Homework 7 David Yang

Chapter 11 (The Seifert-van Kampen Theorem) Problems.

Section 67 (Direct Sums of Abelian Groups), 67.4(b), (c)

The order of an element a of an abelian group G is the smallest positive integer m such that ma = 0, if such exists; otherwise, the order of a is said to be infinite. The order of a thus equals the order of the subgroup generated by a.

b) Show that if G is free abelian, it has no elements of finite order.

Solution. Since G is free abelian, it has the elements $\{a_{\alpha}\}$ as a basis, where each a_{α} generates an infinite cyclic subgroup G_{α} . Let a be a general element of G, and let its order be denoted by m, so that ma = 0. Since G is free abelian, it is by definition also the direct sum of the groups $\{G_{\alpha}\}$, so

$$a = \sum_{\alpha_i} m_{\alpha_i} a_{\alpha_i}$$

where each a_{α_i} is a basis element of G and so $m_{\alpha_i}a_{\alpha_i}$ is an element of the group G_{α_i} . Multiplying both sides of the above equation by m and using the fact that the order of a is defined to be m, we know that

$$0 = ma = m \sum m_{\alpha_i} a_{\alpha_i} = \sum (mm_{\alpha_i}) a_{\alpha_i}.$$

By the uniqueness caused by G being a direct sum of the groups G_{α} , we know that each $(mm_{\alpha_i})a_{\alpha_i}=0$; however, each a_{α_i} is of infinite order as they are the generator of an infinite cyclic group G_{α_i} . Consequently, we must have that $mm_{\alpha_i}=0$ for each α_i .

By definition, since m > 0, it follows that $m_{\alpha_i} = 0$ for each α_i . Thus, a = 0, and so the only element of finite order in G is 0. We conclude that if G is free abelian, it has no elements of finite order.

b) Show the additive group of rationals has no elements of finite order, but is not free abelian. [*Hint*: If $\{a_{\alpha}\}$ is a basis, express $\frac{1}{2}a_{\alpha}$ in terms of this basis.]

Section 68 (Free Product of Groups), 68.4

Prove Theorem 68.4 (Uniqueness of Free Products): Let $\{G_{\alpha}\}$ be a family of groups. Suppose G and G' are groups and $i_{\alpha} \colon G_{\alpha} \to G$ and $i'_{\alpha} \colon G_{\alpha} \to G'$ are families of monomorphisms, such that the families $\{i_{\alpha}(G_{\alpha})\}$ and $\{i'_{\alpha}(G_{\alpha})\}$ generate G and G', respectively. If both G and G' have the extension property stated in the preceding lemma, then there is a unique isomorphism $\varphi \colon G \to G'$ such that $\varphi \cdot i_{\alpha} = i'_{\alpha}$ for all α .

Solution.