Quiz 1

1. Sea x = 1,4142 y sea $x^* = 1,414$. Determine el error absoluto, el error relativo y la cantidad de dígitos significativos con los que x^* aproxima a x. Solución:

$$\varepsilon_{ab} = |x - x^*| = |1,4142 - 1,414| = 2,0 \times 10^{-4}$$

$$\delta_{rel} = \frac{|x - x^*|}{|x|} = \frac{2,0 \times 10^{-4}}{|1,4142|} \approx 1,4142 \times 10^{-4}$$

Entonces, $\delta_{rel} \approx 1{,}4142 \times 10^{-4} < 5 \times 10^{-4}$, así, x aproxima a x^* con a lo sumo p=4 dígitos significativos.

2. La función sucesionRaiz2 recibe como entradas un valor inicial x1 y una tolerancia tol. La salida de dicha función es xn, una aproximación al valor $x = \sqrt{2}$.

Cree una función nueva sucesionRaiz2_v2 que reciba como entradas: un valor inicial x1, una tolerancia tol y una cantidad máxima de iteraciones N. sucesionRaiz2_v2 debe devolver dos salidas: la aproximación xn y la cantidad de iteraciones realizadas. Solución:

- 3. Sea $f(x) = \sqrt{x} \cos(x)$, definida en [0, 1].
 - a) Justifique que f posee una raíz c en dicho intervalo y utilice el algoritmo de bisección para encontrar la aproximación c_3 de la raíz de f.
 - b) ¿Cuántas iteraciones se necesitan para aproximar c con una precisión de 10^{-4} ?

Solución: f es continua, además

a)

$$f(0) = \sqrt{0} - \cos(0) = -1$$

$$f(1) = \sqrt{1} - \cos(1) \approx 0.45$$

por TVI existe $c \in [0, 1]$ tal que f(c) = 0.

- 1) Definimos $[a_1, b_1] = [0, 1]$ y $c_1 = \frac{a_1 + b_1}{2} = \frac{1}{2}$. Se tiene que $f(c_1) \approx -0.1705$, entonces $c \in [c_1, b_1]$.
- 2) Definimos $[a_2,b_2]=[c_1,b_1]$ y $c_2=\frac{c_1+b_1}{2}=\frac{3/2}{2}=3/4$. Se tiene que $f(c_2)\approx 0.1343$, entonces $c\in [c_1,c_2]$.
- 3) Definimos $[a_3, b_3] = [c_1, c_2]$ y $c_3 = \frac{c_1 + c_2}{2} = \frac{5/4}{2} = 5/8$.
- b) Por teorema, se tiene que $|c_k c| < \frac{b-a}{2^k}$, entonces, planteamos

$$\frac{b-a}{2^k} < 10^{-4}$$

$$2^{-k} < 10^{-4}$$

$$-k \log 2 < -4$$

$$k > \frac{4}{\log(2)}$$

$$k > 13,28$$

4. Sea $f(x) = x^3 - 2x - 5$, definida en [2, 3]. Muestre que la función $g(x) = \sqrt[3]{2x + 5}$ satisface las condiciones de unicidad del punto fijo en [2, 3]. ¿Cuál es una iteración simple que permite aproximar una raíz de f en el intervalo dado?

Solución: Primero, note que se puede obtener el criterio de g de la siguiente forma

$$x^{3} - 2x - 5 = 0$$
$$x^{3} = 2x + 5$$
$$x = \sqrt[3]{2x + 5}$$

Luego, se debe verificar las condiciones del teorema:

a) g es continua en [2,3].

b) Veamos que $g([2,3]) \subset [2,3]$:

$$g(2) = \sqrt[3]{9} \approx 2.08 \in [2, 3]$$

 $g(3) = \sqrt[3]{11} \approx 2.22 \in [2, 3]$

además, $g'(x) = \frac{2}{3\sqrt[3]{(2x+5)^2}} > 0$ para $x \in [2,3]$, por lo que g es creciente. Se sigue que $g([2,3]) \subset [2,3]$.

c) Veamos que |g'(x)| < 1 para $x \in [2, 3]$:

$$g'(x) = \frac{2}{3\sqrt[3]{(2x+5)^2}}$$

$$\leq \frac{2}{3\sqrt[3]{(2\cdot 2+5)^2}}$$

$$\approx 0.1540 < 1$$

Por teorema del punto fijo, g posee un único punto fijo en [2,3] y además la iteración $g(c_{k+1}) = \sqrt[3]{2c_k + 5}$ converge al punto fijo para cualquier $c_0 \in [2,3]$.