マイコンの構成

- ①マイコン(micro computer)は他のコンピュータと同じ構成
- ②ストアードプログラム(プログラム記憶)式
- ③マイコンの特徴はバスが1組のみで小型

- ①マイコンなどのハードウェアは標準品 → 開発費は不要
- ②ソフトウェアは専用 → システムは個別
- ③ソフトウェアを交換すると別システムとなる
- ④部品が少ない → 故障が少ない

個別システム

マイコンの基本構成

マイコンシステムには、

命令を読み出し実行する ①CPU、

その命令やデータを格納する ②メモリ、

センサや制御対象の装置とのインタフェースを担う ③周辺機能の構成要素が必要。

メモリには読み出し専用のROMと書き込みも可能なRAMがある。

周辺機能は必要に応じて組み合わせて使う。

また、それぞれの構成要素はバス信号で接続する。

CPU ROM 命令、固定データ 命令フェッチ、 クロツク デコード、実行 Bus RAM 変数など 周辺機能 電源 タイマなど 周辺機能 マイコンは扱うことができるメモリなど 表示、通信など の全ての資源に番地(Addtress)を 使ってアクセスする。センサやアクチュ エータの入出力も同じ扱い。

電源をオフしても記憶が 消えない読み出し専用メ モリ。

機器組込みのマイコンではプログラムは全てROMに記憶し、変更することはない。

読み書きが同じ様な操作で自由にできるメモリ。電源をオフすると記憶が消える揮発性の種類が殆ど。機器組込みのマイコンでは表示データや変数などの一時的な記憶にのみに利用する。

バスとメモリマップ

CPU内部レジスタと命令の実行動作

マイコンの動作と命令

- ①機械語命令(2進数)のみ実行できる
- ②人間は機械語命令では開発効率が悪い
- ③命令を英略号で示したアセンブリ言語を用いる
- 4 作成したプログラムは機械語に変換し、メモリに記憶してから実行

C言語と機械語命令

- ①アセンブリ言語はCPUファミリ毎に異なる
- ②CPUファミリが異なるとアセンブリ言語も異なる
- ③CPUファミリに依存しない高級言語での開発が効率良い
- ④機器組込みではCまたはC++言語が利用されることが多い
- **⑤作成したプログラムは機械語に変換し、メモリに記憶してから実行**

マイコンの分類

分類		説明		
用途による分類	パソコンやゲーム機など プログラムを取り替える	プログラムをメモリに転送するための記憶媒体と機能があり、システムの拡張も考慮されている。	Micro Processing Unitと呼ばれる	
	携帯電話や自動車、エ アコンなどプログラムは 固定	専用回路を開発するより安価なためマイコンが用いられる。システムに必要となる機能をできるだけICに集積する。	Micro Control Unitと 呼ばれる	
1命令で処理できる量(ビット数)による分類	4ビット	世界初のマイコンi4004も4ビット。現在は主にリモコンなどに利用。		
	8ビット	1980年以前の初期パソコンやファミコンなどが有名。現在は白物家電や簡単な論理回路の置き換えに利用。		
	16ビット	1980年ころのパソコンやスーパファミコンなどが有名。現在は幅広く利用。		
	32ビット	1990年ころのパソコンや携帯ゲーム機など		
	64ビット	現在のパソコンやゲーム機		

ビット数と扱えるデータ範囲

ビット	組合せパターン	符号無し整数	符号付整数
4	16通り	0~15	-8∼+7
8	256通り	0~255	-128~+12 7
16	65536	0~65535	-32768~+32767
	通り(64K)		
32	4294967296	0~4294967295	-2147483648~2147483647
	通り(4G)		

4ビットマイコンで8ビットの演算をする場合のイメージ

1回の演算で処理できない量で処理可能。

DSP(Digital Signal Processor)とは

·DSPとは何者か

TI社が得意なDSPとはデジタル信号処理に向いたプロセッサです。 デジタル信号処理とは、JPEGやMP3などのデータの圧縮/伸張処理やノ イズ(雑音)を取除いてクリアな信号に変換する処理などのことです。 デジタル信号処理には演算として積と和が多く使われます。 つまりDSPとは、

→ 単に積和演算の早いマイコン です。

座標変換の例

$$x' = x \cos \theta + y(-\sin \theta)$$
$$y' = x \sin \theta + y \cos \theta$$

 $\sin(pi/2 * x) = x * (1.57079632 - 0.6459637595 y + 0.0796899183 y^2 - 0.0046741438 y^3 + 0.0001516717 y^4),$ where, $y = x^2$, and $0 \le x \le pi/2$.

こういった計算をハードウエアで記述しておくと計算速度が著しく改善できる。

JPEGの例

DCT for 8dots x 8dots Picture

No. 3

メモリのハイアラーキ構成

I/Oポートの機能

メモリマップ

典型的なマイコンの構成要素

メモリの概念図

マイコンの動作

- (1)メモリに対してPCで指定されるアドレスを MAR を経由して送り出し、PCの内容を1だけインクリメントする。
- (2)メモリを読み出しに設定し、読み出したデータを MBR に書き込み、メモリ動作完了を待つ。
- (3)MBR の内容を IR に転送する。
- (4)IRの12~14b目をデコードし、この命令が ACC とメモリになるオペランドとの加算であることを判断する。 と同時に MAR に対して IR のアドレスフィールドをアドレスとして転送し、メモリの読み出しを行う。
- (5)メモリからデータを読み出し MBR に書き込む。メモリの読み出し完了を待つ。
- (6)MBR の内容と ACC の内容を加算し、結果を ACC に収納し、命令の実行終了。

マイコンとボードの具体例

ルネサスエレクトロニクス社 SAKURAボード Arduino互換ボード

■ RXマイコンを搭載したGR-SAKURAボード

M

RXマイコンのCPU内部レジスタ

アキュムレータ ACC (アキュムレータ) b0

清和演算用レジスタ

RXマイコンのメモリマップ

- 4Gバイト空間
- メモリマップに周辺のI/Oレジスタ

RX63N**応用例**

■モータインバータ制御とEther・CAN・USBコネクティビティを1チップで実現

- ■モータ制御に必要な各種周辺機能の搭載
- ■Ether機能内蔵 上位システム・制御システム・センサ間の接続性の向上