

MACIEJ BARTCZAK, WOJCIECH MATUSIAK, KAROL MUĆK,
MARCIN PRACKI

styczeń 2021



### Problem

Na podstawie danych zebranych do dnia prognozy, określić,

czy w dniu prognozy intensywność zanieczyszczenia PM10 w wybranej stacji przekroczy 55 µg/m³?

## Wnioski z raportu cząstkowego

- Dobór danych i metodologii
- Znacząca istotność danych związanych z wiatrem
- Problemem rzadkie przekraczanie poziomu odcięcia





### Dane

Parametry zanieczyszczenia powietrza: PM10, PM2.5, NOx, CO

Dane Głównego Inspektoratu Ochrony Środowiska zostały pozyskane i przetworzone w dn. 23.11.2020. Obejmują zakres czasowy 01.01.2010 - 30.09.2020.

Bank danych pomiarowych - GIOŚ (gios.gov.pl)

Historyczne dane meteorologiczne:

Źródłem pochodzenia danych jest Instytut Meteorologii i Gospodarki Wodnej – Państwowy Instytut Badawczy. Dane Instytutu Meteorologii i Gospodarki Wodnej – Państwowego Instytutu Badawczego zostały przetworzone.

https://danepubliczne.imgw.pl/data/dane\_pomiarowo\_obserwacyjne/

- temperatura powietrza
- wilgotność względna
- prędkość wiatru
- suma dobowa opadów
- zachmurzenie ogólne
- widzialność
- Dane kalendarzowe: dni robocze, ferie zimowe

## Podział danych ze stacji pomiarowych

- Dane ze stacji w promieniu 100km od Warszawy
- 5 sektorów: Warszawa, północ, południe, wschód, zachód





Położenie stacji pomiarowych w okolicy Warszawy (długość i szerokość geograficzna)

# Wyniki

| Model                               | Dane z przeszłości<br>dalszej niż 1 dzień | Dane spoza<br>Warszawy | Accuracy (5-fold CV) |
|-------------------------------------|-------------------------------------------|------------------------|----------------------|
| Const                               | -                                         | -                      | 84,8%                |
| Regularyzowana regresja logistyczna | NIE                                       | NIE                    | 86,0% ± 1,7%         |
| Sieć neuronowa                      | TAK                                       | TAK                    | 87,2% ± 4,9%         |
| Sieć neuronowa                      | TAK                                       | NIE                    | 87,2% ± 5,1%         |
| Sieć neuronowa                      | NIE                                       | TAK                    | 87,3% ± 4,9%         |
| Sieć neuronowa                      | NIE                                       | NIE                    | 87,2% ± 5,1%         |

## Alternatywne podejścia

- Modele deterministyczne/symulacje
- Rekurencyjne sieci neuronowe
- Przegląd metod w artykule "Statistical Modeling Approaches For PM10 Prediction In Urban Areas; A Review Of 21st-century Studies", H.T. Shahraiyni, S. Sodoudi, Atmosphere, 2016

### Literatura

#### Szczególnie pomocne okazały się artykuły:

- "Development of a model for forecasting of PM10 concentrations in Salamanca, Mexico", Cortina-Januchs et al., Atmospheric Pollution Research, 2015
- "Statistical Modeling Approaches For PM10 Prediction In Urban Areas; A Review Of 21st-century Studies", H.T. Shahraiyni, S. Sodoudi, Atmosphere, 2016