Math 870 Lecture: Delaunay Triangulation (*Computational Geometry*, Ch.9) Nacha Chavez

Motivation:

When talking about mapping the surface of the Earth, unless it is a country with minimal height changes such as the Netherlands, it is unrealistic to assume there is no relief. Thus, we must find a way to approximate a 3-dimensional space with limited sample points efficiently and which produces the most natural approximation.

Approach:

- 1) Model our points by first determining a *Triangulation* of *P*. (This is our focus!)
- 2) Lift each sample point to its correct height. (i.e. mapping every triangle in 2-d to its appropriate triangle in 3-d.)
- 3) We've created a polyhedral terrain to approximate the original terrain.

Questions:

- 1. How do we triangulate the set of sample points? *There are many different possible triangulations available.*
- 2. Which triangulation is the most appropriate to approximate a terrain?

 Unfortunately, there is not definitive answer to this question. With a given set of limited sample points, we want the one that is most natural. From this we can create a set of criterion that tells us which triangulation is best. The main criterion is maximizing the minimal angle of every triangle in our triangulation, a.k.a. a Delaunay Triangulation.

Glossary, Theorems, Lemmas, etc.:

Terrain: A 2-dimensional surface in a 3-dimensional space such that every vertical line intersects it in a point, if it intersects it at all. In other words, it is the graph of the function $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ that assigns a height f(p) to every point p in the domain, A, of the terrain.

Triangulation of P: A planar subdivision whose bounded faces are triangles and whose vertices are the points of P. (Recall from Chris's lecture that we know every bounded face (or polygon) can be triangulated.)

Polyhedral terrain: The graph of a continuous function that is piecewise linear.

P: Define $P = \{p_1, p_2, ..., p_n\}$ as the set of points in the plane

Maximal Planar Subdivision: A subdivision *S* such that no edge connecting two vertices can be added to *S* without destroying its planarity.

Triangulation of P: The maximal planar subdivision whose vertex set is *P*.

Angle-vector of T: $A(T) \equiv (\alpha_1, \alpha_2, ..., \alpha_{3m})$ is the angle vector of T where T is the triangulation of P and $\alpha_1, \alpha_2, ..., \alpha_{3m}$ is the list of 3m angles in T sorted by increasing angle.

A(T) > A(T'): Let T and T' be triangulations of a point set P where $A(T) \equiv (\alpha_1, \alpha_2, ..., \alpha_{3m})$ and $A(T') \equiv (\alpha'_1, \alpha'_2, ..., \alpha'_{3m})$ are the corresponding angle vectors. Then we say the angle-vector of T is larger than the angle-vector of T' if

A(T) is lexicographically larger than A(T'). This means if there exists an index I with $1 \le i \le 3m$ such that

$$\alpha_j = \alpha_j' \text{ for all } j < i, \text{ and } \alpha_i > \alpha_i'$$
 then $A(T) > A(T')$.

- Angle-optimal: With the same triangulations as above, we say the triangulation T is angle-optimal if $A(T) \ge A(T')$.
- Theorem. 9.2 (Thale's Theorem): Denote the smaller angle defined by three points p, q, r by $\angle pqr$ Let C be a circle, l be a line intersecting C in points a and b, and p, q, r, and s points lying on the same side of l. Suppose that p and q lie on C, that r lies inside C, and that s lies outside C. Then

$$\angle arb > \angle apb = \angle aqb > \angle asb$$
.

- Edge Flip: If an edge e is not an edge of the unbounded face of P, then it is incident to two triangles $p_i p_j p_k$ and $p_i p_j p_l$. If these two triangles form a convex quadrilateral, we can obtain a new triangulation T' by removing $\overline{p_i p_j}$ from T and inserting $\overline{p_k p_l}$ instead. This is called an edge flip.
- *Illegal Edge*: We call the edge $e = \overline{p_i p_j}$ an *illegal edge* if

$$\min_{1\leq i\leq 6}\alpha_i<\min_{1\leq i\leq 6}\alpha_i'.$$

- Lemma 9.4: Let edge $\overline{p_ip_j}$ be incident to triangles $p_ip_jp_k$ and $p_ip_jp_l$, and let C be the circle through p_i,p_j , and p_k . The edge $\overline{p_ip_j}$ is illegal if and only if the point p_l lies in the interior of C. Furthermore, if the points p_i,p_j,p_k,p_l form a convex quadrilateral and do not lie on a common circle, then exactly one of $\overline{p_ip_j}$ and $\overline{p_kp_l}$ is an illegal edge.
- Legal Triangulation: A triangulation that does not contain any illegal edges.
- *Voronoi Diagram of P*: The subdivision of the plane P into n regions, one for each site (point) in P, such that the region of a site $p \in P$ contains all points in the plane for which p is the closest site. We denote this as Vor(P).
- Delaunay Graph of P: The strait line embedding of a graph G, which has a line connecting two nodes if their corresponding Voronoi cells share an edge, denoted as DG(P).
- Theorem 9.5: The Delaunay graph of a planar point set is a plane graph.
- General Position: We say that a set of points is in general position if it contains no four points on a circle. Therefore, P in general position means every vertex of the Voronoi diagram has degree three, and consequently all bounded faces of DG(P) are triangles.
- *Theorem 9.6*: Let *P* be a set of points in the plane.
 - (i) Three points $p_i, p_j, p_k \in P$ are vertices of the same face of the Delaunay graph of P if and only if the circle through p_i, p_j, p_r contains no point of P in its interior.

- (ii) Two points $p_i, p_j \in P$ form an edge of the Delaunay graph of P if and only if there is a closed disc C that contains p_i and p_j on its boundary and does not contain any other point of P.
- Theorem 9.7: Let P be a set of points in the plane, and let T be a triangulation of P. Then T is a Delaunay triangulation of P if and only if the circumcircle of any triangle of T does not contain a point of P in its interior.
- Theorem 9.8: Let P be a set of points in the plane. A triangulation T of P is legal if and only if T is a Delaunay triangulation of P.
- Theorem 9.9: Let P be a set of points in the plane. Any angle-optimal triangulation of P is a Delaunay triangulation of P. Furthermore, any Delaunay triangulation of P maximizes the minimum angle over all triangulations of P.

Randomized Incremental: Input points in random order.

Lemma 9.10: Every new edge created in DELAUNAYTRIANGULATION or in LEGALIZEEDGE during the insertion of p_r is an edge f the Delaunay graph of $\Omega \cup \{p_1,...,p_r\}$, where $\Omega = \{p_{-1},p_{-2},p_{-3}\}$.

Theorem 9.12: The Delaunay triangulation of a set P of n points in the plane can be computed in $O(n \log n)$ expected time, using O(n) expected storage.

Algorithms:

Algorithm DELAUNAYTRIANGULATION (P)

Input. A set *P* of *n* points in the plane

Output. A Delaunay triangulation of P.

- 1. Let p_{-1}, p_{-2} , and p_{-3} be a suitable set of three points such that P is contained in the triangle $p_{-1}p_{-2}p_{-3}$.
- 2. Initialize *T* as the triangulation consisting of the single triangle $p_{-1}p_{-2}p_{-3}$.
- 3. Compute a random permutation of $p_1, p_2, ..., p_n$ of P.
- 4. **for** $r \leftarrow 1$ **to** n
- 5. **do**(*Insert p_r into T:*)
- 6. Find a triangle $p_i p_j p_k \in T$ containing p_r .
- 7. **if** p_r lies in the interior of the triangle $p_i p_j p_k$
- 8. **then** Add edges from p_r to the three vertices of $p_i p_j p_k$, thereby splitting $p_i p_j p_k$ into three triangles.
- 9. LEGALIZEEDGE $(p_r, \overline{p_i p_j}, T)$
- 10. LEGALIZEEDGE $(p_r, \overline{p_j p_k}, T)$
- 11. LEGALIZEEDGE $\left(p_r, \overline{p_k p_i}, T\right)$
- 12. **else** (* p_r lies on an edge of $p_i p_j p_k$, say $\overline{p_i p_j}$ *)
- 13. Add edges from p_r to p_k and to the third vertex p_l of the other triangle that is incident to $\overline{p_i p_j}$, thereby splitting the two

triangles incident to $\overline{p_i p_j}$ into four triangles.

14. LEGALIZEEDGE
$$(p_r, \overline{p_i p_l}, T)$$

15. LEGALIZEEDGE
$$(p_r, \overline{p_l p_j}, T)$$

16. LEGALIZEEDGE
$$(p_r, \overline{p_j p_k}, T)$$

17. LEGALIZEEDGE
$$(p_r, \overline{p_k p_i}, T)$$

- 18. Discard p_{-1}, p_{-2} , and p_{-3} with all their incident edges from T.
- 19. **return** *T*

LEGALIZEEDGE $(p_r, \overline{p_i p_j}, T)$

- 1. (*The point being inserted is p_r , and $\overline{p_i p_j}$ is the edge of T that may need to be flipped.*)
- 2. **if** $\overline{p_i p_j}$ is illegal
- 3. **then** let $p_i p_j p_k$ be the triangle adjacent to $p_r p_i p_j$ along $\overline{p_i p_j}$.
- 4. (*Flip $\overline{p_i p_j}$:*) Replace $\overline{p_i p_j}$ with $\overline{p_r p_k}$.
- 5. LEGALIZEEDGE $(p_r, \overline{p_i p_k}, T)$
- 6. LEGALIZEEDGE $(p_r, \overline{p_k p_j}, T)$