MPEI 2021-2022

Variáveis aleatórias multidimensionais

Motivação

Trabalhamos frequentemente com grupos de variáveis relacionadas

- Peso e altura das pessoas
- Número de temporais em vários meses

X1 = número de temporais em Junho (0, 1, ou 2)

120 million photoreceptors

X2 = número de temporais em Julho (0, 1, ou 2)

Variáveis aleatórias multidimensionais

- Frequentemente temos situações em que os resultados possíveis são conjuntos de várias variáveis aleatórias, X1, X2,..
- Dois tipos de casos:
 - Experiência aleatória produz várias saídas
 - Repetições da experiência aleatória (com uma única saída)
- A um vector n-dimensional em que as componentes são as variáveis aleatórias X_1, X_2, \dots, X_n chama-se **vector** aleatório ou v.a. Vectorial

$$\mathbf{X} = (X_1 \quad X_2 \quad \dots \quad X_n)$$

Vector aleatório

- Um vector aleatório X é uma função que atribui um vector de números reais a todos os resultados ζ em S, o espaço de amostragem da experiência aleatória.
- Exemplo: $\mathbf{X} = (H \ W \ A)$ com

 $H(\zeta)$ = altura do estudante ζ em metros, $W(\zeta)$ = peso do estudante ζ em Kg, e $A(\zeta)$ = idade do estudante ζ em anos.

Como caracterizar estas variáveis aleatórias com n-dimensões ?

Funções de distribuição conjuntas

 Para lidar com estas situações envolvendo 2 ou mais variáveis, definem-se, estendendo as definições para uma variável:

- Função massa de probabilidade conjunta
- Função de distribuição cumulativa conjunta
- Função de densidade de probabilidade conjunta

Função probabilidade de massa conjunta

Para duas variáveis discretas, X e Y:

•
$$p_{X,Y}(i,j) = P(X=i \land Y=j)$$

Exemplo: X= dado 1; Y= dado 2

$$p_{X,Y}(1,1) = p_{X,Y}(1,2) = \dots = p_{X,Y}(6,6) = 1/36$$

Exemplo (continuação)

Representação 3D

Função massa de probabilidade conjunta

 A expressão generaliza para mais de 2 variáveis:

•
$$p_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P(X_1 = x_1,X_2 = x_2,...,X_n = x_n)$$

• Uma função em \mathbb{R}^n , não-negativa

•
$$\sum_{x_1,x_2,...,x_n} p_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = 1$$

função de distribuição acumulada conjunta

- Tal como no caso escalar, pode definir-se uma função de distribuição acumulada conjunta
 - Simples extensão
- Para duas variáveis, X e Y:

$$F_{X,Y}(x,y) = P(X \le x \land Y \le y)$$

Para n variáveis:

$$F_{X_1,...,X_n}(x_1,...,x_n) = P(X_1 \le x_1,...,X_n \le x_n).$$

No caso discreto é uma função em terraços ...

Exemplo 1

Caso discreto

 Y_1 = número de temporais em Junho (0, 1, ou 2)

 Y_2 = número de temporais in Julho (0, 1, ou 2)

Tabela com probabilidades

Distribuição de cada uma das variáveis

- A distribuição de cada uma das variáveis pode ser obtida da distribuição conjunta
- Por exemplo, no caso com duas variáveis X e Y:

•
$$F_X(a) = P(X \le a)$$

• =
$$P(X \le a, Y < \infty)$$

• =
$$F_{X,Y}(a, \infty)$$

- De forma similar:
- $F_Y(b) = P(Y \le b) = F_{X,Y}(\infty, b)$

Funções de probabilidade marginais

 Também se pode obter facilmente a função de massa de probabilidade de cada uma das variáveis

As fórmulas para o caso discreto são:

•
$$p_X(x) = \sum_{\mathcal{Y}} p_{X,Y}(x, y)$$

•
$$p_Y(y) = \sum_{x} p_{X,Y}(x,y)$$

Funções de probabilidade marginais

• No caso de duas variáveis (X e Y):

 Para obter a função massa de probabilidade de X somamos as linhas apropriadas da tabela representando a função de probabilidade conjunta

De forma similar obtém-se Y somando as colunas

Exemplo 1

Para o exemplo introduzido antes...

Julho (y ₂)						
Junho (y1)		0	1	2	$p(y_1)$	
	0	0.05	0.1	0.15	0.30	
	1	0.1	0.15	0.20	0.45	
	2	0.15	0.05	0.05	0.25	
	$p(y_2)$	0.30	0.30	0.40	1.00	

$$p_{Y1}(y1) = \begin{array}{c|c} y_{I} & p_{YI}(y_{I}) \\ \hline 0 & 0.30 \\ \hline 1 & 0.45 \\ \hline 2 & 0.25 \\ \hline \text{TOTAL} & 1.00 \end{array}$$

y_2	$p_{Y2}(y_2)$
0	0.30
1	0.30
2	0.40
TOTAL	1.00

Generalização

- O caso de n variáveis discretas é uma generalização simples
- Se $X_1, X_1, ..., X_n$ são variáveis aleatórias discretas no mesmo espaço de amostragem com função massa de probabilidade conjunta:

$$p_{X_1,...X_n}(x_1,...x_n) = P(X_1 = x_1,...,X_n = x_n)$$

• A função de probabilidade marginal para $X_{\mathbf{1}}$ é:

$$p_{X_1}(x_1) = \sum_{x_2,...,x_n} p_{X_1,...X_n}(x_1,...x_n)$$

• A função (bidimensional) para a função de probabilidade marginal de X_1 e X_2 : $p_{X_1X_2}(x_1,x_2) = \sum p_{X_1,...,X_n}(x_1,x_2,x_3,...,x_n)$

 $x_3,...,x_n$

Independência

 Duas variáveis aleatórias X e Y são independentes se, para qualquer a, b se verificar

•
$$P(X \le a, Y \le b) = P(X \le a)P(Y \le b)$$

• Ou seja, são independentes se os eventos $E_a = \{X \le a\}$ e $E_b = \{Y \le b\}$ são independentes

Independência

 Em termos de função de distribuição acumulada conjunta:

X e Y são independentes se e só se

$$F_{X,Y}(a,b) = F_X(a)F_Y(b)$$

qualquer que sejam a e b

- Também, no caso discreto, X e Y são independentes se e só se $p(x,y) = p_X(x) \; p_Y(y)$
- E no caso contínuo $f_{XY}(x,y) = f_X(x) f_Y(y)$

Generalização – independência de n variáveis aleatórias

• n variáveis X_1, X_2, \dots, X_n são independentes se

$$f_{X_1,X_2,\dots,X_n}(x_1,x_2,\dots,x_n) = \prod_{i=1}^n f_{X_i}(x_i), \quad \forall x_1,\dots,x_n \in \mathbb{R}$$

Exemplo 1

• Y_1 e Y_2 são independentes ?

Julho (y_2)						
Junho (y1)		0	1	2	$P(y_1)$	
	0	0.05	0.1	0.15	0.30	
	1	0.1	0.15	0.20	0.45	
	2	0.15	0.05	0.05	0.25	
	$f(y_2)$	0.30	0.30	0.40	1.00	

Julho (y ₂)						
Junho (y ₁)		0	1	2	$p(y_I)$	
	0	0.09			0.30	
	1				0.45	
	2				0.25	
	$p(y_2)$	0.30	0.30	0.40	1.00	

Esperança matemática

Extensão das definições

- Os momentos de ordem j k das variáveis X, Y definem-se como sendo,
- Caso discreto:

$$E[X^{j}Y^{k}] = \sum_{m} \sum_{n} x_{m}^{j} y_{n}^{k} p_{XY}(x_{m}, y_{n})$$

Caso contínuo:

$$E[X^{j}Y^{k}] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^{j}y^{k} f_{XY}(x,y) dx dy$$

- Se j=1 e k=0 ou j=0 e k=1 temos os valores médios de X e Y
- Se *j*=2 e *k*=0 ou *j*=0 e *k*=2 temos os valores quadráticos médios

• • •

 Os momentos centrais conjuntos de ordem j k das variáveis X, Y definem-se como:

$$E[(X - E[X])^{j}(Y - E[Y])^{k}]$$

 Para j=2 e k=0 ou j=0 e k=2 obtemos as variâncias de X e Y

Correlação

• O momento de ordem j=k=1, E[XY], é designado de correlação das variáveis X e Y

• Quando E[XY] = 0 as variáveis são ortogonais

E[XY] e Independência

Sendo X e Y independentes

$$E[XY] = E[X]E[Y]$$

• Demonstração (caso discreto):

$$E[XY] = \sum_{x,y} xy \, p_{X,Y}(x,y)$$

$$= \sum_{x,y} xy \ p_{X,Y}(x,y)$$

$$= \sum_{x,y} xy \ p(x)p_Y(y)$$

$$= \left[\sum_{x} x \ p_X(x)\right] \ \left[\sum_{y} y \ p_Y(y)\right]$$

$$= E[X]E[Y]$$

Covariância

 A covariância de duas variáveis X e Y é o seu momento central de ordem j= k= 1

- Ou seja E[(X E[X]) (Y E[Y])]
- Designa-se por Cov(X,Y)
- Cov(X,Y) = E[(X E[X])(Y E[Y])] = E[XY - XE[Y] - YE[X] + E[X]E[Y]] = E[XY] - 2E[X]E[Y] + E[X]E[Y]= E[XY] - E[X]E[Y]
- E[X] = 0 ou E[Y] = 0 $\Rightarrow Cov(X, Y) = E[XY]$

Covariância

• É uma generalização da Variância Cov(X,X) = E[(X - E[X])(X - E[X])]= Var(X)

 A covariância é uma medida de relação linear entre as variáveis aleatórias

 Se a relação for não linear, a covariância pode não ser sensível à relação.

Covariância e independência

- Se X e Y são independentes então Cov(X, Y) = 0
- "Demonstração":
- Como vimos Cov(X,Y) = E[XY] E[X]E[Y]
- X e Y são independentes implica

$$E[XY] = E[X]E[Y]$$

Nota: o contrário não é verdadeiro pode ter-se Cov(*X,Y*)=0 e as variáveis não serem independentes

Propriedades da Covariância

- Cov(X,X) = Var(X)
- Cov(X,Y) = Cov(Y,X)
- Cov(cX,Y) = c Cov(X,Y)
- Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)

Demonstração:

$$= E[X(Y + Z)] - E[X]E[Y + Z] =$$

$$= E[XY] + E[XZ] - E[X]E[Y] - E[X]E[Z]$$

$$= E[XY] - E[X]E[Y] + E[XZ] - E[X]E[Z]$$

$$= Cov(X,Y) + Cov(X,Z)$$

• Generalização:
$$\operatorname{Cov}\left(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}(X_i, Y_j)$$

Covariância de *n* variáveis

• Se tivermos um vector de n variáveis aleatórias $Y = (Y_1, Y_2, ..., Y_n)$

•
$$Cov(Y) = \begin{bmatrix} Cov(Y_1, Y_1) & \cdots & Cov(Y_1, Y_n) \\ \vdots & \ddots & \vdots \\ Cov(Y_n, Y_1) & \cdots & Cov(Y_n, Y_n) \end{bmatrix}$$

$$\bullet = \begin{bmatrix} Var(Y_1) & \cdots & Cov(Y_1, Y_n) \\ \vdots & \ddots & \vdots \\ Cov(Y_1, Y_n) & \cdots & Var(Y_n) \end{bmatrix}$$

Exemplo

 Considere a seguinte distribuição conjunta de X e Y e calcule Cov(X, Y)

Cov(X,Y)=?

- E(X) = ?= $1 \times 0.3 + 3 \times 0.7 = 2.4$
- E(Y) = ?
- = $1 \times 0.3 + 2 \times 0.4 + 3 \times 0.3 = 2.0$
- Cov(X,Y) = E[(X-E[X]) (Y-E[Y])]
- = $(1-2,4)(1-2,0) \times 0,1 + (1-2,4)(2-2,0) \times 0,2$
- $+(3-2,4)(1-2,0) \times 0,2 + (3-2,4)(2-2,0) \times 0.2$
- $+(3-2,4)(3-2,0) \times 0.3 = 0.2$

Coeficiente de correlação

A coeficiente de correlação de duas variáveis X e
Y é:

$$\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \ \sigma_Y}$$

- Demonstra-se que $-1 \le \rho_{XY} \le 1$
- E que os valores extremos (1 e -1) se obtém para a relação linear Y = a X + b com a> 0 ou a <0, respectivamente

Coeficiente de correlação

• Se $\rho_{XY} = 0$ as variáveis dizem-se descorrelacionadas

- Como se viu, se X e Y são independentes, a sua covariância é nula e portanto são descorrelacionadas
 - Mas o contrário não é (necessariamente) verdadeiro

Exemplo de cálculo de ho_{XY}

x	у	P(x,y)
0	0	0,2
1	1	0,1
1	2	0,1
2	1	0,1
2	2	0,1
3	3	0,4
	SOMA	1,0

Cálculo de E[XY], E[X] e E[Y]

x	у	P(x,y)	xy P(x,y)	x P(x)	y P(y)	$x^2 P(x)$
0	0	0,2	0x0x0,2=0	0	0	0
1	1	0,1	1x1x0,1=0,1	0,1	0,1	0,1
1	2	0,1	0,2	0,1	0,2	0,1
2	1	0,1	0,2	0,2	0,1	0,4
2	2	0,1	0,4	0,2	0,2	0,4
3	3	0,4	3,6	1,2	1,2	3,6
	SOMA	1,0	4,5	1,8	1,8	4,6

Exemplo de cálculo de ho_{XY}

- $Var(X) = E[X^2] (E[X])^2 = 4,6 3,24 = 1,36$
- Var(Y) é igual à de X
- Cov(X,Y) = E[XY] E[X]E[Y]
- = 4,5 (1,8)(1,8) = 1,26
- Finalmente:

•
$$\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{1,26}{(\sqrt{1,36})(\sqrt{1,36})} = 0,926$$