函数综合1

2025年7月22日

函数的性质

- 1. 设 f(x) 是定义在 \mathbf{R} 上的函数,对于 $m, n \in \mathbf{R}$ 恒有
 - (1) 证明: f(0) = 1.
 - (2) 证明: $x \in \mathbf{R}$ 时, 恒有 f(x) > 0.
 - (3) 证明: f(x) 在 \mathbf{R} 上是减函数.
 - (4) 若 $f(x) \cdot f(2-x) > 1$, 求 x 的取值范围.

- 2. (1) 已知函数 f(x) 满足 f(x+2) = 2f(x),且 f(6) = 3f(2) + 2,则 f(8) =_____.
 - (2) 对任意的实数 x, y, $f(x+y) = f(x^2) + f(2y)$, 则 f(2) =_____.
 - (3) 已知函数 f(x) 的定义域为 $(0,+\infty)$, f(xy) = f(x) + f(y), 若 f(9) = 6, 则 $f(3\sqrt{3}) =$

- 3. 已知函数 $f(x) = x^2 + bx + c$, 方程 f(x) = x 的两个根为 x_1 和 x_2 , 且 $x_1 x_2 > 2$.
 - (1) 证明: x_1 , x_2 也是方程 f(f(x)) = x 的两个根.
 - (2) 设 f(f(x)) = x 的另两个根为 x_3 和 x_4 ,试判断 x_1, x_2, x_3, x_4 的大小.

4. 设 $x \in \mathbf{R}$, [x] 表示不超过 x 的最大整数. 若存在实数 n, 使得 [t] = 1, $[t^2] = 2$, ..., $[t^n] = n$ 同时成立,求正整数 n 的最大值.

零点问题

1. 已知函数 $f(x) = \begin{cases} e^x - 2, & x \le 0, \\ \ln x, & x > 0 \end{cases}$, 讨论 $y = f[f(kx) + 1] + 1(k \ne 0)$ 的零点个数.

2. 若至少存在一个 $x(x \ge 0)$,使得关于 x 的不等式 $x^2 \le 4 - |2x - m|$ 成立,求实数 m 的取值范围

3. 已知定义在 \mathbf{R} 上的函数 $f(x) = \begin{cases} x^2+2, & x \in [0,1), \\ 2-x^2, & x \in [-1,0) \end{cases}$,且 f(x+2) = f(x),则方程 $g(x) = \frac{2x+5}{x+2}$ 在区间 [-5,1] 上所有实根之和为 ______.

4. 已知函数 $f(x)(x \in \mathbf{R})$ 满足 f(-x) = 2 - f(x),若函数 $y = \frac{x+1}{x}$ 与 y = f(x) 图像的交点为 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$,则 $\sum_{i=1}^n (x_i + y_i) = \underline{\qquad}$.

5. 已知函数 $f(x) = a \sin x + b \cos x (a, b \in \mathbf{Z})$, 且满足 $\{x | f(x) = 0\} = \{x | f(f(x)) = 0\}$, 求 a 的最大值.

- 6. 已知 a,b,c,d 是不全为 0 的实数,函数 $f(x) = bx^2 + cx + d, g(x) = ax^3 + bx^2 + cx + d$. 若方程 f(x) = 0 有实数根,且方程 f(x) = 0 的实数根都是 g(f(x)) = 0 的根;反之,方程 g(f(x)) = 0 的实数根都是 f(x) = 0 的实数根都是 f(x) = 0 的实数根.
 - (1) 求 d 的值;
 - (2) 若 a=0, 求 c 的取值范围;
 - (3) 若 a = 1, f(1) = 0,求 c 的取值范围.

- 7. 已知二次函数 $(x) = ax^2 + bx + c(a > 0)$,方程 f(x) = x 的两个根 x_1, x_2 满足 $0 < x_1 < x_2 < \frac{1}{a}$.
 - (1) 当 $x \in (0, x_1)$ 时,证明 $x < f(x) < x_1$;
 - (2) 设函数 f(x) 的图像关于直线 $x=x_0$ 对称, 证明 $x_0<\frac{x_1}{2}$

- 8. 己知函数 $f(x) = \frac{1}{|x+2|} + kx + b$, 其中 k, b 为实数且 $k \neq 0$.
 - (1) 当 k>0 时,根据定义证明 f(x) 在 $(-\infty,-2)$ 上是单调递减;
 - (2) 求使得函数 f(x) 有三个不同的零点的 b 的取值范围;

- 9. 设函数 $f(x) = x^2 + ax + b(a, b \in \mathbf{R})$.
 - (1) 当 $b = \frac{a^2 + 1}{4}$ 时, 求函数 f(x) 在 [0,1] 上的最小值 g(a) 的表达式;
 - (2) 已知函数 f(x) 在 [-1,1] 上存在零点, $0 \le b 2a \le 1$,求 b 的取值范围.

任意与恒成立问题

- 1. 已知函数 $f(x) = x^2 + 4|x a| (x \in \mathbf{R})$.
 - (1) 若存在实数 $x_1, x_2 \in [-1, 1]$, 使得 $f(x_1) = f(x_2)$, 求 a 的取值范围;
 - (2) 若对任意实数 x_1, x_2 , 都有 $|f(x_1) f(x_2)| \le k$ 成立, 求 k 的最小值.(用 a 表示)

- 2. 设函数 $f(x) = x |2x a|, g(x) = \frac{x^2 a}{x 1}, a > 0.$
 - (1) 当 a = 8 时,求 f(x) 在区间 [3,5] 上的值域;
 - (2) 若对任意的 $t \in [3,5]$, $\exists x_i \in [3,5] (i=1,2)$, 且 $x_1 \neq x_2$, 使 $f(x_i) = g(t)$, 求实数 a 的取值范围.

- 3. 设二次函数 $f(x) = ax^2 + bx + c(a, b, c \in \mathbf{R}, a \neq 0)$ 满足条件:
 - a. 当 $x \in \mathbf{R}$ 时, f(x-4) = f(2-x), 且 $f(x) \ge x$;
 - b. 当 $x \in (0,2)$ 时, $f(x) \le \left(\frac{x+1}{2}\right)^2$;
 - c. f(x) 在 R 上的最小值为 0.
 - (1) 求 f(x) 的解析式;
 - (2) 求最大值 m, 使得 $\exists t \in \mathbf{R}$, 对 $\forall x \in [1, m]$, 有 $f(x + t) \leq x$.

三角函数

1.
$$4\cos 50^{\circ} - \tan 40^{\circ} =$$
_____.

2. 设函数
$$f(x) = \cos(\omega x - \frac{\pi}{6})(\omega > 0)$$
 的最小正周期为 $\frac{\pi}{5}$,求其对称轴方程.

3. 已知函数
$$f(x) = \sin(\omega x + \frac{\pi}{3})(\omega > 0)$$
 在区间 $(0,\pi)$ 内无零点,其图像关于 $x = \frac{2\pi}{3}$ 对称,求 $f(x)$ 的解析式.

4. 已知函数 $f(x) = \sin(\omega x + \frac{\pi}{3})(\omega > 0)$ 的图像关于点 $(\frac{\pi}{3}, 0)$ 对称,且在 $(\frac{\pi}{4}, \frac{\pi}{2})$ 上只有两条对称轴,求 ω 的值.

5. 已知函数 $f(x) = \sin(\omega x + \varphi)(\omega > 0, -\frac{\pi}{2} < \varphi < \frac{\pi}{2}), x = -\frac{\pi}{4}$ 为 f(x) 的零点, $x = \frac{\pi}{4}$ 为 y = f(x) 的对称轴,且 f(x) 在区间 $\left(\frac{\pi}{18}, \frac{5\pi}{36}\right)$ 上单调,求 ω 的最大值.

6. 已知函数 $y=\sin(\omega x+\frac{\pi}{6})(\omega>0)$ 在区间 $(0,\frac{\pi}{2})$ 上有一个最高点和一个最低点,求 ω 的取值范围.

7. 己知函数 $f(x)=2\cos(\omega x+\frac{\pi}{6})(\omega>0)$ 在区间 $[-\frac{\pi}{6},\frac{\pi}{3}]$ 上单调递减,且在区间 $[0,\pi]$ 上有且仅有 1 个零点,求 ω 的取值范围.

8. 已知函数 $f(x) = \cos(\omega x + \varphi)(\omega > 0, -\frac{\pi}{2} < \varphi < 0)$, $\left| f(-\frac{\pi}{6}) \right| = 1, f(\frac{\pi}{6}) = 0$,且 f(x) 在区间 $\left(\frac{\pi}{6}, \frac{5\pi}{24} \right)$ 上单调,求 ω 的取值范围.