KONTRAK PERKULIAHAN, SILABUS - GBPP, SAP, serta PENILAIAN dan EVALUASI PROSES PEMBELAJARAN

MATA KULIAH PENGANTAR PENGOLAHAN CITRA DIGITAL (KOM421)

Disusun oleh: Dr. Yeni Herdiyeni, S.Si, M.Komp

Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor September 2016

Lembar Pengesahan

Judul laporan : Kontrak Perkuliahan, Silabus - GBPP, SAP,

dan Penilaian dan Evaluasi Proses Pembelajaran

Mata Kuliah : Pengantar Pengolahan Citra Digital (KOM342)

Ketua Tim Penyusun : Dr. Yeni Herdiyeni, S.Si, M. Komp

Angggota Tim Penyusun : Ir. Aziz Kustiyo, M.Komp dan Mayanda Mega, S.Komp,

M.Komp

Bagian : Kecerdasan Komputasional

Departemen/Fakultas : Ilmu Komputer/FMIPA

Bogor, Sep 2016

Menyetujui:

Ketua Departemen Ilmu Komputer Penyusun,

Dr. Agus Buono, M.Si, M.Kom Dr. Yeni Herdiyeni

NIP: 196607021993021001 NIP: 19750923 2000 12 2 001

Kontrak Perkuliahan

1. Identitas Perkuliahan:

Nama Mata Kuliah : Pengantar Pengolahan Citra Digital

Kode Mata Kuliah : KOM342 SKS 3 (2-3)

Semester : 6

Koordinator : Dr. Yeni Herdiyeni, S.Si, M. Komp (YHY)

Tim Pengajar : 1. Ir. Aziz Kustiyo, M.Komp (AZK)

2. Mayanda Mega Santoni, S.Komp, M.Komp (MMS)

Jadwal Kuliah/Praktikum: K: Kamis (10.00 - 11.40): RK. U 2.01

K: Jumat (09.00 - 10.40): RK. U 2.02 P: Senin (08.00 - 10.00): Lab 2 Ilkom P: Senin (10.00 - 12.00): Lab 2 Ilkom

Asisten Praktikum : 1. Mayanda Mega Santoni, S.Komp, M.Komp

2. Nino Tanio

Jumlah Mhs Kuliah :

Periode Perkuliahan : September - Desember 2016

2. Deskripsi Matakuliah

Mata kuliah ini menjelaskan karakteristik citra digital, analisis dan pengolahan citra digital seperti pembentukan citra (image formation), restorasi citra (image restoration), peningkatan kualitas citra (image enhancement), transformasi citra dalam ruang frekuensi, segmentasi citra, morfologi citra, kompresi citra, dan pengolahan citra untuk pengenalan citra (image recognition). Perangkat lunak yang digunakan C dan OpenCV.

3. Tujuan Instruksional Umum

Setelah mengambil mata kuliah ini, diharapkan mahasiswa mampu: menjelaskan, mengolah dan menganalisis citra digital serta meningkatkan keterampilan komunikasi lisan dan tertulis melalui presentasi proyek aplikasi pengolahan citra digital yang mereka kembangkan.

4. Strategi Perkuliahan

Kuliah diberikan kepada mahasiswa S1 Ilmu Komputer IPB yang mengambil matakuliah ini sebagai mata kuliah wajib. Perkuliahan dilakukan sebanyak 14 kali pertemuan kuliah tatap muka. Metode perkuliahan adalah kombinasi antara ceramah, diskusi, dan diakhiri dengan presentasi proyek akhir.

Tugas terdiri dari dua jenis, yaitu tugas perorangan yang harus diselesaikan oleh mahasiswa pada waktu tertentu, dan tugas kelompok dalam bentuk proyek akhir setiap kelompok terdiri atas 2-3 orang. Produk yang dihasilkan oleh setiap kelompok berupa program komputer, laporan hasil kajian sesuai dengan topik yang dipilih, dan slide presentasi. Presentasi proyek akhir dilakukan pada pertemuan 13 dan 14.

Di samping kegiatan di kelas dan di luar kelas, mahasiswa diharapkan dapat belajar mandiri dengan menggunakan aplikasi *e-Learning* IPB (LMS) yang beralamat di http://lms.ipb.ac.id/. Seluruh mahasiswa diwajibkan mengambil (*enroll*) mata kuliah tersebut dengan *enrollment key*: **KOM421** *Username* dan *password* sama dengan yang digunakan untuk akses internet IPB.

5. Proyek

Untuk membangun kemampuan mahasiswa dalam mengimplementasikan materi mata ajaran ini, diberikan bentuk penugasan berupa proyek. Materi proyek ditentukan oleh dosen koordinator dan dibagikan kepada kelompok mahasiswa secara acak. Ketentuan proyek:

- Proyek dikerjakan secara berkelompok,
- Jumlah anggota maksimal 3 orang,
- Mekanisme pembagian kelompok dan pembagian topik akan diatur oleh dosen,
- Tentukan pembagian kerja dalam kelompok secara merata,
- Hasil proyek: dokumen dan produk (software aplikasi),
- Pembuatan dokumen proyek sesuai ketentuan/template yang diberikan,
- Produk dipresentasikan pada 2 minggu di akhir perkuliahan (pada jam kuliah),
- Komponen penilaian: laporan akhir (*softcopy* dan *hardcopy*), produk *software* aplikasi, dan presentasi (ppt).

6. Strategi Penilaian

Nilai akhir (NA) adalah nilai kumulatif dari nilai ujian tengah semester (UTS), ujian akhir semester (UAS), tugas perorangan (TP), dan tugas kelompok atau proyek akhir (PA).

Metode dan bobot nilai sebagai berikut:

- 1. UTS (1-6) dan UAS (8-14) dilakukan melalui ujian tertulis dengan bobot masing-masing 35%. Kisi-kisi ujian akan disampaikan pada pertemuan ke-6 untuk UTS, dan pada pertemuan ke-14 untuk UAS.
- 2. Nilai TP adalah rata-rata dari semua tugas yang diberikan, dan diberi bobot 10%
- 3. Nilai PA terdiri dari nilai produk proyek (program komputer, laporan) dan presentasi. Bobot nilai PA adalah 20%.

Selang nilai untuk menetapkan huruf mutu A, AB, B, BC, C, D, atau E ditentukan sebagai berikut:

A : Nilai >= 75
AB : 70 <= Nilai < 75
B : 65 <= Nilai < 70
BC : 60 <= Nilai < 65
C : 55 <= Nilai < 60
D : 45 < Nilai < 55
E : Nilai < 45

7. Referensi Utama

- 1. Acharya, T., dan Ray, A. K. 2005. Image Processing Principles and Application. John Wiley & Sons, Inc., Publication.
- 2. Gonzalez, R. C., Woods, R. E., Eddins, Steven. 2000. Digital Image Processing. Prentice Hall.
- 3. Gonzalez, R. C., Woods, R. E., Eddins, Steven. 2004. Digital Image Processing Using Matlab. Prentice Hall.
- 4. Alasdair McAndrew. 2004. Introduction to Digital Image Processing with Matlab. Thomson Course Technology, USA.
- Bradski, G., Kaehler, A. 2008. Learning OpenCV (Computer Vision with the OpenCV Library). O'Reilly.
- 6. Acharya, Tinku dan Ray, A.K. 2005. Image Processing. Principles and Applications. A John Wiley and Sons, Inc., Publication
- 7. Russ, John. C. 2007. The Image Processing Handbook, Fifth Edition. Taylor & Francis Group, LLC
- 8. Umbaugh, S.C. 1999. Computer Vision and Image Processing. A Practical Approach using CVI Tools, Prentice Hall PTR.

^{*}Ketentuan ini berlaku sama untuk semua mahasiswa baru maupun pengulang.

- Rastislav Lukac dan Konstantinos. 2007. Color Image Processing. Methods and Applications.
 Taylor & Francis Group, LLC
- 10. Pitas, I. Digital Image Processing Algorithm. 1993. Prentice Hall
- 11. Bahan bacaan lain yang relevan

8. Absensi

- ♣ Sesuai dengan ketentuan perkuliahan yang ditetapkan oleh IPB, mahasiswa diwajibkan menghadiri kuliah setidaknya 12 pertemuan dari 14 kali pertemuan. Mahasiswa yang kehadirannya dalam kuliah tidak mencapai 12 pertemuan **tidak diperbolehkan** mengikuti **ujian akhir semester** sehingga nilai ujian akhir semesternya dinyatakan 0.
- ♣ Menitip absen dikategorikan sebagai tindakan indisipliner sehingga kepada pelakunya akan diberlakukan sanksi sesuai dengan peraturan yang berlaku.
- ♣ Mahasiswa yang melakukan kecurangan dalam absen tidak diperkenankan untuk mengikuti ujian dan dinyatakan tidak lulus dari mata kuliah PPCD
- ♣ Mahasiswa diwajibkan menyerahkan bukti ketidakhadiran yang sah kepada Bagian Akademik Departemen Ilmu Komputer selambat-lambatnya seminggu sejak tanggal mahasiswa tersebut tidak hadir dalam perkuliahan.
- ♣ Pengumuman nama-nama mahasiswa yang tidak dapat mengikuti ujian akhir semester akan diberikan selambat-lambatnya 3 hari sebelum ujian akhir semester dilaksanakan.

9. Tata Tertib Mahasiswa

- ♣ Mahasiswa WAJIB mengikuti tata tertib IPB di lingkungan kampus.
- ♣ Mahasiswa diwajibkan hadir di dalam ruang kuliah tepat waktu. Keterlambatan diperbolehkan selambat-lambatnya 15 menit sejak pengajar memasuki ruang kuliah.
- ♣ Segala alat komunikasi/handphone harus dikondisikan tidak bersuara, dan tidak diperkenankan menggunakannya di dalam kelas selama proses belajar mengajar dan ujian berlangsung.
- ♣ Mahasiswa tidak boleh mempergunakan komputer selama proses kuliah, kecuali atas permintaan pengajar.
- ♣ Mahasiswa di dalam kelas Basisdata tidak diperkenankan makan, menggunakan kaos oblong, pakaian ketat/pendek, menggunakan peralatan hiburan (contoh: *mobile music player*, *walkman*, *ipod*, *headset/headphone*, dll), serta memakai sandal.
- ♣ Mahasiswa yang melanggar ketentuan-ketentuan tersebut dapat dikenakan sanksi antara lain: pengeluaran dari kelas, pemberian tugas, pemotongan nilai, dan sanksi lain yang diserahkan kepada pengajar terkait dengan tidak melanggar aturan, norma, serta etika.
- ♣ Mahasiswa yang melakukan kecurangan dalam pelaksanaan ujian (UTS, UAS, dan plagiat tugas) akan diberikan nilai 0.
- ♣ Mahasiswa yang melakukan kecurangan dalam tugas, dapat dikenakan sanksi berupa pengurangan nilai akhir sebesar 2ⁿ, dengan n adalah frekuensi kecurangan.

9. Rencana Acara Perkuliahan

u ke-	Materi Kuliah		Proyek dan Praktikum			
Minggu ke-	Topik PI		Proyek	Praktikum	PIC	
1	Pendahuluan	YHY	Pembagian kelompok project	Instalasi OpenCV	MMS	
2.	Pembentukan Citra Digital	YHY	Pembagian topik project	Pengenalan citra digital dengan OpenCV	MMS	
3.	Peningkatan Mutu Citra	YHY	Pembahasan proposal project	Peningkatan mutu citra dengan pengolahan titik	MMS	
4	Konvolusi	YHY	Peningkatan mutu kualitas citra	Peningkatan mutu citra dengan konvolusi	MMS	
5	Histogram	YHY	Pengumpulan proposal <i>project</i>	Histogram	MMS	
6	Warna	YHY	Ekstraksi Citr	Warna	MMS	
7	Transformasi Fourier	YHY	Ekstraksi citra	Transformasi Fourier	MMS	
	UTS					
8	Wavelet	AZK/ MMS	Ekstraksi Citra	Wavelet	MMS	
9	Restorasi Citra	AZK/ MMS	Implementasi sistem	Restorasi Citra	MMS	
10	Segmentasi	AZK/ MMS	Implementasi sistem	Segmentasi	MMS	
11	Hough Transform	AZK/ MMS	Implementasi sistem	Hough Transform	MMS	
12	Morfologi	AZK/ MMS	Implementasi sistem	Morfologi	MMS	
13	Pemampatan Citra	AZK/ MMS		Presentasi Proyek	YHY, AZK, MMS	
14	Pengantar Pengenalan Pola	AZK/ MMS		Presentasi Proyek	YHY, AZK, MMS	
	UAS				1111111	

AP : Asisten Praktikum

Catatan tambahan :	
Kontrak perkuliahan ini telah disampaikan dan dik	omunikasikan kepada mahasiswa pada:
Hari/Tanggal : Kamis, 8 September 2016	
Dosen yang menyampaikan	Perwakilan mahasiswa
Dr. Yeni Herdiyeni	
	No HP:

SILABUS/GBPP BERBASIS KOMPETENSI DAN KKNI

Kode Mata Kuliah : KOM421

Nama Mata Kuliah : Pengantar Pengolahan Citra Digital

SKS : 3(2-3)

Semester : 6

Prasyarat : Aljabar Martiks

Deskripsi Singkat : Mata kuliah ini menjelaskan karakteristik citra

digital, analisis dan pengolahan citra digital seperti pembentukan citra (image formation), restorasi citra (image restoration), peningkatan kualitas citra (image enhancement), transformasi citra dalam ruang frekuensi, segmentasi citra, morfologi citra, kompresi citra, dan pengolahan citra untuk pengenalan citra (image recognition). Perangkat lunak yang

digunakan C dan OpenCV.

Tinjauan Instruksional Umum (TIU): Setelah mengambil mata kuliah ini, diharapkan

mahasiswa mampu: menjelaskan, mengolah dan menganalisis citra digital serta meningkatkan keterampilan komunikasi lisan dan tertulis melalui presentasi proyek aplikasi pengolahan

citra digital yang mereka kembangkan.

NO	TINJAUAN INSTRUKSIONAL KHUSUS (TIK)	ТОРІК	SUB TOPIK	ESTIMASI WAKTU (menit)	SUMBER KEPUSTA KAAN
1	Mahasiswa dapat memahami dan menjelaskan pengolahan citra digital secara umum	Pendahuluan	 kontrak perkuliahan Pengertian citra digital Pengantar Pengolahan dan Analisis Citra Digital 	100	1,2,3,5
2	Mahasiswa dapat menjelaskan proses pembentukan citra digital	Pembentukan Citra Digital	 Pembentukan citra digital Image Sampling dan Quantization Elemen-elemen Citra Digital Tipe-tipe citra digital 	100	1,2,3,5

NO	TINJAUAN INSTRUKSIONAL KHUSUS (TIK)	ТОРІК	SUB TOPIK	ESTIMASI WAKTU (menit)	SUMBER KEPUSTA KAAN
			Ukuran Citra		
3	Mahasiswa dapat menjelaskan dan mengimpementasikan peningkatan kualitas mutu citra digital	Peningkatan Mutu Citra	 Peningkatan mutu citra pada domain spasial Peningkatan mutu citra pada domain frekuensi 	100	1,2,3,5
4	Mahasiswa dapat menjelaskan dan mengimpementasikan teknik konvolusi untuk peningkatan kualitas citra digital	Konvolusi	Teori konvolusiKonvolusi pada fungsi dua dimensi	100	1,2,3,5
5	Mahasiswa dapat menjelaskan dan mengimpementasikan teknik histogram pada citra digital	Histogram	 Pengertian histogram Histogram kontras titra Histogram dynamic range Histogram image	100	1,2,3,5
6	Mahasiswa dapat menjelaskan dan mengimpementasikan ruang warna pada citra digital	Warna	 Penglihatan Manusia RGB HSV YCbCr CIE NTSC CMY dan CYMK 	100	1,2,3,5
7	Mahasiswa dapat menjelaskan dan	Transformasi	Teori Dasar Fourier	100	1,2,3,5

NO	TINJAUAN INSTRUKSIONAL KHUSUS (TIK)	ТОРІК	SUB TOPIK	ESTIMASI WAKTU (menit)	SUMBER KEPUSTA KAAN
	mengimpementasikan transformasi fourier pada citra digital	Fourier	 Fungsi Periodik Representasi Bilangan Komplek Formule Euler Transformasi Fourier Fungsi diskret transformasi fourier Fast Fourier Transform Aplikasi transformasi Fourier 		
8	Mahasiswa dapat menjelaskan dan mengimpementasikan restorasi citra digital	Restorasi Citra	 Pengertian restorasi citra Model citra restorasi dan degradasi 	100	1,2,3,5
9	Mahasiswa dapat menjelaskan dan mengimpementasikan tekni wavelet pada citra digital	Wavelet	 Definisi Wavelet Continous wavelet transform Discrete Wavelet transform Transformasi Wavelet 2D Aplikasi Wavelet 	100	1,2,3,5
10	Mahasiswa dapat menjelaskan dan mengimpementasikan berbagai teknik segmentasi pada citra digital	Segmentasi	 Segmentasi Tepi Deteksi tepi Robert, Prewitt dan Sobel Deteksi Canny (First Order Gaussian) Deteksi Laplace (Second Derivatives) 	100	1,2,3,5
11	Mahasiswa dapat menjelaskan dan mengimpementasikan	Hough Transform	Hough Transform GarisHough Transform	100	1,2,3,5

NO	TINJAUAN INSTRUKSIONAL KHUSUS (TIK)	ТОРІК	SUB TOPIK	ESTIMASI WAKTU (menit)	SUMBER KEPUSTA KAAN
	hough transform pada citra digital		Lingkaran Hough Transform Ellipse		
12	Mahasiswa dapat menjelaskan dan mengimpementasikan teknik morfologi pada citra digital	Morfologi	Erosi, DilasiOperasi morfologi gabunganAplikasi morfologi	100	1,2,3,5
13	Mahasiswa dapat menjelaskan dan mengimpementasikan teknik pemampatan citra digital	Pemampatan Citra	 Definisi pemampatan citra Tipe redudansi citra Teknik pemampatan citra digital (Lossless compression, Lossy compression) 	100	1,2,3,5
14	Mahasiswa dapat menjelaskan dan mengimpementasikan teknik pengolahan citra digital untuk pengenalan pola	Pengantar Pengenalan Pola	 Definisi pengenalan pola Contoh aplikasi pengenalan pola pada pengolahan citra 	100	1,2,3,5

Sumber Kepustakaan:

- 1. Acharya, T., dan Ray, A. K. 2005. Image Processing Principles and Application. John Wiley & Sons, Inc., Publication.
- 2. Gonzalez, R. C., Woods, R. E., Eddins, Steven. 2000. Digital Image Processing. Prentice Hall.
- 3. Gonzalez, R. C., Woods, R. E., Eddins, Steven. 2004. Digital Image Processing Using Matlab. Prentice Hall.
- 4. Alasdair McAndrew. 2004. Introduction to Digital Image Processing with Matlab. Thomson Course Technology, USA.
- 5. Bradski, G., Kaehler, A. 2008. Learning OpenCV (Computer Vision with the OpenCV Library). O'Reilly.
- 6. Acharya, Tinku dan Ray, A.K. 2005. Image Processing. Principles and Applications. A John Wiley and Sons, Inc., Publication
- 7. Russ, John. C. 2007. The Image Processing Handbook, Fifth Edition. Taylor & Francis Group, LLC

- 8. Umbaugh, S.C. 1999. Computer Vision and Image Processing. A Practical Approach using CVI Tools. Prentice Hall PTR.
- 9. Rastislav Lukac dan Konstantinos. 2007. Color Image Processing. Methods and Applications. Taylor & Francis Group, LLC
- 10. Pitas, I. Digital Image Processing Algorithm. 1993. Prentice Hall
- 11. Bahan bacaan lain yang relevan