# COL215L: Digital Logic & System Design

Lecture 21: Finite State Machines (Cont.)



M. Balakrishnan CSE@IITD

September 29, 2021

Vireshwar Kumar CSE@IITD

### Circuit, State Table and State Diagram



|               | Next state |       | Output |               |
|---------------|------------|-------|--------|---------------|
| Present State | x = 0      | x = 1 | x = 0  | x = 1         |
| AB            | AB         | AB    | y      | $\mathcal{Y}$ |
| 00            | 00         | 01    | 0      | 0             |
| 01            | 11         | 01    | 0      | 0             |
| 10            | 10         | 00    | 0      | 1             |
| 11            | 10         | 11    | 0      | 0             |



#### Finite State Machine

- Circuits that can be represented with finite number of states
  - Output Present State with/without Input
- Output
  - Present State Moore type
  - Present State & Inputs Mealy type



### Design Steps

- 1. Specification 🗲
- 2. State Diagram
- 3. State Table
- 4. State Assignment (Minimize States)
- 5. Select Flip-Flop and Implement Circuit



# Step-1: Specification

- one input, w
- one output, z
- Recognize the pattern 11
  - If w\_{|-1} = 1 and w\_{|i} = 1, z\_{|i+1} = 1
    Otherwise, z\_{|i|} = 0

Step-2: State Diagram





#### Step-3: State Table



### Step-4: State Assignment





#### Step-5: Circuits

Flip

|   | Present               | Next     |          |        |
|---|-----------------------|----------|----------|--------|
|   | state                 | 0        | w = 1    | Output |
|   | <i>y</i> 2 <i>y</i> 1 | $Y_2Y_1$ | $Y_2Y_1$ | Z      |
| A | 00                    | 00       | 01       | 0      |
| В | 01                    | 00       | 10       | 0      |
| С | 10                    | 00       | 10       | 1      |
|   | 11                    | dd↑      | dd       | d      |











### Step-5: Circuits (Cont.)

