

MECH366: Modeling of Mechatronic Systems

L16: Transfer function of DC motors

Dr. Ryozo Nagamune
Department of Mechanical Engineering
University of British Columbia

- Up to now, we have studied state-space modeling based on linear graphs, and transfer function.
- Today, we will learn transfer function modeling of DC motors.
- Various models and their relations

Transfer function (review)

A transfer function is defined by

$$G(s) := \frac{Y(s)}{R(s)}$$
 Laplace transform of system output Laplace transform of system input

- A system is assumed to be at rest. (zero initial condition)
- Transfer function is a generalization of "gain" concept.

Today's topics

4

- Modeling of DC motor
- Step response of the first-order system

These topics are relevant to Lab 4-A.

Model of DC motor

"a": armature

 e_a : applied voltage

 i_a : armature current

"b": back EMF

"m": mechanical

 θ_m : angular position

 ω_m : angular velocity

 J_m : total inertia

 B_m : viscous friction

6

Modeling of DC motor: t-domain

• Armature circuit
$$e_a(t) = R_a i_a(t) + L_a \frac{di_a(t)}{dt} + e_b(t)$$

Load torque

- Mechanical load $J_m \dot{\omega}_m(t) = T_m(t) B_m \omega_m(t) T_L(t)$
- Connection between mechanical/electrical parts

• Motor torque
$$T_m(t) = K_i i_a(t)$$

• Back EMF
$$e_b(t) = K_b \omega_m(t)$$

• Angular position $\omega_m(t) = \dot{\theta}_m(t)$

Modeling of DC motor: s-domain

- Armature circuit $I_a(s) = \frac{1}{L_a s + R_a} (E_a(s) E_b(s))$ 1
- Mechanical load $\Omega_m(s) = \frac{1}{J_m s + B_m} (T_m(s) T_L(s))$ 2
- Connection between mechanical/electrical parts
 - Motor torque $T_m(s) = K_i I_a(s)$
 - Back EMF $E_b(s) = K_b \Omega_m(s)$
- Angular position $\Theta_m(s) = \frac{1}{s}\Omega_m(s)$ 5

DC motor: Block diagram

Transfer function (TF) with feedback Black's formula

Negative feedback system

$$E(s) = R(s) - H(s)G(s)E(s) \longrightarrow E(s) = \frac{1}{1 + G(s)H(s)}R(s)$$

$$Y(s) = G(s)E(s)$$

$$Y(s) = G(s)E(s) \longrightarrow Y(s) = \frac{G(s)}{1 + G(s)H(s)}R(s)$$

$$\left(\begin{array}{cc} G(s) & \text{: forward path TF} \\ G(s)H(s) & \text{: open-loop TF} \end{array} \right)$$

Ex: TF of feedback systems

• Compute transfer functions from R(s) to Y(s).

DC motor: Transfer functions

If
$$T_L = 0$$
, then
$$\frac{\Omega_m(s)}{E_a(s)} = \frac{\frac{K_i}{(L_a s + R_a)(J_m s + B_m)}}{1 + \frac{K_b K_i}{(L_a s + R_a)(J_m s + B_m)}} = \underbrace{\frac{K_i}{(L_a s + R_a)(J_m s + B_m)}}_{G_1(s)}$$

If
$$E_a = 0$$
, then
$$\frac{\Omega_m(s)}{T_L(s)} = -\frac{\frac{1}{J_m s + B_m}}{1 + \frac{K_b K_i}{(L_a s + R_a)(J_m s + B_m)}} = -\frac{L_a s + R_a}{(L_a s + R_a)(J_m s + B_m)} = -\frac{L_a s + R_a}{(L_a s + R_a)(J_m s + B_m)}$$

$$\Omega_m(s) = G_1(s)E_a(s) + G_2(s)T_L(s)$$

$$\Theta_m(s) = \frac{1}{s}\Omega_m(s) = \frac{1}{s}(G_1(s)E_a(s) + G_2(s)T_L(s))$$

12

DC motor: Derivation of TFs

$$\Omega_m(s) = F_1(s) \left[-T_L(s) + F_2(s) \left\{ E_a(s) - F_3(s) \Omega_m(s) \right\} \right]$$

$$\Omega_m(s) = \frac{F_1(s)F_2(s)}{1 + F_1(s)F_2(s)F_3(s)} E_a(s) - \frac{F_1(s)}{1 + F_1(s)F_2(s)F_3(s)} T_L(s)$$

DC motor: TFs (cont'd)

Note: For DC motors, La<<Ra. Then, an approximated TF is obtained by setting La=0.

$$\frac{\Omega_m(s)}{E_a(s)} = \frac{K_i}{(L_a s + R_a)(J_m s + B_m) + K_b K_i} \approx \frac{K_i}{R_a (J_m s + B_m) + K_b K_i}
=: \frac{K}{T s + 1} \left(K := \frac{K_i}{R_a B_m + K_b K_i}, \ T = \frac{R_a J_m}{R_a B_m + K_b K_i} \right)$$

2nd order system

1st order system

$$\frac{\Theta_m(s)}{E_a(s)} = \frac{K}{s(Ts+1)}$$

Today's topics

- Modeling of DC motor
- Step response of the first-order system

These topics are relevant to Lab 4-A.

Step response of first-order system

Input a unit step function to a first-order system.
 Then, what is the output?

$$Y(s) = G(s)U(s)$$

$$= \frac{K/T}{s+1/T} \cdot \frac{1}{s} \qquad \mathcal{L}^{-1} \quad y(t) = \mathcal{L}^{-1} \{Y(s)\}$$

$$= \frac{K}{s} + \frac{-K}{s+1/T} \qquad = \frac{K(1 - e^{-t/T})}{(t > 0)}$$

(Partial fraction expansion)

Meaning of K and T

$$G(s) = \frac{K}{Ts+1}$$

- *K* : DC gain
 - Final (steady-state) value

$$\lim_{t \to \infty} y(t) = K$$

- T: Time constant
 - Time when response rises 63% of final value
 - Indication of speed of response (convergence)
 - Response is faster as T becomes smaller.

Step response for some *K* & *T*

System identification (Empirical modeling technique)

• Suppose that we have a "black-box" system.

Obtain step response with amplitude A.

Can you obtain a transfer function? How?

Summary

- Transfer function modeling of DC motors
 - Block diagram
 - Black's formula
 - Step response
- Next,
 - Performance specification
 - Step response of second order systems
- Lab 4: Nov 8 (report due Nov 25 (Monday), 6pm)
- Project: Fridays Nov 15, 22, 29 (presentation)
- Homework 6: Due Nov 12 (Tuesday), 6pm

Block diagram

- Represents relations among signals and systems
- Very useful in representing control systems
- Also useful in computer simulations (Simulink)
- Elements
 - Block: transfer function ("gain" block)
 - Arrow: signal
 - Node: summation (or subtraction) of signals

20

Typical mistakes

Unclear which signal is "E"

Signal must be indicated on an arrow.

MECH 466 21

Typical mistakes (cont'd)

Both are fine, but they have different meanings!

