Rotational Spectra of $^{13}CH_3F$ in the $v_2 = 1$ and $v_5 = 1$ Vibrational States

D. Papoušek,* J. Demaison,* G. Wlodarczak,* J. Cosléou,* P. Pracna,† S. Klee,‡ M. Winnewisser,‡ S. P. Belov,§ and M. Yu. Tretyakov§

*Laboratoire de Spectroscopie Hertzienne, URA CNRS 249, Universite de Lille, F-59655 Villeneuve d'Ascq Cedex, France; †J. Heyrovský Institute of Physical Chemistry and Electrochemistry, Czech Academy of Sciences, Dolejškova 3, 182 23 Prague 8, Czech Republic; ‡Physikalisch-Chemisches Institut, Justus-Liebig Universität, Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany; and §Institute of Applied Physics, Russian Academy of Sciences, Ulyanova 46, Nizhny Novgorod, Russia 603600

Millimeter-wave and submillimeter-wave spectra of the rotational transitions in the $v_2 = 1$ and $v_5 = 1$ vibrational states of $^{13}\text{CH}_3\text{F}$ were measured up to 462 GHz. Far-infrared spectra of these transitions were measured in the region 30–65 cm⁻¹ with a resolution of 0.0019 cm⁻¹ using an interferometric spectrometer Bruker IFS 120 HR. Almost 700 lines including 14 lines of the $\Delta(k-l_5) = \pm 3$ perturbation-allowed transitions in the $v_5 = 1$ state were assigned. Both vibrational states are strongly perturbed, especially by the x,y-Coriolis resonance and "2, -1" l-type interactions. The corresponding spectroscopical parameters were determined by a nonlinear least-squares fit to the experimental data. © 1994 Academic Press, Inc.

INTRODUCTION

The rotational spectrum of $^{13}\text{CH}_3\text{F}$ in the excited vibrational states $v_2=1$ and $v_5=1$ was studied by Hirota et al. (1) who measured eight $\Delta J=1$, $\Delta k=0$ transitions for J=0 and 1, and five direct l-type doubling transitions in the kl=+1 sublevel of the $v_5=1$ state. They found that both states are strongly perturbed by the x,y-Coriolis interaction, and by using a simple model Hamiltonian of this interaction, they determined approximately the difference between the interacting vibrational levels and some of the diagonal and off-diagonal parameters of the Hamiltonian. Hegelund et al. (2) reported an analysis of the vibration-rotational structure of the Raman spectrum of the v_2/v_5 band system of $^{13}\text{CH}_3\text{F}$ measured with 0.30 cm⁻¹ resolution. They could determine only the value of E_5 and with a limited accuracy the values of $A_5 - A_0$, $A_2 - A_0$, and $A_5 \zeta_{a5b}$. As far as we know, no high-resolution study has been published so far on the v_2/v_5 system of bands in $^{13}\text{CH}_3\text{F}$; our high-resolution Fourier transform measurement and analysis of the vibration-rotational transitions to the $v_2=1$ and $v_5=1$ vibrational states is reported in a subsequent paper (3).

In the present paper, we extended the measurements of the frequencies of the rotational transitions in the $v_2 = 1$ and $v_5 = 1$ states of $^{13}\text{CH}_3\text{F}$ in the millimeter-wave and submillimeter-wave regions up to 462 GHz. Furthermore, we recorded Fourier transform spectra of the pure rotational transitions in the excited vibrational states $v_2 = 1$ and $v_5 = 1$ in the region 30-65 cm⁻¹ with an unapodized resolution of 0.0019 cm⁻¹. This made it possible to assign almost 700 lines of the pure rotational transitions and to determine the upper state spectroscopical parameters much more accurately than reported previously (I, 2).

EXPERIMENTAL DETAILS

Fluoromethane—13CH3F

The sample of ¹³CH₃F was purchased from MSD Isotopes, Montreal, Canada; it contained 99.4 at. % of ¹³C.

Millimeter-Wave and Submillimeter-Wave Spectra

Rotational spectra in the frequency range 120–300 GHz were measured at the University of Lille, France, with a computer-controlled millimeter-wave spectrometer using heterodyne detection (4). The lines between 340 and 470 GHz were measured with a source-modulated and phase-stabilized output frequency of a submillimeter BWOs (Thomson-CSF). The absorption signals were detected with an He-cooled InSb bolometer. The accuracy of the measurements was better than 50 kHz. Forty-eight lines between 158 and 345 GHz were measured with a submillimeter-wave spectrometer with an acoustic detection RAD and with a submillimeter frequency synthesizer built at the Institute of Applied Physics in Nizhnii Novgorod, Russia [Refs. (5, 6)]. The experimental uncertainty of the frequency was estimated to be better than 200 kHz. All the spectra were measured at room temperature.

Infrared Spectra

The infrared spectra were measured in Giessen, Germany, in absorption in a heatable cell with an optical path length of 3.00 m using an interferometric spectrometer (Bruker IFS 120 HR) equipped with a mercury lamp as the source and a silicon bolometer operating at 4.2 K as detector. Spectra were recorded at an unapodized resolution 0.0019 cm⁻¹ at sample pressures of 1.25 mbar (125 Pa) and an elevated temperature of 360 K. They were calibrated with respect to the lines of the rotational transitions in the ground state of ¹³CH₃F which were previously measured (7) at a sample pressure of 0.12 mbar (12 Pa) and calibrated with respect to standard water lines. In this way we avoided pressure-induced shifts of the transition wavenumbers which might not be negligible if the measurement of ¹³CH₃F would be calibrated with respect to standard lines of water [see also Ref. (8)]. A segment of the spectrum between 49.0 and 50.5 cm⁻¹ is shown in Fig. 1.

THEORY

Strong vibration-rotational interactions between the closely spaced vibrational levels $v_2 = 1$ (symmetry species A_1) and $v_5 = 1$ (symmetry species E) in $^{13}\text{CH}_3\text{F}$ require the use of a variational approach in a nonlinear least-squares determination of the parameters of the vibrational states. The situation is analogous to $^{12}\text{CH}_3\text{F}$ and we used the same reduced vibration-rotational Hamiltonian as that in our previous study of the interactions in the $v_2 = 1$ and $v_5 = 1$ states of $^{12}\text{CH}_3\text{F}$ (9, 10). Thus for the diagonal elements of the matrix representation of the Hamiltonian we used the expression

$$E_{vr}(J, k, l)/hc = E_{v}/hc + B_{v}J(J+1) + (A_{v} - B_{v})k^{2} - 2(A\zeta_{5}^{2})kl + \eta_{J}J(J+1)kl + \eta_{K}k^{3}l + \tau_{J}J^{2}(J+1)^{2}kl + \tau_{JK}J(J+1)k^{3}l + \tau_{K}k^{5}l - D_{J}^{v}J^{2}(J+1)^{2} - D_{JK}^{v}J(J+1)k^{2} - D_{K}^{v}k^{4} + H_{J}^{v}J^{3}(J+1)^{3} + H_{JK}^{v}J^{2}(J+1)^{2}k^{2} + H_{KJ}^{v}J(J+1)k^{4} + H_{K}^{v}k^{6} + L_{J}^{v}J^{4}(J+1)^{4} + L_{JK}^{v}J^{3}(J+1)^{3}k^{2} + L_{JK}^{v}J^{2}(J+1)^{2}k^{4} + L_{JKK}^{v}J(J+1)k^{6} + \cdots$$

$$(1)$$

FIG. 1. Part of the far-infrared spectrum of the pure rotational transitions in the $v_2 = 1$ and $v_5 = 1$ vibrational states of $^{13}\text{CH}_3\text{F}$.

in which l=0 for the nondegenerate vibrational state $v_2=1$ and $l=\pm 1$ for the sublevels of the doubly degenerate state $v_5=1$.

The strongest vibration-rotational interaction between the $v_2 = 1$ and the $v_5 = 1$ states in CH₃F is the x,y-Coriolis coupling which has the matrix elements

$$\langle 0, 1^{+1}; J, k+1 | (H_{21} + H_{23})/hc | 1, 0^{0}; J, k \rangle$$

$$= -\langle 1, 0^{0}; J, k+1 | (H_{21} + H_{23})/hc | 0, 1^{-1}; J, k \rangle$$

$$= 2^{1/2} \{ C_{11}^{(1)} + C_{11}^{(3a)} J(J+1) + C_{11}^{(3b)} [k^{2} + (k+1)^{2}] \} F(J, k),$$
(2)

where

$$F(J,k) = [J(J+1) - k(k+1)]^{1/2}.$$
 (3)

The same levels are connected by a matrix element of a quartic term in the expanded Hamiltonian which has, however, a different J, k dependence from that in Eq. (2),

$$\langle 0, 1^{+1}; J, k+1 | H_{22}/hc | 1, 0^{0}; J, k \rangle$$

$$= \langle 1, 0^{0}; J, k+1 | H_{22}/hc | 0, 1^{-1}; J, k \rangle = 2^{1/2} C_{11}^{(2)} (2k+1) F(J, k).$$
 (4)

The "2, -1" *l*-type interaction plays an important role in CH₃F because it connects the closely spaced sublevels +l; J, K and -l; J, K+1 in the $v_5=1$ state. It has the following matrix element with determinable parameters q_{12} and f_{12}^K :

$$\langle 0, 1^{-1}; J, k+1 | (H_{22} + H_{24})/hc | 0, 1^{+1}; J, k \rangle$$

$$= 2\{ [q_{12} + f_{12}^{J}J(J+1)](2k+1) + f_{12}^{K}[k^{3} + (k^{3}+1)^{3}] \} F(J, k). \quad (5)$$

In order to take into account the A_1 - A_2 splittings of the energy levels in a convenient way, the matrix of the Hamiltonian was set up in the fully symmetrized set of basis functions A_+ and A_- obtained by a Wang transformation. In these basis wavefunctions, the matrix of the Hamiltonian factorizes for each value of the rotational quantum number J into three blocks corresponding to the A_1 , A_2 , and E symmetry species of the C_{3v} group. The dimensions of the A_1 , A_2 blocks are J+1 for A_+ and J for A_- , and 2J+1 for blocks which correspond to the symmetry species E.

ASSIGNMENT AND ANALYSIS

The results of a least-squares fit of the previously published microwave transition frequencies together with our submillimeter-wave and far-infrared data are given in Tables I-III. The $v_2=1$ and $v_5=1$ state parameters are given in Table I. The experimental and calculated frequencies (wavenumbers) of the rotational transitions are compared in Tables II and III.

The $v_2 = 1$ and $v_5 = 1$ vibrational states of ¹³CH₃F are strongly perturbed by the x,y-Coriolis interaction because of the large Coriolis coupling coefficient $\zeta_{2,5x}^y = -0.60$ and because the difference $E_2 - E_5$ between the interacting vibrational levels is only 11.918 cm⁻¹. Besides this, there is a strong perturbation in the $v_5 = 1$ vibrational state which is caused by the "2, -1" *l*-type interaction because of the close resonances and

TABLE I

Parameters of the $v_2 = 1$ and $v_5 = 1$ Vibrational States of ¹³CH₃F (in Units of cm⁻¹)

	Diagonal	terms	Į	Off-diagonal terms
Parameter	v ₂ =1	v5=1	Parameter	
E ₅ -E ₂	11.918734	(325)a	C ₁₁	0.5039516 (69)
A _v	5.2054072(1462)	5.1376192 (1715)	C ₁₁ ^(3a) / 10 ⁻⁵	-0.26178(77)
$B_{\mathbf{v}}$	0.82728656(26)	0.83102545 (189)	C ₁₁ ^(3b) / 10 ⁻⁵	14.153 (499)
D_j^{ν} / 10-6	1.91949 (79)	1.98483(45)	C ₁₁ / 10 ⁻³	1.82377 (472)
D _{JK} / 10-6	11.5949 (2316)	12.9085 (1045)	q ₁₂ / 10 ⁻³	2.236009 (123)
D _K / 10-6	156.6191 (240761)	141.6605 (312805)	f ₁₂ / 10-6	0.8689 (409)
H _j ^v / 10 ⁻⁹	0. ъ	0.00155 c		z-Coriolis
H ^v _{JK} / 10 ⁻⁹	-0.3544 ^c	-0.0492 (152)	Αξ ₅	-1.2782364 (907)
H _{KJ} / 10 ⁻⁹	-35.5992(479)	1.3411 (2401)	ղ _յ / 10 ⁻⁴	-0.51551 (1849)
H _K ^v / 10 ⁻⁹	779.14°	1.026 °	η _K / 10-4	-2.11459 (60360)
L _{JK} / 10 ⁻¹¹ (see d)	4.70131 ^c	-0.41 70 0 °	τ _J / 10-6	-0.003389 (120)
y JKK / 10 ⁻¹¹ (see ^d)	49.1929°	1.1406°	τ _{JK} / 10-6	0.106108 (3602)
i			τ _K / 10-6	-0.112194 ¢

Note. Number of data, 711; standard deviation of the fit, 0.427 MHz.

^{*} Figures in parentheses are standard errors in units of the last digit stated.

b Constrained value.

^c Constrained to the value obtained by a simultaneous fit of the rotational and vibration-rotational data in Ref. (3).

^d L_J^v , L_{JJK}^v , and L_K^v constrained to zero.

TABLE II Frequencies of the Pure Rotational Transitions in the v_2 = 1 and v_5 = 1 Vibrational States of $^{13}{\rm CH_3F}$

,								
ī	K	1 Expb Uncc E-Cd Refe	J	K	l	Expb	Uncc	E-Cd Refe
v ₂	= 1		2	1	1	158754.880	200	439 N
			2	1	1		50	-16 L
0	0	46354.370 200 103 H	2	2	1	152575.463	50	-14 L
1	0	92820.690 * -2782 H	2	0	-1	(158990.722)	ı	
1	1	89754.250 200 -750 H	2	- 1	-1	(132567.216)	ı	
2	0	(139503.540)	2	2	-1	(143767.789)		
2	1	(135693.370)	2	2	- 1	(143766.806)	1	
2	2	(163824.298)	3	1	1	211202.970	200	293 N
3	Ō	186459.210 200 99 N	3	1	1	199268.190	200	-32 N
3	ī	182444.660 200 -360 N	(3	1	1	199268.214	50	-8 L)g
3	2	(214716.039)	3	2	i	.,,	200	251 N
3	3	203356.250 200 -365 N	3	3	i		200	290 N
4	ő	233721.070 200 257 N	2	ő	-1			230 14
4	ĭ	229878.730 200 63 N	2	ĭ	-1			
4	ź	264911.290 200 -642 N	3 3 3	2	-1			
4	3	253993.420 200 -626 N	2	2	-1	(
4	4	250654.910 200 -280 N	3	3	-1			
5	ŏ	281290.360 200 97 N	3					231 N
5	ĭ	277830.000 * -2088 N	4	1	1		200 200	73 N
5	2	(314736.827)	4	1	1			
5	3	304519.830 200 -729 N	4	2	1		200	18 N
5	4	300737.340 200 -302 N	4	3	1		200	273 N
5 5	5		4	4	1		200	199 N
		(299159.501) 329149.140 200 373 N	4	0	-]			
6	ó		4	1	-1	\		
6	1	(326164.952)	4	2	-1	· · · · · · · · · · · · · · · · · · ·		
6	2	364350.000 200 -281 N	4	2	-1	(
6	3	354931.270 200 -750 N	4	3	-]			
6	4	350794.550 200 -528 N	4	4	-]			
6	4	350794.520 50 -558 L	5	1	1		200	185 N
6	5	348994.324 50 311 L	5	1]		200	114 N
6	6	348036.221 * 1352 L	5	2	1	305109.890	200	23 N
7	0	377266.558 50 461 L	5	3	1	303418.640	200	25 N
7	1	374770.889 50 79 L	5	4	1	. 302474.340	200	47 N
7	2	413833.991 50 -155 L	5	5	1	301846.700	200	153 N
7	3	(405229.143)	5	0	-1	312361.250	200	479 N
7	4	400823.879 50 -568 L	5	1	- 3	277104.140	200	194 N
7	5	398817.203 50 313 L	5	2	- ;	288232.010	200	-442 N
7	6	397732.890 * 1270 L	5	2	-	288206.450	200	411 N
7	7	397055.211 50 -359 L	5 5	2 3	-	292522.930	200	-73 N
8	0	425608.037 50 632 L	5	4	-	(294437.392)	
8	1	423573.271 50 268 L	5	5	-	1 (295477.625)	
8	2	463232.826 50 -56 L	6	1		366543.820	200	190 N
8	3	455415.365 50 -751 L	6	ī		1 348657.530		142 N
8	4	450822.520 50 -580 L	6	2		355931.890		107 N
8	5	448626.859 50 326 L	6	3		353944.820		81 N
8	6	447420.336 50 1068 L	6	4		352848.260		-13 N
8	7	446660.984 * -1312 L	6	5		1 352120.270		93 N
8	8	446138.503 50 -235 L	6	6		1 351587.360	200	206 N
٠		440150.505 50 255 2	6	ő	-			432 N
1/.	5 = 1		6	1	-			23 N
*	, – 1		6	2				43 14
0	0	-1 53765.640 200 423 H		2	-			
1	1	1 106019.990 200 -515 H	6	3	-	(200	-61 N
1	1	1 99640.600 200 279 H	6	4			50	
1	0	-1 107006.510 200 1622 H	6		-			
			6	5	•			113 N
1	1	-1 (85708.308) ^f	6	6	+	1 (345444.058	,	

energy level crossings for certain values of J and kl. As a result, the rotational lines do not appear for a given J in bunches of lines with a rather regular K structure resolved by centrifugal distortion effects, but as a strongly irregular structure which dominates the overall appearance of the rotational spectrum in the $v_2 = 1$ and $v_5 = 1$ states of CH₃F.

TABLE II-Continued

J	K	1	Expb	Uncc	E-Cq	Refe	J	K	ı	Expb	Uncc	E-Cd Refe
7	1	1	415118.668	50	126	L	8	0	-1	461568.	944 50	355 L
7	1	1	398431.626	50	246	L	8 8	1	-1	424427.	769 50	-84 L
7	2	1	(406734.159))			8	2	-1	430233.	141 50	-382 L
7	3	1	(404450.466))			8	2	-1	433573.	089 50	-131 L
7	4	1	403204.497	50	-106		8	3	-1	438945.		-108 L
7	5	1	402378.077	50	-56		8	4	-1	441626.		46 L
7	6	1	401772.640	50		L	8	5	- 1	443141.		231 L
7	7	1	401298.200	50		L	8	6	-1	444079.		277 L
7	0	-1	412066.657	50	358		8	7	-1	444693.		178 L
7	1	-1	375230.954	50	-55	L	8	8	-1	445106.	631 50	-354 L
7	2	-1	387766.670	50		L	r	irec	. 1	pe transit	ione	
7	2	-1	385015.393	50	-37		L	iiec	נו-ני	pe uansn	10115	
7	3	-1	390121.225	50	-80	L	2	+1		9628.	790 200	248 H
7	4	-1	392566.974	50	4	Ļ	3	+1		18926.8	300 200	433 H
7	5	-1	393928.590	50	105		4	+1		30861.4	450 200	628 H
7	6	-1	394766.949	50	170	Ļ	5	+1		45117.4	160 200	816 H
7	7	-1	395314.495	50	44	Ļ	6	+1		61368.	170 200	817 H
8	ļ	1	472178.716	50	-11	Ļ	_					
8	1	1	448189.176	50	482		F	orbi	ddei	rotationa	ıl transitio	ıs ⁿ
8 8 8	2	1	457510.110	50		Ļ	_1		. 13	42100	.075 50	74.1
8		1	454932.537	50		Ļ		₹(7,				
8	5	1	453540.680	50	-122 -104	L L		₹(8,	٠.			
ð	6	1	452618.123 451941.677	50 50	-104	_	p	R(7,	ا(2-	381821	1.321 50)-288 L
8	7	1	451410.993	50	-00	L	р	R(8,	-2)i	466233	3.300 50) 31 L
8	8	1	451410.993	50	46		p	R(3,	-1)	210703	3.861 50) 129 L
0	٥	1	4307/3.311	30	40	L						

a) In doublets corresponding to transitions between levels with the resolved A₁-A₂ splitting, transitions between the A₊ blocks are given first.

For low J values the assignments could be based in principle on the previous results of Hirota et al. (1), but for higher J's the assignments would be much more difficult without a parallel analysis of the high-resolution infrared bands ν_2 and ν_5 [see Ref. (3)]. This was important also for the lower values of J because the frequency of the rotational transition in the $v_5 = 1$ state, J = 2, $kl = -1 \leftarrow J = 1$, kl = -1, which was reported by Hirota et al. (1), is probably obscured by a typographical error in the publication. Attempts to include this frequency in the early stages of the analysis led to considerable difficulties until we decided to exclude it from the fit. Few other frequencies for which the uncertainty of the experimental value was probably larger than the estimated one were also omitted from the analysis (see Tables II and III).

In the final fits, we used 12 frequencies from the data set reported by Hirota et al. (1), 106 frequencies from our millimeter-wave and submillimeter-wave measurements, and 593 wavenumbers of the rotational transitions from our measurements of the farinfrared spectra. Their statistical weights were taken as 1/UNC², where UNC is the estimated uncertainty of the line as indicated in Tables II and III.

The A_1 - A_2 splittings of the rotational energy levels which appear in the kl = +1 states ("giant" l-type doubling) could be easily observed in the whole spectrum range

b) Lxp is the experimental value in MHz; transition frequencies in parentheses are calculated.

 $^{^{4}}$) E - C = v_{exp} - v_{calc} in kHz.

d) Estimated uncertainty of the experiment in kHz. Transitions denoted by asterisk were not included in the fit.

e) H: data taken from Ref. (1), N: our measurements with RAD' spectrometer in Nizhnii Novgorod; L: our measurements at the University of Lille.

f) According to Hirota et al. (1), the experimental value is 85461.32 MHz.

g) The same transition as indicated on the line above.

h) Notation: xR(J,kl) with x=r denoting $\Delta K=+1$ rotational transition, x=p denoting $\Delta K=-1$ rotational transition.

i) Transitions between the A+ blocks.

TABLE III

Wavenumbers (in Units of cm⁻¹) of the Pure Rotational Transitions in the $v_2 = 1$ and $v_5 = 1$ Vibrational States of ¹³CH₃F^a

J K	l Expb	Uncc	E-Cd	J K I	Expb	Uncc	E-Cd	JKI	Expb Uncc E-Cd
v ₂ = 1				23 8	39.61979	10	43	29 2	48.62908 10 7
	20 52056		•	23 10	39.56981	10	70	29 3	49.83679 100 -95
18 0	30.52956	10	0	23 11	39.56049	66	27	29 3	49.83679 100 47
18 1	30.53469	10	•	24 0	40.37464	16	0	29 5	49.66558 66 -74
18 3	31.78078	10	-11	24 1	40.38746	16	-8	29 6	49.58102 233 -202
18 3 18 4	31.78078	10 10	0 -12	24 2	40.44632	10	9	29 10	49.41419 16 202
18 4 18 5	31.64775 31.54353	10	-12	24 3	41.64927	26	-23	29 11	49.40791 66 85
19 0	32.17072	10	-23	24 3	41.64927	26	19	30 0	50.19709 33 9
19 1	32.17810	16	13	24 4	41.54859	10	-21	30 1	50.21073 16 -30
19 3	33.42895	16	-18	24 5	41.44692	33	-38	30 2	50.26215 10 -5
19 3	33.42895	16	-4	24 6	41.36579	100	-105	30 3	51.47152 100 -17
19 4	33.30148	10	-5	24 10	41.21320	66	145	30 3	51.47152 100 174
19 5	33.19691	16	-17	25 0	42.01401	16	7	30 4	51.39726 16 -31
19 6	33.12320		-59	25 1	42.02736	10	4	30 5	51.30516 66 -74
20 0	33.81215		10	25 2	42.08497	16	14	30 6	51.22251 10 0
20 0	33.82104		4	25 3	43.29018	33	51	30 10	51.05219 66 281
20 1	33.88326		-16	25 3	43.29018	33	103	30 11	51.04675 66 149
20 3	35.07582		-10	25 4	43.19390	33	-8	31 0	51.83002 10 -29
20 3	35.07582		8	25 5	43.09339	33	-39	31 1	51.84415 33 -12
20 4	34.95366		-14	25 6 25 9	43.01112	166	-130 58	31 2 31 3	51.89409 10 -5 53.10198 200 -252
20 5	34.84915		-21	25 9 25 10	42.87453	166		31 3	
20 6	34.77338		-87	25 10	42.85502 42.85131	66 166	142 -81	31 4	53.10198 200 12 53.03337 16 -30
20 7	34.72192		76	26 0	43.65256	100	-61	31 5	52.94299 66 -97
20 9	34.65490	100	-47	26 1	43.66628	16	10	31 6	52.86024 66 -36
20 10	34.63604		-75	26 2	43.72241	16	-5	31 9	52.70874 66 299
20 10	34.63794	330	114	26 3	44.92831	33	-25	32 0	53.46204 10 -33
21 0	35.45309	10	-15	26 3	44.92831	33	41	32 1	53.47591 10 -28
21 1	35.46351	16	-6	26 4	44.83756		-14	32 2	53.52467 10 -11
21 2	35.52519	10	-7	26 5	44.73834		-62	32 3	54.73622 33 -15
21 3	36.72115	23	-15	26 6	44.65766		76	32 3	54.73303 100 50
21 3	36.72115	23	6	26 9	44.51364		-146	32 4	54.66778 33 -39
21 5	36.50051	10	-5	26 12	44,49396		-122	32 5	54.57953 66 -95
21 6	36.42291		-92	27 0	45,29010		-2	32 6	54,49847 100 121
21 11	36.27252		35	27 1	45.30408		4	32 9	54.34317 100 267
21 12	36.27252		-149	27 2	45.35921	10	12	32 12	54.33971 16 117
22 0			8	27 3	46.56596	33	-24	33 0	55.09265 33 -45
22 1	37.10563		4	27 3	46.56596	33	60	33 1	55.10651 10 -25
22 2			9	27 4	46,47986	10	-8	33 2	55.15399 10 -7
22 3			-14	27 5	46.38243	10	-37	33 3	56.36746 10 -22
22 3			12	27 6	46.29841		-177	33 3	56.36188 33 12
22 4			0	27 10	46.13740	100	266	33 4	56.30061 10 -44
22 5			-34	27 11	46.12786	100	-10	33 5	56.21413 100 -127
22 6			-87	27 12	46.13740	100	-20	34 0	56.72198 10 -43
22 9			134	28 0	46.92674	10	-8	34 1	56.73561 10 -27
22 10			-16	28 1	46.94079	10	-5	34 2	56.78185 16 -0
22 11	37.91645		-6	28 2	46,99464		2	34 3	58.00024 133 6
22 12			-290	28 3	48.20204	100	-55	34 3	57.98938 10 -1
23 0			-5	28 3	48.20204		53	34 4	57.93262 100 3
23 1			2	28 4	48.11923		-145	34 5	57.84740 66 -120
23 2			7	28 5	48.02471		-57	34 6	57.76261 330 -34
23 3			-17	28 6	47.94038		-187	34 9	57.60823 100 199
23 3			15	28 9	47.79620		165	35 0	58.34983 10 -4
23 4			-4	28 10	47.77622	66	229	35 1	58.36314 10 -3
23 5			-36	29 0	48.56242	16	-5	35 2	58.40812 10 -1
23 6			-101	29 1	48.57651	10	-2	35 3	59.63793 10 17
23 6	39.7216	5 *	147						

investigated in this paper. The splitting of the kl = -2 levels could be well resolved in the millimeter-wave and submillimeter-wave spectra (cf. Table II). In the far-infrared spectrum, we could observe the splitting only for J = 18 and 19 (cf. Table III). In the $v_2 = 1$ vibrational state of $^{13}\text{CH}_3\text{F}$, we were able to resolve the $A_1 - A_2$ splittings only for K = 3, $J \ge 32$. In some cases, the calculation predicts splittings of lines which

TABLE III—Continued

J K l Expb Uncc E	Cd J K l Expb Uncc E-Cd	J K 1 Expb Uncc E-Cd
35 3 59.61585 10 1	2 19 4 1 33.52850 10 -10	21 3 -1 35.83905 33 9
35 4 59.56129 33 -4		21 4 -1 36.17470 16 -16
35 5 59.47879 100 -14		21 5 -1 36.08696 10 11
35 6 59.40137 333 32		21 6 -1 36.14793 16 19
35 8 59.27679 66 27		21 7 -1 36.18818 433 -460
36 0 59.97589 33 -6		21 10 -1 36.26076 33 -43
36 1 59.98914 16 -4		22 1 1 38.99463 10 3
36 2 60.03275 33 -4		22 1 1 38.12673 10 -7
36 3 (61.29663)	19 0 -1 33.40919 10 -7	22 3 1 39.45549 166 28
36 3 61.24000 10 -3		22 4 1 38.51070 10 1
36 4 61.18873 10 -8		22 5 I 38.45598 16 20
36 5 61.10853 100 -15		22 6 1 38.40822 166 -97
36 6 61.02448 433 -40		22 7 1 38.37068 16 4
36 9 60.86964 100 30		22 8 1 38.33757 33 -6
37 0 61.60070 33 -6		22 10 1 38.28222 33 0
37 1 61.61346 33 -6		22 12 1 38.23566 33 7
37 3 62.50405 200 -18		22 0 -1 38.31408 16 5
37 3 62.86345 66 -		22 1 -1 38.41402 10 -5
37 4 62.81435 66 -12		22 2 -1 37.30297 33 38
37 7 62.58885 100 22		22 2 -1 37.30297 33 38
38 0 63.22369 33 -7.		22 3 -1 37.36297 100 -7
38 1 63.23620 33 -7		22 4 -1 36.77794 50 99
38 3 (64.63097)	20 4 1 35.19202 10 -3	22 5 -1 37.72497 16 8
38 3 (64,48488)	20 5 1 35.13482 10 0	22 6 -1 37.78432 16 1
38 4 64.88426 100 21		22 7 -1 37.8432 10 1
38 6 64.28511 100 8		22 8 -1 37.86308 33 -28
30 0 04.20311 100 0	20 8 1 35.02261 10 -3	22 9 -1 37.88582 66 -38
$v_5 = 1$	20 9 1 34.99329 233 -226	22 10 -1 37.90191 66 46
19 1 1 22 27/22 10	20 10 1 24 07 125 100 15	22 11 -1 37.91089 100 12
	20 10 1 34.97133 100 13	23 1 1 40.64449 16 -13
10 1 1 31.32001 10	20 0 1 25 04422 10 0	23 1 1 39.77573 16 5
18 2 1 32.10446 16 -20	20 1 1 25 14127 10 6	23 2 1 40.45590 16 -2
18 3 1 31.93549 10 -:	20 2 1 24 02245 02 70	23 3 1 40.10366 16 12
18 4 1 31.86302 10	20 2 1 24 02245 10 2	23 4 1 40.16406 10 3
18 5 1 31.80736 16 -	20 2 1 24 20029 10 0	23 5 1 40.11355 33 5
18 6 1 31.76461 66 -53	20 4 1 24 41067 16 10	23 6 1 40.06656 10 6
18 7 1 31.73106 10 -1 18 8 1 31.70105 166 -15	20 5 1 24 44057 10 1	23 7 1 40.02706 10 0
	20 (1 74 51049 10 1	23 8 1 39.99447 133 137
	20 0 1 24 (0(0) 16 6	23 10 1 39.93627 33 48
	20 10 1 24 (2027 (6 20	23 0 -1 39.94898 10 6
	20 11 1 24 62946 66 7	23 1 -1 40.04951 10 -2
	21 1 1 27 24100 166 02	23 2 1 38.93736 33 23
	21 1 1 26 47600 10 1	23 2 -1 38.93736 33 -11
18 1 -1 31.86613 10 -10	21 2 1 27 12621 10 0	23 3 -1 39.09875 16 14
18 2 -1 30.76242 100	21 2 1 26 76160 10 01	23 4 -1 39.42200 10 10
	, 21 4 1 26 05204 10 2	23 5 -1 39.36497 10 15
18 3 -1 30.95539 10	21 6 1 26 70612 10 6	23 6 -1 39.42016 33 -12
18 4 -1 31.09878 33 -30	21 6 1 26 74905 100 129	23 7 -1 39.46650 100 -73
18 5 -1 31.17554 16 16	21 7 1 26 71277 16 1	24 1 1 42.29303 10 9
	21 0 1 26 60112 22 21	24 1 1 41.42335 16 0
18 8 -1 31.30107 166 -166	21 0 1 26 65222 200 45	24 2 1 42.11672 10 2
18 10 -1 31.33514 100 4	21 10 1 26 62722 10 11	24 3 1 41.87905 16 23
18 11 -1 31.34216 50 -30	21 12 1 26 50207 10 22	24 4 1 41.81076 10 6
18 12 -1 31.34433 100 -200	21 0 1 26 67000 16 0	24 5 1 41.76897 16 -16
19 1 1 34.03335 50 -40	21 1 1 26 77704 16 4	24 6 1 41.72195 16 -18
19 1 1 33.17337 10 -	21 2 1 25 66010 100 27	24 7 1 41.68176 10 -19
19 2 1 33.78365 10 -	21 2 1 25 66010 100 22	24 8 1 41.64713 10 0
19 3 1 33.58977 10	21 2 1 35.00010 100 -22	2. 0 1 41.04/13 10 0

were within the range of the significant digits of the experimental transition frequencies or wavenumbers, but the splittings could not be resolved in the spectrum. In these cases, the experimental frequencies were compared in the fit with both calculated values but their weights were decreased by taking into account the predicted splitting and the quality of the blended lines.

In most cases, the observed lines correspond to transitions with the usual selection rules for the purely rotational transitions in a symmetric top molecule $\Delta J = 1$, ΔK

TABLE III-Continued

J K	. 1	Expb	Uncc	E-Cd	J K l Expb Uncc E-Cd J K l Expb	Unec E-Cd	- 1
$\frac{3}{24} \frac{10}{10}$		41.58814	33	15	27 2 1 47.08390 10 7 29 6 1 49.23761	33 38	-
24 11	-	41.56144	133	-53	27 3 1 46.91123 10 0 29 8 -1 49.30667	100 85	
24 0		41.58370	10	5	27 4 1 46.62376 10 21 29 9 1 49.33223	100 -97	
	-1	41.68433	16	ő	27 5 1 46.72048 16 18 30 1 1 (52.14676		
	-1	40.57137	16	16	27 6 1 46.67825 33 10 30 1 1 51.28255	′ 13 -1	ı
24 2	-1	40.57137	16	-11	27 7 1 46.63691 16 0 30 2 1 52.02936	10 4	
24 3	-1	40.72814	33	0	27 9 1 46.56596 100 -60 30 3 1 51.87391	16 26	5
	-1	40.93733	10	5	27 12 1 46.47986 200 -58 30 4 1 51.55768	10 20)
24 5	-1	41.00886	10	6	27 0 -1 46.48611 10 10 30 5 1 51.63167	16 11	l
24 6		41.05605	10	27	27 1 -1 46.58430 10 -6 30 6 1 51.61488	16 15	
24 7		41.10363	100	53	27 1 -1 (46.58436) 30 7 1 51.57555		
	-1	41.17821	33	-55	27 2 -1 45.47007 16 23 30 8 1 51.53781	33 13	
	-1	41.19324	100	-53	27 2 -1 45.47007 10 9 30 10 1 51.46967	66 15	
25 1	-	43.93957	10	3	27 3 -1 45.61396 10 0 30 0 -1 51.38324		-
25 1		43.06977	16	-6	27 4 -1 45.76032 10 6 30 1 -1 51.47699		
25 2 25 3		43.77487	16	-2	27 5 -1 46.05217 166 64 30 2 -1 50.36126 27 6 -1 45.96196 33 41 30 2 -1 50.36126	10 17	
	_	43.57567	16	11			9
25 4 25 5	_	43.44595 43.42226	10 16	6 -14	27 7 -1 46.00684 166 147 30 3 -1 50.49365 27 12 -1 46.10180 66 -100 30 4 -1 50.62677		
25 6		43.42220	33	7	28 1 1 48.86851 83 -64 30 7 -1 50.90063	16 13 10 -13	
25 7		43.33506	10	-21	28 1 1 48.00163 100 5 30 11 -1 50.99477	166 -17	
25 9		43.26746	50	-34	28 2 1 48.73470 33 3 30 12 -1 50.99889		
25 10	-	43.23917	10	40	28 3 1 48.56884 10 1 31 1 1 53.78255		
) -1	43.21822	10	7	28 4 1 48.10092 10 10 31 1 1 52.92081	16	
	-1	43.31849	10	4	28 5 1 48.36370 16 15 31 2 1 53.67332		
-	- i	42.20492	16	16	28 6 1 48.32629 16 22 31 3 1 53.52224		-
25 2	_	42.20492	16	-5	28 7 1 48.28494 10 -13 31 4 1 53.30341	10 2	
	3 - 1	42.35798	66	70	28 8 1 48.24830 66 65 31 5 1 53.25041	33 3	
25 4	-1	42.52856	16	8	28 9 1 48.21364 16 10 31 6 1 53.25534		
25 5	5 -1	42.66174	10	13	28 10 1 48.18202 50 -3 31 7 1 53.21773	16 -	7
25 6	5 -1	42.69138	33	45	28 12 1 48.12467 200 -33 31 8 1 53.17987	' 16 -	3
25 7	-1	42.73738	66	-67	28 0 -1 48.11923 16 10 31 0 -1 53.01376		2
25 8		42.77372	66	6	28 1 -1 48.21593 10 -15 31 1 -1 53.10578		
25 9	-	42.79918	66	33	28 2 -1 47.10143 16 24 31 2 -1 51.98954		4
25 11		42.82655	66	37	28 2 -1 47.10143 10 13 31 2 -1 51.98954		1
25 12		42.83091	66	-37	28 3 -1 47.24139 10 6 31 3 -1 52.11908		2
26 1	-	45.58443	10	-2	28 4 -1 47.38218 10 19 31 4 -1 52.24845		
26 1		44.71513	10	7	28 5 -1 47.85372 100 3 31 5 -1 52.47102		
26 2		45.43061	10	3	28 6 -1 47.59855 33 36 31 6 -1 52.53340		1
26 3		45.24833	10	6	28 7 -1 47.63970 200 189 32 1 1 (55.41645		
26 4 26 5		45.05871	10	14	28 9 -1 47.69949 200 -190 32 1 1 54.55753		
26 5 26 6		45.07307 45.02799	10 16	-8 -8	28 10 -1 47.71767 200 -214 32 2 1 55.31482 29 1 1 50.50885 10 -2 32 3 1 55.16798		6
26 7	-	44.98706	10	10	29 1 1 49.64277 16 -2 32 4 1 54.99805		
26 9		44.91832	16	35	29 2 1 50.38324 10 9 32 5 1 54.85044		4
_) -1	44.85253	16	22	29 3 1 50.22284 10 10 32 6 1 54.89207		
26 1		44.95175	16	-4	29 5 1 50.00152 16 12 32 7 1 54.85744		
	2 -1	43.83779	33	12	29 6 1 49.97199 33 31 32 8 1 54.82006		
26 2		43.83779	33	-5	29 7 1 49.93127 10 -6 32 9 1 54.78401		9
26 3		43.98607	10	16	29 8 1 49.89326 16 -30 32 0 -1 54.64368		
26 5		44.33427	iŏ	13	29 10 1 49.82671 33 8 32 1 -1 54.73303		
26 6		44.32630	33	26	29 0 -1 49.75169 10 13 32 2 -1 53.61685		8
26 7	7 -1	44.37360	166	146	29 1 -1 49.84688 16 -2 32 2 -1 53.61886		
26 8	3 -1	44.40781	66	-51	29 2 -1 48.73184 10 21 32 3 -1 53.74316		5
26 9	-1	44.43385	66	-34	29 2 -1 48.73184 10 12 32 4 -1 53.86925		1
27 1	1 1	47.22821	66	54	29 3 -1 48.86877 100 79 32 5 -1 54.04456	16 -	6
27 1	1 1	46.35896	10	-2	29 4 -1 49.00434 16 -3 32 6 -1 54.20089	66 6	7

^{= 1,} $\Delta l = 0$. However, we were able to observe 14 lines of purely rotational transitions in the $v_5 = 1$ state, which are allowed by the "2, -1" l-type interaction described by Eq. (5). They have the selection rules $\Delta J = \pm 1$, $\Delta (k - l_5) = \pm 3$, as illustrated by Fig. 2. Such perturbation-allowed rotational transitions can have a significant intensity only if there is a large difference between the mixing of the wavefunctions in the upper and lower rotational levels. This is illustrated by Table IV, in which the coefficients of the mixing of the vibration-rotational wavefunctions are given. The mixing of the

TABLE III—Continued

J K I Expb Un	c ^c E-C ^d J	K I Expb	Unc ^c E-C ^d J	K 1 Expb Uncc E-Cd
32 7 -1 54.16314 66	5 45 35	5 1 1 60.29166	33 -245 36	8 -1 60.69961 166 146
32 8 -1 54.19497 66	5 129 35	5 1 1 59.45832	10 -4 37	1 1 (63.92569)
33 1 1 57.04701 33	3 -55 35	5 2 1 60.22614	16 13 37	1 1 62.71691 10 -13
33 1 1 (56.19285)	35		16 -4 37	2 1 63.48909 10 13
33 2 1 56.95416 10			33 25 37	
33 3 1 56.81131 10			100 26 37	
33 4 1 56.66512 10			166 102 37	
33 6 1 56.52537 100			33 -25 37	
33 7 1 56.49530 10			66 59 37	
33 0 -1 56.27136 16			10 -23 37	
33 1 -1 56.35990 10			10 13 37	
33 2 -1 55.24289 10			10 11 37	
33 2 -1 55.24289 16			100 -67 37	
33 3 -1 55.36807 133			100 -13 37	
33 4 -1 55.48926 33			100 -35 38	
33 5 -1 55.63983 33			100 5 38	
33 6 -1 55.89494 50			166 196 38	
33 7 -1 55.79398 100			33 -8 38	
34 1 1 58.67359 33			166 -117 38	
34 1 1 57.82649 10			38	
34 2 1 58.59145 33			16 -6 38	
34 3 1 58.45246 16			16 10 38	2 -1 63.35349 33 54
34 4 1 58.32033 10			16 -10	1111 1
34 5 1 57.94768 83				orbidden rotational transitionse
34 6 1 58.15393 160			266 185 rR	(21,+3) 38,08079 33 72
34 7 1 58.12989 33			10 -58 _{FD}	(22,+3) 38.09562 33 8
34 0 -1 57.89775 33			133 114 ₋₀	(28,+4) 50.15584 33 -79
34 1 -1 57.98551 33			10 -22 ₋₁₀	(29,+4) 49.50451 33 10
34 2 -1 56.86760 10			00 /3 _0	R(21,-4) 34.85645 100 18
34 2 -1 56.86760 10			00 /4 10	R(22,-4) 38.13675 100 13
34 4 -1 57.10804 50			100 -121	R(23,-4) 41.46334 100 14
34 5 -1 57.24489 100			100 -41 20	8(28,-5) 45.80018 100 230
34 7 -1 57.42607 100			00 -30 5	R(29,-5) 49.72669 10 18
34 9 -1 57.47416 100) 51 36	5 7 -1 60.70219	16 28 PK	

a) In doublets corresponding to transitions between levels with the A_1 - A_2 splitting (J,K=3) in the $v_2=1$ state, J,kl=+1 and J,kl=-2 in the $v_5=1$ state), transitions between the A_+ blocks are given first.

symmetrized zeroth-order wavefunctions $|v_2, v_5; J, kl\rangle_0$ which are involved in these rotational transitions can be described as

$$|0, 1^{\pm 1}; J, kl\rangle_{\text{perturbed}} = c_1 |0, 1^{\pm 1}; J, kl = +1\rangle_0 + c_2 |0, 1^{\pm 1}; J, kl = -2\rangle_0 + c_3 |1, 0^0; J, k = 0\rangle_0 + c_4 |1, 0^0; J, k = 3\rangle_0 + c_5 |0, 1^{\pm 1}; J, kl = +4\rangle_0,$$
 (6)

where on the left-hand side of Eq. (6), kl is either +1 or -2 depending on the values of the mixing coefficients c_i (see further discussion).

There is almost a complete mixing of the wavefunctions of the kl = +1 and kl = -2 unperturbed states for J = 8, while the mixing is relatively small for J = 7 and J = 9. It should be noted that for J = 8, both perturbed wavefunctions have the largest contributions from the unperturbed wavefunction $\{0, 1^{\pm 1}; J = 8, kl = -2\}_0$ (see Table IV). Thus, formally both states should be assigned as the kl = -2 states of $v_5 = 1$, but this is certainly not convenient. In cases such as this the assignment is rather arbitrary but certainly the choice of a label which we decide to attach to a particular line is a matter of convenience. This fact has no effect on the calculation of the pa-

b) Transition frequencies in parentheses are calculated. Transitions denoted by asterisk were not included in the fit.

c) Estimated uncertainty of the experiment in units 10-5 cm⁻¹.

d) E - C = v_{exp} - v_{calc} in units 10^{-5} cm⁻¹.

e) See footnote h) in Table II.

FIG. 2. Illustration of the allowed rotational transitions (filled arrows) and "forbidden" rotational transitions (empty arrows) in the $v_5=1$ vibrational state of $^{13}\mathrm{CH}_3\mathrm{F}$.

rameters by fitting the experimental data. A situation like this occurs also in other states of CH₃F, especially in states which are strongly mixed by the x,y-Coriolis interaction (3, 10). For example, this occurs for all the pairs of energy levels which are related to the unperturbed energy levels $|1,0^0; J, K=3\rangle_0$ and $|0,1^{\pm 1}; J, kl=-2\rangle_0$ for $J \ge 31$. In this case both perturbed states have a maximum contribution from the $|0,1^{\pm 1}; J, kl=-2\rangle_0$ state and their assignment is rather arbitrary.

TABLE 1V

Coefficients of the Mixing of Wavefunctions in the +l; J, K = 1 and -l; J, K = 2 States of the $v_5 = 1$ Vibrational Level of $^{13}\text{CH}_3\text{F}$

Assignment		Energy				
	c ₁	Ç	c 3	C4	C 5	(cm ⁻¹)
$\{0, 1^{\pm 1}; J=7, k\ell = +1 > pert \}$	0.94080	-0.07740	0.32927	-0.02206	0.00154	1521.608
$ 0, 1^{\pm 1}; J=7, k\ell = -2>_{pert}$	0.07637	0.95333	0.02542	0.29026	-0.02066	1522.719
$[0, 1^{\pm 1}; J=8, k\ell = +1>_{pert}]$	0.65689	-0.67166	0.25347	-0.22969	0.01893	1535.455
$ 0, 1^{\pm 1}; J=8, k\ell = -2>_{pert}$	0.66325	0.66513	0.25367	0.23021	-0.01903	1535.654
$ 0, 1^{\pm 1}; J=9, k\ell = +1>_{pert}$	0.91972	0.08401	0.38190	0.03451	-0.00328	1551.206
$0, 1^{\pm 1}; J=9, k\ell = -2>_{pert}$	-0.08324	0.93001	-0.03646	0.35457	-0.03313	1550.005

	•	3-	
Parameter	Ref. (1)	Ref. (2)	Our work
E ₅ - E ₂	11.94 (4)a		11.918734 (325)
B ₅	0.831415 (43)		0.83102545 (189)
$A\zeta_5^z$	-1.264 (25)	-1.273 (8)	-1.2782364 (907)
B ₂	0.826345 (25)		0.82728656 (26)
A ₅ - A ₀		-0.044 (3)	-0.0448108 (1715)
A ₂ - A ₀		0.021 (4)	0.0229772(1462)
C ₁₁ ⁽¹⁾	0.5015 (15)		0.5039516 (69)
$q_{12}/10^{-3}$	2.63 (120)		2.236009 (123)
η _J /10 ⁻⁴	-0.60 (40)		-0.51551 (1849)
	1		

TABLE V

Comparison of the Parameters (in Units of cm⁻¹) in the $v_2 = 1$ and $v_5 = 1$ States of $^{13}\text{CH}_3\text{F}$

DISCUSSION

Such a rich purely rotational spectrum (including many "forbidden" transitions) in an excited vibrational state of a symmetric top molecule has been probably observed for the first time. This demonstrates that with the use of highly sensitive millimeter-wave and submillimeter-wave spectrometers, and Fourier transform spectrometers with excellent signal to noise ratios in the far-infrared region, one can now observe spectra of purely rotational transitions in the excited vibrational states, from which almost the same information can be obtained on the spectroscopic parameters of the upper vibrational states as is possible from the high-resolution infrared spectra of the vibration–rotational transitions (apart, of course, from the band origin which is the exclusive feature of infrared measurements).

For 13 CH₃F, this can be seen in Table I. It should be noted that because of the Δk = 0 selection rule for the usual purely rotational transitions, information which can be obtained, for example, on the difference $E_5 - E_2$ or on the coefficients A, $A\zeta_5^2$, D_K^v or the Coriolis parameters C_{11} , etc., depends on the magnitude of the vibrationrotational interactions between the states $v_2 = 1$ and $v_5 = 1$. For CH₃F, this interaction is so strong that most of these parameters could be determined very accurately, except D_K^2 and D_K^5 which are influenced by their smaller sensitivity to the available experimental data. It was also not possible to determine from the rotational data the values of the coefficients H_K^2 , H_K^5 , and τ_K . We constrained them to the values obtained in the subsequent paper [Ref. (3)] by fitting the rotational data simultaneously with the wavenumbers of the vibration-rotational transitions to the states $v_2 = 1$ and $v_5 = 1$. We also constrained the coefficients H_J^v , L_{JK}^v , and L_{JKK}^v , to the values obtained in Ref. (3). Sextic and octic centrifugal distortion coefficients for the $v_2 = 1$ and $v_5 = 1$ states of CH₃F are effective parameters which partially absorb interactions that have not been explicitly taken into account in this paper. As is discussed in more detail in Ref. (3), it seems that that for J > 30 and for certain values of the rotational quantum numbers, the interaction between the lower lying vibrational state $v_6 = 1$ and the

a Number in parentheses are standard errors in units of the last digit.

states $v_2 = 1$ and $v_5 = 1$ cannot be completely absorbed into the effective spectroscopical parameters of the $v_2 = 1$ and $v_5 = 1$ states. A future variational analysis of the interactions between the $v_2 = 1$, $v_5 = 1$, $v_3 = 1$, and $v_6 = 1$ states is expected to improve the situation.

The values of some of the parameters which were obtained in the present paper are compared with the previously determined parameters [Refs. (I, 2)] in Table V. A simultaneous analysis of the vibration-rotational transition wavenumbers with the wavenumbers of the purely rotational transitions in the ground and excited vibrational states should of course provide more accurate parameters.

ACKNOWLEDGMENTS

D.P. is grateful to the Région Nord-Pas-de-Calais (France) for appointment as Visiting Research Professor in 1992–1993. The laboratory work in Giessen was supported in part by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

RECEIVED: August 3, 1993

Note added in proof. E. Hirota, A. Taleb-Bendiad, and T. Amano (J. Mol. Spectrosc., in press), remeasured the $J=2 \leftarrow 1$ kl=-1 transition and found its frequency at 85 710.095 MHz (see footnote f of Table II).

REFERENCES

- 1. E. HIROTA, S. SAITO, AND Y. ENDO, J. Mol. Spectrosc. 70, 469-471 (1978).
- 2. F. HEGELUND, S. BRODERSEN, AND I. M. MILLS, J. Mol. Spectrosc. 70, 386-393 (1978).
- 3. D. PAPOUŠEK, J. DEMAISON, G. WLODARCZAK, P. PRACNA, S. KLEE, AND M. WINNEWISSER, J. Mol. Spectrosc. 164 (1994).
- 4. J. Burie, D. Boucher, J. Demaison, and A. Dubrulle, J. Phys. (Paris) 43, 1319-1325 (1982).
- S. P. BELOV, A. V. BURENIN, L. I. GERSHTEIN, V. V. KOROLIKHIN, AND A. F. KRUPNOV, Opt. Spectrosc. 35, 172–176 (1973).
- S. P. BELOV, V. M. DEMKIN, V. I. PUCENKIN, AND M. YU. TRETYAKOV, Third Generation Submillimeterwave Spectrometer, Institute for Applied Physics, Gorkii, 1988, unpublished report.
- 7. P. PRACNA, S. KLEE, M. WINNEWISSER, D. PAPOUŠEK, YEN-CHU HSU, AND HANN-SEN CHEN, J. Mol. Spectrosc. 156, 217–226 (1992).
- 8. D. Papoušek, Yen-Chu Hsu, Hann-Sen Chen, P. Pracna, S. Klee, M. Winnewisser, and J. Demaison, J. Mol. Spectrosc. 159, 33–41 (1993).
- P. PRACNA, D. PAPOUŠEK, S. P. BELOV, M. YU. TRETYAKOV, AND K. SARKA, J. Mol. Spectrosc. 146, 120–126 (1991).
- D. PAPOUŠEK, Z. PAPOUŠKOVÁ, J. F. OGILVIE, P. PRACNA, S. CIVIS, AND M. WINNEWISSER, J. Mol. Spectrosc. 153, 145–166 (1992).