Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$\frac{4k^2}{(\alpha_0\!-\!4\beta_1)(1\!+\!2k^2)^2}$
${\mathfrak r}_{1}^{\#1}{}_{\alpha}$	0	0	0	- 0	- 0 0	0	$\frac{0}{\alpha_0}$
$\sigma_{1^{-}lpha}^{\#2}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$
$\tau_{1}^{\#1}\alpha\beta$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2ik}{(\alpha_0 - 4\beta_1)(1 + k^2)^2}$	$-\frac{2k^2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	0	0	0	0
	$^{\sharp 1}_{\lfloor + \atop \rfloor} + ^{\alpha \beta}$	$^{#2}_{1}$ $+^{\alpha\beta}$	$^{\sharp 1}_{+} + ^{\alpha \beta}$	$r_{1}^{\#1} +^{\alpha}$	$+^{\alpha}$	$t_{1}^{\#1} \dagger^{\alpha}$	$\mathfrak{r}_1^{\#2} + \alpha$

	$\omega_{2^{+}lphaeta}^{\sharp1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_2^{\#1}{}_{lphaeta\chi}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{\alpha_0}{4}+\beta_1$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$-\frac{\alpha_0}{4}+\beta_1$

_	$\sigma_{2^{+}lphaeta}^{\!\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{16\beta_1}{\alpha_0^2-4\alpha_0\beta_1}$	$\frac{2i\sqrt{2}}{\alpha_0k}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0
$\sigma_2^{\sharp 1} \dagger^{lphaeta\chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4} + \beta_1}$

	$\sigma_{0}^{\sharp 1}$	$ au_{0}^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0^{+}}^{\#1}$ †	$\frac{8 \beta_1}{\alpha_0^2 - 4 \alpha_0 \beta_1 + 8 \alpha_6 \beta_1 k^2}$	$-\frac{i\sqrt{2} (\alpha_0-4\beta_1)}{\alpha_0 (\alpha_0-4\beta_1)k+8\alpha_6\beta_1 k^3}$	0	0
$ au_{0^{+}}^{\#1}$ †	$\frac{i \sqrt{2} (\alpha_0 - 4 \beta_1)}{\alpha_0 (\alpha_0 - 4 \beta_1) k + 8 \alpha_6 \beta_1 k^3}$	$-\frac{\alpha_0 - 4 \beta_1 + 2 \alpha_6 k^2}{k^2 (\alpha_0^2 - 4 \alpha_0 \beta_1 + 8 \alpha_6 \beta_1 k^2)}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	$\frac{2}{\alpha_0 - 4 \beta_1}$

$f_{1}^{\#2}$	0	0	0	$-\frac{1}{2}\bar{l}\left(\alpha_{0}-4\beta_{1}\right)k$	0	0	0
$f_{1^{}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0
$\omega_1^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{4} (\alpha_0 - 4 \beta_1)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$\frac{1}{2}i(\alpha_0-4\beta_1)k$
$\omega_{1}^{\#2}{}_{\alpha\beta}$ $f_{1}^{\#1}{}_{\alpha\beta}$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#_+^2} _{\alpha\beta}$	$\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$\frac{1}{4} \left(\alpha_0 - 4 \beta_1 \right) \left \frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}} \right $	$\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{#1} + \alpha \beta \frac{1}{4}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1}^{\#_1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

Source constraints/gauge generators	auge generators
reps	Multiplicities
$\tau_{0+}^{\#2} == 0$	1
$t_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} == 0$ 3	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$t_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#2}{}^{\alpha\beta} == 0 \ 3$	3
Total constraints:	10

	$_{c^{lphaeta}}$ ر رم $_{a^{eta}}$	$\partial_{\beta}\omega^{\alpha\beta}_{\alpha} + 2\beta_{1}$	$_3$ - $\alpha_0 f^{\alpha}_{\ \alpha} \partial_{\chi} \omega^{\beta}$	$\beta_1 \partial_{\chi} f^{\delta}_{\ \beta} \partial^{\chi} f_{\delta}^{\ \beta}$	$\omega^{\chi\delta}_{\chi}$ - $\beta_1 \partial^{\chi} f_{\zeta}^{\mu}$	', y, z]dzdyc						
	$_{\alpha}^{\chi\delta}\omega_{\chi\delta}^{\alpha}+f$	$\partial_{\beta}\omega_{\alpha}^{X} + \alpha_{0}$	$_{0}$ $f^{\alpha\beta}$ $\partial_{\chi}\omega_{\alpha}^{\chi}$	$_{\chi}f_{\beta}^{\ \delta}\partial^{\chi}f_{\delta}^{\ \beta}+$	$\alpha_6 \partial_\beta \omega^{\alpha\beta}_{\ \ \alpha} \partial_\beta$	$_{\zeta\delta}\partial^{\zeta}f_{\chi}^{\delta})[t,x]$	$\omega_{0}^{\#1}$	0	0	0	$\frac{1}{2} \left(\alpha_0 - 4 \beta_1\right)$	
	$3_1 \omega_0$	$f^{\alpha\beta}$	$\alpha^{+}\alpha$	- eta_1 \hat{o}	$^{5} + \frac{2}{3}$	$_{1}\partial^{\chi}f$	$f_{0}^{\#2}$	0	0	0	0	
uc	$\frac{3}{\alpha} \omega_{\beta \chi}^{\chi} - 2 \mu$	$_{\delta} \partial_{\beta} f^{\alpha \beta} - \alpha_0$	$\partial_{\beta} f_{\chi}^{\chi} \partial_{\beta} f^{\alpha}$	$(\beta_1 \partial_X f^{\alpha\beta}) +$	$\partial_{eta f_{\chi}}^{ \beta} \partial_{\delta} f^{\chi^{\dot{c}}}$	$e^{\zeta} = \frac{1}{2} e^{\zeta} + \frac{1}{2} e^{\zeta}$	$f_0^{\#1}$	$-\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	$-4 \beta_1 k^2$	0	0	
Quadratic (free) action	$\text{S}_{\text{F}} == \\ \left\{ \int \int \int \left(-\frac{1}{2} \left(\alpha_0 - 4 \beta_1 \right) \omega^{\alpha \beta}_{\ \alpha} \omega^{X}_{\beta \chi} - 2 \beta_1 \omega^{\chi \delta}_{\alpha} \omega^{\alpha}_{\chi \delta} + f^{\alpha \beta} \tau_{\alpha \beta} + \omega^{\alpha \beta \lambda} \right\} \right\}$	$\omega_{\alpha \ X}^{\ X} \partial_{\beta} f^{\alpha\beta} - 2 \beta_1 \omega_{\alpha \ \delta}^{\ \delta} \partial_{\beta} f^{\alpha\beta} - \alpha_0 f^{\alpha\beta} \partial_{\beta} \omega_{\alpha \ X}^{\ X} + \alpha_0 \partial_{\beta} \omega^{\alpha\beta}_{\alpha} + 2 \beta_1$	$2\beta_1 \omega_{\beta}^{\delta} \delta^{\beta} f^{\alpha}_{\alpha} - 2\beta_1 \delta_{\beta} f^{\chi}_{\chi} \delta^{\beta} f^{\alpha}_{\alpha} + \alpha_0 f^{\alpha\beta} \delta_{\chi} \omega_{\alpha}^{\chi}_{\beta} - \alpha_0 f^{\alpha}_{\alpha} \delta_{\chi} \omega^{\beta}_{\beta}$	$\omega_{\alpha\chi\beta} \left(-\frac{1}{2} \alpha_0 \ \omega^{\alpha\beta\chi} + 4 \beta_1 \partial^\chi f^{\alpha\beta} \right) + \beta_1 \partial_\chi f_{\beta}^{\ \delta} \partial^\chi f_{\delta}^{\ \beta} + \beta_1 \partial_\chi f^{\delta}_{\ \beta} \partial^\chi f_{\delta}^{\ \beta}$	$4 \beta_1 \partial^\beta f^\alpha_{\ \alpha} \partial_\delta f_\beta^{\ \delta} - 2 \beta_1 \partial_\beta f_\lambda^{\ \beta} \partial_\delta f^{\chi\delta} + \frac{2}{3} \alpha_6 \partial_\beta \omega^{\alpha\beta}_{\ \alpha} \partial_\delta \omega^{\chi\delta}_{\ \chi} - \beta_1 \partial^\chi f_\zeta^{\ \beta}$	$eta_1 \partial^\chi f_\zeta^{\ eta} \partial^\zeta f_{\chi eta} + eta_1 \partial^\chi f_{\delta \zeta} \partial^\zeta f^\delta_{\ \chi} - eta_1 \partial^\chi f_{\zeta \delta} \partial^\zeta f^\delta_{\ \chi}) [t, \chi, y, z] dz dy c$	$\omega_{0}^{\#1}$	$\omega_{0}^{\#1} + \left \frac{\alpha_0}{2} - 2\beta_1 + \alpha_6 k^2 \right $	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	0	0	
Quad	S _F == [][[][(-1)	ω_{α}^{\times}	$2\beta_1$	$\omega_{lpha\chieta}$	$4 \beta_1 i$	$\beta_1 \partial^X$		$\omega_{0}^{\#1}$ \dagger	$f_{0}^{#1}$ †	$f_0^{#2} \uparrow$	$\omega_{0}^{\#1} \dagger$	

Massive and massless spectra

Massive particle							
Pole residue:	$\left \frac{1}{\alpha_0} + \frac{1}{\alpha_6} - \frac{1}{4\beta_1} > 0\right $						
Polarisations:	1						
Square mass:	$-\frac{\alpha_0 (\alpha_0 - 4 \beta_1)}{8 \alpha_6 \beta_1} > 0$						
Spin:	0						
Parity:	Even						

?
$$k^{\mu}$$
?

Quadratic pole	2
Pole residue:	$\frac{1}{\alpha_0} > 0$
Polarisations:	2

Unitarity conditions

$$\alpha_0 > 0 \&\& \alpha_6 > 0 \&\& \beta_1 < 0 \mid |\beta_1 > \frac{\alpha_0}{4}$$