

Universidade Federal de Santa Catarina Centro Tecnológico

Departamento de Informática e Estatística Ciências da Computação & Engenharia Eletrônica

Sistemas Digitais

INE 5406

Aula 10-T

4. O Processador MIPS multiciclo: construção do bloco operativo e execução das instruções.

Profs. José Luís Güntzel e Cristina Meinhardt

{j.guntzel, cristina.meinhardt}@ufsc.br

MIPS Monociclo

Instruções Consideradas

Instrução	Formato	Linguagem de Montagem	Significado
Adição	R	add \$s1, \$s2, \$s3	\$s1 ← \$s2 + \$s3
Subtração	R	sub \$s1, \$s2, \$s3	\$s1 ← \$s2 - \$s3
AND bit a bit	R	and \$s1, \$s2, \$s3	\$s1 ← \$s2 and \$s3
OR bit a bit	R	or \$s1, \$s2, \$s3	\$s1 ← \$s2 or \$s3
Load word	I	lw \$s1, desl(\$s2)	\$s1 ← Mem[\$s2 + des1]
Store word	I	sw \$s1, desl(\$s2)	Mem[\$s2 + desl] ←\$s1
Salto condicional	Ι	beq \$s1, \$s2, desl	if $(\$s1==\$s2)$ then PC \leftarrow PC+4+(des1<<2)
Salto incondicional	J	j L	PC \leftarrow L onde L = ((PC+4)[31-28]) (constante $<<$ 2)

Derivando uma Implementação Multiciclo

Cada caixa pode representar um ou mais passos e portanto, pode executar em um ou mais ciclos de relógio (dependendo da instrução).

Derivando uma Implementação Multiciclo

Princípio: Cada etapa (abaixo) terá exatamente um ciclo de relógio para executar (e assim, o período do relógio será reduzido)

instrução	Etapa 1	Etapa 2	Etapa3	Etapa 4	Etapa 5
Tipo R	Busca da instrução	Lê registrador(es) & decodifica instrução	ULA	Escreve registrador	
lw	Busca da instrução	Lê registrador(es) & decodifica instrução	ULA	Lê memória	Escreve registrador
sw	Busca da instrução	Lê registrador(es) & decodifica instrução	ULA	Escreve na memória	
beq	Busca da instrução	Lê registrador(es) & decodifica instrução	ULA		
jump	Busca da instrução	decodifica instrução *			

Implementação:

- Inserir registrador(es) entre os elementos que executam as etapas
- Possibilidade de reaproveitar recursos (principalmente a ULA)

Bloco Operativo Multiciclo: Características

Uma única memória para armazenar dados e instruções

Consequência:

• endereço de leitura vem do PC; endereço de escrita vem de ULASaída. Logo, usar mux 2:1

Bloco Operativo Multiciclo Novos Registradores Não-Visíveis ao Programador

- Registrador de Instrução (IR ou RI)
- Registrador de Dados da Memória (MDR ou RDM)
- Registradores A e B, para guardar os dados lidos do banco de registradores
- Registrador ULASaída, para guardar o resultado de operação feita c/ a ULA

Bloco Operativo Multiciclo Novos Registradores Não-Visíveis ao Programador

Todos os registradores novos (**exceto o RI**) devem armazenar dados somente entre duas bordas de relógio consecutivas e portanto, não necessitam sinal de carga (controle de escrita), apenas do sinal de relógio (omitido nos diagramas)

Bloco Operativo Multiciclo

Dado a ser Escrito em Registrador pode vir da ULA (via ULASaída) ou da Memória (via RDM)

Consequência:

• Reposicionamento do mux 2:1 na entrada de dado a ser escrito (do banco de registradores)

Bloco Operativo Multiciclo

ULA usada também para calcular PC+4 e endereço de desvio

Consequência:

- Necessidade de mux 2:1 na entrada superior
- Entrada inferior passa a ter mux 4:1 (ao invés de mux 2:1)

Bloco Operativo Multiciclo + Sinais de Controle

MIPS Multiciclo

Acréscimos de Recursos para Suportar jump e branch on equal

Existem 3 possíveis fontes para o PC:

- O resultado de PC+4, disponível na saída da ULA: este valor sempre será armazenado no PC
- 2. O conteúdo de ULASaída: este registrador armazena o endereço-alvo do desvio condicional, após este ter sido calculado pela ULA (beq)
- 3. Os 26 bits menos significativos do IR, deslocados à esquerda e concatenados com os 4 bits mais significativos do PC incrementado (jump)

MIPS Multiciclo (incluso Bloco de Controle)

Passos Necessários para Qualquer Instrução no MIPS Multiciclo

Nome do passo	Instrução tipo R	Instrução lw	Instrução sw	Instrução beq	Instrução j			
Busca da instrução		RI = Mem[PC] PC = PC + 4						
Decodificação da instrução & leitura dos registradores Rs e Rt & cálculo do endereço de desvio (cond.)		A = Reg [RI[25-21]] B = Reg [RI[20-16]] ULASaída = PC + (extensão de sinal(RI[15-0]) <<2)						
Execução, cálculo do endereço de acesso à memória, término de uma instrução branch/jump	ULASaída = A op B	ULASaída = A + extensão de sinal (RI[15- 0])		Se (A == B) então PC = ULASaída	PC = PC[31-28] (RI[25-0] <<2)			
Término de uma instrução store word ou de tipo R	Reg [RI[15-11]] = ULASaída	RDM = Mem [ULASaída]	Mem [ULASaída] = B					
Término de uma instrução load word		Reg[RI[20-16]] = RDM						
Número de passos	4	5	4	3	3			

Busca da Instrução (e PC ← PC+4)

Passos Necessários para Qualquer Instrução no MIPS Multiciclo

Nome do passo	Instrução tipo R	Instrução lw	Instrução sw	Instrução beq	Instrução j			
Busca da instrução		RI = Mem[PC] PC = PC + 4						
Decodificação da instrução & leitura dos registradores Rs e Rt & cálculo do endereço de desvio (cond.)		A = Reg [RI[25-21]] B = Reg [RI[20-16]] ULASaída = PC + (extensão de sinal(RI[15-0]) <<2)						
Execução, cálculo do endereço de acesso à memória, término de uma instrução branch/jump	ULASaída = A op B	ULASaída = A + extensão de sinal (RI[15-0])		Se (A == B) então PC = ULASaída	PC = PC[31-28] (RI[25-0] <<2)			
Término de uma instrução store word ou de tipo R	Reg [RI[15-11]] = ULASaída	RDM = Mem [ULASaída]	Mem [ULASaída] = B					
Término de uma instrução load word		Reg[RI[20-16]] = RDM						
Número de passos	4	5	4	3	3			

Decodificação da instrução & Leit. Rs e Rt (cálculo do end. p/ beq)

Passos Necessários para Instrução beq no MIPS Multiciclo

Nome do passo	Instrução tipo R	Instrução lw	Instrução sw	Instrução beq	Instrução j			
Busca da instrução		RI = Mem[PC] PC = PC + 4						
Decodificação da instrução & leitura dos registradores Rs e Rt & cálculo do endereço de desvio (cond.)		A = Reg [RI[25-21]] B = Reg [RI[20-16]] ULASaída = PC + (extensão de sinal(RI[15-0]) <<2)						
Execução, cálculo do endereço de acesso à memória, término de uma instrução branch/jump	ULASaída = A op B	ULASaída = A + extensão de sinal (RI[15-0])		Se (A == B) então PC = ULASaída	PC = PC[31-28] (RI[25-0] <<2)			
Término de uma instrução store word ou de tipo R	Reg [RI[15-11]] = ULASaída	RDM = Mem [ULASaída]	Mem [ULASaída] = B					
Término de uma instrução load word		Reg[RI[20-16]] = RDM						
Número de passos	4	5	4	3	3			

Execução da Instrução beq: testa se A == B

Passos Necessários para Instrução jump no MIPS Multiciclo

Nome do passo	Instrução tipo R	Instrução lw	Instrução sw	Instrução beq	Instrução j			
Busca da instrução		RI = Mem[PC] PC = PC + 4						
Decodificação da instrução & leitura dos registradores Rs e Rt & cálculo do endereço de desvio (cond.)		A = Reg [RI[25-21]] B = Reg [RI[20-16]] ULASaída = PC + (extensão de sinal(RI[15-0]) <<2)						
Execução, cálculo do endereço de acesso à memória, término de uma instrução branch/jump	ULASaída = A op B	ULASaída = A + extensão de sinal (RI[15-0])		Se (A == B) então PC = ULASaída	PC = PC[31-28] (RI[25-0] <<2)			
Término de uma instrução store word ou de tipo R	Reg [RI[15-11]] = ULASaída	RDM = Mem [ULASaída]	Mem [ULASaída] = B					
Término de uma instrução load word		Reg[RI[20-16]] = RDM						
Número de passos	4	5	4	3	3			

Execução da Instrução jump: somente seleção de caminho

Passos Necessários para Instruções Tipo R no MIPS Multiciclo

Nome do passo	Instrução tipo R	Instrução lw	Instrução sw	Instrução beq	Instrução j			
Busca da instrução		RI = Mem[PC] PC = PC + 4						
Decodificação da instrução & leitura dos registradores Rs e Rt & cálculo do endereço de desvio (cond.)		A = Reg [RI[25-21]] B = Reg [RI[20-16]] ULASaída = PC + (extensão de sinal(RI[15-0]) <<2)						
Execução, cálculo do endereço de acesso à memória, término de uma instrução branch/jump	ULASaída = A op B	ULASaída = A + extensão de sinal (RI[15-0])		Se (A == B) então PC = ULASaída	PC = PC[31-28] (RI[25-0] <<2)			
Término de uma instrução store word ou de tipo R	Reg [RI[15-11]] = ULASaída	RDM = Mem [ULASaída]	Mem [ULASaída] = B					
Término de uma instrução load word		Reg[RI[20-16]] = RDM						
Número de passos	4	5	4	3	3			

Execução de Instruções Tipo R: execução na ULA

Passos Necessários para Instruções Tipo R no MIPS Multiciclo

Nome do passo	Instrução tipo R	Instrução lw	Instrução sw	Instrução beq	Instrução j			
Busca da instrução		RI = Mem[PC] PC = PC + 4						
Decodificação da instrução & leitura dos registradores Rs e Rt & cálculo do endereço de desvio (cond.)		A = Reg [RI[25-21]] B = Reg [RI[20-16]] ULASaída = PC + (extensão de sinal(RI[15-0]) <<2)						
Execução, cálculo do endereço de acesso à memória, término de uma instrução branch/jump	ULASaída = A op B	ULASaída = A + extensão de sinal (RI[15- 0])		Se (A == B) então PC = ULASaída	PC = PC[31-28] (RI[25-0] <<2)			
Término de uma instrução store word ou de tipo R	Reg [RI[15-11]] = ULASaída	RDM = Mem [ULASaída]	Mem [ULASaída] = B					
Término de uma instrução load word		Reg[RI[20-16]] = RDM						
Número de passos	4	5	4	3	3			

Execução de Instruções Tipo R: escreve em registrador

Passos Necessários para Instruções Iw e sw no MIPS Multiciclo

Nome do passo	Instrução tipo R	Instrução lw	Instrução sw	Instrução beq	Instrução j			
Busca da instrução		RI = Mem[PC] PC = PC + 4						
Decodificação da instrução & leitura dos registradores Rs e Rt & cálculo do endereço de desvio (cond.)		A = Reg [RI[25-21]] B = Reg [RI[20-16]] ULASaída = PC + (extensão de sinal(RI[15-0]) <<2)						
Execução, cálculo do endereço de acesso à memória, término de uma instrução branch/jump	ULASaída = A op B	ULASaída = A + extensão de sinal (RI[15-0])		Se (A == B) então PC = ULASaída	PC = PC[31-28] (RI[25-0] <<2)			
Término de uma instrução store word ou de tipo R	Reg [RI[15-11]] = ULASaída	RDM = Mem [ULASaída]	Mem [ULASaída] = B					
Término de uma instrução load word		Reg[RI[20-16]] = RDM						
Número de passos	4	5	4	3	3			

Execução de Instruções: execução lw/sw (calc. endereço desvio)

Passos Necessários para Instrução sw no MIPS Multiciclo

Nome do passo	Instrução tipo R	Instrução lw	Instrução sw	Instrução beq	Instrução j			
Busca da instrução		RI = Mem[PC] PC = PC + 4						
Decodificação da instrução & leitura dos registradores Rs e Rt & cálculo do endereço de desvio (cond.)		A = Reg [RI[25-21]] B = Reg [RI[20-16]] ULASaída = PC + (extensão de sinal(RI[15-0]) <<2)						
Execução, cálculo do endereço de acesso à memória, término de uma instrução branch/jump	ULASaída = A op B	ULASaída = A + extensão de sinal (RI[15-0])		Se (A == B) então PC = ULASaída	PC = PC[31-28] (RI[25-0] <<2)			
Término de uma instrução store word ou de tipo R	Reg [RI[15-11]] = ULASaída	RDM = Mem [ULASaída]	Mem [ULASaída] = B					
Término de uma instrução load word		Reg[RI[20-16]] = RDM						
Número de passos	4	5	4	3	3			

Término da Instrução sw: escreve na memória

Passos Necessários para Instrução lw no MIPS Multiciclo

Nome do passo	Instrução tipo R	Instrução lw	Instrução sw	Instrução beq	Instrução j			
Busca da instrução		RI = Mem[PC] PC = PC + 4						
Decodificação da instrução & leitura dos registradores Rs e Rt & cálculo do endereço de desvio (cond.)		A = Reg [RI[25-21]] B = Reg [RI[20-16]] ULASaída = PC + (extensão de sinal(RI[15-0]) <<2)						
Execução, cálculo do endereço de acesso à memória, término de uma instrução branch/jump	ULASaída = A op B	ULASaída = A + extensão de sinal (RI[15-0])		Se (A == B) então PC = ULASaída	PC = PC[31-28] (RI[25-0] <<2)			
Término de uma instrução store word ou de tipo R	Reg [RI[15-11]] = ULASaída	RDM = Mem [ULASaída]	Mem [ULASaída] = B					
Término de uma instrução load word		Reg[RI[20-16]] = RDM						
Número de passos	4	5	4	3	3			

Acesso à Memória na Instrução Iw: lê dado da memória

Passos Necessários para Instrução lw no MIPS Multiciclo

Nome do passo	Instrução tipo R	Instrução lw	Instrução sw	Instrução beq	Instrução j			
Busca da instrução		RI = Mem[PC] PC = PC + 4						
Decodificação da instrução & leitura dos registradores Rs e Rt & cálculo do endereço de desvio (cond.)		A = Reg [RI[25-21]] B = Reg [RI[20-16]] ULASaída = PC + (extensão de sinal(RI[15-0]) <<2)						
Execução, cálculo do endereço de acesso à memória, término de uma instrução branch/jump	ULASaída = A op B	ULASaída = A + extensão de sinal (RI[15-0])		Se (A == B) então PC = ULASaída	PC = PC[31-28] (RI[25-0] <<2)			
Término de uma instrução store word ou de tipo R	Reg [RI[15-11]] = ULASaída	RDM = Mem [ULASaída]	Mem [ULASaída] = B					
Término de uma instrução load word		Reg[RI[20-16]] = RDM						
Número de passos	4	5	4	3	3			

Término da Instrução Iw: escreve em registrador

Caminhos Críticos (para Estimar o Relógio)

Caminhos Críticos (para Estimar o Relógio)

Caminhos Críticos (para Estimar o Relógio)

Leitura da Semana

Livro:

PATTERSON, David A.; HENNESSY, John L. "Computer Organization and Design: the hardware/software Interface", 3rd edition, Morgan Kaufmann Publishers, San Francisco, California, USA, 2007.

Se usar a 2ª Edição: Seção 5.4. Se usar a 3ª Edição: Seção 5.5.

