

BACCALAUREAT PROFESSIONNEL T.M.A Technicien Menuisier – Agenceur

ÉPREUVE : E2 – Épreuve de technologie

Unité U21 Analyse technique d'un ouvrage

DOSSIER CORRIGÉ

Temps conseillé	Composition du dossier	Pagination	Notation
	Page de garde	1/6	
40 min	Lecture de plan	2/6	/ 40
45 min	RDM	3/6	/ 100
45 min	Répartition dalles plafond	4/6	/ 80
60 min	Acoustique / réverbération	5/6	/ 100
40 min	Traçage VG / AC	6/6	/80

Total = / 400

/ 20

Compétences terminales évaluées :

- C1.1 .décoder et analyser les données de définition
- C2.1.choisir et adapter des solutions techniques
- C2.2.établir les plans et tracés d'exécution d'un ouvrage.

CODE EPREUVE :		EXAMEN:	SPÉCIALITE :		
1606-TM	A T 21	BACCALAUREAT PROFESSIONNEL	Technicien Menuisier - A	r - Agenceur	
SESSION 2016	DOSSIER CORRIGÉ	EPREUVE : E2 – Épreuve de technologie Unité U21 : Analyse technique d'un ouvra	0	alculatrice autorisée : OUI	
Durée : 4 h 00		Coefficient : 3	Р	age : 1 / 6	

Corrigé

LECTURE DE PLANS

Etude du dossier d'architecte

1.1 Inscrire le nom du plan 1

Plan de Masse ou Plan Masse

1.2 Indiquer l'orientation des façades du bâtiment A :

Façade 1 : Nord-Est Façade 2 : Sud-Est Façade 3 : Nord-Ouest Façade 4 : Sud-Ouest

1.3 Inscrire l'orientation de la façade du bâtiment B

Façade 5 : Sud-Ouest

1.4 Quel est le type d'ouverture de la porte fenêtre repérée $oldsymbol{a}$ sur la façade du Bâtiment B

Ouvrant à la française

1.5 Quelle pièce est éclairée par la porte fenêtre repérée $oldsymbol{(b)}$ sur la façade Sud Ouest du Bâtiment D

Chambre D8

1.6 Calculer le linéaire de plinthe des pièces repérées sur le plan Extrait Bâtiment A

Détailler le mode de calcul

- Pièce **A26** (linge propre)

 $(6,59 + 4,15 + 5,49 + 4,29) - (1,26 \times 2) = 18,00 \text{ m}^2$

1.7 Dans le tableau ci-dessous indiquer par une croix le sens d'ouverture des portes (Repéré sur Extrait Bâtiment A)

Pièces	Poussant gauche	Poussant droite
A19		X
A21	X	
A22	X	
A58	X	

1.8 Sur la coupe AA donner:

- La hauteur du Vide Sanitaire : 60 cm

- La hauteur sous plafond : 2,60 m

- La hauteur sous fermettes : 2,85 m

- Le niveau du faîtage : + 5,68 m

1.9 Sur la coupe BB dans le rectangle en pointillés gras et à l'aide du plan d'ensemble, Indiquer le nombre de portes :

Portes poussant droite: 8

Portes poussant gauche: 10

Question	1.1	/2
Question	1.2	/8
Question	1.3	/2
Question	1.4	/2
Question	1.5	/2
Question	1.6	/10
Question	1.7	/4
Question	1.8	/6
Question	1.9	/4
To	otal =	/40

Examen: Baccalauréat Professionnel T.M.A - Epreuve: E2 - 1606-TMA T 21 - Page 2/6

Corrigé

Résistance des matériaux

Etagère en MDF-HLS

L'étagère située dans l'atelier cuisine de largeur 180 mm et d'une longueur de 1200mm doit supporter un poids de : 6 Boites décoratives d'un poids de 870 grammes chacune et de 6 casseroles de 1560 grammes chacune

L'étagère à une densité de 15 kilogrammes au m²

1.1 Déterminer le poids total en N (avec $g = 9.81 \text{m/s}^2$)

$$((0.87 \times 6) + (1.56 \times 6) + (0.18 \times 1.2 \times 15)) \times 9.81 = 174.81N$$

1.2 Déterminer la charge linéique en N/mm (Q)

$$Q=174.81 / 1200 = (0.1457) 0.15 N /mm$$

Nous étudierons uniquement la partie située entre les points A et B

2.1 Modéliser le profil porteur entre les points A et B pour une charge répartie de 0,15

2.2 Déterminer les intensités en daN des actions aux appuis A et B

$$174,81 = 17,48$$
daN

A = 8.74 daN

 $B = 8.74 \, daN$

Moment fléchissant

3.1 Déterminer le moment fléchissant maximum daN .cm

Q = charge en daN pour 1cm

 $Mf = Q \times L^2$

0,15 x 120² = 270 daN cm

Pour du 1 C

 $I = B \times h^3$

Pour du 1,9 cm

Pour du 2,2 cm

Pour du 2,5 cm

$$18 \times 1.9^3 = 10.29 \text{ cm}^4$$

$$18 \times 2.2^3 = 15.97 \text{ cm}^4$$

$$18 \times 2.5^3 = 23.44 \text{ cm}^2$$

3.3 Déterminer la flèche en cm

Elasticité pour MDF-HLS E = 26000 daN / cm²

$$f = 5 \times Q \times L^4$$

8 48 EI

3.2 Calculer le moment quadratique I en cm ⁴

ou

$$f = 5 \times Q \times L^4$$

384 EI

Pour du 1,9 cm

Pour du 2,2 cm

Pour du 2,5 cm

$$5 \times 0.15 \times 120^4$$
 = 1,68 cm 348 x 26000 x 10,29

$$\frac{5 \times 0.15 \times 120^4}{348 \times 26000 \times 15,97}$$
 = 1,08 cm

$$\frac{5 \times 0.15 \times 120^4}{348 \times 2600 \times 23.44} = 0,73 \text{ cm}$$

3.4 Suivant le résultat ci-dessus, justifier le choix de l'épaisseur du MDF de l'étagère pour ces trois possibilités : 19 mm ; 25 mm pour une flèche instantanée maxi de 1/150

120/150 = 0.8 cm

D'où le choix de l'épaisseur du MDF 25 mm

Du	·		
Qu	estion	1.1	/5
Qu	estion	1.2	/5
Qu	estion	2.1	/5
Qu	estion	2.2	/5
Qu	estion	3.1	/15
Qu	estion	3.2	/15
Qu	estion	3.3	/30
Qu	estion	3.4	/20
	T	otal =	/100

Barème de correction

Corrigé

CONFIGURATION DE L'ATELIER CUISINE

Les caractéristiques de la salle sont :

Longueur L = 6,48 mLargeur I = 4,76 m

Décrochement L = 4,88 m I = 2,26 m

Hauteur sous plafond = 2,60 m

Les ouvertures se composent de la façon suivante :

1 porte de I = 1,55 m H= 2,04 m

1 porte fenêtre I = 3 m H= 2,2 m.

1 fenêtre | I = 1,2 m H= 1 m

Calculer la durée de réverbération de l'atelier cuisine :

On calcule d'abord la surface d'absorption équivalente suivant le tableau ci-dessous Les sons sont étudiés à la fréquence de **1000 Hz**.

Pour la précision des calculs utiliser deux chiffres après la virgule

	Nature	Quant	Long	Larg	Haut	Surface	$S = m^2$	а	axS
						à déduire			
Décrochement		1	4,88	2,26		11,03			
Sol		1	6,48	4,76		11,03	19,81	0,03	0,59
Plafond	Plâtre peint	1	6,48	4,76		11,03	19,81	0,03	0,59
Murs	Plâtre peint	1	6,48	4,76	2,6		47,47	0,03	1,42
Porte	Isoplane pleine	1		1,55	2,04		3,18	0,09	0,29
Porte fenêtre		1	3,00		2,20		6,6	0,12	0,79
Fenêtre		1	1,20		1,00		1,2	0,12	0,14
ΣSa									3,83
Volume local	Surface sol = 19	9,81					V= 51,50 m ³		
	•				•	<u> </u>		Tr =	2.15

Le niveau acoustique de l'atelier cuisine est corrigé Quel sera alors :

Tr après la pose d'un plafond suspendu en panneau acoustique de laine de roche 1200 x 600 type Ekla de 15 mm d'épaisseur

La correction acoustique impose de baisser la hauteur du plafond à 2,30 m du local par la pose d'un faux plafond de dalles acoustiques

Configuration de la salle avec le faux plafond

Connigu	iration de la sa	iic avcc	ic laux	piaioni	4				
	Nature	Quant	Long	Larg	Haut	Surface à	S =m²	а	axS
						déduire			
Décrochement		1	4,88	2,26		11,03			
Sol		1	6,48	4,76		11,03	19,81	0,03	0,59
Plafond	acoustique	1	6,48	4,76		11,03	19,81	0,85	16.84
Murs	Plâtre peint	1	6,48	4,76	2,3		40,72	0,03	1.22
Porte	Isoplane pleine	1		1,55	2,04		3,18	0,09	0,29
Porte fenêtre		1	3,00		2,20		6,6	0,12	0,79
Fenêtre		1	1,20		1,00		1,2	0,12	0,14
ΣSa									18,65
Volume local	Surface sol = 19	9,81					V=45,56m ³		
					•		•	Tr=	0.39

Espace réservé aux calculs

Barème de correction

Calcul des surfaces	/20
Calcul de Tr	/30
Calcul des surfaces	/20
Calcul de Tr avec le faux plafond	/30
Total =	/100

Examen: Baccalauréat Professionnel T.M.A - Epreuve: E2 – 1606-TMA T 21- Page: 5/6

Barème de correction

Vraie grandeur /30

Angle de corroyage /30

Précision /20

Total = /80