Matematika I

Séria úloh 20

d) (1b) Znázornite kužeľosečku a v náčrte popíšte jej významné prvky.

 c_3) rovnicu hlavnej osi kužeľosečky:

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \sqrt{x} + \ln(4 - x^2 - y^2)$$

b)
$$f(x,y) = \arcsin x + \sqrt{4 - x^2 - y^2}$$

c)
$$f(x,y) = \frac{\ln(x+1)}{\sqrt{4-x^2-y^2}}$$

d)
$$f(x,y) = \frac{\arcsin(x+y)}{\sqrt{4-x^2-y^2}}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} xy \, dxdy,$$

kde množina M je mnohouholník, ktorého vrcholy majú súradnice $A=[1,0],\ B=[2,0],\ C=[2,2]$ a D=[1,3].

Výsledok:....

4. (4b) Toto je príklad typu F

text text text

- 5. (8b) Daná je lineárna obyčajná diferenciálna rovnica (LODR) $y''(x) + 6y'(x) + 9y(x) = e^{-3x}$.
 - a) (2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.

Charakteristická rovnica je:

b) (2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.

Fundamentálny systém riešení je

b) (2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.

Partikulárne riešene je

a) (2b) Napíšta všaobogná riošenie danej lineárnej diferenciálnej rovnice

6. (4b) Vypočítajte
$\lim_{[x,y]\to[0,1]} \frac{x^2y^2}{x+y+1}.$
Výsledok:
7. (6b) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y)=e^{x\cos y}$ v bode $T=[1,\pi,z_0].$
(2b) Nájdite z_0 a uveďte súradnice dotykového bodu :
(4b) Všeobecná rovnica dotykovej roviny τ je:
8. (6b) Daná je funkcia $f(x,y) = \sqrt{4 + x^2 + y^2}$, bod $A = [1, 2]$ a vektor $\vec{l} = (-1, 2)$.
a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode A .
Gradient funkcie $f(x,y)$ v bode A je
b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je
9. (27b) Daná je funkcia $f(x,y)=x^2+y^2-2x-4y+1$ a oblasť M . Oblasť M je mnohouholník $ABCD$ s vrcholmi $A=[0,1],\ B=[2,1],\ C=[2,3]$ a $D=[0,3]$.
a) Načrtnite oblasť M :
Náčrt:
Pomocou matematických vzťahov popíšte hranice oblasti M :
(a) (2b) <i>AB</i>
(b) (2b) BC
(c) $(2b)$ CD

(d) (2b) AD

b)	(5b) Nájdite lokálne extrémy danej funkcie $f(x,y)$ v oblasti M . Ak hľadané lokálne extrémy nie sú, napíšte "nie sú".
	Doplňte odpoveď: Funkcia $f(x,y)$ má v bode lokálne
c)	Nájdite viazané lokálne extrémy danej funkcie $f(x,y)$ na hraniciach oblasti M . Ak hľadaný lokálny extrém nejestvuje, napíšte "nie je".
	(a) (3b) Na hranici AB má funkcia $f(x,y)$ v bode viazané lokálne
	(b) (3b) Na hranici BC má funkcia $f(x,y)$ v bode viazané lokálne
	(c) (3b) Na hranici CD má funkcia $f(x,y)$ v bode viazané lokálne
	(d) (3b) Na hranici AD má funkcia $f(x,y)$ v bode $\ldots\ldots$ viazané lokálne $\ldots\ldots$
d)	(2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na oblasti $M.$
	Najväčšia hodnota funkcie $f(x,y)$ je:
	Najmenšia hodnota funkcie $f(x,y)$ je: