Höhere Analysis I

Sommersemester 2015

Prof. Dr. D. Lenz

Blatt 10

Abgabe Dienstag 07.07.2015

- (1) Sei (X, d) ein metrischer Raum. Der Vektorraum $C_0(X)$ ist definiert als die Menge aller stetigen Funktionen $f: X \to \mathbb{C}$, sodass für jedes $\varepsilon > 0$ eine kompakte Teilmenge $K_{\varepsilon} \subset X$ existiert mit $|f(x)| \leq \varepsilon$ für alle $x \notin K_{\varepsilon}$. Zeigen Sie die folgenden Aussagen.
 - (a) Für $X = \mathbb{R}$ ausgestattet mit der euklidischen Metrik gilt die Gleichheit

$$C_0(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{C} \mid f \text{ stetig mit } \lim_{x \to \pm \infty} f(x) = 0 \}.$$

(b) Für $X=\mathbb{N}$ mit der diskreten Metrik gilt die Gleichheit

$$C_0(\mathbb{N}) = \{ f : \mathbb{N} \to \mathbb{C} \mid \lim_{n \to \infty} f(n) = 0 \}.$$

- (2) Sei ν ein positives Maß und μ ein komplexes Maß auf dem Maßraum (X, \mathcal{A}) . Zeigen Sie, dass folgende Aussagen äquivalent sind.
 - (i) Es ist μ absolut stetig bezüglich ν .
 - (ii) Zu jedem $\varepsilon > 0$ existiert ein $\delta > 0$ mit $|\mu(E)| < \varepsilon$ falls $E \in \mathcal{A}$ und $\nu(E) < \delta$.
- (3) Sei ν ein positives Maß auf dem Maßraum $(X, \mathcal{A}), h \in \mathcal{L}^1(X, \nu)$ und $S \subset \mathbb{C}$ eine abgeschlossene Teilmenge mit

$$\frac{1}{\nu(E)} \int_E h d\nu \in S$$

für alle meßbaren E mit $\nu(E) > 0$. Zeigen Sie, dass h fast sicher nur Werte in S annimmt.

- (4) Ein lineares Funktional $\varphi : \ell^{\infty}(\mathbb{N}) \to \mathbb{R}$ heißt Banachlimes, wenn φ folgende drei Eigenschaften erfüllt:
 - (i) Es gilt $\varphi \circ S = \varphi$ für den Linksshift $S(x_1, x_2, \dots) := (x_2, x_3, \dots)$,
 - (ii) Sind alle $x_k \geq 0$, so ist $\varphi(x) \geq 0$,
 - (iii) Für die Folge e = (1, 1, ...) ist $\varphi(e) = 1$.

Zeigen Sie:

- (a) Ist $\varphi : \ell^{\infty}(\mathbb{N}) \to \mathbb{R}$ ein Banachlimes, so gilt:
 - (1) Für alle $x = (x_n) \in \ell^{\infty}(\mathbb{N})$ ist $\liminf x_n \leq \varphi(x) \leq \limsup x_n$.
 - (2) φ ist stetig mit Norm $\|\varphi\| = 1$.
 - (3) φ ist nicht multiplikativ, d.h. es existieren $x,y\in\ell^\infty(\mathbb{N})$ mit $\varphi(x)\varphi(y)\neq\varphi(x\cdot y)$.
- (b) Es gibt Banachlimiten.

<u>Hinweis:</u> Betrachten Sie den Untervektorraum $U := \{x \in \ell^{\infty}(\mathbb{N}) : \lim x_n \text{ existiert}\}$ und setzen Sie ein geeignetes lineares Funktional bezüglich dem sublinearen Funktional $p(x) := \lim \sup \frac{1}{n} \sum_{i=0}^{n-1} x_i$ fort.

Zusatzaufgabe.

Sei (X, \mathcal{A}) ein Maßraum und μ ein komplexes Maß auf \mathcal{A} . Definiere die Abbildung $|\mu|$: $\mathcal{A} \to [0, \infty]$ durch

$$|\mu|(E) := \sup \left\{ \sum_{n \in \mathbb{N}} |\mu(E_n)| \mid (E_n) \text{ Zerlegung von } E \right\}, \qquad E \in \mathcal{A}.$$

Zeigen Sie, dass $|\mu|$ eine σ -additive Abbildung ist.