

	Cheat sh	neet						
pycaret.org	Clustering	Anomaly Detection	Association Rule	Regression & Classification			Time Series	
Tutorials Clustering Beginner Anomaly Beginner Association Rules Beginner	<pre>setup(data=df) create_model(*) assign_model(**) plot_model(**) evaluate_model() tune_model() predict_model() deploy_model() save_model() load_model() pull() models() get_metrics() add_metric()</pre>	<pre>setup(data=df) create_model(*) assign_model(**) plot_model(**) evaluate_model() tune_model() predict_model() deploy_model() save_model() load_model() models() get_logs() get_config() set_config()</pre>	setup(data=df,	setup(data=df,	* model: (classification) 'lr' 'knn' 'nb' 'dt' 'svm' 'rbfsvm' 'gpc' 'mlp' 'ridge' 'rf' 'qda' 'ada'	* model: (regression) 'lr' 'lasso' 'ridge' 'en' 'lar' 'llar' 'omp' 'br' 'ard' 'par' 'ransac' 'tr' 'huber'	<pre>setup(data=df) models(*) compare_models() create_model(*) tune_model() blend_models() plot_model() finalize_model() save_model() load_model() pull() models() predict_model()</pre>	<pre>* model: 'naïve') 'grand_means' 'snaive' 'polytrend' 'arima' 'auto_arima'</pre>
Beginner Intermediate Regression Beginner Intermediate Classification Binary (Beginner) Binary (Intermediate)	remove_metric() get_logs() get_config() set_config() save_config() load_config() get_clusters() * model: 'kmeans' 'ap' 'meanshift'	<pre>save_config() load_config() get_outliers() * model: 'abod' 'cluster' 'histogram' 'knn' 'lof' 'svm'</pre>	tune_model() evaluate_model() save_model() load_model() models() get_logs() get_config() set_config() get_topics() * model: 'lda'	dssign_model() calibrate_model() optimize_threshold() get_leaderboard() dashboard() eda() check_fairness() predict_model() finalize_model() convert_model() deploy_model() save_model() save_experiment()	'gbc' 'lda' 'et' 'xgboost' 'lightgbm' 'catboost' ** plot= 'auc' 'threshold' 'pr' 'error'	'kr' 'svm' 'knn' 'dt' 'rf' 'et' 'ada' 'gbr' 'mlp' 'xgboost' 'lightgbm' 'catboost'	<pre>get_metrics() add_metric() remove_metric() get_logs() get_config() set_config() save_config() load_config() ** plot= 'ts' 'cv' 'acf'</pre>	<pre>'ridge_cds_dt' 'lasso_cds_dt' 'lar_cds_dt' 'llar_cds_dt' 'br_cds_dt' 'huber_cds_dt' 'par_cds_dt' 'dm_cds_dt' 'dn_cds_dt' 'fnf_cds_dt'</pre>
Multiclass (Beginner) Time Series Beginner Unsupervised Learning Supervised Learning Time Series Analysis	<pre>'sc' 'hclust' 'dbscan' 'optics' 'birch' 'kmodes' ** plot = 'cluster' 'tsne' 'elbow' 'silhouette' 'distance' 'distribution'</pre>	<pre>'pca' 'mcd' 'sod' 'sos' ** plot= 'tsne' 'umap'</pre>	'laa' 'lsi' 'hdp' 'rp' 'nmf' 'frequency' 'distribution' 'bigram' 'trigram' 'sentiment' 'pos' 'tsne' 'topic_model' 'topic_distribution' 'wordcloud' 'umap'	<pre>save_experIment() save_config() load_config() load_model() convert_model() create_api() create_docker() create_app() automl() pull() models() get_logs() get_config() set_config() get_system_logs() (1) classification only</pre>	'class_report' 'boundary' 'rfe' 'learning' 'manifold' 'calibration' 'vc' 'dimension' 'feature' 'feature_all' 'parameter' 'lift' 'gain' 'tree' 'ks' 'confusion_mater'	** plot= 'residuals' 'error' 'cooks' 'rfe' 'learning' 'vc' 'manifold' 'feature' 'feature_all' 'residuals_ interactive' 'parameter' 'tree'	'act' 'pacf' 'decomp_stl' 'diagnostics' 'forecast' 'insample' 'residuals' 'train_test_spl: 'decomp_classica	
				(1) classification only	·contusion_mat	rix		

Parameters of setup() and its *default values*

Clustering

Clustering

```
preprocess = True.
imputation_type = 'simple',
iterative imputation iters = 5,
categorical features = None,
categorical imputation = 'mode',
categorical_iterative_imputer = 'Lightgbm',
ordinal_features = None,
high cardinality features = None,
high_cardinality_method = 'frequency'.
numeric features = None,
numeric imputation = 'mean',
numeric_iterative_imputer = 'lightabm'.
date features = None,
ignore features = None,
normalize = False,
normalize method = 'zscore',
transformation = False,
transformation method = 'yeo-johnson',
handle unknown categorical = True,
unknown categorical method = 'least frequent',
pca = False.
pca_method = 'linear',
pca components = None,
ignore_low_variance = False,
combine rare levels = False,
rare level threshold = 0.1.
bin_numeric_features = None,
remove multicollinearity = False,
multicollinearity threshold = 0.9,
remove perfect collinearity = False,
group features = None,
group_names = None,
n jobs = -1,
use_gpu = False,
custom_pipeline = None,
html = True,
session_id = None,
system log = True,
log_experiment = False,
experiment name = None,
log plots = False,
log profile = False,
log data = False,
silent = False,
verbose = True,
profile = False.
profile kwargs = None
```

Color code

required

optional

Anomaly Detection Regression & Classification

```
Preprocess = True.
imputation_type = 'simple',
iterative imputation iters = 5,
categorical features = None,
categorical imputation = 'mode',
categorical_iterative_imputer = 'Lightgbm',
ordinal_features = None,
high cardinality features = None,
high_cardinality_method = 'frequency',
numeric features = None,
numeric imputation = 'mean',
numeric_iterative_imputer = 'lightgbm',
date features = None,
ignore features = None,
normalize = False,
normalize method = 'zscore',
transformation = False.
transformation method = 'yeo-johnson',
handle_unknown_categorical = True,
unknown_categorical_method = 'least_frequent',
pca = False.
pca_method = 'linear',
pca components = None,
ignore low variance = False,
combine rare levels = False,
rare level threshold = 0.1.
bin_numeric_features = None,
remove multicollinearity = False,
multicollinearity threshold = 0.9,
remove perfect collinearity = False,
group features = None,
group_names = None,
n jobs = -1,
use_gpu = False.
custom_pipeline = None,
html = True,
session id = None,
system log = True,
log_experiment = False,
experiment_name = None,
log plots = False,
log profile = False,
log data = False,
silent = False,
verbose = True,
profile = False.
profile_kwargs = None
```

```
data = DataFrame, target = 'column_name',
train size = 0.7.
test data = None,
preprocess = True,
imputation type = 'simple',
iterative imputation iters = 5,
categorical features = None,
categorical_imputation = 'constant',
categorical iterative imputer = 'lightabm'.
ordinal features = None.
high cardinality features = None,
high_cardinality_method = 'frequency',
numeric features = None,
numeric imputation = 'mean',
numeric_iterative_imputer = 'Lightgbm',
date features = None,
ignore features = None,
normalize = False,
normalize method = 'zscore',
transformation = False.
transformation method = 'yeo-johnson',
handle unknown categorical = True.
unknown_categorical_method = 'least_frequent',
pca = False,
pca method = 'linear',
pca components = None,
ignore low variance = False.
combine rare levels = False,
rare level threshold = 0.1,
bin numeric features = None,
remove outliers = False,
outliers threshold = 0.05,
remove_multicollinearity = False,
multicollinearity threshold = 0.9,
remove perfect collinearity = True,
```

```
create clusters = False.
cluster iter = 20,
polynomial features = False,
polynomial_degree = 2,
trigonometry features = False,
polynomial threshold = 0.1,
group_features = None,
group names = None,
feature selection = False,
feature selection threshold = 0.8.
feature selection method = 'classic',
feature interaction = False,
feature ratio = False,
interaction threshold = 0.01,
transform target = False,
transform_target_method = 'box-cox',
data split shuffle = True.
data split stratify = False,
fold strategy = 'kfold'.
fold = 10,
fold shuffle = False.
fold groups = None,
n jobs = -1
use gpu = False,
custom pipeline = None,
html = True.
session_id = None,
log experiment = False,
experiment name = None,
log plots = False,
log profile = False.
log data = False,
silent = False.
verbose = True,
profile = False.
profile kwargs = None
```

Time Series

```
data = [.Series. .DataFrame].
preprocess = True,
imputation type = 'simple',
fold_strategy = 'expanding',
fold = 3.
fh = 1
seasonal_period = None,
enforce pi = False,
n_{jobs} = -1,
use gpu = False.
custom pipeline = None,
html = True,
session_id = None,
system_log = True,
log experiment = False,
experiment_name = None,
log plots = False.
log profile = False,
log data = False.
verbose = True,
profile = False.
profile kwargs = None
```

Association Rule

```
data,
transaction_id ='column_name',
item_id = 'column_name',
ignore_items = None,
session_id = None
```

NLF

```
data,
Target = 'column_name',
custom_stopwords = None,
Html = True,
session_id = None,
log_experiment = False,
experiment_name = None,
log_plots = False,
log_data = False,
Verbose = True
```