F	茅	号

苏州大学 物理化学 (一) 上 课程期中试卷

得分

一、选择题 (共15 题 30 分)

- 1. 对于不做非体积功的封闭体系,下面关系式中不正确的是: ()
 - (A) $(\partial H/\partial S)_p = T$
 - (B) $(\partial A/\partial T)_V = -S$
 - (C) $(\partial H/\partial p)_S = V$
 - (D) $(\partial U/\partial V)_S = p$
- 2. 标准离子生成焓取 H^+ 的摩尔生成焓为零,即 $\Delta_f H_m(H^+,\infty,aq)=0$ 。在此规定下, H_2 的摩尔生成焓 $\Delta_f H_m(H_2,g)$ 为何值? ()
 - (A) 为零
- (B) 大于零
- (C) 小于零
- (D) 不定
- 3. 在未达平衡的多相体系中,组成 B 若在各相中的物质的量分数都相等,则 ()
 - (A) B 组分在各相中的化学势相等
 - (B) B组分在各相中的活度相等
 - (C) B 组分在气相中的分压相等
 - (D) 上述三种情况均不可确定。
- 4. 一体系经过 A,B,C 三条不同的途径由同一始态出发至同一终态。其中 A,B 为可逆途径, C 为不可逆途径,则下列有关体系的熵变 ΔS 的七个等式为: (Q_A , Q_B , Q_C 分别为三过程中体系吸的热)

$$\begin{array}{c|c} \Delta S_{A} & \underline{\stackrel{(1)}{=}} & \Delta S_{B} & \underline{\stackrel{(2)}{=}} & \Delta S_{C} \\ & \| (3) & \| (4) & \| (5) \\ & \int \delta Q_{A} / T & \underline{\stackrel{(6)}{=}} \int \delta Q_{B} / T & \underline{\stackrel{(7)}{=}} \int \delta Q_{C} / T \end{array}$$

其中错误的是: ()

- (A) (5), (6)
- (B) (1), (4)
- (C) (2), (3)
- (D) (5), (7)
- 5. Cl₂(g)的燃烧热为何值? ()
 - (A) HCl(g)的生成热
- (B) HClO₃的生成热
- (C) HClO₄的生成热
- (D) Cl₂(g)生成盐酸水溶液的热效应

- 6. 关于偏摩尔量,下面的叙述中不正确的是: () (A) 偏摩尔量的数值可以是正数、负数和零 (B) 溶液中每一种广度性质都有偏摩尔量,而且都不等于其摩尔量 (C) 除偏摩尔吉布斯自由能外,其他偏摩尔量都不等于化学势 (D) 溶液中各组分的偏摩尔量之间符合吉布斯-杜亥姆关系式 7. 有三个大热源,其温度 $T_3 > T_2 > T_1$, 现有一热机在下面两种不同情况下工作: (1) 从 T_3 热源吸取 Q 热量循环一周对外作功 W_1 ,放给 T_1 热源热量为(Q- W_1) (2) T_3 热源先将 O 热量传给 T_2 热源, 热机从 T_2 热源吸取 O 热量循环一周, 对外作功 W_2 , 放给 T_1 热源 (Q- W_2) 的热量 则上述两过程中功的大小为: () (A) $|W_1| > |W_2|$ (B) $|W_1| = |W_2|$ (C) $|W_1| < |W_2|$ (D) $|W_1| \ge |W_2|$ 8. 在物质的量恒定的 S-T 图中,通过某点可以分别作出等容线和等压线,其斜率分别为 $(\partial S/\partial T)_V = X$ 和 $(\partial S/\partial T)_P = Y$,则在该点两曲线的斜率关系是 () (A) X < Y(B) X = Y(C) X > Y(D) 无定值 9. 公式 dG = -SdT + Vdp 可适用下述哪一过程:) (A) 298K、101325Pa 下的水蒸发过程 (B) 理想气体真空膨胀 (C) 电解水制取氢 (D) $N_2(g) + 3H_2(g) = 2NH_3(g)$ 未达平衡 10. 2 mol 液态苯在其正常沸点(353.2 K)和 101.325 kPa 下蒸发为苯蒸气,该过程的 △ vapA 等于 ()
- (C) -2.94 kJ11. 可以用 U - S 坐标对气体循环过程作出图解,指出下面哪一个图代表理想气体经历卡诺 循环的 *U-S* 图。 (

(B) -5.87 kJ

(D) -1.47 kJ

(1) 等温膨胀 (2) 绝热膨胀 (3) 等温压缩 (4) 绝热压缩

(A) -23.48 kJ

	(A)	高	(B)	低		(C)	相等	(D)	不可比较	Ę		
13. Ē	三知:	某气相反应在	$T_1=4$	00 K, _I	p=10p	,⊖ 时	的热效应	与 T ₂ = 800	0 K, p = 10	p [⊖] 时!	的热	效应
((C)	则两种条件 $\Delta_r S_m(T_1) > \Delta_r S_m(T_1) = \Delta_r S_m(T_1) < $ 不能确定其	$\Delta _{\rm r}S_{\rm m}(Z)$ $\Delta _{\rm r}S_{\rm m}(Z)$ $\Delta _{\rm r}S_{\rm m}(Z)$	T_2) T_2)	:					()	
		气体在等温条 应为 :	件下,	经恒外	压压缩	至稳	定, 此变	化中的体系	系熵变ΔS _体	及环境	境熵 ² (变)
		ΔS $_{\! ilde{k}}\!\!>0$, ΔS $_{\! ilde{k}}\!\!>0$, ΔS $_{\! ilde{k}}\!\!>0$, ΔS $_{\! ilde{k}}\!\!>0$			` '		$0, \Delta S = 0$ $0, \Delta S = 0$					
(1	A)	理想气体经历 C _V (T ₂ -T ₁) (p ₂ V ₂ - p ₁ V ₁)/()			(B)	$C_p(T_2)$			3一个是错	误的?	()
<u>=</u> ,	计算	题 (每题 10	分,封	共50分)							
		理想气体在 O , W 以及 c						<i>p</i> [⊕] ,如果原	膨胀是可逆	<u>5</u> 的,	试计算	算此

)

12. 273 K, 2×101.3 kPa 时, 水的化学势比冰的化学势:

得分

2. 已知乙酸乙酯的燃烧热为 -2246 kJ·mol¹, 298K 时下列各物质的 $\Delta_f H_{\,\mathrm{m}}^{\,\ominus}$ 分别为:

物质	CH ₃ CO ₂ H(1)	C ₂ H ₅ OH(1)	CO ₂ (g)	H ₂ O(g)
$\Delta_{\mathbf{f}}H_{\mathbf{m}}/k\mathbf{J}\cdot\mathbf{mol}^{-1}$	-488.3	277.4	-393	-241.8

298 K 时 H₂O(l)的摩尔气化热等于 43.93 kJ·mol¹, 求下列反应在 298 K 时的 $\Delta_r H_m^{\ominus}$, $\Delta_r U_m^{\ominus}$ 。

$$CH_3COOH(l) + C_2H_5OH(l) = CH_3COOC_2H_5(l) + H_2O(g) \\$$

3. 绝热等压条件下,将一小块冰投入 263 K, 100 g 过冷水中,最终形成 273 K 的冰水体系,以 100 g 水为体系,求在此过程中的 Q, ΔH , ΔS ,上述过程是否为可逆过程?通过计算说明。已知 273 K 时: $\Delta_{\rm fus}H_{\rm m}({\rm H_2O})=6.0~{\rm kJ\cdot mol^{-1}}$,

$$C_{p, m}(H_2O, l) = 75.3 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$

$$C_{p, m}(H_2O, s) = 37.2 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$

- 4. 某水溶液含有非挥发性物质,水在 271.7 K 时凝固, 求:
 - (1) 该溶液的正常沸点;
 - (2) 在 298.15 K 时该溶液的蒸气压;
 - (3) 298.15 K 时此溶液的渗透压。

已知水的凝固点降低常数 $K_f = 1.86 \text{ K·kg·mol}^{-1}$,水的沸点升高常数 $K_b = 0.52 \text{ K·kg·mol}^{-1}$, 298.15 K 时纯水的蒸气压为 3167 Pa。

- 5. 两液体 A, B 形成理想液态混合物。在 320 K, 溶液 I 含 3 mol A 和 1 mol B, 总蒸气压为: $5.33 \times 10^4 \, \text{Pa}$ 。再加入 2 mol B 形成理想液态混合物 II, 总蒸气压为 $6.13 \times 10^4 \, \text{Pa}$ 。
 - (1) 计算纯液体的蒸气压 p_A^* , p_B^* ;
 - (2) 理想液态混合物 I 的平衡气相组成 yB;
 - (3) 理想液态混合物 I 的混合过程自由能变化 $\Delta_{mix}G_{m}$;
 - (4) 若在理想液态混合物 II 中加入 3 mol B 形成理想液态混合物III, 总蒸气压为多少?

得分

三、问答题 (每题 10 分, 20 分)

- 1. 判断以下各过程中 $Q,W,\Delta U,\Delta H$ 是否为零?若不为零,能否判断是大于零还是小于零?
 - (1) 理想气体恒温可逆膨胀
 - (2) 理想气体节流膨胀
 - (3) 理想气体绝热、反抗恒外压膨胀
 - (4) 1mol 实际气体恒容升温
 - (5) 在绝热恒容容器中, H₂(g) 与 Cl₂(g) 生成 HCl(g) (理想气体反应)
- 2. 某物质的量为 n 的气体遵循下列物态方程:

pV = nRT(1 + bp) , b 为常数

证明: 该气体的焦耳-汤姆逊系数 $\mu_{\text{J-T}} = (\partial T/\partial p)_H = 0$ 。