1. Rewrite all expressions with positive exponents and combine all terms with the same base. (aka "simplify").

'simplify").
(a)
$$\sqrt[3]{x^{-2}} = (x^{-2})^3 = x^{-2/3}$$

(b)
$$b^{(n-1)}(3b^2)^n = 3 \cdot b \cdot b = 3 b$$

(c)
$$\frac{6x^2y}{\sqrt{4x^{-2}y^3}} = \frac{6x^2y}{2x^{-1}y^{3/2}} = \frac{3x}{y^{1/2}}$$

2. For the function $f(x) = \frac{2}{x}$, write f(3) - f(3+h) as a single fraction.

$$f(3)-f(3+h) = \frac{2}{3} - \frac{2}{3+h} = \frac{2(3+h)-2(3)}{3(3+h)} = \frac{6+2h-6}{3(3+h)}$$
$$= \frac{2h}{3(3+h)}$$

3. Expand $(\sqrt{x} - 3)(\sqrt{x} + 3)$.

$$= X - 9$$

4. Solve for x in the equation $1 + e^{2-x} = 4$.

$$e^{2-x}$$
 = 3

$$2-x = \ln 3$$

5. Evaluate:

(a)
$$\ln(e^{0.24}) + \ln(1) = 0.24 + 0 = 0.24$$

(b)
$$\sin(7\pi/6) = -\frac{1}{2}$$

6. Solve $x^2 = 6 - x$ for x.

$$x^{2}+x-6=0$$

 $(x+3)(x-2)=0$
 $x=-3 \text{ or } x=2$

7. Write an equation of the line through the point (1,3) parallel to the line 8x + 2y = 17.

$$8x+2y=17$$
 or $y=-4x+\frac{1}{2}$

8. Are the following statements true or false? Explain.

$$(\sqrt{5}a - b)^2 = 5a^2 + b^2$$

a.
$$(\sqrt{5}a - b)^2 = 5a^2 + b^2$$
 F. $(\sqrt{5}a - b)^2 = 5a^2 - 2\sqrt{5}ab + b^2$

b.
$$\sqrt{9x^2+4} = 3x+2$$
 . F. Try X=1. $\sqrt{9\cdot 1^2+4} = \sqrt{13}$ but $3\cdot l+2=5$

c.
$$\frac{a+2}{d+a} = \frac{a}{a} + \frac{2}{d} = 1 + \frac{2}{d}$$
 F. Try a=0. Then $\frac{a+2}{d+a} = \frac{2}{d} \neq 1 + \frac{2}{d}$

d.
$$\frac{c^2 + \sqrt{6}}{c} = \frac{c^2}{c} + \frac{\sqrt{6}}{c} = c + \frac{\sqrt{6}}{c}$$
 T . $\frac{c^2 + \sqrt{6}}{c} = \left(\frac{1}{c}\right)\left(\frac{c^2 + \sqrt{6}}{c}\right) = \frac{c^2}{c} + \frac{\sqrt{6}}{c} = c + \frac{\sqrt{6}}{c}$

9. Graph each function below and state its domain and range. Label your graphs.

domain: [-5,00)

range: [0,00)

(b)
$$f(x) = \arctan(x)$$

domain: (-00,00)

range: (-72, 7/2)

(c)
$$g(x) = -\ln(x-2)$$

domain: (2,00)
range: (-00,00)

(d) $k(x) = 2\cos(3x)$

domain: (-00,00)

range: [-2,2]

(e) $j(x) = 5 - e^x$

domain: (-00,00)

range: (-00,5)

•1. Find the domain of $H(t) = \sqrt{4 - 13t^2}$

So the domain
$$\begin{bmatrix} -2 \\ \sqrt{13} \end{bmatrix}$$

2. Assume θ is in the first quadrant and $\sin \theta = \frac{1}{3}$. Find $\tan \theta$.

So
$$a^2 + 1^2 = 3^2$$

 $a^2 = 8$
 $a = 2\sqrt{2}$
Now $\tan \theta = \frac{opp}{adj} = \frac{1}{2\sqrt{2}}$

3. (BONUS:) For each equality below, find θ and explain why the answers are different.

4

(a)
$$\cos(\theta) = 1/2$$

(b)
$$\arccos(1/2) = \theta$$

Part b is asking for the out put of a function. So there is only one value. Fart a is asking for all
$$\theta$$
-values so that $\cos\theta = \frac{1}{2}$