Projet Architecture et Codesign

Affichage VGA d'un signal audio et de sa FFT

Sommaire

- I Introduction
- II Gestion du projet
- III Présentation des composant et des simulations
- IV Apport du projet
- V Conclusion

Rappel du sujet

Introduction

Analyseur de spectre :

- IP I2S
- DDR
- DMA
- IP FFT
- IP VGA

Fonctionnement prévu du projet

Introduction

Technologies et outils :

- FPGA Zynq-7000
- VHDL
- DMA, DDR et AXI-Stream
- FFT IP Core

Contexte et enjeux

- Puissance d'un FPGA
- Optimisation de la gestion des données
- Combiner le FPGA et l'ARM Cortex A9
- FFT IP Core

Défis:

- Assurer la précision et la rapidité de la FFT
- Transferts rapide vers la mémoire et le VGA sans utiliser le processeur

Gestion du projet

Répartition des tâches :

~ Une personne → Une tâche / Un composant

Fonctionnement:

Prise d'informations \rightarrow Réalisation du composant \rightarrow Testbench

Gestion du projet

Présentation des composant

Réalisation et tests

AXI STREAM

4 signaux

- Ready
- Valid
- Data
- Last

From slave To slave

12S - Protocole

Protocole avec 4 fils

- MCLK
- BCLK
- LRCLK
- SDIN

24 bits de données par canal

12S - Implémentation

Choix de la valeurs des clocks

- $fs = 44.1 \, kHz$
- MCLK = 256 × fs
- BCLK = 64 × fs

Speed Mode	MCLK/LRCK Ratio	SCLK/LRCK Ratio	Input Sample Rate Range (kHz)
Single-Speed Mode	256x	64	4-24, 43-54
	512x	64	43-54
	384x	64	4-24, 43-54
	784x	64	43-54
Double-Speed Mode	128x	64	86-108
	256x	64	86-108
	192x	64	86-108
	384x	64	86-108

12S - Implémentation

12S - Implémentation

Trame de 32 bits Bit de poids fort pour différencier canal Gauche et Droite

Paquet de 512 trames

12S - Simulation

12S - Simulation

12S résumé architecture

FFT: Contrainte

Formatage FFT

Step = Fe/taille FFT

Lien FFT - VGA

VGA

1024x768, 60Hz 65.000 1024 24 136 160 768 3 6 29

VGA

[bare metal (C)]

J.

(AXI4-Lite → Registers)

J

-----MM2S -----

DDR ← DataMover (Read)

 \downarrow

AXI4-Stream Master → FIFO

-----S2MM ------

FIFO → AXI4-Stream Slave

 \downarrow

DataMover (Write) → DDR

Address Space Offset	Name	Description
00h	MM2S_DMACR	MM2SDMA Control register
04h	MM2S_DMASR	MM2SDMA Status register
08h	MM2S_CURDESC	MM2S Current Descriptor Pointer. Lower 32 bits of the address.
0Ch	MM2S_CURDESC_MSB	MM2S Current Descriptor Pointer. Upper 32 bits of address.
10h	MM2S_TAILDESC	MM2S Tail Descriptor Pointer. Lower 32 bits.
14h	MM2S_TAILDESC_MSB	MM2S Tail Descriptor Pointer. Upper 32 bits of address.
2Ch ²	SG_CTL	Scatter/Gather User and Cache
30h	S2MM_DMACR	S2MM DMA Control register
34h	S2MM_DMASR	S2MM DMA Status register
38h	S2MM_CURDESC	S2MM Current Descriptor Pointer. Lower 32 address bits
3Ch	S2MM_CURDESC_MSB	S2MM Current Descriptor Pointer. Upper 32 address bits.
40h	S2MM_TAILDESC	S2MM Tail Descriptor Pointer. Lower 32 address bits.
44h	S2MM_TAILDESC_MSB	S2MM Tail Descriptor Pointer. Upper 32 address bits.

```
Xil_Out32(DMA_BASE_ADDR + DMA_S2MM_STRIDE, 0x0);
Xil_Out32(DMA_BASE_ADDR + DMA_S2MM_LENGTH, 128);
uint32_t table_to_send[200] = {0x11, 0x22, 0x33};
uint32_t received_table[200] = {0x00, 0x00, 0x00};
uint32_t received_table[200] = {0x11, 0x22, 0x33};
```


Fonctionnement attendu :

Réception des données par le dongle I2S à une adresseprécise.

- \times uint32_t table_to_send[200] = {0x11, 0x22, 0x33};
- #define DMA_BASE_ADDR 0x40400000

Conclusion

- Limites et difficultés
- Projet presque finalisé
- Perspectives

Merci pour votre attention

