Algèbre linéaire avancée II printemps 2021

Série 4

Tous les exercices sauf celui marqué d'une (*) seront corrigés. La correction sera postée sur Piazza 2 semaines après. La solution de l'exercice (*) sera discutée dans les séances d'exercices du mardi. Un des exercices (*) sera une question ouverte de l'examen final.

Exercice 1. Soient $V = \mathbb{R}_n[t]$ l'espace vectoriel des polynômes de degré au plus n sur \mathbb{R} , $a \in \mathbb{R}$, $B = \{1, t, t^2, \ldots, t^n\}$ une base et $v = (1, a, a^2, \ldots, a^n)^{\mathsf{T}} \in \mathbb{R}^{n+1}$. Montrer que pour $p \in V$, on a $v^{\mathsf{T}}[p]_B = p(a)$, où $p(x) \in \mathbb{R}$ est l'évaluation de p en $x \in \mathbb{R}$.

Exercice 2. Soient K un corps et n un entier positif. Montrer que la matrice $A \in K^{n \times n}$, donnée par

$$A = \begin{pmatrix} 0 & \dots & \dots & 0 & -\alpha_0 \\ 1 & \ddots & & \vdots & -\alpha_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & 1 & -\alpha_{n-1} \end{pmatrix}, \tag{1}$$

a le polynôme caractéristique $p_A(t)=(-1)^n(t^n+\alpha_{n-1}t^{n-1}+\cdots+\alpha_1t+\alpha_0).$

Exercice 3. 1. Soit $A \in K^{n \times n}$ une matrice triangulaire inférieure, c-à-d

$$A = egin{pmatrix} a_{11} & 0 & \dots & 0 \ a_{21} & a_{22} & 0 & dots \ dots & \ddots & 0 \ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$

Montrer que l'ensemble des valeurs propres de A est $\{a_{11}, \ldots, a_{nn}\}$.

- 2. Est-ce que A est diagonalisable ?
- 3. Est-ce que les deux matrices suivantes sont semblables ?

$$A = \begin{pmatrix} 1 & 3 & -2 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 2 \end{pmatrix}$$

Exercice 4. Soit V un espace vectoriel sur un corps K de dimension finie, et $f: V \mapsto V$ un endomorphisme. Soit $p: V \mapsto V$ un automorphisme, c-a-d un endomorphisme inversible. Montrer que $\lambda \in K$ est une valeur propre de f si et seulement si λ est une valeur propre de l'endomorphisme $p^{-1} \circ f \circ p$.

Exercice 5. 1. Vérifier le Théorème de Cayley-Hamilton sur la matrice

$$A = egin{pmatrix} 1 & 1 & 0 \ -1 & 0 & 1 \ -2 & 1 & 0 \end{pmatrix} \in \mathbb{R}^{3 imes 3}.$$

- 2. Soient K un corps, et $A \in K^{2\times 2}$. Soit $p_A(t) = t^2 + a_1t + a_0$ avec $a_0 \neq 0$. Calculer l'inverse de A à l'aide du Théorème de Cayley-Hamilton.
- 3. Considérer le Théorème de Cayley-Hamilton. On pourrait penser qu'il est possible d'utiliser l'argument $p_A(A) = \det(A \cdot I_n A) = 0$ pour montrer le théorème. Montrer que ce raisonnement est faux.

Exercice 6. Déterminer pour quelles valeurs du couple (a, b) la matrice

$$X = egin{pmatrix} 0 & a & b \ a & 0 & b \ a & b & 0 \end{pmatrix} \in \mathbb{R}^{3 imes 3}, \quad a,b \in \mathbb{R}, ab
eq 0,$$

est diagonalisable.

Exercice 7. (*) Soient K un corps, et $\lambda_1, \ldots, \lambda_r \in K$ les valeurs propres d'une matrice $A \in K^{n \times n}$ et m_1, \ldots, m_r leurs multiplicités algébriques. Soit $m_1 + \cdots + m_r = n$.

Définition: La *trace* de A est définie par $\mathrm{Tr}(A) := \sum_{i=1}^n a_{ii}$.

Démontrer les assertions suivantes:

- $i) \; \det(A) = \prod_{i=1}^r \lambda_i^{m_i}$
- ii) Si $p_A(\lambda)=lpha_n\lambda^n+lpha_{n-1}\lambda^{n-1}+\cdots+lpha_1\lambda+lpha_0$, montrer que $lpha_{n-1}=(-1)^{n-1}\operatorname{Tr}(A)$.
- iii) $\operatorname{Tr}(A) = \sum_{i=1}^r m_i \lambda_i$