Tarea 1 ⊲ Entrega: 7 de marzo, 2008 ⊳

Contents

1.	First Section	1
2.	Second Section	2
3.	Third Section	3
4.	Some Boxed Examples	3
5.	Some Boxed Definitions	3
	dix: Robot Design and Engineering General Background	4
7.	Procedure	4
		4

1. First Section

- 1. Q1: This is bold underlined text.
- 2. Q2
- 3. Q3

Figura 1: An example of an invisible figure.

2008.03.22

2. Second Section

- 4. Q4
- 5. Q5
- 6. Q6

2008.03.22

3. Third Section

- 7. Q7
- 8. Q8
- 9. Q9

Some Boxed Examples

Ejemplo 4.1

 $\overline{X \equiv \text{toss a coin }}(\leftarrow \text{this is the } \textit{process}).$

 $x_0 = \mathsf{head}$

 $x_1 = \mathsf{tail}$

Ejemplo 4.2

 $X \equiv \text{draw some number of candies with a spoon.}$

 $P(X=x_i)=\frac{n_i}{N}$ where n_i is the number of times the amount x_i was drawn, $i=1,2,\ldots I$.

5. Some Boxed Definitions

Probability Law

$$\sum_{i=1}^{\infty} P(x_i) = 1, \qquad \int_{-\infty}^{\infty} p(x) dx = 1$$
 (1)

Probabilidades no-condicionadas individuales (unconditional individual probabilities)

$$P(x_i) = \frac{n_{X_i}}{N}, \qquad i = 1, \dots, I$$
 (2)

$$P(x_i) = \frac{n_{X_i}}{N}, \qquad i = 1, \dots, I$$

$$P(y_j) = \frac{n_{Y_j}}{N}, \qquad j = 1, \dots, I$$
(2)

Something in the air.

3 2008.03.22

Appendix: Robot Design and Engineering

- 6. General Background
- 7. Procedure
- 8. Function Reference

8.1. zfunction

Purpose Compute something.

Syntax zfunction(args)

Description This function computes something using the $\alpha(X)$ algorithm.

 $\alpha(X,Y) \mapsto \alpha(X)\alpha(Y)$ (4)

Arguments v_1 The value of the first argument.

 v_2 The value of the second argument.

:

 v_n The value of the n-th argument.

Examples Applying zfunction to three arguments cannot be shown here. Do not use a "verbatim"

environment nor "verb" within any "fref" environment command, such as "fpurp", "fex", etc. Instead make a direct declaration of a "minipage" environment within the "fref"

environment and place the verbatim text within the minipage.

Discussion There is nothing to discuss.

See Also recfunc, strangefunction

References See the work by Batwing in [1] and references therein for details on the derivation.

Implementation

Notes

This is an example of a custom-defined field. It relies on the Deawfulization method to revert the uglyness of the complex expressions.

Some other things can be subjectless if they are continuations.

2008.03.22 4

Verbatim Space

Must use begin(verbatim) and end(verbatim) to produce verbatim text. Note the other commands do not accept verbatim text!

8.2. recfunc

Examples

Consider the Zetino basis, Z, given in the example for the function zfunction on page 4. Additionally, suppose that $Z_6 = [f_1, f_2] = 0$, then the Zetino algebra can be expressed in terms of the following 3-dimensional basis of independent Zetino products, in terms of which z4 is expressed (see the example for the function zfunction on page 4):

Salut!

Carambola

Is the problem of creating something literally #0?&\$!* stupid!

Alobmarac

Is the problem of inverting something totally silly!

2008.03.22 5