IPv4 Subnetting – Sections

Section 1: Analyzing Individual Subnets

Section 2: Converting Subnet Masks

Section 3: Analyzing IP Networks

Section 4: Identifying the Subnets of a Network

Section 5: Analyzing Designs Using Masks

Section 6: Subnetting and the Exam

IPv4 Subnetting – Section 3

Understanding the IPv4 Address Space

* Finding Facts about IP Networks

In This Lesson...

Understanding the IPv4 Address Space

- IP Networks Vs. IP Subnets
- Public IP Networks
- IPv4 Address Classes
- Private IP Networks
- CIDR Blocks
- Summary and Terms

Defining "IPv4 Subnet": Noun

1. A Predictable Set of Consecutive Numbers

A. **Subnet ID**: The Lowest Number in the Subnet

B. Address Range: The Numbers in Between

C. **Subnet Broadcast Address**: The Highest Number in the Subnet

2. A Set with a Small Set of Predictable Sizes that are Powers of 2

A. Theoretical Size: 2^H (H is Based on the Subnet Mask)

B. Two Reserved Numbers: (Subnet ID, Subnet Broadcast Address)

C. Usable Size: $2^{H} - 2$

3. A Subset of an IP Network

Defining "IPv4 Network": Noun

1. A Predictable Set of Consecutive Numbers

A. **Network ID**: The Lowest Number in the **Network**

B. Address Range: The Numbers in Between

C. **Network Broadcast Address**: The Highest Number in the **Network**

2. A Set with Three Specific Predictable Sizes

A. Theoretical Sizes: 28, or 216, or 224

B. Two Reserved Numbers: Network ID, Network Broadcast Address

C. Usable Sizes: $2^8 - 2$, or $2^{16} - 2$, or $2^{24} - 2$

3. Usable as:

A. Use Like a Subnet, as One Set of Addresses

B. Subdivide into Smaller Subsets to Create Subnets

Some Example IPv4 Networks

- 1.0.0.0 255.0.0.0 All Addresses that Begin with 1
- 2.0.0.0 255.0.0.0 All Addresses that Begin with 2
- 3.0.0.0 255.0.0.0 All Addresses that Begin with 3
- 4.0.0.0 255.0.0.0 All Addresses that Begin with 4
- 5.0.0.0 255.0.0.0 All Addresses that Begin with 5

Using A Network in a Topology

- VLAN
- Serial Link
- Ethernet WAN

Topology: One VLAN, One Network

Topology: Two VLANs, Two Network

Three VLANs and Two WAN Links

Example Routing Table with Network 1.0.0.0

R1 Routing Table

Network	Interface	Next Hop	
1.0.0.0	SerialO/1/1	2.2.2.2	

The 2²⁴ DDN Numbers in Network 1.0.0.0

```
1. 0. 0. 1
  0. 0.
  0. 0.
  0. 0. 4
  0. 0.
1. 0. 0. 7
  0. 0. 8
  0. 0. 10
   0. 0.249
  0. 0.250
   0. 0.251
  0. 0.252
1. 0. 0.253
  0. 0.254
```

0. 0.255

```
2<sup>24</sup> DDN Numbers
Begin with 1:
16,777,216
```

```
1,255,255.
1,255,255.
1,255,255,
1.255.255.
1,255,255,
1,255,255.
1.255.255.
1,255,255,
1.255.255.
1,255,255, 9
1.255.255. 10
1,255,255,249
1.255.255.250
1,255,255,251
1,255,255,252
1.255.255.253
1,255,255,254
1.255.255.255
```

Patterns: 2¹⁶ Subnets of 2⁸ Addresses

```
1.254. 0.__
                                                        1.255. 0.
          1. 1. 0.__ 1. 2. 0.__
                                            1.254. 1.
                                                        1.255. 1.__
1. 0. 1. 1. 1. 1. 1. 2. 1.
                                            1.254. 2.__
                                                        1.255. 2.
1. 0. 2.__ 1. 1. 2.__ 1. 2. 2.__
                                            1.254. 3.__
                                                        1.255. 3.__
1. 0. 3.__
           1. 1. 3.__
                       1. 2. 3.__
                                            1.254. 4.__
                                                        1.255. 4.
1. 0. 4.
           1. 1. 4. 1. 2. 4.
                                            1.254. 5.
                                                        1.255. 5.
1. 0. 5. 1. 1. 5. 1. 2. 5.
                                            1.254. 6.__
                                                        1.255. 6.
                       1. 2. 6.__
1. 0. 6.__ 1. 1. 6.__
                                            1.254. 7.__
                                                        1.255. 7.
1. 0. 7.__
           1. 1. 7.__ 1. 2. 7.__
                                            1.254. 8.__
                                                        1.255. 8.__
1. 0. 8.__ 1. 1. 8.__ 1. 2. 8.__
                                            1.254. 9.
                                                        1.255. 9.
1. 0. 9.
         1. 1. 9.
                       1. 2. 9.__
                                            1.254. 10.
                                                        1.255. 10.__
1. 0. 10. 1. 1. 10. 1. 2. 10.
                                            1.254.249.
                                                        1.255.249.
1. 0.249. 1. 1.249.
                       1. 2.249.
                                            1.254.250.
                                                        1.255.250.
1. 0.250.
           1. 1.250.
                       1. 2.250.
                                            1.254.251.
                                                        1.255.251.
1. 0.251. 1. 1.251. 1. 2.251.
                                            1.254.252.
                                                        1.255.252.
1. 0.252. 1. 1.252. 1. 2.252.
                                            1.254.253.
                                                        1.255.253.
1. 0.253. 1. 1.253. 1. 2.253.
                                            1.254.254.
                                                        1.255.254.
1. 0.254. 1. 1.254. 1. 2.254.
                                            1.254.255.
                                                        1.255.255.
1. 0.255. 1. 1.255. 1. 2.255.
```

Three Starting Points for an Enterprise

- A Public IP Network
- A Private IP Network
- A CIDR Block (a Subset of a Public Network)

In This Lesson...

Understanding the IPv4 Address Space

- IP Networks Vs. IP Subnets
- Public IP Networks
- IPv4 Address Classes
- Private IP Networks
- CIDR Blocks
- Summary and Terms

Original Plan: Unique Networks for All

Public Network Assignments

Internet Assigned Numbers Authority (IANA)

https://www.iana.org

Regional Registries:

- AFRINIC Africa
- APNIC Asia/Pacific
- ARIN North America
- LACNIC Latin/South America
- RIPE NCC Europe, Middle East, Central Asia

ISPs

Subnetting Inside Each Company

In This Lesson...

Understanding the IPv4 Address Space

- IP Networks Vs. IP Subnets
- Public IP Networks
- IPv4 Address Classes
- Private IP Networks
- CIDR Blocks
- Summary and Terms

Breaking Down the IPv4 Address Space

Breaking Down the IPv4 Address Space

IPv4 Address Class

Class	First Octet Values	Purpose
Α	1 – 126*	Unicast (large networks)
В	128 – 191	Unicast (medium-sized networks)
С	192 – 223	Unicast (small networks)
D	224 – 239	Multicast
E	240 – 255	Reserved (formerly experimental)

^{*} First Octet of 0 or 127: Reserved for Special Uses

Class A Example: Address Identifies Class

Class A Example: 8.4.1.1

Class A Example: Network ID and Broadcast

The Default Mask for Class A Networks

Key Facts about Each Class A Network

Class	# Octets Equal for All Addresses	Octets	Host Octets		Hosts Per Network (2 ^H – 2)
А	1	1	3	24	16,777,214

Class B Example: Address Identifies Class

Class B Example: 130.4.1.1

Class B Example: Network ID and Broadcast

The Default Mask for Class B Networks

Sizes Per Class

Class	# Octets Equal for All Addresses	Network Octets	Host Octets	Host Bits	Hosts Per Network (2 ^H – 2)
Α	1	1	3	24	16,777,214
В	2	2	2	16	65,534

Class C Example: Address Identifies Class

Class C Example: 199.1.1.1

Class B Example: Network and Broadcast

Class C Networks and Default Mask

Sizes Per Class

Class	# Octets Equal for All Addresses	Network Octets	Host Octets	Host Bits	Hosts Per Network (2 ^H – 2)
А	1	1	3	24	16,777,214
В	2	2	2	16	65,534
С	3	3	1	8	254

In This Lesson...

Addressing, Routing, and IP Networks

- IP Networks Vs. IP Subnets
- Public IP Networks
- IPv4 Address Classes
- Private IP Networks
- CIDR Blocks
- Summary and Terms

Original Plan: Unique Networks for All

Revised Plan: Choose Privates for Internal Use

NAT Basics: Translating Private to Public

Enterprise: Network 10.0.0.0

Internet: Requires Public Addresses

Small Set of Public Addresses Available: 200.1.1.0 – 200.1.1.3

NAT Basics: Translating Private to Public

Enterprise: Network 10.0.0.0 Internet: Requires Public Addresses www.cisco.com Client NAT Internet Private 10.1.1.1 170.1.1.1 Source Source Destination Destination 10.1.1.1 170.1.1.1 200.1.1.1 170.1.1.1 **NAT Changes**

Private Network + 1 Public Class C Network

Private IP Networks

Class of Networks		Number of Networks
Α	10.0.0.0	1
В	172.16.0.0 through 171.31.0.0	16
С	192.168.0.0 through 192.168.255.0	256

16 Private Class B Networks

```
172.16.0.0
              172.24.0.0
172.17.0.0
              172.25.0.0
172.18.0.0
              172.26.0.0
172.19.0.0
              172.27.0.0
172.20.0.0
              172.28.0.0
172.21.0.0
              172.29.0.0
172.22.0.0
              172.30.0.0
172.23.0.0
              172.31.0.0
```


256 Private Class C Networks

192.168.0.0	192.168.12.0	192.168.24.0	192.168.244.0
192.168.1.0	192.168.13.0	192.168.25.0	192.168.245.0
192.168.2.0	192.168.14.0	192.168.26.0	192.168.246.0
192.168.3.0	192.168.15.0	192.168.27.0	192.168.247.0
192.168.4.0	192.168.16.0	192.168.28.0	192.168.248.0
192.168.5.0	192.168.17.0	192.168.29.0	192.168.249.0
192.168.6.0	192.168.18.0	192.168.30.0	 192.168.250.0
192.168.7.0	192.168.19.0	192.168.31.0	192.168.251.0
192.168.8.0	192.168.20.0	192.168.32.0	192.168.252.0
192.168.9.0	192.168.21.0	192.168.33.0	192.168.253.0
192.168.10.0	192.168.22.0	192.168.34.0	192.168.254.0
192.168.11.0	192.168.23.0	192.168.35.0	192.168.255.0

In This Lesson...

Addressing, Routing, and IP Networks

- IP Networks Vs. IP Subnets
- Public IP Networks
- IPv4 Address Classes
- Private IP Networks
- CIDR Blocks
- Summary and Terms

Original Plan: Wasteful, Limited

Class A, B: Many Addresses Unused

Inflexible: 3 Sizes Only

Class	# Octets Equal for All Addresses	Network Octets	Host Octets	Host Bits	Hosts Per Network (2 ^H – 2)
Α	1	1	3	24	16,777,214
В	2	2	2	16	65,534
С	3	3	1	8	254

Private w/ NAT: Also Wasteful

Example: CIDR Blocks, Size 8 Each

CIDR Block Terminology

Classless Interdomain Routing (CIDR) Block

- Public Address Block
- "Classless": Not a Class A, B, or C Network; Usually Smaller
- Allocates Only the Smallest Block to Meet the Need, Saving Addresses

Private Classful + Small Public CIDR Block

In This Lesson...

Addressing, Routing, and IP Networks

- IP Networks Vs. IP Subnets
- Public IP Networks
- IPv4 Address Classes
- Private IP Networks
- CIDR Blocks
- Summary and Terms

Options for Enterprise IPv4 Addresses

Public Network

- IANA etc. Allocates Most of Address Space as Public (Unique in Universe)
- Original Plan: Ask and Receive a Public Classful Network
- Last 20 Years: Use Private, NAT, CIDR

Private Network

- IANA Reserves Some Classful Networks for Special Purposes
- Private Networks: For Use Within an Organization
- Private Networks + NAT: Clients Can Communicate to Internet

Classless Interdomain Routing (CIDR) Block

- Public Address Block
- Sizes are Any 2^H, so Less Waste
- Normally Relies on Also Using Private Network and NAT

Terms from this Topic

Networks:

Network ID

Network Number (Synonym)

Network Address (Synonym)

Network Broadcast Address

Masks:

Mask

Subnet Mask

Prefix Length

Prefix Bits

Network Bits

Host Bits

Address Groups:

Address Block

Private IP Network

Public IP Network

CIDR Block

Miscellaneous

Classless Interdomain Routing (CIDR)

IPv4 Subnetting – Sections

Section 1: Analyzing Individual Subnets

Section 2: Converting Subnet Masks

Section 3: Analyzing IP Networks

Section 4: Identifying the Subnets of a Network

Section 5: Analyzing Designs Using Masks

Section 6: Subnetting and the Exam

IPv4 Subnetting – Section 3

Understanding the IPv4 Address Space

* Finding Facts about IP Networks

In This Lesson...

Analyzing Classful IPv4 Networks

- The Process: Finding Facts about a Network
- Another Process: Calculating Facts about a Network
- Learning Stages and Practice

Process 1: Finding Basic Facts about a Network

1. Determine the Class

- A. Class A: 1st Octet 1 126
- B. Class B: 1st Octet 128 191
- C. Class C: 1st Octet 192 223

2. Record the Number of Network and Host Octets (Classes A, B, C)

- A. Class A: 1 Network, 3 Host
- B. Class B: 2 Network, 2 Host
- C. Class C: 3 Network, 1 Host

3. Record the Default Mask

- A. Class A: 255.0.0.0
- B. Class B: 255.255.0.0
- C. Class C: 255.255.255.0

Determine Class Based on First Octet Values

Range of First Octet (Inclusive)	Class	# Network Octets	# Host Octets	Default Mask
1126*	Α	1	3	255.0.0.0
128191	В	2	2	255.255.0.0
192223	С	3	1	255.255.255.0
224239	D	N/A	N/A	N/A
240255	E	N/A	N/A	N/A

^{*} First Octet of 0 or 127: Reserved for Special Uses

Size of Network and Host Fields – No Subnetting

In Class Discussion Examples

Problem Number	IP Address	Class	# Network Octets	# Host Octets	Default Mask
1	10.1.2.3				
2	172.20.1.1				
3	200.3.4.5				
4	227.3.4.5				
5	241.5.4.3				

In Class Discussion Examples

Problem Number	IP Address	Class	# Network Octets	# Host Octets	Default Mask
1	10.1.2.3	Α	1	3	255.0.0.0
2	172.20.1.1	В	2	2	255.255.0.0
3	200.3.4.5	С	3	1	255.255.255.0
4	227.3.4.5	D	N/A	N/A	N/A
5	241.5.4.3	E	N/A	N/A	N/A

In This Lesson...

Analyzing Classful IPv4 Networks

- The Process: Finding Facts about a Network
- Another Process: Calculating Facts about a Network
- Learning Stages and Practice

Process 2: Calculating Classful Network Facts

1. Set up the Problem on Paper

- A. Write: Mask Above, Address Below, Column Aligned
- B. Leave Space for: Network ID, Network Broadcast Address, Two More Values

2. For Each Column, If Mask = 255:

- A. Copy Address Octets(s) to Network ID
- B. Copy Address Octets(s) to Network Broadcast Address

For Each Column, If Mask = 0:

- A. Write 0s in the Network ID
- B. Write 255s in Network Broadcast Address

4. To Find the Range of Addresses:

- A. In 4th Octet, Network ID: +1
- B. In 4th Octet, Broadcast: -1

Example Question 1

Problem Number	IP Address	Network ID	First Address	Last Address	Network Broadcast Address
1	10.1.2.3				
2	172.20.1.1				
3	200.3.4.5				
4	227.3.4.5				
5	241.5.4.3				

- 1. Set up the Problem on Paper
 - A. Mask Above, Address Below, Column Aligned
 - B. Space for: Network ID, Broadcast, +2

- 2. If Mask = 255:
 - A. Copy Address Octet(s) to Network ID
 - B. Copy Address Octet(s) to Broadcast Address
- 255. 0. 0. 0 Default Mask10. 1. 2. 3 Address
 - Network ID

10. . .

Broadcast

- 3. If Mask = 0:
 - A. Write 0s in the Network ID
 - B. Write 255s in Network Broadcast Address

B B B
10. 255. 255. 255

Broadcast

Range of Addresses in the Network

4. To Find the Range of Addresses in the Network:

A. In 4th Octet, Network ID: +1

B. In 4th Octet, Broadcast: -1

```
255.
                        Default Mask
      0. 0.
 10.
                        Address
 10.
       0.
                        Network ID
                        First Address
 10. 255. 255. 254
                        Last Address
 10. 255. 255. 255
                        Broadcast
```


Example Question 2

Problem Number	IP Address	Network ID	First Address	Last Address	Network Broadcast Address
1	10.1.2.3	10.0.0.0	10.0.0.1	10.255.255.254	10.255.255.255
2	172.20.1.1				
3	200.3.4.5				

- 1. Set up the Problem on Paper
 - A. Mask Above, Address Below, Column Aligned
 - B. Space for: Network ID, Broadcast, +2

- 2. If Mask = 255:
 - A. Copy Address Octet(s) to Network ID
 - B. Copy Address Octet(s) to Broadcast Address

```
255. 255. 0. 0 Default Mask172. 20. 1. 1 Address
```


172. 20 . .

Broadcast

- 3. If Mask = 0:
 - A. Write 0s in the Network ID
 - B. Write 255s in Network Broadcast Address

255. 255.	0.	0	Default Mask
172. 20.	2.	3	Address

172. 20. Network ID

172. 20. **255. 255**

Range of Addresses in the Network

4. To Find the Range of Addresses in the Network:

A. In 4th Octet, Network ID: +1

B. In 4th Octet, Broadcast: -1

```
255. 255. 0.
                       Default Mask
172. 20. 1.
                       Address
172.
      20.
                       Network ID
172. 20.
                       First Address
172. 20. 255. 254
                       Last Address
172. 20. 255. 255
                       Broadcast
```


Example Question 3

Problem Number	IP Address	Network ID	First Address	Last Address	Network Broadcast Address
1	10.1.2.3	10.0.0.0	10.0.0.1	10.255.255.254	10.255.255.255
2	172.20.1.1	172.20.0.0	172.20.0.1	172.20.255.254	172.20.255.255
3	200.3.4.5				

- 1. Set up the Problem on Paper
 - A. Mask Above, Address Below, Column Aligned
 - B. Space for: Network ID, Broadcast, +2

- 2. If Mask = 255:
 - A. Copy Address Octet(s) to Network ID
 - B. Copy Address Octet(s) to Broadcast Address

```
255. 255. 255. 0 Default Mask200. 3. 4. 5 Address
```


Broadcast

- 3. If Mask = 0:
 - A. Write 0s in the Network ID
 - B. Write 255s in Network Broadcast Address

255.	255.	255.	0	Default Mask
200.	3.	4.	5	Address

200. 3. 4. 255 Broadcast

Range of Addresses in the Network

4. To Find the Range of Addresses in the Network:

A. In 4th Octet, Network ID: +1

B. In 4th Octet, Broadcast: -1

```
255, 255, 255,
                       Default Mask
200 . 3.
                       Address
200.
       3.
                       Network ID
    3. 4.
200.
                       First Address
    3. 4. 254
200.
                       Last Address
200.
                       Broadcast
```


Example Question 3

Problem Number	IP Address	Network ID	First Address	Last Address	Network Broadcast Address
1	10.1.2.3	10.0.0.0	10.0.0.1	10.255.255.254	10.255.255.255
2	172.20.1.1	172.20.0.0	172.20.0.1	172.20.255.254	172.20.255.255
3	200.3.4.5	200.3.4.0	200.3.4.1	200.3.4.254	200.3.4.255

In This Lesson...

Analyzing Classful IPv4 Networks

- The Process: Finding Facts about a Network
- Another Process: Calculating Facts about a Network
- Learning Stages and Practice

Stages

Stage	Primary Study Goal	Have You Understood and Memorized Ideas and Processes?	Do You Get 100% Correct?	Do You Go Fast?
1	Learning	No		
2	Perfecting	Yes	No	
3	Accelerating	Yes	Yes	No
4	Completed	Yes	Yes	Yes

Stage 1 (Learn) Advice for This Exercise

Approach to the Exercises:

- 1. Use Notes/Examples
- 2. Check Answer if Unsure
- 3. Investigate Mistakes
- 4. Ask Instructor to Work the Problem!

Graduate to Stage 2 Now if:

1. Could Hide All Notes and Still Answer!

Stage 2 (Perfect) Advice for This Exercise

Approach to the Exercises:

- No Notes
- 2. Take Your Time
- 3. Complete a Question Set before Checking Answers

Graduate to Stage 3 Now if:

1. 100% Correct on Two Sets

Stage 3 (Accelerate) Advice for this Exercise

Study Approach:

- 1. Each Time Trial:
 - A. Write Pre-exam Notes
 - B. Set a Per-item Time Goal
 - C. Start Clock
 - D. Complete the Entire Question Set
 - E. Compare your Speed to Time Goal

Graduate to Stage 4 Now if:

1. Don't! For now, keep practicing for speed.

Speed Goals for CCNA Exam

Subnetting Processes	Book Speed Goals	Your Speed Goal	Your Current Speed	Your Current Stage
Find Classful Network Facts *	10			
Convert Mask Formats *	10			
Find Subnet Facts	30			
Interpret Design w/ Mask	15			
Choose One Mask	15			
Find All Subnet IDs *	45			

^{*} These Time Estimates Do Not Include the Time to Write/Type the Answers

Practice!

Exercises for:

"Calculate Classful Network Facts"

Come Back to Class!

Exercises for:

"Calculate Classful Network Facts"

Time Finished!

IPv4 Subnetting – Sections

Section 1: Analyzing Individual Subnets

Section 2: Converting Subnet Masks

Section 3: Analyzing IP Networks

Section 4: Identifying the Subnets of a Network

Section 5: Analyzing Designs Using Masks

Section 6: Subnetting and the Exam

Tomorrow's Schedule!

- First 20 Minutes: Office Hours!
 - I'll Answer Questions about Day 1!
 - NO NEW MATERIAL!
- 20 Minutes After the Hour: Lecture Begins!
 - New Material!

Course Outline

Day 1

Section 1: Analyzing Existing Subnets

Section 2: Converting Subnet Masks

Section 3: Analyzing IP Networks

Day 2

Office Hours (QA for the First 20 Minutes)

Section 4: Finding All Subnets in a Network

Section 5: Analyzing Designs Using Masks

Section 6: Subnetting and the Exam

Self-Evaluation Time!

Subnetting Processes	Book Speed Goals	Your Speed Goal	Your Current Speed	Your Stage Goal During Class	Your Current Stage
Find Classful Network Facts *	10				
Convert Mask Formats *	10				
Find Subnet Facts	30				
Interpret Design w/ Mask	15				
Choose One Mask	15				
Find All Subnet IDs *	45				

^{*} These Time Estimates Do Not Include the Time to Write/Type the Answers

Homework (Optional): Work the Problems

- I will Re-Paste Today's Practice Problem Links So You Can Find Them!
- Complete Today's Practice Problems if You Didn't Finish!

Homework/Practice: Cert Guide

- ICND1 Official Cert Guide
 - Part of Safari
 - Many Practice Questions
 - Lighter Colors in the Table

Book Element	Types of Problems
Appendix D	Find Classful Facts
Appendix E	Convert Masks
Appendix E	Interpret Masks
Appendix F	Find Subnet Facts
Appendix G	Choose Masks
Appendix G	Find All Subnets
Appendix H	VLSM

Homework/Practice: Wendell's Blog

- Wendell's CCENT Skills Blog
 - blog.certskills.com/ccent
 - Look in "Questions" Tab.

Click "Questions"

Homework/Practice: Build Your Own

- Use Any Subnetting Calculator
 - Windows: Solarwinds Subnetting Calculator
 - Linux/Mac: ipcalc command-line tool
 - Look in "Questions" Tab

```
Wendell-Odoms-iMac:~ wendellodom$ ipcalc -b 192.168.1.55/27
Address: 192.168.1.55
Netmask: 255.255.255.224 = 27
Wildcard: 0.0.0.31
=>
Network: 192.168.1.32/27
HostMin: 192.168.1.33
HostMax: 192.168.1.62
Broadcast: 192.168.1.63
Hosts/Net: 30 Class C, Private Internet
```

