

1 Docket No. TINE-002
2

3

4 **APPLICATION**
5

6

7

8 **FOR UNITED STATES LETTERS PATENT**
9

10

11 -----
12

13

14 **SPECIFICATION**
15

16

17

18 TO ALL WHOM IT MAY CONCERN:
19

20 BE IT KNOWN THAT I, **Gordon A. Tiner**, a citizen of the United States, have
21 invented a new and useful fluid cooled air conditioning system of which the following
22 is a specification:
23

1

2

3 **Fluid Cooled Air Conditioning System**

4

5

6 **CROSS REFERENCE TO RELATED APPLICATIONS**

7 Not applicable to this application.

8

9

10 **STATEMENT REGARDING FEDERALLY
11 SPONSORED RESEARCH OR DEVELOPMENT**

12 Not applicable to this application.

13

14

15 **BACKGROUND OF THE INVENTION**

16

17

18

19 **Field of the Invention**

20

21 The present invention relates generally to air conditioning systems and more
22 specifically it relates to a fluid cooled air conditioning system for effectively cooling a
23 continuous flow of return air to a desired temperature.

24

25

26 **Description of the Related Art**

27

28 Conventional air conditioning systems have been in use for years. One type of
29 air conditioning system utilizes a liquid or gaseous refrigerant that requires the usage

1 of a compressor and a condenser. Refrigerant cooled systems receive return air and
2 pass the air over the condenser to reduce the temperature of the air before dispensing
3 into a room via an air duct.

4

5 In larger buildings, refrigerant-based systems run into problems because the conduit
6 between the condenser and the air handler exceeds distance limitations, or the length of
7 duct work becomes unmanageable. To solve these inherent problems with conventional
8 refrigerant-based systems, "chilled water systems" are typically utilized.

9

10 In a chilled water system, the entire air conditioner is positioned upon the roof or
11 behind the building. It cools water to between 40 and 45 Fahrenheit. This chilled water is
12 then piped throughout the building and connected to air handlers as needed. One popular
13 application of chilled water systems has been underfloor-air for computer rooms using
14 false floors and the like. It is well known that computer rooms have numerous electronic
15 heat generating devices that have high cooling requirements.

16

17 The main problem with conventional chilled water systems is that they are not
18 capable of handling high cooling loads that can be associated with a computer room
19 operating at peak capacity. Another problem with conventional chilled water systems
20 is that they require large flow rates of chilled water to maintain a desirable
21 temperature.

22

23 While these devices may be suitable for the particular purpose to which they
24 address, they are not as suitable for effectively cooling a continuous flow of return air
25 to a desired temperature. Conventional chilled water systems are not capable of
26 efficiently and effectively cooling a room having high cooling requirements.

27

28 In these respects, the fluid cooled air conditioning system according to the
29 present invention substantially departs from the conventional concepts and designs of

1 the prior art, and in so doing provides an apparatus primarily developed for the
2 purpose of effectively cooling a continuous flow of return air to a desired temperature.

3

4

1

2 **BRIEF SUMMARY OF THE INVENTION**

3

4 In view of the foregoing disadvantages inherent in the known types of air
5 conditioning systems now present in the prior art, the present invention provides a new
6 fluid cooled air conditioning system construction wherein the same can be utilized for
7 effectively cooling a continuous flow of return air to a desired temperature.

8

9 The general purpose of the present invention, which will be described
10 subsequently in greater detail, is to provide a new fluid cooled air conditioning system
11 that has many of the advantages of the air conditioning systems mentioned heretofore
12 and many novel features that result in a new fluid cooled air conditioning system
13 which is not anticipated, rendered obvious, suggested, or even implied by any of the
14 prior art air conditioning systems, either alone or in any combination thereof.

15

16 To attain this, the present invention generally comprises a first valve fluidly
17 connected to a chilled fluid supply, a main cooling unit connected to the first valve, a
18 second valve connected to the main cooling unit and a chilled fluid return, and a
19 precooling unit connected to the second valve. During normal cooling requirements,
20 the second valve diverts the chilled fluid to the chilled fluid return instead of the
21 precooling unit. However, during high cooling requirements, the second valve allows
22 the chilled fluid to pass through the precooling unit for precooling the return air prior
23 to entering the main cooling unit.

24

25 There has thus been outlined, rather broadly, the more important features of the
26 invention in order that the detailed description thereof may be better understood, and
27 in order that the present contribution to the art may be better appreciated. There are
28 additional features of the invention that will be described hereinafter and that will form
29 the subject matter of the claims appended hereto.

1
2 In this respect, before explaining at least one embodiment of the invention in
3 detail, it is to be understood that the invention is not limited in its application to the
4 details of construction and to the arrangements of the components set forth in the
5 following description or illustrated in the drawings. The invention is capable of other
6 embodiments and of being practiced and carried out in various ways. Also, it is to be
7 understood that the phraseology and terminology employed herein are for the purpose
8 of the description and should not be regarded as limiting.

9
10 A primary object of the present invention is to provide a fluid cooled air
11 conditioning system that will overcome the shortcomings of the prior art devices.

12
13 A second object is to provide a fluid cooled air conditioning system for
14 effectively cooling a continuous flow of return air to a desired temperature.

15
16 Another object is to provide a fluid cooled air conditioning system that may be
17 utilized in various cooling applications such as but not limited to underfloor air and
18 computer rooms.

19
20 An additional object is to provide a fluid cooled air conditioning system that
21 reduces the amount of chilled water required to cool heated return air.

22
23 Other objects and advantages of the present invention will become obvious to the
24 reader and it is intended that these objects and advantages are within the scope of the
25 present invention.

26
27 To the accomplishment of the above and related objects, this invention may be
28 embodied in the form illustrated in the accompanying drawings, attention being called
29 to the fact, however, that the drawings are illustrative only, and that changes may be

1 made in the specific construction illustrated and described within the scope of the
2 appended claims.

3

1

2 **BRIEF DESCRIPTION OF THE DRAWINGS**

3

4 Various other objects, features and attendant advantages of the present
5 invention will become fully appreciated as the same becomes better understood when
6 considered in conjunction with the accompanying drawings, in which like reference
7 characters designate the same or similar parts throughout the several views, and
8 wherein:

9

10 FIG. 1 is an upper perspective view of the present invention.

11

12 FIG. 2 is a top view of the present invention illustrating the airflow.

13

14 FIG. 3 is a block diagram illustrating the fluid flow during normal cooling
15 requirements.

16

17 FIG. 4 is a block diagram illustrating the fluid flow during high cooling
18 requirements whereby the chilled fluid passes through the precooling unit.

19

20 FIG. 5 is a flow chart illustrating the overall functionality of the present
21 invention.

22

23 FIG. 6 is a block diagram of the present invention illustrating the electrical
24 connections and communications between the electrical components.

25

26

1

2 **DETAILED DESCRIPTION OF THE INVENTION**

3

4 *A. Overview*

5 Turning now descriptively to the drawings, in which similar reference
6 characters denote similar elements throughout the several views, FIGS. 1 through 6
7 illustrate a fluid cooled air conditioning system 10, which comprises a first valve 30
8 fluidly connected to a chilled fluid supply 20, a main cooling unit 40 connected to the
9 first valve 30, a second valve 50 connected to the main cooling unit 40 and a chilled
10 fluid return 22, and a precooling unit 60 connected to the second valve 50. During
11 normal cooling requirements, the second valve 50 diverts the chilled fluid to the
12 chilled fluid return 22 instead of the precooling unit 60. However, during high cooling
13 requirements, the second valve 50 allows the chilled fluid to pass through the
14 precooling unit 60 for precooling the return air prior to entering the main cooling unit
15 40.

16

17 *B. Chilled Fluid System*

18 The chilled fluid system may be comprised of any conventional chilled fluid
19 system commonly utilized within the air conditioning industry. The chilled fluid
20 system may utilize various types of fluid such as but not limited to water. The chilled
21 fluid system has a chilled fluid return 22 for collecting the heated fluid, a fluid
22 conditioner 24 for chilling the heated fluid, and a chilled fluid supply 20 for providing
23 the chilled fluid to the present invention as shown in Figures 3 and 4 of the drawings.
24 The fluid conditioner 24 reduces the temperature of the fluid through a heat exchange
25 process.

26

27 *C. First Valve*

28 The first valve 30 fluidly is connected to the chilled fluid supply 20 as shown in
29 Figures 1, 3 and 4 of the drawings. The first valve 30 receives a fluid flow F1 and

1 controls the flow to the main cooling unit **40** depending upon the cooling
2 requirements. The fluid flow F1 preferably has a temperature of approximately 45
3 degrees, however various other temperatures may be utilized.

4

5 *D. Main Cooling Unit*

6 The main cooling unit **40** is fluidly connected to the first valve **30** as shown in
7 Figures 1, 3 and 4 of the drawings. The main cooling unit **40** is preferably comprised
8 of a cooling coil structure wherein the fluid flow F1 passes through the coils thereby
9 conducting heat from the precooled air from the precooling unit **60**.

10

11 The fluid leaves the main cooling unit **40** as fluid flow F2 wherein the
12 temperature of fluid flow F2 may be approximately 55 degrees depending upon the
13 amount of heat conducted from the airflow. The supply air leaving through the main
14 cooling unit **40** is preferably approximately 55 degrees, however various other
15 temperatures may be achieved for the supply air as shown in Figures 1 and 2 of the
16 drawings.

17

18 *E. Precooling Unit*

19 The precooling unit **60** is positioned to receive return air prior to the main
20 cooling unit **40** as shown in Figures 1 and 2 of the drawings. The precooling unit **60** is
21 fluidly connected to the second valve **50** as shown in Figures 1, 3 and 4 of the
22 drawings. The precooling unit **60** is preferably comprised of a cooling coil structure
23 wherein the fluid flow F3 from the second valve **50** passes through the coils thereby
24 conducting heat from the return air.

25

26 The fluid leaves the precooling unit **60** as fluid flow F5 as shown in Figure 1 of
27 the drawings. The fluid flow F5 is then combined with the diversion fluid flow F4 to
28 form fluid flow F6 as shown in Figure 1 of the drawings. The second valve **50**

1 determines the flow rate of the chilled fluid that passes through the precooling unit **60**
2 based upon the cooling requirements of the system.

3

4 **F. Second Valve**

5 The second valve **50** is fluidly connected between the main cooling unit **40** and
6 a chilled fluid return **22** and the precooling unit **60** as shown in Figure 1 of the
7 drawings. The second valve **50** directs the chilled fluid to the precooling unit **60**
8 during periods of high cooling requirements and diverts the chilled fluid to the chilled
9 fluid return **22** during periods of normal cooling requirements.

10

11 The second valve **50** is preferably a three-way valve structure, however various
12 other structures may be utilized. The periods of high cooling requirements occur when
13 the room temperature exceeds 75 degrees Fahrenheit, though various other set points
14 may be utilized to determine when chilled fluid is diverted through the precooling unit
15 **60**.

16

17 **G. Control Unit**

18 A control unit **72** is in communication with the first valve **30**, the second valve
19 **50**, a blower unit **70**, the fluid conditioner **24** and sensors as shown in Figure 6 of the
20 drawings. The control unit **72** is preferably programmable for allowing the setting of
21 various set points at various periods of time. The blower unit **70** draws the return air
22 through the precooling unit **60** and then through the main cooling unit **40** as shown in
23 Figure 2 of the drawings.

24

25 The control unit **72** receives input data from the sensors regarding return air
26 conditions, precooled air conditions, supply air conditions, room air conditions and
27 fluid flow conditions. The air conditions monitored by the control unit **72** include but
28 are not limited to temperature, flow rate, humidity, pressure and the like. The fluid
29 conditions monitored by the control unit **72** include but are not limited to temperature,

1 flow rate, pressure and the like. The control unit 72 adjusts the first valve 30 and the
2 second valve 50 according to the preprogrammed settings and the input data.

3

4 **H. Operation**

5 Figure 5 illustrates the overall operation of the present invention. During the
6 initial stages of operation during normal cooling requirements, only the main cooling
7 unit 40 is activated by the opening of the first valve 30 as shown in Figure 3 of the
8 drawings. The second valve 50 diverts the chilled coolant to the child fluid return as
9 shown in Figure 3 of the drawings. The first valve 30 may be adjustable for allowing
10 controlling of the flow of the chilled fluid to the main cooling unit 40 depending upon
11 cooling requirements. The return air thereby passes through the precooling unit 60
12 without any cooling occurring and then entering the main cooling unit 40 as shown in
13 Figures 1 and 2 of the drawings.

14

15 If the cooling requirements are high (e.g. the room temperature exceeds 75
16 degrees, etc.), the second valve 50 is thereby manipulated to allow chilled fluid to
17 enter the precooling unit 60. The fluid flow F3 that enters the precooling unit 60 is
18 approximately 55 degrees after being heated by the main cooling unit 40. The fluid
19 flow F5 that leaves the precooling unit 60 may have a temperature of approximately 65
20 degrees after conducting the heat from the return air. For example, the return air
21 temperature may range between 75 – 95 degrees with the precooling unit 60 reducing the
22 temperature of the precooled air exiting the precooling unit 60 to approximately 75
23 degrees. The precooled air then enters the main cooling unit 40 where the precooled air is
24 further cooled to a temperature of approximately 55 degrees. Various other temperature
25 ranges may be achieved within the present invention as desired.

26

27 As to a further discussion of the manner of usage and operation of the present
28 invention, the same should be apparent from the above description. Accordingly, no
29 further discussion relating to the manner of usage and operation will be provided.

1
2 With respect to the above description then, it is to be realized that the optimum
3 dimensional relationships for the parts of the invention, to include variations in size,
4 materials, shape, form, function and manner of operation, assembly and use, are
5 deemed to be within the expertise of those skilled in the art, and all equivalent
6 structural variations and relationships to those illustrated in the drawings and
7 described in the specification are intended to be encompassed by the present invention.
8

9 Therefore, the foregoing is considered as illustrative only of the principles of
10 the invention. Further, since numerous modifications and changes will readily occur to
11 those skilled in the art, it is not desired to limit the invention to the exact construction
12 and operation shown and described, and accordingly, all suitable modifications and
13 equivalents may be resorted to, falling within the scope of the invention.

14

Index of Elements for Fluid Cooled Air Conditioning System (TINE-002)

<input type="checkbox"/> ENVIRONMENTAL ELEMENTS	<input type="checkbox"/> 40. Main Cooling Unit
<input type="checkbox"/>	<input type="checkbox"/> 41.
<input type="checkbox"/>	<input type="checkbox"/> 42.
<input type="checkbox"/>	<input type="checkbox"/> 43.
<input type="checkbox"/>	<input type="checkbox"/> 44.
<input type="checkbox"/>	<input type="checkbox"/> 45.
<input type="checkbox"/>	<input type="checkbox"/> 46.
<input type="checkbox"/>	<input type="checkbox"/> 47.
<input type="checkbox"/>	<input type="checkbox"/> 48.
<input type="checkbox"/>	<input type="checkbox"/> 49.
<input type="checkbox"/> 10. Fluid Cooled Air Conditioning System	<input type="checkbox"/> 50. Second Valve
<input type="checkbox"/> 11.	<input type="checkbox"/> 51.
<input type="checkbox"/> 12.	<input type="checkbox"/> 52.
<input type="checkbox"/> 13.	<input type="checkbox"/> 53.
<input type="checkbox"/> 14.	<input type="checkbox"/> 54.
<input type="checkbox"/> 15.	<input type="checkbox"/> 55.
<input type="checkbox"/> 16.	<input type="checkbox"/> 56.
<input type="checkbox"/> 17.	<input type="checkbox"/> 57.
<input type="checkbox"/> 18.	<input type="checkbox"/> 58.
<input type="checkbox"/> 19.	<input type="checkbox"/> 59.
<input type="checkbox"/> 20. Chilled Fluid Supply	<input type="checkbox"/> 60. Precooling Unit
<input type="checkbox"/> 21.	<input type="checkbox"/> 61.
<input type="checkbox"/> 22. Chilled Fluid Return	<input type="checkbox"/> 62.
<input type="checkbox"/> 23.	<input type="checkbox"/> 63.
<input type="checkbox"/> 24. Fluid Conditioner	<input type="checkbox"/> 64.
<input type="checkbox"/> 25.	<input type="checkbox"/> 65.
<input type="checkbox"/> 26.	<input type="checkbox"/> 66.
<input type="checkbox"/> 27.	<input type="checkbox"/> 67.
<input type="checkbox"/> 28.	<input type="checkbox"/> 68.
<input type="checkbox"/> 29.	<input type="checkbox"/> 69.
<input type="checkbox"/> 30. First Valve	<input type="checkbox"/> 70. Blower Unit
<input type="checkbox"/> 31.	<input type="checkbox"/> 71.
<input type="checkbox"/> 32.	<input type="checkbox"/> 72.
<input type="checkbox"/> 33.	<input type="checkbox"/> 73.
<input type="checkbox"/> 34.	<input type="checkbox"/> 74.
<input type="checkbox"/> 35.	<input type="checkbox"/> 75.
<input type="checkbox"/> 36.	<input type="checkbox"/> 76.
<input type="checkbox"/> 37.	<input type="checkbox"/> 77.
<input type="checkbox"/> 38.	<input type="checkbox"/> 78.
<input type="checkbox"/> 39.	<input type="checkbox"/> 79.