MATH 151B MIDTERM SAMPLE EXAM

Problem 1

Every rational number x can be written in the form $x = \frac{m}{n}$ where n > 0 and m and n are integers without common divisors. When x = 0, we take n = 1. Consider the following function f on \mathbb{R} where f(x) = 0 if x is irrational and $f(x) = \frac{1}{n}$ if $x = \frac{m}{n}$ is rational. Prove that f is continuous at every irrational point and f has a simple discontinuity at every rational point.

Problem 2

Suppose f is real and three times differentiable on [-1, 1], such that

$$f(-1) = 0$$
, $f(0) = 0$, $f(1) = 1$, $f'(0) = 0$.

Prove that $f^{(3)}(x) \ge 3$ for some $x \in (-1, 1)$.

Problem 3

Suppose α is continuous and increasing on [a, b] and f is the function such that $f(x_0) = 1$ and f(x) = 0 if $x \neq x_0$. Prove that

$$\int f d\alpha = 0.$$

Problem 4

Suppose f and g are complex differentiable function on (0,1), $f(x) \to 0$, $g(x) \to 0$, $f'(x) \to A$, $g'(x) \to B$ as $x \to 0$ where A and B are complex numbers and $B \neq 0$. Prove that

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{A}{B}$$