Business Case: Target SQL

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:
- 1. Data type of all columns in the "customers" table.

```
SELECT
column_name,
data_type
FROM
`Target.INFORMATION_SCHEMA.COLUMNS`
WHERE
table_name = 'customers';
```


2. Get the time range between which the orders were placed.

SELECT

min(order_purchase_timestamp) as First_order,
max(order_purchase_timestamp) as last_order,
date_diff(max(order_purchase_timestamp),
min(order_purchase_timestamp), day) as Difference in days'
FROM `Target.orders`

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DE	TAILS EXECU	TION GRAPH
Row	First_order ▼	/1	last_order ▼	//	Difference_in_days	
1	2016-09-04 21:15	5:19 UTC	2018-10-17 1	7:30:18 UTC	772	

3. Count the Cities & States of customers who ordered during the given period.

SELECT

count(distinct customer_city) as City_count, count(distinct customer_state) as State_count FROM

`Target.customers` as c JOIN `Target.orders` as o ON c.customer_id = o.customer_id

2. In-depth Exploration:

1. Is there a growing trend in the no. of orders placed over the past years?

Growing trends considering year-on-year analysis for 2016, 2017, and 2018 isn't much insightful here, assuming that the question is asking month-on-month analysis.

SELECT EXTRACT(Year from order_purchase_timestamp) AS order_year,EXTRACT(month from order_purchase_timestamp) AS order_month, COUNT(*) AS order_count

FROM `Target.orders` GROUP BY order_year, order_month ORDER BY order_year, order_month;

Row	over_year ▼	over_month ▼	order_count ▼
1	2016	9	4
2	2016	10	324
3	2016	12	1
4	2017	1	800
5	2017	2	1780
6	2017	3	2682
7	2017	4	2404
8	2017	5	3700
9	2017	6	3245
10	2017	7	4026

Growing Trend of Number of Orders

From September 2016 to November 2017, there is a general upward trend in order counts, indicating overall growth in orders placed. However, this growth trend was disrupted in December 2017, and the orders count dropped, recovered back from January 2018 and was stable and dropped drastically again in September 2018.

2. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

SELECT

EXTRACT(month from order_purchase_timestamp) AS order_month, COUNT(*) AS order_count FROM `Target.orders` GROUP BY order_month ORDER BY Order_month;

Row	order_month ▼	order_count ▼
1	1	8069
2	2	8508
3	3	9893
4	4	9343
5	5	10573
6	6	9412
7	7	10318
8	8	10843
9	9	4305
10	10	4959

There is a general trend of higher order counts in the middle months of the year (May, June, July, August), possibly due to summer holiday shopping, indicating that these months might be popular for shopping.

September has the lowest order count in this dataset. It might be worth investigating potential reasons for the sudden and significant drop in orders during this month.

3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs: Dawn
7-12 hrs: Mornings
13-18 hrs: Afternoon
19-23 hrs: Night

SELECT

CASE

WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 0 AND 6 THEN 'Dawn'

WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 7 AND 12 THEN 'Morning'

WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 13 AND 18 THEN 'Afternoon'

ELSE 'Night'

END AS time_of_day,

COUNT(*) AS order_count

FROM

`Target.orders`

GROUP BY

time_of_day

ORDER BY

order_count DESC;

11	time_of_day ▼	order_count ▼
1	Afternoon	38135
2	Night	28331
3	Morning	27733
4	Dawn	5242

Most orders were placed during the afternoon followed by Night.

3. . Evolution of E-commerce orders in the Brazil region:

1. Get the month on month no. of orders placed in each state.

SELECT

EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month, c.customer_state as state, COUNT(*) AS order_count

FROM

`Target.orders` as o JOIN `Target.customers` as c

ON o.customer_id = c.customer_id

GROUP BY

order_month,

state

ORDER BY

order_month,

state,

Order count;

Row order_m	onth ▼ state ▼	order_count ▼	11
1	1 AC	8	
2	1 AL	39	
3	1 AM	12	:
4	1 AP	11	
5	1 BA	264	
6	1 CE	99	
7	1 DF	151	
8	1 ES	159	
9	1 GO	164	
10	1 MA	66	

2. How are the customers distributed across all the states?

SELECT customer_state, count(*) as customer_count FROM `Target.customers` GROUP BY customer_state ORDER BY customer_count desc

Row	customer_state ▼	customer_count -			
1	SP	41746			
2	RJ	12852			
3	MG	11635			
4	RS	5466			
5	PR	5045			
6	SC	3637			
7	ВА	3380			
8	DF	2140			
9	ES	2033			
10	GO	2020			

4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

1. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders.

```
with CTE as

(SELECT *

FROM

`Target.payments` AS p JOIN `Target.orders` as o

ON p.order_id = o.order_id

WHERE EXTRACT(month from o.order_purchase_timestamp) BETWEEN 1 AND 8

AND EXTRACT(year from o.order_purchase_timestamp) BETWEEN 2017 AND 2018

), CTE2 AS(SELECT EXTRACT(year from order_purchase_timestamp) AS year,

SUM(payment_value) as cost,

FROM CTE

GROUP BY year

ORDER BY year
```

SELECT year, round(cost,2) as cost, LEAD(cost) over(order by year) as next_year_value, round(((LEAD(cost) over(order by year)-cost)/cost)*100,2) as percent_increase from CTE2

Row	year ▼	cost ▼	next_year_value ▼	percent_increase 🔻
1	2017	3669022.12	8694733.839999	136.98
2	2018	8694733.84	nuli	nuli

There is a 136.98 % increase in the cost of orders from 2017 to 2018.

2. Calculate the Total & Average value of order price for each state.

```
SELECT
c.customer_state,
round(SUM(oil.price),2) as Total_price,
round(sum(oil.price)/count(distinct oil.order_id),2) as Average_price
FROM`
Target.customers` as c JOIN `Target.orders` as o
ON c.customer_id = o.customer_id
JOIN `Target.order_items` as oil
ON oil.order_id = o.order_id
GROUP BY
c.customer_state
ORDER BY
```

c.customer_state;

Row	customer_state ▼	Total_price ▼	Average_price ▼
1	AC	15982.95	197.32
2	AL	80314.81	195.41
3	AM	22356.84	152.09
4	AP	13474.3	198.15
5	ВА	511349.99	152.28
6	CE	227254.71	171.25
7	DF	302603.94	142.4
8	ES	275037.31	135.82
9	GO	294591.95	146.78
10	MA	119648.22	161.69

Results per page: 50 ▼ 1 – 27 of 27 | ⟨ ⟨ ⟩ > |

3. Calculate the Total & Average value of order freight for each state.

SELECT

C.customer_state,
round(SUM(oil.freight_value),2) as Total_freight_value,
round(sum(oil.freight_value)/count(distinct oil.order_id),2) as Average_freight_value
FROM

`Target.customers` as c JOIN `Target.orders` as o ON c.customer_id = o.customer_id JOIN `Target.order_items` as oil ON oil.order_id = o.order_id GROUP BY c.customer_state ORDER BY c.customer_state;

Row	customer_state ▼	Total_freight_value	Average_freight_valu					//
1	AC	3686.75	45.52					
2	AL	15914.59	38.72					
3	AM	5478.89	37.27					
4	AP	2788.5	41.01					
5	BA	100156.68	29.83					
6	CE	48351.59	36.44					
7	DF	50625.5	23.82					
8	ES	49764.6	24.58					
		Results per pa	ge: 50 ▼ 1 -	- 27 of 27	I<	<	>	>1

5. Analysis based on sales, freight and delivery time.

1. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

- time_to_deliver = order_delivered_customer_date order_purchase_timestamp
 - **diff_estimated_delivery** = order_estimated_delivery_date order_delivered_customer_date

SELECT

order_id,

order_purchase_timestamp,

order_delivered_customer_date,

order_estimated_delivery_date,

timestamp_diff(order_delivered_customer_date, order_purchase_timestamp, day) as time_to_deliver,

timestamp_diff(order_delivered_customer_date,order_estimated_delivery_date, day) as diff_estimated_delivery

FROM `Target.orders`

where order_status = "delivered"

Row ,	order_delivered_customer_date	▼ order_estimated_delivery_date ▼	time_to_deliver ▼	diff_estimated_deliv
1	2017-05-16 14:49:55 UTC	2017-05-18 00:00:00 UTC	30	-1
2	2017-05-17 10:52:15 UTC	2017-05-18 00:00:00 UTC	32	0
3	2017-05-16 09:07:47 UTC	2017-05-18 00:00:00 UTC	29	-1
4	2017-05-22 14:11:31 UTC	2017-05-18 00:00:00 UTC	43	4
5	2017-05-22 16:18:42 UTC	2017-05-18 00:00:00 UTC	40	4
6	2017-05-19 13:44:52 UTC	2017-05-18 00:00:00 UTC	37	1
7	2017-05-23 14:19:48 UTC	2017-05-18 00:00:00 UTC	33	5
8	2017-05-24 08:11:57 UTC	2017-05-18 00:00:00 UTC	38	6
9	2017-08-16 20:19:32 UTC	2017-08-14 00:00:00 UTC	36	2
		Results per page: 50 ▼ 1	– 50 of 96478	< > >I

87182 orders out of 96478 were delivered before the estimated delivery date.

2. Find out the top 5 states with the highest & lowest average freight value.

```
with CTE as
(SELECT c.customer_state,
round(sum(oil.freight_value)/count(distinct oil.order_id),2) as Average_freight_value
FROM `Target.customers` as c JOIN `Target.orders` as o
ON c.customer_id = o.customer_id
JOIN `Target.order_items` as oil
ON oil.order_id = o.order_id
GROUP BY c.customer_state
)
(SELECT 'Top 5 Lowest Average Freight' AS category, * from CTE
order by average_freight_value
limit 5)
UNION ALL
(SELECT 'Top 5 Highest Average Freight' AS category, * from CTE
order by average_freight_value desc
limit 5)
```

Row	category ▼	customer_state ▼	Average_freight_valu	
1	Top 5 Highest Average Freight	RR	48.59	
2	Top 5 Highest Average Freight	РВ	48.35	
3	Top 5 Highest Average Freight	RO	46.22	
4	Top 5 Highest Average Freight	AC	45.52	
5	Top 5 Highest Average Freight	PI	43.04	
6	Top 5 Lowest Average Freight	SP	17.37	
7	Top 5 Lowest Average Freight	MG	23.46	
8	Top 5 Lowest Average Freight	PR	23.58	
9	Top 5 Lowest Average Freight	DF	23.82	
10	Top 5 Lowest Average Freight	RJ	23.95	

3. Find out the top 5 states with the highest & lowest average delivery time.

with CTE as

(SELECT c.customer_state, round(sum(timestamp_diff(order_delivered_customer_date, order_purchase_timestamp, day))/count(distinct c.customer_id),2) as Average_delivery_time,

FROM `Target.customers` as c JOIN `Target.orders` as o

ON c.customer_id = o.customer_id

GROUP BY c.customer_state)

(SELECT 'Top 5 Lowest Average Delivery time' as category, * FROM CTE

ORDER BY CTE.Average_delivery_time

LIMIT 5)

UNION ALL

(SELECT 'Top 5 Highest Average Delivery time' as category, * FROM CTE

ORDER BY CTE. Average_delivery_time desc

LIMIT 5)

1 Top 5 Highest Average Delivery AP 26.34 2 Top 5 Highest Average Delivery RR 25.83 3 Top 5 Highest Average Delivery AM 25.46 4 Top 5 Highest Average Delivery AL 23.11 5 Top 5 Highest Average Delivery PA 22.62 6 Top 5 Lowest Average Delivery SP 8.05 7 Top 5 Lowest Average Delivery PR 11.25 8 Top 5 Lowest Average Delivery MG 11.27 9 Top 5 Lowest Average Delivery DF 12.16 10 Top 5 Lowest Average Delivery SC 14.12	Row	category ▼	customer_state ▼	Average_delivery_tim
3 Top 5 Highest Average Delivery AM 25.46 4 Top 5 Highest Average Delivery AL 23.11 5 Top 5 Highest Average Delivery PA 22.62 6 Top 5 Lowest Average Delivery SP 8.05 7 Top 5 Lowest Average Delivery PR 11.25 8 Top 5 Lowest Average Delivery MG 11.27 9 Top 5 Lowest Average Delivery DF 12.16	1	Top 5 Highest Average Delivery	AP	26.34
4 Top 5 Highest Average Delivery AL 23.11 5 Top 5 Highest Average Delivery PA 22.62 6 Top 5 Lowest Average Delivery SP 8.05 7 Top 5 Lowest Average Delivery PR 11.25 8 Top 5 Lowest Average Delivery MG 11.27 9 Top 5 Lowest Average Delivery DF 12.16	2	Top 5 Highest Average Delivery	RR	25.83
5 Top 5 Highest Average Delivery PA 22.62 6 Top 5 Lowest Average Delivery SP 8.05 7 Top 5 Lowest Average Delivery PR 11.25 8 Top 5 Lowest Average Delivery MG 11.27 9 Top 5 Lowest Average Delivery DF 12.16	3	Top 5 Highest Average Delivery	AM	25.46
6 Top 5 Lowest Average Delivery SP 8.05 7 Top 5 Lowest Average Delivery PR 11.25 8 Top 5 Lowest Average Delivery MG 11.27 9 Top 5 Lowest Average Delivery DF 12.16	4	Top 5 Highest Average Delivery	AL	23.11
7 Top 5 Lowest Average Delivery PR 11.25 8 Top 5 Lowest Average Delivery MG 11.27 9 Top 5 Lowest Average Delivery DF 12.16	5	Top 5 Highest Average Delivery	PA	22.62
8 Top 5 Lowest Average Delivery MG 11.27 9 Top 5 Lowest Average Delivery DF 12.16	6	Top 5 Lowest Average Delivery	SP	8.05
9 Top 5 Lowest Average Delivery DF 12.16	7	Top 5 Lowest Average Delivery	PR	11.25
	8	Top 5 Lowest Average Delivery	MG	11.27
10 Top 5 Lowest Average Delivery SC 14.12	9	Top 5 Lowest Average Delivery	DF	12.16
	10	Top 5 Lowest Average Delivery	SC	14.12

4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

SELECT c.customer_state,

round(sum(timestamp_diff(order_estimated_delivery_date, order_delivered_customer_date, day))/count(distinct c.customer_id),2) as diff_estimated_delivery FROM

`Target.customers` as c JOIN `Target.orders` as o ON c.customer_id = o.customer_id GROUP BY c.customer_state ORDER BY diff_estimated_delivery DESC LIMIT 5

Row	customer_state ▼	diff_estimated_delive
1	AC	19.52
2	AP	18.46
3	RO	18.38
4	AM	18.23
5	RR	14.63

6. Analysis based on the payments:

1. Find the month on month no. of orders placed using different payment types.

SELECT p.payment_type, EXTRACT(Month from o.order_purchase_timestamp) as Month, EXTRACT(Year from o.order_purchase_timestamp) as Year, count(*) as order_count from `Target.payments` as p JOIN `Target.orders` as o ON p.order_id = o.order_id group by p.payment_type, Year, Month

Most used payment method was credit_card followed by UPI.

2. Find the no. of orders placed on the basis of the payment installments that have been paid.

SELECT payment_installments, count(*) as order_count from `Target.payments` WHERE payment_installments > 1 GROUP BY payment_installments

Row	payment_installment	order_count ▼
1	2	12413
2	3	10461
3	4	7098
4	5	5239
5	6	3920
6	7	1626
7	8	4268
8	9	644
9	10	5328
10	11	23