MAC 0460 / 5832

Aprendizagem Computacional Modelos, algoritmos e aplicações

Nina Hirata (nina@ime.usp.br) Sala 6 - bloco C

Monitor: Igor

Aula 9 (2012)

Erro de um classificador

Dada uma distribuição de probabilidade conjunta p sobre o espaço $X \times Y$, o erro de um classificador $f: X \to Y$, segundo uma função de perda L, é dado pela esperança:

$$Erro(f) = E[L(y, f(\mathbf{x}))]$$

No caso da função de perda zero-um, temos

$$Erro(f) = P_{\mathbf{x} \in X} (y \neq f(\mathbf{x}))$$

Erro estimado

Erro estimado de g (com respeito a um conjunto de teste T com n elementos):

(proporção de exemplos classificados incorretamente por g)

$$Erro_T(g) = \frac{1}{n} \sum_{\mathbf{x}_i \in T} \delta(y_i, g(\mathbf{x}_i))$$

na qual $\delta(a,b)=1$ se $a\neq b$ e $\delta(a,b)=0$ se a=b.

Usando o fato de que $Erro_T(g)$ pode ser encarado como tendo uma distribuição binomial (errou/acertou classificação) e o fato de uma distribuição binomial poder ser aproximada por uma distribuição normal, temos que

o Erro(g), encontra-se com N% de probabilidade no intervalo

$$Erro_T(g) \pm z_N \sqrt{\frac{Erro_T(g)(1 - Erro_T(g))}{n}}$$

Valores de z_N para diferentes valores de N:

Nível de confiança N%	50%	68%	80%	90%	95%	98%	99%
Constante z_N	0.67	1.00	1.28	1.64	1.96	2.33	2.58

16 de Setembro de 2012 5 / 15

Não se pode tirar conclusões apenas a partir do erro estimado sobre um conjunto de testes T, especialmente quando n = |T| é pequeno.

Opção: validação cruzada (com ou sem reposição)

Comparação de dois classificadores

Considerar a diferença

$$\hat{d} = Erro_{T_1}(g_1) - Erro_{T_2}(g_2)$$

como estimador para a diferença verdadeira $d = Erro(g_1) - Erro(g_2)$.

Aproximando a distribuição de cada um deles por uma normal, a distribuição de \hat{d} pode ser aproximada por uma normal (pois a diferença de duas normais é uma normal).

De forma similar ao caso anterior, um **intervalo de confiança** de N% para d, $\acute{\rm e}$

$$\hat{d} \pm Z_N \sqrt{\frac{Erro_{T_1}(g_1)(1 - Erro_{T_1}(g_1))}{n_1} + \frac{Erro_{T_2}(g_2)(1 - Erro_{T_2}(g_2))}{n_2}}$$

Teste de hipóteses

Comparação baseada em teste de hipóteses

- Sejam g_1 e g_2 dois classificadores.
- $Erro(g_1)$ e $Erro(g_2)$ são seus erros verdadeiros.
- $d = Erro(g_1) Erro(g_2)$. Logo d > 0 implica que erro de g_1 é maior que erro de g_2 .
- Na prática só temos erros estimados $Erro_{T_1}(g_1)$ e $Erro_{T_2}(g_2)$.

Queremos saber:

Qual a probablidade de que " $Erro(g_1) > Erro(g_2)$ ", dado que foi observado $\hat{d} = Erro_{T_1}(g_1) - Erro_{T_2}(g_2)$?

Teste de hipóteses

EXEMPLO:

- suponha $Erro_{T_1}(g_1) = 0.3$ e $Erro_{T_2}(g_2) = 0.2$; logo $\hat{d} = 0.1$
- Pergunta: qual é a probabilidade de que " $Erro(g_1) > Erro(g_2)$?", dado que observamos $\hat{d} = 0.1$?
- equivalentemente, qual a probabilidade de que d>0, dado que observamos $\hat{d}=0.1$?
- temos $d > 0 \iff d > \hat{d} 0.1 \iff \hat{d} < d + 0.1$
- qual é a distribuição de \hat{d} ? Pode ser aproximada por uma normal com média $\mu_{\hat{d}}$
- $oldsymbol{\bullet}$ Assim, a probabilidade de $\hat{d} < d+0.1$ é a mesma de $\hat{d} < \mu_{\hat{d}} + 0.1$

9 / 15

() 16 de Setembro de 2012

- Como sabemos a distribuição de \hat{d} , podemos calcular a massa de probabilidade no intervalo de interesse
- $\bullet \ \sigma_{\hat{d}}^2 \approx \frac{\textit{Erro}_{T_1}(g_1)(1 \textit{Erro}_{T_1}(g_1))}{n_1} + \frac{\textit{Erro}_{T_2}(g_2)(1 \textit{Erro}_{T_2}(g_2))}{n_2}$
- Para $Erro_{\mathcal{T}_1}(g_1)=0.3$ e $Erro_{\mathcal{T}_2}(g_2)=0.2$, $\sigma_{\hat{d}}^2pprox 0.61$
- Logo $\hat{d}<\mu_{\hat{d}}+0.1$ pode ser escrito como $\hat{d}<\mu_{\hat{d}}\pm1.64\sigma_{\hat{d}}$ (pois $1.64\times0.61\approx1$)
- 1.64 é o coeficiente associado ao intervalo de confiança de 90%
- Logo a probabilidade de $\hat{d} < \mu_{\hat{d}} + 1.64 \sigma_{\hat{d}}$ é 90% + o extremo esquerdo (5%)
- Isto é, podemos dizer com 95% de confiança que $\hat{d} < d + 0.1$

E nos casos de validação cruzada ??

Abordagens do tipo validação cruzada estimam o **erro médio** (e não o erro verdadeiro).

Tipicamente, em validação cruzada, o interesse é em comparar dois tipos de classificadores.

Em vez de considerar a probabilidade de erro, podemos considerar o **erro médio**

Dado um algoritmo de treinamento, para cada conjunto de treinamento S, temos um classificador g(S) e um erro Erro(g(S))

O erro médio do algoritmo é a média dos erros calculados sobre cada possível conjunto de treinamento S de mesmo tamanho n.

Estimação do erro esperado

k-fold Cross-validation paired t-Test

Particiona-se S em k subconjuntos de mesmo tamanho T_1, T_2, \ldots, T_k , e obtém-se k classificadores usando os algoritmos L_A e L_B . Sejam então $g_{A_i} = L_A(S \setminus T_i)$, $g_{B_i} = L_B(S \setminus T_i)$ e $\hat{\delta}_i = Erro_{T_i}(g_{A_i}) - Erro_{T_i}(g_{B_i})$. O **erro médio estimado** é então dado por

$$\hat{\delta} = \frac{1}{k} \sum_{i=1}^{k} \hat{\delta}_{i}$$

Qual é a qualidade de $\hat{\delta}$?

- ullet para valores grandes de n, podemos supor que $\hat{\delta_i}$ segue uma distribuição aproximadamente normal (teorema do limite central)
- Então $\hat{\delta}$ também segue uma distribuição normal com média conhecida, mas variância desconhecida.
- usando-se a variância amostral obtém-se uma distribuição t (em vez da normal)
- intervalo de confiança para $\hat{\delta}$ é calculado usando-se a tabela para a distribuição t: o intervalo de confiança de N% de δ é dado por

$$\hat{\delta} \pm t_{N,k-1} VAR[\hat{\delta}]$$

na qual

$$VAR[\hat{\delta}] = \sqrt{\frac{1}{k(k-1)\sum_{i=1}^{k}(\delta_i - \hat{\delta})^2}}$$

e k-1 representa o grau de liberdade (relacionado ao número de eventos independentes que produzem os valores de $\hat{\delta}$)

Por exemplo, para N=95 e k=11, a constante é $t_{95.9}=2.23$.

Curva ROC (Receiving Operating Characteristic)

Curva ROC (Receiving Operating Characteristic)

Curvas ROC podem ser desenhadas quando se tem um classificador binário com algum parâmetro ordenado; por exemplo, quando aumentar o valor desse parâmetro implica em aumentar a quantidade de exemplos aceitos (isso aumenta taxa de TP, mas também aumenta taxa de FP).

Olhando a curva, pode-se escolher o parâmetro ótimo.

Ou então, no caso de dois classificadores, pode-se escolher aquele com a melhor curva.