Présentation sur les Systèmes Multi-Agents

Cas pratiques

Optimisation d'usinage de surface gauche par système multi-agent auto-organisateur

Surface gauche

- Surface non-plane
- Surface dont tous les points ne sont pas

Usinage de surface gauche

Procédé de réalisation d'une pièce par enlèvement de matière

Fraisage

- Rotation de l'outil
- Déplacement de la pièce

Outils utilisés

Outil torique

- Efficace
- Mais nécessite un plan d'usinage adapté

Rayon effectif de l'outil torique

- Quantité de matière enlevée par l'outil
- Varie selon la direction d'usinage

$$R_{effectif}(S, \alpha, R, r) = \frac{(R - r) \cdot \cos(|S - \alpha|)^2}{\sin(S) \cdot (1 - \sin(|S - \alpha|)^2 \cdot \sin(S)^2)} + r$$

R, r: Dimensions de l'outil

S: Direction de plus grande pente

 α : Direction d'usinage

Plus de passages

Moins de passages

Problématique

Minimiser le temps d'usinage

Maximiser le rayon effectif de la surface

<u>ET</u>

Minimiser le nombre de changements de direction

Exercice

- Identification des entités
- Entités actives/passives
- Environnement
- Adéquation
- Agentification : Définition des agents
- Situations non-coopératives

Maillage de la surface d'une tuile

Vue en YZ

Vue en XY

Agent maille

Comportement coopératif

2 buts locaux contradictoires

- 2 critères corrélés à la fonction globale sans la connaître
 - O Un critère sur la taille des zones
 - O Un critère sur la plus grande différence de directions optimales des mailles d'une zone

Satisfaction d'un agent

Chaque situation -> Une valeur d'insatisfaction par critère

- Insatisfaction d'une situation = Maximum des deux insatisfactions
 - \bigcirc Avec coefficients de pondération α et β dépendants de la machine

insatisfaction 2 < insatisfaction 1 < insatisfaction actuelle

Satisfaction des critères

Évolution de la fonction de coût

Estimation du temps de calcul

Estimation d'état d'un réseau électrique

Réseau électrique

- > 1 000 000 km de lignes
- Dizaines de millions de consommateurs

cre.fr Biserica, Observabilité et reconstruction d'état des réseaux de distribution du futur, 2011

Gestion actuelle de réseaux

- Centralisation des données
- Contrôle centralisé

Évolution des réseaux

- Ouverture du marché électrique au privé [Biserica 2011]
 - Suppression des monopoles
- Intégration de producteurs décentralisés
 - Energies renouvelables

Production centralisée → Décentralisée Gestion quasi-passive → Active Défi technologique

Biserica, Observabilité et reconstruction d'état des réseaux de distribution du futur, 2011

Définition du Smart Grid

Concept de **réseau électrique autonome** capable de **s'adapter** aux besoins des clients de manière **sécurisée**, **écologique** et **économique**. Il permet **l'échange bidirectionnel** d'information et d'électricité à travers les lignes.

Caractéristiques du Smart Grid

- 1. Équilibre de l'offre et la demande
 - Besoins énergétiques satisfaits par la production
- Auto-cicatrisation
 - Réparation automatique
- 3. Réduction des pertes
 - Combinaison de réglages qui réduit les pertes
- 4. Minimisation des sollicitations matérielles
 - Minimiser l'usure du matériel
- 5. Régulation de tension
 - Tension correcte en tous points

Challenge : Exploitation intelligente des différents éléments du réseau et de leurs dynamiques

Objectif du projet

Régulation de tension

Pourquoi l'estimation d'état ?

- Caractéristique
 - Régulation de tension
- Déterminer les consignes de tension
 - Garantir que la tension en tout point sera comprise dans un intervalle prédéfini
 - Éviter les sous-tensions et sur-tensions

Régulation de tension

- Besoin d'avoir une idée de l'état des réseaux
- Ajout de capteurs de tension et de puissance
 - Coût important
 - Manque de précision

Estimation d'état

Estimation d'état

Trouver l'état le plus vraisemblable d'un système étant donnés certaines quantités mesurées et le modèle du système et **filtrer les erreurs**

Maximum de vraisemblance

- Minimisation de la distance entre les valeurs mesurées et les valeurs calculées [Aldrich 1997]
- Chercher les paramètres de la loi qui maximisent la probabilité d'avoir observé un ensemble de valeurs
 - Distributions normales
- Formulation en moindre carrés pondérés
 - Somme des carrés des distances entre les valeurs des mesures (z_i) et les valeurs calculées $(h_i(x))$ pondérées par la précision des mesures (σ_i)

$$\sum_{z \in Mesures} \left(\frac{z_i - h_i(x)}{\sigma_i}\right)^2$$
 Fonction objectif à minimiser

Adéquation de l'approche

Approche AMAS

Problème complexe

Contrôle et connaissances distribués

Dynamique endogène ou exogène

Système **ouvert**

Smart Grid

Contrôle complexe

Points de contrôle et information géographiquement **distribués**

Adaptation à divers changements internes ou externes

Ajout et suppression de dispositifs

Exercice

Agentification

Bus

Producteur

Consommateur

Mesures

- Ensemble des capteurs
- Valeurs connues (zero injection)
- Modèles de consommation

Définition du voisinage des agents

Interaction

- Entre agents Bus reliés via une ligne
- Entre agent Bus et agent Mesure associés

Voisinage des agents pour l'estimation d'état

Agent Mesure

Agent Bus

- Communication
 - Entre agents Bus reliés via une ligne
 - Entre agent Bus et agent Mesure associés
 - Entre agents Mesure
 - Pair à pair
 - Graphe connexe

Agent Bus

- But local
 - Déterminer les valeurs qui satisfont la loi des nœuds
- Criticité
 - Ecart à la loi des nœuds
- Voisinage
 - Agents Bus
 - Agent Mesure
- Perception locale
 - Les valeurs estimées par les voisins
- Décision
 - Réévaluer ses valeurs grâce aux perceptions
- Action
 - Envoyer ses nouvelles valeurs

Loi des noeuds

« La somme des courants entrants dans un nœud est égale à la somme des courants sortants de ce même nœud » Kirchhoff

- Newton-Raphson
 - Méthode itérative de recherche de racine de fonction couramment utilisée
- Inversion de matrice
 - Complexité polynomiale d'ordre supérieur à 2

• Pour chaque nœud:

$$i_1 + i_2 = i_3$$

Décision de l'agent Bus

SNC de l'agent Bus

Non respect de la loi des nœuds (Conflit)

 Itération locale de <u>Newton-Raphson</u> pour satisfaire la loi des noeuds

Différence avec l'agent Mesure (Conflit)

 Modification de la valeur estimée au profit de celle de l'agent mesure

Agent Mesure

- But local
 - Essayer de corriger les mesures
- Criticité
 - Ecart à la mesure
- Voisinage
 - Agents Mesure
 - 1 Agent Bus
- Perception locale
 - Les valeurs estimées du voisin agent bus
- Décision
 - Réévaluer la valeur estimée
- Action
 - Envoyer sa nouvelle valeur

SNC de l'agent Mesure

Différence avec la valeur de l'agent Bus (Conflit)

 Rapprocher sa valeur de celle de l'agent Bus (erreur peut augmenter)

Attitude coopérative

Agent Mesure qui cherche à compenser son erreur

 Prise en charge d'une partie de l'erreur (si pas plus critique)

Exemple de résolution

Agent Mesure

Agent Bus

Expérimentations & Évaluations

Critères d'évaluation

- 1. Temps de convergence par rapport à la taille des réseaux pour le passage à l'échelle
- 2. Fonction globale : minimisation des moindres carrés pondérés
- 3. Qualité du filtrage des erreurs des capteurs
- 4. Robustesse face aux perturbations
- 5. Capacité d'ouverture
- 6. Impact du nombre de capteurs de tension sur l'estimation

Conditions d'expérimentations

- 7 réseaux étudiés
 - 1 réel : 64 bus
 - 6 générés aléatoirement (pour passage à l'échelle) : 41, 80, 111, 133, 153 et 207 bus
- Modèles de consommations
 - Représentés par des valeurs bruitées à 50%
- Capteurs de puissance et de tension au niveau des points de production d'énergie (Bruités à 1%)
- Nombre et placement des autres capteurs varient selon les évaluations
- Entre 1 000 et 10 000 résolutions
- Evaluations faites sur machine moyenne gamme (Core i7, 2.7 Ghz, 16Go) avec la technologie Java

Critère 1 : Temps de convergence du système ATENA4SE

- Mesure du temps requis pour arriver à une solution valide
 - Erreur inférieure à 1%
- 6 réseaux générés aléatoirement
 - Besoin de réseaux de différentes tailles
- 10 000 résolutions
 - Temps d'une résolution inférieur à une seconde
- Critère d'arrêt : Erreur globale inférieure à 1%
 - Non utilisé par les agents

Tendance linéaire

Critère 2 : Minimisation des moindres carrés pondérés

- Fonction attendue du système : Minimisation de la fonction objectif (Moindres carré pondérés)
- Mesure de l'état de la fonction objectif à chaque cycle (1 itération de chaque agent)
 - Inconnue des agents
 - Calculée pour l'évaluation
- Réseau réel de 64 bus
- < 1 seconde</p>
- Résolution émergente
- Anytime

Diminution de la fonction objectif globale

Critère 3 : Qualité du filtrage des erreurs des capteurs

- Evaluer le filtrage des erreurs des capteurs
- 1 000 résolutions

• Réseau réel de 64 bus

 Critère d'arrêt des résolutions : 5 000 cycles

Filtrage de 50%

Filtrage > 90% avec les approches globales
[Chilard 2009]

Critère 4 : Robustesse

- Capacité du système à supporter des perturbations
- Mesure de l'erreur maximale d'estimation
- Réseau généré de 111 bus
- Capteurs avec 1% d'erreur
- Passage du bruit sur l'ensemble des capteurs de tension à 10% d'erreur

S'adapte en cas de fortes pertubations

Critère 5 : Ouverture

