B.7 Evaluation 08 Tableaux de signes et inéquations.. Nom

Résoudre dans $\mathbb R$ les inéquations suivantes d'inconnue x :

1) $(2x-3)(3x+5) \ge 0$

$(2x - 9)(9x + 9) \geqslant 0$				
x	$-\infty$		$+\infty$	

 $\mathcal{S}_1 =$

(5x-4)(1-2x)(4x-3) < 0

_	(3x-4)(1-2x)(4x-3) < 0					
	x	$-\infty$	$+\infty$			

 $\mathcal{S}_2 =$

 $\frac{2x-6}{4-9x} \leqslant 0$

x	$-\infty$			$+\infty$

 $\mathcal{S}_3 =$

4)
$$\frac{(-2x-12)(2x-8)}{(3x+6)(7-x)} < 0$$

		3 1 3)(1		
x	$-\infty$			$+\infty$

$$\mathcal{S}_4 =$$

 $\frac{x - 25}{3x^2 + 6x} < 0$

x	$-\infty$	- O.A	$+\infty$

$$\mathcal{S}_5 =$$