Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования

Тульский государственный университет

КАФЕДРА АВТОМАТИКИ И ТЕЛЕМЕХАНИКИ

СРЕДСТВА ГРАФИКИ BORLAND PASCAL И BORLAND C

Контрольно-курсовая работа по курсу «Программирование на ЯВУ»

Вариант № 4

Выполнил:	студент группы 220601	Белым А.А.
		(подпись)
Проверил:	к. фм. н., доцент	Сулимова В.В.
		(подпись)

Цель работы

Цель работы заключается в том, чтобы научиться использовать видео функции для работы в графическом режиме на языках Borland Pascal и Borland C.

Задание

Написать программу, которая выводит на экран изображение идущих часов, имеющих секундную и минутную стрелки.

Теоретическая справка

1. Схема алгоритма

На рисунке 1 представлена схема алгоритма рисования анимированных аналоговых часов.

Рисунок 1 – Схема алгоритма рисования аналоговых часов

На рисунке 2 представлена схема алгоритма установки графического режима и нахождения центра экрана.

Рисунок 2 — Схема алгоритма установки графического режима На рисунке 3 представлена схема алгоритма рисования циферблата.

Рисунок 3 — Схема алгоритма рисования циферблата На рисунке 4 представлена схема алгоритма рисования часовых стрелок.

Рисунок 4 – Схема алгоритма рисования часовых стрелок

На рисунке 5 представлена схема алгоритма перевода координат точки из полярной системы в Декартову систему координат.

Рисунок 5 – Схема алгоритма преобразования координат

2. Инструкция пользователю

Данная программа изображает анимированные аналоговые часы.

Для использования просто запустите программу. Учтите, что в одном каталоге с программой должны находится файлы GOTHIC.CHR и драйвер EGAVGA.bgi (либо другой драйвер для вашего оборудования). Из-за отсутствия этих файлов, а также в некоторых других случаях программа завершит работу с сообщением об ошибке. Программа отображает время также как и любые другие аналоговые часы, например, механические. Чтобы завершить программу, нажмите любую клавишу.

3. Инструкция программисту

Для решения задачи рисования аналоговых часов были предприняты следующие действия.

Объявлены константы:

BORDER COLOR - цвет границ циферблата,

BG_COLOR - цвет фона,

FG COLOR - цвет надписей,

FACE_COLOR - цвет циферблата,

MARG_COLOR - цвет поля с цифрами и штрихами,

HOURHAND_COLOR - цвет часовой стрелки,

MINHAND_COLOR - цвет минутной стрелки,

SECHAND_COLOR - цвет секундной стрелки,

Подключены заголовочные файлы <stdio.h> для функций ввода-вывода, <dos.h> - для функций времени, <graphics.h> - для графического режима и <conio.h> - для управления клавиатурой в программе на языке Си.

Подключены модули dos - для функций времени, graph - для графического режима и crt - для управления клавиатурой в программе на языке Паскаль.

Объявлены типы TTime – "время", его описание представлено в таблице 1, и Tpoint – координаты точки в Декартовой системе координат, его описание представлено в таблице 2.

Таблица 1 - Описание полей типа "время"

имя	тип		предназначение
	Pascal	C	
ti_hour,			Время: часы, минуты, секунды, сотые доли
ti_min,	and		секунд.
ti_sec,	word	unsigned	
ti_hund		char	

Таблица 2 - Описание полей типа "коорднаты точки"

имя	тип		предназначение
	Pascal	C	
х,у	integer	int	координаты точки.

Объявлены следующие структуры данных, представленные в таблице 3:

Таблица 3 - Структуры данных, используемые в в основной части программы рисования часов

имя	тип		предназначение
	Pascal C		
Pcenter	TPoint		координаты центра экрана,
CurrTime, DrawTime	TTime		текущее время и время последнего перерисовывания стрелок,
Redraw	boolean int		указывает, нужно ли перерисовать стрелки (true - нужно, false - нет),
ok	boolean	int	флаг отсутствия ошибки (1 - нет ошибки).

Также программа была разбита на следующие подпрограммы:

1. Процедура Polar2Dec() переводит координаты точки из полярной системы в Декартову. Точка задается углом Angle и расстоянием от центра Len в полярной системе, и координатами (P.x;P.y) в Декартовой. Центр полярной системы задается координатами (P0.x;P0.y).

void Polar2Dec(double Ang, double Len, TPoint P0, TPoint *P)
procedure Polar2Dec(Ang, Len: Real;P0:TPoint; var P: Tpoint);

Параметры процедуры представлены в таблице 4:

Таблица 4 - Параметры процедуры преобразования координат

имя	тип		предназначение
	Pascal C		
Ang	real double		угол в полярной системе,
Len	real double		расстояние от центра в полярной системе,
P0	TT) a i m 4	центр полярной системы в Декартовой,
Р	TPoint		координаты точки в Декартовой системе.

Локальные переменные процедуры отсутствуют.

2. Процедура DrawFace() рисует циферблат с центром в точке P0.

void DrawFace(TPoint P0);

procedure DrawFace(P0:TPoint);

Параметры процедуры представлены в таблице 5:

Таблица 5 - Параметры процедуры рисования циферблата

имя	тип	предназначение
	Pascal C	
P0	TPoint	центр циферблата.

Локальные переменные процедуры представлены в таблице 6:

Таблица 6 - Локальные переменные процедуры рисования циферблата

имя	Т	ип	предназначение
	Pascal	C	
			переменная-счетчик для
i	integer	int	рисования цифр часов и
			штрихов минут;
P	TD	Point	центр цифры-часа,
P1,P2	11	OIII	координаты концов штриха;
num	string	char[5]	строка с цифрой для вывода;
OldStylaLina	lin agattin agtum	struct	заданные перед процедурой
OldStyleLine	linesettingstype	linesettingstype	стили и цвета.
OldCtrilaTout	torrisottin outrus	struct	
OldStyleText,	textsettingstype	textsettingstype	
OldCtrdoEiii	£11a attin aatau	struct	
OldStyleFill	fillsettingstype	fillsettingstype	
OldColor	integer	int	

3. Процедура DrawHands() рисует стрелки часов с центром циферблата в точке Р0,для времени CurrTime, цветами: hour_color - для часовой стрелки, min_color - для минутной стрелки, sec_color - для секундной стрелки.

void DrawHands(TPoint P0,TTime CurrTime,

int hour_color,int min_color,int sec_color);

Procedure DrawHands(P0:TPoint; CurrTime:TTime;

hour color, min color, sec color:word);

Параметры процедуры представлены в таблице 7:

Таблица 7 - Параметры процедуры рисования стрелок

имя	тип		предназначение
	Pascal C		
P0	TPoint		центр циферблата,
CurrTime	TTime		текущее время,
hour_color	integer int		цвет часовой стрелки,
min_color	integer int		цвет минутной стрелки,
sec_color	integer int		цвет секундной стрелки.

Локальные переменные процедуры представлены в таблице 8:

Таблица 8 - Локальные переменные процедуры рисования стрелок

имя	Т	ип	предназначение
	Pascal	C	
D1 D2			координаты концов секундной
P1,P2			стрелки,
D2 D4	TD	laint	координаты концов минутной
P3,P4	119	oint	стрелки,
D5 D6			координаты концов часовой
P5,P6			стрелки,
OldStylaLina	linogottinogtyma	struct	заданные перед процедурой
OldStyleLine	linesettingstype	linesettingstype	стили и цвета.
OldColor	integer	int	

4. Функция Initialize() устанавливает графический режим и находит точку Pcenter - центр экрана.

Возвращает 1(true), если операция прошла успешно, иначе возвращается 0(false).

int Initialize(TPoint *Pcenter);

function Initialize(var Pcenter:TPoint):boolean;

Параметры функции представлены в таблице 9:

Таблица 9 - Параметры функции установки графического режима

имя	тип		предназначение
	Pascal	C	
Pcenter	TPoint		координаты центра экрана.

Локальные переменные функции представлены в таблице 10:

Таблица 10 - Локальные переменные функции установки графического режима

имя	тип		предназначение
	Pascal	C	
GraphDriver,	integer	int	устанавливаемые графический драйвер и
GraphMode			графический режим,
gr_code	integer	int	код ошибки инициализации графического режима.

4. Текст программы на языке Pascal

Ниже представлен текст программы на языке Borland Pascal 7.0 для рисования аналоговых часов.

```
uses graph, crt, dos;
Const BORDER COLOR=Black; {цвет границ циферблата}
    BG COLOR =DarkGray; {цвет фона}
      FG COLOR=Black; {цвет надписей}
      FACE COLOR=LightGray; {цвет циферблата}
      MARG COLOR=White; {цвет поля с цифрами и штрихами}
      HOURHAND COLOR=Blue; {цвет часовой стрелки}
      MINHAND COLOR=Green; {цвет минутной стрелки}
      SECHAND COLOR=Black; {цвет секундной стрелки}
type
      TPoint = record {TOYKA}
            x, y: Integer; {координаты}
      end;
      TTime=record { время }
            ti hour, ti min, {часы, минуты,}
            ti sec, ti hund {секунды, миллисекунды}
            : Word;
      end;
(*
Процедура Polar2Dec() переводит координаты точки из полярной системы в Декартову.
Точка задается углом Angle и расстоянием от центра Len в полярной системе,
и координатами (Р.х;Р.у) в Декартовой.
Центр полярной системы задается координатами (РО.х;РО.у).
Параметры:
Ang - угол в полярной системе,
Len - расстояние от центра в полярной системе,
РО - центр полярной системы в Декартовой,
Р - координаты точки в Декартовой системе.
Локальные переменные:
отсутствуют.
*)
procedure Polar2Dec(Ang, Len: Real; P0: TPoint; var P: TPoint);
begin
      Ang := Ang - 90; { Correlation for our coord system }
      P.x := Round(P0.x + Len * cos(Ang * Pi / 180));
      P.y := Round(P0.y + Len * sin(Ang * Pi / 180));
end;
```

```
(*
Процедура DrawFace() рисует циферблат с центром в точке Р0.
Параметры:
РО - центр циферблата.
Локальные переменные:
і - переменная-счетчик для рисования цифр часов и штрихов минут;
Р - центр цифры-часа,
Р1, Р2 - координаты концов штриха;
num - строка с цифрой для вывода;
OldStyleLine,OldStyleText,
OldStyleFill, OldColor - заданные перед процедурой стили и цвета.
*)
procedure DrawFace(P0:TPoint);
var i:byte; P,P1,p2:TPoint; num:string;
    OldStyleLine:LineSettingsType; OldStyleText:TextSettingsType;
    OldStyleFill:FillSettingsType; OldColor:integer;
begin
      GetLineSettings(OldStyleLine); GetTextSettings(OldStyleText);
      GetFillSettings(OldStyleFill); OldColor:=GetColor;
      SetColor(BORDER COLOR);
      SetLineStyle(0,0,3);
      SetFillStyle(SolidFill, MARG COLOR);
      FillEllipse(P0.x, P0.y, P0.y-30, P0.y-30);
      SetColor(BORDER COLOR);
      SetLineStyle(0,0,2);
      SetFillStyle(SolidFill, FACE COLOR);
      FillEllipse(P0.x, P0.y, P0.y-70, P0.y-70);
      SetColor(BG COLOR);
      SetFillStyle(HatchFill, BG COLOR);
      FillEllipse(P0.x, P0.y, 3, 3);
      SetTextStyle(GothicFont, HorizDir, 4);
      SetTextJustify(CenterText, CenterText);
      SetLineStyle(0,0,2);
      SetColor(FG COLOR);
      for i := 5 to 64 do
                              begin
            if i mod 5 =0 then begin
            Polar2DEc(i*6, P0.y - 50, P0, P);
            str(i div 5, num);
            OutTextXY(Round(P.x), Round(P.y)-7, num);
            end else begin
```

```
Polar2Dec(i * 6, PO.y - 70,p0, P1);
            Polar2Dec(i * 6, P0.y-60,p0, P2);
            Line (p1.x, p1.y, p2.x, p2.y);
            end;
      end;
      with oldStyleLine do
         setLineStyle(LineStyle, Pattern, Thickness);
      with oldStyleText do begin
         setTextStyle(Font, Direction, CharSize);
         setTExtJustify(horiz,vert);
      end;
      with oldStyleFill do
         setFillStyle(Pattern, Color);
      setColor(OldColor);
end;
(*
Процедура DrawHands() рисует стрелки часов с центром циферблата в точке РО,
для времени CurrTime, цветами:
hour color - для часовой стрелки,
min color - для минутной стрелки,
sec color - для секундной стрелки.
Параметры:
РО - центр циферблата,
CurrTime - текущее время,
hour color - цвет часовой стрелки,
min color - цвет минутной стрелки,
sec color - цвет секундной стрелки.
Локальные переменные:
Р1, Р2 - координаты концов секундной стрелки,
РЗ, Р4 - координаты концов минутной стрелки,
Р5, Р6 - координаты концов часовой стрелки,
OldStyleLine, OldColor - заданные перед процедурой стили и цвета.
*)
Procedure DrawHands(P0:TPoint;CurrTime:TTime;hour color,min color,sec color:word);
var P1,p2,p3,p4,p5,p6:TPoint;
OldStyleLine:LineSettingsType; oldColor:integer;
begin
      GetLineSettings(OldStyleLine); OldColor:=GetColor;
      SetLineStyle(0,0,3);
      { Second arrow }
      Polar2Dec((CurrTime.ti sec + CurrTime.ti hund/100) * 6, p0.y - 72,p0, P1);
      Polar2Dec((CurrTime.ti sec + CurrTime.ti hund/100) * 6, 5,p0, P2);
```

```
{ Minute arrow }
      Polar2Dec((CurrTime.ti_min + CurrTime.ti_sec/60) * 6, p0.y - 120,p0, P3);
      Polar2Dec((CurrTime.ti min + CurrTime.ti sec/60) * 6, 5,p0, P4);
      { Hour arrow }
      Polar2Dec((CurrTime.ti hour + CurrTime.ti min/60) * 30, p0.y - 150,p0, P5);
      Polar2Dec((CurrTime.ti hour + CurrTime.ti min/60) * 30, 5,p0, P6);
      { Draw }
      SetColor(sec color);
      SetColor(sec color);
      Line(P2.x, P2.y, P1.x, P1.y);
      SetColor(min color);
      Line(P4.x, P4.y, P3.x, P3.y);
      SetColor(hour color);
      Line(P6.x, P6.y, P5.x, P5.y);
      with oldStyleLine do
         setLineStyle(LineStyle, Pattern, Thickness);
      SetColor(oldColor);
end:
(*
Процедура Initialize() устанавливает графический режим
и находит точку Pcenter - центр экрана.
Параметры:
Pcenter - координаты центра экрана.
Локальные переменные:
GraphDriver, GraphMode - устанавливаемые графический драйвер и графический режим,
gr code - код ошибки инициализации графического режима.
function Initialize(var Pcenter:TPoint):boolean;
var GraphDriver, GraphMode, gr code:integer;
begin
      GraphDriver:=DETECT;
      InitGraph(GraphDriver, GraphMode, '');
      gr code:=GraphResult;
      if gr code=grOK then begin
            ClearDevice;
            SetFillStyle(SolidFill, BG COLOR);
            floodfill(0,0,BG COLOR);
            Pcenter.x := GetMaxX div 2;
```

```
PCenter.y := GetMaxY div 2;
            Initialize:=true;
      end else begin
            WriteLn('Ошибка инициализации графического режима #', gr code);
            Initialize:=false;
      end;
end;
(*
Программа - аналоговые часы.
Переменные:
Pcenter - координаты центра экрана,
CurrTime, DrawTime - текущее время и время последнего перерисовывания стрелок,
Redraw - указывает, нужно ли перерисовать стрелки (true - нужно, false - нет),
ok - флаг отсутствия ошибки (1 - нет ошибки).
*)
var ok:boolean;
      Pcenter:TPoint;
      Redraw:boolean;
      CurrTime, DrawTime: TTime;
begin
      ok:=Initialize(Pcenter);
      if ok then begin
            SetTextStyle(GothicFont, HorizDir, 4);
            SetTextJustify(CenterText, CenterText);
            SetColor(FG COLOR);
            OutTextXY(Pcenter.x,7, 'Press any key to exit');
            OutTextXY(Pcenter.x, GetMaxY-21, 'Press any key to exit');
            DrawFace(Pcenter);
            GetTime (DrawTime.ti hour, DrawTime.ti min,
                                 DrawTime.ti sec, DrawTime.ti hund);
            DrawHands (Pcenter, DrawTime, HOURHAND COLOR,
                                    MINHAND COLOR, SECHAND COLOR);
            Redraw:=false;
            while not keypressed do begin
                  if Redraw then begin
                        { Erase }
                        DrawHands (Pcenter, DrawTime, FACE COLOR,
                                     FACE COLOR, FACE COLOR);
                        GetTime(DrawTime.ti_hour, DrawTime.ti_min,
```

```
DrawTime.ti_sec, DrawTime.ti_hund);
                        DrawHands (Pcenter, DrawTime, HOURHAND COLOR,
                                      MINHAND_COLOR, SECHAND_COLOR);
                        Redraw:=False;
                  end else begin
                        GetTime(CurrTime.ti_hour, CurrTime.ti_min,
                                     CurrTime.ti_sec, CurrTime.ti_hund);
                        Redraw:=((CurrTime.ti hour-DrawTime.ti hour)<>0)
                               or((CurrTime.ti min-DrawTime.ti min)<>0)
                                 or ((CurrTime.ti sec-DrawTime.ti sec)<>0)
                                or(abs(CurrTime.ti_hund- DrawTime.ti_hund)>4);
                  end;
            end;
            CloseGraph;
      end else WriteLn('Программа прервана!');
end.
```

5. Текст программы на языке Си

Ниже представлен текст программы на языке Borland C 3.1 для рисования аналоговых часов.

```
#include <stdio.h>
#include <graphics.h>
#include <conio.h>
#include <dos.h>
#include <math.h>
const int BORDER COLOR=BLACK, // цвет границ циферблата
    BG COLOR=DARKGRAY, // цвет фона
      FG COLOR=BLACK, // цвет надписей
      FACE COLOR=LIGHTGRAY, // цвет циферблата
      MARG COLOR=WHITE, // цвет поля с цифрами и штрихами
      HOURHAND COLOR=BLUE, // цвет часовой стрелки
      MINHAND COLOR=GREEN, // цвет минутной стрелки
      SECHAND COLOR=BLACK; // цвет секундной стрелки
typedef struct { //точка
      int x, y; //координаты
} TPoint;
typedef struct time TTime; //время
Процедура Polar2Dec() переводит координаты точки из полярной системы в Декартову.
Точка задается углом Angle и расстоянием от центра Len в полярной системе,
и координатами (Р.х;Р.у) в Декартовой.
Центр полярной системы задается координатами (РО.х;РО.у).
Параметры:
Ang - угол в полярной системе,
Len - расстояние от центра в полярной системе,
РО - центр полярной системы в Декартовой,
Р - координаты точки в Декартовой системе.
Локальные переменные:
отсутствуют.
*/
void Polar2Dec(double Ang, double Len, TPoint PO, TPoint *P) {
      Ang -= 90;
      P->x = (int) (P0.x + Len * cos(Ang * M PI / 180));
      P->y = (int) (P0.y + Len * sin(Ang * M PI / 180));
};
/*
Процедура DrawFace() рисует циферблат с центром в точке Р0.
Параметры:
РО - центр циферблата.
Локальные переменные:
```

```
і - переменная-счетчик для рисования цифр часов и штрихов минут;
Р - центр цифры-часа,
Р1, Р2 - координаты концов штриха;
num - строка с цифрой для вывода;
OldStyleLine,OldStyleText,
OldStyleFill, OldColor - заданные перед процедурой стили и цвета.
void DrawFace(TPoint P0) {
  int i; TPoint P,P1,P2; char num[5];
  struct linesettingstype OldStyleLine; struct textsettingstype OldStyleText;
  struct fillsettingstype OldStyleFill; int OldColor;
      getlinesettings(&OldStyleLine); gettextsettings(&OldStyleText);
      getfillsettings(&OldStyleFill); OldColor=getcolor();
      setcolor(BORDER COLOR);
      setlinestyle (0,0,3);
      setfillstyle(SOLID FILL, MARG_COLOR);
      fillellipse(P0.x,P0.y,P0.y-30,P0.y-30);
      setcolor(BORDER COLOR);
      setlinestyle(0,0,2);
      setfillstyle(SOLID FILL, FACE COLOR);
      fillellipse(P0.x,P0.y,P0.y-70,P0.y-70);
      setcolor(BG COLOR);
      setfillstyle(HATCH FILL, BG COLOR);
      fillellipse(P0.x, P0.y, 3 , 3);
      settextstyle(GOTHIC FONT, HORIZ DIR, 4);
      settextjustify(CENTER TEXT, CENTER TEXT);
      setlinestyle(0,0,2);
      setcolor(FG COLOR);
      for (i = 5; i<65;i++) {</pre>
            if (!(i%5)){
                  Polar2Dec(i*6, P0.y - 50, P0, &P);
                  sprintf(num, "%d", i/5);
                  outtextxy((int)(P.x),(int)(P.y)-7,num);
            } else {
                  Polar2Dec(i * 6, PO.y - 70, PO, &P1);
                  Polar2Dec(i * 6, PO.y-60, PO, &P2);
                  line(P1.x,P1.y,P2.x,P2.y);
            };
      };
```

```
setlinestyle(OldStyleLine.linestyle,
                             OldStyleLine.upattern,OldStyleLine.thickness);
      settextstyle(OldStyleText.font,OldStyleText.direction,
                         OldStyleText.charsize);
      settextjustify(OldStyleText.horiz,OldStyleText.vert);
      setfillstyle(OldStyleFill.pattern,OldStyleFill.color);
      setcolor(OldColor);
};
/*
Процедура DrawHands() рисует стрелки часов с центром циферблата в точке РО,
для времени CurrTime, цветами:
hour color - для часовой стрелки,
min color - для минутной стрелки,
sec color - для секундной стрелки.
Параметры:
РО - центр циферблата,
CurrTime - текущее время,
hour color - цвет часовой стрелки,
min color - цвет минутной стрелки,
sec color - цвет секундной стрелки.
Локальные переменные:
Р1, Р2 - координаты концов секундной стрелки,
Р3, Р4 - координаты концов минутной стрелки,
Р5, Р6 - координаты концов часовой стрелки,
OldStyleLine, OldColor - заданные перед процедурой стили и цвета.
*/
void DrawHands (TPoint P0, TTime CurrTime, int hour color, int min color, int
sec color) {
  TPoint P1, P2, P3, P4, P5, P6;
  struct linesettingstype OldStyleLine; int OldColor;
      getlinesettings(&OldStyleLine); OldColor=getcolor();
      setlinestyle (0,0,3);
      Polar2Dec((CurrTime.ti sec + (double)CurrTime.ti hund/100) * 6,
                                                                 P0.y - 72,P0, &P1);
      Polar2Dec((CurrTime.ti sec + (double)CurrTime.ti hund/100) * 6, 5, P0, &P2);
      Polar2Dec((CurrTime.ti min + (double)CurrTime.ti sec/60) * 6,
                                                             P0.y - 120, P0, \&P3);
      Polar2Dec((CurrTime.ti min + (double)CurrTime.ti sec/60) * 6, 5, P0, &P4);
      Polar2Dec((CurrTime.ti hour +(double) CurrTime.ti min/60) * 30,
                                                           P0.y - 150, P0, &P5);
      Polar2Dec((CurrTime.ti_hour +(double) CurrTime.ti_min/60) * 30, 5,P0, &P6);
```

```
setcolor(sec color);
      line(P2.x, P2.y, P1.x, P1.y);
      setcolor(min_color);
      line(P4.x, P4.y, P3.x, P3.y);
      setcolor(hour color);
      line(P6.x, P6.y, P5.x, P5.y);
      setlinestyle(OldStyleLine.linestyle,OldStyleLine.upattern,
                        OldStyleLine.thickness);
      setcolor(OldColor);
};
/*
Процедура Initialize() устанавливает графический режим
и находит точку Pcenter - центр экрана.
Параметры:
Pcenter - координаты центра экрана.
Локальные переменные:
GraphDriver, GraphMode - устанавливаемые графический драйвер и графический режим,
gr code - код ошибки инициализации графического режима.
* /
int Initialize(TPoint *Pcenter) {
int GraphDriver, GraphMode, gr code;
      GraphDriver=DETECT;
      initgraph(&GraphDriver, &GraphMode,"");
    gr code=graphresult();
      if (gr code==grOk) {
            cleardevice();
            setfillstyle(SOLID FILL, BG COLOR);
            floodfill(0,0,BG COLOR);
            Pcenter->x = getmaxx() / 2;
            Pcenter->y = getmaxy() / 2;
            return 1;
      } else {
            printf("Ошибка инициализации графического режима #%d", gr code);
            return 0;
      }
};
Программа - аналоговые часы.
Переменные:
Pcenter - координаты центра экрана,
```

```
CurrTime, DrawTime - текущее время и время последнего перерисовывания стрелок,
Redraw - указывает, нужно ли перерисовать стрелки (true - нужно, false - нет),
ок - флаг отсутствия ошибки (1 - нет ошибки).
int main(void) {
  int ok:
 TPoint Pcenter;
  int WaitEnded;
  TTime CurrTime, DrawTime;
      ok=Initialize(&Pcenter);
      if (ok) {
            settextstyle(GOTHIC FONT, HORIZ DIR, 4);
            settextjustify(CENTER TEXT, CENTER TEXT);
            setcolor(FG COLOR);
            outtextxy(Pcenter.x,7, "Press any key to exit");
            outtextxy(Pcenter.x,getmaxy()-21, "Press any key to exit");
            DrawFace (Pcenter);
            gettime(&DrawTime);
            DrawHands (Pcenter, DrawTime, HOURHAND COLOR,
                          MINHAND COLOR, SECHAND COLOR);
            WaitEnded=0:
            while (!kbhit()){
                  if (WaitEnded) {
                        DrawHands (Pcenter, DrawTime, FACE COLOR,
                                   FACE_COLOR, FACE COLOR);
                        gettime(&DrawTime);
                        DrawHands (Pcenter, DrawTime, HOURHAND COLOR,
                                    MINHAND COLOR, SECHAND COLOR);
                        WaitEnded=0;
                  } else {
                        gettime(&CurrTime);
                        WaitEnded=(CurrTime.ti hour-DrawTime.ti hour) | |
                                    (CurrTime.ti min-DrawTime.ti min)
                                     ||(CurrTime.ti sec-DrawTime.ti sec)
                                      ||(abs(CurrTime.ti hund- DrawTime.ti hund)>4);
                  };
            };
            closegraph();
      } else printf("Программа прервана!");
    return 0;
}
```

6. Тестовый пример

Ниже на рисунке 6 приведен пример работы программы, рисующей анимированные аналоговые часы.

Рисунок 6 — Пример работы программы рисования аналоговых часов

Вывод

В ходе выполнения данной лабораторной работы я научился использовать функции и процедуры графического режима в программах на языках Си и Паскаль. Графический режим позволяет программисту управлять каждым пикселом на экране, что позволяет строить изображения различной степени сложности — от графиков функций и графических окон до анимированных интерактивных изображений. На сегодняшний день графический режим является основным режимом работы видеоадаптера. Сейчас многие вообще не могут представить компьютер без графической оконной среды. Конечно, для работы с графическим режимом требуется более высокая квалификация программиста.