

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at <http://about.jstor.org/participate-jstor/individuals/early-journal-content>.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

colored plates are used to show the author's interpretation of the transformation of the resting mycoplasm into the mycelium condition of the rust.—J. C. ARTHUR.

Light relations at high altitudes.—WIESNER'S study of the *Lichtgenuss* of plants, already comprehensive for varying latitudes, has now been extended²¹ to include high altitudes. During a period of thirty days from Aug. 16, photometric observations were made in the Yellowstone territory at eight altitudes ranging from 515 to 2210^m above sea level. The investigation shows that the behavior of plants with advancing latitude does not agree with that manifested under increasing altitude. The relative amount of available light appropriated by arctic plants increases inversely with the distance from the pole. This relation holds with increasing altitude only to a certain limit, above which a smaller and smaller share of available light is appropriated. The cypress habit of growth is evidently intended to protect from increased intensity of light, whether this accompanies low latitudes or high altitudes. This seems all the more probable because in such altitudes species having this habit do not show a defoliation from heat, which is manifested by other species that do not show it at lower levels.—RAYMOND H. POND.

Tomato rot.—VON OVEN²² has recently described a disease of tomatoes caused by *Fusarium rubescens* Appel & Von Oven. This fungus causes a rotting of the tomato fruit, and evidently does not belong to the fungi in this group producing stem rot or wilt disease, although in cultures the pink and violet shades characteristic of the latter are also produced by this new species. As it is impossible to separate the species of *Fusarium* on morphological grounds, VON OVEN has attempted to distinguish this species at least from several disease-producing fusariums by their physiological characteristics. It is thus distinguished from *F. Solani*, *F. putrefaciens*, and *F. rhizogenum*. In cultures on sterilized potato small sclerotia were formed, which produced conidia after being exposed during December and January. The author concludes that this is a hibernating stage of the fungus, although he does not mention finding them in nature.—H. HASSELBRING.

Axillary scales of aquatic monocots.—As aquatic monocotyledons are by some held to be modern representatives of the more primitive angiosperms; as these forms may have been genetically related to some such type as Isoetes; and as he regards the ligule as an important phylogenetic organ, GIBSON²³ has made a study of the vestigial structures of the following families: Potamogetonaceae,

²¹ WIESNER, J., Untersuchungen über den Lichtgenuss der Pflanzen im Yellowstonegebiete und in anderen Gegenden Nordamerikas. Sitzungsber. Kaiserl. Akad. Wiss. Wien, Math.-Naturw. Klasse 114¹: (pp. 74.) figs. 2. 1905.

²² OVEN, E. von, Ueber eine Fusariumerkrankung der Tomaten. Landw. Jahrb. 34:489-520. pls. 5, 6. fig. 1. 1905.

²³ GIBSON, R. J. HARVEY, The axillary scales of aquatic monocotyledons. Jour. Linn. Soc. Bot. 37:228-237. pls. 5, 6. 1905.