More Planar Graphs

Thomas Cohn

9/27/18

We want to come up with a charecterization of planar graphs. We proved K_5 and $K_{3,3}$ are nonplanar.

Defn: H is a <u>minor</u> of G if it can be obtained from G by deleting vertexes, deleting edges, and contracting edges.

Defn: H is a <u>subdivision</u> of G if it can be obtained by adding vertexes to split edges, removing edges, and removing vertexes.

Thm: (Wagner) A graph G is nonplanar iff G contains K_5 or $K_{3,3}$ as a minor.

Thm: (Kuratowski) A graph G is nonplanar iff G containes K_5 or $K_{3,3}$ as a subdivision. Proof:

Claim 1: If G has no subdivision of K_5 or $K_{3,3}$ and $e \in G$, then G/e = H has no subdivision of K_5 or $K_{3,3}$. If $H' \subset H$ has a subdivision of K_5 or $K_{3,3}$, and $z \in H'$, then H' is a subdivision of G. If $z \in H'$, and $\deg_{H'}(z) = 2$ (then just do every case) **I'm not sure what he means here** Claim 2: (Inductive-ness) let G' = G/e. Then G' has fewer edges than G. By induction, G' is planar. \square

A torus is a doughnut. We can draw graphs onto a torus.

Ex: K_7 can be drawn on a torus.

Defn: T_g is the sphere with g handles.

Defn: Given G and T_g , an embedding of G on T_g is a drawing of G on T_g s.t. no 2 edges cross.

Defn: Given G and T_g , a 2-cell embedding of G on T_g is a drawing such that no 2 edges cross and $T_g \setminus (V \cup E) = \sqcup D_i$ where each D_i is a "disc".

Thm: If G has an embedding on T_g , then $v-e+f\geq 2-2g$. If G has a 2-cell embedding on T_g , then v-e+f=2-2g.