Five classic components

Binary arithmetic

- (Sounds scary)
- So far we studied
 - Instruction set architecture basic
 - MIPS architecture & assembly language
- We will review binary arithmetic algorithms and their implementations
- Binary arithmetic will form the basis for CPU's datapath design

Binary number representations

- We looked at how to represent a number (in fact the value represented by a number) in binary
 - Unsigned numbers everything is positive
- We will deal with more complicated cases
 - Negative numbers
 - Real numbers (a.k.a. floating-point numbers)

- Limited number of binary numbers (patterns of 0s and 1s)
 - 8-bit number: 256 patterns, 00000000 to 11111111
 - in general, there are 2^N bit patterns, where N is bit width

16 bit: $2^{16} = 65,536$ bit patterns

32 bit: $2^{32} = 4,294,967,296$ bit patterns

- Unsigned numbers use patterns for 0 and positive numbers
 - 8-bit number range [0..255] corresponds to

00000000 0 00000001 1

-

1111111 255

- 32-bit number range [0..4294,967,295]
- in general, the range is [0..2^N-1]

Binary addition

```
0 + 0 = 0, carry = 0 (no carry)
1 + 0 = 1, carry = 0
0 + 1 = 1, carry = 0
1 + 1 = 0, carry = 1
```

Binary subtraction

```
0 - 0 = 0, borrow = 0 (no borrow)
1 - 0 = 1, borrow = 0
0 - 1 = 1, borrow = 1
1 - 1 = 0, borrow = 0
```

- Binary arithmetic is straightforward
- Addition: Just add numbers and carry as necessary
- Consider adding 8-bit numbers:

- Binary arithmetic is straightforward
- Subtraction: Just subtract and borrow as necessary
- Consider subtracting 8-bit numbers:

CS/CoE0447: Computer Organization and Assembly Language

(i.e., "borrow overflow")

Unsigned Binary to Decimal

- How to convert binary number?
 - First, each digit is position *i*, numbered right to left
 - e.g., for 8-bit number: b₇b₆b₅b₄ b₃b₂b₁b₀
- Now, we just add up powers of 2
 - $b_0 \times 2^0 + b_1 \times 2^1 + b_2 \times 2^2 + \dots + b_7 \times 2^7$
- An example

```
1011 0111
= 1 \times 2^{0} + 1 \times 2^{1} + 1 \times 2^{2} + 0 \times 2^{3} + 1 \times 2^{4} + 1 \times 2^{5} + 0 \times 2^{6} + 1 \times 2^{7}
= 1 + 2 + 4 + 0 + 16 + 32 + 0 + 128
= 183d
```

• $v = \sum_{i=1}^{n} (b_i \times 2^i)$, where $0 \le i \le K-1$, where K=# bits, i is bit posn

Unsigned Binary Numbers in MIPS

- MIPS instruction set provides support
 - addu \$1,\$2,\$3adds two unsigned numbers (\$2,\$3)
 - addiu \$1,\$2,10 adds unsigned number with signed immediate
 - subu \$1,\$2,\$3 subtracts two unsigned numbers
 - etc.
- Primary issue: The carry/borrow out is ignored
 - Overflow is possible, but it is ignored
 - Signed versions take special action on overflow (we'll see shortly!)
- Unsigned memory accesses: Ibu, Ihu
 - Loaded value is treated as unsigned number
 - Convert from smaller bit width (8 or 16) to a 32-bit number
 - Upper bits in the 32-bit destination register are set to 0s

Important 7-bit Unsigned Numbers

- American Standard Code for Information Interchange (ASCII)
 - Developed in early 60s, rooted in telecomm
 - Maps 128 bit patterns (2⁷) into control, alphabet, numbers, graphics
 - Provides control values present in other important codes (at the time)
 - 8th bit might be present and used for error detection (parity)
- Control: Null (0), Bell (7), BS (8), LF (0A), CR (0D), DEL (7F)
- Numbers: (30-39)
- Alphabet: Uppercase (41-5A), Lowercase (61-7A)
- Other (punctuation, etc): 20-2F, 3A-40, 5E-60, 7B-7E
- Unicode: A larger (8,16,32 bit) encoding; backward compatible with ASCII

Regular ASCII Chart (character codes 0 - 127)

000d	00h		(nul)	016d	10h	▶ (dle	032d	20h	sp	048d	30h	0	064d	40h	@	080d	50h	P	096d	60h	,	112d	70h	p
001d	01h	0	(soh)	017d	11h	(dc1)	033d	21h	!	049d	31h	1	065d	41h	Α	081d	51h	Q	097d	61h	a	113d	71h	q
002d	02h	•	(stx)	018d	12h	\$ (dc2	034d	22h	"	050d	32h	2	066d	42h	В	082d	52h	R	098d	62h	b	114d	72h	r
003d	03h	*	(etx)	019d	13h	‼ (de3	035d	23h	#	051d	33h	3	067d	43h	C	083d	53h	S	099d	63h	С	115d	73h	s
004d	04h	٠	(eot)	020d	14h	¶ (dc4	036d	24h	\$	052d	34h	4	068d	44h	D	084d	54h	т	100d	64h	d	116d	74h	t
005d	05h	٠	(enq)	021d	15h	§ (nak	037d	25h	%	053d	35h	5	069d	45h	Е	085d	55h	U	101d	65h	е	117d	75h	u
006d	06h	٠	(ack)	022d	16h	(syn	038d	26h	&	054d	36h	6	070d	46h	F	086d	56h	v	102d	66h	f	118d	76h	v
007d	07h	•	(bel)	023d	17h	‡ (etb	039d	27h		055d	37h	7	071d	47h	G	087d	57h	W	103d	67h	g	119d	77h	w
008d	08h		(bs)	024d	18h	↑ (can	040d	28h	(056d	38h	8	072d	48h	н	088d	58h	x	104d	68h	h	120d	78h	x
009d	09h		(tab)	025d	19h	↓ (em.	041d	29h)	057d	39h	9	073d	49h	1	089d	59h	Y	105d	69h	i	121d	79h	у
010d	OAh		(1f)	026d	1Ah	(eof	042d	2Ah	*	058d	3Ah	:	074d	4Ah	J	090d	5Ah	Z	106d	6Ah	j	122d	7Ah	z
011d	OBh	ੋ	(vt)	027d	1Bh	← (esc	043d	2Bh	+	059d	3Bh	;	075d	4Bh	К	091d	5Bh	[]	107d	6Bh	k	123d	7Bh	- {
012d	OCh	\$	(np)	028d	1Ch	- (fs	044d	2Ch	,	060d	3Ch	<	076d	4Ch	L	092d	5Ch	١.	108d	6Ch	1	124d	7Ch	- 1
013d	ODh		(cr)	029d	1Dh	↔ (gs	045d	2Dh	-	061d	3Dh	-	077d	4Dh	M	093d	5Dh	1	109d	6Dh	m	125d	7Dh	
014d	0Eh	ð	(so)	030d	1Eh	▲ (rs	046d	2Eh		062d	3Eh	>	078d	4Eh	N	094d	5Eh	^	110d	6Eh	n	126d	7Eh	~
015d	OFh	0	(si)	031d	1Fh	• (us	047d	2Fh	/	063d	3Fh	?	079d	4Fh	0	095d	5Fh	_	111d	6Fh	0	127d	7Fh	
						CONTRACTOR AND ADDRESS OF THE PARTY.																		

Extended ASCII Chart (character codes 128 - 255; Codepage 850)

_																						
128d	80h	Ç	144d	90h	É	160d	A0h	á	176d	BOh		192d	COh	-	208d	DOh	D 22	1d E0h	0	240d	FOh	-
129d	81h	ü	145d	91h	æ	161d	A1h	í	177d	B1h	20	193d	C1h	_	209d	D1h	Đ 22	5d E1h	ß	241d	F1h	±
130d	82h	é	146d	92h	Æ	162d	A2h	6	178d	B2h		194d	C2h	т	210d	D2h	È 22	6d E2h	ô	242d	F2h	-
131d	83h	â	147d	93h	ô	163d	A3h	ú	179d	B3h	- 1	195d	C3h	ŀ	211d	D3h	Ë 22	7d E3h	Ò	243d	F3h	34
132d	84h	ā	148d	94h	ö	164d	A4h	ñ	180d	B4h	4	196d	C4h	-	212d	D4h	È 22	8d E4h	ő	244d	F4h	- 1
133d	85h	à	149d	95h	6	165d	A5h	Ñ	181d	B5h	Á	197d	C5h	+	213d	D5h	1 22	9d E5h	Ő	245d	F5h	§
134d	86h	å	150d	96h	û	166d	A6h	a	182d	B6h	Â	198d	C6h	ã	214d	D6h	Ì 23	0d E6h	μ	246d	F6h	÷
135d	87h	ç	151d	97h	ù	167d	A7h	ō	183d	B7h	A	199d	C7h	Ã	215d	D7h	Î 23	ld E7h	þ	247d	F7h	
136d	88h	ê	152d	98h	ÿ	168d	ASh	i	184d	B8h	0	200d	C8h	L	216d	D8h	Ï 23.	2d E8h	Þ	248d	F8h	δ
137d	89h	ë	153d	99h	Ö	169d	A9h	®	185d	B9h	4	201d	C9h	r	217d	D9h	J 23	3d E9h	Ú	249d	F9h	-
138d	8Ah	è	154d	9Ah	Ü	170d	AAh	_	186d	BAh	- 1	202d	CAh	Ŧ	218d	DAh	г 23	1d EAh	Û	250d	FAh	
139d	8Bh	ï	155d	9Bh	ø	171d	ABh	$\frac{1}{2}$	187d	BBh	9	203d	CBh	Ŧ	219d	DBh	23	5d EBh	Ù	251d	FBh	1
140d	8Ch	î	156d	9Ch	£	172d	ACh	1/4	188d	BCh	a	204d	CCh	ŀ	220d	DCh	2 3	6d ECh	ý	252d	FCh	2
141đ	SDh	ì	157d	9Dh	Ø	173d	ADh	i	189d	BDh	c	205d	CDh	-	221d	DDh	23	7d EDh	Ý	253d	FDh	8
142d	8Eh	Ä	158d	9Eh	×	174d	AEh	**	190d	BEh	¥	206d	CEh	÷	222d	DEh	Ì 23	8d EEh	_	254d	FEh	•
143d	-8Fh	Å	159d	9Fh	f	175d	AFh	39	191d	BFh	٦	207d	CFh	n	223d	DFh	23	9d EFh	,	255d	FFh	

Hexadecimal to Binary

0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	В	1011
4	0100	C	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Groups of ASCII-Code in Binary

Bit 6	Bit 5	Group
0	0	Control Characters
0	1	Digits and Punctuation
1	0	Upper Case and Special
1	1	Lower Case and Special

```
]ñ□öÉFAM•mܼ1×ýÑÝq>çÀ¬;ÔE':H'<ÇÇ&f.š}t¤£□áy»îe¬□é½›®tÿ`ÃçØC¶[</p>
##¯,ï®ÇüæÏ˯ù\Q)¼Jè∙ôû
                                                                    -More--(0%)
7ÖnNú:Çî'4~m©Ãö-Ò¶·ĐaÜÓ¹WÀ¹ê>ή»¿ÆÂzóøò¢`Ç«9ì6:ðg³2<¸-ÖéÌwƵ£Û
ÿ}wø<sD8ð.u ãVÓÞAW:]jÆ/ÑÄÁW68`c
zü¼Óý®(,çGårn\í³éô2OS2ÝÛ×ø.Ú#^LL;XzYî nOçÓËr.û ÊXJ(¥LKGFőz¤°)¦ïDÇQÏμ[è
© m5妰ýÑM[Gá¤ÄGO,KXô@áäS
5ÄójSö″®p≪N jÍÛãêOäÌÎx;¥ì¤
:=æk(T¹ÁnÓFUã#Ì-ykï§/-aô6( ò5Rä
ï?X
XR%%%kCc°Ió#Ý'Åkt°ZÇ1% ûí~]]ædNŦæà
áÍãÛè∖÷A;À®:<
֏zÊ9zý.âèÔ¿/Bë5ÇäzÝÞèÛ>DI¤»ÁêÞhú¿^ÎÊOP@zô¢=êÇnj®jºZÛ¦Úá
             8ìØL{dÓï@
zz?¶1¼*{®
                      ^§ÂÉàóé30ÆtuØ
ÏyÓíq6}NAa¤
 %clo.ú =+ahq.GvUitãót4±01úùô^L*åéL°ib0je'±,wê×Đz;Ëòu
o ú`ZÊ5a¾-nKh¾ï¯¨ï
c^LÑiS;Ñz:=Ëù¤;ø¾zùu îTX.çÎy £ÏÑ¥m¼Xb54Ù¿£8àÖ¯¿æFªÂ<
FaS£¼**áZbĐÒqe|Ø-R£?óüŞâãæ(°ènxÒ£Ó;îpÑômoéNŞ|K¨íqµ>°ÒAøö¾óܳýðævŞÄ3DM÷1×1p
3Çs°NdV«×æ|:Ζő >ø¨s‰ÇGíQèø â£´æäM/;íèd'>μÇϹñb4ô+ +[L½³éï ΕμçÂt;Ï
§q\{&]aqK:Øa₩
ÊÈiŞûè°&ödêãy°OÍ41ÞO¦4&ø@ê,^L °>ÔJ|b=ZÙH¤FÚB[, ËùC
 -More--(1%)
```

OOPS!!! (listed object file)

Signed Numbers

- How to represent positive and *negative* numbers?
- We still have a limited number of bit patterns
 - 8-bit: 256 bit patterns (i.e., 00000000 ... 11111111)
 - 16 bit: $2^{16} = 65,536$ bit patterns
 - 32 bit: 2^{32} = 4,294,967,296 bit patterns
- Re-assign bit patterns differently
 - Some patterns are assigned to negative numbers, some to positive
- How to assign available patterns? Three ways:
 - Sign magnitude, 1's complement, 2's complement

Method 1: sign-magnitude

- Same method we use for decimal numbers
- {sign bit, absolute value (magnitude)}
 - Sign bit (msb): 0 positive, 1 negative
 - Examples, assume 4-bit representation

```
0000 +0
0011 +3
1001 -1
1111 -7
1000 -0 (two 0's???)
```

Properties

- Two 0s a positive 0 and a negative 0?
- Equal # of positive and negative numbers
- A + (-A) does not give zero!
- Consider sign during arithmetic

Sign-magnitude

- Let's check A + (-A) is not zero
- Consider N = 5 bits number. Zero is 00000 or 10000.
- Try this: -4 + 4 = ?????

```
-4 is 10100
4 is 00100

so, let's add them together:
10100 -4d
+ 00100 4d
----- ---
11000 -8d YIKES!
```

Method 2: one's complement

- Negation of +X is $((2^N 1) X)$, where N is number of bits
 - $A + (-A) = 2^{N} 1$ (i.e., -0)
 - Given a number A, it's negation is done by (1111...1111 A)
 - In fact, simple bit-by-bit inversion will give the same-magnitude number with a different sign
 - Examples, assume 4-bit representation
 - 0000 ′
 - 0011 ...
 - 1001 ~
 - 1111 -u
 - 1000
- Properties
 - There are two 0s
 - There are equal # of positive and negative numbers
 - A+(-A) = 0 (whew!) but... A+0=A only works for +0 (try it with -0!)
 - 2 step process for subtraction (accounts for "carry out")

One's Complement

- Negation of $X(2^N 1) X$, positive are usual value
- Consider N=4

<u>Binary</u>	<u>One's</u>	<u>Binary</u>	<u>One's</u>
0000	0	1000	-7
0001	1	1001	-6
0010	2	1010	-5
0011	3	1011	-4
0100	4	1100	-3
0101	5	1101	-2
0110	6	1110	-1
0111	7	1111	-0

notice how the counting works: 1111 is -0... then -1... -2... etc.

One's Complement

- Let's check the "0 property": A + (-A) = 0
- Suppose A = 5

```
5 is 0101 negation of 5 is (2^4-1)-5 = (16-1)-5 = 15-5 = 10 10 (unsigned) is 1010 check the table: 1010 is -5 in 1's complement now, let's try 5 + (-5) in 1's complement
```

0101	5	1010	
+ 1010	-5	+ 0000 (+0)	11 0)
1111	-0	1010 (-5)	(-6)

Method 3: two's complement

- Negation is (2^N X)
 - $A + (-A) = 2^N$
 - Given a number A, it's negation is done by (1111...1111 A) + 1
 - In fact, simple bit-by-bit inversion followed by adding 1 will give the same-magnitude number with a different sign
 - Examples, assume 4-bit representation
 - 0000
 - 0011
 - 1001
 - 1111
 - 1000 ?
- Properties
 - There is a single 0
 - There are unequal # of positive and negative numbers
 - Subtraction is simplified one step based on addition (we'll see! ©)

- Negation of $X(2^N X)$, positive are usual value
- Consider N=4

<u>Binary</u>	<u>One's</u>	<u>Binary</u>	<u>One's</u>
0000	0	1000	-8
0001	1	1001	-7
0010	2	1010	-6
0011	3	1011	-5
0100	4	1100	-4
0101	5	1101	-3
0110	6	1110	-2
0111	7	1111	-1

notice how the counting works: 1000 is -8... 1001 is -7... etc.

- Let's check the "0 property": A + (-A) = 0
- Suppose A = 5

```
5 is 0101
negation of 5 is 2<sup>4</sup> - 5 = 16 - 5 = 11
11(unsigned) is 1011
check the table: 1011 is -5 in 2's complement
now, let's try 5 + (-5) in 2's complement
```

```
0101 5 1011 0111 (7)
+ 1011 -5 + 0000 (0) + 0001 (1)
----- 0 1011 (-5) 1000 (-8)
```

- Negation: (2⁸ X) vs. (111111111 X) + 1
- Note 2⁸ needs 9 bits:
 - 28 is 256, from earlier conversion process: 1 0000 0000 = 1 * 28
- Whereas the other form has only 8 bits. Let's try it!
 - Consider X = 10 and we want to find -10

- How to convert binary 2's complement number?
 - Same as before, except most significant bit is "sign"
- Consider an 8-bit 2's complement number

•
$$b_0 \times 2^0 + b_1 \times 2^1 + b_2 \times 2^2 + \dots + b_7 \times (-2^7)$$

An example

```
1011 0111
= 1 \times 2^{0} + 1 \times 2^{1} + 1 \times 2^{2} + 0 \times 2^{3} + 1 \times 2^{4} + 1 \times 2^{5} + 0 \times 2^{6} + 1 \times (-2^{7})
= 1 + 2 + 4 + 0 + 16 + 32 + 0 + (-128)
= -73d
```

- What is 73d in 2's complement binary number?
- $v = (\sum (b_i \times 2^i)) + b_{K-1} \times -2^{K-1}$, where $0 \le i < K-1$, where K=# bits, i is bit posn