Coding Bird

· · 드론으로 배우는

프로그래밍 교실

Ad1. 트리 만들기

∵ 목차 ∵

01	Serial 통신 ······	01
	시리얼 통신이란?	02
	하드웨어 시리얼 ·····	04
	Serial통신 실습하기 ······	05
02	조건문	07
	if문	08
	if문 작성 해보기 ······	11
03	상수에 대해서	13
	상수란?	12
	상수 작성 해보기	13

. 드론으로 배우는

프로그래밍 교실

초판발행 2016년 9월 23일

지은이 최정애 | 펴낸이 최정애

펴낸곳 WHIT | 주소 안산시 한양대학로55 창업보육센터 B01

전화 010-5125-2139

Published by WHIT. Printed in Korea Copyright ⓒ 2016 최정애 & WHIT

이 책의 저작권은 최정애와 WHIT에 있습니다. 저작권법에 의해 보호를 받는 저작물이므로 무단 복제 및 무단 전재를 금합니다.

01 트리 만들기1

트리 만들기는 프로그래밍 언어를 배우다보면 꼭 한 번씩 거쳐가는 과정입니다. *모양을 이용해서 원하는 도형을 출력하다보면 프로그래밍 실력이 한 단계씩 업그레이드 되는 것을 느낄 수 있습니다. *모양을 이용해 트리 모양을 만들 수 있게 되면 나아가서 별 모양, 스페이스 모양, 하트 모양 등 또한 만들 수 있습니다.

트리 만들기란?

프로그래밍 트리 프로그래밍 트리

트리 만들기 과정1

1 다음과 같이 코드를 작성하여 아두이노에 업로드합니다.

```
tree_1
 1 | int height = 0;
 3 void setup() {
     Serial.begin(9600);
 4
     pinMode(3, OUTPUT);
     pinMode(2, INPUT);
     delay(3000);
 8|}
 9
10 | void | loop() {
11
     Serial.println("insert height of tree");
     height = getNumber() - '0';
12
     Serial.println(height);
13
14
15
16
17|}
18
19 char getNumber() {
20
     white (!Serial.available());
21
     if (Serial.available()) {
22
       char input = Serial.read();
23
       return input;
24
     }
25
     return 0;
26 | }
```

<그림1-6> 시리얼 통신 코드

2 亙 버튼을 눌러 시리얼 모니터를 켭니다.

3 보드레이트를 맞춘 후 1~9 사이의 숫자를 입력하며 숫자가 출력되는지 확인합니다.

전송

트리 만들기 과정1 해석

```
<그림1-7> 시리얼 통신 확인
int height = 0; //트리 높이 저장 변수
void setup() {
Serial.begin(9600); // 시리얼 통신 시작
pinMode(3, OUTPUT); // 3번 핀을 출력으로 설정
pinMode(2, INPUT); //2번 핀을 입력으로 설정
delay(3000); //3초 대기
void loop() {
Serial.println("insert height of tree"); //문구 출력
height = getNumber() - '0'; // 숫자를 얻기 위함
Serial.println(height); // 트리 높이 출력
}
char getNumber() {// getNumber()함수 정의
while (!Serial.available()); //시리얼 입력이 있을 때까지 대기
if (Serial.available()) {//만약 입력이 있으면
 char input = Serial.read(); // 입력을 저장
 return input; // 입력 반환
return 0;
```

트리 만들기 과정2

- 1 *을 높이만큼 출력시키려면 어떻게 해야 할까요?
- ② loop()의 코드를 다음과 같이 변형합니다.

```
tree_2
                     1 int height = 0;
                     3 void setup() {
                       Serial.begin(9600);
                     5 pinMode(3, OUTPUT);
                         pinMode(2, INPUT);
                         delay(3000);
                     8|}
                     9
                    10 void loop() {
                    11
                         Serial.println("insert height of tree");
                    12
                         height = getNumber() - '0';
                         Serial.println(height);
                    13
                    14
                    15
                         for(int i=0;i<height;i++){</pre>
                           Serial.print("*");
                    16
바뀐 부분
                    17
                         }
                    18
                    19
                         Serial printin():
                    20 | }
                    21
                    22 char getNumber() {
                    23
                         white (!Serial.available());
                        if (Serial.available()) {
                    24
                    25
                           char input = Serial.read();
                    26
                           return input;
                    27
                         }
                    28
                         return 0;
                    29 |}
```

- 3 🙍 버튼을 눌러 시리얼 모니터를 켭니다.
- 4 보드레이트를 맞춘 후 1~9 사이의 숫자를 입력하며 *이 숫자만큼 출력되는지 확인합니다.

트리 만들기 과정2 해석

```
void loop() {
Serial.println("insert height of tree"); //문구 출력
height = getNumber() - '0'; // 숫자를 얻기 위함
Serial.println(height); // 트리 높이 출력

for(int i=0;i<height;i++){// height만큼 반복
Serial.print("*"); // *출력
}

Serial.println(); // 줄 바꿈
}
```

02 트리 만들기2

트리 만들기는 프로그래밍 언어를 배우다보면 꼭 한 번씩 거쳐가는 과정입니다. *모양을 이용해서 원하는 도형을 출력하다보면 프로그래밍 실력이 한 단계씩 업그레이드 되는 것을 느낄 수 있습니다. *모양을 이용해 트리 모양을 만들 수 있게 되면 나아가서 별 모양, 스페이스 모양, 하트 모양 등 또한 만들 수 있습니다.

트리 만들기 과정3

1 다음과 같이 코드를 변형하여 아두이노에 업로드합니다.

```
tree_3
 1 int height = 0;
3 void setup() {
4
     Serial.begin(9600):
5
    pinMode(3, OUTPUT);
     pinMode(2, INPUT);
7
     delay(3000);
8|}
9
10 | void loop() {
     Serial.println("insert height of tree");
11
12
     height = getNumber() - '0';
13
     Serial.println(height);
14
15
     for (int i = 0; i < height; i++) {
16
      for (int k = 0; k < i + 1; k++) {
         Serial.print("*"):
17
       }
18
19
       Serial.println():
20
     }
21
22
     Serial.println():
23 | }
24
25 char getNumber() {
     white (!Serial.available());
26
27
    if (Serial.available()) {
28
       char input = Serial.read();
29
       return input;
30
     }
31
     return 0;
32 | }
              <그림1-6> 시리얼 통신 코드
```

바뀐 부분

- ③ 🙍 버튼을 눌러 시리얼 모니터를 켭니다.
- 4 보드레이트를 맞춘 후 1~9 사이의 숫자를 입력하며 *이 숫자만큼 출력되는지 확인합니다.

트리 만들기 과정3 해석

```
void loop() {
Serial.println("insert height of tree"); //문구 출력
height = getNumber() - '0'; // 숫자를 얻기 위함
Serial.println(height); // 트리 높이 출력

for (int i = 0; i < height; i++) {// height까지 i 순차 증가
for (int k = 0; k < i + 1; k++) {// i+1만큼 반복
Serial.print("*"); // i+1만큼 * 출력
}
Serial.println(); //줄 바꿈
}

Serial.println(); // 줄 바꿈
}
```

트리 만들기 과정4

1 다음과 같이 코드를 변형하여 아두이노에 업로드합니다.

```
tree_4
 1 int height = 0;
 2
 3 void setup() {
4
    Serial.begin(9600);
 5
    pinMode(3, OUTPUT);
 6 pinMode(2, INPUT);
7
     delay(3000);
8|}
9
10 | void loop() {
     Serial.println("insert height of tree");
11
12
     height = getNumber() - '0';
13
     Serial.printIn(height);
14
15
     for (int i = 0; i < height; i++) {</pre>
       for (int j = 0 ; j < height - i ; j++) {
16
17
         Serial.print(" "):
18
19
       for (int k = 0; k < i + 1; k++) {
         Serial.print("*");
20
21
22
       Serial .println():
23
     }
24
25
     Serial.println():
26 | }
27
28 char getNumber() {
29
     white (!Serial.available());
    if (Serial.available()) {
30
31
       char input = Serial.read();
32
       return input;
33
    }
34
     return 0;
35 |}
            <그림1-6> 시리얼 통신 코드
```

바뀐 부분

- ③ 🔟 버튼을 눌러 시리얼 모니터를 켭니다.
- 4 보드레이트를 맞춘 후 1~9 사이의 숫자를 입력하며 *이 숫자만큼 출력되는지 확인합니다.

트리 만들기 과정4 해석

```
void loop() {
Serial.println("insert height of tree"); //문구 출력
height = getNumber() - '0'; // 숫자를 얻기 위함
Serial.println(height); // 트리 높이 출력

for (int i = 0; i < height; i++) {// height까지 i 순차 증가
for (int j = 0; j < height - i; j++) {// height-i만큼 반복
Serial.print(""); // 빈칸 출력
}
for (int k = 0; k < i + 1; k++) {// i+1만큼 반복
Serial.print("*"); // * 출력
}
Serial.println(); //줄 바꿈
}
Serial.println(); // 줄 바꿈
}
```

03 트리 만들기3

트리 만들기는 프로그래밍 언어를 배우다보면 꼭 한 번씩 거쳐가는 과정입니다. *모양을 이용해서 원하는 도형을 출력하다보면 프로그래밍 실력이 한 단계씩 업그레이드 되는 것을 느낄 수 있습니다. *모양을 이용해 트리 모양을 만들 수 있게 되면 나아가서 별 모양, 스페이스 모양, 하트 모양 등 또한 만들 수 있습니다.

트리 만들기 과정5

바뀐 부분

1 다음과 같이 코드를 변형하여 아두이노에 업로드합니다.

```
tree_5
 1 int height = 0;
 2
 3 void setup() {
   Serial.begin(9600);
 5 pinMode(3, OUTPUT);
 6 pinMode(2, INPUT);
 7
     delay(3000);
 8|}
 9
10 void loop() {
     Serial.println("insert height of tree");
11
     height = getNumber() - '0';
12
13
     Serial.printIn(height);
14
15
     for (int i = 0; i < height; i++) {</pre>
       for (int j = 0 ; j < height - i ; j++) {</pre>
16
         Serial.print(" ");
17
       }
18
19
       for (int k = 0; k < 2 * i + 1; k++) {
20
         Serial.print("*");
21
       }
22
       Serial.println():
23
     }
24
25
     Serial.println():
26 }
27
28 char getNumber() {
29
    while (!Serial.available());
30
    if (Serial.available()) {
31
       char input = Serial.read();
32
       return input;
    }
33
34
     return 0;
35 }
              <그림1-6> 시리얼 통신 코드
```

- ③ 🔟 버튼을 눌러 시리얼 모니터를 켭니다.
- 4 보드레이트를 맞춘 후 1~9 사이의 숫자를 입력하며 *이 숫자만큼 출력되는지 확인합니다.

트리 만들기 과정5 해석

```
void loop() {
Serial.println("insert height of tree"); //문구 출력
height = getNumber() - '0'; // 숫자를 얻기 위함
Serial.println(height); // 트리 높이 출력

for (int i = 0; i < height; i++) {// height까지 i 순차 증가
for (int k = 0; k < 2 * i + 1; k++) {// 2*i+1만큼 반복
Serial.print("*"); // i+1만큼 * 출력
}
Serial.println(); //줄 바꿈
}

Serial.println(); // 줄 바꿈
}
```

트리 만들기 과정6 1 다음과 같이 코드를 변형하여 아두이노에 업로드합니다.

```
tree_6
 1 int height = 0;
3 void setup() {
    Serial.begin(9600);
5
    pinMode(3, OUTPUT);
    pinMode(2, INPUT);
     delay(3000);
8 }
9
10 | void | loop() {
11
     Serial.println("insert height of tree");
12
     height = getNumber() - '0';
     Serial.println(height);
13
14
15
    for (int i = 0; i < height; i++) {
16
      for (int j = 0 ; j < height - i ; j++) {
17
         Serial.print(" ");
      }
18
19
      for (int k = 0; k < 2 * i + 1; k++) {
20
         Serial.print("*");
21
      }
22
       Serial.println():
23
    }
24
     for (int i = 0 ; i < height ; i++) {
25
      Serial.print(" ");
26
     }
27
     Serial.print("*");
28
     Serial.println():
29 }
30
31 char getNumber() {
32
    while (!Serial.available());
    if (Serial.available()) {
33
34
      char input = Serial.read();
35
      return input;
36
    }
37
     return 0;
38 }
            <그림1-6> 시리얼 통신 코드
```

바뀐 부분

- ③ 亙 버튼을 눌러 시리얼 모니터를 켭니다.
- 4 보드레이트를 맞춘 후 1~9 사이의 숫자를 입력하며 *이 숫자만큼 출력되는지 확인합니다.

트리 만들기 과정6 해석

```
void loop() {
Serial.println("insert height of tree"); //문구 출력
height = getNumber() - '0'; // 숫자를 얻기 위함
Serial.println(height); // 트리 높이 출력

for (int i = 0; i < height; i++) {// height까지 i 순차 증가
for (int k = 0; k < 2 * i + 1; k++) {// 2*i+1만큼 반복
Serial.print("*"); // i+1만큼 * 출력
}
Serial.println(); //줄 바꿈
}
for (int i = 0; i < height; i++) {//height만큼 반복
Serial.print(""); //빈칸 출력
}
Serial.print("*"); // * 출력
Serial.println(); // 줄 바꿈
}
```


