

Modulations analogiques de porteuse AM FM PM

Filière SMP - Cycle Licence - Semestre 6

Qu'est ce que la modulation ?

- La modulation consiste à transformer un signal sinusoïdal connu appelé porteuse par le signal à transmettre.
- C'est la variation d'une grandeur caractéristique la porteuse (Amplitude, Fréquence ou Phase) en fonction du signal informatif.
- Elle translate le spectre en bande de base vers une fréquence plus élevée.

Exemple

Signal informatif (Modulant)

Principe de base

Le signal à transmettre est par conséquent intégré dans une **onde** sinusoïdale de haute fréquence appelée porteuse :

$$u_{p}(t) = U_{p} \cdot \cos(\omega_{p} \cdot t + \varphi_{p})$$

→ Les paramètres modifiables sont :

- \rightarrow l'amplitude : U_p
- \rightarrow la fréquence : $f_p = \frac{\omega_p}{2\pi}$
- ightarrow la phase : $\boldsymbol{\varphi}_{p}$

- Modulation d'amplitude AM
- Modulation de fréquence FM
- Modulation de phase **PM**

Modulation AM

- Première modulation employée en Télécommunication
- L'élément de base est un multiplieur (mélangeur) :

Avec en entrée $u_1(t)=u_0$ $_1\cos(\omega_1t)$ et $u_2(t)=u_0$ $_2\cos(\omega_2t)$, on obtient en sortie :

$$v(t) = K.u_1(t).u_2(t)$$

$$v(t) = K.\frac{u_0 u_0 2}{2} [\cos((\omega_1 + \omega_2).t) + \cos((\omega_1 - \omega_2).t)]$$

Modulation AM

Analyse fréquentielle des signaux :

Définition : Le spectre d'un signal est la représentation fréquentielle du signal.

$$u_1(t) = u_{0\ 1}\cos(\omega_1 t)$$
 et $u_2(t) = u_{0\ 2}\cos(\omega_2 t)$

Signal modulant basse fréquence

$$\mathbf{u}_{\mathbf{m}}(\mathbf{t}) = \mathbf{U}_{\mathbf{m}} \cdot \cos(2\pi \mathbf{f}_{\mathbf{m}} \cdot \mathbf{t})$$

Signal porteur haute fréquence

$$\mathbf{u}_{\mathbf{p}}(t) = \mathbf{U}_{\mathbf{p}} \cdot \cos(2\pi \mathbf{f}_{\mathbf{p}} \cdot t)$$

Signal modulé AM-DBAP

$$u_s(t) = A (1 + m \cos(2\pi f_m t)) \times \cos(2\pi f_p t)$$

 $modulant u_m(t) = U_m \cdot \cos(2\pi f_m \cdot t)$

 $porteur u_p(t) = U_p \cdot \cos(2\pi f_p \cdot t)$

Signal modulé AM-DBAP:

Taux de modulation :
$$m = \frac{U_m}{U_0} = \frac{S_{max} - Smin}{S_{max} + Smin}$$

Condition de bonne modulation : m < 1

<u>Démodulateur AM-DBAP</u>:

Spectre du signal modulé AM-DBAP:

$$u_s(t) = \frac{A \cdot m}{2} \cos(2\pi (\mathbf{f_p} + \mathbf{f_m})t) + \frac{A \cdot m}{2} \cos(2\pi (\mathbf{f_p} - \mathbf{f_m})t) + A\cos(2\pi \mathbf{f_p}t)$$

$$B = 2 f_m$$

Inconvénient de la modulation AM-DBAP:

• Transporte la plus grande partie de son énergie dans la porteuse alors que l'information utile se trouve contenue dans les bandes latérales

Solution d'économie en énergie : supprimer la porteuse lors de l'émission.

Modulation AM sans porteuse

Modulateur AM-DBSP:

$$\mathbf{u}_{s}(\mathbf{t}) = \mathbf{k} \times U_{m} \cos(2\pi f_{m} t) \times U_{p} \cos(2\pi f_{p} t)$$

$$\mathbf{u}_{\mathbf{p}}(t) = \mathbf{U}_{\mathbf{p}} \cdot \cos(2\pi \mathbf{f}_{\mathbf{p}} \cdot t)$$

Modulation AM sans porteuse

<u>Démodulateur AM-DBSP</u>:

(Boucle à verrouillage de phase PLL)

Modulation AM sans porteuse

Spectre du signal modulé AM-DBSP :

→ L'information transmise est redondante car une seule bande suffit.

Modulation AM sans porteuse à bande latérale unique

Modulateur AM-BLU:

Démodulateur AM-BLU:

Le signal BLU reçu est multiplié par $U_p'\cos(2\pi f_p t)$ suivi par un filtrage passe bas pour éliminer la composante haute fréquence en $2f_p$.

On regroupe sous le terme modulation angulaire :

la Modulation de Fréquence FM et la Modulation de Phase PM.

Pour un signal modulant $u_m(t)$:

- En modulation de phase :

$$\theta_i(t) = 2\pi f_p t + kp u_m(t) \qquad \text{et} \qquad f_i(t) = \frac{1}{2\pi} \frac{d\theta_i(t)}{dt} = f_p + \frac{k_p}{2\pi} \frac{du_m(t)}{dt}$$

 k_p est le coefficient de proportionnalité du modulateur (en rd/V) .

- En modulation de fréquence :

$$\theta_i(t) = 2\pi f_p t + 2\pi k_f \int_0^t u_m(x) dx$$
 et $f_i(t) = f_p + k_f u_m(t)$

k est la sensibilité du modulateur (en Hz/V).

Elle consiste à faire varier l'argument d'une **onde porteuse** sinusoïdale en fonction du message à transmettre $u_m(t)$:

$$u_{p}(t) = U_{p} \cos s(\omega_{p} t + \varphi_{p}) = U_{p} \cos(\theta_{i}(t))$$

où $\boldsymbol{U}_{\mathrm{p}}$ et $\boldsymbol{\omega}_{\mathrm{p}}$ sont des constantes.

- la phase instantanée de $u_p(t)$: $\theta_i(t) = \omega_p t + \varphi_p(t)$
- la fréquence instantanée de $u_p(t)$: $f_i(t) = \frac{1}{2\pi} \frac{d\theta_i(t)}{dt} = f_p + \frac{1}{2\pi} \frac{d\varphi_p(t)}{dt}$
- ightharpoonup La fonction $\varphi_p(t)$ est appelée excursion (variation) de phase instantanée.
- ▶ La fonction $\frac{1}{2\pi} \frac{d\varphi_p(t)}{dt}$ est appelée excursion de fréquence instantanée.

La modulation de fréquence et la modulation de phase présentent des caractéristiques analogues et on peut facilement déduire l'une à partir de l'autre :

On va s'intéresser dans la suite à la modulation de fréquence en conséquence.

La modulation de fréquence :

- → Générer un signal FM consiste à transformer des variations de tension en variations de fréquence (VCO : Oscillateur Commandé en Tension).
- o Cette transformation, tension $u \rightarrow fréquence\ f$, doit être linéaire :

$$f(u) = f_p + \alpha u$$

o Si u=0 alors f=fp: le modulateur FM délivre la porteuse non modulée, α est appelé sensibilité du modulateur (en Hz/V) et mesure la variation de fréquence Δf produite par une variation de tension.

Génération d'un signal FM:

Spectre d'un signal FM : Fonctions de Bessel $J_n(\beta)$

On obtient un spectre de raies symétrique par rapport à f_p et avec un écart de f_m entre chaque paire de raies successives. On a : $|J_n| = |J_{-n}|$

Spectre d'un signal FM : approximation

- On remarque qu'en théorie le spectre est infini (nombre de raies infini).
- On cherche souvent à optimiser la largeur du spectre transmis pour qu'il soit adapté à la largeur du support de transmission.
- ▶ La transmission d'un signal modulé en fréquence nécessite alors une plage de fréquence de largeur :

$$B \approx 2(\beta + 1)f_m \approx 2(\Delta f + f_m)$$

La largeur de bande B s'appelle Bande de Carson. On montre qu'elle conserve 98 % de la puissance du signal modulé.

Démodulation d'u signal FM:

→ Discriminateur :

Démodulation d'u signal FM:

→ La boucle à verrouillage de phase (PLL : Phase Locked Loop)

Comparaison : modulation d'amplitude et de fréquence

- → La modulation de fréquence présente l'avantage par rapport à la modulation d'amplitude d'être beaucoup mois sensible aux parasites électromagnétiques.
- → De plus en FM toute l'énergie transmise contient l'information alors qu'en AM les deux raies latérales sont redondantes et la porteuse ne contient pas d'information.
- → Par contre les circuits de modulation et de démodulation sont en général plus compliqués en FM qu'en AM.

Exercices d'application

→ Retrouver l'équation du signal modulé AM-DBAP en explicitant A et m :

$$u_s(t) = A \left(1 + m \cos(2\pi f_m t) \right) \times \cos(2\pi f_p t)$$

Signal modulant: $u_m(t) = U_m \cdot \cos(2\pi f_m \cdot t)$

Signal porteur: $u_p(t) = U_p \cdot \cos(2\pi f_p \cdot t)$

Composante continue : U_0

 \Rightarrow Exprimer les fréquences contenues dans le signal modulé $\mathbf{u}_{\mathbf{s}}(\mathbf{t})$.