GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) EXAMINATION - SUMMER 2021

Subject Code:2160704 Date:05/08/2021

Subject Name: Theory of Computation

Time:02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** (a) Define DFA and NFA and NFA- Λ

03 04

07

04

07

03

04

07

- (b) Write Regular Expressions corresponding to each of the following subsets of {0,1}* (i) The language of all strings containing both 101 and 010 as substrings.

- (ii) The language of all strings that do not end with 01.
- (c) Use the principle of mathematical induction to prove that $1+3+5+...+(2n-1)=n^2$ for all n>0 where r is an odd integer & n is the number of terms in the sum.
- Q.2 (a) Define onto, one-to-one, and bijection functions.
 - (b) Using constructive approach determine NFA- Λ for the regular expression (0+1)*1(0+1).
 - (c) Convert the CFG, G ($\{S,A,B\},\{a,b\},P$, S) to CNF, where P is as follows $S \to aAbB$

$$A \rightarrow Ab \mid b$$

$$B \to Ba \mid a$$

OR

(c) Convert the Mealy machine shown in given figure into Moore machine.

- Q.3 (a) Define CFG. When is a CFG called an 'ambiguous CFG'?
 - **(b)** Draw FA for accepting: The strings with odd no of 1's and odd no of 0's.
 - (c) Convert following NFA- Λ to NFA

q	$\delta(q, \Lambda)$	$\delta(q, 0)$	$\delta(q, 1)$
A	{B}	{A}	φ
В	{D}	{C}	φ
С	φ	φ	{B}
D	φ	{D}	φ

OR

- **Q.3** (a) Give recursive definitions of the extended transition functions, δ^* for DFA and NFA.
 - (b) For the language $L = \{ xcx^r | x \rightarrow \{a,b\}^* \}$ design a PDA(Push Down Automata).
 - (c) Write Kleene's Theorem part-I, Any regular language can be accepted by a finite automation.

1

03

04

07
