目次

1	共通する前提	2
2	確率変数 X と A の演算	3
2.1	X^A	3
2.2	A^X	3
2.3	$\log_A X$	3
2.4	$\log_X A$	3
3	確率密度関数が連続値の確率変数 X,Y の演算 X^Y	4
3.1	不定積分と $-\infty$ から ∞ までの定積分 \dots	4
3.2	定積分	4
4	確率密度関数が離散値の確率変数 X,Y の演算 X^Y	5
4.1	$Z = X^Y$	5
4.2	$Z = \log(X)$	5

1 共通する前提

内容の正しさは自信ない。特に数学記号の使い方。

これ以降、共通して用いる変数・関数

f(x), g(y), h(z):確率密度関数

X,Y,Z:確率変数

A:(確率変数ではない) 変数および定数

i, j, k, N, M, L:自然数

X = f(x), Y = g(y), Z = h(z)

特に断りがなければ、X,Y,Z は独立な確率変数

特に断りがなければ、x,y,z は独立な変数

2 確率変数 X と A の演算

ここの章、まだ編集中

2.1 X^{A}

$$Y=X^A$$
 のとき。 $g(y)=rac{f(x/(Ax^{A-1}))}{Ax^{A-1}} \qquad (y=x^A)$

2.2 A^{X}

$$Y = A^X$$
 のとき。 $g(y) = (y = A^x)$

2.3 $\log_A X$

$$\log_A X$$
 のとき。 $g(y) = (y = \log_A x)$

2.4 $\log_X A$

$$\log_X A$$
 のとき。 $g(y) = (y = \log_x A)$

3 確率密度関数が連続値の確率変数 X,Y の演算

 $Z = X^Y$ について。

3.1 不定積分と $-\infty$ から ∞ までの定積分

$$h(z) = \int \frac{1}{|yz^{1-1/y}|} f(z^{1/y}) g(y) \, dy$$

$$h(z) = \int_{-\infty}^{\infty} \frac{1}{|yz^{1-1/y}|} f(z^{1/y}) g(y) \, dy$$

3.2 定積分

x の積分区間は $x_0 \le x \le x_1$

y の積分区間は $y_0 \le y \le y_1$

$$h(z) = \begin{cases} \int_{-\infty}^{\infty} \frac{1}{|yz^{1-1/y}|} f(z^{1/y}) g(y) \, dy & if \ \exists y, \ y \in \{y_0 \le y \le y_1 \mid x_0 \le z^{1/y} \le x_1\} \\ 0 & otherwise, \end{cases}$$

4 確率密度関数が離散値の確率変数 X,Y の演算

確率変数 X,Y がともに離散値の時を考える章。

この章のそれぞれの節における共通事項の一覧。

$$h(z_k) = \sum_{\{i,j\}_k} f(x_i)g(y_j)$$
 $i = 1, 2, 3 \cdots, N$ $j = 1, 2, 3 \cdots, M$ $k = 1, 2, 3 \cdots, L$ (L は $1 \le L \le N + M$ を満たす自然数。) $x_{i+1} = x_i + d_i$ ($d_i > 0$) $y_{j+1} = y_j + d_j$ ($d_j > 0$) $z_{k+1} = z_k + d_k$ ($d_k > 0$)

4.1
$$Z = X^Y$$

 $\{i, j\}_k = \{(i, j) | z_k = x_i^{y_j}\}$

4.2
$$Z = \log(X)$$

$${i,j}_k = {(i,j)|z_k = \log(x_i)}$$