Claims

1

6.

1	1. An apparatus, comprising:			
2	a plurality of flow controllable queues containing data to be transmitted, wherein the flow			
3	controllable queues are organized by flow;			
4	a plurality of destinations to receive data from the plurality of flow controllable queues;			
5	a controller to continually maintain an aggregate count of data ready for transmission to			
6	the destinations and determine next queue to transmit data from based at least partially on the			
7	aggregate counts.			
1	2. The apparatus of claim 1, wherein the flow includes at least some subset of			
2	source, destination, protocol, and class of service.			
1	3. The apparatus of claim 1, wherein data is ready for transmission if the associated			
2	flow controllable queue is flow controlled.			
1	4. The apparatus of claim 1, wherein the count for a particular destination includes			
2	flow controllable queues associated with the particular destination.			
1	5. The apparatus of claim 1, wherein the next queue is one of the flow controllable			
2	queues associated with the destination having biggest aggregate count.			

The apparatus of claim 1, wherein the aggregate count is number of bytes.

7. 1 The apparatus of claim 1, wherein the aggregate count for a specific destination is 2 updated to add data queued when data is added to an associated flow controllable queue. 1 8. The apparatus of claim 1, wherein the aggregate count for a specific destination is updated to remove data dequeued when data is removed from an associated flow controllable 2 3 queue. 1 9. The apparatus of claim 3, wherein the aggregate count for a specific destination is 2 updated to remove data associated with a flow controllable queue if the flow control for the 3 associated flow controllable queue is deactivated. 1 10. The apparatus of claim 3, wherein the aggregate count for a specific destination is updated to add data associated with a flow controllable queue if the flow control for the 2 3 associated flow controllable queue is activated. The apparatus of claim 1, wherein the aggregate count for a specific destination is 1 11. updated to reflect any changes in associated flow controllable queues. 2 1 12. The apparatus of claim 11, wherein the changes include any combination of data 2 being added, data being removed, or a flow control change.

- 1 13. The apparatus of claim 1, wherein said controller updates the aggregate counts
 2 each clock cycle to account for changes made to associated flow controllable queues during that
 3 clock cycle.
- 1 14. The apparatus of claim 1, wherein said controller updates the aggregate count for 2 a specific destination by adding data queued in a first associated flow controllable queue and 3 subtracting data dequeued from a second associated flow controllable queue if the queuing and 4 the dequeuing occurred during the same clock cycle.
- 1 15. The apparatus of claim 1, wherein said controller updates the aggregate count for a specific destination by adding data queued in a first associated flow controllable queue, and adding data contained within a second associated flow controllable queue that became flow controlled, if the queuing and the flow control activation occurred during the same clock cycle.
- 1 16. The apparatus of claim 1, wherein said controller updates the aggregate count for 2 a specific destination by subtracting data dequeued from a first associated flow controllable queue, and adding data contained within a second associated flow controllable queue that 4 became flow controlled, if the dequeuing and the flow control activation occurred during the 5 same clock cycle.
- 1 17. The apparatus of claim 1, wherein said controller updates the aggregate count for 2 a specific destination by adding data queued in a first associated flow controllable queue, 3 subtracting data dequeued from a second associated flow controllable queue, and adding data

- 4 contained within a third associated flow controllable queue that became flow controlled, if the
- 5 queuing, the dequeuing, and the flow control activation occurred during the same clock cycle.
- 1 18. The apparatus of claim 1, wherein said controller updates the aggregate count for
- 2 a specific destination by subtracting data contained within an associated flow controllable queue
- 3 that had flow control deactivated, if the flow control de-activation was the only event that
- 4 occurred during a clock cycle or occurred during the same clock cycle as a queuing to the
- 5 associated flow controllable queue, a dequeuing from the associated queue, or both.
 - 19. A method, comprising:
- 2 creating a plurality of queues based on at least some subset of source, destination,
- 3 protocol, and class of service;
- storing data received in a first one of the plurality of queues based on the flow of the data;
- 5 removing data transmitted from a second one of the plurality of queues;
- 6 maintaining a continuous aggregate count of data eligible for transmission to the
- 7 destinations;

1

- 8 selecting a next queue to transmit data from based at least in part on the aggregate counts.
- 1 20. The method of claim 19, wherein the aggregate count for a particular destination 2 includes queues associated with the particular destination.
- 1 21. The method of claim 19, wherein said selecting includes selecting one of the 2 queues associated with the destination having biggest aggregate count as the next queue.

Patent Application -22- 042390.P17398

1	22.	The method of claim 19, wherein said maintaining includes totaling number of
2	bytes eligible	for transmission to the destinations.
1	23.	The method of claim 19, wherein said maintaining includes adding data queued to
2	an associated	queue.
1	24.	The method of claim 19, wherein said maintaining includes removing data
2	dequeued from	n an associated queue.
1	25.	The method of claim 19, wherein said maintaining includes removing an
2	associated que	eue that is deactivated.
1	26.	The method of claim 19, wherein said maintaining includes adding an associated
2	queue that is a	activated.
1	27.	The method of claim 19, wherein said maintaining includes updating the count
2	each clock cyc	cle to reflect any combination of data being added, data being removed, and flow
3	control change	e made to associated queues during that clock cycle.
1	28.	A store and forward device comprising:

2	a plurality of Ethernet cards to receive, store, and transmit data, wherein the plurality of		
3	Ethernet cards include a plurality of ingress ports, a plurality of egress ports, and a plurality of		
4	queues;		
5	a processor to maintain a continuous aggregate count of amount of data queued for the		
6.	egress ports;		
7	a backplane to connect the plurality of Ethernet cards together; and		
8	a scheduler to determine a next queue to service based at least in part on the aggregate		
9	counts.		
	·		
1	29. The device of claim 28, wherein said scheduler selects the next queue based on		
2	the egress port having highest aggregate count.		
1	30. The device of claim 28, wherein said scheduler selects the next queue per ingres		
2	port based on the associated egress port having highest aggregate count.		
1	The device of claim 28, wherein said processor maintains the aggregate count by		
2	updating the count each clock cycle to reflect any combination of data being added, data being		
3	removed, and flow control change made to associated queues during that clock cycle.		