numpy

Dr. Ilkay Altintas

What are the key features of numpy?

- Multi-dimensional arrays
- Built-in array operations
- Simplified, but powerful array interactions → broadcasting
- Integration of other languages (Fortran, C, C++)

```
\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}
```

Why numpy for data science?

Speed

Functionality

Many packages are built on Numpy!

numpy: ndarray Indexing

 $a_slice = an_array[:2, 1:3]$

numpy: Broadcasting

 employ broadcasting to perform operations on different size ndarrays

0	1	2	3
		3	

	0	1	2	3	,	0	1	2	3
0	1	2	3	4		0	1	0	2
1	5	6	7	8	T			R	
2	9	10	11	12					
A									

	0	1	2	3		0	1	2	3	7
0	1	2	3	4		0				
1	5	6	7	8	_	0		0		
2	9	10	11	12		0	1	0	2	В
		_	•	•	4					

	0	1	2	3
0	1	3	3	6
1	5	7	7	10
2	9	11	11	14

Result

Broadcasting rules

"When operating on two arrays, NumPy compares their shapes element-wise. It starts with the trailing dimensions, and works its way forward. Two dimensions are compatible when

- 1. they are equal, or
- 2. one of them is 1"

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html