Factor models via Autoencoders

A clever way of using Neural Networks to solve a familiar but important problem in Finance was proposed by <u>Gu, Kelly, and Xiu, 2019</u> (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3335536).

It is an extension of the Factor Model framework of Finance, combined with the tools of dimensionality reduction (to find the factors) of Deep Learning: the Autoencoder.

You can find <u>code (https://github.com/stefan-jansen/machine-learning-for-trading/blob/main/20 autoencoders for conditional risk factors/06 conditional autoence for this model as part of the excellent book by <u>Stefan Jansen (https://github.com/stefan-jansen/machine-learning-for-trading/blob/main/20 autoencoders for conditional risk factors/06 conditional autoence</u></u>

trading/blob/main/20 autoencoders for conditional risk factors/06 conditional autoenc

- <u>Github (https://github.com/stefan-jansen/machine-learning-for-trading)</u>
- In order to run the code notebook, you first need to run a notebook for <u>data prepara</u> <u>jansen/machine-learning-for-</u>

trading/blob/main/20 autoencoders for conditional risk factors/05 conditional a

- This notebook relies on files created by notebooks from earlier chapters of
- So, if you want to run the code, you have a lot of preparatory work ahead of
- Try to take away the ideas and the coding

Factor Model review

We will begin with a quick review/introduction to Factor Models in Finance.

The universe of securities (e.g., equities) is often quite large

- several hundred (or thousands) of individual tickers
- denote the size by *n*

It is often the case that the returns of many securities can be explained

- as being the sum of influences of "common factors"
 - market index
 - industry indices
 - size, momentum

It is sometimes useful to approximate the return of a security

- as the dot product of
- ullet the sensitivity of the security to a number f of $common\ factors$
- the returns of the common factors

This is useful

- as a means of *dimensionality* reduction
 - lacktriangle we need timeseries of returns for only $f \leq n$ factors rather than all n securities
- as a means of understanding the behavior of two or more securities
 - as the sum of common influences
 - rather than completely idiosyncratic returns
 - Hedging, risk-management

First, some necessary notation:

- $\mathbf{r}_s^{(d)}$: Return of ticker s on day d.
- $\hat{\mathbf{r}}_s^{(d)}$: approximation of $\mathbf{r}_s^{(d)}$
- $n_{
 m tickers}$: large number of tickers
- $n_{\rm dates}$: number of dates
- ullet $n_{
 m factors}$: small number of factors: independent variables (features) in our approximation
- ullet Matrix ${f R}$ of ticker returns, indexed by date
 - $lacksquare \mathbf{R}: (n_{\mathrm{dates}} imes n_{\mathrm{tickers}})$
 - $lacksquare |\mathbf{R}^{(d)}| = n_{\mathrm{tickers}}$
 - $\circ \;\; {f R}^{(d)}$ is vector of returns for each of the $n_{
 m tickers}$ on date d
- ${f r}$ will denote a vector of single day returns: ${f R}^{(d)}$ for some date d

Notation summary

term	meaning		
s	ticker	_	
$n_{ m tickers}$	number of tickers	_	
d	date	_	
$n_{ m dates}$	number of dates	_	
$n_{ m chars}$	number of characteristics per ticker	-	
m	number of examples	_	
	$m=n_{ m dates}$	_	
i	index of example	_	
	There will be one example per date, so we use i and d interchangeably.	_	
$[\setminus \mathbf{X}^{\setminus \mathrm{ip}},$			
$\mathbf{R}^{ackslash\mathrm{ip}}]$	example i		
	\$	\X^\ip	= (\ntickers \times \nchars)\$
	\$	\R^\ip	= \ntickers\$
$ackslash \mathbf{X}_s^{(d)}$	vector of ticker s 's characteristics on day d		
	\$	\X^\dp_s	= \nchars\$

Note

The paper actually seeks to predict $\hat{\mathbf{r}}_s^{(d+1)}$ (forward return) rather than approximate the current return $\hat{\mathbf{r}}_s^{(d)}$.

We will present this as an approximation problem as opposed to a prediction problem for simplicity of presentation (i.e., to include PCA as a model).

A **factor model** seeks to approximate/explain the return of a *number* of tickers in terms of common "factors" ${f F}$

$$egin{array}{lll} oldsymbol{f F}: (n_{
m dates} imes n_{
m factors}) \ oldsymbol{f R}_1^{(d)} &=& eta_1^{(d)} \cdot oldsymbol{f F}^{(d)} + \epsilon_1 \ dots & dots \ oldsymbol{f R}_{n_{
m tickers}}^{(d)} &=& eta_{n_{
m tickers}}^{(d)} \cdot oldsymbol{f F}^{(d)} + \epsilon_{n_{
m tickers}} \end{array}$$

There are several ways to create a factor model

- depending on what we assume
- is given, in addition to ${f R}$

We will examine each method, but here is a high-level summary:

\mathbf{Name}	Given	Solve for
Pre-defined factors	$\mathbf{F}:(n_{ ext{dates}} imes n_{ ext{factors}})$	$eta_s:(n_{ ext{factors}})$
Pre-defined sensitivities	$eta:(n_{ ext{tickers}} imes n_{ ext{factors}})$	$\mathbf{F}^{(d)}$
Nothing pre-defined AE for cond. risk factors		$egin{aligned} \mathbf{F}, eta^T \ \mathbf{F}^{(d)}, \underline{eta}^{(d)} : (n_{ ext{tickers}} imes n_{ ext{factors}}) \ ext{time-varying } eta : (n_{ ext{tickers}} imes n_{ ext{time}}) \end{aligned}$

The first two approaches

- take one part (e.g., sensitivities or factor returns) of the product as given
- solves for the other part

The PCA approach

- solves for *both* parts of the product
 - subject to the ticker sensitivities β being fixed through time

The Autoencoder for Conditional Risk factors approach

- solves for *both* parts of the product
 - lacktriangle and has time-varying sensitivities eta and factor returns ${f F}$

Pre-defined factors, solve for sensitivities

Suppose ${f F}$ is given: a matrix of returns of "factors" over a range of dates

- $\mathbf{F}^{(d)}$ includes the returns of multiple factor tickers
 - e.g., market, several industries, large/small cap indices

Solve for β_s , for each s

- $n_{
 m tickers}$ separate Linear Regression models
- Linear regression for ticker *s*:
 - r_s and ${f F}$ are time series (length $n_{
 m dates}$) of returns for tickers/factors
 - Solve for β_s
 - constant over time

$$\boldsymbol{r}_s = \begin{pmatrix} \boldsymbol{\gamma}_s^{(d)} & \boldsymbol{\beta}_s^{(d)} & \boldsymbol{\beta}_s \\ \boldsymbol{\gamma}_s^{(d)}, \boldsymbol{\gamma}_s^{(d)} \end{pmatrix} = \langle \boldsymbol{F}_s^{(d)}, \boldsymbol{r}_s^{(d)} \rangle$$

$$\boldsymbol{r}_s = \begin{pmatrix} \boldsymbol{r}_s^{(1)} \\ \boldsymbol{r}_s^{(2)} \\ \vdots \\ \boldsymbol{r}_s^{(n_{\text{dates}})} \end{pmatrix}, \ \boldsymbol{F} = \begin{pmatrix} \boldsymbol{F}_1^{(1)} & \dots & \boldsymbol{F}_{n_{\text{factors}}}^{(1)} \\ \boldsymbol{F}_1^{(2)} & \dots & \boldsymbol{F}_{n_{\text{factors}}}^{(2)} \\ \vdots \\ \boldsymbol{F}_1^{(n_{\text{dates}})} & \dots & \boldsymbol{F}_{n_{\text{factors}}}^{(n_{\text{dates}})} \end{pmatrix}, \ \boldsymbol{\beta}_s = \begin{pmatrix} \boldsymbol{\beta}_{s,1} \\ \boldsymbol{\beta}_{s,2} \\ \vdots \\ \boldsymbol{\beta}_{s,n_{\text{factors}}} \end{pmatrix}$$

 $\mathbf{r}_s = \mathbf{F} * \beta_s$

Picture of linear regression

- One ticker s at a time, as a timeseries
 - selected column in left matrix
- Given
- \blacksquare matrix \mathbf{F} of factor timeseries
 - columns of right matrix

- Solve
- for sensitivities β_s (middle vector)
- dot product of sensitivity vector and row of factors on *one date(
 - estimated returns

$$\hat{\mathbf{r}}_s^{(d)} = eta_s \cdot \mathbf{F}^{(d)}$$

Linear regression solves for eta_s

• to minimize errors across dates

$$\sum_{d=1}^{n_{ ext{dates}}} \left(\mathbf{r}_s^{(d)} - \hat{\mathbf{r}}_s^{(d)}
ight)^2$$

In [3]: | fig

Out[3]:

Pre-defined sensitivities, solve for factors

Suppose β is given:

• for each ticker $s: \beta_{s,j}$ is the sensitivity of s to \mathbf{F}_j

Solve for $\mathbf{F}^{(d)}$ for each d

- $n_{
 m dates}$ separate Linear Regressions
- Linear regression for date d
 - $\mathbf{r}^{(d)}$ and $\beta^{(d)}$ are cross sections (width n_{tickers}) of one day ticker returns/sensitivities
 - Solve for $\mathbf{F}^{(d)}$
 - constant over tickers

$$\mathbf{r}^{(d)} = \begin{pmatrix} \mathbf{r}_1^{(d)} \\ \mathbf{r}_1^{(d)} \\ \vdots \\ \mathbf{r}_{n_{\mathrm{tickers}}}^{(d)} \end{pmatrix}, \ \mathbf{F}^{(d)} = \begin{pmatrix} \mathbf{F}_1^{(d)} \\ \mathbf{F}_2^{(d)} \\ \vdots \\ \mathbf{F}_{n_{\mathrm{factors}}}^{(d)} \end{pmatrix}, \ \beta = \begin{pmatrix} \beta_{1,1}, & \dots & \beta_{1,n_{\mathrm{factors}}} \\ \beta_{2,1}, & \dots & \beta_{2,n_{\mathrm{factors}}} \\ \vdots \\ \beta_{n_{\mathrm{tickers}},1}, & \dots & \beta_{n_{\mathrm{tickers}},n_{\mathrm{factors}}} \end{pmatrix}$$

Picture of Cross-Sectional regression

- One date d at a time
 - selected row of left matrix
- Given
- matrix β of sensitivities of each ticker to each factor

$$eta:(n_{ ext{tickers}} imes n_{ ext{factors}})$$

- sensitivities are constant through time
- Solve
- for factor returns at one date
 - selected row of right matrix
 - dot product of
 - sensitivity for one ticker (e.g., red row for AAPL)
 - \circ factor returns at date d
 - give estimated return of AAPL

$$\hat{\mathbf{r}}_{\mathrm{AAPL}} = eta^{\mathrm{AAPL}} \cdot \mathbf{F}^{(d)}$$

Cross-sectional regression solves for $\mathbf{F}^{(d)}$

In [5]: | fig

Out[5]:

Solve for sensitivities and factors: PCA

Yet another possibility: solve for β and ${\bf F}$ simulataneoulsy.

Recall Principal Components

• Representing $igwedge {f X}$ (defined relative to $n_{
m tickers}$ "standard" basis vectors) via an alternate basis ${f V}$

$$ackslash \mathbf{X} = ackslash \mathbf{\tilde{X}} \mathbf{V}^T$$

We factor matrix $\backslash \mathbf{X}$ into $\backslash \mathbf{\tilde{X}}$ and \mathbf{V}^T .

In our case, we identify

- $\setminus \mathbf{X}$ with the ticker returns \mathbf{R} .
- $\sqrt{\mathbf{X}}$ with the factor returns \mathbf{F}
- \mathbf{V}^T as β

Thus

$$\mathbf{R} = ilde{\mathbf{R}}eta$$

where

$$\mathbf{R}, ilde{\mathbf{R}}: (n_{ ext{dates}} imes n_{ ext{tickers}})$$

$$eta:(n_{ ext{tickers}} imes n_{ ext{tickers}})$$

The factorization is often used to achieve dimensionality reduction

- ullet approximating the $n_{
 m tickers}$ timeseries
- ullet with $n_{
 m factors} < n_{
 m tickers}$ factors

Reducing the dimension yields an approximation of ${f R}$

$$\mathbf{R} pprox \mathbf{F} eta$$

where

$$\mathbf{R}:(n_{ ext{dates}} imes n_{ ext{tickers}})$$

$$\mathbf{F}:(n_{ ext{dates}} imes n_{ ext{factors}})$$

$$eta$$
 : $(n_{ ext{factors}} imes n_{ ext{tickers}})$

Thus

- column j of ${\bf F}$ is the return series of the j^{th} factor
- ullet column j of eta are the sensitivities of ticker i to the factors
 - which don't vary with time

The return $\mathbf{R}_{j}^{(d)}$ of ticker j on date d is approximated by

- ullet the dot product of row d of F
 - lacktriangle the returns of the $n_{
 m factors}$ on date d
- and column j of β
 - lacksquare the sensitivities of j to the n_{factors}

This paper

This paper will create a factor model that

- Solve for ${f F}, eta$ simultaneously
 - like PCA
 - but with time-varying β

This very general approach is facilitated because

• ${f F}$ and eta are defined by Neural Networks

Figure 2: Conditional Autoencoder Model

Note: This figure presents the diagram of an autoencoder augmented to incorporate covariates in the factor loading specification. The left-hand side describes how factor loadings β_{t-1} at time t-1 (in green) depend on firm characteristics Z_{t-1} (in yellow) of the input layer 1 through an activation function g on neurons of the hidden layer. Each row of yellow neurons represents the $P \times 1$ vector of characteristics of one ticker. The right-hand side describes the corresponding factors at time t. f_t nodes (in purple) are weighted combinations of neurons of the input layer 2, which can either be P characteristic-managed portfolios x_t (in pink) or N individual asset returns r_t (in red). In the latter case, the input layer 2 is exactly what the output layer aims to approximate, which is the same as a standard autoencoder.

Autoencoder

Ε

Encoder

 $\mathbf{x}^{(i)}$

The paper refers to the model as a kind of Autoencoder.

$\mathbf{z}^{(i)}$

D

Decoder

Autoencoder

Let's review the topic.

- An Autoencoder has two parts: an Encoder and a Decoder
- The Encoder maps inputs \mathbf{x}^{ip} , of length n
- Into a "latent vectors" $\setminus \mathbf{z}^{\setminus \mathrm{ip}}$ of length $n' \leq n$
- If n' < n, the latent vector is a bottleneck
- The Decoder maps $\backslash \mathbf{z}^{\backslash \mathrm{ip}}$ into $\backslash \mathbf{x}^{\backslash \mathrm{ip}}$, of length n, that is an approximation of $\backslash \mathbf{x}^{\backslash \mathrm{ip}}$

The training examples for an Autoencoder are

That is

we want the output for each example to be identical to the input

The challenge:

- $\bullet \;$ the input is passed through a "bottleneck" $\backslash \mathbf{z}$ of lower dimensions than the example length n
- information is lost
- analog: using PCA for dimensionality reduction, but with non-linear operations

Autoencoder for Conditional Risk Factors

Imagine that we are given $\mathbf{R}:(n_{\mathrm{dates}} imes n_{\mathrm{tickers}})$

ullet timeseries (length $n_{
m dates}$) of returns of $n_{
m tickers}$ tickers

Suppose we map a one day set of returns $\mathbf{R}^{(d)}$ into two separate values

- $eta^{(d)}:(n_{ ext{tickers}} imes n_{ ext{factors}})$ -- the sensitivity of each ticker to each of $n_{ ext{factors}}$ one day "factor" returns
- ullet $\mathbf{F}^{(d)}:(n_{ ext{factors}} imes 1)$ -- the one day returns of $n_{ ext{factors}}$ factors

Our goal is to output $\hat{\mathbf{R}}^{(d)}$, an approximations of $\mathbf{R}^{(d)}$ such that

$$\hat{\mathbf{R}}^{(d)} = eta^{(d)} * \mathbf{F}^{(d)}$$

$$\hat{ extbf{R}}^{(d)} \;\; pprox \;\; extbf{R}^{(d)}$$

This is the same goal as an Autoencoder but subject to the constraint that $\hat{\mathbf{R}}^{(d)}$

• is the product of the ticker sensitivities and factor returns

The Neural Network *simultaneously* solves for $\beta^{(d)}$ and $\mathbf{F}^{(d)}$.

This looks somewhat like PCA

- but, in PCA, β does not vary by day: it is constant over days in this model, $\beta^{(d)}$ varies by day

This paper goes one step further than the standard Autoencoder

```
ullet Inputs igwedge_{oldsymbol{X}} : (n_{	ext{dates}} \ 	imes n_{	ext{tickers}} \ 	imes n_{	ext{chars}}) ullet rather than oldsymbol{R} : (n_{	ext{dates}} \ 	imes n_{	ext{tickers}})
```

Each ticker s on each day d, has $n_{
m chars} \geq 1$ "characteristic"

- ullet one of them may the daily return ${f R}^{(d)}$
- but may also include a number of other time varying characteristics

The proposed model is a Neural Network with two sub-networks.

The Beta network computes
$$eta_s^{(d)} = ext{NN}_eta(m{f X}_s^{(d)};m{f W}_eta)$$

- $\backslash \mathbf{X}_s^{(d)}$ as input
- ullet parameterized by weights $igwedge \mathbf{W}_{eta}$
- $eta_s^{(d)}$ is only a function of $igl \langle \mathbf{X}_s^{(d)} igr \rangle$, the characteristics of s
 - lacktriangle and **not** of any other ticker s'
 eq s
 - ullet $eta_s^{(d)}$ shares $igwedge \mathbf{W}_eta$ across **all** tickers s' and dates d'
 - contrast this with factor model with fixed factors
 - \circ we solve for a separate eta_s for each ticker s
 - via per-ticker timeseries regression
 - contrast this with PCA
 - $\circ \;\; eta_s$ is influenced by $\mathbf{R}_{s'}$ for s'
 eq s

The Factor network computes $\mathbf{F}^{(d)} = \mathrm{NN}_{\mathbf{F}}(\mathbf{R}^{(d)}, ackslash \mathbf{W}_{\mathbf{F}})$

- $\mathbf{R}^{(d)}$ as input (not $\setminus \mathbf{X}^{(d)}$ as in the Beta network)
- parameterized by weights $ackslash \mathbf{W_F} \ \mathbf{R}^{(d)}$ is only a function of $\mathbf{R}^{(d)}$ for date d
 - lacksquare and **not** of any other date d'
 eq d
 - $\mathbf{F}^{(d)}$ shares $\mathbf{W}_{\mathbf{F}}$ across **all** dates

This model

- ullet has neither pre-defined Factors ${f F}$ or pre-defined Sensitivities eta
- Simultaneously solve for $eta_s^{(d)}$ and $\mathbf{F}^{(d)}$

Here is a picture

Summary of this paper

Approximate cross section of daily returns: $\hat{\mathbf{r}}^{(d)} \approx \mathbf{r}^{(d)}$ $\mathbf{r}^{(d)} \approx \hat{\mathbf{r}}^{(d)} = \beta^{(d)} * \mathbf{F}^{(d)}$

- like an Autoencoder
- subject
 - lacktriangledown to returns as product of sensitivities and factors: $\hat{f r}^{(d)}=eta^{(d)}*{f F}^{(d)}$
 - $ullet eta_s^{(d)} = ext{NN}_eta(igackslash extbf{X}_s^{(d)}; igackslash extbf{W}_eta)$
 - $\bullet \ \mathbf{F}^{(d)} = \mathrm{NN}_{\mathbf{F}}(\mathbf{R}^{(d)}, \backslash \mathbf{W}_{\mathbf{F}})$

Shapes:

- $ullet \mathbf{r}^{(d)}:(n_{ ext{tickers}} imes 1)$
- ullet $eta:(n_{ ext{tickers}} imes n_{ ext{factors}})$
- $\mathbf{F}^{(d)}:(n_{\mathrm{factors}} imes 1)$

Complete Neural Network

Beta (Input) side of network

The Beta network NN_{eta}

- maps ticker characteristics to ticker factor sensitivities
 - for each day

It uses a single layer fully connected (Dense) Layer with $n_{ m factors}$ units

- input: $n_{
 m chars}$ attributes (characteristics) for each of $n_{
 m tickers}$ tickers
- ullet output: $n_{
 m factors}$ factor sensitivities for each of $n_{
 m tickers}$ tickers

$$ext{NN}_{eta}: (n_{ ext{tickers}} imes n_{ ext{chars}}) \mapsto (n_{ ext{tickers}} imes n_{ ext{factors}})$$

Input \X

$$ackslash \mathbf{X}: (n_{ ext{dates}} imes n_{ ext{tickers}} imes n_{ ext{chars}})$$

$$ackslash \mathbf{X}^{(d)}:(n_{ ext{tickers}} imes n_{ ext{chars}})$$

- ullet Example on date d
- Consists of $n_{
 m tickers}$ tickers, each with $n_{
 m chars}$ characteristics

Sub Neural network $ext{NN}_eta$

$$ext{NN}_{eta} = ext{Dense} \; (n_{ ext{factors}})(ackslash extbf{X})$$

- Fully connected network
- ullet Dense $(n_{ ext{factors}})$ computes a function $(n_{ ext{tickers}} imes n_{ ext{chars}}) \mapsto (n_{ ext{tickers}} imes n_{ ext{factors}})$
- Threads over ticker dimension (<u>see</u>
 (https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense))
 - tickers share same weights across all tickers
 - single Dense $(n_{
 m factors})$ not $n_{
 m tickers}$ copies of Dense $(n_{
 m factors})$ with independent weights

$$ackslash \mathbf{W}_eta:(n_{\mathrm{factors}} imes n_{\mathrm{chars}})$$

- ullet weights shared across all d,s
 - $ullet \ igwedge W_{eta,s}^{(d)} = igigee W_{eta,s'}^{(d')}$ for all s',d'
 - the transformation of characteristics to beta independent of ticker
- ullet hence, size of $igwedge \mathbf{W}_eta$ is $(n_{\mathrm{factors}} imes n_{\mathrm{chars}})$

$$eta^{(d)} = ext{Dense}\left(n_{ ext{factors}}, ext{activation='relu'})(igackslash \mathbf{X}^{(d)}) \ eta^{(d)}: \left(n_{ ext{tickers}} imes n_{ ext{factors}}
ight)$$

Note that the Beta network

- uses non-linearities (ReLU activation for the Dense hidden layer)
- more complex relationship
 - translating the "characteristics" (given as input) of a ticker
 - to its betas with respect to the constructed factors

Factor side of network

The Factor network NN_{F}

- maps ticker returns to factor returns
 - for each day

It uses a single layer fully connected (Dense) Layer with $n_{ m factors}$ units

- input: vector of ticker returns (one-day)
- output: vector of factor returns

 $ext{NN}_{\mathbf{F}}: n_{ ext{tickers}} \mapsto n_{ ext{factors}}$

Input \mathbf{R}

$$\mathbf{R}:(n_{\mathrm{dates}} imes n_{\mathrm{tickers}})$$

$$\mathbf{R}^{(d)}:(n_{ ext{tickers}} imes 1)$$

- Example on date d
- Consists of returns of $n_{
 m tickers}$ tickers

Sub Neural network $NN_{\mathbf{F}}$

 $\mathrm{NN}_{\mathbf{F}} = \mathtt{Dense}\;(n_{\mathrm{factors}})$

- Fully connected network
- ullet Dense($n_{ ext{factors}})$ computes a function $n_{ ext{tickers}} \mapsto n_{ ext{factors}}$

$$ackslash \mathbf{W_F}:(n_{\mathrm{factors}} imes n_{\mathrm{tickers}})$$

- ullet Weights shared across all d,s
 - $ullet \ igwedge \ igwed \ igwedge \ igwedge \ igwedge \ igwedge \ igwedge \ igwed \ igwedge \ igwedge \ igwedge \ igwed \ igwedge \ igwed$
 - the transformation of cross section of ticker returns to Factor returns independent of ticker
- ullet hence, size of $igl\langle \mathbf{W_F}$ is $(n_{ ext{tickers}} imes n_{ ext{factors}})$

$$\mathbf{F}^{(d)} = ext{Dense}\left(n_{ ext{factors}}
ight)\!\left(\mathbf{R}^{(d)}
ight) \ \mathbf{F}^{(d)}:n_{ ext{factors}}$$

Note that the Factor Network

- does not use non-linearities (no activation function in the Dense layer)
- design choice
 - factors are thus linear combinations of the input series
 - so can construct the factors as portfolios of the input series
 - with quantities give by weights of the Dense network

Dot

The Dot layer computes the dot product of tickers sensitivities and factor returns.

• this is the predicted return

$$\hat{\mathbf{r}}^{(d)} = eta^{(d)} \cdot \mathbf{F}^{(d)}$$

Dot product threads over factor dimension

- ullet Computes $\hat{f r}_s^{(d)}=eta_s^{(d)}\cdot{f F}^{(d)}$ for each s
 - each s is a row of $\beta^{(d)}$

$$\hat{\mathbf{r}}^{(d)}:n_{ ext{tickers}}$$

Loss

The key to any NN is the Loss Function.

Let $\setminus loss_{(s)}^{(d)}$ denote error of ticker s on day d.

$$ackslash ext{loss}_{(s)}^{(d)} = \mathbf{r}_s^{(d)} - \hat{\mathbf{r}}_s^{(d)}$$

 $\setminus \mathbf{loss}^{(d)}$ is the loss, across tickers, on date d (one training example)

$$ackslash ext{loss}^{(d)} = \sum_s ackslash ext{loss}^{(d)}_{(s)}$$

The number of examples m equals $n_{
m dates}$

So the Total Loss is

$$ackslash ext{loss} = \sum_d ackslash ext{loss}^{(d)}$$

Predicting future returns, rather than explaining contemporaneous returns

The model is sometimes presented as predicting **day ahead** returns rather than contemporaneous returns.

In that case the objective is

$$\hat{\mathbf{r}}^{(d)} = \mathbf{r}^{(d+1)}$$

and Loss for a single ticker and date becomes

$$ackslash \mathbf{loss}_{(s)}^{(d)} = \mathbf{r}_s^{(d+1)} - \hat{\mathbf{r}}_s^{(d)}$$

Code

The model is built by the function make_model
(06 conditional autoencoder for asset pricing model.ipynb#Automate-model-generation)

```
def make_model(hidden_units=8, n_factors=3):
    input_beta = Input((n_tickers, n_characteristics), name='input_beta')
    input_factor = Input((n_tickers,), name='input_factor')

    hidden_layer = Dense(units=hidden_units, activation='relu', name='hidden_la
yer')(input_beta)
    batch_norm = BatchNormalization(name='batch_norm')(hidden_layer)

    output_beta = Dense(units=n_factors, name='output_beta')(batch_norm)

    output_factor = Dense(units=n_factors, name='output_factor')(input_factor)

    output = Dot(axes=(2,1), name='output_layer')([output_beta, output_factor])

    model = Model(inputs=[input_beta, input_factor], outputs=output)
    model.compile(loss='mse', optimizer='adam')
    return model
```

Here is what the model looks like:

Highlights

- Two input layers
 - one each for the Beta and Factor networks
- The model is passed a pair as input
 - one input for each side of the network

```
Model(inputs=[input_beta, input_factor], outputs=output)
```

 and is <u>called</u>
 (06 conditional autoencoder for asset pricing model.ipynb#Tra <u>Model</u>) with a pair

```
model.fit([X1_train, X2_train], y_train,
...
```

Loss function: MSE

```
model.compile(loss='mse', optimizer='adam')
```

Training data

```
def get_train_valid_data(data, train_idx, val_idx):
    train, val = data.iloc[train_idx], data.iloc[val_idx]
    X1_train = train.loc[:, characteristics].values.reshape(-1, n_tickers, n_characteristics)
    X1_val = val.loc[:, characteristics].values.reshape(-1, n_tickers, n_characteristics)
    X2_train = train.loc[:, 'returns'].unstack('ticker')
    X2_val = val.loc[:, 'returns'].unstack('ticker')
    y_train = train.returns_fwd.unstack('ticker')
    y_val = val.returns_fwd.unstack('ticker')
    return X1_train, X2_train, y_train, X1_val, X2_val, y_val
```

• X1_train: ticker chacteristics

Discussion

Comparison to other factor models

Recall the pre-defined sensitivities factor model

- given sensitivities of tickers to factors
- solve for factors

The sensitivities were not time-varying

- but the cross-sectional regression would trivially accept time-varying sensitivities
- as does the Autoencoder (time-varying "characteristics" per ticker)

The Autoencoder model is most similar to the pre-defined sensitivities model.

The main difference

- pre-defined sensitivities are with respect to factors whose "meaning" has been pre-defined
 - e.g., a "size" or "industry" factor
 - the cross-sectional regression solves for a factor with a pre-defined meaning
- Autoencoder model has sensitivities to "characteristics" rather than factors with pre-defined meaning
 - we solve for betas with respect to implied factors
 - and simultaneously solve for the factor returns
 - the "meaning" of the factors is **not** pre-defined
 - is a function of characteristics
 - determined by weights of the Beta network

Also note that the depth of the Beta network could be greater

- non-linearities at each layer
- more complex relationships

In contrast, the Factor network

- is constructed as a single layer with no activations
- in order to make construction of "factor portfolios" possible

The inputs to the Factor network could be *any* timeseries

- does not have to be the ticker returns
- e.g., liquid, investable instruments such as ETF's

```
In [6]: print("Done")
```

Done