TD 2 Implémentation BDD

VAN DE MERGHEL Robin

2023

Table des matières

Exercice 1																								1	
Question 1																								1	
Question 2																								2	
Question 3																								2	
Question 4																								2	
Exercice 2																								3	
Question 1																								3	

Exercice 1

```
Considérons les deux transactions suivantes : T1 : READ(A,t); t := t+2 ; WRITE(A,t); READ(B,t); t=t*3 ; WRITE(B,t); COMMIT T2 : READ(B,s); s := s*2 ; WRITE(B,s); READ(A,s); s=s+3 ; WRITE(A,s); COMMIT
```

Question 1

Donner les plans correspondant aux exécutions en série (T_1,T_2) et (T_2,T_1) Avc (T_1,T_2) :

$\overline{T_1}$	T_2	A	В
r(A,t)		a	
t := t + 2		a	
w(A,t)		a+2	
r(B,t)		a+2	b
$t := t \times 3$		a+2	b
w(B,t)		a+2	$b \times 3$
commit		a+2	$b \times 3$
	r(B,s)	a+2	$b \times 3$
	$s := s \times 2$	a+2	$b \times 3$
	w(B,s)	a+2	$b \times 6$
	r(A,s)	a+2	$b \times 6$
	s := s + 3	a+2	$b \times 6$
	w(A,s)	a+5	$b \times 6$
	commit	a+5	$b \times 6$

État final : A = a + 5 et $B = b \times 6$

Avec (T_2,T_1) :

$\overline{T_2}$	T_1	A	В
r(B,s)			\overline{b}
$s := s \times 2$			b
w(B,s)			$b \times 2$
r(A,s)		a	$b \times 2$
s := s + 3		a	$b \times 2$
w(A,s)		a+3	$b \times 2$
commit		a+3	$b \times 2$
	r(A,t)	a+3	$b \times 2$
	t := t + 2	a+3	$b \times 2$
	w(A,t)	a+5	$b \times 2$
	r(B,t)	a+5	$b \times 2$
	$t := t \times 3$	a+5	$b \times 2$
	w(B,t)	a+5	$b \times 6$
	commit	a+5	$b \times 6$

État final : A = a + 5 et $B = b \times 6$

Question 2

Montrer que les exécutions (T_1,T_2) et (T_2,T_1) sont équivalentes, en commençant sur un exemple de base de données initial.

On a les deux mêmes états finaux, donc les deux exécutions sont équivalentes.

Question 3

Donner l'exemple d'une exécution de T_1 et de T_2 qui fait appraître un problème de lectures impropres.

Avec (T_1, T_2) :

T_1	T_2	A	В
r(A,t)		a	
t := t + 2		a	
w(A,t)		a+2	
r(B,t)		a+2	b
$t := t \times 3$		a+2	b
	r(B,s)	a+2	b
	$s := s \times 2$	a+2	b
	w(B,s)	a+2	$b \times 2$
	r(A,s)	a+2	$b \times 2$
	s := s + 3	a+2	$b \times 2$
	w(A,s)	a+5	$b \times 2$
w(B,t)		a+5	$b \times 2$
commit		a+5	$b \times 2$
	commit	a+5	$b \times 2$

On a a+3 dans A, modifié par ${\cal T}_2,$ alors que ${\cal T}_1$ n'a pas encore commit.

Question 4

Donner l'exemple d'une exécution de T_1 et de T_2 qui fait appraître un problème de perte de mise à jour.

Avec (T_1,T_2) :

$\overline{T_1}$	T_2	A	В
r(A,t)		a	
t := t + 2		a	
w(A,t)		a+2	
r(B,t)		a+2	b
$t := t \times 3$		a+2	b
	r(B,s)	a+2	b
	$s := s \times 2$	a+2	b
	w(B,s)	a+2	$b \times 2$
	r(A,s)	a+2	$b \times 2$
	s := s + 3	a+2	$b \times 2$
	w(A,s)	a+5	$b \times 2$
w(B,t)		a+5	$b \times 2$
commit		a+5	$b \times 2$
	commit	a+5	$b \times 2$

On a a+3 dans A, modifié par T_2 , alors que T_1 n'a pas encore commit.

Exercice 2

Considérons les deux transactions suivantes : T1 : r1(a) w1(a) w1(b) r1(b) commit1 T2 : r2(b) w2(b) r2(a) w2(a) commit2

Question 1

Donner trois exécutions sérialisables de ${\cal T}_1$ et ${\cal T}_2.$

On a :

$$E_1 = (T_1, T_2) = r_1(a) \ w_1(a) \ w_1(b) \ r_1(b) \ r_2(b) \ w_2(b) \ r_2(a) \ w_2(a) \ commit_1 \ commit_2$$

$\overline{T_1}$	T_2
$r_1(A)$	
$w_1(A)$	
$w_1(B)$	
$r_1(B)$	
$commit_1$	
	$r_2(B)$
	$w_2(B)$
	$r_2(A)$
	$w_2(A)$
	$commit_2$

On a:

$$E_2 = (T_2, T_1) = r_2(b) \ w_2(b) \ r_2(a) \ w_2(a) \ r_1(a) \ w_1(a) \ w_1(b) \ r_1(b) \ commit_2 \ commit_1$$

T_2	T_1
$r_2(B)$ $w_2(B)$	
$egin{aligned} r_2(A) \ w_2(A) \ commit_2 \end{aligned}$	
<i>commu</i>	$r_1(A)$ $w_1(A)$
	$\begin{array}{c} w_1(B) \\ r_1(B) \\ commit_1 \end{array}$

On a aussi :

T_1	T_2
$r_1(A)$	
$w_1(A)$	
$commit_1$	
	$r_2(B)$
	$w_2(B)$
	$commit_2$
$w_1(B)$	
$r_1(B)$	
$commit_1$	
	$r_2(A)$
	$w_2(A)$
	$commit_2$

Équivalent à :

 $E = r_1(a) \ w_1(a) \ commit_1 \ r_2(b) \ w_2(b) \ commit_2 \ w_1(b) \ r_1(b) \ commit_1 \ r_2(a) \ w_2(a) \ commit_2$