Penalized Competing Risks Analysis using Case-base sampling

Nirupama Tamvada

June 21

Department of Statistics, UBC

Overview

1. Background and Motivation

2. Proposed Method

- 3. Simulation Study
 - 1. Variable Selection
 - 2. CIF Prediction
- 4. Discussion and Future Work

Background

Survival Analysis

Quantify expected time to event, e.g. death, onset of disease

Proportion of a population which will survive past a certain time?

Of the surviving population, at what rate will they eventually experience the event?

How do particular characteristics affect event rate?

Initial

Absorbing

Censoring is common issue in survival analysis

- Follow individuals typically for a fixed study period
- When study ends, some individuals still have not experienced event yet
- Individuals drop out: event status unknown

Competing Risks: Extension of Survival Analysis

• In real life, subjects can potentially experience more than one type of a certain event

Competing Risks: Extension of Survival Analysis

- Naive survival analysis: treat other event as censored
- Individual is no longer at risk of experiencing event of interest

Outcomes of Interest in Survival Analysis

1. Hazard

2. Cumulative incidence

Survival Analysis: Hazard

- Describes rate: instantaneous risk of event J for subjects that are currently event-free
- Quantify risk factors: "1-unit change in Age can increase the rate of occurrence of event by 2.11"

$$lpha(t) \cdot dt := \lim_{\Delta t \searrow 0} rac{P(T \in [t, t + \Delta t) | T \geq t)}{\Delta t}$$

Survival Analysis: Cumulative Incidence (CIF)

- Describes risk: Probability of occurrence of event of interest/incidence over time
- "5-year risk of event for Patient X is 0.57"

$$P(T \le t) = \int_0^t P(T > u) \alpha(u) du$$

Motivation

What should we model in a survival analysis?

Interested in risk factors? Interested in predicting patient outcome?

Model cause-specific hazard

 Quantify effects of covariates on the rate of the outcome in subjects

Model cause-specific cumulative incidence

- Estimate patient prognosis
- Inform clinical patient management

Competing Risks Models: Cox Proportional Hazards

$$h(t|x_i) = h_0(t) \exp(\mathbf{x}_i^T \boldsymbol{\beta})$$

- Models cause-specific hazards: subjects who are event free
- Flexible semi-parametric approach: measures relative risk through hazards ratio
- Proportional Hazards Assumption: Baseline hazard not explicitly modelled

$$rac{h(t|X_1)}{h(t|X_2)} = rac{h_0(t) \cdot \exp(eta_1 X_1)}{h_0(t) \cdot \exp(eta_2 X_2)} = rac{\exp(eta_1 X_1)}{\exp(eta_2 X_2)}$$

Competing Risks Models: Cox Proportional Hazards

- Treats competing risk as censored
- To estimate CIF: Have to estimate baseline hazard separately

• Produces non-parametric, step-wise estimates of cumulative

Number at risk

Normoalhuminuria

incidence: difficult to interpret

Competing Risks Models: CIF Models

- E.g. Fine Gray model
- Model CIF through sub-distribution hazards: Consider event-free and individuals who have experienced competing event
- One-to-one relationship with CIF
- Produces non-parametric CIF estimates that account for competing risks
- Also produces step-wise estimates of CIF

Cause-Specific Hazards Models

Cause-Specific Hazards Models

Quantify Risk Factors: easy to interpret

Treat competing risks as censored

CIF Models

Quantify clinical prognosis

Account for competing risks

Cause-Specific Hazards Models

Quantify Risk Factors: easy to interpret

Treat competing risks as censored

CIF Models

Quantify clinical prognosis

Account for competing risks

Cause-Specific Hazards Models

CIF Models

Produce estimates of CIF that are smooth in time: easy to interpret

Proposed Method

Solution: Casebase framework (Bhatnagar et al., 2020)

- Models the cause-specific hazard directly using (smooth) parametric distribution families
- Produces smooth CIF curves, adjusting for competing risks
- Based on Hanley & Miettinen's (2009) case base sampling method

Casebase framework

Let $N_i(t) \in \{0,1,2\}$ be counting processes corresponding to the event for individuals $i=1,\dots n$

We model the hazard function to satisfy:

$$\lambda_i(t)dt = E[dN_i(t) \mid past]$$

Casebase framework

We model the hazard function to satisfy:

$$\lambda_i(t)dt = E[dN_i(t) \mid past]$$

If the hazard function $\lambda_i(t;\theta)$ is parameterized in terms of θ we can define an estimator by maximizing the likelihood:

$$L_0(\theta) = \prod_{i=1}^n \exp\left\{-\int_0^{\min(t_i,\tau)} \lambda_i(t;\theta)dt\right\} \prod_{i=1}^n \prod_{t \in [0,\tau)} \lambda_i(t;\theta)^{dN_i(t)},$$

Casebase framework

 By conditioning on person-moments through case-base sampling, we can avoid computing the integral

We can define an estimating equation for heta as follows:

$$L(heta) = \prod_{i=1}^n \prod_{t \in [0, au]} \left(rac{\lambda_j(t)^{dN_j(t)}}{
ho_i(t) + \sum_{j=1}^J \lambda_j(t)}
ight)$$

where
$$ho_i(t) = rac{ ext{N in base series}}{ ext{Total population time of study-base}}$$

• Corresponds to multinomial likelihood with offset $\log(1/\rho_i(t))$.

Casebase Estimation: Multinomial Regression

• Multinomial Regression parameterization:

$$\log rac{\Pr(G = l|x,t)}{\Pr(G = K|x,t)} = eta_{0l} + x^Teta_l + \log(B/b), \;\; l = 1,\ldots,K-1$$

- glmnet uses symmetric parameterization: does not estimate offset
- Optimize using stochastic variance reduced gradient (SVRG) (Johnson and Zhang., 2013): fast convergence for p > n
- Implemented in **mtool** package

$$\min_{ heta \in \mathbb{R}^p} -\ell(heta) + \sum_{i=1}^p w_j \lambda \left(rac{1-lpha}{2} \sum_{k=1}^p | heta_{j_k}| + rac{lpha}{2} \sum_{k=1}^p | heta_{j_k}|^2
ight)$$

Simulation Study: Variable Selection

Data Generation: Survival Data

Competing Risks Survival Data

• Survival times generated from two exponential distributions using inverse transform sampling (one-year time period)

$$t_i = rac{-\log(u_1)}{0.1 \cdot \exp(Xeta)}, i = 1, 2$$

• Cause-indicator (1 - Cause of interest, 2 - Competing Risk) generated from binomial experiment

$$\operatorname{Binomial}[n, (1-p)^{\exp(X\beta_1)}]$$

where p=0.5

- ullet Uniform censoring: U[0,M]
- ~ 44 % Cause of interest, ~ 42 % Competing Risk, ~ 15 % Censoring Rate

Data Generation: Covariate Generation

- m au True predictors generated from MVN with $m \mu=0$ and pairwise correlations ho=0.5
- $m \omega$ Noise predictors generated from MVN with $m \mu=0$ and pairwise correlations ho=0.1
- ullet We set $eta_1=(0,1)^T$ and $eta_2=-eta_1$
- N = 400
- Ratio of number of predictors (p)/ True predictors: 120/50, 1000/50

Data Generation: Simulation Settings

Compare Cause-Specific Hazard Models: Look at Cause 1

1. Pen. Case-base with LASSO penalty (LASSO-Casebase)

2. Pen. cox with LASSO penalty (LASSO-Cox)

- Tune Case-base using 5-fold cross-validation and Cox using 10-fold cross-validation, select lambda.min
- Time variable is transformed into log(Time) to model Weibull hazard in casebase and is not penalized
- **Comparison Metrics:** Sensitivity, Specificity, Matthew's Correlation Coefficient (MCC) (FP = FN = 0: +1, TP = TN = 0: -1)

Results: N = 400, p = 120, Tp = 50

Results: N = 400, p = 1000, Tp = 50

Simulation Study: CIF Prediction

Data Generation: Simulation Settings

Compare Cause-Specific and CIF Models:

- X generated from IID MVN
- 1. Pen. Case-base with LASSO penalty (LASSO-Casebase)
- 2. Pen. cox with LASSO penalty (LASSO-Cox)
- 3. Boosted Fine-Gray Model (FineBoost)
- Comparison Metrics: Time-dependent Brier Score

$$B(t) = rac{1}{n} \sum_{i=1}^n rac{\delta_i}{\widetilde{S}_i(t)} \sum_{j=1}^m I(Y_i(t)=j) \Big(I(Y_i(t)=j) - \widehat{P}(Y_i(t)=j)\Big)^2$$

 δ_i : event indicator variable

 $\widetilde{S}_i(t)$:Estimated censoring survival function for individual i at time t (KM)

Results: N = 400, p = 120, Tp = 50

Conclusions and Next Steps

Cause-Specific Hazards Models

Quantify Risk Factors: easy to interpret

Treat competing risks as censored

CIF Models

Quantify clinical prognosis

Account for competing risks

Cause-Specific Hazards Models

Quantify Risk Factors: easy to interpret

Treat competing risks as censored

CIF Models

Quantify clinical prognosis

Account for competing risks

Cause-Specific Hazards Models

CIF Models

Produce estimates of CIF that are smooth in time: easy to interpret

Conclusion

Cause-Specific Hazards Models

CIF Models

Cause-Specific Hazards Models

Quantify Risk Factors: easy to interpret

reat competing risks as censored

CIF Models

Performs comparably to CIF models in prediction

Cause-Specific Hazards Models

CIF Models

Produce estimates of CIF that are smooth in time: easy to interpret

Next Steps

- Deal with uniform censoring randomness
- Bootstrapped confidence intervals for the Brier score (using .632+ rule)
- More CIF comparison models (Direct Binomial)
- **If time:** analysis on dataset (p > n) 2000 genes, 400 observations and time-event data on Bladder Cancer

Current Struggles:

p > n cases running out of memory on Compute Canada :(