Initiation à la programmation

Examen de Janvier 2005

durée 2h - documents non autorisés

Exercice 1: Avec les cartes (30mn)

On souhaite écrire un programme qui résout le problème du robot manipulateur de cartes suivant :

Situation initiale :

```
Tas1 : 'C[K]P[T]' , Tas2 : '' , Tas3 : '' , Tas4 : ''
```

Situation finale:

```
Tas1 : '[T]' , Tas2 : '[K]C' , Tas3 : 'P' , Tas4 : ''
```

- ${f Q}$ 1 . Parmi les quatre tas suivants, lesquels sont conformes à la description du tas 1 dans la situation initiale? (justifiez votre réponse)
 - 1. 'CP'
 - 2. 'CKKPKT'
 - 3. 'CKKPTT'
 - 4. 'CKP'
- ${f Q}$ 2 . Donnez pour chaque tas valide de la question 1, la situation finale correspondante.
- Q 3 . On commence par mettre les trèfles sur le tas 4. Écrivez dans le langage du robot les instructions effectuant cette transformation.
- **Q 4** . Cette transformation étant effectuée, que fait-on avec les cartes restant sur le tas 1? Écrivez les instructions correspondantes.
- **Q 5** . Que reste-t-il à faire pour atteindre la situation finale souhaitée ? Écrivez les instructions correspondantes.

Exercice 2: Jeu du Loto (1H30)

Règle du jeu du Loto Au jeu du Loto, un joueur choisit une combinaison de six numéros différents compris entre 1 et 49 (bornes incluses). Un tirage aléatoire choisit une combinaison de six numéros différents compris entre 1 et 49 (bornes incluses). Le gain du joueur est fonction du nombre de numéros communs entre le choix du joueur et le tirage aléatoire.

But de l'exercice Réaliser quelques procédures et fonctions d'un programme de simulation du jeu du Loto. Il ne s'agit pas de réaliser la totalité du programme.

Représentation des données Le programme à réaliser va devoir manipuler des combinaisons de six numéros compris entre 1 et 49. Les combinaisons sont représentées par des tableaux de six entiers indexés de 1 à 6. La figure 1 montre la combinaison (23, 12, 37, 41, 5, 47). (Notez que les numéros ne sont pas nécessairement dans l'ordre croissant)

	1	2	3	4	5	6
$c_1 =$	23	12	37	41	5	47

Fig. 1 – Une combinaison

Q 1. Donnez la déclaration du type nommé COMBINAISON.

Affichage des combinaisons On veut réaliser une procédure nommée afficher qui affiche une combinaison (à raison d'un numéro par ligne).

- **Q 2** . Indiquez quel(s) paramètre(s) doit avoir cette procédure, et précisez son (leur) mode de passage (entrée, sortie, entrée/sortie).
- Q 3. Écrivez cette procédure en Pascal.

Saisie de combinaisons On veut réaliser une procédure nommée demander qui demande à l'utilisateur une combinaison, l'utilisateur donnant sa combinaison en tapant un numéro à la fois.

- **Q 4**. Indiquez quel(s) paramètre(s) doit avoir cette procédure, et précisez son (leur) mode de passage (entrée, sortie, entrée/sortie).
- Q 5. Écrivez cette procédure en Pascal en supposant que l'utilisateur n'entre que des numéros valides (entiers compris entre 1 et 49) et tous distincts.

Vérification de combinaisons La déclaration du type COMBINAISON n'oblige pas une variable de ce type à ne contenir que des numéros tous ditincts. On dira qu'une combinaison est *valide* si elle n'est composée que de numéros tous distincts.

Voici (le début d') un algorithme qui permet de tester si une combinaison c est valide.

```
i:=1 tant que i\leq 5 et c[i]\not\in c[i+1..6] faire i:=i+1 fin tant que
```

(la notation c[i..j] désigne la prtie du tableau c d'indice compris entre i et j)

 ${f Q}$ 6 . À l'issue de cette boucle ${f tant}$ ${f que}$, qu'est-ce qui permet de conclure à la validité de la combinaison c?

 ${\bf Q}$ 7 . Dans cette question, on suppose réalisé le prédicat

```
// appartient(i,c) est vrai \Leftrightarrow c[i] \in c[i+1..6]
// Condition d'Utilisation : 1 \le i \le 6
function appartient(const i : CARDINAL; const c : COMBINAISON) : BOOLEAN;
```

Réalisez en Pascal le prédicat nommé combinaison Valide qui teste si la combinaison passée en paramètre est valide.

Q 8. Réalisez maintenant le prédicat appartient spécifié dans la question précédente.

Numéros communs Il s'agit maintenant de réaliser une fonction nommée compare qui retourne le nombre de numéros communs qu'ont les deux combinaisons passées en paramètres. Par exemple, avec les combinaisons des figures 1 et 2, on doit avoir compare $(c_1, c_2) = 2$.

	1	2	3	4	5	6
$c_2 =$	7	41	28	47	45	17

Fig. 2 – Une autre combinaison

- Q 9 . Précisez l'entête de cette fonction.
- ${f Q}$ 10 . Donnez un algorithme (en PASCAL ou en français) pour résoudre ce problème.