KCET EXAMINATION – 2020 SUBJECT: MATHEMATICS

DATE: 30-07-2020

1. If
$$2^{x+2y}=2^{x+y}$$
, then $\frac{dy}{dx}$ is

a) 2^{y-x} b) -2^{y-x} c) 2^{x-y} d) $\frac{2^{y}-1}{2^{x}-1}$

Ans. b

Ans. b

2. If
$$f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
, then $f'(\sqrt{3})$ is

a) $-\frac{1}{2}$ b) $\frac{1}{2}$ c) $\frac{1}{\sqrt{3}}$ d) $-\frac{1}{\sqrt{3}}$

8. The value of $\int \frac{1+x^4}{1+x^6} dx$ is

a) $\tan^{-1}x + \tan^{-1}x^3 + C$

b) $\tan^{-1}x + \frac{1}{3}\tan^{-1}x^3 + C$

Ans. b

The right hand and left hand limit of the 3.

$$f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

are respectively

- a) 1 and 1
- b) 1 and -1
- c) -1 and -1
- d) -1 and 1

Ans. b

4. If
$$y = 2x^{n+1} + \frac{3}{x^n}$$
, then $x^2 \frac{d^2y}{dx^2}$ is

- a) 6n(n+1)y
- b) n(n+1)y
- c) $x \frac{dy}{dx} + y$

Ans. b

If the curves 2x=y2 and 2xy=K intersect 5. perpendicularly, then the value of K2 is

- a) 4
- b) $2\sqrt{2}$
- c) 2
- d) 8

Ans. d

if (xe)y=ey, then $\frac{dy}{dx}$ is

a)
$$\frac{\log x}{\left(1 + \log x\right)^2}$$

a)
$$\frac{\log x}{\left(1 + \log x\right)^2}$$
 b)
$$\frac{1}{\left(1 + \log x\right)^2}$$
 c)
$$\frac{\log x}{\left(1 + \log x\right)}$$
 d)
$$\frac{e^x}{x(y-1)}$$

c)
$$\frac{\log x}{(1 + \log x)}$$

d)
$$\frac{e^x}{x(y-1)}$$

Ans. a

TIME: 02.30 PM TO 03.50 PM

If the side of a cube is increased by 5%, then the surface area of a cube is increased by b) 60% c) 6% d) 20%

a)
$$\tan^{-1} x + \tan^{-1} x^3 + C$$

b)
$$\tan^{-1} x + \frac{1}{3} \tan^{-1} x^3 + C$$

c)
$$\tan^{-1} x - \frac{1}{3} \tan^{-1} x^3 + C$$

d)
$$\tan^{-1} x + \frac{1}{3} \tan^{-1} x^2 + C$$

Ans. b

The maximum value of $\frac{\log_e x}{x}$, if x>0 is

- a) e b) 1 c) $\frac{1}{e}$ d) $-\frac{1}{e}$

Ans. c

10. The value of $\int e^{\sin x} \sin 2x dx$ is

- a) $2e^{\sin x}(\sin x 1) + C$
- b) $2e^{\sin x}(\sin x + 1) + C$
- c) $2e^{\sin x}(\cos x + 1) + C$
- d) $2e^{\sin x}(\cos x 1) + C$

Ans. a

11. The value of $\int_{-\frac{1}{2}}^{\frac{\pi}{2}} \cos^{-1} x \, dx$ is

- a) π b) $\frac{\pi}{2}$ c) 1 d) $\frac{\pi^2}{2}$

Ans. b

12. If
$$\int \frac{3x+1}{(x-1)(x-2)(x-3)} dx$$

 $= A \log |x-1| + B \log |x-2| + C \log |x-3| + C$, then the values of A, B and C are respectively.

Ans. d

13. The value of
$$\int_{0}^{1} \frac{\log(1+x)}{1+x^{2}} dx$$
 is

a)
$$\frac{\pi}{2}\log 2$$

b)
$$\frac{\pi}{4}\log 2$$

c)
$$\frac{1}{2}$$

d)
$$\frac{\pi}{8}\log 2$$

Ans. d

The area of the region bounded by the curve 14. $y^2=8x$ and the line y=2x is

a)
$$\frac{16}{3}$$
 sq.units

b)
$$\frac{4}{3}$$
 sq.units

c)
$$\frac{3}{4}$$
 sq.units d) $\frac{8}{3}$ sq.units

d)
$$\frac{8}{3}$$
 sq.units

Ans. b

The value of $\int_{\pi}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^{x}} dx$ is

- b) 0
- c) 1
- d) -2

Ans. c

The order of the differential equation obtained 16. by eliminating arbitrary constants in the family of curves $c_1y = (c_2 + c_3)e^{x+c_4}$ is

- a) 1
- b) 2
- c) 3
- d) 4

Ans. a

The general solution of the 17. differential equation x2dy-2xydx=x4cosx dx is

- a) $y=x^2sinx+cx^2$
- b) $y=x^2\sin x+c$
- c) $y=sinx+cx^2$
- d) v=cosx+cx2

Ans. a

The area of the region bounded by the line 18. y=2x+1, x-axis and the ordinates x=-1 and x=1

- a) $\frac{9}{4}$
- b) 2 c) $\frac{5}{2}$
 - d) 5

Ans. c

The two vectors $\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} + 3\hat{j} + 5\hat{k}$ represent the two sides \overrightarrow{AB} and \overrightarrow{AC} respectively of a $\triangle ABC$. The length of the median through A is

a)
$$\frac{\sqrt{14}}{2}$$

b) 14

c) 7 d) $\sqrt{14}$

Ans. d

If \vec{a} and \vec{b} are unit vectors and θ is the angle 20. between \vec{a} and \vec{b} , then $\sin \frac{\theta}{2}$ is

a)
$$|\vec{a} + \vec{b}|$$
 b) $\frac{|\vec{a} + \vec{b}|}{2}$ c) $\frac{|\vec{a} - \vec{b}|}{2}$ d) $|\vec{a} - \vec{b}|$

b)
$$\frac{|\vec{a}|}{\vec{a}}$$

c)
$$\frac{|\vec{a}-\vec{a}|}{2}$$

d)
$$|\vec{a} - \vec{b}|$$

Ans. c

21. The curve passing through the point (1, 2) given that the slope of the tangent at any point (x, y) is $\frac{3x}{y}$ represents

- a) Circle
- b) Parabola
- c) Ellipse
- d) Hyperbola

Ans. d

22. If $|\vec{a} \times \vec{b}|^2 + |\vec{a}.\vec{b}|^2 = 144$ and $|\vec{a}| = 6$ then $|\vec{b}|$ is equal to a) 6 b) 3 c) 2 d) 4

Ans.

23. The point (1, -3, 4) lies in the octant a) Second b) Third c) Fourth d) Eighth

Ans. c

24. If the vectors $2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}}, 2\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ and $\lambda \hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ coplanar, then the value of λ is a) 6 b) -5c) -6d) 5

Ans. a

The distance of the point (1, 2, -4) from the line $\frac{x-3}{2} = \frac{y-3}{3} = \frac{z+5}{6}$ is

a)
$$\frac{293}{7}$$

b)
$$\frac{\sqrt{293}}{7}$$

c)
$$\frac{293}{49}$$

a)
$$\frac{293}{7}$$
 b) $\frac{\sqrt{293}}{7}$ c) $\frac{293}{49}$ d) $\frac{\sqrt{293}}{49}$

Ans. b

- The sine of the angle between the straight line 26. $\frac{x-2}{3} = \frac{3-y}{-4} = \frac{z-4}{5}$ plane 2x - 2v + z = 5 is
- a) $\frac{3}{\sqrt{50}}$ b) $\frac{3}{50}$ c) $\frac{4}{5\sqrt{2}}$ d) $\frac{\sqrt{2}}{10}$

Ans. G

- If a line makes an angle of $\frac{\pi}{3}$ with each of x 27. and y-axis, then the acute angle made by z-axis is
- b) $\frac{\pi}{6}$ c) $\frac{\pi}{3}$ d) $\frac{\pi}{2}$

Ans. a

- 28. Corner points of the feasible region determined by the system of linear constraints are (0, 3), (1, 1) and (3, 0). Let z = px + qy, where p, q>0. Condition on p and q so that the minimum of z occurs at (3, 0) and (1, 1) is
- a) p = 2q b) $p = \frac{q}{2}$ c) p = 3q d) p = q

Ans. b

The feasible region of an LPP is shown in the 29. figure. If Z = 11x + 7y, then the maximum value of Z occurs at

- a) (0,5)
- b) (3,3)
- c) (5,0)
- d) (3,2)

Ans. d

- 30. A die is thrown 10 times, the probability that an odd number will come up atleast one time is

- a) $\frac{1}{1024}$ b) $\frac{1023}{1024}$ c) $\frac{11}{1024}$ d) $\frac{1013}{1024}$

Ans. b

- If A and B are two events such that 31. $P(A) = \frac{1}{3}, P(B) = \frac{1}{2}$ and $P(A \cap B) = \frac{1}{6}$, then

- a) $\frac{2}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{2}$ d) $\frac{1}{12}$

Ans. a

32. Events E_1 and E_2 from a partition of the sample space S. A is any event such that

$$P(E_1) = P(E_2) = \frac{1}{2}, P(E_2 / A) = \frac{1}{2}$$
 and

$$P(A/E_2) = \frac{2}{3}$$
, then $P(E_1/A)$ is

- a) $\frac{1}{2}$ b) $\frac{2}{3}$ c) 1 d) $\frac{1}{4}$

Ans. a

- The probability of solving a problem by three 33. persons A, B and C independently is $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{3}$ respectively. Then the probability of the problem is solved by any two of them is
- a) $\frac{1}{12}$ b) $\frac{1}{4}$ c) $\frac{1}{24}$ d) $\frac{1}{8}$

Ans. b

- If n(A) = 2 and total number of possible 34. relations from Set A to set B is 1024, then n(B) is
 - a) 512
- b) 20
- c) 10
- d) 5

Ans. d

- The value of $\sin^2 51^\circ + \sin^2 39^\circ$ is
 - a) 1
- b) 0
- c) $\sin 12^{\circ}$
- d) cos 12°

Ans. a

- 36. $\tan A + \cot A = 2$, then value of $tan^4 A + cot^4 A =$
 - a) 2

a) 64

b) 1

b) 63

c) 4

c) 57

d) 5

d) 58

Ans.

If $A = \{1, 2, 3, 4, 5, 6\}$, then the number of 37. subsets of A which contain atleast two elements is

Ans. c

38.	If $z = x + iy$,	then the	equation	z+1 = z-1	4
	represents				
	a) a circle		b) a parab	ola	
	c) x-axis		d) y-axis		A
Ans.	d				
39.	The value of ${}^{16}C_9 + {}^{16}C_{10} - {}^{16}C_6 - {}^{16}C_7$ is a) 0 b) 1 c) ${}^{17}C_{10}$ d) ${}^{17}C_3$				4
	a) 0 b)	1	c) $^{17}C_{10}$	d) ¹⁷ C ₃	
Ans.	a				A

The number of terms in the expansion of 40. $(x + y + z)^{10}$ is

a) 66

b) 142

c) 11

d) 110

Ans. a

If $P(n): 2^n < n!$ 41.

> Then the smallest positive integer for which P(n) is true if

a) 2

b) 3

b) 4

b) 1

d) 5

d) 8

d) 6

Ans. c

The two lines lx + my = n and l'x + m'y = n'42. are perpendicular if

a) ll' + mm' = 0

b) lm' = ml'

c) lm + l'm' = 0

d) lm' + ml' = 0

Ans. a

If the parabola x^2 =4ay passes through the point (2, 1), then the length of the latus rectum is

c) 2

c) 2

a) 1

Ans. b

If the sum of n terms of an A.P is given by $S_n = n^2 + n$, then the common difference of the A.P is

a) 4 Ans. a

The negation of the statement "For all real 45. numbers x and y, x + y = y + x" is

a) For all real numbers x and y, $x + y \neq y + x$

b) For some real numbers x and y, x + y = y + x

c) For some real number x and y, $x + y \neq y + x$

d) for some real numbers x and y, x - y = y - x

Ans. a

The standard deviation of the data 6, 7, 8, 9,

a) $\sqrt{2}$

b) $\sqrt{10}$

c) 2

d) 10

ns. a

 $47. \quad \lim_{x \to 0} \left(\frac{\tan x}{\sqrt{2x+4} - 2} \right) \text{ is equal to}$

a) 2

c) 4

d) 6

lns. a

If a relation R on the set $\{1, 2, 3\}$ be defined by 48. $R=\{(1, 1)\}, \text{ then R is }$

a) Reflexive and symmetric

b) 3

b) Reflexive and transitive

c) symmetric and transitive

d) Only symmetric

Ans. a

49. Let $f:[2,\infty)\to R$ be the function defined $f(x) = x^2 - 4x + 5$, then the range of f is a) $(-\infty, \infty)$ b) $[1, \infty)$

c) $(1,\infty)$

d) [5,∞)

Ans. b

50. If A, B, C are three mutually exclusive and exhaustive events of an experiment such that P(A) = 2P(B) = 3P(C), then P(B) is equal to

a) $\frac{1}{11}$ b) $\frac{2}{11}$ c) $\frac{3}{11}$ d) $\frac{4}{11}$

Ans. c

51. The domain of the function defined by $f(x) = \cos^{-1} \sqrt{x-1}$ is

a) [1, 2] b) [0, 2] c) [-1, 1] d) [0, 1]

Ans. a

The value of $\cos\left(\sin^{-1}\frac{\pi}{3}+\cos^{-1}\frac{\pi}{3}\right)$ is c) -0

a) 0

d) Does not exist

Ans. a

53. If $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, then A^4 is equal to

a) A

b) 2A

c) I

d) 4A

Ans. a

- If $A = \{a, b, c\}$, then the number of binary operations on A is
 - a) 3
- b) 36
- c) 3^3
- d) 39

Ans. a

- 55. If $\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$ A = $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then the matrix a is
 - a) $\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$
 - b) $\begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$
 - c) $\begin{pmatrix} -2 & 1 \\ 3 & -2 \end{pmatrix}$

Ans. b

- If $f(x) = \begin{vmatrix} x^3 x & a + x & b + x \\ x a & x^2 x & c + x \\ x b & x c & 0 \end{vmatrix}$ then
 - a) f(1) = 0
- b) f(2) = 0
- c) f(0) = 0
- d) f(-1) = 0

Ans. c

- If A and B are square matrices of same order 57. and B is a skew symmetric matrix, then A'BA
 - a) Symmetric matrix
 - b) Null matrix
 - c) Diagonal matrix
 - d) Skew symmetric matrix

Ans. a

- If A is a square matrix of order 3 and |A|=5, 58. then | A adj. A | is
 - a) 5
- b) 125
- c) 25
- d) 625

Ans. b

If f(x) $\begin{cases} \frac{1-\cos Kx}{x\sin x}, & \text{If } x \neq 0 \\ \frac{1}{2}, & \text{If } x = 0 \end{cases}$ is continuous at

x=0, then the value of K is

- a) $\pm \frac{1}{2}$
- c) ±2
- d) ±1

Ans. d

- If $a_1a_2a_3....a_9$ are in A.P. then the value of

 - a) $\frac{9}{2}(a_1 + a_9)$ b) $a_1 + a_9$
 - c) $\log_{e}(\log_{e} e)$

Ans. c