Ответы к устному опросу 1 семестр

1. Предел функции в точке

Определение предела (по Коши). Число A называется пределом функции f(x) в точке a (при $x \to a$), если для любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что для любого значения аргумента x из проколотой δ - окрестности точки a выполняется неравенство $|f(x) - A| < \varepsilon$.

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ 0 < x - a < \delta \implies |f(x) - A| < \varepsilon$$

2. Односторонние пределы

Функция может иметь различные предельные точки слева и справа в некоторой точке.

Число A называется пределом функции f(x) в точке a справа (слева), если для любого ε > 0 найдется δ > 0 такое, что для любого значения аргумента $x \in (a; a + \delta)$ (соответственно $x \in (a - \delta; a)$) выполняется неравенство $|f(x) - A| < \varepsilon$.

$$\frac{\lim}{x \to a+0} f(x) = A$$
 или $f(a+0) = A$

$$\frac{\lim}{x \to a - 0} f(x) = A$$
 или $f(a - 0) = A$

Теорема. Если у функции f(x) существуют в точке a предел слева и предел справа, причем f(a + 0) = f(a - 0) = A, то в данной точке существует предел этой функции, равный A.

3. Предел функции при $x \to \infty$

Пусть функция f(x) задана на множестве X и $\forall N \exists x \in X : x > N$

Число A называется пределом функции f(x) при $x \to +\infty$, если $\forall \varepsilon > 0$ $\exists N$, такое, что для любого x > N выполнено неравенство $|f(x) - A| < \varepsilon$.

$$\frac{\lim}{x \to +\infty} f(x) = A$$

Аналогично определяется $\frac{lim}{x \to -\infty} f(x) = A$ (Число A называют пределом функции f (x) при $x \to -\infty$, если для любого положительного числа ϵ найдется такое отрицательное число C, что при всех x, удовлетворяющих неравенству x < C ,будет выполняться неравенство| f (x) - A | < ϵ .)

Если
$$\frac{\lim}{x \to -\infty} f(x) = \frac{\lim}{x \to +\infty} f(x) = A$$
 ,то пишут $\frac{\lim}{x \to \infty} f(x) = A$

4. Бесконечно большая функция

Функция f(x) называется бесконечно большой в точке a (при $x \to a$), если

$$\frac{\lim}{x \to a} f(x) = \infty$$
 иначе,

$$\forall \varepsilon > 0 \ \exists \delta > 0, \ 0 < |x - a| < \delta \Longrightarrow |f(x)| > A$$

5. Бесконечно малая функция

Функция f(x) называется бесконечно малой в точке a (при $x \to a$), если

$$\frac{\lim}{x \to a} f(x) = 0$$
 иначе,

$$\forall \varepsilon > 0 \ \exists \delta > 0, \ 0 < |x - a| < \delta \Longrightarrow |f(x)| < \varepsilon$$

Основные свойства бесконечно малых функций:

Теорема1. Сумма и разность двух бесконечно малых в точке a функций есть функция бесконечно малая в точке a.

Теорема 2. Произведение бесконечно малой в точке a функции на ограниченную в окрестности точки a функцию есть функция бесконечно малая в точке a.

Следствие 1. Произведение конечного числа ограниченных функций, из которых хотя бы одна — б. м. в точке a, есть функция бесконечно малая в точке a.

Следствие 2. Частное от деления бесконечно малой в точке а функции на функцию, имеющую отличный от нуля предел в точке а есть функция бесконечно малая в точке a.

6. Связь между функцией, ее пределом и бесконечно малой функцией

Теорема (о связи между функцией, пределом и бесконечно малой функцией)

1)Если
$$\frac{\lim}{x \to a} f(x) = A$$
, то $f(x) = A + a(x) - 6$.м. в точке a

2)Если
$$f(x) = A + a(x)$$
, где $a(x) - 6$.м. в точке a и A – число, то $\frac{\lim}{x \to a} f(x) = A$

1) Согласно определению предела

$$\forall \varepsilon > 0 \ \exists \delta > 0, \ 0 < x - a < \delta \Longrightarrow |f(x) - A| < \varepsilon.$$

Это означает, что функция

 $\alpha(x) = f(x) - A$ — бесконечно малая в точке a.

Представим f(x) в виде $f(x) = A + f(x - A) = A + \alpha(x)$.

7. Основные теоремы о пределах.

<u>Теорема.</u> Пусть функции f(x) и g(x) определены в проколотой окрестности точки a и, пусть

 $\frac{\lim_{x\to a} f(x) = A, \frac{\lim_{x\to a} g(x) = B}{x}$. Тогда:

$$\frac{\lim}{x \to a} [f(x) \pm g(x)] = A \pm B ;$$

$$\frac{\lim}{x \to a} f(x) \cdot g(x) = A \cdot B \; ;$$

Если $B \neq 0$, то в некоторой проколотой окрестности точки a определена функция f(x) g(x) и

$$\frac{\lim}{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B} .$$

1) Согласно теореме о связи функции, предела и б. м.

$$f(x) = A + \alpha(x)$$
, $g(x) = B + \beta(x)$,

где $\alpha(x)$ и $\beta(x)$ — б. м. в точке a.

Поэтому $f(x) \pm g(x) = (A \pm B) + (\alpha(x) \pm \beta(x)) = (A \pm B) + \gamma(x)$ где $\gamma(x) = \alpha(x) \pm \beta(x)$ - б. м. в точке a.

Следовательно,

$$\frac{\lim_{x \to a} f(x) \pm g(x) = A \pm B$$

Следствие 1.

$$\frac{\lim}{x \to a} c \cdot f(x) = c \cdot A$$

где c = const

Следствие 2. Пусть $P_n(x)$ и $Q_m(x)$ – многочлены степени n и m. Если $Q_m(a) \neq 0$, то

$$\frac{\lim}{x \to a} \frac{P_n(x)}{Q_m(x)} = \frac{P_n(a)}{Q_m(a)}$$

<u>Замечание.</u> Алгебраические свойства предела допускают обобщение на функции, являющиеся б. м. или б. б. в точке a, например

$$[\infty \cdot \infty] = \infty$$
, $[c \cdot \infty] = \infty$, $[\frac{c}{0}] = \infty$, $[\frac{c}{\infty}] = 0$, $[\frac{\infty}{0}] = \infty$, $[\frac{0}{\infty}] = 0$

8. Признаки существования пределов

Теорема (о пределе промежуточной функции):

Если в проколотой окрестности точки a выполняются неравенства

$$f(x) \le g(x) \le h(x)$$

и существуют пределы функций f(x) и h(x) в точке a, причем

$$\frac{\lim}{x \to a} f(x) = \frac{\lim}{x \to a} h(x) = A$$

то существует

$$\frac{\lim}{x \to a} g(x) = A$$

Теорема (о пределе монотонной функции):

Если функция f(x) монотонна и ограничена на полупрямой $x \ge a$, то существует

$$\frac{\lim}{x \to +\infty} f(x) = A$$

Замечание. Аналогичная теорема имеет место для правого и левого предела функции в точке a: если функция f x монотонна и ограничена в правой (левой) полуокрестности точки a, то существует

$$\frac{\lim}{x \to a+0} f(x)$$
 или $\frac{\lim}{x \to a-0} f(x)$

Следствие. Монотонная ограниченная последовательность сходится.

9. Первый замечательный предел

$$\frac{\lim}{x \to 0} \frac{\sin x}{x} = 1; \qquad \frac{\lim}{x \to 0} \frac{\operatorname{tg} x}{x} = 1; \frac{\lim}{x \to 0} \frac{\operatorname{arcsin} x}{x} = 1; \frac{\lim}{x \to 0} \frac{\operatorname{arctg} x}{x} = 1;$$

10. Второй замечательный предел

$$\frac{\lim}{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = \frac{\lim}{x \to +\infty} \left(1 + x\right)^{\frac{1}{x}} = e^{-\frac{1}{x}}$$

(этот предел является неопределенностью типа $\left[1^{\infty}\right]$)

11. Сравнение бесконечно малых функций

Пусть f(x) и g(x) – б.м. в точке a.

Функция f(x) называется бесконечно малой более высокого порядка (имеет более высокий порядок малости), чем g(x) при $x \to a$, если

$$\frac{\lim}{x \to a} \frac{f(x)}{g(x)} = 0$$

Обозначение f = o(g) при $x \to a$ (о – малое от g)

Функции f(x) и g(x) называются бесконечно малыми одного порядка (имеют одинаковый порядок малости) при $x \to a$, если

$$\frac{\lim}{x \to a} \frac{f(x)}{g(x)} = A \neq 0$$

12. Эквивалентные бесконечно малые и основные теоремы о них

Функции f(x) и g(x) называются эквивалентными бесконечно малыми при $x \to a$, если

$$\frac{\lim}{x \to a} \frac{f(x)}{g(x)} = 1$$

Обозначение $f \sim g$ при $x \to a$

Теорема 1. Предел отношения двух бесконечно малых функций не изменится, если каждую или одну из них заменить эквивалентной ей бесконечно малой.

Теорема 2. Разность двух эквивалентных бесконечно малых функций есть бесконечно малая более высокого порядка, чем каждая из них.

Теорема 3. Сумма конечного числа бесконечно малых функций разных порядков эквивалентна слагаемому низшего порядка.

13. Непрерывность функции в точке, в интервале и на отрезке

Опр1

Функция f(x) называется непрерывной в точке a, если

$$\frac{\lim}{x \to a} f(x) = f(a)$$

1) Функция f(x) определена в точке a и в некоторой окрестности точки a;

- 2)Функция f(x) имеет предел при $x \to a$;
- 3) Предел функции в точке a равен значению функции в точке a.

Опр2

Функция f(x) называется непрерывной в точке a, если она определена в точке a и ее окрестности и бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции

$$\frac{\lim}{\Delta x \to 0} \Delta y = 0$$

Функция f(x) называется непрерывной в интервале (a; b), если она непрерывна в каждой точке этого интервала.

Функция f(x) называется непрерывной на отрезке [a;b], если она непрерывна в интервале (a;b), в точке a непрерывна справа, а в точке b непрерывна слева.

14. Точки разрыва функции и их классификация

Предельная точка области определения функции, в которой функция не является непрерывной называется *точкой разрыва функции*.

Классификация точек разрыва функции:

Устранимый разрыв.

Точка a называется точкой устранимого разрыва функции f(x), если существует

$$\frac{\lim}{x \to a} f(x) = b$$
, _но в точке $x = a$ функция $f(x)$ либо не определена, либо $f(a) \neq b$

Если положить f(a) = b разрыв будет устранен, т.е. функция станет непрерывной в точке а

Разрыв 1-го рода

Точка a называется точкой разрыва 1-го рода функции f(x), если существуют

$$\frac{\lim}{x \to a+0} f(x) = b$$
 и $\frac{\lim}{x \to a-0} f(x) = c$ но они не равны.

Величину |b - c| называют скачком функции в точке разрыва 1-го рода.

Разрыв 2-го рода

Точка a называется точкой разрыва 2-го рода функции f(x), если в этой точке не существует по крайней мере один из односторонних пределов

15. <u>Основные теоремы о непрерывных функциях. Непрерывность</u> элементарных функций

Теорема 1

Если функции f(x) и g(x) непрерывны в точке a, то функции $f(x) \pm g(x)$, $f(x) \cdot g(x)$, f(x) / g(x) (при условии $g(a) \neq 0$) также непрерывны в точке a.

Теорема 2. (о непрерывности сложной функции)

Пусть функция t = g(x) непрерывна в точке a, g(a) = b а функция y = f(t) непрерывна в точке b. Тогда сложная функция y = f(g(x)) непрерывна в точке a.

Теорема 3. (о непрерывности обратной функции)

Пусть функция y = f(x) определена, строго монотонна и непрерывна на X = [a; b]. Тогда множеством ее значений является Y = [f(a); f(b)]; на [f(a); f(b)] существует обратная функция $x = f^{-1}(y)$; обратная функция также строго монотонна; обратная функция непрерывна на Y = [f(a); f(b)].

Теорема 4.

Всякая элементарная функция непрерывна в каждой точке, в которой она определена.

16. Свойства функций, непрерывных на отрезке

Теорема (Вейерштрасса).

Если функция непрерывна на отрезке, то она достигает на этом отрезке своего наибольшего и наименьшего значения.

Следствие.

Если функция непрерывна на отрезке, то она ограничена на этом отрезке.

Теорема (Больцано-Коши).

Если функция y = f(x) непрерывна на отрезке [a; b] и принимает на его концах неравные значения f(a) = A и f(b) = B, то на этом отрезке она принимает все промежуточные значения между A и B.

Следствие.

Если функция y = f(x)непрерывна на отрезке [a; b] и принимает на его концах значения разных знаков, то внутри отрезка [a; b] найдется хотя бы одна точка c, в которой f(c) = 0.

Функция y = f(x) непрерывна на [a; b], a < 0, b > 0; M — наибольшее значение функции f(x) на [a; b]; m — наименьшее значение функции f(x) на [a; b].

17. <u>Определение производной. Ее механический и геометрический смысл.</u>

Если существует $f'(x) = \frac{\lim}{\Delta x \to 0} \frac{\Delta y}{\Delta x}$,то он называется производной функции y = f(x) в точке x.

Физический смысл

Пусть x — время, а y = f(x) — координаты точки, движущейся по оси ОY, в момент времени x.

Соотношение
$$\frac{\Delta y}{\Delta x} = \frac{f(x+\Delta x)-f(x)}{\Delta x}$$

представляет собой среднюю скорость точки на промежутке от момента времени x до момента времени x + Δx , а величина

$$\vartheta(x) = f'(x) = \frac{\lim}{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

является мгновенной скоростью в момент времени x.

В случае произвольной функции y = f(x) производная f'(x) характеризует скорость изменения переменной y (функции) относительно изменения аргумента x.

Геометрический смысл:

Геометрический смысл производной заключается в том, что численно производная функции в данной точке равна тангенсу угла, образованного касательной, проведенной через эту точку к данной кривой, и положительным направлением оси Ох:

$$f'(x_0) = tg \alpha$$
 или $f'(x_0) = k$

где k - угловой коэффициент касательной

18. <u>Уравнение касательной к кривой (НЕ УВЕРЕН) (ВРОДЬ ОНО САМОЕ)</u>

Уравнение касательной к графику функции y = f(x) в точке $A(x_0, f(x_0))$ имеет вид:

$$y - f(x_0) = f'(x_0)(x - x_0)$$

19. Связь между непрерывностью и дифференцируемостью функции

Функция y = f(x), имеющая производную в точке, называется дифференцируемой в этой точке.

Функция y = f(x), имеющая производную в каждой точке интервала (a; b), называется дифференцируемой в этом интервале.

Теорема

Если функция дифференцируема в некоторой точке, то она непрерывна в ней.

Обратная теорема не верна!

20. Производная суммы, разности, произведения и частного функций

<u>Теорема</u>. Если функции u(x) и v(x) дифференцируемы в точке x, то функции $u(x) \pm v(x)$, $u(x) \cdot v(x)$, u(x) / v(x) (где $v(x) \neq 0$) также дифференцируемы в точке x, причем:

$$[u(x) \pm v(x)]' = u'(x) \pm v'(x)$$
$$[u(x) \cdot v(x)]' = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$
$$\left[\frac{u(x)}{v(x)}\right]' = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v^2(x)}$$

21. Производная сложной и обратной функций

Сложной:

Рассмотрим сложную функцию y = f(t), где $t = \varphi(x)$, то есть $y = f(\varphi(x))$.

Теорема. Пусть функция $t = \varphi(x)$ дифференцируема в точке x_0 , $\varphi(x_0) = t_0$, функция y = f(t) дифференцируема в точке t_0 . Тогда сложная функция $y = f(\varphi(x))$ дифференцируема в точке x_0 и выполнено равенство:

$$[f(\varphi(x_0))]' = f'(t_0) \cdot \varphi'(x_0) = f_{\varphi'} \cdot \varphi_{x'}$$

Обратной:

Теорема. Пусть функция y = f(x) определена, строго монотонна и непрерывна в окрестности точки x_0 , дифференцируема в точке x_0 и $f'(x_0) \neq 0$. Пусть $f(x_0) = y_0$. Тогда в некоторой окрестности точки y_0 существует обратная функция $x = f^{-1}(y)$, эта функция дифференцируема в точке y_0 и

$$f^{-1}'(y_0) = \frac{1}{f'(x_0)}$$

22. <u>Дифференцирование неявных и параметрически заданных</u> функций

<u>Неявных:</u>

Если функция задана неявно уравнением F(x, y) = 0, то для нахождения производной y ' по аргументу x достаточно продифференцировать это уравнение по x, рассматривая при этом y как функцию x, затем полученное уравнение разрешить относительно y '.

Параметрически заданных:

$$y = f(x), \quad \left\{ \begin{array}{l} x = x(t) \\ y = y(t) \end{array} \right.$$
, где t – параметр.

Если функции x(t) и y(t) дифференцируемы, функция x = x(t) имеет обратную, то

$$t'_{x} = \frac{1}{x_{t'}}$$

Функцию y = f(x) можно рассматривать как сложную функцию

$$y = f(x) = f(t(x))$$

Получим
$$y_x^{'} = \frac{y_t^{'}}{x_t^{'}}$$

23. Логарифмическое дифференцирование

$$y' = y \cdot (\ln y)'$$

24. Производные высших порядков

Производная n -го порядка функции y = f(x) определяется как производная от производной (n-1) - го порядка.

$$f^{(n)}(x) = [f^{(n-1)}(x)]'$$

25. Дифференциал функции

Дифференциалом функции y = f(x) в точке x называется линейная функция аргумента Δx :

$$dy = f(x) \cdot \Delta x$$

26. Геометрический смысл дифференциала функции

Дифференциал dy равен тому изменению функции y = f(x) при изменении аргумента на Δx , которое имела бы функция, если бы на отрезке $[x, x + \Delta x]$ она была линейной с угловым коэффициентом, равным f'(x).

27. Основные теоремы о дифференциалах

Основные теоремы о дифференциалах соответствуют теоремам о производных:

$$d(u \pm v) = du \pm dv$$

$$d(u \cdot v) = v \cdot du + u \cdot dv$$

$$d(\frac{u}{v}) = \frac{du \cdot v - u \cdot dv}{v^2} \quad (v \neq 0)$$

Дифференциал сложной функции $y = f(x) = f(\varphi(x))$ равен:

$$dy = f_{\varphi}' \cdot d\varphi$$

28. Дифференциалы высших порядков

Дифференциал n-го порядка функции y = f(x) определяется как дифференциал от дифференциала (n-1) - го порядка.

$$d^{(n)}y = d(d^{(n-1)}y)$$