20 DP Problems. NxM matrix. ways to reach from (0,0) -> (N-1,H-1) Number (1,1+1) D 1 2 (0,0) (0,1) (0,2) (1,2) (2,2) O (0,0) (0,1) (1,1) (2,1) (2,2) (0,0) (0,1) (1,1) (1,2) (2,2) (0,0) (1,0) (20) (21) (22) 2 (0,0) (1,0) (1,1) (1,2) (2,2) (0,0) (1,0) (1,1) (2,1) (2,2) 0 5×6 0 ١ 2

(4,5)

3

4

=> Optimal substructure.

> Overlapping subproblems

de state.

dp[i][j] = # of ways to reach (i,j) from (0,0).

dp table: :int dp[N][M];

dp Expression:

Cilli-19qls + (1-1919qls = (i,1)qls

	0	1	2	3	4	2
0	1	> <u>1</u> -	· 1-	-1-	-1-	- 1
	7-					
2	7					
3	7 7					
Ч	7					

ind dp[N][M];

for(i=0; i< N; i++) {

for(j=0; j< M; j++) {

Bue Case [if(i==0|| j==0)

dp[i][j]=1;

else {

3

dp[i][j] = dp[i-1][j] + dp[i][j-1];

3_3

left to right ? top to bottom

top to bottom ? left to right

TC: O(NH) Sc: O(NM) \emptyset : No. of ways to reach to cell NH, MH. $\max[i][j] = 0 \Rightarrow \text{Blocked}$ $\max[i][j] = \bot \Rightarrow \text{Empty}$

	D	t	2	3	
D	1	,	1	١	
1	١	ļ	1	١	
2	1	١	0	1	
3	٦	O		١	
4	1	0	١	١	

Ways to reach from (0,0) to (4,3).

-> Overlapping subproblems.

#

dp[i][j] \Rightarrow # of ways to reach from (0,0) to (\(\frac{1}{1}\)\)

$$dp[i][j] = \begin{cases} dp[i][j] = 0 & \text{if mat[i][j]} = 0 \\ dp[i-1][j] + dp[i][j-1] \end{cases}$$

olp matrix

	O	t	2	3		O	t	2	3
b	ſ	(//////////////////////////////////////	١	ı	D	1	0	0	\bigcirc
1	1	1	ţ	1	1	\mathcal{T}			
2	\Diamond	1	0	1	$\underline{\mathscr{Q}}$	0			
ઝ	٦	0	1	١	3	Ö			
4	1	0	l		4	٥			

```
= 1; i< N; i++) {
if (mat[i][0] == 1)

dp(i][0] = 1;
for ( i= 1; i< N; i++) {
     else break;
=
for( i= 1; i< N; i++) <
      for(j=⊥;j<M;j++) <
             if ( mat(i)(j) = = 0)
                   dp[i][i] = 0;
             else
                  aptilli) = apti-17tj) +
                               dp[i][j-1];
             3
3 return dp[N-1][H-1);
        TC: O(NM)
        SC: D(NM)
    Bottom Up DP.
```

```
# Recursive DP Solution:
         L> Recursion + Memoization.
   Int ways (int mat ) (), int N, int M) &
          int apen ] [M] = {-13;
          if (mat [0][0] == 0) return 0;
           dp[\delta][\delta] = 1
          fun (mat, dp, N-1, M-1);
    1 = 1 + ef ways to reach to cell NH, MH.
    int fun (int math)[], int aproll), i, j) {
         if (i(011 1<0) return 0;
         if (matlissis == 0) return 0;
         (i,j) is blocked.

if (apliffif = = (-1)) { (alculated yet.)
             aplissij = fun (mat, dp, i-1, j)
                        fun (mat, dp, i, j-1);
       return apriorisis;

TC: O(NM) | SC: O(NM)
```