12ML:: CHEAT SHEET

The I2ML: Introduction to Machine Learning course offers an introductory and applied overview of "supervised" Machine Learning. It is organized as a digital lecture.

Basic Notations

Important **notations** used in the whole course

 \mathcal{X} : p-dim. input space

Usually we assume $\mathcal{X} = \mathbb{R}^p$, but categorical **features** can occur as well.

 ${\cal Y}$: target space

For example, $\mathcal{Y}=\mathbb{R}$, $\mathcal{Y}=\{0,1\}$, $\mathcal{Y}=\{-1,1\}$, $\mathcal{Y}=\{1,\ldots,g\}$ or $\mathcal{Y}=\{\mathrm{label}_1,\ldots,\mathrm{label}_g\}$.

x : feature vector

$$\mathsf{x} = (\mathsf{x}_1, \ldots, \mathsf{x}_p)^\mathsf{T} \in \mathcal{X}.$$

y: target / label / output

 $y \in \mathcal{Y}$.

 \mathbb{P}_{xy} : probability distribution

Joint probability distribution on $\mathcal{X} \times \mathcal{Y}$.

p(x, y) or $p(x, y | \theta)$: joint pdf

Joint probability density function for x and y.

Note: This lecture is mainly developed from a frequentist perspective. If parameters appear behind the |, this is for better reading, and does not imply that we condition on them in a Bayesian sense (but this notation would actually make a Bayesian treatment simple). So formally, $p(x|\theta)$ should usually be understood to mean $p_{\theta}(x)$ or $p(x,\theta)$ or $p(x;\theta)$.

Definitions

 $(x^{(i)}, y^{(i)})$: i -th observation or instance

$$\mathcal{D} = \left(\left(\mathsf{x}^{(1)}, \mathsf{y}^{(1)} \right), \ldots, \left(\mathsf{x}^{(n)}, \mathsf{y}^{(n)} \right) \right)$$

data set with *n* observations.

 $\mathcal{D}_{\mathsf{train}}$, $\mathcal{D}_{\mathsf{test}}$: data for training and testing

Often, $\mathcal{D} = \mathcal{D}_{\mathsf{train}} \dot{\cup} \; \mathcal{D}_{\mathsf{test}}$

 $f(\mathsf{x})$ or $f(\mathsf{x} \mid \boldsymbol{\theta}) \in \mathbb{R}$ or \mathbb{R}^g : prediction function (**model**)

We might suppress θ in notation.

 $h(\mathsf{x}) ext{ or } h(\mathsf{x}|oldsymbol{ heta}) \in \mathcal{Y}$

Discrete prediction for classification.

 $\boldsymbol{\theta} = (\theta_1, \theta_2, ..., \theta_d) \in \Theta$: model parameters

Some models may traditionally use different symbols.

 \mathcal{H} : hypothesis space

f lives here, restricts the functional form of f.

$$\epsilon = y - f(x)$$
 or $\epsilon^{(i)} = y^{(i)} - f(x^{(i)})$

Residual in regression.

yf(x) or $y^{(i)}f(x^{(i)})$: margin for binary classification

With, $\mathcal{Y}=\{-1,1\}$.

 $\pi_k(x) = \mathbb{P}(y = k \mid x)$: **posterior probability** for class k, given x

In case of binary labels we might abbreviate $\pi(\mathsf{x}) = \mathbb{P}(\mathsf{y} = 1 \mid \mathsf{x})$.

 $\pi_k = \mathbb{P}(y = k)$: **prior probability** for class k

In case of binary labels we might abbreviate $\pi=\mathbb{P}(y=1)$. $\mathcal{L}(m{ heta})$ and $\ell(m{ heta})$: Likelihood and log-Likelihood for a parameter $m{ heta}$

These are based on a statistical model.

 \hat{y} , \hat{f} , \hat{h} , $\hat{\pi}_k(x)$, $\hat{\pi}(x)$ and $\hat{\theta}$

These are learned functions and parameters (These are estimators of corresponding functions and parameters).

Note: With a slight abuse of notation we write random variables, e.g., x and y, in lowercase, as normal variables or function arguments. The context will make clear what is meant.

Important terms

Model: $f: \mathcal{X} \to \mathbb{R}^g$ is a function that maps feature vectors to predictions.

Learner: takes a data set with features and outputs (training set,

 $\in \mathbb{D})$ and produces a **model** (which is a function $f: \mathcal{X} o \mathbb{R}^g$)

Learning = Representation + Evaluation + Optimization.

Representation: (Hypothesis space) Defines which kind of model

structure of f can be learned from the data.

Example: Linear functions, Decision trees etc.

Evaluation: A metric that quantifies how well a specific model performs on a given data set. Allows us to rank candidate models in order to choose the best one.

Example: Squared error, Likelihood etc.

Optimization: Efficiently searches the hypothesis space for good models.

Example: Gradient descent, Quadratic programming etc.

Loss function: The "goodness" of a prediction f(x) is measured by

a loss function L(y, f(x))

Through **loss**, we calculate the prediction error and the choice of the loss has a major influence on the final model

Risk Minimization: The ability of a model f to reproduce the association between x and y that is present in the data \mathcal{D} can be measured by the average loss: the **empirical risk**.

$$\mathcal{R}_{emp}(f) = \frac{1}{n} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right).$$

Learning then amounts to **empirical risk minimization** – figuring out which model f has the smallest average loss:

$$\hat{f} = rg \min_{f \in \mathcal{H}} \mathcal{R}_{\mathsf{emp}}(f).$$