MAT-255 Number Theory—Spring 2024

Claire Merriman

Spring 2024

Contents

Ι	Week 1	3
	Introduction and Divisibility	3
	Introduction	3
	Mathematical definitions, mathematical notation	3
	Divisibility	4
	Division algorithm, divisibility	5
	Logic, proof by contradiction, and biconditionals	6
	Other Results from Strayer	G

Part I

Week 1

Introduction and Divisibility

Learning Objectives. By the end of class, students will be able to:

- Understand the course structure
- Formally define even and odd
- Formally define "divides"
- Complete basic algebraic proofs.

Introduction

What is number theory?

Elementary number theory is the study of integers, especially the positive integers. A lot of the course focuses on prime numbers, which are the multiplicative building blocks of the integers. Another big topic in number theory is integer solutions to equations such as the Pythagorean triples $x^2 + y^2 = z^2$ or the generalization $x^n + y^n = z^n$. Proving that there are no integer solutions when n > 2 was an open problem for close to 400 years.

The first part of this course reproves facts about divisibility and prime numbers that you are probably familiar with. There are two purposes to this: 1) formalizing definitions and 2) starting with the situation you understand before moving to the new material.

Mathematical definitions, mathematical notation

Definition. We will use the following number systems and abbreviations:

- The *integers*, written \mathbb{Z} , is the set $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$.
- The natural numbers, written \mathbb{N} . Most elementary number theory texts either define \mathbb{N} to be the positive integers or avoid using \mathbb{N} . Some mathematicians include 0 in \mathbb{N} .
- The real numbers, written \mathbb{R} .
- The integers modulo n, written \mathbb{Z}_n . We will define this set in Strayer Chapter 2, although Strayer does not use this notation.

We will also use the following notation:

• The symbol \in means "element of" or "in." For example, $x \in \mathbb{Z}$ means "x is an element of the integers" or "x in the integers."

This first section will cover results in both Strayer and Ernst.

Learning outcomes: Author(s): Claire Merriman **Definition** (Ernst, Definition 2.1). An integer n is even if n = 2k for some $k \in \mathbb{Z}$. An integer n is odd if n = 2k + 1 for some $k \in \mathbb{Z}$.

Now, the preceding definition is standard in an introduction to proofs course, but it is not the only definition of even/odd. We also have the following definition that is closer to the definition you are probably used to:

Definition (Strayer, Definition 4). Let $n \in \mathbb{Z}$. Then n is said to be *even* if 2 divides n and n is said to be *odd* if 2 does not divide n.

Note that we need to define *divides* in order to use Strayer's definition. We will formally prove that these definitions are *equivalent*, but for now, let's use Ernst definition.

Theorem (Ernst, Theorem 2.2). If n is an even integer, then n^2 is even.

In-class Problem 1 *Prove this theorem.*

Proof If n is an even integer, then by Ernst, Definition 2.1, there is some $k \in \mathbb{Z}$ such that n = 2k. Then

$$n^2 = (2k)^2 = 2(2k^2).$$

Since $2(k^2)$ is an integer, we have written n^2 in the desired form. Thus, n^2 is even.

Theorem (Ernst, Theorem 2.3). The sum of two consecutive integers in odd.

For this problem, we need to figure out how to write two consecutive integers.

Proof Let n, n + 1 be two consecutive integers. Then their sum is n + n + 1 = 2n + 1, which is odd by Ernst, Definition 2.1.

Divisibility

The goal of this chapter is to review basic facts about divisibility, get comfortable with the new notation, and solve some basic linear equations.

We will also use this material as an opportunity to get used to the course.

Definition (a divides b). Let $a, b \in \mathbb{Z}$. The a divides b, denoted $a \mid b$, if there exists an integer c such that b = ac. If $a \mid b$, then a is said to be a divisor or factor of b. The notation $a \nmid b$ means a does not divide b.

Note that 0 is not a divisor of any integer other than itself, since b = 0c implies a = 0. Also all integers are divisors of 0, as odd as that sounds at first. This is because for any $a \in \mathbb{Z}$, 0 = a0.

Reminding students about the reading for Friday.

Division algorithm, divisibility

Learning Objectives. By the end of class, students will be able to:

- Prove facts about divisibility
- Prove basic mathematical statements using definitions and direct proof
- Use truth tables to understand compound propositions
- Prove statements by contradiction
- Use the greatest integer function.

Reading Read Ernst Chapter 1 and Section 2.1. Also read Strayer Introduction and Section 1.1 through the proof of Proposition 1.2 (that is, pages 1-5).

Turn in: From Ernst

Problem 2 For $n, m \in \mathbb{Z}$, how are the following mathematical expressions similar and how are they different? In particular, is each one a sentence or simply a noun?

- (a) $n \mid m$
- (b) $\frac{m}{n}$
- (c) m/n

Problem 3 Let $a, b, n, m \in \mathbb{Z}$. Determine whether each of the following statements is true or false. If a statement is true, prove it. If a statement is false, provide a counterexample.

- (a) If $a \mid n$, then $a \mid mn$
- (b) If 6 divides n, then 2 divides n and 3 divides n.
- (c) If ab divides n, then a divides n and b divides n.

Problem 4 Determine whether the converse of each of Corollary 2.9, Theorem 2.10, and Theorem 2.11 is true. That is, for $a, n, m \in \mathbb{Z}$, determine whether each of the following statements is true or false. If a statement is true, prove it. If a statement is false, provide a counterexample.

- (a) If a divides n^2 , then a divides n. (Converse of Corollary 2.9)
- (b) If a divides -n, then a divides n. (Converse of Theorem 2.10)
- (c) If a divides m + n, then a divides m and a divides n. (Converse of Theorem 2.11)

Learning outcomes:

Author(s): Claire Merriman

Logic, proof by contradiction, and biconditionals

We will begin by working through Ernst Section 2.2 through Example 2.21. Discuss Problem 2.17 as a class, and note that Problem 2.19 is on Homework 1.

In-class Problem 5 Construct a truth table for $A \Rightarrow B, \neg(A \Rightarrow B)$ and $A \land \neg B$

This is the basis for *proof by contradiction*. We assume both A and $\neg B$, and proceed until we get a contradiction. That is, A and $\neg B$ cannot both be true.

Definition (Proof by contradiction). Let A and B be propositions. To prove A implies B by contradiction, first assume the B is false. Then work through logical steps until you conclude $\neg A \land A$.

First, let's define a *lemma*. A lemma is a minor result whose sole purpose is to help in proving a theorem, although some famous named lemmas have become important results in their own right.

Definition (greatest integer (floor) function). Let $x \in \mathbb{R}$. The greatest integer function of x, denoted [x] or [x], is the greatest integer less than or equal to x.

Lemma (Strayer, Lemma 1.3). Let $x \in \mathbb{R}$. Then $x - 1 < [x] \le x$.

Proof By the definition of the greatest integer (floor) function, $[x] \leq x$.

To prove that x-1 < [x], we proceed by contradiction. Assume that $x-1 \ge [x]$ (the negation of x-1 < [x]). Then, $x \ge [x] + 1$. This contradicts the assumption that [x] is the greatest integer less than or equal to x. Thus, x-1 < [x].

Homework #1 Rubrics

Proofs and writing

Strayer Exercise Set 1.1, Exercises 5, 10, 11. Ernst Problem 2.19, Problem 2.37, then either prove or provide a counterexample for the statements. Additional problem provided below.

Homework Problem 6 Prove or disprove the following statements.

- (a) If a, b, c, and d are integers such that if $a \mid b$ and $c \mid d$, then $a + c \mid b + d$.
- (b) If a, b, c, and d are integers such that if $a \mid b$ and $c \mid d$, then $ac \mid bd$.
- (c) If a, b, and c are integers such that if $a \nmid b$ and $b \nmid c$, then $a \nmid c$.

Rubric:

- **0** points Work does not contain enough of the relevant concepts to provide feedback.
- 1 points Does not demonstrate understanding Contains a reasonable attempt to prove each part, but does not meet the criteria for two points.
- 2 points Needs revisions
- 3 points Demonstrates understanding
- 4 points Exemplary

Homework Problem 7 (a) Let $n \in \mathbb{Z}$. Prove that $3 \mid n^3 - n$.

- (b) Let $n \in \mathbb{Z}$. Prove that $5 \mid n^5 n$.
- (c) Let $n \in \mathbb{Z}$. Is it true that $4 \mid n^4 n$? Provide a proof or counter example.

Rubric:

- 0 points Work does not contain enough of the relevant concepts to provide feedback.
- 1 points Does not demonstrate understanding Contains a reasonable attempt to prove each part, but does not meet the criteria for two points.
- 2 points Needs revisions
- 3 points Demonstrates understanding
- 4 points Exemplary

Proof

Homework Problem 8 Use the definition of even and odd from Strayer **not** Ernst.

- (a) Let $n \in \mathbb{Z}$. Prove that n is an even integer if and only if n = 2m with $m \in \mathbb{Z}$.
- (b) Let $n \in \mathbb{Z}$. Prove that n is an odd integer if and only if n = 2m + 1 with $m \in \mathbb{Z}$.
- (c) Prove that the sum and product of two even integers are even.

- (d) Prove that the sum of two odd integers is even and that their product is odd.
- (e) Prove that the sum of an even integer and an odd integer is odd and that their product is even.
- (f) Prove that the sum of an even integer and an odd integer is odd and their product is even.

Rubric:

- **0 points** Work does not contain enough of the relevant concepts to provide feedback.
- 1 points Does not demonstrate understanding Contains a reasonable attempt to prove each part, but does not meet the criteria for two points.
- 2 points Needs revisions
- 3 points Demonstrates understanding
- 4 points Exemplary

Proof

Homework Problem 9 Let A represent "6 is an even integer" and B represent "4 divides 6." Express each of the following compound propositions in an ordinary English sentence and then determine its truth value.

- a. $A \wedge B$
- b. $A \vee B$
- $c. \neg A$
- $d. \neg B$
- $e. \neg (A \land B)$
- $f. \neg (A \lor B)$
- $g. A \Rightarrow B$

Rubric:

- **0** points Work does not contain enough of the relevant concepts to provide feedback.
- 1 points Does not demonstrate understanding Contains a reasonable attempt to prove each part, but does not meet the criteria for two points.
- 2 points Needs revisions
- 3 points Demonstrates understanding
- 4 points Exemplary

Homework Problem 10 Let A and B represent the statements from Problem 2.19. Express each of the following in an ordinary English sentence.

- (a) The converse of $A \Rightarrow B$
- (b) The contrapositive of $A \Rightarrow B$

Rubric:

0 points Work does not contain enough of the relevant concepts to provide feedback.

1 points Does not demonstrate understanding Contains a reasonable attempt to prove each part, but does not meet the criteria for two points.

2 points Needs revisions

3 points Demonstrates understanding

4 points Exemplary

Homework Problem 11 For each of the following equation, find what real numbers x make the statement true. Prove your statement.

- (a) |x| + |x| = |2x|
- (b) [x+3] = 3 + [x]
- (c) |x+3| = 3+x

Rubric:

0 points Work does not contain enough of the relevant concepts to provide feedback.

1 points Does not demonstrate understanding Contains a reasonable attempt to prove each part, but does not meet the criteria for two points.

2 points Needs revisions

3 points Demonstrates understanding

4 points Exemplary

Other Results from Strayer

Axiom 1 (Well Ordering Principle). Every nonempty set of positive integers contains a least element.

Divisibility facts

Proposition 1 (Proposition 1.2). Let $a, b, c, d \in \mathbb{Z}$. If $c \mid a$ and $c \mid d$, then $c \mid ma + nb$.

Proposition (Proposition 1.10). Let $a, b \in \mathbb{Z}$ with (a, b) = d. Then $(\frac{a}{d}, \frac{b}{d}) = 1$.

Lemma (Lemma 1.12). If $a, b \in \mathbb{Z}$, $a \ge b > 0$, and a = bq + r with $q, r \in |Z|$, then (a, b) = (b, r).

Learning outcomes:

Author(s): Claire Merriman

Prime facts

Lemma (Lemma 1.14). Let $a, b, p \in \mathbb{Z}$ with p prime. If $p \mid ab$, then $p \mid a$ or $p \mid b$.

Corollary (Corollary 1.15). Let $a_1, a_2, \ldots, a_n, p \in \mathbb{Z}$ with p prime. If $p \mid a_1 a_2 \cdots a_n$, then $p \mid a_i$ for some i.

Proposition (Proposition 1.17). Let $a, b \in \mathbb{Z}$ with a, b > 1. Write $a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$ and $b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$ where p_1, p_2, \ldots, p_n are distinct primes and $a_1, a_2 \cdots, a_n, b_1, b_2, \cdots, b_n$ are nonnegative integers (possibly zero). Then

$$(a,b) = p_1^{\min\{a_1,b_1\}} p_2^{\min\{a_2,b_2\}} \cdots p_n^{\min\{a_n,b_n\}}$$

and

$$[a,b] = p_1^{\max\{a_1,b_1\}} p_2^{\max\{a_2,b_2\}} \cdots p_n^{\max\{a_n,b_n\}}.$$

Theorem (Theorem 1.19). Let $a, b \in \mathbb{Z}$ with a, b > 0. Then (a, b)[a, b] = ab.

Congruences

Proposition (Proposition 2.1). Let $a, b, c, d, m \in \mathbb{Z}$ with m > 0, then:

- (a) $a \equiv a \pmod{m}$
- (b) $a \equiv b \pmod{m}$ implies $b \equiv a \pmod{m}$
- (c) $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ implies $a \equiv c \pmod{m}$

Proposition (Proposition 2.4). Let $a, b, c, d, m \in \mathbb{Z}$ with m > 0, then:

- (a) $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ implies $a + c \equiv b + d \pmod{m}$
- (b) $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ implies $ac \equiv bd \pmod{m}$.

Proposition (Proposition 2.5). Let $a, b, c, m \in \mathbb{Z}$ with m > 0. Then $ca \equiv cb \pmod{m}$ if and only if $a \equiv b \pmod{\frac{m}{(a,m)}}$.

Lemma (Chapter 2, Exercise 9). Let $a, b, c, m \in \mathbb{Z}$ with m > 0. If $a \equiv b \pmod{m}$ then $ac \equiv bc \pmod{mc}$ for c > 0.

Corollary (Corollary 2.15). Let p be a prime number and let $a \in \mathbb{Z}$. Then $a^p \equiv a \pmod{p}$.

The Euler Phi-Function

Theorem (Theorem 3.3). Let p be prime and let $a \in \mathbb{Z}$ with a > 0. Then $\phi(p^a) = p^a - p^{a-1} = p^{a-1}(p-1)$.

Diophantine equations

Theorem (Theorem 6.2). Let ax + by = c be a linear Diophantine equation in two variables x and y and let d = (a, b). If $d \nmid c$, then the equation has no solutions. If $d \mid c$ then there are infinitely many solutions of the form

$$x = x_0 + \frac{b}{d}n, y = y_0 - \frac{a}{d}n, \text{ for } n \in \mathbb{Z}.$$