Lecture 1: Introduction to Multicast

7COM1030 - Multicast and Multimedia Networking

Dr. Xianhui Che (Cherry)

x.che@herts.ac.uk

School of Computer Science

University of Hertfordshire, UK

Topics

- Why Multicast?
- Multicast Groups
- Multicast Services

Multicasting

Multicast refers to one-to-many or many-to-many communications

Multicast is driven by receivers: Receivers indicate interest in receiving data.

Multicast is sending a packet that is received at many destinations, NOT sending packets to many destinations.

Multicast Applications

- Many applications transmit the same data at one time to multiple receivers
 - Broadcasts of radio or video
 - Video conferencing
 - Shared applications
- A network must have mechanisms to support such applications in an efficient manner

Why Multicast?

It is feasible to implement multicast using either unicast or broadcast, but both solutions have shortcomings.

- Only works if all members are in the same LAN.
- Waste of network capacity.
- Security Issues

- One copy sent to every destination
- Not realistic for large multicast networks

Network with Multicast

A packet is sent over a link 12 times.

Attempting with Unicast

A packet is sent over a link 22 times:

$$3+6+7+6=22$$

Topics

- Why Multicast?
- Multicast Groups
- Multicast Services

Multicast Groups

- The set of receivers for a multicast transmission is called a multicast group
 - A multicast group is identified by a multicast address
 - A user that wants to receive multicast transmissions **joins** the corresponding multicast group, and becomes a **member** of that group

Semantics of IP Multicast

- Multicast groups are identified by IP addresses in the range 224.0.0.0 239.255.255.255 (class D address)
- Every host (more precisely: interface) can join and leave a multicast group dynamically
 - no access control (think of tuning to a radio frequency)
- Every IP datagram sent to a multicast group is transmitted to all members of the group
 - no security, no "floor control"
 - Sender does not need to be a member of the group

Topics

- Why Multicast?
- Multicast Groups
- Multicast Services

Multicast Delivery in an IP Network

After a user joins, the network builds the necessary routing paths to delivery data to the multicast group, called distribution tree

Data is delivered downstream in the tree

Multicast Services

▶ The IP Multicast service is unreliable

Application
Transport
Network
Access

Internet Protocol Stack

- Transport layer protocols:
 - User Datagram Protocol (UDP)
 - Real-time Transport Protocol (RTP): for multimedia content
 - Reservation Protocol (RSVP): for bandwidth reservation in a multicast distribution
 - There is no multicast version of TCP
- For applications (e.g. file delivery) that require a reliable data transfer (e.g. sequence numbers, timers, re-transmission), the service guarantee must be provided by the application layer

Network Layer Protocols in the Internet Hierarchy

Local Area Network (join/leave)	 Internet Group Management Protocol (IGMP) Multicast Listener Discovery (MLD): for IPv6
Intra-domain (routing)	 Multicast Open Shortest Path First (MOSPF) Distance Vector Multicast Routing Protocol (DVMRP) Protocol Independent Multicast (PIM)
Inter-domain (routing)	 Multicast Border Gateway Protocol (MBGP) PIM-SM: PIM in the sparse mode Multicast Source Discovery Protocol (MSDP)

Joining a multicast group: 2-step process

- Local area: host informs local multicast router of desire to join group: IGMP
- Wide area: local router interacts with other routers to receive multicast datagram flow
 - many protocols (e.g., DVMRP, MOSPF, PIM)

Home Reading

Mastering Networks: An Internet Lab Manual

Jorg Liebeherr, Magda El Zarki

Pearson, 1st edition, 20 Aug. 2003

ISBN-10: 0201781344

ISBN-13: 978-0201781342

Chapter 10: IP Multicast

Available on StudyNet:

Pay attention to the highlights!

Questions?

Email: x.che@herts.ac.uk

Office: LB218

Tel: 01707 286206