確率・統計特論 期末試験

担当: 来嶋 秀治 (Shuji Kijima)

注意事項

- ・書籍, ノート, メモ, 演習解答持ち込み可. 電子機器 (電子書籍, 電卓を含む) 使用不可.
- ・解答欄が足りない場合は、解答用紙裏面を使用して良い.
- ・問題は全部で3問ある. 合計点が100点を超える場合でも100点満点とする.

30 L(a,b) = \$ 2x; (05, 4) = (06)
= 201 (ax + 6x - x/054)

- (1/2,b) = 20/07 + b - Tog)

問題 1 [50点]

I. 中心極限定理を記述せよ. [5]

II. いま, n 対の実数 $(x_1,y_1),\ldots,(x_n,y_n)$ が与えられたとし, 実変数 a,b の関数

の最小化を考える. 記法の便利のため、

$$\overline{x} := \frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad \overline{\log y} := \frac{1}{n} \sum_{i=1}^{n} \log y_{i}, \quad \overline{x \cdot \log y} := \frac{1}{n} \sum_{i=1}^{n} x_{i} \cdot \log y_{i}, \quad \overline{x^{2}} := \frac{1}{n} \sum_{i=1}^{n} \sum_{i=1}^{n} x_{i}^{2},$$

とする.

(II-1) 関数 L(a,b) の導関数 $\frac{\partial}{\partial a}L(a,b)$ と $\frac{\partial}{\partial b}L(a,b)$ を求めよ. $\widehat{[10]}$

(II-2) 関数 L(a,b) を最小とする a,b を \overline{x} , $\overline{\log y}$, $\frac{1}{x \cdot \log y}$, $\overline{x^2}$ を用いて答えよ. 10

III. あるシステムにおいて、負荷 x ($10 \le x \le 100$) が加えられた時の応答値 y を知りたい、6 回の試行を行ったところ、下記のデータを得た.

 $L(a,b) := \sum_{i=1}^{n} (ax_i + b - \log y_i)^2$

試行番号	1	2	3	4	5	6
負荷 <i>x</i>	16.4	27.7	71.3	81.9	59.6	43.1
応答値 log y	24.6	64.3	161.8	194.6	91.1	63.6

(III-1) このシステムでは、 $\log y = ax + b + \mathcal{E}$ が成り立つと仮定される。ただし、誤差項 \mathcal{E} は正規分布 $N(0,\sigma^2)$ に従う確率変数である。このとき a と b に対する最小二乗推定量をそれぞれ求めよ。ただし、以下の数値を用いてよい。 [10]

$$\overline{x} \simeq 50.0$$
, $\overline{\log y} \simeq 100.0$, $\overline{x \cdot \log y} \simeq \frac{6305}{3040}$, $\overline{x^2} \simeq 6305$.

(III-2) 規格では a=2.0 とされている.このシステムは規格を満たしていると言えるか?有意水準 5%で議論せよ.ただし誤差項 $\mathcal E$ の分散は $\sigma^2=600$ と仮定できるものとする. [15]

t 分布表

自由度	1	2	3	4	<u></u>	6	7	8	9	10
両側 5%点	12.706	4.303	3.182	2.776	2.571	2.447	2.365	2.306	2.262	2.228

問題 2 [60点]

I. いま、 Ω を可算集合とし、確率空間 $(\Omega, 2^{\Omega}, P)$ を考える。事象 $A_i \in 2^{\Omega}$ $(i=1,\ldots,n)$ は $A_i \cap A_j = \emptyset$ $(i \neq j)$ を満たし、かつ $\bigcup_{j=1}^n A_j = \Omega$ を満たすものとする。また事象 $B \in 2^{\Omega}$ とする。 (I-1) 条件付き確率

$$Pr[B \mid A_i]$$

の定義を書け. [5]

(I-2) 条件付き確率の和

$$\sum_{j=1}^n \Pr[B \mid A_j] \cdot \Pr[A_j]$$

を Pr[B] を用いて表せ、証明を記述すること [10] (I-3) 次の式を示せ、[5]

$$\Pr[A_i \mid B] = \frac{\Pr[B \mid A_i] \cdot \Pr[A_i]}{\sum_{j=1}^{n} \Pr[B \mid A_j] \cdot \Pr[A_j]}$$

ヒント: (I-1), (I-2) を利用せよ.

II. コインが 100 枚ある. 内, 50 枚のコイン (type A) は表の出る確率が 3%, 30 枚のコイン (type B) は表の出る確率が 4%, 残りの 20 枚のコイン (type C) は表の出る確率が 5%とする. 100 枚のコイン は見分けがつかないものとする.

(II-1) コインをランダムに 1 枚選んでトスを行った. 表が出る確率を求めよ. [10] この (11-1)

(II-2) コインをランダムに 1 枚選んでトスを行ったところ, 表がでた. 選んだコインが type C である確率を求めよ. [10]

III. ある工場で作るコインは (とても) 歪んでいる.この工場で作るコインの表の出る確率 P はベー しタ分布 B(2,6) に従うものとする.ただし,ベータ分布 $B(\alpha,\beta)$ $(\alpha>0,\beta>0)$ の密度関数は

$$f(x) := \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \qquad (0 \le x \le 1)$$

で与えられ, $B(\alpha,\beta):=\int_0^1 t^{\alpha-1}(1-t)^{\beta-1}\mathrm{d}t$ は正規化定数である.

(III-1) コインを 1 枚抽出し、そのコインを n 回投げたところ、表が k 回出た.選んだコインの表の出る確率 P の事後分布を求めよ.[10]

(III-2) (III-1) において, n=29, k=6 であった場合, 選んだコインの表が出る確率はいくつと推定されるか? 最大事後確率推定量 (maximum a posteriori: 事後分布の最頻値) を求めよ. [10]

 $w(0|z) = \frac{1}{2} \frac{1$

問題 3 [50点]

- I. 表が出る確率 p のコインを n 回投げた時, 表が 2 回連続しては現れない確率を q_n とする.
- (I-1) q2, q3, q4 を求めよ. [10]
- (I-2) q_n に関する漸化式を求めよ. [10]
- (I-3) p = 2/3 のとき, q_n を n の関数として求めよ. [10]

II. あるシステムの時刻 t $(t=0,1,2,\ldots)$ の状態は、3 次元の確率変数 $X^{(t)}:=(X_1^{(t)},X_2^{(t)},X_3^{(t)})$ \in $\{0,1\}^3$ で表現されるものとする.時刻 0 の状態は $X^{(0)}:=(0,0,0)$ とする.時刻 t の状態 $X^{(t)}$ から 時刻t+1の状態 $X^{(t+1)}$ への推移は次のように与えられる.

- (i) 添え字 $i \in \{1,2,3\}$ が一様ランダムに一つ選ばれ, (ii) 確率 1/4 で $X_i^{(t+1)}$ の値が反転する.

例えば時刻 0 の状態 (0,0,0) から 1/3 の確率で添え字 2 が選ばれ、1/4 の確率で反転したとき、時 刻 1 の状態 $X^{(1)}=(0,1,0)$ となる.その後,1/3 の確率で添え字3 が選ばれ,3/4 の確率で反転し なかったとき、時刻 2 の状態 $X^{(2)} = (0,1,0)$ となる.

(II-1) 時刻1のとき、 $X_1^{(1)} + X_2^{(1)} + X_3^{(1)} = 1$ となる確率を求めよ. 10

(II-2) 時刻 t>0 のとき, $X_1^{(t)}+X_2^{(t)}+X_3^{(t)}=3$ となる確率を求めよ.[10]