修論題名

東京工業大学 理学院物理学系物理学コース 陣内研究室 奥山広貴(19M00398)

2020年12月2日

概要

目次

概要		i
第1章	LHC-ATLAS 実験と検出器アップグレード計画	1
1.1	LHC について	1
1.2	ATLAS 実験	1
1.3	HL-LHC 実験アップグレード計画	1
第2章	新型ピクセルモジュール	2
2.1	シリコン検出器	2
2.2	ピクセルモジュールの構成	2
2.3	モジュールの種類	2
2.4	現行ピクセルモジュールとの違い	2
第 3 章	検出器量産と品質試験	3
3.1	検出器量産	3
3.2	組み立て工程	3
3.3	品質試験	3
3.4	品質試験に用いるソフトウェア	4
第 4 章	モジュール情報及び品質試験結果管理システム	5
4.1	中央データベース	5
4.2	ローカルデータベース	9
4.3	チュートリアルと普及状況	13
4.4	実装した機能	15
4.5	量産時の情報登録・データ同期の流れ	21
4.6	モジュール生産状況の解析	21
第5章	品質試験項目:読み出し試験に用いるソフトウェアと学内実験室におけるデモンストレー	
	ション	22
5.1	読み出し試験に用いるソフトウェアの概要	22
5.2	読み出し試験結果解析ツールの開発	22
5.3	学内実験室におけるデモンストレーション	22
第6章	ローカルデータベースに実装した読み出し試験結果検索機能の詳細と処理時間測定	25

目次	iii
	111
	111

6.1	実装方法	25
6.2	処理時間測定	26
6.3	いくつかの改善点と比較	26
第7章	中央データベースとローカルデータベースのデータ同期ツールに関する研究	27
7.1	サーバーの設置場所による処理時間の違い	27
7.2	モジュール ID のダウンロード機能確認と処理時間測定	29
7.3	読み出し試験結果のアップロード機能確認と処理時間測定	30
第8章	まとめ	31
8.1	まとめ	31
8.2	今後の課題	31
8.3	結論	31
付録 A	ローカルデータベースにおける読み出し試験結果検索システムの性能評価	32
付録 B	読み出し試験に用いたハードウェア詳細	33
参考文献		34
謝辞		35

第1章

LHC-ATLAS 実験と検出器アップグレード 計画

1.1 LHC について

LHC と ATLAS 実験は分けたほうがいい。

- 1.2 ATLAS 実験
- 1.2.1 内部飛跡検出器
- 1.2.2 カロリメータ
- 1.2.3 ミューオン検出器
- 1.3 HL-LHC 実験アップグレード計画
- 1.3.1 加速器アップグレード
- 1.3.2 内部飛跡検出器のアップグレード、現行との違い
- 1.3.3 期待される物理

第2章

新型ピクセルモジュール

- 2.1 シリコン検出器
- 2.1.1 半導体
- 2.1.2 pn 接合
- 2.1.3 検出原理
- 2.1.4 放射線損傷
- 2.2 ピクセルモジュールの構成
- 2.2.1 要求
- 2.2.2 シリコンセンサー
- 2.2.3 読み出しフロントエンドチップ
- 2.2.4 PCB
- 2.2.5 モジュールキャリア
- 2.3 モジュールの種類
- 2.4 現行ピクセルモジュールとの違い

第3章

検出器量産と品質試験

- 3.1 検出器量産
- 3.2 組み立て工程
- 3.3 品質試験

各組み立て工程に対して、いくつかの品質試験を行う。行う品質試験の代表的なものを以下に示す。

- 外観検査
- 質量測定
- 平坦性測定
- 電気的試験

各試験項目についての詳細と現時点での決定事項を以下に記す。

- 3.3.1 外観検査
- 3.3.2 質量測定
- 3.3.3 平坦性測定
- 3.3.4 電気的試験

電気的試験はさらに以下のようないくつかの項目に細分化される。

First Power Up

センサー特性確認試験

SLDO VI

Chip Configuration

読み出し試験

Bump bond quarity

- 3.3.5 簡易電気的試験
- 3.4 品質試験に用いるソフトウェア
- 3.4.1 YARR
- 3.4.2 QC helper

第4章

モジュール情報及び品質試験結果管理シ ステム

前章で述べたように、モジュール生産及び品質試験を世界中で行う。これらの情報はデータベースシステムを用いて管理することが決まっていて、現在この開発を行っている。システムについては、大きく2つに分けられる。チェコに設置し、試験運用をしている中央データベースと、各組み立て期間に設置し、運用の際に使用するローカルデータベースである。本章ではこれらのデータベースについて説明する。また、システム開発の中で私が開発を行った仕組みや機能について詳細に説明する。

4.1 中央データベース

4.1.1 中央データベースの概要

概要

中央データベースは、新型内部飛跡検出器の製造に関する全ての情報の保存を目的として開発されたデータベースである。ユニコーン大学が開発、運用を行っていて、チェコにデータベースサーバーが設けられている。新型内部飛跡検出器は、前述したようにピクセル検出機とストリップ検出機にから構成される。これらを生産するにあたって、シリコンセンサーや電気基板といった小さな部品から製造を行い、それらを用いたモジュールの組み立て、複数モジュールを搭載した stave や ring の組み立てを経て検出器が完成する。また各組み立て段階において、動作確認等を目的とした品質試験を行う。これらの過程における全ての構成部品の情報、及び品質試験結果を中央データベースに保存する。

意義

中央データベースに保存された情報は、検出器運転時の参考値として扱われる。モジュールを例にだすと、品質試験で読み出し試験を行った際の最適な設定値を中央データベースに保存するため、実際の運転時に参照することができる。また運転前の状態における検出器の性能、運転前後での検出機性能比較を行うことができる。HL-LHCでは1章で述べたように、運転時における放射線量が大きいものとなるため、運転前後での放射線損傷の影響の研究を行うことができ、検出機の寿命の推定や放射線損傷に関しての対策に役に立てることができる。

それらしいデータかこんな解析に役立てたいみたいなのを考え中です。

図 4.1 モジュール構造の一例

4.1.2 モジュール情報構造および構成部品との関係の実装

中央データベースにモジュールを登録するためには、1章で述べたようにモジュールの種類、モジュールを構成する部品といった情報構造を決定し、データベース上に定義しておく必要がある。この情報構造をデータベースに実装し、登録できる仕組みを整えた。詳細な種類と構造については表 4.1 に示す。またある種類に関する例を図 4.1 に示す。

4.1.3 組み立て工程および品質試験の情報形式の実装

モジュールの情報構造の実装に加えて、品質試験の情報を正確に管理するには、モジュール組み立て工程の情報と付随する品質試験の項目をデータベース上に定義する必要がある。これを実装し、テスト結果を適切な組み立て工程へアップロードできる仕組みを整えた。

詳細な構造を図4.2に示す。

表 4.1 中央データベースにおけるモジュールの種類と構造

種類	構成する部品 (数)
Triplet L0 stave module	Single bare module(3)
	Triplet stave PCB(1)
Triplet L0 Ring0 module	Single bare module(3)
	Triplet R0 PCB(1)
Triplet L0 Ring0.5 module	Single bare module(3)
	Triplet R0.5 PCB(1)
L1 quad module	Quad bare module(1)
	Quad PCB(1)
Outer system quad moudle	Quad bare module(1)
	Quad PCB(1)
Outer system quad moudle	Dual bare module(1)
	Dual PCB(1)
Digital triplet L0 stave module	Digital single bare module(3)
	Triplet stave PCB(1)
Digital triplet L0 Ring0 module	Digital single bare module(3)
	Triplet R0 PCB(1)
Digital triplet L0 Ring0.5 module	Digital single bare module(3)
	Triplet R0.5 PCB(1)
Digital quad module	Digital quad bare module(1)
	Quad PCB(1)
Digital L1 quad moudle	Digital quad bare module(1)
	Quad PCB(1)
Dummy triplet L0 stave module	Dummy single bare module(3)
	Triplet stave $PCB(1)$
Dummy triplet L0 Ring0 module	Dummy single bare module(3)
	Triplet R0 PCB(1)
Dummy triplet L0 Ring0.5 module	Dummy single bare module(3)
	Triplet R0.5 PCB(1)
Dummy quad module	Dummy quad bare module(1)
	Quad PCB(1)
Dummy L1 quad moudle	Dummyl quad bare module(1)
	Quad PCB(1)

表 4.2 中央データベースにおける組み立て工程と付随するテスト項目

組み立て項目	付随する組み立て情報及び品質試験項目
1. Bare to PCB assembly	Visual Inspection
	Metrology
	Mass measurement
	Glue information
2. Wirebonding	Visual Inspection
	Wirebond information
	(Wirebond pull test)
	First power up
	Sensor IV
	SLDO VI
	Chip configuration
	Pixel failure test
3. Wirebond Protection	Visual Inspection
	Potting information
	Sensor IV
	Chip configuration
	Readout for basic electrical
4. Parylene Coating	Visual Inspection
	Palylene information
	Mass measurement
	Sensor IV
	Chip configuration
	Readout for basic electrical
	Bump bond quality
5. Thermal Cycling	Visual Inspection
	Thermal cycling info
	Sensor IV
	Chip configuration
	Readout for basic electrical
6. Burn-in	Visual Inspection
	Metrology
	Mass Measurement
	First power up
	Sensor IV
	SLDO VI
	Chip configuration
	Pixel failure test
7. Reception	

図 4.2 ローカルデータベースシステムの概要

4.2 ローカルデータベース

4.2.1 ローカルデータベースの概要と意義

中央データベースでは、前述したようにモジュールの情報のみならず新型内部飛跡検出器に関わるすべての情報を管理する。データベースの機能としては汎用的に使えるようなものになっている。モジュールの組み立て及びその品質試験に関しては3章で述べたように工程が複数に渡り、行う品質試験の数も多い。1つの生産現場で多いところでは数千個のモジュールを作ることになるため、データ管理が簡単にかつ円滑に進むようになっているのが好ましい。このような理由から、生産現場での生産性、利便性に特化し、円滑な生産をサポートすることを目的としたデータベースシステム (ローカルデータベース)を開発している。システムの概要図を図 4.2 に示す。オープンソースのサービスである MongoDB を各生産現場で使い、開発したウェブアプリケーションを併用することでデータ管理や中央データベースとのデータ同期を行うシステムとなっている。

具体的にローカルデータベースは以下のような利点を持つ。

- ローカルにデータベースサーバーを立てるためアクセス速度が早く、円滑にデータ管理を行うことができる。
- モジュールの組み立て工程を管理し、生産者の適切な処理を助ける。
- モジュールに特化したデータ管理、解析を行うことで異常をいち早く検知できる。
- 試験者の情報や試験時間など、テスト結果以外の必要な情報を正確に管理できる。

データベース コレクション: 試験結果 【 ("id": 1001, "モジュール_id": 2001, "試験者_id": 3001, "試験場所_id": 4001 "試験日時": 9/14.16:03, "試験項目": "digitalscan" ドキュメント

図 4.3 MongoDB の構造の例

4.2.2 MongoDB と内部構造

MongoDB とは NoSQL に分類されるデータベースである。MongoDB の構造について簡単に表したものを図 4.3 に示す。一般的な SQLDB のようにテーブル形式ではなく、JSON 形式で情報を格納する。情報を保持している一枚のシートを「ドキュメント」と呼び、「コレクション」と呼ばれる枠に複数のドキュメントが格納されている。各ドキュメントは ID を持っていて、異なるコレクションにおけるドキュメント間の紐付けはこの ID を用いて行う。

ローカルデータベースシステムにおいて、MongoDB を使用する主な利点を以下に示す。

- ◆ 各コレクションに格納するドキュメントの構造が動的であるため、開発を柔軟に行うことができる。
- JSON 形式のため情報取得の際に変換処理が不要で、ウェブアプリケーションとの親和性が高い。
- ◆ 全ての処理をメモリ上で実行するため、高速な読み書きが可能。

モジュール及び品質試験に用いる主なコレクションと内部情報を表 4.3 に示す。

4.2.3 データ同期ツール

モジュールや品質試験の結果のデータ共有のために、中央データベースとローカルデータベースの間で データ同期が行われる必要がある。これを行うツールを Python を用いて開発した。現在は以下のような 機能を実装している。

- モジュール ID のダウンロード
- 読み出し試験結果のアップロード

実装した開発項目について、詳細については以下で述べる。読み出し試験以外に実施する品質試験結果の ダウンロード、アップロードの機能や、組み立て工程情報の取得等の機能が今後の開発課題として上げら れる。

表 4.3 品質試験に用いる主なコレクション

データベース名	コレクション名	情報
localdb	component	モジュール情報、FE チップ情報
	${\it childParentRelation}$	FE チップとモジュールの関係性
	QC.module.status	各モジュールに対する組み立て工程及び選択された試験結果
	QC.result	品質試験結果
	testRun	読み出し試験結果
	user	読み出し試験実施者
	institute	読み出し試験実施場所
	$component \\ Test \\ Run$	component と testRun の関係性
	comments	コメント情報
localdbtools	QC.status	組み立て工程及び試験項目
	viewer.user	登録ユーザの情報
	viewer.query	読み出し結果キーワード、検索機能実行時に使用
	viewer.tag.docs	モジュール及び試験結果に付けるタグ情報

図 4.4 ウェブアプリケーション処理のイメージ

4.2.4 ウェブアプリケーション

各組み立て機関において、試験者が品質試験結果を閲覧、管理するツールとして、ウェブアプリケーションを開発している。ローカルデータベースとアプリケーション間の処理に特化したイメージを図?? に示す。このようにアプリケーションはデータベースとブラウザー、データベース間のインターフェースとなっている。

図 4.5 品質試験結果の例

試験結果を迅速に分かりやすく見るシステムを作り、円滑な生産の補助や異常結果の早期発見がアプリケーション目的としている。またデータベースの情報管理のみならず、閲覧上述したデータ同期ツールや、後述する試験結果の解析ツールなどの外部スクリプトの実行、結果取得といった、生産時における全てのユーザの操作はこのアプリケーションを用いて行う。

ウェブアプリケーションでは、現在以下の機能を使用することができる。ある品質試験の結果ページを 図 4.5 に示す。

- 登録モジュール情報及び品質試験結果の閲覧機能
- ローカルデータベースにおけるユーザ管理機能
- 上述したデータ同期処理実行機能

図 4.6 ハンズオンとハンズオフ

4.3 チュートリアルと普及状況

ローカルデータベースの機能の普及を目的として、2020年2月にCERN研究所にてシステムのチュートリアルを行った。このチュートリアルは以下のような2つのセッションに分けて行った。

- 参加者が実際にサーバーの設定、各ソフトウェアのインストールを行いながら機能を実践するセッション (2月3日から6日まで)
- 私が参加者の前で実際に機能を実践し、システムや使い方に対して議論を行うセッション (2月7日)

それぞれのセッションの様子を図 4.12 に示す。数多くの議論を行い、有益なフィードバックを得ることができた。また品質試験の流れにおいて、一連の機能確認をすることができた。

これを経て現在ローカルデータベースは世界 10 箇所にて導入され、試験運用が開始している。また将来的には全組み立て機関で使うことが決定しており、それに向けたシステム開発、サポートが必要となっている状況である。ローカルデータベースについて、導入及び試験運用を行っている機関を以下に示す。また世界地図を 4.7 に示す。

- 高エネルギー加速器研究機構 (KEK), 日本
- 欧州原子核研究機構 (CERN), スイス
- University of Liverpool, イギリス
- University of Oxford, イギリス
- University of Glasgow, イギリス
- Paris-Saclay University, フランス
- パリ第6大学, フランス
- フランス国立科学研究センター, フランス
- University of Grenoble, フランス
- University of Gottingen, ドイツ
- University of Siegen, ドイツ
- University of Genoa, イタリア
- University of Salento, イタリア

図 4.7 ローカルデータベース地図

- University of Milan, イタリア
- University of Udine, $\forall \beta \forall \gamma$
- Univerity of Trento, イタリア
- University of Oklahoma, アメリカ
- Argonne National Laboratory, アメリカ
- Lawrence Berkeley National Laboratory(LBL), アメリカ

表 4.4 ユーザ権限一覧

ユーザ	付加される権限	使用できる機能
管理者	ユーザ管理権限	権限付きユーザ登録機能
	データベース読み書き権限	
	ウェブアプリケーションログイン権限	
権限付ユーザ	ユーザ管理権限	試験結果のアップロード
	データベース読み書き権限	中央データベースとのデータ同期機能
	ウェブアプリケーションログイン権限	その他ウェブアプリケーションの機能 (コメント、タグ)
一般ユーザ		モジュール情報及び試験結果の閲覧

4.4 実装した機能

私は、このシステムの中に以下のような機能を実装した。詳細について以下に述べる。

- ユーザ管理機能
- 品質試験結果の登録と組み立て工程の管理機能
- 読み出し試験結果検索機能
- 中央データベースとのデータ同期ツール

4.4.1 ユーザ管理機能及び各種機能

異常があった際に確認することを目的として、誰が試験を行ったかを記録することが必要である。また、モジュールの登録や中央データベースとのデータ同期など、データベースの機能使用を制限することも必要である。これらを目的として、試験者及びデータベース使用者情報の管理システムを開発、実装した。この詳細について以下に述べる。

機能概要

データベース権限の段階として、管理者、権限付きユーザ、一般ユーザの3段階を設けた。各ユーザが 使うことのできる機能を表 4.4 に示す。

権限付きユーザの機能としてモジュール及び試験結果にコメント、タグをつける機能を実装した。使用 したときの様子を図 4.8、4.9 に示す。

機能の仕組み

管理者登録はアプリケーション起動前にシェルスクリプトを用いて行う。また、権限付きユーザはアプリケーション起動後、内部の機能を用いて動く仕組みとした。ユーザ登録の際に以下の2つの処理が行われるように実装した。

- 1. mongoDB に対する読み書き権限の付与
- 2. ウェブアプリケーションで用いるユーザ情報の保持

図 4.8 コメント機能

図 4.9 タグ機能

図 4.10 ユーザドキュメント例

1の処理を行う理由は、登録ユーザが関連ソフトウェアを用いて試験結果を mongoDB にアップロード できるようにするためである。

2 の処理は、ウェブアプリケーション内でのログイン判断、ユーザの情報保持に使う。試験結果アップロードの際にもこの情報を用いて、試験者の記録が行われる。この情報は表 4.3 の viewer.user に保存される。実際に保存されるドキュメントの例を図 4.10 に示す。

図 4.11 サインオフ機能

4.4.2 品質試験結果の登録と組み立て工程の自動更新

ローカルデータベースへアップロードした品質試験結果の中から、本結果として中央データベースへアップロードする結果を選択する機能を開発した。品質試験は3章で述べたように、各モジュール、各組み立て工程に対して行うものであるため、結果選択も同様に工程毎に行うことを想定している。結果選択後、データベースにおける組み立て工程の情報も次のものへ自動的に更新する機能となっている。

概要

あるモジュール、組み立て工程に対して結果を選択する様子を図 4.17 に示す。組み立て工程も自動更 新されていることがわかる。

仕組み

改善項目

4.13

```
"_id" : ObjectId("5f6a1a080e9468c1aef6422c"),
"sys" : {
                {"mts" : ISODate("2020-09-22T15:36:40.324Z"),
"cts" : ISODate("2020-09-22T15:36:40.324Z"),
"rev" : 0
),
"dbversion": 1.01,
"proddbVersion": 1,
"stage_flow": [
"MODULETOPCB",
"MODULEWTREBONDING",
"MODULEWTREBONDPROTE
                "MODULEWIREBONDPROTECTION",
                "MODULEPARYLENECOATING",
"MODULETHERMALCYCLING",
"MODULEBURNIN",
"MODULERECEPTION"
 ],
"stage_test" : {
                 "MODULETOPCB" : [
                              "METROLOGY_FLEX_ATTACH",
"OPTICAL",
"GLUE_MODULE_FLEX_ATTACH",
"MASS"
                ],
"MODULEWIREBONDING" : [
""TDEBONDING",
                               "WIREBONDING"
                               "OPTICAL"
                               "OPTICAL",
"WIREBOND",
"IV_CURVE",
"FULL_ELECTRICAL_TEST"
                ],
"MODULEWIREBONDPROTECTION" : [
                               "OPTICAL"
                              "POTTING",
"MASS",
"BASIC_ELECTRICAL",
"IV_CURVE"
                "MODULEPARYLENECOATING" : [
                               "OPTICAL",
                              "MASS",
"PARYLENE",
"BASIC_ELECTRICAL",
"IV_CURVE"
                ],
"MODULETHERMALCYCLING"
"PASTO FLECTRIC
                               HERMALCYCLING" : [
"BASIC_ELECTRICAL",
                               "IV_CURVE",
"THERMAL_CYCLING",
"OPTICAL"
                ],
"MODULEBURNIN" : [
"FULL_ELECTRICAL_TEST",
                               "METROLOGY_FINAL"
                               "MASS",
"OPTICAL_SCAN",
                ],
"MODULERECEPTION" : [ ]
```

図 4.12 ステージ機能実装詳細

図 4.13 ステージ分岐

4.4.3 読み出し試験結果の検索機能

登録モジュールや品質試験結果の一覧ページに検索機能を実装した。確認したいモジュール情報や試験 結果を迅速に取得し、閲覧できることを目的としている。検索機能を使用している様子を図 4.14 に示す。 フリーキーワードを入力し、検索することができる仕組みとなっていて、一般的なウェブページの検索 エンジンのように扱うことができる。現在は単一キーワード検索の他に、以下の機能を実装している。

- 完全一致、部分一致検索
- AND、OR 検索

検索結果一覧表

図 4.14 検索機能の様子

また生産に向けて、検索にかかる処理時間測定を行った。検索機能の詳しい実装方法と処理時間についての詳細は、6章で述べる。

FIGURE

図 4.15 ダウンロード機能の概要

FIGURE

図 4.16 アップロード機能の概要

4.4.4 中央データベースとの情報同期ツール

生産時にはローカルデータベースと中央データベースにおいて、情報の同期が必要となる。例えば、モジュールの ID や組み立て工程、テスト結果といった情報があげられる。この情報同期のためのインターフェースツールを開発した。主に開発した項目については以下の2つである。

- モジュールの ID 及びモジュールを構成する FE chip の ID のダウンロード機能
- 読み出し試験に関しての試験結果アップロード機能

ダウンロード機能についての詳細を図 4.15 にまとめた。中央データベースに登録されているモジュールの ID、FE chip の ID とその数、対応関係をダウンロードしてくるものとなる。

FIGURE

図 4.17 データベースシステム操作の流れ

FIGURE

図 4.18 生産時のモジュール組み立て状況解析の例

4.5 量産時の情報登録・データ同期の流れ

想定している、モジュールに関しての組み立て工程とデータベースシステムでのユーザ操作の流れを図??に示す。

各ユーザ操作は上述したウェブアプリケーションを用いて行う。最終的には、モジュールの情報及び選択した品質試験の結果が全て中央データベースへ同期されている状態となる。この流れのデモンストレーションを、学内のプロトタイプモジュールを用いて行った。詳細を5章で述べる。

4.6 モジュール生産状況の解析

上述したデータベースシステムを使って、将来的には世界でモジュール生産がどれだけ進んでいるのかを解析する機能を作ることを考えている。全てのモジュールの状況は各生産場所のローカルデータベース上に記録され、組み立て工程ごとに中央データベースへデータ同期する。そのため生産時には、中央データベースで全てのモジュールに関して、現在の組み立て情報を取得できることができ、世界的な生産状況の解析を行うことができる。想定している解析結果のイメージ図を図 4.18 に示す。

第5章

品質試験項目:読み出し試験に用いるソフトウェアと学内実験室におけるデモンストレーション

- 5.1 読み出し試験に用いるソフトウェアの概要
- 5.2 読み出し試験結果解析ツールの開発
- 5.3 学内実験室におけるデモンストレーション

学内実験室で開発しているソフトウェアを用いて読み出し試験を行い、実際の生産時における流れのデモンストレーションを局所的に行なった。その詳細について以下に示す。

5.3.1 デモンストレーションの流れ

今回のデモンストレーションで確認した機能を以下に示す。

- 中央データベースとローカルデータベースのデータ同期機能 (モジュール ID のダウンロード、試験結果のアップロード)
- 読み出し試験に使う各種機能 (設定ファイル生成、温度、電圧、電流モニタリング、試験結果閲覧)
- 結果選択とピクセル解析機能

またデモンストレーションにおける流れの概要を図5.1に示す。

5.3.2 読み出し試験セットアップ

読み出し試験に用いるハードウェアのセットアップを表 5.1、概要を図 5.2、各ハードウェアの写真を 5.3 に示す。各装置の詳細については付録 B に示す。

FIGURE

図 5.1 デモンストレーションの流れ

表 5.1 各ハードウェアの性能

1 2 result 1 result 2

FIGURE

図 5.2 ハードウェアセットアップの概要

FIGURE

図 5.3 各ハードウェアの写真

FIGURE

図 5.4 ダウンロードしたモジュール ID 確認画面

FIGURE

図 5.5 設定ファイル生成のイメージ

FIGURE

図 5.6 生成ファイル確認画面

5.3.3 読み出し試験内容

読み出し試験を通して、モジュールに与える電圧値、電流値、チップ横についている NTC から読み取れる温度を記録した。以下の流れに沿って読み出しを行なった。

5.3.4 機能確認

モジュール ID のダウンロード

登録したモジュールの ID を機能を使ってダウンロードし、ウェブアプリケーションで確認した。確認した画面を図 5.4 に示す。

読み出し試験

以下の流れで読み出し試験を行なった。読み出し試験はサーバーのシェルを用いて行う。

・設定ファイル生成

ダウンロードしたモジュールの ID を用いて、読み出しに用いる設定ファイルを生成した。イメージを 図 5.5、実際に生成したファイルを確認した画面を図 5.6 に示す。

・試験実施とアップロード

上述した流れに沿って読み出し試験を実施した。試験結果は各試験の終わりに自動的にアップロードされるようなシステムとなっている。

・電圧値、電流値、温度のモニタリング

記録した値を Grafana を使ってモニタリングをした。その様子を図 5.7 に示す。

FIGURE

図 5.7 DCS のモニタリング

FIGURE

図 5.8 試験結果の閲覧

FIGURE

図 5.9 各測定値の閲覧

FIGURE

図 5.10 scan 結果選択の様子

表 5.2 ピクセル解析結果

1	2
result 1	result 2

表 5.3 scan file の存在確認

1	2
result 1	result 2

- ・検索機能の確認検索機能の確認を行った。
- ・試験結果の閲覧

ウェブアプリケーションを用いて、試験結果を閲覧した。その様子を図 5.8、5.9 に示す。

結果選択とピクセル解析

読み出し結果を選択し、ピクセル解析を行なった。結果選択の様子を図5.10、解析結果を表5.2に示す。

試験結果アップロード

選択した結果を中央データベースにアップロードし、各ファイルが正しくアップロードされていることを確認した。各ファイルの存在を確認した結果を表 5.3 に示す。

第6章

ローカルデータベースに実装した読み出 し試験結果検索機能の詳細と処理時間 測定

生産時には、読み出し試験の結果は一つの機関で大量に生じるものである。4章で述べたように、任意のタイミングで必要な結果を取得できる検索機能を実装した。詳細について以下に示す。

6.1 実装方法

今回の実装では、一般的にウェブで用いられているフリーワードの検索エンジンのような機能を実装しようと考えた。ユーザの操作を最小限にし、柔軟な検索ができるようにするためである。

また対象の読み出し試験に対しては、対象とする検索ワードを以下に絞って開発をした。このシステムの場合、試験に関わるデータベース内の情報は固定されていて、ユーザが対象としたい検索ワードは以下の項目に限られると考えたためである。

- モジュール及び FE チップの ID
- 読み出し試験項目 (例:digital scan)
- 読み出し試験者
- 読み出し試験場所
- 試験日時 (将来的に範囲指定を用いた検索機能を検討)
- タグ機能を用いてつけられたタグ

そこで実装方法として、以下の2つを考えた。

- 1. 各試験に関する情報を Pvthon リスト集め、検索ワードが含まれるかを確認する方法
- 2. 各試験に関する情報を持つドキュメント、コレクションを予め作成、それを参照し検索を行う方法 これらについて以下で詳細を説明する。以下のような流れで検索処理を行う。
 - 1. ユーザが検索ワードを入力し、処理を実行
- 2. 読み出し試験に関する情報を全て取得
- 3. Python リストに保持、検索ワード一致を確認、試験を選別

4. ブラウザーに送信

1について、この方法のアルゴリズムのイメージを図 6.1 に示す。この方法はデータベース内の試験結果とアプリケーションの関数内だけで全ての処理を行うことが可能なため、シンプルな実装方法である。

1の方法について、ユーザが処理を実行した際にデータベース内で情報を取得し、Python リストにつめる処理を行う。しかしこの方法を試験実装したところ、データベース内の構造は複雑であり複数のコレクションを跨いで情報を保持しているため、試験結果全てに対してリアルタイムでこの処理を行うと、時間を大きく要してしまう問題が発生した。イメージを図??に示す。

そこで方法2を考案し、実装を行った。アルゴリズムのイメージを図??に示す。検索キーワードを別のドキュメントに予め保持しておき、処理実行時にはそれを参照することで検索を行うというものである。

6.2 処理時間測定

6.3 いくつかの改善点と比較

図 6.1 検索機能実装方法 1

第7章

中央データベースとローカルデータベー スのデータ同期ツールに関する研究

開発した機能が生産時に十分であるかどうか見積もりは今後の開発を効率よく進めていく上で重要である。生産時のデータの数や量を想定してその際のシステム性能を見積もることで、今の実装で十分かどうか、改善が必要な場合どのように改善すればいいかを知ることができる。中央データベースとローカルデータベースのデータ同期機能に関して処理時間評価を行った。詳細について以下で説明する。

7.1 サーバーの設置場所による処理時間の違い

4章で述べたように、中央データベースはチェコに設置されている。そのため試験結果のアップロードに関して、各組み立て機関から接続しデータ送信する処理時間は、機関の場所に大きく依存すると考えられる。世界的にデータ同期ツールが不自由なく動くことに向けた開発、改善に役立てることを目的として、データを送信する処理時間を、以下の3つの場所に置かれているサーバーを用いて測定した。

- 日本、高エネルギー加速器研究所 (KEK)
- アメリカ、バークレー研究所 (LBL)
- スイス、欧州原子核研究機構 (CERN)

各サーバーの性能を表 7.1 に示す。また各サーバーが置かれている場所の位置関係を図 7.1 に示す。 これらのサーバーは実際に生産の際に使用するものと同程度の性能を持ち、サーバーが置かれている環境も生産時と同じであるとしている。回線の混雑具合などによる処理時間の低下は、本測定では考慮に入れていない。

設置機関	CPU				Memory	Disk
	Type	Core	Thread	${\rm Clock\ speed}[{\rm GHz}]$	[kB]	[GB]
KEK	Intel(R) Core(TM) i7-6700	4	8	3.4	15,981,000	197
LBL	Intel(R) Core(TM) i7-8700	6	12	3.7	32,628,000	233
CERN	Intel Core Processor (Broadwell, IBRS)	1	10	2.2	29,978,888	80

表 7.1 サーバーの性能一覧

図 7.1 各サーバの位置関係

表 7.2 データ同期ツールの中で使用した API

関数名	処理の内容	本ツールでの使用用途
getComponent	登録した装置情報の取得	主にダウンロード時におけるモジュールやチップの情報取得に用いる。
${\it uploadTestRunResults}$	テスト結果生成	読み出し試験結果生成の際に用いる。
create Test Run Attachment	あるテスト結果に対するバイナリファイルの添付	読み出し試験結果生成後にファイルを添付する際に用いる。

表 7.3 モジュール情報の取得にかかる時間

サーバー	処理時間 [秒]
KEK	0.49 ± 0.02
LBL	0.37 ± 0.02
CERN	0.30 ± 0.04

表 7.4 1Byte のデータファイル添付にかかる処理時間

サーバー	処理時間 [秒]
KEK	0.54 ± 0.04
LBL	0.34 ± 0.03
CERN	0.39 ± 0.02

7.1.1 データ同期ツールに使用する API

中央データベースのデータ取得には、用意されている API のサービスを使用している。ローカルデータベースとのデータ同期ツールの中で主に使用している API を表 7.2 に示す。

7.1.2 API 使用にかかる時間

上述した API 使用時の処理時間を各サーバーで測定した。以下の3つの測定を行なった。

- getComponent を用いた、登録モジュール情報 1 つの取得時間測定
- createTestRunAttachment を用いて、ある試験結果ページに 1Byte のデータファイルを添付する 時間測定
- createTestRunAttachment を用いて、ある試験結果ページに容量の異なるデータファイルを添付、 容量に対する時間依存性を測定

最初の 2 項目に関して、各処理時間についてまとめたものを表 7.3、7.4 に示す。またファイル容量と 処理時間の関係を図 7.2 に示す。1Byte での測定点も含んでいる。

図 7.2 添付するファイルサイズと処理時間の関係

FIGURE

図 7.3 ダウンロードアルゴリズムのイメージ図

表 7.5 登録した KEK モジュール

1	2
result 1	result 2

FIGURE

図 7.4 ダウンロードした KEK モジュールがアプリケーションで確認できている様子

7.2 モジュール ID のダウンロード機能確認と処理時間測定

7.2.1 アルゴリズム

開発したモジュール ID をダウンロードするツールのアルゴリズムについて記す。アルゴリズムのイメージを図 7.5 に示す。

7.2.2 機能確認

KEK で組み立てられた 6 台のモジュールを中央データベースに登録し、ダウンロードを行った。登録したモジュールを表 7.5、ダウンロードをしてアプリケーションで確認した様子を図 7.4 に示す。

7.2.3 処理時間測定

KEK モジュールをダウンロードした際の処理時間を測定した。これについてまとめたものを表 7.6 に示す。

表 7.6 ダウンロード処理時間測定

1	2
result 1	result 2

FIGURE

図 7.5 アップロードアルゴリズムのイメージ図

表 7.7 アップロード処理時間測定

1	2
result 1	result 2

7.2.4 改善点

7.3 読み出し試験結果のアップロード機能確認と処理時間測定

7.3.1 アルゴリズム

読み出し試験の結果をアップロードするツールのアルゴリズムについて記す。アルゴリズムのイメージを図??に示す。

7.3.2 機能確認

5章でアップロード機能については確認したため、ここでは割愛する。

7.3.3 処理時間測定

5章で行った読み出し試験の結果を中央データベースにアップロードした際の処理時間測定を行った。 これについてまとめたものを表 7.7 に示す。

7.3.4 改善点

構造を変えることかなあ。

第8章

まとめ

- 8.1 まとめ
- 8.2 今後の課題
- 8.3 結論

付録 A

ローカルデータベースにおける読み出し 試験結果検索システムの性能評価

付録 B

読み出し試験に用いたハードウェア詳細

付録がいる場合はどうぞ。

参考文献

[テキスト] 東京工業大学理学部物理学科『物理実験学第一』(2009)

謝辞