Effect of ω -Hydrogenation on the Adsorption of Fluorononanols at the Hexane/Water Interface: Temperature Effect on the Adsorption of Fluorononanols

Takanori Takiue,*,† Daiki Murakami,† Takafumi Tamura,† Hiroyasu Sakamoto,‡ Hiroki Matsubara,† and Makoto Aratono†

Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan, and Department of Visual Communication Design, Faculty of Design, Kyushu University, Fukuoka 815-8540, Japan

Received: April 8, 2005; In Final Form: May 17, 2005

The interfacial tensions (γ) of the hexane solutions of 1H,1H-perfluorononanol (FDFC₉OH) and its ω -hydrogenated analogue 1H,1H,9H-perfluorononanol (HDFC₉OH) against water were measured as a function of temperature and concentration under atmospheric pressure in order to know the effect of ω -dipoles on the adsorption behavior of fluorononanols. The interfacial pressure (π) versus mean area per adsorbed molecule (A) curves consist of two discontinuous changes among three different states: the gaseous, expanded, and condensed states. The A values at given π in the gaseous and expanded states are larger for HDFC₉OH than for FDFC₉OH. The changes in partial molar entropy ($\overline{s}_1^H - s_1^O$) and energy ($\overline{u}_1^H - u_1^O$) of adsorption were evaluated. Their values are negative, and therefore, the alcohols have a smaller entropy and energy at the interface than in the bulk solution. Furthermore, the $\overline{u}_1^H - u_1^O$ value is more negative for HDFC₉OH than for FDFC₉OH in the expanded state and also in the condensed film just above the expanded—condensed phase transition point. This seems to be due to the following: (1) HDFC₉OH may tilt from interface normal for ω -dipoles to interact effectively with water molecules in the interfacial region and to reduce their own repulsive interaction between neighbors arranging parallel in the adsorbed film. This leads to a lower \overline{u}_1^H value for HDFC₉OH than for FDFC₉OH. (2) The contact of ω -dipoles with hexane molecules in the bulk solution is energetically unfavorable, and thus, the u_1^O value of HDFC₉OH is expected to be larger than that of FDFC₉OH.

Introduction

The study on the adsorbed film at the oil/water interface is of great importance from basic scientific as well as industrial viewpoints, because it provides us fundamental and suggestive information about the structures and properties of more complicated molecular organized systems, such as emulsions and biomembranes. We have investigated the adsorption of fluoroalkanols at the hexane/water interface by measuring the interfacial tension and evaluating the interfacial density and thermodynamic quantity change of adsorption. 1-5 In the course of the studies, it was found that the adsorbed films exhibit phase transition between gaseous (or expanded) and condensed states depending on the molecular structure such as the fluorocarbon (FC) chain length and the extent of fluorination of the hydrophobic chain. In addition, the X-ray reflection technique was applied to the adsorbed fluoroalkanol film in order to gain information on the film structure from the molecular level.^{6–8} The phase transition observed in the interfacial tension measurement was substantiated by an abrupt change in the interfacial coverage, which is defined as the ratio of the occupied area of the condensed phase to the whole area of the interface, evaluated from the X-ray data analysis.^{7,8} Furthermore, it was suggested that the adsorbed film close to the phase transition point is microscopically inhomogeneous with condensed phase domains, in which the molecules are densely packed, surrounded by a low molecular density region.

Since one of the most remarkable features of the fluorine atom is its most electronegative effect of all atoms, the substitution of a fluorine atom of a fluorocarbon (FC) chain into a hydrogen atom produces a dipole at the terminal methyl group and thus is expected to affect appreciably the adsorption behavior of FC surface-active substances at interfaces.9 In our previous study on the adsorption of 1H,1H,2H,2H-perfluorooctanol (TFC₈OH) and its β -fluorinated analogue 1H,1H-perfluorooctanol (DFC₈OH) at the hexane/water interface,⁵ the substitution of hydrogen atoms at the β -position of the TFC₈OH molecule into fluorine increases the dipole moment of the hydroxyl group and eventually induces drastic change in the state of the adsorbed film between TFC₈OH and DFC₈OH. Furthermore, in the study of the adsorption at the air/water interface and micelle formation of a water-soluble FC surfactant, such as tetraethyleneglycol mono-1,1-dihydrotridecafluoroheptyl ether (pFC₇E₄) and its ω -hydrogenated analogue tetraethyleneglycol mono-1,1,7-trihydrododecafluoroheptyl ether (FC₇E₄), it was found that the substitution of a fluorine atom at the terminal position (ω -position) of the FC chain into a hydrogen atom lowers the surface density and increases the critical micelle concentration. $^{10-14}$ This is induced by the ω -dipole of FC₇E₄, which is generated by the hydrogenation of the terminal fluorine of pFC₇E₄.

In this study, we aim at clarifying the effect of ω -dipoles on the adsorbed film of fluoroalkanol at the oil/water interface,

^{*}To whom correspondence should be addressed. Phone: +81 92 642 2578. Fax: +81 92 642 2607. E-mail: t.takscc@mbox.nc.kyushu-u.ac.jp.

[†] Department of Chemistry.

Department of Visual Communication Design.

Figure 1. Chemical structures of the fluorononanols: (1) HDFC₉OH; (2) FDFC₉OH.

because (1) the oil-soluble surface-active substances can form the condensed film in addition to the gaseous and expanded states and therefore the effect of ω -dipoles on the molecular orientation in the closely packed state can be examined and (2) the effect of the weak interaction of ω -dipoles with oil molecules is also expected to be elucidated in terms of the thermodynamic quantity changes of adsorption. Thus, we employed homologous fluoroalkanols with or without ω -dipoles, 1H,1H,9H-perfluorononanol (HDFC9OH) and 1H,1H-perfluorononanol (FDFC9-OH), shown in Figure 1, as materials and measured the interfacial tension between the hexane solution and water phases as a function of temperature and concentration under atmospheric pressure. The partial molar entropy and energy changes associated with the adsorption of HDFC₉OH were evaluated and compared to those of FDFC₉OH in order to see the effect of ω -dipoles on the adsorption of HDFC₉OH.

Experimental Section

1*H*,1*H*,9*H*-Perfluorononanol (HDFC₉OH) and 1*H*,1*H*-perfluorononanol (FDFC₉OH) were purchased from Azmax Co. Ltd. and purified by recrystallization from hexane solution. Their purities were checked by gas—liquid chromatography and by observing no time dependence in the interfacial tension between their hexane solutions and water. Hexane purchased from Aldrich Chemical Co. Ltd. was distilled once, and water, three

times; the second and third stages were done from dilute alkaline permanganate solution.

The interfacial tension (γ) of the hexane solutions of HDFC₉OH and FDFC₉OH against water was measured as a function of temperature (T) and the molality of alcohol (m_1) (the subscript "1" denotes alcohol) by the pendant drop method based on the drop shape analysis described elsewhere.^{15,16} The densities of pure water and hexane were used for the calculation of interfacial tension.^{17,18} The error in the γ value was estimated within 0.05 mN m⁻¹.

Results and Discussion

Figure 2 shows the temperature dependence of the interfacial tension of the HDFC₉OH (Figure 2a) and FDFC₉OH (Figure 2b) systems. In both systems, the γ value decreases slightly with increasing T at low concentrations and increases greatly at high concentrations. In the middle m_1 range, the γ versus Tcurves show one or two break points, at which the slope of the curves changes abruptly. The γ values read from Figure 2 at 298.15 K were plotted against m_1 in Figure 3. The γ value decreases with increasing m_1 , and the curves show two break points shown by arrows. These break points are attributable to the phase transitions in the adsorbed film of fluorononanols at the hexane/water interface. In Figure 4 are shown the temperature dependence of the equilibrium interfacial tension (γ^{eq}) and molality (m_1^{eq}) at the transition points. The γ^{eq} value decreases with increasing temperature, and the corresponding m_1^{eq} value increases. It is noted that the γ^{eq} value of HDFC₉OH is lower and the m_1^{eq} value higher than those of FDFC₉OH.

To assign the state of the adsorbed film, first, the interfacial density of alcohol (Γ_1^H) was calculated by applying the equation

$$\Gamma_1^{\rm H} = -(m_1/RT)(\partial \gamma/\partial m_1)_{T,p} \tag{1}$$

to the γ versus m_1 curves in Figure 3. The results are shown as the Γ_1^H versus m_1 curves in Figure 5. The Γ_1^H value increases with m_1 and changes discontinuously at the phase transition points. Then, the interfacial pressure (π) and the mean area per

Figure 2. (a) Interfacial tension vs temperature curves of HDFC₉OH at constant molality: $m_1 = (1)$ 0, (2) 0.2500, (3) 0.5000, (4) 0.7499, (5) 1.000, (6) 1.250, (7) 1.500, (8) 1.750, (9) 1.997, (10) 2.500, (11) 3.000, (12) 3.496, (13) 4.000, (14) 4.501, (15) 5.000, (16) 5.500, (17) 6.000, (18) 6.999, (19) 8.002, (20) 9.000, (21) 10.00, (22) 11.00, (23) 12.00, (24) 13.00, (25) 14.00, and (26) 15.50 mmol kg⁻¹. (b) Interfacial tension vs temperature curves of FDFC₉OH at constant molality: $m_1 = (1)$ 0, (2) 0.2000, (3) 0.4000, (4) 0.5999, (5) 0.8001, (6) 0.9999, (7) 1.200, (8) 1.400, (9) 1.600, (10) 1.800, (11) 2.000, (12) 2.500, (13) 3.001, (14) 3.500, (15) 4.000, (16) 5.000, (17) 6.000, (18) 7.000, (19) 7.999, (20) 9.001, (21) 9.998, and (22) 12.00 mmol kg⁻¹.

Figure 3. Interfacial tension vs molality curves at 298.15 K: (1) HDFC₉OH; (2) FDFC₉OH.

Figure 4. (a) Equilibrium interfacial tension vs temperature curves: (1) gaseous—expanded transition for HDFC₉OH; (2) gaseous—expanded transition for FDFC₉OH; (3) expanded—condensed transition for HDFC₉OH; (4) expanded—condensed transition for FDFC₉OH. (b) Equilibrium molality vs temperature curves: (1) gaseous—expanded transition for HDFC₉OH; (2) gaseous—expanded transition for FDFC₉OH; (3) expanded—condensed transition for HDFC₉OH; (4) expanded—condensed transition for FDFC₉OH.

adsorbed molecule (A) values are evaluated by using the equations

$$\pi = \gamma^0 - \gamma \tag{2}$$

and

$$A = 1/N_{\rm A} \Gamma_1^{\rm H} \tag{3}$$

Figure 5. Interfacial density vs molality curves at 298.15 K: (1) HDFC₉OH; (2) FDFC₉OH.

Figure 6. Interfacial pressure vs mean area per adsorbed molecule curves at 298.15 K: (1) HDFC₉OH; (2) FDFC₉OH; (3) TFC₁₀OH.

respectively, where γ^0 is the interfacial tension between the pure hexane/water interface and N_A is Avogadro's number. Figure 6 shows the π versus A curves of both systems together with the curve obtained for the 1H,1H,2H,2H-perfluorodecanol (TFC₁₀-OH) system for comparison. It is realized that the curves exhibit two discontinuous changes among three different states; the two types of phase transitions occur in the adsorbed film of fluorononanols. The A value in the almost vertical region is around 0.3 nm² which is very close to the cross-sectional area of the FC chain. Thus, this region corresponds to the condensed state in which the alcohol molecules are closely packed with each other. Taking account of our previous conclusion that the adsorbed film of TFC₁₀OH shows two types of phase transitions from the gaseous to the expanded state and from the expanded to the condensed state, 2,4 the adsorbed films with middle and large A values are assigned to the expanded and gaseous states, respectively. It seems that the A values at given π in the expanded and gaseous states are larger for HDFC₉OH than for FDFC₉OH, and the interfacial pressure (π^{eq}) at the transition points is larger, while the area (Aeq) is smaller for HDFC₉OH than for FDFC₉OH. These differences rely on two factors induced by the substitution of a fluorine atom at the ω -position of a FDFC₉OH molecule into a hydrogen atom. One is the repulsive interaction of ω -dipoles arranging parallel with each other in the adsorbed HDFC₉OH film.¹⁹ Another is the weaker dispersion interaction between the HDFC₉OH molecules compared to that between the FDFC₉OH ones because of the lower molecular weight of HDFC₉OH.

Figure 7. Entropy change associated with adsorption vs molality curves at constant temperature: T = (1) 288.15, (2) 293.15, (3) 298.15, (4) 303.15, and (5) 308.15 K: (a) HDFC₉OH; (b) FDFC₉OH.

Now let us discuss the adsorption behavior of fluorononanols from the viewpoints of entropy and energy. The entropy change associated with adsorption (Δs) was evaluated by applying the equation

$$\Delta s = -(\partial \gamma / \partial T)_{p,m_s} \tag{4}$$

to the γ versus T curves in Figure 2. The results are shown as the Δs versus m_1 curves at constant temperature in Figure 7. The essential feature of the curves is the same in both systems: the Δs value decreases from positive to negative with increasing adsorption and changes discontinuously at the phase transition points. The condensed state is characterized by a large negative Δs value.

The negative contribution of alcohol to the Δs value is examined by evaluating the partial molar entropy change of adsorption $(\bar{s}_1^H - s_1^O)$. Here, the superscripts "H" and "O" represent the adsorbed film and hexane phase, respectively. The value is estimated by using the relation²⁰

$$\bar{s}_1^{H} - s_1^{O} = [\Delta s + (1 - \Gamma_1^{H} a_1)(\partial \gamma / \partial T)_{\rho, \Gamma^{H}}] / \Gamma_1^{H},$$
 (5)

where $s_1^{\rm O}$ is the partial molar entropy of alcohol in the hexane solution, $\bar{s}_1^{\rm H}$ is the mean partial molar entropy inherent in the interface, and a_1 is the partial molar area of the alcohol. Here, we employed 0.3 nm² for the a_1 value in this study.⁴ In Figure 8, the $\bar{s}_1^{\rm H} - s_1^{\rm O}$ values at 298.15 K are plotted against $\Gamma_1^{\rm H}$ for the expanded and condensed states. It is realized that the $\bar{s}_1^{\rm H} - s_1^{\rm O}$ value is negative and therefore the fluorononanols have a smaller

Figure 8. Partial molar entropy change of adsorption vs interfacial density curves at 298.15 K: (1) HDFC₉OH; (2) FDFC₉OH.

Figure 9. Partial molar energy change of adsorption vs interfacial density curves at 298.15 K: (1) HDFC₉OH; (2) FDFC₉OH.

entropy in the adsorbed film than in the bulk solution because of the restricted orientation of molecules at the interface. Furthermore, the discontinuous change in the $\bar{s}_1^H - s_1^O$ value at the expanded—condensed transition point, which gives a partial molar entropy change between the expanded and condensed states, $\bar{s}_1^{H,e} - \bar{s}_1^{H,e}$, is larger for FDFC₉OH than for HDFC₉OH. The difference in $\bar{s}_1^{H,e} - \bar{s}_1^{H,e}$ values may come from the larger $\bar{s}_1^{H,e}$ value of FDFC₉OH due to the larger entropy of mixing of fluorononanol without ω -dipoles with hexane molecules in the expanded state and smaller the $\bar{s}_1^{H,e}$ value of FDFC₉OH due to the stronger dispersion interaction between the FDFC₉OH molecules in the condensed state than between the HDFC₉OH molecules.

The partial molar energy change of adsorption $(\bar{u}_1^H - u_1^O)$ was calculated by using the following equation

$$\bar{u}_{1}^{H} - u_{1}^{O} = \gamma a_{1} + T(\bar{s}_{1}^{H} - s_{1}^{O}) - p(\bar{v}_{1}^{H} - v_{1}^{O})$$
 (6)

$$\approx \gamma a_1 + T(\overline{s}_1^{\mathrm{H}} - s_1^{\mathrm{O}}) \tag{7}$$

where it is assumed that the contribution of the last term in eq 6 to the $\bar{u}_1^{\rm H}-u_1^{\rm O}$ value is negligibly small under atmospheric pressure. The $\bar{u}_1^{\rm H}-u_1^{\rm O}$ versus $\Gamma_1^{\rm H}$ curves at 298.15 K are illustrated in Figure 9. The $\bar{u}_1^{\rm H}-u_1^{\rm O}$ value is negative, and thus, the adsorption of fluorononanols is caused by a reduction of energy that overcomes a decrease in entropy. It is found that the $\bar{u}_1^{\rm H}-u_1^{\rm O}$ value of HDFC₉OH is smaller than that of FDFC₉OH at given $\Gamma_1^{\rm H}$ in the expanded state; the energetical stabili-

Figure 10. Values of the coefficients of dT of eqs (\bigcirc) 8 and (\bigcirc) 9 vs temperature curves for (a) HDFC₉OH and (b) FDFC₉OH: (1) gaseous–expanded transition; (2) expanded–condensed transition.

zation by the adsorption of HDFC₉OH molecules from the hexane solution is larger than that of FDFC₉OH molecules. Furthermore, it is noted that the $\bar{u}_1^H - u_1^O$ value of HDFC₉OH in the condensed state just above the phase transition point is largely negative. Taking note of the difference in the π versus A curves obtained, the above results are explained by two factors: (1) HDFC₉OH tends to tilt from interface normal for ω -dipoles to interact effectively with water molecules in the interfacial region and to reduce the repulsive force acting between neighbors. This leads to a lower \bar{u}_1^H value for HDFC₉OH than for FDFC₉OH. (2) The contact of ω -dipoles with hexane molecules in the bulk solution is energetically unfavorable, and therefore, the u_1^O value of HDFC₉OH is expected to be larger than that of the FDFC₉OH system.

The $\bar{u}_1^H - u_1^O$ values of both alcohols are almost equal to each other at the saturated interfacial density. The X-ray reflectivity study on the adsorbed film of 1H,1H,2H,2H-perfluorodecanol (TFC₁₀OH), which does not have an ω -dipole, at the hexane/water interface shows that the TFC₁₀OH molecules stand almost upright in the condensed state which is regarded as a two-dimensional solid state in terms of the electron density value of the adsorbed film.^{7,8} Therefore, the HDFC₉OH molecules as well as the FDFC₉OH ones would orient nearly perpendicular to the interface in the saturated Γ_1^H region.

However, HDFC₉OH has a smaller interfacial density in the condensed films and clearly different values of thermodynamic quantities related to the adsorption compared to FDFC₉OH as mentioned above. Thus, in the next paper,²¹ we will discuss the effect of ω -dipoles on the molecular orientation at the

interface from the viewpoint of volume through the measurement of the pressure dependence of interfacial tension.

Finally, let us examine the phase transition found in this study. When the two states α and β coexist at the interface, the equilibrium interfacial tension (γ^{eq}) is given by^{4,22}

$$d\gamma^{\text{eq}} = -[(\Delta s^{\beta}/\Gamma_{1}^{\text{H},\beta} - \Delta s^{\alpha}/\Gamma_{1}^{\text{H},\alpha})/(1/\Gamma_{1}^{\text{H},\beta} - 1/\Gamma_{1}^{\text{H},\alpha})] dT + [(\Delta v^{\beta}/\Gamma_{1}^{\text{H},\beta} - \Delta v^{\alpha}/\Gamma_{1}^{\text{H},\alpha})/(1/\Gamma_{1}^{\text{H},\beta} - 1/\Gamma_{1}^{\text{H},\alpha})] dp$$
(8)

Since the $\gamma^{\rm eq}$ value is a function of temperature and pressure, we have

$$d\gamma^{eq} = (\partial \gamma^{eq}/\partial T)_p dT + (\partial \gamma^{eq}/\partial p)_T dp$$
 (9)

Therefore, the coefficients of $\mathrm{d}T$ of eqs 8 and 9 are evaluated separately by using the Γ_1^{H} and Δs values in Figures 5 and 7 and by the slope of the γ^{eq} versus T curve in Figure 4, respectively. The results are shown in Figure 10 for both alcohol systems. It is realized that the agreement of both coefficients is good enough to claim that the two types of phase transitions take place in the adsorbed films of fluorononanols.

Conclusions

The effect of ω -hydrogenation on the adsorption of fluorononanols at the hexane/water interface was examined by evaluating the partial molar entropy and energy changes associated with adsorption and comparing the values between the two alcohols, 1H,1H-perfluorononanol (FDFC₉OH) and its ω -hydrogenated analogue 1H,1H,9H-perfluorononanol (HDFC₉OH). The energy change is more negative for HDFC₉OH than for FDFC₉OH in the condensed film just above the expanded—condensed phase transition point as well as in the expanded state. This would rely on the following:

- (1) HDFC₉OH tends to tilt from interface normal for ω -dipoles to interact effectively with water molecules in the interfacial region and to reduce the repulsive interaction between neighbors arranging parallel in the adsorbed film. This leads to a lower energy value for HDFC₉OH than for FDFC₉OH in the adsorbed film.
- (2) HDFC₉OH molecules are energetically unstable in the hexane solution compared to FDFC₉OH ones because of the hydrophilic nature of the ω -dipole, and therefore, the partial molar energy of HDFC₉OH is expected to be larger than that of FDFC₉OH.

Acknowledgment. This work was supported in part by the Grant-in Aid for Scientific Research (C) and (B) Japan Society for the Promotion of Science (nos. 16550017 and 16350075).

References and Notes

- (1) Hayami, Y.; Uemura, A.; Ikeda, N.; Aratono, M.; Motomura, K. J. Colloid Interface Sci. 1995, 172, 142.
- (2) Takiue, T.; Yanata, A.; Ikeda, N.; Motomura, K.; Aratono, M. J. Phys. Chem. **1996**, 100, 13743.
- (3) Takiue, T.; Yanata, A.; Ikeda, N.; Hayami, Y.; Motomura, K.; Aratono, M. J. Phys. Chem. **1996**, 100, 20122.
- (4) Takiue, T.; Uemura, A.; Ikeda, N.; Motomura, K.; Aratono, M. J. Phys. Chem. B 1998, 102, 3724.
- (5) Takiue, T.; Sugino, K.; Higashi, T.; Toyomasu, T.; Hayami, Y.; Ikeda, N.; Aratono, M. *Langmuir* **2001**, *17*, 8098.
- (6) Zhang, Z.; Mitrinovic, D. M.; Williams, S. M.; Huang, Z.; Schlossman, M. L. J. Chem. Phys. **1999**, 110, 7421.
- (7) Tikhonov, A. M.; Li, M.; Schlossman, M. L. J. Phys. Chem. B 2001, 105, 8065.
- (8) Pingali, S. V.; Takiue, T.; Luo, G.; Tikhonov, A. M.; Ikeda, N.; Aratono, M.; Schlossman, M. L. *J. Phys. Chem. B* **2005**, *109*, 1210.

- (9) $\it Fluorinated Surfactants; Kissa, E., Ed.; Marcel Dekker: New York, 1994; Chapter 3.$
- (10) Matsukubo, T.; Matsubara, M.; Takiue, T.; Aratono, M. Unpublished data.
- (11) Downer, A.; Eastoe, J.; Pitt, A. R.; Penfold, J.; Heeman, R. K. Colloids Surf., A 1999, 156, 33.
- (12) Downer, A.; Eastoe, J.; Pitt, A. R.; Simister, E. A.; Penfold, J. *Langmuir* **1999**, *15*, 7591.
- (13) Eastoe, J.; Paul, A.; Rankin, A.; Wat, R.; Penfold, J.; Webster, J. R. P. *Langmuir* **2001**, *17*, 7873.
 - (14) Ravey, J. C.; Stebe, M. J. Colloids Surf., A 1994, 84, 11.
- (15) Sakamoto, H.; Murao, A.; Hayami, Y. J. Inst. Image Inf. Television Eng. 2002, 56, 1643.
- (16) Murakami, R.; Sakamoto, H.; Hayami, Y.; Matsubara, H.; Takiue, T.; Aratono, M. *J. Phys. Chem. B*, submitted for publication, 2005.
- (17) Kell, G. S.; Whally, E. Philos. Trans. R. Soc. London, Ser. A 1965, 258, 565.
 - (18) Orwoll, R. A.; Flory, P. J. J. Am. Chem. Soc. 1967, 89, 6814.
- (19) Israelachvili, J. N. *Intermolecular and Surface Forces*, 2nd ed.; Academic Press: London, 1992; Chapter 4.
 - (20) Motomura, K. J. Colloid Interface Sci. 1978, 64, 348.
- (21) Takiue, T.; Hirose, D.; Murakami, D.; Sakamoto, H.; Matsubara, H.; Aratono, M. *J. Phys. Chem. B*, submitted for publication, 2005.
- (22) Matubayasi, N.; Motomura, K.; Aratono, M.; Matuura, R. Bull. Chem. Soc. Jpn. 1978, 51, 2800.