CSE 311 HW4

Rohan Mukherjee

February 1, 2023

- 2.1 (a) The "proof" is incorrect because they started with the conclusion and concluded the hypothesis.
 - (b) It is false, take a = 1, b = 0, c = 2. Clearly ab = bc = 0, while $a \neq c$. The statement would however be true if we restrict our domain to non-zero real numbers.
- 2.2 (a) The above proof is incorrect as $\sqrt{a^2} = |a|$, which is not necessarily a (it could be -a). If we impose the additional restriction that $a, b \ge 0$, then the statement is true, as |x| = x for all $x \ge 0$.
 - (b) The above statement is false. Take a = 1, b = -1. Clearly $a^2 = b^2 = 1$, while $a \neq b$.

3. (a) Mysterious(x) = $\exists k(x-3=4k)$.

(b)

let a be arbitrary

1.1. Mysterious(a) (Assumption) (Definition of Mysterious(a)) 1.2. $\exists k(a - 3 = 4k)$ 1.3. a - 3 = 4b(Elim \exists) 1.4. a = 4b + 3(Add 3 to both sides) 1.5. a = 2(2b + 1) + 1(Factor out a 2) 1.6. $\exists l(a = 2l + 1)$ (Intro \exists) 1.7. Odd(a) (Definition of Odd(a)) 2. Mysterious(a) \rightarrow Odd(a) (Direct proof rule) 3. $\forall x (Mysterious(x) \rightarrow Odd(x))$ (Intro \forall)

- (c) Let $x \in \mathbb{Z}$ be arbitrary. If $4 \mid (x-3)$, then x-3=4k for some $k \in \mathbb{Z}$. Rearranging, we get that x=4k+3=4k+2+1=2(2k+1)+1, and clearly $2k+1 \in \mathbb{Z}$, so x is odd by the definition of an odd number. As x was arbitrary, we have proven our statement. \square
- (d) The first sentence corresponds to the first 3 lines of my proof, that is α being arbitrary and using the definition of Mysterious(α). The part before the second comma corresponds to the next 3 lines of algebra, and the part after the comma corresponds to translating that to $Odd(\alpha)$. The last sentence corresponds to the last 2 lines of the proof–reintroducing the \forall .

5. (a) Given any $x \in (B \setminus A) \cap (C \setminus A)$, we see that $x \in B$ and $x \notin A$, and that $x \in C$ and $x \notin A$. It is now clear that we have both $x \in B$ and $x \in C$, which shows that $x \in B \cap C$. We also have $x \notin A$ (twice, in fact), so by the definition of set difference, we have that $x \in (B \cap C) \setminus A$. As x was arbitrary, we have that $(B \setminus A) \cap (C \setminus A) \subseteq (B \cap C) \setminus A$. Given $x \in (B \cap C) \setminus A$, we have that $x \in B \cap C$ and that $x \notin A$. The first condition is equivalent to $x \in B$ and $x \in C$, so we see see that $x \in B$ and that $x \notin A$, and at the same time we have that $x \in C$ and $x \notin A$ (this step is similar to intro A in a formal proof). This shows that $x \in (B \cap C) \setminus A$, by the definition of A and A arbitrary, we have the reverse inclusion A and A arbitrary, we have the reverse inclusion A and A arbitrary we have the reverse inclusion A and A arbitrary we have the reverse inclusion A arbitrary arbitrary we have the reverse inclusion A arbitrary are indeed equal.

Here is the chain of equivalences:

```
x \in (B \setminus A) \cap (C \setminus A)

\iff x \in B \setminus A \land x \in C \setminus A (Definition of \cap)

\iff (x \in B \land x \notin A) \land (x \in C \land x \notin A) (Definition of \setminus)

\iff (x \in B \land x \in C) \land (x \notin A \land x \notin A) (Commutativty, and associativity twice)

\iff (x \in B \land x \in C) \land x \notin A (p \land p \equiv p)

\iff x \in (B \cap C) \land x \notin A (Definition of \cap)

\iff x \in (B \cap C) \land A (Definition of \setminus)
```

(b) Take $\{1,2,3\} = A = B = C$. Note that $A \setminus B = B \setminus C = \emptyset$. Therefore, the LHS is $A \setminus \emptyset = A = \{1,2,3\}$, while the RHS is $\emptyset \setminus C = \emptyset \neq \{1,2,3\}$, so we have found a counterexample. This is not a surprising result, as subtraction of real numbers is also not associative.

- 6. (a) The first problem is that $X \subseteq S \cup T \to X \subseteq S \vee X \subseteq T$. This is false, take $X = \{1, 2, 3\}$, $S = \{1, 2\}$, and $T = \{3\}$. Clearly the first statement is true while the second is false. The proof strategy error is that all they attempted to do was show that $P(S \cup T) \subseteq P(S) \cup P(T)$, but they also had to show the other direction, which is that $P(S) \cup P(T) \subseteq P(S \cup T)$.
 - (b) This statement is also false, take $S = \{1\}$, $T = \{2\}$. $P(S) = \{\emptyset, \{1\}\}$, $P(T) = \{\emptyset, \{2\}\}$, and as $S \cap T = \emptyset$, $P(S \cap T) = \{\emptyset\}$. The union of all of these powersets is $\{\emptyset, \{1\}, \{2\}\}$, which clearly does not contain $S \cup T = \{1, 2\}$, which is certainly in the LHS. So these aren't equal, and we are done.

- 7. (a) Given two arbitrary positive integers x, y, we know that $x \ge 1$, and $y \ge 1$. Then $x + y \ge 2$, so at the very least $x + y \ne 1$, which proves that it is not an arbitrary positive integer (as *arbitrary* would mean that it can take on the value of all positive integers!)
 - (b) Let $(x, y) \in (S \cup T) \times V$ be arbitrary.

...

Therefore, $(x,y) \in (S \times V) \cup (T \times V)$. As (x,y) was arbitrary, this shows that $(S \cup T) \times V \subseteq (S \times V) \cup (T \times V)$.

Next, let $(x, y) \in (S \times V) \cup (T \times V)$ be arbitrary.

•••

Therefore, $(x, y) \in (S \cup T) \times V$. As (x, y) was arbitrary, this shows that $(S \cup T) \times V \supseteq (S \times V) \cup (T \times V)$. Because both sets are contained in each other, they are equal. \square

8. This assignment was particularly short. I have been really excited to get to English proofs, as it is something that I have practiced a LOT. I love math, and started learning English proofs this summer when I was reading, "Abstract Algebra: An Introduction" by T.W. Hungerford, which is where i was introduced to a lot of the number theory that we are now learning in class. I hope to take graduate algebra next year, so although I know a lot of proofs already, I find it helpful that I finally understand the underlying logic behind what I was doing (or at least, I have a better understanding of the sort). This problem set took me \approx 3 hours (I take a while to review stuff). I spent the most time on problem 3, as I had to write an inference proof, which takes long to type up (it was also fairly confusing).