Semester II

Year	Ι	Course Code: 21BCA2C4L	Credits	03		
Sem.	П	Course Title:Data Structures using C	Hours	40		
Course Pre- requisites, if any		Knowledge of Programming				
Formative Assessment Marks: 40		Summative Assessment Marks: 60	Duration of ESA: 02 hrs.			
Course Outcomes		 At the end of the course the student should be able to: Understand the classification of data structures and dynamic memory allocation Understand the difference between iteration and recursion and apply recursive definition for problem solving Understand and evaluate the applications of stacks and queues Understand and evaluate the applications of linked 				
Unit No.		lists and tree Course Content	Hours			
Unit I		Introduction to data structures: Definition; Types of data structures - Primitive & Non-primitive, Linear and Non-linear; Operations on data structures. Dynamic memory allocation: Static & Dynamic memory allocation; Memory allocation and deallocation functions - malloc, calloc, realloc and free. Pointers in C: Understanding pointers - Declaring and initializing pointers, accessing address and value of variables using pointers; Pointers and Arrays; Pointer Arithmetic; Advantages and disadvantages of using pointers;				
Unit II	I	Recursion: Definition; Types of recursions; Recursion Technique Examples - GCD, Binomial coefficient nCr, Towers of Hanoi; Comparison between iterative and recursive functions. Sorting and Searching: Arrays as abstract data types, Representation of linear arrays in memory, Traversing linear arrays; Inserting and deleting elements; Sorting — Selection sort, Bubble sort, Quick sort, Selection sort, Insertion sort; Searching - Sequential Search, Binary search; Iterative and Recursive searching	10			

	Stacks: Basic Concepts – Definition and Representation of stacks; Operations on stacks – Push, Pop; Applications of stacks; Infix, postfix and prefix notations; Conversion from infix to postfix using stack; Evaluation of postfix expression using	10					
Unit III	stack; Application of stack in function calls. Queues: Basic Concepts – Definition and Representation of queues; Types of queues, - Simple queues, Circular queues, Double ended queues, Priority queues; Operations on Simple queues;						
Unit IV	Linked list: Basic Concepts – Definition and Representation of linked list, Types of linked lists - Singly linked list, Doubly linked list, Circular linked list Doubly Circular Linked list; Representation of Linked list in Memory; Operations on Singly linked lists – Traversing, Searching, Insertion, Deletion; Trees: Definition; Tree terminologies –node, root node, parent node, ancestors of a node, siblings, terminal & non-terminal nodes, degree of a node, level, edge, path, depth; Binary tree: Type of binary trees - strict binary tree, complete binary tree, binary search tree and heap tree; Array representation of binary tree. Traversal of binary tree; preorder, in order and post order traversal.	12					
Recommended Learning Resources							
Print Resources	 Ellis Horowitz and SartajSahni: Fundamentals of Data Structures Tanenbaum: Data structures using C (Pearson Education) Kamathane: Introduction to Data structures (Pearson Education) Y. Kanitkar: Data Structures Using C(BPB) Kottur: Data Structure Using C Padma Reddy: Data Structure Using C 						

Year	1	Course Code: 21BCA2C4P Credits	02			
Sem.	II	Course Title: Lab: Data Structures	40			
Course Pre-requisites, if any:		Knowledge of Programming				
Formative Asse Marks: 25	ssment	Summative Assessment Marks: Duration of ESA: 0	02 hrs.			
		Part A:				
		1. Program to find GCD using recursive function				
		2. Program to generate binomial coefficient using refunction.	ecursive			
		3. Program to generate n Fibonacci numbers recursive function.	using			
		4. Program to implement Towers of Hanoi using recu 5. Program to implement dynamic array, find small largest element of the array.				
		6. Program to read the names of cities and arrang alphabetically.	e them			
		7. Program to sort the given list using selection technique.	on sort			
		8. Program to sort the given list using bubb technique.9. Program to sort the given list using insertion technique.				
		Part B:				
		1. Program to sort the given list using quick sort tech	•			
		2. Program to sort the given list using merg technique.	ge sort			
		3. Program to search an element using linear technique.	search			
		4. Program to search an element using binary technique.	search			
		5. Program to implement Stack.				
		6. Program to convert an infix expression to postfix.				
		7. Program to implement simple queue.				
		8. Program to implement linear linked list.				
		9. Program to display in-order traversal of a binary tr	ee.			