Compito di Matematica Discreta e Algebra Lineare 13 Febbraio 2019

		10	rebbraio 2019		
Cognome e	nome:				
Numero di matricola:					
<u>IMPORTANTE</u> : Scrivere il nome su ogni foglio. Mettere <u>TASSATIVAMENTE</u> nei riquadri le risposte, e nel resto del foglio lo svolgimento.					
Esercizio 1. Fattorizzare il polinomio $x^8 - 1$ su $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.					
	GII (O)		GIV ID		an C
Г	su Q]	su R]	su C

Esercizio 2. 1) Determinare per quali valori del parametro intero a il seguente sistema di congruenze ammette soluzioni intere. 2) Trovare tutte le soluzioni per $a=-3$.				
$\begin{cases} ax \equiv 6 \\ 4x \equiv a \end{cases}$	(mod 15) (mod 15)			

per quali a ha soluzione	?	soluzioni per $a = -3$

Esercizio 3. Consideriamo \mathbb{R}^3 col prodotto scalare standard. Sia $A:\mathbb{R}^3\to\mathbb{R}^3$ l'applicazione lineare che nella base standard è rappresentatata dalla matrice

$$[A] = \begin{pmatrix} 0 & 0 & -2 \\ 0 & -2 & 0 \\ -2 & 0 & 3 \end{pmatrix}$$

- 1) Trovare gli autovalori di A.2) Trovare una base ortonormale di \mathbb{R}^3 che diagonalizzi A.

Autovalori	Base

Esercizio 4. Consideriamo la matrice a coefficienti in $\mathbb R$

$$B=\left(\begin{array}{cc}-1&1\\4&4\end{array}\right)$$

Sia V lo spazio vettoriale delle matrici 2×2 a coefficienti in \mathbb{R} . Calcolare la dimensione del nucleo e dell'immagine dell'applicazione lineare $L:V \to V$ tale che per ogni matrice X vale

$$L(X) = XB - BX$$

dimensione nucleo	dimensione immagine