Combinatory Logic Synthesis and Alternation Highlights of Logic, Games and Automata 2013, Paris

Boris Düdder, Moritz Martens & Jakob Rehof joint work with Paweł Urzyczyn, University of Warsaw

Department of Computer Science Technical University of Dortmund

September 21th, 2013

Combinatory Logic Synthesis

- Using combinatory logic (CL) as a foundation for synthesis by type inhabitation
- Components from a repository
- Component-based Synthesis is (re-)emerging research topic
- Combinatory logic
 - Schönfinkel and Curry (1920's)
 - Variable-free
 - Hilbert-style

Alternation

- Alternating Turing Machine (ATM)
- Chandra, Kozen and Stockmeyer (1981)
- Existential / universal states
- Acceptance rules adapted

Simply Typed λ -calculus (λ_{\rightarrow})

$$e ::= x \mid \lambda x.e \mid (e \ e')$$

$$\tau ::= a \mid \tau \to \tau'$$

$$\Gamma = \{x : \tau, \ldots\}$$

$$\frac{\Gamma \vdash e : \tau \to \tau' \quad \Gamma \vdash e' : \tau}{\Gamma \vdash (e \ e') : \tau'} (\to E)$$

$$\frac{\Gamma, x : \sigma \vdash e : \tau}{\Gamma \vdash \lambda x.e : \sigma \to \tau} (\to I)$$

$$\frac{\Gamma \vdash e : \tau \quad \tau \leq \tau'}{\Gamma \vdash e : \tau'} (\le)$$

Type inhabitation

Does there exist λ -term e with $\Gamma \vdash e : \tau$?

Curry-Howard Isomorphism

Propositions-as-types correspondence

 $\lambda_{\rightarrow} \leftrightarrow$ minimal inutitionistic propositional logic

Types \leftrightarrow propositions

 λ_{\rightarrow} terms \leftrightarrow proofs

Inhabitation ↔ provability

Statman's theorem

Provability in intuitionistic logic is PSPACE-complete.

Fixed-base CL (Hilbert-style System)

$$S: (\sigma \to \tau \to \rho) \to (\sigma \to \tau) \to \sigma \to \rho$$

$$K: \sigma \to \tau \to \sigma$$

$$I: \tau \to \tau$$

$$\frac{[\textit{S} \text{ is substitution}]}{\Gamma, \textit{x} : \tau \vdash \textit{x} : \textit{S}(\tau)} (\text{var}) \qquad \qquad \frac{\Gamma \vdash \textit{e} : \tau \rightarrow \tau' \quad \Gamma \vdash \textit{e}' : \tau}{\Gamma \vdash (\textit{e} \textit{ e}') : \tau'} (\rightarrow \text{E})$$

Relativized Inhabitation

Set of given combinators is not fixed but given as part of the input.

Given Γ and τ does there exist CL-term e with $\Gamma \vdash e : \tau$?

Related Results

Relativized inhabitation in CL for simple types is undecidable. (Linial-Post)

Example Repository

```
egin{aligned} \Gamma = \{ & Tr: () 
ightarrow D((R,R),R,R), \ pos: D((R,R),R,R) 
ightarrow ((R,R),R), \ cdn: ((R,R),R) 
ightarrow (R,R), \ fst: (R,R) 
ightarrow R, \ snd: (R,R) 
ightarrow R, \ \vdots \ \} \end{aligned}
```

Example Repository with Semantic Specification

```
\Gamma = \{
         Tr: () \to D((R,R) \cap Cart, R \cap GPST, R \cap Cel),
        pos: D((R,R) \cap \epsilon, R \cap \mu, R) \rightarrow ((R,R) \cap \epsilon, R \cap \mu) \cap Pos,
        cdn: ((R,R) \cap \epsilon, R) \cap Pos \rightarrow (R,R) \cap \epsilon,
        fst: ((R,R) \cap Coord \rightarrow R) \cap (Cart \rightarrow Cx) \cap (Polar \rightarrow Radius),
        snd: ((R,R) \cap Coord \rightarrow R) \cap (Cart \rightarrow Cy) \cap (Polar \rightarrow Angle),
\Gamma \vdash ? : R \cap Angle \text{ has inhabitant } ? = snd(cdn(pos Tr()))
```

Relation of Inhabitation in λ_{\rightarrow} and Alternation

Solving $\Gamma \vdash ? : \tau$

To answer $\Gamma \vdash ? : \tau$ apply one of the following tactics:

- for $\tau = \tau_1 \rightarrow \tau_2$, ask $\Gamma \cup \{\tau_1\} \vdash ? : \tau_2$
- for $\tau = a$, choose $x \in \Gamma$ with $x : \sigma_1 \to \ldots \to \sigma_n \to a$ then ask $\Gamma \vdash ? : \sigma_i$ for all $1 \le i \le n$. Success if n = 0.

Alternation

- Nondeterminism: choose $x \in \Gamma$
- Alternation: all $\Gamma \vdash$? : σ_i must be solved in parallel

Finite Combinatory Logic $FCL(\cap, \leq)$

$$\tau ::= \mathbf{a} \mid \tau \to \tau \mid \tau \cap \tau$$

$$\overline{\Gamma, x : \tau \vdash x : \tau}$$
 (var)

$$\frac{\Gamma \vdash e : \tau \to \tau' \quad \Gamma \vdash e' : \tau}{\Gamma \vdash (e \ e') : \tau'} (\to E)$$

$$\frac{\Gamma \vdash e : \tau_1 \quad \Gamma \vdash e : \tau_2}{\Gamma \vdash e : \tau_1 \cap \tau_2} (\cap \mathsf{I})$$

$$\frac{\Gamma \vdash e : \tau \quad \tau \leq \tau'}{\Gamma \vdash e : \tau'} (\leq)$$

RU, TLCA 2011

	Complexity	lower-bound	upper-bound
FCL	Ртіме		
FCL(∩)	Ехртіме	bottom-up TA	top-down ATA
$FCL(\cap, \leq)$	Ехртіме	bottom-up TA	ATM

Bounded Combinatory Logic $BCL_k(\cap, \leq)$

$$\tau ::= \mathbf{a} \mid \alpha \mid \tau \to \tau \mid \tau \cap \tau$$

$$\frac{[S: \mathbb{V} \to \mathbb{T}_k]}{\Gamma, x: \tau \vdash x: S(\tau)} (\text{var})$$

$$\frac{\Gamma \vdash e : \tau \to \tau' \quad \Gamma \vdash e' : \tau}{\Gamma \vdash (e \ e') : \tau'} (\to \mathsf{E})$$

$$\frac{\Gamma \vdash e : \tau_1 \quad \Gamma \vdash e : \tau_2}{\Gamma \vdash e : \tau_1 \cap \tau_2} (\cap \mathsf{I})$$

$$\frac{\Gamma \vdash e : \tau \quad \tau \leq \tau'}{\Gamma \vdash e : \tau'} (\leq)$$

DMRU, CSL 2012

	Complexity	lower-bound	upper-bound
$BCL_k(\leq)$	Ехртіме	ATM	ATM
$BCL_k(\cap,\leq)$	2+k-Exptime	ATM	ATM

Complexity of Inhabitation Problems

System	Complexity	Authors
FCL(≤)	Ртіме	RU, TLCA 2011
$FCL(\cap, \leq)$	Ехртіме	RU, TLCA 2011
$BCL_k(\leq)$	EXPTIME	DMRU, CSL 2012
$BCL_k(\cap, \leq)$	(k+2)-Exptime	DMRU, CSL 2012
$\mathrm{CL}(SK) o$	PSPACE	S, 1979
$\lambda(-\cap I)$	EXPSPACE	RU, KF 2012
$\lambda^{r2}\cap$	EXPSPACE	U, TLCA 2009
$\lambda\cap$	∞	U, 1999
$\mathrm{CL}(\cap)$	∞	DH, 1992 + U, 1999

Open Research Questions

- Relation between LTL-style and combinatory synthesis
- Generally: relation to MSO synthesis

ATM for Inhabitation in $BCL_k(\cap, \leq)$

```
Input: \Gamma, \tau
         // loop
               CHOOSE (x : \sigma) \in \Gamma;
               \sigma' := \bigcap \{ S(\sigma) \mid S : Var(\Gamma, \tau) \to \mathbb{T}_k(\Gamma, \tau) \};
               CHOOSE n \in \{0, ..., \|\sigma'\|\};
5
               CHOOSE P \subseteq \mathbb{P}_n(\sigma');
               IF (\bigcap_{\pi \in P} tgt_n(\pi) \leq \tau) THEN
6
                    IF (n = 0) THEN ACCEPT:
8
                    ELSE
9
                         FORALL(i = 1 \dots n)
                                     \tau := \bigcap_{\pi \in P} \operatorname{arg}_i(\pi);
10
11
                         GOTO LINE 2:
12
               ELSE REJECT;
```