8.2 信号检测系统中的放大电路

8.2.1 测量放大器

主要特点

输入抗阻高

共模抑制比高

常用于测量直流缓变微弱信号

应用:热电偶、应变电桥、流量计、生物电测量等

1. 三运放测量放大器

(1)基本电路图

共模抑制比高

输入抗阻高

对电路要求:

- a. 运放A₁、A₂的特性一致性
- b. 电阻 R_3 , R_4 , R_5 , R_6 要精密配合($R_3 = R_5$, $R_4 = R_6$)

(2) 电路分析

由图可知

$$u_{b1} = u_{Id} + u_{Ic}$$
$$u_{b2} = u_{Ic}$$

$$i = \frac{u_{b1} - u_{b2}}{R_{G}} = \frac{u_{O1} - u_{O2}}{R_{1} + R_{G} + R_{2}}$$

$$\overline{\mathbf{m}} \quad u_{\mathrm{b1}} - u_{\mathrm{b2}} = u_{\mathrm{Id}}$$

所以

$$u_{\text{O1}} - u_{\text{O2}} = \frac{R_1 + R_G + R_2}{R_G} u_{\text{Id}}$$

$$u_{\rm O} = (1 + \frac{R_4}{R_3}) \times \frac{R_6}{R_5 + R_6} u_{\rm O2} - \frac{R_4}{R_3} u_{\rm O1}$$

$$R_3 = R_4 = R_5 = R_6 = R$$

$$u_{0} = (1 + \frac{R_{4}}{R_{3}}) \times \frac{R_{6}}{R_{5} + R_{6}} u_{02} - \frac{R_{4}}{R_{3}} u_{01}$$

$$= -(u_{01} - u_{02})$$

$$= -(1 + \frac{R_{1} + R_{2}}{R_{C}}) u_{1d}$$

输出信号共模信号urc无关

因此,放大器具有很高的抑制共模信号的能力。

测量放大器:高增益、直接耦合、差动输入、单端 输出、高输入阻抗、高共模抑制比的放大电路

$$u_{\rm O} = -(1 + \frac{R_1 + R_2}{R_{\rm G}})u_{\rm Id}$$

$$= -(1 + \frac{2R}{R_{\rm C}})u_{\rm Id}$$

问:1.如何改变增益最方便?R_G

2. 电阻不一致如何调整?

例:由三运放放大器组成的温度测量电路。

R: 热敏电阻

集成化:仪表放大器

2. 单片集成测量放大器AD521

集成化的三运放测量放大器。

性能指标:

- (1) 共模抑制比120dB
- (2) 输入阻抗3×10⁹Ω
- (3) 增益带宽大于2MHz
- (4) 电压放大倍数0.1~1000
- (5) 电源电压± (5~18)V
- (6) 过载能力较强,动态特性好

(1) 引脚说明

三运放测量放大器

三运放测量放大器

(2) 基本连接方式图

8.2.2 隔离放大器

特点:

输入回路与输出回路之间是电绝缘的。

信号传递的主要方式:

电磁耦合----经过变压器传递信号

光电耦合----光信号为媒介传递信号

1. 光电耦合隔离放大器

光电耦合器原理图

二极管——二极管型

二极管——三极管型

光电耦合器的特点

- a.耦合器中的发光和光敏元件都是非线性器件。
- b.非线性器件传输模拟信号将会导致信号失真。

克服非线性失真采取的主要措施

- a. 给非线性器件施加合适的直流偏置,在小范围内线性传输信息。
- b. 采用负反馈技术

一种典型的光电耦合隔离放大器

上页 下页 后退

上页 下页 后退

工作原理

模拟电子技术基础

实现信号传输

实现信号隔离

上页 下页

后退

2. 变压器隔离放大器

放大器原理图

调制

恢复原低频信号

两侧电源独立

给输入侧提供能量

上页下页后退

变压器隔离放大器AD277原理图和引脚

8.2.3 程控放大器

8.2.3 程控放大器

在自动测控系统和智能仪器中,如果测控信号的幅度范围 比较宽,为了保证必要的测量精度,需要改变量程,实现 增益自动调整。

(1) 电路及工作原理

4选1模拟开关

 A
 B

 0
 0
 R_1 接入

 0
 1
 R_2 接入

 1
 0
 R_3 接入

 1
 1
 R_4 接入

电路的电压增益

$$A_{\rm U} = -\frac{R_{\rm X}/\!/R_{\rm F}}{R}$$

- (2)程控增益放大器的特点
- (a) 电路简单
- (b) 模拟开关引起误差,适用于测量精度不高场合。

单片集成程控增益放大器:

AD公司: AD602、AD605、AD5330及AD8367等

BB公司: PGA100、PGA102、PGA200等

TI公司: VCA820、VCA821、 VCA824等

