

N-channel 600 V, 0.03 Ω typ., 68 A MDmesh™ M2 Power MOSFET in a TO247-4 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max	ΙD
STW70N60M2-4	650 V	0.040 Ω	68 A

- Excellent switching performance thanks to the extra driving source pin
- Extremely low gate charge
- Excellent output capacitance (C_{OSS}) profile
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh™ M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packaging
STW70N60M2-4	70N60M2	TO247-4	Tube

Contents STW70N60M2-4

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curve)	6
3	Test cir	·cuits	8
4	Packag	e information	9
	4.1	TO247-4 package information	9
5	Revisio	on history	11

STW70N60M2-4 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vgs	Gate-source voltage	±25	V
I_D	Drain current (continuous) at T _C = 25 °C	68	Α
ΙD	Drain current (continuous) at T _C = 100 °C	43	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	272	Α
P _{TOT}	Total dissipation at T _C = 25 °C	450	W
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by $T_{\text{jmax}})$	10	А
Eas	Single pulse avalanche energy (starting $T_j=25^{\circ}C$, $I_D=10$ A; $V_{DD}=50$ V)	1500	mJ
dv/dt (2)	Peak diode recovery voltage slope	15	V/ns
dv/dt (3)	MOSFET dv/dt ruggedness 50		V/ns
T _{stg}	Storage temperature range	55 to 150	°C
T_{j}	Operating junction temperature range	- 55 to 150	

Notes

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.28	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	50	°C/W

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}}I_{SD} \leq 68$ A, di/dt = 400 A/ μ s, $V_{DS(peak)} < V_{(BR)DSS}, V_{DD} = 400 \ V$

 $^{^{(3)}}V_{DS} \le 480 \ V$

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	600			٧
	Zero gate voltage	$V_{GS} = 0$, $V_{DS} = 600 \text{ V}$			1	μΑ
I _{DSS}	drain current	$V_{GS} = 0$, $V_{DS} = 600 \text{ V}$, $T_{C}=125 ^{\circ}\text{C} ^{(1)}$			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0, V _{GS} = ±25 V			±10	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 34 A		0.030	0.040	Ω

Notes:

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	5200	ı	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	-	250	ı	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	5	-	pF
Coss eq. (1)	Equivalent output capacitance	$V_{GS} = 0$, $V_{DS} = 0$ to 480 V	1	395	ı	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D =0 A	-	3.3	ı	Ω
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 68 \text{ A},$	-	118	ı	nC
Qgs	Gate-source charge	V _{GS} = 10 V	-	25	-	nC
Q_{gd}	Gate-drain charge	(see Figure 15: "Gate charge test circuit")	-	47	-	nC

Notes:

Table 6: Switching times

1 42.0 01 01.11019 100						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 34 \text{ A},$	ı	30	1	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	ı	10	ı	ns
t _{d(off)}	Turn-off-delay time	(see Figure 14: "Switching times test circuit for resistive	1	150	-	ns
t _f	Fall time	load" and Figure 19: "Switching time waveform")	-	9	-	ns

⁽¹⁾Defined by design, not subject to production test.

 $^{^{(1)}}$ Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS

Table 7: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isp	Source-drain current		-		68	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		272	Α
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 68 \text{ A}, V_{GS} = 0$	ı	0.98	1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 68 A,	ı	520		ns
Qrr	Reverse recovery charge	$di/dt = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 60 \text{ V}$	ı	12		μC
I _{RRM}	Reverse recovery current	(see Figure 18: "Unclamped inductive waveform")	-	45		Α
t _{rr}	Reverse recovery time	I _{SD} = 68 A,	-	680		ns
Qrr	Reverse recovery charge	di/dt = 100 A/ μ s V _{DD} = 60 V, T _j = 150 °C	1	18		μC
I _{RRM}	Reverse recovery current	(see Figure 18: "Unclamped inductive waveform")	-	50		Α

Notes:

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curve)

Figure 10: Normalized gate threshold voltage vs temperature

VGS(th) (norm)

1.1

0.9

0.8

0.7

0.6

-50

0

50

100

TJ(°C)

Test circuits STW70N60M2-4

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO247-4 package information

øP1 Α2 \Box D3 øP2 Α1 b2 b (x4) e (x2) SECTION A-A BASE METAL WITH PLATING b1 8405626_A

Figure 20: TO247-4 package outline

Table 8: TO247-4 mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	4.90	5.00	5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
b	1.16		1.29
b1	1.15	1.20	1.25
b2	0		0.20
С	0.59		0.66
c1	0.58	0.60	0.62
D	20.90	21.00	21.10
D1	16.25	16.55	16.85
D2	1.05	1.20	1.35
D3	24.97	25.12	25.27
E	15.70	15.80	15.90
E1	13.10	13.30	13.50
E2	4.90	5.00	5.10
E3	2.40	2.50	2.60
е	2.44	2.54	2.64
e1	4.98	5.08	5.18
L	19.80	19.92	20.10
Р	3.50	3.60	3.70
P1			7.40
P2	2.40	2.50	2.60
Q	5.60		6.00
S		6.15	
Т	9.80		10.20
U	6.00		6.40

STW70N60M2-4 Revision history

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
26-Sep-2016	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved