DSC680 PredictingAppUsageNotebook LincolnBrown

February 2, 2025

```
[1]: # Import libraries
     import pandas as pd
     import matplotlib.pyplot as plt
     import numpy as np
     from scipy.stats import ttest_ind, mannwhitneyu
     import seaborn as sns
     from sklearn.model_selection import train_test_split
     from sklearn.preprocessing import StandardScaler, OneHotEncoder
     from sklearn.compose import ColumnTransformer
     from sklearn.pipeline import Pipeline
     from sklearn.ensemble import RandomForestRegressor
     from sklearn.linear_model import LinearRegression
     from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
     from xgboost import XGBRegressor
[2]: f = "user behavior dataset.csv"
     df = pd.read csv(f, low memory=False)
[3]: df.describe()
[3]:
              User ID
                       App Usage Time (min/day)
                                                  Screen On Time (hours/day)
            700.00000
                                                                   700.000000
     count
                                      700.000000
     mean
            350.50000
                                      271.128571
                                                                     5.272714
     std
            202.21688
                                      177.199484
                                                                     3.068584
    min
              1.00000
                                       30.000000
                                                                     1.000000
     25%
            175.75000
                                      113.250000
                                                                     2.500000
     50%
            350.50000
                                      227.500000
                                                                     4.900000
     75%
            525.25000
                                      434.250000
                                                                     7.400000
            700.00000
    max
                                      598.000000
                                                                    12.000000
            Battery Drain (mAh/day)
                                      Number of Apps Installed Data Usage (MB/day)
     count
                         700.000000
                                                    700.000000
                                                                          700.000000
                        1525.158571
                                                     50.681429
                                                                          929.742857
     mean
     std
                         819.136414
                                                     26.943324
                                                                          640.451729
     min
                         302.000000
                                                     10.000000
                                                                          102.000000
     25%
                         722.250000
                                                     26.000000
                                                                          373.000000
     50%
                        1502.500000
                                                     49.000000
                                                                          823.500000
     75%
                        2229.500000
                                                     74.000000
                                                                         1341.000000
```

max 2993.000000 99.000000 2497.000000

```
Age
                   User Behavior Class
       700.000000
                             700.000000
count
        38.482857
                               2.990000
mean
std
        12.012916
                               1.401476
        18.000000
min
                               1.000000
25%
        28.000000
                               2.000000
50%
        38.000000
                               3.000000
75%
        49.000000
                               4.000000
        59.000000
max
                               5.000000
```

```
[4]: df.columns
```

0.1 Exploratory Data Analysis

```
[5]: # Check for missing values df.isna().sum()
```

```
[5]: User ID
                                     0
     Device Model
                                     0
     Operating System
                                     0
     App Usage Time (min/day)
                                     0
     Screen On Time (hours/day)
                                     0
     Battery Drain (mAh/day)
                                     0
     Number of Apps Installed
                                     0
     Data Usage (MB/day)
                                     0
                                     0
     Age
     Gender
                                     0
     User Behavior Class
                                     0
     dtype: int64
```

```
[6]: # Drop rows containing the missing values for age df.dropna(inplace=True)
```

```
[7]: # Group the features

numerical_features = ['App Usage Time (min/day)', 'Screen On Time (hours/day)',

→'Number of Apps Installed', 'Data Usage (MB/day)', 'Age']

categorical_features = ['Device Model', 'Operating System', 'Gender']
```

```
[8]: # Let's start looking at the distribution of numerical features
     # Num of numerical features
     num_features = len(numerical_features)
     # Get the dimensions of the grid w/ 2 cols
     n_{cols} = 2
     n_rows = (num_features + n_cols -1)
     # Create subplots
     fig, axes = plt.subplots(n_rows, n_cols, figsize=(12, 4 * n_rows))
     # Flatten the axes
     axes = axes.flatten()
     for i, feature in enumerate(numerical_features):
         sns.histplot(data=df, x=feature, kde=True, bins=20, color='blue', L
      ⇔ax=axes[i])
         axes[i].set_title(f'Distribution of {feature}')
         axes[i].set_xlabel(feature)
         axes[i].set_ylabel('Frequency')
     # Remove unused subplots
     for j in range(i + 1, len(axes)):
        fig.delaxes(axes[j])
     plt.tight_layout()
    plt.show()
```



```
[10]: # Boxplot of App Usage Time
plt.figure(figsize=(8,6))
sns.boxplot(data=df, x='App Usage Time (min/day)')
plt.title('Distribution of App Usage Time')
plt.xlabel('App Usage Time (min/day)')
plt.show()
```



```
[11]: # Bins for the Age column
bins = [18, 29, 39, 49, 59]
df['Age Group'] = pd.cut(df['Age'], bins=bins)
df
```

[11]:		User ID	Device Model	Operating System	App Usage Time	(min/day)	\
	0	1	Google Pixel 5	Android		393	
	1	2	OnePlus 9	Android		268	
	2	3	Xiaomi Mi 11	Android		154	
	3	4	Google Pixel 5	Android		239	
	4	5	iPhone 12	iOS		187	
			•••	•••			
	695	696	iPhone 12	iOS		92	
	696	697	Xiaomi Mi 11	Android		316	
	697	698	Google Pixel 5	Android		99	
	698	699	Samsung Galaxy S21	Android		62	
	699	700	OnePlus 9	Android		212	

```
Screen On Time (hours/day) Battery Drain (mAh/day) \
0
                               6.4
                                                          1872
                               4.7
1
                                                          1331
2
                               4.0
                                                          761
3
                               4.8
                                                          1676
4
                               4.3
                                                          1367
                               •••
695
                               3.9
                                                          1082
696
                               6.8
                                                          1965
697
                               3.1
                                                           942
698
                               1.7
                                                           431
699
                               5.4
                                                          1306
     Number of Apps Installed Data Usage (MB/day)
                                                               Gender
                                                          Age
0
                                                           40
                                                   1122
                                                                 Male
1
                              42
                                                    944
                                                           47
                                                               Female
2
                              32
                                                    322
                                                           42
                                                                 Male
3
                              56
                                                    871
                                                           20
                                                                 Male
4
                              58
                                                    988
                                                           31
                                                               Female
. .
695
                              26
                                                           22
                                                                 Male
                                                    381
696
                              68
                                                   1201
                                                           59
                                                                 Male
697
                              22
                                                               Female
                                                    457
                                                           50
698
                              13
                                                    224
                                                           44
                                                                 Male
699
                              49
                                                    828
                                                              Female
     User Behavior Class Age Group
0
                         4
                             (39, 49]
1
                             (39, 49]
                         3
2
                         2
                             (39, 49]
3
                             (18, 29]
4
                         3
                             (29, 39]
. .
                         2
                             (18, 29]
695
696
                         4
                             (49, 59]
                             (49, 59]
697
                         2
698
                         1
                             (39, 49]
699
                             (18, 29]
```

[700 rows x 12 columns]

0.2 Which Age Group Has the Highest App Usage Time?

```
[12]: # App Usage Time by Age

plt.figure(figsize=(8,6))
sns.boxplot(data=df, x='Age Group', y='App Usage Time (min/day)')
plt.title('App Usage Time by Age Group')
plt.xlabel('Age Group')
plt.ylabel('App Usage Time (min/day)')
plt.show()
```


0.3 Are there any differences in app usage time between genders?

```
[13]: # App Usage Time by Gender
plt.figure(figsize=(8, 6))
sns.boxplot(data=df, x='Gender', y='App Usage Time (min/day)')
plt.title('App Usage Time by Gender')
plt.xlabel('Gender')
plt.ylabel('App Usage Time (min/day)')
plt.show()
```


0.4 How does daily screen time correlate with app usage time?

0.5 Do heavier app users use significantly more data?

```
[15]: # Boxplot of Data Usage by User Group
sns.boxplot(x='User Behavior Class', y='Data Usage (MB/day)', data=df)
plt.title('Data Usage by User Group')
plt.show()
```


Heavier Usage Group Data Consumption:

count 275.000000
mean 1599.450909
std 438.960967
min 1002.000000
25% 1209.000000
50% 1493.000000
75% 1931.500000

```
2497.000000
     max
     Name: Data Usage (MB/day), dtype: float64
     Lighter Usage Group Data Consumption:
     count
              425.000000
              496.402353
     mean
     std
              269.391401
     min
              102.000000
     25%
              266.000000
     50%
              457.000000
     75%
              723.000000
              997.000000
     max
     Name: Data Usage (MB/day), dtype: float64
[17]: # User Group Boxplot
      sns.boxplot(x='User Group', y='Data Usage (MB/day)', data=df)
      plt.title('Data Usage by User Group')
      plt.show()
```



```
[18]: t_stat, p_value = ttest_ind(heavier_users, lighter_users, equal_var=False)
print(f'T-Test: t-statistic = {t_stat}, p-value = {p_value}')
```

T-Test: t-statistic = 37.36602293628329, p-value = 8.29848208005354e-134 Conclusion: Heavier app users consume significantly more data compared to lighter app users.

Gender Distribution by User Group


```
[23]: # App Usage Time by Device

plt.figure(figsize=(8,6))
    sns.boxplot(data=df, x='Device Model', y='App Usage Time (min/day)')
    plt.title('App Usage Time by Device Type')
    plt.xlabel('Device Model')
    plt.ylabel('App Usage Time (min/day)')
    plt.show()
```



```
[24]: # App Usage Time by Operating System

plt.figure(figsize=(8,6))
sns.boxplot(data=df, x='Operating System', y='App Usage Time (min/day)')
plt.title('App Usage Time by Operating System')
plt.xlabel('Operating System')
plt.ylabel('App Usage Time (min/day)')
plt.show()
```


0.6 Models - Linear Regression, Random Forest, XGBoost

```
])
      # Train Test Split
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
       →random_state=42)
[27]: # Linear Regression Model
      lr_pipeline = Pipeline(steps=[
          ('preprocessor', preprocessor),
          ('model', LinearRegression())
      ])
      # Train and evaluate
      lr_pipeline.fit(X_train, y_train)
      y_pred_lr = lr_pipeline.predict(X_test)
      mae_lr = mean_absolute_error(y_test, y_pred_lr)
      mse_lr = mean_squared_error(y_test, y_pred_lr)
      rmse_lr = np.sqrt(mse_lr)
      r2_lr = r2_score(y_test, y_pred_lr)
      # Print Results
      print('Linear Regression Results')
      print(f'MAE: {mae_lr}')
      print(f'MSE: {mse_lr}')
      print(f'RMSE: {np.sqrt(mse_lr)}')
      print(f'R^2: {r2_score(y_test, y_pred_lr)}')
     Linear Regression Results
     MAE: 35.051906212117125
     MSE: 1885.1893380352788
     RMSE: 43.41876711786366
     R^2: 0.9312093987635787
[28]: # Random Forest Model
      rf_pipeline = Pipeline(steps=[
          ('preprocessor', preprocessor),
          ('model', RandomForestRegressor(random_state=42))
      ])
      # Train and evaluate
      rf_pipeline.fit(X_train, y_train)
      y_pred_rf = rf_pipeline.predict(X_test)
      mae_rf = mean_absolute_error(y_test, y_pred_rf)
      mse_rf = mean_squared_error(y_test, y_pred_rf)
      rmse_rf = np.sqrt(mse_rf)
      r2_rf = r2_score(y_test, y_pred_rf)
```

```
print('Random Forest Results:')
      print(f'MAE: {mae_rf}')
      print(f'MSE: {mse_rf}')
      print(f'RMSE: {np.sqrt(mse_rf)}')
      print(f'R^2: {r2_score(y_test, y_pred_rf)}')
     Random Forest Results:
     MAE: 27.30028571428572
     MSE: 1231.0872942857143
     RMSE: 35.08685358201436
     R^2: 0.9550775970138398
[29]: # XGBoost Model
      xgb_pipeline = Pipeline(steps=[
          ('preprocessor', preprocessor),
          ('model', XGBRegressor(random_state=42))
      ])
      # Train and evaluate
      xgb_pipeline.fit(X_train, y_train)
      y_pred_xgb = xgb_pipeline.predict(X_test)
      mae_xgb = mean_absolute_error(y_test, y_pred_xgb)
      mse_xgb = mean_squared_error(y_test, y_pred_xgb)
      rmse_xgb = np.sqrt(mse_xgb)
      r2_xgb = r2_score(y_test, y_pred_xgb)
      print('XGBoost Results:')
      print(f'MAE: {mae_xgb}')
      print(f'MSE: {mse_xgb}')
      print(f'RMSE: {np.sqrt(mse_xgb)}')
      print(f'R^2: {r2_score(y_test, y_pred_xgb)}')
     XGBoost Results:
     MAE: 29.092661203656878
     MSE: 1452.941171127899
     RMSE: 38.11746543420613
     R^2: 0.9469821440708955
[30]: # Put the scores into a dataframe
      metrics_df = pd.DataFrame({
          'Model': ['Linear Regression', 'Random Forest', 'XGBoost'],
          'MAE': [mae_lr, mae_rf, mae_xgb],
          'MSE': [mse_lr, mse_rf, mse_xgb],
          'RMSE': [rmse_lr, rmse_rf, rmse_xgb],
          'R2': [r2_lr, r2_rf, r2_xgb]
      })
```

print(metrics_df)

```
        Model
        MAE
        MSE
        RMSE
        R2

        0 Linear Regression
        35.051906
        1885.189338
        43.418767
        0.931209

        1 Random Forest
        27.300286
        1231.087294
        35.086854
        0.955078

        2 XGBoost
        29.092661
        1452.941171
        38.117465
        0.946982
```

0.7 Graphing Model Performance

0.8 Residuals

0.9 Model Analysis

From the performance metrics and graphs above, we can see that the Random Forest model performs the best. It has the lowest RMSE and highest R^2 score.

```
[32]: # Let's get the feature importance from the Random Forest Model
    rf_model = rf_pipeline.named_steps['model']

# Get the feature names after preprocessing
    feature_names = preprocessor.get_feature_names_out(X_train.columns)

# Get the feature importances
    feature_importance = rf_model.feature_importances_

# Create a dataframe to hold the results
    importance_df = pd.DataFrame({
        'Feature': feature_names,
         'Importance': feature_importance
}).sort_values(by='Importance', ascending=False)
```

print(importance_df)

```
Importance
                                  Feature
2
           num__Number of Apps Installed
                                              0.368334
3
                num__Data Usage (MB/day)
                                              0.300794
1
            num__Battery Drain (mAh/day)
                                              0.288011
0
         num__Screen On Time (hours/day)
                                              0.037086
4
        cat__Device Model_Google Pixel 5
                                              0.000895
6
    cat__Device Model_Samsung Galaxy S21
                                              0.000852
             cat__Device Model_OnePlus 9
5
                                              0.000750
7
          cat__Device Model_Xiaomi Mi 11
                                              0.000731
12
                         cat__Gender_Male
                                              0.000723
11
                       cat__Gender_Female
                                              0.000583
10
               cat__Operating System_iOS
                                              0.000501
8
             cat__Device Model_iPhone 12
                                              0.000387
9
           cat__Operating System_Android
                                              0.000354
```

0.10 Which features were the most important for predicting app usage time?

```
[33]: # Plot the feature importance
plt.figure(figsize=(8,6))
sns.barplot(x='Importance', y='Feature', data=importance_df)
plt.title('Feature Importance for Random Forest')
plt.xlabel('Importance Score')
plt.ylabel('Feature')
plt.show()
```

