CỰC TRỊ CỦA HÀM SỐ

DANG 1. TÌM CƯC TRỊ CỦA HÀM SỐ DƯA VÀO BẢNG BIẾN THIÊN, ĐỒ THỊ CỦA HS f(x);f'(x)

Kiến thức cần nhớ

• Điều kiện cần (định lí 1): Nếu hàm số y = f(x) có đạo hàm trên khoảng (a;b) và đạt cực đại

(hoặc cực tiểu) tại x, thì f'(x) = 0.

• Điều kiện đủ (định lí 2):

Nếu f'(x) đổi dấu từ **âm sang dương** khi x đi qua điểm x_{\circ} (theo chiều tăng) thì hàm số y = f(x)

đạt **cực tiểu** tại điểm $x_{_{\circ}}$.

Nếu f'(x) đổi dấu từ **dương sang âm** khi x đi qua điểm x_{\circ} (theo chiều tăng) thì hàm số y=f(x)

đạt **cực đại** tại điểm $x_{\hat{a}}$.

• Định lí 3: Giả sử y=f(x) có đạo hàm cấp 2 trong khoảng $(x_{\circ}-h;\ x_{\circ}+h),\ với\ h>0.$ Khi đó:

Nếu $y'(x_{_{\circ}})=0, \ y''(x_{_{\circ}})>0$ thì $x_{_{\circ}}$ là điểm cực tiểu.

Nếu $y'(x_0) = 0$, $y''(x_0) < 0$ thì x_0 là điểm cực đại.

Các THUẬT NGỮ cần nhớ

• Điểm cực đại (cực tiểu) của **hàm số** là x_{\circ} , **giá trị cực đại (cực tiểu)** của hàm số là $f(x_{\circ})$

 $(hay \ y_{_{\text{CH}}} \ hoặc \ y_{_{\text{CT}}}). \ Diễm cực đại của$ **đồ thị hàm số** $là <math>M(x_{_{\circ}}; f(x_{_{\circ}})).$

 $\bullet \ \ \textit{N\'eu} \ \ M(x_\circ;y_\circ) \ \ l\grave{a} \ \textit{d\'e\'m} \ \textit{cực trị của d\'o} \ \textit{thị hàm số} \ \ y=f(x) \Rightarrow \begin{cases} f'(x_0)=0 \\ y_0=f(x_0) \end{cases}.$

Câu 1: (Đề Tham Khảo 2020 – Lần 1) Cho hàm số y = f(x) có bảng biến thiên như sau:

\boldsymbol{x}	$-\infty$		0		3		$+\infty$
f'(x)		+	0	—	0	+	
f(x)	$-\infty$		* ² \		-4		+∞

Giá trị cực tiểu của hàm số đã cho bằng

A. 2.

B. 3.

C. 0.

D. -4.

Câu 2: (Đề Tham Khảo 2020 – Lần 2) Cho hàm số f(x) có bảng biến thiên như sau:

Hàm số đã cho đạt cực đại tại

A. x = -2.

B. x = 2.

C. x = 1.

D. x = -1.

Câu 3: (**Mã 104 - 2020 Lần 1**) Cho hàm số f(x) có bảng biến thiên như sau:

x	$-\infty$		-1		3		$+\infty$
f'(x)		+	0	_	0	+	
f(x)	$-\infty$	/	× ² \		-3		+∞

Giá trị cực đại của hàm số đã cho bằng

A. 3.

B. −3.

C. -1.

D. 2.

(MĐ 101-2022) Cho hàm số y = f(x) có bảng biến thiên như hình vẽ Câu 4:

Điểm cực tiểu của hàm số đã cho là

A. x = -2.

B. x = 2.

C. x = -1.

D. x = 1.

(**Mã 105 - 2017**) Cho hàm số y = f(x) có bảng biến thiên như sau Câu 5:

Mệnh đề nào dưới đây đúng?

A. Hàm số đạt cực tiểu tại x = -5

B. Hàm số có bốn điểm cực trị

C. Hàm số đạt cực tiểu tại x = 2

D. Hàm số không có cực đại

(**Mã 110 - 2017**) Cho hàm số y = f(x) có bảng biến thiên như sau Câu 6:

Tìm giá trị cực đại y_{CD} và giá trị cực tiểu y_{CT} của hàm số đã cho.

A. $y_{CD} = 2$ và $y_{CT} = 0$ **B.** $y_{CD} = 3$ và $y_{CT} = 0$ **C.** $y_{CD} = 3$ và $y_{CT} = -2$ **D.** $y_{CD} = -2$

 $va y_{CT} = 2$

Câu 7: (**Mã 123 - 2017**) Cho hàm số y = f(x) có bảng biến thiên như sau

x	- ∞	-1		0		1	+∞
y	-	0	+	0	-	0	+
	+∞			3			+ ∞
У		0			_	0	

Mệnh đề nào dưới đây sai

A. Hàm số có giá trị cực đại bằng 3

- B. Hàm số có hai điểm cực tiểu
- C. Hàm số có giá trị cực đại bằng 0
- D. Hàm số có ba điểm cực trị

Câu 8: (Đề Tham Khảo 2020 – Lần 2) Cho hàm số f(x) có bảng xét dấu của f'(x) như sau:

Số điểm cực trị của hàm số đã cho là

A. 3.

B. 0.

C. 2.

D. 1.

Câu 9: (**Mã 101 - 2020 Lần 1**) Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng xét dấu của f'(x) như sau:

Số điểm cực đại của hàm số đã cho là

A. 4.

B. 1.

C. 2.

D. 3.

Câu 10: (**Mã 102 - 2020 Lần 1**) Cho hàm f(x) liên tục trên \mathbb{R} và có bảng xét dấu f'(x) như sau:

Số điểm cực tiểu của hàm số là

A. 1.

B. 2.

C. 3.

D. 4.

Câu 11: (MĐ 103-2022) Cho hàm số $y = ax^4 + bx^2 + c$ có đồ thị là đường cong trong hình bên. Giá trị cực tiểu của hàm số đã cho bằng

A. 1.

B. 4.

C. -1.

D. 3.

Câu 12: (MĐ 103-2022) Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

A. (1;-1).

B. (3;1).

C. (1;3).

D. (-1;-1).

Câu 13: (MĐ 102-2022) Cho hàm số $y = ax^4 + bx^2 + c$ có đồ thị như đường cong trong hình bên.

Số điểm cực trị của hàm số đã cho là

A. 1.

B. 0.

C. 2.

D. 3.

Câu 14: Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị hàm số y = f'(x) được cho như hình vẽ.

Chọn khẳng định đúng

- **A.** f(x) đạt cực đại tại x = 0.
 - **B.** f(x)đạt cực tiểu tại x = -1.
- C. f(x)đạt cực tiểu tại x=1.

D. f(x) có ba điểm cực trị.

Câu 15: Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} . Đồ thị hàm số y = f'(x) như hình vẽ sau:

Số điểm cực trị của hàm số y = f(x) - 5x là:

A. 2.

B. 3.

C. 4.

D. 1.

DẠNG 2. TÌM CỰC TRỊ CỦA HÀM SỐ KHI BIẾT BIỂU THỰC f(x); f'(x)

- **Bài toán**: Tìm các điểm cực đại, cực tiểu (nếu có) của hàm số y = f(x).
- A Phương pháp: Sư dung 2 qui tắc tìm cực tri sau:

Quy tắc I: sử dụng nội dụng định lý 1

- Bước 1. Tìm tập xác định D của hàm số.
- **Bước 2**. Tính đạo hàm y' = f'(x). Tìm các điểm x_i , (i = 1, 2, 3, ..., n) mà tại đó đạo hàm bằng 0 hoặc không xác đinh.
- **Bước 3**. Sắp xếp các điểm x_i theo thứ tự tăng dần và lập bảng biến thiên.
- Bước 4. Từ bảng biến thiên, suy ra các điểm cực trị (dựa vào nội dung định lý 1).

Quy tắc II: sử dụng nội dụng định lý 2

- Bước 1. Tìm tập xác định D của hàm số.
- **Bước 2**. Tính đạo hàm y' = f'(x). Giải phương trình f'(x) = 0 và kí hiệu x_i , (i = 1, 2, 3, ..., n) là các nghiệm của nó.
- **Bước 3**. Tính f''(x) và $f''(x_i)$.

+ Nếu f''	I. Dựa vào dấu của $y''(x_i)$ $y''(x_i) < 0$ thì hàm số đạt cụ $y''(x_i) > 0$ thì hàm số đạt cụ	\mathbf{r} c đại tại điểm x_i .	của điểm x_i :	
Câu 16:	(Mã 101 – 2020 Lần 2) điểm cực đại của hàm số c		ham f'(x) = x(x-1)	$(x+4)^3$, $\forall x \in \mathbb{R}$. Số
	A. 3.	B. 4.	C. 2.	D. 1.
Câu 17:	(Mã 101 - 2019) Cho hàr hàm số đã cho là	m số $f(x)$ có đạo hàm f	$y'(x) = x(x+2)^2, \forall x \in \mathbb{R}$. Số điểm cực trị của
	A. 2.	B. 1.	C. 0.	D. 3.
Câu 18:	(THPT Lê Quý Dôn Dà	$ m extbf{N} ilde{ extbf{a}} extbf{ng 2019})$ Cho hàm số	$f\left(x\right)$ có đạo hàm	
	$f'(x) = x(1-x)^2(3-x)$	$(x-2)^4$ với mọi $x \in \mathbb{R}$	R. Điểm cực tiểu của hàm	số đã cho là
	A. $x = 2$.	B. $x = 3$.	C. $x = 0$.	D. $x = 1$.
Câu 19:	(THCS - THPT Nguyễn	Khuyến 2019) Nếu hàm	số f x có đạo hàm là	
	$f' x = x^2 x - 2 x^2 -$	x-2 $x+1$ thì tổng c	ác điểm cực trị của hàm số	$\hat{\delta} f x$ bằng
	A. −1.	B. 2.	C. 1.	D. 0.
Câu 20:	(Mã 104 - 2017) Hàm số	$y = \frac{2x+3}{x+1}$ có bao nhiêu	ı điểm cực trị?	
	A. 1	B. 3	C. 0	D. 2
Câu 21:	Hàm số nào trong bốn hàn	n số được liệt kê dưới đây	không có cực trị?	
	A. $y = \frac{2x-3}{x+2}$.	B. $y = x^4$.	C. $y = -x^3 + x$.	D. $y = x+2 $.
Câu 22:	Cho hàm số $y = \frac{x^2 + 3}{x + 1}$.	Mệnh đề nào dưới đây đú	ng?	
	A. Cực tiểu của hàm sốC. Cực tiểu của hàm số	_	B. Cực tiểu của hàm sD. Cực tiểu của hàm s	_
Câu 23:	(Chuyên Hùng Vương tổng hoành độ và tung ở		cực đại của đồ thị hàm s	$ \hat{o} y = x^3 - 6x^2 + 9x co$
	A. 5.	B. 1.		D. -1.
Câu 24:	(Chuyên Vĩnh Phúc 201	9) Tìm giá trị cực tiểu y_c	$_{T}$ của hàm số $y = -x^{3} +$	3x-4.

A. $y_{CT} = -6$ **B.** $y_{CT} = -1$ **C.** $y_{CT} = -2$

D. $y_{CT} = 1$

Câu 25: (THPT Ba Đình 2019) Cho hàm số $y = x^4 - 2x^2 + 1$. Xét các mệnh đề sau đây

1) Hàm số có 3 điểm cực trị. 2) Hàm số đồng biến trên các khoảng (-1;0); $(1;+\infty)$.

3) Hàm số có 1 điểm cực trị. 4) Hàm số nghịch biến trên các khoảng $(-\infty; -1)$; (0;1).

Có bao nhiều mênh đề **đúng** trong bốn mênh đề trên?

A. 2.

B. 1.

C. 4.

D. 3.

(THCS - THPT Nguyễn Khuyến 2019) Hàm số $y = \frac{1}{4}x^4 - \frac{1}{3}x^3 - \frac{5}{2}x^2 - 3x + 2019m (m \in \mathbb{R})$ đạt cực tiểu tại điểm:

A. x = 3.

B. x = -3. **C.** x = 1. **D.** x = -1.

(THPT Sơn Tây Hà Nội 2019) Tìm số điểm cực trị của hàm số $y = x^4 - 2x^2$. **Câu 27:**

A. 2.

B. 4.

C. 3.

D. 1.

(**Mã 101, Năm 2017**) Cho hàm số y = f(x) có bảng biến thiên như sau

Đồ thị của hàm số y = |f(x)| có bao nhiều điểm cực trị?

A. 5

B. 3

C. 4

D. 2

DẠNG 3. TÌM M ĐỂ HÀM SỐ ĐẠT CỰC TRỊ TẠI $x = x_0$

Bước 1. Tính $y'(x_0), y''(x_0)$

Bước 2. Giải phương trình $y'(x_0) = 0 \Rightarrow m$?

Bước 3. Thế m vào $y''(x_0)$ nếu giá trị $\begin{bmatrix} y'' > 0 \rightarrow x_0 = CT \\ y'' < 0 \rightarrow x_0 = CD \end{bmatrix}$

	trị thực của m để hàm số có 3 cực trị								
	A. $m > 0$.	B. $m \ge 0$.	C. $m < 0$.	D. $m \le 0$.					
Câu 41:	(THPT Ba Đình 2019) Tìm tất cả các giá trị của tham số m để hàm số $y = x^3 - 3x^2 + 2mx + m$ có cực đại và cực tiểu?								
	A. $m < \frac{3}{2}$.	B. $m < -\frac{3}{2}$.	C. $m \le \frac{3}{2}$.	D. $m > \frac{3}{2}$.					
Câu 42:	(Chuyên Hà Tĩnh - Lần 1 - 2019) Có bao nhiều giá trị nguyên của tham số m để hàm số $y = m^2 x^4 - (m^2 - 2019m)x^2 - 1$ có đúng một cực trị?								
	A. 2019.	B. 2020.	C. 2018.	D. 2017.					
Phươn	DƯỜNG THẮNG ĐỊ (cho y' This Phân tích (bằng cách com buy) Dường thẳng qua 2 đị	ti qua 2 điểm cực trị của chia đa thức y cho y')	a hàm số bậc ba là phần						
Câu 43:	(Mã 123 - 2017) ĐTHS ạ thẳng <i>AB</i> ?	$y = x^3 - 3x^2 - 9x + 1 $ có	hai cực trị A và B . Điển	n nào thuộc đường					
	A. $M(0;-1)$	B. <i>N</i> (1;–10)	C. $P(1;0)$	D. $Q(-1;10)$					
Câu 44:	(Mã 104 - 2017) Tìm giá trị thực của tham số m để đường thẳng $d: y = (2m-1)x+3+m$ vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y = x^3 - 3x^2 + 1$.								
	A. $m = \frac{3}{2}$	B. $m = \frac{3}{4}$	C. $m = -\frac{1}{2}$	D. $m = \frac{1}{4}$					

(THPT Yên Khánh A - Ninh Bình - 2019) Cho hàm số $y = x^3 - 3(m+1)x^2 + 3(7m-3)x$. Gọi

C. 0.

D. Vô số.

S là tập các giá trị nguyên của tham số m để hàm số không có cực trị. Số phần tử của S là

(THPT Hai Bà Trưng - Huế - 2019) Tìm tất cả các giá trị của tham số thực m để hàm số

A. $m \in (-\infty, 6) \cup (0, +\infty)$. **B.** $m \in (-6, 0)$. **C.** $m \in [-6, 0)$. **D.** $m \in [-6, 0]$.

Câu 40: (Quang Trung - Bình Phước - Lần 5 - 2019) Cho hàm số $y = x^4 - 2mx^2 + m$. Tìm tất cả các giá

B. 4.

 $y = mx^3 - 2mx^2 + (m-2)x + 1$ không có cực trị

A. 2.

Câu 39:

Câu 45: Tìm giá trị thực của tham số m để đường thẳng y = (2m-1)x + m + 3 song song với đường thẳng đi qua các điểm cực trị của đồ thị hàm số $y = x^3 - 3x^2 + 1$

A.
$$m = \frac{3}{4}$$
.

B.
$$m = \frac{1}{2}$$
.

C.
$$m = -\frac{3}{4}$$

B.
$$m = \frac{1}{2}$$
. **C.** $m = -\frac{3}{4}$. **D.** $m = -\frac{1}{2}$.

(Chuyên Vĩnh Phúc - 2018) Tìm tất cả các giá trị của tham số m để đồ thị hàm số $y = x^3 + 2x^2 + (m-3)x + m$ có hai điểm cực trị và điểm M(9; -5) nằm trên đường thẳng đi qua hai điểm cực tri của đồ thi.

A.
$$m = -1$$
.

B.
$$m = -5$$
.

$$C_{n} m = 3$$

D.
$$m = 2$$
.

(TT Diệu Hiền - Cần Thơ - 2018) Giả sử A, B là hai điểm cực tri của đồ thi hàm số Câu 48: $f(x) = x^3 + ax^2 + bx + c$ và đường thẳng AB đi qua gốc tọa độ. Tìm giá trị nhỏ nhất của P = abc + ab + c.

A.
$$-\frac{16}{25}$$
.

C.
$$-\frac{25}{9}$$
.

DẠNG 5. TÌM M ĐỂ HÀM SỐ BẬC 3 CÓ CỰC TRỊ THỎA MÃN ĐIỀU KIỆN CHO TRƯỚC

\star Bài toán tổng quát: Cho hàm số $y = f(x; m) = ax^3 + bx^2 + cx + d$. Tìm tham số m để đồ thị hàm số có 2 điểm cực trị x_1 , x_2 thỏa mãn điều kiện K cho trước?

> Phương pháp:

— **Bước 1**. Tập xác định $D = \mathbb{R}$. Tính đạo hàm: $y' = 3ax^2 + 2bx + c$.

— **Bước 2**. Để hàm số có 2 cực trị
$$\Leftrightarrow$$
 $y' = 0$ có 2 nghiệm phân biệt \Leftrightarrow
$$\begin{cases} a_{y'} = 3a \neq 0 \\ \Delta_{y'} = (2b)^2 - 4.3ac > 0 \end{cases}$$

và giải hệ này sẽ tìm được $m ∈ D_1$.

— **Bước 3**. Gọi x_1 , x_2 là 2 nghiệm của phương trình y' = 0. Theo Viét, ta có:

$$\begin{cases} S = x_1 + x_2 = -\frac{b}{a} \\ P = x_1 x_2 = \frac{c}{a} \end{cases}.$$

- **Bước 4**. Biến đổi điều kiện K về dạng tổng S và tích P. Từ đó giải ra tìm được $m \in D_2$.
- **Bước 5**. Kết luận các giá trị m thỏa mãn: $m = D_1 \cap D_2$.

ULuu ý:

- Hàm số bậc 3 không có cực trị $\Leftrightarrow y' = 0$ không có 2 nghiệm phân biệt $\Leftrightarrow \Delta_{y'} \le 0$.
- Trong trường hợp điều kiên K liên quan đến hình học phẳng, tức là cần xác định toa độ 2 điểm cực trị $A(x_1; y_1)$, $B(x_2; y_2)$ với x_1 , x_2 là 2 nghiệm của y' = 0. Khi đó có 2 tình huống thường gặp sau:

- Nếu giải được nghiệm của phương trình y' = 0, tức tìm được x_1 , x_2 cụ thể, khi đó ta sẽ thế vào hàm số đầu đề y = f(x;m) để tìm tung độ y_1, y_2 tương ứng của A và
- Nếu tìm không được nghiệm y' = 0, khi đó gọi 2 nghiệm là x_1 , x_2 và tìm tung độ y_1 , y_2 bằng cách thế vào phương trình đường thẳng nối 2 điểm cực tri.

Dang toán: Tìm m để các hàm số sau có cực tri thỏa điều kiên cho trước (cùng phía, khác **phía** *d*):

Vị trí tương đối giữa 2 điểm với đường thẳng:

- Cho 2 điểm $A(x_A; y_A)$, $B(x_B; y_B)$ và đường thẳng d: ax + by + c = 0. Khi đó:

 Nếu $(ax_A + by_A + c) \cdot (ax_B + by_B + c) < 0$ thì A, B nằm về 2 phía so với đường thẳng d.

 Nếu $(ax_A + by_A + c) \cdot (ax_B + by_B + c) > 0$ thì A, B nằm cùng phía so với đường d.

- Dể hàm số bậc ba y = f(x) có 2 điểm cực trị nằm cùng phía so với trục tung $Oy \Leftrightarrow phương$ trình y' = 0 có 2 nghiệm trái dấu và ngược lại.
- Để hàm số bậc ba y = f(x) có 2 điểm cực trị nằm cùng phía so với trực hoành $Ox \Leftrightarrow đ \hat{o}$ thị hàm số y = f(x) cắt trực Ox tại 3 điểm phân biệt \Leftrightarrow phương trình hoành độ giao điểm f(x) = 0 có 3 nghiệm phân biệt (áp dụng khi nhẩm được nghiệm).

Dạng toán: Tìm m để các hàm số sau có cực trị thỏa điều kiện cho trước (đối xứng và cách đều):

- \star <u>Bài toán 1</u>. Tìm m để đồ thị hàm số có 2 điểm cực trị A, B đối xứng nhau qua đường d:
- **Bước 1**. Tìm điều kiện để hàm số có cực đại, cực tiểu $\Rightarrow m \in D_1$.
- Bước 2. Tìm tọa độ 2 điểm cực trị A, B. Có 2 tình huống thường gặp:
- + Một là y' = 0 có nghiệm đẹp x_1 , x_2 , tức có $A(x_1; y_1)$, $B(x_2; y_2)$.
- + Hai là y' = 0 không giải ra tìm được nghiệm. Khi đó ta cần viết phương trình đường thẳng nối 2 điểm cực trị là Δ và lấy $A(x_1; y_1)$, $B(x_2; y_2) \in \Delta$.
- **Bước 3**. Gọi $I\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$ là trung điểm của đoạn thẳng AB.

 $y = x^3 - 3mx^2 + 27x + 3m - 2$ đạt cực trị tại x_1, x_2 thỏa mãn $|x_1 - x_2| \le 5$. Biết S = (a;b]. Tính T = 2b - a**A.** $T = \sqrt{51} + 6$ **B.** $T = \sqrt{61} + 3$ **C.** $T = \sqrt{61} - 3$ **D.** $T = \sqrt{51} - 6$

A.
$$T = \sqrt{51} + 6$$

B.
$$T = \sqrt{61} + 3$$

C.
$$T = \sqrt{61} - 3$$

D.
$$T = \sqrt{51} - 6$$

A. S = 3.

B. $S = \frac{1}{2}$. **C.** S = 1.

D. S = 2.

Câu 60: (Chuyên Lê Hồng Phong - 2018) Tìm m đề đồ thị hàm số $y = x^4 - 2mx^2 + 1$ có ba điểm cực trị A(0; 1), B, C thỏa mãn BC = 4?

 A_{\bullet} $m = \sqrt{2}$

B. m = 4.

 $C_{n} m = +4$

D. $m = \pm \sqrt{2}$

(Mã 105 -2017) Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số $y = x^4 - 2mx^2$ có Câu 61: ba điểm cực trị tạo thành một tam giác có diện tích nhỏ hơn 1.

A. 0 < m < 1

B. m > 0

C. $0 < m < \sqrt[3]{4}$

D. m < 1

(**Liên Trường - Nghệ An -2018**) Gọi m_0 là giá trị của tham số m để đồ thị hàm số **Câu 62:** $y = x^4 + 2mx^2 - 1$ có ba điểm cực trị tạo thành một tam giác có diện tích bằng $4\sqrt{2}$. Mệnh đề nào sau đây đúng

A. $m_0 \in (-1;0]$.

B. $m_0 \in (-2;-1]$. **C.** $m_0 \in (-\infty;-2]$. **D.** $m_0 \in (-1;0)$.

(CHUYÊN ĐHSPHN - 2018) Gọi A, B, C là các điểm cực trị của đồ thị hàm số Câu 63: $y = x^4 - 2x^2 + 4$. Bán kính đường tròn nội tiếp tam giác *ABC* bằng

A. 1.

R $\sqrt{2} + 1$

 $C_{1}\sqrt{2}-1$

 $\mathbf{D}_{\bullet} \sqrt{2}$

 $(\mathbf{\Phi}\mathbf{\hat{e}}\ \mathbf{Minh}\ \mathbf{Hoa}\ \mathbf{2017})$ Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số $y = x^4 + 2mx^2 + 1$ có ba điểm cực trị tạo thành một tam giác vuông cân

A. $m = \frac{1}{\sqrt[3]{0}}$.

B. m = 1.

C. $m = -\frac{1}{\sqrt[3]{0}}$. **D.** m = -1.

(THPT Minh Châu Hưng Yên 2019) Tìm tất cả các giá trị thực của tham số m để đồ thị hàm Câu 65: số $y = x^4 - 2m^2x^2 + m + 4$ có ba điểm cực trị tạo thành ba đỉnh của một tam giác đều?

A. $m \in \{0; \sqrt{3}; -\sqrt{3}\}$ **B.** $m \in \{0; \sqrt[6]{3}; -\sqrt[6]{3}\}$ **C.** $m \in \{\sqrt[6]{3}; -\sqrt[6]{3}\}$ **D.** $m \in \{-\sqrt{3}; \sqrt{3}\}$

Câu 66: (Chuyên Nguyễn Trãi - Hải Dương - Lần 2 - 2020) Cho hàm số $y = x^4 - 2mx^2 - 2m^2 + m^4$ có đồ thị (C). Biết đồ thị (C) có ba điểm cực trị A, B, C thỏa mãn ABCD là hình thoi với D(0; -3). Số mthuộc khoảng nào sau đây?

A. $m \in \left(\frac{1}{2}; \frac{9}{5}\right)$. **B.** $m \in \left(\frac{9}{5}; 2\right)$. **C.** $m \in \left(-1; \frac{1}{2}\right)$. **D.** $m \in \left(2; 3\right)$.

DẠNG 6. TÌM M ĐỂ HÀM SỐ BẬC 2 TRÊN BẬC 1 CÓ CỰC TRỊ THỎA MẪN YÊU CẦU BÀI TOÁN

Áp dụng tính chất: Nếu x_0 là điểm cực trị của hàm số hữu tỷ $y = \frac{u(x)}{v(x)}$ thì giá trị cực trị tương ứng của

hàm số là.

$$y_0 = \frac{u(x_0)}{v(x_0)} = \frac{u'(x_0)}{v'(x_0)}$$

Câu 67: (Toán Học Tuổi Trẻ Số 5) Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y = \frac{x^2 + 2x + 3}{2x + 1}$.

A. y = 2x + 2.

B. y = x + 1.

C. v = 2x + 1. **D.** v = 1 - x.

(**THPT Nam Trực - Nam Định - 2018**) Cho hàm số $y = \frac{x^2 - 2mx + m + 2}{2x - 2m}$. Để hàm số có cực đại **Câu 68:** và cưc tiểu, điều kiện của tham số m là:

 $\mathbf{A.} \begin{vmatrix} m < -1 \\ m > 2 \end{vmatrix}$

B. -1 < m < 2. **C.** -2 < m < 1. **D.** $\begin{bmatrix} m < -2 \\ m > 1 \end{bmatrix}$.

Câu 69: Giá trị của tham số m để hàm số $y = \frac{x^2 + mx + 1}{x + m}$ đạt cực đại tại điểm $x_0 = 2$ là:

A. m = -1.

B. m = -3. **C.** m = 1.

D. m = 3.

Câu 70: Cho hàm số $y = \frac{x^2 + mx + 1}{x + m}$ (với m là tham số). Tìm tất cả các giá trị của tham số m để hàm số có giá trị cực đại là 7.

A. m = 7.

B. m = 5.

C. m = -9.

D. m = -5.

Gọi S là tập hợp các giá trị thực của tham số m để đồ thị hàm số $y = \frac{x^2 + mx + m^2}{x - 1}$ có hai điểm cực trị A, B. Khi $\angle AOB = 90^{\circ}$ thì tổng bình phương tất cả các phần tử của S bằng:

A. $\frac{1}{16}$.

 $C. \frac{1}{8}$.

D. 16.

<u>DẠNG 7: CỰC TRỊ CÚA HÀM TỔNG VÀ HÀM HƠP</u>

Câu 72: Cho hàm số f(x) có đạo hàm liên tục và xác định trên R, đồ thị hàm số y = f(x) như hình vẽ dưới. gọi S là tập các giá trị nguyên của $m \in [-20; 20]$ để hàm số $y = (f(x) + m)^2$ có đúng 5 điểm cực trị. Số phần tử của tập S là:

A. 20

B. 22

C. 21

D. 19

Câu 73: Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

Hàm số $y = 2[f(x)]^3 - 9[f(x)]^2 + 12f(x) + 2021$ có bao nhiều điểm cực đại?

A. 5.

B. 10.

C. 7.

D. 9.

Câu 74: Cho hàm số f(x) có đạo hàm liên tục xác định trên \mathbb{R} , có đồ thị hàm số y = f(x) như hình vẽ bên dưới. gọi S là tập hợp chứa các giá trị nguyên của tham số m để hàm số $y = (f(x))^3 - m \cdot (f(x))^2 - (2m-3)f(x) + 2021$ có đúng 4 điểm cực trị. Số phần tử của tập S là:

A. 11.

B. 8.

C. 10.

D. 9.

Câu 75: Cho hàm số bậc bốn f(x) có bảng biến thiên như sau:

x	-∞	-1		0		1	+∞
f'(x)	+	0	_	0	+	0	_
f(x)		, 3 \		<u> </u>		≠ ³ ∖	8-8

Số điểm cực tiểu của hàm số $g(x) = [f(x-1)]^2 + 2021$ là

A. 5.

C. 3.

D. 7.

Câu 76: Cho hàm số bậc năm y = f(x) có đồ thị y = f'(x) như hình vẽ dưới đây

Tìm tất cả các giá trị của m để số điểm cực trị của hàm số $g(x) = f(x^2 - 3x + m)$ là 5.

- **A.** $(2;+\infty)$.
- **B.** $\left(-\infty; \frac{17}{4}\right)$. **C.** $\left(-\infty; \frac{9}{4}\right)$. **D.** $\left(\frac{9}{4}; \frac{17}{4}\right)$.

DANG 8 : CỰC TRỊ HÀM SỐ CHỨA DẦU GIÁ TRỊ TUYỆT ĐỐI

- Một số kiến thức cần nắm:
 - 1) Cách vẽ đồ thị hàm số y = |f(x)|:

Cho đồ thị hàm số y=f(x) . Đồ thị hàm số $y=\left|f(x)\right|$ được vẽ bằng cách:

- Giữ nguyên phần đồ thị của hàm số y = f(x) nằm phía trên trục hoành.
- Lấy đối xứng phần đồ thị của hàm số y = f(x) nằm phía dưới trục hoành qua trục hoành đồng thời xóa phần phía dưới trục hoành.

Số điểm cực trị của đồ thị hàm số y = |f(x)|:

• Số cực trị của hàm số y = |f(x)| bằng tổng số cực trị hàm số y = f(x) và số điểm cắt của y = f(x) và trục Ox (không tính điểm tiếp xúc).

2) Cách vẽ đồ thị hàm số y = f(|x|):

Hàm số y = f(|x|) là hàm số chẵn nên đồ thị đối xứng qua trục tung. Đồ thị được vẽ bằng cách:

- Giữ nguyên đồ thị của hàm số $y = f(x), (C_1)$ ứng với $x \ge 0$.
- Với x < 0 được vẽ bằng cách lấy đối xứng phần đồ thị (C_1) qua trục tung.

Số điểm cực trị của đồ thị hàm số y = f(|x|):

Số điểm cực trị của hàm số f(|x|) là: 2a+1 với a là số điểm cực trị dương của hàm số y=f(x) (số điểm cực trị của đồ thị hàm số y=f(x) nằm phía bên phải trục tung).

3) Số điểm cực trị (nếu có) của hàm số y = f(ax+b)+c bằng số điểm cực trị của hàm số y = f(x)

.

4) Đồ thị hàm số có dạng $y = |u(x)| \cdot v(x)$

- Từ đồ thị (C): y = u(x).v(x) suy ra đồ thị (C'): y = |u(x)|.v(x).
- Ta có: $y = |u(x)| \cdot v(x) = \begin{cases} u(x) \cdot v(x) & \text{neu } u(x) \ge 0 \\ -u(x) \cdot v(x) & \text{neu } u(x) < 0 \end{cases}$

Cách vẽ đồ thị hàm số (C') từ đồ thị (C):

- Giữ nguyên miền đồ thị $u(x) \ge 0$ của đồ thị (C): y = f(x).
- Bỏ phần đồ thị miền u(x) < 0 của (C), lấy đối xứng phần đồ thị bị bỏ qua Ox.

Câu 77: Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên

Số điểm cực trị của hàm số f(|x|) bằng

A. 5.

B. 2.

C. 3.

D. 4.

Câu 78: Cho f(x) có đạo hàm $f'(x) = x(x-1)^2(x^2-4)$ số điểm cực trị của hàm số y = f(|x|) là

A. 5.

B. 3.

 \mathbb{C}^{2}

D. 4.

Câu 79: Cho hàm số bậc ba có đồ thị y = f(x) như hình vẽ dưới đây. Tất cả các số thực của tham số m để hàm số y = |f(x) + m| có 5 điểm cực trị là

- **A.** $\begin{bmatrix} m \le -1 \\ m \ge 3 \end{bmatrix}$. **B.** -1 < m < 3. **C.** $\begin{bmatrix} m = -1 \\ m = 3 \end{bmatrix}$.
- **D.** 1 < m < 3.

(Chuyên Vinh – Lần 2). Đồ thị (C) có hình vẽ bên. **Câu 80:**

Tất cả các giá trị của tham số m để hàm số y = |f(x) + m| có ba điểm cực trị là:

- **A.** $m \le -1$ hoặc $m \ge 3$. **B.** $m \le -3$ hoặc $m \ge 1$. **C.** m = -1 hoặc m = 3.
- **Câu 81:** Cho hàm số y = f(x) có đạo hàm $f'(x) = (x^3 2x^2)(x^3 2x)$ với mọi $x \in \mathbb{R}$. Hàm số y = |f(1-2018x)| có nhiều nhất bao nhiều điểm cực trị
 - **A.** 9.

- **B.** 2022.
- **C.** 11.
- **D.** 2018.
- (Đề Tham Khảo 2018) Có bao nhiều giá trị nguyên của tham số m để hàm số **Câu 82:** $y = |3x^4 - 4x^3 - 12x^2 + m|$ có 7 điểm cực trị?
 - A. 5

- **D.** 3
- (**THPT Kinh Môn 2018**) Cho hàm số $y = f(x) = x^3 (2m-1)x^2 + (2-m)x + 2$. Tìm tất cả các giá trị của tham số m để hàm số y = f(|x|) có 5 điểm cực trị.
- **A.** $\frac{5}{4} < m \le 2$. **B.** $-2 < m < \frac{5}{4}$. **C.** $-\frac{5}{4} < m < 2$. **D.** $\frac{5}{4} < m < 2$.

Câu 84: (MĐ 101-2022) Có bao nhiều giá trị nguyên dương của tham số m để hàm số $y = \left| x^4 - 2mx^2 + 64x \right|$ có đúng ba điểm cực trị?

A. 5.

B. 6.

C. 12.

D. 11.

Câu 85: (MĐ 103 2020-2021 – ĐỢT 2) Cho hàm số $y = f(x) = x^4 - 10x^3 + 24x^2 + (4-m)x$. Có bao nhiều giá trị nguyên của m để hàm số g(x) = f(|x|) có đúng 7 điểm cực trị?

A. 25.

B. 22.

C. 26.

D. 21.