Adapter-Based Extension of Multi-Speaker TTS Model for New Speakers

- Paper, Nvidia
- 기존 Multi-Speaker TTS모델을 Adapter 튜닝을 통해 새로운 Speaker에 대해 업데이트
- TTS 모델
 - FastPitch, GST-speaker embedding -> CLN
- Adapter
 - Transformer layer 뒤에 모두 삽입
 - Pitch predictor, aligner 등 모든 모듈에 삽입
- Full Finetuning 과의 성능 비교
 - 훈련 Set이 1시간일 때는 더 좋은 성능
 - 데이터셋에 따라 성능 차이가 있지만, 대부분 Full Finetuning과 유사한 성능을 보임

WhiSLU: End-to-End Spoken Language Understanding with Whisper

Figure 1: This figure presents an example of WhiSLU's prediction. The model is trained to directly generate a well-formatted JSON string, learned from the sequence-level multitask learning strategy. The "Intent" entry represents the main task prediction, while the remaining entries correspond to the predictions of auxiliary tasks.

- Paper
- Whisper로 SLU를 훈련할 때, Auxiliary task 를 활용
- 여러가지 SLU task를 Json 형식으로 생성하 도록 훈련

Model	EM	EM-TREE	SLU-wer
wav2vec2.0 [5]	68.70	82.78	-
HuBERT [5]	69.23	82.87	-
cascade system	72.36	82.78	-
WhiSLU-large	74.49	84.89	6.8103
WhiSLU-large-SML	76.68	86.37	6.1407

Table 4: Overall comparison result. The table illustrates a comparison between the performance of the baseline models and our proposed WhiSLU models. Notably, both the WhiSLU-large models with and without the sequence-level multitask learning (SML) strategy achieved significant improvements in EM, EMTREE, and SLU-wer. This suggests that our proposed method of transferring knowledge from the ASR model to the NLU task is effective in enhancing the performance of the WhiSLU model.

Whisper Features for Dysarthric Severity-Level Classification

- Paper
- Whisper Encoder + CNN layers

Figure 1: Functional Block Diagram of Proposed Whisper Encoder Transfer Learning Pipeline in tandem with CNN classifier

● 성능

Table 5: Performance Evaluation for Various Feature Sets

Feature Set	Accuracy	F1-Score	MCC	Jaccard Index	Hamming Loss
MFCC	95.20	0.91	0.88	0.84	0.087
LFCC	96.05	0.96	0.96	0.93	0.034
Whisper	98.02	0.98	0.96	0.97	0.019

Related works

- DuTa-VC: A Duration-aware Typical-to-atypical Voice Conversion Approach with Diffus ion Probabilistic Model
 - Interspeech 2023, Paper, Github
- Target Speaker (Dysarthric speech)와 유사한 duration 정보를 가지도록 함
- Source Speaker에서 speaker-independent한 mel-spectrogram 을 추출
- 의료진이 dysarthric 평가 feature 단위로 평가했을 때 유사한 지표를 보임

감사합니다.