JEE Main 27 Jan 2024 (Shift-2) (Memory Based)

The Actual Paper will be Updated with Solution After the Official Release

JEE (MAIN) 2024 DATE-27/01/2024 (SHIFT-2)

PHYSICS

1. An equation of real gas
$$\left(p - \frac{a}{V^2}\right)(V - b) = RT$$

then dimension of $\left(\frac{a}{h^2}\right)$ is

P: Pressure

V = Volume

R = Gas constant

T = Temperature

$$(1) [ML^{-1}T^{-2}]$$

(2) $[MLT^{-2}]$

(3) $[ML^2T^{-2}]$ (4) $[MLT^{-1}]$

(1) Ans.

Sol. Basic theory

2. **Assertion:** There can be positive zero error in vernier calliper.

Reason: Due to mishandling or rough handling of instrument

- (1) Assertion true, reason true and reason is correct explanation of assertion
- (2) Assertion true, reason true and reason is not correct explanation of assertion
- (3) Assertion true, reason false
- (4) Assertion false, reason true

Ans. **(1)**

In a RLC series circuit R = 10Ω , L = $\frac{100}{\pi}$ mH, C = $\frac{10^{-3}}{\pi}$ F and frequency is 50 Hz. Find power factor. 3.

Ans.

Sol.
$$X_L = \frac{100}{\pi} \times 2\pi \times 50 \times 10^{-3} = 10\Omega$$

$$\mathbf{X}_{\mathrm{C}} = \frac{1}{2\pi \times 50 \times \frac{10^{-3}}{\pi}} = 10\Omega$$

$$X_L = X_C$$

$$\cos\phi = 1$$

4. A stone is released and while free-fall stone covers 80 m distance in last 2 sec. Find distance of point A from top most point.

Ans. 45

Sol.

$$S = ut + \frac{1}{2}gt^{2}$$

$$A \qquad t = t$$

$$80m$$

$$B \qquad t' = t + 2$$

$$5 (t+2)^2 - 5t^2 = 80 \Rightarrow t = 3\sec t$$

$$S_A = 0 + \frac{1}{2} \times 10 \times 3^2 = 45m$$

- 5. A person is standing on horizontal ground. A rod of mass 12 kg is touching a shoulder of person and other end is resting on ground. Angle made by rod with horizontal is 60°. Reaction force applied by person on rod is
 - (1) 60 N
- (2) 30 N
- (3) 90 N
- (4) 120 N

Ans. (2)

Sol.

Taking torque about N₁.

$$mg.\frac{\ell}{2} \cos 60^{\circ} = N_2.\ell$$

$$N_2 = 30 \text{ N}$$

Point 'B' is at highest point of trajectory of object. Magnitude of acceleration at 'A' and 'B' is equal. Find the 6. angle ' θ ' as shown.

- $(1) 2 \tan^{-1}(1/2)$
- $(2) \tan^{-1}(1/2)$
- $(3) \tan^{-1}(1/4)$
- $(4) \tan^{-1}(2)$

Ans. **(1)**

Sol. Apply work energy theorem

$$mg\ell(1-cos\theta) = \frac{1}{2} \ m \ v_0^2$$

$$\frac{\mathbf{v}_0^2}{\ell} = 4g\sin^2\left(\frac{\theta}{2}\right) \qquad \dots (1)$$

$$g\sin\theta = \frac{\mathbf{v}_0^2}{\ell} \qquad \dots(2)$$

$$\tan\left(\frac{\theta}{\ell}\right) = \frac{1}{\ell}$$

$$\tan\left(\frac{\theta}{2}\right) = \frac{1}{2}$$

$$\theta = 2\tan^{-1}\left(\frac{1}{2}\right)$$

In an adiabatic process, pressure is proportional to cube of temperature. Find the ratio C_p/C_v . 7.

Ans.

Sol.
$$PT^{\gamma/1-\gamma} = constant$$

$$P \propto T^3$$

$$PT^{-3} = C$$

$$\frac{\gamma}{1-\gamma} = -3$$

$$\gamma = -3 + 3\gamma$$

$$2\gamma = 3$$

$$\gamma = 3/2$$

8. **Assertion:** Angular velocity of earth around sun is lesser than the angular velocity of moon about earth.

Reason: Time taken by moon revolve around earth is less than time taken by earth to revolve around sun.

- (1) Both Assertion (A) and Reason (R) are true & correct explanation of Assertion 'A'
- (2) Both 'A' and 'R' are correct but 'R' is not correct explanation of 'A'
- (3) 'A' is correct and 'R' is false
- (4) 'A' is false and 'R' is correct

Ans. **(1)**

Sol.
$$T = \frac{2\pi}{\omega}$$
 $T_{\text{earth}} = 365 \text{ days}$

$$T_{\text{moom}} = 27 \text{ days}$$

9. If wave function of a metal is 6.68eV. Find threshold frequency.

$$(1) 8 \times 10^{15} \text{ Hz}$$

(2)
$$1.6 \times 10^{15} \,\text{Hz}$$
 (3) $10 \times 10^{15} \,\text{Hz}$

(3)
$$10 \times 10^{15} \, \text{Hz}$$

$$(4) 4 \times 10^{15} \,\mathrm{Hz}$$

(2) Ans.

Sol.
$$6.68 \times 1.6 \times 10^{-19} = 6.626 \times 10^{-34} \text{ v}_0$$

$$1.6 \times 10^{15} \text{Hz} = v_0$$

10. Find magnetic field strength at the centre of loop.

$$R_{_{1}}=\frac{\pi}{2}$$

$$R_2 = \frac{\pi}{4}$$

Ans.
$$24 \times 10^{-7}$$
 Tesla

$$B_{centre} = \frac{\mu_0(i)}{4R_1} + \frac{\mu_0 i}{4R_2}$$

$$=\frac{\mu_0 \times 4}{4} \left[\frac{1}{R_1} + \frac{1}{R_2} \right]$$

$$= \mu_0 \left[\frac{2}{\pi} + \frac{4}{\pi} \right]$$

$$=4\pi\times10^{-7}\left\lceil\frac{6}{\pi}\right\rceil$$

$$= 24 \times 10^{-7} \text{ Tesla}$$

11. Assertion: If external force is removed, then body will try to regain its actual shape, this is called elasticity.

Reason: Due to intermolecular force, this happens

- (1) Assertion True, Reason True & Reason is correct explanation of assertion
- (2) Assertion True, Reason True & Reason is not correct explanation of assertion
- (3) Assertion True, Reason false
- (4) Assertion false, Reason True

Ans. (1)

12. A bullet gets embedded in a fixed target. It is found that bullet losses $1/3^{rd}$ of its velocity in traveling 4 cm into target and losses remaining kinetic energy while traveling further $d \times 10^{-3}$ m. Find d.

Ans. 32

Sol. $v^2 = u^2 + 2ax$

$$\left(\frac{2u}{3}\right)^2 = u^2 + 2(-a)(4cm)$$
(1)

for next

$$O = \left(\frac{2u}{3}\right)^2 + 2(-a)(x)] \qquad(2)$$

using equation (i) &(ii)

$$x = 32 \times 10^{-3} \text{ m}$$

So
$$d = 32$$

- 13. 1 mole of an ideal O_2 gas is at 27°C. Find its total kinetic energy?
 - (1) 1250 J
- (2) 6250 J
- (3) 645 J
- (4) 1025 J

Sol. Kinetic Energy =
$$\frac{n}{2}$$
fRT

$$\mathbf{KE} = \frac{1}{2} \times 5 \times \frac{25}{3} \times 300$$

$$= 6250 J$$

Light of intensity I = $6 \times 10^8 \frac{W}{m^2}$ is incident on an object kept in medium of refractive index, $\mu = 3$ 14. assuming 100% absorption. Find radiation pressure (N/m²)?

Ans.

Sol. Radiation =
$$\frac{IA}{\left(\frac{hv}{\lambda}\right)} \left(\frac{h}{\lambda}\right) \frac{1}{A} = \frac{I}{v} = \frac{I}{C} \mu = \frac{6 \times 10^8 \times 3}{3 \times 10^8} = 6$$

15. A ring and a solid sphere of same mass and radius are released from same point of inclined plane. Find the ratio of their KE when they reach to bottom without slipping

- (1) 1:7
- (2) 1:3
- (3)1:5
- (4) 1 : 1

Ans. **(4)**

EC Sol.

 $mgh = k_f - k_i$

 $k_f = mgh$

so $KE_{Ring} = K.E._{solid\ sphere}$

16. Three voltmeters of different internal resistances are connected as shown in figure and a certain voltage is applied across AB. State which is true?

- (1) $V_1 + V_2 > V_3$ (2) $V_1 + V_2 \neq V_3$
- (3) $V_1 + V_2 = V_3$ (4) $V_1 + V_2 < V_3$

Ans. **(3)**

Sol. By series and parallel combination

 $\mathbf{V}_1 + \mathbf{V}_2 = \mathbf{V}_3$

Specific resistance S is given as $S = \frac{RA}{\ell}$. If length is doubled, find corresponding change in S. **17.**

- (1) S is halved
- (2) S is doubled
- (3) S is quadrupled
- (4) No change in S

(4) Ans.

18. Assertion : Static friction depends on area of contact but independent of material.

Reason: Kinetic friction is independent of area of contact but depends on material.

- (1) Assertion true, reason true and reason is correct explanation of assertion.
- (2) Assertion true, reason true and reason is not correct explanation of assertion.
- (3) Assertion true, reason false.
- (4) Assertion false, reason true.

Ans. (4)

19. Assertion : Work done by electrostatics force on an object when moved on equipotential surface is always zero.

Reason: Electric field lines falls perpendicular to the equipotential surface

- (1) Assertion true, reason true and reason is correct explanation of assertion.
- (2) Assertion true, reason true and reason is not correct explanation of assertion.
- (3) Assertion true, reason false.
- (4) Assertion false, reason true.

Ans. (1)

- Sol. Assertion is true and reason is true and correct explanation.
- **20.** A nucleus of C^{13} breaks into C^{12} and neutron. Find energy released.

Atomic mass of $C^{12} = 12.000 \text{ u}$

$$C^{13} = 13.013975 u$$

$$n = 1.008665 u$$

(1) 3.04 MeV

(2) 4.1 MeV

(3) 4.94 MeV

(4) 6 MeV

Ans. (3)

Sol. Mass defect =
$$13.013975 - (12 + 1.008665) = 0.00531 \text{ U}$$

Energy released = $0.00531 \times 931 = 4.94 \text{ MeV}$

21. For given logic circuit. The truth table will be

	A	В	Y
	0	0	0
(1)	0	1	1
	1	0	1
	1	1	1

3 Y
) 1
. 1
) 1

A	В	Y		A	В	Y
0	0	1		0	0	0
0	1	1	(3)	0	1	0
1	0	1		1	0	0
1	1	0		1	1	1

	0	0	0
(4)	0	1	1
	1	0	1
	1	1	0

 $A \mid B \mid Y$

(4) Ans.

Using Boolean algebra Sol.

$$Y = A\overline{B} + \overline{A}B$$

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

22. In a transformer, ratio of turns in primary to secondary coil is 10:1. If primary side voltage is 230 volt and frequency is 50 Hz and resistance of secondary side is 46 Ω , then find power output.

(1) Ans.

$$Sol. \qquad \frac{N_1}{N_2} = \frac{V_1}{V_2}$$

$$\frac{10}{1} = \frac{230}{V_2}$$

$$V_2 = 23 \text{ V}$$

$$P_2 = \frac{V_2^2}{R_2} = \frac{23 \times 23}{46} = \frac{23}{2} = 11.5W$$

Ans. 45

Sol.

$$I = I_0 \cos^2\!\phi \sin^2\!\phi$$

$$I_{\text{max}}$$
 at $\phi = 45^{\circ}$

24. If their fundamental frequencies are sounded together, beat frequency is 7 Hz. Find velocity (in m/s) of sound in air?

Ans. 24

$$\begin{aligned} & \textbf{Sol.} & & f_1 = \frac{v}{4\ell_1} & & f_2 = \frac{v}{2\ell_2} \\ & & f_1 = \frac{v \times 100}{4 \times 150} & f_2 = \frac{v \times 100}{2 \times 350} \\ & & f_1 = \frac{v}{6} & f_2 = \frac{v}{7} \\ & & \frac{v}{6} - \frac{v}{7} = 7 \\ & & \frac{v}{42} = 7 \,, & v = 42 \times 7 \\ & & v = 294 \text{ m/sec} \end{aligned}$$

25. For 200 μ A current galvanometer deflects by $\pi/3$ radians. For what value of current, it will deflect by $\pi/10$ radians?

Ans. 60

Sol. $i \propto \theta$ (angle of deflection)

$$\frac{i_1}{i_2} = \frac{\theta_1}{\theta_2}$$

$$\frac{200\mu A}{i_2} = \frac{\pi/3}{\pi/10} = \frac{10}{3}$$

$$60 \ \mu A = i_2$$

26. Two charges of magnitude –4 μC kept at (1, 0, 4) and another charge of +4 μC kept at (2, –1, 5) in the presence of external electric field $E = 0.2 \hat{i} \text{ V/cm}$. The torque on the system of charges is $8\sqrt{\alpha} \times 10^{-5} \text{ N-m}$. Find α.

Ans.

Sol. $\overset{\mathbf{r}}{\tau} = \overset{\mathbf{l}}{\mathbf{P}} \times \overset{\mathbf{l}}{\mathbf{E}}$

$$\overset{r}{P} = P \hat{r} = 4 \times 10^{-6} \times \sqrt{3} \frac{(\hat{i} - \hat{j} + \hat{k})}{\sqrt{3}}$$

$$\hat{P} = 4 \times 10^{-6} (\hat{i} - \hat{j} + \hat{k})$$

$$\dot{E} = 0.2 \times 10^2 \,\hat{i} = 20 \,\hat{i} \, V/m$$

$$\hat{\tau} = 4 \times 10^{-6} \times 20[(\hat{i} - \hat{j} + \hat{k}) \times \hat{i}]$$

$${\stackrel{r}{\tau}} = 8 \times 10^{-5} (\hat{k} + \hat{j})$$

$$|{}^{\mathbf{r}}_{\tau}| = 8\sqrt{2} \times 10^{-5} \text{ Nm}$$

$$\alpha = 2$$

- 27. A nucleus with atomic number '50' and having radius of nucleus is 9×10^{-13} cm. Calculate the potential (in MV) at the surface of the nucleus.
- Ans. 8

Sol.

$$V_{\text{surface}} = \frac{kQ}{r} = \frac{9 \times 10^{9} \times 50 \times 1.6 \times 10^{-19}}{9 \times 10^{-15}}$$

$$= 80 \times 10^5 \text{ volt}$$

$$V_{\text{surface}} = 8 \text{ MV}$$

28. A pressure inside wall pipe before hole is 4.5×10^4 N/m². When a small hole is made in pipe, pressure is changed to 2.0×10^4 N/m². If speed of water flux after hole is \sqrt{v} m/s. Find out v:

Ans. 50

Sol.
$$\Delta P = \frac{1}{2}\rho v^2$$

$$2.5 \times 10^4 = \frac{1}{2} \times 10^3 \, \mathrm{v}_0^2$$

$$v_0 = \sqrt{50} \text{ m/s}$$

$$v = 50$$

CHEMISTRY

1. For Ist order reaction, time required for 99.9% completion is:

 $(1) 2t_{1/2}$

- $(2) 4t_{1/2}$
- $(3) 5t_{1/2}$
- $(4) 10t_{1/2}$

Ans. (4)

Sol.
$$\frac{t_{99.9\%}}{t_{1/2}} = \frac{\frac{1}{k} \ln \left(\frac{100}{100 - 99.9} \right)}{\frac{1}{k} \ln 2} = \frac{\ln(10^3)}{\ln 2} = \frac{3}{0.3} = 10$$

$$t_{99.9\%} = 10t_{1/2}$$

2. Number of non polar molecules among following are:

HF, H₂O, CO₂, NH₃, SO₂, H₂, CH₄, BF₃

Ans. (4)

Sol. CO_2 , H_2 , CH_4 , BF_3

3. 3M NaOH solution is to be prepared using 84 g NaOH, then the volume of solution in litre is $_$ \times 10^{-1}

Ans. (7)

Sol.
$$3 = \frac{84/40}{V_{\text{sol(L)}}}$$

$$\therefore$$
 V_{solution} = 0.7 L

4. Select **incorrect** match :

(1) Haber process: Fe

(2) Polythene : Ziegler-Natta catalyst $[Al_2(CH_3)_6 + TiCl_4]$

(3) Wacker's process: PtCl₂

(4) Photography: AgBr

Ans. (3)

Sol. Wacker's process : PdCl₂

5. 1 mole PbS is oxidised by x mole O_3 liberating y mole O_2 . Determine (x + y).

Ans. (8)

Sol. PbS +
$$4O_3 \longrightarrow PbSO_4 + 4O_2$$

 $x = 4$; $y = 4$

6. Spin only magnetic moment of [Pt(NH₃)₂Cl(CH₃NH₂)]Cl is :

Ans. (0)

- **Sol.** $Pt^{+2}: 5d^8 \Rightarrow dsp^2 \& unpaired e^- = 0 \Rightarrow Magnetic moment = 0$
- 7. S-1: Formation of Ce⁴⁺ is favoured by inert gas configuration.

S-2: Ce⁴⁺ acts as strong oxidising agent & converts to Ce³⁺.

Ans. Both S-1 & S-2 are correct.

8. Which of the following can't act as oxidising agent?

 $(1) \text{MnO}_4^-$

- (2) N^{3-}
- (3) BrO₃⁻
- $(4) SO_4^{2-}$

Ans. (2)

- **Sol.** In N^{-3} , nitrogen is present in minimum O.N. & hence it cannot act as oxidising agent.
- **9.** The quantity which changes with temperature is:

(1) Molarity

- (2) Molality
- (3) Mole fraction
- (4) Mass %

Ans. (1)

- **Sol.** Quantities involving volume are temperature dependent.
- 10. Reduction potential of hydrogen electrode at pH = 3 is.......

$$\left(\frac{2.303RT}{F} = 0.059\right)$$

Ans. (-0.177 volt)

Sol.
$$H^+$$
 (aq) + $e^- \longrightarrow \frac{1}{2} H_2(g)$

R.P. =
$$-\frac{0.059}{1} \log \left(\frac{1}{H^+} \right) = -0.059 \log(10^{+3})$$

= $-0.059 \times 3 = -0.177 \text{ volt}$

- Identify the species in which central atom is in d²sp³ hybridisation: 11.
 - (1) SF₆
- (2) BrF₅
- (3) $[PtCl_4]^{2-}$ (4) $[Co(NH_3)_6]^{3+}$

(4) Ans.

Sol. SF_6 sp^3d^2

12. $\Delta H^{\circ} = +77.2 \text{ kJ}, \Delta S^{\circ} = 122 \text{ J/mol-K}, T = 300 \text{ K}, \log K = ?$

Ans. (-7.07)

 $\Delta G^{\circ} = -2.303 RT \log k$ Sol.

$$77.2 - \frac{300 \times 122}{1000} = \frac{-2.303 \times 8.314 \times 300 \log K}{1000}$$

 $\log K = -7.07$

13. In group 16

Statement-I: Oxygen shows only –2 oxidation state.

Statement-II: On moving top to bottom, stability of +4 oxidation state decreases, whereas that of +6 oxidation state increases.

- (1) Both Statement I and Statement II are correct.
- (2) Both Statement I and Statement II are incorrect.
- (3) Statement I is correct but Statement II is incorrect.
- (4) Statement I is incorrect but Statement II is correct.
- Ans. **(2)**

Statement-I: Since electronegativity of oxygen is very high, it shows only negative oxidation Sol. state as -2 except in the case of OF_2 where its oxidation state is +2.

Statement-II: The stability of + 6 oxidation state decreases down the group and stability of + 4 oxidation state increases (inert pair effect).

14. How many of following has/have noble gas configuration?

- Ans. (2)
- **Sol.** (Sr^{2+}, Cs^{+})
- 15. Which of the following has d^{10} configuration?
 - (1) Cr, Cd, Cu, Ag

(2) Cd, Cr, Ag, Zn

(3) Ag, Cr, Cu, Zn

(4) Cu, Cd, Zn, Ag

- Ans. (4)
- **Sol.** Cr : [Ar] $3d^5 4s^1$
 - Cu : [Ar] 3d¹⁰ 4s¹
 - Ag : [Kr] 4d¹⁰ 5s¹
 - Zn: [Ar] 3d¹⁰ 4s²
 - Cd: [Kr] 4d¹⁰ 5s²
- **16.** Which of the following is used to identify the phenolic group test?
 - (1) Carbylamine test

(2) Lucas test

(3) Tollen's test

(4) Phthalein dye test

- Ans. (4)
- 17. Product is:
 - (1) + I

(2) OH + I

(3) OH + H-O

(4) I + H-O

18. Match the column

(Q)
$$Na_2Cr_2O_7$$

(R)
$$\underbrace{\frac{\text{(i) NaOH (1eq.)}}{\text{(ii) CH}_3-Cl}}$$

(S)
$$\underbrace{\begin{array}{c} OH \\ (i) CO_2/NaOH \\ (ii) H^+ \end{array}}$$

Ans.
$$(P) - (2)$$
; $(Q) - (1)$; $(R) - (4)$; $(S) - (3)$

- **19.** When egg is boiled then which of the following structure of protein remains intact?
 - (1) Quaternary structure

(2) Primary structure

(3) Secondary structure

(4) Tertiary structure

Ans. **(2)**

- 20. Which of the following compound will not give S_N1 reaction?
 - (1) $CH_2=CH-CH_2C1$

(2) Ph–CH₂–Cl

(3) $\underset{\text{H}_3\text{C}}{\overset{\text{H}_3\text{C}}{\sim}}$ CH–Cl

(4) CH₃-CH=CH-Cl

Ans. **(4)**

- 21. The second homologue of monocarboxylic acid is
 - (1) HCOOH
- (2) CH₃COOH
- (3) CH₃CH₂COOH (4) CH₃CH₂CH₂-COOH

(1) Ph-CH-CH₃

(2) Ph-CH₂-CH₂-CH₂-OH

(3) Ph-CH₂-CH₂-O-CH₃

(4) Ph-CH-CH₂-CH₃

Ans. (1)

Ans. (1)

23. When 9.3 gm of aniline in reacted with acetic anhydride then mass of acetanilide formed is [X] gm. Report your answer as 10X.

Sol.

$$\begin{array}{c}
NH_2 \\
NH-C-CH_3
\end{array}$$
9.3 gm

Mole of Aniline = $\frac{9.3}{93}$ = 0.1

Mole of acetanilide = 0.1

Mass of acetanilide = $0.1 \times 135 = 13.5$ gm

$$10x = 13.5 \times 10 = 135 \text{ gm}$$

24. The correct stability order of following resonating structures is

- (I) CH₂=CH-CH=O
- ⊕ | (II) CH₂–CH=C–H
- (III) CH₂-CH=C-H

- $(1) \parallel > \parallel \parallel > 1$
- (2) I > II > III
- (3) I > III > II
- (4) III > II > I

- 25. Steam volatile and water immiscible substances are separated by
 - (1) Steam distillation

(2) Fractional distillation under reduced pressure

(3) Fractional distillation

(4) Distillation.

(1) Ans.

26. How many of the following compounds contain chiral centre?

$$(I) \bigcup_{i=1}^{N}$$

$$(IV) \xrightarrow{NO_2} COOH (V) \xrightarrow{I}$$

Ans. 4 (I, III, IV, V)

27. The bond line representation of following compound is CH(OH)(CN)₂

$$(1) \stackrel{\text{CN}}{\longleftarrow}$$

$$(2) \xrightarrow{\text{CN}}_{\text{OH CN}}$$

(3)
$$_{\text{NC}}$$
 OH $_{\text{CN}}$

(2)
$$\stackrel{\text{CN}}{\downarrow_{\text{OH}}}$$
 CN (4) $\stackrel{\text{CN}}{\downarrow_{\text{HO}}}$ CN

(3) Ans.

JEE (MAIN) JANUARY 2024 DATE-27/01/2024 (SHIFT-2)

MATHEMATICS

1. An urn contains 6 black and 9 red balls. Four balls are drawn from the urn twice without replacement. The probability that first four balls are black & 2nd four balls are red in colour is:

$$(1) \frac{3}{765}$$

(2)
$$\frac{6}{715}$$

$$(3) \frac{3}{715}$$

$$(4) \frac{6}{615}$$

Ans. (3)

Sol.
$$\frac{{}^{6}C_{4}}{{}^{15}C_{4}} \times \frac{{}^{9}C_{4}}{{}^{11}C_{4}} = \frac{3}{715}$$

2. A line x + y = 0 touches the circle $(x - \alpha)^2 + (y - \beta)^2 = 50$, α , β , > 0. The distance of origin from its points of contact is $4\sqrt{2}$. Find $\alpha^2 + \beta^2$.

Ans. 82

Sol. Point of contact is $(0 + 4\sqrt{2} \cos 135^\circ, 0 + 4\sqrt{2} \sin 135^\circ) = (-4, 4)$

$$\left| \frac{\alpha + \beta}{\sqrt{2}} \right| = 5\sqrt{2}$$
 $\alpha + \beta = 10$ (i)

$$(-4 - \alpha)^2 + (4 - \beta)^2 = 50$$

$$(\alpha + 4)^2 + (4 - 10 + \alpha)^2 = 50$$

$$(\alpha + 4)^2 + (\alpha - 6)^2 = 50$$

$$\alpha = 1, \beta = 9$$

$$\alpha^2 + \beta^2 = 82$$

Also point of contact is (4, -4)

Satisfying this point of contact in the equation of circle we get

$$(4-\alpha)^2 + (-4-\beta)^2 = 50$$

$$(4-\alpha)^2 + (\beta+4)^2 = 50$$

$$(4-\alpha)^2 + (14-\alpha)^2 = 50$$

$$\Rightarrow \alpha = 9, \beta = 1$$

$$\alpha^2 + \beta^2 = 82$$

3. Let $2\tan^2 x - 5\sec x - 1 = 0$ has 7 solutions in $x \in \left[0, \frac{n\pi}{2}\right]$, then the minimum value of n is N find

$$\sum_{k=1}^{N} \frac{k}{2^k}$$

$$(1) \ 2 \cdot \left(\frac{2^{13} - 1}{2^{13}}\right) - \frac{13}{2^{13}}$$

$$(2)\left(\frac{2^{13}-1}{2^{13}}\right)-\frac{13}{2^{13}}$$

(3)
$$2 \cdot \left(\frac{2^{13}-1}{2^{13}}\right) + \frac{13}{2^{14}}$$

$$(4) \ 2 \cdot \left(\frac{2^{13}-1}{2^{13}}\right) - \frac{13}{2^{14}}$$

Ans. (1)

Sol.

$$2\tan^2 x - 5\sec x - 1 = 0$$

$$2\sec^2 x - 5\sec x - 3 = 0$$

$$2\sec^2 x - 6\sec x + \sec x - 3 = 0$$

$$(2\sec x + 1)(\sec x - 3) = 0$$

$$\sec x = 3, -\frac{1}{2}$$

$$\Rightarrow$$
 sec x = 3

$$\Rightarrow \cos x = \frac{1}{3}$$

For 7 solutions, n = 13 = N

so
$$\sum_{k=1}^{13} \frac{k}{2^k}$$

let
$$S = \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{13}{2^{13}}$$

$$\frac{1}{2}S = \frac{1}{2^2} + \frac{2}{2^3} + \dots + \frac{13}{2^{14}}$$

$$\frac{1}{2}S = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots \frac{1}{2^{13}} - \frac{13}{2^{14}}$$

$$\frac{1}{2}S = \frac{1}{2} \cdot \frac{\left(1 - \frac{1}{2^{13}}\right)}{1 - \frac{1}{2}} - \frac{13}{2^{14}}$$

$$S = 2 \cdot \left(\frac{2^{13} - 1}{2^{13}}\right) - \frac{13}{2^{13}}$$

- 4. The vertices of a triangle are A(1, 2, 2), B(2, 1, 2) & C(2, 2, 1). The perpendicular distance of its orthocentre from the given sides are ℓ_1 , ℓ_2 & ℓ_3 . Find the value of $\ell_1^2 + \ell_2^2 + \ell_3^2$.
 - (1) 1
- (2) $\frac{1}{2}$
- $(3) \frac{1}{3}$
- $(4) \frac{1}{4}$

Sol. \triangle ABC is equilateral

 \therefore orthocentre & centroid will be same $\left(\frac{5}{3}, \frac{5}{3}, \frac{5}{3}\right)$

midpoint of AB is $\left(\frac{3}{2}, \frac{3}{2}, 2\right)$

$$\Rightarrow \ell_1 = \sqrt{\frac{1}{36} + \frac{1}{36} + \frac{1}{9}}$$

$$=\frac{1}{\sqrt{6}}=\ell_2=\ell_3$$

5. Let two sets A and B having 'm' & 'n' elements respectively such that difference of the number of subsets of A and that of B is 56, then (m, n) is

Ans. (3)

Sol. $2^m - 2^n = 56$; m > n

$$\Rightarrow 2^{n}(2^{m-n}-1)=8(2^{3}-1)$$

$$\Rightarrow$$
 m = 6, n = 3

6. If 'A' is a square matrix of order '2' such that roots of the equation $det(A - \lambda I) = 0$ are 1 and -3, then sum of diagonal elements of matrix 'A²' is

$$(2) -3$$

Ans. (4)

Sol. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

$$\therefore |A - \lambda I| = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = 0$$

$$\Rightarrow \lambda^2 - (a+d)\lambda + ad - bc = 0$$

Sum of the roots = a + d = 2

Product of roots = ad - bc = -3

Now
$$A^2 = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^2 + bc & b(a+d) \\ c(a+d) & d^2 + bc \end{bmatrix}$$

$$\therefore \operatorname{tr}(A^2) = a^2 + d^2 + 2bc = (a+d)^2 - 2(ad-bc) = 4 + 6 = 10$$

7. Let $\tan^{-1}x + \tan^{-1}2x = \frac{\pi}{4}$; x > 0, then number of positive values of x is/are

- (1) 0
- (2) 1
- (3) 2
- (4) 3

Sol.
$$\tan^{-1}\left(\frac{x+2x}{1-2x^2}\right) = \frac{\pi}{4}$$

$$\Rightarrow \frac{3x}{1-2x^2} = 1 \qquad \Rightarrow x = \frac{-3 \pm \sqrt{17}}{4}$$

$$\therefore x = \frac{\sqrt{17} - 3}{4}$$

8. Find the coefficient of
$$x^{2012}$$
 in $(1-x)^{2008}$. $(1+x+x^2)^{2007}$

Ans.

Sol. Coefficient of
$$x^{2012}$$
 in $(1-x^3)^{2007}$. $(1-x)$

Coefficient of
$$x^{2012}$$
 in $(1-x^3)^{2007} - x(1-x^3)^{2007}$

Coefficient of
$$x^{2012}$$
 in $^{2007}C_{r_1}\left(-x^3\right)^{r_1}+^{2007}C_{r_2}\left(-1\right)^{r_2}x^{3r_2+1}$

$$3r_1 = 2012$$
 Which is not possible for any $r_1 \in w$

and
$$3r_2 + 1 = 2012$$
 also not possible for any $r_2 \in w$

$$\therefore$$
 no term containing x^{2012}

$$\therefore$$
 Coefficient of x^{2012} is 0

9. An ellipse is passing through focii of hyperbola
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$
 and product of their eccentricities is

1, then the length of chord of ellipse passing through (0, 2) and parallel to x-axis is

$$(1)\ \frac{5\sqrt{5}}{3}$$

$$(2) \ \frac{3}{5\sqrt{5}}$$

(3)
$$\frac{10\sqrt{5}}{3}$$

(4)
$$\frac{20\sqrt{5}}{3}$$

Ans.

Sol.
$$\frac{x^2}{16} - \frac{y^2}{9} = 1 \qquad \Rightarrow e_H = \frac{5}{4} \qquad \Rightarrow e_E = \frac{4}{5}$$

$$\Longrightarrow e_H = \frac{5}{4}$$

$$\Rightarrow$$
 e_E = $\frac{4}{5}$

Ellipse is passing through $(\pm 5, 0)$

$$\therefore \text{ ellipse}: \frac{x^2}{25} + \frac{y^2}{9} = 1$$

and points of chord :
$$\left(\pm \frac{5\sqrt{5}}{3}, 2\right)$$

$$\therefore \text{ Length of chord} = \frac{10\sqrt{5}}{3}$$

10. If
$$\alpha$$
 and $\frac{1}{\overline{\alpha}}$ are two complex numbers which satisfy the equations $|z - z_0|^2 = 4$ and $|z - z_0|^2 = 16$

respectively, where
$$z_0 = 1 + i$$
, then the value of $5|\alpha|^2$ is

Sol.
$$|\alpha - z_0|^2 = 4$$

$$\Rightarrow$$
 $(\alpha - z_0) (\overline{\alpha} - \overline{z}_0) = 4$

$$|\alpha|^2 - \alpha \overline{z}_0 - \overline{\alpha} z_0 + |z_0|^2 = 4$$

$$|\alpha|^2 - \alpha \overline{z}_0 - \overline{\alpha} z_0 = 2 \dots (i)$$

(ii)
$$\left| \frac{1}{\overline{\alpha}} - z_0 \right|^2 = 16 \Rightarrow (1 - \overline{\alpha} z_0) (1 - \alpha \overline{z}_0) = 16 |\alpha|^2$$

$$\Rightarrow 1 - \alpha \overline{z}_0 - \overline{\alpha} z_0 + |\alpha|^2 \cdot 2 = 16|\alpha|^2 \cdot ...(ii)$$

from (i) & (ii)
$$-1 - |\alpha|^2 = 2 - 16 |\alpha|^2 \Rightarrow 15 |\alpha|^2 = 3 \Rightarrow 5 |\alpha|^2 = 1$$

11. Let $x^2 - x - 1 = 0$ has roots α and β such that $S_n = 2023 \ \alpha^n + 2024 \ \beta^n$, then

(1)
$$S_{12} = S_{11} - S_{10}$$

(2)
$$S_{12} = S_{10} - S_{11}$$

(3)
$$S_{12} = S_{10} + S_{11}$$

(4)
$$S_{12} = -S_{10} - S_{11}$$

Ans. (3)

Sol.
$$S_n = 2023 \alpha^n + 2024 \beta^n$$

$$\Rightarrow S_n - S_{n-1} - S_{n-2} = 0$$

$$\Rightarrow S_{12} = S_{11} + S_{10}$$

12. For the series 20, $19\frac{1}{4}$, $18\frac{1}{2}$,, $-129\frac{1}{4}$, the 20^{th} term from end is

$$(1) - 115$$

$$(2) - 119$$

$$(3) -117$$

$$(4) - 120$$

Ans. (1)

Sol.
$$T_{20}$$
 for $a = -129\frac{1}{4} = -\frac{517}{4}$, $d = \frac{3}{4}$

$$T_{20} = -\frac{517}{4} + 19 \cdot \frac{3}{4} = -\frac{460}{4} = -115$$

13.
$$\int \frac{x^8 - x^2}{\left(x^{12} + 3x^6 + 1\right) \tan^{-1} \left(x^3 + \frac{1}{x^3}\right)} dx =$$

(1)
$$\frac{1}{3} \ln \tan^{-1} \left(x^3 + \frac{1}{x^3} \right) + C$$

(2)
$$\ell n \tan^{-1} \left(x^3 + \frac{1}{x^3} \right) + C$$

(3)
$$\tan^{-1}\left(x^3 + \frac{1}{x^3}\right) + C$$

(4) None of these

Ans. (1)

Sol.
$$\int \frac{x^8 - x^2}{\left(x^{12} + 3x^6 + 1\right) \tan^{-1} \left(x^3 + \frac{1}{x^3}\right)} dx =$$

Let
$$\tan^{-1}\left(x^3 + \frac{1}{x^3}\right) = t$$

$$\frac{1}{1 + \left(x^3 + \frac{1}{x^3}\right)^2} \left(3x^2 - \frac{3}{x^4}\right) dx = dt$$

$$\frac{x^6}{x^{12} + 2x^6 + 1 + x^6} \times \frac{3x^6 - 3}{x^4} dx = dt$$

$$\frac{1}{3} \left| \frac{1}{t} dt = \frac{1}{3} \ell n(t) + C \right|$$

$$=\frac{1}{3} \ell n \tan^{-1} \left(x^3 + \frac{1}{x^3}\right) + C$$

14. If
$$\lim_{x\to 0} \frac{\alpha \sin x + \beta \cos x + \ln(1-x) + 3}{3 \tan^2 x} = \frac{1}{3}$$
 find $2\alpha - \beta$

Ans. (4

Sol.
$$\lim_{x \to 0} \frac{\alpha \sin x + \beta \cos x + \ln(1 - x) + 3}{\frac{3 \tan^2 x}{x^2}} = \frac{1}{3}$$

$$\beta + 3 = 0 \Rightarrow \beta = -3$$

$$\lim_{x\to 0} \frac{\alpha\cos x - \beta\sin x - \frac{1}{1-x}}{2x}$$

$$\alpha - 1 = 0 \Rightarrow \alpha = 1$$

so
$$2\alpha - \beta = 5$$

- 15. Let a_1 , a_2 , a_3 a_{15} are 15 observations having mean and variance as 12 & 9 respectively. One of the observation which was 12, misread as 10. The correct mean and variance are μ and σ^2 respectively, then $15(\mu + \mu^2 + \sigma^2)$
 - (1)2521
- (2)2522
- (3)2518
- (4) 2621

Ans. (1)

Sol. old mean
$$12 = \frac{\sum x_i}{n} \Rightarrow 12 = \frac{a_1 + a_2 + \dots + a_{14} + 10}{15}$$

$$\sum_{i=1}^{14} a_i = 170$$

old variance =
$$9 \Rightarrow 9 + (12)^2 = \frac{a_1^2 + a_2^2 + \dots + a_{14}^2 + 10^2}{15}$$

$$\sum_{i=1}^{14} a_i^2 = 2195$$

new mean (
$$\mu$$
) = $\frac{\sum_{i=1}^{14} a_i + 12}{15} = \frac{170 + 12}{15} = \frac{182}{15}$

new variance (σ^2)

$$\sigma^2 + \mu^2 = \frac{\sum_{i=1}^{14} a_i^2 + 12^2}{15} = \frac{2339}{15}$$

$$\sigma^2 + \mu^2 + \mu = \frac{2339}{15} + \frac{182}{15} = \frac{2521}{15}$$

$$15(\sigma^2 + \mu^2 + \mu) = 2521$$

16. Values of
$$\alpha$$
 for which
$$\begin{vmatrix} 1 & \frac{3}{2} & \alpha + \frac{3}{2} \\ 1 & \frac{1}{3} & \alpha + \frac{1}{3} \\ 2\alpha + 3 & 3\alpha + 1 & 0 \end{vmatrix} = 0 \text{ lies in the interval}$$

$$(2)(-3,0)$$

$$(3)(-2,1)$$

$$(4)(-2,0)$$

Sol.
$$C_3 \rightarrow C_3 - (\alpha C_1 + C_2)$$

$$\begin{vmatrix} 1 & \frac{3}{2} & 0 \\ 1 & \frac{1}{3} & 0 \\ 2\alpha + 3 & 3\alpha + 1 & -(2\alpha^2 + 6\alpha + 1) \end{vmatrix} = 0$$

$$\Rightarrow \frac{7}{6}(2\alpha^2 + 6\alpha + 1) = 0$$

$$\Rightarrow \alpha = \frac{-3 + \sqrt{7}}{2}, \frac{-3 - \sqrt{7}}{2}$$

17. Let $g(x) = 3f\left(\frac{x}{3}\right) + f(3-x)$, where f''(x) > 0 and $x \in (0, 3)$, g(x) is decreasing in $x \in (0, \alpha)$ and increasing in $(\alpha, 3)$, then 8α is

Ans. (18)

Sol.
$$g'(x) = 3 \cdot \frac{1}{3} f'\left(\frac{x}{3}\right) - f'(3-x) = f'\left(\frac{x}{3}\right) - f'(3-x)$$

g(x) is decreasing g'(x) < 0

$$f'\left(\frac{x}{3}\right) < f'(3-x)$$

 \therefore f''(x) > 0 \Rightarrow f'(x) is increasing

$$\frac{x}{3} < 3 - x$$

$$\frac{4x}{3} < 3 \Rightarrow x < \frac{9}{4}$$

$$\alpha = \frac{9}{4}$$

$$\therefore 8\alpha = 18$$

18. Let $\triangle ABC$ have vertices A(2, 2, 3), B(2, -3, 3) C(-1, -2, 3) and length of internal angle bisector of angle A is ℓ , then the value of $2\ell^2$ is

Ans. (45)

Sol.

$$\overrightarrow{AB} = -5j$$

$$\overline{AC} = -3i - 4j$$

$$\left| \overrightarrow{AB} \right| = \left| \overrightarrow{AC} \right|$$

$$D\left(\frac{-1+2}{2}, \frac{-2-3}{2}, \frac{3+3}{2}\right)$$

$$D\left(\frac{1}{2}, \frac{-5}{2}, 3\right)$$

$$AD = \sqrt{\left(\frac{1}{2} - 2\right)^2 + \left(2 + \frac{5}{2}\right)^2 + \left(3 - 3\right)^2}$$

$$\ell = \sqrt{\frac{9}{4} + \frac{81}{4}}$$

$$2\ell^2 = 45$$

$$=\sqrt{\frac{90}{4}}=\sqrt{\frac{45}{2}}$$

19. Let
$$S_1 = \frac{\lfloor 4!}{(4!)^{3!}}$$
 and $S_2 = \frac{\lfloor 5!}{(5!)^{4!}}$, then

(1)
$$S_1 \in N$$
 and $S_2 \notin N$

(2)
$$S_1 \in N$$
 and $S_2 \in N$

(3)
$$S_1 \notin N$$
 and $S_2 \in N$

(2)
$$S_1 \notin N$$
 and $S_2 \notin N$

Ans. (2)

Sol. Make 6 groups of 4 each

$$24 \rightarrow (4, 4, 4, 4, 4, 4, 4)$$

Number of ways of making groups = $\frac{24!}{(4!)^6.6!}$ = I₁

$$\frac{(24)!}{(4!)^6} = \frac{\lfloor 4!}{(4!)^{3!}} = (6!I_1)$$

 $S_1 \in N$

$$(5!) \rightarrow (5, 5, 5, 5, \dots, 5(24 \text{ times}))$$

$$\frac{[5!]}{(5!)^{24} \cdot 24!} = I_2 \Rightarrow S_2 = (24!) I_2$$

Hence $S_2 \in N$

20. Let area bounded by $y = \min(3x, 6x - x^2)$; $y \ge 0$ is A, then 2A is

Ans. (63)

$$2x = 6x - x^2$$

$$A = \frac{1}{2} \times 3 \times 9 + \int_{3}^{6} \sqrt{6x - x^{2}} dx$$

$$A = \frac{27}{2} + \int_{3}^{6} \sqrt{9 - (x - 3)^2} dx$$

$$A = \frac{27}{2} + \left(\frac{x-3}{2}\sqrt{9-(x-3)^2} + \frac{9}{2}\sin^{-1}\left(\frac{x-3}{3}\right)\right)_a^6$$

$$A = \frac{27}{2} + \frac{9\pi}{4}$$

$$12A = 162 + 27\pi$$

Let $(x^2 - 4)dy = y(y - 3)dx$ satisfying $y(4) = \frac{3}{2}$ then y(10) is equal to 21.

$$(1) \frac{3}{1-8^{\frac{1}{4}}}$$

(2)
$$\frac{3}{1+8^{\frac{1}{4}}}$$

$$(3) \frac{3}{1+2^{\frac{1}{4}}}$$

(1)
$$\frac{3}{1-8^{\frac{1}{4}}}$$
 (2) $\frac{3}{1+8^{\frac{1}{4}}}$ (3) $\frac{3}{1+2^{\frac{1}{4}}}$ (4) $\frac{3}{1-2^{\frac{1}{4}}}$

Ans.

Sol.
$$=\frac{1}{3}\int \frac{y-(y-3)}{y(y-3)} dy = \frac{1}{4}\int \frac{(x+2)-(x-2)}{(x+2)(x-2)} dx$$

$$\frac{1}{3} (\ell \, n \, | \, y - 3 \, | - \ell \, n \, | \, y \, |) = \frac{1}{4} (\ell \, n \, | \, x - 2 \, | - \ell \, n \, | \, x + 2 \, |) + C$$

$$\frac{1}{3} \ell n \left| \frac{y-3}{y} \right| = \frac{1}{4} \left(\ell n \left| \frac{x-2}{x+2} \right| \right) + C$$

$$\frac{1}{3} \ell n \left| \frac{\frac{3}{2} - 3}{\frac{3}{2}} \right| = \frac{1}{4} \ell n \left(\frac{4 - 2}{4 + 2} \right) + C$$

$$C = \frac{1}{4} \ell \, n \, 3$$

$$\left| \frac{1}{3} \ell n \right| \frac{y-3}{y} = \frac{1}{4} \ell n \left| \frac{x-2}{x+2} \right| + \frac{1}{4} \ell n 3$$

$$\Rightarrow$$
 x = 10

$$\frac{1}{3} \ell n \left| \frac{y-3}{y} \right| = \frac{1}{4} \ell n \left| \frac{2}{3} \right| + \frac{1}{4} \ell n 3$$

$$\frac{1}{3} \ell n \left| \frac{y-3}{y} \right| = \frac{1}{4} \ell n 2$$

$$\ell n \left| \frac{y-3}{y} \right| = \ell n 2^{\frac{3}{4}}$$

$$\left|\frac{y-3}{y}\right| = 2^{\frac{3}{4}}$$

$$-y+3=8^{\frac{1}{4}}y$$

$$y = \frac{3}{1 + 8^{\frac{1}{4}}}$$

- 22. Three lines 2x y 3 = 0, 6x + 3y + 4 = 0, $\alpha x + 2y + 4 = 0$ does not form triangle then find $[\Sigma \alpha^2]$ (where [.] denotes the greatest integer function)
- Ans. (32)
- **Sol.** If two lines are parallel

$$\frac{2}{\alpha} = \frac{-1}{2} \implies \alpha = -4$$

$$\frac{6}{\alpha} = \frac{3}{2} \Rightarrow \alpha = 4$$

If lines are concurrent

$$\begin{vmatrix} 2 & -1 & -3 \\ 6 & 3 & 4 \\ \alpha & 2 & 4 \end{vmatrix} = 0$$

$$2(12-8) + 1(24-4\alpha) - 3(12-3\alpha) = 0$$

$$8 + 24 - 4\alpha - 36 + 9\alpha = 0$$

$$5\alpha = 4 \Rightarrow \alpha = \frac{4}{5}$$

$$\Sigma \alpha^2 = 16 + 16 + \frac{16}{25}$$

$$[\Sigma \alpha^2] = 32$$

23. Let
$$f(x) = \int_{0}^{x} g(t) \log \left(\frac{1-t}{1+t} \right) dt$$
, (where $g(x)$ is cont. odd function).

If
$$\int_{-\frac{\pi}{2}}^{\pi/2} \left(f(x) + \frac{x^2 \cos x}{1 + e^x} \right) dx = \left(\frac{\pi}{\alpha} \right)^2 - \alpha$$
, then find α

Ans. $\alpha = 2$

Sol.
$$I = \int_{0}^{\pi/2} \left(f(x) + f(-x) + \frac{x^2 \cos x}{1 + e^x} + \frac{x^2 \cos x}{1 + e^{-x}} \right) dx = \int_{0}^{\pi/2} (f(x) + f(-x) + x^2 \cos x) dx \quad \dots (i)$$

Now
$$f(-x) = \int_{0}^{-x} g(t) \log \left(\frac{1-t}{1+t}\right) dt$$

$$t = -p$$

$$= \int_{0}^{x} -g(-p) \log \left(\frac{1+p}{1-p}\right) dp = -f(x)$$

$$\therefore \text{ (i) becomes I} = \int_{0}^{\pi/2} x^2 \cos x \, dx = x^2 \sin x - 2 \int x \sin x \, dx = (x^2 \sin x - 2) \left(-x \cos x + \sin x \right) \Big)_{0}^{\pi/2}$$

$$=\frac{\pi^2}{4}-2\Rightarrow\frac{\pi^2}{4}-2$$