Commutative Algebra Homework 1

Michael Nelson

September 2, 2020

Problem 1

Exercise 1. Given an example of a commutative ring (necessarily without identity) that does not have a maximal proper ideal.

Solution 1. Let A be any divisible group (for instance $A = \mathbb{Q}$). So A = nA for every $n \in \mathbb{Z} \setminus \{0\}$. Then observe that A has no maximal proper subgroups. Indeed, assume for a contradiction that B is a maximal proper subgroup of A. Then B must have finite index in A (otherwise we can find a nonzero proper subgroup B'/B of A/B and pull this back to a proper subgroup B' of A which contains B), say A : B = m. Then we have

$$A = mA$$

$$\subseteq B$$

$$\subseteq A,$$

which forces A = B which gives us a contradiction.

Now we turn A into a ring in a rather trivial way, namely we define multiplication on A by

$$a \cdot a' = 0$$

for all $a, a' \in A$. Clearly multiplication defined in this way gives A the structure of a commutative ring (but without an identity element). Moreover since A has no maximal proper subgroups, we see that A has no maximal ideals as a ring.

Problem 2

Exercise 2. Let R be a commutative ring with identity and let $I \subset R$ be a proper ideal of R. We denote by rad I to be the radical of I and we denote by N(R) to be the set of nilpotents of R.

- 1. Show that rad *I* is contained in the intersection of all prime ideals that contain *I*.
- 2. Show the other containment.
- 3. Show that N(R) is the intersection of all prime ideals of R.

Solution 2. 1. Let $x \in \text{rad } I$ and let \mathfrak{p} be a prime ideal in R which contains I. Choose $n \in \mathbb{N}$ such that $x^n \in I$. Then since $I \subseteq \mathfrak{p}$, we have $x^n \in \mathfrak{p}$. It follows that $x \in \mathfrak{p}$ since \mathfrak{p} is prime. Since and x and \mathfrak{p} were arbitrary, it follows that rad I is contained in all prime ideals which contains I. Thus rad I is contained in the intersection of all prime ideals which contains I.

2. Assume for a contradiction that

$$\operatorname{rad} I \not\supseteq \bigcap_{\substack{\mathfrak{p} \text{ prime} \\ \mathfrak{p} \supseteq I}} \mathfrak{p}.$$

Choose $x \in \bigcap_{\mathfrak{p} \supseteq I} \mathfrak{p}$ such that $x \notin \operatorname{rad} I$. Thus $x \in \mathfrak{p}$ for all prime ideals \mathfrak{p} which contain I and $x^n \notin I$ for all $n \in \mathbb{N}$. We will find a prime ideal in R which contains I but does not contain x, which will give us a contradiction. Consider the ring obtained by localizing R at the multiplicative set $\{x^n \mid n \in \mathbb{N}\}$:

$$R_x = \{a/x^n \mid a \in \mathbb{R} \text{ and } n \in \mathbb{N}\},$$

and let $\rho: R \to R_x$ be the corresponding localization map, given by

$$\rho(a) = a/1$$

for all $a \in R$. Since $x^n \neq 0$ for all $n \in \mathbb{N}$, we see that $I_x = \rho(I)R_x$ is a proper ideal of R_x . In particular, there exists a prime ideal \mathfrak{q} in R_x which contains I_x . Then $\rho^{-1}(\mathfrak{q})$ is a prime ideal in R which contains I but does not contain x. Indeed, if $\rho^{-1}(\mathfrak{q})$ contained x, then \mathfrak{q} would contain a unit, namely x/1, and hence would not be prime.

3. By parts 1 and 2, we have

$$\operatorname{rad} I \neq \bigcap_{\substack{\mathfrak{p} \text{ prime} \\ \mathfrak{p} \supset I}} \mathfrak{p}$$

for *all* ideals *I* of *R*. In particular, since $N(R) = rad \langle 0 \rangle$, we have

$$N(R) = \bigcap_{\mathfrak{p} \text{ prime}} \mathfrak{p}.$$

Problem 3

Exercise 3. Let R be a commutative ring with identity. Denote the Jacobson radical of R by J(R). Then $x \in J(R)$ if and only if 1 + ax is a unit for all $a \in R$.

Solution 3. Suppose $x \in J(R)$ and assume for a contradiction that 1 + ax is not a unit for some $a \in R$. Choose a maximal ideal in R which contains 1 + ax, say \mathfrak{m} . Since $x \in J(R)$, we see that in particular $x \in \mathfrak{m}$. Since 1 + ax and ax belong to \mathfrak{m} , their difference also belongs to \mathfrak{m} . In other words, $1 \in \mathfrak{m}$. This contradicts the fact that \mathfrak{m} is a proper ideal of R. Thus our original assumption was wrong, which means that 1 + ax is a unit for all $a \in R$.

Conversely, suppose 1 + ax is a unit for all $a \in R$ and assume for a contradiction that $x \notin J(R)$. Choose a maximal ideal in R which does not contain x, say \mathfrak{m} . Then $Rx + \mathfrak{m} = R$ since \mathfrak{m} is maximal. Thus there exists $a \in R$ and $y \in \mathfrak{m}$ such that ax + y = 1, or in other words,

$$1 - ax = y$$
.

By assumption, this implies y is a unit. This contradicts the fact that $y \in \mathfrak{m}$ and \mathfrak{m} is a proper ideal.

Problem 4

Exercise 4. Let *R* be an integral domain. Then

$$R = \bigcap_{\mathfrak{m} \text{ maximal}} R_{\mathfrak{m}}.$$

Solution 4. Since R is an integral domain, it has no zerodivisors. Thus all of the localization maps $\rho_m \colon R \to R_m$ are injective. In fact, they are just inclusion maps since we are identifying R and its localizations R_m with subrings of the fraction field K of R. Thus we have

$$R\subseteq\bigcap_{\mathfrak{m}\,\mathrm{maximal}}R_{\mathfrak{m}}.$$

For the reverse inclusion, let $\gamma \in R_{\mathfrak{m}}$ for all maximal ideals \mathfrak{m} in R. Consider the set

$$R : \gamma = \{a \in R \mid a\gamma \in R\}.$$

Note that since $\gamma \in K$, we can express it as $\gamma = x/y$ where $x \in R$ and $y \neq 0$. Then it's easy to see that $y \in R : \gamma$. So $R : \gamma$ can be though of as "the set of all denominators of γ ". It is easy to see that $R : \gamma$ is an ideal in R. We claim that $R : \gamma = R$. Indeed, assume for a contradiction that $R : \gamma$ is proper ideal of R. Then $R : \gamma$ is contained in a maximal ideal, say m. However this means that $\gamma \notin R_m$: if $\gamma \in R_m$, then we could express it as $\gamma = x/y$ where $x \in R$ and $y \notin m$. Then $y \in R : \gamma \subseteq m$ which is a contradiction. So we've found a maximal ideal m such that $\gamma \notin R_m$ which gives us a contradiction. Thus $R : \gamma = R$. In that case, we see that $1 \in R : \gamma$, so $\gamma = 1 \cdot \gamma \in R$. Thus we have

$$R\supseteq\bigcap_{\mathfrak{m}\,\mathrm{maximal}}R_{\mathfrak{m}}.$$