

Notes: These are notes live-tex'd from a graduate course in 4-Manifolds taught by Philip Engel at the University of Georgia in Spring 2021. As such, any errors or inaccuracies are almost certainly my own.

4-Manifolds

Lectures by Philip Engel. University of Georgia, Spring 2021

D. Zack Garza

D. Zack Garza University of Georgia dzackgarza@gmail.com

 $Last\ updated \hbox{:}\ 2021\hbox{-}01\hbox{-}28$

Table of Contents

Contents

Ta	able of Contents	2
1	Tuesday, January 12 1.1 Background	
2	Friday, January 15	7
3		
4	Lecture 3 (Wednesday, January 20) 4.1 Sheaves 4.2 Bundles	
5	Lecture 4 (Friday, January 22) 5.1 The Exponential Exact Sequence	18
6	Principal G-Bundles and Connections (Monday, January 25)	21
7	Wednesday, January 27 7.1 Bundles and Connections	
To	oDos .	29
D	efinitions	30
TI	heorems	31
Ex	kercises	32
Fi	gures	3 3
Bi	ibliography	34

Table of Contents

1 | Tuesday, January 12

1.1 Background

From Phil's email:

There are very few references in the notes, and I'll try to update them to include more as we go. Personally, I found the following online references particularly useful:

- Dietmar Salamon: Spin Geometry and Seiberg-Witten Invariants [5]
- Richard Mandelbaum: Four-dimensional Topology: An Introduction [2]
 - This book has a nice introduction to surgery aspects of four-manifolds, but as a warning: It was published right before Freedman's famous theorem. For instance, the existence of an exotic R⁴ was not known. This actually makes it quite useful, as a summary of what was known before, and provides the historical context in which Freedman's theorem was proven.
- Danny Calegari: Notes on 4-Manifolds [1]
- Yuli Rudyak: Piecewise Linear Structures on Topological Manifolds [4]
- Akhil Mathew: The Dirac Operator [3]
- Tom Weston: An Introduction to Cobordism Theory [6]

A wide variety of lecture notes on the Atiyah-Singer index theorem, which are available online.

1.2 Introduction

Definition 1.2.1 (Topological Manifold)

Recall that a **topological manifold** (or C^0 manifold) X is a Hausdorff topological space locally homeomorphic to \mathbb{R}^n with a countable topological base, so we have charts $\varphi_u: U \to \mathbb{R}^n$ which are homeomorphisms from open sets covering X.

Example 1.2.2 (The circle): S^1 is covered by two charts homeomorphic to intervals:

Tuesday, January 12

Remark 1.2.3: Maps that are merely continuous are poorly behaved, so we may want to impose extra structure. This can be done by imposing restrictions on the transition functions, defined as

$$t_{uv} := \varphi_V \to \varphi_U^{-1} : \varphi_U(U \cap V) \to \varphi_V(U \cap V).$$

Definition 1.2.4 (Restricted Structures on Manifolds)

- We say X is a **PL manifold** if and only if t_{UV} are piecewise-linear. Note that an invertible PL map has a PL inverse.
- We say X is a C^k manifold if they are k times continuously differentiable, and smooth if infinitely differentiable.
- We say X is **real-analytic** if they are locally given by convergent power series.
- We say X is **complex-analytic** if under the identification $\mathbb{R}^n \cong \mathbb{C}^{n/2}$ if they are holomorphic, i.e. the differential of t_{UV} is complex linear.
- We say X is a **projective variety** if it is the vanishing locus of homogeneous polynomials on \mathbb{CP}^N .

1.2 Introduction 4

Remark 1.2.5: Is this a strictly increasing hierarchy? It's not clear e.g. that every C^k manifold is PL.

Question 1.2.6

Consider \mathbb{R}^n as a topological manifold: are any two smooth structures on \mathbb{R}^n diffeomorphic?

Remark 1.2.7: Fix a copy of \mathbb{R} and form a single chart $\mathbb{R} \xrightarrow{\mathrm{id}} \mathbb{R}$. There is only a single transition function, the identity, which is smooth. But consider

$$X \to \mathbb{R}$$
$$t \mapsto t^3.$$

This is also a smooth structure on X, since the transition function is the identity. This yields a different smooth structure, since these two charts don't like in the same maximal atlas. Otherwise there would be a transition function of the form $t_{VU}: t \mapsto t^{1/3}$, which is not smooth at zero. However, the map

$$X \to X$$
$$t \mapsto t^3.$$

defines a diffeomorphism between the two smooth structures.

Claim: \mathbb{R} admits a unique smooth structure.

Proof (sketch).

Let \mathbb{R} be some exotic \mathbb{R} , i.e. a smooth manifold homeomorphic to \mathbb{R} . Cover this by coordinate charts to the standard \mathbb{R} :

Fact

There exists a cover which is *locally finite* and supports a partition of unity: a collection of smooth functions $f_i: U_i \to \mathbb{R}$ with $f_i \geq 0$ and supp $f \subseteq U_i$ such that $\sum f_i = 1$ (i.e., bump functions). It is also a purely topological fact that $\tilde{\mathbb{R}}$ is orientable.

So we have bump functions:

1.2 Introduction 5

Take a smooth vector field V_i on U_i everywhere aligning with the orientation. Then $\sum f_i V_i$ is a smooth nowhere vector field on X that is nowhere zero in the direction of the orientation. Taking the associated flow

$$\mathbb{R} \to \tilde{\mathbb{R}}$$
$$t \mapsto \varphi(t).$$

such that $\varphi'(t) = V(\varphi(t))$. Then φ is a smooth map that defines a diffeomorphism. This follows from the fact that the vector field is everywhere positive.

Slogan

To understand smooth structures on X, we should try to solve differential equations on X.

Remark 1.2.10: Note that here we used the existence of a global frame, i.e. a trivialization of the tangent bundle, so this doesn't quite work for e.g. S^2 .

Question 1.2.11

What is the difference between all of the above structures? Are there obstructions to admitting any particular one?

Answer 1.2.12

- 1. (Munkres) Every C^1 structure gives a unique C^k and C^{∞} structure.
- 2. (Grauert) Every C^{∞} structure gives a unique real-analytic structure.
- 3. Every PL manifold admits a smooth structure in dim $X \le 7$, and it's unique in dim $X \le 6$, and above these dimensions there exists PL manifolds with no smooth structure.
- 4. (Kirby–Siebenmann) Let X be a topological manifold of dim $X \geq 5$, then there exists a cohomology class $ks(X) \in H^4(X; \mathbb{Z}/2\mathbb{Z})$ which is 0 if and only if X admits a PL structure.

1.2 Introduction 6

¹Note that this doesn't start at C^0 , so topological manifolds are genuinely different! There exist topological manifolds with no smooth structure.

Moreover, if ks(X) = 0, then (up to concordance) the set of PL structures is given by $H^3(X; \mathbb{Z}/2\mathbb{Z})$.

- 5. (Moise) Every topological manifold in dim $X \leq 3$ admits a unique smooth structure.
- 6. (Smale et al.): In dim $X \ge 5$, the number of smooth structures on a topological manifold X is finite. In particular, \mathbb{R}^n for $n \ne 4$ has a unique smooth structure. So dimension 4 is interesting!
- 7. (Taubes) \mathbb{R}^4 admits uncountably many non-diffeomorphic smooth structures.
- 8. A compact oriented smooth surface Σ , the space of complex-analytic structures is a complex orbifold ² of dimension 3g-2 where g is the genus of Σ , up to biholomorphism (i.e. moduli).

Remark 1.2.13: Kervaire-Milnor: S^7 admits 28 smooth structures, which form a group.

2 | Friday, January 15

Remark 2.0.1: Let

$$V \coloneqq \left\{ a^2 + b^2 + c^2 + d^3 + e^{6k-1} = 0 \right\} \subseteq \mathbb{C}^5$$

$$S_{\varepsilon} \coloneqq \left\{ |a|^2 + |b|^2 + |c|^2 + |d|^2 + |e|^2 \right\}.$$

Then $V_k \cap S_{\varepsilon} \cong S^7$ is a homeomorphism, and taking $k = 1, 2, \dots, 28$ yields the 28 smooth structures on S^7 . Note that V_k is the cone over $V_k \cap S_{\varepsilon}$.

? Admits a smooth structure, and $\overline{V}_k \subseteq \mathbb{CP}^5$ admits no smooth structure.

Question 2.0.2

Is every triangulable manifold PL, i.e. homeomorphic to a simplicial complex?

Friday, January 15

²Locally admits a chart to \mathbb{C}^n/Γ for Γ a finite group.

Answer 2.0.3

No! Given a simplicial complex, there is a notion of the **combinatorial link** L_V of a vertex V:

It turns out that there exist simplicial manifolds such that the link is not homeomorphic to a sphere, whereas every PL manifold admits a "PL triangulation" where the links are spheres.

Remark 2.0.4: What's special in dimension 4? Recall the **Kirby-Siebenmann** invariant $ks(x) \in H^4(X; \mathbb{Z}_2)$ for X a topological manifold where $ks(X) = 0 \iff X$ admits a PL structure, with the caveat that dim $X \ge 5$. We can use this to cook up an invariant of 4-manifolds.

Definition 2.0.5 (Kirby-Siebenmann Invariant of a 4-manifold) Let X be a topological 4-manifold, then

$$ks(X) := ks(X \times \mathbb{R}).$$

Friday, January 15

Remark 2.0.6: Recall that in dim $X \ge 7$, every PL manifold admits a smooth structure, and we can note that

$$H^4(X; \mathbb{Z}_2) = H^4(X \times \mathbb{R}; \mathbb{Z}_2) = \mathbb{Z}_2,.$$

since every oriented 4-manifold admits a fundamental class. Thus

$$ks(X) = \begin{cases} 0 & X \times \mathbb{R} \text{ admits a PL and smooth structure} \\ 1 & X \times \mathbb{R} \text{ admits no PL or smooth structures} \end{cases}.$$

Remark 2.0.7: $ks(X) \neq 0$ implies that X has no smooth structure, since $X \times \mathbb{R}$ doesn't. Note that it was not known if this invariant was nonzero for a while!

Remark 2.0.8: Note that $H^2(X;\mathbb{Z})$ admits a symmetric bilinear form Q_X defined by

$$\langle \alpha, \beta \rangle \mapsto \int_X \alpha \wedge \beta = \alpha \vee \beta([X]) \in \mathbb{Z}.$$

where [X] is the fundamental class.

3 | Main Theorems for the Course

Proving the following theorems is the main goal of this course.

Theorem 3.0.1 (Freedman).

If X, Y are compact oriented topological 4-manifolds, then $X \cong Y$ are homeomorphic if and only if ks(X) = ks(Y) and $Q_X \cong Q_Y$ are isometric, i.e. there exists an isometry

$$\varphi: H^2(X; \mathbb{Z}) \to H^2(Y; \mathbb{Z}).$$

that preserves the two bilinear forms in the sense that $\langle \varphi \alpha, \varphi \beta \rangle = \langle \alpha, \beta \rangle$. Conversely, every **unimodular** bilinear form appears as $H^2(X; \mathbb{Z})$ for some X, i.e. the pairing induces a map

$$H^2(X;\mathbb{Z}) \to H^2(X;\mathbb{Z})^{\vee}$$

 $\alpha \mapsto \langle \alpha, \cdot \rangle.$

which is an isomorphism. This is essentially a classification of simply-connected 4-manifolds.

Remark 3.0.2: Note that preservation of a bilinear form is a stand-in for "being an element of the orthogonal group", where we only have a lattice instead of a full vector space.

Remark 3.0.3: There is a map $H^2(X;\mathbb{Z}) \xrightarrow{PD} H_2(X;\mathbb{Z})$ from Poincaré, where we can think of elements in the latter as closed surfaces $[\Sigma]$, and

 $\langle \Sigma_1, \Sigma_2 \rangle$ = signed number of intersections points of $\Sigma_1 \not h \Sigma_2$.

Note that Freedman's theorem is only about homeomorphism, and is not true smoothly. This gives a way to show that two 4-manifolds are homeomorphic, but this is hard to prove! So we'll black-box this, and focus on ways to show that two *smooth* 4-manifolds are *not* diffeomorphic, since we want homeomorphic but non-diffeomorphic manifolds.

Definition 3.0.4 (Signature)

The **signature** of a topological 4- manifold is the signature of Q_X , where we note that Q_X is a symmetric nondegenerate bilinear form on $H^2(X;\mathbb{R})$ and for some a,b

$$(H^2(X;\mathbb{R}),Q_x) \xrightarrow{\text{isometric}} \mathbb{R}^{a,b}$$
.

where a is the number of +1s appearing in the matrix and b is the number of -1s. This is \mathbb{R}^{ab} where $e_i^2 = 1, i = 1 \cdots a$ and $e_i^2 = -1, i = a + 1, \cdots b$, and is thus equipped with a specific bilinear form corresponding to the Gram matrix of this basis.

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \ddots & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix} = I_{a \times a} \oplus -I_{b \times b}.$$

Then the signature is a - b, the dimension of the positive-definite space minus the dimension of the negative-definite space.

Theorem 3.0.5 (Rokhlin's Theorem).

Suppose $(\alpha, \alpha) \in 2\mathbb{Z}$ and $\alpha \in H^2(X; \mathbb{Z})$ and X a simply connected **smooth** 4-manifold. Then 16 divides sig(X).

Remark 3.0.6: Note that Freedman's theorem implies that there exists topological 4-manifolds with no smooth structure.

Theorem 3.0.7(Donaldson).

Let X be a smooth simply-connected 4-manifold. If a = 0 or b = 0, then Q_X is diagonalizable and there exists an orthonormal basis of $H^2(X; \mathbb{Z})$.

Remark 3.0.8: This comes from Gram-Schmidt, and restricts what types of intersection forms can occur.

3.1 Warm Up: \mathbb{R}^2 Has a Unique Smooth Structure

Remark 3.1.1: Last time we showed \mathbb{R}^1 had a unique smooth structure, so now we'll do this for \mathbb{R}^2 . The strategy of solving a differential equation, we'll now sketch the proof.

Definition 3.1.2 (Riemannian Metrics)

A Riemannian metric $g \in \operatorname{Sym}^2 T^*X$ for X a smooth manifold is a metric on every T_pX given by

$$g_p: T_pX \times T_pX \to \mathbb{R}$$

$$g(v,v) \ge 0, g(v,v) = 0 \iff v = 0.$$

Definition 3.1.3 (Almost complex structure)

An almost complex structure is a $J \in \text{End}(TX)$ such that $J^2 = -\text{id}$.

Remark 3.1.4: Let $e \in T_pX$ and $e \neq 0$, then if X is a surface then $\{e, Je\}$ is a basis of T_pX .

This is a basis because if Je and e are parallel, then ??? In particular, J_p is determined by a point in $\mathbb{R}^2 \setminus \{\text{the } x\text{-axis}\}$

3.1.1 Sketch of Proof

Let $\tilde{\mathbb{R}}^2$ be an exotic \mathbb{R}^2 .

Step 1 Choose a metric on $\tilde{\mathbb{R}}^2$ $g \coloneqq \sum f_I g_i$ with g_i metrics on coordinate charts U_i and f_i a partition of unity.

Step 2 Find an almost complex structure on $\tilde{\mathbb{R}}^2$. Choosing an orientation of $\tilde{\mathbb{R}}^2$, g defines a unique almost complex structure $J_pe := f \in T_p\tilde{\mathbb{R}}^2$ such that

- g(e,e) = g(f,f)
- g(e, f) = 0. $\{e, f\}$ is an oriented basis of $T_p \tilde{\mathbb{R}}^2$

This is because after choosing e, there are two orthogonal vectors, but only one choice yields an oriented basis.

Step 3 We then apply a theorem:

Theorem 3.1.5(?).

Any almost complex structure on a surface comes from a complex structure, in the sense that there exist charts $\varphi_i: U_i \to \mathbb{C}$ such that J is multiplication by i.

So $d\varphi(J \cdot e) = i \cdot d\varphi_i(e)$, and $(\tilde{\mathbb{R}}^2, J)$ is a complex manifold. Since it's simply connected, the Riemann Mapping Theorem shows that it's biholomorphic to \mathbb{D} or \mathbb{C} , both of which are diffeomorphic to \mathbb{R}^2 .

> See the Newlander-Nirenberg theorem, a result in complex geometry.

4 Lecture 3 (Wednesday, January 20)

Today: some background material on sheaves, bundles, connections.

Definition 4.1.1 (Presheaves and Sheaves)

Recall that if X is a topological space, a **presheaf** of abelian groups \mathcal{F} is an assignment $U \to \mathcal{F}(U)$ of an abelian group to every open set $U \subseteq X$ together with a restriction map $\rho_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$ for any inclusion $V \subseteq U$ of open sets. This data has to satisfying certain conditions:

- a. $\mathcal{F}(\emptyset) = 0$, the trivial abelian group.
- b. $\rho_{UU}: \mathcal{F}(U) \to \mathcal{F}(U) = \mathrm{id}_{\mathcal{F}(U)}$
- c. Compatibility if restriction is taken in steps: $U \subseteq V \subseteq W \implies \rho_{VW} \circ \rho_{UV} = \rho_{UW}$.

We say \mathcal{F} is a **sheaf** if additionally:

d. Given $s_i \in \mathcal{F}(U_i)$ such that $\rho_{U_i \cap U_j}(s_i) = \rho_{U_i \cap U_j}(s_j)$ implies that there exists a unique $s \in \mathcal{F}(\bigcup_i U_i)$ such that $\rho_{U_i}(s) = s_i$.

Example 4.1.2(?): Let X be a topological manifold, then $\mathcal{F} = C^0(\cdot, \mathbb{R})$ the set of continuous functionals form a sheaf. We have a diagram

4.1 Sheaves 14

Link to diagram

Property (d) holds because given sections $s_i \in C^0(U_i; \mathbb{R})$ agreeing on overlaps, so $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$, there exists a unique $s \in C^0(\bigcup_i U_i; \mathbb{R})$ such that $s|_{U_i} = s_i$ for all i – continuous functions glue.

Remark 4.1.3: Recall that we discussed various structures on manifolds: PL, continuous, smooth, complex-analytic, etc. We can characterize these by their sheaves of functions, which we'll denote \mathcal{O} . For example, $\mathcal{O} = C^0(\cdot; \mathbb{R})$ for topological manifolds, and $\mathcal{O} = C^\infty(\cdot; \mathbb{R})$ is the sheaf for smooth manifolds. Note that this also works for PL functions, since pullbacks of PL functions are again PL. For complex manifolds, we set \mathcal{O} to be the sheaf of holomorphic functions.

Example 4.1.4(Locally Constant Sheaves): Let $A \in Ab$ be an abelian group, then \underline{A} is the sheaf defined by setting $\underline{A}(U)$ to be the locally constant functions $U \to A$. E.g. let $X \in Mfd_{Top}$ be a topological manifold, then $\underline{\mathbb{R}}(U) = \mathbb{R}$ if U is connected since locally constant \Longrightarrow globally constant in this case.

⚠ Warning 4.1.5

Note that the presheaf of constant functions doesn't satisfy (d)! Take \mathbb{R} and a function with two different values on disjoint intervals:

Note that $s_1|_{U_1\cap U_2} = s_2|_{U_1\cap U_2}$ since the intersection is empty, but there is no constant function that restricts to the two different values.

4.1 Sheaves 15

4.2 Bundles

Remark 4.2.1: Let $\pi: \mathcal{E} \to X$ be a **vector bundle**, so we have local trivializations $\pi^{-1}(U) \xrightarrow{h_u} Y^d \times U$ where we take either $Y = \mathbb{R}, \mathbb{C}$, such that $h_v \circ h_u^{-1}$ preserves the fibers of π and acts linearly on each fiber of $Y \times (U \cap V)$. Define

$$t_{UV}: U \cap V \to \mathrm{GL}_d(Y)$$

where we require that t_{UV} is continuous, smooth, complex-analytic, etc depending on the context.

Example 4.2.2 (Bundles over S^1): There are two \mathbb{R}^1 bundles over S^1 :

Note that the Mobius bundle is not trivial, but can be locally trivialized.

Remark 4.2.3: We abuse notation: \mathcal{E} is also a sheaf, and we write $\mathcal{E}(U)$ to be the set of sections $s: U \to \mathcal{E}$ where s is continuous, smooth, holomorphic, etc where $\pi \circ s = \mathrm{id}_U$. I.e. a bundle is a sheaf in the sense that its sections form a sheaf.

4.2 Bundles 16

Example 4.2.4(?): The trivial line bundle gives the sheaf \mathcal{O} : maps $U \xrightarrow{s} U \times Y$ for $Y = \mathbb{R}$, \mathbb{C} such that $\pi \circ s = \text{id}$ are the same as maps $U \to Y$.

Definition 4.2.5 (\mathcal{O} -modules)

An \mathcal{O} -module is a sheaf \mathcal{F} such that $\mathcal{F}(U)$ has an action of $\mathcal{O}(U)$ compatible with restriction.

Example 4.2.6(?): If \mathcal{E} is a vector bundle, then $\mathcal{E}(U)$ has a natural action of $\mathcal{O}(U)$ given by $f \sim s := fs$, i.e. just multiplying functions.

Example 4.2.7 (Non-example): The locally constant sheaf \mathbb{R} is not an \mathcal{O} -module: there isn't natural action since the sections of \mathcal{O} are generally non-constant functions, and multiplying a constant function by a non-constant function doesn't generally give back a constant function.

We'd like a notion of maps between sheaves:

Definition 4.2.8 (Morphisms of Sheaves)

A morphism of sheaves $\mathcal{F} \to \mathcal{G}$ is a group morphism $\varphi(U) : \mathcal{F}(U) \to \mathcal{G}(U)$ for all opens $U \subseteq X$ such that the diagram involving restrictions commutes:

$$\mathcal{F}(U) \xrightarrow{\varphi(U)} \mathcal{G}(U)$$

$$\downarrow^{\rho_{UV}} \qquad \downarrow^{\rho_{UV}}$$

$$\mathcal{F}(V) \xrightarrow{\varphi(V)} \mathcal{F}(V)$$

Example 4.2.9(An \mathcal{O} -module that is not a vector bundle.): Let $X = \mathbb{R}$ and define the skyscraper sheaf at $p \in \mathbb{R}$ as

$$\mathbb{R}_p(U) \coloneqq \begin{cases} \mathbb{R} & p \in U \\ 0 & p \notin U. \end{cases}$$

The $\mathcal{O}(U)$ -module structure is given by

$$\mathcal{O}(U) \times \mathcal{O}(U) \to \mathbb{R}_p(U)$$

 $(f,s) \mapsto f(p)s.$

This is not a vector bundle since $\mathbb{R}_p(U)$ is not an infinite dimensional vector space, whereas the space of sections of a vector bundle is generally infinite dimensional (?). Alternatively, there are arbitrarily small punctured open neighborhoods of p for which the sheaf makes trivial assignments.

Example 4.2.10 (of morphisms): Let $X = \mathbb{R} \in Mfd_{Sm}$ viewed as a smooth manifold, then multiplication by x induces a morphism of structure sheaves:

$$(x \cdot) : \mathcal{O} \to \mathcal{O}$$

$$s \mapsto x \cdot s$$

for any $x \in \mathcal{O}(U)$, noting that $x \cdot s \in \mathcal{O}(U)$ again.

4.2 Bundles 17

Exercise 4.2.11(?)

Check that $\ker \varphi$ is naturally a sheaf and $\ker(\varphi)(U) = \ker(\varphi(U)) : \mathcal{F}(U) \to \mathcal{G}(U)$

Here the kernel is trivial, i.e. on any open U we have $(x \cdot) : \mathcal{O}(U) \to \mathcal{O}(U)$ is injective. Taking the cokernel coker $(x \cdot)$ as a presheaf, this assigns to U the quotient presheaf $\mathcal{O}(U)/x\mathcal{O}(U)$, which turns out to be equal to \mathbb{R}_0 . So $\mathcal{O} \to \mathbb{R}_0$ by restricting to the value at 0, and there is an exact sequence

$$0 \to \mathcal{O} \xrightarrow{(x \cdot)} \mathcal{O} \to \mathbb{R}_0 \to 0.$$

This is one reason sheaves are better than vector bundles: the category is closed under taking quotients, whereas quotients of vector bundles may not be vector bundles.

5 | Lecture 4 (Friday, January 22)

5.1 The Exponential Exact Sequence

Let $X = \mathbb{C}$ and consider \mathcal{O} the sheaf of holomorphic functions and \mathcal{O}^{\times} the sheaf of nonvanishing holomorphic functions. The former is a vector bundle and the latter is a sheaf of abelian groups. There is a map $\exp: \mathcal{O} \to \mathcal{O}^{\times}$, the **exponential map**, which is the data $\exp(U): \mathcal{O}(U) \to \mathcal{O}^{\times}(U)$ on every open U given by $f \mapsto e^f$. There is a kernel sheaf $2\pi i \mathbb{Z}$, and we get an exact sequence

$$0 \to 2\pi i \underline{\mathbb{Z}} \to \mathcal{O} \xrightarrow{\exp} \mathcal{O}^{\times} \to \operatorname{coker}(\exp) \to 0.$$

Question 5.1.1

What is the cokernel sheaf here?

Let U be a contractible open set, then we can identify $\mathcal{O}^{\times}(U)/\exp(\mathcal{O}^{\times}(U)) = 1$.

Any $f \in \mathcal{O}^{\times}(U)$ has a logarithm, say by taking a branch cut, since $\pi_1(U) = 0 \implies \log f$ has an analytic continuation. Consider the annulus U and the function $z \in \mathcal{O}^{\times}(U)$, then $z \notin \exp(\mathcal{O}(U))$ – if $z = e^f$ then $f = \log(z)$, but $\log(z)$ has monodromy on U:

Thus on any sufficiently small open set, coker(exp) = 1. This is only a presheaf: there exists an open cover of the annulus for which $z|_{U_i}$, and so the naive cokernel doesn't define a sheaf. This is because we have a locally trivial section which glues to z, which is nontrivial.

Exercise 5.1.2 (?)

Redefine the cokernel so that it is a sheaf. Hint: look at sheafification, which has the defining property $\operatorname{Hom}_{\operatorname{Presh}}(\mathcal{G},\mathcal{F}^{\operatorname{Presh}}) = \operatorname{Hom}_{\operatorname{Sh}}(\mathcal{G},\mathcal{F}^{\operatorname{Sh}})$ for any sheaf \mathcal{G} .

Definition 5.1.3 (Global Sections Sheaf)

The **global sections** sheaf of \mathcal{F} on X is given by $H^0(X;\mathcal{F}) = \mathcal{F}(X)$.

Example 5.1.4(?):

- $C^{\infty}(X) = H^{0}(X, C^{\infty})$ are the smooth functions on X
- $VF(X) = H^0(X;T)$ are the smooth vector fields on X for T the tangent bundle
- If X is a complex manifold then $\mathcal{O}(X) = H^0(X; \mathcal{O})$ are the globally holomorphic functions on X.
- $H^0(X; \mathbb{Z}) = \underline{\mathbb{Z}}(X)$ are ??

Remark 5.1.5: Given vector bundles V, W, we have constructions $V \oplus W, V \otimes W, V^{\vee}$, Hom $(V, W) = V^{\vee} \otimes W$, Symⁿ $V, \Lambda^{p}V$, and so on. Some of these work directly for sheaves:

- $\mathcal{F} \oplus \mathcal{G}(U) := \mathcal{F}(U) \oplus \mathcal{G}(U)$
- For tensors, duals, and homs $\mathcal{H}om(V,W)$ we only get presheaves, so we need to sheafify.

⚠ Warning 5.1.6

 $\operatorname{Hom}(V,W)$ will denote the global homomorphisms $\mathscr{H}\operatorname{om}(V,W)(X)$, which is a sheaf.

Example 5.1.7(?): Let $X^n \in \mathrm{Mfd}_{\mathrm{sm}}$ and let Ω^p be the sheaf of smooth p-forms, i.e $\Lambda^p T^\vee$, i.e. $\Omega^p(U)$ are the smooth p forms on U, which are locally of the form $\sum f_{i_1,\dots,i_p}(x_1,\dots,x_n)dx_{i_1} \wedge dx_{i_2} \wedge \dots dx_{i_p}$ where the f_{i_1,\dots,i_p} are smooth functions.

Example 5.1.8 (Sub-example): Take $X = S^1$, writing this as \mathbb{R}/\mathbb{Z} , we have $\Omega^1(X) \ni dx$. There are two coordinate charts which differ by a translation on their overlaps, and dx(x+c) = dx for c a constant:

Exercise 5.1.9(?)

Check that on a torus, dx_i is a well-defined 1-form.

Remark 5.1.10: Note that there is a map $d: \Omega^p \to \Omega^{p+1}$ where $\omega \mapsto d\omega$.

⚠ Warning 5.1.11

d is **not** a map of \mathcal{O} -modules: $d(f \cdot \omega) = f \cdot \omega + df \wedge \omega$, where the latter is a correction term. In particular, it is not a map of vector bundles, but is a map of sheaves of abelian groups since $d(\omega_1 + \omega_2) = d(\omega_1) + d(\omega_2)$, making d a sheaf morphism.

Let $X \in \mathrm{Mfd}_{\mathbb{C}}$, we'll use the fact that TX is complex-linear and thus a \mathbb{C} -vector bundle.

Remark 5.1.12(Subtlety 1): Note that Ω^p for complex manifolds is $\Lambda^p T^{\vee}$, and so if we want to view $X \in \mathrm{Mfd}_{\mathbb{R}}$ we'll write $X_{\mathbb{R}}$. $TX_{\mathbb{R}}$ is then a real vector bundle of rank 2n.

Remark 5.1.13 (Subtlety 2): Ω^p will denote holomorphic p-forms, i.e. local expressions $\sum f_I(z_1, \dots, z_n) \Lambda dz_I$. For example, $e^z dz \in \Omega^1(\mathbb{C})$ but $z\bar{z}dz$ is not, where dz = dx + idy. We'll use a different notation when we allow the f_I to just be smooth: $A^{p,0}$, the sheaf of (p,0)-forms. Then $z\bar{z}dz \in A^{1,0}$.

Remark 5.1.14: Note that $T^{\vee}X_{\mathbb{R}}\otimes_{\mathbb{C}}=A^{1,0}\oplus A^{0,1}$ since there is a unique decomposition $\omega=fdz+gd\bar{z}$ where f,g are smooth. Then $\Omega^dX_{\mathbb{R}}\otimes_{\mathbb{R}}\mathbb{C}=\bigoplus_{p+q=d}A^{p,q}$. Note that $\Omega^p_{\vee}\neq A^{p,q}$ and these are really quite different: the former are more like holomorphic bundles, and the latter smooth. Moreover $\dim\Omega^p(X)<\infty$, whereas Ω^1_{\vee} is infinite-dimensional.

6 Principal G-Bundles and Connections (Monday, January 25)

Definition 6.0.1 (Principal Bundles)

Let G be a (possibly disconnected) Lie group. Then a **principal** G-bundle $\pi: P \to X$ is a space admitting local trivializations $h_u: \pi^{-1}(U) \to G \times U$ such that the transition functions are given by left multiplication by a continuous function $t_{UV}: U \cap V \to G$.

Remark 6.0.2: Setup: we'll consider TX for $X \in Mfd_{\setminus}$, and let g be a metric on the tangent bundle given by

$$g_p: T_p X^{\otimes 2} \to \mathbb{R},$$

a symmetric bilinear form with $g_p(u, v) \ge 0$ with equality if and only if v = 0.

Definition 6.0.3 (The Frame Bundle) Define $\operatorname{Frame}_p(X) \coloneqq \{ \operatorname{bases of} T_p X \}$, and $\operatorname{Frame} X \coloneqq \bigcup_{p \in X} \operatorname{Frame}_p X$.

Remark 6.0.4: More generally, Frame \mathcal{E} can be defined for any vector bundle \mathcal{E} , so Frame $X := \operatorname{Frame} TX$. Note that Frame X is a principal $\operatorname{GL}_n(\mathbb{R})$ -bundle where $n := \operatorname{rank}(\mathcal{E})$. This follows from the fact that the transition functions are fiberwise in $\operatorname{GL}_n(\mathbb{R})$, so the transition functions are given by left-multiplication by matrices.

Remark 6.0.5 (*Important*): A principal G-bundle admits a G-action where G acts by right multiplication:

$$P \times G \to P$$
$$((g, x), h) \mapsto (gh, x).$$

This is necessary for compatibility on overlaps. **Key point**: the actions of left and right multiplication commute.

Definition 6.0.6 (Orthogonal Frame Bundle)

The **orthogonal frame bundle** of a vector bundle \mathcal{E} equipped with a metric g is defined as $\operatorname{OFrame}_p \mathcal{E} := \{\operatorname{orthonormal bases of } \mathcal{E}_p\}$, also written $O_r(\mathbb{R})$ where $r := \operatorname{rank}(\mathcal{E})$.

Remark 6.0.7: The fibers $P_x \to \{x\}$ of a principal G-bundle are naturally **torsors** over G, i.e. a set with a free transitive G-action.

Definition 6.0.8 (?)

Let $\mathcal{E} \to X$ be a complex vector bundle. Then a **hermitian metric** is a hermitian form on every fiber, i.e.

$$h_p: \mathcal{E}_p \times \overline{\mathcal{E}_p} \to \mathbb{C}$$
.

where $h_p(v, \overline{v}) \geq 0$ with equality if and only if v = 0. Here we define $\overline{\mathcal{E}_p}$ as the fiber of the complex vector bundle $\overline{\mathcal{E}}$ whose transition functions are given by the complex conjugates of those from \mathcal{E} .

Remark 6.0.9: Note that $\mathcal{E}, \overline{\mathcal{E}}$ are genuinely different as complex bundles. There is a *conjugate-linear* map given by conjugation, i.e. $L(cv) = \bar{c}L(v)$, where the canonical example is

$$\mathbb{C}^n \to \mathbb{C}^n$$
$$(z_1, \dots, z_n) \mapsto (\overline{z_1}, \dots, \overline{z_n}).$$

Definition 6.0.10 (Unitary Frame Bundle)

We define the **unitary frame bundle** UFrame(\mathcal{E}) $\coloneqq \bigcup_{p}$ UFrame(\mathcal{E})_p, where at each point this is given by the set of orthogonal frames of \mathcal{E}_p given by (e_1, \dots, e_n) where $h(e_i, \overline{e_j}) = \delta_{ij}$.

Remark 6.0.11: This is a principal G-bundle for $G = U_r(\mathbb{C})$, the invertible matrices $A_{/\mathbb{C}}$ satisfy $A\overline{A}^t = \mathrm{id}$.

Example 6.0.12 (of more principal bundles): For $G = \mathbb{Z}/2\mathbb{Z}$ and $X = S^1$, the Möbius band is a principal G-bundle:

Example 6.0.13 (more principal bundles): For $G = \mathbb{Z}/2\mathbb{Z}$, for any (possibly non-oriented) manifold X there is an **orientation principal bundle** P which is locally a set of orientations on U, i.e.

$$P \coloneqq \{(x, O) \mid x \in X, O \text{ is an orientation of } T_p X \}.$$

Note that P is an oriented manifold, $P \to X$ is a local isomorphism, and has a canonical orientation. (?) This can also be written as $P = \text{Frame}X/\text{GL}_n^+(\mathbb{R})$, since an orientation can be specified by a choice of n linearly independent vectors where we identify any two sets that differ by a matrix of positive determinant.

Definition 6.0.14 (Associated Bundles)

Let $P \to X$ be a principal G-bundle and let $G \to \operatorname{GL}(V)$ be a continuous representation. The **associated bundle** is defined as

$$P \times_G V = \{(p, v) \mid p \in P, v \in V\} / \sim$$
 where $(p, v) \sim (pg, g^{-1}v),$

which is well-defined since there is a right action on the first component and a left action on the second.

Example 6.0.15(?): Note that Frame(\mathcal{E}) is a $GL_r(\mathbb{R})$ -bundle and the map $GL_r(\mathbb{R}) \xrightarrow{\mathrm{id}} GL(\mathbb{R}^r)$ is

a representation. At every fiber, we have $G \times_G V = (p, v) / \sim$ where there is a unique representative of this equivalence class given by (e, pv). So $P \times_G V_p \to \{p\} \cong V_x$.

Exercise 6.0.16(?)

Show that $\operatorname{Frame}(\mathcal{E}) \times_{\operatorname{GL}_r(\mathbb{R})} \mathbb{R}^r \cong \mathcal{E}$. This follows from the fact that the transition functions of $P \times_G V$ are given by left multiplication of $t_{UV} : U \cap V \to G$, and so by the equivalence relation, $\operatorname{im} t_{UV} \in \operatorname{GL}(V)$.

Remark 6.0.17: Suppose that M^3 is an oriented Riemannian 3-manifold. Them $TM \to \text{Frame}(M)$ which is a principal SO(3)-bundle. The universal cover is the double cover SU(2) \to SO(3), so can the transition functions be lifted? This shows up for spin structures, and we can get a \mathbb{C}^2 bundle out of this.

7 Wednesday, January 27

7.1 Bundles and Connections

Definition 7.1.1 (Connections)

Let $\mathcal{E} \to X$ be a vector bundle, then a **connection** on \mathcal{E} is a map of sheaves of abelian groups

$$\nabla: \mathcal{E} \to \mathcal{E} \otimes \Omega^1_X$$

satisfying the Leibniz rule:

$$\nabla(fs) = f\nabla s + s \otimes ds$$

for all opens U with $f \in \mathcal{O}(U)$ and $s \in \mathcal{E}(U)$. Note that this works in the category of complex manifolds, in which case ∇ is referred to as a **holomorphic connection**.

Remark 7.1.2: A connection ∇ induces a map

$$\tilde{\nabla}: \mathcal{E} \otimes \Omega^p \to \mathcal{E} \otimes \Omega^{p+1}$$
$$s \otimes \omega \mapsto \nabla s \wedge w + s \otimes d\omega.$$

where $\wedge: \Omega^p \otimes \Omega^1 \to \Omega^{p+1}$. The standard example is

$$d: \mathcal{O} \to \Omega^1$$
$$f \mapsto df.$$

where the induced map is the usual de Rham differential.

Exercise 7.1.3 (?)

Wednesday, January 27 25

Prove that the *curvature* of ∇ , i.e. the map

$$F_{\nabla} \coloneqq \nabla \circ \nabla : \mathcal{E} \to \mathcal{E} \otimes \Omega^2$$

is \mathcal{O} -linear, so $F_{\nabla}(fs) = f \nabla \circ \nabla(s)$. Use the fact that $\nabla s \in \mathcal{E} \otimes \Omega^1$ and $\omega \in \Omega^p$ and so $\nabla s \otimes \omega \in \mathcal{E}\Omega^1 \otimes \Omega^p$ and thus reassociating the tensor product yields $\nabla s \wedge \omega \in \mathcal{E} \otimes \Omega^{p+1}$.

Remark 7.1.4: Why is this called a connection?

This gives us a way to transport $v \in \mathcal{E}_p$ over a path γ in the base, and ∇ provides a differential equation (a flow equation) to solve that lifts this path. Solving this is referred to as **parallel transport**. This works by pairing $\gamma'(t) \in T_{\gamma(t)}X$ with Ω^1 , yielding $\nabla s = (\gamma'(t)) = s(\gamma(t))$ which are sections of γ .

Note that taking a different path yields an endpoint in the same fiber but potentially at a different point, and $F_{\nabla} = 0$ if and only if the parallel transport from p to q depends only on the homotopy class of γ .

Note: this works for any bundle, so can become confusing in Riemannian geometry when all of the bundles taken are tangent bundles!

Example 7.1.5 (A classic example): The Levi-Cevita connection ∇^{LC} on TX, which depends on a metric g. Taking $X = S^2$ and g is the round metric, there is nonzero curvature:

In general, every such transport will be rotation by some vector, and the angle is given by the area of the enclosed region.

Definition 7.1.6 (Flat Connection and Flat Sections)

A connection is flat if $F_{\nabla} = 0$. A section $s \in \mathcal{E}(U)$ is flat if it is given by

$$L(U) \coloneqq \left\{ s \in \mathcal{E}(U) \mid \nabla s = 0 \right\}.$$

Exercise 7.1.7 (?)

Show that if ∇ is flat then L is a local system: a sheaf that assigns to any sufficiently small open set a vector space of fixed dimension. An example is the constant sheaf \mathbb{C}^d . Furthermore $\operatorname{rank}(L) = \operatorname{rank}(\mathcal{E}).$

Remark 7.1.8: Given a local system, we can construct a vector bundle whose transition functions are the same as those of the local system, e.g. for vector bundles this is a fixed matrix, and in general these will be constant transition functions. Equivalently, we can take $L \otimes_{\mathbb{R}} \mathcal{O}$, and $L \otimes 1$ form flat sections of a connection.

7.2 Sheaf Cohomology

Definition 7.2.1 (?)

Let \mathcal{F} be a sheaf of abelian groups on a topological space X, and let $\mathfrak{U} := \{U_i\} \Rightarrow X$ be an open cover of X. Let $U_{i_1,\dots,i_p} = U_{i_1} \cap U_{i_2} \cap \dots \cap U_{i_p}$. Then the **Čech Complex** is defined as

$$C_{\mathfrak{U}}^{p}(X,\mathcal{F}) \coloneqq \prod_{i_1 < \dots < i_p} \mathcal{F}(U_{i_1,\dots,i_p})$$

with a differential

$$\partial^{p}: C_{\mathfrak{U}}^{p}(X, \mathcal{F}) \to C_{\mathfrak{U}}^{p+1}(X\mathcal{F})$$

$$\sigma \mapsto (\partial \sigma)_{i_{0}, \cdots, i_{p}} \coloneqq \prod_{j} (-1)^{j} \sigma_{i_{0}, \cdots, \widehat{i_{j}}, \cdots, i_{p}} \Big|_{U_{i_{0}, \cdots, i_{p}}}$$

where we've defined this just on one given term in the product, i.e. a p-fold intersection.

Exercise 7.2.2 (?)

Check that $\partial^2 = 0$.

Remark 7.2.3: The Čech cohomology $H_{\mathfrak{U}}^p(X,\mathcal{F})$ with respect to the cover \mathfrak{U} is defined as $\ker \partial^p / \operatorname{im} \partial^{p-1}$. It is a difficult theorem, but we write $H^{p}(X,\mathcal{F})$ for the Čech cohomology for any sufficiently refined open cover when X is assumed paracompact.

Example 7.2.4(?): Consider S^1 and the constant sheaf \mathbb{Z} :

7.2 Sheaf Cohomology 28 7 ToDos

ere we have

$$C^0(S^1, \underline{\mathbb{Z}}) = \underline{\mathbb{Z}}(U_1) \oplus \underline{\mathbb{Z}}(U_2) = \underline{\mathbb{Z}} \oplus \underline{\mathbb{Z}},$$

and

$$C^{1}(S^{1}, \mathbb{Z}) = \bigoplus_{\substack{\text{double} \\ \text{intersections}}} \underline{\mathbb{Z}}(U_{ij})\underline{\mathbb{Z}}(U_{12}) = \underline{\mathbb{Z}}(U_{1} \cap U_{2}) = \underline{\mathbb{Z}} \oplus \underline{\mathbb{Z}}.$$

We then get

$$C^{0}(S^{1}, \underline{\mathbb{Z}}) \xrightarrow{\partial} C^{1}(S^{1}, \underline{\mathbb{Z}})$$
$$\mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$$
$$(a,b) \mapsto (a-b, a-b),$$

Which yields $H^*(S^1, \underline{\mathbb{Z}}) = [\mathbb{Z}, \mathbb{Z}, 0, \cdots].$

ToDos

List of Todos

ToDos 29

Definitions

1.2.1	Definition – Topological Manifold	3
1.2.4	Definition – Restricted Structures on Manifolds	4
2.0.5	Definition – Kirby-Siebenmann Invariant of a 4-manifold	8
3.0.4	Definition – Signature	10
3.1.2	Definition – Riemannian Metrics	11
3.1.3	Definition – Almost complex structure	11
4.1.1	Definition – Presheaves and Sheaves	14
4.2.5	Definition – \mathcal{O} -modules	17
4.2.8	Definition – Morphisms of Sheaves	17
5.1.3	Definition – Global Sections Sheaf	19
6.0.1	Definition – Principal Bundles	21
6.0.3	Definition – The Frame Bundle	22
6.0.6	Definition – Orthogonal Frame Bundle	23
6.0.8	Definition – ?	23
6.0.10	Definition – Unitary Frame Bundle	23
6.0.14	Definition – Associated Bundles	24
7.1.1	Definition – Connections	25
7.1.6	Definition – Flat Connection and Flat Sections	28
7.2.1	Definition – ?	28

Definitions 30

Theorems

3.0.1	Theorem – Freedman	6
3.0.5	Theorem – Rokhlin's Theorem	10
3.0.7	Theorem – Donaldson	10
3 1 5	Theorem – ?	19

Theorems 31

Exercises

4.2.11	Exercise – ?							 														18
5.1.2	Exercise – ?							 														19
5.1.9	Exercise – ?							 														20
6.0.16	Exercise – ?							 														25
	Exercise – ?																					
7.1.7	Exercise – ?							 														28
7.2.2	Exercise – ?							 		 	 											28

Exercises 32

Figures

List of Figures

Figures 33

Bibliography

- [1] Danny Calegari. *Notes on 4-manifolds*. https://math.uchicago.edu/~dannyc/courses/ 4manifolds_2018/4_manifolds_notes.pdf.
- [2] Richard Mandelbaum. "Four-dimensional topology: an introduction". In: Bull. Amer. Math. Soc. (N.S.) 2.1 (Jan. 1980), pp. 1-159. URL: https://projecteuclid.org:443/euclid.bams/1183545202.
- [3] Akhil Matthew. The Dirac Operator. https://math.uchicago.edu/~amathew/dirac.pdf.
- [4] Yuli Rudyak. Piecewise Linear Structures on Topological Manifolds. https://hopf.math.purdue.edu/Rudyak/PLstructures.pdf.
- [5] Dietmar Salamon. Spin Geometry and Seiberg-Witten Invariants. https://people.math.ethz.ch/~salamon/PREPRINTS/witsei.pdf. 1999.
- [6] Tom Weston. An Introduction to Cobordism Theory. https://people.math.umass.edu/~weston/oldpapers/cobord.pdf.

Bibliography 34