Last name	
First name	

LARSON—OPER 731—CLASSROOM WORKSHEET 21

König's Theorem & Matroids		
König's Theorem		
1.	What is a <i>matching</i> in a graph, what is a <i>vertex cover</i> , what is a <i>bipartite graph</i> , and what is König's Theorem?	
2.	Represent finding a maximum matching in a bipartite graph as an integer programming problem and use total unimodularilty to show that the relaxation of this IP has integer solutions.	
3.	What does the dual of this IP model?	
4.	Use total unimodularilty to show that the relaxation of this dual IP has integer solutions. How does this prove König's Theorem?	

Matroids

5. Why, if you have a set Y of 3 linearly independent vectors in \mathbb{R}^3 and a set X of 2 linearly independent vectors, must it be the case that there is a vector $v \in Y$ such that $X \cup \{v\}$ is linearly independent?

6.	What is a matroid?
7.	What is a tree? What is a spanning tree in a graph?
8.	What can you say about the number of edges in a tree?
9.	What is a forest in a graph? What is a component of a graph? What is κ ? What can you say about the number of edges in a forest?
10.	Why, if the edges Y of a graph G induce a forest and the edges X of G induce a forest and $ Y > X $, must it be the case that there is an edge $e\in Y$ such that $X\cup\{e\}$ induces a forest in G ?