Memory organization

- □ Random access
- □ Wordline, bitline, cell

Architecture of memory design

- □ N-bit decoder for X and Y
- Peripheral circuits

Types of memory

- □ Random-access memory (RAM)
- SRAM and DRAM
- □ Read-only memory (ROM), nonvolatile memory
- Mask-programmed ROM
- Programmable ROM
- Erasable programmable ROM
- □ Flash memory
- Ferroelectric RAM (FRAM)

Memory timing

- □ Read access time (tac)
- □ Cycle time (tcycle)
- Set-up time (tset-up)

Decoders

- □ Nand or nor can be used
- Cascaded gate is more general than n-input gate
- □ Pre-decoding and maindecoding

Predecoder configurations

Structure of two-level decoder

6-bit address

Static RAM cell

6 transistor SRAM cell

Wordline and bitline configuration

Cbit = (source/drain cap+wire cap+contact cap) * # of cells in column Cword=(2*gate cap+wire cap) * # of cells in row

Read operation

Think of tradeoff between M3 and M1

Write operation

W4/W6=1.5

Think of tradeoff between M4 and M6

Cell layout

ခြ Column pull-up configurations 74 ဗ Important to equalize bitline voltage before 3 reads <u>=</u> ž

19

19

9

10

P

Address transition detection (ATD)

Column decoding and multiplexing

Column selection

Two-level tree decoder for a 4-bit column address

Write circuit

Read circuit

Differential voltage sense amp

Detecting 0 or 1

(b) Charging output

(a) Discharging output

Latch-based sense amplifier

Replica circuit for sense amplifier clock enable

Replica cell design

Memory architecture

Divided wordline to reduce power and delay

Bitline partitioning to reduce delay

