Table of Laplace Transforms

This table will appear on exams.

f(t)	$\mathcal{L}[f(t)]$	
f(t)	$\int_0^\infty f(t)e^{-st}dt$	Definition of Laplace transform
t ⁿ	$\frac{n!}{s^{n+1}}$	Valid for $n = 0, 1, 2,$
t ^r	$\frac{r}{s}\mathcal{L}[t^{r-1}]$	Valid for $r > 0$
$t^{-1/2}$	$\sqrt{\frac{\pi}{s}}$	
e ^{at}	$\frac{1}{s-a}$	
cos at	$\frac{s}{s^2 + a^2}$	
sin at	$\frac{a}{s^2 + a^2}$	
$\frac{\sin at}{t}$	$\arctan\left(\frac{a}{s}\right)$	
$\frac{e^{at}-1}{t}$	$\ln\left(\frac{s}{s-a}\right)$	
f'(t)	$s\mathcal{L}[f(t)] - f(0)$	First derivative in t
f''(t)	$s^2 \mathcal{L}[f(t)] - sf(0) - f'(0)$	Second derivative in t
$e^{at}f(t)$	$F(s-a)$ where $F(s) = \mathcal{L}[f(t)]$	Shifting Theorem 1
$u_a(t)f(t-a)$	$e^{-as}\mathcal{L}[f(t)]$	Shifting Theorem 2
$\delta(t-a)$	e ^{-as}	Dirac delta function
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} \mathcal{L}[f(t)]$	Derivatives in s
f(t) * g(t)	$\mathcal{L}[\mathit{f}(t)]\mathcal{L}[g(t)]$	The Convolution Theorem