1. [10] Determine all possible rational canonical forms of a linear transformation on a six-dimensional \mathbb{Q} -vector space with characteristic polynomial $x^2(x^2+1)^2$.

Let T be a linear transformation on \mathbb{Q}^6 have characteristic polynomial $\chi(x) := x^2(x^2+1)^2$. The rational canonical form of T will be a block-diagonal matrix where the ith block is the companion matrix of a divisor d_i of χ such that $d_i|d_{i+1}$ and χ is the product of the d_i . These correspond to the decomposition of the $\mathbb{Q}[t]$ -module \mathbb{Q}^6 with t acting via T.

There are the four possible factorizations: $d_1 := x^2(x^2+1)^2$, $d_1 := x$, $d_2 := x(x^2+1)^2$, $d_1 := (x^2+1)$, $d_2 := x^2(x^2+1)$, and $d_1 := x(x^2+1)$, $d_2 := x(x^2+1)$. These give four possible rational canonical forms:

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 1 & 0 & 0 & 0 & 0 \\ \mathbf{0} & 0 & 1 & 0 & 0 & 0 \\ \mathbf{0} & 0 & 0 & 1 & 0 & -2 \\ \mathbf{0} & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & -1 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 1 & 0 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 0 & 0 & 0 & 0 \\ \mathbf{0} & \mathbf{0} & 0 & 1 & 0 & -1 \\ \mathbf{0} & \mathbf{0} & 0 & 0 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 1 & 0 & -1 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} & 0 & 0 & 0 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 0 & 1 & 0 & -1 \\ \mathbf{0} & \mathbf{0} & 0 & 0 & 1 & 0 \end{pmatrix}$$

2. [6] Let F/K be a field extension. Please give proper (complete sentences, etc.) definitions of the following concepts. [F:K].

The index, [F:K] of K in F, is the dimension of F as a vector space over K. This is also called the degree of the extension.

F/K is a Galois extension.

The field extension F/K is a *Galois extension* if the group $\mathsf{Gal}(F/K)$ of automorphisms of the field F that fixes elements of K has the property that K is its fixed field: $u \in F \setminus K \Rightarrow \exists \sigma \in \mathsf{Gal}(F/K)$ with $\sigma(u) \neq u$.

3. [6] Suppose that the characteristic of a field K is not 2 and F/K is a field extension of degree two. Show that there is an element $\alpha \in F \setminus K$ with $\alpha^2 \in K$, and that $F = K(\alpha)$.

First note that if $\alpha \in F \setminus K$, then $F = K + K\alpha \subset K(\alpha) \subset F$, as [F:K] = 2.

Let $\beta \in F \setminus K$. As $\beta^2 \in F = K(\beta)$, there exist $c, d \in K$ (not both zero) with $\beta^2 = b\beta + c$. Set $\alpha := \beta - b/2$. Then

$$\alpha \not\in K \qquad \text{and} \qquad \alpha^2 \ = \ \beta^2 - b\beta + b^2/4 \ = \ c + b^2/4 \ \in \ K \, .$$

4. [8] Let F/K be a finite Galois extension and E an intermediate field of this extension. A Galois conjugate of E is its image $\sigma(E)$ under any element $\sigma \in \operatorname{Gal}(F/K)$. Show that the compositum of all the Galois conjugates of E is Galois over E and is the smallest intermediate field E that contains E and is Galois over E. (This compositum is the subfield generated by all Galois conjugates of E.)

The compositum M is the smallest intermediate field that contains $\{\sigma E \mid \sigma \in \mathsf{Gal}(F/K)\}$, and is therefore stable. The problem is completed by noting that stable intermediate fields of a finite Galois extension are Galois.