WHAT IS CLAIMED:

1. A compound of Formula (I):

$$A^{2} \xrightarrow{N} A^{1} R^{1} R^{2}$$

$$O \xrightarrow{N} A^{1} R^{1} R^{2}$$

$$O \xrightarrow{N} M W$$

$$(I)$$

or a stereoisomer, pharmaceutically acceptable salt form or prodrug thereof, wherein:

 $^{\prime}$ A¹ is C₁-C₃ alkylene substituted by 0-2 C₁-C₄ alkyl;

10

5

$$A^2$$
 is $-C(=0)R^{9b}$, $-S(=0)R^{9b}$, $-S(=0)_2R^{9b}$, $-CONHR^{9b}$, $-S(=0)_2NHR^{9b}$, $-C(=0)OR^{9b}$; $-A^3-R^{9a}$; $-A^3-A^4-R^{9a}$; $-A^3-A^4-A^5-R^{9a}$; or

15 $-A^3-A^4-A^5-R^9a$; or $-A^3-A^4-A^5-A^6-R^9a$.

/ W is selected from the group:

25 $-C(=O) CF_2 CF_3$, -C(=O) H, and $-C(=O) W^1$;

```
/ W<sup>1</sup> is OR<sup>8</sup> or -NR<sup>11</sup>R<sup>11</sup>a.
   /Q is selected from the group:
           -(CR^{10}R^{10}C)_{m}-Q^{1}
          -(CR^{10}R^{10}C)_{m}-Q^{2},
5
           C_1-C_4 alkyl substituted with Q^1,
           C_2-C_4 alkenyl substituted with Q^1,
           C_2-C_4 alkynyl substituted with O^1,
           an amino acid residue,
           -A^7-A^8, and
10
           -A7 - A8 - A9:
   / m is 1, 2, 3, or 4;
15 / 0<sup>1</sup> is selected from the group:
          -CO_2R^{11}, -SO_2R^{11}, -SO_3R^{11}, -P(O)_2R^{11}, -P(O)_3R^{11};
           aryl substituted with 0-4 Q^{1a}; and
           5-6 membered heterocyclic group consisting of carbon
              atoms and 1-4 heteroatoms selected from the group:
20
              O, S, and N; optionally saturated, partially
              unsaturated or unsaturated; and said 5-6 membered
             heterocyclic group is substituted with 0-4 Q<sup>1a</sup>;
   /Q^{1a} is H, F, Cl, Br, I, -NO_2, -CN, -NCS, -CF_3, -OCF_3,
          -CO_2R^{19}, -C(=O)NR^{19}R^{19}a, -NHC(=O)R^{19}, -SO_2R^{19},
25
          -SO_2NR^{19}R^{19}a, -NR^{19}R^{19}a, -OR^{19}, -SR^{19}, C_1-C_4 alkyl,
          C1-C4 alkoxy, C1-C4 haloalkyl, or C1-C4 haloalkoxy;
   /0^2 is -x-NR^{12}-z, -NR^{12}-y-z, or -x-NR^{12}-y-z:
```

```
' X is -C(=0) -, -S -, -S(=0) -, -S(=0) 2-, -P(0) -, -P(0) 2-, or
          -P(O)3-;
  / Y is -C(=0) -, -S -, -S(=0) -, -S(=0) 2 -, -P(0) -, -P(0) 2 -, or
          -P(0)3-;
  / Z is selected from the group:
          C1-C4 haloalkyl;
          C1-C4 alkyl substituted with 0-3 Za;
          C2-C4 alkenyl substituted with 0-3 Za;
10
          C2-C4 alkynyl substituted with 0-3 Za;
          C3-C10 cycloalkyl substituted with 0-5 Zb;
          arvl substituted with 0-5 Zb;
          5-10 membered heterocyclic group consisting of carbon
15
             atoms and 1-4 heteroatoms selected from the group:
             O, S, and N; optionally saturated, partially
             unsaturated or unsaturated; and said 5-10 membered
             heterocyclic group is substituted with 0-4 Zb;
          an amino acid residue;
          -A^7-A^8, and
20
          -A7 - A8 - A9:
   /Za is selected from the group:
          H, F, Cl, Br, I, -NO<sub>2</sub>, -CN, -NCS, -CF<sub>3</sub>, -OCF<sub>3</sub>,
          -\text{CO}_2\text{R}^{20}, -\text{C}_{(=0)}\text{NR}^{20}\text{R}^{20}a, -\text{NHC}_{(=0)}\text{R}^{20}, -\text{NR}^{20}\text{R}^{20}a,
25
          -OR^{20}, -SR^{20}, -S(=0)R^{20}, -SO_2R^{20}, -SO_2NR^{20}R^{20}a, C_1-C_4
          alkyl, C1-C4 haloalkyl, C1-C4 haloalkoxy;
          C3-C10 cycloalkyl substituted with 0-5 Zb;
          C3-C10 carbocyle substituted with 0-5 Zb;
```

aryl substituted with 0-5 Zb; and

ļ#

```
5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group:

O, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-4 Z<sup>b</sup>;
```

```
/ Z<sup>b</sup> is selected from the group:
    H, F, Cl, Br, I, -NO2, -CN, -NCS, -CF3, -OCF3,
        -CO2R<sup>20</sup>, -C(=0)NR<sup>20</sup>R<sup>20</sup>a, -NHC(=0)R<sup>20</sup>, -NR<sup>20</sup>R<sup>20</sup>a,

10    -OR<sup>20</sup>, -SR<sup>20</sup>, -S(=0)R<sup>20</sup>, -SO2R<sup>20</sup>, -SO2NR<sup>20</sup>R<sup>20</sup>a, C1-C4
    alkyl, C1-C4 haloalkyl, C1-C4 haloalkoxy;
    C3-C10 cycloalkyl substituted with 0-5 Z<sup>C</sup>;
    c3-C10 carbocyle substituted with 0-5 Z<sup>C</sup>;
    aryl substituted with 0-5 Z<sup>C</sup>; and

15    5-10 membered heterocyclic group consisting of carbon
    atoms and 1-4 heteroatoms selected from the group:
    0, S, and N; optionally saturated, partially
    unsaturated or unsaturated; and said 5-10 membered
    heterocyclic group is substituted with 0-4 Z<sup>C</sup>;
```

/Z^c is H, F, Cl, Br, I, -NO₂, -CN, -NCS, -CF₃, -OCF₃, $-CO_{2}R^{20}, -C(=O)NR^{20}R^{20a}, -NHC(=O)R^{20}, -NR^{20}R^{20a},$ $-OR^{20}, -SR^{20}, -S(=O)R^{20}, -SO_{2}R^{20}, -SO_{2}NR^{20}R^{20a}, C_{1}-C_{4}$ alkyl, C₁-C₄ haloalkyl, or C₁-C₄ haloalkoxy;

/R¹ is selected from the group: H, F;

C1-C6 alkyl substituted with 0-3 R^{1a};

C2-C6 alkenyl substituted with 0-3 R^{1a};

C2-C6 alkynyl substituted with 0-3 R^{1a}; and

C3-C6 cycloalkyl substituted with 0-3 R^{1a};

```
/R<sup>1a</sup> is selected at each occurrence from the group:
          C1, F, Br, I, CF3, CHF2, OH, =0, SH, -\text{CO}_2\text{R}^{1\text{b}}, -\text{SO}_2\text{R}^{1\text{b}},
          -SO_3R^{1b}, -P(O)_2R^{1b}, -P(O)_3R^{1b}, -C(=O)_NHR^{1b},
          -NHC(=0)R^{1b}, -SO_2NHR^{1b}, -OR^{1b}, -SR^{1b}, C_3-C_6
5
          cycloalkyl, C1-C6 alkoxy, -S-(C1-C6 alkyl);
          C_1-C_4 alkyl substituted with 0-3 R^{1c};
          aryl substituted with 0-5 R^{1c};
          -0-(CH<sub>2</sub>)<sub>n</sub>-aryl substituted with 0-5 R<sup>1c</sup>;
          -S-(CH_2)_n-aryl substituted with 0-5 R<sup>1c</sup>; and
10
          5-10 membered heterocyclic group consisting of carbon
             atoms and 1-4 heteroatoms selected from the group:
             O, S, and N; optionally saturated, partially
             unsaturated or unsaturated; and said 5-10 membered
             heterocyclic group is substituted with 0-3 R1c;
15
  /n is 0, 1 or 2;
  /R1b is H;
          C1-C4 alkyl substituted with 0-3 R<sup>1c</sup>;
20
          C_2-C_4 alkenyl substituted with 0-3 R^{1c};
          C_2-C_4 alkynyl substituted with 0-3 R^{1c};
          C_3-C_6 cycloalkyl substituted with 0-5 R^{1C};
          aryl substituted with 0-5 R^{1c};
          aryl-C_1-C_4 alkyl substituted with 0-4 R^{1c}; or
25
          5-6 membered heterocyclic group consisting of carbon
             atoms and 1-4 heteroatoms selected from the group:
             O, S, and N; optionally saturated, partially
             unsaturated or unsaturated; and said 5-10 membered
             heterocyclic group is substituted with 0-4 R<sup>1c</sup>;
30
```

```
/ R<sup>1c</sup> is selected at each occurrence from the group:  C_{1}\text{-C4 alkyl, Cl, F, Br, I, OH, SH, -CN, -NO}_{2}, \text{-OR}^{1d}, \\ -C(=0)\text{OR}^{1d}, \text{-NR}^{1d}\text{R}^{1d}, \text{-SO}_{2}\text{R}^{1d}, \text{-SO}_{3}\text{R}^{1d}, \text{-C}(=0)\text{NHR}^{1d}, \\ -\text{NHC}(=0)\text{R}^{1d}, \text{-SO}_{2}\text{NHR}^{1d}, \text{-CF}_{3}, \text{-OCF}_{3}, \text{C}_{3}\text{-C6 cycloalkyl,} \\ \text{phenyl, and benzyl;}
```

 $^{\prime}\,\text{R}^{1d}$ is selected at each occurrence from the group: H, C1-C4 alkyl, phenyl and benzyl;

10

- / R^2 is selected from the group: H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₄ cycloalkyl, and C₃-C₄ cycloalkyl(C₁-C₄ alkyl)-;
- 15 /alternatively, R^1 and R^2 can be combined to form a 4-7 membered cyclic group consisting of carbon atoms; substituted with 0-2 R^{14} ;

 $/R^3$ is selected from the group: R^4 ,

- 20 $-(CH_2)_p-NH-R^4$,
 - $-(CH_2)_{p}-NHC(=0)-R^4$,
 - $-(CH_2)_{p}-C(=0)NH-R^4$,
 - $-(CH_2)_p-C(=0)O-R^4$,
 - $-(CH_2)_p-C(=0)C(=0)-R^4$,
- 25 $-(CH_2)_{p}-C(=0)C(=0)NH-R^4$,
 - $-(CH_2)_p$ -NHC (=0) NH-R 4 ,
 - $-(CH_2)_p$ -NHC(=0)NHC(=0)-R⁴,
 - $-(CH_2)_{D}-NHS(=0)_{2}-R^{4}$,
 - $-(CH_2)_p-S(=0)_2NH-R^4$,

```
-(CH_2)_{D}-C(=0)-R^4,
           -(CH<sub>2</sub>)<sub>p</sub>-O-R<sup>4</sup>, and
           -(CH_2)_{p}-S-R^4;
 5 /p is 0, 1, or 2;
  / R^4 is selected from the group:
           C_1-C_6 alkyl substituted with 0-3 R^{4a};
           C2-C6 alkenyl substituted with 0-3 R4a;
           C_2-C_6 alkynyl substituted with 0-3 R^{4a};
10
           C3-C10 cycloalkyl substituted with 0-4 R4b;
           C3-C10 carbocycle substituted with 0-4 R4b;
           aryl substituted with 0-5 R^{4b};
           aryl-C1-C4 alkyl substituted with 0-5 R4b; and
15
           5-10 membered heterocyclic group consisting of carbon
                 atoms and 1-4 heteroatoms selected from the
                 group: O, S, and N; optionally saturated,
                 partially unsaturated or unsaturated; and said 5-
                 10 membered heterocyclic group is substituted
                 with 0-4 \text{ R}^{4b}:
20

ho_{\mathrm{R}^{4a}} is, at each occurrence, independently selected from:
          H, F, Cl, Br, I, -NO<sub>2</sub>, -CN, -NCS, -CF<sub>3</sub>, -OCF<sub>3</sub>,
           =0, OH, -CO_2H, -C (=NH) NH_2, -CO_2R^{11}, -C (=O) NR^{11}R^{11}a,
           -NHC(=0)R^{11}, -NR^{11}R^{11}a, -OR^{11}a, -SR^{11}a, -C(=0)R^{11}a,
25
           -S(=0)R^{11a}, -SO_2R^{11}, -SO_2NR^{11}R^{11a}, -NHC(=NH)NHR^{11},
           -C(=NH)NHR^{11}, =NOR^{11}, -NR^{11}C(=O)OR^{11}a,
           -NR^{11}C(=0)NR^{11}R^{11}a, -NR^{11}SO_2NR^{11}R^{11}a, -NR^{11}SO_2R^{11}a,
          -OP(0)(OR^{11})_2;
```

C1-C4 alkyl substituted with 0-3 R^{4b};

C2-C4 alkenyl substituted with 0-3 R^{4b};

C2-C4 alkynyl substituted with 0-3 R^{4b};

C3-C7 cycloalkyl substituted with 0-4 R^{4c};

5 C3-C10 carbocycle substituted with 0-4 R^{4c};

aryl substituted with 0-5 R^{4c}; and

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: 0, S, and N; optionally saturated,

partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-3 R^{4c};

/R^{4b} is, at each occurrence, independently selected from: H, F, Cl, Br, I, -NO2, -CN, -NCS, -CF3, -OCF3, =0, OH, 15 $-CO_2H$, $-C(=NH)NH_2$, $-CO_2R^{11}$, $-C(=O)NR^{11}R^{11a}$. $-NHC(=0)R^{11}$, $-NR^{11}R^{11}a$, $-OR^{11}a$, $-SR^{11}a$, $-C(=0)R^{11}a$. $-S(=0)R^{11}a$, $-SO_2R^{11}$, $-SO_2NR^{11}R^{11}a$, $-NHC(=NH)NHR^{11}$, $-C(=NH)NHR^{11}$, $=NOR^{11}$, $-NR^{11}C(=O)OR^{11}a$, $-OC(=O)NR^{11}R^{11}a$, $-NR^{11}C(=O)NR^{11}R^{11}a$, $-NR^{11}SO_2NR^{11}R^{11}a$. 20 $-NR^{11}SO_2R^{11a}$, $-OP(O)(OR^{11})_2$; C_1-C_4 alkyl substituted with 0-3 R^{4c} ; C_2 - C_4 alkenyl substituted with 0-3 R^{4c} ; C_2 - C_4 alkynyl substituted with 0-3 R^{4C} ; C3-C6 cycloalkyl substituted with 0-4 R4d; 25 aryl substituted with $0-5 R^{4d}$; and 5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated or

unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-3 R^{4d} ;

```
/R^{4c} is, at each occurrence, independently selected from:
         H, F, Cl, Br, I, -NO2, -CN, -NCS, -CF3, -OCF3, =0, OH,
         -CO_2H, -C(=NH)NH_2, -CO_2R^{11}, -C(=O)NR^{11}R^{11}a,
         -NHC(=0)R^{11}, -NR^{11}R^{11}a, -OR^{11}a, -SR^{11}a, -C(=0)R^{11}a.
         -S(=0)R^{11}a, -SO_2R^{11}, -SO_2NR^{11}R^{11}a,
         C1-C4 haloalkyl, C1-C4 haloalkoxy;
         C1-C4 alkyl substituted with 0-3 R4d;
10
         Co-C4 alkenyl substituted with 0-3 R4d;
         C2-C4 alkynyl substituted with 0-3 R4d;
          C_3-C_6 cycloalkyl substituted with 0-4 R^{4d};
          aryl substituted with 0-5 R4d; and
15
          5-10 membered heterocyclic group consisting of carbon
               atoms and 1-4 heteroatoms selected from the
               group: O, S, and N; optionally saturated or
               unsaturated; and said 5-10 membered heterocyclic
               group is substituted with 0-3 R^{4d};
20
 /R^{4d} is, at each occurrence, independently selected from:
         H, F, Cl, Br, I, -NO2, -CN, -NCS, -CF3, -OCF3, =0, OH,
          -CO_2H, -CO_2R^{11}, -C(=O)NR^{11}R^{11}a, -NHC(=O)R^{11}.
          -NR^{11}R^{11}a, -OR^{11}a, -SR^{11}a, -C(=O)R^{11}a, -S(=O)R^{11}a,
          -SO_2R^{11}, -SO_2NR^{11}R^{11a}, C_1-C_4 alkyl, C_1-C_4 alkoxy,
25
          C1-C4 haloalkyl, C1-C4 haloalkoxy, phenyl, and benzyl;
 / R<sup>8</sup> is H or C1-C4 alkyl;
```

```
_{/R}^{9a} is selected from the group: H, -S(=0)R^{9b}, -S(=0)_2R^{9b},
         -S(=0) 2NHR^{9b}, -C(=0)R^{9b}, -C(=0)OR^{9b}, -C(=0)NHR^{9b},
         -C(=0) NHC(=0) R^{9b};
         C1-C6 alkyl substituted with 0-3 R9C;
         C2-C6 alkenyl substituted with 0-3 R9c;
5
         C2-C6 alkynyl substituted with 0-3 R9c;
         C3-C6 cycloalkyl substituted with 0-3 R9d;
         C3-C14 carbocycle substituted with 0-4 R9d;
         aryl substituted with 0-5 R^{9d}; and
         5-10 membered heterocyclic group consisting of carbon
10
            atoms and 1-4 heteroatoms selected from the group:
            O, S, and N; optionally saturated, partially
            unsaturated or unsaturated; and said 5-10 membered
           heterocyclic group is substituted with 0-4 R9d:
15
 /R^{9b} is selected from the group: H;
         C1-C6 alkyl substituted with 0-3 R9c;
         C2-C6 alkenyl substituted with 0-3 R9c;
         C2-C6 alkynyl substituted with 0-3 R9c;
         C3-C6 cycloalkyl substituted with 0-3 R9d;
20
         C3-C14 carbocycle substituted with 0-4 R9d;
         aryl substituted with 0-5 R9d; and
         5-10 membered heterocyclic group consisting of carbon
            atoms and 1-4 heteroatoms selected from the group:
            O, S, and N; optionally saturated, partially
25
            unsaturated or unsaturated; and said 5-10 membered
           heterocyclic group is substituted with 0-4 R9d;
```

25

```
/\mathrm{R}^{9\mathrm{C}} is selected from the group: CF3, OCF3, Cl, F, Br, I,
         =0, OH, C(0) OR^{11}, NH<sub>2</sub>, NH(CH<sub>3</sub>), N(CH<sub>3</sub>)<sub>2</sub>, -CN, NO<sub>2</sub>;
         C1-C6 alkyl substituted with 0-3 R9d;
         C2-C6 alkenyl substituted with 0-3 R9d;
         C2-C6 alkynyl substituted with 0-3 R9d;
5
         C3-C6 cycloalkyl substituted with 0-3 R9e;
         C3-C14 carbocycle substituted with 0-4 R9e;
         aryl substituted with 0-5 R9e; and
         5-10 membered heterocyclic group consisting of carbon
            atoms and 1-4 heteroatoms selected from the group:
10
            O, S, and N; optionally saturated, partially
            unsaturated or unsaturated; and said 5-10 membered
            heterocyclic group is substituted with 0-4 R9e;
15 ^{9d} is selected at each occurrence from the group:
         CF_3, OCF_3, Cl, F, Br, I, =0, OH, C(0)OR^{11}, NH_2,
            NH(CH3), N(CH3)2, -CN, NO2;
         C1-C4 alkyl substituted with 0-3 R9e;
         C1-C4 alkoxy substituted with 0-3 R9e;
```

5-6 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-6 membered heterocyclic group is substituted with 0-4 R^{9e};

R^{9e} is selected at each occurrence from the group:

C3-C6 cycloalkyl substituted with 0-3 R9e;

aryl substituted with 0-5 R9e; and

```
C1-C4 alkyl, C1-C4 alkoxy, CF3, OCF3, C1, F, Br, I, =0, OH, phenyl, C(0)OR<sup>11</sup>, NH<sub>2</sub>, NH(CH<sub>3</sub>), N(CH<sub>3</sub>)<sub>2</sub>, -CN, and NO<sub>2</sub>;
```

- 5 / R^{10} is selected from the group: $-CO_2R^{11}$, $-NR^{11}R^{11a}$, and C_1-C_6 alkyl substituted with 0-1 R^{10a} ;
- / R^{10a} is selected from the group: halo, -NO₂, -CN, -CF₃, $-CO_{2}R^{11}, -NR^{11}R^{11a}, -OR^{11}, -SR^{11}, -C(=NH)NH_{2}, \text{ and aryl}$ substituted with 0-1 R^{10b} ;
- / R^{10b} is selected from the group: -CO₂H, NH₂, -OH, -SH, and -C(=NH)NH₂;
- $15 / R^{10c}$ is H or C₁-C₄ alkyl;
 - / alternatively, R^{10} and R^{10c} can be combined to form a C3-C6 cycloalkyl group substituted with 0-1 R^{10a} ;
- /R11 and R11a are, at each occurrence, independently selected from the group: H;

 C1-C6 alkyl substituted with 0-3 R11b;

 C2-C6 alkenyl substituted with 0-3 R11b;

 C2-C6 alkynyl substituted with 0-3 R11b;

 C3-C7 cycloalkyl substituted with 0-3 R11b;
- aryl substituted with 0-3 R^{11b} ; and aryl(C1-C4 alkyl) substituted with 0-3 R^{11b} ;

```
/ R<sup>11b</sup> is OH, C<sub>1</sub>-C<sub>4</sub> alkoxy, F, Cl, Br, I, NH<sub>2</sub>, or -NH(C<sub>1</sub>-C<sub>4</sub>
           alkyl);
 / R<sup>12</sup> is H or C<sub>1</sub>-C<sub>4</sub> alkyl;
  ^{\prime} R<sup>14</sup> is C<sub>1</sub>-C<sub>4</sub> alkyl or C<sub>2</sub>-C<sub>4</sub> alkenyl;
 \sqrt{R^{19}} and R^{19a} are independently selected from the group: H,
           C1-C4 alkyl, C1-C4 haloalkyl, aryl, aryl(C1-C4 alkyl),
           C3-C6 cycloalkyl, and C3-C6 cycloalkyl(C1-C4 alkyl);
10
 / alternatively, NR^{19}R^{19a} may form a 5-6 membered
        heterocyclic group consisting of carbon atoms, a
        nitrogen atom, and optionally a second heteroatom
        selected from the group: O, S, and N;
15
 / R<sup>20</sup> and R<sup>20a</sup> are independently selected from the group: H,
           C1-C4 alkyl, C1-C4 haloalkyl, aryl,
           aryl(C1-C4 alkyl)-, C3-C6 cycloalkyl, and
20
           C3-C6 cycloalkyl(C1-C4 alkyl)-;
  /alternatively, NR<sup>20</sup>R<sup>20a</sup> may form a 5-6 membered
           heterocyclic group consisting of carbon atoms, a
           nitrogen atom, and optionally a second heteroatom
25
           selected from the group: O, S, and N;
  / OR<sup>26</sup> and OR<sup>27</sup> are independently selected from:
           a) -OH,
           b)-F,
           c) - NR^{28}R^{29}
30
           d) C1-C8 alkoxy, and
```

/when taken together, OR^{26} and OR^{27} form:

- e) a cyclic boronic ester where said cyclic boronic ester contains from 2 to 20 carbon atoms, and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O;
- f) a cyclic boronic amide where said boronic amide contains from 2 to 20 carbon atoms and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O; or
- g) a cyclic boronic amide-ester where said boronic

 amide-ester contains from 2 to 20 carbon atoms and,

 optionally, 1, 2, or 3 heteroatoms which can be N,

 S, or 0;

/R²⁸ and R²⁹, are independently selected from: H, C₁-C₄ alkyl, aryl(C₁-C₄ alkyl)-, and C₃-C₇ cycloalkyl;

 A^3 , A^4 , A^5 , A^6 , A^7 , A^8 , and A^9 are independently selected from an amino acid residue; and

an amino acid residue, at each occurence, independently comprises a natural amino acid, a modified amino acid or an unnatural amino acid wherein said natural, modified or unnatural amino acid is of either D or L configuration.

25

5

2. A compound of Claim 1, or a stereoisomer, pharmaceutically acceptable salt form or prodrug thereof, wherein:

30 A^1 is -CH₂- or -CH₂CH₂-;

 A^2 is $-C(=0)R^{9b}$, $-S(=0)R^{9b}$, $-S(=0)_2R^{9b}$, $-CONHR^{9b}$,

```
-s(=0)_{2}NHR^{9b}, -c(=0)_{0}R^{9b};
             -A^3-R^9a:
             -A^{3}-A^{4}-R^{9}a:
             -A^{3}-A^{4}-A^{5}-R^{9}a; or
             -A^{3}-A^{4}-A^{5}-A^{6}-R^{9}a;
  5
      W is selected from the group:
             -B(OR^{26})(OR^{27}),
             -C(=0)C(=0)-Q
 10
             -C(=O)C(=O)NH-Q,
             -C(=0)C(=0)-O-Q,
             -C(=0)CF_2C(=0)NH-Q,
             -C(=O)CF_3,
             -C(=0)CF_2CF_3,
 15
            -C(=0)H, and
            -C(=0)W^{1};
     W^1 is OR^8 or -NR^{11}R^{11}a;
     Q is selected from the group:
20
            -(CR^{10}R^{10}C)_{m-0}1
            C_1-C_4 alkyl substituted with Q^1,
            C_2-C_4 alkenyl substituted with Q^1, and
            C_2-C_4 alkynyl substituted with O^1;
25
     m is 1 or 2;
     Q^1 is selected from the group:
            -\text{CO}_2\text{R}^{11}, -\text{SO}_2\text{R}^{11}, -\text{SO}_3\text{R}^{11}, -\text{P(O)}_2\text{R}^{11}, -\text{P(O)}_3\text{R}^{11};
           phenyl substituted with 0-4 0la; and
30
```

```
5-6 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group:

O, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-6 membered heterocyclic group is substituted with 0-4 Q<sup>1a</sup>;
```

```
Q<sup>1a</sup> is H, F, Cl, Br, I, -NO_2, -CN, -NCS, -CF_3, -OCF_3, -CO_2R^{19}, -C(=O)NR^{19}R^{19a}, -NHC(=O)R^{19}, -SO_2R^{19}, -SO_2NR^{19}R^{19a}, -NR^{19}R^{19a}, -OR^{19}, -SR^{19}, C_1-C4 alkyl, C_1-C4 alkoxy, C_1-C4 haloalkyl, or C_1-C4 haloalkoxy;
```

```
R<sup>1</sup> is selected from the group: H, F;

C1-C6 alkyl substituted with 0-3 R<sup>1a</sup>;

C2-C6 alkenyl substituted with 0-3 R<sup>1a</sup>;

C2-C6 alkynyl substituted with 0-3 R<sup>1a</sup>; and

C3-C6 cycloalkyl substituted with 0-3 R<sup>1a</sup>;
```

```
R<sup>1a</sup> is selected at each occurrence from the group:

Cl, F, Br, I, CF3, CHF2, OH, =0, SH, -CO2R<sup>1b</sup>, -SO2R<sup>1b</sup>,

-SO3R<sup>1b</sup>, -P(O)2R<sup>1b</sup>, -P(O)3R<sup>1b</sup>, -C(=O)NHR<sup>1b</sup>,

-NHC(=O)R<sup>1b</sup>, -SO2NHR<sup>1b</sup>, -OR<sup>1b</sup>, -SR<sup>1b</sup>, C3-C6

cycloalkyl, C1-C6 alkoxy, -S-(C1-C6 alkyl);

C1-C4 alkyl substituted with 0-3 R<sup>1c</sup>;

aryl substituted with 0-5 R<sup>1c</sup>;

-O-(CH2)n-aryl substituted with 0-5 R<sup>1c</sup>;

-S-(CH2)n-aryl substituted with 0-5 R<sup>1c</sup>; and

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group:

O, S, and N; optionally saturated, partially
```

unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-3 R^{1c};

n is 0, 1 or 2;

5

10

15

R^{1b} is H:

C1-C4 alkyl substituted with 0-3 R^{1C};

C2-C4 alkenyl substituted with 0-3 R1c;

 C_2 - C_4 alkynyl substituted with 0-3 R^{1c} ;

 C_3-C_6 cycloalkyl substituted with 0-5 R^{1c} ;

aryl substituted with 0-5 R^{1c};

aryl-C₁-C₄ alkyl substituted with 0-4 R^{1c}; or

- 5-6 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group:
 O, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-4 R^{1C};
- R^{1c} is selected at each occurrence from the group: $C_1-C_4 \text{ alkyl}, Cl, F, Br, I, OH, SH, -CN, -NO_2, -OR^{1d}, \\ -C(=O)OR^{1d}, -NR^{1d}R^{1d}, -SO_2R^{1d}, -SO_3R^{1d}, -C(=O)NHR^{1d}, \\ -NHC(=O)R^{1d}, -SO_2NHR^{1d}, -CF_3, -OCF_3, C_3-C_6 \text{ cycloalkyl}, \\ \text{phenyl}, \text{ and benzyl};$
- 25 R^{1d} is selected at each occurrence from the group: H, C₁-C₄ alkyl, phenyl and benzyl;
- R² is selected from the group: H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₄ cycloalkyl, and C₃-C₄ cycloalkyl(C₁-C₄ alkyl)-;

```
alternatively, R^1 and R^2 can be combined to form a 4-7
           membered cyclic group consisting of carbon atoms;
           substituted with 0-2 R^{14};
5
     R^3 is selected from the group: R^4,
           -(CH<sub>2</sub>)<sub>p</sub>-NH-R<sup>4</sup>,
           -(CH<sub>2</sub>)<sub>D</sub>-NHC(=0)-R<sup>4</sup>,
           -(CH_2)_{D}-C(=0)NH-R^4,
           -(CH_2)_D-C(=0)O-R^4,
10
           -(CH_2)_{p}-C(=0)C(=0)-R^4,
           -(CH_2)_{D}-C(=0)C(=0)NH-R^4,
           -(CH_2)_{D}-NHC(=O)NH-R^4,
           -(CH_2)_D-NHC(=0)NHC(=0)-R<sup>4</sup>,
           -(CH_2)_{D}-NHS(=0)_{2}-R^{4},
15
           -(CH_2)_{p}-S(=O)_{2}NH-R^4,
           -(CH_2)_{p}-C(=0)-R^4,
           -(CH<sub>2</sub>)<sub>p</sub>-O-R<sup>4</sup>, and
           -(CH_2)_{p}-S-R^4;
20
     p is 0, 1, or 2;
     R^4 is selected from the group:
           C1-C6 alkyl substituted with 0-3 R4a;
           C2-C6 alkenyl substituted with 0-3 R4a;
25
           C2-C6 alkynyl substituted with 0-3 R4a;
           C3-C10 cycloalkyl substituted with 0-4 R4b;
           C3-C10 carbocycle substituted with 0-4 R4b;
```

aryl substituted with 0-5 R^{4b};

aryl-C₁-C₄ alkyl substituted with 0-5 R^{4b}; and

5-10 membered heterocyclic group consisting of carbon

atoms and 1-4 heteroatoms selected from the

group: 0, S, and N; optionally saturated,

partially unsaturated or unsaturated; and said 5
10 membered heterocyclic group is substituted

with 0-3 R^{4b};

 R^{4a} is, at each occurrence, independently selected from: 10 H, F, Cl, Br, I, -NO₂, -CN, -NCS, -CF₃, -OCF₃, =0, OH, $-CO_2H$, -C (=NH) NH_2 , $-CO_2R^{11}$, -C (=O) $NR^{11}R^{11}a$, $-NHC(=0)R^{11}$, $-NR^{11}R^{11}a$, $-OR^{11}a$, $-SR^{11}a$, $-C(=0)R^{11}a$, $-S(=0)R^{11}a$, $-SO_2R^{11}$, $-SO_2NR^{11}R^{11}a$, $-NHC(=NH)NHR^{11}$, $-C(=NH)NHR^{11}$, $=NOR^{11}$, $-NR^{11}C(=O)OR^{11}a$. 15 $-NR^{11}C(=0)NR^{11}R^{11}a$, $-NR^{11}SO_2NR^{11}R^{11}a$, $-NR^{11}SO_2R^{11}a$, $-OP(O)(OR^{11})_2$; C_1-C_4 alkyl substituted with 0-3 R^{4b} ; C2-C4 alkenyl substituted with 0-3 R4b; C2-C4 alkynyl substituted with 0-3 R4b; 20 C3-C7 cycloalkyl substituted with 0-4 R4c; C_3-C_{10} carbocycle substituted with 0-4 R^{4C} ; aryl substituted with $0-5 R^{4c}$; and 5-10 membered heterocyclic group consisting of carbon 25

atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-3 R^{4c}:

30

```
R<sup>4b</sup> is, at each occurrence, independently selected from:
          H, F, Cl, Br, I, -NO2, -CN, -NCS, -CF3, -OCF3, =0, OH,
          -CO_2H, -C(=NH)NH_2, -CO_2R^{11}, -C(=O)NR^{11}R^{11}a.
          -NHC(=0)R11, -NR11R11a, -OR11a, -SR11a, -C(=0)R11a,
          -S(=0)R^{11a}, -SO_2R^{11}, -SO_2NR^{11}R^{11a}, -NHC(=NH)NHR^{11},
5
          -C(=NH)NHR^{11}, =NOR^{11}, -NR^{11}C(=O)OR^{11}a,
          -OC(=0)NR^{11}R^{11}a, -NR^{11}C(=0)NR^{11}R^{11}a, -NR^{11}SO_2NR^{11}R^{11}a,
          -NR^{11}SO_2R^{11a}, -OP(O)(OR^{11})_2;
          C_1-C_4 alkyl substituted with 0-3 R^{4c};
          C_2-C_4 alkenyl substituted with 0-3 R^{4C};
10
          C_2-C_4 alkynyl substituted with 0-3 R^{4c};
          C3-C6 cycloalkyl substituted with 0-4 R<sup>4d</sup>;
          aryl substituted with 0-5 R^{4d}; and
          5-10 membered heterocyclic group consisting of carbon
15
                atoms and 1-4 heteroatoms selected from the
                group: O, S, and N; optionally saturated or
                unsaturated; and said 5-10 membered heterocyclic
                group is substituted with 0-3 R^{4d};
```

20 R^{4C} is, at each occurrence, independently selected from:

H, F, Cl, Br, I, -NO₂, -CN, -NCS, -CF₃, -OCF₃, =O, OH,

-CO₂H, -C(=NH)NH₂, -CO₂R¹¹, -C(=O)NR¹¹R¹¹a,

-NHC(=O)R¹¹, -NR¹¹R¹¹a, -OR¹¹a, -SR¹¹a, -C(=O)R¹¹a,

-S(=O)R¹¹a, -SO₂R¹¹, -SO₂NR¹¹R¹¹a,

25 C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy;

C₁-C₄ alkyl substituted with 0-3 R^{4d};

C₂-C₄ alkenyl substituted with 0-3 R^{4d};

C₂-C₄ alkynyl substituted with 0-3 R^{4d};

C₃-C₆ cycloalkyl substituted with 0-4 R^{4d};

5

aryl substituted with 0-5 R4d; and

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: 0, S, and N; optionally saturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-3 R^{4d};

15 \mathbb{R}^8 is H or C₁-C₄ alkyl;

20 C_1 - C_6 alkyl substituted with 0-3 R^{9c} ;

C2-C6 alkenyl substituted with 0-3 R9c;

 C_2 - C_6 alkynyl substituted with 0-3 R^{9c} ;

C3-C6 cycloalkyl substituted with 0-3 R9d;

C3-C14 carbocycle substituted with 0-4 R9d;

25 aryl substituted with 0-5 R^{9d}; and

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group:

O, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-4 R^{9d}:

1 /

R^{9b} is selected from the group: H; C1-C6 alkyl substituted with 0-3 R9C; C2-C6 alkenyl substituted with 0-3 R9C; C2-C6 alkynyl substituted with 0-3 R9c; 5 C3-C6 cycloalkyl substituted with 0-3 R9d; C3-C14 carbocycle substituted with 0-4 R9d; aryl substituted with 0-5 R9d; and 5-10 membered heterocyclic group consisting of carbon 10 atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-4 R9d; R^{9c} is selected from the group: CF3, OCF3, Cl, F, Br, I, 15 =0, OH, $C(0)OR^{11}$, NH_2 , $NH(CH_3)$, $N(CH_3)_2$, -CN, NO_2 ; C_1 - C_6 alkyl substituted with 0-3 R^{9d} ; C2-C6 alkenyl substituted with 0-3 R9d; C2-C6 alkynyl substituted with 0-3 R^{9d}; C3-C6 cycloalkyl substituted with 0-3 R9e; 20 C3-C14 carbocycle substituted with 0-4 R9e;

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group:

O, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-4 R^{9e};

 \mathbf{R}^{9d} is selected at each occurrence from the group:

arvl substituted with 0-5 R9e; and

 R^{9e} is selected at each occurrence from the group: $C_1\text{-}C_4 \text{ alkyl}, \ C_1\text{-}C_4 \text{ alkoxy}, \ CF_3, \ OCF_3, \ Cl, \ F, \ Br, \ I, \\ = O, \ OH, \ phenyl, \ C(O)OR^{11}, \ NH_2, \ NH(CH_3), \ N(CH_3)_2, \\ - CN, \ and \ NO_2;$

 R^{10} is selected from the group: $-CO_2R^{11}$, $-NR^{11}R^{11a}$, and C_1
C6 alkyl substituted with 0-1 R^{10a} ;

 R^{10a} is selected from the group: halo, -NO₂, -CN, -CF₃, -CO₂ R^{11} , -NR¹¹ R^{11a} , -OR¹¹, -SR¹¹, -C(=NH)NH₂, and aryl substituted with 0-1 R^{10b} ;

 R^{10b} is selected from the group: -CO₂H, - NH₂, -OH, -SH, and -C(=NH)NH₂;

 R^{10c} is H or C_1 - C_4 alkyl;

30

25

alternatively, R^{10} and R^{10c} can be combined to form a C₃-C₆ cycloalkyl group substituted with 0-1 R^{10a} ;

R¹¹ and R^{11a} are, at each occurrence, independently selected from the group: H;

C₁-C₆ alkyl substituted with 0-3 R^{11b};

C₂-C₆ alkenyl substituted with 0-3 R^{11b};

C₂-C₆ alkynyl substituted with 0-3 R^{11b};

C₃-C₇ cycloalkyl substituted with 0-3 R^{11b};

aryl substituted with 0-3 R^{11b}; and

aryl(C₁-C₄ alkyl)- substituted with 0-3 R^{11b};

 R^{11b} is OH, C_1 - C_4 alkoxy, F, Cl, Br, I, NH₂, or -NH(C_1 - C_4 alkyl);

 R^{12} is H or C1-C4 alkyl;

 R^{14} is C_1 - C_4 alkyl or C_2 - C_4 alkenyl;

- 20 R^{19} and R^{19a} are independently selected from the group: H, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, aryl, aryl(C_1 - C_4 alkyl), C_3 - C_6 cycloalkyl, and C_3 - C_6 cycloalkyl(C_1 - C_4 alkyl);
- alternatively, NR¹⁹R^{19a} may form a 5-6 membered

 heterocyclic group consisting of carbon atoms, a
 nitrogen atom, and optionally a second heteroatom
 selected from the group: O, S, and N;
- ${\rm OR}^{26}$ and ${\rm OR}^{27}$ are independently selected from: a)-OH,

20

25

- b)-F,
- $c)-NR^{28}R^{29}$
- d) C1-C8 alkoxy, and

when taken together, OR^{26} and OR^{27} form:

- e) a cyclic boronic ester where said cyclic boronic ester contains from 2 to 20 carbon atoms, and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O;
- 10 R^{28} and R^{29} , are independently selected from: H, C₁-C₄ alkyl, aryl(C₁-C₄ alkyl)-, and C₃-C₇ cycloalkyl;
 - ${\tt A}^3\,,~{\tt A}^4\,,~{\tt A}^5\,,~{\tt and}~{\tt A}^6\,,~{\tt are}~{\tt independently}~{\tt selected}~{\tt from}~{\tt an}$ amino acid residue; and
 - an amino acid residue, at each occurence, independently comprises a natural amino acid, a modified amino acid or an unnatural amino acid wherein said natural, modified or unnatural amino acid is of either D or L configuration.
 - 3. A compound of Claim 2, or a stereoisomer, pharmaceutically acceptable salt form or prodrug thereof, wherein:

 A^1 is -CH₂- or -CH₂CH₂-;

 $_{-A^3-R^{9a}}$; $_{-A^3-A^4-R^{9a}}$: or

```
-A^{3}-A^{4}-A^{5}-R^{9}a:
```

W is $-B(OR^{26})(OR^{27});$

5 R^1 is selected from the group: H; $C_{1}\text{-}C_{4} \text{ alkyl substituted with } 0\text{-}2 \text{ }R^{1a};$ $C_{2}\text{-}C_{4} \text{ alkenyl substituted with } 0\text{-}2 \text{ }R^{1a};$ $C_{2}\text{-}C_{4} \text{ alkynyl substituted with } 0\text{-}2 \text{ }R^{1a};$ and

10 R^{1a} is selected at each occurrence from the group:
Cl, F, Br, CF₃, CHF₂, OH, C₃-C₆ cycloalkyl, C₁-C₄
alkoxy, -S-(C₁-C₄ alkyl);

 C_1-C_4 alkyl substituted with 0-2 R^{1c} ;

aryl substituted with $0-3 R^{1C}$; and

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group:

O, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-3 R^{1c};

20

25

 R^{1c} is selected at each occurrence from the group: $C_1\text{-}C_4 \text{ alkyl}, \ Cl, \ F, \ Br, \ I, \ OH, \ SH, \ -CN, \ -NO_2, \ -OR^{1d},$ $-C(=0)OR^{1d}, \ -NR^{1d}R^{1d}, \ -SO_2R^{1d}, \ -SO_3R^{1d}, \ -C(=0)NHR^{1d},$ $-NHC(=0)R^{1d}, \ -SO_2NHR^{1d}, \ -CF_3, \ -OCF_3, \ C_3\text{-}C_6 \ cycloalkyl,$ phenyl, and benzyl;

 $R^{\mbox{\scriptsize 1d}}$ is selected at each occurrence from the group: H, C1-C4 alkyl, phenyl and benzyl;

30 R^2 is H or C₁-C₄ alkyl;

```
R^3 is selected from the group: R^4,
          -(CH<sub>2</sub>)<sub>D</sub>-NH-R<sup>4</sup>,
          -(CH_2)_{p}-NHC(=0)-R^4,
          -(CH_2)_p-C(=0)NH-R^4,
5
          -(CH_2)_{D}-C(=0)O-R^4,
          -(CH<sub>2</sub>)<sub>D</sub>-NHC(=0)NH-R<sup>4</sup>,
          -(CH_2)_D-NHC(=0)NHC(=0)-R<sup>4</sup>,
          -(CH_2)_{D}-C(=0)-R^4
          -(CH<sub>2</sub>)<sub>p</sub>-O-R<sup>4</sup>, and
10
          -(CH_2)_{p}-S-R^4;
    p is 0, 1, or 2;
    R^4 is selected from the group:
          C_1-C_4 alkyl substituted with 0-3 R^{4a};
          C2-C4 alkenyl substituted with 0-3 R4a;
          C2-C4 alkynyl substituted with 0-3 R4a;
          C_3-C_6 cycloalkyl substituted with 0-2 R^{4b};
          aryl substituted with 0-5 R^{4b}; and
20
           5-10 membered heterocyclic group consisting of carbon
                 atoms and 1-4 heteroatoms selected from the
                 group: O, S, and N; optionally saturated,
                 partially unsaturated or unsaturated; and said 5-
                 10 membered heterocyclic group is substituted
25
```

 R^{4a} is, at each occurrence, independently selected from: H, F, Cl, Br, I, -NO2, -CN, -NCS, -CF3, -OCF3,

with $0-4 R^{4b}$;

=0, OH, $-CO_2H$, $-C(=NH)NH_2$, $-CO_2R^{11}$, $-C(=O)NR^{11}R^{11}a$, $-NHC(=0)R^{11}$, $-NR^{11}R^{11}a$, $-OR^{11}a$, $-SR^{11}a$, $-C(=0)R^{11}a$, $-S(=0)R^{11a}$, $-SO_2R^{11}$, $-SO_2NR^{11}R^{11a}$, $-NHC(=NH)NHR^{11}$, $-C(=NH)NHR^{11}$, $=NOR^{11}$, $-NR^{11}C(=O)OR^{11a}$, $-NR^{11}C(=0)NR^{11}R^{11}a$, $-NR^{11}SO_2NR^{11}R^{11}a$, $-NR^{11}SO_2R^{11}a$; 5 C1-C4 alkyl substituted with 0-2 R4b; C2-C4 alkenyl substituted with 0-2 R4b; C2-C4 alkynyl substituted with 0-2 R4b; C3-C7 cycloalkyl substituted with 0-3 R^{4c}; aryl substituted with $0-5 R^{4C}$; and 10 5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-15 10 membered heterocyclic group is substituted with $0-3 R^{4C}$:

R^{4b} is, at each occurrence, independently selected from:

H, F, Cl, Br, I, -NO₂, -CN, -NCS, -CF₃, -OCF₃, =O, OH,

-CO₂H, -C(=NH)NH₂, -CO₂R¹¹, -C(=O)NR¹¹R¹¹a,
-NHC(=O)R¹¹, -NR¹¹R¹¹a, -OR¹¹a, -SR¹¹a, -C(=O)R¹¹a,
-S(=O)R¹¹a, -SO₂R¹¹, -SO₂NR¹¹R¹¹a, -NHC(=NH)NHR¹¹,
-C(=NH)NHR¹¹, =NOR¹¹, -NR¹¹C(=O)OR¹¹a,
-OC(=O)NR¹¹R¹¹a, -NR¹¹C(=O)NR¹¹R¹¹a, -NR¹¹SO₂NR¹¹R¹¹a,
-NR¹¹SO₂R¹¹a, -OP(O)(OR¹¹)₂;

C₁-C₄ alkyl substituted with 0-3 R^{4C};
C₂-C₄ alkenyl substituted with 0-3 R^{4C};
C₂-C₄ alkynyl substituted with 0-3 R^{4C};
C₃-C₆ cycloalkyl substituted with 0-4 R^{4d};

aryl substituted with $0-5 R^{4d}$; and

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-3 R^{4d};

 $R^{ ext{4c}}$ is, at each occurrence, independently selected from: H, F, Cl, Br, I, -NO2, -CN, -NCS, -CF3, -OCF3, =0, OH, $-CO_2H$, $-C(=NH)NH_2$, $-CO_2R^{11}$, $-C(=O)NR^{11}R^{11}a$. 10 $-NHC(=0)R^{11}$, $-NR^{11}R^{11}a$, $-OR^{11}a$, $-SR^{11}a$. $-C(=0)R^{11}a$. $-S(=0)R^{11}a$, $-SO_2R^{11}$, $-SO_2NR^{11}R^{11}a$, C1-C4 haloalkyl, C1-C4 haloalkoxy; C_1-C_4 alkyl substituted with 0-3 R^{4d} ; C_2-C_4 alkenyl substituted with 0-3 R^{4d} ; 15 C_2 - C_4 alkynyl substituted with 0-3 R^{4d} ; C3-C6 cycloalkyl substituted with 0-4 R4d; arvl substituted with $0-5 R^{4d}$; and 5-10 membered heterocyclic group consisting of carbon 20 atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated or unsaturated; and said 5-10 membered heterocyclic

25 R^{4d} is, at each occurrence, independently selected from:

H, F, Cl, Br, I, -NO₂, -CN, -NCS, -CF₃, -OCF₃, =0, OH,

-CO₂H, -CO₂R¹¹, -C(=0)NR¹¹R¹¹a, -NHC(=0)R¹¹,

-NR¹¹R¹¹a, -OR¹¹a, -SR¹¹a, -C(=0)R¹¹a, -S(=0)R¹¹a,

-SO₂R¹¹, -SO₂NR¹¹R¹¹a, C₁-C₄ alkyl, C₁-C₄ alkoxy,

C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, phenyl, and benzyl;

group is substituted with $0-3 R^{4d}$;

```
R^{9a} is selected from the group: H, -S(=0)R^{9b}, -S(=0)2R^{9b},
         -S(=0)_2NHR^{9b}, -C(=0)_R^{9b}, -C(=0)_R^{9b}, -C(=0)_NHR^{9b},
         -C(=0) NHC(=0) R^{9b};
         C1-C4 alkyl substituted with 0-3 R9C;
5
         C2-C4 alkenyl substituted with 0-3 R9c;
         C2-C4 alkynyl substituted with 0-3 R9c;
         C3-C6 cycloalkyl substituted with 0-3 R<sup>9d</sup>;
         C3-C14 carbocycle substituted with 0-4 R9d;
         aryl substituted with 0-5 R9d; and
10
         5-10 membered heterocyclic group consisting of carbon
            atoms and 1-4 heteroatoms selected from the group:
            O, S, and N; optionally saturated, partially
            unsaturated or unsaturated; and said 5-10 membered
            heterocyclic group is substituted with 0-4 R9d;
15
    R<sup>9b</sup> is selected from the group: H;
         C1-C4 alkyl substituted with 0-2 R9C;
         C_2-C_4 alkenyl substituted with 0-2 R^{9C};
         C2-C4 alkynyl substituted with 0-2 R9c;
20
         C3-C6 cycloalkyl substituted with 0-2 R9d;
         C3-C14 carbocycle substituted with 0-3 R9d;
         aryl substituted with 0-3 R^{9d}; and
         5-10 membered heterocyclic group consisting of carbon
25
            atoms and 1-4 heteroatoms selected from the group:
            O, S, and N; optionally saturated, partially
            unsaturated or unsaturated; and said 5-10 membered
            heterocyclic group is substituted with 0-3 R9d;
```

R^{9c} is selected from the group: CF₃, OCF₃, Cl, F, Br, I,

=0, OH, C(O)OR¹¹, NH₂, NH(CH₃), N(CH₃)₂, -CN, NO₂;

C₁-C₄ alkyl substituted with 0-3 R^{9d};

C₂-C₄ alkenyl substituted with 0-3 R^{9d};

C₂-C₄ alkynyl substituted with 0-3 R^{9d};

C₃-C₆ cycloalkyl substituted with 0-3 R^{9e};

C₃-C₁₄ carbocycle substituted with 0-4 R^{9e};

aryl substituted with 0-5 R^{9e}; and

5-10 membered heterocyclic group consisting of carbon

atoms and 1-4 heteroatoms selected from the group:

O, S, and N; optionally saturated, partially

unsaturated or unsaturated; and said 5-10 membered

heterocyclic group is substituted with 0-4 R^{9e};

R^{9d} is selected at each occurrence from the group: 15 CF_3 , OCF_3 , C1, F, Br, I, =0, OH, $C(0)OR^{11}$, NH_2 , NH(CH3), N(CH3)2, -CN, NO2; C1-C4 alkyl substituted with 0-3 R9e; C1-C4 alkoxy substituted with 0-3 R9e; C3-C6 cycloalkyl substituted with 0-3 R9e; 20 arvl substituted with 0-5 R^{9e}; and 5-6 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, 25 partially unsaturated or unsaturated; and said 5-6 membered heterocyclic group is substituted with $0-4 R^{9e}$;

R^{9e} is selected at each occurrence from the group:

C₁-C₄ alkyl, C₁-C₄ alkoxy, CF₃, OCF₃, Cl, F, Br, I, =0, OH, phenyl, C(0)OR¹¹, NH₂, NH(CH₃), N(CH₃)₂, -CN, and NO₂;

5 R^{11} and R^{11a} are, at each occurrence, independently selected from the group: H; $C_{1}\text{-}C_{4} \text{ alkyl substituted with 0-1 } R^{11b};$ phenyl substituted with 0-2 R^{11b} ; and benzyl substituted with 0-2 R^{11b} ;

10

15

 R^{11b} is OH, C_1 - C_4 alkoxy, F, Cl, Br, I, NH₂, or -NH(C_1 - C_4 alkyl);

 ${\tt OR}^{26}$ and ${\tt OR}^{27}$ are independently selected from:

a)-0H,

d) C1-C8 alkoxy, and

when taken together, OR^{26} and OR^{27} form:

 e) a cyclic boronic ester where said cyclic boronic ester contains from 2 to 16 carbon atoms;

20

A³, A⁴, and A⁵, are independently selected from an amino acid residue wherein said amino acid residue, at each occurence, is independently selected from the group:

Ala, Arg, Asn, Asp, Aze, Cys, Gln, Glu, Gly, His, Hyp,

Ile, Leu, Lys, Met, Orn, Phe, Pro, Sar, Ser, Thr, Trp,

Tyr, Val, Abu, Alg, Ape, Cha, Cpa, Cpg, Dfb, Dpa, Gla,

Irg, HomoLys, Phe(4-fluoro), Tpa, Asp(OMe), Glu(OMe),

Hyp(OMe), Asp(O^tBu), Glu(O^tBu), Hyp(O^tBu), Thr(O^tBu),

Asp(OBzl), Glu(OBzl), Hyp(OBzl), Pro(OBzl), Thr(OBzl),

cyclohexylglycine, cyclohexylalanine,

cyclopropylglycine, t-butylglycine, phenylglycine, and 3,3-diphenylalanine.

- 4. A compound of Claim 3, or a stereoisomer,
- 5 pharmaceutically acceptable salt form or prodrug thereof, wherein:

$$A^1$$
 is $-CH_2-$;

10
$$A^2$$
 is $-C(=0)R^{9b}$, $-S(=0)R^{9b}$, $-S(=0)_2R^{9b}$, $-CONHR^{9b}$, $-S(=0)_2NHR^{9b}$, $-C(=0)OR^{9b}$; $-A^3-R^{9a}$; $-A^3-A^4-R^{9a}$; or $-A^3-A^4-A^5-R^{9a}$;

15

W is
$$-B(OR^{26})(OR^{27})$$
;

 ${\tt R}^{1}$ is selected from the group: H;

C1-C4 alkyl substituted with 0-2 R^{1a};

C2-C4 alkenyl substituted with 0-2 R^{1a};

C2-C4 alkynyl substituted with 0-2 R^{1a};

 R^{1a} is selected at each occurrence from the group: Cl, F, Br, CF3, or CHF2;

25

20

$$\mathbb{R}^2$$
 is H or methyl;

 ${\bf R}^3$ is selected from the group: ${\bf R}^4$,

$$-(CH_2)_{p}-NH-R^4$$
,

30
$$-(CH_2)_{p}-NHC(=0)-R^4$$
,

ļa

```
-(CH_2)_{D}-C(=0)NH-R^4,
         -(CH_2)_{D}-C(=0)O-R^4,
         -(CH_2)_{p}-NHC(=O)NH-R^4,
         -(CH_2)_{D}-NHC(=0)NHC(=0)-R^4,
         -(CH_2)_{D}-C(=0)-R^4,
5
         -(CH_2)_{D}-O-R^4, and
         -(CH_2)_{D}-S-R^4;
    p is 0 or 1;
10
    R^4 is selected from the group:
         C1-C4 alkyl substituted with 0-3 R4a;
         C2-C4 alkenyl substituted with 0-3 R4a;
         C2-C4 alkynyl substituted with 0-3 R4a;
         C3-C4 cycloalkyl substituted with 0-2 R4b;
15
         phenyl substituted with 0-3 R4b;
         naphthyl substituted with 0-3 R4b; and
         5-10 membered heterocyclic group selected from the
              group: pyridinyl, furanyl, thienyl, pyrrolyl,
20
              pyrazolyl, pyrazinyl, piperazinyl, imidazolyl,
              indolyl, benzimidazolyl, 1H-indazolyl,
              oxazolidinyl, benzotriazolyl, benzisoxazolyl,
              benzoxazolyl, oxindolyl, benzoxazolinyl,
              benzthiazolyl, benzisothiazolyl, isatinoyl,
              isoxazolopyridinyl, isothiazolopyridinyl,
25
              thiazolopyridinyl, oxazolopyridinyl,
              imidazolopyridinyl, pyrazolopyridinyl,
              4H-quinolizinyl, benzofuranyl, benzothiophenyl,
              quinazolinyl, quinolinyl, 4H-quinolizinyl, and
```

ŀ÷

30

quinoxalinyl; and said 5-10 membered heterocyclic group is substituted with 0-3 R4b;

R^{4a} is, at each occurrence, independently selected from: H, F, Cl, Br, -NO2, -CN, -CF3, -OCF3, OH, -CO2H, 5 $-C(=NH)NH_2$, $-CO_2R^{11}$, $-C(=O)NR^{11}R^{11a}$, $-NHC(=O)R^{11}$, $-NR^{11}R^{11}a$, $-OR^{11}a$, $-SR^{11}a$, $-C(=O)R^{11}a$, $-S(=O)R^{11}a$, $-SO_2R^{11}$, $-SO_2NR^{11}R^{11}a$, $-NR^{11}C(=0)NR^{11}R^{11}a$, -NR11SO2R11a; C_1-C_4 alkyl substituted with 0-2 R^{4b} ; 10 phenyl substituted with $0-3 R^{4c}$; naphthyl substituted with 0-3 R^{4C}; and 5-10 membered heterocyclic group selected from the group: pyridinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, pyrazinyl, piperazinyl, imidazolyl, 15 indolyl, benzimidazolyl, 1H-indazolyl, oxazolidinyl, benzotriazolyl, benzisoxazolyl, benzoxazolyl, oxindolyl, benzoxazolinyl, benzthiazolyl, benzisothiazolyl, isatinoyl, 20 isoxazolopyridinyl, isothiazolopyridinyl, thiazolopyridinyl, oxazolopyridinyl, imidazolopyridinyl, pyrazolopyridinyl, 4H-quinolizinyl, benzofuranyl, benzothiophenyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, and 25 quinoxalinyl; and said 5-10 membered heterocyclic

 R^{4b} is, at each occurrence, independently selected from: H, F, Cl, Br, $-NO_2$, -CN, $-CF_3$, $-OCF_3$, OH, $-CO_2H$, $-C(=NH)NH_2$, $-CO_2R^{11}$, $-C(=O)NR^{11}R^{11}a$, $-NHC(=O)R^{11}$, $-NR^{11}R^{11}a$, $-OR^{11}a$, $-SR^{11}a$, $-C(=O)R^{11}a$, $-S(=O)R^{11}a$,

group is substituted with $0-3 R^{4C}$;

 $-SO_2R^{11}$, $-SO_2NR^{11}R^{11}a$, $-NR^{11}C(=0)NR^{11}R^{11}a$, $-NR^{11}SO_2R^{11a}$; C_1-C_4 alkyl substituted with 0-1 R^{4c} ; phenyl substituted with 0-3 R4d; naphthyl substituted with 0-3 R4d; and 5 5-10 membered heterocyclic group selected from the group: pyridinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, pyrazinyl, piperazinyl, imidazolyl, indolyl, benzimidazolyl, 1H-indazolyl, 10 oxazolidinyl, benzotriazolyl, benzisoxazolyl, benzoxazolyl, oxindolyl, benzoxazolinyl, benzthiazolyl, benzisothiazolyl, isatinoyl, isoxazolopyridinyl, isothiazolopyridinyl, thiazolopyridinyl, oxazolopyridinyl, imidazolopyridinyl, pyrazolopyridinyl, 15 4H-quinolizinyl, benzofuranyl, benzothiophenyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, and quinoxalinyl; and said 5-10 membered heterocyclic group is substituted with 0-3 R4d; 20 R^{4c} is, at each occurrence, independently selected from: H, F, Cl, Br, -NO₂, -CN, -CF₃, -OCF₃, OH, -CO₂H, $-C(=NH)NH_2$, $-CO_2R^{11}$, $-C(=O)NR^{11}R^{11a}$, $-NHC(=O)R^{11}$, $-NR^{11}R^{11}a$ $-OR^{11}a$ $-SR^{11}a$ $-C(=O)R^{11}a$ $-S(=0)R^{11a}$, $-SO_2R^{11}$, $-SO_2NR^{11}R^{11a}$, 25 C1-C4 haloalkyl, C1-C4 haloalkoxy and C1-C4 alkyl; $R^{ ext{dd}}$ is, at each occurrence, independently selected from:

```
The first send often constraints for the constraint of the first send of the first s
```

 $-SO_2R^{11}$, $-SO_2NR^{11}R^{11a}$, C_1-C_4 alkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkyl, C_1-C_4 haloalkoxy, phenyl, and benzyl;

 R^{9a} is selected from the group: H, $-S(=0)R^{9b}$, $-S(=0)2R^{9b}$, -S(=0) 2NHR9b, -C(=0) R9b, -C(=0) OR9b, -C(=0) NHR9b, 5 -C(=0) NHC(=0) R^{9b} : C1-C4 alkyl substituted with 0-2 R9C; C3-C12 carbocycle substituted with 0-3 R9d; phenyl substituted with 0-3 R^{9d}; naphthyl substituted with 0-3 R^{9d}; and 10 5-10 membered heterocyclic group selected from the group: pyridinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, pyrazinyl, piperazinyl, imidazolyl, indolyl, benzimidazolyl, 1H-indazolyl, 15 oxazolidinyl, benzotriazolyl, benzisoxazolyl, benzoxazolyl, oxindolyl, benzoxazolinyl, benzthiazolyl, benzisothiazolyl, isatinoyl, isoxazolopyridinyl, isothiazolopyridinyl, thiazolopyridinyl, oxazolopyridinyl, 20 imidazolopyridinyl, pyrazolopyridinyl, 4H-quinolizinyl, benzofuranyl, benzothiophenyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, and quinoxalinyl; and said 5-10 membered heterocyclic

25

R^{9b} is selected from the group: H;

C1-C4 alkyl substituted with 0-1 R^{9C};

C2-C4 alkenyl substituted with 0-1 R^{9C};

C2-C4 alkynyl substituted with 0-1 R^{9C};

group is substituted with 0-3 R^{9d};

30 C3-C₁₂ carbocycle substituted with 0-3 R^{9d};

phenyl substituted with 0-3 R^{9d}; naphthyl substituted with 0-3 R^{9d}; and 5-10 membered heterocyclic group selected from the group: pyridinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, pyrazinyl, piperazinyl, imidazolyl, 5 indolyl, benzimidazolyl, 1H-indazolyl, oxazolidinyl, benzotriazolyl, benzisoxazolyl, benzoxazolyl, oxindolyl, benzoxazolinyl, benzthiazolyl, benzisothiazolyl, isatinoyl, isoxazolopyridinyl, isothiazolopyridinyl, 10 thiazolopyridinyl, oxazolopyridinyl, imidazolopyridinyl, pyrazolopyridinyl, 4H-quinolizinyl, benzofuranyl, benzothiophenyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, and quinoxalinyl; and said 5-10 membered heterocyclic 15 group is substituted with $0-3 R^{9d}$:

R^{9C} is selected from the group: CF3, OCF3, Cl, F, Br, OH, $C(0)OR^{11}$, NH_2 , $NH(CH_3)$, $N(CH_3)_2$, -CN, NO_2 ; C1-C4 alkyl substituted with 0-2 R^{9d}; 20 C2-C4 alkenyl substituted with 0-2 R9d; C2-C4 alkynyl substituted with 0-2 R9d; C3-C6 cycloalkyl substituted with 0-2 R9e; C3-C12 carbocycle substituted with 0-3 R9e; phenyl substituted with 0-3 R9e; 25 naphthyl substituted with 0-3 R^{9e}; and 5-10 membered heterocyclic group selected from the group: pyridinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, pyrazinyl, piperazinyl, imidazolyl, 30 indolyl, benzimidazolyl, 1H-indazolyl, oxazolidinyl, benzotriazolyl, benzisoxazolyl,

benzoxazolyl, oxindolyl, benzoxazolinyl, benzthiazolyl, benzisothiazolyl, isatinoyl, isoxazolopyridinyl, isothiazolopyridinyl, thiazolopyridinyl, oxazolopyridinyl, imidazolopyridinyl, pyrazolopyridinyl, 4H-quinolizinyl, benzofuranyl, benzothiophenyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, and quinoxalinyl; and said 5-10 membered heterocyclic group is substituted with 0-3 R^{9e};

10

5

 R^{9d} is selected at each occurrence from the group: CF_3 , OCF_3 , Cl, F, Br, OH, $C(O)OR^{11}$, NH_2 , $NH(CH_3)$, $N(CH_3)_2$, -CN, NO_2 , C_1 - C_4 alkyl, C_1 - C_4 alkoxy, and phenyl;

15

 R^{9e} is selected at each occurrence from the group: C_1 - C_4 alkyl, C_1 - C_4 alkoxy, CF_3 , OCF_3 , Cl, F, Br, I, =0, OH, phenyl, $C(O)OR^{11}$, NH_2 , $NH(CH_3)$, $N(CH_3)_2$, -CN, and NO_2 ;

20

30

- R^{11} and R^{11a} are, at each occurrence, independently selected from the group: H, methyl, ethyl, propyl, butyl, phenyl and benzyl;
- 25 OR 26 and OR 27 are independently selected from:
 - a)-OH,
 - d) C1-C8 alkoxy, and

when taken together, OR^{26} and OR^{27} form:

e) a cyclic boronic ester where said cyclic boronic ester is formed from the group: pinanediol, pinacol, 1,2-ethanediol, 1,3-propanediol, 1,2propanediol, 2,3-butanediol, 1,2diisopropylethanedio, 5,6-decanediol, 1,2-dicyclohexylethanediol, diethanolamine, and 1,2-diphenyl-1,2-ethanediol;

5 A³ is Val, Glu, Ile, Thr, cyclohexylglycine, or cyclohexylalanine;

A⁴ is Val, Ile, Leu, cyclohexylglycine, cyclopropylglycine, t-butylglycine, phenylglycine, or 3,3-10 diphenylalanine; and

 ${\tt A}^{\tt 5}$ is (D or L stereochemistry) Asp, Glu, Val, Ile, t-butylglycine, and Gla.

5. A compound of Claim 4, or a stereoisomer, pharmaceutically acceptable salt form or prodrug thereof, wherein:

20 A^1 is -CH₂-;

 A^2 is H, $-C(=0)R^{9b}$, $-CONHR^{9b}$, $-C(=0)OR^{9b}$; $-A^3-R^{9a}$; or $-A^3-A^4-R^{9a}$;

25

15

W is pinanediol boronic ester;

R¹ is H, ethyl, allyl, or 2,2-difluoro-ethyl;

30 R^2 is H;

 R^3 is selected from the group: R^4 ,

ļ.

```
-(CH<sub>2</sub>)<sub>D</sub>-NH-R<sup>4</sup>,
          -(CH_2)_D-NHC(=0)-R<sup>4</sup>,
          -(CH_2)_{D}-C(=0)NH-R^4,
          -(CH_2)_{D}-C(=0)O-R^4,
          -(CH<sub>2</sub>)<sub>D</sub>-NHC(=O)NH-R<sup>4</sup>,
5
          -(CH_2)_D-NHC (=0) NHC (=0) -R<sup>4</sup>,
          -(CH_2)_{D}-C(=0)-R^4,
          -(CH<sub>2</sub>)<sub>p</sub>-O-R<sup>4</sup>, and
          -(CH<sub>2</sub>)<sub>D</sub>-S-R<sup>4</sup>;
10
    p is 0 or 1;
    R^4 is selected from the group: H, methyl, isopropyl,
       t-butyl, phenyl, benzyl, phenethyl, Ph-propyl, 3-Ph-2-
       propenyl, phenyl, 2-benzoic acid, 5-isophthalate
15
       dimethyl ester, triphenylmethyl, 1-(1-naphthyl)ethyl, 2-
       methylphenyl, 4-methylphenyl, 4-ethylphenyl, 2-
       isopropylphenyl, 4-isopropylphenyl, 4-tert-butylphenyl,
       2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2-
20
       ethoxyphenyl, 4-ethoxyphenyl, 2-F-phenyl, 3-F-phenyl, 4-
       F-phenyl, 2-Cl-phenyl, 4-Cl-phenyl, 2-CF<sub>3</sub>-phenyl, 3-CF<sub>3</sub>-
       phenyl, 4-CF3-phenyl, 4-(trifluoromethoxy)phenyl, 4-
       (hydroxymethyl)phenyl, 3-cyanophenyl, 3-(acetyl)phenyl,
       2-phenoxyphenyl, 3-phenoxyphenyl, 4-(acetyl)phenyl, 2-
       (methoxycarbonyl)-phenyl, 3-(methoxycarbonyl)-phenyl,
25
       4-(methoxycarbonyl)-phenyl, 2-(ethoxycarbonyl)-phenyl,
       3-(ethoxycarbonyl)-phenyl, 4-(ethoxycarbonyl)phenyl, 2-
       (butoxycarbonyl)phenyl, 2-(tert-butoxycarbonyl)phenyl,
       4-(dimethylamino)phenyl, 2-(methylthio)phenyl, 3-
30
        (methylthio)phenyl, 4-(methylthio)phenyl, 2-
```

(methylsulfonyl)phenyl, 3-CF₃S-phenyl, 2-nitrophenyl, 4-

nitrophenyl, 2-aminophenyl, 4-(benzyloxy)phenyl, 2-biphenyl, 4-biphenyl, 2,6-diisopropylphenyl, 2,4-difphenyl, 2,5-dif-phenyl, 2,6-dif-phenyl, 3,4-dichlorophenyl, 2,4-dimethoxyphenyl, 2,5-dimethoxyphenyl, 5-Cl-2-methoxyphenyl, 4-F-2-nitrophenyl, 3,4,5,-trimethoxyphenyl, 5-Cl-2,4-dimethoxyphenyl, 5-F-2,4-dimethoxyphenyl, Trans-2-phenylcyclopropyl, 1-naphthyl, 2-naphthyl, 2-pyridinyl, 3-pyridinyl, 2-quinolinyl, 5-quinolinyl, 1-isoquinolinyl, 2-phenyl-4-quinolinyl, 2-phenyl-4-quinolinyl, 2-anilino-2-oxoethyl and 2-3-methylbutyric acid methyl ester;

 R^{9a} is selected from the group: H, $-S(=0)R^{9b}$, $-S(=0)_2R^{9b}$, -S(=0) 2NHR^{9b}, -C(=0) R^{9b}, -C(=0) OR^{9b}, -C(=0) NHR^{9b}. 15 -C(=0) NHC(=0) R^{9b} ; C1-C4 alkyl substituted with 0-2 R9c; C3-C12 carbocycle substituted with 0-2 R9d; phenyl substituted with 0-2 R^{9d}; naphthyl substituted with 0-2 R^{9d}; and 20 5-10 membered heterocyclic group selected from the group: pyridinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, pyrazinyl, piperazinyl, imidazolyl, indoly1, benzimidazoly1, 1H-indazoly1, 25 oxazolidinyl, benzotriazolyl, benzisoxazolyl, benzoxazolyl, oxindolyl, benzoxazolinyl, benzthiazolyl, benzisothiazolyl, isatinoyl, isoxazolopyridinyl, isothiazolopyridinyl, thiazolopyridinyl, oxazolopyridinyl, imidazolopyridinyl, pyrazolopyridinyl, 30 4H-quinolizinyl, benzofuranyl, benzothiophenyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, and

quinoxalinyl; and said 5-10 membered heterocyclic group is substituted with 0-2 $R^{9}d$;

R^{9b} is selected from the group: H; C1-C4 alkyl substituted with 0-1 R9c; 5 C3-C12 carbocycle substituted with 0-2 R9d; phenyl substituted with 0-2 R^{9d}; naphthyl substituted with 0-2 R^{9d}; and 5-10 membered heterocyclic group selected from the 10 group: pyridinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, pyrazinyl, piperazinyl, imidazolyl, indolyl, benzimidazolyl, 1H-indazolyl, oxazolidinyl, benzotriazolyl, benzisoxazolyl, benzoxazolyl, oxindolyl, benzoxazolinyl, benzthiazolyl, benzisothiazolyl, isatinoyl, 15 isoxazolopyridinyl, isothiazolopyridinyl, thiazolopyridinyl, oxazolopyridinyl, imidazolopyridinyl, pyrazolopyridinyl, 4H-quinolizinyl, benzofuranyl, benzothiophenyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, and 20 quinoxalinyl; and said 5-10 membered heterocyclic group is substituted with 0-2 R9d;

R^{9C} is selected from the group: CF3, OCF3, Cl, F, Br, OH,

C(0)OR¹¹, NH₂, NH(CH₃), N(CH₃)₂, -CN, NO₂;

C₁-C₄ alkyl substituted with 0-1 R^{9d};

C₂-C₄ alkenyl substituted with 0-1 R^{9d};

C₂-C₄ alkynyl substituted with 0-1 R^{9d}; and

 30 R 9d is selected at each occurrence from the group:

CF₃, OCF₃, Cl, F, Br, OH, C(O)OR¹¹, NH₂, NH(CH₃), N(CH₃)₂, -CN, NO₂, C₁-C₄ alkyl, C₁-C₄ alkoxy, and phenyl;

5 R^{11} is selected from the group: H, methyl, ethyl, propyl, butyl, phenyl and benzyl;

 ${\tt A}^3$ is Val, Glu, Ile, Thr, cyclohexylglycine, or cyclohexylalanine; and

10

 ${\tt A}^4$ is Val, Ile, Leu, cyclohexylglycine, cyclopropylglycine, t-butylglycine, phenylglycine, or 3,3-diphenylalanine.

6. A compound of Claim 5, or a stereoisomer, pharmaceutically acceptable salt form or prodrug thereof, wherein:

 A^1 is $-CH_2-$;

20

 A^2 is $-C(=0)OR^{9b}$ or $-A^3-R^{9a}$;

W is pinanediol boronic ester;

25 R¹ is H, ethyl or allyl;

 R^2 is H;

 R^3 is R^4 ;

- R⁴ is selected from the group: Ph-propyl, 3-Ph-2-propenyl,
 2-phenyl-4-quinolinyl, 2-phenyl-4-quinolinyl-methyl,
 2-methyl-6-quinolinyl, and 2-anilino-2-oxoethyl;
- 5 R^{9a} is selected from the group: $-S(=0)_2R^{9b}$, $-C(=0)_R^{9b}$, $-C(=0)_R^{9b}$, and $-C(=0)_R^{9b}$;
 - ${\rm R}^{\rm 9b}$ is selected from the group: t-butyl, fluorenylmethyl, fluorenyl, benzyl;
- phenyl substituted with 0-2 R^{9d};

 naphthyl substituted with 0-2 R^{9d}; and

 pyridinyl substituted with 0-2 R^{9d};
- R^{9d} is selected at each occurrence from the group: CF3, OCF3, Cl, F, Br, OH, C(O)OR^{11}, NH2, NH(CH3), N(CH3)2, -CN, NO2, C1-C4 alkyl, C1-C4 alkoxy, and phenyl; and

 A^3 is Val.

20

- 7. A compound of Claim 1, or a stereoisomer or a pharmaceutically acceptable salt form or prodrug thereof, selected from:
- 25 (4S)-N-{[[(1R)-1-[(3αS,4S,6S,7αR)-hexahydro-3α,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-{(2S)-3-methyl-2-[(phenylacetyl)-amino]-butanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

ŀ÷

```
tert-butyl (1S)-N-{[[(1R)-1-[(3\alphaS,4S,6S,7\alphaR)-hexahydro-
                             3\alpha, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-
                             yl]propyl}amino)carbonyl]-2-oxo-3-(3-
                             phenylpropyl)imidazolidinyl]carbonyl}-2-
   5
                             methylpropylcarbamate;
                              (4S) - N - \{ [ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - 1] \} \}
                             trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-
                            y1]propy1\}-3-{(2S)-2-[(anilinocarbony1)amino]-3-}
10
                             methylbutanoy1}-2-oxo-1-(3-phenylpropy1)-4-
                             imidazolidinecarboxamide;
                              (4S) - N - \{ [(1R) - 1 - (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - (4S) - N - \{ (1R) - 1 - (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - (4S) - N - \{ (1R) - 1 - (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - (4S) -
                             trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-
15
                            yl]propyl}-3-{(2S)-2-[(9H-fluoren-1-ylcarbonyl)amino]-3-}
                            methylbutanoyl}-2-oxo-1-(3-phenylpropyl)-4-
                             imidazolidinecarboxamide;
                             (4S) - N - \{ [ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - nexahydro - 3\alpha, 6S, 7\alpha R \} \} 
20
                             trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-
                            y1]propy1}-3-((2S)-2-{[(4-methoxyphenyl)acetyl]amino}-3-
                            methylbutanoyl)-2-oxo-1-(3-phenylpropyl)-4-
                             imidazolidinecarboxamide;
25
                             (4S) - N - \{ [(1R) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - (4S) - N - \{ (1R) - 1 - [(3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - (4S) - (4S)
                            trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]-3-
                            buteny1\}-3-\{(2S)-2-[(9H-fluoren-1-ylcarbony1)amino\}-3-
                            methylbutanoy1}-2-oxo-1-(3-phenylpropy1)-4-
                            imidazolidinecarboxamide;
30
                            9H-fluoren-9-ylmethyl (1S)-N-{[[(1R)-1-[(3\alphaS,4S,6S,7\alphaR)-
                            hexahydro-3\alpha, 5, 5-trimethyl-4, 6-methano-1, 3, 2-
```

15

20

30

```
benzodioxaborol-2-yl]propyl}amino)carbonyl]-2-oxo-3-(3-phenylpropyl)imidazolidinyl]carbonyl}-2-methylpropylcarbamate;
```

```
(4S)-N-\{[[(1R)-1-[(3\alpha S,4S,6S,7\alpha R)-hexahydro-3\alpha,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl\}-3-((2S)-3-methyl-2-\{[3-(trifluoromethyl)benzyl]amino} butanoyl)-2-oxo-1-(3-phenylpropyl)-4-
```

imidazolidinecarboxamide;

methylpropylcarbamate;

```
(4S) -N-{[[(1R)-1-[(3\alphaS,4S,6S,7\alphaR)-hexahydro-3\alpha,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-{(2S)-2-[([1,1'-biphenyl]-4-ylmethyl)amino]-3-methylbutanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;
```

9*H*-fluoren-9-ylmethyl (1S)-1- $(\{(5S)$ -5- $[(\{(1R)$ -1- $[(3\alpha S, 4S, 6S, 7\alpha R)$ -hexahydro-3 α , 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl]propyl}amino)carbonyl]-2-oxo-3-[(2-phenyl-4-quinolinyl)methyl]imidazolidinyl}carbonyl)-2-

 $N-((1S)-1-\{[(5S)-5-\{[[(1R)-1-[(3\alpha S,4S,6S,7\alpha R)-hexahydro-3\alpha,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-amino)carbonyl]-2-oxo-3-(3-phenylpropyl)imidazolidinyl]carbonyl}-2-methylpropyl)-2-chloronicotinamide;$

(4S) -N-{[[(1R)-1-[(3 α S, 4S, 6S, 7 α R) -hexahydro-3 α , 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl]propyl}-3-{(2S)-2-[(4-butylbenzoyl)amino]-3-

30

```
methylbutanoyl}-2-oxo-1-(3-phenylpropyl)-4-
                    imidazolidinecarboxamide;
                    isobutyl (1S)-1-\{[(5S)-5-\{[(1R)-1-[(3\alpha S, 4S, 6S, 7\alpha R)-1]\}\}]\}
  5
                    hexahydro-3\alpha, 5, 5-trimethyl-4, 6-methano-1, 3, 2-
                    benzodioxaborol-2-yl]propyl}amino)carbonyl]-2-oxo-3-(3-
                    phenylpropyl)imidazolidinyl]carbonyl}-2-
                    methylpropylcarbamate;
                     (4S) - N - \{ [ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - 1 ] \} \}
10
                    trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-
                    y1]propy1}-3-((2S)-2-{[(benzoylamino)carbony1]amino}-3-
                    methylbutanoyl) -2-oxo-1-(3-phenylpropyl) -4-
                    imidazolidinecarboxamide;
15
                     (4S) - N - \{ [ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - 1] \} \}
                    trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-
                   y1]propy1}-3-[(2S)-3-methy1-2-(1-
                    naphthoylamino)butanoyl]-2-oxo-1-(3-phenylpropyl)-4-
                    imidazolidinecarboxamide;
20
                    (4S) - N - \{ [ (1R) - 1 - [ (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - 1] \} \}
                    trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-
                   y1propy1}-3-[(2S)-2-(acetylamino)-3-methylbutanoy1]-2-
25
                    oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;
                    (4S) - N - \{ [(1R) - 1 - (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - (4S) - N - \{ (1R) - 1 - (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - (4S) - N - \{ (1R) - 1 - (3\alpha S, 4S, 6S, 7\alpha R) - hexahydro - 3\alpha, 5, 5 - (4S) -
                    trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-
                   y1]propy1}-3-[(2S)-2-(benzoylamino)-3-methylbutanoy1]-2-
```

oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

benzyl (5S)-5-[({(1R)-1-[(3 α S,4S,6S,7 α R)-hexahydro-3 α ,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]-3-butenyl}amino)carbonyl]-2-oxo-3-[(2E)-3-phenyl-2-propenyl]-1-imidazolidinecarboxylate; and

benzyl (5S)-5-[({(1R)-1-[(3 α S,4S,6S,7 α R)-hexahydro-3 α ,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]-3-butenyl}amino)carbonyl]-3-(2-anilino-2-oxoethyl)-2-oxo-1-imidazolidinecarboxylate.

10

- - 98. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 2, or a pharmaceutically acceptable salt form or prodrug thereof.
- () 9. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 3, or a pharmaceutically acceptable salt form or prodrug thereof.
- 10. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 4, or a pharmaceutically acceptable salt form or prodrug thereof.
 - 11. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically

effective amount of a compound of Claim 5, or a pharmaceutically acceptable salt form or prodrug thereof.

- 12. A pharmaceutical composition comprising a

 5 pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 6, or a pharmaceutically acceptable salt form or prodrug thereof.
- 10 pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 7, or a pharmaceutically acceptable salt form or prodrug thereof.
- 15 14. A method of treating a viral infection which comprises administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt form or prodrug thereof.
- 20 16. A method of treating HCV infection which comprises administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt form or prodrug thereof.

25 **16.** A method

- 16. A method of treating HCV infection which comprises administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 2, or a pharmaceutically acceptable salt form or prodrug thereof.
 - 17. A method of treating HCV infection which comprises administering to a host in need of such treatment a

therapeutically effective amount of a compound of Claim 3, or a pharmaceutically acceptable salt form or prodrug thereof.

5 1918. A method of treating HCV infection which comprises administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 4, or a pharmaceutically acceptable salt form or prodrug thereof.

- JO 19. A method of treating HCV infection which comprises administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 5, or a pharmaceutically acceptable salt form or prodrug thereof.
- 20. A method of treating HCV infection which comprises administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 6, or a pharmaceutically acceptable salt form or prodrug thereof.
- 21. A method of treating HCV infection which comprises administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 7, or a pharmaceutically acceptable salt form or prodrug thereof.

5

10

15

TITLE

Imidazolidinones and Their Related Derivatives as
Hepatitis C Virus NS3 Protease Inhibitors

FIELD OF THE INVENTION

The present invention relates generally to a novel class of imidazolidinones of Formula (I):

$$A^{2} \xrightarrow{N} A^{1} \xrightarrow{R^{1}} R^{2}$$

$$W$$

(I)

that are useful as serine protease inhibitors, and more particularly as Hepatitis C virus NS3 protease inhibitors. This invention also relates to pharmaceutical compositions comprising these compounds and methods of using the same.