מסדי נתונים

תרגול 3

SQL לעומת Relational Algebra

RA	SQI
σ select	Where
$oldsymbol{\pi}$ projection	Select
ρ	As
U union	union
∩ intersection	IN
difference	NOT IN
× cartesian product	Outer join
\bowtie	Inner Join

$$R imes S := \{(r_1, r_2, \ldots, r_n, s_1, s_2, \ldots, s_m) | (r_1, r_2, \ldots, r_n) \in R, (s_1, s_2, \ldots, s_m) \in S \}$$

(natural join) צרוף טבעי

$$R \bowtie S =$$

מוגדר ע"י מכפלה, בחירה והיטל:

$$\Pi_{\text{חזרות}}$$
 ללא חזרות R,S ללא תכונות משותפות ($R \times S$)

- R, S אפשר להפעיל בין כל שתי רלציות ullet
- Sו-Sו ו-S, בסכמה של התוצאה מופיעות כל התכונות של הסכמות של Sור אבל פעם אחת בלבד
- רשומה כלשהי מ-R (באותן R-יות שמסכימות עם רשומה כלשהי מ-R (באותן R-יות שישנן ב-R) ועם רשומה כלשהי מ-R (כנ"ל)

natural join

R

idNo astName		firstName
35712589	Smith	Jane
37684198	Cohen	Eviatar

S

idNo	street	city
35712589	35 Elm	Chicago
37684198	17 Herzl	Haifa

 $S\bowtie R$

idNo	lastName	firstName	street	city
35712589	Smith	Jane	35 Elm	Chicago
37684198	Cohen	Eviatar	17 Herzl	Haifa

natural join

דוגמא נוספת:

ספק

שם ספק	מס' ספק
אופיס דיפו	1
גרפיטי	2

פריט

מס' ספק	שם פריט	מס' פריט
1	עט כדורי	2
1	עט נובע	3

פריט 🔀 ספק

שם ספק	מס' ספק	ם פריט	וס' פריט ש	מ
אופיס דיפו	1	ט כדורי	ענ	2
אופיס דיפו	1	ט נובע	ענ	3

Division ÷

(S)Completed

Student	Task
Fred	Database1
Fred	Database2
Fred	Compiler1
Eugene	Database1
Eugene	Compiler1
Sarah	Database1
Sarah	Database2

(T)DBProject

Task
Database1
Database2

(R)Completed ÷ DBProject

Student

Fred

Sarah

הגדרה פורמלית:

 $R \div S = \{ t[a_1,...,a_n] : t \in R \land \forall s \in S ((t[a_1,...,a_n] \cup s) \in R) \}$

.T×R \subseteq S היא הקבוצה המקסימלית עבורה R במילים אחרות:

נניח את מסד הנתונים הבא:

Person (name, age, gender)

name is a key

Frequents (name, pizzeria)

(name, pizzeria) is a key

Eats (name, pizza)

(name, pizza) is a key

Serves (pizzeria, pizza, price)

(pizzeria, pizza) is a key

מצא מסעדות המבוקרות לפחות ע"י מבקר אחד בן
 פחות מ18

$$\pi_{pizzeria}(\sigma_{age < 18}(Person) \bowtie Frequents)$$

מצאו את שמות כל הנשים שאכלו פיצה זיתים או
 נפוליטנה (או שניהם)

$$\pi_{name} \Big(\sigma_{gender=\text{'female'} \, \land \, (pizza=\text{'mushroom'} \, \lor \, pizza=\text{'pepperoni'})} \big(Person \bowtie Eats \big) \Big)$$

מה משמעות הביטוי הבא:

$$\pi_{name}(\sigma_{gender=\text{'female'}, \land pizza=\text{'mushroom'}}(Person \bowtie Eats)) \cap \pi_{name}(\sigma_{gender=\text{'female'}, \land pizza=\text{'pepperoni'}}(Person \bowtie Eats))$$

תשובה: שמות כל הנשים שאכלו גם pepperoni וגם

מה משמעות הביטוי הבא:

$$\begin{pmatrix} \pi_{pizzeria}(\sigma_{gender='female'}(Person) \bowtie Frequents) & - \\ \pi_{pizzeria}(\sigma_{gender='male'}(Person) \bowtie Frequents) & - \\ \end{pmatrix} \cup \begin{pmatrix} \pi_{pizzeria}(\sigma_{gender='male'}(Person) \bowtie Frequents) & - \\ \pi_{pizzeria}(\sigma_{gender='female'}(Person) \bowtie Frequents) & - \\ \end{pmatrix}$$

- תשובה:
- כל הפיצריות שבאים לבקר אותם או רק נשים או רק
 גררים

?מה משמעות הביטוי הזה

$$\pi_{name}(Person) - \pi_{name}(\pi_{name,pizzeria}(Eats \bowtie Serves) - Frequents)$$

- תשובה:
- מוצא את כל האנשים שהולכים לכל הפיצריות שמגישים בהם לפחות פיצה אחת שהם אוהבים.

• נסתכל במסד הנתונים הזה:

- Serves(<u>S Name</u>, <u>L Num</u>, <u>Direction</u>, Km)
- Arrives(<u>T Num</u>, <u>S Name</u>, <u>L Num</u>, <u>Direction</u>, Platform,
 D_Time ,A_Time)
- Station(<u>S Name</u>, Height)
- Station_Type(<u>S_Name</u>, <u>S_Type</u>)

דוגמאות לשאילתות

- ?תחנות המשרתות יותר מקו אחד
- נרצה לבחון שתי שורות מטבלת Serves בו זמנית. השאילתה:
- $\pi_{S_Name}(\sigma_{(S_Name=S)\land((L_Num\ne L)\lor(Direction\ne D))}(\rho_{S_Name\rightarrow S, L_Num\rightarrow L, Direction\rightarrow D, Km\rightarrow K}(Serves) \times Serves))$
 - ?מה אם לא נרצה להחשיב כיוונים שונים של אותו קו
- $\pi_{S_Name}(\sigma_{(S_Name=S)\land (L_Num\ne L)}(\rho_{S_Name \rightarrow S, L_Num \rightarrow L, Direction \rightarrow D, Km \rightarrow K})$ (Serves) × Serves))
 - ? כיצד נמצא תחנות המשרתות קו אחד (במספר כיוונים) בדיוק
- $\pi_{S_Name}(Serves) \setminus \pi_{S_Name}(\sigma_{(S_Name=S) \land (L_Num \neq L)}(\rho_{S_Name \rightarrow S, L_Num \rightarrow L, Direction \rightarrow D, Km \rightarrow K}(Serves) \times Serves))$

דוגמאות לשאילתות

- מהו שם התחנה הגבוהה ביותר?
- יותר קל למצוא את התחנות שאינן הגבוהות ביותר:
- R = $\pi_{S_Name}(\sigma_{(Height < H)}(Station \times \rho_{S_Name \rightarrow N, Height \rightarrow H}Station))$
 - עתה קל להשלים את השאילתה: •
- π_{S_Name} (Station) \ R

דוגמאות לשימוש בחילוק

- ? אלו רכבות (לפי מספר) מגיעות לכל התחנות •
- $\pi_{\text{T_Num,S_Name}}(\text{Arrives}) \div \pi_{\text{S_Name}}(\text{Station})$
 - ומה אם יש תחנות שלא נמצאות על אף קו פעיל?איך נמנע מלהתחשב בהן?
- $\pi_{\text{T_Num,S_Name}}(\text{Arrives}) \div \pi_{\text{S_Name}}(\text{Serves})$
 - ומה אם יש תחנות הנמצאות על קו פעילאולם אף רכבת אינה מבצעת עצירה בהן?
- $\pi_{\text{T Num,S Name}}(\text{Arrives}) \div \pi_{\text{S Name}}(\text{Arrives})$

דוגמאות נוספות

- ? אלו תחנות נמצאות על הקו 1-דרום
- : המידע הנ"ל נמצא כולו בטבלת Serves. השאילתה
- $\pi_{S_{Name}}(\sigma_{(L_{Num=1})\land(Direction="south")}(Serves))$
 - ? לאלו קווים יש תחנות מתחת לפני הים
 - כאן נדרש לצרף את Serves ל-Station. השאילתה המלאה:
- $\pi_{L_{Num,Direction}}(\sigma_{Height<0}(Station \bowtie Serves))$

דוגמא נוספת - גרף

- נתונות הרלציות הבאות המתארות גרף מכוון חסר לולאות עצמיות.
 - Node(id, color) •
 - id –מייצג צמתים בגרף המזהה הייחודי של צומת color -והצבע שלו
 - Edge(source, target) •
 - source מייצג קשת מכוונת בין צומת בעל מזהה ייחודי target – וצומת בעל מזהה ייחודי
 - הניחו כי כל הצמתים בגרף מופיעים בטבלה Node

גרף

שורש צבעוני" הוא צומת שיש ממנו קשת לצמתים בכל הצבעים שקיימים בגרף. כתבו שאילתת RA המחזירה את מזהי הצמתים שהם שורשים צבעוניים, ואת הצבע של כל אחד מהם.

Source Edge 1 2 1 3 1 4 2 1 2 3

Id	Color
1	R
2	G
3	В
4	r

• דוגמא:

גרף

• תשובה:

R1 <-
$$Edge \triangleright \triangleleft Node_{(id/target)}$$

R2 <-
$$\pi_{source}$$
 ($\pi_{source_colorR1} \div \pi_{color}Node$)

R3 <-
$$\pi_{id,color} \left((R2_{(source_iid)} \rhd \lhd Node) \right)$$

R1

Source	Target	color
1	2	G
1	3	В
1	4	R
2	1	R
2	3	b

R2	R3	
Source	id	Colo
1	1	