Определение 1. Говорят, что функция f(x) есть "о маленькое " от функции g(x) (при $x \to a$), если существует такая функция $\alpha(x)$, что $\lim_{x\to a}\alpha(x)=0$ и $f(x)=g(x)\cdot\alpha(x)$. Обозначение: f(x)=o(g(x)).

Задача 1. Докажите, что $\sin x = o(1)$ и $x^2 = o(x)$ при $x \to 0$; $x = o(x^2)$ при $x \to \infty$.

Определение 2. Пусть $M\subseteq\mathbb{R}$ — открытое множество. Функцию $f:M\to\mathbb{R}$ называют n раз непрерывно $\partial u\phi$ - ϕ еренцируемой, если на M существуют и непрерывны производные $f', f'', \dots, f^{(n)}$. Множество таких функций обозначают $C^n(M)$. Множество функций, дифференцируемых на M любое число раз, обозначают $C^{\infty}(M)$.

Задача 2. Пусть $f \in C^n(\mathcal{U}_{\varepsilon}(x_0)), f(x_0) = f'(x_0) = \cdots = f^{(n)}(x_0) = 0$. Докажите, что

- а) для любого k < n и для любого $x \in \mathcal{U}_{\varepsilon}(x_0)$ существует такое $\alpha \in \mathcal{U}_{\varepsilon}(x_0)$, что $f^{(k)}(x) = (x x_0)f^{(k+1)}(\alpha)$;
- **б)** для любого $x \in \mathcal{U}_{\varepsilon}(x_0)$ существуют такие $x_1, x_2, \dots, x_n \in \mathcal{U}_{\varepsilon}(x_0)$, что

$$f(x) = (x - x_0)(x_1 - x_0)(x_2 - x_0) \dots (x_{n-1} - x_0)f^{(n)}(x_n);$$

B) $f(x) = o((x - x_0)^n).$

Задача 3. Пусть $f \in C^n(\mathcal{U}_{\varepsilon}(x_0))$. Докажите, что первые n производных в точке x_0 многочлена

$$P(x) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$
 совпадают с первыми n производными в точке x_0 функции $f(x)$.

Задача 4. а) Пусть
$$f \in C^n(\mathcal{U}_{\varepsilon}(x_0))$$
. Докажите, что при любом $x \in \mathcal{U}_{\varepsilon}(x_0)$ справедливо следующее равенство:
$$f(x) = f(x_0) + \frac{f'(x_0)}{2!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

б) Докажите, что выполнение равенства п. а) при любом $x \in \mathcal{U}_{\varepsilon}(x_0)$ означает в случае n=0 непрерывность функции f(x) в точке x_0 , а в случае n=1 — дифференцируемость функции f(x) в точке x_0 .

Задача 5. а) Пусть $f \in C^{n+1}(\mathcal{U}_{\varepsilon}(x_0))$. Докажите, что для любого $x \in \mathcal{U}_{\varepsilon}(x_0)$ существует такое $\alpha \in \mathcal{U}_{\varepsilon}(x_0)$, что справедливо следующее равенство:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(\alpha)}{(n+1)!}(x - x_0)^{n+1}$$

(оно называется формулой Тейлора с остаточным членом в форме Лагранжа).

б) Пусть $f \in C^{\infty}(\mathcal{U}_{\varepsilon}(x_0))$. Пусть $x \in \mathcal{U}_{\varepsilon}(x_0)$ и существует такое число c > 0, что при любом $\alpha \in \mathcal{U}_{\varepsilon}(x_0)$ и при любом $n \in \mathbb{N}$ выполнено неравенство $|f^{(n)}(\alpha)| < c$. Докажите, что тогда $f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \dots$

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$$

(т. е. стоящий справа ряд (называемый рядом Тейлора с центром в x_0 функции f) сходится к f(x).)

Задача 6. Напишите ряд Тейлора с центром в $\pi/6$ функции $\sin x$. Сходится ли он к $\sin x$ при $x \in \mathbb{R}$?

Задача 7. Напишите ряды Тейлора с центром в нуле для следующих функций: **a)** e^x ; **б)** a^x (a>0); **в)** $\sin x$; **г)** $\cos x$; **д)** $\frac{1}{1-x}$; **e)** $\ln(1+x)$; **ж)** $(1+x)^{\alpha}$ $(\alpha\in\mathbb{R})$; **3)** $\arctan x$; **и)** $\arctan x$; **к)** $\frac{1}{1+x^2}$.

Задача 8. а) Исследуйте сходимость полученного ряда Тейлора к соответствующей функции при $x \in \mathbb{R}$ в каждом из пунктов задачи 7. б) Нарисуйте в любой удобной программе графики нескольких функций и их многочленов Тейлора с центром в нуле (и посмотрите ролик: youtu.be/3d6DsjIBzJ4).

Задача 9. Докажите, что **a)** $\operatorname{tg} x = x + \frac{1}{3}x^3 + o(x^3)$ при $x \to 0$; **б)** $e^x - (1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}) < \frac{3}{(n+1)!}$ при $0\leqslant x\leqslant 1$ и вычислите e с точностью до $10^{-5};$ в) $|\sin x-(x-\frac{x^3}{6})|<10^{-5}$ при |x|<1/4.

Задача 10. Вычислите пределы: **a)** $\lim_{x \to 0} \frac{\cos x - e^{-x^2/2}}{x^4}$; **b)** $\lim_{x \to 0} \frac{e^x \sin x - x(x+1)}{x^3}$; **b)** $\lim_{x \to 0} \frac{\arctan x}{\tan x - \arcsin x}$

Задача 11. Пусть $f(x) = e^{-1/x^2}$ при $x \neq 0, f(0) = 0$. Найдите для f ряд Тейлора с центром в нуле.

Задача 12. Пусть $f \in C^{\infty}(\mathcal{U}_{\varepsilon}(0))$. Верно ли, что ряд Тейлора с центром в нуле для функции f

а) сходится при всех x из $\mathcal{U}_{\varepsilon}(0)$? б) если сходится при некотором x из $\mathcal{U}_{\varepsilon}(0)$, то обязательно к f(x)?

Задача 13*. Перестановка (x_1, x_2, \ldots, x_n) чисел $1, 2, \ldots, n$ называется *змеей* (длины n), если выполнены неравенства $x_1 < x_2 > x_3 < x_4 > \dots$ (Например, при n=2 есть только одна змея 1<2, при n=3 две: 1 < 3 > 2 и 2 < 3 > 1.) Пусть k_n — число змей длины n. а) Найдите рекуррентную формулу для вычисле-

ния k_n . **6)** Пусть $K(x) = \sum_{n=0}^{\infty} k_n \frac{x^n}{n!}$. Докажите, что $2K'(x) = 1 + K^2(x)$ и найдите K(x), решив это уравнение.

в) Докажите, что ряд Тейлора тангенса есть $\operatorname{tg} x = 1\frac{x}{1!} + 2\frac{x^3}{3!} + 16\frac{x^5}{5!} + \dots = \sum_{n=1}^{\infty} k_{2n-1} \frac{x^{2n-1}}{(2n-1)!}$.

1	2 a	2	2 6	2 B	3	4 a	4 6	5 a	5 6	6	7 a	- ا	7 в	7 д	 7 ж	 	7.7	8 a	8 6	9 a	9 6	9 B	10 a	10 б	10 B	11	12 a	12 6	13 a	13 б	13 B