Universidade Federal do Ceará Campus de Quixadá Matemática Computacional (2017.1) Prof. Wladimir Araújo Tavares

Trabalho de Implementação Aplicações de Interpolação Linear Trabalho em equipe máximo 2 alunos Data de Entrega: 30/05/2017 Plágio será punidos com nota zero

 $Reposit\'orio: https://github.com/WladimirTavares/matematica_computacional2017/tree/master/interpolacao_polinomial$

No código disponível no repositório acima, temos o processo completo para encontrar uma interpolação polinomial de Vandermonde. Dados os n+1 pontos $(x_0, f(x_0)), \ldots, (x_n, f(x_n))$, queremos aproximar f(x) por um polinômio $p_n(x)$ de grau menor ou igual a n representado por:

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \tag{1}$$

Os coeficientes de $p_n(x)$ pode ser encontrado através da solução do seguinte sistema:

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$
(2)

Por exemplo, dados 3 pontos (-1,4),(2,-1),(0,1), encontre o polinômio $p_2(x)$. Resolva o sistema:

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 2 & 4 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \\ 1 \end{bmatrix}$$
 (3)

O polinômio $p_2(x) = 1.0 - 2.33333x + 0.66667x^2$

- 1. Implemente a interpolação de Lagrange:
 - (a) Implemente uma função que calcula os fatores de Lagrange para uma valor x. Esta função deve ter a seguinte assinatura:

$$LD L(vector < t_ponto > ponto s, int i, LD x)$$

(b) Implemente uma função que calcula o valor de $p_n(x)$, onde $p_n(x)$ é o polinômio de Lagrange. Esta função deve ter a seguinte assinatura:

2. A tabela abaixo relaciona a quantidade ideal de calorias em função da idade e do peso para homens que realizam atividade física moderada a uma temperatura ambiente.

Peso	Idade	25	45	65
	50	2500	2350	1900
	60	2850	2700	2250
	70	3200	3000	2750
	80	3550	3350	2850

Usando interpolação quadrática, determine a cota aproximada de calorias para um homem de 35 anos que pesa $62~{\rm kg}.$