ECUACIONES DIFERENCIALES ORDINARIAS 521218

PRACTICA 1. Generalidades y EDO de 1er Orden (primera parte)

Problema 1. Verifique que la función y = y(x) es una solución de la ecuación diferencial.

a)
$$y = x^2$$
, $y' = 2y/x$;

b)
$$y = e^x + 2e^{-2x}$$
, $y' + 2y = 3e^x$;

c)
$$y = e^{-x^2}$$
, $y' = -2xy$

d)
$$y = e^{-5x}$$
, $y'' + 10y' + 25y = 0$; (*)

e)
$$y = \ln(x), y' = e^{-y}; (*)$$

f)
$$y = \cos(3x) + \sin(3x) - 5$$
, $y'' + 9y = -45$

a)
$$y = x^2$$
, $y' = 2y/x$; b) $y = e^x + 2e^{-2x}$, $y' + 2y = 3e^x$; c) $y = e^{-x^2}$, $y' = -2xy$; d) $y = e^{-5x}$, $y'' + 10y' + 25y = 0$; (*) e) $y = \ln(x)$, $y' = e^{-y}$; (*) f) $y = \cos(3x) + \sin(3x) - 5$, $y'' + 9y = -45$; g) $y = e^{x^2} \int_0^x e^{-t^2} dt + e^{x^2}$, $y' - 2xy = 1$.

$$y - 2xy = 1.$$

Problema 2. Verifique que la función y = y(x) definida por intervalos, es una solución de la ecuación diferencial.

a)
$$y(x) = \begin{cases} -x^2 & \text{si } x < 0 \\ x^2 & \text{si } x \ge 0 \end{cases}$$
 solución de

$$xy'(x) - 2y(x) = 0.$$

b)
$$y(x) = \begin{cases} 0 & \text{si } x < 0 \\ x^3 & \text{si } x \ge 0 \end{cases}$$
 solución de

$$(y'(x))^2 - 9xy(x) = 0.$$

Problema 3. Encuentre los valores de α para que $y(x) = e^{\alpha x}$ sea solución de

a)
$$y'(x) + 5y(x) = 0$$
; (*) b) $y''(x) = y'(x) + y(x)$; c) $2y'''(x) = y'(x) + y(x)$

b)
$$y''(x) = y'(x) + y(x)$$
;

c)
$$2y'''(x) = y'(x) + y(x)$$

Problema 4. En cada una de las (EDO) siguientes, establezca la región (o regiones posibles) donde quede garantizada

- a) la existencia de al menos una solución
- b) la existencia y unicidad de la solución.

(i)
$$y' = 2x + y$$
;

(ii)
$$y^2 + x^2y' = 0$$
; (*)

(iii)
$$y' = x^2 - y^2$$

(iv)
$$y' = x^2 + y^2$$

(i)
$$y' = 2x + y$$
; (ii) $y^2 + x^2y' = 0$; (*) (iii) $y' = x^2 - y^2$; (iv) $y' = x^2 + y^2$; (v) $y' = \frac{2y - x}{x}$; (*) (vi) $y' = (y - 1)x$.

(vi)
$$y' = (y - 1)x$$

En todos los casos, considere conocida (y adecuada) la condición inicial $y(x_0) = y_0$.

Problema 5. Encuentre la solución general de la E.D.O.

- a) $y' = 5 \operatorname{sen}(8x)$; b) $y'' = e^{4x} + \cos(3x)$; (*) c) y' = -2y; d) $xy' y = y^3$; e) $y' = y^3 \operatorname{sen}(2x)$; (*) f) $y' = (y^2 + 2y)/x$

Problema 6. Encuentre la solución del problema de valor inicial indicando la región en que la solución es única

- a) $y' = x^3$, con y(2) = 5; b) y' = 8y, con y(1) = 3;
- c) $y' = \sqrt[4]{y}$, con y(1) = 0; (*) d) xy' = 2y, con y(-1) = -1; (*) e) $y' = x^2y^2 + y^2 + x^2 + 1$, con y(0) = 2.

Problema 7. Considere el siguiente problema de valor inicial:

$$y'(x) = \sqrt{|y(x)|}, \text{ con } y(0) = 0$$

con y = y(x), para todo $x \ge 0$.

- a) Usando el método de separación de variables pruebe que $y(x) = \frac{1}{4}x^2$ es solución del (PVI).
- b) Compruebe que $y(x) \equiv 0$ también es solución del (PVI). Como es posible que haya dos soluciones distintas a pesar del teorema de existencia y unicidad?
- c) Compruebe que cualquiera sea a > 0,

$$y(x) = \begin{cases} 0 & \text{si } 0 \le x < a \\ \frac{1}{4}(x-a)^2 & \text{si } x \ge a \end{cases}$$

también es solución. Deduzca que hay una infinidad de soluciones.

(*) Problemas a resolver en clases de Práctica con el Prof. Ayudante.

06/08/07

JMS/CMG/jms