TD3 - Prétraitements

Arthur Garnier

1 Exercice 1

Le filtre appliqué sera un filtre passe-bas, qui aura pour effet un lissage et donc une atténuatation du bruit.

Le filtre appliqué sera : $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

Pour les bords on peut :

- Dupliquer les lignes des bords (et donc obtenir une image 13x5) avant traitement
- Dupliquer les bords après traitement

Pour un pixel le traitement sera :

$$I'(x,y) = \frac{1}{\sum coef} \left[a \times I(x+1,y+1) + b \times (x+1,y) + \ldots + i \times I(x-1,y-1) \right]$$

Pour la ligne centrale on aura donc :

Il suffit ensuite de dupliquer pour effectuer ce traitement sur les bords :

$$\begin{bmatrix} 100 & 100 & 90 & 90 & 90 & 100 & 111 & 111 & 111 & 100 & 100 \\ 100 & 100 & 90 & 90 & 90 & 100 & 111 & 111 & 111 & 100 & 100 \\ 100 & 100 & 90 & 90 & 90 & 100 & 111 & 111 & 111 & 100 & 100 \\ \end{bmatrix}$$

2 Exercice 2

1. Ces masques sont des filtres passe-haut, ils ne laissent que les zones à fort contraste. Ce masque effectue une dérivée. C'est un masque de détection de contours, donc sur l'image ça donnerait une accentuation des contours

2.

Module d'une image :
$$\sqrt{(\frac{dI}{dx})^2+(\frac{dI}{dy})^2}\approx |\frac{dI}{dx}|+|\frac{dI}{dy}|$$

$$Arg = arctan\left(\frac{-\frac{dI}{dy}}{\frac{dI}{dx}}\right)$$

	osanic ivoid ce	omposante Est Mc	odule Angle Est/Nord
Prewitt -9 Sobel -13	-1; -1;		-37 -37,3

3. Le pixel appartient à une zone de transistion situé entre 2 zones homogènes. Zone de transition à diagonale (grâce à l'angle)

3 Exercice 4 : Filtrage inverse

Masque pour l'inverse :
$$\begin{bmatrix} - & 3 & - \\ 2 & 5 & - \\ - & - & - \end{bmatrix}$$

Les pixels à 10 sont (en commençant à 0,0):

- (1,1)
- (3,4)
- (4,4)
- (5,5)
- (6,4)
- (6,6)

4 Exercice 5

$$i1 = \begin{bmatrix} 255 & 255 & 255 & 255 & 2 & 2 & 255 & 255 & 255 & 255 \end{bmatrix}$$

$$i2 = \begin{bmatrix} 255 & 255 & 1 & 0 & 0 & 0 & 255 & 255 \end{bmatrix}$$