7/4 Point Set Topology B(2, n) = {n \in /11m-a1/cm} A pet S SIR" is open it Anes, 3B(n,n) CS Denterian point

11 10 Show A set S & IRn

Show A set S was interior. Open: 5 = ints Show (1) IR is open 2 IRn is open Make (a, b1), (a2, b2), (a3, b3)... (an, bn) Show, she confesion product (a, b) x (a2xb) × (a2xb) ×... (anxbn) is open.

Denterseetion of a Finite cultertion of open pets is open. Denterseetion of a construction of open pets is open.
Finite cullection of open pets is open
@ Union of any collection of open sets is open.
Structure of open set in IR
Component Interval:
open publit in 1k. In open
Component Interval: S open subset in R'. In open interval (hinte /inhinite) I is called component interval of S if I S & # any open interval. J # I P. + I S I S
In Show that every point of a non-compty open sets belongs to one & only one component interval of s.
belongs to one & only one component interval of S.
Close Set:
15 0 pch.
[[Cy b,] C = (-0, a,) U(b, , 0)
@ [a,b]x [az x bz] x x [an, bn]
Lamra 3. Union of linite cullection of closed set is closed. ii) Autitrary Intersection of close set is close.
Asherent point no Br (and brint in 12")
Then n is adherent to S if every open ball B(2, r) contains at least one point in S.
ball $S = Sn \in \mathbb{R}^n / B(x,r) / 1S$
ball $B(x,r)$ contains at weast one porton. Ash $S = \{x \in \mathbb{R}^n \mid B(x,r) \cap S \neq \emptyset \text{ for all } r > 0\}$
Show, A-Bopen, B-A Closed.
Show, A-Bopen, B-A Closed.

If $S \subseteq IR$, S is bounded above, Then, $Sup S \in Adh S$. Def: (Accumula: pt)= (Limit kt.) every B(n,n) contains at least one boint of S distinct brum n. Ace $S = Adh(s - \{n\})$ $n \in S$ but $n \notin Ace(s)$ $n \in S$ but $n \notin Ace(s)$ $n \in S$ isolated. Alberence bt. & Limit point S= {/n} n \in N | accumulation bt. 20 set of inationals, Ministery many pt. of S. Clused Set: - if contains clused iff it contains all its adherent pt.

