CSCI567 HW1

Angzhan He, Gaoyuan Jiang February 3, 2024

1 1.1

$$\begin{aligned} w_{k+1}^T w_{opt} &= (w_k + y_i x_i)^T w_{opt} \\ &= w_k^T w_{opt} + y_i x_i^T w_{opt} \\ &= w_k^T w_{opt} + y_i w_{opt}^T x_i \\ &\geq w_k^T w_{opt} + \gamma ||w_{opt}||_2 \end{aligned}$$

1.2

$$w_{k+1}^T w_{k+1} = (w_k + y_i x_i)^T (w_k + y_i x_i)$$

$$= w_k^T w_k + w_k^T y_i x_i + y_i x_i^T w_k + y_i^2 x_i^T x_i$$

$$= ||w_k||_2^2 + 2y_i w_k^T x_i + y_i^2 ||x_i||_2^2$$

$$\leq ||w_k||_2^2 + y_i^2 R^2$$

$$\leq ||w_k||_2^2 + R^2$$

1.3

$$\begin{aligned} w_{k+1}^T w_{opt} &\geq w_k^T w_{opt} + \gamma ||w_{opt}||_2 \\ Mupdates \\ w_{k+1}^T w_{opt} &\geq \gamma M \\ ||w_{k+1}||_2 ||w_{opt}||_2 &\geq w_{k+1}^T w_{opt} &\geq \gamma M \\ ||w_{k+1}||_2 &\geq \gamma M \end{aligned}$$

$$||w_{k+1}||_2^2 \le ||w_k||_2^2 + R^2$$

$$Mupdates$$

$$||w_{k+1}||_2^2 \le R^2 M$$

$$||w_{k+1}||_2 \le R\sqrt{M}$$

1.4

$$\gamma M \le ||w_{k+1}||_2 \le R\sqrt{M}$$
$$\gamma^2 M^2 \le R^2 M$$
$$M \le R^2/\gamma^2$$

2.1

Algorithm: For all positive data points in the training set, find the smallest and the largest values of x_1 and x_2 , which correspond to a_1, b_1, a_2 and b_2 respectively.

Proof: The realizable assumption shows that there exists a rectangle B^* that perfectly classifies the training data. The rectangle B_S we get by the algorithm have an empirical risk of 0, which is the minimum possible. Thus, the rectangle B_S is an empirical risk minimizer.

2.2

From a probabilistic perspective and with respect to 0-1 loss, $R(f_{S'}^{ERM}) \geq 0.5$ indicates the misclassifying probability is greater than 0.5. If we need to let this model classify every data points in training set $\{(\mathbf{x},y),i\in[n]\}$ correctly, it means we can not select any data point from $B^*-B_{S'}$. The probability mass (with respect to D) of $B^*-B_{S'}$ is larger than 0.5. If we draw data point i.i.d from distribution D, then the possibility of selecting such a bad training set of size n is less than 0.5^n , which is non-zero, but very small when n is large enough.

2.3

Step1: According to the definition of empirical risk minimizer and realizability assumption, B_S must be contained within B^* to have zero empirical risk.

Step2: B_i has a probability mass of $\varepsilon/4$ by construction, since there are four such rectangles, the combined B_S where f_S^{ERM} could potentially fail to classify correctly is less than $4 \times \varepsilon/4 = \varepsilon$.

Step3: The probability that none of the *n* examples in *S* are in B_i is $(1 - \varepsilon/4)^n$.

$$P = (1 - \varepsilon/4)^n$$

$$log(P) = nlog(1 - \varepsilon/4)$$

$$log(P) \le -n(\varepsilon/4)$$

$$log(P) \le log(\delta/4)$$

$$P < \delta/4$$

Step4: The union bound states that the probability of at least one of a set of events occurring is on greater than the sum of the probabilities of the individual events. Apply this to the probability that S does not contain an example from each B_i , the sum of the probability is $4 \times (\delta/4) = \delta$. Thus, the probability that S contains all examples from each B_i is at least $1 - \delta$.

2.4

In R^d , define 2d critical regions (similar to the B_i rectangles from the 2-dimensional case) surrounding the true B^* , each with a probability mass of $\varepsilon/(2d)$ with respect to the distribution D. If S contains positive examples in all of the critical regions, then $R(f_S^{ERM}) \leq (2d) \times (\varepsilon/(2d)) = \varepsilon$. According to the union bound, for each of the 2d critical regions, we want the probability that the sample S does not contain a positive example from that region to be less than $\delta/(2d)$.

$$P = (1 - \varepsilon/(2d))^n$$
$$log(P) = nlog(1 - \varepsilon/(2d))$$
$$log(P) \le -n(\varepsilon/(2d))$$

To make $P \leq \delta/(2d)$, we get $n \geq \frac{2dlog(2d/\delta)}{\varepsilon}$.