

Algorithms and Data Structures 2 CS 1501

Spring 2022

Sherif Khattab

ksm73@pitt.edu

Announcements

- Upcoming deadlines:
 - Homework 9 due on 3/28
 - Assignment 2 due on 3/28
 - Lab 9 due on 4/1
 - Assignment 3 and 4 due on 4/18
 - Used to be one assignment

Previous lecture ...

- Repeated Minimum Problem
 - Priority Queue and heap

CourseMIRROR Reflections (most confusing)

- graphic tracing
- The PQ sorting got confusing while tracing
- The heap sort was most confusing
- How to make the heap from the array was a bit confusing
- I was confused about when we would use a heap in an array or use it in a BTree structure. Are both done?
- Why would you use Prims algorithms versus Kruskals algorithm to find a MST?

CourseMIRROR Reflections (most interesting)

- Analysis of different type of tries
- Knowing the index of a child/parent of a node with the index formulas
- that you can represent a heap with just an array
- min heap insertion
- Seeing heaps and indexes. Some databases are built over these structures
- Heaps! And their find/insert/remove operations
- Kruskals seemed more straighforward than Prims
- I found it interesting how a HeapSort used the heap properties to sort effectively

Repetitive Minimum Problem

- Input:
 - a (large) dynamic set of data items in the form of
- Output:
 - find a minimum item
- You are implementing an algorithm that repeats this problem
 - examples of such an algorithm?
 - Prim's, Huffman tree construction
- What we cover today applies to the repetitive maximum problem as well

Let's create an ADT!

- The Priority Queue ADT
- Primary operations of the PQ:
 - O Insert
 - Find item with highest priority
 - e.g., findMin() or findMax()
 - Remove an item with highest priority
 - e.g., removeMin() or removeMax()
 - **■** Update an item

Indirection

- Maintain a second data structure that maps item IDs to each item's current position in the heap
- This creates an indexable PQ

Indirection example setup

- Let's say I'm shopping for a new video card and want to build a heap to help me keep track of the lowest price available from different stores.
- Keep objects of the following type in the heap:

```
class CardPrice implements Comparable<CardPrice>{
      public String store;
      public double price;
      public CardPrice(String s, double p) { ... }
      public int compareTo(CardPrice o) {
            if (price < o.price) { return -1; }</pre>
            else if (price > o.price) { return 1; }
            else { return 0; }
```

Indirection example

- n = new CardPrice("NE", 333.98);
- a = new CardPrice("AMZN", 339.99);
- x = new CardPrice("NCIX", 338.00);
- b = new CardPrice("BB", 349.99);
- Update price for NE: 340.00
- Update price for NCIX: 345.00
- Update price for BB: 200.00

Indirection

"NE":2

"AMZN":1

"NCIX":3

"BB":0

Indexable PQ Example

Indexable PQ Example

Prim's MST Algorithm

OK, so what's our runtime?

- For every vertex we add to T, we'll need to check all of its neighbors to check for edges to add to T next
 - O Let's assume we use an adjacency matrix:
 - Takes $\Theta(v)$ to check the neighbors of a given vertex
 - Time to update parent/best edge arrays?
 - Time to pick next vertex?
 - O What about with an adjacency list?

Prim's MST: What about a faster way to pick the best edge?

- Sounds like a job for a priority queue!
 - \bigcirc Priority queues can remove the min value stored in them in $\Theta(\lg n)$
 - Also Θ(Ig n) to add to the priority queue
- What does our algorithm look like now?
 - Visit a vertex
 - Add edges coming out of it to a PQ
 - While there are unvisited vertices, pop from the PQ for the next vertex to visit and repeat

Prim's with a priority queue

PQ:

1: (0, 2)

2: (5, 3)

3: (1, 4)

4: (2, 5)

5: (2, 3)

5: (0, 3)

5: (2, 1)

6: (0, 1)

6: (2, 4)

6: (5, 4)

Runtime using a priority queue

- Have to insert all e edges into the priority queue
 - O In the worst case, we'll also have to remove all e edges
- So we have:

$$\bigcirc$$
 e * $\Theta(\lg e)$ + e * $\Theta(\lg e)$

$$\bigcirc = \Theta(2 * e \lg e)$$

$$\bigcirc = \Theta(e \lg e)$$

• This algorithm is known as *lazy Prim's*

Do we really need to maintain e items in the PQ?

- I suppose we could not be so lazy
- Just like with the adjacency matrix implementation, we only need the best edge for each vertex
 - O PQ will need to be indexable
- This is the idea of *eager Prim's*
 - \bigcirc Runtime is $\Theta(e \mid g \mid v)$

Eager Prim's Runtime

virsetiers: vlog v e updates: elog v venovals: vlog v (e+v)log v-A (elog v) e>(v-1)

Eager Prim's Example 1

Eager Prim's Example 2

Comparison of Prim's implementations

Parent/Best Edge array Prim's

 \bigcirc Runtime: $\Theta(v^2)$

 \bigcirc Space: $\Theta(v)$

- Lazy Prim's
 - O Runtime: Θ(e lg e)
 - \bigcirc Space: $\Theta(e)$
 - O Requires a PQ
- Eager Prim's
 - Runtime: Θ(e lg v)
 - \bigcirc Space: $\Theta(v)$
 - O Requires an indexable PQ

Eager vs. Lazy Prim's

$$ebge = elogv$$

$$= 2.elogv$$

$$= 0 (elogv)$$

Problem of the Day: Dynamic connectivity problem

- Input:
 - A set of items initially in separate groups and
 - O a sequence of merge/union operations, each operation mering two items
- Output:
 - O At any point of time, we can be asked if two items are in the same group
 - O Initially, the answer will be NO for any two items because they start in separate groups
- For a given graph G, can we determine whether or
- Can also be viewed as checking subset membershi
- Important for many practical applications

Let's build an ADT

- Union/Find ADT (aka Disjoint Sets ADT)
- Has two operations
 - O Union(x, y)
 - Merge items x and y into the same group
 - \bigcirc Find(x)
 - Return the group number of x

A simple approach

- Have an id array simply store the component id for each item in the union/find structure
 - O How do we determine if two vertices are connected?
 - O How do we establish the connected components?
 - Add graph edges one at a time to UF data structure using union operations

Example

ID:

Analysis of our simple approach

- Runtime?
 - O To find if two vertices are connected?
 - O For a union operation?

Connected?

Union Find API

Covering the basics

```
public int count() {
    return count;
}

public boolean connected(int p, int q) {
    return find(p) == find(q);
}
```

Implementing the Fast-Find approach

```
public UF(int n) {
   count = n;
   id = new int[n];
   for (int i = 0; i < n; i++) { id[i] = i; }
public int find(int p) { return id[p]; }
public void union(int p, int q) {
      int pID = find(p), qID = find(q);
      if (pID == qID) return;
      for(int i = 0; i < id.length; i++)</pre>
             if (id[i] == pID) id[i] = qID;
      count--;
```

Union-Find Example 1

Union-Find Example 2

Kruskal's algorithm Runtime: Take 2

- With this knowledge of union/find, how, exactly can it be used as a part of Kruskal's algorithm?
 - O What is the runtime of Kruskal's algorithm?

e territors
Corrected? A(1)
Union
A(2)

Can we improve on union()'s runtime?

- What if we store our connected components as a forest of trees?
 - O Each tree representing a different connected component
 - O Every time a new connection is made, we simply make one tree the child of another

Tree example

Forest of Trees Implementation

Please submit your reflections by using the CourseMIRROR App

If you are having a problem with CourseMIRROR, please send an email to **coursemirror.development@gmail.com**

8/29/2022

