

Saha's Book

Plotting Coordinates

Visualizing Data

Let's Code

Discrete Structures: CMPSC 102

Oliver BONHAM-CARTER

Fall 2018 Week 11

Saha's Book

Plotting Coordinates

Visualizing Data

Let's Code

Saha, Chapter 2: Visualizing Data with graphs

- How to present data with graphics
- Plotting basic numbers
- Plotting results from equations
- Plotting all kinds of things!

A Number Line: x

Saha's Book

Plotting Coordinates

Visualizing Data

- The x-axis runs horizontally left to right
- The middle of the number line is where x=0
- Left of 0: negative numbers (all kinds of numbers!)
- Right of 0: positive numbers (all kinds of numbers, too!)

Cartesian system, 2-D Coordinates: x and y Denoted \mathbb{R}^2

Saha's Book

Plotting Coordinates

Visualizing Data

- The x-axis runs along the bottom (horizontally left to right)
- The y-axis runs along the side (vertically bottom to top)
- Typically, the (0,0) point (the origin) is shown where x=0 and y=0

2-D Coordinates: x and y

Saha's Book

Plotting Coordinates

Visualizing Data

- The two number lines are called the *x*-axis and the *y*-axis and are called the *coordinate axes*
- The intersection of the values of x and y creates the 2-D point (called the ordered pair) on the canvas.
- There are four quadrants defined by:
 - Quadrant I: (x, y)
 - **Q** Quadrant II: (-x, y)
 - **3** Quadrant III: (-x, -y)
 - **Q** Quadrant IV: (x, -y)

Example Coordinates: x and y Example plot

Saha's Book

Plotting Coordinates

Visualizing Data

- Origin: (0,0)
- Green: (2,3)
- Red: (-3,1)
- Blue: (-1.5, -2.5)

3-D Coordinates: x, y, and z Denoted \mathbb{R}^3

Saha's Book

Plotting Coordinates

Visualizing Data

- The three number lines are called the *x*-axis, the *y*-axis, and the *z*-axis and are called the *coordinate axes*
- The intersection of the values of x, y and z creates the point defined by the ordered triple on the canvas.
- The z-axis:

3-D Coordinates: x, y, and z Example plot

Saha's Book

Plotting Coordinates

Visualizing Data

Creating Plots with Matplotlib

Saha's Book

Plotting Coordinates

Visualizing Data

More Plots Adding Legends Adding Titles Plotting Equations

Let's Code

 We first need to know that the library is installed on your machine.

python3

from pylab import plot, show

- https://matplotlib.org/index.html
- https://matplotlib.org/3.0.0/users/installing.html

Your First Plot Plot some simple points

Saha's Book

Plotting Coordinates

Visualizing Data

More Plots Adding Legends Adding Titles Plotting Equations

Let's Code

Place in python3 or in a python3 program file

```
from pylab import plot, show #get the library
x_num = [1,2,3,4,5] #def of x
y_num = [1,5,3,7,9] # def of y
plot(x_num, y_num) # gives mem addr of obj
show() # draw the plot on canvas
```


Gimme Points, Not Lines

Plot some basic numbers using points

Saha's Book

Plotting Coordinates

Visualizing Data

More Plots Adding Legends Adding Titles Plotting Equations Let's Code

Place in python3 or in a python3 program file

```
from pylab import plot, show #get the library
x_num = [1,2,3,4,5] #def of x
y_num = [1,5,3,7,9] # def of y
plot(x_num, y_num, marker ='o')
# also including 'o', '*', 'x', and '+' as points
show() # draw the plot on canvas
```


Another Amazing Example!

Plot the sin wave

Saha's Book

Plotting Coordinates

Visualizing Data

More Plots Adding Legends Adding Titles Plotting

Equations Let's Code

```
Place in python3 or in a python3 program file
```

```
from pylab import plot, show #get the library
import math
x_num = [i for i in range(50)]
y_num = [math.sin(i) for i in x_num]
plot(x_num, y_num, marker ='o')
# also including 'o', '*', 'x', and '+' as points
show() # draw the plot on canvas
```


Yet, **Another** Amazing Example!

Plot the temperature in NYC and save the file too!

Saha's Book

Plotting Coordinates

Visualizing Data

More Plots Adding Legends Adding Titles Plotting Equations

Let's Code

Place in python3 or in a python3 program file

from pylab import plot, show, savefig #note savefig
nyc_temp = [53.9, 56.3, 56.4, 53.4, 54.5, 55.8,
56.8, 55.0, 55.3, 54.0, 56.7, 56.4, 57.3]
years = range(2000, 2013)
plot(years, nyc_temp, marker='o')
also including 'o', '*', 'x', and '+' as points
savefig('mygraph.png') #save in root directory
show() # draw the plot on canvas

Three Plots Together! Amazing! Plot the temperature in NYC aggregated by time

Saha's Book

Plotting Coordinates

Visualizing Data

More Plots Adding Legends Adding Titles Plotting Equations

Let's Code

Place in python3 or in a python3 program file

from pylab import plot, show, savefig #note savefig
months = range(1, 13)

nyc_temp_2000 = [31.3, 37.3, 47.2, 51.0, 63.5, 71.3, 72.3, 72.7, 66.0, 57.0, 45.3, 31.1]

nyc_temp_2006 = [40.9, 35.7, 43.1, 55.7, 63.1, 71.0, 77.9, 75.8, 66.6, 56.2, 51.9, 43.6]

nyc_temp_2012 = [37.3, 40.9, 50.9, 54.8, 65.1, 71.0, 78.8, 76.7, 68.8, 58.0, 43.9, 41.5]

plot(months, nyc_temp_2000, months, nyc_temp_2006,
months, nyc_temp_2012)
savefig('mygraph.png') #save in root directory
show() # draw the plot on canvas

Three Plots Together! Amazing! Plot the temperature in NYC aggregated by time

Saha's Book

Plotting Coordinates

Visualizing Data

More Plots
Adding Legends
Adding Titles
Plotting

Equations
Let's Code

Three Plots Together! And a LEGEND too!

Plot the temperature in NYC aggregated by time

Saha's Book Plotting

Plotting Coordinates

Visualizing
Data
More Plots

Adding Legends
Adding Titles
Plotting
Equations
Let's Code

```
Place in python3 or in a python3 program file
```

from pylab import plot, show, savefig, legend #note legend months = range(1, 13) nyc_temp_2000 = [31.3, 37.3, 47.2, 51.0, 63.5, 71.3, 72.3, 72.7, 66.0, 57.0, 45.3, 31.1]

nyc_temp_2006 = [40.9, 35.7, 43.1, 55.7, 63.1, 71.0, 77.9, 75.8, 66.6, 56.2, 51.9, 43.6]

nyc_temp_2012 = [37.3, 40.9, 50.9, 54.8, 65.1, 71.0, 78.8, 76.7, 68.8, 58.0, 43.9, 41.5]

plot(months, nyc_temp_2000, months, nyc_temp_2006,
months, nyc_temp_2012)
legend([2000, 2006, 2012]) # make the legend
savefig('mygraph.png') #save in root directory
show() # draw the plot on canvas

Three Plots Together! And a LEGEND too!

Plot the temperature in NYC aggregated by time

Saha's Book Plotting Coordinates

Visualizing

Data More Plots

Adding Legends
Adding Titles
Plotting
Equations

Add Title and Axes Descriptions!

Plot the temperature in NYC aggregated by time

Saha's Book

Plotting Coordinates

Visualizing
Data
More Plots
Adding Legends

Adding Titles
Plotting
Equations
Let's Code

```
Place in python3 or in a python3 program file
```

```
from pylab import plot, show, title, savefig, xlabel, ylabel, legend
months = range(1, 13)
nyc_temp_2000 = [31.3, 37.3, 47.2, 51.0, 63.5, 71.3,
72.3, 72.7, 66.0, 57.0, 45.3, 31.1]
nyc_temp_2006 = [40.9, 35.7, 43.1, 55.7, 63.1, 71.0,
77.9, 75.8, 66.6, 56.2, 51.9, 43.6]
nvc_temp_2012 = [37.3, 40.9, 50.9, 54.8, 65.1, 71.0,
78.8, 76.7, 68.8, 58.0, 43.9, 41.5]
plot(months, nyc_temp_2000, months, nyc_temp_2006, months, nyc_temp_2012)
title('Average monthly temperature in NYC')
xlabel('Month') #x-axis label
vlabel('Temperature') #v-axis label
legend([2000, 2006, 2012]) #legend
savefig('mygraph.png') #save in root directory
show() # draw the plot on canvas
```

Sorry about the fine print. :-(

Add a Title and Axes Descriptions!

Plot the temperature in NYC aggregated by time

Saha's Book Plotting Coordinates

Visualizing Data More Plots

Adding Legends Adding Titles

Plotting Equations

Changing the Field of View (Move the Axes)

Saha's Book

Plotting Coordinates

Visualizing Data More Plots

Adding Legends

Adding Titles

Equations Let's Code

```
nyc_temp = [53.9, 56.3, 56.4, 53.4, 54.5, 55.8,
56.8, 55.0, 55.3, 54.0, 56.7, 56.4, 57.3]
plot(nyc_temp, marker='o')
axis()
#(-0.60, 12.6, 53.205, 57.495)
show()
```


Changing the Field of View (using the Axes)

Saha's Book

Plotting Coordinates

Visualizing Data More Plots

Adding Legends

Adding Titles

Equations
Let's Code

Set the x-axis, min and max

```
plot(nyc_temp, marker='o')
axis(xmin = 3, xmax = 7)
show()
```


Plotting the Log Equation

Saha's Book

Plotting Coordinates

Visualizing Data

More Plots Adding Legends Adding Titles Plotting

Equations

```
Let's Code
```

```
Log Plot
```

date: 3 November 2018

```
from pylab import plot, show, title, savefig, xlabel, ylabel, legend
import math
x = [i \text{ for } i \text{ in } range(1,20)]
```

```
plot(x,y, marker = 'o')
title(' Log Equation plot')
xlabel('x Values') #x-axis label
vlabel('log(x)') #y-axis label
legend(['log(x)']) #legend
```

v = [math.log(i) for i in x]

savefig('myLogPlot.png') #save in root directory show() # draw the plot on canvas

Sorry about the fine print. :-(

The Plotted Log(x)Plot the temperature in NYC aggregated by time

Saha's Book Plotting

Plotting Coordinates

Visualizing
Data
More Plots
Adding Legends
Adding Titles
Plotting

Equations
Let's Code

Let's Code

Saha's Book

Plotting Coordinates

Visualizing Data

Let's Code

We are going to code character frequency plotter.

