Chapter 2

List of exercises

2.1 Sampling random points within D- dimensional domains by hit and miss

Rectangle Generate random points uniformly distributed within a rectangle $[a,b] \times [c,d]$ and compare the analytic value of the area $A = L_{ab}L_{cd}$ with the Monte Carlo estimate based on the hit-miss method as a function of the number of "throws".

Disk Do the same for a unit radius disk.

2.2 Sampling random numbers from a given distribution

2.2.1 Inversion method

Exercise Use the inversion method to design an algorithm that samples random numbers according to the power law probability distribution

$$\rho(x) = c x^n, \quad \text{with } x \in [0, 1] \tag{2.1}$$

for some constant c that normalise $\rho(x)$. Simulate the cases n=3,4 and compare the histograms with the analytical expressions.

Exercise Use the inversion method to sample random numbers according to the probability distribution $\rho(x) = cx^2$ with $x \in [0, 2]$

Additional exercises Use the inversion method to generate random numbers with the following PDF

- 1. $\rho(x) = \mu e^{-\mu x}$, for $x \ge 0$;
- 2. $\rho(x) = 2x e^{-x^2}$, for $x \ge 0$.
- 3. $\rho(x) = \frac{1}{(a+bx)^n}$ for $x \ge 0$ and n > 1

Note. For all the exercises proposed above first compute the F, F^{-1} and the map $x_i = f(\xi_i)$ and then implement and run the corresponding algorithm. Compute the histogram of the sampled points and compare it with the expected PDF.

2.3 Sampling via transformation of coordinates

Exercise Sampling uniformly points within a unit radius disk The obvious approach to sample points within the unit disk corresponds to considering $r = \xi_1$ and $\theta = 2\pi \xi_2$ with ξ_1, ξ_2 uniformly distributed in [0, 1].

- Show by simulation that this algorithm does not sample points uniformly within the disk. Explain which is the conceptual mistake of this algorithm.
- Design an algorithm that does it correctly. (**Hint:** One way is to first perform the transformation into polar coordinates and then use the marginal p(r) and the conditional $p(\theta|r)$ PDFs to do the sampling by applying in turn the 1D inversion method.)

Exercise A way to generate numbers from a 2D (normalised) 2D Gaussian PDF, $\mathcal{N}(0,1)$ is the so-called Box-Muller transformation. This is based on the idea presented during the lecture in which one first makes a coordinate transformation to factorize the 2-point PDF

$$\rho(x,y) = \frac{1}{2\pi} e^{-(x^2 + y^2)/2} \tag{2.2}$$

into a product of two one-point PDFs and then performs two separate samplings, one for each PDF.

- Write an algorithm that does this sampling by first performing the analytical calculations necessary to find the correct transformation;
- How one can extend the algorithm to sample from $\mathcal{N}(\mu, \sigma^2)$?

2.3.1 Rejection method

Exercise Use the rejection method to generate random numbers that are distributed according to the pdf

$$f(x) = \sqrt{2/\pi} e^{-x^2}. (2.3)$$

Hint: One may use a function g(x) = A for $0 \le x \le p$ and $g(x) = (A/p) x \exp(p^2 - x^2)$ for x > p. See how good the performance is for a few values of p (use a reasonable value N of "darts".

2.4 Importance sampling

Exercise Let us consider the following function $f(x) = e^{-x^2}g(x)$ in $[0,\infty]$ where g(x) is a slowly varying function. Compute the integral both with the crude method and by using the importance sampling technique. Hint: For the importance sampling method use a Gaussian random number generator with density $W(x) = \sqrt{2/\pi}e^{-x^2}$ With this choice one has

$$I = \int_0^\infty f(x) \, dx \sim \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{W(x_i)} = \frac{1}{N} \sqrt{\pi/2} \sum_{i=1}^N g(x_i). \tag{2.4}$$

Exercise Estimate the integral

$$\int_0^{\pi/2} \cos x \, dx \tag{2.5}$$

using the importance sampling technique with g(x) proportional to $a+bx^2$. Determine the optimal values of the parameters a and b to generate samples according to g(x) and establish the number of iterations needed to get an accuracy of %1.