Efekty krańcowe w modelach regresji liniowej o szczegółowych postaciach

Poniżej omówiono przypadki, gdy w powyższym modelu regresji liniowej uwzględniono:

- 1) zmienna objaśniająca jest w formie logarytmu,
- 2) zmienna objaśniana jest w formie logarytmu,
- 3) zmienne objaśniana i objaśniająca są w formie logarytmu,
- 4) interakcję między para zmiennych objaśniających.

Rozważamy klasyczny model regresji liniowej postaci

$$z_{t} = f(x_{t}; \boldsymbol{\beta}) + \varepsilon_{t} \quad \text{gdzie}$$

$$f(x_{t}; \boldsymbol{\beta}) = x_{t} \cdot \boldsymbol{\beta} = \sum_{j=1}^{k} x_{t,j} \cdot \boldsymbol{\beta}_{j} = x_{t,1} \boldsymbol{\beta}_{1} + ... + x_{t,h} \boldsymbol{\beta}_{h} + ... + x_{t,k} \boldsymbol{\beta}_{k},$$

$$(1)$$

w którym w szczególności wartość oczekiwana zmiennej ε_t wynosi zero, $E(\varepsilon_t)=0$, a t to identyfikator obserwacji (obiektu, np. konsumenta).

Efekty krańcowe względem np. zmiennej x_{th} liczymy jako różnice między wartościami oczekiwanymi zmiennej z_t dla różnych wartości zmiennych x_{th} przy założeniu ceteris paribus. Gdy x_{th} jest zmienną ciągłą, to w praktyce stosuje się formułę różniczkową dla efektu krańcowego (*Efekt*), czyli liczy się wartość pochodnej cząstkowej względem x_{th} . Stąd uzyskuje się aproksymację ilorazu przyrostu (bezwzględnego) wartości oczekiwanymi zmiennej z_t ($\Delta E(z_t)$) i przyrostu zmiennej x_{th} ($\Delta x_{t,h}$)¹, więc

$$Efekt_{x_{th}}(x_t; \beta) = \frac{\partial E(z_t)}{\partial x_{t,h}} = \frac{\partial f(x_t; \beta)}{\partial x_{t,h}} \approx \frac{\Delta E(z_t)}{\Delta x_{t,h}}$$
(2)

W klasie modeli z addytywnym składnikiem losowym i z $E(\varepsilon)=0$ formułę (2) można zapisać:

$$Efekt_{x_{th}}(x_t; \beta) = \frac{\partial f(x_t; \beta)}{\partial x_{th}} \approx \frac{\Delta z_t}{\Delta x_{th}}$$
(3)

W interpretacji korzysta się ze wspomnianej własności, że $\Delta z_t \approx Efekt_{x_{th}}(x_t; \beta) \cdot \Delta x_{t,h}$ ceteris paribus, czyli przy założeniu, że wartości pozostałych zmiennych są ustalone (nie zmieniają się), tj. $\Delta x_{t,g} = 0$ dla każdego g=1,...,k i $g\neq h$. Zauważmy, że efekt krańcowy jest funkcją dwóch argumentów, wektorów β i x_t , czyli może zależeć zarówno od wartości parametrów, jak i ewentualnie od wartości zmiennych objaśniających.

_

¹ Aproksymacja ta jest tym bardziej dokładna, im $\Delta x_{t,h} \to 0$. Wynika to z koncepcji różniczki zupełnej funkcji wielu zmiennych przy dodatkowym założeniu, że pozostałe zmienne objaśniające są ustalone (stałe). W ogólnym przypadku z różniczki zupełnej wynika aproksymacja $\Delta z_t \approx \sum_{j=1}^k \textit{Efekt}_{x_{ij}}(x_t; \beta) \cdot \Delta x_{t,j}$, którą można wykorzystać do uzyskiwania odpowiedzi o zmianach Δz_t wywołanych zmianami wybranych zmiennych objaśniających.

1. Zmienna objaśniająca jest w formie logarytmu

Rozważamy szczególną postać modelu (1), w którym zmienna objaśniająca występuje jako logarytm pewnej zmiennej w_t przyjmującej jedynie wartości dodatnie (np. w_t jest to cena produktu, dochód konsumenta itp.)

$$z_t = \beta_0 + \beta_1 \cdot \ln(w_t) + \varepsilon_t. \tag{4}$$

Interesuje nas wpływ zmiany wartości zmiennej w_t na z_t . Licząc pochodną według (3) otrzymuje się:

$$Efekt_{w_t}(w_t; \beta) = \frac{\partial(\beta_0 + \beta_1 \ln(w_t))}{\partial w_t} = \beta_1 \frac{1}{w_t} \approx \frac{\Delta z_t}{\Delta w_t}.$$
 (5)

W konsekwencji efekt krańcowy liczony względem w_t zależy odwrotnie proporcjonalnie od jej wartości a współczynnikiem proporcjonalności jest parametr β_1 . Oczywiście znak tego efektu zależy od znaku β_1 . Zatem w tym przypadku efekt krańcowy liczy się dla ustalonych wartości w_t , więc w konsekwencji jest on indywidualny dla każdej obserwacji. W tym kontekście można sformułować pytanie jaki wpływ ma procentowa zmiana wartości zmiennej w_t na zmiany z_t . Jeśli obie strony formuły (5) pomnoży się przez w_t , to otrzyma się

$$\beta_1 \frac{1}{w_t} w_t \approx \frac{\Delta z_t}{\Delta w_t} w_t, \tag{6}$$

co prowadzi do tego, że

$$\frac{\Delta z_t}{\Delta w_t / w_t} \approx \beta_1. \tag{7}$$

Zatem parametr β_1 ma interpretację quasi-elastyczności, czyli wzrost $\frac{\Delta w_t}{w_t}$ o jednostkę skutkuje przeciętnym wzrostem (spadkiem) zmiennej z_t o β_1 jednostek, gdy $\beta_1 > 0$ ($\beta_1 < 0$). Z kolei w praktyce rozważa się wzrost względny w_t o 1%, co oznacza, że $\Delta w_t/w_t = 0.01$, a wówczas zmienna z_t zmieni się o $\beta_1/100$ jednostek. Analogicznie względny wzrost w_t o 10% powoduje zmianę z_t o $\beta_1/10$ jednostek. Przykładowo, jeśli $\beta_1 = 2$, to otrzymuje się, że z_t wzrośnie odpowiednio o 0,02 i 0,2 jednostek.

2. Zmienna objaśniana jest w formie logarytmu

Rozważamy inną szczególną postać modelu (1), w którym zmienna objaśniana została poddana transformacji logarytmicznej oczywiście pod warunkiem, że przyjmuje wartości dodatnie (np. wydajność pracy, wielkość produkcji itp.)

$$\ln(z_t) = \beta_0 + \beta_1 \cdot w_t + \varepsilon_t. \tag{8}$$

Pomocniczo warto policzyć następującą pochodną funkcji złożonych (wykorzystując regułę łańcuchową):

Jerzy Marzec, Katedra Ekonometrii i Badań Operacyjnych UEK Kierunek: Analityka gospodarcza

$$\frac{\partial z_t}{\partial w_t} = \frac{\partial z_t}{\partial \ln(z_t)} \cdot \frac{\partial \ln(z_t)}{\partial w_t} = \frac{\partial e^{\ln(z_t)}}{\partial \ln(z_t)} \cdot \beta_1 = e^{\ln(z_t)} \cdot \beta_1 = z_t \cdot \beta_1 \approx \frac{\Delta z_t}{\Delta w_t}. \tag{9}$$

Dzieląc lewą i prawą stronę formuły (9) przez z_t otrzymuje się

$$\frac{\Delta z_t / z_t}{\Delta w_t} \approx \beta_1, \tag{10}$$

co można ująć w kategoriach zmian względnych ($\Delta z_{\scriptscriptstyle t}/z_{\scriptscriptstyle t1}$), tj. procentowych postaci

$$\frac{\Delta z_t}{z_t} \cdot 100\% \approx (\beta_1 \cdot 100)\% \cdot \Delta w_t \,. \tag{11}$$

Zatem wyrażenie ($\beta_1 \cdot 100$)% informuje (w przybliżeniu) o ile procentowo zmieni się wartość zmiennej z_t , gdy nastąpi zmiana wartości zmiennej w_t o jednostkę. Gdy np. $\beta_1 = 0.02$, to interpretacja jest oczywista, gdyż jeśli $\Delta w_t = 1$, to z_t wzrośnie o 2%.

Najprostszym przypadkiem (8) jest model trendu wykładniczego zapisanego jako

$$\ln(z_t) = \beta_0 + \beta_1 \cdot t + \varepsilon_t \,. \tag{12}$$

Wówczas ($\beta_1 \cdot 100$)% informuje (w przybliżeniu) o średniookresowej (samoistnej) dynamice zmiennej z_t (wzroście albo spadku)) w badanym okresie (t=1,...,T).

3. Zmienne objaśniana i objaśniające są w formie logarytmu

Łącząc oba prezentowane przypadki uzyskuje się trzeci model o znanej postaci

$$\ln(z_t) = \beta_0 + \beta_1 \cdot \ln(w_{t,1}) + \beta_2 \cdot \ln(w_{t,2}) + \varepsilon_t. \tag{13}$$

w którym zarówno zmienna objaśniana jak i objaśniające są w formie logarytmu. Oczywiście można ten model uogólnić na przypadek *k*–zmiennych objaśniających.

W przypadku (13) otrzymuje się prostą interpretację wykorzystując pojęcie elastyczności

$$Elas_{w_{t,j}}(w_t; \boldsymbol{\beta}) = \frac{\partial \ln z_t}{\partial \ln w_{t,j}} = \boldsymbol{\beta}_j \approx \frac{\Delta z_t / z_t}{\Delta w_{t,j} / w_{t,j}} \quad \text{dla } j = 1, 2.$$
 (14)

Formuły te można uogólnić na przypadek wielu zmiennych objaśniających. W przypadku modelu (13) elastyczność względem dowolnej zmiennej objaśniającej nie zależy od wartości tych zmiennych, więc w interpretacji wykorzystuje się wartość odpowiedniego parametru. Przykładowo, 1% wzrost wartości zmiennej $w_{t,1}$ powoduje, że wartość zmiennej z_t zmieni się o β_1 % przy założeniu $w_{t,2}$ jest stałe (np. gdy $\beta_1 = 0.25$, to z_t wzrośnie o 0.25%).

Warto przypomnieć jeszcze jedną formułę użyteczną przy interpretacji wyników, tj.

$$\frac{\Delta z_t}{z_t} \approx Elast_{wt,1} \cdot \frac{\Delta w_{t,1}}{w_{t,1}} + Elast_{wt,2} \cdot \frac{\Delta w_{t,2}}{w_{t,2}}.$$
(15)

Można wtedy określić m.in., że łączny wpływ zmiany w_{t1} o a% i w_{t2} o b% spowoduje zmianę z_t o $(a \cdot \beta_1 + i b \cdot \beta_2)\%$, np. gdy a=1 i b=-1, to z_t zmieni się o $(\beta_1-\beta_2)\%$.