EC504 ALGORITHMS AND DATA STRUCTURES FALL 2020 MONDAY & WEDNESDAY 2:30 PM - 4:15 PM

Prof: David Castañón, dac@bu.edu

GTF: Mert Toslali, toslali@bu.edu

Haoyang Wang: haoyangw@bu.edu

Christopher Liao: <u>cliao25@bu.edu</u>

Hw6 + Ob: Today...

Hw7 (G7?) i out by
Friday..

Projects: Approved

Still taking bids on
Alternate final examtina
(Favorite: F., LM)

Monlay stides: Corrected to compute accurate distances

Data Structures for Multidimensional Search

- So far, focused on 1-D data
 - Balanced BSTs, B+ trees, ...
- Many applications involve data which is higher-dimensional
 - Astronomy (simulation of galaxies) 3 dimensions
 - Protein folding in molecular biology 3 dimensions
 - Lossy data compression 4 to 64 dimensions
 - Image processing 2 dimensions
 - Graphics 2 or 3 dimensions
 - Animation 3 to 4 dimensions
 - Geographical databases 2 or 3 dimensions
 - Web searching 200 or more dimensions
 - Machine learning hundreds of dimensions

K-Nearest-Neighbor

Problem: whats are the 4 closest restaurants to my hotel

Nearest Neighbor Query in High Dimensions

- Very important and practical problem!
 - Image retrieval

Point-Region Quadtree

ンプ

- · PR Quadtrees are tries
 - Trie: Decomposition based on equal division of the key space
 - Shaped like a tree, with each internal node with 4 children (some empty)
- Every internal node corresponds to a region, with midpoint used for navigation
- Leaves correspond to 2-D points

 The children of a node correspond to the four quadrants of a square partition of a region

- The children of a node are labelled NE, NW, SW, and SE to indicate to which quadrant they correspond
- If a leaf contains more than one point, it splits into 4 subregions
- Need rule to break ties: arbitrary prefer N to S, E to W
- 3-D variant: Octrees

Quadtree Construction

Building a Quad Tree (1/5)

Building a Quad Tree (2/5)

Building a Quad Tree (3/5)

Building a Quad Tree (4/5)

Building a Quad Tree (5/5)

Quadtree Representation

Quadtree Properties

- The depth of a quadtree for a set P of points in the plane is at most
 O(log(s/c)), where c is the smallest distance between any points in P and s
 is the side length of the initial square.
- A quadtree of depth d which stores a set of n points has O((d + 1)n) nodes and can be constructed in O((d + 1)n) time.
- The neighbor of a given node in a given direction can be found in O(d +1) time.

Build Example - 1

• Coordinates: (7,4.1), (2.1,5), (4.1,8.1), (5,3), (8.1,6.1), (10.1,2.1), (13,6.1) (7,9), (9,3). Arrange them in a quadtree, using the range 0-16 for each of the coordinates

Build Example - 2

• Coordinates: (7,4.1), (2.1,5), (4.1,8.1), (5,3), (8.1,6.1), (10.1,2.1), (13,6.1) (7,9), (9,3). Arrange them in a quadtree, using the range 0-16 for each of the coordinates

Build Example - 3

• Coordinates: (7,4.1), (2.1,5), (4.1,8.1), (5,3), (8.1,6.1), (10.1,2.1), (13,6.1) (7,9), (9,3). Arrange them in a quadtree, using the range 0-16 for each of the coordinates

Insert Example

Insert Example - 2

Insert (6,3.5)

Insert Example - 2

Insert (6,3.5)

Delete Example

2-D Range Querying in Quad Trees

Nearest Neighbor Search

- As you get results, tighten the circle.
- Continue until no closer node in query.

Quadtree- Nearest Neighbor Search

Algorithm

Initialize range search with large r

Put the root on a stack

Repeat

- Pop the next node T from the stack
- For each child C of T
 - if C intersects with a circle (ball) of radius r around q, add C to the stack
 - if C is a leaf, examine point(s) in C and update r
- Whenever a point is found, update r (i.e., current minimum)
- Only investigate nodes with respect to current r.

1.41.101

Quadtree

- Simple data structure.
- Easy to implement.
- But, it might not be efficient:
 - A quadtree could have a lot of empty cells
 - If the points form sparse clouds, it takes a while to reach nearest neighbors

kd-trees (k-dimensional trees)

Main ideas:

- Generalize Binary Search Trees to k-dimensional data
- k-d tree: binary search tree where search decisions are made based on different coordinates at each level
 - Root is level 0
 - At level i, splitting decision is made based on coordinate (i mod k) + 1
- Property: node at i level use discriminator index j = (i mod k) + 1 with key value x_i
 - Right descendants $(x_1', ..., x_k')$ must have $x_j' \ge x_j$ Left descendants $(x_1'', ..., x_k'')$ must have $x_j'' < x_j$

2-dimensional kd-trees

A data structure to support nearest neighbor and rangequeries in R².

- Not the most efficient solution in theory.
- Everyone uses it in practice.

Algorithm: Batch construction

- Choose x or y coordinate (alternate).
- Choose the median of the coordinate; this defines a horizontal or vertical line.
- Recurse on both sides until there is only one point left, which is stored as a leaf.

We get a binary tree

- Size O(n).
- − Construction time O(nlogn)
- Depth O(logn)
- K-NN query time: O(n^{1/2}+k)...under many assumptions

d-dimensional kd-trees

- A data structure to support range queries in Rd
- The construction algorithm is similar as in 2-d

At the root we split the set of points into two subsets of same size by a hyperplane vertical to \mathbf{x}_1 -axis.

At the children of the root, the partition is based on the second coordinate: $\mathbf{x_2}$ Coordinate.

At depth **d**, we start all over again by partitioning on the first coordinate.

The recursion stops until there is only one point left, which is stored as a leaf.

- Preprocessing time: O(nlogn).
- Space complexity: O(n).
- k-NN query time: $O(n^{1-1/d}+k)$.

k-D Tree

Kd Trees Can Be Inefficient if built sequentially (but not when built in batch!)

insert(<5,0>)
insert(<6,9>)
insert(<9,3>)
insert(<6,5>)
insert(<7,7>)
insert(<8,6>)

Incremental inserts not good...

Insert (55, 62)

Delete data

- Suppose we need to remove p = (a, b)
 - Find node **t** which contains **p**
 - If t is a leaf node, replace it by null
 - 1 Care Sul • Otherwise, find a replacement node **r** = (c, d) – see below!
 - Replace (a, b) by (c, d)
 - Remove r
- Finding the replacement $\mathbf{r} = (c, d)$
 - If **t** has a right child, use the successor*
 - Otherwise, use node with minimum value* in the left subtree
 - Move right child of that node as appropriate

*(depending on what axis the node discriminates)

Delete data (cont'd)

Delete data (cont'd)

KD Tree – Region of a node

- The region *region(v)* corresponding to a node v is a rectangle, which is bounded by splitting lines stored at ancestors of v
- A point is stored in the subtree rooted at node v if and only if it lies in region(v)

KD Tree - Region of a node (cont'd)

■ A point is stored in the subtree rooted at node v if and only if it lies in region(v).

KD Tree - Range Search

low[1] = 23, high[1] = 30;

"pruning" subtrees from the search.

2-D Range Querying in 2-D Trees

Search every partition that intersects the rectangle. Check whether each node (including leaves) falls into the range.

Other Shapes for Range Querying

Search every partition that intersects the shape (circle). Check whether each node (including leaves) falls into the shape.

KD Tree Variation

- Data stored at leaves only
 - Navigation keys inside
 - Looks like quadtree, but with adaptive boundaries, balance
 - Similar to B vs B+ trees

Quad Trees vs. k-D Trees $O(M^{1-1}G)$

- k-D Trees
 - Density balanced trees
 - Number of nodes is O(n) where n is the number of points
 - Height of the tree is O(log n) with batch insertion
 - Supports insert, delete, find, nearest neighbor, range queries
- Quad Trees
 - Number of nodes is $O(n(1 + \log(\Delta/n)))$ where n is the number of points and Δ is the ratio of the width (or height) of the key space and the smallest distance between two points
 - Height of the tree is O(log n + log Δ) •
 - Supports insert, delete, find, nearest neighbor, range queries

109 ~ 27 levels. 10,000 - 9]
B+ trees

Quadtrees, kd Trees Good for Points

- •What about shapes?
- Problem of Interest:
- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer efficiently spatial queries (range, nn, etc)

- In multidimensional space, there is no unique ordering! Not possible to use B+-trees[⊗] ∨
- [Guttman 84] R-tree!
- Group objects close in space in the same node
 - => guaranteed page utilization
 - => easy insertion/split algorithms.
 - (only deal with Minimum Bounding Rectangles MBRs)

R-tree

- A multi-way external memory tree
- Keys: n-dimensional rectangles, (2 points)
- Index nodes and data (leaf) nodes
- All leaf nodes appear on the same level
 - Leaf node index entries: (I, tuple id)
 - Non-leaf node entry: (I, child ptr)
- Every node contains between m and M entries
 - $m \le M/2$ is the minimum entries per node.
- The root node has at least 2 entries (children)

Example

eg., w/ fanout 4: group nearby rectangles to parent MBRs; each group -> disk page

Example

- R trees grow like B+ trees
 - Bottom up
 eg., w/ fanout 4: group nearby rectangles to parent MBRs; each group -> disk page

Example

- R trees grow like B+ trees
 - Bottom up
 eg., w/ fanout 4: group nearby rectangles to parent MBRs; each group -> disk page

R-trees: Search

- Given a search rectangle S ...
 - Start at root and locate all child nodes whose rectangle I intersects S (via linear search).
 - Search the subtrees of those child nodes.
 - When you get to the leaves, return entries whose rectangles intersect S.

R-trees:Search

R-trees: Search

- Main points:
 - every parent node completely covers its 'children'
 - nodes in the same level may overlap!
 - a child MBR may be covered by more than one parent it is stored under ONLY ONE of them
 - a point query may follow multiple branches.
 - works for higher dimensions

- Insert X: Start from the leaves. Which one?
 - Start at root
 - Go down the tree by choosing child whose rectangle needs the least enlargement to include X (Δ area or perimeter...) In case of a tie, choose child with smallest area
 - Least enlargement: increase in area or perimeter...a choice!

Insert Y

■Extend the parent MBR

- How to find the next node to insert a new object Y?
 - Using ChooseLeaf: Find the entry that needs the least enlargement to include Y. Resolve ties using the area (smallest)
- Enlargement measured by change in perimeter of MBR or change in area
- Problem: Can saturate a leaf. In this case, need to split
 - When you split, you readjust MBR in parent to correspond to remaining objects in each of the new nodes.
 - May need to recursively split parent...

■If node is full then <u>Split</u>: ex. Insert w

R-trees:Split

- Split node P1: partition the MBRs into two groups.
- Multiple algorithms possible

R-trees:Split

- Pick two rectangles as 'seeds' for group 1 and group 2
 - Farthest apart in dimension relative to total spread in dimension

R-trees: Split

- pick two rectangles as 'seeds' for group 1 and group 2;
- assign each rectangle 'R' to the 'closest' 'group' in any order
- 'closest': the smallest increase in area
- Once a base rectangle has maximum number of rectangles for split, the rest are assigned to other rectangle: guarantee minimum m in both!

R-trees: Linear Split

- How to pick Seeds:
 - Find the rects with the highest low and lowest high sides in each dimension
 - Normalize the separations by dividing by the width of all the rects in the corresponding dim

Choose the pair with the greatest normalized separation

R-trees: Quadratic Split

- How to pick Seeds:
 - For each pair E1 and E2, calculate the rectangle J=MBR(E1, E2) and d= J-E1-E2. Choose the pair with the largest d
- PickNext:
 - For each remaining rectangle E, calculate the area increase to include it in group d1(E) and d2(E)
 - Choose the remaining rectangle to insert with highest difference:
 - |d1(E)-d2(E)|
 - Assign this remaining rectangle to its closest group: the one that has the smallest area increase.
 - Repeat until all rectangles are assigned, or until one group has M-m+1 entries. In the latter case, put the remaining rectangles into the other group and stop. If all rectangles have been distributed then stop.

- Find the leaf node that contains the entry E
- Remove E from this node
- If underflow:
 - Eliminate the node by removing the node entries and the parent entry
 - Reinsert the orphaned (other entries) into the tree using Insert
- Why reinsert?
 - Nodes can be merged with sibling whose area will increase the least, or entries can be redistributed.
 - Reinsertion is easier to implement.

Insertion example

- M = 4, m = 2; Delete R212 which creates underflow in R21.
- Will delete and add R211 (orphan) to reinsert Queue
- Have underflow in R2. Will delete R2 and add intermediate node R2 to reinsert queue. Add the entries in R22 for reinsertion.

R-trees with point data

 E_3

R-Tree, Leaf Nodes

R-Tree – Intermediate Nodes

$$a$$
 b c d e f g h i j k l m E_3 E_4 E_5 E_6 E_7

 E_{I}

R-tree, Range Query

Range Query

R-trees: Variations

- R+-tree: DO not allow overlapping, so split the objects (similar to z-values)
- R*-tree: change the insertion, deletion algorithms (minimize not only area but also perimeter, forced re-insertion)