03/03/2025 QUIZ4.

so.far

1. eliminating left recursion

(a) direct left recursion

immediate

A > A \ A > B B \ E

6 indirect left recursion

 $A \rightarrow Bb \mid a$

 $A \Rightarrow B b$

B-Ab

⇒ Abb

idea: reduce to direct recursim

A -> Bb

- A>Bb

a

a

 $B \rightarrow Bbb$

B -> ab B'

ab

B' -> bbB'

Or. B -> A b

B-Ab

A -> Abb

A -> a A'

a

A' -> bb A'

٤

General alsonthum arrange the Ns into some order A1, A2... An for i=1 to n // consider rules Ai >>
for s=1 to i-1

a) replace each rule Ai >> As ? with A: -> SIX | SZX -- | SIEY Where As -> di dz -- () (< b) eliminate direct recursion ex; A→Ba B -> Ab order A, B

$$A \rightarrow B a$$

$$A \rightarrow B a$$

$$B \rightarrow B a b$$

$$B \rightarrow C B'$$

$$B' \rightarrow E$$

$$ab B'$$

order B, A

$$A \rightarrow BQ \Rightarrow A \rightarrow Aba$$
 ca

ex2.
$$S \rightarrow A$$

$$A \rightarrow Ba$$

$$a$$

$$b \rightarrow Ab$$

ex3:
$$A \rightarrow Cd$$

$$B \rightarrow Ce$$

$$C \rightarrow A$$

$$B \rightarrow Ce$$

ex4
$$A \rightarrow Ba$$
| Aa
| C
| B \rightarrow Bb
| Ab

1 d

A, B, C

$$A \rightarrow cd$$
 $A \rightarrow cd$
 $B \rightarrow ce$ $B \rightarrow ce$
 $C \rightarrow cd$ $C \rightarrow fc'$
 $C \rightarrow cd$ $C \rightarrow fc'$
 $C \rightarrow cd$ $C \rightarrow fc'$
 $C \rightarrow cd$ $C \rightarrow fc'$

 $A \rightarrow CA'$ |BaA' $A' \rightarrow aA'$ |E $B \rightarrow Bb$ |d |CA'b |BaA'b

A, B

$$A \rightarrow CA'$$

$$|BaA'|$$

$$A' \rightarrow aA'$$

$$|E|$$

$$B \rightarrow Bb$$

$$|A| \rightarrow Bb$$

$$|B \rightarrow Bb|$$

$$|B \rightarrow Bb|$$

$$|B \rightarrow Bb|$$

$$|B \rightarrow Bb|$$

$$|CA'b|$$

$$|CA'b|$$

$$|BaA'b|$$

$$|BaA'b|$$

$$A \rightarrow CA'$$

$$BaA'$$

$$A' \rightarrow aA'$$

$$1 \in \mathcal{B}$$

$$A' \rightarrow bB'$$

03/05/2025 by looking ahead prok "right rule 0 A 00 A -> Bc BOD input 1: C 0.2 6

back-track free grammar/preditive gramar: can always predict the correct rule with bounded look ahead.

LL(1). back track free. look ahead one word stoken grainmar: can be pursed in I mean time

2: first (a) $\alpha \in (NUTUEOFUE)^*$

 $x \in first(\alpha)$ iff $\alpha \Longrightarrow xy$, $x \in \{T, E, E, E\}$

* . Q E {TUEVEOF } $first(\alpha) = \alpha$

* a G N a -> B1 B2 ··· BK

 $first(\alpha) = first(B_1 B_2 \cdots B_k)$

S-> ABDC

= first (BI) U first (B2). A > a

B-> b

U...first (Bi)

1) where Bi is the first symbol whose
first set does not contain E.

first(s) ② E E first(a) if and only if s \$ a -

E E first (Bi) for every 1 si < k 3(b. -

=> =

2→ d

11 compute. first.

A → BIB2---BZ A > C, Cz --- Cm

// init

for each & E TU {E} U {E oF (

first (a) = a

for each a E N

 $fist(\alpha) = \{ \}$

11 000

While first sets are still changing do 11 iterate all production rules

for each production A -> B1 Bz ... Bk do

tirethis = tiret (B1) - { E}

trailing = true

processed,

for, (= 1 to k-1)

if E 6 first (Bi)

firstkhs = firstrhs v first (Bi+1)

- {2}

ese

traily = false break

Hend for .

69

if 4roùiny = 4rue and $E \in frot(B_k)$ $\int frostrhs = SES \cup frostrhs$ $frost(A) = frost(A) \cup frostrhs$ L: //end of er foro.

ex1. 0 "Goal -> 13+

1 13+ > pair 13+

2 8

3 pair -> (13+) First sets.

1		1 mit	Yound 1	
	Goal	1	Φ 2	
	113+	4	133	
	pair	{3		
	((
	,			
	1)		
	8	8		
	EOF	EQ		