Series of PCA for Covid-19 study

Matt Blanchard

1 Summary

I reran all EFAs using the reduced sample (N=1361). The factor structures were the same, however, there were some minor differences in the item loadings.

1. PCA on Coping, adaptability, resilience, personality, and others.

Same 6 factors with minor differences in item loadings

- PC2 distraction (+) and acceptance (+) also load
- PC3 acceptance (+) also loads
- PC4 coping denial (+) also loads
- PC5 emotionsupp (+) also loads
- PC6 cope_religion (-) loads instead of cope_reframing (+)
- 2. PCA on coping
- PC4 distraction (+) also loads
- 3. Reason
- PC1 item 2 (-) also loads
- PC3 item 1 (+) also loads

Also, there were a few minor differences and potential issues:

- 4. For the coping variables, I had to use PCA not FA using PAF (poor fit).
- 5. For the opinion variables, should items 5, 6, or 10 be reverse coded? When I calculate Cronbach's Alpha it says these items are negatively correlated with the total scale.

Table 1 Correlations between variables

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
. cope_distraction																											
cope_active	.23**																										
. cope_denial	.12**	.03																									
. cope_substance	.10**	.01	.24**																								
. cope_emotsupp	.29**	.27**	.14**	.18**																							
. cope_instrsupp	.30**	.27**	.18**	.14**	.74**																						
. cope_disengage	.08**	11**	.39**	.32**	.15**	.21**																					
. cope_venting	.23**	.10**	.30**	.24**	.43**	.48**	.37**																				
cope reframing	.23**	.42**	.07**	.01	.24**	.22**	06*	.11**																			
0. cope_planning	.29**	.52**	.07*	.06*	.36**	.40**	.04	.29**	.39**																		
1. cope_humor	.15**	.05	.09**	.18**	.13**	.11**	.11**	.22**	.23**	.10**																	
. cope_acceptance	.17**	.29**	23**	07**	.12**	.05	21**	06*	.29**	.26**	.11**																
3. cope_religion	.05	.21**	.11**	05	.14**	.22**	.04	.14**	.24**	.18**	03	.02															
4. cope_selfblame	.17**	02	.32**	.29**	.27**	.32**	.50**	.49**	.05	.25**	.17**	14**	.06*														
5. extraversion	.07**	.15**	.06*	.13**	.19**	.15**	02	.07**	.16**	.08**	.05	.02	.07*	04													
6. agreeableness	.18**	.15**	05	01	.25**	.21**	10**	.07*	.16**	.11**	06*	.11**	.04	01	.37**												
7. conscientious	03	.18**	10**	15**	06*	09**	27**	20**	.13**	.05	16**	.12**	.08**	23**	.02	.09**											
8. neuroticism	.17**	10**	.16**	.16**	.20**	.20**	.32**	.34**	06*	.06*	.01	11**	02	.40**	09**	.05	24**										
9. intellect	.10**	.12**	11**	02	.12**	.09**	08**	.07**	.11**	.16**	.06*	.14**	.02	.01	.13**	.23**	02	.01									
0. resilience	.01	.29**	08**	10**	02	06*	36**	21**	.28**	.14**	.06*	.24**	.06*	32**	.26**	.12**	.31**	51**	.14**								
1. adaptability_crisis	06*	.22**	09**	03	03	06*	20**	17**	.15**	.12**	.01	.20**	.05	22**	.22**	.06*	.23**	34**	.11**	.60**							
2. adaptability_uncertainty	06*	.21**	15**	06*	05	09**	28**	21**	.16**	.09**	.01	.22**	.00	28**	.26**	.16**	.18**	44**	.20**	.64**	.68**						
. conservatism	02	.11**	.10**	08**	09**	10**	08**	13**	.10**	.00	05	01	.13**	15**	.10**	07*	.14**	13**	16**	.19**	.14**	.05					
1. reactance	03	06*	.18**	.18**	.00	01	.24**	.19**	01	.02	.14**	11**	02	.17**	.02	21**	23**	.16**	.02	07*	01	07**	.02				
i. gov_trust	07*	.03	02	07*	05	06*	14**	16**	.09**	04	07*	.04	.07**	14**	.08**	.00	.15**	10**	07*	.14**	.05	.08**	.29**	14**			
i. cultural_tightloose	.08**	.03	01	04	01	01	04	05	.07**	01	.01	.10**	02	04	03	.03	.06*	02	04	.06*	.05	.00	.13**	.00	.07**		
7. RWA	.03	.09**	.17**	08**	07*	03	.02	05	.11**	.00	10**	04	.14**	08**	.07*	09**	.16**	03	23**	.09**	.06*	03	.52**	02	.22**	.18**	
. PoliticalOrient	.08**	07*	01	.11**	.14**	.15**	.10**	.13**	04	.02	.06*	.00	12**	.14**	01	.15**	13**	.12**	.16**	13**	12**	05	47**	.00	28**	06*	

2 Coping, adaptability, reslience, and personality

- 2.1 Correlations between variables
- 2.2 KMO and Bartlett's test of spherecity

 $\label{eq:Table 2} {\it KMO: Measure of sampling adequacy}$

0.82

 $\begin{array}{c} {\rm Table} \ 3 \\ {\rm Bartletts} \ {\rm test} \ {\rm of} \ {\rm spherecity} \end{array}$

chisq	p.value	df
9949	0	378

Scree plot

The scree plot suggests a 6 or 7 component solution. SK extracted 6 components from the full dataset so I will do the same.

2.4 PCA: 6 components

Table 4 Variance accounted for by components

component	eigen	prop_var	cum_var	${\rm rotation_SS_load}$
1	4.37	0.11	0.11	3.1
2	3.65	0.11	0.22	3.1
3	2.34	0.11	0.33	2.96
4	1.69	0.09	0.42	2.49
5	1.38	0.06	0.48	1.67
6	1.17	0.05	0.52	1.29
7	1.01	0.00	0.02	1.20
8	0.97			
9	0.89			
10	0.87			
11	0.84			
12	0.77			
13	0.72			
14	0.70			
15	0.69			
16	0.65			
17	0.61			
18	0.56			
19	0.55			
20	0.52			
21	0.50			
22	0.49			
23	0.45			
24	0.41			
25	0.39			
26	0.31			
27	0.28			
28	0.24			

Table 5 Pattern Matrix

var	PC1	PC2	PC3	PC4	PC5	PC6	h2
adaptability_uncertainty	0.87						0.73
adaptability_crisis	0.84						0.64
resilience	0.8						0.73
extraversion	0.44				0.71		0.62
neuroticism	-0.6						0.50
cope_planning		0.8					0.60
cope_active		0.71					0.55
cope_instrsupp		0.6					0.65
cope_reframing		0.6					0.49
$cope_emotsupp$		0.54			0.33		0.61
cope_religion		0.52				-0.4	0.42
cope_acceptance		0.4	-0.34			0.45	0.53
cope_venting		0.39	0.49				0.57
cope_distraction		0.35				0.44	0.43
cope_disengage			0.68				0.55
cope_denial			0.65	0.31			0.47
reactance			0.65				0.42
cope_substance			0.62				0.39
cope_selfblame			0.54				0.54
cope_humor			0.42			0.44	0.44
conscientious			-0.41				0.33
RWA				0.82			0.61
conservatism				0.8			0.62
gov_trust				0.5			0.31
$cultural_tightloose$				0.37		0.63	0.42
PoliticalOrient				-0.67			0.49
intellect				-0.39			0.29
agreeableness					0.8		0.67

Table 6 Correlations between components

	RC1	RC2	RC4	RC3	RC5	RC6
RC1	1.00	-0.01	-0.35	0.15	-0.11	0.19
RC2	-0.01	1.00	0.15	-0.03	0.32	0.11
RC4	-0.35	0.15	1.00	-0.20	0.15	0.00
RC3	0.15	-0.03	-0.20	1.00	-0.09	-0.19
RC5	-0.11	0.32	0.15	-0.09	1.00	-0.04
RC6	0.19	0.11	0.00	-0.19	-0.04	1.00

3 Biz statements

3.1 Correlations between variables

Table 7 Correlations between variables

	1	2	3
1. WFH_Biz_Statements_1			
2. WFH_Biz_Statements_2	.44**		
3. WFH_Biz_Statements_3	.24*	.31**	
4. WFH_Biz_Statements_4	.33**	.53**	.64**

3.2 Reliability

Table 8 Cronbach's Alpha

 $\begin{array}{c} \text{Table 9} \\ \text{KMO: Measure of sampling adequacy} \end{array}$

 $\begin{array}{c} \text{Table 10} \\ \text{Bartletts test of spherecity} \end{array}$

$_{ m chisq}$	p.value	$_{ m df}$
88	0	6

Scree plot

The scree plot suggests a 1 component solution. This is consistent with the components extracted by SK from the full dataset.

3.5 PCA: 1 component

 $\begin{tabular}{ll} Table 11 \\ Variance accounted for by components \\ \end{tabular}$

component	eigen	prop_var	cum_var	${\bf rotation_SS_load}$
1 2 3 4	2.27 0.87 0.56 0.30	0.57	0.57	2.27

Table 12 Pattern Matrix

var	PC1	h2
WFH_Biz_Statements_4 WFH_Biz_Statements_2 WFH_Biz_Statements_3 WFH_Biz_Statements_1	0.86 0.76 0.74 0.63	0.74 0.58 0.55 0.40

4 Compliance

4.1 Correlations between variables

Table 13 Correlations between variables

	1	2	3	4	5	6	7	8	9	10	11
1. BehaviourComply_1_1											
BehaviourComply_1_2	.25**										
 BehaviourComply_1_3 	.47**	.35**									
4. BehaviourComply_1_4	.09**	.20**	.29**								
5. BehaviourComply_1_5	.06*	.13**	.20**	.38**							
6. BehaviourComply_1_6	.18**	.29**	.38**	.25**	.28**						
7. BehaviourComply_2_1	.42**	.28**	.50**	.27**	.18**	.34**					
8. BehaviourComply_2_2	.40**	.42**	.50**	.21**	.13**	.41**	.46**				
BehaviourComply_2_3	.22**	.29**	.28**	.23**	.20**	.31**	.39**	.43**			
10. Behaviour Comply_2_4	.13**	.19**	.22**	.28**	.21**	.20**	.29**	.18**	.21**		
11. BehaviourComply_2_5	.08**	.07*	.17**	.25**	.21**	.10**	.17**	.08**	.14**	.42**	
12. BehaviourComply_2_6	.27**	.19**	.31**	.25**	.20**	.26**	.34**	.21**	.22**	.56**	.39**

4.2 Reliability

Table 14 Cronbach's Alpha

a 0.79

4.3 KMO and Bartlett's test of spherecity

 $\begin{array}{c} \text{Table 15} \\ \text{KMO: Measure of sampling adequacy} \end{array}$

0.85

Table 16 Bartletts test of spherecity

chisq	p.value	df
4086	0	66

Scree plot

The scree plot suggests a 3 component solution. This is consistent with the components extracted by SK from the full dataset.

4.5 PCA: 3 component

Table 17 Variance accounted for by components

component	eigen	prop_var	cum_var	rotation_SS_load
1	4.00	0.26	0.26	3.12
2	1.57	0.16	0.42	1.93
3	1.11	0.14	0.56	1.63
4	0.84			
5	0.74			
6	0.71			
7	0.63			
8	0.62			
9	0.49			
10	0.46			
11	0.43			
12	0.40			

Table 18 Pattern Matrix

var	PC1	PC2	PC3	h2
BehaviourComply_2_2	0.82			0.64
BehaviourComply_1_1	0.79		-0.42	0.59
BehaviourComply_1_3	0.73			0.58
BehaviourComply_2_1	0.69			0.55
BehaviourComply_1_2	0.58			0.37
BehaviourComply_2_3	0.49			0.39
BehaviourComply_1_6	0.42		0.43	0.47
BehaviourComply_2_4		0.77		0.66
BehaviourComply_2_5		0.76		0.58
BehaviourComply_2_6		0.76		0.68
BehaviourComply_1_5			0.83	0.63
BehaviourComply_1_4			0.69	0.55

Table 19 Correlations between components

	RC1	RC2	RC3
RC1	1.0	0.30	0.40
RC2	0.3	1.00	0.27
RC3	0.4	0.27	1.00

5 Coping

5.1 Correlations between variables

Table 20 Correlations between variables

	1	2	3	4	5	6	7	8	9	10	11	12	13
1. cope_distraction													
2. cope_active	.23**												
3. cope_denial	.12**	.03											
4. cope_substance	.10**	.01	.24**										
5. cope_emotsupp	.29**	.27**	.14**	.18**									
6. cope_instrsupp	.30**	.27**	.18**	.14**	.74**								
7. cope_disengage	.08**	11**	.39**	.32**	.15**	.21**							
8. cope_venting	.23**	.10**	.30**	.24**	.43**	.48**	.37**						
9. cope_reframing	.23**	.42**	.07**	.01	.24**	.22**	06*	.11**					
10. cope_planning	.29**	.52**	.07*	.06*	.36**	.40**	.04	.29**	.39**				
11. cope_humor	.15**	.05	.09**	.18**	.13**	.11**	.11**	.22**	.23**	.10**			
12. cope_acceptance	.17**	.29**	23**	07**	.12**	.05	21**	06*	.29**	.26**	.11**		
13. cope_religion	.05	.21**	.11**	05	.14**	.22**	.04	.14**	.24**	.18**	03	.02	
14. cope_selfblame	.17**	02	.32**	.29**	.27**	.32**	.50**	.49**	.05	.25**	.17**	14**	.06*

5.2 Reliability

Table 21 Cronbach's Alpha

0.75

5.3 KMO and Bartlett's test of spherecity

 $\begin{tabular}{ll} Table~22\\ KMO: Measure~of~sampling~adequacy\\ \end{tabular}$

0.79

Table 23 Bartletts test of spherecity

chisq	p.value	df
4644	0	91

Scree plot

The scree plot suggests either a 2 factor (FA) solution or a 4 component (PCA) solution. SK extracted 4 factors using PAF from the full dataset. I will conduct a 4 component PCA.

5.5 PCA: 4 components

 $\begin{tabular}{ll} Table~24\\ Variance~accounted~for~by~components \end{tabular}$

-	eigen	prop_var	$_{\rm cum_var}$	$rotation_SS_load$
1	3.62	0.17	0.17	2.37
2	2.28	0.17	0.34	2.33
3	1.18	0.15	0.49	2.12
4	1.05	0.09	0.58	1.32
5	0.86			
6	0.79			
7	0.77			
8	0.70			
9	0.61			
10	0.55			
11	0.50			
12	0.45			
13	0.40			
14	0.25			

 $\begin{array}{c} \text{Table 25} \\ \text{Pattern Matrix} \end{array}$

var	PC1	PC2	PC3	PC4	h2
cope_instrsupp	0.93				0.79
cope_emotsupp	0.92				0.75
cope_venting	0.53	0.42			0.59
cope_planning	0.36		0.52		0.56
$cope_distraction$	0.33				0.34
cope_denial		0.76			0.55
cope_disengage		0.73			0.59
$cope_selfblame$		0.6			0.56
cope_substance		0.46		0.47	0.42
$cope_acceptance$		-0.51	0.33	0.35	0.55
cope_reframing			0.81		0.64
cope_active			0.69		0.58
cope_religion			0.66	-0.51	0.64
cope_humor				0.77	0.57

 ${\bf Table~26} \\ {\bf Correlations~between~components}$

	RC1	RC2	RC4	RC3
RC1 RC2	$\frac{1.00}{0.25}$	$0.25 \\ 1.00$	0.40 -0.05	$0.38 \\ 0.04$
RC4 RC3	$0.40 \\ 0.38$	-0.05 0.04	1.00 0.16	0.16 1.00

6 DASS

6.1 Correlations between variables

Table 27 Correlations between variables

	1	2
1. DASS_stress		
2. DASS_anxiety	.79**	
$3. \ \mathrm{DASS_depression}$.71**	.68**

6.2 Reliability

Table 28 Cronbach's Alpha

6.3 KMO and Bartlett's test of spherecity

Table 29

KMO: Measure of sampling adequacy

 $\begin{array}{c} \text{Table 30} \\ \text{Bartletts test of spherecity} \end{array}$

chisq	p.value	df
286	0	3

Scree plot

6.5 PCA

The scree plot suggests a 1 component solution. This is consistent with the components extracted by SK from the full dataset.

6.6 PCA: 1 component

 $\begin{tabular}{ll} Table 31 \\ Variance accounted for by components \\ \end{tabular}$

component	eigen	prop_var	cum_var	rotation_SS_load
1	2.45	0.82	0.82	2.45
2	0.34			
3	0.20			

Table 32 Pattern Matrix

var	PC1	h2
DASS_stress DASS_anxiety	$0.92 \\ 0.91$	$0.85 \\ 0.83$
DASS_depression	0.88	0.77

7 Follow

7.1 Correlations between variables

Table 33 Correlations between variables

	1	2	3
 follow_self follow_family follow_atrisk follow_people 	.68** .60** .66**	.73** .69**	.78**

7.2 Reliability

Table 34 Cronbach's Alpha

 $\begin{array}{c} \text{Table 35} \\ \text{KMO: Measure of sampling adequacy} \end{array}$

Table 36 Bartletts test of spherecity

$_{\rm chisq}$	p.value	$^{\mathrm{df}}$
3360	0	6

Scree plot

7.5 PCA

The scree plot suggests a 1 component solution. This is consistent with the components extracted by SK from the full dataset.

7.6 PCA: 1 component

 $\begin{tabular}{ll} Table 37 \\ Variance accounted for by components \\ \end{tabular}$

component	eigen	prop_var	cum_var	${\bf rotation_SS_load}$
1	3.07	0.77	0.77	3.07
2	0.42			
3	0.30			
4	0.20			

Table 38 Pattern Matrix

var	PC1	h2
follow_people	0.90	0.80
follow_family	0.89	0.78
follow_atrisk	0.89	0.79
follow_self	0.83	0.69

8 Government

8.1 Correlations between variables

Table 39 Correlations between variables

	1	2
1. Govt_Satisfaction		
2. Govt_Extreme	58**	
3. Govt_Truth	.62**	35**

8.2 Reliability

Table 40 Cronbach's Alpha

8.3 KMO and Bartlett's test of spherecity

Table 41 KMO: Measure of sampling adequacy

Table 42 Bartletts test of spherecity

chisq	p.value	df
1192	0	3

8.4 Scree plot

An ultra-Heywood case was detected for FA so I only plotted eigen values using PCA here. This issue did not occur for PCA.

Scree plot

The scree plot suggests a 1 component solution. This is consistent with the components extracted by SK from the full dataset.

8.5 PCA: 1 component

 $\begin{tabular}{ll} Table 43 \\ Variance accounted for by components \\ \end{tabular}$

component	eigen	prop_var	cum_var	rotation_SS_load
1	2.04	0.68	0.68	2.04
2	0.65			
3	0.30			

Table 44 Pattern Matrix

var	PC1	h2
Govt_Satisfaction Govt_Truth Govt_Extreme	0.90 0.79 -0.77	$0.82 \\ 0.63 \\ 0.60$

9 Intelligence

9.1 Correlations between variables

Table 45 Correlations between variables

	1	2
1. CRT_acc		
belief_acc	.51**	
3. EAT_acc	.53**	.58**

9.2 Reliability

Table 46 Cronbach's Alpha

 $\begin{array}{c} \text{Table 47} \\ \text{KMO: Measure of sampling adequacy} \end{array}$

Table 48 Bartletts test of spherecity

chisq	p.value	df
375	0	3

Scree plot

9.5 PCA

The scree plot suggests a 1 component solution. This is consistent with the components extracted by SK from the full dataset.

9.6 PCA: 1 component

Table 49 Variance accounted for by components

component	eigen	prop_var	cum_var	rotation_SS_load
1	2.08	0.69	0.69	2.08
2	0.50			
3	0.42			

 $\begin{array}{c} \text{Table 50} \\ \text{Pattern Matrix} \end{array}$

var	PC1	h2
EAT_acc	0.85	0.72
belief_acc	0.84	0.70
CRT_acc	0.81	0.66

10 News sources

10.1 Correlations between variables

Table 51 Correlations between variables

	1	2	3	4	5	6
1. NS_FriendsFam 2. NS_OffGovt 3. NS_OffHealth 4. NS_Science 5. NS_WordMouth	.09** .07* .02 .54**	.59** .35** .03	.50** .00	02		
6. NS_News 7. NS_SocialMedia	.15** .31**	.13** .08**	.00 .07*	.04 .05	.20** .38**	.23**

10.2 Reliability

Table 52 Cronbach's Alpha

 $\begin{array}{c} \text{Table 53} \\ \text{KMO: Measure of sampling adequacy} \end{array}$

KMO	
0.64	

Table 54 Bartletts test of spherecity

chisq	p.value	df
1828	0	21

Scree plot

The scree plot suggests a 2 component solution. This is consistent with the components extracted by SK from the full dataset.

10.5 PCA: 2 component

Table 55 Variance accounted for by components

eigen	$prop_var$	${\rm cum_var}$	${\rm rotation_SS_load}$
2.11	0.28	0.28	1.97
1.81	0.28	0.56	1.95
0.92			
0.70			
0.65			
0.45			
0.37			
	2.11 1.81 0.92 0.70 0.65	2.11 0.28 1.81 0.28 0.92 0.70 0.65 0.45	2.11 0.28 0.28 1.81 0.28 0.56 0.92 0.70 0.65 0.45

Table 56 Pattern Matrix

var	PC1	PC2	h2
NS_OffHealth NS_OffGovt NS_Science NS_WordMouth NS_FriendsFam	0.88 0.8 0.75	0.82 0.77	0.76 0.65 0.56 0.67 0.59
NS_SocialMedia NS_News		0.69 0.46	$0.48 \\ 0.22$

Table 57 Correlations between components

	RC1	RC2
RC1	1.0	0.1
RC2	0.1	1.0

11 Opinion

11.1 Correlations between variables

Table 58 Correlations between variables

	1	2	3	4	5	6	7	8	9
1. opinion_1									
2. opinion_2	.47**								
3. opinion_3	.41**	.48**							
4. opinion_4	.38**	.22**	.21**						
5. opinion_5	10**	04	04	09**					
6. opinion_6	36**	21**	19**	27**	.19**				
7. opinion_7	.50**	.33**	.35**	.54**	12**	34**			
8. opinion_8	.29**	.10**	.19**	.40**	06*	14**	.46**		
9. opinion_9	.31**	.35**	.34**	.28**	05	17**	.41**	.27**	
10. opinion_10	20**	18**	12**	16**	.20**	.33**	26**	11**	17**

11.2 Reliability

- ## Warning in psych::alpha(x): Some items were negatively correlated with the total scale and probably ## should be reversed.
- ## To do this, run the function again with the 'check.keys=TRUE' option
- ## Some items (opinion_5 opinion_6 opinion_10) were negatively correlated with the total scale and ## probably should be reversed.
- ## To do this, run the function again with the 'check.keys=TRUE' option

Table 59 Cronbach's Alpha

0.5

11.3 KMO and Bartlett's test of spherecity

Table 60 KMO: Measure of sampling adequacy

KMO 0.83

Table 61 Bartletts test of spherecity

cl	hisq	p.value	$\mathrm{d}\mathrm{f}$
2	890	0	45

Scree plot

The scree plot suggests a 3 component solution. This is consistent with the components extracted by SK from the full dataset.

11.5 PCA: 3 component

 $\begin{tabular}{ll} Table~62\\ Variance~accounted~for~by~components \end{tabular}$

component	eigen	prop_var	cum_var	${\rm rotation_SS_load}$
1	3.44	0.22	0.22	2.17
2	1.23	0.21	0.43	2.11
3	1.14	0.15	0.58	1.54
4	0.82			
5	0.76			
6	0.63			
7	0.59			
8	0.53			
9	0.45			
10	0.39			

 $\begin{array}{c} \text{Table 63} \\ \text{Pattern Matrix} \end{array}$

var	PC1	PC2	PC3	h2
opinion_2	0.93			0.71
opinion_3	0.85			0.62
opinion_1	0.54			0.57
opinion_9	0.48			0.42
opinion_8		0.95		0.67
opinion_4		0.82		0.62
opinion_7		0.68		0.69
opinion_5			0.74	0.49
opinion_10			0.73	0.53
opinion_6			0.64	0.52

Table 64 Correlations between components

	RC1	RC3	RC2
RC1	1.00	0.53	-0.32
RC3	0.53	1.00	-0.34
RC2	-0.32	-0.34	1.00

12 Org statements

12.1 Correlations between variables

Table 65 Correlations between variables

	1	2	3
1. WFH_OrgStatements_1 2. WFH_OrgStatements_2 3. WFH_OrgStatements_3 4. WFH_OrgStatements_4	.43** .15** .22**	.34** .46**	.66**

12.2 Reliability

Table 66 Cronbach's Alpha

 $\begin{array}{c} \text{Table 67} \\ \text{KMO: Measure of sampling adequacy} \end{array}$

Table 68 Bartletts test of spherecity

chisq	p.value	df
407	0	6

Scree plot

The scree plot suggests a 1 or 2 component solution. SK extracted 1 component using the full dataset so I will do the same.

12.5 PCA: 1 component

 $\begin{tabular}{ll} Table~69\\ Variance~accounted~for~by~components \end{tabular}$

component eig	en prop_var	cum_var	${\rm rotation_SS_load}$
2 1. 3 0.	16 0.54 00 52 32	0.54	2.16

Table 70 Pattern Matrix

var	PC1	h2
WFH_OrgStatements_4 WFH_OrgStatements_3 WFH_OrgStatements_2 WFH_OrgStatements_1	0.84 0.77 0.76 0.53	0.71 0.60 0.57 0.29

13 Reasons to leave

13.1 Correlations between variables

Table 71 Correlations between variables

	1	2	3	4	5	6	7	8	9	10
1. ReasonsLeaveHome 1										
2. ReasonsLeaveHome_2	.03									
3. ReasonsLeaveHome_3	.05	.10**								
4. ReasonsLeaveHome_4	.06	.11**	.23**							
5. ReasonsLeaveHome_5	.01	.09*	.12**	.28**						
6. ReasonsLeaveHome_6	02	.04	02	04	.20**					
7. ReasonsLeaveHome_7	.08*	.00	.09**	.15**	.20**	.15**				
8. ReasonsLeaveHome_8	.14**	.08*	.13**	.22**	.09*	.04	.12**			
9. ReasonsLeaveHome_9	.06	.04	.07	.13**	.18**	.23**	.19**	.29**		
$10. \ {\tt ReasonsLeaveHome_10}$.02	01	.26**	.20**	.12**	.04	.17**	.22**	.12**	
11. ReasonsLeaveHome_11	.04	.00	.27**	.21**	.14**	.03	.15**	.26**	.21**	.56**

13.2 Reliability

Table 72 Cronbach's Alpha

 $\begin{array}{c} \text{Table 73} \\ \text{KMO: Measure of sampling adequacy} \end{array}$

KMO	
0.69	

Table 74
Bartletts test of spherecity

_	chisq	p.value	df
	905	0	55

Scree plot

The scree plot suggests a 3 or 4 component solution. SK extracted 3 componentsusing the full dataset so I will do the same.

13.5 PCA: 3 component

Table 75 Variance accounted for by components

component	eigen	prop_var	cum_var	$rotation_SS_load$
1	2.44	0.18	0.18	1.96
2	1.32	0.14	0.32	1.54
3	1.13	0.13	0.44	1.38
4	1.07			
5	0.95			
6	0.88			
7	0.78			
8	0.75			
9	0.65			
10	0.61			
11	0.43			

Table 76 Pattern Matrix

var	PC1	PC2	PC3	h2
ReasonsLeaveHome_10	0.89			0.68
ReasonsLeaveHome_11	0.89			0.69
ReasonsLeaveHome_3	0.42		0.36	0.40
ReasonsLeaveHome_8	0.33			0.30
$Reasons Leave Home_2$	-0.39		0.79	0.49
ReasonsLeaveHome_6		0.8		0.57
ReasonsLeaveHome_9		0.62		0.45
ReasonsLeaveHome_7		0.49		0.31
ReasonsLeaveHome_5		0.47	0.37	0.41
$Reasons Leave Home_4$			0.61	0.47
ReasonsLeaveHome_1			0.37	0.11

 ${\bf Table~77} \\ {\bf Correlations~between~components}$

	RC1	RC2	RC3
RC1	1.00	0.27	0.44
RC2	0.27	1.00	0.26
RC3	0.44	0.26	1.00

14 Social behaviour

14.1 Correlations between variables

Table 78 Correlations between variables

	1	2	3	4	5	6	7
1. BehaviourProsocial_1							
BehaviourProsocial_2	.20**						
BehaviourProsocial_3	.15**	.22**					
4. BehaviourProsocial_4	.25**	.30**	.33**				
5. BehaviourAntisocial_1	.11**	.08**	.11**	.11**			
6. BehaviourAntisocial_2	.17**	.13**	.13**	.20**	.55**		
7. BehaviourAntisocial_3	.14**	.08**	.14**	.16**	.15**	.21**	
$8. \ \ Behaviour Antisocial_4$.24**	.17**	.04	.15**	.14**	.21**	.22**

14.2 Reliability

Table 79 Cronbach's Alpha

 $\begin{tabular}{ll} Table 80\\ KMO: Measure of sampling adequacy \end{tabular}$

Table 81 Bartletts test of spherecity

chisq	p.value	df
1271	0	28

Scree plot

The scree plot suggests a 3 component solution. This is not consistent with the 2 components extracted by SK from the full dataset. I will extract 2 components only.

14.5 PCA: 2 component

Table 82 Variance accounted for by components

component	eigen	prop_var	cum_var	rotation_SS_load
1	2.30	0.23	0.23	1.85
2	1.27	0.21	0.45	1.72
3	1.02			
4	0.88			
5	0.77			
6	0.67			
7	0.64			
8	0.44			

Table 83 Pattern Matrix

var	PC1	PC2	h2
BehaviourProsocial_4	0.75		0.54
BehaviourProsocial_2	0.7		0.44
BehaviourProsocial_3	0.66		0.39
BehaviourProsocial_1	0.53		0.32
$Behaviour Antisocial_1$		0.88	0.69
BehaviourAntisocial_2		0.86	0.72
BehaviourAntisocial_3		0.36	0.23
${\bf BehaviourAntisocial_4}$		0.32	0.25

Table 84 Correlations between components

	RC1	RC2
RC1 RC2	$\frac{1.00}{0.37}$	0.37 1.00

15 Covid worry

15.1 Correlations between variables

Table 85 Correlations between variables

	1	2	3	4
1. CovidWorry_1				
2. CovidWorry_2R	.51**			
3. CovidWorry_3	.39**	.24**		
4. CovidWorry_4	.39**	.23**	.47**	
CovidWorry_5	.51**	.35**	.46**	.42**

15.2 Reliability

Table 86 Cronbach's Alpha

 $\begin{array}{c} \text{Table 87} \\ \text{KMO: Measure of sampling adequacy} \end{array}$

KMO
0.78

Table 88 Bartletts test of spherecity

chisq	p.value	df
1657	0	10

Scree plot

The scree plot suggests a 1 component solution. This is consistent with the components extracted by SK from the full dataset.

15.5 PCA: 3 component

Table 89 Variance accounted for by components

component	eigen	prop_var	cum_var	rotation_SS_load
1	2.60	0.52	0.52	2.6
2	0.90			
3	0.56			
4	0.51			
5	0.43			

Table 90 Pattern Matrix

var	PC1	h2
CovidWorry_1 CovidWorry_5 CovidWorry_3 CovidWorry_4 CovidWorry_2R	0.79 0.77 0.71 0.69 0.63	0.63 0.60 0.51 0.48 0.39