Отчет по лабораторной работе №7 по курсу "Анализ алгоритмов" по теме "Методы поиска подстроки в строке"

Студент: Барсуков Н.М. ИУ7-56 Преподаватель: Волкова Л.Л., Строганов Ю.В.

Содержание

1	Ана	алитический раздел	3								
	1.1	Цель и задачи	3								
	1.2	Алгоритмы	3								
		1.2.1 Обзор алгоритма Кнута-Мориса-Прата	3								
	1.3	Обзор алгоритма Бойера - Мура	5								
		1.3.1 Сканирование слева направо, сравнение справа налево	5								
		1.3.2 Эвристика стоп-символа	5								
		1.3.3 Эвристика совпавшего суффикса	6								
	1.4	Вывод	6								
2	Ког	нструкторский раздел	7								
3	Tex	нологический раздел	8								
4	4 Иследовательский раздел										
5	Зак	лючение	10								
C_{1}	писо	N MCHUHESUBSHIRIN MCAUHHMNUB	11								

Введение

Поиск подстроки в строку - одна из простеших задач поиска информации. Применяется в виде встроенной функции в текстовых редакторах, СУБД, поисковых машинах, языках программирования и т. п. В задачах поиска традиционо принято обознать шаблон поиска как needle (с англ. игла), а строку, в которой ведется поиск как haystack (с англ - стог сена). Обычно через \sum обозначается алфавит, на котором проводится поиск.

1 Аналитический раздел

В данном разделе описана цель и задачи необходимые для выполнения онной. Дано полное описание алгоритма Кнута - Моррса - Прата и Бойера - Мура и их математические описания.

1.1 Цель и задачи

Целью данной работы является изучение способов поиска подстроки в строке с помощью алгоритмов Кнута-Мориса-Прата и Бойера-Мура. Для достижения поставленной цели требуется решить следующие задачи:

- 1. изучить алгоритмы:
 - (а) стандартный;
 - (b) Кнута-Мориса-Прата;
 - (с) Бойера-Мура;
- математически описать решение задачи поиска подстроки на основании выше указанных алгоритмов;
- 3. реализовать выше указанные алгоритмы;
- 4. сравнить;
- 5. сделать выводы.

1.2 Алгоритмы

1.2.1 Обзор алгоритма Кнута-Мориса-Прата

В задачах поиска информации одной из важнейших задач является поиск точно заданной подстроки в строке. Примитивный алгоритм поиска подстроки в строке основан на переборе всех подстрок, длина которых равна длине шаблона поиска, и посимвольном сравнении таких подстрок с шаблоном поиска.

Алгоритм Кнута-Морриса-Пратта является одним из первых алгоритмов с линейной оценкой в худшем случае.

Обозначим через:

$$n = |heystack|, m = |needle|$$
 (1)

где |word|, обозначает длину слова word

Префикс-функция строки $\pi(S,i)$ – это длина наибольшего префикса строки S[1..i], который не совпадает с этой строкой и одновременно является ее суффиксом. Проще говоря, это длина наиболее длинного начала строки,

Таблица 1: Пример префикс функции для строки abcdabca

1 1				·				ı	
S[i]	a	b	С	d	a	b	С	a	
$\pi(S,i)$	0	0	0	0	1	2	3	1	

являющегося также и ее концом. Для строки S удобно представлять префикс функцию в виде вектора длиной |S|-1. Можно рассматривать префиксфункцию длины |S|, положив $\pi(S,1)=0$. Пример приведен на таблице 1.2.1

Наиболее полный алгоритм вычисления префикс-функции на псевдокоду показан в листинге 1

Algorithm 1: Псевдокод функции поиска префикса

```
1 <u>алг</u> префикс функция (арг строка S[1 ... i]) begin
     Преположим что \pi(S,i)=k;
     if S[i+1] = S[K+1], mo then
3
        \pi(S, i+1) = k+1;
4
5
     else
        if k = 0 then
6
           \pi(S, i+1) = 0.;
7
         else
8
            Положить k_i = \pi(S, k) и прейти к шагу 3;
9
```

Рассмотрим алгоритм Кнута-Морриса-Пратта. Пусть $S[0\dots m-1]$ — образец, $T[0\dots n-1]$ — строка, в которой ведется поиск. Рассмотрим сравнение строк на позиции i, то есть образец $S[0\dots m-1]$ сопоставляется с частью строки $T[i\dots i+m-1]$. Предположим, первое несовпадение произошло между символами S[j] и T[i+j], где i < j < m. Обозначим $P = S[0\dots j-1] = T[i\dots i+j-1]$. При сдвиге можно ожидать, что префикс S сойдется с какимлибо суффиксом строки P. Поскольку длина наиболее длинного префикса, являющегося одновременно суффиксом, есть префикс-функция от строки S для индекса j, приходим к следующему алгоритму.

- 1) шаг 1: построить префикс-функцию образца S, обозначим ее F;
- 2) шаг 2: положить k = 0, i = 0;
- 3) шаг 3: сравнить символы S[k] и T[i]. Если символы равны, увеличить k на 1. Если при этом k стало равно длине образца, то вхождение образца S в строку T найдено, индекс вхождения равен i-|S|+1. Алгоритм завершается. Пока k>0, присвоим k=F[k-1] и переходим в начало шага 3;
- 4) шаг 4: Пока і < |T|, увеличиваем і на 1 и переходим к шагу 3.

1.3 Обзор алгоритма Бойера - Мура

Алгоритм сравнивает символы шаблона х справа налево, начиная с самого правого, один за другим с символами исходной строки у. Если символы совпадают, производится сравнение предпоследнего символа шаблона и так до конца. Если все символы шаблона совпали с наложенными символами строки, значит, подстрока найдена, и поиск окончен. В случае несовпадения какого-либо символа (или полного совпадения всего шаблона) он использует две предварительно вычисляемых эвристических функции, чтобы сдвинуть позицию для начала сравнения вправо.

Алфавит обозначим буквой \sum Пусть |y|=n, |x|=m и $|\sum|=\sigma$. Предположим, что в процессе сравнения возникает несовпадение между символом x[i]=а шаблона и символом y[i+j]=b исходного текста при проверке на позиции j. Тогда:

$$x[i+1...m-1] = y[i+j+1...j+m-1] = u$$
 (2)

И

$$x[i] \neq y[i+j] \tag{3}$$

тогда m - i - 1 символом шаблона не совпало (оставшийся "хвост" подстроки). В целом алгоритм можно описать с помощью трех ключевых положений.

1.3.1 Сканирование слева направо, сравнение справа налево

Совмещается начало текста (строки) и шаблона, проверка начинается с последнего символа шаблона. Если символы совпадают, производится сравнение предпоследнего символа шаблона и т. д. Если все символы шаблона совпали с наложенными символами строки, значит, подстрока найдена, и выполняется поиск следующего вхождения подстроки. Если же какой-то символ шаблона не совпадает с соответствующим символом строки, шаблон сдвигается на несколько символов вправо, и проверка снова начинается с последнего символа.

1.3.2 Эвристика стоп-символа

Эвристика стоп-символа присутствует в большинстве описаний алгоритма Бойера — Мура, включая оригинальную статью Бойера и Мура, но не является необходимой для достижения оценки O(n+m) времени работы. Предположим, что мы производим поиск слова «колокол». Первая же буква не совпала — «к» (назовём эту букву стоп-символом). Тогда можно сдвинуть шаблон вправо до последней его буквы «к», что показано в таблице 2

Таблица 2: Поиск слова колокол в строке к

raddinga 2. ridhan dhasa naddina sa ripana n														
Строка	*	*	*	*	*	*	K	*	*	*	*	*	*	
Шаблон	K	О	Л	О	K	О	Л							
След. шаг			K	О	Л	О	K	0	Л					

Если стоп-символ «к» оказался за другой буквой «к», эвристика стопсимвола не работает. В таких ситуациях может быть полезна третья идея алгоритма Бойера — Мура — эвристика совпавшего суффикса.

1.3.3 Эвристика совпавшего суффикса

Если при чтении шаблона справа налево совпал суффикс S, а символ b, стоящий перед S в шаблоне (т. е. шаблон имеет вид PbS), не совпал, то эвристика совпавшего суффикса сдвигает шаблон на наименьшее число позиций вправо так, чтобы строка S совпала с шаблоном, а символ, предшествующий в шаблоне данному совпадению S, отличался бы от b (если такой символ вообще есть). Для данного шаблона s[0...m-1] считается целочисленный массив suffshift[0...m], в котором suffshift[i] равно минимальному числу j>0, такому, что s[i-j] \neq s[i-1] и s[i-j+k]=s[i-1+k] для любого k>0, для которого выполняется $0 \le i$ -j+k < m и $0 \le i$ -1+k < m. 3

Таблица 3: Поиск слова "скалкалка" в строке, рассмотрение суффикса "рка"

Строка	*	*	*	*	*	*	р	K	a	*	*	*	*	*	
Шаблон	С	К	a	Л	К	a	Л	K	a						
След. шаг							С	K	a	Л	K	a	Л	K	a

В данном случае совпал суффикс «ка», и шаблон сдвигается вправо до ближайшего «ка», перед которым нет буквы «л».

1.4 Вывод

В данном разделе было приведено общее и алгоритмическое описание алгоритмов Кнута-Морриса-Пратта и Бойера-Мура, приведены примеры.

2 Конструкторский раздел

3 Технологический раздел

4 Иследовательский раздел

5 Заключение

Список литературы