

Satisfiability of CTL* with constraints¹

Claudia Carapelle, Alexander Kartzow, Markus Lohrey

Universität Leipzig

HIGHLIGHTS Paris, 21.09.2013

¹Work supported by the DFG Research Training Group 1763 (QuantLA).

Overview

- Introduction: CTL* with constraints
- WMSO+B
- Satisfiability of CTL* with constraints
- ullet Constraints over $\mathbb Z$

P - countable set of atomic propositions

Definition. CTL* formulas
$$\text{state} \qquad \varphi \coloneqq p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \mathsf{E} \psi \qquad (p \in \mathsf{P})$$

$$\mathsf{path} \qquad \psi \coloneqq \varphi \mid \neg \psi \mid (\psi \land \psi) \mid \mathsf{X} \psi \mid \psi \mathsf{U} \psi$$

- P countable set of atomic propositions
- V countable set of variables
- ${\cal S}$ finite set of relation symbols (Signature)

Definition. CTL*(\mathcal{S}) formulas $\text{state} \qquad \varphi := p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \exists \psi \qquad (p \in P)$ $\text{path} \qquad \psi := \varphi \mid \neg \psi \mid (\psi \land \psi) \mid \exists \psi \mid \psi \forall \psi \mid r(\exists^{i_1}x_1, \dots, \exists^{i_k}x_k)$ $\qquad \qquad \qquad \land \text{tomic Constraint}$ $r \in \mathcal{S}, \quad k = \operatorname{ar}(r), \quad x_1, \dots, x_k \in V, \quad i_1, \dots, i_k \geq 0$

V - variables

 ${\cal S}$ - signature

Definition. A-constraint graph

 $\mathcal{C} = (\mathcal{A}, \mathcal{K}, \gamma)$ where:

V - variables

 ${\cal S}$ - signature

Definition. A-constraint graph

 $C = (A, K, \gamma)$ where:

• $A = (A, r_1, ..., r_n)$ is an S-structure (the concrete domain)

- V variables
- ${\cal S}$ signature

Definition. A-constraint graph

 $C = (A, K, \gamma)$ where:

- $A = (A, r_1, ..., r_n)$ is an S-structure (the concrete domain)
- $\mathcal{K} = (D, \rightarrow, \rho)$ is a Kripke structure over P

- V variables
- ${\cal S}$ signature

Definition. A-constraint graph

 $\mathcal{C} = (\mathcal{A}, \mathcal{K}, \gamma)$ where:

- $A = (A, r_1, ..., r_n)$ is an S-structure (the concrete domain)
- $\mathcal{K} = (D, \rightarrow, \rho)$ is a Kripke structure over P
- $\gamma: D \times V \rightarrow A$

- V variables
- ${\cal S}$ signature

Definition. A-constraint graph

 $\mathcal{C} = (\mathcal{A}, \mathcal{K}, \gamma)$ where:

- $A = (A, r_1, ..., r_n)$ is an S-structure (the concrete domain)
- $\mathcal{K} = (D, \rightarrow, \rho)$ is a Kripke structure over P
- $\gamma: D \times V \rightarrow A$

Atomic Constraints

$$(\mathcal{C}, \pi) \vDash r(\mathsf{X}^{i_1} \mathsf{x}_1, \dots, \mathsf{X}^{i_k} \mathsf{x}_k) \text{ iff}$$
$$r(\gamma(\pi(i_1), \mathsf{x}_1), \dots, \gamma(\pi(i_k), \mathsf{x}_k))$$

S - signature, $r \in S$ of arity k

 x_1, \ldots, x_k, x, y - FO variables

X - Monadic SO variable

Definition. WMSO+B formulas over S

$$\varphi := r(x_1, \dots, x_k) \mid x = y \mid x \in X \mid \neg \varphi \mid \varphi \wedge \varphi \mid \exists x \ \varphi \mid \exists X \ \varphi \mid \mathsf{B} X : \varphi$$

S - signature, $r \in S$ of arity k

 x_1, \ldots, x_k, x, y - FO variables

X - Monadic SO variable

Definition. WMSO+B formulas over S

$$\varphi := r(x_1, \dots, x_k) \mid x = y \mid x \in X \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \varphi \mid \exists X \varphi \mid \mathsf{B} X : \varphi$$

SO variables range over finite subsets of the interpretation domain

S - signature, $r \in S$ of arity k

 x_1, \ldots, x_k, x, y - FO variables

X - Monadic SO variable

Definition. WMSO+B formulas over S

$$\varphi := r(x_1, \dots, x_k) \mid x = y \mid x \in X \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \varphi \mid \exists X \varphi \mid \mathsf{B} X : \varphi$$

SO variables range over finite subsets of the interpretation domain

$$(A, r_1, \dots, r_n) \models \mathsf{B} X : \varphi(X)$$
 iff $\exists b \in \mathbb{N} \text{ s.t. for all finite } C \subseteq A$ with $A \models \varphi(C)$ we have $|C| \leq b$.

Example

$$G = (V, E)$$
 - directed graph

Reachability is definable in WMSO \rightarrow reach_E(a,b)

Example

$$G = (V, E)$$
 - directed graph

Reachability is definable in WMSO \rightarrow reach_E(a, b)

$$\mathsf{ECycle}_E = \exists x \, \exists y (\mathsf{reach}_E(x, y) \land E(y, x))$$

Example

$$G = (V, E)$$
 - directed graph

Reachability is definable in WMSO \rightarrow reach_E(a, b)

$$\mathsf{ECycle}_F = \exists x \, \exists y (\mathsf{reach}_E(x, y) \land E(y, x))$$

 $G \models \neg \mathsf{ECycle}_F \rightarrow \mathsf{we} \; \mathsf{exclude} \; \mathsf{the} \; \mathsf{presence} \; \mathsf{of} \; \mathsf{cycles} \; \mathsf{in} \; G.$

Example

$$G = (V, E)$$
 - directed graph

Reachability is definable in WMSO \rightarrow reach_E(a,b)

$$\mathsf{ECycle}_E = \exists x \, \exists y (\mathsf{reach}_E(x, y) \land E(y, x))$$

 $G \models \neg \mathsf{ECycle}_F \rightarrow \mathsf{we} \; \mathsf{exclude} \; \mathsf{the} \; \mathsf{presence} \; \mathsf{of} \; \mathsf{cycles} \; \mathsf{in} \; G.$

G is acyclic Path
$$E(a, b, Z)$$

$$BPaths_E(x,y) = BZ : Path_E(x,y,Z)$$

Theorem (Bojanczyk, Torunczyk, 2012)

Satisfiability over infinite trees is decidable for Bool(MSO, WMSO+B).

SATISFIABILITY

- ullet Fix a signature ${\cal S}$
- Fix a concrete domain \mathcal{A} (S-structure)
- ullet Let arphi be a $\mathsf{CTL}^*(\mathcal{S})$ -state formula

 φ is \mathcal{A} -satisfiable if there is an \mathcal{A} -constraint graph $\mathcal{C} = (\mathcal{A}, \mathcal{K}, \gamma)$ and a node v of \mathcal{K} such that $(\mathcal{C}, v) \models \varphi$.

SATISFIABILITY

- ullet Fix a signature ${\cal S}$
- Fix a concrete domain \mathcal{A} (S-structure)
- ullet Let arphi be a $\mathsf{CTL}^*(\mathcal{S})$ -state formula

 φ is \mathcal{A} -satisfiable if there is an \mathcal{A} -constraint graph $\mathcal{C} = (\mathcal{A}, \mathcal{K}, \gamma)$ and a node v of \mathcal{K} such that $(\mathcal{C}, v) \models \varphi$.

Satisfiability of $CTL^*(A)$

INPUT: $\varphi \in CTL^*(S)$.

QUESTION: Is φ \mathcal{A} -satisfiable?

Theorem 1

If A is negation-closed and has the property EHomDef(Bool(MSO,WMSO+B)) then

satisfiability of $CTL^*(A)$ is decidable.

Theorem 1

If A is negation-closed and has the property EHomDef(Bool(MSO,WMSO+B)) then

satisfiability of $CTL^*(A)$ is decidable.

Definition

 $A = (A, r_1, ..., r_n)$ is negation-closed if the complement of every relation r_i is effectively definable by a positive existential first-order formula.

Theorem 1

If A is negation-closed and has the property EHomDef(Bool(MSO,WMSO+B)) then

satisfiability of $CTL^*(A)$ is decidable.

Definition

 $A = (A, r_1, ..., r_n)$ is negation-closed if the complement of every relation r_i is effectively definable by a positive existential first-order formula.

Example

 $(\mathbb{Z}, <, =)$ is negation-closed.

 \bullet $\neg x < y$ if and only if $x = y \lor y < x$.

Theorem 1

If A is negation-closed and has the property EHomDef(Bool(MSO,WMSO+B)) then

satisfiability of $CTL^*(A)$ is decidable.

Definition. EHomDef

Given a signature S and a logic L, an S-structure A has the property $\mathsf{EHomDef}(L)$ iff

there exists a \mathcal{L} -sentence ψ such that for every \mathcal{S} -structure \mathcal{B} with countable domain the following holds:

there exists a homomorphism $h: \mathcal{B} \to \mathcal{A}$ if and only if $\mathcal{B} \models \psi$.

Theorem 1

If A is negation-closed and has the property EHomDef(Bool(MSO,WMSO+B)) then

satisfiability of $CTL^*(A)$ is decidable.

Definition. EHomDef

Given a signature $\mathcal S$ and a logic $\mathcal L$, an $\mathcal S$ -structure $\mathcal A$ has the property $\mathsf{EHomDef}(\mathcal L)$ iff

there exists a \mathcal{L} -sentence ψ such that for every \mathcal{S} -structure \mathcal{B} with countable domain the following holds:

there exists a homomorphism $h: \mathcal{B} \to \mathcal{A}$ if and only if $\mathcal{B} \models \psi$.

We write $\mathcal{B} \leq \mathcal{A}$ if a homomorphism from \mathcal{B} to \mathcal{A} exists.

Example

The structure $Q = (\mathbb{Q}, <, =)$ has the property EHomDef(WMSO)

Example

The structure $Q = (\mathbb{Q}, <, =)$ has the property EHomDef(WMSO)

Characterization:

For a countable structure $\mathcal{B} = (B, r_{<}, r_{=})$

 $\mathcal{B} \leq \mathcal{Q}$ if and only if \mathcal{B} does not contain a <-cycle [Lutz, 2004]

Example

The structure $Q = (\mathbb{Q}, <, =)$ has the property EHomDef(WMSO)

Characterization:

For a countable structure $\mathcal{B} = (B, r_{<}, r_{=})$

 $\mathcal{B} \leq \mathcal{Q}$ if and only if \mathcal{B} does not contain a <-cycle [Lutz, 2004]

Translation:

$$\psi \coloneqq \neg \exists x \, \exists y (\mathsf{reach}_{\leq}(x, y) \land y < x)$$

Example

The structure $Q = (\mathbb{Q}, <, =)$ has the property EHomDef(WMSO)

Characterization:

For a countable structure $\mathcal{B} = (B, r_{<}, r_{=})$

 $\mathcal{B} \leq \mathcal{Q}$ if and only if \mathcal{B} does not contain a <-cycle [Lutz, 2004]

Translation:

$$\psi \coloneqq \neg \exists x \exists y (\mathsf{reach}_{\leq}(x, y) \land y < x)$$

$$\mathcal{B} \models \psi$$
 iff \mathcal{B} has no <-cycles iff $\mathcal{B} \leq \mathcal{Q}$

Theorem 1

If A is negation-closed and has the property EHomDef(Bool(MSO, WMSO+B)) then

satisfiability of $CTL^*(A)$ is decidable.

Theorem 1

If A is negation-closed and has the property EHomDef(Bool(MSO, WMSO+B)) then

satisfiability of $CTL^*(A)$ is decidable.

ullet tree model property of CTL*(\mathcal{S})

[Gascon, 2008]

Theorem 1

If A is negation-closed and has the property EHomDef(Bool(MSO,WMSO+B)) then

satisfiability of $CTL^*(A)$ is decidable.

• tree model property of $CTL^*(S)$

[Gascon, 2008]

• decidability result for Bool(MSO, WMSO+B)

[Bojanczyk and Torunczyk, 2012]

How do we use all this?

Example

The structure $Q = (\mathbb{Q}, <, =)$ has the property EHomDef(WMSO) and it is negation-closed.

 \Rightarrow satisfiability of $CTL^*(Q)$ is decidable!

How do we use all this?

Example

The structure $Q = (\mathbb{Q}, <, =)$ has the property EHomDef(WMSO) and it is negation-closed.

 \Rightarrow satisfiability of $CTL^*(Q)$ is decidable!

Theorem 2

 $\mathcal{Z} = (\mathbb{Z}, <, =)$ has the property EHomDef(WMSO+B)

 $(\Rightarrow \text{satisfiability of CTL}^*(\mathcal{Z}) \text{ is decidable!})$

STEP 1:
$$(\mathbb{Z}, <)$$

Lemma - Characterization

Let A = (A, <) be a countable structure.

 $\mathcal{A} \leq (\mathbb{Z}, <)$ if and only if:

(H1) ${\cal A}$ does not contain cycles

(H2) for all $x, y \in A$ there is a $b \in \mathbb{N}$ such that the length of all paths from x to y is bounded by b.

STEP 1:
$$(\mathbb{Z}, <)$$

Lemma - Characterization

Let A = (A, <) be a countable structure.

 $\mathcal{A} \leq (\mathbb{Z}, <)$ if and only if:

- (H1) ${\cal A}$ does not contain cycles
- (H2) for all $x, y \in A$ there is a $b \in \mathbb{N}$ such that the length of all paths from x to y is bounded by b.

Lemma - Translation

We can express H1 and H2 in WMSO+B.

- (H1) ¬ECycle_<
- (H2) $\forall x \forall y \text{ BPaths}_{<}(x, y)$

STEP 2:
$$(\mathbb{Z}, <, =)$$

Concrete domains over Z

STEP 2:
$$(\mathbb{Z}, <, =)$$

STEP 3:
$$(\mathbb{Z}, <, =, (=_a)_{a \in \mathbb{Z}}, (\equiv_{a,b})_{0 \leq a < b})$$