Experiment 8

Aditya Sawant Subject: DWM

Class: TE4 Roll no: 46 Batch: D

Aim: Implementation of Single Link Agglomerative Hierarchical Clustering method

Importing Necessary Libraries

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import scipy.cluster.hierarchy as shc
from scipy.spatial.distance import squareform, pdist
```

Creating Random Data

```
In [2]: a = np.random.random_sample(size = 7)
b = np.random.random_sample(size = 7)
print("a =", a)
print("\nb =", b)

a = [0.15463777 0.99601545 0.818494    0.07099782 0.75245598 0.1237946
    0.51349379]

b = [0.2794447    0.23999913    0.13585238    0.58296189    0.78808406    0.57313983
    0.55061228]
```

Creating Pandas Dataframe

```
In [3]: point = ['P1','P2','P3','P4','P5','P6','P7']
data = pd.DataFrame({'Point':point, 'a':np.round(a,2), 'b':np.round(b,2)})
data
```

Out[3]:

28
24
14
58
79
57
55
24 14 58

Point a b

```
In [4]: data = data.set_index('Point')

Out[4]:

Point
P1 0.15 0.28
P2 1.00 0.24
P3 0.82 0.14
P4 0.07 0.58
P5 0.75 0.79
P6 0.12 0.57
P7 0.51 0.55
```

Visualizing the data using a Scatter Plot.

```
In [5]:
    plt.figure(figsize=(8,5))
    plt.scatter(data['a'], data['b'], c='r', marker='.')
    plt.xlabel('Column a')
    plt.ylabel('column b')
    plt.title('Scatter Plot of x and y')
    for j in data.itertuples():
        plt.annotate(j.Index, (j.a, j.b), fontsize=15)
```


Calculating the distance matrix in Euclidean method using pdist

```
In [6]: dist = pd.DataFrame(squareform(pdist(data[['a','b']]), 'euclidean'), columns=data.index.values, index=data.index.values) dist
```

Out[6]:

	P1	P2	P3	P4	P5	P6	P7
P1	0.000000	0.850941	0.684471	0.310483	0.787464	0.291548	0.450000
P2	0.850941	0.000000	0.205913	0.990202	0.604152	0.939840	0.579828
P3	0.684471	0.205913	0.000000	0.869540	0.653758	0.821523	0.514004
P4	0.310483	0.990202	0.869540	0.000000	0.711688	0.050990	0.441022
P5	0.787464	0.604152	0.653758	0.711688	0.000000	0.667308	0.339411
P6	0.291548	0.939840	0.821523	0.050990	0.667308	0.000000	0.390512
P7	0.450000	0.579828	0.514004	0.441022	0.339411	0.390512	0.000000

Visualizing using a Dendrogram

```
In [7]: plt.figure(figsize=(12,5))
    plt.title("Dendrogram with Single Linkage")
    dend = shc.dendrogram(shc.linkage(data[['a', 'b']], method='single'), labels=data.index)
```

