



FCC LISTED, REGISTRATION NUMBER: 720267

IC LISTED REGISTRATION NUMBER IC 4621A-1 Informe de ensayo nº: Test report No:

NIE: 47081RRF.002

#### **Test report**

### USA FCC Part 15.247, 15.209 CANADA RSS-247, RSS-Gen

Radio Frequency Devices. Operation within the bands 902 - 928 MHz, 2400 -2483.5 MHz, and 5725 - 5850 MHz.

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

General Requirements and Information for the Certification of Radio Apparatus.

| Identificación del objeto ensayado:  Identification of item tested   | Wellness ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Marca:<br>Trademark                                                  | ŌURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Modelo y/o referencia tipo:  Model and /or type reference            | ŌURA ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Other identification of the product:                                 | FCC ID: 2AD7V-OURARING15001<br>IC: 20635- OURARING15001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Final HW version:                                                    | FRD_05 for the ring, FRC_04 for the cradle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Final SW version:                                                    | HEAT SW version 2015.08-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Características: Features                                            | Sleep Analysis, Activity Monitoring, Readiness Score.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fabricante                                                           | JOUZEN OY<br>Elektroniikkatie 3, 90590 Oulu, Finland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Método de ensayo solicitado, norma:  Test method requested, standard | USA FCC Part 15.247 10-1-14 Edition: Operation within the bands 902 - 928 MHz, 2400 -2483.5 MHz, and 5725 - 5850 MHz.  USA FCC Part 15.209 10-1-14 Edition: Radiated emission limits; general requirements.  CANADA RSS-247 Issue 1 (May 2015).  CANADA RSS-Gen Issue 4 (November 2014).  Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 558074 D01 DTS Meas Guidance v03r03 dated 06/09/2015.  ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices. |
| Resultado: Summary                                                   | IN COMPLIANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



| Approbado por (nombre / cargo y firma): Approved by (name / position & signature) | A. Llamas<br>RF Lab. Manager |
|-----------------------------------------------------------------------------------|------------------------------|
| Fecha de realización:  Date of issue                                              | 2015-11-23                   |
| Formato de informe No:  Report template No                                        | FDT08_17                     |



## Index

| Competences and guarantees   | ∠ |
|------------------------------|---|
| General conditions           | ∠ |
| Uncertainty                  |   |
| Usage of samples             |   |
| Test sample description      |   |
| Identification of the client | 5 |
| Testing period               | 5 |
| Environmental conditions     | 5 |
| Remarks and comments         | 6 |
| Testing verdicts             | 7 |
| Appendix A – Test result     |   |



### **Competences and guarantees**

AT4 wireless is a testing laboratory accredited by the National Accreditation Body (ENAC -Entidad Nacional de Acreditación), to perform the tests indicated in the Certificate No. 51/LE 147.

AT4 wireless is a laboratory with a measurement facility in compliance with the requirements of Section 2.948 of the FCC rules and has been added to the list of facilities whose measurements data will be accepted in conjuction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Registration Number: 720267.

AT4 wireless is a laboratory with a measurement site in compliance with the requirements of RSS 212, Issue 1 (Provisional) and has been added to the list of filed sites of the Canadian Certification and Engineering Bureau. Reference File Number: IC 4621A-1.

In order to assure the traceability to other national and international laboratories, AT4 wireless has a calibration and maintenance program for its measurement equipment.

AT4 wireless guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at AT4 wireless at the time of performance of the test.

AT4 wireless is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

**IMPORTANT:** No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of AT4 wireless.

#### General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of AT4 wireless.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of AT4 wireless and the Accreditation Bodies.

### **Uncertainty**

Uncertainty (factor k=2) was calculated according to the AT4 wireless internal document PODT000.

### Usage of samples

Samples undergoing test have been selected by: the client

Sample S/01 is composed of the following elements:

| Control Nº | Description                                 | Model     | Serial Nº   | Date of reception |
|------------|---------------------------------------------|-----------|-------------|-------------------|
| 47081C/017 | Wellness ring with integral antenna (GB 11) | ŌURA ring | XQT54360770 | 2015-10-29        |

1. Sample S/01 has undergone following test(s).

All radiated tests indicated in appendix A.



#### Sample S/02 is composed of the following elements:

| Control Nº | Description                          | Model     | Serial Nº   | Date of reception |
|------------|--------------------------------------|-----------|-------------|-------------------|
| 47081C/003 | Wellness ring with antenna connector | ŌURA ring | XP653661104 | 2015-09-28        |
| 47081C/007 | Interface board                      |           |             | 2015-09-28        |

1. Sample S/02 has undergone following test(s).

All conducted tests indicated in appendix A.

### **Test sample description**

The test sample consists of a Wellness ring.

ŌURA is a revolutionary wellness ring and app, designed to help user gets more restful sleep and performs better. It enables user to learn how the lifestyle choices affect user's sleep, and how the quality of the sleep affects user's ability to perform.

The ŌURA ring can automatically tell when user is sleeping. When user goes to sleep, the ŌURA ring analyzes the quality of the rest and recovery by measuring the heart rate (optically), respiration rate, body temperature, and movement. While user is awake, it monitors the duration and intensity of the activities, and the time user spends sitting.

The ŌURA app integrates and visualizes this data to identify patterns between the sleep quality and daily activities. By understanding how well user slept and recharged, it can determine the readiness to perform and help user adjust the intensity and duration of the day's activities. It can also uncover actionable insights for changes to the daily activities that can help user sleep better.

#### **Identification of the client**

JOUZEN OY

Elektroniikkatie 3, 90590 Oulu, Finland

### **Testing period**

The performed test started on 2015-10-08 and finished on 2015-11-09.

The tests have been performed at AT4 wireless.

#### **Environmental conditions**

In the control chamber, the following limits were not exceeded during the test:

| Temperature                   | Min. = 15 °C<br>Max. = 35 °C |
|-------------------------------|------------------------------|
| Relative humidity             | Min. = 20 %<br>Max. = 75 %   |
| Shielding effectiveness       | > 100 dB                     |
| <b>Electric insulation</b>    | $> 10 \text{ k}\Omega$       |
| Reference resistance to earth | < 1 Ω                        |

2015-11-23



In the semianechoic chamber, the following limits were not exceeded during the test.

| Temperature                   | Min. = 15 °C<br>Max. = 35 °C                                                                |
|-------------------------------|---------------------------------------------------------------------------------------------|
| Relative humidity             | Min. = 20 %<br>Max. = 75 %                                                                  |
| Air pressure                  | Min. = 860 mbar<br>Max. = 1060 mbar                                                         |
| Shielding effectiveness       | > 100 dB                                                                                    |
| <b>Electric insulation</b>    | $> 10 \text{ k}\Omega$                                                                      |
| Reference resistance to earth | <1Ω                                                                                         |
| Normal site attenuation (NSA) | < ±4 dB at 10 m distance between item under test and receiver antenna, (30 MHz to 1000 MHz) |
| Field homogeneity             | More than 75% of illuminated surface is between 0 and 6 dB (26 MHz to 1000 MHz).            |

In the chamber for conducted measurements, the following limits were not exceeded during the test:

| Temperature                   | Min. = 15 °C<br>Max. = 35 °C        |
|-------------------------------|-------------------------------------|
| Relative humidity             | Min. = 20 %<br>Max. = 75 %          |
| Air pressure                  | Min. = 860 mbar<br>Max. = 1060 mbar |
| Shielding effectiveness       | > 100 dB                            |
| <b>Electric insulation</b>    | $> 10 \text{ k}\Omega$              |
| Reference resistance to earth | < 1 Ω                               |

### **Remarks and comments**

#### 1: Used instrumentation:

#### **Conducted Measurements**

|    |                                | Last Cal. date | Cal. due date |
|----|--------------------------------|----------------|---------------|
| 1. | EMI Test Receiver R&S ESU 40   | 2014/02        | 2016/02       |
| 2. | DC power supply R&S NGPE 40/40 | 2014/11        | 2017/11       |



#### Radiated Measurements

|    |                                                                     | Last Cal. date | Cal. due date |
|----|---------------------------------------------------------------------|----------------|---------------|
| 1. | Semianechoic Absorber Lined Chamber ETS FACT3 200STP                | N.A.           | N.A.          |
| 2. | BiconicalLog antenna ETS LINDGREN 3142E                             | 2014/03        | 2017/03       |
| 3. | Multi Device Controller EMCO 2090                                   | N.A.           | N.A.          |
| 4. | Double-ridge Guide Horn antenna 1-18 GHz<br>SCHWARZBECK BBHA 9120 D | 2013/11        | 2016/11       |
| 5. | Broadband Horn antenna 18-40 GHz<br>SCHWARZBECK BBHA 9170           | 2014/03        | 2017/03       |
| 6. | EMI Test Receiver R&S ESU 40                                        | 2014/02        | 2016/02       |
| 7. | RF pre-amplifier 10 MHz-6 GHz<br>SCHWARZBECK BBV9743                | 2015/03        | 2016/03       |
| 8. | RF pre-amplifier 1-18 GHz Bonn Elektronik<br>BLMA 0118-3A           | 2015/05        | 2016/05       |
| 9. | RF pre-amplifier 18-40 GHz BONN<br>ELEKTRONIK BLMA 1840-1M          | 2014/02        | 2016/02       |

2: The model tested has four possible variants depending on Ring size and Antenna version. This test report includes the results of the worst case measured in a preliminary scan of the four variants.

### **Testing verdicts**

| Not applicable: | N/A |
|-----------------|-----|
| Pass:           | P   |
| Fail:           | F   |
| Not measured:   | N/M |

| FCC PART 15 PARAGRAPH / RSS-247                     |                                              | VERDICT |                |   |    |
|-----------------------------------------------------|----------------------------------------------|---------|----------------|---|----|
|                                                     |                                              | NA      | P              | F | NM |
| Section 15.247 Subclause (a) (2) / RSS-247 5.2. (1) | 6 dB Bandwidth                               |         | P              |   |    |
| Section 15.247 Subclause (b) / RSS-247 5.4. (4)     | Maximum output power and antenna gain        |         | P              |   |    |
| Section 15.247 Subclause (d) / RSS-247 5.5          | Emission limitations conducted (Transmitter) |         | P              |   |    |
| Section 15.247 Subclause (d) / RSS-247 5.5          | Band-edge emissions compliance (Transmitter) | P       |                |   |    |
| Section 15.247 Subclause (e) / RSS-247 5.2. (2)     | Power spectral density                       |         | P              |   |    |
| Section 15.247 Subclause (d) / RSS-247 5.5          | Emission limitations radiated (Transmitter)  |         | P <sup>2</sup> |   |    |

2: See section "Remarks and comments".

AT4 wireless, S.A.U.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España www.at4wireless.com · C.I.F. A29 507 456



# Appendix A – Test result



#### **INDEX**

| TEST CONDITIONS                                                                          | 10 |
|------------------------------------------------------------------------------------------|----|
| Occupied Bandwidth                                                                       | 12 |
| Section 15.247 Subclause (a) (2) / RSS-247 5.2. (1). 6 dB Bandwidth                      | 15 |
| Section 15.247 Subclause (b) / RSS-247 5.4. (4). Maximum output power and antenna gain   | 18 |
| Section 15.247 Subclause (d) / RSS-247 5.5. Emission limitations conducted (Transmitter) | 21 |
| Section 15.247 Subclause (d) / RSS-247 5.5. Band-edge emissions compliance (Transmitter) | 24 |
| Section 15.247 Subclause (e) / RSS-247 5.2. (2) Power spectral density                   | 26 |
| Section 15.247 Subclause (d) / RSS-247 5.5. Emission limitations radiated (Transmitter)  | 29 |



#### **TEST CONDITIONS**

Power supply (V):

 $V_{nominal} = 3.8 \text{ Vdc}$ 

Type of power supply = DC voltage from rechargeable battery.

Type of antenna: Integral antenna

Maximum declared antenna gain: 0.2 dBi

#### **TEST FREQUENCIES:**

Lowest channel: 2402 MHz Middle channel: 2440 MHz Highest channel: 2480 MHz

#### CONDUCTED MEASUREMENTS

The equipment under test was set up in a shielded room and it is directly connected to the spectrum analyzer.



#### RADIATED MEASUREMENTS

All radiated tests were performed in a semi-anechoic chamber. The measurement antenna is situated at a distance of 3 m for the frequency range 30 MHz-1000 MHz (30 MHz-1000 MHz Bilog antenna) and at a distance of 1m for the frequency range 1 GHz-25 GHz (1 GHz-18 GHz Double ridge horn antenna and 18 GHz-40 GHz horn antenna).

For radiated emissions in the range 1 GHz-25 GHz that is performed at a distance closer than the specified distance, an inverse proportionality factor of 20 dB per decade is used to normalize the measured data for determining compliance.

The equipment under test was set up on a non-conductive (wooden) platform one meter above the ground plane and the situation and orientation was varied to find the maximum radiated emission.

It was also rotated 360° and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission.

Measurements were made in both horizontal and vertical planes of polarization.



#### Radiated measurements setup f < 1 GHz



Shielded Control Room For Radiated Measurements

#### Radiated measurements setup f > 1 GHz





### **Occupied Bandwidth**

#### **RESULTS**

(see next plots).

|                               | Lowest frequency | Middle frequency | Highest frequency |
|-------------------------------|------------------|------------------|-------------------|
|                               | 2402 MHz         | 2440 MHz         | 2480 MHz          |
| 99% bandwidth (MHz)           | 1.038            | 1.038            | 1.041             |
| -26 dBc bandwidth (MHz)       | 1.248            | 1.248            | 1.254             |
| Measurement uncertainty (kHz) |                  | <± 1.80          |                   |



#### Lowest Channel



#### Middle Channel





#### Highest channel





### Section 15.247 Subclause (a) (2) / RSS-247 5.2. (1). 6 dB Bandwidth

#### **SPECIFICATION**

The minimum 6 dB bandwidth shall be at least 500 kHz.

#### **RESULTS**

6 dB Bandwidth (see next plots).

|                               | Lowest frequency | Middle frequency | Highest frequency |
|-------------------------------|------------------|------------------|-------------------|
|                               | 2402 MHz         | 2440 MHz         | 2480 MHz          |
| 6 dB Spectrum bandwidth (kHz) | 716.0            | 718.0            | 730.0             |
| Measurement uncertainty (kHz) |                  | <±2.0            |                   |

Verdict: PASS



#### 6 dB BANDWIDTH.

#### Lowest Channel



#### Middle Channel



47081RRF.002 Page 16 of 39 2015-11-23



#### Highest Channel





#### Section 15.247 Subclause (b) / RSS-247 5.4. (4). Maximum output power and antenna gain

#### **SPECIFICATION**

For systems using digital modulation in the 2400-2483.5 MHz band: 1 watt (30 dBm). The e.i.r.p. shall not exceed 4 W (36 dBm) (Canada).

#### **RESULTS**

The maximum peak conducted output power was measured using the method according to point 9.1.1. of Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 558074 D01 DTS Meas Guidance v03r03 dated 06/09/2015.

The EIRP power (dBm) is calculated by adding the declared maximum antenna gain to the measured conducted power.

MAXIMUM OUTPUT POWER. See next plots.

Maximum declared antenna gain: 0.2 dBi.

|                               | Lowest frequency | Middle frequency | Highest frequency |
|-------------------------------|------------------|------------------|-------------------|
|                               | 2402 MHz         | 2440 MHz         | 2480 MHz          |
| Maximum conducted power (dBm) | 2.71             | 2.26             | 1.74              |
| Maximum EIRP power (dBm)      | 2.91             | 2.46             | 1.94              |
| Measurement uncertainty (dB)  |                  | <±1.20           |                   |

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

Verdict: PASS



#### CONDUCTED PEAK POWER.





47081RRF.002 Page 19 of 39 2015-11-23

#### AT4 wireless, S.A.U.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España www.at4wireless.com · C.I.F. A29 507 456



### Highest frequency





#### Section 15.247 Subclause (d) / RSS-247 5.5. Emission limitations conducted (Transmitter)

#### **SPECIFICATION**

In any 100 kHz bandwidth outside the frequency band in which the digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required shall be 30 dB instead of 20 dB.

#### **RESULTS:**

Reference Level Measurement

|                                   | Lowest frequency | Middle frequency | Highest frequency |
|-----------------------------------|------------------|------------------|-------------------|
|                                   | 2402 MHz         | 2440 MHz         | 2480 MHz          |
| Reference Level Measurement (dBm) | 2.64             | 2.16             | 1.60              |
| Measurement uncertainty (dB)      |                  | <±1.20           |                   |

Lowest frequency 2402 MHz

All peaks are more than 20 dB below the limit.

Middle frequency 2440 MHz

All peaks are more than 20 dB below the limit.

Highest frequency 2480 MHz

All peaks are more than 20 dB below the limit.

Verdict: PASS







Note: The peak shown in the plot above the limit is the carrier frequency.

#### Middle frequency



Page 22 of 39

Note: The peak shown in the plot above the limit is the carrier frequency.







Note: The peak shown in the plot above the limit is the carrier frequency.

www.at4wireless.com · C.I.F. A29 507 456



#### Section 15.247 Subclause (d) / RSS-247 5.5. Band-edge emissions compliance (Transmitter)

#### **SPECIFICATION**

In any 100 kHz bandwidth outside the frequency band in which the digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required shall be 30 dB instead of 20 dB.

#### **RESULTS:**

#### 1. LOW FREQUENCY SECTION. CONDUCTED.

See next plot.



Verdict: PASS



#### 2. HIGH FREQUENCY SECTION. CONDUCTED.

See next plot.



Verdict: PASS

2015-11-23



#### Section 15.247 Subclause (e) / RSS-247 5.2. (2) Power spectral density

#### **SPECIFICATION**

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

#### **RESULTS**

The maximum power spectral density level in the fundamental emission was measured using the method PKPSD (Peak PSD) according to point 10.2. of Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 558074 D01 DTS Meas Guidance v03r03 dated 06/09/2015.

Power spectral density (see next plots).

|                              | Lowest frequency | Middle frequency | Highest frequency |
|------------------------------|------------------|------------------|-------------------|
|                              | 2402 MHz         | 2440 MHz         | 2480 MHz          |
| Power spectral density (dBm) | 2.65             | 2.18             | 1.60              |
| Measurement uncertainty (dB) | <±1.20           |                  |                   |



#### Power spectral density.

#### Lowest Channel



#### Middle Channel



#### AT4 wireless, S.A.U.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España www.at4wireless.com · C.I.F. A29 507 456



### Highest Channel



2015-11-23



#### Section 15.247 Subclause (d) / RSS-247 5.5. Emission limitations radiated (Transmitter)

#### **SPECIFICATION**

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)) / RSS-Gen 8.9.:

| Frequency Range (MHz) | Field strength (µV/m) | Field strength (dBµV/m) | Measurement distance (m) |
|-----------------------|-----------------------|-------------------------|--------------------------|
| 0.009-0.490           | 2400/F(kHz)           | -                       | 300                      |
| 0.490-1.705           | 24000/F(kHz)          | -                       | 30                       |
| 1.705 - 30.0          | 30                    | -                       | 30                       |
| 30 - 88               | 100                   | 40                      | 3                        |
| 88 - 216              | 150                   | 43.5                    | 3                        |
| 216 - 960             | 200                   | 46                      | 3                        |
| 960 - 25000           | 500                   | 54                      | 3                        |

The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

#### **RESULTS:**

The situation and orientation was varied to find the maximum radiated emission. It was also rotated 360° and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission.

Measurements were made in both horizontal and vertical planes of polarization.

All tests were performed in a semi-anechoic chamber at a distance of 3 m for the frequency range 30 MHz-1000 MHz and at distance of 1m for the frequency range 1 GHz-25 GHz.

The field strength is calculated by adding correction factor to the measured level from the spectrum analyzer. This correction factor includes antenna factor, cable loss and pre-amplifiers gain.

Preliminary scan of the four versions was performed to determine the worst case of Radiated emissions. Thus, the worst case has been the variant: GB 11.



#### Frequency range 30 MHz-1000 MHz.

The spurious signals detected do not depend on the operating channel.

All peaks are more than 20 dB below the limit.

#### Frequency range 1 GHz-25 GHz

The results in the next tables show the maximum measured levels in the 1-25 GHz range including the restricted bands 2.31-2.39 GHz and 2.4835-2.5 GHz (see next plots).

Spurious signals with peak levels above the average limit (54  $dB\mu V/m$  at 3 m) are measured with average detector for checking compliance with the average limit.

#### 1. CHANNEL: LOWEST (2402 MHz).

| Spurious frequency (GHz) | Polarization | Detector | Emission Level (dBµV/m) | Measurement<br>Uncertainty (dB) |
|--------------------------|--------------|----------|-------------------------|---------------------------------|
| 2.33414                  | V            | Peak     | 53.98                   | ± 4.69                          |
| 2.44796                  | V            | Peak     | 52.21                   | ± 4.69                          |
| 2.49333                  | V            | Peak     | 47.87                   | ± 4.69                          |
| 4.80425                  | Н            | Peak     | 35.57                   | ± 4.69                          |

#### 2. CHANNEL: MIDDLE (2440 MHz).

| Spurious frequency (GHz) | Polarization | Detector | Emission Level (dBµV/m) | Measurement<br>Uncertainty (dB) |
|--------------------------|--------------|----------|-------------------------|---------------------------------|
| 2.32831                  | V            | Peak     | 53.73                   | ± 4.69                          |
| 2.41603                  | V            | Peak     | 52.17                   | ± 4.69                          |
| 2.48902                  | V            | Peak     | 47.88                   | ± 4.69                          |
| 4.87975                  | V            | Peak     | 38.56                   | ± 4.69                          |



#### 3. CHANNEL: HIGHEST (2480 MHz).

| Spurious frequency (GHz) | Polarization | Detector | Emission Level (dBµV/m) | Measurement<br>Uncertainty (dB) |
|--------------------------|--------------|----------|-------------------------|---------------------------------|
| 2.36648                  | V            | Peak     | 47.04                   | ± 4.69                          |
| 2.44750                  | V            | Peak     | 50.99                   | ± 4.69                          |
| 2.49516                  | Н            | Peak     | 49.51                   | ± 4.69                          |
| 2.58290                  | V            | Peak     | 50.90                   | ± 4.69                          |
| 4.95975                  | V            | Peak     | 40.03                   | ± 4.69                          |

Verdict: PASS



#### FREQUENCY RANGE 30 MHz-1000 MHz.



(This plot is valid for all three channels).



## FREQUENCY RANGE 1 GHz to 3 GHz. **CHANNEL: Lowest (2402 MHz).**



Note: The peak shown in the plot above the limit is the carrier frequency.

#### CHANNEL: Middle (2440 MHz).



Note: The peak shown in the plot above the limit is the carrier frequency.



### CHANNEL: Highest (2480 MHz).



Note: The peak shown in the plot above the limit is the carrier frequency.

FREQUENCY RANGE 3 GHz to 18 GHz.

#### CHANNEL: Lowest (2402 MHz).





#### CHANNEL: Middle (2440 MHz).



#### CHANNEL: Highest (2480 MHz).





#### FREQUENCY RANGE 18 GHz to 26 GHz.



(This plot is valid for all three channels).



#### FREQUENCY RANGE 2.31 GHz to 2.39 GHz. (RESTRICTED BAND)

#### CHANNEL: Lowest (2402 MHz).



#### CHANNEL: Middle (2440 MHz).





#### CHANNEL: Highest (2480 MHz).



#### FREQUENCY RANGE 2.4835 GHz to 2.5 GHz. (RESTRICTED BAND)

#### CHANNEL: Lowest (2402 MHz).



Page 38 of 39 2015-11-23



#### CHANNEL: Middle (2440 MHz).



### CHANNEL: Highest (2480 MHz).



Page 39 of 39 2015-11-23