Rank-65612 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_3^3 + X_0^2 X_3 + X_0 X_1 X_2 = 0$$

(1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(8) is 1227396174

General information

Number of lines	7
Number of points	89
Number of singular points	2
Number of Eckardt points	0
Number of double points	3
Number of single points	49
Number of points off lines	35
Number of Hesse planes	0
Number of axes	0
Type of points on lines	97
Type of lines on points	$4^2, 2^3, 1^{49}, 0^{35}$

Singular Points

The surface has 2 singular points:

$$0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0) 1: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0)$$

The 7 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4672} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4672} = \mathbf{Pl}(0, 0, 0, 0, 0, 1)_{649}$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & \gamma^{6} \\ 0 & 1 & 0 & 0 \end{bmatrix}_{3504} = \begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{3504} = \mathbf{Pl}(2,0,0,1,0,0)_{19}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 0 & \gamma^{5} \\ 0 & 1 & 0 & 0 \end{bmatrix}_{1752} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{1752} = \mathbf{Pl}(4,0,0,1,0,0)_{21}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 0 & \gamma^{3} \\ 0 & 1 & 0 & 0 \end{bmatrix}_{2920} = \begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{2920} = \mathbf{Pl}(7,0,0,1,0,0)_{24}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & \gamma^{6} \\ 0 & 0 & 1 & 0 \end{bmatrix}_{3568} = \begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{3568} = \mathbf{Pl}(0,6,1,0,0,0)_{15}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 0 & \gamma^{5} \\ 0 & 0 & 1 & 0 \end{bmatrix}_{1816} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{1816} = \mathbf{Pl}(0,3,1,0,0,0)_{12}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & 0 & \gamma^{3} \\ 0 & 0 & 1 & 0 \end{bmatrix}_{2984} = \begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{2984} = \mathbf{Pl}(0,5,1,0,0,0)_{14}$$

Rank of lines: (4672, 3504, 1752, 2920, 3568, 1816, 2984) Rank of points on Klein quadric: (649, 19, 21, 24, 15, 12, 14)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 3 Double points: The double points on the surface are:

$$P_{76} = (2, 0, 0, 1) = \ell_1 \cap \ell_4$$

 $P_{78} = (4, 0, 0, 1) = \ell_2 \cap \ell_5$

$$P_{81} = (7,0,0,1) = \ell_3 \cap \ell_6$$

Single Points

The surface has 49 single points: The single points on the surface are:

 $0: P_{19} = (0, 1, 1, 0)$ lies on line ℓ_0 15: $P_{105} = (7, 3, 0, 1)$ lies on line ℓ_3 1: $P_{27} = (0, 2, 1, 0)$ lies on line ℓ_0 16: $P_{108} = (2, 4, 0, 1)$ lies on line ℓ_1 2: $P_{35} = (0, 3, 1, 0)$ lies on line ℓ_0 17: $P_{110} = (4, 4, 0, 1)$ lies on line ℓ_2 18: $P_{113} = (7, 4, 0, 1)$ lies on line ℓ_3 $3: P_{43} = (0,4,1,0)$ lies on line ℓ_0 4: $P_{51} = (0, 5, 1, 0)$ lies on line ℓ_0 19: $P_{116} = (2, 5, 0, 1)$ lies on line ℓ_1 5: $P_{59} = (0, 6, 1, 0)$ lies on line ℓ_0 20: $P_{118} = (4, 5, 0, 1)$ lies on line ℓ_2 6: $P_{67} = (0, 7, 1, 0)$ lies on line ℓ_0 21: $P_{121} = (7, 5, 0, 1)$ lies on line ℓ_3 7: $P_{84} = (2, 1, 0, 1)$ lies on line ℓ_1 22: $P_{124} = (2, 6, 0, 1)$ lies on line ℓ_1 8: $P_{86} = (4, 1, 0, 1)$ lies on line ℓ_2 23: $P_{126} = (4, 6, 0, 1)$ lies on line ℓ_2 9: $P_{89} = (7, 1, 0, 1)$ lies on line ℓ_3 24: $P_{129} = (7, 6, 0, 1)$ lies on line ℓ_3 10: $P_{92} = (2, 2, 0, 1)$ lies on line ℓ_1 25: $P_{132} = (2,7,0,1)$ lies on line ℓ_1 11: $P_{94} = (4, 2, 0, 1)$ lies on line ℓ_2 26: $P_{134} = (4,7,0,1)$ lies on line ℓ_2 12: $P_{97} = (7, 2, 0, 1)$ lies on line ℓ_3 27: $P_{137} = (7,7,0,1)$ lies on line ℓ_3 13 : $P_{100} = (2, 3, 0, 1)$ lies on line ℓ_1 28: $P_{140} = (2,0,1,1)$ lies on line ℓ_4 14 : $P_{102} = (4,3,0,1)$ lies on line ℓ_2 29: $P_{142} = (4, 0, 1, 1)$ lies on line ℓ_5

```
30: P_{145} = (7, 0, 1, 1) lies on line \ell_6
                                                                    40: P_{395} = (2,0,5,1) lies on line \ell_4
31: P_{203} = (2,0,2,1) lies on line \ell_4
                                                                    41: P_{397} = (4, 0, 5, 1) lies on line \ell_5
32 : P_{205} = (4, 0, 2, 1) lies on line \ell_5
                                                                    42: P_{400} = (7, 0, 5, 1) lies on line \ell_6
33 : P_{208} = (7, 0, 2, 1) lies on line \ell_6
                                                                    43: P_{459} = (2,0,6,1) lies on line \ell_4
34: P_{267} = (2,0,3,1) lies on line \ell_4
                                                                    44: P_{461} = (4,0,6,1) lies on line \ell_5
35: P_{269} = (4,0,3,1) lies on line \ell_5
                                                                    45: P_{464} = (7, 0, 6, 1) lies on line \ell_6
36: P_{272} = (7,0,3,1) lies on line \ell_6
                                                                    46: P_{523} = (2,0,7,1) lies on line \ell_4
37: P_{331} = (2, 0, 4, 1) lies on line \ell_4
                                                                    47: P_{525} = (4,0,7,1) lies on line \ell_5
38: P_{333} = (4, 0, 4, 1) lies on line \ell_5
                                                                    48: P_{528} = (7,0,7,1) lies on line \ell_6
39 : P_{336} = (7,0,4,1) lies on line \ell_6
```

The single points on the surface are:

Points on surface but on no line

The surface has 35 points not on any line: The points on the surface but not on lines are:

$0: P_4 = (1, 1, 1, 1)$	$18: P_{326} = (5, 7, 3, 1)$
$1: P_{20} = (1, 1, 1, 0)$	$19: P_{342} = (5, 1, 4, 1)$
$2: P_{34} = (7, 2, 1, 0)$	$20: P_{354} = (1, 3, 4, 1)$
$3: P_{41} = (6, 3, 1, 0)$	$21: P_{367} = (6, 4, 4, 1)$
$4: P_{45} = (2, 4, 1, 0)$	$22: P_{380} = (3, 6, 4, 1)$
$5: P_{54} = (3, 5, 1, 0)$	$23: P_{415} = (6, 2, 5, 1)$
$6: P_{64} = (5, 6, 1, 0)$	$24: P_{420} = (3, 3, 5, 1)$
$7: P_{71} = (4,7,1,0)$	$25: P_{446} = (5, 6, 5, 1)$
$8: P_{156} = (3, 2, 1, 1)$	$26: P_{450} = (1, 7, 5, 1)$
$9: P_{174} = (5, 4, 1, 1)$	$27: P_{474} = (1, 2, 6, 1)$
$10: P_{199} = (6,7,1,1)$	$28: P_{487} = (6, 3, 6, 1)$
$11: P_{212} = (3, 1, 2, 1)$	$29: P_{492} = (3, 4, 6, 1)$
$12: P_{222} = (5, 2, 2, 1)$	$30: P_{502} = (5, 5, 6, 1)$
$13: P_{247} = (6, 5, 2, 1)$	$31: P_{535} = (6, 1, 7, 1)$
$14: P_{250} = (1, 6, 2, 1)$	$32: P_{550} = (5, 3, 7, 1)$
$15: P_{298} = (1, 4, 3, 1)$	$33: P_{562} = (1, 5, 7, 1)$
$16: P_{308} = (3, 5, 3, 1)$	$34: P_{580} = (3,7,7,1)$
$17: P_{319} = (6,6,3,1)$	

Line Intersection Graph

	0123456
0	0111111
1	1011100
2	1101010
3	1110001
4	1100011
5	1010101
6	$\begin{array}{c} 01111111\\ 0111100\\ 1101010\\ 1110001\\ 1100011\\ 1010101\\ 1001110\\ \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

	Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6
ĺ	in point	P_1	P_1	P_1	P_2	P_2	P_2

Line 1	intersects
--------	------------

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4
in point	P_1	P_1	P_1	P_{76}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_5
in point	P_1	P_1	P_1	P_{78}

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_6
in point	P_1	P_1	P_1	P_{81}

Line 4 intersects

Line	ℓ_0	ℓ_1	ℓ_5	ℓ_6
in point	P_2	P_{76}	P_2	P_2

Line 5 intersects

Line	ℓ_0	ℓ_2	ℓ_4	ℓ_6
in point	P_2	P_{78}	P_2	P_2

Line 6 intersects

Line	ℓ_0	ℓ_3	ℓ_4	ℓ_5
in point	P_2	P_{81}	P_2	P_2

The surface has 89 points:

The points on the surface are:

$0: P_1 = (0, 1, 0, 0)$	$30: P_{110} = (4, 4, 0, 1)$	$60: P_{326} = (5,7,3,1)$
$1: P_2 = (0, 0, 1, 0)$	$31: P_{113} = (7, 4, 0, 1)$	$61: P_{331} = (2,0,4,1)$
$2: P_4 = (1, 1, 1, 1)$	$32: P_{116} = (2, 5, 0, 1)$	$62: P_{333} = (4,0,4,1)$
$3: P_{19} = (0, 1, 1, 0)$	$33: P_{118} = (4, 5, 0, 1)$	$63: P_{336} = (7,0,4,1)$
$4: P_{20} = (1, 1, 1, 0)$	$34: P_{121} = (7, 5, 0, 1)$	$64: P_{342} = (5, 1, 4, 1)$
$5: P_{27} = (0, 2, 1, 0)$	$35: P_{124} = (2, 6, 0, 1)$	$65: P_{354} = (1, 3, 4, 1)$
$6: P_{34} = (7, 2, 1, 0)$	$36: P_{126} = (4, 6, 0, 1)$	$66: P_{367} = (6, 4, 4, 1)$
$7: P_{35} = (0, 3, 1, 0)$	$37: P_{129} = (7, 6, 0, 1)$	$67: P_{380} = (3, 6, 4, 1)$
$8: P_{41} = (6, 3, 1, 0)$	$38: P_{132} = (2,7,0,1)$	$68: P_{395} = (2, 0, 5, 1)$
$9: P_{43} = (0, 4, 1, 0)$	$39: P_{134} = (4,7,0,1)$	$69: P_{397} = (4,0,5,1)$
$10: P_{45} = (2, 4, 1, 0)$	$40: P_{137} = (7, 7, 0, 1)$	$70: P_{400} = (7,0,5,1)$
$11: P_{51} = (0, 5, 1, 0)$	$41: P_{140} = (2, 0, 1, 1)$	71: $P_{415} = (6, 2, 5, 1)$
$12: P_{54} = (3, 5, 1, 0)$	$42: P_{142} = (4,0,1,1)$	$72: P_{420} = (3, 3, 5, 1)$
13: $P_{59} = (0, 6, 1, 0)$	43: $P_{145} = (7, 0, 1, 1)$	73: $P_{446} = (5, 6, 5, 1)$
$14: P_{64} = (5, 6, 1, 0)$	$44: P_{156} = (3, 2, 1, 1)$	$74: P_{450} = (1,7,5,1)$
$15: P_{67} = (0, 7, 1, 0)$	$45: P_{174} = (5, 4, 1, 1)$	$75: P_{459} = (2,0,6,1)$
$16: P_{71} = (4,7,1,0)$	$46: P_{199} = (6,7,1,1)$	$76: P_{461} = (4,0,6,1)$
$17: P_{76} = (2,0,0,1)$	$47: P_{203} = (2, 0, 2, 1)$	77: $P_{464} = (7, 0, 6, 1)$
$18: P_{78} = (4,0,0,1)$	$48: P_{205} = (4, 0, 2, 1)$	78: $P_{474} = (1, 2, 6, 1)$
$19: P_{81} = (7,0,0,1)$	$49: P_{208} = (7, 0, 2, 1)$	79: $P_{487} = (6, 3, 6, 1)$
$20: P_{84} = (2, 1, 0, 1)$	$50: P_{212} = (3, 1, 2, 1)$	$80: P_{492} = (3,4,6,1)$
$21: P_{86} = (4, 1, 0, 1)$	$51: P_{222} = (5, 2, 2, 1)$	$81: P_{502} = (5, 5, 6, 1)$
$22: P_{89} = (7, 1, 0, 1)$	$52: P_{247} = (6, 5, 2, 1)$	$82: P_{523} = (2, 0, 7, 1)$
$23: P_{92} = (2, 2, 0, 1)$	$53: P_{250} = (1, 6, 2, 1)$	$83: P_{525} = (4, 0, 7, 1)$
$24: P_{94} = (4, 2, 0, 1)$	$54: P_{267} = (2, 0, 3, 1)$	$84: P_{528} = (7, 0, 7, 1)$
$25: P_{97} = (7, 2, 0, 1)$	$55: P_{269} = (4, 0, 3, 1)$	$85: P_{535} = (6, 1, 7, 1)$
$26: P_{100} = (2, 3, 0, 1)$	$56: P_{272} = (7, 0, 3, 1)$	$86: P_{550} = (5, 3, 7, 1)$
$27: P_{102} = (4, 3, 0, 1)$	$57: P_{298} = (1, 4, 3, 1)$	$87: P_{562} = (1, 5, 7, 1)$
$28: P_{105} = (7, 3, 0, 1)$	$58: P_{308} = (3, 5, 3, 1)$	$88: P_{580} = (3, 7, 7, 1)$
$29: P_{108} = (2, 4, 0, 1)$	$59: P_{319} = (6, 6, 3, 1)$	