

CS5340 Uncertainty Modeling in Al

Asst. Prof. Harold Soh

Dept of Computer Science

National University of Singapore

Poll Everywhere!

https://pollev.com/haroldsohsoo986

Lecturer:

Harold Soh

Department of CS

Office: COM3-02-58

Email: harold@comp.nus.edu.sg

Web: https://haroldsoh.github.io

Lab: https://clear-nus.github.io

Research Interests:

Human Al/Robot Interaction, Machine Learning, Al, Robotics

Artificial Intelligence is Cool (again)!

https://ourworldindata.org/grapher/attendance-major-artificial-intelligence-conferences

CS5340 is **not** a "deep learning" class

So, what is CS5340 about?

CS5340 in a nutshell

CS5340 is about how to "represent" and "reason" with uncertainty in a computer.

A Modeling Exercise: Influenza

- You're hired to design an Al Diagnostician.
- Scope: Influenza (Flu)
- Problem: Given a patient X and information available, does X have the flu?
- Modeling steps:
 - What are the relevant variables?
 - What are the relationship between the variables?

Possible Relevant Variables

https://pollev.com/haroldsohsoo986

Possible Relevant Variables

- Whether X has the flu or not.
- Immunity to influenza
- Vaccinated
- Genetically immune
- Symptoms present or not:
 - Fever, Cough, Sore throat, Runny nose, Etc.
- Whether the person came into contact with a person with the flu recently.
- Current prevalence of flu in the population
- Structure of the population
- Flu test result
- and so on ...

Modeling the Relationships

- Consider binary variables.
- How can we represent how the variables are related?
- One simple way:
 - Rules, e.g.,
 - IF (fever AND cough AND (NOT immune))
 THEN flu=TRUE
 ELSE flu=FALSE
- What are the problems?

Generative (Causal) Modeling of Relationships between Variables

A probabilistic approach.

 Capture the generative process to model the *structure* between variables and the conditional probabilities involved.

- Let's try this out.
- Belief and Decision Networks
 - http://www.aispace.org/downloads.shtml

Generative (Causal) Modeling of Relationships between Variables

CS5340 in a nutshell

CS5340 is about how to "represent" and "reason" with uncertainty in a computer.

CS5340 in a nutshell

CS5340 is about how to "represent" and "reason" with uncertainty in a computer.

Representation: The *language* is probability and probabilistic graphical models (PGM).

The language is used to model problems.

Reasoning: We use learning and inference algorithms to answer questions.

e.g., Belief-propagation/sumproduct, MCMC, and variational Bayes

Types of Uncertainties

Aleatoric Uncertainty

- Natural randomness in the process
- A parameter's value can change with each trial (the variability is random)

Epistemic Uncertainty

- Uncertainty in the model
- A parameter takes on a certain value but we're not sure what that value is.
- Exercise: Consider the influenza diagnosis problem. What are the *aleatoric* and *epistemic* uncertainties present?

PGM: Applications

Robotics
Medical Diagnosis
Recommender Systems
Financial Modeling
Natural Language Processing
Computer Vision
Generative Modelling

And many more!

Markov Localization

" Monte Carlo Localization for Mobile Robots", Frank Dellaert et. al., ICRA 1999

Scene Understanding

Human-Robot Collaboration

"Trust-Aware Decision Making for Human-Robot Collaboration: Model Learning and Planning", Chen et al., HRI 2018

Generative Modeling

Ansari, Abdul Fatir, and Harold Soh. "Hyperprior induced unsupervised disentanglement of latent representations." *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 33. 2019.

Generative Modeling via Diffusion Models

https://arstechnica.com/information-technology/2022/09/with-stable-diffusion-you-may-never-believe-what-you-see-online-again/

Figure 2: The directed graphical model considered in this work.

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." *Advances in Neural Information Processing Systems* 33 (2020): 6840-6851.

Language Modeling

2. Approach

At the core of our approach is language modeling. Language modeling is usually framed as unsupervised distribution estimation from a set of examples $(x_1, x_2, ..., x_n)$ each composed of variable length sequences of symbols $(s_1, s_2, ..., s_n)$. Since language has a natural sequential ordering, it is common to factorize the joint probabilities over symbols as the product of conditional probabilities (Jelinek & Mercer, 1980) (Bengio et al., 2003):

$$p(x) = \prod_{i=1}^{n} p(s_n|s_1, ..., s_{n-1})$$
 (1)

This approach allows for tractable sampling from and estimation of p(x) as well as any conditionals of the form $p(s_{n-k},...,s_n|s_1,...,s_{n-k-1})$. In recent years, there have been significant improvements in the expressiveness of models that can compute these conditional probabilities, such as self-attention architectures like the Transformer (Vaswani et al., 2017).

Radford, Alec, et al. "Language models are unsupervised multitask learners." *OpenAl blog* 1.8 (2019): 9.

CS5340 in a nutshell

CS5340 is about how to "represent" and "reason" with uncertainty in a computer.

Questions?

https://pollev.com/haroldsohsoo986

Course Administration

Course Info, Schedule, and Assessments

Course Schedule (Tentative)

Week	Date	Lecture Topic	Tutorial
1	16 Jan	Introduction to Uncertainty Modeling + Probability Basics	Introduction
2	23 Jan	Simple Probabilistic Models	Introduction and Probability Basics
3	30 Jan	Bayesian networks (Directed graphical models)	More Basic Probability
4	6 Feb	Markov random Fields (Undirected graphical models)	DGM modelling and d-separation
5	13 Feb	Variable elimination and belief propagation	MRF + Sum/Max Product
6	20 Feb	Factor graphs	Quiz 1
-	-	RECESS WEEK	
7	5 Mar	Mixture Models and Expectation Maximization (EM)	Linear Gaussian Models
8	12 Mar	Hidden Markov Models (HMM)	Probabilistic PCA
9	19 Mar	Monte-Carlo Inference (Sampling)	Linear Gaussian Dynamical Systems
10	26 Mar	Variational Inference	MCMC + Sequential VAE
11	2 Apr	Inference and Decision-Making	Diffusion Models
12	9 Apr	Gaussian Processes (Special Topic)	Quiz 2
13	16 Apr	Project Presentations	Closing Lecture

From Zero to Control via Pixels

From Zero to Control via Pixels

https://planetrl.github.io

CS5340 :: Harold Soh

30

Course Information

Lecture and Tutorials: Blended Classroom style

- Lecture Videos Online: Posted on Canvas (Panopto) every Wednesday
- Tutorial Questions: Posted on Canvas every Wednesday
- Tutorial: Tuesday 18:30 to 20:30(-ish) at LT18

Prerequisites:

- A statistics/probability course: CS3243 and (EE2012/A or ST2132 or ST2334 or ((MA2216 or ST2131) and (ST1131/A or ST1232 or DSC2008)))
 - Please note: we will spend very little time on basic probability.
- CS3243/CS3263 Introduction to Artificial Intelligence

Drop Dates (Please verify):

- 'W' grade: 29 Jan 2024, 23:59hrs onwards.
- 'F' grade: 4 Mar 2024, 23:59hrs onwards.

Recommended Readings (Not Compulsory)

Teaching Assistant

Eugene Lim
PhD. Candidate
Department of Computer Science
Email: elimwj@u.nus.edu

Research Interests: Multi-Armed Bandits, Generative Models, Al Theory.

Canvas

Piazza Discussion Forums

CS5340 :: Harold Soh

35

Assessments

• No Final Exam ©

• Team Project: 30%

• **Quizzes:** 40%

• Tutorials: 20%

• Participation: 10%

Forum Participation

- Team-based
- 4 to 5 people per team
- Key Dates:
 - Form Teams: 6 Feb
 - Abstract Due: 27 Feb
 - Presentations: 16 April
 - Report Due: 26 April
- Deliverables:
 - Abstract
 - NeurIPS LaTeX Template
 - Up to 4 pages excl. references
 - Technical report
 - NeurIPS LaTeX Template
 - Up to 8 pages excl. references
 - 5-10 mins Presentation

Example Past Projects

Computer Vision / Image Processing

- Techniques for Image Denoising
- Image Background Generation with VAEs and MRFs

Financial / Economic / Political Modeling

- Uncertainty Distribution of Sales
- Modeling Political Behaviors with PGMs
- Portfolio Risk and Return

Robotics Prediction / Control

- Robust Deep Reinforcement Learning
- Drone Trajectory Estimation with HMMs

Natural Language Processing

- Repairing Multilingual Subtitles with Deep Markov Models
- Infectious Disease Modeling/Diagnosis
 - Uncertainty in Patient Diagnosis
 - Modeling the Mortality Risk of COVID-19
 - Modeling COVID-19 Spread

More Project Ideas

- Robot Social Navigation
 - Human Crowd Perception and Modeling
 - Human Perception using Multi-modal sensors (mmWave, Wifi)
 - Diffusion-based Generation of New Test/Adversarial Environments.
- Imitation Learning
 - Generative-style imitation learning
 - Incorporating norms into generative imitation learning.
- Uncertainty in LLMs
 - Incorporating uncertainty estimation into LLMs.

Project Abstract

Introduction

- What is the problem you want to solve?
- Why do you want to solve it?
- Why is it important/interesting?

Related Work

What other work has been done in this area?

Approach/Methodology

- How do you propose to solve it?
- Why do you want to solve it this way?

Preliminary Results (if any)

What have you done so far?

Ethical/Social Impact Statement

What ethical/social impact would this project have (if any)?

Al Tool Use

- If you used AI Tools (e.g., LLMs), discuss how they were used.
- Note: Support your statements with evidence (references and/or results)

Quizzes

- Quiz 1: 20%
 - 20 Feb 2024
 - Covers all material up to Week 5 (Variable Elimination and Belief Propagation)
- Quiz 2: 20%
 - 9 Apr 2024
 - Covers all material up to Week 10 (Variational Inference)
- Rules:
 - Open book.
 - No electronic equipment

Academic Honesty

- Do *NOT* cheat
- **Strict** Plagiarism policy:
 - If you cheat, we will report you to the disciplinary board
 - If found guilty, you will get an F (University Policy)
- Please be academically honest.
 - "Give credit where credit is due"
- Al Tools (e.g., LLMs)
 - Write your own reports/abstracts.
 - Using LLMs:
 - as enhanced editors to correct grammar/spelling is OK.
 - as intermediate tools to discuss and brainstorm with is OK.
 - If you use LLMs: At the end of your report/abstract, you **MUST** add a section on "AI Tool Use".

Tutorials

- Every Tuesday from 6:30pm to 8:30pm
- Graded Questions on Canvas "Quiz" Platform
- Each tutorial is worth 2.5% of your grade.
- Best 8 out of 10 tutorials to calculate your final score.
- **IMPORTANT:** The tutorial "quiz" is only open from 6:30pm to 9:30pm. No late entries will be allowed.
- We're going to do one today!

Course Schedule (Tentative)

Week	Date	Lecture Topic	Tutorial
1	16 Jan	Introduction to Uncertainty Modeling + Probability Basics	Introduction
2	23 Jan	Simple Probabilistic Models	Introduction and Probability Basics
3	30 Jan	Bayesian networks (Directed graphical models)	More Basic Probability
4	6 Feb	Markov random Fields (Undirected graphical models)	DGM modelling and d-separation
5	13 Feb	Variable elimination and belief propagation	MRF + Sum/Max Product
6	20 Feb	Factor graphs	Quiz 1
-	-	RECESS WEEK	
7	5 Mar	Mixture Models and Expectation Maximization (EM)	Linear Gaussian Models
8	12 Mar	Hidden Markov Models (HMM)	Probabilistic PCA
9	19 Mar	Monte-Carlo Inference (Sampling)	Linear Gaussian Dynamical Systems
10	26 Mar	Variational Inference	MCMC + Sequential VAE
11	2 Apr	Inference and Decision-Making	Diffusion Models
12	9 Apr	Gaussian Processes (Special Topic)	Quiz 2
13	16 Apr	Project Presentations	Closing Lecture

Questions?

https://pollev.com/haroldsohsoo986

