

A First-Order Algorithmic Framework for Wasserstein Distributionally Robust Logistic Regression

Jiajin Li, Sen Huang, Anthony Man-Cho So

Department of Systems Engineering and Engineering Management
The Chinese University of Hong Kong

Problem Setting

Problem Setup: Consider the Wasserstein distance-induced distributionally robust logistic regression (**DRLR**) problem as follows

$$\inf_{\beta \in \mathbb{R}^n} \sup_{\mathbb{Q} \in B_{\epsilon}(\hat{\mathbb{P}}_N)} \mathbb{E}_{(x,y) \sim \mathbb{Q}}[\ell_{\beta}(x,y)] \tag{1}$$

- $\ell_{\beta}(x,y) = \log(1 + \exp(-y\beta^T x))$ with the feature label pair $(x,y) \in \Theta := \mathbb{R}^n \times \{+1,-1\}$
- $\hat{\mathbb{P}}_N = \frac{1}{N} \sum_{i=1}^N \delta_{(\hat{x}_i, \hat{y}_i)}$: Empirical distribution
- Wasserstein distance-induced ambiguity set: $B_{\epsilon}(\hat{\mathbb{P}}_N) = \{ \mathbb{Q} \in \mathcal{P}(\Theta) : W(\mathbb{Q}, \hat{\mathbb{P}}_N) \leq \epsilon \}$

$$W(\mathbb{Q}, \hat{\mathbb{P}}_N) = \inf_{\Pi \in \mathcal{P}(\Theta \times \Theta)} \left\{ \int_{\Theta \times \Theta} d(\xi, \xi') \Pi(\mathrm{d}\xi, \mathrm{d}\xi') : \Pi(\mathrm{d}\xi, \Theta) = \mathbb{Q}(\mathrm{d}\xi), \ \Pi(\Theta, \mathrm{d}\xi') = \hat{\mathbb{P}}_N(\mathrm{d}\xi') \right\}$$

- $d(\xi, \xi') = ||x x'|| + \frac{\kappa}{2}|y y'|$ where κ represents the label reliability
- (1) admits a tractable conic reformulation (A). In particular, if $\kappa = +\infty$ and $\|.\|$ is the ℓ_{∞} -norm, (A) reduces to the well-known ℓ_1 -regularized logistic regression

$$\inf_{\beta} \left\{ \frac{1}{N} \sum_{i=1}^{N} \ell_{\beta}(\hat{x}_{i}, \hat{y}_{i}) + \epsilon \|\beta\|_{1} \right\}.$$

• DRO methodology provides a principled approach to regularization.

Limitations: Apply interior-point algorithms based off-the-shelf solvers (e.g., YALMIP) to tackle (A), which severely limits the applicability of the DRO approach in large-scale learning problems.

Can we propose a lightweight first-order algorithm to solve (A) ($\kappa < \infty$) efficiently? Yes!

Key Steps in LP-ADMM

• Quadratic programming with box constraints (i.e., w.r.t (D))

$$\beta^{k+1} = \arg\min_{\beta \in \in \mathbb{R}^n} \left\{ \|Z\beta - \mu^k - \frac{w^k}{\rho_k}\|_2^2 + \mathbb{I}_{\{\|\beta\|_{\infty} \leq \lambda\}} \right\}.$$

• By exploiting the strongly convex property of the local model, we propose a first-order linearized update

$$\mu^{k+1} = \arg\min_{\mu \in \mathbb{R}^N} \left\{ \frac{1}{N} \sum_{i=1}^N \left(\frac{h'(\mu_i^k) \mu_i}{\mu_i} + \max\{\mu_i - \lambda \kappa, 0\} \right) + \frac{\rho_k}{2} \|\mu - Z\beta^{k+1} + \frac{w^k}{\rho_k}\|_2^2 \right\}.$$

• Geometrically increased penalty parameter $\rho_{k+1} = \gamma \rho_k, \gamma > 1$.

Our First-Order Algorithmic Framework

Outline:

- Step 1: Invoking the fix λ strategy, we perform an one-dimensional search to update λ .
- (B) Step 2: For the resulting problem (B), we apply the operator splitting technique to obtain (C).
 - Step 3: Exploiting the specific local structure, we propose a novel LP-ADMM to solve (C), which further involves the subproblem of β -exact update (D).

Main Theorem

Suppose that $\{\beta^k, \mu^k, w^k\}_{k\geq 0}$ is generated by the LP-ADMM algorithm. We have

- $\{\beta^k, \mu^k, w^k\}_{k\geq 0}$ converges to a KKT point.
- The function value converges with rate $\mathcal{O}(\frac{1}{K})$.

Note that $h(\mu) = \log(1 + \exp(-\mu)), z_i = \hat{y}_i \hat{x}_i$ and w^k is the Lagrange multiplier.

Experiments & Results

Compare the CPU Running Time with YALMIP Solver:

Table 1: Synthetic Data & UCI Adult Data

Dataset	Samples	Features	YALMIP (s)	Ours (s)	Ratio
Synthetic	5000	100	287.67 ± 2.67	0.64 ± 0.03	451
Synthetic	10000	10	283.25 ± 18.98	0.50 ± 0.02	563
Synthetic	10000	100	1165.40 ± 26.52	1.37 ± 0.12	852
ala	1605	123	25.63	2.93	9
a2a	2265	123	39.20	3.53	11
a3a	3185	123	57.79	4.26	14
a4a	4781	123	105.32	4.56	23
a5a	6414	123	155.42	4.39	35
a6a	11220	123	413.65	4.68	88
a7a	16100	123	738.12	5.41	137
a8a	22696	123	1396.45	5.81	240
a9a	32561	123	2993.30	7.08	423

Efficiency of LP-ADMM for β -subproblem:

