MATH 8320: ALGEBRAIC CURVES AND RIEMANN SURFACES — HOMEWORK 1

1. Hyperelliptic curves

- (1) Let $f(x) \in \mathbb{C}[x]$ be a polynomial of degree 2n without repeated roots. Let $U \subset \mathbb{C}^2$ be the Riemann surface defined by $y^2 f(x) = 0$. Construct explicitly a compact Riemann surface X containing U along with a map $X \to \mathbb{P}^1$.
- (2) Let $D \subset \mathbb{C}$ be a small disk that does not contain any zeros of f(x). Prove that the preimage $\pi^{-1}(D)$ is biholomorphic to a disjoint union of two disks. What if D contains a zero of f(x)?
- (3) Compute the Euler characteristic and hence the genus of X.
- (4) Prove that the field of meromorphic functions on X is isomorphic to

$$\mathbb{C}(x)[y]/(y^2-f(x)).$$

2. Cyclic coverings

- (5) Generalize as much of the above as you can to the curve defined by $y^n f(x) = 0$, where $f(x) \in \mathbb{C}[x]$ is a polynomial of degree divisible by n without repeated roots.
- (6) What happens in the analysis above if the degree of f(x) is not divisible by n?

3. Complex Tori

(7) Let $X = \mathbb{C}/\Lambda$, where $\Lambda \subset \mathbb{C}$ is a lattice. Note that addition induces a (holomorphic) group law on X. Show that under this law, X is a divisible group. For a positive integer n, nescribe the group X[n] of n-torsion points on X.

4. Plane curves

- (8) Let $X \subset \mathbb{P}^2$ be a smooth plane curve of degree 1 or 2. Show that X is isomorphic to \mathbb{P}^1 .
- (9) Let $C \subset \mathbb{P}^2$ be the Fermat curve, defined by

$$X^d + Y^d + Z^d = 0.$$

By analyzing the ramification of the map $C \to \mathbb{P}^1$ given by $[X:Y:Z] \mapsto [X:Y]$, find the genus of C.

5. Line bundles

(10) We defined the line bundle $\mathbb{O}(m)$ on \mathbb{P}^1 in class. Identify the space of global holomorphic sections of $\mathbb{O}(m)$ with polynomials in $\mathbb{C}[x]$ of degree at most m, or equivalently, with homogeneous polynomials of degree m in $\mathbb{C}[x,y]$.