

Cryptographie basée sur les Courbes Elliptiques

Version du 24 avril 2024

TME

1 Notations

Soit p un nombre premier, \mathbb{F}_p désigne le corps à p éléments. Dans ce TME, vous manipulerez des courbes \mathcal{E} définies sur \mathbb{F}_p d'équation $y^2 = x^3 + ax + b$. Une telle courbe sera représentée par un triplet (p,a,b) où p est un nombre premier et $a,b\in\mathbb{F}_p$. Un point P:=(x,y) sera représenté par un couple (x,y) et le point à l'infini \mathcal{O} sera représenté par le tuple vide ().

2 Questions

Question 1. Écrire une fonction $est_elliptique$ qui prend en entrée une courbe $\mathcal{E}=(p,a,b)$ et renvoie True si cette courbe est elliptique et False sinon.

Question 2. Écrire une fonction point_sur_courbe qui prend en entrée un point P et une courbe \mathcal{E} et renvoie True si le point P se trouve sur la courbe \mathcal{E} et False sinon.

Question 3. Écrire une fonction symbole_legendre qui prend en entrée un entier a et un premier p et renvoie le symbole de Legendre de a mod p. Ce symbole est donné par l'expression $a^{\frac{p-1}{2}}$ mod p. Expliquer pourquoi.

Question 4. Écrire une fonction cardinal qui prend en entrée une courbe \mathcal{E} et renvoie le nombre de points de cette courbe. Votre fonction doit être suffisament efficace pour passer le test 3.

Question 5. Écrire une fonction liste_points qui prend en entrée une courbe $\mathcal E$ et renvoie la liste des points de $\mathcal E$ (point à l'infini compris). On pourra utiliser que, lorsque p premier est congru à $3 \mod 4$, une racine carrée de $a \mod p$ est donnée par $a^{\frac{p+1}{4}} \mod p$. Vérifier ce résultat.

Question 6. Rappeler le théorème de Hasse. Écrire une fonction cardinaux_courbes qui prend en entrée un premier p et renvoie un dictionnaire dont les clés sont les cardinaux possibles pour une courbe elliptique définie sur \mathbb{F}_p . On associe à une clé c le nombre de courbes elliptiques définies sur \mathbb{F}_p de cardinal c.

La fonction dessine_graphe, avec en entrée un premier p, utilise votre fonction cardinaux_courbes pour dessiner l'histogramme des cardinaux des courbes elliptiques définies sur \mathbb{F}_p .

Question 7. Écrire une fonction est_egal qui prend en entrée deux points P_1 et P_2 ainsi qu'un premier p et renvoie True si ces points sont égaux sur \mathbb{F}_p et False sinon.

Question 8. Écrire une fonction addition qui prend en entrée deux points P_1 et P_2 ainsi que la courbe elliptique \mathcal{E} à laquelle ils appartiennent et renvoie le point $P_1 + P_2$.

Question 9. Écrire une fonction $multiplication_scalaire$ qui prend en entrée un entier k, un point P et la courbe elliptique \mathcal{E} à laquelle il appartient et renvoie le point [k]P. Votre fonction doit être suffisament efficace pour passer le test 7

Question 10. Écrire une fonction ordre qui prend en entrée un point P, la courbe elliptique \mathcal{E} à laquelle ce point appartient, le cardinal N de la courbe et la factorisation de N en produits de facteurs premiers et renvoie l'ordre du point P dans le groupe de points de la courbe \mathcal{E} . On pourra utiliser la fonction factor qui prend en entrée un entier N et renvoie une liste de couples (p, a_p) où p est un diviseur premier de N et a_p est la valuation p-adique de N.

Question 11. Écrire une fonction point_aleatoire_naif qui prend en entrée une courbe $\mathcal E$ et renvoie un point (x,y) de $\mathcal E$ choisi aléatoirement. Cette fonction devra choisir x et y au hasard jusqu'à obtenir un point de la courbe. Estimer le nombre de points à tirer avant de trouver un point de la courbe $\mathcal E$. En déduire la complexité de votre fonction. Lancer votre fonction sur la courbe

 $\mathcal{E} = (360040014289779780338359, 117235701958358085919867, 18575864837248358617992)$

Commenter.

Question 12. Améliorer la complexité de la fonction ci-dessus dans une nouvelle fonction point_aleatoire. Vous pourrez vous limiter aux courbes définies sur \mathbb{F}_p pour p congru à 3 mod 4 et utiliser le calcul de racines carrées présenté précédemment. Donner la complexité de votre nouvelle fonction. Tester sur la courbe ci-dessus.

Question 13. Utiliser la fonction précédente et la fonction ordre pour écrire une fonction point_ordre qui prend en entrée une courbe \mathcal{E} , son cardinal N, la factorisation de son cardinal et un premier n divisant N et retourne un point d'ordre n.

Question 14. Application au protocole de Diffie-Hellman. Programmer l'échange de clé Diffie-Hellman. Pour cela, coder deux fonctions $keygen_DH$ et echange_DH. La première prendra en argument une courbe \mathcal{E} , un entier n et un point d'ordre n et génèrera une clé publique et une clé privée pour l'échange Diffie-Hellman. echange_DH prend en entrée une clé secrète d'Alice, une clé publique de Bob ainsi que la courbe \mathcal{E} et calcule la clé commune Diffie-Hellman.

Question 15. Etant donnés le premier p=248301763022729027652019747568375012323 et la courbe $\mathcal{E}:y^2=x^3+x$ sur $\mathbb{Z}/p\mathbb{Z}$ de cardinal N=248301763022729027652019747568375012324 dont la factorisation est donnée par [(2,2), (62075440755682256913004936892093753081, 1)], trouver un bon point P pour un échange de clé Diffie-Hellman. Expliquer pourquoi ce point est bien et comment il a été trouvé.