

Text-to-SQL Generation For Question Answering On Electronic Medical Records

Ping Wang, Tian Shi, Chandan K. Reddy
Department of Computer Science
Virginia Tech, Arlington, VA 22203

Outline

- Introduction
- Challenges
- Our Contributions
- Experiments
- Conclusion

Introduction

QA Examples on Electronic Medical Records

	g	b
	ũ	ŋ
	a	Ū
	C	2
	Ç	Ū
•	۰	-
	Ç	Ū
(1
-		
	Ç	Ū
	c	
	C)
	•	
,	<u>כ</u>	2
., -	2	
.,	0	ַ

Question samples

	SUBJECT ID	HADM I	D TEST LABEL		ТҮРЕ		SUBJEC	T ID	HADM ID		SHORT TITLE	
TEST	66411	178264	Anion gap	Ch	emistry	SES	925	8	183354		Cardiogenic shock	
LABT	66411	178264	Hematocrit	Hematology		DIAGNOSES	925	8	183354		Convulsions NEC	
	29961	196409	Bicarbonate	Ch	emistry	DIAC	6641	.1	178264		Atrial fibrillation	
1	29961	196409	Free calcium	Bl	ood gas		6641	.1	178264	,	Ac diastolic hrt failure	
<u>s</u>	SUBJECT ID	HADM ID	DRUG		TYPE		SUBJEC	T_ID	HADM_ID		SHORT TITLE	
<u>N</u>	66411	178264	5% Dextrose		Base	RES	9258		183354		Procedure-one vessel	
PRESCRIPTIONS	66411	178264	Miconazole powde	er 2%	Main	EDURES	9258		183354		Insert endotracheal tube	
ESC	29961	196409	Warfarin		Main	PROCI	66411		178264	Al	bdomen artery incision	
#	29961	196409	Iso-Osmotic		Base	7	66411		178264		Venous catch NEC	
≌	SUBJECT ID	HADM ID	NAME	AGE	ADMISSIO	N TYPE	DAYS	PF	RIMARY DISEASE		ADMISSION LOCATION	
EMOGRAPHIC	990	184231	Dawn Brill	89	EMERG	ENCY	7	Gastrointestinal bleed		ed .	Emergency room admit	
OGR	17772	122127	Ruben Thomas	0	NEWB	ORN	6		NEWBORN		Clinic referral/premature	
EM	66411	178264	Jennifer Fulgham	72	EMERG	ENCY	8	Femor	al artery thrombo	osis	Emergency room admit	
۵	29961	196409	Mary Corson	72	EMERG	ENCY	20		S/P fall		Clinic referral/premature	

Q1: Tell A1: S/P

Q1: Tell me the primary disease and prescribed medicines of patient Mary Corson.

A1: S/P fall; Warfarin, Iso-Osmotic.

Q2: Give me the titles of procedures underwent by patient Jennifer Fulgham.

A2: Abdomen artery incision, Venous catch NEC.

Q3: How many patients were admitted at emergency room?

A3: 2

Challenges

Question generation:

- No existing dataset for question answering on relational database in healthcare domain.
- Not feasible to enumerate all possible questions on the database.

Question-to-SQL generation:

- Multiple columns
 - What is <u>the admission time</u> and <u>primary disease</u> of Michael Tucker?
- Multiple tables and table unawareness
 - Provide the <u>primary disease</u> of Michael Tucker and the <u>procedure names</u> he underwent.

Our Contributions

- Create a large-scale MIMICSQL dataset:
 - For Question-to-SQL generation task in healthcare domain.
 - Based on the structured tables in MIMIC III.
 - By leveraging the power of crowd-sourcing.
- Develop a model for Question-to-SQL generation:
 - Each question may be related to multiple tables.
 - Related tables are unknown for input questions.
 - Each question may be related to multiple columns.
 - The dependencies of different components are considered during the SQL generation.

Database Used: MIMIC III

- Medical Information Mart for Intensive Care III¹ (MIMIC III) dataset:
 - 46,520 de-identified ICU patients from Beth Isreal Deaconess Medical Center between 2001 and 2012.
 - Different tables are generally linked by patient ID, hospital admission ID, lab item ID or ICD9 code.
 - Question answering on MIMIC III will involve five categories of patient information, including demographics, laboratory test results, diagnosis, procedures and prescriptions. We extracted and prepared a specific table for each category.

MIMICSQL Generation: Question Generation

Question generation:

- Time-consuming to manually generate questions; Machine generated questions are not natural.
- We take advantage of both template-based machine generation method and crowd-sourcing to collect the question-SQL query pairs.

Template question:

- The question templates are manually generated based on both the table schema and content. Two types of questions are included:
 - Information retrieval questions
 - Reasoning questions

Natural language (NL) question:

 Each template question is rephrased as its corresponding natural language question by Freelancers with medical domain knowledge on a crowd-sourcing platform named Freelancer¹.

MIMICSQL Generation: SQL Generation

A general SQL template:

SELECT AGG_OPERATION AGG_COLUMN FROM TABLE WHERE CONDITION

- AGG_OPERATION: the operation used for the corresponding selected AGG_COLUMN, takes one of the five values, including "NULL", "COUNT", "MAX", "MIN" and "AVG".
- AGG_COLUMN: the topic that we are interested in each question and it is based on table schema.
- TABLE: the table names that are related to the question.
- **CONDITION:** the constraints in the corresponding question. During the query generation, we mainly consider five different operations in the condition, including "=", ">", "<", ">=" and "<=".

Illustration of MIMICSQL

- MIMICSQL dataset is made publicly available at: https://github.com/wangpinggl/TREQS
- Here is an illustration example of MIMISQL:

SUBJECT_ID	HADM_ID	Gender	ADMISSION_TYPE			SUBJECT_ID	HADM_ID	SHORT_TITLE	
990	184231	F	EMERGENCY		ES	9258	183354	Procedure-one vessel	
17772	122127	М	NEWBORN) M	28588	141664	Insert endotracheal tube	
i	:	:	:	:	핑	:	:	:	:
66411	178264	F	EMERGENCY		8	66411	178264	Abdomen artery incision	
29961	196409	М	EMERGENCY		_	66411	178264	Venous catch NEC	

SQL template: SELECT \$AGG_OP (\$AGG_COLUMN)+ FROM \$TABLE WHERE (\$COND_COLUMN \$COND_OP \$COND_VAL)+

Question: How many female patients underwent the procedure of abdomen artery incision?

SQL query: SELECT COUNT (DISTINCT DEMOGRAPHIC.SUBJECT ID)

FROM DEMOGRAPHIC INNER JOIN PROCEDURES on DEMOGRAPHIC.HADM_ID = PROCEDURES.HADM_ID WHERE DEMOGRAPHIC."GENDER" = "F" AND PROCEDURES."SHORT TITLE" = "Abdomen artery incision"

Data format: "sel": 1, "agg_col": [[0, 0]], "table": [0, 2], "cond": [[0, 6, 0, "F"], [2, 3, 0, "Abdomen artery incision"]]

Problem Formulation

Translate-Edit Model for Question-to-SQL

- Input: natural language question $x = (x_1, x_2, ..., x_I)$.
- Output: SQL query $y = (y_1, y_2, ..., y_T)$.
- TRanslate-Edit Model for Question-to-SQL query (TREQS) generation:
 - Translating a question on the table contents to a SQL query using a Seq2Seq (Pointer-Generator) based model,
 - Editing the generated query with attentive-copying metaalgorithm.
 - Further editing the query with task-specific lookup tables.

Controlled Generation and Copying in TREQS

Attention Mechanisms in TREQS

- Temporal Attention on Question:
 - Prevent the decoder repetitively attending on the same part of the question.
- Dynamic Attention on SQL:
 - Dynamically attend on the previous generated tokens.

Condition Values Recovery

- Can generated queries be executable?
 - For example, "How many patients who have bowel obstruct and stay in hospital for more than 10 days?"
 - One of the conditions in the generated SQL query is "PRIMARY_DISEASE = bowel obstruct", however, "bowel obstruct" does not appear in the database.
- Retrieve exact condition values based on the predicted ones and table content.
 - This approach makes use of string matching metric ROUGE-L to find the most similar condition value from the look-up table.

Evaluation

Overall evaluation:

- Execution accuracy: $Acc_{ex} = \frac{N_{ex}}{N}$
 - N denotes the number of questions in the collection.
 - N_{ex} represents the number of executed queries that result in correct answers.
- Logic form accuracy: $Acc_{lf} = \frac{N_{lf}}{N}$.
 - N_{lf} denotes the number of queries that match exactly with the ground truth.
 - String match between generated queries and ground truth.

Break-down evaluation:

Accuracy for each component in SQL query.

Results of TREQS on Template Questions

Main results:

	Template Questions						
Method	Devel	opment	Tes	ting			
	Acc_{LF}	Acc_{EX}	Acc_{LF}	Acc_{EX}			
Coarse2Fine	0.298	0.321	0.518	0.526			
M-SQLNET	0.258	0.588	0.382	0.603			
Seq2Seq	0.098	0.372	0.160	0.323			
Seq2Seq + recover	0.138	0.429	0.231	0.397			
PtrGen	0.312	0.536	0.372	0.506			
PtrGen + recover	0.442	0.645	0.426	0.554			
TREQS (our)	0.712	0.803	0.802	0.825			
TREQS + recover	0.853	0.924	0.912	0.940			

Performance break-down:

Method	Development						Testing						
Method	Agg_{op}	Agg_{col}	Table	Con_{col+op}	Con_{val}	Average	Agg_{op}	Agg_{col}	Table	Con_{col+op}	Con_{val}	Average	
Coarse2Fine	0.321	0.321	0.321	0.321	0.298	0.316	0.528	0.528	0.528	0.520	0.518	0.524	
M-SQLNet	1.000	0.978	0.994	0.876	0.274	0.824	1.000	0.956	0.996	0.881	0.401	0.847	
Seq2Seq	0.999	0.950	0.972	0.761	0.119	0.760	0.999	0.865	0.963	0.818	0.210	0.771	
Seq2Seq + recover	0.999	0.950	0.972	0.761	0.163	0.769	0.999	0.865	0.963	0.818	0.296	0.788	
PtrGen	0.999	0.991	0.992	0.979	0.325	0.857	1.000	0.988	0.992	0.985	0.381	0.869	
PtrGen + recover	0.999	0.991	0.992	0.979	0.449	0.882	1.000	0.988	0.992	0.985	0.433	0.880	
TREQS (our)	1.000	0.999	0.995	0.924	0.719	0.927	1.000	0.995	0.996	0.980	0.810	0.956	
TREQS + recover	1.000	0.999	0.995	0.924	0.859	0.955	1.000	0.996	0.996	0.984	0.918	0.979	

Results of TREQS on NL Questions

Main results:

	NL Questions							
Method	Devel	opment	Testing					
	Acc_{LF}	Acc_{EX}	Acc_{LF}	Acc_{EX}				
Coarse2Fine	0.217	0.309	0.378	0.496				
M-SQLNET	0.086	0.225	0.142	0.260				
Seq2Seq	0.076	0.112	0.091	0.131				
Seq2Seq + recover	0.092	0.195	0.103	0.173				
PtrGen	0.126	0.174	0.160	0.222				
PtrGen + recover	0.181	0.325	0.180	0.292				
TREQS (our)	0.451	0.511	0.486	0.556				
TREQS + recover	0.562	0.675	0.556	0.654				

Performance break-down:

Method	ethod Development						Testing						
Method	Agg_{op}	Agg_{col}	Table	Con_{col+op}	Con_{val}	Average	Agg_{op}	Agg_{col}	Table	Con_{col+op}	Con_{val}	Average	
Coarse2Fine	0.319	0.313	0.321	0.260	0.214	0.285	0.524	0.490	0.528	0.448	0.413	0.481	
M-SQLNet	0.994	0.939	0.933	0.722	0.080	0.734	0.989	0.873	0.941	0.749	0.140	0.738	
Seq2Seq	0.978	0.872	0.926	0.466	0.137	0.676	0.970	0.696	0.892	0.563	0.239	0.672	
Seq2Seq + recover	0.978	0.872	0.926	0.471	0.174	0.684	0.970	0.696	0.892	0.565	0.296	0.684	
PtrGen	0.987	0.917	0.944	0.795	0.172	0.766	0.987	0.830	0.926	0.824	0.214	0.757	
PtrGen + recover	0.987	0.917	0.944	0.795	0.236	0.776	0.987	0.830	0.926	0.824	0.235	0.760	
TREQS (our)	0.990	0.912	0.942	0.834	0.574	0.850	0.993	0.827	0.941	0.841	0.679	0.856	
TREQS + recover	0.990	0.912	0.942	0.834	0.694	0.873	0.993	0.827	0.941	0.844	0.763	0.874	

Generated Queries on NL Questions

Method	Example 1	Example 2
Question	how many female patients underwent the procedure of abdomen artery incision?	how many patients admitted in emergency were tested for ferritin?
Ground truth	<pre>select count (distinct demographic."subject_id") from demo- graphic inner join procedures on demographic.hadm_id = pro- cedures.hadm_id where demographic."gender" = "f" and proce- dures."short_title" = "abdomen artery incision"</pre>	<pre>select count (distinct demographic."subject_id") from demographic inner join lab on demographic.hadm_id = lab.hadm_id where demo- graphic."admission_type" = "emergency" and lab."label" = "ferritin"</pre>
M-SQLNET	<pre>select count (distinct demographic."subject_id") from demo- graphic inner join procedures on demographic.hadm_id = pro- cedures.hadm_id where demographic."gender" = "f" and proce- dures."short_title" = "parent infus nutrit sub"</pre>	<pre>select count (distinct demographic."subject_id") from demographic inner join lab on demographic.hadm_id = lab.hadm_id where de- mographic."admission_type" = "emergency" and lab."label" = "po2"</pre>
Seq2Seq	<pre>select count (distinct demographic."subject_id") from demo- graphic inner join procedures on demographic.hadm_id = pro- cedures.hadm_id where demographic."gender" = "m" and proce- dures."long_title" = "other abdomen"</pre>	select count (distinct demographic."subject_id") from demographic inner join lab on demographic.hadm_id = lab.hadm_id where demographic."admission_location" = "phys referral/normal deli" and lab."itemid" = "ferritin"
Seq2Seq+recover	<pre>select count (distinct demographic."subject_id") from demo- graphic inner join procedures on demographic.hadm_id = pro- cedures.hadm_id where demographic."gender" = "m" and proce- dures."long_title" = "other bronchoscopy"</pre>	select count (distinct demographic."subject_id") from demographic inner join lab on demographic.hadm_id = lab.hadm_id where demographic."admission_location" = "phys referral/normal deli" and lab."itemid" = "51200"
PtrGen	<pre>select count (distinct demographic."subject_id") from demo- graphic inner join procedures on demographic.hadm_id = pro- cedures.hadm_id where demographic."gender" = "f" and proce- dures."long_title" = "spinal abdomen artery"</pre>	<pre>select count (distinct demographic."subject_id") from demographic inner join lab on demographic.hadm_id = lab.hadm_id where demo- graphic."admission_type" = "emergency" and lab."label" = "troponin i"</pre>
PtrGen+recover	<pre>select count (distinct demographic."subject_id") from demo- graphic inner join procedures on demographic.hadm_id = pro- cedures.hadm_id where demographic."gender" = "f" and proce- dures."long_title" = "spinal tap"</pre>	<pre>select count (distinct demographic."subject_id") from demographic inner join lab on demographic.hadm_id = lab.hadm_id where demo- graphic."admission_type" = "emergency" and lab."label" = "troponin i"</pre>
TREQS	<pre>select count (distinct demographic."subject_id") from demo- graphic inner join procedures on demographic.hadm_id = pro- cedures.hadm_id where demographic."gender" = "f" and proce- dures."short_title" = "abdomen artery abdomen"</pre>	<pre>select count (distinct demographic."subject_id") from demographic inner join lab on demographic.hadm_id = lab.hadm_id where demo- graphic."admission_type" = "emergency" and lab."label" = "ferritin"</pre>
TREQS + recover	<pre>select count (distinct demographic."subject_id") from demo- graphic inner join procedures on demographic.hadm_id = pro- cedures.hadm_id where demographic."gender" = "f" and proce- dures."short_title" = "abdomen artery incision"</pre>	<pre>select count (distinct demographic."subject_id") from demographic inner join lab on demographic.hadm_id = lab.hadm_id where demo- graphic."admission_type" = "emergency" and lab."label" = "ferritin"</pre>

^{*} The incorrectly predicted words are highlighted in red color.

Visualization of Accumulated Attention on Conditions

Question	Generated SQL
provide the number of patients less than 83 years of age who were diagnosed with pneumococcal pneumonia.	select count (distinct demographic.subject_id) from demographic inner join diagnoses on demographic.hadm_id = diagnoses.hadm_id where demographic.age < 83 and diagnoses.short_title = pneumococcal pneumonia
provide the number of patients whose diagnoses is lap surg convert to open and they are female.	select count (distinct demographic.subject_id) from demographic inner join diagnoses on demographic.hadm_id = diagnoses.hadm_id where demographic.gender = f and diagnoses.long_title = lap surg convert to open they
among patients treated with amitriptyline, calculate the number of temale patients.	select count (distinct demographic.subject_id) from demographic inner join prescriptions on demographic.hadm_id = prescriptions.hadm_id where demographic.gender = f and prescriptions.drug = amitriptyline
get me the number of elective hospital admission patients who had coronary artery primary disease .	select count (distinct demographic.subject_id) from demographic where demographic.admission_type = elective and demographic.diagnosis = coronary artery disease
give the number of patients whose admission type is elective and primary disease is abdominal abscess .	select count (distinct demographic.subject_id) from demographic where demographic.admission_type = elective and demographic.diagnosis = abdominal abscess
how many patients aged below 36 years have stayed in the hospital for more than 14 days?	select count (distinct demographic.subject_id) from demographic where demographic.age < 36 and demographic.days_stay > 14
what is the number of patients whose admission location is emergency room admit and with primary disease t5 fracture?	select count (distinct demographic.subject_id) from demographic where demographic.admission_location = emergency room admit and demographic.diagnosis = t5 fracture

^{*} Different conditions are labeled with different colors.

^{*} An intense shade on a word indicates a higher attention weight, and vice versa.

Conclusion

- Automated query generation from a natural language question is a challenging problem in healthcare domain.
- We first generated MIMICSQL dataset with Question-SQL pairs specifically for the Question-to-SQL generation task in healthcare domain.
- We further proposed a Seq2Seq based TRanslate-Edit Model for Question-to-SQL query (TREQS) generation and solved the problem on MIMICSQL by first generating the targeted SQL directly and then editing with both attention mechanism and recover technique.
- The proposed model is able to handle several challenges that are unique to MIMICSQL, including multiple tables, OOV words and table-unaware assumption.

Thank You!

Link to MIMICSQL dataset and codes:

https://github.com/wangpinggl/TREQS

Feel free to send questions and suggestions to

ping@vt.edu tshi@vt.edu reddy@cs.vt.edu