Langevin Monte Carlo Beyond Lipschitz Gradient Continuity

Matej Benko ¹, Iwona Chlebicka ², Jørgen Endal ³, Błażej Miasojedow ²

¹Brno University of Technology

²University of Warsaw

³Norwegian University of Science and Technology

Main Goal

Scope

We provide an algorithm to sample from the probability measure with the density

$$\mu^*(x) = \frac{\exp(-V(x))}{\int_{\mathbb{R}^d} \exp(-V(y)) \, \mathrm{d}y}.$$

- Sharp convergence rates in terms of the Wasserstein distance and Kullback-Leibler divergence are provided.
- \blacktriangleright We do not need to assume that ∇V is globally Lipschitz.
- Our approach cover light tail distributions.

Applications

- Bayesian statistics
- Machine Learning

Langevin Monte Carlo

Langevin Diffusion Equation

$$\begin{cases} dY_t = -\nabla V(Y_t) dt + \sqrt{2} dB_t, \\ Y_t \sim \mu_t, \\ Y_0 \sim \mu_0, \end{cases} t > 0,$$

Standard (Explicit) Langevin Monte Carlo

$$X_0 \sim \mu_0$$

 $X_k = X_{k-1} - \tau \nabla V(X_{k-1}) + \sqrt{2\tau} Z_k$ $k = 1, 2, ...$

where $\{Z_k\}_{k\geq 1}$ i.i.d standard Gaussian distribution independent on history of chain.

State of the art

Typical assumptions

- ightharpoonup global Lipschitz continuity of ∇V
- ightharpoonup convexity (strong convexity) of V
- convexity can be relaxed if log-Sobolev inequality is satisfied

Existing results

- Finite time convergence bounds in terms of KL-divergence or Wasserstein distance.
- Explicit and polynomial dependence on dimension of bounds

Methods

- Convergence of diffusion process and comparison with its discretization.
- ▶ Apply gradient flow formulation and tools from convex optimization theory.

Literature

- S. Chewi, M. A. Erdogdu, M. Li, <u>et al.</u>, "Analysis of langevin monte carlo from poincare to log-sobolev,"
- A. Dalalyan, "Further and stronger analogy between sampling and optimization: Langevin monte carlo and gradient descent,"
- A. S. Dalalyan, "Theoretical guarantees for approximate sampling from smooth and log-concave densities,",
- A. Durmus, S. Majewski, and B. Miasojedow, "Analysis of Langevin Monte Carlo via convex optimization,",
- A. S. Dalalyan, A. Karagulyan, and L. Riou-Durand, "Bounding the error of discretized Langevin algorithms for non-strongly log-concave targets,",
- A. Durmus and É. Moulines, "Nonasymptotic convergence analysis for the unadjusted Langevin algorithm,",
- A. Durmus and É. Moulines, "High-dimensional Bayesian inference via the unadjusted Langevin algorithm,",
- M. A. Erdogdu and R. Hosseinzadeh, "On the convergence of langevin monte carlo: The interplay between tail growth and smoothness,"
- M. A. Erdogdu, R. Hosseinzadeh, and S. Zhang, "Convergence of langevin monte carlo in chi-squared and rényi divergence,"
- A. Mousavi-Hosseini, T. K. Farghly, Y. He, et al., "Towards a complete analysis of langevin monte carlo: Beyond poincaré inequality,"

Why we need gradient Lipschitz V?

lacktriangle Euler-Maruyama dicretization is transient if abla V is not Lipschitz

- G. O. Roberts and R. L. Tweedie, "Exponential convergence of Langevin distributions and their discrete
 approximations,",
- J. C. Mattingly, A. M. Stuart, and D. J. Higham, "Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise,".

Explicit Euler scheme:

$$x_{k+1} = x_k - \tau \nabla V(x_k)$$

We have $V(x_{k+1}) \leq V(x_k)$ if ∇V Lipschitz, otherwise $V(x_{k+1})$ could be arbitrarily large.

Implicit Euler scheme:

$$x_{k+1} = x_k - \tau \nabla V(x_{k+1})$$

We have $V(x_{k+1}) \leq V(x_k)$ always even if V is not convex.

Inexact Proximal Langevin Algorithm

Proximal operator:

$$\operatorname{prox}_{V}^{\tau}(x) := \underset{y \in \mathbb{R}^{d}}{\operatorname{arg\,min}} \left\{ V(y) + \frac{1}{2\tau} |y - x|^{2} \right\}.$$

ightharpoonup We consider numerical approximation of the minimizer with known precision δ

Inexact Proximal Langevin Algorithm (IPLA)

- ▶ Sample initial distribution $X_0 \sim \mu_0$
- ▶ For k = 0, ..., n 1:

Step 1: Run routine for computing with an output

$$X_{k+\frac{2}{3}} = \text{prox}_{V}^{\tau}(X_{k}) + \Theta_{k+\frac{2}{3}}; \qquad |\Theta_{k+\frac{2}{3}}| \le \delta,$$

Step 2: Add Gaussian noise, i.e

$$X_{k+1} = X_{k+\frac{2}{3}} + Z_{k+1} \, ; \qquad Z_{k+1} \sim \mathcal{N}(0, 2\tau \mathrm{Id}) \, .$$

Assumptions

Assumptions for IPLA

▶ V is λ -convex for $\lambda \in \mathbb{R}$ outside of a ball $B \subset \mathbb{R}^d$:

$$V(x) \geq V(y) + \nabla V(y) \cdot (x-y) + \tfrac{\lambda}{2} \, 1\!\!1_{\mathbb{R}^d \backslash B}(y) \, |x-y|^2 \, ; \qquad \forall x,y \in \mathbb{R}^d \, .$$

► *V* is gradient locally Lipschitz with polynomial *q*-growth:

$$|\nabla V(x) - \nabla V(y)| \le L_q \min\{|x - y|, 1\}(|x|^{q-1} + |y|^{q-1}) \quad \forall x, y \in \mathbb{R}^d.$$

▶ Initial distribution $\varrho_0 \in \mathscr{P}_{q_V+1}(\mathbb{R}^d)$, i.e. has finite moment of order q_V+1 .

Theoretical results

KL Error Bound

Let $\tau < 1/\lambda_V$, $\kappa, \alpha > 0$, and $\delta \le \kappa \tau^{1+\alpha}$. Assume further that

$$0 < \tau_{\varepsilon} \le \min \left\{ \left(\frac{\varepsilon}{3C(\mu^*)\kappa} \right)^{\frac{1}{\alpha}}, 1 \right\}$$

and $K(\tau_{\varepsilon}) \leq \varepsilon/3$. Let the number of iterations n_{ε} be such that $n_{\varepsilon} \geq 3W_2^2(\varrho_0, \mu^*)/(2\varepsilon\tau_{\varepsilon})$. Then

$$\mathrm{KL}(\varrho_{n_{\varepsilon}}|\mu^*) \leq \varepsilon$$
.

Moreover, for computing one sample in terms of KL with precision ε , in a case of warm start $(W_2^2(\varrho_0, \mu^*) \leq C$ for some absolute constant C), we need

- (i) $d^{\frac{q_V+1}{2}}\mathcal{O}(\varepsilon^{-2})$ iterations, if $\alpha \geq 1$;
- (ii) $d^{\frac{q_V+1}{2}}\mathcal{O}(\varepsilon^{-1-\alpha^{-1}})$ iterations, if $\alpha < 1$.

Theoretical Results

W_2 Error Bound (for strongly convex case)

Suppose that $R_V=0$ and $\lambda_V>0$. Let $\tau<1/\lambda_V$, $\alpha\geq 0$, and $\delta\leq \kappa \tau^{1+\alpha}$. Assume further that

$$\tau_{\varepsilon}^{2\alpha} \leq \frac{\lambda_V^2 \varepsilon}{96\kappa^2 \log^2(6W_2^2(\varrho_0, \mu^*)\varepsilon^{-1})}$$

and $K(\tau_{\varepsilon}) \leq \frac{1}{12} \lambda_V \varepsilon$. Let the number of iterations n_{ε} be such that

$$2\log(6W_2^2(\varrho_0,\mu^*)\varepsilon^{-1}){\textcolor{red}{\tau_\varepsilon}^{-1}}\lambda_V^{-1} \leq \textcolor{red}{n_\varepsilon} \leq 4\log(6W_2^2(\varrho_0,\mu^*)\varepsilon^{-1}){\textcolor{red}{\tau_\varepsilon}^{-1}}\lambda_V^{-1} \,.$$

Then

$$W_2^2(\varrho_{n_{\varepsilon}},\mu^*) \leq \varepsilon$$
.

Moreover, for computing one sample in terms of the Wasserstein distance with precision ε , in the case of warm start, up to logarithmic terms we need

- (i) $d^{\frac{q_V+1}{2}}\mathcal{O}(\varepsilon^{-2})$ iterations, if $\alpha \geq \frac{1}{2}$;
- (ii) $d^{\frac{q_V+1}{2}}\mathcal{O}(\varepsilon^{-\alpha^{-1}})$ iterations, if $\alpha<\frac{1}{2}$.

Example 1: Sampling from Distribution with Light Tail

Density of form

$$\mu^*(x) \propto \exp\left(-\frac{|x|^4}{4}\right).$$

Mom.	Method	Start in tail RE CV		$\begin{array}{cc} \text{Start in } x_0 = 0 \\ \text{RE} & \text{CV} \end{array}$	
$\mathbb{E} Y ^2$	IPLA TULA ULA	0.0027 0.0047 NaN	0.0019 0.0016 NaN	0.0006 0.0030 0.0020	0.0018 0.0019 0.0018
$\mathbb{E} Y ^4$	IPLA TULA ULA	0.0054 0.0095 NaN	0.0039 0.0032 NaN	0.0025 0.0073 0.0028	0.0036 0.0039 0.0035
$\mathbb{E} Y ^6$	IPLA TULA ULA	0.0081 0.0144 NaN	0.0058 0.0047 NaN	0.0047 0.0120 0.0032	0.0054 0.0058 0.0053

TULA: N. Brosse, A. Durmus, É. Moulines, et al., The tamed unadjusted Langevin algorithm, 2019

Example 1: Sampling from Distribution with Light Tail cont.

Figure: Trajectory of the 1st coordinate from Example 1 starting in a tail. Both plots are based on the same data.

Example 1: Sampling from Distribution with Light Tail cont.

Figure: Example 1, starting in minimizer. Dependence of relative error (RE) of IPLA, TULA and ULA on stepsize τ . ULA gives results only for smaller values of τ . Dashed line represents the observed edge of the area of ULA stability ($\tau \approx 0.01$).

Example 2: Ginzburg-Landau model

Density

$$V(x) = \sum_{i,j,k=1}^{q} \frac{1-v}{2} x_{ijk}^2 + \frac{v \varkappa}{2} |\widetilde{\nabla} x_{ijk}|^2 + \frac{v \varsigma}{4} x_{ijk}^4,$$

where
$$\widetilde{\nabla} x_{ijk} = \left(x_{i+jk} - x_{ijk}, x_{ij+k} - x_{ijk}, x_{ijk+} - x_{ijk}\right)$$
 .

Mom.	Method	Start RE	in tail CV	Start in RE	$x_0 = 0$ CV
$\mathbb{E} Y ^2$	IPLA TULA ULA	0.0025 0.0067 NaN	0.0244 0.0213 NaN	0.0748 0.0859 0.0727	0.0786 0.0739 0.0697
$\mathbb{E} Y ^4$	IPLA	0.0053	0.0491	0.1425	0.1558
	TULA	0.0134	0.0425	0.1635	0.1473
	ULA	NaN	NaN	0.1385	0.1399
$\mathbb{E} Y ^6$	IPLA	0.0083	0.0742	0.2040	0.2323
	TULA	0.0199	0.0638	0.2337	0.2208
	ULA	NaN	NaN	0.1980	0.2117

Bayesian Image Deconvolution

Density

$$\mu^* \propto \exp\left(-\frac{1}{2\sigma^2}|y - Hx|^2 - \beta TV(x)\right)$$
.

► TV is not smooth function (violate assumption on ULA and TULA)

Figure: Result of the Bayesian Image Denoising. The original photo by Zbyszko Siemaszko 1955-56.