Lecture 3: ARM, Cortex-M, and STM32 Families

Seyed-Hosein Attarzadeh-Niaki

Microprocessors

1

Outline

- ARM processors
- ARM Cortex-M processor cores
- STM32 microcontrollers
 - Architecture

Microprocessors

ARM PROCESSORS

Microprocessors

5

6

ARM Family

Diversity of processor products for three areas in the Cortex processor family

Microprocessors

One CPU, many peripherals

- ARM has defined the architecture, registers, instruction set, memory map, and timing of the ARM CPU and holds the copyright to it.
- Other companies add their own peripherals.
- So, the codes are not compatible

Actel	Analog Devices	Atmel
Broadcom	Cypress	Ember
Dust Networks	Energy	Freescale
Fujitso	Nuvoton	NXP
Renesas	Samsung	ST
Toshiba	Texas Instruments	Triad Semiconductor

Microprocessors

13

ARM Simplified Block Diagram

Microprocessors

ARM CORTEX-M PROCESSORS

Microprocessors

17

Cortex-M3 and Cortex-M4 Processors

- Use an ARMv7-M, 32-bit architecture
 - Internal registers, data path, and bus interfaces
- Considered as a RISC with advanced CISC-like features
- ISA is called Thumb ISA and is based on Thumb-2 Technology
- Three-stage pipeline design
- · Harvard bus architecture with unified memory space
- On-chip bus interfaces based on ARM AMBA
- An interrupt controller called NVIC
- Support for various features for OS
- Sleep mode support and various low power features
- Optional MPU (Memory Protection Unit)
- Bit-data accesses in specific memory regions using Bit Band
- Used in single processor or multi-processor designs

Microprocessors

ARM and the Microcontroller Vendors

- Many silicon vendors provide ARM Cortex-M3 or Cortex-M4 microcontrollers
- ARM provides
 - The processor source in Verilog
 - Intellectual Property (IP) products
 - ARM Physical IP
 - Peripherals and AMBA infrastructure components
 - Debug components for linking debug systems
 - Cortex-M System Design Kit (CMSDK) for chip designers
 - Software development platforms
 - Keil Microcontroller Development Kit (MDK-ARM)
 - ARM Development Studio 5 (DS-5)

How to Choose a Microcontroller?

- Peripherals and interface features
- Memory size requirements of the application
- Low power requirements
- Performance and maximum frequency
- Chip package
- Operation conditions (voltage, temperature, electromagnetic interference)
- Cost and availability
- · Software development tool support and development kits
- · Future upgradability
- Firmware packages and firmware security
- Availability of application notes, design examples, and support

croprocessors

STM32 MICROCONTROLLERS

Microprocessors

Microprocessors

93 CoreMark 32 MHz 33 DMIPS

26 DMIPS

273 CoreMark 80 MHz 100 DMIPS

25

STM32 Variations

STM32 Family	Cortex-M	SysTick Timer	Bit-Banding	Memory Protection Unit (MPU)	CPU Cache	OS Support	Memory Architecture
F0	M0	Yes	Yes	No	No	Yes	Von Neumann
LO	M0+	Yes	Yes	Yes	No	Yes	Von Neumann
F1, F2, L1	М3	Yes	Yes	Yes	No	Yes	Harvard
F3, F4, L4	M4	Yes	Yes	Yes	No	Yes	Harvard
F7	M7	Yes	No	Yes	Yes	Yes	Harvard

Microprocessors

Note: Types of Technical Material

- Tutorials and getting started guides
- User guides
- Reference manuals
- Datasheets
- White papers
- Application notes
- Flyers and brochures
- Presentations and webinars
- Reference designs
- •

Learn how to find & use them!

Microprocessors

STM32F401 Register Boundary Addresses I

Bus	Boundary address	Peripheral
	0xE010 0000 - 0xFFFF FFFF	Reserved
Cortex [®] -M4	0xE000 0000 - 0xE00F FFFF	Cortex-M4 internal peripherals
	0x5004 0000 - 0xDFFF FFFF	Reserved
AHB2	0x5000 0000 - 0x5003 FFFF	USB OTG FS
	0x4002 6800 - 0x4FFF FFFF	Reserved
	0x4002 6400 - 0x4002 67FF	DMA2
	0x4002 6000 - 0x4002 63FF	DMA1
	0x4002 5000 - 0x4002 4FFF	Reserved
	0x4002 3C00 - 0x4002 3FFF	Flash interface register
	0x4002 3800 - 0x4002 3BFF	RCC
	0x4002 3400 - 0x4002 37FF	Reserved
AHB1	0x4002 3000 - 0x4002 33FF	CRC
AHB1	0x4002 2000 - 0x4002 2FFF	Reserved
	0x4002 1C00 - 0x4002 1FFF	GPIOH
	0x4002 1400 - 0x4002 1BFF	Reserved
	0x4002 1000 - 0x4002 13FF	GPIOE
	0x4002 0C00 - 0x4002 0FFF	GPIOD
	0x4002 0800 - 0x4002 0BFF	GPIOC
	0x4002 0400 - 0x4002 07FF	GPIOB
	0x4002 0000 - 0x4002 03FF	GPIOA

Microprocessors

33

STM32F401 Register Boundary Addresses II

Bus	Boundary address	Peripheral
	0x4001 4C00- 0x4001 FFFF	Reserved
	0x4001 4800 - 0x4001 4BFF	TIM11
	0x4001 4400 - 0x4001 47FF	TIM10
	0x4001 4000 - 0x4001 43FF	TIM9
	0x4001 3C00 - 0x4001 3FFF	EXTI
	0x4001 3800 - 0x4001 3BFF	SYSCFG
	0x4001 3400 - 0x4001 37FF	SPI4/I2S4
	0x4001 3000 - 0x4001 33FF	SPI1
APB2	0x4001 2C00 - 0x4001 2FFF	SDIO
APB2	0x4001 2400 - 0x4001 2BFF	Reserved
	0x4001 2000 - 0x4001 23FF	ADC1
	0x4001 1800 - 0x4001 1FFF	Reserved
	0x4001 1400 - 0x4001 17FF	USART6
	0x4001 1000 - 0x4001 13FF	USART1
	0x4001 0800 - 0x4001 0FFF	Reserved
	0x4001 0400 - 0x4001 07FF	TIM8
	0x4001 0000 - 0x4001 03FF	TIM1
	0x4000 7400 - 0x4000 FFFF	Reserved

Microprocessors

STM32F401 Register Boundary Addresses III

Bus	Boundary address	Peripheral
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6000 - 0x4000 6FFF	Reserved
	0x4000 5C00 - 0x4000 5FFF	I2C3
	0x4000 5800 - 0x4000 5BFF	I2C2
	0x4000 5400 - 0x4000 57FF	I2C1
	0x4000 4800 - 0x4000 53FF	Reserved
	0x4000 4400 - 0x4000 47FF	USART2
	0x4000 4000 - 0x4000 43FF	I2S3ext
	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
APB1	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2
	0x4000 3400 - 0x4000 37FF	I2S2ext
	0x4000 3000 - 0x4000 33FF	IWDG
	0x4000 2C00 - 0x4000 2FFF	WWDG
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers
	0x4000 1000 - 0x4000 27FF	Reserved
	0x4000 0C00 - 0x4000 0FFF	TIM5
	0x4000 0800 - 0x4000 0BFF	TIM4
	0x4000 0400 - 0x4000 07FF	TIM3
	0x4000 0000 - 0x4000 03FF	TIM2

Microprocessors

