LIMA CITY OVERVIEW – SIMILARITIES AND DIFFERENCES IN LIMA RESTAURANTS

1. INTRODUCTION

1.1. Background

Lima is the capital of Peru, and this city is mainly divided into five zones: north, mid, modern, south and east. Each of these areas has different features, whether in the economic, social and cultural aspects. For instance, while the mid-town Lima is the most traditional part of the city (where the main government buildings are located), the business center and the corporate buildings are in modern districts. Hence, considering only the recreational aspect, it would be very useful to know the most popular types of venues within each of these five areas. Moreover, it might be relevant to include an assessing of how their similarities and differences could be connected. This will be convenient to generate information for the business sector based on a market research as any market study has an overview of the features as starting point over a target; in this case, over a specific sort of venue. Therefore, the two sort of questions that this study tries to solve could be "which type of venue X is better in the north zone rather than in the east of the city?", and "are the venues in the south more similar to the north than the center to the east?". As Peruvians well-known for their good cuisine, we are going to evaluate only restaurants as our main venue.

1.2. Problem

This study will list and visualize the different districts that make up each of the five areas of Lima. With this information, we will determine which is the most frequent category of a restaurant in each area and their level of acceptance. Moreover, we will assess the similarities to one area of the city with another based on this information, given some insights from it.

2. DATA ACQUISITION AND CLEANING

2.1. Data Sources

To find the districts of Lima city, we will scrap the references of Lima in its Wikipedia website (Wikipedia Lima Web Article). Likewise, to segment each of these districts by their corresponding area, the same process will be executed from the following link also from Wikipedia (Wikipedia Lima Districts Chart).

- Wikipedia Lima Web Article: https://es.wikipedia.org/wiki/Lima_Metropolitana
- Wikipedia Lima Districts Chart: https://es.wikipedia.org/wiki/Categor%C3%ADa:Distritos_de_Lima

2.2. Data Cleaning

Data scraped from these two URL sources will be useful in order to generate a main dataframe. The process started defining a "Lima" prefix in each district's name to get coordinates information from the Wikipedia Lima Web Article's link. Later, we use Foursquare API to get venues information (such as latitude, longitude, venue name, ID, and so on) only for the "Restaurant" category. In the meantime, the Wikipedia Lima Districts Chart's link will be used to get the segmentation of each district according to these five areas or sectors. Finally, we joint this two information in one general dataframe called "main_df".

2.3. Feature Selection

After data cleaning, the main dataframe looks like the following picture, including all the features:

	Localidad	Localidad Latitude	Localidad Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category	Venue ID	Sector	sector_color
166	Lima, Rímac	-12.0203	-77.03546	Manka Mitu (Olla De Barro)	-12.02367	-77.03249	Restaurant	5a89d47f178 a2a50af8794 02	Centro de Lima	red
167	Lima, Rímac	-12.0203	-77.03546	Purito Catacaos	-12.02434	-77.03626	Seafood Restaurant	527697e911 d2f813ded3 b722	Centro de Lima	red
168	Lima, Rímac	-12.0203	-77.03546	Chifa Hoo Wa	-12.02666	-77.03402	Chinese Restaurant	4c6842cd738 51b8d4721b a39	Centro de Lima	red
169	Lima, Rímac	-12.0203	-77.03546	Chifa Yon Fu	-12.02733	-77.03333	Cantonese Restaurant	5691d1d938f aabbd111fe bb0	Centro de Lima	red
170	Lima, Rímac	-12.0203	-77.03546	El Rinconcit o	-12.02807	-77.03404	Seafood Restaurant	51d5c205498 ec498fc1e7a 9c	Centro de Lima	red
171	Lima, Rímac	-12.0203	-77.03546	El Loco Pez	-12.02324	-77.03147	Seafood Restaurant	5183eeea49 8ef05a2d466 8e7	Centro de Lima	red
172	Lima, Rímac	-12.0203	-77.03546	Restaura nt de Marina y Jcarlos	-12.02623	-77.03559	Peruvian Restaurant	51d1c81b49 8e99172720 6311	Centro de Lima	red

Using the Folium Map, we can visualize each restaurant venue by sector as follows:

Where:

- North: orange.
- Center (Mid): red.
- East: green.
- Modern (residential): blue
- South: yellow

3. METHODOLOGY

3.1. Which type of restaurant is better by sector and in the entire Lima city?

Our first goal is to find which type of restaurant is more popular in each Lima sector (and also in the whole city). In order to do this, we only count each of them by sector. Later, we can get two different results: a bar plot and a representative percentage of the most common restaurant type based on the total restaurants in that sector. In that sense, we get:

Count of each category from total 573

General Info Top 1 venues summary:

cant

Sector Venue Category

Lima Residencial Seafood Restaurant 9.08% | Total: 573

General Info Top 1 venues summary:

cant

Venue Category Cono Este de Lima Peruvian Restaurant 13.33% | Total: 75

General Info Top 1 venues summary:

cant

Venue Category Sector

General Info Top 1 venues summary:

cant

Venue Category Sector

12.38% | Total: 210

Cono Norte de Lima Restaurant ********* Thus, choosing the top 1 type restaurant venues by sector, we can get:

	Sector	Venue Category
0	Centro de Lima	Seafood Restaurant
1	Lima Residencial	Seafood Restaurant
2	Cono Este de Lima	Peruvian Restaurant
3	Cono Norte de Lima	Restaurant
4	Cono Sur de Lima	Seafood Restaurant

3.2. Are the restaurant venues in the south more like the north than the center to the east?

Our second goal is to cluster each of this type of restaurants using an unsupervised machine learning classification model. Why is that? Basically, because we want to get some differences and similarities among the restaurant types without any information about Lima sectors. This is relevant in the sense we can get some venues that are similar to each other independently whether they belong to one sector or not. What if one restaurant from the north is pretty similar to another in the east, given some information data? This is the class of conclusion that we want to achieve.

In order to do this, we use the Foursquare API to get additional information –specifically, we get rating and tips information for each type of restaurant. However, there are some limitations here. Foursquare gives only 50 maximum calls to get this info, thus unfortunately we must select randomly some samples from our restaurant dataframe by type and sector. We select only 5 restaurants by sector, which makes a total of 25 restaurants venues in each Lima zone. Considering that we are going to get 2 data about each restaurant (rating and tips), we achieve the maximum 50 calls allowed.

Using the Foursquare API to get ratings and tips, we get the following dataframe. Note that in some sectors there are less than five restaurants selected. This is because not all the restaurants have ratings *or* tips. We delete the venues without this information in order to avoid give unnecessary conclusions:

		Localidad	Localidad Latitude	Localidad Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category	Venue ID	Distrito	Sector	sector_color	rating	tips
Sector														
Centro de Lima	519	Lima, Lima	-12.06211	-77.03653	PuertoN ortePe	-12.05775	-77.03855	Seafood Restaurant	4daf3288 4df00ee0 1d34c00f	Lima	Centro de Lima	red	7.3	52
	1015	Lima, Lince	-12.08657	-77.03665	El Merlín de Cabo Blanco	-12.08807	-77.04715	Seafood Restaurant	4c740c7cf f1fb60c54 69f2a7	Lince	Centro de Lima	red	7.8	113
	1024	Lima, Lince	-12.08657	-77.03665	Punto Azul	-12.09212	-77.03253	Seafood Restaurant	4ba3d856 f964a520 d86538e3	Lince	Centro de Lima	red	7.7	42
Cono Este de Lima	426	Lima, San Juan de Luriganch o	-11.94875	-76.97791	El Rinconci to de la Panchita	-11.94427	-76.98196	Peruvian Restaurant	50c3867c e4b0e77d 29fa8312	San Juan de Luriganch o	Cono Este de Lima	green	0	3
	468	Lima, Santa Anita	-12.22338	-76.84771	Las Leñas	-12.22381	-76.85379	Peruvian Restaurant	4de00941 45dd3eae 8763f5a1	Santa Anita	Cono Este de Lima	green	6	17
Cono Sur de Lima	1533	Lima, San Bartolo	-12.38707	-76.77795	Restaura nte Chelulo	-12.38923	-76.77738	Seafood Restaurant	4d6abcf4a 27f236ae b5c9666	San Bartolo	Cono Sur de Lima	yellow	5.7	16
	289	Lima, Pucusana	-12.48209	-76.79745	Restaura nt Jhony	-12.481	-76.79829	Seafood Restaurant	4ec95535 6c251306 cda4ac3b	Pucusana	Cono Sur de Lima	yellow	0	2
	858	Lima, San Juan de Miraflores	-12.15585	-76.97213	Cevicher ia "Dorita"	-12.15469	-76.96853	Seafood Restaurant	50739334 c84c42b9 Obc5beef	San Juan de Miraflores	Cono Sur de Lima	yellow	0	1
Lima Residenc ial	134	Lima, San Miguel	-12.07866	-77.09528	Mi Propieda d Privada	-12.08707	-77.09292	Seafood Restaurant	4bfd89a5 b68d0f47 09eee857	San Miguel	Lima Residenc ial	blue	8.7	39
	1227	Lima, San Luis	-12.07236	-76.99589	Mi Cebi- chela	-12.08322	-76.99313	Seafood Restaurant	4d32166d b6093704 0627f3df	San Luis	Lima Residenc ial	blue	6.5	14
	1235	Lima, San Luis	-12.07236	-76.99589	Los Cantarit os	-12.08189	-76.99329	Seafood Restaurant	4e6d1a3b e4cd4bed ebeb02b2	San Luis	Lima Residenc ial	blue	7.2	29
	557	Lima, Barranco	-12.14396	-77.02027	Chanfain ita Pale	-12.14679	-77.01442	Seafood Restaurant	4d5d72ee 775f8cfac 257c2e0	Barranco	Lima Residenc ial	blue	8.2	28
	1507	Lima, Pueblo Libre	-12.07664	-77.06786	Don Pedrito	-12.08731	-77.07251	Seafood Restaurant	51d851f2 498eb4a6 d5b55e0e	Pueblo Libre	Lima Residenc ial	blue	7.2	11

Whit this dataframe, we can apply Kmeans algorithm to find the right number of clusters. We will use only ratings and tips data to do this. Based on the Elbow Method, we compute the right number of clusters assessing:

Assigning the labels to each venue, we get our modified dataframe:

		Localidad	Localidad Latitude	Localidad Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category	Venue ID	Distrito	Sector	sector_color	rating	tips	Labels	label_color
Sector																
Centro de Lima	519	Lima, Lima	-12.06211	-77.03653	PuertoN ortePe	-12.05775	-77.03855	Seafood Restaurant	4daf328 84df00e e01d34c	Lima	Centro de Lima	red	7.3	52	0	red
	1015	Lima, Lince	-12.08657	-77.03665	El Merlín de Cabo Blanco	-12.08807	-77.04715	Seafood Restaurant	4c740c7 cff1fb60c 5469f2a	Lince	Centro de Lima	red	7.8	113	1	green
	1024	Lima, Lince	-12.08657	-77.03665	Punto Azul	-12.09212	-77.03253	Seafood Restaurant	4ba3d85 6f964a5 20d8653 8e3	Lince	Centro de Lima	red	7.7	42	0	red
Cono Este de Lima	426	Lima, San Juan de Luriganch o	-11.94875	-76.97791	El Rinconci to de la Panchita	-11.94427	-76.98196	Peruvian Restaurant	50c3867 ce4b0e7 7d29fa8 312	San Juan de Luriganc ho	Cono Este de Lima	green	0	3	2	blue
	468	Lima, Santa Anita	-12.22338	-76.84771	Las Leñas	-12.22381	-76.85379	Peruvian Restaurant	4de0094 145dd3e ae8763f 5a1	Santa Anita	Cono Este de Lima	green	6	17	2	blue
Cono Sur de Lima	1533	Lima, San Bartolo	-12.38707	-76.77795	Restaur ante Chelulo	-12.38923	-76.77738	Seafood Restaurant	4d6abcf 4a27f23 6aeb5c9	San Bartolo	Cono Sur de Lima	yellow	5.7	16	2	blue
	289	Lima, Pucusana	-12.48209	-76.79745	Restaur ant Jhony	-12.481	-76.79829	Seafood Restaurant	4ec9553 56c2513 06cda4a	Pucusan a	Cono Sur de Lima	yellow	0	2	2	blue
	858	Lima, San Juan de Miraflores	-12.15585	-76.97213	Cevicher ia "Dorita"	-12.15469	-76.96853	Seafood Restaurant	5073933 4c84c42 b90bc5b eef	San Juan de Miraflor es	Cono Sur de Lima	yellow	0	1	2	blue
Lima Residenc ial	134	Lima, San Miguel	-12.07866	-77.09528	Mi Propied ad Privada	-12.08707	-77.09292	Seafood Restaurant	4bfd89a 5b68d0f 4709eee 857	San Miguel	Lima Residenc ial	blue	8.7	39	0	red
	1227	Lima, San Luis	-12.07236	-76.99589	Mi Cebi- chela	-12.08322	-76.99313	Seafood Restaurant	4d32166 db60937 040627f 3df	San Luis	Lima Residenc ial	blue	6.5	14	2	blue
	1235	Lima, San Luis	-12.07236	-76.99589	Los Cantarit os	-12.08189	-76.99329	Seafood Restaurant	4e6d1a3 be4cd4b edebeb0 2b2	San Luis	Lima Residenc ial	blue	7.2	29	0	red
	557	Lima, Barranco	-12.14396	-77.02027	Chanfain ita Pale	-12.14679	-77.01442	Seafood Restaurant	4d5d72e e775f8cf ac257c2 e0	Barranco	Lima Residenc ial	blue	8.2	28	0	red
	1507	Lima, Pueblo Libre	-12.07664	-77.06786	Don Pedrito	-12.08731	-77.07251	Seafood Restaurant	51d851f 2498eb4 a6d5b55 e0e	Pueblo Libre	Lima Residenc ial	blue	7.2	11	2	blue

Finally, using the Folium map, we can identify this clusters in Lima:

4. DISCUSSION

As I mentioned before, Lima is a city divided in five areas. We are not including the districts belong to Callao, which is recognized legally as a province. In that sense, Lima is a multicultural city with many features. That is why a study only based on the restaurant venues information might not be a well-structured deep research in order to identify the relationships between differences and similarities of the city by sector, even if the target is focusing only in this sort of venues. Other variables, such as population, economic wealth of citizens, transportation, etc., should be taken into consideration as well. However, this could be an initial point to draw an overview of the city.

It is important to understand the limitations in the application of our Kmeans classification model. In that sense, we use the Elbow method to get the optimum K value, which result in number 3. However, we are only use perhaps a non-representative sample of 5 restaurants by sector because of the maximum calls allowed by Foursquare. Moreover, in that sample of 25 venues, not all of the them were used —some do not have information about rating or tips. Thus, is obvious that, in a deep research, this optimum K value might not be the same. In a real scenario, and based on the previous comment, we must use more restaurant type venues and more variables in order to get a better understanding.

About the data, it is necessary to comprehend that the type "Restaurant" and "Peruvian Restaurant" might include seafood cuisine too. However, although this could reinforce the idea that Seafood Restaurant might be consider as one of the main cuisines in this city, we are not going to use these two categories as a part of our conclusion.

As a final detail, we performed a data analysis through the district information by adding their coordinates and venues information as a general data and visualizing in using a Folium Map. In a deep research, these data can also be used in a dynamically way from some platforms or packages automatically.

5. CONCLUSIONS

Based on the results, we can draw two conclusions.

- 5.1. Based on the results in 3.1., we can conclude that "Seafood Restaurant" is the most common type of restaurant in Lima, Peru –the relevance of its importance is different among districts, being 12.10% of the total restaurants in mid-town Lima (Centro de Lima), 9.08% in modern Lima (Lima Residencial) and 19.33% in Lima south (Cono Sur). Perhaps, this represent an important supply and demand relationship of this sort of food in the citizens of Lima.
- 5.2. Based on the results in 3.2., we can conclude effectively that there are some similarities and divergences among restaurants in the same or in a different sector. As we can see in the last Folium map, there are some restaurants that, in the same area, belongs to another label. In the same way, we can identify some venues that are part of the same cluster although they fit in a different sector of the city.