STAT 5385: Lab 5

William Ofosu Agyapong

03/03/2022

```
toluca <- read.table("../Data Sets/Chapter 1 Data Sets/CH01TA01.txt")
colnames(toluca) <- c("lot_size", "Work_hours")
kable(head(toluca, 10))</pre>
```

lot_size	Work_hours
80	399
30	121
50	221
90	376
70	361
60	224
120	546
80	352
100	353
50	157

```
senic <- read.table(".../Data Sets/Appendix C Data Sets/APPENC01.txt")
colnames(senic) <- c("ID", "LOS", "Age", "Infec", "Cul", "Xray", "beds", "Med", "region", "avg", "nurses", "fands")
kable(head(senic, 10))</pre>
```

$\overline{\mathrm{ID}}$	LOS	Age	Infec	Cul	Xray	beds	Med	region	avg	nurses	fands
1	7.13	55.7	4.1	9.0	39.6	279	2	4	207	241	60
2	8.82	58.2	1.6	3.8	51.7	80	2	2	51	52	40
3	8.34	56.9	2.7	8.1	74.0	107	2	3	82	54	20
4	8.95	53.7	5.6	18.9	122.8	147	2	4	53	148	40
5	11.20	56.5	5.7	34.5	88.9	180	2	1	134	151	40
6	9.76	50.9	5.1	21.9	97.0	150	2	2	147	106	40
7	9.68	57.8	4.6	16.7	79.0	186	2	3	151	129	40
8	11.18	45.7	5.4	60.5	85.8	640	1	2	399	360	60
9	8.67	48.2	4.3	24.4	90.8	182	2	3	130	118	40
10	8.84	56.3	6.3	29.6	82.6	85	2	1	59	66	40

toluca %>% dfSummary() %>% view()

0.1 Regression matrix calculations

```
j <- rep(1,nrow(toluca)) # create a vector of ones for the intercept
X <- cbind(j,toluca$lot_size) # Create the design matrix
y <- toluca$Work_hours;y # Extract response variable</pre>
```

[1] 399 121 221 376 361 224 546 352 353 157 160 252 389 113 435 420 212 268 377

STAT 5385 - Lab 5 William O. Agyapong

1

40 80

[20] 421 273 468 244 342 323

kable(t(X))# making sure everything went right

```
j
  1
           1
                1
                    1
                         1
                              1
                                  1
                                            1
                                                1
                                                     1
                                                         1
                                                                   1
                                                                        1
                                                                            1
                                                                                 1
                                                                                     1
                                                                                          1
                                                                                              1
                                                                                                   1
        1
                                        1
  80
       30
           50
               90
                    70
                       60
                            120
                                  80
                                      100
                                           50
                                               40
                                                    70
                                                        90
                                                            20
                                                                 110
                                                                      100
                                                                           30
                                                                                50
                                                                                    90
                                                                                        110
                                                                                             30
                                                                                                  90
# matrix computations
(xpx \leftarrow t(X) %*%X)
##
       j
## j 25
           1750
## 1750 142300
(xpy <- t(X) %*%y)
##
       [,1]
## j 7807
## 617180
(ypy <- t(y) %*%y)
           [,1]
## [1,] 2745173
xpx^-1 # is this the correct inverse? This computes elementwise inverse; probably not what we want.
##
             j
## j 0.0400000 5.714e-04
## 0.0005714 7.027e-06
solve(xpx) # computes the inverse of a matrix
##
             j
## j 0.287475 -3.535e-03
## -0.003535 5.051e-05
# Using the SENIC data
names(senic) # just to remind ourselves of the variable names
## [1] "ID"
                 "LOS"
                          "Age"
                                   "Infec" "Cul"
                                                      "Xray"
                                                               "beds"
                                                                         "Med"
## [9] "region" "avg"
                          "nurses" "fands"
j <- rep(1, nrow(senic))</pre>
X2 \leftarrow as.matrix(cbind(j, senic[, c(4,6,12)]))
kable(head(X2, 10)) # looking at few rows to make sure everything went right
```

j	Infec	Xray	fands
1	4.1	39.6	60
1	1.6	51.7	40
1	2.7	74.0	20
1	5.6	122.8	40
1	5.7	88.9	40
1	5.1	97.0	40
1	4.6	79.0	40
1	5.4	85.8	60
1	4.3	90.8	40
1	6.3	82.6	40

STAT 5385 - Lab 5 William O. Agyapong

```
y2 <- senic$LOS
(xpx2 \leftarrow t(X2) %*%X2)
##
           j Infec Xray fands
## j
        113.0 492.1
                        9224
                              4877
## Infec 492.1 2344.4 41488 22181
## Xray 9224.0 41487.8 794935 401791
## fands 4877.0 22180.6 401791 236367
(xpy2 <- t(X2) %*%y2)
##
        [,1]
## j
       1090
## Infec 4901
## Xray 90582
## fands 48212
(ypy2 \leftarrow t(y2) %*%y2)
##
       [,1]
## [1,] 10928
solve(xpx2)
##
                       Infec
                                  Xray
## j 0.221158 -0.0047174 -1.685e-03 -1.256e-03
## Infec -0.004717 0.0075030 -2.143e-04 -2.425e-04
## Xray -0.001685 -0.0002143 3.023e-05 3.488e-06
## fands -0.001256 -0.0002425 3.488e-06 4.697e-05
```