RESULTADO DE APRENDIZAJE

RdA de la asignatura:

 Plantear los conceptos fundamentales del aprendizaje automático, incluyendo los principios básicos, técnicas de preprocesado de datos, métodos de evaluación y ajuste de modelos, destacando su importancia en el análisis y resolución de problemas de datos.

RdA de la actividad:

- Comprender qué es el aprendizaje no supervisado y sus aplicaciones generales.
- Diferenciar entre los tipos de agrupamiento: exclusivo, superposición, jerárquico y probabilístico.
- Identificar preguntas clave y reflexiones iniciales sobre el tema mediante la interacción con un modelo de IA.

INTRODUCCIÓN

Pregunta inicial: ¿Cómo podríamos encontrar patrones en un conjunto de datos sin etiquetas?

DESARROLLO

Actividad 1: Introducción al Aprendizaje No Supervisado

Se utilizará un video introductorio para familiarizar a los estudiantes con el concepto de aprendizaje no supervisado y sus aplicaciones en problemas de datos sin etiquetas.

¿Cómo lo haremos?

• **Proyección de video:** Se presentará un video educativo que explique qué es el aprendizaje no supervisado.

Enlace al video: QUÉ es el Aprendizaje No Supervisado.

• Interacción con ChatGPT: Después del video, cada estudiante formulará preguntas a ChatGPT relacionadas con los términos o conceptos que no entendieron durante la visualización.

Verificación de aprendizaje: Se llevará a cabo una discusión grupal donde los estudiantes compartirán:

- Los términos que investigaron.
- Las respuestas proporcionadas por ChatGPT.

Términos guía para las preguntas: K-Means, Clusterización jerárquica, DBSCAN, Modelos de mezclas gaussianas, Ruido en los datos, Detección de anomalías.

Actividad 2: Definiciones clave

En esta actividad, los estudiantes explorarán las definiciones y características de los principales tipos de agrupamiento en el aprendizaje no supervisado.

¿Cómo lo haremos?

- **Presentación de conceptos:** El docente explicará brevemente las definiciones y ejemplos de los principales tipos de agrupamiento en aprendizaje no supervisado:
 - Agrupamiento exclusivo: Cada dato pertenece exclusivamente a un único grupo. Ejemplo: k-means.
 - **Agrupamiento con superposición:** Los datos pueden pertenecer a múltiples grupos con grados de pertenencia. Ejemplo: clustering difuso (*fuzzy clustering*).
 - Agrupamiento jerárquico: Los datos son organizados en una estructura de árbol jerárquico. Ejemplo: dendrogramas.
 - Agrupamiento probabilístico: Los datos se asignan a clústeres basándose en modelos probabilísticos. Ejemplo: Gaussian Mixture Models (GMMs).
- **Exploración guiada:** Los estudiantes realizarán dos tareas principales en grupos pequeños:
 - 1. **Preguntar a ChatGPT:** Cada grupo formulará las siguientes preguntas al modelo:
 - ¿Cuál es la principal diferencia entre el agrupamiento jerárquico y el agrupamiento exclusivo?
 - ¿Cuándo es preferible usar un modelo probabilístico como GMM frente a kmeans?
 - ¿Qué limitaciones tienen los métodos de agrupamiento con superposición en aplicaciones reales?
 - Búsqueda de referencias: Usando la plataforma Consensus, los estudiantes buscarán un artículo científico que respalde o amplíe las respuestas obtenidas de ChatGPT. Deberán identificar la idea principal del artículo y cómo se relaciona con el tema discutido.

Verificación de aprendizaje: Cada grupo presentará sus hallazgos de la siguiente manera:

- Resumen de las respuestas obtenidas de ChatGPT.
- Referencia científica encontrada en Consensus y cómo esta valida o amplía las respuestas del modelo.

El docente facilitará la discusión y aclarará dudas adicionales sobre los conceptos.

Actividad 3: Efecto de la Normalización en la Clusterización

En esta actividad, los estudiantes analizarán cómo las diferentes técnicas de normalización pueden afectar el resultado de los algoritmos de clusterización.

¿Cómo lo haremos?

- **Presentación inicial:** Se presenta un gráfico que muestra cómo diferentes normalizaciones (por ejemplo, *StandardScaler*, *MinMaxScaler*, *RobustScaler*, *Normalizer*) afectan la distribución de los datos en un espacio bidimensional.
- **Exploración individual:** Cada estudiante deberá analizar el gráfico y responder preguntas como:
 - ¿Cuál técnica de normalización parece más adecuada para separar los grupos visualmente?
 - ¿Cómo podrían estas diferencias impactar en algoritmos como k-means o clustering jerárquico?
- **Ejercicio práctico:** Usando un conjunto de datos sencillo (por ejemplo, el conjunto make_blobs de sklearn.datasets), los estudiantes implementarán en Python diferentes normalizaciones y aplicarán k-means para observar los resultados. El código base será proporcionado por el docente:

```
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler, Normalizer
from sklearn.cluster import KMeans

# Generar y ajustar los datos
X, _ = make_blobs(n_samples=100, centers=2, cluster_std=5, random_state=42)
X[:, 1] *= 2 # Aumentar varianza en la segunda característica
X += 5 # Desplazar datos

# Aplicar K—means
labels = KMeans(n_clusters=2, random_state=42).fit_predict(X)

# Escaladores
scalers = {
    "Original Data": None,
    "StandardScaler": StandardScaler(),
```

```
"MinMaxScaler": MinMaxScaler(),
    "RobustScaler": RobustScaler(),
    "Normalizer": Normalizer()
}
# Crear figuras
fig, axes = plt.subplots(2, 3, figsize=(12, 8))
axes = axes.ravel()
for i, (name, scaler) in enumerate(scalers.items()):
    X_scaled = scaler.fit_transform(X) if scaler else X
    ejeX, ejeY = ((-3, 4), (-3, 4)) if scaler else ((-10, 20), (-10, 50))
    axes[i].scatter(X\_scaled[:, 0], X\_scaled[:, 1], c=labels, cmap="bwr", alpha=0.6)
    axes[i].set_title(name)
    axes[i].set_xlim(ejeX)
    axes[i].set_ylim(ejeY)
plt.tight_layout()
plt.show()
```

Verificación de aprendizaje:

- Cada estudiante dará un análisis breve que incluya:
 - Observaciones sobre cómo la normalización afecta los resultados de k-means.
 - Una conclusión sobre qué técnica consideran más adecuada para este conjunto de datos y por qué.

CIERRE

Tarea: Los estudiantes deberán realizar las siguientes actividades de forma individual:

- Buscar en Kaggle un conjunto de datos que sea adecuado para implementar un algoritmo de clusterización. Ejemplos de conjuntos de datos incluyen: segmentación de clientes, agrupación de películas o canciones, o análisis de patrones en datos demográficos.
- Descargar el conjunto de datos seleccionado e identificar qué características podrían necesitar preprocesamiento (como normalización o manejo de valores faltantes).

Pregunta de investigación:

- 1. ¿Cómo podrían detectarse anomalías en un conjunto de datos usando aprendizaje no supervisado?
- 2. ¿Qué factores pueden dificultar la identificación de clústeres claros en datos reales, y cómo podrías abordarlos?