Teste de Análise Matemática III/Cálculo Diferencial e Integral III

11 Novembro 2017 - duração 1h30m

Indique a sua versão do teste na folha de rosto do caderno de exame. Justifique convenientemente as respostas às questões 2–5.

Versão A

- 1. Para cada uma das questões seguintes, indique sem justificar, qual é a resposta correcta (escreva apenas A,B,C ou opte por não responder):
 - (a) Sabendo que 1 é raiz simples da equação característica de y'' + ay' + by = 0, a EDO $y'' + ay' + by = te^t$ pode ter uma solução da forma: A: $(ct^2 + dt)e^t$, $c, d \in \mathbb{R}$. B: $(ct + d)e^t$, $c, d \in \mathbb{R}$. C: ct^3e^t , $c \in \mathbb{R}$.
 - (b) Sabendo que o sistema $x' = \begin{bmatrix} a & 2 \\ 2a & 4 \end{bmatrix} x$ tem uma solução da forma $e^{3t}v$ (com $v = (v_1, v_2) \neq 0$) então: A: a = 1. B: a = -1. C: a = 3.
 - (c) A EDO $y\,dx=x\,dy$ (para $x,y\neq 0$), A: é exacta. B: não é exacta, mas tem factor integrante x^{-2} . C: não é exacta, mas tem factor integrante $(xy)^{-2}$.
 - (d) Seja $f: \mathbb{R} \to \mathbb{R}$ a extensão 2π -periódica da função $f(x) = x(x+\pi)$ em $]-\pi,\pi]$. Sendo S(x) a soma da série de Fourier de f(x), o valor de $S(7\pi)$ é: A: $2\pi^2$. B: $56\pi^2$. C: π^2 .

(Nota: cada resposta correcta = 0, 7 val., cada resposta errada = -0, 2 val.)

- 2. (a) Encontre a trajectória ortogonal à família de curvas $x^{\alpha}y^{3} = c$ ($c \in \mathbb{R}$) passando pelo ponto $(x_{0}, y_{0}) = (1, 3)$. NOTA: Faça $\alpha = \max\{2, \text{último dígito do seu número de aluno}\}$.
 - (b) Encontre a solução do PVI y'' + 2y' + 2y = 0, y(0) = 0, y'(0) = -2.
- 3. Determine a solução geral do sistema $x' = \begin{bmatrix} \frac{1}{2} & 2 \\ -\frac{1}{2} & -\frac{3}{2} \end{bmatrix} x$.
- 4. (a) Considere a função 4-periódica $g: \mathbb{R} \to \mathbb{R}$ tal que $g(x) = \begin{cases} k & \text{se } x \in]-1,1[\\ 0 & \text{se } x \in]-2,-1[\cup]1,2[\end{cases}$, cuja série de Fourier é $\frac{k}{2} + \frac{2k}{\pi} \sum_{n \geq 0} \frac{(-1)^n}{2n+1} \cos\left(\frac{(2n+1)\pi}{2}x\right)$. Escreva o polinómio de Fourier P_3 de ordem 3 de g e calcule o erro quadrático de P_3 relativo a g no intervalo [-2,2]. NOTA: Faça $k = \max\{2, \text{último dígito do seu número de aluno}\}$.
 - (b) Seja $\sum_{n=1}^{\infty} \frac{1}{n^3} \sin(\frac{n\pi}{2}x)$ a série de Fourier de uma função $f: \mathbb{R} \to \mathbb{R}$ de classe C^1 e 4-periódica. Qual o valor do integral $\int_{-2}^2 f(x) \sin(5\pi x) \, dx$? E de $\int_0^2 f(x) \sin(5\pi x) \, dx$?
- 5. Sejam I um intervalo não degenerado de \mathbb{R} , $A(t) = [a_{ij}(t)]$ uma matriz $n \times n$ de funções contínuas $a_{ij}: I \to \mathbb{R}$ e $h: I \to \mathbb{R}^n$ uma função contínua. Considere o sistema

$$x' = A(t)x + h(t), t \in I. (1)$$

Enuncie e deduza o método de variação das constantes de Lagrange aplicado a (1).

FIM

Cotações propostas: 2.8 + 2.6 + 2 + 1.6 + 1. (Total: 10 valores)

Identidade de Parseval: para $f \in SC([-L, L])$, $||f||^2 = \int_{-L}^{L} f(x)^2 dx = L\left(\frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2)\right)$.