

Технологический стек машинного обучения

Шпилевский Яромир

Ведущий разработчик First Line Software

Agenda

- Вычислительная модель нейрона.
- CPU и архитектура Фон Неймана.
- Классификация Флинна. SIMD подход. GPU и TPU.
- Нейропроцессоры.

Зачем

- Всегда нужно понимать программно-аппаратный стек технологии, с которой работаете.
 - Для отладки.
 - Для анализа производительности.
 - С машинным обучением особенно актуально ресурсоёмкие задачи, приходится думать об эффективности использования ресурсов.

• ...

Не совсем нейрон

Следует помнить, что мы оперируем не совсем нейроном, а его вычислительной моделью.

- По сути происходит моделирование работы одной вычислительной архитектуры (нейронных сетей) с помощью другой (компьютера).
 - Который, по большому счету, является всё той же архитектурой фон Неймана [1].

Почему важна параллельность

• В вычислительной модели нейрона многие операции можно производить параллельно.

• Благодаря этому можно получить большой прирост производительности.

Central Processing Unit (CPU)

- Есть несколько архитектурных принципов машины фон Неймана [1].
 - <...>
 - Программное управление. <...> Команды выполняются последовательно друг за другом. <...>
 - Single Instruction Single Data (SISD) по классификации Флинна. [2]
 - <...>
- Попытка распараллелить расчет модели на современных многоядерных процессорах даст относительно небольшой выигрыш (Multiple Instruction Multiple Data MIMD).
 - х2?, х4?, х8? (в идеале, в случае отсутствия взаимного негативного влияния)
 - Реально меньше, из-за конфликтов между ядрами.
 - Взаимное положительное влияние тем более вряд ли. 😊
- Нужна ли нам полная независимость вычислительных ядер?

Graphics Processing Unit (GPU) в ML. Предпосылки

- В задачах компьютерной графики есть потребность в операциях над большими массивами данных.
- При этом это **одна** операция, которая оперирует большим массивом данных.
 - Например, сложить две матрицы.
- Почему бы не реализовать сопроцессор с SIMD архитектурой?
 - В дополнение к архитектуре фон Неймана.
- SIMD обработка очень выручает и в задачах машинного обучения.

GPU. SIMD обработка

- Одна инструкция, обрабатывающая множественные данные.
 - За один процессорный цикл.

GPU. Технологии (1)

- NVIDIA CUDA (Compute Unified Device Architecture) [3]
 - Проприетарная технология NVIDIA.
 - Наиболее популярная технология.
- OpenCL (Open Computing Language) [4]
 - Открытый стандарт. Разрабатывается Khronos Group (организация, разрабатывающая стандарты OpenGL и Vulkan).
 - Получил меньшее распространение.
- AMD ROCm (Radeon Open Compute Module) [5]
 - Открытый стандарт. При этом вкладываются ресурсы коммерческой компании.
 - Пока небольшое распространение, но активно набирает большую долю рынка.
 - Интересный SDK. Компиляторы, как под CPU, так и под GPU, реализованы, как бекенд к LLVM.

GPU. Технологии (2)

- Intel Habana
 - Проприетарная технология Intel.
 - Пока небольшое распространение, но активно набирает большую долю рынка.
 - SynapseAl Software собственный стек системного ПО. [6]
- НТЦ «Модуль»
 - Проприетарная технология НТЦ «Модуль».
 - Пока небольшое распространение, но активно набирает большую долю рынка.
 - Система-на-кристалле (System-on-Chip): ARM процессоры + ядра тензорных сопроцессоров.
 - Neuromatrix Deep Learning SDK. <a>T

GPU. Технологии (3)

- Tenstorrent. [8]
 - Проприетарная технология.
 - Пока небольшое распространение.
 - Система-на-кристалле (System-on-Chip): RISC-V процессоры + ядра тензорных сопроцессоров.
 - RISC-V: архитектура набора инструкций (Instruction Set Architecture (ISA)) со свободной спецификацией (в отличие от ARM).

GPU. Технологии. О рынке

- Большой рост применений АІ. Рынок растёт.
- Рынок молодой и ещё формирующийся:
 - Возможно возникновение новых игроков.
 - Лидерство существующих игроков не догма.
 - Возможно, кто-нибудь найдёт технологическую особенность, которая изменит всё.

Tensor Processing Unit (TPU)

- Специализированный сопроцессор для обработки тензоров.
- В большинстве случаев быстрее GPU.
- TPU сам по себе общий термин, но чаще всего подразумевается конкретная реализация от Google.
- TPU специально проектировались, как аппаратные ускорители для платформы Tensorflow.
- Проприетарная технология Google.
 - TPU доступен, как аппаратный ускоритель для Tensorflow при работе в Colab.
 - TPU доступен в виде Compute as a Service с REST API [9] в облаке Google.
 - Нет открытого TPU API, аналога CUDA или OpenCL.

Tensor Processing Unit (TPU). Use Cases

User ML Model

Tensorflow

TPU Hardware

User ML code

REST API

Google Cloud TPU API

TPU Hardware

Нейропроцессоры, они же нейроморфные процессоры

- Даже TPU это всё ещё аппаратный ускоритель для расчета модели нейрона, но не нейросетевая структура, реализованная непосредственно «в железе».
- Противоречие:
 - Обычно аппаратно реализуют «строительные кубики» той или иной степени абстракции.
 - Насколько оправдано аппаратно реализовывать всю нейронную сеть, решающую специфичную задачу?
 - Цикл разработки микросхемы от логического дизайна до фотолитографии может достигать 5 лет.
- Довольно давно предпринимаются попытки реализовать именно нейропроцессор / нейроморфный (в форме нейронов) процессор.
- Работы всё ещё на ранних исследовательских стадиях, готовых продуктов нет.

Нейропроцессоры. Ключевые слова

- Ключевые слова:
 - Neural Processor Unit (NPU)
 - Neural Network Processor (NNP)
 - Intelligence Processing Unit (IPU)
 - Vision Processing Unit (VPU)
 - Graph Processing Unit (GPU) (не тот же самый GPU ☺)

Нейроморфный процессор Алтай (AltAl)

- Разработчик Мотив Нейроморфные Технологии. [10] [11]
- Физически воссозданы нейроны и синапсы.

Сравнение

CPU

- + Можно подключить большое количество RAM. Может быть хорошим вариантом для моделей с большим количеством данных и относительно небольшой сложностью обучения.
- - Низкая параллельность.

GPU

- + Высокая SIMD параллельность.
- - Часто требуется, чтобы модель умещалась в GRAM, а её меньше, чем RAM.

• TPU

- + Ещё большая SIMD параллельность, «GPU на стероидах». ©
- - Подробности аппаратной архитектуры часто скрыты. Не понятно, с какими характеристиками модели имеет смысл поэкспериментировать.

Программно-аппаратный стек

• На протяжении курса будем периодически возвращаться к этой картине.

ML Model

CPU (x86_64: SSE, AVX) (ARM: NEON, NVDLA) CUDA API

OpenCL

ROCm API

SynapseAl

NeuroMatrix API

CUDA Capability

NVIDIA GPU

AMD GPU

Intel Habana Gaudi Модуль CPU или SoC (CPU + GPU)

Ссылки (1)

- 1) Архитектура фон Неймана
 - https://inf1.info/machineneumann
- 2) Классификация Флинна
 - https://sites.google.com/site/exemsenko/4-klassifikacia-vycislitelnyhsetej-parallelnoj-obrabotki-sisd-simd-mimd-misd-konvejery-kespamat
- 3) NVIDIA CUDA
 - https://developer.nvidia.com/cuda-toolkit
- 4) OpenCL
 - https://www.khronos.org/opencl/
- 5) AMD ROCm
 - https://rocmdocs.amd.com/en/latest/

Ссылки (2)

- 6) SynapseAl Software
 - https://docs.habana.ai/en/latest/Gaudi_Overview/SynapseAl_Software_Suite.html
- 7) Neuromatrix Deep Learning SDK
 - https://www.module.ru/directions/iskusstvennyj-intellekt/neuromatrix-deep-learning
- 8) Tenstorrent
 - https://tenstorrent.com/grayskull/
- 9) Google Cloud TPU API
 - https://cloud.google.com/tpu/docs/reference/rest
- 10) Нейроморфный процессор «AltAI»
 - https://motivnt.ru/neurochip-altai/
- 11) Нейроморфный процессор «AltAI». Выступление Валерия Канглера
 - https://www.youtube.com/watch?v=GpdAzK3rRvw

Резюме

- Рассмотрели вычислительную модель нейрона.
- Рассмотрели её вычисление на СРU.
- Рассмотрели, как SIMD подход позволяет добавить производительности. Рассмотрели GPU и TPU.
- Рассмотрели нейропроцессоры, их перспективность и проблемы.

Вопросы для самоконтроля

- В чём сложность выполнения вычислительной модели нейрона?
- За счёт чего достигается прирост производительности при SIMD подходе?
- В чём принципиальное отличие нейропроцессоров?
- Какое противоречие есть у этого подхода?

Спасибо!

