Π

BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-188240

(43) Date of publication of application: 04.07.2000

(51)Int.Cl.

H01G 9/10

HO1G 9/14

(21)Application number: 11-255249

(71)Applicant: MATSUSHITA ELECTRIC IND

CO LTD

(22)Date of filing:

09.09.1999

(72)Inventor: TSUBAKI YUICHIRO

MATSUURA HIROYUKI

MINATO KOICHIRO

MOROKUMA MUNEHIRO

NITTA YUKIHIRO

(30)Priority

Priority number: 10290333

Priority date : 13.10.1998

Priority country: JP

(54) ALUMINUM ELECTROLYTIC CAPACITOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide highly

reliable aluminum electrolytic capacitor by specifying

the water content and freezing point of a specific driving electrolyte thereby specifying the chlorine

content and impedance characteristics of a mouth

sealing material.

SOLUTION: Driving electrolyte of an aluminum

electrolytic capacitor of rated voltage 100 V or less

having water content of 20-90 wt.% principally

comprises a compound selected from ammonium

formate, ammonium acetate, ammonium lactate, or

the like, and contains 1 wt.% or more of compound

selected from organic carboxylic acids or ammonium

salts thereof shown by formulas I, II, e.g. trimethyl

adipic acid or sebacic acid. It has no firing point and has freezing point of -10°C or below. Chlorine content of a mouth sealing material is 300 ppm or below for the weight thereof and the ratio of impedance at -10°C, 100 kHz to that at 20°C, 100 kHz is 4 or less.

LEGAL STATUS

[Date of request for examination]

26.02.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開發号 特開2000-188240 (P2000-188240A)

(43)公開日 平成12年7月4日(2000.7.4)

(51) Int.CL'		織別記号	FI		テーマコード(参考)
H01G	9/035		H01G	9/02	311
	9/10			9/10	E
	9/14			9/14	Α

密査請求 未請求 菌球項の数14 〇L (全 17 頁)

(21)山嶼番号	特顧平11−255249	(71) 出顧人	000005821
			松下電器産業株式会社
(22)出題日	平成11年9月9日(1999.9.9)		大阪府門真市大字門真1006番池
		(72) 発明者	春 雄一郎
(31)優先概主張番号	将圈平10 -290333		大阪府門真市大字門真1006番地 松下電器
(32)優先日	平成10年10月13日(1998.10.13)		<u> </u>
(33)優先權主張国	日本 (J P)	(72) 発明者	松浦 裕之
			大阪府門真市大字門真1006番地 松下電器
		•	産業株式会社内
		(74)代理人	100097445
			弁理士 岩橋 文権 (外2名)
			Clab In Jean A

最終頁に続く

(54)【発明の名称】 アルミニウム電解コンデンサ

(57)【要約】 (修正有)

【課題】 水を多量に含むことで引火点の存在しない電 解液を用いたアルミニウム電解コンデンサを高温下で長 時間使用した場合に見られる外観変化、特性劣化の少な い信頼性の高いアルミニウム電解コンデンサを提供する ことを目的とする。

【解決手段】 駆動用電解液の含水率が20~90wt %であり、かつ(化1)で示される有機カルボン酸、

(化2)で示される有機カルボン酸もしくはこれらのア ンモニウム塩より選ばれる一種以上の化合物を1wt% 以上含有し、引火点を有さないものであり、かつ駆動用 電解液の凝固点が-10°C以下であり、かつ前記封口材 の含有塩素量が封口材重量に対して300ppm以下で あり、かつ20℃、100kH2におけるインピーダン スに対する-10℃、100k日2のインピーダンス比 が4以下である定格電圧100V以下のアルミニウム電 解コンデンサ。

[ft1]

(文中日2は保根アルキル器を示す。 61は水光原下また健康 но-с-сн-сн, ÖŔ?

(R2は前記に筒じ)を水す。)

(1t2)

(式中R3、R4は低級アルギル基を示す。)

【特許請求の範囲】

【語求項1】 表面に酸化アルミニウムからなる誘電体 層を形成した陽極アルミニウム館と陰極アルミニウム館 をその間にセパレータを介在させて巻回することにより 機成されたコンデンサ素子に駆動用電解液を含浸し、前 記コンデンサ素子を有底筒状のアルミニウムケースに収 納した後、このアルミニウムケースの開口部を封口材で | 紂止したアルミニウム電解コンデンサにおいて、前記駆 動用電解液の含水率が20~90~1%であり、かつ駆 動用電解液が爆酸アンモニウム、酢酸アンモニウム、乳 19 の含有塩素量が封口材重量に対して300 p.p.m.以下で 酸アンモニウム、グリコール酸アンモニウム、蘇酸アン モニウム、琥珀酸アンモニウム、マロン酸アンモニウ ム。アジピン酸アンモニウム、安息香酸アンモニウム、 グルタル酸アンモニウム、アゼライン酸アンモニウムよ り遺ばれる一種以上の化合物を主弯解腎として含有し、*

$$0 = C - OH$$

$$H \circ C - (CH_2)_3 - C - R^3$$

$$R^3$$

*かつトリメチルアジピン酸。1,6-デカンジカルボン 酸、セパシン酸、1,7-オクタンジカルボン酸。ブチ ルオクタンジカルボン酸。3 - tert - ブチルアジピン 酸、3-tert-オクチルヘキサン二酸、3-n-ドデシ ルヘキサン二酸。(化1)で示される有機カルボン酸、 (化2) で示される有機カルボン酸もしくはこれらのア ンモニウム塩より選ばれる一種以上の化合物を1wt% 以上含有し、引火点を有さないものであり、かつ駆動用 電解液の凝固点が-10°C以下であり、かつ前記封口材 あり、かつ20℃、100k目2におけるインピーダン スに対する-10℃、100k目2のインピーダンス比 が4以下である定格電圧100V以下のアルミニウム電 解コンデンサ。

[ft]

(2)

(武中R2は低級アルキル基を示す。R1は水裏原でまたは焦

(R2は梅記に同じ) を示す。)

(ft2)

(式中R3、R4は低級アルキル基を示す。)

【調求項2】 温度100°C以上での定格電圧負荷およ び無負荷放置試験における1000時間以内のアルミニ ウムケース底面部の弁膨れ量が+1mm以内であり、か つ初期漏れ電流値に対する100℃以上で無負荷放置試 験を実施した1000時間以内での漏れ電流値の変化率 が+5000%以内である請求項1に記載のアルミニウ ム電解コンデンサ。

【請求項3】 駆動用電解液が、エチレングリコール、 プロピレングリコール、グリセリン、ポリグリセリン、 ポリエチレングリコール。エチレンオキシドとプロピレ ンオキシドから成る共宣合物から選ばれる一種以上より なる有機溶媒を含有し、かつアルキル雑酸エステル、次 亜燐酸、ビロ燐酸およびこれらの塩より選ばれる一種以 上のリン化合物を0.01wt%以上含有し、かつρー ニトロフェノール、m-ニトロフェノール、o-ニトロ フェノール、p-ニトロ安息香酸、m-ニトロ安息香 酸、oーニトロ安息香酸、pーニトロアニソール、mー ニトロアニソール、oーニトロアニソールより選ばれる ものである請求項1または2に記載のアルミニウム電解 コンデンサ。

【請求項4】 蟻酸アンモニウム、酢酸アンモニウム、 乳酸アンモニウム、グリコール酸アンモニウム、蓬酸ア ンモニウム、琥珀酸アンモニウム、マロン酸アンモニウ 30 ム、アジピン酸アンモニウム、安息香酸アンモニウム、一 グルタル酸アンモニウム。アゼライン酸アンモニウムよ り選ばれる一種以上の化合物の総含有量に対するトリメ チルアジピン酸、1,6-デカンジカルボン酸、セバシ ン酸、1,7-オクタンジカルボン酸、ブチルオクタン ジカルボン酸、3 - tert - ブチルアジピン酸、3 - tert ーオクチルヘキサン二酸、3-n-ドデシルヘキサンニ 酸、(化1)で示される有機カルボン酸、(化2)で示 される有機カルボン酸もしくはこれらのアンモニウム塩 より選ばれる一種以上の化合物の総合有量の比率が①。 49 (15以上~5. ()未満の範囲にあり、かつ上記化合物の 総含有量が電解液の重量に対して10wt%以上である 駆動用電解液を用いた請求項1~3のいずれか一つに記 載のアルミニウム電解コンデンサ。

【語求項5】 コンデンサ素子を構成するセパレータに アルキル燐酸エステル、次亜燐酸、ヒロ燐酸もしくはそ れらの塩、およびシリコーン化合物として一般式(化 3) で示されるシリコーン化合物 [特に反応性シリコー ンであるヒドロキシ変性シリコーン。アミノ変性シリコ ーン、カルボキシル変性シリコーン、アルコール変性シ 一種以上のニトロ化台物を①.①1wt%以上含有する 50 リコーン、エポキシ変性シリコーンなど] およびシラン

http://www4.ipdl.ncipi.go.jp/tjcontenttrns.ipdl?N0000=21&N0400=image/gif&N0401...

5/24/2006

カップリング剤。アルコキシシランより選ばれる一種以 *記載のアルミニウム電解コンデンサ。 上の化合物を付着させた語求項1~4のいずれか一つに* [(k3]

$$X_{a} = \begin{bmatrix} x_{1} & x_{2} \\ x_{3} & x_{4} \end{bmatrix}$$

【太郎、黒1~まらはフルモル塩、アルケニル耳、アリール茶、アラルキル苓、木陰詩。 カルボキシルは、クミノル、アミドは、クナンは、スステル場、エーデル茶、ニトロル、シアノル 。 スポポン基。ナルデヒドル、またはそれらを行する提発数1~20の異化水素株(-R)、ガチ シ状化水光差(- OE)の数から遊ばれた少なくとも一般であり、だいに異なっても良い。 集合数 nは1世上である。}

【請求項6】 化合物の付着量がセパレータの単位重置 当たり5.0~50.0mg/gである請求項5に記載 のアルミニウム電解コンデンサ。

【請求項7】 コンデンサ素子を構成する陽極アルミニ ウム箱、陰極アルミニウム箱の少なくとも一方にアルキ ル鱗酸エステル、次亜燐酸、ピロ燐酸もしくはそれらの 塩、およびシリコーン化合物として一般式(化3)で示 されるシリコーン化合物 [特に反応性シリコーンである ヒドロキシ変性シリコーン、アミノ変性シリコーン、カ ルボキシル変性シリコーン、アルコール変性シリコー ン、エポキシ変性シリコーンなど〕およびシランカップ リング剤、アルコキシシランより選ばれる一種以上の化 台物を付着させた請求項1~6いずれか一つに記載のア ルミニウム電解コンデンサ。

【請求項8】 化合物の付着量が電極着の単位重量当た りでり、5~5、0mg/gである請求項7に記載のア ルミニウム電解コンデンサ。

【請求項9】 封口材がイソブチレンイソブレンラバ - . エチレンプロピレンターポリマーおよびそれらの湿 合物よりなり、かつ封口村の任意の部位の硬度が65~ 30 ル. ジヘキシル雑酸エステル、ジオクチル燐酸エステ 1001R日D(国際ゴム硬さ単位)である請求項1~ 8のいずれか一つに記載のアルミニウム電解コンデン サ.

【請求項10】 シリコーン化合物として一般式(化 3) であるシリコーン化合物 [特に反応性シリコーンで あるヒドロキシ変性シリコーン、アミノ変性シリコー ン。カルボキシル変性シリコーン、アルコール変性シリ コーン、エポキシ変性シリコーンなど] およびシランカ ップリング剤。アルコキシシランより選ばれる一種以上 に付着させた請求項1~9のいずれか一つに記載のアル ミニウム電解コンデンサ。

【請求項11】 アルミニウムケースがアルミニウムも しくはアルミニウム合金よりなり、かつアルミニウムケ ース底面部の板厚みが0.30mm以上である請求項1 ~10のいずれか一つに記載のアルミニウム電解コンデ ンサ.

【請求項12】 アルミニウムケースの内面にアルキル 燐酸エステル、次亜燐酸、ビロ燐酸もしくはそれらの

るシリコーン化合物【特に反応性シリコーンであるヒド ロキシ変性シリコーン、アミノ変性シリコーン。カルボ キシル変性シリコーン、アルコール変性シリコーン、エ ポキシ変性シリコーンなど] およびシランカップリング 削、アルコキシシランより選ばれる一種以上の化合物を 付着させた請求項1~11のいずれか一つに記載のアル ミニウム電解コンデンサ。

【請求項13】 アルキル機酸エステルがモノアルキル 燐酸エステル、ジアルキル燐酸エステル、トリアルキル 20 燐酸エステルより選ばれる一種以上の化合物であって、 一分子当たりのアルキル鎖の総炭素数が3~36個であ る請求項5~12のいずれか一つに記載のアルミニウム 弯解コンデンサ。

【請求項14】 アルキル雑酸エステルがモノメチル燐 酸エステル、モノエチル鱗酸エステル。モノプロビル燐 酸エステル、モノブチル燐酸エステル。モノヘキシル燐 酸エステル、モノオクチル燐酸エステル、モノデシル燐 酸エステル、ジメチル燐酸エステル。ジメチル燐酸エス テル、ジプロビル燐酸エステル、ジブチル燐酸エステ ル、ジデシル雑酸エステル、トリメチル燐酸エステル、 トリエチル燐酸エステル。トリプロビル燐酸エステル、 トリプチル燐酸エステル、トリヘキシル燐酸エステル、 トリオクチル燐酸エステル、トリデンル燐酸エステルよ り選ばれる一種以上の化合物である語求項5~13のい ずれか一つに記載のアルミニウム電解コンデンサ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は引火点を有しない低 の化合物を封口柱の内部に含有させるか、もしくは表面 40 温特性に優れる高含水率な電解液を用いることにより機 成した、高温下で長時間使用した場合でも外観変化、特 性劣化の少ない信頼性の高いアルミニウム電解コンデン がに関するものである。

[0002]

【従来の技術】従来のアルミニウム電解コンデンサは図 1に示すように、エッチング処理による表面拡大化処理 の後、陽極酸化処理により誘弯体層を形成したアルミニ ウム箔を陽極箔2とし、この陽極箔2と陰極箔3の間に マニラ麻、クラフト紙等のセパレータ4を介在させた状 塩、またはシリコーン化合物として一般式(化3)であ、50、療で登回したものに、駆動用電解液(以下電解液とい

う)を含浸させてコンデンサ素子1を形成し、これを有 底筒状のアルミニウムケース5に挿入した後、アルミニ ウムケース5の開口部をゴムからなる封口材6で封口す ることにより構成されている。上記電解液は粗面化され た陽極箔2に密着することにより静電容置を引き出し、 さらに電解液の有する化成能力によりアルミニウム酸化 皮膜の誘電体層を消鋒できることから漏れ電流を低く維 待できるなどの機能を担っている。また、電解液のもつ 特性の中でも特に電気伝導度はコンデンサのインビーダ ンス性能に大きな影響を及ぼす。

【0003】以上の観点より、特に保証温度105℃以 上の定格電圧100V以下の低圧級の低インピーダンス のアルミニウム電解コンデンサには、低温特性と化成性 に優れるアープチロラクトンを密媒とし、フタル酸やマ レイン酸の4級アンモニウム塩を電解質とする電気伝導 度の高い、高温中でも安定な電解液(特開昭62-14 5713号公報、特開昭62-145715号公報を 頗) が用いられてきた。

[0004]

【発明が解決しようとする課題】しかしながら上記ャー ブチロラクトン溶媒にフタル酸やマレイン酸の4級アン モニウム塩を溶解した電解液を用いたアルミニウム電解 コンデンサを、湿度の高い雰囲気下で連続通常使用した 場合、陰極部で強アルカリ成分が生成し、特に陰極リー ドやそれに接する封□材6を侵食することによりコンデ ンサ外部へ電解液が漏出するといった問題が起こる恐れ のあるものであった。

【0005】とのような問題を回避するためには、通電 時でもアルカリ生成の少ない電解液。すなわちエチレン グリコールおよび水を溶媒とし、アジビン酸アンモニウ ム等のアンモニウム塩を電解質とした電解液を用いるこ とが有効である。

【0006】また、アープチロラクトン溶媒を用いた電 解液は100°C前後の引火点を有するため、電子機器の 異常動作等によりアルミニウム電解コンデンサに異常電 圧や逆弯圧が印加されて安全弁が作動し、万一電解液が 順出した際にも発火の危険性がないとは言い切れなかっ

【0007】一方、保証温度85℃で定格電圧100V 以下の低圧級のアルミニウム電解コンデンサにおいて は、電解液の溶媒にエチレングリコールに電気伝導度を 高めることを目的に加えられる水との混合溶媒を用い、 アジビン酸アンモニウム等のアンモニウム塩を電解質と する電解液を用いることができるが、この種の電解液を 用いたアルミニウム電解コンデンサにおいては、溶媒成 分の1つである水の綿点(100℃)以上の温度におい て長期に電気性能を維持することが困難であり、例え は、温度110°Cの定格電圧印加試験においてはアルミ ニウムと水との水和反応の結果生じる多量の水素ガスの 影響による内圧上昇のために、1000時間以内に底面 50 あり」かつ20℃,100k目~におけるインビーダン

部の安全弁が作動したり、温度110°Cの無負荷放置試 験においては、1000時間以内に初期漏れ電流値に対 する試験後の漏れ電流値の変化率が+5000%を越え るなどの不具合が生じていた。

【0008】とれらの問題を解決するため、電極箱と水 との水和反応を抑制する目的で電解液に種々の雑系化合 物を添加する方法や、発生した水素ガスを吸収する目的 でガス吸収剤として種々のニトロ化合物を添加するなど の方法が提案されているが、これらの方法を用いても含 10 水率が20%を越えるような高含水率な電解液を用い て、100°C以上の温度において長期にコンデンサの電

気性能を維持することは困難であった (定格電圧が10) ○Vを越えるような高圧級のコンデンサにおいては、誘 電体である酸化皮膜が厚く強固であるために、含水率が 20~25%程度の電解液を用いれば、100°C以上の 温度において1000~2000時間程度は電気性能が 安定な場合はあり得るが、定格電圧100 V以下のコン デンサにおいては酸化皮膜が薄いために、これらの問題 点は十分に解決されていない。)。

【0009】また更には、含水率が20%以上の電導度 の高い電解液を100℃以上の温度で長期に使用する場 台においては、含水率が20%未満の低含水率の電解液 では問題とならなかった封口ゴム中の塩素が原因とな り、長時間の高温中負荷試験において陽極アルミニウム リードの腐食を引き起こし、結果として漏れ電流が増大 したり、隣極アルミニウムリードの腐食断線を招く場合 があった。

【0010】本発明はこのような従来の課題を解決し、 高信頼性のアルミニウム電解コンデンサを提供すること を目的とするものである。

[0011]

【課題を解決するための手段】上記課題を解決するため に本発明は、含水率が20~90wも%であり、かつ駆 動用電解液が蜷酸アンモニウム、酢酸アンモニウム、乳 酸アンモニウム、グリコール酸アンモニウム、鞣酸アン モニウム、琥珀酸アンモニウム、マロン酸アンモニウ ム。アジピン酸アンモニウム、安息香酸アンモニウム、 グルタル酸アンモニウム。アゼライン酸アンモニウムよ り遊ばれる一種以上の化合物を主電解腎として含有し、 40 かつトリメチルアジピン酸、1,6-デカンジカルボン 酸。セバシン酸、1,7-オクタンジカルボン酸。ブチ ルオクタンジカルボン酸、3 - tert - ブチルアジビン 酸、3 - tert - オクチルヘキサン二酸、3 - n - ドデシ ルヘキサン二酸。(化4)で示される有機カルボン酸、 (化5)で示される有機カルボン酸もしくはこれらのア ンモニウム塩より選ばれる一種以上の化合物を1wt% 以上含有し、引火点を有さないものであり、かつ駆動用 電解液の凝固点が-10°C以下であり、かつ前記封口材 の含有塩素量が封口材重量に対して3000gm以下で

(5)

特闘2000-188240

スに対する-10℃、100k日2のインピーダンス比 * [0012] が4以下である定格電圧100V以下のアルミニウム電 ((t4) 解コンテンサとしたものである。

(式中R2は紙級アルギル基を示す。R1は水素原子または基

(R 2は前記に回じ)を示す。)

[0013] [(t5]

(武中R3、R4は低級アルギル基を示す。) **電子機器の異常動作等によりアルミニウム電解コンデン** サに異常電圧や遊電圧が印加されて安全弁が作動し、万 一電解液が噴出した際にも発火の危険性の少ない。イン ピーダンス性能並びにその低温特性に優れた定格電圧1 ① O V以下のアルミニウム電解コンデンサを実現するこ とができる。

[0015]

【発明の真施の形態】本発明の請求項1に記載の発明 は、表面に酸化アルミニウムからなる誘電体層を形成し セパレータを介在させて巻回することにより構成された コンデンサ素子に駆動用電解液を含浸し、前記コンデン サ素子を有底筒状のアルミニウムケースに収納した後、 アルミニウムケースの関口部を封口村で封止したアルミ ニウム電解コンデンサにおいて、前記駆動用電解液の含 水率が20~90~1%であり、かつ駆動用電解液が蟻 酸アンモニウム、酢酸アンモニウム、乳酸アンモニウ ム。グリコール酸アンモニウム、蓚酸アンモニウム、硫 珀酸アンモニウム、マロン酸アンモニウム、アジビン酸 アンモニウム、安息香酸アンモニウム、グルタル酸アン モニウム、アゼライン酸アンモニウムより選ばれる一種 以上の化合物を主電解質として含有し、かつトリメチル アジビン酸、1、6-デカンジカルボン酸、セバシン 酸、1,7-オクタンジカルボン酸。ブチルオクタンジ カルボン酸、3 - tert-ブチルアジビン酸、3 - tert-オクチルヘキサン二酸、3-n-ドデシルヘキサンニ 酸、(化4)で示される有機カルボン酸、(化5)で示 される有機カルボン酸もしくはこれらのアンモニウム塩 より選ばれる一種以上の化合物を1wt%以上含有し、

点が-10 ℃以下であり、かつ前記封口材の含有塩素量 が封口材重量に対して30000m以下であり、かつ2 0℃、100kH2におけるインピーダンスに対する-10℃、100kHzのインピーダンス比が4以下であ る定格電圧100V以下のアルミニウム電解コンデンサ としたものであり、信頼性が高く、しかも電子機器の異 鴬動作等によりアルミニウム電解コンデンサに異常電圧 【0014】この本発明により、信頼性が高く」しかも、20、や道電圧が印刷されて安全弁が作動し、万一電解液が噴 出した際にも発火の危険性の少ない。インピーダンス特 性並びにその低温特性に優れたアルミニウム電解コンデ ンサを提供できるという作用を有する。

【0016】なお、電解液の含水率が20%未満の範囲 では低温での電気伝導度が十分に発現できないので、2 0℃、100kHでにおけるインピーダンスに対する。 10℃、100k目2のインピーダンス比が4を越える ので好ましくない。また含水率が90%を越える範圍で は、電解液の凝固点が−10℃より高い温度となる場合 た陽極アルミニウム箔と陰極アルミニウム箔をその間に 30 があるので、前記した20℃でのインビーダンス性能を 確保することはできるが、コンデンサの低温側での保証 温度範囲が−10℃以上となり保証範囲が狭まるので好 きしくない。

> 【0017】また、トリメチルアジピン酸、1、6ーデ カンジカルボン酸、セバシン酸、1、7-オクタンジカ ルボン酸、ブチルオクタンジカルボン酸、3 - tert-ブ チルアジピン酸、3 - tert-オクチルヘキサン二酸、3 - n - ドデシルヘキサン二酸、(化4)で示される有機 カルボン酸、(化5)で示される有機カルボン酸もしく 40 はとれらのアンモニウム塩より選ばれる一種以上の化合 物は、電極箱表面に吸着し、水との反応を阻害するもの であり、特に高温中負荷の状態での効果が大きい。ま た。これらの有機カルボン酸成分の含有率が1wt%以 下の範囲においては隣極着保護の効果が極端に弱まるの で好ましくない。

【0018】また、含有塩素量が封口材重量に対して3 () () p p mを超える新口村を使用してコンデンサを構成 すると、100°C以上の温度において定格電圧試験を行 った際に、封口ゴムより遊離した塩化物が電解液に含ま 引火点を有さないものであり、かつ駆動用電解液の凝固 50 れる多量の水によりイオンに解離し、その結果、高温下

10

で陽極アルミニウムリードを腐食させるので好ましくな Ls.

【0019】請求項2に記載の発明は、請求項1に記載 の発明において、温度100℃以上での定格電圧負荷お よび無負荷放置試験における1000時間以内のアルミ ニウムケース底面部の弁膨れ置が±1mm以内であり、 かつ初期漏れ電流値に対する100°C以上で無負荷放置 試験を実施した1000時間以内での漏れ電流値の変化 率が+5000%以内であるアルミニウム電解コンデン サとしたものであり、アルミニウムケース底面部の弁膨 19 る。また、p-ニトロフェノール、m-ニトロフェノー れ量が1mm以上、および無負荷放置試験1000時間 以内での漏れ電流値の変化率が+5000%以上になる と製品外観および特性に著しい変化を及ぼすため好まし くない。

【①020】請求項3に記載の発明は、請求項1または 2に記載の発明において、駆動用電解液が、エチレング リコール、プロビレングリコール、グリセリン。ポリグ リセリン、ポリエチレングリコール。エチレンオキシド とプロピレンオキシドから成る共重合物から選ばれる一 種以上よりなる有機溶媒を含有し、かつアルキル雑酸エ 20 キサンジカルボン酸、ドデンルヘキサンジカルボン酸、 ステル、次亜燐酸、ビロ燐酸およびこれらの塩より選ば れる一種以上のリン化合物を0.01wt%以上含有 し、かつゥーニトロフェノール、カーニトロフェノー ル、oーニトロフェノール、pーニトロ安息香酸、mー ニトロ安息香酸、0-ニトロ安息香酸、p-ニトロアニ ソール、血ーニトロアニソール、o-ニトロアニソール より選ばれる一種以上のニトロ化合物を0.01wt% 以上含有するものである構成としたものであり、用いる 溶媒の具体例としては、アルコール類 [] 価アルコール アルコール、アミノアルコールなど);2価アルコール (エチレングリコール、ポリエチレングリコール、プロ ピレングリコール、1,3-プロパンジオール、1,2 ープタンジオール、1,3-プタンジオール、1、4-ブタンジオール、2、3-ブタンジオール、1、5-ペ ンタンジオール、2-メチル-2,4-ペンタンジオー ル、2-エチル-1、3-ヘキサンジオール、ジエチレ ングリコール、ヘキシレングリコール、フェニルグリコ ールなど);3価アルコール(グリセリン、ポリグリセ ロバンジオール、1,2、6-ヘキサントリオール、3 ーメチルペンタンー1、3、5ートリオールなど);へ キントールなど]、エーテル領[モノエーテル(エチレ ングリコールモノメチルエーテル、ジエチレングリコー ルモノメチルエーテル、ジエチレングリコールモノエチ ルエーテル、エチレングリコールモノフェニルエーテル など);ジェーテル(エチレングリコールジメチルエー テル、エチレングリコールジエチルエーテル、ジエチレ ングリコールジメチルエーテル、ジエチレングリコール

ドとプロピレンオキシドからなる共重合物もよびこれら 二種以上の混合物があげられる。中でも各種溶質の溶解 度が高く、温度特性に優れたエチレングリコールが好ま Liks.

【0021】また、アルキル燐酸エステル、次亜燐酸、 ピロ雑酸およびこれらのアンモニウム塩より選ばれる一 種以上のリン化合物を()。() 1 w t %以上含有させるこ とにより、これらの化合物が電極箱に吸着し、コンデン **サ特性を損ねることなく電極箱と水との反応を抑制す** ル、oーニトロフェノール、pーニトロ安息香酸、mー ニトロ安息香酸、0 - ニトロ安息香酸、p - ニトロアニ ソール、mーニトロアニソール、oーニトロアニソール より遺ばれる一種以上のニトロ化合物は、ニトロ基の虚 元性により水素ガス吸収の役割を果たし、特に陰極箔側 へ吸着されるものであるが、これらニトロ化合物につい ても上記トリメチルアジピン酸、1、6-デカンジカル ボン酸、1,7-オクタンジカルボン酸、ブチルオクタ ンジカルボン酸、Tert-プチルアジピン酸、オクチルへ (化4)、(化5)で表される有機カルボン酸もしくは これらのアンモニウム塩より選ばれる一種以上の化合物 の陰極額への吸着効果を更に高める働きを有し、陰極額 の水に対する保護効果を効率良く高めることができる。 このときのニトロ化合物の濃度は電解液に対して()。() 1 w t %以上が望ましく()。() 1 w t %以下では併用の 効果が極端に損なわれる。

【0022】請求項4に記載の発明は、請求項1~3の いずれか一つに記載の発明において、特に含水率の高い 《プチルアルコール、ジアセトンアルコール、ベンジル 39 電解液において電極笛との反応を抑制できる組成につい て配合部数を含めて限定したものであり、エチルグリコ ールを密媒として蟻酸アンモニウム、酢酸アンモニウ ム、乳酸アンモニウム、グリコール酸アンモニウム、蓚 酸アンモニウム、琥珀酸アンモニウム、マロン酸アンモ ニウム、アジビン酸アンモニウム、安息香酸アンモニウ ム。グルタル酸アンモニウム、アゼライン酸アンモニウ ムより選ばれる一種以上の化合物の総含有量に対するト リメチルアジビン酸、1、6-デカンジカルボン酸、セ バジン酸、1、7-オクタンジカルボン酸、ブチルオク リン、2-エルチ-2-ヒドロキシメチル-1、3-プ 40 タンジカルボン酸、3-tert-プチルアジピン酸。3tert-オクチルヘキサン二酸、3-n-ドデシルヘキサ ン二酸、(化4)で示される有機カルボン酸、(化5) で示される有機カルボン酸もしくはこれらのアンモニウ ム塩より選ばれる一種以上の化合物の総含有量の比率が 0.05以上~5.0未満の範圍にあり、かつ上記化合 物の総含有量が電解液の重量に対して10 w t %以上で ある構成としたもので、これらの化合物が弯極着に各々 の機能を持って吸着し、コンデンサ特性を損ねることな く電極笛と水との水和反応を抑制することができるとい ジエチルエーテルなど)など]、さらにエチレンオキシ 50 5作用を有する。

(2)

【0023】請求項5~8に記載の発明は、請求項1~ 4のいずれか一つに記載の発明において、機成するセパ レータまたは電便館のいずれか一方に、アルキル機酸エ ステル、次亜磷酸、ビロ磷酸より選ばれる一種以上の化 台物もしくはその塩、またはシリコーン化台物として一 般式(化6)であるシリコーン化合物 [特に反応性シリ コーンであるヒドロキシ変性シリコーン、アミノ変性シ リコーン、カルボキシル変性シリコーン、アルコール変 性シリコーン。エポキシ変性シリコーンなど] およびシ ランカップリング剤、アルコキシシランが付着したも の、および前記化合物のセパレータや電極箱への付着量 を規定したものである。

【0024】シリコーン化合物としては、ヒドロキシ変 性シリコーン、アミノ変性シリコーン、カルボキシル変 性シリコーン、アルコール変性シリコーン、エポキシ変 性シリコーンである反応性シリコーンなどをあげること ができる。シリコーン化合物は次の一般式(化6)で表 される。

[0025]

[fk6]

【りり26】X1~X6の具体例としては、メチル基、 エチル基、プロビル基、ブチル基などのアルキル基領、 ビニル基、アリル基などのアルケニル基、フェニル基、 ナフチル基などのアリール基、ベンジル基、フェネチル 基などのアラルキル基額などの炭化水素基、メトキシ 基。エトキシ苺、プロボン苺、プトキシ基、ビニルオキ 36 合物の電極箔への付着置が電極箔の単位重置当たり()。 シ蟇、フェノキシ基、ベンジルオキシ基などのオキシ炭 化水素基あるいは水酸基をあけることができる。メチル カルボキシル墓。エチルカルボキシル墓、プロピルカル ボキンル基などの脂肪族カルボキシル基などがあげられ る。メチルアミン基、エチルアミン基。プロピルアミン 基。フェニルアミン基などのアミノ炭化水素基などがあ げられる。使用されるシリコーン化合物は以上に限定さ れることはなく、一般的な反応性シリコーン化合物でも 可能である。またシランカップリング削としてN-8 (アミノエチル) ァーアミノプロピルトリメトキシシラ 46 ン、N-B (アミノエチル) ァーアミノプロピルメチル ジメトキシシンラン、N-B (アミノエチル) ァーアミ ノプロピルトリエトキシンシラン、テーグリシドキシブ ロビルトリメトキシシラン、ビニルトリメトキシシラ ン。ビニルトリエトキシシラン、ビニルトリス(Bメト キシエトキシシラン)、β-(3,4xポキシシクロへ キンル) エチルトリメトキンシラン、ァーグリンドキシ プロビルメチルジエトキシシラン、ャーグリシドキシブ ロビルメチルジエトキシシラン、ャーメタクリロキシブ

ロビルメチルジエトキシンラン、ャーアミノプロビルト リエトキシシラン、N-フェニル-ァ-アミノプロピル トリメトキシシラン、ャーメルカプトプロピルトリメト キシンランなどがある。アルコキシンランとしてテトラ メトキシシラン、テトラエトキシシランなど以上に限定 されることはなく、一般的に使用される化台物である。 【0027】との構成によれば、同種の燐系化合物およ びシリコーン化合物を予め含有させた電解液を巻回型の コンデンサ素子に単に含浸させる場合と比較して、燐系 10 化合物およびシリコーン化合物を素子中心部まで容易に 分布させることが可能となるので、同種の燐系化合物を 予め含有させた電解液を巻回型のコンデンサ素子に単に **含浸させる場合に生じ易い、添加剤の組な部分(電解液** を単に含浸させた場合には、燐系添加剤およびシリコー ン化合物が素子中心部まで十分行き減らず、分布が不均 一になる)からの水和による電極箱の劣化を生じ難くす ることができるので、電極着の水和劣化による静電容量 の低下や水素ガス発生の程度をより一層改善できるの で、より信頼性の高いコンデンサを構成することができ 20 るという作用を有する。

【0028】前記燐系化合物およびシリコーン化合物の セパレータへの付着量がセパレータの単位重量当たり 5. Omg/g未満では水和劣化抑制効果が十分でない ので好ましくない。また、付着量がセパレータの単位重 置当たり50.0mg/gを越える範囲においては、燐 系化合物の有する韓水性の長鎖アルキル鎖の影響によ り、親水性であるセパレータへの電解液の浸透性が低下 するため、コンデンサのインピーダンスが大きくなり好 ましくない。また、前記幾系化合物およびシリコーン化 5mg/g未満では水和劣化抑制効果が十分でないので 好ましくない。また、付着量が電極着の単位重量当たり 5. Omg/gを越える範囲においては、電解液/電極 箔界面の抵抗成分が大きくなり、コンデンサのインピー ダンスが大きくなるので好ましくない。陰極箔について は、化成、未化成いずれの場合も同様の効果を発現でき るが、 更に信頼性を高めるためには、 陰極に 1~2 V程 度の化成処理を行うことが望ましい。

【0029】請求項9~10に記載の発明は、請求項1 ~8のいずれか一つに記載の発明において、封口村にイ ソプチレンイソプレンラバー、エチレンプロピレンター ポリマーおよびそれらの混合物を用い、かつ封口村の任 意の部位の硬度を65~1001RHD(国際ゴム硬さ 単位) に規定したものである。封口村の硬度が65!R HD未満であれば、ガス発生の少ないコンデンサを構成 した場合においても、100℃を越える温度において試 験した場合においては、電解液中に含まれる水分の蒸気 圧のみでコンデンサの外観変形が生じたり、封口ゴムの 飛び出しが生じたりするので好ましくない。また、硬度 ロビルメチルジメトキシンラン、アーメタクリロキシブ 50 が1001RHDを越える範囲の紂口ゴムを用いた場合

http://www4.ipdl.ncipi.go.jp/tjcontenttrns.ipdl?N0000=21&N0400=image/gif&N0401...

..,

においては、ゴムが脆くなり、試験中にゴムに急裂が入るなどの不具合が生じるので好ましくない。また、シリコーン化合物を封口材の内部に含有させるか、表面に付着させた場合、リードと封止されている部分の密着性が向上するなどの効果により、特に陽極リードの腐食反応を抑制することができ、また電解液中の溶媒のドライアップを抑制することができるため静電容量の低下を抑制できるという作用を有する。

【0030】語求項11~12に記載の発明は、語求項1~10に記載の発明において、アルミケースの底面厚 10 みの縄定およびアルミニウムケースの内面に処理するリン化合物およびシリコーン化合物を限定したものであり、このことにより、100℃以上定格負荷、無負荷試験においてもアルミニウム電解コンデンサの外護変化やケース内面の腐食の増大をより一層抑制することができるという作用を有する。

【0031】請求項13~14に記載の発明は、請求項5~12のいずれか一つに記載の発明において、リン化台物のうちアルキル燐酸エステルがモノメチル燐酸エステル、モノゴロビル燐酸エステル、モノブターにより、全アル・モノブチル燐酸エステル、モノブキル燐酸エステル、モノヘキシル燐酸エス

テル、モノオクチル燐酸エステル、モノデシル燐酸エステル、ジメチル燐酸エステル、ジエチル燐酸エステル、ジブロビル燐酸エステル、ジブチル燐酸エステル、ジヘキンル燐酸エステル、ジオクチル燐酸エステル、ドリエチル燐酸エステル、トリプロビル燐酸エステル、トリプチル燐酸エステル、トリプロビル燐酸エステル、トリプチル燐酸エステル、トリプチル燐酸エステル、トリオクチル燐酸エステル、トリデンル燐酸よステル、トリデンル燐酸よステル、トリデンル燐酸よステル、トリデンル炭酸とステル、トリデンル炭酸とり遺ばれる一種以上の化合物に限定したものである。

16 【0032】次に、玄発明について具体例を挙げて説明する。

【 0 0 3 3 】 (表 1)、 (表 2)、 (表 3) に本発明の 実舗の形態 1 ~ 2 5 および比較例 1 ~ 8 の電解液組成、使用したセパレータのリン化合物もしくはシリコーン化合物付着量、使用した電配着のリン化合物もしくはシリコーン化合物付着量、使用した封口村の含有塩素量、封口村の浸度および表面処理したシリコーン化合物。アルミニウムケースの底面厚みおよびアルミニウムケース内面に処理を行った化合物を示す。

) 【0034】 【表1】

エディングリンド Action 1 Marcon 1 Processing 1 Profit Confect Indiang 1 Profit Indiang Indiang 1 Profit Indiang
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
次 (元) (元) (元) (元) (元) (元) (元) (元) (元) (元)
05 11-2-1-4-10-10-10-10-10-10-10-10-10-10-10-10-10-
(A:9)
1 1 1 1 1
BC (013)
スタトンタンコーゴ(45)、売ま(57)、デンゴンボンド ロッス(15)、ニドチウェンンできたっぱい ファーコンス(15) こことのは、 (49.1) なら 1.17、こことの対しが表し、 4.88数デントポンエ(6)
カース・カイン・カイの)・ 他の表示。 アンセンタアン・モータイリン・1トャチタンンのサイン・モータム・10、1ト・ナタアンのサイン・ロン・10、10・ド・ナース・カイン・ロン・ロン・ロン・ロン・ロン・ロン・ロン・ロン・ロン・ロン・ロン・ロン・ロン
エチレンソリコール(Sh. (Batta): アコピンピランモ ユウム((B): 1.1*オウタンジコキョンピランモニウム (R): レナーロダス(After): カキの様 インモンメよい
エチトンタリコール/file はALGA アンピニのアンモ ニコム GUD ト・オッタ シンタの みよン 6 アンモニウム GUD 10 「DL D - F L P V X A A A A A A A A A A A A A A A A A A
エナレフリコール(A), Liktus, アメビン関ンシャ いん(D) エイタットンタルのプレモニッパ - (他11) (7), n-1- ロイカリのアスを示して、ネタ地をアンモニッパ (を11)
エチレングリコール/65. 株式は3. アンピンボアンミ ニウム(13) 1. トラヤタラングカボンボリンを云つム — (は1.2) (2) n-1-D/2の目体の1. 表の値像でファミッム(0.
エダナングリコール(48、単元58、デフピン関アン会 エヴェイの) 1・1・7 サランジョンギンペフンをニウム(1) ヴュ・カートの立の万能(1) より解除デンをニウム(1)
エマレングリコール(Al) 点を(Al) アリアグルをトンタ ニュム(II)、1.1でもフタンプカルギンボンでしてニーニー (使14) (3)、カールの定品が使1、実出機械デンモニのよい
エチレングリコール(6)・6水(3)、アンプラのボアイ ニュム(10)・1.7-オケランプラネボルギアンモニウム (7)、ア・プロ交換ス層(1)、20(素質デンモニウェル)

[0035]

【表2】

(10)

特闘2000-188240

		17								
ı	1	1	የራውት ሳሪ ም ያያው ተ	(Æ6:	(1,2)	(63)	-	1	1	-
0 3 0	0.3 P	0.40	0 3 0	0.30	0°.30	08.0	9.30	0 8 10	0 8 0	0.28
HET?	(0:0)	ı	ì	ı	ı	ı	I	. 1	ı	
7.0	10	40	6.2	٥,	7.0	7.0	10	? .	g 2	9.0
001	Q ų 2	QO i	001	001	100	oe ı	061	001	061	901
1	1	ı	-	ı	1	-	ı	1	ı	_
ı	I	-	-	-	ı	ı	-	ı	_	-
1	I	1	,	ı	-	-	1	-	-	-
	1	\$	-	ı	-	-	ı	ı	ı	-
		<u> </u>		_	 (9) エデンプリコート(46)、気水(13)、アンピン(東アンモー) ローコのム(10)、エードカップングカッポン等アンモロウム(19)、11トロダ北手機(11)、大小機能アンモコッショ) 		おテレンテリコール(45)、見え(35)、アンピンをランキコール(45)、「トナワラテンジルルインボファーロイ (1)、ホーエトロ・メンジルインボファーロイ (1)、ホーエトロ・メロが成け、火山が成了シャコウム(1)、 オープカラテル構造スタを(4)			Mon エナレングリコール(50)、初水(60)、アウビン保サンキの コンム HO)、(マオクタンジアがおいをアンモコウム カージ (6)、0-イドロダル海(0)、大田湖東下上に(0人口)
4 (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	を できる は は は は は は は は は は は は は は は は は は は	* * * * * * * * * * * * * * * * * * *	4.50 m 16.50 m 16.50 m	4.08 Plea 19.08 CB	大阪学の大阪学の	本語のよりのない。	本 (を (を (を) 2 (を) 2 (を) 2 (を) 2 (を) 2 (を) 2 (を) 2 (を) 3 (を) 3 (を) 3 (e) 3 (大学の	SEC.	(대왕) (대왕)

[0036] 【表3】

I FAMILI	オナアングラコール(43) 男女だる。 ドジアン保アンキア・シュセス。 こうキッシングチボン報アンドロウス(9.5) ライトの実現出籍三)。女に参数アンドロのよ()	1	1		1	100	4 7	ı	0.30	1
KBW 7	コアングンゴール(64、現が25、アンガンボアッカロク4(0)、コアギタシッとをは少数アンド はかのい コール・コール アンガンをは (0)、次元数ポレッキョンエ (0.922	ţ	1	ı	1	194	2	,	900 0	!
ENED!	メアレングコローラ(66) - 80名(33) - アンピン教コンモビンを(25) - コーキクランプコンテン教ングも 10分(25) - 20人のコンプリング 10分(25) - カラ教育の10分(10) - コードングの表示の10分(10) - カラ教育の10分(10)	ı	ı	i	1	100	e r	1	ט געו	ŧ
set2bj4	セチレンヴィコールidS、GA(45)、アンピン独でンモニ ウムG)、Li キッタンジカルボン関アンモニウム(3) p== -D女仏内教(1)、大川内的アンモニウム(1)	ı	1	I	ī	70 ī	7.0	, 1	0 3 0	1
teeffs	ユデレングリコード(60) 新木(45) アジピン機プンテエアム(10) Liff かりンジカルボン艦コンモニジム(0) n-z トロダ仏記憶(1) 実代議修アンモニヴム(1)		ı	-	ı	350	2.0	1	0.30	1
rtekor 6	エキレングリコーも(49) みん(3)、アンピンのアンモニット(10)、1,5×クァンジルルボン的アンドニッム(10)、s-デトリンは過剰(1)、火炉機をアンモニッム(1)。	ı	1	ı	_	901	0.0	,	0.30	1
Erkind ?	エデシングリコール(10、初か(45)。アジピン俊アンモニ ひん(12)。1,15 マッテングリボン俊アンモニウム(1)。 リニトロ女仏で構作)。大学研修アンモニウム(1)。	ı	ı	ı	-	y y t	υż	ı	0.25	1
E-FR-FILE	ロレアングルコーラ(35) 、現金(35) ・シガカリ 衛アンボリー ひずこ(3) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	W=acc	100	ı	1	007	D.	ı	0.34	ı

(11) 特闘2000-188240

*【①①37】本発明の衰越の形態1~25の電解液の引火点をクリープランド関放式法で測定した結果。128℃~134℃の温度範囲において試験炎が消えることが確認されたことにより、これらの電解液は引火点を有さない。また、本発明の衰極の形態1~25の電解液を30℃の温度に設定した低温恒温槽中で24時間放置した結果、性状の変化は確認されなかったことにより、電解液の凝固点が-10℃以下であることも確認された。【①①38】なお、(表1)、(表2)中に記載の(化10~)~(化14)の化学式は以下に示すものである。

[0039] [化7]

20

30

$$\begin{array}{c} & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & &$$

(ft 1 2)

CH₃

CH₄

CH₅

CH₅

CH₆

CH₇

CH₇

CH₇

CH₈

(0 0 4 5)

(R1 3)

CH₃

(1k 1 4)

CH₃

【0047】(表4)~(表7)に本発明の衰縮の形態 1~25 および比較例1~8の電解液を用いて構成した アルミニウム電解コンデンサの20℃/100kH2に

のインピーダンス比、温度110℃で1000時間の定 格電圧印加および無負荷放置試験後の製品底面部の膨れ 10 置、漏れ電流の変化率、封口ゴムより透過した溶媒の透 過量、陽極アルミニウムリードの腐食性および封口ゴム の状態を示す。なお、本試験に供したアルミニウム電解 コンデンサは、定格電圧6、3 V - 静電容置56 θμF (サイズ: Φ8×11L) および定格電圧5()V-静電 容量1500µF(サイズ: #16×35, 5L) の二 種類である。また、セパレータ(マニラ麻繊維材質)、 電極着および封口ゴム(樹脂加硫したイソブチレンイソ プロピレンラバー [ブチルゴム] 材質) のリン化合物も しくはシリコーン化合物の付着処理については、任意議 20 度のリン化合物もしくはシリコーン化合物の水溶液中に セパレータ、電極箱および封口ゴムを浸漬処理した後、 100℃中で1時間乾燥処理を行った。また、封口ゴム 中の塩素量については、三菱化学(株)製の全塩素分析 装置(品番:TSX-10)により測定を行い、封口ゴ ムの重置当たりの塩素量に換算して示した。

【0·048】 【表4】

		23							(1	3)						_	特	開 2 24		00-	-188	24
110Cを格響所 は81 180 時間数	9#1134.05k%	つコルギ	*ikal	#tht	ያለር ድ	#Hrat	野化ない	気化さい	रहिद्धाः	せんぴん	123	教作邓儿	おにない	েকম্বস্ক	ひたみつ	りかる。	あれたし	いたなし	またなし	1:2#2		
LIPT CORPORATE PARTY OF THE PAR	リートの組合は光	Paillydor L) while	142824.1	Milata L	1446111	HERIT	日本党は「	コな器を	វា សាធារក	三世代の「	の場合し	rizza l	日間なっ	ी ग्रह्मांब	PSES:1.	HANDET L	FUZDZ i.	मध्यत	日間ない		
	高雄性 inati	2 6-	<i>≟</i> 6−	- 6.5	-0.5	-8.1	1.9.5	-9 1	1.8-	-9.5	-9.3	-9.5	- 9. 1	9.6-	-80	-7.8	-7.9	£ .5 =	p 0	-4.3		
iid statelikiziter (K)	SERVER L	i 3	120	301	961	001	105	118	açı	101	108	10 T	109	1:0	119	117	115	114	138	119		
(32) 成功多处部中域の多体部門務 同時の1一次8月	STAND! CHINESEN	82	34	6.9	8-0	9 2	8.2	0.9		7 :1	2	8 4	20	1 8	8.3	3 2	† 20	1.8	6.9	÷ *		
प्रिक्तसम्बद्धाः न न देतामध्य	(会会を記る)	0.13	0.13	3, 10	600	0.68	9.10	60'D	0.06	200	9.08	6.05	600	0.10	9.16	0.13	4.15	6.43] : :	9.11		
110℃-1060時間知品は始め アルミニクムヤース度面がの 数打は (thin)	राक्षक्रम् सम्बद्धाः	0.54	0.15	60 6	90.0	90.0	6.09	9.14	0.10	900	6.93	010	a .	91.9	0.16	0 16	0.18	0.96	Ü. 12	9.13		
	(-1717.20C)	3.0	3.6	£3	2.2	o.;	3, 1	3.2	3.3	3.3	3.2	3.2	3.5	27	3.4	\$.3	3.2	0.5	2 €	3.2		
		本記載の行路に	本が知ら	4:00 (B) (1)	本が記念の	S SECTION OF	大の日子の日本の日本の	A PURCO	を発明の 工格の開催る	本類別	本がある	42000 1	4.800k)	4.50/30 / 3.450 if 第 13	4.120JD)	ATTENDED IN	4.10tilori	A TRUE I	A CULCI	A.砂明の 実験の形態 19		

[0049] 【表5】 (14)

特闘2000-188240

						(1								26	100
表でなり	数化化	FROL	Wea	Bittet	が代むし	Butto	部や光子	180 S-3	ettel.	公在 22.20	まだけらの様で別し	産沈みし	変化なし		
1:00H	7:55:14	回覧なし	outhin t	Went.	18884	ERLEGATE L	FUNDS L	ា សាក្តារ	ויושניי ר	東京高島 (3年) (3年) (3年) (3年) (3年)	ा अध्यक्ष	お殴れ。	Catallian.		
9.8-	- 4.7	ā '6-	-9.5	- 6.4	-111	阿斯卡	9.6	無子別	\$ 0-	-9.3	-9.5	3 €	96-		
61.19	58-	106	118	5.8	139	ı	1300	1	130	6600	130	-	١،،		
98	9	8 22	æ 7.	70	9.6	1	112		135	120	<u>د</u> ۲	-	10		
0.11	0.11	900	Ð. 0 £	20.0	0.15	1997 1109/14/19919	3	अप्र राह्नम्बर १६५मपट	0.30	0.50	£ \$ U	19.00 (VE) 0 (19.00)	e) 13		
0 11	\$ 13	30 0	0.11	9.11	5 5	TERM TO SHOW	U. o t	CACATOL WASH		0.55	ι	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	9.24		
3.2	2 %	3.e	9.0	1.2	1.2	3.1	3.3	3.1		3.0	3 3	3.1	4.6		
を記載の 芸術の名詞 む	AND AND	Older	450%0	Olyce 23	1.500(1) 2.600(1) 2.600(1)	1 अस्त्रम	11.0957.2	LEWIS	LEGS 14	ICK/N2	DEPENDENCE OF THE PROPERTY OF	1.65917	testic		

[0050]

		21	7						(1	LS)							*	28		00
116七元的地区 日本 1000 时间	Sinker Cities	が化さし	REGI	医性溶儿	#ICE!	ายสห	१६५४	ませなし	724次	1273	स्थान्त्र ।	KREL	女化ない	が作なし	おだなし	会 化なし	METS!	#HCGC	MEGI	¥:lebt.
現代の機能型 位置 100 配置形 内閣教育を対けるで	リードの過去物質	INBUZ L	HINGS.	J. EDET	्रस्वतः	178'3K'H	Mills L	一の数点	Himsl	HIZGE	力が発展し	וממגיגר	1 \$2 Med	ा क्राप्तारा	ा स्थान	Mills 75 L	17/201	砂塩ない	1980 L	記されて
53	All the contact	- 38.7	-357	-15.5	3 5 8 -	-35.1	-35.5	- 95.7	-36.)	-35.5	-36 3	-35.5	-35.4	.356	-31.6	-36.3	-308-	- 35.3	-35.4	-36.9
1107-1618 FAMMANARES 1117-1618-1618 - 117-1618 FAMMANARES 2017-1618-1618-1618-1618-1618-1618-1618-16	18 MEN	13.5	148	138	133	114	123	1.3.8	189	321	133	138	1.38	2 4 3	47.		148	1 4 8	23.1	146
SURLY WITH ONE	Para 1855	#	98	5.5		219	 •• ••	9.6	20	3.6	3.4	\$	5.8	6.1	79	1.8	46	83	8	8.5
大統領語の	MOALUTE JAMES	0.38	0.40	9.37	0.29	3.2	0.28	0.29	6.35	0.24	47 y	u. 39	9.27	9.29	0.44	0.45	0.45	9.1.4	0.34	9.35
コウン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Special Property of the Parket Property of th	9.67	0.68	0.80	3.56	0.00	0.90	A. 63	0.62	4.61	9.60	\$ 62	0.91	0.6!	0,72	67.0	0.70	6.33	0 63	i3
12 E-97-2E	(-10C/2012)	.a	J. 20				3.2	3 6	8.4	(1)	3. 5.	3,6		3.	y:	63	3.7	4.6	2 6	4
	•	4.5030	があるがあり	**************************************	北約627 本的527	大学の正確の	A SEPTION OF THE PROPERTY OF T	ASSESSED TO THE PARTY OF THE PA	本を割る	4.00 JENE A	45646	्राह्मात्र्यः क्राह्मात्रः	大学のの第一大学問題	発売の高い	大学の政権に	4.200 P. 1	4.8890	CARD'S	A.9.09/C.	大きの事務 18 大きのから 18 大きのから 18 大きんちょう

[0051] 【表7】

29	

4:00 ips	3.2	0.62	0.35	8.1	143	9 00 1	おおい	#:Kr.
भूगांकाश्रीहरू क्रीमार	3.6	9.64	0.35	9.6	8	-35.7	WATER	なんなし
大学の時間の本が別の		09.0	0.36	9.3	139	-33.5	18/8Kill	ながない
Althorities Albinos	3 2	0.63	P. 30	8.2	20 -	1 3 fi. 6	SWIDT: L	J PAINS
22 SECTION 22 45 SECTION 22	3.5	0.63	0 40	2.8	1 5 6	-35.6	HRUGS:	がたなし
A STORY OF STATE OF S	2, 3	0 7.8	0.40	3.5	136	-39.3	NWis t.	Jarah 6
LEGAN 1	5.3	USA SENIO	18.77. 116.387.3 678475	-	_	利定不可	PARITA L.	\$212KB
(C. 1949)	3.3	0.78	09 10	1.4	6089	-35.9	Milital	Buch
urfeet 3	4.5	Of Bill I Victory	(16 Ag 10 18 Ag 10	1	1	机定不可	liggte L	なんぎり
1146904	20.3	0.75	0.53	136	4500	- 15.5	माक्टर	13 to 26 A
t-vorte	3.4	0.95	0:30	921	12500	E 56-	(20) 1 UMP(2)	BARA
It Kedi G	3.5		91.7	9.4	136	-35.5	言語をし	(9 RIA II MUS)
比较的	3.5	14以 (14夜·16母村	1627: (1954: 39401)	ı	-	.38.5	PERSON.	7834
4.6.618	9.	6.18	0.52	9	305	-35.6	T DE LA	#(C)1C

【0052】(表4)~(表7)の結果から、本発明の アルミニウム電解コンデンサは、インビーダンス比も低 く、110℃中の寿命試験においてもアルミニウムケー スの底面部の膨れ質(L寸変化)および漏れ電流値の変 化率が少なく、かつ陽極アルミニウムリードの腐食性、 封口ゴムの飛び出しもないことが判る。

[0053]

【発明の効果】以上のように本発明によれば、20℃、 100 k H 2 におけるインピーダンスに対する-10 ℃、100 kH2のインビーダンス比が4以下であり、 かつ温度100 C以上での定格電圧印刷および無負荷放 置試験1000時間以内のアルミニウムケースの底面部 の弁膨れ置が+ 1 mm以下であり、かつ初期漏れ電流値 に対する100℃以上での無負荷放置試験1000時間 以内での漏れ電流値の比率が+5000%以下といった 性能を有し、高温下で長時間使用した場合でも外観変 50 4 セパレータ

化、特性劣化が少ない上、電子機器の異常作動等により アルミニウム電解コンデンサに異常電圧や逆電圧が印加 されて安全弁が作動し、万一電解液が噴出した際にも発 火の危険性も少ない、低温特性に優れる高含水率の電解 液を用いることにより、信頼性の高い上、インビーダン 40 ス性能並びにその低温特性に優れる定格電圧100V以 下のアルミニウム電解コンデンサを構成することができ

【図面の簡単な説明】

【図1】本発明の一実施の形態を含むアルミニウム電解 コンデンサの構成を示す一部切欠斜視図

【符号の説明】

- 1 コンデンサ
- 2 陽極箔
- 3 陰極箔

31

(17)

特闘2000-188240

32

5 アルミニウムケース

* *6 封口材

[図1]

/ コンデンサ素子

2 隣極箔

3 陰秘箔

4 セパレータ

5 アルミケース

6 期口村

フロントページの続き

(72)発明者 淺 浩一郎

大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 諸隈 宗宏

大阪府門真市大字門真1006香地 松下電器

産業株式会社内

(72)発明者 新田 幸弘

大阪府門真市大字門真1906香地 松下電器

產業株式会社內

```
【公報種別】特許法第17条の2の規定による補正の掲載
【部門区分】第7部門第2区分
【発行日】平成15年6月13日(2003.6.13)
【公開香号】特開2000-188240 (P2000-188240A)
【公開日】平成12年7月4日(2000.7.4)
【年通号数】公開特許公報12-1883
【出願香号】特願平11-255249
【国際特許分類第7版】
 H01G 9/035
     9/10
     9/14
(FI)
 H01G
     9/02
          311
     9/10
            E
     9/14
            Α
【手統領正書】
【提出日】平成15年2月26日(2003.2.2
                                 【補正方法】変更
6)
                                 【補正内容】
【手統領正 1 】
                                 [0034]
【補正対象書類名】明細書
                                 【表1】
【補正対象項目名】0034
```

特闘2000-188240

	(四年) 中国(四年)	会化管的部	27.28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	一般事題	電価格への化合関係 語		#03.6		745=945-8	14.7.A
		化布物源	1 1 2 2	化免税图	(4) 基础(4)	的有效素 Alippm)	(GER (JRHD)	記録を行うとなっている。	な を が	心 いったに 会会を
大学問の 実施の指 続1	モニウム(12)、)・ア・オクタンジカルボン酸アンモニウム(7)、p・ニトロ奴象者酔い)、 が登場確アンモニウム(1)					140	5	1	0.30	1
本夫員の 実施の形 352	エデレングリコール(65)、何水(35)、アジピン観アン モニウム(12)、16・デガンジカリボン留アンモニウム 17)、アニトロ父兄者別(1)、実際教授アンモニウム	i	1	;	;	100	30		0.30	1
本20間の 実施の影		次重体験 アンモニウム	90	-:		06r	70		0. 30	
本実験 発剤 1 の別		(£8)	99			160	70		0.30	
米別記の表別の記録を	エタンングリコール(85)、 お水(35)、 アンピン酸アン モニウム(12)、17-オウタンジカルボン酸アンモニウ ム(71, アニトロ素 赵賢 賢(1)、決立権政アンモニウム	(\$£10)	20	7		169	70		ი. ვი	1
本金融の 実施の表 で の		(C:1)	ş			160	70		0.30	:
本金明の 実施の政 続7	エデレングリコール(65)、対水(35) アンピン世アンモーマニケム(12)、パーオクタンジカルボン酸アンモニケム(7)、ペーニトロ安発管整(1)、次型体域アンモニウム	1 - 7		光振な問 アンホロン ム	8 2	109	30		00.00	-
本を配ける 発性の 発性の 発性の 発性の 発性の 発性の 発性の 発性 の 発性 の	エテレングリコール(55)、 粒水(35) モニウム(12)、12・セクケンジカルボ ム(71、ウニトロ安姓春堂(1)、浅岳は			(£0)	5	160	20		0.30	-
本を組の 実施の影 取9				(1110)	ъ	100	20		ი. მე	
本会員の 政第の総 第10				(£ 11;	5	100	70		a. 30	
本知识的 建筑的形 第11	エテレングリコール・655、税米(95)、アンビン酸アンモニウム(12)、17・オウシンジカル・ボン酸アンモニウム(7)、ロニトロ受職器(1)、抗型塩酸アンモニウム			(4212)	9	100	2		0, 30	
本角明の 東施の謝 類12		!		(£13)	В	160	70		0.33	
太郎日の 東部の沙 町13	エキレングリコール(65)、対水(35) デジビン酸プント モニウム(12)、1フ・オクテンジカルボン程アンモニウ L(7)、アードロ安良各数(1)、改亜熔数2シモニウム			(4८१४)	8	ነናው	7.0		0.30	1
本条明の 実施の約 数14	エテレングリコール(65)、約米(35)、アジだい数アンキニウム(12)、ハッセクテンジカルボン暦アンモニウム(1)、アニトロ党の要徴(1)、天正仏教アンモニウム		1	:	ED.	100	20	(6.9)	0.30	

【手続稿正2】 【補正対象書類名】明細書 【補正対象項目名】0035 【補正方法】変更

【鯆正内容】 [0035] 【表2】

も表明の キョウム(12)、17・オクタンジカルボンをアンモョウ 実成の形 人(7)、アニトロ安息豊駿(1)、次国爆駿アンモニウ 祭15 (4(1)
本発明の「エチレングリコール(65)、段水(35)、アツビン酸アン 医路の形 モニウム(12)、16-デカンジカルボン酸アンモニウム 盥16 【(7)、 o-ニドロ変見養養(1)、次亜増散アンモニウム
ネ毎明の モニウム(12)、いっオウタンジカルボン酸アンモニウ 英語の形 ム(7)、 アニトロ安息者酸(1)、次西烯酸アンモニウ ーーー 数17 ム(1)
エテレングリコール(85)、税米(35)、アジピン鎖アン モニウム(12)、1.7-オクタンプカルボン酸アンモニウム(7)、p.ニトロ安昌百姓(1)、牧馬雄戦アンモニウ
エテレングリコール(65)、校木(36)、アジピン酸アンモニウム(12)、1:-オクケンジカルボン酸アンモニウム(7)、p=トロ安息春後(1)、次早熔鉄アンモニウ
本巻町の エドフングリコール(66), 従来(36), アンピンペアン 実践の格 キェウム(12), 17-キクタンンカンボン破アンモニウ 版20 ム(7), アニトロ宮見名覧(1), 次型体験アンモニウ
承乗時の「エテレングリコール(66)、韓末(36)、アジピン酸アン 路聴のお「モニウム(12)、1,7-オクタンジカルボン酸アンモニウ 版21 — (4(7)、9-エトロ家見豊略(1)、次型複数アンモニウ
本毎明の「エテンブグリコール(46)、蚊木(35)、アゾピン値アン 実施の形 モニウム(12)、17-オクタンジカルボン軽アンモニウ 数22 ユ(7)、P-エトロ安見書時(1)、攻原爆撃アンモニウ
ニケンングリコール(65)、従水(36)、アンビン段アン モニウム(12)、(化7)(7)、p-ニトコ安易香酸(1)。 次豆燐酸アンモニウム(1)
エテレングリコール(66), 従水(36), アンピン酸アンモニウム(12), (化3)(7), かニトロ安良書談(1), 次回嫁教アンモニウム(1)
エテレングリコール(65)、核水(35)、アゾピン酸アノ モニウム(12)、1/-オクケンジカルボン酸アンモニウ 14(7)、アニトロ安息者酸(1)、攻亜燐酸アンモニウ

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.