Introduzione

back

Link Piter

Indice

- Introduzioneback
 - Indice
 - Sistemi di elaborazione in tempo reale
 - Sistemi in tempo reale: Aspetti principali
 - Caratteristiche fondamentali
 - Obiettivi principali nella progettazione del software
 - · Metodologia di progetto
 - Approccio "Top-Down"
 - · Aspetti temporali nei sistemi real-time
 - Vincoli temporali principali
 - Tipologie di schedulazione
 - Classificazione della schedulazione
 - Tipologie di processi
 - Parametri temporali
 - Processi periodici:
 - Processi sporadici:
 - · Funzioni di utilità di un processo
 - · Problematiche nei sistemi real-time
 - Tempi di blocco
 - · Soluzioni: Protocolli di accesso
 - Obiettivi
 - Strategie

Sistemi di elaborazione in tempo reale

Un sistema di elaborazione opera in tempo reale soltanto se fornisce i risultati attesi entro prestabiliti limiti temporali (dipendenti dal contesto applicativo).

Sistemi in tempo reale: Aspetti principali

Caratteristiche fondamentali

- · Correttezza e affidabilità
- Predicibilità: Un requisito essenziale nei sistemi critici.
- · Efficienza e flessibilità

Obiettivi principali nella progettazione del software

1. Rispetto dei vincoli temporali.

2. Capacità di operare in contesti applicativi complessi come l'automazione industriale (es. "Packaging Valley" in Emilia Romagna).

Metodologia di progetto

Approccio "Top-Down"

La progettazione di un sistema complesso si basa su una decomposizione gerarchica su più livelli (approggio "divide et impera"):

- 1. Livelli funzionali: Ogni livello individua entità con ruoli e interazioni ben definiti.
- 2. **Riduzione della complessità**: Man mano che si scende nella gerarchia, il numero di componenti cresce, ma la complessità di ciascun componente diminuisce.

Aspetti temporali nei sistemi real-time

Vincoli temporali principali

- · Frequenza massima di esecuzione.
- Tempo massimo di elaborazione per ogni task.
- · Deadlines rigorose.

Tipologie di schedulazione

- 1. Off-line: Pianificazione a priori.
- 2. **On-line**: Pianificazione dinamica durante l'esecuzione.

Classificazione della schedulazione

- Garantita: Rispetta tutti i vincoli temporali.
- Best-effort: Ottimizza le prestazioni medie senza garanzie rigide.
- Preemptive: Consente la sospensione di un processo.
- Non-preemptive: I processi non possono essere interrotti.

Tipologie di processi

- 1. Real-time con vincoli temporali:
 - Hard real-time: Vincoli sempre rispettati.
 - **Soft real-time**: Vincoli rispettati in condizioni di carico normale.
- 2. Non real-time: Nessun vincolo temporale rigoroso.
- 3. **Periodici**: Esecuzione con frequenza costante.
- 4. Sporadici o Aperiodici: Esecuzione variabile o irregolare.

Parametri temporali

Per ogni processo \$i\$, vengono definiti:

- Arrival Time (\$a_i\$): Istante di rilascio del task.
- Start time (\$s_i\$) e Finish time (\$f_i\$).
- **Deadline (\$d_i\$)**: Vincolo temporale massimo.
- Latenza (\$L_i\$) e Slack time (\$X_i\$).
- \$C_i = f_i s_i\$ computation time.
- \$D_i = d_i a_i\$ relative deadline.
- R i = f i a i response time.
- \$L i = f i d i\$ **lateness**.
- \$E_i = max(0, L_i)\$ tardiness (exceeding time).
- \$X_i = D_i C_i\$ laxity (slack time): Tempo massimo in cui si può differire un task senza problemi.

Processi periodici:

- \$a_(i+1) a_i = T\$ (periodo)
- \$D_i = T\$
- \$a_1 = \varphi\$ (fase)

Processi sporadici:

- \$a_(i+1) a_o \geq MIT\$ (minimum interarrival time)
- \$D_i \leq MIT\$

Funzioni di utilità di un processo

Problematiche nei sistemi real-time

- 1. **Inversione di priorità**: Quando processi a bassa priorità bloccano quelli ad alta priorità. Per evitare si usa l'ereditarietà delle priorità, se un processo a minor priorità blocca un task a maggior priorità eredita la sua priorità.
- 2. Concatenazione di blocchi: Multipli processi si bloccano a vicenda su risorse condivise.
- 3. **Deadlock**: Situazioni in cui due o più processi sono in stallo permanente a causa di risorse condivise. **Tipi di blocchi**:
 - Inevitabile: Accesso mutualmente esclusivo.
 - Evitabile: Concatenazione di blocchi.
 - Da evitare: Inversione di priorità incontrollata.

Tempi di blocco

- Concatenazione di blocchi: \$\rarr\$ Limitati, ma potenzialmente significativi.
- Inversione di priorità: \$\rarr\$ Illimitati.
- Deadlock: \$\rarr\$ Infiniti

Soluzioni: Protocolli di accesso

Obiettivi

- Limitare i tempi di blocco dei processi.
- Evitare inversioni di priorità e deadlock.
- Garantire un accesso efficiente alle risorse condivise.

Strategie

- 1. Gestione delle priorità.
- 2. Regole di ordinamento per accessi a risorse condivise.
- 3. Utilizzo di semafori e protocolli avanzati per sincronizzazione.