Diabetes Risk Prediction of Patient Readmission - Using Python

Part A

```
In [2]: import math
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    import time

In [3]: #load the CSV file
    df = pd.read_csv('diabetic_data.csv')
    print('Number of samples: ',len(df))
    Number of samples: 101766

In [4]: df.head(10)
```

Out[4]:

counter_id	patient_nbr	race	gender	age	weight	admission_type_id	discharge_dispositi
2278392	8222157	Caucasian	Female	[0- 10)	?	6	
149190	55629189	Caucasian	Female	[10- 20)	?	1	
64410	86047875	AfricanAmerican	Female	[20- 30)	?	1	
500364	82442376	Caucasian	Male	[30- 40)	?	1	
16680	42519267	Caucasian	Male	[40- 50)	?	1	
35754	82637451	Caucasian	Male	[50- 60)	?	2	
55842	84259809	Caucasian	Male	[60- 70)	?	3	
63768	114882984	Caucasian	Male	[70- 80)	?	1	
12522	48330783	Caucasian	Female	[80- 90)	?	2	
15738	63555939	Caucasian	Female	[90- 100)	?	3	

/s × 50 columns

```
In [5]: #count of the number of rows for each type
        df.groupby('readmitted').size()
Out[5]: readmitted
        <30
               11357
        >30
               35545
        NO
               54864
        dtype: int64
In [6]: #11,13,14,19,20,21 are related to death or hospice.
        df=df.loc[~df.discharge disposition id.isin([11,13,14,19,20,21])]
In [7]:
        #we will try to predict if a patient is likely to be re-admitted within 30 days
        df['OUTPUT_LABEL'] = (df.readmitted == '<30').astype('int')</pre>
        def calc prevalence(y actual):
In [8]:
            return (sum(y_actual)/len(y_actual))
In [9]: print('Prevalence:%.3f'%calc_prevalence(df['OUTPUT_LABEL'].values))
```

Prevalence:0.114

Out[10]:

	encounter_id	patient_nbr	race	gender	age	weight	admission_type_id	discharge_c
0	2278392	8222157	Caucasian	Female	[0- 10)	NaN	6	
1	149190	55629189	Caucasian	Female	[10- 20)	NaN	1	
2	64410	86047875	AfricanAmerican	Female	[20- 30)	NaN	1	
3	500364	82442376	Caucasian	Male	[30- 40)	NaN	1	
4	16680	42519267	Caucasian	Male	[40- 50)	NaN	1	
5	35754	82637451	Caucasian	Male	[50- 60)	NaN	2	
6	55842	84259809	Caucasian	Male	[60- 70)	NaN	3	
7	63768	114882984	Caucasian	Male	[70- 80)	NaN	1	
8	12522	48330783	Caucasian	Female	[80- 90)	NaN	2	
9	15738	63555939	Caucasian	Female	[90- 100)	NaN	3	

10 rows × 51 columns

```
In [19]: | #The columns that are numerical
         cols_num = ['time_in_hospital','num_lab_procedures', 'num_procedures','num_medic
In [20]: df[cols_num].isnull().sum()
Out[20]: time_in_hospital
                                0
         num_lab_procedures
                                0
         num_procedures
                                0
         num medications
                                0
         number_outpatient
                                0
         number_emergency
                                0
         number_inpatient
                                0
         number_diagnoses
                                0
         dtype: int64
```

```
In [40]: #Categorical variables are non-numeric data such as race and gender
         cat_cols = ['race', 'gender', 'max_glu_serum', 'A1Cresult', 'metformin', 'repagl'
         #addition for another category 'UNK'
In [23]:
         df['race']=df['race'].fillna('UNK')
         df['payer_code']=df['payer_code'].fillna('UNK')
         df['medical specialty']=df['medical specialty'].fillna('UNK')
         print('Number medical specialty: ',df.medical_specialty.nunique())
In [25]:
         df.groupby('medical specialty').size().sort values(ascending=False)
         Number medical specialty: 73
Out[25]: medical_specialty
         UNK
                                              48616
         InternalMedicine
                                              14237
         Emergency/Trauma
                                               7419
         Family/GeneralPractice
                                               7252
         Cardiology
                                               5279
         Psychiatry-Addictive
                                                  1
         Dermatology
                                                  1
         Speech
                                                  1
         SportsMedicine
                                                  1
         Surgery-PlasticwithinHeadandNeck
                                                  1
         Length: 73, dtype: int64
In [30]: #Consider top 10 count from above 73
         top_10=['UNK','InternalMedicine', 'Emergency/Trauma', 'Family/GeneralPractice',
         #make a new column with duplicated data
         df['med spec']=df['medical specialty'].copy()
         #replace all specialties not in top 10 with 'other' category
         df.loc[~df.med_spec.isin(top_10), 'med_spec']='other'
In [32]: #created a category other is added so we have 11 in total
         df.groupby('med_spec').size().sort_values(ascending=False)
Out[32]: med spec
         UNK
                                        48616
         InternalMedicine
                                        14237
                                         8199
         other
         Emergency/Trauma
                                         7419
         Family/GeneralPractice
                                         7252
         Cardiology
                                         5279
         Surgery-General
                                         3059
         Nephrology
                                         1539
         Orthopedics
                                         1392
         Orthopedics-Reconstructive
                                         1230
         Radiologist
                                         1121
         dtype: int64
```

```
In [33]: #The get_dummies function does not work on numerical data
    cols_cat_num=['admission_type_id','discharge_disposition_id','admission_source_id
    df[cols_cat_num]=df[cols_cat_num].astype('str')
```

Out[41]:

	race_Asian	race_Caucasian	race_Hispanic	race_Other	race_UNK	gender_Male	gender_Unknov
0	0	1	0	0	0	0	
1	0	1	0	0	0	0	
2	0	0	0	0	0	0	
3	0	1	0	0	0	1	
4	0	1	0	0	0	1	
5	0	1	0	0	0	1	
6	0	1	0	0	0	1	
7	0	1	0	0	0	1	
8	0	1	0	0	0	0	
9	0	1	0	0	0	0	

10 rows × 133 columns

In [42]: df=pd.concat([df.df cat].axis=1)

```
In [43]:
          cols all cat=list(df cat.columns)
          cols all cat
Out[43]: ['race Asian',
           'race Caucasian',
           'race_Hispanic',
           'race_Other',
           'race UNK',
           'gender_Male',
           'gender_Unknown/Invalid',
           'max_glu_serum_>300',
           'max_glu_serum_None',
           'max_glu_serum_Norm',
           'A1Cresult >8',
           'A1Cresult None',
           'A1Cresult_Norm',
           'metformin No',
           'metformin_Steady',
           'metformin_Up',
           'repaglinide No',
           'repaglinide Steady',
           'repaglinide_Up',
           'nateglinide No',
           'nateglinide_Steady',
           'nateglinide_Up',
           'chlorpropamide No',
           'chlorpropamide Steady',
           'chlorpropamide_Up',
           'glimepiride No',
           'glimepiride_Steady',
           'glimepiride_Up',
           'acetohexamide_Steady',
           'glipizide No',
           'glipizide_Steady',
           'glipizide_Up',
           'glyburide No',
           'glyburide_Steady',
           'glyburide_Up',
           'tolbutamide Steady',
           'pioglitazone_No',
           'pioglitazone_Steady',
           'pioglitazone_Up',
           'rosiglitazone_No',
           'rosiglitazone_Steady',
           'rosiglitazone Up',
           'acarbose_No',
           'acarbose_Steady',
           'acarbose Up',
           'miglitol No',
           'miglitol_Steady',
           'miglitol Up',
           'troglitazone_Steady',
           'tolazamide_Steady',
           'tolazamide_Up',
           'insulin No',
           'insulin_Steady',
```

```
'insulin Up',
'glyburide-metformin No',
'glyburide-metformin_Steady',
'glyburide-metformin Up',
'glipizide-metformin Steady',
'glimepiride-pioglitazone Steady',
'metformin-rosiglitazone Steady',
'metformin-pioglitazone_Steady',
'change_No',
'diabetesMed Yes',
'payer_code_CH',
'payer_code_CM',
'payer code CP',
'payer_code_DM',
'payer_code_FR',
'payer_code_HM',
'payer code MC',
'payer_code_MD'
'payer code MP',
'payer_code_OG',
payer_code_OT'
'payer code PO',
'payer code SI'
'payer_code_SP',
'payer_code_UN',
'payer_code_UNK',
'payer code WC',
'admission_type_id_2',
'admission type id 3',
'admission_type_id_4',
'admission_type_id_5',
'admission type id 6',
'admission_type_id_7',
'admission type id 8',
'discharge disposition id 10',
'discharge disposition id 12',
'discharge_disposition_id_15',
'discharge disposition id 16',
'discharge disposition id 17',
'discharge disposition id 18',
'discharge disposition id 2',
'discharge disposition id 22',
'discharge_disposition_id_23',
'discharge disposition id 24',
'discharge disposition id 25',
'discharge disposition id 27',
'discharge_disposition_id_28',
'discharge disposition id 3',
'discharge_disposition_id_4',
'discharge_disposition_id_5',
'discharge disposition id 6',
'discharge disposition id 7',
'discharge_disposition_id_8',
'discharge disposition id 9',
'admission_source_id_10',
'admission source id 11',
'admission source id 13',
```

```
'admission_source_id_14',
'admission_source_id_17',
'admission_source_id_2',
'admission source id 20',
'admission source id 22',
'admission_source_id_25',
'admission_source_id_3',
'admission_source_id_4',
'admission_source_id_5',
'admission source id 6',
'admission source id 7',
'admission_source_id_8',
'admission source id 9',
'med_spec_Emergency/Trauma',
'med_spec_Family/GeneralPractice',
'med spec InternalMedicine',
'med spec Nephrology',
'med_spec_Orthopedics',
'med spec Orthopedics-Reconstructive',
'med_spec_Radiologist',
'med_spec_Surgery-General',
'med spec UNK',
'med_spec_other']
```

In [44]: df[['age','weight']].head(10)

Out[44]:

	age	weight
0	[0-10)	NaN
1	[10-20)	NaN
2	[20-30)	NaN
3	[30-40)	NaN
4	[40-50)	NaN
5	[50-60)	NaN
6	[60-70)	NaN
7	[70-80)	NaN
8	[80-90)	NaN
9	[90-100)	NaN

```
In [46]: df.groupby('age').size().sort_values(ascending=False)
Out[46]: age
          [70-80)
                      25331
          [60-70)
                      22059
          [50-60)
                      17060
          [80-90)
                      16434
                       9607
          [40-50)
                       3764
          [30-40)
          [90-100)
                       2589
          [20-30)
                       1649
          [10-20)
                        690
          [0-10)
                        160
          dtype: int64
In [47]:
         #mapping the category range to category
          age_id={'[0-10)':0,
                  '[10-20)':10,
                 '[20-30)':20,
                 '[30-40)':30,
                 '[40-50)':40,
                 '[50-60)':50,
                 '[60-70)':60,
                 '[70-80)':70,
                 '[80-90)':80,
                 '[90-100)':90}
```

```
In [48]: df['age_group']=df.age.replace(age_id)
    df.head(10)
```

Out[48]:

	encounter_id	patient_nbr	race	gender	age	weight	admission_type_id	discharge_c
0	2278392	8222157	Caucasian	Female	[0- 10)	NaN	6	
1	149190	55629189	Caucasian	Female	[10- 20)	NaN	1	
2	64410	86047875	AfricanAmerican	Female	[20- 30)	NaN	1	
3	500364	82442376	Caucasian	Male	[30- 40)	NaN	1	
4	16680	42519267	Caucasian	Male	[40- 50)	NaN	1	
5	35754	82637451	Caucasian	Male	[50- 60)	NaN	2	
6	55842	84259809	Caucasian	Male	[60- 70)	NaN	3	
7	63768	114882984	Caucasian	Male	[70- 80)	NaN	1	
8	12522	48330783	Caucasian	Female	[80- 90)	NaN	2	
9	15738	63555939	Caucasian	Female	[90- 100)	NaN	3	

10 rows × 186 columns

```
In [50]: df.weight.notnull().sum()
Out[50]: 3125
In [51]: df['has_weight']=df.weight.notnull().astype('int')
In [52]: cols_extra=['age_group','has_weight']
In [54]: #2 columns have been added to the dataframe col2use=cols_num+cols_all_cat+cols_extra df_data=df[col2use+['OUTPUT_LABEL']]
```

```
In [55]: #shuffle the samples
          df data=df data.sample(n=len(df data),random state=42)
          df data=df data.reset index(drop=True)
          #save 30% of the data as validation and testdata
In [56]:
          df valid test=df data.sample(frac=.3,random state=42)
          print('Split Size: %.3f'%(len(df valid test)/len(df data)))
          Split Size: 0.300
          #split into test and validation using 50% fraction
In [57]:
          df_test=df_valid_test.sample(frac=.5,random_state=42)
          df valid=df valid test.drop(df test.index)
In [58]: #use the rest of the data as training data
          df train all = df data.drop(df valid test.index)
In [204]:
          print('Test prevalence(n = %d):%.3f'%(len(df test),calc prevalence(df test.OUTPU)
          print('Valid prevalence(n = %d):%.3f'%(len(df_valid),calc_prevalence(df_valid.OU')
          print('Train all prevalence(n = %d):%.3f'%(len(df_train_all), calc_prevalence(df]
          Test prevalence(n = 14902):0.117
          Valid prevalence(n = 14901):0.113
          Train all prevalence(n = 69540):0.113
In [59]:
          #we will create a balanced training data set that has 50% positive and 50% negat
          #split the training data into positive and negative
          rows pos = df train all.OUTPUT LABEL==1
          df train pos=df train all.loc[rows pos]
          df train neg=df train all.loc[~rows pos]
          #merge the balanced data
          df_train=pd.concat([df_train_pos,df_train_neg.sample(n=len(df_train_pos),random_
          #shuffle the order of training sample
          df train=df train.sample(n=len(df train),random state=42).reset index(drop=True)
          print('Train Balance prevalence(n=%d):%.3f'%(len(df_train),calc_prevalence(df_train))
```

Train Balance prevalence(n=15766):0.500

```
In [62]: #input matrix X
          X train=df train[col2use].values
          X train all=df train all[col2use].values
          X valid=df valid[col2use].values
          #output vector y
          y_train=df_train['OUTPUT_LABEL'].values
          y valid=df valid['OUTPUT LABEL'].values
          print('Training All shapes: ',X_train_all.shape)
          print('Training shapes: ',X_train.shape,y_train.shape)
          print('Validation shapes: ',X_valid.shape,y_valid.shape)
          Training All shapes: (69540, 143)
          Training shapes: (15766, 143) (15766,)
          Validation shapes: (14901, 143) (14901,)
In [63]: from sklearn.preprocessing import StandardScaler
          scaler=StandardScaler()
          scaler.fit(X_train_all)
Out[63]: StandardScaler(copy=True, with mean=True, with std=True)
In [66]: import pickle
          scalerfile='scaler.sav'
          pickle.dump(scaler,open(scalerfile,'wb'))
In [67]: #Load it back
          scaler=pickle.load(open(scalerfile, 'rb'))
In [68]: | X train tf=scaler.transform(X train)
          X valid tf=scaler.transform(X valid)
In [144]:
          #Model Selection
          from sklearn.metrics import roc auc score, accuracy score, precision score, recal
          def calc_specificity (y_actual, y_pred, thresh):
              # calculate specificity
              return sum((y_pred <thresh) &(y_actual ==0)) /sum (y_actual ==0)</pre>
          def print report (y actual, y pred, thresh):
              auc = roc auc score(y actual, y pred)
              accuracy =accuracy_score(y_actual, (y_pred >thresh))
              recall =recall score(y actual, (y pred > thresh) )
              precision = precision_score(y_actual, (y_pred > thresh))
              specificity =calc_specificity(y_actual, y_pred, thresh)
              print('AUC:%.3f'% auc)
              print ('accuracy:%.3f'%accuracy)
              print ('recall:%.3f'%recall)
              print ('precision:%.3f'% precision)
              print('specificity:%.3f'%specificity)
              print('prevalence:%.3f'%calc_prevalence(y_actual))
              return auc, accuracy, recall, precision, specificity
```

```
In [145]:
          #hreshold at 0.5 to label a predicted sample as positive
          thresh=0.5
In [146]:
          #k-nearest neighbors
           from sklearn.neighbors import KNeighborsClassifier
          knn=KNeighborsClassifier(n neighbors=100)
          knn.fit(X_train_tf,y_train)
Out[146]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                                metric params=None, n jobs=None, n neighbors=100, p=2,
                                weights='uniform')
In [147]:
          y train preds=knn.predict proba(X train tf)[:,1]
          y_valid_preds=knn.predict_proba(X_valid_tf)[:,1]
          print('knn')
          print('training')
          knn_train_auc,knn_train_accuracy,knn_train_recall,knn_train_precision,knn_train_
          print('validation:')
          knn valid auc,knn valid accuracy,knn valid recall,knn valid precision,knn valid
          knn
          training
          AUC:0.650
          accuracy:0.603
          recall:0.491
          precision:0.633
          specificity:0.673
          prevalence:0.500
          validation:
          AUC:0.621
          accuracy:0.670
          recall:0.469
          precision:0.165
          specificity:0.655
          prevalence:0.113
```

```
In [148]:
          # Logistic regression
          from sklearn.linear model import LogisticRegression
          lr=LogisticRegression(random state = 42)
          lr.fit(X train tf, y train)
          C:\Users\nikhi\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:43
          2: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a
          solver to silence this warning.
            FutureWarning)
Out[148]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                              intercept scaling=1, l1 ratio=None, max iter=100,
                              multi class='warn', n jobs=None, penalty='12',
                              random state=42, solver='warn', tol=0.0001, verbose=0,
                              warm start=False)
In [149]:
          y train preds = lr.predict proba(X train tf)[:,1]
          y valid preds = lr.predict proba(X valid tf)[:,1]
          print('Logistic Regression')
          print('Training:')
          lr train auc, lr train accuracy, lr train recall, \
              lr_train_precision, lr_train_specificity = print_report(y_train,y_train_pred
          print('Validation:')
          lr_valid_auc, lr_valid_accuracy, lr_valid_recall, \
               lr_valid_precision, lr_valid_specificity = print_report(y_valid,y_valid_pred
          Logistic Regression
          Training:
          AUC:0.678
          accuracy:0.628
          recall:0.558
          precision:0.649
          specificity:0.698
          prevalence:0.500
          Validation:
          AUC:0.661
          accuracy:0.662
          recall:0.558
          precision:0.180
          specificity:0.675
          prevalence:0.113
```

```
In [150]:
          #Stochastic Gradient Descent
          from sklearn.linear model import SGDClassifier
          sgdc=SGDClassifier(loss = 'log',alpha = 0.1,random state = 42)
          sgdc.fit(X train tf, y train)
Out[150]: SGDClassifier(alpha=0.1, average=False, class_weight=None, early_stopping=Fals
                         epsilon=0.1, eta0=0.0, fit intercept=True, l1 ratio=0.15,
                         learning_rate='optimal', loss='log', max_iter=1000,
                         n iter no change=5, n jobs=None, penalty='12', power t=0.5,
                         random state=42, shuffle=True, tol=0.001, validation fraction=0.
          1,
                         verbose=0, warm start=False)
          y_train_preds = sgdc.predict_proba(X_train_tf)[:,1]
In [151]:
          y valid preds = sgdc.predict proba(X valid tf)[:,1]
          print('Stochastic Gradient Descend')
          print('Training:')
          sgdc_train_auc, sgdc_train_accuracy, sgdc_train_recall, sgdc_train_precision, sg
          print('Validation:')
          sgdc_valid_auc, sgdc_valid_accuracy, sgdc_valid_recall, sgdc_valid_precision, sg
          Stochastic Gradient Descend
          Training:
          AUC:0.676
          accuracy:0.624
          recall:0.550
          precision:0.645
          specificity:0.698
          prevalence:0.500
          Validation:
          AUC:0.661
          accuracy:0.664
          recall:0.553
          precision:0.180
          specificity:0.678
          prevalence:0.113
In [152]: # Naive Bayes
          from sklearn.naive_bayes import GaussianNB
          nb = GaussianNB()
          nb.fit(X train tf, y train)
Out[152]: GaussianNB(priors=None, var smoothing=1e-09)
```

AUC:0.508
accuracy:0.506
recall:0.989
precision:0.503
specificity:0.022
prevalence:0.500

Validation:
AUC:0.505
accuracy:0.129
recall:0.988
precision:0.114
specificity:0.020
prevalence:0.113

Training:

```
In [154]: #Decision Tree Classifier
    from sklearn.tree import DecisionTreeClassifier
    tree = DecisionTreeClassifier(max_depth = 10, random_state = 42)
    tree.fit(X_train_tf, y_train)
```

```
In [155]:
          y train preds = tree.predict proba(X train tf)[:,1]
          y valid preds = tree.predict proba(X valid tf)[:,1]
          print('Decision Tree')
          print('Training:')
          tree_train_auc, tree_train_accuracy, tree_train_recall, tree_train_precision, tr
          print('Validation:')
          tree valid auc, tree valid accuracy, tree valid recall, tree valid precision, tr
          Decision Tree
          Training:
          AUC:0.736
          accuracy:0.672
          recall:0.629
          precision:0.688
          specificity:0.713
          prevalence:0.500
          Validation:
          AUC:0.625
          accuracy:0.636
          recall:0.572
          precision:0.170
          specificity:0.643
          prevalence:0.113
In [156]:
          #Random Forest Classifier
          from sklearn.ensemble import RandomForestClassifier
          rf=RandomForestClassifier(max depth = 6, random state = 42)
          rf.fit(X train tf, y train)
          C:\Users\nikhi\Anaconda3\lib\site-packages\sklearn\ensemble\forest.py:245: Futu
          reWarning: The default value of n estimators will change from 10 in version 0.2
          0 to 100 in 0.22.
            "10 in version 0.20 to 100 in 0.22.", FutureWarning)
Out[156]: RandomForestClassifier(bootstrap=True, class weight=None, criterion='gini',
                                  max depth=6, max features='auto', max leaf nodes=None,
                                  min_impurity_decrease=0.0, min_impurity_split=None,
                                  min samples leaf=1, min samples split=2,
                                  min weight fraction leaf=0.0, n estimators=10,
                                  n_jobs=None, oob_score=False, random_state=42, verbose=
          0,
                                  warm start=False)
```

```
In [157]:
          v train preds = rf.predict_proba(X_train_tf)[:,1]
          y valid preds = rf.predict proba(X valid tf)[:,1]
          print('Random Forest')
          print('Training:')
          rf_train_auc, rf_train_accuracy, rf_train_recall, rf_train_precision, rf_train_s
          print('Validation:')
          rf valid auc, rf valid accuracy, rf valid recall, rf valid precision, rf valid s
          Random Forest
          Training:
          AUC:0.681
          accuracy:0.630
          recall:0.576
          precision:0.646
          specificity:0.685
          prevalence:0.500
          Validation:
          AUC:0.646
          accuracy:0.642
          recall:0.559
          precision:0.170
          specificity:0.653
          prevalence:0.113
In [158]: #Gradient Boosting Classifier
          from sklearn.ensemble import GradientBoostingClassifier
          gbc =GradientBoostingClassifier(n estimators=100, learning rate=1.0,
                max depth=3, random state=42)
          gbc.fit(X_train_tf, y_train)
Out[158]: GradientBoostingClassifier(criterion='friedman mse', init=None,
                                      learning_rate=1.0, loss='deviance', max_depth=3,
                                      max features=None, max leaf nodes=None,
                                      min_impurity_decrease=0.0, min_impurity_split=None,
                                      min_samples_leaf=1, min_samples_split=2,
                                      min weight fraction leaf=0.0, n estimators=100,
                                      n iter no change=None, presort='auto',
                                      random_state=42, subsample=1.0, tol=0.0001,
```

validation fraction=0.1, verbose=0,

warm start=False)

```
In [159]:
          y train preds = gbc.predict proba(X train tf)[:,1]
          y valid preds = gbc.predict proba(X valid tf)[:,1]
          print('Gradient Boosting Classifier')
          print('Training:')
          gbc_train_auc, gbc_train_accuracy, gbc_train_recall, gbc_train_precision, gbc_tr
           print('Validation:')
           gbc valid auc, gbc valid accuracy, gbc valid recall, gbc valid precision, gbc val
          Gradient Boosting Classifier
          Training:
          AUC:0.772
          accuracy:0.695
          recall:0.668
          precision:0.706
          specificity:0.722
          prevalence:0.500
          Validation:
          AUC:0.640
          accuracy:0.621
          recall:0.574
          precision:0.164
          specificity:0.627
          prevalence:0.113
```

In [161]: df_results1

Out[161]:

	classifier	data_set	auc	accuracy	recall	precision	specificity
0	KNN	train	0.649591	0.603070	0.490676	0.632957	0.673094
1	KNN	valid	0.621118	0.670425	0.469436	0.164517	0.654812
2	LR	train	0.678000	0.627807	0.557529	0.648708	0.698084
3	LR	valid	0.660551	0.661969	0.557864	0.179664	0.675242
4	SGD	train	0.675524	0.624001	0.550425	0.645396	0.697577
5	SGD	valid	0.661396	0.663915	0.553116	0.179680	0.678042
6	NB	train	0.508168	0.505835	0.989217	0.502967	0.022453
7	NB	valid	0.505320	0.128985	0.987537	0.113801	0.019522
8	DT	train	0.735899	0.671889	0.628948	0.688038	0.712673
9	DT	valid	0.625254	0.636266	0.572107	0.170228	0.642554
10	RF	train	0.680951	0.630217	0.575796	0.646121	0.684638
11	RF	valid	0.645864	0.642105	0.559050	0.170282	0.652694
12	GB	train	0.771748	0.694913	0.668147	0.771748	0.721680
13	GB	valid	0.639688	0.620831	0.574481	0.164040	0.626740

```
In [162]: import seaborn as sns
   import matplotlib.pyplot as plt
   sns.set(style="darkgrid")
```

```
In [163]: ax = sns.barplot(x="classifier", y="auc", hue="data_set", data=df_results1)
    ax.tick_params(labelsize=15)
    plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., fontsize = 15)
    plt.xlabel('Classifier')
    plt.ybale('AUC')
    plt.figure(figsize=(25,15))
    plt.show()
```


<Figure size 1800x1080 with 0 Axes>

```
In [164]:
          import numpy as np
          from sklearn.model selection import learning curve
          from sklearn.model selection import ShuffleSplit
          def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
                                   n jobs=1, train sizes=np.linspace(.1, 1.0, 5)):
              plt.figure()
              plt.title(title)
              if ylim is not None:
                  plt.ylim(*ylim)
              train_sizes, train_scores, test_scores = learning_curve(
                  estimator, X, y, cv=cv, n jobs=n jobs, train sizes=train sizes, scoring
              train scores mean = np.mean(train scores, axis=1)
              train scores std = np.std(train scores, axis=1)
              test scores mean = np.mean(test scores, axis=1)
              test scores std = np.std(test scores, axis=1)
              plt.grid()
              plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                                train scores mean + train scores std, alpha=0.1,
                                color="r")
              plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                                test scores mean + test scores std, alpha=0.1, color="b")
              plt.plot(train sizes, train scores mean, 'o-', color="r",
                        label="Training score")
              plt.plot(train sizes, test scores mean, 'o-', color="b",
                        label="Cross-validation score")
              plt.legend(loc="best")
              return plt
```

```
In [165]: cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=42)
    estimator = RandomForestClassifier(max_depth = 6, random_state = 42)
    plot_learning_curve(estimator, title, X_train_tf, y_train, ylim=(0.2, 1.01), cv=0
    plt.xlabel('Training examples')
    plt.ylabel('AUC')
    plt.title('Learning Curves (Random Forest)')
    plt.show()
```



```
In [111]: values_to_plot = feature_importances.iloc[-num:].values.ravel()
    feature_labels = list(feature_importances.iloc[-num:].index)
    plt.figure(num=None, figsize=(8, 15), dpi=80, facecolor='w', edgecolor='k');
    plt.barh(ylocs, values_to_plot, align = 'center')
    plt.ylabel('Features')
    plt.xlabel('Importance Score')
    plt.title('Negative Feature Importance Score - Logistic Regression')
    plt.yticks(ylocs, feature_labels)
    plt.show()
```



```
In [112]: from sklearn.model_selection import RandomizedSearchCV
          # number of trees
          n = range(200, 1000, 200)
          # maximum number of features to use at each split
          max features = ['auto', 'sqrt']
          # maximum depth of the tree
          max_depth = range(1,10,1)
          # minimum number of samples to split a node
          min samples split = range(2,10,2)
          # criterion for evaluating a split
          criterion = ['gini', 'entropy']
          # random grid
          random_grid = {'n_estimators':n_estimators,
                         'max_features':max_features,
                         'max depth':max depth,
                         'min samples split':min samples split,
                         'criterion':criterion}
          print(random grid)
          {'n_estimators': range(200, 1000, 200), 'max_features': ['auto', 'sqrt'], 'max_
          depth': range(1, 10), 'min samples split': range(2, 10, 2), 'criterion': ['gin
          i', 'entropy']}
In [113]: from sklearn.metrics import make scorer, roc auc score
          auc scoring = make scorer(roc auc score)
 In [ ]: #Randomized Search random forest
In [114]: | # create the randomized search cross-validation
          rf random = RandomizedSearchCV(estimator = rf, param distributions = random grid
                                         n_iter = 20, cv = 2, scoring=auc_scoring,
                                         verbose = 1, random state = 42)
```

```
In [115]: # fit the random search model (this will take a few minutes)
          t1 = time.time()
          rf random.fit(X train tf, y train)
          t2 = time.time()
          print(t2-t1)
          Fitting 2 folds for each of 20 candidates, totalling 40 fits
          [Parallel(n jobs=1)]: Using backend SequentialBackend with 1 concurrent worker
          [Parallel(n_jobs=1)]: Done 40 out of 40 | elapsed: 2.5min finished
          156.14898324012756
In [116]: rf random.best params
Out[116]: {'n estimators': 600,
            'min_samples_split': 6,
            'max_features': 'auto',
            'max depth': 8,
            'criterion': 'gini'}
In [187]:
          y_train_preds = rf.predict_proba(X_train_tf)[:,1]
          y valid preds = rf.predict proba(X valid tf)[:,1]
          print('Baseline Random Forest')
          rf_train_auc_base = roc_auc_score(y_train, y_train_preds)
          rf_valid_auc_base = roc_auc_score(y_valid, y_valid_preds)
          print('Training AUC:%.3f'%(rf_train_auc_base))
          print('Validation AUC:%.3f'%(rf valid auc base))
          print('Optimized Random Forest')
          y_train_preds_random = rf_random.best_estimator_.predict_proba(X_train_tf)[:,1]
          y valid preds random = rf random.best estimator .predict proba(X valid tf)[:,1]
          rf_train_auc = roc_auc_score(y_train, y_train_preds_random)
          rf valid auc = roc auc score(y valid, y valid preds random)
          print('Training AUC:%.3f'%(rf train auc))
          print('Validation AUC:%.3f'%(rf valid auc))
          Baseline Random Forest
          Training AUC:0.681
          Validation AUC:0.646
          Optimized Random Forest
          Training AUC:0.723
          Validation AUC:0.661
In [188]:
          print(rf_valid_auc_base)
          print(rf valid auc)
          0.6458642208706648
          0.6614703156321624
```

```
In [118]:
          #optimize the performnce of stochastic gradient descent
           penalty = ['none','12','11']
          max iter = range(100, 500, 100)
          alpha = [0.001, 0.003, 0.01, 0.03, 0.1, 0.3]
          random_grid_sgdc = {'penalty':penalty,
                         'max_iter':max_iter,
                         'alpha':alpha}
          # create the randomized search cross-validation
           sgdc random = RandomizedSearchCV(estimator = sgdc, param distributions = random ;
                                             n_iter = 20, cv = 2, scoring=auc_scoring, verbose
                                             random state = 42)
          t1 = time.time()
           sgdc_random.fit(X_train_tf, y_train)
           t2 = time.time()
           print(t2-t1)
```

C:\Users\nikhi\Anaconda3\lib\site-packages\sklearn\linear_model\stochastic_grad ient.py:561: ConvergenceWarning: Maximum number of iteration reached before con vergence. Consider increasing max_iter to improve the fit.

ConvergenceWarning)

C:\Users\nikhi\Anaconda3\lib\site-packages\sklearn\linear_model\stochastic_grad ient.py:561: ConvergenceWarning: Maximum number of iteration reached before con vergence. Consider increasing max_iter to improve the fit.

ConvergenceWarning)

C:\Users\nikhi\Anaconda3\lib\site-packages\sklearn\linear_model\stochastic_grad ient.py:561: ConvergenceWarning: Maximum number of iteration reached before con vergence. Consider increasing max_iter to improve the fit.

ConvergenceWarning)

C:\Users\nikhi\Anaconda3\lib\site-packages\sklearn\linear_model\stochastic_grad ient.py:561: ConvergenceWarning: Maximum number of iteration reached before con vergence. Consider increasing max_iter to improve the fit.

ConvergenceWarning)

18.213062524795532

```
In [119]: | sgdc_random.best_params_
Out[119]: {'penalty': 'none', 'max_iter': 400, 'alpha': 0.001}
```

```
In [191]:
          y train preds = sgdc.predict proba(X train tf)[:,1]
          y valid preds = sgdc.predict proba(X valid tf)[:,1]
          print('Baseline sgdc')
          sgdc_train_auc_base = roc_auc_score(y_train, y_train_preds)
          sgdc_valid_auc_base = roc_auc_score(y_valid, y_valid_preds)
          print('Training AUC:%.3f'%(sgdc train auc base))
          print('Validation AUC:%.3f'%(sgdc valid auc base))
          print('Optimized sgdc')
          y train preds random = sgdc random.best estimator .predict proba(X train tf)[:,1
          y_valid_preds_random = sgdc_random.best_estimator_.predict_proba(X_valid_tf)[:,1
          sgdc_train_auc = roc_auc_score(y_train, y_train_preds_random)
          sgdc_valid_auc = roc_auc_score(y_valid, y_valid_preds_random)
          print('Training AUC:%.3f'%(sgdc_train_auc))
          print('Validation AUC:%.3f'%(sgdc valid auc))
          Baseline sgdc
          Training AUC:0.676
          Validation AUC:0.661
          Optimized sgdc
          Training AUC:0.676
          Validation AUC:0.657
In [192]: print(sgdc valid auc base)
          print(sgdc valid auc)
          0.6613956376948003
          0.6566861227466392
In [166]:
          #optimize the performnce of Gradient boosting classifier
          # number of trees
          n_estimators = range(100,500,100)
          # maximum depth of the tree
          \max depth = range(1,5,1)
          # Learning rate
          learning rate = [0.001, 0.01, 0.1]
          # random grid
          random_grid_gbc = {'n_estimators':n_estimators,
                         'max depth':max depth,
                         'learning_rate':learning_rate}
          # create the randomized search cross-validation
          gbc random = RandomizedSearchCV(estimator = gbc, param distributions = random gr
                                           n_iter = 20, cv = 2, scoring=auc_scoring,
                                           verbose = 0, random_state = 42)
          t1 = time.time()
          gbc_random.fit(X_train_tf, y_train)
          t2 = time.time()
          print(t2-t1)
```

458.43239283561707

```
In [167]:
          gbc random.best params
Out[167]: {'n estimators': 200, 'max depth': 2, 'learning rate': 0.1}
In [168]:
          y train preds = gbc.predict proba(X train tf)[:,1]
          y_valid_preds = gbc.predict_proba(X_valid_tf)[:,1]
          print('Baseline gbc')
          gbc_train_auc_base = roc_auc_score(y_train, y_train_preds)
          gbc_valid_auc_base = roc_auc_score(y_valid, y_valid_preds)
          print('Training AUC:%.3f'%(gbc train auc base))
          print('Validation AUC:%.3f'%(gbc valid auc base))
          print('Optimized gbc')
          y train preds random = gbc random.best estimator .predict proba(X train tf)[:,1]
          y_valid_preds_random = gbc_random.best_estimator_.predict_proba(X_valid_tf)[:,1]
          gbc_train_auc = roc_auc_score(y_train, y_train_preds_random)
          gbc_valid_auc = roc_auc_score(y_valid, y_valid_preds_random)
          print('Training AUC:%.3f'%(gbc train auc))
          print('Validation AUC:%.3f'%(gbc valid auc))
          Baseline gbc
          Training AUC:0.772
          Validation AUC:0.640
          Optimized gbc
          Training AUC:0.690
          Validation AUC:0.671
In [195]:
          print(gbc_valid_auc_base)
          print(gbc_valid_auc)
          0.6396884722052578
          0.6711373140011927
In [203]:
          #Hyperparameter tuning result
          df_results = pd.DataFrame({'classifier':['SGD','SGD','RF','RF','GB','GB'],
                                      'data_set':['base','optimized']*3,
                                     'auc':[sgdc_valid_auc_base,sgdc_valid_auc,
                                            rf_valid_auc_base,rf_valid_auc,
                                            gbc valid auc base, gbc valid auc, ],
                                     })
          df_results
```

Out[203]:

	classifier	data_set	auc
0	SGD	base	0.661396
1	SGD	optimized	0.656686
2	RF	base	0.645864
3	RF	optimized	0.661470
4	GB	base	0.639688
5	GB	optimized	0.671137

```
In [194]: #Aggregate the results to compare baseline model on validation set
    ax = sns.barplot(x="classifier", y="auc", hue="data_set", data=df_results)
    ax.set_xlabel('Classifier',fontsize = 15)
    ax.set_ylabel('AUC', fontsize = 15)
    ax.tick_params(labelsize=15)
    plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., fontsize = 15)
    plt.figure(figsize=(20,15))
    plt.show()
```


<Figure size 1440x1080 with 0 Axes>

```
In [126]: #model selection: best classifier
    pickle.dump(gbc_random.best_estimator_, open('best_classifier.pkl', 'wb'),protoco
In [127]: #model evaluation
    X_test = df_test[col2use].values
    y_test = df_test['OUTPUT_LABEL'].values
    scaler = pickle.load(open('scaler.sav', 'rb'))
    X_test_tf = scaler.transform(X_test)

In [128]: best_model = pickle.load(open('best_classifier.pkl','rb'))
    y_train_preds = best_model.predict_proba(X_train_tf)[:,1]
    y_valid_preds = best_model.predict_proba(X_valid_tf)[:,1]
    y_test_preds = best_model.predict_proba(X_test_tf)[:,1]
```

```
In [196]: thresh = 0.5
    print('Training:')
    train_auc, train_accuracy, train_recall, train_precision, train_specificity = pr:
    print('Validation:')
    valid_auc, valid_accuracy, valid_recall, valid_precision, valid_specificity = pr:
    print('Test:')
    test_auc, test_accuracy, test_recall, test_precision, test_specificity = print_recall.
```

Training:
AUC:0.676
accuracy:0.624
recall:0.550
precision:0.645
specificity:0.698
prevalence:0.500

Validation:
AUC:0.661
accuracy:0.664
recall:0.553
precision:0.180
specificity:0.678
prevalence:0.113

Test:
AUC:0.667
accuracy:0.650
recall:0.578
precision:0.184
specificity:0.660
prevalence:0.117

In []: #final evaluation

Out[202]:

	Training	Validation	Test
AUC	0.676	0.661	0.667
Accuracy	0.624	0.664	0.65
Recall	0.55	0.553	0.578
Precision	0.645	0.18	0.184
Specificity	0.698	0.678	0.66
Prevalence	0.5	0.113	0.117

```
In [130]: from sklearn.metrics import roc_curve
    fpr_train, tpr_train, thresholds_train = roc_curve(y_train, y_train_preds)
    auc_train = roc_auc_score(y_train, y_train_preds)
    fpr_valid, tpr_valid, thresholds_valid = roc_curve(y_valid, y_valid_preds)
    auc_valid = roc_auc_score(y_valid, y_valid_preds)
    fpr_test, tpr_test, thresholds_test = roc_curve(y_test, y_test_preds)
    auc_test = roc_auc_score(y_test, y_test_preds)
    plt.plot(fpr_train, tpr_train, 'r-',label ='Train AUC:%.3f'%auc_train)
    plt.plot(fpr_valid, tpr_valid, 'b-',label ='Valid AUC:%.3f'%auc_valid)
    plt.plot(fpr_test, tpr_test, 'g-',label ='Test AUC:%.3f'%auc_test)
    plt.plot([0,1],[0,1],'k--')
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.legend()
    plt.show()
```

