A method to infer inductive numeric invariants inspired from Constraint Programming Dagstuhl Seminar 14351

Experimental Talk

Antoine Miné

(inspiration from Charlotte Truchet & Sriram Sankaranarayanan)

CNRS & École normale supérieure Paris. France

24-29 August 2014

Introduction

Constraint Programming
$$\stackrel{Charlotte}{\longleftarrow}$$
 Abstract Interpretation

Two fields: with different goals, tools, communities

- Constraint Programming
- Abstract Interpretation

yet there are similarities we can exploit!

- Previous work: with Marie Pelleau, Charlotte Truchet, Frédéric Benhamou use abstract domains in a constraint programming solver
- Today: original idea by Sriram Sankaranarayanan maybe we can adapt constraint programming algorithms to infer post-fixpoints of semantic functions instead of solutions of constraints

Overview

- Reminders on Constraint Programming
- Inductive numeric invariant inference
 - Motivation: invariants and inductive invariants
 - Algorithm
- Very preliminary experiments

Constraint Programming Primer

Constraint Programming

Goal: solve hard, combinatorial problems

- express the problem using constraints declarative language use conjunctions of first-order formulas with arithmetic (\mathbb{R} , \mathbb{Z} , enumerations)
- solve the constraints using generic methods

Here, we consider only continuous constraints (not discrete ones)

Constraint satisfaction problem

<u>Definition:</u> Constraint Satisfaction Problem (CSP)

- $\mathcal{V} \stackrel{\text{def}}{=} \{ v_1, \dots, v_n \}$: set of variables
- $\mathcal{D} \stackrel{\text{def}}{=} D_1 \times \cdots \times D_n$: a set of initial domains $\forall i : D_i \subseteq \mathbb{R}$ and D_i is bounded
- $\mathcal{C} \stackrel{\text{def}}{=} \{ C_1, \dots, C_m \}$ set of constraints on \mathcal{V}

CSP solution:

• $\mathcal{S} \stackrel{\text{def}}{=} \{ \vec{x} \in \mathcal{D} \mid \forall i : \vec{x} \models C_i \}$

(also possible: look for a single solution instead of all solutions)

Constraint satisfaction problem example

$$\bullet \ \mathcal{V} \stackrel{\text{def}}{=} (v_1, v_2)$$

$$D_1 \stackrel{\text{def}}{=} [-1, 14]$$

$$D_2 \stackrel{\text{def}}{=} [-5, 10]$$

•
$$C_1: (v_1 - 9)^2 + v_2^2 \le 25$$

 $C_2: (v_1 + 1)^2 + (v_2 - 5)^2 \le 100$

(slide from Marie Pelleau & Charlotte Truchet)

Constraint satisfaction problem example

- $\mathcal{V} \stackrel{\text{def}}{=} (v_1, v_2)$
- $D_1 \stackrel{\text{def}}{=} [-1, 14]$ $D_2 \stackrel{\text{def}}{=} [-5, 10]$
- $C_1: (v_1 9)^2 + v_2^2 \le 25$ $C_2: (v_1 + 1)^2 + (v_2 - 5)^2 \le 100$

(slide from Marie Pelleau & Charlotte Truchet)

Constraint satisfaction problem solution

We would like to enumerate $S \subseteq \mathbb{R}^f rm - e$, but this is impossible! \implies instead, we cover S tightly with a finite set of boxes

 \mathcal{S}^{\sharp} set of boxes such that:

- \circ $\mathcal{S} \subset \cup \mathcal{S}^{\sharp}$
- ∀B ∈ S[‡]:
 - either $B \subseteq \mathcal{S}$
 - or size(B) $\leq \epsilon$ and $B \cap S \neq \emptyset$

(on discrete problems, solvers eventually enumerate \mathcal{S})

- list of boxes todo := $\{D\}$
- while todo is not empty

- list of boxes todo := $\{D\}$
- while todo is not empty
 - pop a box from todo

- list of boxes todo := { *D* }
- while todo is not empty
 - pop a box from todo
 - shrink it using the constraints consistency
 - \simeq interval test transfer function

- list of boxes todo := { *D* }
- while todo is not empty
 - pop a box from todo
 - shrink it using the constraints consistency
 - \simeq interval test transfer function
 - if empty, continue
 - if small or contains only solutions shift it the solution list

- list of boxes todo := { *D* }
- while todo is not empty
 - pop a box from todo
 - shrink it using the constraints consistency
 - \simeq interval test transfer function
 - if empty, continue
 - if small or contains only solutions shift it the solution list
 - else
 split the box
 push the pieces into todo

- list of boxes todo := { *D* }
- while todo is not empty
 - pop a box from todo
 - shrink it using the constraints consistency
 - \simeq interval test transfer function
 - if empty, continue
 - if small or contains only solutions shift it the solution list
 - else
 split the box
 push the pieces into todo

- list of boxes todo := { *D* }
- while todo is not empty
 - pop a box from todo
 - shrink it using the constraints consistency
 - \simeq interval test transfer function
 - if empty, continue
 - if small or contains only solutions shift it the solution list
 - else
 split the box
 push the pieces into todo

Inductive Numeric Invariant Inference

Motivating example

program x := input [-1,1] y := input [-1,1] while true do x' := 0.7 * (x + y) y' := 0.7 * (x - y) x := x'; y := y' done

<u>Goal:</u> prove that $x, y \in [-2, 2]$ is a loop invariant

Program semantics:

- initial values of (x, y): $I \stackrel{\text{def}}{=} [-1, 1] \times [-1, 1]$
- loop effect on (x, y):

$$F: \mathcal{P}(\mathbb{R}^2) \to \mathcal{P}(\mathbb{R}^2)$$

$$F(X) \stackrel{\text{def}}{=} \{ (0.7(x+y), 0.7(x-y)) \mid (x,y) \in X \}$$

Invariants and inductive invariants

Given:

- $F: \mathcal{P}(\mathbb{R}^n) \stackrel{\cup}{\longrightarrow} \mathcal{P}(\mathbb{R}^n)$ a \cup -morphism
- $I \subseteq \mathbb{R}^n$: an initial set

Then:

- $S \subseteq \mathbb{R}^n$ is an inductive invariant if $I \subseteq S \land F(S) \subseteq S$ (invariant + proof)
- Ifp_I F is the best inductive invariant (Tarski's Theorem ⇒ inductive invariants exist)
- any $S \supseteq \mathsf{lfp}_I F$ is an invariant (invariants are not always inductive invariants: $F(S) \not\subseteq S$)

Motivating example

program x := input [-1,1] y := input [-1,1]while true do x' := 0.7 * (x + y) y' := 0.7 * (x - y) x := x'; y := y'done

$$I \stackrel{\text{def}}{=} [-1, 1] \times [-1, 1]$$

$$F(X) \stackrel{\text{def}}{=} \{ (0.7(x+y), 0.7(x-y)) \mid (x, y) \in X \}$$

- $G = [-2, 2] \times [-2, 2]$ is an invariant all executions satisfy $(x, y) \in G$ at loop head
- $G = [-2, 2] \times [-2, 2]$ is not an inductive invariant $F(G) \not\subseteq G$

in fact, no box is inductive!

Problem statement

Goal: infer an inductive invariant from an invariant

Given:

- $F: \mathcal{P}(\mathbb{R}^n) \stackrel{\cup}{\longrightarrow} \mathcal{P}(\mathbb{R}^n)$ a \cup -morphism
- $I \subseteq \mathbb{R}^n$: an initial set
- $G \subseteq \mathbb{R}^n$: a goal invariant

find 5 such that:

- $I \subseteq S \land F(S) \subseteq S$
- S ⊂ G

(S is an inductive invariant)

(S implies the invariant G)

Abstract domain

<u>Issue:</u> we cannot compute in $\mathcal{P}(\mathbb{R}^n)$

⇒ we reason in a computable abstract domain instead

Abstract domain: $\mathcal{D}^{\sharp} \subseteq \mathcal{P}(\mathbb{R}^n)$

- selected subsets of \mathbb{R}^n
- e.g.: boxes $\mathcal{D}^{\sharp} \stackrel{\text{def}}{=} \{ \prod_{i=1}^{n} [a_i, b_i] \mid \forall i : a_i, b_i \in \mathbb{R} \cup \{-\infty, +\infty\} \}$

Abstraction closure: $\rho: \mathcal{P}(\mathbb{R}^n) \stackrel{\subseteq}{\longrightarrow} \mathcal{D}^{\sharp}$

- soundness condition: $\forall S : S \subseteq \rho(S)$
- monotonicity: $\forall S, R: S \subseteq R \implies \rho(S) \subseteq \rho(R)$
- idempotence: $\rho \circ \rho = \rho$

we simplify traditional AI by assimilating abstract elements to their representation we have a Galois connection $\mathcal{P}(\mathbb{R}^n) \xleftarrow{\mathrm{id}}_{a} \mathcal{D}^{\sharp}$

Abstract operators

Abstract operator: $F^{\sharp}: \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$

- soundness: $\forall S \in \mathcal{D}^{\sharp}$: $F(S) \subseteq F^{\sharp}(S)$
- optional optimality: $F^{\sharp} = \rho \circ F$

Abstract initial set: $I^{\sharp} \in \mathcal{D}^{\sharp}$

- soundness: $I \subseteq I^{\sharp}$
- optional optimality: $I^{\sharp} = \rho(I)$

Abstract goal: $G^{\sharp} \in \mathcal{D}^{\sharp}$ $(G = G^{\sharp} \in \mathcal{D}^{\sharp})$

Motivating example

program x := input [-1,1] y := input [-1,1] while true do x' := 0.7 * (x + y) y' := 0.7 * (x - y) x := x'; y := y' done

Abstract semantics on boxes:

$$F^{\sharp}: \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$$

$$F^{\sharp}([l_{x}, h_{x}], [l_{y}, h_{y}]) \stackrel{\text{def}}{=} ([0.7(l_{x} + l_{y}), 0.7(h_{x} + h_{y})], [0.7(l_{x} - h_{y}), 0.7(h_{x} - l_{y})])$$

$$I^{\sharp} \stackrel{\text{def}}{=} [-1, 1] \times [-1, 1]$$

Expressiveness problem

Traditional Abstract Interpretation approach:

- find an abstract post-fixpoint of F^{\sharp} : $F^{\sharp}(X^{\sharp}) \subseteq X^{\sharp}$, $I^{\sharp} \subseteq X^{\sharp}$
- by iterating F^{\sharp} from \emptyset with acceleration ∇ , \triangle , $\tilde{\triangle}$, \square

Issue: in our example F^{\sharp} , in the box abstract domain, the only abstract post-fixpoint greater than I^{\sharp} is \top

Traditional solution:

use a stronger abstract domain \mathcal{D}^{\sharp} (relational domain) \Longrightarrow high design cost

Note: traditional disjunctive completion and trace partitioning will not help as F^{\sharp} has no control and no join

Abstract problem statement

We ask that the goal invariant G is represented in \mathcal{D}^{\sharp} yet \mathcal{D}^{\sharp} may not be able to represent any inductive invariant \Longrightarrow use a set of abstract elements

Goal: infer $S = \{S_1, \dots, S_n\} \subseteq \mathcal{D}^{\sharp}$ such that:

- $i \neq j \Longrightarrow \operatorname{vol}(S_i \cap S_j) = 0$ no overlap
- $I^{\sharp} \subseteq \cup_{i} S_{i}$ S covers the initial set I
- $\forall i : F^{\sharp}(S_i) \subseteq \cup_i S_i$ implies $F(\cup_i S_i) \subseteq \cup_i S_i$, i.e., S is inductive
- $\forall i : S_i \subseteq G^{\sharp}$ S implies the goal invariant

Solving algorithm: overview

Algorithm: inspired by constraint programming

Given: F^{\sharp} , I^{\sharp} , G^{\sharp} such that $I^{\sharp} \subseteq G^{\sharp}$

The algorithm maintains a "soup" $\mathcal{S} \in \mathcal{P}_{\mathsf{finite}}(\mathcal{D}^{\sharp})$

Algorithm

- start with $\mathcal{S} \stackrel{\text{def}}{=} \{G^{\sharp}\}$
- while $\exists k : F^{\sharp}(S_k) \not\subseteq \cup_i S_i$
 - choose $S_k \in \mathcal{S}$
 - either keep S_k , discard S_k , or split S_k
- at each step $\bigcup_i S_i$ can only decrease
- at each step $I^{\sharp} \subseteq \cup_i S_i$
- we stop when $\forall k: F^{\sharp}(S_k) \subseteq \cup_i S_i$

Solving algorithm: element classification

Each $S_k \in \mathcal{S}$ can be classified according to three criteria:

- whether $F^{\sharp}(S_k) \subseteq \bigcup_i S_i$ or not $(S_k \text{ is benign: it does not impede } \mathcal{S}'\text{s inductiveness})$
- whether $\exists i : F^{\sharp}(S_i) \cap S_k \neq \emptyset$ or not $(S_k \text{ is useful, for some } S_i \text{ to be benign})$
- whether $I^{\sharp} \cap S_k \neq \emptyset$ or not $(S_k \text{ is necessary, for } S \text{ to be invariant})$

Discarding a useful S_k can change the fact that some $S_{i\neq k}$ is benign (different from regular CP)

Dilemma:

shrinking F(X) makes $F(X) \subseteq X$ more likely but this requires shrinking X, which makes $F(X) \subseteq X$ less likely!

case 1:
$$F^{\sharp}(S_k) \subseteq \cup_i S_i$$

 S_k is benign

case 1:
$$F^{\sharp}(S_k) \subseteq \cup_i S_i$$

subcase 1a: $\forall i : S_k \cap F^{\sharp}(S_i) = \emptyset \land I^{\sharp} \cap S_k = \emptyset$

 S_k is benign but useless

 \Longrightarrow discard S_k


```
case 1: F^{\sharp}(S_k) \subseteq \cup_i S_i
subcase 1b: \exists i : S_k \cap F^{\sharp}(S_i) \neq \emptyset \quad \lor \quad I^{\sharp} \cap S_k \neq \emptyset
```

 S_k is benign and useful (or necessary)

$$\Longrightarrow$$
 keep S_k

case 2:
$$F^{\sharp}(S_k) \cap (\cup_i S_i) = \emptyset$$

 S_k can never become benign

case 2:
$$F^{\sharp}(S_k) \cap (\cup_i S_i) = \emptyset$$

subcase 2a: $S_k \cap I^{\sharp} = \emptyset$

 S_k is not necessary

 \Longrightarrow discard S_k

case 2:
$$F^{\sharp}(S_k) \cap (\cup_i S_i) = \emptyset$$

subcase 2b: $S_k \cap I^{\sharp} \neq \emptyset$

 S_k is necessary but can never become benign!

⇒ abort, we fail to find an inductive invariant

case 3:
$$F^{\sharp}(S_k) \not\subseteq \cup_i S_i \wedge F^{\sharp}(S_k) \cap (\cup_i S_i) \neq \emptyset$$

 S_k is partially benign

⇒ two possible choices

case 3:
$$F^{\sharp}(S_k) \not\subseteq \cup_i S_i \wedge F^{\sharp}(S_k) \cap (\cup_i S_i) \neq \emptyset$$
 \Longrightarrow either **split** S_k into S_k^1 and S_k^2 , such that $S_k^1 \cup S_k^2 = S_k$
(often $F^{\sharp}(S_k^1) \cup F^{\sharp}(S_k^2) \subset F^{\sharp}(S_k) \Longrightarrow \text{progress}$)

Solving algorithm: cases

case 3:
$$F^{\sharp}(S_k) \not\subseteq \cup_i S_i \wedge F^{\sharp}(S_k) \cap (\cup_i S_i) \neq \emptyset \wedge S_k \cap I^{\sharp} = \emptyset$$
 \Longrightarrow or discard S_k
(except if S_k is necessary)

Solving algorithm: cases

case 3:
$$F^{\sharp}(S_k) \not\subseteq \cup_i S_i \wedge F^{\sharp}(S_k) \cap (\cup_i S_i) \neq \emptyset$$

Splitting followed by discarding achieves shrinking S_k

Solving algorithm: cases

case 3:
$$F^{\sharp}(S_k) \not\subseteq \cup_i S_i \wedge F^{\sharp}(S_k) \cap (\cup_i S_i) \neq \emptyset$$

Discarding a useful S_k can cause some $S_{\ell \neq k}$ to be become **not benign** $F(S_\ell) \subseteq \cup_i S_i$ but $F(S_\ell) \not\subseteq \cup_{i \neq k} S_i$

Solving algorithm: termination

Terminate when:

• either $\forall k$: $F^{\sharp}(S_k) \subseteq \cup_i S_i$

 \Longrightarrow **success**: $\cup_i S_i$ is an inductive invariant

Solving algorithm: termination

Terminate when:

• or $\exists k : F^{\sharp}(S_k) \cap (\cup_i S_i) = \emptyset \quad \land \quad S_k \cap I^{\sharp} \neq \emptyset$

⇒ failure: cannot find an inductive invariant

Solving algorithm: termination

Terminate when:

reaching a split limit

⇒ failure: cannot find an inductive invariant

Solving algorithm: choices

Choosing S_k

Pick the element with the least coverage

$$\begin{aligned} \mathsf{coverage}(S_k) &= \tfrac{\sum_i \mathsf{vol}(F^\sharp(S_k) \cap S_i)}{\mathsf{vol}(F^\sharp(S_k))} \in [0,1] \\ & (\mathsf{quantifies how benign an element is}) \end{aligned}$$

Our ultimate goal is to have $\forall k$: coverage(S_k) = 1

 $(\mathsf{indeed}\ \forall k : \mathsf{coverage}(S_k) = 1 \iff F^{\sharp}(S_k) \subseteq \cup_i \ S_i)$

Solving algorithm: choices

Choosing whether to split or to discard S_k

for the case
$$F^{\sharp}(S_k) \not\subseteq \cup_i S_i \quad \wedge \quad F^{\sharp}(S_k) \cap (\cup_i S_i) \neq \emptyset$$

- if $\operatorname{coverage}(S_k) < \epsilon$ and $S_k \cap I^{\sharp} = \emptyset$, discard S_k unlikely that $\operatorname{coverage}(S_k)$ will ever be 1
- if $\operatorname{vol}(S_k) < \epsilon$ and $S_k \cap I^{\sharp} = \emptyset$, discard S_k splitting threshold
- if $\operatorname{vol}(S_k) < \epsilon$ and $S_k \cap I^\sharp \neq \emptyset$, keep S_k intact we must ensure $I^\sharp \subseteq \cup_i S_i$ at all time \Longrightarrow avoid discarding necessary elements
- otherwise, split S_k
 increases coverage

other heuristics are possible: usefulness, backtracking, etc.

Solving algorithm: tightening

<u>Idea:</u> tighten S_k without removing important points

$$S_k \mapsto \rho \left(\cup_i \left(S_k \cap F^{\sharp}(S_i) \right) \cup \left(S_k \cap I^{\sharp} \right) \right)$$

- keep $S_k \cap F^{\sharp}(S_i)$ unchanged for all i
- keep $S_k \cap I^{\sharp}$ unchanged
- reduce $vol(S_k) \implies increase coverage(S_k)$
- → useful after a split

(similar to CP consistency)

Solving algorithm: data-structures

Maintain for each $S_k \in S$:

- \bullet $F^{\sharp}(S_k)$
- coverage(S_k)
- $\operatorname{pre}(S_k) \stackrel{\text{def}}{=} \{ i \mid S_k \cap F^{\sharp}(S_i) \neq \emptyset \}$
- post $(S_k) \stackrel{\text{def}}{=} \{ i \mid F^{\sharp}(S_k) \cap S_i \neq \emptyset \}$
- \implies loop iteration cost in $\mathcal{O}(|\operatorname{pre}(S_k)| + |\operatorname{post}(S_k)|) \ll |\mathcal{S}|$

keep S sorted by increasing coverage(S_k)

Preliminary experiments

program

```
\begin{array}{l} x:= input \ [\text{-}1,1] \\ y:= input \ [\text{-}1,1] \\ \text{while true do} \\ x':= 0.7 * (x+y) \\ y':= 0.7 * (x-y) \\ x:= x'; \ y:= y' \\ \text{done} \end{array}
```


iterate 1

iterate 2

iterate 3

iterate 4

iterate 5

iterate 6

iterate 7

iterate 8

iterate 9

iterate 10

iterate 20

iterate 30

iterate 40

iterate 50

iterate 60

iterate 70

iterate 80

iterate 90

iterate 100

iterate 200

iterate 300

iterate 400

iterate 500

iterate 600

iterate 700

iterate 800

iterate 900

iterate 5000

final iterate: 4730

digital filter

```
\begin{array}{l} \text{s0} := \text{input} \; [\text{-}0.1, 0.1] \\ \text{s1} := \text{input} \; [\text{-}0.1, 0.1] \\ \text{while true do} \\ \text{r} := 1.5 \; \text{* s0} \; \text{-} \; 0.7 \; \text{* s1} \; + \; [\text{-}0.1, 0.1] \\ \text{s1} := \text{s0} \\ \text{s0} := \text{r} \\ \text{done} \end{array}
```

digital filter

```
\begin{array}{l} \text{s0} := \text{input} \; [\text{-}0.1, \! 0.1] \\ \text{s1} := \text{input} \; [\text{-}0.1, \! 0.1] \\ \text{while true do} \\ \text{r} := 1.5 \; \text{*} \; \text{s0} \; \text{-} \; 0.7 \; \text{*} \; \text{s1} \; + \; [\text{-}0.1, \! 0.1] \\ \text{s1} := \text{s0} \\ \text{s0} := \text{r} \\ \text{done} \end{array}
```


after 16330 iterations 2.8 s wall clock

our implementation is still very naïve, it uses arbitrary precision rationals

Conclusion

Comparison with classic Constraint Programming

- both over-approximate the solution with sets of elements but CP minimizes the solution
- CP over-approximates $\operatorname{gfp}_D F^{\sharp}$ where $F(X) \stackrel{\operatorname{def}}{=} X \cap C$ we over-approximate $\operatorname{lfp}_I F^{\sharp}$ where F is a \cup -morphism
- both use decreasing iterations
 in CP, every iteration is sound
 we are sound only when the algorithm terminates successfully
- both use split, discard, and tighten operations
- CP discards elements only by consistency (propagation)
 we discard elements by choice

Comparison with classic Abstract Interpretation

- both seek to infer inductive program invariants
- ullet both are parameterized by an arbitrary abstract domain \mathcal{D}^\sharp
- both use an abstract version F^{\sharp} of the program semantics F^{\sharp} is derived compositionally from the program syntax
- both can fail to find an inductive invariant for us, the choice of \mathcal{D}^{\sharp} may not matter as much (we rely on $\mathcal{P}_{\text{finite}}(\mathcal{D}^{\sharp})$, not \mathcal{D}^{\sharp} , to express the inductive invariant)
- Al starts with increasing iterations we only perform decreasing iterations
- Al iterates F^{\sharp} we iterate an inclusion check $F^{\sharp}(X) \subseteq Y$
- in AI, disjunctions are caused by control joins ∪, ∇
 we create disjunction to refine

Conclusion

We proposed a new algorithm:

- to infer inductive numeric program invariants
- inspired by Constraint Programming on continuous domains

Benefit:

 no a priori knowledge of the shape of the inductive invariant no need to design a dedicated numeric domain
 we use boxes instead of a relational or even a non-linear abstract domain

Limitations:

- very new and untried approach!
- large number of iterations (compared to a dedicated domain)
- we may fail due to a misguided choice high reliance on the choice and split strategies

Future work

- More robust implementation and testing (is our method really working?)
- Possible improvements:
 - more clever choices between split and discard (maybe backtracking, learning, etc.)
 - ullet use other abstract domains \mathcal{D}^{\sharp} beside boxes (e.g., octagons)
 - handled unbounded goal invariants G^{\sharp}
 - disjunctive completion: $F^{\sharp}: \mathcal{D}^{\sharp} \to \mathcal{P}_{\mathsf{finite}}(\mathcal{D}^{\sharp})$
 - classic decreasing iterations to improve the inductive invariant
- Relationship with logic-based methods (IC3 with SMT)
- Relationship with abstract interpretation iteration methods (is this iteration of some F'^{\sharp} with dual narrowing $\tilde{\Delta}$?)