Exercise 2 c)

Solution. 1. \mathcal{B} is a subbasis for the discrete topology. Take an arbitary subset $\mathcal{U} \subset \mathbb{R}$. If $\mathcal{U} = \mathbb{R}$, then we simply have

$$\mathbb{R} = \bigcup_{x \in \mathbb{R}} \{x, x+1\}$$

as $\{x, x+1\}$ are members of the subbasis \mathcal{B} . Similarly, if $\mathcal{U} = \mathbb{R} \setminus \{y\}$ for some $y \in \mathbb{R}$, then we have

$$\mathbb{R} \setminus \{y\} = \left(\bigcup_{\substack{x \in \mathbb{R} \\ x+1 \neq y}} \{x, x+1\}\right) \cup \{y-1, y+1\}$$

because again $\{y-1, y+1\}$ lies in \mathcal{B} . For any other cases, notice that there are two distinct points $y \neq z$ with $y, z \notin \mathcal{U}$, thus the two sets $\{x, y\}$ and $\{x, z\}$ are members of \mathcal{B} . Therefore, we have

$$\mathcal{U} = \bigcup_{x \in \mathcal{U}} \{x\}$$
$$= \bigcup_{x \in \mathcal{U}} \{x, y\} \cap \{x, z\}.$$

In other words, every subset of \mathbb{R} is a union of finite intersections of members in \mathcal{B} , thus \mathcal{B} as a subbasis generates the discrete topology.

2. However, \mathcal{B} is not a basis of the discrete topology. Plainly, a singleton set cannot be generated from a union of elements of \mathcal{B} .

Exercise 3 b)

Suppose \mathcal{B} is a subbasis for a topology \mathcal{T} on a set X. Given another topological space Y, show that a map $f: Y \longrightarrow X$ is continuous if and only if for every $\mathcal{U} \in \mathcal{B}$, $f^{-1}(\mathcal{U})$ is open in Y.

Lemma. The preimage of a map is stable under arbitary unions and finite intersections.

Proof. Let $f: X \longrightarrow Y$ be a map, $\{A_i\}_{i \in I}$ be a family of subsets in Y, and A and B subsets in Y.

1. It is plainly

$$x \in f^{-1}\left(\bigcup_{i \in I} A_i\right) \iff f(x) \in \bigcup_{i \in I} A_i$$

$$\iff \text{there is a } i \in I \text{ such that } f(x) \in A_i$$

$$\iff \text{there is a } i \in I \text{ such that } x \in f^{-1}(A)$$

$$\iff x \in \bigcup_{i \in I} f^{-1}(A).$$

2. We simply have

$$x \in f^{-1}(A \cap B) \iff f(x) \in A \cap B$$

 $\iff f(x) \in A \text{ and } f(x) \in B$
 $\iff x \in f^{-1}(A) \text{ and } x \in f^{-1}(B)$
 $\iff x \in f^{-1}(A) \cap f^{-1}(B).$

Solution. Denote the topology of Y by S.

" \Rightarrow ": Let $f: Y \longrightarrow X$ be continuous and fix an $\mathcal{U} \in \mathcal{B}$. Since \mathcal{B} is subbasis, all its elements are open subsets, thus \mathcal{U} is open. Then by definition of continuous maps, the preimage $f^{-1}(\mathcal{U})$ is also open in Y. As we have fixed an arbitary $\mathcal{U} \in \mathcal{B}$, we may conclude the desired result.

" \Leftarrow ": On the other hand, let for every $\mathcal{U} \in \mathcal{B}$ the preimage $f^{-1}(\mathcal{U})$ be open in Y. Consider an arbitary open subset $\mathcal{V} \in \mathcal{T}$. By the definition of a subbasis, \mathcal{V} is a union of finite intersection of members of \mathcal{B} , i.e.

$$\mathcal{V} = \bigcup_{lpha \in I} \left(\mathcal{U}_1^{lpha} \cap \dots \cap \mathcal{U}_{n_{lpha}}^{lpha}
ight)$$

with I being an arbitary index set, and $n_{\alpha} \in \mathbb{N}$ for each $\alpha \in I$. The preimage of \mathcal{V} therefore is

$$f^{-1}(\mathcal{V}) = f^{-1}\left(\bigcup_{\alpha \in I} \left(\mathcal{U}_1^{\alpha} \cap \dots \cap \mathcal{U}_{n_{\alpha}}^{\alpha}\right)\right)$$
$$= \bigcup_{\alpha \in I} \left(f^{-1}(\mathcal{U}_1^{\alpha}) \cap \dots \cap f^{-1}(\mathcal{U}_{n_{\alpha}}^{\alpha})\right)$$

where we applied the aforementioned lemma on the last step. Now, $f^{-1}(\mathcal{U}_i)$ are open subsets for all $i \in \mathbb{N}$. By the definition of topological spaces, unions of finite intersections of open subsets are also open, hence $f^{-1}(\mathcal{V})$ is open. Thus, f is continuous.

Exercise 3 c)

Now suppose $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{{\alpha} \in I}$ is a collection of topological spaces, (X, \mathcal{T}) is $\prod_{{\alpha} \in I} X_{\alpha}$ with the product topology, and the subbase $\mathcal{B} \subset \mathcal{T}$ is taken to consist of all sets of the form

$$\{x_{\alpha\alpha\in I}\mid x_{\beta}\in\mathcal{U}_{\beta}\}\subset\prod_{\alpha}X_{\alpha}$$

for arbitary $\beta \in I$ and $\mathcal{U}_{\beta} \in \mathcal{T}_{\beta}$.

Show that a sequence $\{x_{\alpha}^{n}\}_{\alpha\in I}\in X$ converges to $\{x_{\alpha}\}_{\alpha\in X}\in X$ as $n\longrightarrow\infty$ if and only if $x_{\alpha}^{n}\longrightarrow x_{\alpha}$ for every $\alpha\in I$.

Solution. " \Rightarrow ": Let the sequence $\{x_{\alpha}^n\}_{\alpha\in I}\in X$ converge to $\{x_{\alpha}\}_{\alpha\in I}\in X$. By exercise 3 a), we have that for all subbase $\mathcal{U}\in\mathcal{B}$ with $\{x_{\alpha}\}_{\alpha\in I}\in\mathcal{U}$ it is $\{x_{\alpha}^n\}_{\alpha\in I}\in\mathcal{U}$ for sufficiently large n. The members of the subase was in the form

$$\{\{x_{\alpha}\}_{\alpha\in I}\mid x_{\beta}\in\mathcal{U}_{\beta}\}\subset\prod_{\alpha\in I}X_{\alpha}.$$

Thus, for each $\alpha \in I$, we have $x_{\alpha}^n \to x_{\alpha}$.

" \Leftarrow ": On the other hand, let x_{α}^n converge to x_{α} for every $\alpha \in I$. By definition of convergence, we have that for every neighbourhood \mathcal{V}_{α} of x_{α} , it is $x_{\alpha}^n \in \mathcal{V}_{\alpha}$ for all sufficiently large n. Denote the open subsets of these neighbourhoods by \mathcal{U}_{α} . Then, $\prod_{\alpha \in I} \mathcal{U}_{\alpha}$ is a neighbourhood of $\{x_{\alpha}\}_{\alpha \in I}$ in the product topology and also contains all $\{x_{\alpha}^n\}_{\alpha \in I}$ if n is sufficiently large enough. Thus, $\{x_{\alpha}^n\}_{\alpha \in I}$ converges to $\{x_{\alpha}\}_{\alpha \in I}$.

Exercise 7

Solution. 1. The error is in the following part.

"which means that x_n cannot enter arbitary neighbourhoods of $x \in X$ for arbitary large values of n, i.e. there exists $N_x \in \mathbb{N}$ and an open neighbourhood of $\mathcal{U}_x \subset X$ of x such that $x_n \notin \mathcal{U}_x$ for every $n \geq N_x$ "

The definition of convergence of a sequence was that for every neighbourhood $\mathcal{U} \subset X$ of x it is $x_n \in \mathcal{U}$ for all $n \in \mathbb{N}$ sufficiently large. Thus, if we negate the definition, we have that for every neighbourhood $\mathcal{U} \subset X$ of x it is $x_n \notin \mathcal{U}$ for some $n \in \mathbb{N}$ sufficiently large.

This mistakes makes the last conclusion false. The proof says "each of these finitely many subsets contains at most finitely many terms of x_n ", but in actuality the subsets may contain infinitely many terms of x_n .

2. It sufficies to require X to be a first-countable space. Then,

3