Compiler Design Unit I – Part 1

- 1. Finite automation deterministic
- 2. Finite automation non deterministic
- 3. Conversion of NFA to DFA
- 4. Minimization of DFA

Reference Book:

- Compilers: Principles, Techniques, and Tools, 2/E.
 - Alfred V. Aho, Columbia University
 - Ravi Sethi, Avaya Labs
 - Jeffrey D. Ullman, Stanford University

Dragon Book

2nd Edition with Monica S. Lam, Stanford University

Finite Automata

- Finite automata are used to recognize patterns.
- It takes the string of symbol as input and changes its state accordingly. When the desired symbol is found, then the transition occurs.
- At the time of transition, the automata can either move to the next state or stay in the same state.
- Finite automata have two states, **Accept state** or **Reject state**. When the input string is processed successfully, and the automata reached its final state, then it will accept.

A finite automaton is a collection of 5-tuple (Q, Σ , δ , q0, F), where:

• Q: finite set of states

• ∑: finite set of the input symbol

• q0: initial state

• F: final state

• δ : Transition function

Finite Automata Model:

- Finite automata can be represented by input tape and finite control.
- Input tape: It is a linear tape having some number of cells. Each input symbol is placed in each cell.
- Finite control: The finite control decides the next state on receiving particular input from input tape. The tape reader reads the cells one by one from left to right, and at a time only one input symbol is read.

Fig :- Finite automata model

There are two types of finite automata:

- DFA(deterministic finite automata)
- NFA(non-deterministic finite automata)

1. DFA

• DFA refers to deterministic finite automata. Deterministic refers to the uniqueness of the computation. In the DFA, the machine goes to one state only for a particular input character. DFA does not accept the null move.

2. NFA

 NFA stands for non-deterministic finite automata. It is used to transmit any number of states for a particular input. It can accept the null move.

- Every DFA is NFA, but NFA is not DFA.
- There can be multiple final states in both NFA and DFA.
- DFA is used in Lexical Analysis in Compiler.
- NFA is more of a theoretical concept.

Deterministic Finite Automata (DFA)

- The finite automata are called deterministic finite automata if the machine is read an input string one symbol at a time.
- In DFA, there is only one path for specific input from the current state to the next state.
- DFA does not accept the null move, i.e., the DFA cannot change state without any input character.
- DFA can contain multiple final states. It is used in Lexical Analysis in Compiler.

A DFA is a collection of 5-tuples same as we described in the definition of FA.

- Q: finite set of states
- ∑: finite set of the input symbol
- q0: initial state
- F: final state
- δ: Transition function

Transition function can be defined as:

• $\delta: Q \times \Sigma \rightarrow Q$

Example 1:

• $Q = \{q0, q1, q2\}$

•
$$\Sigma = \{0, 1\}$$

- $q0 = \{q0\}$
- $F = \{q2\}$

Transition Table:

Present State	Next state for Input 0	Next State of Input 1
→q0	q0	q1
q1	q2	q1
*q2	q2	q2

Example 2:

• DFA with $\Sigma = \{0, 1\}$ accepts all starting with 0.

Example 3:

• DFA with $\Sigma = \{0, 1\}$ accepts all ending with 0.

• Example 4:

• Design a DFA that accepts at most 3 a"s

Non-Deterministic finite automata(NFA)

- The finite automata are called NFA when there exist many paths for specific input from the current state to the next state.
- Every NFA is not DFA, but each NFA can be translated into DFA.
- NFA is defined in the same way as DFA but with the following two exceptions, it contains multiple next states, and it contains ε transition.
- NFA also has five states same as DFA, but with different transition function, as shown follows:

 $\delta: Q \times \Sigma \rightarrow 2^{Q}$

Present State	Next state for Input 0	Next State of Input 1
→q0	q0, q1	q1
q1	q2	q0
*q2	q2	q1, q2

Example:

• NFA with $\Sigma = \{0, 1\}$ accepts all strings with 01.

Present State	Next state for Input 0	Next State of Input 1
→q0	q1	ε
q1	ε	q2
*q2	q2	q2

Example:

• NFA with $\Sigma = \{0, 1\}$ and accept all string of length atleast 2.

Present State	Next state for Input 0	Next State of Input 1
→q0	q1	q1
q1	q2	q2
*q2	ε	ε

Design a NFA for the transition table as given below

•	

Present State	0	1
$\rightarrow q0$	q0, q1	q0, q2
q1	q3	3
q2	q2, q3	q3
\rightarrow q3	q3	q3

Example:

• Design an NFA with $\Sigma = \{0, 1\}$ accepts all string ending with 01.

• Design an NFA with $\Sigma = \{0, 1\}$ in which double '1' is followed by double '0'.

Conversion of NFA to DFA:

- **Step 1** Create state table from the given NDFA.
- **Step 2** Create a blank state table under possible input alphabets for the equivalent DFA.
- **Step 3** Mark the start state of the DFA by q0 (Same as the NDFA).
- **Step 4** Find out the combination of States $\{Q_0, Q_1, ..., Q_n\}$ for each possible input alphabet.
- **Step 5** Each time we generate a new DFA state under the input alphabet columns, we have to apply step 4 again, otherwise go to step 6.
- **Step 6** The states which contain any of the final states of the NDFA are the final states of the equivalent DFA.

Example:

State	0	1
→q0	q0	q1
q1	{q1, q2}	q1
*q2	q2	{q1, q2}

State	0	1
→[q0]	[q0]	[q1]
[q1]	[q1, q2]	[q1]
*[q1, q2]	[q1, q2]	[q1, q2]

Example:

State	0	1
→q0	{q0, q1}	{q1}
*q1	φ	{q0, q1}

State	0	1
→[q0]	[q0, q1]	[q1]
*[q1]	φ	[q0, q1]
*[q0, q1]	[q0, q1]	[q0, q1]

Minimization of DFA

Step 1: Remove all the states that are unreachable from the initial state via any set of the transition of DFA.

Step 2: Draw the transition table for all pair of states.

Step-03: Now, start applying equivalence theorem.

- Take a counter variable k and initialize it with value 0.
- Divide Q (set of states) into two sets such that one set contains all the non-final states and other set contains all the final states.
- This partition is called P0.

Step-04: Increment k by 1.

- Find Pk by partitioning the different sets of Pk-1.
- In each set of Pk-1, consider all the possible pair of states within each set and if the two states are distinguishable, partition the set into different sets in Pk.

Step-05: Repeat step-04 until no change in partition occurs. In other words, when you find Pk = Pk-1, stop.

Step-06: All those states which belong to the same set are equivalent. The equivalent states are merged to form a single state in the minimal DFA.

Example 1:

Step-01:

- •State q₃ is inaccessible from the initial state.
- •So, we eliminate it and its associated edges from the DFA.

Step-02:

Draw a state transition table-

	a	b
→q0	*q1	q0
*q1	*q2	*q1
*q2	*q1	*q2

Step 3:
$$P_0 = \{ q_0 \} \{ q_1, q_2 \}$$

Step 4: $P_1 = \{ q_0 \} \{ q_1, q_2 \}$

Since $P_1 = P_0$, so we stop.

From P_1 , we infer that states q_1 and q_2 are equivalent and can be merged together.

Example 2:

Step-01:

The given DFA contains no dead states and inaccessible states.

Step-02:

Draw a state transition table-

	а	b
→ q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	*q4
*q4	q1	q2

Step-03:

Now using Equivalence Theorem, we have-

$$P_{0} = \{ q_{0}, q_{1}, q_{2}, q_{3} \} \{ q_{4} \}$$

$$P_{1} = \{ q_{0}, q_{1}, q_{2} \} \{ q_{3} \} \{ q_{4} \}$$

$$P_{2} = \{ q_{0}, q_{2} \} \{ q_{1} \} \{ q_{3} \} \{ q_{4} \}$$

$$P_{3} = \{ q_{0}, q_{2} \} \{ q_{1} \} \{ q_{3} \} \{ q_{4} \}$$

Since $P_3 = P_2$, so we stop.

From P_3 , we infer that states q_0 and q_2 are equivalent and can be merged together.

