CS4102 Algorithms

Spring 2021 – Floryan and Horton

Module 4, Day 3: Recorded Lecture

Roadmap: Where We're Going and Why

- Reductions between problems
 - Why? Can be a practical way of solving a new problem
 - Also: A proof about one problem's complexity can be applied to another
 - Formal definition of a reduction
- Examples
 - Bipartite graphs, matching
 - Vertex cover and independent set

Using One Solution to Solve Something Else

- Sometimes we can solve a "new" problem using a solution to another problem
 - We need to "re-cast" the "new" problem as an instance of the other problem
 - We may need to relate how the answer found for the other problem gives the answer for the "new" problem
- Some examples coming in this lecture:
 - We'll see how to solve edge-disjoint path problem.
 Use that to solve vertex-disjoint path problem.
 - We know how to find max network flow.
 Use that to solve bi-partite matching.

Edge-Disjoint Paths

Given a graph G = (V, E), a start node u and a destination node v, give the maximum number of paths from u to v which share no edges Note this is an optimization problem.

Edge-Disjoint Paths

Given a graph G = (V, E), a start node u and a destination node v, give the maximum number of paths from u to v which share no edges

Edge-Disjoint Paths

Given a graph G = (V, E), a start node u and a destination node v, give the maximum number of paths from u to v which share no edges

Edge-Disjoint Paths Algorithm

Use a problem we know how to solve, max network flow, to solve this!

Make u and v the source and sink, give each edge capacity 1, find the max flow.

What's the situation?

- Given an input I_1 for the max network flow problem (graph G with edge capacities), we can find the max flow for that input
- Given an input I_2 for *edge-disjoint path problem*, we can:
 - Convert that input I_2 to make a valid input I_1 for network flow problem, by using same graph G but adding capacity=1 for each edge
 - Solve max network flow problem for I_1 and get result R_1
 - Use R_1 to give the solution R_2 for edge-disjoint path for input I_2
 - In this case, |f| = the number of paths
- Next, let's solve another problem using our new edge-disjoint path solution

Vertex-Disjoint Paths

Given a graph G=(V,E), a start node u and a destination node v, give the maximum number of paths from u to v which share no <u>vertices</u>

Vertex-Disjoint Paths

Given a graph G=(V,E), a start node u and a destination node v, give the maximum number of paths from u to v which share no vertices

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance of edge-disjoint paths

Make two copies of each node, one connected to incoming edges, the other to outgoing edges

What's the situation <u>now?</u>

- Given an input I_1 for the max network flow problem (graph G with edge capacities), we can find max flow for that input
- Given an input I_2 for <u>edge</u>-disjoint path problem, we can:
 - Convert that input I_2 to make a valid input I_1 for network flow problem, and solve that to find number of edge-disjoint paths
- Given an input I_3 for <u>vertex</u>-disjoint path problem, we can:
 - Convert that input I_3 to make a valid input I_2 for edge-disjoint path problem
 - See above! Convert I_2 to I_1 and solve max network flow problem
- This chain of "problem conversions" finds lets us solve <u>vertex</u>disjoint path problem
 - Time complexity? Cost of solving max network flow plus two conversions

Reductions

(We're about to get interested in problems that seem to require exponential time...)

Max-flow vs. min-cut

- These two problems are "equivalent"
 - Remember? max-flow min-cut theorem
 - Here we're saying: if you can solve one, you can solve the other
- Alternatively, we can say that one problem reduces to the other
 - The problem of finding min-cut reduces to the problem of finding maxflow
 - Maybe this *reduction* requires some work to "convert"
 - Could be nothing or minimal
 - For these problems, the cost of the conversion is polynomial

Reduction

- A reduction is a transformation of one problem into another problem
 - Min-cut is reducible to max-flow because we can use max-flow to solve min-cut
 - Formally, problem A is reducible to problem B if we can use a solution to B to solve A
- We're particularly interested in reductions that happen in polynomial time
- If A is polynomial-time reducible to B, we denote this as:
 A ≤_p B

Reducing both ways

- It's easy to see that:
 - Min-cut \leq_p max-flow
 - Max-flow \leq_p min-cut
- Because they reduce both ways, they are polynomial-time equivalent
 - If we find a polynomial solution for one, the other is also polynomial
 - What if we prove an exponential lower-bound for one?
 Is it possible that the other one could have a polynomial solution?

Bipartite Matching

Bipartite Graphs

- A graph is bipartite if node-set V can be split into sets X and Y such that every edge has one end in X and one end in Y
 - X and Y could be colored red and blue
 - Or Boolean true/false

How to determine if G is bipartite?

The numbers and arrows on edges may give you a clue....

BFS or DFS, and label nodes by levels in tree.

Non-tree edge to node with same label means NOT bipartite.

Notes and assumptions

- We assume the graph is connected
 - Otherwise we will only look at each connected component individually
- A triangle cannot be bipartite
 - In fact, any graph with an odd length cycle cannot be bipartite

Dog Lovers

Adoptable Dogs

Is this the best possible? The largest possible set of edges?

Dog Lovers Adoptable Dogs

Better! In fact, the maximum possible! How can we tell?

A *perfect bipartite match*: Equal-sized left and right subsets, and all nodes have a matching edge

Given a graph G = (L, R, E)

a set of left nodes, right nodes, and edges between left and right Find the largest set of edges $M \subseteq E$ such that each node $u \in L$ or $v \in R$ is incident to at most one edge.

Maximum Bipartite Matching Using Max Flow

Make G = (L, R, E) a flow network G' = (V', E') by:

Adding in a source and sink to the set of nodes:

$$-V' = L \cup R \cup \{s, t\}$$

 Adding an edge from source to L and from R to sink:

 $-E' = E \cup \{u \in L \mid (s, u)\} \cup \{v \in r \mid (v, t)\}$

Make each edge capacity 1:

 $- \forall e \in E', c(e) = 1$

Maximum Bipartite Matching Using Max Flow

- 1. Make G into $G' \qquad \Theta(L+R)$
- 2. Compute Max Flow on G' $\Theta(E \cdot V) |f| \leq L$
- 3. Return *M* as all "middle" edges with flow 1 $\Theta(L+R)$

Roadmap: Where We've Been and Why

- Reductions between problems
 - Why? Can be a practical way of solving a new problem
 - Coming soon: A proof about one problem's complexity can be applied to another
 - Formal definition of a reduction
- Examples
 - Bipartite graphs, matching
- Next: example problems: vertex cover and independent set
 - Then, classes of problems: P, NP, NP-Hard, NP-complete