$12a_{0497} (K12a_{0497})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{104} - u^{103} + \dots + 2u^3 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 104 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{104} - u^{103} + \dots + 2u^3 + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{10} + 3u^{8} - 4u^{6} + 3u^{4} - u^{2} + 1 \\ -u^{10} + 2u^{8} - 3u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{6} - u^{4} + 1 \\ -u^{8} + 2u^{6} - 2u^{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{19} - 4u^{17} + 8u^{15} - 8u^{13} + 3u^{11} + 2u^{9} - 2u^{7} + 2u^{5} - 3u^{3} + 2u \\ -u^{21} + 5u^{19} - 13u^{17} + 20u^{15} - 20u^{13} + 13u^{11} - 7u^{9} + 4u^{7} - u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{50} - 11u^{48} + \dots + u^{2} + 1 \\ -u^{52} + 12u^{50} + \dots - 8u^{6} + u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{28} + 7u^{26} + \dots + u^{2} + 1 \\ -u^{28} + 6u^{26} + \dots + 8u^{6} - 3u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{77} - 18u^{75} + \dots - 4u^{3} + u \\ u^{77} - 17u^{75} + \dots - u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{102} 92u^{100} + \cdots 4u^2 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{104} + 47u^{103} + \dots + 2u^2 + 1$
c_2, c_6	$u^{104} - u^{103} + \dots + 2u^3 + 1$
c_3, c_{12}	$u^{104} + u^{103} + \dots - 22u + 1$
c_4	$u^{104} - u^{103} + \dots - 4786u + 1237$
c_5,c_{10}	$u^{104} + u^{103} + \dots + 2u + 1$
c_7	$u^{104} - 3u^{103} + \dots - 8u + 3$
<i>c</i> ₈	$u^{104} + 13u^{103} + \dots + 20u + 1$
<i>c</i> ₉	$u^{104} + 49u^{103} + \dots + 2u^2 + 1$
c_{11}	$u^{104} + 5u^{103} + \dots + 17926u + 3477$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{104} + 21y^{103} + \dots + 4y + 1$
c_2, c_6	$y^{104} - 47y^{103} + \dots + 2y^2 + 1$
c_3, c_{12}	$y^{104} - 79y^{103} + \dots + 112y + 1$
c_4	$y^{104} - 23y^{103} + \dots - 66086992y + 1530169$
c_5,c_{10}	$y^{104} + 49y^{103} + \dots + 2y^2 + 1$
	$y^{104} + 5y^{103} + \dots + 800y + 9$
C ₈	$y^{104} + y^{103} + \dots + 284y + 1$
<i>c</i> ₉	$y^{104} + 13y^{103} + \dots + 4y + 1$
c_{11}	$y^{104} + 29y^{103} + \dots + 539591540y + 12089529$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.859307 + 0.524203I	-0.01758 + 7.72337I	0
u = -0.859307 - 0.524203I	-0.01758 - 7.72337I	0
u = 0.836775 + 0.503199I	1.90773 - 2.97029I	0
u = 0.836775 - 0.503199I	1.90773 + 2.97029I	0
u = -1.011650 + 0.233039I	-2.04169 + 0.66017I	0
u = -1.011650 - 0.233039I	-2.04169 - 0.66017I	0
u = -0.980187 + 0.397197I	-1.88622 + 1.31284I	0
u = -0.980187 - 0.397197I	-1.88622 - 1.31284I	0
u = -1.056710 + 0.066632I	0.57803 + 2.08421I	0
u = -1.056710 - 0.066632I	0.57803 - 2.08421I	0
u = -0.958501 + 0.452296I	-1.91153 + 1.29780I	0
u = -0.958501 - 0.452296I	-1.91153 - 1.29780I	0
u = 1.070350 + 0.091384I	1.69880 + 2.66563I	0
u = 1.070350 - 0.091384I	1.69880 - 2.66563I	0
u = 1.055850 + 0.204960I	-5.41329 + 2.54049I	0
u = 1.055850 - 0.204960I	-5.41329 - 2.54049I	0
u = 0.542072 + 0.741306I	3.99783 - 9.10436I	0
u = 0.542072 - 0.741306I	3.99783 + 9.10436I	0
u = 1.051860 + 0.253380I	-4.49361 - 4.87932I	0
u = 1.051860 - 0.253380I	-4.49361 + 4.87932I	0
u = -0.534590 + 0.741284I	6.16977 + 4.04816I	0
u = -0.534590 - 0.741284I	6.16977 - 4.04816I	0
u = -0.515131 + 0.748064I	7.20284 + 1.69792I	0
u = -0.515131 - 0.748064I	7.20284 - 1.69792I	0
u = -1.083390 + 0.136794I	-4.04015 - 2.23636I	0
u = -1.083390 - 0.136794I	-4.04015 + 2.23636I	0
u = 0.504216 + 0.753178I	5.99912 + 3.19718I	0
u = 0.504216 - 0.753178I	5.99912 - 3.19718I	0
u = 1.092950 + 0.116654I	0.50313 + 4.81762I	0
u = 1.092950 - 0.116654I	0.50313 - 4.81762I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.756728 + 0.484409I	2.14268 - 1.17121I	6.64343 + 0.I
u = 0.756728 - 0.484409I	2.14268 + 1.17121I	6.64343 + 0.I
u = 0.531824 + 0.723039I	1.51039 - 1.63841I	0
u = 0.531824 - 0.723039I	1.51039 + 1.63841I	0
u = 0.453000 + 0.771117I	5.72060 - 0.33111I	5.65604 + 0.I
u = 0.453000 - 0.771117I	5.72060 + 0.33111I	5.65604 + 0.I
u = -0.442763 + 0.774845I	6.80677 - 4.55207I	7.37432 + 3.79202I
u = -0.442763 - 0.774845I	6.80677 + 4.55207I	7.37432 - 3.79202I
u = -1.101690 + 0.121004I	-1.74425 - 9.83174I	0
u = -1.101690 - 0.121004I	-1.74425 + 9.83174I	0
u = 0.422973 + 0.784494I	3.34574 + 11.96320I	0 7.58874I
u = 0.422973 - 0.784494I	3.34574 - 11.96320I	0. + 7.58874I
u = -0.427276 + 0.781006I	5.58256 - 6.89102I	5.88164 + 3.70083I
u = -0.427276 - 0.781006I	5.58256 + 6.89102I	5.88164 - 3.70083I
u = 0.420575 + 0.770410I	0.90649 + 4.32693I	0 2.33566I
u = 0.420575 - 0.770410I	0.90649 - 4.32693I	0. + 2.33566I
u = -0.705886 + 0.507842I	0.40911 - 3.44910I	3.11069 + 2.13802I
u = -0.705886 - 0.507842I	0.40911 + 3.44910I	3.11069 - 2.13802I
u = -1.077900 + 0.384069I	-3.24714 + 0.72316I	0
u = -1.077900 - 0.384069I	-3.24714 - 0.72316I	0
u = 1.091470 + 0.378875I	-5.64601 + 3.93267I	0
u = 1.091470 - 0.378875I	-5.64601 - 3.93267I	0
u = 1.057270 + 0.468756I	-1.30857 - 5.15318I	0
u = 1.057270 - 0.468756I	-1.30857 + 5.15318I	0
u = 1.091190 + 0.402366I	-7.16519 - 3.66403I	0
u = 1.091190 - 0.402366I	-7.16519 + 3.66403I	0
u = 0.442649 + 0.704496I	2.18390 + 1.10352I	3.36438 - 0.54429I
u = 0.442649 - 0.704496I	2.18390 - 1.10352I	3.36438 + 0.54429I
u = -0.406121 + 0.717438I	-0.98090 - 4.64543I	-1.49398 + 4.59581I
u = -0.406121 - 0.717438I	-0.98090 + 4.64543I	-1.49398 - 4.59581I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.096760 + 0.443551I	-6.88645 + 3.66322I	0
u = -1.096760 - 0.443551I	-6.88645 - 3.66322I	0
u = 1.092910 + 0.459875I	-2.73025 - 6.49785I	0
u = 1.092910 - 0.459875I	-2.73025 + 6.49785I	0
u = -1.102030 + 0.460728I	-5.09595 + 11.30370I	0
u = -1.102030 - 0.460728I	-5.09595 - 11.30370I	0
u = 1.033640 + 0.601494I	0.01999 - 3.42754I	0
u = 1.033640 - 0.601494I	0.01999 + 3.42754I	0
u = 1.031380 + 0.616617I	2.54297 + 3.93822I	0
u = 1.031380 - 0.616617I	2.54297 - 3.93822I	0
u = -1.036210 + 0.614543I	4.67843 + 1.11092I	0
u = -1.036210 - 0.614543I	4.67843 - 1.11092I	0
u = -1.076910 + 0.561271I	-2.47407 + 2.03216I	0
u = -1.076910 - 0.561271I	-2.47407 - 2.03216I	0
u = -1.049530 + 0.613467I	5.61409 + 3.47527I	0
u = -1.049530 - 0.613467I	5.61409 - 3.47527I	0
u = 1.056730 + 0.613529I	4.35675 - 8.38369I	0
u = 1.056730 - 0.613529I	4.35675 + 8.38369I	0
u = 1.076960 + 0.578529I	0.31558 - 6.04373I	0
u = 1.076960 - 0.578529I	0.31558 + 6.04373I	0
u = -1.090550 + 0.576963I	-2.98339 + 9.60531I	0
u = -1.090550 - 0.576963I	-2.98339 - 9.60531I	0
u = 1.086520 + 0.607111I	3.83813 - 4.87610I	0
u = 1.086520 - 0.607111I	3.83813 + 4.87610I	0
u = -0.425267 + 0.621881I	-0.56836 + 2.70224I	0.03525 - 3.31047I
u = -0.425267 - 0.621881I	-0.56836 - 2.70224I	0.03525 + 3.31047I
u = -1.092040 + 0.605858I	4.87795 + 9.76344I	0
u = -1.092040 - 0.605858I	4.87795 - 9.76344I	0
u = 1.099510 + 0.597884I	-1.10494 - 9.49521I	0
u = 1.099510 - 0.597884I	-1.10494 + 9.49521I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.100100 + 0.603734I	3.58412 + 12.10850I	0
u = -1.100100 - 0.603734I	3.58412 - 12.10850I	0
u = 1.102800 + 0.603758I	1.3260 - 17.1890I	0
u = 1.102800 - 0.603758I	1.3260 + 17.1890I	0
u = -0.440195 + 0.550648I	-0.56785 + 2.71251I	0.81371 - 3.53130I
u = -0.440195 - 0.550648I	-0.56785 - 2.71251I	0.81371 + 3.53130I
u = -0.115185 + 0.609334I	-2.40566 - 7.26290I	-1.85956 + 7.00955I
u = -0.115185 - 0.609334I	-2.40566 + 7.26290I	-1.85956 - 7.00955I
u = 0.122607 + 0.579644I	-0.12195 + 2.52084I	1.47418 - 3.47002I
u = 0.122607 - 0.579644I	-0.12195 - 2.52084I	1.47418 + 3.47002I
u = -0.062282 + 0.583449I	-4.12580 + 0.18635I	-5.37095 + 0.17680I
u = -0.062282 - 0.583449I	-4.12580 - 0.18635I	-5.37095 - 0.17680I
u = 0.223352 + 0.497108I	0.88054 + 1.24792I	3.91671 - 4.24844I
u = 0.223352 - 0.497108I	0.88054 - 1.24792I	3.91671 + 4.24844I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{104} + 47u^{103} + \dots + 2u^2 + 1$
c_2, c_6	$u^{104} - u^{103} + \dots + 2u^3 + 1$
c_3, c_{12}	$u^{104} + u^{103} + \dots - 22u + 1$
c_4	$u^{104} - u^{103} + \dots - 4786u + 1237$
c_5,c_{10}	$u^{104} + u^{103} + \dots + 2u + 1$
c_7	$u^{104} - 3u^{103} + \dots - 8u + 3$
C ₈	$u^{104} + 13u^{103} + \dots + 20u + 1$
<i>c</i> 9	$u^{104} + 49u^{103} + \dots + 2u^2 + 1$
c_{11}	$u^{104} + 5u^{103} + \dots + 17926u + 3477$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{104} + 21y^{103} + \dots + 4y + 1$
c_2, c_6	$y^{104} - 47y^{103} + \dots + 2y^2 + 1$
c_3, c_{12}	$y^{104} - 79y^{103} + \dots + 112y + 1$
c_4	$y^{104} - 23y^{103} + \dots - 66086992y + 1530169$
c_5,c_{10}	$y^{104} + 49y^{103} + \dots + 2y^2 + 1$
c_7	$y^{104} + 5y^{103} + \dots + 800y + 9$
C ₈	$y^{104} + y^{103} + \dots + 284y + 1$
<i>c</i> 9	$y^{104} + 13y^{103} + \dots + 4y + 1$
c_{11}	$y^{104} + 29y^{103} + \dots + 539591540y + 12089529$