

Contrôle de cinématique

Exercice 1

La représentation graphique de la vitesse v (t) d'un mobile est donnée à la figure ci-contre.

- 1) A l'aide de sa représentation graphique déterminez les équations de la vitesse v (t) pour chacune des 3 phases du mouvement.
- **2)** Calculer les accélérations du mobile au cours des trois phases du mouvement.

Déterminez les équations de l'accélération y (t)

Tracer la représentation graphique γ (t) de l'accélération en fonction du temps, avec t ϵ [0; 12] en secondes.

3) Déterminez les équations de l'espace x(t)

Déterminez l'espace total parcouru par le mobile au cours du mouvement sachant qu'à t = 0, $x_0 = 0$.

Tracer la représentation graphique x (t) de l'espace en fonction du temps, avec t ε [0; 12] en secondes.

Exercice 2

Dans le système bielle-manivelle, l'extrémité d'une tige (OA) de longueur (R) a un mouvement circulaire uniforme avec la vitesse angulaire (ω) constante.

Elle entraı̂ne une autre tige (AB) de longueur L > R dont l'extrémité B peut coulisser sur un axe Ox ; à t = 0, $\Theta = 0$.

- 1) Quelle est l'équation horaire angulaire ($\Theta = f(t)$) du point A?
- 2) Déterminer la hauteur AM à l'instant t.
- 3) En déduire OM(t) et MB(t) (cf relation dans le triangle AMB) puis l'équation horaire x(t) du mouvement de B.(OB = x(t))
- 4) Déterminer alors la vitesse du point B
- **5)** En déduire les instants auxquels elle s'annule et les positions correspondantes de B ?
- 6) Démontrez que l'accélération de B est :

$$\ddot{x} = -R. \dot{\theta}^2 [\cos \theta + \frac{1}{4} \frac{R^3 \sin^2 2\theta}{[L^2 - (R\sin \theta)^2]^{3/2}} - \frac{R\cos 2\theta}{\sqrt{L^2 - (R\sin \theta)^2}}]$$

7) Que devient l'expression x(t) si R =L?

Exercice 3

Une roue de rayon **R** roule sans glisser sur un support rectiligne. Un **point I** de la périphérie de la roue décrit une courbe appelée cycloïde.

Le **point I** venant en contact avec le support en un **point O**, on introduit un repère R(Ox, Oy). Soit l'angle Θ , défini par $\Theta = \widehat{ICH}$

1). Soit x l'abscisse du **centre C** de la roue lorsque le contact avec la piste se fait au **point H**. Le roulement se fait sans glissement impose que la mesure de l'arc HI est la même que celle du segment OH. Donner une relation entre \mathbf{x} , \mathbf{R} et $\mathbf{\Theta}$.

2).En projetant sur les axes l'égalité vectorielle : $\overrightarrow{OI} = \overrightarrow{OH} + \overrightarrow{HC} + \overrightarrow{CI}$ écrire les coordonnées du **point I** en fonction de **x**, Θ et de **R**.

Pour la suite, on prendra \overrightarrow{OI} = (x - R.sin Θ). \vec{x} + R.(1 - cos Θ). \vec{y}

- 3). Déduire les composantes des vecteurs vitesse et accélération du point I.
- **4)**.On suppose que la vitesse du **point C** est constante.
- **4.1).** Que peut-on dire du vecteur vitesse lorsque I est en contact avec le support?
- **4.2).** Déterminer le vecteur accélération dans cette position.

5).La roue est une roue de voiture de rayon 28 cm, supposé bien gonflée pour qu'on puisse négliger la déformation du pneumatique au contact du sol.

Calculer l'accélération du **point I** lorsqu'il passe au contact avec le sol, sachant que l'automobile roule avec une vitesse de 120 km/h. Comparer avec l'accélération **g**

