01. 빅데이터 개요 및 활용

- 1) 데이터와 정보
- 1.1) 데이터의 정의
- · 데이터는 추론과 추정의 근거를 이루는 사실이다.
- 현실 세계에서 관찰하거나 측정하여 수집한 값이다.
- 1.2) 데이터의 특징
- · 다른 객체와의 상호관계 속에서 더 큰 가치를 갖는다.
- · 객관적 사실이라는 존재적 특성을 갖는다.
- · 추론, 추정, 예측, 전망을 위한 근거로써 당위적 특성을 갖는다.
- 1.3) 데이터의 구분
- ① 정량적 데이터(Quantitative Data)
- 주로 숫자로 이루어진 정형 데이터이다.
- · 통계에 더 초점을 맞춘 데이터로, 측량하거나 분석이 가능한 수량적 데이터를 의미
- ② 정성적 데이터(Qualitative Data)
- · 문자와 같은 텍스트로 구성되며 함축적 의미를 갖는 비정형 데이터이다.
- · 사용자 경험 및 구매 행태를 보여주는 기술적인 데이터를 의미
- ▶정량적 데이터와 정성적 데이터 비교

	정량적 데이터	정성적 데이터
유형	정형 데이터, 반정형 데이터	비정형 데이터
특징	여러 요소의 결합으로 의미 부여	객체 하나가 함축된 의미 내포
관점	주로 객관적 내용	주로 주관적 내용
구성	수치나 기호 등	문자나 언어 등
형태	데이터베이스, 스프레드시트 등	이미지, 텍스트 파일 등
위치	DBMS, 로컬 시스템 등 내부	웹사이트, 모바일 플랫폼 등 외부
분석	통계 분석 시 용이	통계 분석 시 어려움

1.4) 데이터의 유형

① 정형 데이터(Structured Data)

정해진 형식과 구조에 맞게 저장되도록 구성된 데이터이며, 연산 가능예) DBMS 테이블, 스프레드시트 등

② 반정형 데이터(Semi-Structured Data)

데이터의 형식과 구조가 비교적 유연하고 스키마 정보를 데이터와 함께 제공하는 파일 형식의 데이터, 연산 불가능에) HTML, XML, JSON 등

③ 비정형 데이터(Unstructured Data)

구조가 정해지지 않은 대부분의 데이터이며, 연산 불가능 예) 동영상, 이미지, 음성, 문서 등

1.5) 데이터의 근원에 따른 분류

- ① 가역 데이터
- · 생산된 데이터의 원본으로 일정 수준 환원이 가능한 데이터로 원본과 1:1 관계를 갖는다.
- 이력 추적이 가능하여 원본 데이터가 변경될 경우 변경사항을 반영할 수 있다.
- ② 불가역 데이터
 - •생산된 데이터의 원본으로 환원이 불가능한 데이터이다.
- · 원본 데이터와 전혀 다른 형태로 재생산되기 때문에 원본데이터의 내용이 변경되 었더라도 변경사항을 반영할 수 없다.

▶가역 데이터와 불가역 데이터 비교

	가역 데이터	불가역 데이터
환원성(추적성)	가능(비가공 데이터)	불가능(가공 데이터)
의존성	원본 데이터 그 자체	원본 데이터와 독립된 새 객체
원본과의 관계 1대1의 관계		1대N, N대1 또는 M대N의 관계
처리과정 탐색		결합
활용분야	데이터 마트, 데이터 웨어하우스	데이터 전처리, 프로파일 구성

1.6) 데이터의 기능

- · 과학적 발견은 개인의 암묵적 지식에 기초하는 경우가 많으며, 이를 활용하기 위해 데이터를 기반으로 한 암묵지와 형식지의 상호작용이 중요하다.
- ·데이터 기반 지식경영의 핵심 이슈는 암묵지와 형식지의 상호작용에 있다.

① 암묵지

학습과 경험을 통해 개인에게 체화되어 겉으로 드러나지 않는 지식 사회적으로 중요하지만 다른 사람에게 공유되기 어려움

② 형식지

문서나 매뉴얼처럼 형상화된 지식 전달과 공유가 용이

1.7) 지식창조 매커니즘

- · 암묵지와 형식지 간 상호작용을 위한 일본의 경영학자 노나카 이쿠지로의 지식 창조 매커니즘은 다음의 상호작용 단계로 구성된다.
- · 상호작용에는 내면화, 공통화, 표출화, 연결화가 있다.

▶데이터 상호작용 단계

상호작용	내용
내면화	행동과 실천교육 등을 통해 형식지가 개인의 암묵지로 체화되는 단계
공통화	다른 사람과의 대화 등 상호작용을 통해 개인이 암묵지를 습득하는 단계
표출화	형식지 요소 중의 하나이며 개인에게 내재된 경험을 객관적인 데이터인 문서나 매체로 저장하거나 가공, 분석하는 과정
연결화	형식지가 상호결합하면서 새로운 형식지를 창출하는 과정

1.8) 데이터, 정보, 지식, 지혜

- · 데이터, 정보, 지식, 지혜는 인간의 사회활동 속에서 가치창출을 위한 일련의 프로세 스로 연결되어 기능한다.
- 데이터에서부터 가치를 추출하는 것은 통찰, 지혜를 얻는 과정으로 Ackoff, R.L.이 도 식화한 DIKW 피라미드로 표현할 수 있다.

▶지식 피라미드(DIKW 피라미드)

피라미드 요소	설명
지혜 (Wisdom)	· 근본 원리에 대한 깊은 이해를 바탕으로 도출되는 창의적 아이디어 · 상황이나 맥락에 맞게 규칙을 적용하는 요소 예) A사이트의 다른 상품도 B사이트보다 저렴할 것으로 판단
지식 (Knowledge)	 획득한 다양한 정보를 구조화하여 유의미한 정보로 분류하고 일반화시킨 결과물 정보에 기반해 찾아진 규칙예) A사이트가 싸게 팔기 때문에 A사이트에서 구매할 계획
정보 (Information)	· 가공, 처리하여 데이터간의 연관 관계와 함께 의미가 도출된 데이터예) 기사 책은 A사이트에서 더 싸게 판매
데이터 (Data)	· 현실세계에서 관찰하거나 측정한 객관적인 사실로서 값 예) 기사 책이 A사이트에서 20,000원, B사이트에서 25,000원에 판매

2) 데이터베이스

2.1) 데이터베이스의 정의

- ·체계적, 조직적으로 정리되고 전자식 또는 기타 수단으로 개별적으로 접근할 수 있는 독립된 데이터의 집합이다.
- · 동시에 복수의 적용 업무를 지원 할 수 있도록 복수 이용자의 요구에 대응해 데이터를 받아들이고 저장, 공급하기 위해 일정한 구조에 따라 편성된 데이터의 집합이다.
- ·문자, 기호, 음성, 화상, 영상 등 상호 관련된 다수의 콘텐츠를 정보 처리 및 정보통신 기기에 의하여 체계적으로 수집, 축적하여 다양한 용도와 방법으로 이용할 수 있도록 정리한 정보의 집합체이다.

2.2) 데이터베이스 관리 시스템(DBMS: DataBase Management System)

- · 데이터베이스를 관리하며 응용 프로그램들이 데이터베이스를 공유하며 사용할 수 있는 환경을 제공하는 소프트웨어이다.
- SQL(Structured Query Language)
- 데이터베이스에 접근할 때 사용하는 언어이다.
- 단순한 질의 기능뿐만 아니라 데이터 정의와 조작 기능을 갖추고 있다.
- 테이블 단위로 연산을 수행하며 초보자들도 비교적 쉽게 사용 가능하다.

▶데이터베이스 관리 시스템의 종류

종류	설명	
관계형 DBMS	데이터를 열과 행을 이루는 테이블로 표현하는 모델	
객체지향 DBMS	정보를 객체 형태로 표현하는 모델	
네트워크 DBMS	그래프 구조를 기반으로 하는 모델	
계층형 DBMS	트리 구조를 기반으로 하는 모델	

2.3) 데이터베이스의 특징

① 통합된 데이터(Integrated Data)

동일한 데이터가 중복되어 저장되지 않음을 의미 데이터의 중복은 관리상 복잡하고 다양한 문제를 야기

② 저장된 데이터(Stored Data)

컴퓨터가 접근할 수 있는 저장매체에 데이터를 저장

③ 공용 데이터(Shared Data)

여러 사용자가 서로 다른 목적으로 데이터를 함께 이용 일반적으로 대용량화되어 있고 구조가 복잡함

④ 변화되는 데이터(Changed Data)

데이터는 현시점의 상태를 나타내며 지속적으로 갱신 갱신으로 변화하면서도 현재의 정확한 데이터를 유지

▶데이터베이스의 장단점

장점	단점	
·데이터 중복 최소화 ·데이터 실시간 접근 가능 ·데이터 보안 강화 ·논리적 및 물리적 독립성 제공 ·데이터 일관성 제공 ·데이터 무결성 보장 ·데이터 공유 용이	·구축과 유지에 따른 비용 발생 ·백업과 복구 등 관리 필요	

2.4) 데이터베이스의 활용

- OLTP(OnLine Transaction Processing)
- · 호스트 컴퓨터와 온라인으로 접속된 여러 단말 간 처리 형태의 하나로 데이터베이스의 데이터를 수시로 갱신하는 프로세싱을 의미한다.
- 여러 단말에서 보내온 메시지에 따라 호스트 컴퓨터가 데이터베이스를 액세스하고, 바로 처리 결과를 돌려보내는 형태를 말한다.
- 현재 시점의 데이터만을 데이터베이스가 관리한다는 개념이다.
- ② OLAP(OnLine Analytical Processing)
 - · 정보 위주의 분석 처리를 하는 것으로, OLTP에서 처리된 데이터를 분석해 제품의 판매추이, 구매성향 파악, 재무 회계 분석 등을 프로세싱하는 것을 의미한다.
 - · 다양한 비즈니스 관점에서 쉽고 빠르게 데이터에 접근하여 의사결정에 활용할 수 있는 정보를 얻을 수 있게 하는 기술이다.

▶OLTP와 OLAP의 비교

구분	0LTP	OLAP
데이터 구조	복잡	단순
데이터 갱신	동적으로 순간적	정적으로 주기적
응답 시간	수 초 이내	수 초에서 몇 분 사이
데이터 범위	수 십일 전후	오랜 기간 저장
데이터 성격	정규적인 핵심 데이터	비정규적 읽기 전용 데이터
데이터 크기	수 기가바이트	수 테라바이트
데이터 내용	현재 데이터	요약된 데이터
데이터 특성	트랜잭션 중심	주제 중심
데이터 액세스 빈도	높음	보통
질의 결과 예측	주기적이며 예측 가능	예측하기 어려움

2.5) 데이터 웨어하우스(DW: Data Warehouse)

- · 사용자의 의사결정에 도움을 주기 위하여 기간시스템의 데이터베이스에 축적된 데이터를 공통의 형식으로 변환해서 관리하는 데이터베이스이다.
- · 데이터 웨어하우스는 일정한 시간 동안 데이터를 축적하고 의사결정을 위한 다양한 분석 작업을 수행한다.

▶데이터 웨어하우스의 특징

특징	설명
주제지향성 (Subject-orientation)	고객, 제품 등과 같은 중요한 주제를 중심으로 그 주제와 관련된 데이터들로 구성된다.
통합성 (Integration)	데이터가 데이터 웨어하우스에 입력될 때는 일관된 형태로 변환되며, 전사적인 관점에서 통합된다.
시계열성 (Time-variant)	데이터 웨어하우스의 데이터는 일정 기간 동안 시점별로 이어진다.
비휘발성 (Non-volatilization)	데이터 웨어하우스에 일단 데이터가 적재되면 일괄 처리 작업에 의한 갱신 이외에는 변경이 수행되지 않는다.

▶데이터 웨어하우스의 구성

3) 빅데이터 개요

3.1) 개요

- 빅데이터는 기존 데이터보다 너무 방대하여 기존의 방법이나 도구로 수집/저장/분석 등이 어려운 정형 및 비정형 데이터들을 의미한다.
- · 빅데이터는 일반적인 데이터베이스 소프트웨어로 저장, 관리, 분석할 수 있는 범위를 초과하는 규모의 데이터이다.(McKinsey, 2011)
- 빅데이터는 다양한 종류의 대규모 데이터로부터 저렴한 비용으로 가치를 추출하고 데이터의 초고속 수집, 발굴, 분석을 지원하도록 고안된 차세대 기술 및 아키텍처이다.(IDC, 2011)
- 빅데이터는 대용량 데이터를 활용해 작은 용량에서는 얻을 수 없었던 새로운 통찰이나 가치를 추출해 내며, 나아가 이를 활용해 시장과 기업 및 시민과 정부의 관계 등 많은 분야에 변화를 가져오는 것이다.(Mayer-Schonberger&Cukier, 2013)

3.2) 빅데이터의 등장과 변화

- ① 빅데이터의 등장배경
 - · 디지털화, 저장기술, 인터넷 보급, 모바일 혁명, 클라우드 컴퓨팅 등 관련 기술이 빠르게 발전하고 있다.
 - · 기업에서는 온·오프라인 고객 데이터가 많이 축적 되면서 데이터에 숨어 있는 가치를 발굴해 새로운 성장동력으로 활용하고 있다.
 - · 학계에서는 인간 게놈 프로젝트, 기후 변화 등 거대 데이터를 다루는 학문분야 가 확산되면서 필요한 기술 아키텍처 및 분석 기법들이 발전하고 있다.

② 빅데이터의 등장으로 인한 변화

- •데이터 처리 시점이 사전 처리에서 사후 처리로 이동하였다.
- · 기술 발전으로 인한 데이터 처리비용 감소로 표본조사가 아닌 전수조사를 통해 패턴이나 정보를 발견하는 방식으로 변화 하였다.
- 데이터의 가치 판단 기준이 질(Quality) 보다 양(Quantity)으로 그 중요도가 변화하였다.
- · 데이터를 분석하는 방향이 이론적 인과관계 중심에서 단순한 상관관계로 변화되는 경향이 있다.

3.3) 빅데이터의 특징

빅데이터 용어가 사용된 초기에 가트너(Gartner) 그룹은 3V(규모, 유형, 속도)로 빅데이터의 특징을 설명했으며, 최근에는 빅데이터 분석을 통해 얻을 수 있는 가치와 데이터에 대한 품질의 중요성이 강조되고 있다.

▶빅데이터의 특징

광의	협의	특징	설명
		규모(Volume)	· 데이터 양이 급격하게 증가(대용량화) · 기존 데이터 관리 시스템의 성능적 한계 도달
	3V 유형(Variety)		·데이터의 종류와 근원 확대(다양화) ·정형 데이터 외 반정형 및 비정형 데이터로 확장
5V		속도(Velocity)	·데이터 수집과 처리 속도의 변화(고속화) ·대용량 데이터의 신속하고 즉각적인 분석 요구
	품질(Veracity)	·데이터의 신뢰성, 정확성, 타당성 보장이 필수 ·고품질의 데이터에서 고수준 인사이트 도출 가능	
	_	가치(Value)	· 대용량의 데이터 안에 숨겨진 가치 발굴이 중요 · 다른 데이터들과 연계 시 가치가 배로 증대

▶전통적 데이터와 빅데이터 비교

구분	전통적 데이터	빅데이터
규모	기가바이트(GB) 이하	테라바이트(TB) 이상
처리단위	시간 또는 일 단위 처리	실시간 처리
유형	정형 데이터	정형+반정형, 비정형 데이터
처리방식	중앙집중식 처리	분산 처리
시스템	RDBMS	Hadoop, HDFS, Hbase, NoSQL 등

3.4) 빅데이터의 활용

빅데이터를 활용하기 위한 3대요소로 자원, 기술, 인력이 있다.

▶빅데이터 활용을 위한 3요소

구성 요소 내용	
자원(Resource)	· 정형, 반정형, 비정형 데이터를 실시간으로 수집한다. · 수집된 데이터를 전처리 과정을 통해 품질을 향상 시킨다.
기술(Technology)	· 분산 파일 시스템을 통해 대용량 데이터를 분산 처리한다. · 데이터마이닝 등을 통해 데이터를 분석 및 시각화한다. · 데이터를 스스로 학습, 처리 할 수 있는 AI기술을 활용한다.
인력(People)	· 통계학, 수학, 컴퓨터공학, 경영학 분야 전문지식을 갖춘다. · 도메인 지식을 습득하여 데이터 분석 및 결과를 해석한다.

▶빅데이터 활용을 위한 기본 테크닉

테크닉	설명	예시
연관규칙학습	변인들 간 주목할 만한 상관관계 가 있는지 확인하는 방법	도시락을 구매하는 사람이 음료 수를 더 많이 구매하는가?
유형분석	문서를 분류하거나 조직을 그룹 화할 때 사용	이것은 어떤 특성을 가진 집단에 속하는가?
유전 알고리즘	최적화가 필요한 문제를 생물진 화의 과정을 모방하여 점진적으 로 해결책을 찾는 방법	시청률을 최고치로 하기 위해 어떤 프로그램을 어떤 시간에 방송해야 하는가?
기계학습	데이터로부터 학습한 알려진 특 성을 활용하여 예측	시청 기록을 바탕으로 어떤 영화 를 가장 보고 싶어하는가?
회귀분석	독립변수가 종속변수에 미치는 영향을 분석할 때 사용	경력과 학력이 연봉에 미치는 영 항은?
감정분석	특정 주제에 대해 말을 하거나 글을 쓴 사람의 감정을 분석	새로운 할인 정책에 대한 고객의 평은 어떤가?
소셜 네트워크분석	특정인과 다른 사람의 관계를 파악하고 영향력 있는 사람을 분석할 때 사용	고객들 간 관계망은 어떻게 구성 되는가?

4) 빅데이터의 가치

- 4.1) 빅데이터의 기능과 효과
- 빅데이터는 이를 활용하는 기존 사업자에게 경쟁 우위를 제공한다.
- 빅데이터는 알고리즘 기반으로 의사결정을 지원하거나 이를 대신한다.

4.2) 빅데이터의 가치 측정의 어려움

특정 데이터의 가치는 그 데이터의 활용 및 가치 창출 방식과 분석 기술의 발전여부 등에 따라 달라질 수 있어 이를 측정하고 판단하는 것은 쉽지 않다.

- ① 데이터 활용 방식
- 데이터를 재사용하거나 재결합, 다목적용 데이터 개발 등이 일반화 되면서 특정 데이터를 누가, 언제, 어디서 활용할지 알 수 없기 때문에 그 가치를 측정하기 어렵다.
- ② 가치 창출 방식
- 데이터는 어떠한 목적을 갖고서 어떻게 가공하는가에 따라 기존에 없던 가치를 창 출할 수 도 있어 사전에 그 가치를 측정하기 어렵다.
- ③ 분석 기술 발전
- 데이터는 지금의 기술 상황에서는 가치가 없어 보일지라도 새로운 분석 기법이 등 장할 경우 큰 가치를 찾아낼 수 있으므로 당장 그 가치를 측정하기 어렵다.
- ④ 데이터 수집 원가
- 데이터는 달성하려는 목적에 따라 수집하거나 가공하는 비용이 상황에 따라 달라 질 수 있어 그 가치를 측정하기 어렵다.

4.3) 빅데이터의 영향

- ·기업에게 혁신과 경쟁력 강화, 생산성 향상의 근간이 된다.
- •정부에게 환경 탐색과 상황 분석, 미래 대응 수단을 제공한다.
- ▶빅데이터 활용을 통해 얻는 가치

기관명	경제적 효과		
F ' (0010)	데이터는 자본이나 노동력과 거의 동등한 레벨의 경제적 투입 자본		
Economist(2010)	으로 비즈니스의 새로운 원자재 역할을 한다.		
MIT Sloan(2010)	데이터 분석을 잘 활용하는 조직일수록 차별적 경쟁력을 갖추고 높		
	은 성과를 창출한다.		
Gartner(2011)	데이터는 21세기 원유이며 미래 경재 우위를 결정한다. 기업은 다		
	가올 데이터 경제시대를 이해하고 정보고립을 경계해야 한다.		
McKinsey(2011)	빅데이터는 혁신, 경쟁력, 생산성의 핵심 요소이다.		

5) 데이터 산업의 이해

5.1) 데이터 산업의 진화

- •데이터 산업은 데이터 처리, 통합, 분석, 연결, 권리 시대로 진화하고 있다.
- 데이터 통합 시대까지 데이터의 역할은 거래를 정확히 기록하고 거래의 자동화를 지원하는 것이었다. 데이터 분석 수준이 향상되면서 데이터의 자원 활용이 가능해졌다.

① 데이터 처리 시대

- 컴퓨터 프로그래밍 언어를 이용하여 대규모 데이터를 빠르고 정확하게 처리할 수 있게 되었으며 결과는 파일 형태로 보관되었다.
- 기업들은 EDPS(Electronic Data Processing System)를 도입하여 급여 계산, 회계 전표 처리 등의 업무에 적용하였다.
- 데이터는 업무 처리의 대상으로 새로운 가치를 제공하지는 않았다.

② 데이터 통합 시대

- 데이터 처리가 여러 업무에 적용되기 시작하면서 데이터가 쌓이기 시작했고 전 사적으로 데이터 일관성을 확보하기가 어려워 졌다.
- 데이터 모델링과 데이터베이스 관리 시스템이 등장했다.
- 데이터 조회와 보고서 산출, 원인 분석 등을 위해 데이터 웨어하우스가 도입 되었다.

③ 데이터 분석 시대

- 대부분 업무에 정보기술이 적용되고, 모바일 기기 보급, 공정센서 확대, 소셜 네트워크 이용 확산 등으로 인해 데이터가 폭발적으로 증가했다.

- 대규모 데이터를 보관하고 관리할 수 있는 하둡, 스파크 등의 빅데이터 기술이 등장했다.
- 데이터를 학습하여 전문가보다도 정확한 의사결정을 빠르게 내릴 수 있는 인공 지능 기술도 상용화되었다.
- 데이터를 분석하여 사실들의 인과관계를 밝힐 수 있고, 이를 업무에 적용하면 의사결정의 연관성과 기민성을 높일 수 있다는 점이 다양한 사례로 증명되었다.
- 데이터 소비자(Data Consumer)의 역할과 활용 역량을 높이기 위한 데이터 리터 리시(Data Literacy) 프로그램의 중요성도 커지고 있다.

④ 데이터 연결 시대

- 기업 또는 기관, 사람, 사물 등 모든 것이 항상 그리고 동시에 둘 이상의 방식으로 연결되어 데이터를 주고 받는다.
- 디지털 경제의 주축 세력인 디지털 원주민은 융합된 서비스를 원한다.
- 데이터 경제의 데이터 연결을 강조하는 의미에서, 오픈 API 경제라는 용어가 사용되기도 한다. 또한, 오픈 API 제공 수 및 접속 수, 오픈 API로 연결된 외부 실체 수 등이 기업의 지속가능성과 성장성을 확인할 수 있는 지표가 되기도 한다.

⑤ 데이터 권리 시대

- 개인이 자신의 데이터를 자신을 위해서 사용한다.
- 데이터 권리를 개인이 갖게 된다는 것은 산업이 데이터를 중심으로 재편될 수 있다는 뜻이다.
- 데이터의 공정한 사용이 보장되어야 하며, 데이터 독점이 유발할 수 있는 경제 독점이 방지되어야 한다.

5.2) 데이터 산업의 구조

① 인프라 영역

- 데이터 수집, 저장, 분석, 관리 등의 기능을 담당한다.
- 컴퓨터나 네트워크 장비 및 스토리지 같은 하드웨어 영역이 있다.
- 데이터를 관리하고 분석하기 위한 소프트웨어 영역이 있다.

② 서비스 영역

- 데이터를 활용하기 위한 교육이나 컨설팅 또는 솔루션을 제공한다.
- 데이터 그 자체를 제공하거나 이를 가공한 정보를 제공한다.
- 데이터를 처리하는 역할을 담당하기도 한다.

6) 빅데이터 조직 및 인력

6.1) 필요성

- · 기업의 경쟁력 확보를 위해 비즈니스 질문을 도출하고, 이를 충족하기 위한 가치를 발굴하며, 비즈니스를 최적화하기 위하여 빅데이터 조직 및 인력 구성 방안을 수립한다.
- 빅데이터와 관련된 기술적인 문제들은 기술의 발전으로 어느 정도 해소 되었다.
- •데이터 분석 및 활용을 위한 조직체계나 분석 전문가 확보에 어려움이 있다.
- •데이터 분석 관점의 컨트롤 타워에 대한 필요성이 제기 되고 있다.

6.2) 조직의 역할

- 전사 및 부서의 분석 업무를 발굴한다.
- 전문적인 분석 기법과 도구를 활용하여 빅데이터 속에서 인사이트를 찾아낸다.
- 발견한 인사이트를 전파하고 이를 실행한다.

6.3) 조직의 구성

통계학이나 분석 방법에 대한 지식과 분석 경험이 있는 전문 인력을 중심으로 전 사 또는 특정 부서 내 조직으로 구성하여 운영한다.

- ① 조직 구성을 위한 체크리스트
 - 비즈니스 질문을 선제적으로 찾아낼 수 있는 구조인가?
- 분석 전담조직과 타 부서 간 유기적인 협조와 지원이 원활한 구조인가?
- 효율적인 분석 업무를 수행하기 위한 분석 조직의 내부 조직구조인가?
- 전사 및 단위부서가 필요시 접촉하며 지원할 수 있는 구조인가?
- 어떤 형태의 조직(집중형, 기능형, 분산형)으로 구성하는 것이 효율적인가?
- ② 인력 구성을 위한 체크리스트
- 비즈니스 및 IT 전문가의 조합으로 구성되어야 하는가?
- 어떤 경험과 어떤 스킬을 갖춘 사람으로 구성해야 하는가?
- 통계적 기법 및 분석 모델링 전문 인력을 별도로 구성해야 하는가?
- 전사 비즈니스를 커버하는 인력이 없다면?
- 전사 분석업무에 대한 적합한 인력 규모는 어느 정도인가?
- ③ 구성 인력과 필요역량
- 비즈니스를 이해하고 있는 인력
- 분석에 필요한 컴퓨터 공학적인 기술을 이해하고 있는 인력
- 통계를 이용한 다양한 분석기법을 활용할 수 있는 분석 지식을 갖춘 인력

- 조직 내 분석 문화 확산을 위한 변화 관리 인력
- 분석 조직 뿐 아니라 관련 부서 조직원의 분석 역량 향상을 위한 교육담당 인력
- ▶데이터 분석 업무 수행 주체에 따른 조직구조

* DSCoE: Data Science Center of Excellence

조직구조	내용
집중형	· 전사 분석 업무를 별도의 전담조직에서 수행 · 내부에서 전사 분석과제의 전략적 중요도에 따라 우선순위를 정함 · 현업 부서와 분석 업무가 중복/이원화 가능성 있음
기능형	· 분석 수행의 일반적 구조 · 각 현업 부서에서 분석 업무를 직접 수행 · 전사적 관점에서 전략적 핵심 분석이 어려우며, 특정 현업 부서에 국한된 협소한 분석을 수행할 가능성 높음
분산형	· 분석 전문 인력을 현업 부서에 배치하여 분석 업무를 수행 · 전사 차원에서 분석과제의 우선순위를 선정하고 수행 · 분석 결과를 현업에 빠르게 적용 가능

6.4) 데이터 사이언스 역량

- · 데이터 사이언스는 정형, 비정형 형태를 포함한 다양한 데이터로부터 지식과 인사이트를 추출하는 데 과학적 방법론, 프로세스, 알고리즘, 시스템을 동원하는 융합분야 이다.
- · 데이터 사이언스는 데이터를 통해 실제 현상을 이해하고 분석하는 데 필요한 통계학, 데이터 분석, 기계학습과 연관된 방법론을 통합하는 개념으로 정의되기도 한다.

▶데이터 사이언스의 영역

① 데이터 사이언스의 기능

- 비즈니스 성과를 좌우하는 핵심이슈에 답할 수 있다.
- 사업의 성과를 견인해 나갈 수 있다.

② 데이터 사이언스의 한계

- 분석 과정에서 가정과 같이 인간의 해석이 개입되는 단계가 불가피 하다.
- 분석 결과를 바라보는 사람에 따라 서로 다른 해석과 결론을 내릴 수 있다.
- 아무리 정량적인 분석이라 할지라도 모든 분석은 가정에 근거한다.

6.5) 데이터 사이언티스트

- ·데이터에 대한 이론적 지식과 숙련된 분석 기술을 바탕으로 통찰력과 전달력 및 협업 능력을 갖춘 데이터 분야 전문가 이다.
- ·데이터의 다각적 분석을 통해 인사이트를 도출하고 이를 조직의 전략 방향 제시에 활용할 수 있는 기획자이기도 하다.
- •문제를 집중적으로 파고들어 질문을 찾고, 검증 가능한 가설을 세워야 한다.

▶데이터 사이언스의 영역

[연습문제]

1. 다음 중 데이터에 대한 설명으로 틀린 것은?

- ① 데이터는 일반적으로 정형, 비정형, 반정형 데이터로 구분된다.
- ② 비정형 데이터는 텍스트, 음성, 영상 등 특수한 데이터 이다.
- ③ 정형 데이터는 흔히 볼 수 있는 주로 숫자로 구성된 데이터이다.
- ④ 정형 데이터는 비정형 데이터보다 품질이 우수하며 다양한 분석이 가능하다.

2. 다음 중 정성적 데이터로 옳은 것은?

- ① 일본에 대한 국민들의 인식
- ② 서울에서 제주까지 비행시간
- ③ 한국인의 평균 수명
- ④ 국내 인구 증가율

3. 다음 중 반정형 데이터가 아닌 것은?

- ① XML
- ISON
- ③ TEXT
- 4 HTML

4. 다음 중 비정형 데이터가 아닌 것은?

- ① 동영상
- ② 이미지
- ③ 음성
- ④ 전화번호

5. 다음 중 정보의 특징이 아닌 것은?

- ① 적정성
- ② 일관성
- ③ 관련성
- ④ 적시성

6. 다음 중 지식의 피라미드를 순서대로 나열한 것은?

- ① 데이터 → 정보 → 지식 → 지혜
- ② 데이터 → 정보 → 지혜 → 지식
- ③ 데이터 → 지혜 → 정보 → 지식
- ④ 데이터 → 지식 → 지혜 → 정보

7. 다음 중 지식창조 매커니즘의 단계가 아닌 것은?

- ① 표출화(Externalization) ② 내면화(Internalization)
- ③ 통합화(Integration)
- ④ 공통화(Socialization)

8. 다음 중 데이터 웨어하우스의 특징이 아닌 것은?

- ① 주제지향성(Subject-orientation)
- ② 휘발성(Volatilization)
- ③ 통합성(Integration)
- ④ 시계열성(Time-variant)

9. 다음 중 데이터 웨어하우스의 구성요소가 아닌 것은?

- ① 데이터 모델(Data Model)
- ② 데이터 전처리(Data Pre-processing)
- ③ ETL(Extract, Transform, Load)
- ④ ODS(Operational Data Store)

10. 다음 중 빅데이터의 주요 특징으로 틀린 것은?

- ① 다양성
- ② 대용량성
- ③ 신속성
- ④ 일관성

11. 다음 중 빅데이터를 활용할 때 얻을 수 있는 가치가 아닌 것은?

- ① 마케팅 효과 극대화
- ② 제품 생산 비용 절감
- ③ 비즈니스 의사결정의 고도화
- ④ 고객 개인정보 활용을 통한 통제

12. 다음 중 빅데이터 활용에 필요한 3요소로 옳은 것은?

- ① 자원, 인력, 프로세스
- ② 자원, 기술, 인력
- ③ 기술, 인력, 프로세스
- ④ 자원, 기술, 프로세스

13. 다음 중 빅데이터가 만들어 낸 변화로 틀린 것은?

- ① 사전처리에서 사후처리로 변화
- ② 인과관계에서 상관관계로 변화
- ③ 전수조사에서 표본조사로 변화
- ④ 데이터의 질보다 양의 중요도 증가

14. 다음 중 빅데이터의 도입 효과가 아닌 것은?

- ① 빅데이터는 투명성을 높여 R&D 및 관리 효율성을 제고한다.
- ② 빅데이터는 시뮬레이션을 통한 수요 포착과 변수 탐색으로 경쟁력을 강화한다.
- ③ 빅데이터는 고객 세분화 맟춤형 개인화 서비스를 통해 마케팅 비용이 발생하지 않게 한다.
- ④ 빅데이터는 비즈니스 모델이나 제품 또는 서비스의 혁신을 가져온다.

15. 다음 중 데이터의 가치 측정이 어려운 이유로 틀린 것은?

- ① 데이터 재사용이 일반화되며 특정 데이터를 누가 언제 사용했는지 알기 어렵다.
- ② 분석 기술의 발전으로 과거에는 불가능 했던 데이터 분석이 가능해졌다.
- ③ 한정된 곳에서 데이터가 활용되고 있다.
- ④ 기존에 존재하지 않던 새로운 가치를 창출 한다.

16. 다음 중 데이터 산업 구조의 분류로 옳은 것은?

- ① 서비스, 솔루션
- ② 서비스, 컨설팅
- ③ 인프라. 서비스
- ④ 인프라, 컨설팅

17. 다음 중 데이터 산업 구조의 서비스 영역으로 틀린 것은?

- ① 데이터 활용 교육
- ② 데이터 처리 제공
- ③ 데이터 기반 컨설팅
- ④ 도출된 인사이트 기반의 새로운 아이디어 제공

18. 다음 중 마이데이터가 등장한 시점으로 옳은 것은?

- ① 데이터 통합 시대
- ② 데이터 분석 시대
- ③ 데이터 연결 시대
- ④ 데이터 권리 시대

19. 다음 중 집중형 조직구조에 대한 설명으로 틀린 것은?

- ① 전사 분석 업무를 별도의 분석 전담조직에서 수행 한다.
- ② 분석 결과를 현업에 빠르게 적용할 수 있다.
- ③ 현업 부서의 분석 업무와 이원화될 가능성이 높다.
- ④ 전략적 중요도에 따라 분석 조직이 우선순위를 정하여 진행 가능하다.

20. 다음 데이터 사이언티스트에 대한 요구역량 중 Soft Skill이 아닌 것은?

- ① 분석 기술에 대한 숙련
- ② 설득력 있는 전달
- ③ 통찰력 있는 분석
- ④ 다분야 간 협력

02. 빅데이터 기술 및 제도

- 1) 빅데이터 플랫폼
- 1.1) 빅데이터 플랫폼의 등장배경

빅데이터 플랫폼은 빅데이터 수집부터 저장, 처리, 분석 등 전 과정을 통합적으로 제공 하여 그 기술들을 잘 사용할 수 있도록 준비된 환경이다.

- ① 비즈니스 요구사항 변화
- 빠른 의사결정 속도보다 장기적이고 전략적인 접근이 필요하다.
- 초저가의 대규모 프로세싱과 클라우드 컴퓨팅 기반의 분석 환경이 등장했다.
- ② 데이터 규모와 처리 복잡도 증가
 - 다양한 형태의 데이터 수집과 복잡한 로직을 이용한 대용량 처리가 필요하다.
 - 분산 처리가 불가피하며 이를 제어할 수 있는 고도의 기술이 필요하다.
- ③ 데이터 구조의 변화와 신속성 요구
 - SNS 데이터나 로그 파일, 스트림 데이터 등 비정형 데이터의 비중과 실시간 처리에 대한 요구가 높아지고 있다.
 - 약한 관계형 스키마나 반정형 데이터와 같은 정형적이지 않은 데이터가 증가하고 있다.
- ④ 데이터 분석 유연성 증대
 - 기존의 통계적 분석방법과 같이 정해진 절차와 과정을 따르지 않아도 분석 목적에 맞게 유연한 분석이 가능하게 되었다.
 - 인공지능 기술의 발전으로 다양한 방법론을 통해 텍스트, 음성, 이미지, 동영상 등 다양한 요소들의 분석이 가능하게 되었다.

1.2) 빅데이터 플랫폼의 기능

빅데이터를 처리하는 과정에서 부하 발생은 불가피하며, 빅데이터 플랫폼은 이러한 부 하들을 기술적인 요소들을 결합하여 해소한다.

- ① 컴퓨팅 부하 발생
 - 빅데이터를 처리하고자 할 때 연산과정에서 CPU, GPU, 메모리 등을 사용하며 부하가 발생한다.
 - 빅데이터 플랫폼을 통한 CPU 성능 향상 및 클러스터(Cluster)에서의 효과적인 자원 할당을 통해 부하를 제어할 수 있다.

② 저장 부하 발생

- 빅데이터 처리 과정의 입력 데이터, 중간 가공 데이터, 출력 데이터 등 여러 단계에서 부하가 발생한다.
- 빅데이터 플랫폼을 통한 파일 시스템 개선, 메모리와 파일 시스템의 효과적인 사용 및 데이터베이스 성능 향상으로 제어할 수 있다.

③ 네트워크 부하 발생

- 빅데이터를 처리하는 과정에서 분산처리를 하고자 할 때 노드(Node) 간의 통신 과정에서 부하가 발생한다.
- 빅데이터 플랫폼을 통한 대역폭의 효과적 분배 및 네트워크상에서 최단거리에 위치한 노드를 탐색하여 제어할 수 있다.

1.3) 빅데이터 플랫폼의 조건

빅데이터 플랫폼은 서비스 사용자와 제공자 어느 한쪽에 치우쳐서는 안되며 모두가 만족할 수 있는 환경을 제공하여야 한다.

- ① 서비스 사용자 측면에서의 체크리스트
- 주어진 문제를 해결하기에 충분한 요소들을 제공하는 환경인가?
- 편리한 사용자 인터페이스(UI)를 제공하는가?
- ② 서비스 제공자 측면에서의 체크리스트
 - 성능적인 문제가 발생하지 않도록 충분한 관리 기능을 제공하는가?
- 사용자 접속 및 인증을 관리할 수 있는 기능을 제공하는가?
- 효율적인 운영을 위한 자원 관리 기능을 제공하는가?
- 서비스 품질 관리를 위한 각종 지표들을 충분히 제공하는가?
- 안전한 서비스 제공을 위한 보안적인 요소들을 갖추고 있는가?
- 플랫폼 도입을 통해 비용 절감을 이룰 수 있는가?

1.4) 빅데이터 플랫폼의 구조

▶빅데이터 처리과정별 요소기술을 고려한 플랫폼 구조

데이터 처리 및 분석 엔진	데이터 수집 및 정제 모듈	서비스 관리 모듈	사용자 관리 모듈	모니터링 모듈	보안 모듈
데이터 처리 및 분석	데이터 추출		인증 및 접속 관리	서비스 모니터링	
처리 및 분석 워크플로우구성	데이터 변환		사용자 서비스 관리		

사용자 요청 파싱 모듈	작업 스케줄링 모듈	데이터 및 자원 할당 모듈	프로파일링 모듈	데이터 관리 모듈	자원 관리 모듈
		초기 데이터 할당	자원 프로파일링		
		데이터 재할당 및 복제	응용 프로파일링		
		초기 자원 할당	응용 시뮬레이션		
		자원 재할당 및 스케일링			
		서비스 관리 모듈	사용자 관리 모듈	모니터링 모듈	보안 모듈
			인증 및 접속 관리	서비스 모니터링	
			사용자 서비스 관리		
			SLA 관리		

사용자 요청 파싱 모듈	자원 배치 모듈	노드 관리 모듈	스토리지 관리 모듈	네트워크 관리 모듈	
	초기 자원 배치				
	자원 재할당 및 스케일링				
		서비스 관리 모듈	사용자 관리 모듈	모니터링 모듈	보안 모듈
			인증 및 접속 관리	서비스 모나터링	
			사용자 서비스 관리	자원 모니터링	
			SLA 관리		

① 소프트웨어 계층

빅데이터 어플리케이션을 구성하며 데이터 처리 및 분석과 이를 위한 데이터 수집, 정제를 한다.

컴포넌트	설명			
	데이터를 처리하고 분석			
데이터 처리	데이터 처리 및 분석	서비스에 따른 데이터 처리 및 분석 수행		
및 분석 엔진	처리 및 분석 워크플로우 구성	워크플로우 기반 데이터 처리 및 분석 수행		
	데이터 표현	데이터 처리 및 분석한 결과를 표현		
	빅데이터 분석 엔진을	위한 데이터를 수집하고 정제		
데이터 수집	데이터 추출	원천 데이터에서 데이터 추출		
및 정제 모듈	데이터 변환	원천 데이터에서 추출한 데이터를 변환하고 균질화 및 정제		
	데이터 적재	변환된 데이터를 데이터 웨어하우스로 적재		
서비스 관리 모듈	소프트웨어 계층에서 제공하는 서비스를 관리			
	사용자를 관리			
사용자 관리	인증 및 접속 관리	사용자별 인증과 접속 관리		
모듈	사용자 서비스 관리	사용자별 서비스를 관리		
	SLA 관리	사용자별 서비스 수준 협약을 관리		
모니터링 모듈	플랫폼 및 인프라스트	럭처 서비스 사용성과 성능을 모니터링		
보안 모듈	소프트웨어 계층의 보안을 관리			

② 플랫폼 계층

빅데이터 어플리케이션을 실행하기 위한 플랫폼을 제공하며, 작업 스케줄링이나 데이터 및 자원 할당과 관리, 프로파일링 등을 수행한다.

컴포넌트	설명		
	사용자 어플리케이션	e을 실행하는 데이터와 자원을 할당	
	초기 데이터 할당	사용자 어플리케이션 데이터 초기 할당	
데이터 및 자원 할당	데이터 재할당 및 복제	동적인 상황을 고려하여 데이터를 재할당 및 복제	
모듈	초기 자원 할당	사용자 어플리케이션을 실행하는 인프라스트럭처의 자원을 초기 할당	
	자원 재할당 및 스케일링	동적인 상황을 고려하여 자원을 재할당 및 스케일링	
	자원 및 어플리케이	션을 프로파일링 또는 시뮬레이션	
프로파일링	자원 프로파일링	인프라스트럭처 자원을 할당하는 인프라스트럭처 자원을 프로파일링	
모듈	어플리케이션 프로파일링	인프라스트럭처 자원을 할당하는 사용자 어플리케 이션을 프로파일링	
	어플리케이션 시뮬레이션	인프라스트럭처 자원 선택 및 구성을 하는 사용자 어플리케이션을 시뮬레이션	
데이터 관리 모듈	사용자 데이터를 관리		
자원 관리 모둘	인프라스트럭처 자원을 관리		
서비스 관리 모듈	플랫폼 계층에서 제공하는 서비스를 관리		
	사용자를 관리		
사용자 관리	인증 및 접속 관리	사용자별 인증과 접속 관리	
모듈	사용자 서비스 관리	사용자별 서비스를 관리	
	SLA 관리	사용자별 서비스 수준 협약을 관리	
모니터링 모듈	인프라스트럭처 서비	스 가용성과 성능을 모니터링	
보안 모듈	소프트웨어 계층의 .	보안을 관리	

③ 인프라스트럭처 계층

자원 배치와 스토리지 관리, 노드 및 네트워크 관리 등을 통해 빅데이터 처리와 분석에 필요한 자원을 제공한다.

컴포넌트		설명		
사용자 요청 파싱	사용자가 요청한 내용을 파싱			
	사용자에게 제공할 자원을 배치			
자원 배치 모듈	초기 자원 배치	사용자에게 제공하는 자원을 초기 배치		
	자원 재배치 및 스케일링	동적인 상황을 고려하여 자원을 재배치 및 스케일링		
노드 관리 모듈	인프라스크럭처 내의 노드를 관리			
데이터 관리 모듈	인프라스크럭처 내의 스토리지를 관리			
자원 관리 모듈	인프라스크럭처 내외의 네트워크를 관리			
서비스 관리 모듈	인프라스크럭처 계층에서 제공하는 서비스를 관리			
	사용자를 관리한다.			
사용자 관리	인증 및 접속 관리	사용자별 인증과 접속 관리		
모듈	사용자 서비스 관리	사용자별 서비스를 관리		
	SLA 관리	사용자별 서비스 수준 협약을 관리		
	서비스를 모니터링	한다.		
모니터링 모듈	서비스 모니터링	서비스 가용성과 성능을 모니터링		
	자원 모니터링	노드, 스토리지, 네트워크 등 자원 가용성과 성능을 모니터링		
모니터링 모듈	플랫폼 및 인프라스	느트럭처 서비스 사용성과 성능을 모니터링		
보안 모듈	소프트웨어 계층의 보안을 관리			

2) 빅데이터 처리기술

2.1) 빅데이터 처리과정과 요소기술

▶빅데이터 처리과정

① 데이터 소스(생성)

- 데이터베이스나 파일 관리 시스템과 같은 내부 데이터가 있다.
- 인터넷으로 연결된 외부로부터 생성된 파일이나 데이터가 있다.

② 수집

- 크롤링을 통해 데이터 원천으로부터 데이터를 검색하여 수집한다.
- ETL을 통해 소스 데이터로부터 추출하고, 변환하여, 적재한다.
- 단순한 수집이 아니라 검색 및 수집, 변환 과정을 모두 포함한다.
- 로그 수집기나, 센서 네트워크 및 Open API 등을 활용할 수 있다.

③ 저장

- 저렴한 비용으로 데이터를 쉽고 빠르게 많이 저장한다.
- 정형 데이터뿐만 아니라 반정형, 비정형 데이터도 포함한다.
- 병렬 DBMS나 하둡(Hadoop), NoSQL 등 다양한 기술을 사용할 수 있다.
- 시스템 간의 데이터를 서로 공유 가능하다.

④ 처리

- 데이터를 효과적으로 처리하는 기술이 필요하다.
- 분산 병렬 및 인 메모리(In-memory) 방식으로 실시간 처리한다.
- 대표적으로 하둡(Hadoop)의 맵리듀스(MapReduce)를 활용할 수 있다.

⑤ 분석

- 데이터를 신속하고 정확하게 분석하여 비즈니스에 기여한다.
- 특정 분야 및 목적의 특성에 맞는 분석 기법 선택이 중요하다.
- 통계분석, 데이터 마이닝, 텍스트 마이닝, 기계학습 방법 등이 있다.

⑥ 표현(시각화)

- 처리 및 분석 결과를 표, 그래프 등을 이용해 쉽게 표현하고 탐색이나 해석에 활용한다
- 정보 시각화 기술, 시각화 도구, 편집 기술, 실시간 자료 시각화 기술로 구성되어 있다.

2.2) 빅데이터 수집

- ① 크롤링(Crawling)
 - 무수히 많은 컴퓨터에 분산 저장되어 있는 문서를 수집하여 검색 대상의 색인으로 포함시키는 기술이다.
- ② 로그 수집기
 - 조직 내부에 있는 웹 서버나 시스템의 로그를 수집하는 소프트웨어이다.
- ③ 센서 네트워크(Sensor Network)
 - 유비쿼터스 컴퓨팅 구현을 위한 초경량 저전력의 많은 센서들로 구성된 유무선 네트워크이다.
- 4 RSS Reader/Open API
 - 데이터의 생산, 공유, 참여할 수 있는 환경인 웹2.0 을 구현하는 기술이다.
- ⑤ ETL 프로세스
 - 데이터의 추출(Extract), 변환(Transform), 적재(Load)의 약어로, 다양한 원천 데이터 를 취합해 추출하고 공통된 형식으로 변환하여 데이터 웨어하우스에 적재하는 과정이다.

▶ETL 프로세스

과정	설명
데이터 추출 (Extract)	· 원천 데이터로부터 적재하고자 하는 데이터를 추출한다.
데이터 변환 (Transform)	· 추출한 데이터를 변환하고 균질화하며 정제한다. · 정제한 데이터를 적재하고자 하는 데이터 웨어하우스 구조에 맞게 변환한다. · 통합하는 제약 조건 및 비즈니스 규칙에 따라 필터링이나 확인 작업 을 한다.
데이터 적재 (Load)	· 변환된 데이터를 데이터 웨어하우스에 적재한다.

2.3) 빅데이터 저장

- NoSQL(Not-only SQL)
 - 전통적인 관계형 데이터베이스와는 다르게 데이터 모델을 단순화하여 설계된 비관계형 데이터베이스로 SQL을 사용하지 않는 DBMS와 데이터 저장장치이다.
 - 기존의 RDBMS 트랜잭션 속성인 원자성(Atomicity), 일관성(Consistency), 독립성 (Isolation), 지속성(Durability)을 포기한다.
 - 데이터 업데이트가 즉각적으로 가능한 데이터 저장소이다.
 - Cloudata, Hbase, Cassandra, MongoDB 등이 대표적이다.
- ② 공유 데이터 시스템(Shared data System)
 - 일관성, 가용성(Availability), 네트워크 분할 감내성(Tolerance To Net-work Partition) 중에서 최대 두 개의 속성만 보유할 수 있다. (CAP 이론)
 - 네트워크 분할 감내성을 취하고 일관성과 가용성 중 하나를 포기하여 일관성과 가용성을 모두 취하는 기존 RDBMS보다 높은 성능과 확장성을 제공한다.
- ③ 병렬 데이터베이스 관리 시스템(DBMS, DataBase Management System)
 - 다수의 마이크로프로세서를 사용하여 여러 디스크에 질의, 갱신, 입출력 등 데이터 베이스 처리를 동시에 수행하는 시스템이다.
 - 확장성을 제공하기 위해 작은 단위의 동작으로 트랜잭션 적용이 필요하다.
 - VoltDB, SAP HANA, Vertica, Greenplum, Netezza가 대표적이다.
- ④ 분산 파일 시스템
 - 네트워크로 공유하는 여러 호스트의 파일에 접근할 수 있는 파일 시스템이다.
 - 데이터를 분산하여 저장하면 데이터 추출 및 가공 시 빠르게 처리할 수 있다.
 - GFS(Google File System), HDFS(Hadoop Distributed File System), 아마존 S3 파일 시스템이 대표적이다.
- ⑤ 네트워크 저장 시스템
 - 이기종 데이터 저장 장치를 하나의 데이터 서버에 연결하여 총괄적으로 데이터를 저장 및 관리하는 시스템이다.
 - SAN(Storage Area Network), NAS(Network Attached Storage)가 대표적이다.

2.4) 빅데이터 처리

① 분산 시스템과 병렬 시스템

구분	설명
분산 시스템	 · 네트워크상에 분산되어 있는 컴퓨터를 단일 시스템인 것처점 구동하는 기술이다. · 분산 시스템에 속한 각 노드는 독립된 시스템이다. · 독립 컴퓨터의 집합으로 만들었으나 마치 단일 시스템인 것처럼 수행되어야 한다.
병렬 시스템	·문제 해결을 위해 CPU 등의 자원을 데이터 버스나 지역 통신 시스템 등으로 연결하여 구동하는 기술이다. ·분할된 작업을 동시에 처리하여 계산 속도를 빠르게 한다.

- · 용어는 구분되어 사용되기도 하지만 서로 중첩되는 부분이 많아 실제 시스템에서도 이 둘을 명확히 구분하기는 어렵다.
- · 두 개념을 아우르는 분산 병렬 컴퓨팅이라는 용어를 사용한다.

② 분산 병렬 컴퓨팅

다수의 독립된 컴퓨팅 자원을 네트워크상에 연결하여 이를 제어하는 미들웨어 (Middleware)를 이용해 하나의 시스템으로 동작하게 하는 기술이다.

▶분산 병렬 컴퓨팅 시 고려사항

문제	설명
전체 작업의 배분 문제	·전체 직업을 잘 쪼개어 여리 개의 작은 작업으로 나눠야 한다.
각 프로세서에서 계산된 중간 결과물을 프로세서 간 주고받는 문제	· 효율적인 통신은 성능과 직결된다. · 보통 단일 시스템은 전체 작업을 노드의 수만큼 균등하게 나눈다. · 이종 시스템은 컴퓨팅 능력에 따라 전체 작업을 배분한다. · 노드 간의 동산을 최소화하는 기법 등이 반영되면 자원을 좀 더 효율적으로 사용할 수 있어 성능 항상에 도움이 된다.
서로 다른 프로세서 간 동기화 문제	 · 데이터 병렬 처리에서 동기적 방법을 사용할 경우 프로세서는 특정 계산이 끝나거나 특정 데이터를 넘겨받을 때까지 반드시 대기 하여야 한다. · 동기적 방법의 경우 송신자는 수신자에게서 데이터를 받았다는 응답이 올 때까지 대기하여야 한다. · 비동기적 방법에서는 결과 메시지를 보낸 즉시 다음 작업을 계속할 수 있다. · 비동기적 방법의 경우 프로세서는 기다릴 필요가 없지만, 계산 과정이 적합한지는 확인해야 한다.

③ 하둡(Hadoop)

- 분산 처리 환경에서 대용량 데이터 처리 및 분석을 지원하는 오픈 소스 소프트웨어 프레임워크이다.
- 야후에서 최초로 개발했으며, 지금은 아파치 소프트웨어 재단에서 프로젝트로 관리되고 있다.
- 하둡 분산파일시스템인 HDFS와 분산컬럼기반 데이터베이스인 Hbase, 분산 컴퓨팅 지원 프레임워크인 맵리듀스(MapReduce)로 구성되어 있다.
- 분산파일시스템을 통해 수 전대의 장비에 대용량 파일을 나누어 저장할 수 있는 기능을 제공한다.
- 분산파일시스템에 저장된 대용량의 데이터들을 맵리듀스를 이용하여 실시간으로 처리 및 분석 가능하다.
- 하둡의 부족한 기능을 보완하는 하둡 에코시스템이 등장하여 다양한 솔루션을 제공한다.

④ 아파치 스파크(Apache Spark)

- 실시간 분산형 컴퓨팅 플랫폼으로 In-Memory 방식으로 처리를 하며 하둡보다 처리속도가 빠르다.
- 스칼라 언어로 개발되었지만 스칼라뿐만 아니라 Java, R, Python을 지원한다.

⑤ 맵리듀스(MapReduce)

- 구글에서 개발한 방대한 양의 데이터를 신속하게 치리하는 프로그래밍 모델로 효과적인 병렬 및 분산 치리를 지원한다.
- 런타임(Runtime)에서의 입력 데이터 분할, 작업 스케줄링, 노드 고장, 노드간의 데이터 전송 작업이 맵리듀스 처리 성능에 많은 영향을 미친다.

▶맵리듀스 처리단계

1 단계	입력 데이터를 읽고 분할한다.
2 단계	분할된 데이터를 할당해 맵 작업을 수행한 후, 그 결과인 중간 데이터를 통합 및 재분할한다.
3 단계	통합 및 재분할된 중간 데이터를 셔플(Shullle)한다.
4 단계	셔플된 중간 데이터를 이용해 리듀스 작업을 수행한다.
5 단계	출력 데이터를 생성하고, 맵리듀스 처리를 종료한다.

2.5) 빅데이터 분석

- ① 데이터 분석 방법의 분류
 - 탐구 요인 분석(EFA Exploratory Factor Analysis) : 데이터 간 상호 관계를 파악하여 데이터를 분석하는 방법이다.
- 확인 요인 분석(CFA, Confirmalory Factor Analysis) : 관찰된 변수들의 집합 요소 구 조를 파악하기 위한 통계적 기법을 통해 데이터를 분석하는 방법이다.

② 데이터 분석 방법

구분	설명
분류 (Classification)	·미리 알려진 클래스들로 구분되는 학습 데이터 셋을 학습시켜 새로 추가되는 데이터가 속할 만한 데이터 셋을 찾는 지도학습 방법이다.
군집화	·특성이 비슷한 데이터를 하나의 그룹으로 분류하는 방법으로 분류와 달리
(Clustering)	학습 데이터 셋을 이용하지 않는 비지도학습 방법이다.
기계학습	· 인공지능 분이에서 인간의 학습을 모델링한 방법이다.
(Machine	· 의사결정트리 등 기호적 학습과 신경망이나 유전 알고리즘 등 비기호적 학
Learning)	습, 베이지안이나 은닉 마코프 등 확률적 학습 등 다양한 기법이 있다.
텍스트 마이닝 (Text Mining)	· 자연어 처리 기술을 이용해 인간의 언어로 쓰인 비정형 텍스트에서 유용한 정보를 추출하거나 다른 데이터와의 연관성을 파악하기 위한 방법이다. · 분류나 군집화 등 빅데이터에 숨겨진 의미 있는 정보를 발견하는 데 사용 하기도 한다.
웹마이닝	·인터넷을 통해 수집한 정보를 데이터 마이닝 방법으로 분석하는 응용분야
(Web Mining)	이다.
오피니언 마이닝	· 온라인의 다양한 뉴스와 소셜 미디어 코멘트 또는 사용자가 만든 콘텐츠에
(Opinion Mining)	서 표현된 의견을 추출, 분류, 이해하여 자산화하는 응용분야이다.
리얼리티 마이닝	· 휴대폰 등 기기를 사용하여 인간관계와 행동 양태 등을 추론하는 응용분야이다.
(Reality Mining)	· 통화량, 통화 위치, 통화 상태, 통화 대상, 통화 내용 등을 분석하여 사용자의 인간관계나 행동 특성을 찾아낸다.
소셜 네트워크 분석 (Social Network Analysis)	· 수학의 그래프 이론을 바탕으로 소셜 네트워크 서비스에서 네트워크 연결 구조와 강도를 분석하여 사용자의 명성 및 영향력을 측정하는 방법이다.
감성 분석 (Sentiment Analysis)	· 문장의 의미를 파악하여 글의 내용에 긍정 또는 부정, 좋음 또는 나쁨을 분류하거나 만족 또는 불만족 강도를 자수화하는 방법이다. · 도출된 지수를 이용하여 고객의 감성 트렌드를 시계열로 분석하고, 고객의 감성 변화에 기업들이 신속하게 대응 및 부정적인 의견의 확산을 방지하는 데 활용할 수 있다.

- 3) 빅데이터와 인공지능
- 3.1) 인공지능(Al: Artificial Intelligence)
 - ① 인공지능의 정의
 - 인공지능은 기계를 지능화하는 노력이며, 지능화란 객체가 환경에서 적절히, 그리고 예 지력을 갖고 작동하도록 하는 것이다. (Artificial Intelligence and life in 2030, 스탠퍼드 대학교 Al100)
 - 인공지능은 합리적 행동 수행자(Rational Agent)이며, 어떤 행동이 최적의 결과를 낳을 수 있도록 하는 의사결정 능력을 갖춘 에이전트를 구축하는 것이다.(Artificial Intelligence a modern approach [3rd edition], 러셀과 노빅)
 - 인공지능은 설정한 목표를 극대화하는 행동을 제시하는 의사결정 로직이다.
 - ② 인공지능과 기계학습 및 딥러닝의 관계
 - 인공지능을 논할 때 기계학습과 딥러닝을 혼재하여 사용한다.
 - 인공지능은 사람이 생각하고 판단하는 사고 구조를 구축하려는 전반적인 노력이다.
 - 기계학습은 인공지능의 연구 분야 중 하나로 인간의 학습 능력과 같은 기능을 축적된 데이터를 활용하여 실현하고자 하는 기술 및 방법이다.
 - 딥러닝은 기계학습 방법 중 하나로 컴퓨터가 많은 데이터를 이용해 사람처럼 스스로 학습할 수 있도록 인공신경망 등의 기술을 이용한 기법이다.
 - ③ 딥러닝(Deep Learning)의 특징
 - 딥러닝은 제프리 힌튼(Geoffrey Everest Hinton)의 노력으로 함수추정 방법으로써의 신경망 관점에서 정보를 압축, 가공, 재현하는 알고리즘으로 일반화하면서 인공지능의 핵심 동인이 되었다.
 - 깊은 구조에 의해 엄청난 양의 데이터를 학습할 수 있는 특징을 갖고 있다.
 - 딥러닝의 학습을 위한 데이터의 확보는 곧 우수한 인공지능 개발과 깊은 관련성이 있다.
 - ④ 기계학습의 종류

종류	설명
지도학습 (Supervised Learning)	· 학습 데이터로부터 하나의 함수를 유주해내기 위한 방법이다. · 지도 학습기(Supervised Learner)가 하는 작업은 훈련 데이터로부터 주어진 데이터에 대해 예측하고자 하는 값을 올바로 추측해 내는 것이다.
비지도학습 (Unsupervised Learning)	· 데이터가 어떻게 구성되었는지를 알아내는 문제의 범주에 속한다. · 지도학습 혹은 강화학습과는 달리 입력 값에 대한 목표치가 주어지지 않는다. · 통계의 밀도 추정(Density Estimation)과 깊은 연관이 있으며, 데이터의주요 특징을 요약하고 설명할 수 있다.

준지도학습 (Semi-supervised Learning)	 목표 값이 표시된 데이터와 표시되지 않은 데이터를 모두 학습에 사용하는 것을 말한다. 많은 기계학습 연구자들이 목표 값이 없는 데이터에 적은 양의 목표 값을 포함한 데이터를 사용할 경우 학습 정확도에 있어서 상당히 좋아짐을 확인하였다.
강화학습 (Reinforcement Learning)	· 행동심리학에서 영감을 받았으며, 선택 가능한 행동들 중 보상을 최대화하는 행동 혹은 순서를 선택하는 방법이다. · 강화학습의 초점은 학습 과정(on-line)에서의 성능이며, 이는 탐색(exploration)과 이용(exploitation)의 균형을 맞춤으로써 제고된다.

⑤ 기계학습 방법에 따른 인공지능 응용분야

학습종류	방법	응용영역
지도학습	분류모형	· 이미지 인식 · 음성 인식 · 신용평가 및 사기검출 · 불량예측 및 원인발굴
	회귀모형	· 시세/가격/주가 예측 · 강우량 예측 등
비지도 학습	군집분석	·텍스트 토픽 분석 ·고객 세그멘테이션
	오토인코더 (AutoEncoder)	· 이상징후 탐지 · 노이즈 제거 · 텍스트 벡터화
	생성적 적대 신경망 (Generative Adversarial Network)	· 시뮬레이션 데이터 생성 · 누락 데이터 생성 · 패션 데이터 생성 등
강화학습	강화학습	· 게임 플레이어 생성 · 로봇 학습 알고리즘 · 공급망 최적화 등

3.2) 인공지능 데이터 학습의 진화

- ① 전이학습(Transfer Learning)
 - 인간의 응용력과 같이 유사 분야에 학습된 딥러닝 모형을 다른 문제를 해결하기 위해 사용하고자 할 때 적은 양의 데이터로도 좋은 결과를 얻을 수 있다.
 - 주로 이미지, 언어, 텍스트 인식과 같이 지도학습 중 분류모형인 인식(recog-nition) 문제에 활용 가능하다.
 - 인식 문제의 경우 데이터 표준화가 가능하여 사전학습모형 입력형식에 맞출 수 있다.
- ② 전이학습 기반 사전학습모형(Pre-trained Model)
 - 학습 데이터에 의한 인지능력을 갖춘 딥러닝 모형에 추가적인 데이터를 학습 시키는 방식이다.
 - 데이터 학습량에 따라 점차 발전하는 것도 중요하지만, 응용력을 갖추는 것 또한 필수적이다.
 - 상대적으로 적은 양의 데이터로도 제한된 문제에 인공지능 적용이 가능하다.
 - 이미 학습된 사전학습모형도 데이터를 함축한 초보적 인공지능으로서 충분한 가치를 지닌 새로운 의미의 데이터라고 할 수 있다.
- 3 BERT(Bidirectional Encoder Representations from Transformers)
 - 2018년 구글에서 발표한 언어인식 사전학습모형이다. 확보된 언어 데이터의 추가 학습을 통한 신속한 학습이 가능하다.
 - 다층의 임베딩 구조를 통해 1억2천 개가 넘는 파라미터로 구성된 획기적인 모형이다.
 - 256개까지의 문자가 입력되어 768차원 숫자 벡터가 생성되는 방식이다.
 - 언어 인식뿐 아니라 번역, 챗봇의 Q&A 엔진으로 활용 가능하다.

3.3) 빅데이터와 인공지능의 관계

- ① 인공지능을 위한 학습 데이터 확보
 - 학습 데이터 측면을 고려한 양질의 데이터 확보는 결국 성공적인 인공지능 구현과 직결된다.
 - 딥러닝은 깊은 구조를 통해 무한한 모수 추정이 필요한 만큼 많은 양의 데이터가 필요하다.
 - 인공지능 학습에 활용될 수 있는 데이터로 가공이 필요하며, 학습의 가이드를 제공 해 주는 애노테이션 작업이 필수적이다.

② 학습 데이터의 애노테이션 작업

- 많은 데이터 확보 후 애노테이션을 통해 학습이 가능한 데이터로 가공하는 작업이 필요하다.
- 작업의 특성상 많은 수작업이 동반되며, 이로 인해 인공지능 사업은 노동집약적이라는 인식을 만들어 냈다.

▶이미지 애노테이션 작업 예

- ③ 애노테이션 작업을 위한 도구로써의 인공지능
 - 인공지능 시장이 확장되며 애노테이션 작업을 전문으로 하는 기업의 수가 증가하였다.
 - 경쟁으로 인해 학습용 데이터에 대한 보안 및 애노테이션 결과에 대한 품질 요구 수준이 높아졌다.
 - 기업들은 데이터 업로드 및 애노테이션 도구, 작업 모니터링을 위한 플랫폼을 제공 하기 시작했다.
 - 현재 자동으로 애노테이션을 수행해 주는 인공지능 기반의 애노테이션 도구를 제 공하는 서비스로 진화 중이다.

3.4) 인공지능의 기술동향

- ① 기계학습 프레임워크(Machine Learning Framework) 보급 확대
 - 구글브레인이 개발한 텐서플로우(Tensorflow)는 파이썬 기반 딥러닝 라이브러리로 여러 CPU 및 GPU와 플랫폼에서 사용 가능하다.
 - 케라스(Keras)는 딥러닝 신경망 구축을 위한 단순화된 인터페이스를 가진 라이브러리이며, 몇 줄의 코드만으로 딥러닝 모형 개발이 가능하다.
- ② 생성적 적대 네트워크(GAN: Generative Adversarial Networks)
 - GAN은 두 개의 인공신경망으로 구성된 딥러닝 이미지 생성 알고리즘이다.
- 생성자가 가짜 사례를 생성하면 감별자가 진위를 판별하도록 구성한 후 이들이 적 대적 관계 속에서 공방전을 반복하도록 한다.

- 가짜 사례의 정밀도를 점점 더 진짜 사례와 구별하기 어려운 수준으로 높이는 방식으로 작동한다.
- 주로 새로운 합성 이미지를 생성하는 분석에 많이 적용되어 왔으나, 점차 다른 분야에 응용하는 사례가 늘고 있다.

③ 오토인코더(Autoencoder)

- 오토인코더는 라벨이 설정되어 있지 않은 학습 데이터로부터 더욱 효율적인 코드로 표현하도록 학습하는 신경망이다.
- 입력 데이터의 차원을 줄여 모형을 단순화시키기 위해 활용할 수 있다.
- ④ 설명 가능한 인공지능(XAI: eXplainable AI)
 - 설명 가능한 인공지능은 결론 도출 과정에 대한 근거를 차트나 수치 또는 자연에 형태의 설명으로 제공한다.
 - 기존의 기계학습은 정확한 예측을 할 수 있도록 하는 방향으로 개발되어 왔다.
 - 기존 기계학습의 완성된 모형은 내부 구조가 매우 복잡하고 의미를 이해하기 어려워 일종의 블랙박스 모형이라 불리었다.

⑤ 기계학습 자동화(AutoML)

- 기계학습 자동화는 명칭 그대로 기계학습의 전체 과정을 자동화하는 것이다.
- 세부적으로는 데이터 전처리, 변수 생성, 변수 선택, 알고리즘 선택, 하이퍼파라미터 최적화 등의 기능을 수행한다.
- 기계학습 모형 개발 과정의 생산성을 높이며 비전문가들의 활용을 용이하게 할 것으로 기대된다.

3.5) 인공지능의 한계점과 발전방향

- ① 국내시장의 한계
 - 국내에서 축적한 머신러닝 및 인공지능과 관련한 수학, 통계학적 이해도는 낮은 수 준이다.
 - 인공지능 개발을 위한 데이터 확보 및 그 중요성에 대한 인식이 부족하다.

② 인공지능의 미래

- 딥러닝의 재학습 및 전이학습 특성을 활용한 사전학습모형이 새로운 데이터 경제의 모습이 될 것이다.
- 마스킹이나 라벨링 등의 애노테이션 작업을 통해 학습용 데이터를 가공하는 산업 이 확산되고 있다.
- 복잡한 BERT의 학습을 위한 구글의 클라우드 서비스와 같은 확장된 개념의 데이터 경제로 파생될 것으로 보인다.

4) 개인정보 개요

- 4.1) 개인정보의 정의와 판단기준
- ① 개인정보의 정의
 - 살아 있는 개인에 관한 정보로서 개인을 알아볼 수 있는 정보이다.
 - 해당 정보만으로는 특정 개인을 알아볼 수 없더라도 다른 정보와 쉽게 결합하여 알아볼 수 있는 정보를 포함한다.

② 개인정보의 판단기준

- '생존하는' '개인에 관한' 정보여야 한다.
- '정보'의 내용 · 형태 등은 제한이 없다.
- 개인을 알아볼 수 있는 정보여야 한다.
- 다른 정보와 쉽게 결합하여 개인을 알아볼 수 있는 정보도 포함한다.

4.2) 개인정보의 처리와 활용

- ① 개인정보의 이전
- 개인정보가 다른 사람(제3자)에게 이전되거나 공동으로 처리하게 하는 것이다.
- ② 개인정보의 처리 위탁
- 개인정보처리자의 업무를 처리할 목적으로 제3자에게 이전되는 것이다.
- ③ 개인정보의 제3자 제공
- 해당 정보를 제공받는 자의 고유한 업무를 처리할 목적 및 이익을 위하여 개인정 보가 이전되는 것이다.

4.3) 개인정보의 보호

- ① 개인정보의 보호조치
- 조직 내부의 정보보안 방침과 개인정보보호법에 위배되지 않도록 개인정보보호 가 이드라인을 점검한다.
- 데이터를 외부에 공개하는 경우 가이드라인에서 정한 규칙을 준수하는지 반드시 확인한다.
- 가이드라인에 명시되지 않은 경우 관계기관이나 조직 내부의 법무가이드를 받은 후 적절한 범위 안에서 데이터를 활용하도록 한다.
- 개인정보 보호를 위해 주기적인 패스워드 변경, 시스템 패스워드 관리 보안 강화, 의심스러운 메일 열람 금지, 정기적인 보안교육 참여 등을 유도한다.
- 백신의 설치 및 최신버전으로 유지하고, 개인정보를 과하게 요구하는 사이트의 가입을 자제한다.

② 빅데이터 개인정보보호 가이드라인(방송통신위원회)

구분	설명	
비식별화	<수집 시부터 개인식별 정보에 대한 철저한 비식별화 조치> ·개인정보가 포함된 공개된 정보 및 이용내역정보는 비식별화 조치를 취한 후 수집·저장·조합·분석 및 제3자 제공 등이 가능하다.	
투명성 확보	 <빅데이터 처리 사실 · 목적 등의 공개를 통한 투명성 확보> ·개인정보 취급방침을 통해 비식별화 조치 후 빅데이터 처리 사실 · 목적 · 수집 출처 및 정보 활용 거부권 행사 방법 등을 이용자에게 투명하게 공개한다. - (개인정보 취급방침) 비식별화 조치 후 빅데이터 처리 사실 · 목적 등을 이용자 등에게 공개하고 '정보활용 거부 페이지 링크'를 제공하여이용자가 거부권을 행사할 수 있도록 조치한다. - (수집 출처 고지) 이용자 이외의 자로부터 수집한 개인정보처리 시 '수집 출처 · 목적, 개인정보 처리 정지 요구권'을 이용자에게 고지한다. 	
재식별 시 조지	<개인정보 재식별 시, 즉시 파기 및 비식별화 조치> · 빅데이터 처리 과정 및 생성정보에 개인정보가 재식별될 경우, 즉시 파기하거나 추가적인 비식별화 조치토록 한다.	
민감정보 및 비밀정보 처리	 <민감정보 및 통신비밀의 수집 - 이용·분석 등 처리 금지> · 특정 개인의 사상 - 신념, 정치적 견해 등 민감정보의 생성을 목적으로 정보의 수집·이용·저장·조합·분석 등 처리 금지한다. · 이메일, 문자 메시지 등 통신 내용의 수집·이용·저장·조합·분석 등 처리 금지한다. 	
기술적 · 관리적 보호조치	< 구집된 정보의 저장·관리 시 '기술적·관리적 보호조치' 시행> ·비식별화 조치가 취해진 정보를 저장 - 관리하고 있는 정보 처리시스템에 대한 기술적·관리적 보호조치 적용한다 (보호조치) 침입차단시스템 등 접근 통제장치 설치, 접속 기록에 대한위 ·변조 방지 조치, 백신 소프트웨어 설치·운영 등 악성프로그램에의한 침해 방지 조치한다.	

5) 개인정보 법·제도

5.1) 개인정보보호법

- ① 개인정보보호법의 개요
 - 당사자의 동의 없는 개인정보 수집 및 활용하거나 제3자에게 제공하는 것을 금지하는 등 개인정보보호를 강화한 내용을 담아 제정한 법률이다.
 - 상대방의 동의 없이 개인정보를 제3자에게 제공하면 5년 이하의 징역이나 5,000만 원 이하의 벌금에 처할 수 있다.
- ② 개인정보의 범위(제2조 제1회)
- 어떤 정보가 개인정보에 해당하는지는 그 정보가 특정 개인을 알아볼 수 있게 하는 다른 정보와 쉽게 결합할 수 있는가에 따라 결정된다.
- 법원은 그 정보 자체로는 누구의 정보인지를 알 수 없더라도 다른 정보와 결합 가 능성을 비교적 넓게 인정하여 개인정보에 해당한다 판단하고 있다.
- ③ 개인정보의 처리 위탁
 - 일정한 내용을 기재한 문서에 의하여 업무 위탁이 이루어져야 한다.(개인정보보호법 제 26조 제1항)
 - 위탁하는 입무의 내용과 수탁자를 정보주체에게 알려야 하는바, 개인정보처리방침에 해당 내용을 추가하여 공개하거나, 사업장 등의 보기 쉬운 장소에 게시하는 방법 등을 시행해야 한다.(개인정보보호법 제26조 제3항, 동법 시행령 제28조 제3항)
 - 수탁자에 대한 교육 및 감독 의무를 부담하게 된다.(개인정보보호법 제26조 제1항)
 - 수탁자가 위탁 받은 업무와 관련하여 개인정보를 처리하는 과정에서 개인정보보호 법을 위반하여 발생한 손해배상책임에 대하여는 수탁자를 개인정보처리자의 소속 직원으로 본다.(개인정보보호법 제26조 제6항)
 - 손해가 발생한 경우 정보주제의 손해배상 청구에 대해 위탁자가 책임을 질 수 있다.
- ④ 개인정보의 제3자 제공
 - 정보주체로부터 개인정보 제3자 제공 동의를 받아야 한다.(개인정보보호법 제17조 제1항)
- ⑤ 개인정보 처리 위탁과 제3자 제공 판단 기준
 - <서울중앙지방법원 2018. 8. 16. 선고 2017-1296 판결 참조>
 - 개인정보의 취득목적과 방법
 - 대가 수수 여부
 - 수탁자에 대한 실질적인 관리·감독 이부
 - 정보주체 또는 이용자의 개인정보 보호 필요성에 미치는 영향
 - 개인정보를 이용할 필요가 있는 자가 실질적으로 누구인지 등

- ⑥ 비식별 개인정보의 이전
 - 정보주체 또는 제3자의 이익을 부당하게 침해할 우려가 있는 경우는 제외한다.
 - 통계작성 및 학술연구 등의 목적을 위하여 필요한 경우로서 '특정 개인을 알아볼 수 없는 형태로 개인정보'를 제공할 수 있도록 규정하고 있다(개인정보보호법 제18조 제2항 제4회).
 - 데이터 제공이 목적에 부합하는지, 특정 개인을 알아볼 수 없는 형태로 제공하는지 에 대해 사전에 검토하여야 한다.

5.2) 정보통신망 이용촉진 및 정보보호 등에 관한 법률(정보통신망법)

- ① 정보통신망법의 개요
 - 정보통신망의 개발과 보급 등 이용 촉진과 함께 통신망을 통해 활용되고 있는 정 보보호에 관해 규정한 법률이다.
 - 이용자의 동의를 받지 않고 개인정보를 수집하거나 제3자에게 개인정보를 제공한 경우, 법정대리인의 동의 없이 만 14세 미만의 아동의 개인정보를 수집한 경우, 악성프로그램을 전달 또는 유포한 경우 등은 5년 이하의 징역 또는 5,000만원 이하의 벌금에 처해진다.
- ② 개인정보의 처리 위탁
 - 원칙적으로는 개인정보 처리위탁을 받는 자, 개인정보 처리위탁을 하는 업무의 내용을 이용자에게 알리고 동의를 받아야 한다.
 - 단, 정보통신서비스 제공자 등은 정보통신서비스의 제공에 관한 계약을 이행하고 이용자의 편의 증진 등을 위하여 필요한 경우에는 고지절차와 동의절차를 거치지 않고, 이용자에게 이에 관해 알리거나 개인정보 처리방침 등에 이를 공개할 수 있다(정보통신망법 제25조 제2항).
 - 만일 제3자에게 데이터 분석을 위탁할 경우, 해당 서비스가 정보통신서비스 제공에 관한 계약을 이행하고 이용자의 편의 증진을 위한 것인지 검토해야 한다.

③ 개인정보의 보호조치

- 정보통신서비스 제공자 등은 개인정보를 처리할 때에는 분실·도난·유출·위조·변조 또는 훼손을 방지하고 개인정보의 안전성을 확보하기 위하여 기술적, 관리적 조치를 하여야 한다(정보통신망법 제28조, 동법 시행령 제15조).
- ④ 개인정보의 해외 전송
 - 정보통신서비스 제공자 등은 개인정보를 국외에 제공 ·처리위탁· 보관하려면 이용 자의 동의를 받아야 한다(정보통통신망법 제63조 제2항).
 - 해외 소재 클라우드 서버를 사용하거나 해외 업체에 데이터를 이전하는 경우에는 국외 이전에 관한 정보통신망법의 규정을 검토하여야 한다.

5.3) 신용정보의 이용 및 보호에 관한 법률(신용정보보호법)

- ① 신용정보보호법의 개요
- 개인신용정보를 신용정보회사 등에게 제공하고자 하는 경우에 해당 개인으로부터 서면 또는 공인전자서명이 있는 전자문서에 의한 동의 등을 얻어야 한다.
- 신용정보주체는 신용정보회사 등이 본인에 관한 신용정보를 제공하는 때에는 제공 받은 자, 그 이용 목적, 제공한 본인정보의 주요 내용 등을 통보하도록 요구하거나 인터넷을 통하여 조회할 수 있도록 요구할 수 있다.
- 신용정보회사 등이 보유하고 있는 본인정보의 제공 또는 열람을 청구할 수 있고, 사실과 다른 경우에는 정정을 청구할 수 있다.
- ② 개인정보의 범위 (제2조 제1호 및 제2호, 제34조 제1항)
 - '신용정보'란 금융거래 등 상거래에 있어서 거래 상대방의 신용을 판단할 때 필요 한 정보로서 다음 각 목의 정보를 말한다.
 - 가. 특정 신용정보주체를 식별할 수 있는 정보
 - 나. 신용정보주체의 거래내용을 판단할 수 있는 정보
 - 다. 신용정보주체의 신용도를 판단할 수 있는 정보
 - 라. 신용정보주체의 신용거래능력을 판단할 수 있는 정보
 - 마. 그 밖에 가목부터 라목까지와 유사한 정보

③ 개인신용정보

- 금융거래 등 상거래에 있어서 거래 상대방에 대한 신용도·신용거래능력 등의 판단을 위해 필요로 하는 정보로 정의하고, 그 세부 사항은 대통령령으로 정한다.
- ④ 개인신용정보의 처리 위탁
 - 신용정보회사 등은 그 업무 범위에서 의뢰인의 동의를 받아 다른 신용정보회사에 신용정보의 수집·조사를 위탁할 수 있다.
- 신용정보회사, 신용정보집중기관, 은행, 금융지주회사, 금융투자업자, 보험회사 등은 신용정보 처리 위탁 시 금융위원회에 보고해야 하며, 이에 관한 구체적 사항은 「금융회사의 정보처리 업무 위탁에 관한 규정」에 따른다.
- 특정 신용정보주체를 식별할 수 있는 정보는 암호화하거나 봉함 등의 보호조치를 하여야 하며, 신용정보가 분실·도난·유출·변조 또는 훼손당하지 않도록 수탁자를 연 1회 이상 교육하여야 한다.
- 위탁계약의 이행에 필요한 경우로서 수집된 신용정보의 처리를 위탁하기 위하여 제공하는 경우 정보주체의 동의를 받지 않아도 된다(신용정보보호법 제17조, 동법 시행령 제14조).

- ⑤ 개인신용정보의 제3자 제공
 - 개인신용정보를 타인에게 제공하려는 경우 정보주체에 서비스 제공을 위하여 필수적 동의 사항과 그 밖의 선택적 동의 사항을 구분하여 설명한 후 각각 동의를 받도록 하고 있다(신용정보보호법 제32조, 제34조 등).
 - 기타 개인정보 제공 시 개인정보보호법이 적용된다.

5.4) 2020년 데이터 3법의 주요 개정 내용

- 데이터 이용 활성화를 위한 '가명정보' 개념 도입 및 데이터가 결합 근거 마련
- •개인정보보호 관련 법률의 유사·중복 규정을 정비 및 거버넌스 체계 효율화
- 데이터 활용에 따른 개인정보처리자 책임 강화
- 다소 모호했던 개인정보의 판단기준 명확화
- ① 개인정보보호법 주요 개정 내용
 - 개인정보 관련 개념을 개인정보, 가명정보, 익명정보로 구분
 - 가명정보를 통계 작성 연구, 공익적 기록보존 목적을 처리할 수 있도록 허용
 - 가명정보 이용 시 안전장치 및 통제 수단 마련
 - 분산된 개인정보보호 감독기관을 개인정보보호위원회로 일원화
 - 개인정보보호위원회는 국무총리 소속 중앙행정기관으로 격상
- ② 정보통신망법 주요 개정 내용
 - 개인정보보호 관련 사항을 개인정보보호법으로 이관
 - 온라인상 개인정보보호 관련 규제 및 감독 주체를 개인정보보호위원회로 변경
- ③ 신용정보보호법 주요 개정 내용
 - 가명정보 개념을 도입해 빅데이터 분석 및 이용의 법적 근거 마련
 - 가명정보는 통계작성, 연구, 공익적 기록보존 등을 위해 신용정보 주체의 동의 없이 이용. 제공 가능

6) 개인정보 비식별화

- 6.1) 개인정보 비식별화의 개요
- ① 비식별 정보
 - 정보의 집합물에 대해「개인정보 비식별 조치 가이드라인에 따라 적정하게 '비식별 조치'된 정보를 말한다.
 - ② 비식별 조치
 - 정보의 집합물에서 개인을 식별할 수 있는 요소를 전부 또는 일부 삭제하거나 대체 등의 방법을 통해 개인을 알아볼 수 없도록 하는 조치를 말한다.
 - ③ 비식별 정보의 활용
 - 비식별 정보는 개인정보가 아닌 정보로 추정되므로 정보주체로부터의 별도 동의 없이 해당 정보를 이용하거나 제3자에게 제공할 수 있다.
 - 다만, 불특정 다수에게 공개되는 경우에는 다른 정보를 보유하고 있는 누군가에 의해 해당 정보주체가 식별될 가능성이 있으므로 비식별 정보의 공개는 원칙적으로 금지된다.
 - ④ 비식별 정보의 보호
 - 비식별 정보는 개인정보가 아닌 것으로 추정되지만, 새로운 결합 기술이 나타나거나 결합 가능한 정보가 증가하는 경우에는 정보주체가 '재식별'될 가능성이 있다.
 - 비식별 정보를 처리하는 자(비식별 정보를 제공받은 자 포함)가 해당 정보를 이용하는 과정에서 재식별하게 된 경우에는 해당 정보를 즉시 처리중지하고 파기 하여야 한다.
 - 비식별 정보라고 하더라도 필수적인 관리적·기술적 보호조치는 이행해야 한다.
- 6.2) 개인정보 비식별화 조치 가이드라인
- ① 개인정보 비식별화 조치 가이드라인의 추진배경
 - 정부 3.0 및 빅데이터 활용 확산에 따른 데이터 활용가치가 증대되고 있다.
 - 개인정보 보호 강화에 대한 사회적 요구가 지속되고 있다.
 - '보호와 활용'을 동시에 모색하는 세계적 정책변화에 적극 대응이 필요하다.
- ② 개인정보 비식별화 조치 가이드라인의 단계별 조치사항

▶개인정보 비식별 조치 가이드라인, 국무조정실 외 5개 정부부처

단계	조치사항	데이터
사전 검토	개인정보에 해당하는지 여부를 검토한 후, 개인정보 가 아닌 것이 명백한 경우 법적 규제 없이 자유롭게 활용	개인정보, 식별 정보
비식별 조치	정보 집합물(데이터셋)에서 개인을 식별할 수 있는 요소를 전부 또는 일부 삭제하거나 대체하는 등의 방법을 활용, 개인을 알아볼 수 없도록 하는 조치	가명, 총계, 삭 제, 범주화, 마 스킹
적정성 평가	다른 정보와 쉽게 결합하여 개인을 식별할 수 있는 지를 「비식별 조치 적정성 평가단」을 통해 평가	k-익명성, I-다 양성, t-근접성
사후 관리	비식별 정보 안전조치, 재식별 가능성 모니터링 등 비식별 정보 활용 과정에서 재식별 방지를 위해 필 요한 조치 수행	관리적/기술적 보호조치

③ 개인정보 비식별화 조치 가이드라인의 조치방법

가명 처리	· 개인정보 중 주요 식별 요소를 다른 값으로 대체하는 방법이다. · 값을 대체 시 규칙이 노출되어 역으로 쉽게 식별할 수 없도록 해야 한다.
	예) 홍길동, 35세, 서울 거주, 한국대 재학 → 임꺽정, 30대, 서울 거주, 국제대 재학
총계 처리	·데이터의 총합 값을 보여 주고 개별 값을 보여 주지 않는 방법이다. ·특정 속성을 지닌 개인으로 구성된 단체의 속성 정보를 공개하는 것 은 그 집단에 속한 개인의 정보를 공개하는 것과 마찬가지이므로 주 의해야 한다.
	예) 임꺽정 180cm, 홍길동 170cm, 이콩쥐 160cm, 김팥쥐 150cm → 물리학과 학생 키 합 : 660cm, 평균 키 165cm 예) 에이즈 환자 집단임을 공개하면서 특정인이 그 집단에 속함을 알 수 있도록 표시하는 행위 금지
데이터 삭제 ·	·데이터 공유나 개방 목적에 따라 데이터 셋에 구성된 값 중 필요 없는 값 또는 개인식별에 중요한 값을 삭제하는 방법이다.
	예) 주민등록번호 901206-1234567 → 90년대생, 남자 예) 개인과 관련된 날짜정보(합격일 등)는 연단위로 처리
데이터 범주화	·데이터의 값을 범주의 값으로 변환하여 값을 숨기는 방법이다.
	예) 홍길동, 35세 → 홍씨, 30~40세
데이터 마스킹	 개인을 식별하는 데 기여할 확률이 높은 주요 식별자를 보이지 않도록 처리하는 방법이다. 남아 있는 정보만으로 개인을 식별할 수 없어야 하며, 공개된 다른 정보와 결합하더라도 특정 개인을 식별할 수 없어야 한다.
	예) 홍길동, 35세, 서울 거주, 한국대학교 재학 → 홍00, 35세, 서울 거주, 00대 재학

7) 개인정보 활용

- 7.1) 데이터 수집의 위기 요인과 통제 방안
 - ① 사생활 침해로 위기 발생
 - M2M(Machine to Machine) 시대가 되면서 정보를 수집하는 센서들의 수가 증가하고 있다
 - 개인정보의 가치가 커짐에 따라 많은 사업자들이 개인정보 습득에 더 많은 자원을 투입하고 있다.
 - 특정 데이터가 본래 목적 외로 가공되어 2차, 3차 목적으로 활용될 가능성이 커지고 있다.
 - 위험의 범위가 사생활 침해 수준을 넘어 사회, 경제적 위협으로 더 확대될 수 있다.
 - ② 동의에서 책임으로 강화하여 통제
 - 개인정보는 본래의 1차적 목적 외에도 2차, 3차적 목적으로 가공, 유통, 활용되고 있다.
 - 개인정보의 활용에 대해 개인이 매번 동의하는 것은 매우 어려운 일이며, 경제적으로도 비효율적이다.
 - 개인정보 사용으로 발생하는 피해에 대해서는 개인정보 사용자가 책임을 지게한다.
 - 개인정보를 사용하는 주체가 익명화 기술 같은 더 적극적인 보호 장치를 마련하게 하는 효과가 있을 것으로 기대된다.

7.2) 데이터 활용의 위기 요인과 통제 방안

- ① 책임원칙 훼손으로 위기 발생
 - 빅데이터의 분석 결과에 따라 특정한 행위를 할 가능성이 높다는 이유만으로 특정 인이 처벌받는 것은 민주주의 사회 원칙을 훼손한다.
 - 특정인이 특정한 사회, 경제적 특성을 가진 집단에 속한다는 이유만으로 그의 신용 도와 무관하게 대출이 거절되는 상황은 잘못된 클러스터링의 피해이다.
- ② 결과 기반 책임 원칙을 고수하여 통제
 - 기존의 책임 원칙을 더 강화해야 한다.
 - 예측 결과에 의해 불이익을 당할 가능성을 최소화하는 방안 마련이 필요하다.
 - 제도 마련과 함께 알고리즘의 기술적 완성도를 더 높여야 한다.

7.3) 데이터 처리의 위기 요인과 통제 방안

- ① 데이터 오용으로 위기 발생
- 빅데이터는 과거에 일어났던 일로 인해 기록된 데이터를 의존한다.
- 빅데이터를 기반으로 미래를 예측하는 것은 어느 정도 정확도를 가질 수 있지만 항상 맞는 것은 아니다.
- 빅데이터 사용자가 데이터를 과신할 때 큰 문제가 발생할 가능성이 높다.
- 잘못된 지표를 사용하는 것은 오히려 과거 경험에 의존하는 것보다 더 잘못된 결론을 도출할 수 있다.
- ② 알고리즘 접근을 허용하여 통제
 - 알고리즘에 대한 접근권한을 부여받아 직접 검증할 수 있도록 한다.
 - 알고리즘에 대한 객관적인 인증방안을 마련 및 도입한다.
- 알고리즘의 부당함을 반증할 수 있는 방법을 제시해 줄 것을 요청한다.
- 공개해 준 알고리즘을 해석해 줄 알고리즈미스트와 같은 전문가를 영입한다.
- 알고리즈미스트는 컴퓨터, 수학, 통계학, 비즈니스 등의 다양한 지식이 필요하다.

[연습문제]

1. 다음 중 빅데이터 플랫폼의 주요 요소기술이 아닌 것은?

- ① 데이터 분석기술
- ② 데이터 수집기술
- ③ 데이터 저장기술
- ④ 데이터 복구기술

2. 다음 중 원천 데이터로부터 필요 데이터를 추출하여 변환한 후 적재하는 과정을 나타내는 용어로 옳은 것은?

- MapReduce
 ETL
- 3 HDFS
- Pre-processing

3. 다음 중 빅데이터 플랫폼의 빅데이터 수집기술이 아닌 것은?

- ① 크롤링(Crawling) ② ETL ③ Clustering ④ Open API

4. 다음 중 맵리듀스의 데이터 처리과정을 순서대로 나열한 것은?

- Split → Map → Shuffle → Reduce
- ② Shuffle → Map → Split → Reduce
- ③ Map → Split → Shuffle → Reduce
- ④ Reduce → Shuffle → Map → Split

5. 다음 중 빅데이터 플랫폼의 등장배경이 아닌 것은?

- ① 데이터 처리 복잡도 증가
- ② 데이터 구조의 변화
- ③ 데이터 처리의 신속성 요구
- ④ 데이터 처리 유연성 증대

6. 다음 중 빅데이터 플랫폼의 부하 제어 기능으로 틀린 것은?

- ① 컴퓨팅 부하 제어
- ② 분석 부하 제어
- ③ 네트워크 부하 제어
- ④ 저장 부하 제어

7. 다음 중 딥러닝 분석 기법이 아닌 것은?

- LSTM(Log Short-Term Memory)
- ② RNN(Recurrent Neural Network)
- (3) K Nearest Neighborhood
- 4 Auto-encoder

8. 다음 중 기계학습의 종류가 아닌 것은?

- ① 지도학습(Supervised Learning)
- ② 비지도학습(Unsupervised Learning)
- ③ 시뮬레이션학습(Simulation Learning)
- ④ 준지도학습(Semi-supervised Learning)

9. 다음 중 데이터상의 주석 작업으로 딥러닝과 같은 학습 알고리즘이 무엇을 학습해야 하는지 알려 주는 표식 작업을 무엇이라 하는가?

- ① 애노테이션(Annotation)
- ② 이노베이션(Innovation)
- ③ 이벨류에이션(Evaluation)
- ④ 애그리게이션(Aggregation)

10. 다음 중 개인정보의 판단기준으로 틀린 것은?

- ① 생존하는 개인에 관한 정보여야 한다.
- ② 개인과 인격체를 갖춘 법인으로 한정한다.
- ③ 정보의 내용이나 형태 등은 제한이 없다.
- ④ 다른 정보와 쉽게 결합하여 개인을 알아볼 수 있는 정보도 포함한다.

11. 다음 중 빅데이터를 활용하기 위한 데이터 기본3법에 해당하지 않는 것은?

- ① 개인정보보호법
- ② 정보통신망 이용촉진 및 정보보호 등에 관한 법률
- ③ 신용정보의 이용 및 보호에 관한 법률
- ④ 국가정보화 기본법

12. 다음 중 신용정보의 이용 및 보호에 관한 법률 의 개인정보 범위에 대한 설명 중 틀린 것은?

- ① 신용정보란 금융거래 등 상거래에 있어서 거래 상대방의 신용을 판단할 때 필요한 정보이다.
- ② 개인신용정보란 신용정보 중 개인의 신용도와 신용거래능력 등을 판단할 때 필요한 정보이다.
- ③ 개인정보란 살아 있는 개인에 관한 정보로서 성명, 주민등록번호 및 영상 등을 통하여 개인을 알아볼 수 있는 정보이다.
- ④ 개인식별정보란 생존하는 개인의 성명, 주소 및 주민등록번호, 여권번호, 운전면허번호, 외국인 등록번호, 국내거소신고번호 및 성별, 국적 등 개인을 식별할 수 있는 정보이다.

13. 다음 중 2020년에 개정된 데이터 기본 3법의 주요 개정 내용으로 옳지 않은 것은?

- ① 데이터 이용 활성화를 위한 익명정보 개념 도입 및 데이터간 결합 근거를 마련하였다.
- ② 개인정보보호 관련 법률의 유사, 중복된 규정을 정비 및 거버넌스 체계 효율화를 이루었다.
- ③ 데이터 활용에 따른 개인정보처리자 책임을 강화하였다.
- ④ 다소 모호했던 개인정보의 판단기준을 명확하게 하였다.

14. 다음 중 데이터 기본 3법을 적용하고자 할 때의 설명으로 틀린 것은?

- ① 일반법과 특별법이 저촉되면 특별법이 먼저 적용된다.
- ② 특별법에 규정이 없는 사항에 대해서는 일반법이 적용된다.
- ③ 개인정보보호법은 데이터 기본 3법 중 특별법에 해당한다.
- ④ 법률이 상호 모순되거나 저촉되는 경우 신법이 구법에 우선한다.

15. 다음 중 개인정보 재식별 시 조치사항으로 옳은 것은?

- ① 관리자의 동의를 구한 후 재식별 정보를 계속 이용한다.
- ② 데이터 수집 과정에서 재식별된 개인정보를 관리자의 승인을 받아 사용한다.
- ③ 개인정보가 재식별된 경우 즉시 파기 또는 추가적인 비식별화 조치를 취하여야 한다.
- ④ 데이터 처리 과정에서 획득 개인정보는 스스로 사용할 수 있다.

16. 다음 중 개인정보 비식별화 절차로 옳은 것은?

- ① 비식별 조치 → 적정성 평가 → 사전검토 → 사후관리
- ② 사전검토 → 비식별 조치 → 적정성 평가 → 사후관리
- ③ 적정성 평가 → 사전검토 → 비식별 조치 → 사후관리
- ④ 사전검토 → 적정성 평가 → 비식별 조치 → 사후관리

17. 다음 중 개인으로 인식될 수 있는 가능성을 가진 데이터를 식별하기 어려운 형태로 가공하는 과정을 무엇이라 하는가?

- ① 비식별화 ② 미식별화 ③ 균질화 ④ 정제화

18. 다음 중 비식별화 방법이 아닌 것은?

- ① 가명처리
- ② 데이터 삭제
- ③ 데이터 범주화
- ④ 데이터 표본화

19. 다음 중 빅데이터로 인한 위기 요인이 아닌 것은?

- ① 데이터의 오용 ② 자본주의의 심화
- ③ 사생활의 침해 ④ 책임 원칙의 훼손

20. 다음 중 빅데이터를 활용하는 과정에서 사생활 침해를 방지하기 위하여 데이터에 포함된 개인정보를 삭제하거나 알아볼 수 없는 형태로 변환하는 방법을 무엇이라 하는가?

- ① 가명화 ② 일반화 ③ 정규화 ④ 익명화