Лабораторная работа №1.4.1 ИЗУЧЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ ПОГРЕШНОСТЕЙ НА ПРИМЕРЕ ФИЗИЧЕСКОГО МАЯТНИКА

Гёлецян А.Г.

22 июля 2022 г.

1 Введение

Цель работы:

- проверить справедливость формулы для периода колебаний физического маятника и определить значение ускорения свободного падения
- убедиться в справедливости теоремы Гюйгенса об обратимости точек опоры и центра качания маятника

В работе используются:

- металлический стержень
- опорная призма
- торцевые ключи
- закреплённая на стене консоль
- подставка с острой гранью для определения цента масс маятника
- секундомер
- линейки металлические длиной 30, 50 и 100 см
- штангенциркуль
- электронные весы
- математический маятник

2 Теория

Рис. 1: Схема установки

Напишем уравнение движения системы

$$-(m+M)gx_{\pi}\sin\varphi = (I_m + I_M)\ddot{\varphi}$$

где m, I_m это масса и момент инерции призмы соответственно, а M, I_M это масса и момент инерции стержня соответственно.

Из теоремы Штайнера-Гюйгенса

$$I_M = Ml^2/12 + Ma^2$$

В наших измерениях $m \approx M/11$, а расстояние центра масс призмы от оси качения составляет примерно $a_m=1.5$ см. В измерениях минимальное значение a, которое использовалось в измерениях составляет $a_{min}=12.5$ см. Таким образом оценим какая доля имеет момент инереции призмы в системе.

$$\frac{I_m}{I_M} = \frac{m}{M} \frac{a_m^2}{a_{min}^2 + \frac{l^2}{12}} \approx 0.02\%$$

Так как эта величина на порядки

меньше относительных погрешностей всех других измерении, мы имеем полное моральное право пренебрегать I_m относительно I_M .

Общий центр масс призмы и стержня

При приближении $\varphi \ll 1$ наше уравнение движения переходит в уравнение гармонического осцилятора, откуда можно легко получить формулу периода колебания маятника

$$T = 2\pi \sqrt{\frac{\frac{l^2}{12} + a^2}{\beta x_{\rm n} g}} \tag{1}$$

где $\beta = 1 + m/M$.

3 Ход работы

Для начала измерим все статические величины.

$$l = (100.1 \pm 0.05)$$
см $m = (76.3 \pm 0.1)$ г $M = (870.5 \pm 0.1)$ г

Чтобы понять сколько знаков нам хранить для β для начала подсчитаем его погрешность

$$\Delta\beta = \sqrt{(\Delta m \frac{\partial \beta}{\partial m})^2 + (\Delta M \frac{\partial \beta}{\partial M})^2} = \sqrt{(\frac{\Delta m}{M})^2 + (\frac{\Delta M m}{M^2})^2} \approx 0.0001 \quad (2)$$

Мы видим, что после запятой можем хранить 4 цифры, поэтому

$$\beta = 1.0877 \pm 0.0001$$

Для проведения серии измерении (a=const) фиксируем призму в каком то положении a и несколько раз(N=8) измеряем время n колебании. Обозначим это время t. Погрешность измерения a равна $\Delta a=0.1$ см, т.к. a является разницой двух измерении с погреностью 0.05см (a=l/2-x). Для краткости в работе указаны сразу a, без указания x. То же самое верно и для $x_{\rm II}$ ($\Delta x_{\rm II}=0.1$ см).

Период колебания считаем по формуле T=t/n, а случайную ошибку по формуле

$$\Delta T_{\text{случ}} = \frac{1}{n} \sqrt{\frac{1}{N-1} \sum (t_i - \bar{t})^2}$$

Систематическая ошибка $\Delta t_{\rm сист}=0.02$ с (примерное время обновления экрана секундомера). Так как T=t/n, то $\Delta T_{\rm сист}=\Delta t_{\rm сист}/n$. Полная ошибкаhа

$$\Delta T = \sqrt{\Delta {T_{\rm chct}}^2 + \Delta {T_{\rm chyq}}^2}$$

В Таблице 1 приведены данные измерении. В Таблице 2 приведены периоды колебании с погрешностями. В Таблице 3 приведены расчетные значения g и $\Delta g_{\text{сист}}$. Последняя считалось по аналогичной (2) формуле.

Серия	1	2	3	4	5	6	7	8
a, cm	39.3	32.5	29.2	24.3	22.0	19.1	15.3	12.4
$x_{\mathrm{ц}}, \mathrm{cm}$	36.0	29.8	26.8	22.2	20.1	17.4	14.0	11.3
n	20	20	20	10	10	20	20	20

№ опыта		t, c								
1	31.30	30.69	30.63	15.43	15.59	31.94	33.76	36.03		
2	31.21	30.61	30.62	15.39	15.55	31.98	33.69	35.97		
3	31.25	30.70	30.63	15.43	15.58	31.89	33.65	35.94		
4	31.28	30.64	30.57	15.41	15.66	31.98	33.73	36.00		
5	31.30	30.61	30.64	15.46	15.60	31.95	33.72	35.96		
6	31.27	30.68	30.61	15.40	15.67	31.97	33.73	35.94		
7	31.27	30.70	30.53	15.48	15.71	31.94	33.77	35.98		
8	31.26	30.70	30.62	15.40	15.65	32.03	33.68	35.98		

Таблица 1: Измерения времени t для n колебании

a, cm	39.3	32.5	29.2	24.3	22.0	19.1	15.3	12.4
T, c	1.563	1.533	1.53	1.542	1.563	1.598	1.686	1.799
ΔT , c	0.002	0.002	0.002	0.004	0.006	0.002	0.002	0.002

Таблица 2: Периоды колебании для различных a

№ опыта		$g, \text{cm/c}^2$							
1	980	979	976	981	982	984	976	983	
2	986	985	977	986	988	982	980	986	
3	983	979	976	981	984	987	983	988	
4	981	983	980	984	974	982	978	985	
5	980	985	975	977	981	984	979	987	
6	982	980	977	985	972	982	978	988	
7	982	979	982	975	968	984	976	986	
8	983	979	977	985	975	979	981	986	

$\bar{g}, \mathrm{cm/c^2}$	981							
$\Delta g_{\text{случ}}, \text{см/c}^2$		4						
$\Delta g_{\text{сист}}, \text{см/c}^2$	5	6	6	7	9	7	8	9

Таблица 3: Расчетные g для каждого измерения

3.1 д методом усреднения

Начнем подсчет результатов с подсчета g методом усреднения.

$$\bar{g} = 981 \text{cm/c}^2, \Delta g_{\text{cnvq}} = 4 \text{cm/c}^2$$

Для подсчета систематических ошибок воспользуемся формулой, аналогичной формуле (2). Для оценки полной погрешности возмем $\Delta g_{\text{сист}}$ как средюю из Таблицы 3.

$$\Delta g_{\text{сист}} \approx 7 \text{cm/c}^2, \Delta g = \sqrt{\Delta g_{\text{сист}}^2 + \Delta g_{\text{случ}}^2} \approx 8 \text{cm/c}^2$$

Финальный ответ.

$$g = (981 \pm 8) \text{cm/c}^2, \varepsilon_q \approx 0.8\%$$

3.2 Минимум T(a)

Из графика на Рис. 2 видно, что зависимость T(a) имеет минимум, и он находится около a=28см. Согласно приближенной формуле, где не учитывается влияние массы призмы на положение общего центра масс, минимум можно найти решив уравнение

$$\frac{d}{da}(a + \frac{l^2}{12a}) = 0 \implies a = \frac{l}{2\sqrt{3}} \approx 29cM$$

так как количество вблизи минимума у нас не так уж и велико, и выражение для минимума не учитывает влияние массы призмы, можно удтверждать что эксперимент соответствует теории.

3.3 q методом MHK

Если ввести обозначения $u=T^2x_{\mathbf{q}}$ и $v=a^2,$ то формулу периода можно переписать как

$$u = \frac{4\pi^2}{q\beta}(v + \frac{l^2}{12})$$

Видим что между u и v есть линейная связь, о чем и свидетельствуют графики на Рис. 3 и 4.

$$\Delta v = 2a\Delta a, \Delta u = \sqrt{(T^2 \Delta x_{\text{II}})^2 + (2Tx_{\text{II}}\Delta T)^2}$$

Составим таблицу данных графика 3 (Рис. 4).

$u, c^2 cm$	88.0	70.1	62.8	52.8	49.1	44.4	39.8	36.6
$\Delta u, c^2 cm$	0.3	0.3	0.3	0.4	0.4	0.3	0.3	0.3
v, cm^2	1541	1053	850	588	482	363	233	153
$\Delta v, \text{cm}^2$	8	6	6	5	4	4	3	2

Таблица 4: Значения $u, \Delta u, v, \Delta v$

Методом наименьших квадратов находим коэффиценты k и b для уравнения u=kx+b, где $k=\frac{4\pi^2}{g\beta}$ а $b=k\frac{l^2}{12}$. Расчитаем также случайные ошибки k и b, которые появляются из за МНК (для краткости оставим формулы расчета погрешностей коэффицентов МНК).

$$k = (0.0370 \pm 0.0002)c^2/cm$$

 $b = (100.4 \pm 0.2)c^2cm$

Теперь рассчитаем g и l из коэффицентов.

$$g = \frac{4\pi^2}{k\beta}, \Delta g = g\sqrt{\left(\frac{\Delta k}{k}\right)^2 + \left(\frac{\Delta \beta}{\beta}\right)^2}$$

$$l = \sqrt{\frac{12b}{k}}, \Delta l = l\sqrt{\left(\frac{\Delta b}{2b}\right)^2 + \left(\frac{\Delta k}{2k}\right)^2}$$

Подставив числа получаем

$$g = (981 \pm 9) \text{cm/c}^2, l = (100.4 \pm 0.5) \text{cm}$$

3.4 Опыт с приведенной длиной маятника

Если в формуле (1) ввести обозначение $l_{\rm пp}=\frac{l^2/12+a^2}{\beta x_{\rm п}},$ то формулу периода можно переписать как

$$T = 2\pi \sqrt{\frac{l_{\rm np}}{g}}$$

Это означает, что период математического маятника с длиной $l_{\rm np}$ будет совпадать с периодом физического маятника. Проверим это на опыте.

Физический маятник имеет конфигурацию 1 (см. Таблицу 1) a=39.3см, $x_{\rm q}=36.0$ см. Подставив числа получаем $l_{\rm np}=60.8$ см. Теперь измерим период математического маятника с этой длиной.

t, c	31.50	31.48	31.50	31.47	31.45
T, c	1.575	1.574	1.575	1.574	1.573

Таблица 5: Периоды колебания математического маятника (n=20)

Из этих данных получаем $T_{\text{мат}}=1.574$ с. Период физического маятника $T_{\text{физ}}=(1.563\pm0.002)$ с. Теперь подсчитаем погрешность $T_{\text{мат}}$ и проверим равенство этих периодов.

$$\Delta T_{\text{MAT}}^{\text{CUCT}} = \Delta l_{\text{пр}} \frac{T_{\text{MAT}}}{2l} \approx 0.013 \text{c}$$

В расчете $\Delta l_{\rm np} = 1$ см, т.к. установка длины маятника было довольно не точным в связи с шаровидностю груза и прогиба линейки. Как видим в пределах погрешности эти периоды совпадают, поэтому в пределах погрешности формула приведенной длины маятника работает.

Теперь проделаем опыт по переворачиванию маятника относительно точки с расстоянием $l_{\rm np}.$

1 '	31.34				
T, c	1.567	1.564	1.563	1.562	1.562

Таблица 6: Периоды колебания перевернутого маятника (n=20)

Получаем период $T_{\rm nep}=1.564{\rm c},$ что в пределах погрешности $T_{\rm физ}.$ Еще раз удтверждаемся, что формула приведенной длины работает.

4 Заключение

Как видим в пределах погрешности ускорение свободного падения, расчетная длина стержня совпадают с реальными значениями, а формулы периода маятника и теорема об обратимости центра качения и точки опоры прпвдивы в пределах погрешности.

