

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: 2018

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تسيير واقتصاد

اختبار في مادة: الرياضيات

المدة: 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

يمثّل الجدول التّالي تطور النسبة المئوية لنتائج شهادة البكالوريا في ثانوية ما، من سنة 2011 إلى سنة 2017.

السنة	2011	2012	2013	2014	2015	2016	2017
رتبة السنة x_i	1	2	3	4	5	6	7
النسبة المئوية y_i %	44,78	49,79	51,36	56,07	58,84	62,45	75,01

مثل سحابة النقط $M_i\left(x_i;y_i
ight)$ في معلم متعامد (نأخذ 1cm لكل سنة على محور الفواصل و 1cm لكل 1cmعلى محور التراتيب).

 $M_i\left(x_i;y_i\right)$ إحداثيي G ، النقطة المتوسطة لسحابة النقط $\left(\overline{X};\overline{Y}\right)$ احسب (2

 $(x_i; y_i)$ معادلة مستقيم الانحدار بالمربعات الدنيا للسلسلة y = ax + b لتكن (3 . b قيمة احسب قيمة (10^{-2} النتيجة إلى a = 4,41)، ثمّ احسب قيمة

4) باستعمال التعديل الخطى السابق، ابتداء من أي سنة تتجاوز نسبة النجاح %80 ؟

التمربن الثاني: (04 نقاط)

أجريت دراسة إحصائية على قسم نهائي تسيير واقتصاد حول ممارسة التلاميذ لرياضة ما، فكانت النتائج كما يلي: 70% من التلاميذ إناث، منهن 30% لا يمارسن هذه الرياضة.

90% من التلاميذ الذكور يمارسون هذه الرياضة.

نختار عشوائيا تلميذا من هذا القسم ونعتبر الحوادث التالية:

G: التلميذ المختار ذكر G

التلميذ المختار أنثى: F

S: التلميذ المختار يمارس هذه الرياضة.

1) انقل الشجرة المقابلة ثم أكملها.

2) احسب الاحتمالات الآتية:

. $P_S(G)$ و $P_{\overline{S}}(F)$ ، $P(G \cap \overline{S})$ ، P(S)

هل الحادثتان G و \overline{S} مستقلتان \mathcal{S} برّر إجابتك.

اختبار في مادة: الرياضيات / الشعبة: تسيير واقتصاد / بكالوريا 2018

التمرين الثالث: (04 نقاط)

: يلي المعرفتان كما يلي و (v_n) و المعرفتان كما يلي (I

$$v_n = u_n - 20$$
 و من أجل كل عدد طبيعي $u_{n+1} = 0,7u_n + 6$: n عدد طبيعي $u_0 = 50$

- . n برهن أن (v_n) متتالية هندسية أساسها 0.7 يطلب تعيين حدّها الأول v_n ، وكتابة عبارة v_n بدلالة v_n
 - . u_n أ. اكتب بدلالة n عبارة الحد العام (2
 - $\lim_{n\to +\infty} u_n$ ميّن اتجاه تغير المتتالية $\left(u_n\right)$ ثم احسب \cdot
 - II) تملك جريدة يومية 5000 مشترك في سنة 2016. بعد كل سنة تفقد %30 من المشتركين وتكتسب 600 مشترك جديد.

$$u_0 = 50$$
 أي $u_n = 2016 + n$ نعتبر المئة هي الوحدة: ونرمز ب u_n لعدد المشتركين في سنة

- 1) ما هو عدد المشتركين في سنة 2017؟ ثم في سنة 2018؟
 - . $u_{n+1} = 0.7u_n + 6$ أ. برّر العبارة (2

ب. ابتداء من أي سنة يصبح عدد المشتركين أقل من 2400 مشترك؟

التمرين الرابع: (08 نقاط)

 $f(x) = \ln(x+2) + \ln(-x+8) - \ln 16$: بj = -2 ; g[x+2] = -2 , g[x+2] = -2

- الحسب نهايتي الدالة f عند طرفي مجموعة التعريف -2;8 و فسّر النتيجتين بيانيا.
- . (f مشتقة الدالة f ') $f'(x) = \frac{-2x+6}{(x+2)(-x+8)}$:]-2;8[مشتقة الدالة f ') مشتقة الدالة (2
 - . f الدرس إشارة f'(x) على المجال]-2;8[وشكّل جدول تغيّرات الدالة f'(x)
 - . عيّن نقط تقاطع المنحنى $\left(C_{f}
 ight)$ مع محوري الإحداثيات.
 - ، f(6-x)=f(x) و -2;8[و -2;8[و -2;8[بيّن أنه من أجل كل -2 من المجال -2;8[من المجال -2;8[
 - (C_f) ارسم المنحنى (6
 - : ب]-2;8[المعرّفة على المجال F بنكن الدالة العددية المعرّفة المعرّفة على الدالة العددية المعرّفة المعرّفة

$$F(x) = (x+2)\ln(x+2) + (x-8)\ln(-x+8) - 2x - x \ln 16$$

.]–2;8 \lceil للمجال على المجال F دالة أصلية لـ f على المجال

: احسب ب cm^2 مساحة الحيّز المستوي المحدّد بالمنحنى (C_f) و المستقيمات التي معادلاتها (x=4) و x=0 ، y=0

انتهى الموضوع الأول

اختبار في مادة: الرياضيات / الشعبة: تسيير واقتصاد / بكالوريا 2018

الموضوع الثانى

التمرين الأول: (04 نقاط)

الجدول التالي يمثّل تطوّر عدد المتقاعدين من سنة 2009 إلى سنة 2014 بالجزائر. (الديوان الوطني للإحصائيات).

السنة	2009	2010	2011	2012	2013	2014
x_i رتبة السنة	1	2	3	4	5	6
عدد المتقاعدين y_i (بالملايين)	2,17	2,19	2,32	2,48	2,63	2,77

ا) مثّل سحابة النقط $M_i(x_i; y_i)$ في معلم متعامد. (نأخذ كوحدة بيانية: 2cm لكل سنة على محور الفواصل و 2cm كل مليون متقاعد على محور التراتيب).

- عيّن إحداثيي النقطة المتوسطة G ثم علّمها.
- 3) اكتب معادلة مستقيم الانحدار بالمريّعات الدّنيا.
- 4) نفرض أن تطوّر عدد المتقاعدين يبقى على هذه الوتيرة في السنوات الموالية.
 - أ. قدّر عدد المتقاعدين في الجزائر في سنة 2020.

ب. ابتداء من أيّ سنة يتعدّى عدد المتقاعدين في الجزائر 4 ملايين متقاعد.

التمرين الثاني: (04 نقاط)

تضُّم مؤسسة إنتاجية موظفين من الجنسين

F رجالا يرمز لهم بH و نساء يرمز لهن ب

منهم الإداريون "A" ، المهندسون "I" و العمال "T" . موزعين حسب الجدول المقابل:

يخضع الموظفون لفحص طبى دوري. نختار عشوائيا موظفا.

- P(H) = 0.52 أ. بيّن أنّ احتمال أن يكون الموظف رجلا هو \bullet (1 \bullet
 - . $P(F \cap I)$ و $P(H \cap T)$ احسب (2
 - 3) ما احتمال أن يكون الموظف مهندسا؟
 - 4) ما احتمال أن يكون الموظف رجلا علما أنه إداري؟

	الإداريون A	المهندسون I	العمال T
الرجال	12%	13%	27%
النساء	16%	12%	20%

اختبار في مادة: الرياضيات / الشعبة: تسيير واقتصاد / بكالوريا 2018

التمرين الثالث: (04 نقاط)

 $2u_{n+1}=u_n+6$ ، n عدد طبیعی المتتالیة العددیة المعرفة کما یلی: $u_0=-1$ و من أجل كل عدد طبیعی (u_n)

- . $u_n < 6$ ، n عدد طبیعي أ. (1 $u_n < 6$ ، $u_n < 6$) عدد التراجع أنه من أجل كل عدد الدرس اتجاه تغير المتتالية $u_n = u_n = u_n$
- $v_n = u_n 6$: n نضع من أجل كل عدد طبيعي (2 $v_n = v_n 6$ نضع من أجل كل عدد طبيعي أساسها $\frac{1}{2}$ يطلب حساب حدّها الأول v_n أ. بيّن أنّ v_n بدلالة v_n ثمّ احسب v_n بدلالة v_n بدلال
- $P_n = v_0 \times v_1 \times v_2 \times ... \times v_n$ و $S_n = u_0 + u_1 + u_2 + ... + u_n$ احسب بدلالة n ما يلي: (3

التمرين الرابع: (08 نقاط)

- . $g(x) = 1 + (1-x)e^{-x+1}$: $g(x) = 1 + (1-x)e^{-x+1}$: $g(x) = 1 + (1-x)e^{-x+1}$) بعتبر الدالة العددية $g(x) = 1 + (1-x)e^{-x+1}$ ادرس اتجاه تغير الدالة $g(x) = 1 + (1-x)e^{-x+1}$ بن g(x) > 0 : g(x) > 0 : g(x) > 0 ادرس اتجاه تغير الدالة $g(x) = 1 + (1-x)e^{-x+1}$ بن $g(x) = 1 + (1-x)e^{-x+1}$ ادرس اتجاه تغير الدالة $g(x) = 1 + (1-x)e^{-x+1}$ بن $g(x) = 1 + (1-x)e^{-x+1}$
 - $f\left(x
 ight)=x+xe^{-x+1}$:ب $[0;+\infty[$ المعرفة على المجال f المعرفة على المجال f المعرفة على المجال f المعرفة على المعرفة على المجانس و $f\left(C;\overrightarrow{i},\overrightarrow{j}\right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس و $f\left(C_f\right)$
 - (C_f) مقارب للمنحني y=x مقارب للمنحني (Δ) فو المعادلة Δ مقارب للمنحني . Δ المستقيم (Δ) بالنسبة إلى المستقيم (Δ) بالنسبة المستقيم (Δ) بالنسبة المستقيم (Δ) بالنسبة (Δ) با
 - . f التغيرات للدالة f'(x) = g(x) : $[0; +\infty[$ للدالة x من المجال x من المجال y بيّن أنّه من أجل كل x من المجال y
 - $3,75 < \alpha < 3,77$: حيث α حيث f(x) = 4 تقبل حلّا وحيدا (3
 - (C_f) و (Δ) ، (T) اكتب معادلة المماس (T) للمنحنى (C_f) عند النقطة ذات الفاصلة (T) ثم ارسم
 - $.F(x) = \frac{1}{2}x^2 (x+1)e^{-x+1}$: كما يلي: $[0;+\infty[$ كما المعرّفة على المعرّفة على المعرّفة على المجال F على المجال F على المجال أنّ الدالة F هي دالة أصلية للدالة f على المجال F على المجال أنّ الدالة أصلية للدالة أصلية للدالة أصلية الدالة الدالة أصلية الدالة الدا
 - f(x)dx ب. أوجد القيمة المضبوطة للعدد $\int_{1}^{4} f(x)dx$ ، ثم أعط تفسيرا هندسيا لهذا العدد.
 - نمذج الكلفة الهامشية C_m لإنتاج كميّة q (مقدرة بآلاف الوحدات) حيث $0 \leq q \leq 7$ بالدالة q المعرّفة سابقا أي: $C_m(q) = f(q)$ حيث: $C_m(q) = f(q)$. (الكلفة الهامشية مقدّرة بملايين الدنانير)
 - أ. ما هي كمية المنتوج التي من أجلها لا تتجاوز الكلفة الهامشية 4 ملايين دينار ؟
 - ب. نذكّر أنّ دالة الكلفة الإجمالية C_T هي دالة أصلية لدالة الكلفة الهامشية. احسب القيمة المتوسطة للكلفة الإجمالية عندما تنتج الشركة ما بين 1000 وحدة و 4000 وحدة.

العلامة		4 h f h h h h h h h h
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		التمرين الأول : (04 نقاط)
1.25	1.25	$M(x_i; y_i)$ تمثیل سحابة النقط $M(x_i; y_i)$
1.25	1.25	2) إحداثيي النقطة المتوسطة G: (4;56.90)
1.25	01	3) بیان أن: a = 4.41 نيان أن: 3
0.25	0.25	استنتاج قیمهٔ b = 39.26 : b استنتاج قیمهٔ
0.23	0.25	4) السنة التي تتجاوز فيها نسبة النجاح %80 هي: 2020
		(* 18° 0.4)
		التمرين الثاني: (04 نقاط) التمرين الثاني: (04 نقاط)
1.5	0.5×3	1 1
		0.7
		F
		\overline{s}
	0.75×2	$P(G \cap \overline{S}) = 0.03$, $P(s) = 0.62$: (2
02.25	0.5	$P_{\overline{s}}(F) = \frac{35}{38} \approx 0.92$
0.25	0.25	$P_{S}(G) = \frac{27}{62} \approx 0.44$
0.23	0.25	02
	0.23	$P(G \cap \overline{S}) \neq P(G) \times P(\overline{S})$ الحادثتان G و \overline{S} غير مستقلتين لأن:
		<u>التمرين الثالث</u> : (04 نقاط)
1.5	0.5	$q=0.7$ إثبات أن (V_n) متتالية هندسية اساسها $(1$
1.3	0.5	$V_0 = 30$ و حدها الأول
	0.5	. $V_n = 30 imes (0.7)^n$ و عبارة حدها العام
	0.25	$U_n = 30 \times (0.7)^n + 20^{-1}$ (2
0.75	0.25	. متناقصة تماما $U_{n+1} - U_n = -9 imes (0.7)^n < 0 : (U_n)$ باتجاه تغير
	0.25	$\lim_{n\to+\infty}u_n=20\qquad \qquad $
		,

01	0.5	$U_{_{1}}=50-0.3 imes50+6=41$: كا عدد المشتركين في سنة 2017 هو 4100 لأن (1
	0.5	$U_2 = 41 - 0.3 \times 41 + 6 = 34.7$ و عدد المشتركين في سنة 2018 هو 3470 لأن $3470 = 41 - 0.3 \times 41 + 6 = 34.7$
		U_{n+1} أ- U_{n+1} هو عدد المشتركين في سنة U_{n+1}
0.75	0.5	و U_n هو عدد المشتركين في سنة U_n
0.75		$U_{n+1} = U_n - 0.3 \times U_n + 6 = 0.7 \times U_n + 6$ فإن
	0.25	$U_n = 30 \times (0.7)^n + 20 < 24$ ب - عدد المشتركين أقل من 2400 أي
		$(0.7)^n < \frac{2}{15}$ أي
		2022 أي $n = 6$ أي سنة $n > \frac{\ln\left(\frac{2}{15}\right)}{\ln\left(0.7\right)}$
		التمرين الرابع: (08 نقاط)
2.5	0.75×2	$\lim_{x \to 8} f(x) = -\infty \cdot \lim_{x \to -2} f(x) = -\infty (1)$
2.3		لمستقيمان اللذان معادلتاهما $x=-2$ و $x=8$ على الترتيب هما مستقيمان مقاربان $x=8$
	1	عموديان.
1	0.5×2	$f'(x) = \frac{-2x+6}{(x+2)(-x+8)}$ ، $]-2;8[$ من أجل كل x من أجل كل (2)
	0.5×2	:f '(x) إشارة (3
1.75	0.75	ب و ر) _ جدول التغيّرات
		J. 65 :
		$(C_f) \cap (y'y) = \{O(0;0)\}$ إذن $f(0) = 0$ (4
0.75	0.75	معناه $x=6$ أو $x=6$ و منه $f(x)=0$
		$.(C_f) \cap (x 'x) = \{O(0;0); A(6;0)\}$
		$(6-x) \in]-2;8[$ فإنّ $]-2;8[$ من أجل كل x من $[6-x) \in]-2;8[$
	0.25	: في $f(6-x) = \ln(6-x+2) + \ln(x-6+8) - \ln 16$
0.5	0.25	و منه المستقيم ذو المعادلة $x=3$ هو محور تناظر للمنحنى $f(6-x)=f(x)$
		و معد المستعيم دو المعادلة $x=y$ مو معور تناظر تستعلي $\cdot (C_f)$
0.5	0.5	$\cdot(C_f)$ إنشاء المنحني (C_f
	L	

الإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعبة: تسيير واقتصاد/ بكالوريا: 2018

0.5	0.5	.F'(x) = f(x)، $]-2;8[$ من أجل كل x من $[-2;8]$ من أجل كل $[-2;8]$ من أجل كل الدالة $[-2;8]$ على المجال $[-2;8]$
0.5	0.5	$A = \int_0^4 f(x) dx \times (2 \times 2cm^2) = [F(x)]_0^4 \times (2 \times 2cm^2) $ (8) $A = 4[6\ln 6 - 2\ln 2 - 8]cm^2$ و منه

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التمرين الأول: (04 نقاط)
01	1	1) تمثيل السحابة
	0.5	$\frac{-}{x} = \frac{1+2+3+4+5+6}{6} = 3.5$ (2)
01	0.5	$\frac{-}{y} = \frac{2.17 + 2.19 + 2.32 + 2.48 + 2.63 + 2.77}{6} = 2.43$
		G(3.5; 2.43) ثم تعليم النقطة المتوسطة
		تقبل النتائج القريبة جدا من هذه النتائج .
		: کان $y = 0.128x + 1.982$ کان $y = 0.128x + 1.982$
01	0.5×2	$a = \frac{\sum_{1}^{6} \left(x_{i} - \overline{x}\right) \left(y_{i} - \overline{y}\right)}{\sum_{1}^{6} \left(x_{i} - \overline{x}\right)^{2}} = \frac{2.24}{17.5} \approx 0.128$
		$b = \overline{y} - a\overline{x} = 2.43 - 0.128 \times 3.5 = 1.982$
		تقبل النتائج القريبة جدا من هذه النتائج .
	0.5	أ- سنة 2020 تقابلها الرتبة $x_i = 12$ منه عدد المتقاعدين هو $(4$
		$y = 0.128 \times 12 + 1.982$
01	0.5	منه 3.518 مليون متقاعد في سنة 2020 .
		x=16 منه $0.128x+1.982>4$ ب $-$
		التمرين الثاني (04 نقاط)
	0.25	P(H) = 0.12 + 0.13 + 0.27 = 0.52 - 1
01	0.75	$P_H(A) = \frac{3}{13}$ ، $P(F) = 0.16 + 0.12 + 0.20 = 0.48$: اتمام الشجرة :
	0.73	$P_{H}(I) = \frac{1}{4}$ $P_{F}(T) = \frac{5}{12} P_{F}(I) = \frac{1}{4} P_{F}(A) = \frac{1}{3} \qquad P_{H}(T) = \frac{27}{52} g$
01	0.5×2	$P(F \cap I) = 0.48 \times \frac{1}{4} = 0.12$ $P(H \cap T) = 0.52 \times \frac{27}{52} = 0.27$ (2)

الإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعبة: تسيير واقتصاد/ بكالوريا: 2018

01	1	$P(I) = P(I \cap H) + P(I \cap F) = 0.52 \times \frac{1}{4} + 0.48 \times \frac{1}{4} = 0.25$ (3)
01	1	$P_A(H) = \frac{P(H \cap A)}{P(A)} = \frac{0.52 \times \frac{3}{13}}{0.52 \times \frac{3}{13} + 0.48 \times \frac{1}{3}} = \frac{3}{7} \approx 0.43 \text{ (4)}$
	1	التمرين الثالث: (04 نقاط)
1.5	1	$u_n < 6$ ، n البرهان بالتراجع أنه من اجل كل عدد طبيعي أ البرهان بالتراجع أنه من اجل كل عدد البيعي
1.5	0.25	(u_n) دراسة اتجاه تغير المتتالية (u_n)
	0.25	(u_n) متقاربة (u_n) متقاربة
	0.5	$v_{n+1} = \frac{1}{2}v_n$: هندسیة هندسیة (v_n) بیان أن (2
	0.25	$v_0 = -7$
1.5	0.5	$v_n = -7 \left(\frac{1}{2}\right)^n$: n ب کتابة v_n بدلالة v_n
	0.25	$\lim_{n \to +\infty} u_n = 6$
		$: P_n$ و S_n حساب (3
01	0.75	$S_n = 7\left(\frac{1}{2}\right)^n + 6n - 8$
	0.25	$P_n = (-7)^{n+1} \left(\frac{1}{2}\right)^{\frac{n(n+1)}{2}}$
	0.20	$I_n = (1)$ (2)
		التمرين الرابع (08 نقاط)
		(I
	0.25	$g'(x) = (x-2)e^{-x+1}$: فإن $x \in [0; +\infty[$ من أجل (1
0.75	0.25	. لدينا من أجل $x \in [0;2]$ فإن g دالة متناقصة تماما.
	0.25	من أجل $x \in [2;+\infty[$ فإن g دالة متزايدة تماما.
	0.23	$g(x)>0$ يما أن $g(2)=1-rac{1}{e}>0$ قيمة حدية صغرى للدالة g

الإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعبة: تسيير واقتصاد/ بكالوريا: 2018

		α
2	0.5	$\lim_{x \to +\infty} f(x) = +\infty - 1 $ (11)
2	0.5	$\lim_{x\to +\infty} f(x) = +\infty \qquad f(1)$
	0.5×2	$+\infty$ بجوار (C_f) بجوار المستقيم Δ بجوار Δ بجوار المستقيم Δ بجوار Δ بجوار Δ
	0.5	(Δ) يقع فوق المستقيم $f(x)-x=xe^{-x+1}$ ب $f(x)-x=xe^{-x+1}$ باذن من أجل $f(x)$
	0.5	$f'(x) = g(x) : x \in [0; +\infty[$ تبیان أن من أجل (2
01	0.5	جدول التغيرات
0.75	0.75	$f(3.75) \approx 3.98$ و $[3.75;3.77]$ و $f(3)$
0.75	0.75	$f(3.77) \approx 4.01$.
1 75	1	(T): y = x+1 معادلة المماس (4
1.75	0.25×3	$\left(C_f ight)$ رسم المماس ، المستقيم $\left(\Delta ight)$ و المنحنى
	0.25	$[0;+\infty[$ على المجال F دالة أصلية للدالة f على المجال F
1	0.5	$\int_{1}^{4} f(x)dx = [F(x)]^{4} = \frac{19}{2} - 5e^{-3} - \varphi$
1	0.25	(\mathcal{C}_f) تفسير الهندسي للعدد $\int_0^4 f(x)dx$ هو مساحة الحيز المستو المحدد بالمنحنى
		y=0 و المستقيمات التي معادلاتها $x=1, x=4$ و $y=0$
	0.5	$x \in [0; \alpha[$ معناه $f(x) < 4$ أ- لدينا (6
0.75		$q\in igl[0;lphaigl[$ معناه $C_{\scriptscriptstyle m}(q)<4$
	0.25	ب- القيمة المتوسطة للكلفة الإجمالية ما بين 1 وحدة و 4 وحدات .
		$\mu = \frac{1}{4-1} \int_{1}^{4} f(x) dx = \frac{19}{6} - \frac{5e^{-3}}{3}$