

AQA GCSE Maths: Higher

Iteration

Contents

* Iteration

Head to www.savemyexams.com for more awesome resources

Iteration

Your notes

Iteration

What is iteration?

- Some equations do not have "nice" solutions
 - They are **not** integers (whole numbers), fractions or simple decimals
 - Instead, they can be irrational decimal solutions that go on forever with no pattern
- Iteration is a repeated process used to solve such equations
 - the process starts with an **initial value** (starting value)
 - after each stage of the process (after each "iteration"), a solution is produced
 - the solutions get more and more accurate as more and more iterations are performed
 - these solutions are called **estimates**
- Scientific calculators allow us to perform iterations very quickly using the ANS button
 - Iteration questions will only be asked in the calculator exam

Copyright © Save My Exams. All Rights Reserved

How do I make an iterative formula?

- Find the equation you would like to solve using iteration
 - for example, $x^3 + x = 7$
- Rearrange this equation into the form x = f(x) by making any x the subject of the equation
 - for example, $x = \sqrt[3]{7 x}$
- Replace the x on the left with x_{n+1} (meaning the "next" value of x) and any x's on the right with x_n (meaning the "current" value of x)
 - $X_{n+1} = \sqrt[3]{7 X_n}$
 - This called the iterative formula
 - n and n+1 are just counters: n+1 is simply one more than n
 - n starts at 0 so the process starts with x₀, the initial value
 - x_1 is your first estimate, x_2 is your second estimate, etc

How do I use my calculator to do iteration?

- Find a good initial (starting) value (x_0) near to the solution
 - This is often given in the question, for example $x_0 = 2$
- Store $x_0 = 2$ into your calculator (by typing 2 and pressing the "=" button)
 - 2 is now stored under the "Ans" button
- Type in the right-hand side of the iteration formula with "Ans" instead of x_n
 - $\sqrt[3]{7 \text{Ans}}$
- Press "=" to find x₁ (be careful to only press "=" once)
 - $x_1 = 1.709975...$
- Without pressing any other button, press "=" again to find x_2
 - $x_2 = 1.742418...$
- Press "=" again to find x_3
 - $x_3 = 1.738849...$
- Repeat as many times as required

• the more you do, the closer the estimates get to the true solution

e.g. USE THE ITERATIVE FORMULA $x_{n+1} = 5 - 2\sqrt[3]{x}$ WITH $x_0 = 3$ TO FIND x_1 , x_2 , x_3 AND x_4 . GIVE YOUR ANSWERS TO 3 DECIMAL PLACES.

STEP 1:

ENTER INITIAL VALUE x_0 AND PRESS = /EXE

STEP 2:

ENTER (THE RIGHT HAND SIDE OF) THE ITERATIVE FORMULA USING ANS INSTEAD OF \mathbf{x}_{n} .

STEP 3:

PRESS =/EXE TO OBTAIN x1

 $x_1 = 2.116$

Page 5 of 11

STEP 4:

REPEAT STEP 3 AS NECESSARY

$$x_2 = 2.433$$

$$x_3 = 2.310$$

$$x_4 = 2.356$$

Copyright © Save My Exams. All Rights Reserved

What do x_1, x_2, x_3, \dots represent?

- x_1, x_2, x_3 ... etc are **estimates** to the **solution** of x = f(x)
 - for example, $x_1 = 1.709975..., x_2 = 1.742418..., x_3 = 1.738849...$ are estimates to $X = \sqrt[3]{7 X}$
- They are also estimates of solutions to any **rearrangements** of x = f(x)
 - such as the original equation trying to be solved, $x^3 + x = 7$
- This makes x_1, x_2, x_3 ... estimates to the solution of the original equation
- The more times you perform the iteration, the better the estimates get to the real solution

Page 6 of 11

How do you show that there is a solution in a given interval?

- To find x_0 (the initial / starting value), you are often asked to show that there is a solution in an interval
- For example, show that there is a solution to $x^3 + x = 7$ between 1 and 2
 - Method 1: Leave a constant term (e.g. the 7) on the right, substitute x = 1 and x = 2 into the left and show that this gives values **below and above** 7
 - $1^3 + 1 = 2$ and $2^3 + 2 = 10$ which are below and above 7
 - A solution therefore lies between 1 and 2
 - Method 2: Use "O" as your constant term on the right (by rearranging the equation into "... = 0"), then substitute in x = 1 and x = 2, showing this gives values below and above 0, i.e. negative and positive
 - this is called a **change of sign** between 1 and 2
 - $x^3 + x 7 = 0$
 - Substitute x = 1 into the left-hand side: $1^3 + 1 7 = -5$ (negative)
 - Substitute x = 2 into the left-hand side: 2³ + 2 7 = 3 (positive)
 - A solution lies between 1 and 2 as there is a **change of sign**

- $\,\blacksquare\,\,$ Knowing an interval that contains the solution helps to find x_0
 - If the solution is between 1 and 2 then you could choose either $x_0 = 1$ or $x_0 = 2$

Examiner Tips and Tricks

- Be careful to not press =/EXE or "Ans" more than once at a time. If you do the best thing to do is
 to restart from the beginning.
- Iteration questions always require working with a lot of decimal places, so write down all digits from your calculator display for x_1, x_2 , etc. and round them at the end if necessary

Worked Example

Use the iterative formula

$$x_{n+1} = \frac{\sqrt{x_n^5 - x_n + 2}}{3}$$

with $x_0 = 0.5$ to find values for x_1, x_2 , and x_3 . Give your answers to 5 decimal places.

STEP 1:

ENTER INITIAL VALUE INTO CALCULATOR AND PRESS =

STEP 2:

ENTER ITERATIVE FORMULA USING ANS INSTEAD OF \mathbf{x}_{n}

Page 9 of 11

SIEY 3:

PRESS =/EXE IO CALCULATE X1

STEP 4:

REPEAT STEP 3 AS MANY TIMES AS NECESSARY

$$x_2 = 0.42157$$

 $x_1 = 0.41248$

$$x_3 = 0.42055$$

Copyright © Save My Exams. All Rights Reserved

