

Universidade de Aveiro Departamento de Matemática

Cálculo II – Agrupamento IV

2018/2019

Soluções da 2.^a Prova (19/junho/2019) da Avaliação Discreta (e algumas sugestões de resolução)

- 1. (a) $(0,0), (-\frac{5}{3},0), (-1,2) \in (-1,-2).$
 - (b) (0,0) é um minimizante local e $(-\frac{5}{3},0)$ é um maximizante local de f.
 - (c) A afirmação é falsa. Como, por exemplo, f(-3,0) = -9 é menor que f(0,0) = 0, logo (0,0) não é minimizante global. Como é minimizante local, também não é maximizante global.
- 2. (a) Use o Teorema de Weierstrass.
 - (b) $\sqrt{3}$ (atingido em $(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})$).

3.
$$y = \frac{x}{-\ln x + C}, C \in \mathbf{R}.$$

- 4. (a) Verifique que y=x e $y=e^x$ são soluções da EDO homógenea associada e que são linearmente independentes.
 - (b) $y_p = x^2 + x + 1$.
 - (c) $y = C_1 x + C_2 e^x + x^2 + x + 1$, $C_1, C_2 \in \mathbb{R}$.

5.
$$y = C_1 e^x + C_2 e^{-x} + \frac{1}{3} e^{-2x}, \ C_1, C_2 \in \mathbb{R}.$$

6.
$$y(t) = \frac{5}{4}e^{-t} - \frac{5}{4}e^{t} + \frac{7}{2}te^{t}, t \ge 0.$$