

Optimization of Logistics Systems / Logistics Systems Planning I 4. Exercise

Exercise 4.1 (Kruskal's algorithm)

Given the street network in the following figure:

The local energy supplier wants to build a new district heating network. To do this, all nodes in the city must be connected to the district heating network. The energy supplier produces at node 1 and would like to supply all nodes with energy. What does a minimum-cost energy network look like if the cost of installing a line is proportional to the weights on the edges of the graph? Solve the problem using Kruskal's algorithm!

Solution:

Kruskal's algorithm:

- 1. $T = \emptyset$
- 2. Terminate if |T| = |V| 1
- 3. Choose minimal-cost edge e which has not yet been considered
- 4. If $(V, T \cup \{e\})$ contains no circle, set $T := T \cup \{e\}$. Go to 2!

Sort the edges according to non-decreasing weights:

Edge (i, j)	Weight	yes/no	Edge (i, j)	Weight	yes/no
(4,8)	0	yes	(10,11)	7	yes
(7,11)	2	yes	(6,9)	7	yes
(4,5)	3	yes	(5,9)	8	no
(2,4)	4	yes	(8,9)	9	no
(11,13)	5	yes	(3,7)	9	yes
(8,12)	5	yes	(6,3)	10	no
(4,6)	6	yes	(1,2)	10	yes FINISH!
(6,7)	6	yes	(9,12)	11	no

In the figure, edge weights correspond to the **order in which the edges are added to the MST**.

Exercise 4.2 (MST)

The following graph is given, the edges marked in bold represent a spanning tree:

- 1. Use the path optimality conditions to prove that the graph is not an MST. Give the corresponding path and edges.
- 2. Use the cut optimality conditions to prove that the graph is not an MST. Give the corresponding path and edges.
- 3. Construct an MST for the graph.

Solution:

1. Path optimality: For example, non-tree edge $\{2,5\}$ with cost 3 and associated tree path 2-4-3-5. Edge $\{4,3\}$ of the tree has higher cost of 5.

2. Cut optimality: Remove edge $\{3,5\}$ with cost 3, then the two resulting components are defined by the node sets $\{1,5\}$ and $\{2,3,4,6\}$. The edge $\{5,6\}$ from the cut set has smaller cost of 1.

- 3. Kruskal: (3,6) yes, (5,6) yes, (1,5) yes, (2,5) yes, (3,5) no, (1,3) no, (2,4) yes
- \Rightarrow Edge weights correspond to the **order in which the edges are added to the MST**.

