

# 데이터베이스 프로그래밍

095 절차형 SQL B등급

096 프로시저(Procedure) D등급

097 쿼리 성능 최적화 D등급

예상문제은행

#### 이 장에서 꼭 알아야 할 키워드 Best 10

- 1. 절차형 SQL 2. 트리거 3. 사용자 정의 함수 4. 디버깅
- 5. 프로시저 6. 쿼리 성능 최적화 7. RBO 8. CBO
- 9. 옵티마이저 10. APM

## Section 095\_1 절차형 SQL의 개요



절차형 SQL은 C, JAVA 등의 프로그래밍 언어와 같이 연속적인 실행이나 분기, 반복 등의 제어가 가능한 SQL을 의미한다.

- 절차형 SQL은 일반적인 프로그래밍 언어에 비해 효율은 떨어지지만 단일 SQL 문장으로 처리하기 어려운 연속적인 작업들을 처리하는데 적합하다.
- 절차형 SQL을 활용하여 다양한 기능을 수행하는 저장 모듈을 생성할 수 있다.
- 절차형 SQL은 DBMS 엔진에서 직접 실행되기 때문에 입 · 출력 패킷이 적은 편이다.
- BEGIN ~ END 형식으로 작성되는 블록(Block) 구조로 되어 있기 때문에 기능별 모듈화가 가능하다.
- 절차형 SQL의 종류

| 프로시저(Procedure) | 특정 기능을 수행하는 일종의 트랜잭션 언어로, 호출을 통해 실행되어 미리 저장해 놓은 SQL 작업을 수행한다.                       |
|-----------------|-------------------------------------------------------------------------------------|
| 트리거(Trigger)    | 데이터베이스 시스템에서 데이터의 입력, 갱신, 삭제 등의 <mark>이벤트(Event)</mark> 가 발생할 때마다 관련 작업이 자동으로 수행된다. |
| 사용자 정의 함수       | 프로시저와 유사하게 SQL을 사용하여 일련의 작업을 연속적으로 처리하며, 종료 시 예약어 Return을 사용하여 처리 결과를 단일값으로 반환한다.   |

# Section 095\_1 절차형 SQL의 개요



- 1. 절차형 SQL에 대한 설명으로 옳지 않은 것은?
- ① 절차형 SQL의 종류에는 프로시저, 트리거, 사용자 정의 함수가 있다.
- ② 프로시저는 특정 기능을 수행하는 트랜잭션 언어로, 처리 결과를 단일값으로 반환한다.
- ③ 트리거는 데이터베이스에 이벤트가 발생할 때 수행되는 작업이다.
- ④ 사용자 정의 함수는 프로시저와 유사하며, 예약어 RETURN을 사용하는 것이 특징이다.

## **Section 095\_2** 절차형 SQL의 테스트와 디버깅



절차형 SQL은 디버깅을 통해 기능의 적합성 여부를 검증하고, 실행을 통해 결과를 확인하는 테스트 과정을 수행한다.

- 절차형 SQL은 테스트 전에 생성을 통해 구문 오류(Syntax Error)나 참조 오류의 존재 여부를 확인한다.
- 많은 코드로 구성된 절차형 SQL의 특성상 오류 및 경고 메시지가 상세히 출력되지 않으므로 SHOW 명령어를 통해 내용을 확인 하고 문제를 수정한다.
- 정상적으로 생성된 절차형 SQL은 디버깅을 통해 로직을 검증하고, 결과를 통해 최종적으로 확인한다.
- 절차형 SQL의 디버깅은 실제로 데이터베이스에 변화를 줄 수 있는 삽입 및 변경 관련 SQL문을 주석으로 처리하고, 출력문을 이용하여 화면에 출력하여 확인한다.
- ※ 테스트와 디버깅의 목적: 테스트(Test)를 통해 오류를 발견한 후 디버깅(Debugging)을 통해 오류가 발생한 소스 코드를 추적하며 수정함

- 1. 오류가 발생한 코드를 추적하여 수정하는 작업은?
- 1 Loading
- ③ Debugging

- ② Linking
- 4 Hashing

## Section 096\_1 프로시저(Procedure)의 개요



프로시저란 절차형 SQL을 활용하여 특정 기능을 수행하는 일종의 트랜잭션 언어로, 호출을 통해 실행되어 미리 저장해 놓은 SQL 작업을 수행한다.

- 프로시저를 만들어 데이터베이스에 저장하면 여러 프로그램에서 호출하여 사용할 수 있다.
- 프로시저는 데이터베이스에 저장되어 수행되기 때문에 스토어드(Stored) 프로시저라고도 불린다.
- 프로시저는 시스템의 일일 마감 작업, 일괄(Batch) 작업 등에 주로 사용된다.

#### 프로시저의 구성도



## Section 096\_1 프로시저(Procedure)의 개요



- DECLARE: 프로시저의 명칭, 변수, 인수, 데이터 타입을 정의하는 선언부이다.
- BEGIN / END : 프로시저의 시작과 종료를 의미한다.
- CONTROL: 조건문 또는 반복문이 삽입되어 순차적으로 처리된다.
- SQL: DML, DCL이 삽입되어 데이터 관리를 위한 조회, 추가, 수정, 삭제 작업을 수행한다.
- EXCEPTION: BEGIN ~ END 안의 구문 실행 시 예외가 발생하면 이를 처리하는 방법을 정의한다.
- TRANSACTION: 수행된 데이터 작업들을 DB에 적용할지 취소할지를 결정하는 처리부이다.

## Section 096\_1 프로시저(Procedure)의 개요



- 1. 프로시저에 대한 설명으로 옳지 않은 것은?
- ① 절차형 SQL을 사용하는 트랜잭션 언어이다.
- ② 데이터베이스에 저장되어 수행되기 때문에 스토어드 프로시저라고도 부른다.
- ③ 프로시저는 다시 호출하여 사용할 수 없다.
- ④ 시스템의 일일 마감 작업, 배치 작업 등에 주로 사용된다.
- 2. 프로시저의 구성 요소에 대한 설명으로 거리가 먼 것은?
- ① DECLARE: 프로시저의 명칭이나 인수, 변수 등을 정의하는 부분
- ② CONTROL: 조건문이나 반복문을 삽입하여 데이터를 처리하는 부분
- ③ TRANSACTION : 앞에서 수행한 작업들에 대한 DB 적용 여부를 결정하는 부분
- ④ EXCEPTION : 파라미터에 오류가 발생했을 때 이를 처리하는 방법을 정의하는 부분
  - ✓ 예외 발생 시

# Section 097\_1 쿼리 성능 최적화의 개요



쿼리 성능 최적화는 데이터 입·출력 애플리케이션의 성능 향상을 위해 SQL 코드를 최적화하는 것이다.

- 쿼리 성능을 최적화하기 전에 성능 측정 도구인 APM을 사용하여 최적화 할 쿼리를 선정해야 한다.
- 최적화 할 쿼리에 대해 옵티마이저가 수립한 실행 계획을 검토하고 SQL 코드와 인덱스를 재구성한다.
- \* RBO vs CBO

RBO(Rule Based Optimizer)는 규칙 기반 옵티마이저이고, CBO(Cost Based Optimizer)는 비용 기반 옵티마이저로서 다음과 같은 차이점이 있다.

|        | RBO                  | CBO                   |
|--------|----------------------|-----------------------|
| 최적화 기준 | 규칙에 정의된 우선순위         | 액세스 비용                |
| 성능 기준  | 개발자의 SQL 숙련도         | 옵티마이저의 예측 성능          |
| 특징     | 실행 계획 예측이 쉬움         | 성능 통계치 정보 활용, 예측이 복잡함 |
| 고려사항   | 개발자의 규칙 이해도, 규칙의 효율성 | 비용 산출 공식의 정확성         |

## Section 097\_1 쿼리 성능 최적화의 개요



- 1. DBMS에서 작성한 쿼리를 수행하는데 시간이 너무 오래 걸려 최적화 작업을 수행하고자 한다. 이와 관련된 내용으로 옳지 않은 것은?
- ① 먼저 APM 도구를 사용하여 어떤 쿼리를 최적화할지 특정한다.
- ② 선정된 쿼리에서 옵티마이저가 수립한 실행 계획을 검토한다.
- ③ DBMS가 규칙 기반 옵티마이저(RBO)를 사용한다면 사전에 정의해 놓은 규칙을 수정하여 실행 계획을 변경한다.
- ④ 비용 기반 옵티마이저(CBO)의 경우 개발자의 숙련도에 따라 성능이 좌우되므로 쿼리를 충분히 이해하고 최적화 작업을 수행한다. ✓ RBO
- 2. 규칙 기반 옵티마이저(RBO)와 비용 기반 옵티마이저(CBO)에 대한 설명 중 잘못된 것은?
- ① 규칙 기반 옵티마이저는 개발자가 사전에 정의해 놓은 규칙에 의해 실행 계획이 작성된다.
- ② 비용 기반 옵티마이저는 정해진 알고리즘에 따라 비용을 계산하여 실행 계획을 작성된다.
- ③ 규칙 기반 옵티마이저는 DBMS의 버전이나 테이블이 변경되면 접근 경로 등이 변경될 수 있으므로, 변화가 있을 때마다 실행 계획을 재검토해야 한다. ✓ CBO
- ④ 실무에서 주로 사용되는 것은 비용 기반 옵티마이저이다.

### 예상문제은행

#### 1. 다음 중절차형 SQL에 대한 설명으로 거리가 먼 것은?

- ① C, Java와 같이 반복, 분기 등의 제어가 포함된 연속적인 작업이 가능하다.
- ② BEGIN~END 형식의 블록 구조로 구성된다.
- ③ DBMS에 저장되어 실행되기 때문에 입·출력 패킷이 적다.
- ④ 일반적인 프로그래밍 언어와 다르게 사용자가 <mark>직접 함수를 정의</mark>하여 사용하는 것은 불가능하다.

#### 2. 절차형 SQL의 테스트에 대한 설명으로 잘못된 것은?

- ① 디버깅과 실행을 통한 결과 검증으로 테스트를 수행한다.
- ② 디버깅 시 데이터베이스에 변화를 주는 코드들은 모두 삭제한 후 변경 내역만을 점검한다.
- ③ 구문 오류나 참조 오류는 생성 시 존재 여부를 확인할 수 있다.
- ④ 생성 및 실행 중에 발생한 오류(Error) 및 경고(Warning)는 SHOW 명령어를 통해 확인할 수 있다.

#### 3. 절차형 SQL의 특징에 대한 설명으로 옳지 않은 것은?

- ① 프로시저, 사용자 정의 함수, 트리거가 여기에 속한다.
- ② 프로그래밍 언어와 같은 절차적이고 연속적인 명령문의 실행이 가능하다.

#### ③ 모듈화가 어려워 재사용이 어렵다.

- ④ DBMS 내부에 저장되어 처리된다.
- 4. 다음 중 데이터베이스에 저장되어 여러 프로그램에서 호출하여 사용할 수 있으며, 일일 마감 작업 및 배치 작업에 주로 사용되는 절차형 SQL은 무엇인가?
- ① 프로시저(Procedure)
- ② 트리거(Trigger)
- ③ 사용자 정의 함수(User-defined Function)
- ④ 인덱스(Index)
- 5. 저장 프로시저(Stored Procedure)를 작성하고자 할 때 반드시 작성 해야 하는 부분은?
- ① 트랜잭션(TRANSACTION)
- ② 선언(DECLARE) ✓ 변수 선언
- ③ 예외(EXCEPTION)
- ④ 반환(RETURN) ✓ FUNCTION



### 예상문제은행

# 6. 절차형 SQL 중 프로시저의 파라미터(Parameter)에 대한 설명으로 옳지 않은 것은?

- ① 매개 변수를 의미하며, 프로시저와 호출문 사이에서 값을 전달하는 역할을 수행한다.
- ② IN은 호출문으로부터 프로시저의 매개 변수에 값을 전달하겠다는 의미이다.
- ③ OUT은 프로시저로부터 호출문에 매개 변수에 값을 전달하겠다는 의미이다.
- ④ 파라미터에는 어떤 값이 올지 알 수 없으므로 자료형을 생략한다.

# 7. 절차형 SQL인 프로시저, 트리거, 사용자 정의 함수의 각 구성 요소 중에서 공통적인 요소에 해당하지 않는 것은?

- ① DECLARE ✓ Variable
- ② EVENT

③ SQL ✓ Query

④ CONTROL ✓ Algorithm

# 8. APM(Application Performance Monitoring)에 대한 설명으로 옳은 것은?

- ① 애플리케이션의 성능 관리 및 진단을 위해 사용되는 도구이다.
- ② 데이터베이스에서 작성된 SQL이 효율적으로 수행되도록 최적의 경 로를 찾아주는 도구이다.
- ③ DBMS의 옵티마이저가 수립한 SQL 코드의 실행 절차와 방법을 의미한다.
- ④ 개발자가 정한 규칙에 따라 성능이 좌우된다.

#### 9. 쿼리 성능 최적화를 위한 작업으로 잘못된 것은?

- ① 힌트를 활용하여 쿼리 내부 명령문들의 실행 순서를 변경해 본다.
- ② 하나의 테이블에 가능한 한 다양한 인덱스를 생성하여 효율적으로 검색될 수 있도록 한다.
- ③ 단일 인덱스로 읽기만 하는 경우 IOT(Index-Organized Table)로 구성한다.
- ④ WHERE절을 사용하여 조회 범위를 제한한다.