MATH 20510 Lecture 19

May 7, 2025

Theorem 0.1. (Graded product rule) Let ω be a k-form and λ be an m-form, both of class C^1 . Then

$$d(\omega \wedge \lambda) = (d\omega) \wedge \lambda + (-1)^k \omega \wedge (d\lambda).$$

Proof. It suffices to show this on simple forms $\omega = f dx_I$, $\lambda = g dx_J$, $f, g \in C^1$. Then

$$\omega \wedge \lambda = fgdx_I \wedge dx_J.$$

If I and J have any common indices, then both sides equal 0 and the theorem holds. Now assume that I and J have no common terms. Then

$$d(\omega \wedge \lambda) = d(fgdx_I \wedge dx_J)$$

$$= (-1)^{\alpha} d(fgdx_{[I,J]})$$

$$= (-1)^{\alpha} (fdg + gdf) \wedge dx_{[I,J]}$$

$$= (fdg + gdf) \wedge dx_I \wedge dx_J$$

$$= (-1)^k (fdx_I) \wedge dg \wedge dx_J + df \wedge dx_I \wedge (gdx_J)$$

$$= (-1)^k \omega \wedge (d\lambda) + (d\omega) \wedge \lambda.$$

Theorem 0.2. If ω is a k-form of class C^1 , then

$$d^2(\omega) = 0.$$

Proof.

 $d(dx_I) = 0 = d(1dx_I) = d(1) \wedge dx_I.$

Let $f \in C^2(E)$, $E \subseteq \mathbb{R}^n$. Then

$$d^{2}f = d\left(\sum_{i=1}^{n} (D_{i}f)(x)dx_{i}\right)$$

$$= \sum_{i=1}^{n} d(D_{i}f) \wedge dx_{i}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} D_{ij}fdx_{j} \wedge dx_{i}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} -D_{ij}fdx_{i} \wedge dx_{j}.$$

Thus $d^2f = 0$. Then, for a k-form $\omega = f dx_I$,

$$d\omega = df \wedge dx_I$$

and

$$d^{2}\omega = d^{2}f \wedge dx_{I} + (-1)df \wedge d(dx_{I})$$
$$= 0 - 0$$
$$= 0.$$

Definition 0.3.

- (i) A k-form ω is closed if $d\omega = 0$.
- (ii) A k-form ω is exact if there exists a (k-1)-form α such that $d(\alpha) = \omega$.

Remark 0.4.

- (i) If ω is a k-form that is of class C^2 then $d^2\omega = 0$ so $d\omega$ is exact.
- (ii) Every exact form is closed $(d(d\omega) = 0)$.

Question. Is the converse of (ii) true?

Answer. No.