Computational Learning Theory

Reading:

Mitchell chapter 7

Suggested exercises:

• 7.1, 7.2, 7.5, 7.7

Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

November 1, 2010

Computational Learning Theory

What general laws constrain inductive learning?
We seek theory to relate:

- Probability of successful learning
- Number of training examples
- Complexity of hypothesis space
- Accuracy to which target function is approximated
- Manner in which training examples presented

Sample Complexity

How many training examples are sufficient to learn the target concept?

- 1. If learner proposes instances, as queries to teacher
 - Learner proposes instance x, teacher provides c(x)
- 2. If teacher (who knows c) provides training examples
 - teacher provides sequence of examples of form $\langle x, c(x) \rangle$
- 3. If some random process (e.g., nature) proposes instances
 - instance x generated randomly, teacher provides c(x)

Sample Complexity: 3

Given:

- set of instances X
- \bullet set of hypotheses H
- set of possible target concepts C
- training instances generated by a fixed, unknown probability distribution \mathcal{D} over X

Learner observes a sequence D of training examples of form $\langle x, c(x) \rangle$, for some target concept $c \in C$

- instances x are drawn from distribution \mathcal{D}
- teacher provides target value c(x) for each

Learner must output a hypothesis h estimating c

• h is evaluated by its performance on subsequent instances drawn according to \mathcal{D}

Note: randomly drawn instances, noise-free classifications

True Error of a Hypothesis

Definition: The **true error** (denoted $error_{\mathcal{D}}(h)$) of hypothesis h with respect to target concept c and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D} .

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

Two Notions of Error

Training error of hypothesis h with respect to target concept c

• How often $h(x) \neq c(x)$ over training instances D

$$error_{\mathsf{D}}(h) \equiv \Pr_{x \in \mathsf{D}}[c(x) \neq h(x)] \equiv \frac{\sum_{x \in \mathsf{D}} \delta(c(x) \neq h(x))}{|\mathsf{D}|}$$

True error of hypothesis h with respect to c

training examples

• How often $h(x) \neq c(x)$ over future instances drawn at random from \mathcal{D}

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

Probability distribution P(x)

Two Notions of Error

Training error of hypothesis h with respect to target concept c

• How often $h(x) \neq c(x)$ over training instances D

Can we bound $error_{\mathcal{D}}(h)$ in terms of $error_{\mathcal{D}}(h)$

$$error_{\mathsf{D}}(h) \equiv \Pr_{x \in \mathsf{D}}[c(x) \neq h(x)] \equiv \frac{\sum_{x \in \mathsf{D}} \delta(c(x) \neq h(x))}{|\mathsf{D}|}$$

True error of hypothesis h with respect to c

training examples

• How often $h(x) \neq c(x)$ over future instances drawn at random from \mathcal{D}

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

Probability distribution P(x)

$$error_{\mathbb{D}}(h) \equiv \Pr_{x \in \mathbb{D}}[c(x) \neq h(x)] \equiv \frac{\sum_{x \in \mathbb{D}} \delta(c(x) \neq h(x))}{|\mathbb{D}|}$$
 training examples in terms of
$$error_{\mathbb{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$
 Probability distribution
$$\Pr(x)$$

if D was a set of examples drawn from \mathcal{D} and <u>independent</u> of h, then we could use standard statistical confidence intervals to determine that with 95% probability, $error_{\mathcal{D}}(h)$ lies in the interval:

$$error_{\mathbf{D}}(h) \pm 1.96 \sqrt{\frac{error_{\mathbf{D}}(h) (1 - error_{\mathbf{D}}(h))}{n}}$$

but D is the *training data* for h

Version Spaces

A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if h(x) = c(x) for each training example $\langle x, c(x) \rangle$ in D.

Target concept is the (usually unknown) boolean fn to be learned

 $c: X \to \{0,1\}$

$$Consistent(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \ h(x) = c(x)$$

The **version space**, $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

$$VS_{H,D} \equiv \{h \in H | Consistent(h, D)\}$$

Exhausting the Version Space

Hypothesis space H

(r = training error, error = true error)

Definition: The version space $VS_{H,D}$ is said to be ϵ -exhausted with respect to c and \mathcal{D} , if every hypothesis h in $VS_{H,D}$ has true error less than ϵ with respect to c and \mathcal{D} .

$$(\forall h \in VS_{H,D}) \ error_{\mathcal{D}}(h) < \epsilon$$

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \epsilon \leq 1$, the probability that the version space with respect to H and D is not ϵ -exhausted (with respect to c) is less than

 $|H|e^{-\epsilon m}$

How many examples will ϵ -exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \epsilon \leq 1$, the probability that the version space with respect to H and D is not ϵ -exhausted (with respect to c) is less than

 $|H|e^{-\epsilon m}$

Interesting! This bounds the probability that <u>any</u> consistent learner will output a hypothesis h with $error(h) \ge \epsilon$

Any(!) learner that outputs a hypothesis consistent with all training examples (i.e., an h contained in VS_{HD})

What it means

[Haussler, 1988]: probability that the version space is not ϵ -exhausted after m training examples is at most $|H|e^{-\epsilon m}$

$$\Pr[(\exists h \in H) s.t.(error_{train}(h) = 0) \land (error_{true}(h) > \epsilon)] \leq |H|e^{-\epsilon m}$$

Suppose we want this probability to be at most δ

1. How many training examples suffice?

$$m \ge \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

2. If $error_{train}(h) = 0$ then with probability at least (1- δ):

$$error_{true}(h) \le \frac{1}{m}(\ln|H| + \ln(1/\delta))$$

Example: H is Conjunction of Boolean Literals

 $m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$

Consider classification problem f:X→Y:

- instances: $X = \langle X_1 X_2 X_3 X_4 \rangle$ where each X_i is boolean
- learned hypotheses are rules of the form:
 - IF $\langle X_1 X_2 X_3 X_4 \rangle = \langle 0, ?, 1, ? \rangle$, THEN Y=1, ELSE Y=0
 - i.e., rules constrain any subset of the X_i

How many training examples *m* suffice to assure that with probability at least 0.9, *any* consistent learner will output a hypothesis with true error at most 0.05?

Example: H is Decision Tree with depth=2

 $m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$

Consider classification problem f:X→Y:

- instances: $X = \langle X_1 \dots X_N \rangle$ where each X_i is boolean
- learned hypotheses are decision trees of depth 2, using only two variables

How many training examples *m* suffice to assure that with probability at least 0.9, *any* consistent learner will output a hypothesis with true error at most 0.05?

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

Sufficient condition:

Holds if learner L
requires only a
polynomial number of
training examples, and
processing per
example is polynomial

Agnostic Learning

So far, assumed $c \in H$

Agnostic learning setting: don't assume $c \in H$

- What do we want then?
 - The hypothesis h that makes fewest errors on training data
- What is sample complexity in this case?

 $m \ge \frac{1}{2\epsilon^2} (\ln|H| + \ln(1/\delta))$

derived from Hoeffding bounds:

 $Pr[error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h) + \epsilon] \leq e^{-2m\epsilon^2}$ true error training error degree of overfitting

note ϵ here is the difference between the training error and true error

Additive Hoeffding Bounds – Agnostic Learning

• Given m independent coin flips of coin with true $Pr(heads) = \theta$ bound the error in the maximum likelihood estimate $\hat{\theta}$

$$\Pr[\theta > \widehat{\theta} + \epsilon] \le e^{-2m\epsilon^2}$$

Relevance to agnostic learning: for any <u>single</u> hypothesis h

$$\Pr[error_{true}(h) > error_{train}(h) + \epsilon] \le e^{-2m\epsilon^2}$$

But we must consider all hypotheses in H

$$\Pr[(\exists h \in H)error_{true}(h) > error_{train}(h) + \epsilon] \le |H|e^{-2m\epsilon^2}$$

• So, with probability at least $(1-\delta)$ every h satisfies

$$error_{true}(h) \le error_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$

General Hoeffding Bounds

• When estimating parameter θ inside [a,b] from m examples

$$P(|\widehat{\theta} - E[\widehat{\theta}]| > \epsilon) \le 2e^{\frac{-2m\epsilon^2}{(b-a)^2}}$$

• When estimating a probability θ is inside [0,1], so

$$P(|\widehat{\theta} - E[\widehat{\theta}]| > \epsilon) \le 2e^{-2m\epsilon^2}$$

And if we're interested in only one-sided error, then

$$P((E[\widehat{\theta}] - \widehat{\theta}) > \epsilon) \le e^{-2m\epsilon^2}$$

What if H is not finite?

- Can't use our result for finite H
- Need some other measure of complexity for H
 - Vapnik-Chervonenkis (VC) dimension!

Shattering a Set of Instances

labels each member of S positive or negative

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

Instance space X

The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

Instance space X

VC(H)=3

Sample Complexity based on VC dimension

How many randomly drawn examples suffice to ε -exhaust $VS_{H,D}$ with probability at least $(1-\delta)$?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably (1- δ) approximately (ϵ) correct

$$m \ge \frac{1}{\epsilon} (4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

Compare to our earlier results based on |H|:

$$m \ge \frac{1}{\epsilon}(\ln(1/\delta) + \ln|H|)$$

Consider X = <, want to learn $c: X \rightarrow \{0,1\}$

What is VC dimension of

H1: if
$$x > a$$
 then $y = 1$ else $y = 0$

H2: if
$$x > a$$
 then $y = 1$ else $y = 0$ or, if $x > a$ then $y = 0$ else $y = 1$

Closed intervals:

H3: if
$$a < x < b$$
 then $y = 1$ else $y = 0$

H4: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ or, if $a < x < b$ then $y = 0$ else $y = 1$

Consider X = <, want to learn $c: X \rightarrow \{0,1\}$

What is VC dimension of

Open intervals:

H1: if
$$x > a$$
 then $y = 1$ else $y = 0$ VC(H1)=1

H2: if
$$x > a$$
 then $y = 1$ else $y = 0$ VC(H2)=2 or, if $x > a$ then $y = 0$ else $y = 1$

Closed intervals:

H3: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ VC(H3)=2

H4: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ VC(H4)=3 or, if $a < x < b$ then $y = 0$ else $y = 1$

What is VC dimension of lines in a plane?

•
$$H_2 = \{ ((w_0 + w_1x_1 + w_2x_2) > 0 \rightarrow y=1) \}$$

What is VC dimension of

- $H_2 = \{ ((w_0 + w_1x_1 + w_2x_2) > 0 \rightarrow y=1) \}$ - $VC(H_2)=3$
- For H_n = linear separating hyperplanes in n dimensions, $VC(H_n)=n+1$

For any finite hypothesis space H, can you give an upper bound on VC(H) in terms of |H|? (hint: yes)

More VC Dimension Examples to Think About

- Logistic regression over n continuous features
 - Over n boolean features?
- Linear SVM over n continuous features
- Decision trees defined over n boolean features $F: \langle X_1, ... X_n \rangle \rightarrow Y$
- Decision trees of depth 2 defined over n features
- How about 1-nearest neighbor?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ε) correct?

$$m \ge \frac{1}{\epsilon} (4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

How tight is this bound?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ε) correct?

$$m \ge \frac{1}{\epsilon} (4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 1, any learner L, any $0 < \varepsilon < 1/8$, and any $0 < \delta < 0.01$. Then there exists a distribution \mathcal{D} and a target concept in C, such that if L observes fewer examples than

$$\max\left[rac{1}{\epsilon}\log(1/\delta),rac{VC(C)-1}{32\epsilon}
ight]$$

Then with probability at least δ , L outputs a hypothesis with $error_{\mathcal{D}}(h) > \epsilon$

Agnostic Learning: VC Bounds

[Schölkopf and Smola, 2002]

With probability at least $(1-\delta)$ every $h \in H$ satisfies

$$error_{true}(h) < error_{train}(h) + \sqrt{\frac{VC(H)(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}}$$

Structural Risk Minimization [Vapnik]

Which hypothesis space should we choose?

Bias / variance tradeoff

SRM: choose H to minimize bound on true error!

$$error_{true}(h) < error_{train}(h) + \sqrt{\frac{VC(H)(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}}$$

^{*} unfortunately a somewhat loose bound...