Azure 3-Tier 클라우드 자동화 구축

Microsoft Cybersecurity School

Team3

기준서 이승민 이헌범 임창현

2025.03.21

목 차

l. 프로젝트 개요2
1. 선정배경
2. 프로젝트 요구사항
3. 개발일정
4. 기술스택
5. 팀원구성
II. 프로젝트 설계4
1. Azure 아키텍처
2. Vnet 및 서브넷 구성
3. 공인 IP 할당
4. 네트워크 보안그룹 적용
5. NAT 게이트웨이 적용
6. SSH 키 및 워드프레스 생성 시작스크립트 작성
7. 가상머신 생성
8. 가용성 이미지를 생성하고 VMSS 정책설정
9. 어플리케이션 게이트웨이 적용
10.웹서비스에 DNS 적용
11.DB 서버 생성
Ⅲ. 테라폼 구현11
IV.시행착오 및 해결방안30
V. 참고문헌

I. 프로젝트 개요

1. 선정배경

사용자가 많은 서비스를 지원하기 위해 웹서버와 DB 서버로 구성된 2-Tier 아키텍처가 아닌 웹서버, 어플리케이션 서버 및 DB 서버로 구성된 3-Tier 아키텍처를 선택하는 것이 바람직 합니다.

3-Tier 아키텍처는 네트워크 구조가 복잡해지므로 코드형 인프라(Infrastrucrture as Code)를 통해 설정을 관리하는 것이 좋습니다. 따라서 이번 프로젝트에서 글로벌 퍼블릭 클라우드 Azure 에 코드형 인프라(IaC) 도구인 Terraform을 적용하여 가용성과 보안성이 향성된 3-Tier Azure 클라우드 인프라를 구축하고자 합니다.

그림 1 네트워크 아키텍처 비교

2. 프로젝트 요구사항

① Bastion 을 통한 보안성 강화

Azure 네트워크 보안그룹(NSG)을 사용하여 Bastion 서버를 통해서만 Web 서버 및 DB 서버에 접속하여 관리할 수 있도록 허용하였습니다. 관리자는 SSH 개인키를 소지해야 Bastion 서버에 접속할 수 있습니다.

② VMSS 로 웹 서버확장성 체크

Azure VMSS(Virtual Machine Scale Set)를 사용하여 부하분산된 VM 그룹을 만들고 관리할 수 있도록 하였습니다. 설정한 서버 증감기준에 따라 VMSS 의 자동 서버확장기능으로 일시적인 사용자 증감에 대처할 수 있습니다.

③ 3-Tier 아키텍처 구성

외부 사용자는 로드 밸런서를 통해 Web 서버에만 접근할 수 있도록 설정하였으며, DB 서버는 내부 네트워크에서만 접근 가능하도록 제한하여 보안을 강화였습니다.

3. 개발일정

일자	2025-03-17	2025-03-18	2025-03-19	2025-03-20	2025-03-21
요구사항 정의	0	0			
아키텍처 설계	0	0			
Azure 구성테스트	0	0	0	0	
테라폼 인프라자동화	0	0	0	0	
문서화 작업				0	0
수정 및 최종테스트				0	0

4. 기술스택

구분	Tools
Azure Services	NAT P-GW VMSS DNS Zones
Dev tool	Terraform 1.11.1 draw.io Xshell 8
WEB & WAS	Apache 2.4.63 Wordpress 6.7.2
Database	Azure Database for MySQL servers 8.0.21
Virtual OS	RockyLinux 9.3.20231113
Code Editor	Visual Studio Code 1.98.2

5. 팀원구성

이름	기준서	이승민	이헌범	임창현
역할	아키텍처 설계	요구사항 분석	테라폼 작성	최종테스트
월	구성도 작성	업무분담	PPT 작성	보고서 작성

Ⅱ. 프로젝트 설계

1. Azure 아키텍처

그림 2 Draw.io 에서 작성한 Azure 아키텍처

본 프로젝트는 Azure 기반 3-Tier 아키텍처 입니다.

사용자는 공개된 DNS 주소를 이용해 Public Subnet 의 어플리케이션 게이트웨이를 통하여 회사의 웹어플리케이션을 이용할 수 있습니다. 사용자가 늘어나더라도 관리자가 설정한 정책기준에 따라 웹서버에 오토스케일링이 적용되어 이용에 차질이 없도록 설계되었습니다.

관리자는 Public Subnet 의 Bastion 가상머신을 통해 Web 서버, Web-App 서버, DB 서버를 직접 접속하여 관리할 수 있습니다. 또한 VMSS 의 Autoscaling 정책을 통해 설정한 서버의 cpu 사용률 기준점을 바탕으로 서버 갯수가 자동으로 확장 또는 축소되어 비용관리를 최적화 할 수 있습니다.

2. Vnet 및 서브넷 구성

① Vnet

Vnet	IPv4 CIDR	역할
team3_Vnet	10.0.0.0/16	Korea Central 에 위치한 Vnet

② Subnet

Subnet	IPv4 CIDR	역할
team3_bastion	10.0.0.0/24	보안관리자만 접속가능하다
team3_load	10.0.1.0/24	외부에서 오는 HTTP 트래픽을 로드밸런싱한다
team3_nat	10.0.2.0/24	내부 VM 이 공인 IP 을 통해 외부로 향한다
team3_web1	10.0.3.0/24	이미지화 될 WEB1 서버가 위치한 곳이다
team3_web2	10.0.4.0/24	병행운영 할 WEB2 서버가 위치한 곳이다
team3_db	10.0.5.0/24	DB 서버가 위치한 곳이다
team3_auto	10.0.6.0/24	WEB1 이미지로 생성된 서버가 오토스케일링 된다

3. 공인 IP 할당

IP.id	IPv4	역할
team3_bastion_ip	4.218.19.242	Bastion 의 공인 IP
team3_nat_ip	4.218.20.249	NAT의 공인 IP
team3_appgwip	4.218.22.74	Application Gateway 의 공인 IP

그림 3 Terraform Output 모듈을 통해 Bastion 과 LB의 공인 IP를 출력

4. 네트워크 보안그룹 적용

team3_bastion_nsq

관리자의 IP 에서 Bastion 서버에 SSH(22 번 포트) 접속을 허용하는 네트워크 보안그룹(NSG)입니다. NSG 를 Bastion VM 의 NIC 에 적용합니다.

(2) team3_web_nsq

Bastion 서버의 공인 IP에서 WEB 서버의 SSH(22 번 포트) 접속을 허용하며, HTTP(80 번 포트)를 허용하는 네트워크 보안 그룹(NSG)입니다. NSG를 WEB1 VM 및 WEB2 VM의 NIC에 적용합니다.

5. NAT 게이트웨이 적용

1 team3_natgw

내부 서브넷의 VM 이 인터넷에 직접 노출되지 않도록, NAT IP 를 이용하여 외부로 나가는 패킷을 변환합니다. 내부 서브넷 web1, web2, auto 에 적용하여 보안을 향상시킵니다.

6. SSH 키 및 워드프레스 생성 시작스크립트 작성

local.id_rsa

SSH 개인키를 Bastion VM 에 배치하여 WEB 서버에 SSH 접속이 가능하게 하는 스크립트입니다.

2 local.wd

WEB1 및 WEB2 VM 에서 워드프레스를 설치하고 DB와 연동하게 하는 스크립트입니다.

그림 4 Bastion VM 에서 WEB IMAGE VM 에 원격접속하여 관리 가능

7. 가상머신 생성

VM.id	IPv4	Storage	OS	역할
team3_bastion	10.0.0.4	StandardSSD	Rocky 9.3.20231113	보안관리자 PC
team3_web1	10.0.3.4	StandardSSD	Rocky 9.3.20231113	이미지 웹서버
team3_web2	10.0.4.4	StandardSSD	Rocky 9.3.20231113	병행운영 웹서버

8. 가용성 이미지를 생성하고 VMSS 정책설정

① team3_image

WEB1 의 VM을 이미지화하여 동일한 환경을 가진 인스턴스를 배포할 수 있도록 설정합니다. 이를 통해 일관성을 유지하면서 장애발생 시 신속하게 복구할 수 있습니다.

② team3_gallery

갤러리를 생성하여 여러 VM에서 공통으로 사용할 수 있는 이미지를 저장할 수 있도록 합니다. 갤러리를 활용하면 여러 지역의 VM에 동일한 이미지를 배포할 수 있습니다.

3 team3_shimage

갤러리에 생성된 이미지를 공유할 수 있도록 저장합니다.

4 team3 version

이미지의 버전을 설정하여 업데이트 및 롤백을 관리할 수 있습니다.

(5) team3_vmss

VMSS 로 생성되는 SSD 종류와 Linux 버전 및 초기인스턴스 수를 지정할 수 있습니다. 이를 통해 자동 확장되는 VM 이 동일한 스펙과 환경을 유지할 수 있도록 관리할 수 있습니다.

6 team3_autoscale

VMSS 의 최소 및 최대 인스턴스 개수를 지정하여 자동 확장 정책을 적용합니다. CPU 사용량을 기준으로 VM 증설과 축소를 적용하여 비용절감과 성능 최적화를 동시에 달성할 수 있습니다.

그림 5 디폴트로 설정된 두 개의 VM 이 존재

그림 6 VM 에 원격접속하여 stress 명령어로 부하테스트를 실행

그림 7 부하테스트 실행 후 VM 이 최대설정인 6개까지 늘어난 모습

9. 어플리케이션 게이트웨이 적용

① team3_appgw

어플리케이션 게이트웨이는 7계층 로드밸런서 역할을 수행합니다. 웹서비스 HTTP에 대한 트래픽을 관리하고 특정 백엔드풀로 라우팅할 수 있도록 지정했습니다.

health-testpage-team3-VM1

health-testpage-team3-VM2

그림 8 어플리케이션 게이트웨이에 접속한 모습

10. 웹서비스에 DNS 적용

- ① team3_dns

 DNS 레코드를 관리하기 위한 기본 영역을 설정합니다.
- ② team3_root_record 루트 도메인@에 대해 A 레코드를 생성하여, 지정된 퍼블릭 IP에 연결합니다.
- ③ team3_root_cname
 www 서브도메인에 대한 A 레코드를 생성하고, 지정된 퍼블릭 IP를 타겟으로 연결합니다.
- ④ team3_ns
 "team3-ns"라는 네임서버(NS) 레코드를 생성하여, 도메인의 네임서버를 설정합니다.
- ⑤ team3_ptr
 IP 주소에서 도메인 이름으로의 역방향 검색을 가능하게 합니다.

그림 9 가비아 (https://domain.gabia.com)에서 Azure 네임서버를 등록

11. DB 서버 생성

1 team3_pridns

Private DNS Zone 을 활용하여 MySQL 서버의 사설 도메인 네임을 관리할 수 있습니다. MySQL 서버가 내부 네트워크(VNet)에서만 접근 가능하도록 Private Link 를 설정하는 경우, Private DNS 를함께 설정해야 내부에서 FQDN(예: mysql.team3.private.azure)으로 접근이 가능합니다.

2 team3_dns_link

Private DNS Zone 을 특정 VNet 에 연결하는 역할을 합니다. Azure 의 Private DNS Zone 은 기본적으로 네트워크와 연결되어 있지 않으므로, VNet 에서 해당 DNS 를 사용할 수 있도록 Virtual Network Link 를 설정해야 합니다. 이를 통해 동일한 VNet 또는 피어링된 VNet 내에서 MySQL 서버를 도메인 네임을 통해 접근할 수 있습니다.

3 team3_mysql

Azure MySQL 서버의 이름 또는 Terraform 에서 정의한 논리적 식별자를 의미합니다. Terraform 코드에서 MySQL 서버의 리소스를 생성할 때 Identifier을 설정하는 데 사용됩니다.

4 team3_mysql_ep

MySQL 서버가 생성된 후, 클라이언트가 접속할 수 있도록 제공되는 엔드포인트(FQDN 또는 IP 주소)를 의미합니다. Azure MySQL은 기본적으로 Public Endpoint 를 제공하지만, Private Link 를 설정한 경우 내부 VNet 을 통해 Private Endpoint 로 접속해야 합니다.

그림 10 DNS 로 접속한 워드프레스

III. 테라폼 구현

그림 11 환경구성을 위한 테라폼 파일

00.init.tf

```
terraform {
    required_providers {
        azurerm = {
            source = "hashicorp/azurerm"
            version = "~> 4.23"
        }
    }
}

provider "azurerm" {
    subscription_id = var.subid
    features {}
}
```

01_rg.tf

```
# Create Resource Group
resource "azurerm_resource_group" "team3_rg" {
  name = "02-${var.name}-rg"
  location = var.location
}
```

02_vnet.tf

```
# Create Virtual Network
resource "azurerm virtual network" "team3 vnet" {
                    = "${var.name}-vnet"
 resource_group_name = azurerm_resource_group.team3_rg.name
 location
                    = azurerm_resource_group.team3_rg.location
 address_space
                    = ["10.0.0.0/16"]
}
# Create Public Subnet for Bastion
resource "azurerm subnet" "team3 bastion" {
                     = "${var.name}-bastion"
 name
 resource_group_name = azurerm_resource_group.team3_rg.name
 virtual_network_name = azurerm_virtual_network.team3_vnet.name
 address prefixes = ["10.0.0.0/24"]
}
# Create Load Subnet
resource "azurerm subnet" "team3 load" {
                     = "${var.name}-load"
 resource_group_name = azurerm_resource_group.team3_rg.name
 virtual network name = azurerm virtual network.team3 vnet.name
 address prefixes = ["10.0.1.0/24"]
}
# Create NAT Subnet
resource "azurerm_subnet" "team3_nat" {
                     = "${var.name}-nat"
 name
 resource_group_name = azurerm_resource_group.team3_rg.name
 virtual network name = azurerm virtual network.team3 vnet.name
 address_prefixes = ["10.0.2.0/24"]
}
// Web Subnet 들이 필요없는 상황이라 삭제 고려
# Create Web1 Subnet
resource "azurerm_subnet" "team3_web1" {
 name
                     = "${var.name}-web1"
 resource_group_name = azurerm_resource_group.team3_rg.name
 virtual_network_name = azurerm_virtual_network.team3_vnet.name
 address prefixes = ["10.0.3.0/24"]
```

```
# Create Web2 Subnet
resource "azurerm_subnet" "team3_web2" {
                      = "${var.name}-web2"
 resource_group_name = azurerm_resource_group.team3_rg.name
 virtual network name = azurerm virtual network.team3 vnet.name
 address_prefixes = ["10.0.4.0/24"]
# Create DB Subnet
resource "azurerm_subnet" "team3_db" {
                     = "${var.name}-db"
 resource_group_name = azurerm_resource_group.team3_rg.name
 virtual_network_name = azurerm_virtual_network.team3_vnet.name
 address prefixes = ["10.0.5.0/24"]
# Subnet for Auto Scale
resource "azurerm_subnet" "team3_auto" {
 name
                      = "${var.name}-auto"
 resource group name = azurerm resource group.team3 rg.name
 virtual network name = azurerm virtual network.team3 vnet.name
 address_prefixes = ["10.0.6.0/24"]
```

03_publicip.tf

```
# Public IP for Bastion VM
resource "azurerm_public_ip" "team3_bastion ip" {
  name
                     = "${var.name}-bastion-ip"
  resource group name = azurerm resource group.team3 rg.name
                    = azurerm_resource_group.team3_rg.location
 location
  allocation_method = "Static"
                     = "Standard"
  sku
}
# Public IP for NAT Gateway
resource "azurerm_public_ip" "team3_nat_ip" {
                     = "${var.name}-nat-ip"
  resource_group_name = azurerm_resource_group.team3_rg.name
 location
                    = azurerm resource group.team3 rg.location
  allocation_method = "Static"
                     = "Standard"
  sku
}
# Public IP for Load Balancer
resource "azurerm_public_ip" "team3_appgwip" {
                     = "${var.name}-lb-ip"
  name
  resource_group_name = azurerm_resource_group.team3_rg.name
```

```
location = azurerm_resource_group.team3_rg.location
allocation_method = "Static"
sku = "Standard"
}
```

04_nsg.tf

```
# Network Security Group for Bastion
resource "azurerm_network_security_group" "team3_bastion_nsg" {
                     = "${var.name}-bat-nsg"
 name
 location
                     = azurerm_resource_group.team3_rg.location
 resource_group_name = azurerm_resource_group.team3_rg.name
 # Bastion SSH Allow Rule
 security_rule {
   name
                             = "Allow-SSH-From-Host"
                             = 200
   priority
   direction
                             = "Inbound"
                             = "Allow"
   access
   protocol
                             = "Tcp"
                             = "*"
   source port range
   destination_port_range
                            = "22"
   source_address_prefix = var.local_public_ip
   destination_address_prefix = var.bastion_ip
 }
}
# Network Security Group for Internal Network
resource "azurerm_network_security_group" "team3_web_nsg" {
 name
                     = "${var.name}-web-nsg"
                    = azurerm resource group.team3 rg.location
 location
 resource_group_name = azurerm_resource_group.team3_rg.name
 # Web SSH Allow Rule
 security_rule {
                             = "Allow-SSH-From-Bastion"
   name
                             = 200
   priority
                             = "Inbound"
   direction
                             = "Allow"
   access
                             = "Tcp"
   protocol
                             = "*"
   source_port_range
                            = "22"
   destination port range
   source_address_prefix
                            = var.bastion_ip
   destination_address_prefix = "*"
 }
 # Web Http Allow Rule
 security_rule {
                             = "Allow-HTTP-From-All"
   name
   priority
                             = 210
   direction
                              = "Inbound"
```

```
access = "Allow"
protocol = "Tcp"
source_port_range = "*"
destination_port_range = "80"
source_address_prefix = "*"
destination_address_prefix = var.auto_ip
}
```

05_natgw.tf

```
# Create NAT Gateway
resource "azurerm_nat_gateway" "team3_natgw" {
                    = "${var.name}-natgw"
 name
 location
                    = azurerm_resource_group.team3_rg.location
 resource_group_name = azurerm_resource_group.team3_rg.name
}
# NAT Gateway Association
resource "azurerm subnet nat gateway association" "team3 web1 nat" {
 subnet_id = azurerm_subnet.team3_web1.id
 nat gateway id = azurerm nat gateway.team3 natgw.id
}
resource "azurerm_subnet_nat_gateway_association" "team3_web2_nat" {
 subnet_id = azurerm_subnet.team3_web2.id
 nat_gateway_id = azurerm_nat_gateway.team3_natgw.id
}
resource "azurerm subnet nat gateway association" "team3 web nat" {
 subnet id
            = azurerm_subnet.team3_auto.id
 nat gateway id = azurerm nat gateway.team3 natgw.id
}
# Attachment Public IP -> NAT Gateway
resource "azurerm_nat_gateway_public_ip_association" "team3_natgwp_pubip" {
 nat_gateway_id = azurerm_nat_gateway.team3_natgw.id
 public_ip_address_id = azurerm_public_ip.team3_nat_ip.id
```

06_nic.tf

```
ip_configuration {
                                 = "${var.name}-bat-ip"
   name
   subnet id
                                 = azurerm_subnet.team3_bastion.id
    private ip address allocation = "Static"
   private_ip_address
                                 = var.bastion ip
   public_ip_address_id
                                = azurerm public ip.team3 bastion ip.id
  }
# Network Interface Card for Web1
resource "azurerm_network_interface" "team3_web1_nic" {
                     = "${var.name}-web1-nic"
  name
                     = azurerm_resource_group.team3_rg.location
  location
  resource_group_name = azurerm_resource_group.team3_rg.name
  ip_configuration {
                                 = "${var.name}-web1-ip"
   name
                                 = azurerm subnet.team3 web1.id
   subnet id
    private_ip_address_allocation = "Static"
   private ip address
                                 = "10.0.3.4"
  }
# Network Interface Card for Web2
resource "azurerm_network_interface" "team3_web2_nic" {
                     = "${var.name}-web2-nic"
  name
                     = azurerm_resource_group.team3_rg.location
 location
  resource_group_name = azurerm_resource_group.team3_rg.name
  ip configuration {
   name
                                 = "${var.name}-web2-ip"
                                 = azurerm subnet.team3 web2.id
   subnet id
   private_ip_address_allocation = "Static"
    private ip address
                                 = "10.0.4.4"
  }
```

07_nsg-nic.tf

```
# Bastion NIC <-> NSG

resource "azurerm_network_interface_security_group_association"

"team3_bat_nic_nsgasso" {
   network_interface_id = azurerm_network_interface.team3_bat_nic.id
   network_security_group_id = azurerm_network_security_group.team3_bastion_nsg.id
}

# Web NIC <-> NSG
```

08_bastion_vm.tf

```
# Create Bastion VM
resource "azurerm_linux_virtual_machine" "team3_bastion" {
                     = "${var.name}-bastion"
 resource group name = azurerm resource group.team3 rg.name
 location
                      = azurerm_resource_group.team3_rg.location
 size
                      = "Standard F1s"
 admin_username
                      = var.name
 network interface ids = [azurerm network interface.team3 bat nic.id]
 user_data
                      = base64encode(local.id rsa)
 admin_ssh_key {
   username = var.name
   public key = file("id rsa.pub")
 }
 os disk {
   caching
                      = "ReadWrite"
   storage_account_type = "StandardSSD_LRS"
 }
 source_image_reference {
   publisher = "resf"
   offer = "rockylinux-x86_64"
   sku
           = "9-1vm"
   version = "9.3.20231113"
 plan {
   publisher = "resf"
   product = "rockylinux-x86_64"
   name = "9-1vm"
 }
```

09_web_vm.tf

```
# Create VM Web1
resource "azurerm_linux_virtual_machine" "team3_web1" {
                      = "${var.name}-web1"
 name
 resource_group_name = azurerm_resource_group.team3_rg.name
 location
                      = azurerm resource group.team3 rg.location
 size
                      = "Standard F1s"
 admin_username
                      = var.name
 network interface ids = [azurerm network interface.team3 web1 nic.id]
 user_data
                      = base64encode(local.wdimage)
 admin_ssh_key {
   username = var.name
   public_key = file("id_rsa.pub")
 }
 os_disk {
                       = "ReadWrite"
   caching
   storage_account_type = "StandardSSD_LRS"
 }
 source_image_reference {
   publisher = "resf"
   offer = "rockylinux-x86 64"
   sku = "9-1vm"
   version = "9.3.20231113"
 }
 plan {
   publisher = "resf"
   product = "rockylinux-x86_64"
         = "9-1vm"
   name
 }
# Create VM Web2
resource "azurerm_linux_virtual_machine" "team3_web2" {
                      = "${var.name}-web2"
 resource_group_name = azurerm_resource_group.team3_rg.name
 location
                      = azurerm resource group.team3 rg.location
 size
                      = "Standard F1s"
                      = var.name
 admin username
 network_interface_ids = [azurerm_network_interface.team3_web2_nic.id]
 user_data
                      = base64encode(local.wd)
 admin ssh key {
   username = var.name
   public key = file("id rsa.pub")
```

10_web1gen.tf

```
resource "time_sleep" "wait_before_stop" {
  create duration = "120s"
 depends_on = [azurerm_linux_virtual_machine.team3_web1]
}
resource "null resource" "stop web1" {
  provisioner "local-exec" {
   command = "az vm stop --resource-group 02-team3-rg --name team3-web1"
 }
  depends_on = [time_sleep.wait_before_stop]
resource "null resource" "deal web1" {
  provisioner "local-exec" {
    command = "az vm deallocate --resource-group 02-team3-rg --name team3-web1"
  }
 depends_on = [null_resource.stop_web1]
}
resource "null_resource" "gen_web1" {
  provisioner "local-exec" {
    command = "az vm generalize --resource-group 02-team3-rg --name team3-web1"
```

```
}
depends_on = [null_resource.deal_web1]
}
```

11_image.tf

```
resource "azurerm_image" "team3_image" {
                          = "${var.name}-image"
  name
  resource_group_name
                          = azurerm_resource_group.team3_rg.name
 location
                           = azurerm_resource_group.team3_rg.location
  source_virtual_machine_id = azurerm_linux_virtual_machine.team3_web1.id
                           = "V2"
 hyper_v_generation
 depends on = [null resource.gen web1]
resource "azurerm_shared_image_gallery" "team3_gallery" {
                     = "${var.name}gallery"
  name
  resource group name = azurerm resource group.team3 rg.name
                     = azurerm_resource_group.team3_rg.location
  depends_on = [azurerm_image.team3_image]
resource "azurerm_shared_image" "team3_shimage" {
                     = "${var.name}-shimage"
  name
                     = azurerm_shared_image_gallery.team3_gallery.name
  gallery name
  resource_group_name = azurerm_resource_group.team3_rg.name
  location
                    = azurerm resource group.team3 rg.location
  os_type
                     = "Linux"
                    = false
  specialized
 hyper_v_generation = "V2"
  identifier {
    publisher = var.name
            = "web-template"
   offer
             = "wordpress-v1"
    sku
  }
  depends_on = [azurerm_shared_image_gallery.team3_gallery]
resource "azurerm_shared_image_version" "team3_version" {
                     = "1.0.0"
  name
 gallery_name
                     = azurerm_shared_image_gallery.team3_gallery.name
  image_name
                     = azurerm_shared_image.team3_shimage.name
  resource group name = azurerm resource group.team3 rg.name
```

12_vmss.tf

```
# Create VMSS
resource "azurerm_linux_virtual_machine_scale_set" "team3_vmss" {
                    = "${var.name}-vmss"
 name
 resource_group_name = azurerm_resource_group.team3_rg.name
                   = azurerm_resource_group.team3_rg.location
 location
 upgrade_mode
                   = "Manual"
                   = "Standard F1s"
 sku
 instances
                   = 2
 admin_username
                   = var.name
 source_image_id = azurerm_shared_image_version.team3_version.id
 plan {
         = "9-lvm"
   name
   publisher = "resf"
   product = "rockylinux-x86_64"
 }
 admin ssh key {
   username = var.name
   public_key = file("id_rsa.pub")
 }
 os_disk {
                      = "ReadWrite"
   caching
   storage_account_type = "StandardSSD_LRS"
 }
 network interface {
   name = "${var.name}-vmss-nic"
   primary = true
   ip_configuration {
                                                = "${var.name}-nic"
     name
     primary
                                                = true
```

13 vmssrule.tf

```
resource "azurerm_monitor_autoscale_setting" "team3_autoscale" {
                    = "${var.name}-autoscale"
 resource_group_name = azurerm_resource_group.team3_rg.name
                = azurerm_resource_group.team3_rg.location
 target_resource_id = azurerm_linux_virtual_machine_scale_set.team3_vmss.id
 profile {
   name = "${var.name}-Profile"
   capacity {
     default = 2
     minimum = 2
     maximum = 6
   }
   rule {
     metric trigger {
       metric_name = "Percentage CPU"
       metric resource id = azurerm linux virtual machine scale set.team3 vmss.id
       time_grain
                        = "PT1M"
       statistic
                        = "Average"
       time_window
                        = "PT5M"
       time_aggregation = "Average"
                        = "GreaterThan"
       operator
                        = 75
       threshold
       metric_namespace = "microsoft.compute/virtualmachinescalesets"
     scale_action {
       direction = "Increase"
       type = "ChangeCount"
       value = "1"
       cooldown = "PT1M"
     }
   }
   rule {
     metric_trigger {
```

```
metric_name = "Percentage CPU"
   metric_resource_id = azurerm_linux_virtual_machine_scale_set.team3_vmss.id
               = "PT1M"
   time_grain
                   = "Average"
   statistic
   time_window = "PT5M"
   time_aggregation = "Average"
                   = "LessThan"
   operator
   threshold
                   = 25
 }
 scale_action {
   direction = "Decrease"
   type = "ChangeCount"
          = "1"
   value
   cooldown = "PT1M"
}
```

14_appgw.tf

```
# Create Application Gateway
resource "azurerm_application_gateway" "team3_appgw" {
                    = "${var.name}-appgw"
 name
 resource_group_name = azurerm_resource_group.team3_rg.name
 location
                    = azurerm_resource_group.team3_rg.location
 sku {
   name = "Basic"
   tier = "Basic"
   capacity = 2
 }
 gateway_ip_configuration {
   name = "${var.name}-gateway-ip-configuration"
   subnet_id = azurerm_subnet.team3_load.id
 }
 # For HTTP Service
 frontend_port {
   name = var.frontend_port_name
   port = 80
 # Attachment Public IP
 frontend_ip_configuration {
                       = var.frontend_ip_configuration_name
   public_ip_address_id = azurerm_public_ip.team3_appgwip.id
```

```
# Backend IP Setting
 backend address pool {
               = var.backend_address_pool_name
   ip addresses = ["10.0.4.4"]
 }
 backend_http_settings {
                        = var.http setting name
   cookie_based_affinity = "Disabled"
                       = "/"
   path
   port
                        = 80
                       = "Http"
   protocol
   request_timeout = 60
 }
 http_listener {
                                 = var.listener name
   name
   frontend ip configuration name = var.frontend ip configuration name
   frontend_port_name
                                = var.frontend_port_name
                                 = "Http"
   protocol
 }
 request routing rule {
   name
                            = var.request_routing_rule_name
                            = "Basic"
   rule_type
   http_listener_name = var.listener_name
   backend_address_pool_name = var.backend_address_pool_name
   backend_http_settings_name = var.http_setting_name
   priority
                             = 100
 }
}
```

15_dns.tf

```
resource "azurerm_dns_zone" "team3_dns" {
                     = "semicolt.store"
  name
  resource_group_name = azurerm_resource_group.team3_rg.name
}
resource "azurerm_dns_a_record" "team3_root_record" {
                     = "@"
 name
  resource group name = azurerm resource group.team3 rg.name
                    = azurerm_dns_zone.team3_dns.name
 zone_name
 ttl
                     = 300
 target_resource_id = azurerm_public_ip.team3_appgwip.id
}
resource "azurerm_dns_a_record" "team3_root_cname" {
                     = "www"
 name
  resource_group_name = azurerm_resource_group.team3_rg.name
```

```
zone_name
                     = azurerm_dns_zone.team3_dns.name
  ttl
                     = 300
  target_resource_id = azurerm_public_ip.team3_appgwip.id
resource "azurerm_dns_ns_record" "team3_ns" {
                     = "team3-ns"
  name
                     = azurerm_dns_zone.team3_dns.name
  zone name
  resource_group_name = azurerm_resource_group.team3_rg.name
 ttl
                     = 300
  records
                     = ["ns1.semicolt.store"]
resource "azurerm_dns_ptr_record" "team3_ptr" {
                     = "team3-ptr"
  name
  zone_name
                     = azurerm_dns_zone.team3_dns.name
 resource_group_name = azurerm_resource_group.team3_rg.name
                     = 300
  records
                     = ["semicolt.store"]
```

16_db.tf

```
# DNS Zone for MySQL
resource "azurerm_private_dns_zone" "team3_pridns" {
                     = "${var.name}.mysql.database.azure.com"
  name
  resource_group_name = azurerm_resource_group.team3_rg.name
}
# DNS zone Virtual Network Links
resource "azurerm_private_dns_zone_virtual_network_link" "team3_dns_link" {
                       = "${var.name}-pridns-vnetzone.com"
  name
 resource_group_name = azurerm_resource_group.team3_rg.name
 virtual_network_id = azurerm_virtual_network.team3_vnet.id
  private_dns_zone_name = azurerm_private_dns_zone.team3_pridns.name
}
# Create MySQL Server
resource "azurerm_mysql_flexible_server" "team3_mysql" {
                              = "${var.name}-mysql"
  resource_group_name
                              = azurerm_resource_group.team3_rg.name
 location
                              = azurerm_resource_group.team3_rg.location
  administrator_login
                              = var.name
  administrator password
                              = var.password
 backup_retention_days
                              = 7
  geo_redundant_backup_enabled = false
  sku name
                              = "B_Standard_B1ms"
                              = "8.0.21"
  version
```

```
lifecycle {
   ignore_changes = [
     zone,
   1
 }
# Create Private Endpoint
resource "azurerm_private_endpoint" "team3_mysql_ep" {
                     = "${var.name}-mysql-ep"
 resource_group_name = azurerm_resource_group.team3_rg.name
 location
                    = azurerm_resource_group.team3_rg.location
 subnet id
                    = azurerm subnet.team3 db.id
 private_service_connection {
                                 = "mysql"
   private connection resource id = azurerm mysql flexible server.team3 mysql.id
   subresource_names
                               = ["mysqlServer"]
   is manual connection
                                 = false
 private dns zone group {
                        = "${var.name}-mysql-dns-zone-group"
   name
   private dns zone ids = [azurerm private dns zone.team3 pridns.id]
 }
# Create Database Name "wordpress"
resource "azurerm_mysql_flexible_database" "team3_db" {
                    = "utf8mb4"
 charset
 collation
                    = "utf8mb4_unicode_ci"
                    = "wordpress"
 name
 resource_group_name = azurerm_resource_group.team3_rg.name
                = azurerm_mysql_flexible_server.team3_mysql.name
 server name
# Change Parameter
resource "azurerm_mysql_flexible_server_configuration" "team3_mysql_config" {
                     = "require secure transport"
 name
 resource_group_name = azurerm_resource_group.team3_rg.name
                    = azurerm_mysql_flexible_server.team3_mysql.name
 server_name
                    = "OFF"
 value
```

100_var.tf

```
variable "location" {
  type = string
```

```
default = "Korea Central"
}
variable "name" {
 type = string
 default = "team3"
variable "bastion_ip" {
 type = string
 default = "10.0.0.4"
}
variable "local_public_ip" {
 type = string
 default = "61.108.60.26"
variable "auto_ip" {
 type = string
 default = "10.0.6.0/24"
variable "password" {
 type = string
 default = "It12345!"
variable "id_rsa" {
type = string
 default = "----BEGIN RSA PRIVATE KEY-----
\nMIIEogIBAAKCAQEAk8ugubI2AOE5utL6qcZ68khg5KsU6BnNRzQF4OMasdupYIRh\nwNLKT+kT/TJhdOsred
(blank)
DWQ=\n----END RSA PRIVATE KEY----"
}
variable "subid" {
 type = string
 default = "99b79efe-ebd6-468c-b39f-5669acb259e1"
variable "backend_address_pool_name" {
 default = "team3-Backaddrpool"
variable "frontend_port_name" {
 default = "team3-FrontendPort"
}
```

```
variable "frontend_ip_configuration_name" {
  default = "team3-AGIPConfig"
}

variable "http_setting_name" {
  default = "team3-HTTPsetting"
}

variable "listener_name" {
  default = "team3-Listener"
}

variable "request_routing_rule_name" {
  default = "team3-RoutingRule"
}
```

101_local.tf

```
# USER DATA File for Bastion VM
locals {
  id rsa = <<USER DATA
#!/bin/bash
mkdir /home/${var.name}/.ssh
echo -e "${var.id_rsa}" > /home/${var.name}/.ssh/id_rsa
chmod 600 /home/${var.name}/.ssh/id_rsa
chown ${var.name}.${var.name} /home/${var.name}/.ssh/id_rsa
USER DATA
}
# USER DATA File for Web Service VM
locals {
 wd = <<USER DATA
#!/bin/bash
setenforce 0
grubby --update-kernel ALL --args selinux=0
yum install -y httpd wget tar php php-cli php-pdo php-fpm php-json php-mysqlnd
wget https://ko.wordpress.org/wordpress-6.7.2-ko KR.tar.gz
tar xvfz wordpress-6.7.2-ko_KR.tar.gz
cp -ar wordpress/* /var/www/html/
sed -i "s/DirectoryIndex index.html/DirectoryIndex index.php/g"
/etc/httpd/conf/httpd.conf
cp /var/www/html/{wp-config-sample.php,wp-config.php}
sed -i "s/database_name_here/wordpress/g" /var/www/html/wp-config.php
sed -i "s/username_here/${var.name}/g" /var/www/html/wp-config.php
sed -i "s/password_here/It12345!/g" /var/www/html/wp-config.php
sed -i "s/localhost/10.0.5.4/g" /var/www/html/wp-config.php
cat > /var/www/html/health.html << eof</pre>
```

```
<html><body><h1>health-testpage</h1></body></html>
eof
chown -R apache.apache /var/www
systemctl enable --now httpd
USER DATA
}
# USER DATA File for Web Service VM
locals {
  wdimage = <<USER DATA
#!/bin/bash
setenforce 0
grubby --update-kernel ALL --args selinux=0
yum install -y WALinuxAgent httpd wget tar php php-cli php-pdo php-fpm php-json php-
mysqlnd
wget https://ko.wordpress.org/wordpress-6.7.2-ko_KR.tar.gz
tar xvfz wordpress-6.7.2-ko KR.tar.gz
cp -ar wordpress/* /var/www/html/
sed -i "s/DirectoryIndex index.html/DirectoryIndex index.php/g"
/etc/httpd/conf/httpd.conf
cp /var/www/html/{wp-config-sample.php,wp-config.php}
sed -i "s/database name here/wordpress/g" /var/www/html/wp-config.php
sed -i "s/username_here/${var.name}/g" /var/www/html/wp-config.php
sed -i "s/password_here/It12345!/g" /var/www/html/wp-config.php
sed -i "s/localhost/10.0.5.4/g" /var/www/html/wp-config.php
cat > /var/www/html/health.html << eof</pre>
<html><body><h1>health-testpage</h1></body></html>
chown -R apache.apache /var/www
systemctl enable --now httpd
waagent -deprovision -force
USER DATA
```

102_output.tf

```
# Check Public IP

output "Bastion_Public_IP" {
   value = azurerm_public_ip.team3_bastion_ip.ip_address
}

output "LB_Public_IP" {
   value = azurerm_public_ip.team3_appgwip.ip_address
}
```

IV. 시행착오 및 해결방안

▶ 불충분한 RockyLinux 이미지 정보

VM 에 사용할 Rockylinux를 정보를 확인하려고 했으나 Azure 마켓플레이스에서는 코드에 작성할수 있을만큼 충분한 정보가 노출되어 있지 않았습니다. 웹 검색결과를 참고하여 아래와 같이 az vm image list 명령어를 통해 얻은 버전정보로 코드를 작성할 수 있었습니다.

그림 12 Azure Portal 에서 확인되는 RockyLinux 이미지 정보

C:\Users\secu16>az vm image listpublisher resfoffer rockylinux-x86_64alloutput table						
Architecture	Offer	Publisher	Sku	Urn	Version	
x64	rockylinux-x86_64	resf	8-base	resf:rockylinux-x86_64:8-base:8.9.20231119	8.9.20231119	
x64	rockylinux-x86_64	resf		resf:rockylinux-x86_64:8-lvm:8.9.20231119		
x64	rockylinux-x86_64	resf	9-base	resf:rockylinux-x86_64:9-base:9.3.20231113	9.3.20231113	
x64	rockylinux-x86_64	resf	9-lvm	resf:rockylinux-x86_64:9-lvm:9.3.20231113	9.3.20231113	

그림 13 az vm image list 명령어로 버전 확인

✓ 해결방안을 적용한 09 web vm.tf

```
source_image_reference {
  publisher = "resf"
  offer = "rockylinux-x86_64"
  sku = "9-lvm"
  version = "9.3.20231113"
}
```

이미지 생성오류

WEB1을 통해 이미지를 등록해도 정상적으로 VM이 일반화 되지 않았습니다. 이미지 일반화는 순차처리가 요구되는데 테라폼에서는 모듈 실행 순서가 지켜지지 않아 발생하는 문제였습니다. 따라서 depends_on 코드로 순서에 맞게 실행되도록 하여 VMSS 이미지를 정상적으로 생성하는 것을 확인할 수 있었습니다.

그림 14 이미지 일반화의 순차처리 설계

유저데이터 복사오류

VM 생성 후 일반화에 즉시 돌입하여 발생하는 오류였습니다. 따라서 time_sleep 모듈로 대기시간을 2 분 부여하여 정상적으로 VM 이 생성된 후에 일반화가 시작되도록 하였습니다.

```
+ setenforce 0
+ grubby --update-kernel ALL --args selinux=0
+ dnf config-manager --set-enabled crb
+ dnf install -y WALinuxAgent httpd wget tar php php-cli php-pdo php-fpm php-json php-mysqlnd
Rocky Linux 9 - Base0S
716 kB/s | 2.3 MB 00:03
Rocky Linux 9 - AppStream
1.8 MB/s | 8.6 MB 00:04
Cloud-init v. 23.1.1-11.el9.0.1 running 'init-local' at Sun, 23 Mar 2025 14:01:07 +0000. Up 12.83 seconds.
Cloud-init v. 23.1.-11.el9.0.1 running 'init' at Sun, 23 Mar 2025 14:01:10 +0000. Up 15.89 seconds.
ci-info:
ci-info:
                                                              ++++++++Net device info+++
             | Device |
   -info:
-info:
                                Up
                                                          Address
                                                                                                   Mask
                                                                                                                     Scope
                                                                                                                                          Hw-Address
                                                          10.0.3.4
                                                                                           255.255.255.0
                                                                                                                    global
link
                                                                                                                                   60:45:bd:44:fb:4e
60:45:bd:44:fb:4e
   -info:
                  eth0
lo
lo
                                          fe80::6245:bdff:fe44:fb4e/64
127.0.0.1
::1/128
                                                                                               255.0.0.0
                              True
True
                                                                                                                       host
 i-info:
```

그림 15 일반화 생성오류 메시지

✓ 해결방안을 적용한 10_web1gen.tf

```
resource "time_sleep" "wait_before_stop" {
  create duration = "120s"
 depends on = [azurerm linux virtual machine.team3 web1]
resource "null_resource" "stop_web1" {
  provisioner "local-exec" {
    command = "az vm stop --resource-group 02-team3-rg --name team3-web1"
  }
 depends on = [time sleep.wait before stop]
resource "null_resource" "deal_web1" {
  provisioner "local-exec" {
    command = "az vm deallocate --resource-group 02-team3-rg --name team3-web1"
 }
 depends on = [null resource.stop web1]
resource "null_resource" "gen_web1" {
  provisioner "local-exec" {
    command = "az vm generalize --resource-group 02-team3-rg --name team3-web1"
  }
  depends on = [null resource.deal web1]
```

V. 참고문헌

- Microsoft. (n.d.). *Microsoft Azure Portal*. Retrieved March 21, 2025
 https://portal.azure.com
- 2. Microsoft. (n.d.). *Design and implement Microsoft Azure networking solutions (AZ-700)*. Microsoft Learn. Retrieved March 21, 2025

https://learn.microsoft.com/ko-kr/training/paths/design-implement-microsoft-azure-networking-solutions-az-700/

3. HashiCorp. (n.d.). *Azure Resource Manager (azurerm) provider*. Terraform Registry. Retrieved March 21, 2025

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs

4. Microsoft. (n.d.). *Install the Azure CLI on Windows using winget*. Microsoft Learn. Retrieved March 21, 2025

https://learn.microsoft.com/en-us/cli/azure/install-azure-cli-windows?pivots=winget

5. Stack Overflow user. (2023, August 30). *Create a Rocky Linux virtual machine on Azure with Terraform?* Stack Overflow. Retrieved March 21, 2025

https://stackoverflow.com/questions/77016500/create-a-rocky-linux-virtual-machine-on-azure-with-terraform/78705990#78705990