EECS 495: Combinatorial Optimization Lecture Manolis, Nima Mechanism Design with Rounding

Motivation

- Make a social choice that (approximately) maximizes the social welfare subject to the economic constraints of truthfulness
- When optimizing the social welfare is NP-hard and the standard solution, the VCG mechanism, cannot be computed efficiently find truthful approximation algorithms

Mechanism Design Basics

- A set of possible outcomes \mathcal{A} and a set of bidders \mathcal{N} .
- For each $i \in \mathcal{N}$ a private function v_i : $\mathcal{A} \to \mathbb{R}_0^+$
- A Mechanism elicits bid b_i from each $i \in \mathcal{N}$ and outputs the set $f(b_1, \ldots, b_n) \in \mathcal{A}$ and and charges player $I \in \mathcal{N}$: $p_i(b_1, \ldots, b_n)$
- We relax f and p to be random variables over the possible outcomes and the \mathbb{R}^n payment vectors
- The expected utility of a player $i \in \mathcal{N}$ is given by $E[v_i(f(b_i, \ldots, b_n)) p_i(b_1, \ldots, b_n)]$
- A mechanism is truthful in expectation if for every $b_i \neq v_i$ and $v_{-i} \in$

$$\mathbb{R}^{n-1}$$
: $E[v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i})] \ge E[v_i(f(b_i, v_{-i})) - p_i(b_i, v_{-i})]$

Problem Formulation

Multi Unit Combinatorial Auctions

- A set [m] of items
- A number B representing how many copies we have of each item
- A set [n] of players
- Player i has valuation function v_i : $2^{[m]} \to \Re^+, v_i(\emptyset) = 0, v_i(A) \leq v_i(B)$ for $A \subseteq B$ (monotone)
- Feasible solution: allocation (S_1, \ldots, S_n) such that each item is allocated to at most B players (these sets must be disjoint for B = 1)
- *i*'s value for (S_1, \ldots, S_n) is $v_i(S_i)$
- Goal: Maximize Social Welfare: $\sum_{i} v_i(S_i)$

Lotteries and Value Oracles

- Value oracle takes set and returns value
- Analogous oracle for lotteries
- For $x \in [0,1]^m$, D_x define

$$F_v(x) = E_{S \sim D_x}[v(S)] = \sum_{S} v(S) \prod_{j \in S} x_j \prod_{j \notin S} (1 - x_j)$$

• That is the value of the lottery can be computed as the expected value of the outcome w.r.t. the distribution of the lottery

A general technique for constructing truthful approximation algorithms

Deterministic Support Mechanism

- Any randomized mechanism can be viewed as a deterministic mechanism with a different outcome space: the set of all lotteries over the original outcomes, the deterministic support mechanism
- Given any truthful in expectation mechanism the corresponding deterministic support mechanism that charges the expected payment vector is truthful
- The reverse is also true. A similar rule Clark-Groves could be used to ensure individual rationality in expectation.
- These transformations preserve the social welfare at any input

The new framework

- The packing property of a problem is that its corresponding natural LP satisfies the following fact: if vector x is a solution to the problem then any $0 \le x' \le x$ is also a solution
- The mutli-unit combinatorial auction problem has the packing property:
- The LP formulation we will use is the

following

$$\max \sum_{i,S \neq \emptyset} v_i(S) x_{i,S}$$

subject to $\sum_{S \neq \emptyset} x_{i,S} \leq 1$ for each player i

$$\sum_{i} \sum_{S: i \in S} x_{i,S} \le 1 \text{ for each item } j$$

$$x_{i,S} \geq 0$$
 for each i, S

Theorem 0.1 Given any α -approximation algorithm for a problem with the "packing property" that proves also an integrality gap of at most α there is a randomized truthful in expectation α -approximation algorithm

The mechanism is defined as follows:

- 1. Compute the fractional optimal solution x^*
- 2. Scale the solution by α : $x' = x^*/\alpha$
- 3. Express x' as a convex combination of integer solutions where there are polynomially many non-zero weights
- 4. Convert the deterministic support allocation into its corresponding randomized version.

Claim: This algorithm returns a truthful in expectation randomized mechanism

Proof:

• Consider the mechanism that did not scale by α and could probably express the best fractional solution as a convex combination of exponentially many integral ones

- This coincides with the VCG mechanism on lotteries therefore its randomization is also truthful
- The randomization obtained in the case where we scale by α has simply scaled the utility of each agent at every input, hence, the truthfulness equation is satisfied

□ Claim: We can express the scaled allocation as a convex combination of polynomially many integral solutions

Proof:

- Let \mathcal{I} be the set of integral solutions
- Let x^* be the fractional optimal solution
- Let $E = \{(i, S) \mid x_{i,S}^* > 0\}$
- we define the following primal P and its dual D

Primal

$$\min \sum_{l \in \mathcal{I}} \lambda_l$$

s.t.
$$\sum_{l} \lambda_{l} x_{i,S}^{l} = x_{i,S}^{*}/\alpha$$
 for all $(i, S) \in E$

$$\sum_{l\in\mathcal{I}}\lambda_l\geq 1$$

$$\lambda_l \geq 0$$
 for all $l \in \mathcal{I}$

Dual

$$\max \frac{1}{\alpha} \sum_{(i,S) \in E} x_{i,S}^* w_{i,S} + z$$

s.t.
$$\sum_{(i,S)\in E} x_{i,S}^l w_{i,S} + z \leq 1$$
 for all $l \in \mathcal{I}$

$$\lambda_l > 0$$
 for all $l \in \mathcal{I}$

- If the optimal solution to the primal is 1 then the variables λ correspond to the weights of the convex combination
- Primal P has exponentially many variables
- It has polynomially many constrains; Since x^* is an extreme point of the original problem, it has at most m + n non zero variables, i.e., $|E| \le m + n$.
- Equivalently, dual *D* has exponentially many constraints but polynomially many variables
- We will show how we can solve the Dual restricting the feasible space only to the optimal solutions since then we have a separation oracle

Claim: Let $w_{i,S}^+ = \max(w_{i,S}, 0)$. Given any integral x to the original problem one can find integral solution x^l such that

$$\sum_{(i,S)\in E} x_{i,S}^l w_{i,S} = \sum_{(i,S)\in E} \hat{x}_{i,S} w_{i,S}^+$$

Proof:

1. if
$$w_{i,S} > 0$$
 set $x_{i,S}^l = x_{i,S}$

2. Otherwise set
$$x_{i,S}^l = 0$$
.

Claim: For any weight vector w we can compute in polynomial time an integral solution such that

$$\sum_{(i,S)\in E} x_{i,S}^l w_{i,S} \ge \frac{1}{\alpha} \max_{\text{feasible } x} \sum_{(i,S)\in E} x_{i,S} w_{i,S}$$

Proof:

- If some components of w are negative take w^+
- We can monotonize

$$w'_{i,S} = \max_{T \subseteq S: (i,T) \in E} w_{i,T}^+$$

- Apply approximation algorithm with valuations w' and get solution y
- By construction $w'_{i,S} \ge w_{i,S}$ for all $(i, S) \in E$.
- Note that we don't care about as singing weights for $(i, S) \notin E$ such the respective $w_{i,S}$ are zero.
- We know that

$$\sum_{(i,S)\in E} y_{i,S} w'_{i,S}$$

is greater than α fraction of the objective

- We need to find another y such that the same holds with weights w^+
- If we put some weight to some (i, S) such that $w'_{i,S} \neq w^+_{i,S}$, i.e., we increased this value due to monotonicity constraints we put all of this weight then we simply put weight 1 to (i,T) where $T \subseteq S$ and $w^+_{i,T} = w'_{i,S}$
- Use the previous claim to conclude that there is an integral solution x^l such that is greater than α fraction of the objective when we use values w

Claim: We can find a convex combination of $\frac{x^*}{\alpha}$ with polynomially many non zero weights in polynomial time

Proof:

- First prove that the optimum of the dual is 1: Set z = 1 and $w_{i,S} = 0$ for all $(i, S) \in E$.
- Assume we can find something better using solution x^* : Then by the previous claim we can find an integer solution that is α approximate of x^* which implies the that corresponding constrain is violated
- Using this argument we add the inequality

$$\frac{1}{\alpha} \cdot \sum_{(i,S) \in E} x_{i,S}^* w_{i,S} + z \ge 1$$

- Run Ellipsoid method on D to identify a dual program with polynomial size set of inequalities that is equivalent to D (the violated inequalities that are returned by the separation oracle that are used to cut the ellipsoid)
- The primal of this program has polynomial number of constraints and variables.
- Therefore non zero variables to the integer solution are at most the number of variables plus the number of the constrains.
- The separation oracle used is the following: If

$$\frac{1}{\alpha} \sum_{(i,S) \in E} x_{i,S}^* w_{i,S} + z > 1$$

then we identify the violated constrain according to the previous Claim or otherwise we use the half space that is defined by this constraint to cut the ellipsoid

Applications of this technique

These technique can be used on existing approximation algorithms for the MUCA problem and derive the following results:

- For short valuation (each player is interested in one set and its subsets) $O(m^{\frac{1}{B+!}}$ for any $B \geq 1$ and $(1 + \epsilon)$ for $B = \Omega(\log m)$.
- For general valuation functions the same bound but with with ex post Nash equilibrium as a solution concept
- For the special case of multi unit auctions this technique can be proved to be 2 approximate

Convex Rounding Framework

Relaxations

• Π an optimization problem, $\forall (\mathcal{S}, w) \in \Pi$

maximize
$$w(x)$$
 (1)
subject to $x \in \mathcal{S}$

- Π' relaxation: $\forall (\mathcal{S}, w) \in \Pi$ defines convex and compact relaxed feasible set $\mathcal{R} \in \mathbb{R}^m$ and an extension $w_{\mathcal{R}} : \mathcal{R} \to \mathbb{R}$ of the objective
- So we have the following

maximize
$$w_{\mathcal{R}}(x)$$
 subject to $x \in \mathcal{R}$

- A rounding scheme $r: \mathcal{R} \to \mathcal{S}$ (possibly randomized)
- If $\forall x \in \mathcal{R}$, $E[w(r(x))] \geq \alpha w_{\mathcal{R}}(x)$, then this is an α -approximation

Convex Rounding and MIDR

- MIDR: Fix some algorithm. Let distribution D_w be outcome for objective function w. Let \mathcal{D} be the set of all possible D_w . The algorithm is MIDR if $\forall w, D \in \mathcal{D}, E_{x \sim D_w}[w(x)] \geq E_{x \sim D}[w(x)]$
- We can convert any MIDR algorithm to a truthful mechanism, with the same approximation guarantee, using VCG payments
- Observation: Instead of solving the relaxation and then rounding, why not optimize over the outcome of the rounding scheme?

maximize
$$E[w(r(x))]$$
 (2)
subject to $x \in \mathcal{R}$

• We don't know if it is tractable

Lemma 0.2 Program 2 is MIDR

- For most typical roundings, 2 is hard to solve
- e.g., if r(x) = x for $x \in \mathcal{S}$, then it is more general than 1
- So we probably should have the unusual property that $r(x) \neq x$ for $x \in \mathcal{S}$
- Rounding scheme r is α -approximate if $w(x) \geq E[w(r(x))] \geq \alpha w(x), \forall x \in \mathcal{S}$

Lemma 0.3 If r is α -approximate, then 2 is an α -approximation to the original problem 1

- Call r convex if E[w(r(x))] concave
- For r convex 2 can be solve efficiently

• So the problem is to find α -approximate convex rounding

Theorem 0.4 If \exists polynomial, approximate, convex r for Π' , \exists truthful-in-expectation, polynomial, α -approximate mechanism for Π

Combinatorial Auctions

Matroid Rank Sum

- Set function $v: 2^{[m]} \to \Re$ is an MRS function if $\exists u_1 \ldots, u_k$ (all matroid rank functions), and weights $w_1, \ldots, w_k \in \Re^+$ such that $v(S) = \sum_{\ell=1}^{k} w_{\ell} u_{\ell}(S)$
- Includes weighted coverage functions, matroid weighted rank functions, and all convex combinations of them
- Negative result: no universally truthful, polynomial, VCG-based mechanism achieves constant factor assuming $NP \not\subset$ P|Poly

Results

Theorem 0.5 $\exists (1-1/e)$ -approximate mechanism for combinatorial auctions with MRS valuations

• Formulation

maximize
$$w(x) = \sum_{i} v_i(\{j : x_{ij} = 1\})$$

subject to $\sum_{i} x_{ij} \leq 1$
 $x_{ij} \in \{0, 1\}$

- \mathcal{R} is relaxation to $0 \le x_{ij} \le 1$
- For $x \in [0,1]^m$, D_x define the extension of the value function

$$F_v(x) = E_{S \sim D_x}[v(S)] = \sum_S v(S) \prod_{j \in S} x_j \prod_{j \notin S} (1 - s)$$

Poisson Rounding

Lemma 0.6 Consider $f: 2^V \rightarrow \Re$ monotone, submodular, and normalizes $(f(\emptyset) = 0)$. Consider set $S \subseteq V$ and random set S' by choosing each element of S independently with prob p. Then $E[f(S')] \ge p \cdot f(S)$.

Proof:

- Fix an ordering on elements of S
- Let S_i be the first i elements of S(similarly for S_i')
- $f(S) = \sum_{1 \le i \le |S|} f(S_i) f(S_{i-1}),$ where $f(S_0) = 0$

$$E[f(S')] = E[\sum_{1 \le i \le |S'|} f(S'_i) - f(S'_{i-1})]$$

$$\geq \sum_{1 \le i \le |S|} p \cdot (f(S_i) - f(S_{i-1}))$$

$$= p \cdot f(S)$$

- Now we define the Poisson Rounding
- \bullet Given fractional solution x, independently for each item assign j to i with prob $1 - e^{-x_{ij}}$
- Note $1 e^{-x_{ij}} \le x_{ij}$

Lemma 0.7 Poisson rounding is (1 - $\forall i, j$ 1/e)-approximate for submodular valuations

Proof:

- Rounding applied to integer solu- $F_v(x) = E_{S \sim D_x}[v(S)] = \sum_S v(S) \prod_{j \in S} x_j \prod_{j \notin S} (1 - x_j)$ ition cancels each allocated item

- Consider (S_1, \ldots, S_n) integer and corresponding (random) (S'_1, \ldots, S'_n)
- $-S'_i$ includes any $j \in S_i$ independently with prob 1 1/e
- Then $E[v_i(S_i')] \ge (1 1/e)v_i(S_i)$

Lemma 0.8 Poisson rounding is concave for MRS valuations

Proof:

• Let $(S_1, \ldots, S_n) = r_{\text{poiss}}(x)$

- Want to prove $E[w(r_{poss}(x))] = E[\sum v_i(S_i)]$ concave
- Show $E[v_i(S_i)]$ concave
- We prove concavity for a subclass: Coverage functions

Definition 0.1 A function $f: 2^V \to \Re$ is a coverage function if \exists a set A (different from V) of "activities", a value v_i for each activity $i \in A$, and a set $X_j \subseteq A$ for each j, such that $v(S) = \sum_{i \in c(S)} v_i$, where $c(S) = \bigcup_{j \in S} v_j$.

Proof:

$$E[v(S)] = E[\sum_{i \in c(S)} v_i]$$
$$= \sum_{i \in A} v_i Pr[i \in c(S)]$$

For each $i \in A$, define $Y_i = \{j \in S | i \in X_j\}$. We have

$$Pr[i \in c(S)] = Pr[S \cap X_i \neq \emptyset]$$

= $1 - e^{-\sum_{j \in Y_i} x_j}$