

Table of contents

01

Objective

Why a better classification model matters for investors

04

SVM

Evaluated an alternative prediction model

02

The dataset and its trends

A collection of annual company data features and their bankruptcy status

05

Neural Network Models

Evaluate alternative prediction models and their strengths.

O3 Random Forest, XGBoost

How we trained and evaluated a prediction model

06

Recommendations

Compare various modeling strategies and future efforts

01 Objective

We have been contracted to advise a hedge fund looking to add prudent investments to their portfolio. The client is risk-averse.

We will build a classification model that predicts whether a company will succeed or go bankrupt in order to better advise our client which companies to invest with and which to avoid.

Exploratory data analysis of bankruptcy

The dataset

US Company Bankruptcy Prediction Dataset (1999 - 2018)

- 8,971 distinct companies:
 - 8,362 are in business "alive"
 - 609 are bankrupt
- 18 financial health features such as:

Total assets

Earnings before interest and taxes

Total Liabilities

Total long-term debt

Link to dataset: https://www.kaggle.com/datasets/ut karshx27/american-companies-ban kruptcy-prediction-dataset

The relationship between **EBITDA** and bankruptcy

The relationship between **Net income** and bankruptcy

The relationship between market value and bankruptcy

The relationship between total liabilities and bankruptcy

The relationship between operating costs and bankruptcy

03

Tree models for classification

Handling imbalanced classes

