# Linear Regression as Machine Learning

### Machine Learning in Molecular Science

Prof. Michael Shirts July 22nd, 2024



#### This session

- Simple linear regression
  - The model
  - The regression framework, which is much more general for supervised learning
- Making predictions with the model
- Multiple linear regression
- Regularization
- General least squares
- Logistic regression

# The simplest machine learning: Simple linear regression (SLR)

- The regression framework (generic in supervised machine learning)
  - Propose a model
  - Define a measure of the error of the model
    - Called "score" or "loss function" in ML
  - Estimate the "best" coefficients given the score
  - Determine the error in the model

$$Y \approx \beta_0 + \gamma$$
Variable definitions

The humble SLR  $Y \approx \beta_0 + \beta_1 X$  (simple linear regression) Or ordinary least squares (OLS)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Distinguishing the estimates we make with the training data (hat) from the proposed actual coefficients/responses...

#### How different is the model from the truth?

#### Residuals

• The difference between the observed value of the dependent variable (y) and the predicted value (ŷ) is called the residual (e).



### What different ways of determining the "best" model?



Minimize sum of residuals  $\sum e_i$ 

$$\sum_{i} e_{i}$$

Errors can cancel out



Minimize sum of absolute value of residuals

$$\sum_{i} |e_{i}|$$

Multiple solutions, bad math properties



Minimize maximum absolute value residual

Max  $e_i$ 

Only depends on outliers

#### **Residual Sum of Squares**

Sum of squared residual errors has much better math properties than others,

like uniqueness and analytical error estimates.

RSS = 
$$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$

For general models:

$$RSS = (y_1 - f(x_1))^2 + (y_2 - f(x_2))^2 + \dots + (y_n - f(x_n))^2$$

#### **Mean Square Error**

Mean Square Error (MSE) is the average square residual

$$MSE = \frac{RSS}{N}$$

Root Mean Square Error (RMSE) is easier to grasp because it has the same units as the output

$$RMSE = \sqrt{MSE}$$

This is a little different than the unbiased estimator of residual standard error

$$RSE = \frac{RSS}{N - p}$$

$$MSE = Variance + Bias^2$$

The bias-variance tradeoff is directly reflected in the MSE

#### The method of least squares minimization

Given model

Training data

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

$$(x_1,y_1), (x_2,y_2), \ldots, (x_n,y_n)$$

#### Find the $\beta_0$ and $\beta_1$ minimizing the RSS

RSS = 
$$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

#### Then we minimize the RSS

Minimizing RSS = 
$$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \ldots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$

$$\frac{\partial RSS}{\partial \hat{\beta}_0} = 0$$
 Means setting: 
$$\frac{\partial RSS}{\partial \hat{\beta}_1} = 0$$

Which is solved by:

$$B = (Z^T Z)^{-1} Z^T Y$$

$$\begin{array}{ccc}
y_1 \\
y_2 \\
y_3 \\
\dots
\end{array}$$

$$B = \begin{bmatrix}
\beta \\
\beta
\end{bmatrix}$$

Which gives:

$$(Z^T Z)B = Z^T Y$$

Fortunately, you don't have to do the math!!!

Which is the same thing as:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

# Other ways to measure accuracy of the model – how are we doing overall?

ESS = TSS - RSS ("explained sum of squares")

R<sup>2</sup> statistic 
$$R^2 = \frac{TSS - RSS}{TSS} = \frac{ESS}{TSS}$$

A scale-invariant measure (ranges between [0,1]) that explains "the proportion of the variability of Y that is explained by X"



### Differences with simple least squares and the rest of ML

- There's a LOT of useful statistics that you can get out of SLR/ORL
  - Estimates in uncertainties in parameters
  - Hypothesis testing about whether the parameters are statistically different than zero, and therefore relevant
  - Check the "statsmodel" package for more
- Most of them are used nor not possible to use for ML, so we won't cover them here.
  - If you have millions of parameters, uncertainties are not that useful, and hypothesis testing becomes messy
- For deep learning, you don't even TRY to get to the true minimum, since it's almost certainly overfit

### To the notebook!

#### **Multiple Linear Regression**

 Concept: independently assess the variation in Y with different values of X:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon,$$

 As with SLR, the coefficients are determined by setting the analytical partial derivatives to zero and solving the resultant p+1 linear equations

#### We again minimize the RSS

$$\frac{\partial RSS}{\partial \vec{\beta}} = 0$$

Which is solved by:

$$B = (Z^T Z)^{-1} Z^T Y$$

Which gives:

$$(Z^T Z)B = Z^T Y$$

| <b>y</b> 1 |
|------------|
| <b>y</b> 2 |
| <b>y</b> 3 |
|            |
| Уn         |

$$B = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_0 \\ \dots \\ \beta_p \end{bmatrix}$$



More numerically robust to solve this using np.linalg.solv( $Z^TZ,Z^TY$ )

#### Visualizing multiple linear regression



**FIGURE 3.4.** In a three-dimensional setting, with two predictors and one response, the least squares regression line becomes a plane. The plane is chosen to minimize the sum of the squared vertical distances between each observation (shown in red) and the plane.

#### Big picture concepts

- Tempting to simply add one term for each feature in X and see how good of a fit we obtain, but that doesn't give us much inference
- There is a huge risk of overfitting with using a lot of parameters!
- We can use a new different type of hypothesis test to find out if <u>any</u> of the parameters are significant
  - Not generally useful in ML
- We can use some algorithms (selection algorithms) to try and reduce the number of parameters
  - Again, not as generally useful in ML

### To the notebook!

#### **General Linear Models**

$$Y = \beta_0 + \beta_1 f_1(x_1) + \beta_2 f_2(x_2) + \cdots + \beta_p f_p(x_p)$$

Works for any set of functions f; can be different for each  $x_i$ 

$$Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$
 Can be polynomials

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{1,2} x_1 x_2$$

Can have linear terms of multiple variables

$$Y = \beta_0 + \beta_1 f_1(x_1) + \beta_2 f_2(x_2) + \beta_{1,2} f_{1,2}(x_1, x_2)$$

Can have functions of multiple variables

Can still implement in LinearRegression by using functions of X as predictors

#### "Clicker" question

Which of the following is a truly nonlinear model?

A. 
$$Y = a + b X^2 + c X^4$$

B. 
$$Y = a X_1 + b X_2 + c X_3 X_4$$

C. 
$$Y = a X + In X^b$$

D. 
$$Y= a X + b ln(X-c)$$

E. 
$$Y = a X_1 + b(1-X_2)^2$$

# General Linear Models: We again minimize the RSS

$$Y = \beta_0 + \beta_1 f_1(x_1) + \beta_2 f_2(x_2) + \cdots + \beta_p f_p(x_p)$$

$$RSS = \sum_{i} (Y_i - \hat{Y}_i)^2$$

Which is solved by:

 $B = (Z^T Z)^{-1} Z^T Y$ 

$$\frac{\partial RSS}{\partial \vec{\beta}} = 0$$

$$B = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_0 \\ \dots \end{bmatrix}$$

|  | 1 | f <sub>1</sub> (x <sub>11</sub> ) | f <sub>2</sub> (x <sub>21</sub> ) | <br>$f_p(x_{p1})$ |
|--|---|-----------------------------------|-----------------------------------|-------------------|
|  | 1 | $f_1(x_{12})$                     | $f_2(x_{22})$                     | <br>$f_p(x_{p2})$ |
|  | 1 | f <sub>1</sub> (x <sub>13</sub>   | $f_2(x_{23})$                     | <br>$f_p(x_{p3})$ |
|  |   | •••                               |                                   | <br>              |
|  | 1 | f <sub>1</sub> (x <sub>1n</sub>   | $f_2(x_{2n})$                     | <br>$f_p(x_{pn})$ |

Which gives:

$$(Z^T Z)B = Z^T Y$$

Works for any set of functions f; can be different function for each  $x_i$ 

# How do I decide to use a more complicated linear model?

- Careful selection based on statistical analysis about model freedom (out of scope for today)
- Because the physics or underlying data structure say that those terms <u>should</u> have a given functional form
  - Heat capacities are known to be polynomial in T
  - Many quantities are naturally logarithmic/exponential/ product/inverse
- Requires domain expertise!

# What other kinds of basis functions can you use?

- Polynomials
- Periodic functions if dealing with fundamentally periodic behavior
  - Ocean temperature weather is a periodic function of day and year!
- Something else that comes from physics or other information
- Piecewise functions
  - Step functions
  - Splines

#### **Fully nonlinear models**

- Where to go when you have a true nonlinear model to fit/train?
- Write a function for the RSS or other loss function

RSS = 
$$\sum_{i} \left( Y_i - f(\overrightarrow{X}, \overrightarrow{p}) \right)^2$$

Minimize it! Lots of tools available

scipy.optimize.curve\_fit

scipy.optimize.Curve\_fit(f, xdata, ydata, p0=None, sigma=None, absolute\_sigma=False, check\_finite=True, bounds=(-inf, inf), method=None, jac=None, \*\*kwargs)

[source]

- Most learning kits have different optmization methods built in
- There's still a formula for errors in parameters, but it gets messy.

#### Types of nonlinear models

- K-nearest neighbors, decision tree, or support vector regression or classification
- All types of neural nets
- A key point is that they require numerical solution.
  - This means the strategies to solve them require a lot of fiddling with and testing
  - Can give very different results from trial to trial
  - We will spend time with this in the context of neural nets

### Go to the notebook!

#### When good models go bad

- Increasing parameters can be seductive, especially if you "feel" like you have a large data set:
  - BUT in high dimension your training data may severely undersample the space of parameters
- Supervised learning models are powerful:
  - If you have a lot of (relevant) data you can often get a model that is predictive

#### The curse of dimensionality

Consider a situation in which you need n=10 data points in order to cover response range (in Y) for each X<sub>i</sub>.

For P=1, n=10, P=2, need n=100, P=3, need n=1000...



Our ability to capture significant fractions of the predictor space collapses after a few dimensions

### VERY EASY TO OVERFIT MODELS WITH MANY PARAMETERS

- If there are many parameters
- There are many coefficients in the model
- You can easily overfit
- Cannot use R<sup>2</sup> or MSE of training set
- Must use MSE of validation set or other measure.



Shown in graph: data set R<sup>2</sup>, training MSE and test MSE as a function of adding variables unrelated to output

#### Ridge regression

Ridge replaces the RSS term: RSS =  $\sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$ 

with a new minimizer that includes a so-called shrinkage or regularization penalty:

$$\sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2,$$

- The adjustable parameter λ, trades the vanilla RSS with a penalty for nonzero coefficients.
- As λ increases to infinity, the minimized error drives all of the coefficients to zero

#### Regularization: big picture concepts

#### Why would do we want to do this?

- Recall that models with <u>more parameters</u> will better estimate the training set, reducing the <u>training error</u>.
- However, adding more parameters increases the testing error.
- The variance of response Y is increased via the bias-variance tradeoff
- Reducing the <u>magnitude of the coefficients</u> allows the most important variables to account for most of the fit
- Many ML regression methods use this, not just linear regression

#### Ridge in practice

Unlike RSS minimizers, which are scale equivariant, the predictor data <u>must be</u> <u>standardized</u> in regularization methods:

Standard Least Squares

$$\sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

Ridge regression

$$\sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \overline{x}_j)^2}}$$
 standardized data

#### Ridge regression process

- Fit a series of ridge regression models
  - Across a wide range of λ and
  - Track the coefficient values and test set error (or estimate) as λ is changed
- Determine the model w/smallest validation error
- Then estimate the true test error w/new data that was not used in the training
- In practice: use cross-validation!

### Hyperparameters are choices that you make that are not the parameters of the model

- What should the value of λ be for a ridge regression?
- What should the value of K be in a K-neighbors algorithm?
- How do you choose them?

### How parameters change with change in shrinkage parameter



$$\hat{\beta}$$
 = vector of least squares coefficient estimates  $\|\beta\|_2 = \sqrt{\sum_{j=1}^p \beta_j^2} = L_2$  norm (distance of  $\beta$  from 0) = size of parameters  $\|\hat{\beta}_{\lambda}^R\|_2/\|\hat{\beta}\|_2$ , = amount coefficients are smaller

### Reducing flexibility in a <u>controlled</u> way can minimize MSE



- When  $\lambda = 0$ , Ridge = linear regression
  - Variance is high, but there is no bias
- As λ increases, the flexibility of the regression decreases
  - Leads to decreased <u>variance</u> of prediction
  - But, increased bias, since the parameters are restrained

#### LASSO regression

- Least Absolute Shrinkage and Selection
   Operator
- Ridge regression does not set any of the coefficients exactly to zero but can shrink all of them
- Final model still includes all p predictors
- The LASSO regression was developed and, inspired by ridge,
- To provide the possibility that some of the coefficients can take a value of zero
- Like ridge, the LASSO operator is

$$\sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

#### Measuring size of parameters

$$\lambda \sum_{j=1}^p |eta_j|$$
 Size via L $_1$  norm

$$\lambda \sum_{j=1}^{p} \beta_j^2$$

Size via L<sub>2</sub> norm

## An extra bonus in LASSO: deselecting variables that don't contribute to the fit

The key difference is the <u>penalty</u> due to nonzero coefficients.

**LASSO** minimize 
$$\left\{\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij}\right)^2\right\}$$
 subject to  $\sum_{j=1}^p |\beta_j| \le s$ 

and

Ridge (L2) 
$$\min_{\beta} \left\{ \sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{subject to} \quad \sum_{j=1}^{p} \beta_j^2 \le s,$$

A mathematical result of LASSO is that some of the β values can be zero at the minimum error

#### Why can LASSO coefficients become zero?



**FIGURE 6.7.** Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions,  $|\beta_1| + |\beta_2| \le s$  and  $\beta_1^2 + \beta_2^2 \le s$ , while the red ellipses are the contours of the RSS.

Axes (where one β is zero) are further from the origin in LASSO than the other points

### Ridge vs LASSO coefficient size



#### LASSO vs. Ridge

 If ALL variables predictive, LASSO and ridge are similar, with ridge slightly better



#### LASSO vs. Ridge

 If only a <u>few</u> variables are predictive, LASSO has real advantages

> Bias<sup>2</sup> = black Variance = green MSE = purple

LASSO - solid Ridge - dotted





#### Directly relevant with deep learning

- L1 and L2 regularization frequently used in many ML loss functions
- Prevents overfitting when there are many, many parameters

#### Go to the notebook!

#### Classification with the logistic model

- Consider the data below:
  - We are trying to make a guess as to whether someone will default on a loan on the basis of their bank account balance and income level
  - We have a two choice classification: will they default or not?



#### Why logistic regression?

- Let's say we trained a linear model such that the output was either 1 or 0.
- Blue line is what our predictive might look like

 We would like something more like this, with a probability of default given for each input





#### The logistic function

$$p(X) = \beta_0 + \beta_1 X.$$

simple linear model

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

logistic equation

$$\frac{p(X)}{1 - p(X)} = e^{\beta_0 + \beta_1 X}.$$

Solve for  $e^{\beta_0 + \beta_1 X}$ 

Can anyone define "odds"?

If your probability of success is 1 in 5 (0.2), your odds of success are 1 in 4: p(x)/(1-p(x)) = 0.2 / (1-0.2) = 0.25

#### The logistic function

$$\frac{p(X)}{1 - p(X)} = e^{\beta_0 + \beta_1 X}.$$

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X.$$

The left side of the equation is log of the odds Called the "logit",

Equation elates the change in log of odds of success w/change in X

The logit is a linear function

Probability goes from 0 to 1 Log probability goes from -∞ to 1 Logit (log odds) goes from -∞ to ∞

#### Multiple ways to solve it

• Use linear regression to solve:  $\log \left( \frac{p(X)}{1 - p(X)} \right) = \beta_0 + \beta_1 X$ .

• Predict 
$$\log\left(\frac{p(X)}{1-p(X)}\right)$$
 . If > 0, yes, if < 0. No.

- Use nonlinear regression of  $p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$ .
  - Predict p(x). If > 0.5, yes, if < 0.5, no.

#### Go to the notebook!

#### Multiple logistic regression

Extension is very straightforward!

$$\ln\left(\frac{P(X)}{1 - P(X)}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

# **Curve Fitting Methods** and the Messages They Send



https://xkcd.com/2048/