NATIONAL FORENSIC SCIENCES UNIVERSITY

B.TECH-M.TECH(Integrated) - Semester - III - Nov -2022

Subject Code: CTBTCSE SIII P1

Subject Name: Engineering Mathematics-III

Time: 11:30 - 1:00 pm

Date: 07/11/2022

Total Marks: 50

Instructions:

- 1. Attempt all questions.
- 4 2. Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.

			Mark
Q.1	(a)	Expand $f(x) = \sin x$, $0 < x < \pi$, in a Fourier cosine series.	04
		or	
	(b)	Find	04.
		(a) $\mathcal{L}[e^{2t}t^2]$ (b) $\mathcal{L}[e^{3t}\cos 2t]$	
	(c)	Prove the second shifting theorem of the Laplace Transform.	05
	(d)	Expand $f(x) = x$, $0 < x < 2$, in a half range (a) sine series, (b) cosine series.	07
		Attempt any three	
Q.2	(a)	Expand $f(x)=\cos x$, $0 < x < Pi$, in a Fourier series	06
	(b)	Write any six properties of the Laplace Transform with examples.	06
	(c)	What is the condition for the existence of the Laplace Transform?	06
		Also	
		Find $\mathcal{L}^{-1}\left[\frac{3s+6}{s^2+3s}\right]$	
	(d)	Expand $f(x) = x^2$, $0 < x < 2\pi$ in a Fourier series if (a) the period is 2π , (b) the specified.	06
		Attempt any two.	
Q.3	(a)	What is the condition for the existence of the Fourier Series?	08
		Classify each of the following functions according as they are even, odd, or neither even nor odd.	
		(a) $f(x) = \begin{cases} 2 & 0 < x < 3 \\ -2 & -3 < x < 0 \end{cases}$ Period = 6	
		(b) $f(x) = \begin{cases} \cos x & 0 < x < \pi \\ 0 & \pi < x < 2\pi \end{cases}$ Period = 2π	
	(b)	Find the Laplace transform, if it exists, of each of the following functions	08
		(a) $f(t) = e^{at}$ (b) $f(t) = 1$ (c) $f(t) = t$ (d) $f(t) = e^{t^2}$	
	(c)	Expand $f(x) = x$, $0 < x < 2$, in a half range (a) sine series. (b) easine series.	08

NATIONAL FORENSIC SCIENCES UNIVERSITY

B.Tech + M.Tech. Cyber Security Semester - III 의AN-202 3

Subject Code: CTBTCSE SIII P1

Date:04/01/2023

Subject Name: Engineering Mathematics III

Time: 11:00 Am to 2:00 PM

Total Marks: 100

Instructions:

- 1. Write down each question on separate page.
- 2. Attempt all questions.
- 3. Make suitable assumptions wherever necessary.
- 4. Figures to the right indicate full marks.

			Marks
Q.1	(a).	Solve $(D^2 - 1)y = 4xe^x$	05
		Find the general solution of $\frac{d^2y}{dx^2} + y = cosecx$ by method of	05
	(c),	variation of parameters. Obtain Half Range Fourier Cosine and Sine Series for $f(x) = x$, $0 < x < \pi$	07
	10	OR	
	(c)		07
Q.2	(a)	places, using N-R method. Find the Inverse Laplace Transform of $\frac{1}{(s+\sqrt{2})(s+\sqrt{3})}$	05
	-	Form the Partial Differential equation from $z = (x - a)^2 + (y - b)^2$	05
			07
	(c)<	OR	
	(c)	Solve the IVP $y'' + 3y' + 2y = e^t$, $y(0) = 1$, $y'(0) = 0$ using Laplace	07
Q.3	(a)	transform. Find a root of the equation $x^3 - 4x - 9 = 0$ using bisection method	08
	1	correct up to three decimal places.	08
	(b)	Solve: $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = e^{4x}$	
		OR	
	(1-)	Find the Fourier series for the Periodic function	08
	(0)	Tind the Fourier server	
		$f(x) = -\pi \; ; \; -\pi < x < 0$	
		$=x$; $0 < x < \pi$	
		Hence deduce that $\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$	
		Hence deduce that $\frac{1}{8} - 2n = 1 (2n-1)^2$	05
Q.4	(a)	State second shifting theorem and also find $L[\cos t. u(t-\pi)]$.	05
	(b),	- Land - Congration of Variables Sulve	
		Using the Method of Separation of Variables $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$; given that $u(0,y) = 8 e^{-3y}$	
		If $f(x) = x^2$, $0 \le x \le 2\pi$, find a Fourier series for $f(x)$.	07
	(c)	$ \frac{\text{If } f(x) = x^2, \ 0 \le x \le 2\pi, \text{ initial if fourier solves}}{\text{OR}} $	

gr. , , , , , th., t.	(c)	Elimination of the function from the relation $f(xy + z^2, x + y + z) = 0$	07
Q.5	(a)	Find inverse Laplace transform of $log(\frac{s+a}{s+b})$	05
	(b)	Find the general solution of $3x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = 0$, $x > 0$ where one of the solutions is $y_1 = x$.	05
		$x > 0$ where one of the solutions is $y_1 = x$.	^=
-	(c)	Find $L^{-1}\left(\frac{1}{s(s^2+1)(s^2+4)}\right)$	07
		OR	
	(c)	Solve $x^3 \frac{d^3y}{dx^3} + x^2 \frac{d^2y}{dx^2} = x^2$, using Cauchy's-Euler Differential equation.	07
Q.6	(a)_	Solve $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 4\cos(\log(1+x))$ using the	08
		Legendre's homogeneous differential equation.	
	(p)	No college Management (SA) to the Management	08
		OR	
	(b)	Use the Regula Falsi method to find a real root of the equation $x = e^{-x}$, correct up to three decimal places.	08

NATIONAL FORENSIC SCIENCES UNIVERSITY B.Tech + M.Tech. Cyber Security Semester - III-ATKT-JUNE-2023

Subject Code: CTBTCSE SIII P1 Date: 13/06/2023

Subject Name: Engineering Mathematics-3

Time: 11:00 a.m to 2:00 p.m Total Marks: 100

Instructions:

1. Write down each question on a separate page.

2. Attempt all questions.

3. Make suitable assumptions wherever necessary.

4. Figures to the right indicate full marks.

			Mark
Q.1	(a)	Find the Inverse Laplace Transform of $\frac{3s^2+2}{(s+1)(s+2)(s+3)}$	05
	(b)		05
	(c)		07
		OR	
	(c) ₂	Solve the IVP $y'' + y' - 2y = 0$, $y(0) = 4$, $y'(0) = -5$ using Laplace transform.	07
Q.2	(a)	Solve $(D^2 - 2D + 1)y = 10e^x$	05
	(b)	Find the general solution of $\frac{d^2y}{dx^2} + 9y = sec3x$ by method of	05
		variation of parameters.	07
	(c)	Find the Fourier series of $f(x) = 2x, -1 < x < 1, 2p = 2L = 2$	07
		OR	0.5
	(c)	Find the real root of the equation x^3 - x -1= 0, correct up to 3 decimal	07
	-	places, using N-R method.	00
Q.3	(a)	State Convolution theorem and evaluate $L^{-1}\left(\frac{s}{(s^2+a^2)^2}\right)$	08
		Solve $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 4\cos(\log(1+x))$ using the	08
		Legendre's homogeneous differential equation.	
		OR	
		Use the Regula Falsi method to find a real root of the equation $x = e^{-x}$, correct up to three decimal places.	08
Q.4		Find the general solution of $3x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = 0$,	05
	11 \	$x > 0$ where one of the solutions is $y_1 = x$.	0.5
		Find inverse Laplace transform of $log(\frac{s+a}{s+b})$	05
	(c)	Solve $x^3 \frac{d^3y}{dx^3} + x^2 \frac{d^2y}{dx^2} = x^2$, using Cauchy's-Euler Differential equation.	07
		OR	
		Find $L^{-1}\left(\frac{1}{s(s^2+1)(s^2+4)}\right)$	07
2.5	(a) l	Jsing the Method of Separation of Variables Solve	05

mades standar reg. 46 miles - 4	1	$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$; given that $u(x, 0) = 6 e^{-3x}$	
	(b)	State second shifting theorem and also find $L[cost.u(t-\pi)]$.	05
		If $f(x) = x^2$, $0 \le x \le 2\pi$, find a Fourier series for $f(x)$.	07
		OR	
	(c),	Elimination of the function from the relation $f(x+y+z, x^2+y^2+z^2) = 0$	07
	4	$f(x + y + z, x^2 + y^2 + z^2) = 0$	
Q.6	(a)	Find a root of the equation $x^3 - 4x - 9 = 0$ using bisection method	08
		correct up to three decimal places.	
	(b)	Solve: $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = e^{4x}$	08
		OR	
	(b)	Find the Fourier series for the Periodic function	08
		$f(x) = -\pi \; ; \; -\pi < x < 0$	
		$=x; 0 < x < \pi$	
		Hence deduce that $\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$	
		$8 \cdot 2^{n-1}(2n-1)^2$	