EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 1

Varianta 1

Fizică

Subiectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	
	Soluție / schiță de rezolvare
II.1.a.	$E = Ir + I_{bec}R$
	$n \cdot I_{bec} = I$
	R ăspuns: $n=21$
b.	$W = I^2 R_e t$
	$R_e = \frac{R}{n}$
	Răspuns: $W = 252 \text{ kJ}$
C.	$P = I^2 R_{ext}$
	$P = P_{\text{max}}$ pentru $r = R_{\text{ext}}$
	I = E/(2r)
	$P_{\text{max}} = E^2 / (4r)$
	Răspuns: $P_{\text{max}} = 72 \text{ W}$
II.2.a.	$\Phi = B \cdot S \cdot \cos(90^{\circ} - \alpha)$
	Răspuns: $\Phi = 18\pi \cdot 10^{-5} Wb = 56,52 \cdot 10^{-5} Wb$
b.	$e = -\frac{\Delta\Phi}{\Delta t}$
	$e = -S\cos(90^{\circ} - \alpha)\frac{\Delta B}{\Delta t} = ct.$
	Răspuns: $e = 18\pi \cdot 10^{-6} \ V = 56,52 \cdot 10^{-6} \ V$
C.	$q = i \cdot t_2$
	i = e/R
	Răspuns: $q = 904,32 \cdot 10^{-6} C$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 2

Fizică

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr item	Soluție / schiță de rezolvare
II.1.a.	Valoarea intensității curentului prin conductorul 2 când întrerupătorul este închis
	$I_2 = 0$ Valoarea intensității curentului prin conductorul 2 când întrerupătorul este deschis
	$I_2 = \frac{E}{R_1 + R_2}$
	Răspuns: $\Delta I_2 = 1.5 A$
b.	$W_1 = I_1^2 R_1 t$
	$I_1 = \frac{E}{R_1}$
	$\textbf{R\"{a}spuns:} W_1 = 5400 J$
C.	explicație
II.2.a.	$\overrightarrow{B_1} + \overrightarrow{B}_2 = 0$
	$B_1 = \frac{\mu I_1}{2\pi(2r)}$
	$B_2 = \frac{\mu I_2}{2r}$
	Răspuns: $\frac{I_1}{I_2} = 2\pi$
b.	definiție enunț
C.	$e = -\frac{\Delta\Phi}{\Delta t}$
	$e = -\pi r^2 \cdot \frac{dB}{dt}$
	Răspuns: $e = 12,56 \cdot mV$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 3

Fizică

Subiectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Calutia I aglită de vezalueve
	Soluție / schiță de rezolvare
II.1.a.	$R_{23} = 6\Omega$
	$R_{_{123}}=3\Omega$
	$R_{1234} = 8,8\Omega$
	$R_{ m echiv} = 9\Omega$
	$i = E/(r + R_{1234}) = E/R_{echiv}$
	Răspuns: $i = 2 A$
b.	$i_1 = i/2$
	$i_1 = 1A$
	$W = R_1 \cdot i_1^2 \cdot \tau$
	R `aspuns: W = 1800 J
C.	$i_{23} = i/2$
	$i_{23} = 1A$
	$U_{ab} = R_2 \cdot i_{23}$
	$Răspuns: U_{ab} = 2V$
II.2.a.	$\vec{B} = \vec{B}_1 + \vec{B}_2$
	$B_1 = B_2 = \mu_0 \frac{I}{\pi \cdot B}$
	$\pi \cdot H$ $B = B_1 - B_2$
	Răspuns: $B = 0$
b.	$F/\ell = \mu_0 I^2 / (4\pi R)$
	Răspuns: $F/\ell = 10^{-6} N/m$
C.	$\vec{B}_{total} = \vec{B}_{1O} + \vec{B}_{2O} + \vec{B}_{spira}$
	$B_{spira} = \mu_0 \frac{I}{2 \cdot R}$
	$B_{1O} = B_{2O} = \mu_0 \frac{I}{\pi \cdot R}$
	$B_{total} = B_{spirrea}$
	$R \text{ ``aspuns: } B_{total} = 6,28 \times 10^{-6} T$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 3

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 4

Fizică

Subiectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
	Colație / Collița de lezelvale
II.1.a.	$R_{1p} = R_1/2$
	$R_{2p} = R_2/3$
	$R_e = R_{1p} + R_{2p}$
	Răspuns: $R_e = 22\Omega$
b.	$I = \frac{E_1 + E_2}{R_e + r_1 + r_2}$
	$R_e + r_1 + r_2$
	Răspuns: $I = 0.6A$
C.	$U_{AB} = -E_1 + I \cdot (R_{1p} + r_1) = E_2 - I \cdot (R_{2p} + r_2)$
	Răspuns: $U_{AB} = 1.2 \text{ V}$
II.2.a.	$m \cdot g = B \cdot I \cdot L$
	I = E/R
	$B = m \cdot g \cdot R / E \cdot L$
	Răspuns: $B = 0.9T$
b.	$e = B \cdot L \cdot V$
	I = e/R
	$I = B \cdot L \cdot v / R$ Răspuns: $I = 4,5 mA$
C.	$m \cdot g = B \cdot I \cdot L$
C.	$H \cdot g = B \cdot I \cdot L$ $e = B \cdot L \cdot V_{max}$
	$I = B \cdot L \cdot V_{max} / R$
	$V_{max} = m \cdot g \cdot R / B^2 \cdot L^2$
	Răspuns: $V_{max} = 20 \text{m/s}$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 4

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 5

Fizică

Subiectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	
	Soluție / schiță de rezolvare
II.1.a.	$\Phi = NBS$
	$\Phi = NB\pi r^2$
	Răspuns: $\Phi = 15.7t(Wb)$
b.	$e = -\frac{d\Phi}{dt}$
	dt 2 / 2
	$e = -\frac{SdB}{dt}$
	$a\tau$ Răspuns: $e = -15,7V$
C.	După secunda a 10-a B nu mai variază , deci fenomenul de inducție electromagnetică
	încetează
	$-\frac{d\Phi}{dt}=0$
	GI.
II.2.a.	R ăspuns: $e = 0$ Teoremele lui Khirchhoff
II.Z.a.	
	$\frac{-1}{r_1} + \frac{-2}{r_2}$
	$I = \frac{\frac{E_1}{r_1} + \frac{E_2}{r_2}}{1 + R\left(\frac{1}{r_1} + \frac{1}{r_2}\right)}$
	$r_1 + r_1 - \frac{r_2}{r_1}$
	Răspuns: $I = \frac{4}{3}A = 1,(3)A$
b.	$\frac{E_1}{E_2}$
	$E_0 = \frac{r_1 \cdot r_2}{r_1 \cdot r_2}$
	$\frac{1}{x} + \frac{1}{x}$
	1 12
	$r_e = \frac{1}{1 - 1}$
	$E_{e} = \frac{\frac{r_{1}}{r_{1}} + \frac{r_{2}}{r_{2}}}{\frac{1}{r_{1}} + \frac{1}{r_{2}}}$ $r_{e} = \frac{1}{\frac{1}{r_{1}} + \frac{1}{r_{2}}}$
	Răspuns: $E_e = 4V$, $r_e = 2\Omega$
C.	$W = I^2 \cdot (R + r_e) \cdot t$
	R ăspuns: $W = 248,(8)J$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 6

Fizică

Subiectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$R = (\rho \ell)/s$
,	Răspuns: $R = 10 \Omega$
b.	I = E/R
	Răspuns: $I = 2,4$ A
C.	$d' = \frac{\ell}{2} - d = 0,2m$
	$R' = \frac{\rho}{s} \cdot \frac{d'(2d + d')}{\ell}, R'' = \frac{\rho}{s} \cdot \frac{\ell}{4}$
	$Q' = E^2 / R', \ Q'' = E^2 / R''$
	$\frac{Q'}{Q''} = \frac{R''}{R'} = \frac{\ell^2}{4d'(2d+d')}$
	Răspuns: $\frac{Q'}{Q''} = \frac{25}{16} \cong 1,56$
II.2.a.	$ \begin{array}{c c} \overrightarrow{B_{M}} & \bullet & \bullet \\ M & \rightarrow & N \end{array} $ $ \begin{array}{c c} B = \frac{\mu_0 I}{2\pi r} \\ \overrightarrow{B_0} = \overrightarrow{B_M} + \overrightarrow{B_N} $
l.	Răspuns:Inducția magnetică este nulă în punctul O(0, 0).
b.	Figură corectă $B_{1} = B_{2} = \frac{\mu_{0}I}{2\pi r_{1}}$ $B = B_{1}\sqrt{2} = \frac{\mu_{0}I}{2\pi a}$
	Răspuns : direcție-paralelă cu OX, sensul –conform figurii, mărimea $B = 2 \cdot 10^{-5} T$
C.	$B_3 = (\mu_0 I)/(2r)$
	$B' = \sqrt{B^2 + B_3^2}$
	Răspuns: $B' = 2\sqrt{2} \cdot 10^{-5} T = 2,82 \cdot 10^{-5} T$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 6

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 7

Fizică

Subiectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	
	Soluție / schiță de rezolvare
II.1.a.	$R_{23} = R_2 R_3 (R_2 + R_3)$
	$R_{AB} = fR$
	$R_e = R_1 + R_2 R_3 / (R_2 + R_3) + fR$
	Răspuns: $R_e = 6.5\Omega$
b.	$I = (E_1 - E_2)/(R_e + r_1 + r_2)$
	Răspuns: I = 2 A
C.	R = p I / S
	$I=\pi R d^2/4 \rho$
	Răspuns: I = 5 cm
II.2.a.	l = l ₁ + l ₂ ;
	$E_1 = IR + I_1 r_1$; $E_2 = IR + I_2 r_2$;
	$I = (E_1 r_2 + E_2 r_1) / [r_1 r_2 + R(r_1 + r_2)]$
	Răspuns: I = 1 A
b.	$Q = U_{CD} \cdot I \cdot t = R \cdot I^2 \cdot t$
	Răspuns: Q = 4350 J
C.	$F = BII \sin \alpha = BII$
	Răspuns:F = 1 mN

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările Varianta 7

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 8

Varianta 8

Fizică

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$I_A = \frac{E}{R_3 + r + r_A}$
	Răspuns : $I_A = 1,25 A$
b.	$P_i = I_A^2 R_3$
	$I_3 = \frac{1}{2} \cdot \frac{E}{r + r_A + R_3/2}$
	$f = \frac{P_f - P_i}{P_i} = \frac{I_3^2}{I_A^2} - 1$
	R äspuns: $f = -36%$
C.	$I_A = \frac{E}{r + r_A + R_3/2}$
	R ăspuns: $I_A = 2A$
II.2.a.	$L = \mu_0 \frac{N^2 S}{I}$
	Răspuns: $L = 3,14 \text{ mH}$
b.	q = aria de sub grafic Răspuns: q = 6 C
C.	$e = -L\frac{\Delta i}{\Delta t}$
	Răspuns: e = 3,14 mV

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 9

Varianta 9

Fizică

Subiectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	
	Soluție / schiță de rezolvare
II.1.a.	2
II. I .a.	$S = \pi \cdot r^2$
	$\Phi = NBS\cos\alpha$
	R ăspuns: $\Phi = 1256Wb$
b.	
	$e = -\frac{\Delta\Phi}{\Delta t}$
	Δt
	$e = -\frac{2\Phi}{\Delta t}$
	
	R ăspuns: $e = -12.560V$
C.	$e \cdot v \cdot B = \frac{m \cdot v^2}{B}$
	$e^{-V \cdot B} = \frac{R}{R}$
	$R = \frac{m \cdot v}{e \cdot B}$
	$H = \frac{1}{e \cdot B}$
	R ăspuns: $R = 568 \mu m$
II.2.a.	$R_1 - \frac{R_1R_2}{R_1R_2}$
	$R_p = \frac{R_1 R_2}{R_1 + R_2}$
	, E
	$I = \frac{E}{R + r + \frac{R_1 \cdot R_2}{R_1 + R_2}}$
	$R+T+\frac{1}{R_1+R_2}$
	Răspuns: $I = 1A$
b.	
	$\Phi = L \cdot I$
	$R \text{ `aspuns: } \Phi = 2 \cdot 10^{-3} Wb$
C.	
	$I_{min} = \frac{R_p \cdot I}{R_2}$
	Răspuns: $I_{min} = 0$,(3) A
	Trasparis. Imin — 0,(0)/1

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 10

Fizică

Subiectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	tensiunile la bornele becurilor:
	$U_1 = \frac{P_1}{I_1} = 20V$
	$U_2 = \frac{P_2}{l_2} = 40V$
	legile lui Kirchhoff:
	$E = I \cdot r + U_1 + U_2 \Rightarrow I = 1 \text{ A}; I = I_1 + I_x \Rightarrow I_x = 0.5 \text{ A}; I = I_y + I_2 \Rightarrow I_y = 0.4 \text{ A}$
	calculul rezistențelor electrice R_x și R_y în care este împărțită rezistența potențiometrului:
	$R_{x} = \frac{U_{1}}{I_{x}} = 40\Omega$, $R_{y} = \frac{U_{2}}{I_{y}} = 100\Omega$
	R ăspuns: $R = R_x + R_y = 140 \Omega$
b.	aplicarea legii I a lui Kirchhoff în nodul A şi precizarea că sensul curentului I_C este de la C la A Răspuns : $I_C = I_2 - I_1 = 0,1$ A
C.	rezistențele electrice ale becurilor:
	$R_{b1} = \frac{P_1}{l_1^2} = 40\Omega$
	$R_{b2} = \frac{P_2}{l_2^2} = \frac{200}{3} \Omega$
	condiția de transfer maxim de putere: $R_{ext} = r$
	Răspuns: $r = \frac{R_{b1} \cdot R_X}{R_{b1} + R_X} + \frac{R_{b2} \cdot R_Y}{R_{b2} + R_Y} = 60\Omega$
II.2.a.	precizarea sensului curentului I prin conductorul MN
	$e = B \cdot L \cdot v = 0.2 \text{ V}$
	legile lui Kirchhoff: $I = I_1 + I_2$; $e = I_1 \cdot R_1 + I \cdot R$; $e = I_2 \cdot R_2 + I \cdot R$
	Răspuns : <i>I</i> = 80 mA
b.	Expresia forței electromagnetice
	$F_{ext} = F_{elmg}$
	Răspuns : $F_{ext} = B \cdot l \cdot L = 3,2 \text{ mN}$
C.	Expresia puterii furnizate circuitului de sursa de t.e.m. indusă
	Răspuns :P = e⋅I = 16 mW

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 11

Fizică

Subiectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$P_2 = I_2^2 R_2$
	$I_2R_2 = I_3R_3$
	$I_1 = I_2 + I_3$
	$Răspuns: I_1 = 3 A$
b.	$E = I_1(r + R_1) + I_2R_2$
	Răspuns : $E = 53 V$
C.	$R + \frac{R_2 \cdot R_3}{R_2 + R_2} = r$
	2 3
	R ăspuns: $R = 0.33\Omega$
II.2.a.	$B = \frac{\mu_0 N_1 I_1}{I}$
	Răspuns : $B = 6.28 \cdot 10^{-5} T$
b.	$e_2 = -N_2 \frac{\Delta \Phi_2}{\Delta t} = -N_2 \frac{\mu_0 N_1 l_1 S_2}{l_1 l_2}$
	Răspuns : $e_2 = -3.14 \cdot 10^{-5} V$
C.	$\Phi = 3.14 \cdot 10^{-5} \cdot t(Wb)$
	reprezentare grafică - dependența de timp a fluxului magnetic în al doilea solenoid în intervalul de timp $[0s,2s]$.

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 12

Varianta 12

Fizică

Subiectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	
	Soluție / schiță de rezolvare
II.1.a.	R.R.
,	$R_{\rm e} = \frac{R_2 R_3}{R_2 + R_3}$
	Răspuns: $R_e = 30 \Omega$
b.	$P_1 = U_1 I$
	$P_{23} = R_{\rm e}I^2$
	$P = P_1 + P_{23}$
	$R_{\rm e}I^2 + U_1I - P = 0$
	Răspuns: $I = 2 A$
C.	legea a doua a lui Kirchhoff
	$E = rI + U_1 + R_eI$
	Răspuns: $E = 160 V$
II.2.a.	$B_1 = \frac{\mu_0 I_1}{2\pi d}$
	$B_2 = \frac{\mu_0 I_2}{2r}$
	$B_o = B_1 - B_2 $
	Răspuns : $B_0 = 3\pi \cdot 10^{-6} T \cong 9{,}42 \cdot 10^{-6} T$
b.	$B_1' = \frac{\mu_0 I_1}{2\pi d'}$
	2 <i>m</i> d'
	$B_1 = B_2$
	$d' = \frac{rl_1}{\pi l_2}$
	Răspuns: $d' = 8 cm$
C.	$B = \sqrt{B_1'^2 + B_2^2}$
	$B_o'' = \frac{\mu_0 I_2}{2r} \sqrt{2}$
	R ăspuns: $5\pi\sqrt{2} \cdot 10^{-6} \ T \cong 22,2 \cdot 10^{-6} \ T$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 13

Varianta 13

Fizică

Subiectul B. ELECTRICITATE ŞI MAGNETISM

NR ITEM	Soluție / schiță de rezolvare
II.1.a.	$I = \frac{E}{r + R}$ $R = \frac{E - Ir}{I}$
	$R = \frac{E - Ir}{I}$
	Răspuns: $R=1,7\Omega$
b.	$B = \frac{\mu_0 NI}{\ell}$
	Răspuns: $B \cong 31,4 mT$
C.	$\phi = LI$
	$L = \frac{\mu_0 N^2 S}{\ell}$ $S = \frac{\phi \ell}{\mu_0 N^2 I}$
	$S = \frac{\phi \ell}{\mu_0 N^2 I}$
	Răspuns: $S \cong 12,56 mm^2$
II.2.a.	$P = \frac{U^2}{R}$ $R = \frac{U^2}{P}$
	$R = \frac{C}{P}$
	Răspuns: $R=48,4\Omega$
b.	definiție expresia legii inducției electromagnetice
C.	$e = -\frac{\Delta\Phi}{\Delta t}$
	$e = -L \cdot \frac{di}{dt}$
	Răspuns: $e=20\cdot mV$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 14

Fizică

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. item	Soluție / schiță de rezolvare
	oordine / sornita de rezorvare
II.1.a.	$R_{p} = \frac{R_{1}R_{2}^{2}}{2R_{1}R_{2} + R_{2}^{2}}$
	$R_s = R_p + R_3$
	Răspuns: $R_s = 118.8 \Omega$
b.	$I_3 = \frac{E}{r + R_s}$
	$I_1 = \frac{I_3 R_2}{2R_1 + R_2}$
	$I_2 = \frac{I_3 R_1}{2R_1 + R_2}$
	Răspuns : $I_1 = 0.5A$, $I_2 = 0.25A$, $I_3 = 1A$
C.	$Q = R_3 I_3 t$
	R aspuns: Q = 391,68 KJ
II.2.a.	$\vec{B} \otimes \vec{V}$
	sensul curentului electric indus - conform figurii
b.	mg = BIL
	$v = \frac{mgR}{R^2I^2}$
	Răspuns: $V = 5m/s$
C.	$P = \frac{B^2 L^2 v^2}{R}$
	Răspuns: $P = 5W$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 15

Fizică

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Colutio / ochită de vezelveve
	Soluție / schiță de rezolvare
II. 1. a.	aditivitatea tensiunilor $U = U_1 + U_2$
	$I = \frac{U}{R_{v_1} + R_{v_2}}$
	$U_{1,2} = IR_{V_{1,2}} = \frac{UR_{V_{1,2}}}{R_{V_1} + R_{V_2}}$
	Răspuns : $U_1 = 108V$; $U_2 = 72 V$
b.	$R'_{1,2} = \frac{R_{1,2}R_3}{2R_{1,2} + R_3}$
	$\frac{U_1 + U_2}{U_{1,2}} = \frac{R_1' + R_2'}{R_{1,2}'} \Longrightarrow U_{1,2} = \frac{U \cdot R'_{1,2}}{R'_1 + R'_2}$
	Răspuns : $U_1 = 99V$; $U_2 = 81V$
C.	$R_1' = \frac{R_1 R_3'}{R_1 + R_3}$ $R_2' = \frac{R_2 R_3''}{R_2 + R_3''}$
	$R_{3}' + R_{3}'' = R_{3}$
	$U_1 = U_2$, $R_3' = R_2 = 4kΩ$ si $R_3'' = R_1 = 6kΩ$
	Răspuns : R ₃ ' / R ₃ "=2 / 3
II. 2. a.	expresia fluxului magnetic $\Phi = B a^2$
	$\Phi = B a$ Răspuns : $\Phi = 2 mWb$
	maspuns. $\Psi = 2mwb$
b.	expresia legii Faraday $e=-rac{\Delta\Phi}{\Delta t}$
	Δt semnificația mărimilor
C.	
	$e_{\scriptscriptstyle med} = \frac{\Delta \Phi}{\Delta t} = \frac{Ba^2}{\Delta t}$
	$i_{med} = rac{e_{med}}{R}$
	$q = i_{med} \Delta t = \frac{Ba^2}{R}$
	Răspuns : $q = 2.5 \cdot 10^{-5} C$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 16

Fizică

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Calutia / aabită ala varralusva
	Soluție / schiță de rezolvare
II.1.a.	Legile lui Kirchhoff:
	$I_2 = I_1 + I_3$; $E_1 = I_2 R_2 + I_1 (R_1 + r)$; $E_2 = I_2 R_2 + I_3 R_3$
	Răspuns: $I_2 = 0.76A$
b.	$I_3 = \frac{E_2 - I_2 R_2}{R_3}$
	$P = R_3 I_3^2$
	Răspuns: $P = 1,537W$
C.	$I_1 = \frac{E_1 - I_2 R_2}{R_1 + r}$
	$Q = R_1 I_1^2 \Delta t$
	Răspuns: $Q=47,04J$
II.2.a.	$S_1 = \frac{\pi D_1^2}{4}$
	$R = \frac{\rho l_1}{S_1}$
	Răspuns: $R = 1.08 \cdot 10^{-2} \Omega$
b.	$l = N D_1; S = \frac{l_1^2}{4\pi N^2}; L = \frac{\mu_0 \mu_r l_1^2}{4\pi N D_1}$
	$R \text{ `aspuns: } L = 10^{-2} H$
C.	$e = -N \frac{\Delta \Phi}{\Delta t}$ $e = \frac{B l_1^2}{4 \pi N \Delta t}$
	$e = rac{B{l_1}^2}{4\piN\Delta t}$
	Răspuns: $e = 3.18V$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 17

Fizică

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	
	Soluție / schiță de rezolvare
II.1.a.	-
II. I .a.	$I_{sc} = \frac{E}{r}$
	1
b.	Răspuns: $I_{sc} = 10 A$
	$I = \frac{L}{R_1 R_2}$
	$I = \frac{E}{\frac{R_1 R_2}{R_1 + R_2} + R_3 + r}$
	$I_A = I_1 = \frac{I}{2}$
	Răspuns: $I_A = 0.5 A$
C.	$I_1 R_1 = I_2 R_2$ și $I_1 R_4 = I_2 R_3$
	$R_4 = R_1 R_3 / R_2$
	Răspuns : $R_4 = 6 \Omega$
II.2.a.	$S = \pi r^2$
	$R = \rho \frac{2\pi r}{s}$
	R ăspuns: $R = 0,105 \Omega$
b.	$I = \frac{E}{R}$
	r – R
	$B = \mu_0 \frac{l}{2r}$
	Răspuns : $B = 1,20 \cdot 10^{-4} T$
C.	l'= l
	$B' = \mu_o \frac{l'}{2r} = B$
	$B_{rez} = \sqrt{B^2 + B^{12}}$
	Răspuns : $B_{rez} = 1,69 \cdot 10^{-4} T$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 18

Varianta 18

Fizică

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	
	Soluție / schiță de rezolvare
II.1.a.	$R_{\rm x} = 12\Omega$
	$I = \frac{E}{R_{AB} + r}$
	$R_{AB} = \frac{RR_x}{R + R_x}$
	Răspuns: $I = 2 A$
b.	$U_{AB} = R_{AB}I$
	Răspuns: $U_{AB} = 8 V$
C.	$r = \frac{RR_{x}^{'}}{R + R_{x}^{'}}$
	Răspuns: $R_x^{'} = 1,2\Omega$
II.2.a.	$B = \frac{\mu_0 NI}{\ell}$
	$\ell = Nd$
	Răspuns : $B \cong 3,14 \cdot 10^{-3} T$
b.	$\Phi = NB\pi r^2 \cdot \cos \alpha$
	Răspuns : $\Phi \cong 5 \cdot 10^{-5} Wb$
C.	$\mathbf{e} = -\frac{\Delta\Phi}{\Delta t}$
	$e = \frac{NB\pi r^2 \cdot \cos \alpha}{\Delta t}$
	e = Ri
	$i = \frac{q}{\Delta t}$
	$q = \frac{NB\pi r^2 \cos \alpha}{R}$
	Răspuns : $q \approx 2 \cdot 10^{-6} C$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 19

Fizică

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$P = \frac{U^2}{T}$
	R
	$P = \frac{U^2}{R}$ $R = \frac{U^2}{R}$
	Răspuns: $R = 10 \Omega$
b.	
	$i = \frac{u}{R}$
	Răspuns: $i = 22 A$
C.	
	rezistența echivalentă a <i>n</i> calorifere $R_p = \frac{R}{n}$
	intensitatea curentului prin ansamblul de n calorifere : $i_p = \frac{U \cdot n}{R} = n \cdot I$
	două calorifere necesită intensitatea $i_2 = 44 A !$
II.2.a.	Răspuns: nu poate funcționa decât un calorifer
II.Z.a.	$B_{rez} = B_{terestru, vertica} + B$
	$\vec{B}_{rez} = 0$
	Răspuns : $B_{terestru,vertical} = 3 \times 10^{-5} T$
b.	suprafața "măturată" de aripi $S=\ell \cdot v \cdot au$
	$\Phi = B_{ ext{ iny vertical, terestru}} \cdot S$
	Răspuns : $\Phi = 0.675 Wb$
C.	$ \Delta = \Delta \Phi$
	$ e = \frac{\Delta \Phi}{\Delta t}$
	Răspuns : $e = 0.0675 V$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 20

Fizică

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	
	Soluție / schiță de rezolvare
II.1.a.	$U = IR_{AC}$
,	
	$I = \frac{E}{R_{AB} + r}$
	Răspuns: $U = 5V$
b.	Răspuns:
	$U_{\text{max}} = IR_{AB} = 25V$
	$U_{min} = 0$
C.	$P_1 = I_1^2 R_1$
	$E = I(r + R_{AB} - R_x) + I_1 R_1$
	$I_1 R_1 = I_2 R_x$
	$I = I_1 + I_2$
	$R_x^2 + 9R_x - 36 = 0$
	Răspuns: $R_x = 3 \Omega$
II.2.a.	stabilirea direcției și sensului forței
	$I = \frac{E}{r}$
	r $F = BI\ell$
	F = 5N
b.	
	F'= G
	$I' = \frac{mg}{B\ell}$
	Răspuns: I'= 40 A
C.	$I = \frac{E - e}{c}$
	$e = B\ell v$
	Răspuns: $V = 50 m/s$
	- I

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 21

Fizică

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	teorema lui Kirchhoff pentru ochiuri de rețea
	$\begin{cases} E_1 = I_1(R_1 + R_3) \\ E_1 = I_2(R_2 + R_4) \end{cases}$
	$E_1 = I_2(R_2 + R_4)$
	$I_1 = 3A$
	$U_{AM} = R_1 \cdot I_1$
	$\mathbf{R ispuns}: \ U_{AM} = 3V$
b.	$W = (R_1 + R_3)I_1^2 \cdot \Delta t + (R_2 + R_4)I_2^2 \cdot \Delta t$
	$I_2 = 4A$
	Răspuns : $W = 302, 4 \cdot 10^3 J$
C.	$E_2 = I_1 R_3 - I_2 R_4$
	$\textbf{Răspuns:} E_2 = 5V$
II.2.a.	$F = F_{electromagnetica}$; $F = B \cdot I \cdot l$
	, F
	$I = \frac{F}{B \cdot l}$
	Răspuns : $I = 2A$
b.	e = B l v
	e = (r + R)I
	$v = \frac{(r+R)I}{R \cdot l}$
	$V - \frac{1}{B \cdot l}$
	Răspuns : $v = 0.5 m/s$
C.	$W = e \cdot I \cdot \Delta t = (r + R) \cdot I^2 \cdot \Delta t$
	$\mathbf{R\check{a}spuns}:\ W = 6000J$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 21

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 22

Varianta 22

Fizică

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	
	Soluție / schiță de rezolvare
11.4.5	•
II.1.a.	$N = s \cdot p$
	condiția transferului maxim de putere: $R = r_{echiv}$
	$r_{\text{echiv}} = s \cdot r / p$
	$\mathbf{R\check{a}spuns}: \mathbf{S} = 100$
b.	$E_{echiv} = s \cdot E$
	E_{echiv}^2
	$P_{\text{max}} = \frac{E_{\text{echiv}}^2}{4r_{\text{echiv}}}$
	Răspuns: $P_{max} = 250 W$
	· IIIux
C.	$I = \frac{s \cdot E}{s \cdot E}$
	$I = \frac{s \cdot E}{R + \frac{s \cdot r}{s}}$
	ρ
	$U = R \cdot I$
	R "aspuns": U = 50 V
II.2.a.	$e = B \cdot L \cdot v$
	Răspuns: $e = 0.1V$
b.	$I = e/R_e$
	$R_{\rm e} = 2 \cdot R / 3$
	Răspuns: $I = 1,5 A$
C.	$L = F \cdot d$
	$F = B \cdot I \cdot L$
	$d = v \cdot t$
	Răspuns: $L = 1.5 J$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 23

Fizică

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	întrerupătorul K deschis $I_1 = E/(R_1 + r)$
	$P_1 = I_1^2 R_1$
	întrerupătorul K închis $R_e = R_1 R_2 / (R_1 + R_2)$
	$I_2 = E/(R_e + r)$
	$P_2 = {l_2}^2 R_e$
	$r = \sqrt{R_1 R_e}$
	Răspuns: $r = 1.5 \Omega$
b.	$f = \frac{I_2}{I_1} = \frac{R_1 + r}{\text{Re} + r},$
	Răspuns: $f=2$
C.	$r = R'_{ech}$
	$R_e = R_1 R_2 / (R_1 + R_2)$
	Răspuns: $R_2' = 3 \Omega$
II.2.a.	$B = \mu_0 \cdot \frac{N \cdot I}{b}$
	$B = \mu_0 \cdot {b}$
	aplicarea legilor lui Kirchhoff: $I = I_1 + I_2$; $E_1 = I \cdot R + I_1 \cdot r_1$; $E_2 = I \cdot R + I_2 \cdot R_2$; $I = 3A$
	Răspuns : $B = 12 \cdot \pi \cdot 10^{-3} \text{ T} = 37,68 \text{ mT}$
b.	Răspuns: la capătul A al bobinei se află polul nord al acesteia
C.	$\mathbf{e} = -\frac{\mu \cdot N^2 \cdot S}{b} \cdot \frac{\Delta i}{\Delta t};$
	$S = \pi \cdot r^2$
	Răspuns: <i>e</i> = 1,2 V

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 24

Fizică

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$U_{12} = R_1 l_1 = 20 \text{ V}, \ l_2 = \frac{U_{12}}{R_2}, \ l_3 = l_1 + l_2$
	Răspuns : $I_2 = 4 \text{ A}$, $I_3 = 6 \text{ A}$
b.	$U_{ab} = U_{12} + I_3 R_3$ $E = U_{ab} + rI_3$ Răspuns : $E = 47 \text{ V}$
C.	$W_1 = R_1 I_7^2 \Delta t$ Răspuns : $W_1 = 2400 \text{ J}$
II.2.a.	$\Phi = L \cdot I$ Răspuns : $\Phi = 5 \cdot 10^{-3}$ Wb
b.	$L = \frac{\mu N^2 S}{\ell}$ Răspuns : $N = \sqrt{\frac{L\ell}{\mu_0 S}} = 500$
C.	$e_a = -L \frac{\Delta I}{\Delta t}$
	Răspuns : $e_a = 50 \cdot 10^{-3} \text{ V}$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 25

Fizică

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$r_{ech} = \frac{r_1 r_2}{r_1 + r_2}$
	Răspuns: $r = 0.67 \Omega$
b.	$E_{ech} = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2}$
	$I = \frac{E_{ech}}{r_{ech} + R}$
	Răspuns : <i>I</i> = 2,19 A
C.	$Q = RI^2t$
	Răspuns : <i>Q</i> = 28776,6 J
II.2.a.	D.I.
	e = Blv
b.	Răspuns: $e = 2.5 \cdot 10^{-3} \text{ V}$ $R_{ech} = \frac{R_1 R_2}{R_1 + R_2}$ $R_{tot} = R + R_{ech}$
	$I = \frac{e}{R_{tot}}$ Răspuns: $I = 1$ mA
C.	$R = \frac{\rho l}{S}$ $\rho = \frac{R\pi d^2}{4l}$
	$\rho = \frac{R\pi d^2}{4l}$
	Răspuns : $\rho = 3.14 \cdot 10^{-6} \Omega \text{m}$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 25

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 26

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție/ rezolvare
II.1.a.	$E_{\text{echiv}} = E_{1\text{echiv}} + E_{2\text{echiv}} = E_1 + E_2$
	$r_{\text{echiv}} = r_{\text{1echiv}} + r_{\text{2echiv}} = \frac{r_1 + r_2}{2}$
	Răspuns: $E_{echiv} = 15V$ și $r_{echiv} = 2,1\Omega$
b.	$I = \frac{E_{\text{echiv.}}}{R_1 + R_2 + r_{\text{echiv.}}}$
	Răspuns: <i>I</i> ≅ <i>0,208 A</i>
C.	$R_{\rm s} = r_{\rm echiv} = \frac{r_1 + r_2}{2}$
	Răspuns: $R_s = 2.1\Omega$
II.2.a.	$\Phi = L \cdot I$ Răspuns: $\Phi = 0.8 Wb$
b.	reprezentarea grafică corectă a t.e.m. autoinduse
C.	$u_{AB} = R \cdot i - e$
	e = OV şi $i = 4A$
	$u_{AB} = R \cdot i$
	Răspuns: $u_{AB} = 20 V$

Fizică Varianta 26

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 27

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție/rezolvare
II.1.a.	
	$P = \left(\frac{E}{R+r}\right)^2 R$
	Răspuns: $P = 12 W$
b.	
	$I = \frac{E}{R + \frac{r}{2}}$
	_
	Răspuns: <i>I</i> = 2,5 <i>A</i>
C.	condiția de maxim a puterii transferate
	$R = \frac{r}{2}$
	Răspuns: $R=1\Omega$
II.2.a.	
	$\vec{B} = \vec{B}_1 + \vec{B}_2$
	$B = \mu_0 \frac{l_1}{2\pi \frac{d}{2}} + \mu_0 \frac{l_2}{2\pi \frac{d}{2}}$
	Răspuns: $B = 0,12 mT$
b.	$B = \sqrt{\left(\mu_0 \frac{l_1}{2\pi d_1}\right)^2 + \left(\mu_0 \frac{l_2}{2\pi d_2}\right)^2}$
	Răspuns: $B = 0.06 mT$
C.	condiția de echilibru ⇔ câmp nul
	$\mu_0 \frac{l_1}{2\pi(d+x)} = \mu_0 \frac{l_2}{2\pi x}$
	Răspuns: $x = 5 cm$ în exterior față de I_2 .

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 28

Varianta 28

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție/ rezolvare
II.1.a.	$l_1 = \sqrt{\frac{P}{R_b}}$
	Răspuns: I ₁ = 3 A
b.	$E_1 = I_1 \cdot (R_b + r_1) + I \cdot R_1$; $E_2 = I_2 \cdot (R_2 + r_2) + I \cdot R_1$; $I_1 = I_2 + I$
	Răspuns: E ₂ = 3 V
C.	$U_{MN} = I_1 \cdot R_1$ Răspuns: $U_{MN} = 3 \text{ V}$
II.2.a.	$e = -\frac{S \cdot \Delta B}{\Delta t}$
	$\frac{\Delta B}{\Delta t} = 2 \frac{T}{s}$
	$S = L \cdot d = 2000 \text{ cm}^2$
	precizarea că sensul curentului indus este (antiorar)
	Răspuns: $I = \frac{ e }{R+r} = 16mA$
<u>b.</u>	$F_{elmg} = B \cdot l \cdot d$
	Răspuns: $F_{elmg} = 16 \cdot t \text{ (mN)}$
C.	$P = r \cdot l^2$
	Răspuns: <i>P</i> = 1,28 mW

2

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 29

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție/rezolvare
II.1.a.	$I = \frac{E}{r + R_{\text{echiv}}}$ $(R_1 + R_2)R_3$
	$R_{\text{echiv}} = \frac{\left(R_1 + R_2\right)R_3}{R_1 + R_2 + R_3}$ $\text{Răspuns: } I = 8A$
b.	$U_{ab}=R_2I_{ab}$ $I_{ab}=E/(R_1+R_2)$ Răspuns: $U_{ab}=8V$
C.	$P_{ab} = \frac{U_{ab}^2}{R_2}$ Răspuns: $P_{ab} = 32W$
II.2.a.	sens corect $e = BLv$ Răspuns: $e = 4V$
b.	identificarea elementelor circuitului electric echivalent $I(R+r)=E+e$ Răspuns: $I=1,6A$
C.	identificarea forței electromagnetice ca forță de rezistență la deplasare $F_{em} = ILB$ $F_{tracțiune} = F_{em}$ Răspuns: $F_{tracțiune} = 1,6N$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 30

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / rezolvare
II.1.a.	$W_1 = l_1^2 R_1 \Delta t_1, \ W_2 = l_2^2 R_2 \Delta t_2$ $W_1 = W_2$ $l_1 = l_2$ Răspuns: $\Delta t_1 / \Delta t_2 = 20$
b.	$I = E/(r + R_1 + R_2)$ $U_V = U_{AB} = U_{R_2} = IR_2$ Răspuns: $U_V = 6V$
C.	$\begin{split} R_{\rm e} &= R_1 + (R_2 R_3)/(R_2 + R_3) \\ l' &= E/(r + R_{\rm e}) \\ U'_{\rm AB} &= l' R_2 R_3/(R_2 + R_3) \\ l'_{\rm A} &= U'_{\rm AB}/R_3 \\ \text{Răspuns: } I_{\rm A} &= 1,5 {\rm A} \end{split}$
II.2.a.	$\begin{cases} E_1 + E_2 = I_1(r_1 + R) + I_2 r_2 \\ E_1 = I_1(r_1 + R) - I_b R_b \\ I_1 + I_b = I_2 \end{cases}$ Răspuns: $I_b = 1,25$ A, $I_1 = 2,75$ A, $I_2 = 4$ A
b.	$B = \mu \frac{NI_b}{\ell}$ $L = \mu \frac{N^2S}{\ell}$ Răspuns: $B = 1,25 \text{ T}$
C.	$\Delta\Phi=\Phi_2-\Phi_1$ $\Phi_1=Ll_b$ $\Phi_2=0$ Răspuns: $\Delta\Phi=-0.125~\mathrm{Wb}$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 30

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 31

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / rezolvare
II.1.a.	E = nE ₁
	$r = nr_1$
	Răspuns: $E = 24 \text{ V}$
b.	$r = 1,2 \Omega$
D.	$R = \frac{E}{l} - r$
	Răspuns: $R = 10.8 \Omega$
C.	
	$Q = Rl^2 \Delta t \ sau \ Q = \frac{U^2}{R} \Delta t \ sau \ Q = Ul \Delta t$
	$\frac{Q_{\text{ext}}}{Q_{\text{int}}} = \frac{Rl^2 \Delta t}{rl^2 \Delta t} = \frac{R}{r}$
	$Q_{\text{int}} r l^2 \Delta t r$ Răspuns: $\frac{Q_{\text{ext}}}{Q_{\text{int}}} = 9$
II.2.a.	enunțul corect al legii Faraday sau scrierea formulei $e=-rac{\Delta\Phi}{\Delta t}$
b	precizarea convenţiilor de semn pentru Φ şi pentru e
b.	desenul corect indicarea sensului corect
	justificarea alegerii sensului corect
C.	$I = \frac{B\ell v}{R_1 + R_2}$
	· ·
	Răspuns: I = 0,0625 A

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 32

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / rezolvare
II.1.a.	
	$N = \frac{L}{d}$ $B = \frac{\mu NI}{L}$
	a uNI
	$B = \frac{\mu u \cdot v}{L}$
	Răspuns: $B = \pi \cdot 10^{-1} T$
b.	N2 0
	$L_b = \frac{\mu N^2 S}{I}$
	Răspuns: $L_b = 5H$
C.	
	$R_b = ho rac{L_{fir}}{S_{fir}}$
	"
	$L_{fir} = 2 \cdot \pi \cdot R \cdot \frac{L}{d}$, $S_{fir} = \pi \cdot \left(\frac{d}{2}\right)^2$
	Răspuns: $R_b = 42,5\Omega$
II.2.a.	
	$E_1 = I_1 R_1 - I_2 R_2$
	$ \begin{cases} E_1 = I_1 R_1 - I_2 R_2 \\ E_2 = I_2 R_2 \\ I = I_1 + I_2 \end{cases} $
	$(I - I_1 + I_2)$ Răspuns: $I = 6A$, $I_1 = 5A$, $I_2 = 1A$
b.	φ
	$Q_2 = R_2 I_2^2 \Delta t$
	Răspuns: $Q_2 = 240J$
C.	Pentru $U = I_1 R_1$
	$O = I_1 N_1$ Răspuns: $U = 10V$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. item	Soluție, rezolvare
II. 1.a.	
	$P=R_1I_1^2$; $I_1=\sqrt{\frac{P}{R_1}}$; $P=R_2I_2^2$; $I_2=\sqrt{\frac{P}{R_2}}$
	Răspuns: $I_1 = 1,2 A$; $I_2 = 0,6 A$
b.	
	$E=I_{1}(R_{1}+r)=I_{2}(R_{2}+r)$
	Răspuns: r=2 Ω
c.	
	$P_{max} = \frac{E^2}{4r}$
	Răspuns: P _{max} =1,62 W
II.2.a.	F.
	$E=B\cdot \ell \cdot v; l=\frac{E}{R+r}$
	Răspuns: I=0,02 A
b.	
	$W=1^{2} (R+r) \Delta t$
	Răspuns: W=3,2 mJ
c.	
	F=B·I· ℓ
	Răspuns: F=4mN

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 34

Varianta 34

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / rezolvare
II.1.a.	$ \rho = \frac{RS}{I} $
	Răspuns: $\rho = 5 \cdot 10^{-6} \Omega \cdot m$
b.	$r = R_{ext}$
	$R_{\text{ext}} = \frac{R}{2}$
	Răspuns: $r = 10\Omega$
	I ₁
C.	$Q = Rl_1^2 \Delta t$
	$I = \frac{I}{I} = \frac{E}{I}$
	$I_1 = \frac{I}{2}, I = \frac{E}{r + \frac{R}{2}}$
	Răspuns: $Q = 162KJ$
II.2.a.	
	sens corect
	$\left \leftarrow d \rightarrow \right $
b.	$B_1 = B_2 \; ; \frac{\mu l_1}{2\pi d} = \frac{\mu l_2}{2R}$
	2πα 2R . RI.
	$d = \frac{RI_1}{\pi I_2}$
	Răspuns: <i>d</i> = 15,92 <i>cm</i>
C.	$\vec{B} = \vec{B}_1 + \vec{B}_2 \Rightarrow B = 2B_1$
	$B = \frac{\mu l_2}{R}$
	Răspuns: $B = 5.02 \cdot 10^{-5} T$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 35

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție/ rezolvare
II.1.a.	. E – R.U.
	$I = \frac{E - R_1 I_1}{r} = 4,5 A$
	$I_2 = I - I_1 = 3 A$
	$R_2 = \frac{R_1 I_1}{I_2}$
	Răspuns: $R_2 = 5 \Omega$
b.	Pentru
	$W = R_2 I_2^2 \cdot \Delta t$
	Răspuns: $W = 27 kJ$
C.	1 1 1 1
	$\frac{1}{R_{\rm e}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_{\rm x}}$
	$r = R_e$
	Răspuns: $R_x = 5 \Omega$
II.2.a.	numărul de spire al bobinei $N = \ell / d$
	trumanur de spire ai pobliner $N = \ell / d$ $\ell_{fir} = N \cdot 2\pi r$
	Răspuns: $\ell_{fir} = 2.4 m$
b.	
	$R = \frac{\rho \ell_{fir}}{S} = \frac{4\rho \ell_{fir}}{\pi d^2}$
	$I = \frac{E}{R+r}$
	Răspuns: $I = 2,5 A$
C.	$L = \frac{\mu_0 N^2 S}{\ell} = \frac{\mu_0 N^2 \cdot \pi a^2}{\ell}$
	$\Phi = L \cdot I$
	Răspuns: $\Phi = 24 \cdot 10^{-6} Wb$

Varianta 35 Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 36

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	
	Soluție / rezolvare
II.1.a.	
	$U = I_2 R_2$
	Răspuns: $U = 12V$
b.	$E = I_1(R_1 + r) + I_2R_2$
	$I_2R_2 = I_3R_3$
	$I_1 = I_2 + I_3$ Răspuns: $E = 42V$
	Haspuns. $E = 42 \text{ V}$
C.	$R_{\text{ext}} = r$
	$R' = R_1 + \frac{R_2 R_3}{R_2 + R_3}$
	$\frac{1}{R_{\text{ext}}} = \frac{1}{R'} + \frac{1}{R_{\text{x}}}$
II.2.a.	Răspuns: $R_x = 12 \Omega$
II.Z.a.	$R = \frac{E}{I}$
	Răspuns: $R = 50 \Omega$
b.	$B = \frac{\mu_0 NI}{\ell}$
	$n = \frac{N}{\ell}$
	Răspuns: $B = 2 \cdot 10^{-4} T$
C.	
	$ e = -L \frac{\Delta I}{\Delta t} = L \frac{I}{\Delta t}$
	$L = \mu_0 N^2 S / \ell = \mu_0 NnS$
	$S = \pi D^2 / 4$
	$R= ho\ell_{ extit{fir}}$ / s
	$\ell_{\it fir} = N\pi D$
	Răspuns: $e = 10^{-4} V$

Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 37

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / rezolvare
II.1.a.	$I_1 = \frac{E}{r + R_1 + \frac{R_2 \cdot R_3}{(R_2 + R_3)}}$
	$I_2 = \frac{I_1 \cdot R_3}{R_2 + R_3}$
	$I_3 = \frac{I_1 \cdot R_2}{R_2 + R_3}$ $I_1 = 2 \text{ A}, I_2 = 1, 2 \text{ A}, I_3 = 0,8 \text{ A}$
b.	$B = \frac{\mu_0 \cdot N \cdot I_3}{I}$
	Răspuns: B = 6,4 μT
C.	$\Phi = B \cdot S = B \cdot \pi \cdot d^2 / 4$
	$\Phi = 1.6 \cdot \pi \cdot 10^{-8} \text{ Wb}$
II.2.a.	
	$R_x = X \cdot R$
	$I = \frac{n \cdot E}{n \cdot r + R_{AC}}$
	I = 1 A
b.	
	$W = R_{AC} \cdot I^2 \cdot t$
C.	W = 3,9 kJ
	$I_{sc} = \frac{n \cdot E}{n \cdot r}$
	Răspuns: I=7,5A
	·

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 38

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. item	Soluție / rezolvare
II.1.a.	reprezentarea corectă a schemei de alimentare
b.	$I = \frac{U}{R}$; $U_R = U - kU_0$; $I = nI_0$
	$R = \frac{U - kU_0}{nI_0}$
	Răspuns: $R=250\Omega$
C.	$P = nI_0U$
	Răspuns: $P = 132 W$
II.2.a.	$I = \frac{E}{r+R}$, $R = \rho \frac{l_{fir}}{S_{fir}}$
	$l_{fir} = \pi DN$
	$R = \frac{4\rho ND}{d^2}$
	Răspuns: $I=1A$
b.	$\Phi = BSN \qquad B = \frac{\mu_0 \mu_r NI}{l}$
	$\Phi = \frac{\pi \mu_0 \mu_r N^2 D^2 I}{4l}$
	Răspuns: $\Phi = 0.8Wb$
C.	$e_m = -\frac{\Delta\Phi}{\Delta t}$
	$\Delta \Phi = -\Phi$, deci $\ e_{_{m}} = rac{\Phi}{\Delta t}$
	Răspuns: $e_{\scriptscriptstyle m}=4V$

Varianta 38 Fizică

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 39

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / rezolvare
II.1.a.	$R = \frac{U}{I}$ din grafic
	Răspuns: $R=4\Omega$
b.	$I = \frac{E}{r} - \frac{1}{r}U$
	$I = 0 \Rightarrow E = U = 12 V$
	$U=0 \implies I=\frac{E}{r}=6 A$
	Răspuns: $r = 2 \Omega$
C.	$P = U \cdot I = \frac{E}{r}U - \frac{1}{r}U^2$
	când $P = P_{\text{max}} \Rightarrow U = \frac{E}{2}$
	Răspuns: $U = 6 V$
II.2.a.	$e = BLv\sin\alpha$
	Răspuns: $e = 0.3 V$
b.	F = BIL
	I = e/R
	Răspuns: $F = 0.06 N$
C.	$W = I^2 Rt$
	Răspuns: $W = 0.03 J$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 40

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / rezolvare
II.1.a.	Pentru montajul serie
	$R_e = 3R = 9\Omega$
	L_ E _1A
	$I = \frac{E}{3R + r} = 1A$
	$P = 3RI^2$
	Răspuns: $P = 3W$
b.	U = IR
	Răspuns: U = 3V
C.	$I_{sc} = \frac{E}{r} = 10A$
	$P_{sc} = \frac{E^2}{r}$
	Răspuns: $P_{sc} = 100W$
II.2.a.	$B = \frac{\mu_0}{2r} \cdot \left(I_2 \pm \frac{I_1}{\pi} \right)$
	Răspuns: $B_1 = 1,884mT$; $B_2 = 0,628mT$
b.	$B_{cond} = \frac{\mu_0 \cdot l_1}{2\pi \cdot r} = 0.628mT$
	$B_{\rm spira} = \frac{\mu_0 \cdot I_2}{2r} = 1,256mT$
	$B = \sqrt{B_{cond}^2 + B_{spiar{a}}^2}$
	Răspuns: $B = 1,4mT$
C.	$e = -\frac{d\Phi}{dt}$
	$e = -\frac{\pi \cdot r^2 \cdot B}{\Delta t}$
	Răspuns: e=314V

Varianta 40

EXAMENUL DE BACALAUREAT - 2007

Fizică

FIZICa

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 41

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / rezolvare
II.1.a.	
	$U_s = E - r \cdot I_s, \ U_p = E - r \cdot I_p$
	Răspuns: $U_s = 7.5V$, $U_\rho = 4V$
b.	$R_s = R_1 + R_2$, $R_p = \frac{R_1 R_2}{R_1 + R_2}$
	$R_1 + R_2 = \frac{E}{I_s} - r$, $\frac{R_1 R_2}{R_1 + R_2} = \frac{E}{I_p} - r$
	Răspuns: $R_1 = 1\Omega$; $R_2 = 2\Omega$
C.	$P_s = E \cdot I_s$, $P_p = E \cdot I_p$
	Răspuns: $P_s = 25 w$; $P_p = 60 w$
II.2.a.	precizarea sensului corect al curentului (de la A' la A)
b.	expresia t.e.m. induse în fir $e = LvB$
	Răspuns: $e = 4V$
C.	expresia $e + E = (R + r)I$
	Răspuns: $I = \frac{e+E}{R+r} = 1,6A$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 42

Subjectul B. ELECTRICITATE ŞI MAGNETISM

	Soluție, rezolvare
II.1.a.	Enunţ corect
	$P = R \cdot I^2$ sau $P = \frac{U^2}{R}$
b.	$E = r(l_1 + l_2)$ Răspuns: $E = 20 \text{ V}$
C.	$P = r \cdot l_1 \cdot l_2$ Răspuns: $P = 32$ W
II.2.a.	$e = B\ell v$ Răspuns: 3 V
b.	desenul corect indicarea modificărilor
C.	$U = \frac{B\ell vR_2}{R_1 + R_2}$
	Răspuns: <i>U</i> = 0,75 V

Fizică Varianta 42

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii Proba F: Profil: tehnic - toate specializările

Varianta 43

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / rezolvare
II.1. a.	$\frac{U}{u} = 49 \Rightarrow U = 49u$
	U = IR şi $u = IrRăspuns: R = 49r = 49\Omega$
b.	$I = \frac{E}{r + R}$
	$I_{sc} = \frac{E}{r} \Rightarrow r = \frac{E}{I_{sc}}$
	$r = 1\Omega$ I = 2A
C.	$R = \rho \frac{\ell}{S}$
	Răspuns: $\ell = \frac{RS}{\rho} = 980 m$
2. a	F = BII e = BIv
	$I = \frac{e}{R} = \frac{Blv}{R}$
	Răspuns: $F = \frac{B^2 l^2 v}{R}$
b	G-F=ma mişcarea uniformă $a=0$
	$v_{\text{max}} = \frac{\text{mgR}}{\text{B}^2 l^2}$
	Răspuns: v = 10 m/s
С	$P_{min} = -F \cdot V$
	$P_{min} = -\frac{B^2 l^2 v^2}{B}$
	Răspuns: $P_{min} = -10W$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 44

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție, rezolvare
II.1.a.	R.R.
	$R_{e} = \frac{R_{1}R_{2}}{R_{1} + R_{2}}$
	Răspuns: $R_{_{\!e}}=12\Omega$
b.	
	$I_1R_1 = I_2R_2$
	$I = I_1 + I_2$
C.	Răspuns: $I = 5A$
0.	$P_{R1} = R_1 I_1^2$
	$P_{R2} = R_2 I_2^2$
	Răspuns: $P_{R1}/P_{R2} = 1,5$
II.2.a.	figurarea corectă a sensului curentului electric indus
b.	
	e = Blv
	I = Blv/R
	Răspuns: $I = 0.01A$
C.	L = Fl
	F = BIl
	Răspuns: $L = 8 \cdot 10^{-5} J$

Fizică Varianta 44

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. item	Soluție / rezolvare
II. 1.a.	rezistența electrică echivalentă a rezistorilor (în derivație, respectiv, în serie) Răspuns: $R_e=50\Omega$
b	voltmetrul ideal $Rv \to \infty$ legea lui Ohm aplicată porțiunii de circuit AB legea lui Ohm un circuit simplu Răspuns: E = 78 V
c.	legea lui Joule $Q = RI^2 \Delta t$ Răspuns: Q = 3,375 kJ
II.2.a.	$\left e\right =B\ell v\sinlpha$ polaritatea t.e.m. induse la capetele conductorului AB Răspuns: $e=5V$
b.	circuitul electric echivalent legea lui Ohm aplicată circuitului Răspuns: I = 0,5A
c.	$F=Bi\ell\;,\;\vec{\ell}\;\perp\vec{B}$ Răspuns: F = 0,5 N regula mâinii stângi

2

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 46

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / rezolvare
II.1.a.	Din grafic: $P_{\text{max}} = 20W$; $\frac{E}{2} = 10V$
	$P_{\text{max}} = \frac{E^2}{4r}$
	Răspuns: $E = 20V$
b.	$P = E \cdot I$
	$I = \frac{E}{R+r}$
	Răspuns: $P = 10W$
C.	$\eta = \frac{R_p}{R_p + r}$
	$R_p = \frac{R}{2}$
	Răspuns: $\eta = 0.5; \eta = 50\%$
II.2.a.	
	e = -Blv $e = -0.4V$
b.	e – – 0,4 v
	$F = B \cdot I \cdot l$
	$I = \frac{E - Blv}{R + r}$
	R+r Răspuns: $I = 2A$; $F = 0.4N$
C.	$V = \text{maxim} \Rightarrow F_{el} = 0 \; ; \; I = 0$
	$E = B l v_{ m max} \implies$ V $_{ m max} = rac{E}{B l}$
	Răspuns: $v_{\text{max}} = 10 m / s$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 47

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Solutie / rezolvare
II.1.a.	Soluție / Tezolvale
	$U_2 = I_2 R_2$
	$U_3 = I_3 R_3$
	$U_2 = U_3, \ l_1 = l_2 + l_3$
	Răspuns: $I_3 = 2 \text{A}, \ I_1 = 5 \text{A}$
b.	$E = I_1(r + R_1) + I_2R_2$
	$I_{sc} = E/r$
	Răspuns: $I_{sc} \cong 41,7 A$
C.	
	$r = R_{\text{circuit ext.}}$
	$P_{\text{max}} = I^2 R = \left(\frac{E}{r+R}\right)^2 R = \frac{E^2}{4r}, \qquad P = I'^2 R' = \left(\frac{E}{r+R'}\right)^2 R' P = k P_{\text{max}}$
	rezultat final $R' = 1.8 \Omega$, $R'' = 0.2 \Omega$
II.2.a.	la ieşirea din câmp, $\Delta\Phi$ < 0
	$e = B\ell v$
	$I = B\ell v/R$
	Răspuns: I = 5 mA
b.	
	$F = Bl\ell$
	$F = B^2 \ell^2 v / R$
	Răspuns: $F = 50 \mu\text{N}$
С.	$Q = Q_{111111} + Q_{111111}$
	Răspuns: $Q = 2 \mu J$
c.	$Q = Q_{\text{intrare}} + Q_{\text{lesire}}$ $Q = I^2 R \Delta t$ $\Delta t = 2\ell/\nu$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 48

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție, rezolvare
II.1.a.	$R_{12} = \frac{R_1 R_2}{R_1 + R_2}$
	Răspuns: $R_{12} = 4\Omega$
b.	$R = \rho \frac{\ell}{S}$
	Răspuns: $\rho = 7.5 \cdot 10^{-6} \Omega \cdot m$
C.	$x = \frac{R_{AC}S}{\rho}$ $E - U_{AC} = I(R_{12} + r)$
	$E - U_{AC} = I(R_{12} + r)$
	$R_{AC} = \frac{U_{AC}}{I}$
	Răspuns: $x = 0.4m$
II.2.a.	$e = B\ell v$
	A doua teoremă a lui Kirchhoff; $I_1R_1 = e$
	Răspuns: $I_1 = 1,5A$
b.	$I_1R_1 = I_2R_2$
	$\begin{array}{ll} R_1 N_1 - I_2 N_2 \\ R_2 N_2 = 1 A \end{array}$
C.	$P_1 = I_1^2 R_1$
	$P_2 = I_2^2 R_2$
	$P = P_1 + P_2$
	Răspuns: $P = 7.5 W$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 49

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție, rezolvare
II.1.a.	$r = E/I_{sc} = 0.5\Omega$
	Aplicarea legilor lui Kirchhoff sau legea lui Ohm
	Răspuns: $I_1 = 1,5A$
b.	$U_{AB} = -I_1 R_1$
	Răspuns: $U_{AB} = -3V$
C.	I=2A
	$W = \left[(R_3 + R_4)I^2 + R_2I_2^2 + R_1I_1^2 \right] t$
	Răspuns: $W=1560J$
II.2.a.	$\Phi = BS\cos 0$
	$S = \pi r^2$
	$r = l/2\pi$
	$\Phi = Bl^2 / 4\pi$
	Răspuns: $\Phi = 2mWb$
b.	i = e / R
	$R = \rho 4l / \pi d^2$
	$e = -\Delta\Phi/\Delta t = -S\alpha$
	$i = I \alpha d^2 / 16 \rho$
	Răspuns: $i = 5,2mA$
c.	$Q/t = Ri^2$
	Răspuns: $Q/t = 51 \cdot 10^{-8} \ J/s$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 50

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție/ rezolvare
II.1.a.	$R_{12} = \frac{R_1 R_2}{R_1 + R_2}$
	$R = R_{AB} + R_{12}$
	Răspuns: $R=14,1\Omega$
b.	$I = \frac{E}{R+r} = 4A$
	$I_1 = I \frac{R_2}{R_1 + R_2} = 1,2A$
	Răspuns: $I_2 = I \frac{R_1}{R_1 + R_2} = 2,8A$ $U_{AC} = I'R_{AC} = \frac{E}{R_{12} + r + R_{AC}} \cdot R_{AC} = 42V$
C.	$U_{AC} = I'R_{AC} = \frac{E}{R_{12} + r + R_{AC}} \cdot R_{AC} = 42V$
	Răspuns: $R_{AC}=7\Omega$
II.2.a.	$F_L = F_{cp}; \ q \lor B = \frac{m \lor^2}{R}$
	$V = \frac{qRB}{m}$
	Răspuns: $v = 2.6 \cdot 10^6 m/s$
b.	$T = \frac{2\pi n}{q \cdot B}$
	Răspuns: $T = 1,1 \cdot 10^{-7} s$
C.	$E_c = \frac{mV^2}{2}$
	Răspuns: $E_c = 14 \cdot 10^4 eV$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 51

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție/ schiță de rezolvare
II.1.a.	$L = \frac{\mu_0 \mu_r N^2 S}{I}$
	·
b.	Răspuns L = 12,56 H $\Phi = LI$
D.	$\Phi = Li$ Răspuns $\Phi = 12,56 \text{ Wb}$
C.	$e = -\frac{\Delta \Phi}{\Delta t} = (\mu_r - 1) \frac{\mu_0 \cdot N^2 \cdot S \cdot I}{I \cdot \Delta t}$
	Răspuns e = 125,47 V
II.2.a.	Răspuns $e = 125,47 \text{ V}$ $I = \frac{E}{R_{ext} + r}$
	R _{ech} este minimă pentru gruparea paralel
	Răspuns I este maxim pentru gruparea paralel
b.	$\frac{1}{R_{ech}} = \sum \frac{1}{R_i}$ $I = \frac{E}{R_{ech} + r}$
	$I = \frac{E}{R_{ech} + r}$
	Răspuns $I=1A$
C.	$R_{ech} = r$
	$\frac{R}{4} = r$
	Răspuns $R=4\Omega$

Fizică Varianta 51

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 52

FIZICĂ

Subiectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$R_{e} \frac{R_{3}(R_{1} + R_{2})}{R_{1} + R_{2} + R_{3}}$
	Răspuns $R_e = 4 \Omega$
b.	$I=rac{E}{r+rac{R}{2}}$, unde $R=R_1=R_2=R_3=6\Omega$
	$I' = \frac{E}{r + \frac{2R}{3}}$
	R aspuns E = 15 V
c.	$r = 1\Omega$
	$I_1 = \frac{E - rI'}{R_1 + R_2}$
	$W = R_2 I_1^2 \cdot t$
	$Raspuns W_1 = 21,6 kJ$
II.2.a.	$e = B \cdot L \cdot v$
	Răspuns $e = 0.6 V$
b.	$R_{e} = \frac{R_{1}R_{2}}{R_{1} + R_{2}}$
	$I = \frac{e}{R_e} = 0.2A$
	$I = I_1 + I_2$
	$R_1 I_1 = R_2 I_2$
	R ăspuns $I_1 = 0,12 A$;
C.	$F = B \cdot I \cdot L$ Răspuns $F = 0.03 N$
	naspulis 1 — 0,031V

Varianta 52

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 53

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$I_1 = \frac{E}{R + r \cdot n}$
	$\frac{E}{2}$
	$I_2 = \frac{\frac{E}{2}}{R + r \cdot \frac{n}{2}}$
	$R = E\left(\frac{1}{I_2} - \frac{1}{I_1}\right)$
	R ăspuns $R = 4\Omega$
b.	$n=2\frac{E}{r}\left(\frac{1}{I_1}-\frac{1}{2I_2}\right)$
	Răspuns $n = 20$
C.	$Q = R \cdot l_1^2 \cdot t$
	R ăspuns $Q = 960J$
II.2.a.	Răspuns sens corect (de la N la M prin conductorul mobil)
b.	e = BLV
	Răspuns $ e = 0.8 V$
C.	legea a doua a lui Kirchhoff
	$I = \frac{E + e}{R + r}$
	Răspuns $I = 14A$

Varianta 53 Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 54

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$2E = I(R_1 + 2r) + I_1R_2$ $2E(R_2 + R_2)$
	$0 = I_2 R_3 + I_1 R_2 \qquad I = \frac{2E(R_3 + R_2)}{(R_1 + 2r)(R_3 + R_2) + R_3 R_2}$
	$I = I_1 + I_2$
	Răspuns $l = 2,60A$
b.	P = UI
	$P = R_1 I^2$
	Răspuns $P = 13,52 W$
C.	$I_{SC} = \frac{2E}{2r}$
	Răspuns $I_{SC} = 60A$
II.2.a.	$\Phi = BS$
	$\Phi = B(OM)^2 \sin(\frac{\theta}{2})\cos(\frac{\theta}{2})$
	Răspuns $\Phi = 6.92 \ 10^{-5} \ Wb$
b.	e = Blv
	e = Bv(MN)
	Răspuns $e = 8 mV$
C.	$I = \frac{e}{R}, R = 3r(MN)$
	$I = \frac{Bv}{3r} = ct.$
	Răspuns $I = 0,2 A$

Varianta 54

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 55

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$R_e = \frac{(R_1 + R_3) \cdot (R_2 + R_4)}{R_1 + R_2 + R_3 + R_4}$
	$R = \frac{nE}{I} - R_{e} - nr$
	Răspuns $R=4\Omega$
b.	$P = I^2 R$
	R ăspuns $P_1 = 16 W$
c.	$R_{ext} = \frac{R_1 R_2}{R_1 + R_2} + \frac{R_3 R_4}{R_3 + R_4} + R$
	R ăspuns $R_{\text{ext}} = 13,88\Omega$
II.2.a.	$\Phi = NBS$
	$\Phi = \frac{\ell}{d} B \pi r^2$
	Răspuns $\Phi = 251,2 \mu Wb$
b.	$e = -\frac{\Delta\Phi}{\Delta t}$
	$e = \frac{3NBS}{4\Delta t}$
	$\epsilon - \frac{1}{4\Delta t}$
	$R \tilde{a} spuns e = 18,84 mV$
C.	$L = \frac{\mu N^2 S}{\ell}$ $L = \mu_0 \mu_r \frac{\ell \pi r^2}{d^2}$
	$L = \mu_0 \mu_r \frac{\ell \pi r^2}{d^2}$
	Răspuns $L = 85,33mH$

Varianta 55

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 56

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$\frac{F}{\ell} = \mu_0 \frac{l^2}{2\pi d}$
	~ 2,50
	Răspuns $F/\ell = 10^{-5} N/m$
	Firele se resping
b.	$B_{1} = \frac{\mu_{0}I}{2\pi D}$
	$B_2 = \frac{\mu_0 I}{2\pi (D+d)}$
	$B_1/B_2 = 1 + d/D$
	Răspuns $B_1/B_2 = 1 + 0,0005 = 1$
C.	Câmpurile celor două fire au – în toate punctele din spiră – inducții constante, egale în modul și
	de sensuri opuse
	Răspuns $\phi = 0$
II.2.a.	$ \begin{cases} (R_1 + r) = E/I_1 \\ (R_2 + r) = E/I_2 \end{cases} $
	$(R_2 + r) = E/I_2$
	$E = (R_1 - R_2)/(1/I_1 - 1/I_2)$
	Răspuns $E = 12V$
b.	$I_1/I_2 = (R_2 + r)/(R_1 + r)$
	$r = (I_2 R_2 - I_1 R_1)/(I_1 - I_2)$
	Răspuns $r = 1\Omega$
C.	$P_{\text{max}} = E^2/4r$
	$P_{\text{max}} = 36W$

Varianta 56 Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Varianta 57

FIZICĂ

B. Electricitate si magnetism

Nr. Item	Soluție / schiță de rezolvare
II. 1. a.	$P = RI^2 = \frac{R \cdot E^2}{\left(R + r\right)^2}$
	$\frac{R_1 E^2}{(R_1 + r)^2} = \frac{R_2 E^2}{(R_2 + r)^2}$
	$r = \sqrt{R_1 R_2}$
b.	$r = 4\Omega$ $R_e = \frac{R_1 R_2}{R_1 + R_2} \cong 1.8\Omega$
	$P = \frac{R_e E^2}{\left(R_e + r\right)^2}$
	Răspuns P = 5,35W
C.	$P_{\max} \iff R = r = 4\Omega$ Răspuns $R = 4\Omega$
II. 2. a.	$\phi_{(\iota)} = B_{(\iota)} \cdot S$
	$S = \pi r^2 = 3.14 \cdot 10^{-4} m^2$
	Răspuns $\phi_{(i)} = (25,12-6,28t) \cdot 10^{-9} [Wb]$
b.	$e = -\frac{\Delta \Phi}{\Delta t}$
	Δt $e = 6.28 \cdot 10^{-9} V$
	$i = \frac{e}{R}$
	K
	Răspuns $i = \frac{6.28 \cdot 10^{-9}}{10^{-3}} A = 6.28 \mu A$
C.	$B = \mu_0 \frac{I}{2r}$
	Condiția de anulare a câmpului $ \vec{B} + \vec{B}_{_0} = \vec{0} $
	$I = \frac{2rB_0}{\mu_0}$
	$\mathbf{R\check{a}spuns} I = 1,27A$

2

Fizică
Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 58

FIZICĂ

Subjectul B. ELECTRICITATE

Nr. item	Soluție / schiță de rezolvare
	$n_1 E = I_1 n_1 r + IR$
	$n_2 E = I_2 n_2 r + IR$ $I = I_1 + I_2$
	7 - 1 ₁ + 1 ₂ 2 · F
	$I = \frac{2 \cdot E}{r + R \cdot \frac{n_1 + n_2}{n_1 \cdot n_2}}$
	Răspuns <i>I</i> ≅ 0,645 <i>A</i>
	$P = I^2 R$
	Răspuns $P \cong 8,32 W$
C.	$I_2 = \frac{E}{r} - \frac{IR'}{n_2 r} = 0$
	$I' = \frac{2 \cdot E}{r + H' \cdot \frac{n_1 + n_2}{n_1 \cdot n_2}}$
	$R' = \frac{n_1 n_2 r}{n_1 - n_2}$
	Răspuns $R'=2\Omega$
	$\frac{\Delta B}{\Delta t} = -0.1$
	$\Delta t \\ B(t) = B_0 - 0.1t$
	Răspuns $B(t) = 0.4 - 0.1t$ (T)
	$e = -\frac{\Delta\Phi}{\Delta t}$
	$\epsilon = -\frac{\Delta t}{\Delta t}$
	$e = -S \cdot \frac{\Delta B}{\Delta t}$;
	$e = -S \cdot \frac{\Delta B}{\Delta t} ;$ $e = -\pi r^2 \cdot \frac{\Delta B}{\Delta t}$
	Răspuns $e = 125,6 \mu V$
C.	$i = \frac{e}{R}$
	Răspuns $i = 1,57mA$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 59

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	aplicarea legilor lui Kirchhoff
	Răspuns $I_3 = 3A$
b.	$U_{AB} = -I_3 R_2$
	Răspuns $U_{AB} = -6V$
C.	$E'_{1} = E_{2}R_{3}/(R_{2} + R_{3})$
	Răspuns $E_1 = 4V$
II.2.a.	e = B l v
	Răspuns $e = 2V$
b.	$i = e/(R + R_1)$
	$R_1 = \rho I/S$
	Răspuns $i = 0.8A$
C.	$G = F_{emg}$
	$i_1 = e_1 / (R + R_1)$
	$V_{\max} = dSg(R + R_1)/B^2I$
	$Răspuns v_{max} = 1,75 m/s$

Varianta 59 Fizică

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 60

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr item	Soluție / Schiță de rezolvare
II.1.a.	$R_0 = \frac{\rho_0 \ell}{S}$
	$R_0 = \frac{\rho_0 \ell}{S}$ $R = \frac{\rho \ell}{S} = \frac{\rho_0 (1 + \alpha t)}{S}$
	$R_{01} + R_{02} = R_1 + R_2$
	Răspuns $\frac{\ell_1}{\ell_2} - \frac{ ho_{02}lpha_2}{ ho_{01}lpha_1}$
b.	$E_1 - E_2 = I(R + 2r)$
	$U_2 = E_2 + Ir$
	Răspuns $U_2 = 6,15V$
C.	$W = I^2 Rt$ Răspuns $W = 2916 J$
II.2.a.	dacă v=v _{max} $\Longrightarrow \overrightarrow{F_e} + \overrightarrow{G} = 0$
	$F_e = mg$
	Răspuns $F_e=1N$
b.	$I\ell B=mg$
	$I = \frac{e}{R}$
	$e = B\ell v_{ m max}$
	$v_{\text{max}} = \frac{mgR}{B^2 \ell^2}$
	$\mathbf{R \check{a} spuns} v_{\mathrm{max}} = 4 m / s$
C.	$e = B\ell v_{\text{max}} = \frac{mgR}{B\ell}$
	Răspuns $e = 2V$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 61

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$R_2 = U^2 / P_2$
	Răspuns $R_2 = 484 \Omega$
b.	$I_1 = P_1 / U$
	Răspuns $I_1 \cong 0,22 A$
C.	Rezistorul cu rezistența R trebuie legat în paralel cu becul 1 $I_2 = P_2 / U$
	$R = U/(I_2 - I_1)$
	$R \tilde{\mathbf{a}} \mathbf{spuns} R \cong 956 \Omega$
II.2.a.	$\Phi = BS\cos\alpha$
	$\Phi = \frac{\pi D^2 B}{4} \cos 60^0$
	sens corect
	Răspuns $\Phi = 6.28 \cdot 10^{-2} \ Wb$
b.	$e = -\frac{\Delta\Phi}{\Delta t}$
	$e = -\frac{\pi D^2}{4} \cdot \frac{\Delta B}{\Delta t} \cdot \cos 60^0 = \frac{\pi D^2}{8} \cdot 10$
	Răspuns $e = 0.628 V$
C.	$I = \frac{e}{R}$
	Răspuns $I = 0.0628 A$

Varianta 61

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Fizică

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 62

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$E = U_1 + U_2$
	Răspuns $E = 24 \text{ V}$
b.	$r = \frac{U_1 \cdot U_2}{P}$
	Răspuns $r = 0.9 \Omega$
C.	$U_m = \frac{E}{2} = \frac{U_1 + U_2}{2}$
	Răspuns $U_{\rm m} = 12 \text{ V}$
II.2.a.	definiția și precizarea unității de măsură
b.	$B = \mu_0 n I$
	Răspuns $B = 0.4 \pi T = 1.26 T$
C.	$\Phi = NBS$
	Răspuns Φ = 1,26 mWb

Varianta 62 Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 63

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr.Item	Soluție / schită de rezolvare
II.1.a.	$e = -\frac{\Delta\phi}{\Delta t}$
b.	$\phi = \vec{B} \cdot \vec{S} = B\pi \frac{D^2}{4}$
	Răspuns $\phi \approx 31.4 mWb$
C.	$i = \frac{e}{R}$
	$i = -\frac{\Delta \phi / \Delta t}{R} = \frac{B\pi D^2}{4\Delta t}$
	Răspuns $i \approx 15,7 A$
II.2.a.	$E_1 - IR_1 = U_{AB} = 0$
	$E_2 - IR_2 = U_{AB} = 0$
	$I = \frac{E_1}{R_1}$ $E_2 = \frac{R_2}{R_1} E_1$
	$E_2 = \frac{R_2}{R_1} E_1$
	$\mathbf{R ispuns} \qquad E_2 = 90V$
b.	$I = \frac{E_1}{R_1}$
	Răspuns $I = 0.3 A$
C.	$P = (R_1 + R_2)I^2$
	R ăspuns $P = 4W$

Varianta 63 Fizică

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 64

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr.Item	Soluție / schiță de rezolvare
II.1.a.	$\Phi = \vec{B} \cdot \vec{S} = BS\cos\alpha$
	Răspuns $\Phi = 4 \cdot 10^{-5} Wb$
b.	$e = -\frac{\Delta\Phi}{\Delta t}$
	Răspuns $e = 4 \cdot 10^{-5} V$
C.	$\Delta q = i\Delta t$
	i = e/R
	Răspuns $\Delta q = \frac{e}{R} \Delta t = 4 \cdot 10^{-5} C$
II.2.a.	U = E - rI
	$U_a = E - rI_a = 7,5V$
	$\mathbf{R\check{a}spuns} U_b = E - rI_b = 4V$
b.	$\begin{cases} R_1 + R_2 = \frac{U_a}{I_a} \\ \frac{R_1 R_2}{R_1 + R_2} = \frac{U_b}{I_b} \end{cases}$
	$\frac{1}{R_1 + R_2} = \frac{2}{I_b}$
	Răspuns $R_1 = 1\Omega, R_2 = 2\Omega$
C.	$P = U_{bome}I$
	$P_a = U_a I_a, P_b = U_b I_b$
	Răspuns $P_a = 18,75W, P_b = 24W$

Varianta 64 Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 65

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr.item	Soluție / schiță de rezolvare
II.1.a.	$U_b = E - rI_p$
	$\mathbf{R aspuns} U_b = 4V$
b.	$\begin{cases} R_1 + R_2 = \frac{E}{I_S} - r \\ \frac{R_1 + R_2}{R_1 + R_2} = \frac{E}{I_P} - r \end{cases} \begin{cases} R_1 + R_2 = \frac{E}{I_S} - r \\ R_1 + R_2 = \frac{E}{I_S} - r \end{cases} \begin{cases} R_1 + R_2 = 3 \\ R_1 + R_2 = 2 \end{cases}$
	$R^2 - 3R + 2 = 0$
	$\mathbf{R}\mathbf{\check{a}spuns} R_1 = 2\Omega, R_2 = 1\Omega$
C.	$W = I_{\mathcal{S}}(E - rI_{\mathcal{S}})t$
	R ăspuns $W = 33750$ J
II.2.a.	$B_1 = \mu_0 \frac{l_1}{\pi d}, B_2 = \mu_0 \frac{l_2}{\pi d}$
	$B = B_2 - B_1$
	R ăspuns $B = 8 \mu T$
b.	$F_{13} = \mu_0 \frac{I_1 I_3}{2\pi d_1}, F_{23} = \mu_0 \frac{I_2 I_3}{2\pi d_2}$
	$F = \sqrt{F_{13}^2 + F_{23}^2}$
	Răspuns $F \cong 1,4 \cdot 10^{-5} N$
C.	$F_{13} = \mu_0 \frac{l_1 l_3}{2\pi x}, F_{23} = \mu_0 \frac{l_2 l_3}{2\pi (d-x)}$
	$F_{13} = F_{23}$
	$x = \frac{l_1}{l_1 + l_2} d$
	Răspuns $x \approx 1.3 cm$

Varianta 65

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 66

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$I_{sc} = \frac{E}{r}$
	$P_1 = R_1 I_1^2; I_1 = \frac{E}{R_1 + r};$
	$P_2 = R_2 I_2^2; I_2 = \frac{E}{R_2 + r}$
	$P_1 = P_2$
	Răspuns $r = 6\Omega$; $E = 120V$
b.	E^2
	$P_{\text{max}} = \frac{E^2}{4r}$
	Răspuns $P_{\text{max}} = 600W$
C.	$f = \frac{P_{utila}}{P_{consumata}} ; \eta = \frac{R_1 + R_2}{R_1 + R_2 + r}$
	Răspuns $f = \frac{13}{19}$
II.2.a.	$B_1 = \frac{\mu_0 I_1}{2\pi r_1}; B_2 = \frac{\mu_0 I_2}{2\pi r_2}$
	$\vec{B}_{M} = \vec{B}_{1} + \vec{B}_{2}; B_{M} = \sqrt{{B_{1}}^{2} + {B_{2}}^{2}}; B_{M} = \frac{\mu_{0}}{2\pi} \sqrt{\frac{{I_{1}}^{2}}{r_{1}^{2}} + \frac{{I_{2}}^{2}}{r_{2}^{2}}}$
	R aspuns $B_M = 2.83 \cdot 10^{-5} T$
b.	$B_1 = B_2; \ B_1 = \frac{\mu_0 I_1}{2\pi x}; \ B_1 = \frac{\mu_0 I_2}{2\pi (d-x)} \Rightarrow \ x = \frac{I_1 d}{I_1 + I_2}$
	Răspuns $x = \frac{25}{7}cm = 3,57cm$
c.	$F_1 = \frac{\mu_0 I_1 I_3}{\pi d}$; $F_1 = \frac{\mu_0 I_2 I_3}{\pi d}$
	$\vec{F} = \vec{F_1} + \vec{F_2}; F = F_1 - F_2 $
	R ăspuns $F = 2,4 \cdot 10^{-5} H$

Proba scrisă la Fizică Varianta 66

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 67

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$R_{13} = R_1 + R_3$
	$R_{24} = R_2 + R_4$
	R ₁₃ R ₂₄
	$R_{\text{ext}} = \frac{R_{13}R_{24}}{R_{13} + R_{24}}$
	1 –
	$I = \frac{nE}{R_{ext} + nr}$
	Răspuns I = 1,5 A $ \frac{1}{R_{12}} = \frac{1}{R_1} + \frac{1}{R_2} $
b.	<u></u>
	$\frac{1}{R_{34}} = \frac{1}{R_3} + \frac{1}{R_4}$
	R ₃₄ R ₃ R ₄
	$R_{\text{ext}} = R_{12} + R_{34}$
	$U_{AB} = IR_{ext}$
	Răspuns U'AB = 5,4 V
C.	$I = I_1 + I_2$
	$I_1R_1 = I_2R_2$
	IR ₁
	$I_2 = \frac{IR_1}{R_1 + R_2}$
	$P_2 = U_2 I_2 = R_2 I_2^2$
	Răspuns P ₂ = 1,08 W
II.2.a.	e=BLV
b.	Răspuns e = 2 V legile lui Kirchhoff
	*
	$I = \frac{e}{R_{ext} + r}$
	$I_1 = I R_2 / (R_1 + R_2)$ $I_2 = I R_1 / (R_1 + R_2)$
	$l_2 = l R_1 / (R_1 + R_2)$ Răspuns $l_1 = 0.75 A$; $l_2 = 0.25 A$
C.	Energia W = e ·I· t
	Răspuns W = 4 mJ

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 68

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II. 1. a	$I = \frac{E}{R+r}$
	Răspuns I = 0,8 A
b.	F=BII
	R ăspuns F = 0,768 N
C.	E . Phy
	$I' = \frac{E + Blv}{R + r}$
	Răspuns I = 1,2 A
II. 2. A.	$W = RI^2t$
	W - M I
	$R = R_1 + R_2$
	$I = \frac{E}{R_1 + R_2 + r}$
b.	Răspuns W = 4320 J
D.	U = R ' I '
	$R' = R_1 + \frac{R_2 R_3}{R_2 + R_3}$
	$R_1 + R_2 + R_3$
	$I' = \frac{E}{R' + r}$
	Răspuns U = 17,05 V
C.	
	$\frac{P}{P} = \frac{R}{R + r}$
	$P^{'} = R' + r$
	Răspuns P / P ' = 0,85

Varianta 68

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 69

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. item	Soluție / schiță de rezolvare
II.1.a.	teoremele lui Kirchhoff :
	Răspuns $I_1 = 0.15A; I_2 = -0.05A; I_3 = 0A; I = 0.1A$
b.	expresia legii lui Ohm pentru o porțiune de circuit
	R' = U/l ₃ Răspuns R'→∞
C.	instrumentul cu rezistență internă foarte mare este voltmetrul (voltmetrul ideal are
	<i>R</i> _V →∞)
	$R \text{ aspuns} \qquad \qquad U = 5 \ V.$
II.2.a	stabilirea polarității corecte a tem induse
	$I(R+r) = E \mp e $
	e = Blv
	$\textbf{R\"{a}spuns} \qquad I_{\min} = 2A; I_{\max} = 2,11A$
b.	condiția de deplasare uniformă a conductorului
	$\overline{F_{mec}} + \overline{F_{emg}} = \vec{0}; F_{mec} - F_{emg} = 0$
	$F_{emg} = BIl; F_{\min, \max} = Bl \frac{E \mp Blv}{R + r}$
	Răspuns $F_{\min} = 10^{-2} N; F_{\max} = 1,055 \cdot 10^{-2} N$
C.	$Q = I^2 R \Delta t$
	$\Delta \Phi = Blv\Delta t$
	$Q = \left(\frac{E - Blv}{R + r}\right)^2 \frac{R\Delta\Phi}{Blv}$
	Răspuns $Q=0,2J$

Fizică Varianta 69 Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 70

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$U_1 = IR_1$
	$P = P_1 + P_2$
	$P_1 = I^2 R_1, P_2 = I^2 R_2$
	Răspuns $R_1 = 10 \Omega$
b.	$E = U_b + Ir$, $U_b = IR_{ext.}$, $R_{ext.} = R_1 + R_2$
	$k = P_{\text{ext}} / P_{\text{sursa}}, \ P_{\text{ext.}} = IU_{\text{b}}, P_{\text{sursa}} = IE$
	R ăspuns $E = 37,5 \text{ V}, r = 6,25 \Omega$
	$l' = E/(r + R'_{ext})$
0.	$R_{\text{ext}}^{\prime} = R_2 + R_1 R_{\text{V}} / (R_1 + R_{\text{V}})$
	$U'_1 = I'R_e$
	Răspuns U'≅7V
II.2.a.	$\Phi_1 = BS_1 \cos \alpha$
	$S_1 = 0.5 \ a \cdot vt_1$
	$\alpha = 0$
	Răspuns $\Phi_1 = 45 \text{ mWb}$
b.	$e = -\frac{\Delta\Phi}{\Delta t}$
	$\Delta \Phi = B \Delta S$, $\Delta S = 0.5 a \Delta x$, $\Delta x = v \Delta t$
	e = -0.5 Bav
	R ăspuns $e = -4,5 \text{mV}$
C.	$I_2 = \frac{ e }{R_2}$
	$R_2 = R_0 \ell_2 = R_0 \left(a + vt_2 + \sqrt{a^2 + (vt_2)^2} \right)$
	Răspuns $I_2 = 1,875 \text{ mA}$

Varianta 70 Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 71

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$Q_2 = \frac{U^2}{R_2}t$
	$Q_2 = \frac{U^2}{R_2}t$ $U = \sqrt{\frac{Q_2R_2}{t}}$
	1 1
b.	Răspuns $U = 3V$ $I = I_1 + I_2$
	$I_1 = \frac{U}{R_1} ; \qquad I_2 = \frac{U}{R_2}$
	Răspuns $I = 2,5A$
C.	. E ₀
	$I = \frac{c}{R_e + r_e}$
	$I = \frac{E_e}{R_e + r_e}$ $E_e = E; \ r_e = \frac{r}{2}$
	$R_e = \frac{E}{I} - \frac{r}{2}$
	$R_e = \frac{R_1 R_2}{R_1 + R_2} + R$
	Răspuns $R = 2.3\Omega$
II.2.a.	$e = -\frac{\Delta\Phi}{\Delta t}$
	$e = -\pi \cdot a^2 \cdot \cos \alpha \cdot \frac{B_2 - B_1}{\Delta t}$
	$e = -\pi \cdot a \cdot \cos \alpha \cdot \frac{\Delta t}{\Delta t}$
b.	$R "aspuns" = 5.10^{-3} V$
D.	Răspuns $e = 5 \cdot 10^{-5} V$ $e = -\frac{\Phi_2 - \Phi_1}{\Delta t}$
	$e = -B_2 \frac{0 - S \cdot \cos \alpha}{\Delta t} = B_2 \pi a^2 \frac{\cos \alpha}{\Delta t}$
	Răspuns $e = \frac{1}{3} \cdot 10^{-4} (V)$
	$t \in \left[0,4s\right]: \ I_1 = \frac{e_1}{R}$
	$t \in \left[4,10s\right]: I_2 = \frac{e_2}{R}$
	Răspuns $I_1 = 5 \cdot 10^{-6} A$; $I_2 = \frac{1}{3} \cdot 10^{-5} A$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 72

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$U_{ab} = E_2 + E_1 - I_1 r$
	$\textbf{R\"{a}spuns} \boldsymbol{U}_{ab} = \frac{16}{3} \boldsymbol{V} \cong 5,33 \boldsymbol{V}$
b.	Legile lui Kirchhoff
	$E_1 + E_2 = I_1(R_1 + r) + I_3 R_3$
	$0 = I_3 R_3 - I_2 R_2$
	$I_1 = I_2 + I_3$
	$\textbf{Rǎspuns} \boldsymbol{I}_2 = \frac{2}{3}\boldsymbol{A} \cong 0,66\boldsymbol{A}$
C.	$P = U_3 I_3 = I_3^2 R_3$
	R aspuns $P = \frac{16}{9}W = 1,(7)W$
II.2.a.	$\overrightarrow{F}_B + \overrightarrow{G}_B = 0$
	$I_{B} = \frac{m_{0}g 2\pi d}{\mu_{0}\mu_{r}I_{A}}$
	$I_B = \mu_0 \mu_r I_A$
	Răspuns $I_B = 50A$
b.	Reprezentarea corectă a sensurilor curenților electrici prin cei trei conductori
C.	$\overrightarrow{F}_C + \overrightarrow{F}_A + \overrightarrow{G}_B = 0$
	$I_C = \sqrt{\frac{m_0 g \pi d}{\mu_0 \mu_r}}$
	Răspuns $I_c = 22,36A$

Varianta 72

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 73

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	legile lui Kirchhoff
	$I = \frac{(E_1/r_1) + (E_2/r_2) + (E_3/r_3)}{1 + R \cdot [(1/r_1) + (1/r_2) + (1/r_3)]}$
	Răspuns I = 1 A
b.	$W = \frac{U_{AB}^2}{R} t = R \cdot I^2 \cdot t$
	R ăspuns W = 2,4 kJ
C.	R< <rv< th=""></rv<>
	$U_{V} = I' \cdot \frac{R \cdot R_{V}}{R + R_{V}}$
	$U_{V} = I' \cdot \frac{R \cdot R_{V}}{R + R_{V}}$ $I' \cong \frac{E}{r_{1} + R}$
	Răspuns U _V ≈ 2,4 V
II.2.a.	sens corect
	$I = \frac{e}{R_{LM} + r}$
	$R_{LM} = \frac{\rho I}{S} = \frac{4\rho I}{\pi d^2}$
	Răspuns $e = (2\pi)m \ V \cong 6,28 \ mV$
b.	$v = {\stackrel{e}{P}}_{B \cdot L}$
	Răspuns v = 2m/s
C.	F=B·I·L
	Răspuns $F = 2\pi^2 \cdot 10^{-6} N \cong 19,7 N$

Varianta 73 Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 74

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$V_A = V_B$
	$R_4 = \frac{R_2 R_3}{R_1}$
	Răspuns $R_4 = 3 \Omega$
b.	$I = \frac{2E}{R_{coh} + 2r}$
	$R_{ech} = \frac{(R_1 + R_2)(R_3 + R_4)}{R_1 + R_2 + R_3 + R_4}$
	$I_3 = \frac{2}{5}I$
	$W_4 = R_4 I_3^2 t$
	R ăspuns $W_4 = 23,33 \text{ J}$
C.	$B = \frac{\mu_0 N I_3}{I}$
	Răspuns $B = 4,52 \cdot 10^{-4} \text{ T}$
II.2.a.	$R = \frac{\rho l}{S}$
	$S = \frac{\pi d^2}{4}$
	R ăspuns $R = 1,2 \Omega$
b.	$B = \frac{\mu_0 I}{2r}$ $r = \frac{l}{2\pi}$
	Răspuns $B = 25,12 \cdot 10^{-7} \text{ T}$
C.	$e = -\frac{d\Phi}{dt}$
	$e = -\pi r^2 a$
	Răspuns <i>e</i> = 3,14 V

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 75

FIZICĂ

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. item	Soluție / schită de rezolvare
II. 1.a.	rezistența bobinei $R = \rho \frac{l}{c}$
	$r=R(rac{E}{U}-1)$ Răspuns $r=0.5~\Omega$
b.	$B = \frac{\mu_0 \mu_r N I}{l}$ Răspuns $B = 1 mT$
C.	puterea transferată de sursă unui circuit exterior $P=R_1\cdot I^2$ condiția de transfer maxim de putere Răspuns $R_1=0.5\Omega$
II.2.a.	$mg = B \cdot I \cdot l$ rezistența echivalentă a circuitului $R = 8Ω$ viteza limită a barei $v = \frac{mgR}{B^2 l^2}$ Răspuns $v = 2 m/s$
b.	t.e.m. indusă $e = Blv$ Răspuns $e = 4V$
C.	$P = R_3 I_2^2$ $I_2 = \frac{e}{R_3 + R_{24}} = 0.1A$ Răspuns P=0,25 W

Fizică Varianta 75

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea: matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 76

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr item	Soluție, rezolvare
II.1.a.	
	$I = \frac{U}{R}$
	Răspuns: I = 4 A
b.	Assumed the Windshift of the state of the st
	teorema lui Kirchhoff pentru ochiul format dintr-o sursă și rezistorul R
	$r = \frac{E - IR}{I}$
	Răspuns: $r = 2,5 \Omega$
C.	
	$W = I^2Rt$
	Răspuns: $W = 60 J$
II.2.a.	
	$ \mathbf{e} = B\ellv$
	Răspuns: $e = 10 V$
b.	
	legea lui Ohm o porțiune de circuit
	Răspuns: I = 1A
C.	$\Phi = LI$
	Răspuns: $\Phi = 0.01 Wb$
	11a3pulls. $\Psi = 0,01770$

Varianta 76

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Fizică

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Varianta 77

Nr. Item	Soluție, rezolvare
II.1.a.	$R_p = \frac{R_1 R_2}{R_1 + R_2}$
	$R=R_3+\frac{R_1R_2}{R_1+R_2}$ Răspuns: $R=75\Omega$
b.	$U_{MN} = IR_p = I \frac{R_1 R_p}{R_1 + R_2}$ rezultat final $U_{MN} = 30V$
C.	$P_1 = \frac{U_{MN}^2}{R_1}$
II.2.a.	Răspuns: $P_1 = 45W$
11.2.4.	$\Phi = BS\cos(\pi - \alpha)$
	Răspuns: $\Phi = 4 \cdot 10^{-5} Wb$
b.	$e = -\frac{\Delta\Phi}{\Delta t}$
	$\Delta\Phi = BS\cos\pi - BS\cos0 = -2BS$ Răspuns: $e = 16mV$
<u> </u>	$I = \frac{e}{R}$ $I = \frac{q}{\Delta t}$ Răspuns: $q = 16 \cdot 10^{-6} C$

Proba E: Specializarea : matematică -informatică, științe ale naturii Proba F: Profil: tehnic - toate specializările

Varianta 78

Nr. Item	Soluție / rezolvare
II.1. a.	$tg\alpha = \frac{B_1 - 2}{3}$, $tg\alpha = \frac{10 - B_1}{2}$, B_1 - inducția magnetică după $\Delta t = 3s$
Г	$\frac{B_1 - 2}{3} = \frac{10 - B_1}{2}$
	Răspuns: $B_1 = 6,8mT$
b.	$e = -\frac{\Delta \Phi}{\Delta t} = -\frac{\Delta B \cdot S}{\Delta t}$
	ΔB - variația inducției magnetice în intervalul (3 ÷ 5) s $\Longrightarrow \frac{\Delta B}{\Delta t} = 1,6T/s$
	$e = -\pi r^2 \frac{\Delta B}{\Delta t} \cos \left(\frac{\pi}{2} - \alpha \right)$
	$e = -0.4 \mathrm{mV}$
C.	$tg\alpha = \frac{\Delta B}{\Delta t} = 1,6$
	$tg\alpha = 1.6 = \frac{B_3 - B_1}{4 - 3}$, B_3 după $\Delta t = 4s \implies B_3 = 8.4 mT$
	$\Phi = B_3 S \cos \left(\frac{\pi}{2} - \alpha \right)$
	Răspuns: $\Phi = 2,28 \cdot 10^{-6} \text{ Wb}$
2. a	$P = IU + I^2R_2$, R_2 – rezistența reostatului
	$1^2 + 31 - 10 = 0$
b	U = 2A W = Ult
	W = 0.12kWh
С	$U_{R'} = U - U_{R_1} = 60V$,
	$U_{R'} = IR'$
	$R' = \frac{U_{R_2}}{I}$
	1
	Răspuns: $R'=30\Omega$

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 79

Nr. Item	Soluție / rezolvare
II.1.a.	$R_e = \frac{R_V R_2}{R_V + R_2} + R_1 \qquad I = \frac{E}{R_e}$
	Răspuns: $I = \frac{11}{40} = 0,275A$
b.	$U = I \cdot \frac{R_2 R_V}{R_2 + R_V}$ Răspuns: $U = 110V$
C.	$Q = R_1 I^2 t$ Răspuns: $Q = 18,15kJ$
II.2.a.	$I = \frac{B}{\mu_0 \mu_r n} = 1,2A \qquad \qquad I = \frac{E}{\frac{RR_b}{R+R_b}+r} \qquad \qquad R_b = \frac{1}{\frac{E}{R}} = \frac{1}{R}$ Răspuns: $R_b = 20\Omega$
b.	$P = RI^2$ Răspuns: $P = 7.2W$
С.	$L = \frac{\Phi}{I}$
	Răspuns: $L = 0.3mH$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 80

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / rezolvare
II.1.a.	$R_{\rm e}=\frac{\left(R_1+R_2\right)\cdot\left(R_3+R_4\right)}{R_1+R_2+R_3+R_4}$ Răspuns: $R_{\rm e}=5\Omega$
b.	$I = \frac{E}{R_e + r}$ Răspuns: $I = 2A$
c.	$R_{e}' = r$ $R_{4}' = \frac{(R_{1} + R_{2}) \cdot (r - R_{3}) + rR_{3}}{R_{1} + R_{2} - r}$ Răspuns: $R_{4}' = 0.5\Omega$
II.2.a.	$B=\mu_0 n I$ Răspuns: $B=1.2\pi\cdot 10^{-3} T\cong 3.77 m T$
b.	$\Phi = BS \cos\left(\frac{\pi}{2} - \alpha\right)$ $S = \frac{\pi D^2}{4}$ Răspuns: $\Phi = 25,95 \mu Wb$
c.	$q = I\Delta t ;$ $I = \frac{e}{R} ;$ $e = -\frac{\Delta\Phi}{\Delta t}$ $q = \frac{BS\left[\cos\left(\frac{\pi}{2} - \alpha\right) - \cos\left(\frac{\pi}{2} - \beta\right)\right]}{R}$ Răspuns: $q = 5,47\mu C$

Fizică Varianta 80

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 81

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / rezolvare
II.1.a.	$P \perp P$
	$E = I(r+R) + \frac{P_1 + P_2}{I}$
	Răspuns: $I = 5A$
b.	$E = I(r+R) + I \cdot R_{e}$
	Răspuns: $R_e = 2.4\Omega$
C.	
	$\eta = \frac{R + R_e}{R + R_e + r}$
	Răspuns: $\eta = \frac{43}{48}$
II.2.a.	Y . D . C
	$\Phi = B \cdot S$ while
	$B = \frac{\mu NI}{l}$
	$I = \frac{U}{R} ; S = \frac{\pi D^2}{4}$
	Răspuns: $\Phi = \frac{\mu N U \pi D^2}{4Rl} \Rightarrow \Phi = 24 \cdot 10^{-7} Wb$
b.	uN^2S No.
	$L = \frac{\mu N^2 S}{l} sau L = \frac{N\Phi}{l}$
	Răspuns: $L = 3.84 \cdot 10^{-5} H$
C.	47
	$e = -L \frac{\Delta I}{\Delta t}$
	Răspuns: $ e = 24 \cdot 10^{-3} V = 24 mV$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 82

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / rezolvare
II.1.a.	
	$R_e = R_1 + \frac{R_2 R_3}{R_2 + R_3}$, $R_e = 10\Omega$
	$I = \frac{E}{R+r}$, $I = 1$ A
	$R šspuns: U = R_e I, U = 10V$
b.	$I_1 = I = 1A$
	$I_1 = I_2 + I_3$, $I_2 R_2 = I_3 R_3$
	Răspuns: $I_2 = I_3 = \frac{I_1}{2}, I_2 = I_3 = 0,5A$
	Haspuns: $I_2 = I_3 = \frac{1}{2}$, $I_2 = I_3 = 0.5A$
C.	$W = D I^2 \Lambda A$
	$W_2 = R_2 I_2^2 \Delta t,$
	Răspuns: $W_2 = 450J$
II.2.a.	e = Blv,
	Răspuns: final $e=10V$
b.	$I = \frac{E}{R+r} ,$
	Răspuns: I = 2,5 A
C.	Puterea mecanică necesară deplasării conductorului mobil cu viteza constantă $P = F \cdot { t V}$
	Răspuns: $P = 25W$

Varianta 82

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 83

Subjectul B. Electricitate si magnetism

Nr. Item	Soluție / rezolvare
1.4	
l. 1.	a
2.	b
3. 1	b
3. 4. 5.	C
II. 1. a.	legea Kirchhoff $I = I_1 + I_2$
	$R_{_{e}} = \frac{R_{_{1}}R_{_{2}}}{R_{_{1}} + R_{_{2}}} \qquad \qquad R_{_{e}} = 4\Omega$
	$I = \frac{E}{r + R_e}$ $\frac{I_1}{I_2} = \frac{R_2}{R_1}$ $I_1 = \frac{IR_2}{R_1 + R_2}$ $I_2 = I - I_1$
	Răspuns: $I_1 = \frac{5}{3} A \cong 1,67A$ $I_2 \cong 3,33A$
b.	legea lui Ohm $U_{_1}=R_{_1}I_{_1}$
	Răspuns: $U_1 = 12 \cdot \frac{5}{3} = 20V$
C.	condiția de maxim $R_2 = r_{echiv}$
	Răspuns: $r_{echiv} = \frac{R_1 r}{R_1 + r} = 3\Omega$
II. 2. a.	$\Delta \Phi = Ba^2$
	$\left e\right = \frac{\Delta\Phi}{\Delta t} = \frac{Ba^2}{\Delta t}$
	$i = \frac{Ba^2}{R\Delta t}$
	$\Delta q = i\Delta t = \frac{Ba^2}{R}$
	Răspuns: $\Delta q = 25 \cdot 10^{-6} C = 25 \mu C$
b.	expresia fluxului $\Phi = Ba^2 \cos \omega t$
	t.e.m. indusă $e = -\frac{\Delta\Phi}{\Delta t} = Ba^2\omega\sin\omega t$
	Răspuns: $e_{(t)} = 0.02 \sin 10t$ (V)
C.	legea lui Ohm $i = \frac{e}{R}$
	Răspuns: $i_{(t)} = 125 \sin 10t$ (μA)

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, ştiințe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 84

Nr. Item	
	Soluție, rezolvare
II.1.a.	dacă $I_G = 0$, prin rezistorii R_1 și R_2 trece acela și curent, deci sunt legați în serie
	$R' = R_1 + R_2$
	$1/R_{AB} = 1/R_f + 1/R'$
	rezultat final $R_{\rm AB}$ =3,6 Ω
b.	$I = E/(r + R_{AB})$
	$U_{AB} = E - Ir$
	$I_{\text{ADB}} = U_{\text{AB}} / (R_1 + R_2)$
	$\Phi = LI_{ADB}$
	rezultat final $\Phi = 60 \text{ mWb}$
C.	$din I_{G} = 0 \Rightarrow U_{DC} = 0$
	legea II a lui Kirchhof pentru ochiul ADCA: $U_{\rm AD} = U_{\rm AC}$
	legea II a lui Kirchhof pentru ochiul ADCA: $U_{\rm DB} = U_{\rm CB}$
	$U_{AD} = I_{ADB}R_1$, $U_{AC} = I_{ACB}R_{AC}$; $U_{DB} = I_{ADB}R_2$, $U_{CB} = I_{ACB}R_{CB}$
	$R = \rho \ell / S$, $R_{AC} = \rho \ell_{AC} / S$, $R_{CB} = \rho \ell_{CB} / S$
	Răspuns: $\ell_{AC} / \ell_{CB} = R_1 / R_2 = 0.8$
II.2.a.	desen
b.	
D.	$mv^2/R = q vB$
	$m_1 v_1^2 / R_1 = q_1 v_1 B$ $m_2 v_2^2 / R_2 = q_2 v_2 B$
	$d=2(R_1+R_2)$
	rezultat final $d = 11 \mathrm{m}$
C.	$T = 2\pi R/v, mv^2/R = q vB, T = 2\pi m/ q B$
	$\Delta t = 0.5 T_1 - T_2 $
	rezultate finale: $\Delta t \cong 3,73 \mu s$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 85

Nr. Item	Soluție / rezolvare
II.1.a.	$I_1 = \frac{E}{r}$; $I_0 = \frac{E}{B+r}$
	$r = \frac{I_0 R}{I_1 - I_0}$
	$I_1 - I_0$ Răspuns: $r = 0.1\Omega$; $E = 1.9V$
b.	
	Legile lui Kirchhoff scrise corect $I^{'}=2I; n_1E=IR_1+2In_1r; n_2E=IR_2-IR_1+In_2r; I'$ intensitatea curentului prin cele n_1 surse
	$n_1 = \frac{lR_1}{F - 2lr}; n_2 = \frac{l(R_2 - R_1)}{F - lr}$
	2 211 2 11
C.	Răspuns: $n_1 = 4$; $n_2 = 6$
	U _{BA} = IR ₁
	U _{AB} = -U _{BA} Răspuns: U _{AB} = - 6 V
II.2.a.	
	$V = V_{\text{max}}$ $c\hat{a}nd$ $F_1 = F$
	$BI\ell = BI_1\ell \Rightarrow I = I_1$
	$\frac{E}{R+r} = \frac{e}{R+r} \Rightarrow E = e$
	$v_{\text{max}} = \frac{E}{B\ell}$
	$B\epsilon$
b.	Răspuns: $v_{\text{max}} = 50 \frac{\text{m}}{\text{s}}$
	$v_0 < 50 \frac{m}{s} \Rightarrow l > l_1; \ l_t = l - l_1$
	$I_t = \frac{E - B\ell v_0}{B + r}$
	Forța ce trebuie aplicată în sens invers mişcării : $F_0 = BI_t \ell$
	Răspuns: $F_0 = 0.58 N$
C.	
	$I_t = \frac{E + B\ell v_0}{R + r}$
	Răspuns: $I_t = 7.2 A$

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 86

B. Electricitate şi magnetism

Nr. Item	Solutie / rezolvare
II. 1. a.	$P = \frac{U^2}{R}$ $R_{1,2} = \frac{U^2}{P_{1,2}}$
	$R_{1,2}=rac{\mathcal{O}}{P_{1,2}}$ Răspuns: R ₁ = 302,5 Ω ; R ₂ = 110 Ω
b.	Legea lui Ohm
	$I_{1,2} = \frac{U_{1,2}}{R_{1,2}}$ Răspuns: $I_1 = 0,364$ A; $I_2 = 1$ A
C.	schema montajului echivalent justificarea şuntării becului de 40W $R_S = \frac{U_b}{I_2 - I_1} = \frac{110V}{(1 - 0.364)A}$
	$I_2 - I_1 = (1 - 0.364)A$ Răspuns: $R_S = 172.86\Omega$
II. 2. a.	$B=rac{\mu_0 I}{2r}$ Răspuns: B = 2,62 10-6T
b.	$\Phi = BS = B\pi r^2$ Răspuns: $\Phi = 0.036Wb$
C.	$q = e_{med}\Delta t$
	$i_{med} = rac{e_{med}}{R}$
	$e_{med} = -\frac{\Delta\Phi}{\Delta t} = -\frac{BS(\cos 180^{\circ} - \cos 0^{\circ})}{\Delta t} = \frac{2BS}{\Delta t}$ $\Rightarrow q = \frac{2BS}{R}$
	Răspuns: $q = 1.8C$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 87

Nr. Item	Soluție / rezolvare
II.1.a.	D.
	$R_2 = r$
	Răspuns: $R_2 = 2\Omega$
b.	$I_{sc} = \frac{E}{r}$
	Răspuns: $I_{sc} = 6A$
c.	R
	$\eta = \frac{R_{ech}}{R_{ech} + r}$
	$R_{ech} = \eta r / (1 - \eta)$
	Răspuns: $R_{ech}=6\Omega$
II.2.a.	A DC and O
	$\phi = B S \cos 0$ Răspuns: $\phi = 6.28 \cdot 10^{-4} Wb$
b.	Haspuns: $\psi = 0,28\cdot 10$ WD
	$i = \frac{e}{R}$
	$R = 2\pi r r_0$
	$e = -\frac{\Delta \phi}{\Delta t} = \frac{\phi}{\Delta t}$
	Răspuns: $i = 25mA$
C.	
	$q = i_1 \cdot \Delta t$
	$i_1 = e_1 / R$ $e_1 = BS(1 - \cos \alpha) / \Delta t$
	$q = BS(1 - \cos \alpha)/R$
	Răspuns: $q = 25 mC$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii Proba F: Profil: tehnic - toate specializările

Varianta 88

Nr. Item	Soluție / rezolvare
II.1. a.	P=I ² R
	$I = \frac{E}{r + R}$
	$P_1 = P_2 \Rightarrow \frac{R_2 + r}{R_1 + r} = \sqrt{\frac{R_2}{R_1}} = 2$
	Răspuns: $r = 2\Omega$ $P = I_S^2 (R_1 + R_2)$
b.	$P = I_s^2 (R_1 + R_2)$
	$I_{S} = \frac{E}{R_1 + R_2 + r}$
	$I_{S} = \frac{10}{7}A$
	Răspuns: P=10,2W
C.	$P_1 = l_1^2 R_1$
	$P_{tot} = EI_1$
	$\frac{P_1}{P_{\text{tot}}} = \frac{R_1}{R_1 + r} = 0.33 = 33\%$
	Răspuns: $\frac{P_1}{P_{tot}} = 0.33 = 33\%$
2. a	$I_{sc} = rac{E}{r}$, deoarece $R_{tijar{a}} \cong 0\Omega$
	Răspuns: I = 3A
b	Răspuns: $I = 3A$ $P_b = UI \implies I = \frac{P}{U} = 1A$
	Răspuns: bec $P_b = I^2 R_b \Rightarrow R_b = 4\Omega$
	$I = \frac{E}{R_b + r} = 1A$
С	Deci becul va funcționa F = Bl'I
	$l' = \frac{E - e}{r}$, dar $e = Blv$
	$F = \frac{B^2 ^2 V}{2r}$
	Răspuns: F = 29,5mN

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

- ♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ
- ♦Se acordă 10 puncte din oficiu.

◆Timpul efectiv de lucru este de 3 ore.

Varianta 89

Nr. item	Soluție / rezolvare
II. 1.a.	
	intensitatea curentului prin bobină $I_1 = 2A$
	$U_{AB} = 30V$
	$P_2 = \frac{U_{AB}^2}{R_2}$
	Răspuns: $P_2 = 15W$
b.	$\Phi = BS\cos(\vec{n},\vec{B})$
	fluxul magnetic printr-o spiră a bobinei Răspuns: $\Phi_{sp}\cong 20\mu Wb$
C.	
	$E = U_{AB} + Ir$ $I = I_1 + I_2 = 2,5 A$
	$r = \frac{E - U_{AB}}{I}$
	Răspuns: $r = 4\Omega$
II.2.a.	expresia t.e.m. induse Răspuns: $e = 0.6V$
b.	
	$R = \frac{R_1 R_2}{R_1 + R_2}$
	legea lui Ohm un circuit simplu rezultatul final <i>I = 0,2A</i>
C.	condiția de mișcare uniformă
	expresia forței electromagnetice
	expresia forței mecanice Răspuns: $F_m = 74 \text{mN}$

Proba E: Specializarea: matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 90

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / rezolvare
II.1.a.	$B_{M} = \frac{\mu_{o}\left(I_{2} - I_{1}\right)}{\pi d}$
	Răspuns: $B_M = 8 \cdot 10^{-6} T$
b.	D D
	$B_{1N} = B_{2N}$
	$\frac{\mu_{o}l_{1}}{2\pi x} = \frac{\mu_{o}l_{2}}{2\pi(d-x)}$
	Răspuns: $x \approx 3.3 cm$
C.	F
	$\frac{F}{\ell} = \frac{\mu_o l_1 l_2}{2\pi d}$
	Přemune: F 16 10-6 N/IW
	Răspuns: $\frac{F}{\ell} = 16 \cdot 10^{-6} N/W$
II.2.a.	E
	$I = \frac{E}{r + R}$
	$U = IR = \frac{RE}{r + R}$
	Răspuns: $U = 8V$
b.	naspuis. 0 – 0v
	$\eta = \frac{p_n}{p_2} = \frac{RI}{(r+R)I} = \frac{R}{r+R}$
	Răspuns: $\eta = \frac{2}{3}$
C.	
	$p = \frac{RI^2}{(r+R)I^2} = \frac{R}{r+R}$
	Condiția R = r
	Răspuns: $R = 2\Omega$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 91

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. item	Soluție / rezolvare
II. 1. a.	reprezentarea corectă a celor două scheme: R_s în paralel cu consumatorul 1, respectiv R_p în serie cu gruparea paralel a celor doi consumatori cu motivația : $I_1 = \frac{P_1}{U_0} = \frac{10}{11} A < I_2 = \frac{P_2}{U_0} = \frac{40}{11} A$
b.	$R_{s} = \frac{U_{0}^{2}}{P_{2} - P_{1}}$
	$R_p = rac{U_0 \left(U - U_0 ight)}{P_2 + P_1}$ Răspuns: $R_s = 40,3~\Omega$, respectiv $R_p = 24,2~\Omega$
c.	expresia randamentului $\eta = rac{P_{util}}{P_{consumat}}$ $\eta_{_{p}} = rac{U_{_{0}}}{U_{_{0}}}$
II.2.a.	Răspuns: $\eta_p = 50\%$
	$I_1 = \frac{E}{r + R_1}$ Răspuns: $I_1 = 0,5 A$
b.	Răspuns: $I_1 = 0,5 A$ $\Phi = BNS ; B = \frac{\mu_0 NI}{l}$ $I_2 = \frac{E}{r \left(1 + \frac{R_2}{R_1}\right) + R_2};$
	$\Phi = \frac{\pi\mu_0 N^2 d^2 E}{4l \left[r \left(1 + \frac{R_2}{R_1} \right) + R_2 \right]} ;$ Răspuns: $\Phi = 1, 2 \cdot 10^{-5} Wb$
C.	$I = -L \frac{\Delta I}{\Delta t}$; cu $L = \frac{\Phi}{I_2}$.
	$e = L \frac{I_2}{\Delta t} \; ;$ Răspuns: $e = 12 V$

Fizică Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 92

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / rezolvare
II.1.a.	
	Din grafic: $E = 40V$; $I_{sc} = 10A$
	$I_{sc} = \frac{E}{r}$
	Răspuns: $E = 40V$; $r = 4\Omega$;
b.	teoremele lui Kirchhoff:
	$E = I \cdot r + I_1 R_1$ $I_1 R_1 = I_2 R_2$
	$I_1 \mathbf{K}_1 - I_2 \mathbf{K}_2$ $I = I_1 + I_2$
	Răspuns: $I = 3,75 A$; $I_1 = 2,5 A$; $I_2 = 1,25 A$
C.	$P_{sursa} = E \cdot I$
	$P_{grupare} = I^2 \cdot R_p$
	$R_{p} = \frac{R_{1}R_{2}}{R_{1} + R_{2}}$
	Răspuns: $P_{sursa} = 150W$; $P_{grupare} = 93,75W$
II.2.a.	$e = -L \frac{\Delta I}{\Delta t}; L = \frac{\mu_0 N^2 S}{I}$
	Răspuns: $e = -\pi \cdot 10^{-3} V$
b.	$B = \frac{\mu_0 NI}{l} ; I = at$
	Răspuns: $B = 8\pi \cdot 10^{-3} T$
C.	$e = -\frac{\Delta\Phi}{\Delta t}$; $\Phi = B \cdot s$
	$B = \frac{\mu_0 NI}{l} \Rightarrow e = -\frac{s\mu_0 Na}{l}$
	$R \text{ aspuns: } e = -4\pi \cdot 10^{-7} V$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 93

Varianta 93

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție/ rezolvare
II.1.a.	
	$I_1 = E/(R_1 + r)$
	$U_{AB} = R_1 I_1$
	Răspuns: $U_{AB} = 8V$
b.	$R_1 - R_1 R_2$
	$R_{12} = \frac{R_1 R_2}{R_1 + R_2}$
	$I = E/(R_{12} + r)$
	Răspuns: $I = 2,47A$
C.	
	$P_{\text{max}} \rightarrow R_e = r$
	$R_e = \frac{(R_2 + R_3)R_1}{R_1 + R_2 + R_3}$
	Răspuns: $R_3 = 4\Omega$
II.2.a.	$\Phi_0 = B_0 S$
	$S = \pi \cdot r^2$
	$B_0 = 100mT$
	Răspuns: $\Phi_0 \cong 2 \cdot 10^{-3} Wb$
b.	$e = -\Delta\Phi/\Delta t$
	$\Delta \Phi = -\Phi_0$
	$\Delta t = 2ms$
C.	Răspuns: $e=1V$
- C.	I = e/R
	$P = RI^2$
	Răspuns: $P = 0.2W$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 94

Nr. Item	Soluție / rezolvare
II.1. a.	$\Phi = \vec{B} \cdot \vec{S} = BS\cos\alpha$
	$\Delta \Phi = \Phi_2 - \Phi_1 = BS \cos \alpha_2 - BS \cos \alpha_1$
	$\Delta\Phi = -2BS = -\frac{\pi Bd^2}{2}$
	Răspuns: $\Delta\Phi = 7,68 \cdot 10^{-4}$ Wb
b.	$\mathrm{e}=-rac{\Delta\Phi}{\Delta t}$
	$\overline{e} = N \frac{\Delta \Phi}{\Delta t}$
	\overline{R} Răspuns: $\overline{e} = 0,307V$
C.	$\bar{i} = \frac{e}{R}$
	Răspuns: $\bar{i} = 12A$
2. a	Se aplică regula burghiului drept Pentru:
	$R_1 = \frac{U_{N_1}^2}{P_{N_1}}$
	Răspuns: $R_1 = 75\Omega$
b	$\rho = \rho_0 (1 + \alpha t)$
	$R_1 = R_{01} (1 + \alpha t)$
	$t = \frac{1}{\alpha} \left(\frac{R_1}{R_{01}} - 1 \right)$
	$r = \frac{1}{\alpha} \left(\frac{1}{R_{01}} - 1 \right)$
	Răspuns: $t = 2000^{\circ} C$
С	U^2
	Răspuns: $t = 2000^{\circ} C$ $R_2 = \frac{U^2}{P_{N2_1}}$ $R_{echiv} = \frac{R_1 + R_2}{2}$
	$R_1 + R_2$
	$R_{echiv} = \frac{1}{2}$
	$I_1 = I_2$ $I = 2I_1$
	$I = 2I_1$
	$R_x = \frac{R_1 + R_2}{2}$
	2
	Răspuns: $R_{_X} = 50\Omega$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 95

Nr. Item	Soluție / rezolvare
II.1.a.	
	$R_e = \frac{R_1 R_2}{R_1 + R_2} + R_3$
	Răspuns: $R_e=8,1\Omega$
b.	
	$r_e = \frac{r}{2}$
	$I_3 = \frac{E}{R_e + r_e}$
	Răspuns: $I_3 = 4A$
C.	
	$P_{ext} = R_e I_3^2$
	Răspuns: $P_{ext} = 129,6W$
II.2.a.	
	$I = \frac{E - Blv}{R + r}$
b.	Răspuns: $I = 1A$
	Expresia forței electromagnetice $F = BIl$
	Răspuns: $F = 2.5N$
C.	
	$P = FV = I^2(R+r)$
	Răspuns: $P = 5W$

EXAMENUL DE BACALAUREAT - 2007 Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 96

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție/ rezolvare
	$B = \frac{\mu_0 \mu_r N I_1}{I}$ $\Phi_{bobinā} = \frac{\mu_0 \mu_r N I_1}{I} S_1$
	Răspuns: $\Phi_{bobină} = 18,84 \cdot 10^{-3} Wb$
b.	t.e.m. indusă în spiră ${ m e}=-rac{\Delta\Phi_{ m spiră}}{\Delta t}$
	$e = -\frac{0 - \Phi}{\Delta t} = \frac{\Phi}{\Delta t}$
	$\Delta t = \frac{\Phi_{\text{spir}\tilde{a}}}{e} = \frac{BS_2 \cos 60^0}{e} \text{ unde } B = B_{\text{bobin}\tilde{a}}$
	Răspuns: $\Delta t = 6.28 \cdot 10^{-6} s$
C.	$e = i_{spir\hat{a}}R \Rightarrow i_{spir\hat{a}} = \frac{e}{R}$
	Răspuns: $I = 0.2A$
2. a	$U_{R_1} = I_1 R_1 = 6V$
b	$P_{R_1} = I^2 R_1 = 18W$
С	$2E = I_1 R_1 \Rightarrow E = \frac{I_1 R_1}{2}$
	Răspuns: $E_1 = E_2 = 7,5V$

Fizică Varianta 96

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 97

Varianta 97

Nr. Item	Soluție / rezolvare
II.1.a.	$I_1 = E/(R_1 + r)$
	$I_1 = E/(R_1 + r)$ $I_2 = E/(R_2 + r)$
	$I_1=4A$; $I_2=2A$; $R_1=3\Omega$; $R_2=8\Omega$ (din grafic)
	Răspuns: $E=20V$
b.	
	$I_{sc} = E/r$
	$r = (I_1 R_1 - I_2 R_2) / (I_1 - I_2)$ Propugg $I_1 = 10.4$
C.	Răspuns: $I_{sc} = 10A$
C.	$P = P_{\text{max}} \rightarrow R = r$
	$P_{\text{max}} = E^2 / 4r$
	rezultat final: $P_{ m max}=50W$
II.2.a.	enunțarea corectă și completă a legii inducției electromagnetice
b.	
D.	$\Phi = BS$
	$S = l^2$
	Răspuns: $\Phi=0{,}05Wb$
C.	$\Delta \Phi = B(S' - S)$
	$\Delta \Phi = B(S - S)$ $e = -\Delta \Phi / \Delta t$
	$e = -\Delta \Phi / \Delta t$ $I = e / R$
	$q = I \cdot \Delta t$
	Răspuns: $q = 11,5mC$

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 98

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. item	Soluție / rezolvare
II.1.a.	puterea disipată pe circuitul exterior $P = \frac{E^2 R}{(R+r)^2}$
	$R_{1,2} = \frac{E^2}{2P} \left(1 \pm \sqrt{1 - \frac{4rP}{E^2}} \right) - r$
	Răspuns: $R_1 = 22,5 \Omega, R_2 = 0,1 \Omega.$
b.	condiția $R = r$
	$P_{\text{max}} = \frac{E^2}{4r}$
	Răspuns: $P_{\rm max}=10,66W$
C.	
	aplicarea legilor lui Ohm şi Kirchhoff
	$I = \frac{E - U_0}{R(1 - f) + r}$
II 0 a	Răspuns: $I = 0,3A$
II. 2. a.	expresia fortei Lorentz
	expresia inducției câmpului magnetic creat de curentul staționar
	Răspuns: $ f = \frac{\mu_0 e v I}{2\pi d}$
b.	expresia forței de respingere $F=rac{\mu_0 I^2 L}{2\pi d}$
C.	reprezentarea corectă a direcției și sensului vectorilor inducție magnetică și viteză
	Răspuns: $f = 0$.

2

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 99

Nr. item	Soluție / rezolvare
II. 1. a	
	$R = \frac{R_1 R_2}{R_1 + R_2} + R_3 + R_4$ Rezultat: R = 11 \Omega
b.	$I_3 = I_4 = \frac{E}{R+r}$
	$I_3 = I_1 + I_2 R_1 I_1 - R_2 I_2 = 0$
	Rezultat: : I ₁ = 1,2 A
C.	
	$W = RI_3^2 t$
	Rezultat: : W = 13,2 KJ
II. 2. a.	
	$I = \frac{E}{R_1 + R_2 + r}$
	Rezultat: I = 1A
b.	$B = \mu_0 \frac{NI}{l}$
	Rezultat: B = 8 mT
C.	$e_a = \mu_0 rac{N^2 S ig \Delta \ell ig }{\ell \Delta t}$ Rezultat: e = 0,2 V

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 100

Subjectul B. ELECTRICITATE ŞI MAGNETISM

Nr. Item	Soluție / rezolvare
II.1.a.	
	$E_{ech} = E \; ; \; r_{ech} = \frac{r}{2}$
	$R_{ech} = \frac{R_1 R_2}{R_1 + R_2} + R_3$
	$I = \frac{E}{R_{ech} + r_{ech}}$
	$I_1 = \frac{I}{2}$
	$U_{_1} = I_{_1}R_{_1}$ Răspuns: $U_{_1} = 3 \text{ V}$
b.	$I_2 = I_1$ Răspuns: $I_2 = 0,5$ A
C.	$Q = R_3 I^2 t$ Răspuns: $Q = 3600 \text{ J}$
II.2.a.	sens corect pentru t.e.m indusă $e=Blv$ Răspuns: $e=6$ V
b.	$R_{tot} = R + r$ $I = \frac{e}{R_{tot}}$
	R_{tot} Răspuns: I = 30 A
C.	F = BIl
	P = FV Răspuns: $P = 180 \text{ W}$