1. Gauß'sche Glockenformel A1

a) Achsensymmetrisch, wenn $\mu = 0$: f(-x) = f(x)

b) Extremstelle (Hochpunkt) bei $x=\mu$. y ist größer, wenn σ kleiner wird. y ist kleiner, wenn σ größer wird.

c) Die Wendestelle ist bei $x=\pm \sigma$ und um μ verschoben, also bei $\mu \pm \sigma$

2. Gauß'sche Glockenformel A2

a)

$$\varphi_{\mu,\sigma}(X) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\mu = 0$$

$$\sigma = 1$$

$$\varphi_{\mu,\sigma}(X) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{(x)^2}{2}}$$

b)

• Die Funktion kann durch eine Veränderung von μ verschoben werden.

• Die Funktion kann durch eine Veränderung von σ gestreckt bzw. gestaucht werden.

c)

$$\varphi(x) \ge 0$$
$$\int_{a}^{b} \varphi(x) dx = 1$$

Wenn $\sigma>0$ \to $\sigma\cdot x\geq 0$ \wedge $(x-\mu)^2\geq 0$ ist die Funktion eine Wahrscheinlichkeitsdichte.

$$\begin{split} \varphi(X) &\geq 0 \\ \text{wenn } \sigma &> 0 \to \sigma \cdot \sqrt{2\pi} > 0 \to \sigma > 0 \\ (x - \mu)^2 &\geq 0 \to \mu \in \mathbb{R} \\ \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{(x - \mu)^2}{2\sigma^2}} &\geq 0 \end{split}$$