CS 310 - Winter 2000 - Sample Final Exam 3

Last Name:	
First Name:	

1. (Logic) Prove that the following logical implications cannot be reversed:

- 1. $\exists x [p(x) \land q(x)] \Rightarrow \exists x p(x) \land \exists x q(x)$.
- 2. $\forall x [p(x) \lor q(x)] \Leftarrow \forall x p(x) \lor \forall x q(x)$.
- **2.** (Sets) Let X be a set with n elements, and assume that $a \in X$. How many elements are there in each of the following sets:
 - 1. $\mathcal{P}(X) = \text{power set of } X$?
 - 2. $\mathfrak{P}(X \{a\})$?
 - 3. $\mathcal{P}(X) \{\{a\}\}$?
 - 4. $\mathcal{P}(\{X, a\})$?
- **3.** (Functions) Let $f: \{0,1,2,3\} \to \{1,2,3,4\}$ be the function f(x) = "remainder of dividing 2^x by 5". Prove that f is invertible and find its inverse.
- **4.** (Operations) Find the properties (commutative, associative, existence of identity element, existence of inverse) verified by the following operation on \mathbb{R}^+ :

$$x \circ y = \frac{1}{\frac{1}{x} + \frac{1}{y}} \,.$$

- **5.** (Relations) On \mathbb{Z}^2 we define the relation $(x_1, y_1) \Re (x_2, y_2) \Leftrightarrow x_1 y_1 = x_2 y_2$. Prove that \Re is an equivalence relation. Describe the equivalence classes.
- **6.** (Counting) In how many ways can we get an odd number of tails if we toss 7 (distinct) coins?
- 7. (Recursiveness) Find a close-form formula for the function $f: \mathbb{N} \to \mathbb{N}$ defined recursively in the following way:
 - 1. f(0) = 0.
 - 2. f(n) = f(n-1) + n, for $n \ge 1$.
- **8.** (Modular Arithmetic) How many units are there in $(\mathbb{Z}_{45}, +, \cdot)$? How many zero divisors?

For each of the following elements $x \in \mathbb{Z}_{45}$, determine if x is a unit or a zero divisor. If it is a unit, find its inverse. If it is a zero divisor find another element y such that $x \cdot y = 0$ in \mathbb{Z}_{45} : (1) x = 7, (2) x = 12, (3) x = 15, (4) x = 22.

1

9. (Graphs, Counting, Trees) How many Hamiltonian paths beginning at vertex A are there in the graph shown in figure 1? How many Hamiltonian cycles? (Hint: Use a decision tree).

Figure 1: Graph G.

10. (Graphs, Coloring) Is the graph G shown in figure 1 planar? If so, draw it without intersecting edges. Find its chromatic number $\chi(G)$. Is it possible to remove an edge e from G so that $\chi(G - \{e\}) < \chi(G)$? Justify your answers.