Figure 1

Figur 2

		,			Figur 2								
		Tl	NI	T2	N2	T3	N3	T4	N4	T5	N5	T6	N6
	p27	UM	UM	М	M	UM	UM	M	M	M	M	M	М
445	14-3-3	UM	UM			M	M	M	M	M	M		
	Apaf2	l				M	M	M	M			M	М
268	BRCA1	UM	M	M	UM	M	M	M	M	М	М	М	М
584	Calc	М	М			М	M	D	M	UM	D	,	
443	Casp8	М	UM			UM	M	UM	M	M	M		
	CycD2	М	М			М	M	M	M	M	М	М	UM
	DAPK	UM	М			М	M	М	M	M	М	М	М
	E-cadr	UМ	М			М	M	UM?	UM?	M	М		
	EDNRB	UM	UM			UM	M	M	M	M	М	М	М
	EP300	М	М					M	М				
	ERa-proximal	UM	UM	M	M	М	M	М	M	М	М	М	М
	ERa-distal	М	М			М	M	M	M	M	M	M	M
523		UM	UM			UM	M	M	UM	M	D?	M	M
	FHIT	M	M			UM	UM	M	UM	M	UM		
	GPC3	M	M			М	M	M	M	M	M	M	M
288		M	M		-	UM	M	M	M	M	M	M	
	GSTP1	UM	UM	M	M	M	M	M	M	M	M	M	M
	HIC1	M	M		.**	M	M	M	M	M	M	M	M
	HIN	M	UM	UM	UM	M	M	M	M	M	M	M	M
	hMLH1	-	15111	J.+1	J	M	UM	M	M	UM	UM	UM	M
	hMSH2	 	 			M	M	M	M	Olvi	CIVI	M	M
$\overline{}$	ICAM1	UM	UM			M	M	M	M	M	M	M	M
	MCJ	UM	M			UM	UM	UM	IVI	IVI	1V1	IVI	IVI
	MCT-1	D	M			UM	UM	M	M	M	M		
	MDGI	М	UM			UM	UM	UM	UM	D	D		
	MDR-1	M	M			M	UM	M	UM	M		M	
	MGMT	IVI	IVI			M	M	M	M	IVI	IVI		M
	Muc2	UM	M	M	M	M	M	M	M	M	M		M
	Myf	M	M	IVI	IVI	M	M	UM	UM	M	M	UM	UM
			1										
380		M	M			D	UM	UM	UM	D	D	MU	D
229		UM	UM			UM	M	D .	D	D	D :	D	D
249		UM	M			M	M	UM	UM	M	M	М	UM
471		UM .	M			UM -	M	M	UM	M	1.6	UM .	M
337		M	M			UM:	M	M	UM:	M	M	-0-1006 in 004000	M
	Pax5	М	M			M	M	M	M	M	M	M	M
	PR-1 proximal	14					M		M			M	M
	PR-2distal	M	М			M	M	M	M	М	M		
	RARb2	M	M	14	N4	M	M	M	M	N 4	N 4	3.4	14
	Rassfl A	M	M	M	М	M	M	M		M	M		M
	RB1	M	M			M	M	M		M	M		M
	RFC1	M	M			M	M	UM ·	M	, or a principal of	UM		M
-	RIZ1	M	M			M	M	M	M	M	M	M	M
	S100A2	M	M				UM				M		
	SOCS1	M;	UM				M				M		M
	SRBC	M	M				M			M		ŮM	
	SYK .	M	M				M		M	M			M
	TBSP*	10 - 17 - 111 - 17	UM			UM.*			UM	- Marine		М	
	TES**	M	M			M _{****}		<u>M</u> : */		M*		М	
	TMS1	M	М				M	M	M		M		M
-	TRANCE	M	М			M	М	M	M	M	M		M
	uPA												M?
146	VHL	M	M			M	M	M	M	M	М	M	M

	Figure 2
217	
445	Negative regulator of breast cancer growth
154	
268	Silencing = increased risk of BC; no meth in normal; meth in diff path
584	
443	Correlates with Rassf1a meth in neuroblastoma
242	Methylation frequent in BC (25%), correlates with higher grade, different in intraductal and invasive
367	Methylation correlates with invasive lobular carcinoma, no p53 overexpression, ER positivity
	Loss of expression correlates with poor survival and ER status; expressed in inflammatory BC.
552	Potential role in osteoblastic mets
586	histone acetyltransferase
	Silencing - poor risk factor
508	Silencing - poor risk factor
523	Reduced expression - lower DFS, resistance to Tam; expr in 50% of BC vs 91% of benign lesions
306	Progressive loss in breast cancer
286	Growth inhibitor; lost in breast cancer
288	Expression is higher in higher grade
366	
495	Expression - good prognostic marker
400	Expressed only in normal but not in breast cancer
418	Repair gene
237	Repair gene
350	Expression inhibits growth of breast cancer
	Repair gene
440	Novel oncogene
650	Silencing increases chance of tumor growth
306	
190	Low expression equals poor survival
	Expression - less aggressive behavior, lymph node mets, higher grade of DCIS
716	Hypermethylation in higher grade tumors
	Frequently deleted in cancer
	Frequently deleted in cancer
	Expression - in higher grade; no correlation with prognosis
	Loss - poor prognosis. Maternally expressed; expression - better survival at chemotherapy
	Overexpression -poor prognosis, higher grade;Reduced expresion - tumorigenesis; in mets
175	Inhibition leads to loss of growth control via CD19
	Expression predicts response to horm therapy
	Expression predicts response to horm therapy
	Inhibited in tumors
	Methylated in breast tumors (43%) and small-cell lung cancer (100%)
	Loss of expression predicts faster growth of tumor; correlates with no node mets
	Expression - correlates with resistance to folates
	Loss of expression - a condition for tumor growth
	Expression is lost in cancer
	Inhibitor of Jak/Stat; Jak/Stat regulates differention; silencing - very freq in AML; no correlation with outcome
	Interacts with BRCA-1; methylated in cancer cell lines
	Reduced expression correlates with metastasis
	Expression of TBSP - good prognosis in DCIS; reduced metastasis
	Putative tumor-suppressor, freq methylated
	Reduced expression correlates with tumor growth and resistance to apoptosis
	Expression in bone mets, unclear whether in breast cancer cells or not
	Increased activity correlates with mets
1 146	Deletions of chromosamal region in breast cancer

Figure 3

FH	IT GPC3	M	Σ	UM UM	M	Σ Σ
	Fas	MN	5	<u>₩</u>	Μn	8
ERa-	∢	Σ	S O	Mο	MΩ	<u>M</u>
ERa-	8	Μ	Σ	Σ	Σ	≥
	Ep300	ΜN	MΩ	MΩ	Σ	Σ
	EDNRB	M	Δ	MU	MO	ΜO
ய்	cadherin	Μ	MO	MD	QN	QN N
	DAPK	WΩ	W	MD	WΩ	Σ
	CycD2	M	Σ	Σ	Σ	≥
Caspase	8	WN	MN	Σ	Σ	MO
	1 Calcitonin	W	MΩ	MU	Σ	Σ
	Apaf2 BRCA-1	MO	M	MD	WΩ	Σ
	Apaf2	M	Δ	MD	W	Σ
14-3-3	sigma	M	Σ	∑	MU	MΘ
	Gene	MDA	MCF-7	T47D	T1	ž

		SOCS-1	ΜΩ	MΩ	NM	W	Ν
	S100	A 2	Σ	Σ	M	Σ	Σ
		RIZ	Σ	₹	Σ	W	Σ
		RFC-1	Σ	ΜĎ	M	M	Σ
		RB-1	Σ	Σ	MO	W	Σ
		PR Rassfta RB-1 RFC-1	Σ	Σ	Σ	Σ	Σ
		R	Σ	Σ	MΩ	M	Σ
		PAX	Σ	₹	Σ	×	Σ
		p73	Σ	Σ	Σ	М	Σ
	p57	Kip2	MΩ	MΩ	Σ	MN	Σ
	p27	Kip1	MΩ	MΩ	MU	WN	MΩ
	p21	waf1	Μ	ΜŊ	M	MN	Σ
p16	NK4	∢	_	_	Σ	MU	Σ
	p15	INK4B	٥	۵	MΩ	Σ	Σ
		Myf	Σ	Σ	M	Σ	Σ
		MCJ Muc2 Myf	Σ	Σ	Σ	Σ	Σ
5		S S	Σ	Σ	MΩ	MΩ	Σ
		MGMT	Σ	Σ	MΩ	ΩN	2
		MDR1	Σ	Σ	Σ	Σ	Σ
		MDGI	Σ	Σ	Σ	W	Σ
		MCT1	ĕ	Σ	Q	Q	2
		_	Σ	Σ	Σ	Μ'n	MΩ
		hMLH1 ICAM1	Σ	₹	MΩ	Q.	Q
-		<u>۔</u> ا	Σ	Σ	Z	Σ	M
			Σ	Σ	Σ	Σ	Σ
		GSTP1 HIC1	Σ	Σ	Σ	MO	Σ
		GR.	₽	M	V	Μ	Σ
		Gene	MDA	MCF-7	T47D	F	ž

Gene	SRBC	SYK	TES	THBS TMS1		TRANCE	uPA	VHL
MDA	NM	Μ	WN	MΩ	Δ	W	MN	ΜN
MCF-7	Σ	Σ	W	WΩ	Σ	W	UM	MΩ
T47D	M	UM	М	MU	M	MU	M	MU
T1	М	W	М	М	M	W	ΩN	М
N 1	M	Μ	M	WΩ	M	M	ΠN	М

Figure 4

A. Northern blot

B. Methylation-specific PCR

Figure 5

	BRCA1	SYK	RIZ	p15	MCT-1	cycD2	Rb1	14-3-3a
CTCL (n=6-8)	100%	14%	12%	%0	16%	%0	%0	400%

	Control Samples (n=8)	Summary of T-cell lines (n=6)	HUT 78	HUT 102	C91PL	EC155	N1185	N1186
BRCA 1	%0	%09	Σ	n	Σ	Σ	ח	n
SYK	%0	16%	W	n	n	U	n	n
RIZ	%0	%0	n	n	n	n	n	n
p15 ^{ink4a}	12%	40%	خ	n	M	ν	n	n
р16 ^{пк48}	%0	%0	ن	n	n	n	n	n
MCT-1	%0	%0	n	Ŋ	n	n	n	n
MYF	%0	%09	W	n	M	M	n	n
calcitonin	%0	33%	W	n	n	Σ	n	n
p57 ^{Kip2}	%0	%0	n	٤	n	خ	n	n
CD79b	%0	33%	W	n	n	M	n	n
p27 ^{Kip1}	%0	%0	n	n	n	n	n	n
RAR	%0	%0	n	U	U	U	n	n
cycD2	12%	%0	N	U	n	U	n	ח
Rb1	%0	%0	n	U	n	U	n	n
HIN	%0	16%	n	n	n	M	n	ח
HIC1	%0	20%	M	n	M	M	n	n
p73	%0	16%	M	n	n	U	n	n
RASSF1A	%0	16%	M	U	n	U	n	D
14-3-3σ	100%	83%	M	Ŋ	M	M	W	M
DAPK	%0	33%	M	Ü	n	U	W	n
SRBC	خ	33%	M	U	n	U	n	M
Rab	%0	16%	M	U	n	U	n	n
ERα	%0	%99	M	U	M	M	n	M
PR	%0	20%	M	n	M	M	n	n
GSTP	%0	16%	M	n	n	U	n	n
MGMT	%0	%0	n	U	n	U	n	n
MDR1	%0	16%	M	n	n	U	n	n
HMLH	%0	%0	n	U	n	U.	n	n
p21 ^{wat1}	%0	%0	n	Ú	n	U	n	n

Figure 7