1

OXIDACIÓN REDUCCIÓN

• Estequiometría redox

- 1. 100 g de NaBr se tratan con ácido nítrico concentrado de densidad 1,39 g/cm³ y riqueza 70 % en masa, hasta reacción completa. Sabiendo que los productos de la reacción son Br₂, NO₂, NaNO₃ y agua:
 - a) Ajusta las semirreacciones que tienen lugar por el método del ion-electrón, la ecuación iónica y la molecular.
 - b) Calcula el volumen de ácido nítrico consumido.

Datos: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(A.B.A.U. extr. 19)

 $\textbf{Rta.:} \ \ a) \ 2 \ Br^{-}(aq) \ + \ 2 \ NO_{3}^{-}(aq) \ + \ 4 \ H^{+}(aq) \longrightarrow Br_{2}(l) + \ 2 \ NO_{2}(g) \ + \ 2 \ H_{2}O(l);$

 $2 \text{ NaBr(aq)} + 4 \text{ HNO}_3(\text{aq}) \rightarrow \text{Br}_2(\text{l}) + 2 \text{ NO}_2(\text{g}) + 2 \text{ NaNO}_3(\text{aq}) + 2 \text{ H}_2\text{O(l)}; \text{ b) } V = 126 \text{ cm}^3 \text{ HNO}_3.$

Datos Cifras significativas: 3

Masa de bromuro de sodio m(NaBr) = 100 g Disolución de ácido nítrico: densidad $\rho = 1{,}39 \text{ g/cm}^3$ riqueza $r = 70{,}0 \%$

Masa molar del bromuro de sodio M(NaBr) = 103 g/molMasa molar del ácido nítrico $M(HNO_3) = 63.0 \text{ g/mol}$

Incógnitas

Volumen de disolución de HNO₃ que reacciona

V

Solución:

a) Se escriben las semirreacciones iónicas:

Oxidación: $2 \text{ Br}^- - 2 \text{ e}^- \rightarrow \text{Br}_2$

Reducción: $(NO_3)^- + 2 H^+ + e^- \rightarrow NO_2 + H_2O$

Se obtiene la ecuación iónica ajustada multiplicando la segunda semirreacción por 2 y sumando:

$$2 \text{ Br}^- + 2 (\text{NO}_3)^- + 4 \text{ H}^+ \longrightarrow \text{Br}_2 + 2 \text{ NO}_2 + 2 \text{ H}_2\text{O}$$

Para obtener la ecuación global, se suma a cada lado $2 \text{ Na}^+ \text{ y } 2 \text{ (NO}_3)^-$, y se combinan los iones para formar los compuestos:

$$2 \text{ NaBr(aq)} + 4 \text{ HNO}_3(\text{aq}) \rightarrow \text{Br}_2(\text{l}) + 2 \text{ NO}_2(\text{g}) + 2 \text{ NaNO}_3(\text{aq}) + 2 \text{ H}_2\text{O(l)}$$

b) Se calcula la cantidad de bromuro de sodio que hay en 100 g:

$$n=100$$
 g NaBr $\frac{1 \text{ mol NaBr}}{103 \text{ g NaBr}} = 0,972 \text{ mol NaBr}$

Se calcula la cantidad de ácido nítrico necesaria para reaccionar con esa cantidad de bromuro de sodio, mirando la ecuación ajustada de la reacción:

$$n'=0,972 \text{ mol NaBr} \frac{4 \text{ mol HNO}_3}{2 \text{ mol NaBr}} = 1,94 \text{ mol HNO}_3$$

Se calcula el volumen de disolución ácido nítrico del 70 % y densidad 1,39 g/cm³ que contiene esa cantidad:

$$V=1,94 \text{ mol HNO}_3 = \frac{63.0 \text{ g HNO}_3}{1 \text{ mol HNO}_3} = \frac{100 \text{ g D HNO}_3}{70.0 \text{ g HNO}_3} = \frac{1 \text{ cm}^3 \text{ D HNO}_3}{1,39 \text{ g D HNO}_3} = 126 \text{ cm}^3 \text{ D HNO}_3$$

La mayor parte de las respuestas puede calcularse con la hoja de cálculo <u>Quimica (es)</u> Cuando esté en el índice, mantenga pulsada la tecla «♠» (mayúsculas) mientras hace clic en la celda:

Reacciones redox

del capítulo:

Oxidación reducción

Redox

Reacciones redox

Si hay datos, bórrelos. (Haga clic en el botón Borrar datos y pulse la opción Aceptar).

Escriba las fórmulas químicas en las celdas blancas con borde verde, los datos en las celdas blancas con borde azul, y pulse en las celdas de color salmón para elegir entre las opciones que se presentan.

			DATOS			
		Reactivos →	Productos			
NaBr	HNO₃		Br_2	NO_2	NaNO ₃	H ₂ O
Calcular:	volumen	disolución	HNO ₃	$[HNO_3] =$	70	% masa
				Densidad	1,39	g/cm³
necesarios	para reaccionar	con				
100	g		NaBr			

Podrá ver:

oura ver.						
R E S U L T A D O S						
					Cifras significat	ivas: 3
Ajuste ion-e	lectrón					
Oxidación	$2~\mathrm{Br}^{-}$		- 2 e ⁻ →	Br_{2}		×1
Reducción	$(NO_3)^-$	+ 2 H ⁺	$+ e^- \rightarrow$	NO_2	+ H_2O	×2
	2 Br ⁻	+ 2 (NO ₃) ⁻	+ 4 H ⁺ →	Br ₂	+ 2 NO ₂	+ 2 H ₂ O
Ecuación ajustada:						
2 NaBr + 4 H	$INO_3 \rightarrow B$	$r_2 + 2 NO_2 + 2 NaN$	$O_3 + 2 H_2O$			
n(NaBr) =		0,972 mol		n(H	$(NO_3) =$	1,94 mol
				V(H	$(NO_3) =$	126 cm³ (D)

Electrolisis

- 1. Durante el electrolisis del cloruro de magnesio fundido:
 - a) ¿Cuántos gramos de Mg se producen cuándo pasan 8,80·10³ culombios a través de la célula?
 - b) ¿Cuánto tiempo se tarda en depositar 0,500 gramos de Mg con una corriente de 25,0 amperios?
 - c) ¿Cuántos litros de cloro se obtendrán en el punto (b) a una presión de 1,23 atm y a una temperatura de 27 °C.
 - d) Escribe los procesos electrolíticos que ocurren en el ánodo y en el cátodo.

(P.A.U. sep. 00)

Rta.: a)
$$m = 1,11$$
 g de Mg; b) $t = 159$ s; c) $V = 0,412$ dm³;
d) ánodo: $2 \text{ Cl}^- \rightarrow \text{Cl}_2 + 2 \text{ e}^-$; cátodo: $\text{Mg}^{2+} + 2 \text{ e}^- \rightarrow \text{Mg}$.

Datos		Cifras significativas: 3
Carga eléctrica que atr	aviesa la celda (apdo. a)	$Q = 8,80 \times 10^3 \text{ C}$
Masa de magnesio depositada (apdo. b)		$m(\mathrm{Mg}) = 0.500~\mathrm{g}$
Intensidad que atraviesa la celda (apdo. b)		I = 25,0 A
Gas cloro: presión	ı	p = 1,23 atm
temper	atura	$T = 27 ^{\circ}\text{C} = 300 \text{K}$
Constante de los gases ideales		$R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
Masa atómica del magnesio		M(Mg) = 24.3 g/mol

Incógnitas

Masa de magnesio depositada cuando pasan 8,80×10³ C

m(Mg)

Incógnitas

Tiempo que se tarda en depositar 0,500 g de Mg

Volumen de gas cloro desprendido

t

Otros símbolos

Cantidad de sustancia (número de moles)

n

Solución:

a) Se calcula la cantidad de electrones equivalente a la carga de 8,80×10³ C:

$$n(e)=8,80\cdot10^3 \text{ C} \frac{1 \text{ mol e}}{9,65\cdot10^4 \text{ C}}=0,912 \text{ mol e}$$

La reacción en el cátodo es:

$$Mg^{2+} + 2 e^{-} \rightarrow Mg$$

Se calcula la masa de magnesio depositada, mirando la ecuación ajustada de la reacción:

$$m(Mg) = 0.0912 \text{ mol e } \frac{1 \text{ mol Mg}}{2 \text{ mol e}} \frac{24.3 \text{ g Mg}}{1.00 \text{ mol Mg}} = 1.11 \text{ g Mg}$$

b) Se calcula la cantidad de magnesio que hay en 0,500 g

$$n(Mg)=0,500 \text{ g Mg} \frac{1,00 \text{ mol Mg}}{24,3 \text{ g Mg}}=0,0206 \text{ mol Mg}$$

Se calcula la cantidad de electrones necesaria para que se deposite todo el magnesio, mirando la ecuación ajustada de la reacción:

$$n(e)=0,0206 \text{ mol Mg} \frac{2 \text{ mol e}}{1 \text{ mol Mg}}=0,0412 \text{ mol e}$$

Se calcula la carga eléctrica equivalente:

$$Q = 0.041 \text{ 2mol e} \cdot \frac{9.65 \cdot 10^4 \text{ C}}{1 \text{ mol e}} = 3.98 \cdot 10^3 \text{ C}$$

Se calcula el tiempo con la expresión de la intensidad:

$$I = \frac{Q}{t}$$
 $\Rightarrow t = \frac{Q}{I} = \frac{3.98 \cdot 10^3 \text{ C}}{25 \text{ A}} = 159 \text{ s}$

c) La reacción de electrolisis es:

$$MgCl_2 \rightarrow Mg(s) + Cl_2(g)$$

Se calcula la cantidad de cloro, mirando la ecuación ajustada de la reacción:

$$n(Cl_2) = n(Mg) = 0.0206 \text{ mol } Cl_2$$

Se calcula el volumen de cloro, medido a 1,23 atm y 27 °C, suponiendo comportamiento ideal para el gas:

$$V = \frac{n \cdot R \cdot T}{p} = \frac{0,0206 \text{ mol Cl}_2 \cdot 0,0820 \text{ atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 300 \text{ K}}{1,23 \text{ atm}} = 0,412 \text{ dm}^3 = 412 \text{ cm}^3 \text{ Cl}_2$$

d) La reacción en el ánodo es la de oxidación: $2 \text{ Cl}^- \rightarrow \text{Cl}_2 + 2 \text{ e}^-$

$$2 \text{ Cl}^- \rightarrow \text{Cl}_2 + 2 \text{ e}^-$$

La reacción en el cátodo es la de reducción:

$$Mg^{2+} + 2 e^{-} \rightarrow Mg$$

La mayor parte de las respuestas puede calcularse con la hoja de cálculo Quimica (es) Cuando esté en el índice, mantenga pulsada la tecla « 🌣 » (mayúsculas) mientras hace clic en la celda:

Electrolisis

del capítulo:

Oxidación reducción Electrolisis Electrolisis

Si hay datos, bórrelos. (Haga clic en el botón Borrar datos y pulse la opción Aceptar).

Escriba las fórmulas químicas en las celdas blancas con borde verde, los datos en las celdas blancas con borde azul, y pulse en las celdas de color salmón para elegir entre las opciones que se presentan.

Cuestiones y problemas de las <u>Pruebas de evaluación de Bachillerato para el acceso a la Universidad</u> (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.

Algunos cálculos se hicieron con una hoja de cálculo de LibreOffice del mismo autor.

Algunas ecuaciones y las fórmulas orgánicas se construyeron con la extensión <u>CLC09</u> de Charles Lalanne-Cassou.

La traducción al/desde el gallego se realizó con la ayuda de <u>traducindote</u>, y del <u>traductor de la CIXUG</u>.

Se procuró seguir las <u>recomendaciones</u> del Centro Español de Metrología (CEM).

Se consultó al Copilot de Microsoft Edge y se tuvieron en cuenta algunas de sus respuestas en las cuestiones.

Actualizado: 17/07/24

Sumario

	_
CION REDI	ICCION

Estequiometría redox
agua:
b) Calcula el volumen de ácido nítrico consumido
Electrolisis2
1. Durante el electrolisis del cloruro de magnesio fundido:2
a) ¿Cuántos gramos de Mg se producen cuándo pasan 8,80·103 culombios a través de la célula?
b) ¿Cuánto tiempo se tarda en depositar 0,500 gramos de Mg con una corriente de 25,0 amperios?
c) ¿Cuántos litros de cloro se obtendrán en el punto (b) a una presión de 1,23 atm y a una temperatura de 27 °C
d) Escribe los procesos electrolíticos que ocurren en el ánodo y en el cátodo