1 Opis języka akcji

Język akcji, zaprojektowany na potrzeby zadania, spełnia następujące warunki:

- 1. Prawo inercji.
- 2. Sekwencyjność działań.
- 3. Możliwe akcje niedeterministyczne.
- 4. Liniowy model czasu czas dyskretny.
- 5. Pełna informacja o wszystkich:
 - (a) akcjach,
 - (b) skutkach bezpośrednich.
- 6. Akcja posiada:
 - (a) warunek początkowy,
 - (b) czas trwania $t \ge 1, t \in \mathbb{N}$,
 - (c) efekt akcji.
- 7. Podczas trwania akcji, wartości zmiennych, na które ona wpływa, nie są znane.
- 8. Występujące rodzaje efektów:
 - (a) środowiskowe: zmiany wartości zmiennych systemu,
 - (b) dynamiczne: wystąpienie akcji może wywołać wystąpienie innych akcji po $d\geqslant 0$ jednostkach czasu od jej zakończenia.
- 9. W pewnych stanach akcje mogą być niewykonalne. Takie stany są określone przez podanie konkretnych punktów czasowych, albo przez określenie warunków logicznych.
- 10. Stany opisywane częściowo przez obserwacje.
- 11. Pewne stany mogą rozpocząć wykonywanie pewnych akcji.

Językiem odpowiadającym powyższym założeniom jest język AL opisujący domeny akcji z czasem liniowym.

1.1 Sygnatura języka

```
Sygnaturą języka jest następująca trójka zbiorów: \psi = (F, Ac, \mathbb{N}), gdzie:
```

F – zbiór zmiennych inercji (fluentów)

Ac – zbiór akcji

N – zbiór liczb naturalnych (czas trwania akcji)

1.2 Opis domeny

Oznaczenia:

$$f \in F$$
 – fluent $Ac_i, Ac_j \in Ac$ – akcje

 $\alpha, \pi \in Forms(F)$ – warunki $d_i, d \in \mathbb{N}$

Rodzaje zdań występujących w projektowanym języku (domena języka):

- (Ac_i, d_i) causes α if π Akcja Ac_i trwająca d_i jednostek czasu powoduje stan α , jeśli zachodzi warunek π .
- (Ac_i, d_i) invokes (Ac_j, d_j) after d if π Akcja Ac_i trwająca d_i jednostek czasu powoduje wykonanie akcji Ac_j trwającej d_j jednostek czasu po d jednostkach czasu od zakończenia akcji Ac_i , jeśli przy jej rozpoczęciu zachodzi warunek π .
- (Ac_i, d_i) releases f if π Akcja Ac_i trwająca d_i jednostek czasu powoduje uwolnienie f po zakończeniu akcji Ac_i , jeśli zachodzi warunek π .
- π triggers (Ac_i, d_i) Akcja Ac_i trwająca d_i jednostek czasu jest wykonywana, jeśli zajdzie warunek π .
- impossible (Ac_i, d_i) at dAkcja Ac_i trwająca d_i jednostek czasu jest niewykonalna w chwili d.
- impossible (Ac_i, d_i) if π Akcja Ac_i trwająca d_i jednostek czasu jest niewykonalna, jeśli zachodzi warunek π .

1.3 Scenariusze działań

Scenariusze działań opisane są w następujący sposób:

- Sc = (OBS, ACS)
- $OBS = \{(\gamma_1, t_1), ..., (\gamma_m, t_m)\}$, gdzie: $m \ge 0$ – liczba obserwacji, każda obserwacja jest stanem częściowym (stanem spełniającym warunek γ_i w pewnym punkcie czasu t_i). $\gamma_i \in Forms(F)$
- $ACS = \{((Ac_1, d_1), t_1), ..., ((Ac_n, d_n), t_n)\}$, gdzie: $n \ge 0$, $Ac_i \text{akcja}$, $d_i \text{czas trwania akcji}$, $t_i \text{punkt w czasie (rozpoczęcie akcji)}$.

1.4 Semantyka

Definicja 1.1. Semantyczną strukturą języka AL nazywamy system $S = (H, O, E, T_{\infty})$ taki, że:

- $H: Forms(F) \times \mathbb{N} \longrightarrow \{0,1\}$ jest funkcją historii, pozwala ona stwierdzić, jaki stan ma pewny fluent lub czy dana formuła jest spełniona, dla określonej chwili czasu t.
- $O: Ac \times \mathbb{N} \longrightarrow 2^F$ jest funkcją okluzji. Dla pewnej ustalonej akcji $A \in Ac$, chwili czasu $t \in \mathbb{N}$, funkcja O(A,t) zwraca zbiór fluentów, na który akcja A ma wpływ, jeśli będzie ona trwała w chwili t. Wartość funkcji okluzji będziemy nazywać regionem okluzji.
- $E \subseteq Ac \times \mathbb{N} \times \mathbb{N}$ jest relacją wykonań akcji. Trójka (A,t,d) należy do relacji E jeśli akcja A trwająca d jednostek czasu jest rozpoczęta w czasie t. W naszym modelu zakładamy warunek sekwencyjności działań. Oznacza on, że tylko jedną akcje możemy wykonać w danym czasie tak, więc jeśli $(t_1,t_1+d_1)\subseteq (t_2,t_2+d_2)$ lub $(t_2,t_2+d_2)\subseteq (t_1,t_1+d_1)$ oraz $(A,t_1,d_1)\in E$ i $(B,t_2,d_2)\in E$, to A=B, $t_1=t_2$, $d_1=d_2$. Natomiast jeżeli $(t_1,t_1+d_1)\nsubseteq (t_2,t_2+d_2)$, $(t_2,t_2+d_2)\nsubseteq (t_1,t_1+d_1)$ oraz $(A,t_1,d_1)\in E$ i $(B,t_2,d_2)\in E$, to $t_1+d_1< t_2$ lub $t_2+d_2< t_1$.
- $T_{\infty} \in \mathbb{N}$ jest czasem zakończenia scenariusza, może to być dowolnie duża ustalona liczba naturalna. Mówi ona do kiedy powinny być zakończone wszystkie akcje w danym scenariuszu. Oznacza to, że nie będziemy rozpatrywać nieskończonych scenariuszy.

Niech: A, B będą akcjami, f - fluentem, α, π - będą formułami, d, d_2, d_3 - liczbami naturalnymi (oznaczającymi czas trwania akcji) oraz $fl(\alpha)$ będzie zbiorem fluentów występujących w α . Wtedy dla zdań języka AL muszą być spełnione następujące warunki:

- Dla każdego wyrażenia $((A,d) \ causes \ \alpha \ if \ \pi) \in D$ i dla każdego momentu w czasie $t \in \mathbb{N}$, jeżeli $H(\pi,t) = 1$ oraz $(A,t,d) \in E$, wtedy $H(\alpha,t+d) = 1$ oraz dla każdego momentu w czasie $d' \in \mathbb{N}$ takiego, że $1 \le d' \le d$ mamy $fl(\alpha) \subseteq O(A,t+d')$.
- Dla każdego wyrażenia $((A,d) \ release \ f \ if \ \pi) \in D$ i dla każdego momentu czasu $t \in \mathbb{N}$, jeżeli $H(\pi,t)=1$ oraz $(A,t,d) \in E$, wtedy dla każdego momentu w czasie $d' \in \mathbb{N}$ takiego, że $1 \le d' \le d$ mamy $f \in O(A,t+d')$.

- Dla każdego wyrażenia (π triggers (A,d)) $\in D$ i dla każdego momentu czasu $t \in \mathbb{N}$, jeżeli $H(\pi,t)=1$ oraz $t+d \leq T_{\infty}$, wtedy $(A,t,d) \in E$.
- Dla każdego wyrażenia $((A, d_1) \ invokes \ (B, d_2) \ after \ d \ if \ \pi) \in D$ i dla każdego momentu czasu $t \in \mathbb{N}$, jeżeli $H(\pi, t) = 1, \ (A, t, d_1) \in E$ oraz $t + d + d_1 + d_2 \leq T_{\infty}$, wtedy $(B, t + d + d_1, d_2) \in E$.
- Dla każdego wyrażenia (impossible (A, d) at t) mamy $(A, t, d) \notin E$
- Dla każdego wyrażenia (impossible (A,d) if π) i dla każdego momentu czasu $t \in \mathbb{N}$, jeżeli $H(\pi,t)=1$, wtedy $(A,t,d) \notin E$.

Definicja 1.2. Niech $S = (H, O, E, T_{\infty})$ będzie strukturą języka AL, Sc = (OBS, ACS) będzie scenariuszem, oraz D dziedziną. Powiemy, że S jest strukturą dla Sc zgodną z opisem domeny D, jeśli:

- Dla każdej obserwacji $(\alpha, t) \in OBS$ mamy $H(\alpha, t) = 1$
- $ACS \subseteq E$
- Dla każdej akcji $A \in Ac$ oraz dla każdego czasu rozpoczęcia akcji i jej długości $t, d \in \mathbb{N}$, jeżeli $(A, t, d) \in E$, to $t + d \leq T_{\infty}$.

Definicja 1.3. Niech $O_1,O_2\colon X\longrightarrow 2^Y$. Mówimy, że $O_1\prec O_2$ jeżeli $\forall x\in X\ O_1(x)\subseteq O_2(x)$ oraz $O_1\neq O_2$.

Definicja 1.4. Niech $S = (H, O, E, T_{\infty})$ będzie strukturą dla scenariusza Sc = (OBS, ACS) zgodną z opisem dziedziny D. Mówimy, że S jest O-minimalną strukturą, jeżeli nie istnieje struktura $S' = (H', O', E', T'_{\infty})$ dla tego samego scenariusza i domeny taka, że $O' \prec O$.

Definicja 1.5. Niech $S = (H, O, E, T_{\infty})$ będzie strukturą dla scenariusza Sc = (OBS, ACS) zgodną z opisem domeny D. S będziemy nazywać modelem Sc zgodnym z opisem D jeżeli:

- S jest O-minimalny
- Dla każdego momentu w czasie $t, d \in \mathbb{N}$, $\{f \in F : H(f,t) \neq H(f,t+d)\} \subseteq O(A,t+d)$ dla pewnej akcji A.
- Nie istnieje, żadna struktura S' = (H', O', E') dla Sc zgodna z opisem D, która spełnia poprzednie warunki oraz taka, że $E' \subset E$.

Uwaga 1.1. Nie dla każdego scenariusza można ułożyć model. Mówimy, że scenariusz Sc jest zgodny jeśli istnieje do niego model zgodny z dziedziną D.