Суммы и интегралы Дарбу

Всегда предполагаем, что f - ограничена на изучаемом отрезке [a,b].

Опр: 1. \forall разбиения \mathbb{T} отрезка [a,b] следующая сумма:

$$s(f, \mathbb{T}) = \sum_{k=1}^{N} \inf_{\Delta_k} f \cdot |\Delta_k|$$

называется нижней суммой Дарбу.

Опр: 2. \forall разбиения \mathbb{T} отрезка [a,b] следующая сумма:

$$S(f, \mathbb{T}) = \sum_{k=1}^{N} \sup_{\Delta_k} f \cdot |\Delta_k|$$

называется верхней суммой Дарбу.

Лемма 1. Верны следующие утверждения:

- $(1) \ s(f,\mathbb{T}) = \inf_{\xi} \sigma(f,\mathbb{T},\xi) \leq \sigma(f,\mathbb{T},\xi) \leq \sup_{\xi} \sigma(f,\mathbb{T},\xi) = S(f,\mathbb{T});$
- (2) Пусть $\mathbb{T} \subset \mathbb{T}'$ (измельчение разбиения \mathbb{T}), тогда $s(f,\mathbb{T}) \leq s(f,\mathbb{T}')$ и $S(f,\mathbb{T}) \geq S(f,\mathbb{T}')$;
- (3) $\forall \mathbb{T}_1, \mathbb{T}_2, s(f, \mathbb{T}_1) \leq S(f, \mathbb{T}_2);$

Опр: 3. Точная верхняя грань нижней суммы Дарбу:

$$\underline{\mathbf{I}} = \sup_{\mathbb{T}} s(f, \mathbb{T})$$

называется нижним интегралом Дарбу.

Опр: 4. Точная нижняя грань верхней суммы Дарбу:

$$\overline{\mathbf{I}} = \inf_{\mathbb{T}} S(f, \mathbb{T})$$

называется верхним интегралом Дарбу.

Лемма 2. Нижний и верхний интегралы Дарбу можно определить следующим образом:

$$\lim_{\lambda(\mathbb{T})\to 0} s(f,\mathbb{T}) = \underline{\mathbf{I}}, \lim_{\lambda(\mathbb{T})\to 0} S(f,\mathbb{T}) = \overline{\mathbf{I}}$$

 $\hfill \square$ Рассмотрим первое равенство, предел мы понимаем в следующем смысле:

$$\forall \varepsilon > 0, \, \exists \, \delta > 0 \colon \forall \, \mathbb{T}, \, \lambda(\mathbb{T}) < \delta \Rightarrow \underline{\mathbf{I}} - s(f, \mathbb{T}) < \varepsilon$$

По определению, нижний интеграл Дарбу это точная верхняя грань нижней суммы Дарбу, тогда:

$$\forall \varepsilon > 0, \ \exists \, \mathbb{T}_{\varepsilon} \colon \underline{\mathbf{I}} - \varepsilon < s(f, \mathbb{T}_{\varepsilon})$$

Пусть $\mathbb T$ - произвольное разбиение отрезка [a,b]. Рассмотрим следующую разность:

$$\underline{\mathbf{I}} - s(f, \mathbb{T}) = \underline{\mathbf{I}} - s(f, \mathbb{T}_{\varepsilon}) + s(f, \mathbb{T}_{\varepsilon}) - s(f, \mathbb{T}) < \varepsilon + s(f, \mathbb{T}_{\varepsilon}) - s(f, \mathbb{T})$$

Возьмем $\mathbb{T} \cup \mathbb{T}_{\varepsilon}$ - измельчение \mathbb{T}_{ε} и \mathbb{T} , тогда по предыдущей лемме:

$$\varepsilon + s(f, \mathbb{T}_{\varepsilon}) - s(f, \mathbb{T}) \le \varepsilon + s(f, \mathbb{T} \cup \mathbb{T}_{\varepsilon}) - s(f, \mathbb{T})$$

Пусть \mathbb{T} разбивает отрезок [a,b] на Δ_k , а $\mathbb{T} \cup \mathbb{T}_{\varepsilon}$ разбивает отрезок [a,b] на Δ'_m . Среди отрезков $\mathbb{T} \cup \mathbb{T}_{\varepsilon}$ есть те же самые, что и среди отрезков \mathbb{T} .

Pис. 1: Разбиение отрезка [a, b].

Отрезки разбиения \mathbb{T} не совпадают с отрезками разбиения $\mathbb{T} \cup \mathbb{T}_{\varepsilon}$ там, где отрезки Δ_k разбиты точками разбиения \mathbb{T}_{ε} : $x_1, x_2, \ldots, x_{N-1}$, где N зависит от ε . Таким образом:

$$\forall x_j \in \mathbb{T}_{\varepsilon}, \ j = \overline{1, N-1}, \ x_j \notin \Delta_k \Rightarrow \exists \ m \colon \Delta_k = \Delta'_m$$

И то же самое будет верно для Δ'_m :

$$\forall x_i \in \mathbb{T}_{\varepsilon}, \ j = \overline{1, N-1}, \ x_i \notin \Delta'_m \Rightarrow \exists \ k \colon \Delta'_m = \Delta_k$$

Следовательно, не совпадающих отрезков разбиения может быть не более, чем удвоенное число точек разбиения \mathbb{T}_{ε} , то есть 2(N-1) отрезков. Оценим разность $s(f,\mathbb{T} \cup \mathbb{T}_{\varepsilon}) - s(f,\mathbb{T})$:

$$s(f, \mathbb{T} \cup \mathbb{T}_{\varepsilon}) - s(f, \mathbb{T}) = \sum_{m} \inf_{\Delta'_{m}} f \cdot |\Delta'_{m}| - \sum_{k} \inf_{\Delta_{k}} f \cdot |\Delta_{k}| = \sum_{m: x_{j} \in \Delta'_{m}} \inf_{\Delta'_{m}} f \cdot |\Delta'_{m}| + \sum_{m: x_{j} \notin \Delta'_{m}} \inf_{\Delta'_{m}} f \cdot |\Delta'_{m}| - \sum_{k: x_{j} \in \Delta_{k}} \inf_{\Delta_{k}} f \cdot |\Delta_{k}| = \sum_{m: x_{j} \in \Delta'_{m}} \inf_{\Delta'_{m}} f \cdot |\Delta'_{m}| - \sum_{k: x_{j} \in \Delta_{k}} \inf_{\Delta_{k}} f \cdot |\Delta_{k}|$$

Пусть $M=\sup_{[a,b]}|f|$, тогда $\inf_{[a,b]}f\leq M$ и $-\inf_{[a,b]}f\leq M$. Поскольку разбиение $\mathbb{T}\cup\mathbb{T}_{\varepsilon}$ более мелкое, чем \mathbb{T} , то его масштаб $\lambda(\mathbb{T})=\max_{k}|\Delta_{k}|\geq \lambda(\mathbb{T}\cup\mathbb{T}_{\varepsilon})=\max_{m}|\Delta'_{m}|$. Поскольку число точек разбиения \mathbb{T}_{ε} зависит от ε , то $N=N_{\varepsilon}$. В результате мы получим следующее:

$$\sum_{m: x_j \in \Delta'_m} \inf_{\Delta'_m} f \cdot |\Delta'_m| - \sum_{k: x_j \in \Delta_k} \inf_{\Delta_k} f \cdot |\Delta_k| \le 2(N_{\varepsilon} - 1)M \cdot \lambda(\mathbb{T}) + 2(N_{\varepsilon} - 1)M \cdot \lambda(\mathbb{T}) \le 4N_{\varepsilon}M \cdot \lambda(\mathbb{T})$$

$$\underline{\mathbf{I}} - s(f, \mathbb{T}) \le \varepsilon + 4N_{\varepsilon}M \cdot \lambda(\mathbb{T})$$

Пусть $\delta > 0$: $4N_{\varepsilon}M\cdot\delta < \varepsilon$, тогда:

$$\forall \mathbb{T}, \lambda(\mathbb{T}) < \delta \Rightarrow I - s(f, \mathbb{T}) < 2\varepsilon$$

Аналогичное доказательство проводится для верхнего интеграла Дарбу.

Применим эту лемму к доказательству критерия Дарбу.

Критерий Дарбу

Теорема 1. (**Критерий** Дарбу) Пусть f - ограничена на отрезке [a,b]. Функция f интегрируема на отрезке [a,b] по Риману $\Leftrightarrow \bar{\mathbf{I}} = \underline{\mathbf{I}}$. В случае интегрируемости верно:

$$\underline{\mathbf{I}} = \overline{\mathbf{I}} = \int_{a}^{b} f(x)dx$$

(⇒) Функция f интегрируема на [a, b], тогда:

$$\forall \varepsilon > 0, \ \exists \ \delta > 0 \colon \forall (\mathbb{T}, \xi), \ \lambda(\mathbb{T}) < \delta \Rightarrow \int_{a}^{b} f(x) dx - \varepsilon < \sigma(f, \mathbb{T}, \xi) < \int_{a}^{b} f(x) dx + \varepsilon$$

По лемме мы знаем, что: $s(f,\mathbb{T}) = \inf_{\xi} \sigma(f,\mathbb{T},\xi)$ и $S(f,\mathbb{T}) = \sup_{\xi} \sigma(f,\mathbb{T},\xi)$. Поскольку отмеченное разбиение в определении интегрируемости - произвольное, то:

$$\int_{a}^{b} f(x)dx - \varepsilon \le s(f, \mathbb{T}) \le S(f, \mathbb{T}) \le \int_{a}^{b} f(x)dx + \varepsilon \Rightarrow$$

$$\Rightarrow \lim_{\lambda(\mathbb{T})\to 0} s(f,\mathbb{T}) = \lim_{\lambda(\mathbb{T})\to 0} S(f,\mathbb{T}) = \int_a^b f(x) dx$$

По лемме выше, эти пределы равны нижнему и верхнему интегралам Дарбу:

$$\lim_{\lambda(\mathbb{T})\to 0} s(f,\mathbb{T}) = \underline{\mathbf{I}} = \lim_{\lambda(\mathbb{T})\to 0} S(f,\mathbb{T}) = \overline{\mathbf{I}} \Rightarrow \underline{\mathbf{I}} = \overline{\mathbf{I}} = \int\limits_a^b f(x) dx$$

 (\Leftarrow) Пусть $\underline{I} = \overline{I} = I$, мы знаем, что:

$$\forall \varepsilon > 0, \ \exists \, \delta > 0 \colon \forall \, \mathbb{T}, \ \lambda(\mathbb{T}) < \delta \Rightarrow \mathrm{I} - \varepsilon = \underline{\mathrm{I}} - \varepsilon < s(f, \mathbb{T}) \leq \sigma(f, \mathbb{T}, \xi) \leq S(f, \mathbb{T}) < \overline{\mathrm{I}} + \varepsilon = \mathrm{I} + \varepsilon$$

где $s(f,\mathbb{T}) \leq \sigma(f,\mathbb{T},\xi) \leq S(f,\mathbb{T})$ по лемме выше. Тогда:

$$\forall \varepsilon > 0, \, \exists \, \delta > 0 \colon \forall \, \mathbb{T}, \, \lambda(\mathbb{T}) < \delta \Rightarrow |\sigma(f, \mathbb{T}, \xi) - \mathrm{I}| < \varepsilon$$

Следовательно, f интегрируема на [a, b].

Следствие 1. Ограниченная функция f интегрируема по Риману $\Leftrightarrow \forall \varepsilon > 0, \; \exists \, \mathbb{T} \colon S(f,\mathbb{T}) - s(f,\mathbb{T}) < \varepsilon.$

 (\Rightarrow) Функция f - интегрируема $\Rightarrow \overline{\mathbf{I}} = \underline{\mathbf{I}}$. При $\lambda(\mathbb{T}) \to 0$ получим:

$$s(f,\mathbb{T}) \to \underline{\mathrm{I}},\, S(f,\mathbb{T}) \to \overline{\mathrm{I}} \Rightarrow S(f,\mathbb{T}) - s(f,\mathbb{T}) \to 0$$

 (\Leftarrow) Пусть $\forall \varepsilon > 0, \ \exists \ \mathbb{T} \colon S(f,\mathbb{T}) - s(f,\mathbb{T}) < \varepsilon$. По определению: $s(f,\mathbb{T}) \leq \underline{\mathbf{I}} \leq \overline{\mathbf{I}} \leq S(f,\mathbb{T}), \$ тогда:

$$\forall \varepsilon > 0, \ \exists \, \mathbb{T} \colon S(f, \mathbb{T}) - s(f, \mathbb{T}) < \varepsilon \Rightarrow 0 \leq \overline{\mathbb{I}} - \underline{\mathbb{I}} < \varepsilon \Rightarrow \overline{\mathbb{I}} = \underline{\mathbb{I}}$$

Мы получили критерий по которому можно проверить интегрируемость функции f. Для этого мы должны найти разбиение, где разность $S(f,\mathbb{T}) - s(f,\mathbb{T})$ - маленькая. Распишем её подробнее:

$$S(f, \mathbb{T}) - s(f, \mathbb{T}) = \sum_{k} \sup_{\Delta_k} f \cdot |\Delta_k| - \sum_{k} \inf_{\Delta_k} f \cdot |\Delta_k| = \sum_{k} \left(\sup_{\Delta_k} f - \inf_{\Delta_k} f \right) \cdot |\Delta_k| = \sum_{k} \omega(f, \Delta_k) \cdot |\Delta_k|$$

где $\omega(f, \Delta_k)$ - колебание функции f на интервале Δ_k . Таким образом, запишем критерий интегрируемости.

<u>Критерий интегрируемости</u>: Функция f - интегрируема $\Leftrightarrow \forall \varepsilon > 0, \exists \mathbb{T} \colon \sum_k \omega(f, \Delta_k) \cdot |\Delta_k| < \varepsilon.$

Rm: 1. С учетом критерия становится очевидным, что непрерывные функции - интегрируемы: функция f - непрерывна на отрезке $[a,b] \Rightarrow$ будет равномерно непрерывна \Rightarrow как только масштаб разбиения станет меньше δ , колебания станут меньше $\varepsilon \Rightarrow$ вся сумма станет меньше, чем $\varepsilon(b-a)$.

Rm: 2. Критерий нарушается там, где мы не сможем справиться с колебаниями (то есть там, где функция будет разрывной). При этом если точка разрыва одна, то она портит только одно слагаемое суммы и это слагаемое можно сделать маленьким за счет длины Δ_k .

Таким образом, точки разрыва могут быть, но их должно быть столько, чтобы сумма длин накрывающих их отрезков была маленькой, а на остальных отрезках справимся за счет непрерывности.

Это приводит к мысли, что интегрируемые по Риману функции это те, которые имеют не "слишком много" точек разрыва. Чтобы найти точное условие интегрируемости, необходимо понять в каком смысле точек разрыва "мало".

Множество меры ноль

Опр: 5. Множество $E \subset \mathbb{R}$ называется множеством меры ноль по Лебегу, если: $\forall \varepsilon > 0$, \exists не более чем счетный набор интервалов $\{I_n\}$ таких, что:

- (1) Множество E покрыто этими интервалами: $E \subset \bigcup I_n$;
- (2) Сумма длин этих интервалов меньше ε : $\sum_{n} |\mathbf{I}_n| < \varepsilon$;

Примеры множеств меры ноль

1) Точка: возьмем интервал I, накрывающий точку a длина которого меньше $\varepsilon.$

Рис. 2: Множество меры ноль: точка.

2) **Конечный набор точек**: накроем точки x_1, \ldots, x_N интервалами I_i , длины которых меньше $\frac{\varepsilon}{N}$. Таким образом, суммарная длина всех отрезков будет меньше ε и все интервалы покрывают весь конечный набор точек.

$$|I_{1}| < \frac{\varepsilon}{N} \qquad |I_{N-1}| < \frac{\varepsilon}{N} \qquad |I_{N}| < \frac{\varepsilon}{N}$$

$$x_{1} \qquad x_{2} \qquad x_{3} \qquad \dots \qquad x_{N-1} \qquad x_{N}$$

Рис. 3: Множество меры ноль: конечный набор точек.

3) Счетный набор точек: $\{x_n\}_{n=1}^{\infty}$ накрываем интервалами I_i , длина которых становятся меньше с ростом n. Например, интервалами длина которых меньше, чем $\frac{\varepsilon}{2^{n+1}}$. Тогда:

$$\sum_{n=1}^{\infty} |\mathbf{I}_n| < \varepsilon \sum_{n=1}^{\infty} \frac{1}{2^{n+1}} = \varepsilon$$

4) **Множество Кантора**: Отрезок [0,1] делится на 3 равные части, середина исключается. Потом оставшиеся интервалы снова делятся на 3 равные части и середина снова исключается, и так далее. То, что останется будет множеством меры ноль. Сумма длин этих отрезков равна:

$$1 - \sum_{n=1}^{N} \frac{2^{n-1}}{3^n} \to 0$$

Это значит, что на каждом шаге можно оставшееся множество накрыть конечным числом отрезков, сумма длин которых будет меньше любого наперед заданного $\varepsilon > 0$. Любой такой отрезок можно будет чуть-чуть расширить, чтобы получился интервал.

5) **Отрезок**: Отрезок [a,b] (где b>a) не является множеством меры ноль, поскольку сумму длин покрывающих интервалов сделать меньше, чем длина отрезка не получится. Об этом говорит следующая лемма.

Лемма 3. Если $[a,b]\subset\bigcup_n \mathrm{I}_n$, где I_n - интервалы, то верно следующее:

$$b - a \le \sum_{n} |\mathbf{I}_{n} \cap [a, b]| \le \sum_{n} |\mathbf{I}_{n}|$$

Rm: 3. Из этой леммы следует еще одно доказательство того, что отрезок не является счетным множеством. Если бы он являлся счетным множеством, то был бы множеством меры ноль.

 \square Отрезок это компакт, поэтому достаточно рассмотреть конечное покрытие. Пусть $[a,b]\subset\bigcup_{n=1}^N \mathrm{I}_n.$ Будем доказывать индукцией по количеству интервалов N.

<u>База</u>: $N=1\Rightarrow [a,b]\subset (\alpha,\beta)\Rightarrow b-a\leq |[a,b]\cap (\alpha,\beta)|=b-a\leq \beta-\alpha.$

<u>Шаг</u>: Пусть верно для N, докажем для N+1. Можно считать, что $b \in I_{N+1} = (\alpha_{N+1}, \beta_{N+1})$. Пусть точка $\alpha_{N+1} \in [a,b]$, иначе смотри базу индукции. Рассмотрим отрезок $[a,\alpha_{N+1}]$, он целиком покрывается остальными интервалами:

$$[a, \alpha_{N+1}] \subset \bigcup_{n=1}^{N} I_n$$

Если это не так, то вместе с интервалом $(\alpha_{N+1}, \beta_{N+1})$ они бы не смогли покрыть отрезок [a, b]. Тогда:

$$\alpha_{N+1} - a \le \sum_{n=1}^{N} |[a, \alpha_{N+1}] \cap I_n|$$

где верно следующее:

$$\forall n, |[a, \alpha_{N+1}] \cap I_n| \le |[a, b] \cap I_n|$$

Добавим $b - \alpha_{N+1}$ к правой и левой части неравенства выше, получим:

$$b - a \le b - \alpha_{N+1} + \sum_{n=1}^{N} |[a, \alpha_{N+1}] \cap I_n| \le b - \alpha_{N+1} + \sum_{n=1}^{N} |[a, b] \cap I_n| = |[a, b] \cap I_{N+1}| + \sum_{n=1}^{N} |[a, b] \cap I_n|$$

Учитывая, что $\forall n, |[a,b] \cap I_n| \leq |I_n|$ получим требуемое.

Свойства множеств меры ноль

- 1) В определении множества меры ноль по Лебегу можно интервалы заменить отрезками.
- (\Rightarrow) Если $\forall \varepsilon > 0,\ \exists$ интервалы $\mathrm{I}_n = (\alpha_n,\beta_n)$ такие, что:

$$E \subset \bigcup_{n} I_{n} \wedge \sum_{n} |I_{n}| < \varepsilon$$

то это выполнено и для отрезков $[\alpha_n, \beta_n]$. Поскольку E содержится в объединении интервалов и их концов, а наличие или отсутствие точки на сумму длин не сказыватеся.

 (\Leftarrow) Пусть теперь $\forall \varepsilon > 0, \exists J = [\alpha_n, \beta_n]$ такие, что:

$$E \subset \bigcup_{n} J_n \wedge \sum_{n} |J_n| < \varepsilon$$

Расширим отрезки до интервалов, увеличив длину в два раза:

$$I_n = \left(\frac{\alpha_n + \beta_n}{2} - (\beta_n - \alpha_n), \frac{\alpha_n + \beta_n}{2} + (\beta_n - \alpha_n)\right), |I_n| = 2|J_n| \Rightarrow \sum_n |I_n| < 2\varepsilon$$

А поскольку $\varepsilon > 0$ - произвольное, то получим требуемое.

- 2) Если E множество меры ноль и $D \subset E$, то D множество меры ноль.
- □ Очевидно, поскольку если смогли покрыть большее множество, то меньшее покроем тем более:

$$D \subset E \subset \bigcup_n I_n$$

Сумма длин отрезков не меняется, следовательно получаем требуемое.

3) Если E_n (не более, чем счетный набор) - множество меры ноль, то $\bigcup_n E_n$ - множество меры ноль.

 \square По аналогии со счетным набором точек: каждое E_n необходимо покрыть своим набором $\{\mathbf{I}_k^n\}$ так, чтобы сумма их длин была меньше, чем $\frac{\varepsilon}{2^{n+1}}$:

$$E_n \subset \bigcup_k I_k^n \wedge \sum_k |I_k^n| < \frac{\varepsilon}{2^{n+1}} \Rightarrow \bigcup_n E_n \subset \bigcup_{k,n} I_k^n \wedge \sum_{k,n} |I_k^n| < \varepsilon$$

Таким образом, выполнено определение множества меры ноль.

Rm: 4. Здесь стоит задаться вопросом, как мы смогли так просуммировать произвольно ряд по индексам k, n. У нас есть числа a_k^n - длины отрезков I_k^n . Мы знаем, что сумма по k при фиксированном n меньше, чем $\frac{\varepsilon}{2^{n+1}}$:

$$\sum_{k} a_k^n < \frac{\varepsilon}{2^{n+1}}$$

А теперь мы начинаем складывать по k, n: делаем нумерацию пар (k, n) (например, по табличке или по диагонали, главное чтобы вся таблица была занумерована). Таким образом, мы получаем сопоставление: $j \to (k(j), n(j))$ и строим сумму по j:

$$\sum_{j} a_{k(j)}^{n(j)}$$

Именно это подразумевается, когда пишем сумму ряда по индексам k,n: $\sum_{k,n} |\mathbf{I}_k^n| < \varepsilon$. Эта сумма есть предел частичных сумм:

$$\sum_{i} a_{k(j)}^{n(j)} = \lim_{M \to \infty} \sum_{i=1}^{M} a_{k(j)}^{n(j)}$$

В этой конечной сумме уже можно перераспределить слагаемые так, как будет удобно, например, по принадлежности к n: отдельно те, которые относятся к 1 (если нет таких, то считаем слагаемое равным 0), отдельно те, которые относятся к 2 и так далее. Получим следующую сумму:

$$\sum_{j=1}^{M} a_{k(j)}^{n(j)} = \sum_{p} a_p^1 + \sum_{p} a_p^2 + \ldots + \sum_{p} a_p^M < \frac{\varepsilon}{4} + \frac{\varepsilon}{8} + \ldots + \frac{\varepsilon}{2^{M+1}} < \varepsilon$$

Каждая частичная сумму меньше, чем $\varepsilon \Rightarrow$ их предел меньше или равен ε :

$$\sum_{k,n} |\mathcal{I}_{k}^{n}| = \sum_{j} a_{k(j)}^{n(j)} = \lim_{M \to \infty} \sum_{j=1}^{M} a_{k(j)}^{n(j)} \le \varepsilon$$

Критерий Лебега

Опр: 6. Если некоторое свойство имеет место для всех точек, кроме множества меры ноль, то говорят, что это свойство выполняется почти всюду.

Теорема 2. (**Критерий Лебега**) f - интегрируема по Риману на отрезке $[a,b] \Leftrightarrow f$ - ограничена на отрезке [a,b] и f почти всюду непрерывна на отрезке [a,b].

Rm: 5. Проще говоря, функция интегрируема тогда и только тогда, когда функция ограничена, а множество точек разрыва является множеством меры ноль по Лебегу.