SL Rules

Modus Ponens $(\rightarrow E)$

$$\begin{array}{c} P \rightarrow Q \\ P \\ Q \end{array}$$

Conjunction Introduction $(\land I)$

Р
Q
$(P \wedge Q)$

Conjunction Elimination ($\wedge E$)

$$\begin{bmatrix} (P \wedge Q) \\ P \\ Q \end{bmatrix}$$

Disjunction Introduction $(\lor I)$

$$-\frac{(\mathsf{P})}{\mathsf{P}\vee\mathsf{Q}}$$

Disjunction Elimination $(\vee E)$

$$\begin{bmatrix} P \lor Q \\ \neg P \\ Q \end{bmatrix}$$

Biconditional Elimination $(\leftrightarrow E)$

$$\begin{bmatrix} (\mathsf{P} \leftrightarrow \mathsf{Q}) \\ \mathsf{P} \to \mathsf{Q} \\ \mathsf{Q} \to \mathsf{P} \end{bmatrix}$$

Negation Elimination $(\neg E)$

Hypothetical Rules

Reiteration (R)

Conditional Introduction $(\rightarrow I)$

Reductio ad Absurdum(RAA)

Quantifier Rules

Universal Introduction $(\forall I)$

- (1) a does not occur in an open assumption
- (2) a does not occur in $\forall \chi \Phi \chi$

Universal Elimination $(\forall E)$

$$\triangleright \left| \begin{array}{c} \forall \chi \Phi \chi \\ \Phi \alpha \end{array} \right|$$

Existential Introduction $(\exists I)$

$$\triangleright \left| \begin{array}{c} \Phi \alpha \\ \exists \chi \Phi \chi \end{array} \right|$$

Existential Elimination $(\exists E)$

provided that

- (1) α does not occur in an open assumption
- (2) α does not occur in $\exists \chi \Phi \chi$
- (3) α does not occur in Ψ

Quantifier Negation (QN):

$$\neg \forall \chi \Phi \chi \equiv \exists \chi \neg \Phi \chi \\ \neg \exists \chi \Phi \chi \equiv \forall \chi \neg \Phi \chi$$

Identity Rules

Identity Introduction (=I)

$$\hat{\alpha}=\hat{\alpha}$$

Identity Elimination (=e)

$$\begin{vmatrix} \alpha = \beta \\ \Phi \alpha \\ \Phi \beta \end{vmatrix}$$

¹Not a hypothetical rule but often used together.