Лабораторная работа №2. Программирование разветвленных алгоритмов

Содержание отчета:

- 1. Задание
- 2. Блок-схема
- 3. Текст программы
- 4. Ручной расчет контрольного примера
- 5. Машинный расчет контрольного примера

Задание 2

Написать программу для вычисления выражения

Вычислить		I
3a - b + 4	где	$a = \min(x1, x2, x3, x4)$
$y = \frac{1}{a^2b + 3\sqrt{b}}$		$b = \max(x1, x2, x3 + x4)$
$3a^2 + 5$		$a = \min(x1 - x2, x3 + x4)$
	где	$b = \max(x1 + x2, x3, x4)$
8-5 <i>a</i>	БПО	$a = \min(x1, x2, \max(x3, x4))$
$y = \frac{1}{b^2 + 1}$	тде	$b = \max(x1, x2, x3, x4)$
$4\sqrt{a}+b$	где	$a = \min(x1 + x2, x3, x4)$
$y = \frac{b+7}{b+7}$		$b = \max(x1, \min(x2, x3), x4)$
7a-1	где	$a = \min(x1, x1 + x3, x2 + x4)$
$\sqrt{b} + 5$		$b = \max(x1 + x2, x3, x4)$
$y = \frac{3a^2 - a + 4}{a^2 + a + 4}$		$a = \min(x1, x2, x3, x4)$
$y - \frac{1}{2-b+a}$	тде	$b = \max(x1, x2, x3 + x4)$
8a+5	где	$a = \min(x1, \max(x2, x3), x4)$
$y - \frac{1}{b^2 + a + 3}$		$b = \max(\min(x1, x2), x3, x4)$
$v = \frac{a - 3b + 7}{a - 3b + 7}$	где	$a = \min(x1, x2, \max(x3, x4))$
y-b+2a+1		$b = \max(x1, \min(x2, x3, x4))$
$v = \frac{3a - 4}{}$	гле	$a = \min(x1, x2, x3, x4)$
<i>y</i> – <i>b</i> +1	тде	$b = \max(x1, x2, x3 + x4)$
$9a-\sqrt{b+1}$	где	$a = \min(x1, \max(x2, x3), \max(x4, x5))$
$y-\frac{a+2b-3}{a+2b-3}$		$b = \max(x1, x2 + x3, x4 - x5)$
$v = \frac{11a - 4b + 5}{}$	гле	$a = \min(x1, x2 + x3, x4 - x5)$
	1 де	$b = \max(x1 + x2, x2 + x3, x4)$
$v = \frac{3b - 4}{}$	P	$a = \min(x1 - x2, x3, x4 + x5)$
$\int_{a^2}^{b} - \frac{1}{a^2} + \sqrt{a+1}$	тдс	$b = \max(x1, \min(x2, x3, x4))$
$3a-4b\overline{-5\sqrt{ab}}$	DH2	$a = \min(\max(x1, x2), \max(x3, x4))$
$y = {2b+1}$	тде	$b = \max(x1 - x2, x3 + x4, x5)$
$\sqrt{7ab-4a}$	где	$a = \min(x1, x2, x3, x4)$
$\nabla uv + 1$		$b = \max(x1, x2, x3 + x4)$
$3a^2 - 4b^2$	где	$a = \min(x1 + x2, x3, x4 - x5)$
$y - \frac{1}{\sqrt{b} + 4}$		$b = \max(x1, \min(x2, x3), x4, x5)$
	$v = \frac{7ab - 4a}{}$	$y = \frac{3a^2 + 5}{\sqrt{b + 2}}$ где $y = \frac{8 - 5a}{b^2 + 1}$ где $y = \frac{4\sqrt{a} + b}{b + 7}$ где $y = \frac{7a - 1}{\sqrt{b} + 5}$ где $y = \frac{3a^2 - a + 4}{2 - b + a}$ где $y = \frac{8a + 5}{b^2 + a + 3}$ где $y = \frac{a - 3b + 7}{b + 2a + 1}$ где $y = \frac{3a - 4}{b + 1}$ где $y = \frac{9a - \sqrt{b + 1}}{a + 2b - 3}$ где $y = \frac{11a - 4b + 5}{b + \sqrt{1 + a}}$ где $y = \frac{3b - 4}{a^2 + \sqrt{a + 1}}$ где $y = \frac{3a - 4b - 5\sqrt{ab}}{2b + 1}$ где $y = \frac{7ab - 4a}{\sqrt{ab} + 1}$ где

	1		
16	$y = \frac{2b - 4a^2}{\sqrt{ab + 2} + 1}$	где	$a = \min(x1, x2, x3) + \max(x2, x3, x4)$
	$y - \sqrt{ab+2} + 1$	тдс	$b = \max(x1, \min(x2, x3 + x4))$
17	$y = \sqrt{\frac{3a - 4b}{2b + a}}$	770	$a = \min(\max(x1, x2), x3, x4, x5)$
	$y = \sqrt{\frac{2b+a}{2b+a}}$	где	$b = \max(x1, x2, \min(x3, x4), x5)$
18	$y = \frac{\sqrt{4a+b-1}}{\sqrt{2b+a}+3}$	7770	$a = \min(x1 + x2, x2 + x3, x3 + x4)$
	▼ · · · · · ·	где	$b = \max(\min(x1, x2, x3), \min(x1, x3 + x4))$
19	$y = \frac{3\sqrt{ab} - 4\sqrt{a+b}}{b+1}$	EH0	$a = \min(x1 - x2, x1 + x2, x4)$
	$y = \frac{b+1}{b+1}$	где	$b = \max(x1, \min(x2, x3, x4), x3 + x4)$
20	$y = \frac{3a^2 - 4\sqrt{b}}{ab + 5}$	EHO	$a = \min(x1, x2, x3, \max(x4, x5), x6)$
		где	$b = \max(x1 + x2, x3 - x4, x5 + x6)$
21	$y = \frac{3\sqrt{ab} - 4a}{3b + 5a}$	EHO	$a = \min(\max(x1, x4), \max(x2, x3), x4)$
	$y - {3b + 5a}$	где	$b = \max(x1 + x2, x2 + x3, x4)$
22	$y = \frac{7ba - 4\sqrt{b}}{2b + \sqrt{1+a}}$	F.T.0	$a = \min(x1, x2, x3, x5)$
	$y = \frac{1}{2b + \sqrt{1+a}}$	где	$b = \max(x1, \min(x2, x3), x4)$
23	$y = \frac{a - 3b + 2}{\sqrt{b} - \sqrt{a}}$	где	$a = \min(x1, x2) + \min(x3, x4)$
	V	тде	$b = \max(x1, x2 + x3, x4)$
24	$y = \frac{3a^2 - \sqrt{3b+1}}{ab+5}$	БПА	$a = \min(x1, x2 + x3, x4, x5)$
	$y - {ab+5}$	где	$b = \max(\min(x1, x2), x3, x4 + x5)$
25	$y = \frac{7b - 4a^2 - 1}{\sqrt{b^3 - 1} + 1}$	гле	$a = \min(x1 - x2, x3 + x4)$
	$y-\frac{\sqrt{b^3-1}+1}{\sqrt{b^3-1}+1}$	где	$b = \max(x1 - x2, \min(x2, x3), x3 - x4)$
26	$y = \frac{9a^3 - 4a^2}{2b + 11}$	БПО	$a = \min(x1 + x2, x2 + x3, x4)$
		где	$b = \max(x1, x2, \min(x3, x4))$
27	$y = \frac{3a^2 - 4b^3}{b + 3a}$	гле	$a = \min(x1 - x2, x3, x4)$
	y - b + 3a	где	$b = \max(x1, x2, \min(x1, x3 + x4))$