensiones y tolerancias	IRAM-IAS U500-509/08
Características mecánica	s IRAM-IAS U500-503/12. Grado F-24
Largos	6 metros. Largos especiales, consultar
Peso aproximado del paquete	2.000 kg

Т

Usos y aplicaciones

Los perfiles T son muy utilizados en herrería e industria metalúrgica en general. Se utilizan como elementos estructurales, guías, canales, soportes, cerramientos, etc.

Alt	tura		Espesor	
		1/8"	3/16"	1/4"
pulgadas	milímetros	3,2 mm	4,8 mm	6,4 mm
3/4"	19,1	0,89		
7/8"	22,2	1,04		
1″	25,4	1,19		
1 1/4"	31,7	1,54	2,27	
1 1/2"	38,1	1,84	2,72	
2"	50,8		3,69	4,87

Los valores de las tablas indican peso por metro (kg/m).

Parámetro	Normas y medidas
Dimensiones y tolerancias	IRAM-IAS U500-561/06
Características mecánicas	IRAM-IAS U500-503/12. Grado F-24
Largos	6 metros. Largos especiales, consultar
Peso aproximado del paquete	2.000 kg

Tablestacas

Usos y aplicaciones

Facilitan la fijación de tirantes y conexiones giratorias, inclusive bajo el agua. Nuestra gama de modelos, ofrece la mejor opción técnica y económica para cada proyecto.

Modelos	Ancho	Altura	Espesor		Ma	sa	Momento	Módulo
	ь	h	Ala t	Alma s	Perfil individual	Pantalla	de inercia	resistente elástico
	mm	mm	mm	mm	kg/m	kg/m²	cm ⁴ /m	cm³/m
AU 14	750	408	10,0	8,3	77,9	103,8	28.680	1.405
AU 18	750	441	10,5	9,1	88,5	118,0	39.300	1.780
GU 8N	600	312	7,5	7,1	48,5	80,9	12.010	770

Si su proyecto requiere otro modelo, consulte disponibilidad mediante nuestro Servicio de Asistencia Comercial.

Planchuelas laminadas

Planchuelas lisas

Usos y aplicaciones

Construcción: refuerzos, rejas, cercos,

herrería en general.

Agro: elementos estructurales para maquinaría e implementos agrícolas.

Industria: fabricación de maquinarias y herramientas

y metalurgia en general.

Industria automotriz: fabricación de acoplados,

semirremolques y autopiezas.

Anch	o a					Espesor e				
		1/8"	3/16"	1/4"	5/16"	3/8"	1/2"	5/8"	3/4"	1″
pulgadas	mm	3,2 mm	4,8 mm	6,4 mm	7,9 mm	9,5 mm	12,7 mm	15,9 mm	19 mm	25,4 mm
1/2	12,7	0,32	0,48	0,64						
5/8	15,9	0,40	0,60	0,79						
3/4	19,0	0,48	0,72	0,95	1,18	1,42				
7/8	22,2	0,56	0,84	1,12	1,38					
1	25,4	0,64	0,96	1,28	1,58	1,89	2,53			
1 1/4	31,8	0,80	1,20	1,60	1,97	2,37	3,17			
1 1/2	38,1	0,96	1,44	1,91	2,36	2,84	3,80			
1 3/4	44,5	1,12	1,68	2,24	2,76	3,32	4,44			
2	50,8	1,28	1,91	2,55	3,15	3,79	5,06	6,34	7,58	
2 1/2			2,39	3,19	3,97	4,74	6,33	7,93	9,52	12,66
3			2,87	3,83	4,73	5,68	7,60	9,51	11,37	15,19
4			3,83	5,10	6,30	7,58	10,13	12,68	15,15	20,26
5						9,47	12,66	15,85	18,94	25,32
6						11,37	15,19	19,02	22,73	30,39

Los valores de la tabla indican peso por unidad de longitud: kg/m.

Parámetro	Normas y medidas
Dimensiones y tolerancias	IRAM-IAS U500-657/06
Material por análisis químico	IRAM-IAS U500-600/03. Grados 1026, 1045 y 5160. Otros grados consultar
Material por características mecánicas	IRAM-IAS U500-503/12. Grado F-24 5" y 6" Grado F-36
Largos	6 metros medidas menores a 3" 6-8 metros medidas mayores a 3" excepto 5 x 3/4" y 4" x 1" fabricadas en 5 a 7 m Largos especiales consultar
Peso aproximado del paquete	2.000 kg
Rectitud	Menor o igual a 4 mm/m - Sección < 1.000 mm² Menor o igual a 2,5 mm/m - Sección ≥ 1.000 mm²

Planchuelas perforadas

Usos y aplicaciones

Construcción: las planchuelas perforadas se utilizan para el armado de rejas y cerramientos.

Medida d		Perforación redonda								
Medic	за о	9	eparac	ión a = 1	130 mm	1	Sep	aración a = 65	aración a = 65 mm	
		3/8"	1/2"	9/16"	5/8"	3/4"	1/2"y3/8"	9/16" y 3/8"	5/8" y 3/8"	
pulgadas	mm	9,5 mm	12,7 mm	14,3 mm	15,9 mm	19 mm	12,7 y 9,5 mm	14,3 y 9,5 mm	15,9 y 9,5 mm	
1 x 3/16	25,4 x 4,8	5,50	5,39							
1 x 1/4	25,4 x 6,4		7,38							
1 1/4 x 3/16	31,7 x 4,8		7,22	7,14	7,07		7,05	6,71		
1 1/4 x 1/4	31,7 x 6,4		9,47	9,29	9,26		9,20			
1 1/2 x 3/16	38,1 x 4,8		8,81	8,48	8,30	8,27				
1 1/2 x 1/4	38,1 x 6,4		8,84	10,92	11,02	10,68				

Los valores de la tabla indican peso por planchuela en kg.

		Perforación cuadrada							
Medid	ia d	9	Separación a = 130 mm			Separación a = 65 mm			
		3/8"	1/2"	9/16"	5/8"	3/4"	1/2"y3/8"	9/16" y 3/8"	5/8" y 3/8"
pulgadas	mm	9,5 mm	12,7 mm	14,3 mm	15,9 mm	19 mm	12,7 y 9,5 mm	14,3 y 9,5 mm	15,9 y 9,5 mm
1 x 3/16	25,4 x 4,8	5,47	5,38						
1 x 1/4	25,4 x 6,4		7,31						
1 1/4 x 3/16	31,7 x 4,8		7,15	7,02	7,00		6,96		
1 1/4 x 1/4	31,7 x 6,4		9,34	9,24			9,01		
1 1/2 x 3/16	38,1 x 4,8		8,74	8,17	8,59	7,95			
1 1/2 x 1/4	38,1 x 6,4		8,74	11,03	10,76	10,44			

Los valores de la tabla indican peso por planchuela en kg.

Planchuelas de acero microaleado de alto límite de fluencia

Usos y aplicaciones

Vigas principales, doble T, acoplados y semirremolques.

And	ho			Esp	oesor		
		5/16"	3/8"	1/2"	5/8"	3/4"	1″
pulgadas	mm	7,9 mm	9,5 mm	12,7 mm	15,9 mm	19 mm	25,4 mm
4	101,6	6,30	7,58	10,13	12,68	15,15	20,26
5	127		9,47	12,66	15,85	18,94	25,32
6	152,6		11,37	15,19	19,02	22,73	30,39

Peso por metro (kg/m) de las medidas estándar.

Parámetro	Normas y medidas
Especificaciones técnicas	IRAM-IAS U500-503/12. Grado F-36 Acero: grado 1525 Límite de fluencia: 415 MPa, mínima Tensión de rotura 490 MPa, mínima Alargamiento a la rotura: 22% mínimo C equivalente: ≤ 0,55%
Largos	6-8 metros Largos especiales consultar
Peso aproximado del paquete	2.000 kg

Barras laminadas en caliente

Barras cuadradas

Usos y aplicaciones

Construcción: herrería (cercos, rejas, portones, escaleras, barandas, pasamanos, etc.) Industria: herramientas y máquinas en general.

Agro: reparaciones generales de instalaciones y máquinas.

Denominación	Medida del lado a		Sección S	Peso G
	mm	pulgadas	cm ²	kg/m
5/16"	7,94	5/16"	0,63	0,49
3/8"	9,53	3/8"	0,91	0,71
7/16"	11,11	7/16"	1,23	0,97
1/2"	12,70	1/2"	1,61	1,27
9/16"	14,29	9/16"	2,04	1,60
5/8"	15,88	5/8"	2,52	1,98
3/4"	19,05	3/4"	3,63	2,85
7/8"	22,20	7/8"	4,94	3,88
1"	25,40	1"	6,45	5,06
1 1/8"	28,60	1 1/8"	8,17	6,41
1 1/4"	31,70	1 1/4"	10,08	7,91
1 1/2"	38,10	1 1/2"	14,52	11,39

Barras redondas

Usos y aplicaciones

Construcción: herrería (cercos, rejas, portones, escaleras, barandas, pasamanos, etc.) Indust

Agro:

Denominación	Diámetro d		Sección S	Peso G
	mm	pulgadas	cm ²	kg/m
1/4"	6,35	1/4"	0,32	0,25
3/8"	9,53	3/8"	0,71	0,56
7/16"	11,11	7/16"	0,97	0,76
1/2"	12,70	1/2"	1,27	0,99
9/16"	14,29	9/16"	1,60	1,26
5/8"	15,88	5/8"	1,98	1,55
3/4"	19,05	3/4"	2,85	2,24
7/8″	22,23	7/8"	3,88	3,05
1″	25,40	1"	5,07	3,98
1 1/4"	31,75	1 1/4"	7,92	6,23

tria: herramie : reparaciones					
nominación	Diáme	tro d	Sección S	Peso G	
	mm	pulgadas	cm²	kg/m	
1/4"	6,35	1/4"	0,32	0,25	
2 /0"	0.50	2.10#	0.74	0.50	1

а

Parámetro	Normas y medidas				
	Barras cuadradas	Barras redondas			
Dimensiones y tolerancias	IRAM-IAS U500-605/89	IRAM-IAS U500-605/89			
Análisis químico grados 1008-1020	IRAM-IAS U500-600/03	IRAM-IAS U500-600/03 Grados 1008-1020 Grado 1045 a pedido			
Largo estándar	6 metros	6 metros			
Peso del paquete	2.000 kg aproximadamente	2.000 kg aproximadamente			

Clavos

Punta París

Longit	ud	Diámetro	Presentación			
pulgadas	mm	mm	A granel kg/caja	Cajas / pallet	Fraccionado Bolsas 1 kg /caja	Cajas / pallet
1	25,4	2,15	30	9 o 36	16	15 o 60
1 1/2	38,1	2,45	30	9 o 36	16	15 o 60
2	50,8	2,87	30	9 o 36	16	15 o 60
2 1/2	63,5	3,33	30	9 o 36	16	15 o 60
3	76,2	3,76	30	9 o 36	16	15 o 60
3 1/2	88,9	4,11	30	9 o 36	16	15 o 60
4	101,6	4,25	30	9 o 36	16	15 o 60
5	127,0	5,50	30	9 o 36	16	15 o 60
6	152,4	5,50	30	9 o 36	16	15 o 60
7	177,4	6,65	20	9 o 36	N/C	N/C
8	203,2	6,65	20	9 o 36	N/C	N/C

Punta París espiralados

Longit	ud	Diámetro	Presentación				
pulgadas	mm	mm	A granel kg/caja	Cajas / pallet	Fraccionado Bolsas 1 kg /caja	Cajas / pallet	
1	25,4	1,90-2,00	30	9 o 36	16	15 o 60	
1 1/2	38,1	2,20-2,30	30	9 o 36	16	15 o 60	
2	50,8	2,70-2,80	30	9 o 36	16	15 o 60	
2 1/2	63,5	3,10-3,20	30	9 o 36	16	15 o 60	
3	76,2	3,85-3,90	30	9 o 36	16	15 o 60	
4	101,6	4,25-4,40	30	9 o 36	16	15 o 60	
5	127,0	4,70-4,80	20	9 o 36	16	15 o 60	
6	152,4	5,10-5,20	20	9 o 36	N/C	N/C	

Punta cajoneros barnizados

Funta Cajoneros Darnizados							
Longit	Longitud		metro	Presentación			
pulgadas	mm	mm	Calibre P.G.	A granel (kg)			
1,18	30	1,50	10	30			
0,98	25	1,80	12	30			
1,10	28	1,80	12	30			
1,18	30	1,80	12	30			
1,26	32	1,80	12	30			
1,38	35	1,80	12	30			
1,50	38	1,80	12	30			
1,57	40	1,80	12	30			
1,50	38	2,00	13	30			
1,57	40	2,00	13	30			
1,77	45	2,00	13	30			
1,50	38	2,15	14	30			
1,57	40	2,15	14	30			
1,77	45	2,15	14	30			
1,97	50	2,15	14	30			
1,97	50	2,45	15	30			
2,48	63	2,70	16	30			
2,95	75	3,00	17	30			

Punta cajoneros

Longitud	ngitud Diámetro		ietro	Presentación
pulgadas	mm	mm	Calibre P.G.	A granel (kg)
0,98	25	1,50	10	20
1,10	28	1,60	11	20
1,18	30	1,60	11	20
0,98	25	1,80	12	20
1,10	28	1,80	12	20
1,18	30	1,80	12	20
1,26	32	1,80	12	20
1,38	35	1,80	12	20
1,50	38	1,80	12	20
1,57	40	1,80	12	20
1,77	45	1,80	12	20
1,97	50	2,00	12	20
1,50	38	2,00	13	20
1,57	40	2,00	13	20
1,77	45	2,00	13	20
1,50	38	2,15	14	20
1,57	40	2,15	14	20
1,77	45	2,15	14	20
1,97	50	2,15	14	20
1,97	50	2,45	15	20
2,48	63	2,60	16	20
2,95	75	2,60	16	20
2,95	75	3,00	17	20
3,54	90	3,00	17	20
3,94	100	3,00	17	20
3,54	90	3,33	18	20
3,74	95	3,33	18	20
5,98	152	3,33	18	20
6,46	164	3,33	18	20
6,97	177	3,33	18	20

Punta cajoneros espiralados

Longitud		Diámetro	Presentación
pulgadas	mm	mm	Granel
1,26	32	1,90 - 2,00	20
1,50	38	1,90 - 2,00	20
1,77	45	2,20 - 2,30	20
1,97	50	2,20 - 2,30	20
1,97	50	2,50 - 2,60	20
2,48	63	2,50 - 2,60	20
2,95	75	2,50 - 2,60	20

Cabeza de plomo

Longitud		Diámetro	Presentación
pulgadas	mm	mm	Bolsas de 100 u. / caja
2 1/2	63,50	4,19	20
3	76,20	4,19	20
4	101,40	4,19	20

Punta fina cabeza perdida

Lon	gitud	Diár	netro	Presentación	
pulgadas	mm	mm	Calibre P.G.	Fraccionado Bolsas 1 kg /caja	Acondicionado cajas/pallet
0,63	16	1,20	7	16	15 o 60
0,79	20	1,20	7	16	15 o 60
0,63	16	1,30	8	16	15 o 60
0,79	20	1,30	8	16	15 o 60
0,98	25	1,30	8	16	15 o 60
1,18	30	1,30	8	16	15 o 60
0,79	20	1,40	9	16	15 o 60
0,98	25	1,40	9	16	15 o 60
1,18	30	1,40	9	16	15 o 60
1,38	35	1,40	9	16	15 o 60
0,98	25	1,50	10	16	15 o 60
1,18	30	1,50	10	16	15 o 60
1,38	35	1,50	10	16	15 o 60
1,57	40	1,50	10	16	15 o 60
0,98	25	1,80	12	16	15 o 60
1,18	30	1,80	12	16	15 o 60
1,26	32	1,80	12	16	15 o 60
1,38	35	1,80	12	16	15 o 60
1,50	38	1,80	12	16	15 o 60
1,57	40	1,80	12	16	15 o 60
1,97	50	1,80	12	16	15 o 60
1,57	40	2,15	14	16	15 o 60
1,77	45	2,15	14	16	15 o 60
1,97	50	2,15	14	16	15 o 60
1,97	50	2,45	15	16	15 o 60
2,48	63	2,70	16	16	15 o 60
2.95	75	3.00	17	16	15 o 60

Punta fina cabeza chata

Long	gitud	Dián	netro	Presentación	
pulgadas	mm	mm	Calibre P.G.	Fraccionado Bolsas 1 kg /caja	Acondicionado cajas/pallet
0,63	16	1,20	7	16	15 o 60
0,79	20	1,20	7	16	15 o 60
0,63	16	1,30	8	16	15 o 60
0,79	20	1,30	8	16	15 o 60
0,98	25	1,30	8	16	15 o 60
1,18	30	1,30	8	16	15 o 60
0,79	20	1,40	9	16	15 o 60
0,98	25	1,40	9	16	15 o 60
1,18	30	1,40	9	16	15 o 60
1,38	35	1,40	9	16	15 o 60
0,98	25	1,50	10	16	15 o 60
1,18	30	1,50	10	16	15 o 60
1,38	35	1,50	10	16	15 o 60
1,57	40	1,50	10	16	15 o 60
0,98	25	1,80	12	16	15 o 60
1,18	30	1,80	12	16	15 o 60
1,26	32	1,80	12	16	15 o 60
1,50	38	1,80	12	16	15 o 60
1,57	40	1,80	12	16	15 o 60
1,97	50	1,80	12	16	15 o 60
1,57	40	2,15	14	16	15 o 60
1,77	45	2,15	14	16	15 o 60
1,97	50	2,15	14	16	15 o 60
1,97	50	2,45	15	16	15 o 60
2,48	63	2,70	16	16	15 o 60
2,95	75	3,00	17	16	15 o 60

Usos y aplicaciones

Clavos	Usos
Punta París	Encofrados para construcción, clavado de postes de grandes dimensiones, machimbres, maderas en general, etc.
Punta París espiralados	Construcción de pallets, clavado de tirantes en techos de madera, etc.
Punta cajoneros	Construcción de cajones y cajas en general, techados de paja para quinchos, etc.
Punta cajoneros espiralados	Construcción de cajones para colmenares, machiembrados, etc.
Punta cajonero barnizados	Construcción de cajones para envasado de frutas de exportación (resistentes a la humedad).
Punta fina cabeza chata	Mueblería (para trabajos donde se requiere una excelente terminación).
Punta fina cabeza perdida	Mueblería (para trabajos donde se requiere una excelente terminación).
Cabeza de plomo	Armado de techos de chapa y tinglados en general.

ASWG: American Steel Wire Gauge. PG: Paris Gauge.

Alambres recocidos de acero bajo carbono

Para ataduras en general. Aplicable a distintos usos tanto en la construcción como en el hogar.

Características

Calibre	Diámetro	Peso nominal
ISWG	mm	kg/100 m
17	1,42	1,24
16	1,63	1,64
15	1,83	2,06
14	2,03	2,54
13	2,34	3,38
12	2,64	4,30
11	2,94	5,33
10	3,25	6,51
9	3,66	8,26
8	4,06	10,16
6	4,87	14,68

Forma de suministro

	Rollos	
kg	kg	kg
900 ±10%	30	60

Certificado

Según requerimientos.

Tejimet®

Alambres tejidos galvanizados

Romboidal

Usos y aplicaciones

El alambre **Tejimet**[®] es el más adecuado para la instalación de todo tipo de cercados, ya que posee resistencia a las altas tensiones, lo que evita posibles deformaciones y una excelente uniformidad en su qalvanizado.

Existe una amplia variedad de dimensiones en cuanto a la abertura de la malla, altura del tejido y calibre de los alambres. Además viene compactado, resultando más econômico su transporte. Rollos de 10 metros.

Denominación comercial	Peso del rollo 10 metros	Altura	Luz de malla	Calibre	Diámetro
	kg	m	mm		mm
125 - 50 - 14	13,5	1,25	50	14	2,03
125 - 63 - 14	10,5	1,25	63	14	2,03
150 - 63 - 14	13,5	1,50	63	14	2,03
150 - 76 - 14,5	9,7	1,50	76	14,5	1,93
150 - 76 - 14	11,5	1,50	76	14	2,03
150 - 50 - 14	16	1,50	50	14	2,03
180 - 50 - 14	20,7	1,80	50	14	2,03
180 - 63 - 14	16,5	1,80	63	14	2,03
180 - 76 - 14	13,4	1,80	76	14	2,03
200 - 50 -12	36,5	2,00	50	12	2,64
200 - 50 - 14	23	2,00	50	14	2,03
200 - 63 - 14	18	2,00	63	14	2,03

Job-Shop

Mallas electrosoldadas para uso no estructural

Fabricadas con alambres lisos, galvanizados o sin galvanizar. Se pueden utilizar, entre otras aplicaciones, para cercos provisorios y desmontables, cercos para autopistas, protección de balcones, bandejas pasacables, contenedores y racks.

Plano esquemático

Paneles de 1,2 m x 3 m

Modelos	Cuantía Iongitudinal	Sepai	ación	Diámetro Saliei de alambres		Salientes		Peso nominal	
	cm²/m	Longit.	Transv.	Longit.	Transv.	A1=A2	A3=A4	kg/	l /2
	cm-/m	mm	mm	mm	mm	cm	cm	panel	kg/m²
Cuadrícula									
Q 109	1,09	50	50	2,6	2,6	2,5	2,5	6,18	1,72
Q 141	1,41	50	50	3,0	3,0	2,5	2,5	7,92	2,20
Q 182	1,82	50	50	3,4	3,4	2,5	2,5	10,22	2,84
Q 216	2,16	25	25	2,6	2,6	1,25	1,25	12,10	3,36
Disposición	Disposición rectangular								
R 141	1,41	50	30	3,0	3,0	1,5	2,5	10,56	2,93
R 216	2,16	25	38	2,6	2,6	1,8	1,25	9,98	2,77
R 282	2,82	25	38	3,0	3,0	1,8	1,25	13,07	3,63

Consulte con nuestro Servicio de Asistencia Comercial por medidas especiales.

Bagual®

Alambres de púas galvanizados

Alambres galvanizados crudos y recocidos. Bajo carbono

Los usos de este producto incluyen la construcción de alambrados y cercos para propiedades que requieran mayor protección y alta seguridad.

Alambre	Diámetro	Tolerancia	Tensión de rotura	Carga de rotura	Peso Zn mínimo
	mm	mm	kg/mm²	kg	g /m²
D6	1,6			190	90
Base púas	1,8	± 0,04	55	260	90
Púas ¹	1,63				60

^{1.} Recocido final.

Acondicionado producto final

Alambre	Longitud del rollo	Peso del rollo	Distancia entre púas
	m	kg	pulgadas
Súper Bagual®	500	30	4
Pagual®	500	22	5
Bagual®	500	23,5	4

Electrodos

Producidos para soldadura de aceros por arco eléctrico

La soldadura por arco eléctrico es un proceso de unión de metales por medio de aporte de calor, suficiente como para lograr la fusión y mezcla de los bordes a unir, con o sin agregado de metal adicional. Para lograr el estado de fusión en la zona de unión, se necesita poner en juego una determinada cantidad de energía en forma de calor. El que provee de dicha energía calórica es el arco eléctrico.

Electrodo	Características y usos	Presentación	Diámetro	Punta	Corriente y polaridad
E-6010 celulósico	Con revestimiento mayoritaria- mente de celulosa. Para soldaduras de penetración. Arco agresivo para pasadas de raíz. Poco sensible a la humedad. Ideal para soldar al aire libre. Escoria de fácil remoción. Usado en gasoductos, oleoductos y todo tipo de cañerías, así como en astilleros y grandes estructuras.	Caja con 5 paquetes de 5 kg cada uno.	2,50 3,25 4,00	Plateada	CC+
E-6011 celulósico	De similares características que el E-6010, con la ventaja que puede aplicarse en corriente alterna, lo cual le otorga versatilidad de acuer- do al equipamiento disponible.	Caja con 5 paquetes de 5 kg cada uno.	2,5 3,25 4,00	Blanca	CC+ CA+
E-6013 rutílico	Para aceros con tenor bajo y medio de carbono. Fácilmente controlable. Fácil apertura de arco y de muy buena estabilidad, Ideal para soldaduras de baja penetración. Buena apariencia y escasa exigencia mecánica. Para estructuras metálicas como rejas, perfiles y chapa fina.	Caja de 25 kg con 5 bolsas de 5 kg cada una. Caja de 20 kg con 20 bolsas de 1 kg cada una.	2,00 2,50 3,25 4,00	Azul	CA CC AP
E-7015 básico	Electrodo de revestimiento básico de bajo hidrógeno. Para soldar aceros tipo SAE 1045. La escoria es de fácil remoción fría. Tiene pene- tración mediana, Debe aplicarse con arco corto y el electrodo bien seco.	Caja con 5 paquetes de 5 kg cada uno.	2,50 3,25 4,00	Marrón	CC+
E-7018 básico	De revestimiento básico y uso generalizado. Fácil fusión. Alto rendimiento de deposición. Excelentes valores mecánicos para piezas de alta exigencia. Para soldadura de aceros disímiles. Utilizado para reparaciones en sectores mecánicos, industria naval, aeronáutica y estructuras metálicas.	Caja con 5 paquetes de 5 kg cada uno.	2,50 3,25 4,00	Verde	CA CC+

Recomendaciones

- Proteja su cuerpo de las radiaciones del arco eléctrico, especialmente sus ojos, durante toda la actividad de soldadura.
- Trabaje en un lugar ventilado; los humos y gases pueden ser perjudiciales para la salud.
- · Mantenga el producto en un lugar seco para conservar la calidad original.

Clasificación

Análisis típico del metal depositado

Electrodo	DIN 1913	AWS	IRAM-IAS	Si	Mn	С
		A 5.1 U500-601/87		%	%	%
E-6010 celulósico	E 43 43 C4	E 6010	E 4310	0,20	0,45	0,12
E-6011 celulósico	E 43 43 C13	E 6011	E 4311	0,15	0,40	0,08
E-6013 rutílico	E 43 22 R 3	E 6013	E 4313	0,20	0,50	0,09
E-7015 básico	E 51 55B (R) 10	E 7015	E 5115	0,55	0,90	0,07
E-7018 básico	E Y 42 66 Mn B	E 7018	E 5118	0,45	1,30	0,06

Propiedades mecánicas del metal depositado

Electrodo	Tratamiento térmico	Límite elástico	Carga de rotura	Elongación	Valores impacto
		N/mm²	N/mm²	(Lo=4d0) %	CVN test J
E-6010 celulósico	250 ℃	LF ≥ 305	RT ≥ 400-560	A ≥ 22	≥ 47 J
E-6011 celulósico	A/W	LF ≥ 330	RT ≥ 430	A ≥ 22	≥ 27 J
E-6013 rutílico	A/W	LF ≥ 330	RT ≥ 430	A ≥ 17	NR
E-7015 básico	A/W	LF ≥ 400	RT ≥ 400	A ≥ 22	≥ 27 J
E-7018 básico	A/W	LF ≥ 375	RT ≥ 490-660	A ≥ 22	≥ 47 J

Funcionamiento

Electrodo	Diámetro	Corriente	Posiciones de soldadura
	mm	Amperios	
	2,50	40 - 65	
E-6010 celulósico	3,25	90 - 130	
E-6010 celulosico	4	130 - 160	——
	5	160 - 200	
	2,50	55 - 75	
E-6011 celulósico	3,25	90 - 130	
E-6011 Celulosico	4	130 - 160	<u></u>
	5	160 - 200	
	2	40 - 65	
E-6013 rutílico	2,50	60 - 85	
E-6013 Tutilico	3,25	100 - 130	_
	4	140 - 180	
	2,50	65 - 90	
E-7015 básico	3,25	100 - 130	
E-7013 Dasico	4	130 - 170	
	5	180 - 230	
	2,50	70 - 90	
E 704014 :	3,25	100 - 140	
E-7018 básico	4	130 - 190	_
	5	180 - 250	

Alambre continuo para soldar

Producido bajo norma

El alambre macizo cobreado para soldadura se utiliza para soldadura por arco eléctrico, con protección gaseosa para procesos MIG/MAG. Este producto posee excelentes propiedades mecánicas y es apto para aplicar sobre aceros al carbono o de baja aleación.

Usos y aplicaciones

Se emplea en estructuras metálicas, industrias automotriz, ferroviaria y naval, construcción mecánica, maquinaria agrícola, calderería pesada, tuberías y en general donde se requiera alto rendimiento del material de aporte y elevada productividad.

Clasificación

Análisis típico del metal depositado Silicio Manganeso Carbor

AWS 5.18
ER70 S-6

Silicio	Manganeso	Carbono
%	%	%
0,90	1,55	0,09

Posiciones de soldadura

Propiedades mecánicas del metal depositado

Tratamiento térmico	Límite elástico	Carga de rotura	Elongación	Valores impacto
	N/mm²	N/mm²	(Lo=4d0)	CVN test
A / WL	F 420	RT 500	50	A 22%

Polaridad

Funcionamiento y presentación

Diámetro	Corriente	Tensión	Caudal CO ₂	Rollo en carretel plástico
mm	amperios	voltios	litros/minuto	kg
0,90	60-120	16-22	8-12	18
1,20	120-150	22-28	12-14	18

Único alambre para soldar, fabricado en Argentina, en carrete plástico y bobinado hilo a hilo.

Información técnica

Tabla de conversión de pulgadas a milímetros

Fracción de pulgada	pulgadas	milímetros	Fracción de pulgada	pulgadas	milímetros
1/64	0,0156	0,3969	33/64	0,5156	13,0969
1/32	0,0313	0,7938	17/32	0,5313	13,4938
	0,0394	1,0000	35/64	0,5469	13,8906
3/64	0,0469	1,1906		0,5512	14,0000
1/16	0,0625	1,5875	9/16	0,5625	14,2875
5/64	0,0781	1,9844	37/64	0,5781	14,6844
	0,0787	2,0000		0,5906	15,0000
3/32	0,0938	2,3813	19/32	0,5938	15,0813
7/64	0,1094	2,7781	39/64	0,6094	15,4781
	0,1181	3,0000	5/8	0,6250	15,8750
1/18	0,1250	3,1750		0,6299	16,0000
9/64	0,1406	3,5719	41/64	0,6406	16,2719
5/32	0,1563	3,9688	21/32	0,6563	16,6688
	0,1575	4,0000		0,6693	17,0000
11/64	0,1719	4,3656	43/64	0,6719	17,0656
3/16	0,1875	4,7625	11/16	0,6875	17,4625
	0,1969	5,0000	45/64	0,7031	17,8594
13/64	0,2031	5,1594		0,7087	18,0000
7/32	0,2188	5,5563	23/32	0,7188	18,2563
15/64	0,2344	5,9531	47/64	0,7344	18,6531
	0,2362	6,0000		0,7480	19,0000
1/4	0,2500	6,3500	3/4	0,7500	19,0500
17/64	0,2656	6,7469	49/64	0,7656	19,4469
	0,2756	7,0000	25/32	0,7813	19,8438
9/32	0,2813	7,1438		0,7874	20,0000
19/64	0,2969	7,5406	51/64	0,7969	20,2406
5/16	0,3125	7,9375	13/16	0,8125	20,6375
	0,3150	8,0000		0,8268	21,0000
21/64	0,3281	8,3344	53/64	0,8281	21,0344
11/32	0,3438	8,7313	27/32	0,8438	21,4313
	0,3543	9,0000	55/64	0,8594	21,8281
23/64	0,3594	9,1281		0,8661	22,0000
3/8	0,3750	9,5250	7/8	0,8750	22,2250
25/64	0,3906	9,9219	57/64	0,8906	22,6219
	0,3937	10,0000		0,9055	23,0000
13/32	0,4063	10,3188	29/32	0,9063	23,0188
27/64	0,4219	10,7156	59/64	0,9219	23,4156
	0,4331	11,0000	15/16	0,9375	23,8125
7/16	0,4375	11,1125		0,9449	24,0000
29/64	0,4531	11,5094	61/64	0,9531	24,2094
15/32	0,4688	11,9063	31/32	0,9688	24,6063
	0,4724	12,0000		0,9843	25,0000
31/64	0,4844	12,3031	63/64	0,9844	25,0031
1/2	0,5000	12,7000	1/1	1,0000	25,4000
	0,5118	13,0000			

Conversión de magnitudes físicas

Magnitud	Para convertir	en	multiplicar por
Longitud	pulgada	milímetro	25,4
	milímetro	pulgada	0,03937
	pie	metro	0,3048
	metro	pie	3,28084
Superficie	pulgada cuadrada	milímetro cuadrado	645,16
	milímetro cuadrado	pulgada cuadrada	0,00155
	pie cuadrado	metro cuadrado	0,9290304
	metro cuadrado	pie cuadrado	10,76391
Peso (fuerza)	libra (av)	kilogramo fuerza	0,45359237
	kilogramo fuerza	libra (av)	2,2046225
	tonelada (sh)	tonelada (met)	0,9071847
	tonelada (met)	tonelada (sh)	1,102311
	tonelada (lg)	tonelada (met)	1,016047
	tonelada (met)	tonelada (lg)	0,984206
	Newton	kilogramo fuerza	0,1019716
	kilogramo fuerza	Newton	9,80665
Peso / Longitud	libra/pie	kg/metro	1,488164
	kg/metro	libra/pie	0,67197
Peso / Área (Presión / Tensión)	libra/pulgada cuadrada	kg/mm cuadrado	0,00070307
	kg/mm cuadrado	libra/pulgada cuadrada	1.422,3343
	MPa	kg/mm cuadrado	0,1019716
	kg/mm cuadrado	MPa	9,80665
	p.s.i.	MPa	0,006894758
	MPa	p.s.i.	145,0377
Peso / Volumen (peso específico)	libra/pulgada cúbica	gramo/cm cúbico	27,6799
	gramo/cm cúbico	libra/pulgada cúbica	0,036127
Temperatura	°Farenheit	Celsius	5/9 (°F - 32)
	°Celsius	°Farenheit	9/5 (°C + 32)

av: avoir dupois

sh: short 2.000 libras lg: long 2.240 libras

met: métrica

Sistema Métrico Legal Argentino (SIMELA)

Unidades de base

Magnitud	Unidad	Símbolo
Longitud	metro	m
Masa	kilogramo	kg
Tiempo	segundo	S
Intensidad de corriente eléctrica	amperio	А
Temperatura termodinámica	kelvin	k
Intensidad luminosa	candela	cd
Cantidad de materia	mol	mol

Unidades suplementarias

Magnitud	Unidad	Símbolo
Ángulo plano	radián	rad
Ángulo sólido	estéreo-radián	sr

Unidades derivadas

Magnitud	Unidad	Símbolo
Superficie	metro cuadrado	m²
Volumen	metro cúbico	m³
Frecuencia	hertz	$Hz = s^{-1}$
Densidad	kilogramo por metro cúbico	kg/m³
Velocidad	metro por segundo	m/s
Velocidad angular	radián por segundo	rad/s
Aceleración	metro por segundo cuadrado	m/s²
Aceleración angular	radián por segundo cuadrado	rad/s²
Fuerza	Newton	$N = kg.m/s^2$
Presión (tensión mecánica)	Pascal	$Pa = N/m^2$
Viscosidad cinemática	metro cuadrado por segundo	m²/s
Viscosidad dinámica N.s/m²	Newton-segundo por m cuadrado	N.s/m ²
Trabajo, energía, cantidad de calor	Joule	J = N.m
Potencia	Watt	W =J/s
Cantidad de electricidad	Coulomb	C = A.s
Tensión eléctrica, diferencia de potencial	Voltio	V = W/A
Intensidad de campo eléctrico	Voltio por metro	V/m
Resistencia eléctrica	ohm	R = V/A
Conductancia eléctrica	siemens	$S = W^{-1}$
Capacidad eléctrica	faradio	F = A.s/V
Flujo de inducción magnética	weber	Wb = V.s

Unidades derivadas (continuación)

Magnitud	Unidad	Símbolo
Inductancia	henry	H = V.s/A
Inducción magnética	tesla	$T = Wb/m^2$
Intensidad de campo magnético	amperio por metro	A/m
Fuerza magneto-motriz	amperio	А
Flujo luminoso	lumen	lm = cd.sr
Luminancia	candela por metro cuadrado	cd/m²
lluminación	lux	$lx = lm/m^2$
Número de ondas	uno por metro	m ⁻¹
Entropía	Joule por kelvin	J/K
Calor específico	Joule por kilogramo kelvin	J/(kg.K)
Conductividad térmica	Watt por metro kelvin	W/(m.K)
Intensidad energética	Watt por estéreo-radián	W/sr
Actividad (de una fuente radioactiva)	becquerel	S ⁻¹
Calor específico	Joule por kilogramo kelvin	J/(kg.K)
Conductividad térmica	Watt por metro kelvin	W/(m.K)
Intensidad energética	Watt por estéreo-radián	W/sr
Actividad (de una fuente radioactiva)	uno por segundo	S ⁻¹

Litro: nombre especial que puede darse al decímetro cúbico en tanto y en cuanto no exprese resultados de medidas de volumen de alta precisión.

Grado Celsius: puede utilizarse para expresar un intervalo de temperatura en lo que es equivalente al kelvin.

Formación de múltiplos y submúltiplos

	•	
Factor que multiplica la unidad	Prefijo	Símbolo
10 ¹²	tera	T
10 ⁹	giga	G
10 ⁶	mega	M
10 ³	kilo	k
10 ²	hecto	h
10¹	deca	da
10 ⁻¹	deci	d
10 ⁻²	centi	С
10 ⁻³	mili	m
10 ⁻⁶	micro	р
10 ⁻⁹	nano	n
10 ⁻¹²	pico	р
10 ⁻¹⁵	femto	f
10 ⁻¹⁸	atto	a

Áreas, baricentros, momentos de inercia y resistencia

Sección	Área y otros datos	Distancia baricéntrica	Momento de inercia	Momento resistente mínimo
x	$S = \frac{h}{2} (a+b)$	$e_x = \frac{h}{3} \frac{a+2b}{a+b}$	$J_X = \frac{h^3}{36} \frac{a^2 + 4ab + b^2}{a + b}$ $J_y = \frac{h}{48} (a^2 + a^2b + ab^2 + b^3)$	$W_{X} = \frac{J_{X}}{h - e_{X}}$ $W_{y} = \frac{2J_{y}}{a}$
x = d - 1	$S = \pi r^2 = \frac{\pi d^2}{4}$ perimetro=d\pi	e _X = <u>d</u>	$J_X = J_y = \frac{\pi d^4}{64} = \frac{\pi r^4}{4}$ = 0.05 d ⁴ = 0.7854 r ⁴	$W_{X}=W_{y}=\frac{\pi d^{3}}{32}=\frac{\pi r^{3}}{4}$ $\approx 0.1 \ d^{3}\approx 0.7854 \ r^{3}$
$\begin{array}{c c} x & \xrightarrow{iy} & \xrightarrow{i} & \xrightarrow{e_X} \\ \hline \\ x & \xrightarrow{r} & \xrightarrow{i} & \xrightarrow{r} & \xrightarrow{e_X} \end{array}$	$S = \frac{\pi}{2} r^2 = 1,57080 r^2$	$e_X = \frac{4r}{3\pi} \approx 0,4244 \text{ r}$	$J_{X} = r^{4} \left(\frac{\pi}{8} - \frac{8}{9\pi} \right) \approx 0,1098r^{4}$ $J_{Y} = \frac{\pi r^{4}}{8} \approx 0,3927r^{4}$	$W_{X} \approx 0.1907 r^{3}$ $W_{y} = \frac{\pi r^{3}}{8} \approx 0.3927 r^{3}$
By X X X X X X X X X	S=BH-bh	$e_X = \frac{H}{2}$ $e_Y = \frac{B}{2}$	$J_{X} = \frac{1}{12} (BH^{3} - bh^{3})$ $J_{Y} = \frac{1}{12} (HB^{3} - hb^{3})$	$W_X = \frac{1}{6H} (BH^3 - bh^3)$ $W_y = \frac{1}{6B} (HB^3 - hb^3)$
	$S = \frac{\pi}{4} \ (D^2 - d^2)$	e _x =e _y = D/2	$J_{X} = J_{y} = \frac{\pi}{64} (D^{4} - d^{4})$ $= \frac{\pi}{4} (R^{4} - r^{4})$	$W_{X} = W_{y} = \frac{\pi}{32} \frac{\left(D^{4} - d^{4}\right)}{D}$ $= \frac{\pi}{2} \frac{\left(R^{4} - r^{4}\right)}{R}$

Sección	Área y otros datos	Distancia baricéntrica	Momento de inercia	Momento resistente mínimo
$\begin{bmatrix} x \\ y \\ -\frac{1}{1} \\ -\frac{1}{1} \\ \frac{1}{1} \\ $	S= bh	$e_{\chi} = \frac{h}{2}$ $e_{y} = \frac{b}{2}$	$J_X = \frac{bh^3}{12} \qquad J_b = \frac{bh^3}{3}$ $J_y = \frac{hb^3}{12}$	$W_X = \frac{bh^2}{6}$ $W_X = \frac{hb^2}{6}$
x	S= h ²	$e_{x=}e_{y}=\frac{h}{2}$ $e_{\xi}=e_{\eta}=\frac{h}{2}\sqrt{2}$	$J_{X} = J_{y} = \frac{h^{4}}{12}$ $J_{\xi} = J_{\eta} = \frac{h^{4}}{12}$	$W_{X}=W_{Y}=\frac{h^{3}}{6}$ $W_{\xi}=W_{\eta}=\frac{h}{6}=\frac{\sqrt{2}}{12} h^{3}$ $\approx 0.11785 h^{3}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S = <u>bh</u> 2	e _X = 1/3 h	$J_X = \frac{bh^3}{36}$ $J_y = \frac{hb^3}{48}$ $J_b = \frac{bh^3}{12}$ $J_s = \frac{bh^3}{4}$	$W_X = \frac{bh^2}{24}$ $W_Y = \frac{hb^2}{24}$
1 b 1 ex x	$S = \frac{bh}{2}$	$e_{X} = \frac{h}{2}$ $e_{Y} = \frac{b}{2}$	$J_{x} = \frac{bh^{3}}{48}$ $J_{y} = \frac{hb^{3}}{48}$	$W_X = \frac{bh^2}{24}$ $W_Y = \frac{hb^2}{24}$
\$\frac{\x}{a} - \frac{\y}{1} \\ \frac{\x}{a} - \frac{\y}{a} \\ \frac{\x}{a} - \frac{\y}{a} \\ \frac{\x}{a} - \frac{\y}{a} \\ \frac{\x}{a} - \frac{\y}{a} \\ \frac{\x}{a} - \frac{\y}{a} \\ \frac{\x}{a} - \frac{\y}{a} \\ \frac{\x}{a} - \frac{\y}{a} \\ \frac{\x}{a} - \frac{\y}{a} \\ \frac{\x}{a} - \frac{\y}{a} - \frac{\x}{a} - \frac{\x}{a} - \frac{\x}{a} - \frac{\x}{a} - \frac{\x}{a} - \\ \frac{\x}{a} - \fra	$S = \frac{3\sqrt{3}}{2} r^2$	$e_{x} = \frac{a}{2} \approx 0.866 \text{ r} e_{y} = r$ $a = r\sqrt{3}, r = \frac{a}{\sqrt{3}}$	$\begin{vmatrix} J_{X} = J_{Y} \\ J_{\xi} = J_{\eta} \end{vmatrix} = \frac{5\sqrt{3}}{144} a^{4}$ $\approx 0.06 a^{4}$	$W_X = W_{\xi} = \frac{5\sqrt{3}}{72} a^3$ $\approx 0,1203 a^2$ $W_Y = W_{\eta} = \frac{5}{48} a^3$ $\approx 0,1042 a^3$

Reacciones, momentos flectores y flechas

Disposición de los apoyos y distribución de las cargas	Reacciones A y B	Momento Flector	Flecha máxima		
	B=P	Mx=P·x Mmax=P·l	$\Delta = \frac{P \cdot I^3}{3E \cdot J}$		
W B	B= w·l	$Mx = \frac{w \cdot x^2}{2}$ $M \text{ max} = MB = \frac{-w \cdot 1^2}{2}$	$\Delta = \frac{w \cdot l}{8E \cdot J}$		
A -X-1 -V2-1B	A=B= - P / 2	$Mx = \frac{P \cdot x}{2}$ $M \text{ max} = \frac{P \cdot l}{4}$	Δ= <u>P· l³</u> 48E·J		
A W Y A B B 1 1/2 I	A=B= w·l 2	$Mx = \frac{w \cdot x}{2} \cdot (I - x)$ $M \text{ max} = \frac{w \cdot I}{8}^{2}$	Δ= <u>5 w·l⁴</u> 384E·J		

Disposición de los apoyos y distribución de las cargas	Reacciones A y B	Momento Flector	Flecha máxima
P V2 - Y1 - Y1 - Y1 - X - X - X - X - X - X - X - X - X -	$A = \frac{5P}{16} \\ B = \frac{11P}{16}$	$\begin{aligned} \text{Mx} &= \frac{5}{16} \text{ P·x} \left(\chi < 1/2 \right) \\ \text{Mx} &= \text{P·I} \left(-\frac{1}{2}, \frac{1}{16}, \frac{ \chi }{1}, \frac{ \chi }{16}, \chi$	$\Delta = \frac{7 \text{P·}}{768 \text{E·}} \text{J}$ para x= 0,447l
W -0,7501- А _x _ Δmax	$A = \frac{3}{8} \text{ w·l}$ $B = \frac{5}{8} \text{ w·l}$	$Mx = \frac{w \cdot x}{2} \left(\frac{3}{4} \mathbf{I} - x \right)$ $Mmax = \frac{9}{128} w \cdot l^2$ $para x = \frac{3}{8} \mathbf{I}$ $MB = \frac{w \cdot l^2}{8}$	$\Delta = \frac{w \cdot l^4}{185E \cdot J}$ para x= 0,4215 · l
Д У, Г. В -х-д т	$A=B=\frac{P}{2}$	$\begin{aligned} \text{Mx} &= \frac{P}{2} \left(\text{ x } - \frac{1}{4} \right) \\ \text{MA} &= \text{MB} = -\frac{P \cdot l}{8} \\ \text{Mc} &= \frac{P \cdot l}{8} \end{aligned}$	$\Delta = \frac{P \cdot l^3}{192E \cdot J}$
W y -1/2-1 A A A C C C C C C C	$A=B=\frac{w\cdot l}{2}$	$\begin{aligned} Mx &= \frac{w}{2} \left[I \cdot x - \frac{I^2}{6} - x^2 \right] \\ MA &= MB = -\frac{w \cdot I^2}{12} \\ MC &= \frac{w \cdot I^2}{24} \end{aligned}$	$\Delta = \frac{w \cdot l^4}{384 \text{ E} \cdot J}$

Tablas de pesos unitarios y sobrecargas mínimas

Pesos unitarios

Mampostería (sin revoques)	kN / m³
Ladrillo cerámico macizo común	16
Ladrillo cerámico hueco portante (hueco < 60%)	10
Ladrillo cerámico hueco no portante (hueco >60%)	8
Bloque hueco de hormigón	15
Morteros	kN / m³
Cal y arena	17
Cal, arena y polvo de ladrillo	16
Cemento portland y arena	21
Cemento portland, cal y arena	19
Hormigones	kN / m³
Cemento portland, arena y canto rodado o piedra partida	
Sin armar	23,5
Armado	25
Cemento portland, arena y cascotes	18
Metales	kN / m³
Acero	78,5
Aluminio	27
Cobre	89
Plomo	114
Pisos	kN / m²
Mosaicos de granito reconstituido	0,60
Baldosas cerámicas de espesor 12 mm	0,28
Piso elevado o flotante	0,40
Cielorraso	kN / m²
Cielorraso de plaquetas de yeso, armadura de aluminio	0,20
Yeso con metal desplegado	0,18
Cubierta	kN / m²
Chapa acanalada de perfil ondulado o trapezoidal de acero zincado o aluminizado, 0,7 mm	0,070
Chapa acanalada de aluminio, 0,6 mm	0,025
Teja cerámica tipo colonial, sobre entablonado (incluido)*	0,90
Teja cerámica tipo francesa, sobre entablonado (incluido)*	0,65
Teja de pizarras artificial, sobre entablonado (incluido)*	0,45

^{*} Cuando estas cubiertas se encuentre**n mon**tadas sobre enlistonado solamente, restar 0,1 KN / m².

Sobrecargas mínimas

Edificios de viviendas	kN / m²
Azoteas accesibles	2
Azoteas inaccesibles	1
Baños - Cocinas - Lavaderos (uso residencial)	2
Balcones, viviendas en general	5
Balcones, casas de 1 y 2 familias, < 10 m ²	3
Dormitorios - Lugar de estar - Comedor (uso residencial)	2
Otros edificios	kN / m²
Cuartos de máquinas y calderas	7,5
Gimnasios - Salones de baile y de fiesta	5
Vestuarios	2,5

Diseño por resistencia en hormigón estructural

Preparación del contenido:

Supervisión del contenido:

Armadura

Nota: verificar siempre cuantías mínimas y máximas reglamentarias.

Mn	<= H30 (β1= 0,850)		Η: (β1= 0			40),779)	H45 (β1= 0,743)		H50 (β1= 0,707)		H58 (β1= 0,650)		kz
	kc	ες	kc	ες	kc	ες	kc	ες	kc	ες	kc	ες	
0,02	0,028	104,08	0,029	99,59	0,031	0,09	0,032	90,59	0,034	86,09	0,037	78,89	0,988
0,03	0,042	67,95	0,044	64,97	0,046	61,99	0,048	59,01	0,051	56,03	0,055	51,26	0,982
0,04	0,057	49,88	0,059	47,66	0,062	45,44	0,065	43,22	0,068	40,99	0,074	37,44	0,976
0,05	0,071	39,04	0,074	37,27	0,078	35,50	0,082	33,74	0,086	31,97	0,093	29,14	0,970
0,06	0,086	31,80	0,090	30,34	0,094	28,88	0,099	27,41	0,104	25,95	0,113	23,61	0,963
0,07	0,101	26,63	0,106	25,39	0,111	24,14	0,116	22,90	0,122	21,65	0,132	19,66	0,957
0,08	0,116	22,75	0,122	21,67	0,127	20,59	0,133	19,51	0,140	18,48	0,152	16,69	0,950
0,09	0,132	19,73	0,138	18,78	0,144	17,82	0,151	16,87	0,159	15,91	0,173	14,38	0,944
0,10	0,148	17,31	0,154	16,46	0,161	15,61	0,169	14,75	0,178	13,90	0,193	12,53	0,937
0,11	0,164	15,33	0,171	14,56	0,179	13,79	0,187	13,02	0,197	12,25	0,214	11,02	0,930
0,12	0,180	13,68	0,188	12,98	0,196	12,28	0,206	11,58	0,216	10,88	0,235	9,76	0,924
0,13	0,196	12,28	0,205	11,64	0,214	11,00	0,225	10,36	0,236	9,71	0,257	8,69	0,917
0,14	0,213	11,08	0,222	10,49	0,233	9,90	0,244	9,31	0,256	8,71	0,279	7,77	0,090
0,15	0,230	10,04	0,240	9,49	0,251	8,94	0,263	8,39	0,277	7,85	0,301	6,97	0,902
0,16	0,247	9,12	0,258	8,61	0,270	8,10	0,283	7,59	0,297	7,08	0,324	6,27	0,895
0,17	0,265	8,31	0,277	7,84	0,290	7,36	0,303	6,89	0,319	6,41	0,470	5,65	0,887
0,18	0,283	7,59	0,296	7,15	0,309	6,70	0,324	6,26	0,340	5,81	0,370	5,10	0,880
0,19	0,302	6,95	0,315	6,53	0,329	6,11	0,345	5,69	0,363	5,27	0,394	4,61	0,872
0,20	0,320	6,36	0,335	5,97	0,350	5,57	0,367	5,18	0,385	4,79			0,864
0,21	0,340	5,83	0,355	5,46	0,371	5,09	0,389	4,72					0,856
0,22	0,359	5,35	0,375	5,00	0,392	4,65							0,847
0,23	0,380	4,90											0,839
kz*	0,8	841	0,8	847	0,8	354							

Para la programación automática del cálculo, los coeficientes de la tabla surgen de las siguientes funciones:

$$k_c = \frac{1}{\beta_1} \left(1 - \sqrt{1 - \frac{m_n}{0,425}} \right), \quad \varepsilon_s = \frac{3.(1 - k_c)}{k_c}, \quad k_z = 0.5 + 0.5 \sqrt{1 - \frac{m_n}{0,425}}, \quad k_z = 1 - \beta_1.0.1875$$

Material cedido a la AAHES por la Cátedra de Hormigón Pretensado y Prefabricación de la Facultad de Ingeniería de la UNR.

Sección rectangular

Tablas y Equivalencias

Sección T

Nota
Para el caso de flexión compuesta con flexión dominante sirve el mismo esquema de cálculo de la flexión simple con el momento referido a la armadura traccionada.

| Men = Mn - v (N-s) tracción) | Men = Mn - v (N-s) tracción | Man = Mn - v (N-s) tracción | Man = Mn - v (N-s) tracción | Man = Mn - v (N-s) tracción | Man = Mn - v (N-s) tracción | Man = Mn - v (N-s) tracción | Mn - v (N

Parametrización de curvas para aceros para hormigón armado

fse: tensión a tiempo infinito deducidas todas las pérdidas fdc: tensión de descompresión

Si
$$\epsilon_{pt} > \epsilon_{pu} \longrightarrow f_{ps} = f_{pu}$$

Para cables no adherentes:

$$\theta$$
/h<35
fps=fse + 70 + $\frac{fc}{100pp}$
fps ≤ fpy
fps ≤ fse + 420
 θ /h > 35
fps = fse + 70 + $\frac{fc}{300pp}$
fps < fpy
fps < fse + 210
p=Aps / b*dp

Aceros para hormigón armado
AL 220 fy=220 MPa
DN A 420 fy=420 MPa
AM 500 fy=500 Mpa

Calidad ArcelorMittal Acindar

ArcelorMittal Acindar

Servicio de Asistencia Comercial

0-800-444-ACINDAR (2246) (54-11) 4616-9300 sac.acindar@arcelormittal.com.ar

