Predict which Tweets are about real disasters and which ones are not

•••

Yanwen Duan Jiameng Sun

Data Cleaning

id keyword location

9	Iu	Keyword	location	text	target	text_clean	tokemzeu	lower	stopwords_removed	pos_tags	wordnet_pos	leilillauzeu	lellilla_su
0	1	NaN	NaN	Our Deeds are the Reason of this #earthquake M	1	Our Deeds are the Reason of this earthquake Ma	[Our, Deeds, are, the, Reason, of, this, earth	[our, deeds, are, the, reason, of, this, earth	[deeds, reason, earthquake, may, allah, forgiv	[(deeds, NNS), (reason, NN), (earthquake, NN),	[(deeds, n), (reason, n), (earthquake, n), (ma	[deed, reason, earthquake, may, allah, forgive	deed reason earthquake may allah forgive u
1	4	NaN	NaN	Forest fire near La Ronge Sask. Canada	1	Forest fire near La Ronge Sask Canada	[Forest, fire, near, La, Ronge, Sask, Canada]	[forest, fire, near, la, ronge, sask, canada]	[forest, fire, near, la, ronge, sask, canada]	[(forest, JJS), (fire, NN), (near, IN), (la, J	[(forest, a), (fire, n), (near, n), (la, a), ([forest, fire, near, la, ronge, sask, canada]	forest fire near la ronge sask canada
2	5	NaN	NaN	All residents asked to 'shelter in place' are	1	All residents asked to shelter in place are be	[All, residents, asked, to, shelter, in, place	[all, residents, asked, to, shelter, in, place	[residents, asked, shelter, place, notified, o	[(residents, NNS), (asked, VBD), (shelter, JJ)	[(residents, n), (asked, v), (shelter, a), (pl	[resident, ask, shelter, place, notify, office	resident ask shelter place notify officer evac
3	6	NaN	NaN	13,000 people receive #wildfires evacuation or	1	13000 people receive wildfires evacuation orde	[13000, people, receive, wildfires, evacuation	[13000, people, receive, wildfires, evacuation	[13000, people, receive, wildfires, evacuation	[(13000, CD), (people, NNS), (receive, JJ), (w	[(13000, n), (people, n), (receive, a), (wildf	[13000, people, receive, wildfire, evacuation,	13000 people receive wildfire evacuation order
4	7	NaN	NaN	Just got sent this photo from Ruby #Alaska as 	1	Just got sent this photo from Ruby Alaska as s	[Just, got, sent, this, photo, from, Ruby, Ala	[just, got, sent, this, photo, from, ruby, ala	[got, sent, photo, ruby, alaska, smoke, wildfi	[(got, VBD), (sent, JJ), (photo, NN), (ruby, N	[(got, v), (sent, a), (photo, n), (ruby, n), ([get, sent, photo, ruby, alaska, smoke, wildfi	get sent photo ruby alaska smoke wildfires pou

lower stopwords removed

pos tags wordnet pos

lemmatized lemma str

tokenized

text target text clean

Data Visualization I

Data Visualization II

Model I - BERT

Model II - BERTweet

Fine tune pre-trained models from Hugging Face

- Model is trained based on text classification tasks.
- Train on a 16GB GPU from Google Colab
- Since each text in our dataset is relatively short between 10 to 20 tokens, we used smart batch padding on the fly instead of pre-padding to max length 512. This helps speed up the training.

```
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
if data_args.task_name is not None:
    kwargs["language"] = "en"
    kwargs["dataset_tags"] = "glue"
    kwargs["dataset_args"] = data_args.task_name
    kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}"

if training_args.push_to_hub:
    trainer.push_to_hub(**kwargs)

else:
    trainer.create_model_card(**kwargs)
```

BERT vs BERTweet? Old Data vs New Data?

BERT-Base trained with the train set of the first dataset (7613 samples)

Epoch/Metric	Training Loss	Test Loss	Test Accuracy	Test F1
1	0.50	0.45	0.81	0.77
2	0.38	0.42	0.83	0.78
3	0.33	0.43	0.83	0.78

The following models were trained with the new train set (13289 samples) BERT-Base (Total time: 744.282s)

Epoch/Metric	Training Loss	Test Loss	Test Accuracy	Test F1
1	0.371	0.350	0.857	0.713
2	0.276	0.343	0.863	0.744
3	0.196	0.383	0.856	0.742

BERTweet-Base (Total time: 770.702s)

Epoch/Metric	Training Loss	Test Loss	Test Accuracy	Test F1
1	0.386	0.358	0.861	0.710
2	0.331	0.341	0.864	0.740
3	0.191	0.363	0.869	0.745

- We have fine tuned both BERT and BERTweet with old or new train set
- The models with new data have higher Accuracy.

One of the potential reason: Data makes more impacts on performance than Model itself does.

 BERTweet can achieve similar accuracy as traditional BERT with the same train set

One of the possible reason we can think of is: Both models have large amount of parameters (100M +), while our dataset size is relatively small (10K +).

Web Application Based on BERTweet

- We have built a web application with Streamlit
- By typing in context of a tweet and hitting the Detect button, the app can predict whether the tweet is about real disaster or not with corresponding probability.

Summary

- Data vs Model?
 - Our projects show that more data brings better results. The benefit of data even outweighs the improved model in our case.
 - We believe that with more data, the BERT and BERTweet models can keep improving. After all, the number of our samples(13289) is 1/10000 of the number of BERT's parameters (110M).