

Sum up

Sum up

Sum up

Fig. 1 Use cases of artificial intelligence, computer vision, and machine learning in clinical development

Key areas

- ML based learning to predict pharmaceutical pharmaceutical properties of molecular compounds and targets for drug discovery
- Using pattern recognition and segmentation techniques on medical images (retinal scans, X-ray images..) to enable faster diagnoses and tracking of disease progression
- Developing deep learning techniques on multimodal data sources such as combining genomic and clinical data to detect new predictive models
- Using Natural Language processing techniques to process medical records to tabulate data

Skeleton of a project

DATA PREPROCESSING

ALGORITHM SELECTION

TRAINING

VALIDATION

DATA PREPROCESSING

Data preprocessing

DATA CLEANING

IMBALANCED DATASET

Data cleaning

GARBAGE IN, GARBAGE OUT!

SMOTE: https://jair.org/index.php/jair/article/view/10302

ALGORITHM SELECTION

Is the tumor malignant or benign?

Blood glucose level at 9am

Relation between genetic variant and disease

MRI image analysis in lung cancer

Is a patient going to have complications if I give treatment?

Depends on:

- Type of problem to solve
- Characteristics of the target variable
- ...

VALIDATION OF THE MODEL

Validation of the model

Two elements:

- Metric
- Type of validation

Metrics: classification

Confusion Matrix: a table showing correct predictions and types of incorrect predictions.

Metrics: classification

Confusion Matrix: a table showing correct predictions and types of incorrect predictions.

True Positive:

Interpretation: You predicted positive and it's true.

You predicted that a woman is pregnant and she actually is.

True Negative:

Interpretation: You predicted negative and it's true.

You predicted that a man is not pregnant and he actually is not.

False Positive: (Type 1 Error)

Interpretation: You predicted positive and it's false.

You predicted that a man is pregnant but he actually is not.

False Negative: (Type 2 Error)

Interpretation: You predicted negative and it's false.

You predicted that a woman is not pregnant but she actually is.

Actual Values Positive (1) Negative (0) TP FP Negative (0) FN TN

Metrics: classification

Metric	Formula Evaluation Focus		
Accuracy	$ACC = \frac{TP + TN}{TP + TN + FP + FN}$ Overall effectiveness of a classifier		
Error rate	$ERR = \frac{FP + FN}{TP + TN + FP + FN}$	Classification error	
Precision	$PRC = \frac{TP}{TP + FP}$	Class agreement of the data labels with the positive labels given by the classifier	
Sensitivity Specificity	$\begin{array}{l} \text{SNS} = \frac{\text{TP}}{\text{TP} + \text{FN}} \\ \text{SPC} = \frac{\text{TN}}{\text{TN} + \text{FP}} \end{array}$	Effectiveness of a classifier to identify positive labels How effectively a classifier identifies negative labels	
ROC	$ROC = \frac{\sqrt{SNS^2 + SPC^2}}{\sqrt{2}}$	Combined metric based on the Receiver Operating Characteristic (ROC) space [53]	
F ₁ score	$F_1 = 2 \frac{PRC \cdot SNS}{PRC + SNS}$	Combination of precision (PRC) and sensitivity (SNS) in a single metric	
Geometric Mean	$GM = \sqrt{SNS \cdot SPC}$	Combination of sensitivity (SNS) and specificity (SPC) in a single metric	

Metrics: regression

R squared: is a statistical measure of how close the data are to the fitted regression line.

Metrics: regression

R-squared is the percentage of the response variable variation that is explained by a linear model.

Or: R-squared = Explained variation / Total variation

R-squared is always between 0 and 1:

- 0 indicates that the model explains none of the variability of the response data around its mean.
- 1 indicates that the model explains all the variability of the response data around its mean.

Validation: internal

K- fold Cross Validation

Iteration 1	Test	Train	Train	Train	Train
Iteration 2	Train	Test	Train	Train	Train
Iteration 3	Train	Train	Test	Train	Train
Iteration 4	Train	Train	Train	Test	Train
reduction 1	Ham	Train	TTG.	1001	110
Iteration 5	Train	Train	Train	Train	Test

Validation: internal

Leave One Out Cross Validation

iteration 1/N:	
iteration 2/N:	
iteration 3/N:	
	:
iteration N/N:	

Validation: external

Using a control dataset or a dataset with the same characteristics but from other source.

DISCOVERY

REPLICATION

Exercise

2. First small project Following all the steps explained in the lesson build a project using the following breast cancer dataset from sklearn.