## 1

## GATE 2023 EC 48

## EE23BTECH11061 - SWATHI DEEPIKA\*

**Question:** Let an input x[n] having discrete time Fourier transform  $X(e^{j\omega})=1-e^{-j\omega}+2e^{-3j\omega}$  be passed through an LTI system. The frequency response of the LTI system is  $H(e^{j\omega})=1-\frac{1}{2}e^{-2j\omega}$ . The output y[n] of the system is

## **Solution:**

| Parameter             | Value                                                 |
|-----------------------|-------------------------------------------------------|
| $X(e^{j\omega})$      | $1 - e^{-j\omega} + 2e^{-3j\omega}$                   |
| $H(e^{j\omega})$      | $1 - \frac{1}{2}e^{-2j\omega}$                        |
| $Y(e^{j\omega})$      | $X(e^{j\omega}) \cdot H(e^{j\omega})$                 |
| <i>y</i> [ <i>n</i> ] | ?                                                     |
| $\delta[n]$           | $\frac{1}{2\pi}\int_{-\pi}^{\pi}e^{j\omega n}d\omega$ |

TABLE I Parameters

$$y[n] = x[n] * h[n]$$
 (1)

$$x(n) * h(n) \longleftrightarrow X(e^{j\omega}) \cdot H(e^{j\omega})$$

$$Y(e^{j\omega}) = X(e^{j\omega}) \cdot H(e^{j\omega})$$

$$y[n] = \delta[n] - \delta[n-1] + \frac{5}{2}\delta[n-3] - \frac{1}{2}\delta[n-2] - \delta[n-5]$$
(8)

$$y[n] = \delta[n] - \delta[n-1] + 2.5\delta[n-3] - 0.5\delta[n-2] - \delta[n-5]$$
(9)



$$Y(e^{j\omega}) = (1 - e^{-j\omega} + 2e^{-3j\omega}) \cdot \left(1 - \frac{1}{2}e^{-2j\omega}\right)$$
(3)  
=  $(1 - e^{-j\omega} + \frac{5}{2}e^{-3j\omega} - \frac{1}{2}e^{-2j\omega} - e^{-5j\omega})$  (4)

$$Y(e^{j\omega})\longleftrightarrow y[n]$$

$$y[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} Y(e^{j\omega}) e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left( 1 - e^{-j\omega} + \frac{5}{2} e^{-3j\omega} - \frac{1}{2} e^{-2j\omega} - e^{-5j\omega} \right) e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega n} d\omega - \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-1)} d\omega + \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{5}{2} e^{j\omega(n-3)} d\omega - \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2} e^{j\omega(n-2)} d\omega - \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-5)} d\omega$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega n} d\omega - \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-1)} d\omega + \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{5}{2} e^{j\omega(n-3)} d\omega - \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2} e^{j\omega(n-2)} d\omega - \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-5)} d\omega$$

(2) Fig. 1. y(n) vs n