TABLE 3.3 One-dimensional, steady-state solutions to the heat equation with no generation

	Plane Wall	Cylindrical Wall ^a	Spherical Wall ^a
Heat equation	$\frac{d^2T}{dx^2} = 0$	$\frac{1}{r}\frac{d}{dr}\bigg(r\frac{dT}{dr}\bigg) = 0$	$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dT}{dr}\right) = 0$
Temperature distribution	$T_{s,1} - \Delta T \frac{x}{L}$	$T_{s,2} + \Delta T \frac{\ln{(r/r_2)}}{\ln{(r_1/r_2)}}$	$T_{s,1} - \Delta T \left[\frac{1 - (r_1/r)}{1 - (r_1/r_2)} \right]$
Heat flux (q'')	$k\frac{\Delta T}{L}$	$\frac{k\Delta T}{r\ln\left(r_2/r_1\right)}$	$\frac{k\Delta T}{r^2[(1/r_1) - (1/r_2)]}$
Heat rate (q)	$kA\frac{\Delta T}{L}$	$\frac{2\pi Lk\Delta T}{\ln\left(r_2/r_1\right)}$	$\frac{4\pi k \Delta T}{(1/r_1) - (1/r_2)}$
Thermal resistance ($R_{t,cond}$)	$\frac{L}{kA}$	$\frac{\ln\left(r_2/r_1\right)}{2\pi Lk}$	$\frac{(1/r_1) - (1/r_2)}{4\pi k}$

Table 3.4 Temperature distribution and heat loss for fins of uniform cross section

	Fin Heat Transfer Rat	Temperature Distribution θ/θ_b		Tip Condition $(x = L)$	Case
$M \frac{\sinh mL + (h/mk)\cosh mL}{\cosh mL + (h/mk)\sinh mL}$ (3.77)			$\frac{\cosh m(L-x) + (h/mk)\sin m(L-x)}{\cosh mL + (h/mk)\sin m(L-x)}$	Convection heat ransfer: $d\theta(L) = -kd\theta/dx _{x=L}$	A
	M tanh mi	(3.80)	$\frac{\cosh m(L-x)}{\cosh mL}$	Adiabatic: $l\theta/dx _{x=L} = 0$	В
$M \frac{(\cosh mL - \theta_L/\theta_b)}{\sinh mL}$, ,	$\frac{(\theta_L/\theta_b)\sinh mx + \sinh m}{\sinh mL}$	Prescribed temperature: $\theta(L) = \theta_L$	С
(3.83)		(3.82)			_
(3.85)	M	(3.84)	e^{-mx}	$\begin{aligned} \text{nfinite fin } (L \to \infty); \\ \partial(L) &= 0 \end{aligned}$	D
!	M	(3.84)	e^{-mx}	nfinite fin $(L \to \infty)$: $\theta(L) = 0$ $m^2 \equiv hP/kA_c$ $-T_{\infty} \qquad M \equiv \sqrt{hPkA_c}\theta_b$	

Fin effectiveness: how much heat the fin dissipates relative to how much it would dissipate from base with no fin Fin efficiency: how much heat the fin dissipates relative to how much it would dissipate if entire fin were at base temperature

$$\frac{\rho Vc}{hA_s} \ln \frac{\theta_i}{\theta} = t \qquad \frac{\theta}{\theta_i} = \frac{T - T_{\infty}}{T_i - T_{\infty}} = \exp \left[-\left(\frac{hA_s}{\rho Vc}\right)t \right]$$

$$\theta \equiv T - T_{\infty}$$
 $\theta_i \equiv T_i - T_{\infty}$ $Bi = \frac{hL_c}{k} < 0.1$

TABLE 2.2 Boundary conditions for the heat diffusion equation at the surface (x = 0)

$$T(0,t) = T_s$$

Constant surface heat flux

(a) Finite heat flux

$$-k\frac{\partial T}{\partial x}\Big|_{x=0}=q_s''$$

(b) Adiabatic or insulated surface

$$\frac{\partial T}{\partial x}\Big|_{x=0} = 0$$

Convection surface condition

$$-k\frac{\partial T}{\partial x}\Big|_{x=0} = h[T_{\infty} - T(0, t)]$$
 (2.34)

Heat Equation in Cartesian, Cylindrical, and Spherical Coordinates

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{q} = \rho c_p \frac{\partial T}{\partial t}$$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(kr\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\partial \phi}\left(k\frac{\partial T}{\partial \phi}\right) + \frac{\partial}{\partial z}\left(k\frac{\partial T}{\partial z}\right) + \dot{q} = \rho c_p \frac{\partial T}{\partial t}$$

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(kr^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \phi} \left(k \frac{\partial T}{\partial \phi} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(k \sin \theta \frac{\partial T}{\partial \theta} \right) + \dot{q} = \rho c_p \frac{\partial T}{\partial t}$$