Worksheet 3

Problem 1. General view of GMM [Bi] Ex. 9.9

Recall that The expected value of the complete-data log likelihood function for GMM is given by

$$\mathbb{E}_{\mathbf{Z}}\left[\ln p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})\right] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left\{\ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\right\}.$$

With a fixed $\gamma(z_{nk})$, find the maximizer μ_k, Σ_k for $\mathbb{E}_{\mathbf{Z}}[\ln p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})]$.

Problem 2. K-means as the limit of EM cf. [Bi] Ch.9.3.2

Consider the EM algorithm where the covariance matrices of the mixture components are all given by $\Sigma_k = \epsilon I, \ k = 1, \cdots, K$.

- 1. Write $p(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$.
- 2. Show that $\gamma(z_{nk}) \to r_{nk}$ as $\epsilon \to 0$, where $r_{nk} = 1$ if $k = \operatorname{argmin}_j \|\mathbf{x}_n \boldsymbol{\mu}_j\|^2$ and $r_{nk} = 0$ otherwise.
- 3. Show that as $\epsilon \to 0$,

$$\mathbb{E}_{\mathbf{Z}}\left[\ln p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})\right] \to -\frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2 + \text{const.}$$

Problem 3. Rayleigh quotient

The Rayleigh quotient for a real symmetric matrix A and a nonzero vector v is given by

$$\rho(\boldsymbol{v}, \boldsymbol{A}) = \frac{\boldsymbol{v}^\mathsf{T} \boldsymbol{A} \boldsymbol{v}}{\boldsymbol{v}^\mathsf{T} \boldsymbol{v}} \ .$$

Prove that the $\rho(v, A) \in [\lambda_{\min}, \lambda_{\max}]$ where λ_{\min} and λ_{\max} are the smallest and largest eigenvalues of A, respectively. For what v does $\rho(v, A)$ achieve the min and the max, respectively?

Problem 4. Graph Laplacian

- 1. Prove that all the eigenvalues of the graph Laplacian L = D W are non-negative.
- 2. Prove that all the eigenvalues of the normalized graph Laplacian $L_{\text{sym}} = I D^{-1/2}WD^{-1/2}$ are in [0,2].

Problem 5. One-class SVM

The optimization problem for one-class SVM is

$$\min \ R^2 + C \sum_{n=1}^N \xi_n$$
 s.t. $\|\phi(\boldsymbol{x}_n) - \boldsymbol{a}\|^2 \le R^2 + \xi_n$ for all n $\xi_n \ge 0$ for all n

Write the Lagrangian and express it using only the Lagrange multipliers and the kernel $K(\boldsymbol{x}_n, \boldsymbol{x}_m) = \phi(\boldsymbol{x}_n)^\mathsf{T} \phi(\boldsymbol{x}_m)$.

Problem 6. RKHS cf. [HaTF] Ex.5.16

Recall that $K(x,y)=\sum_{j=1}^{\infty}\gamma_j\phi_j(x)\phi_j(y)$ for which we can order $\gamma_1\geq\gamma_2\geq\cdots$ and $\{\phi_j\}_{j=1}^{\infty}$ is orthonormal: $\langle\phi_i,\phi_j\rangle=\delta_{ij}$. Consider the ridge regression problem

$$\min_{\{c_j\}_{j=1}^{\infty}} \sum_{n=1}^{N} \left(y_n - \sum_{j=1}^{\infty} c_j \phi_j(x_n) \right)^2 + \lambda \sum_{j=1}^{\infty} \frac{c_j^2}{\gamma_j} ,$$

1. Explain why the problem is equivalent to

$$\min_{\alpha} (y - K\alpha)^{\mathsf{T}} (y - K\alpha) + \lambda \alpha^{\mathsf{T}} K\alpha$$
.

2. Assume $K(x,y) = \sum_{m=1}^M h_m(x)h_m(y)$ and $M \geq N$. Prove:

$$\boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{V} \boldsymbol{D}_{\gamma}^{1/2} \boldsymbol{\phi}(\boldsymbol{x})$$

where $\boldsymbol{h}(x) = [h_1(x), \cdots, h_M(x)]^\mathsf{T}$ and $\boldsymbol{\phi}(x) = [\phi_1(x), \cdots, \phi_M(x)]^\mathsf{T}$; \boldsymbol{V} is an $M \times M$ orthogonal matrix and $\boldsymbol{D}_\gamma = \mathrm{diag}(\gamma_1, \cdots, \gamma_M)$. What are \boldsymbol{V} and \boldsymbol{D}_γ ? (Hint: $h_m = \sum_{j=1}^M \langle h_m, \phi_j \rangle \, \phi_j$).