实验二 两级交流放大电路

作者: GeorgeDong32

一、实验目的

- 1. 掌握如何合理设置静态工作点。
- 2. 学会放大电路频率特性测试方法。
- 3. 了解放大电路的失真及消除方法。

二、实验仪器

- 1. 双踪示波器。
- 2. 数字万用表。
- 3. 信号发生器,

三、预习要求

- 1. 复习教材多级放大电路内容及频率响应特性测量方法。
- 2. 分析图 2. 1 两级交流放大电路。初步估计测试内容的变化范围。

四、实验内容

实验电路见图 2.1

图 2.1 两级交流放大电路

1. 设置静态工作点

- (1)按图接线,注意接线尽可能短,注意 Rp2 的连接方式。
- (2) 静态工作点设置:第一级为增加信噪比,工作点尽可能低,U_{C1} 应在 2V 以下。第二级工作点应保证在输出波形不失真的前提下幅值尽量大,U_{C2} 约 7V。
- (3) 在输入 A 端接入频率为 1kHz 幅度为 100mV 的交流信号(为避免连接电缆传输失真,使用实验箱上加衰减的办法,即信号源用一个较大的信号。例如 100mV,在实验板上经 R_1 、 R_2 ,100:1 衰减电阻衰减,降为 1mV),使 U_{i1} 为 1mV,观察 U_{o1} 输出信号波形,再连接 U_{o1} 和 U_{i2} ,观察 U_{o2} 输出信号。此时信号很可能已经失真,可减少 A 端输入信号幅度到 50mV,并适当调节 R_{P2} 使输出信号不失真。

注意: 如发现有寄生振荡,可采用以下措施消除:

- ① 重新布线,尽可能走短线。
- ② 在第一级放大电路增加直流负反馈电路。
- ③ 在三极管 V1、V2的 b、e 之间加几 p 到几百 p 的电容。
- ④ 信号源与放大电路用屏蔽线连接。
- 2. 按表 2.1 要求测量并计算,注意测静态工作点时应断开输入信号。

X 2. 1												
	静态工作点						输入/输出电压			电压放大倍数		
	第一级			第二级			(mV)			第1级	第2级	整体
	U_{C1}	U_{B1}	U_{E1}	U_{C2}	U_{B2}	U_{E2}	Uil	U_{o1}	U_{o2}	A_{u1}	A_{u2}	A_{u}
空载	1.41	0.712	0	7. 11	2.42	1.71	0.5	44	4250	88	96. 59	8500
负载	1. 435	0.712	0	7. 11	2.43	1. 73	0.5	44	2190	88	49.77	4380

表 2.1

- 3. 接入负载电阻 R_L=3k, 按表 2.1 测量并计算,比较实验内容 2、3 的结果。
- 4. 测两级放大电路的频率特性
- (1)将放大器负载断开,先将输入信号频率调到 1kHz,幅度调到使输出幅度最大而不失真。
- (2)保持输入信号幅度不变,改变频率,按表 2.2 测量并记录。继续提高频率,找到上截止频率 f_H,同样得到下截止频率 f_L。
- (3)接上负载、重复上述实验,注意负载对上下截止频率的影响。

表 2.2

f (Hz)		50	100	250	500	1K	2. 5k	5k	10k	20k
Uo	R _L =∞	1	2. 12	3. 68	4. 21	4. 32	4.4	4.4	4.4	4.4
	R _L =3k	0.5	1.07	1.69	2. 13	2. 19	2.24	2. 25	2. 24	2. 24

五、实验后结果分析:

实验电路的频率特性图:

其中下限频率 fL 约为为 197Hz, 上限频率 fH 约为 151kHz

增加频率范围的方法:

- 1. 引入负反馈稳定输入电压
- 2. 加大所使用的电容