A440

2016/02/16 0x64 Tales #05 Number

Livesense Inc. HORINOUCHI Masato

A440ってなに?

- オクターブ4のA(ラ)の周波数を440Hzとすること。基準ピッチ(音高)として国際標準となっている。
- 1955年 に ISO により A=440 が定められる前は歴史的経緯により A=415, A=430, A=466 など様々な基準ピッチが用いられてきた。
- 少々高い基準ピッチの方が華やかに聴こえるので、現在では A=442, A=444 やそれを越えるオーケストラも多い。

みんな知ってる A440

- 時報
 - time_signal.wav
 - 440Hz 440Hz 440Hz 880Hz という周波数で鳴っている。

オクターブ

- 1オクターブ上の音を鳴らすには周波数を 2倍にする。
- 1オクターブ下の音を鳴らすには周波数を 1/2倍にする。
- ・オクターブxのAの周波数は等比数列
 - $1 \Rightarrow 55, 2 \Rightarrow 110, 3 \Rightarrow 220, 4 \Rightarrow 440, 5 \Rightarrow 880 \dots$
 - f(x) = 27.5 * (2 ** x)

音律

音程の周波数をどのように規定するか。

- 平均律
 - 1オクターブを 12等分した音律。
 - (0..12).each {|i| 2.0 ** (i.to_f / 12) }の等比数列。
- 純正律
 - 純正音程(周波数比が単純な整数比となる)を用いた音律。
 - 和音で倍音のうなりが発生しない。Cメジャーでの C-E-G が 4:5:6 となる。

平均律と純正律による音程

音程	十二平均律による値	数値	セント値	純正音程	純正音程のセント値	差
一度	$2^{0/12} = 1$	1.000000	0	$\frac{1}{1} = 1.00000000$	0.00	0
短二度	$2^{1/12} = \sqrt[12]{2}$	1.059463	100	$\frac{16}{15} \approx 1.06666\cdots$	111.73	-11.73
長二度	$2^{2/12} = \sqrt[6]{2}$	1.122462	200	$\frac{9}{8}$ = 1.1250000	203.91	-3.91
短三度	$2^{3/12} = \sqrt[4]{2}$	1.189207	300	$\frac{6}{5}$ = 1.20000000	315.64	-15.64
長三度	$2^{4/12} = \sqrt[3]{2}$	1.259921	400	$\frac{5}{4}$ = 1.2500000	386.31	+13.69
完全四度	$2^{5/12} = \sqrt[12]{32}$	1.334840	500	$\frac{4}{3} \approx 1.33333\cdots$	498.04	+1.96
三全音	$2^{6/12} = \sqrt{2}$	1.414214	600	$\frac{45}{32}$ = 1.40625	590.22	+9.78
完全五度	$2^{7/12} = \sqrt[12]{128}$	1.498307	700	$\frac{3}{2}$ = 1.50000000	701.96	-1.96
短六度	$2^{8/12} = \sqrt[3]{4}$	1.587401	800	$\frac{8}{5}$ = 1.60000000	813.69	-13.69
長六度	$2^{9/12} = \sqrt[4]{8}$	1.681793	900	$\frac{5}{3} \approx 1.66666\cdots$	884.36	+15.64
短七度	$2^{10/12} = \sqrt[6]{32}$	1.781797	1000	$\frac{16}{9} \approx 1.777777\cdots$	996.09	+3.91
長七度	$2^{11/12} = \sqrt[12]{2048}$	1.887749	1100	$\frac{15}{8}$ = 1.8750000	1088.27	+11.73
八度	$2^{12/12} = 2$	2.000000	1200	$\frac{2}{1}$ = 2.00000000	1200.00	0

デモ

Cメジャーで全音階と C-E-G, F-A-C, G-B-D の三和音。

- 平均律 A440: temp_12tet_a440.wav
- 平均律 A444: temp_12tet_a444.wav
- 純正律 A440: temp_just.wav

今回の検証、

当初はリアルタイム生成した波形デ

ータを /dev/dsp に出力しようと考

えていたのだが...。

データどうやって作ったの?

- MMLパーサー作って波形データに変換すれば良いのでは...
- 波形データさえ作れたら.wav 出力も簡単だよね。
- 波形生成関数変えれば正弦波以外も出力できるよね。
- 波形データを合成できればマルチトラック化できるよね。
- 作ってみた ← イマココ

to be continued...