DM_halo_models

Generated by Doxygen 1.9.4

1 DM_halo_models	1
1.1 Overview	1
1.2 Requirements	1
1.3 Fitting	1
1.4 Acknowledgements	2
1.5 Citations	2
1.6 Contact	2
2 Namespace Index	3
2.1 Namespace List	3
3 Class Index	5
3.1 Class List	5
4 Namespace Documentation	7
4.1 alp_funcs Namespace Reference	7
4.1.1 Detailed Description	8
4.2 alp_params Namespace Reference	8
4.2.1 Detailed Description	8
4.2.2 Function Documentation	9
4.2.2.1 alphamatched()	9
4.3 cdm_funcs Namespace Reference	9
4.3.1 Detailed Description	10
4.4 cdm_params Namespace Reference	10
4.4.1 Detailed Description	11
4.5 constants Namespace Reference	11
4.5.1 Detailed Description	11
4.5.2 Function Documentation	12
4.5.2.1 standard()	12
4.6 galaxy Namespace Reference	12
4.6.1 Detailed Description	12
4.7 halo Namespace Reference	13
4.7.1 Detailed Description	13
4.8 model_fit Namespace Reference	13
4.8.1 Detailed Description	14
4.8.2 Function Documentation	14
4.8.2.1 abund_match_rel()	15
4.8.2.2 BTFR()	16
4.8.2.3 conc_mass_rel_Du()	16
4.8.2.4 conc_mass_rel_Wa()	17
4.9 results Namespace Reference	17
4.9.1 Detailed Description	18
5 Class Documentation	19

5.1 alp_funcs.base_funcs Class Reference	19
5.1.1 Detailed Description	20
5.1.2 Constructor & Destructor Documentation	20
5.1.2.1init()	20
5.1.3 Member Function Documentation	20
5.1.3.1 mass_sol_init()	21
5.1.3.2 msol()	21
5.1.3.3 rc()	22
5.1.3.4 rhoc()	22
5.1.3.5 xc()	23
5.1.4 Member Data Documentation	23
5.1.4.1 cdmhalo	23
5.1.4.2 matched	24
5.1.4.3 mfree	24
5.2 cdm_funcs.base_funcs Class Reference	24
5.2.1 Detailed Description	25
5.2.2 Constructor & Destructor Documentation	25
5.2.2.1init()	25
5.2.3 Member Function Documentation	25
5.2.3.1 mass_frac_dc14()	25
5.2.3.2 rc()	26
5.2.3.3 rhoc()	27
5.2.3.4 xc()	27
5.2.4 Member Data Documentation	28
5.2.4.1 mass_num	28
5.3 cdm_params.base_funcs Class Reference	28
5.3.1 Detailed Description	28
5.3.2 Constructor & Destructor Documentation	28
5.3.2.1init()	28
5.3.3 Member Function Documentation	29
5.3.3.1 v200min_dc14()	29
5.3.3.2 v200min_frac_dc14check()	30
5.4 constants.fitting_dict Class Reference	30
5.4.1 Detailed Description	31
5.4.2 Constructor & Destructor Documentation	31
5.4.2.1init()	32
5.4.3 Member Function Documentation	33
5.4.3.1 args_opts()	33
5.4.3.2 params_vals()	34
5.5 galaxy.galaxy Class Reference	36
5.5.1 Detailed Description	36
5.5.2 Constructor & Destructor Documentation	36

5.5.2.1init()	36
5.5.3 Member Data Documentation	37
5.5.3.1 data	37
5.5.3.2 df	37
5.5.3.3 df1	38
5.6 model_fit.grar_fit Class Reference	38
5.6.1 Detailed Description	39
5.6.2 Constructor & Destructor Documentation	39
5.6.2.1init()	39
5.6.3 Member Function Documentation	39
5.6.3.1 fit()	40
5.6.3.2 g_bar()	40
5.6.3.3 g_rar()	41
5.6.3.4 g_tot()	41
5.6.3.5 grar_model()	42
5.7 cdm_funcs.halo Class Reference	43
5.7.1 Detailed Description	43
5.7.2 Constructor & Destructor Documentation	43
5.7.2.1init()	44
5.7.3 Member Function Documentation	44
5.7.3.1 mass()	44
5.7.3.2 Mvir()	45
5.7.4 Member Data Documentation	46
5.7.4.1 mass_num	46
5.8 cdm_params.halo Class Reference	46
5.8.1 Detailed Description	47
5.8.2 Constructor & Destructor Documentation	47
5.8.2.1init()	47
5.8.3 Member Function Documentation	48
5.8.3.1 params()	48
5.8.4 Member Data Documentation	48
5.8.4.1 data	48
5.8.4.2 params_vals	49
5.9 halo.halo Class Reference	49
5.9.1 Detailed Description	50
5.9.2 Constructor & Destructor Documentation	50
5.9.2.1init()	50
5.9.3 Member Function Documentation	50
5.9.3.1 mass()	50
5.9.3.2 velocity()	51
5.9.4 Member Data Documentation	52
5.9.4.1 data	52

5.9.4.2 halo_init	52
5.9.4.3 params	52
5.9.4.4 params_vals	52
5.10 model_fit.model_fit Class Reference	53
5.10.1 Detailed Description	53
5.10.2 Constructor & Destructor Documentation	53
5.10.2.1init()	53
5.10.3 Member Function Documentation	54
5.10.3.1 bic()	54
5.10.3.2 fit()	54
5.10.3.3 plot()	55
5.10.3.4 residual()	56
5.10.3.5 velocity_tot()	56
5.10.4 Member Data Documentation	57
5.10.4.1 args_opts	57
5.11 results.plots Class Reference	57
5.11.1 Detailed Description	59
5.11.2 Constructor & Destructor Documentation	59
5.11.2.1init()	60
5.11.3 Member Function Documentation	60
5.11.3.1 BIC_CDM()	60
5.11.3.2 BIC_diffs_CDM()	61
5.11.3.3 BIC_psi_mfix_ex()	62
5.11.3.4 BIC_psi_mfree()	63
5.11.3.5 chi_box_Einasto_checks()	64
5.11.3.6 chi_CDM()	64
5.11.3.7 chi_dist_CDM()	65
5.11.3.8 chi_dist_CDM_checks()	66
5.11.3.9 chi_dist_DC14_checks()	66
5.11.3.10 chi_dist_Einasto_checks()	67
5.11.3.11 chi_dist_psi_mfix_ex()	68
5.11.3.12 chi_dist_psi_mfree()	68
5.11.3.13 chi_gal_psi_mfix()	69
5.11.3.14 chi_psi_mfix()	70
5.11.3.15 chi_psi_mfix_ex()	71
5.11.3.16 chi_psi_mfree()	72
5.11.3.17 MLd_degen_CDM()	73
5.11.3.18 Msol_psi_mfix()	74
5.11.3.19 Msol_psi_mfix_ex()	75
5.11.3.20 Msol_psi_mfree()	75
5.11.3.21 params_dist_CDM()	77
5.11.3.22 params_dist_CDM_checks()	78

5.11.3.23 params_dist_DC14_checks()	 . 78
5.11.3.24 params_dist_Einasto_checks()	 . 79
5.11.3.25 params_dist_psi_mfix_ex()	 . 80
5.11.3.26 params_dist_psi_mfree()	 . 80
5.11.3.27 params_scatter_Einasto_checks()	 . 81
5.11.3.28 relations_CDM()	 . 82
5.11.3.29 relations_psi_mfix_ex()	 . 82
5.11.3.30 relations_psi_mfree()	 . 83
5.11.3.31 rotcurves_CDM_all()	 . 84
5.11.3.32 rotcurves_CDM_check()	 . 85
5.11.3.33 rotcurves_DC14_check()	 . 85
5.11.3.34 rotcurves_Einasto_check()	 . 86
5.11.3.35 rotcurves_psi_all()	 . 86
5.12 results_results_CDM_all Class Reference	 . 87
5.12.1 Detailed Description	 . 88
5.12.2 Constructor & Destructor Documentation	 . 88
5.12.2.1init()	 . 88
5.12.3 Member Function Documentation	 . 89
5.12.3.1 fit()	 . 89
5.13 results_results_CDM_check Class Reference	 . 90
5.13.1 Detailed Description	 . 90
5.13.2 Constructor & Destructor Documentation	 . 90
5.13.2.1init()	 . 90
5.13.3 Member Function Documentation	 . 91
5.13.3.1 fit()	 . 91
5.14 results_results_DC14_check Class Reference	 . 92
5.14.1 Detailed Description	 . 92
5.14.2 Constructor & Destructor Documentation	 . 92
5.14.2.1init()	 . 92
5.14.3 Member Function Documentation	 . 93
5.14.3.1 fit()	 . 93
5.15 results_results_Einasto_check Class Reference	 . 93
5.15.1 Detailed Description	 . 94
5.15.2 Constructor & Destructor Documentation	 . 94
5.15.2.1init()	 . 94
5.15.3 Member Function Documentation	 . 95
5.15.3.1 fit()	 . 95
5.16 results_results_psi_multi_all Class Reference	 . 96
5.16.1 Detailed Description	 . 96
5.16.2 Constructor & Destructor Documentation	 . 96
5.16.2.1init()	 . 96
5.16.3 Member Function Documentation	 . 97

Index

5.16.3.1 fit()	97
5.16.4 Member Data Documentation	98
5.16.4.1 cdmhalo	98
5.17 results_results_psi_single_all Class Reference	98
5.17.1 Detailed Description	99
5.17.2 Constructor & Destructor Documentation	99
5.17.2.1init()	99
5.17.3 Member Function Documentation	100
5.17.3.1 fit()	100
5.17.4 Member Data Documentation	101
5.17.4.1 cdmhalo	101
5.18 alp_funcs.soliton Class Reference	101
5.18.1 Detailed Description	102
5.18.2 Constructor & Destructor Documentation	102
5.18.2.1init()	102
5.18.3 Member Function Documentation	103
5.18.3.1 mass()	103
5.18.3.2 Mhalo()	103
5.18.3.3 Mvir()	104
5.18.4 Member Data Documentation	104
5.18.4.1 cdmhalo	104
5.18.4.2 matched	105
5.18.4.3 mfree	105
5.19 alp_params.soliton Class Reference	105
5.19.1 Detailed Description	106
5.19.2 Constructor & Destructor Documentation	106
5.19.2.1init()	107
5.19.3 Member Function Documentation	107
5.19.3.1 params()	107
5.19.4 Member Data Documentation	108
5.19.4.1 cdmhalo	108
5.19.4.2 data	108
5.19.4.3 matched	108
5.19.4.4 mfree	108
5.19.4.5 params_vals	108

109

Chapter 1

DM_halo_models

Testing DM models with SPARC

See insert publication here for more information.

1.1 Overview

This repository was created to test several galactic dark matter (DM) models against the Spitzer Photometry and Accurate Rotation Curves (SPARC) catalog data (see http://astroweb.case.edu/SPARC/). It can be used to obtain fit results for each of the DM models analyzed, as well as calculate various properties such as the galactic DM mass, etc. For more information pertaining to the math and physics behind the calculations, see *insert publication here*.

For more detailed documentation see: insert documentation link or DM_halo_models_docs.pdf

1.2 Requirements

See requirements.txt

1.3 Fitting

All results, including figures, in *insert publication here* can be reproduced using the Jupyter notebooks. The main results of the paper are included in the notebooks :

- fits_CDM_all.ipynb
- · fits_Einasto.ipynb

Comparisons to previous studies can be found in the notebooks:

- · checks_CDM_all.ipynb
- checks_DC14_NFW.ipynb
- checks_Einasto_NFW.ipynb

2 DM_halo_models

1.4 Acknowledgements

This material is based upon work supported by the U.S. Department of Energy (DOE), Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE. ORISE is managed by ORAU under contract number DE-SC0014664. All opinions expressed in this paper are the authors' and do not necessarily reflect the policies and views of DOE, ORAU, or ORISE.

Thanks to Joshua Eby and Peter Suranyi for valuable discussions and comments from proofreading of *insert publication here*.

Thanks to Mike Sokoloff and Daniel Vieira for setting up computational resources to be used in the next installment of this study.

1.5 Citations

Below is the bibtex formatted citation for insert publication here,

insert bibtex citation here

Below is the bibtex formatted citation for this repository,

@misc{Street_DM_halo_models, author = {Street, Lauren and Gnedin, Nickolay Y. and Wijewardhana, L. C. R.}, title = {{DM halo models}}, url = { https://github.com/laurenstreet/DM_halo_models}}

1.6 Contact

streetlg@mail.uc.edu

Chapter 2

Namespace Index

2.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

aip_iuric		
	The package containing the functions for the ULDM halo models	7
alp_para	ams	
	The package containing the parameters for the ULDM halo models	8
cdm_fur	ncs	
	The package containing the functions for the CDM halo models	9
cdm_pa	rams	
	The package containing the parameters for the CDM halo models	10
constant	ts	
	The package containing constants, fitting routine definitions, and fitting routine parameter values	11
galaxy		
	The package containing information about all SPARC catalog galaxies	12
halo		
	The package containing the general information for all DM halo models	13
model_f		
	The package containing the general fitting procedures	13
results		
	The package containing the procedures to obtain results for various cases	17

4 Namespace Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

alp_funcs.base_funcs	
The class containing base functions needed to describe the ULDM halo models	19
cdm_funcs.base_funcs	
The class containing base functions needed to describe the CDM halo models	24
cdm_params.base_funcs	
The class containing all base functions for the CDM halo parameters	28
constants.fitting_dict	
The class containing dictionaries of fitting variables	30
galaxy.galaxy	
The class containing data for all SPARC catalog galaxies	36
model_fit.grar_fit	
The class containing the fitting procedure for the gravitational acceleration relation	38
cdm_funcs.halo	
The class containing mass functions for the CDM halo models	43
cdm_params.halo	
The class containing all parameters for fitting the CDM halo models	46
halo.halo	
The class containing definitions to describe a DM halo	49
model_fit.model_fit	
The class containing the fitting procedure assuming a chosen halo model for a chosen galaxy .	53
results.plots	
The class to obtain rotation curve plots for given galaxies	57
results.results_CDM_all	0-
The class to obtain fit results for all CDM halos analyzed	87
results.results_CDM_check	0.0
The class to obtain fit results to check all CDM model implementation	90
results.results_DC14_check	00
The class to obtain fit results to check the DC14 and NFW model implementation	92
results.results_Einasto_check The along to obtain fit regults to about the Finance and NEW model implementation	01
The class to obtain fit results to check the Einasto and NFW model implementation	93
results_results_psi_multi_all The class to obtain fit results for all double flavored ULDM models analyzed	96
results_results_psi_single_all	90
The class to obtain fit results for all single flavored ULDM models analyzed	98
alp_funcs.soliton	30
The class containing mass functions for the ULDM halo models	101
alp_params.soliton	101
The class containing all parameters for fitting the ULDM halo models	105
The diass containing all parameters for fitting the OLDM halo models	100

6 Class Index

Chapter 4

Namespace Documentation

4.1 alp_funcs Namespace Reference

The package containing the functions for the ULDM halo models.

Classes

· class base_funcs

The class containing base functions needed to describe the ULDM halo models.

· class soliton

The class containing mass functions for the ULDM halo models.

Variables

```
• standard_consts_in = constants.standard()
     dictionary
     Dictionary containing standard constants.
def kmTOGeV = standard_consts_in['kmTOGeV']
     Conversion from km to GeV

    def sTOGeV = standard consts in['sTOGeV']

     Conversion from s to GeV
• def kpcTOGeV = standard_consts_in['kpcTOGeV']
     Conversion from kpc to GeV
• def msun = standard_consts_in['msun']
     Mass of sun in GeV
def MP = standard_consts_in['MP']
     float
     Planck mass in GeV
• def rhocrit = standard_consts_in['rhocrit']
     Critical density of universe in GeV<sup>4</sup>
• fitting_dict_in = constants.fitting_dict()
     constants.fitting_dict instance
```

Instance of the constants.fitting_dict class using all default values

4.1.1 Detailed Description

The package containing the functions for the ULDM halo models.

4.2 alp_params Namespace Reference

The package containing the parameters for the ULDM halo models.

Classes

· class soliton

The class containing all parameters for fitting the ULDM halo models.

Functions

• def alphamatched (m22, msol, c200, V200)

Define the value of α when using ULDM matched models.

Variables

```
    standard_consts_in = constants.standard()
```

dictionary

Dictionary containing standard constants.

• def kmTOGeV = standard_consts_in['kmTOGeV']

float

Conversion from km to GeV

• def sTOGeV = standard_consts_in['sTOGeV']

float

Conversion from s to GeV

def kpcTOGeV = standard_consts_in['kpcTOGeV']

float

Conversion from kpc to GeV

• def msun = standard_consts_in['msun']

float

Mass of sun in GeV

• def **MP** = standard_consts_in['MP']

float

Planck mass in GeV

def rhoc = standard_consts_in['rhocrit']

float

Critical density of universe in GeV⁴

• fitting_dict_in = constants.fitting_dict()

constants.fitting_dict instance

Instance of the constants fitting_dict class using all default values

4.2.1 Detailed Description

The package containing the parameters for the ULDM halo models.

4.2.2 Function Documentation

4.2.2.1 alphamatched()

```
def alp_params.alphamatched ( m22, msol, c200, V200)
```

Define the value of α when using ULDM matched models.

This defines the value of α in the ULDM matched models. This value of is fixed from the condition $\rho_{\rm SOI}\left(3\,r_{\rm C,SOI}\right) = \rho_{\rm Einasto}\left(3\,r_{\rm C,SOI}\right)$.

Parameters

m22	mass of ULDM in units of $10^{-22}\mathrm{eV}$
msol	mass of soliton in units of solar masses
c200	Einasto profile variable c_{200}
V200	Einasto profile variable $V_{ m 200}$

Returns

float Value of α to be used for ULDM matched models

4.3 cdm_funcs Namespace Reference

The package containing the functions for the CDM halo models.

Classes

class base_funcs

The class containing base functions needed to describe the CDM halo models.

· class halo

The class containing mass functions for the CDM halo models.

Variables

```
• standard_consts_in = constants.standard()
```

dictionary

Dictionary containing standard constants.

def kmTOGeV = standard_consts_in['kmTOGeV']

float

Conversion from km to GeV

• def sTOGeV = standard_consts_in['sTOGeV']

float

Conversion from s to GeV

def kpcTOGeV = standard consts in['kpcTOGeV']

float

Conversion from kpc to GeV

• def msun = standard_consts_in['msun']

float

Mass of sun in GeV

def MP = standard_consts_in['MP']

float

Planck mass in GeV

• def rhocrit = standard_consts_in['rhocrit']

float

Critical density of universe in GeV⁴

• fitting_dict_in = constants.fitting_dict()

constants.fitting_dict instance

Instance of the constants.fitting_dict class using all default values

4.3.1 Detailed Description

The package containing the functions for the CDM halo models.

4.4 cdm params Namespace Reference

The package containing the parameters for the CDM halo models.

Classes

class base_funcs

The class containing all base functions for the CDM halo parameters.

· class halo

The class containing all parameters for fitting the CDM halo models.

Variables

```
    standard_consts_in = constants.standard()

     dictionary
     Dictionary containing standard constants.

    def kmTOGeV = standard consts in['kmTOGeV']

     Conversion from km to GeV
• def sTOGeV = standard_consts_in['sTOGeV']
     float
     Conversion from s to GeV
def kpcTOGeV = standard_consts_in['kpcTOGeV']
     Conversion from kpc to GeV
def msun = standard_consts_in['msun']
     Mass of sun in GeV
def MP = standard_consts_in['MP']
     Planck mass in GeV
def rhoc = standard_consts_in['rhocrit']
     Critical density of universe in GeV<sup>4</sup>
• fitting_dict_in = constants.fitting_dict()
     constants.fitting_dict instance
```

4.4.1 Detailed Description

The package containing the parameters for the CDM halo models.

Instance of the constants.fitting_dict class using all default values

4.5 constants Namespace Reference

The package containing constants, fitting routine definitions, and fitting routine parameter values.

Classes

· class fitting_dict

The class containing dictionaries of fitting variables.

Functions

• def standard ()

The dictionary containing standard constants.

4.5.1 Detailed Description

The package containing constants, fitting routine definitions, and fitting routine parameter values.

4.5.2 Function Documentation

4.5.2.1 standard()

```
def constants.standard ( )
```

The dictionary containing standard constants.

This defines the dictionary containing standard constants needed during fitting procedure.

Returns

dictionary

Dictionary of standard constants:

- kmTOGeV in units $[km^{-1}GeV^{-1}]$ = conversion from kilometer to GeV
- sTOGeV in units $[s^{-1} \text{ GeV}^{-1}]$ = conversion from second to GeV
- kpcTOGeV in units $[kpc^{-1} GeV^{-1}]$ = conversion from kpc to GeV
- msun in units [GeV] = mass of sun in GeV
- MP in units [GeV] = Planck mass in GeV
- rhocrit in units $\lceil \text{GeV}^4 \rceil$ = critical density of universe in GeV^4
- MOND_gdag in units $[m\,s^{-2}]$ = gravitational acceleration constant for gravitational acceleration relation in MOND theory

4.6 galaxy Namespace Reference

The package containing information about all SPARC catalog galaxies.

Classes

· class galaxy

The class containing data for all SPARC catalog galaxies.

4.6.1 Detailed Description

The package containing information about all SPARC catalog galaxies.

All data has been taken from SPARC database: http://astroweb.case.edu/SPARC/Data files can be found in:

- DM halos models/pyfiles/data/MassModels Lelli2016c.txt
- DM halos models/pyfiles/data/SPARC Lelli2016c.txt

4.7 halo Namespace Reference

The package containing the general information for all DM halo models.

Classes

· class halo

The class containing definitions to describe a DM halo.

Variables

```
• standard_consts_in = constants.standard()
```

dictionary

Dictionary containing standard constants.

def kmTOGeV = standard_consts_in['kmTOGeV']

floai

Conversion from km to GeV

def sTOGeV = standard_consts_in['sTOGeV']

float

Conversion from s to GeV

def kpcTOGeV = standard consts in['kpcTOGeV']

floa

Conversion from kpc to GeV

• def msun = standard_consts_in['msun']

float

Mass of sun in GeV

def MP = standard_consts_in['MP']

float

Planck mass in GeV

• fitting_dict_in = constants.fitting_dict()

constants.fitting_dict instance

Instance of the constants.fitting_dict class using all default values

4.7.1 Detailed Description

The package containing the general information for all DM halo models.

4.8 model_fit Namespace Reference

The package containing the general fitting procedures.

Classes

· class grar_fit

The class containing the fitting procedure for the gravitational acceleration relation.

· class model_fit

The class containing the fitting procedure assuming a chosen halo model for a chosen galaxy.

Functions

```
• def conc_mass_rel_Du (m200)
```

Define the concentration-mass relation (CMR).

• def conc_mass_rel_Wa (m200)

Define the concentration-mass relation (CMR).

• def BTFR (Vf)

Define the baryonic Tully-Fisher relation (BTFR).

• def abund_match_rel (m200)

Define the abundance matching relation (AMR).

Variables

• standard_consts_in = constants.standard()

dictionary

Dictionary containing standard constants.

def kmTOGeV = standard_consts_in['kmTOGeV']

float

Conversion from km to GeV

• def sTOGeV = standard_consts_in['sTOGeV']

float

Conversion from s to GeV

def kpcTOGeV = standard_consts_in['kpcTOGeV']

float

Conversion from kpc to GeV

def msun = standard_consts_in['msun']

float

Mass of sun in GeV

• def **MP** = standard_consts_in['MP']

float

Planck mass in GeV

• fitting_dict_in = constants.fitting_dict()

constants.fitting_dict instance

Instance of the constants.fitting_dict class using all default values

4.8.1 Detailed Description

The package containing the general fitting procedures.

4.8.2 Function Documentation

4.8.2.1 abund_match_rel()

Define the abundance matching relation (AMR).

This defines the AMR for a given halo mass. See Peter S. Behroozi et al 2013 ApJ 770 57: https://doi. \leftarrow org/10.1088/0004-637x/770/1/57 and Peter S. Behroozi et al 2013 ApJL 762 L31: https \leftarrow ://doi.org/10.1088/2041-8205/762/2/131 for more information. The AMR is given by,

$$\frac{M_*}{M_{200}} = 2N \left[\left(\frac{M_{200}}{M_1 \, M_\odot} \right)^{-\beta} + \left(\frac{M_{200}}{M_1 \, M_\odot} \right)^{-\gamma} \right]^{-1},$$

where N = 0.0351, $\beta = 1.375$, $\gamma = 0.608$, and $\log_{10}(M_1) = 11.59$.

Parameters

m200	float	1
	Total mass of the DM halo in units of solar masses.	

Returns

float

Total stellar mass of a galaxy in units of solar masses.

4.8.2.2 BTFR()

```
\begin{tabular}{ll} def & model\_fit.BTFR & ( \\ & Vf & ) \end{tabular}
```

Define the baryonic Tully-Fisher relation (BTFR).

This defines the BTFR for a given maximum circular velocity of a galaxy. See Federico Lelli et al 2016 ApJL 816 L14: https://doi.org/10.3847/2041-8205/816/1/114 for more information. The BTFR is given by,

$$\log_{10}\frac{M_b}{M_\odot} = s\,\log_{10}\left(\frac{V_f}{\mathrm{km\,s^{-1}}}\right) + \log_{10}A, \label{eq:mb_sigma}$$

where M_{\odot} is the mass of sun, $s=3.71\pm0.08$, and $\log_{10}A=2.27\pm0.18$.

Parameters

 $\begin{array}{|c|c|c|c|c|}\hline \textit{Vf} & \textit{float} & \\ & \textit{Maximum circular velocity in units of km s}^{-1}. & \\ \hline \end{array}$

Returns

float

Total baryonic mass of a galaxy in units of solar masses.

4.8.2.3 conc_mass_rel_Du()

Define the concentration-mass relation (CMR).

This defines the CMR for a given halo mass. See Monthly Notices of the Royal Astronomical Society, Volume 441, Issue 4, 11 July 2014, Pages 3359–3374: https://doi.org/10.1093/mnras/stu742 for more information. The CMR is given by,

$$\log_{10} c_{200} = 0.905 - 0.101 \log_{10} \left(\frac{M_{200}}{10^{12} h^{-1} M_{\odot}} \right),$$

where $h^{-1}=0.73$ and M_{\odot} is the mass of sun.

Parameters

m200	float	
	Total mass of the DM halo in units of solar masses.	

Returns

float

Concentration parameter assuming the CMR.

4.8.2.4 conc mass rel Wa()

```
def model_fit.conc_mass_rel_Wa ( m200 )
```

Define the concentration-mass relation (CMR).

This defines the CMR for a given halo mass. See Nature volume 585, pages 39–42 (2020): $https://doi.\leftrightarrow org/10.1038/s41586-020-2642-9$ for more information. The CMR is given by,

$$c_{200} = \sum_{i=0}^{5} c_i \ln \left(\frac{M_{200}}{h^{-1} M_{\odot}} \right)^i,$$

where $h^{-1}=0.6777$, M_{\odot} is the mass of sun, $c_0=27.112$, $c_1=-0.381$, $c_2=-1.853\times 10^{-3}$, $c_3=-4.141\times 10^{-4}$, and $c_5=3.208\times 10^{-7}$.

Parameters

m200	float
	Total mass of the DM halo in units of solar masses.

Returns

float

Concentration parameter assuming the CMR.

4.9 results Namespace Reference

The package containing the procedures to obtain results for various cases.

Classes

· class plots

The class to obtain rotation curve plots for given galaxies.

· class results CDM all

The class to obtain fit results for all CDM halos analyzed.

· class results_CDM_check

The class to obtain fit results to check all CDM model implementation.

• class results_DC14_check

The class to obtain fit results to check the DC14 and NFW model implementation.

class results_Einasto_check

The class to obtain fit results to check the Einasto and NFW model implementation.

· class results_psi_multi_all

The class to obtain fit results for all double flavored ULDM models analyzed.

• class results_psi_single_all

The class to obtain fit results for all single flavored ULDM models analyzed.

Variables

• fitting_dict_in = constants.fitting_dict()

constants.fitting_dict instance Instance of the constants.fitting_dict class using all default values

4.9.1 Detailed Description

The package containing the procedures to obtain results for various cases.

Chapter 5

Class Documentation

5.1 alp_funcs.base_funcs Class Reference

The class containing base functions needed to describe the ULDM halo models.

Public Member Functions

```
    def __init__ (self, model, fit_dict_in=fitting_dict_in)
```

Define the constructor of the base_funcs class.

def msol (self, params)

Define the total soliton mass.

• def rc (self, params)

Define the soliton profile variable rc.

• def rhoc (self, params)

Define the soliton profile variable rhoc.

• def xc (self, params, r)

Define the soliton profile variable xc.

• def mass_sol_init (self, params, r)

Define the mass profile of the soliton.

Public Attributes

model

str

Model to assume for DM halo.

· fit_dict_in

constants.fitting_dict instance

Instance of the constants.fitting_dict class.

args_opts

dictionary

Dictionary of rules to be assumed during fitting Instance of constants.fitting_dict.args_opts

matched

bool

Denotes how to combine the soliton and outer halo.

mfree

20 Class Documentation

float

Denotes how to treat soliton particle mass in fitting procedure.

• cdmhalo

float

Denotes which CDM profile to use for outer halo in ULDM galactic structure.

· m22

float

Soliton particle mass in units of 10^{-22} eV.

m22 2

float

Soliton particle mass two in units of 10^{-22} eV.

5.1.1 Detailed Description

The class containing base functions needed to describe the ULDM halo models.

5.1.2 Constructor & Destructor Documentation

5.1.2.1 __init__()

Define the constructor of the base_funcs class.

This defines the constructor of the base funcs class.

Parameters

self	object pointer
model	str Model to assume for DM halo. Can be equal to :
	psi_singlepsi_multi
fit_dict← _in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used in fitting.

5.1.3 Member Function Documentation

5.1.3.1 mass_sol_init()

Define the mass profile of the soliton.

This defines the mass of the soliton at a given radius for the given model parameters.

Parameters

self	object pointer
params	Imfit.Parameters instance Instance of the Imfit.Parameters class. All model parameters contained here. This can be created using alp_params.soliton.params.
r	ndarray[N] Numpy array of N radii values in units of kpc.

Returns

ndarray[N] (for single flavored models) or ndarray[2,N] (for double flavored models) Numpy array of N soliton mass values (for single flavored models) or numpy array of [2,N] mass values (for double flavored models) in units of solar mass.

5.1.3.2 msol()

Define the total soliton mass.

This defines the total soliton mass for the given model parameters.

Parameters

self	object pointer
params	Imfit.Parameters instance Instance of the Imfit.Parameters class. All model parameters contained here. This can be created using alp_params.soliton.params.

Returns

float (for single flavored models) or ndarray[2] (for double flavored models)

The total soliton mass (for single flavored models) or both total soliton masses, msol_1 and msol_2 (for double flavored models) in units of solar mass.

22 Class Documentation

5.1.3.3 rc()

Define the soliton profile variable rc.

This defines the soliton profile variable rc for the given model parameters. The soliton profile variable rc is given by,

$$r_c \approx 0.228 \left(\frac{M_{\rm SOI}}{10^9}\right)^{-1} m^{-2}, \label{eq:rc}$$

where $M_{
m SOI}={
m alp_funcs.base_funcs.msol}$ and $m={
m m22}$ in alp_params.soliton.params.

Parameters

self	object pointer
params	Imfit.Parameters instance Instance of the Imfit.Parameters class. All model parameters contained here. This can be created using alp_params.soliton.params.

Returns

float (for single flavored models) or ndarray[2] (for double flavored models)

The halo profile variable rc in units of kpc. The soliton profile variable rc (for single flavored models) or both soliton profile variables, rc_1 and rc_2 (for double flavored models) in units of kpc.

5.1.3.4 rhoc()

Define the soliton profile variable rhoc.

This defines the soliton profile variable rhoc for the given model parameters. The soliton profile variables rhoc is given by,

$$\rho_c \approx 7 \times 10^9 \left(\frac{M_{\rm SOl}}{10^9}\right)^4 m^6,$$

where $M_{
m SOI}={
m alp_funcs.base_funcs.msol}$ and $m={
m m22}$ in alp_params.soliton.params.

Parameters

self	object pointer
params	Imfit.Parameters instance
	Instance of the Imfit.Parameters class. All model parameters contained here.
	This can be created using alp_params.soliton.params.

Returns

float (for single flavored models) or ndarray[2] (for double flavored models)

The soliton profile variable rhoc (for single flavored models) or both soliton profile variables, rhoc_1 and rhoc \leftarrow _2 (for double flavored models) in units of M_{\odot}/kpc^3 .

5.1.3.5 xc()

Define the soliton profile variable xc.

This defines the soliton profile variable xc = r/rc for the given model parameters. The soliton profile variable xc is given by,

$$x_c = r/r_c$$

where $r_c = alp_funcs.base_funcs.rc$.

Parameters

self	object pointer
params	Imfit.Parameters instance
	Instance of the Imfit.Parameters class. All model parameters contained here.
	This can be created using alp_params.soliton.params.
r	ndarray[N]
	Numpy array of N radii values in units of kpc.

Returns

ndarray[N] (for single flavored models) or ndarray[2,N] (for double flavored models) Numpy array of N (for N given radii) soliton profile variables xc (for single flavored models) or [2,N] soliton profile variables, xc_1 and xc_2 (for double flavored models).

5.1.4 Member Data Documentation

5.1.4.1 cdmhalo

```
alp_funcs.base_funcs.cdmhalo
```

float

Denotes which CDM profile to use for outer halo in ULDM galactic structure.

Equal to constants.fitting_dict.sol_cdmhalo

24 Class Documentation

5.1.4.2 matched

alp_funcs.base_funcs.matched

bool

Denotes how to combine the soliton and outer halo.

Equal constants.fitting_dict.sol_match

5.1.4.3 mfree

```
alp_funcs.base_funcs.mfree
```

float

Denotes how to treat soliton particle mass in fitting procedure.

Equal to constants.fitting_dict.sol_mfree

The documentation for this class was generated from the following file:

· pyfiles/models/alps/alp_funcs.py

5.2 cdm_funcs.base_funcs Class Reference

The class containing base functions needed to describe the CDM halo models.

Public Member Functions

• def __init__ (self, model, fit_dict_in=fitting_dict_in)

Define the constructor of the base_funcs class.

• def mass_frac_dc14 (self, params)

Define the mass fraction for the DC14 model.

def rc (self, params)

Define the halo profile variable rc.

• def rhoc (self, params)

Define the halo profile variable rhoc.

• def xc (self, params, r)

Define the halo profile variable xc.

Public Attributes

· model

str

Model to assume for DM halo.

fit_dict_in

constants.fitting_dict instance

Instance of the constants.fitting_dict class.

· args_opts

dictionary

Dictionary of rules to be assumed during fitting Instance of constants.fitting_dict.args_opts

· mass_num

int

Used to differentiate between soliton 1 and soliton 2 in double flavored ULDM models.

5.2.1 Detailed Description

The class containing base functions needed to describe the CDM halo models.

5.2.2 Constructor & Destructor Documentation

5.2.2.1 __init__()

Define the constructor of the base_funcs class.

This defines the constructor of the base_funcs class.

Parameters

self	object pointer
model	str Model to assume for DM halo. Can be equal to :
	• Burkert
	• DC14
	• Einasto
	• NFW
fit_dict← _in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used in fitting.

5.2.3 Member Function Documentation

5.2.3.1 mass_frac_dc14()

Define the mass fraction for the DC14 model.

26 Class Documentation

This defines the stellar to DM mass fraction for the DC14 model assuming the given model parameters. The stellar to DM mass fraction is given by,

$$X = \log_{10} \left(M_* / M_{\mathsf{halo}} \right),$$

where,

$$M_* pprox \left(ilde{\Upsilon}_{\mbox{disk}} + ilde{\Upsilon}_{\mbox{bulge}}
ight) L,$$

with L= Luminosity in galaxy.galaxy.data, $M_{\mbox{halo}}=$ cdm_funcs.halo.Mvir, and $\tilde{\Upsilon}_{\mbox{disk}}=$ MLD and $\tilde{\Upsilon}_{\mbox{bulge}}=$ MLB in cdm_params.halo.params.

Parameters

self	object pointer
params	Imfit.Parameters instance
	Instance of the Imfit.Parameters class. All model parameters contained here.
	This can be created using cdm_params.halo.params.

Returns

float

The stellar to DM mass fraction in the DC14 model.

5.2.3.2 rc()

Define the halo profile variable rc.

This defines the halo profile variable rc for the given model parameters. The halo profile variable rc is given by,

$$r_c = \sqrt{\frac{3}{2\pi\,\rho_{\rm crit}}} \frac{M_P\,V_{200}}{20\,c_{200}},$$

where $\rho_{\rm Crit}=$ rhocrit and $M_P=$ MP in constants.standard, while $V_{200}=$ v200 and $c_{200}=$ c200 in cdm_params.halo.params.

Parameters

self	object pointer
params	Imfit.Parameters instance
	Instance of the Imfit.Parameters class. All model parameters contained here.
	This can be created using cdm_params.halo.params.

Returns

float

The halo profile variable rc in units of kpc.

5.2.3.3 rhoc()

Define the halo profile variable rhoc.

This defines the halo profile variable rhoc for the given model parameters. The halo profile variables rhoc is given by,

$$\rho_c = \frac{M_{200}}{4\pi r_c^3 \left[\ln \left(1 + c_{200} \right) - \frac{c_{200}}{1 + c_{200}} \right]},$$

where $r_c=\operatorname{cdm_funcs.base_funcs.rc}$, $M_{200}=\operatorname{cdm_funcs.halo.Mvir}$, and $c_{200}=\operatorname{c200}$ in $\operatorname{cdm_params.halo.params.$

Parameters

self	object pointer
params	Imfit.Parameters instance
	Instance of the Imfit.Parameters class. All model parameters contained here.
	This can be created using cdm_params.halo.params.

Returns

float

The halo profile variable rhoc in units of M_{\odot}/kpc^3 .

5.2.3.4 xc()

Define the halo profile variable xc.

This defines the halo profile variable xc for the given model parameters. The halo profile variable xc is given by,

$$x_c = r/r_c$$

where $r_c = \text{cdm_funcs.base_funcs.rc.}$

Parameters

self	object pointer
params	Imfit.Parameters instance Instance of the Imfit.Parameters class. All model parameters contained here. This can be created using cdm_params.halo.params.
r	ndarray[N] Numpy array of N radii values in units of kpc.

28 Class Documentation

Returns

ndarray[N]

Numpy array of N halo profile variables xc.

5.2.4 Member Data Documentation

5.2.4.1 mass_num

```
cdm_funcs.base_funcs.mass_num
```

int

Used to differentiate between soliton 1 and soliton 2 in double flavored ULDM models.

Outer CDM halo is halo 1 if mass_num = 0 and is halo 2 if mass_num = 1.

The documentation for this class was generated from the following file:

• pyfiles/models/cdm/cdm funcs.py

5.3 cdm_params.base_funcs Class Reference

The class containing all base functions for the CDM halo parameters.

Public Member Functions

def init (self)

Define the constructor of the base funcs class.

def v200min_frac_dc14check (self, mstar, mgas, vfac)

Define the expression for V200 to be assumed in particular cases.

• def v200min_dc14 (self, mstar)

Define the minimum allowed V200 for the DC14 model.

5.3.1 Detailed Description

The class containing all base functions for the CDM halo parameters.

This class contains functions necessary to describe CDM halo parameters for various cases.

5.3.2 Constructor & Destructor Documentation

```
5.3.2.1 __init__()
```

Define the constructor of the base_funcs class.

This defines the constructor of the base_funcs class.

Parameters

self	object pointer
------	----------------

5.3.3 Member Function Documentation

5.3.3.1 v200min_dc14()

Define the minimum allowed V200 for the DC14 model.

This defines the minimum allowed V200 for the DC14 model. This is assumed when using the fit routines:

- · constants.fitting_dict.fit_routine = 'uni_priors',
- constants.fitting dict.fit routine = 'c200 priors check',
- constants.fitting_dict.fit_routine = 'v200_priors_check',
- constants.fitting_dict.fit_routine = 'MLd_priors_check',
- constants.fitting_dict.fit_routine = 'MLb_priors_check',
- constants.fitting_dict.fit_routine = 'CDM_check' The allowed values for V200 are given by,

$$V_{200} \geq \left[10^{1.3} M_* \sqrt{\frac{2\pi \, \rho_{\rm Crit}}{3}} \frac{20 \times 10^9}{M_P^3} \right]^{1/3},$$

where,

$$M_* pprox \left(ilde{\Upsilon}_{ extsf{disk}} + ilde{\Upsilon}_{ extsf{bulge}}
ight) L.$$

Here, $ho_{
m crit}=$ rhocrit and $M_P=$ MP in constants.standard, $M_{
m gas}=$ Mgas and L= Luminosity in galaxy.galaxy.data, $\tilde{\Upsilon}_{
m disk}=$ MLD and $\tilde{\Upsilon}_{
m bulge}=$ MLB in cdm_params.halo.params.

Parameters

self	object pointer	
mstar		
	Total stellar mass in units of $10^9\mathrm{solar}$ masses.	

Returns

float

Minimun allowed value for V200 for the DC14 model for various cases.

5.3.3.2 v200min_frac_dc14check()

Define the expression for V200 to be assumed in particular cases.

This defines the allowable values for V200 in \log_{10} space when using the fit routine constants.fitting_dict.fit_routine = 'DC14_check'. The allowable values for V200 are given by,

$$V_{200} \geq \left[\left(M_* + M_{\rm gas} \right) \sqrt{\frac{2\pi \, \rho_{\rm crit}}{3}} \frac{20 \times 10^9}{0.2 \, M_P^3} \right]^{1/3},$$

where.

$$M_* pprox \left(ilde{\Upsilon}_{\sf disk} + ilde{\Upsilon}_{\sf bulge}
ight) L.$$

Here, $ho_{
m crit}=$ rhocrit and $M_P=$ MP in constants.standard, $M_{
m gas}=$ Mgas and L= Luminosity in galaxy.galaxy.data, $\tilde{\Upsilon}_{
m disk}=$ MLD and $\tilde{\Upsilon}_{
m bulge}=$ MLB in cdm_params.halo.params.

Parameters

self	object pointer	
mstar	float	
	Total stellar mass in units of 10^9 solar masses.	
mgas	float	
	Total HI gas mass in units of $10^9\ {\rm solar}$ masses.	
vfac	float	
	Factor to vary in fitting procedure.	

Returns

float

Value for V200 in \log_{10} space in units of \log_{10} (km s⁻¹).

The documentation for this class was generated from the following file:

pyfiles/models/cdm/cdm_params.py

5.4 constants.fitting_dict Class Reference

The class containing dictionaries of fitting variables.

Public Member Functions

Define the constructor of the fitting_dict class.

def args_opts (self)

Define the fitting rules.

· def params vals (self)

Define the fitting values.

Public Attributes

· fit routine

str

Denotes the fitting routine to use.

· sol match

bool

Denotes how to combine the soliton and outer halo.

· sol mfree

bool

Denotes how to treat soliton particle mass in fitting procedure.

· sol_cdm_halo

str

Denotes which CDM profile to use for outer halo in ULDM galactic structure.

sol m22

float

Soliton particle mass (for single flavored models) and soliton 1 particle mass (for double flavored models) in units of 10^{-22} eV.

sol m22 2

float

Soliton 2 particle mass (for double flavored models) in units of $10^{-22} \ {\rm eV}.$

· sol_m22_tab

ndarray[N]

Numpy array of soliton particle masses (for single flavored, matched models) and soliton 1 particle masses (for double flavored, matched models) in units of 10^{-22} eV.

· sol m22 tab prime

ndarray[N]

Numpy array of soliton particle masses (for single flavored, summed models) and soliton 1 particle masses (for double flavored, summed models) in units of 10^{-22} eV.

· sol_m22_2_tab

ndarray[N]

Numpy array of soliton 2 particle masses (for double flavored, matched models) in units of $10^{-22}\,\mathrm{eV}$.

sol_m22_2_tab_prime

ndarray[N]

Numpy array of soliton 2 particle masses (for double flavored, summed models) in units of 10^{-22} eV.

sol_mass_ind

int

Used to differentiate between soliton 1 and soliton 2 in double flavored models.

5.4.1 Detailed Description

The class containing dictionaries of fitting variables.

5.4.2 Constructor & Destructor Documentation

5.4.2.1 __init__()

Define the constructor of the fitting_dict class.

This defines the constructor of the fitting_dict class.

self	object pointer
fit_routine	(optional) str Denotes the fitting routine to use. Can be equal to:
	• 'uni_priors' : uniform priors on all parameters (used for main results of paper)
	• 'c200_priors_check' : used to check affect of changing prior ranges for c200
	 'v200_priors_check': used to check affect of changing prior ranges for v200
	 'MLd_priors_check': used to check affect of changing prior ranges for MLd
	 'MLb_priors_check': used to check affect of changing prior ranges for MLb
	• 'CDM_check': used to obtain results to be compared with Pengfei Li et al 2020 ApJS 247 31: https://doi.org/10.3847/1538-4365/ab700e
	 'DC14_check': used to obtain results to be compared with Monthly Notices of the Royal Astronomical Society, Volume 466, Issue 2, April 2017, Pages 1648–1668: https://doi.org/10.1093/mnras/stw3101
	 'Einasto_check': used to obtain results to be compared with Nicolas Loizeau and Glennys R. Farrar 2021 ApJL 920 L10:
	https://doi.org/10.3847/2041-8213/ac1bb7
sol_match	(optional) bool Denotes how to combine the soliton and outer halo. If equal to:
	False : soliton and CDM halo to be summed
	True : soliton and CDM halo to be matched
sol_mfree	(optional) bool Denotes how to treat soliton particle mass in fitting procedure. If equal to:
	False : soliton particle mass set to be fixed
	True : soliton particle mass to be free

Parameters

sol_cdm_halo	(optional) str Denotes which CDM profile to use for outer halo in ULDM galactic structure. Can be equal to:
	• 'Burkert'
	• 'DC14'
	• 'Einasto'
	• 'NFW'
sol_m22	(optional) float Soliton particle mass (for single flavored models) and soliton 1 particle mass (for double flavored models) in units of $10^{-22}\mathrm{eV}$. Only used for case in which soliton particle mass is fixed (i.e. constants.fitting_dict.sol_mfree = False)
sol_m22_2	(optional) float Soliton 2 particle mass (for double flavored models) in units of 10^{-22} eV. Only used for case in which soliton particle mass is fixed (i.e. constants.fitting_dict.sol_mfree = False)
sol_m22_tab	(optional) ndarray[N] Numpy array of soliton particle masses (for single flavored, matched models) and soliton 1 particle masses (for double flavored, matched models) in units of $10^{-22}\mathrm{eV}$. Only used for case in which soliton particle mass is fixed (i.e. constants.fitting_dict.sol_mfree = False)
sol_m22_tab_prime	(optional) ndarray[N] Numpy array of soliton particle masses (for single flavored, summed models) and soliton 1 particle masses (for double flavored, summed models) in units of $10^{-22}\mathrm{eV}$. Only used for case in which soliton particle mass is fixed (i.e. constants.fitting_dict.sol_mfree = False)
sol_m22_2_tab	(optional) ndarray[N] Numpy array of soliton 2 particle masses (for double flavored, matched models) in units of 10^{-22} eV. Only used for case in which soliton particle mass is fixed (i.e. constants.fitting_dict.sol_mfree = False)
sol_m22_2_tab_prime	(optional) ndarray[N] Numpy array of soliton 2 particle masses (for double flavored, summed models) in units of 10^{-22}eV . Only used for case in which soliton particle mass is fixed (i.e. constants.fitting_dict.sol_mfree = False)
sol_mass_ind	(optional) int Used to differentiate between soliton 1 and soliton 2 in double flavored models. Can be equal to 0 (to denote soliton 1) or 1 (to denote soliton 2)

5.4.3 Member Function Documentation

5.4.3.1 args_opts()

```
\label{eq:constants.fitting_dict.args_opts} \mbox{ (} \\ self \mbox{ )}
```

Define the fitting rules.

This defines the rules to be assumed during fitting.

Many prior cases and fitting routines to compare to previous studies are taken into account.

Parameters

```
self object pointer
```

Returns

dictionary

Dictionary of rules to be assumed during fitting:

• 'fitting_routine': Dictionary of possible fitting routines

Each of the following fitting routines can be equal to true or false. By default, the only fitting routine that is set to true is the one equal to fit routine.

```
- 'uni_priors' : bool
```

- 'c200_priors_check' : bool
- 'v200_priors_check' : bool
- 'MLd_priors_check' : bool
- 'MLb_priors_check' : bool
- 'CDM check' : bool
- 'DC14 check' : bool
- 'Einasto_check' : bool
- · 'soliton' : Dictionary of soliton variables
 - 'matched' : bool (equal to constants.fitting_dict.sol_match)
 - 'mfree' : bool (equal to constants.fitting_dict.sol_mfree)
 - 'cdm halo' : str (equal to constants.fitting dict.sol cdm halo)
 - 'm22': float (equal to constants.fitting_dict.sol_m22)
 - 'm22_2': float (equal to constants.fitting_dict.sol_m22_2)
 - 'm22 tab': ndarray[N] (equal to constants.fitting dict.sol m22 tab)
 - 'm22_tab_prime' : ndarray[N] (equal to constants.fitting_dict.sol_m22_tab_prime)
 - 'm22_2_tab' : ndarray[N] (equal to constants.fitting_dict.sol_m22_2_tab)
 - 'm22_2_tab_prime' : ndarray[N] (equal to constants.fitting_dict.sol_m22_2_tab_prime)
 - 'mass_ind' : int (equal to constants.fitting_dict.sol_mass_ind)

5.4.3.2 params vals()

```
\begin{tabular}{ll} def & constants.fitting\_dict.params\_vals & ( \\ & self & ) \end{tabular}
```

Define the fitting values.

This defines the values for various variables used during the fitting procedure.

Many prior cases and fitting routines to compare to previous studies are taken into account. Values are setup to be utilized in Imfit.Parameters class.

Parameters

```
self object pointer
```

Returns

```
dictionary
```

Possible dictionary of variables values to be used during fitting.

Variables values are setup in lists with format [starting value,min,max]

Dictionary to be used depends on value of fit routine.

If:

- fit routine = 'uni priors', resulting dictionary is:
 - 'CDM': values for variables describing CDM halos
 - * 'c200' : [3, 1, 100]
 - * 'v200' : [100, 1, 1000] in units of km s⁻¹
 - * 'v200 fac' : $[1.5, 1, \infty]$
 - * 'MLd' : $[0.5,\,0.01,\,5]$ in units of M_{\odot}/L_{\odot}
 - * 'MLb' : [0.7, 0.01, 5] in units of M_{\odot}/L_{\odot}
 - * 'alpha' : $[0.16, -\infty, \infty]$ (only used for Einasto profile)
 - 'soliton' : values for variables describing soliton
 - \star 'Msol' : $[10^9,\,10^{4.5},\,10^{12}]$ in units of M_{\odot}
 - * 'Msol_2' : $[10^9, 10^{4.5}, 10^{12}]$ in units of M_{\odot}
 - $\star \,\, \, {\rm 'm22'} : [1, \, 10^{-3}, \, 10^{3}]$ in units of $10^{-22} \, {\rm eV}$
 - * 'm22 2' : $[1, 10^{-3}, 10^{3}]$ in units of 10^{-22} eV
- fit_routine = 'c200_priors_check', resulting dictionary is same as 'uni_priors' with following changes:
 - 'CDM':
 - * 'c200' : $[3, 0, \infty]$
- fit_routine = 'v200_priors_check', resulting dictionary is same as 'uni_priors' with following changes:
 - 'CDM'
 - * 'v200' : $[100, 0, \infty]$ in units of km s⁻¹
- fit_routine = 'MLd_priors_check', resulting dictionary is same as 'uni_priors' with following changes:
 - 'CDM' :
 - * 'MLd' : $[0.5,\,0,\,\infty]$ in units of M_{\odot}/L_{\odot}
- fit routine = 'MLb priors check', resulting dictionary is same as 'uni priors' with following changes:
 - 'CDM' :
 - * 'MLb' : $[0.7,\,0,\,\infty]$ in units of M_{\odot}/L_{\odot}
- fit_routine = 'CDM_check', resulting dictionary is same as 'uni_priors' with following changes:
 - 'CDM' :
 - * 'c200' : $[3, 10^{-1}, 10^3]$
 - * 'v200' : [100, 10, 500] in units of km s⁻¹
- fit_routine = 'DC14_check', resulting dictionary is same as 'uni_priors' with following changes:
 - 'CDM' :
 - * 'c200' : $[\log_{10} 5, \log_{10} 1, \log_{10} 100]$
 - * 'v200' : $[\log_{10} 100, \, \log_{10} 10, \, \log_{10} 500]$ in units of $\log_{10} \left(\text{km} \, \text{s}^{-1} \right)$
 - * 'v200_fac' : $[2, 1, \infty]$
 - * 'MLd' : $[\log_{10} 0.5,\,\log_{10} 0.3,\,\log_{10} 0.8]$ in units of $\log_{10} \left(M_{\odot}/L_{\odot}\right)$
- fit_routine = 'Einasto_check', resulting dictionary is same as 'uni_priors' with following changes:
 - 'CDM' :
 - * 'v200' : [100, 1, 500] in units of km s⁻¹
 - * 'alpha' : $[0.16, 10^{-3}, 10]$

The documentation for this class was generated from the following file:

• pyfiles/data_models/constants.py

5.5 galaxy.galaxy Class Reference

The class containing data for all SPARC catalog galaxies.

Public Member Functions

```
    def __init__ (self, name)
    Define the constructor of the galaxy class.
```

Public Attributes

name

str Galaxy name

df

Pandas dataframe

Dataframe that contains data from SPARC catalog.

df1

Pandas dataframe

Dataframe that contains data from SPARC catalog.

gal_init

Pandas dataframe

Dataframe that contains data for an initialized galaxy.

• data

dictionary Dictionary that contains data for the chosen galaxy (i.e.

5.5.1 Detailed Description

The class containing data for all SPARC catalog galaxies.

5.5.2 Constructor & Destructor Documentation

```
5.5.2.1 __init__()
```

Define the constructor of the galaxy class.

This defines the constructor of the galaxy class.

self	object pointer	
name	str	
	Can be equal to:	Generated by Doxyger
	 Any galaxy name in the SPARC catalog (e.g. 'CamB') The galaxy with galaxy name will be analyzed. 	

5.5.3 Member Data Documentation

5.5.3.1 data

galaxy.galaxy.data

dictionary Dictionary that contains data for the chosen galaxy (i.e.

either 'name' or 'random'):

'Radius': ndarray[N]
 Numpy array of galactocentric radii in units of [kpc]

• 'Vobs' : ndarray[N] $\text{Numpy array of observed circular velocities at given radii in units of } [\text{km s}^{-1}]$

• 'eVobs' : ndarray[N] ${\hbox{Numpy array of error in observed circular velocities in units of } [\hbox{km s}^{-1}]$

• 'Vgas' : ndarray[N] Numpy array of contribution from gas to circular velocities in units of $[{\rm km\,s^{-1}}]$

• 'Vdisk' : ndarray[N] $\text{Numpy array of contribution from the disk to circular velocities in units of } [\text{km s}^{-1}]$

- 'Vbulge' : ndarray[N] ${\rm Numpy~array~of~contribution~from~the~bulge~to~circular~velocities~in~units~of~[km~s^{-1}]}$

- 'Luminosity' : float Total luminosity at $[3.6~\mu\mathrm{m}]$ in units of $[10^9~L_{\odot}]$

- 'Mgas': float Total mass of HI gas in units of $[10^9\,M_\odot]$

'Vf': float
 Maximum circular velocity in units of [km s⁻¹]

• 'Inclination' : float Inclination of galaxy in units of [degrees]

 'Quality': int Quality flag of galaxy

5.5.3.2 df

galaxy.galaxy.df

Pandas dataframe

Dataframe that contains data from SPARC catalog.

 $Contains\ data\ from\ DM_halo_models/pyfiles/data/MassModels_Lelli2016c.txt$

5.5.3.3 df1

```
galaxy.galaxy.df1
```

Pandas dataframe

Dataframe that contains data from SPARC catalog.

Contains data from DM halo models/pyfiles/data/SPARC Lelli2016c.txt

The documentation for this class was generated from the following file:

· pyfiles/data_models/galaxy.py

5.6 model_fit.grar_fit Class Reference

The class containing the fitting procedure for the gravitational acceleration relation.

Public Member Functions

• def init (self, model, ULDM fits=False, fit dict in=fitting dict in)

Define the constructor of the grar_fit class.

def g_tot (self, params, data)

Define the total radial gravitational acceleration of the galaxy.

def g bar (self, params, data)

Define the radial gravitational acceleration due to baryonic matter.

• def g_rar (self, gdag, params, data)

Define the radial gravitational acceleration relation.

• def grar_model (self, gbarin, gdag)

Define the general model of the radial gravitational acceleration relation.

def fit (self)

Define the fit result for the modeled gravitational acceleration relation.

Public Attributes

model

str

Model to assume for DM halo.

· fit_dict_in

constants.fitting_dict instance
Instance of the constants.fitting_dict class.

· args_opts

dictionary

Dictionary of rules to be assumed during fitting Instance of constants.fitting_dict.args_opts

ULDM_fits

bool

True if performing fits for the ULDM models

5.6.1 Detailed Description

The class containing the fitting procedure for the gravitational acceleration relation.

See See Stacy S. McGaugh, Federico Lelli, and James M. Schombert Phys. Rev. Lett. 117, 201101: https://doi.org/10.1103/PhysRevLett.117.201101 for more information

5.6.2 Constructor & Destructor Documentation

5.6.2.1 __init__()

Define the constructor of the grar_fit class.

This defines the constructor of the grar_fit class.

Parameters

self	object pointer
model	str Model to assume for DM halo. Can be equal to :
	Burkert
	• DC14
	• Einasto
	• NFW
	• psi_single
	• psi_multi
ULDM_fits	(optional) bool True if performing fits for the ULDM models
fit_dict_in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used in fitting.

5.6.3 Member Function Documentation

5.6.3.1 fit()

Define the fit result for the modeled gravitational acceleration relation.

This defines the fit result for the modeled gravitational acceleration relation.

Parameters

self object pointer	object pointer
---------------------	----------------

Returns

Imfit.Minimizer.minimize fit result

Fit results contain the optimized parameters and several goodness-of-fit statistics.

5.6.3.2 g_bar()

Define the radial gravitational acceleration due to baryonic matter.

This defines the radial gravitational acceleration due to baryonic matter assuming the given model parameters and galaxy data. The radial gravitational acceleration due to baryonic matter is given by,

$$g_{\mbox{\scriptsize bar}}(r) = V_{\mbox{\scriptsize bar}}(r)^2/r,$$

where,

$$V_{\mathsf{bar}}(r) = \sqrt{\left|V_{\mathsf{gas}}(r)\right|V_{\mathsf{gas}}(r) + \tilde{\Upsilon}_{\mathsf{disk}}\left|V_{\mathsf{disk}}(r)\right|V_{\mathsf{disk}}(r) + \tilde{\Upsilon}_{\mathsf{bulge}}\left|V_{\mathsf{bulge}}(r)\right|V_{\mathsf{bulge}}(r)}.$$

Here, $V_{\rm gas}(r)$, $V_{\rm disk}(r)$, and $V_{\rm bulge}(r)$ can be found in galaxy.galaxy.data. Finally, $\tilde{\Upsilon}_{\rm disk}={\rm MLD}$ and $\tilde{\Upsilon}_{\rm bulge}={\rm MLB}$ in cdm_params.halo.params (for CDM models) or alp_params.soliton.params (for ULDM models).

self	object pointer
params	Imfit.Parameters instance
	Instance of the Imfit.Parameters class. All model parameters contained here.
	This can be created using cdm_params.halo.params (for CDM models) or
	alp_params.soliton.params (for ULDM models)
data	dictionary
	Dictionary containing all the necessary data for a given galaxy. This can be created using galaxy.galaxy.

Returns

ndarray[N]

Numpy array of N values of the radial gravitational acceleration due to baryons in units of $m s^{-2}$.

5.6.3.3 g_rar()

Define the radial gravitational acceleration relation.

This defines the radial gravitational acceleration relation assuming the given relation constant, gdag, model parameters and galaxy data. The radial gravitational acceleration relation is given by,

$$g_{\mbox{tot}}(r) = \frac{g_{\mbox{bar}}(r)}{1 - \exp\left(-\sqrt{g_{\mbox{bar}}(r)/g_{\dagger}}\right)}, \label{eq:gtot}$$

where $g_{\mbox{bar}}(r) = \mbox{model_fit.grar_fit.g_bar}$ and g_{\dagger} is some constant.

Parameters

self	object pointer
gdag	float
	Constant in the gravitational acceleration relation. Must be in units of m $\rm s^{-2}$.
params	Imfit.Parameters instance
	Instance of the Imfit.Parameters class. All model parameters contained here.
	This can be created using cdm_params.halo.params (for CDM models) or
	alp_params.soliton.params (for ULDM models)
data	dictionary
	Dictionary containing all the necessary data for a given galaxy. This can be created using galaxy.galaxy.

Returns

ndarray[N]

Numpy array of N values of the total radial gravitational acceleration relation in units of $m s^{-2}$.

5.6.3.4 g_tot()

Define the total radial gravitational acceleration of the galaxy.

This defines the total radial gravitational acceleration of the galaxy assuming the given model parameters and galaxy data. The total radial gravitational acceleration is given by,

$$g_{\text{tot}}(r) = V_{\text{tot}}(r)^2/r,$$

where $V_{tot}(r) = model_fit.model_fit.velocity_tot$.

Parameters

self	object pointer
params	Imfit.Parameters instance Instance of the Imfit.Parameters class. All model parameters contained here. This can be created using cdm_params.halo.params (for CDM models) or alp_params.soliton.params (for ULDM models)
data	dictionary Dictionary containing all the necessary data for a given galaxy. This can be created using galaxy.galaxy.

Returns

ndarray[N]

Numpy array of N values of the total radial gravitational acceleration in units of $m s^{-2}$.

5.6.3.5 grar_model()

Define the general model of the radial gravitational acceleration relation.

This defines the general model of the radial gravitational acceleration relation for the model parameters, gbarin and gdag. This is the form of the radial gravitational acceleration relation to be used in fitting and is given by,

$$g_{\mbox{tot}}(r) = \frac{g_{\mbox{bar}}(r)}{1 - \exp\left(-\sqrt{g_{\mbox{bar}}(r)/g_{\dagger}}\right)}. \label{eq:gtot}$$

Here, the fit parameter g_{\dagger} can be found by fitting this model using $g_{tot}(r) = model_{fit.grar_fit.g_{tot}}$ and $g_{bar} = model_{fit.grar_fit.g_{tot}}$ bar.

self	object pointer
gbarin	ndarray[N]
	Numpy array of N values of baryonic gravitational accerlation in units of m ${ m s}^{-2}$.
gdag	ndarray[N]
	Constant in the gravitational acceleration relation in units of $m s^{-2}$.

Returns

ndarray[N]

Numpy array of N values of the total modeled radial gravitational acceleration in units of $m s^{-2}$.

The documentation for this class was generated from the following file:

· pyfiles/fitting/model_fit.py

5.7 cdm funcs.halo Class Reference

The class containing mass functions for the CDM halo models.

Public Member Functions

• def __init__ (self, model, fit_dict_in=fitting_dict_in)

Define the constructor of the halo class.

• def mass (self, params, r)

Define the mass profile of the CDM galactic structure.

def Mvir (self, params)

Define the total galactic DM halo mass.

Public Attributes

model

str

Model to assume for DM halo.

· fit_dict_in

constants.fitting_dict instance
Instance of the constants.fitting_dict class.

· args_opts

dictionary

Dictionary of rules to be assumed during fitting Instance of constants.fitting_dict.args_opts

• mass_num

int

Used to differentiate between soliton 1 and soliton 2 in double flavored ULDM models.

· base funcs in

cdm_funcs.base_funcs instance
Instance of the cdm_funcs.base_funcs class

5.7.1 Detailed Description

The class containing mass functions for the CDM halo models.

5.7.2 Constructor & Destructor Documentation

5.7.2.1 __init__()

Define the constructor of the halo class.

This defines the constructor of the halo class.

Parameters

self	object pointer
model	str Model to assume for DM halo. Can be equal to :
	• Burkert
	• DC14
	• Einasto
	• NFW
fit_dict← _in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used in fitting.

5.7.3 Member Function Documentation

5.7.3.1 mass()

Define the mass profile of the CDM galactic structure.

This defines the mass of the CDM galactic structure at a given radius given the model parameters. The mass profile depends on the model assumed. The mass profile for each model is given by :

• Burkert, $M_{\mathsf{Burkert}}(r) = \pi \, \rho_c \, r_c^3 \left\{ -2 \arctan(x_c(r)) + \log \left[\left(1 + x_c(r)\right)^2 \left(1 + x_c(r)^2\right) \right] \right\},$

• DC14,

$$M_{\mbox{\scriptsize DC}14}(r) = 4\pi\,\rho_c\,r_c^3\,x_c(r)^{3-\gamma}\,{}_2\mbox{\scriptsize F}_1\left(\frac{3-\gamma}{\alpha},\frac{\beta-\gamma}{\alpha},\frac{3+\alpha-\gamma}{\alpha},-x_c(r)^\alpha\right)(3-\gamma)^{-1}, \label{eq:DC14}$$

where,

$$\begin{split} \alpha &= 2.94 - \log_{10} \left[\left(10^{X+2.33} \right)^{-1.08} + \left(10^{X+2.33} \right)^{2.99} \right], \\ \beta &= 4.23 + 1.34X + 0.26X^2, \\ \gamma &= -0.06 - \log_{10} \left[\left(10^{X+2.56} \right)^{-0.68} + 10^{X+2.56} \right]. \end{split}$$

Here, $X = \operatorname{cdm_funcs.base_funcs.mass_frac_dc14}$, and ${}_2\mathsf{F}_1 = \mathsf{Gaussian}$ hypergeometric function.

· Einasto.

$$M_{\mathsf{Finasto}}(r) = 4\pi \, \rho_c \, r_c^3 \exp\left(2/\alpha\right) \left(2/\alpha\right)^{-3/\alpha} \, \Gamma\left(3/\alpha, 2x_c^\alpha/\alpha\right)/\alpha,$$

where $\alpha=$ alpha in cdm_params.halo.params and $\Gamma\left(a,x\right)=$ incomplete Gamma function.

• NFW,

$$M_{\text{NFW}}(r) = 4\pi \, \rho_c \, r_c^3 \left[\ln(1 + x_c(r)) - \frac{x_c(r)}{1 + x_c(r)} \right].$$

For each of the above masses, $\rho_c=\text{cdm_funcs.base_funcs.rhoc},\ r_c=\text{cdm_funcs.base_funcs.rc},\ \text{and}\ x_c(r)=\text{cdm_funcs.base_funcs.xc}.$

Parameters

self	object pointer
params	Imfit.Parameters instance Instance of the Imfit.Parameters class. All model parameters contained here. This can be created using cdm_params.halo.params.
r	ndarray[N] Numpy array of N radii values in units of kpc.

Returns

ndarray[N]

Numpy array of N mass values in units of solar mass.

5.7.3.2 Mvir()

Define the total galactic DM halo mass.

This defines the total mass of the galactic DM given the model parameters. The total galactic DM mass is given by,

$$M_{200} = \sqrt{\frac{3}{2\pi\rho_{\rm Crit}}} \frac{M_P^3 V_{200}^3}{20},$$

where $ho_{
m crit}=$ rhocrit and M_P = MP in constants.standard, while $V_{200}=$ v200 in cdm_params.halo.params.

self	object pointer
params	Imfit.Parameters instance
	Instance of the Imfit.Parameters class. All model parameters contained here.
	This can be created using cdm_params.halo.params.

Returns

float

Total mass of the galactic DM in units of solar mass.

5.7.4 Member Data Documentation

5.7.4.1 mass_num

```
cdm_funcs.halo.mass_num
```

int

Used to differentiate between soliton 1 and soliton 2 in double flavored ULDM models.

Outer CDM halo is halo 1 if mass num = 0 and is halo 2 if mass num = 1.

The documentation for this class was generated from the following file:

• pyfiles/models/cdm/cdm_funcs.py

5.8 cdm_params.halo Class Reference

The class containing all parameters for fitting the CDM halo models.

Public Member Functions

• def __init__ (self, model, data, fit_dict_in=fitting_dict_in)

Define the constructor of the halo class.

def params (self)

Define the parameters to be assumed.

Public Attributes

model

str

Model to assume for DM halo.

• data

dictionary

Dictionary containing all the necessary data for a given galaxy.

fit_dict_in

constants.fitting_dict instance

Instance of the constants.fitting_dict class.

· args_opts

dictionary

Dictionary of rules to be assumed during fitting Instance of constants.fitting_dict.args_opts

params_vals

dictionary

Dictionary of variable values to be used during fitting.

· c200

list

Values for c200 in the form [starting value, min, max] Contained in constants.fitting_dict.params_vals

v200

list

Values for V200 in the form [starting value, min, max] Contained in constants.fitting_dict.params_vals

v200fac

list

Values for v200fac in the form [starting value, min, max] Contained in constants.fitting_dict.params_vals

MLD

list

Values for MLd in the form [starting value, min, max] Contained in constants.fitting_dict.params_vals

MLB

list

Values for MLb in the form [starting value, min, max] Contained in constants.fitting_dict.params_vals

· alpha

lict

Values for alpha in the form [starting value, min, max] Contained in constants.fitting_dict.params_vals

5.8.1 Detailed Description

The class containing all parameters for fitting the CDM halo models.

This class contains all parameters necessary to perform the fitting procedures for all CDM halo models.

5.8.2 Constructor & Destructor Documentation

5.8.2.1 __init__()

Define the constructor of the halo class.

This defines the constructor of the halo class.

self	object pointer
------	----------------

Parameters

model	str Model to assume for DM halo. Can be equal to :
	Burkert
	• DC14
	• Einasto
	• NFW
data	dictionary Dictionary containing all the necessary data for a given galaxy. This can be created using galaxy.galaxy.
fit_dict <i>⊷</i> _in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used in fitting.

5.8.3 Member Function Documentation

5.8.3.1 params()

```
\label{eq:cdm_params.halo.params} \mbox{ (} \\ self \mbox{ )}
```

Define the parameters to be assumed.

This defines the parameters to be assumed during the fitting procedures for all CDM halos.

Parameters

self object pointer

Returns

Imfit.Parameters instance Instance of the Imfit.Parameters class

5.8.4 Member Data Documentation

5.8.4.1 data

cdm_params.halo.data

dictionary

Dictionary containing all the necessary data for a given galaxy.

This can be created using galaxy.galaxy.

5.8.4.2 params_vals

```
cdm_params.halo.params_vals
```

dictionary

Dictionary of variable values to be used during fitting.

Instance of constants.fitting_dict.params_vals

The documentation for this class was generated from the following file:

pyfiles/models/cdm/cdm_params.py

5.9 halo.halo Class Reference

The class containing definitions to describe a DM halo.

Public Member Functions

def init (self, model, data, fit dict in=fitting dict in)

Define the constructor of the halo class.

def mass (self, params, r)

Define the DM halo mass within some radius assuming the chosen model.

• def velocity (self, params, r)

Define the total circular velocity of the DM halo at some radius assuming the chosen model.

Public Attributes

model

str

Model to assume for DM halo.

data

dictionary

Dictionary containing all the necessary data for a given galaxy.

· fit_dict_in

constants.fitting_dict instance

Instance of the constants fitting dict class.

· args_opts

dictionary

Dictionary of rules to be assumed during fitting Instance of constants.fitting_dict.args_opts

• params_vals

dictionary

Dictionary of variable values to be used during fitting.

· params

Ifmit.Parameters instance

Instance of the Imfit. Parameters class All model parameters contained here.

· halo_init

Can be:

5.9.1 Detailed Description

The class containing definitions to describe a DM halo.

5.9.2 Constructor & Destructor Documentation

5.9.2.1 __init__()

Define the constructor of the halo class.

This defines the constructor of the halo class.

Parameters

self	object pointer
model	str Model to assume for DM halo. Can be equal to :
	• Burkert
	• DC14
	• Einasto
	• NFW
	• psi_single
	• psi_multi
data	dictionary Dictionary containing all the necessary data for a given galaxy. This can be created using galaxy.galaxy.
fit_dict↔ _in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used in fitting.

5.9.3 Member Function Documentation

5.9.3.1 mass()

```
def halo.halo.mass (
          self,
```

```
params,
r )
```

Define the DM halo mass within some radius assuming the chosen model.

This defines the total DM halo mass within the given radius assuming the given model parameters. Particular equations for mass depends on chosen model.

Parameters

self	object pointer
params	Imfit.Parameters instance
	Instance of the Imfit.Parameters class. All model parameters contained here.
	This can be created using cdm_params.halo.params (for CDM models) or
	alp_params.soliton.params (for ULDM models)
r	ndarray[N]
	Numpy array of N radii values in units of kpc.

Returns

ndarray[N]

Numpy array of N mass values in units of solar mass.

5.9.3.2 velocity()

Define the total circular velocity of the DM halo at some radius assuming the chosen model.

This calculates the total circular velocity of the DM halo at the given radius assuming the given model parameters. Total circular velocity is given by,

$$V(r) = \sqrt{\frac{M(r)}{M_P^2\,r}}$$

where M(r) = halo.halo.mass, and M_P is the Planck mass (see constants.standard)

self	object pointer
params	Imfit.Parameters instance
	Instance of the Imfit.Parameters class. All model parameters contained here. This can be created using cdm_params.halo.params (for CDM models) or alp_params.soliton.params (for ULDM models)
r	ndarray[N]
	Numpy array of N radii values in units of kpc.

Returns

ndarray[N]

Numpy array of N circular velocity values in units of km/s.

5.9.4 Member Data Documentation

5.9.4.1 data

halo.halo.data

dictionary

Dictionary containing all the necessary data for a given galaxy.

This can be created using galaxy.galaxy.

5.9.4.2 halo_init

halo.halo.halo_init

Can be:

- · cdm_funcs.halo instance
- alp_funcs.soliton instance
 Instance of cdm_funcs.halo or alp_funcs.soliton class depending on chosen model.

5.9.4.3 params

halo.halo.params

Ifmit.Parameters instance

Instance of the Imfit.Parameters class All model parameters contained here.

This can be created using cdm_params.halo.params (for CDM models) or alp_params.soliton.params (for ULDM models)

5.9.4.4 params_vals

halo.halo.params_vals

dictionary

Dictionary of variable values to be used during fitting.

Instance of constants.fitting_dict.params_vals

The documentation for this class was generated from the following file:

pyfiles/data_models/halo.py

5.10 model fit.model fit Class Reference

The class containing the fitting procedure assuming a chosen halo model for a chosen galaxy.

Public Member Functions

```
• def __init__ (self, halo, ULDM_fits=False)
```

Define the constructor of the model_fit class.

• def velocity_tot (self, params, r, data)

Define the total circular velocity of a galaxy at some radius for the given halo model.

· def residual (self, params, r, data)

Define the residual of the modeled total circular velocity from the data for a chosen galaxy.

def fit (self, params, data, calc_covar_in=True)

Define the fit result for the modeled total circular velocity for a galaxy.

· def bic (self, fit)

Define the BIC value for a given fit.

def plot (self, halo, gal, axs)

Define the plot of the model of the total circular velocity for a galaxy.

Public Attributes

· halo

halo.halo instance

Instance of the halo.halo class.

args_opts

dictionary

Dictionary of rules to be assumed during fitting.

· ULDM fits

bool

True if performing fits for the ULDM models

5.10.1 Detailed Description

The class containing the fitting procedure assuming a chosen halo model for a chosen galaxy.

5.10.2 Constructor & Destructor Documentation

5.10.2.1 __init__()

Define the constructor of the model_fit class.

This defines the constructor of the model_fit class.

Parameters

self	object pointer
halo	halo.halo instance
	Instance of the halo.halo class. Assumed halo model and proper definitions contained in halo
	class instance.
ULDM_fits	(optional) bool
	True if performing fits for the ULDM models

5.10.3 Member Function Documentation

5.10.3.1 bic()

Define the BIC value for a given fit.

This defines the BIC value for a given fit.

Parameters

self	object pointer
fit	model_fit.model_fit.fit instance
	Instance of the model_fit.model_fit.fit function.

Returns

float

BIC value for a given fit.

5.10.3.2 fit()

Define the fit result for the modeled total circular velocity for a galaxy.

This defines the fit result for the modeled total circular velocity assuming the given model parameters and galaxy data.

Parameters

self	object pointer
params	Imfit.Parameters instance Instance of the Imfit.Parameters class. All model parameters contained here. This can be created using cdm_params.halo.params (for CDM models) or alp_params.soliton.params (for ULDM models)
data	dictionary Dictionary containing all the necessary data for a given galaxy. This can be created using galaxy.galaxy.
calc_covar↔ _in	(optional) bool True(False) if covariance matrix is to be(is not to be) calculated in fitting procedure

Returns

Imfit.Minimizer.minimize fit result

Fit result contains the optimized parameters and several goodness-of-fit statistics.

5.10.3.3 plot()

Define the plot of the model of the total circular velocity for a galaxy.

This defines the plot of the model of total circular velocity for a galaxy assuming the best fit parameters.

Parameters

self	object pointer
halo	halo.halo instance
	Instance of the halo.halo class. Assumed halo model and proper definitions contained in halo class
	instance.
gal	galaxy.galaxy instance
	Instance of the galaxy.galaxy class. Contains all necessary galaxy data.
axs	matplotlib axis
	Axis in which matplotlib plot will be contained

Returns

matplotlib plot

Plot of the circular velocity of the different galaxy contributions including the DM halo given the assumed model and best fit parameters.

5.10.3.4 residual()

Define the residual of the modeled total circular velocity from the data for a chosen galaxy.

This calculates the residual of the modeled total circular velocity from the data for a galaxy at a given radius assuming the given model parameters and galaxy data. This is used as the fitting residual in the Imfit.Minimizer class and is given by,

$$\text{res} = \frac{V_{\mathsf{obs}}(r) - V_{\mathsf{model}}(r)}{V_{\mathsf{obs,err}}(r)},$$

 $\text{where } V_{\mbox{\scriptsize obs}}(r) \text{ and } V_{\mbox{\scriptsize obs},\mbox{\scriptsize err}}(r) \text{ can be found in } \mbox{\scriptsize galaxy.data} \text{ and } V_{\mbox{\scriptsize model}}(r) = \mbox{\scriptsize model_fit.model_fit.velocity_tot.}$

Parameters

self	object pointer
params	Imfit.Parameters instance Instance of the Imfit.Parameters class. All model parameters contained here. This can be created using cdm_params.halo.params (for CDM models) or alp_params.soliton.params (for ULDM models)
r	ndarray[N] Numpy array of N radii values in units of kpc.
data	dictionary Dictionary containing all the necessary data for a given galaxy. This can be created using galaxy.galaxy.

Returns

ndarray[N]

Numpy array of N residual values.

5.10.3.5 velocity_tot()

Define the total circular velocity of a galaxy at some radius for the given halo model.

This defines the total circular velocity of a galaxy at a given radius assuming the given model parameters and galaxy data. The total circular velocity is given by,

$$V(r) = \sqrt{V_{\text{bar}}(r)^2 + V_{\text{DM}}(r)^2},$$

where.

$$V_{\mathsf{bar}}(r) = \sqrt{\left|V_{\mathsf{gas}}(r)\right|V_{\mathsf{gas}}(r) + \tilde{\Upsilon}_{\mathsf{disk}}\left|V_{\mathsf{disk}}(r)\right|V_{\mathsf{disk}}(r) + \tilde{\Upsilon}_{\mathsf{bulge}}\left|V_{\mathsf{bulge}}(r)\right|V_{\mathsf{bulge}}(r)}.$$

Here, $V_{\text{DM}}(r) = \text{halo.halo.velocity}, \ V_{\text{gas}}(r), \ V_{\text{disk}}(r), \ \text{and} \ V_{\text{bulge}}(r) \ \text{can be found in galaxy.galaxy.data}.$ Finally, $\tilde{\Upsilon}_{\text{disk}} = \text{MLD} \ \text{and} \ \tilde{\Upsilon}_{\text{bulge}} = \text{MLB in cdm_params.halo.params}$ (for CDM models) or alp_params.soliton.params (for ULDM models).

Parameters

self	object pointer
params	Imfit.Parameters instance Instance of the Imfit.Parameters class. All model parameters contained here. This can be created using cdm_params.halo.params (for CDM models) or alp_params.soliton.params (for ULDM models)
r	ndarray[N] Numpy array of N radii values in units of kpc.
data	dictionary Dictionary containing all the necessary data for a given galaxy. This can be created using galaxy.galaxy.

Returns

ndarray[N]

Numpy array of N circular velocity values in units of km/s.

5.10.4 Member Data Documentation

5.10.4.1 args_opts

model_fit.model_fit.args_opts

dictionary

Dictionary of rules to be assumed during fitting.

Instance of constants.fitting_dict.args_opts

The documentation for this class was generated from the following file:

• pyfiles/fitting/model_fit.py

5.11 results.plots Class Reference

The class to obtain rotation curve plots for given galaxies.

Public Member Functions

• def __init__ (self)

Define the constructor of the plots class.

def rotcurves_CDM_all (self, galaxies, fit_dict_in=fitting_dict_in, size=(20, 20), save_file=None)

Define the plot of the rotation curves for given galaxies and for all CDM models.

def rotcurves_psi_all (self, galaxies, fit_dict_in=fitting_dict_in, size=(20, 20), save_file=None)

Define the plot of the rotation curves for given galaxies and for the single ULDM and double ULDM models.

• def rotcurves_CDM_check (self, galaxies, fit_dict_in=fitting_dict_in, size=(20, 20))

Define the plot of the rotation curves for given galaxies and for all CDM models.

def rotcurves_DC14_check (self, galaxies, fit_dict_in=fitting_dict_in, size=(20, 20))

Define the plot of the rotation curves for given galaxies and for the DC14 and NFW models.

def rotcurves_Einasto_check (self, galaxies, fit_dict_in=fitting_dict_in, size=(20, 20))

Define the plot of the rotation curves for given galaxies and for the Einasto and NFW models.

• def BIC_diffs_CDM (self, dict_in, bins=250, lwin=3, save_file=None)

Define the plot of the BIC differences for different priors using CDM models.

def BIC_CDM (self, dict_in, bins=250, lwin=3, save_file=None)

Define the plot of the BIC differences for the CDM models.

def chi CDM (self, dict in, splt=50, lwin=3, save file=None)

Define the plot of the reduced chi-square comparisons for the CDM models.

def chi_dist_CDM (self, dict_in, bins=50, save_file=None)

Define the plot of the reduced chi-square distributions for the CDM models.

• def params dist CDM (self, dict in, bins=50, save file=None)

Define the plot of the parameter distributions for the CDM models.

def MLd_degen_CDM (self, save_file=None)

Define the plot of the reduced chi-square contours for the NFW model.

def relations CDM (self, dict in, save file=None)

Define the plot of the empirical relations for the CDM models.

• def BIC_psi_mfree (self, psis_dict_in, psim_dict_in, CDM_dict_in, splt=50, lwin=3, save_file=None)

Define the plot of the BIC differences between the ULDM (particle mass free) and Einasto models.

def chi_psi_mfree (self, psis_dict_in, psim_dict_in, CDM_dict_in, splt=50, lwin=3, save_file=None)

Define the plot of the reduced chi-square for the ULDM (particle mass free) and Einasto models.

• def Msol_psi_mfree (self, psis_dict_in, psim_dict_in, save_file=None)

Define the plot of the soliton-halo (SH) relation for the ULDM (particle mass free) models.

def chi_dist_psi_mfree (self, psis_dict_in, psim_dict_in, bins=50, save_file=None)

Define the plot of the reduced chi-square distributions for the ULDM (particle mass free) models.

• def params_dist_psi_mfree (self, psis_dict_in, psim_dict_in, bins=50, save_file=None)

Define the plot of the parameter distributions for the ULDM (particle mass free) models.

def relations_psi_mfree (self, psis_dict_in, psim_dict_in, save_file=None)

Define the plot of the empirical relations for the ULDM (particle mass free) models.

def chi_psi_mfix (self, psis_dict_in, psim_dict_in, CDM_dict_in, lwin=4, fit_dict_in=fitting_dict_in, save_← file=None)

Define the plot of the reduced chi-square for the ULDM (particle mass fixed and scanned) and Einasto models.

• def chi_gal_psi_mfix (self, psis_dict_in, CDM_dict_in, lwin=4, fit_dict_in=fitting_dict_in, save_file=None)

Define the plot of the cumulative reduced chi-square for single flavor ULDM (particle mass fixed and scanned) and Einasto models.

• def Msol_psi_mfix (self, psis_dict_in, psim_dict_in, bins=50, fit_dict_in=fitting_dict_in, save_file=None)

Define the plot of the soliton-halo (SH) relation for the ULDM (particle mass fixed and scanned) models.

def BIC_psi_mfix_ex (self, psis_dict_in, psim_dict_in, CDM_dict_in, m22_ex=10 **(1.5), m22_2_ex=10 **(1.8), bins=50, lwin=3, save file=None)

Define the plot of the BIC differences distributions between the ULDM (particle mass fixed) and Einasto models.

def chi_psi_mfix_ex (self, psis_dict_in, psim_dict_in, CDM_dict_in, m22_ex=10 **(1.5), m22_2_ex=10 **(1.8), splt=50, lwin=3, save_file=None)

Define the plot of the reduced chi-square for the ULDM (particle mass fixed) and Einasto models.

def Msol_psi_mfix_ex (self, psis_dict_in, psim_dict_in, m22_ex=10 **(1.5), m22_2_ex=10 **(1.8), save_← file=None)

Define the plot of the soliton-halo (SH) for the ULDM (particle mass fixed) and Einasto models.

def chi_dist_psi_mfix_ex (self, psis_dict_in, psim_dict_in, m22_ex=10 **(1.5), m22_2_ex=10 **(1.8), bins=50, save_file=None)

Define the plot of the reduced chi-square distributions for the ULDM (particle mass fixed) models.

 def params_dist_psi_mfix_ex (self, psis_dict_in, psim_dict_in, m22_ex=10 **(1.5), m22_2_ex=10 **(1.8), bins=50, save_file=None)

Define the plot of the parameter distributions for the ULDM (particle mass fixed) models.

 def relations_psi_mfix_ex (self, psis_dict_in, psim_dict_in, m22_ex=10 **(1.5), m22_2_ex=10 **(1.8), save file=None)

Define the plot of the empirical relations for the ULDM (particle mass fixed) models.

def chi_dist_CDM_checks (self, dict_in, bins=50)

Define the plot of the reduced chi-square distributions for the CDM models (checks).

def params_dist_CDM_checks (self, dict_in, bins=50)

Define the plot of the parameter distributions for the CDM models (checks).

def chi_dist_DC14_checks (self, dict_in, bins=50)

Define the plot of the reduced chi-square distributions for the DC14 and NFW models (checks).

def params_dist_DC14_checks (self, dict_in, bins=50)

Define the plot of the parameter distributions for the DC14 and NFW models (checks).

def chi_box_Einasto_checks (self, dict_in)

Define the plot of the reduced chi-square for the Einasto and NFW models (checks).

def chi_dist_Einasto_checks (self, dict_in, bins=50)

Define the plot of the reduced chi-square distributions for the Einasto and NFW models (checks).

def params_dist_Einasto_checks (self, dict_in, bins=50)

Define the plot of the parameters distributions for the Einasto and NFW models (checks).

• def params_scatter_Einasto_checks (self, dict_in, fit_dict_in=fitting_dict_in)

Define the plot of the halo parameters for the Einasto model (checks).

Public Attributes

· fit dict in

constants.fitting_dict instance Instance of the constants.fitting_dict class.

· size

tuple Size of figure.

5.11.1 Detailed Description

The class to obtain rotation curve plots for given galaxies.

5.11.2 Constructor & Destructor Documentation

5.11.2.1 __init__()

```
def results.plots.__init__ ( self\ )
```

Define the constructor of the plots class.

This defines the constructor of the plots class.

Parameters

self	object pointer
galaxies	str[N] List of galaxy names (or 'random') to plot the given galaxies (or random galaxies) in the SPARC catalog.

5.11.3 Member Function Documentation

5.11.3.1 BIC_CDM()

Define the plot of the BIC differences for the CDM models.

This defines the plot of the differences in BIC between each CDM model analyzed.

self	object pointer
dict_in	dictionary See fits_CDM_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: dict_in = {
	• 'Burkert' : {}
	• 'DC14' : {}
	• 'Einasto' : {}
	'NFW' : {} }, where each {} must be an instance of results.results_CDM_all.fit.
bins	(optional) int
	Number of bins for histogram plot.
lwin	(optional) int
	Width of lines for plot.
save_file	(optional) str
	File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[2,3]

Figure of the differences in BIC between each CDM model.

5.11.3.2 BIC_diffs_CDM()

Define the plot of the BIC differences for different priors using CDM models.

This defines the plot of the differences in BIC for different prior cases for each CDM model analyzed.

Parameters

self	object pointer
dict_in	dictionary See fits_CDM_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: dict_in = {
	• 'uni_priors' : {}
	• 'c200_priors_check' : {}
	• 'v200_priors_check' : {}
	• 'MLd_priors_check' : {}
	'MLb_priors_check' : {} }, where each {} must be of the form:{} =
	• 'Burkert' : {}
	• 'DC14' : {}
	• 'Einasto' : {}
	'NFW' : {} Finally, each {} must be an instance of results_results_CDM_all.fit.
bins	(optional) int Number of bins for histogram plot.
lwin	(optional) int Width of lines for plot.
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[4,4]

Figure of the BIC differences for different priors using all CDM models.

5.11.3.3 BIC_psi_mfix_ex()

Define the plot of the BIC differences distributions between the ULDM (particle mass fixed) and Einasto models.

This defines the plot of the distributions of the differences in BIC between each of the ULDM (particle mass fixed) models and the Einasto model.

Parameters

self	object pointer
psis_dict_in	dictionary The dictionary for the single flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psis_dict_in = { 'Summed': {} 'Matched': {} }, where each {} must be an instance of results.results_psi_single_all.fit.
psim_dict↔ _in	dictionary The dictionary for the double flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psim_dict_in = { 'Summed': {} 'Matched': {} }, where each {} must be an instance of results_results_psi_multi_all.fit.
CDM_dict← _in	dictionary The dictionary for the Einasto. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be an instance of results_results_CDM_all.fit.
m22_ex	(optional) float Value for particle mass (single flavor models) or particle mass one (double flavor models).
m22_2_ex	(optional) float Value for particle mass two (double flavor models).
lwin	(optional) int Width of lines for plot.
bins	(optional) int Number of bins for histogram plot.
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[2,2]

Figure of the BIC differences distributions between each ULDM (particle mass fixed) model and the Einasto model.

5.11.3.4 BIC_psi_mfree()

Define the plot of the BIC differences between the ULDM (particle mass free) and Einasto models.

This defines the plot of the differences in BIC vs. ULDM particle mass between each of the ULDM (particle mass free) models and the Einasto model.

Parameters

self	object pointer
psis_dict_in	dictionary The dictionary for the single flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psis_dict_in = { 'Summed': {} 'Matched': {} }, where each {} must be an instance of results_results_psi_single_all.fit.
psim_dict⊷ _in	dictionary The dictionary for the double flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psim_dict_in = { 'Summed' : {} 'Matched' : {} }, where each {} must be an instance of results_results_psi_multi_all.fit.
CDM_dict← _in	dictionary The dictionary for the Einasto. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be an instance of results_results_CDM_all.fit.
splt	(optional) int Point size for plot.
lwin	(optional) int Width of lines for plot.
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[3,2]

Figure of the differences in BIC vs. particle mass between each ULDM (particle mass free) model and the Einasto model.

5.11.3.5 chi_box_Einasto_checks()

Define the plot of the reduced chi-square for the Einasto and NFW models (checks).

This defines the plot of the reduced chi-square comparison between the Einasto and NFW models (checks).

Parameters

self	object pointer
dict⇔	dictionary
_in	See checks_Einasto_NFW.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: dict_in = {
	 'Einasto': {} 'NFW': {} }, where each {} must be an instance of results_results_Einasto_check.fit.

Returns

matplotlib.pyplot.figure[1,2]

Figure of the reduced chi-square comparisons between the Einasto and NFW models (checks).

5.11.3.6 chi_CDM()

Define the plot of the reduced chi-square comparisons for the CDM models.

This defines the plot of the reduced chi-square comparisons between each CDM model analyzed.

self	object pointer
dict_in	dictionary See fits_CDM_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: dict_in = {
	• 'Burkert' : {}
	• 'DC14' : {}
	• 'Einasto' : {}
	'NFW': {} }, where each {} must be an instance of results_results_CDM_all.fit.
	Conserted by Devision

Parameters

splt	(optional) int
	Point size for plot.
lwin	(optional) int
	Width of lines for plot.
save_file	(optional) str
	File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[2,3]

Figure of the reduced chi-square comparisons between each CDM model.

5.11.3.7 chi_dist_CDM()

Define the plot of the reduced chi-square distributions for the CDM models.

This defines the plot of the reduced chi-square distribution for each CDM model analyzed.

Parameters

self	object pointer
dict_in	dictionary
	See fits_CDM_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: dict_in = {
	• 'Burkert' : {}
	• 'DC14' : {}
	• 'Einasto' : {}
	• 'NFW' : {} }, where each {} must be an instance of results_results_CDM_all.fit.
bins	(optional) int
	Number of bins for histogram plot.
save_file	(optional) str
	File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[2,2]

Figure of the reduced chi-square distributions for each CDM model.

5.11.3.8 chi_dist_CDM_checks()

Define the plot of the reduced chi-square distributions for the CDM models (checks).

This defines the plot of the reduced chi-square distribution for each CDM model analyzed (checks).

Parameters

self	object pointer
dict⊷ _in	dictionary See checks_CDM_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form:
	dict_in = { • 'Burkert' : {}
	• 'DC14' : {} • 'Einasto' : {}
	• 'NFW' : {} }, where each {} must be an instance of results.results_CDM_check.fit.
bins	(optional) int Number of bins for histogram plot.

Returns

matplotlib.pyplot.figure[1,4]

Figure of the reduced chi-square distributions for each CDM model (checks).

5.11.3.9 chi_dist_DC14_checks()

Define the plot of the reduced chi-square distributions for the DC14 and NFW models (checks).

This defines the plot of the reduced chi-square distribution for the DC14 and NFW models (checks).

self	object pointer
------	----------------

Parameters

dict←	dictionary
_in	See checks_DC14_NFW.ipynb for an example of formatting for the dictionary. Dictionary must be of
	the form:
	dict_in = {
	• 'DC14' : {}
	• 'NFW' : {} }, where each {} must be an instance of results_results_DC14_check.fit.
bins	(optional) int
	Number of bins for histogram plot.

Returns

matplotlib.pyplot.figure[1,2]

Figure of the reduced chi-square distributions for the DC14 and NFW models (checks).

5.11.3.10 chi_dist_Einasto_checks()

Define the plot of the reduced chi-square distributions for the Einasto and NFW models (checks).

This defines the plot of the reduced chi-square distribution for the Einasto and NFW models (checks).

Parameters

self	object pointer
dict←	dictionary
_in	See checks_Einasto_NFW.ipynb for an example of formatting for the dictionary. Dictionary must be of
	the form:
	dict_in = {
	• 'Einasto' : {}
	• 'NFW' : {} }, where each {} must be an instance of results.results_Einasto_check.fit.
bins	(optional) int
	Number of bins for histogram plot.

Returns

matplotlib.pyplot.figure[1,2]

Figure of the reduced chi-square distributions for the Einasto and NFW models (checks).

5.11.3.11 chi_dist_psi_mfix_ex()

Define the plot of the reduced chi-square distributions for the ULDM (particle mass fixed) models.

This defines the plot of the reduced chi-square distributions for each of the ULDM (particle mass fixed) models.

Parameters

self	object pointer
psis_dict_in	dictionary The dictionary for the single flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psis_dict_in = {
	• 'Summed' : {}
	• 'Matched' : {} }, where each {} must be an instance of results_results_psi_single_all.fit.
psim_dict⊷ _in	dictionary The dictionary for the double flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psim_dict_in = {
	• 'Summed' : {}
	• 'Matched' : {} }, where each {} must be an instance of results_results_psi_multi_all.fit.
m22_ex	(optional) float Value for particle mass (single flavor models) or particle mass one (double flavor models).
m22_2_ex	(optional) float Value for particle mass two (double flavor models).
bins	(optional) int Number of bins for histogram plot.
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[2,2]

Figure of the reduced chi-square distributions for each of the ULDM (particle mass fixed) models.

5.11.3.12 chi_dist_psi_mfree()

```
def results.plots.chi_dist_psi_mfree ( self,
```

```
psis_dict_in,
psim_dict_in,
bins = 50,
save_file = None )
```

Define the plot of the reduced chi-square distributions for the ULDM (particle mass free) models.

This defines the plot of the reduced chi-square distributions for each of the ULDM (particle mass free) models.

Parameters

self	object pointer
psis_dict_in	dictionary The dictionary for the single flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psis_dict_in = {
	• 'Summed' : {}
	• 'Matched' : {} }, where each {} must be an instance of results_results_psi_single_all.fit.
psim_dict↔ _in	dictionary The dictionary for the double flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psim_dict_in = {
	 'Summed': {} 'Matched': {} }, where each {} must be an instance of results_results_psi_multi_all.fit.
bins	(optional) int Number of bins for histogram plot.
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[2,2]

Figure of the reduced chi-square distributions for each of the ULDM (particle mass free) models.

5.11.3.13 chi_gal_psi_mfix()

Define the plot of the cumulative reduced chi-square for single flavor ULDM (particle mass fixed and scanned) and Einasto models.

This defines the plot of the cumulative reduced chi-square comparisons vs. galaxy between each of the single flavor ULDM (particle mass fixed and scanned) models and the Einasto model.

Parameters

self	object pointer
psis_dict_in	dictionary The dictionary for the single flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psis_dict_in = { 'Summed': {}
	• 'Matched' : {} }, where each {} must be an instance of results_results_psi_single_all.fit.
psim_dict↔ _in	dictionary The dictionary for the double flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psim_dict_in = { 'Summed' : {} 'Matched' : {} }, where each {} must be an instance of results_results_psi_multi_all.fit.
CDM_dict⊷ _in	dictionary The dictionary for the Einasto. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be an instance of results_results_CDM_all.fit.
lwin	(optional) int Width of lines for plot.
fit_dict_in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains the mass ranges to be used.
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[2,1]

Figure of the cumulative reduced chi-square vs. galaxy for each of the single flavor ULDM (particle mass fixed and scanned) models and the Einasto model.

5.11.3.14 chi_psi_mfix()

Define the plot of the reduced chi-square for the ULDM (particle mass fixed and scanned) and Einasto models.

This defines the plot of the reduced chi-square comparisons vs. particle mass between each of the ULDM (particle mass fixed and scanned) models and the Einasto model.

Parameters

self	object pointer
psis_dict_in	dictionary The dictionary for the single flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psis_dict_in = {
psim_dict↔ _in	dictionary The dictionary for the double flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psim_dict_in = { 'Summed' : {} 'Matched' : {} }, where each {} must be an instance of results_results_psi_multi_all.fit.
CDM_dict← _in	dictionary The dictionary for the Einasto. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be an instance of results_results_CDM_all.fit.
lwin	(optional) int Width of lines for plot.
fit_dict_in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains the mass ranges to be used.
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[2,2]

Figure of the reduced chi-square comparisons vs. particle mass between each of the ULDM (particle mass fixed and scanned) models and the Einasto model.

5.11.3.15 chi_psi_mfix_ex()

Define the plot of the reduced chi-square for the ULDM (particle mass fixed) and Einasto models.

This defines the plot of the reduced chi-square comparisons between each of the ULDM (particle mass fixed) models and the Einasto model.

Parameters

self	object pointer
psis_dict_in	dictionary The dictionary for the single flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psis_dict_in = { 'Summed' : {} 'Matched' : {} }, where each {} must be an instance of results_results_psi_single_all.fit.
psim_dict⊷ _in	dictionary The dictionary for the double flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psim_dict_in = { 'Summed' : {} 'Matched' : {} }, where each {} must be an instance of results_results_psi_multi_all.fit.
CDM_dict← _in	dictionary The dictionary for the Einasto. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be an instance of results_results_CDM_all.fit.
m22_ex	(optional) float Value for particle mass (single flavor models) or particle mass one (double flavor models).
m22_2_ex	(optional) float Value for particle mass two (double flavor models).
splt	(optional) int Point size for plot.
lwin	(optional) int Width of lines for plot.
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[2,2]

Figure of the reduced chi-square comparisons between each ULDM (particle mass fixed) model and the Einasto model.

5.11.3.16 chi_psi_mfree()

Define the plot of the reduced chi-square for the ULDM (particle mass free) and Einasto models.

This defines the plot of the reduced chi-square comparisons between each of the ULDM (particle mass free) models and the Einasto model.

Parameters

self	object pointer
psis_dict_in	dictionary The dictionary for the single flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psis_dict_in = {
psim_dict↔ _in	dictionary The dictionary for the double flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psim_dict_in = { 'Summed' : {} 'Matched' : {} }, where each {} must be an instance of results_results_psi_multi_all.fit.
CDM_dict↔ _in	dictionary The dictionary for the Einasto. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be an instance of results_results_CDM_all.fit.
splt	(optional) int Point size for plot.
lwin	(optional) int Width of lines for plot.
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[2,2]

Figure of the reduced chi-square comparisons between each of the ULDM (particle mass free) models and the Einasto model.

5.11.3.17 MLd_degen_CDM()

Define the plot of the reduced chi-square contours for the NFW model.

This defines the plot of the reduced chi-square contours in the \$\tilde{\Upsilon}_d-c_{200}\$ plane for the NFW model.

self	object pointer
save_file	
	File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[2,2]

Figure of the reduced chi-square contours in the \$\tilde{\Upsilon}_d-c_{200}\$ plane for the NFW model.

5.11.3.18 Msol_psi_mfix()

Define the plot of the soliton-halo (SH) relation for the ULDM (particle mass fixed and scanned) models.

This defines the plot of the SH relation for each of the ULDM (particle mass fixed and scanned) models.

Parameters

self	object pointer
psis_dict_in	dictionary The dictionary for the single flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psis_dict_in = {
	• 'Summed' : {}
	• 'Matched' : {} }, where each {} must be an instance of results_results_psi_single_all.fit.
psim_dict⊷ _in	dictionary The dictionary for the double flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psim_dict_in = {
	• 'Summed' : {}
	• 'Matched' : {} }, where each {} must be an instance of results_results_psi_multi_all.fit.
bins	(optional) int Number of bins for histogram plot.
fit_dict_in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains the mass ranges to be used.
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[3,2]

Figure of the SH relation for each of the ULDM (particle mass fixed and scanned) models.

5.11.3.19 Msol_psi_mfix_ex()

Define the plot of the soliton-halo (SH) for the ULDM (particle mass fixed) and Einasto models.

This defines the plot of the SH relation for each of the ULDM (particle mass fixed) models and the Einasto model.

Parameters

self	object pointer
psis_dict_in	dictionary The dictionary for the single flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psis_dict_in = {
	• 'Summed' : {}
	• 'Matched' : {} }, where each {} must be an instance of results_results_psi_single_all.fit.
psim_dict↔ _in	dictionary The dictionary for the double flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psim_dict_in = {
	• 'Summed' : {}
	• 'Matched' : {} }, where each {} must be an instance of results_results_psi_multi_all.fit.
m22_ex	(optional) float Value for particle mass (single flavor models) or particle mass one (double flavor models).
m22_2_ex	(optional) float Value for particle mass two (double flavor models).
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[3,2]

Figure of the SH relation for each ULDM (particle mass fixed) model and the Einasto model.

5.11.3.20 Msol_psi_mfree()

```
psim_dict_in,
save_file = None )
```

Define the plot of the soliton-halo (SH) relation for the ULDM (particle mass free) models.

This defines the plot of the SH relation vs. particle mass for each of the ULDM (particle mass free) models.

Parameters

self	object pointer
psis_dict_in	dictionary The dictionary for the single flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psis_dict_in = {
	 'Summed': {} 'Matched': {} }, where each {} must be an instance of results_results_psi_single_all.fit.
psim_dict⊷ _in	dictionary The dictionary for the double flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psim_dict_in = {
	'Summed' : {}'Matched' : {} }, where each {} must be an instance of results_results_psi_multi_all.fit.
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[3,2]

Figure of the SH relation vs. particle mass for each of the ULDM (particle mass free) models.

5.11.3.21 params_dist_CDM()

Define the plot of the parameter distributions for the CDM models.

This defines the plot of the parameter distributions for each CDM model analyzed.

self	object pointer
dict_in	dictionary See fits_CDM_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: dict_in = {
	• 'Burkert' : {}
	• 'DC14' : {}
	• 'Einasto' : {}
	'NFW': {} }, where each {} must be an instance of results.results_CDM_all.fit.
bins	(optional) int
Generated by Do	*Manuel of bins for histogram plot.
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

```
matplotlib.pyplot.figure[4,4]
```

Figure of the parameter distributions for each CDM model.

5.11.3.22 params_dist_CDM_checks()

Define the plot of the parameter distributions for the CDM models (checks).

This defines the plot of the parameter distributions for each CDM model analyzed (checks).

Parameters

self	object pointer
dict⊷	dictionary
_in	See checks_CDM_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: dict_in = {
	• 'Burkert' : {}
	• 'DC14' : {}
	• 'Einasto' : {}
	• 'NFW' : {} }, where each {} must be an instance of results_results_CDM_check.fit.
bins	(optional) int
	Number of bins for histogram plot.

Returns

```
matplotlib.pyplot.figure[4,4]
```

Figure of the parameter distributions for each CDM model (checks).

5.11.3.23 params_dist_DC14_checks()

Define the plot of the parameter distributions for the DC14 and NFW models (checks).

This defines the plot of the parameter distributions for the DC14 and NFW models (checks).

Parameters

self	object pointer
dict← _in	dictionary See checks_DC14_NFW.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: dict_in = {
	 'DC14': {} 'NFW': {} }, where each {} must be an instance of results_results_DC14_check.fit.
bins	(optional) int Number of bins for histogram plot.

Returns

matplotlib.pyplot.figure[1,2]

Figure of the reduced chi-square distributions for the DC14 and NFW models (checks).

5.11.3.24 params_dist_Einasto_checks()

Define the plot of the parameters distributions for the Einasto and NFW models (checks).

This defines the plot of the parameter distributions for the Einasto and NFW models (checks).

Parameters

self	object pointer
dict⊷ _in	dictionary See checks_Einasto_NFW.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: dict_in = {
	 'Einasto': {} 'NFW': {} }, where each {} must be an instance of results_results_Einasto_check.fit.
bins	(optional) int Number of bins for histogram plot.

Returns

matplotlib.pyplot.figure[3,2]

Figure of the parameter distributions for the Einasto and NFW models (checks).

5.11.3.25 params_dist_psi_mfix_ex()

Define the plot of the parameter distributions for the ULDM (particle mass fixed) models.

This defines the plot of the parameter distributions for each of the ULDM (particle mass fixed) models.

Parameters

self	object pointer
psis_dict_in	dictionary The dictionary for the single flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psis_dict_in = {
	• 'Summed' : {}
	• 'Matched' : {} }, where each {} must be an instance of results_results_psi_single_all.fit.
psim_dict← _in	dictionary The dictionary for the double flavor models. See fits_Einasto_all.ipynb for an example of
	formatting for the dictionary. Dictionary must be of the form: psim_dict_in = {
	• 'Summed' : {}
	• 'Matched' : {} }, where each {} must be an instance of results_results_psi_multi_all.fit.
bins	(optional) int Number of bins for histogram plot.
m22_ex	(optional) float Value for particle mass (single flavor models) or particle mass one (double flavor models).
m22_2_ex	(optional) float Value for particle mass two (double flavor models).
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[4,4]

Figure of the parameter distributions for each of the ULDM (particle mass fixed) models.

5.11.3.26 params_dist_psi_mfree()

```
def results.plots.params_dist_psi_mfree ( self, \label{eq:self}
```

```
psis_dict_in,
psim_dict_in,
bins = 50,
save_file = None )
```

Define the plot of the parameter distributions for the ULDM (particle mass free) models.

This defines the plot of the parameter distributions for each of the ULDM (particle mass free) models.

Parameters

self	object pointer
psis_dict_in	dictionary The dictionary for the single flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psis_dict_in = {
	• 'Summed' : {}
	• 'Matched' : {} }, where each {} must be an instance of results_results_psi_single_all.fit.
psim_dict↔ _in	dictionary The dictionary for the double flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psim_dict_in = {
	 'Summed': {} 'Matched': {} }, where each {} must be an instance of results_results_psi_multi_all.fit.
bins	(optional) int Number of bins for histogram plot.
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[4,4]

Figure of the parameter distributions for each of the ULDM (particle mass free) models.

5.11.3.27 params_scatter_Einasto_checks()

Define the plot of the halo parameters for the Einasto model (checks).

This defines the plot of the halo parameters for the Einasto model (checks).

self

Parameters

dict_in	dictionary See checks_Einasto_NFW.ipynb for an example of formatting for the dictionary. Dictionary must be of the form:
	<pre>dict_in = {</pre>
fit_dict↔ _in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains the necessary parameters for fitting.

Returns

```
matplotlib.pyplot.figure[1,2]
```

Figure of the halo parameters for the Einasto model (checks).

5.11.3.28 relations_CDM()

Define the plot of the empirical relations for the CDM models.

This defines the plot of the empirical relations for each CDM models analyzed.

Parameters

self	object pointer
save_file	(optional) str
	File path to save plot. Default is None, in which case file is not saved.

Returns

```
matplotlib.pyplot.figure[4,4]
```

Figure of the empirical relations for each CDM model.

5.11.3.29 relations_psi_mfix_ex()

```
m22_ex = 10**(1.5),

m22_2_ex = 10**(1.8),

save_file = None)
```

Define the plot of the empirical relations for the ULDM (particle mass fixed) models.

This defines the plot of the empirical relations for each of the ULDM (particle mass fixed) models.

Parameters 2 4 1

self	object pointer
psis_dict_in	dictionary The dictionary for the single flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psis_dict_in = {
	• 'Summed' : {}
	• 'Matched' : {} }, where each {} must be an instance of results_results_psi_single_all.fit.
psim_dict↔ _in	dictionary The dictionary for the double flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psim_dict_in = {
	• 'Summed' : {}
	• 'Matched' : {} }, where each {} must be an instance of results_results_psi_multi_all.fit.
m22_ex	(optional) float Value for particle mass (single flavor models) or particle mass one (double flavor models).
m22_2_ex	(optional) float Value for particle mass two (double flavor models).
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[4,4]

Figure of the empirical relations for each of the ULDM (particle mass fixed) models.

5.11.3.30 relations_psi_mfree()

Define the plot of the empirical relations for the ULDM (particle mass free) models.

This defines the plot of the empirical relations for each of the ULDM (particle mass free) models.

Parameters

self	object pointer
psis_dict_in	dictionary The dictionary for the single flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psis_dict_in = {
	 'Summed' : {} 'Matched' : {} }, where each {} must be an instance of results_results_psi_single_all.fit.
psim_dict↔ _in	dictionary The dictionary for the double flavor models. See fits_Einasto_all.ipynb for an example of formatting for the dictionary. Dictionary must be of the form: psim_dict_in = {
	 'Summed': {} 'Matched': {} }, where each {} must be an instance of results results psi multi all.fit.
	• iviatoried . {} , where each {} must be all instance of results_psi_mult_all.nt.
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[4,4]

Figure of the empirical relations for each of the ULDM (particle mass free) models.

5.11.3.31 rotcurves_CDM_all()

Define the plot of the rotation curves for given galaxies and for all CDM models.

This defines the plot of the rotation curves for all given galaxies and for all CDM models.

self	object pointer
fit_dict← _in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used in fitting.
size	(optional) tuple Size of figure.
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

```
matplotlib.pyplot.figure[N,4]
```

Figure of rotation curves for all given galaxies (N galaxies in total) and for all CDM halos (4 in total).

5.11.3.32 rotcurves_CDM_check()

Define the plot of the rotation curves for given galaxies and for all CDM models.

This defines the plot of the rotation curves for all given galaxies and for all CDM models. For comparison with Pengfei Li et al 2020 ApJS 247 31: https://doi.org/10.3847/1538-4365/ab700e

Parameters

self	object pointer
fit_dict⇔	(optional) constants.fitting_dict instance
_in	Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used
	in fitting.
size	(optional) tuple
	Size of figure.

Returns

```
matplotlib.pyplot.figure[N,4]
```

Figure of rotation curves for all given galaxies (N galaxies in total) and for all CDM halos (4 in total).

5.11.3.33 rotcurves_DC14_check()

Define the plot of the rotation curves for given galaxies and for the DC14 and NFW models.

This defines the plot of the rotation curves for all given galaxies and for the DC14 and NFW models. For comparison with Monthly Notices of the Royal Astronomical Society, Volume 466, Issue 2, April 2017, Pages 1648–1668: https://doi.org/10.1093/mnras/stw3101

Parameters

self	object pointer
fit_dict← _in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used in fitting.
size	(optional) tuple Size of figure.

Returns

matplotlib.pyplot.figure[N,2]

Figure of rotation curves for all given galaxies (N galaxies in total) and for the DC14 and NFW models.

5.11.3.34 rotcurves_Einasto_check()

Define the plot of the rotation curves for given galaxies and for the Einasto and NFW models.

This defines the plot of the rotation curves for all given galaxies and for the Einasto and NFW models. For comparison with Nicolas Loizeau and Glennys R. Farrar 2021 ApJL 920 L10 : $https://doi.org/10. \leftarrow 3847/2041-8213/ac1bb7$

Parameters

self	object pointer
fit_dict← _in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used in fitting.
size	(optional) tuple Size of figure.

Returns

matplotlib.pyplot.figure[N,2]

Figure of rotation curves for all given galaxies (N galaxies in total) and for the Einasto and NFW models.

5.11.3.35 rotcurves_psi_all()

```
galaxies,
fit_dict_in = fitting_dict_in,
size = (20,20),
save_file = None )
```

Define the plot of the rotation curves for given galaxies and for the single ULDM and double ULDM models.

This defines the plot of the rotation curves for all given galaxies and for the single ULDM and double ULDM models.

Parameters

self	object pointer
fit_dict← _in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used in fitting.
size	(optional) tuple Size of figure.
save_file	(optional) str File path to save plot. Default is None, in which case file is not saved.

Returns

matplotlib.pyplot.figure[N,2]

Figure of rotation curves for all given galaxies (N galaxies in total) and for the single and double ULDM (will correspond to either summed or matched model depending on value for constants.fitting_dict.sol_match).

The documentation for this class was generated from the following file:

· pyfiles/fitting/results.py

5.12 results_CDM_all Class Reference

The class to obtain fit results for all CDM halos analyzed.

Public Member Functions

```
• def __init__ (self, model, ULDM_fits=False, fit_dict_in=fitting_dict_in)

Define the constructor of the results_CDM_all class.
```

def fit (self)

Define the fit results.

Public Attributes

model

str

Model to assume for DM halo.

· fit_dict_in

constants.fitting_dict instance

Instance of the constants.fitting_dict class.

args_opts

dictionary

Dictionary of rules to be assumed during fitting Instance of constants.fitting_dict.args_opts

matched

bool

True if performing ULDM fits and ULDM matched models

· ULDM_fits

bool

True if performing ULDM fits

5.12.1 Detailed Description

The class to obtain fit results for all CDM halos analyzed.

This class can be used to obtain results for all CDM halos analyzed.

120 galaxies in the SPARC catalog are used for CDM only fits, 93 galaxies used for ULDM fits with Einasto halo.

5.12.2 Constructor & Destructor Documentation

5.12.2.1 __init__()

Define the constructor of the results_CDM_all class.

This defines the constructor of the results_CDM_all class.

self	object pointer
model	str
	Model to assume for DM halo. Can be equal to :
	Burkert
	• DC14
	• Einasto
	• NFW
	Generated by Doxyger
ULDM_fits	(optional) bool
	True if performing fits for the ULDM models.
fit_dict_in	(optional) constants.fitting_dict instance

5.12.3 Member Function Documentation

5.12.3.1 fit()

Define the fit results.

This defines the fit results for the assumed model for 120 galaxies in the SPARC catalog.

Parameters

```
self object pointer
```

Returns

dictionary

Dictionary of resulting fit parameters. Results are as follows: fit = {'Vbulge_none': {...}, 'Vbulge': {...}} where 'Vbulge none'/'Vbulge' corresponds to galaxies without/with a bulge component.

```
fit['Vbulge_none'] = {
'Name' : ndarray[120],
'fit' : ndarray[120],
'Chi_sq' : ndarray[120],
'BIC' : ndarray[120],
'Mvir' : ndarray[120] (unumpy.uarray),
'params' : dictionary,
}
```

- fit['Vbulge'] = same as fit['Vbulge_none'] Each of the components of fit['Vbulge_none'] and fit['Vbulge'] are :
- 'Name' = name of galaxy
- 'fit' = model_fit.model_fit.fit object
- 'Chi sq' = reduced chi-squared
- 'BIC' = Bayesian information criterion
- 'Mvir' = M200 (mass enclosed within radius R200) in units of solar masses

```
    'params' = {
    'c200' : ndarray[120] (unumpy.uarray) = halo concentration,
    'v200' : ndarray[120] (unumpy.uarray) = halo virial velocity,
    'MLd' : ndarray[120] (unumpy.uarray) = mass-to-light ratio of disk,
    'MLb' : ndarray[120] (unumpy.uarray) = mass-to-light ratio of bulge,
    'alpha' : ndarray[120] (unumpy.uarray) = Einasto halo parameter,
    'mstar' : ndarray[120] (unumpy.uarray) = mass of stellar component,
    'Vf' : ndarray[120] = maximum circular velocity,
    'mgas' : ndarray[120] = mass of gas component,
    }
```

The documentation for this class was generated from the following file:

pyfiles/fitting/results.py

5.13 results results CDM check Class Reference

The class to obtain fit results to check all CDM model implementation.

Public Member Functions

```
    def __init__ (self, model, fit_dict_in=fitting_dict_in)
        Define the constructor of the results_CDM_check class.

    def fit (self)
        Define the fit results.
```

Public Attributes

model

str

Model to assume for DM halo.

· fit dict in

constants.fitting_dict instance Instance of the constants.fitting_dict class.

5.13.1 Detailed Description

The class to obtain fit results to check all CDM model implementation.

The class to obtain fit results for comparison with Pengfei Li et al 2020 ApJS 247 31 : $https://doi. \leftarrow org/10.3847/1538-4365/ab700e$

5.13.2 Constructor & Destructor Documentation

5.13.2.1 __init__()

Define the constructor of the results_CDM_check class.

This defines the constructor of the results_CDM_check class.

self	object pointer	
model	str	
	Model to assume for DM halo. Can be equal to:	
	Burkert	
	• DC14	Generated by Doxygen
	• DC14	
	Einasto	

5.13.3 Member Function Documentation

5.13.3.1 fit()

```
def results.results_CDM_check.fit (
              self )
```

Define the fit results.

This defines the fit results for the assumed model for all galaxies in the SPARC catalog.

Parameters

self	object pointer

Returns

dictionary

Dictionary of resulting fit parameters. Results are as follows : fit = {'Vbulge_none' : {...}, 'Vbulge' : {...}} where 'Vbulge none'/'Vbulge' corresponds to galaxies without/with a bulge component.

```
• fit['Vbulge_none'] = {
  'Name': str[175],
  'Chi sq': ndarray[175],
  'params' : ndarray[175, 3 or 4],
  'Mvir': float,
  'fit': model_fit.model_fit.fit object,
```

- fit['Vbulge'] = same as 'Vbulge none' with the change : 'params': ndarray[175, 4 or 5] Each of the components of fit['Vbulge none'] and fit['Vbulge'] are :
- 'Name' = name of galaxy
- 'Chi sq' = reduced chi-squared
- 'params' = fit parameters
 - for Burkert, DC14, and NFW without bulge component: [c200, v200, MLd]
 - for Burkert, DC14, and NFW with bulge component: [c200, v200, MLd, MLb]
 - for Einasto without bulge component: [c200, v200, MLd, alpha]
 - for Einasto with bulge component: [c200, v200, MLd, MLb, alpha]
- 'Mvir' = M200 (mass enclosed within radius R200) in units of solar masses
- 'fit' = model fit.model fit.fit object

The documentation for this class was generated from the following file:

· pyfiles/fitting/results.py

5.14 results.results DC14 check Class Reference

The class to obtain fit results to check the DC14 and NFW model implementation.

Public Member Functions

```
    def __init__ (self, model, fit_dict_in=fitting_dict_in)
        Define the constructor of the results_DC14_check class.

    def fit (self)
        Define the fit results.
```

Public Attributes

model

str

Model to assume for DM halo.

· fit dict in

constants.fitting_dict instance Instance of the constants.fitting_dict class.

5.14.1 Detailed Description

The class to obtain fit results to check the DC14 and NFW model implementation.

The class to obtain fit results for comparison with Monthly Notices of the Royal Astronomical Society, Volume 466, Issue 2, April 2017, Pages 1648–1668 : https://doi.org/10.1093/mnras/stw3101

5.14.2 Constructor & Destructor Documentation

5.14.2.1 __init__()

Define the constructor of the results_DC14_check class.

This defines the constructor of the results_DC14_check class.

self	object pointer
model	str
	Model to assume for DM halo. Can be equal to :
	• DC14
	Generated by Doxygen
	• NFW
fit_dict←	(optional) constants.fitting_dict instance
_in	Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used

5.14.3 Member Function Documentation

5.14.3.1 fit()

Define the fit results.

This defines the fit results for the assumed model for 120 galaxies in the SPARC catalog.

Parameters

self	object pointer

Returns

dictionary

Dictionary of resulting fit parameters. Results are as follows: fit = {'Vbulge_none': {...}, 'Vbulge': {...}} where 'Vbulge none'/'Vbulge' corresponds to galaxies without/with a bulge component.

```
    fit['Vbulge_none'] = {
        'Name' : str[149],
        'Chi_sq' : ndarray[149],
        'params' : ndarray[149, 3],
        'Mvir' : float,
        'BIC' : float,
        'fit' : model_fit.model_fit.fit object,
        }
```

- fit['Vbulge'] = same as 'Vbulge_none' with the change :
 - 'params' : ndarray[149, 4]

Each of the components of $fit['Vbulge_none']$ and fit['Vbulge'] are :

- 'Name' = name of galaxy
- 'Chi sq' = reduced chi-squared
- 'params' = fit parameters
 - for DC14, and NFW without/with bulge component: [c200, v200, MLd]
- 'Mvir' = M200 (mass enclosed within radius R200) in units of solar masses
- 'BIC' = Bayesian information criterion (using Imfit definition)
- 'fit' = model_fit.model_fit.fit object

The documentation for this class was generated from the following file:

· pyfiles/fitting/results.py

5.15 results_Einasto_check Class Reference

The class to obtain fit results to check the Einasto and NFW model implementation.

Public Member Functions

```
    def __init__ (self, model, fit_dict_in=fitting_dict_in)
    Define the constructor of the results_Einasto_check class.
```

def fit (self)

Define the fit results.

Public Attributes

model

str

Model to assume for DM halo.

fit_dict_in

constants.fitting_dict instance Instance of the constants.fitting_dict class.

5.15.1 Detailed Description

The class to obtain fit results to check the Einasto and NFW model implementation.

The class to obtain fit results for comparison with Nicolas Loizeau and Glennys R. Farrar 2021 ApJL 920 L10: https://doi.org/10.3847/2041-8213/ac1bb7

5.15.2 Constructor & Destructor Documentation

5.15.2.1 init ()

Define the constructor of the results_Einasto_check class.

This defines the constructor of the results_Einasto_check class.

self	object pointer
model	str Model to assume for DM halo. Can be equal to :
	Einasto NFW
fit_dict↔ _in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used in fitting.

5.15.3 Member Function Documentation

5.15.3.1 fit()

```
\label{eq:constraint} \begin{array}{c} \texttt{def results.results\_Einasto\_check.fit} & \texttt{(} \\ & & \texttt{self} \text{)} \end{array}
```

Define the fit results.

This defines the fit results for the assumed model for 120 galaxies in the SPARC catalog.

Parameters

self	object pointer

Returns

dictionary

Dictionary of resulting fit parameters. Results are as follows : fit = {'Vbulge_none' : $\{...\}$, 'Vbulge' : $\{...\}$ } where 'Vbulge_none'/'Vbulge' corresponds to galaxies without/with a bulge component.

```
    fit['Vbulge_none'] = {
        'Name' : str[121],
        'Chi_sq' : ndarray[121],
        'params' : ndarray[121, 3 or 4],
        'Mvir' : float,
        'fit' : model_fit.model_fit.fit object,
        }
```

- fit['Vbulge'] = same as 'Vbulge_none' with the change :
 'params' : ndarray[121, 4 or 5]
 Each of the components of fit['Vbulge none'] and fit['Vbulge'] are :
- 'Name' = name of galaxy
- 'Chi sq' = reduced chi-squared
- 'params' = fit parameters
 - for NFW without bulge component: [c200, v200, MLd]
 - for NFW with bulge component: [c200, v200, MLd, MLb]
 - for Einasto without bulge component: [c200, v200, MLd, alpha]
 - for Einasto with bulge component: [c200, v200, MLd, MLb, alpha]
- 'Mvir' = M200 (mass enclosed within radius R200) in units of solar masses
- 'fit' = model_fit.model_fit.fit object

The documentation for this class was generated from the following file:

· pyfiles/fitting/results.py

5.16 results_psi_multi_all Class Reference

The class to obtain fit results for all double flavored ULDM models analyzed.

Public Member Functions

```
    def __init__ (self, fit_dict_in=fitting_dict_in)
        Define the constructor of the results_psi_multi_all class.

    def fit (self)
        Define the fit results.
```

Public Attributes

· fit_dict_in

```
constants.fitting_dict instance
Instance of the constants.fitting_dict class.
```

· args_opts

dictionary

Dictionary of rules to be assumed during fitting Instance of constants.fitting_dict.args_opts

· mfree

bool

Equal to true/false if soliton particle mass free/fixed in fitting procedure

• cdmhalo

str

Can be equal to:

matched

bool

True if using ULDM matched models

5.16.1 Detailed Description

The class to obtain fit results for all double flavored ULDM models analyzed.

This class can be used to obtain results for all double flavored ULDM models analyzed. 93 galaxies in the SPARC catalog are used.

5.16.2 Constructor & Destructor Documentation

Define the constructor of the results_psi_multi_all class.

This defines the constructor of the results_psi_multi_all class.

Parameters

self	object pointer
fit_dict← _in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used
	in fitting.

5.16.3 Member Function Documentation

5.16.3.1 fit()

Define the fit results.

This defines the fit results for the double flavor ULDM models for 93 galaxies in the SPARC catalog.

Parameters

Returns

dictionary

Dictionary of resulting fit parameters. Results are as follows : fit = {'Vbulge_none' : $\{...\}$, 'Vbulge' : $\{...\}$ } where 'Vbulge_none'/'Vbulge' corresponds to galaxies without/with a bulge component.

```
fit['Vbulge_none'] = {
  'Name' : ndarray[93],
  'fit' : ndarray[93],
  'Chi_sq' : ndarray[93],
  'BIC' : ndarray[93],
  'Mhalo_1' : ndarray[93],
  'Mhalo_2' : ndarray[93],
  'Mvir' : ndarray[93],
  'params' : dictionary,
}
```

- fit['Vbulge'] = same as fit['Vbulge_none'] Each of the components of fit['Vbulge_none'] and fit['Vbulge'] are:
- 'Name' = name of galaxy
- 'fit' = model_fit.model_fit.fit object
- 'Chi_sq' = reduced chi-squared
- 'BIC' = Bayesian information criterion
- 'Mhalo_1' = mass of ULDM halo one
- 'Mhalo 2' = mass of ULDM halo two

```
• 'Mvir' = M200 (mass enclosed within radius R200) in units of solar masses
```

```
'params' = {
 'c200': ndarray[93] (unumpy.uarray) = halo one concentration,
 'c200_2': ndarray[93] (unumpy.uarray) = halo two concentration,
 'v200': ndarray[93] (unumpy.uarray) = halo one virial velocity,
 'v200 2': ndarray[93] (unumpy.uarray) = halo two virial velocity,
 'MLd': ndarray[93] (unumpy.uarray) = mass-to-light ratio of disk,
 'MLb': ndarray[93] (unumpy.uarray) = mass-to-light ratio of bulge,
 'alpha': ndarray[93] (unumpy.uarray) = Einasto halo parameter,
 'm22': ndarray[93] (unumpy.uarray) = ULDM particle one mass,
 'm22_2': ndarray[93] (unumpy.uarray) = ULDM particle two mass,
 'Msol': ndarray[93] (unumpy.uarray) = soliton one mass,
 'Msol_2': ndarray[93] (unumpy.uarray) = soliton two mass,
 'mstar': ndarray[93] (unumpy.uarray) = mass of stellar component,
 'Vf': ndarray[93] = maximum circular velocity,
 'mgas': ndarray[93] = mass of gas component,
 }
```

5.16.4 Member Data Documentation

5.16.4.1 cdmhalo

```
results.results_psi_multi_all.cdmhalo
str
Can be equal to:
```

- · 'Burkert'
- 'DC14'
- 'Einasto'
- 'NFW'

The documentation for this class was generated from the following file:

· pyfiles/fitting/results.py

5.17 results_results_psi_single_all Class Reference

The class to obtain fit results for all single flavored ULDM models analyzed.

Public Member Functions

```
    def __init__ (self, fit_dict_in=fitting_dict_in)
    Define the constructor of the results_psi_single_all class.
    def fit (self)
```

Define the fit results.

Public Attributes

fit_dict_in

constants.fitting_dict instance Instance of the constants.fitting_dict class.

· args_opts

dictionary

Dictionary of rules to be assumed during fitting Instance of constants.fitting_dict.args_opts

· mfree

bool

Equal to true/false if soliton particle mass free/fixed in fitting procedure

• cdmhalo

str

Can be equal to :

matched

bool

True if using ULDM matched models

5.17.1 Detailed Description

The class to obtain fit results for all single flavored ULDM models analyzed.

This class can be used to obtain results for all single flavored ULDM models analyzed. 93 galaxies in the SPARC catalog are used.

5.17.2 Constructor & Destructor Documentation

5.17.2.1 __init__()

Define the constructor of the results_psi_single_all class.

This defines the constructor of the results_psi_single_all class.

self	object pointer
fit_dict←	(optional) constants.fitting_dict instance
_in	Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used
	in fitting.

5.17.3 Member Function Documentation

5.17.3.1 fit()

```
def results.results_psi_single_all.fit ( self )
```

Define the fit results.

This defines the fit results for the single flavor ULDM models for 93 galaxies in the SPARC catalog.

Parameters

```
self object pointer
```

Returns

dictionary

Dictionary of resulting fit parameters. Results are as follows: fit = {'Vbulge_none': {...}, 'Vbulge': {...}} where 'Vbulge_none'/'Vbulge' corresponds to galaxies without/with a bulge component.

```
    fit['Vbulge_none'] = {
        'Name' : ndarray[93],
        'fit' : ndarray[93],
        'Chi_sq' : ndarray[93],
        'BIC' : ndarray[93],
        'Mhalo' : ndarray[93],
        'Mvir' : ndarray[93],
        'params' : dictionary,
        \understand \u
```

- fit['Vbulge'] = same as fit['Vbulge_none'] Each of the components of fit['Vbulge_none'] and fit['Vbulge'] are :
- 'Name' = name of galaxy
- 'fit' = model_fit.model_fit.fit object
- 'Chi_sq' = reduced chi-squared
- 'BIC' = Bayesian information criterion
- 'Mhalo' = mass of ULDM halo
- 'Mvir' = M200 (mass enclosed within radius R200) in units of solar masses
- 'params' = {
 'c200': ndarray[93] (unumpy.uarray) = halo concentration,
 'v200': ndarray[93] (unumpy.uarray) = halo virial velocity,
 'MLd': ndarray[93] (unumpy.uarray) = mass-to-light ratio of disk,
 'MLb': ndarray[93] (unumpy.uarray) = mass-to-light ratio of bulge,
 'alpha': ndarray[93] (unumpy.uarray) = Einasto halo parameter,
 'm22': ndarray[93] (unumpy.uarray) = ULDM particle mass,
 'Msol': ndarray[93] (unumpy.uarray) = soliton mass,
 'mstar': ndarray[93] (unumpy.uarray) = mass of stellar component,
 'Vf': ndarray[93] = maximum circular velocity,
 'mgas': ndarray[93] = mass of gas component,
 }

5.17.4 Member Data Documentation

5.17.4.1 cdmhalo

```
results_psi_single_all.cdmhalo
```

str

Can be equal to:

- · 'Burkert'
- 'DC14'
- · 'Einasto'
- 'NFW'

The documentation for this class was generated from the following file:

• pyfiles/fitting/results.py

5.18 alp_funcs.soliton Class Reference

The class containing mass functions for the ULDM halo models.

Public Member Functions

- def __init__ (self, model, fit_dict_in=fitting_dict_in)
 - Define the constructor of the soliton class.
- def mass (self, params, r)

Define the mass profile of the ULDM galactic structure.

• def Mhalo (self, params)

Define the total mass of the outer halo.

• def Mvir (self, params)

Define the total galactic DM halo mass.

Public Attributes

model

str

Model to assume for DM halo.

· fit_dict_in

constants.fitting_dict instance

Instance of the constants.fitting_dict class.

· args_opts

dictionary

Dictionary of rules to be assumed during fitting Instance of constants.fitting_dict.args_opts

· matched

hool

Denotes how to combine the soliton and outer halo.

· mfree

float

Denotes how to treat soliton particle mass in fitting procedure.

· m22

float

Soliton particle mass in units of 10^{-22} eV.

m22 2

float

Soliton particle mass two in units of 10^{-22} eV.

• cdmhalo

float

Denotes which CDM profile to use for outer halo in ULDM galactic structure.

· base_funcs_in

alp_funcs.base_funcs instance
Instance of the alp_funcs.base_funcs class

· halo_init

cdm_funcs.halo instance
Instance of the cdm_funcs.halo class

5.18.1 Detailed Description

The class containing mass functions for the ULDM halo models.

5.18.2 Constructor & Destructor Documentation

5.18.2.1 __init__()

Define the constructor of the soliton class.

This defines the constructor of the soliton class.

Parameters

self	object pointer
model	str Model to assume for DM halo. Can be equal to :
	psi_singlepsi_multi
fit_dict↔ _in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used in fitting.

5.18.3 Member Function Documentation

5.18.3.1 mass()

Define the mass profile of the ULDM galactic structure.

This defines the mass of the ULDM galactic structure (soliton and outer halo) at a given radius given the model parameters.

Parameters

self	object pointer
params	Imfit.Parameters instance Instance of the Imfit.Parameters class. All model parameters contained here. This can be created using cdm_params.halo.params.
r	ndarray[N] Numpy array of N radii values in units of kpc.

Returns

ndarray[N]

Numpy array of N mass values in units of solar mass.

5.18.3.2 Mhalo()

Define the total mass of the outer halo.

This defines the total mass of the outer halo assuming the model parameters.

Parameters

self		object pointer	
para	ıms	Imfit.Parameters instance	
		Instance of the Imfit.Parameters class. All model parameters contained here.	
		This can be created using alp_params.soliton.params.	

Returns

float

Total mass of the outer halo in units of solar mass.

5.18.3.3 Mvir()

Define the total galactic DM halo mass.

This defines the total mass of the galactic DM given the model parameters.

Parameters

self	object pointer
params	Imfit.Parameters instance Instance of the Imfit.Parameters class. All model parameters contained here. This can be created using cdm_params.halo.params.

Returns

float

Total mass of the galactic DM in units of solar mass.

5.18.4 Member Data Documentation

5.18.4.1 cdmhalo

```
alp_funcs.soliton.cdmhalo
```

float

Denotes which CDM profile to use for outer halo in ULDM galactic structure.

Equal to constants.fitting_dict.sol_cdmhalo

5.18.4.2 matched

alp_funcs.soliton.matched

bool

Denotes how to combine the soliton and outer halo.

Equal constants.fitting_dict.sol_match

5.18.4.3 mfree

alp_funcs.soliton.mfree

float

Denotes how to treat soliton particle mass in fitting procedure.

Equal to constants.fitting_dict.sol_mfree

The documentation for this class was generated from the following file:

· pyfiles/models/alps/alp_funcs.py

5.19 alp_params.soliton Class Reference

The class containing all parameters for fitting the ULDM halo models.

Public Member Functions

• def __init__ (self, model, data, fit_dict_in=fitting_dict_in)

Define the constructor of the soliton class.

· def params (self)

Define the parameters to be assumed.

Public Attributes

model

str

Model to assume for DM halo.

• data

dictionary

Dictionary containing all the necessary data for a given galaxy.

· fit_dict_in

constants.fitting_dict instance

Instance of the constants.fitting_dict class.

· args_opts

dictionary

Dictionary of rules to be assumed during fitting Instance of constants.fitting_dict.args_opts

params_vals

dictionary

Dictionary of variable values to be used during fitting.

c200

list

Values for c200 in the form [starting value, min, max] Contained in constants.fitting dict.params vals

v200

list

Values for V200 in the form [starting value, min, max] Contained in constants.fitting_dict.params_vals

v200fac

list

Values for v200fac in the form [starting value, min, max] Contained in constants.fitting dict.params vals

• MLD

list

Values for MLd in the form [starting value, min, max] Contained in constants.fitting_dict.params_vals

MLB

list

Values for MLb in the form [starting value, min, max] Contained in constants.fitting_dict.params_vals

· alpha

list

Values for alpha in the form [starting value, min, max] Contained in constants.fitting_dict.params_vals

msol

float

Values for msol in the form [starting value, min, max] Contained in constants.fitting_dict.params_vals

m22

float

Values for m22 in the form [starting value, min, max] Contained in constants.fitting_dict.params_vals

· msol_2

float

Values for msol two in the form [starting value, min, max] Contained in constants.fitting dict.params vals

· m22_2

float

Values for m22 two in the form [starting value, min, max] Contained in constants.fitting_dict.params_vals

matched

bool

Denotes how to combine the soliton and outer halo.

• mfree

float

Denotes how to treat soliton particle mass in fitting procedure.

• cdmhalo

float

Denotes which CDM profile to use for outer halo in ULDM galactic structure.

5.19.1 Detailed Description

The class containing all parameters for fitting the ULDM halo models.

This class contains all parameters necessary to perform the fitting procedures for all ULDM halo models.

5.19.2 Constructor & Destructor Documentation

5.19.2.1 __init__()

Define the constructor of the soliton class.

This defines the constructor of the soliton class.

Parameters

self	object pointer	
model	str Model to assume for DM halo. Can be equal to :	
	psi_singlepsi_multi	
	· -	
data	dictionary Dictionary containing all the necessary data for a given galaxy. This can be created using galaxy.galaxy.	
fit_dict <i>⇔</i> _in	(optional) constants.fitting_dict instance Instance of the constants.fitting_dict class. Contains all the necessary rules and values to be used in fitting.	

5.19.3 Member Function Documentation

5.19.3.1 params()

```
\begin{tabular}{ll} $\operatorname{def alp\_params.soliton.params} & ( \\ & self \end{tabular} \label{eq:self}
```

Define the parameters to be assumed.

This defines the parameters to be assumed during the fitting procedures for all ULDM halos.

Parameters

```
self object pointer
```

Returns

Imfit.Parameters instance Instance of the Imfit.Parameters class

5.19.4 Member Data Documentation

5.19.4.1 cdmhalo

```
alp_params.soliton.cdmhalo
```

float

Denotes which CDM profile to use for outer halo in ULDM galactic structure.

Equal to constants.fitting_dict.sol_cdmhalo

5.19.4.2 data

```
alp_params.soliton.data
```

dictionary

Dictionary containing all the necessary data for a given galaxy.

This can be created using galaxy.galaxy.

5.19.4.3 matched

```
alp_params.soliton.matched
```

bool

Denotes how to combine the soliton and outer halo.

Equal constants.fitting_dict.sol_match

5.19.4.4 mfree

```
\verb|alp_params.soliton.mfree|
```

float

Denotes how to treat soliton particle mass in fitting procedure.

Equal to constants.fitting_dict.sol_mfree

5.19.4.5 params_vals

```
alp_params.soliton.params_vals
```

dictionary

Dictionary of variable values to be used during fitting.

Instance of constants.fitting_dict.params_vals

The documentation for this class was generated from the following file:

pyfiles/models/alps/alp_params.py

Index

init	params, 107
alp_funcs.base_funcs, 20	params_vals, 108
alp_funcs.soliton, 102	alphamatched
alp_params.soliton, 106	alp_params, 9
cdm_funcs.base_funcs, 25	args_opts
cdm_funcs.halo, 43	constants.fitting dict, 33
cdm_params.base_funcs, 28	model_fit.model_fit, 57
cdm_params.halo, 47	′
constants.fitting dict, 31	bic
galaxy.galaxy, 36	model_fit.model_fit, 54
halo.halo, 50	BIC_CDM
model_fit.grar_fit, 39	results.plots, 60
model_fit.model_fit, 53	BIC_diffs_CDM
results.plots, 59	results.plots, 61
results.results_CDM_all, 88	BIC_psi_mfix_ex
results.results_CDM_check, 90	results.plots, 61
results.results_DC14_check, 92	BIC_psi_mfree
results.results_Einasto_check, 94	results.plots, 63
results.results_psi_multi_all, 96	BTFR
results.results_psi_mitit_all, 99	model_fit, 16
results.results_psi_single_all, 55	
abund_match_rel	cdm_funcs, 9
model_fit, 14	cdm funcs.base funcs, 24
alp_funcs, 7	init , 25
alp_funcs.base_funcs, 19	mass_frac_dc14, 25
init, 20	mass num, 28
cdmhalo, 23	rc, 26
mass_sol_init, 20	rhoc, 26
matched, 23	xc, 27
mfree, 24	cdm_funcs.halo, 43
msol, 21	init , 43
rc, 21	mass, 44
rhoc, 22	mass num, 46
	Mvir, 45
XC, 23	cdm_params, 10
alp_funcs.soliton, 101	cdm_params.base_funcs, 28
init, 102	init, 28
cdmhalo, 104	v200min_dc14, 29
mass, 103	v200min_dc14, 25 v200min frac dc14check, 29
matched, 104	cdm params.halo, 46
mfree, 105	init, 47
Mhalo, 103	, 47 data, 48
Mvir, 104	
alp_params, 8	params, 48
alphamatched, 9	params_vals, 48
alp_params.soliton, 105	cdmhalo
init, 106	alp_funcs.base_funcs, 23
cdmhalo, 108	alp_funcs.soliton, 104
data, 108	alp_params.soliton, 108
matched, 108	results.results_psi_multi_all, 98
mfree, 108	results.results_psi_single_all, 10

110 INDEX

chi_	_box_Einasto_checks	g_tot
	results.plots, 63	model_fit.grar_fit, 41
chi_	CDM	galaxy, 12
	results.plots, 64	galaxy.galaxy, 36
chi_	_dist_CDM	init, 36
	results.plots, 65	data, 37
chi_	_dist_CDM_checks	df, 37
	results.plots, 65	df1, 37
chi_	_dist_DC14_checks	grar_model
	results.plots, 66	model_fit.grar_fit, 42
chi	dist Einasto checks	
_	results.plots, 67	halo, 13
chi	dist_psi_mfix_ex	halo.halo, 49
_	results.plots, 67	init, 50
chi	dist_psi_mfree	data, 52
_	results.plots, 68	halo_init, 52
chi	gal_psi_mfix	mass, 50
·	results.plots, 69	params, 52
chi	psi mfix	params_vals, 52
01.11_	results.plots, 70	velocity, 51
chi	psi mfix ex	halo_init
0111_	results.plots, 71	halo.halo, 52
chi	psi_mfree	,
0111_	results.plots, 72	mass
con	c_mass_rel_Du	alp_funcs.soliton, 103
COIL	model_fit, 16	cdm_funcs.halo, 44
oon	c_mass_rel_Wa	halo.halo, 50
COH		mass_frac_dc14
	model_fit, 17	cdm_funcs.base_funcs, 25
con	stants, 11	mass num
	standard, 12	cdm_funcs.base_funcs, 28
con	stants.fitting_dict, 30	cdm_funcs.halo, 46
	init, 31	mass sol init
	args_opts, 33	alp_funcs.base_funcs, 20
	params_vals, 34	matched
dote		alp_funcs.base_funcs, 23
data		alp_funcs.soliton, 104
	alp_params.soliton, 108	alp_params.soliton, 108
	cdm_params.halo, 48	mfree
	galaxy.galaxy, 37	alp_funcs.base_funcs, 24
-14	halo.halo, 52	alp_funcs.soliton, 105
df		alp_params.soliton, 108
-124	galaxy.galaxy, 37	Mhalo
df1		alp funcs.soliton, 103
	galaxy.galaxy, 37	MLd_degen_CDM
fit		results.plots, 73
ш	model fit are fit 20	•
	model_fit.grar_fit, 39	model_fit, 13
	model_fit.model_fit, 54	abund_match_rel, 14
	results.results_CDM_all, 89	BTFR, 16
	results.results_CDM_check, 91	conc_mass_rel_Du, 16
	results.results_DC14_check, 93	conc_mass_rel_Wa, 17
	results.results_Einasto_check, 95	model_fit.grar_fit, 38
	results.results_psi_multi_all, 97	init, 39
	results.results_psi_single_all, 100	fit, 39
ایم	O	g_bar, 40
g_b		g_rar, 41
	model_fit.grar_fit, 40	g_tot, 41
g_ra		grar_model, 42
	model_fit.grar_fit, 41	model_fit.model_fit, 53

INDEX 111

tuta E0	DIO ODM 00
init, 53	BIC_CDM, 60
args_opts, 57	BIC_diffs_CDM, 61
bic, 54	BIC_psi_mfix_ex, 61
fit, 54 plot, 55	BIC_psi_mfree, 63 chi_box_Einasto_checks, 63
residual, 55	chi_CDM, 64
	chi_dist_CDM, 65
velocity_tot, 56 msol	chi_dist_CDM_checks, 65
alp_funcs.base_funcs, 21	chi dist DC14 checks, 66
Msol_psi_mfix	chi dist Einasto checks, 67
results.plots, 74	chi_dist_psi_mfix_ex, 67
Msol_psi_mfix_ex	chi_dist_psi_mfree, 68
results.plots, 74	chi_gal_psi_mfix, 69
Msol_psi_mfree	chi_psi_mfix, 70
results.plots, 75	chi_psi_mfix_ex, 71
Mvir	chi_psi_mfree, 72
alp_funcs.soliton, 104	MLd degen CDM, 73
cdm funcs.halo, 45	Msol_psi_mfix, 74
_ ,	Msol_psi_mfix_ex, 74
params	Msol_psi_mfree, 75
alp_params.soliton, 107	params_dist_CDM, 77
cdm_params.halo, 48	params_dist_CDM_checks, 78
halo.halo, 52	params_dist_DC14_checks, 78
params_dist_CDM	params_dist_Einasto_checks, 79
results.plots, 77	params_dist_psi_mfix_ex, 79
params_dist_CDM_checks	params_dist_psi_mfree, 80
results.plots, 78	params_scatter_Einasto_checks, 81
params_dist_DC14_checks	relations_CDM, 82
results.plots, 78	relations_psi_mfix_ex, 82
params_dist_Einasto_checks	relations_psi_mfree, 83
results.plots, 79	rotcurves_CDM_all, 84
params_dist_psi_mfix_ex	rotcurves_CDM_check, 85
results.plots, 79	rotcurves_DC14_check, 85
params_dist_psi_mfree results.plots, 80	rotcurves_Einasto_check, 86
params_scatter_Einasto_checks	rotcurves_psi_all, 86
results.plots, 81	results.results_CDM_all, 87
params_vals	init, 88 fit, 89
alp_params.soliton, 108	results_results_CDM_check, 90
cdm_params.halo, 48	init, 90
constants.fitting_dict, 34	
halo.halo, 52	results.results DC14 check, 92
plot	init , 92
model_fit.model_fit, 55	fit, 93
;	results_Einasto_check, 93
rc	init, 94
alp_funcs.base_funcs, 21	fit, 95
cdm_funcs.base_funcs, 26	results.results_psi_multi_all, 96
relations_CDM	init , 96
results.plots, 82	cdmhalo, 98
relations_psi_mfix_ex	fit, 97
results.plots, 82	results.results_psi_single_all, 98
relations_psi_mfree	init, 99
results.plots, 83	cdmhalo, 101
residual	fit, 100
model_fit.model_fit, 55	rhoc
results, 17	alp_funcs.base_funcs, 22
results.plots, 57	cdm_funcs.base_funcs, 26
init, 59	

112 INDEX

```
rotcurves_CDM_all
    results.plots, 84
rotcurves\_CDM\_check
    results.plots, 85
rotcurves_DC14_check
    results.plots, 85
rotcurves_Einasto_check
    results.plots, 86
rotcurves_psi_all
    results.plots, 86
standard
    constants, 12
v200min_dc14
    cdm_params.base_funcs, 29
v200min_frac_dc14check
    cdm_params.base_funcs, 29
velocity
    halo.halo, 51
velocity_tot
    model_fit.model_fit, 56
ХC
    alp_funcs.base_funcs, 23
    cdm_funcs.base_funcs, 27
```