

Report (6) AER 123; Gas Dynamics B.Sc. 2nd. Year, 2014/2015

Report 6: Oblique Shock Wave

Submitted to:

Prof. First Last

By:

احمد محمد محمود .1	Sec. 1, B.N. 30
2. Name Name	Sec. 1, B.N. 31
3. Name Name	Sec. 2, B.N. 32

Contents

Contents	i
Nomenclature	i
1. Problem Statement	
2. Mathematical Model	1
3. Assumptions	1
4. Analysis	
4.1. Working Procedure: 4.2. Results	
5. Conclusion	3
Appendices	5
A. Matlab Codes	5
References	7

Nomenclature

N.S. Navier Stockes

w.r.t. with respect to

This page is intentionally left blank!

1. Problem Statement

Produce charts that describe the change of supersonic flow properties when it turned away from itself.

2. Mathematical Model

The most general governing equation is N.S. equation. This is any dummy text just to show the capabilities of nomenclatures θ of LyX w.r.t. LaTeX.

$$\mu = \sin^{-1}\left(\frac{1}{M}\right)$$
$$\left(\frac{a_0}{a}\right)^2 = 1 + \frac{\gamma - 1}{2}M^2$$

3. Assumptions

- 1) Steady flow
- 2) Quasi-dimensional flow; (area is variable with x only).

- 8) Body forces can de neglected; (weight of fluid)
- 9) Viscous stresses are absent
- 10) Changes in potential energy are neglected
- 11) Perfect gas
- 12) Thermally perfect gas
- 13) Adiabatic flow with no external work

4. Analysis

We can derive the formula that governs super flow expansion as:

$$\nu(M_1) = \nu(M_2) + \theta$$

$$\nu(M) = \sqrt{\frac{\gamma + 1}{\gamma - 1}} \tan^{-1} \left(\sqrt{\left(\frac{\gamma - 1}{\gamma + 1}\right) (M^2 - 1)} \right) \tan^{-1} \left(\sqrt{M^2 - 1} \right)$$

4.1. Working Procedure:

If you know M_1 & θ know you can use equation (3) to solve for M_2 using Newton Raphson iteration scheme as described below:

$$f(M_2) = \sqrt{\frac{\gamma + 1}{\gamma - 1}} \tan^{-1} \left(\sqrt{\left(\frac{\gamma - 1}{\gamma + 1}\right) (M^2 - 1)} \right) - \tan^{-1} \left(\sqrt{M^2 - 1}\right) - \theta - \nu(M_1)$$

$$f'(M_2) = \frac{M_2}{\sqrt{M_2^2 - 1} \left(1 + \frac{\gamma - 1}{\gamma + 1} (M_2^2 - 1)\right)} - \frac{1}{M_2 \sqrt{M_2^2 - 1}}$$

After you get M_2 you can get the pressure and temperature using the isentropic relations:

$$\frac{T_2}{T_1} = \frac{1 + \frac{\gamma - 1}{2} M_1^2}{1 + \frac{\gamma - 1}{2} M_2^2}$$

$$\frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma - 1}}$$

$$\frac{\rho_2}{\rho_1} = \left(\frac{T_2}{T_1}\right)^{\frac{1}{\gamma - 1}}$$

$$P_{01} = P_{02} = P_0$$

Function M_2o.m [Code 2] illustrates this procedure. Report6 main.m [Code 1] was used to plot the figures shown in section 4.2. Report6 main.m [Code 3] is just for exporting the figure to a pdf or emf to be included in section 4.2. Therefore this code is not complete.

. هذا هو بعض الكلمات العربية في سطر انجليزي This is a line with some Arabic words

و هذا سطر عربي به بعض الكلمات الانجليزية.Thus is some English words in an Arabic line.

و بناءً عليه فقد تم اثبات المطلوب. و بناءً عليه اثبات المطلوب. و بناءً عليه فقد تم اثبات المطلوب.

4.2. Results

The following table is just for demonstration. It doesn't provide any useful information.

Angle (\theta)	Temperature	Pressure	Density
12	324	6780	7676
12	232	232	7565
23	12121	232	4654

5. Conclusion

We see that we can still obtain solutions for M_2 for $\theta > 90^\circ$. But, however I think the solutions for $\theta > 90^\circ$ aren't practical.

Pressure, temperature & density increases as the kinetic energy increase as in [1].

This page is intentionally left blank!

Appendices

A. Matlab Codes

Code 1: Report6 main.m

```
function M 2 vec=M 2o(M 1, theta d vec, ...
                                                                                                                 gamma)
                                                                                                                                                                    %optional arguments
 if nargin<3
                     gamma=1.4;
 end
theta vec=deg2rad(theta d vec);
n1=sqrt((gamma+1)/(gamma-1))*atan(sqrt((gamma-1)/(gamma+1)*(M 1^2-1)))-
atan(sqrt(M_1^2-1));
%Newton Raphson iteration
M 2 vec=1.1*ones(size(theta d vec));
for ii=1:length(theta d vec)
                    f=sqrt((gamma+1)/(gamma-1))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))**atan(sqrt((gamma-1)))**atan(sqrt((gamma-1)))***atan(sqrt((gamma-1)))***********
1)/(gamma+1)*(M 2 vec(ii)^2-1)))-atan(sqrt(M 2 vec(ii)^2-1))-theta vec(ii)-
                     fdash=1/(M 2 vec(ii)^2-1)^(1/2)*M 2 vec(ii)/(1+(gamma-1)^2)
1)/(gamma+1)*(M 2 vec(ii)^2-1))-1/(M 2 vec(ii)^2-1)^(1/2)/M 2 vec(ii);
                    M 2 n=M 2 vec(ii)-f/fdash;
                    while abs(M 2 vec(ii)-M 2 n)>=100*eps %This is dangerous. Infinte loop
can occur!!
                                        M 2 \text{ vec(ii)} = M 2 n;
                                         f=sqrt((gamma+1)/(gamma-1))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))*atan(sqrt((gamma-1)))**atan(sqrt((ga
1)/(gamma+1)*(M 2 vec(ii)^2-1))-atan(sqrt(M 2 vec(ii)^2-1))-theta vec(ii)-1)
n1;
                                         fdash=1/(M \ 2 \ vec(ii)^2-1)^(1/2)*M \ 2 \ vec(ii)/(1+(gamma-max)^2)
 1)/(gamma+1)*(M 2 vec(ii)^2-1))-1/(M 2 vec(ii)^2-1)^(1/2)/M 2 vec(ii);
                                        M 2 n=M 2 vec(ii)-f./fdash;
                     end
                    M 2 vec(ii) = M 2 n;
 end
```

Code 2: Function M 2o.m

```
fdash=1/(M \ 2 \ vec(ii)^2-1)^(1/2)*M \ 2 \ vec(ii)/(1+(gamma-iii))
1)/(gamma+1)*(M 2 vec(ii)^2-1))-1/(M 2 vec(ii)^2-1)
1)^{(1/2)}/M 2 \text{ vec(ii)};
    M 2 n=M 2 vec(ii)-f/fdash;
    while abs(M 2 vec(ii)-M 2 n)>=100*eps %This is dangerous.
Infinte loop can occur!!
        M 2 vec(ii) = M 2 n;
         f=sqrt((gamma+1)/(gamma-1))*atan(sqrt((gamma-
1)/(gamma+1)*(M 2 vec(ii)^2-1)))-atan(sqrt(M 2 vec(ii)^2-1))-
theta vec(ii)-n1;
         fdash=1/(M \ 2 \ vec(ii)^2-1)^(1/2)*M \ 2 \ vec(ii)/(1+(gamma-iii))
1)/(gamma+1)*(M 2 vec(ii)^2-1))-1/(M 2 vec(ii)^2-1)
1)^{(1/2)}/M 2 \text{ vec(ii)};
        M 2 n=M 2 vec(ii)-f./fdash;
    end
    M 2 \text{ vec(ii)} = M 2 n;
end
```

Code 3: Function export_figure

```
unction export figure (h vec,
                      Expand, filenames, resolution, pictureFormat)
%Optional arguments
if nargin<2</pre>
    Expand='';
end
if nargin<4</pre>
    resolution=600;
elseif isempty(resolution)
    resolution=600;
end
if nargin<5</pre>
    pictureFormat={'pdf'};
else
    if ~iscell(pictureFormat)
        error('pictureFormat must be cell array of strings.')
    end
end
%%% A lot more code
```

References

- [1] J. D. Anderson, Modern Compressible Flow, McGraw-Hill, New York, 1990.[2] Report (1).[3] Report (3).