Pra esse exercício comparei três algoritmo diferente, usando como comparação métricas de avaliação de desempenho e matriz de confusão: Exercício um sem a utilização do GridSearchCV;

n_samples: 2000						
	precision	recall	f1-score	support		
neg	0.86	0.80	0.83	240		
pos	0.82	0.88	0.85	260		
accuracy			0.84	500		
macro avg	0.84	0.84	0.84	500		
weighted avg	0.84	0.84	0.84	500		
[[191 49] [31 229]]						

Já no exercício dois com a utilização do GridSearchCV;

	precision	recall	f1-score	support
neg pos	0.89 0.82	0.85 0.88	0.87 0.85	275 225
accuracy macro avg weighted avg	0.86 0.86	0.86 0.86	0.86 0.86 0.86	500 500 500
[[233 42] [28 197]]				

Agora no exercício três aonde pede para utilizar algoritmo de classificação diferente foi usado o Naive Bayes e CountVectorizer;

n_samples: 20		11	£4	
	precision	recall	f1-score	support
neg	0.78	0.86	0.82	249
pos	0.85	0.76	0.80	251
accuracy			0.81	500
macro avg	0.81	0.81	0.81	500
weighted avg	0.81	0.81	0.81	500
[[214 35] [59 192]]				

Os três modelos tiveram um desempenho muito próximo, mas é importante lembrar que a escolha do modelo mais adequado depende do contexto e dos objetivos específicos do problema. No caso da classificação de reviews de filmes em positivos e negativos, é fundamental minimizar os erros de classificação, evitando dar uma classificação negativa a um filme que é bom ou uma classificação positiva a um filme que é ruim.

Dito isso, considerando a acurácia como métrica de desempenho, o melhor modelo foi o que utilizou o GridSearchCV, que obteve uma acurácia de 86%. No entanto, é importante avaliar outras métricas, como a precisão e o recall, e também considerar outros fatores relevantes para o problema em questão, antes de decidir qual modelo utilizar.