Tutorial 2- Exercise 10

Arrival time= Departure time + journey time

Journey time (hrs) = Distance (kms)/ Speed (km/hr)

Main Constraint

- You need to deal only with arrivals occurring later in the same day as the departure.
- the arrival time as an integer on a 24-hour clock (8:30 P.M. = 2030)
- ❖ The function result should be the required departure time (<u>rounded to the nearest minute</u>) as an integer on a 24-hour clock.
- There are many algorithm solutions to this problem
- ❖ In the following we propose the following design solution:
 - 1. Convert the arrival time to minutes
 - Calculate the journey time in minutes (rounded)
 - 3. Calculate the departure time in minutes (rounded)
 - 4. Convert the departure time to 24 hrs format

Step 1: Convert the arrival time (24hrs format) to minutes

- ❖ Given a time 2333, what is its corresponding value in minutes?
 - □ If we can extract the hour value (hr) and minute value (mn), the corresponding value in minutes is hr*60+mn
 - □ How could we extract the hr and mn from the input value?
 - For 2333, hr = 23, mn=33
 - Solution hr= time/100 (integer division), mn= time mod 100
 - ** the variable time, hr, mn should all be integer.
- Let's
 - □ arr_time: arrival time, int data type
 - arr_min: arrival time, int data type ,where
 - arr_min=60*(arr_time/100)+arr_time %100

Steps 2-3

- Step 2: Calculate the journey time in minutes and round it
 - □ The time in minutes can be calculated as follows:

```
Journey time (mns) = 60*(Distance (kms)/ Speed (km/hr))
```

- □ Although we can round a float/double using round() [math.h should be included in the header of your program], we'll use instead journey_,min= (int)(60*(Distance (kms)/ Speed (km/hr))+0.5)
 - Let's define
 - □ float time = 60 *(distance/speed);
 - □ int journey_min= (int) (time+0.5)
- Step 3: Calculate the departure time in minutes

departure time = arrival time - journey_min

Let's define dep_time_min = arr_min- journey_min (int)

Step 4: Convert the departure time to 24 hrs format

- Given a time in minutes, what is its corresponding value in 24hr format?
 - □ If we deduce the hour value (hr) and minute value (mn), the resulting value will be 100*hr+mn
 - □ Using the dep_time_min variable calculated in slide 4, we have,

 hr = dep_time_min /60; mn = dep_time_min %60
- Let's define int dep_hr, dep_min to hold the departure time hour and minutes

```
dep_hr = dep_time_min /60
dep_min = dep_time_min %60
dep_time = dep_hr * 100 + dep_min;
```