

Calcul Différentiel I

Analyse 3-AP2 1440/2018

Excercice 1:

Montrer que la fonction définie par $f(x,y) = x^2 + y^2$ est différentiable au point (1,1).

Excercice 2:

Soit l'application suivante :

$$f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$$
$$(x,y) \mapsto \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- 1. Montrer que f est continue sur \mathbb{R}^2 .
- 2. Prouver l'existence des dérivées partielles au point (0,0). Sont-elles continues en (0,0)?
- 3. Que peut-on dire de la différentiabilité de f au point (0,0)?

Excercice 3:

Soit la fonction f telle que : $f(x,y) = y^2 \sin\left(\frac{x}{y}\right)$

- 1. Montrer que l'on peut définir un prolongement par continuité \bar{f} de la fonction f.
- 2. Préciser en quels points la fonction \bar{f} est de classe \mathcal{C}^1 .
- 3. Étudier la différentiabilité de \bar{f} .

Excercice 4:

Soit $g: \mathbb{R} \to \mathbb{R}$ une application de classe C^2 et $F: \mathbb{R}^2 \to \mathbb{R}$ définie par $F(x,y) = \frac{g(x) - g(y)}{x - y}$ si $x \neq y$, F(x,x) = g'(x). Montrer que F est de classe C^1 en tout point de \mathbb{R}^2 et calculer sa différentielle.