

Enhancing the Automotive Supply Chain in Response to Semiconductor Shortages

Team 14

Introduction

The semiconductor shortage crisis started in 2021, caused by the pandemic and its impact on global supply chains.

The automotive industry was directly affected by this since chips are a crucial element in vehicles.

Rising prices

The crisis shed a light on the importance of supply chain transformation and the necessity of digitalization and collaboration between moving parts.

Background

SEMICONDUCTORS SHORTAGE

SUPPLY CHAIN VISIBILITY

DIGITAL TRANSFORMATION

ADVANCED TECHNOLOGIES

Current Supply Chain Situation

Automotive Semiconductor Demand Forecasting Challenges

Just-In-Time Supply
Chain Visibility
Gaps

Automotive Chip
Supply Lead
Times

Competition From
Consumer
Electronics

- Unclear technology roadmaps for predicting chip needs in new vehicle models
- Complexity from frequent changes to custom vehicle orders mid-production
- Limited visibility into semiconductor content across vehicle components/features

- Lack of end-to-end supply chain transparency on chip usage and inventory
- No standardized data sharing between automakers, suppliers, and chipmakers
- Minimal advanced analytics for semiconductor supply/demand monitoring

- 4-month minimum lead time if manufacturing capacity available
- 18+ months if capacity expansion required for automotive-grade chips
- 3+ years to build new semiconductor fabrication plants for automakers

- Automotive lower priority as chip demand spiked for PCs, cellphones during pandemic
- Mature node capacity constrained, fiercer competition for autograde chips
- Cost-sensitive
 automotive
 semiconductors de prioritized by suppliers

Technology and their Applications

Al to detect changes in demand and supply

IoT solving Chip Shortage Blockchain integration with IoT

Qualitative Benefits of Digital Transformation

1. ENHANCED DECISION MAKING

2. PROACTIVE RISK MANAGEMENT

3. BUILD RESILIENCY IN THE SUPPLY CHAIN

4. ENHANCED

COLLABORATION AND

COMMUNICATION

Measuring Digital Technology Effectiveness in Supply Chains

01 **PERFECT ORDER RATE**

The percentage of orders delivered without any issues, such as delays, damages, or inaccuracies.

02 CYCLE TIME REDUCTION

The reduction in time taken to move a product from order to delivery, measured pre- and post-digital transformation.

03 **DIGITAL**TRACEABILITY
INDEX

The extent to which a company can track and trace products throughout the supply chain using digital tools.

04 INVENTORY ACCURACY

The accuracy of inventory records compared to physical stock.

05 **SUSTAINABILITY METRICS**

Metrics such as carbon footprint reduction, waste minimization, and resource optimization, enabled by digital technologies.

Challenges & Solutions

01 HIGH INITIAL COSTS

 Seek government grants and incentives for digital transformation initiatives to make the automotive industry more resilient and sustainable

02 INTEGRATION ISSUE

- Define standards for integrating semiconductor data across supply chain
- Alignment across procurement, supply chain, IT, product development
- Establish governance for sharing semiconductor data across OEM

03 DATA SECURITY CONCERNS

- Implement cybersecurity controls to protect sensitive chip information
- Use a Multi-Layered Security Approach such as firewalls or intrusion detection systems

04 **CHANGE MANAGEMENT**

- Create a technology roadmap that connects supply chain functions to better develop next-gen semiconductor innovations
- Communicate the benefits of digital transformation clearly to all stakeholders

Recommendations

STRENGTHENING GLOBAL TRADE AGREEMENTS AND POLICIES TO FACILITATE THE FREE FLOW OF SEMICONDUCTOR PRODUCTS.

INVESTING IN
DOMESTIC
SEMICONDUCTOR
MANUFACTURING
CAPABILITIES

ESTABLISHING
COLLABORATIVE
SEMICONDUCTOR
ECOSYSTEMS WITH
REGIONAL HUBS

Roadmap to 2030

2024-2025

2026-2027

2028

2029

2030

- Initial research and global outreach
- Begin
 foundational
 studies for
 blockchain
 integration in
 trade processes

- Negotiations for new trade agreements
- invest in infrastructure
 for domestic
 manufacturing
 Pilot projects for
 - Pilot projects for blockchain to secure supply chain data

- Implementation of trade agreements
- Start pilot projects for IoT applications in semiconductor manufacturing.
- Evaluate the effectiveness of trade policies and blockchain implementations
- Scale up
 domestic
 production with
 IoT integration for
 efficiency

- Establish and formalize regional hubs
- Full-scale deployment of blockchain and IoT within these ecosystems

References

Burkacky, O., Deichmann, J., Pfingstag, P., & Werra, J. (2022). Semiconductor shortage: How the automotive industry can succeed. McKinsey & Company.

Choi, T.-M. (2021). Supply chain financing using blockchain: The case of Walmart. International Journal of Production Economics, 218, 152-165. https://doi.org/10.1016/j.ijpe.2019.10.001

Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos, T., & Fosso Wamba, S. (2020). The impact of big data on world-class sustainable manufacturing. International Journal of Production Economics, 220, 1070-1083. https://doi.org/10.1016/j.ijpe.2019.07.003

Gdali, Z. (2024, February 26). How can IoT help in supply chain management? firecell.io. https://firecell.io/how-can-iot-help-in-supply-chain-management/

EY. (2024). Five actions supply chain and operations management can take today. https://www.ey.com/en_us/coo

House, W. (2023, October 22). FACT SHEET: Biden-Harris administration announces 31 regional tech hubs to spur American innovation, strengthen manufacturing, and create Good-Paying jobs in every region of the country. The White House. https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/23/fact-sheet-biden-harris-administration-announces-31-regional-tech-hubs-to-spur-american-innovation-strengthen-manufacturing-and-create-good-paying-jobs-in-every-region-of-the-country/

Jackley, M. (2023, July 13). 9 Ways to Reduce Supply Chain Disruptions. Oracle. https://www.oracle.com/scm/reduce-supply-chain-disruptions/

Kamble, S. S., Gunasekaran, A., & Sharma, R. (2019). Analysis of the driving and dependence power of barriers to adopt Industry 4.0 in Indian manufacturing industry. Computers in Industry, 101, 107-119. https://doi.org/10.1016/j.compind.2018.11.004

Lawler, D. (2023, June 6). How Blockchain is Revolutionizing the Automotive Supply Chain. https://www.linkedin.com/pulse/how-blockchain-revolutionizing-automotive-supply-chain-david-lawler/

References

Lewis, J. A. (2022). Strengthening a transnational semiconductor industry. https://www.csis.org/analysis/strengthening-transnational-semiconductor-industry

MIT Technology Review. (2022, May 26). Transforming the automotive supply chain for the 21st century. MIT Technology Review. https://www.technologyreview.com/2022/05/12/1052201/transforming-the-automotive-supply-chain-for-the-21st-century/

Olenick, C. J. (2018). Understanding and working within the gender binary: An internship with Fundación Triángulo (Independent Study Project Collection, No. 2613). SIT Graduate Institute. https://digitalcollections.sit.edu/cgi/viewcontent.cgi?article=4616&context=isp_collection

Reuters. (2020). Germany agrees \$2.3 billion aid for auto industry to navigate technology shifthttps://www.reuters.com/article/idUSKBN27I1C0/

Roy, S., Saranga, H., Hazra, J., & Indian Institute of Management Bangalore. (2024). The Evolving Semiconductor Industry: Post-Covid Challenges for Automakers.

Shah, P. (2024b, March 4). Cyber security in automotive supply chain: challenges and solutions. https://www.linkedin.com/pulse/cyber-security-automotive-supply-chain-challenges-solutions-shah-auxbf/

Sjs. (2024, February 16). The role of AI in Developing Resilient Supply Chains | GJIA. Georgetown Journal of International Affairs. https://gjia.georgetown.edu/2024/02/05/the-role-of-ai-in-developing-resilient-supply-chains/#:~:text=In%20addition%20to%20real%2Dtime,shipping%20delays%2C%20among%20other%20issues

Venne, U. (2023, March 21). 5 agile supply chain risk management strategies: from reactive to proactive. Everstream AI. https://www.everstream.ai/articles/5-agile-supply-chain-risk-management-strategies/#:~:text=Proactive%20risk%20management%20requires%20the

Xu, L. D., He, W., & Li, S. (2014). Internet of Things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233-2243. https://doi.org/10.1109/TII.2014.2300753

OUR TEAM

MARIA TOBAR

SEBASTIAN ROZAS

M. CAMILA AGUIRRE

ILORA TIMBANDYOPADHYAY L

TIMOTHY F.