Programação de Robôs Aula 1

Introdução

PROGRAMAÇÃO DE ROBÔS PROF. GUILHERME FRÓES SILVA

https://guilhermepucrs.github.io/progRobos

Índice

Objetivos

Avaliação

Introdução

Laboratório de Manufatura Integrada por Computador (CIM)

Robosoft

Objetivos

A disciplina visa fornecer ao aluno conhecimento específico na área de programação de robôs industriais bem como elucidar o funcionamento dos manipuladores robóticos presentes no laboratório.

O aluno deve:

- Conhecer o funcionamento básico de um manipulador robotizado
- Programar com desenvoltura

Avaliação

Número Máximo de Faltas (25%)

4 faltas

Cálculo do G1:

$$G_1 = \frac{(P_1 + P_2)3 + (T_1 + T_2 + T_3 + T_4)}{10}$$

Prova de Substituição (PS)

- Toda matéria
- Só pode ser realizada por quem faltou uma prova

Provas

- Sem consulta
- Proibido usar calculadoras gráficas (50g, Texas, etc.)

Introdução

Introdução

O termo *robótica* aparece pela primeira vez em 1941 na obra "Runaround" de Isaac Asimov, baseado no termo *robota* que por sua vez foi utilizado pelo escritor checo Karel Căpek na peça R.U.R (*Rossum's Universal Robots*), escrita em 1920.

"a conexão inteligente entre percepção e atuação" (O. Khatib, 1992).

"Estudo de máquinas capazes de substituir seres humanos na execução de certa tarefa, com relação a **atividades físicas** e **tomadas de decisão**." (SCIAVICCO, L. Modelling and control of robot manipulators)

Robô Industrial

ISO8373:2012 define *robô industrial* como: "an automatically controlled, **reprogrammable**, **multipurpose**, manipulator, *programmable in three or more axes*, which can be either fixed in place or mobile for use in industrial automation applications

Reprogrammable

 designed so that the programmed motions or auxiliary functions can be changed without physical alteration

Multipurpose

capable of being adapted to a different application with physical alteration

8

Vantagens

Aumento de produtividade

Aumento da qualidade

Aumento da rentabilidade

Operação em ambientes perigosos

Desvantagens

Alto investimento

Treinamento Especial

Produto muito customizado

Demanda oscilatória

COMPUTER INTEGRATED MANUFACTURING

Laboratório de Manufatura Integrada por Computador (Computer Integrated Manufacturing – CIM)

http://www.feng.pucrs.br/laboratorios/labcim/

Composo por um sistema de manufatura flexível completamente controlado por computadores.

O sistema contém cinco estações para **estoque** de peças, **manufatura**, **controle de qualidade** e **montagem** de peças e produtos.

Estação 1: **Estoque** – ASRS

Estação 2: **Torno** – ER-9

Estação 3: **Fresa** – ER-7

Estação 4: Controle de Qualidade – MK3

Estação 5: **Montagem** – SCARA ER-14

POLITÉCNICA

Robosoft

Terminal

Modo AUTO

- TP em modo Auto
- Digitar AUTO + <ENTER> no prompt

Modo Edição

- Programas desenvolvidos em linguagem ACL (Advanced Control Language)
- Comandos executados após download do programa para o controlador e execução do comando RUN <nome>

Exemplo

```
PROGRAM PROG1
```

LABEL 001

PRINT "Programa teste"

PRINTLN "Hello World!"

// Isto é um comentário

PRINTLN

GOTO 001

END

Próxima Aula

ROBOSOFT (LER CAP. 2 E 3 DA APOSTILA)

Obrigado ©

ATÉ A PRÓXIMA AULA

