Support Vector Machine(SVM)

21BCE1964

In [4]:

Out[4]:

data

What is the support vector machine(SVM)?

Support Vector Machine or SVM is one of the most popular Supervised Learning algorithms, which is used for Classification as well as Regression problems. However, primarily, it is used for Classification problems in Machine Learning.

```
In [1]:
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
import matplotlib.pyplot as plt
import seaborn as sns
import os
root folder = '/'
for dirname, , filenames in os.walk(root folder):
    for filename in filenames:
        print(os.path.join(dirname, filename))
/kaggle/input/raisin-dataset/Raisin Dataset/Raisin Dataset.xlsx
/kaggle/input/raisin-dataset/Raisin_Dataset/Raisin_Dataset.arff
/kaggle/input/raisin-dataset/Raisin Dataset/Raisin Dataset Citation Request.txt
In [2]:
!pip install openpyxl
Collecting openpyxl
  Downloading openpyxl-3.1.2-py2.py3-none-any.whl (249 kB)
                                            - 250.0/250.0 kB 6.3 MB/s eta 0:00:0000:01
Collecting et-xmlfile
  Downloading et xmlfile-1.1.0-py3-none-any.whl (4.7 kB)
Installing collected packages: et-xmlfile, openpyxl
Successfully installed et-xmlfile-1.1.0 openpyxl-3.1.2
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting
behaviour with the system package manager. It is recommended to use a virtual environment
instead: https://pip.pypa.io/warnings/venv
Data Review
In [3]:
# Reading data with pandas library.
data = pd.read excel('Raisin Dataset.xlsx', engine="openpyxl")
```

```
Area MajorAxisLength MinorAxisLength Eccentricity ConvexArea
                                                                                           Class
                                                                      Extent Perimeter
0 87524
              442.246011
                               253.291155
                                              0.819738
                                                             90546 0.758651
                                                                              1184.040 Kecimen
              406.690687
1 75166
                               243.032436
                                              0.801805
                                                             78789 0.684130
                                                                              1121.786 Kecimen
2 90856
              442.267048
                               266.328318
                                              0.798354
                                                             93717 0.637613
                                                                              1208.575 Kecimen
3 45928
              286.540559
                               208.760042
                                              0.684989
                                                             47336 0.699599
                                                                               844.162 Kecimen
```

4	79408 Area	352.190770 MajorAxisLength	290.827533 MinorAxisLength	0.564011 Eccentricity	ConvexArea	0.792772 Extent	1073.251 Perimeter	Kecimen Class

895	83248	430.077308	247.838695	0.817263	85839	0.668793	1129.072	Besni
896	87350	440.735698	259.293149	0.808629	90899	0.636476	1214.252	Besni
897	99657	431.706981	298.837323	0.721684	106264	0.741099	1292.828	Besni
898	93523	476.344094	254.176054	0.845739	97653	0.658798	1258.548	Besni
899	85609	512.081774	215.271976	0.907345	89197	0.632020	1272.862	Besni

900 rows × 8 columns

In [5]:

```
# information of data
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 900 entries, 0 to 899
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Area	900 non-null	int64
1	MajorAxisLength	900 non-null	float64
2	MinorAxisLength	900 non-null	float64
3	Eccentricity	900 non-null	float64
4	ConvexArea	900 non-null	int64
5	Extent	900 non-null	float64
6	Perimeter	900 non-null	float64
7	Class	900 non-null	object

dtypes: float64(5), int64(2), object(1)

memory usage: 56.4+ KB

In [6]:

```
# Dataset Values(Max, min, std..)
data.describe()
```

Out[6]:

	Area	MajorAxisLength	MinorAxisLength	Eccentricity	ConvexArea	Extent	Perimeter
count	900.000000	900.000000	900.000000	900.000000	900.000000	900.000000	900.000000
mean	87804.127778	430.929950	254.488133	0.781542	91186.090000	0.699508	1165.906636
std	39002.111390	116.035121	49.988902	0.090318	40769.290132	0.053468	273.764315
min	25387.000000	225.629541	143.710872	0.348730	26139.000000	0.379856	619.074000
25%	59348.000000	345.442898	219.111126	0.741766	61513.250000	0.670869	966.410750
50%	78902.000000	407.803951	247.848409	0.798846	81651.000000	0.707367	1119.509000
75%	105028.250000	494.187014	279.888575	0.842571	108375.750000	0.734991	1308.389750
max	235047.000000	997.291941	492.275279	0.962124	278217.000000	0.835455	2697.753000

In [7]:

```
# Data Correlation: Relationship between columns
data.corr()
```

Out[7]:

	Area	MajorAxisLength	MinorAxisLength	Eccentricity	ConvexArea	Extent	Perimeter
Area	1.000000	0.932774	0.906650	0.336107	0.995920	-0.013499	0.961352
MajorAxisLength	0.932774	1.000000	0.728030	0.583608	0.945031	-0.203866	0.977978
MinorAxisLength	0.906650	0.728030	1.000000	-0.027683	0.895651	0.145322	0.827417
Fccentricity	N 3361N7	0 583608	-0 027683	1 000000	N 34821N	-0 361061	N 447845

	·····	0.000.07	0.00000	0.02,000		0.0 TOE 10	0.00.00.	VI T T I U T U
Conv	∕exArea_	Area 0.995920	MajorAxisLength 0.945031	MinorAxisLength 0.895651	Eccentricity 0.348210	ConvexArea 1.000000	Extent -0.054802	Perimeter 0.976612
	Extent	-0.013499	-0.203866	0.145322	-0.361061	-0.054802	1.000000	-0.173449
Pe	erimeter	0.961352	0.977978	0.827417	0.447845	0.976612	-0.173449	1.000000

In [8]:

```
# Visualization of correlation result with seaborn library heatmap.
f, ax = plt.subplots(figsize = (12,10))
sns.heatmap(data.corr(), annot = True, linewidths=0.5, linecolor = "black", fmt = ".4f",
ax = ax)
plt.show()
```


When I looked at correlation I generally am seeing direct proportion in between the columns.

In [9]:

```
# Visualization of correlation results with seaborn library pairplot sns.pairplot(data, hue = "Class")
```

Out[9]:

<seaborn.axisgrid.PairGrid at 0x7e4c4efd0e10>

In [10]:

```
# Dataset columns names
data.columns
```

Out[10]:

Data Visuzalization

The Second visual has zero correlations between columns.

```
In [11]:
```

```
# First Visual
# The number of Class in the dataset and its graphic.
sns.countplot(x = "Class", data = data)
data.loc[:,"Class"].value_counts()
```

Out[11]:

Kecimen 450 Besni 450

Name: Class, dtype: int64

In [12]:

```
# Second Visual
Kecimen = data[data.Class == "Kecimen"]
Besni = data[data.Class == "Besni"]

plt.figure(figsize = (8,8))
plt.scatter(Kecimen.MinorAxisLength, Kecimen.Eccentricity, color = "blue", label = "Kecimen", linewidths=0.5, edgecolors="white")
plt.scatter(Besni.MinorAxisLength, Besni.Eccentricity, color = "orange", label = "Besni", linewidths=0.5, edgecolors="white")
plt.xlabel("MinorAxisLength")
plt.ylabel("Eccentricity")
plt.legend()
plt.show()
```


Data Preparing for SVM

I prepare x_data and y_data and I will normalize to x_data. The reason I do normalization is that the values do not match with each other, so the number 72.61 and the number 1.59 are not in the same range, I will reduce these numbers to the same range. My range will be 0-1. I read dataset again beacause I will change in dataset. The class column is a string type and I want to that be an integer. In the block of code, I will specify.

```
In [13]:
```

```
# Read dataset
data_svm = pd.read_excel('Raisin_Dataset.xlsx', engine="openpyxl")
```

In [14]:

data_svm

Out[14]:

	Area	MajorAxisLength	MinorAxisLength	Eccentricity	ConvexArea	Extent	Perimeter	Class
0	87524	442.246011	253.291155	0.819738	90546	0.758651	1184.040	Kecimen
1	75166	406.690687	243.032436	0.801805	78789	0.684130	1121.786	Kecimen
2	90856	442.267048	266.328318	0.798354	93717	0.637613	1208.575	Kecimen
3	45928	286.540559	208.760042	0.684989	47336	0.699599	844.162	Kecimen
4	79408	352.190770	290.827533	0.564011	81463	0.792772	1073.251	Kecimen
895	83248	430.077308	247.838695	0.817263	85839	0.668793	1129.072	Besni
896	87350	440.735698	259.293149	0.808629	90899	0.636476	1214.252	Besni
897	99657	431.706981	298.837323	0.721684	106264	0.741099	1292.828	Besni
898	93523	476.344094	254.176054	0.845739	97653	0.658798	1258.548	Besni
899	85609	512.081774	215.271976	0.907345	89197	0.632020	1272.862	Besni

900 rows × 8 columns

In [15]:

```
# Change class type.
# Kecimen = 1
# Bensi = 0
data_svm.Class = [1 if i == "Kecimen" else 0 for i in data.Class]
```

In [16]:

data_svm

Out[16]:

	Area	MajorAxisLength	MinorAxisLength	Eccentricity	ConvexArea	Extent	Perimeter	Class
0	87524	442.246011	253.291155	0.819738	90546	0.758651	1184.040	1
1	75166	406.690687	243.032436	0.801805	78789	0.684130	1121.786	1
2	90856	442.267048	266.328318	0.798354	93717	0.637613	1208.575	1
3	45928	286.540559	208.760042	0.684989	47336	0.699599	844.162	1
4	79408	352.190770	290.827533	0.564011	81463	0.792772	1073.251	1
895	83248	430.077308	247.838695	0.817263	85839	0.668793	1129.072	0
896	87350	440.735698	259.293149	0.808629	90899	0.636476	1214.252	0
897	99657	431.706981	298.837323	0.721684	106264	0.741099	1292.828	0
898	93523	476.344094	254.176054	0.845739	97653	0.658798	1258.548	0
899	85609	512.081774	215.271976	0.907345	89197	0.632020	1272.862	0

900 rows × 8 columns

In [17]:

```
# x_data
x_data = data_svm.drop(["Class"], axis = 1)
#y_data
```

```
y_data = data_svm.Class.values
In [18]:
x_data
```

```
Area MajorAxisLength MinorAxisLength Eccentricity ConvexArea
                                                                         Extent Perimeter
  0 87524
                 442.246011
                                  253,291155
                                                 0.819738
                                                                90546 0.758651
                                                                                  1184.040
  1 75166
                 406.690687
                                  243.032436
                                                 0.801805
                                                                78789 0.684130
                                                                                  1121.786
                                                                                  1208.575
  2 90856
                 442.267048
                                  266.328318
                                                 0.798354
                                                                93717 0.637613
  3 45928
                 286.540559
                                  208.760042
                                                 0.684989
                                                                47336 0.699599
                                                                                   844.162
  4 79408
                 352.190770
                                  290.827533
                                                 0.564011
                                                                81463 0.792772
                                                                                  1073.251
895 83248
                 430.077308
                                  247.838695
                                                 0.817263
                                                                85839 0.668793
                                                                                  1129.072
896 87350
                 440.735698
                                  259.293149
                                                 0.808629
                                                                90899 0.636476
                                                                                  1214.252
897 99657
                 431.706981
                                  298.837323
                                                 0.721684
                                                                106264 0.741099
                                                                                  1292.828
                 476.344094
                                  254.176054
                                                 0.845739
                                                                97653 0.658798
                                                                                  1258.548
898 93523
899 85609
                 512.081774
                                  215.271976
                                                 0.907345
                                                                89197 0.632020
                                                                                  1272.862
```

900 rows × 7 columns

```
In [19]:
```

Out[18]:

```
y_data
```

Out[19]:

```
1,
array([1, 1, 1, 1, 1, 1, 1,
                              1,
                                      1, 1,
                                            1,
                                                1,
                                                   1,
                                                      1,
                                                          1,
                                                             1,
                                                                1, 1,
                              1,
                                                   1, 1,
       1, 1, 1, 1, 1, 1, 1,
                                  1,
                                      1, 1,
                                            1,
                                                1,
                                                          1,
                                                              1,
                                                                1, 1,
        1, 1, 1, 1, 1, 1,
                            1,
                               1,
                                  1,
                                      1, 1,
                                            1,
                                                1,
                                                   1, 1,
                                                                 1, 1,
                                      1, 1,
                                            1,
                                                1,
        1, 1, 1, 1, 1, 1, 1,
                               1,
                                  1,
                                                   1, 1,
                                                          1,
                                                              1,
                                                                 1, 1,
                                      1, 1,
                           1,
                                  1,
                                            1,
           1, 1, 1,
                     1,
                        1,
                               1,
                                                1,
                                                   1, 1,
                                                          1,
                                                              1,
                                                                 1, 1,
       1,
           1,
                     1,
                            1,
                               1,
                                  1,
                                      1,
                                         1,
                                            1,
                                                   1,
                                                      1,
              1, 1,
                        1,
                                                1,
                                                          1,
                                                                 1, 1,
                                                              1,
                                         1,
                                                       1,
                 1,
                            1,
                               1,
                                             1,
       1,
           1,
              1,
                     1,
                        1,
                                   1,
                                      1,
                                                1,
                                                   1,
                                                          1,
                                                              1,
                                                                 1,
                                                                    1,
                 1,
                            1,
                               1,
                                         1,
                                             1,
                                                       1,
                                                                    1,
       1,
           1,
              1,
                     1,
                        1,
                                   1,
                                      1,
                                                1,
                                                   1,
                                                          1,
                                                              1,
                                                                 1,
       1,
           1,
                  1,
                     1,
                        1,
                            1,
                               1,
                                   1,
                                      1,
                                         1,
                                             1,
                                                1,
                                                   1,
                                                       1,
                                                          1,
                                                              1,
                                                                    1,
                                                                 1,
       1,
                  1,
                        1,
                            1,
                               1,
                                   1,
                                      1,
                                         1,
                                             1,
                                                   1,
                                                       1,
                                                          1,
           1,
                     1,
                                                1,
                                                              1,
                                                                 1,
                                                                    1,
                  1,
                     1,
                               1,
                                      1,
                                         1,
                                             1,
                                                1,
                                                       1,
       1,
           1,
                        1,
                            1,
                                   1,
                                                   1,
                                                          1,
                                                              1,
                                                                 1,
                                                                    1,
                     1,
                            1,
                               1,
                                  1,
                                         1,
                                             1,
                                                          1,
       1,
           1,
              1,
                  1,
                        1,
                                      1,
                                                1,
                                                   1,
                                                       1,
                                                              1,
                                                                 1,
                                                                    1,
       1,
                  1,
                     1,
                        1,
                            1,
                               1,
                                  1,
                                      1,
                                         1,
                                             1,
                                                1,
                                                   1,
                                                       1,
                                                          1,
                                                              1,
                                                                 1,
                                                                    1,
                  1,
                        1,
                            1,
                               1,
                                      1,
                                         1,
                                            1,
                                                       1,
                                                                    1,
       1,
           1,
              1,
                     1,
                                  1,
                                                1,
                                                   1,
                                                          1,
                                                              1,
                                                                 1,
                                                                           1,
                                                                              1.
                        1,
                               1,
                                                1,
                                                   1,
       1,
           1,
                                      1,
                                         1,
                                            1,
              1,
                  1,
                     1,
                           1,
                                  1,
                                                       1,
                                                          1,
                                                              1,
                                                                    1,
                                                                 1,
                                                                        1.
                                                                           1.
                                         1,
                                            1,
                                                       1,
       1,
                        1,
                               1,
                                  1,
                                      1,
                                                1,
                                                   1,
                                                                    1,
           1,
                 1,
                     1,
                           1,
                                                          1,
              1,
                                                              1,
                                                                 1,
                                                                        1,
                                                                           1.
                              1,
                                        1,
                                            1,
                                  1,
                                               1,
                                                  1,
                                                                    1,
                 1,
                     1, 1, 1,
                                                      1,
       1,
           1,
             1,
                                     1,
                                                          1,
                                                             1,
                                                                 1,
                 1,
                     1, 1, 1,
                              1,
                                      1, 1,
                                            1,
                                                      1,
                                                                    1,
           1, 1,
                                  1,
                                               1,
                                                   1,
                                                          1, 1,
                                                                 1,
                                                                       1,
                              1,
                                                   1, 1,
                                                                 1, 1,
           1, 1, 1,
                    1, 1, 1,
                                  1,
                                      1, 1, 1, 1,
                                                          1, 1,
                              1, 1,
           1, 1, 1,
                    1, 1, 1,
                                      1, 1, 1, 1,
                                                   1, 1,
                                                          1, 1,
                                                                 1, 1,
       1, 1, 1, 1, 1, 1, 1,
                              1, 1,
                                      1, 0, 0, 0, 0, 0, 0, 0,
                                                                 0, 0, 0,
       0, 0, 0, 0,
                     Ο,
                        Ο,
                            Ο,
                               Ο,
                                  Ο,
                                      0, 0, 0, 0,
                                                   0, 0,
                                                          Ο,
                                                              0,
                                                                 0, 0,
       Ο,
           0, 0, 0,
                     Ο,
                        Ο,
                            Ο,
                               Ο,
                                   Ο,
                                      Ο,
                                         Ο,
                                            Ο,
                                                Ο,
                                                   0, 0,
                                                          Ο,
                                                              0,
                                                                 Ο,
                                                                    Ο,
                                                                        Ο,
                                                                           Ο,
                               Ο,
       Ο,
           0, 0, 0,
                     Ο,
                        Ο,
                            Ο,
                                  Ο,
                                      Ο,
                                         Ο,
                                            Ο,
                                                Ο,
                                                   0, 0,
                                                          Ο,
                                                              Ο,
                                                                 Ο,
                                                                    Ο,
                                                                        Ο,
                                                                           0,
       0, 0,
              0, 0,
                     Ο,
                        Ο,
                            Ο,
                               Ο,
                                  Ο,
                                      Ο,
                                         0, 0,
                                                0,
                                                   0, 0,
                                                          Ο,
                                                              0,
                                                                 Ο,
                                                                    Ο,
                                                                        Ο,
                                                                           0,
                 Ο,
                               Ο,
                                                                    Ο,
       Ο,
           Ο,
              Ο,
                     Ο,
                        0,
                            Ο,
                                  Ο,
                                      Ο,
                                         Ο,
                                            Ο,
                                                Ο,
                                                   Ο,
                                                       Ο,
                                                          Ο,
                                                              0,
                                                                 Ο,
                                                                        Ο,
                                                                           Ο,
                 Ο,
                               Ο,
                                                       Ο,
       Ο,
           Ο,
              Ο,
                     Ο,
                        0,
                            Ο,
                                  Ο,
                                      Ο,
                                         Ο,
                                            Ο,
                                                Ο,
                                                   Ο,
                                                          Ο,
                                                              0,
                                                                 0,
                                                                    Ο,
                                                                           0,
                                                                        Ο,
                                                0,
           0,
              0,
                  0,
                        0,
                            Ο,
                               Ο,
                                   Ο,
                                      Ο,
                                         Ο,
                                            Ο,
                                                       0,
                                                              0,
                                                                    Ο,
       Ο,
                     Ο,
                                                   Ο,
                                                          Ο,
                                                                 0,
                                                                        Ο,
                                                                           0,
                                         Ο,
                 0,
                            Ο,
                               Ο,
                                            Ο,
                                                       0,
       Ο,
           0,
              0,
                     Ο,
                        Ο,
                                   Ο,
                                      Ο,
                                                Ο,
                                                   Ο,
                                                          Ο,
                                                              0,
                                                                 0,
                                                                    Ο,
                                                                        Ο,
                                                                           0,
           0,
                 0,
                     0,
                        0,
                            Ο,
                               Ο,
                                  Ο,
                                      0,
                                         Ο,
                                            Ο,
                                                Ο,
                                                   0,
                                                      Ο,
                                                          0,
                                                              0,
                                                                 0,
                                                                    Ο,
                 0,
                     0,
                        0,
                            0,
                               Ο,
                                  Ο,
                                      Ο,
                                         Ο,
                                            Ο,
                                                0,
                                                   0,
                                                       0,
                                                          0,
                                                              0,
                                                                    0,
        0,
                                                                 0,
                                                                        Ο,
                               0,
                                  0,
                                            0,
                                                       0,
       0,
           0,
              0,
                  0,
                     0,
                        0,
                            0,
                                      0,
                                         0,
                                                0,
                                                   0,
                                                          0,
                                                              0,
                                                                 0,
                                                                    0,
                                                                        0,
                               Ο,
       0,
           0,
              0,
                 Ο,
                     Ο,
                        0,
                            0,
                                  Ο,
                                      Ο,
                                         Ο,
                                            Ο,
                                                Ο,
                                                   Ο,
                                                      Ο,
                                                          0,
                                                             Ο,
                                                                 0,
                                                                    Ο,
                                                                       0,
                 0,
                                                      0,
              0,
        0.
          0,
                    0, 0,
                           0, 0, 0,
                                      Ο,
                                        0, 0, 0, 0,
                                                          0, 0,
                                                                 0, 0, 0, 0,
```

In [20]:

```
#Normalization
x_data = (x_data - np.min(x_data))/(np.max(x_data) - np.min(x_data))
```

In [21]:

x data

Out[21]:

	Area	MajorAxisLength	MinorAxisLength	Eccentricity	ConvexArea	Extent	Perimeter
0	0.296370	0.280714	0.314376	0.767872	0.255504	0.831422	0.271791
1	0.237427	0.234638	0.284945	0.738636	0.208864	0.667854	0.241842
2	0.312263	0.280741	0.351778	0.733009	0.268084	0.565754	0.283594
3	0.097973	0.078935	0.186620	0.548194	0.084089	0.701809	0.108284
4	0.257660	0.164011	0.422064	0.350968	0.219472	0.906315	0.218493
895	0.275975	0.264945	0.298733	0.763836	0.236831	0.634192	0.245347
896	0.295540	0.278757	0.331595	0.749761	0.256905	0.563259	0.286325
897	0.354240	0.267056	0.445044	0.608017	0.317858	0.792897	0.324126
898	0.324983	0.324902	0.316915	0.810259	0.283698	0.612254	0.307635
899	0.287236	0.371214	0.205302	0.910695	0.250153	0.553478	0.314521

900 rows × 7 columns

In [22]:

```
# Train test split
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.3, rando
m_state = 1)
```

Traning Model

In [23]:

```
from sklearn.svm import SVC
svm = SVC(random_state = 1)
svm.fit(x_train, y_train)
print("print accuracy of svm algo:", svm.score(x_test, y_test))
```

print accuracy of svm algo: 0.9037037037037037

In [24]:

```
test_score_list = []
train_score_list = []

for i in range(1,100):
    svm2 = SVC(C = i)
    svm2.fit(x_train, y_train)
    test_score_list.append(svm2.score(x_test, y_test))
    train_score_list.append(svm2.score(x_train, y_train))
```

```
plt.figure(figsize=(15,5))
p = sns.lineplot(range(1,100), train_score_list, marker='*', label='Train Score')
p = sns.lineplot(range(1,100), test_score_list, marker='o', label='Test Score')
```

/opt/conda/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional a rgument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/opt/conda/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional a rgument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

In [25]:

```
#import GridSearchCV
from sklearn.model_selection import GridSearchCV
grid={"C":[1, 100, 1000], "kernel":["linear", "poly", "sigmoid"]}
svm3 = SVC(random_state = 1)
svm3.fit(x_train, y_train)
print("test accuracy {}".format(svm3.score(x_test,y_test)))
print("Train accuracy {}".format(svm3.score(x_train, y_train)))
svm3_gscv=GridSearchCV(svm3,grid,cv=10)
svm3_gscv.fit(x_test,y_test)
test accuracy 0.9037037037037037
Train accuracy 0.861904761904762
```

Out[25]:

In [26]:

```
print("best hyperparameters: ", svm3_gscv.best_params_)
print("accuracy: ", svm3_gscv.best_score_)
```

best hyperparameters: {'C': 1, 'kernel': 'poly'}
accuracy: 0.8925925925925926

In [27]:

```
from sklearn.svm import SVC
svm4 = SVC(C = 1, kernel="poly")
```

```
print("test accuracy: {} ".format(svm4.fit(x_test, y_test).score(x_test, y_test)))
print("train accuracy: {} ".format(svm4.fit(x_train, y_train).score(x_train, y_train)))
```

test accuracy: 0.9037037037037037 train accuracy: 0.8523809523809524