# Análise de sobrevivência em pacientes com mieloma múltiplo SME0821 - Análise de Sobrevivência - Atividade I

Francisco Rosa Dias de Miranda - 4402962 — Heitor Carvalho Pinheiro - 11833351 — Lua Nardi Quito - 11371270 — Vitor Pinho Iecks Ponce - 10785968 — Gusthavo Henrique Parra da Silva - 7086506 — Felipe Tadaki T. Ida - 11027629

## abril 2022

## Contents

| 1) Introdução          | 4  |
|------------------------|----|
| 2) Metodologia         | 4  |
| 3) Análise de dados    |    |
| K-M Algoritmo          |    |
| Algoritmo Nelson-Aalen | 1  |
| Tábua Atuarial         | 16 |
| 4) Conclusão           | 1  |
| 5) Bibliografia        | 1  |

## 1) Introdução

O mieloma múltiplo é o câncer que afeta aos plasmócitos, células da medula óssea responsáveis pela produção de anticorpos. Nos indivíduos acometidos, os plasmócitos são anormais e se multiplicam rapidamente, comprometendo a produção das outras células do sangue.

Foram obtidas medidas de expressão gênica em indivíduos com mieloma múltiplo, a partir de bases disponíveis no GEO (Id: GSE4581), um repositório de dados genômicos públicos do NCBI (National Center for Biotechnology Information). Nesse estudo, foram coletados dados de uma amostra de 256 pacientes, consistindo nas 11 colunas descritas abaixo:

| Variável                                                | Descrição                                                                                                                                                                                            |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| molecular_group<br>chr1q21_status<br>treatment<br>event | Subgrupos moleculares dos pacientes<br>Status de amplificação do cromossomo 1q21<br>Todos os pacientes receberam o tratamento TT2<br>Status de sobrevivência, $0 = \text{vivo}$ , $1 = \text{morto}$ |
| time<br>CCND1, CRIM1,<br>DEPDC1, IRF4                   | Tempo de sobrevivência, em meses  Nível de expressão dos respectivos genes                                                                                                                           |
| TP53, WHSC1                                             |                                                                                                                                                                                                      |

O conjunto de dados também encontra-se disponível no R através do comando survminer::myeloma.

```
library(tidyverse)
library(survival)
library(survminer)
library(pander)
library(biostat3)
# Conjunto de dados utilizado
df <- survminer::myeloma %>% rownames_to_column %>% tibble
# Substituindo o indicador de censura por um tipo booleano
df$event <- as.logical(df$event)</pre>
head(df)
```

```
## # A tibble: 6 x 12
     rowname molecular_group chr1q21_status treatment event time
                                                                     CCND1 CRIM1
##
##
     <chr>>
              <fct>
                              <fct>
                                             <fct>
                                                        <lgl> <dbl>
                                                                     <dbl> <dbl>
## 1 GSM50986 Cyclin D-1
                              3 copies
                                             TT2
                                                        FALSE 69.2 9908. 421.
## 2 GSM50988 Cyclin D-2
                              2 copies
                                                        FALSE
                                                               66.4 16699.
                                             TT2
## 3 GSM50989 MMSET
                              2 copies
                                             TT2
                                                        FALSE
                                                               66.5
                                                                      294. 618.
## 4 GSM50990 MMSET
                              3 copies
                                             TT2
                                                        TRUE
                                                               42.7
                                                                      242.
                                                                           11.9
                                                                      473.
## 5 GSM50991 MAF
                              <NA>
                                             TT2
                                                        FALSE
                                                               65
                                                                            38.8
## 6 GSM50992 Hyperdiploid
                              2 copies
                                             TT2
                                                        FALSE
                                                               65.2
                                                                      664.
                                                                            16.9
## # ... with 4 more variables: DEPDC1 <dbl>, IRF4 <dbl>, TP53 <dbl>, WHSC1 <dbl>
```

```
# tabela descritivas da variável resposta
pander(summary(df$time))
```

| Min. | 1st Qu. | Median | Mean  | 3rd Qu. | Max.  |
|------|---------|--------|-------|---------|-------|
| 0    | 23.7    | 33.05  | 34.43 | 45.47   | 69.24 |

## Expressão gênica versus tempo de censura



Foram plotadas em cada gráfico, as covariáveis de expressões gênicas em relação ao tempo de censura e a sua respectiva expressão gênica, no eixo X temos a raiz quadrada da contagem de pacientes e no eixo Y é o tempo (em meses).

Observa-se que não há aparente relação linear entre o tempo até o evento e a contagem do evento de interesse

```
## trocar por tempo vs raiz quadrada da contagem
    df %>% arrange(desc(time)) %>%
ggplot(aes(x=1:nrow(df), y=time)) +
    geom_segment( aes(x=1:nrow(df), xend=1:nrow(df), y=0, yend=time, color = event), alpha = 0.6) +
    geom_point( aes(color=event), size=4, alpha=0.4) +
    theme_light() +
    coord_flip() +
    theme(
        panel.grid.major.y = element_blank(),
        panel.border = element_blank(),
```

```
axis.ticks.y = element_blank(),
) +
labs(x = "Observação (i)",
    y = "Tempo",
    color = "Censura",
    title = "Expressão gênica versus tempo de censura")
```

## Expressão gênica versus tempo de censura



Podemos observar que as censuras presentes nesse conjunto de dados são do tipo aleatória e a direita. Além disso, o tratamento utilizado nesses pacientes foi sempre o mesmo (TT2), dessa forma, não havendo um grupo de controle.

#### 2) Metodologia

Nesse trabalho, nosso objetivo é a análise de dados de sobrevivência com censura a direita a partir de uma abordagem não-paramétrica, em que o interesse é identificar fatores de prognóstico para o mioma múltiplo a partir da amostra coletada.

Vamos usar os metodos K-M, tabela atuarial e Nelson-Aalen para analisar os dados nesse estudo.

Kaplan-Meier: O estimador de Kaplan-Meier, também conhecido como estimador do limite de produto, é uma estatística não paramétrica usada para estimar a função de sobrevivência a partir de dados de sobrevivência. Na pesquisa médica, muitas vezes é usado para medir a fração de pacientes que vivem por um determinado período de tempo após o tratamento. Em outros campos, os estimadores de Kaplan-Meier podem ser usados para medir o tempo que as pessoas permanecem desempregadas após uma perda de emprego ou o tempo até a falha de peças de máquinas.

Tabela Atuarial:

TODO: descrever os metodos utilizados

### 3) Análise de dados

Inicialmente, realizaremos a estimativa da Curva de Sobrevivência dos pacientes com Mieloma, utilizando o estimador de Kaplan-Meier.

#### K-M Algoritmo

```
km_fit <- survfit(Surv(time, event) ~ 1, data = df)</pre>
```

Definida a função de sobrevivência, podemos verificar a curva de sobrevivência considerando todas as covariáveis.



Podemos verificar os resultados da estimação completa, usando summary()

```
summary(km_fit, times = seq(0,70,5))
```

```
## Call: survfit(formula = Surv(time, event) ~ 1, data = df)
##
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
             256
##
       0
                        1
                             0.996 0.00390
                                                    0.988
                                                                  1.000
                                                    0.958
       5
             250
                        5
##
                             0.977 0.00946
                                                                  0.995
##
             239
                             0.934 0.01556
                                                    0.904
      10
                       11
                                                                  0.965
##
      15
             228
                       11
                             0.891 0.01951
                                                    0.853
                                                                  0.930
##
      20
             220
                        8
                             0.859 0.02173
                                                    0.818
                                                                  0.903
##
      25
             179
                        8
                             0.827 0.02378
                                                    0.781
                                                                  0.875
                        7
                             0.791 0.02628
##
      30
             149
                                                    0.741
                                                                  0.845
##
      35
             116
                        3
                             0.774 0.02758
                                                    0.722
                                                                  0.830
                             0.716 0.03225
##
      40
              94
                                                    0.655
                                                                  0.782
```

| ## | 45 | 69 | 2 | 0.698 0.03385 | 0.635 | 0.767 |
|----|----|----|---|---------------|-------|-------|
| ## | 50 | 50 | 3 | 0.663 0.03780 | 0.592 | 0.741 |
| ## | 55 | 27 | 2 | 0.632 0.04187 | 0.555 | 0.719 |
| ## | 60 | 10 | 1 | 0.597 0.05222 | 0.503 | 0.708 |
| ## | 65 | 6  | 0 | 0.597 0.05222 | 0.503 | 0.708 |

De início, percebemos que não há tempo mediano, uma vez que as observações se encerram antes de serem obtidas probabilidades de sobrevivência de 50%.

Sendo assim, os pacientes em estudo apresentariam uma probabilidade de sobrevivência de 60% após cinco anos.

**Determinando o** *Cutpoint* para cada expressão gênica Temos diferentes níveis de expressão para os genes CRIM1", "DEPDC1", "WHSC1", "CCND1", "IRF4" e "TP53". Entretanto, a categorização desses valores nos auxilia na comparação entre as variáveis. O R nos permite estimar os *cutpoints* (Pontos de corte) ideais, para cada variável numérica, permitindo reduzir os diversos valores a duas categorias: "high" e "low".

O teste utilizado é o Maximally Selected Rank statistics, que assume que um valor desconhecido de X, determina dois grupos distintos em Y. No nosso, caso, o teste busca encontrar o valor númerico do nível da expressão gênica que melhor separa os valores em dois grupos distintos.

#### Cutpoint ótimo de cada expressão

|                  | cutpoint | statistic |
|------------------|----------|-----------|
| CCND1            | 450.7    | 1.976     |
| $\mathbf{CRIM1}$ | 82.3     | 1.968     |
| DEPDC1           | 279.8    | 4.275     |
| IRF4             | 12053    | 2.178     |
| TP53             | 748.3    | 2.929     |
| WHSC1            | 3206     | 3.361     |

```
plot(res.cut, gex_cols, pallete = "npg")
```

Gráfico para cada "Cutpoint"

## \$CCND1









Definidos os melhores pontos que dividem os valores das expressões gênicas em dois grupos distintos, podemos enfim, categorizar nossas variáveis em dois grupos: high e low.

```
res.cat <- surv_categorize(res.cut)
pander(head(res.cat))</pre>
```

| time  | event | CCND1        | CRIM1 | DEPDC1 | IRF4         | TP53         | WHSC1        |
|-------|-------|--------------|-------|--------|--------------|--------------|--------------|
| 69.24 | FALSE | high         | high  | high   | high         | low          | low          |
| 66.43 | FALSE | $_{ m high}$ | low   | low    | $_{ m high}$ | $_{ m high}$ | low          |
| 66.5  | FALSE | low          | high  | low    | low          | high         | $_{ m high}$ |
| 42.67 | TRUE  | low          | low   | low    | low          | $_{ m high}$ | $_{ m high}$ |
| 65    | FALSE | high         | low   | low    | low          | low          | low          |
| 65.2  | FALSE | high         | low   | high   | high         | high         | low          |

Curvas de sobrevivência para cada expressão gênica Curvas de sobrevivência para cada expressão gênica, considerando os níveis low e high.

```
#defyning each fit for each gene
fit1 <- survfit(Surv(time, event) ~ CCND1, data = res.cat)
fit2 <- survfit(Surv(time, event) ~ CRIM1, data = res.cat)
fit3 <- survfit(Surv(time, event) ~ DEPDC1, data = res.cat)
fit4 <- survfit(Surv(time, event) ~ IRF4, data = res.cat)
fit5 <- survfit(Surv(time, event) ~ TP53, data = res.cat)
fit6 <- survfit(Surv(time, event) ~ WHSC1, data = res.cat)

#List of ggsurvplots
fit_list <- list(fit1,fit2,fit3,fit4,fit5,fit6)</pre>
```



Curvas de sobrevivência para os diferentes grupos moleculares



#### # summary(fit2)

O gráfico acima expõe todas as curvas de sobrevivência para os diferentes grupos moleculares.

Em nosso teste de hipótese temos duas hipóteses possíveis:

 $H_0$ : Não há diferença entre as curvas de sobrevivência para os diferentes grupos moleculares.  $H_1$  Há diferença entre as curvas de sobrevivência para os diferentes grupos moleculares.

Em nosso teste, utilizamos por padrão um  $\alpha=0.05$ , ou seja, nosso Intervalo de Confiança é de 95%.

O valor-p resposta é um valor global que apenas nos indica se há alguma diferença entre as curvas de sobrevivência. Como p=0.047<0.05, podemos rejeitar  $H_0$  e concluir que existe uma diferença entre os grupos moleculares.

Podemos realizar um Log-rank teste pareado entre os diferentes grupos moleculares, a fim de identificar quais grupos apresentam diferenças significativas de risco de morte.

```
fit <- survfit(Surv(time, event) ~ chr1q21_status, data = df)
# Pairwise survdiff</pre>
```

```
res <- pairwise_survdiff(Surv(time, event) ~ molecular_group,</pre>
     data = myeloma)
res
##
##
   Pairwise comparisons using Log-Rank test
##
## data: myeloma and molecular_group
##
##
                    Cyclin D-1 Cyclin D-2 Hyperdiploid Low bone disease MAF
## Cyclin D-2
                    0.723
                    0.943
                                0.723
## Hyperdiploid
## Low bone disease 0.723
                               0.988
                                           0.644
## MAF
                    0.644
                               0.447
                                           0.523
                                                         0.485
## MMSET
                    0.328
                               0.103
                                           0.103
                                                         0.103
                                                                          0.723
## Proliferation
                               0.038
                                           0.038
                                                         0.062
                                                                          0.485
                    0.103
##
                    MMSET
## Cyclin D-2
## Hyperdiploid
## Low bone disease -
## MAF
## MMSET
## Proliferation
                    0.527
## P value adjustment method: BH
```

De acordo com o teste Log-Rank entre os grupos moleculares, podemos concluir que existe diferença significativa entre os seguintes grupos moleculares:

- Proliferation e Cyclin D-2
- Proliferation e Hyperdiploid

```
ggsurvplot(
                            # survfit object with calculated statistics.
  fit,
  data = df, # data used to fit survival curves.
  risk.table = TRUE,
                         # show risk table.
  pval = TRUE,
                            # show p-value of log-rank test.
  conf.int = TRUE,
                            # show confidence intervals for
                            # point estimaes of survival curves.
                          # present narrower X axis, but not affect
  xlim = c(0,65),
                            # survival estimates.
  break.time.by = 5,
                        # break X axis in time intervals by 500.
   ggtheme = theme_minimal(), # customize plot and risk table with a theme.
 risk.table.y.text.col = T, # colour risk table text annotations.
 risk.table.y.text = FALSE # show bars instead of names in text annotations
                            # in legend of risk table
```





O p-valor do grafico acima é do teste log-rank, e como o valor deu menor que 0.05, podemos concluir que há evidência estatística de que as curvas de sobrevivência são diferentes para a amplificação do cromossomo \*chr1q21. Em seguida temos que fazer o teste 2 a 2 para essas curvas

```
# log rank 2 a 2
abc <- pairwise_survdiff(Surv(time, event) ~ chr1q21_status,</pre>
     data = myeloma)
abc
##
##
    Pairwise comparisons using Log-Rank test
##
##
  data: myeloma and chr1q21_status
##
##
             2 copies 3 copies
## 3 copies 0.025
## 4+ copies 0.193
                       0.508
##
## P value adjustment method: BH
```

Podemos concluir que existe diferença significativa entre os seguintes status do cromossomo: 2 copias e 3 copias (p-valor abaixo de 0.05)

#### Algoritmo Nelson-Aalen

```
na_fit <- survfit(coxph(Surv(time, event) ~ 1, data = df))
summary(na_fit, times = seq(0,70,5))</pre>
```

```
## Call: survfit(formula = coxph(Surv(time, event) ~ 1, data = df))
##
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
                             0.996 0.00389
##
       0
             256
                        1
                                                    0.989
                                                                   1.000
##
       5
             250
                       5
                             0.977 0.00944
                                                    0.958
                                                                  0.995
             239
                             0.934 0.01553
                                                    0.904
                                                                  0.965
##
      10
                       11
##
                             0.891 0.01947
                                                    0.853
      15
             228
                       11
                                                                  0.930
##
      20
             220
                        8
                             0.860 0.02169
                                                    0.818
                                                                  0.903
##
      25
             179
                        8
                             0.827 0.02373
                                                    0.782
                                                                  0.875
                        7
##
      30
             149
                             0.792 0.02623
                                                    0.742
                                                                  0.845
##
      35
             116
                        3
                             0.774 0.02752
                                                    0.722
                                                                  0.830
              94
                        8
                             0.717 0.03217
                                                                  0.782
##
      40
                                                    0.656
                        2
##
      45
              69
                             0.699 0.03376
                                                    0.636
                                                                  0.768
                        3
##
      50
              50
                             0.664 0.03767
                                                    0.594
                                                                  0.742
##
      55
              27
                        2
                             0.633 0.04168
                                                    0.556
                                                                  0.720
##
      60
              10
                        1
                             0.599 0.05159
                                                    0.506
                                                                   0.709
##
                        0
                             0.599 0.05159
                                                    0.506
                                                                  0.709
      65
               6
```

plot(na\_fit, conf.int=T, xlab="Tempo (em meses)", ylab="S(t) estimada", bty="n")



#### Tábua Atuarial

```
lifetab2(Surv(time, event) ~ 1, data = df, breaks = seq(0,70,5))
```

```
##
          tstart tstop nsubs nlost nrisk nevent
                                                                     pdf
                                                                               hazard
                                                       surv
## 0-5
               0
                      5
                          256
                                  0 256.0
                                                6 1.0000000 0.004687500 0.004743083
                                  0 250.0
## 5-10
               5
                     10
                          250
                                               11 0.9765625 0.008593750 0.008997955
## 10-15
                          239
                                  0 239.0
                                               11 0.9335938 0.008593750 0.009421842
              10
                     15
## 15-20
              15
                     20
                          228
                                  0 228.0
                                                8 0.8906250 0.006250000 0.007142857
## 20-25
              20
                     25
                          220
                                 33 203.5
                                                8 0.8593750 0.006756757 0.008020050
                                                7 0.8255912 0.006900464 0.008536585
## 25-30
              25
                     30
                          179
                                 23 167.5
## 30-35
              30
                     35
                          149
                                 30 134.0
                                                3 0.7910889 0.003542189 0.004528302
## 35-40
              35
                     40
                          116
                                 14 109.0
                                                8 0.7733780 0.011352337 0.015238095
```

```
82.5
                                               2 0.7166163 0.003474503 0.004907975
## 40-45
              40
                    45
                          94
                                23
## 45-50
              45
                    50
                          69
                                16
                                    61.0
                                               3 0.6992438 0.006877807 0.010084034
## 50-55
                                    39.5
                                               2 0.6648547 0.006732706 0.010389610
              50
                    55
                          50
                                21
## 55-60
                                               1 0.6311912 0.006644118 0.010810811
              55
                    60
                          27
                                16
                                    19.0
## 60-65
              60
                    65
                          10
                                 4
                                     8.0
                                               0 0.5979706 0.000000000 0.000000000
## 65-70
              65
                    70
                                  6
                                     3.0
                                               0 0.5979706 0.000000000 0.000000000
                           6
## 70-Inf
              70
                           0
                                     0.0
                                               0 0.5979706
                   Inf
                                                                    NΑ
                           se.pdf
##
              se.surv
                                     se.hazard
## 0-5
          0.000000000 0.001891105 0.001936219
## 5-10
          0.009455526 0.002534833 0.002712299
## 10-15 0.015561930 0.002534833 0.002840004
## 15-20 0.019506821 0.002174908 0.002524979
## 20-25 0.021727144 0.002347671 0.002834946
## 25-30 0.023932025 0.002560874 0.003225791
## 30-35 0.026245434 0.002025474 0.002614249
## 35-40 0.027577954 0.003884710 0.005383570
## 40-45 0.032034021 0.002431847 0.003470201
## 45-50 0.033530156 0.003886048 0.005820169
## 50-55 0.037299082 0.004654004 0.007344085
## 55-60 0.042330039 0.006482242 0.010806862
## 60-65 0.051514121
                              NaN
                                           NaN
## 65-70 0.051514121
                              NaN
                                           NaN
## 70-Inf 0.051514121
                               NA
                                            NA
```

#### 4) Conclusão

TODO: escrever a conclusão

#### 5) Bibliografia

```
citation("survminer")
##
```

```
## To cite package 'survminer' in publications use:
##
     Kassambara A, Kosinski M, Biecek P (2021). _survminer: Drawing
##
     Survival Curves using 'ggplot2'_. R package version 0.4.9,
##
##
     <https://CRAN.R-project.org/package=survminer>.
##
## A BibTeX entry for LaTeX users is
##
##
     @Manual{,
##
       title = {survminer: Drawing Survival Curves using 'ggplot2'},
##
       author = {Alboukadel Kassambara and Marcin Kosinski and Przemyslaw Biecek},
##
       year = \{2021\},\
##
       note = {R package version 0.4.9},
##
       url = {https://CRAN.R-project.org/package=survminer},
##
```