• minimize $f(x) = c^T x - \sum_{i=1}^m \log(-a_i^T x + b_i)$

where $A \in \mathbf{R}^{m \times n}$ with a_i being the transpose of the ith row of A, $b \in \mathbf{R}^m$, $c \in \mathbf{R}^n$.

Here we set

$$A = \begin{bmatrix} 1 & 3 \\ 1 & -3 \\ -1 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 0.1 \\ 0.1 \\ 0.1 \end{bmatrix}, \quad c = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Initial point
$$x^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• Gradient
$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \end{bmatrix}$$
, and Hessian $\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 x_2} \\ \frac{\partial^2 f(x)}{\partial x_2 x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} \end{bmatrix}$

- Newton step $\Delta x_{nt} = -(\nabla^2 f(x))^{-1} \nabla f(x) \rightarrow \Delta x_{nt}^{(0)}$
- Newton decrement $\lambda(x) = (-\nabla f(x)^T \Delta x_{nt})^{1/2} \rightarrow \lambda^{(0)}(x)$
- Backtracking line search along search direction using $\beta=0.7$ starting from t=1 until $x^{(0)}+t\Delta x_{nt}^{(0)}\in \operatorname{dom} f$ (Note: $t^+\coloneqq\beta t$)
- Continue the backtracking line search until $f(x+t\Delta x_{nt}^{(0)}) \leq \alpha t \lambda(x)^2$, where $\alpha=0.1$
- Update $x^{(1)} = x^{(0)} + t\Delta x_{nt}^{(0)}$
- If $\lambda(x)^2/2 < \text{stopping criterion}$, then break the loop.