

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA

MARIA LETÍCIADE ARAÚJO VERAS PEDRO LUIZ LEITE PEREIRA RODRIGO OLIVEIRA RODRIGUES SOFIA COSTA BARRETO

PROJETO FINAL DISCIPLINA DE CONTROLE DE SISTEMAS DINÂMICOS CONTROLE DE VELOCIDADE DE UM MOTOR CC E TACO-GERADOR TURMA 01A

FORTALEZA

2016

SUMÁRIO

1 OBJETIVOS	3
2 INTRODUÇÃO	3
2.1 Motor CC	3
2.2 Taco-gerador	3
2.3 Controladores PID	4
2.3.1 Função Proporcional	4
2.3.2 Função Integral	4
2.3.3 Função Derivativa	5
2.4 Controle de Velocidade em Malha Fechada	5
3 LEVANTAMENTO DO MODELO DO SISTEMA	6
3.1 Procedimento Experimental	6
3.2 Função de Transferência do Sistema	7
4 VALIDAÇÃO DO MODELO MATEMÁTICO	10
4.1 Resposta ao Degrau Unitário	10
4.2 Modelo de Simulação da Planta	11
5 PROJETO DO CONTROLADOR	12
5.1 Lugar Geométrico das Raízes do Sistema Original	12
5.2 Lugar Geométrico das Raízes do Sistema Controlado	13
5.3 Modelo de Simulação do Sistema de Controle	13
6 PROJETO ELETRÔNICO	14
7 MATERIAL UTILIZADO	21
8 RESULTADOS	22
9 CONCLUSÃO	25
REFERÊNCIAS	26

1 OBJETIVOS

O objetivo deste trabalho é apresentar o projeto, a simulação e a montagem de um sistema de controle de velocidade em malha fechada para um motor CC de 0,74 W, utilizando um taco-gerador como transdutor de velocidade.

2 INTRODUÇÃO

2.1 Motor CC

O motor de corrente contínua (CC) é uma máquina elétrica que transforma energia elétrica em energia mecânica. A máquina CC funciona a partir do princípio da atração e da repulsão de campos magnéticos, ou seja, ela possui um enrolamento de armadura conectada a um comutador e polos magnéticos que são excitados por uma fonte CC e que estão permanentemente magnetizados. O resultado da interação dos campos magnéticos é a produção de um conjugado eletromecânico, produzindo movimento rotacional do eixo.

As vantagens da utilização do controle de velocidade dos motores CC são o fato de possuírem valores constantes de tensão, torque e velocidade em regimes permanentes e velocidade diretamente proporcional à tensão aplicada no enrolamento da armadura, apresentando características lineares.

2.2 Taco-gerador

Os tacos-geradores são elementos eletromecânicos utilizados para informar a velocidade de rotação, gerando em sua saída uma tensão contínua proporcional à sua rotação. É um gerador CC de ímã permanente acoplado mecanicamente ao eixo em que se deseja medir a velocidade.

Para que o motor CC funcione como um taco-gerador é necessário que a tensão de saída seja estabilizada na faixa operacional e a saída seja estável a variações de temperatura.

2.3 Controladores PID

O controlador proporcional-integral-derivativo é uma técnica de controle de processos que une as ações derivativa, integral e proporcional, fazendo assim com que o sinal de erro seja minimizado pela ação proporcional, zerado pela ação integral e obtido com uma velocidade antecipativa pela ação derivativa.

A fórmula geral do PID é dada por:

$$u(t) = K_p e(t') + K_i \int_0^t e(\tau) d\tau + K_d \frac{d}{dt} e(t),$$
 (Eq. 1)

em que

u(t): é a saída em relação ao tempo;

e(t): é a entrada menos o erro em relação ao tempo;

 K_p : é a constante proporcional;

 K_i : é a constante integral;

 K_d : é a constante derivativa.

2.3.1 Função Proporcional

$$P_{out} = K_p e(t) (Eq. 2)$$

Essa função do controlador PID produz um valor na saída proporcional ao erro obtido na realimentação. A resposta do proporcional pode ser ajustada a partir da constante de ganho K_p . Quanto maior a constante K_p , maior será o ganho do erro e mais instável será o sistema. Porém, se a constante K_p for muito pequena, menor será o seu tempo de resposta.

2.3.2 Função Integral

$$I_{out} = K_i \int_0^t e(\tau) d\rho$$
 (Eq. 3)

A função integral soma todos os erros instantâneos e a somatória é multiplicada pela constante K_i . A função integral do controlador PID acelera o movimento do processo até o ponto desejado e elimina o erro que ocorre na função anterior. Como a função soma dados instantâneos, o resultado do processo pode ultrapassar o ponto desejado.

2.3.3 Função Derivativa

$$D_{out} = K_d \frac{d}{dt} e(t)$$
 (Eq. 4)

A função derivativa retarda a taxa de variação de saída do controlador. Essa função diminui a ultrapassagem da função anterior e melhora a estabilidade do controlador. Por outro lado, a função derivativa causa um retardo na resposta e é muito suscetível a ruídos. Isto acontece porque essa função amplifica o ruído e caso o ruído e o ganho K_d forem muito grandes, podem causar instabilidade no controlador.

Portanto, para uma melhor estabilidade no sistema usamos o controlador PID que contém as três funções e dependendo das constantes podem melhorar ou piorar a estabilidade do sistema a ser controlado.

2.4 Controle de Velocidade em Malha Fechada

No controle em malha fechada, informações sobre como a saída de controle está evoluindo são utilizadas para determinar o sinal de controle que deve ser aplicado ao processo em um instante específico. Isto é feito a partir de uma realimentação da saída para a entrada.

Em geral, a fim de tornar o sistema mais preciso e de fazer com que ele reaja a perturbações externas, o sinal de saída é comparado com um sinal de referência e o desvio entre estes dois sinais é utilizado para determinar o sinal de controle que deve efetivamente ser aplicado ao processo. Assim, o sinal de controle é determinado de forma a corrigir este desvio entre a saída e o sinal de referência. O dispositivo que utiliza o sinal de erro para determinar ou calcular o sinal de controle a ser aplicado à planta é chamado de controlador ou compensador.

A utilização da realimentação e controle em malha fechada nos processos permite aumentar a precisão, rejeitar o efeito de perturbações externas, estabilizar um sistema naturalmente instável em malha aberta e diminuir a sensibilidade do sistema a variações dos parâmetros.

3 LEVANTAMENTO DO MODELO DO SISTEMA

3.1 Procedimento Experimental

Para levantar o modelo aproximado do sistema motor taco-gerador (MTG) proposto, primeiramente montou-se a estrutura apresentada na Figura 1.

Figura 1 – Estrutura montada para levantamento do modelo do sistema MTG

Fonte: Autoria própria.

Tanto o motor como o taco-gerador apresentam as especificações fornecidas nas Tabela 1 e Tabela 2.

Tabela 1 – Especificações do motor nas condições sem carga e de rotor bloqueado

	Tensão		Sem carga		Rotor bloqueado		
Modelo	Faixa de	Nominal	Velocidade	Corrente	Torque		Corrente
	operação	Nommai	r/min	A	mN⋅m	g∙cm	A
JFF-130SH- 11340	CC3,0-12,0V	CC9,0V	7400	0,035	6,37	65	0,68

Fonte: Disponível em http://www.made-in-china.com/.

Tabela 2- Especificações do motor na condição de máxima eficiência

	Tensão		Na máxima eficiência				
Modelo	Faixa de operação	Nominal	Velocidade	Corrente	Torque		Saída
			r/min	A	mN⋅m	g⋅cm	W
JFF-130SH- 11340	CC3,0-12,0V	CC9,0V	6030	0,15	1,18	12,0	0,74

Fonte: Disponível em http://www.made-in-china.com/.

Aplicando uma tensão nominal de 7 V nos terminais do motor, foi possível acompanhar a resposta do sistema (tensão gerada nos terminais do taco-gerador) com o auxílio do osciloscópio. A fim de reduzir as oscilações na saída do taco-gerador, foi adicionado um capacitor de 220 µF aos seus terminais. A Figura 2 mostra os sinais de entrada e saída do sistema, em que o canal 1 (CH1) do osciloscópio está monitorando a tensão de entrada e o canal 2 (CH2) a tensão de saída.

Figura 2 – Formas de onda obtidas do osciloscópio

Fonte: Autoria própria.

3.2 Função de Transferência do Sistema

Os dados que formam ambas as curvas foram colhidos do osciloscópio a partir de um cartão memória. Os pontos são tomados em intervalos de 0,0002 s. Com base nesses pontos, as curvas puderam ser reproduzidas no MATLAB a partir de um código apropriado, como mostra a Figura 3.

10 Sinal de Entrada Sinal de Saída 8 6 4 Tensão (V) 2 0 -2 -4 -6 -8 0.1 0.2 0.3 0.4 0.5 Tempo (s)

Figura 3 – Formas de onda reproduzidas no MATLAB

Fonte: Autoria própria.

Utilizando a ferramenta *System Identification*(IDENT) do MATLAB, foi levantada a função de transferência que caracteriza a planta do sistema. A Figura 4 apresenta a tela principal dessa ferramenta.

Figura 4 – Janela da ferramenta System Identification

Fonte: Autoria própria.

Estimando o modelo por uma função de primeira ordem do tipo

$$G(s) = \frac{K}{1 + Tp1s},$$
 (Eq. 5)

foi atingida uma aproximação de 96,13%, como mostra a Figura 5.

7 Aproximado Real 6 5 Tensão (V) 2 1 0 -1 0.1 0.2 0.3 0.5 0.4 Tempo (s)

Figura 5 – Aproximação do modelo real por uma função de primeira ordem

Fonte: Autoria própria.

Neste caso, os coeficientes *K*e e *Tp1* da função aproximada gerados pela ferramenta IDENT valem 0,84022 e 0,048412, respectivamente. Assim, a função de transferência que caracteriza o sistema foi definida como:

$$G(s) = \frac{0,84022}{1 + 0,048412s}.$$
 (Eq. 6)

No formato de polos e zeros, G(s) é dada por:

$$G(s) = \frac{17,3556}{s + 20,6560}.$$
 (Eq. 7)

4 VALIDAÇÃO DO MODELO MATEMÁTICO

4.1 Resposta ao Degrau Unitário

Com base na função de transferência obtida, foi gerado o gráfico da resposta ao degrau unitário do sistema, como mostra a Figura 6.

Figura 6 – Resposta ao degrau unitário do sistema

Fonte: Autoria própria.

Figura 7 – Parâmetros do sistema em malha aberta

Fonte: Autoria própria.

A partir da Figura 6, é possível verificar que o modelo gerado é estável em malha aberta e não apresenta oscilações na parte transitória.

O MATLAB foi utilizado para obter os seguintes parâmetros do sistema em malha aberta: tempo de assentamento pelo critério de 5% e tempo de subida, como mostra a Figura 7.

4.2 Modelo de Simulação da Planta

Para verificar a resposta do sistema frente a um degrau de amplitude igual a 7 – equivalente à tensão aplicada no procedimento experimental –, o seguinte diagrama de blocos foi construído no SIMULINK.

Figura 8 – Diagrama de blocos do sistema em malha aberta

Fonte: Autoria própria.

A resposta do sistema em malha aberta é mostrada na Figura 9

Figura 9 – Resposta do sistema em malha aberta ao degrau de amplitude 7

Fonte: Autoria própria.

É possível observar que a forma de onda obtida na saída do sistema em malha aberta é bastante semelhante àquela verificada no procedimento experimental—dada pela Figura 2—. As discrepâncias encontradas são decorrentes da aproximação do modelo matemático e do fato de que a tensão de entrada do procedimento experimental atingiu níveis superiores a 7 V, diferente da simulação no MATLAB, em que a tensão aplicada foi igual a 7 V exatos.

5 PROJETO DO CONTROLADOR

5.1 Lugar Geométrico das Raízes do Sistema Original

Com o auxílio da ferramenta SISO Tool do MATLAB, é possível obter o Lugar Geométrico das Raízes (LGR) do modelo da planta, como mostra a Figura 10

Figura 10 – Lugar geométrico das raízes do sistema original

Fonte: Autoria própria.

Como verificado, o modelo da planta possui um polo no lado esquerdo do plano complexo. O sistema MTG proposto, portanto, é estável em malha aberta – fato confirmado pela reposta ao degrau, mostrada na Figura 6–, não apresentando grandes complicações para o projeto do controlador.

5.2 Lugar Geométrico das Raízes do Sistema Controlado

O controlador da planta – de acordo com as premissas do projeto – deve ser do tipo PID. Assim, ao LGR da Figura 10 deve ser adicionado um polo na origem e dois zeros, de forma a obter um ponto de operação desejável. Desta forma, o LGR do sistema controlado é apresentado na Figura 11.

Figura 11 – Lugar geométrico das raízes do sistema controlado

Fonte: Autoria própria.

Exportando o modelo do controlador para a área de trabalho do MATLAB, é obtida a seguinte função de transferência:

$$C(s) = \frac{0.048819(s + 29.47)(s + 36.27)}{s}$$
 (Eq. 8)

5.3 Modelo de Simulação do Sistema de Controle

Para modelar o sistema em malha fechada, foi construída, no SIMULINK, a estrutura em diagrama de blocos mostrada na Figura 12.

Figura 12 – Diagrama de blocos do sistema em malha fechada

Fonte: Autoria própria.

Após rodar a simulação em um período fixado de 0,5 s, as curvas de entrada e saída foram obtidas do bloco *Scope* do diagrama. A Figura 13 mostra ambos os sinais de entrada e saída da simulação.

8 Sinal de Entrada Sinal de Saída 7 6 Tensão (V) 3 2 1 0 0.1 0.2 0.3 0.4 0.5 Tempo (s)

Figura 13 – Resposta do sistema em malha fechada ao degrau de amplitude 7

Fonte: Autoria própria.

Pode-se confirmar, portanto, que o modelo de controle montado no sistema MTG apresenta erro de regime nulo para referências do tipo degrau.

6 PROJETO ELETRÔNICO

Para o projeto eletrônico do controlador PID escolheu-se a configuração de malha fechada apresentada na Figura 14. Em que a planta é um motor taco-gerador.

Figura 14 - Projeto eletrônico do controlador PID em malha fechada

Fonte: Disponível em http://labdegaragem.com/.

Aplicando a transformada de Laplace na Eq. 1, é possível encontrar uma equação genérica para o controlador PID:

$$u(s) = Kp + \frac{Ki}{s} + Kd \cdot s$$
 (Eq. 9)

Rearranjando a Eq. 8 é possível obter:

$$C(s) = 3,209 + \frac{52,182}{s} + 0,048819 \cdot s$$
 (Eq. 10)

Dessa forma, comparou-se a Eq. 10 com a Eq. 9 definindo assim os valores dos ganhos do controlador PID:

$$Kp = 3,209$$
 $Ki = 52,182$
 $Kd = 0,048819$

Para o projeto eletrônico do sistema, utilizaram-se configurações de amplificadores operacionais para representar os blocos: Somador, Subtrator, Proporcional, Integrador e Derivativo, apresentados na Figura 14.

Utilizaram-se os amplificadores operacionais do CI LM324 apresentados na Figura 15. Foram necessários dois LM324, pois foram utilizados cinco amplificadores operacionais no circuito projetado.

Figura 15 – Mapa dos pinos do CI LM324

Fonte: Disponível em http://freedatasheets.com/.

Entretanto, para a utilização do LM324 no circuito proposto, fez-se necessário alimentar o pino 11 com um sinal –Vcc. Com isso, foi possível gerar os sinais negativos do sistema de controle, o que não seria possível aterrando o pino 11.

A função Proporcional foi projetada utilizando a configuração apresentada na Figura 16, utilizou-se o amplificador operacional "1" do primeiro CI LM324.

Rp2

LM324

LM324

Figura 16 – Esquema do circuito proporcional

Fonte: Autoria própria.

Calcularam-se os valores dos resistores *Rp1* e *Rp2* de forma que o circuito da Figura 16 representasse a função proporcional. Para isso fez-se:

$$\frac{Rp2}{Rp1} = Kp \tag{Eq. 11}$$

$$\frac{Rp2}{Rp1} = 3,209$$
 (Eq. 12)

Considerando valores comerciais, definiram-se os valores dos resistores Rp1 e Rp2:

$$Rp1 = 3,3 k\Omega$$

$$Rp2 = 12 k\Omega$$

A função Integrador foi projetada utilizando a configuração apresentada na Figura 17, utilizou-se o amplificador operacional "2" do primeiro CI LM324.

Figura 17 – Esquema do circuito integrador

Fonte: Autoria própria.

Calcularam-se os valores do resistor *Ri* e do capacitor *Ci* de forma que o circuito da Figura 17 representasse a função Integrador. Para isso fez-se:

$$\frac{1}{Ri \cdot Ci} = Ki \tag{Eq. 13}$$

$$\frac{1}{Ri \cdot Ci} = 52,182$$
 (Eq. 14)

$$Ri \cdot Ci = 0.01916$$
 (Eq. 15)

Considerando valores comerciais, definiram-se os valores dos componentes *Ri* e *Ci*:

$$Ri = 82 k\Omega + 4,7 k\Omega$$

$$Ci = 220 nF$$

A função Derivativa foi projetada utilizando a configuração apresentada na Figura 18, utilizou-se o amplificador operacional "3" do primeiro CI LM324.

Rd NAME OF THE PROPERTY OF THE

Figura 18 – Esquema do circuito derivativo

Fonte: Autoria própria.

Calcularam-se os valores do resistor Rd e do capacitor Cd de forma que o circuito da Figura 18 representasse a função Derivativa. Para isso fez-se:

$$Rd \cdot Cd = Kd$$
 (Eq. 16)

$$Rd \cdot Cd = 0.048819$$
 (Eq. 17)

Considerando valores comerciais, definiram-se os valores dos componentes $Rd \in Cd$:

$$Rd = 220 k\Omega$$

$$Cd = 220 nF$$

A fim de evitar problemas com os sinais de erro negativos, utilizaram-se capacitores cerâmicos tanto para o circuito integrador quanto para o circuito derivativo.

Para somar os sinais na saída dos termos Propocional, Integrador e Derivativo do controlador PID, utilizou-se uma configuração de amplificador operacional somador com pesos unitários. Definiu-se que todos os resistores do somador deveriam ser de $10~\rm k\Omega$ para que todos os três termos do PID tivessem o mesmo peso. A configuração somador é apresentada na Figura 19. Utilizou-se o amplificador operacional "1" do segundo CI LM324.

Figura 19- Esquema do circuito somador

Fonte: Autoria própria.

Para subtrair os sinais de referência e de saída da planta controlada (realimentação), utilizou-se uma configuração de amplificador operacional subtrator com pesos unitários. Definiu-se que todos os resistores do subtrator deveriam ser de $10 \text{ k}\Omega$ para que os dois sinais subtraídos tivessem o mesmo peso. O circuito subtrator terá como saída o sinal de erro, que será a entrada do controlador PID. A configuração subtratoré apresentada na Figura 20. Utilizou-se o amplificador operacional "3" do segundo CI LM324.

Figura 20 – Esquema do circuito subtrator

Fonte: Autoria própria.

Dessa forma, definiu-se o circuito completo do sistema de controle em que a planta controlada é um motor taco-gerador. O circuito completo é apresentado na Figura 21.

19 kg

19

Figura 21 – Circuito completo do sistema de controle

Fonte: Autoria própria.

Como referência para o sistema de controle utilizou-se um sinal de 9 V, e o mesmo sinal que alimenta o motor. Dessa forma, o sistema de controle tem como finalidade fazer com que o taco gerador acompanhe uma referência de 9 V. Utilizou-se ainda, um potenciômetro de $100~\text{k}\Omega$ para variar a referência do sistema.

Para alimentar o motor taco-gerador, foi necessário utilizar o transistor TIP 41 na configuração com coletor comum, como está exposto na Figura 22. Dessa forma, o sinal de controle será a corrente de base do transistor que controlará a alimentação do motor e a saída do segundo motor, utilizado como taco-gerador, será a realimentação do sistema de controle PID.

Sistema de Controle

VCC

TIP 41

Ve

M

GND

GND

Figura 22 – Circuito da alimentação do motor taco-gerador com coletor comum

Fonte: Adaptado do Roteiro da Prática 8.

 $Com\ o\ intuito\ de\ reduzir\ o\ ruído\ da\ malha\ de\ controle,\ adicionou-se\ um$ capacitor eletrólito de 220 μF em paralelo com a saída do gerador.

7 MATERIAL UTILIZADO

Para a implementação do sistema de controle de velocidade do Motor Taco-Gerador, utilizou-se os seguintes materiais apresentados na Tabela 3.

COMPONENTE	QUANTIDADE
Motor CC 9V	2
TIP 41	1
LM324	2
Capacito Cerâmico 220 nF	2
Capacitor Eletrolítico 220 μF	1

Tabela 3 – Componentes Utilizados

Resistor 10 kΩ	8
Resistor 12 kΩ	1
Resistor 3,3 kΩ	1
Resistor 82 kΩ	1
Resistor 4,7 kΩ	1
Resistor 220 kΩ	1
Potenciômetro 100kΩ	1
Protoboard	1

Fonte: Autoria própria.

8 RESULTADOS

Após a simulação, procedeu-se com a implementação prática do circuito eletrônico de controle do motor taco-gerador, que está exposto na Figura 23.

Figura 23 – Implementação do circuito eletrônico de controle

Fonte: Autoria própria.

Para alimentação do circuito, utilizaram-se duas fontes CC ligadas em série ajustadas em 9 V. Dessa forma, foi possível gerar sinais de +9 V e de -9 V para alimentar os pinos 4 e 11, respectivamente, dos CIs LM324.

Para realizar os testes do circuito de controle, utilizou-se um potenciômetro de $100~\text{k}\Omega$ para variar o sinal de referência do sistema. Os sinais de entrada e saída foram aferidos através de um osciloscópio. Na Figura 24 é possível verificar que o sinal

de saída da planta controlada (CH 2 – "azul") acompanha o sinal de referência do sistema (CH1 – "amarelo").

GWINSTEK ∨÷▼ 0.000s Measure Vavg 3.62V 3.62V **Duty Cycle** 1: 38.21% Frequency 1: 694.7mHz 2: 701.3mHz Vmax 5.19V 5.19V Vmin 1: 2.48V 2: 2.40V EDGE 8 == 20 **■** 500ms ROLL O CH1 **FDC** 0 < 2Hz ത്തി

Figura 24 – Sinais de entrada e saída do sistema de controle

Fonte: Autoria própria.

Um segundo teste foi realizado para analisar a resposta do sistema a uma perturbação inserida na planta. Mantendo a referência constante, pressionou-se o eixo de conexão entre o motor e o taco-gerador, aplicando uma força moderada no sistema. Na Figura 25, é possível verificar em (1) o momento em que a perturbação foi inserida e em (2) o momento em que a perturbação foi removida do sistema.

Figura 25 – Sinais de entrada e saída a uma perturbação externa

Fonte: Autoria própria.

A partir da Figura 25 é possível observar que, embora tenham ocorrido pequenas variações durante a entrada e a saída da perturbação, o sistema de controle age

no sentido de manter a velocidade de rotação constante. Para isso, o controle PID varia a corrente e consequentemente o torque, a fim de compensar as perturbações externas.

Por fim, variou-se o sinal de referência de 0,50 V a 5,50 V e mediram-se os sinais de tensão em diferentes pontos do circuito. Os pontos medidos foram: sinal de referência (Ref), sinal de saída (Y), sinal de controle (U), tensão de emissor (Ve), tensão de coletor (Vc) e a diferença entre o sinal de alimentação (Vcc) e a tensão de emissor. Os valores aferidos estão apresentados na Tabela 4.

Tabela 4 – Sinais de tensão do sistema

Ref (V)	Y(V)	U (V)	Ve (V)	Vc (V)	Vcc - Ve (V)
0,50	0,53	0,58	1,29	8,92	7,71
1,00	1,03	1,13	1,60	8,92	7,40
1,50	1,52	1,32	2,03	8,92	6,97
2,08	2,08	1,56	2,57	8,94	6,43
2,50	2,49	1,72	3,11	8,92	5,89
3,00	2,99	2,66	3,63	8,92	5,37
3,50	3,52	3,32	4,17	8,92	4,83
4,00	3,99	4,32	4,76	8,92	4,24
4,50	4,48	5,16	5,29	8,92	3,71
5,00	5,00	6,00	5,82	8,92	3,18
5,50	5,23	6,51	6,10	8,92	2,90

Fonte: Autoria própria.

Devido à configuração de coletor comum, a tensão de coletor permanece constante e igual à tensão de alimentação do circuito.

Além disso, é possível verificar da Tabela 4 que o sinal de saída (Y) tende a acompanhar o sinal de referência (Ref) do sistema, apresentando erro médio absoluto de 0,038 V.

9 CONCLUSÃO

Nesse trabalho, foi apresentado o projeto, a simulação e a implementação prática de um sistema de controle PID para controle de velocidade de um motor tacogerador.

Primeiramente, foi levantada a curva da planta MTG proposta e, a partir da ferramenta IDENT do MATLAB, determinou-se a função de transferência que caracteriza o sistema. Com base nesta função de transferência foi possível determinar, através da ferramenta SISO Tool do MATLAB, o lugar geométrico das raízes, verificando que o sistema era estável em malha aberta.

Em seguida, ainda com a ferramenta SISO Tool, foi determinada a função de transferência do controlador PID, ajustando o ponto de operação a um valor desejado.

Em posse da equação do controlador PID, dimensionou-se os componentes do circuito eletrônico para controle da planta. Foram utilizados os amplificadores operacionais do CI LM324 para implementar as funções proporcional, integral e derivativa do controlador PID.

Após a montagem da estrutura de controle, foi possível perceber que o controlador agiu corretamente, fazendo com que a saída do sistema seguisse o sinal de referência. Observou-se também que o sistema controlado apresentou um erro médio absoluto 0,038 V para os sinais de referência ajustados entre 0,50 e 5,50 V.

REFERÊNCIAS

- [1] DORF, R.; BISHOP, R. H. **Sistemas de controle moderno**. 11. ed. Rio de Janeiro: LTC, 2009.
- [2] OGATA, K. **Engenharia de controle moderno**. 5. ed. São Paulo: Prentice Hall, 2011.
- [3] **MADE IN CHINA**. Disponível em http://www.made-in-china.com/>. Acesso em: 14/11/2016.
- [4] **FREE DATASHEETS**. Disponível em http://freedatasheets.com/>. Acesso em: 21/11/2016.
- [5] **LAB DE GARAGEM**. Disponível em http://labdegaragem.com/>. Acesso em 21/11/2016.
- [6] Roteiro da Prática 8. **Controle de Velocidade Motor taco-gerador PI simplificado**. Disciplina de Controle de Sistemas Dinâmicos. Universidade Federal do Ceará, 2016.