

电力系统继电保护原理

主讲教师: 张沛超

Email: pczhang@sjtu.edu.cn

输电线路的电流保护

- 电流保护:反应故障时电流量的不正常状态(增大)而动作的保护原理
- 针对相间故障
 - 2.1 单侧电源网络相间短路电流保护
 - 2.2 电网相间短路的方向性电流保护
- **针对接地故障**
 - 2.3 中性点直接接地电网接地短路的电流保护
 - 2.4 中性点非直接接地电网单相接地的电流保护

2.2 电网相间短路的方向性电流保护

- 1. 双侧电源网络中电流保护的问题
- 2. 功率方向继电器的工作原理
- 3. 功率方向继电器的900接线方式
- 4. 方向性电流保护的整定及评价

2.2.1 双侧电源网络中电流保护 存在的问题

双侧电源网络

实际超高压电网为多电源、多环路系统

查 在保护研究中,常将电网 简化为双侧电源网络

IEEE 39 bus test case

用于保护分析的简化电网

双侧电源网络

思考: 当研究线路AB上的保护时,下图应视为单侧电源网络还是双侧电源网络?

双侧电源网络对电流保护的影响

- 电网结构从单侧电源变为双侧电源,对保护有何影响?
 - 短路电流方向不再单一 (需要定义参考方向,或正方向)
 - 线路保护系统的配置发生变化 (线路两侧皆要配置)
 - 电流保护可能不正确动作(没有能力区分短路电流方向)

双侧电源网络

● 保护2电流I段的动作范围

双侧电源网络

● 保护2电流I段的动作范围

● 思考:在反方向故障时,电流保护一定会误动吗?

电流速断保护存在的问题

(b)d2点短路时的电流分布

d1点短路时,如果 $I_{d1}^{(I)} > I_{act-1}'$,则保护1的速断保护会误动作

d2点短路时,如果 $I_{d2}^{(I)} > I_{act-6}'$,则保护6的速断保护会误动作

观察:短路电流方向(功率方向)与参考方向相反时可能误动

解决方法:方向性电流保护

- ■方向性电流保护 = 电流保护 + 功率方向继电器
 - > 当保护反方向故障时,由功率方向继电器闭锁电流保护

2.2.2 功率方向继电器的工作原理

正、反方向短路时电压电流相位特征

*i*_m为继电器的测量电流,红色箭头为其正(参考)方向

$$\dot{U}_{m} = \dot{I}_{k1} Z_{k1} = \dot{I}_{m} Z_{k1}$$

$$\dot{I}_{m} = \dot{I}_{k1}$$

$$\varphi_{k1}$$

(a) 正方向(k1)故障时

(b) 反方向(k2)故障时

正方向短路时电压电流相位关系

测量电压:
$$\dot{U}_{
m mA}=\dot{U}_{A}$$

测量电流:
$$I_{\text{mA}} = I_{k1A}$$

测量阻抗角:
$$\varphi_{mA} = \arg \frac{U_{mA}}{\dot{I}_{mA}} = \varphi_{k1}$$

相角判据:
$$0^0 < \varphi_{\text{mA}} < 90^0$$

功率判据:
$$<\dot{U}_{\scriptscriptstyle mA},\dot{I}_{\scriptscriptstyle mA}>=U_{\scriptscriptstyle mA}I_{\scriptscriptstyle mA}\cos\varphi_{\scriptscriptstyle mA}>0$$

反方向短路时电压电流相位关系

$$180^{0} < \varphi_{mA} < 270^{0}$$

$$<\dot{U}_{mA}, \dot{I}_{mA} >= U_{mA} I_{mA} \cos \varphi_{mA} = U_{A} I_{k2A} \cos(180^{0} + \varphi_{k2}) < 0$$

功率方向继电器的工作原理

正方向和反方向故障时的区别:

- ① 母线电压和短路电流之间的相位关系
- ② 短路功率方向(正负)

功率方向继电器:用以判别功率方向或测定电压、 电流间相位角的继电器

动作方程(判据)与动作区域

功率判据

$$U_m I_m \cos \varphi_m > 0$$

相角判据

$$-90^{\circ} < \varphi_m < +90^{\circ}$$

功率方向继电器 动作方程

动作方程(判据)与动作区域

功率判据

$$U_m I_m \cos \varphi_m > 0$$

相角判据

$$-90^{\circ} < \varphi_m < +90^{\circ}$$

功率方向继电器 动作方程

功率方向继电器 动作区域

对功率方向继电器的要求

$$U_m I_m \cos \varphi_m > 0$$

- 对功率方向继电器有如下基本要求:
 - 1. 正方向任何类型的短路故障都能动作,而当反方向故障时则不动作(选择性)。
 - 2. 故障后加入继电器的电流、电压和余弦项应尽可能 地大一些,以消除和减小方向元件的死区(灵敏性)。

那么上述功率方向继电器的基本动作方程是否满足要求呢?

思考

- 分析U1~U4与下列运行方式的对应关系
 - 1. 本线路末端故障?
 - 2. 本线路反向故障?
 - 3. 本线路出口故障?

问题 (1) $\cos \varphi_m$

• $\phi_m \to \pm 90^o$ 时,电压、电流相量接近垂直,其内积接近0。此时,存在拒动或误动风险!

解决方法: 旋转测量电压相量 () 上海 < () 大海 < () 大

- 当测量电压和电流幅值不变时,方向继电器输出随两者间相位角而变化。
- 如将 U_m 旋转 $-\varphi_{k1}$,再与 I_m 比相,则功率方向继电器将最为灵敏(选择性也更好)

正向故障

解决方法:旋转测量电压相量 () 上海汽鱼大学 SHANGHAI JIAO TONG UNIVERSITY

- 当测量电压和电流幅值不变时,方向继电器输出随两者间相位角而变化。
- 如将 U_m 旋转 $-\varphi_{k1}$,再与 I_m 比相,则功率方向继电器将最为灵敏(选择性也更好)

正向故障

解决方法: 旋转测量电压相量 (シ) と 海 え 道 大 彦 SHANGHAI JIAO TONG UNIVERSITY

- 如将 U_m 旋转 $-\varphi_{k1}$,再与 I_m 比相,则功率方向继电器将最为灵敏
- 动作判据发生如下变化

解决方法: 旋转测量电压相量 (*) と海える大学 Shanghai Jiao Tong University

- ullet 如将 U_m 旋转 $-arphi_{k1}$,再与 I_m 比相,则功率方向继电器 将最为灵敏
- 动作判据发生如下变化

$$-90^{0} < \arg \frac{\dot{U}_{m} e^{-i\varphi_{k1}}}{\dot{I}_{m}} < +90^{0}$$

$$\Leftrightarrow \varphi_{k1} - 90^0 < \arg \frac{\dot{U}_m}{\dot{I}_m} < \varphi_{k1} + 90^0$$

$$\Leftrightarrow U_m I_m \cos(\varphi_m - \varphi_{k1}) > 0$$

最大灵敏角

- $^{\odot}$ 定义: 当测量电压和电流幅值不变时,方向继电器输出为最大时的相位角称为最大灵敏角 φ_{sen}
- ® φ_{sen}是功率方向继电器最重要的定值。

$$U_m I_m \cos(\varphi_m - \varphi_{k1}) > 0$$

最大灵敏角

- $^{\odot}$ 定义: 当测量电压和电流幅值不变时,方向继电器输出为最大时的相位角称为最大灵敏角 φ_{sen}
- φ_{sen}是功率方向继电器最重要的定值。

$$U_{m}I_{m}\cos(\varphi_{m}-\varphi_{k1})>0$$

$$U_{m}I_{m}\cos(\varphi_{m}-\varphi_{sen})>0$$

$$\dot{U}_{m}I_{m}\cos(\varphi_{m}-\varphi_{sen})>0$$

$$\Leftrightarrow \varphi_{sen} + 90^{\circ} > \arg \frac{\dot{U}_m}{\dot{I}_m} > \varphi_{sen} - 90^{\circ}$$

继电器的动作区域

功率判据

$$U_m I_m \cos(\varphi_m - \varphi_{sen}) > 0$$

相角判据

$$\varphi_{sen} + 90^{\circ} > \arg \frac{\dot{U}_m}{\dot{I}_m} > \varphi_{sen} - 90^{\circ}$$

功率方向继电器 动作方程

继电器的动作区域

功率判据

$$U_m I_m \cos(\varphi_m - \varphi_{sen}) > 0$$

相角判据

$$\varphi_{sen} + 90^{\circ} > \arg \frac{\dot{U}_m}{\dot{I}_m} > \varphi_{sen} - 90^{\circ}$$

功率方向继电器 动作方程 功率方向继电器 (电压) 动作区域

思考 😯

- 1. 设最大灵敏角 $\phi_{sen} = 60^{\circ}$,线路阻抗角为80°,则在正向(反向)发生发生三相短路时,
 - 请给出B相继电器的功率判据表达式
 - 在动作区域平面上绘制测量电压位置
- 2. 当系统正常运行时,方向继电器的触点是否闭合?