

ĐẠI HỌC ĐÀ NẪNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN

Vietnam - Korea University of Information and Communication Technology

Chương 3

PHÉP TÍNH TÍCH PHÂN CỦA HÀM MỘT BIẾN

ĐÀ NẪNG - 2020

CHUONG 3

3.1 TÍCH PHÂN BẤT ĐỊNH

3.2 TÍCH PHÂN XÁC ĐỊNH

3.3 TÍCH PHÂN SUY RỘNG

3.4 MỘT SỐ ỨNG DỤNG CỦA TP

3.2. TÍCH PHÂN XÁC ĐỊNH

3.2.1. Định nghĩa

3.2.2. Các tính chất của TPXĐ

3.2.3. Liên hệ giữa tích phân và nguyên hàm

3.2.4. Các phương pháp tính TPXĐ

3.2.1. Định nghĩa

a. Bài toán diện tích hình thang cong

Cho hình thang cong aABb, giới hạn bởi trục Ox, hai đường thẳng x = a, x = b và đường cong y = f(x), trong đó f(x) liên tục trên đoạn [a, b].

Hãy tính diện tích hình thang cong aABb?

$$S_n = \sum_{i=1}^n f(\xi_i) \Delta x_i$$

Như vậy: khi Δx_i càng nhỏ và n càng lớn thì diện tích hình bậc thang sẽ xấp xỉ diện tích hình thang cong.

Do đó, diện tích hình thang cong được tính như sau:

$$S = \lim_{n \to \infty} \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

b. Định nghĩa tích phân xác định

Định nghĩa

Cho hàm số f(x) xác định trên [a, b].

$$\lim_{n\to\infty} \sum_{i=1}^{n} f(\xi_i) \Delta x_i \quad (n\to\infty \text{ sao cho max } \Delta x_i\to 0)$$

tồn tại hữu hạn không phụ thuộc vào cách chia đoạn [a,b] và cách chọn ξ_i thì giới hạn đó được gọi là

tích phân xác định của hàm f(x) trên [a, b].

Khi đó ta gọi f(x) là hàm khả tích trên [a, b].

Kí hiệu:

$$\int_{a}^{b} f(x)dx$$

[a, b]: gọi là đoạn lấy tích phân,

a: cận dưới, b: cận trên.

s: dấu tích phân xác định

f(x): hàm dưới dấu tích phân

x : biến số tích phân

Chú ý.

Chu y. Cho f(x) là hàm xác định tại a.

$$\int_{a}^{a} f(x)dx = 0$$

2. Cho f(x) xác định trên đoạn [a, b]

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

3. Tích phân xác định chỉ phụ thuộc vào hàm dưới dấu tích phân xác định, phụ thuộc vào các cận, không phụ thuộc vào biến số tích phân.

Tức là:
$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(u)du = \int_{a}^{b} f(t)dt$$

c. Ý nghĩa hình học

Nếu $f(x) \ge 0$ và liên tục trên [a, b] thì $\int_{a}^{b} f(x) dx$

là diện tích hình thang cong giới hạn bởi các đường

$$y = f(x)$$
, $x = a$, $x = b$ và trục Ox.

$$S = \int_{a}^{b} f(x) dx$$

d. Định lí tồn tại tích phân xác định Định lí

- Nếu f(x) liên tục trên đoạn [a, b] thì nó khả tích trên đoạn đó.
- Nếu f(x) có một điểm gián đoạn loại một (x = c) trên đoạn [a, b] thì nó khả tích trên đoạn ấy và ta có :

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Mệnh đề trên vẫn đúng nếu f(x) có một số hữu hạn điểm gián đoạn loại một trên đoạn [a, b].

3.2.2. Tính chất của TPXĐ

Giả sử f(x), g(x) khả tích trên [a, b], khi đó:

1.
$$\int_{a}^{b} Kf(x)dx = K \int_{a}^{b} f(x)dx$$
, với K: hằng số

2.
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

3.
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \quad \text{v\'eti } c \in [a, b]$$

$$\mathbf{4.} \qquad \int dx = b - a$$

5. Nếu
$$f(x) \le g(x), \forall x \in [a, b]$$
 thì $\int_a^b f(x) dx \le \int_a^b g(x) dx$

6. Nếu m
$$\leq$$
 f(x) \leq M, \forall x \in [a, b] thì m(b $-$ a) \leq $\int f(x)dx \leq$ M (b $-$ a)

Ví dụ: Ước lượng giá trị tích phân:

$$I = \int_{0}^{\frac{\pi}{2}} e^{\sin^2 x} dx$$

7. Định lí giá trị trung bình

Nếu f(x) liên tục trên đoạn [a,b] thì tồn tại ít nhất $c \in [a,b]$ sao cho:

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

hay
$$(b-a)f(c) = \int_a^b f(x)dx$$

Ý nghĩa hình học:

Nếu f(x) liên tục trên đoạn [a, b] ta luôn tìm được ít nhất một điểm $c \in [a, b]$ sao cho $S_{aMNb} = S_{aABb}$

f(c) gọi là giá trị trung bình của f(x) trên đoạn [a, b].

3.2.3. Liên hệ giữa TPXĐ và nguyên hàm.

1. Đạo hàm của tích phân theo cận trên

Cho hàm số y = f(x) liên tục trên [a, b]. Tích phân

$$I(x) = \int_{0}^{x} f(t) dt$$

với $a \le x \le b$, là một nguyên hàm của hàm f(x) trên [a, b]

Tức là:

$$I'(x) = \left(\int_{a}^{x} f(t)dt\right) = f(x)$$

Một cách tổng quát:

$$\left[\int_{a}^{v(x)} f(t)dt\right]' = f[v(x)].v'(x)$$

2. Công thức Newton – Leibiz.

Nếu F(x) là nguyên hàm của f(x) liên tục trên [a, b] thì:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

hay:

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b}.$$

3.2.4. Các phương pháp tính TPXĐ

1. Phương pháp đổi biến số

- Đặt
$$x = \varphi(t)$$

- Đặt
$$t = \varphi(x)$$

Ví dụ: Tính

$$\int_{0}^{2} \sqrt{4 - x^{2}} \, dx$$

$$\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin^{2} x} \, dx$$

$$\int_{0}^{\infty} \frac{\cos x}{1 + \sin^{2} x} \, dx$$

2. Phương pháp tích phân từng phần

$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du$$

Ví dụ: Tính

$$\frac{\pi}{4} x \cos x dx$$

$$\int_{0}^{e} \frac{\ln x}{x^{3}} dx$$

$$\int_{1}^{e} \frac{\ln x}{x^{3}} dx$$

$$\int_{1}^{e} \frac{\ln x}{x^{3}} dx$$

$$\int_{1}^{e} \frac{\ln x}{x^{3}} dx$$