Artificial Intelligence

Artificial Neural Network

Pham Viet Cuong
Dept. Control Engineering & Automation, FEEE
Ho Chi Minh City University of Technology

- ✓ Computing systems inspired by biological neural networks
- ✓ Consists of several processing elements that receive inputs and deliver outputs
- ✓ "Learn" to perform tasks by considering examples
- Be able to model nonlinear processes.

- ✓ Applications:
 - Natural Language Processing
 - Text classification
 - Language generation
 - Document summarization
 - Machine translation
 - Speech recognitionTÀI LIỆU SƯU TẬP
 - Character recognition BÖI HCMUT-CNCP
 - Spell checking

- ✓ Applications:
 - System identification and control
 - Vehicle control
 - Process control
 - Auto-piloting
 - Autonomous driving cars
 - Robot navigation TAI LIỆU SƯU TẬP
 - Component fault detection and simulation
 - Chip failure analysis
 - Trajectory prediction
 - Petroleum exploration

- ✓ Applications:
 - Time series forecasting and prediction
 - Weather forecasting
 - Stock market prediction
 - Cost models
 - Medical
 - Cancers detection TAI LIÊU SƯU TÂP
 - Medical image analysis of HCMUT-CNCP
 - EEGs
 - Drug design

- ✓ Applications:
 - Image/video/audio analysis
 - Image recognition
 - Image compression
 - Radar and sonar image classification
 - Signature verification

- ✓ Applications:
 - Education:
 - Adaptive learning software \(^{\cong \cong \cong\cong \cong \cong \cong \cong \cong \cong \cong \cong \cong \cong
 - Student performance modeling
 - Personality profiling
 - Bussiness analytics
 - Customer behavior modeling UU TAP
 - Customer segmentation "
 - Market research
 - Banking
 - Credit and loan application evaluation
 - Fraud and risk evaluation

✓ Biological neural network

✓ Artificial neural network

- ✓ Example: self-driving car
 - Input (raw data/features)
 - Output (steering angle, throttle, brake)
 - Hidden layers

- ✓ Why nonlinear activation function?
- ✓ Why bias?

✓ Useful links

- Link 1
- Link 2
- Link 3

- Error back propagation
 - Framework

- Loss function:
 - Squared L² norm
 - Angle between 2 vectors
 - Cross entropy

- Error back propagation
 - Loss function:
 - Euclidean norm (2-norm) ACNC

$$\|oldsymbol{x}\|_2 := \sqrt{x_1^2 + \dots + x_n^2}$$

- Angle between 2 vectors Suu Tâp
 - BỞI HCMUT-CNCP

Cross entropy

$$H(p,q) = -\sum_i p_i \log q_i$$

16

- Error back propagation
 - Loss function:

- Error back propagation
 - Optimization problem
 - Gradient descent

$$x \leftarrow x - \frac{df}{dx}$$
$$x \leftarrow x - \mu \frac{df}{dx}$$

 μ : learning rate

$$w \leftarrow w - \mu \frac{\partial L}{\partial w}$$

Error back propagation

Example

$$net_{h_1} = w_1i_1 + w_2i_2 + b_1$$

$$out_{h_1} = f(net_{h_1})$$

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$E = \frac{1}{2} \left\{ \left(target_{o_1} - out_{o_1} \right)^2 + \left(target_{o_2} - out_{o_2} \right)^2 \right\}$$

✓ Error back propagation

$$w \leftarrow w - \mu \frac{\partial L}{\partial w}$$

$$\frac{\partial E}{\partial w_5}$$

Chain rule

$$\frac{\partial E}{\partial w_5} = \frac{\partial E}{\partial out_{o_1}} \frac{\partial out_{o_1}}{\partial net_{o_1}} \frac{\partial net_{o_1}}{\partial w_5}$$

Example

$$\frac{\partial E}{\partial w_5} = \frac{\partial E}{\partial out_{o_1}} \frac{\partial out_{o_1}}{\partial net_{o_1}} \frac{\partial net_{o_1}}{\partial w_5}$$

$$net_{o_1} = w_5 out_{h_1} + w_6 out_{h_2} + b_2$$

$$out_{o_1} = f(net_{o_1})$$

$$f(x) = \frac{1}{1 + e^{-x}}$$

TÀI LIÊU SƯU TÂP

BỞI HCMUT-CNCP

$$E = \frac{1}{2} \left\{ \left(target_{o_1} - out_{o_1} \right)^2 + \left(target_{o_2} - out_{o_2} \right)^2 \right\}$$

- ✓ Error back propagation
 - Chain rule

$$\frac{\partial E}{\partial w_5} = \frac{\partial E}{\partial out_{o_1}} \frac{\partial out_{o_1}}{\partial net_{o_1}} \frac{\partial net_{o_1}}{\partial w_5}$$

- ✓ Error back propagation
 - Chain rule

$$\frac{\partial E}{\partial w_5} = \frac{\partial E}{\partial out_{o_1}} \frac{\partial out_{o_1}}{\partial net_{o_1}} \frac{\partial net_{o_1}}{\partial w_5}$$

TÀI LIỆU SƯU TẬP

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial out_{o_1}} \frac{\partial out_{o_1}}{\partial net_{o_1}} \frac{\partial net_{o_1}}{\partial out_{h_1}} \frac{\partial out_{h_1}}{\partial net_{h_1}} \frac{\partial \mathring{net}_{h_1}}{\partial w_1}$$

$$b1.35$$

.40 w5

.50 w7

.15 w1

.25 w3

Chain rule

$$\frac{\partial E}{\partial w_{1}} = \frac{\partial E}{\partial out_{o_{1}}} \frac{\partial out_{o_{1}}}{\partial net_{o_{1}}} \frac{\partial net_{o_{1}}}{\partial out_{h_{1}}} \frac{\partial out_{h_{1}}}{\partial net_{h_{1}}} \frac{\partial net_{h_{1}}}{\partial w_{1}}$$

$$\frac{\partial E}{\partial w_1} = \left(\frac{\partial E}{\partial out_{o_1}} \frac{\partial out_{o_1}}{\partial net_{o_1}} \frac{\partial net_{o_1}}{\partial out_{h_1}} + \frac{\partial E}{\partial out_{o_2}} \frac{\partial out_{o_2}}{\partial net_{o_2}} \frac{\partial net_{o_2}}{\partial out_{h_1}}\right) \frac{\partial out_{h_1}}{\partial net_{h_1}} \frac{\partial net_{h_1}}{\partial w_1}$$

- Homework 2: Find derivative formulas for a NN
- 2 inputs
- 2 hidden layers, each layer has 3 neurals
- 3 outputs

- ✓ Overfitting: high variance
- Underfitting: high bias

Appropirate-fitting

✓ Overfitting vs. Underfitting

✓ Overfitting vs. Underfitting

Overfitting vs. Underfitting

Fukushima: The Failure of Predictive Models

Stacey, Brian

Southern New Hampshire University

Magnitude

1 April 2015

- Reasons
 - Underfitting (simplifying assumption)
 - Too simple model
 - Not enough training
 - Overfitting
 - Too complicated modeLIÊU SƯU TẬP
 - Not enough training data *** Not enough training data

- ✓ Countermeasures for Underfitting
 - Better model
 - More training

- Countermeasures for Overfitting
 - Simplifying model
 - Removing features from data
 - More data
 - ImageNet Large Scale Visual Recognition Challenge
 - 1000 classes

- Countermeasures for Overfitting
 - Data augmentation
 - Extracting patches

- ✓ Countermeasures for Overfitting
 - Data augmentation
 - Extracting patches
 - Reflection

- ✓ Countermeasures for Overfitting
 - Data augmentation
 - Extracting patches
 - Reflection
 - Rotation
 - Altering intensities of RGB channels

- ✓ Countermeasures for Overfitting
 - Data augmentation
 - Extracting patches
 - Reflection
 - Rotation
 - Altering intensities of RGB channels
 - and more
 TÀI LIỆU SƯU TẬP
 - AlexNet: 2048 times

- ✓ Countermeasures
 - **Early stopping**
 - Training set
 - Test set
 - Validation set

- Reasons
- Countermeasures
 - Early stopping
 - Training set
 - Test set
 - Validation set

- Countermeasures
 - Drop out
 - Co-adaptation

- ✓ Gradient descent
 - 2D illustration
 - Stochastic gradient descent
 - Batch gradient descent

$$w \leftarrow w - \mu \frac{\partial L}{\partial w}$$

- Gradient descent
 - Stochastic gradient descent
 - Update: each training example Of the Control of
 - Online
 - Unstable
 - Can avoid local minima
 - Batch gradient descent TÀI LIỆU SƯU TẬP
 - Update: all training dataset of HCMUT-CNCF
 - More stable
 - May prematurely converge

Stochastic Gradient Descent

Gradient Descent

- ✓ Gradient descent
 - 2D illustration
 - Stochastic gradient descent
 - Batch gradient descent
 - Mini-batch gradient descent
 - Update: subset of training set
 - Mini-batch size: 16 2561 LIÊU SU'
 - Best of both worlds

Mini-Batch Gradient Descent

- Error back propagation
 - Data point/example/sample/instance/input vector/feature vector/observation
 - Batch size
 - Epoch: 10, 100, 500, 1000, and larger

- ✓ References
 - https://en.wikipedia.org/wiki/Neural_circuit
 - https://en.wikipedia.org/wiki/Artificial_neural_network
 - https://www.securityinfowatch.com/video-surveillance/videoanalytics/article/21069937/deep-learning-to-the-rescue
 - and others

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP