МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КРЕМЕНЧУЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ МИХАЙЛА ОСТРОГРАДСЬКОГО

НАВЧАЛЬНО-НАУКОВИЙ ІНСТИТУТ ЕЛЕКТРИЧНОЇ ІНЖЕНЕРІЇ ТА ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Кафедра автоматизації та інформаційних систем

Навчальна дисципліна

«ПАРАЛЕЛЬНІ ТА РОЗПОДІЛЕНІ ОБЧИСЛЕННЯ»

ЗВІТИ З ЛАБОРАТОРНИХ РОБІТ

студент групи КН-23-1 Полинько І.М. Перевірила

доцент кафедри AIC

Істоміна Н. М.

Виконав

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КРЕМЕНЧУЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ МИХАЙЛА ОСТРОГРАДСЬКОГО

НАВЧАЛЬНО-НАУКОВИЙ ІНСТИТУТ ЕЛЕКТРИЧНОЇ ІНЖЕНЕРІЇ ТА ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Кафедра автоматизації та інформаційних систем

Навчальна дисципліна

«ПАРАЛЕЛЬНІ ТА РОЗПОДІЛЕНІ ОБЧИСЛЕННЯ»

ЗВІТ З ЛАБОРАТОРНОЇ РОБОТИ № 1

студент групи КН-23-1 Полинько I. М.

Перевірила

Виконав

доцент кафедри AIC

Істоміна Н. М.

Лабораторна робота №1

Тема: Оцінювання ефективності розпаралеленого алгоритму

Мета: набути навичок оцінювання ефективності розпаралелювання довільного алгоритму.

Хід роботи:

- 1. Для виконання завдання вибрати довільний процес, що може бути поданий у вигляді алгоритму (можна взяти бізнес процес із завдання для дипломної роботи).
 - 2. Скласти детальний послідовний алгоритм вибраного процесу. Додати складений алгоритм до звіту.
 - 3. Розпаралелити послідовний алгоритм використовуючи концепцію необмеженого паралелізму. Додати складений алгоритм до звіту.
 - 4. Для отриманого алгоритму знайти значення таких характеристик:
 - загальна кількість операцій N;
 - кількість послідовних операцій ns;
 - кількість паралельних операцій пр;
 - частка послідовних операцій β;
 - сумарна висота паралельної форми;
 - ширина паралельної форми;
 - максимальне можливе прискорення R.

Якщо в алгоритмі наявні декілька паралельних форми, обчислюємо їх інтегральні показники (підсумовуємо їх).

Завдання 1-2:

Створимо детальний послідовний алгоритм приготування за рецептом.

Рисунок 1.1 - Послідовний алгоритм у середовищі Visio

Завдання 3:

Розпаралелимо послідовний алгоритм:

Рисунок 1.2 – Необмежено паралельний алгоритм

Масштаб часу наступний:

- -0.5 xb. 5 mm.;
- 1 xB. 5 mm.;
- -2 xB. 10 mm.;
- -3 xB. 10 MM.;
- 5 xB. 15 MM.;
- 7 xB. 20 mm.;
- 10 xB. 25 mm.;
- -30 xB. -35 MM.

Наведемо оновлену діаграму алгоритму з урахуванням масштабу часу.

Рисунок 1.3 — Необмежено паралельний алгоритм з урахуванням масштабу часу

Наведемо діаграму обмеженого паралелізму:

Рисунок 1.4 – Обмежено паралельний алгоритм

Завдання 4:

Знаходимо значення характеристик для усіх алгоритмів.

Таблиця 1 – Послідовний алгоритм

		Вартість
		послідовна,
Номер дії	Зміст	XB
1	Змішати муку, воду, яйце, сіль	10
2	Вимісити тісто	10
3	Залишити тісто	30
4	Нарізати м'ясо	5
5	Перемолоти м'ясо на фарш	5
6	Дрібно нарізати цибулю	2
7	Змішати фарш, цибулю, спеції	3
8	Розкачати тісто	7
9	Вирізати кружечки	5
10	Покласти начинку	10
11	Заліпити краї	0,5
12	Закип'ятити воду	5
13	Додати сіль, лавровий лист	0,5
14	Кинути пельмені у киплячу воду	0,5
15	Варити до спливання + 5 хв	10
16	Дістати пельмені	1
17	Додати масло	1

Оцінювання послідовного	
алгоритму:	
Загальна кількість операції	17
Кількість послідовних операцій	17
Кількість паралельних операцій	
Частка послідовних операцій	1
Частка паралельних операцій	
Сумарна висота паралельної	
форми	
Ширина паралельної форми	
Загальна вартість роботи	105,5
Вартість послідовних операцій	105,5
Вартість паралельних операцій	
Максимальне можливе	
прискорення	26,375

Таблиця 2 – Необмежено паралельний алгоритм

Номер дії	Зміст	Вартість ФП1	Вартість ФП2	Вартість ФПЗ	Вартість ФП4	Вартість рядка
1	Змішати муку, воду, яйце, сіль	10				10
2	Вимісити тісто	10				10
3	Залишити тісто, дрібно нарізати цибулю, нарізати м'ясо, закип'ятити воду	30	2	5	5	30
4	Розкачати тісто, перемолоти м'ясо на фарш, додати сіль і лавровий лист	7		5	0,5	7
5	Вирізати кружечки, змішати фарш та цибулю зі спеціями	5		3		5
6	Покласти начинку	10				10
7	Заліпити краї	0,5				0,5
8	Кинути пельмені у киплячу воду	0,5				0,5
9	Варити до спливання + 5 хв	10				10
10	Дістати пельмені	1				1
11	Додати масло	1				1

Оцінювання паралельного	
алгоритму:	
Висота паралельної форми	11
Кількість послідовних операцій	8
Кількість паралельних операцій	9
Частка послідовних операцій	47%
Частка паралельних операцій	53%
Ширина паралельної форми	4
Загальна вартість роботи	105,5
Вартість послідовних операцій	43
Вартість паралельних операцій	42
Вартість розпаралеленого	
алгоритму	85
Прискорення при необ. парал.	1,24
Максимальне можливо прискорення	26,4

Таблиця 3 – Обмежено паралельний алгоритм

Номер дії	Зміст	Вартість ФП1	Вартість ФП2	Вартість рядка
1	Змішати муку, воду, яйце, сіль	10		10
2	Вимісити тісто	10		10
3	Залишити тісто, дрібно нарізати цибулю, нарізати м'ясо, перемолоти м'ясо на фарш, змішати фарш та цибулю зі спеціями	30	15	30
4	Розкачати тісто	7		7
5	Вирізати кружечки	5		5
6	Покласти начинку, закип'ятити воду, додати сіль та лавровий лист	10	5,5	10
7	Заліпити краї	0,5		0,5

8	Кинути пельмені у киплячу воду	0,5	0,5
9	Варити до спливання + 5 хв	10	10
10	Дістати пельмені	1	1
11	Додати масло	1	1

Оцінювання паралельного алгоритму:	
Висота паралельної форми	11
Кількість послідовних операцій	9
Кількість паралельних операцій	8
Частка послідовних операцій	53%
Частка паралельних операцій	47%
Ширина паралельної форми	2
Загальна вартість роботи	105,5
Вартість послідовних операцій	44
Вартість паралельних операцій	41
Вартість розпаралеленого алгоритму	85
Прискорення при необ. парал.	1,24
Максимальне можливо прискорення	52,8

Висновки:

На цій лабораторній роботі ми оцінили ефективність розпаралеленого алгоритму та набули навичок оцінювання ефективності розпаралелювання довільного алгоритму. У моєму варіанті розпаралелювання необмеженим паралелізмом не надало достатньо ефективного приросту, прискоривши процес в 1.24 рази, при максимально можливих 26.4. Але метод обмеженого паралелізму надає більшого прискорення за рахунок вдвічі меншої кількості пристроїв, видаючи те саме прискорення в 1.24 рази.

Контрольні питання:

1. Поясніть закон Амдала в загальному виді.

Закон Амдала визначає максимальне прискорення, яке можна отримати від розпаралелювання програми.

2. Поясніть закон Амдала з точки зору написання програм.

У програмуванні закон Амдала означає, що навіть якщо велика частина коду виконується паралельно, серійна (непаралельна) частина обмежує максимальне прискорення.

3. Що таке внутрішній паралелізм?

Внутрішній паралелізм — це можливість виконання кількох операцій одночасно всередині одного процесора або пристрою (наприклад, конвеєризація в процесорах).

4. Поясніть концепцію необмеженого паралелізму.

Необмежений паралелізм — ідея, що теоретично можливо досягти будьякого рівня прискорення, якщо ε достатньо процесорів і відсутні послідовні обмеження.

5. Скільки пристроїв необхідно для реалізації вашого розпаралеленого алгоритму?

Для реалізація необмеженого паралелізму мені знадобилося чотири пристрої, а для обмеженого – два пристрої.

6. Як оцінюється ефективність розпаралелювання?

Ефективність розпаралелювання оцінюється коефіцієнтом прискорення:

$$E = \frac{Z}{P},\tag{1.1}$$

де Z – загальна вартість роботи, P – вартість розпаралеленого алгоритму.

7. Що таке ширина паралельної форми?

Ширина паралельної форми — це кількість пристроїв, що використовується для розпаралелювання.

8. Що таке висота паралельної форми?

Висота паралельної форми — це кількість усіх процесів, враховуючи їх розпаралелення.

9. Як обчислюється частка паралельних операцій?

Частка паралельних операцій обчислюється наступним чином:

$$C = \frac{Z}{P},\tag{1.2}$$

де Z – загальна кількість операцій, P – кількість паралельних операцій.

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КРЕМЕНЧУЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ МИХАЙЛА ОСТРОГРАДСЬКОГО

НАВЧАЛЬНО-НАУКОВИЙ ІНСТИТУТ ЕЛЕКТРИЧНОЇ ІНЖЕНЕРІЇ ТА ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Кафедра автоматизації та інформаційних систем

Навчальна дисципліна

«ПАРАЛЕЛЬНІ ТА РОЗПОДІЛЕНІ ОБЧИСЛЕННЯ»

ЗВІТ З ЛАБОРАТОРНОЇ РОБОТИ № 2

студент групи КН-23-1 Полинько І. М. Перевірила

доцент кафедри AIC

Істоміна Н. М.

Виконав

Лабораторна робота №2

Тема: Обчислення характеристик функціональних пристроїв

Мета: набути навичок обчислення характеристик функціональних пристроїв і систем побудованих на них.

Хід роботи:

- 1. Для системи, що складається з функціональних пристроїв (характеристики ФП наведені у таблиці 2.1), визначити:
 - кількість пристроїв;
 - вартість роботи кожного ФП;
 - вартість роботи системи;
 - завантаженість кожного ФП;
 - пікову продуктивність системи;
 - реальну продуктивність системи;
 - зважену завантаженість кожного ФП;
 - зважену завантаженість системи;
 - максимальну пікову продуктивність у системі;
 - прискорення.
- 2. Увести до системи ще один ФП з максимальними з можливих характеристик. Оцінити, як зміниться прискорення та реальна продуктивність системи.
- 3. Увести до початкової системи ще один ФП з мінімальними з можливих характеристик. Оцінити як зміниться прискорення та реальна продуктивність системи.
- 4. До звіту додати лістинги розрахунків для початкової системи та систем з додатковими $\Phi\Pi$.

Таблиця 2.1 – Варіанти характеристик функціональних пристроїв

Варіант 16	ФП1	ФП2	ФП3	ФП4	ФП5	ФП6	ФП7	ФП8	ФП9	ФП10
Пікова продуктивність	8000	8000	8000	8000	8000	8000	8000	8000	8000	8000
ФΠ										
Реальна										
продуктивність	6985	6281	6472	7047	7150	5093	4910	5713	5141	6856
ΦΠ										
Вартість однієї	2	2	2	2	2	2	2	2	2	2
операції, нс	4	4	2			2	2	2	<u> </u>	2

Завдання 1:

	Α	В	С	D	Е	F	G	Н	1	J	K	L	M
1	Варіант 16	ФП1	ФП2	ФП3	ФП4	ФП5	ФП6	ФП7	ФП8	ФП9	ФП10	Кількість пристроїв	10
2	Пікова	8000	8000	8000	8000	8000	8000	8000	8000	8000	8000	Пікова продуктивність	80000
3	Реальна	6985	6281	6472	7074	7150	5093	4910	5713	5141	6856	Реальна	61675
4	Вартість однієї	2	2	2	2	2	2	2	2	2	2		
5													
6	Вартість роботи	13970	12562	12944	14148	14300	10186	9820	11426	10282	13712	Вартість роботи	123350
7	Завантаженість	87,31%	78,51%	80,90%	88,43%	89,38%	63,66%	61,38%	71,41%	64,26%	85,70%		
8	Зважена	11,33%	10,18%	10,49%	11,47%	11,59%	8,26%	7,96%	9,26%	8,34%	11,12%	Зважена	100,00%
9												Максимальна пікова	8000
10												Прискорення	7,709375

Рисунок 2.1 – Базова система

Завдання 2:

	Α	В	С	D	Е	F	G	Н	1	J	K	L	M
1	Варіант 16	ФП1	ФП2	ФП3	ФП4	ФП5	ФП6	ФП7	ФП8	ФП9	ФП10	Кількість пристроїв	10
2	Пікова	8000	8000	8000	8000	8000	8000	8000	8000	8000	16000	Пікова продуктивність	88000
3	Реальна	6985	6281	6472	7074	7150	5093	4910	5713	5141	14006	Реальна	68825
4	Вартість однієї	2	2	2	2	2	2	2	2	2	2		
5													
6	Вартість роботи	13970	12562	12944	14148	14300	10186	9820	11426	10282	28012	Вартість роботи	137650
7	Завантаженість	87,31%	78,51%	80,90%	88,43%	89,38%	63,66%	61,38%	71,41%	64,26%	87,54%		
8	Зважена	10,15%	9,13%	9,40%	10,28%	10,39%	7,40%	7,13%	8,30%	7,47%	20,35%	Зважена	100,00%
9												Максимальна пікова	16000
10												Прискорення	4,3015625

Рисунок 2.2 — Система «Кращий $\Phi\Pi$ »

Завдання 3:

- 4	Α	В	С	D	E	F	G	Н	1	J	K	L	M
1	Варіант 16	ФП1	ФП2	ФП3	ФП4	ФП5	ФП6	ФП7	ФП8	ФП9	ФП10	Кількість пристроїв	10
2	Пікова	8000	8000	8000	8000	8000	8000	8000	8000	8000	7500	Пікова продуктивність	79500
3	Реальна	6985	6281	6472	7074	7150	5093	4910	5713	5141	5855	Реальна	60674
4	Вартість однієї	2	2	2	2	2	2	2	2	2	2		
5													
6	Вартість роботи	13970	12562	12944	14148	14300	10186	9820	11426	10282	11710	Вартість роботи	121348
7	Завантаженість	87,31%	78,51%	80,90%	88,43%	89,38%	63,66%	61,38%	71,41%	64,26%	78,07%		
8	Зважена	11,51%	10,35%	10,67%	11,66%	11,78%	8,39%	8,09%	9,42%	8,47%	9,65%	Зважена	100,00%
9												Максимальна пікова	8000
10												Прискорення	7,58425

Рисунок 2.3 – Система «Гірший ФП»

Завдання 4:

12	Зведена	Base	ФП+	ΦП-
13	Прискорення	7,709375	4,301563	7,58425
14	Вартість роботи	123350	137650	121348
15	Реальна	61675	68825	60674

Рисунок 2.4 – Лістинг розрахунків

Висновки:

цій лабораторній роботі Ha МИ обчислювали характеристики функціональних пристроїв, набути навичок обчислення характеристик функціональних пристроїв і систем побудованих на них. У моєму варіанті покращення функціонального пристрою призвело до незначного збільшення роботи великого зменшення вартості та прискорення, зменшення функціонального пристрою призвело до мінімальних змін параметрів у порівнянні з базовою системою.

Контрольні питання:

1. Що таке вартість роботи?

Вартість роботи — це кількість елементарних операцій, необхідних для виконання певної задачі або алгоритму.

2. Як оцінюється вартість окремої логічної операції?

Вартість логічної операції визначається за кількістю тактів або умовних одиниць, які потрібні для її виконання. У спрощеному аналізі приймається, що базова логічна операція (наприклад, AND, OR, NOT) має вартість 1 умовну одиницю.

3. Як оцінюється вартість виконання вибраного алгоритму або програмного коду?

Вартість виконання алгоритму визначається як сума вартостей усіх операцій, що виконуються, з урахуванням кількості повторень (циклів, рекурсій).

$$C = \sum_{i=1}^{n} c_i \cdot k_i, \tag{2.1}$$

де c_i — вартість i-тої операції, k_i — кількість її виконань.

4. Що таке функціональний пристрій?

Функціональний пристрій — це апаратний або логічний модуль, здатний виконувати певний набір обчислювальних операцій, таких як додавання, множення, передача даних тощо.

5. Приклади системи, що складається з декількох функціональних пристроїв:

- Центральний процесор (CPU), графічний процесор (GPU) та блок прискорення нейронних обчислень (TPU).
- Багатоядерний процесор, де кожне ядро окремий функціональний пристрій.
- Вбудована система з арифметичним блоком, блоком пам'яті та блоком введення/виведення.

6. Що таке простий функціональний пристрій?

Простий функціональний пристрій — це пристрій, що виконує лише одну типову операцію за один такт, наприклад, додавання двох чисел. Його архітектура не дозволяє виконання складних або комбінованих операцій.

7. Як обчислюється реальна та пікова продуктивність функціонального пристрою?

Пікова продуктивність — це максимально можлива кількість операцій,
 яку пристрій здатен виконати за одиницю часу:

$$P_{peak} = n \cdot f, \tag{2.2}$$

де n — кількість операцій за такт, f — тактова частота.

– Реальна продуктивність — фактична кількість операцій, виконаних за одиницю часу при заданому навантаженні:

$$P_{peak} = \frac{N}{T},\tag{2.3}$$

де N — кількість виконаних операцій, T — час виконання.

8. Як обчислюється завантаженість функціонального пристрою?

Завантаженість показує ступінь використання пристрою:

$$U = \frac{P_{real}}{P_{peak}} \cdot 100\%, \tag{2.4}$$

9. Сформулюйте базовий закон Амдала.

Закон Амдала визначає теоретичне обмеження прискорення паралельної обчислювальної системи:

$$S = \frac{1}{(1-\alpha) + \frac{\alpha}{p}}\tag{2.5}$$

де α — частка алгоритму, що може бути паралелізована, p — кількість паралельних пристроїв.

10. Як обчислюється завантаженість системи з декількох функціональних пристроїв?

$$U_{sys} = \frac{\sum P_{real,i}}{\sum P_{peak,i}} \cdot 100\%, \tag{2.6}$$

де $P_{real,i}$ — реальна продуктивність i-го пристрою, $P_{peak,i}$ — пікова продуктивність i-го пристрою.

11. Як обчислюється реальна продуктивність системи з декількох функціональних пристроїв?

$$P_{real,sys} = \sum P_{real,i}, \tag{2.7}$$

12. Як обчислюється пікова продуктивність системи з декількох функціональних пристроїв?

$$P_{peak,sys} = \sum P_{peak,i}, \tag{2.8}$$

13. Як обчислюється прискорення системи з декількох функціональних пристроїв?

$$S = \frac{T_1}{T_p},\tag{2.9}$$

де T_1 — час виконання задачі на одному пристрої, T_p — час виконання задачі на паралельній системі.