

Computer Security

RSA

Hyoungshick Kim

Department of Software
College of Software
Sungkyunkwan University

The RSA problem

- Here: group \mathbb{Z}^*_{N} of order $\phi(N)$
- Choose e with $gcd(e, \phi(N)) = 1$
 - Raising to the e-th power is a permutation on \mathbb{Z}_{N}^{*} !
- If ed = 1 mod $\phi(N)$, raising to the d-th power is the *inverse* of raising to the e-th power
 - $i.e., (x^e)^d = x \mod N, (x^d)^e = x \mod N$
 - x^d is the e-th root of x modulo N

The RSA problem

- If p, q are known:
 - \Rightarrow ϕ (N) can be computed
 - \Rightarrow d = e⁻¹ mod ϕ (N) can be computed
 - ⇒ possible to compute e-th roots modulo N

- If p, q are not known:
 - ⇒ computing $\phi(N)$ is as hard as factoring N⇒ cor **Very useful for public-key cryptography!**

The RSA assumption (informal)

• Informally: given N and e, hard to compute the e-th root of a uniform element $y \in \mathbb{Z}^*_{N}$

Implementing RSA

- One way to implement RSA:
 - Generate uniform n-bit primes p, q
 - Set N := pq
 - Choose arbitrary e with $gcd(e, \phi(N))=1$
 - Compute $d := [e^{-1} \mod \phi(N)]$
 - Output (N, e, d)

Implementing RSA

- Choice of e?
 - Does not seem to affect hardness of the RSA problem
 - -e = 3, $2^{16} + 1$ (1 0000 0000 0000 0001; i.e., efficient for square and multiply; prime number) for efficient exponentiation

RSA public key crypto

- Proposed in 1977 by Ron Rivest, Adi Shamir and Leonard Adleman at MIT
- It is believed to be secure and still widely used

Shamir

Rivest

Adleman

(Plain) RSA crypto system

- Private key is two large primes p, q or d
- Public key is n = pq and public exponent e
 - e is a relatively prime to $\phi(N)$ (= (p-1)(q-1))
 - find d where de = 1 (mod $\phi(N)$)
- Encryption: c = m^e (mod n)
- Decryption: m = c^d (mod n)
 - $-m^{ed} = m^{(1+k(p-1)(q-1)) \mod (p-1)(q-1)} = m$

Simple RSA example (1)

- Select large(?) primes p = 11, q = 3
- Then N = pq = 33 and (p 1)(q 1) = 20
- Choose e = 3 (relatively prime to 20)
- Find d such that $ed = 1 \mod 20$
 - We find that d = 7 works
- Public key: (N, e) = (33, 3)
- Private key: d = 7

Simple RSA example (2)

- Public key: (N, e) = (33, 3)
- Private key: d = 7
- Suppose message M=8
- Ciphertext C is computed as

$$C = M^e \mod N = 8^3 = 512 = 17 \mod 33$$

Decrypt C to recover the message M by

$$M = C^d \mod N = 17^7 = 410,338,673$$

= 12,434,505 * 33 + 8 = 8 mod 33

Security of (plain) RSA crypto

- This scheme is deterministic
 - Cannot be CPA-secure! (i.e., CPA-secure crypto must be randomized)
- RSA assumption only refers to hardness of computing the eth roots of uniform C
 - C is not uniform unless M is
 - Partial information about the eth root may be leaked

Plain RSA should never be used!

Questions?

