Pedram Kheirkhah Sangdeh

East Lansing, MI 48824 https://pksangdeh.github.io LinkedIn | sangdeh@msu.edu | (502)-599-1533

SUMMARY

- A Ph.D. student in CS, skilled in wireless communications, signal processing, and machine learning
- Interested in design, analysis, and implementation of PHY/MAC protocols for WLANs, 5G, 6G & beyond
- Published a book chapter and 16 research papers in JSAC, ToN, MobiHoc, INFOCOM, and TWC

TECHNICAL SKILLS

- Core skills: Wireless communications, signal processing, machine learning, networking, optimization
- Technologies: Wi-Fi (IEEE 802.11 ac/ax), 5G NR, 3GPP LTE, 802.11p, Bluetooth, ZigBee, mmWave
- Platforms and Tools: Python, MATLAB, C++, PyTorch, CVX, GNURadio, USRP, FMCW Radar
- Techniques: MIMO, OFDM, detection, estimation, simulation, implementation, OOP, prototyping

EDUCATION		
PhD in Computer Science	Michigan State University (MSU)	2020-present
PhD in Electrical and Computer Eng.	University of Louisville (Transferred to MSU)	2017-2020
MS in Electrical Engineering	University of Tehran	2011-2014
BS in Electrical Engineering	Iran University of Science and Technology	2006-2011
EVDEDIENCE		

EXPERIENCE

- Computer Networks and Sensing Systems Lab, MSU, East Lansing, MI (Sep. 2020 Present) Research Assistant,
 - o Research on wireless communications and machine learning including protocol design, theoretical analysis, system implementation (PHY/MAC), field test, and data collection
 - Learning-based multiplexing for MU-MIMO-OFDMA mode in 802.11ax
 - In-band underlay D2D and 5G NR communications
 - Low-overhead sounding for MU-MIMO in IEEE 802.11ac/ax
 - Jamming-resilient communications for VANETs
 - Low-latency V2X (V2V/V2I) communications
- Digital Wireless Communications Lab, UofL, Louisville, KY
 Research Fellow,

 (Aug. 2017 Aug. 2020)
 - Design, simulation, optimization, and implementation of protocols in WLANs, cellular networks, and VANETs to enhance spectral efficiency and mitigate co-channel interference
 - Wi-Fi/LTE coexistence in unlicensed band
 - Taming interference in densely deployed Wi-Fi networks
 - Blind spectrum sharing in cognitive radio networks
 - Uplink distributed MIMO for wireless LANs
 - Design and operate lab-scale networks using USRP, clock, switches, spectrum analyzer, FMCW Radar, POWDER-RENEW, GNURadio, WireShark, CSI tools

SELECT FIRST-AUTHOR PUBLICATIONS

- 1. DeepMux: Deep-learning-based channel sounding and resource allocation for IEEE 802.11ax *IEEE Journal on Selected Areas in Communications (JSAC)*, 2021.
- 2. DM-COM: Combining device-to-device and MU-MIMO communications for cellular networks *IEEE Internet of Things Journal (IoTJ)*, 2021.
- 3. A practical spectrum sharing Scheme for cognitive radio networks: Design and experiments *IEEE/ACM Transactions on Networking (ToN)*, 2020.
- 4. LB-SciFi: Online learning-based channel feedback for MU-MIMO in wireless LANs *IEEE International Conference on Network Protocols (ICNP)*, 2020.
- 5. A downlink NOMA scheme for wireless LANs *IEEE Transactions on Communications (TCOM)*, 2020.