

Nonlinear Programming:

Constrained NLP and IPOPT Solver

Assoc. Prof. Karl Ezra Pilario, Ph.D.

Process Systems Engineering Laboratory
Department of Chemical Engineering
University of the Philippines Diliman

Outline

- Introduction to NLP
- Necessary and Sufficient Conditions for Optimality
- Convex Programming
- Methods for Solving NLP
 - One-Dimensional, Unconstrained NLP
 - Multivariable, Unconstrained NLP
 - Zero-order, First-order, Second-order Methods
 - Constrained NLP

A Taxonomy of NLP Solvers

Zero-order Methods

Derivative-free, black-box

- Grid Search / Exhaustive
 Search
- Random Search
- Nelder-Mead Simplex
- Metaheuristic Search
 - Genetic Algorithms
 - Particle Swarm
 - Simulated Annealing
 - Differential Evolution
 - CMAES
- Bayesian Optimization / Surrogate-based

First-order Methods

Uses 1st derivative information

- Steepest Descent or Gradient Descent
- Stochastic Gradient Descent (SGD)
 - RMSProp, Adam, etc.
- Conjugate Gradient methods (e.g. Fletcher-Reeves)
- Coordinate Descent

Second-order Methods

Uses 1st and 2nd derivative information

- Newton's method
- Quasi-newton method (BFGS)
- Levenberg-Marquardt
- Trust Region Newton Methods
- Active Set and Interior-Point Methods
- Sequential Quadratic Programming (SQP)
- IPOPT

Multivariable, Unconstrained NLP

Norm over all data points, i = 1, 2, ..., N

- Newton's method
- Quasi-newton Method (BFGS)
- Levenberg-Marquardt
- Trust Region Newton Methods
- Active Set and Interior-Point Methods
- Sequential Quadratic Programming (SQP)
- IPOPT

Levenberg-Marquardt Method

$$\min f(x_k)$$

This is the **Newton** update:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k [\mathbf{H}(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k)$$

$$\min f(x_k) = \frac{1}{2} ||r(x)||^2$$

Least-squares objective

$$\nabla f(\mathbf{x}_k) = [\mathbf{J}_r(\mathbf{x}_k)]^T r(\mathbf{x})$$

where
$$[\boldsymbol{J}_r(\boldsymbol{x}_k)]_{ij} = \left[\frac{\partial r_i}{\partial x_j}\right]$$
 (Jacobian)

Steps:

- Make an initial guess, x_0
- Solve the search direction, s_k :

$$(\mathbf{J}_r^T \mathbf{J}_r + \beta \mathbf{I}) \mathbf{s}_k = -[\mathbf{J}_r(\mathbf{x}_k)]^T r(\mathbf{x})$$

• Calculate step size α by minimizing:

$$g_k(\alpha) = f(\mathbf{x}_k + \alpha \mathbf{s}_k)$$

• Update $x_{k+1} = x_k + \alpha s_k$

*The LM algorithm is useful in least-squares curve fitting and parameter estimation.

Ensures that $H(x_k)$ is positivedefinite and wellconditioned.

Use $\boldsymbol{H}(\boldsymbol{x}_k) \approx \boldsymbol{J_r}^T \boldsymbol{J_r}$

(Levenberg-Marquardt algorithm)

Use
$$\boldsymbol{H}(\boldsymbol{x}_k) \approx \boldsymbol{J_r}^T \boldsymbol{J_r} + \beta \boldsymbol{I}$$
 (Levenberg)

or
$$H(x_k) \approx I_r^T I_r + \beta \operatorname{diag}(I_r^T I_r)$$
 (Marquardt)

 β = damping parameter

Multivariable, Unconstrained NLP

- Newton's method
- Quasi-newton Method (BFGS)
- Levenberg-Marquardt
- Trust Region Newton Methods
- Active Set and Interior-Point Methods
- Sequential Quadratic Programming (SQP)

Trust Region Newton Methods

Example:

Minimize
$$f(x)$$
 from $x_0 = (-1.2, 1.0)$:
 $f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$

$$\min_{\boldsymbol{p}_k} f(\boldsymbol{x}_k) + \nabla f(\boldsymbol{x}_k)^T \boldsymbol{p}_k + \frac{1}{2} \boldsymbol{p}_k^T \boldsymbol{H}_k \boldsymbol{p}_k$$
 Trust region subproblem

such that
$$\|\boldsymbol{p}_k\| \leq \Delta_k$$

Approx. Newton solution: $\mathbf{p}_k = -[\mathbf{H}(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k)$ Approx. Steepest descent solution: $\mathbf{p}_k = -\nabla f(\mathbf{x}_k)$

Step 1: Make an initial guess, x_0 .

Step 2: Solve the trust-region subproblem to get p_k . \longrightarrow e.g. Dogleg

Step 3: Check if the approximation is good:

• If yes, accept p_k and maybe enlarge Δ_k .

• If no, reject p_k and shrink Δ_k .

Step 4: Update: $x_{k+1} = x_k + p_k$

method

Outline

- Introduction to NLP
- Necessary and Sufficient Conditions for Optimality
- Convex Programming
- Methods for Solving NLP
 - One-Dimensional, Unconstrained NLP
 - Multivariable, Unconstrained NLP
 - Zero-order, First-order, Second-order Methods
 - Constrained NLP

Multivariable, Constrained NLP

Theory of Lagrange Multipliers

Minimize: f(x)

Subject to: $h_i(x) = 0$ $i \in \mathcal{E}$

 $g_j(x) \le 0$ $j \in \mathcal{I}$

and $x_k^L \le x_k \le x_k^U$ k = 1, 2, ..., n

If x^* is a local minimizer and the *gradients of the active constraints* satisfy linear independence (LICQ), then there exists a set of scalars (Lagrange multipliers), λ_i $(i \in \mathcal{E})$ and σ_j $(j \in \mathcal{I})$ such that:

Karush-Kuhn-Tucker (KKT) Conditions

$$\nabla f(\mathbf{x}^*) + \sum_{i \in \mathcal{E}} \lambda_i \nabla h_i(\mathbf{x}^*) + \sum_{j \in \mathcal{I}} \sigma_j \nabla g_j(\mathbf{x}^*) = 0$$

or $\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\sigma}^*) = 0$ (stationarity)

$$h_i(x^*) = 0$$
 (primal $g_i(x^*) \le 0$ feasibility)

$$\lambda_i \geq 0,$$
 $i \in \mathcal{E}$ (dual $\sigma_j \geq 0,$ $j \in \mathcal{I}$ feasibility)

$$\sigma_j g_j(x^*) = 0, \quad j \in \mathcal{I} \quad \text{(complementarity)}$$

*LICQ = Linear independence constraint qualification

Multivariable, Constrained NLP

- Newton's method
- Quasi-newton Method (BFGS)
- Levenberg-Marquardt
- Trust Region Newton
 Methods
- Active Set and Interior-Point Methods
- Sequential Quadratic Programming (SQP)
- IPOPT

Active Set and Interior Point Methods

Minimize: f(x)

Subject to: $h_i(x) = 0$ i = 1, 2, ..., l

 $g_j(\boldsymbol{x}) \leq 0 \qquad j = 1, 2, \dots, m$

and $x_k^L \le x_k \le x_k^U \quad k = 1, 2, ..., n$

Active Set Methods

- Popular since the 1970s
- Idea: Guess an initial active set of constraints, then add / delete using gradient and Lagrange multiplier information until optimality is detected.
- **Suitable for:** small number of constraints
- Usage: MATLAB SQP, Python scipy SLSQP, etc.

Interior Point Methods

- Popular since the 1990s
- Idea: Guess an initial x inside the feasible region, then stay strictly inside as you iterate until a boundary is approached.
- **Suitable for:** Large-scale, sparse problems
- Usage: IPOPT, MOSEK, other modern solvers

Multivariable, Constrained NLP

- Newton's method
- Quasi-newton Method (BFGS)
- Levenberg-Marquardt
- Trust Region Newton Methods
- Active Set and Interior-Point Methods
- Sequential Quadratic Programming (SQP)
- IPOPT

Sequential Quadratic Programming (SQP)

Minimize: f(x)

Subject to:
$$h_i(x) = 0$$
 $i = 1, 2, ..., l$

$$g_j(x) \le 0$$
 $j = 1, 2, \dots, m$

and
$$x_k^L \le x_k \le x_k^U \quad k = 1, 2, \dots, n$$

- In Python's scipy.optimize, the SLSQP algorithm (Sequential Leastsquares QP) uses line search (BFGS) + active-set solver.
- In MATLAB's fmincon, available algorithms include sqp, activeset, and interior-point.

SQP Subproblem

Quadratic

Linear

$$\min_{\boldsymbol{d}_{x},\boldsymbol{d}_{\lambda},\boldsymbol{d}_{\sigma}} f(\boldsymbol{x}_{k}) + \nabla f(\boldsymbol{x}_{k})^{T} \boldsymbol{d}_{x} + \frac{1}{2} \boldsymbol{d}_{x}^{T} \nabla_{xx}^{2} \mathcal{L}(\boldsymbol{x}_{k},\boldsymbol{\lambda}_{k},\boldsymbol{\sigma}_{k}) \boldsymbol{d}_{x}$$

Subject to: $\boldsymbol{h}(\boldsymbol{x}_k) + \nabla \boldsymbol{h}(\boldsymbol{x}_k)^T \boldsymbol{d}_{\lambda} = 0$

$$\boldsymbol{g}(\boldsymbol{x}_k) + \nabla \boldsymbol{g}(\boldsymbol{x}_k)^T \boldsymbol{d}_{\sigma} \le 0$$

Step 1: Make an initial guess, x_0 , λ_0 , σ_0 .

Step 2: Solve the SQP subproblem for $d_{x,\lambda,\sigma}$.

Step 3: Update $x_{k+1} = x_k + d_x$,

$$\boldsymbol{\lambda}_{k+1} = \boldsymbol{\lambda}_k + \boldsymbol{d}_{\lambda},$$

$$\boldsymbol{\sigma}_{k+1} = \boldsymbol{\sigma}_k + \boldsymbol{d}_{\sigma}.$$

where:

$$\mathcal{L}(\boldsymbol{x}_k, \boldsymbol{\lambda}_k, \boldsymbol{\sigma}_k) = f(\boldsymbol{x}_k) + \boldsymbol{\lambda}_k^T \boldsymbol{h}(\boldsymbol{x}_k) + \boldsymbol{\sigma}_k^T \boldsymbol{g}(\boldsymbol{x}_k)$$

is the corresponding Lagrangian of the original NLP.

 λ_k , σ_k are Lagrange multipliers.

- Solve using Active Set or Interior-Point.
- **Line-search SQP:** Use quasi-newton on *d*.
- **Trust-region SQP:** Use trust-region on d.

IPOPT (Interior Point OPTimizer)

https://github.com/coin-or/lpopt

 Designed to find local solutions of optimization problems of the form:

$$\min_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x})$$

s.t.
$$g_L \leq g(x) \leq g_U$$

 $x_L \leq x \leq x_U$

- The functions f(x) and g(x) can be nonlinear, nonconvex, but must be twice differentiable.
- Main steps:
 - Initialization
 - Check convergence
 - Compute search direction: Damped Newton
 - Solve for step size: Filter Line Search
 - Update
- A. Wächter and L. T. Biegler, On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming, *Mathematical Programming* 106(1), pp. 25-57, 2006.

Barrier Method

Transform the NLP by adding a log-penalty, then decrease the value of *barrier parameter*, μ , to approach the original NLP.

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \quad \Longrightarrow \quad \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) - \mu \sum_{i} \ln(g(\mathbf{x}_i))$$

s.t.
$$g(x) \ge 0$$

IPOPT (Interior Point OPTimizer)

https://github.com/coin-or/lpopt

• Effect of the barrier term:

Barrier Method

Transform the NLP by adding a log-penalty, then decrease the value of *barrier parameter*, μ , to approach the original NLP.

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \quad \Longrightarrow \quad \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) - \mu \sum_{i} \ln(g(\mathbf{x}_i))$$

s.t.
$$g(x) \ge 0$$

Source: https://www.youtube.com/watch?v=bJ0Kkf4u9bo

© 2025 Karl Ezra S. Pilario, PhD.

Common Pitfalls of NLP Solvers

- Termination at nonoptimal point.
 - A. Typically, due to poor derivative accuracy.
 - B. No good search directions found.
 - C. Successive objective function values converge, but KKT conditions are not satisfied.
- Termination at non feasible point.
 - A. Problem may have conflicting constraints
 - B. Initial guess is poorly located
 - C. Functions may have discontinuities / undefined regions.
- 3. Solver takes a long time
 - A. Possibly no solution exists
 - B. Solver may not be appropriate
 - C. Tolerances are too small

Some workarounds:

- Avoid using functions with undefined regions such as sqrt(-x), log(x), etc. Use x^2, exp(x), etc. instead.
- 2. Make sure initial guess is well-informed by physical intuition and it is feasible.
- 3. Try lowering tolerance or changing the initial guess if solver is stuck.
- 4. Scaling the variables to similar magnitudes improves numerical stability.
- 5. Try solving a smaller problem first, then add constraints or variables incrementally.

Class Exercises

Problem 1 Minimize the Himmelblau function within a circle:

$$\min(x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$
s. t. $x_1^2 + x_2^2 \le 9$

Problem 2 [Rao (2009). Engineering Optimization: Theory and Practice]

The layout of a processing plant consisting of a pump (P), a water tank (T), a compressor (C), and a fan (F), is shown. The locations of the various units in terms of (x,y) coordinates are also indicated. It was decided to add a new unit, a heat exchanger (H), to the plant. To avoid congestion, it was decided to locate H within a rectangular area defined by $-15 \le x \le 15$ and $-10 \le y \le 10$. Find the location of H that minimizes the sum of its Euclidean distances from the existing units, P, T, C, and F.

Class Exercises

Problem 3 [EHL Problem 8.41]

For the purposes of planning, you are asked to determine the optimal heat exchanger areas for the sequence of 3 exchangers as shown.

Exchanger	U	Area	Duty
1	120	A_1	Q_1
2	80	A_2	Q_2
3	40	A_3	Q_3

Given that $mC_p=10^5\frac{Btu}{hr^\circ F}$, find the temperatures T_1,T_2,T_3 , such that ΣA_i is a minimum. Assume that the following design equation is valid for ends 1 and 2 in each heat exchanger:

$$Q = UA \frac{\Delta T_1 + \Delta T_2}{2}$$

A Taxonomy of NLP Solvers

Zero-order Methods

Derivative-free, black-box

- Grid Search / Exhaustive
 Search
- Random Search
- Nelder-Mead Simplex
- Metaheuristic Search
 - Genetic Algorithms
 - Particle Swarm
 - Simulated Annealing
 - Differential Evolution
 - CMAES
- Bayesian Optimization / Surrogate-based

First-order Methods

Uses 1st derivative information

- Steepest Descent or Gradient Descent
- Stochastic Gradient Descent (SGD)
 - RMSProp, Adam, etc.
- Conjugate Gradient methods (e.g. Fletcher-Reeves)
- Coordinate Descent

Second-order Methods

Uses 1st and 2nd derivative information

- Newton's method
- Quasi-newton method (BFGS)
- Levenberg-Marquardt
- Trust Region Newton Methods
- Active Set and Interior-Point Methods
- Sequential Quadratic Programming (SQP)
- IPOPT