Tarea#2

Cristian Angulo Ramírez

Análisis de sistemas lineales

Tabla de la Transformada de Laplace

Tabla de Transformadas de Laplace

$$L\left\{f(t)\right\}=\int_{0}^{\infty}e^{-st}\,f(t)\,dt$$

	7		_	12.	
	f(t)	F(s)		f(t)	F(s)
1.	1	$\frac{1}{s}$	2.	$t^n, \ n=1,2,3,$	$\frac{n!}{s^{n+1}}$
3.	$t^\alpha, \ -1 < \alpha$	$\frac{\Gamma(\alpha+1)}{s^{\alpha+1}}$	4.	e"1	$\frac{1}{s-a}$
5.	$t^ne^{at},n=1,2,3,$	$\frac{n!}{(s-a)^{n+1}}$	6.	$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
7.	$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$	8.	$\sinh (\omega t)$	$\frac{\omega}{s^2 - \omega^2}$
9.	$\cosh{(\omega t)}$	$\frac{s}{s^2 - \omega^2}$	10.	$e^{a \cdot t} \sin(\omega t)$	$\frac{\omega}{(s-a)^2+\omega^2}$
11.	$e^{a t} \cos (\omega t)$	$\frac{s-a}{(s-a)^2+\omega^2}$	12.	$t \sin(\omega t)$	$\frac{2 \omega s}{(s^2 + \omega^2)^2}$
13.	$t \cos(\omega t)$	$\frac{s^2 - \omega^2}{\left(s^2 + \omega^2\right)^2}$	14.	$\sin(\omega t) - \omega t \cos(\omega t)$	$\frac{2 \omega^3}{\left(s^2 + \omega^2\right)^2}$
15.	$\sin{(\omegat)} + \omegat\cos{(\omegat)}$	$\frac{2 \omega s^2}{\left(s^2 + \omega^2\right)^2}$	16.	$\frac{1}{a-b} \left(e^{at} - e^{bt} \right)$	$\frac{1}{(s-a)(s-b)}$
17.	$\frac{1}{a-b}\left(ae^{at}-be^{ht}\right)$	$\frac{s}{(s-a)(s-b)}$	18.	$\frac{1}{a^2} \left(1 - \cos(a t)\right)$	$\frac{1}{s\left(s^2+a^2\right)}$
19.	$\frac{1}{a^3} \left(a t - \sin \left(a t \right) \right)$	$\frac{1}{s^2(s^2 + a^2)}$	20.	f(t) + g(t)	F(s) + G(s)
21.	c f(t)	cF(s)	22.	f'(t)	s F(s) - f(0)
23.	f''(t)	$s^2 F(s) - s f(0) - f'(0)$	24.	$f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \cdots - f^{(n-1)}(0)$
25.	$e^{at}f(t)$	F(s-a)	26.	$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} F(s)$
27.	$U_a(t) = U(t - a)$	$\frac{e^{-as}}{s}$	28.	$f(t-a)U_a(t)$	$e^{-a \times} F(s)$
29.	$f * g = \int_{0}^{t} f(t - \sigma)g(\sigma)d\sigma$	F(s)G(s)	30.	$\delta(t-c)$	e ^{-c,a}
31.	f(t+T) = f(t)	$\frac{\int_0^T e^{-s t} f(t) dt}{1 - e^{-s T}}$	32.	$\int_{0}^{t} f(\sigma) d\sigma$	$\frac{1}{s}F(s)$
33.	$\frac{f(t)}{t}$	$\int_{A}^{+\infty} F(\sigma) d\sigma$	34.	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$

$$\lim_{s \to +\infty} s F(s) = f(0) \qquad \lim_{s \to 0^+} s F(s) = \lim_{t \to +\infty} f(t)$$

Grafica de la función de transferencia "Rampa"

Aplicando la transformada de Laplace obtenemos la ecuación de $\boldsymbol{V}_{o}(t)$

$$V_o(t) = t^{-C_1 * R_1} + t + e^{\frac{-1}{C_1 * r_1} * t}$$