Orders and Euler's Theorem

Friday, March 27

Last time: We conjectured that if p is prime, then for any a < p we have $a^{p-1} \equiv 1 \pmod{p}$. This led to a discussion of the **order** of elements. Here is a summary of what we have so far:

- For any finite group G and any element $g \in G$, we say the **order** of g is the least k such that $a^k = e$ (the identity).
- We also noted that if $\operatorname{ord}(g) = k$ then g, g^2, g^3, \dots, g^k are distinct elements. Why is this?

- Since there are k distinct powers of g, we have that the cyclic subgroup generated by g, that is, $\langle g \rangle$ contains exactly k elements.
- Thus the order of the element g is equal to the order of the cyclic subgroup generated by g.
- But Lagrange's theorem tells us that the order of a subgroup must divide the order of the group.
- Thus the order of any element $g \in G$ must divide the order of G.

Now let's continue where we left off.

• Suppose $\operatorname{ord}(g) = k$. What is g^{nk} for any n?

• Now consider the group U(p) where p is prime. This is the group of *units* mod p, which means $\{1, 2, 3, \ldots, p-1\}$ (which is a consequence of Bezout's lemma).

- Thus in U(p) we have $g^{p-1} = 1$ for all $g \in U(p)$.
- Therefore $a^{p-1} \equiv 1 \pmod{p}$. This result is called *Fermat's Little Theorem*.

This is known as Euler's Theorem.

For Euler's theorem to be useful, we need to understand how the φ function behaves.

- We know that $\varphi(p) = p 1$ for any prime p. We also will define $\varphi(1) = 1$ (because it will be useful to do so).
- The definition of $\varphi(n)$ is: the number of positive integers less than n that are relatively prime to n. Find $\varphi(n)$ by brute force for some non-prime values of n.
- In particular, find $\varphi(6)$, $\varphi(10)$, $\varphi(14)$, $\varphi(15)$, and $\varphi(21)$. Note that each of these is the product of two primes.
- $\varphi(4) = 2, \ \varphi(6) = 2, \ \varphi(8) =$