Chap4

 ${\bf Shang Xiaojin}$

2022年12月14日

目录

0.1	Numerical Differentiation and Integration	4
	0.1.1 Ex	4
	0.1.2 code	4
	0.1.3 Ans	4
0.2	Richardson's Extrapolation	5
	0.2.1 Ex	5
	0.2.2 Ans	5
0.3	CompositeNumerical Integration	6
	0.3.1 Ex	6
	0.3.2 code	6
	0.3.3 Ans	7
0.4	Romberg Integration	7
	0.4.1 Ex	7
	0.4.2 code	8
	0.4.3 Ans	9
0.5	Gaussian Quadrature	9
	0.5.1 Ex	9
	0.5.2 code	9
	0.5.3 Ans	10
0.6	Mutiple Integrals	10
	0.6.1 Ex	10
	0.6.2 code	10
	0.6.3 Ans	11
0.7	addition	11

0.1 Numerical Differentiation and Integration

0.1.1 Ex

Use the formulas given in this section to determine , as accurately as possible , approximations for each missing entry in the following tables

x	f(x)	f'(x)
2.1	-1.709847	J (~)
2.2	-1.373823	
2.3	-1.119214	
2.4	-0.9160143	
2.5	-0.7470223	
2.6	-0.6015966	

0.1.2 code

```
{\bf tic}
format long
X = 2.1:0.1:2.6;
F = -[1.709847 \ 1.373823 \ 1.119214 \ 0.9160143 \ 0.7470223 \ 0.6015966];
dig(X,F)
\mathbf{toc}
function k = dig(X,F)
n = size(X, 2);
h = X(2) - X(1);
k = zeros(1,n);
for i = 1:n
          \mathbf{i}\,\mathbf{f} \quad \mathbf{i} \ >= \ 3 \ \&\& \ \mathbf{n-i}>= \ 2
                   k(i) = (F(i-2) - 8*F(i-1) + 8*F(i+1) - F(i+2))/12*h;
          \mathbf{elseif} \ i < = 2
                   k(i) = (-25*F(i) + 48*F(i+1) - 36*F(i+2) + 16*F(i+3) - 3*F(i+4))/12*h;
          {\tt elseif} \  \, n\!\!-\!\!i\!<\, 2
                   k\hspace{.05cm}(\hspace{.05cm} i\hspace{.1cm}) \hspace{.1cm} = \hspace{.1cm} (25*F\hspace{.05cm}(\hspace{.05cm} i\hspace{.1cm}) \hspace{.1cm} - \hspace{.1cm} 48*F\hspace{.05cm}(\hspace{.05cm} i\hspace{.1cm} -\hspace{.1cm} 1) \hspace{.1cm} + \hspace{.1cm} 36*F\hspace{.05cm}(\hspace{.05cm} i\hspace{.1cm} -\hspace{.1cm} 2) \hspace{.1cm} - \hspace{.1cm} 16*F\hspace{.05cm}(\hspace{.05cm} i\hspace{.1cm} -\hspace{.1cm} 3) \hspace{.1cm} + \hspace{.1cm} 3*F\hspace{.05cm}(\hspace{.05cm} i\hspace{.1cm} -\hspace{.1cm} 4))/12*h\hspace{.1cm};
         end
end
end
```

0.1.3 Ans

X	f(x)	f'(x)
2.1	-1.709847	0.038993
2.2	-1.373823	0.028769
2.3	-1.119214	0.022497
2.4	-0.9160143	0.018378
2.5	-0.7470223	0.015442
2.6	-0.6015966	0.013555

0.2 Richardson's Extrapolation

0.2.1 Ex

• The forward-difference formula can be expressed as

$$f'(x_0) = \frac{1}{h} [f(x_0 + h) - f(x_0)] - \frac{h}{2} f''(x_0) - \frac{h^2}{6} f'''(x_0) + O(h^3)$$

Use extrapolation to derice an $O(h^3)$ formula for $f'(x_0)$

• Suppose that N(h) is an approximation to M for every M > 0 and that

$$M = N(h) + K_1h + K_2h^2 + K_3h^3 + \dots$$

for some constants $K_1, K_2, K_3, \dot{U}sethevalueN(h), N(\frac{h}{3}), and N(\frac{h}{9}) to produce an O(h^3)$

0.2.2 Ans

 Ex_1

$$f'(x_0) = \frac{1}{h} [f(x_0 + h) - f(x_0)] - \frac{h}{2} f''(x_0) - \frac{h^2}{6} f'''(x_0) + O(h^3)$$

let $\frac{h}{2} = h$ such that

$$f'(x_0) = \frac{2}{h} [f(x_0 + \frac{h}{2}) - f(x_0)] - \frac{h}{4} f''(x_0) - \frac{h^2}{24} f'''(x_0) + O(h^3)$$

$$f'(x_0) = (2) - (1) = \left(4f(x_0 + \frac{h}{2}) - f(x_0 + h) - 3f(x_0)\right)/h + \frac{h^2}{12}f'''(x_0) + O(h^3)$$

Similarly, it can be obtained

$$f'(x_0) = \left(f(x_0 + h) + 32f(x_0 + \frac{h}{4}) - 12f(x_0 + \frac{h}{2}) - 21f(x_0)\right)/h + O(h^3)$$

 Ex_2

$$M = N(h) + K_1 h + K_2 h^2 + K_3 h^3 + \dots$$
 (1)

$$N_2(h) = \frac{3N(\frac{h}{3}) - N(h)}{2} \tag{2}$$

$$N_3(h) = \frac{27N(\frac{h}{9}) - 12N(\frac{h}{3}) + N(h)}{16}$$
(3)

0.3 CompositeNumerical Integration

0.3.1 Ex

Determine the values of n and h required to approximate

$$\int_0^2 e^{2x} \sin(3x) dx$$

to within 10^{-4} . Use

- Composite Trapezoidal rule
- Composite Simpson's rule
- Composite Midpoint rule

0.3.2 code

function

• Composite Trapezoidal

```
\begin{array}{lll} \textbf{function} & t = Com\_Trap(\,f\,,x\,,x0\,,x1\,,n) \\ t = subs(\,f\,,x\,,x0\,) \, + \, subs(\,f\,,x\,,x1\,); \\ h = (x1-\,x0\,\,)/n\,; \\ t1 = 0; \\ \textbf{for} & i = 1\!:\!n\!-\!1 \\ & t1 = t1 \, + \, subs(\,f\,,x\,,x0\,\,+\,\,i\,*\!h\,); \\ \textbf{end} \\ t = vpa((\,t\,\,+\,\,2\!*\!t1\,)\!*\!(\,h/2\,))\,; \\ \textbf{end} \end{array}
```

• Composite Midpoint

```
\begin{array}{l} \mbox{\bf function} \ \ p \ = \ Com\_mid(\,f\,\,,x\,\,,x0\,\,,x1\,\,,n) \\ \\ k \ = \ (\,x1-x0\,)\,/\,n\,; \\ \\ p \ = \ 0\,; \\ \mbox{\bf for} \ \ i= \ 1\,:\,n \\ \\ p \ = \ k*subs(\,f\,\,,x\,\,,x0+k/2+(\,i\,-1)*k) \ + \ p\,; \\ \mbox{\bf end} \\ \mbox{\bf end} \end{array}
```

• Composite Simpson

```
function g = Inte\_Simpson(f, x, x0, x1, n)

g = subs(f, x, x0) + subs(f, x, x1);

k = (x1-x0)/n;

g1 = 0;

g2 = 0;

for i = 1:n/2

g1 = subs(f, x, x0 + (2*i-1)*k) + g1;

end

for i = 1:n/2-1

g2 = subs(f, x, x0 + 2*i*k) +g2;

end

g = (k/3) * (g + 2*g2 + 4*g1);

end
```

main body

```
syms x
f = \exp(2*x)*\sin(3*x);
\mathbf{real} = \operatorname{vpa}(\operatorname{int}(f,x,0,2));
t = 0;
\operatorname{thate1} = \operatorname{abs}(\operatorname{real} - \operatorname{vpa}(\operatorname{Com_mid}(f,x,0,2,144)))
\operatorname{thate2} = \operatorname{abs}(\operatorname{real} - \operatorname{vpa}(\operatorname{Com_Trap}(f,x,0,2,205)))
\operatorname{thate3} = \operatorname{abs}(\operatorname{real} - \operatorname{vpa}(\operatorname{Inte_Simpson}(f,x,0,2,20)))
```

0.3.3 Ans

Method	n	thate
Mid	144	0.000995
Trap	205	0.000982
Simp	20	0.000669

0.4 Romberg Integration

0.4.1 Ex

$$f(x) = \begin{cases} x^3 + 1 & 0 \le x \le 0.1 \\ 1.001 + 0.03(x - 0.1) + 0.3(x - 0.1)^2 + 2(x - 0.1)^3 & 0.1 \le x \le 0.2 \\ 1.009 + 0.15(x - 0.2) + 0.9(x - 0.2)^2 + 2(x - 0.2)^2 & 0.2 \le x \le 0.3 \end{cases}$$

$$(4)$$

Apply Romberg integration to the following integrals until $R_{n-1,n-1}$ and $R_{n,n}$ agree to within 10^{-4} .

0.4.2 code

```
clear, clc
syms x
f1 = x^3 + 1;
f2 = 1.001 + 0.03*(x - 0.1) + 0.3*(x-0.1)^2 + 2*(x-0.1)^3;
f3 = 1.009 + 0.15*(x - 0.2) + 0.9*(x - 0.2)^2 + 2*(x - 0.2)^3;
t1 = Com\_Trap(f1, x, 0, 0.1, 1);
t2 = \text{Com\_Trap}(f1, x, 0, 0.1, 2);
t3 = Com_{Trap}(f1, x, 0, 0.1, 4);
R1 = [t1 \ 0 \ 0;
    t2 t2 + 1/3*(t2 - t1) 0 ;
    t3 t3 + 1/3*(t3 - t2) 0 ];
R1(3,3) = R1(3,2) + 1/15*(R1(3,2)-R1(2,2));
t1 = \text{Com\_Trap}(f2, x, 0.1, 0.2, 1);
t2 = Com\_Trap(f2, x, 0.1, 0.2, 2);
t3 = Com\_Trap(f2, x, 0.1, 0.2, 4);
R2 = [t1 \ 0 \ 0;
    t2 t2 + 1/3*(t2 - t1) 0 ;
    t3 t3 + 1/3*(t3 - t2) 0 ;
R2(3,3) = R2(3,2) + 1/15*(R2(3,2)-R2(2,2));
t1 = Com\_Trap(f3, x, 0.2, 0.3, 1);
t2 = \text{Com\_Trap}(f3, x, 0.2, 0.3, 2);
t3 = Com\_Trap(f3, x, 0.2, 0.3, 4);
R3 = [t1 \ 0 \ 0;
    t2 t2 + 1/3*(t2 - t1) 0 ;
    t3 t3 + 1/3*(t3 - t2) 0];
R3(3,3) = R3(3,2) + 1/15*(R3(3,2)-R3(2,2));
R = R1 + R2 + R3
```

0.4.3 Ans

$$\begin{pmatrix}
0.30275 & 0 & 0 \\
0.30250625 & 0.302425 & 0 \\
0.3024453125 & 0.302425 & 0.302425
\end{pmatrix}$$
(5)

0.5 Gaussian Quadrature

0.5.1 Ex

Approximate the following integrals using Gaussian Quadrature with n = 2,3,4,5 to the exact values of the integrals.

• $\int_0^1 x^2 \sin(x) dx$

0.5.2 code

```
clc, clear
format long
f = (x) (1/2)*((x+1)/2)^2*exp(-(x+1)/2);
t2 = f(-1/sqrt(3)) + f(1/sqrt(3));
A1 = [0.7745966692 \ 0.5555555556]
0.00000000000000000.88888888899
-0.7745966692 \ 0.55555555556];
t3 = 0; t4 = 0; t5 = 0;
for i = 1:3
    t3 = t3 + A1(i,2) * f(A1(i,1));
end
A2 = [0.8611363116 \ 0.3478548451]
0.3399810436 \ 0.6521451549
-0.3399810436 0.6521451549
-0.8611363116 \ 0.3478548451;
for i = 1:4
    t4 = t4 + A2(i,2) * f(A2(i,1));
end
A3=[0.9061798459 0.2369268850
0.5384693101 \ \ 0.4786286705
0.00000000000 \quad 0.5688888889
-0.5384693101 0.4786286705
-0.9061798459 \ 0.2369268850;
for i = 1:5
```

$$\begin{array}{lll} t5 \; = \; t5 \; + \; A3(\,i \; ,2\,) \; \; * \; \; f\,(A3(\,i \; ,1\,)\,)\,; \\ \\ \textbf{end} \\ [\,t2\, ,t3\, ,t4\, ,t5\,] \end{array}$$

0.5.3 Ans

n	P(x)
2	0.159410430966379
3	0.160595386815970
4	0.160602777514260
5	0.160602794113723

目录

0.6 Mutiple Integrals

0.6.1 Ex

Use Algorithm with n=m=4,and Gaussian Quadrature with n=3 to approximate the following double integrals.

•
$$\int_0^{0.5} \int_0^{0.5} e^{y-x} dy dx$$

0.6.2 code

• Gauss

```
clc, clear
syms x
syms y
f = 1/16 * exp((y-x)/4);
A = \begin{bmatrix} 0.7745966692 & 0.55555555556 \end{bmatrix}
0.00000000000 \ 0.8888888889
-0.7745966692 \ 0.55555555556];
f1 = A(1,2) * subs(f,y,A(1,1));
f2 = A(2,2) * subs(f,y,A(2,1));
f3 = A(3,2) * subs(f,y,A(3,1));
g1 = 0; g2 = 0; g3 = 0;
for i = 1:3
     g1 = g1 + A(i,2) * subs(f1,x,A(i,1));
end
for i = 1:3
     g2 \, = \, g2 \, + \, A(\,i \,\,,2\,) \  \  * \  \, subs(\,f2\,\,,x\,,A(\,i \,\,,1\,)\,)\,;
end
```

0.7 ADDITION 11

```
g3 = g3 + A(i,2) * subs(f3,x,A(i,1));
 end
 g = vpa(g1 + g2 + g3)
  real = 0.2552519304;
  theta1 = abs(real - g)
• Simpson
  clc, clear
 syms x
 syms y
  f = exp(y-x);
 A = [];
  for i = 1:5
      A = [A subs(f, y, (i-1)*0.125)];
 end
 M = Inte\_Simpson(A(1), x, 0, 0.5, 4) + Inte\_Simpson(A(5), x, 0, 0.5, 4);
  \mathbf{for} \quad \mathbf{i} = 2:4
      \mathbf{if} \mod(\mathbf{i}, 2) == 0
           M = M+4*Inte\_Simpson(A(i), x, 0, 0.5, 4);
      elseif mode(i,2) > 0
           M = M+2*Inte\_Simpson(A(i), x, 0, 0.5, 4);
      end
 end
  Ans1 = vpa((0.125/3)*M)
  theta2 = abs(0.2552519304 - Ans1)
```

0.6.3 Ans

for i = 1:3

Method	outcome	thate
Guass(n=3)	0.25525192651465210169986117556611	0.0000000038853478916375842275193296766305
Simpson	0.25525262154254027459421843780846	0.00000069114254028125677303472302062701

Guass(n=3) is more accurate than Simpson.

0.7 addition