Association rules Part 1

Mohammed Brahimi & Sami Belkacem

Association Rule Mining

• Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Juice, Eggs
3	Milk, Diaper, Juice, Coke
4	Bread, Milk, Diaper, Juice
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} \rightarrow {Juice},
{Milk, Bread} \rightarrow {Eggs, Coke},
{Juice, Bread} \rightarrow {Milk},
```

Implication means co-occurrence, not causality!

Binary representation

- Market basket data can be represented in a binary format.
- A row corresponds to a transaction and a column corresponds to an item.
- An item is one if the item is present in a transaction and zero otherwise.
- An item is represented using a binary asymmetric variable.

TID	Bread	Milk	Diapers	Juice	Eggs	Cola
1	1	1	0	0	0	0
2	1	0	1	1	1	0
3	0	1	1	1	0	1
4	1	1	1	1	0	0
5	1	1	1	0	0	1

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

- Frequency of occurrence of an itemset
- E.g. σ ({Milk, Bread, Diaper}) = 2

Support (s)

- Fraction of transactions that contain an itemset
- E.g. **s**({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Juice, Eggs
3	Milk, Diaper, Juice, Coke
4	Bread, Milk, Diaper, Juice
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form
 X → Y, where X and Y are itemsets
- Example:{Milk, Diaper} → {Juice}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Juice, Eggs
3	Milk, Diaper, Juice, Coke
4	Bread, Milk, Diaper, Juice
5	Bread, Milk, Diaper, Coke

Rule Evaluation Metrics

• Support (s)

Fraction of transactions that contain both **X** and **Y**

• Confidence (c)

Measures how often items in **Y** appear in transactions that contain **X**

Example:

$$\{Milk, Diaper\} \Rightarrow \{Juice\}$$

$$s = \frac{\sigma(\text{Milk, Diaper, }Juice)}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper}, Juice)}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
 - support computes <u>frequency</u> of a rule and confidence its <u>reliability</u>
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the *minsup* and *minconf* thresholds
 - ⇒ Computationally prohibitive!

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \left[\begin{pmatrix} d \\ k \end{pmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{pmatrix} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R=602 rules

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Juice, Eggs
3	Milk, Diaper, Juice, Coke
4	Bread, Milk, Diaper, Juice
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Juice} (s=0.4, c=0.67)
{Milk, Juice} \rightarrow {Diaper} (s=0.4, c=1.0)
{Diaper, Juice} \rightarrow {Milk} (s=0.4, c=0.67)
{Juice} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} \rightarrow {Milk, Juice} (s=0.4, c=0.5)
{Milk} \rightarrow {Diaper, Juice} (s=0.4, c=0.5)
```

Observations:

- All the rules are binary partitions of the same itemset: {Milk, Diaper, Juice}
- Rules originating from the same itemset have identical support but can have different confidence.
- If the itemset is infrequent, then all six candidate rules can be pruned immediately without having to compute their confidence values.

Mining Association Rules

Two-step approach:

1. Frequent Itemset Generation

First generate all itemsets whose support ≥ *minsup*

2. Rule Generation

Then generate high **confidence** rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation is still computationally expensive

Frequent Itemset Generation: Lattice with 5 items

Frequent Itemset Generation

Brute-force approach:

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

- Match each transaction against every candidate in the lattice
- N: # of transactions, M: # of candidate itemsets, w: maximum transaction width
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: **M**=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - E.g. a hash structure
 - No need to match every candidate against every transaction

Reducing Number of Candidates

Apriori principle:

If an itemset is frequent, then all of its subsets must also be frequent

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Apriori principle holds due to the following property of the support measure:
 - Support of an itemset never exceeds the support of its subsets
- If a subset of an itemset is infrequent, then this itemset is infrequent
- If an itemset is infrequent, then all itemsets that include this infrequent itemset should be infrequent

TID	Items
1	Bread, Milk
2	Juice, Bread, Diaper, Eggs
3	Juice, Coke, Diaper, Milk
4	Juice, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Juice	3
Diaper	4
Eggs	1

Minimum Support = 3

If every subset is considered,

$${}^6C_1 + {}^6C_2 + {}^6C_3$$

 $6 + 15 + 20 = 41$
With support-based pruning,
 $6 + 6 + 4 = 16$

TID	Items
1	Bread, Milk
2	Juice, Bread, Diaper, Eggs
3	Juice, Coke, Diaper, Milk
4	Juice, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Juice	3
Diaper	4
Eggs	1

Minimum Support = 3

If every subset is considered,

$${}^6C_1 + {}^6C_2 + {}^6C_3$$

 $6 + 15 + 20 = 41$
With support-based pruning,
 $6 + 6 + 4 = 16$

Item	Count
Bread	4
Coke	2
Milk	4
Juice	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset
{Bread,Milk}
{Juice, Bread}
{Bread,Diaper}
{Juice,Milk}
{Diaper,Milk}
{Juice,Diaper}

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

If every subset is considered, ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 4 = 16

Item	Count
Bread	4
Coke	2
Milk	4
Juice	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Juice, Bread}	2
{Bread,Diaper}	3
{Juice,Milk}	2
{Diaper,Milk}	3
{Juice,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

If every subset is considered, ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3}$ 6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 4 = 16

Item	Count
Bread	4
Coke	2
Milk	4
Juice	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Juice, Bread}	2
{Bread,Diaper}	3
{Juice,Milk}	2
{Diaper,Milk}	3
{Juice,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Juice	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Juice, Bread}	2
{Bread,Diaper}	3
{Juice,Milk}	2
{Diaper,Milk}	3
{Juice,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

Itemset	Count
{Juice, Diaper, Milk}	2
{Juice, Bread, Diaper}	2
{Bread, Diaper, Milk}	2
{Juice, Bread, Milk}	1

Item	Count
Bread	4
Coke	2
Milk	4
Juice	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Juice, Bread}	2
{Bread,Diaper}	3
{Juice,Milk}	2
{Diaper,Milk}	3
{Juice,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

Itemset	Count
{Juice, Diaper, Milk}	2
{Juice, Bread, Diaper}	2
{Bread, Diaper, Milk}	2
{Juice, Bread, Milk}	1

Apriori Algorithm

F_k: frequent k-itemsets

L_k: candidate k-itemsets

- Let k=1
- Generate F₁ = {frequent 1-itemsets}
- Repeat until F_k is empty
 - Candidate Generation: Generate L_{k+1} from F_k
 - Candidate Pruning: Prune candidate itemsets in L_{k+1} containing subsets of length k that are infrequent
 - Support Counting: Count the support of each candidate in L_{k+1} by scanning the DB
 - Candidate Elimination: Eliminate candidates in L_{k+1} that are infrequent, leaving only those that are frequent => F_{k+1}