Group Theory

Daniel Mao

Copyright \bigodot 2021 Daniel Mao All Rights Reserved.

Contents

1	oup Basics	1			
		Definitions			
	1.2	Properties	1		
	1.3	Sufficient Conditions	2		
2	Nor	Normal Subgroups			
	2.1	Definitions and Equivalent Conditions	5		
	2.2	Properties	5		
3	3 Cosets				
	3.1	Definitions	9		
	3.2	Properties	O		

ii *CONTENTS*

1

Group Basics

1.1 Definitions

Definition (Binary Operation) Let G be a set. We define a **binary operation** on G to be the function * from $G \times G$ to G.

Definition (Group). Let G be a set. Let * be a binary operation. We say that the ordered pair (G, *) is a **group** if it satisfies all of the conditions listed below.

- (1) (Closure) For any two elements a and b in G, $a * b \in G$.
- (2) (Associativity) For any elements a, b, and c in G, a * (b * c) = (a * b) * c.
- (3) (Identity) There exists an element id in G such that for any element a in G, a * id = id * a = a.
- (4) (Invertibility) For any element a in G, there exists an element a^{-1} also in G such that $a*a^{-1}=id$.

Definition (Commutative Group). We say a group is **commutative** if the binary operation on the group is also commutative.

Definition (Finite Group). We say a group is **finite** if the set is a finite set.

1.2 Properties

Proposition 1.2.1 (Uniqueness of identity). Let (G, *) be a group. Then the identity element id of (G, *) is unique.

Proposition 1.2.2 (Uniqueness of Inverse). Let (G,*) be a group. Then for any element a in G, a^{-1} is unique.

2 1. GROUP BASICS

Proposition 1.2.3 (Arithmetic Properties). (1) Let (G, *) be a group. For any element a in G,

$$(a^{-1})^{-1} = a.$$

(2) Let (G,*) be a group. For any elements a and b in G,

$$(ab)^{-1} = b^{-1} * a^{-1}.$$

1.3 Sufficient Conditions

Proposition 1.3.1. The intersection of a collection of subgroups is also a subgroup.

Proof.

Let (G,*) be a group.

Let \mathcal{H} be a collection of subgroups of G.

Say $\mathcal{H} = \{H_{\lambda}\}_{{\lambda} \in \Lambda}$ where Λ is an index set and H_{λ} is a subgroup of (G, *) for any ${\lambda} \in \Lambda$.

Let H denote the intersection of all subgroups in \mathcal{H} .

Let H_{λ} be an arbitrary subgroup in \mathcal{H} .

Since H_{λ} is a group, $id \in H_{\lambda}$.

Since $id \in H_{\lambda}$ for any $\lambda \in \Lambda$, $id \in H$.

Let h_1 and h_2 be arbitrary elements in H.

Since $h_1, h_2 \in H$ and $H \subseteq H_\lambda$, $h_1, h_2 \in H_\lambda$.

Since $h_1, h_2 \in H_\lambda$ and H_λ is a group, $h_1 h_2 \in H_\lambda$.

Since $h_1h_2 \in H_\lambda$ for any $\lambda \in \Lambda$, $h_1h_2 \in H$.

Since $h_1h_2 \in H$ for any elements h_1 and h_2 in H, H is closed under product.

Let h be an arbitrary element in H.

Since $h \in H$ and $H \subseteq H_{\lambda}$, $h \in H_{\lambda}$.

Since $h \in H_{\lambda}$ and H_{λ} is a group, $h^{-1} \in H_{\lambda}$.

Since $h^{-1} \in H_{\lambda}$ for any $\lambda \in \Lambda$, $h^{-1} \in H$.

Since $h^{-1} \in H$ for any element h in H, H is closed under inverse.

Since $id \in H$ and H is closed under product and inverse, H is a subgroup.

Proposition 1.3.2. Let (G, *) be a group. Let S and T be subgroups of G. Then the product ST is a group if and only if the two subgroups permute. i.e., if ST = TS.

Proof.

 $[ST \ \textit{is a group} \implies ST = TS]$

For one direction, assume that ST is a group.

We are to prove that ST = TS.

Let x be an arbitrary element in ST.

Since ST is a group, by definition of group, any element in ST has an inverse in ST.

Since $x \in ST$ and any element in ST has an inverse in ST, in particular, x has an inverse ST. i.e., x^{-1} exists and $x^{-1} \in ST$.

Since $x \in ST$, x = st for some $s \in S$ and $t \in T$.

Since $x^{-1} \in ST$, $x^{-1} = s't'$ for some $s' \in S$ and $t' \in T$.

Since $x^{-1} = s't'$, $x = (x^{-1})^{-1} = (s't')^{-1} = t'^{-1}s'^{-1}$.

Since T is a group, by definition, any element in T has an inverse in T.

Since $t' \in T$ and any element in T has an inverse in T, in particular, t' has an inverse in T. i.e., t^{-1} exists and $t'^{-1} \in T$.

Since S is a group, by definition, any element in S has an inverse in S.

Since $s' \in S$ and any element in S has an inverse in S, in particular, s' has an inverse in S. i.e., s^{-1} exists and $s'^{-1} \in S$.

Since $x = {t'}^{-1} {s'}^{-1}$ and ${t'}^{-1} \in T$ and ${s'}^{-1} \in S$, $x \in TS$.

Since for any $x \in ST$, $x \in TS$, $ST \subseteq TS$.

 $[ST = TS \implies ST \text{ is a group}]$

For the reverse direction, assume that ST = TS.

We are to prove that (ST, *) is a subgroup of (G, *).

Part 0. $ST \subseteq G$.

Part 1. Closure.

Let x_1 and x_2 be two arbitrary elements in ST.

Since $x_1 \in ST$, $x_1 = s_1t_1$ for some $s_1 \in S$ and some $t_1 \in T$.

Since $x_2 \in ST$, $x_2 = s_2t_2$ for some $s_2 \in S$ and some $t_2 \in T$.

Since $x_1 = s_1t_1$ and $x_2 = s_2t_2$, $x_1x_2 = s_1t_1s_2t_2$.

Since $t_1 \in T$ and $s_2 \in S$, $t_1s_2 \in TS$.

Since $t_1s_2 \in TS$ and ST = TS, $t_1s_2 \in ST$.

Since $t_1s_2 \in ST$, $t_1s_2 = s't'$ for some $s' \in S$ and $t' \in T$.

Since $x_2x_2 = s_1t_1s_2t_2$ and $t_1s_2 = s't'$, $x_2x_2 = s_1s't't_2$.

Since (S, *) is a group, it is closed under *.

Since (S, *) is closed under * and $s_1, s' \in S$, in particular, $s_1s' \in S$.

Since (T, *) is a group, it is closed under *.

Since (T, *) is closed under * and $t', t_2 \in T$, in particular, $t't_2 \in T$.

Since $x_2x_2 = s_1s't't_2$ and $s_1s' \in S$ and $t't_2 \in T$, $x_1x_2 \in ST$.

Since $x_1x_2 \in ST$ for any $x_1, x_2 \in ST$, (ST, *) is closed under *.

Part 2. Associativity.

Follows directly from the associativity of * on G.

Part 3. Identity.

Let id be the identity element in (G, *).

Since (S, *) is a subgroup of (G, *), $id \in S$.

1. GROUP BASICS

Since (T, *) is a subgroup of (G, *), $id \in T$.

Since $id \in S, T, id \in ST$.

Since id is the identity element in (G, *) and $ST \subseteq G$, id is the identity element in (ST, *).

Part 4. Invertibility.

Let x be an arbitrary element in ST.

Since $x \in ST$, x = st for some element s in S and some element t in T.

Since S is a group, any element in T has an inverse in T.

Since $s \in S$ and any element in S has an inverse in S, in particular, s has an inverse in S. i.e., s^{-1} exists and $s^{-1} \in S$.

Since T is a group, any element in T has an inverse in T.

Since $t \in T$ and any element in T has an inverse in T, in particular, t has an inverse in T. i.e., t^{-1} exists and $t^{-1} \in T$.

Define $x' := t^{-1}s^{-1}$.

Since $t^{-1} \in T$ and $s^{-1} \in S$ and $x' = t^{-1}s^{-1}$, $x' \in TS$.

Since ST = TS and $x' \in TS$, $x' \in ST$.

Since x = st and $x' = t^{-1}s^{-1}$,

$$xx' = stt^{-1}s^{-1}$$

= $s * (t * t^{-1}) * s^{-1}$
= $s * id * s^{-1}$
= $s * s^{-1}$
= id .

Since x = st and $x' = t^{-1}s^{-1}$,

$$x'x = t^{-1}s^{-1}st$$

$$= t^{-1} * (s^{-1} * s) * t$$

$$= t^{-1} * id * t$$

$$= t^{-1} * t$$

$$= id.$$

Since $x' \in ST$ and xx' = id and x'x = id, by definition of inverse, x' is the inverse of x in (ST, *).

Normal Subgroups

2.1 Definitions and Equivalent Conditions

Definition (Normal Subgroup). Let (G,*) be a group. Let (N,*) be a subgroup of (G,*). We say that (N,*) is a **normal subgroup** of (G,*) if (N,*) is invariant under conjugation. i.e., if $gng^{-1} \in N$ for any $g \in G$ and any $n \in N$. Or equivalently, if $gNg^{-1} \subseteq N$ for any $g \in G$.

Definition (Normal Subgroup). Let (G, *) be a group. Let (N, *) be a subgroup of (G, *). We say that (N, *) is a **normal subgroup** of (G, *) if the left and right cosets of N for any element in G coincide.

Proposition 2.1.1. The two definitions of normal subgroup are equivalent.

Proof.

2.2 Properties

Proposition 2.2.1. The product of a normal subgroup with any other subgroup is a subgroup.

```
Proof. Let (G,*) be a group. Let (N,*) be a normal subgroup of (G,*). Let (H,*) be an arbitrary subgroup of (G,*). We are to prove that HN=NH.
```

[Forward Direction. $HN \subseteq NH$]

For one direction, let x be an arbitrary element in HN.

Since $x \in HN$, x = hn for some $h \in H$ and some $n \in N$.

Since (H,*) is a group, by definition of group, any element in H has an inverse in H.

Since $h \in H$ and any element in H has an inverse, in particular, h has an inverse in H. i.e., h^{-1} exists and $h^{-1} \in H$.

Define $n' := hnh^{-1}$.

Since $n' = hnh^{-1}$, $x = hn = hnh^{-1}h = n'h$.

Since (H, *) is a subgroup of (G, *), $H \subseteq G$.

Since $h \in H$ and $H \subseteq G$, $h \in G$.

Since (N, *) is a normal subgroup of (G, *), by definition of normality, $gng^{-1} \in N$ for any $g \in G$ and any $n \in N$.

Since $h \in G$ and $n \in N$ and $n' = hnh^{-1}$ and $gng^{-1} \in N$ for any $g \in G$ and any $n \in N$, in particular, $n' \in N$.

Since $n' \in N$ and $h \in H$ and x = n'h, $x \in NH$.

Since $x \in NH$ for any $x \in HN$, $NH \subseteq HN$.

[Backward Direction. $HN \subseteq NH$]

For the reverse direction, let x be an arbitrary element in NH.

Since $x \in NH$, x = nh for some $n \in N$ and some $h \in H$.

Since (H, *) is a group, by definition of group, any element in H has an inverse in H.

Since $h \in H$ and any element in H has an inverse, in particular, h has an inverse in H. i.e., h^{-1} exists and $h^{-1} \in H$.

Define $n' := h^{-1}nh$.

Since $n' = h^{-1}nh$, $x = nh = hh^{-1}nh = hn'$.

Since (H, *) is a subgroup of (G, *), $H \subseteq G$.

Since $h \in H$ and $H \subseteq G$, $h \in G$.

Since (N, *) is a normal subgroup of (G, *), by definition of normality, $g^{-1}ng \in N$ for any $g \in G$ and any $n \in N$.

Since $h \in G$ and $n \in N$ and $n' = h^{-1}nh$ and $g^{-1}ng \in N$ for any $g \in G$ and any $n \in N$, in particular, $n' \in N$.

Since $n' \in N$ and $h \in H$ and x = hn', $x \in HN$.

Since $x \in HN$ for any $x \in NH$, $HN \subseteq HN$.

[Summary.]

Since (H, *) and (N, *) are subgroups of (G, *) and HN = NH, (HN, *) and (NH, *) are subgroups of (G, *).

Proposition 2.2.2. The product of two normal subgroups is also a normal subgroup.

Proof.

2.2. PROPERTIES 7

Let (G,*) be a group.

Let (N, *) and K, *) be two arbitrary normal subgroups of (G, *).

We are to prove that NK is a normal subgroup of (G, *).

Since (N, *) and (K, *) are both normal, (NK, *) is a subgroup of (G, *).

Let x be an arbitrary element in NK.

Since $x \in NK$, x = nk for some $n \in N$ and some $k \in K$.

Let g be an arbitrary element in G.

Since (G, *) is a group and $g \in G$, g^{-1} exists and $g^{-1} \in G$.

Since (N, *) is a normal subgroup of (G, *), $gng^{-1} \in N$.

Since (K, *) is a normal subgroup of (G, *), $gkg^{-1} \in K$.

Since $gng^{-1} \in N$ and $gkg^{-1} \in K$, $gng^{-1}gkg^{-1} \in NK$.

Since $gxg^{-1} = gnkg^{-1} = gng^{-1}gkg^{-1}$ and $gng^{-1}gkg^{-1} \in NK$, $gxg^{-1} \in NK$.

Since $gxg^{-1} \in NK$ for any $x \in NK$ and any $g \in G$, by definition of normal subgroup, (NK, *) is a normal subgroup of (G, *).

Cosets

3.1 Definitions

Definition (Left Coset). Let (G, *) be a group. Let (H, *) be a subgroup of (G, *). Let g be an element in G. We define the **left** coset of H determined by g, denoted by gH, to be the set given by

$$gH := \{gh : h \in H\}.$$

Definition (Right Coset). Let (G, *) be a group. Let (H, *) be a subgroup of (G, *). Let g be an element in G. We define the **right** coset of H determined by g, denoted by Hg, to be the set given by

$$Hg := \{ hg : h \in H \}.$$

3.2 Properties

Proposition 3.2.1. All cosets have the same cardinality.