Graphentheoretische Konzepte und Algorithmen Petrinetze

Julia Padberg

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences **THM 08**

Informelle Einführung PN

S/T-Netze

... mit Kapazitäten

Netzeigenschaften

Schluss

Informelle Einführung von Stellen/Transitions-Netzen

- Was sind Petrinetze?
- Beispiel Verkehrsampel
- Grundbegriffe anhand eines Beispiels

Was sind Petrinetze?

- Formalismus zur Modellierung von
 - Nebenläufigen Prozessen
 - Verteilten Systemen
- Graphische Beschreibungsmittel
 - Stellen
 - Transitionen
 - ► Kanten
 - Token
- Low- und High-Level Petrinetz-Formalismen
- Modellierung & Simulation
- Analyse & Verifikation

Wieso PetriNetze ???

Carl Adam Petri

(* 12. Juli 1926;†2. Juli 2010)

hat sie erfunden!!

1962 in seiner Dissertation

Kommunikation mit

Von der Fakultät für Mathematik und Physik der Technischen Hochschule Darmstadt

zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer.nat.)

> genehmigte Dissertation

vorgelegt von Carl Adam Petri aus Leipzig

Referent: Prof.Dr.rer.techn.A.Walther Korreferent: Prof.Dr.Ing.H.Unger

Tag der Einreichung: 27.7.1961
Tag der mündlichen Prüfung: 20.6.1962

D 17

Bonn 1962

Übersicht über Netz-Formalismen

- (Low-Level) Petri-Netze
 - Token sind ununterscheidbar
 - z.B. elementare Netze, S/T-Netze
- High-Level Netze
 - Token sind Daten & verschiedene Schaltmodi
 - Coloured Netze, Algebraische High-Level Netze
- Netze mit Zeitmodellierung
 - Erweiterung um explizite / stochastische Zeit
 - Timed Netze, Stochastische Netze
- URL: http://www.informatik.uni-hamburg.de/TGI/PetriNets/

Begriffe am Beispiel

Stellen Kanten t2t3

Transitionen

Token/Marken

Begriffe am Beispiel

Leser-Schreiber-System

Aufgabe 1:

Gegeben dieses Netz:

Welche Folgemarkierung ist richtig?

c)

Lösung von Aufgabe 1

Gegeben dieses Netz:

Welche Folgemarkierung ist richtig?

Aufgabe 2: Modellierung einer Ampel

Modellieren Sie jetzt bitte eine zweiseitige Baustellenampel, so dass es für die Lampen (rot – gelb – grün) der jeweiligen Ampel jeweils explizite Stellen gibt.

Grundlagen von Stellen/Transitions-Netzen

- Definition ohne und mit Kapazitäten
- Schaltverhalten

Klassische Definition

Definition (Markiertes S/T-Netz)

Ein (markiertes) S/T-Netz ist ein 4-Tupel $N = (P, T, W, M_0)$, für das gilt:

- 1. P und T sind Mengen, deren Elemente Stellen (places) bzw. Transitionen genannt werden mit $P \cap T = \emptyset$.
- 2. $W: (P \times T) \cup (T \times P) \rightarrow \mathbb{N}_0$ ordnet jeder Kante ihr Kantengewicht zu.
- 3. Und die Anfangsmarkierung $M_0: P \to \mathbb{N}_0$ beschreibt die Verteilung der Token.

Aufgabe 3:

Beschreiben Sie das folgende S/T-Netz formal:

$$N = (P, T, W, M_0) \text{ mit:}$$

$$P = \{p1, p2, p3\}$$

$$T = \{t1, t2, t3\}$$

$$W(x, y) = \begin{cases} 2 & \text{; falls } (x, y) = (p1, t1) \\ 1 & \text{; falls } (x, y) \in \{(p2, t2), (p3, t3), (t1, p2), (t1, p3), (t2, p1), (t3, p1)\} \\ 0 & \text{; sonst} \end{cases}$$

$$M(x) = \begin{cases} 3 & \text{; falls } x = p1 \end{cases}$$

$$M_0(x) = \begin{cases} 3 & \text{; falls } x = p1 \\ 0 & \text{; sonst} \end{cases}$$

Verhalten von S/T-Netzen

Aktivierung & Schalten

Aktivierung

Eine Transition t ist unter einer Markierung M aktiviert M[t), wenn jede Stelle im Vorbereich der Transition mindestens soviele Token enthält, wie das Gewicht der entsprechenden eingehenden Kante vorschreibt.

Schalten

Eine Transition t schaltet M[t)M', wenn Token aus dem Vorbereich entfernt werden und Token im Nachbereich hinzugefügt werden. Die Anzahl der entfernten bzw. hinzugefügten Token wird NUR von den entsprechenden Kantengewichten bestimmt. M' ist die Folgemarkierung.

Aufgabe 4:

Welche Transitionen sind aktiviert und wie ist die jeweilige Folgemarkierung von m aus?

Lösung

- t₁ ist *m*-aktiviert und die Folgemarkierung sieht man nicht
- t₂ ist *m*-aktiviert und die Folgemarkierung sieht man nicht
- t₃ ist *m*-aktiviert und die Folgemarkierung sieht man nicht

Schalten

Definition (Vorbereich, Nachbereich)

Für einen Knoten $x \in P \cup T$ eines S/T-Netzes N = (P, T, W)

bezeichnet $\bullet x = \{y \mid W(y, x) > 0\}$ den Vorbereich und

 $x \bullet = \{y \mid W(x, y) > 0\} \text{ den Nachbereich von } x.$

Definition (Schaltverhalten)

Sei N = (P, T, W) ein S/T-Netz.

- 1. Eine Transition $t \in T$ heißt *M-aktiviert*, falls für alle $p \in \bullet t : M(p) \ge W(p, t) \dots$ wird durch M[t) notiert.
- 2. Eine *M*-aktivierte Transition $t \in T$ bestimmt eine *Folgemarkierung M'* von *M* durch M'(p) = M(p) W(p,t) + W(t,p) für alle $p \in P$. t schaltet von *M* nach M'

..... wird durch M[t)M' oder $M \xrightarrow{t} M'$ notiert.

Aufgabe 5:

Weisen Sie nach, dass die Transitionen t_1 , t_2 und t_3 *M*-aktiviert sind und berechnen Sie bitte jeweilige Folgemarkierung von **M**?

Lösung von Aufgabe 5

$$p1 \mapsto M(p_1) - W(p_1, t_1) + W(t_1, p_1) = 2 - 2 + 0 = 0$$

$$M': p2 \mapsto M(p_2) - W(p_2, t_1) + W(t_1, p_2) = 1 - 1 + 1 = 1$$

$$p3 \mapsto M(p_3) - W(p_3, t_1) + W(t_1, p_3) = 2 - 0 + 1 = 3$$

►
$$M[t_2\rangle$$
, denn • $t_2 = \{p_3\}$
 $M(p_3) = 2 \ge 2 = W(p_3, t_2)$
und $M[t_2\rangle M''$ mit
 $p_1 \mapsto M(p_1) - W(p_1, t_2) + W(t_2, p_1) = 2 - 0 + 3 = 5$

$$M'': p2 \mapsto M(p_2) - W(p_2, t_2) + W(t_2, p_2) = 1 - 0 + 2 = 3$$

$$p3 \mapsto M(p_3) - W(p_3, t_2) + W(t_2, p_3) = 2 - 2 + 0 = 0$$

Lösung von Aufgabe 5


```
► M[t_3), denn •t_3 = \{p_3\}

M(p_3) = 2 \ge 1 = W(p_3, t_3)

und M[t_3)M''' mit

p_1 \mapsto M(p_1) - W(p_1, t_3) + W(t_3, p_1) = 2 - 0 + 1 = 3

M''' : p_2 \mapsto M(p_2) - W(p_2, t_3) + W(t_3, p_2) = 1 - 0 + 0 = 1

p_3 \mapsto M(p_3) - W(p_3, t_3) + W(t_3, p_3) = 2 - 1 + 0 = 1
```

Markierungsgraph

- Markierungen bilden die Zustände eines Netzes
- Markierungsgraphen repräsentiert alle erlaubten Zustände
- zusammen mit den zwischen ihnen möglichen Schaltschritten

Definition (Markierungsgraph)

Der Markierungsgraph MG = (MV, ME) eines S/T-Netzes N = (P, T, W) ist gegeben durch

- die Knoten (engl. vertices) $MV = \{M \mid M : P \to \mathbb{N}_0 \text{ ist Markierung für } N\}$ und
- die Kanten (eng. edges) $ME = \{M \xrightarrow{t} M' \mid t \in T \land M[t)M'\}$, wobei die Kanten als 3-stellige Relation $ME \subseteq MV \times T \times MV$ aufgefasst werden.

Erreichbarkeitsgraph

Erreichbarkeitsmenge ist die Menge aller von M aus erreichbaren Markierungen gegeben durch:

$$[M\rangle := \{M' \mid M \stackrel{*}{\longrightarrow} M' \in MG\}$$

Definition (Erreichbarkeitsgraph)

Der Erreichbarkeitsgraph $EG = (EG_V, EG_E)$ eines markierten Netzes N mit M_0 ist der kleinste Teilgraph des Markierungsgraphen $MG = (MG_V, MG_E)$ für das unmarkierte Netz N, so dass gilt:

- Die Knoten $EG_V = [M_0]$ sind alle von der Anfangsmarkierung aus zu erreichenden Markierungen.
- Für alle $M \in EG_V$ und $M \xrightarrow{t} M' \in MG_E$ ist auch $M \xrightarrow{t} M' \in EG_E$.

Aufgabe 6:

Geben Sie bitte den Erreichbarkeitsgraphen von diesem Netz an.

Lösung von Aufgabe 6

S/T-Netze

Aufgabe 7:

Welche Unterschiede gibt es zwischen Markierungs-

und Erreichbarkeitsgraph?

Aufgabe 8:

S/T-Netze

Ein Werkstück W muss gleichzeitig von Maschine A und von Maschine B bearbeitet werden.
Entwickeln Sie ein geeignetes Petrinetz für diesen Bearbeitungsprozess!
Welche Anfangsmarkierung gibt es in Ihrem Modell?

Lösung von Aufgabe 8

S/T-Netz mit Kapazitäten

Für die Modellierung ist es wesentlich komfortabler, lassen sich obere Grenzen für die Anzahl der Token auf einer Stelle angeben. Diese obere Grenze nennt man Kapazitäten.

Definition

Ein S/T-Netz mit Kapazitäten ist ein 4-Tupel N = (P, T, W, K) für das gilt:

- 1. (P, T, W) ist S/T-Netz.
- 2. $K: P \to \mathbb{N}^{\omega}$ erklärt eine (möglicherweise unbeschränkte) *Kapazität* für jede Stelle.

 \mathbb{N}^{ω} bezeichnet die Menge der natürlichen Zahlen inklusive ω , das für unendlich steht. Dabei gilt für alle $n \in \mathbb{N}$ das folgende:

$$n < \omega$$
 und $\omega = \omega + n = \omega - n = n \cdot \omega$

Markierungen und Schaltverhalten mit Kapazitäten

Definition (Markierungen und Schaltverhalten mit Kapazitäten)

Sei N ein S/T-Netz mit Kapazitäten.

- 1. Für eine Markierung $M: P \to \mathbb{N}$ muss für alle Stellen $p \in P$ gelten: $M(p) \le K(p)$.
- 2. Eine Transition $t \in T$ ist *M-aktiviert*, falls für alle $p \in \bullet t : M(p) \ge W(p, t)$ und **zusätzlich** für alle $p \in t \bullet : M(p) + W(t, p) \le K(p)$ gilt.

Netzkomplement, um

Kapazitäten in der Modellierung zu nutzen ohne sie in der Theorie zu behandeln

Definition (Netzkomplementierung)

Sei N = (P, T, W, K) ein S/T-Netz. Dann ist das Netzkomplement (mit unbeschränkten Kapazitäten) N' = (P', T, W') von N gegeben durch:

$$P' = P \uplus \overline{P} \text{ wobei } \overline{P} = \{ \overline{p} \mid p \in P \text{ mit } K(p) \neq \omega \}$$

$$W'(x,y) = \begin{cases} W(x,y) & \text{; falls } x \in P \text{ oder } y \in P \\ W(p,t) & \text{; falls } (x,y) = (t,\overline{p}) \text{ und } \overline{p} \in \overline{P}. \end{cases}$$

$$W(t,p) & \text{; falls } (x,y) = (\overline{p},t) \text{ und } \overline{p} \in \overline{P}.$$

Für eine Markierung M von N gibt es eine komplementierte Markierung M von N, die

berechnet wird durch
$$M' := M'(x) = \begin{cases} K(p) - M(p) & \text{; falls } x = \overline{p} \in \overline{P} \\ M(x) & \text{; sonst} \end{cases}$$
.

BSP

$$M_0 = 2p_1$$

Erreichbarkeitsgraph ${\cal E}{\cal G}$

$$(2,0) \xrightarrow{t_1} (1,2)$$

$$M_0' = 2p_1 + \overline{p_1} + 2\overline{p_2}$$

Erreichbarkeitsgraph EG'

$$(2,0,1,2) \xrightarrow{t_1} (1,2,2,0)$$

Aufgabe 9:

Geben Sie bitte zu diesem Netz N sein Komplement an.

Was heißt äquivalent??

Eigenschaften von S/T-Netzen

- Beschränktheit
- Erreichbarkeit
- Lebendigkeit
- Verklemmung
- Verklemmungsfreiheit
- Reversibilität

Beschränktheit

Definition (Beschränktheit)

Sei N_{M_0} ein markiertes Netz und EG sein Erreichbarkeitsgraph. Eine Stelle $p \in P$ heißt beschränkt, falls es eine Zahl $n \in \mathbb{N}_0$ gibt, so dass für alle Markierungen $M \in EG$ gilt: $M(p) \le n$. Das Netz N_{M_0} heißt beschränkt, falls alle Stellen $p \in P$ beschränkt sind.

Beschränktheit von Stellen und markierten Netzen ist entscheidbar.

Satz (Beschränktheit)

Für endliche markierte Netze N_{M_0} gilt: N_{M_0} ist beschränkt gdw. der Erreichbarkeitsgraph EG von N_{M_0} endlich ist.

Aufgabe 10:

Ist das Netz beschränkt für

- $M_0 = (1,0,0,0,0)$? JA
- $M_0 = (1,0,1,0,0)$? NEIN

Erreichbarkeit

Erreichbarkeit

Sei N ein S/T-Netz und MG sein Markierungsgraph. Eine Transition $t \in T$ heißt von $M \in MG$ aus erreichbar, kurz M-erreichbar, falls in MG ein Pfad $M \stackrel{*}{\longrightarrow} M' \stackrel{t}{\longrightarrow} M''$ existiert.

Eine Markierung M eines markierten Netzes N_{M_0} heißt **erreichbar**, falls $M \in EG$, oder anders ausgedrückt, falls $M \in [M_0)$, d. h. es gibt einen Pfad $M_0 \stackrel{*}{\longrightarrow} M \in MG$.

Lebendigkeit

Lebendigkeit

Sei N ein S/T-Netz und MG sein Markierungsgraph, M_0 eine Anfangsmarkierung für N und EG der entsprechende Erreichbarkeitsgraph für N_{Mn} . Dann heißt

- eine Markierung $M \in MG$ lebendig in N bzw. N_{M_0} , falls jede Transition $t \in T$ M-erreichbar ist.
- eine Transition t ∈ T lebendig in N_{M₀}, wenn sie für alle Markierungen M ∈ EG M-erreichbar ist.
- ▶ das markierte Netz N_{M_0} lebendig, wenn alle Transitionen $t \in T$ lebendig sind.

Eine Transition $t \in T$ heißt **tot** in einer Markierung M, wenn es kein $M' \in [M]$ gibt, so dass t in Markierung M' aktiviert ist.

Aufgabe 11:

Geben Sie bitte ein Netz an, so dass wenigstens eine Transition weder lebendig noch tot ist.

Lösung

Merke

t tot $\Longrightarrow t$ nicht lebendig, aber nicht umgekehrt.

Verklemmung

oder auch Deadlock

Verklemmung/Verklemmungfreiheit

Sei N ein markiertes S/T-Netz. dann heißt eine Markierung $M \in MG$ Verklemmung,

wenn kein $t \in T$ M-aktiviert ist.

N heißt verklemmungsfrei (auch: schwach lebendig), falls N keine Verklemmung $M \in EG$ besitzt.

Beispiel

Zusammenhang Lebendigkeit & Verklemmungsfreiheit

Sei (N, M_0) markiertes S/T-Netz mit $T \neq \emptyset$, dann gilt

Wenn (N, M_0) lebendig ist, dann ist (N, M_0) auch verklemmungsfrei.

Bemerkung

Die Umkehrung gilt nicht.

Aufgabe 12:

Geben Sie bitte ein S/T-Netz an, dass verklemmungsfrei ist, aber nicht lebendig. Versuchen Sie bitte es nachzuweisen.

N verklemmungsfrei, wenn kein $M \in EG$, so dass kein $t \in T$ M-aktiviert ist. N lebendig, wenn alle Transitionen M-erreichbar ist.

Für M_1 mit $M_0[t_1 > M_1 = (0, 1, 0)$ ist t_1 nicht mehr erreichbar, also (N, M_0) nicht lebendig. (N, M_0) verklemmungsfrei, denn: $(100)[t_1 > (010)[t_3 > (001)[t_2 > (010)]$ und mehr Markierungen gibt es nicht

EG & Lebendigkeit

Ist der EG eines Netzes N stark zusammenhängend und es gibt eine M_0 -erreichbare Transition $t \in T$, dann ist N verklemmungsfrei.

Ist der EG eines Netzes N stark zusammenhängend und gibt es für jede Transition $t \in T$ eine mit t beschriftete Kante im EG, dann ist N lebendig.

Hat der EG eines Netzes N eine Senke, dann ist N nicht verklemmungsfrei.

THM 08 Schluss

und weiteres ...

... für einige weitere Semester

- andere Netztypen
- weitere Eigenschaften InvariantenFallen, Siphons
- Anwendungen
- Hierarchiekonzepte
- Transformation von Netzen

Schluss

Zusammenfassung Petrinetze

- Defintion, Schaltverhalten
- Schaltsemantik
- Kapazitäten
- Eigenschaften