From Delaporte to Poisson or Negative Binomial: MH-within-Gibbs Inference and Limits

Leonidas Ntrekos Email: l.ntrekos@gmail.com GitHub: LNtrekos

August 29, 2025

1 Setup

This short note presents a reproducible MH-within-Gibbs sampler for the Delaporte Distribution in R, not so efficient but with nice presentation of the whole methodology. The goal is to estimate (posterior) (r, p, λ) from observed (simulated) counts X_1, \ldots, X_n and to illustrate (in R) the process where the posterior approaches a Negative Binomial distribution when the Poisson component vanishes or vice versa depending on sample X. The code lives in $src/delaporte_sampler.R$ figures are auto-generated to results/figures/.

2 Model

Let $X_i = Y_{1i} + Y_{2i}$ with $Y_{1i} \perp \!\!\!\perp Y_{2i}$ and

$$Y_{1i} \sim \mathcal{NB}(r, p), \qquad \qquad \Pr(Y_{1i} = y) = \frac{\Gamma(y+r)}{\Gamma(r)\Gamma(y+1)} p^r (1-p)^y,$$
$$Y_{2i} \sim \mathcal{P}(\lambda), \qquad \qquad \Pr(Y_{2i} = z) = e^{-\lambda} \frac{\lambda^z}{z!},$$

where r > 0, $p \in (0,1)$, $\lambda > 0$. This yields the Delaporte distribution for X_i .

Priors. We assume a priori independence,

$$\pi(r, p, \lambda) = \pi(r) \pi(p) \pi(\lambda),$$

and place weakly-informative priors

$$r \sim \text{Gamma}(a_r, b_r), \quad p \sim \text{Beta}(a_p, b_p), \quad \lambda \sim \text{Gamma}(a_\lambda, b_\lambda),$$

where the Gamma is in rate parameterization,

$$f(r\mid a,b) = \frac{b^a}{\Gamma(a)}\,r^{a-1}e^{-br}, \qquad r>0,$$

and the Beta density is

$$f(p \mid a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} p^{a-1} (1-p)^{b-1}, \qquad p \in (0, 1).$$

For the examples in this report we take

$$a_r = b_r = 0.01$$
, $a_p = b_p = 1$, $a_\lambda = b_\lambda = 0.01$ (and $n = 100$)

but any other weakly-informative choices can be used.

3 Inference (MH-within-Gibbs)

Latent counts $Y_{1i} \in \{0, \dots, X_i\}$ are introduced. One sweep consists of:

1. **Update** $\lambda \mid \cdot$. Given Y_1 , the full conditional is

$$\lambda \mid \cdot \sim \text{Gamma}\Big(\underbrace{\sum_{i} (X_i - Y_{1i}) + a_{\lambda}, \ n + b_{\lambda}}_{\text{Poisson totals}}\Big).$$

2. **Update** $p \mid \cdot$ Given Y_1 and r,

$$p \mid \cdot \sim \text{Beta}(nr + a_p, \sum_i Y_{1i} + b_p).$$

3. **Update** $r \mid \cdot$ **by MH.** With a log-normal random-walk proposal $r' \sim \log \mathcal{N}(\log r, v^2)$, accept with probability min $\{1, \alpha\}$ where

$$\log \alpha = \left[\sum_{i=1}^{n} \left(\log \Gamma(Y_{1i} + r') - \log \Gamma(r') \right) + n r' \log p + a_r \log r' - b_r r' \right]$$
$$- \left[\sum_{i=1}^{n} \left(\log \Gamma(Y_{1i} + r) \right) - n \log \Gamma(r) + n r \log p + a_r \log r - b_r r \right].$$

4. **Update** $Y_{1i} \mid \cdot$. For each i, enumerate $y = 0, \dots, X_i$ and sample with weights proportional to

$$\Pr(Y_{1i} = y \mid \cdot) \propto \frac{\Gamma(y+r)}{\Gamma(r)\Gamma(y+1)} p^r (1-p)^y \cdot \frac{\lambda^{X_i-y}}{\Gamma(X_i-y+1)}.$$

Stable enumeration for Y_{1i} . For each observation i and candidate value $y \in \{0, \dots, x_i\}$ define the log-weight

$$\ell_{iy} = \log \Gamma(y+r) - \log \Gamma(r) - \log \Gamma(y+1) + r \log p + y \log(1-p) + (x_i - y) \log \lambda - \log \Gamma(x_i - y + 1) - \lambda.$$

The terms $r \log p$ and $-\lambda$ do not depend on y and can be dropped when normalizing. To compute probabilities stably, set $m_i = \max_{0 \le j \le x_i} \ell_{ij}$ and use

$$\Pr(Y_{1i} = y \mid r, p, \lambda, x_i) = \frac{\exp\{\ell_{iy} - m_i\}}{\sum_{i=0}^{x_i} \exp\{\ell_{ij} - m_i\}} = \operatorname{softmax} (\ell_{i0}, \dots, \ell_{ix_i})_y.$$

Numerical stability (clamping). To avoid undefined logs when p is arbitrarily close to 0 or 1 and when λ is close to 0, we clamp with a tiny ε :

$$\tilde{p} = \text{clamp}_{01}(p; \varepsilon) := \min\{\max(p, \varepsilon), 1 - \varepsilon\}, \qquad \tilde{\lambda} = \max(\lambda, \varepsilon),$$

with $\varepsilon = 10^{-12}$ in our implementation.

4 Chain behaviour across simulated datasets.

Because $X_i \sim \text{Delaporte}(r, p, \lambda)$ satisfies

$$\mathbb{E}[X] = \lambda + \underbrace{\frac{r(1-p)}{p}}_{\mu_{\rm NB}},$$

many (r, p, λ) combinations produce almost the same mean when n is moderate, but with quite different distribution each time. As a result, the MH-within-Gibbs sampler often exhibits visible "jumps" between two interpretations of the data: (i) a Poisson-like regime with r small, $p \approx 1$, and λ explaining most of the mean; and (ii) an NB-like regime with larger r, moderate p, and λ near 0. The traces in plot below illustrate these switches; the density panels show the long right tail of r and the concentration of p near the boundary, both typical under weak priors.

Figure 1: Posterior diagnostics from the repository example: trace plots (left) and marginal posterior densities (right) for r, p, and λ ; solid lines mark posterior means and dashed lines the 95% credible intervals. is effectively zero (posterior mean 0.057), implying that the Poisson component vanishes in practice; the Delaporte reduces to a near–Negative Binomial fit.

Practical notes. The observed switching is posterior multimodality/flatness, not necessarily non-convergence. We mitigate numerical issues by clamping p and λ (Sec. 3): $\tilde{p} = \min\{\max(p,\varepsilon), 1-\varepsilon\}$ and $\tilde{\lambda} = \max(\lambda,\varepsilon)$ with $\varepsilon = 10^{-12}$, and by tuning the r proposal to a 20–40% acceptance rate.

Below is the pseudoalgorithm summarising one MH-within-Gibbs sweep using the updates above.

Algorithm 1 MH-within-Gibbs for the Delaporte model

Require: Data $X_{1:n}$; hyperparameters (a_r, b_r) , (a_p, b_p) , $(a_{\lambda}, b_{\lambda})$; proposal scale v; iterations T

- 1: Initialize $r^{(0)} > 0$, $p^{(0)} \in (0,1)$, $\lambda^{(0)} > 0$, and $Y_{1i}^{(0)} \in \{0,\ldots,X_i\}$ for all i
- 2: **for** t = 1, ..., T **do**

3: Update
$$\lambda \mid \cdot : \lambda^{(t)} \sim \text{Gamma}\left(\sum_{i=1}^{n} (X_i - Y_{1i}^{(t-1)}) + a_{\lambda}, \ n + b_{\lambda}\right)$$

4: **Update**
$$p \mid \cdot : p^{(t)} \sim \text{Beta}\left(n r^{(t-1)} + a_p, \sum_{i=1}^{n} Y_{1i}^{(t-1)} + b_p\right)$$

5: **Update** $r \mid \cdot$ **by MH**: Propose $r' \sim \log \mathcal{N}(\log r^{(t-1)}, v^2)$ and accept with probability $\min\{1, e^{\log \alpha}\}$ where

$$\begin{split} \log \alpha = & \Big[\sum_{i} (\log \Gamma(Y_{1i}^{(t-1)} + r') - \log \Gamma(r')) + n \, r' \log p^{(t)} + a_r \log r' - b_r r' \Big] - \\ & \Big[\sum_{i} (\log \Gamma(Y_{1i}^{(t-1)} + r^{(t-1)}) - \log \Gamma(r^{(t-1)})) + n \, r^{(t-1)} \log p^{(t)} + a_r \log r^{(t-1)} - b_r r^{(t-1)} \Big]. \end{split}$$

If accepted set $r^{(t)} \leftarrow r'$, else $r^{(t)} \leftarrow r^{(t-1)}$.

6: Update each $Y_{1i} \mid \cdot$ by finite enumeration: For $y = 0, \dots, X_i$ compute

$$\ell_{iy} = \log \Gamma(y + r^{(t)}) - \log \Gamma(r^{(t)}) - \log \Gamma(y + 1) + r^{(t)} \log p^{(t)} + y \log(1 - p^{(t)}) + (X_i - y) \log \lambda^{(t)} - \log \Gamma(X_i - y + 1).$$

Set $m_i = \max_y \ell_{iy}$ and $w_{iy} = \exp(\ell_{iy} - m_i)$; sample $Y_{1i}^{(t)}$ from Categorical $(w_{i0}, \dots, w_{iX_i})$. 7: **end for**