Законы реляционной алгебры

Закон коммутативности декартова произведения отношений

 $R_1 \times R_2 = R_2 \times R_1$, здесь и далее R_1 и R_2 – экземпляры отношений.

Закон ассоциативности декартова произведения

$$(R_1 \times R_2) \times R_3 = R_1 \times (R_2 \times R_3)$$

Закон каскада проекций

Допустим, $(a_1...a_n)\subseteq (b_1...b_n)$, a_i , b_i — это атрибуты отношения R, тогда $\Pi_{a1...an}(\Pi_{b1...bn}(R))=\Pi_{a1...an}(R)$

Закон каскада селекций

Допустим, $F=f_1 \Lambda f_2$ тогда $\sigma_F(R)=\sigma_{f1}(\sigma_{f2}(R))$

Закон перестановки проекции и селекции

- 1) Допустим, в условия поиска F входят атрибуты только из множества $a_1...a_n$, тогда $\Pi_{a1...an}(\sigma_F(R)) = \sigma_F(\Pi_{a1...an}(R))$
- 2) Допустим, в условия поиска F входят атрибуты не только из множества $a_1...a_n$, но и из $b_1...b_n$, тогда $\Pi_{a1...an}(\sigma_F(R))=\Pi_{a1...an}(\sigma_F(\Pi_{a1...an,b1...bn}(R)))$

Селекция декартова произведения

Отношение f_l содержит атрибуты только из отношения R_l , тогда $\sigma_{fl}(R_l \times R_2) = \sigma_{fl}(R_l) \times R_2$.

Следствие:

пусть $F=f_1 \Lambda f_2$ и в f_1 входят атрибуты R_1 , а в f_2 входят из R_2 , тогда $\sigma_F(R_1 \times R_2) = \sigma_{fI}(R_1) \times \sigma_{f2}(R_2)$

Доказательство:

$$\sigma_{fl} \land_{f2} (R_1 \times R_2) = \sigma_{fl} (\sigma_{f2}(R_1 \times R_2)) = \sigma_{fl} (\sigma_{f2}(R_2 \times R_1)) = \\ = \sigma_{fl} (R_1 \times \sigma_{f2}(R_2)) = \sigma_{fl} (R_1) \times \sigma_{f2} (R_2) = \sigma_{fl} (R_1 \times \sigma_{f2}(R_2)) = \\ \sigma_{fl} (R_1 \times \sigma_{f2}(R_2)) = \sigma_{fl} (R_1) \times \sigma_{f2} (R_2) = \\ \sigma_{fl} (R_1 \times \sigma_{f2}(R_2)) = \sigma_{fl} (R_1 \times \sigma_{f2}(R_2)) = \\ \sigma_{fl} (R_1 \times \sigma_{f2}(R_2)) = \sigma_{fl} (R_1 \times \sigma_{f2}(R_2)) = \\ \sigma_{fl} (R_1 \times \sigma_{f2}(R_2)) = \sigma_{fl} (R_1 \times \sigma_{f2}(R_2)) = \\ \sigma_{fl} (R_1 \times \sigma_{f2}(R_2)) = \sigma_{fl} (R_1 \times \sigma_{f2}(R_2)) = \\ \sigma_{fl} (R_1 \times \sigma_{f2}(R_2)) = \sigma_{fl} (R_1 \times \sigma_{f2}(R_2)) = \\ \sigma_{fl} (R_1 \times \sigma$$

Закон перестановки селекции и объединения

$$\sigma_F(R_1 UR_2) = \sigma_F(R_1) U\sigma_F(R_2)$$

Закон перестановки селекции и разности отношений

$$\sigma_F(R_1-R_2)=\sigma_F(R_1)-\sigma_F(R_2)$$

Закон перестановки проекции и декартова произведения

 $b_1...b_n$ – это атрибуты отношения R_1 $c_1...c_k$ – это атрибуты отношения R_2 $\Pi_{b1...bn,c1...ck}(R_1 \times R_2) = \Pi_{b1...bn}(R_1) \times \Pi_{c1...ck}(R_2)$

Закон перестановки проекции и объединения

$$\Pi_{a1...an}(R_1 UR_2) = \Pi_{a1...an}(R_1) U\Pi_{a1...an}(R_2)$$