Mathematical Formulae and Identities

Rutuj Gavankar rsgavank.edu

August 1, 2018

Contents

1		liminary Algebra								
	1.1	Coordinate Geometry								
	1.2	Logarithms and Exponentials								
	1.3	Binomial Expansion								
2	Trigonometry									
	2.1	Common Values and the Unit Circle								
	2.2	Pythagorean Identities								
	2.3	Double Angle Formulae								
	2.4	Sum and Difference Formulae								
	2.5	Sum to Product Formulae								
	2.6	Product to Sum Formulae								
	2.7	Inverse Trigonometric Functions								
	2.8	Trigonometry in the Complex Plane								
	2.9	Hyperbolic Identities								
	2.10	Inverse Hyperbolic Functions								
3	Vec	Vector Algebra								
	3.1	Scalar Product								
	3.2	Vector Product								
	3.3	Equations of lines, planes and spheres								
4	Limits									
	4.1	Precise Definition of a Limit								
	4.2	Common Limits								
	4.3	L'Hôpital's Rule								
5	Sequences and Series									
	5.1	Common Summation Formulae								
	5.2	Geometric Series								
	5.3	Power-Series								

	5.4	Series Convergence Tests	10					
	5.5	Common Convergent Series	10					
6	Diff	erential Calculus	10					
	6.1	Derivative Rules and Properties	10					
	6.2	Common Derivatives	10					
	6.3	Applications of Derivatives	10					
		6.3.1 Tangent to a Curve	10					
		6.3.2 Analysis	11					
		6.3.3 Taylor Polynomials	11					
7	Integral Calculus							
	7.1	Fundamental Theorem of Calculus	11					
	7.2	Common Antiderivatives	12					

1 Preliminary Algebra

1.1 Coordinate Geometry

Equation of a line:

$$y = mx + c$$

Equation of a circle:

$$(x-h)^2 + (y-k)^2 = r^2$$

Equation of a parabola:

$$y - k = a(x - h)^{2}$$
 $x - h = a(y - k)^{2}$

Equation of an ellipse:

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Equation of a hyperbola:

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

1.2 Logarithms and Exponentials

Properties of Exponentials

$$a^{n}a^{m} = a^{n+m}$$

$$(ab)^{n} = a^{n}b^{n}$$

$$(a^{n})^{m} = a^{nm}$$

$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$$

$$\left(\frac{a}{b}\right)^{-n} = \frac{b}{a^{n}}$$

Properties of Logarithms

$$\log_a a = 1$$

$$(\log_a b)(\log_b c) = \log_a c$$

$$\log_a b = \frac{1}{\log_b a}$$

$$\log_a (xy) = \log_a x + \log_a y$$

$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

1.3 Binomial Expansion

$${}^{n}C_{k} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Also,

$${}^{n}C_{0} = {}^{n}C_{n} = 1$$
$${}^{n}C_{1} = {}^{n}C_{n-1} = n$$
$${}^{n}C_{k} = {}^{n}C_{n-k}$$

For a binomial expression raised to the power n:

$$(x+y)^n = \sum_{k=0}^{k=n} {}^n C_k x^{n-k} y^k$$

Pascal's Triangle

Commonly Factored Polynomials:

$$x^{2} - y^{2} = (x - y)(x + y)$$

$$(x + y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x - y)^{2} = x^{2} - 2xy + y^{2}$$

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$$

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

$$(x + y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x - y)^{3} = x^{3} - 3x^{2}y + 3xy^{2} - y^{3}$$

2 Trigonometry

2.1 Common Values and the Unit Circle

$ heta^\circ$	0°	30°	45°	60°	90°
θ^c	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	N/D

Table 1: Commonly used trigonometric values. Refer the Unit Circle

2.2 Pythagorean Identities

$$\sin^2 x + \cos^2 x = 1$$

$$\csc^2 x - \cot^2 x = 1$$

$$\sec^2 x - \tan^2 x = 1$$

2.3 Double Angle Formulae

$$\sin(2x) = 2\sin x \cos x \qquad \tan(2x) = \frac{2\tan x}{1 - \tan^2 x}$$

$$\cos(2x) = 2\cos^2 x - 1$$

$$= \cos^2 x - \sin^2 x$$

$$= 1 - 2\sin^2 x$$

2.4 Sum and Difference Formulae

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y \qquad \cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\arcsin x \pm \arcsin y = \arcsin(x\sqrt{1 - y^2} \pm y\sqrt{1 - x^2})$$

$$\arccos x \pm \arccos y = \arccos(xy \mp \sqrt{(1 - x^2)(1 - y^2)})$$

$$\arctan x \pm \arctan y = \arctan(\frac{x \pm y}{1 \mp xy})$$

2.5 Sum to Product Formulae

2.6 Product to Sum Formulae

2.7 Inverse Trigonometric Functions

$$\sin^{-1}(-x) = -\sin^{-1}x & \cos^{-1}(-x) = \pi - \cos^{-1}x, & |x| \le 1
\tan^{-1}(-x) = -\tan^{-1}x & \cot^{-1}(-x) = \pi - \cot^{-1}x, & x \in \mathbf{R}
\csc^{-1}x = \sin^{-1}\left(\frac{1}{x}\right) & \sec^{-1}x = \cos^{-1}\left(\frac{1}{x}\right), & |x| \ge 1
\cot^{-1}x = \tan^{-1}\left(\frac{1}{x}\right), & x < 0
\cot^{-1}x = \pi + \tan^{-1}\left(\frac{1}{x}\right), & x < 0
\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}, & |x| \le 1
\csc^{-1}x + \sec^{-1}x = \frac{\pi}{2}, & |x| \ge 1$$

2.8 Trigonometry in the Complex Plane

Euler's Formula:

$$re^{i\theta} = r(\cos\theta + i\sin\theta)$$

De Moivre's Formula:

$$(\cos \theta + i \sin \theta)^n = \cos (n\theta) + i \sin (n\theta)$$

Exponential Definition of Trigonometric Functions:

$$\cos(ix) = \frac{(e^x + e^{-x})}{2} \qquad \sin(ix) = i\frac{(e^x - e^{-x})}{2} \qquad \tan(ix) = i\frac{(e^x - e^{-x})}{(e^x + e^{-x})}$$

Exponential Definition of Hyperbolic Functions:

$$\cosh(x) = \frac{(e^x + e^{-x})}{2} \qquad \sinh(x) = \frac{(e^x - e^{-x})}{2} \qquad \tanh(x) = \frac{(e^x - e^{-x})}{(e^x + e^{-x})}$$

Relationship between hyperbolic and trigonometric functions:

$$\cosh x = \cos ix$$
 $\cos x = \cosh ix$
 $i \sin x = \sinh ix$
 $i \sin x = \sinh ix$

2.9 Hyperbolic Identities

$$\cosh^2 x - \sinh^2 x = 1 \qquad \operatorname{sech}^2 x + \tanh^2 x = 1 \qquad \operatorname{csch}^2 x + \coth = 1$$

$$\sinh(2x) = 2\sinh x \cosh x \qquad \cosh(2x) = \cosh^2 x + \sinh^2 x \qquad \sinh x + \cosh x = e^x$$

6

2.10 Inverse Hyperbolic Functions

$$\cosh^{-1} x = \ln (\sqrt{1+x^2} + x)$$

$$\tanh^{-1} x = \ln \sqrt{\frac{1+x}{1-x}}$$

$$= \frac{1}{2} \ln \frac{1+x}{1-x}$$

3 Vector Algebra

Figure 2: Addition of two vectors using Parallelogram Law

3.1 Scalar Product

$$a \cdot b = |a||b|\cos\theta$$
$$= \langle a|b\rangle$$

If $a = x_1\hat{i} + y_1\hat{j} + z_1\hat{k}$ and $b = x_2\hat{i} + y_2\hat{j} + z_2\hat{k}$ then,

$$a \cdot b = (x_1 x_2)\hat{i} + (y_1 y_2)\hat{j} + (z_1 z_2)\hat{k}$$

If $a \cdot b = 0$ then, $a \perp b$

3.2 Vector Product

$$a \times b = |a||b|\sin\theta$$
$$= |b\rangle\langle a|$$

If $a = x_1\hat{i} + y_1\hat{j} + z_1\hat{k}$ and $b = x_2\hat{i} + y_2\hat{j} + z_2\hat{k}$ then,

$$a \times b = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

3.3 Equations of lines, planes and spheres

Equation of a line: In Fig.3, the vector \mathbf{r} can be written as $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$

Figure 3: The equation of a line. The vector b is in the direction AR and λ b is the vector from A to R.

4 Limits

4.1 Precise Definition of a Limit

Definition 1 (Limit of a function) Let f(x) be a function defined on an open interval around x_0 . We say that the limit of f(x) as x approaches x_0 is L, i.e. $\lim_{x\to x_0} f(x) = L$, if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for all x

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \varepsilon.$$

4.2 Common Limits

$$\lim_{x \to \infty} \left(1 + \frac{k}{x} \right)^{mx} = e^{mk} \qquad \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \qquad \lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^x = \frac{1}{e}$$

$$\lim_{x \to \infty} \left(\frac{x}{x+k} \right)^x = \frac{1}{e^k} \qquad \lim_{x \to 0} \left(1 + x \right)^{\frac{1}{x}} = e \qquad \lim_{x \to 0} \left(\frac{a^x - 1}{x} \right) = \ln a$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to 0} \frac{\sin ax}{bx} = \frac{a}{b} \qquad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

4.3 L'Hôpital's Rule

Theorem 1 (L'Hôpital's Rule) Suppose f and g are differentiable functions such that

- 1. $g'(x) \neq 0$ on an open interval I containing a;
- 2. $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$, or $\lim_{x\to a} f(x) = \pm \infty$ and $\lim_{x\to a} g(x) = \pm \infty$;
- 3. $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ exists.

Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

5 Sequences and Series

5.1 Common Summation Formulae

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$\sum_{i=1}^{n} r^{i} = \frac{1-r^{n+1}}{1-r}$$

5.2 Geometric Series

The Geometric Series

$$S = \sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + ar^3 \dots$$

Is convergent if |r| < 1 and,

$$S = \frac{a}{1 - r}$$

5.3 Power-Series

$$\zeta(p) = \sum_{n=1}^{\infty} \frac{1}{n^p}$$

converges for p > 1

5.4 Series Convergence Tests

5.5 Common Convergent Series

6 Differential Calculus

6.1 Derivative Rules and Properties

The differntial operator is a linear operator

$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$
 $(c \cdot f(x))' = c \cdot f'(x)$

Product Rule:

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Quotient Rule:

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - g'(x) \cdot f(x)}{(g(x))^2}$$

Chain Rule:

$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$

6.2 Common Derivatives

$$\frac{\mathrm{d}}{\mathrm{d}x}a^{x} = (\ln a)a^{x}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\log_{a}x = \frac{1}{x\ln a}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\sin x = \cos x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cos x = -\sin x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cot x = \sec^{2}x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\csc x = -\csc x \cot x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\sec x = \sec x \tan x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cot x = -\csc^{2}x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\sin^{-1}x = \frac{1}{\sqrt{1-x^{2}}}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cos^{-1}x = -\frac{1}{\sqrt{1-x^{2}}}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cot^{-1}x = \frac{1}{1+x^{2}}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cot^{-1}x = -\frac{1}{1+x^{2}}$$

6.3 Applications of Derivatives

6.3.1 Tangent to a Curve

Tangent to a curve f(x) at a point a:

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x)\Big|_{x=a}$$

For a straight line passing through points (x_1, y_1) and (x_2, y_2) , the slope, m, is constant and is calculated by:

$$m = \tan \theta = \frac{y_2 - y_1}{x_2 - x_1}$$

Where θ is the angle of the line with the x-axis

6.3.2 Analysis

Critical Points c is a critical point of f(x) if f'(c) = 0 or f'(c) doesn't exist.

Increasing/Decreasing f(x) is increasing on an interval I if f'(x) > 0 for all x on the interval I. f(x) is decreasing on an interval I if f'(x) < 0 for all x on the interval I. f(x) is constant on an interval I if f'(x) = 0 for all x on the interval I.

Concave Up/Concave Down f(x) is concave up on an interval I if f''(x) > 0 for all x on the interval I. f(x) is concave down on an interval I if f''(x) < 0 for all x on the interval I.

Inflection Points c is an inflection point of f(x) if the concavity changes at f(c).

6.3.3 Taylor Polynomials

Definition 2 (Taylor Polynomial) Let f(x) be a real-valued function that is infinitely differentiable at $x = x_0$. The Taylor series expansion for the function f(x) centered around the point $x = x_0$ is given by

$$\sum_{n=0}^{\infty} f^{(n)}(x_0) \frac{(x-x_0)^n}{n!}$$

Where $f^{(n)}(x_0)$ is the n^{th} derivative of f(x) at $x = x_0$.

7 Integral Calculus

7.1 Fundamental Theorem of Calculus

Theorem 2 (First Fundamental Theorem of Calculus) If f is continuous on [a,b], then the function defined by

$$S(x) = \int_{a}^{x} f(t) dt$$

is continuous on [a,b] and differentiable on (a,b), and S'(x) = f(x).

Written in Leibniz notation,

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, dt = f(x)$$

Theorem 3 (Second Fundamental Theorem of Calculus) If f is a continuous function on [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

where F is the anti-derivative of f, i.e. F' = f.

7.2 Common Antiderivatives

$$\int \frac{1}{x} dx = \ln|x| + c$$

$$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b| + c$$

$$\int \cos a dx = \frac{1}{a} \sin ax + c$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax + c$$

Figure 1: Unit Circle