Discrete Math Counting Introduction

Victor Bankston

Tulane University

March 24, 2025

• Many natural questions start with 'how many...'

- Many natural questions start with 'how many...'
 - How many times do I need to walk back to the car to bring the groceries in?

- Many natural questions start with 'how many...'
 - How many times do I need to walk back to the car to bring the groceries in?
 - How many ways are there to lace your shoes?

- Many natural questions start with 'how many...'
 - How many times do I need to walk back to the car to bring the groceries in?
 - How many ways are there to lace your shoes?
 - How many chess positions are there?

- Many natural questions start with 'how many...'
 - How many times do I need to walk back to the car to bring the groceries in?
 - How many ways are there to lace your shoes?
 - How many chess positions are there?
- If understand a thing, you can count that thing: counting tests understanding.

- Many natural questions start with 'how many...'
 - How many times do I need to walk back to the car to bring the groceries in?
 - How many ways are there to lace your shoes?
 - How many chess positions are there?
- If understand a thing, you can count that thing: counting tests understanding.
 - How many edges are on a cube? (12)

- Many natural questions start with 'how many...'
 - How many times do I need to walk back to the car to bring the groceries in?
 - How many ways are there to lace your shoes?
 - How many chess positions are there?
- If understand a thing, you can count that thing: counting tests understanding.
 - How many edges are on a cube? (12)
 - How many prime numbers are there (∞) ?

- Many natural questions start with 'how many...'
 - How many times do I need to walk back to the car to bring the groceries in?
 - How many ways are there to lace your shoes?
 - How many chess positions are there?
- If understand a thing, you can count that thing: counting tests understanding.
 - How many edges are on a cube? (12)
 - How many prime numbers are there (∞) ?
 - How many pairs of twin primes (numbers p and p+2 that are both prime) are there? (unknown)

• How many divisors of 46 are there?

- How many divisors of 46 are there?
- i.e. Find $|\{k \in \mathbb{N} : k|46\}|$.

- How many divisors of 46 are there?
- i.e. Find $|\{k \in \mathbb{N} : k|46\}|$.
- Solution: Use the prime factorization $46 = 2^1 \times 23^1$.

- How many divisors of 46 are there?
- i.e. Find $|\{k \in \mathbb{N} : k|46\}|$.
- Solution: Use the prime factorization $46 = 2^1 \times 23^1$.
- The factors of 46 come from reducing the exponents in the prime factorization of 46.

- How many divisors of 46 are there?
- i.e. Find $|\{k \in \mathbb{N} : k|46\}|$.
- Solution: Use the prime factorization $46 = 2^1 \times 23^1$.
- The factors of 46 come from reducing the exponents in the prime factorization of 46.
- They are of the form $2^{n'_1} \times 23^{n_2}$, where $0 \le n_1 \le 1$ and $0 \le n_2 \le 1$.

- How many divisors of 46 are there?
- i.e. Find $|\{k \in \mathbb{N} : k|46\}|$.
- Solution: Use the prime factorization $46 = 2^1 \times 23^1$.
- The factors of 46 come from reducing the exponents in the prime factorization of 46.
- They are of the form $2^{n_1'} \times 23^{n_2'}$, where $0 \le n_1 \le 1$ and $0 \le n_2 \le 1$.
- These factors are

- How many divisors of 46 are there?
- i.e. Find $|\{k \in \mathbb{N} : k|46\}|$.
- Solution: Use the prime factorization $46 = 2^1 \times 23^1$.
- The factors of 46 come from reducing the exponents in the prime factorization of 46.
- They are of the form $2^{n_1'} \times 23^{n_2'}$, where $0 \le n_1 \le 1$ and $0 \le n_2 \le 1$.
- These factors are
 - $2^1 \times 23^1 = 46$

- How many divisors of 46 are there?
- i.e. Find $|\{k \in \mathbb{N} : k|46\}|$.
- Solution: Use the prime factorization $46 = 2^1 \times 23^1$.
- The factors of 46 come from reducing the exponents in the prime factorization of 46.
- They are of the form $2^{n'_1} \times 23^{n_2'}$, where $0 \le n_1 \le 1$ and $0 \le n_2 \le 1$.
- These factors are
 - $2^1 \times 23^1 = 46$
 - $2^0 \times 23^1 = 23$

- How many divisors of 46 are there?
- i.e. Find $|\{k \in \mathbb{N} : k|46\}|$.
- Solution: Use the prime factorization $46 = 2^1 \times 23^1$.
- The factors of 46 come from reducing the exponents in the prime factorization of 46.
- They are of the form $2^{n'_1} \times 23^{n_2'}$, where $0 \le n_1 \le 1$ and $0 \le n_2 \le 1$.
- These factors are
 - $2^1 \times 23^1 = 46$
 - $2^0 \times 23^1 = 23$
 - $2^1 \times 23^0 = 2$

- How many divisors of 46 are there?
- i.e. Find $|\{k \in \mathbb{N} : k|46\}|$.
- Solution: Use the prime factorization $46 = 2^1 \times 23^1$.
- The factors of 46 come from reducing the exponents in the prime factorization of 46.
- They are of the form $2^{n'_1} \times 23^{n_2'}$, where $0 \le n_1 \le 1$ and $0 \le n_2 \le 1$.
- These factors are
 - $2^1 \times 23^1 = 46$
 - $2^0 \times 23^1 = 23$
 - $2^1 \times 23^0 = 2$
 - $2^0 \times 23^0 = 1$

- How many divisors of 46 are there?
- i.e. Find $|\{k \in \mathbb{N} : k|46\}|$.
- Solution: Use the prime factorization $46 = 2^1 \times 23^1$.
- The factors of 46 come from reducing the exponents in the prime factorization of 46.
- They are of the form $2^{n'_1} \times 23^{n_2'}$, where $0 \le n_1 \le 1$ and $0 \le n_2 \le 1$.
- These factors are
 - $2^1 \times 23^1 = 46$
 - $2^0 \times 23^1 = 23$
 - $2^1 \times 23^0 = 2$
 - $2^0 \times 23^0 = 1$
- There are 4 factors of 46.

• Given $N \in \mathbb{N}$, how many divisors does N have?

- Given $N \in \mathbb{N}$, how many divisors does N have?
- Assume $N = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$ is the prime factorization of N.

- Given $N \in \mathbb{N}$, how many divisors does N have?
- Assume $N = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$ is the prime factorization of N.
- Solution: $(n_1 + 1)(n_2 + 1) \dots (n_k + 1)$.

- Given $N \in \mathbb{N}$, how many divisors does N have?
- Assume $N = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$ is the prime factorization of N.
- Solution: $(n_1 + 1)(n_2 + 1) \dots (n_k + 1)$.
- Notice: we need to include +1 in each factor because of the possibility of reducing the exponent n_i to a number in $\{0, 1, \ldots n_i\}$.

- Given $N \in \mathbb{N}$, how many divisors does N have?
- Assume $N = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$ is the prime factorization of N.
- Solution: $(n_1 + 1)(n_2 + 1) \dots (n_k + 1)$.
- Notice: we need to include +1 in each factor because of the possibility of reducing the exponent n_i to a number in $\{0, 1, \ldots, n_i\}$.
 - The mistake of using n_i instead of n_i + 1 is an "off by one" error. Watch out.

- Given $N \in \mathbb{N}$, how many divisors does N have?
- Assume $N = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$ is the prime factorization of N.
- Solution: $(n_1 + 1)(n_2 + 1) \dots (n_k + 1)$.
- Notice: we need to include +1 in each factor because of the possibility of reducing the exponent n_i to a number in $\{0, 1, \ldots, n_i\}$.
 - The mistake of using n_i instead of n_i + 1 is an "off by one" error. Watch out.
- In this solution, why did we multiply the number of choices for each n'_i?

• Suppose a task involves 2 steps: We do step 1, **then** we do step 2.

- Suppose a task involves 2 steps: We do step 1, **then** we do step 2.
- The Product rule says that the number of ways to complete the task is #WaysToDoStep1×#WaysToDoStep2.

- Suppose a task involves 2 steps: We do step 1, **then** we do step 2.
- The Product rule says that the number of ways to complete the task is #WaysToDoStep1×#WaysToDoStep2.
- Identifying a factor of 46 involves 2 steps: First choose $n_i' \in \{0,1\}$, then choose $n_2' \in \{0,1\}$.

- Suppose a task involves 2 steps: We do step 1, **then** we do step 2.
- The Product rule says that the number of ways to complete the task is #WaysToDoStep1×#WaysToDoStep2.
- Identifying a factor of 46 involves 2 steps: First choose $n_i' \in \{0,1\}$, then choose $n_2' \in \{0,1\}$.
- The product rule justifies multiplying 2 × 2 = 4 to count the factors of 46.

- Suppose a task involves 2 steps: We do step 1, **then** we do step 2.
- The Product rule says that the number of ways to complete the task is #WaysToDoStep1×#WaysToDoStep2.
- Identifying a factor of 46 involves 2 steps: First choose $n_i' \in \{0, 1\}$, then choose $n_2' \in \{0, 1\}$.
- The product rule justifies multiplying 2 × 2 = 4 to count the factors of 46.
- Mathematically, the product rule states that $|A \times B| = |A||B|$.

• Suppose a task involves 2 steps: We do step 1 **or** we do step 2 (but not both).

- Suppose a task involves 2 steps: We do step 1 or we do step 2 (but not both).
- The Sum rule says that the number of ways to complete the task is #WaysToDoStep1 + #WaysToDoStep2.

- Suppose a task involves 2 steps: We do step 1 or we do step 2 (but not both).
- The Sum rule says that the number of ways to complete the task is #WaysToDoStep1 + #WaysToDoStep2.
- Example: I have a king and rook on a chessboard. In some position, the king can go to 8 squares and the rook can go to 14 squares. How many moves can I make?

- Suppose a task involves 2 steps: We do step 1 or we do step 2 (but not both).
- The Sum rule says that the number of ways to complete the task is #WaysToDoStep1 + #WaysToDoStep2.
- Example: I have a king and rook on a chessboard. In some position, the king can go to 8 squares and the rook can go to 14 squares. How many moves can I make?
- The total number of moves is 8 + 14 = 22.

Counting and bijections

• Recall: Bijections are invertible functions.

- Recall: Bijections are invertible functions.
- They determine a matching between the domain and codomain.

- Recall: Bijections are invertible functions.
- They determine a matching between the domain and codomain.
- When both the domain and codomain are finite, a bijection demonstrates that they have the same size

- Recall: Bijections are invertible functions.
- They determine a matching between the domain and codomain.
- When both the domain and codomain are finite, a bijection demonstrates that they have the same size
- Example $A = \{1, 2, 3, \dots, 10\}$ is in bijection with $B = \{10, 20, \dots 100\}$ under $x \leftrightarrow 10x$.

- Recall: Bijections are invertible functions.
- They determine a matching between the domain and codomain.
- When both the domain and codomain are finite, a bijection demonstrates that they have the same size
- Example $A = \{1, 2, 3, \dots, 10\}$ is in bijection with $B = \{10, 20, \dots 100\}$ under $x \leftrightarrow 10x$.
- This means that A and B have the same size.

- Recall: Bijections are invertible functions.
- They determine a matching between the domain and codomain.
- When both the domain and codomain are finite, a bijection demonstrates that they have the same size
- Example $A = \{1, 2, 3, \dots, 10\}$ is in bijection with $B = \{10, 20, \dots 100\}$ under $x \leftrightarrow 10x$.
- This means that A and B have the same size.
- When we count "one two three..." we are establishing a bijection with {1, 2, 3, ...}.

• Mathematicians generalize the notion of the size to cardinality.

- Mathematicians generalize the notion of the size to cardinality.
- Specifically, two sets have the same cardinality if there is a bijection between them.

- Mathematicians generalize the notion of the size to cardinality.
- Specifically, two sets have the same cardinality if there is a bijection between them.
- The difficult Cantor-Bernstein theorem states that cardinalities are ordered.

- Mathematicians generalize the notion of the size to cardinality.
- Specifically, two sets have the same cardinality if there is a bijection between them.
- The difficult Cantor-Bernstein theorem states that cardinalities are ordered.
- Ex: $|\mathbb{Z}| = |\mathbb{Q}|$, but $|\mathbb{R}| > |\mathbb{Z}|$.

- Mathematicians generalize the notion of the size to cardinality.
- Specifically, two sets have the same cardinality if there is a bijection between them.
- The difficult Cantor-Bernstein theorem states that cardinalities are ordered.
- Ex: $|\mathbb{Z}| = |\mathbb{Q}|$, but $|\mathbb{R}| > |\mathbb{Z}|$.
- An elaborate theory justifies the slogan "Some infinities are bigger than others."

- Mathematicians generalize the notion of the size to cardinality.
- Specifically, two sets have the same cardinality if there is a bijection between them.
- The difficult Cantor-Bernstein theorem states that cardinalities are ordered.
- Ex: $|\mathbb{Z}| = |\mathbb{Q}|$, but $|\mathbb{R}| > |\mathbb{Z}|$.
- An elaborate theory justifies the slogan "Some infinities are bigger than others."
- In Discrete math, we should stick to the finite, or at least countably finite sets.

 How many handshakes occur if 10 people meet for the first time?

- How many handshakes occur if 10 people meet for the first time?
- To specify a handshake, choose a person A. Then choose a person $B \neq A$ for A to shake hands with.

- How many handshakes occur if 10 people meet for the first time?
- To specify a handshake, choose a person A. Then choose a person $B \neq A$ for A to shake hands with.
- This counts each handshake twice, once between A and B and again between B and A, so we divide by 2.

- How many handshakes occur if 10 people meet for the first time?
- To specify a handshake, choose a person A. Then choose a person B ≠ A for A to shake hands with.
- This counts each handshake twice, once between A and B and again between B and A, so we divide by 2.
- There are $\frac{10\times9}{2}$ handshakes.

• We also write this as $\frac{10\times9}{2}=\binom{10}{2}$.

- We also write this as $\frac{10\times9}{2}=\binom{10}{2}$.
- $\binom{10}{2}$ is the number of pairs of people, where the order of the pair does not matter.

- We also write this as $\frac{10\times9}{2}=\binom{10}{2}$.
- $\binom{10}{2}$ is the number of pairs of people, where the order of the pair does not matter.
- A dual way to think about "order does not matter" is that we count according to a fixed order.

- We also write this as $\frac{10\times9}{2}=\binom{10}{2}$.
- $\binom{10}{2}$ is the number of pairs of people, where the order of the pair does not matter.
- A dual way to think about "order does not matter" is that we count according to a fixed order.
- For example, we can always think of the taller person as shaking the shorter person's hand.

- We also write this as $\frac{10\times9}{2}=\binom{10}{2}$.
- $\binom{10}{2}$ is the number of pairs of people, where the order of the pair does not matter.
- A dual way to think about "order does not matter" is that we count according to a fixed order.
- For example, we can always think of the taller person as shaking the shorter person's hand.
- The distinction between counting with order and without order is a common source of mistakes.

- We also write this as $\frac{10\times9}{2}=\binom{10}{2}$.
- $\binom{10}{2}$ is the number of pairs of people, where the order of the pair does not matter.
- A dual way to think about "order does not matter" is that we count according to a fixed order.
- For example, we can always think of the taller person as shaking the shorter person's hand.
- The distinction between counting with order and without order is a common source of mistakes.
- It can be tricky to write unambiguous questions so that it is clear exactly what is being counted.

- We also write this as $\frac{10\times9}{2}=\binom{10}{2}$.
- $\binom{10}{2}$ is the number of pairs of people, where the order of the pair does not matter.
- A dual way to think about "order does not matter" is that we count according to a fixed order.
- For example, we can always think of the taller person as shaking the shorter person's hand.
- The distinction between counting with order and without order is a common source of mistakes.
- It can be tricky to write unambiguous questions so that it is clear exactly what is being counted.
- Example: How many ways can 10 people sit if there are 11 chairs? (Just 1: everybody sits down in a chair.)