TD4. Chaînes de Markov.

Exercice 1. On lance un dé de manière répétitive. Parmi les suites aléatoires suivantes, lesquelles sont des chaînes de Markov ? Donner leur matrice de transition.

- a) X_n : le plus grand résultat obtenu après n lancers.
- b) N_n : le nombre de 6 obtenus au bout de n lancers.
- c) C_n : nombre de lancers, à l'instant n, depuis le dernier 6.
- d) $B_n = \sum_{k=0}^n N_k$.

Exercice 2. On considère une chaîne de Markov $(X_n)_{n\geqslant 0}$ homogène de matrice de transition P. Déterminer si les processus suivantes sont des chaînes de Markov et éventuellement préciser leur matrice de transition:

- a) $W_n = X_{n+k}, n \ge 0$ où $k \in \mathbb{N}$ est fixé;
- b) $Y_n = X_{2n}, n \ge 0$;
- c) $Z_n = X_{T_n}$, $n \ge 0$ où $T_n = S_1 + \dots + S_n$, $T_0 = 0$ et la suite $(S_n)_{n \ge 1}$ est iid et à valeurs dans $\mathbb{N} + 1$.

Exercice 3. (Pannes aléatoires) Soit $\{U_n\}_{n\geqslant 0}$ une suite iid à valeurs dans $\{1,2,...,+\infty\}$. La v.a. U_k s'interprète comme durée de vie d'une quelque machine (la k-eme) qui est remplace par un autre (la k+1-eme) des qu'elle défaille. Au temps initial 0 la machine 1 est mise en service et elle dure jusq'au temps U_1 , subitement remplacée par la machine 2 que dure pour un intervalle de temps U_2 et donc jusq'au temps U_1+U_2 et ainsi de suite. On note X_n le temps de service de la machine en utilisation au temps n. Le processus $\{X_n\}_{n\geqslant 0}$ est un processus à valeurs dans $\mathbb N$. Montrer que $(X_n)_{n\geqslant 0}$ est une chaîne de Markov homogène sur $\mathbb N$ de matrice de transition

$$P(x,y) = \begin{cases} \frac{\mathbb{P}(U_1 > x+1)}{\mathbb{P}(U_1 > x)} & \text{si } y = x+1 ;\\ 1 - P(x,x+1) & \text{si } y = 0 ;\\ 0 & \text{autrement } . \end{cases} \forall x, y \in \mathbb{N}$$

Exercice 4. (L'urne d'Ehrenfest) Dans un récipient divisé en deux enceintes par une paroi poreuse sont réparties N molécules de gaz. A chaque unité de temps une particule choisi au hasard change d'enceinte. (les particules sont choisie avec loi uniforme sur $\{0, N\}$ et indépendamment à chaque instant de temps)

- 1. Vision Microscopique: L'état du système X_n à l'instant n est représenté par un vecteur $(x^i) \in M = \{0, 1\}^N$ où la i^e composante x^i vaut 1 ou 0 selon que la i-eme particule est dans la première ou la seconde enceinte.
 - a. Montrer que $(X_n)_{n\geqslant 0}$ est une chaîne de Markov sur M et donner sa matrice de transition.
 - b. Écrire $(X_n)_{n\geq 0}$ comme récurrence aléatoire.
 - c. Montrer que pour tout $x, y \in M$ il existe $n \ge 0$ tel que $\mathbb{P}(X_n = y | X_0 = x) > 0$.

- 2. Vision macroscopique: Soit S_n ne nombre de particules dans la première enceinte au temps $n: S_n = \sum_{k=1}^N X_n^k$.
 - a. Montrer que S_n est une chaîne de Markov sur $\{0, N\}$ et donner sa matrice de transition.
 - b. Écrire $(S_n)_{n\geq 0}$ comme récurrence aléatoire.
 - c. Montrer que pour tout $x, y \in \{0, N\}$ il existe $n \ge 0$ tel que $\mathbb{P}(S_n = y | S_0 = x) > 0$.

Exercice 5. (RUINE DU JOUEUR) Deux joueurs A et B misent de façon répété 1 euro et chaque fois la probabilité que A gagne est $p \in]0,1[$. Les jeux successifs sont indépendantes. Soit X_n la fortune du joueur A après n parties et soit a la fortune initiale de A et b celle de B. Le jeux termine de que un des joueurs perd tout sa fortune. On stipule que si un des joueurs perd sa fortune à l'instant n alors $X_k = X_n$ pour tout $k \geqslant n$. Donc $X_0 = a$ et le jeux termine de que $X_n \in \{0, a+b\}$. Soit $T = \inf\{n \geqslant 0 \colon X_n = 0 \text{ ou } X_n = a+b\}$ la durée (aléatoire) du jeux. La probabilité que A gagne si sa fortune initiale est x on la note $u(x) = \mathbb{P}(X_T = a+b, T < + \infty | X_0 = x)$.

- 1. Montrer que $(X_n)_{n\geqslant 0}$ est une chaîne de Markov et déterminer son espace d'états M et sa matrice de transition P.
- 2. Montrer que u(0) = 0, u(a + b) = 1 et

$$u(x) = pu(x+1) + (1-p)u(x-1),$$
 $a < x < b.$

- 3. Déterminer u(x) et $v(x) = \mathbb{P}(X_T = 0, T < +\infty | X_0 = x)$ et conclure que $\mathbb{P}(T = +\infty | X_0 = x) = 1$ pour tout $x \in M$.
- 4. Remarquer que dans le cas $b = +\infty$ (joueur contre casino) et p = q (jeux équitable) on a que v(x) = 1 et donc que un joueur perdra toujours...
- 5. Soit $m(x) = \mathbb{E}[T|X_0 = x]$ la durée moyenne du jeux si la fortune initiale de A est x. Montrer que m(x) satisfait la récurrence:

$$m(x) = 1 + p m(x+1) + (1-p) m(x-1)$$

pour tout $x \in]0, a+b[$ avec conditions au bords m(0) = 0 et m(a+b) = 0.

6. Montrer que l'unique solution de cette récurrence est

$$m(x) = x (a + b - x).$$

7. Conclure que dans le cas $b=+\infty$ en moyenne il faut un temps infini pour être ruiné en jouant contre le banc.