Espacios Vectoriales: El Concepto

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

19 de octubre de 2020

Agenda: Espacios Vectoriales: El Concepto

- Grupos
- 2 Cuerpo
- Sepacio Vectorial
- 4 Algunos espacios vectoriales
- Recapitulando

Grupos 1/2

Considere el siguiente conjunto $\mathbf{G} = \{g_1, g_2, g_3, \cdots, g_n, \cdots\}$ y la operación interna \square (la ley del grupo). Entonces los elementos del conjunto forman un *grupo abeliano*.

Cerrada respecto a la operación □:

$$\{g_i \in \mathbf{G}, g_j \in \mathbf{G}\} \Rightarrow \exists g_k = g_i \square g_j \in \mathbf{G}$$

 \bullet Asociativa respecto a la operación $\square :$

$$g_k \square (g_i \square g_j) = (g_k \square g_i) \square g_j$$

- Existencia de un elemento neutro: $\exists \ \hat{\mathbf{g}} \in \mathbf{G} \ \Rightarrow \ g_i \ \Box \ \hat{\mathbf{g}} = g_i = \hat{\mathbf{g}} \ \Box \ g_i$
- Existencia de un elemento inverso:

$$g_i \in \mathbf{G} \Rightarrow \exists g_i^{-1} \in \mathbf{G} \Rightarrow g_i \square g_i^{-1} = g_i^{-1} \square g_i = \hat{\mathbf{g}}$$

• Conmutativa respecto a la operación \square : $g_i \square g_j \equiv g_i \square g_i$.

Ejemplos de Grupos

- Enteros Z respecto a la suma;
- Racionales Q respecto a la suma y a la multiplicación;
- Rotaciones 2D y 3D (grupo no-abeliano);
- Matrices $n \times m$ respecto a la suma, (grupo abeliano).

Cuerpo

Definiremos como un cuerpo (o campo) el conjunto $\mathbf{A} = \{\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n, \cdots\} \text{ sobre el cual están definidas dos operaciones: suma (+) y multiplicación (·) y que satisfacen las siguientes propiedades:$

- Forman un grupo abeliano respecto a la suma (+) con el elemento neutro representado por el cero 0.
- ullet Forman un grupo abeliano respecto a la multiplicación (\cdot) . Se excluye el cero 0 y se denota el elemento neutro de la multiplicación como 1.
- **3** Es distributiva respecto a la suma (+): Dados α_i, α_j y α_k se tiene que

$$\alpha_i \cdot (\alpha_j + \alpha_k) = \alpha_i \cdot \alpha_j + \alpha_i \cdot \alpha_k.$$

Ejemplos típicos de campos lo constituyen los racionales $\mathcal Q$, los números reales $\mathbb R$ y los números complejos $\mathbb C$. Normalmente se refiere estos campos como *Campos Escalares*.

Espacio Vectorial 1/2

Sea $\mathbf{V} = \{|v_1\rangle, |v_2\rangle, |v_3\rangle \cdots |v_i\rangle \cdots \}$, será un espacio vectorial lineal y sus elementos $|v_i\rangle$ vectores, si $|v_i\rangle \in \mathbf{V}$ forman un grupo abeliano respecto a \boxplus y una operación multiplicación por un elemento de un campo,

- $\mathbf{K} = \{\alpha, \beta, \gamma \cdots \}$:
 - **V** es cerrado bajo la operación suma \boxplus : $\forall |v_i\rangle, |v_j\rangle \in \mathbf{V} \Rightarrow |v_k\rangle = |v_i\rangle \boxplus |v_j\rangle \in \mathbf{V}$
 - La operación suma \boxplus es conmutativa: $\forall |v_i\rangle, |v_j\rangle \in \mathbf{V} \Rightarrow |v_i\rangle \boxplus |v_j\rangle = |v_i\rangle \boxplus |v_i\rangle$
 - La operación suma ⊞ es asociativa:

$$\forall |v_i\rangle, |v_j\rangle, |v_k\rangle \in \mathbf{V} \Rightarrow (|v_i\rangle \boxplus |v_j\rangle) \boxplus |v_k\rangle = |v_i\rangle \boxplus (|v_j\rangle \boxplus |v_k\rangle)$$

- Existe un único elemento neutro
 - $|0\rangle: |0\rangle \boxplus |v_i\rangle = |v_i\rangle \boxplus |0\rangle = |v_i\rangle \ \forall \ |v_i\rangle \in \mathbf{V}$
- f e Existe un elemento simétrico para cada elemento de f V:

$$\forall |v_i\rangle \in \mathbf{V} \exists |-v_i\rangle / |v_i\rangle \boxplus |-v_i\rangle = |0\rangle$$

Espacio Vectorial 1/2

Pero además **V** es cerrado bajo el producto por un escalar: $\forall \alpha \in \mathbf{K}$ y cualquier $|v_i\rangle \in \mathbf{V} \Rightarrow \alpha |v_i\rangle \in \mathbf{V}$ y

- $\alpha(\beta|v_i\rangle) = (\alpha\beta)|v_i\rangle$
- $(\alpha + \beta) |v_i\rangle = \alpha |v_i\rangle \boxplus \beta |v_i\rangle$
- $\alpha(|\mathbf{v}_i\rangle \boxplus |\mathbf{v}_j\rangle) = \alpha |\mathbf{v}_i\rangle \boxplus \alpha |\mathbf{v}_j\rangle$
- $\mathbf{1}\ket{v_i} = \ket{v_i} \ \forall \ \ket{v_i} \in \mathbf{V}$
- La condición necesaria y suficiente para que $\mathbf{S} \subseteq \mathbf{V}$ sea un subespacio vectorial de \mathbf{V} es que para cualesquier $|u_i\rangle$ y $|v_i\rangle$ de \mathbf{S} y cualesquier α y β de \mathbf{K} se tiene que: $\alpha |u_i\rangle + \beta |v_i\rangle \in \mathbf{S}$.

Algunos espacios vectoriales 1/2

- Los números reales $\mathbf{V} = \mathbb{R}$ y los números complejos $\mathbf{V} = \mathbb{C}$ con el campo K de reales o complejos y definidas las operaciones ordinarias de suma y multiplicación.
- El espacio $\mathbf{V} \equiv \mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}$: producto cartesiano de \mathbb{R} , con n-uplas de números, la operación suma ordinaria de vectores en *n*-dimensionales y lamultiplicación por escalares.

$$|x\rangle = (x_1, x_2, x_3, \dots x_n) \quad \wedge \quad |y\rangle = (y_1, y_2, y_3, \dots, y_n)$$

$$|x\rangle \boxplus |y\rangle \equiv (x_1 + y_1, x_2 + y_2, x_3 + y_3, \dots x_n + y_n)$$

$$\alpha |x\rangle = (\alpha x_1, \alpha x_2, \alpha x_3, \dots \alpha x_n).$$

• \mathbf{E}^{∞} constituido por vectores $|x\rangle = (x_1, x_2, x_3, \cdots x_n, \cdots)$ con infinitas (contables) componentes.

$$|x\rangle = (x_1, x_2, x_3, \cdots, x_n, \cdots) \land |y\rangle = (y_1, y_2, y_3, \cdots, y_n, \cdots)$$

$$|x\rangle \boxplus |y\rangle \equiv (x_1 + y_1, x_2 + y_2, x_3 + y_3, \cdots, x_n + y_n, \cdots)$$

$$\alpha |x\rangle = (\alpha x_1, \alpha x_2, \alpha x_3, \cdots, \alpha x_n, \cdots),$$

Algunos espacios vectoriales 2/2

• Las matrices $n \times n$ reales o complejas **K** real o complejo.

$$|x\rangle = M_{ab} \wedge |y\rangle = N_{ab}$$

 $|x\rangle \boxplus |y\rangle \equiv M_{ab} + N_{ab} = (M+N)_{ab}$
 $\alpha |x\rangle = \alpha M_{ab} = (\alpha M)_{ab}$

- Los $\mathcal{P} = \{a_0, a_1x, a_2x^2, \cdots, a_nx^n, \cdots\}$, con \boxplus la suma y multiplicación ordinaria de polinomios con números.
- Espacios Funcionales con la suma ordinaria entre funciones y la multiplicación por un número (por un elemento de un campo)

$$|f\rangle = f(x) \quad \land \quad |g\rangle = g(x)$$

 $|f\rangle \boxplus |g\rangle \equiv f(x) + g(x) \equiv (f+g)(x)$
 $\alpha |f\rangle = (\alpha f)(x) \equiv \alpha f(x)$.

• Las funciones continuas e infinitamente diferenciables, definidas en $[a,b]: \mathcal{C}^\infty_{[a,b]}$.

Recapitulando

En presentación consideramos

