Modern Statistical Modeling

Lectured by Wei Lin

LATEXed by Chengxin Gong

2023年3月14日

目录

1	Review of Linear Algebra	2
2	Review of Probability Theory	2
3	Prediction and Nearest Neighbor	3
4	Linear Regression	4

1 Review of Linear Algebra

- Rank of $A \in \mathbb{R}^{m \times n}$: max # of linearly independent row/columns. Facts: (i) $0 \le \operatorname{rank}(A) \le \min(m, n)$; (ii) $\operatorname{rank}(A) = \operatorname{rank}(A^T) = \operatorname{rank}(AA^T) = \operatorname{rank}(A^TA)$; (iii) $\operatorname{rank}(BAC) = \operatorname{rank}(A)$ for nonsingular compatible B, C.
- Range(column space): $\mathcal{C}(A) = \{Ax : x \in \mathbb{R}^n\} \subset \mathbb{R}^m$. Null space: $\mathcal{N}(A) = \{x \in \mathbb{R}^n : Ax = 0\}$. Facts: (i) $\operatorname{rank}(A) = \dim \mathcal{C}(A)$; (ii) $\dim \mathcal{C}(A) + \dim \mathcal{N}(A) = n$; (iii) $\mathcal{N}(A) = \mathcal{C}(A^T)^{\perp}$; (iv) $\mathcal{C}(AA^T) = \mathcal{C}(A)$.
- Trace of $A \in \mathbb{R}^{m \times n}$: $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$. Facts: (i) linearity: $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$, $\operatorname{tr}(cA) = c\operatorname{tr}(A)$; (ii) cyclic property: $\operatorname{tr}(AB) = \operatorname{tr}(BA)$, $\operatorname{tr}(ABC) = \operatorname{tr}(BCA) = \operatorname{tr}(CAB)$; (iii) $\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i a_{ij} b_{ij}$.
- Trace product: $\langle A, B \rangle = \operatorname{tr}(A^T B) = \operatorname{tr}(AB^T) = \sum_i \sum_j a_{ij} b_{ij}$. It induces Frobenius norm: $||A||_F = \sqrt{\langle A, A \rangle} = (\sum_{i,j} a_{ij})^{1/2}$.
- Determinant: $\det(A)$ or |A|. Facts: (i) $\det(cA) = c^n \det(A)$; (ii) $\det(AB) = \det A \det B$; (iii) $\det(A^{-1}) = \det(A)^{-1}$; (iv) $\det(A) = \prod_{i=1}^n \lambda_i$.
- Three decomposition. (1) For symmetric A, spectrum(eigen) decomposition: $A = V\Lambda V^T = \sum_{i=1}^r \lambda_i v_i v_i^T$ where V is orthogonal $(V^TV = VV^T = I)$ and $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. (2) SVD for $A \in \mathbb{R}^{n \times p}$ of rank r: $A = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$ where $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0), \sigma_1 \geq \dots \geq \sigma_r \geq 0$ and $\{u_i\}, \{v_i\}$ orthonormal. arg $\min_{Y \in \mathbb{R}^{n \times p}, \operatorname{rank}(Y) \leq r} ||X Y||_F = \sum_{i=1}^r \sigma_i u_i v_i^T$ (low rank-r approximation). (3) QR decomposition: A = QR where Q is orthonormal and R is upper-triangular. It corresponds to Garm-Schmidt orthogonalization process.
- Idempotent: $P^T = P$. Facts: (i) If P is symmetric, then P is idempotent of rank r iff it has r eignevalues 1 and n r 0; (ii) If P is a projection matrix, then tr(P) = rank(P).
- Generalized inverses: For $A \in \mathbb{R}^{m \times n}$, $A^- \in \mathbb{R}^{n \times m}$ is called a generalized inverse of A if $AA^-A = A$. Moore-Penrose inverse A^+ if (i) $AA^+A = A$; (ii) $A^+AA^+ = A$; (iii) $(A^+A)^T = A^+A$; (iv) $(AA^+)^T = AA^+$. Such A^+ is unique, and $A^+ = V\Sigma^+U^T = \sum_{i=1}^r \sigma_i^{-1}v_iu_i^T$.
- Theorem 1.1 $P_X = X(X^TX)^-X^T$ is the orthogonal projection onto C(X). $[P_X$ does not depend on the choice of $(X^TX)^-$]

Proof $\forall v \in \mathbb{R}^n$, write v = x + w where $x \in \mathcal{C}(X), w \in \mathcal{C}(X)^T$. By definition, $P_X v = P_X x + P_X w = P_X x + X(X^T X)^- X^T w = P_X x$. We need to show $u^T X(X^T X)^- X^T X = u^T X, \forall u \in \mathbb{R}^n$.

Lemma 1.1 $C(X^T) = C(X^TX)$.

Proof Use
$$C(X^TX) \subset C(X^T)$$
 and $rank(X^TX) = rank(X)$.

By the lemma,
$$u^T X (X^T X)^- X^T X = z^T X^T X (X^T X)^- X^T X = z^T X^T X = u^T X$$
.

2 Review of Probability Theory

- Distribution related to multivariate normal: $X \sim \mathcal{N}_p(\mu, \Sigma)$. Moment generating function: $M_X(t) = \mathbb{E}e^{t^TX} = \exp(t^T\mu + \frac{1}{2}t^T\Sigma t)$. Characteristic function: $\phi_X(t) = \mathbb{E}e^{it^TX} = \exp(it^T\mu \frac{1}{2}t^T\Sigma t)$. Facts: (i) $A_{g\times p}X + b_{g\times 1} \sim \mathcal{N}_g(A\mu + b, A\Sigma A^T)$; (ii) $X \sim \mathcal{N}_p(\mu, \Sigma) \Leftrightarrow a^TX \sim \mathcal{N}(a^T\mu, a^T\Sigma a), \forall a \in \mathbb{R}^p$; (iii) $Y_1 = A_1X + b_1 \perp \!\!\!\perp Y_2 = A_2 + b_2 \Leftrightarrow \operatorname{Cov}(Y_1, Y_2) = A_1\Sigma A_2^T = 0$.
- Noncentral χ^2 : $X \sim \mathcal{N}_p(\mu, I_p)$. Then $X^T X \sim \chi_p^2(\lambda)$ with noncenteral parameter $\lambda = \mu^T \mu$. Pdf of $\chi_p^2(\lambda)$: $f(x; p, \lambda) = \sum_{k=0}^{\infty} \frac{e^{-\lambda/2}(\lambda/2)^k}{k!} f(x; p+2k, 0)$ where $f_q(x) = f(x; q, 0) = \frac{x^{q/2}e^{-x/2}}{2^{q/2}\Gamma(q/2)} I(x>0)$, a Poisson $(\frac{\lambda}{2})$ -weighted mixture of χ_{p+2k}^2 . M.g.f.: $M_X(t; p, \lambda) = \frac{1}{(1-2t)^p/2} \exp(\frac{\lambda t}{1-2t})$. Ch.f.: $\Phi_X(t; p, \lambda) = \frac{1}{(1-2it)^{p/2}} \exp(\frac{i\lambda t}{1-2it})$. Facts: (i)

PREDICTION AND NEAREST NEIGHBOR

If $X \sim \mathcal{N}(\mu, \Sigma)$ then $(X - \mu)^T \Sigma^{-1}(X - \mu) \sim \chi_p^2$ and $X^T \Sigma^{-1} X \sim \chi_p^2(\mu^T \Sigma^{-1} \mu)$; (ii) Additivity: If $X \sim \chi_{p_i}^2(\lambda_i)$ independent for $i = 1, \dots, k$, then $\sum_{i=1}^n X_i \sim \chi_{\sum_i p_i}^2(\sum_i \lambda_i)$; (iii) Rank deficient: If $X \sim \mathcal{N}_p(\mu, I_p), A \in \mathbb{R}^{p \times p}$ symmetric, then $X^T A X \sim \chi_p^2(\lambda)$ with $\lambda = \mu^T A \mu \Leftrightarrow A$ is idempotent of rank r; (iv) If $X \sim \mathcal{N}_p(\mu, \Sigma), A \in \mathbb{R}^{p \times p}$ symmetric, $B \in \mathbb{R}^{q \times p}$, then $X^T A X \perp \!\!\!\perp B X \Leftrightarrow B \Sigma A = 0_{q \times p}$; (v) $X^T A X \perp \!\!\!\perp X^T B X \Leftrightarrow A \Sigma B = 0_{p \times p}$.

• Theorem 2.1 (Cochran) $X \sim \mathcal{N}_p(\mu, I_p), X^T X = X^T A_1 X + \dots + X^T A_k X \equiv Q_1 + \dots + Q_k, A_i \in \mathbb{R}^{p \times p}$ symmetric of rank r_i . Then $Q_i \sim \chi^2_{r_i}(\lambda_i)$ independent for $i = 1, \dots, k \Leftrightarrow p = r_1 + \dots + r_k$. In this case, $\lambda_i = \mu^T A_i \mu$ and $\lambda_1 + \dots + \lambda_k = \mu^T \mu$.

Proof " \Leftarrow ": Note that $\forall i, \exists c_{ij} \in \mathbb{R}^p, j = 1, \dots, r_i$ s.t. $Q_i = X^T A_i X = \pm (c_{i1}^T X)^2 \pm \dots \pm (c_{ir_i}^T X)^2$. Let $C_i = (c_{i1}, \dots, c_{ir_i})$ and $C_{p \times r} = (C_1, \dots, C_k)^T$, then $X^T X = X^T C \triangle C X$, where \triangle is $p \times p$ diagnal with diagnol entries $\pm 1 \Rightarrow C^T \triangle C = I_p$. Thus C is of full rank and hence $\triangle = (C^T)^{-1} C^{-1} = (C^{-1})^T C^{-1} = (C^{-1})^T C^{-1}$ is positive definite $\Rightarrow \triangle = I_p$ and $C^T C = I_p$.

"\Rightarrow":
$$X^TA_i \sim \chi^2_{r_i}(\lambda_i)$$
 independent $\Rightarrow X^TX = \sum_i X^TA_iX \sim \chi^2_{\sum_i r_i}(\sum_i \lambda_i) \Rightarrow \sum_i r_i = p$.

- Noncentral F: If $Q_1 \sim \chi_p^2(\lambda)$ and $Q_2 \sim \chi_q^2$ are independent, then $\frac{Q_1/p}{Q_2/q} \sim F_{p,q}(\lambda)$.
- Noncentral t: If $U_1 \sim \mathcal{N}(\lambda, 1)$ and $U_2 \sim \chi_q^2$ are independent, then $T = \frac{U_1}{\sqrt{U_2/q}} \sim t_q(\lambda)$.

3 Prediction and Nearest Neighbor

- Goal: (1) predict y from x ("black box"); (2) which variable(s) in x contributes to the prediction of y (" $x^T\beta$ "), estimation, testing, variable selection.
- Why are prediction and estimation different: (1) model parameters; (2) identifiability $(f_{\theta_1} \neq f_{\theta_2} \Rightarrow \theta_1 \neq \theta_2)$.
- Find prediction function $f: \mathcal{X} \to \mathcal{Y}$ that minimizes $\mathbb{E}_{X,Y} \mathcal{L}(f(X),Y) = \mathbb{E}\{\mathbb{E}(\mathcal{L}(f(X),Y)|X)\}$ where loss function $\mathcal{L}: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.
- Optimal predictor conditioned on x: $f^*(x) = \arg\min_{f(x) \in \mathcal{Y}} \mathbb{E}\{\mathcal{L}(f(X), Y) | X = x\}$.
- Regression: y numerical, squared error $(L_2$ -loss) $\mathcal{L}(\hat{y}, y) = (\hat{y} y)^2$, $\mathbb{E}\{(Y f(X))^2 | X\} = \{\mathbb{E}(Y|X) f(X)\}^2 + \mathbb{E}\{(Y \mathbb{E}(Y|X))^2 | X\} = \text{bias}^2 + \text{variance. Optimal } f^*(X) = \mathbb{E}(Y|X).$
- To model f^* , $\begin{cases} \text{parametric: linear, } f*(x) = x^T\beta, \beta \in \mathbb{R}^2 \\ \text{nonparametric: infinite dimension, } f^*(x) = m(x), m \text{ satisfying certain smoothness} \end{cases}.$
- Classification: 0-1 loss $\mathcal{L}(\hat{y}, y) = I(\hat{y} = y)$, $\mathbb{E}\{\mathcal{L}(h(X), Y) | X = x\} = \sum_{j \neq h(x)} P(Y = j | X = x) = 1 P(Y = h(X) | X = x)$. Optimal classification (Bayes classifier): $h^*(x) = \arg \max_{h(x) \in \mathcal{Y}} P(Y = h(X) | X = x)$.
- A fully nonparametric approach: k nearest neighbor (k-NN). Given training data $\{(x_i, y_i)\}_{i=1}^m$, use data "around" x to estimate $m(x) = \mathbb{E}(Y|X=x)$. Rationale: "Things that look alike must be alike". Classification: $h_{k\text{-NN}}(x) = \max_{i=1}^m \sum_{i \in N_k(x)} y_i$. k controls size of neighbor set. $k \uparrow$: effective sample size \uparrow , variance \downarrow , heterogeneity \uparrow , bias \uparrow .
- Theory for 1-NN: Consider binary classification: $\mathcal{Y} = \{0,1\}$, $\mathcal{L}(h(x),y) = I(h(x) \neq y)$. Assume $\mathcal{X} \subset [0,1]^d$, ρ Euclidean distance, $S = \{(x_i,y_i)\}_{i=1}^n$. $\forall x \in \mathcal{X}$, let $\pi_1(x), \dots, \pi_n(x)$ be an ordering of $\{1,\dots,n\}$ with increasing distance to x. $\eta(x) = \mathbb{E}(Y = 1|X = x)$. Bayes classifier: $h^*(x) = I(\eta(x) > \frac{1}{2})$. Assumption on η : η is c-Lipschitz for some c > 0. Goal: Derive an upper bound on $\mathbb{E}_{S \sim \mathcal{D}^n} \mathcal{L}(\hat{h}_S) = \mathbb{E}_{S \sim \mathcal{D}^n} \mathbb{E}_{(x,y) \sim \mathcal{D}} I(\hat{h}_S(x) \neq y)$.
- Lemma 3.1 The 1-NN rule \hat{h}_S satisfies $\mathbb{E}_{S \sim \mathcal{D}^n} \mathcal{L}(\hat{h}_S) \leq 2\mathcal{L}(h^*) + c\mathbb{E}_{S \sim \mathcal{D}^n, x \sim \mathcal{D}}||x x_{\pi_1}(x)||$.

LINEAR REGRESSION

Proof $\mathbb{E}_{S}\mathcal{L}(\hat{h}_{S}) = \mathbb{E}_{S_{x} \sim \mathcal{D}_{x}^{n}, x \sim \mathcal{D}_{x}, y \sim \eta(x), y' \sim \eta(\pi_{1}(x))} P(y \neq y')$. Note that $P(y \neq y') = \eta(x')(1 - \eta(x)) + (1 - \eta(x'))\eta(x) = (\eta - \eta + \eta')(1 - \eta) + (1 - \eta + \eta - \eta')\eta = 2\eta(1 - \eta) + (\eta - \eta')(2\eta - 1)$. Since η is c-Lipschitz and $|2\eta - 1| \leq 1$, $P(y \neq y') \leq 2\eta(1 - \eta) + c||x - x'||$. Substituting back, $\mathbb{E}_{S}\mathcal{L}(\hat{h}_{S}) \leq 2\mathbb{E}_{x}\eta(x)(1 - \eta(x)) + c\mathbb{E}_{S,x}||x - x_{\pi_{1}(x)}||$. The Bayes error $\mathcal{L}(h^{*}) = \mathbb{E}_{x}\{\eta(x) \wedge (1 - \eta(x))\} \geq \mathbb{E}_{x}(\eta(x)(1 - \eta(x)))$.

• Lemma 3.2 Let C_1, \dots, C_r be a collection of subsets of \mathcal{X} . Then $\mathbb{E}_{S \sim \mathcal{D}^n} \{ \sum_{i:C_i \cap S = \emptyset} \} P(C_i) \leq \frac{r}{ne}$ ("probability of subsets that not hit by S").

Proof By linearity, $\mathbb{E}_S\{\sum_{i:C_i\cap S=\emptyset}P(C_i)\}=\sum_{i=1}^rP(C_i)\mathbb{E}_SI(C_i\cap S=\emptyset)=\sum_{i=1}^rP(C_i)P(C_i\cap S=\emptyset)$. Note that $P(C_i\cap S=\emptyset)=(1-P(C_i))^n\leq e^{-nP(C_i)}$. Thus, LHS $\leq \sum_{i=1}^rP(C_i)e^{-nP(C_i)}\leq r\max P(C_i)e^{-nP(C_i)}\leq r\min P(C_i)e^{-nP(C_i)}$

• Theorem 3.1 (Generalization upper bound for 1-NN) $\mathbb{E}_S \mathcal{L}(\hat{h}_S) \leq 2\mathcal{L}(h^*) + 2c\sqrt{d}n^{-\frac{1}{d+1}}$.

Proof Take C_i of the form $\{x: x_j \in [(\alpha_j - 1)/T, \alpha_j/T], \forall j\}$, where $\alpha_1, \dots, \alpha_d \in \{1, \dots, T\}^d$.

Case 1: If $x, x' \in C_i$ for some i, then $||x - x'|| \le \sqrt{d\epsilon}$.

Case 2: Otherwise, $||x - x'|| \le \sqrt{d}$.

Hence, $\mathbb{E}_{S,x}||x-x_{\pi_1(x)}|| \leq \mathbb{E}_S\{P(\cup_{i:C_i\cap S\neq\emptyset}C_i)\sqrt{d}\epsilon + P(\cup_{i:C_i\cap S=\emptyset})\sqrt{d}\} \leq \sqrt{d}(\epsilon + \frac{r}{ne})$. Since $r=(\frac{1}{\epsilon})^d$, $\cdots \leq \sqrt{d}(\epsilon + \frac{1}{\epsilon^d ne})$. Matching the two terms gives $\epsilon = (\frac{1}{ne})^{\frac{1}{d+1}}$ and the optimal bound $2\sqrt{d}(ne)^{-\frac{1}{d+1}} \leq 2\sqrt{d}n^{-\frac{1}{d+1}}$. \square

• Theorem 3.2 (Generalization upper bound for k-NN) $\mathbb{E}_S \mathcal{L}(\hat{h}_S) \leq (1 + \sqrt{\frac{8}{k}}) \mathcal{L}(h^*) + (6c\sqrt{d} + k)n^{-\frac{1}{d+1}}$.

Remark 3.1 k is called regularization parameter/hyperparameter and the optimal $k \sim n^d$.

Remark 3.2 Exponential dependence on d: "curse of dimensionality".

• Theorem 3.3 (Lower bound) $\forall c > 1$ and any learning rule h, \exists a distribution over $[0,1]^d \times \{0,1\}$ s.t. $\eta(x)$ is cLipschitz, the Bayes error is 0, but for $n < (c+1)^d/2$, $\mathbb{E}\mathcal{L}(h) > \frac{1}{4}$ (i.e. minimax bound $\inf_h \sup_y \mathbb{E}\mathcal{L}(h) \ge Cn^{-\frac{1}{d+1}}$).

Hint Let G_c^d be the regular grid on $[0,1]^d$ with distance 1/c between points. Then any $\eta: G_c^d \to \{0,1\}$ is c-Lipschitz. Then use the following theorem.

• Theorem 3.4 (No free-lunch theorem) Let A be any learning rule for binary classification with 0-1 loss over \mathcal{X}^d and $n < |\mathcal{X}|/2$. Then \exists distribution D over $\mathcal{X} \times \{0,1\}$ s.t. $\mathbb{E}\mathcal{L}(A) \geq \frac{1}{4}$. Furthermore, with prob $\geq \frac{1}{7}$, $\mathcal{L}(A_S) \geq \frac{1}{8}$.

4 Linear Regression

- $Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + \epsilon_{n\times 1}$, $\mathbb{E}(\epsilon|X) = 0$, $Var(\epsilon) = \sigma^2 I_n$ and X fixed.
- Least squares estimator (LSE) solves the normal equation $X^T X \hat{\beta} = X^T Y, \hat{\beta} = (X^T X)^- X^T Y.$
- ANOVA: $y_{ij} = \mu + \alpha_j + \epsilon_{ij}, i = 1, \dots, n_j, j = 1, \dots, J. \sum_j n_j = n, \sum_j \alpha_j = 0.$
- **Definition** 4.1 θ is estimable if \exists an unbiased estimator of θ . $c^T\beta$ is linearly estimable if $\exists l \in \mathbb{R}^n$ s.t. $\mathbb{E}(l^TY) = c^T\beta, \forall \beta \in \mathbb{R}^p \Leftrightarrow c = X^Tl \in \mathcal{C}(X^T)$.
- Theorem 4.1 (1) If $c^T\hat{\beta}$ is unique, then $c \in \mathcal{C}(X^TX) = \mathcal{C}(X^T)$.
 - (2) If $c \in \mathcal{C}(X^T)$, then $c^T \hat{\beta}$ is unique and unbiased for $c^T \beta$.
 - (3) If $c^T \beta$ is estimable and $\epsilon \sim \mathcal{N}_n(0, \sigma^2 I_n)$, then $c \in \mathcal{C}(X^T)$.

Proof (1) Let $b \in \mathcal{C}(X^TX)^{\perp}$ be arbitrary, then $X^TY = X^TX\hat{\beta} = X^TX(\hat{\beta} + b) \Rightarrow c^T\hat{\beta} = c^T(\hat{\beta} + b) \Rightarrow c^Tb = 0$. (2) $c = X^Tl$ for some $l \in \mathbb{R}^n$, then $c^T\hat{\beta} = lX^T\hat{\beta} = lX^T(X^TX)^-X^TY = lP_XY$ is unique. $\mathbb{E}(c^T\hat{\beta}) = l^TP_x\mathbb{E}Y = l^TP_XX\beta = l^TX\beta = c^T\beta$.

LINEAR REGRESSION

(3) If
$$\exists$$
 an estimator $T(X,Y)$ unbiased for $c^T\beta$, then $c^T\beta = \int T(X,y) \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}} \exp\{-\frac{1}{2\sigma^2}||y-X\beta||^2\}dy$. Differentiate with β , $c = X^T \int \frac{y-X\beta}{(2\pi\sigma^2)^{\frac{n}{2}}\sigma^2} T(X,y) \exp\{-\frac{1}{2\sigma^2}||y-X\beta||^2\}dy$.

Remark 4.1 $A\beta$ with $A \in \mathbb{R}^{q \times p}$ is estimable iff $\mathcal{C}(A^T) \subset \mathcal{C}(X^T) \Leftrightarrow A = A_*X$ for some $A_* \in \mathbb{R}^{q \times n}$. In particular, β is estimable iff X has full column.

- Ordinary least squares: $\hat{\beta} = (X^T X)^- X^T Y$.
- Proposition 4.1 For any estimable $A\beta$ and $B\beta$, $Cov(A\hat{\beta}, B\hat{\beta}) = \sigma^2 A(X^T X)^- B^T$, $Var(A\hat{\beta}) = \sigma^2 A(X^T X)^- A^T$.

Proof
$$\exists A_*$$
 and B_* s.t. $A = A_*X$, $B = B_*X$. Since $\hat{Y} = X\hat{\beta} = X(X^TX)^-X^TY = P_XY$, we have $\operatorname{Var}(\hat{Y}) = P_X\operatorname{Var}(Y)P_X^T = \sigma^2P_X$. Hence $\operatorname{Cov}(A\hat{\beta},B\hat{\beta}) = \operatorname{Cov}(A_*\hat{Y},B_*\hat{Y}) = A_*\operatorname{Var}(\hat{Y})B_*^T = \sigma^2A_*P_XB_*^T = A(X^TX)^-B^T$. \square

• Theorem 4.2 (Gauss-Markov) If $c^T\beta$ is estimable, then $c^T\hat{\beta}$ has the minimum variance among all linear unbiased estimates. (Best Linear Unbiased Estimator, BLUE)

Proof Let
$$l^TY$$
 be an unbiased estimator of $c^T\beta$. Hence, $c = X^Tl$, so that $c^T\hat{\beta} = l^TX\hat{\beta} = l^T\hat{Y}$. Thus, $\operatorname{Var}(l^TY) - \operatorname{Var}(c^T\hat{\beta}) = l^T[\operatorname{Var}(Y) - \operatorname{Var}(\hat{Y})]l = \sigma^2 l^T(I - P_X)l \ge 0$.

- Residual $\hat{\epsilon} = Y \hat{Y} = (I P_X)Y \in \mathcal{C}(X)^{\perp}$, $\mathbb{E}\hat{\epsilon}(I P_X)\mathbb{E}Y = (I P_X)X\beta = 0$, $\operatorname{Var}(\hat{\epsilon}) = \sigma^2(I P_X)^2 = \sigma^2(I P_X)$, $\operatorname{Cov}(\hat{\epsilon}, \hat{Y}) = \operatorname{Cov}((I P_X)Y, P_XY) = (I P_X)(\sigma^2I)P_X = 0$.
- Residual sum of squares (RSS): $||\hat{\epsilon}||^2 = \hat{\epsilon}^T \hat{\epsilon} = Y^T (I P_X) Y$. $\mathbb{E}(RSS) = \mathbb{E} \operatorname{tr}(\hat{\epsilon} \hat{\epsilon}^T) = \operatorname{tr}(\mathbb{E}(\hat{\epsilon} \hat{\epsilon}^T)) = \operatorname{tr}\{(I P_X)\sigma^2\} = \sigma^2 (n \operatorname{rank}(X))$. $\hat{\sigma}^2 = \frac{RSS}{n-r}$ is an unbiased estimator of σ^2 .
- Restricted LSE: $Y = X\beta + \epsilon$, $\mathbb{E}\epsilon = 0$, $\operatorname{Var}(\epsilon) = \sigma^2 I$, $\operatorname{rank}(X) = r$, $X = (X_1, X_2)$, $\beta = (\beta_1^T, \beta_2^T)^T$. $H_0 : \beta_2 = \beta_2^* \text{ vs } \beta_2 \neq \beta_2^*$. β_2 is estimable $\Rightarrow \operatorname{rank}(X_2) = s$, $\operatorname{rank}(X_1) = r s$ and $\mathcal{C}(X_1) \cap \mathcal{C}(X_2) = \{0\}$.

Proof
$$\exists C \in \mathbb{R}^{q \times n}$$
 s.t. $(0_{s \times (p-s)}, I_s) = CX = (CX_1, CX_2)$. Hence $\operatorname{rank}(X_2) = s$ and $\operatorname{rank}(X_1) = r - s$. If $X_1b_1 = X_2b_2$ then $b_2 = CX_1b_1 = 0$.

- Under $H_0: \beta_2 = \beta_2^*, \ Y = X_1\beta_1 + X_2\beta_2 + \epsilon$ becomes $Y X_2\beta_2^* = X_1\beta_1 + \epsilon$. Restricted normal equation: $X_1^T X_1 \tilde{\beta}_1 = X_1^T (Y X_2\beta_2^*). \ \mathcal{C}(X_1) \subset \mathcal{C}(X) \Rightarrow P_{X_1}P_X = P_{X_1}. \text{ Since } P_XY = \hat{Y} = X\hat{\beta} = X_1\hat{\beta}_1 + X_2\beta_2, \text{ we have } X_1\tilde{\beta}_1 = P_{X_1}(Y X_2\beta_2^*) = P_{X_1}(P_XY X_2\beta_2^*) = P_{X_1}(X_1\hat{\beta}_1 + X_2(\hat{\beta}_2 \beta_2^*)) = X_1\hat{\beta}_1 + P_{X_1}X_2(\hat{\beta}_2 \beta_2^*).$ Let $\tilde{Y} = X_1\tilde{\beta}_1 + X_2\beta_2^*$ the fitted valued of the restricted model. $\hat{Y} \tilde{Y} = X_1\hat{\beta}_1 + X_2\hat{\beta}_2 [X_1\hat{\beta}_1 + P_{X_1}X_2(\hat{\beta}_2 \beta_2^*)] X_2\beta_2^* = (I P_{X_1})X_2(\hat{\beta}_2 \beta_2^*).$
- Theorem 4.3 $C(Z_2) = C(X_1)^{\perp} \cap C(X)$, where $Z_2 = (I P_{X_1})X_2 = X_2 P_{X_1}X_2$.

Proof
$$\mathcal{C}(Z_2) \subset \mathcal{C}(I - P_{X_1}) = \mathcal{C}(X_1)^{\perp}$$
. Since $\mathcal{C}(P_{X_1}X_2) \subset \mathcal{C}(X_1)$, $\mathcal{C}(Z_2) = \mathcal{C}(X_2 - P_{X_1}X_2) \subset \mathcal{C}(X)$. Conversely, if $X = X_1b_1 + X_2b_2 \in \mathcal{C}(X)$ and $X \perp \mathcal{C}(X_1)$, then $X = (I - P_{X_1})X = (I - P_{X_1})X_2b_2 \in \mathcal{C}(Z_2)$.

Corollary 4.1 $P_{Z_2} = P_X - P_{X_1}$.

• Now $\hat{Y} - \tilde{Y} = (I - P_{X_1})[X_2(\hat{\beta}_2 - \beta_2^*) + X_1\hat{\beta}_1] = (I - P_{X_1})(P_XY - X_2\beta_2^*) = (I - P_{X_1})P_X(Y - X_2\beta_2^*) = P_{Z_2}(Y - X_2\beta_2^*).$ In view of $\mathbb{R}^n = \mathcal{C}(X)^\perp \oplus \mathcal{C}(X)$, $Y - \tilde{Y} = (Y - \hat{Y}) + (\hat{Y} - \tilde{Y})$. $RSS_{H_0} = ||Y - \tilde{Y}||^2 = ||Y - \hat{Y}||^2 + ||\hat{Y} - \tilde{Y}||^2$, $RSS = ||Y - \hat{Y}||^2 = ||(I - P_X)Y||^2 = ||(I - P_X)(Y - X_2\beta_2^*)||^2$. $RSS_{H_0} - RSS = ||\hat{Y} - \tilde{Y}||^2 = ||Z_2(\hat{\beta}_2 - \beta_2^*)||^2 = ||P_{Z_2}(Y - X_2\beta_2^*)||^2$.