SET-1 Code: 13BS1001

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, Jan / Feb-2016 **ENGINEERING MATHEMATICS – I**

(Common to All Branches)

Time: 3 Hours Max. Marks: 70

PART-A

Answer all Questions

 $[10 \times 1 = 10 \text{ M}]$

- 1. (a) Define Exact differential equation
 - (b) State Newton' law of cooling
 - (c) Find the particular integral of the differential equation $y'' 4y = e^{2x}$
 - (d) Define simple harmonic motion

(e) If
$$x = u(1 - v)$$
, $y = uv$ compute $\frac{\partial(x, y)}{\partial(u, v)}$

(f) If
$$z = u^2 + v^2$$
 and $u = at^2, v = 2at$ find $\frac{dz}{dt}$

(g) Evaluate
$$\int_{x=0}^{1} \int_{y=0}^{1} \int_{z=0}^{1} x^{2} y^{3} z \, dx \, dy \, dz$$
(h) Evaluate
$$\int_{-1}^{2} \int_{x^{2}}^{x+2} dy \, dx$$

(h) Evaluate
$$\int_{-1}^{2} \int_{x^2}^{x+2} dy \, dx$$

(i) Evaluate
$$\int_{c}^{-1} \overline{F} . d\overline{R}$$
, where $\overline{F} = 3xy\overline{i} - y^{2}\overline{j}$ and c is the curve $y = 2x^{2}$ from $(0,0)$ to $(1,2)$

(j) State Green's theorem in the xy – plane

PART-B:

Answer one question from each unit

 $[5 \times 12 = 60M]$

UNIT-I

- 2. (a) Solve $(1 + y^2)dx = (\tan^{-1} y x)dy$
 - (b) If the temperature of the air is 30° C and the substance cools from 100° C to 70° C in 15 minutes, find when the temperature will 40°C

(OR)

3. (a) Solve
$$\frac{dy}{dx} + \frac{y}{x} \log y = \frac{y}{x} (\log y)^2$$

(b) Find the orthogonal trajectories $r^n \sin n\theta = a^n$, where a is parameter

UNIT-II

4. (a) Solve
$$(D^2 + D + 1)y = (1 - e^x)$$

(b) Solve $(D^2 + 1)y = \tan x$ by the method of Variation of Parameters

Code: 13BS1001 SET-1

(OR)

- 5. (a) Solve $(D^2 3D + 2)y = e^{3x} + \sin 2x$
 - (b) Solve $(D^4 + 2D^2 + 1)y = \cos x$

UNIT-III

- 6. (a) Expand $e^x \log(1+y)$ in powers of x & y up to the term of the third degree
 - (b) A rectangular open box of capacity 32 cubic units is to be prepared. Find the dimensions of the box, to minimize the cost of painting outside of the box

(OR)

- 7. (a) Using Maclaurin's series expand log(1+x) up to the terms containing x^4
 - (b) If $u = \tan^{-1} x + \tan^{-1} y$, $v = \frac{x+y}{1-xy}$, then find $\frac{\partial(u,v)}{\partial(x,y)}$

UNIT-IV

- 8. (a) Find the volume of the solid generated by the revolution of cardioid $r = a(1 + \cos \theta)$ about the initial line
 - (b) Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$

(OR)

9. Evaluate $\int_{0}^{1} \int_{x^2}^{2-x} xy dy dx$ by changing the order of integration

UNIT-V

- 10. (a) Find the directional derivative of $xy^2 + yz^3$ at the point (2,-1,1) in the direction of $\vec{i} + 2\vec{j} + 2\vec{k}$
 - (b) Find $grad(\overline{r})$, where $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$.

(OR)

11. Verify Stroke's theorem for $\overline{F} = (x^2 + y^2)\overline{i} - 2xy\overline{j}$ taken around the rectangle bounded by the lines $x = \pm a, y = 0, y = b$.

2 of 2