

## PDFormer

Propagation Delay-aware
Dynamic Long-range
TransFormer for Traffic Flow
Prediction



23.3.2



#### 问题描述: PDFormer

- 1、Dynamic动态
- 2、Long-range长距离
- 3、Propagation Delay-aware传播时间延迟感知



### 01 创新点

- ➤ Spatial Self-attention: 捕获空间依赖关系 { local geographic neighborhood global semantic neighborhood
- ▶ Delay-aware Feature Transformation: 集成历史交通模式
- ➤ Temporal Self-attention: 识别时间动态性





#### 算法描述: Data Embedding Layer

#### > Spatial Graph Laplacian Embedding

对无向图G进行编码,使得G蕴含的信息可计算。

Graph Laplacian 的最小非零特征值 对应的特征向量是图G最优的一维编码

$$G = (V,A) \implies riangle = I - D^{-rac{1}{2}}AD^{-rac{1}{2}} \implies riangle = U^T \wedge U \implies X_{spe} \in R^{N imes d}$$

> Temporal Periodic Embedding

$$X_w, X_d \in R^{T imes d}$$

$$\mathcal{X}_{emb} = \mathcal{X}_{data} + X_{spe} + X_w + X_d + X_{tpe}$$



➤ 空间自注意力(Spatial Self-Attention, SSA)模块

$$\begin{cases} Q_t^{(S)} = X_{t::}W_Q^S, K_t^{(S)} = X_{t::}W_K^S, V_t^{(S)} = X_{t::}W_V^S \\ A_t^{(S)} = \frac{(Q_t^{(S)})(K_t^{(S)})^\top}{\sqrt{d'}} \in \mathbb{R}^{N \times N} \\ SSA(Q_t^{(S)}, K_t^{(S)}, V_t^{(S)}) = softmax(A_t^{(S)})V_t^{(S)} \end{cases} \qquad \begin{matrix} GeoSSA(Q_t^{(S)}, K_t^{(S)}, V_t^{(S)}) = softmax(A_t^{(S)} \odot M_{geo})V_t^{(S)} \\ SemSSA(Q_t^{(S)}, K_t^{(S)}, V_t^{(S)}) = softmax(A_t^{(S)} \odot M_{sem})V_t^{(S)} \end{matrix}$$

• geographic masking matrix  $M_{geo}$  . 依据距离的远近

• semantic masking matrix  $M_{sem}$  : DTW算法,计算节点之间历史交通流量的相似性





• semantic masking matrix  $M_{sem}$  : <u>DTW算法</u>,计算节点之间历史交通流量的相似性

例子: 计算序列A(1-1-3-3-2-4)和序列B(1-3-2-2-4-4)两个序列的相似性

|         | A(1)=1 | A(2) =1 | A(3) =3 | A(4) =3    | A(5) =2      | A(6) =4     |
|---------|--------|---------|---------|------------|--------------|-------------|
| B(1) =1 | 0_     | → 0     | 2       | 2          | 1            | 3           |
| B(2) =3 | 2      | 2       | 0-      | <b>*</b> 0 | 1            | 1           |
| B(3) =2 | 1      | 1       | 1       | 1          | <b>~</b> o — | 2           |
| B(4) =2 | 1      | 1       | 1       | 1          | 0            | 2           |
| B(5) =4 | 3      | 3       | 1       | 1          | 2,           | <b>~</b> 0— |
| B(6) =4 | 3      | 3       | 1       | 1          | 2            | <b>O</b>    |



➤ 空间自注意力(Spatial Self-Attention, SSA)模块

$$\left\{egin{aligned} Q_t^{(S)} &= X_{t::}W_Q^S, K_t^{(S)} = X_{t::}W_K^S, V_t^{(S)} = X_{t::}W_V^S \ A_t^{(S)} &= rac{(Q_t^{(S)})(K_t^{(S)})^ op}{\sqrt{d'}} \in \mathbb{R}^{N imes N} \ \left\{egin{aligned} GeoSSA(Q_t^{(S)}, K_t^{(S)}, V_t^{(S)}) &= softmax(A_t^{(S)} \odot M_{geo})V_t^{(S)} \ SemSSA(Q_t^{(S)}, K_t^{(S)}, V_t^{(S)}) &= softmax(A_t^{(S)} \odot M_{sem})V_t^{(S)} \end{aligned}
ight.$$

• geographic masking matrix  $M_{geo}$  : 依据距离的远近

• semantic masking matrix  $M_{sem}$  : DTW算法,计算节点之间历史交通流量的相似性



➤ 延迟感知特征转换(Delay-aware Feature Tansformation, DFT)模块

K-shape聚类算法





> 延迟感知特征转换(Delay-aware Feature Transformation, DFT)模块

K-shape聚类算法

• 距离计算: 互相关算法, 计算两个等长序列的相似性



块重叠越多,形状越像, 互相关系数CC越大,SBD形态距离越小

$$SBD(\vec{x}, \vec{y}) = 1 - \max_{w} \left( \frac{CC_w(\vec{x}, \vec{y})}{\sqrt{R_0(\vec{x}, \vec{x}) \cdot R_0(\vec{y}, \vec{y})}} \right)$$



▶ 延迟感知特征转换(Delay-aware Feature Transformation, DFT)模块

K-shape聚类算法

**距离计算:** 互相关算法, 计算两个等长序列的相似性

$$SBD(\vec{x}, \vec{y}) = 1 - \max_{w} \left( \frac{CC_w(\vec{x}, \vec{y})}{\sqrt{R_0(\vec{x}, \vec{x}) \cdot R_0(\vec{y}, \vec{y})}} \right)$$

**质心计算**:使质心与其他时间序列的相似度NCC最小,与簇中各序列的NCC最大。

$$C_k = argmin \sum_{(ec{x^{ o}}_i \epsilon p_k)} NCC_c(ec{x^{ o}}_i, ec{c^{ o}})^2 = argmax \sum_{(ec{x^{ o}}_i \epsilon p_k)} (rac{max_w CC_w(ec{x^{ o}}_i, ec{c^{ o}})}{\sqrt{R_0(ec{x^{ o}}_i, ec{x^{ o}}_i)}})^2$$

迭代更新



➤ 延迟感知特征转换(Delay-aware Feature Transformation, DFT)模块

K-shape聚类算法









#### ▶ 算法描述: Output Layer

$$\hat{\mathcal{X}} = Conv_2(Conv_1(\mathcal{X}_{hid}) \in \mathbb{R}^{T' imes N imes C}$$

## 04 数据集

| Datasets | #Nodes       | #Edges | #Timesteps | #Time Interval | Time range            |
|----------|--------------|--------|------------|----------------|-----------------------|
| PeMS04   | 307          | 340    | 16992      | 5min           | 01/01/2018-02/28/2018 |
| PeMS07   | 883          | 866    | 28224      | 5min           | 05/01/2017-08/31/2017 |
| PeMS08   | 170          | 295    | 17856      | 5min           | 07/01/2016-08/31/2016 |
| NYCTaxi  | 75 (15x5)    | 484    | 17520      | 30min          | 01/01/2014-12/31/2014 |
| CHIBike  | 270 (15x18)  | 1966   | 4416       | 30min          | 07/01/2020-09/30/2020 |
| T-Drive  | 1024 (32x32) | 7812   | 3600       | 60min          | 02/01/2015-06/30/2015 |

# 05 🔷 实验结果1

|          |        | PeMS04  |        |         | PeMS07  |         | PeMS08 |         |        |  |
|----------|--------|---------|--------|---------|---------|---------|--------|---------|--------|--|
| Model    | MAE    | MAPE(%) | RMSE   | MAE     | MAPE(%) | RMSE    | MAE    | MAPE(%) | RMSE   |  |
| VAR      | 23.750 | 18.090  | 36.660 | 101.200 | 39.690  | 155.140 | 22.320 | 14.470  | 33.830 |  |
| SVR      | 28.660 | 19.150  | 44.590 | 32.970  | 15.430  | 50.150  | 23.250 | 14.710  | 36.150 |  |
| DCRNN    | 22.737 | 14.751  | 36.575 | 23.634  | 12.281  | 36.514  | 18.185 | 11.235  | 28.176 |  |
| STGCN    | 21.758 | 13.874  | 34.769 | 22.898  | 11.983  | 35.440  | 17.838 | 11.211  | 27.122 |  |
| GWNET    | 19.358 | 13.301  | 31.719 | 21.221  | 9.075   | 34.117  | 15.063 | 9.514   | 24.855 |  |
| MTGNN    | 19.076 | 12.961  | 31.564 | 20.824  | 9.032   | 34.087  | 15.396 | 10.170  | 24.934 |  |
| STSGCN   | 21.185 | 13.882  | 33.649 | 24.264  | 10.204  | 39.034  | 17.133 | 10.961  | 26.785 |  |
| STFGNN   | 19.830 | 13.021  | 31.870 | 22.072  | 9.212   | 35.805  | 16.636 | 10.547  | 26.206 |  |
| STGODE   | 20.849 | 13.781  | 32.825 | 22.976  | 10.142  | 36.190  | 16.819 | 10.623  | 26.240 |  |
| STGNCDE  | 19.211 | 12.772  | 31.088 | 20.620  | 8.864   | 34.036  | 15.455 | 9.921   | 24.813 |  |
| STTN     | 19.478 | 13.631  | 31.910 | 21.344  | 9.932   | 34.588  | 15.482 | 10.341  | 24.965 |  |
| GMAN     | 19.139 | 13.192  | 31.601 | 20.967  | 9.052   | 34.097  | 15.307 | 10.134  | 24.915 |  |
| TFormer  | 18.916 | 12.711  | 31.349 | 20.754  | 8.972   | 34.062  | 15.192 | 9.925   | 24.883 |  |
| ASTGNN   | 18.601 | 12.630  | 31.028 | 20.616  | 8.861   | 34.017  | 14.974 | 9.489   | 24.710 |  |
| PDFormer | 18.321 | 12.103  | 29.965 | 19.832  | 8.529   | 32.870  | 13.583 | 9.046   | 23.505 |  |



| Datasets | NYCTaxi |         |        |        |         |        | T-Drive |               |        |        | CHIBike |        |       |         |       |       |         |       |
|----------|---------|---------|--------|--------|---------|--------|---------|---------------|--------|--------|---------|--------|-------|---------|-------|-------|---------|-------|
| Metrics  |         | inflow  |        |        | outflow |        |         | inflow        |        |        | outflow |        |       | inflow  |       |       | outflow |       |
| Models   | MAE     | MAPE(%) | RMSE   | MAE    | MAPE(%) | RMSE   | MAE     | MAPE(%)       | RMSE   | MAE    | MAPE(%) | RMSE   | MAE   | MAPE(%) | RMSE  | MAE   | MAPE(%) | RMSE  |
| STResNet | 14.492  | 14.543  | 24.050 | 12.798 | 14.368  | 20.633 | 19.636  | 17.831        | 34.890 | 19.616 | 18.502  | 34.597 | 4.767 | 31.382  | 6.703 | 4.627 | 30.571  | 6.559 |
| DMVSTNet | 14.377  | 14.314  | 23.734 | 12.566 | 14.318  | 20.409 | 19.599  | 17.683        | 34.478 | 19.531 | 17.621  | 34.303 | 4.687 | 32.113  | 6.635 | 4.594 | 31.313  | 6.455 |
| DSAN     | 14.287  | 14.208  | 23.585 | 12.462 | 14.272  | 20.294 | 19.384  | 17.465        | 34.314 | 19.290 | 17.379  | 34.267 | 4.612 | 31.621  | 6.695 | 4.495 | 31.256  | 6.367 |
| DCRNN    | 14.421  | 14.353  | 23.876 | 12.828 | 14.344  | 20.067 | 22.121  | 17.750        | 38.654 | 21.755 | 17.382  | 38.168 | 4.236 | 31.264  | 5.992 | 4.211 | 30.822  | 5.824 |
| STGCN    | 14.377  | 14.217  | 23.860 | 12.547 | 14.095  | 19.962 | 21.373  | 17.539        | 38.052 | 20.913 | 16.984  | 37.619 | 4.212 | 31.224  | 5.954 | 4.148 | 30.782  | 5.779 |
| GWNET    | 14.310  | 14.198  | 23.799 | 12.282 | 13.685  | 19.616 | 19.556  | 17.187        | 36.159 | 19.550 | 15.933  | 36.198 | 4.151 | 31.153  | 5.917 | 4.101 | 30.690  | 5.694 |
| MTGNN    | 14.194  | 13.984  | 23.663 | 12.272 | 13.652  | 19.563 | 18.982  | 17.056        | 35.386 | 18.929 | 15.762  | 35.992 | 4.112 | 31.148  | 5.807 | 4.086 | 30.561  | 5.669 |
| STSGCN   | 15.604  | 15.203  | 26.191 | 13.233 | 14.698  | 21.653 | 23.825  | 18.547        | 41.188 | 24.287 | 19.041  | 42.255 | 4.256 | 32.991  | 5.941 | 4.265 | 32.612  | 5.879 |
| STFGNN   | 15.336  | 14.869  | 26.112 | 13.178 | 14.584  | 21.627 | 22.144  | 18.094        | 40.071 | 22.876 | 18.987  | 41.037 | 4.234 | 32.222  | 5.933 | 4.264 | 32.321  | 5.875 |
| STGODE   | 14.621  | 14.793  | 25.444 | 12.834 | 14.398  | 20.205 | 21.515  | 17.579        | 38.215 | 22.703 | 18.509  | 40.282 | 4.169 | 31.165  | 5.921 | 4.125 | 30.726  | 5.698 |
| STGNCDE  | 14.281  | 14.171  | 23.742 | 12.276 | 13.681  | 19.608 | 19.347  | 17.134        | 36.093 | 19.230 | 15.873  | 36.143 | 4.123 | 31.151  | 5.913 | 4.094 | 30.595  | 5.678 |
| STTN     | 14.359  | 14.206  | 23.841 | 12.373 | 13.762  | 19.827 | 20.583  | 17.327        | 37.220 | 20.443 | 15.992  | 37.067 | 4.160 | 31.208  | 5.932 | 4.118 | 30.704  | 5.723 |
| GMAN     | 14.267  | 14.114  | 23.728 | 12.273 | 13.672  | 19.594 | 19.244  | 17.110        | 35.986 | 18.964 | 15.788  | 36.120 | 4.115 | 31.150  | 5.910 | 4.090 | 30.662  | 5.675 |
| TFormer  | 13.995  | 13.912  | 23.487 | 12.211 | 13.611  | 19.522 | 18.823  | 16.910        | 34.470 | 18.883 | 15.674  | 35.219 | 4.071 | 31.141  | 5.878 | 4.037 | 30.647  | 5.638 |
| ASTGNN   | 13.844  | 13.692  | 23.177 | 12.112 | 13.602  | 19.201 | 18.798  | <u>16.101</u> | 33.870 | 18.790 | 15.584  | 33.998 | 4.068 | 31.131  | 5.818 | 3.981 | 30.617  | 5.609 |
| PDFormer | 13.152  | 12.743  | 21.957 | 11.575 | 12.820  | 18.394 | 17.832  | 14.711        | 31.606 | 17.743 | 14.649  | 31.501 | 3.950 | 30.214  | 5.559 | 3.837 | 29.914  | 5.402 |

## 05 🔷 消融实验



| Dataset         | PeM      | 1S04      | NYO      | CTaxi     |  |  |
|-----------------|----------|-----------|----------|-----------|--|--|
| Model           | Training | Inference | Training | Inference |  |  |
| GMAN            | 501.578  | 38.844    | 130.672  | 4.256     |  |  |
| ASTGNN          | 208.724  | 52.016    | 119.092  | 4.601     |  |  |
| <b>PDFormer</b> | 133.871  | 8.120     | 85.305   | 2.734     |  |  |
| STTN            | 100.398  | 12.596    | 68.036   | 2.650     |  |  |
| TFormer         | 71.099   | 7.156     | 76.169   | 2.575     |  |  |





## 谢谢观看

MANY THANKS!

23.3.2

