

Europäisches Patentamt

European Patent Office

Office europeen des brevets

(11) EP 1 043 395 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 11.10.2000 Bulletin 2000/41

(21) Application number: 98961610.7

(22) Date of filing: 25.12.1998

(51) Int. Cl.⁷: **C12N 15/12**, C12N 15/63, C12Q 1/02, C12P 21/08, C07K 14/705, C07K 16/28, C12N 1/21, C12N 1/19, C12N 5/12

(86) International application number: PCT/JP98/05967

(87) International publication number:WO 99/33978 (08.07.1999 Gazette 1999/27)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

(30) Priority: 26.12.1997 JP 36118797

(71) Applicant:
BANYU PHARMACEUTICAL CO., LTD.
Chuo-ku, Tokyo 103-8416 (JP)

(72) Inventors:

 ITADANI, Hiraku, Banyu Pharmaceutical Co., Ltd Tsukuba-shi, Ibaraki 300-2611 (JP) TAKIMURA, Tetsuo,
 Banyu Pharmaceutical Co., Ltd
 Tsukuba-shi, Ibaraki 300-2611 (JP)

 NAKAMURA, Takao, Banyu Pharmaceutical Co., Ltd Tsukuba-shi, Ibaraki 300-2611 (JP)

 OHTA, Masataka, Banyu Pharmaceutical Co., Ltd Tsukuba-shi, Ibaraki 300-2611 (JP)

(74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

(54) NOVEL GUANOSINE TRIPHOSPHATE (GTP)-BINDING PROTEIN CONJUGATE TYPE RECEPTOR PROTEINS

(57) The present invention provides a full-length cDNA encoding a rat G protein-coupled receptor protein, which was isolated by screening cDNA libraries originating from rat thalamus and hypothalamus. It also provides human cDNA corresponding to the rat cDNA. Use of these G protein-coupled receptor proteins makes it possible to screen ligands and also drug-candidate compounds capable of regulating signal transduction from receptors.

Description

Technical Field

[0001] The present invention relates to a novel guanosine triphosphate binding protein-coupled receptor protein, a DNA encoding said protein, and a method for screening drug-candidate compounds using them.

Background Art

[0002] Many hormones and neurotransmitters regulate physiological functions through specific receptor proteins located on the cell membrane. Many of these receptor-proteins transduce signals into the cell by activating a guanosine triphosphate binding protein (occasionally referred to as "G protein" below) that is coupled to them. These receptor proteins are thereby named as G protein-coupled receptors. Since they have a common structure composed of seven transmembrane regions, they are also generally called "seven-transmembrane receptor proteins."

[0003] G protein-coupled receptors, which are expressed on the surface of cells *in vivo* and functioning cells of tissues, play an extremely important role as a target of molecules such as hormones, neurotransmitters, and biologically active compounds, which regulate the functions of these cells and tissues. Therefore, G protein-coupled receptor proteins have received great attention as targets in drug-development.

G protein-coupled receptors reported so far include, muscarinic acetylcholine receptors M1, M2, M3, and M4 (Peralta E.G. et al., EMBO J. 6:3923-3929 (1987)), muscarinic acetylcholine receptor M5 (Bonner T. I. et al., Neuron 1:403-410 (1988)), adenosine receptor A1 (Libert F. et al., Science 244:569-572 (1989)), α1A adrenoreceptor (Bruno J.F. et al., Biochem. Biophys. Res. Commun. 179:1485-1490 (1991)), β1 adrenoreceptor (Frielle T. et al., Proc. Natl. Acad. Sci. USA 84:7920-7924 (1987)), angiotensin receptor AT, (Takayanagi R. et al., Biochem. Biophys. Res. Commun. 183:910-916 (1992)), endothelin receptor ET_A (Adachi M. et al., Biochem. Biophys. Res. Commun. 180:1265-1272 (1991)), gonadotropin releasing factor receptor (Kaker S.S. et al., Biochem. Biophys. Res. Commun. 189:289-295 (1992)), histamine receptor H₂ (Ruat M. et al., Proc. Natl. Acad. Sci. USA 87:1658-1672 (1992)), neuropeptide Y receptor Y1 (Larhammar D. et al., J. Biol. Chem. 267:10935-10938 (1992)), interleukin-8 receptor IL8RA (Holmes W.E. et al., Science 2563:1278-1280(1991)), dopamine receptor D₁ (Mahan L.C. et al., Proc. Natl. Acad. Sci. USA 87:2196-2200 (1990)), metabolic glutamate receptor mGluR1 (Masu M. et al., Nature 349:760-765 (1991)), and somatostatin receptor 30 SS₁ (Yamada Y. et al., Proc. Natl. Acad. Sci. USA 89:251-255) (for reference, Watson S. and Arkinstall S., The Gprotein Linked Receptor FactsBook, Academic Press (1994)). Examples of developed medicines aimed at G protein-coupled receptors are: terazosine hydrochloride (antihypertensive agent, α1 adrenoreceptor antagonist), atenolol (antiarrhythmia, β1 adrenoreceptor antagonist), dicyclomine hydrochloride (antispasmodic agent, acetylcholine receptor antagonist), ranitidine hydrochloride (drug for peptic ulcers, histamine receptor H2 antagonist), trazodone hydrochloride (antidepressant, serotonin receptor 5-HT1B antagonist), and buprenorphine hydrochloride (analgesic agent, opioid receptor k agonist) (for reference, Stadel J.M. et al., Trends Pharm. Sci. 18:430-437 (1997); Medicine Handbook 5th edition, Yakugyo-Jiho).

[0005] The hypothalamus, a part of the brain which governs a number of programs that trigger a particular response, contributes to the homeostasis of the internal environment by means of a variety of outputs, as the center of the autonomic nervous system. For instance, it releases hormones such as thyrotropic hormone releasing hormone, gonadotropic hormone releasing hormone, and growth hormone releasing hormone, and thereby regulates the entire endocrine system through the actions of these hormones on the specific receptors expressed in target cells. These outputs in the hypothalamus are thought to be mediated by receptors expressed in the hypothalamus and compounds reacting with them. Therefore, elucidation of the relationship between the compounds regulating the hypothalamus outputs and their specific receptors expressed in the hypothalamus is extremely important in developing novel medicines for the treatment of diseases arising from endocrine disorders.

Disclosure of the Invention

[0006] The present invention provides a novel G protein-coupled receptor protein expressed in the brain (in particular, thalamus and hypothalamus, etc.). It also provides a method for screening ligands and drug-candidate compounds using said receptor protein.

[0007] The inventors first selected a region highly conserved in known G protein-coupled receptor proteins, then designed primers corresponding to the region, and performed reverse transcriptase-polymerase chain reaction (RT-PCR) using mRNA obtained from rat thalamus and hypothalamus. Next, amplified clones were randomly selected, and their partial nucleotide sequences were determined. To remove known clones from the nucleotide sequence determined-clones, colony-hybridization was performed using as a probe, cDNA clones judged to be encoding a known G protein-coupled receptor protein by homology search. Negative clones that failed to hybridize with any probe were

selected. Using probes prepared based on the nucleotide sequence of the negative clones, the inventors screened cDNA libraries from rat thalamus and hypothalamus, and succeeded in isolating a full-length cDNA encoding a rat G protein-coupled receptor. They also succeeded in isolating a full-length human cDNA corresponding to the rat cDNA. Furthermore, northern blot analysis of the tissue specificity of the gene expression showed that these genes are specifically expressed in the brain.

[0008] These G protein-coupled receptors would be extremely useful in screening for ligands and compounds that regulate the signal transduction from receptors, which are anticipated to be utilized as novel medicines.

[0009] Thus, the present invention relates to novel G protein-coupled receptor proteins that are expressed in the brain, DNAs encoding them, and a method for screening ligands and compounds that are drug-candidate compounds using the proteins.

[0010] Specifically, the invention relates to:

15

20

25

30

35

40

45

- (1) a guanosine triphosphate binding protein-coupled receptor protein comprising the amino acid sequence of SEQ
- ID NO: 1, or said amino acid sequence in which one or more amino acids are replaced, deleted, or added;
- (2) a guanosine triphosphate binding protein-coupled receptor protein comprising the amino acid sequence of SEQ
- ID NO: 20, or said amino acid sequence in which one or more amino acids are replaced, deleted, or added;
- (3) a guanosine triphosphate binding protein-coupled receptor protein encoded by a DNA which hybridizes with a DNA comprising the nucleotide sequence of SEQ ID NO: 2;
- (4) a guanosine triphosphate binding protein-coupled receptor protein encoded by a DNA which hybridizes with a DNA comprising the nucleotide sequence of SEQ ID NO: 21;
- (5) a partial peptide of the receptor protein as described in any one of (1) to (4);
- (6) a DNA encoding the receptor protein as described in any one of (1) to (4) or the partial peptide as described in (5);

170

- (7) the DNA described in (6), wherein said DNA comprising the nucleotide sequence of SEQ ID NO: 2 or NO: 21;
- (8) a vector containing the DNA as described in any one of (5) to (7);
- (9) a transformant carrying the vector as described in (8);
- (10) a method of producing the receptor protein as described in any one of (1) to (4) or the partial peptide as described in (5), the method comprising culturing the transformant as described in (9);
- (11) a method of screening for a ligand of the receptor protein as described in any one of (1) to (4), the method comprising exposing a test compound to the receptor protein as described in any one of (1) to (4) or the partial peptide as described in (5), and selecting a compound that binds to said protein or partial peptide;
- (12) a method of screening for a compound that inhibits the binding between the receptor protein as described in any one of (1) to (4) and its ligand, the method comprising,
 - (a) exposing a ligand to the receptor protein as described in any one of (1) to (4) or the partial peptide as described in (5) in the presence of a test compound, and detecting the binding activity between said protein or partial peptide and the ligand, and.
 - (b) comparing the binding activity detected in (a) with that in the absence of the test compound, and selecting a compound that reduces the binding activity between said protein or partial peptide and the ligand;
- (13) a kit for screening a compound that inhibits the binding between the receptor protein as described in any one of (1) to (4) and its ligand, the kit comprising the receptor protein as described in any one of (1) to (4) or the partial peptide as described in (5); and
- (14) an antibody which binds to the receptor protein as described in any one of (1) to (4).

[0011] "G protein-coupled receptor protein" herein refers to a receptor protein that transduces intracellular signals by activating G proteins. "Ligand" refers to a natural compound capable of binding to a G protein-coupled receptor and inducing signal transduction. "Agonist" refers to a compound having a bioactivity similar to that of the ligands of G protein-coupled receptors, including both natural and artificially synthesized compounds. "Antagonist" refers to a compound capable of inhibiting the bioactivity of a ligand of a G protein-coupled receptor, including both natural and artificially synthesized compounds. "Protein" and "peptide" as used herein include their salts as well.

[0012] The present invention relates to a novel G protein-coupled receptor protein. The nucleotide sequence of the cDNA encoding rat G protein-coupled receptor "BG2" isolated in the present invention is shown as SEQ ID NO; 2, and the amino acid sequence of the "BG2" protein is shown as SEQ ID NO: 1. The nucleotide sequence of the cDNA encoding human G protein-coupled receptor "BG2" isolated herein is shown as SEQ ID NO: 21, and the amino acid sequence of the human "BG2" protein is shown as SEQ ID NO: 20.

[0013] Rat "BG2" protein has 26%, 25%, and 29% homology to known G protein-coupled receptors; bovine muscarinic acetylcholine receptor M3 protein (Lee P.H. et al., Biochim. Biophys. Acta 1223:151-154 (1994)), human mus-

carinic acetylcholine receptor M5 protein (Bonner T.I. et al., Neuron 1:403-410 (1988)), and mouse α 2A adrenoreceptor (Link R. et al., Mol. Pharmacol. 42:16-27 (1992)), respectively. The result of the hydrophobicity plot analysis showed that rat "BG2" protein contains hydrophobic regions (seven transmembrane regions) characteristic to G protein-coupled receptors. In addition, the coding region of the rat "BG2" cDNA has a size of approximately 1.2 kb, a size similar to that of the known G protein-coupled receptors.

[0014] Human "BG2" protein has 32%, 28%, and 27% homology to known G protein-coupled receptors; human α -2C-1 adrenoreceptor (Regan J.W. et al., Proc. Natl.Acad.Sci. USA 85:6301-6305 (1988)), mouse β -1 adrenoreceptor (Jasper J.R. et al., Biochim. Biophys. Acta 1178:307-309 (1993)), and human muscarinic acetylcholine receptor M3 protein (Peralta E.G. et al., EMBO J 6:3923-3929 (1987)), respectively.

[0015] These results suggest that the "BG2" proteins belong to the G protein-coupled receptor family, which further suggests that they participate in signal transduction through the activation of G proteins upon ligand binding.

[0016] Furthermore, the result of a northern blot analysis showed that the genes encoding the "BG2" proteins are specifically expressed in the brain. *In situ* hybridization detected a strong expression of the rat "BG2" gene in the hippocampus and spinal cord, and also in the hypothalamus, thalamus, and cerebellum.

[0017] The hippocampus plays an important role in memory and learning, the cerebellum regulates the body motions, and the hypothalamus serves as the center of the autonomic nervous system. Thus, the "BG2" proteins are assumed to be involved in the regulation of these functions. Therefore, the "BG2" proteins and genes, or an agonist or antagonist that can regulate the "BG2" protein function(s) can be used in the treatment of disabilities in memory and learning, or the control of the autonomous nervous system, such as regulation of, blood pressure, digestion, body temperature, and food-intake etc.

[0018] "BG2" protein may be prepared as natural protein, and also as recombinant protein by using recombinant DNA technology. A natural protein may be prepared, for instance, by extracting tissues such as the thalamus and hypothalamus, speculated to express "BG2" protein, and performing immunoaffinity chromatography using anti-"BG2" antibody as described later on. On the other hand, the recombinant protein can be prepared by culturing transformant cells carrying DNA encoding "BG2" protein as described later on.

[0019] One skilled in the art can prepare an altered protein having a function (transduction of intracellular signals through G protein activation) equivalent to that of the natural protein by introducing modifications such as replacement of any amino acid contained in the natural rat or human "BG2" protein (SEQ ID NO: 1, or SEQ ID NO: 20, respectively) according to known methods. Mutations of amino acids in a protein may occur naturally. The G protein-coupled receptor protein of the present invention includes such mutant proteins having an amino acid sequence altered by replacement, deletion or addition, having a function equivalent to that of the natural protein. The methods of altering amino acids, known to one skilled in the art, include, the Kunkel method (Kunkel T.A. et al., Methods Enzymol. 154:367-382 (1987)), double primer method (Zoller M.J. and Smith M., Methods Enzymol. 154:329-350 (1987)), cassette mutation (Wells et al., Gene 34:315-323 (1985)), and megaprimer method (Sarkar G. and Sommer S.S., Biotechniques 8:404-407 (1990)). The number of mutated amino acids in a functionally equivalent protein is generally not more than 10% of all the amino acids, favorably not more than 10 amino acids, and more favorably not more than 3 amino acids (for instance, one amino acid).

[0020] One skilled in the art can also use hybridization techniques (Hanahan D. and Meselson M., Methods Enzymol. 100:333-342 (1983); Benton W.D. and Davis R.W., Science 196:180-182 (1977)) to isolate a highly homologous gene from various other species based on the sequence of the rat or human "BG2" cDNA (SEQ ID NO: 2, or SEQ ID NO; 21, respectively) or a part of it, and use the isolated DNA to obtain a protein a functionally equivalent to these "BG2" proteins. Thus, it is possible for one skilled in the art to prepare a protein functionally equivalent to the rat or human "BG2" proteins, which is encoded by a DNA that hybridizes to the rat or human "BG2" cDNA. The G protein-coupled receptor protein of the present invention includes these proteins as well. Species used for isolation of a functionally equivalent protein include mouse, rabbit, sheep, bovine, dog, and pig, for instance, and particularly the brain tissues such as thalamus and hypothalamus are suitable.

[0021] DNA encoding a functionally equivalent protein to the rat or human "BG2" proteins has usually high homology to the nucleotide sequence of the rat or human "BG2" cDNA (SEQ ID NO: 2, and NO: 21). High homology generally means a sequence identity of not less than 70%, favorably not less than 80%, and more favorably not less than 90% at the nucleotide level. The sequence identity can be determined by the FASTA program.

[0022] Hybridization to isolate a DNA having high homology to the rat or human "BG2" cDNA is usually performed in "6x SSC, 40% formamide, at 25°C" followed by a wash in "1x SSC at 55°C," favorably in "6x SSC, 40% formamide, at 37°C" followed by a wash in "0.2x SSC at 55°C," and more favorably in "6x SSC, 50% formamide, at 37°C" followed by a wash in "0.1x SSC at 62°C." One skilled in the art may easily obtain a hybridization condition similar to the above conditions by appropriately selecting factors such as the dilution rate of SSC, the formamide concentration, and temperature.

[0023] The present invention also includes a partial peptide of the above-described G protein-coupled receptor protein. The partial peptide of the present invention includes, for instance, those corresponding to the N-terminal region of

the G protein-coupled receptor protein, which can be utilized to prepare an antibody. The partial peptide of the invention has a length of at least 15 amino acids, and favorably 20 amino acids.

Furthermore, the present invention relates to a DNA encoding the G protein-coupled receptor protein of the invention as described above or its partial peptide. The DNA encoding the G protein-coupled receptor protein of the invention or its partial peptide includes cDNA, genomic DNA, and synthetic DNA, but is not limited as far as it encodes the protein or the peptide. cDNA encoding the G protein-coupled receptor of the invention can be obtained by screening a cDNA library from a tissue expressing the receptor (for instance, thalamus and hypothalamus) by using as a ³²Plabeled probe, the cDNA as described in SEQ ID NO: 2 or NO: 21, or a part of it, complementary RNA to the DNA, or a synthetic oligonucleotide comprising a part of the cDNA. Alternatively, cDNA may be cloned by synthesizing an oligonucleotide corresponding to the nucleotide sequence of the cDNA, and amplifying cDNA from an appropriate tissue (such as thalamus and hypothalamus) by PCR. Genomic DNA can be obtained by screening a genomic library by hybridization using as a ³²P-labled probe, the cDNA as described in SEQ ID NO: 2 or NO: 21, or a part of it, complementary RNA to the DNA, or a synthetic oligonucleotide comprising a part of the cDNA. Alternatively, it may be cloned by synthesizing an oligonucleotide corresponding to the nucleotide sequence of the cDNA, and amplifying genome DNA by PCR. Synthetic DNA can be prepared by chemically synthesizing oligonucleotides comprising a part of the nucleotide sequence of SEQ ID NO: 2 or NO: 21, annealing them into a double strand, and ligating them using DNA ligase (Khorana H.G. et al., J. Biol. Chem. 251:565-570 (1976); Goeddel D.V. et al., Proc. Natl. Acad. Sci. USA 76:106-110 (1979)).

[0025] These DNA can be used for producing recombinant proteins. Namely, it is possible to prepare the G protein-coupled receptor protein of the invention as a recombinant protein by inserting a DNA encoding the receptor protein (DNA as described in SEQ ID NO: 2 or NO: 21, for instance) into an appropriate expression vector, culturing a transformant obtained by introducing the vector into an appropriate cell, and purifying the expressed protein. Since the G protein-coupled receptor protein of the invention is a receptor protein, it is possible to prepare it in a form expressed on the cell membrane.

[0026] Specifically, if the host is *Escherichia coli*, the plasmid vectors such as pET-3 (Rosenburg A.H. et al., Gene 56:125-135 (1987)) and pGEX-1 (Smith D.B. and Johnson K.S., Gene 67:31-40 (1988)) may be used. *E.coli* can be transformed by the Hanahan method (Hanahan D., J. Mol. Biol. 166:557-580 (1983)), electroporation (Dower W.J. et al., Nucleic Acids Res. 16:6127-6145 (1988)), and such. If the host is fission yeast (Schizosaccharomyces pombe), a plasmid vector such as pESP-1 (Lu Q. et al., Gene 200:135-144 (1997)) is used. Yeast can be transformed by spheroplast fusion (Beach D. and Nurse P., Nature 290:140 (1981)), and lithium acetate method (Okazaki K. et al., Nucleic Acids Res. 18:6485-6489 (1990)), etc.

[0027] If the host is a mammalian cell, such as Chinese Hamster ovary-derived CHO cells and human HeLa cells, vectors such as pMSG (Clontech) are used. Recombinant DNA is introduced into mammalian cells by calcium phosphate method (Graham F.L. and van derEb A.J., J. Virology 52:456-467 (1973)), DEAE-dextran method (Sussman D.J. and Milman G., Mol. Cell. Biol. 4:1641-1643 (1984)), lipofection (Felgner P.L. et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987)), and electroporation (Neumann E. et al., EMBO J. 1:841-845 (1982)), etc. If the host is an insect cell, a baculovirus vector such as pBacPAK8/9 (Clontech) can be used. Transformation of insect cells is done by the methods described in the literature (BioTechnology 6:47-55 (1980)).

[0028] Recombinant proteins expressed in host cells can be purified by known methods. The proteins can also be synthesized as fusion proteins tagged with histidine residues at the N-terminus, or fused to glutathione-S-transferase (GST), and purified by using their binding ability toward a metal chelating resin, or a GST affinity resin (Smith M.C. et al., J. Biol. Chem. 263:7211-7215 (1988)), respectively. For instance, when the vector pESP-1 is used, the protein of interest is synthesized as a fusion protein with GST, which can be purified using GST affinity resin. The fusion protein may be digested with thrombin, or blood coagulating factor Xa to liberate the protein of interest.

[0029] Moreover, DNA encoding the G protein-coupled receptor protein of the present invention can be used in gene therapy of diseases that arise from a mutation of the protein. When used in gene therapy, the DNA can be introduced into human cells using retrovirus vectors (Danos O. and Mulligan R.C., Proc. Natl. Acad. Sci. USA 85:6460-6464 (1988); Dranoff et al., Proc. Natl. Acad. Sci. USA 90:3539-3543 (1993)), or adenovirus vectors (Wickham T.J. et al., Cell 73:309-319 (1993)), etc. To administer the vector to patients, transplantation of bone marrow, subcutaneous injection, and intravenous injection can be used (Asano S., Protein Nucleic acid and Enzyme 40:2491-2495 (1995)).

[0030] Furthermore, the present invention relates to an antibody that is capable of binding to the G protein-coupled receptor protein of the invention. Antibodies against the G protein-coupled receptor protein can be prepared by known methods in the art (for instance, refer to Shin-Seikagaku-Jikken-Kouza I: Protein I 389-406, Tokyo-Kagaku-Doujin). For instance, polyclonal antibodies are prepared as follows. An appropriate dose of the above protein or its partial peptide is administered into immune animals such as rabbits, guinea pigs, mice, or chickens. Administration may be performed together with the adjuvant (such as FIA or FCA) that promotes antibody production, and usually performed every couple of weeks. The titer of antibodies can be increased by performing multiple immunizations. After the final immunization, antisera are obtained by withdrawing blood from immune animals. Polyclonal antibodies are purified from antisera by

ammonium sulfate precipitation, fractionation by anion exchange chromatography, or affinity chromatography with either Protein A or immobilized antigen. Monoclonal antibodies are prepared as follows. The G protein-coupled receptor proteins of the invention or its partial peptide is administered into immune animals as described above. After the final immunization, their spleens or lymph nodes are excised. Then, antigen-producing cells are recovered from the spleens or the lymph nodes, and fused with myeloma cells using polyethylene glycol etc. to produce hybridomas. Desired hybridomas are selected by screening, and their culture supernatant is used to prepare monoclonal antibodies. Monoclonal antibodies can be purified by ammonium sulfate precipitation, fractionation by anion exchange chromatography, or affinity chromatography with either Protein A or immobilized antigen. Antibodies prepared thereby can be used not only in affinity purification of the G protein-coupled receptor protein of the invention, but also for the diagnosis or antibody treatment of diseases arising from the abnormal expression of the receptors, or detection of the expression level of the receptors.

[0031] If used for antibody treatment, humanized antibodies or human antibodies are preferable. Humanized antibodies, in case of mouse-human chimeric antibodies, are prepared by isolating the gene encoding the antibody against the G protein-coupled receptor protein from the producing mouse cells, replacing the constant region of the H chain of the antibody with that of the human IgE, and introducing it into mouse myeloma J558L cells (Neuberger M.S. et al., Nature 314:268-270 (1985)). Human antibodies can be prepared by immunizing mice, whose immune system is replaced with that of human, with the G protein-coupled receptor protein.

Furthermore, the present invention relates to a method of screening ligands of the G protein-coupled receptor protein of the invention. The method includes such processes as exposing a test compound to the G protein-coupled receptor protein or its partial peptide, and selecting compounds that are capable of binding to the proteins or the peptide. Compounds to be tested include known compounds such as acetylcholine, adenosine, adrenaline, noradrenaline, angiotensin, bombesin, bradykinin, C5a., anaphylatoxin, calcitonin, cannabinoids, chemokines, cholecystokinin, dopamine, endothelin, formylmethionylpeptide, GABA, galanin, glucagon, glutamate, glycopeptide hormone, histamine, 5-hydroxytryptophan, leucotriene, melanocortin, neuropeptide Y, neurotensin, odorant, opioid peptide, opsin, parathyroid hormone, platelet activating factor, prostanoid, somatostatin, tachykinin, thrombin, thyrotropin releasing hormone, vasopressin, and oxytocin (Watson S. and Arkinstall S., G protein Linked Receptor FactsBook, Academic Press (1994)), and also other purified proteins, expressed products of genes (including libraries), extracts of tissues or cells in which the ligand is stipulated to be expressed (the brain, thalamus, and hypothalamus etc.), and the culture medium of the cells. The G protein-coupled receptor proteins may be used in a form expressed in desired cells (including transformants genetically engineered to express the proteins) or on the cell surface, in a form of the membrane fractions of the cells, or in a form bound to an affinity column. If necessary, test compounds may be labeled appropriately. Methods for labeling include radioisotope labeling, and fluorescence labeling, but not limited thereto. The binding between the G protein-coupled receptor proteins and test compounds can be examined by detecting the label added to the compound (for instance, measuring the radioactivity or fluorescence intensity), or using as an index, intracellular signaling triggered by the compound binding to the G protein-coupled receptor protein (such as G protein activation, the change in the concentration of Ca2+ or cAMP, phospholipase C activation, and the change in pH). Specific methods can be employed as described in the literatures (Cell Calcium 14:663-671 (1993); Analytical Biochemistry 226:349-354 (1995); J. Biol. Chem. 268:5957-5964 (1993); Cell 92:573-585 (1998); Nature 393:272-273 (1998)), and unexamined published Japanese patent application (JP-A) No. Hei 9-268). Alternatively, the binding may be detected by measuring the activity of the reporter gene using two-hybrid system (Zervos et al., Cell 72:223-232 (1994); Fritz et al., Nature 376:530-533 (1995)).

[0033] The present invention also relates to a method of screening for a compound which can inhibit the binding between the G protein-coupled receptor proteins of the invention and their ligands. The method includes processes of (a) exposing the ligand to the G protein-coupled receptors or their partial peptides in the presence of test compound, and detecting the binding ability between the ligand and the proteins or peptides, and (b) comparing the ability detected in (a) with that in the absence of the compound, and selecting compounds which are capable of decreasing the binding ability. Compounds to be tested include proteins, peptides, non-peptide compounds, artificially synthesized compounds, extracts of tissues and cells, sera, but not limited thereto. The G protein-coupled receptor proteins may be used in a form expressed in desired cells (including transformants genetically engineered to express the proteins) or on the cell surface, in a form of the membrane fractions of the cells, or in a form bound to an affinity column. If necessary, tested compounds may be labeled appropriately. Methods for labeling include radioisotope labeling, and fluorescence labeling, but not limited thereto. The binding between the G protein-coupled receptor proteins and test compounds can be examined by detecting the label added to the compound (for instance, measuring the radioactivity or fluorescence intensity), or using intracellular signaling, as an index, that are triggered by the compound binding to the G protein-coupled receptor protein (such as G protein activation, the change in the concentration of Ca²⁺ or cAMP, phospholipase C activation, and the change in pH). Specific methods can be employed as described in the literatures (Cell Calcium 14:663-671 (1993); Analytical Biochemistry 226:349-354 (1995); J. Biol. Chem. 268:5957-5964 (1993); Cell 92:573-585 (1998); Nature 393:272-273 (1998)), and JR-A Hei 9-268). If the result of the detection showed that the binding

activity in the presence of a test compound is lower than that in the absence of the compound, the compound is judged to be capable of inhibiting the binding between the G protein-coupled receptors or their partial peptides and their ligands. These compounds include those capable of triggering the intracellular signaling through binding to the G protein-coupled receptor (agonist), and those not having such activity (antagonist). Agonists have similar bioactivities to those of the ligands of the G protein-coupled receptors. On the other hand, antagonists inhibit the bioactivities of the ligands. Therefore, these agonists and antagonists are useful as medicinal components for treatment of diseases arising from disorders in the signaling pathway mediated by the G protein-coupled receptors.

[0034] Furthermore, the present invention relates to a screening kit for compounds that inhibit the binding between the G protein-coupled receptor proteins and their ligands. The G protein-coupled receptor proteins or their partial peptides may be in a form expressed in desired cells (including transformants genetically engineered to express the protein) or on the cell surface, in a form of membrane fractions of the cell, or in a form bound to an affinity column. Components of the kit of the invention may include, other than the above described receptor protein samples, ligand samples (both labeled and unlabeled), and buffers for the reaction between the ligand and the receptor protein, and wash solutions. Labels to be added to the ligands include radioisotope and fluorescence, for instance. The kit of the invention can be used as described in JP-A Hei 9-268.

Brief Description of the Drawings

[0035]

20 20

25

30

Figure 1 shows the hydrophobicity plot of the mouse BG2 protein. The seven hydrophobic regions (transmembrane regions) that are characteristics of the G protein-coupled receptor proteins are indicated by the numbers from 1 to 7. The numbers in the bottom indicate those of the amino acid residues in the "BG2" protein.

Figure 2 shows the result of northern blot analysis of the tissue specific expression of the human and mouse BG2 genes.

Figure 3 shows the result of *in situ* hybridization analysis of the location of the mouse "BG2" gene expression in the brain.

Figure 4 shows the result of *in situ* hybridization analysis of the location of the mouse "BG2" gene expression in the spinal cord. "Sense" and "Antisense" indicate the results using sense RNA probe (not hybridizing with mRNA; negative control), and antisense RNA probe (hybridizing with mRNA), respectively.

Best Mode for Carrying out the Invention

[0036] The present invention is illustrated in detail below with reference to examples, but is not to be construed as being limited thereto.

Example 1: Isolation of a gene encoding a rat G protein-coupled receptor

[0037] The G protein-coupled receptors share a characteristic structure composed of seven transmembrane regions, and the amino acid sequences of the transmembrane regions and the adjacent regions are well conserved. The present inventors first compared the nucleotide sequences of the second and the seventh transmembrane domains, which are highly conserved, with known G protein-coupled receptors: mouse neuropeptide Y receptor Y1 (GenBank Accession Number Z18280), rat Y1 (Z11504), human Y1 (M84755), mouse neuropeptide Y receptor Y4 (U40189), rat Y4 (Z68180), human Y4 (Z66526), and mouse neuropeptide Y receptor Y6 (U58367), and synthesized novel sense and antisense primers, as described in SEQ ID NO: 3 and NO: 4, respectively.

3.5

[0038] Next, single stranded cDNA was synthesized from poly(A)*RNA prepared from rat thalamus and hypothalamus using the RNA-PCR kit (TaKaRa), and PCR was performed using the two primers. Specifically, poly(A)*RNA was prepared from rat thalamus and hypothalamus using Fasttrack 2.0 kit (Invitrogen). Then, 75 ng of the poly(A)*RNA was used to synthesize complementary DNA according to the protocol accompanying the RNA-PCR kit (TaKaRa). PCR amplification was performed using all the cDNA. The reaction mixture comprising each 0.15 mM dNTPs, 1.5 mM MgCl₂, 0.025 U/μl rTaq polymerase (TaKaRa), each 0.5 μM degenerated primer Fg (SEQ ID NO: 3) and Rb (SEQ ID NO: 4), and enzyme accompanying 10x PCR buffer was prepared making a total of 130 μl, and aliquoted into six 20 μl fractions. PCR was performed with the Pertier thermal cycler PTC200 (MJ Research) under conditions as follows: a single cycle of 94°C for 2 min, followed by 35 cycles of 94°C for 30 sec, 48°C for 1 min, 72°C for 1 min 30 sec, and then a single cycle of 72°C for 8 min. After PCR, the six reaction-solutions were combined, and the amplified products were purified using the Wizard PCR purification kit (Promega), and then eluted with 30 μl TE. 2 μl of the TE eluate was used for cloning into the pCR2.1 vector of the TOPO TA cloning kit (Invitrogen). XL1-Blue cells were used as the host cell and transformed using the *E.coli* pulser (BioRad). From the resulting transformants, 5,760 colonies having white or light blue

color were randomly selected using the gene library construction system BioPick (BioRobotics), and inoculated into fifteen 384-well plates containing LB media supplemented with 100 μ g/ml of ampicillin. Clones were cultured at 37°C overnight, and replica plated onto a filter on top of a LB agar plate containing 100 μ g/ml ampicillin and 25% glycerol, and another filter on top of a LB agar plate containing 100 μ g/ml ampicillin, for preparing a glycerol stock, and colony hybridization, respectively, using a gene library replicating system BioGrid (BioRobotics).

Since the obtained PCR clones were expected to contain multiple overlapping clones of the NPY receptor cDNA, 80 clones out of the 5,760 clones were randomly selected, and their nucleotide sequences were partially determined. To determine the nucleotide sequence, plasmid DNA purified by the plasmid automatic isolating system PI100sigma (Kurabo) was used as a template. The sequence reactions were performed using the dye-primer-cycle sequencing kit FS (Perkin Elmer), and the reaction products were separated by electrophoresis using the DNA sequencer 377 (Perkin Elmer). The homology search of the obtained sequence using the blast program of the Wisconsin package (Genetic Computer Group) showed that 29 out of the 80 clones were the cDNAs encoding the coiled-coil like protein 1 (GeneBank Accession Number U79024) while 17 clones were those of the neuropeptide Y receptor Y1 (Z11504). Then, these two cDNA fragments were used as a probe for hybridization with the filters containing a library of the degenerated PCR amplified fragments. Probes were prepared by amplifying the insert of the respective clones by PCR, purifying the products using the Wizard PCR purification kit (Promega), and labeling them with $[\alpha^{-32}P]$ dCTP using the Prime-It II random primer labeling kit (Stratagene). Colony hybridization was performed according to the standard method (Sambrook et al., Molecular Cloning: A laboratory manual 2nd edition (1989)). Colonies that were negative for either the coiled-coil like protein 1 or the neuropeptide Y receptor Y1 were selected and their partial nucleotide sequences were determined. For DNA sequencing, the insert fragment of each clone was amplified by PCR from the culture medium, purified using the PCR product purification kit (Amersham), and used as a template. The sequence reactions were performed using the dye-primer-cycle sequencing kit FS (Perkin Elm. 1), and the reaction products were separated by electrophoresis using the DNA sequencer 377 (Perkin Elmer). The obic ned sequences were analyzed by the homology search using the blast program of the Wisconsin package (Genetic Computer Group), and, as a result, a clone which has significant homology to the muscarinic acetylcholine receptor M5 (GeneBank Accession Number M22926) was found. The clone has been deposited at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology.

Name of the depositary institution: National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, MITI.

Address of the depositary institution: 1-1-3 Higashi, Tsukuba, Ibaraki 305-8566, Japan.

Date of deposit: 12/25/1997.

30

Accession Number: FERM BP-6575

[0040] Next, in order to isolate the full-length cDNA of the gene, cDNA libraries were prepared from rat thalamus and hypothalamus. cDNA was synthesized according to the protocol accompanying the cDNA synthesizing kit (Stratagene), and the vector pEF1x and the host XL1-blue MRF' (Stratagene) were used. The pEF1x is a refined derivative of the pcDNA3 (Invitrogen) prepared as follows.

(1) Preparation of the human EF1a promoter (GeneBank Accession Number J04617)

[0041] PCR was performed using human genomic DNA with primers (SEQ ID NO: 6/ CGAGGATCCGTGAGGCTC-CGGTGCCCGTC; SEQ ID NO: 7/ CGGGTAAGCTTCACGACACCTGAAATGGAAGA). The products were digested with BamHI (TaKaRa) and HindIII (TaKaRa), and subcloned into the plasmid vector pUC19 (TaKaRa). The resulting plasmid was digested with XhoI, blunt-ended with the Klenow fragment (TaKaRa), and self-ligated using the DNA ligation kit (TaKaRa). The resulting plasmid was digested with BamHI and HindIII, and the insert was recovered.

(2) Alteration of the pcDNA3

[0042] The pcDNA3 was digested with Mlul (TaKaRa), blunt-ended with the Klenow fragment (TaKaRa), and self-ligated using the DNA ligation kit. The resulting plasmid was digested with AfIIII (New England Biolabs) and Smal (TaKaRa), blunt-ended with the Klenow fragment (TaKaRa), and self-ligated using the DNA ligation kit. Then, the obtained plasmid was digested with BgIII (TaKaRa) and HindIII, and the fragment depleted of the CMV promoter was recovered, and ligated with the insert fragment as described in (1) using the DNA ligation kit to construct the pEF1x.

[0042] Next, the guelectide sequence of the cDNA fragment was used to synthesize plinging cleating probe (SEQ ID).

[0043] Next, the nucleotide sequence of the cDNA fragment was used to synthesize oligonucleotide probe (SEQ ID NO: 8/ CCTTCTGCATCCCATTGTACGTACC), and multiple clones were obtained from the above cDNA libraries from rat thalamus and hypothalamus according to the protocol of the gene trapper cDNA positive selection system (GIBCO BRL). Then, colony hybridization was performed using the cDNA insert of the above isolated clone (FERM BP-6574)

as a probe, and a positive clone was obtained. This clone has been deposited at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology.

Name of the depositary institution: National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, MITI.

Address of the depositary institution: 1-1-3 Higashi, Tsukuba, Ibaraki 305-8566, Japan.

Date of deposit: 12/25/1997. Accession Number: FERM BP-6574

[0044] The insert fragment of the clone was of 2.7 kb. Plasmid DNA was prepared by the QIAprep Midi Kit (QIA-GEN), and the complete nucleotide sequence was determined using the shotgun cloning method (Sambrook et al.., Molecular Cloning: A laboratory manual 2nd edition (1989)). cDNA fragmentation was performed using the closed sonifier biomaterial treating system Biorupter (Tousou Denki), and the DNA fragments were separated by electrophoresis on a 2% agarose gel. Fragments of around 0.6 kb were purified using the gene clean spin kit (bio101), blunt-ended with T4 DNA polymerase (TaKaRa), and cloned into the Hincll-BAP treated pUC118 vector, XL1-Blue was used as a host cell, and transformed using the *E.coli* pulser (BioRad). The obtained shotgun clones were sequenced using the dye-primer cycle sequencing kit FS (Perkin Elmer), or the dye-terminator cycle sequencing kit (Perkin Elmer). The resulting sequences were combined and edited to get the complete nucleotide sequence using the DNA sequencing software Sequencher (Hitachi Software). The complete nucleotide sequence is composed of 2700 bp, and turned out to be encoding a protein of 413 amino acids (SEQ ID NO: 5). Because there is a stop codon in the 5' region of the open reading frame, the cDNA is supposed to include the entire coding region (SEQ ID NO: 2). When this sequence was translated into the amino acid sequence, the hydrophobicity plot identified seven transmembrane regions from 1 to 7 (Figure 1).

[0045] In addition, the open reading frame size was approximately 1.2 kb, which is similar to that of the known G protein-coupled receptors. G protein-coupled receptor proteins have common features in their amino acid sequences, and thus form a protein family. As a result of the homology search using the amino acid sequence encoded by the isolated cDNA, the encoded protein was found to be a novel receptor protein having a homology of 26%, 25%, and 29% to known G protein-coupled receptors: bovine muscarinic acetylcholine receptor M3 protein (Lee P.H. et al., Biochim. Biophys. Acta 1223:151-154 (1994)), human muscarinic acetylcholine receptor M5 protein (Bonner T.I. et al., Neuron 1:403-410 (1988)), and mouse a2A adrenoreceptor (Link R. et al., Mol. Pharmacol. 42:16-27 (1992)), respectively.

Example 2: The isolation of the human G protein-coupled receptor gene

[0046] The obtained rat sequence was subjected to EST search to reveal a fragment of the human homologue (gene bank NID: 946030 and NID: 901756). Human fetal brain cDNA was amplified by PCR using the specific primers IF01 (SEQ ID NO: 9/ CTTCCGCCGGGCCTTCACCAA) and IR02 (SEQ ID NO: 10/ ACAGACACGGCGGGGCTCAC) (probe 1). A human \(\tilde{L}\) EMBL3 SP6/T7 genomic library (Clontech) of a size of 1.2x10⁶ pfu was screened using probe 1 according to standard procedure plaque hybridization procedures. Two positive clones were thus isolated. The obtained phage-clones were digested with SacI, and three bands of a clone were subcloned. These fragments, termed I1 (SEQ ID No: 11), I3 (SEQ ID No: 12) and I5 (SEQ ID No: 13), were sequenced and a hypothetical sequence was speculated by comparing with the rat homologue. I1 and I3 were subjected to PCR amplification using specific primers YS03 (SEQ ID NO: 14/ TGAACGCTTCGGGGGCGCTG) and YS05 (SEQ ID NO: 15/ GAGATGGCGAGGTTGAGCAGG), YS12 (SEQ ID NO: 16/ GGCTCCAAGCCATCGGCGTC) and YS14(SEQ ID NO: 17/ CTCACTTCCAGCAGTGCTCC) and the PCR products were termed probe 2 and probe 3, respectively. Human hypothalamus cDNA (1.3 x 10⁶ phage) was plated at a density of 5.6 x 10⁴ pfu/150mm plate. The obtained sub-pools were checked by PCR using the primers YS03 and YS05. One positive sub-clone was screened in the same method as the screening of the genomic library, using probe 2. One cDNA clone containing 5'UTR to TM5 was obtained and named cDNA clone 1.

[0047] Probe 4 was amplified by PCR from cDNA clone 1 using the primers YS07 (SEQ ID NO: 18/ GCCTCCG-CACCCAGAACAAC) and YS10 (SEQ ID NO: 19/ TGCGCCTCTGGATGTTCAG). Phase screening of the human hippocampus library (3x10⁶ pfu) was done in the same method as the genomic library, using probe 3 and probe 4. A few clones were obtained and the longest one, termed cDNA clone 2, was sequenced. It has the region between TM2 and 3'UTR. cDNA clone 1 was digested by SacII, and the 3.3kb band, which contained vector and the 5'-end region, was treated by shrimp alkaline phosphatase. cDNA clone 2 was also digested by SacII, and the 1.7kb fragment was ligated into the 3.3kb fragment from cDNA clone 1. The clone into which this ligated fragment was inserted has been deposited at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology.

Name of the depositary institution: National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, MITI.

Address of the depositary institution: 1-1-3 Higashi, Tsukuba, Ibaraki 305-8566, Japan.

Date of deposit: 12/17/1998. Accession Number: FERM BP-6609

[0048] Human "BG2" cDNA nucleotide sequence is shown in SEQ ID NO: 21, and the amino acid sequence of the protein encoded by the said cDNA in SEQ ID NO: 20.

[0049] Human "BG2" protein had 32%, 28%, and 27% homology to known G protein-coupled receptors; human α -2C-1 adrenoreceptor (Regan J.W. et al., Proc. Natl. Acad. Sci. USA 85:6301-6305 (1988)), mouse β -1 adrenoreceptor (Jasper J.R. et al., Biochim. Biophys. Acta 1178:307-309 (1993)), and human muscarinic acetylcholine receptor M3 protein (Peralta E.G. et al., EMBO J. 6:3923-3929 (1987)), respectively.

Example 3: Northern blot analysis

[0050] Probe 4 was labeled with ³²Pγ-dCTP (Amersham, Prime It II) and used as cDNA probe for the detection of human "BG2". Human Multiple Tissue Northern (MTN) Blots Membrane with Express HybriTM was purchased from Clontech. After prehybridization of the membrane at 68°C for 30 min, it was hybridized with the probe at 68°C for 1 hr (final concentration of the probe was 1.5 x 10⁶cpm/ml.) The blot was rinsed with 2 x SSC containing 01% SDS at 42°C for 30 min, and the final wash was done at 50°C for 30 min in 0.1 x SSC containing 0.1% SDS. The blot was then exposed at -80°C for 2.5 days to Kodak autoradiographic film.

[0051] For the detection of the mouse "BG2," probe was prepared by PCR amplifying using the rat "BG2" cDNA as a template with sense primer MF2 (SEQ ID NO: 22/ TGCATCCCATTGTACGTNCC), and antisense primer MR1 (SEQ ID NO: 24/ TGCTCTGGGACACCATCTTC), purifying the amplified products by electrophoresis on an agarose gel, and labeling them as above described for human gene.

[0052] Blotting membrane used was the Rat MTN (Multiple Tissue Northern) blot (Clontech). Hybridization was performed at 42°C overnight in hybridization buffer (50% formamide, 4x SSPE, 1% SDS, 0.5% BLOTTO, and 100 µg/ml salmon sperm DNA). The membrane was washed at 65°C in 0.1x SSC containing 0.1% SDS, and then exposed to the Kodak autoradiography film at -80°C overnight.

[0053] The result showed that the human and rat "BG2" genes are strongly expressed particularly in the brain (Fig. 2).

Example 4: In situ Hybridization

30

40

[0054] Adult male Sprague-Dawley rats (Charles River Japan) aged 13-18 weeks were anesthetized with inhalation of ether, connected to a rotary pump and infused with chilled 4% paraformaldehyde in phosphate buffer (pH7.2) via a cannula inserted into the left ventricle. After perfusion, brain, pituitary and spinal cord were removed and dissected to sagittal or coronal sections. The tissue specimens were postfixed with the same fixative overnight at 4°C. The following process was carefully done to avoid RNA contamination. Tissue specimens were embedded in paraffin wax in a routine manner, then paraffin sections were cut into a thickness of 6 µm by rotary microtome (Model HM 355; MICROM Laborgerate GmbH). The sections were stored in moisture free condition at -20°C until proceeded to *in situ* hybridization.

[0055] For preparation of rat BG2 sense and antisense RNA probes, the cDNA fragment, amplified by PCR from MP-21 plasmid DNA using a sense primer MF2 (SEQ ID NO:22/ TGCATCCCATTGTACGTNCC) and antisense primer MR3 (SEQ ID NO:23/ ATCATTAGGAGCGTGTANGG), was cloned into pZErO-2 vector (Invitrogen). The RNA probes were labeled with digoxigenin using DIG RNA Labeling Kit (Boehringer Mannheim). Paraffin sections were de-paraffinized with xylene and transferred to distilled water after rinsing with graded ethyl alcohol. *In situ* Hybridization Reagents (ISHR, Code No. 316-01951; Nippon Gene) were used as reagents without digoxigenin-labeled RNA. The sections were incubated with two changes of phosphate buffer saline(PBS;ISHR 1) for 1 min and 10 min. The sections were treated with proteinase K (ISHR 6) for 10 min at 37°C. Acetylation was done with acetylation buffer (ISHR 3) containing acetic anhydride (ISHR 4) for 15 min, followed by quenching with PBS/glycine buffer (ISHR 2) for 20 min at room temperature, rinsed twice with 4 x SSC (ISHR 5) for 10 min and then rinsed with PBS buffer for 10 min. After pre-hybridization with 50% formamide/2 x SSC for 30 min at room temperature, hybridization was performed for 16 hr at 42 °C using digoxigenin-labeled RNA probe (1 μg/ml).

[0056] Post hybridization washing was performed twice 50% formamide/2 x SSC for 10 min at 42°C. Then the sections were treated with RNase A (ISHR10)/NET buffer (ISHR 9) for 30 min at 37°C after rinsing with NET buffer (ISHR 9) for 5 min at 37°C. After washing twice with 0.1 x SSC buffer (ISHR 11) for 20 min, the sections were transferred and labeled digoxigenin was detected using the Digoxigenin Detection Kit (Boehringer Manheim). Then the sections were rinsed with 100 mM Tris-Hcl, 150 mM NaCl containing buffer (Buffer 1) for 1 min at room temperature then incubated with blocking reagent (Buffer 2) for 30 min at room temperature. The sections were incubated with anti-digoxigenin alka-

line phosphatase-labeled antibody for 60 min at room temperature. After washing with Buffer 1 for 15 min and Buffer 3 for 2 min at room temperature, the solutions were incubated with NBT/X-phosphate solution diluted with Buffer 3 for 12-14 hr at room temperature. The sections were mounted with glycerol or Permount after washing with Buffer 4.

[0057] As a result, as shown in Figures 3 and 4, BG2 cDNA probe was strongly hybridized to the hippocampus and the spinal cord. Hybridization of a medium extent was also detected in hypothalamus and cerebellum.

Industrial Applicability

[0058] The present invention has provided novel G protein-coupled receptor proteins specifically expressed in the brain, and their genes. Use of the receptors makes it possible to screen their ligands and compounds that are candidates for medicines. These ligands and candidate compounds would be useful in the diagnosis and treatment of diseases arising from disorders of signal transduction pathway mediated by the G protein-coupled receptor of the invention.

SEQUENCE LISTING

3	<110> BANYU PHARMACEUTICAL CO., LTD.
10	<120> GUANOSINE TRIPHOSPHATE (GTP) BINDING PROTEIN-COUPLED RECEPTOR PROTEIN
	<130> B1-902FCT
15	<140> <141>
20	<150> JP 1997-361187 <151> 1997-12-26
	<160> 24
	<170> Patentin Ver. 2.0
30	<210> 1 <211> 413 <212> PRT <213> Rattus norvegicus
35	<pre><400> 1 Met Glu Arg Ala Pro Pro Asp Gly Leu Met Asn Ala Ser Gly Thr Leu 1 5 10 15</pre>
40	Ala Gly Glu Ala Ala Ala Gly Gly Ala Arg Gly Phe Ser Ala Ala 20 25 30
45	Trp Thr Ala Val Leu Ala Ala Leu Met Ala Leu Leu Ile Val Ala Thr 35 40 45
	Val Leu Gly Asn Ala Leu Val Met Leu Ala Phe Val Ala Asp Ser Ser 50 55 60
50	Leu Arg Thr Gln Asn Asn Phe Phe Leu Leu Asn Leu Ala Ile Ser Asp 65 70 75 80

	Phe Leu Val Gly Ala Phe Cys Ile Pro Leu Tyr Val Pro Tyr Val Leu	
	85 90 95	
5	mus tou Val	
	Thr Gly Arg Trp Thr Phe Gly Arg Gly Leu Cys Lys Leu Trp Leu Val	
	100 105 110	
	a guy Yel Dhe Ban Tlo Val Leu Tle	
10	Val Asp Tyr Leu Leu Cys Ala Ser Ser Val Phe Asn Ile Val Leu Ile	
	115 120 125	
	Ser Tyr Asp Arg Phe Leu Ser Val Thr Arg Ala Val Ser Tyr Arg Ala	
	140	
15	130 135	
	Gln Gln Gly Asp Thr Arg Arg Ala Val Arg Lys Met Ala Leu Val Trp	
	145 150 155 160	
20	742	
20	Val Leu Ala Phe Leu Leu Tyr Gly Pro Ala Ile Leu Ser Trp Glu Tyr	
•	165 170 175	
25	Leu Ser Gly Gly Ser Ser Ile Pro Glu Gly His Cys Tyr Ala Glu Phe	
	180 185 190	
	Phe Tyr Asn Trp Tyr Phe Leu Ile Thr Ala Ser Thr Leu Glu Phe Phe	2
30	195 200 205	
	The Lou Act	_
	Thr Pro Phe Leu Ser Val Thr Phe Phe Asn Leu Ser Ile Tyr Leu Asn	•
	210 215 220	
35	The Low Arm Cly Cly Arm Cly Ala Gl	v
	Ile Gln Arg Arg Thr Arg Leu Arg Leu Asp Gly Gly Arg Glu Ala Gl	0
	225 230 235	
	Pro Glu Pro Pro Pro Asp Ala Gln Pro Ser Pro Pro Pro Ala Pro Pr	0
40	245 250 255	
	243	
	Ser Cys Trp Gly Cys Trp Pro Lys Gly His Gly Glu Ala Met Pro Le	:u
	260 265 270	
45		
	His Ser Ser Gly Ser Ser Ser Arg Gly Thr Glu Arg Pro Arg Ser Le	ъп
	275 280 285	
50	Lys Arg Gly Ser Lys Pro Ser Ala Ser Ser Ala Ser Leu Glu Lys A	rg
	290 295 300	

	Met	Lys	Met	Val	Ser	Gln	Ser	Ile	Thr	Gln	Arg	Phe	Arg	Leu	Ser	Arg	
	305					310					315					320	
5																	
	Asp	Lvs	Lys	. Val	Ala	Lys	Ser	Leu	Ala	Ile	Ile	Val	Ser	Ile	Phe	Gly	
					325	•				330					335		
					•••												
10	* ***	~		. 21	· D	~. -	mb-	Tou	T 011	Wot	710	T10	N-~		23.0	0.00	
	Leu	Cys	, III	Ala		ıyı	1111	Deu		wér	116		A. y		VIG	Cys	
				340					345					350			
																	•
15	His	Gly	Ar	Cys	Ile	Pro	Asp	Tyr	Trp	Tyr	Glu	Thr	Ser	Phe	Trp	Leu	
15			35	5				360					365				
	Leu	Tr	Al.	a Asr	Ser	Ala	Val	Asn	Pro	Val	Leu	Tyr	Pro	Leu	Сув	His	
		37	0				375					380					
20																	
	Tyr	Se	r Ph	e Arg	, Arg	Ala	Phe	Thr	Lys	Leu	Leu	Cys	Pro	Glr	Lys	Leu	
	385	,				390					395	;	-			400	
25	Tire	374	1 61	n Pro	n Uie	, G1v	, 500	· T.en	. Gli	. 61+	. (%)	: T	Tare				
	БĀЗ	, va	1 61	H FI		_	Je.	, pec	. 010				, Ly.	'			
					405	•				410	,						
30																	
	<23	L0>	2														
	<21	L1>	1239)													
	<22	L2>	DNA														
35	<2	13>	Ratt	us n	orve	gicus	3										
55																	
	<2	20>															
	<2	21>	CDS														
				(12	301												
40	~2.		(-/	\ 12	331												
			_														
	<4	00>	2														
	at	g g	ag c	gc gc	g cc	g cc	c ga	c gg	g ct	g at	g aa	c gc	g tc	g gg	c ac	t ctg	48
45	Me	t G	lu A	rg Al	la Pr	o Pr	o As	p Gl	y Le	u Me	t As	n Al	a Se	r Gl	y Th	r Leu	
	1				5					10					15	į.	
	gc	c g	ga g	ag go	g gc	g ga	t go	a gg	rc gg	g gc	g cg	jc gg	c tt	c to	g go	t gcc	96
50																la Ala	
			-	20					25					3(

14

	t g g	acc	gct	gtc	ctg	gct	gc g	ctc	atg	gcg	ctg	ctc	atc	gtg	gcc	aca	144
	Trp	Thr	Ala	Val	Leu	Ala	Ala	Leu	Met	Ala	Leu	Leu	Ile	Val	Ala	Thr	
5			35					40					45				
							-										
	gta	ctg	ggc	aac	gcg	ctg	gtc	atg	ctc	gcc	ttc	gtg	gcg	gat	tcg	agc	192
	Val	Leu	Gly	Asn	Ala	Leu	Val	Met	Leu	Ala	Phe	Val	Ala	Asp	Ser	Ser	
10		50					55					60					
	ctc	cgc	ACC	cag	aac	aac	ttċ	ttt	ctg	ctc	aac	ctc	gcc	atc	tcc	gac	240
	Leu	Arg	Thr	Gln	Asn	Asn	Phe	Phe	Leu	Leu	Asn	Leu	Ala	Ile	Ser	Asp	-
15	65					70					75					80 .	
	ttc	ctc	gtg	ggt	ÇCC	ttc	tgc	atc	cca	ttg	tac	gta	ccc	tat	gtg	ctg	288
	Phe	Leu	Val	Gly	Ala	Phe	Cys	Ile	Pro	Leu	Tyr	Val	Pro	Tyr	Val	Leu	
20					85					90					95		
	acc	ggc	cgt	tgg	acc	ttc	ggc	cgg	ggc	ctc	tgc	aag	ctg	tgg	ctg	gtg	336
	Thr	Gly	Arg	Trp	Thr	Phe	Gly	Arg	Gly	Leu	Суз	Lys	Leu	Trp	Leu	Val	
25				100					105					110			
	gta	gac	tac	cta	ctg	tgt	gcc	tcc	ccg	gtc	ttc	aac	atc	gta	CEC	atc	384
	Val	Asp	Tyr	Leu	Leu	Cys	Ala	Ser	Ser	Val	Phe	Asn	Ile	Val	Leu	Ile	
30			115					120					125				
	ago	tat	gac	ega	ttc	ctg	tca	gto	act	cga	gct	gto	tcc	tac	agg	gcc	432
	Ser	Tyr	Asp	Arg	Phe	Leu	Ser	Val	Thr	Arg	Ala	Val	Ser	Tyr	Arg	Ala	
35		130)				135					140					
	cag	çaç	999	gac	acg	aga	cgg	gco	gtt	cgg	aag	atg	gca	ctg	gtg	tgg	480
	Glr	Glr	Gly	Asp	Thr	Arg	Arg	Ala	Val	Arg	Lys	Met	Ala	Leu	Val	Trp	
40	145	5				150					155	j				160	
	gtg	cto	geo	tto	cto	ctg	tat	ggg	cct	gcc	ato	ctç	g agt	tgg	gag	tac	528
	Va.	l Lei	ı Ala	Phe	Let	Leu	Туг	Gl3	Pro	Ala	Ile	e Leu	ı Ser	Trp	Glu	Tyr	
45					165	•				170)				175		
	ct	g to	ggt	ggc	agt	tco	ato	CCC	gaç	ggg	Cac	tg:	c tat	gct	gag	tte	576
	Le	ı Se	r Gly	/ G_3	y Sei	Ser	: Ile	e Pro	Glu	ı Gly	/ Hi:	з Су:	з Туг	Ala	Glu	Phe	
50				180)				185	5				190)		
	tt	c ta	c aac	tg;	j ta	tt:	cto	c at	acq	g gc	c to	c ac	cicto	gaç	; ttc	ttc	624

15

	Phe	Tyr	Asa	Trp	Tyr	Phe	Leu	Ile	Thr	Ala	Ser	Thr	Leu	Glu	Phe	Phe	
			195					200					205				
5																	
	acg	ccc	ttc	ctc	agc	gtt	acc	ttc	ttc	aac	ctc	agc	atc	tac	ctg	aac	672
	Thr	Pro	Phe	Leu	Ser	Val	Thr	Phe	Phe	Asn	Leu	Ser	Ile	Tyr	Leu	Asn	
		210					215					220					
10																1.1.1	
	atc	cag	agg	cgc	acc	cgc	ctt	cgg	ctt	gat	ggg	ggc	cgt	gag	gct	ggc	720
	Ile	Gln	Arg	Arg	Thr	Arg	Leu	Arg	Leu	Asp	Gly	Gly	Arg	Glu	Ala	Gly	
	225					230					235					240	-
15						•											
	cca	gaa	ccc	cça	cca	gat	gcc	cag	ccc	tcg	cca	cct	cca	gct	ccc	ccc	768
	Pro	Glu	Pro	Pro	Pro	Asp	Ala	Gln	Pro	Ser	Pro	Pro	Pro	Ala	Pro	Pro	
					245					250			*		255		
20																	
	agc	tgc	tgg	ggc	tgc	tgg	cca	aaa	3 33	cat	ggc	gag	gcc	atg	ccg	ttg	816
	Ser	Cys	Trp	Gly	Cys	Trp	Pro	Lys	Gly	His	Gly	Glu	Ala	Met	Pro	Leu	
				260					265					270	l		
25																	
	cac	agc	tct	ggc	ago	tcc	tca	agg	ggc	act	gag	agg	CCB	cgc	tca	ctc	864
	His	Ser	Ser	Gly	Ser	Ser	Ser	Arg	Gly	Thr	Glu	Arg	Pro	Arg	Ser	Leu	
			275					280					285	ı			
30																	
	aaa	agg	ggc	tcc	aaç	CCS	tca	gca	tct	tca	gca	tcc	ctg	gaç	aaç	cgc	912
	Lys	Arq	Gly	Ser	Lys	Pro	Ser	Ala	Ser	Ser	Ala	Ser	Lev	Gli	ı Lys	Arg	
		290)				295	5				300)				
35																	
	ato	g aag	ato	gtg	, tc	caç	ago	ato	acc	: cag	g cg	tto	cgg	g ct	g to	g cgg	960
	Met	Lys	Met	: Val	Sei	Gli	ı Ser	: Ile	Thi	Gli	n Ar	g Phe	e Arc	J Le	u Se	r Arg	
	30	5				310)				31	5				320	
40																	
	ga	c aa	g aaq	g gr	ggc	c aag	tc	gct	g gc	at	c at	c gt	g ag	at	c tt	t ggg	1008
	As	p Ly	s Lys	s Va	l Ala	a Ly	s Se	r Le	u Ala			e Vai	l Se	r Il	e Ph	e Gly	
					32	5				33	0				33	5	
45																	
	ct	c tg	c tg	g gc	g cc	g ta	c ac	g ct	c ct	a at	g at	c at	c cg	a go	t gc	t tgc	1056
	Le	u Cy	s Tr	p Al	a Pr	о Ту	r Th	r Le	u Le	u Me	t Il	e Il	e Ar	g Al	a Al	a Cys	
				34	0				34	5				35	0		
50																	
	ca	t gg	c cg	c tg	c at	c cc	c ga	t ta	c tg	g ta	c ga	g ac	g to	c tt	c tç	g ctt	1104
	Hi	s Gl	y Ar	д Су	s Il	e Pr	o As	рТу	r Tr	рТу	r Gl	u Th	r Se	r Pl	e Ti	p Leu	L

		355				360					365				
		333				360					203				
5	cta taa	gcc aac	tca	acc	atc	aac	ccc	ate	ctc	tac	cca	cta	tac	cac	1152
		Ala Asn			_										
	370				375					380		,	-		
40		-													
10	tac agc	ttc cgc	aga	gcc	ttc	acc	aag	ctc	ctc	tgc	ccc	cag	aag	ctc	1200
	Tyr Ser	Phe Arg	Arg	Ala	Phe	Thr	Lys	Leu	Leu	Cys	Pro	Gln	Lys	Leu	
	385			390	•	• .	•	•	395					400	
. 15															•
	aag gtc	cag ccc	cac	ggc	tcc	ctg	gag	cag	tgc	tgg	aag				1239
	Lys Val	Gln Pro	His	Gly	Ser	Leu	Glu	G1n	Cys	Trp	Lys				
			405					410							
20															
	<210> 3														
	<211> 2														
	<212> D	ANA													
25	<213> A	rtificia	ıl Se	quen	ce										
	<220>					-4-1	Con				::-:-	11			
		Descript:						uenc	e: A	I LII	icia	TIA			
30		synthesi:	sed b	Line	ı se	daen	ice								
	<400> 3	3													
		caac ctb	kcctt	ct c	:										21
35	<210>	4													
	<211>	20													
	<212> 1	DNA							•						
	<213>	Artifici	al Se	quen	ice										
40					-										
	<220>							•							
	<223>	Descript	ion c	of Ar	rtiE:	icia.	l Se	quen	ce: 1	Arti	ficia	ally			
		synthesi	zed p	orime	er s	eque	nce								
45															
	<400>	4													
	ccataa	aagn ngg	ggtt	gac											20
F0															
50	<210>	5													
	<211>	2700													
	<212>	DNA													
EE															
<i>55</i>															

	<213> RACLUS Noivegicus	
5	<220> <221> CDS	
	<222> (351)(1589)	
10	- <400> 5	
	aatteggeac gagegggeag ategegggge geacteggtt gegegetgag etaggggtge	60
15	accgacgeae egegggegge tggagetegg etttgetete getgeageag eegegeegee	120
	egececaete egeteagatt eegacaceag ecceetetgg ategecetee tggactetag	180
20	cccgggctct tgctccgacc ccgcggacca tgctccgggc gccccccgga aaaccgggct	240
	gggcgaagag ccggcaaaga ttaggeteac gagcgggggc cccaeccggc cacccagete	300
25	teegeeegtg ceetgeeegg tgteeeegag eegtgtgage etgetgggee atg gag	356
	1	
30	ege geg eeg gee gae ggg etg atg aac geg teg gge act etg gee gga	404
30	Arg Ala Pro Pro Asp Gly Leu Met Asn Ala Ser Gly Thr Leu Ala Gly 5 10 15	
	gag geg geg get gea gge ggg geg ege gge tte teg get gee tgg ace	452
35	Glu Ala Ala Ala Gly Gly Ala Arg Gly Phe Ser Ala Ala Trp Thr 20 25 30	
40	get gte etg get geg ete atg geg etg etc ate gtg gee aca gta etg Ala Val Leu Ala Ala Leu Met Ala Leu Leu Ile Val Ala Thr Val Leu	500
	35 40 45 50	
	gge aac geg etg gte atg ete gee tte gtg geg gat teg age ete ege	548
45	Gly Asn Ala Leu Val Met Leu Ala Phe Val Ala Asp Ser Ser Leu Arg 55 60 65	
	acc cag aac aac tte ttt etg etc aac etc gec atc tee gac tte etc	596
50	Thr Gln Asn Asn Phe Phe Leu Leu Asn Leu Ala Ile Ser Asp Phe Leu	

				ttc									_				644
5	Val	Gly		Phe	Суѕ	Ile	Pro		Tyr	Val	Pro	Tyr		Leu	Thr	Gly	
-			85					90					95				
	cat	taa	acc	ttc	aac	caa	aac	ctc	tgc	aag	ctg	tgg	ctg	gtg	gta	gac	692
	-			Phe					_	-	-	-			_	_	
10		100					105					110					
							_		•								
	tac	cta	ctg	tgt	gcc	tcc	tcg	gtc	ttc	aac	atc	ġta	ctc	atc	agc	tat	740
15	_	Leu	Leu	Cys	Ala		Ser	Val	Phe	Asn		Val	Leu	Ile	Ser	_	-
	115					120					125					130	
	gac	cga	ttc	ctg	t.ca	atc	act.	cga	act	atc	tcc	tac	agg	acc	Ċaσ	cad	788
	_			Leu													
20					135					140					145		
	ggg	gac	acg	aga	cgg	gcc	gtt	cgg	aag	atg	gca	ctg	gtg	tgg	gtg	ctg	836
	Gly	qzA	Thr	Arg	Arg	Ala	Va1	Arg	=	Met	Ala	Leu	Val		Val	Leu	
25				150					155					160			
	acc	rtc	cto	ctg	tat	aaa	cct	acc	atc	cta	agt	taa	asa	tac	cta	tct	884
			-	Leu													•••
30			165		-	_		170					175	_			
	ggt	ggc	agt	tcc	atc	ccc	gag	ggc	Cac	tgc	tat	gct	gag	ttc	ttc	tac	932
	Gly	Gly	Ser	Ser	Ile	Pro	Glu	Gly	His	СУЗ	Tyr	Ala	Glu	Phe	Phe	Tyr	
35		180)				185					190					
	220	· tac	, tar		ctc	ato	acc	, acc	too	- 200	cto	· cac	tto	tto	aca	ccc	980
												-				Pro	300
40	199	_	•			200					205					210	
																,	
	tto	cto	ago	gtt	acc	tto	t t c	aac	cto	ago	ato	tac	ctg	aac	ato	cag	1028
	Phe	e Let	ı Ser	r Val	Thr	Phe	Phe	Asr	Let	ı Ser	: Ile	Tyr	Leu	Ası	11e	Gln	
4 5					215					220)				225	5	
		~ ~-															1076
																gaa Glu	1076
50	234.	9 221	2 +411	230			, 150	. no	23!		Luri	9 011		241		:	
	cc	c cc	a cca	a gat	gc.	: cag	g cc	e to	g cc	a cc	c cc	a gci	cce	C C C	e ago	e tge	1124

	Pro Pro Pro Asp Ala Gln Pro Ser Pro Pro Pro Ala Pro Pro Ser Cys	
5	245 250 255	
J		
	tgg ggc tgc tgg cca aaa ggg cat ggc gag gcc atg ccg ttg cac agc 1172	!
	Trp Gly Cys Trp Pro Lys Gly His Gly Glu Ala Met Pro Leu His Ser	
10	260 265 270	
	tot ggc ago too toa agg ggc act gag agg coa ogc toa otc aaa agg 122	^
	Ser Gly Ser Ser Ser Arg Gly Thr Glu Arg Pro Arg Ser Leu Lys Arg	,
	275 280 285 290 2	
15		
•	ggc tcc aag cca tca gca tct tca gca tcc ctg gag aag cgc atg aag 126	8
	Gly Ser Lys Pro Ser Ala Ser Ser Ala Ser Leu Glu Lys Arg Met Lys	
20	295 300 305	
20		
	atg gtg tcc cag age ate acc cag cgc ttc cgg ctg tcg cgg gac aag 131	6
	Met Val Ser Gln Ser Ile Thr Gln Arg Phe Arg Leu Ser Arg Asp Lys	
25	310 315 320	
	aag gtg gcc aag tcg ctg gcc atc atc gtg agc atc ttt ggg ctc tgc 136	
	ang gtg gcc ang tcg ctg gcc atc atc gtg agc atc ttt ggg ctc tgc 136 Lys Val Ala Lys Ser Leu Ala Ile Ile Val Ser Ile Phe Gly Leu Cys	4
	325 330 335	
30		
•	tgg gcg ccg tac acg ctc cta atg atc atc cga gct gct tgc cat ggc 141	.2
	Trp Ala Pro Tyr Thr Leu Leu Met Ile Ile Arg Ala Ala Cys His Gly	
25	340 345 350	
35		
	cgc tgc atc ccc gat tac tgg tac gag acg tcc ttc tgg ctt ctg tgg 146	0
	Arg Cys Ile Pro Asp Tyr Trp TyrGlu Thr Ser Phe Trp Leu Leu Trp	
40	355 360 365 370	
	gcc aac tcg gcc gtc aac ccc gtc ctc tac cca ctg tgc cac tac agc 15	n e
	Ala Asn Ser Ala Val Asn Pro Val Leu Tyr Pro Leu Cys His Tyr Ser	
	375 380 385	
45		
*	tte ege aga gee tte ace aag ete ete tge eee eag aag ete aag gte 15	56
	Phe Arg Arg Ala Phe Thr Lys Leu Leu Cys Pro Gln Lys Leu Lys Val	
	390 395 400	
50		
	cag ecc cac gge tee etg gag cag tge tgg aag tgageagetg ecceaceett 16	09
	Gln Pro His Gly Ser Leu Glu Gln Cys Trp Lys	

405 410

5	ctgaggccag	gcccttgtac	ttgtttgagt	gggcagccgg	agcgtgggcg	gggccctggt	1669
	ccatgeteeg	ctccaaatgc	catggcggcc	tettagatea	tcaaccccgc	agtggggtag	1729
10	catggcaggt	gggccaagag	ccctagttgg	tggagctaga	gtgtgctggt	tagctctgcc	1789
	gccacattct	ccttcaccac	acagaagaga	caatccagga	gtcccaggca	tgccttccac	1849
15	ctacacacac	acacacacac	acacacacac	acacaccaca	gtgcagtgcc	agtgatgtcc	1909
	ccttttgcat	atttagtggt	tggtgtcctc	cctaatgcaa	acctcggtgt	gtgctcccgg	1969
20	ctccggccct	ggcaatgcgt	gegtgegeee	tgcatgtgct	cacacccgcc	acacacccgc	2029
	ccgccacaca	cttgcaacac	ctcctctctc	ccagaagagc	tggggacgat	gccctttgct	2089
25	gccactgtct	: cttgcttaat	cccagagcct	ggctccttat	ccccactct	cccttcaact	2149
	ctgccccaca	aagtgtcgag	cgcctcggga	aacttgaago	ttctctgctc	cttccactct	2209
30	ggatgttttc	aggaagatgg	aggagaagaa	aacacgtctg	tgaacttgat	gttccttgga	2269
	tgtttaatca	agagagacaa	aattgccgag	gagetegggg	, ctggattggc	: aggtgtgggc	2329
35	tcccacgcc	t tectecetes	gtgctgcago	: ttccggctga	geegegeeag	ctgcttctgc	2389
40	ctgccccgc	c cccaggcttg	ggacgatggd	cctgccctg	ttgccccgt	tgtacaatca	2449
40	gaatttggg	g gtgggtggtt	atggggtaga	a gcggctette	c actgtgccc	aaaggtcctg	2509
45	aggeteaca	g gacagtcago	e aggagagcag	g gcaggeeeg	gacacetgg	g aggaatgctt	2569
4.5	tgcctcgtc	c tgtgtactca	a cctcaggct	t ctgcatgct	e tgctgccct	t gtgccctggt	2629
50	gtgctgcct	c tgccaatgtq	g aaaacacaa	t aaagtgtat	t tttttacgg	a aaaaaaaana	2689
	aaaaaaaa	a a					2700

5	<210> 6 <211> 29 <212> DNA <213> Artificial Sequence	
10	<220> <223> Description of Artificial Sequence: Artificially synthesized primer sequence	
15	<400> 6 cgaggatccg tgaggctccg gtgcccgtc	29
20	<210> 7 <211> 32 <212> DNA <213> Artificial Sequence	
25	<pre><220> <223> Description of Artificial Sequence: Artificially synthesized primer sequence</pre>	
30	<400> 7 cgggtaagct tcacgacacc tgaaatggaa ga	32
35	<210> 8 <211> 24 <212> DNA <213> Artificial Sequence	
40	<220> <223> Description of Artificial Sequence: Artificially synthesized primer sequence	
4 5	<400> 8 cettetgeat cecattgtae gtace	24
50	<210> 9 <211> 21 <212> DNA <213> Artificial Sequence	

	<220>	
	<223> Description of Artificial Sequence: Artificially	
5	synthesized primer sequence	
	<400> 9	
10	cttccgccgg gccttcacca a	21
	<210> 10	
		_
	<211> 24 <212> DNA	_
15	<213> Artificial Sequence	
•	1213 Attitional Sequence	
	<220>	
	<223> Description of Artificial Sequence: Artificially	
20	synthesized primer sequence	
	<400> 10	
25	acagacacgg cggggctcac	20
25		
	<210> 11	
	<211> 1350	
30	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> exon	
35	<222> (280)(557)	
	<400> 11	
	gcactcggct gegegttgcn teeggetgca eggtegcace ggcagegget eaggeteegg 60	ı
40		
	ctectetee getgeageag eegegetgee ggeeceactg ggeteggate eggeecegge 12	0
45	cccctcggca ccgcctgctc tggccccggc cccggccccg cggaccatgc gctgggcgcc 18	0
	cccaggggaa ccegacccgg ccaagggccc gcaaagacga ggctcccggg ccggggcccc 24	ıU
	teciggeege coageteteg geoggegeee tgeecegegt coeggageeg egtgageetg 30) N
50	terrage condetered acondeter cancerated conducting the second	. •
	cggggccatg gagegegege egecegaegg geegetgaae getteggggg egetggeggg 30	50
<i>55</i>		

cgaggcggcg gcggcgggcg gggcgcgcg cttctcggca gcctggaccg cggtgctggc 420

5	cgcgctcatg gcgctgctca tcgtggccac ggtgctgggc aacgcgctgg tcatgctcgc 480
	cttcgtggcc gactcgagcc tccgcaccca gaacaacttc ttcctgctca acctcgccat 540
10	ctccgacttc ctcgtcggta aatccccagc ccctggccgc tgggggaccca gggggcgccca 600
	gcgtggccgg gccagcgggg actggaacac ggacctgggt ggctcccgca ggcacacgcc 660 '
15	ccaccagggg acccggcctg ggaaggggc gteeggagec catggggtgg ggggcacagg 720
	cgaagtteet tgecactcag geetegggae aggggetggg gagagatgte eeegggaagg 780
20	gacacgggca ctgggcgagg cgcaaggcgc aaaggcageg ggtgcagete tggeteetge 840
	gctgtagcca aacaaaggct gctgcggact taggacgcgc ggagggcgca gtggggcggt 900
<i>2</i> 5	ttagagaagg tetgggggag gggacatgga agggggattt ttagagetgt gttgggggaa 960
	gggacggtgg ggaaggtggg ggttggggga gacgctcgga ggagcgtgct ctcacgtgtc 1020
30	caggetetge tgeeggetgg ggggegggge acgeggaggg ggetggageg ecagacacet 1080
25	gttggggctg tgaggtgcgt ctcccagacg ctccaagccc gcttggcagt agtagtagcg 1140
35	gctggcggct ggcggctgca accaagtgcc ctttcagcca ggagaaaggc tttctccttg 1200
4 0	tctaagctga gaccgagggt tgtccagcgc cagggtaggg gctggagtcc agcgggggag 1260
40	gggagaagga aattgtette ttteeteett tgagggetgg gagggetgga cagaagteea 1320
4 5	gggaatcccg actccaggct ctcgggggtc 1350
	<210> 12
50	<211> 448 <212> DNA
	<213> Homo sapiens

<pre> <221> exon <222> (259)(425) <400> 12 gagetececa tgeetggate atcectectg ecceeaggee caggggac 10 gggagetatg tgggggtgaa ggetggegge agggeagagt ttgtggete aggggtggta agatgaggat ggetagttee agaaaageag ecaceatg 15 cegeeggtgt etgegettag gteegtetgt eccetggeee etggetge tggeeetact ecceacagge geettetgea teecactgta tgtaceet 20</pre>	ga caccaggtgg 120
<pre>description 12 </pre>	ga caccaggtgg 120
gagetececa tycetggate atecetecty coeceaggee caggggaes gggagetaty tyggggytgaa ggetggegge agggeagagt ttgtggete aggggytgata agatgaggat ggetagttee agaaaageag ceaceaty cegeeggtyt etgegettag gteegtetyt eeeetggeee etggetge tygeeetaet eeeeaagge geettetgea teeeaetgta tytaeeet	ga caccaggtgg 120
gagetececa tycetggate atecetecty coeceaggee caggggaes gggagetaty tyggggytgaa ggetggegge agggeagagt ttgtggete aggggytgata agatgaggat ggetagttee agaaaageag ceaceaty cegeeggtyt etgegettag gteegtetyt eeeetggeee etggetge tygeeetaet eeeeaagge geettetgea teeeaetgta tytaeeet	ga caccaggtgg 120
gggagctatg tgggggtgaa ggctggcggc agggcagagt ttgtggct aggggtggta agatgaggat ggctagttcc agaaaagcag ccaccatg ccgccggtgt ctgcgcttag gtccgtctgt cccctggccc ctggctgc tggccctact ccccacaggc gccttctgca tcccactgta tgtaccct	ga caccaggtgg 120
aggagetatg tgggggtgaa ggetggegge agggeagagt ttgtgget aggggtggta agatgaggat ggetagttee agaaaageag ceaceatg 15 cegeeggtgt etgegettag gteegtetgt eeeetggeee etggetge tggeeetaet eeecacagge geettetgea teecactgta tgtaceet	tg accdcaggte 180
aggggtggta agatgaggat ggctagttcc agaaaagcag ccaccatg 15 ccgccggtgt ctgcgcttag gtccgtctgt cccctggccc ctggctgc tggccctact ccccacaggc gccttctgca tcccactgta tgtaccct	tg accdcaggte 180
aggggtggta agatgaggat ggctagttcc agaaaagcag ccaccatg 15 ccgccggtgt ctgcgcttag gtccgtctgt cccctggccc ctggctgc tggccctact ccccacaggc gccttctgca tcccactgta tgtaccct	tg accdcaggte 180
ccgccggtgt ctgcgcttag gtccgtctgt cccctggccc ctggctgc tggccctact ccccacaggc gccttctgca tcccactgta tgtaccct	
ccgccggtgt ctgcgcttag gtccgtctgt cccctggccc ctggctgc tggccctact ccccacaggc gccttctgca tcccactgta tgtaccct	
cegeeggtgt etgegettag gteegtetgt eccetggeee etggetge	at ggtcccactg 240
tggccctact ccccacagge geettetgca teccactgta tgtaccct	
	ac gtgctgacag 300
geogotggao ottoggoogg ggoototgca agotgtggot ggtagtgg	ac tacctgctgt 360
geacetecte tgeetteaae ategtgetea teagetaega cegettee	tg tcggtcaccc 420
25	
gageggtgag teetgggétg eggagete	448
20 <210> 13	
30 <211> 1893	
<212> DNA	
<213> Homo sapiens	
³⁵ <220>	
<221> exon	
<222> (293) (1209)	
<222> (293)(1209)	
40	
40 <400> 13	rga gggtrcaggt 60
40	tga gggttcaggt 60
40 <400> 13 gageteacag etggtagggg gtggtaaaca ggeageetag eagagag	
40 <400> 13	
40 <400> 13 gageteacag etggtagggg gtggtaaaca ggeageetag eagagag tggteecagg gagettetga ggeteteact gagtgtggea gggeace	agt cogggaccc 120
40 <400> 13 gageteacag etggtagggg gtggtaaaca ggeageetag eagagag	agt cogggaccc 120
400> 13 gagetcacag etggtagggg gtggtaaaca ggeageetag eagagagt tggteccagg gagettetga ggeteteact gagtgtggea gggeacee agtggggagg gttagaggaa gggaggggaa agagggagg	agt ccgggacccc 120 aca ggaggggaaa 180
40 <400> 13 gageteacag etggtagggg gtggtaaaca ggeageetag eagagag tggteecagg gagettetga ggeteteact gagtgtggea gggeace	agt ccgggacccc 120 aca ggaggggaaa 180
400> 13 gagetcacag etggtagggg gtggtaaaca ggeageetag eagagagt tggteccagg gagettetga ggeteteact gagtgtggea gggeacee agtggggagg gttagaggaa gggaggggaa agagggagg	agt cegggacee 120 aca ggaggggaaa 180 eta egggggegea 240

ccgggcccag	cagggtgaca	cācāācāāāc	agtgcggaag	atgctgctgg	tgtgggtgct	360
ggecttectg	ctgtacggac	cagccatcct	gagetgggag	tacctgtccg	ggggcagctc	420
catccccgag	ggccactgct	atgccgagtt	çttctacaac	tggtacttcc	tcatcacggc	480
ttccaccctg	gagttcttta	cgcccttcct	cagegteace	ttctttaacc	tcagcatcta	540
cctgaacatc	cagaggcgca	cccgcctccg	gctggatggg	gctcgagagg	cagccggccc	600
cgagccccct	cccgaggccc	ageceteace	acccccaccg	cctggctgct	ggggctgctg	660
gcagaagggg	cacggggagg	ccatgccgct	gcacaggtat	ggggtgggtg	aggeggeegt	720
aggegetgag	gccggggagg	cgaccctcgg	gggtggcggt	gggggcggct	cegtggette	780
acccacctcc	agctccggca	gctcctcgag	gggcactgag	aggccgcgct	cactcaagag	840
gggctccaag	ccatcggcgt	ceteggeete	actggagaag	cgcatgaaga	tggtgtccca	900
gagetteace	: cagcgctttc	: ggctgtctcg	ggacaggaaa	gtggccaagt	cgctggccgt	960
catcgtgago	: atctttgggd	tetgetggge	: cccatacacg	ctgctgatga	tcatccgggc	1020
cgcctgccat	ggccactgc	j tocctgacta	ı ctggtacgaa	acctecttet	ggctcctgtg	1080
ggccaactcg	gctgtcaac	ctgtcctcta	ccctctgtg	caccacaget	tecgeeggg	: 1140
Cttcaccaag	g etgetetge	c cccagaagct	caaaatcca	g ccccacaget	ccctggagca	1200
ctgctggaa	g tgagtggcc	c accagagee	t ccctcagcca	a cgcctctctc	agcccaggto	1260
teetgggea	t ctggccctg	c tgcccccta	c ccggctcgt	t cccccagggg	tgagccccg	= 1320
cgtgtctgt	g gecetetet	t aatgccacg	g cagecaece	t gccatggagg	g cgccttcct	g 1380
ggttggcua	g agggcccct	c actggctgg	a ctggaggct	g ggtggeegge	cotgeece	c 1440
acattctgg	c tecaceggg	a gggacagtc	t ggaggtece	a gacatgctg	c ccacccct	g 1500

	ctggtgecca cccttegcag tractggttg gtgttettee caaagcaagc acctgggtgt	7200
5	getecagget teetgeeeta geagtitgee tetgeaegtg cacacacetg cacacceetg	1620
	cacacacetg cacacegtee eteteceegg acaageecag gacactgeet ttgetgeett	1680
10	ctgtetettg cataageete aggeetggee ettteaeece tetteeeaee aactetetet	1740
	gececcaaaa gtgtcaaggg gecetaggaa eetegaaget gttetetget ttteeattet	1800
15	gggtgttttc agaaagatga agaagaaaac atgtctgtga acttgatgtt cctgggatgt	1860
	ttaatcaaga gagacaaaat tgctgaggag ctc	1893
20	<210> 14	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
25		
	<220>	
	<223> Description of Artificial Sequence: Artificially	
30	synthesized primer sequence	
	<400> 14	
	tgaacgette gggggegetg	20
35	<210> 15	
	<211> 21	
	<212> DNA	
	<213> Artificial Sequence	
40		
	<220>	
	<223> Description of Artificial Sequence: Artificially	
	synthesized primer sequence	
45	<400> 15	
	gagatggcga ggttgagcag g	21
50	<210> 16	
	<211> 20	
	<212> DNA	

27

	<213> Artificial Sequence	
5	<220>	
	<223> Description of Artificial Sequence: Artificially	
	synthesized primer sequence	
10	<400> 16	
	ggctccaagc catcggcgtc	20
	<210> 17	
15	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
20	<220>	
	<223> Description of Artificial Sequence: Artificially	
	synthesized primer sequence	
25	<400> 17	
	ctcacttcca gcagtgctcc	20
	<210> 18	
30	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
35	<220>	
	<223> Description of Artificial Sequence: Artificially	
	synthesized primer sequence	
4 0	<400> 18	
	geotecgcae ecagaacaae	20
	<210> 19	
45	<211> 19	
45	<212> DNA	
	<213> Artificial Sequence	
	<220>	
50	<223> Description of Artificial Sequence: Artificially	
	synthesized primer sequence	

	<400> 19	
	tgcgcctctg gatgttcag	19
5		
	<210> 20	
	<211> 453	
	<212> PRT	
10	<213> Homo sapiens	
	<400> 20	
46	Met Glu Arg Ala Pro Pro Asp Gly Pro Leu Asn Ala Ser Gly Ala Leu	
15	1 5 10 15	
	Ala Gly Glu Ala Ala Ala Gly Gly Ala Arg Gly Phe Ser Ala Ala	
20	20 25 30	
20	The state of the s	
	Trp Thr Ala Val Leu Ala Ala Leu Met Ala Leu Leu Ile Val Ala Thr	
	35 40 45	
25	The Mal Ale Ser Ser Ser	
	Val Leu Gly Asn Ala Leu Val Met Leu Ala Phe Val Ala Asp Ser Ser	
	50 55	
	Leu Arg Thr Gln Asn Asn Phe Phe Leu Leu Asn Leu Ala Ile Ser Asp	
30	65 70 75 80	
	Phe Leu Val Gly Ala Phe Cys Ile Pro Leu Tyr Val Pro Tyr Val Leu	
	85 90 95	
35		
	Thr Gly Arg Trp Thr Phe Gly Arg Gly Leu Cys Lys Leu Trp Leu Val	
	100 105 110	
40	Val Asp Tyr Leu Leu Cys Thr Ser Ser Ala Phe Asn Ile Val Leu Ile	
	115 120 125	
	Ser Tyr Asp Arg Phe Leu Ser Val Thr Arg Ala Val Ser Tyr Arg Ala	
45	130 135 140	
	Gln Gln Gly Asp Thr Arg Arg Ala Val Arg Lys Met Leu Leu Val Trp	
50	145 150 155 160	
50		
	Val Leu Ala Phe Leu Leu Tyr Gly Pro Ala Ile Leu Ser Trp Glu Tyr	

29

					165					170					175	
5	Leu	Ser	Gly	Gly 180	Ser	Ser	Ile		Glu 185	Gly	His	Cys	Tyr	Ala 190	Glu	Phe
10	Phe	Tyr	Asn. 195	Trp	Tyr	Phe	L e u	Ile 200	Thr	Ala	Ser	Thr	Le u 205	Glu	Phe	Phe
15	Thr	Pro 210	Phe	Leu	Ser	Val	Thir 215	Phe	Phe	Asn	Leu-	Ser 220	Ile	Туr	Leu	Asn
	Ile 225	Gln	Arg	Arg	Thr	Arg 230	Leu	Arg	Leu	Asp	Gly 235	Ala	Arg	Glu	Ala	Ala 240
20	Gly	Pro	Glu	Pro	Pro 245	Pro	Glu	Ala	Gln	Pro 250	Ser	Pro	Pro	Pro	Pro 255	Pro
<i>25</i>	Gly	Cys	Trp	Gly 260		Trp	Gln	Lув	Gly 265		Gly	Glu	Ala	Met 270	Pro	Leu
30	His	Arg	Tyr 275	•	Val	Gly	Glu	Ala 280	Ala	Val	Gly	Ala	Glu 285	Ala	Gly	Glu
	Ala	290		Gly	Gly	Gly	Gly 295		Gly	Gly	Ser	Val 300		Ser	Pro	Thr
35	Se:		Ser	Gly	Ser	Ser 310		Arg	Gly	Thr	Glu 315	Arg	Pro	Arg	Ser	Leu 320
40	Ly	Arg	J Gly	/ Ser	1 Lys		Ser	Ala	. Se	330		Ser	: Leu	ı Glu	335	Arg
45	Me	t Ly:	3 Met	. Val		Gln	ser	Phe	34:		n Arg	Phe	e Arq	3 Lev		Arg
	As	p Ar	35!		l Ala	Lys	S Sei	7 Let 360		a Va	l Ile	e Val	1 Se:		e Pho	e Gly
50	Le	ц Су 37		p Al	a Pro	туг	Th:		u Le	u Me	t Il	≥ Il 38		g Al	a Al	a Cys
55																

	385 390 395 400
5	
	Leu Trp Ala Asn Ser Ala Val Asn Pro Val Leu Tyr Pro Leu Cys His 405 410 415
10 .	His Ser Phe Arg Ala Phe Thr Lys Leu Leu Cys Pro Gln Lys Leu
	420 425 430
	Lys Ile Gln Pro His Ser Ser Leu Glu His Cys Trp Lys Lys Met Lys
15	435 440 445
	Lys Lys Thr Cys Leu
	450
20	43105 23
	<210> 21 <211> 2050
	<212> DNA
25	<213> Homo sapiens
	<220>
	<221> CDS
30	<222> (271)(1629)
	<400> 21
	agagatgtag ggcgcccctt ttagctgcgc acagaacgaa agaactcgtt ttttctttaa 60
35	grgagtgtgc trgggtgacg cttagggcgc cctccgcagt gcgcgcagga aagcgcactg 120
	g.gagcytyc teggycyacy ceragygage cereagage gagagaagga aagagaacag 120
40	aggetgegga ggeagagetg catgetgggt gegggaagag gtgggeteeg tegeggagte 180
40	getgagteeg tgeeetttta gttagttetg eagtetagta tggteeceat ttgecettee 240
45	actecoggag cogogtgage otgogggged atg gag ege geg eeg eeg gag ggg 294
	Met Glu Arg Ala Pro Pro Asp Gly 1 5
50	ecg ctg aac get teg ggg geg etg geg gge gag geg geg geg gge 342
	Pro Leu Asn Ala Ser Gly Ala Leu Ala Gly Glu Ala Ala Ala Ala Gly 10 15 20

	888	gcg	cgc	ggc	ttc	tcg	gca	gcc	tgg	acc	gcg	gtg	ctg	gcc	gcg	ctc	390
	Gly	Ala	Arg	Gly	Phe	Ser	Ala	Ala	Trp	Thr	Ala	Val	Leu	Ala	Ala	Leu	
5	25					30					35					40	
	atg	gcg	ctg	ctc	atc	gtg	gcc	acg	gtg	ctg	ggc	aac	gcg	ctg	gtc	atg	438
	Met	Ala	Leu	Leu	Ile	Val	Ala	Thr	Val	Leu	Gly	Asn	Ala	Leu	Val	Met	
10					45					50					55		
	ctc	gcc	ttc	gtg	gcc	gac	tơg	agc.	ctc	cgc	acc.	cag	aac	aac	ttc	ttc	486
	Leu	Ala	Phe	Val	Ala	Asp	Ser	Ser	Leu	Arg	Thr	Gln	Asn	Asn	Phe	Phe	
15				60					65					70			
	ctg	ctc	aac	ctc	gcc	atc	tcc	gac	ttc	ctc	gtc	ggc	gcc	ttc	tgc	atc	534
	Leu	Leu		Leu	Ala	Ile	Ser	Asp	Phe	Leu	Val	Gly		Phe	Суѕ	Ile	
20			75					80					85				
		_		_				ctg	_		•				-		
	Pro		-	Val	Pro	Тут		Leu	Thr	Gly	Arg	_	Thr	Phe	Gly	Arg	
25		90					95					100					
			_	_	_		_	gta		-		_		_			
	•		Cys	гуs	Leu	_		Val	vaı	ASP	_		ren	Cys	Tinz		
30	105	1				110	,				115					120	
•																	: 678
								ato lle									
	361	. Alc		. ,,	125		. 160		Jei	130	_	, ,,,,		. 260	135		•
35					12-					-50	,				1.	•	
	acc	. cas	י מרנ	s ata	t ca	ta:	י רמנ	gco	: cac	r car	a gat	. asc	acc	ca		a act	726
		_		_				, poo								_	
			,	140				,	145		,			15			
40																	
	ate	a ca	aa.	ato	a cto	r ct	a at	g tgg	agto	ı ct	c acc	: tto	cto	ct	g ta	c ag	a 774
	-					-		l Tr						_	-		
45			15					160					16		Ī		-
4 5																	
	cc	a gc	c at	c ct	g ag	c tg	g ga	g ta	c ct	g tc	c gg	g gg	c ag	c tc	c at	c c c	c 822
	Pr	o Al	a Il	e Le	u Se	r Tr	p G1	u Ty:	r Le	u Se	r Gl	y Gl	y Se	r Se	r Il	e Pr	0
50		17	0				17	5				18	0				•
50																	
	ga	g gg	с са	c tg	c ta	t gc	c ga	g tt	c tt	c ta	c aa	c tg	g ta	c tt	c ct	c at	c 870

32

	Glu	Gly	His	Cys	Tyr	Ala	Glu	Phe	Phe	Tyr	Asn	Trp	Tyr	Phe	Leu	Ile	
5	185					190					195					200	
	acg	gct	tcc	acc	ctg	gaç	ttc	ttt	acg	ccc	ttc	CTC	agc	gtc	acc	ttc	918
	Thr	Ala	Ser	Thr	Leu	Glu	Phe	Phe	Thr	Pro	Phe	Leu	Ser	Val	Thr	Phe	
10					205					210					215		
				agc			-		_	_		_		_			966
	Phe	Asn	Leu	Ser	Ile	Tyr	Leu	Asn .		Gln	Arg	Arg			Leu	Arg	
15				220					225				,	230			-
	ctg	gat	ggg	gct	cga	gag	gca	gcc	ggc	ccc	gag	ccc	cct	ccc	gag	gcc	1014
	Leu	Asp	Gly	Ala	Arg	Glu	Ala	Ala	Gly	Pro	Glu	Pro	Pro	Pro	Glu	Ala	
			235					240					245				
20																	
	cag	ccc	tca	cca	ccc	cca	ccg	cct	ggc	tgc	tgg	ggc	tgc	tgg	cag	aag	1062
	Gln	Pro	Ser	Pro	Pro	Pro	Pro	Pro	Gly	Суз	Trp	Gly	Суз	Trp	Gln	Lys	
25		250					255					260					
				gag	-		_	_									1110
	_	His	Gly	Glu	Ala		Pro	Leu	His	Arg	_	Gly	Val	Gly	Glu		
30	265					270					275					280	
	~~~	~+ >	~~~	gct	~~~	900		~~~	<b></b>		ar a	~~~		~~~	-a-		1158
	-	-		Ala	_				_								1130
	7,14	407	Q.r.y	,	285	*****				290		023	01,	0-7	295	_	
35																	
	ggc	ggc	tcc	gtg	gct	tca	ccc	acc	tcc	ago	tcc	ggc	ago	tcc	: tcg	agg	1206
	Gly	Gly	Ser	Val	Ala	Ser	Pro	Thr	Ser	Ser	Ser	Gly	Ser	Ser	Ser	Arg	
			•	300					305					310	)		
40																	
	ggc	act	gag	agg	ccg	cgc	tca	ctc	aag	agg	ggc	tcc	aag	r ccc	tco	gcg	1254
	Gly	Thr	Glu	Arg	Pro	Arg	Ser	Leu	Lys	Arg	Gly	Ser	Lys	Pro	Ser	Ala	
			315	5				320	i				325	5			
45																	
•	tco	tçç	gcc	: tcg	ctg	gag	aag	cgc	atç	aaç	g atg	gtg	tco	cag	gago	ttc	1302
	Sez	Sez	Ala	Ser	Leu	ı Glu	Lys	Arg	Met	Lys	s Met	Val	Ser	r Gl	a Sea	Phe	
		330	)				335	5				340	)				
50																	
			-			-	-			-			-		-	gctg	1350
	Th	Glr	n Arg	g Phe	Arç	Lev	ı Sei	Arg	] As	Arg	g Lys	val	Ala	a Ly	s Se	r Leu	

53

	345	350	355	360
5	- ·		ctc tgc tgg gcc c	
	Ala Val Ile Va	365	Leu Cys Trp Ala P 370	375
10			cat ggc cac tgc g His Gly His Cys V	
15		30		390
15			e etg tgg gcc aac t u Leu Trp Ala Asn S 0 4	
20			c cac agc ttc cgc o s His Ser Phe Arg <i>l</i> 420	
<b>25</b>	aag ctg ctc t	gc ccc cag aag ct	c aaa atc cag ccc o	His Ser Ser Leu
30	=	Trp Lys Lys Met Ly	435 ag aag aaa aca tgt ys Lys Lys Thr Cys	
	orteotraga t	445	450	tcaggg ctggattggc 1699
<b>35</b>				octgage tgtgccaget 1759
40				ccaagee tgeeceggee 1819
	actctgtttg c	tcacccagg acctctg	ggg gttgttggga gga	gggggcc cggctgggcc 1879
45	cgagggtccc a	aggegtgea ggggegg	tee agaggaggtg eee	gggcagg ggccgcttcg 1939
	ccargtgctg t	gcaccegtg ccaegeg	yctc tgcatgctcc tct	geetgtg eeegetgege 1999
50	tgccctgcaa a	accgtgaggt cacaata	aaag tgtatttttt tat	tggtget g 2050
	<210> 22			

	<211> 20	
ε	<212> DNA	
5	<213> Artificial Sequence	
	<220>	
10	<223> Description of Artificial Sequence: Artificially	
	synthesized primer sequence	
	<400> 22	
15	tgcatcccat tgtacgtncc	20-
	<210> 23	
20	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
25	<220>	
	<pre>&lt;223&gt; Description of Artificial Sequence: Artificially synthesized primer sequence</pre>	
	synthesized primer saquence	
	<400> 23	
20		
30		20
30	atcattagga gcgtgtangg	20
30		20
35	alcattagga gcgtgtangg	20
	atcattagga gcgtgtangg <210> 24	20
	atcattagga gcgtgtangg <210> 24 <211> 20	20
35	<pre>atcattagga gcgtgtangg &lt;210&gt; 24 &lt;211&gt; 20 &lt;212&gt; DNA</pre>	20
	<pre>atcattagga gcgtgtangg &lt;210&gt; 24 &lt;211&gt; 20 &lt;212&gt; DNA</pre>	20
35	<pre>atcattagga gcgtgtangg  &lt;210&gt; 24  &lt;211&gt; 20  &lt;212&gt; DNA  &lt;213&gt; Artificial Sequence</pre>	20
35	<pre>atcattagga gcgtgtangg  &lt;210&gt; 24 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence &lt;220&gt;</pre>	20
35	<pre>atcattagga gcgtgtangg  &lt;210&gt; 24 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence  &lt;220&gt; &lt;223&gt; Description of Artificial Sequence: Artificially</pre>	20
35 40	<pre>atcattagga gcgtgtangg  &lt;210&gt; 24 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence  &lt;220&gt; &lt;223&gt; Description of Artificial Sequence: Artificially</pre>	
35 40	<pre>atcattagga gcgtgtangg  &lt;210&gt; 24 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence  &lt;220&gt; &lt;223&gt; Description of Artificial Sequence: Artificially</pre>	20
35 40	<pre>atcattagga gcgtgtangg  &lt;210&gt; 24 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence  &lt;220&gt; &lt;223&gt; Description of Artificial Sequence: Artificially</pre>	
35 40	<pre>atcattagga gcgtgtangg  &lt;210&gt; 24 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence  &lt;220&gt; &lt;223&gt; Description of Artificial Sequence: Artificially</pre>	

1

#### **Claims**

5

10

25

30

35

40

45

- A guanosine triphosphate binding protein-coupled receptor protein comprising the amino acid sequence of SEQ ID NO: 1, or said amino acid sequence in which one or more amino acids are replaced, deleted, or added.
- A guanosine triphosphate binding protein-coupled receptor protein comprising the amino acid sequence of SEQ ID NO: 20, or said amino acid sequence in which one or more amino acids are replaced, deleted, or added.
- 3. A guanosine triphosphate binding protein-coupled receptor protein encoded by a DNA which hybridizes with a DNA comprising the nucleotide sequence of SEQ ID NO: 2.
- A guanosine triphosphate binding protein-coupled receptor protein encoded by a DNA which hybridizes with a DNA comprising the nucleotide sequence of SEQ ID NO: 21.
- 15 5. A partial peptide of the receptor protein as described in any one of claims 1 to 4.
  - A DNA encoding the receptor protein as described in any one of claims 1 to 4 or the partial peptide as described in claim 5.
- The DNA described in claim 6, wherein said DNA comprising the nucleotide sequence of SEQ ID NO: 2 or NO: 21.
  - 8. A vector containing the DNA as described in any one of claims 5 to 7.
  - 9. A transformant carrying the vector as described in claim 8.
  - 10. A method of producing the receptor protein as described in any one of claims 1 to 4 or the partial peptide as described in claim 5, the method comprising culturing the transformant as described in claim 9.
  - 11. A method of screening for a ligand of the receptor protein as described in any one of claims 1 to 4, the method comprising exposing a test compound to the receptor protein as described in any one of claims 1 to 4 or the partial peptide as described in claim 5, and selecting a compound that binds to said protein or partial peptide.
  - 12. A method of screening for a compound that inhibits the binding between the receptor protein as described in any one of claims 1 to 4 and its ligand, the method comprising,
    - (a) exposing a ligand to the receptor protein as described in any one of claims 1 to 4 or the partial peptide as described in claim 5 in the presence of a test compound, and detecting the binding activity between said protein or partial peptide and the ligand, and,
    - (b) comparing the binding activity detected in (a) with that in the absence of the test compound, and selecting a compound that reduces the binding activity between said protein or partial peptide and the ligand.
  - 13. A kit for screening a compound that inhibits the binding between the receptor protein as described in any one of claims 1 to 4 and its ligand, the kit comprising the receptor protein as described in any of claims 1 to 4 or the partial peptide as described in claim 5.
  - 14. An antibody which binds to the receptor protein as described in any one of claims 1 to 4.

55

Figure 1



Figure 2





man

Figure 3



Figure 4



antisense

sense

### INTERNATIONAL SEARCH REPORT

International application No. PCT/JP98/05967

	CIFICATION OF SUBJECT MATTER C1 C12N15/12, C12N15/63, C12 C07K16/28, C12N1/21, C12N		14/705,	
According to	o International Patent Classification (IPC) or to both n			
B. FIELD	S SEARCHED			
	ocumentation searched (classification system followed C1 C12N15/12, C12N15/63, C12C07K16/28, C12N1/21, C12N	Q1/02, C12P21/08, C07K	14/705,	
Documentat	ion searched other than minimum documentation to th	e extent that such documents are included	d in the fields searched	
	ata base consulted during the international search (nat (DIALOG), BIOSIS (DIALOG), EMI			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document, with indication, where ap		Relevant to claim No.	
Y	Bonner, T.I. et al., "Identif Muscarinic Acetylcholine Rec (1987) Vol. 237 p.527-532		1, 3, 5-14	
Y	Dewan, Z. et al., "Molecular characterization of a rat arufa2B-adrenergic receptor" Proc. Natl. Acad. Sci. USA (1990) Vol. 87, No. 8 p.3102-3106			
Y	JP,7-67654, A (Mitsubishi ) Laboratories, Inc.), 14 March, 1995 (14. 03. 95)		2, 4, 5-14	
Y	Ernest, G.P. et al., "Disting ligand-binding properties and expression of four human mus receptors" The ENBO J. (1987 p.3923-3929	d tissue-specific carinic acetylcholine	2, 4-14	
x Furthe	r documents are listed in the continuation of Box C.	See patent family annex.		
Special categories of cited documents:  A document defining the general state of the art which is not considered to be of particular relevance  E cartier document but published on or after the international filing date cited to establish the publication date of another citation or other special reason (as specified)  O document referring to an oral disclosure, use, exhibition or other means  P document published prior to the international filing date but later than the priority date claimed  Date of the actual completion of the international search  12 March, 1999 (12.03.99)  T later document published after the international filing date and not in conflict with the application but the principle or theory underlying the invention of comment of particular relevance; the claimed in considered to involve an inventive step when the comment of particular relevance, the claimed in considered to involve an inventive step when the comment of particular relevance, the claimed in considered to involve an inventive step when the comment of particular relevance, the claimed in considered to involve an inventive step when the document of particular relevance, the claimed in considered to involve an inventive step when the comment of particular relevance, the claimed in considered to involve an inventive step when the document of particular relevance, the claimed in considered to involve an inventive step when the document of particular relevance, the claimed in considered to involve an invention of particular relevance, the claimed in considered to involve an invention of considered to involve an invention of considered to involve an invention and considered to involve an invention of considered to involve an invention and co		tion but cited to understand vention assumed invention cannot be d to involve an inventive step aimed invention cannot be when the document is locuments, such combination art artificial for the control of the control		
ł .	ailing address of the ISA/ nese Patent Office	Authorized officer		
Facsimile No.		Telephone No.		

Form PCT/ISA/210 (second sheet) (July 1992)

### INTERNATIONAL SEARCH REPORT

International application No. PCT/JP98/05967

	Citation of document, with indication, where appropriate, of the releva	Relevant to claim No	
tegory*	Thomas, B. et al., "A Novel Subtype of M		1-14
1	Receptor Identified by Homology Screening Biochim. Biophys. Res. Commun. (1987) Vol. 149, No. 1 p.125-132		
A	Maria, F.B. et al., "Normalization and Subtraction: Two Approaches to Facilitate Gene Discovery" Genome Res. (1996) Vol. 6, No. 9 p.791-806		1-14

Form PCT/ISA/210 (continuation of second sheet) (July 1992)