CS 477: Homework #1

Due on September 13, 2016 at 2:30pm $Monica\ Nicolescu$

Matthew J. Berger

Problem 1

Matthew J. Berger

(U & G-required)[30 points] Arrange the following list of functions in ascending order of growth rate. That is, if function g(n) immediately follows function f(n) in your list.

$$f_1(n) = n^{4.5}$$

$$f_2(n) = \sqrt{2n^2 + 1}$$

$$f_3(n) = n^2 + 10$$

$$f_4(n) = 10^n$$

$$f_5(n) = 100^n$$

$$f_6(n) = n^2 \log n$$

Solution:

Formula	Complexity
$f_2(n) = \sqrt{2n^2 + 1}$	$\mathcal{O}(n)$
$f_6(n) = n^2 \log n$	$\mathcal{O}(n^2 \log n)$
$f_3(n) = n^2 + 10$	$\mathcal{O}(n^2)$
$f_1(n) = n^{4.5}$	$\mathcal{O}(n^{4.5})$
$f_4(n) = 10^n$	$\mathcal{O}(10^n)$
$f_5(n) = 100^n$	$\mathcal{O}(100^n)$

Problem 2

(U & G-required)[30 points] Using mathematical induction, show that the following relations are true for every $n \ge 1$:

a)
$$\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2} \right]^2$$

b)
$$\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$$

Solution:

Part A

<u>Proof:</u> We will prove by induction that, for all $n \in \mathbb{Z}_+$,

(1)
$$\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2} \right]^2$$

Base Case: When n = 1, the left side of (1) is $(1)^3 = 1$, and the right side is $\left[\frac{1(1+1)}{2}\right]^2 = \left[\frac{2}{2}\right]^2 = 1$, so both sides are equal and (1) is true for n = 1.

Induction Step: Let $k \in \mathbb{Z}_+$ be given and suppose (1) is true for n = k. Then

$$\sum_{i=1}^{k+1} i^3 = \sum_{i=1}^k + (k+1)^3$$

$$\left[\frac{(k+1)(k+2)}{2}\right]^2 = \left[\frac{k(k+1)}{2}\right]^2 + (k+1)^3$$

$$= \frac{k^2(k+1)^2}{2^2} + (k+1)^3$$

$$= \frac{k^2(k+1)^2}{4} + \frac{4(k+1)^3}{4}$$

$$= \frac{(k+1)^2(k^2+4k+4)}{4}$$

$$= \frac{(k+1)^2(k+2)^2}{2^2}$$

$$= \left[\frac{(k+1)(k+2)}{2}\right]^2$$

Thus, (1) holds for n = k + 1, and the proof of the induction step is complete.

Conclusion: By the principle of induction, (1) is true for all $n \in \mathbb{Z}_+$

Part B

Proof: We will prove by induction that, for all $n \in \mathbb{Z}_+$,

(1)
$$\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$$

<u>Base Case:</u> When n = 1, the left side of (1) is (1)(1+1) = 2, and the right side is $\frac{(1)(1+1)(1+2)}{3} = 2$, so both sides are equal and (1) is true for n = 1.

Induction Step: Let $k \in \mathbb{Z}_+$ be given and suppose (1) is true for n = k. Then

$$\sum_{i=1}^{k+1} i(i+1) = \sum_{i=1}^{k} + (k+1)(k+2)$$

$$\frac{(k+1)(k+2)(k+3)}{3} = \frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$$

$$= \frac{k(k+1)(k+2)}{3} + \frac{3(k+1)(k+2)}{3}$$

$$= \frac{(k+1)(k+2)(k+3)}{3}$$

Thus, (1) holds for n = k + 1, and the proof of the induction step is complete. **Conclusion:** By the principle of induction, (1) is true for all $n \in \mathbb{Z}_+$

Problem 3

(U & G-required)[40 points] Indicate whether the first function of each of the following pairs has a smaller, same, or larger order of growth (to within a constant multiple) than the second function:

- a) (n-1)! and n!
- b) $\log_2 n$ and $\ln n$
- c) 2^{n-1} and 2^n
- d) $\log_2^2 n$ and $\log_2 n^2$

Solution

- a) same
- b) smaller
- c) same
- d) larger

Problem 5

[Extra credit - 20 points] Using the formal definition of the asymptotic notations, prove the following statements:

- a) $5n^2 + 20 \in \mathcal{O}(n^2)$
- b) $n+23 \in \mathcal{O}(n^3)$

Solution

- a) $0 \le 5n^2 + 20 \le cn^2 \to c \ge \frac{20}{n^2} + 5$ and $n_0 \ge 1$ $\therefore c = 25$ and $n_0 = 1$ and $5n + 20 \in \mathcal{O}(n^2)$
- b) $0 \le n + 23 \le cn^3 \to c \ge \frac{n+23}{n^3}$ and $n_0 \ge 1$ $\therefore c = 24$ and $n_0 = 1$ and $n + 23 \in \mathcal{O}(n^3)$