

Team KITcar mit Mrs. Furious

Carolo-Cup am 09. und 10. Februar 2015 in Braunschweig

Agenda

Gesamtkonzept

Freie Fahrt

Hindernisfahrt

Parken

Hardware - Sensorik

Hardware - Aktorik

Hardware - Intelligenz

Kostenaufstellung

Sensorik	Kamera	250	635	1,449€
	Objektiv	250		
	Polfilter	50		
	Gyroskop	30		
	Rad-Encoder	50		
	Infrarot	5		
"Intelligenz"	NUC	400	450	
	Arduino	50		
Aktorik	Servo	20	120	
	Motor	50		
	Motor-Treiber	50		
Sonstiges <i>l</i> Fahrzeug	Fahrwerk	160	244	
	NUC-Akku	24		
	Fahrakku	42		
	UBEC	18		

Energiebilanz

Komponenten	Leistungs- aufnahme im Betrieb (Watt)	
Aktorik	17.8	
Beleuchtung	1.6	
Sensorik + Arduino	2.9	
NUC	14.8	
Komplett	37.0	

Software - Basis

Eigen

OpenCV

protobuf

::: ROS

API

ubuntu®

System

Software – Module und Kommunikation

Agenda

Gesamtkonzept

Freie Fahrt

Hindernisfahrt

Parken

Freie Fahrt - Softwarestruktur

Aktive Komponenten bei Freier Fahrt

Perzeption - Fahrspur

Bahnplanung

Verschieben der erkannten Punkte

Schätzen der Ideallinie

Regelung

Agenda

Gesamtkonzept

Freie Fahrt

Hindernisfahrt

Parken

Stoplinienerkennung und Hindernisfahrt -Softwarestruktur

Zusätzlich zur Freien Fahrt aktive Komponenten

Perzeption - Stoplinien

Suche nach Stoplinienkandidaten

Verifikation

Perzeption - Hindernisse

Laserlinie wird von Hindernis reflektiert

Extraktion durch Hough Transformation

Bahnplanung - Überholmanöver

Verschiebung des Bahnpolynoms

Agenda

Gesamtkonzept

Freie Fahrt

Hindernisfahrt

Parken

Einparken - Softwarestruktur

Zusätzlich zur Freien Fahrt aktive Komponenten

Perzeption - Parklücken

Vermessen der Parklücken durch IR-Sensor

Bahnplanung - Einparken

Fazit und Ausblick

Stärken

Linienerkennung / Bahnplanung

Systematischer Entwicklungsprozess

Verbesserungspotenziale

Hinderniserkennung

Fahrwerk

10.02.15

Backup

Software – Testumgebung

Übersicht des Systemzustandes

Visualisierung und Simulation

Plot von Regelgrößen

Dynamische Parameteranpassung

Regelung

Software – Module und Kommunikation

Stanley Regler

Das bedeutet uns KITcar...

Unsere Universität ist das KIT (Karlsruher Institut für Technologie).

Basis unserer Arbeit ist ein Modellauto, das im **Englischen** "kit car" heißt…

... und das wir zu einem intelligenten und autonomen Racer umgebaut haben!