Grade 12 GS

Probability ex 17

K.H

By Mr.Kassem Hodeib K.H

Exercise 17:

K.H

An urn contains 6 identical balls of which 4 are red and 2 are black.

1) We randomly draw two balls from the urn. Consider the three events:

 A_0 : the two drawn balls are red

 A_1 : the two drawn balls have different colors.

 A_2 : the two drawn balls are black.

Calculate the probability of each of A_0 , A_1 and A_2 .

$$P(A_0) = P(2r) = \frac{C_4^2}{C_6^2} = \frac{2}{5}$$

•
$$P(A_1) = P(rb) = \frac{C_4^1 \times C_2^1}{C_6^2} = \frac{8}{15}$$

•
$$P(A_2) = P(2b) = \frac{C_2^2}{C_6^2} = \frac{1}{15}$$

K.H

Consider the three events:

 B_0 : the two drawn balls are red

 B_1 : the two drawn balls have different colors.

 B_2 : the two drawn balls are black.

- a) Calculate $p(B_0/A_0)$, $p(B_0/A_1)$ and $p(B_0/A_2)$. Deduce that $p(B_0) = 0.4$
- b) Calculate $p(B_1)$ and $p(B_2)$

• 2 balls drawn from urn:

K.H

2 balls drawn from urn:

a) Calculate $p(B_0/A_0)$, $p(B_0/A_1)$ and $p(B_0/A_2)$. Deduce that $p(B_0) = 0.4$

•
$$P(B_0/A_0) = \frac{C_2^2}{C_4^2} = \frac{1}{6}$$

•
$$P(B_0/A_0) = \frac{C_2^2}{C_4^2} = \frac{1}{6}$$
 • $P(B_0/A_1) = \frac{C_3^2}{C_4^2} = \frac{1}{2}$ • $P(B_0/A_2) = \frac{C_4^2}{C_4^2} = 1$

•
$$P(B_0/A_2) = \frac{C_4^2}{C_4^2} = 1$$

•
$$P(B_0) = P(B_0 \cap A_0) + P(B_0 \cap A_1) + P(B_0 \cap A_2)$$

= $P(B_0/A_0) \times P(A_0) + P(B_0/A_1) \times P(A_1) + P(B_0/A_2) \times P(A_2) = \frac{1}{15} + \frac{4}{15} + \frac{1}{15} = \frac{2}{5} = 0.4$

b) Calculate $p(B_1)$ and $p(B_2)$

•
$$P(B_1) = P(B_1 \cap A_0) + P(B_1 \cap A_1) + P(B_1 \cap A_2)$$

 $= P(B_1/A_0) \times P(A_0) + P(B_1/A_1) \times P(A_1) + P(B_1/A_2) \times P(A_2)$
 $= \frac{C_2^1 \times C_2^1}{C_4^2} \times \frac{2}{5} + \frac{C_1^1 \times C_3^1}{C_4^2} \times \frac{8}{15} + 0 = \frac{8}{15}$

•
$$P(B_2) = P(B_2 \cap A_0) + P(B_2 \cap A_1) + P(B_2 \cap A_2)$$

 $= P(B_1 \cap A_1) + P(B_2 \cap A_2) + P(B_2 \cap A_2) + P(B_2 \cap A_2)$

$$= P(B_2/A_0) \times P(A_0) + P(B_2/A_1) \times P(A_1) + P(B_2/A_2) \times P(A_2)$$

$$= \frac{C_2^2}{C_4^2} \times \frac{2}{5} + 0 + 0$$

$$=\frac{1}{15}$$

K.H

c) Knowing that only one black ball is obtained in the second drawing, calculate the probability that only one black ball has been obtained in the first drawing.

•
$$P(A_1/B_1) = \frac{P(A_1 \cap B_1)}{P(B_1)} = \frac{\frac{4}{15}}{\frac{8}{15}} = \frac{1}{2}$$

3) Calculate the probability that, after the two drawing, the remaining two balls in the urn are red.

•
$$P(A_0 \cap B_2) + P(A_1 \cap B_1) + P(A_2 \cap B_0) = \frac{1}{15} + \frac{4}{15} + \frac{1}{15} = \frac{6}{15}$$

• 2 balls drawn from urn:

