

B.Sc. Degree Program Faculty of Applied Sciences University of Sri Jayewardenepura

Course Title	Methods of Operational Research I
Course Code	MAN 103 1.0
Credit Value	01
Status	Core
Year / Level	Year 1
Semester	Semester 1
Theory: Practical: Independent Learning	13: 00: 26
Other: Pre-requisite Course/s	None

Aim of the Course:

To provide a basic understanding about operations research and its role in present world by providing a sound foundation for understanding the concepts, theory and applications of operations research by integrating numerous examples.

Intended Learning Outcomes:

On the successful completion of this course, the student should be able to:

- 1) Identify operational research problems (linear programing/transportation).
- 2) apply mathematical techniques to solve linear programing problems (minimization/maximization)
- 3) apply mathematical techniques to study the results of solved problems. (duality/sensitivity)
- 4) apply mathematical techniques to solve transportation problems.

Course Content:

Methods in Operation Research; Introduction to linear programming; Formation of linear programing problem; objective function; Constraints;

Solving linear programing problem; Minimization and Maximization of objective function;

Graphical Method;

Standard form of a linear programing problem; slack/surplus variables; negative variables; Simplex Method; Artificial variable technique; Types of Solutions in a LPP; optimal solution;

Duality theory; Formation of the dual problem; Dual simplex method;

Sensitivity analysis/post optimality analysis; Changes of the initial problem;

Transportation model; Mathematical formulation; Methods for initial basic feasible solution; Optimal solution; Unbalanced transportation problem;

Scope and Schedule of Teaching - Learning Activities:

Session	Tomic / Ck T	No. of Hrs.			Teaching	Assessment	ILO
No.	Topic / Sub Topic		P	IL	Method	Criteria	Alignment
1	1.1 Terminology, Phase of OR 1.2 Methods in operations research	1	-	2	Lecture / Chapter 1		1,2
2	2 Introduction to linear programming 2.1 Basic requirements 2.2 Steps involved	1	-	2	Lecture / Chapter 2		1,2
3	2.3 Assumptions made 2.4 Solutions of a LPP	1	-	2	Lecture / Chapter 2		1,2
4	3 The graphical method 3.1 Terminology	1	-	2	Lecture / Chapter 3		1,2
5	3.2 Methods to optimal solution 3.3 Practical steps	1	-	2	Lecture / Chapter 3		1,2
6	4 Simplex method 4.1 Standard form 4.2 Slack and Surplus variables	1	-	2	Lecture / Chapter 4		1,2
7	4.3 Negative variables4.4 Maximization problemswith ≤ constraints	1	-	2	Lecture / Chapter 4		1,2
8	4.5 Artificial variables techniques	1	-	2	Lecture / Chapter 4		1,2
9	4.6 Minimization 4.7 Special cases in Simplex method	1	-	2	Lecture / Chapter 4		1,2
10	Mid-Semester Examination	0	0	0	Mid-Sem. Examination	30% of Final Marks	
11	 5 Duality Theory and Sensitivity Analysis 5.1 Formulation of dual problem 5.2 Characteristics and Shadow price 	1	-	2	Lecture / Chapter 5		1,2,3
12	5.3 Introduction to Sensitivity analysis 5.4 Changes of optimal answers due to changes of the problem.	1		2	Lecture / Chapter 5		
13	6 Transportation model6.1 Formulation6.2 Methods for initial feasible solution	1	-	2	Lecture / Chapter 6		1,2,3,4
14	6.3 Finding optimal solution6.4 Unbalanced problem	1	-	2	Lecture / Chapter 6		1,4
	Total	13	-	26			

Linking Program Outcomes with ILOs:

Programme Learning Outcomes:

- 1. Demonstrate competency in theoretical knowledge and practical and/or technical skills in respective subject areas.
- 2. Communicate efficiently and effectively in the respective subject areas using written, oral, visual and/or electronic forms.
- 3. Facilitate, and participate as an empathetic and emotionally intelligent team player with leadership qualities, in a group, diverse team or organization.
- 4. Apply subject based knowledge and skills creatively in making appropriate judgments in changing situations.
- 5. Integrate creativity and innovation to achieve entrepreneurial competencies.
- 6. Implement solutions in keeping with ethical, societal and environmental norms and need for sustainable development.
- 7. Secure life goals through lifelong learning with the aim of strengthening professional skills, and ensuring the betterment of the community.

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7
ILO 1	**			*	*		**
ILO 2	**			*			**
ILO 3	***	**	*	**		*	**
ILO 4	**	*		**			**

^{*** -} Strongly Linked; ** - Medium linked; * Weakly linked

Mode of Assessment:

Formative Assessment (FA): FA1 30% = 30% of Total Marks

Summative Assessment (SA): End Semester Examination: 2-hour paper = 70% of Total Marks

References

- Operations Research Rathindra P.Sen
- Operations Research P.K.Gupta, D.S.Hira
- Operations Research Sudath Manjula Amarsena (A Sinhala Text Book)