4. Model Çalışması

Tez çalışmasının bu bölümünde, fonların fiyat tahmini için model geliştirme uygulamaları yapılacaktır. Model geliştirme için kullanacağımız makine öğrenme metotlarına dair literatür araştırması bolüm 2'de yapılmıştır. Yapılan literatür araştırmasında kendi çalışmamız için kullanacağımız metotları tercih etmemizi sağlayan, büyük bir uygulama alanının mevcut olunması ve benzer çalışmalarda makine öğrenme metotlarının ciddi başarılar elde etmesi, bölüm 3'de açıklamaları yapılmış olana algoritmaları kullanmamızı sağlayacak alt yapıyı oluşturmuştur. Bu bağlamda bu bölümde uygulama olarak beş ana başlık şeklinde bir akış izlenmiştir. İlk olarak, uygulama çalışmaların temel yapısını oluşturan ve önemi yüksek olan veri seti hakkında detaylı bir bilgilendirme verilmiştir. Sonrasında, model geliştirme bölümüne geçmeden veni bir başlık açılarak, geliştirilecek olan modellerin kabul doğruluklarının ölçümünü yapılmasını sağlayan metrikler ile ilgi açıklamlar yapılmış ve daha sonra model geliştirme için kullanılacak olan algoritmaların işleyişi ve kodlama süreçleri için detaylı bilgi verilmiştir. Son ana başlıka ise, kullanılan dört algoritma ile uygulaması yapılan model geliştirme için bulunan sonuçları ortak tablo olarak karşılaştırması yapılarak bölüm sonlandırılmıştır. Ayrıca, tüm uygulama geliştirme ve veri işlem süreçlerin de kullanılan platform, programlama dili ve versiyon bilgileri için tablo 4.1'de ve uygulama çalışmalarında kullanılacak olan bilgisayarın teknik özeliklerine dair ise tablo 4.2' de olmak üzere ayrıntılı bilgi verilmiştir.

Tablo 4.1: Uygulama geliştirme platform bilgileri

Uygulama Adı	Açıklama	Version
Anaconda Navigator	Veri bilimi masaüstü portalı	1.9.12
Python3	Nesne yönelimli, yorumlamalı ve etkileşimi yüksek seviyeli bir programlama dilidir.	3.7.7
Spyder	Python programlama geliştirme için açık kaynaklı bir geliştirme ortamıdır.	4.1.2
JupyterLab	Bir çok programlama dilinde etkileşimli bilgi işlemleri için geliştirilmiş açık kaynaklı bir geliştirme ortamıdır.	1.2.6

Tablo 4.2: Bilgisayar teknik özelikleri

İşlemci	CPU @ 2.7 GHz, Dual-Core Intel Core i5
Bellek	8 GB
Grafikler	Intel Iris Graphics 6100 1536 MB
Depolama	SSD 128 GB

4.1. Veri Hazırlama ve Ön İşleme Süreçleri

Bu bölüm iki alt başlıktan oluşmaktadır. İlk olarak model geliştirme için kullanılacak olan veri seti hakkında detaylı bir bilgi verilmiştir. İkinci olarak, veri ön işleme süreçleri için veri setinin oluşturulması, temizlenmesi ve verinin görselleştirme adımlarının tümü bu başlık altında incelenmiştir.

4.1.1 Veri seti hakkında

Bu çalışmada kullanılan veriler, Takas İstanbul(Takasbank)'un platform ve veri kaynağı sağlayacalığı yaptığı Türkiye Elektronik Fon Dağıtım Platformu (TEFAS) web sitesi üzerinden genele açık olan bilgilerden elde edilmiştir. Her bir fon için 02.01.2019 – 31.12.2019 tarihleri arasında, tipi, türü, toplam değeri, tedavüldeki pay sayısı, pay alan kişi sayısı, fiyatı ve menkul(26 çeşit) oranları ile her bir tarih için faiz bilgisi, altın fiyatı ve dolar fiyatı baz alınarak veri seti hazırlanmıştır. Veri kümesi, toplam 187,438 veri ve 37 kolondan oluşmaktadır. Veri setini oluşturan her bir kolonun tipi ve içeriği hakkında detaylı bilgi ise aşağıda verilmiştir.

- TARIH: Fonun işlem gördüğü tarih bilgisini içerir. Veri tipi, date olarak tutulur.
- **FONTIP**: Fonun tip bilgisini içerir ve 3 çeşittir; Borsa Yatırım Fonu, Emeklilik Fonu, Yatırım Fonu. Veri tipi, object olarak tutulmaktadır. Veri setinde object olarak tutulan veriler, veri ön işlem sürecinde kategorik veri olacak şekilde dönüşümü yapılacaktır.

- **FONTUR**: Fonların tür bilgisini içermekte ve 31 çeşit olarak mevcuttur. Tür sayısı çok olduğundan dolayı Tablo 4.3'te bilgileri verilmektedir. Veri tipi, object olarak tutulmakta.
- FON: Veri setinde fonların uzun isimlendirmeleri mevcut değildir. Bunun yerine, Takasbank tarafından her bir fon'a ait bir kod bilgisi verilmiştir. Toplam fon sayısı 892 ve veri tipi olarakta object bilgisini içermektedir.
- **FONTOPLAMDEGER**: Fonun büyüklük bilgisini içerir ve hesaplama olarak; portföy büyüklüğü + alacaklar borçlar şeklinde bulunur. Veri tipi, float64 olarak tutulur.
- **TEDAVPAYSAYISI**: Fonun satılmış olan pay adeti bilgisini içerir. Veri tipi, float64 olarak tutulur.
- KISISAYISI: Fonun yatırımcı sayısı bilgisini barındırır. Veri tipi, int64 olarak bulunur.
- FONFIYAT: Fonun o tarihteki fiyat bilgisini içerir. Veri tipi, float64 olarak tutulmaktadır.
- FAIZ: Tarih bazında Merkez Bankasının verdiği faiz bilgisini barındırır. Veri tipi, float64 olarak tutulur.
- **DOLARFIYAT**: Merkez Bankasının gün sonunda o tarih için en son verdiği dolar fiyatını bulundurmaktadır. Veri tipi, float64 olarak bulunur.
- **ALTINFIYAT**: Merkez Bankasının gün sonunda o tarih için son verdiği altın fiyat bilgisini bulundurmaktadır. Veri tipi ise, float64'tur.
- MENKULORAN: Fonun portföyündeki kıymetin portföy değerine oranın, yüzdelik üzerinden gösterilmesi bilgisini içerir. Veri setindeki menkul oranı, 26 farklı menkul değerini kolon bilgisi olarak bulundurmaktadır. Verideki her bir menkul değerinin kodu ve tanımı tablo 4.4'te gösterilmektedir. Veri tipleri ise, tüm menkul değerleri float64 olarak veri kümesinde tutulmaktadır.

Tablo 4.3: Veri setindeki fon türleri

	FONTUR
1	Altın Fonu
2	Gümüş Fonu
3	Hisse Senedi Fonu
4	Başlangıç Fonu
5	Başlangıç Katılım Fonu
6	Borçlanma Araçları Fonu
7	Devlet Katkısı Fonu
8	Değişken Fon
9	Endeks Fon
10	Fon Sepeti Fonu
11	Kamu Borçlanma Araçları Fonu
12	Kamu Kira Sertifikası Fonu
13	Kamu Yabancı Para (Döviz) Cinsinden Borçlanma Araç
14	Karma Fon
15	Katılım Katkı Fonu
16	Katılım Standart Fon
17	Kıymetli Madenler
18	OKS Katılım Standart Fon
19	OKS Standart Fon
20	Para Piyasası Fonu
21	Standart Fon
22	Uluslararası Borçlanma Araçları Fonu
23	Özel Sektör Borçlanma Araçları Fonu
24	Altın ve Diğer Kıymetli Madenler Fonu
25	Hisse Senedi Yoğun
26	Katılım Fonu
27	Kira Sertifikası Fonu
28	Kisa Vadeli Kira Sertifikalari Katilim Fonu
29	Koruma Amaçlı Fon
30	Kısa Vadeli Borçlanma Araçları Fonu
31	Serbest Fon

Tablo 4.4: Takasbank'tan alınan menkul kod tanımları

KOD	ACIKLAMAING	ACIKLAMATR
BB	Bank Bills	Banka Bonosu
DT	Government Bond	Devlet Tahvili
DB	FX Payable Bills	Döviz Ödemeli Bono
DÖT	Foreign Currency Bills	Dövize Ödemeli Tahvil
EUT	Eurobonds	Eurobonds
FB	Commercial Paper	Finansman Bonosu
FKB	Fund Participation Certificate	Fon Katılma Belgesi
GAS	Real Estate Certificate	Gayrı Menkul Sertifikası
НВ	Treasury Bill	Hazine Bonosu
HS	Stock	Hisse Senedi
KBA	Government Bonds and Bills (FX)	Kamu Dış Borçlanma Araçları
KKS	Government Lease Certificates	Kamu Kira Sertifikaları
KH	Participation Account	Katılım Hesabı
KM	Precious Metals	Kıymetli Madenler
OSKS	Private Sector Lease Certificates	Özel Sektör Kira Sertifikaları
OST	Private Sector Bond	Özel Sektör Tahvili
TR	Reverse-Repo	Ters-Repo
TPP	TMM	TPP
Т	Derivatives	Türev Araçları
VM	Term Deposit	Vadeli Mevduat
VDM	Asset-Backed Securities	Varlığa Dayalı Menkul Kıymetler
YBA	Foreign Debt Instruments	Yabancı Borçlanma Aracı
YHS	Foreign Equity	Yabancı Hisse Senedi
YMK	Foreign Securities	Yabancı Menkul Kıymet
D	Other	Diğer
R	Repo	Repo

Bu bölümde buraya kadar anlatılan, verilerin toplanması ve her bir kolon için içerik ve tip bilgilerinden bahsedildi. Ayrıca, verilerin toplanma sürecinde herhangi bir ön işlem süreci

uygulanmadığı için mevcut şu an ki format verinin ham halini barındırmaktadır. Bundan dolayı, eksik, yanlış ve gereksiz verilerde bulunmaktadır. Veri işlem bölümünde ayrıntılı incelemesi yapılacaktır.

4.1.2 Veri Ön İşleme Süreçleri

Veri işleme bölümünde, hazırlanmış verinin ham formatı üzerinde ön işleme süreçleri yapılcaktır. Ön işlem süreçleri veri setinin, uygulama bölümünde geliştirilecek olan model için çok önemli bir yere sahiptir. Çünkü ham veri, toplanma sürecinde gereksiz, hatalı, tekrarlı, tutarsız ve boş verilerinin olması mümkün ve verinin bu formatı ise geliştireceğimiz model için doğru bir sonuç elde edilmesini engeler. Bu sebepten ötürü, veri setini tutarlı, eksiksiz ve hatasız olmasını sağlayacak daha ideal bir yapıya dönüştürülür. Doğru bir veri setinin ise, model geliştirme çalışmalarımız için daha performanslı ve doğru sonuçlar elde edilmesini sağlar. Bu kapsamda, verilerin uygulama geliştirme ve analizler için daha uygun bir yapıya getirmesini sağlayan sürece veri ön işleme adımı denir[1]. Veri ön işleme adımlarını aşağıdaki şekilde sıralanabilir.

- Veri temizleme
- Veri bütünleştirme
- Veri indirgeme
- Veri dönüştürme
- Veri madenciliği tekniklerinin uygulanması
- Bulunun sonuçların değerlendirilmesi, uygulanılması[1].

Bu adımlar çerçevesinde, veri setimizi adımı adım ön işleme süreçlerini yapıp ideal bir veri kümesine dönüşümü sağlanacaktır. Temizlenmiş veri kümesi üzerinden, her bir veri kolonun ortamlaması, maximum, minimum değerleri ve korelasyon matrislerine bakılarak gerekli-gereksiz veri olup olmam konusu incelenecektir. Son olarak ise, veri analizinin daha iyi anlaşılması için görselleştirme çalışmaları yapılacaktır.

4.1.2.1 Veri Temizleme ve Dönüştürme

Veri setinin düzenlenmemiş formatı şekil 4.1 verilerek veri üzerinden, temizleme ve dönüştürme işlemleri sırasıyla yapılmaya başlancaktır.

TARIH		columns (total Column	Non-Null Count	Dtype
1 FONTIP 187438 non-null object 2 FONTUR 187438 non-null object 3 FON 187438 non-null object 4 Unnamed: 4			197/29 pop_pull	
2 FONTUR 187438 non-null object 3 FON 187438 non-null object 4 Unnamed: 4 0 non-null float64 5 FONTOPLAMDEGER 187438 non-null float64 6 TEDAVPAYSAYISI 187438 non-null float64 7 KISISAYISI 187438 non-null int64 8 FONFIYAT 187438 non-null float64 9 FAIZ 187438 non-null float64 10 DOLARFIYAT 187438 non-null float64 11 ALTINFIYAT 187438 non-null float64 12 BB 187438 non-null float64 13 DT 185256 non-null float64 14 DB 173992 non-null float64 15 DÖT 148075 non-null float64 16 EUT 113791 non-null float64 17 FB 84322 non-null float64 18 FKB 55378 non-null float64 19 GAS 34803 non-null float64 20 HB 21222 non-null float64 21 HS 11863 non-null float64 22 KBA 6322 non-null float64				
3 FON 187438 non-null object 4 Unnamed: 4 0 non-null float64 5 FONTOPLAMDEGER 187438 non-null float64 6 TEDAVPAYSAYISI 187438 non-null float64 7 KISISAYISI 187438 non-null float64 8 FONFIYAT 187438 non-null float64 9 FAIZ 187438 non-null float64 10 DOLARFIYAT 187438 non-null float64 11 ALTINFIYAT 187438 non-null float64 12 BB 187438 non-null float64 13 DT 185256 non-null float64 14 DB 173992 non-null float64 15 DÖT 148075 non-null float64 16 EUT 113791 non-null float64 18 FKB 55378 non-null float64 19 GAS 34803 non-null float64 20 HB 21222 non-null float64				
4 Unnamed: 4 0 non-null float64 5 FONTOPLAMDEGER 187438 non-null float64 6 TEDAVPAYSAYISI 187438 non-null int64 7 KISISAYISI 187438 non-null float64 9 FAIZ 187438 non-null float64 10 DOLARFIYAT 187438 non-null float64 11 ALTINFIYAT 187438 non-null float64 11 ALTINFIYAT 187438 non-null float64 12 BB 187438 non-null float64 13 DT 185256 non-null float64 14 DB 173992 non-null float64 15 DÖT 148075 non-null float64 16 EUT 113791 non-null float64 17 FB 84322 non-null float64 18 FKB 55378 non-null float64 19 GAS 34803 non-null float64 20 HB 21222 non-null float64 21 HS 11863 non-null float64 22 KBA 6322 non-null float64 23 KKS 2693 non-null float64 24 KH 1216 non-null float64 25 KM 548 non-null float64 26 OSKS 211 non-null float64 27 OST 11 non-null float64 28 TR 0 non-null float64 30 T 0 non-null float64 31 VM 0 non-null float64 32 VDM 0 non-null float64 33 YBA 0 non-null float64 34 YHS 0 non-null float64 35 YMK 0 non-null float64				
5 FONTOPLAMDEGER 187438 non-null float64 6 TEDAVPAYSAYISI 187438 non-null int64 7 KISISAYISI 187438 non-null int64 8 FONFIYAT 187438 non-null float64 9 FAIZ 187438 non-null float64 10 DOLARFIYAT 187438 non-null float64 11 ALTINFIYAT 187438 non-null float64 12 BB 187438 non-null float64 12 BB 187438 non-null float64 12 BB 187438 non-null float64 13 DT 185256 non-null float64 14 DB 173992 non-null float64 15 DÖT 148075 non-null float64 16 EUT 113791 non-null float64 18 FKB 55378 non-null float64 19 GAS 34803 non-null float64 20 HB 21222 non-null float64 21 HS 11863 non-null float64 22 KBA 6322 non-null float64 23 KKS 2693 non-null float64	_			
6 TEDAVPAYSAYISI 187438 non-null int64 7 KISISAYISI 187438 non-null int64 8 FONFIYAT 187438 non-null float64 9 FAIZ 187438 non-null float64 10 DOLARFIYAT 187438 non-null float64 11 ALTINFIYAT 187438 non-null float64 12 BB 187438 non-null float64 13 DT 185256 non-null float64 14 DB 173992 non-null float64 15 DÖT 148075 non-null float64 16 EUT 113791 non-null float64 16 EUT 113791 non-null float64 18 FKB 55378 non-null float64 19 GAS 34803 non-null float64 20 HB 21222 non-null float64 21 HS 11863 non-null float64 22 KBA 6322 non-null float64 23 KKS 2693 non-null float64 24 KH 1216 non-null float64 25 KM 548 non-null float64				
7 KISISAYISI 187438 non-null float64 8 FONFIYAT 187438 non-null float64 9 FAIZ 187438 non-null float64 10 DOLARFIYAT 187438 non-null float64 11 ALTINFIYAT 187438 non-null float64 12 BB 187438 non-null float64 13 DT 185256 non-null float64 14 DB 173992 non-null float64 15 DÖT 148075 non-null float64 16 EUT 113791 non-null float64 16 EUT 113791 non-null float64 18 FKB 55378 non-null float64 19 GAS 34803 non-null float64 20 HB 21222 non-null float64 21 HS 11863 non-null float64 22 KBA 6322 non-null float64 23 KKS 2693 non-null float64 24 KH 1216 non-null float64 25 KM 548 non-null float64 26 OSKS 211 non-null float64 2				
8 FONFIYAT 187438 non-null float64 9 FAIZ 187438 non-null float64 10 DOLARFIYAT 187438 non-null float64 11 ALTINFIYAT 187438 non-null float64 12 BB 187438 non-null float64 13 DT 185256 non-null float64 14 DB 173992 non-null float64 15 DÖT 148075 non-null float64 16 EUT 113791 non-null float64 17 FB 84322 non-null float64 18 FKB 55378 non-null float64 19 GAS 34803 non-null float64 20 HB 21222 non-null float64 21 HS 11863 non-null float64 22 KBA 6322 non-null float64 23 KKS 2693 non-null float64 24 KH 1216 non-null float64 25 KM 548 non-null float64 26 OSKS 211 non-null float64 27 OST 11 non-null float64 28 TR 0 non-null float64 30 T 0				
9 FAIZ 187438 non-null float64 10 DOLARFIYAT 187438 non-null float64 11 ALTINFIYAT 187438 non-null float64 12 BB 187438 non-null float64 13 DT 185256 non-null float64 14 DB 173992 non-null float64 15 DÖT 148075 non-null float64 16 EUT 113791 non-null float64 17 FB 84322 non-null float64 18 FKB 55378 non-null float64 19 GAS 34803 non-null float64 20 HB 21222 non-null float64 21 HS 11863 non-null float64 22 KBA 6322 non-null float64 23 KKS 2693 non-null float64 24 KH 1216 non-null float64 25 KM 548 non-null float64 26 OSKS 211 non-null float64 27 OST 11 non-null float64 28 TR 0 non-null float64 30 T 0 non-null float64 31 VM 0 non-null float64 32 VDM 0 non-null float64 33 YBA 0 non-null float64 34 YHS 0 non-null float64 35 YMK 0 non-null float64	-			
10 DOLARFIYAT 187438 non-null float64 11 ALTINFIYAT 187438 non-null float64 12 BB 187438 non-null float64 13 DT 185256 non-null float64 14 DB 173992 non-null float64 15 DÖT 148075 non-null float64 16 EUT 113791 non-null float64 17 FB 84322 non-null float64 18 FKB 55378 non-null float64 19 GAS 34803 non-null float64 20 HB 21222 non-null float64 21 HS 11863 non-null float64 22 KBA 6322 non-null float64 23 KKS 2693 non-null float64 24 KH 1216 non-null float64 25 KM 548 non-null float64 26 OSKS 211 non-null float64 27 OST 11 non-null float64 28 TR 0 non-null float64 30 T 0 non-null float64 31 VM 0 non-null float64 32 VDM 0 non-null float				
11 ALTINFIYAT 187438 non-null float64 12 BB 187438 non-null float64 13 DT 185256 non-null float64 14 DB 173992 non-null float64 15 DÖT 148075 non-null float64 16 EUT 113791 non-null float64 17 FB 84322 non-null float64 18 FKB 55378 non-null float64 19 GAS 34803 non-null float64 20 HB 21222 non-null float64 21 HS 11863 non-null float64 22 KBA 6322 non-null float64 23 KKS 2693 non-null float64 24 KH 1216 non-null float64 25 KM 548 non-null float64 26 OSKS 211 non-null float64 27 OST 11 non-null float64 28 TR 0 non-null float64 30 T 0 non-null float64 31 VM 0 non-null float64 32 VDM 0 non-null float64 33 YBA 0 non-null float64 34 YHS 0 non-null float64 35 YMK 0 non-null float64				
12 BB				
13 DT				
14 DB 173992 non-null float64 15 DÖT 148075 non-null float64 16 EUT 113791 non-null float64 17 FB 84322 non-null float64 18 FKB 55378 non-null float64 19 GAS 34803 non-null float64 20 HB 21222 non-null float64 21 HS 11863 non-null float64 22 KBA 6322 non-null float64 23 KKS 2693 non-null float64 24 KH 1216 non-null float64 25 KM 548 non-null float64 26 OSKS 211 non-null float64 27 OST 11 non-null float64 28 TR 0 non-null float64 29 TPP 0 non-null float64 31 VM 0 non-null float64 32 VDM 0 non-null float64 33 YBA 0 non-null float64 34 YHS 0 non-null float64 35 YMK 0 non-null float64				
15 DÖT				
16 EUT				
17 FB 84322 non-null float64 18 FKB 55378 non-null float64 19 GAS 34803 non-null float64 20 HB 21222 non-null float64 21 HS 11863 non-null float64 22 KBA 6322 non-null float64 23 KKS 2693 non-null float64 24 KH 1216 non-null float64 25 KM 548 non-null float64 26 OSKS 211 non-null float64 27 OST 11 non-null float64 28 TR 0 non-null float64 29 TPP 0 non-null float64 30 T 0 non-null float64 31 VM 0 non-null float64 32 VDM 0 non-null float64 33 YBA 0 non-null float64 34 YHS 0 non-null float64 35 YMK 0 non-null float64				
18 FKB 55378 non-null float64 19 GAS 34803 non-null float64 20 HB 21222 non-null float64 21 HS 11863 non-null float64 22 KBA 6322 non-null float64 23 KKS 2693 non-null float64 24 KH 1216 non-null float64 25 KM 548 non-null float64 26 OSKS 211 non-null float64 27 OST 11 non-null float64 28 TR 0 non-null float64 30 T 0 non-null float64 31 VM 0 non-null float64 32 VDM 0 non-null float64 33 YBA 0 non-null float64 34 YHS 0 non-null float64 35 YMK 0 non-null float64				
19 GAS 34803 non-null float64 20 HB 21222 non-null float64 21 HS 11863 non-null float64 22 KBA 6322 non-null float64 23 KKS 2693 non-null float64 24 KH 1216 non-null float64 25 KM 548 non-null float64 26 OSKS 211 non-null float64 27 OST 11 non-null float64 28 TR 0 non-null float64 29 TPP 0 non-null float64 30 T 0 non-null float64 31 VM 0 non-null float64 32 VDM 0 non-null float64 33 YBA 0 non-null float64 34 YHS 0 non-null float64 35 YMK 0 non-null float64				
20 HB 21222 non-null float64 21 HS 11863 non-null float64 22 KBA 6322 non-null float64 23 KKS 2693 non-null float64 24 KH 1216 non-null float64 25 KM 548 non-null float64 26 OSKS 211 non-null float64 27 OST 11 non-null float64 28 TR 0 non-null float64 29 TPP 0 non-null float64 30 T 0 non-null float64 31 VM 0 non-null float64 32 VDM 0 non-null float64 33 YBA 0 non-null float64 34 YHS 0 non-null float64 35 YMK 0 non-null float64				
21 HS				
22 KBA 6322 non-null float64 23 KKS 2693 non-null float64 24 KH 1216 non-null float64 25 KM 548 non-null float64 26 OSKS 211 non-null float64 27 OST 11 non-null float64 28 TR 0 non-null float64 29 TPP 0 non-null float64 30 T 0 non-null float64 31 VM 0 non-null float64 32 VDM 0 non-null float64 33 YBA 0 non-null float64 34 YHS 0 non-null float64 35 YMK 0 non-null float64				
23 KKS 2693 non-null float64 24 KH 1216 non-null float64 25 KM 548 non-null float64 26 OSKS 211 non-null float64 27 OST 11 non-null float64 28 TR 0 non-null float64 29 TPP 0 non-null float64 30 T 0 non-null float64 31 VM 0 non-null float64 32 VDM 0 non-null float64 33 YBA 0 non-null float64 34 YHS 0 non-null float64 35 YMK 0 non-null float64				
24 KH 1216 non-null float64 25 KM 548 non-null float64 26 OSKS 211 non-null float64 27 OST 11 non-null float64 28 TR 0 non-null float64 29 TPP 0 non-null float64 30 T 0 non-null float64 31 VM 0 non-null float64 32 VDM 0 non-null float64 33 YBA 0 non-null float64 34 YHS 0 non-null float64 35 YMK 0 non-null float64				
25 KM 548 non-null float64 26 OSKS 211 non-null float64 27 OST 11 non-null float64 28 TR 0 non-null float64 29 TPP 0 non-null float64 30 T 0 non-null float64 31 VM 0 non-null float64 32 VDM 0 non-null float64 33 YBA 0 non-null float64 34 YHS 0 non-null float64 35 YMK 0 non-null float64				
26 OSKS 211 non-null float64 27 OST 11 non-null float64 28 TR 0 non-null float64 29 TPP 0 non-null float64 30 T 0 non-null float64 31 VM 0 non-null float64 32 VDM 0 non-null float64 33 YBA 0 non-null float64 34 YHS 0 non-null float64 35 YMK 0 non-null float64	24	KH	1216 non-null	float64
27 OST 11 non-null float64 28 TR 0 non-null float64 29 TPP 0 non-null float64 30 T 0 non-null float64 31 VM 0 non-null float64 32 VDM 0 non-null float64 33 YBA 0 non-null float64 34 YHS 0 non-null float64 35 YMK 0 non-null float64	25	KM	548 non-null	float64
28 TR	26	0SKS	211 non-null	float64
29 TPP	27	0ST	11 non-null	float64
30 T	28	TR	0 non-null	float64
31 VM			0 non-null	float64
32 VDM 0 non-null float64 33 YBA 0 non-null float64 34 YHS 0 non-null float64 35 YMK 0 non-null float64	30	Т	0 non-null	float64
33 YBA 0 non-null float64 34 YHS 0 non-null float64 35 YMK 0 non-null float64	31	VM	0 non-null	float64
34 YHS 0 non-null float64 35 YMK 0 non-null float64	32	VDM	0 non-null	float64
35 YMK 0 non-null float64	33	YBA	0 non-null	float64
	34	YHS	0 non-null	float64
36 D 0 non-null float64	35	YMK	0 non-null	float64
o non nace reacon	36	D	0 non-null	float64
37 R 0 non-null float64	37	R	0 non-null	float64

Şekil 4.1 : Veri setinin ön işlem yapılmamış formatı

Ilk olarak, şekil 4.1'de veri setinin toplam 187,438 veri ve 38 kolondan oluştuğu bilgisi verilmiş. Daha sonra dört kolondan oluşan yukarıdaki şekil 4.1 ise kolon bilgileri sırasıyla, verinin veri kümesindeki kolon sırası, adı, mevcut kolonda bulunan veri sayısı ve tip bilgilerini içermektedir.

Son olarak, bulunan verilerin tip sayısı ve ne kadar hafıza kullanıldığı bilgisi verilmiştir. Şekil 4.1'de anlaşılacağı üzere, dördüncü sıradaki kolonun tanımsız olduğu ve boş veri içerdiği görülmektedir. Ayrıca, 28'inci sıradaki TR'den başlayarak 37'inci kolandaki alana kadar herhangi bir veri içermediği ve gereksiz olduğu anlaşılıyor. Bu bilgiler ışığında, veri setimiz hatalı ve gereksiz kolonlardan temizlenecek ve object olan verilerin tipleri kategorik olarak dönüşüm işlemleri bu adımda yapılarak, şekil 4.2 'deki son halini almış olacaktır.

#	Column	27 columns): Non-Null Count	Dtype
0	TARIH	187438 non-null	datetime64[ns]
1	FONTIP	187438 non-null	
2	FONTUR	187438 non-null	
3	FON	187438 non-null	3
4	FONTOPLAMDEGER	187438 non-null	
5		187438 non-null	
6	KISISAYISI	187438 non-null	
7	FONFIYAT	187438 non-null	
8	FAIZ	187438 non-null	float64
9	DOLARFIYAT	187438 non-null	
10	ALTINFIYAT	187438 non-null	float64
11	BB	187438 non-null	
12	DT	185256 non-null	float64
13	DB	173992 non-null	float64
14	DÖT	148075 non-null	float64
15	EUT	113791 non-null	float64
16	FB	84322 non-null	float64
17	FKB	55378 non-null	float64
18	GAS	34803 non-null	float64
19	НВ	21222 non-null	float64
20	HS	11863 non-null	float64
21	KBA	6322 non-null	float64
22	KKS	2693 non-null	float64
23	KH	1216 non-null	float64
24	KM	548 non-null	float64
25	0SKS	211 non-null	float64
26	0ST	11 non-null	float64

Şekil 4.2: Veri setinin ön işlem yapılmış formatı

Veri setimiz gereksiz kolon değişkenlerinden temizlenerek, mevcut değişken kolon sayısı 27 olacaktır. Bir sonraki adımda şekil 4.3'te veri setinde bulunan null değerleri üzerinden durulacaktır.

Şekil 4.3: Veri setinin ilk 5 satırlık formatı

TARI	H FONTIP	FONTUR	FON	FONTOPLAMDEGER	TEDAVPAYSAYISI	KISISAYISI	FONFIYAT	FAIZ	DOLARFIYAT	 FKB	GAS	НВ	HS	КВА	KKS	кн	км	osks	ost
0 2019-01-0	2 BORSA YATIRIM FONU	Altın Fonu	FGA	8.722176e+07	4.350000e+06	0	20.050979	0.2302	5.2905	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1 2019-01-0	2 BORSA YATIRIM FONU	Gümüş Fonu	FGS	1.238294e+07	7.000000e+05	0	17.689916	0.2302	5.2905	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2 2019-01-0	2 BORSA YATIRIM FONU	Hisse Senedi Fonu	DJA	1.491130e+07	4.800000e+05	0	31.065216	0.2302	5.2905	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3 2019-01-0	2 EMEKLİLİK FONU	Altın Fonu	AEA	1.465104e+09	6.335717e+10	325392	0.023125	0.2302	5.2905	 0.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4 2019-01-0	2 EMEKLİLİK FONU	Altın Fonu	AEL	1.784293e+09	7.415738e+10	325460	0.024061	0.2302	5.2905	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
5 rows × 27 o	olumns																		

Ilk 5 veri bilgisi verilmiş olan veri seti incelendiğinde, verilerde NaN değerlerin olduğu görülmektedir. Bu bağlamda veri setinin genelinde NaN ya da null değerin var olup olmadığını aşağıdaki şekil 4.4 sorgulanmıştır.

Şekil 4.4: Veri setinde toplam null değer sayısı

Yukarıdaki şekil 4.4'te verilen bilgi, her değişken karşısında null olan toplam değer sayısı verilmiştir. Veri ön işlem sürecinde dikkat edilmesi gereken bir diğer önemli konu ise, veri içinde

bütünlüğü bozan null değerlerinin olup olmaması durumudur. Veri setimizde olan null değerleri, şekil 4.4'te görüldüğü üzere sadece menkul oranları bilgisinde bulunmaktadır. Bunun nedeni veri tabanında menkul oranları tutulurken, bulunan menkul oranlarında değeri olmayan menkul için değişkene null değeri atılmıştır. Menkul oranları hesaplanırken yüzdelik üzerinden 0 ile 100 arasında bir değer aldığından dolayı, null olan değerleri 0 olacak şekilde dönüştürülmesi veri yapısını bozmayacağı görülmüştür.

Şekil 4.5: Sayısal değerlerin ortalama bilgileri

	count	mean	std	min	25%	50%	75%	max
FONTOPLAMDEGER	187438.0	2.394037e+08	5.509213e+08	0.000000	6.929778e+06	3.815812e+07	1.786791e+08	7.207539e+09
TEDAVPAYSAYISI	187438.0	6.301665e+09	1.704090e+10	0.000000	3.456783e+07	5.147614e+08	4.347861e+09	2.577214e+11
KISISAYISI	187438.0	4.325684e+04	1.049055e+05	0.000000	5.100000e+01	1.269000e+03	3.306150e+04	1.064438e+06
FONFIYAT	187438.0	3.982973e+00	2.395512e+01	0.000000	1.523725e-02	3.057850e-02	5.684475e-01	3.657033e+02
FAIZ	187438.0	2.034597e-01	4.610195e-02	0.105100	1.630000e-01	2.295000e-01	2.418000e-01	2.550000e-01
DOLARFIYAT	187438.0	5.683442e+00	2.214480e-01	5.203800	5.532600e+00	5.723800e+00	5.813300e+00	6.213800e+00
ALTINFIYAT	187438.0	2.527867e+05	2.080213e+04	216132.634958	2.323975e+05	2.559016e+05	2.715878e+05	2.868514e+05
ВВ	187438.0	4.071823e+01	3.596555e+01	-90.330000	7.260000e+00	2.794000e+01	7.994000e+01	2.195700e+02
DT	187438.0	2.295568e+01	2.804406e+01	-119.570000	2.960000e+00	9.650000e+00	3.410000e+01	1.074500e+02
DB	187438.0	1.496090e+01	2.223612e+01	-16.150000	7.100000e-01	5.340000e+00	1.806000e+01	1.561000e+02
DÖT	187438.0	8.487016e+00	1.478798e+01	-23.390000	0.000000e+00	1.760000e+00	9.640000e+00	1.000500e+02
EUT	187438.0	5.873882e+00	1.284448e+01	-83.930000	0.000000e+00	1.000000e-02	6.260000e+00	9.918000e+01
FB	187438.0	3.238396e+00	8.946145e+00	-16.570000	0.000000e+00	0.000000e+00	1.790000e+00	9.824000e+01
FKB	187438.0	1.616070e+00	5.469517e+00	-40.620000	0.000000e+00	0.000000e+00	0.000000e+00	9.756000e+01
GAS	187438.0	1.045527e+00	4.623233e+00	-17.890000	0.000000e+00	0.000000e+00	0.000000e+00	9.670000e+01
НВ	187438.0	6.632977e-01	3.542419e+00	-15.650000	0.000000e+00	0.000000e+00	0.000000e+00	5.857000e+01
HS	187438.0	3.054617e-01	2.177117e+00	-16.250000	0.000000e+00	0.000000e+00	0.000000e+00	4.899000e+01
КВА	187438.0	1.008381e-01	9.393350e-01	-16.760000	0.000000e+00	0.000000e+00	0.000000e+00	2.425000e+01
KKS	187438.0	2.969931e-02	5.083447e-01	-12.150000	0.000000e+00	0.000000e+00	0.000000e+00	3.756000e+01
КН	187438.0	5.369669e-03	1.304408e-01	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	6.530000e+00
КМ	187438.0	2.637352e-03	1.100750e-01	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	6.940000e+00
OSKS	187438.0	5.484480e-05	7.166541e-03	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	1.000000e+00
ost	187438.0	0.000000e+00	0.000000e+00	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00

Veri kümesineki sayısal değişkenlerin ortalama, standart sapma, minimum, maximum değerleri ve verinin dağılım oranlarının bilgisi şekil 4.5'te verilmiştir. Bu bilgilerden de açıkça görülmektedir ki, OST değişkenin tüm verilerinin 0 olduğu ve geri kalan diğer menkul oran değişkenlerinin de minimum değerlerinin negatif olduğu bilgisi mevcuttur. Gereksiz veri kapsamında OST değişkenini veri setinden silinme işlemi yapılacaktır. Negatif değerler ise, menkul değişken oranlarının 0 ile 100 arasında değer alınacağı ifade edilmişti. Lakin, Takasbank'tan alınan bilgiye göre müşteri kendi

portföyünü hazırlarken toplam menkul değerinin 100 olması için negatif değerle dengeyi kurmaya çalışmış ve değişken oranlarını bu dengeyi sağlayacağı formatta Takasbank'a bildirilmiştir. Veri setinin orijinal yapısının ve bütünlüğünün bozulmaması için negatif değerlere dair bir işlem yapılmamıştır.

4.1.2.2 Veri Korelasyon Matrisi

Veri ön işleminin bu adımında değişkenler arasındaki bağlantı yönü ve büyüklüğüne dair korelasyon matris ilişkileri incelenecektir. Korelasyon kat sayısı, -1 ile +1 arasında bir değer alır. Buradaki değerinin artı ya da eksi olması ilişkin büyüklüğü hakkında bilgi vermez. Artı değeri alan iki değişkenin, birlikte aynı yönde artıp ya da azaldığını gösterir. Eksi değerinin ise, tam tersi bir ilişkinin iki değişken arasında olduğunu ifade eder. Biri artar iken, diğer değişkenin azaldığını veya tersinin olması durumudur[2]. İlk olarak tüm sayısal değişkenlerin korelasyon matrisi şekil 4.6'te verilerek, matris grafiği hakkında değerlendirmeler yapılmıştır.

	FONTOPLAMDEGER	TEDAVPAYSAYISI	KISISAYISI	FONFIYAT	FAIZ	DOLARFIYAT	ALTINFIYAT	ВВ	DT	DB	FB	FKB	GAS	НВ	HS	KBA	KKS	KH	KM	OSKS
ONTOPLAMDEGER	1.000000	0.623976	0.572384	0.240230	-0.046102	0.028570	0.045445	-0.117865	-0.027456	0.005659	0.129416	0.106025	0.128855	0.111821	0.121980	0.096114	0.097218	0.121421	0.027718	0.033211
TEDAVPAYSAYISI	0.623976	1.000000	0.775371	-0.060899	-0.008602	0.005140	0.006192	-0.017060	-0.051967	-0.005084	0.064690	0.041446	0.053225	0.049651	0.113149	0.052736	0.048886	0.058034	0.011181	0.015839
KISISAYISI	0.572384	0.775371	1.000000	-0.032681	0.005122	-0.004760	-0.006781	-0.015445	-0.041986	-0.012995	0.030175	0.040284	0.068447	0.079492	0.128956	0.112067	0.123169	0.161027	0.038945	0.041491
FONFIYAT	0.240230	-0.060899	-0.032681	1.000000	-0.007930	0.004703	0.008218	-0.048665	-0.015605	-0.016653	0.083380	0.091493	0.065059	0.019361	-0.016518	-0.012317	-0.009550	-0.006741	-0.003937	-0.001252
FAIZ	-0.046102	-0.008602	0.005122	-0.007930	1.000000	-0.245448	-0.765568	-0.033752	0.036919	0.018948	-0.005592	0.011795	0.001221	0.007406	0.003255	0.006380	0.001681	0.002117	-0.015502	-0.003672
DOLARFIYAT	0.028570	0.005140	-0.004760	0.004703	-0.245448	1.000000	0.637137	0.013332	-0.022635	0.001280	0.006523	-0.022790	-0.002092	-0.002664	-0.009928	-0.010439	-0.003190	0.010967	0.006252	-0.002566
ALTINFIYAT	0.045445	0.006192	-0.006781	0.008218	-0.765568	0.637137	1.000000	0.029033	-0.046377	-0.010399	0.014475	-0.017570	-0.002947	-0.005810	-0.001857	-0.008426	0.002367	0.004487	0.014997	0.002182
ВВ	-0.117865	-0.017060	-0.015445	-0.048665	-0.033752	0.013332	0.029033	1.000000	-0.486768	-0.417391	-0.230900	-0.159207	-0.134248	-0.126064	-0.097665	-0.082703	-0.050781	-0.043330	-0.024688	-0.008640
DT	-0.027456	-0.051967	-0.041986	-0.015605	0.036919	-0.022635	-0.046377	-0.486768	1.000000	-0.181136	-0.137992	-0.119830	-0.080377	-0.057854	-0.053092	-0.039780	-0.005085	0.022366	0.015303	0.011778
DB	0.005659	-0.005084	-0.012995	-0.016653	0.018948	0.001280	-0.010399	-0.417391	-0.181136	1.000000	-0.046250	-0.059735	-0.033105	-0.034325	-0.035612	-0.025799	-0.019604	-0.012832	-0.011097	-0.005074
DÖT	0.041470	0.005734	-0.003340	0.045750	-0.011628	0.001866	0.014714	-0.330324	-0.140319	-0.043228	0.072753	0.063816	0.019115	0.032271	0.008000	0.036889	0.006667	-0.005970	0.002188	-0.003420
EUT	0.087064	0.042417	0.039501	0.024862	-0.010221	0.017357	0.022112	-0.297759	-0.141279	-0.027267	0.090035	0.059019	0.042512	0.049625	0.022105	0.024676	0.016664	0.020945	-0.001334	-0.001435
FB	0.129416	0.064690	0.030175	0.083380	-0.005592	0.006523	0.014475	-0.230900	-0.137992	-0.046250	1.000000	0.172609	0.082908	0.085865	0.143654	0.079199	0.009244	-0.003426	0.000199	0.003417
FKB	0.106025	0.041446	0.040284	0.091493	0.011795	-0.022790	-0.017570	-0.159207	-0.119830	-0.059735	0.172609	1.000000	0.166006	0.124785	0.141729	0.156235	0.064302	0.007911	0.002714	-0.001466
GAS	0.128855	0.053225	0.068447	0.065059	0.001221	-0.002092	-0.002947	-0.134248	-0.080377	-0.033105	0.082908	0.166006	1.000000	0.096039	0.106244	0.090018	0.089072	0.057383	0.067329	-0.000141
НВ	0.111821	0.049651	0.079492	0.019361	0.007406	-0.002664	-0.005810	-0.126064	-0.057854	-0.034325	0.085865	0.124785	0.096039	1.000000	0.110060	0.090707	0.068995	0.048971	0.009890	-0.000064
HS	0.121980	0.113149	0.128956	-0.016518	0.003255	-0.009928	-0.001857	-0.097665	-0.053092	-0.035612	0.143654	0.141729	0.106244	0.110060	1.000000	0.202821	0.130826	0.096938	0.022058	0.014396
KBA	0.096114	0.052736	0.112067	-0.012317	0.006380	-0.010439	-0.008426	-0.082703	-0.039780	-0.025799	0.079199	0.156235	0.090018	0.090707	0.202821	1.000000	0.185762	0.123108	0.078569	0.047130
KKS	0.097218	0.048886	0.123169	-0.009550	0.001681	-0.003190	0.002367	-0.050781	-0.005085	-0.019604	0.009244	0.064302	0.089072	0.068995	0.130826	0.185762	1.000000	0.174660	0.096591	0.055314
KH	0.121421	0.058034	0.161027	-0.006741	0.002117	0.010967	0.004487	-0.043330	0.022366	-0.012832	-0.003426	0.007911	0.057383	0.048971	0.096938	0.123108	0.174660	1.000000	0.344127	0.061897
КМ	0.027718	0.011181	0.038945	-0.003937	-0.015502	0.006252	0.014997	-0.024688	0.015303	-0.011097	0.000199	0.002714	0.067329	0.009890	0.022058	0.078569	0.096591	0.344127	1.000000	0.196173
osks	0.033211	0.015839	0.041491	-0.001252	-0.003672	-0.002566	0.002182	-0.008640	0.011778	-0.005074	0.003417	-0.001466	-0.000141	-0.000064	0.014396	0.047130	0.055314	0.061897	0.196173	1.000000

Şekil 4.6: Korelasyon matrisi

Korelasyon matrisine şekil 4.6 bakıldığı vakit, değişkenlerin aralarındaki ilişkin yön ve büyüklük değerlerini görmekteyiz. Genel olarak incelendiğinde, 22 satıra ve 22 kolon matrisinde değerler arasında ciddi bir tutarsızlığın görülmediği ve bazı değişkenler arasında korelasyon katsının daha iyi olduğu gözlemlenmektedir. Bu değişkenlerden, FONTOPLAMDEGER - TEDAVPAYSAYISI - KISISAYISI arasındaki ilişkin diğer değişkenlere oranla daha güçlü olduğu görülmektedir. Veri seti

özelikleri bölümünde veriler hakkındaki açıklamalarda, bu güçlü ilişkinin nedeni desteklemektedir. Bu değişkenlerin bağımsız değişken olarak seçilen FONFIYAT değerine olan katkıları da diğer değişkenlere oranla daha iyi olduğu görülür ve korelasyon matrisinde menkul oran değişkenleri katsayılarıda genel olarak normal gözlenmektedir. FONFIYAT değişkenin FAIZ, DOLARFIYAT ve ALTINFIYAT ile doğrudan korelasyon ilişkisin zayıf olduğu tespit edilmektedir. Ama ALTINFIYAT değişkenin, FAIZ ile arasında ters yönde ve DOLARFIYAT ile de aynı yönde güçlü bir ilişki olduğu incelenmiştir.

4.1.2.3 Veri Görselleştirme

Bu bölümde veri setindeki kategorik ve sayısal değişkenler için görselleştirme çalışmaları yapılacaktır. Veri ön işlemenin bir önceki adımlarından verinin ideal bir veri setine dönüştürülme süreçleri yapılmış ve bu adımda ise bazı değişkenler üzerinden temel bazı grafikselleştirme işlemleri yapılarak bölümü bitirmiş olacağız.

Şekil 4.7: Kategorik değişken dağılım grafikleri

Şekil 4.8: Fon fiyat ve kişi sayısının kategorik değişken grafikleri

Veri göselleştirme amaçımız gereği, belli değişkenlerin veri ile olan ilişkilerini daha anlaşılır olmasını sağlamak için grafikleştirme çalışmaları yapıldı ve bu çalışmalardan, şekil 4.7 ve 4.8'de kategorik değişkenlerin dağılımı ve bağımsız değişken ile olan bağlantılarının görselleştirme işlemleri yapılmıştır. Son olarak yapılan şekil 4.9 ve 4.10'daki grafiklerde, Toplam-Pay-Kisi(FONTOPLAMDEGER-TEDAVPAYSAYISI-KISISAYISI) ve veri setimizde mevcut olunan 2019 yılına ait Faiz-Altın-Dolar(FAIZ-ALTINFIYAT-DOLARFIYAT) ilişkisinin korelasyon grafiği verilmiştir. Bir önceki bölüm olan veri korelasyon matris değerleri incelenirken altın değişkenin, dolar ile pozitif ama faiz değişkeni ile de negatif bir ilişkisinin olduğu ifade edilmişti, bulunan şekil 4.10'daki grafik bu yorumu desteklemektedir.

Şekil 4.9: Toplam-Pay-Kisi sayısı korelasyon grafiği

4.2. Model Ölçüm Metrikleri

Fon fiyatları tahmini için model geliştirirken, yapılan uygulama sonuçlarının başarı değerlendirmesini ölçecek metriklere ihtiyaç duyulmaktadır. Bu bölümde geliştireceğimiz model çalışmaları regresyon problemlerine dahil olduğundan regresyon model değerlendirme metrikleri kullanılacaktır. Model için kullanılacak 4 algoritmanın sonuç değerlendirmesi aynı ölçüm metriklerine göre değerlendirileceğinden, bu başlık altında genel olarak kullanılacak olan metotlardan bahsedilecektir. Literatür bölümünde, makine öğrenme algoritmaların değerlendirme sonuçları ile ilgil yapılan çalışmalar incelendiğinde genel olarak çok sık kullanılan ölçüm metrikleri;

1. Hata Karelerin Ortalaması - Mean Squared Error(MSE)

Hata kare ortalaması, regresyon problemlerinde tahmin eğrisinin gerçek değer noktalarına ne kadar yakın olduğunu belirtir. Matematiksel gösterimi;

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 (4.1)

4.1, 4.2 ve 4.3'te ki denklem değişkenleri;

Gözlem saysı: $\frac{1}{n}$

Gerçek değerler: y_i

Tahmin edilen değerler: \hat{y}_i

MSE değeri, veri setimizdeki bağımsız değişkenlerin tahmin ettiği değer ile gerçek değerin farkın karesinin ortalaması alınarak bulunur. Bulunan değer, birim başına düşen hata payı olarak değerlendirilir. MSE değerinin sıfıra yakın bulunması başarı ölçütü olarak daha iyi bir performans gösterdiği ifade edilebilir[3,4].

2. Hata Kare Ortalamasının Karekökü - Root Mean Square Error(RMSE)

Hata karelerinin ortalamasının karekökü, MSE değerinin karekökü alınarak bulunur. RMSE değeri tahmin hatalarının standart sapması olarakta ifade edilebilir. Ayırca RMSE'nin MSE metoduna göre

daha avantajlı olan özeliği, bazı durumlarda büyük hataları daha fazla cezalandırma işlevine sahip olduğu belirtilmektedir[3,4]. RMSE matematiksel denklemi;

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
 (4.2)

3. Ortalama Mutlak Hata - Mean Absolute Error(MAE)

Ortalama mutlak hata, gerçek değerden tahmin edilen değerin farkının mutlak ölçümü alınarak bulunur. Hesaplanan MAE değerleri daha kolay yorumlanabilir oldukları için regresyon ve zaman serisi gibi problemlerde daha çok kullanılmaktadır[4]. Matematiksel olarak gösterimi;

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
 (4.3)

Kısaca 3 madde halinde tanımlamaları ve matematiksel denklemleri verilen yukarıdaki model ölçüm metrikleri, bu tez çalışmasında önerilen model geliştirme sonuçlarını değerlendirme ölçütünde referans alınarak işlemler yapılacaktır.

4.3. Doğrusal Çoklu Regresyon Algoritmaları ile Model Geliştirme

Model geliştirme çalışmalarının ilk adımı olan doğrusal çoklu regresyonlar ile tahmin işleminde; Kısmi En Küçük Kareler Regresyon (PLSR) ve Ridge Regresyon (RR) algoritmalarıyla uygulamalar yapılacaktır. Bölüm 3'de teorik kapsamlarından bahsedilen PLSR ve RR algoritmaların her birinin kendi bölüm başlığı altında sözde kod(pseudocode) yapılarından, model geliştirme ve optimizasyon adımlarından bahsedilecektir.

4.3.1 Kısmi En Küçük Kareler Regresyonu (PLSR)

Bu kısmıda ilk olarak, PLSR sözde kodu(pseudocode) yapısından bahsedilecektir. Bölüm 3'de ayrıntılı bir şekilde PLSR matematiksel denklem yapısı ve algoritma olarak kullanacağımız NIPALS adımları anlatılmıştı, bu bölümde ise sözde kodu şekil 4.11'de verilerek algoritmanın temel çalışma yapısı gösterilmiştir.

Şekil 4.11: NIPALS algoritma sözde kodu[5]

```
Algoritma 1: NIPALS

Input: E_0 = X Bağımsız değişken değerleri

Output: P = [p_1, \dots, p_H], T = [t_1, \dots, t_H]

for all h = 1, \dots, H do

Step 0: Initialize t_h

Step 1:

repeat

Step 1.1: p_h = E'_{h-1}t_h/(t'_ht_h)

Step 1.2: p_h = p_h/\|p_h\|

Step 1.3: t_h = E_{h-1}p_h/(p'_hp_h)

until convergence of p_h Sistem dengeye ulaşana kadar;

Step 2: E_h = E_{h-1} - t_h p'_h
end for
```

Şekil 4.11'deki sözde kodu ana özelliği, vektör çiftleri arasındaki skaler değerler aracılığıyla çalışmasıdır. Geometrik açıdan, bu skaler değerler En Küçük Kareler Yöntemi (Ordinary Least Squares (OLS)) regresyon çizgilerinin eğimleri olarak yorumlanabilir. Özellikle, her bir t_{ih} ve t_h değeri, en küçük kareler çizgisinin kesişme noktası $(p_h;e_i)$ olmayan değer kümesinden geçerek eğimi, e_i 'nin i t_h satırında E_h aktarımı olur. Benzer şekilde, p_h değerininde keşime noktası $(t_h;e_p)$ olmayan veri kümesinden eğimi, e_p 'nin p t_h kolununda E değer aktarımı yapılır. Geometrik olarak yapılan bu ikili aktarım işlemi, eksik verileri her regresyon satırında yerine yerleştirerek algoritma çalışma akışını tamamlar[5]. Daha sonra uygulama için, model geliştirme ve model optimizasyon adımları incelecektir. Model geliştirme alt başlığında, veri setimizin bağımsız değişkenlerden bağımlı değişken olan fiyat parametresinin tahmini için ilk uygulama adımları incelenecek ve bir sonraki aşama olarak ise, geliştirilmiş olan model üzerinden optimizasyon işlem adımlarından bahsedilerek, PLSR ile model geliştirme bölümünü bitirmiş olacağız.

4.3.1.1 Model geliştirme

Kısmi En Küçük Kareler Regresyonu (PLSR) ile model geliştirme bölümünde, model kurma aşamalarını adımlar halinde örnek kod blokları ve elde edilen sonuçları verilerek detaylı bir şekilde anlatımı yapılacaktır. Toplam 3 adımda model geliştirme çalışması gerçekleştirilecektir.

1.Adım : Veri setinde bağımlı ve bağımsız değişken ile eğitim ve test seti ayrımı;

Y +r	ain_p, X_test_p	v train n v	test n -	train t	est colit(Y	n v n test	cizo-	0 25	randon	ctat	to=/	121									
	uin_p,	,, y_c.u.ip, y_	_ccsc_p =	cruzii_c	.cst_sptit(x	_p, y_p, cese	_5120-	0.23,	- unuon		-	-/									
Х_р.	head()																				
F	ONTOPLAMDEGER	TEDAVPAYSAYISI	KISISAYISI	FAIZ	DOLARFIYAT	ALTINFIYAT	ВВ	DT	DB	DÖT		FB	FKB	GAS	нв	HS	KBA	KKS	кн	KM	OSKS
0	8.722176e+07	4.350000e+06	0	0.2302	5.2905	219270.871675	100.00	0.00	0.00	0.00		0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	1.238294e+07	7.000000e+05	0	0.2302	5.2905	219270.871675	100.00	0.00	0.00	0.00		0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	1.491130e+07	4.800000e+05	0	0.2302	5.2905	219270.871675	99.83	0.17	0.00	0.00		0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	1.465104e+09	6.335717e+10	325392	0.2302	5.2905	219270.871675	1.01	3.44	85.25	3.07		7.23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	1.784293e+09	7.415738e+10	325460	0.3303	5 2005	219270.871675	0.25	99.75	0.00	0.00		0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Şekil 4.12: Bağımlı-bağımsız değişken ve eğitim-test seti ayrımı

Veri kümesi üzerinden ilk olarak yapılacak olan bağımlı, bağımsız değişken ve veri setinin eğitim, test olarak ayrımı, 4 algoritmanın model geliştirme aşamasının ilk adımı olup ve 4 algoritmanın da ortak adımları olacağı için sadece burada detaylı anlatımı yapılacak, diğer 3 algoritmanın model geliştirme aşamasında anlatımı yapılmayacaktır. Bu bağlamdan hareketle veri üzerinden, bağımlı değişken fon fiyat bilgisi y ile bağımsız değişkenler ise X parametresine değer ataması yapılarak, tahmin işlemi için girdi ve çıktı verilerinin ayrıştırma süreçleri gerçekleştirilir. Daha sonra ayrımı yapılmış değişkenler üzerinden, veri setinin eğtim ve test olarak bölünmesi gerekir. Eğitim seti ile ilk model kurma aşamasında öğrenme süreci gerçekleştirilir. Öğrenme süreci yapılmış modelin, öğrenme başarı performansını ölçmek için ayrılmış olan test verisi ile öğrenme durumu değerlendirilir. Uygulama bölümü için önemli olan bu ayrıştırma işlemini, veri setimiz genelinde %75 eğitim ve %25 test verisi oluşturulacak formatta yapılmış. Bölünmüş olan verinin, bağımlı(y_train, y_test) ve bağımsız(X_train, X_test) değişkenler bazında olacak şekilde eğtim ve test olarak aktarım işlemleri yapılmıştır.

2.Adım: Eğitim seti ile model kurma;

Bu adımda, X_train bağımsız değişkenler ile y_train bağımlı değişken üzerinden ilk kurulan PLSR modeli eğitilir. Bu eğtilen modelin, bağımsız değişken girdilerinin katsayıları ve model parametre yapıları şekil 4.12'de gösterilmektedir.

```
pls_model
PLSRegression(copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06)
pls model.coef
array([[ 8.84294439],
       [-4.69831641],
       [-3.03243924],
       [ 0.0337065 ],
       [-0.09314651],
       [-0.02433704],
       [-0.33800515],
       [-0.31991584],
       [-0.81996284].
       [ 0.91092399],
       [-0.09762054],
       [ 1.74953948],
        [ 2.26792273],
       [ 1.19959689],
       [-0.41431445],
       [-1.57986807],
       [-1.26811436],
       [-0.8361369 ].
       [-0.61910158],
       [-0.24914284]
       [-0.0949085111)
```

Şekil 4.12: PLSR Model yapısı ve bağımsız değişken katsayıları

İlk satırda pls_model ile NIPALS algoritmasının parametreleri görülmekte, içerik olarak maximum iterasyon ve bileşen sayıların default değerleri mevcut ve bu parametre değişiklikleri optimizasyon bölümünde yapılacaktır. İkinci satırda modelin bağımsız değişken katsayıları verilmiştir. Burada öğrenme modeli için hesaplanan çoklu doğrusal bir fonksiyon denklemin, birden fazla olan bağımsız değişkenlerin katsayı değerleri bulunmuştur.

3.Adım: Model eğitim ve test seti tahmin bilgileri;

Tablo 4.5: PLSR ölçüm metrik sonuçları

Ölçüm Metrikleri	Eğitim	Test
MSE	497.8090200774829	506.0252001342653
RMSE	22.31163418661849	22.495003892737277
MAE	7.099829131737095	7.119836719007614
R2	0.1273657565331895	0.13348626833437138

Yukarıdaki 4.5'teki tablodan görüleceği üzere, ölçüm metrik sonuçları eğitim ve test verisine göre elde edilmiştir. Ayrıca, modelin mevcut default değerleri üzerinden herhangi bir optimizasyon işlemi yapılmadan bu sonuçlara ulaşılmıştır. Tablodaki sonuçlardan, eğitim ve test değerleri

arasında küçük farklılıkların olduğu görülmektedir. Her ne kadar eğitim seti üzerinden alınan bazı sonuçlar daha iyi olduğu görülsede, model için daha doğru bir değerlendirme referansı test verisinden elde edilen sonuçlar olmuştur.

4.3.1.2 Model optimizasyonu

Kısmi En Küçük Kareler Regresyonu (PLSR) kullanılarak elde edilen tahmin sonuçlarında model optimizasyon parametreleri için yapılan literatür ve örnek çalışmalar incelendiğinde[5], PLSR temel çalışama yapısından hareketle, bağımsız değişkenlerin daha az sayıda ve aralarında çoklu bağlantı problemi olmayan bileşenlere indirgeyip model kurma fikrine dayanıyor olaması, bileşen sayısını optimizasyon konusu yapmıştır. Model doğrulama ve optimum parametre için Cross-validation metodu kullanılacaktır. Cross-validation, makine öğrenmenin veriler üzerinde doğru ve objektif bir öğrenme süreci için yaygın olarak kullanılan, model seçimi ve performans değerlendirmede tercih edilen basit ve etkili bir yöntemdir[6]. Burada, cross-validation yöntemlerinden K-Fold yöntemi kullanılacak ve optimizasyon çalışması toplam 2 adımdan oluşacaktır.

1.Adım: Optimum bileşen sayısı bulmak;

```
#CV
cv_10 = model_selection.KFold(n_splits=10, shuffle=True, random_state=1)

#Hata hesaplamak için döngü
RMSE = []

for i in np.arange(1, X_train_p.shape[1] + 1):
    pls = PLSRegression(n_components=i)
    score = np.sqrt(-1*cross_val_score(pls, X_train_p, y_train_p, cv=cv_10, scoring='neg_mean_squared_error').mean())
    RMSE.append(score)

#Sonuçların Görselleştirilmesi
plt.plot(np.arange(1, X_train_p.shape[1] + 1), np.array(RMSE), '-v', c = "r")
plt.xlabel('Bileşen Sayısı')
plt.ylabel('RMSE')
plt.title('FONFIYAT');
```

Sekil 4.13: PLSR optimum bilesen sayısı kod bloğu

Şekil 4.14: PLSR optimum bileşen sayısı

Şekil 4.13'teki kod bloğundan görüleceği üzere, k-flod yönteminde veri üzerinde işlem yapılırken veriyi bölme sayısı(n_splits) parametresinin secimi genel olarak yapılan çalışmalarda, kullanılan değer aralığı 5 ile 10 arasında olmaktadır[6]. Kendi çalışmamız için yapılan deneysel sonuçlarda ise, en optimum değer 10 olarak bulunmuştur. Kod bloğun çıktısı olan şekil 4.14'te, bileşen sayısı 5 değerinin bir kırılma noktası olduğu ve sonrası değerler için sabit RMSE oranları elde edildiği görülmektedir. Bu bağlamda, tercih edilen en optimum bileşen sayısı 6 olarak seçilmiştir.

2.Adım: Doğrulanmış model tahmin sonuçları;

Tablo 4.6: PLSR ölçüm metrik sonuçları - 2

Ölçüm Metrikleri	
MSE	497.0027614702058
RMSE	22.29355874395575
MAE	6.705839394559914
R2	0.14893622417341656

Tablo 4.6 'da optimizasyon işlemleri yapıldıktan sonra doğrulanmış model verilerinin sonuçlarına bakıldığında, fon fiyat tahmini ile gerçek değer arasındaki farkın açıklanma metriği RMSE değerini baz alarak değerlendirdiğimizde, fon fiyat tahmini yaptığımızda birim başına düşen hata payı oranının artı eksi 22.29 olarak bir sapma değerinin olduğu görülmektedir. Yüzdelik olarak tahmin başarısının ise, %77-78 civarında olduğu saptanmaktadır.

4.3.2 Ridge Regresyonu (RR)

Bu bölümde Ridge Regresyonu (RR) ile model geliştirme çalışmaları yapılacak, daha önceki bölüm 3'de ayrıntılı olarak RR algoritması hakkında bilgilendirilme yapılmıştı. Burada ise, sözde kodu(pseudocode) yapısı ve iki alt başlık olarak; model geliştirme ve optimizasyon konuları incelencektir.

4.3.2.1 Model geliştirme

Bu kısmda yapılan model çalışması, PLSR model geliştirme aşamalarının benzeri olacağından dolayı tekrar olmaması için aynı adımlarda ayrıntılı bir anlatım yapılmayacaktır. Ayrıca, uygulamanın birinci adım olan veri kümesinin test ve eğitim seti olarak ayrılma aşaması ortak olduğu için bu adım atlanarak, 2'inci adımdan başlayarak model çalışmamız gerçekleştirilmiş olacaktır.

2.Adım: Eğitim seti ile model kurma;

```
ridge_model

Ridge(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

ridge_model.coef_

array([ 1.99548506e-08, -4.36501444e-10, -1.01864979e-05, 5.33789312e+00, -6.33703278e-01, 2.45254214e-06, -1.37536605e-03, -1.26321075e-02, -2.43176494e-02, 3.68163153e-02, -1.56943704e-02, 1.05959126e-01, 2.52256301e-01, 1.04918931e-01, -1.40978035e-01, -3.76084541e-01, -8.49985257e-01, -1.04985067e+00, -4.80938207e+00, 5.91301679e-01, -1.93941104e+01])
```

Şekil 4.15: RR Model yapısı ve bağımsız değişken katsayıları

Şekil 4.15'teki modelin birinci satırında model yapısı ve parametreleri mevcut iken, ikinci satırda tahmin işlemi yapılacak olan fonksiyon değişken katsayıları bulunmaktadır. Burada, model parametresi olan alpha(lambda) değişkeni, tahmin fonksiyonunda ceza teriminin katsayı değeridir. Deneysel çalışmalar için manuel 0.1 değeri verilmiştir. Diğer model parametreleri default değerlerdir. Alpha(lambda) değişkenin, model katsayıları değerlerine olan etkisini deneysel olarak göstermek için şekil 4.16 ve 4.17'deki çalışmalar yapılmıştır.

```
lambdalar = 10**np.linspace(10,-2,100)*0.5

ridge_model = Ridge()
katsayilar = []

for i in lambdalar:
    ridge_model.set_params(alpha = i)
    ridge_model.fit(X_train_r, y_train_r)
    katsayilar.append(ridge_model.coef_)

ax = plt.gca()
ax.plot(lambdalar, katsayilar)
ax.set_xscale('log')

plt.xlabel('Lambda(Alpha) Değerleri')
plt.ylabel('Katsayılar/Ağırlıklar')
plt.title('Düzenlileştirmenin Bir Fonksiyonu Olarak Ridge Katsayıları');
```

Şekil 4.16: RR lambda(alpha) örnek kod bloğu

Şekil 4.17: RR lambda(alpha) örnek grafiği

Şekil 4.17'deki grafik çıktısına bakıldığında her bir renk, bir değişkenin katsayı değerini ifade etmekte ve lambda(alpha) değeri değiştikçe katsayılar/ağırlıklar değerlerinde değişim olduğu görülmektedir. Deneysel çalışma için yapılmış olan şekil 4.16'daki kod bloğu ve sonuç grafiğinden anlaşılacağı üzere, alpha parametresinin alacağı değerin katsayılara olan etkisi gözlemlenmektedir.

3. Adım: Model eğitim ve test seti tahmin bilgileri;

Tablo 4.7: RR ölçüm metrik sonuçları - 1

Ölçüm Metrikleri	Eğitim	Test
MSE	489.71681475048916	496.9772456519872
RMSE	22.12954619395728	22.292986467765758
MAE	6.685656583569678	6.706254687410646
R2	0.1415509865886838	0.14897991726786186

Tablo 4.7 'de model ölçüm metrik sonuçlarına bakıldığı vakit, PLSR test ve eğitim sonuçlarına göre daha iyi olduğu görülmektedir. Ayrıca, eğitim ve test değerleri arasında küçük farklılıkların olduğu görülmektedir. Bazı ölçüm metriklerinin eğitim seti üzerinden alınan sonuçları, test verisinden daha iyi olduğu görülsede, model için daha doğrulanmış sonuçlar test verisinden elde edilen sonuçlar baz alınır.

4.3.2.2 Model optimizasyonu

Ridge Regresyonu (RR) model parametre optimizasyon kısmında alpha(lambda) değişkenin optimize edilmesi ile ilgili çalışmalar yapılacaktır. literatür bölümde yapılan araştırmalar ve model geliştirme bölümündeki birinci adımda gerçekleştirilen deneysel çalışmalardan anlaşılacağı üzere, model tahmin fonksiyonu üzerinde çok önemli bir etkisi olan ceza teriminin katsayısı alpha değişkeni optimizasyon konusu olacaktır[6,7]. Optimum değer bulmak için Cross-validation metodu kullanılacak ve yapılacak işlem sayısı toplam 2 adımdan oluşacaktır.

1. Adım: Optimum alpha(lambda) değerinin bulunması;

```
lambdalar = 10**np.linspace(10,-2,100)*0.5
lambdalar[0:5]
array([5.00000000e+09, 3.78231664e+09, 2.86118383e+09, 2.16438064e+09,
      1.63727458e+09])
from sklearn.linear_model import RidgeCV
ridge_cv = RidgeCV(alphas = lambdalar,
                   scoring = "neg_mean_squared_error",
                   normalize = True)
ridge_cv.fit(X_train_r, y_train_r)
RidgeCV(alphas=array([5.00000000e+09, 3.78231664e+09, 2.86118383e+09, 2.16438064e+09,
      1.63727458e+09, 1.23853818e+09, 9.36908711e+08, 7.08737081e+08,
      5.36133611e+08, 4.05565415e+08, 3.06795364e+08, 2.32079442e+08,
      1.75559587e+08, 1.32804389e+08, 1.00461650e+08, 7.59955541e+07,
      5.74878498e+07, 4.34874501e+07, 3.28966612e+07, 2.48851178e+07,
      1.88246790e+07, 1.42401793e+0...
      3.28966612e-01, 2.48851178e-01, 1.88246790e-01, 1.42401793e-01,
      1.07721735e-01, 8.14875417e-02, 6.16423370e-02, 4.66301673e-02,
      3.52740116e-02, 2.66834962e-02, 2.01850863e-02, 1.52692775e-02,
      1.15506485e-02, 8.73764200e-03, 6.60970574e-03, 5.00000000e-03]),
       cv=None, fit_intercept=True, gcv_mode=None, normalize=True,
       scoring='neg_mean_squared_error', store_cv_values=False)
ridge_cv.alpha_
0.005
```

Şekil 4.13: RR optimum alpha(lambda) değeri ve kod bloğu

Kod bloğundan anlaşılacağı üzere, model geliştirme çalışmasında elde ettiğimiz deneysel sonuç dizisini, eğtim verileri üzerinden cross-validation metodu kullanılarak optimum alpha değeri 0.005 olarak bulunmuştur.

2.Adım: Doğrulanmış model tahmin sonuçları;

Ölçüm Metrikleri	
MSE	497.0262344776716
RMSE	22.294085190419267
MAE	6.69722792342646
R2	0.14889602917267908

Tablo 4.8: RR ölçüm metrik sonuçları - 2

Tablo 4.6'daki PLSR model optimizasyon sonuçları ile Tablo 4.8'deki RR doğrulanmış model verilerinin sonuçlarına bakıldığında, birbirine çok yakın değerler olduğu görülmektedir. RR modelin tahmin fonksiyonu, RMSE değerine göre fon fiyat tahmini için birim başına düşen hata payı oranının artı eksi 22.29 olarak, bir sapma değerinin olduğu görülmektedir. Yüzdelik olarak ise, tahmin başarısının %77-78 civarında olduğu saptanmaktadır.

4.4. Doğrusal Olmayan Çoklu Regresyon Algoritmaları ile Model Geliştirme

Model geliştirme çalışmalarının ilk adımı olan doğrusal çoklu regresyonlar ile tahmin işleminde; Kısmi En Küçük Kareler Regresyon (PLSR) ve Ridge Regresyon (RR) algoritmalarıyla uygulamalar yapılacaktır. Bölüm 3'de teorik kapsamlarından bahsedilen PLSR ve RR algoritmaların her birinin kendi bölüm başlığı altında sözde kod(pseudocode) yapılarından, model geliştirme ve optimizasyon adımlarından bahsedilecektir.

4.4.1 Destek Vektör Regresyonu (SVR)

4.4.1.1 Model Geliştirme

4.4.1.2 Model optimizasyonu

- 4.4.2 Yapay Sinir Ağları(YSA)
 - 4.4.2.1 Model geliştirme
 - 4.4.2.2 Model optimizasyonu

4.5. Algoritmaların Model Karşılaştırması

Kaynakça

- 1. Özkan, Y. (2008). Veri Madenciliği Yöntemleri, İstanbul: Papatya Yayıncılık.(bak)
- 2. Özata, M. (2014). Regresyon, Korelasyon ve Faktör Analizi, Sosyal Hizmette İleri İstatistik Uygulamaları Dersi.(web erişim adresi)
- 3. https://scikit-learn.org/stable/modules/classes.html, Regression metrics
- 4. Aydemir, E. (2013). Kusurlu Ürünleri İçeren ekonomik Üretim Miktarı Modelinin Gri Sistem Teorisi Yaklaşımıyla Geliştirilmesi, Doktora Tezi, Fen Bilimleri Enstitüsü, Süleyman Demirel Üniversitesi, Isparta.
- 5. Esposito Vinzi, V. and Russolillo, G. (2013), Partial least squares algorithms and methods. WIREs Comp Stat, 5: 1-19. doi:10.1002/wics.1239
- 6. Cawley, C.G., Talbot, C.L.N. (2010). On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation, Journal of Machine Learning Research, 11(70):2079–2107.
- 7. https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html, RidgeCV