Lecture 9: Policy Gradients and Actor Critics

Hado van Hasselt

UCL, 2021

Background reading: Sutton & Barto, 2018, Chapter 13

"Do no solve a more general problem as an intermediate step."

— Vladimir Vapnik, 1998

If we care about optimal behaviour: why not learn a policy directly?

General overview

- ► Model-based RL
 - + 'Easy' to learn a model (supervised learning)
 - + Learns 'all there is to know' from the data
 - Uses compute & capacity on irrelevant details
 - Computing policy (=planning) is non-trivial and expensive (in compute)
- ► Value-based RL
 - + Easy to generate policy (e.g., $\pi(a|s) = I(a = \underset{a}{\operatorname{argmax}} q(s, a)))$
 - + Close to true objective
 - + Fairly well-understood, good algorithms exist
 - Still not the true objective:
 - May focus capacity on irrelevant details
 - Small value error can lead to larger policy error
- ► Policy-based RL
 - + Right objective!
 - More pros and cons on later slide

General overview

Model-based RL Value-based RL Policy-based RL

- All of these generalise in different ways
- Sometimes learning a model is easier (e.g., simple dynamics)
- Sometimes learning a policy is easier (e.g., "always move forward" is optimal)

Policy-Based Reinforcement Learning

Previously we approximated paramateric value functions

$$v_{\mathbf{w}}(s) \approx v_{\pi}(s)$$

 $q_{\mathbf{w}}(s, a) \approx q_{\pi}(s, a)$

- A policy can be generated from these values (e.g., greedy)
- ► In this lecture we directly parametrise the **policy** directly

$$\pi_{\boldsymbol{\theta}}(a|s) = p(a|s,\boldsymbol{\theta})$$

► This lecture, we focus on model-free reinforcement learning

Value-based and policy-based RL: terminology

- **▶** Value Based
 - Learn values
 - ▶ Implicit policy (e.g. ϵ -greedy)
- **▶** Policy Based
 - No values
 - Learn policy
- ► Actor-Critic
 - Learn values
 - Learn policy

Advantages and disadvantages of policy-based RL

Advantages:

- ► True objective
- Easy extended to high-dimensional or continuous action spaces
- ► Can learn **stochastic** policies
- Sometimes policies are simple while values and models are complex
 - E.g., complicated dynamics, but optimal policy is always "move forward"

Disadvantages:

- Could get stuck in local optima
- Obtained knowledge can be specific, does not always generalise well
- ▶ Does not necessarily extract all useful information from the data (when used in isolation)

Benefits of stochastic policies

Stochastic policies

Why could we need stochastic policies?

- ► In MDPs, there is always an optimal deterministic policy
- ▶ But, most problems are **not fully observable**
 - ► This is the common case, especially with function approximation
 - ► The optimal policy may then be stochastic
- ► Search space is smoother for stochastic policies ⇒ we can use gradients
- Provides some 'exploration' during learning

Stochastic Policy Example:

Aliased Grid World

Example: Aliased Grid World

- ► The grey states look the same
- ► Consider features:

► Compare deterministic and stochastic policies

Example: Aliased Gridworld

- Under aliasing, an optimal deterministic policy will either
 - move left in both grey states (shown by red arrows)
 - or move right in both grey states
- Either way, it can get stuck and never reach the money

Example: Aliased Gridworld

► An optimal stochastic policy moves randomly left or right in grey states

$$\pi_{\theta}(\text{right} \mid \text{wall up and down}) = 0.5$$

 $\pi_{\theta}(\text{left} \mid \text{wall up and down}) = 0.5$

- Will reach the goal state in a few steps with high probability
- Directly learning the policy parameters, we can learn an optimal stochastic policy
- ► Also when optimal policy does not give equal probability (So this differs from random tie-breaking with values.)

Policy Learning Objective

Policy Objective Functions

- Goal: given policy $\pi_{\theta}(s, a)$, find best parameters θ
- How do we measure the quality of a policy π_{θ} ?
- ► In episodic environments we can use the average total return per episode
- ► In continuing environments we can use the average reward per step

Policy Objective Functions: Episodic

Episodic-return objective:

$$J_{G}(\boldsymbol{\theta}) = \mathbb{E}_{S_{0} \sim d_{0}, \pi_{\boldsymbol{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^{t} R_{t+1} \right]$$

$$= \mathbb{E}_{S_{0} \sim d_{0}, \pi_{\boldsymbol{\theta}}} [G_{0}]$$

$$= \mathbb{E}_{S_{0} \sim d_{0}} [\mathbb{E}_{\pi_{\boldsymbol{\theta}}} [G_{t} \mid S_{t} = S_{0}]]$$

$$= \mathbb{E}_{S_{0} \sim d_{0}} [\nu_{\pi_{\boldsymbol{\theta}}} (S_{0})]$$

where d_0 is the start-state distribution This objective equals the expected value of the start state

Policy Objective Functions: Average Reward

► Average-reward objective

$$J_{R}(\boldsymbol{\theta}) = \mathbb{E}_{\pi_{\boldsymbol{\theta}}} [R_{t+1}]$$

$$= \mathbb{E}_{S_{t} \sim d_{\pi_{\boldsymbol{\theta}}}} [\mathbb{E}_{A_{t} \sim \pi_{\boldsymbol{\theta}}(S_{t})} [R_{t+1} \mid S_{t}]]$$

$$= \sum_{s} d_{\pi_{\boldsymbol{\theta}}}(s) \sum_{a} \pi_{\boldsymbol{\theta}}(s, a) \sum_{r} p(r \mid s, a)r$$

where $d_{\pi}(s) = p(S_t = s \mid \pi)$ is the probability of being in state s in the long run Think of it as the ratio of time spent in s under policy π

Policy Gradients

Policy Optimisation

- Policy based reinforcement learning is an optimization problem
- Find θ that maximises $J(\theta)$
- We will focus on stochastic gradient ascent, which is often quite efficient (and easy to use with deep nets)
- Some approaches do not use gradient
 - ► Hill climbing / simulated annealing
 - Genetic algorithms / evolutionary strategies

Policy Gradient

Idea: ascent the gradient of the objective $J(\theta)$

$$\Delta \boldsymbol{\theta} = \alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

▶ Where $\nabla_{\theta} J(\theta)$ is the policy gradient

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial J(\boldsymbol{\theta})}{\partial \theta_1} \\ \vdots \\ \frac{\partial J(\boldsymbol{\theta})}{\partial \theta_n} \end{pmatrix}$$

- \triangleright and α is a step-size parameter
- Stochastic policies help ensure $J(\theta)$ is smooth (typically/mostly)

Gradients on parameterized policies

- ▶ How to compute this gradient $\nabla_{\theta} J(\theta)$?
- Assume policy π_{θ} is differentiable almost everywhere (e.g., neural net)
- For average reward

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \mathbb{E}_{\pi_{\boldsymbol{\theta}}}[R] \,.$$

▶ How does $\mathbb{E}[R]$ depend on θ ?

Contextual Bandits Policy Gradient

- Consider a one-step case (a contextual bandit) such that $J(\theta) = \mathbb{E}_{\pi_{\theta}}[R(S, A)]$. (Expectation is over d (states) and π (actions)) (For now, d does not depend on π)
- We cannot sample R_{t+1} and then take a gradient: R_{t+1} is just a number and does not depend on θ !
- Instead, we use the identity:

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\pi_{\boldsymbol{\theta}}}[R(S, A)] = \mathbb{E}_{\pi_{\boldsymbol{\theta}}}[R(S, A)\nabla_{\boldsymbol{\theta}} \log \pi(A|S)].$$

(Proof on next slide)

- The right-hand side gives an expected gradient that can be sampled
- ▶ Also known as REINFORCE (Williams, 1992)

The score function trick

Let
$$r_{sa} = \mathbb{E}\left[R(S,A) \mid S=s,A=s\right]$$

$$\nabla_{\theta} \mathbb{E}_{\pi_{\theta}}[R(S,A)] = \nabla_{\theta} \sum_{s} d(s) \sum_{a} \pi_{\theta}(a|s) r_{sa}$$

$$= \sum_{s} d(s) \sum_{a} r_{sa} \nabla_{\theta} \pi_{\theta}(a|s)$$

$$= \sum_{s} d(s) \sum_{a} r_{sa} \pi_{\theta}(a|s) \frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)}$$

$$= \sum_{s} d(s) \sum_{a} \pi_{\theta}(a|s) r_{sa} \nabla_{\theta} \log \pi_{\theta}(a|s)$$

$$= \mathbb{E}_{d,\pi_{\theta}}[R(S,A) \nabla_{\theta} \log \pi_{\theta}(A|S)]$$

Contextual Bandit Policy Gradient

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}[R(S, A)] = \mathbb{E}[\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A|S)R(S, A)]$$

(see previous slide)

- ► This is something we can sample
- Our stochastic policy-gradient update is then

$$\theta_{t+1} = \theta_t + \alpha R_{t+1} \nabla_{\theta} \log \pi_{\theta_t}(A_t | S_t).$$

- ▶ In expectation, this is the following the actual gradient
- So this is a pure (unbiased) stochastic gradient algorithm
- Intuition: increase probability for actions with high rewards

Policy gradients: reduce variance

Note that, in general

$$\mathbb{E}\left[b\nabla_{\theta}\log \pi(A_t|S_t)\right] = \mathbb{E}\left[\sum_{a} \pi(a|S_t)b\nabla_{\theta}\log \pi(a|S_t)\right]$$
$$= \mathbb{E}\left[b\nabla_{\theta}\sum_{a} \pi(a|S_t)\right]$$
$$= \mathbb{E}\left[b\nabla_{\theta}1\right]$$

- This is true if *b* does not depend on the action (but it can depend on the state)
- ► Implies we can subtract a baseline to reduce variance

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha (R_{t+1} - b(S_t)) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}_t} (A_t | S_t).$$

We will also use this fact in proofs below

= 0

Example: Softmax Policy

- Consider a softmax policy on action preferences h(s, a) as an example
- Probability of action is proportional to exponentiated weight

$$\pi_{\theta}(a|s) = \frac{e^{h(s,a)}}{\sum_{b} e^{h(s,b)}}$$

The gradient of the log probability is

$$\nabla_{\theta} \log \pi_{\theta}(A_t|S_t) = \underbrace{\nabla_{\theta} h(S_t, A_t)}_{\text{gradient of preference}} - \underbrace{\sum_{a} \pi_{\theta}(a|S_t) \nabla_{\theta} h(S_t, a)}_{\text{expected gradient of preference}}$$

Policy Gradient Theorem

Policy Gradient Theorem

- The policy gradient approach also applies to (multi-step) MDPs
- Replaces reward *R* with long-term return G_t or value $q_{\pi}(s, a)$
- ▶ There are actually two policy gradient theorems (Sutton et al., 2000):
 - average return per episode & average reward per step

Policy gradient theorem (episodic)

Theorem

For any differentiable policy $\pi_{\theta}(s, a)$, let d_0 be the starting distribution over states in which we begin an episode. Then, the policy gradient of $J(\theta) = \mathbb{E}[G_0 \mid S_0 \sim d_0]$ is

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\pi_{\boldsymbol{\theta}}} \left[\sum_{t=0}^{T} \gamma^{t} q_{\pi_{\boldsymbol{\theta}}}(S_{t}, A_{t}) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A_{t}|S_{t}) \mid S_{0} \sim d_{0} \right]$$

where

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

= $\mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a]$

Policy gradients on trajectories

- Policy gradients do **not** need to know the MDP dynamics
- ► Kind of surprising; shouldn't we know how the policy influences the states?

Episodic policy gradients: proof

• Consider trajectory $\tau = S_0, A_0, R_1, S_1, A_1, R_1, S_2, \dots$ with return $G(\tau)$

$$\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi) = \nabla_{\boldsymbol{\theta}} \mathbb{E} \left[G(\tau) \right] = \mathbb{E} \left[G(\tau) \nabla_{\boldsymbol{\theta}} \log p(\tau) \right] \qquad \text{(score function trick)}$$

$$\nabla_{\theta} \log p(\tau) = \nabla_{\theta} \log \left[p(S_0) \pi(A_0 | S_0) p(S_1 | S_0, A_0) \pi(A_1 | S_1) \cdots \right]$$

$$= \nabla_{\theta} \left[\log p(S_0) + \log \pi(A_0 | S_0) + \log p(S_1 | S_0, A_0) + \log \pi(A_1 | S_1) + \cdots \right]$$

$$= \nabla_{\theta} \left[\log \pi(A_0 | S_0) + \log \pi(A_1 | S_1) + \cdots \right]$$

So:

$$\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi) = \mathbb{E}_{\pi} [G(\tau) \nabla_{\boldsymbol{\theta}} \sum_{t=0}^{T} \log \pi(A_t | S_t)]$$

Episodic policy gradients: proof (continued)

$$\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi) = \mathbb{E}_{\pi} [G(\tau) \sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi(A_{t}|S_{t})]$$

$$= \mathbb{E}_{\pi} [\sum_{t=0}^{T} G(\tau) \nabla_{\boldsymbol{\theta}} \log \pi(A_{t}|S_{t})]$$

$$= \mathbb{E}_{\pi} [\sum_{t=0}^{T} \left(\sum_{k=0}^{T} \gamma^{k} R_{k+1} \right) \nabla_{\boldsymbol{\theta}} \log \pi(A_{t}|S_{t})]$$

$$= \mathbb{E}_{\pi} [\sum_{t=0}^{T} \left(\sum_{k=t}^{T} \gamma^{k} R_{k+1} \right) \nabla_{\boldsymbol{\theta}} \log \pi(A_{t}|S_{t})]$$

$$= \mathbb{E}_{\pi} [\sum_{t=0}^{T} \left(\gamma^{t} \sum_{k=t}^{T} \gamma^{k-t} R_{k+1} \right) \nabla_{\boldsymbol{\theta}} \log \pi(A_{t}|S_{t})]$$

$$= \mathbb{E}_{\pi} [\sum_{t=0}^{T} \left(\gamma^{t} G_{t} \right) \nabla_{\boldsymbol{\theta}} \log \pi(A_{t}|S_{t})]$$

 $= \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} q_{\pi}(S_{t}, A_{t}) \nabla_{\theta} \log \pi(A_{t}|S_{t}) \right]$

Episodic policy gradients algorithm

$$\nabla_{\boldsymbol{\theta}} J_{\boldsymbol{\theta}}(\pi) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{I} \gamma^{t} q_{\pi}(S_{t}, A_{t}) \nabla_{\boldsymbol{\theta}} \log \pi(A_{t}|S_{t}) \right]$$

- We can sample this, given a whole episode
- Typically, people pull out the sum, and split up this into separate gradients, e.g.,

$$\Delta \boldsymbol{\theta}_t = \gamma^t G_t \nabla_{\boldsymbol{\theta}} \log \pi(A_t | S_t)$$

such that
$$\mathbb{E}_{\pi}[\sum_{t} \Delta \theta_{t}] = \nabla_{\theta} J_{\theta}(\pi)$$

- lacksquare Typically, people ignore the γ^t term, use $\Delta \theta_t = G_t \nabla_{\theta} \log \pi(A_t | S_t)$
- ► This is actually okay-ish we just partially pretend on each step that we could have started an episode in that state instead (alternatively, view it as a slightly biased gradient)

Policy gradient theorem (average reward)

Theorem

For any differentiable policy $\pi_{\theta}(s, a)$, the policy gradient of $J(\theta) = \mathbb{E}[R \mid \pi]$ is

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi} [q_{\pi_{\theta}}(S_t, A_t) \nabla_{\theta} \log \pi_{\theta}(A_t | S_t)]$$

where

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} - \rho + q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a]$$

$$\rho = \mathbb{E}_{\pi}[R_{t+1}] \qquad (Note: global average, not conditioned on state or action)$$

(Expectation is over both states and actions)

Policy gradient theorem (average reward)

Alternatively (but equivalently):

Theorem

For any differentiable policy $\pi_{\theta}(s, a)$, the policy gradient of $J(\theta) = \mathbb{E}[R \mid \pi]$ is

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi} [R_{t+1} \sum_{n=0}^{\infty} \nabla_{\theta} \log \pi_{\theta} (A_{t-n} | S_{t-n})]$$

(Expectation is over both states and actions)

Policy gradients: reduce variance

- ► Recall $\mathbb{E}_{\pi}[b(S_t)\nabla \log \pi(A_t|S_t)] = 0$, for any $b(S_t)$ that does not depend on A_t
- A common baseline is $v_{\pi}(S_t)$

$$\nabla_{\theta} J_{\theta}(\pi) = \mathbb{E}\left[\sum_{t=0} \gamma^{t} (q_{\pi}(S_{t}, A_{t}) - \nu_{\pi}(S_{t})) \nabla_{\theta} \log \pi(A_{t}|S_{t})\right]$$

► Typically, we estimate $v_{\mathbf{w}}(s) \approx v_{\pi}(s)$ explicitly, and sample

$$q_{\pi}(S_t, A_t) \approx G_t$$

- We can minimise variance further by **bootstrapping**, e.g., $G_t = R_{t+1} + \gamma v_w(S_{t+1})$
- ▶ More on these techniques in the next lecture

Critics

- A critic is a value function, learnt via **policy evaluation**: What is the value $v_{\pi_{\theta}}$ of policy π_{θ} for current parameters θ ?
- This problem was explored in previous lectures, e.g.
 - Monte-Carlo policy evaluation
 - ► Temporal-Difference learning
 - ► *n*-step TD

Actor-Critic

Critic Update parameters w of v_w by TD (e.g., one-step) or MC

Actor Update θ by policy gradient

function One-step Actor Critic

Initialise s, θ

for t = 0, 1, 2, ... do

Sample $A_t \sim \pi_{\theta}(S_t)$

Sample R_{t+1} and S_{t+1}

$$\delta_t = R_{t+1} + \gamma v_{\boldsymbol{w}}(S_{t+1}) - v_{\boldsymbol{w}}(S_t)$$

 $\mathbf{w} \leftarrow \mathbf{w} + \beta \, \delta_t \, \nabla_{\mathbf{w}} v_{\mathbf{w}}(S_t)$

 $\theta \leftarrow \theta + \alpha \, \delta_t \, \nabla_{\theta} \log \pi_{\theta}(A_t \mid S_t)$

[one-step TD-error, or advantage]

[TD(0)]

[Policy gradient update (ignoring γ^t term)]

Policy gradient variations

- Many extensions and variants exist
- ► Take care: bad policies lead to bad data
- This is different from supervised learning (where learning and data are independent)

Increasing robustness with trust regions

- One way to increase stability is to regularise
- ► A popular method is to limit the difference between subsequent policies
- For instance, use the Kullbeck-Leibler divergence:

$$KL(\pi_{\text{old}} || \pi_{\theta}) = \mathbb{E}\left[\int \pi_{\text{old}}(a \mid S) \log \frac{\pi_{\theta}(a \mid S)}{\pi_{\text{old}}(a \mid S)} da\right].$$

(Expectation is over states)

- ► A divergence is like a distance between distributions
- ► Then maximise $J(\theta) \eta \text{KL}(\pi_{\text{old}} || \pi_{\theta})$, for some hyperparameter η c.f. TRPO (Schulman et al. 2015), PPO (Abbeel & Schulman 2016), MPO (Abdolmaleki et al. 2018)

Continuous action spaces

Continuous actions

- Pure value-based RL can be non-trivial to extend to continuous action spaces
 - ightharpoonup How to approximate q(s, a)?
 - ightharpoonup How to compute max q(s, a)?
- When directly updating the policy parameters, continuous actions are easier
- Most algorithms discussed today can be used for discrete and continuous actions
- ▶ Note: exploration in high-dimensional continuous spaces can be challenging

Example: Gaussian policy

- As example, consider a Gaussian policy
- **E.g.**, mean is some function of state $\mu_{\theta}(s)$
- ightharpoonup For simplicity, lets consider fixed variance of σ^2 (can be parametrized as well)
- Policy is Gaussian, $A_t \sim \mathcal{N}(\mu_{\theta}(S_t), \sigma^2)$ (here μ_{θ} is the mean not to be confused with the behaviour policy!)
- The gradient of the log of the policy is then

$$\nabla_{\theta} \log \pi_{\theta}(s, a) = \frac{A_t - \mu_{\theta}(S_t)}{\sigma^2} \nabla \mu_{\theta}(s)$$

▶ This can be used, for instance, in REINFORCE / actor critic

Example: Policy gradient with Gaussian policy

Gaussian policy gradient update:

$$\theta_{t+1} = \theta_t + \beta (G_t - v(S_t)) \nabla_{\theta} \log \pi_{\theta}(A_t | S_t)$$

$$= \theta_t + \beta (G_t - v(S_t)) \frac{A_t - \mu_{\theta}(S_t)}{\sigma^2} \nabla \mu_{\theta}(S_t)$$

▶ Intuition: if return was high, move $\mu_{\theta}(S_t)$ toward A_t

Gradient ascent on value

- Policy gradients work well, but do not strongly exploit the critic
- If values generalise well, perhaps we can rely on them more?
 - 1. Estimate $q_{\mathbf{w}} \approx q_{\pi}$, e.g., with Sarsa
 - 2. Define **deterministic actor**: $A_t = \pi_{\theta}(S_t)$
 - 3. Improve actor (policy improvement) by gradient ascent on the value:

$$\Delta \theta \propto \frac{\partial Q_{\pi}(s, a)}{\partial \theta} = \frac{\partial Q_{\pi}(s, \pi_{\theta}(S_t))}{\partial \pi_{\theta}(S_t)} \frac{\partial \pi_{\theta}(S_t)}{\partial \theta}$$

- Known under various names:
 "Action-dependent heuristic dynamic programming" (ADHDP; Werbos 1990, Prokhorov & Wunsch 1997)
 "Gradient ascent on the value" (van Hasselt & Wiering 2007)
 These days, mostly know as: "Deterministic policy gradient" (DPG; Silver et al. 2014)
- It's a form of policy iteration

Continuous actor-critic learning automaton (Cacla)

We can also define the error in action space, rather than parameter space

1.
$$a_t = Actor_{\theta}(S_t)$$
 (get current (continuous) action proposal)

2.
$$A_t \sim \pi(\cdot|S_t, a_t)$$
 (e.g., $A_t \sim \mathcal{N}(a_t, \Sigma)$) (explore)

3.
$$\delta_t = R_{t+1} + \gamma v_{\mathbf{w}}(S_{t+1}) - v_{\mathbf{w}}(S_t)$$
 (compute TD error)

4. Update
$$v_{\mathbf{w}}(S_t)$$
 (e.g., using TD) (policy evaluation)

5. If
$$\delta_t > 0$$
, update $Actor_{\theta}(S_t)$ towards A_t (policy improvement)

$$\theta_{t+1} \leftarrow \theta_t + \beta(A_t - a_t) \nabla_{\theta_t} \operatorname{Actor}_{\theta_t}(S_t)$$

6. If $\delta_t \leq 0$, do not update $Actor_{\theta}$

Note: update magnitude does not depend on the value magnitude

Note: don't update 'away' from 'bad' actions

Video

(Peng, Berseth, van de Panne 2016)

End of Lecture