Diszkrét matematika II. 2. előadás

Fancsali Szabolcs Levente nudniq@inf.elte.hu

ELTE IK Komputeralgebra Tanszék

Mérai László diái alapján

Felbonthatatlanok, prímek (múlt heti anyag!)

```
Emlékeztető: t felbonthatatlan: csak triviális osztói vannak: \varepsilon, t, \varepsilon \cdot t típusú osztók (ahol \varepsilon egy egység). Más szavakkal: t felbonthatatlan: t = ab \Rightarrow a vagy b egység. p prím: p \mid ab \Rightarrow p \mid a vagy p \mid b. p prím \Rightarrow p felbonthatatlan. Az egész számok körében a fordított irány is igaz:
```

Tétel

Minden felbonthatatlan szám prímszám.

Bizonyítás

Legyen p felbonthatatlan, és legyen $p \mid ab$. Tfh. $p \nmid b$. Ekkor p és b relatív prímek. A bővített euklideszi algoritmussal kaphatunk x, y egészeket, hogy px + by = 1. Innen pax + aby = a. Mivel p osztója a baloldalnak, így osztója a jobboldalnak is: $p \mid a$.

Számelmélet alaptétele (múlt heti anyag!)

Tétel

Minden nem-nulla, nem egység egész szám sorrendtől és asszociáltaktól eltekintve egyértelműen felírható prímszámok szorzataként.

Bizonyítás

Csak nemnegatív számokra.

Létezés: Indukcióval: n=2, n=3 esetén igaz (prímek). Általában ha n prím, akkor készen vagyunk, ha nem, akkor szorzatra bomlik nemtriviális módon. A tényezők már felbonthatók indukció alapján.

Egyértelműség: Indukcióval: n=2, n=3 esetén igaz (prímek). Tfh. $n=p_1p_2\cdots p_k=q_1q_2\cdots q_\ell$, ahol $p_1,p_2\cdots ,p_k,q_1,q_2,\ldots ,q_\ell$ prímek. p_1 osztja a bal oldalt \Rightarrow osztja a jobb oldalt, felthehető $p_1=q_1$. Egyszerűsítve: $n'=p_2\cdots p_k=q_2\cdots q_\ell$. Indukció alapján ez már

Egyszerűsítve: $n'=p_2\cdots p_k=q_2\cdots q_\ell$. Indukció alapján ez mái egyértelmű.

Számelmélet alaptétele (múlt heti anyag!)

Definíció

Egy n nem-nulla egész szám kanonikus alakja:

$$n = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_\ell^{\alpha_\ell} = \pm \prod_{i=1}^{c} p_i^{\alpha_i}$$
, ahol p_1, p_2, \ldots, p_ℓ pozitív prímek, α_1 , $\alpha_2, \ldots, \alpha_\ell$ pozitív egészek.

Következmény (HF)

Legyenek
$$n, m>1$$
 pozitív egészek: $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_\ell^{\alpha_\ell}$, $m=p_1^{\beta_1}p_2^{\beta_2}\cdots p_\ell^{\beta_\ell}$, (ahol most $\alpha_i, \ \beta_i\geq 0$ nemnegatív egészek!). Ekkor
$$(a,b)=p_1^{\min\{\alpha_1,\beta_1\}}p_2^{\min\{\alpha_2,\beta_2\}}\cdots p_\ell^{\min\{\alpha_\ell,\beta_\ell\}},$$

$$[a,b]=p_1^{\max\{\alpha_1,\beta_1\}}p_2^{\max\{\alpha_2,\beta_2\}}\cdots p_\ell^{\max\{\alpha_\ell,\beta_\ell\}},$$

$$(a,b)\cdot [a,b]=a\cdot b.$$

Osztók száma (múlt heti anyag!)

Definíció

Egy n > 1 egész esetén legyen $\tau(n)$ az n pozitív osztóinak száma.

Példa

$$\tau(6) = 4$$
: osztók: 1, 2, 3, 6; $\tau(96) = 12$: osztók: 1, 2, 3, 4, 6, 8, ...

Tétel

Legyen n>1 egész, $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_\ell^{\alpha_\ell}$ kanonikus alakkal. Ekkor $\tau(n)=(\alpha_1+1)\cdot(\alpha_2+2)\cdots(\alpha_\ell+1)$.

Bizonvítás

n lehetséges osztóit úgy kapjuk, hogy a $d=p_1^{\beta_1}p_2^{\beta_2}\cdots p_\ell^{\beta_\ell}$ kifejezésben az összes β_i kitevő végigfut a $\{0,1,\ldots,\alpha_i\}$ halmazon. Így ez a kitevő α_i+1 féleképpen választható.

Példa

$$\tau(2\cdot 3) = (1+1)\cdot (1+1); \qquad \tau(2^5\cdot 3) = (5+1)\cdot (1+1).$$

Prímekről (múlt heti anyag!)

Tétel (Euklidesz)

Végtelen sok prím van.

Bizonyítás

Indirekt tfh csak véges sok prím van. Legyenek ezek p_1,\ldots,p_k . Tekintsük az $n=p_1\cdots p_k+1$ számot. Ez nem osztható egyetlen p_1,\ldots,p_k prímmel sem, igy n prímtényezős felbontásában kell szerepelnie egy újabb prímszámnak.

Tétel (Dirichlet, NB)

Ha a,d egész számok, d>0, $\left(a,d\right)=1$, akkor végtelen sok ak+d alakú prím van.

Prímekről (múlt heti anyag!)

Prímszámtétel: x-ig a prímek száma $\sim \frac{x}{\ln x}$. (Sok prím van!)

Prímek száma:

X	prímek száma	$x/\ln x$
10	4	4, 343
100	25	21,715
1000	168	144, 765
10000	1229	1085, 736

Erathoszthenész szitája: Keressük meg egy adott n-ig az összes prímet. Soroljuk fel 2-től n-ig az egész számokat. Ekkor 2 prím. A 2 (valódi) többszörösei nem prímek, ezeket huzzuk ki. A következő szám 3 szintén prím. A 3 (valódi) többszörösei nem prímek, ezeket huzzuk ki. . . Ismételjük az eljárást \sqrt{n} -ig. A ki nem húzott számok mind prímek.

Mérai László diái alapján

Kongruenciák (múlt heti anyag!)

Oszthatósági kérdésekben sokszor csak a maradékos osztás esetén csak a maradék fontos:

- hét napjai;
- o órák száma, ...

Példa

 $16 \mod 3 = 1 \pmod 3 = 1$: 3-mal való oszthatóság esetén 16 " = " 4.

Definíció

Legyenek a, b, m egészek, akkor $a \equiv b \mod m$ (a és b kongruensek), ha $m \mid a - b$, és $a \not\equiv b \mod m$ (a és b inkongruensek), ha $m \nmid a - b$.

Ekvivalens megfogalmazás: $a \equiv b \mod m \Leftrightarrow a \mod m = b \mod m$, azaz m-mel osztva ugyan azt az osztási maradékot adják.

Példa

 $16 \equiv 4 \mod 3 \text{ u.i. } 3 \mid 16 - 4 \Leftrightarrow 16 \mod 3 = 1 = 4 \mod 3;$

 $16 \equiv 4 \mod 2$ u.i. $2 \mid 16 - 4 \Leftrightarrow 16 \mod 2 = 0 = 4 \mod 2$;

 $16 \not\equiv 4 \mod 5$ u.i. $5 \nmid 16 - 4 \Leftrightarrow 16 \mod 5 = 1 \neq 4 = 4 \mod 5$.

Kongruencia tulajdonságai (múlt heti anyag!)

Tétel

Minden a, b, c, d és m egész számra igaz

- 1. $a \equiv a \mod m$; (reflexív)
- 2. $a \equiv b \mod m$, $m' \mid m \Rightarrow a \equiv b \mod m'$;
- 3. $a \equiv b \mod m \Rightarrow b \equiv a \mod m$; (szimmetrikus)
- 4. $a \equiv b \mod m$, $b \equiv c \mod m \Rightarrow a \equiv c \mod m$; (tranzitív) 5. $a \equiv b \mod m$, $c \equiv d \mod m \Rightarrow a + c \equiv b + d \mod m$;
- 5. a = b mod m, c = d mod m = a | c = b | d mo
- 6. $a \equiv b \mod m$, $c \equiv d \mod m \Rightarrow ac \equiv bd \mod m$.

Bizonyítás

- 1. $m \mid 0 = a a$;
- 2. $m' \mid m \mid a b \Rightarrow m' \mid a b$;
- 3. $m \mid a b \Rightarrow m \mid b a = -(a b);$
- 4. $m \mid a b, m \mid b c \Rightarrow m \mid a c = (a b) + (b c);$
- 5. $m \mid a b, m \mid c d \Rightarrow m \mid (a + c) (b + d) = (a b) + (c d);$
- 6. $a = q_1 m + b$, $c = q_2 m + d \Rightarrow$ $ac = (q_1 m + b)(q_2 m + d) = m(q_1 q_2 m + q_1 d + q_2 b) + bd$.

Kongruencia tulajdonságai (múlt heti anyag!)

Példa

Mi lesz $345 \mod 7 = ?$

 $345 = 34 \cdot 10 + 5 \equiv 6 \cdot 3 + 5 = 18 + 5 \equiv 4 + 5 = 9 \equiv 2 \mod 7.$

Emlékeztető: $a \equiv b \mod m$, $c \equiv d \mod m \Rightarrow ac \equiv bd \mod m$ **Következmény:** $a \equiv b \mod m \Rightarrow ac \equiv bc \mod m$.

Példa

 $14 \equiv 6 \mod 8 \Rightarrow 42 \equiv 18 \mod 24$

A másik irány nem igaz!

 $2 \cdot 7 \equiv 2 \cdot 3 \mod 8 \not\Rightarrow 7 \equiv 3 \mod 8$.

Kongruencia tulajdonságai (múlt heti anyag!)

Tétel

Legyenek a, b, c, m egész számok. Ekkor $ac \equiv bc \mod m \Leftrightarrow a \equiv b \mod \frac{m}{(c,m)}$

Következmény: $ac \equiv bc \mod m$, $(c, m) = 1 \Leftrightarrow a \equiv b \mod m$. Példa $2 \cdot 7 \equiv 2 \cdot 3 \mod 8 \Rightarrow 7 \equiv 3 \mod \frac{8}{2}$.

Bizonyítás

Legyen d=(c,m). Ekkor $m\mid c(a-b)\Leftrightarrow \frac{m}{d}\mid \frac{c}{d}(a-b)$. Mivel $\left(\frac{m}{d},\frac{c}{d}\right)=1$, ezért $\frac{m}{d}\mid (a-b)\Leftrightarrow a\equiv b\mod \frac{m}{d}$.

Lineáris kongruenciák (itt kezdődik az új anyag)

Oldjuk meg a $2x \equiv 5 \mod 7$ kongruencát.

Ha x egy megoldás és $x \equiv y \mod 7$, akkor y szintén megoldás.

Keressük megoldást a $\{0,1,\ldots,6\}$ halmazból!

$$x = 0 \Rightarrow 2x = 0 \not\equiv 5 \mod 7;$$

 $x = 1 \Rightarrow 2x = 2 \not\equiv 5 \mod 7;$
 $x = 2 \Rightarrow 2x = 4 \not\equiv 5 \mod 7;$
 $x = 3 \Rightarrow 2x = 6 \not\equiv 5 \mod 7;$
 $x = 4 \Rightarrow 2x = 8 \equiv 1 \not\equiv 5 \mod 7;$
 $x = 5 \Rightarrow 2x = 10 \equiv 3 \not\equiv 5 \mod 7;$
 $x = 6 \Rightarrow 2x = 12 \equiv 5 \mod 7.$

A kongruencia megoldása: $\{6 + 7\ell : \ell \in \mathbb{Z}\}.$

Van-e jobb módszer?

Oldjuk meg a $23x \equiv 4 \mod 211$ kongruencát! Kell-e 211 próbálkozás?

Lineáris kongruenciák

Tétel

Legyenek a, b, m egész számok, m>1. Ekkor az $ax\equiv b \mod m$ megoldható $\Leftrightarrow (a,m)\mid b$. Ez esetben pontosan (a,m) darab inkongruens megoldás van $\mod m$.

Bizonyítás

 $ax \equiv b \mod m \Leftrightarrow ax + my = b \text{ valamely } y \text{ egészre.}$

Mivel $(a, m) \mid a, m \Leftrightarrow (a, m) \mid ax + my = b$.

Ha d = (a, m) | b legyen a' = a/d, b' = b/d, m' = m/d: a'x + m'y = b'

Mivel (a',m')=1 bővített euklideszi algoritmussal kiszámolható x_0 , y_0 együttható, hogy $a'x_0+m'y_0=1 \Rightarrow a'(b'x_0)+m'(b'y_0)=b'$, azaz

 $x_1 = b'x_0$, $y_1 = b'y_0$ megoldás lesz.

Megoldások száma: legyenek x, ill. y megoldások. Az a'x + m'y = b' és $a'x_1 + m'y_1 = b'$ egyenleteket kivonva egymásból kapjuk:

 $a'(x-x_1) = m'(y_1-y) \Rightarrow m' \mid x-x_1 \Rightarrow x = x_1 + m'k$: $k = 0, 1, \dots d-1$. Ezek megoldások $y = y_1 - ka'$ választással.

4□ > 4□ > 4 = > 4 = > = 900

Mérai László diái alapján

Lineáris kongruenciák

- 1. $ax \equiv b \mod m \Leftrightarrow ax + my = b$.
- 2. Oldjuk meg ax + my = (a, m) egyenletet (Bővített euklideszi algoritmus).
- 2. Ha $(a, m) \mid b \Leftrightarrow \text{van megoldás}$.
- 4. Megoldások: $x_i = \frac{b}{(a,m)}x + k\frac{m}{(a,m)}$: k = 0, 1, ..., (a,m) 1.

Példa Oldjuk meg a $23x \equiv 4 \mod 211$ kongruencát!

i	r _n	q_n	Xi
-1	23	_	1
0	211	_	0
1	23	0	1
2	4	9	-9
3	3	5	46
4	1	1	-55
5	0	3	_

Algoritmus:
$$r_{i-2} = r_{i-1}q_i + r_i$$
,
 $x_{-1} = 1$, $x_0 = 0$,
 $x_i = x_{i-2} - q_i x_{i-1}$

Lnko: $(23, 211) = 1 \mid 4 \Rightarrow$ Egy megoldás: $x = 4(-55) \equiv 202 \mod 211$.

Osszes megoldás: $\{202 + 211\ell : \ell \in \mathbb{Z}\}.$

Ezek megoldások: $23 \cdot (202 + 211\ell) - 4 = 4642 + 211\ell = (22 + \ell) \cdot 211$

Lineáris kongruenciák

Példa

Oldjuk meg a $10x \equiv 8 \mod 22$ kongruencát!

i	r _n	q_n	Xi
-1	10	_	1
0	22	_	0
1	10	0	1
2	2	2	-2
3	0	5	_

Algoritmus:
$$r_{i-2} = r_{i-1}q_i + r_i$$
,
 $x_{-1} = 1$, $x_0 = 0$,
 $x_i = x_{i-2} - q_i x_{i-1}$

Lnko:
$$(10, 22) = 2 \mid 8 \Rightarrow$$

Egy megoldás pár: $x_1 = 4(-2) \equiv 14 \mod 22$
 $x_2 = 4(-2) + \frac{22}{2} \equiv 14 + 11 \equiv 3 \mod 22$.

Összes megoldás:
$$\{14+22\ell:\ \ell\in\mathbb{Z}\}\bigcup\{3+22\ell:\ \ell\in\mathbb{Z}\}.$$
 Ezek megoldások: $x_1=14$: $10\cdot 14-8=132=6\cdot 22$ $x_2=3$: $10\cdot 3-8=22=1\cdot 22$.

Lineáris diofantikus egyenletek

Diofatikus egyenletek: egyenletek egész megoldásait keressük.

Lineáris diofantikus egyenletek: ax + by = c, ahol a, b, c egészek.

Ez ekvivalens az $ax \equiv c \mod b$, $by \equiv c \mod a$ kongruenciákkal.

Az ax + by = c pontosan akkor oldható meg, ha $(a, b) \mid c$, és ekkor a megoldások megkaphatók a bővített euklideszi algoritmussal.

További diofantikus egyenletek:

$$x^2 + y^2 = -4$$
: nincs valós megoldás.

 $x^2-4y^2=3$: nincs megoldás, u.i. 4-gyel való osztási maradékok:

 $x^2 \equiv 3 \mod 4$. De ez nem lehet, a négyzetszám maradéka 0 vagy 1:

X	$x^2 \mod 4$	
4 <i>k</i>	0	
4k + 1	1	
4k + 2	0	
4k + 3	1	

Szeretnénk olyan x egészet, mely egyszerre elégíti ki a következő kongruenciákat:

$$2x \equiv 1 \mod 3$$

$$4x \equiv 3 \mod 5$$

A kongruenciákat külön megoldva:

$$x \equiv 2 \mod 3$$
$$x \equiv 2 \mod 5$$

Látszik, hogy x = 2 megoldás lesz!

Vannak-e más megoldások?

- 2, 17, 32, ..., $2 + 15\ell$;
- további megoldások?
- hogyan oldjuk meg az általános esetben:

$$x \equiv 2 \mod 3$$

$$x \equiv 3 \mod 5$$

Feladat: Oldjuk meg a következő kongruencia rendszert:

$$\left. \begin{array}{l} a_1x \equiv b_1 \mod m_1 \\ a_2x \equiv b_2 \mod m_2 \\ \vdots \\ a_nx \equiv b_n \mod m_n \end{array} \right\}$$

Az egyes lineáris kongruenciák $a_i x \equiv b_i \mod m_i$ külön megoldhatóak:

$$\begin{array}{c}
x \equiv c_1 \mod m_1 \\
x \equiv c_2 \mod m_2 \\
\vdots \\
x \equiv c_n \mod m_n
\end{array}$$

Feladat: Oldjuk meg a következő kongruencia rendszert:

$$\begin{array}{c}
x \equiv c_1 \mod m_1 \\
x \equiv c_2 \mod m_2 \\
\vdots \\
x \equiv c_n \mod m_n
\end{array}$$

Felthető, hogy az $m_1, m_2 \ldots, m_n$ modulusok relatív prímek. Ha pl. $m_1 = m_1'd$, $m_2 = m_2'd$, akkor az első két sor helyettesíthető (Biz.: késöbb)

$$x \equiv c_1 \mod m'_1$$

 $x \equiv c_1 \mod d$
 $x \equiv c_2 \mod m'_2$
 $x \equiv c_2 \mod d$

Ha itt $c_1 \not\equiv c_2 \mod d$, akkor nincs megoldás, különben az egyik sor törölhető.

19.

Kínai maradék tétel

Tétel

Legyenek $1 < m_1, m_2 \dots, m_n$ relatív prím számok, c_1, c_2, \dots, c_n egészek. Ekkor a

$$x \equiv c_1 \mod m_1$$

 $x \equiv c_2 \mod m_2$
 \vdots
 $x \equiv c_n \mod m_n$

kongruencia rendszer megoldható, és bármely két megoldás kongruens egymással modulo $m_1 \cdot m_2 \cdots m_n$.

Kínai maradék tétel

 $x \equiv c_1 \mod m_1, x \equiv c_2 \mod m_2, \ldots, x \equiv c_n \mod m_n. x = ?$

Bizonyítás

A bizonyítás konstruktív!

Legyen $m=m_1m_2$. A bővített euklideszi algoritmussal oldjuk meg az $m_1x_1+m_2x_2=1$ egyenletet. Legyen $c_{1,2}=m_1x_1c_2+m_2x_2c_1$. Ekkor $c_{1,2}\equiv c_j\mod m_j$ (j=1,2). Ha $x\equiv c_{1,2}\mod m$, akkor x megoldása az első két kongruenciának. Megfordítva: ha x megoldása az első két kongruenciának, akkor $x-c_{1,2}$ osztható m_1 -gyel, m_2 -vel, így a szorzatukkal is: $x\equiv c_{1,2}\mod m$. Az eredeti kongruencia rendszer ekvivalens a

$$x \equiv c_{1,2} \mod m_1 m_2$$

 $x \equiv c_3 \mod m_3$
 \vdots
 $x \equiv c_n \mod m_n$

n szerinti indukcióval adódik az állítás.

21.

Példa

$$x \equiv 2 \mod 3$$
$$x \equiv 3 \mod 5$$

Oldjuk meg az $3x_1 + 5x_2 = 1$ egyenletet.

Megoldások:
$$x_1 = -3$$
, $x_2 = 2$. \Rightarrow

$$c_{1,2} = 3 \cdot (-3) \cdot 3 + 5 \cdot 2 \cdot 2 = -27 + 20 = -7.$$

Összes megoldás:
$$\{-7+15\ell:\ \ell\in\mathbb{Z}\}=\{8+15\ell:\ \ell\in\mathbb{Z}\}.$$

Példa

$$\begin{array}{c|c} x\equiv 2 \mod 3 \\ x\equiv 3 \mod 5 \\ x\equiv 4 \mod 7 \end{array} \right\} \quad \begin{array}{c|c} c_{1,2}=8 & x\equiv 8 \mod 15 \\ \hline \Longrightarrow & x\equiv 4 \mod 7 \end{array} \right\}$$

Oldjuk meg a $15x_{1,2} + 7x_3 = 1$ egyenletet.

Megoldások:
$$x_{1,2} = 1$$
, $x_3 = -2$. \Rightarrow

$$c_{1,2,3} = 15 \cdot 1 \cdot 4 + 7 \cdot (-2) \cdot 8 = 60 - 112 = -52.$$

Összes megoldás:
$$\{-52+105\ell:\ \ell\in\mathbb{Z}\}=\{53+105\ell:\ \ell\in\mathbb{Z}\}.$$

Sokszor egy adott probléma megoldása nem egy konkrét szám (számok családja), hanem egy egész halmaz (halmazok családja):

```
• 2x \equiv 5 \mod 7, megoldások: \{6 + 7\ell : \ell \in \mathbb{Z}\}
```

•
$$10x \equiv 8 \mod 22$$
, megoldások: $\{14 + 22\ell : \ell \in \mathbb{Z}\}$, $\{3 + 22\ell : \ell \in \mathbb{Z}\}$.

Definíció

Egy rögzített m modulus és a egész esetén, az a-val kongruens elemek halmazát az a által reprezentált maradékosztálynak nevezzük:

$$\overline{a} = \{x \in \mathbb{Z} : x \equiv a \mod m\} = \{a + \ell m : \ell \in \mathbb{Z}\}.$$

Példa

```
Az 2x \equiv 5 \mod 7 \mod 6
A 10x \equiv 8 \mod 22, megoldásai: \overline{14}, \overline{3}.
m = 7 \text{ modulussal } \overline{2} = \overline{23} = \{..., -5, 2, 9, 16, 23, 30, ...\}
```

Általában: $\overline{a} = \overline{b} \Leftrightarrow a = b \mod m$.

Maradékosztályok

Definíció

Egy rögzített m modulus esetén, ha minden maradékosztályból pontosan egy elemet kiveszünk, akkor az így kapott számok teljes maradékrendszert alkotnak modulo m.

Példa

 $\{33, -5, 11, -11, -8\}$ teljes maradékrendszer modulo 5.

Gyakori választás teljes maradékrendszerekre

- Legkisebb nemnegatív maradékok: $\{0, 1, \dots, m-1\}$;
- Legkisebb abszolútértékű maradékok:

$$\begin{array}{l} \left\{0,\pm 1,\ldots,\pm \frac{m-1}{2}\right\}, \text{ ha } 2 \nmid m; \\ \left\{0,\pm 1,\ldots,\pm \frac{m-2}{2},\frac{m}{2}\right\}, \text{ ha } 2 \mid m. \end{array}$$

25.

Maradékosztályok

Megjegyzés: ha egy maradékosztály valamely eleme relatív prím a modulushoz, akkor az összes eleme az: $(a + \ell m, m) = (a, m) = 1$.

Definíció

Egy rögzített m modulus esetén, ha mindazon maradékosztályból, melyek elemei relatív prímek a modulushoz kiveszünk pontosan egy elemet, akkor az így kapott számok redukált maradékrendszert alkotnak modulo m.

Példa

- {1, 2, 3, 4} redukált maradékrendszer modulo 5.
- $\{1,-1\}$ redukált maradékrendszer modulo 3.
- {1, 19, 29, 7} redukált maradékrendszer modulo 8.
- $\{0, 1, 2, 3, 4\}$ nem redukált maradékrendszer modulo 5.

Definíció (kiegészítés)

Egy rögzített m modulus esetén, ha (a,m)=1, akkor az a által reprezentált maradékosztály \overline{a} redukált maradékosztályok halmazát \mathbb{Z}_m^* -al jelöljuk:

$$\mathbb{Z}_m^* = \{ \overline{a} : 1 \le 0 < m, (a, m) = 1 \}.$$

Maradékosztályok

A maradékosztályok között természetes módon műveleteket definiálhatunk:

Definíció

Rögzített m modulus, és a, b egészek esetén legyen:

$$\overline{a} + \overline{b} \stackrel{\text{def}}{=} \overline{a + b}; \qquad \overline{a} \cdot \overline{b} \stackrel{\text{def}}{=} \overline{a \cdot b}$$

Állítás

Ez értelme definíció, azaz ,ha $\overline{a}=\overline{a^*}, \ \overline{b}=\overline{b^*},$ akkor $\overline{a}+\overline{b}=\overline{a^*}+\overline{b^*},$ illetve $\overline{a}\cdot\overline{b}=\overline{a^*}\cdot\overline{b^*}$

Bizonyítás

Mivel $\overline{a} = \overline{a^*}$, $\overline{b} = \overline{b^*} \Rightarrow a \equiv \underline{a^*} \mod m$, $b \equiv b^* \mod m \Rightarrow a + b \equiv a^* + b^* \mod m \Rightarrow \overline{a + b} = \overline{a^* + b^*} \Rightarrow \overline{a} + \overline{b} = \overline{a^*} + \overline{b^*}$. Szorzás hasonlóan.

27.

Maradékosztályok

A maradékosztályok között természetes módon műveleteket definiálhatunk: $\overline{a} + \overline{b} = \overline{a+b}$; $\overline{a} \cdot \overline{b} = \overline{a \cdot b}$.

Definíció

Rögzített m modulus, legyen \mathbb{Z}_m a maradékosztályok halmaza. Ekkor a halmaz elemei között definiálhatunk összeadást, illetve szorzást.

Példa

$$\mathbb{Z}_3=\{\overline{0},\overline{1},\overline{2}\}.$$

+	0	1	2
0	Ō	1	2
1	ī	2	Ō
2	2	ō	1

$$\mathbb{Z}_4=\{\overline{0},\overline{1},\overline{2},\overline{3}\}.$$

+	Ō	$\overline{1}$	2	3
0	Ō	1	2	3
1	1	2	3	Ō
2	2	3	0	1
3	3	0	1	2

	Ō	1	2	3
0	Ō	Ō	ō	ō
1	Ō	1	2	3
2	Ō	2	Ō	1
3	Ō	3	2	1

Maradékosztályok

Tétel

Kongruenciák

Legyen m > 1 egész. Ha 1 < (a, m) < m, akkor \overline{a} nullosztó \mathbb{Z}_m -ben: \overline{a} -hoz van olyan \overline{b} , hogy $\overline{a} \cdot \overline{b} = \overline{0}$

Ha (a, m) = 1, akkor \overline{a} -nak van reciproka (multiplikatív inverze) \mathbb{Z}_m -ben: \overline{a} -hoz van olyan \overline{x} , hogy $\overline{a} \cdot \overline{x} = 1$.

Speciálisan, ha m prím, minden nem-nulla maradékosztállyal lehet osztani.

Példa

Legyen
$$m=9$$
. $\overline{6}\cdot\overline{3}=\overline{18}=\overline{0}$.
$$(2,9)=1, \text{ fgy } \overline{2}\cdot\overline{5}=\overline{10}=\overline{1}.$$

Bizonvítás

Legyen d=(a,m). Ekkor $a\cdot \frac{m}{d}=\frac{a}{d}\cdot 0\equiv 0\mod m$, ahonnan b=m/djelöléssel $\overline{a} \cdot \overline{b} = \overline{0}$.

Ha (a, m) = 1, akkor a bővített euklideszi algoritmussal megadhatóak x, y egészek, hogy ax + my = 1. Ekkor $ax \equiv 1 \mod m$ azaz $\overline{a} \cdot \overline{x} = \overline{1}$.

Definíció

Egy m>0 egész szám esetén legyen $\varphi(m)$ az m-nél kisebb, hozzá relatív prím egészek száma $\varphi(m)=|\{i:\ 0< i< m, (m,i)=1\}|.$

Példa

 $\varphi(5) = 4$: 5-höz relatív prím pozitív egészek 1, 2, 3, 4;

 $\varphi(6)=2$: 6-hoz relatív prím pozitív egészek 1, 5;

 $\varphi(12)=4$: 12-höz relatív prím pozitív egészek 1,5,7,11.

 $\varphi(15) = 8$: 15-höz relatív prím pozitív egészek 1, 2, 4, 7, 8, 11, 13, 14.

Megjegyzés: $\varphi(m)$ a redukált maradékosztályok száma modulo m.

Euler-féle φ függvény

$$\varphi(m) = |\{i: \ 0 < i < m, (m, i) = 1\}|$$

Tétel (NB)

Legyen m prímtényezős felbontása $m=p_1^{e_1}p_2^{e_2}\cdots p_\ell^{e_\ell}$. Ekkor $\varphi(m)=\prod_{i=1}^\ell\left(p_i^{e_i}-p_i^{e_i-1}\right)=m\cdot\prod_{i=1}^\ell\left(1-\frac{1}{p_i}\right)$

Ha a_1, \ldots, a_r páronként relatív prímek, akkor $\varphi(a_1 \cdots a_r) = \varphi(a_1) \cdots \varphi(a_r)$. Ha p prím, akkor $\varphi(p^m) = p^m - p^{m-1}$.

Példa

$$\begin{array}{l} \varphi(5)=5\left(1-\frac{1}{5}\right)=4;\\ \varphi(6)=6\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=2;\\ \varphi(12)=12\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=4;\\ \varphi(15)=15\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)=8. \end{array}$$

Euler-Fermat tétel

Tétel

Legyen m>1 egész szám, a olyan egész, melyre (a,m)=1. Ekkor $a^{arphi(m)}\equiv 1\mod m.$

Következmény (Fermat tétel)

Legyen p prímszám, $p \nmid a$. Ekkor $a^{p-1} \equiv 1 \mod p$, illetve tetszőleges a esetén $a^p \equiv a \mod p$.

Példa

$$\varphi(6) = 2 \Rightarrow 5^2 = 36 \equiv 1 \mod 6;$$
 $\varphi(12) = 4 \Rightarrow 5^4 = 625 \equiv 1 \mod 12; 7^4 = 2401 \equiv 1 \mod 12.$

Figyelem! $2^4 = 16 \equiv 2 \not\equiv 1 \mod 12$, mert $(2, 12) = 2 \not\equiv 1$.

Euler-Fermat tétel bizonyítása

Lemma

Legyen m>1 egész, $a_1, a_2 \ldots, a_m$ teljes maradékrendszer modulo m. Ekkor minden a,b egészre, melyre $(a,m)=1, a\cdot a_1+b, a\cdot a_2+b\ldots, a\cdot a_m+b$ szintén teljes maradékrendszer. Továbbá, ha $a_1, a_2, \ldots, a_{\varphi(m)}$ redukált maradékrendszer modulo m, akkor $a\cdot a_1, a\cdot a_2 \ldots, a\cdot a_{\varphi(m)}$ szintén redukált maradékrendszer.

A fenti lemma bizonyítása

Ha $i \neq j$ esetén $aa_i + b \equiv aa_j + b \mod m \Leftrightarrow aa_i \equiv aa_j \mod m$. Mivel (a,m)=1, egyszerűsíthetünk a-val: $a_i \equiv a_j \mod m$. Tehát $a \cdot a_1 + b$, $a \cdot a_2 + b \ldots$, $a \cdot a_m + b$ páronként inkongruensek. Mivel számuk m, így teljes maradékrendszert alkotnak.

Ha $(a_i, m) = 1$, $(a, m) = 1 \Rightarrow (a \cdot a_i, m) = 1$. Továbbá $a \cdot a_1$, $a \cdot a_2 \dots$, $a \cdot a_{\varphi(m)}$ páronként inkongruensek, számuk $\varphi(m) \Leftrightarrow$ redukált maradékrendszert alkotnak.

Euler-Fermat tétel bizonyítása

Tétel (Euler-Fermat) $(a, m) = 1 \Rightarrow a^{\varphi(m)} \equiv 1 \mod m$.

A tétel bizonyítása

Legyen a_1 , a_2 , ..., $a_{\varphi(m)}$ egy redukált maradékrendszer modulo m. Mivel $(a,m)=1\Rightarrow a\cdot a_1,\ a\cdot a_2$..., $a\cdot a_{\varphi(m)}$ szintén redukált maradékrendszer.

Innen

$$a^{arphi(m)}\prod_{j=1}^{arphi(m)}a_j=\prod_{j=1}^{arphi(m)}a\cdot a_j\equiv\prod_{j=1}^{arphi(m)}a_j\mod m$$

 $\varphi(m)$

Mivel $\prod a_j$ relatív prím m-hez, így egyszerűsíthetünk vele:

$$a^{\varphi(m)} \equiv 1 \mod m$$

Euler-Fermat tétel használata

Tétel (Euler-Fermat)
$$(a, m) = 1 \Rightarrow a^{\varphi(m)} \equiv 1 \mod m$$

Példa

Mi lesz a 3¹¹¹ utólos számjegye tizes számrendszerben?

Mi lesz 3¹¹¹ mod 10?

$$\varphi(10) = 4 \Rightarrow$$

$$3^{111} = 3^{4 \cdot 27 + 3} = (3^4)^{27} \cdot 3^3 \equiv 1^{27} \cdot 3^3 = 3^3 = 27 \equiv 7 \mod 10$$

Oldjuk meg a $2x \equiv 5 \mod 7$ kongruencát!

 $\varphi(7) = 6$. Szorozzuk be mindkét oldalt 2^5 -el. Ekkor

 $5 \cdot 2^5 \equiv 2^6 x \equiv x \mod 7$. És itt $5 \cdot 2^5 = 5 \cdot 32 \equiv 5 \cdot 4 = 20 \equiv 6 \mod 7$.

Oldjuk meg a $23x \equiv 4 \mod 211 \text{ kongruencát!}$

 $\varphi(211)=210$. Szorozzuk be mindkét oldalt 2^{209} -el. Ekkor

 $4 \cdot 23^{209} \equiv 23^{210} x \equiv x \mod 211$. És itt $4 \cdot 23^{209} \equiv \dots \mod 211$.