Matemática Básica

Julián Braier

Prim Floyd (FCEN-UBA)

Training Camp Argentino 2021

Contenidos

Teoría de Números

Primos

Criba de Eratóstenes

Euclides

Ecuaciones Diofánticas

Aritmética Modular

Propiedades Bonitas

Inverso Modular

Combinatoria

Coeficientes Binomiales

▶ Decimos que a es un factor o divisor de b si a divide a b. Si a es factor de b notamos $a \mid b$, si no $a \nmid b$.

- Decimos que a es un factor o divisor de b si a divide a b. Si a es factor de b notamos a | b, si no a ∤ b.
- Un entero n > 1 es primo si sus únicos factores positivos son 1 y n.

- Decimos que a es un factor o divisor de b si a divide a b. Si a es factor de b notamos a | b, si no a ∤ b.
- Un entero n > 1 es primo si sus únicos factores positivos son 1 y n.
- Cómo podemos chequear si un número es o no primo?

- Decimos que a es un factor o divisor de b si a divide a b. Si a es factor de b notamos a | b, si no a ∤ b.
- Un entero n > 1 es primo si sus únicos factores positivos son 1 y n.
- Cómo podemos chequear si un número es o no primo?
 - Para cada entero x entre 2 y \sqrt{n} ver si x divide a n. Complejidad: $O(\sqrt{n})$.

Para cada entero n > 1 existe una única factorización en primos.

 $^{^{1} \}mathtt{https://cses.fi/problemset/task/1713}$

Para cada entero n > 1 existe una única factorización en primos.

$$n=p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k},$$

donde $p_1, p_2, ..., p_k$ son primos diferentes y $\alpha_1, \alpha_2, ..., \alpha_k$ son enteros positivos.

¹https://cses.fi/problemset/task/1713

Para cada entero n > 1 existe una única factorización en primos.

$$n=p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k},$$

donde $p_1, p_2, ..., p_k$ son primos diferentes y $\alpha_1, \alpha_2, ..., \alpha_k$ son enteros positivos.

Por ejemplo, la factorización de 12:

$$12 = 2^2 * 3^1$$
.

¹https://cses.fi/problemset/task/1713

Para cada entero n > 1 existe una única factorización en primos.

$$n=p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k},$$

donde $p_1, p_2, ..., p_k$ son primos diferentes y $\alpha_1, \alpha_2, ..., \alpha_k$ son enteros positivos.

Por ejemplo, la factorización de 12:

$$12 = 2^2 * 3^1$$
.

Llamemos $\tau(n)$ a la cantidad de divisores¹ de n. Ejemplo $\tau(12) = 6$, porque los divisores de 12 son: 1, 2, 3, 4, 6 y 12. Tenemos la fórmula:

$$\tau(n) = \prod_{i=1}^k (\alpha_i + 1)$$

¹https://cses.fi/problemset/task/1713

► Cómo podemos obtener la factorización de un número?

► Cómo podemos obtener la factorización de un número?

```
vector<int> factors(int n) {
   vector<int> f;
   for (int x = 2; x*x <= n; x++) {
      while (n%x == 0) {
        f.push_back(x);
        n /= x;
      }
   }
   if (n > 1) f.push_back(n);
   return f;
}
```

Cómo podemos obtener la factorización de un número?

```
vector<int> factors(int n) {
   vector<int> f;
   for (int x = 2; x*x <= n; x++) {
      while (n%x == 0) {
        f.push_back(x);
        n /= x;
      }
   }
   if (n > 1) f.push_back(n);
   return f;
}
```

► En f los factores aparecerán tantas veces como dividan a n. Ejemplo factors $(12) \rightarrow \{2, 2, 3\}$.

Cómo podemos obtener la factorización de un número?

```
vector<int> factors(int n) {
   vector<int> f;
   for (int x = 2; x*x <= n; x++) {
      while (n%x == 0) {
        f.push_back(x);
        n /= x;
      }
   }
   if (n > 1) f.push_back(n);
   return f;
}
```

- ► En f los factores aparecerán tantas veces como dividan a n. Ejemplo factors $(12) \rightarrow \{2, 2, 3\}$.
- ► Complejidad: $O(\sqrt{n})$.

Existen algoritmos probabilísticos (y eficientes) para chequear si un número es primo o para factorizar un entero.

²https:
//cp-algorithms.com/algebra/primality_tests.html#toc-tgt-2
3https:
//cp-algorithms.com/algebra/factorization.html#toc-tgt-5

- Existen algoritmos probabilísticos (y eficientes) para chequear si un número es primo o para factorizar un entero.
- Para testear si un número es primo: Miller Rabin².

²https:

^{//}cp-algorithms.com/algebra/factorization.html#toc-tgt-5

- Existen algoritmos probabilísticos (y eficientes) para chequear si un número es primo o para factorizar un entero.
- Para testear si un número es primo: Miller Rabin².
- ▶ Para factorizar un número: Pollard's Rho³.

²https:

^{//}cp-algorithms.com/algebra/factorization.html#toc-tgt-5

- Existen algoritmos probabilísticos (y eficientes) para chequear si un número es primo o para factorizar un entero.
- Para testear si un número es primo: Miller Rabin².
- Para factorizar un número: Pollard's Rho³.

²https:

^{//}cp-algorithms.com/algebra/factorization.html#toc-tgt-5

► Hay infinitos números primos (la demostración es sencilla pero no la quiero hacer).

- Hay infinitos números primos (la demostración es sencilla pero no la quiero hacer).
- La "función-contadora-de-primos" $\pi(n)$ nos dice cuántos primos hay $\leq n$. Ejemplo: $\pi(10) = 4$, porque los primos hasta 10 son 2, 3, 5 y 7.

- Hay infinitos números primos (la demostración es sencilla pero no la quiero hacer).
- La "función-contadora-de-primos" $\pi(n)$ nos dice cuántos primos hay $\leq n$. Ejemplo: $\pi(10) = 4$, porque los primos hasta 10 son 2, 3, 5 y 7.
- Se puede ver que:

$$\pi(n) \approx \frac{n}{\ln n}$$

o sea que los primos están cada vez más espaciados, pero son bastante frecuentes (desde 2 hasta 10^9 la máxima distancia entre dos primos consecutivos es 282).

- Hay infinitos números primos (la demostración es sencilla pero no la quiero hacer).
- La "función-contadora-de-primos" $\pi(n)$ nos dice cuántos primos hay $\leq n$. Ejemplo: $\pi(10) = 4$, porque los primos hasta 10 son 2, 3, 5 y 7.
- Se puede ver que:

$$\pi(n) \approx \frac{n}{\ln n}$$

o sea que los primos están cada vez más espaciados, pero son bastante frecuentes (desde 2 hasta 10^9 la máxima distancia entre dos primos consecutivos es 282).

▶ Para qué quería saber eso? Ejemplo: https: //codingcompetitions.withgoogle.com/kickstart/ round/0000000000435a5b/00000000077a8e6#problem

Eratóstenes

Ponele que queremos saber para cada entero x entre 2 y n si x es primo o no.

- Ponele que queremos saber para cada entero x entre 2 y n si x es primo o no.
- Queremos que si x es primo entonces sieve[x] = 0, si no sieve[x] = 1.

- Ponele que queremos saber para cada entero x entre 2 y n si x es primo o no.
- Queremos que si x es primo entonces sieve[x] = 0, si no sieve[x] = 1.
- Solución: inicializamos todos los elementos de sieve en 0. Luego...

```
for (int x = 2; x <= n; x++) {
   if (sieve[x]) continue;
   for (int u = 2*x; u <= n; u += x) {
      sieve[u] = 1;
   }
}</pre>
```

- Ponele que queremos saber para cada entero x entre 2 y n si x es primo o no.
- Queremos que si x es primo entonces sieve[x] = 0, si no sieve[x] = 1.
- Solución: inicializamos todos los elementos de sieve en 0. Luego...

```
for (int x = 2; x <= n; x++) {
   if (sieve[x]) continue;
   for (int u = 2*x; u <= n; u += x) {
       sieve[u] = 1;
   }
}</pre>
```

► Complejidad: el loop chico se ejecuta a lo sumo $\frac{n}{x}$ veces para cada x. La complejidad total es:

$$\sum_{x=2}^{n} \left(\frac{n}{x}\right) = \frac{n}{2} + \frac{n}{3} + \dots = O(n \log n).$$

- Ponele que queremos saber para cada entero x entre 2 y n si x es primo o no.
- Queremos que si x es primo entonces sieve[x] = 0, si no sieve[x] = 1.
- Solución: inicializamos todos los elementos de sieve en 0. Luego...

```
for (int x = 2; x <= n; x++) {
   if (sieve[x]) continue;
   for (int u = 2*x; u <= n; u += x) {
        sieve[u] = 1;
   }
}</pre>
```

► Complejidad: el loop chico se ejecuta a lo sumo $\frac{n}{x}$ veces para cada x. La complejidad total es:

$$\sum_{x=2}^{n} \left(\frac{n}{x}\right) = \frac{n}{2} + \frac{n}{3} + \dots = O(n \log n).$$

En realidad se puede probar que es $O(n \log \log n)$, o sea casi O(n).

Criba de Eratóstenes Extendida

Con una pequeña modificación al algoritmo anterior podemos calcular, para cada x, cuál es el primo k más chico que lo divide.

Criba de Eratóstenes Extendida

Con una pequeña modificación al algoritmo anterior podemos calcular, para cada x, cuál es el primo k más chico que lo divide.

Fig. 11.2 An extended sieve of Eratosthenes that contains the smallest prime factor of each number

Criba de Eratóstenes Extendida

Con una pequeña modificación al algoritmo anterior podemos calcular, para cada x, cuál es el primo k más chico que lo divide.

- Fig. 11.2 An extended sieve of Eratosthenes that contains the smallest prime factor of each number
- ▶ De esta manera podemos, además de saber si $x \le n$ es primo o no en O(1), encotrar su factorización en $O(\log x)$.

Euclides

Algoritmo de Euclides

► Llamamos máximo común divisor entre a y b (gcd(a, b)) al máximo entero que es divisor de a y de b a la vez.

Algoritmo de Euclides

- ► Llamamos máximo común divisor entre a y b (gcd(a, b)) al máximo entero que es divisor de a y de b a la vez.
- Con esta formulación podemos calcular gcd(a, b) eficientemente (con complejidad O(log min(a, b))).
 - ightharpoonup gcd(a, 0) = a,
 - ightharpoonup $gcd(a,b)=gcd(b,a\ mod\ b),si\ b\neq 0.$

Algoritmo de Euclides

- ► Llamamos máximo común divisor entre a y b (gcd(a, b)) al máximo entero que es divisor de a y de b a la vez.
- Con esta formulación podemos calcular gcd(a, b)
 eficientemente (con complejidad O(log min(a, b))).
 - ightharpoonup gcd(a,0)=a,
 - ightharpoonup $gcd(a,b)=gcd(b,a\ mod\ b),si\ b\neq 0.$
- Llamamos mínimo común múltiplo (lcm(a, b)) al entero más chico que es múltiplo de ambos.

$$lcm(a, b) = \frac{a \ b}{gcd(a, b)}$$

Podemos extender el algoritmo para que devuelva enteros x e y tales que:

$$ax + by = gcd(a, b)$$

Podemos extender el algoritmo para que devuelva enteros x e y tales que:

$$ax + by = gcd(a, b)$$

Podemos resolver recursivamente de manera parecida a cuando sólo queríamos el gcd. Supongamos que tenemos x', y' tales que:

$$bx' + (a \mod b)y' = gcd(a, b).$$

Podemos extender el algoritmo para que devuelva enteros x e y tales que:

$$ax + by = gcd(a, b)$$

Podemos resolver recursivamente de manera parecida a cuando sólo queríamos el gcd. Supongamos que tenemos x', y' tales que:

$$bx' + (a \mod b)y' = gcd(a, b).$$

▶ Dado que $(a \mod b) = a - \lfloor \frac{a}{b} \rfloor b$:

$$bx' + (a - \lfloor \frac{a}{b} \rfloor b)y' = \gcd(a, b).$$

Podemos extender el algoritmo para que devuelva enteros x e y tales que:

$$ax + by = gcd(a, b)$$

Podemos resolver recursivamente de manera parecida a cuando sólo queríamos el gcd. Supongamos que tenemos x', y' tales que:

$$bx' + (a \mod b)y' = gcd(a, b).$$

▶ Dado que $(a \mod b) = a - \lfloor \frac{a}{b} \rfloor b$:

$$bx' + (a - \lfloor \frac{a}{b} \rfloor b)y' = \gcd(a, b).$$

► Moviendo las cosas un poquito...

$$ay' + b(x' - \lfloor \frac{a}{b} \rfloor y') = gcd(a, b).$$

Algoritmo de Euclides Extendido implementación

```
tuple<int,int,int> gcd(int a, int b) {
   if (b == 0) {
      return {1,0,a};
   } else {
      int x,y,g;
      tie(x,y,g) = gcd(b,a%b);
      return {y,x-(a/b)*y,g};
   }
}
```

Algoritmo de Euclides Extendido implementación

```
tuple<int,int,int> gcd(int a, int b) {
   if (b == 0) {
      return {1,0,a};
   } else {
      int x,y,g;
      tie(x,y,g) = gcd(b,a%b);
      return {y,x-(a/b)*y,g};
   }
}
```

► Tiene la misma complejidad que el algoritmo de Euclides en su forma sencilla: O(log min(a, b)).

Infinitas soluciones

El algoritmo que les mostré da una sola solución (x, y), pero hay infinitas.

Infinitas soluciones

- El algoritmo que les mostré da una sola solución (x, y), pero hay infinitas.
- Si (x, y) es solución a ax + by = gcd(a, b), entonces para todo entero k

Infinitas soluciones

- El algoritmo que les mostré da una sola solución (x, y), pero hay infinitas.
- Si (x, y) es solución a ax + by = gcd(a, b), entonces para todo entero k

$$(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)})$$

también es solución.

Ecuaciones Diofánticas

Una ecuación diofántica es una ecuación con la pinta:

$$ax + by = c$$
,

donde $a, b \ y \ c$ son constantes enteras dadas, y tenemos que hallar $x \ e \ y$ que satisfagan. Todos los números deben ser enteros.

Ecuaciones Diofánticas

Una ecuación diofántica es una ecuación con la pinta:

$$ax + by = c$$
,

donde a, b y c son constantes enteras dadas, y tenemos que hallar x e y que satisfagan. Todos los números deben ser enteros.

- ▶ Se puede probar que existe solución si y sólo si gcd(a,b)|c.
- La solución se encuentra usando euclides extendido para a y b, obteniendo x', y' y gcd(a, b). Una solución a la diofántica es el par (x', y') multiplicado por $\frac{c}{gcd(a,b)}$.

Ecuaciones Diofánticas

Una ecuación diofántica es una ecuación con la pinta:

$$ax + by = c$$
,

donde a, b y c son constantes enteras dadas, y tenemos que hallar x e y que satisfagan. Todos los números deben ser enteros.

- ▶ Se puede probar que existe solución si y sólo si gcd(a,b)|c.
- La solución se encuentra usando euclides extendido para a y b, obteniendo x', y' y gcd(a, b). Una solución a la diofántica es el par (x', y') multiplicado por $\frac{c}{gcd(a,b)}$.
- Usando las infinitas soluciones para euclides podemos obtener las infinitas soluciones para la diofántica.

Since number of ways can be large, Shaun would report the answer as modulo 1000000007 $(10^9 + 7)$.

Figure: Codechef

Since number of ways can be large, Shaun would report the answer as modulo 1000000007 (10^9+7) .

Figure: Codechef

Output

For each test case, print the number of excellent arrays modulo $10^9 + 7$.

Figure: Codeforces

Since number of ways can be large, Shaun would report the answer as modulo 1000000007 (10^9+7) .

Figure: Codechef

Output

For each test case, print the number of excellent arrays modulo $10^9 + 7$.

Figure: Codeforces

parameters and the fixed board contents, please determine the sum of the scores of all those games. Since the output can be a really big number, we only ask you to output the remainder of dividing the result by the prime $10^9+7~(1000000007)$.

Figure: Codejam

- Decimos que dos enteros a y b son congruentes módulo m si $m \mid b a$.
- ▶ Notación: $a \equiv b \pmod{m}$.

- Decimos que dos enteros a y b son congruentes módulo m si $m \mid b a$.
- ▶ Notación: $a \equiv b \pmod{m}$.
- ▶ El resto de *a* módulo *m* es el único *r* tal que:
 - ▶ $0 \le r \le m 1$ y
 - ightharpoonup $a \equiv r \pmod{m}$.

- Decimos que dos enteros a y b son congruentes módulo m si $m \mid b a$.
- **Notación:** $a \equiv b \pmod{m}$.
- ▶ El resto de *a* módulo *m* es el único *r* tal que:
 - ▶ $0 \le r \le m 1$ y
 - ightharpoonup $a \equiv r \pmod{m}$.
- ▶ Detallecito de implementación: el operador % en c++ entre 2 enteros te da el resto del primero módulo el segundo. Ejemplo: 8%3 da 2.

- ▶ Decimos que dos enteros a y b son congruentes módulo m si $m \mid b a$.
- **Notación:** $a \equiv b \pmod{m}$.
- ► El resto de *a* módulo *m* es el único *r* tal que:
 - ▶ $0 \le r \le m 1$ y
 - ightharpoonup $a \equiv r \pmod{m}$.
- ▶ Detallecito de implementación: el operador % en c++ entre 2 enteros te da el resto del primero módulo el segundo. Ejemplo: 8%3 da 2.
 - Con números negativos no funciona como nos gustaría. Ejemplo: (−4)%3 da −1, no da 2.

- Propiedades:
 - $ightharpoonup a+b\equiv r\ (mod\ m)\Rightarrow a\%m+b\%m\equiv r\ (mod\ m).$
 - ▶ $a b \equiv r \pmod{m} \Rightarrow a\%m b\%m \equiv r \pmod{m}$.
 - ▶ $a * b \equiv r \pmod{m} \Rightarrow a\%m * b\%m \equiv r \pmod{m}$.

- Propiedades:
 - $ightharpoonup a+b \equiv r \pmod{m} \Rightarrow a\%m+b\%m \equiv r \pmod{m}.$
 - ▶ $a b \equiv r \pmod{m} \Rightarrow a\%m b\%m \equiv r \pmod{m}$.
 - ▶ $a * b \equiv r \pmod{m} \Rightarrow a\%m * b\%m \equiv r \pmod{m}$.
- Estas propiedades son bonitas porque nos permiten ir tomando módulo *r* en pasos intermedios.

- Propiedades:
 - $ightharpoonup a+b \equiv r \pmod{m} \Rightarrow a\%m+b\%m \equiv r \pmod{m}.$
 - ▶ $a b \equiv r \pmod{m} \Rightarrow a\%m b\%m \equiv r \pmod{m}$.
 - ▶ $a * b \equiv r \pmod{m} \Rightarrow a\%m * b\%m \equiv r \pmod{m}$.
- Estas propiedades son bonitas porque nos permiten ir tomando módulo r en pasos intermedios.
- ▶ ¿Vale que $\frac{a}{b} \equiv r \pmod{m}$ $\Rightarrow \frac{a\%m}{b\%m} \equiv r \pmod{m}$?

- Propiedades:
 - $ightharpoonup a+b \equiv r \pmod{m} \Rightarrow a\%m+b\%m \equiv r \pmod{m}.$
 - ▶ $a b \equiv r \pmod{m} \Rightarrow a\%m b\%m \equiv r \pmod{m}$.
 - ▶ $a * b \equiv r \pmod{m} \Rightarrow a\%m * b\%m \equiv r \pmod{m}$.
- Estas propiedades son bonitas porque nos permiten ir tomando módulo r en pasos intermedios.
- ▶ ¿Vale que $\frac{a}{b} \equiv r \pmod{m}$ $\Rightarrow \frac{a\%m}{b\%m} \equiv r \pmod{m}$?
- Lamentablemente no. Contraejemplo: con a = 6, b = 2, m = 4...
 - $ightharpoonup \frac{a}{b} \equiv \frac{6}{2} \equiv 3 \pmod{m}$, pero

► No podemos dividir... pero podemos multiplicar por el inverso modular.

- No podemos dividir... pero podemos multiplicar por el inverso modular.
- ▶ Dados $x \not\equiv 0$ y p primo, llamamos inverso modular de x (x^{-1}) al entero tal que $x * x^{-1} \equiv 1 \pmod{m}$.

- No podemos dividir... pero podemos multiplicar por el inverso modular.
- ▶ Dados $x \not\equiv 0$ y p primo, llamamos inverso modular de x (x^{-1}) al entero tal que $x * x^{-1} \equiv 1 \pmod{m}$.
- ▶ Para calcular $\frac{a}{b}$ % m lo que hacemos es calcular $a*b^{-1}$ % m.

- No podemos dividir... pero podemos multiplicar por el inverso modular.
- ▶ Dados $x \not\equiv 0$ y p primo, llamamos inverso modular de x (x^{-1}) al entero tal que $x * x^{-1} \equiv 1 \pmod{m}$.
- ▶ Para calcular $\frac{a}{b}$ % m lo que hacemos es calcular $a*b^{-1}$ % m.
- ¿Y cómo calculamos el inverso?

Fermat

Pequeño Teorema de Fermat

⁴https:

^{//}cp-algorithms.com/algebra/module-inverse.html#mod-inv-all-num

Pequeño Teorema de Fermat

Dado $x \not\equiv 0$ y p primo, $x^{p-1} \equiv 1 \pmod{p}$.

► Entonces $x^{p-1} \equiv x * x^{p-2} \equiv 1 \pmod{p}$. O sea x^{p-2} es el inverso de x módulo p.

⁴https:

^{//}cp-algorithms.com/algebra/module-inverse.html#mod-inv-all-num

Pequeño Teorema de Fermat

- ► Entonces $x^{p-1} \equiv x * x^{p-2} \equiv 1 \pmod{p}$. O sea x^{p-2} es el inverso de x módulo p.
- ▶ ¿Y ahora? ¿Cómo calculamos x^{p-2} ?

⁴https:

^{//}cp-algorithms.com/algebra/module-inverse.html#mod-inv-all-num

Pequeño Teorema de Fermat

- ► Entonces $x^{p-1} \equiv x * x^{p-2} \equiv 1 \pmod{p}$. O sea x^{p-2} es el inverso de x módulo p.
- \triangleright ; Y ahora? ; Cómo calculamos x^{p-2} ?
- Calcular x * x * ... * x p 2 veces es caro. Pero podemos calcular x^{p-2} en $O(\log p)$ con la siguiente recurrencia:
 - \triangleright Si n es 0: x^n es 1,
 - Si n > 0 y n par: x^n es $(x^{\frac{n}{2}})^2$,
 - Si n > 0 y n impar: x^n es $(x^{\frac{n-1}{2}})^2 * x$.

⁴https:

^{//}cp-algorithms.com/algebra/module-inverse.html#mod-inv-all-num

Pequeño Teorema de Fermat

- ► Entonces $x^{p-1} \equiv x * x^{p-2} \equiv 1 \pmod{p}$. O sea x^{p-2} es el inverso de x módulo p.
- \triangleright ¿Y ahora? ¿Cómo calculamos x^{p-2} ?
- Calcular x * x * ... * x p 2 veces es caro. Pero podemos calcular x^{p-2} en $O(\log p)$ con la siguiente recurrencia:
 - \triangleright Si n es 0: x^n es 1,
 - ► Si n > 0 y n par: x^n es $(x^{\frac{n}{2}})^2$,
 - Si n > 0 y n impar: x^n es $(x^{\frac{n-1}{2}})^2 * x$.
- ▶ De esta manera podemos dividir módulo p en O(log p). Esto suele ser suficientemente eficiente. Si no existe una manera de precomputar en tiempo lineal a todos los inversos módulo p.⁴

⁴https:

^{//}cp-algorithms.com/algebra/module-inverse.html#mod-inv-all-num

Combinatoria

En combinatoria se estudian métodos para contar combinaciones de objetos.

Combinatoria

- En combinatoria se estudian métodos para contar combinaciones de objetos.
- Usualmente, el objetivo es encontrar una manera eficiente de contar las combinaciones, sin generar cada una de las combinaciones por separado.

▶ El coeficiente binomial (a.k.a número combinatorio) $\binom{n}{k}$ nos dice cuántas maneras hay de tomar un subconjunto de k elementos de un conjunto de n elementos.

- ▶ El coeficiente binomial (a.k.a número combinatorio) $\binom{n}{k}$ nos dice cuántas maneras hay de tomar un subconjunto de k elementos de un conjunto de n elementos.
- Se pueden definir recursivamente con la fórmula:

- ▶ El coeficiente binomial (a.k.a número combinatorio) $\binom{n}{k}$ nos dice cuántas maneras hay de tomar un subconjunto de k elementos de un conjunto de n elementos.
- Se pueden definir recursivamente con la fórmula:
 - $(^{n}_{0}) = (^{n}_{n}) = 1,$
- Maneras alternativas de computar los combinatorios:
 - 1. $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.
 - 2. $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$ (sólo si $k \neq 0$).

- ▶ El coeficiente binomial (a.k.a número combinatorio) $\binom{n}{k}$ nos dice cuántas maneras hay de tomar un subconjunto de k elementos de un conjunto de n elementos.
- Se pueden definir recursivamente con la fórmula:
 - $\binom{n}{0} = \binom{n}{n} = 1$,
 - $\triangleright \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$
- Maneras alternativas de computar los combinatorios:
 - 1. $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.
 - 2. $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$ (sólo si $k \neq 0$).
- ► Ejemplo: si en un torneo de 20 equipos juegan todos contra todos, cuántos partidos tiene el torneo?
 - Respuesta: $\binom{20}{2} = 190$.

Propiedades:

$$\qquad \qquad \binom{n}{k} = \binom{n}{n-k}.$$

Triángulo de Pascal

```
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
```

El Libro

Me basé bastante en el libro de Antti Laaksonen "Guide to Competitive Programming" ⁵ (se publicó una reedición en 2020). Recomiendo fuertemente.

⁵https://link.springer.com/book/10.1007/978-3-319-72547-5