Matemática Computacional

Exercícios de Aritmética Computacional maria irene falcão

Mestrado em Matemática e Computação

Exercícios

Exercício 1. Considere o sistema de numeração F(2, 3, -1, 2).

- a) Determine os níveis de overflow e underflow para este sistema.
- b) Quantos números distintos constituem o sistema? Explicite-os e represente-os graficamente, usando a função plot.
- c) Qual a unidade de erro de arredondamento do sistema?
- d) Determine fl(0.125), fl(0.25), fl(4.0) e fl(1.82).

Exercício 2.

- a) Use a ajuda do Matlab para obter informação sobre as funções pré-definidas realmax, realmin e eps.
- b) Justifique os valores obtidos quando as usa (sem especificação do argumento).
- c) Que espera obter se efetuar cada uma das instruções seguintes no Matlab? Confirme a sua resposta.
 - $(i) >> (1+2^-52)-1$
 - $(ii) >> (1+2^-53)-1$
 - $(iii) >> isequal(2^-1074,0)$
 - $(iv) >> isequal(2^-1075,0)$

Exercício 3. Considere o sistema F(10, 4, -99, 99).

- a) Dados x=0.8348, $y=0.4316\times 10^{-4}$ e $z=0.4721\times 10^{-4}$, calcule $(x\oplus y)\oplus z$ e $x\oplus (y\oplus z)$. Que conclui quanto à associatividade da adição num sistema de vírgula flutuante?
- b) Sejam x = 0.5411, y = 0.7223 e z = 0.6134. Verifique que $x \otimes (y \oplus z) \neq (x \otimes y) \oplus (x \otimes z)$.
- c) Considere a equação $3 \oplus x = 3$. Indique várias das suas soluções no sistema considerado.
- Exercício 4. Justifique que num sistema de vírgula flutuante de base b, a divisão ou multiplicação por uma potência de b, se não conduzir a *overflow* ou *underflow*, é uma operação exata.

- Exercício 5. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações, considerando que está trabalhar num sistema de vírgula flutuante IEEE (com o arredondamento usual):
 - a) $x \leq y \Longrightarrow fl(x) \leq fl(y)$;
 - b) $x < y \Longrightarrow fl(x) < fl(y)$;
 - c) $x \le y \Longrightarrow x \le fl(\frac{x+y}{2}) \le y$ $(x, y \in F)$.
 - d) Mostre, através de um exemplo, que a afirmação contida na alínea c) pode ser falsa se trabalharmos num sistema de vírgula flutuante de base 10.
- Exercício 6. Determine, em cada caso, o erro absoluto, o erro relativo, o número de algarismos significativos e o número de casas decimais corretas do valor aproximado \tilde{x} para x:
 - a) x = 1/3, $\tilde{x} = 0.3333$;
 - b) x = 10.375, $\tilde{x} = 10.373$:
 - c) x = 0.0000234, $\tilde{x} = 0.0000272$;
 - d) $x = 0.721 \times 10^{-6}$, $\tilde{x} = 0.724 \times 10^{-6}$.
- Exercício 7. Escreva aproximações com 3 e 4 algarismos significativos para os números 1/6, 1/11, $\pi/100$, e^3 e log 5.
- Exercício 8. Considere a seguinte equação do segundo grau $x^2 + 800x + 1 = 0$, e suponha que pretendemos calcular as suas raízes, trabalhando numa máquina com sistema de numeração F(10, 4, -99, 99).
 - a) Use a fórmula resolvente habitual para determinar (aproximações para) ambas as raízes.
 - b) Relembre que, se a equação $ax^2+bx+c={\sf 0}$ tem duas raízes reais x_1 e x_2 , então $x_1x_2=rac{c}{a}$. Calcule uma nova aproximação para a raiz de menor valor absoluto usando essa igualdade (e a raiz de maior valor absoluto calculada na alínea anterior).
 - c) Calcule, recorrendo à função roots do Matlab, as raízes da equação dada; compare com os valores obtidos em a) e b) e comente.
- Exercício 9. Encontre fórmulas alternativas para calcular as expressões abaixo indicadas, de modo a evitar o efeito do cancelamento subtrativo:
 - a) $\sqrt{1+x}-1$, $x\approx 0$:
- b) $1 \cos x$; $x \approx 0$;
- c) $\operatorname{sen}(x+\delta) \operatorname{sen} x$, $|\delta| \ll |x|$; d) $\frac{1}{1-x} \frac{1}{1+x}$; $x \approx 0$.

Exercício 10.

- a) Calcule o número de condição das funções $f(x) = \sqrt{x}$ e $f(x) = x^2$ e comente sobre o condicionamento dessas funções.
- b) Calcule o número de condição das funções $f(x) = \exp(x)$ e $f(x) = \log x$ e diga para que valores de x o cálculo dessas funções é um problema mal condicionado.
- Exercício 11. Determine estimativas para os erros (em valor absoluto) cometidos nos cálculos dos valores abaixo indicados, quando os argumentos são arredondados para duas casas decimais:
 - a) $\cos(1.432)$; b) $\log(2.347)$; c) $e^{6.135}$.

Exercício 12. Considere o sistema de equações

$$\begin{cases} 3.021x + 2.714y + 6.913z = 12.648 \\ 1.031x - 4.273y + 1.121z = -2.121 \\ 5.084x - 5.832y + 9.155z = 8.407 \end{cases}$$

- a) Determine a sua solução, usando o MATLAB.
- b) Altere o coeficiente -4.273 para -4.275 e resolva o sistema resultante. Que conclusão pode tirar quanto ao sistema em causa?
- Exercício 13. Represente graficamente os polinómios $p(x) = (x-1)^6$ e $q(x) = x^6 6x^5 + 15x^4 20x^3 + 15x^2 6x + 1$, para $x \in [0.999, 1.001]$. Notando que q(x) é a forma expandida de p(x), comente os resultados obtidos.

Trabalhos

Trabalho 1. A média de uma amostra de n valores x_i ; $i = 1, \ldots, n$, é dada por

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

sendo o desvio padrão amostral dado por

$$s = \left(\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2\right)^{1/2}.$$
 (1)

Para maior eficiência, é frequentemente sugerido o uso da seguinte fórmula alternativa para o cálculo do desvio padrão

$$s = \left(\frac{1}{n-1} \sum_{i=1}^{n} \left(x_i^2 - n\overline{x}^2\right)\right)^{1/2}.$$
 (2)

Escreva uma função, $[media, desvio1, desvio2] = \mathbf{mediaDesvios}(x)$, destinada a calcular a média e o desvio padrão de uma amostra, sendo usadas as duas fórmulas (1) e (2) para o cálculo do desvio padrão.

Teste a sua função para várias amostras $\{x_i\}$. Em particular, tente encontrar uma amostra para a qual as duas fórmulas do cálculo do desvio padrão produzam valores bastante diferentes. Justifique a diferença dos resultados.

Trabalho 2. Escreva uma script destinada a calcular aproximações para o número de Nepper e, usando a expressão

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Esta *script* deverá produzir uma tabela com os valores das aproximações $\left(1+\frac{1}{n}\right)^n$ e dos respetivos erros, para $n=10^k$; $k=1,2\dots,20$. Comente os resultados obtidos.

Trabalho 3. Considere o desenvolvimento em série da função exponencial

$$e^x = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \ldots$$

- a) Utilize este desenvolvimento, com 101 termos, para calcular uma aproximação para o valor de e^{-25} .
- b) Obtenha uma aproximação para e^{25} usando a série referida e calcule, então, e^{-25} através da fórmula $e^{-25}=\frac{1}{e^{25}}$.
- c) Compare os resultados obtidos nas alíneas anteriores com o valor de e^{-25} dado usando a função \exp do MATLAB e explique-os.

Trabalho 4. Relembrando as expansões em série das funções arctan x e arcsen x

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots,$$

e

$$\arcsin x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \times 3}{2 \times 4} \frac{x^5}{5} + \frac{1 \times 3 \times 5}{2 \times 4 \times 6} \frac{x^7}{7} + \dots,$$

obtenha duas fórmulas alternativas para o cálculo de π .

Escreva uma *script* para calcular aproximações para π usando as fórmulas referidas e considerando um número de termos em cada série sucessivamente igual a $10, 20, \ldots, 100, 200, 300, \ldots, 1000$. Comente os resultados obtidos.