

Resumos das Aulas de CDI II¹

Curso: LEEC

 2° Semestre de 2021-2022

Norma, distância e bola

Definição: A norma de um vector $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ é o escalar

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

Propriedades da norma:

1) $||x|| \ge 0$ e ||x|| = 0 se e só se x = (0, 0, ..., 0);

2) $\|\alpha x\| = |\alpha| \|x\|$, para qualquer $\alpha \in \mathbb{R}$;

3) $||x + y|| \le ||x|| + ||y||$

Exercício: Mostre que as desigualdades

$$|x_i| \le ||x|| \le |x_1| + |x_2| + \dots + |x_n|$$

são válidas para qualquer $x=(x_1,x_2,...,x_n)\in\mathbb{R}^n$.

Definição: Chama-se distância entre dois pontos $x = (x_1, x_2, ..., x_n)$ e $y = (y_1, y_2, ..., y_n)$ de \mathbb{R}^n ao escalar

$$||x - y|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}.$$

Definição: Chama-se bola de centro $a \in \mathbb{R}^n$ e raio R > 0 ao conjunto dos pontos de \mathbb{R}^n cuja distância a a é inferior a R, ou seja

$$B_R(a) = \{x \in \mathbb{R}^n : ||x - a|| < R\}.$$

Bola de \mathbb{R}^2 com centro (a, b) e raio R

¹Coligidos por João Ferreira Alves

Interior exterior e fronteira

Definição: Dado um conjunto $D \subset \mathbb{R}^n$ e um ponto $a \in \mathbb{R}^n$, diz-se que:

- 1) O ponto a é interior a D, se existir R>0 tal que $B_{R}\left(a\right) \subset D.$
- 2) O ponto a exterior a D, se existir R > 0 tal que $B_R(a) \subset D^c$.
- 3) O ponto a é fronteiro a D, se não é interior nem exterior a D, ou seja

 $B_R(a) \cap D \neq \emptyset \wedge B_R(a) \cap D^c \neq \emptyset$, para qualquer R > 0.

Pontos interiores, exteriores e fronteiros a um conjunto $D \subset \mathbb{R}^2$

O interior, exterior e fronteira de um conjunto $D \subset \mathbb{R}^n$ definem-se respectivamente por:

$$\operatorname{int}(D) = \{ a \in \mathbb{R}^n : a \text{ \'e interior a } D \},$$

$$\operatorname{ext}(D) = \{ a \in \mathbb{R}^n : a \in \operatorname{exterior} a D \}$$

e

$$\partial\left(D\right) = \left\{a \in \mathbb{R}^n : a \text{ \'e fronteiro a } D\right\}.$$

Observação: Note-se que as igualdades:

- 1) $\mathbb{R}^n = \operatorname{int}(D) \overset{\circ}{\cup} \operatorname{ext}(D) \overset{\circ}{\cup} \partial(D);$
- 2) int $(D^c) = \operatorname{ext}(D)$;
- 3) $\operatorname{ext}(D^c) = \operatorname{int}(D);$
- 4) $\partial (D^c) = \partial (D)$

são válidas para qualquer conjunto $D \subset \mathbb{R}^n$.

Exemplo: Se $D = \{(x, y) \in \mathbb{R}^2 : x > 0\}$, então:

int
$$(D) = \{(x,y) \in \mathbb{R}^2 : x > 0\}$$
; ext $(D) = \{(x,y) \in \mathbb{R}^2 : x < 0\}$; $\partial(D) = \{(x,y) \in \mathbb{R}^2 : x = 0\}$.

Exemplo: Se $D = \{(x, y) \in \mathbb{R}^2 : y \ge x^2\}$, então:

$$\operatorname{int}(D) = \left\{ (x, y) \in \mathbb{R}^2 : y > x^2 \right\}; \, \operatorname{ext}(D) = \left\{ (x, y) \in \mathbb{R}^2 : y < x^2 \right\}; \, \partial(D) = \left\{ (x, y) \in \mathbb{R}^2 : y = x^2 \right\}.$$

Definição: Dado $D \subset \mathbb{R}^n$, chama-se fecho de D ao conjunto

$$\overline{D} = \operatorname{int}(D) \cup \partial(D)$$
.

Definição: Seja $D \subset \mathbb{R}^n$.

- 1) Diz-se que D é aberto se D = int(D).
- 2) Diz-se que D é fechado, se $D = \overline{D}$.

Três subconjuntos de \mathbb{R}^2 : A é aberto; B é fechado; C não é aberto nem fechado.

Exercício: Mostre que um conjunto $D \subset \mathbb{R}^n$ é aberto (resp. fechado) se e só se o seu complementar, D^c , é fechado (resp. aberto).

Exercício: Mostre que se dois conjuntos, $D_1, D_2 \subset \mathbb{R}^n$, são abertos (resp. fechados), então também $D_1 \cap D_2$ e $D_1 \cup D_2$ são abertos (resp. fechados).

Exercício: Identifique dois subconjuntos de \mathbb{R}^n que sejam simultaneamente abertos e fechados.

Definição: Seja $D \subset \mathbb{R}^n$.

1) Diz-se que D é limitado, se existir R > 0 tal que

$$||x|| < R$$
, para qualquer $x \in D$.

2) Diz-se que D é compacto, se D é limitado e fechado.

Sucessões em \mathbb{R}^n

Uma sucessão $(x_k)_{k\in\mathbb{N}}$, de termos em \mathbb{R}^n , é uma função que a cada $k\in\mathbb{N}$ faz corresponder um vector $x_k=(x_{k1},x_{k2},...,x_{kn})\in\mathbb{R}^n$.

Definição: Diz-se que uma sucessão $(x_k)_{k\in\mathbb{N}}$ de termos em \mathbb{R}^n converge para $a\in\mathbb{R}^n$, se, para qualquer $\delta>0$, existe $k_0\in\mathbb{N}$ tal que

$$x_k \in B_\delta(a)$$
, para qualquer $k > k_0$.

Para se dizer que uma sucessão $(x_k)_{k\in\mathbb{N}}$ de termos em \mathbb{R}^n converge para $a\in\mathbb{R}^n$, escreve-se

$$\lim x_k = a \text{ ou } x_k \to a.$$

Note-se que uma sucessão de termos em \mathbb{R}^n , $x_k = (x_{k1}, x_{k2}, ..., x_{kn})$, converge para $a = (a_1, a_2, ..., a_n)$ se e só se a sucessão real $||x_k - a||$ converge para 0. Se além disto, tivermos em conta que as desigualdades

$$|x_{kj} - aj| \le ||x_k - a|| \le |x_{k1} - a_1| + |x_{k2} - a_2| + \dots + |x_{kn} - a_n|$$

são válidas para $k \in \mathbb{N}$ e j = 1, ..., n, vemos que

$$x_k = (x_{k1}, x_{k2}, ..., x_{kn}) \to a = (a_1, a_2, ..., a_n)$$
 se e só se $x_{kj} \to a_j$, para qualquer $j = 1, ..., n$.

Exemplo:

1) A sucessão de termos em \mathbb{R}^2 , definida por $x_k = \left(\frac{1}{k}, \frac{k+1}{k}\right)$, converge para (0,1), já que

$$\frac{1}{k} \to 0 \text{ e } \frac{k+1}{k} \to 1.$$

2) A sucessão de termos em \mathbb{R}^3 , definida por $x_k=\left(\frac{1}{k},e^{-k},\frac{k}{1+k^2}\right)$, converge para (0,0,0), já que

$$\frac{1}{k} \to 0, e^{-k} \to 0 \text{ e } \frac{k}{1+k^2} \to 0.$$

3) A sucessão de termos em \mathbb{R}^2 , definida por $x_k = \left((-1)^k, \frac{k}{1+k^2} \right)$, não é convergente porque a sua primeira componente é uma sucessão real divergente.

Definição: Diz-se que uma sucessão $(x_k)_{k\in\mathbb{N}}$ de termos em \mathbb{R}^n é limitada se existe R>0 tal que

$$||x_k|| < R$$
, para qualquer $k \in \mathbb{N}$.

Exercício:

- 1) Mostre que uma sucessão $x_k = (x_{k1}, x_{k2}, ..., x_{kn})$ é limitada se e só se cada uma das suas componentes, x_{ki} , é uma sucessão limitada.
- 2) Mostre que se $x_k = (x_{k1}, x_{k2}, ..., x_{kn})$ é uma sucessão limitada e y_k é uma sucessão real convergente para zero, então a sucessão $z_k = y_k x_k$ converge para (0, 0, ..., 0).

Proposição: Um ponto $a \in \mathbb{R}^n$ pertence ao fecho de A sse existe uma sucessão (x_k) de termos em A tal que $x_k \to a$.

Proposição: Um conjunto $D \subset \mathbb{R}^n$ é fechado se e só se qualquer sucessão covergente de termos em D tem limite em D.

Funções definidas em \mathbb{R}^n

Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ um função com domínio D e com valores em \mathbb{R}^m .

Quando n=m diz-se que f é um campo vectorial. Quando m=1 diz-se que f é um campo escalar.

Uma função $f:D\subset\mathbb{R}^n\to\mathbb{R}^m$ fica definida pelas suas funções coordenadas

$$f_j: D \subset \mathbb{R}^n \to \mathbb{R}, \text{com } j = 1, ..., m,$$

que são os únicos campos escalares que verificam

$$f(x) = (f_1(x), f_2(x), ..., f_m(x))$$
, para qualquer $x \in D$.

Limite de uma função num ponto

Definição: Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ e $a \in \overline{D}$. Diz-se que f(x) tende para $b \in \mathbb{R}^m$ quando x converge para a, e escreve-se

$$\lim_{x \to a} f(x) = b,$$

se para qualquer $\delta > 0$ existe $\epsilon > 0$ tal que

$$f(x) \in B_{\delta}(b)$$
 para qualquer $x \in B_{\epsilon}(a)$.

Proposição: Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ e $a \in \overline{D}$. Então

$$\lim_{x \to a} f(x) = b$$

sse para toda a sucessão (x_k) de termos em D que converge para a se tem $\lim f(x_k) = b$.

Exercício: Seja $D = \mathbb{R}^2 \setminus \{(0,0)\}$ e $f: D \to \mathbb{R}$ a função definida por

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}.$$

- a) Mostre que f tem limite em (1,1).
- b) Mostre que f não tem limite em (0,0).

Proposição: Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}^m, \ a \in \overline{D} \in b = (b_1, ..., b_m)$. Então

$$\lim_{x \to a} f(x) = b \operatorname{sse} \lim_{x \to a} f_j(x) = b_j, \operatorname{para} j = 1, ..., m.$$

Exercício: Seja $D=\mathbb{R}^2\backslash\left\{(0,0)\right\}$ e $f:D\to\mathbb{R}^2$ a função definida por

$$f(x,y) = \left(\frac{\sin(x^2 + y^2)}{x^2 + y^2}, (x^2 + y^2) \ln(x^2 + y^2)\right).$$

Mostre que f tem limite em (0,0).

Continuidade

Definição: Diz-se que uma função $f:D\subset\mathbb{R}^n\to\mathbb{R}^m$ é contínua em $a\in D$, se

$$\lim_{x \to a} f(x) = f(a).$$

Se $A \subset D$, diz-se que f é contínua em A quando é contínua em qualquer ponto de A.

Proposição: Uma função $f:D\subset\mathbb{R}^n\to\mathbb{R}^m$ é contínua em $a\in D$, sse as suas funções coordenadas

$$f_j: D \subset \mathbb{R}^n \to \mathbb{R}, j = 1, ..., m,$$

são contínuas em a.

Exemplo:

- 1) Qualquer função constante $f:D\subset\mathbb{R}^n\to\mathbb{R}$ é contínua no seu domínio.
- 2) As projecções $\pi_i: \mathbb{R}^n \to \mathbb{R}$, definidas por

$$\pi_i\left(x_1, x_2, ..., x_n\right) = x_i$$

são contínuas em \mathbb{R}^n .

Proposição: Se duas funções $f:D\subset\mathbb{R}^n\to\mathbb{R}$ e $g:D\subset\mathbb{R}^n\to\mathbb{R}$ são contínuas em D, então:

- 1) As funções f + g e fg são contínuas em D;
- 2) A função f/g é contínua em $\{x \in D : g(x) \neq 0\}$.

Proposição: Se duas funções $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ e $g:B\subset\mathbb{R}^m\to\mathbb{R}^p$ são contínuas nos seus domínios e $f(A)\subset B$, então a função $g\circ f:A\subset\mathbb{R}^n\to\mathbb{R}^p$ é contínua em A.

Exemplo: Mostre que as funções $f: \mathbb{R}^2 \to \mathbb{R}$ e $g: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$, definidas por

$$f(x,y) = e^{x^2+5y} \in g(x,y) = \frac{\sin(x^2+y^2)}{x^2+y^2},$$

são contínuas nos seus domínios.

Exercício: Mostre que se duas funções, $f:D\subset\mathbb{R}^n\to\mathbb{R}^m$ e $g:E\subset\mathbb{R}^m\to\mathbb{R}^m$, coincidem num conjunto **aberto** $A\subset D\cap E$ e g é contínua em A, então também f é contínua em A.

Exercício: Determine o conjunto dos pontos de continuidade da função $f: \mathbb{R}^2 \to \mathbb{R}$, definida por

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}.$$

Transformaçãoes lineares/afins

Recorde que:

1) Uma aplicação $L: \mathbb{R}^n \to \mathbb{R}^m$ diz-se linear se:

$$L\left(x+y\right)=L\left(x\right)+L\left(y\right) \text{ e }L\left(\alpha x\right)=\alpha L\left(x\right), \text{ para quaisquer }x,y\in\mathbb{R}^{n},\ \alpha\in\mathbb{R}.$$

2) Uma aplicação $L: \mathbb{R}^n \to \mathbb{R}^m$, com funções coordenadas

$$L_1: \mathbb{R}^n \to \mathbb{R}, L_2: \mathbb{R}^n \to \mathbb{R}, ..., L_m: \mathbb{R}^n \to \mathbb{R},$$

é linear se e só se existem números reais a_{ij} , com $i \in \{1, ..., m\}$ e $j \in \{1, ..., n\}$, tais que

$$L_i(x_1,...,x_n) = a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n,$$

ou de forma equivalente

$$\begin{bmatrix} L_1(x_1, ..., x_n) \\ L_2(x_1, ..., x_n) \\ \vdots \\ L_m(x_1, ..., x_n) \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

À matriz

$$M = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

chama-se matriz que representa L em relação às bases canónicas de \mathbb{R}^n e \mathbb{R}^m .

3) Uma aplicação $g: \mathbb{R}^n \to \mathbb{R}^m$ diz-se **afim** se existir um vector $\mathbf{c} \in \mathbb{R}^m$ e uma aplicação linear $L: \mathbb{R}^n \to \mathbb{R}^m$ tais que

$$g(\mathbf{x}) = \mathbf{c} + L(\mathbf{x})$$
, para qualquer $\mathbf{x} \in \mathbb{R}^n$,

ou por outras palavras: se existir uma aplicação linear $L: \mathbb{R}^n \to \mathbb{R}^m$ tal que

$$q(\mathbf{x}) = q(\mathbf{a}) + L(\mathbf{x} - \mathbf{a})$$
, para quaisquer $\mathbf{a}, \mathbf{x} \in \mathbb{R}^n$.

Exercício: Mostre que qualquer aplicação linear (ou afim) $g: \mathbb{R}^n \to \mathbb{R}^m$ é contínua em qualquer ponto do seu domínio.

Gráfico de uma função

Dada uma função $f:D\subset\mathbb{R}^n\to\mathbb{R}^m,$ chama-se gráfico de f ao subconjunto de \mathbb{R}^{n+m} definido por

$$G(f) = \{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{n+m} : \mathbf{x} \in D \land f(\mathbf{x}) = \mathbf{y}\}.$$

Exemplo: O gráfico da aplicação linear $f: \mathbb{R}^2 \to \mathbb{R}$, definida por f(x,y) = x + y, é o plano de equação cartesiana x + y - z = 0, já que

$$G(f) = \{(x, y, z) \in \mathbb{R}^3 : f(x, y) = z\} = \{(x, y, z) \in \mathbb{R}^3 : x + y = z\}.$$

Exemplo: O gráfico da aplicação afim $f: \mathbb{R}^2 \to \mathbb{R}$, definida por f(x,y) = 1 + x - y, é o plano de equação cartesiana x - y - z = -1, já que

$$G(f) = \{(x, y, z) \in \mathbb{R}^3 : f(x, y) = z\} = \{(x, y, z) \in \mathbb{R}^3 : 1 + x - y = z\}.$$

Exemplo: O gráfico da aplicação $f: \mathbb{R}^2 \to \mathbb{R}$, definida por $f(x,y) = x^2 + y^2$, é o parabolóide de equação cartesiana $x^2 + y^2 = z$, já que

$$G(f) = \{(x, y, z) \in \mathbb{R}^3 : f(x, y) = z\} = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z\}.$$

Exemplo: O gráfico da aplicação $f: \mathbb{R}^2 \to \mathbb{R}$, definida por $f(x,y) = \sqrt{x^2 + y^2}$, é a superfície cónica de equação cartesiana $\sqrt{x^2 + y^2} = z$, já que

$$G(f) = \{(x, y, z) \in \mathbb{R}^3 : f(x, y) = z\} = \{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} = z\}.$$

$$f\left(x,y\right) = x + y$$

$$f\left(x,y\right) = 1 + x - y$$

$$f\left(x,y\right) = x^2 + y^2$$

$$f\left(x,y\right) = \sqrt{x^2 + y^2}$$

Derivadas direccionais e derivadas parciais

Definição: Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}$, $\mathbf{a} \in \text{int}(D)$ e $\mathbf{v} \in \mathbb{R}^n$. Ao limite

$$\lim_{t\to 0} \frac{f(\mathbf{a}+t\mathbf{v})-f(\mathbf{a})}{t},$$

quando existe, chama-se derivada de f no ponto \mathbf{a} segundo o vector \mathbf{v} , e designa-se por qualquer dos símbolos $\frac{\partial f}{\partial \mathbf{v}}(\mathbf{a})$, $D_{\mathbf{v}}f(\mathbf{a})$ ou $f'_{\mathbf{v}}(\mathbf{a})$. No caso do vector $\mathbf{v} \in \mathbb{R}^n$ ser unitário ($\|\mathbf{v}\| = 1$), diz-se que $D_{\mathbf{v}}f(\mathbf{a})$ é a derivada direccional de f no ponto \mathbf{a} , na direcção e sentido de \mathbf{v} .

De forma equivalente, pode-se escrever

$$D_{\mathbf{v}}f\left(\mathbf{a}\right) = \varphi_{\mathbf{v}}'\left(0\right),$$

onde $\varphi'_{\mathbf{v}}$ designa a derivada da função real de variável real, definida por

$$\varphi_{\mathbf{v}}(t) = f(\mathbf{a} + t\mathbf{v})$$

Assim, a derivação segundo um vector arbitrário pode reduzir-se à derivação ordinária de uma função real de variável real.

Exemplo: Para a função $f: \mathbb{R}^2 \to \mathbb{R}$, definida por $f(x,y) = x^2y$, teremos

$$D_{(1,1)}f(2,3) = \varphi'_{(1,1)}(0)$$
, com $\varphi_{(1,1)}(t) = f(2+t,3+t) = (2+t)^2(3+t)$.

Como $\varphi'_{(1,1)}(t) = 2(2+t)(3+t) + (2+t)^2$, obtém-se $\varphi'_{(1,1)}(0) = 16$, pelo que

$$D_{(1,1)}f(2,3) = 16.$$

Exemplo: Para a função $f: \mathbb{R}^3 \to \mathbb{R}$, definida por $f(x, y, z) = \sin(xy) + \cos(yz)$, teremos

$$D_{(0,2,1)}f(1,0,0) = \varphi'(0)$$
, com $\varphi_{(0,2,1)}(t) = f(1,2t,t) = \sin(2t) + \cos(2t^2)$.

Como $\varphi'_{(0,2,1)}(t) = 2\cos(2t) - 4t\sin(2t^2)$, obtém-se $\varphi'_{(0,2,1)}(0) = 2$, pelo que

$$D_{(0,2,1)}f(1,0,0) = 2.$$

Definição: Dada uma função $f: D \subset \mathbb{R}^n \to \mathbb{R}$, define-se *i*-ésima derivada parcial de f em $\mathbf{a} \in \text{int}(D)$, com i = 1, ..., n, como sendo a derivada de f no ponto \mathbf{a} segundo o *i*-ésimo vector da base canónica de \mathbb{R}^n , ou seja

$$\frac{\partial f}{\partial x_i}(\mathbf{a}) = D_{\mathbf{e}_i} f(\mathbf{a}), \text{ para } i = 1, ..., n,$$

com $\mathbf{e}_1 = (1, 0, ..., 0), \mathbf{e}_2 = (0, 1, ..., 0), ..., \mathbf{e}_n = (0, 0, ..., 1).$

Exemplo: Para a função $f: \mathbb{R}^2 \to \mathbb{R}$, definida por $f(x,y) = x^2y$, teremos

$$\frac{\partial f}{\partial x}(a,b) = \varphi'_{(1,0)}(0) e \frac{\partial f}{\partial y}(a,b) = \varphi'_{(0,1)}(0)$$

com

$$\varphi_{(1,0)}(t) = f(a+t,b) = (a+t)^2 b \in \varphi_{(0,1)}(t) = f(a,b+t) = a^2 (b+t)$$

Como $\varphi_{(1,0)}'\left(t\right)=2\left(a+t\right)b$ e $\varphi_{(0,1)}'\left(t\right)=a^{2}$ obtém-se

$$\frac{\partial f}{\partial x}(a,b) = \varphi'_{(1,0)}(0) = 2ab \ e \ \frac{\partial f}{\partial y}(a,b) = \varphi'_{(0,1)}(0) = a^2.$$

Ou seja, as derivadas parciais de f estão definidas em qualquer $(x,y) \in \mathbb{R}^2$ e são dadas por

$$\frac{\partial f}{\partial x}(x,y) = 2xy \in \frac{\partial f}{\partial y}(x,y) = x^2.$$

Exemplo: Para a função $f: \mathbb{R}^3 \to \mathbb{R}$, definida por $f(x, y, z) = \sin(xy) + \cos(yz)$, teremos

$$\frac{\partial f}{\partial x}\left(a,b,c\right) = \varphi'_{(1,0,0)}\left(0\right), \frac{\partial f}{\partial y}\left(a,b,c\right) = \varphi'_{(0,1,0)}\left(0\right) \in \frac{\partial f}{\partial z}\left(a,b,c\right) = \varphi'_{(0,0,1)}\left(0\right),$$

com:

$$\begin{array}{lcl} \varphi_{(1,0,0)}\left(t\right) & = & f\left(a+t,b,c\right) & = & \sin\left(\left(a+t\right)b\right) + \cos\left(bc\right); \\ \varphi_{(0,1,0)}\left(t\right) & = & f\left(a,b+t,c\right) & = & \sin\left(a\left(b+t\right)\right) + \cos\left(\left(b+t\right)c\right); \\ \varphi_{(0,0,1)}\left(t\right) & = & f\left(a,b,c+t\right) & = & \sin\left(ab\right) + \cos\left(b\left(c+t\right)\right). \end{array}$$

Como

$$\varphi'_{(1,0,0)}(t) = b\cos((a+t)b)
\varphi'_{(0,1,0)}(t) = a\cos(a(b+t)) - c\sin((b+t)c)
\varphi'_{(0,0,1)}(t) = -b\sin(b(c+t))$$

obtém-se:

$$\begin{array}{lcl} \frac{\partial f}{\partial x} \left(a, b, c \right) & = & \varphi'_{(1,0,0)} \left(0 \right) & = & b \cos \left(ab \right); \\ \frac{\partial f}{\partial y} \left(a, b, c \right) & = & \varphi'_{(0,1,0)} \left(0 \right) & = & a \cos \left(ab \right) - c \sin \left(bc \right); \\ \frac{\partial f}{\partial z} \left(a, b, c \right) & = & \varphi'_{(0,0,1)} \left(0 \right) & = & -b \sin \left(bc \right). \end{array}$$

Ou seja, as derivadas parciais de f estão definidas em qualquer $(x,y,z)\in\mathbb{R}^3$ e são dadas por

$$\frac{\partial f}{\partial x}(x,y,z) = y\cos(xy), \frac{\partial f}{\partial y}(x,y,z) = x\cos(xy) - z\sin(yz) e \frac{\partial f}{\partial z}(x,y,z) = -y\sin(yz).$$

Note-se que a derivada de uma função vectorial $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ num ponto $\mathbf{a} \in \text{int}(D)$ segundo um vector $\mathbf{v} \in \mathbb{R}^n$ define-se de forma análoga:

$$Df_{\mathbf{v}}(\mathbf{a}) = \lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{v}) - f(\mathbf{a})}{t}$$
$$= (Df_{1\mathbf{v}}(\mathbf{a}), ..., Df_{m\mathbf{v}}(\mathbf{a})).$$

Em particular, a i-ésima derivada parcial de f no ponto \mathbf{a} é definida por

$$\frac{\partial f}{\partial x_i}(\mathbf{a}) = \left(\frac{\partial f_1}{\partial x_i}(\mathbf{a}), \frac{\partial f_2}{\partial x_i}(\mathbf{a}), ..., \frac{\partial f_m}{\partial x_i}(\mathbf{a})\right).$$

Matriz jacobiana

Definição: Dada uma aplicação $f:D\subset\mathbb{R}^n\to\mathbb{R}^m$ com derivadas parciais num ponto $\mathbf{a}\in\mathrm{int}\,(D)$, define-se matriz jacobiana de f no ponto \mathbf{a} como sendo

$$Df(a) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{a}) & \frac{\partial f_1}{\partial x_2}(\mathbf{a}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{a}) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{a}) & \frac{\partial f_2}{\partial x_2}(\mathbf{a}) & \cdots & \frac{\partial f_2}{\partial x_n}(\mathbf{a}) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{a}) & \frac{\partial f_m}{\partial x_2}(\mathbf{a}) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{a}) \end{bmatrix}.$$

Por abuso de linguagem, usamos a mesma notação para designar a transformação linear $Df(\mathbf{a}): \mathbb{R}^n \to \mathbb{R}^m$ que relativamente às base canónicas de \mathbb{R}^n e \mathbb{R}^m é representada pela matriz jacobiana, ou seja

$$Df(\mathbf{a})(x_{1},...,x_{n}) = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\mathbf{a}) & \frac{\partial f_{1}}{\partial x_{2}}(\mathbf{a}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{a}) \\ \frac{\partial f_{2}}{\partial x_{1}}(\mathbf{a}) & \frac{\partial f_{2}}{\partial x_{2}}(\mathbf{a}) & \cdots & \frac{\partial f_{2}}{\partial x_{n}}(\mathbf{a}) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\mathbf{a}) & \frac{\partial f_{m}}{\partial x_{2}}(\mathbf{a}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\mathbf{a}) \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\mathbf{a}) x_{1} + \cdots + \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{a}) x_{n} \\ \frac{\partial f_{2}}{\partial x_{1}}(\mathbf{a}) x_{1} + \cdots + \frac{\partial f_{m}}{\partial x_{n}}(\mathbf{a}) x_{n} \\ \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\mathbf{a}) x_{1} + \cdots + \frac{\partial f_{m}}{\partial x_{n}}(\mathbf{a}) x_{n} \end{bmatrix},$$

para qualquer $(x_1, ..., x_n) \in \mathbb{R}^n$.

Exemplo: Para a aplicação $f: \mathbb{R}^2 \to \mathbb{R}$, definida por $f(x_1, x_2) = x_1 x_2$, tem-se

$$\frac{\partial f}{\partial x_1}(x_1, x_2) = x_2 e \frac{\partial f}{\partial x_2}(x_1, x_2) = x_1,$$

pelo que

$$Df(a_1, a_2) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(a_1, a_2) & \frac{\partial f}{\partial x_2}(a_1, a_2) \end{bmatrix} = \begin{bmatrix} a_2 & a_1 \end{bmatrix}$$

e

$$Df(a_1, a_2)(x_1, x_2) = a_2x_1 + a_1x_2$$
, para qualquer $(x_1, x_2) \in \mathbb{R}^2$.

Exemplo: Para a aplicação $f:\{(x_1,x_2)\in\mathbb{R}^2:x_2\neq 0\}\to\mathbb{R}$, definida por $f(x_1,x_2)=\frac{x_1}{x_2}$,

tem-se

$$\frac{\partial f}{\partial x_1}(x_1, x_2) = \frac{1}{x_2} e \frac{\partial f}{\partial x_2}(x_1, x_2) = -\frac{x_1}{x_2^2},$$

pelo que

$$Df\left(a_{1}, a_{2}\right) = \begin{bmatrix} \frac{\partial f}{\partial x_{1}}\left(a_{1}, a_{2}\right) & \frac{\partial f}{\partial x_{2}}\left(a_{1}, a_{2}\right) \end{bmatrix} = \begin{bmatrix} \frac{1}{a_{2}} & -\frac{a_{1}}{a_{2}^{2}} \end{bmatrix}$$

e

$$Df(a_1, a_2)(x_1, x_2) = \frac{x_1}{a_2} - \frac{a_1 x_2}{a_2^2}$$
, para qualquer $(x_1, x_2) \in \mathbb{R}^2$.

Exemplo: Para a aplicação $f: \mathbb{R}^2 \to \mathbb{R}^2$, definida por $f(x_1, x_2) = (\sin(x_1 x_2), \cos(x_1 + x_2))$, tem-se

$$\frac{\partial f_1}{\partial x_1}(x_1, x_2) = x_2 \cos(x_1 x_2), \ \frac{\partial f_1}{\partial x_2}(x_1, x_2) = x_1 \cos(x_1 x_2)$$

e

$$\frac{\partial f_2}{\partial x_1}(x_1, x_2) = \frac{\partial f_2}{\partial x_2}(x_1, x_2) = -\sin(x_1 + x_2),$$

pelo que

$$Df(a_1, a_2) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} (a_1, a_2) & \frac{\partial f_1}{\partial x_2} (a_1, a_2) \\ \frac{\partial f_2}{\partial x_1} (a_1, a_2) & \frac{\partial f_1}{\partial x_2} (a_1, a_2) \end{bmatrix} = \begin{bmatrix} a_2 \cos(a_1 a_2) & a_1 \cos(a_1 a_2) \\ -\sin(a_1 + a_2) & -\sin(a_1 + a_2) \end{bmatrix}$$

e

 $Df(a_1, a_2)(x_1, x_2) = (a_2 \cos(a_1 a_2) x_1 + a_1 \cos(a_1 a_2) x_2, -\sin(a_1 + a_2) x_1 - \sin(a_1 + a_2) x_2),$ para qualquer $(x_1, x_2) \in \mathbb{R}^2$.

Exercício:

1) Mostre que se $f: \mathbb{R}^n \to \mathbb{R}^m$ é uma aplicação linear, então

$$Df(a) = f$$
, para qualquer $a \in \mathbb{R}^n$.

2) Mostre que se $f: \mathbb{R}^n \to \mathbb{R}^m$ é uma aplicação afim, então a aplicação $g: \mathbb{R}^n \to \mathbb{R}^m$, definida por $g(\mathbf{x}) = f(\mathbf{x}) - f(0)$, é linear e

$$Df(a) = g$$
, para qualquer $a \in \mathbb{R}^n$.

Gradiente de um campo escalar

Se uma aplicação $f: D \subset \mathbb{R}^n \to \mathbb{R}$ tem derivadas parciais num ponto $\mathbf{a} \in \text{int}(D)$, chama-se gradiente de f no ponto \mathbf{a} ao vector de \mathbb{R}^n definido por

$$\nabla f(\mathbf{a}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{a}), \frac{\partial f}{\partial x_2}(\mathbf{a}), ..., \frac{\partial f}{\partial x_n}(\mathbf{a})\right).$$

Se tivermos em conta que produto interno dos vectores $\nabla f(\mathbf{a})$ e $(x_1,...,x_n)$ é dado por

$$\nabla f(\mathbf{a}) \cdot (x_1, ..., x_n) = \frac{\partial f}{\partial x_1}(\mathbf{a}) x_1 + \frac{\partial f}{\partial x_2}(\mathbf{a}) x_2 + \dots + \frac{\partial f}{\partial x_n}(\mathbf{a}) x_n,$$

obtem-se

$$Df(a)(x_1,...,x_n) = \nabla f(\mathbf{a}) \cdot (x_1,...,x_n)$$
, para qualquer $(x_1,...,x_n) \in \mathbb{R}^n$.

Diferenciabilidade

Definição: Uma aplicação $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável num ponto $\mathbf{a} \in \operatorname{int}(D)$ se existir uma aplicação linear $L_{\mathbf{a}}: \mathbb{R}^n \to \mathbb{R}^m$ tal que

$$\lim_{\mathbf{h}\to 0} \frac{\|f(\mathbf{a}+\mathbf{h}) - f(\mathbf{a}) - L_{\mathbf{a}}(\mathbf{h})\|}{\|\mathbf{h}\|} = 0,$$

ou de forma equivalente,

$$\lim_{\mathbf{x}\to\mathbf{a}} \frac{\|f(\mathbf{x}) - f(\mathbf{a}) - L_{\mathbf{a}}(\mathbf{x} - \mathbf{a})\|}{\|\mathbf{x} - \mathbf{a}\|} = 0.$$

Proposição: Se $f:D\subset\mathbb{R}^n\to\mathbb{R}^m$ é diferenciável num ponto $\mathbf{a}\in\mathrm{int}\,(D),$ então f é contínua em $\mathbf{a}.$

Proposição: Se $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável em $\mathbf{a} \in \text{int}(D)$, então f tem derivada em \mathbf{a} segundo qualquer vector $\mathbf{v} \in \mathbb{R}^n$ e

$$\frac{\partial f}{\partial \mathbf{v}}(\mathbf{a}) = L_{\mathbf{a}}(\mathbf{v}).$$

Corolário: Se $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável em $\mathbf{a} \in \operatorname{int}(D)$, então a aplicação linear $L_{\mathbf{a}}: \mathbb{R}^n \to \mathbb{R}^m$ é (em relação às bases canónicas de \mathbb{R}^n e \mathbb{R}^m) representada pela matriz jacobiana de f no ponto \mathbf{a} , ou seja $Df(\mathbf{a}) = L_{\mathbf{a}}$. Em particular, tem-se

$$\frac{\partial f}{\partial \mathbf{v}}(\mathbf{a}) = Df(\mathbf{a})(\mathbf{v}), \text{ para qualquer } \mathbf{v} \in \mathbb{R}^n.$$

Quando f é diferenciável num ponto \mathbf{a} , a aplicação linear $Df(\mathbf{a}): \mathbb{R}^n \to \mathbb{R}^m$ é chamada de derivada de f no ponto \mathbf{a} .

Teorema: Uma aplicação $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável num ponto $\mathbf{a} \in \text{int}(D)$ se e só se possui derivadas parciais no ponto \mathbf{a} e

$$\lim_{\mathbf{h}\to 0} \frac{\|f(\mathbf{a}+\mathbf{h}) - f(\mathbf{a}) - Df(\mathbf{a})(\mathbf{h})\|}{\|\mathbf{h}\|} = 0,$$

ou de forma equivalente,

$$\lim_{\mathbf{x}\to\mathbf{a}} \frac{\|f(\mathbf{x}) - f(\mathbf{a}) - Df(\mathbf{a})(\mathbf{x} - \mathbf{a})\|}{\|\mathbf{x} - \mathbf{a}\|} = 0.$$

Exemplos:

- 1) Qualquer aplicação constante $f: \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável em qualquer ponto $\mathbf{a} \in \mathbb{R}^n$ e $Df(\mathbf{a}) = 0$.
- 2) Qualquer aplicação linear $f: \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável em qualquer ponto $\mathbf{a} \in \mathbb{R}^n$ e $Df(\mathbf{a}) = f$.
- 3) Qualquer aplicação afim $f: \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável em qualquer ponto $\mathbf{a} \in \mathbb{R}^n$ e $Df(\mathbf{a}) = f f(0)$.

Exemplo: A aplicação $f: \mathbb{R}^2 \to \mathbb{R}$, definida por $f(x_1, x_2) = x_1 x_2$, é diferenciável em qualquer ponto $\mathbf{a} = (a_1, a_2) \in \mathbb{R}^2$. Com efeito, de

$$Df\left(\mathbf{a}\right)\left(\mathbf{h}\right) = \begin{bmatrix} \frac{\partial f}{\partial x_1}\left(a_1, a_2\right) & \frac{\partial f}{\partial x_2}\left(a_1, a_2\right) \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = \begin{bmatrix} a_2 & a_1 \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = a_2h_1 + a_1h_2,$$

obtemos

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) - Df(\mathbf{a})(\mathbf{h}) = (a_1 + h_1)(a_2 + h_2) - a_1a_2 - (a_2h_1 + a_1h_2) = h_1h_2,$$

pelo que

$$\frac{|f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) - Df(\mathbf{a})(\mathbf{h})|}{\|\mathbf{h}\|} = \frac{|h_1 h_2|}{\sqrt{h_1^2 + h_2^2}} \le \sqrt{h_1^2 + h_2^2}.$$

Logo

$$0 \le \lim_{\mathbf{h} \to 0} \frac{\left| f\left(\mathbf{a} + \mathbf{h}\right) - f\left(\mathbf{a}\right) - Df\left(\mathbf{a}\right)\left(\mathbf{h}\right) \right|}{\|\mathbf{h}\|} \le \lim_{\mathbf{h} \to 0} \sqrt{h_1^2 + h_2^2} = 0,$$

donde se deduz

$$\lim_{\mathbf{h}\to 0} \frac{\left|f\left(\mathbf{a}+\mathbf{h}\right)-f\left(\mathbf{a}\right)-Df\left(\mathbf{a}\right)\left(\mathbf{h}\right)\right|}{\|\mathbf{h}\|} = 0.$$

Exemplo: A aplicação $f: D = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 \neq 0\} \to \mathbb{R}$, definida por $f(x_1, x_2) = \frac{x_1}{x_2}$, é diferenciável em qualquer ponto $\mathbf{a} = (a_1, a_2) \in D$. Com efeito, de

$$Df\left(\mathbf{a}\right)\left(\mathbf{h}\right) = \begin{bmatrix} \frac{\partial f}{\partial x_{1}}\left(a_{1}, a_{2}\right) & \frac{\partial f}{\partial x_{2}}\left(a_{1}, a_{2}\right) \end{bmatrix} \begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{a_{2}} & -\frac{a_{1}}{a_{2}^{2}} \end{bmatrix} \begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix} = \frac{h_{1}}{a_{2}} - \frac{a_{1}h_{2}}{a_{2}^{2}},$$

obtemos

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) - Df(\mathbf{a})(\mathbf{h}) = \frac{a_1 + h_1}{a_2 + h_2} - \frac{a_1}{a_2} - \frac{h_1}{a_2} + \frac{a_1 h_2}{a_2^2} = \frac{a_1 h_2^2 - h_1 h_2 a_2}{a_2^2 (a_2 + h_2)},$$

pelo que

$$\frac{|f(\mathbf{a}+\mathbf{h}) - f(\mathbf{a}) - Df(\mathbf{a})(\mathbf{h})|}{\|\mathbf{h}\|} = \frac{|a_1 h_2^2 - h_1 h_2 a_2|}{|a_2^2 (a_2 + h_2)| \sqrt{h_1^2 + h_2^2}} \\
\leq \frac{|a_1 h_2^2| + |h_1 h_2 a_2|}{|a_2^2 (a_2 + h_2)| \sqrt{h_1^2 + h_2^2}} \\
= \frac{|a_1| (h_1^2 + h_2^2) + |a_2| (h_1^2 + h_2^2)}{|a_2^2 (a_2 + h_2)| \sqrt{h_1^2 + h_2^2}} \\
= \frac{|a_1| + |a_2|}{|a_2^2 (a_2 + h_2)|} \sqrt{h_1^2 + h_2^2}.$$

Logo

$$0 \le \lim_{\mathbf{h} \to 0} \frac{|f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) - Df(\mathbf{a})(\mathbf{h})|}{\|\mathbf{h}\|} \le \lim_{\mathbf{h} \to 0} \frac{|a_1| + |a_2|}{|a_2^2(a_2 + h_2)|} \sqrt{h_1^2 + h_2^2} = 0,$$

donde se deduz

$$\lim_{\mathbf{h}\to 0} \frac{\left|f\left(\mathbf{a}+\mathbf{h}\right)-f\left(\mathbf{a}\right)-Df\left(\mathbf{a}\right)\left(\mathbf{h}\right)\right|}{\|\mathbf{h}\|} = 0.$$

Teorema: Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}$ uma aplicação com derivadas parciais em qualquer ponto dum conjunto aberto $A \subset D$. Se as aplicações

$$\frac{\partial f}{\partial x_1}: A \to \mathbb{R}, \quad \frac{\partial f}{\partial x_2}: A \to \mathbb{R}, \dots, \quad \frac{\partial f}{\partial x_n}: A \to \mathbb{R}$$

são contínuas num ponto $\mathbf{a} \in A$, então f é diferenciável em \mathbf{a} .

Exemplo: A aplicação $f: \mathbb{R}^2 \to \mathbb{R}$, definida por

$$f\left(x,y\right) = \sin^2\left(xy^3\right),\,$$

é diferenciável em qualquer ponto de \mathbb{R}^2 , já que as suas derivadas parciais,

$$\frac{\partial f}{\partial x}(x,y) = 2y^3 \sin(xy^3) \cos(xy^3) = \frac{\partial f}{\partial y}(x,y) = 6xy^2 \sin(xy^3) \cos(xy^3),$$

são aplicações contínuas em \mathbb{R}^2 .

Exemplo: A aplicação $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$, definida por

$$f(x,y) = \ln^3(x^2 + y^4)$$
,

é diferenciável em qualquer ponto do seu domínio, já que as suas derivadas parciais,

$$\frac{\partial f}{\partial x}(x,y) = \frac{6x \ln^2(x^2 + y^4)}{x^2 + y^4} e \frac{\partial f}{\partial y}(x,y) = \frac{12y^3 \ln^2(x^2 + y^4)}{x^2 + y^4},$$

são aplicações contínuas em $\mathbb{R}^2 \setminus \{(0,0)\}.$

Definição: Dado um aberto $D \subset \mathbb{R}^n$, diz-se que uma função $f: D \to \mathbb{R}^m$ é de classe C^1 , e escreve-se $f \in C^1$, se as derivadas parciais de f existem e são contínuas em qualquer ponto de D. Ou de forma equivalente, se as derivadas parciais das funções coordenadas, $f_1, f_2,..., f_m$ existem e são contínuas em qualquer ponto de D.

Proposição: Uma aplicação $f:D\subset\mathbb{R}^n\to\mathbb{R}^m$ é diferenciável num ponto $\mathbf{a}\in\mathrm{int}\,(D)$ se e só cada uma das suas aplicações coordenadas é diferenciável no mesmo ponto.

Corolário: Se $D \subset \mathbb{R}^n$ é aberto, qualquer aplicação $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ de classe C^1 é diferenciável em qualquer ponto de D.

Exemplo: A aplicação $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$, definida por

$$f(x,y) = (\sin^2(xy^3), \ln^3(x^2 + y^4)),$$

é diferenciável em qualquer ponto do seu domínio, já que, pelo que vimos nos exemplos anteriores, a aplicação f é de classe C^1 .

Derivação da função composta (regra da cadeia)

Teorema: Se $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável em $\mathbf{a} \in \operatorname{int}(A)$ e $g: B \subset \mathbb{R}^m \to \mathbb{R}^p$ é diferenciável em $f(\mathbf{a}) \in \operatorname{int}(B)$, então a função composta $g \circ f: D \subset \mathbb{R}^n \to \mathbb{R}^p$, com domínio $D = \{\mathbf{x} \in A: f(\mathbf{x}) \in B\}$, é diferenciável em $\mathbf{a} \in \operatorname{int}(D)$ e

$$D(g \circ f)(\mathbf{a}) = Dg(\mathbf{b}) \circ Df(\mathbf{a}), \text{ com } \mathbf{b} = f(\mathbf{a}).$$

Consequentemente, a matriz jacobiana de $h = g \circ f$ no ponto **a** relaciona-se com as matrizes jacobianas de f e g nos pontos **a** e **b** (respectivamente) através da igualdade

$$\begin{bmatrix} \frac{\partial h_1}{\partial x_1}(\mathbf{a}) & \cdots & \frac{\partial h_1}{\partial x_n}(\mathbf{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial h_m}{\partial x_1}(\mathbf{a}) & \cdots & \frac{\partial h_m}{\partial x_n}(\mathbf{a}) \end{bmatrix} = \begin{bmatrix} \frac{\partial g_1}{\partial y_1}(\mathbf{b}) & \cdots & \frac{\partial g_1}{\partial y_m}(\mathbf{b}) \\ \vdots & \ddots & \vdots \\ \frac{\partial g_p}{\partial y_1}(\mathbf{b}) & \cdots & \frac{\partial g_p}{\partial y_m}(\mathbf{b}) \end{bmatrix} \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{a}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{a}) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{a}) \end{bmatrix}$$

que por sua vez é equivalente à fórmula

$$\frac{\partial h_i}{\partial x_j}(\mathbf{a}) = \frac{\partial g_i}{\partial y_1}(\mathbf{b}) \frac{\partial f_1}{\partial x_j}(\mathbf{a}) + \frac{\partial g_i}{\partial y_2}(\mathbf{b}) \frac{\partial f_2}{\partial x_j}(\mathbf{a}) + \dots + \frac{\partial g_i}{\partial y_m}(\mathbf{b}) \frac{\partial f_m}{\partial x_j}(\mathbf{a}),$$

válida para i = 1, ..., m; j = 1, ..., n, e habitualmete conhecida por regra da cadeia.

Exemplo: As funções $f : \mathbb{R}^2 \to \mathbb{R}^2$ e $g : \{(y_1, y_2) \in \mathbb{R}^2 : y_1 + 2y_2 > 0\} \to \mathbb{R}^3$, definidas por $f(x_1, x_2) = (e^{x_1 - x_2}, x_1 - x_2)$ e $g(y_1, y_2) = (y_1 + \arctan(y_2), y_1 + 2e^{y_2}, \ln(y_1 + 2y_2))$, são de classe C^1 , já que as derivadas parciais de f_1 e f_2 ,

$$\frac{\partial f_1}{\partial x_1}(x_1, x_2) = e^{x_1 - x_2}, \quad \frac{\partial f_1}{\partial x_2}(x_1, x_2) = -e^{x_1 - x_2},$$

$$\frac{\partial f_2}{\partial x_1}(x_1, x_2) = 1, \qquad \frac{\partial f_2}{\partial x_2}(x_1, x_2) = -1,$$

e de g_1 , g_2 e g_3

$$\frac{\partial g_1}{\partial y_1} (y_1, y_2) = 1, \qquad \frac{\partial g_1}{\partial y_2} (y_1, y_2) = \frac{1}{1 + y_2^2},
\frac{\partial g_2}{\partial y_1} (y_1, y_2) = 1, \qquad \frac{\partial g_2}{\partial y_2} (y_1, y_2) = 2e^{y_2},
\frac{\partial g_3}{\partial y_1} (y_1, y_2) = \frac{1}{y_1 + 2y_2}, \quad \frac{\partial g_3}{\partial y_2} (y_1, y_2) = \frac{2}{y_1 + 2y_2},$$

são contínuas nos respectivos domínios. Assim, porque f é diferenciável em $\mathbf{a} = (1,1)$ e g é diferenciável em $\mathbf{b} = f(\mathbf{a}) = (1,0)$, podemos concluir que $g \circ f$ é diferenciável em (1,1), com matriz jacobiana dada por

$$D(g \circ f)(\mathbf{a}) = \begin{bmatrix} \frac{\partial g_1}{\partial y_1} (1,0) & \frac{\partial g_1}{\partial y_2} (1,0) \\ \frac{\partial g_2}{\partial y_1} (1,0) & \frac{\partial g_2}{\partial y_2} (1,0) \\ \frac{\partial g_3}{\partial y_1} (1,0) & \frac{\partial g_3}{\partial y_2} (1,0) \end{bmatrix} \begin{bmatrix} \frac{\partial f_1}{\partial x_1} (1,1) & \frac{\partial f_1}{\partial x_2} (1,1) \\ \frac{\partial f_2}{\partial x_2} (1,1) & \frac{\partial f_2}{\partial x_2} (1,1) \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -2 \\ 3 & -3 \\ 3 & -3 \end{bmatrix}.$$

Exercício: Considere as funções $\gamma(t) = (\sin(t), t^2, \cos(t)), F(x, y, z) = x^2 + y^2 + z^2 + 1$ e $\sigma(t) = F(\gamma(t))$. Calcule a derivada $\sigma'(t)$.

Resposta: As aplicações $\gamma: \mathbb{R} \to \mathbb{R}^3$ e $F: \mathbb{R}^3 \to \mathbb{R}$ são diferenciáveis nos seus domínios, pelo que $\sigma = F \circ \gamma: \mathbb{R} \to \mathbb{R}$ é diferenciável em qualquer ponto do seu domínio e

$$D\sigma(t) = D(F \circ \gamma)(t)$$

$$= DF(\gamma(t))D\gamma(t)$$

$$= \left[\frac{\partial F}{\partial x}(\sin(t), t^2, \cos(t)) \quad \frac{\partial F}{\partial y}(\sin(t), t^2, \cos(t)) \quad \frac{\partial F}{\partial z}(\sin(t), t^2, \cos(t))\right] \begin{bmatrix} \cos(t) \\ 2t \\ -\sin(t) \end{bmatrix}$$

$$= \left[2\sin(t) \quad 2t^2 \quad 2\cos(t)\right] \begin{bmatrix} \cos(t) \\ 2t \\ -\sin(t) \end{bmatrix}$$

$$= 4t^3.$$

Exercício: Considere a função $f(x,y,z)=ye^x+xz^2$ e seja $g:\mathbb{R}^2\to\mathbb{R}^3$ uma função de classe C^1 tal que g(0,0)=(0,1,2) e

$$Dg(0,0) = \left[\begin{array}{cc} 0 & 1 \\ 2 & 3 \\ 4 & 0 \end{array} \right].$$

Calcule a derivada $D_v(f \circ g)(0,0)$ em que v = (1,2).

Resposta: A função $f: \mathbb{R}^3 \to \mathbb{R}$ é de classe C^1 já que as suas derivadas parciais,

$$\frac{\partial f}{\partial x}(x, y, z) = ye^x + z^2, \quad \frac{\partial f}{\partial y}(x, y, z) = e^x \text{ e } \frac{\partial f}{\partial z}(x, y, z) = 2xz,$$

são funções contínuas em \mathbb{R}^3 . Assim, f e g são diferenciáveis nos seus domínios, pelo que $f \circ g : \mathbb{R}^2 \to \mathbb{R}$ é diferenciável em (0,0) e

$$D(f \circ g)(0,0) = Df(g(0,0)) Dg(0,0)$$

$$= \begin{bmatrix} \frac{\partial f}{\partial x}(0,1,2) & \frac{\partial f}{\partial y}(0,1,2) & \frac{\partial f}{\partial z}(0,1,2) \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 8 \end{bmatrix}.$$

Finalmente, porque já vimos que $f \circ g$ é diferenciável em (0,0), obtemos

$$D_{(1,2)}(f \circ g)(0,0) = D(f \circ g)(0,0)(1,2) = \begin{bmatrix} 2 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 18.$$

Exercício: Seja $h: \mathbb{R}^2 \to \mathbb{R}$ a função definida por

$$h(x,y) = g(g(x^2, xy, x + y) + e^x, xy, g(x, x, x)),$$

onde $g: \mathbb{R}^3 \to \mathbb{R}$ é uma função diferenciável no seu domínio. Calcule $\frac{\partial h}{\partial x}(x,y)$ em função das derivadas parciais de g.

Resolução: Considere-se a função diferenciável $f: \mathbb{R}^2 \to \mathbb{R}^3$, definida por

$$f(x,y) = (g(x^2, xy, x + y) + e^x, xy, g(x, x, x)).$$

Como $h = g \circ f$, podemos recorrer à regra da cadeia para obter

$$\frac{\partial h}{\partial x}(x,y) = \frac{\partial g}{\partial u}(f(x,y))\frac{\partial f_1}{\partial x}(x,y) + \frac{\partial g}{\partial v}(f(x,y))\frac{\partial f_2}{\partial x}(x,y) + \frac{\partial g}{\partial w}(f(x,y))\frac{\partial f_3}{\partial x}(x,y)$$

$$= \frac{\partial g}{\partial u}(f(x,y))\frac{\partial f_1}{\partial x}(x,y) + y\frac{\partial g}{\partial v}(f(x,y)) + \frac{\partial g}{\partial w}(f(x,y))\frac{\partial f_3}{\partial x}(x,y)$$

Por outro lado, se considerarmos as funções diferenciáveis $\varphi: \mathbb{R}^2 \to \mathbb{R}^3$ e $\psi: \mathbb{R}^2 \to \mathbb{R}^3$, definidas por

$$\varphi(x,y) = (x^2, xy, x + y) \ e \ \psi(x,y) = (x, x, x),$$

temos

$$f_1(x,y) = g \circ \varphi(x,y) + e^x \in f_3(x,y) = g \circ \psi(x,y),$$

e, mais uma vez pela regra da cadeia, obtemos

$$\frac{\partial f_1}{\partial x}(x,y) = \frac{\partial g}{\partial u}(\varphi(x,y))\frac{\partial \varphi_1}{\partial x}(x,y) + \frac{\partial g}{\partial v}(\varphi(x,y))\frac{\partial \varphi_2}{\partial x}(x,y) + \frac{\partial g}{\partial w}(\varphi(x,y))\frac{\partial \varphi_3}{\partial x}(x,y) + e^x$$

$$= 2x\frac{\partial g}{\partial u}(\varphi(x,y)) + y\frac{\partial g}{\partial v}(\varphi(x,y)) + \frac{\partial g}{\partial w}(\varphi(x,y)) + e^x$$

е

$$\frac{\partial f_3}{\partial x}(x,y) = \frac{\partial g}{\partial u}(\psi(x,y))\frac{\partial \psi_1}{\partial x}(x,y) + \frac{\partial g}{\partial v}(\psi(x,y))\frac{\partial \psi_2}{\partial x}(x,y) + \frac{\partial g}{\partial w}(\psi(x,y))\frac{\partial \psi_3}{\partial x}(x,y)
= \frac{\partial g}{\partial u}(\psi(x,y)) + \frac{\partial g}{\partial v}(\psi(x,y)) + \frac{\partial g}{\partial w}(\psi(x,y)).$$

Finalmente

$$\frac{\partial h}{\partial x}(x,y) = \frac{\partial g}{\partial u}(f(x,y))\frac{\partial f_1}{\partial x}(x,y) + y\frac{\partial g}{\partial v}(f(x,y)) + \frac{\partial g}{\partial w}(f(x,y))\frac{\partial f_3}{\partial x}(x,y)
= \frac{\partial g}{\partial u}(f(x,y))\left(2x\frac{\partial g}{\partial u}(\varphi(x,y)) + y\frac{\partial g}{\partial v}(\varphi(x,y)) + \frac{\partial g}{\partial w}(\varphi(x,y)) + e^x\right) + y\frac{\partial g}{\partial v}(f(x,y)) + \frac{\partial g}{\partial w}(f(x,y))\left(\frac{\partial g}{\partial u}(\psi(x,y)) + \frac{\partial g}{\partial v}(\psi(x,y)) + \frac{\partial g}{\partial w}(\psi(x,y))\right).$$

Aplicações geométricas

Definição: Chama-se caminho em \mathbb{R}^n a qualquer função contínua $\gamma: I \subset \mathbb{R} \to \mathbb{R}^n$ definida num intervalo de \mathbb{R} . Quando o intervalo I é aberto e γ é diferenciável em qualquer dos seus pontos, diz-se que γ é um caminho diferenciável.

Note-se que um caminho $\gamma:I\to\mathbb{R}^n$, definido num intervalo aberto, é diferenciável se e só se as suas funções coordenadas $\gamma_1:I\to\mathbb{R},...,\gamma_n:I\to\mathbb{R}$ são diferenciáveis. Neste caso a matriz jacobiana de γ em $t_0\in I$,

$$\gamma'(t_0) = D\gamma(t_0) = \begin{bmatrix} \gamma_1'(t_0) \\ \vdots \\ \gamma_n'(t_0) \end{bmatrix},$$

pode ser identificada com um vector de \mathbb{R}^n , ou seja

$$\gamma'(t_0) = (\gamma'_1(t_0), ..., \gamma'_n(t_0)).$$

Isto significa que se olharmos para $\gamma(t)$ como vector de posição de uma partícula que se desloca em \mathbb{R}^n , a velocidade (instantânea) da partícula no instante t_0 é dada pelo vector $\gamma'(t_0)$, e é portanto um vector tangente à curva $C = \{\gamma(t) : t \in I\}$ no ponto $\gamma(t_0) \in C$.

Exercício: Determine a recta tangente, r, e a recta normal, s, à curva

$$C = \left\{ \left(t, t^2 \right) : t \in \mathbb{R} \right\}$$

no ponto (1,1).

Resolução: O caminho $\gamma : \mathbb{R} \to \mathbb{R}^2$, definido por $\gamma(t) = (t, t^2)$, é diferenciável, com derivada dada por

$$\gamma'(t) = (1, 2t)$$
.

Como $C = \{\gamma(t) : t \in \mathbb{R}\}$ e $\gamma(1) = (1,1)$, o vector $\gamma'(1) = (1,2)$ é tangente à curva no ponto (1,1). Logo

$$r = \{(1,1) + t(1,2) : t \in \mathbb{R}\} \text{ e } s = \{(1,1) + t(2,-1) : t \in \mathbb{R}\}.$$

Exercício: Determine a recta tangente, r, e a recta normal, s, à curva

$$C = \{(2\cos(t), 3\sin(t)) : t \in]0, 2\pi[\}$$

no ponto $(1, \frac{3}{2}\sqrt{3})$.

Resolução: O caminho $\gamma:]0, 2\pi[\to \mathbb{R}^2$, definido por $\gamma(t) = (2\cos(t), 3\sin(t))$, é diferenciável, com derivada dada por

$$\gamma'(t) = \left(-2\sin\left(t\right), 3\cos\left(t\right)\right).$$

Como $C = \{\gamma(t) : t \in]0, 2\pi[\}$ e $\gamma(\frac{\pi}{3}) = (1, \frac{3}{2}\sqrt{3})$, o vector $\gamma'(\frac{\pi}{3}) = (-\sqrt{3}, \frac{3}{2})$ é tangente à curva no ponto $(\sqrt{2}, \frac{3}{2}\sqrt{2})$. Logo

$$r = \left\{ \left(1, \frac{3}{2}\sqrt{3}\right) + t\left(-\sqrt{3}, \frac{3}{2}\right) : t \in \mathbb{R} \right\} \text{ e } s = \left\{ \left(1, \frac{3}{2}\sqrt{3}\right) + t\left(\frac{3}{2}, \sqrt{3}\right) : t \in \mathbb{R} \right\}.$$

Exercício: Determine a recta tangente, r, e o plano normal, α , à curva

$$C = \left\{ \left(e^t, \cos\left(t\right), \sin\left(t\right) \right) : t \in \left] -\pi, \pi\right[\right\}.$$

no ponto (1, 1, 0).

Resolução: O caminho $\gamma:]-\pi, \pi[\to \mathbb{R}^3,$ definido por $\gamma(t) = (e^t, \cos(t), \sin(t)),$ é diferenciável, com derivada dada por

$$\gamma'(t) = \left(e^t, -\sin\left(t\right), \cos\left(t\right)\right).$$

Como $C = \{\gamma(t) : t \in]-\pi, \pi[\}$ e $\gamma(0) = (1, 1, 0)$, o vector $\gamma'(0) = (1, 0, 1)$ é tangente à curva no ponto (1, 1, 0). Logo

$$r = \{(1, 1, 0) + t(1, 0, 1) : t \in \mathbb{R}\}\ e \alpha = \{(x, y, z) \in \mathbb{R}^3 : x + z = 1\}.$$

Definição: Seja $M \subset \mathbb{R}^n$ e $\mathbf{p} \in M$.

1) Diz-se que um vector $\mathbf{v} \in \mathbb{R}^n$ é tangente a M no ponto p se existir um caminho diferenciável $\gamma: I \to M$ tal que

$$\gamma(t_0) = \mathbf{p} \in \gamma'(t_0) = \mathbf{v}$$
, para algum $t_0 \in I$.

2) Diz-se que um vector $\mathbf{w} \in \mathbb{R}^n$ é ortogonal a M no ponto p quando é ortogonal a qualquer vector tangente a M no ponto \mathbf{p} , ou seja

 $\mathbf{w} \cdot \mathbf{v} = 0$, para qualquer vector \mathbf{v} tangente a M no ponto \mathbf{p} .

Exercício: Seja $M \subset \mathbb{R}^n$ e $\mathbf{p} \in M$. Mostre que:

- a) Se $\mathbf{p} \in \text{int}(M)$, então qualquer vector $\mathbf{v} \in \mathbb{R}^n$ é tangente a M no ponto \mathbf{p} ;
- b) Se $M = \{\mathbf{p}\}$, então só o vector nulo $\mathbf{0} \in \mathbb{R}^n$ é tangente a M no ponto \mathbf{p} ;
- c) Se $D \subset \mathbb{R}^p$ é um conjunto aberto, $\mathbf{a} \in D$ e $f : D \to M$ é uma função diferenciável no seu domínio tal que $f(\mathbf{a}) = \mathbf{p}$, então o vector $Df(\mathbf{a})(\mathbf{u}) \in \mathbb{R}^m$ é tangente ao conjunto M no ponto \mathbf{p} , para qualquer $\mathbf{u} \in \mathbb{R}^p$.
- d) Se $f: \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável no seu domínio e $\mathbf{v} \in \mathbb{R}^n$ é tangente ao conjunto M no ponto \mathbf{p} , então o vector $Df(\mathbf{p})(\mathbf{v}) \in \mathbb{R}^m$ é tangente ao conjunto f(M) no ponto $f(\mathbf{p})$.

Resolução:

- a) Consideremos uma bola $B_r(\mathbf{p}) \subset M$, um vector $\mathbf{v} \in \mathbb{R}^n$ e um número real positivo ϵ tal que $\epsilon \|\mathbf{v}\| < r$. Nestas condições, o caminho diferenciável $\gamma :]-\epsilon, \epsilon[\to M,$ definido por $\gamma(t) = \mathbf{p} + t\mathbf{v}$, satisfaz $\gamma(0) = \mathbf{p}$ e $\gamma'(0) = \mathbf{v}$. Logo \mathbf{v} é tangente a M no ponto \mathbf{p} .
- b) Admitamos que $M = \{\mathbf{p}\}$ e que $\mathbf{v} \in \mathbb{R}^n$ é tangente a M no ponto \mathbf{p} . Isto significa que existe um caminho diferenciável $\gamma : I \to M$ tal que $\gamma'(t_0) = \mathbf{v}$, para algum $t_0 \in I$. Como a função γ é constante em I, obtemos $\mathbf{v} = \gamma'(t_0) = \mathbf{0}$.
- c) Por a) sabemos que qualquer vector $\mathbf{u} \in \mathbb{R}^p$ é tangente a D no ponto \mathbf{a} , pelo que podemos considerar um caminho diferenciável $\gamma: I \to D$ tal que

$$\gamma(t_0) = \mathbf{a} \in \gamma'(t_0) = \mathbf{u}.$$

Assim, porque a função $f:D\to M$ é diferenciável no seu domínio, também o caminho $\varphi=f\circ\gamma:I\to M$ é diferenciável e verifica

$$\varphi(t_0) = f(\gamma(t_0)) = f(\mathbf{a}) = \mathbf{p} \in \varphi'(t_0) = Df(\gamma(t_0)) \gamma'(t_0) = Df(\mathbf{a})(\mathbf{u}),$$

donde se conclui que o vector $Df(\mathbf{a})(\mathbf{u}) \in \mathbb{R}^m$ é tangente ao conjunto M no ponto \mathbf{p} .

d) Se $\mathbf{v} \in \mathbb{R}^n$ é tangente a M no ponto \mathbf{p} , sabemos que existe um caminho diferenciável $\gamma: I \to M$ tal que

$$\gamma(t_0) = \mathbf{p} \in \gamma'(t_0) = \mathbf{v}.$$

Como $f: \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável no seu domínio, também o caminho $\varphi = f \circ \gamma : I \to f(M)$ é diferenciável e verifica

$$\varphi(t_0) = f(\gamma(t_0)) = f(\mathbf{p}) \ e \ \varphi'(t_0) = Df(\gamma(t_0)) \ \gamma'(t_0) = Df(\mathbf{p}) \ (\mathbf{v}),$$

logo o vector $Df(\mathbf{p})(\mathbf{v}) \in \mathbb{R}^m$ é tangente ao conjunto f(M) no ponto $f(\mathbf{p})$.

Definição: Dada uma função $f: \mathbb{R}^n \to \mathbb{R}$ e um número real α , define-se conjunto de nível α de f, como sendo

$$N(\alpha) = \{(x_1, ..., x_n) \in \mathbb{R}^n : f(x_1, ..., x_n) = \alpha\}.$$

Teorema: Seja $M \subset \mathbb{R}^n$ e $f : \mathbb{R}^n \to \mathbb{R}$ tal que $M = N(\alpha)$, para algum $\alpha \in \mathbb{R}$. Se f é diferenciável em \mathbb{R}^n , então o vector $\nabla f(\mathbf{p})$ é ortogonal a M em qualquer ponto $\mathbf{p} \in M$.

Exercício: Demonstre o teorema anterior. Sugestão: Utilize as alíneas a) e d) do exercício anterior para demonstrar que a igualdade $Df(\mathbf{p})(\mathbf{v}) = 0$, com $\mathbf{p} \in M$, é válida para qualquer vector \mathbf{v} tangente a M em \mathbf{p} . Por fim, tenha em conta que $Df(\mathbf{p})(\mathbf{v}) = \nabla f(\mathbf{p}) \cdot \mathbf{v}$.

Exercício: Determine a reta tangente e a recta normal á curva

$$C = \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{9} = 1 \right\}$$

no ponto $\left(1, \frac{3\sqrt{3}}{2}\right)$.

Resolução: Consideremos a função diferenciável $f: \mathbb{R}^2 \to \mathbb{R}$, definida por

$$f(x,y) = \frac{x^2}{4} + \frac{y^2}{9}.$$

Como $C=N\left(1\right)$ e $\nabla f\left(x,y\right)=\left(\frac{x}{2},\frac{2y}{9}\right)$, vemos que o vector $\nabla f\left(1,\frac{3\sqrt{3}}{2}\right)=\left(\frac{1}{2},\frac{\sqrt{3}}{3}\right)$ é ortogonal a C no ponto $\left(1,\frac{3\sqrt{3}}{2}\right)$. Logo

$$s = \left\{ \left(1, \frac{3\sqrt{3}}{2} \right) + t \left(\frac{1}{2}, \frac{\sqrt{3}}{3} \right) : t \in \mathbb{R} \right\} \text{ e } r = \left\{ \left(1, \frac{3\sqrt{3}}{2} \right) + t \left(-\frac{\sqrt{3}}{3}, \frac{1}{2} \right) \right\}.$$

Exercício: Determine a recta normal, s, e o plano tangente, α , ao parabolóide

$$P = \{(x, y, z) \in \mathbb{R}^3 : z = 1 - x^2 - y^2\}$$

no ponto (0, 1, 0).

Resolução: Consideremos a função diferenciável $f: \mathbb{R}^3 \to \mathbb{R}$, definida por

$$f(x,y) = x^2 + y^2 + z.$$

Como P = N(1) e $\nabla f(x, y, z) = (2x, 2y, 1)$, vemos que o vector $\nabla f(0, 1, 0) = (0, 2, 1)$ é ortogonal a P no ponto (0, 1, 0). Logo

$$s = \{(0,1,0) + t(0,2,1) : t \in \mathbb{R}\} \ e \ \alpha = \{(x,y,z) \in \mathbb{R}^3 : 2y + z = 2\}.$$

Exercício: Considere a superfície

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 : \frac{x^2}{3} + \frac{(y - z)^2}{2} + (y + z)^2 = 12 \right\}$$

Determine os pontos de S onde o plano tangente é horizontal.

Resolução: Consideremos a função diferenciável $f: \mathbb{R}^3 \to \mathbb{R}$, definida por

$$f(x,y) = \frac{x^2}{3} + \frac{(y-z)^2}{2} + (y+z)^2$$
.

Como S=N (12) e $\nabla f\left(x,y,z\right)=\left(\frac{2}{3}x,3y+z,y+2z\right)$, vemos que pontos de S onde o plano tangente é horizontal são dados pelas soluções do sistema

$$\begin{cases} \frac{x^2}{3} + \frac{(y-z)^2}{2} + (y+z)^2 & = 12 \\ \frac{2}{3}x & = 0 \\ 3y+z & = 0 \end{cases} \Leftrightarrow \begin{cases} y^2 = 1 \\ x = 0 \\ z = -3y \end{cases},$$

ou seja (0,1,-3) e (0,-1,3).

Derivadas parciais de ordem superior

Seja $D \subset \mathbb{R}^n$ um conjunto aberto e $f: D \to \mathbb{R}$ uma função com derivadas parciais em qualquer ponto do seu domínio. As derivadas parciais das funções

$$\frac{\partial f}{\partial x_i}: D \to \mathbb{R}$$

(quando existem) chamam-se derivadas parciais de f de ordem 2 e denotam-se por

$$\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right), \text{ ou } \frac{\partial^2 f}{\partial x_i^2} \text{ quando } i = j.$$

Analogamente, quando f admite derivadas parciais de ordem 2, definem-se as derivadas parciais de f de ordem 3, como sendo as derivadas parciais das funções

$$\frac{\partial^2 f}{\partial x_i \partial x_i} : D \to \mathbb{R},$$

sendo denotadas por

$$\frac{\partial^3 f}{\partial x_k \partial x_i \partial x_i} = \frac{\partial}{\partial x_k} \left(\frac{\partial^2 f}{\partial x_i \partial x_i} \right).$$

Mais geralmente, definem-se as derivadas parciais de f de ordem p como sendo as derivadas parciais das derivadas parciais de ordem p-1:

$$\frac{\partial^p f}{\partial x_{i_p} \partial x_{i_{p-1}} \cdots \partial x_{i_1}} = \frac{\partial}{\partial x_{i_p}} \left(\frac{\partial^{p-1} f}{\partial x_{i_{p-1}} \cdots \partial x_{i_1}} \right).$$

Exemplo: Para a função $f(x, y, z) = z \arctan(xy)$, tem-se

$$\frac{\partial f}{\partial x}(x,y,z) = \frac{yz}{1+x^2y^2}, \quad \frac{\partial f}{\partial y}(x,y,z) = \frac{xz}{1+x^2y^2} \quad \text{e} \quad \frac{\partial f}{\partial z}(x,y,z) = \arctan(xy),$$

pelo que:

$$\begin{split} \frac{\partial^2 f}{\partial x^2}\left(x,y,z\right) &= \frac{-2xy^3z}{\left(1+x^2y^2\right)^2}, \quad \frac{\partial^2 f}{\partial y\partial x}\left(x,y,z\right) = \frac{z-x^2y^2z}{\left(1+x^2y^2\right)^2}, \quad \frac{\partial^2 f}{\partial z\partial x}\left(x,y,z\right) = \frac{y}{1+x^2y^2} \\ \frac{\partial^2 f}{\partial x\partial y}\left(x,y,z\right) &= \frac{z-x^2y^2z}{\left(1+x^2y^2\right)^2}, \quad \frac{\partial^2 f}{\partial y^2}\left(x,y,z\right) = \frac{-2x^3yz}{\left(1+x^2y^2\right)^2}, \quad \frac{\partial^2 f}{\partial z\partial y}\left(x,y,z\right) = \frac{x}{1+x^2y^2} \\ \frac{\partial^2 f}{\partial x\partial z}\left(x,y,z\right) &= \frac{y}{1+x^2y^2}, \quad \frac{\partial^2 f}{\partial y\partial z}\left(x,y,z\right) = \frac{x}{1+x^2y^2}, \quad \frac{\partial^2 f}{\partial z^2}\left(x,y,z\right) = 0. \end{split}$$

Definição: Diz-se que uma função $f: D \to \mathbb{R}$, definida num conjunto aberto $D \subset \mathbb{R}^n$, é de classe C^p , com $p \in \mathbb{N}$, se as suas derivadas parciais de ordem p existem e são contínuas em qualquer ponto de D.

Teorema (Schwarz): Se $D \subset \mathbb{R}^n$ é um conjunto aberto e $f: D \to \mathbb{R}$ é de classe C^2 , então

$$\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_j},$$

para quaisquer i, j = 1, ..., n.

Definição: Seja $D \subset \mathbb{R}^n$ um conjunto aberto e $f: D \to \mathbb{R}$ uma função com derivadas parciais de ordem 2 num ponto $\mathbf{a} \in D$. Define-se matriz Hessiana de f em \mathbf{a} , com sendo

$$Hf(\mathbf{a}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} (\mathbf{a}) & \frac{\partial^2 f}{\partial x_2 \partial x_1} (\mathbf{a}) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} (\mathbf{a}) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} (\mathbf{a}) & \frac{\partial^2 f}{\partial x_2 \partial x_2} (\mathbf{a}) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_2} (\mathbf{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} (\mathbf{a}) & \frac{\partial^2 f}{\partial x_2 \partial x_n} (\mathbf{a}) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} (\mathbf{a}) \end{bmatrix}.$$

Exercício: Calcule o gradiente e a matriz Hessiana de cada uma das seguintes funções:

a)
$$f(x, y) = x \arctan(y)$$

b)
$$g(x, y, z) = \ln(xy) + e^{z}$$

Resolução: a) Como

$$\frac{\partial f}{\partial x}(x,y) = \arctan(y) \ e \frac{\partial f}{\partial y}(x,y) = \frac{x}{1+y^2}$$

temos

$$\frac{\partial^2 f}{\partial x^2}(x,y) = 0, \ \frac{\partial^2 f}{\partial y \partial x}(x,y) = \frac{1}{1+y^2}, \ \frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{1}{1+y^2} \in \frac{\partial^2 f}{\partial y^2}(x,y) = \frac{-2xy}{(1+y^2)^2}.$$

Logo

$$\nabla f(x,y) = \left(\arctan(y), \frac{x}{1+y^2}\right) \ \text{e} \ Hf(x,y) = \left[\begin{array}{cc} 0 & \frac{1}{1+y^2} \\ \frac{1}{1+y^2} & \frac{-2xy}{(1+y^2)^2} \end{array} \right].$$

b) Como

$$\frac{\partial g}{\partial x}(x,y,z) = \frac{1}{x}, \quad \frac{\partial g}{\partial y}(x,y,z) = \frac{1}{y} \quad e \quad \frac{\partial g}{\partial z}(x,y,z) = e^z$$

temos

$$\begin{split} &\frac{\partial^2 g}{\partial x^2}\left(x,y,z\right) = -\frac{1}{x^2}, \quad \frac{\partial^2 g}{\partial y \partial x}\left(x,y,z\right) = 0, \quad \frac{\partial^2 g}{\partial z \partial x}\left(x,y,z\right) = 0 \\ &\frac{\partial^2 g}{\partial x \partial y}\left(x,y,z\right) = 0, \quad \frac{\partial^2 g}{\partial y^2}\left(x,y,z\right) = -\frac{1}{y^2}, \quad \frac{\partial^2 g}{\partial z \partial y}\left(x,y,z\right) = 0 \\ &\frac{\partial^2 g}{\partial x \partial z}\left(x,y,z\right) = 0, \quad \frac{\partial^2 g}{\partial y \partial z}\left(x,y,z\right) = 0 \quad \text{e} \quad \frac{\partial^2 g}{\partial z^2}\left(x,y,z\right) = e^z. \end{split}$$

Logo

$$\nabla g(x, y, z) = \left(\frac{1}{x}, \frac{1}{y}, e^{z}\right) \text{ e } Hg(x, y, z) = \begin{bmatrix} -\frac{1}{x^{2}} & 0 & 0\\ 0 & \frac{\partial^{2} g}{\partial y^{2}}(x, y, z) = -\frac{1}{y^{2}} & 0\\ 0 & 0 & e^{z} \end{bmatrix}.$$

Exercício: Seja w(x,y)=f(y-x,x+y), em que $f:\mathbb{R}^2\to\mathbb{R}$ é uma função de classe C^2 .

Mostre que se tem

$$\frac{\partial^2 w}{\partial y^2}(x,y) - \frac{\partial^2 w}{\partial x^2}(x,y) = 4 \frac{\partial^2 f}{\partial u \partial v}(u,v),$$

com u = y - x e v = x + y.

Resolução: Consideremos a função $g: \mathbb{R}^2 \to \mathbb{R}^2$, definida por g(x,y) = (y-x,x+y). Como $w(x,y) = f \circ g(x,y)$, temos pela regra da cadeia

$$\frac{\partial w}{\partial x}(x,y) = \frac{\partial f}{\partial u}(g(x,y))\frac{\partial g_1}{\partial x}(x,y) + \frac{\partial f}{\partial v}(g(x,y))\frac{\partial g_2}{\partial x}(x,y)$$

$$= -\frac{\partial f}{\partial u}(g(x,y)) + \frac{\partial f}{\partial v}(g(x,y))$$

$$= \left(\frac{\partial f}{\partial v} \circ g\right)(x,y) - \left(\frac{\partial f}{\partial u} \circ g\right)(x,y)$$

e

$$\frac{\partial w}{\partial y}(x,y) = \frac{\partial f}{\partial u}(g(x,y))\frac{\partial g_1}{\partial y}(x,y) + \frac{\partial f}{\partial v}(g(x,y))\frac{\partial g_2}{\partial y}(x,y)
= \frac{\partial f}{\partial u}(g(x,y)) + \frac{\partial f}{\partial v}(g(x,y))
= \left(\frac{\partial f}{\partial u} \circ g\right)(x,y) + \left(\frac{\partial f}{\partial v} \circ g\right)(x,y),$$

ou seja

$$\frac{\partial w}{\partial x}\left(x,y\right)=\psi\left(x,y\right)-\varphi\left(x,y\right) \text{ e } \frac{\partial w}{\partial y}\left(x,y\right)=\varphi\left(x,y\right)+\psi\left(x,y\right), \text{ com } \varphi=\frac{\partial f}{\partial u}\circ g \text{ e } \psi=\frac{\partial f}{\partial v}\circ g.$$

Como, mais uma vez pela regra da cadeia, se tem:

$$\frac{\partial \varphi}{\partial x}(x,y) = \frac{\partial^2 f}{\partial^2 u}(g(x,y)) \frac{\partial g_1}{\partial x}(x,y) + \frac{\partial^2 f}{\partial v \partial u}(g(x,y)) \frac{\partial g_2}{\partial x}(x,y) = \frac{\partial^2 f}{\partial v \partial u}(g(x,y)) - \frac{\partial^2 f}{\partial^2 u}(g(x,y));$$

$$\frac{\partial \varphi}{\partial y}(x,y) = \frac{\partial^2 f}{\partial^2 u}(g(x,y)) \frac{\partial g_1}{\partial y}(x,y) + \frac{\partial^2 f}{\partial v \partial u}(g(x,y)) \frac{\partial g_2}{\partial y}(x,y) = \frac{\partial^2 f}{\partial^2 u}(g(x,y)) + \frac{\partial^2 f}{\partial v \partial u}(g(x,y));$$

$$\frac{\partial \psi}{\partial x}(x,y) = \frac{\partial^2 f}{\partial u \partial v}(g(x,y)) \frac{\partial g_1}{\partial x}(x,y) + \frac{\partial^2 f}{\partial v^2}(g(x,y)) \frac{\partial g_2}{\partial x}(x,y) = \frac{\partial^2 f}{\partial v^2}(g(x,y)) - \frac{\partial^2 f}{\partial u \partial v}(g(x,y));$$

$$\frac{\partial \psi}{\partial y}(x,y) = \frac{\partial^2 f}{\partial u \partial v}(g(x,y)) \frac{\partial g_1}{\partial y}(x,y) + \frac{\partial^2 f}{\partial^2 v}(g(x,y)) \frac{\partial g_2}{\partial y}(x,y) = \frac{\partial^2 f}{\partial u \partial v}(g(x,y)) + \frac{\partial^2 f}{\partial^2 v}(g(x,y));$$

$$\frac{\partial \psi}{\partial y}(x,y) = \frac{\partial^2 f}{\partial u \partial v}(g(x,y)) \frac{\partial g_1}{\partial y}(x,y) + \frac{\partial^2 f}{\partial^2 v}(g(x,y)) \frac{\partial g_2}{\partial y}(x,y) = \frac{\partial^2 f}{\partial u \partial v}(g(x,y)) + \frac{\partial^2 f}{\partial^2 v}(g(x,y));$$

$$\frac{\partial^2 f}{\partial u \partial v}(g(x,y)) \frac{\partial g_1}{\partial v}(g(x,y)) \frac{\partial g_2}{\partial v}(g(x,y)) \frac{\partial g_2}{\partial v}(g(x,y)) = \frac{\partial^2 f}{\partial u \partial v}(g(x,y)) + \frac{\partial^2 f}{\partial^2 v}(g(x,y));$$

já que f é de classe \mathbb{C}^2 , obtém-se

$$\frac{\partial^{2} w}{\partial x^{2}}(x,y) = \frac{\partial \psi}{\partial x}(x,y) - \frac{\partial \varphi}{\partial x}(x,y)
= \frac{\partial^{2} f}{\partial v^{2}}(g(x,y)) - \frac{\partial^{2} f}{\partial u \partial v}(g(x,y)) - \frac{\partial^{2} f}{\partial v \partial u}(g(x,y)) + \frac{\partial^{2} f}{\partial^{2} u}(g(x,y))
= \frac{\partial^{2} f}{\partial v^{2}}(g(x,y)) - 2\frac{\partial^{2} f}{\partial u \partial v}(g(x,y)) + \frac{\partial^{2} f}{\partial^{2} u}(g(x,y))$$

e

$$\begin{split} \frac{\partial^{2} w}{\partial y^{2}}\left(x,y\right) &= \frac{\partial \varphi}{\partial y}\left(x,y\right) + \frac{\partial \psi}{\partial y}\left(x,y\right) \\ &= \frac{\partial^{2} f}{\partial^{2} u}\left(g\left(x,y\right)\right) + \frac{\partial^{2} f}{\partial v \partial u}\left(g\left(x,y\right)\right) + \frac{\partial^{2} f}{\partial u \partial v}\left(g\left(x,y\right)\right) + \frac{\partial^{2} f}{\partial^{2} v}\left(g\left(x,y\right)\right) \\ &= \frac{\partial^{2} f}{\partial^{2} u}\left(g\left(x,y\right)\right) + 2\frac{\partial^{2} f}{\partial u \partial v}\left(g\left(x,y\right)\right) + \frac{\partial^{2} f}{\partial^{2} v}\left(g\left(x,y\right)\right). \end{split}$$

Logo

$$\frac{\partial^2 w}{\partial y^2}(x,y) - \frac{\partial^2 w}{\partial x^2}(x,y) = 4\frac{\partial^2 f}{\partial u \partial v}(g(x,y)) = 4\frac{\partial^2 f}{\partial u \partial v}(y-x,x+y).$$

Exercício: Seja $f: \mathbb{R}^2 \to \mathbb{R}$ é uma função de classe C^2 , $\mathbf{a} = (a_1, a_2)$, $\mathbf{v} = (v_1, v_2) \in \mathbb{R}^2$, e $\varphi: \mathbb{R} \to \mathbb{R}$ definida por $\varphi(t) = f(\mathbf{a} + t\mathbf{v})$.

- a) Mostre que $\varphi'(t) = \nabla f(\mathbf{a} + t\mathbf{v}) \cdot \mathbf{v} \in \varphi''(t) = \mathbf{v}^T H f(\mathbf{a} + t\mathbf{v}) \mathbf{v}$.
- b) Mostre que se $\nabla f(\mathbf{a}) \cdot \mathbf{v} = 0$ e $\mathbf{v}^T H f(\mathbf{a}) \mathbf{v} \neq 0$, então a função φ tem um extremo local em 0, que será mínimo ou máximo consoante $\mathbf{v}^T H f(\mathbf{a}) \mathbf{v}$ seja positivo ou negativo.

Resolução:

a) Consideremos a função $g: \mathbb{R} \to \mathbb{R}^2$, definida por $g(t) = \mathbf{a} + t\mathbf{v} = (a_1 + tv_1, a_2 + tv_2)$. Como $\varphi = f \circ g$, obtemos (regra da cadeia):

$$\varphi'\left(t\right) = \frac{\partial f}{\partial x_{1}}\left(g\left(t\right)\right)g_{1}'\left(t\right) + \frac{\partial f}{\partial x_{2}}\left(g\left(t\right)\right)g_{2}'\left(t\right) = \frac{\partial f}{\partial x_{1}}\left(g\left(t\right)\right)v_{1} + \frac{\partial f}{\partial x_{2}}\left(g\left(t\right)\right)v_{2} = \nabla f\left(\mathbf{a} + t\mathbf{v}\right) \cdot \mathbf{v}.$$

Como

$$\varphi'(t) = \frac{\partial f}{\partial x_1}(g(t))v_1 + \frac{\partial f}{\partial x_2}(g(t))v_2,$$

obtemos, mais uma vez pela regra da cadeia

$$\varphi''(t) = v_1 \left(\frac{\partial^2 f}{\partial x_1^2} (g(t)) v_1 + \frac{\partial^2 f}{\partial x_2 \partial x_1} (g(t)) v_2 \right) + v_2 \left(\frac{\partial^2 f}{\partial x_1 \partial x_2} (g(t)) v_1 + \frac{\partial^2 f}{\partial x_2^2} (g(t)) v_2 \right)$$

$$= \left[v_1 \quad v_2 \right] \left[\begin{array}{c} \frac{\partial^2 f}{\partial x_1^2} (g(t)) v_1 + \frac{\partial^2 f}{\partial x_2 \partial x_1} (g(t)) v_2 \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} (g(t)) v_1 + \frac{\partial^2 f}{\partial x_2^2} (g(t)) v_2 \end{array} \right]$$

$$= \left[v_1 \quad v_2 \right] \left[\begin{array}{c} \frac{\partial^2 f}{\partial x_1^2} (g(t)) & \frac{\partial^2 f}{\partial x_2 \partial x_1} (g(t)) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} (g(t)) & \frac{\partial^2 f}{\partial x_2^2} (g(t)) \end{array} \right] \left[\begin{array}{c} v_1 \\ v_2 \end{array} \right]$$

$$= \mathbf{v}^T H f(\mathbf{a} + t \mathbf{v}) \mathbf{v}.$$

b) Por a) sabemos que a função $\varphi : \mathbb{R} \to \mathbb{R}$ (de classe C^2) verifica $\varphi'(0) = \nabla f(\mathbf{a}) \cdot \mathbf{v}$ e $\varphi''(0) = \mathbf{v}^T H f(\mathbf{a}) \mathbf{v}$. Logo, se $\nabla f(\mathbf{a}) \cdot \mathbf{v} = 0$ e $\mathbf{v}^T H f(\mathbf{a}) \mathbf{v} \neq 0$, teremos $\varphi'(0) = 0$ e $\varphi''(0) \neq 0$, e como sabemos isto significa que φ tem um extremo local em 0, que será mínimo ou máximo consoante $\varphi''(0)$ seja positivo ou negativo.

Extremos

Definição: Dada uma função $f:D\subset\mathbb{R}^n\to\mathbb{R}$ e um ponto $\mathbf{a}\in D$, diz-se que:

a) f tem um máximo relativo (ou local) em **a** se existe uma bola de centro em **a**, B_r (**a**), tal que

$$f(\mathbf{x}) \leq f(\mathbf{a})$$
, para qualquer $\mathbf{x} \in B_r(\mathbf{a}) \cap D$.

Se $f(\mathbf{x}) \leq f(\mathbf{a})$, para qualquer $\mathbf{x} \in D$, diz-se que f tem um máximo absoluto em \mathbf{a} .

b) f tem um mínimo relativo (ou local) em **a** se existe uma bola de centro em **a**, B_r (**a**), tal que

$$f(\mathbf{a}) \leq f(\mathbf{x})$$
, para qualquer $\mathbf{x} \in B_r(\mathbf{a}) \cap D$.

Se $f(\mathbf{a}) \leq f(\mathbf{x})$, para qualquer $\mathbf{x} \in D$, diz-se que f tem um mínimo absoluto em \mathbf{a} .

c) f tem um extremo em a se tem um máximo relativo ou mínimo relativo no mesmo ponto.

Proposição: Se uma função $f: D \subset \mathbb{R}^n \to \mathbb{R}$, diferenciável em $\mathbf{a} \in \text{int}(D)$, tem um extremo em \mathbf{a} , então $\nabla f(\mathbf{a}) = 0$.

Nota: Se $f: D \subset \mathbb{R}^n \to \mathbb{R}$ é diferenciável em $\mathbf{a} \in \text{int}(D)$ e $\nabla f(\mathbf{a}) = 0$, diz-se que \mathbf{a} é um ponto de estacionaridade de f.

Definição: Chama-se ponto de sela de f a um ponto de estacionaridade que não é ponto de extremo da função.

Definição: Dada uma matriz $n \times n$ simétrica A ($A^T = A$) chama-se forma quadrática associada a A à aplicação $q : \mathbb{R}^n \to \mathbb{R}$ definida por

$$q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

- a) A forma quadrática diz-se definida positiva se $q(\mathbf{x}) > 0$, para qualquer $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$.
- b) A forma quadrática diz-se definida negativa se $q(\mathbf{x}) < 0$, para qualquer $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$.
- c) A forma quadrática diz-se semidefinida positiva se $q(\mathbf{x}) \geq 0$, para qualquer $\mathbf{x} \in \mathbb{R}^n$.
- d) A forma quadrática diz-se semidefinida negativa se $q(\mathbf{x}) \leq 0$, para qualquer $\mathbf{x} \in \mathbb{R}^n$.
- e) A forma quadrática diz-se indefinida se existem $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$ tais que $q(\mathbf{x}_1) > 0$ e $q(\mathbf{x}_2) < 0$.

Teorema: Seja A uma matriz $n \times n$ simétrica e $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ a forma quadrática associada.

- a) A forma quadrática q é definida positiva se todos os valores proprios de A são positivos.
- b) A forma quadrática q é definida negativa se todos os valores proprios de A são negativos.
- c) A forma quadrática q é semidefinida positiva s
se todos os valores proprios de A são positivos ou nulos.
- d) A forma quadrática q é semidefinida negativa se todos os valores proprios de A são negativos ou nulos.
- e) A forma quadrática q é indefinida sse a matriz A tem valores próprios positivos e negativos.

Teorema: Seja $D \subset \mathbb{R}^n$ um conjunto aberto, $f: D \to \mathbb{R}$ uma função de classe C^2 , $\mathbf{a} \in D$ um ponto de estacionaridade de f e $q: \mathbb{R}^n \to \mathbb{R}$ a forma quadrática associada à matriz Hessiana de f em \mathbf{a} , ou seja

$$q(\mathbf{x}) = \mathbf{x}^T H f(\mathbf{a}) \mathbf{x}.$$

Nestas condições tem-se:

- a) Se q é definida positiva, então f tem um mínimo relativo em \mathbf{a} ;
- b) Se q é definida negativa, então f tem um máximo relativo em \mathbf{a} ;
- c) Se q é indefinida, então f tem um ponto de sela \mathbf{a} ;
- d) Se f tem um mínimo relativo em \mathbf{a} , então q é semidefinida positiva;
- e) Se f tem um máximo relativo em \mathbf{a} , então q é semidefinida negativa.

Exercício: Classifique os pontos de estacionaridade de

$$f(x,y) = x^2 + y^2 - \frac{x^3}{3}$$
.

Resolução: Os pontos de estacionaridade de f são as soluções de sistema

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) &= 0\\ \frac{\partial f}{\partial y}(x,y) &= 0 \end{cases} \Leftrightarrow \begin{cases} 2x - x^2 &= 0\\ 2y &= 0 \end{cases} \Leftrightarrow \begin{cases} x(2-x) &= 0\\ y &= 0 \end{cases}.$$

Temos portanto dois pontos de estacionaridade, (0,0) e (2,0). Por outro lado tem-se

$$Hf\left(x,y\right) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x^{2}}\left(x,y\right) & \frac{\partial^{2} f}{\partial y \partial x}\left(x,y\right) \\ \frac{\partial^{2} f}{\partial x \partial y}\left(x,y\right) & \frac{\partial^{2} f}{\partial y^{2}}\left(x,y\right) \end{bmatrix} = \begin{bmatrix} 2 - 2x & 0 \\ 0 & 2 \end{bmatrix},$$

pelo que

$$Hf(0,0) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
 e $Hf(2,0) = \begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix}$.

Como a matriz Hf(0,0) tem um único valor próprio positivo, e Hf(2,0) tem valores positivos e negativos, vemos que f tem um mínimo em (0,0) e um ponto de sela em (2,0).

Exercício: Classifique os pontos de estacionaridade da função

$$f(x,y) = \frac{x^2}{2} + \frac{y^2}{2} + \frac{1}{x} + \frac{1}{y}.$$

Resolução: Os pontos de estacionaridade de f são as soluções de sistema

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0 \\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} x - \frac{1}{x^2} = 0 \\ y - \frac{1}{y^2} = 0 \end{cases} \Leftrightarrow \begin{cases} x^3 - 1 = 0 \\ y^3 - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 1 \end{cases}.$$

Temos portanto um único ponto de estacionaridade, (1, 1). Por outro lado,

$$Hf\left(x,y\right) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x^{2}}\left(x,y\right) & \frac{\partial^{2} f}{\partial y \partial x}\left(x,y\right) \\ \frac{\partial^{2} f}{\partial x \partial y}\left(x,y\right) & \frac{\partial^{2} f}{\partial y^{2}}\left(x,y\right) \end{bmatrix} = \begin{bmatrix} 1 + \frac{2}{x^{3}} & 0 \\ 0 & 1 + \frac{2}{y^{3}} \end{bmatrix},$$

pelo que

$$Hf\left(1,1\right) = \left[\begin{array}{cc} 3 & 0 \\ 0 & 3 \end{array}\right].$$

Como a matriz Hf(1,1) tem um único valor próprio positivo, vemos que f tem um mínimo em (1,1).

Exercício: Classifique os pontos de estacionaridade da função

$$f(x,y) = x^3 - y^2.$$

Resolução: Os pontos de estacionaridade de f são as soluções de sistema

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) &= 0\\ \frac{\partial f}{\partial y}(x,y) &= 0 \end{cases} \Leftrightarrow \begin{cases} 3x^2 &= 0\\ -2y &= 0 \end{cases} \Leftrightarrow \begin{cases} x &= 0\\ y &= 0 \end{cases}.$$

Temos portanto um único ponto de estacionaridade, (0,0). Por outro lado,

$$Hf\left(x,y\right) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x^{2}}\left(x,y\right) & \frac{\partial^{2} f}{\partial y \partial x}\left(x,y\right) \\ \frac{\partial^{2} f}{\partial x \partial y}\left(x,y\right) & \frac{\partial^{2} f}{\partial y^{2}}\left(x,y\right) \end{bmatrix} = \begin{bmatrix} 6x & 0 \\ 0 & -2 \end{bmatrix},$$

pelo que

$$Hf\left(0,0\right) = \left[\begin{array}{cc} 0 & 0 \\ 0 & -2 \end{array} \right].$$

Note-se que, como a matriz Hf(0,0) é semidefinida negativa, isto apenas permite concluir que f tem um máximo ou um ponto de sela no ponto (0,0). No entanto, como f(0,0) = 0 e $f(x,0) = x^3$, vemos que f toma valores positivos e negativos em qualquer bola com centro em (0,0). Logo f tem um ponto de sela em (0,0).

Exercício: Classifique os pontos de estacionaridade da função

$$f(x,y) = x^4 - y^4.$$

Resolução: Os pontos de estacionaridade de f são as soluções de sistema

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) &= 0 \\ \frac{\partial f}{\partial y}(x,y) &= 0 \end{cases} \Leftrightarrow \begin{cases} 4x^3 &= 0 \\ -4y^3 &= 0 \end{cases} \Leftrightarrow \begin{cases} x &= 0 \\ y &= 0 \end{cases}.$$

Temos portanto um único ponto de estacionaridade, (0,0). Por outro lado,

$$Hf\left(x,y\right) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x^{2}}\left(x,y\right) & \frac{\partial^{2} f}{\partial y \partial x}\left(x,y\right) \\ \frac{\partial^{2} f}{\partial x \partial y}\left(x,y\right) & \frac{\partial^{2} f}{\partial y^{2}}\left(x,y\right) \end{bmatrix} = \begin{bmatrix} 12x^{2} & 0 \\ 0 & -12y^{2} \end{bmatrix},$$

pelo que

$$Hf(0,0) = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right].$$

Neste caso a matriz Hessiana é completamente inútil para classificar o ponto de estacionaridade. No entanto, como f(0,0) = 0, $f(x,0) = x^4$ e $f(0,y) = -y^4$ vemos que f toma valores positivos e negativos em qualquer bola com centro em (0,0). Logo f tem um ponto de sela em (0,0).

Exercício: Classifique os pontos de estacionaridade da função

$$f(x,y) = \frac{y^2}{2} + xy + x^4.$$

Resolução: Os pontos de estacionaridade de f são as soluções de sistema

$$\left\{ \begin{array}{lll} \frac{\partial f}{\partial x}\left(x,y\right) & = & 0 \\ \frac{\partial f}{\partial y}\left(x,y\right) & = & 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{lll} 4x^3+y & = & 0 \\ y+x & = & 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{lll} 4x^3-x & = & 0 \\ y & = & -x \end{array} \right. \Leftrightarrow \left\{ \begin{array}{lll} x\left(4x^2-1\right) & = & 0 \\ y & = & -x \end{array} \right. .$$

Temos portanto três pontos de estacionaridade: $(0,0), (\frac{1}{2},-\frac{1}{2})$ e $(-\frac{1}{2},\frac{1}{2})$. Por outro lado,

$$Hf\left(x,y\right) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x^{2}}\left(x,y\right) & \frac{\partial^{2}f}{\partial y\partial x}\left(x,y\right) \\ \frac{\partial^{2}f}{\partial x\partial y}\left(x,y\right) & \frac{\partial^{2}f}{\partial y^{2}}\left(x,y\right) \end{bmatrix} = \begin{bmatrix} 12x^{2} & 1 \\ 1 & 1 \end{bmatrix},$$

pelo que

$$Hf\left(0,0\right) = \left[\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right] \text{ e } Hf\left(\frac{1}{2},-\frac{1}{2}\right) = Hf\left(-\frac{1}{2},\frac{1}{2}\right) = \left[\begin{array}{cc} 3 & 1 \\ 1 & 1 \end{array}\right].$$

Como o polinómio característico de $\left[\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right]$ é

$$\det\left(\left[\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right] - \lambda \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\right) = \det\left[\begin{array}{cc} -\lambda & 1 \\ 1 & 1 - \lambda \end{array}\right] = -\lambda \left(1 - \lambda\right) - 1 = \lambda^2 - \lambda - 1$$

e

$$\lambda^2 - \lambda - 1 = 0 \Leftrightarrow \lambda = \frac{1 + \sqrt{5}}{2} \lor \lambda = \frac{1 - \sqrt{5}}{2},$$

vemos que os valores próprios de Hf(0,0) são $\frac{1+\sqrt{5}}{2} > 0$ e $\frac{1-\sqrt{5}}{2} < 0$. Logo f tem um ponto de sela em (0,0).

Como o polinómio característico de $\left[\begin{array}{cc} 3 & 1 \\ 1 & 1 \end{array}\right]$ é

$$\det\left(\left[\begin{array}{cc} 3 & 1 \\ 1 & 1 \end{array}\right] - \lambda \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\right) = \det\left[\begin{array}{cc} 3 - \lambda & 1 \\ 1 & 1 - \lambda \end{array}\right] = (3 - \lambda)(1 - \lambda) - 1 = \lambda^2 - 4\lambda + 2$$

e

$$\lambda^2 - 4\lambda + 2 = 0 \Leftrightarrow \lambda = 2 + \sqrt{2} \lor \lambda = 2 - \sqrt{2},$$

vemos que os valores próprios de $Hf\left(\frac{1}{2},-\frac{1}{2}\right)=Hf\left(-\frac{1}{2},\frac{1}{2}\right)$ são $2+\sqrt{2}>0$ e $2-\sqrt{2}>0$. Logo f tem dois pontos de mínimo em $\left(\frac{1}{2},-\frac{1}{2}\right)$ e $\left(-\frac{1}{2},\frac{1}{2}\right)$.

Exercício: Classifique os pontos de estacionaridade da função

$$f(x, y, z) = xy + xz + yz - x + z.$$

Resolução: Os pontos de estacionaridade de f são as soluções de sistema

$$\begin{cases} \frac{\partial f}{\partial x}(x,y,z) &= 0\\ \frac{\partial f}{\partial y}(x,y,z) &= 0\\ \frac{\partial f}{\partial z}(x,y,z) &= 0 \end{cases} \Leftrightarrow \begin{cases} y+z-1 &= 0\\ x+z &= 0\\ x+y+1 &= 0 \end{cases} \Leftrightarrow \begin{cases} y+z &= 1\\ x+z &= 0\\ x+y &= -1 \end{cases} \Leftrightarrow \begin{cases} z &= 1\\ y &= 0\\ x &= -1 \end{cases}.$$

Temos portanto um único ponto de estacionaridade: (-1,0,1). Por outro lado:

$$Hf\left(x,y,z\right) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x^{2}}\left(x,y,z\right) & \frac{\partial^{2}f}{\partial y\partial x}\left(x,y,z\right) & \frac{\partial^{2}f}{\partial z\partial x}\left(x,y,z\right) \\ \frac{\partial^{2}f}{\partial x\partial y}\left(x,y,z\right) & \frac{\partial^{2}f}{\partial y^{2}}\left(x,y,z\right) & \frac{\partial^{2}f}{\partial z\partial y}\left(x,y,z\right) \\ \frac{\partial^{2}f}{\partial x\partial z}\left(x,y,z\right) & \frac{\partial^{2}f}{\partial y\partial z}\left(x,y,z\right) & \frac{\partial^{2}f}{\partial z^{2}}\left(x,y,z\right) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix},$$

pelo que

$$Hf(-1,0,1) = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

Como o polinómio característico de Hf(-1,0,1) é

$$\det (Hf(-1,0,1) - \lambda I) = \det \begin{bmatrix} -\lambda & 1 & 1 \\ 1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{bmatrix} = -\lambda^3 + 3\lambda + 2 = (2 - \lambda)(\lambda + 1)^2,$$

os valores próprios de Hf(-1,0,1) são -1 e 2, pelo que f tem um ponto de sela em (-1,0,1).

Exercício: Determine e classifique os pontos de estacionaridade da função

$$f(x,y) = x^4 - y^4 - 2x^2 + 2ay^2$$

para cada valor do parâmetro $a \in \mathbb{R}$.

Resolução: Os pontos de estacionaridade de f são as soluções de sistema

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) &= 0\\ \frac{\partial f}{\partial y}(x,y) &= 0 \end{cases} \Leftrightarrow \begin{cases} 4x^3 - 4x &= 0\\ -4y^3 + 4ay &= 0 \end{cases} \Leftrightarrow \begin{cases} x(x^2 - 1) &= 0\\ y(a - y^2) &= 0 \end{cases}$$

e dependem do parâmetro $a \in \mathbb{R}$, a saber:

$$\begin{cases} (0,0), (\pm 1,0) & \text{se } a \le 0 \\ (0,0), (\pm 1,0), (0,\pm \sqrt{a}), (\pm 1,\pm \sqrt{a}) & \text{se } a > 0 \end{cases}$$

Como

$$Hf\left(x,y\right) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x^{2}}\left(x,y\right) & \frac{\partial^{2}f}{\partial y\partial x}\left(x,y\right) \\ \frac{\partial^{2}f}{\partial x\partial y}\left(x,y\right) & \frac{\partial^{2}f}{\partial y^{2}}\left(x,y\right) \end{bmatrix} = \begin{bmatrix} 12x^{2} - 4 & 0 \\ 0 & -12y^{2} + 4a \end{bmatrix},$$

obtemos:

$$Hf(0,0) = \begin{bmatrix} -4 & 0 \\ 0 & 4a \end{bmatrix}$$
 e $Hf(\pm 1,0) = \begin{bmatrix} 8 & 0 \\ 0 & 4a \end{bmatrix}$, para qualquer $a \in \mathbb{R}$;

$$Hf(0,\pm\sqrt{a}) = \begin{bmatrix} -4 & 0 \\ 0 & -8a \end{bmatrix}$$
 e $Hf(\pm 1,\pm\sqrt{a}) = \begin{bmatrix} 8 & 0 \\ 0 & -8a \end{bmatrix}$, para $a > 0$.

Temos portanto:

Se a < 0, a função tem um máximo local em (0,0) e dois pontos de sela em $(\pm 1,0)$.

Se a > 0, a função tem dois máximos locais nos pontos $(0, \pm \sqrt{a})$, dois mínimos locais nos pontos $(\pm 1, 0)$, e cinco pontos de sela nos pontos (0, 0) e $(\pm 1, \pm \sqrt{a})$.

Se a=0, a matriz Hf(0,0) é semidefinida negativa e as matrizes $Hf(\pm 1,0)$ são semidefinidas positivas, pelo que neste caso a classificação dos três pontos de estacionaridade não

se pode deduzir das correspondentes matrizes Hessianas. No entanto porque, para a=0, se tem

$$f(x,y) = x^4 - y^4 - 2x^2$$

facilmente se verifica que f tem um máximo local em (0,0), já que f(0,0)=0 e $f(x,y)\leq 0$ para (x,y) suficientemente próximo de (0,0) (note que $x^4-2x^2\leq 0$ para x suficientemente próximo de 0). Nos pontos $(\pm 1,0)$ a situação é diferente: se considerarmos as funções reais de variável real

$$\varphi(t) = f(\pm 1, t) = -1 - t^4 e \psi(t) = f(t \pm 1, 0) = (t \pm 1)^4 - 2(t \pm 1)^2,$$

vemos que a primeira tem um máximo em 0, e a segunda um mínimo já que $\psi'(0) = 0$ e $\psi''(0) = 8$. Logo a função f tem dois pontos de sela em $(\pm 1, 0)$.

Teorema da função inversa

Recorde que se $f:A\to B$ é uma aplicação injectiva, com contradomínio $f(A)=\{f(x):x\in A\}$, a inversa de f é a aplicação $f^{-1}:f(A)\to A$ definida por

$$f^{-1}(f(x)) = x$$
, para qualquer $x \in A$.

Trata-se portanto da única aplicação de f(A) em A que verifica

$$(f^{-1} \circ f)(x) = x$$
, para qualquer $x \in A$

 \mathbf{e}

$$(f \circ f^{-1})(y) = y$$
, para qualquer $y \in f(A)$.

Mais geralmente, diz-se que uma aplicação $f:A\to B$ é injectiva (ou invertível) num conjunto $C\subset A$, quando a restrição de f a C é injectiva.

Se $f:A\to B$ é injectiva em $C\subset A$, chama-se inversa de f em C à aplicação $f^{-1}:f(C)\to C$ definida por

$$f^{-1}(f(x)) = x$$
, para qualquer $x \in C$.

Teorema da função inversa: Seja $D \subset \mathbb{R}^n$ um conjunto aberto, $f: D \to \mathbb{R}^n$ uma função de classe C^1 e $\mathbf{a} \in D$. Se det $(Df(a)) \neq 0$, então existe um conjunto aberto $V \subset D$, com $\mathbf{a} \in D$, e tal que:

- 1) A função f é injectiva em V;
- 2) O conjunto $f(V) \subset \mathbb{R}^n$ é aberto;
- 3) A função $f^{-1}: f(V) \to V$ é de classe C^1 e

$$Df^{-1}(f(\mathbf{x})) = (Df(\mathbf{x}))^{-1}$$
, para qualquer $\mathbf{x} \in V$.

Exercício: Considere a função $f:\{(x,y):\mathbb{R}^2:x\neq 0\}\to\mathbb{R}^2$ definida por $f(x,y)=(xy,\frac{y}{x})$.

- a) Mostre que f não é injectiva.
- b) Mostre que f tem inversa local em torno do ponto (2,2) e calcule $Df^{-1}(4,1)$.
- c) Mostre que f tem inversa local em torno do ponto (-2,-2) e calcule $Df^{-1}(4,1)$.

Resolução:

- a) Basta notar f(-x, -y) = f(x, y), para qualquer (x, y) no domínio da função.
- b) A função é de classe C^1 já que as derivadas parciais,

$$\frac{\partial u}{\partial x}\left(x,y\right)=y,\,\frac{\partial u}{\partial y}\left(x,y\right)=x,\,\frac{\partial v}{\partial x}\left(x,y\right)=-\frac{y}{x^{2}}\,\operatorname{e}\,\frac{\partial v}{\partial y}\left(x,y\right)=\frac{1}{x},$$

são contínuas no seu domínio. Como a matriz jacobiana

$$Df(2,2) = \begin{bmatrix} \frac{\partial u}{\partial x}(2,2) & \frac{\partial u}{\partial y}(2,2) \\ \frac{\partial v}{\partial x}(2,2) & \frac{\partial v}{\partial y}(2,2) \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix},$$

é invertível, pois

$$\det Df(2,2) = \det \begin{bmatrix} 2 & 2 \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} = 2 \neq 0,$$

o teorema da função inversa garante que existe um conjunto aberto $V \subset \mathbb{R}^2$, com $(2,2) \in V$, onde f é invertível. Além disso o conjunto $f(V) \subset \mathbb{R}^2$ é aberto e a função inversa f^{-1} : $f(V) \to V$ é de classe C^1 com matriz jacobiana dada por

$$Df^{-1}(f(x,y)) = (Df(x,y))^{-1}$$
, para qualquer $(x,y) \in V$.

Assim, porque f(2,2) = (4,1), obtemos

$$Df^{-1}(4,1) = Df^{-1}(f(2,2)) = (Df(2,2))^{-1} = \begin{bmatrix} 2 & 2 \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{4} & -1 \\ \frac{1}{4} & 1 \end{bmatrix}.$$

c) Como a matriz jacobiana

$$Df(-2,-2) = \begin{bmatrix} \frac{\partial u}{\partial x}(-2,-2) & \frac{\partial u}{\partial y}(-2,-2) \\ \frac{\partial v}{\partial x}(-2,-2) & \frac{\partial v}{\partial y}(-2,-2) \end{bmatrix} = \begin{bmatrix} -2 & -2 \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

é invertível, pois

$$\det Df(-2, -2) = \det \begin{bmatrix} -2 & -2 \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} = 2 \neq 0,$$

o teorema da função inversa garante que existe um conjunto aberto $W \subset \mathbb{R}^2$, com $(-2, -2) \in W$, onde f é invertível. Além disso o conjunto $f(W) \subset \mathbb{R}^2$ é aberto e a função inversa $f^{-1}: f(W) \to W$ é de classe C^1 com matriz jacobiana dada por

$$Df^{-1}(f(x,y)) = (Df(x,y))^{-1}$$
, para qualquer $(x,y) \in W$.

Assim, porque f(-2, -2) = (4, 1), obtemos

$$Df^{-1}(4,1) = Df^{-1}(f(-2,-2)) = (Df(-2,-2))^{-1} = \begin{bmatrix} -2 & -2 \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}^{-1} = \begin{bmatrix} -\frac{1}{4} & 1 \\ -\frac{1}{4} & -1 \end{bmatrix}.$$

Exercício: Mostre que a função $f: \mathbb{R}^3 \to \mathbb{R}^3$, definida por $f(x, y, z) = (2e^{yz-1}, e^{xz-1}, -e^{xy-1})$ é invertível numa vizinhança do ponto (1, 1, 1), com inversa de classe C^1 , e calcule a derivada $Df^{-1}(2, 1, -1)$.

Resolução: a) A função é de classe C^1 já que as derivadas parciais,

$$\frac{\partial u}{\partial x}(x,y,z) = 0, \frac{\partial u}{\partial y}(x,y,z) = 2ze^{yz-1}, \frac{\partial u}{\partial z}(x,y,z) = 2ye^{yz-1},$$

$$\frac{\partial v}{\partial x}(x,y,z) = ze^{xz-1}, \frac{\partial v}{\partial y}(x,y,z) = 0, \frac{\partial v}{\partial z}(x,y,z) = xe^{xz-1}$$

$$\frac{\partial w}{\partial x}(x,y,z) = -ye^{xy-1}, \frac{\partial w}{\partial y}(x,y,z) = -xe^{xy-1}, \frac{\partial w}{\partial z}(x,y,z) = 0,$$

são contínuas no seu domínio. Como a matriz jacobiana

$$Df\left(1,1,1\right) = \begin{bmatrix} \frac{\partial u}{\partial x}\left(1,1,1\right) & \frac{\partial u}{\partial y}\left(1,1,1\right) & \frac{\partial u}{\partial z}\left(1,1,1\right) \\ \frac{\partial v}{\partial x}\left(1,1,1\right) & \frac{\partial v}{\partial y}\left(1,1,1\right) & \frac{\partial v}{\partial z}\left(1,1,1\right) \\ \frac{\partial w}{\partial x}\left(1,1,1\right) & \frac{\partial w}{\partial y}\left(1,1,1\right) & \frac{\partial w}{\partial z}\left(1,1,1\right) \end{bmatrix} = \begin{bmatrix} 0 & 2 & 2 \\ 1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix},$$

é invertível, pois

$$\det Df\left(1,1,1\right) = \det \begin{bmatrix} 0 & 2 & 2 \\ 1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix} = -2\det \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} + 2\det \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix} = -2 - 2 = -4 \neq 0,$$

o teorema da função inversa garante que existe um conjunto aberto $V \subset \mathbb{R}^3$, com $(1,1,1) \in V$, onde f é invertível e a função inversa $f^{-1}: f(V) \to V$ é de classe C^1 com matriz jacobiana dada por

$$Df^{-1}(f(x,y,z)) = (Df(x,y,z))^{-1}$$
, para qualquer $(x,y,z) \in V$.

Assim, porque f(1, 1, 1) = (2, 1, -1), obtemos

$$Df^{-1}(2,1,-1) = Df^{-1}(f(1,1,1)) = (Df(1,1,1))^{-1} = \begin{bmatrix} 0 & 2 & 2 \\ 1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} -\frac{1}{4} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{4} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

Exercício: Considere a função $f(x,y) = (x+y+\sin(x-y), 1+\log(1+xy)-x)$.

- a) Mostre que existe um conjunto aberto $V \subset \mathbb{R}^2$, com $(1,1) \in V$, onde f é invertível. Conclua que o sistema de equações $f(x,y) = (2, \log 2)$ tem solução única em V.
- b) Determine $\frac{\partial x}{\partial u}(2, \log 2)$ e $\frac{\partial y}{\partial v}(2, \log 2)$, onde x(u, v) e y(u, v) designam as funções coordenadas da função inversa $f^{-1}: f(V) \to V$.
- c) Mostre que se $\epsilon > 0$ é suficientemente pequeno e $(x(\epsilon), y(\epsilon))$ designa a única solução em V do sistema de equações $f(x, y) = (2 + \epsilon, \log(2) + \epsilon)$, então $x(\epsilon) > 1$ e $y(\epsilon) > 1$.

Resolução: a) A função f é de classe C^1 já que as derivadas parciais,

$$\frac{\partial u}{\partial x}\left(x,y\right) = 1 + \cos\left(x-y\right), \ \frac{\partial u}{\partial y}\left(x,y\right) = 1 - \cos\left(x-y\right), \ \frac{\partial v}{\partial x}\left(x,y\right) = \frac{y}{1+xy} - 1 \ e \ \frac{\partial v}{\partial y}\left(x,y\right) = \frac{x}{1+xy},$$

são contínuas no seu domínio. Como a matriz jacobiana

$$Df(1,1) = \begin{bmatrix} \frac{\partial u}{\partial x}(1,1) & \frac{\partial u}{\partial y}(1,1) \\ \frac{\partial v}{\partial x}(1,1) & \frac{\partial v}{\partial y}(1,1) \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix},$$

é invertível, pois

$$\det Df(1,1) = \det \begin{bmatrix} 2 & 0 \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} = 1 \neq 0,$$

o teorema da função inversa garante que existe um conjunto aberto $V \subset \mathbb{R}^2$, com $(1,1) \in V$, onde f é invertível. Assim, porque f é injectiva em V e $f(1,1) = (2, \log(2))$, pode-se concluir que a equação $f(x,y) = (2, \log 2)$ tem solução única em V.

b) Pelo teorema da função inversa, o conjunto $f(V) \subset \mathbb{R}^2$ é aberto e a função $f^{-1}: f(V) \to V$ é de classe C^1 com matriz jacobiana dada por

$$Df^{-1}(f(x,y)) = (Df(x,y))^{-1}$$
, para qualquer $(x,y) \in V$.

Assim, porque $f(1,1) = (2, \log 2)$, obtemos

$$Df^{-1}(2, \log 2) = Df^{-1}(f(1, 1)) = (Df(1, 1))^{-1} = \begin{bmatrix} 2 & 0 \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 2 \end{bmatrix},$$

donde se deduz

$$\begin{bmatrix} \frac{\partial x}{\partial u}(2, \log 2) & \frac{\partial x}{\partial v}(2, \log 2) \\ \frac{\partial y}{\partial u}(2, \log 2) & \frac{\partial y}{\partial v}(2, \log 2) \end{bmatrix} = Df^{-1}(2, \log 2) = \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 2 \end{bmatrix}.$$

Logo
$$\frac{\partial x}{\partial u}(2, \log 2) = \frac{1}{2} e^{\frac{\partial y}{\partial v}}(2, \log 2) = 2.$$

c) Como o conjunto aberto $f(V) \subset \mathbb{R}^2$ contém o ponto $f(1,1) = (2,\log 2)$, podemos considerar um real $\delta > 0$ tal que $(2+t,\log(2)+t) \in f(V)$, para qualquer $t \in]-\delta,\delta[$. Isto significa que, para qualquer $t \in]-\delta,\delta[$, o sistema de equações $f(x,y) = (2+t,\log(2)+t)$ tem solução única em V dada por

$$(x(t), y(t)) = f^{-1}(2 + t, \log(2) + t).$$

Note-se que, porque a função $f^{-1}: f(V) \to V$ é de classe C^1 , as funções x(t) e y(t) são de classe C^1 e verificam

$$\begin{bmatrix} x'(0) \\ y'(0) \end{bmatrix} = Df^{-1}(2, \log 2) \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{5}{2} \end{bmatrix}.$$

Logo as funções x(t) e y(t), porque são de classe C^1 e têm derivada positiva em t=0, são estritamente crescentes numa vizinhança de t=0, donde se deduz que se $\epsilon>0$ é suficientemente pequeno, então

$$x(\epsilon) > x(0) = 1 \text{ e } y(\epsilon) > y(0) = 1.$$

Teorema da função implícita

Teorema da função implícita para funções de \mathbb{R}^2 em \mathbb{R} : Seja $D \subset \mathbb{R}^2$ um conjunto aberto, $f:D\to\mathbb{R}$ uma função de classe C^1 e $(a,b)\in D$ tal que f(a,b)=0. Nestas condições tem-se:

1) Se $\frac{\partial f}{\partial y}(a,b) \neq 0$, então existem intervalos abertos $I,J \subset \mathbb{R}$, com $a \in I$, $b \in J$ e $I \times J \subset D$, e uma função $g:I \to J$ de classe C^1 tal que

$$\{(x,y) \in I \times J : f(x,y) = 0\} = \{(x,y) : x \in I \text{ e } y = g(x)\}.$$

Além disso a derivada de g satisfaz

$$g'(x) = -\frac{\frac{\partial f}{\partial x}(x, g(x))}{\frac{\partial f}{\partial y}(x, g(x))}$$
, para qualquer $x \in I$.

Porque g(a) = b, tem-se em particular

$$g'(a) = -\frac{\frac{\partial f}{\partial x}(a, b)}{\frac{\partial f}{\partial y}(a, b)}.$$

2) Se $\frac{\partial f}{\partial x}(a,b) \neq 0$, então existem intervalos abertos $I,J \subset \mathbb{R}$, com $a \in I, b \in J$ e $I \times J \subset D$, e uma função $g:J \to I$ de classe C^1 tal que

$$\{(x,y) \in I \times J : f(x,y) = 0\} = \{(x,y) : y \in J \in x = g(y)\}.$$

Além disso a derivada de g satisfaz

$$g'(y) = -\frac{\frac{\partial f}{\partial y}(g(y), y)}{\frac{\partial f}{\partial x}(g(y), y)}$$
, para qualquer $y \in J$,

Porque g(b) = a, tem-se em particular

$$g'(b) = -\frac{\frac{\partial f}{\partial y}(a, b)}{\frac{\partial f}{\partial x}(a, b)}.$$

Exercício: Mostre que a equação $y \sin(x + y) = 0$ define implicitamente x como função de y nalguma vizinhança do ponto $(0, \pi)$, e calcule a derivada $\frac{dx}{dy}(\pi)$. Confirme o resultado explicitando x como função de y.

Resolução: A função $f(x,y) = y\sin(x+y)$ é de classe C^1 , já que as derivadas parciais,

$$\frac{\partial f}{\partial x}(x,y) = y\cos(x+y) e \frac{\partial f}{\partial y}(x,y) = \sin(x+y) + y\cos(x+y),$$

são contínuas em \mathbb{R}^2 . Como $f(0,\pi)=0$ e $\frac{\partial f}{\partial x}(0,\pi)=\pi\cos(\pi)=-\pi\neq 0$, o teorema da função implícita garante que existem dois intervalos abertos, $I,J\subset\mathbb{R}$, com $0\in I$ e $\pi\in J$, e uma função $g:J\to I$ de classe C^1 tal que

$$\{(x,y) \in I \times J : y\sin(x+y) = 0\} = \{(g(y),y) : y \in J\}$$

e cuja derivada em π é dada por

$$g'(\pi) = -\frac{\frac{\partial f}{\partial y}(0,\pi)}{\frac{\partial f}{\partial x}(0,\pi)} = -\frac{\sin(\pi) + \pi \cos(\pi)}{\pi \cos(\pi)} = -1.$$

Na formulação mais geral do teorema da função implícita trata-se de determinar condições para que um sistema de m equações da forma:

$$\begin{cases} F_{1}(x_{1},...,x_{n},y_{1},...,y_{m}) = 0 \\ F_{2}(x_{1},...,x_{n},y_{1},...,y_{m}) = 0 \\ \vdots \\ F_{m}(x_{1},...,x_{n},y_{1},...,y_{m}) = 0 \end{cases}$$

onde $F_1, ..., F_m$ são funções definidas num aberto $D \subset \mathbb{R}^{n+m}$, possa ser resolvido em ordem às m variáveis $y_1, ..., y_m$, por forma que cada uma destas fique expressa (localmente) como função das restantes variáveis, $x_1, ..., x_n$.

Veremos de seguida que o determinante

$$\frac{\partial (F_1, ..., F_m)}{\partial (y_1, ..., y_m)} (\mathbf{x}, \mathbf{y}) = \det \begin{bmatrix} \frac{\partial F_1}{\partial y_1} (\mathbf{x}, \mathbf{y}) & \cdots & \frac{\partial F_1}{\partial y_m} (\mathbf{x}, \mathbf{y}) \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial y_1} (\mathbf{x}, \mathbf{y}) & \cdots & \frac{\partial F_m}{\partial y_m} (\mathbf{x}, \mathbf{y}) \end{bmatrix},$$

com $\mathbf{x} = (x_1, ..., x_n)$ e $\mathbf{y} = (y_1, ..., y_m)$, a que habitualmente se chama jacobiano das funções $F_1, ..., F_m$ em relação às variáveis $y_1, ..., y_m$, desempenha um papel importante neste contexto.

Teorema da função implícita: Seja D um aberto de \mathbb{R}^{n+m} e $F: D \to \mathbb{R}^m$ uma aplicação com funções coordenadas, $F_1, ..., F_m$, de classe C^1 . Admita-se que

$$(\mathbf{a}, \mathbf{b}) = (a_1, ..., a_n, b_1, ..., b_m) \in D,$$

designa uma solução do sistema de equações $F(\mathbf{x}, \mathbf{y}) = \mathbf{0}$, com $\mathbf{x} = (x_1, ..., x_n)$ e $\mathbf{y} = (y_1, ..., y_m)$, tal que

$$\frac{\partial (F_1, ..., F_m)}{\partial (y_1, ..., y_m)} (\mathbf{a}, \mathbf{b}) \neq 0.$$

Nestas condições, existem conjuntos abertos, $V \subset \mathbb{R}^n$ e $W \subset \mathbb{R}^m$, com $\mathbf{a} \in V$ e $\mathbf{b} \in W$, e uma aplicação $g: V \to W$ de classe C^1 tal que

$$\{(\mathbf{x}, \mathbf{y}) \in V \times W : F(\mathbf{x}, \mathbf{y}) = \mathbf{0}\} = \{(\mathbf{x}, \mathbf{y}) : \mathbf{x} \in V \in \mathbf{y} = g(\mathbf{x})\}.$$

Além disso, as derivadas parciais $\frac{\partial g_i}{\partial x_j}$, com i=1,...,m e j=1,...,n, satisfazem

$$\frac{\partial g_i}{\partial x_j}(\mathbf{x}) = -\frac{\frac{\partial (F_1, \dots, F_m)}{\partial (y_1, \dots, y_{i-1}, x_j, y_{i+1}, \dots, y_m)} (\mathbf{x}, g(\mathbf{x}))}{\frac{\partial (F_1, \dots, F_m)}{\partial (y_1, \dots, y_m)} (\mathbf{x}, g(\mathbf{x}))}, \text{ para qualquer } \mathbf{x} \in V.$$

Porque $\mathbf{b} = g(\mathbf{a})$, tem-se em particular

$$\frac{\partial g_i}{\partial x_j}(\mathbf{a}) = -\frac{\frac{\partial (F_1, \dots, F_m)}{\partial (y_1, \dots, y_{i-1}, x_j, y_{i+1}, \dots, y_m)}}{\frac{\partial (F_1, \dots, F_m)}{\partial (y_1, \dots, y_m)}}(\mathbf{a}, \mathbf{b})$$

Exercício: Mostre que a equação $2z + x^2z^5 + y^2x^3 + xy = 2$ define implicitamente z como função de (x, y) em torno do ponto (0, 0, 1), e calcule a derivada parcial de segunda ordem $\frac{\partial^2 z}{\partial u \partial x}(0, 0)$.

Resolução: Consideremos a função $f(x,y,z) = 2z + x^2z^5 + y^2x^3 + xy - 2$. Note-se que f é de classe C^1 e o ponto (0,0,1) é solução da equação f(x,y,z) = 0, já que f(0,0,1) = 0. Por outro lado, como

$$\frac{\partial f}{\partial z}(x,y,z) = 2 + 5x^2z^4$$
, para qualquer $(x,y,z) \in \mathbb{R}^3$,

obtém-se

$$\frac{\partial f}{\partial z}(0,0,1) = 2 \neq 0.$$

Pelo teorema da função implícita podemos então concluir que existem conjuntos abertos, $V \subset \mathbb{R}^2$ e $W \subset \mathbb{R}$, com $(0,0) \in V$ e $1 \in W$, e uma função $g: V \to W$ de classe C^1 que, se denotada por z(x,y), verifica

$$\{(x, y, z) \in V \times W : f(x, y, z) = 0\} = \{(x, y, z) : (x, y) \in V \in z = z(x, y)\}.$$

Fica portanto demonstrado que, na vizinhança $V \times W$ do ponto (0,0,1), a equação f(x,y,z) = 0 define implicitamente z como função de (x,y).

Por outro lado, como

$$\frac{\partial f}{\partial x}(x, y, z) = 2xz^5 + 3y^2x^2 + y$$
, para qualquer $(x, y, z) \in \mathbb{R}^3$,

teremos

$$\frac{\partial z}{\partial x}\left(x,y\right) = -\frac{\frac{\partial f}{\partial x}\left(x,y,z\left(x,y\right)\right)}{\frac{\partial f}{\partial z}\left(x,y,z\left(x,y\right)\right)} = -\frac{2xz\left(x,y\right)^{5} + 3y^{2}x^{2} + y}{2 + 5x^{2}z\left(x,y\right)^{4}}$$

para qualquer $(x,y) \in V$. Consequentemente,

$$\frac{\partial^{2}z}{\partial y \partial x}(x,y) = -\frac{\left(10xz(x,y)^{4} \frac{\partial z}{\partial y}(x,y) + 6yx^{2} + 1\right)\left(2 + 5x^{2}z(x,y)^{4}\right)^{2}}{\left(2 + 5x^{2}z(x,y)^{4}\right)^{2}} + \frac{\left(2xz(x,y)^{5} + 3y^{2}x^{2} + y\right)\left(20x^{2}z(x,y)^{3} \frac{\partial z}{\partial y}(x,y)\right)}{\left(2 + 5x^{2}z(x,y)^{4}\right)^{2}},$$

e porque z(0,0) = 1, obtemos finalmente

$$\frac{\partial^2 z}{\partial u \partial x}(0,0) = -\frac{2}{4} = -\frac{1}{2}.$$

Exercício: Considere o conjunto $S \subset \mathbb{R}^3$ definido pelo seguinte sistema de equações:

$$\left\{ \begin{array}{lll} y^2 + z^2 & = & x^2 + 1 \\ y^2 + \sin x + \sin z & = & 1 \end{array} \right. .$$

a) Mostre que o conjunto S coincide com o gráfico de uma função $f: \mathbb{R} \to \mathbb{R}^2$ nalguma vizinhançaa do ponto (0,1,0), ou seja, duas das variáveis são funções da terceira.

b) Calcule f'(0).

Resolução: Consideremos a função $F: \mathbb{R}^3 \to \mathbb{R}^2$, definida por

$$F(x, y, z) = (y^2 + z^2 - x^2 - 1, y^2 + \sin x + \sin z - 1).$$

Note-se que F é de classe C^1 e o ponto (0,1,0) é solução do sistema de equações F(x,y,z) = (0,0), já que F(0,1,0) = (0,0). Por outro lado, como

$$\frac{\partial \left(F_{1}, F_{2}\right)}{\partial \left(x, y\right)} \left(x, y, z\right) = \det \begin{bmatrix} \frac{\partial F_{1}}{\partial x} \left(x, y, z\right) & \frac{\partial F_{1}}{\partial y} \left(x, y, z\right) \\ \frac{\partial F_{2}}{\partial x} \left(x, y, z\right) & \frac{\partial F_{2}}{\partial y} \left(x, y, z\right) \end{bmatrix} = \det \begin{bmatrix} -2x & 2y \\ \cos x & 2y \end{bmatrix} = -4xy - 2y \cos x$$

obtém-se

$$\frac{\partial \left(F_1, F_2\right)}{\partial \left(x, y\right)} \left(0, 1, 0\right) = -2 \neq 0.$$

Pelo teorema da função implícita podemos então concluir que existem conjuntos abertos, $V \subset \mathbb{R}$ e $W \subset \mathbb{R}^2$, com $0 \in V$ e $(0,1) \in W$, e uma função $f: V \to W$ de classe C^1 que verifica

$$\{(x, y, z) \in V \times W : F(x, y, z) = (0, 0)\} = \{(x, y, z) : z \in V \in (x, y) = f(z)\},\$$

e porque o conjunto S é formado pelas soluções do sistema de equações F(x,y,z)=(0,0), podemos escrever

$$S \cap (V \times W) = \{(x, y, z) : z \in V \in (x, y) = f(z)\}.$$

Fica assim demonstrado que, na vizinhança $V \times W$ do ponto (0,1,0), o conjunto S coincide com o gráfico da função $f: V \subset \mathbb{R} \to W \subset \mathbb{R}^2$.

Por outro lado, como

$$\frac{\partial \left(F_{1}, F_{2}\right)}{\partial \left(z, y\right)} \left(x, y, z\right) = \det \begin{bmatrix} \frac{\partial F_{1}}{\partial z} \left(x, y, z\right) & \frac{\partial F_{1}}{\partial y} \left(x, y, z\right) \\ \frac{\partial F_{2}}{\partial z} \left(x, y, z\right) & \frac{\partial F_{2}}{\partial y} \left(x, y, z\right) \end{bmatrix} = \det \begin{bmatrix} 2z & 2y \\ \cos z & 2y \end{bmatrix} = 4yz - 2y\cos z,$$

е

$$\frac{\partial \left(F_{1}, F_{2}\right)}{\partial \left(x, z\right)} \left(x, y, z\right) = \det \left[\begin{array}{cc} \frac{\partial F_{1}}{\partial x} \left(x, y, z\right) & \frac{\partial F_{1}}{\partial z} \left(x, y, z\right) \\ \frac{\partial F_{2}}{\partial x} \left(x, y, z\right) & \frac{\partial F_{2}}{\partial z} \left(x, y, z\right) \end{array}\right] = \det \left[\begin{array}{cc} -2x & 2z \\ \cos x & \cos z \end{array}\right] = -2x \cos z - 2z \cos x,$$

obtemos

$$f_1'(0) = \frac{df_1}{dz}(0) = -\frac{\frac{\partial(F_1, F_2)}{\partial(z, y)}(0, 1, 0)}{\frac{\partial(F_1, F_2)}{\partial(x, y)}(0, 1, 0)} = -\frac{-2}{-2} = -1$$

e

$$f_2'(0) = \frac{df_2}{dz}(0) = -\frac{\frac{\partial(F_1, F_2)}{\partial(x, z)}(0, 1, 0)}{\frac{\partial(F_1, F_2)}{\partial(x, y)}(0, 1, 0)} = -\frac{0}{-2} = 0,$$

ou seja f'(0) = (-1, 0).

Exercício: Considere o conjunto $S \subset \mathbb{R}^2$ definido por

$$S = \{(x, y) \in \mathbb{R}^2 : f(x, y) = 0\}, \text{ com } f(x, y) = x^3 + xy^2 - y^3 - 1.$$

- a) Mostre que qualquer vector (0, c), com $c \in \mathbb{R}$, é tangente a S no ponto (1, 0).
- b) Conclua que um vector $\mathbf{v} \in \mathbb{R}^2$ é tangente a S no ponto (1,0) sse $\nabla f(1,0) \cdot \mathbf{v} = 0$.

Resolução:

a) As derivadas parciais de f:

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 + y^2 e \frac{\partial f}{\partial y}(x,y) = 2xy - 3y^2,$$

são obviamente contínuas, pelo que f é de classe de C^1 . Assim, porque

$$f(1,0) = 0 e \frac{\partial f}{\partial x}(1,0) = 3 \neq 0,$$

o teorema da função implícita garante que existem intervalos abertos $I,J\subset\mathbb{R},$ com $1\in I$ e $0\in J,$ e uma função $g:J\to I$ de classe C^1 tal que

$$(I \times J) \cap S = \{(x, y) \in I \times J : f(x, y) = 0\} = \{(x, y) : y \in J \in x = g(y)\},\$$

e

$$g'(0) = -\frac{\frac{\partial f}{\partial y}(1,0)}{\frac{\partial f}{\partial x}(1,0)} = -\frac{0}{3} = 0.$$

Isto significa que, para qualquer $c \in \mathbb{R}$ e $\epsilon > 0$ suficientemente pequeno, a aplicação

$$\gamma_c:]-\epsilon, \epsilon[\to \mathbb{R}^2,$$

definida por $\gamma_{c}(t) = (g(ct), ct)$, é um caminho diferenciável em S tal que

$$\gamma_c(0) = (g(0), 0) = (1, 0) \ e \gamma'_c(0) = (cg'(0), c) = (0, c).$$

Logo, o vector (0, c) é tangente a S no ponto (1, 0).

b) Basta notar que o vector $\nabla f(1,0) = (3,0)$ é ortogonal a S em (1,0), e ter em conta a alínea anterior, onde se demonstra que qualquer vector ortogonal $\nabla f(1,0)$ é tangente a S no ponto (1,0).

Método dos Multiplicadores de Lagrange

Definição: Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}$ uma função e $f_{|S}: S \to \mathbb{R}$ a restrição de f a um subconjunto $S \subset D$. Dado um ponto $\mathbf{a} \in S$, diz-se que:

a) $f_{|S|}$ tem um máximo local em **a**, se existe uma bola de centro em **a**, $B_r(\mathbf{a})$, tal que

$$f(\mathbf{x}) \leq f(\mathbf{a})$$
, para qualquer $\mathbf{x} \in B_r(\mathbf{a}) \cap S$.

Se $f(\mathbf{x}) \leq f(\mathbf{a})$, para qualquer $\mathbf{x} \in S$, diz-se que $f_{|S|}$ tem um máximo absoluto em \mathbf{a} .

b) $f_{|S|}$ tem um mínimo local em **a**, se existe uma bola de centro em **a**, $B_r(\mathbf{a})$, tal que

$$f(\mathbf{a}) \leq f(\mathbf{x})$$
, para qualquer $\mathbf{x} \in B_r(\mathbf{a}) \cap S$.

Se $f(\mathbf{a}) \leq f(\mathbf{x})$, para qualquer $\mathbf{x} \in S$, diz-se que $f_{|S|}$ tem um mínimo absoluto em \mathbf{a} .

c) $f_{|S|}$ tem um extremo local em \mathbf{a} , se $f_{|S|}$ tem um máximo ou mínimo local em \mathbf{a} .

Teorema de Weierstrass: Qualquer função contínua $f: S \to \mathbb{R}$ num conjunto compacto $S \subset \mathbb{R}^n$ tem mínimo e máximo absolutos em S. Isto é, existem $\mathbf{a} \in S$ e $\mathbf{b} \in S$ tais que

$$f(\mathbf{a}) \le f(\mathbf{x}) \le f(\mathbf{b})$$
 para qualquer $\mathbf{x} \in S$.

Proposição: Seja D um aberto de \mathbb{R}^n , $f:D\to\mathbb{R}$ uma função diferenciável e $S\subset D$. Se $f_{|S|}$ tem um extremo local em $\mathbf{a}\in S$, então $\nabla f(\mathbf{a})\cdot\mathbf{v}=0$, para qualquer vector \mathbf{v} tangente a S no ponto \mathbf{a} .

Proposição: Seja D um aberto de \mathbb{R}^n e $F: D \to \mathbb{R}^m$, com $n \geq m$, uma função de classe C^1 . Admita-se que a matriz jacobiana $DF(\mathbf{a})$, com $\mathbf{a} \in S = \{\mathbf{x} \in D: F(\mathbf{x}) = \mathbf{0}\}$, tem característica m e que $T_{\mathbf{a}}S$ designa o subconjunto de \mathbb{R}^n formado pelos vectores tangentes a S no ponto \mathbf{a} . Nestas condições tem-se

$$T_{\mathbf{a}}S = \{ \mathbf{v} \in \mathbb{R}^n : DF(\mathbf{a}) \mathbf{v} = \mathbf{0} \}.$$

Teorema (Método dos Multiplicadores de Lagrange): Seja D um aberto de \mathbb{R}^n e $f:D\to\mathbb{R}$ uma função de classe C^1 . Admita-se que $F:D\to\mathbb{R}^m$, com $n\geq m$, é uma função de classe C^1 , com funções coordenadas $F_1,...,F_m$, tal que

$$\operatorname{rank} DF(\mathbf{x}) = m$$
, para qualquer $\mathbf{x} \in S = \{\mathbf{x} \in D : F(\mathbf{x}) = \mathbf{0}\}$.

Nestas condições, se a restrição de f a S tem um extremo local em $\mathbf{x}=(x_1,...,x_n)\in S$, então existem números reais $\lambda_1,...,\lambda_m$ tais que

$$\nabla f(x_1,...,x_n) = \lambda_1 \nabla F_1(x_1,...,x_n) + \cdots + \lambda_m \nabla F_m(x_1,...,x_n),$$

ou seja, o ponto $(x_1,...,x_n,\lambda_1,...,\lambda_m) \in \mathbb{R}^{n+m}$ é solução do sistema

$$\begin{cases}
\frac{\partial f}{\partial x_{1}}(x_{1},...,x_{n}) - \lambda_{1} \frac{\partial F_{1}}{\partial x_{1}}(x_{1},...,x_{n}) - \cdots - \lambda_{m} \frac{\partial F_{m}}{\partial x_{1}}(x_{1},...,x_{n}) &= 0 \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f}{\partial x_{n}}(x_{1},...,x_{n}) - \lambda_{1} \frac{\partial F_{1}}{\partial x_{n}}(x_{1},...,x_{n}) - \cdots - \lambda_{m} \frac{\partial F_{m}}{\partial x_{n}}(x_{1},...,x_{n}) &= 0 \\
F_{1}(x_{1},...,x_{n}) &= 0 \\
\vdots & \vdots & \vdots \\
F_{m}(x_{1},...,x_{n}) &= 0
\end{cases}$$

Exercício: Determinar os extremos da função $f(x,y) = x^4 + y^2$ no conjunto

$$S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

Resolução: Se considerarmos a função $F: \mathbb{R}^2 \to \mathbb{R}$, definida por $F(x,y) = x^2 + y^2 - 1$, temos

$$S = \{(x, y) \in \mathbb{R}^2 : F(x, y) = 0\}$$

e

$$\operatorname{rank} DF\left(x,y\right) = \operatorname{rank}\left[\begin{array}{cc} \frac{\partial F}{\partial x}\left(x,y\right) & \frac{\partial F}{\partial y}\left(x,y\right) \end{array}\right] = \operatorname{rank}\left[\begin{array}{cc} 2x & 2y \end{array}\right] = 1,$$

para qualquer $(x,y) \in S$. Assim, porque as soluções (x,y,λ) do sistema de equações,

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) - \lambda \frac{\partial F}{\partial x}(x,y) &= 0\\ \frac{\partial f}{\partial y}(x,y) - \lambda \frac{\partial F}{\partial y}(x,y) &= 0\\ F(x,y) &= 0 \end{cases} \Leftrightarrow \begin{cases} 4x^3 - \lambda 2x &= 0\\ 2y - \lambda 2y &= 0\\ x^2 + y^2 &= 1 \end{cases} \Leftrightarrow \begin{cases} x(2x^2 - \lambda) &= 0\\ y(1 - \lambda) &= 0\\ x^2 + y^2 &= 1 \end{cases}$$

são $(\pm 1,0,2)$, $(0,\pm 1,1)$ e $\left(\frac{\pm\sqrt{2}}{2},\frac{\pm\sqrt{2}}{2},1\right)$, vemos que os possíveis pontos de extremo da restrição de f a S são: $(\pm 1,0)$, $(0,\pm 1)$ e $\left(\frac{\pm\sqrt{2}}{2},\frac{\pm\sqrt{2}}{2}\right)$. Por fim, porque

$$f(\pm 1, 0) = f(0, \pm 1) = 1 e f\left(\frac{\pm\sqrt{2}}{2}, \frac{\pm\sqrt{2}}{2}\right) = \frac{3}{4},$$

e porque pelo Teorema de Weirstrass temos a garantia de que a restrição de f ao compacto S tem máximo e mínimo absolutos, podemos concluir que $(\pm 1,0)$, $(0,\pm 1)$ são pontos de máximo absoluto, e $\left(\frac{\pm\sqrt{2}}{2},\frac{\pm\sqrt{2}}{2}\right)$ são pontos de mínimo absoluto.

Exercício: Determinar os extremos da função f(x, y, z) = x + y + z no conjunto

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 3\}.$$

Resolução: Se considerarmos a função $F: \mathbb{R}^3 \to \mathbb{R}$, definida por $F(x, y, z) = x^2 + y^2 + z^2 - 3$, temos

$$S = \{(x, y, z) \in \mathbb{R}^3 : F(x, y, z) = 0\}$$

e

$$\operatorname{rank} DF\left(x,y,z\right) = \operatorname{rank}\left[\begin{array}{cc} \frac{\partial F}{\partial x}\left(x,y,z\right) & \frac{\partial F}{\partial y}\left(x,y,z\right) & \frac{\partial F}{\partial z}\left(x,y,z\right) \end{array}\right] = \operatorname{rank}\left[\begin{array}{cc} 2x & 2y & 2z \end{array}\right] = 1$$

para qualquer $(x, y, z) \in S$. Assim, porque as soluções (x, y, z, λ) do sistema de equações,

$$\begin{cases} \frac{\partial f}{\partial x}(x,y,z) - \lambda \frac{\partial F}{\partial x}(x,y,z) &= 0\\ \frac{\partial f}{\partial y}(x,y,z) - \lambda \frac{\partial F}{\partial y}(x,y,z) &= 0\\ \frac{\partial f}{\partial z}(x,y,z) - \lambda \frac{\partial F}{\partial z}(x,y,z) &= 0\\ F(x,y,z) &= 0 \end{cases} \Leftrightarrow \begin{cases} 1 - 2\lambda x &= 0\\ 1 - 2\lambda y &= 0\\ 1 - 2\lambda z &= 0\\ x^2 + y^2 + z^2 &= 3 \end{cases} \Leftrightarrow \begin{cases} x &= \frac{1}{2\lambda}\\ y &= \frac{1}{2\lambda}\\ z &= \frac{1}{2\lambda}\\ \frac{3}{4\lambda^2} &= 3 \end{cases}$$

são $(1,1,1,\frac{1}{2})$ e $(-1,-1,-1,-\frac{1}{2})$, vemos que os possíveis pontos de extremo da restrição de f a S são (1,1,1) e (-1,-1,-1). Por fim, porque

$$f(1,1,1) = 3 e f(-1,-1,-1) = -3$$

e porque pelo Teorema de Weirstrass temos a garantia de que a restrição de f ao compacto S tem máximo e mínimo absolutos, podemos concluir que (1, 1, 1), (-1, -1, -1) são pontos de máximo absoluto e de mínimo absoluto, respectivamente.

Exercício: Determinar os extremos da função f(x, y, z) = z no conjunto

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 4 \text{ e } x + z = 1\}.$$

Resolução: Se considerarmos a função $F: \mathbb{R}^3 \to \mathbb{R}^2$, definida por

$$F(x, y, z) = (x^2 + y^2 - 4, x + z - 1),$$

temos

$$S = \{(x, y, z) \in \mathbb{R}^3 : F(x, y, z) = (0, 0)\}$$

e

$$\operatorname{rank} DF\left(x,y,z\right) = \operatorname{rank} \left[\begin{array}{ccc} \frac{\partial F_{1}}{\partial x}\left(x,y,z\right) & \frac{\partial F_{1}}{\partial y}\left(x,y,z\right) & \frac{\partial F_{1}}{\partial z}\left(x,y,z\right) \\ \frac{\partial F_{2}}{\partial x}\left(x,y,z\right) & \frac{\partial F_{2}}{\partial y}\left(x,y,z\right) & \frac{\partial F_{2}}{\partial z}\left(x,y,z\right) \end{array} \right] = \operatorname{rank} \left[\begin{array}{ccc} 2x & 2y & 0 \\ 1 & 0 & 1 \end{array} \right] = 2,$$

para qualquer $(x, y, z) \in S$. Assim, porque as soluções $(x, y, z, \lambda_1, \lambda_2)$ do sistema de equações,

$$\begin{cases} \frac{\partial f}{\partial x}(x,y,z) - \lambda_{1} \frac{\partial F_{1}}{\partial x}(x,y,z) - \lambda_{2} \frac{\partial F_{2}}{\partial x}(x,y,z) &= 0 \\ \frac{\partial f}{\partial y}(x,y,z) - \lambda_{1} \frac{\partial F_{1}}{\partial y}(x,y,z) - \lambda_{2} \frac{\partial F_{2}}{\partial y}(x,y,z) &= 0 \\ \frac{\partial f}{\partial z}(x,y,z) - \lambda_{1} \frac{\partial F_{1}}{\partial z}(x,y,z) - \lambda_{2} \frac{\partial F_{2}}{\partial z}(x,y,z) &= 0 \\ F_{1}(x,y,z) &= 0 \\ F_{2}(x,y,z) &= 0 \end{cases} \Leftrightarrow \begin{cases} -2\lambda_{1}x - \lambda_{2} &= 0 \\ -2\lambda_{1}y &= 0 \\ 1 - \lambda_{2} &= 0 \\ x^{2} + y^{2} &= 4 \\ x + z &= 1 \end{cases} ,$$

são $(2,0,-1,-\frac{1}{4},1)$ e $(-2,0,3,\frac{1}{4},1)$, vemos que os possíveis pontos de extremo da restrição de f a S são: (2,0,-1) e (-2,0,3). Por fim, porque

$$f(2,0,-1) = -1 e f(-2,0,3) = 3,$$

e porque pelo Teorema de Weirstrass temos a garantia de que a restrição de f ao compacto S tem máximo e mínimo absolutos, podemos concluir que (-2,0,3), (2,0,-1) são pontos de máximo absoluto e de mínimo absoluto, respectivamente.

Exercício: Determinar os ponto da superfície $S = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 - y^2 + 1\}$ mais próximos da origem.

Resolução: Consideremos a função $F(x, y, z) = z - x^2 + y^2 - 1$. Como

$$S = \{(x, y, z) \in \mathbb{R}^3 : F(x, y, z) = 0\},\$$

e o quadrado da distância de um ponto $(x, y, z) \in \mathbb{R}^3$ a (0, 0, 0) é dado por

$$f(x, y, z) = x^2 + y^2 + z^2$$

teremos de encontrar os pontos de S onde a restrição de f a S tem mínimo absoluto. Como as soluções (x, y, z, λ) do sistema de equações,

$$\begin{cases} \frac{\partial f}{\partial x}\left(x,y,z\right) - \lambda \frac{\partial F}{\partial x}\left(x,y,z\right) &=& 0\\ \frac{\partial f}{\partial y}\left(x,y,z\right) - \lambda \frac{\partial F}{\partial y}\left(x,y,z\right) &=& 0\\ \frac{\partial f}{\partial z}\left(x,y,z\right) - \lambda \frac{\partial F}{\partial z}\left(x,y,z\right) &=& 0\\ F\left(x,y,z\right) &=& 0 \end{cases} \Leftrightarrow \begin{cases} 2x + 2\lambda x &=& 0\\ 2y - 2\lambda y &=& 0\\ 2z - \lambda &=& 0\\ z - x^2 + y^2 &=& 1 \end{cases} \Leftrightarrow \begin{cases} x\left(1+\lambda\right) &=& 0\\ y\left(1-\lambda\right) &=& 0\\ z &=& \frac{\lambda}{2}\\ y^2 - x^2 &=& 1 - \frac{\lambda}{2} \end{cases},$$

são (0,0,1,2) e $\left(0,\frac{\pm\sqrt{2}}{2},\frac{1}{2},1\right)$, vemos que os possíveis pontos de extremo da restrição de f a S são: (0,0,1) e $\left(0,\frac{\pm\sqrt{2}}{2},\frac{1}{2}\right)$. Por fim, porque

$$f(0,0,1) = 1 e f\left(0, \frac{\pm\sqrt{2}}{2}, \frac{1}{2}\right) = \frac{3}{4},$$

podemos concluir que os pontos de S mais próximos de (0,0,0) são $\left(0,\frac{\pm\sqrt{2}}{2},\frac{1}{2}\right)$.

Exercício: Determinar os extremos absolutos da função $f(x, y, z) = x^2 + y^2 + 2z^2 - x - y$ na bola

$$B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 2\}.$$

Resolução: Comecemos por determinar os pontos de estacionaridade de f no interior de B. Como

$$\nabla f(x,y,z) = \left(\frac{\partial f}{\partial x}(x,y,z), \frac{\partial f}{\partial y}(x,y,z), \frac{\partial f}{\partial z}(x,y,z)\right) = (2x - 1, 2y - 1, 4z),$$

vemos que $(\frac{1}{2}, \frac{1}{2}, 0)$ é o único ponto de estacionaridade de f no interior de B.

De seguida, consideremos a superfície

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 2\}$$

e utilizemos o método dos multiplicadores de Lagrange para identificar os extremos da restrição de f a S. Como

$$S = \{(x, y, z) \in \mathbb{R}^3 : F(x, y, z) = 0\}, \text{ com } F(x, y, z) = x^2 + y^2 + z^2 - 2,$$

e as soluções (x, y, z, λ) do sistema de equações,

$$\begin{cases} \frac{\partial f}{\partial x}(x,y,z) - \lambda \frac{\partial F}{\partial x}(x,y,z) &= 0\\ \frac{\partial f}{\partial y}(x,y,z) - \lambda \frac{\partial F}{\partial y}(x,y,z) &= 0\\ \frac{\partial f}{\partial z}(x,y,z) - \lambda \frac{\partial F}{\partial z}(x,y,z) &= 0\\ F(x,y,z) &= 0 \end{cases} \Leftrightarrow \begin{cases} 2x - 1 - 2\lambda x &= 0\\ 2y - 1 - 2\lambda y &= 0\\ 4z - 2\lambda z &= 0\\ x^2 + y^2 + z^2 &= 2 \end{cases} \Leftrightarrow \begin{cases} x &= \frac{1}{2(1-\lambda)}\\ y &= \frac{1}{2(1-\lambda)}\\ 2z(2-\lambda) &= 0\\ x^2 + y^2 + z^2 &= 2 \end{cases},$$

são $\left(-\frac{1}{2}, -\frac{1}{2}, \frac{\pm\sqrt{6}}{2}, 2\right)$, $\left(-1, -1, 0, \frac{3}{2}\right)$ e $\left(1, 1, 0, \frac{1}{2}\right)$, vemos que os possíveis pontos de extremo da restrição de f a S são $\left(-\frac{1}{2}, -\frac{1}{2}, \frac{\pm\sqrt{6}}{2}\right)$, $\left(-1, -1, 0\right)$ e (1, 1, 0).

Com o que vimos podemos concluir que os possíveis pontos de extremo da restrição de f a B são

$$\left(\frac{1}{2}, \frac{1}{2}, 0\right), \left(-\frac{1}{2}, -\frac{1}{2}, \frac{\pm\sqrt{6}}{2}\right), (-1, -1, 0) \in (1, 1, 0).$$

Por fim, porque

$$f\left(\frac{1}{2}, \frac{1}{2}, 0\right) = -\frac{1}{2}, f\left(-\frac{1}{2}, -\frac{1}{2}, \frac{\pm\sqrt{6}}{2}\right) = \frac{9}{2}, f\left(-1, -1, 0\right) = 4 \text{ e } f\left(1, 1, 0\right) = 0$$

e porque pelo Teorema de Weirstrass temos a garantia de que a restrição de f ao compacto B tem máximo e mínimo absolutos, podemos concluir que $\left(-\frac{1}{2},-\frac{1}{2},\frac{\pm\sqrt{6}}{2}\right)$ e $\left(\frac{1}{2},\frac{1}{2},0\right)$ são pontos de máximo absoluto e de mínimo absoluto, respectivamente.

Exercício: Determinar o valor máximo da área de um rectângulo inscrito numa elipse de semieixos $a \in b$.

Resolução: Consideremos a função $F(x,y) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1$. Como a elipse de semieixos a > 0 e b > 0 é dada por

$$S = \{(x, y) \in \mathbb{R}^2 : F(x, y) = 0\},\$$

e o quadrado da área de qualquer rectângulo com vértices em (x,y) , (-x,y) , (-x,-y) , (x,-y) é dado por

$$f\left(x,y\right) = 16x^2y^2$$

teremos de encontrar o máximo absoluto da restrição de f a S. Como as soluções (x, y, λ) do sistema de equações,

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) - \lambda \frac{\partial F}{\partial x}(x,y) &= 0 \\ \frac{\partial f}{\partial y}(x,y) - \lambda \frac{\partial F}{\partial y}(x,y) &= 0 \\ F(x,y) &= 0 \end{cases} \Leftrightarrow \begin{cases} 32xy^2 - \frac{2\lambda x}{a^2} &= 0 \\ 32yx^2 - \frac{2\lambda y}{b^2} &= 0 \\ \frac{x^2}{a^2} + \frac{y^2}{b^2} &= 1 \end{cases} \Leftrightarrow \begin{cases} x\left(16y^2 - \frac{\lambda}{a^2}\right) &= 0 \\ y\left(16x^2 - \frac{\lambda}{b^2}\right) &= 0 \\ \frac{x^2}{a^2} + \frac{y^2}{b^2} &= 1 \end{cases}$$

são $(0, \pm b, 0)$, $(\pm a, 0, 0)$ e $\left(\frac{\pm a\sqrt{2}}{2}, \frac{\pm b\sqrt{2}}{2}, 8a^2b^2\right)$, vemos que os possíveis pontos de extremo da restrição de f a S são: $(0, \pm b)$, $(\pm a, 0)$ e $\left(\frac{\pm a\sqrt{2}}{2}, \frac{\pm b\sqrt{2}}{2}\right)$. Por fim, porque

$$f(0, \pm b) = f(\pm a, 0) = 0 \text{ e } f\left(\frac{\pm a\sqrt{2}}{2}, \frac{\pm b\sqrt{2}}{2}\right) = 4a^2b^2,$$

e porque pelo Teorema de Weirstrass temos a garantia de que a restrição de f a S tem máximo absoluto, podemos concluir que o valor máximo da área de um rectângulo inscrito numa elipse de semieixos a e b é $\sqrt{4a^2b^2}=2ab$.

Cálculo Integral em \mathbb{R}^n

Definição (Intervalo de \mathbb{R}^n): Diz-se que um conjunto $I \subset \mathbb{R}^n$ é um intervalo, se existirem n intervalos reais $J_1 \subset \mathbb{R}, J_2 \subset \mathbb{R}, ..., J_n \subset \mathbb{R}$ tais que

$$I = J_1 \times J_2 \times \dots \times J_n$$

= $\{(x_1, x_2, ..., x_n) \in \mathbb{R}^n : x_k \in J_k \text{ para } k = 1, ..., n\}.$

Dois intervalos de \mathbb{R}^2 : $I_1 = [-4, -1] \times [1, 3];$ $I_2 = [1, 3] \times [2, 4]$

Um intervalo de \mathbb{R}^3 : $I = [0, 2] \times [0, 4] \times [0, 4]$

Definição (Volume *n*-dimensional de um intervalo de \mathbb{R}^n): O volume *n*-dimensional de um intervalo $I = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$ é definido por

$$\operatorname{vol}_n(I) = (b_1 - a_1) \times (b_2 - a_2) \times \cdots \times (b_n - a_n).$$

Definição (Partição de um intervalo de \mathbb{R}^n): Dado um intervalo $I \subset \mathbb{R}^n$, diz-se que uma família de intervalos de \mathbb{R}^n , $I_1, I_2, ..., I_p$, é uma partição de I se

$$I = I_1 \cup I_2 \cup \cdots \cup I_p$$
 e int $(I_i) \cap \text{int}(I_j) = \emptyset$ para $i \neq j$.

Definição (Função em escada): Dado um intervalo $I \subset \mathbb{R}^n$, diz-se que $s: I \to \mathbb{R}$ é uma função em escada se é limitada e existe uma particão de I tal que s é constante no interior de cada um dos seus intervalos.

Gráfico de uma função em escada $s: [-4, 4] \to \mathbb{R}$

Gráfico de uma função em escada $s: [0,2] \times [0,2] \to \mathbb{R}$

Definição (Integral de uma função em escada): Seja I um intervalo limitado de \mathbb{R}^n , $s: I \to \mathbb{R}$ uma função em escada e $I_1, I_2, ..., I_p$ uma partição de I tal que s é constante em int (I_j) . O integral de s em I define-se como sendo

$$\int_{I} s = \sum_{j=1}^{p} s_{j} \operatorname{vol}_{n} (I_{j}),$$

onde s_j designa o valor (constante) que s toma em int (I_j) .

Definição (Integral de uma função): Seja I um intervalo limitado de \mathbb{R}^n e $f: I \to \mathbb{R}$ uma função limitada. O integral inferior de f é definido por

$$\underline{\int}_I f = \sup \left\{ \int_I s : s \text{ \'e uma função em escada e } s \leq f \right\}.$$

O integral superior de f é definido por

$$\overline{\int}_I f = \inf \left\{ \int_I t : t \text{ \'e uma função em escada e } f \leq t \right\}.$$

A função f diz-se integrável se os integrais inferior e superior coincidem, definindo-se, neste caso, o integral de f com sendo

$$\int_I f = \int_I f = \overline{\int}_I f.$$

Se $f: I \subset \mathbb{R} \to \mathbb{R}$ é positiva e integrável, o integral de f coincide com a área do conjunto dos pontos por baixo do gráfico

Se $f: I \subset \mathbb{R}^2 \to \mathbb{R}$ é positiva e integrável, o integral de f coincide com o volume do conjunto dos pontos por baixo do gráfico

Teorema de Fubini

Teorema de Fubini (para funções de duas variáveis): Seja $I = [a, b] \times [c, d] \subset \mathbb{R}^2$ um intervalo limitado e $f: I \to \mathbb{R}$ uma função integrável.

a) Se, para qualquer $x \in [a, b]$, a função $f_x : [c, d] \to \mathbb{R}$, definida por $f_x(y) = f(x, y)$, é integrável em [c, d] e a função $\psi : [a, b] \to \mathbb{R}$, definida por $\psi(x) = \int_c^d f_x(y) \, dy$, é integrável em [a, b], então

$$\int_{I} f = \int_{a}^{b} \psi(x) dx = \int_{a}^{b} \left(\int_{c}^{d} f_{x}(y) dy \right) dx = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

b) Se, para qualquer $y \in [c,d]$, a função $f_y:[a,b] \to \mathbb{R}$, definida por $f_y(x) = f(x,y)$, é integrável em [a,b] e a função $\varphi:[c,d] \to \mathbb{R}$, definida por $\varphi(y) = \int_a^b f_y(x) \, dx$, é integrável em [c,d], então

$$\int_{I} f = \int_{c}^{d} \varphi(y) \, dy = \int_{c}^{d} \left(\int_{a}^{b} f_{y}(x) \, dx \right) dy = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) \, dx \right) dy.$$

Exemplo: Calcular o o integral da função $f: I = [0,1] \times [0,2] \to \mathbb{R}$, definida por $f(x,y) = x^2 + y + 1$.

Pelo teorema de Fubini temos

$$\int_{I} f = \int_{0}^{1} \left(\int_{0}^{2} f(x, y) \, dy \right) dx.$$

Como

$$\int_0^2 f(x,y) \, dy = \int_0^2 \left(x^2 + y + 1\right) \, dy = \left[x^2 y + \frac{1}{2} y^2 + y\right]_{y=0}^{y=2} = 2x^2 + 4,$$

obtemos

$$\int_{I} f = \int_{0}^{1} (2x^{2} + 4) dx = \left[\frac{2}{3}x^{3} + 4x \right]_{x=0}^{x=1} = \frac{14}{3}.$$

Alternativamente, temos

$$\int_{I} f = \int_{0}^{2} \left(\int_{0}^{1} f(x, y) dx \right) dy.$$

Como

$$\int_0^1 f(x,y) dx = \int_0^1 (x^2 + y + 1) dx = \left[\frac{1}{3} x^3 + xy + x \right]_{x=0}^{x=1} = \frac{4}{3} + y,$$

obtemos

$$\int_{I} f = \int_{0}^{2} \left(\frac{4}{3} + y \right) dy = \left[\frac{4}{3} y + \frac{1}{2} y^{2} \right]_{y=0}^{y=2} = \frac{14}{3}.$$

Exercício: Considere o rectângulo $R = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 2 \land 0 \le y \le 1\}$. Calcular o integral de f em R quando:

a)
$$f(x, y) = xy^3$$
;

b)
$$f(x,y) = x \cos(xy)$$
;

c)
$$f(x,y) = \begin{cases} ye^{xy}, & \text{se } x \in [0,1] \\ 0, & \text{caso contrário} \end{cases}$$
.

Resolução: a) Pelo teorema de Fubini temos

$$\int_{R} f = \int_{0}^{2} \left(\int_{0}^{1} f(x, y) \, dy \right) dx = \int_{0}^{2} \left(\int_{0}^{1} xy^{3} dy \right) dx.$$

Como

$$\int_0^1 xy^3 dy = \left[\frac{1}{4}xy^4\right]_{y=0}^{y=1} = \frac{1}{4}x,$$

obtemos

$$\int_{R} f = \int_{0}^{2} \frac{1}{4} x dx = \left[\frac{1}{8} x^{2} \right]_{x=0}^{x=2} = \frac{4}{8} = \frac{1}{2}.$$

Alternativamente, temos

$$\int_{R} f = \int_{0}^{1} \left(\int_{0}^{2} f(x, y) \, dx \right) dy = \int_{0}^{1} \left(\int_{0}^{2} xy^{3} dx \right) dy.$$

Como

$$\int_0^2 xy^3 dx = \left[\frac{1}{2}y^3x^2\right]_{x=0}^{x=2} = 2y^3,$$

obtemos

$$\int_{R} f = \int_{0}^{1} 2y^{3} dy = \left[\frac{1}{2}y^{4}\right]_{y=0}^{y=1} = \frac{1}{2}.$$

b) Pelo teorema de Fubini temos

$$\int_{R} f = \int_{0}^{2} \left(\int_{0}^{1} f(x, y) \, dy \right) dx = \int_{0}^{2} \left(\int_{0}^{1} x \cos(xy) \, dy \right) dx.$$

Como

$$\int_0^1 x \cos(xy) \, dy = [\sin(xy)]_{y=0}^{y=1} = \sin(x) \,,$$

obtemos

$$\int_{R} f = \int_{0}^{2} \sin(x) \, dx = \left[-\cos(x) \right]_{0}^{2} = 1 - \cos(2)$$

Note-se que neste caso, a alternativa:

$$\int_{R} f = \int_{0}^{1} \left(\int_{0}^{2} f(x, y) dx \right) dy = \int_{0}^{1} \left(\int_{0}^{2} x \cos(xy) dx \right) dy$$

$$= \int_{0}^{1} \left(\left[\frac{x \sin(xy)}{y} \right]_{x=0}^{x=2} - \int_{0}^{2} \frac{\sin(xy)}{y} dx \right) dy = \int_{0}^{1} \left(\frac{2 \sin(2y)}{y} + \frac{\cos(2y) - 1}{y^{2}} \right) dy,$$

seria inconclusiva já que envolve funções que não são elementarmente primitiváveis.

c) Pelo teorema de Fubini temos

$$\int_{B} f = \int_{0}^{1} \left(\int_{0}^{2} f_{y}(x) dx \right) dy.$$

onde, para cada $y \in [0,1], \, f_y : [0,2] \to \mathbb{R}$ designa a função definida por

$$f_y(x) = f(x, y) = \begin{cases} ye^{xy}, & \text{se } 0 \le x \le 1 \\ 0, & \text{se } 1 < x \le 2 \end{cases}$$

Como

$$\int_{0}^{2} f_{y}(x) dx = \int_{0}^{1} f_{y}(x) dx + \int_{1}^{2} f_{y}(x) dx = \int_{0}^{1} y e^{xy} dx + \int_{1}^{2} 0 dx = [e^{xy}]_{x=0}^{x=1} = e^{y} - 1,$$

obtemos

$$\int_{R} f = \int_{0}^{1} (e^{y} - 1) dy = [e^{y} - y]_{y=0}^{y=1} = e - 2.$$

Teorema de Fubini (caso geral): Sejam $A \subset \mathbb{R}^k$ e $B \subset \mathbb{R}^m$ intervalos compactos e f uma função integrável no intervalo $A \times B \subset \mathbb{R}^{k+m}$.

a) Se para cada $\mathbf{x} \in A$, a função $f_{\mathbf{x}} : B \to \mathbb{R}$, definida por $f_{\mathbf{x}}(\mathbf{y}) = f(\mathbf{x}, \mathbf{y})$, é integrável em B, e a função $\psi : A \to \mathbb{R}$, definida por $\psi(\mathbf{x}) = \int_{B} f_{\mathbf{x}}(\mathbf{y}) d\mathbf{y}$, é integrável em A, então

$$\int_{A\times B} f = \int_{A} \psi\left(\mathbf{x}\right) d\mathbf{x} = \int_{A} \left(\int_{B} f_{\mathbf{x}}\left(\mathbf{y}\right) d\mathbf{y}\right) d\mathbf{x} = \int_{A} \left(\int_{B} f\left(\mathbf{x}, \mathbf{y}\right) d\mathbf{y}\right) d\mathbf{x}.$$

b) Se para cada $\mathbf{y} \in B$, a função $f_{\mathbf{y}} : A \to \mathbb{R}$, definida por $f_{\mathbf{y}}(\mathbf{x}) = f(\mathbf{x}, \mathbf{y})$, é integrável em A, e a função $\varphi : B \to \mathbb{R}$, definida por $\varphi(\mathbf{y}) = \int_A f_{\mathbf{y}}(\mathbf{x}) d\mathbf{x}$, é integrável em B, então

$$\int_{A\times B} f = \int_{B} \varphi\left(\mathbf{y}\right) d\mathbf{y} = \int_{B} \left(\int_{A} f_{\mathbf{y}}\left(\mathbf{x}\right) d\mathbf{x}\right) d\mathbf{y} = \int_{B} \left(\int_{A} f\left(\mathbf{x}, \mathbf{y}\right) d\mathbf{x}\right) d\mathbf{y}.$$

Nota: O Teorema de Fubini fornece portanto seis alternativas para calcular o intergral de uma função f num intervalo $I = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3] \subset \mathbb{R}^3$, a saber:

$$\int_{I} f = \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} \left(\int_{a_{3}}^{b_{3}} f(x, y, z) dz \right) dy \right) dx \quad \int_{I} f = \int_{a_{2}}^{b_{2}} \left(\int_{a_{1}}^{b_{1}} \left(\int_{a_{3}}^{b_{3}} f(x, y, z) dz \right) dx \right) dy
\int_{I} f = \int_{a_{1}}^{b_{1}} \left(\int_{a_{3}}^{b_{2}} \left(\int_{a_{2}}^{b_{2}} f(x, y, z) dy \right) dz \right) dx \quad \int_{I} f = \int_{a_{3}}^{b_{3}} \left(\int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} f(x, y, z) dy \right) dx \right) dz
\int_{I} f = \int_{a_{2}}^{b_{2}} \left(\int_{a_{3}}^{b_{3}} \left(\int_{a_{1}}^{b_{1}} f(x, y, z) dx \right) dz \right) dy \quad \int_{I} f = \int_{a_{3}}^{b_{3}} \left(\int_{a_{2}}^{b_{1}} \left(\int_{a_{1}}^{b_{1}} f(x, y, z) dx \right) dy \right) dz$$

Exemplo: Pelo teorema de Fubini, o integral da função $f(x,y,z)=xy+e^z$ no intervalo $I=[0,1]\times[0,2]\times[0,1]$ é dado por

$$\int_{I} f = \int_{0}^{1} \left(\int_{0}^{2} \left(\int_{0}^{1} (xy + e^{z}) dz \right) dy \right) dx = \int_{0}^{1} \left(\int_{0}^{2} \left([xyz + e^{z}]_{z=0}^{z=1} \right) dy \right) dx
= \int_{0}^{1} \left(\int_{0}^{2} (xy + e - 1) dy \right) dx = \int_{0}^{1} \left(\left[\frac{1}{2} xy^{2} + ey - y \right]_{y=0}^{y=2} \right) dx
= \int_{0}^{1} (2x + 2e - 2) dx = \left[x^{2} + 2ex - 2x \right]_{x=0}^{x=1} = 2e - 1,$$

ou alternativamente

$$\int_{I} f = \int_{0}^{1} \left(\int_{0}^{1} \left(\int_{0}^{2} (xy + e^{z}) \, dy \right) dz \right) dx = \int_{0}^{1} \left(\int_{0}^{1} \left(\left[\frac{1}{2} xy^{2} + ye^{z} \right]_{y=0}^{y=2} \right) dz \right) dx
= \int_{0}^{1} \left(\int_{0}^{1} (2x + 2e^{z}) \, dz \right) dx = \int_{0}^{1} \left([2xz + 2e^{z}]_{z=0}^{z=1} \right) dx
= \int_{0}^{1} (2x + 2e - 2) \, dx = \left[x^{2} + 2ex - 2x \right]_{x=0}^{x=1} = 2e - 1.$$

Integral de uma função num conjunto limitado

Definição: Seja $D \subset \mathbb{R}^n$ um conjunto limitado e I um intervalo limitado de \mathbb{R}^n tal que $D \subset I$. Diz-se que uma função $f: D \to \mathbb{R}$ é integrável em D, se a função $\widetilde{f}: I \to \mathbb{R}$, definida por

$$\widetilde{f}(x) = \begin{cases} f(x), & \text{se } x \in D \\ 0, & \text{se } x \in I \backslash D \end{cases}$$

é integrável em I. Neste caso, o integral de f em D é definido por

$$\int_D f = \int_I \widetilde{f}.$$

O gráfico de $f:D\subset\mathbb{R}^2\to\mathbb{R}$

O gráfico de $\widetilde{f}:I\subset\mathbb{R}^2\to\mathbb{R}$

O integral de \widetilde{f} coincide com o volume do conjunto dos pontos por baixo do gráfico de f

Exemplo: Pretende-se calcular o integral da função $f(x,y) = e^{x+y}$ no conjunto

$$D = \{(x, y) \in \mathbb{R}^2 : x \le 1; y \le 1; 1 \le x + y\}.$$

Como o conjunto D está contido no intervalo $I = [0,1] \times [0,1]$, temos

$$\int_D f = \int_I \widetilde{f}$$

onde $\widetilde{f}:I\to\mathbb{R}$ está definida por

$$\widetilde{f}(x,y) = \begin{cases} e^{x+y}, & \text{se } (x,y) \in D \\ 0, & \text{se } (x,y) \in I \backslash D \end{cases}$$

A função \hat{f}

Pelo teorema de Fubini temos

$$\int_{I} \widetilde{f} = \int_{0}^{1} \left(\int_{0}^{1} \widetilde{f}(x, y) \, dx \right) dy = \int_{0}^{1} \left(\int_{0}^{1} \widetilde{f}_{y}(x) \, dx \right) dy,$$

onde, para cada $y \in [0,1], \ \widetilde{f_y}: [0,1] \to \mathbb{R}$ designa a função definida por

$$\widetilde{f}_{y}(x) = \widetilde{f}(x,y) = \begin{cases} 0, & \text{se } 0 \le x < 1 - y \\ e^{x+y}, & \text{se } 1 - y \le x \le 1 \end{cases}$$

Assim, porque

$$\int_{0}^{1} \widetilde{f_{y}}(x) dx = \int_{0}^{1-y} \widetilde{f_{y}}(x) dx + \int_{1-y}^{1} \widetilde{f_{y}}(x) dx = \int_{0}^{1-y} 0 dx + \int_{1-y}^{1} e^{x+y} dx = \int_{1-y}^{1} e^{x+y} dx,$$

obtemos

$$\int_{I} \widetilde{f} = \int_{0}^{1} \left(\int_{1-y}^{1} e^{x+y} dx \right) dy,$$

e por fim

$$\int_D f = \int_0^1 \left(\int_{1-y}^1 e^{x+y} dx \right) dy = \int_0^1 \left(\left[e^{x+y} \right]_{x=1-y}^{x=1} \right) dy = \int_0^1 \left(e^{1+y} - e \right) dy = \left[e^{1+y} - e y \right]_{y=0}^{y=1} = e^2 - 2e.$$

De forma mais abreviada, temos a seguinte reformulação do teorema de Fubini que pode ser útil no cálculo dum integral duplo em muitas situações interessantes.

Teorema: Seja $D \subset \mathbb{R}^2$ um conjunto limitado, $I = [a, b] \times [c, d]$ um intervalo compacto tal que $D \subset I$ e $f: D \to \mathbb{R}$ uma função integrável.

a) Se o conjunto D pode ser escrito na forma

$$D = \bigcup_{a \le x \le b} \left\{ (x, y) \in \mathbb{R}^2 : c(x) \le y \le d(x) \right\},\,$$

então

$$\int_{D} f = \int_{a}^{b} \left(\int_{c(x)}^{d(x)} f(x, y) \, dy \right) dx.$$

b) Se o conjunto D pode ser escrito na forma

$$D = \bigcup_{c \le y \le d} \left\{ (x, y) \in \mathbb{R}^2 : a(y) \le x \le b(y) \right\},\,$$

então

$$\int_{D} f = \int_{c}^{d} \left(\int_{a(y)}^{b(y)} f(x, y) dx \right) dy.$$

Um conjunto nas condições do teorema

Exercício: Inverter a ordem de integração para calcular os seguintes integrais:

a)
$$\int_0^1 \left(\int_{2y}^2 \cos(x^2) \, dx \right) dy;$$

b)
$$\int_0^1 \left(\int_{\arcsin(y)}^{\pi/2} y \sin(x) \, dx \right) dy$$
.

Resolução: a) Consideremos o conjunto

$$D = \bigcup_{0 \le y \le 1} \{(x, y) \in \mathbb{R}^2 : 2y \le x \le 2\}$$
$$= \{(x, y) \in \mathbb{R}^2 : 0 \le y \le 1 \land 2y \le x \le 2\}$$

e a função $f: D \to \mathbb{R}$, definida por $f(x,y) = \cos(x^2)$. Como o conjunto D está contido no intervalo $I = [0,2] \times [0,1]$ e a função $f: D \to \mathbb{R}$, definida por $f(x,y) = \cos(x^2)$, é integrável temos

$$\int_{D} f = \int_{0}^{1} \left(\int_{2y}^{2} \cos\left(x^{2}\right) dx \right) dy.$$

O conjunto D

Como por outro lado se tem

$$D = \bigcup_{0 \le x \le 2} \{(x, y) \in \mathbb{R}^2 : c(x) \le y \le d(x)\}, \text{ com } c(x) = 0 \text{ e } d(x) = \frac{x}{2},$$

obtemos

$$\int_{D} f = \int_{0}^{2} \left(\int_{c(x)}^{d(x)} \cos(x^{2}) \, dy \right) dx = \int_{0}^{2} \left(\int_{0}^{x/2} \cos(x^{2}) \, dy \right) dx.$$

Logo

$$\int_{0}^{1} \left(\int_{2y}^{2} \cos(x^{2}) dx \right) dy = \int_{0}^{2} \left(\int_{0}^{x/2} \cos(x^{2}) dy \right) dx = \int_{0}^{2} \left(\frac{x}{2} \cos(x^{2}) \right) dx$$
$$= \frac{1}{4} \int_{0}^{2} \left(2x \cos(x^{2}) \right) dx = \frac{1}{4} \left[\sin(x^{2}) \right]_{0}^{2} = \frac{1}{4} \sin(4) .$$

b) Consideremos o conjunto

$$\begin{split} D &= \bigcup_{0 \leq y \leq 1} \left\{ (x, y) \in \mathbb{R}^2 : \arcsin(y) \leq x \leq \frac{\pi}{2} \right\} \\ &= \left\{ (x, y) \in \mathbb{R}^2 : 0 \leq y \leq 1 \land \arcsin(y) \leq x \leq \frac{\pi}{2} \right\}. \end{split}$$

Como o conjunto D está contido no intervalo $I = [0, \pi/2] \times [0, 1]$, e a função $f : D \to \mathbb{R}$, definida por $f(x, y) = y \sin(x)$, é integrável temos

$$\int_{D} f = \int_{0}^{1} \left(\int_{\arcsin(y)}^{\pi/2} y \sin(x) \, dx \right) dy.$$

O conjunto D

Como por outro lado se tem

$$D = \bigcup_{0 \le x \le \frac{\pi}{2}} \{(x, y) \in \mathbb{R}^2 : c(x) \le y \le d(x)\}, \text{ com } c(x) = 0 \text{ e } d(x) = \sin(x),$$

obtemos

$$\int_{D} f = \int_{0}^{\pi/2} \left(\int_{c(x)}^{d(x)} y \sin(x) \, dy \right) dx = \int_{0}^{\pi/2} \left(\int_{0}^{\sin(x)} y \sin(x) \, dy \right) dx.$$

Logo

$$\int_{0}^{1} \left(\int_{\arcsin(y)}^{\pi/2} y \sin(x) \, dx \right) dy = \int_{0}^{\pi/2} \left(\int_{0}^{\sin(x)} y \sin(x) \, dy \right) dx$$

$$= \int_{0}^{\pi/2} \left(\sin(x) \int_{0}^{\sin(x)} y dy \right) dx = \int_{0}^{\pi/2} \left(\sin(x) \left[\frac{1}{2} y^{2} \right]_{y=0}^{y=\sin(x)} \right) dx$$

$$= \int_{0}^{\pi/2} \sin(x) \frac{1}{2} \sin(x)^{2} dx = \frac{1}{2} \int_{0}^{\pi/2} \left(\sin(x) \left(1 - \cos(x)^{2} \right) \right) dx$$

$$= \frac{1}{2} \int_{0}^{\pi/2} \sin(x) dx + \frac{1}{2} \int_{0}^{\pi/2} -\sin(x) \cos(x)^{2} dx$$

$$= \frac{1}{2} \left[-\cos(x) \right]_{x=0}^{x=\pi/2} + \frac{1}{6} \int_{0}^{\pi/2} -3 \sin(x) \cos(x)^{2} dx$$

$$= \frac{1}{2} + \frac{1}{6} \left[\cos(x)^{3} \right]_{x=0}^{x=\pi/2} = \frac{1}{2} - \frac{1}{6} = \frac{1}{3}.$$

Exercício: Inverter a ordem de integração dos seguintes integrais duplos:

a)
$$\int_0^1 \left(\int_{x^2-1}^{\sqrt{1-x^2}} f(x,y) \, dy \right) dx;$$

b)
$$\int_0^1 \left(\int_{\sqrt{1-x^2}}^{2-x} f(x,y) \, dy \right) dx;$$

Resolução: a) Consideremos o conjunto

$$D = \bigcup_{0 \le x \le 1} \left\{ (x, y) \in \mathbb{R}^2 : x^2 - 1 \le y \le \sqrt{1 - x^2} \right\}$$
$$= \left\{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 1 \land x^2 - 1 \le y \le \sqrt{1 - x^2} \right\}$$

e uma função integrável $f:D\to\mathbb{R}$. Como $D\subset[0,1]\times[-1,1],$ temos

$$\int_{D} f = \int_{0}^{1} \left(\int_{x^{2}-1}^{\sqrt{1-x^{2}}} f(x,y) \, dy \right) dx.$$

Como por outro lado se tem

$$D = \bigcup_{-1 \le y \le 1} \{(x, y) \in \mathbb{R}^2 : a(y) \le x \le b(y)\},\,$$

com

$$a(y) = 0 e b(y) = \begin{cases} \sqrt{y+1}, & \text{se } -1 \le y \le 0\\ \sqrt{1-y^2}, & \text{se } 0 < y \le 1 \end{cases}$$

obtemos

$$\int_{D} f = \int_{-1}^{1} \left(\int_{a(y)}^{b(y)} f(x, y) dx \right) dy = \int_{-1}^{0} \left(\int_{a(y)}^{b(y)} f(x, y) dx \right) dy + \int_{0}^{1} \left(\int_{a(y)}^{b(y)} f(x, y) dx \right) dy
= \int_{-1}^{0} \left(\int_{0}^{\sqrt{y+1}} f(x, y) dx \right) dy + \int_{0}^{1} \left(\int_{0}^{\sqrt{1-y^{2}}} f(x, y) dx \right) dy.$$

Logo

$$\int_{0}^{1} \left(\int_{x^{2}-1}^{\sqrt{1-x^{2}}} f(x,y) \, dy \right) dx = \int_{-1}^{0} \left(\int_{0}^{\sqrt{y+1}} f(x,y) \, dx \right) dy + \int_{0}^{1} \left(\int_{0}^{\sqrt{1-y^{2}}} f(x,y) \, dx \right) dy.$$

b) Consideremos o conjunto

$$D = \bigcup_{0 \le x \le 1} \left\{ (x, y) \in \mathbb{R}^2 : \sqrt{1 - x^2} \le y \le 2 - x \right\}$$
$$= \left\{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 1 \land \sqrt{1 - x^2} \le y \le 2 - x \right\}.$$

e uma função integrável $f: D \to \mathbb{R}$. Como $D \subset [0,1] \times [0,2]$, temos

$$\int_{D} f = \int_{0}^{1} \left(\int_{\sqrt{1-x^{2}}}^{2-x} f(x,y) \, dy \right) dx.$$

O conjunto D

Como por outro lado se tem

$$D = \bigcup_{0 \le y \le 2} \left\{ (x, y) \in \mathbb{R}^2 : a(y) \le x \le b(y) \right\},\,$$

com

$$a(y) = \begin{cases} \sqrt{1 - y^2}, & \text{se } 0 \le y \le 1 \\ 0, & \text{se } 1 < y \le 2 \end{cases} \quad \text{e } b(y) = \begin{cases} 1, & \text{se } 0 \le y \le 1 \\ 2 - y, & \text{se } 1 < y \le 2 \end{cases},$$

obtemos

$$\int_{D} f = \int_{0}^{2} \left(\int_{a(y)}^{b(y)} f(x, y) \, dx \right) dy = \int_{0}^{1} \left(\int_{a(y)}^{b(y)} f(x, y) \, dx \right) dy + \int_{1}^{2} \left(\int_{a(y)}^{b(y)} f(x, y) \, dx \right) dy$$
$$= \int_{0}^{1} \left(\int_{\sqrt{1 - y^{2}}}^{1} f(x, y) \, dx \right) dy + \int_{1}^{2} \left(\int_{0}^{2 - y} f(x, y) \, dx \right) dy.$$

Logo

$$\int_{0}^{1} \left(\int_{\sqrt{1-x^{2}}}^{2-x} f(x,y) \, dy \right) dx = \int_{0}^{1} \left(\int_{\sqrt{1-y^{2}}}^{1} f(x,y) \, dx \right) dy + \int_{1}^{2} \left(\int_{0}^{2-y} f(x,y) \, dx \right) dy.$$

Volumes de subconjuntos limitados de \mathbb{R}^n

Definição: Seja $D \subset \mathbb{R}^n$ um conjunto limitado, $I \subset \mathbb{R}^n$ um intervalo compacto tal que $D \subset I$, e $\chi : I \to \mathbb{R}$ a função característica de D, definida por

$$\chi(\mathbf{x}) = \begin{cases} 1, & \text{se } \mathbf{x} \in D \\ 0, & \text{se } \mathbf{x} \in I \backslash D \end{cases}.$$

O volume do conjunto D é dado por

$$\operatorname{vol}_n(D) = \int_D 1 = \int_I \chi,$$

desde que a função χ seja integrável em I.

O gráfico de χ quando D é um subconjunto de $\mathbb R$

O integral de χ coincide com o comprimento de D

O gráfico de χ quando D é um subconjunto de \mathbb{R}^2

O integral de χ coincide com a área de D

Cálculo da área dum subconjunto $D \subset \mathbb{R}^2$

Teorema: Seja $D \subset \mathbb{R}^2$ um conjunto limitado e $I = [a, b] \times [c, d]$ um intervalo compacto tal que $D \subset I$. Admita-se que a função característica de $D, \chi : I \to \mathbb{R}$, é integrável.

a) Se o conjunto D pode ser escrito na forma

$$D = \bigcup_{a \le x \le b} \left\{ (x, y) \in \mathbb{R}^2 : c(x) \le y \le d(x) \right\},\,$$

então

$$\operatorname{vol}_{2}(D) = \int_{a}^{b} \left(\int_{c(x)}^{d(x)} dy \right) dx.$$

b) Se o conjunto D pode ser escrito na forma

$$D = \bigcup_{c \le y \le d} \left\{ (x, y) \in \mathbb{R}^2 : a(y) \le x \le b(y) \right\},\,$$

então

$$\operatorname{vol}_{2}(D) = \int_{c}^{d} \left(\int_{a(y)}^{b(y)} dx \right) dy.$$

Exercício: Calcular a área da região

$$D = \{(x, y) \in \mathbb{R}^2 : 0 \le 2x \le y \le 3 - x^2\}$$

usando um integral iterado da forma $\int (\int dx) dy$. Calcule ainda (usando a ordem de integração que entender) a coordenada x do centróide.

Resolução: O conjunto D pode ser escrito na forma

$$D = \bigcup_{0 \le y \le 3} \left\{ (x, y) \in \mathbb{R}^2 : a(y) \le x \le b(y) \right\},\,$$

com

$$a(y) = 0 e b(y) = \begin{cases} \frac{y}{2}, & \text{se } 0 \le y \le 2\\ \sqrt{3 - y}, & \text{se } 2 \le y \le 3 \end{cases}$$
.

O conjunto D

Logo

$$\operatorname{vol}_{2}(D) = \int_{0}^{3} \left(\int_{a(y)}^{b(y)} dx \right) dy = \int_{0}^{2} \left(\int_{a(y)}^{b(y)} dx \right) dy + \int_{2}^{3} \left(\int_{a(y)}^{b(y)} dx \right) dy$$
$$= \int_{0}^{2} \left(\int_{0}^{\frac{y}{2}} dx \right) dy + \int_{2}^{3} \left(\int_{0}^{\sqrt{3-y}} dx \right) dy = \int_{0}^{2} \frac{y}{2} dy + \int_{2}^{3} \sqrt{3-y} dy$$
$$= \frac{1}{4} \left[y^{2} \right]_{y=0}^{y=2} - \left[\frac{2}{3} (3-y)^{\frac{3}{2}} \right]_{y=2}^{y=3} = 1 - \left(-\frac{2}{3} \right) = \frac{5}{3}$$

Cálculo do volume dum subconjunto $D \subset \mathbb{R}^3$

Exercício: Seja $D \subset \mathbb{R}^2$ um conjunto limitado, $f: D \to \mathbb{R}$ uma função positiva e integrável e $V \subset \mathbb{R}^3$ o conjunto dos pontos que ficam por baixo do gráfico de f, ou seja

$$V = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D \in 0 \le z \le f(x, y)\}.$$

Mostre que vol₃ $(V) = \int_D f$.

Resolução: Seja $I = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$ intervalo compacto tal que $V \subset I$, $\chi : I \to \mathbb{R}$ a função característica de D e $\widetilde{f} : [a_1, b_1] \times [a_2, b_2] \to \mathbb{R}$, definida por

$$\widetilde{f}(x,y) = \begin{cases} f(x,y) & \text{se } (x,y) \in D \\ 0 & \text{caso contrário} \end{cases}$$

Como

$$\int_{I} \chi = \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} \left(\int_{a_{3}}^{b_{3}} \chi\left(x, y, z\right) dz \right) dy \right) dx$$

 ϵ

$$\int_{a_3}^{b_3} \chi(x, y, z) dz = \begin{cases} \int_0^{f(x, y)} dz & \text{se } (x, y) \in D \\ 0 & \text{caso contrário} \end{cases} = \begin{cases} f(x, y) & \text{se } (x, y) \in D \\ 0 & \text{caso contrário} \end{cases} = \widetilde{f}(x, y),$$

obtemos

$$\operatorname{vol}_{3}(V) = \int_{I} \chi = \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} \left(\int_{a_{3}}^{b_{3}} \chi(x, y, z) dz \right) dy \right) dx$$
$$= \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} \widetilde{f}(x, y) dy \right) dx = \int_{[a_{1}, b_{1}] \times [a_{2}, b_{2}]} \widetilde{f} = \int_{D} f.$$

Exercício: Escreva expressões para o volume do sólido

$$V = \{(x, y, z) \in \mathbb{R}^3 : 0 \le y \le 1; 2y \le x \le 2; 0 \le z \le x + y\}$$

nas seguintes ordens:

- a) $\int \left(\int \left(\int dz\right) dx\right) dy$;
- b) $\int \left(\int \left(\int dz \right) dy \right) dx$.

Resolução: Consideremos o conjunto $D = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le 1 \land 2y \le x \le 2\}$ e a função $f: D \to \mathbb{R}$, definida por f(x,y) = x + y. Como V coincide com o conjunto dos pontos por baixo do gráfico de f, temos

$$\operatorname{vol}_3(V) = \int_D f.$$

O conjunto D

Por fim, porque

$$\int_{D} f = \int_{0}^{1} \left(\int_{a(y)=2y}^{b(y)=2} f(x,y) \, dx \right) dy = \int_{0}^{2} \left(\int_{c(x)=0}^{d(x)=x/2} f(x,y) \, dy \right) dx$$

 \mathbf{e}

$$f(x,y) = \int_0^{f(x,y)} dz = \int_0^{x+y} dz$$

obtemos

$$vol_{3}(V) = \int_{0}^{1} \left(\int_{2y}^{2} \left(\int_{0}^{x+y} dz \right) dx \right) dy = \int_{0}^{2} \left(\int_{0}^{x/2} \left(\int_{0}^{x+y} dz \right) dy \right) dx.$$

Demontra-se de forma análoga que se duas funções , $f:D\to\mathbb{R}$ e $g:D\to\mathbb{R}$, com $f\leq g$, são integráveis e $V\subset\mathbb{R}^3$ designa o conjunto dos pontos compreendidos entre os seus gráficos, ou seja

$$V = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D \text{ e } f(x, y) \le z \le g(x, y)\}$$
$$= \bigcup_{(x, y) \in D} \{(x, y, z) \in \mathbb{R}^3 : f(x, y) \le z \le g(x, y)\},$$

então

$$\operatorname{vol}_{3}(V) = \int_{D} (g - f).$$

Exercício: Escreva expressões para o volume do sólido

$$V = \{(x, y, z) \in \mathbb{R}^3 : 3x^2 + 3y^2 \le z \le 2x^2 + 2y^2 + 1, x \ge 0\}$$

nas seguintes ordens:

- a) $\int \left(\int \left(\int dz \right) dx \right) dy$;
- b) $\int \left(\int \left(\int dz \right) dy \right) dx$.

Resolução: Consideremos o conjunto

$$D = \{(x,y) \in \mathbb{R}^2 : 3x^2 + 3y^2 \le 2x^2 + 2y^2 + 1, x \ge 0\}$$
$$= \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, x \ge 0\}.$$

e as funções $f:D\to\mathbb{R}$ e $g:D\to\mathbb{R}$, definidas por $f(x,y)=3x^2+3y^2$ e $g(x,y)=2x^2+2y^2+1$. Como

$$V = \{(x, y, z) \in \mathbb{R}^3 : 3x^2 + 3y^2 \le z \le 2x^2 + 2y^2 + 1, x \ge 0\}$$

$$= \bigcup_{(x,y)\in D} \{(x,y,z) \in \mathbb{R}^3 : 3x^2 + 3y^2 \le z \le 2x^2 + 2y^2 + 1\}$$

$$= \bigcup_{(x,y)\in D} \{(x,y,z) \in \mathbb{R}^3 : f(x,y) \le z \le g(x,y)\},$$

obtemos

$$\operatorname{vol}_{3}(V) = \int_{D} (g - f).$$

O conjunto D

Por fim, porque

$$\int_{D} (g - f) = \int_{-1}^{1} \left(\int_{a(y)=0}^{b(y)=\sqrt{1-y^{2}}} (g(x,y) - f(x,y)) dx \right) dy$$

$$= \int_{0}^{1} \left(\int_{c(x)=-\sqrt{1-x^{2}}}^{d(x)=\sqrt{1-x^{2}}} (g(x,y) - f(x,y)) dy \right) dx$$

 \mathbf{e}

$$g(x,y) - f(x,y) = \int_{f(x,y)}^{g(x,y)} dz = \int_{3x^2 + 3y^2}^{2x^2 + 2y^2 + 1} dz$$

obtemos

$$\operatorname{vol}_{3}(V) = \int_{-1}^{1} \left(\int_{0}^{\sqrt{1-y^{2}}} \left(\int_{3x^{2}+3y^{2}}^{2x^{2}+2y^{2}+1} dz \right) dx \right) dy = \int_{0}^{1} \left(\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \left(\int_{3x^{2}+3y^{2}}^{2x^{2}+2y^{2}+1} dz \right) dy \right) dx.$$

Definição: Dado $D \subset \mathbb{R}^n$, ao conjunto $C_k(c)$, com k = 1, ..., n e $c \in \mathbb{R}$, definido por

$$C_k(c) = D \cap \{(x_1, ..., x_n) \in \mathbb{R}^n : x_k = c\},\$$

chama-se corte em D perpendicular ao eixo Ox_k .

Teorema: Seja $D \subset \mathbb{R}^n$ um conjunto limitado, $I \subset \mathbb{R}^n$ um intervalo compacto tal que $D \subset I$ e $\chi : I \to \mathbb{R}$ a função característica de D. Se χ é integrável em I e $C_k(c) = \emptyset$ para qualquer $c \in \mathbb{R} \setminus [a, b]$, então

$$\operatorname{vol}_{n}(D) = \int_{a}^{b} \operatorname{vol}_{n-1}(C_{k}(x_{k})) dx_{k}.$$

Exercício: Escreva expressões para o volume do sólido

$$V = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0; y \ge 0; x + y \le 1; 0 \le z \le x + y\}$$

nas seguintes ordens:

a) $\int \left(\int \left(\int dz \right) dx \right) dy$;

b)
$$\int \left(\int \left(\int dy\right) dx\right) dz$$
.

Resolução:

a) Comecemos por determinar a área do corte obtido pela intersecção de V com o plano de equação $y=y_0$, com $y_0\in\mathbb{R}$, ou seja

$$C_2(y_0) = \{(x, y, z) \in \mathbb{R}^3 : y = y_0\} \cap V$$

= $\{(x, y_0, z) \in \mathbb{R}^3 : x \ge 0; y_0 \ge 0; x + y_0 \le 1; 0 \le z \le x + y_0\}.$

Tem-se portanto

$$C_{2}(y_{0}) = \begin{cases} \{(x, y_{0}, z) \in \mathbb{R}^{3} : 0 \leq x \leq 1 - y_{0} \land 0 \leq z \leq x + y_{0}\}, \text{ se } y_{0} \in [0, 1] \\ \emptyset, \text{ caso contrário} \end{cases}.$$

O corte $C_2(y_0)$, com $y_0 \in [0, 1]$

donde se deduz que a área da secção $C_2(y_0)$ é dada por

$$\operatorname{vol}_{2}(C_{2}(y_{0})) = \int_{0}^{1-y_{0}} \left(\int_{0}^{x+y_{0}} dz \right) dx, \text{ para } y_{0} \in [0, 1].$$

Por fim, porque $C_2(y_0) = \emptyset$ para $y_0 \in \mathbb{R} \setminus [0, 1]$, obtemos

$$\operatorname{vol}_{3}(V) = \int_{0}^{1} \operatorname{vol}_{2}(C_{2}(y)) dy$$
$$= \int_{0}^{1} \left(\int_{0}^{1-y} \left(\int_{0}^{x+y} dz \right) dx \right) dy.$$

b) Comecemos por determinar a área do corte obtido pela intersecção de V com o plano de equação $z=z_0,$ com $z_0\in\mathbb{R},$ ou seja

$$C_3(z_0) = \{(x, y, z) \in \mathbb{R}^3 : z = z_0\} \cap V$$

= $\{(x, y, z_0) \in \mathbb{R}^3 : x \ge 0; y \ge 0; x + y \le 1; 0 \le z_0 \le x + y\}$.

Tem-se portanto

$$C_{3}\left(z_{0}\right)=\left\{\begin{array}{l}\left\{\left(x,y,z_{0}\right)\in\mathbb{R}^{3}:x\geq0;y\geq0;z_{0}\leq x+y\leq1\right\},\,\text{se}\,\,z_{0}\in\left[0,1\right]\\\emptyset,\,\text{caso contrário}\end{array}\right..$$

O corte $C_3(z_0)$, com $z_0 \in [0, 1]$

donde se deduz que a área da secção $C_3(z_0)$ é dada por

$$\operatorname{vol}_{2}\left(C_{3}\left(z_{0}\right)\right) = \int_{0}^{z_{0}} \left(\int_{z_{0}-x}^{1-x} dy\right) dx + \int_{z_{0}}^{1} \left(\int_{0}^{1-x} dy\right) dx, \text{ para } z_{0} \in \left[0,1\right].$$

Por fim, porque $C_3(z_0) = \emptyset$ para $z_0 \in \mathbb{R} \setminus [0, 1]$, obtemos

$$vol_{3}(V) = \int_{0}^{1} vol_{2}(C_{3}(z)) dz$$

$$= \int_{0}^{1} \left(\int_{0}^{z} \left(\int_{z-x}^{1-x} dy \right) dx + \int_{z}^{1} \left(\int_{0}^{1-x} dy \right) dx \right) dz$$

$$= \int_{0}^{1} \left(\int_{0}^{z} \left(\int_{z-x}^{1-x} dy \right) dx \right) dz + \int_{0}^{1} \left(\int_{z}^{1} \left(\int_{0}^{1-x} dy \right) dx \right) dz.$$

Exercício: Escreva expressões para o volume do sólido

$$V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1 \land y^2 + z^2 \le 1\}$$

nas seguintes ordens:

a)
$$\int \left(\int \left(\int dz \right) dx \right) dy$$
;

b) $\int (\int (\int dz) dy) dx$.

Resolução:

a) Comecemos por determinar a área do corte obtido pela intersecção de V com o plano de equação $y=y_0,$ com $y_0\in\mathbb{R},$ ou seja

$$C_{2}(y_{0}) = \{(x, y, z) \in \mathbb{R}^{3} : y = y_{0}\} \cap V$$

$$= \{(x, y, z) \in \mathbb{R}^{3} : y = y_{0}; x^{2} + y^{2} \leq 1; y^{2} + z^{2} \leq 1\}$$

$$= \{(x, y_{0}, z) \in \mathbb{R}^{3} : x^{2} \leq 1 - y_{0}^{2} \land z^{2} \leq 1 - y_{0}^{2}\}.$$

Tem-se portanto

$$C_2\left(y_0\right) = \left\{ \begin{array}{l} \left\{(x,y_0,z) \in \mathbb{R}^3: -\sqrt{1-y_0^2} \leq x \leq \sqrt{1-y_0^2} \wedge -\sqrt{1-y_0^2} \leq z \leq \sqrt{1-y_0^2} \right\}, \text{ se } y_0 \in [-1,1] \\ \emptyset, \text{ caso contrário} \end{array} \right.$$

O corte $C_3(y_0)$, com $y_0 \in [-1, 1]$

donde se deduz que a área da secção $C_2(y_0)$ é dada por

$$\operatorname{vol}_{2}\left(C_{2}\left(y_{0}\right)\right)=\int_{-\sqrt{1-y_{0}^{2}}}^{\sqrt{1-y_{0}^{2}}}\left(\int_{-\sqrt{1-y_{0}^{2}}}^{\sqrt{1-y_{0}^{2}}}dz\right)dx,\,\operatorname{para}\,y_{0}\in\left[-1,1\right].$$

Por fim, porque $C_2(y_0) = \emptyset$ para $y_0 \in \mathbb{R} \setminus [-1, 1]$, obtemos

$$vol_{3}(V) = \int_{-1}^{1} vol_{2}(C_{2}(y)) dy$$

$$= \int_{-1}^{1} \left(\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \left(\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} dz \right) dx \right) dy$$

$$= \int_{-1}^{1} \left(\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \left(\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} dz \right) dx \right) dy.$$

b) Comecemos por determinar a área do corte obtido pela intersecção de V com o plano de equação $x=x_0$, com $x_0 \in \mathbb{R}$, ou seja

$$C_{1}(x_{0}) = \{(x, y, z) \in \mathbb{R}^{3} : x = x_{0}\} \cap V$$

$$= \{(x, y, z) \in \mathbb{R}^{3} : x = x_{0}; x^{2} + y^{2} \leq 1; y^{2} + z^{2} \leq 1\}$$

$$= \{(x_{0}, y, z) \in \mathbb{R}^{3} : y^{2} \leq 1 - x_{0}^{2} \wedge y^{2} + z^{2} \leq 1\}.$$

Tem-se portanto

$$C_{1}(x_{0}) = \begin{cases} \left\{ (x_{0}, y, z) \in \mathbb{R}^{3} : -\sqrt{1 - x_{0}^{2}} \leq y \leq \sqrt{1 - x_{0}^{2}} \wedge y^{2} + z^{2} \leq 1 \right\}, \text{ se } x_{0} \in [-1, 1] \\ \emptyset, \text{ caso contrário} \end{cases}.$$

O corte
$$C_1(x_0)$$
, com $x_0 \in [-1, 1]$

donde se deduz que a área da secção $C_1(x_0)$ é dada por

$$\operatorname{vol}_{2}\left(C_{1}\left(x_{0}\right)\right) = \int_{-\sqrt{1-x_{0}^{2}}}^{\sqrt{1-x_{0}^{2}}} \left(\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} dz\right) dy, \, \operatorname{para} \, x_{0} \in \left[-1, 1\right].$$

Por fim

$$\operatorname{vol}_{3}(V) = \int_{-1}^{1} \operatorname{vol}_{2}(C_{1}(x)) dx$$
$$= \int_{-1}^{1} \left(\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \left(\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} dz \right) dy \right) dx.$$

Exercício: Escreva expressões para o volume do sólido

$$V = \left\{ (x, y, z) \in \mathbb{R}^3 : \frac{x}{2} \le y \le x; 0 \le z \le x; x \le 1 \right\}$$

nas seguintes ordens:

a) $\int \left(\int \left(\int dx \right) dz \right) dy$;

b) $\int \left(\int \left(\int dx \right) dy \right) dz$.

Resolução:

a) Comecemos por determinar a área do corte obtido pela intersecção de V com o plano de equação $y=y_0$, com $y_0\in\mathbb{R}$, ou seja

$$C_{2}(y_{0}) = \{(x, y, z) \in \mathbb{R}^{3} : y = y_{0}\} \cap V$$

$$= \{(x, y, z) \in \mathbb{R}^{3} : y = y_{0}; \frac{x}{2} \leq y \leq x; 0 \leq z \leq x; x \leq 1\}$$

$$= \{(x, y_{0}, z) \in \mathbb{R}^{3} : \frac{x}{2} \leq y_{0} \leq x \wedge 0 \leq z \leq x \leq 1\}.$$

Tem-se portanto

$$C_{2}\left(y_{0}\right)=\left\{\begin{array}{l}\left\{\left(x,y_{0},z\right)\in\mathbb{R}^{3}:y_{0}\leq x\leq2y_{0}\wedge0\leq z\leq x\leq1\right\},\text{ se }y_{0}\in\left[0,1\right]\\\emptyset,\text{ caso contrário}\end{array}\right.,$$

O corte $C(y_0)$, com $y_0 \in \left[0, \frac{1}{2}\right]$

O corte $C(y_0)$, com $y_0 \in \left[\frac{1}{2}, 1\right]$

donde se deduz que a área da secção $C_{2}\left(y_{0}\right)$ é dada por

$$\operatorname{vol}_{2}(C_{2}(y_{0})) = \begin{cases} \int_{0}^{y_{0}} \left(\int_{y_{0}}^{2y_{0}} dx \right) dz + \int_{y_{0}}^{2y_{0}} \left(\int_{z}^{2y_{0}} dx \right) dz & \text{se } y_{0} \in \left[0, \frac{1}{2}\right] \\ \int_{0}^{y_{0}} \left(\int_{y_{0}}^{1} dx \right) dz + \int_{y_{0}}^{1} \left(\int_{z}^{1} dx \right) dz & \text{se } y_{0} \in \left[\frac{1}{2}, 1\right] \end{cases}$$

Por fim, porque $\operatorname{vol}_2(C_2(y_0)) = 0$ para $y_0 \notin [0, 1]$, obtemos

$$vol_{3}(V) = \int_{0}^{1} vol_{2}(C_{2}(y)) dy$$

$$= \int_{0}^{\frac{1}{2}} vol_{2}(C_{2}(y)) dy + \int_{\frac{1}{2}}^{1} vol_{2}(C_{2}(y)) dy$$

$$= \int_{0}^{\frac{1}{2}} \left(\int_{0}^{y} \left(\int_{y}^{2y} dx \right) dz + \int_{y}^{2y} \left(\int_{z}^{2y} dx \right) dz \right) dy$$

$$+ \int_{\frac{1}{2}}^{1} \left(\int_{0}^{y} \left(\int_{y}^{1} dx \right) dz + \int_{y}^{1} \left(\int_{z}^{1} dx \right) dz \right) dy$$

$$= \int_{0}^{\frac{1}{2}} \left(\int_{0}^{y} \left(\int_{y}^{2y} dx \right) dz \right) dy + \int_{0}^{\frac{1}{2}} \left(\int_{y}^{2y} \left(\int_{z}^{2y} dx \right) dz \right) dy$$

$$+ \int_{\frac{1}{2}}^{1} \left(\int_{0}^{y} \left(\int_{y}^{1} dx \right) dz \right) dy + \int_{\frac{1}{2}}^{1} \left(\int_{y}^{1} \left(\int_{z}^{1} dx \right) dz \right) dy$$

b) Comecemos por determinar a área do corte obtido pela intersecção de V com o plano de equação $z=z_0$, com $z_0 \in \mathbb{R}$, ou seja

$$C_{3}(z_{0}) = \{(x, y, z) \in \mathbb{R}^{3} : z = z_{0}\} \cap V$$

$$= \{(x, y, z) \in \mathbb{R}^{3} : z = z_{0}; \frac{x}{2} \leq y \leq x; 0 \leq z \leq x; x \leq 1\}$$

$$= \{(x, y, z_{0}) \in \mathbb{R}^{3} : \frac{x}{2} \leq y \leq x; 0 \leq z_{0} \leq x; x \leq 1\}.$$

Tem-se portanto

$$C_3\left(z_0\right) = \left\{ \begin{array}{l} \left\{ (x,y,z_0) \in \mathbb{R}^3 : 0 \le z_0 \le x \le 1; \frac{x}{2} \le y \le x \right\}, \text{ se } z_0 \in [0,1] \\ \emptyset, \text{ caso contrário} \end{array} \right.,$$

donde se deduz que a área da secção $C_3(z_0)$ é dada por

$$\operatorname{vol}_{2}\left(C_{3}\left(z_{0}\right)\right) = \begin{cases} \int_{z_{0}/2}^{z_{0}} \left(\int_{z_{0}}^{2y} dx\right) dy + \int_{z_{0}}^{1/2} \left(\int_{y}^{2y} dx\right) dy + \int_{1/2}^{1} \left(\int_{y}^{1} dx\right) dy & \text{se } z_{0} \in \left[0, \frac{1}{2}\right] \\ \int_{z_{0}/2}^{1/2} \left(\int_{z_{0}}^{2y} dx\right) dy + \int_{1/2}^{z_{0}} \left(\int_{z_{0}}^{1} dx\right) dy + \int_{z_{0}}^{1} \left(\int_{y}^{1} dx\right) dy & \text{se } z_{0} \in \left[\frac{1}{2}, 1\right] \end{cases}.$$

Por fim, porque $\operatorname{vol}_2(C_3(z_0)) = 0$ para $z_0 \notin [0, 1]$, obtemos

$$vol_{3}(V) = \int_{0}^{1} vol_{2}(C_{3}(z)) dz
= \int_{0}^{1/2} vol_{2}(C_{3}(z)) dz + \int_{1/2}^{1} vol_{2}(C_{3}(z)) dz
= \int_{0}^{1/2} \left(\int_{z/2}^{z} \left(\int_{z}^{2y} dx \right) dy + \int_{z}^{1/2} \left(\int_{y}^{2y} dx \right) dy + \int_{1/2}^{1} \left(\int_{y}^{1} dx \right) dy \right) dz
+ \int_{1/2}^{1} \left(\int_{z/2}^{1/2} \left(\int_{z}^{2y} dx \right) dy + \int_{1/2}^{z} \left(\int_{z}^{1} dx \right) dy + \int_{z}^{1} \left(\int_{y}^{1} dx \right) dy \right) dz.$$

Exercício: Escreva expressões para o volume do sólido

$$V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z \le 2 - x^2 - y^2, y \ge 0\}$$

nas seguintes ordens:

a)
$$\int \left(\int \left(\int dx \right) dy \right) dz$$
;

b)
$$\int \left(\int \left(\int dy\right) dx\right) dz$$
.

Resolução: Comecemos por determinar a área do corte obtido pela intersecção de V com o plano de equação $z=z_0$, com $z_0 \in \mathbb{R}$, ou seja

$$C_{3}(z_{0}) = \{(x, y, z) \in \mathbb{R}^{3} : z = z_{0}\} \cap V$$

$$= \{(x, y, z_{0}) \in \mathbb{R}^{3} : x^{2} + y^{2} \leq z_{0} \leq 2 - x^{2} - y^{2}, y \geq 0\}$$

$$= \{(x, y, z_{0}) \in \mathbb{R}^{3} : x^{2} + y^{2} \leq z_{0}, x^{2} + y^{2} \leq 2 - z_{0}, y \geq 0\}.$$

Tem-se portanto

$$C_3(z_0) = \begin{cases} \{(x, y, z_0) \in \mathbb{R}^3 : x^2 + y^2 \le z_0, y \ge 0\}, \text{ se } z_0 \in [0, 1] \\ \{(x, y, z_0) \in \mathbb{R}^3 : x^2 + y^2 \le 2 - z_0, y \ge 0\}, \text{ se } z_0 \in [1, 2] \\ \emptyset, \text{ caso contrário} \end{cases}$$

donde se deduz que a área da secção $C_3(z_0)$ é dada por

$$\operatorname{vol}_{2}\left(C_{3}\left(z_{0}\right)\right) = \begin{cases} \int_{0}^{\sqrt{z_{0}}} \left(\int_{-\sqrt{z_{0}-y^{2}}}^{\sqrt{z_{0}-y^{2}}} dx\right) dy = \int_{-\sqrt{z_{0}}}^{\sqrt{z_{0}}} \left(\int_{0}^{\sqrt{z_{0}-x^{2}}} dy\right) dx & \text{se } z_{0} \in [0,1] \\ \int_{0}^{\sqrt{2-z_{0}}} \left(\int_{-\sqrt{2-z_{0}-y^{2}}}^{\sqrt{2-z_{0}-y^{2}}} dx\right) dy = \int_{-\sqrt{2-z_{0}}}^{\sqrt{2-z_{0}}} \left(\int_{0}^{\sqrt{2-z_{0}-x^{2}}} dy\right) dx & \text{se } z_{0} \in [1,2] \end{cases}.$$

Por fim, porque $C_3(z_0) = \emptyset$ para $z_0 \notin [0, 2]$, obtemos

$$\operatorname{vol}_{3}(V) = \int_{0}^{2} \operatorname{vol}_{2}(C_{3}(z)) dz = \int_{0}^{1} \operatorname{vol}_{2}(C_{3}(z)) dz + \int_{1}^{2} \operatorname{vol}_{2}(C_{3}(z)) dz$$

$$= \int_{0}^{1} \left(\int_{0}^{\sqrt{z}} \left(\int_{-\sqrt{z-y^{2}}}^{\sqrt{z-y^{2}}} dx \right) dy \right) dz + \int_{1}^{2} \left(\int_{0}^{\sqrt{2-z}} \left(\int_{-\sqrt{2-z-y^{2}}}^{\sqrt{2-z-y^{2}}} dx \right) dy \right) dz$$

$$= \int_{0}^{1} \left(\int_{-\sqrt{z}}^{\sqrt{z}} \left(\int_{0}^{\sqrt{z-x^{2}}} dy \right) dx \right) dz + \int_{1}^{2} \left(\int_{-\sqrt{2-z}}^{\sqrt{2-z}} \left(\int_{0}^{\sqrt{2-z-x^{2}}} dy \right) dx \right) dz.$$

Outras aplicações dos integrais

Massa:

Seja $\sigma: D \to \mathbb{R}$ a densidade de massa por unidade de volume do material que constitui um corpo representado por D. Então a massa M do corpo D é dada pelo integral

$$M = \int_D \sigma.$$

Note-se que quando $\sigma = 1$, a massa coincide com o volume.

Centro de Massa:

Seja $\sigma: D \to \mathbb{R}$ a densidade de massa por unidade de volume do material que constitui um corpo representado por D, e seja

$$f_{i}(x) = \frac{1}{M}x_{i}\sigma(x), i = 1, ..., n,$$

onde M é a massa a do corpo.

O centro de massa do corpo é o ponto $(c_1,...,c_n)$ com coordenadas dadas por

$$c_i = \int_D f_i, i = 1, ..., n.$$

No caso em que $\sigma = 1$, ao centro de massa também se chama **centróide.**

Momento de Inércia:

Seja L uma linha recta e $d_L(x)$ a distância de um ponto $x \in \mathbb{R}^n$ à linha L.

O momento de inércia do conjunto D relativo à linha L, designado por I_L , é o integral da função definida por $f(x) = d_L^2(x) \sigma(x)$, ou seja

$$I_L = \int_D f,$$

em que σ é a densidade de massa por unidade de volume de D.

Integrabilidade

Definição: Diz-se que um conjunto $A \subset \mathbb{R}^n$ tem contéudo nulo se para todo o $\epsilon > 0$ existe uma família finita de intervalos limitados $\{I_1, ..., I_N\}$ tal que

$$A \subset I_1 \cup \cdots \cup I_N \text{ e vol}(I_1) + \cdots + \text{vol}(I_N) < \epsilon$$

Proposição:

- 1) Qualquer conjunto finito $A \subset \mathbb{R}^n$ tem contéudo nulo.
- 2) A união de uma famúlia finita de conjuntos com contéudo nulo tem nulo.

Teorema: Se $I \subset \mathbb{R}^n$ é um intervalo compacto e $f: I \to \mathbb{R}$ é uma função contínua, então o gráfico de f tem contéudo nulo em \mathbb{R}^{n+1} .

Teorema: Seja $I \subset \mathbb{R}^n$ um intervalo compacto e $f: I \to \mathbb{R}$ uma função limitada. Se o conjunto dos pontos de descontinuidade de f tem contéudo nulo, então f é integrável em I.

Teorema: Se f e g são funções integráveis num intervalo compacto $I \subset \mathbb{R}^n$, e $\alpha, \beta \in \mathbb{R}$, então as funções $\alpha f + \beta g$, fg e |f| também são integráveis em I e:

1)
$$\int_{I} \alpha f + \beta g = \alpha \int_{I} f + \beta \int_{I} g;$$

2)
$$\left| \int_I f \right| \leq \int_I |f|$$
;

3) Se
$$f \leq g$$
, então $\int_I f \leq \int_I g$.

Mudança de variáveis

Definição: Diz-se que uma função $\varphi: U \to \mathbb{R}^n$, definida num aberto $U \subset \mathbb{R}^n$, é uma mudança de variáveis (ou transformação de coordenadas) se verifica:

- 1) φ é de classe C^1 ;
- 2) φ é injectiva:
- 3) det $D\varphi(\mathbf{x}) \neq 0$, para qualquer $\mathbf{x} \in U$.

Nota: O teorema da função inversa, mostra que uma mudança de variáveis $\varphi: U \to \mathbb{R}^n$ é uma bijecção entre os abertos U e $V = \varphi(U)$, com inversa $\varphi^{-1}: V \to U$ de classe C^1 .

Teorema (Mudança de variáveis): Seja U um aberto de \mathbb{R}^n , $\varphi: U \to V$, com $V = \varphi(U)$, uma mudança de variáveis e $D \subset V$ um conjunto limitado. Se $f: D \to \mathbb{R}$ é uma função integrável e $\varphi^{-1}(D) = \{\mathbf{u} \in U : \varphi(\mathbf{u}) \in D\}$ é um conjunto limitado, então a função $(f \circ \varphi) |\det D\varphi|$ é integrável em $\varphi^{-1}(D)$ e

$$\int_{D} f = \int_{\varphi^{-1}(D)} (f \circ \varphi) |\det D\varphi|.$$

Exemplo: Para calcular o integral da função $f(x,y) = x^2 - y^2$ no conjunto

$$D = \{(x, y) \in \mathbb{R}^2 : 0 \le x + y \le 1, 1 \le x - y \le 2\},\$$

podemos considerar a mudança de variáveis definida por

$$\begin{cases} x+y=u \\ x-y=v \end{cases} \Leftrightarrow \begin{cases} x=\frac{1}{2}u+\frac{1}{2}v \\ y=\frac{1}{2}u-\frac{1}{2}v \end{cases}.$$

Trata-se portanto da bijecção $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$, definida por

$$\varphi(u,v) = \left(\frac{1}{2}u + \frac{1}{2}v, \frac{1}{2}u - \frac{1}{2}v\right).$$

Como

$$\begin{split} \varphi^{-1}\left(D\right) &= \left\{(u,v) \in \mathbb{R}^2 : \varphi\left(u,v\right) \in D\right\} \\ &= \left\{(u,v) \in \mathbb{R}^2 : \left(\frac{1}{2}u + \frac{1}{2}v, \frac{1}{2}u - \frac{1}{2}v\right) \in D\right\} \\ &= \left\{(u,v) \in \mathbb{R}^2 : 0 \le \frac{1}{2}u + \frac{1}{2}v + \frac{1}{2}u - \frac{1}{2}v \le 1 \land 1 \le \frac{1}{2}u + \frac{1}{2}v - \frac{1}{2}u + \frac{1}{2}v \le 2\right\} \\ &= \left\{(u,v) \in \mathbb{R}^2 : 0 \le u \le 1 \land 1 \le v \le 2\right\} \end{split}$$

e

$$f \circ \varphi(u, v) \left| \det D\varphi(u, v) \right| = f\left(\frac{1}{2}u + \frac{1}{2}v, \frac{1}{2}u - \frac{1}{2}v\right) \left| \det \left[\frac{\frac{1}{2}}{\frac{1}{2}} - \frac{\frac{1}{2}}{\frac{1}{2}} \right] \right|$$

$$= \frac{1}{2} \left(\left(\frac{1}{2}u + \frac{1}{2}v\right)^2 - \left(\frac{1}{2}u - \frac{1}{2}v\right)^2 \right)$$

$$= \frac{1}{2}uv,$$

obtemos

$$\int_{D} f = \int_{\varphi^{-1}(D)} (f \circ \varphi) |\det D\varphi| = \int_{1}^{2} \left(\int_{0}^{1} \left(\frac{1}{2} uv \right) du \right) dv$$
$$= \int_{1}^{2} \left(\frac{1}{2} v \int_{0}^{1} u du \right) dv = \frac{1}{4} \int_{1}^{2} v dv = \frac{1}{4} \left[\frac{v^{2}}{2} \right]_{v=1}^{v=2} = \frac{3}{8}.$$

Exercício: Considere a região

$$R = \{(x, y) \in \mathbb{R}^2 : 2 \le xy \le 4, 3x \le y \le 5x, 0 \le x, 0 \le y\},\$$

com densidade de massa igual a $\sigma(x,y) = \frac{2y}{x}$. Calcule a área e a massa de R utilizando uma transformação de coordenadas apropriada.

Resolução: Consideremos a mudança de variáveis em $]0, +\infty[\times]0, +\infty[$ definida por

$$\begin{cases} xy = u \\ \frac{y}{x} = v \end{cases} \Leftrightarrow \begin{cases} x = u^{\frac{1}{2}}v^{-\frac{1}{2}} \\ y = u^{\frac{1}{2}}v^{\frac{1}{2}} \end{cases}.$$

Trata-se portanto da bijecção $\varphi:]0, +\infty[\times]0, +\infty[\to]0, +\infty[\times]0, +\infty[$, definida por

$$\varphi(u,v) = \left(u^{\frac{1}{2}}v^{-\frac{1}{2}}, u^{\frac{1}{2}}v^{\frac{1}{2}}\right).$$

Como

$$\begin{split} \varphi^{-1}\left(R\right) &=& \left\{(u,v) \in \left]0, +\infty\right[\times \left]0, +\infty\right[: \varphi\left(u,v\right) \in R\right\} \\ &=& \left\{(u,v) \in \left]0, +\infty\right[\times \left]0, +\infty\right[: \left(u^{\frac{1}{2}}v^{-\frac{1}{2}}, u^{\frac{1}{2}}v^{\frac{1}{2}}\right) \in R\right\} \\ &=& \left\{(u,v) \in \left]0, +\infty\right[\times \left]0, +\infty\right[: 2 \leq u \leq 4, 3 \leq v \leq 5\right\} \\ &=& \left[2, 4\right] \times \left[3, 5\right], \end{split}$$

e por outro lado se tem

$$\left| \det D\varphi \left(u,v \right) \right| = \left| \det \left[\begin{array}{cc} \frac{1}{2} u^{-\frac{1}{2}} v^{-\frac{1}{2}} & -\frac{1}{2} u^{\frac{1}{2}} v^{-\frac{3}{2}} \\ \frac{1}{2} u^{-\frac{1}{2}} v^{\frac{1}{2}} & \frac{1}{2} u^{\frac{1}{2}} v^{-\frac{1}{2}} \end{array} \right] \right| = \frac{1}{2v}$$

e

$$(\sigma \circ \varphi)(u, v) = \sigma(\varphi(u, v)) = \sigma\left(u^{\frac{1}{2}}v^{-\frac{1}{2}}, u^{\frac{1}{2}}v^{\frac{1}{2}}\right) = 2\frac{u^{\frac{1}{2}}v^{\frac{1}{2}}}{u^{\frac{1}{2}}v^{-\frac{1}{2}}} = 2v$$

obtemos

$$\operatorname{vol}_{2}(R) = \int_{R} 1 = \int_{\varphi^{-1}(R)} |\det D\varphi| = \int_{2}^{4} \left(\int_{3}^{5} \frac{1}{2v} dv \right) du$$
$$= \int_{2}^{4} \frac{1}{2} (\log (5) - \log (3)) du = \log (5) - \log (3)$$

e

$$M = \int_R \sigma = \int_{\varphi^{-1}(R)} \left(\sigma \circ \varphi \right) \left| \det D\varphi \right| = \int_{\varphi^{-1}(R)} 1 = \operatorname{vol}_2 \left([2, 4] \times [3, 5] \right) = 4.$$

Coordenadas polares (r, θ) em \mathbb{R}^2 : É a mudança de variáveis

$$\varphi:]0, +\infty[\times]0, 2\pi[\to \mathbb{R}^2,$$

definida por

$$\varphi(r,\theta) = (r\cos(\theta), r\sin(\theta)),$$

ou de forma equivalente

$$\begin{cases} x = r \cos(\theta) \\ y = r \sin(\theta) \end{cases}.$$

Trata-se de uma bijecção de $]0, +\infty[\times]0, 2\pi[$ em $\mathbb{R}^2 \setminus \{(x,0) : x \ge 0\}$ que transforma intervalos de $]0, +\infty[\times]0, 2\pi[$ em sectores de coroas circulares com centro em (0,0).

Note-se ainda que como

$$D\varphi\left(r,\theta\right) = \begin{bmatrix} \frac{\partial x}{\partial r}\left(r,\theta\right) & \frac{\partial x}{\partial \theta}\left(r,\theta\right) \\ \frac{\partial y}{\partial r}\left(r,\theta\right) & \frac{\partial y}{\partial \theta}\left(r,\theta\right) \end{bmatrix} = \begin{bmatrix} \cos\left(\theta\right) & -r\sin\left(\theta\right) \\ \sin\left(\theta\right) & r\cos\left(\theta\right) \end{bmatrix},$$

tem-se

$$\det D\varphi(r,\theta) = r\cos^2(\theta) + r\sin^2(\theta) = r.$$

Exercício: Escreva o integral $\int \int_S f(x,y) dxdy$ em coordenadas polares considerando as seguintes regiões:

a)
$$S = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 4, x < y\}$$

b)
$$S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 2, x > |y|\}$$

c)
$$S = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, -\sqrt{1 - x^2} \le y \le x\}$$

Resolução: a) Como

$$\varphi^{-1}(S) = \{(r,\theta) \in]0, +\infty[\times]0, 2\pi[: (r\cos(\theta), r\sin(\theta)) \in S \}$$

$$= \{(r,\theta) \in]0, +\infty[\times]0, 2\pi[: 1 \le r^2 \le 4, r\cos(\theta) < r\sin(\theta) \}$$

$$= \{(r,\theta) \in]0, +\infty[\times]0, 2\pi[: 1 \le r \le 2, \cos(\theta) < \sin(\theta) \}$$

$$= \{(r,\theta) \in]0, +\infty[\times]0, 2\pi[: 1 \le r \le 2, \frac{5\pi}{4} < \theta < \frac{\pi}{4} \}$$

$$= [1,2] \times \left] \frac{5\pi}{4}, \frac{\pi}{4} \right[,$$

obtemos

$$\int_{S} f = \int_{\varphi^{-1}(S)} \left(f \circ \varphi \right) \left| \det D\varphi \right| = \int_{1}^{2} \left(\int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} f \left(r \cos \left(\theta \right), r \sin \left(\theta \right) \right) r d\theta \right) dr.$$

b) Com coordenadas polares $(r, \theta) \in]0, +\infty[\times] -\pi, \pi[$, temos

$$\varphi^{-1}(S) = \{(r,\theta) \in]0, +\infty[\times] - \pi, \pi[: (r\cos(\theta), r\sin(\theta)) \in S\}$$

$$= \{(r,\theta) \in]0, +\infty[\times] - \pi, \pi[: r^2 \le 2, r\cos(\theta) > |r\sin(\theta)|\}$$

$$= \{(r,\theta) \in]0, +\infty[\times] - \pi, \pi[: r \le \sqrt{2}, \cos(\theta) > |\sin(\theta)|\}$$

$$= \{(r,\theta) \in]0, +\infty[\times] - \pi, \pi[: r \le \sqrt{2}, -\frac{\pi}{4} < \theta < \frac{\pi}{4}\}$$

$$= \left[0, \sqrt{2}\right] \times \left[-\frac{\pi}{4}, \frac{\pi}{4}\right[.$$

Logo

$$\int_{S} f = \int_{\varphi^{-1}(S)} \left(f \circ \varphi \right) \left| \det D\varphi \right| = \int_{0}^{\sqrt{2}} \left(\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} f\left(r \cos\left(\theta\right), r \sin\left(\theta\right) \right) r d\theta \right) dr.$$

c) Como $S = S_1 \cup S_2$, com

$$S_1 = \{(x,y) \in S : y \le 0\}$$

$$= \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, y \le 0, -\sqrt{1-x^2} \le y\}$$

$$= \{(x,y) \in \mathbb{R}^2 : 0 \le x, y \le 0, x^2 + y^2 \le 1\}$$

e

$$S_2 = \{(x, y) \in S : y > 0\}$$

= \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 < y \le x\},

temos

$$\int_{S} f = \int_{S_{1}} f + \int_{S_{2}} f.$$

Por outro lado, como

$$\varphi^{-1}(S_1) = \{(r,\theta) \in]0, +\infty[\times] - \pi, \pi[: (r\cos(\theta), r\sin(\theta)) \in S_1\}$$

$$= \{(r,\theta) \in]0, +\infty[\times] - \pi, \pi[: 0 \le \cos(\theta), \sin(\theta) \le 0, r^2 \le 1\}$$

$$= [0,1] \times \left[-\frac{\pi}{2}, 0\right]$$

e

$$\varphi^{-1}(S_2) = \{(r,\theta) \in]0, +\infty[\times] - \pi, \pi[: (r\cos(\theta), r\sin(\theta)) \in S_2\}$$

$$= \{(r,\theta) \in]0, +\infty[\times] - \pi, \pi[: 0 \le r\cos(\theta) \le 1, 0 < \sin(\theta) \le \cos(\theta)\}$$

$$= \{(r,\theta) \in]0, +\infty[\times] - \pi, \pi[: 0 < \theta \le \frac{\pi}{4}, r\cos(\theta) \le 1\}$$

$$= \bigcup_{0 < \theta \le \frac{\pi}{4}} \left\{ (r,\theta) \in \mathbb{R}^2 : 0 < r \le \frac{1}{\cos(\theta)} \right\},$$

obtemos

$$\begin{split} \int_{S} f &= \int_{S_{1}} f + \int_{S_{2}} f = \int_{\varphi^{-1}(S_{1})} \left(f \circ \varphi \right) \left| \det D\varphi \right| + \int_{\varphi^{-1}(S_{2})} \left(f \circ \varphi \right) \left| \det D\varphi \right| \\ &= \int_{-\frac{\pi}{2}}^{0} \left(\int_{0}^{1} f \left(r \cos \left(\theta \right), r \sin \left(\theta \right) \right) r dr \right) d\theta + \int_{0}^{\frac{\pi}{4}} \left(\int_{0}^{\frac{1}{\cos(\theta)}} f \left(r \cos \left(\theta \right), r \sin \left(\theta \right) \right) r dr \right) d\theta \end{split}$$

Exercício: Utilize coordenadas polares para calcular o integral duplo

$$\int_0^1 \left(\int_0^{\sqrt{1-x^2}} e^{-x^2 - y^2} dy \right) dx.$$

Resolução: Consideremos o conjunto

$$D = \bigcup_{0 \le x \le 1} \left\{ (x, y) \in \mathbb{R}^2 : 0 \le y \le \sqrt{1 - x^2} \right\}$$

$$= \left\{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 1 \land 0 \le y \le \sqrt{1 - x^2} \right\}$$

$$= \left\{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y, y^2 \le 1 - x^2 \right\}$$

$$= \left\{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y, x^2 + y^2 \le 1 \right\}$$

e a função $f\left(x,y\right) =e^{-x^{2}-y^{2}}.$ Como

$$\int_{D} f = \int_{0}^{1} \left(\int_{0}^{\sqrt{1-x^{2}}} e^{-x^{2}-y^{2}} dy \right) dx$$

e

$$\begin{split} \varphi^{-1}\left(D\right) &=& \left\{ (r,\theta) \in \left] 0, +\infty \left[\times \right] 0, 2\pi \right[: \left(r\cos\left(\theta\right), r\sin\left(\theta\right)\right) \in D \right\} \\ &=& \left\{ (r,\theta) \in \left] 0, +\infty \left[\times \right] 0, 2\pi \left[: 0 \leq r\cos\left(\theta\right) \leq 1, 0 \leq r\sin\left(\theta\right), r^2 \leq 1 \right\} \right. \\ &=& \left. \left\{ (r,\theta) \in \left] 0, +\infty \left[\times \right] 0, 2\pi \left[: 0 \leq \cos\left(\theta\right) \leq \frac{1}{r}, 0 \leq \sin\left(\theta\right), r \leq 1 \right\} \right. \\ &=& \left. \left\{ (r,\theta) \in \left] 0, +\infty \left[\times \right] 0, 2\pi \left[: 0 \leq \cos\left(\theta\right), 0 \leq \sin\left(\theta\right), r \leq 1 \right\} \right. \\ &=& \left. \left[0, 1 \right] \times \left[0, \frac{\pi}{2} \right], \end{split}$$

obtemos

$$\int_{0}^{1} \left(\int_{0}^{\sqrt{1-x^{2}}} e^{-x^{2}-y^{2}} dy \right) dx = \int_{D} f = \int_{\varphi^{-1}(D)} (f \circ \varphi) \left| \det D\varphi \right|
= \int_{0}^{1} \left(\int_{0}^{\frac{\pi}{2}} rf \left(r \cos \theta, r \sin \theta \right) d\theta \right) dr = \int_{0}^{1} \left(\int_{0}^{\frac{\pi}{2}} re^{-r^{2}} d\theta \right) dr
= \int_{0}^{1} \frac{\pi}{2} re^{-r^{2}} dr = -\frac{\pi}{4} \int_{0}^{1} -2re^{-r^{2}} dr = -\frac{\pi}{4} \left[e^{-r^{2}} \right]_{r=0}^{r=1} = \frac{\pi}{4} \left(1 - e^{-1} \right).$$

Exercício: Utilize coordenadas polares (possivelmente modificadas) para calcular o integral da função $f(x,y)=x^2+y^2-1$ no conjunto

$$U = \{(x, y) \in \mathbb{R}^2 : (x+1)^2 + y^2 \le 1, 0 < y\}$$

Resolução: Neste caso podemos utilizar as coordenadas polares (modificadas) definidas por

$$\left\{ \begin{array}{l} x+1=r\cos\left(\theta\right) \\ y=r\sin\left(\theta\right) \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x=r\cos\left(\theta\right)-1 \\ y=r\sin\left(\theta\right) \end{array} \right. ,$$

ou seja $\varphi(r,\theta) = (r\cos(\theta) - 1, r\sin(\theta))$. Como

$$\varphi^{-1}(U) = \{(r,\theta) \in]0, +\infty[\times]0, 2\pi[: (r\cos(\theta) - 1, r\sin(\theta)) \in U\}$$

$$= \{(r,\theta) \in]0, +\infty[\times]0, 2\pi[: r^2 \le 1, 0 < r\sin(\theta)\}$$

$$= \{(r,\theta) \in]0, +\infty[\times]0, 2\pi[: r \le 1, 0 < \theta < \pi\}$$

$$= [0,1] \times [0,\pi[,$$

e por outro lado se tem

 $f \circ \varphi(r, \theta) = f(r \cos(\theta) - 1, r \sin(\theta)) = (r \cos(\theta) - 1)^2 + (r \sin(\theta))^2 - 1 = r^2 - 2r \cos\theta$ e $|\det D\varphi(r, \theta)| = r$, obtemos

$$\int_{U} f = \int_{\varphi^{-1}(U)} (f \circ \varphi) \left| \det D\varphi \right| = \int_{0}^{1} \left(\int_{0}^{\pi} \left(r^{3} - 2r^{2} \cos \theta \right) d\theta \right) dr$$
$$= \int_{0}^{1} \pi r^{3} dr = \frac{1}{4} \pi.$$

Exercício: Utilize coordenadas polares (possivelmente modificadas) para calcular a área do conjunto

$$A = \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{4} + y^2 < 1, |y| < x \right\}$$

Resolução: Neste caso podemos utilizar as coordenadas polares (modificadas) definidas por

$$\begin{cases} \frac{x}{2} = r\cos(\theta) \\ y = r\sin(\theta) \end{cases} \Leftrightarrow \begin{cases} x = 2r\cos(\theta) \\ y = r\sin(\theta) \end{cases},$$

ou seja $\varphi(r,\theta) = (2r\cos(\theta), r\sin(\theta))$. Como

$$\begin{split} \varphi^{-1}\left(A\right) &= \left\{(r,\theta) \in \left]0, +\infty[\times] - \pi, \pi[: (2r\cos(\theta), r\sin(\theta)) \in A\right\} \\ &= \left\{(r,\theta) \in \left]0, +\infty[\times] - \pi, \pi[: \frac{4r^2\cos^2(\theta)}{4} + r^2\sin^2(\theta) < 1, |r\sin(\theta)| < 2r\cos(\theta)\right\} \\ &= \left\{(r,\theta) \in \left]0, +\infty[\times] - \pi, \pi[: r^2 < 1, |\tan(\theta)| < 2, 0 < \cos(\theta)\right\} \\ &= \left\{(r,\theta) \in \left]0, +\infty[\times] - \pi, \pi[: r < 1, |\theta| < \arctan(2)\right\} \\ &= \left[0, 1] \times \left[-\arctan(2), \arctan(2) \right], \end{split}$$

e por outro lado se tem

$$\left| \det D\varphi \left(r, \theta \right) \right| = \left| \det \left[\begin{array}{cc} 2\cos \left(\theta \right) & -2r\sin \left(\theta \right) \\ \sin \left(\theta \right) & r\cos \left(\theta \right) \end{array} \right] \right| = 2r$$

obtemos

$$vol_{2}(A) = \int_{A} 1 = \int_{\varphi^{-1}(A)} |\det D\varphi| = \int_{0}^{1} \left(\int_{-\arctan(2)}^{\arctan(2)} 2r d\theta \right) dr
= \int_{0}^{1} 4r \arctan(2) dr = 4 \arctan(2) \int_{0}^{1} r dr = 4 \arctan(2) \left[\frac{r^{2}}{2} \right]_{r=0}^{r=1} = 2 \arctan(2).$$

Coordenadas cilíndricas (ρ, θ, z) em \mathbb{R}^3 : É a mudança de variáveis

$$\varphi:]0, +\infty[\times]0, 2\pi[\times\mathbb{R} \to \mathbb{R}^3,$$

definida por

$$\varphi(\rho, \theta, z) = (\rho \cos(\theta), \rho \sin(\theta), z)$$

ou de forma equivalente

$$\begin{cases} x = \rho \cos(\theta) \\ y = \rho \sin(\theta) \\ z = z \end{cases}.$$

Trata-se de uma bijecção de $]0, +\infty[\times]0, 2\pi[\times\mathbb{R} \text{ em } \mathbb{R}^3 \setminus \{(x, y, z) : x \ge 0, y = 0\}.$ Note-se ainda que como

$$D\varphi\left(\rho,\theta,z\right) = \begin{bmatrix} \frac{\partial x}{\partial \rho}\left(\rho,\theta,z\right) & \frac{\partial x}{\partial \theta}\left(\rho,\theta,z\right) & \frac{\partial x}{\partial z}\left(\rho,\theta,z\right) \\ \frac{\partial y}{\partial \rho}\left(\rho,\theta,z\right) & \frac{\partial y}{\partial \theta}\left(\rho,\theta,z\right) & \frac{\partial y}{\partial z}\left(\rho,\theta,z\right) \\ \frac{\partial z}{\partial \rho}\left(\rho,\theta,z\right) & \frac{\partial z}{\partial \theta}\left(\rho,\theta,z\right) & \frac{\partial z}{\partial z}\left(\rho,\theta,z\right) \end{bmatrix} = \begin{bmatrix} \cos\left(\theta\right) & -\rho\sin\left(\theta\right) & 0 \\ \sin\left(\theta\right) & \rho\cos\left(\theta\right) & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

tem-se

$$\det D\varphi (\rho, \theta, z) = \rho \cos^2 (\theta) + \rho \sin^2 (\theta) = \rho.$$

Exercício: Utilizar coordenadas cilíndricas para calcular o volume do sólido

$$V = \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < z < \sqrt{2 - x^2 - y^2} \right\}.$$

Resolução: Como

$$\varphi^{-1}(V) = \{(\rho, \theta, z) \in]0, +\infty[\times]0, 2\pi[\times \mathbb{R} : (\rho \cos(\theta), \rho \sin(\theta), z) \in V\}$$

$$= \{(\rho, \theta, z) \in]0, +\infty[\times]0, 2\pi[\times \mathbb{R} : \rho^2 < z < \sqrt{2 - \rho^2} \}$$

$$= \{(\rho, \theta, z) \in \mathbb{R}^3 : 0 < \rho \le 1, 0 < \theta < 2\pi, \rho^2 < z < \sqrt{2 - \rho^2} \}$$

$$= \bigcup_{(\rho, \theta) \in]0, 1] \times]0, 2\pi[} \{(\rho, \theta, z) \in \mathbb{R}^3 : \rho^2 < z < \sqrt{2 - \rho^2} \},$$

temos

$$\operatorname{vol}_{3}(V) = \int_{V} 1 = \int_{\varphi^{-1}(V)} |\det D\varphi| = \int_{\varphi^{-1}(V)} \rho = \int_{0}^{1} \left(\int_{0}^{2\pi} \left(\int_{\rho^{2}}^{\sqrt{2-\rho^{2}}} \rho dz \right) d\theta \right) d\rho.$$

Exercício: Calcule o momento de inércia do sólido

$$U = \left\{ (x, y, z) \in \mathbb{R}^3 : y^2 + z^2 \le 1, 0 \le x \le \left(y^2 + z^2 \right)^{\frac{1}{4}}, y \ge 0, z \ge 0 \right\}$$

relativamente ao eixo Ox, e cuja densidade de massa é dada por $\sigma\left(x,y,z\right)=x\left(y^{2}+z^{2}\right)$.

Resolução: O momento de inércia do sólido relativamente ao eixo Ox é dado pelo integral

$$I_L = \int_U d^2\sigma,$$

onde $d(x, y, z) = \sqrt{y^2 + z^2}$ é a distância de (x, y, z) ao eixo Ox. Temos portanto de calcular o integral da função

$$d^2\sigma\left(x,y,z\right) = x\left(y^2 + z^2\right)^2$$

no conjunto U. Para calcular este integral, consideramos a mudança de variáveis

$$\varphi(\rho, \theta, x) = (x, \rho \sin(\theta), \rho \cos(\theta)),$$

ou de forma equivalente,

$$\begin{cases} x = x \\ y = \rho \sin(\theta) \\ z = \rho \cos(\theta) \end{cases}$$

Como

$$\begin{split} \varphi^{-1}\left(U\right) &=& \left\{(\rho,\theta,x) \in \left]0, +\infty[\times]0, 2\pi[\times\mathbb{R}: \left(x,\rho\sin\left(\theta\right),\rho\cos\left(\theta\right)\right) \in U\right\} \\ &=& \left\{(\rho,\theta,x) \in \left]0, +\infty[\times]0, 2\pi[\times\mathbb{R}: \rho^2 \leq 1, 0 \leq x \leq \rho^{\frac{1}{2}}, \sin\left(\theta\right) \geq 0, \cos\left(\theta\right) \geq 0\right\} \\ &=& \left\{(\rho,\theta,x) \in \left]0, +\infty[\times]0, 2\pi[\times\mathbb{R}: 0 < \rho \leq 1, 0 < \theta \leq \frac{\pi}{2}, 0 \leq x \leq \rho^{\frac{1}{2}}\right\} \\ &=& \bigcup_{(\rho,\theta) \in \left]0,1\right] \times \left]0, \frac{\pi}{2}\right]} \left\{(\rho,\theta,x): 0 \leq x \leq \rho^{\frac{1}{2}}\right\}, \end{split}$$

e $|\det D\varphi (\rho, \theta, x)| = \rho$, obtemos

$$\begin{split} I_L &= \int_U d^2\sigma = \int_{\varphi^{-1}(U)} \left(d^2\sigma \circ \varphi \right) |\det D\varphi| \\ &= \int_0^1 \left(\int_0^{\frac{\pi}{2}} \left(\int_0^{\sqrt{\rho}} d^2\sigma \left(x, \rho \sin \left(\theta \right), \rho \cos \left(\theta \right) \right) \rho dx \right) d\theta \right) d\rho = \int_0^1 \left(\int_0^{\frac{\pi}{2}} \left(\int_0^{\sqrt{\rho}} x \rho^5 dx \right) d\theta \right) d\rho \\ &= \int_0^1 \left(\int_0^{\frac{\pi}{2}} \left(\rho^5 \left[\frac{x^2}{2} \right]_{x=0}^{x=\sqrt{\rho}} \right) d\theta \right) d\rho = \int_0^1 \left(\int_0^{\frac{\pi}{2}} \frac{\rho^6}{2} d\theta \right) d\rho \\ &= \int_0^1 \frac{\pi \rho^6}{4} d\rho = \frac{\pi}{4} \left[\frac{\rho^7}{7} \right]_{\rho=0}^{\rho=1} = \frac{\pi}{28}. \end{split}$$

Exercício: Calcular o volume dos sólidos:

a)
$$A = \left\{ (x, y, z) \in \mathbb{R}^3 : 0 \le x \le 1 - \left(\sqrt{y^2 + z^2} - 1 \right)^2, 0 \le y, 0 \le z \right\};$$

b) $B = \left\{ (x, y, z) \in \mathbb{R}^3 : \left(\sqrt{x^2 + y^2} - 4 \right)^2 + z^2 < 1, 0 \le y, 0 \le z \right\}.$

Resolução: a) Considerando a mudança de variáveis

$$\varphi(\rho, \theta, x) = (x, \rho \sin(\theta), \rho \cos(\theta)),$$

ou de forma equivalente,

$$\begin{cases} x = x \\ y = \rho \sin(\theta) \\ z = \rho \cos(\theta) \end{cases}$$

temos

$$\begin{split} \varphi^{-1}\left(A\right) &= \left\{ (\rho,\theta,x) \in \left] 0, +\infty \left[\times \right] 0, 2\pi \left[\times \mathbb{R} : \left(x, \rho \sin \left(\theta \right), \rho \cos \left(\theta \right) \right) \in A \right\} \right. \\ &= \left\{ (\rho,\theta,x) \in \left] 0, +\infty \left[\times \right] 0, 2\pi \left[\times \mathbb{R} : 0 \leq x \leq 1 - \left(\rho - 1 \right)^2, 0 \leq \rho \sin \left(\theta \right), 0 \leq \rho \cos \left(\theta \right) \right\} \right. \\ &= \left\{ (\rho,\theta,x) \in \left] 0, +\infty \left[\times \right] 0, 2\pi \left[\times \mathbb{R} : 0 \leq x \leq 1 - \left(\rho - 1 \right)^2, 0 \leq \sin \left(\theta \right), 0 \leq \cos \left(\theta \right) \right\} \right. \\ &= \left. \left\{ (\rho,\theta,x) \in \left] 0, +\infty \left[\times \right] 0, 2\pi \left[\times \mathbb{R} : 0 \leq x \leq 1 - \left(\rho - 1 \right)^2, 0 \leq 1 - \left(\rho - 1 \right)^2, 0 < \theta \leq \frac{\pi}{2} \right\} \right. \\ &= \left. \left\{ (\rho,\theta,x) \in \mathbb{R}^3 : 0 \leq x \leq 1 - \left(\rho - 1 \right)^2, 0 < \rho \leq 2, 0 < \theta \leq \frac{\pi}{2} \right\} \right. \\ &= \left. \left\{ (\rho,\theta,x) \in \mathbb{R}^3 : 0 \leq x \leq 1 - \left(\rho - 1 \right)^2, 0 \leq x \leq 2\rho - \rho^2 \right\}. \end{split}$$

Finalmente, porque $|\det D\varphi(\rho, \theta, x)| = \rho$, obtemos

$$\operatorname{vol}_{3}(A) = \int_{A} 1 = \int_{\varphi^{-1}(A)} |\det D\varphi| = \int_{0}^{2} \left(\int_{0}^{\frac{\pi}{2}} \left(\int_{0}^{1 - (\rho - 1)^{2}} \rho dx \right) d\theta \right) d\rho$$

$$= \int_{0}^{2} \left(\int_{0}^{\frac{\pi}{2}} \rho \left(1 - (\rho - 1)^{2} \right) d\theta \right) d\rho = \int_{0}^{2} \frac{\pi}{2} \rho \left(1 - (\rho - 1)^{2} \right) d\rho$$

$$= \frac{\pi}{2} \int_{0}^{2} \rho \left(1 - (\rho - 1)^{2} \right) d\rho = \frac{\pi}{2} \int_{0}^{2} \left(2\rho^{2} - \rho^{3} \right) d\rho = \frac{\pi}{2} \left[\frac{2}{3} \rho^{3} - \frac{1}{4} \rho^{4} \right]_{\rho = 0}^{\rho = 2} = \frac{2}{3} \pi.$$

b) Com coordenadas cilíndricas

$$\begin{cases} x = \rho \cos(\theta) \\ y = \rho \sin(\theta) \\ z = z \end{cases},$$

temos

$$\begin{split} \varphi^{-1}\left(B\right) &=& \left\{ (\rho,\theta,z) \in \left] 0, +\infty \left[\times \right] 0, 2\pi \left[\times \mathbb{R} : \left(\rho\cos\left(\theta\right), \rho\sin\left(\theta\right), z\right) \in B \right\} \right. \\ &=& \left\{ (\rho,\theta,z) \in \left] 0, +\infty \left[\times \right] 0, 2\pi \left[\times \mathbb{R} : \left(\rho-4\right)^2 + z^2 < 1, 0 \leq \rho\sin\left(\theta\right), 0 \leq z \right\} \right. \\ &=& \left\{ (\rho,\theta,z) \in \left] 0, +\infty \left[\times \right] 0, 2\pi \left[\times \mathbb{R} : \left(\rho-4\right)^2 < 1 - z^2, 0 \leq \sin\left(\theta\right), 0 \leq z, 0 \leq 1 - z^2 \right\} \right. \\ &=& \left\{ (\rho,\theta,z) \in \left] 0, +\infty \left[\times \right] 0, 2\pi \left[\times \mathbb{R} : \left|\rho-4\right| < \sqrt{1-z^2}, 0 < \theta \leq \pi, 0 \leq z \leq 1 \right\} \right. \\ &=& \bigcup_{0 \leq z \leq 1} \left\{ (\rho,\theta,z) \in \mathbb{R}^3 : 4 - \sqrt{1-z^2} < \rho < 4 + \sqrt{1-z^2}, 0 < \theta \leq \pi \right\}. \end{split}$$

Logo

$$vol_{3}(B) = \int_{B} 1 = \int_{\varphi^{-1}(B)} |\det D\varphi| = \int_{0}^{1} \left(\int_{0}^{\pi} \left(\int_{4-\sqrt{1-z^{2}}}^{4+\sqrt{1-z^{2}}} \rho d\rho \right) d\theta \right) dz
= \int_{0}^{1} \left(\int_{0}^{\pi} \left(\left[\frac{\rho^{2}}{2} \right]_{\rho=4-\sqrt{1-z^{2}}}^{\rho=4+\sqrt{1-z^{2}}} \right) d\theta \right) dz = \int_{0}^{1} \left(\int_{0}^{\pi} 8\sqrt{1-z^{2}} d\theta \right) dz
= \int_{0}^{1} 8\pi \sqrt{1-z^{2}} dz = 8\pi \int_{0}^{1} \sqrt{1-z^{2}} dz = 2\pi^{2}.$$

Coordenadas esféricas (r, θ, ϕ) em \mathbb{R}^3 : É a mudança de variáveis

$$\varphi:]0, +\infty[\times]0, 2\pi[\times]0, \pi[\to \mathbb{R}^3,$$

definida por

$$\varphi(r, \theta, \phi) = (r \sin(\phi) \cos(\theta), r \sin(\phi) \sin(\theta), r \cos(\phi)),$$

ou de forma equivalente

$$\begin{cases} x = r \sin(\phi) \cos(\theta) \\ y = r \sin(\phi) \sin(\theta) \\ z = r \cos(\phi) \end{cases}$$

Trata-se de uma bijecção de $]0, +\infty[\times]0, 2\pi[\times]0, \pi[$ em $\mathbb{R}^3 \setminus \{(x, y, z) : x \ge 0, y = 0\}$. Note-se ainda que como

$$D\varphi(r,\theta,\phi) = \begin{bmatrix} \frac{\partial x}{\partial r}(r,\theta,\phi) & \frac{\partial x}{\partial \theta}(r,\theta,\phi) & \frac{\partial x}{\partial \phi}(r,\theta,\phi) \\ \frac{\partial y}{\partial r}(r,\theta,\phi) & \frac{\partial y}{\partial \theta}(r,\theta,\phi) & \frac{\partial y}{\partial \phi}(r,\theta,\phi) \\ \frac{\partial z}{\partial r}(r,\theta,\phi) & \frac{\partial z}{\partial \theta}(r,\theta,\phi) & \frac{\partial z}{\partial \phi}(r,\theta,\phi) \end{bmatrix}$$
$$= \begin{bmatrix} \sin(\phi)\cos(\theta) & -r\sin(\phi)\sin(\theta) & r\cos(\phi)\cos(\theta) \\ \sin(\phi)\sin(\theta) & r\sin(\phi)\cos(\theta) & r\cos(\phi)\sin(\theta) \\ \cos(\phi) & 0 & -r\sin(\phi) \end{bmatrix},$$

tem-se

$$\det D\varphi (r, \theta, \phi) = -r^2 \sin \phi.$$

Exercício: Utilizar coordenadas esféricas para calcular o volume da esfera

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2 + z^2} \le s \right\}.$$

Resolução: Como

$$\varphi^{-1}(S) = \{(r, \theta, \phi) \in]0, +\infty[\times]0, 2\pi[\times]0, \pi[: (r\sin(\phi)\cos(\theta), r\sin(\phi)\sin(\theta), r\cos(\phi)) \in S\}$$

$$= \{(r, \theta, \phi) \in]0, +\infty[\times]0, 2\pi[\times]0, \pi[: r \leq s\}$$

$$= [0, s] \times [0, 2\pi[\times]0, \pi[,$$

temos

$$\operatorname{vol}_{3}(S) = \int_{S} 1 = \int_{\varphi^{-1}(S)} |\det D\varphi| = \int_{0}^{s} \left(\int_{0}^{2\pi} \left(\int_{0}^{\pi} r^{2} \sin \phi d\phi \right) d\theta \right) dr$$

$$= \int_{0}^{s} \left(\int_{0}^{2\pi} \left(r^{2} \left[-\cos \phi \right]_{\phi=0}^{\phi=\pi} \right) d\theta \right) dr = \int_{0}^{s} \left(\int_{0}^{2\pi} \left(2r^{2} \right) d\theta \right) dr$$

$$= \int_{0}^{s} 4\pi r^{2} dr = 4\pi \left[\frac{r^{3}}{3} \right]_{r=0}^{r=s} = \frac{4}{3}\pi s^{3}.$$

Exercício: Utilizar coordenadas esféricas para calcular o volume do sólido

$$V = \left\{ (x, y, z) \in \mathbb{R}^3 : 0 < y, 1 \le x^2 + y^2 + z^2 \le 2, \sqrt{x^2 + y^2} < z \right\}.$$

Resolução: Como

$$\varphi^{-1}(V) = \{(r,\theta,\phi) \in]0, +\infty[\times]0, 2\pi[\times]0, \pi[: (r\sin(\phi)\cos(\theta), r\sin(\phi)\sin(\theta), r\cos(\phi)) \in V\}$$

$$= \left\{(r,\theta,\phi) \in]0, +\infty[\times]0, 2\pi[\times]0, \pi[: 0 < \sin(\theta), 1 \le r^2 \le 2, \sqrt{r^2\sin^2(\phi)} < r\cos(\phi)\right\}$$

$$= \left\{(r,\theta,\phi) \in]0, +\infty[\times]0, 2\pi[\times]0, \pi[: 0 < \sin(\theta), 1 \le r^2 \le 2, \sin(\phi) < \cos(\phi)\right\}$$

$$= \left\{(r,\theta,\phi) \in]0, +\infty[\times]0, 2\pi[\times]0, \pi[: 0 < \theta < \pi, 1 \le r \le \sqrt{2}, 0 < \phi < \frac{\pi}{4}\right\}$$

$$= \left[1, \sqrt{2} \times [0, \pi] \times [0, \frac{\pi}{4}]\right]$$

temos

$$\operatorname{vol}_3(V) = \int_V 1 = \int_{\varphi^{-1}(V)} \left| \det D\varphi \right| = \int_{\varphi^{-1}(V)} r^2 \sin \phi = \int_1^{\sqrt{2}} \left(\int_0^{\pi} \left(\int_0^{\frac{\pi}{4}} r^2 \sin \phi d\phi \right) d\theta \right) dr.$$

Regra de Leibniz

Teorema (Regra de Leibniz): Seja $A \subset \mathbb{R}^n$ um conjunto compacto cuja fronteira tem contéudo nulo, U um aberto de \mathbb{R}^m e $f: A \times U \to \mathbb{R}$ uma função contínua. Nestas condições, a função $F: U \to \mathbb{R}$, definida por

$$F(\mathbf{t}) = \int_A f(\mathbf{x}, \mathbf{t}) d\mathbf{x}$$
, para $\mathbf{t} = (t_1, ..., t_m) \in U$,

tem as seguintes propriedades:

- 1) F é contínua em U.
- 2) Se a derivada parcial $\frac{\partial f}{\partial t_i}$ existir e for contínua em $A \times U$, então $\frac{\partial F}{\partial t_i}$ existe em U e

$$\frac{\partial F}{\partial t_i}(\mathbf{t}) = \int_A \frac{\partial f}{\partial t_i}(\mathbf{x}, \mathbf{t}) d\mathbf{x}, \text{ para } \mathbf{t} = (t_1, ..., t_m) \in U.$$

Exemplo: Pela regra de Leibniz, a função $F: \mathbb{R} \to \mathbb{R}$, definida por

$$F(t) = \int_0^{\frac{\pi}{2}} e^{\sin(t+x)} dx,$$

é diferenciável em \mathbb{R} , com derivada dada por

$$F'(t) = \int_0^{\frac{\pi}{2}} \cos(t+x) e^{\sin(t+x)} dx.$$

Em particular

$$F'(0) = \int_{0}^{\frac{\pi}{2}} \cos(x) e^{\sin(x)} dx = \left[e^{\sin(x)} \right]_{x=0}^{x=\frac{\pi}{2}} = e - 1$$

Exercício: Cacule F'(0) onde $F: \mathbb{R} \to \mathbb{R}$ é a função definida por

$$F(t) = \int_0^1 \sin(tx^2 + x^3) dx.$$

Resolução: Consideremos o intervalo compacto A = [0,1] e a função $f : \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,t) = \sin(tx^2 + x^3)$. Como

$$F(t) = \int_{A} f(x, t) dx,$$

e f é de classe C^1 , obtemos

$$F'(t) = \int_{A} \frac{\partial f}{\partial t}(x, t) dx = \int_{0}^{1} x^{2} \cos(tx^{2} + x^{3}) dx,$$

e em particular

$$F'(0) = \int_0^1 x^2 \cos(x^3) \, dx = \frac{1}{3} \int_0^1 3x^2 \cos(x^3) \, dx = \frac{1}{3} \left[\sin(x^3) \right]_{x=0}^{x=1} = \frac{\sin(1)}{3}.$$

Exercício: Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função de classe C^1 . Calcule G'(x), onde $G: \mathbb{R} \to \mathbb{R}$ é definida por

$$G(x) = \int_{x}^{x^{3}} f(tx, t^{2} + x^{3}) dt.$$

Resolução: A função G pode ser escrita na forma

$$G(x) = \int_{a(x)}^{b(x)} g(x, t) dt,$$

com $a: \mathbb{R} \to \mathbb{R}, b: \mathbb{R} \to \mathbb{R} \text{ e } g: \mathbb{R}^2 \to \mathbb{R}, \text{ definidas por}$

$$a(x) = x, b(x) = x^{3} e g(x,t) = f(tx, t^{2} + x^{3}).$$

A função G pode portanto ser vista como composição das funções $H: \mathbb{R}^3 \to \mathbb{R}$ e $L: \mathbb{R} \to \mathbb{R}^3$, definidas por

$$H(x, y, z) = \int_{y}^{z} g(x, t) dt \in L(x) = (x, a(x), b(x)).$$

Como pela regra de Leibniz e pela regra da cadeia se tem

$$\frac{\partial H}{\partial x}\left(x,y,z\right) = \int_{y}^{z} \frac{\partial g}{\partial x}\left(x,t\right) dt = \int_{y}^{z} \left(t \frac{\partial f}{\partial u}\left(tx,t^{2}+x^{3}\right) + 3x^{2} \frac{\partial f}{\partial v}\left(tx,t^{2}+x^{3}\right)\right) dt$$

e pelo teorema fundamental do cálculo sabemos que

$$\frac{\partial H}{\partial y}\left(x,y,z\right) = -g\left(x,y\right) = -f\left(xy,y^2 + x^3\right) \, \, \mathrm{e} \, \, \frac{\partial H}{\partial z}\left(x,y,z\right) = g\left(x,z\right) = f\left(xz,z^2 + x^3\right),$$

obtemos (mais uma vez pela regra da cadeia)

$$G'(x) = (H \circ L)'(x)$$

$$= \frac{\partial H}{\partial x}(x, a(x), b(x)) + a'(x)\frac{\partial H}{\partial y}(x, a(x), b(x)) + b'(x)\frac{\partial H}{\partial z}(x, a(x), b(x))$$

$$= \int_{x}^{x^{3}} \left(t\frac{\partial f}{\partial u}(tx, t^{2} + x^{3}) + 3x^{2}\frac{\partial f}{\partial v}(tx, t^{2} + x^{3})\right) dt - f(x^{2}, x^{2} + x^{3}) + 3x^{2}f(x^{4}, x^{6} + x^{3}).$$

Exercício: Sendo $V_t = \{(x,y,z) \in \mathbb{R}^3 : 1 \le x^2 + y^2 \le t, 0 \le z \le 1, 0 \le y\}$ e $F: [1,+\infty[\to \mathbb{R}$ a função definida por

$$F(t) = \int \int \int_{V_t} \frac{e^{t(x^2+y^2)}}{x^2+y^2} dx dy dz,$$

calcule F'(4).

Resolução: A função F está definida por

$$F(t) = \int_{V_t} g(x, y, z, t) dx dy dz$$
, com $g(x, y, z, t) = \frac{e^{t(x^2 + y^2)}}{x^2 + y^2}$.

Considerando coordenadas cilíndricas, $\varphi(\rho, \theta, z) = (\rho \cos \theta, \rho \sin \theta, z)$, temos

$$\varphi^{-1}(V_t) = \{ (\rho, \theta, z) \in]0, +\infty[\times]0, 2\pi[\times \mathbb{R} : (\rho \cos \theta, \rho \sin \theta, z) \in V_t \}$$

$$= \{ (\rho, \theta, z) \in]0, +\infty[\times]0, 2\pi[\times \mathbb{R} : 1 \le \rho^2 \le t, 0 \le z \le 1, 0 \le \sin \theta \}$$

$$= [1, \sqrt{t}] \times]0, \pi] \times [0, 1],$$

pelo que

$$\int_{V_t} g(x, y, z, t) dx dy dz = \int_{\varphi^{-1}(V_t)} \rho g(\rho \cos \theta, \rho \sin \theta, z) d\rho d\theta dz = \int_{1}^{\sqrt{t}} \left(\int_{0}^{\pi} \left(\int_{0}^{1} \frac{e^{t\rho^2}}{\rho} dz \right) d\theta \right) d\rho \\
= \int_{1}^{\sqrt{t}} \left(\int_{0}^{\pi} \frac{e^{t\rho^2}}{\rho} d\theta \right) d\rho = \int_{1}^{\sqrt{t}} \frac{\pi e^{t\rho^2}}{\rho} d\rho.$$

A função F pode portanto ser escrita na forma

$$F(t) = \int_{1}^{a(t)} f(\rho, t) d\rho, \text{ com } a(t) = \sqrt{t} \text{ e } f(\rho, t) = \frac{\pi e^{t\rho^2}}{\rho},$$

donde se deduz que $F = G \circ H$, onde as funções $G : [1, +\infty[\times \mathbb{R} \to \mathbb{R} \text{ e } H : [1, +\infty[\to \mathbb{R} \text{ estão definidas por }]$

$$G(u,t) = \int_{1}^{u} f(\rho,t) d\rho e H(t) = \left(\sqrt{t}, t\right).$$

Assim, porque pelo teorema fundamental do Cálculo se tem

$$\frac{\partial G}{\partial u}(u,t) = f(u,t),$$

e pela regra Leibniz

$$\frac{\partial G}{\partial t}(u,t) = \int_{1}^{u} \frac{\partial f}{\partial t}(\rho,t) d\rho = \int_{1}^{u} \pi \rho e^{t\rho^{2}} d\rho,$$

vemos que as funções G e H são de classe C^1 , e consequentemente

$$F'(4) = DG(H(4))DH(4)$$

$$= \left[\frac{\partial G}{\partial u}(2,4) \quad \frac{\partial G}{\partial t}(2,4)\right] \left[\frac{1}{4} \atop 1\right]$$

$$= \frac{1}{4}f(2,4) + \int_{1}^{2} \pi \rho e^{4\rho^{2}} d\rho$$

$$= \frac{\pi e^{16}}{8} + \frac{\pi}{8} \int_{1}^{2} 8\rho e^{4\rho^{2}} d\rho = \frac{\pi e^{16}}{8} + \frac{\pi}{8} \left[e^{4\rho^{2}}\right]_{\rho=1}^{\rho=2} = \frac{\pi e^{16}}{8} + \frac{\pi}{8} \left[e^{16} - e^{4}\right] = \frac{\pi}{8} \left(2e^{16} - e^{4}\right).$$

Integral de linha de um campo escalar

Definição: Seja $\gamma:[a,b]\to\mathbb{R}^n$ uma aplicação de classe C^1 e injectiva em]a,b[, e $\Gamma\subset\mathbb{R}^n$ a linha descrita pelo caminho γ , ou seja

$$\Gamma = \{\gamma(t) : t \in [a, b]\}.$$

Ao integral

$$\ell\left(\Gamma\right) = \int_{a}^{b} \left\|\gamma'\left(t\right)\right\| dt$$

chama-se comprimento da linha Γ .

Exemplo: Um segmento de recta $\Gamma = [A, B] \subset \mathbb{R}^n$ é descrito pelo caminho $\gamma : [0, 1] \to \mathbb{R}^n$, definido por

$$\gamma(t) = (a_1 + t(b_1 - a_1), ..., a_n + t(b_n - a_n)), \text{ com } A = (a_1, ..., a_n) \in B = (b_1, ..., b_n),$$

pelo que o comprimento de Γ é dado por

$$\ell(\Gamma) = \int_0^1 \|\gamma'(t)\| dt = \int_0^1 \|(b_1 - a_1, ..., b_n - a_n)\| dt = \int_0^1 \|B - A\| dt = \|B - A\|.$$

Exemplo: A semi-circunferência $\Gamma = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1, y \ge 0\}$ é descrita pelo caminho $\gamma : [0, \pi] \to \mathbb{R}^2$, definido por

$$\gamma(t) = (\cos(t), \sin(t)),$$

pelo que o comprimento de Γ é dado por

$$\ell(\Gamma) = \int_0^{\pi} \|\gamma'(t)\| dt = \int_0^{\pi} \|(-\sin(t), \cos(t))\| dt = \int_0^{\pi} \sqrt{\sin^2(t) + \cos^2(t)} dt = \int_0^{\pi} 1 dt = \pi.$$

Exercício: Determine o comprimento da linha descrita pelo caminho $g:[0,1]\to\mathbb{R}^3$, definido por $g(t)=\left(t,\frac{1}{\sqrt{2}}t^2,\frac{1}{3}t^3\right)$.

Resolução: Basta notar que $g'(t) = (1, \sqrt{2}t, t^2)$, para obter

$$\ell(\Gamma) = \int_0^1 \|g'(t)\| dt = \int_0^1 \left\| \left(1, \sqrt{2}t, t^2 \right) \right\| dt = \int_0^1 \sqrt{1 + 2t^2 + t^4} dt$$
$$= \int_0^1 1 + t^2 dt = \left[t + \frac{1}{3}t^3 \right]_{t=0}^{t=1} = \frac{4}{3}$$

Definição: Seja $\phi : \mathbb{R}^n \to \mathbb{R}$ um campo escalar contínuo e $\Gamma \subset \mathbb{R}^n$ a linha descrita pelo caminho $\gamma : [a, b] \to \mathbb{R}^n$. Ao integral

$$\int_{\Gamma} \phi = \int_{a}^{b} \phi \left(\gamma \left(t \right) \right) \| \gamma' \left(t \right) \| dt$$

chama-se integral de linha do campo escalar ϕ ao longo da linha Γ .

Aplicações dos integrais de linha

Massa de um fio:

Seja $\sigma: \Gamma \to \mathbb{R}$ a densidade de massa por unidade de comprimento do material que constitui um fio descrito por $\gamma: [a,b] \to \mathbb{R}^n$. Então a massa M do fio é dada pelo integral de linha

$$M = \int_{\Gamma} \sigma = \int_{a}^{b} \sigma \left(\gamma \left(t \right) \right) \| \gamma' \left(t \right) \| dt.$$

Note-se que quando $\sigma = 1$, a massa do fio coincide com o seu comprimento.

Centro de Massa de um fio:

Seja $\sigma: \Gamma \to \mathbb{R}$ a densidade de massa por unidade de comprimento do material que constitui um fio descrito por $\gamma: [a, b] \to \mathbb{R}^n$, e seja

$$\phi_{i}\left(x\right) = \frac{1}{M}x_{i}\sigma\left(x\right), i = 1, ..., n,$$

onde M é a massa a do fio.

O centro de massa do fio é o ponto $(c_1,...,c_n)$ com coordenadas dadas por

$$c_{i} = \int_{\Gamma} \phi_{i} = \int_{a}^{b} \phi_{i}\left(\gamma\left(t\right)\right) \left\|\gamma'\left(t\right)\right\| dt = \frac{1}{M} \int_{a}^{b} \gamma_{i}\left(t\right) \sigma\left(\gamma\left(t\right)\right) \left\|\gamma'\left(t\right)\right\| dt, i = 1, ..., n.$$

No caso em que $\sigma = 1$, ao centro de massa também se chama **centróide**.

Momento de Inércia relativo a uma linha recta:

Seja L uma linha recta e $d_L(x)$ a distância de um ponto $x \in \mathbb{R}^n$ à linha L.

O momento de inércia da linha Γ relativo à linha L, designado por I_L , é o integral da função definida por $\phi(x) = d_L^2(x) \sigma(x)$, ou seja

$$I_{L} = \int_{\Gamma} \phi = \int_{a}^{b} d_{L}^{2} \left(\gamma \left(t \right) \right) \sigma \left(\gamma \left(t \right) \right) \| \gamma' \left(t \right) \| dt,$$

em que σ é a densidade de massa por unidade de comprimento do material que constitui a linha.

Exercício: Determine a massa total do fio $\Gamma = \{(t^2, t\cos t, t\sin t) : 0 \le t \le 2\pi\}$, com densidade de massa por unidade de comprimento $\sigma(x, y, z) = \sqrt{x}$.

Resolução: Como a linha Γ é descrita pelo caminho $\gamma:[0,2\pi]\to\mathbb{R}^3$, definido por

$$\gamma(t) = (t^2, t\cos t, t\sin t),\,$$

obtemos

$$M = \int_{\Gamma} \sigma = \int_{0}^{2\pi} \sigma(\gamma(t)) \|\gamma'(t)\| dt = \int_{0}^{2\pi} \sigma(t^{2}, t \cos t, t \sin t) \|(2t, \cos t - t \sin t, \sin t + t \cos t)\| dt$$

$$= \int_{0}^{2\pi} t \sqrt{4t^{2} + (\cos t - t \sin t)^{2} + (\sin t + t \cos t)^{2}} dt = \int_{0}^{2\pi} t \sqrt{1 + 5t^{2}} dt$$

$$= \frac{1}{10} \int_{0}^{2\pi} 10t (1 + 5t^{2})^{\frac{1}{2}} dt = \frac{1}{10} \left[\frac{2}{3} (1 + 5t^{2})^{\frac{3}{2}} \right]_{t=0}^{t=2\pi} = \frac{1}{15} \left((1 + 20\pi^{2})^{\frac{3}{2}} - 1 \right).$$

Exercício: Determine o centro de massa da linha descrita pelas equações $x=y^2+z^2$ e $x^2+y^2+z^2=2$, com densidade de massa $\sigma\left(x,y,z\right)=2-y$.

Resolução: A linha Γ é descrita pelo caminho $\gamma:[0,2\pi]\to\mathbb{R}^3$, definido por

$$\gamma(t) = (1, \cos t, \sin t),$$

já que

$$\begin{cases} x^2 + y^2 + z^2 = 2 \\ y^2 + z^2 = x \end{cases} \Leftrightarrow \begin{cases} x^2 + x - 2 = 0 \\ y^2 + z^2 = x \end{cases} \Leftrightarrow \begin{cases} (x - 1)(x + 2) = 0 \\ y^2 + z^2 = x \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y^2 + z^2 = 1 \end{cases}.$$

Assim, porque a massa do fio é dada por

$$M = \int_{\Gamma} \sigma = \int_{0}^{2\pi} \sigma(\gamma(t)) \|\gamma'(t)\| dt = \int_{0}^{2\pi} \sigma(1, \cos t, \sin t) \|(0, -\sin t, \cos t)\| dt$$
$$= \int_{0}^{2\pi} (2 - \cos t) \sqrt{\sin^{2}(t) + \cos^{2}(t)} dt = \int_{0}^{2\pi} (2 - \cos t) dt = 4\pi,$$

as coordenadas c_1, c_2 e c_3 do centro de massa são:

$$c_{1} = \frac{1}{4\pi} \int_{0}^{2\pi} \gamma_{1}(t) \sigma(\gamma(t)) \|\gamma'(t)\| dt = \frac{1}{4\pi} \int_{0}^{2\pi} (2 - \cos t) dt$$
$$= \frac{1}{4\pi} [2t - \sin t]_{t=0}^{t=2\pi} = 1;$$

$$c_{2} = \frac{1}{4\pi} \int_{0}^{2\pi} \gamma_{2}(t) \,\sigma\left(\gamma\left(t\right)\right) \|\gamma'\left(t\right)\| \,dt = \frac{1}{4\pi} \int_{0}^{2\pi} \left(2 - \cos t\right) \cos t dt$$
$$= \frac{1}{4\pi} \int_{0}^{2\pi} \left(2 \cos t - \cos^{2} t\right) = \frac{1}{4\pi} \left[2 \sin t - \frac{t + \sin t \cos t}{2}\right]_{t=0}^{t=2\pi} = -\frac{1}{4};$$

 ϵ

$$c_{3} = \frac{1}{4\pi} \int_{0}^{2\pi} \gamma_{3}(t) \sigma(\gamma(t)) \|\gamma'(t)\| dt = \frac{1}{4\pi} \int_{0}^{2\pi} (2 - \cos t) \sin t dt$$
$$= \frac{1}{4\pi} \int_{0}^{2\pi} (2 \sin t - \cos t \sin t) dt = \frac{1}{4\pi} \left[-2 \cos t - \frac{\sin^{2} t}{2} \right]_{t=0}^{t=2\pi} = 0.$$

Trabalho, integral de linha de um campo vectorial,

Definição: Seja $\gamma:[a,b]\to\mathbb{R}^n$ um de classe C^1 e $F:U\to\mathbb{R}^n$ um campo vectorial contínuo definido num aberto U de \mathbb{R}^n tal que $\gamma([a,b])\subset U$. Ao integral

$$\int F \cdot d\gamma = \int_{a}^{b} F(\gamma(t)) \cdot \gamma'(t) dt$$

chama-se trabalho realizado pelo campo F ao longo do caminho γ , ou integral de linha de F ao longo do caminho γ .

Nota: A definição de trabalho estende-se a caminhos seccionalmente de classe C^1 . Diz-se que um caminho contínuo $\gamma:[a,b]\to\mathbb{R}^n$ é seccionalmente de classe C^1 , se existem pontos $a=a_0< a_1<\cdots< a_p=b$ por forma a que restrição de γ a cada $[a_{i-1},a_i]$ seja de classe C^1 . Neste caso, quando $F:U\to\mathbb{R}^n$ é um campo vectorial contínuo definido num aberto U de \mathbb{R}^n tal que $\gamma([a,b])\subset U$, define-se

$$\int F \cdot d\gamma = \sum_{i=1}^{p} \int_{a_{i-1}}^{a_i} F(\gamma(t)) \cdot \gamma'(t) dt,$$

ou de forma equivalente

$$\int F \cdot d\gamma = \sum_{i=1}^{p} \int F \cdot d\gamma_i,$$

onde $\gamma_i : [a_{i-1}, a_i] \to \mathbb{R}^n$ designa a restrição de γ a $[a_{i-1}, a_i]$.

Nota: Quando $\Gamma \subset \mathbb{R}^n$ designa a linha descrita por um caminho $\gamma : [a, b] \to \mathbb{R}^n$, seccionalmente de classe C^1 e injectivo em]a, b[, é habitual escrever

$$\int_{\Gamma} F \cdot d\gamma$$

para designar o trabalho realizado pelo campo F ao longo do caminho γ .

Exercício: Seja $U \subset \mathbb{R}^n$ um aberto, $F: U \to \mathbb{R}^n$ um campo vectorial contínuo, e $\gamma: [a,b] \to U$, um caminho de classe C^1 . Mostre que se $\alpha: [c,d] \to [a,b]$ é uma bijecção de classe C^1 , então

$$\int F \cdot d(\gamma \circ \alpha) = \pm \int F \cdot d\gamma,$$

consoante α é crescente ou decrescente.

Sugestão: Mostre que se $G:[a,b] \to \mathbb{R}$ é uma primitiva de $F(\gamma(t)) \cdot \gamma'(t)$, então $G \circ \alpha:[c,d] \to \mathbb{R}$ é uma primitiva de $F((\gamma \circ \alpha)(t)) \cdot (\gamma \circ \alpha)'(t)$.

Exercício: Para cada um dos casos seguintes calcule o trabalho realizado pelo campo vetorial F ao longo do caminho γ indicado:

- a) $F(x,y) = (-y,x), \gamma(t) = (t\cos t, t\sin t), \text{ com } t \in [0,2\pi];$
- b) $F(x, y, z) = (x, z, z y), \gamma(t) = (t^2, \cos t, \sin t), \text{ com } t \in [0, \pi].$

Resolução: a) Como

$$F(\gamma(t)) = F(t\cos t, t\sin t) = (-t\sin t, t\cos t) = \gamma'(t) = (\cos t - t\sin t, \sin t + t\cos t),$$

obtemos

$$\int F \cdot d\gamma = \int_0^{2\pi} F(\gamma(t)) \cdot \gamma'(t) dt = \int_0^{2\pi} (-t \sin t, t \cos t) \cdot (\cos t - t \sin t, \sin t + t \cos t) dt$$

$$= \int_0^{2\pi} ((t \sin t - \cos t) t \sin t + (\sin t + t \cos t) t \cos t) dt$$

$$= \int_0^{2\pi} (t^2 \sin^2(t) + t^2 \cos^2(t)) dt = \int_0^{2\pi} t^2 dt = \left[\frac{t^3}{3} \right]_{t=0}^{t=2\pi} = \frac{8\pi^3}{3}.$$

b) Como

$$F(\gamma(t)) = F(t^2, \cos t, \sin t) = (t^2, \sin t, \sin t - \cos t) = \gamma'(t) = (2t, -\sin t, \cos t),$$

obtemos

$$\int F \cdot d\gamma = \int_0^{\pi} F(\gamma(t)) \cdot \gamma'(t) dt = \int_0^{\pi} (t^2, \sin t, \sin t - \cos t) \cdot (2t, -\sin t, \cos t) dt$$

$$= \int_0^{\pi} (2t^3 - \sin^2(t) + (\sin t - \cos t) \cos t) dt = \int_0^{\pi} (2t^3 - 1 + \cos(t) \sin(t)) dt$$

$$= \left[\frac{t^4}{2} - t + \frac{\sin^2(t)}{2} \right]_{t=0}^{t=\pi} = \frac{\pi^4}{2} - \pi.$$

Exercício: Calcule o trabalho realizado pelo campo vetorial F(x, y, z) = (x, z, 2y) ao longo das seguintes curvas:

- a) O segmento de recta que une o ponto (0,0,0) a (1,2,3).
- b) A intersecção das superfícies $x^2+y^2=1$ e $z=x^2-y^2$ num sentido que parece o anti-horário quando visto desde o ponto (0,0,100).
- c) A intersecção o das superfícies $x=y^2+z^2$ e 2y+x=3 num sentido que parece o horário quando visto do ponto (100,-1,0).

Resolução: a) Trata-se de calcular o trabalho realizado pelo campo vetorial F ao longo do caminho $\gamma:[0,1]\to\mathbb{R}^3$, definido por $\gamma(t)=(t,2t,3t)$, ou seja

$$\int F \cdot d\gamma = \int_0^1 F(\gamma(t)) \cdot \gamma'(t) dt = \int_0^1 F(t, 2t, 3t) \cdot (1, 2, 3) dt$$
$$= \int_0^1 (t, 3t, 4t) \cdot (1, 2, 3) dt = \int_0^1 19t dt = \frac{19}{2}.$$

b) Trata-se de calcular o trabalho realizado pelo campo F ao longo do caminho $\gamma:[0,2\pi]\to\mathbb{R}^3$, definido por

$$\gamma(t) = (\cos t, \sin t, \cos^2 t - \sin^2 t) = (\cos t, \sin t, 1 - 2\sin^2 t)$$

ou seja

$$\int F \cdot d\gamma = \int_0^{2\pi} F(\gamma(t)) \cdot \gamma'(t) dt = \int_0^{2\pi} F(\cos t, \sin t, 1 - 2\sin^2 t) \cdot (-\sin t, \cos t, -4\sin t \cos t) dt$$

$$= \int_0^{2\pi} (\cos t, 1 - 2\sin^2 t, 2\sin t) \cdot (-\sin t, \cos t, -4\sin t \cos t) dt$$

$$= \int_0^{2\pi} (-\sin t \cos t + \cos t - 10\cos t \sin^2 t) dt = \left[\frac{\cos^2 t}{2} + \sin t - 10 \frac{\sin^3 t}{3} \right]_{t=0}^{t=2\pi} = 0.$$

c) Como

$$\left\{ \begin{array}{l} x = y^2 + z^2 \\ 2y + x = 3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = y^2 + z^2 \\ x = 3 - 2y \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = y^2 + z^2 \\ y^2 + z^2 = 3 - 2y \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = y^2 + z^2 \\ (y + 1)^2 + z^2 = 4 \end{array} \right. ,$$

trata-se de calcular o trabalho realizado pelo campo F ao longo do caminho $\gamma:[0,2\pi]\to\mathbb{R}^3,$ definido por

$$\gamma(t) = ((2\cos t - 1)^2 + (-2\sin t)^2, 2\cos t - 1, -2\sin t) = (5 - 4\cos t, 2\cos t - 1, -2\sin t),$$
ou seja

$$\begin{split} \int F \cdot d\gamma &= \int_0^{2\pi} F\left(\gamma\left(t\right)\right) \cdot \gamma'\left(t\right) dt \\ &= \int_0^{2\pi} F\left(5 - 4\cos t, 2\cos t - 1, -2\sin t\right) \cdot \left(4\sin t, -2\sin t, -2\cos t\right) dt \\ &= \int_0^{2\pi} \left(5 - 4\cos t, -2\sin t, 4\cos t - 2\right) \cdot \left(4\sin t, -2\sin t, -2\cos t\right) dt \\ &= \int_0^{2\pi} \left(4\cos t + 20\sin t - 16\cos t\sin t - 12\cos^2 t + 4\right) dt \\ &= \left[4\sin t - 20\cos t - 8\sin^2 t - 6\sin t\cos t - 2t\right]_{t=0}^{t=2\pi} = -4\pi. \end{split}$$

Exercício: Seja $E \subset \mathbb{R}^2$ a elipse definida pela equação $\frac{x^2}{4} + \frac{y^2}{16} = 1$. Calcule o integral de linha do campo vetorial dado por F(x,y) = (4xf(x,y) - y,yf(x,y) + x) ao longo de E orientada no sentido anti-horário, onde $f: \mathbb{R}^2 \to \mathbb{R}$ é contínua.

Resolução: Trata-se de calcular o trabalho realizado pelo campo F ao longo do caminho $\gamma:[0,2\pi]\to\mathbb{R}^2$, definido por

$$\gamma(t) = (2\cos t, 4\sin t).$$

Temos portanto

$$\int F \cdot d\gamma = \int_0^{2\pi} F(\gamma(t)) \cdot \gamma'(t) dt
= \int_0^{2\pi} (8f(2\cos t, 4\sin t)\cos t - 4\sin t, 4f(2\cos t, 4\sin t)\sin t + 2\cos t) \cdot (-2\sin t, 4\cos t) dt
= \int_0^{2\pi} (-2\sin t (8f(2\cos t, 4\sin t)\cos t - 4\sin t) + 4\cos t (4f(2\cos t, 4\sin t)\sin t + 2\cos t)) dt
= \int_0^{2\pi} (-16f(2\cos t, 4\sin t)\sin t\cos t + 8 + 16f(2\cos t, 4\sin t)\cos t\sin t) dt
= \int_0^{2\pi} 8dt = 16\pi.$$

Campos gradientes

Definição: Diz-se que um campo vectorial $F: U \to \mathbb{R}^n$, definido num U aberto de \mathbb{R}^n , é um campo gradiente, se existe um campo escalar $\varphi: U \to \mathbb{R}$, de classe C^1 , tal que $F = \nabla \varphi$, ou seja

$$F\left(\mathbf{x}\right) = \left(F_{1}\left(\mathbf{x}\right), F_{2}\left(\mathbf{x}\right), ..., F_{n}\left(\mathbf{x}\right)\right) = \left(\frac{\partial \varphi}{\partial x_{1}}\left(\mathbf{x}\right), \frac{\partial \varphi}{\partial x_{2}}\left(\mathbf{x}\right), ..., \frac{\partial \varphi}{\partial x_{n}}\left(\mathbf{x}\right)\right), \text{ para } \mathbf{x} \in U.$$

Teorema: Se $F = \nabla \varphi$ é um campo gradiente, definido num U aberto de \mathbb{R}^n , e $\gamma : [a, b] \to U$ é um caminho seccionalmente de classe C^1 , então o trabalho realizado por F ao longo de γ é igual a $\varphi(\gamma(b)) - \varphi(\gamma(a))$, ou seja

$$F \cdot d\gamma = \varphi(B) - \varphi(A)$$
, com $A = \gamma(a)$ e $B = \gamma(b)$.

O teorema anterior mostra que o trabalho realizado por um campo gradiente ao longo dum caminho $\gamma:[a,b]\to U$ seccionalmente de classe C^1 , apenas depende dos pontos $\gamma(a)$ e $\gamma(b)$. Os campos vectoriais com esta propriedade chamam-se conservativos.

Teorema: Seja U um aberto de \mathbb{R}^n e $F:U\to\mathbb{R}^n$ um campo vectorial contínuo. As seguintes afirmações são equivalentes:

- 1) F é conservativo.
- 2) $\int F \cdot d\gamma = 0$, para qualquer caminho $\gamma : [a, b] \to U$ fechado $(\gamma(a) = \gamma(b))$ seccionalmente de classe C^1 .
- 3) F é um campo gradiente.

Definição: Diz-se que um campo vectorial $F: U \to \mathbb{R}^n$, definido num U aberto de \mathbb{R}^n , é fechado, se é de classe C^1 e verifica

$$\frac{\partial F_i}{\partial x_i} = \frac{\partial F_j}{\partial x_i}$$
, para $i \neq j$.

Como consequência do Lema de Schwarz tem-se o seguinte:

Proposição: Seja U um aberto de \mathbb{R}^n e $F:U\to\mathbb{R}^n$ um campo vectorial de classe C^1 . Se F é um campo gradiente, então é fechado.

Exercício: Para cada um dos casos seguintes determine se o campo vetorial é ou não conservativo. Em caso afirmativo, calcule um potencial.

- a) $F(x,y) = (y^2, x^3)$
- b) $F(x,y) = (x^3 + y, y^2 + x)$
- c) $F(x,y) = \left(\frac{x}{x^2+y^2}, \frac{y}{x^2+y^2}\right)$
- d) F(x, y, z) = (y, x, 2z)
- e) F(x, y, z) = (-y, x, z)

Resolução: a) O campo não é fechado, já que

$$\frac{\partial F_1}{\partial y}(x,y) = 2y \neq 3x^2 = \frac{\partial F_2}{\partial x}(x,y),$$

logo não é conservativo.

b) O campo é fechado, já que

$$\frac{\partial F_1}{\partial y}(x,y) = 1 = \frac{\partial F_2}{\partial x}(x,y).$$

Como

$$\begin{cases}
\frac{\partial \varphi}{\partial x}(x,y) = F_1(x,y) \\
\frac{\partial \varphi}{\partial y}(x,y) = F_2(x,y)
\end{cases}
\Leftrightarrow
\begin{cases}
\frac{\partial \varphi}{\partial x}(x,y) = x^3 + y \\
\frac{\partial \varphi}{\partial y}(x,y) = y^2 + x
\end{cases}
\Leftrightarrow
\begin{cases}
\varphi(x,y) = \frac{x^4}{4} + yx + A(y) \\
x + A'(y) = y^2 + x
\end{cases}
\Leftrightarrow
\begin{cases}
\varphi(x,y) = \frac{x^4}{4} + yx + A(y) \\
A'(y) = y^2
\end{cases}
\Leftrightarrow
\begin{cases}
\varphi(x,y) = \frac{x^4}{4} + yx + A(y) \\
A(y) = \frac{y^3}{3} + C
\end{cases}
\Leftrightarrow
\varphi(x,y) = \frac{x^4}{4} + yx + \frac{y^3}{3} + C,$$

concluimos que o campo é conservativo com potencial $\varphi(x,y) = \frac{x^4}{4} + yx + \frac{y^3}{3}$.

c) O campo é fechado, já que

$$\frac{\partial F_1}{\partial y}(x,y) = \frac{-2xy}{\left(x^2 + y^2\right)^2} = \frac{\partial F_2}{\partial x}(x,y).$$

Como

$$\begin{cases}
\frac{\partial \varphi}{\partial x}(x,y) = F_1(x,y) \\
\frac{\partial \varphi}{\partial y}(x,y) = F_2(x,y)
\end{cases}
\Leftrightarrow
\begin{cases}
\frac{\partial \varphi}{\partial x}(x,y) = \frac{x}{x^2+y^2} \\
\frac{\partial \varphi}{\partial y}(x,y) = \frac{y}{x^2+y^2}
\end{cases}
\Leftrightarrow
\begin{cases}
\varphi(x,y) = \frac{1}{2}\log(x^2+y^2) + A(y) \\
\frac{\partial \varphi}{\partial y}(x,y) = \frac{y}{x^2+y^2}
\end{cases}
\Leftrightarrow
\begin{cases}
\varphi(x,y) = \frac{1}{2}\log(x^2+y^2) + A(y) \\
\frac{y}{x^2+y^2} + A'(y) = \frac{y}{x^2+y^2}
\end{cases}
\Leftrightarrow
\begin{cases}
\varphi(x,y) = \frac{1}{2}\log(x^2+y^2) + A(y) \\
A'(y) = 0
\end{cases}
\Leftrightarrow
\varphi(x,y) = \frac{1}{2}\log(x^2+y^2) + A(y)$$

$$\Leftrightarrow \varphi(x,y) = \frac{1}{2}\log(x^2+y^2) + C,$$

concluimos que o campo é conservativo com potencial $\varphi(x,y) = \varphi(x,y) = \frac{1}{2}\log(x^2 + y^2)$.

d) O campo é fechado, já que:

$$\frac{\partial F_{1}}{\partial y}\left(x,y\right)=1=\frac{\partial F_{2}}{\partial x}\left(x,y\right); \\ \frac{\partial F_{1}}{\partial z}\left(x,y\right)=0=\frac{\partial F_{3}}{\partial x}\left(x,y\right); \\ \frac{\partial F_{2}}{\partial z}\left(x,y\right)=0=\frac{\partial F_{3}}{\partial y}\left(x,y\right).$$

Como

$$\begin{cases} \frac{\partial \varphi}{\partial x}(x,y,z) = F_1(x,y,z) \\ \frac{\partial \varphi}{\partial y}(x,y,z) = F_2(x,y,z) \\ \frac{\partial \varphi}{\partial z}(x,y,z) = F_3(x,y,z) \end{cases} \Leftrightarrow \begin{cases} \frac{\partial \varphi}{\partial x}(x,y,z) = y \\ \frac{\partial \varphi}{\partial y}(x,y,z) = x \\ \frac{\partial \varphi}{\partial z}(x,y,z) = 2z \end{cases} \Leftrightarrow \begin{cases} \frac{\partial \varphi}{\partial y}(x,y,z) = yx + A(y,z) \\ \frac{\partial \varphi}{\partial z}(x,y,z) = 2z \end{cases} \\ \Leftrightarrow \begin{cases} \varphi(x,y,z) = yx + A(y,z) \\ x + \frac{\partial A}{\partial y}(y,z) = x \\ \frac{\partial A}{\partial z}(y,z) = 2z \end{cases} \Leftrightarrow \begin{cases} \varphi(x,y,z) = yx + A(y,z) \\ \frac{\partial A}{\partial y}(y,z) = 0 \\ \frac{\partial A}{\partial z}(y,z) = 2z \end{cases} \\ \Leftrightarrow \begin{cases} \varphi(x,y,z) = yx + A(y,z) \\ A(y,z) = B(z) \\ B'(z) = 2z \end{cases} \Leftrightarrow \begin{cases} \varphi(x,y,z) = yx + A(y,z) \\ A(y,z) = B(z) \\ B(z) = z^2 + C \end{cases}$$

concluímos que o campo é conservativo com potencial $\varphi(x, y, z) = yx + z^2$.

d) O campo não é fechado, já que

$$\frac{\partial F_1}{\partial y}(x, y, z) = -1 \neq 1 = \frac{\partial F_2}{\partial x}(x, y, z),$$

logo não é conservativo.

Teorema de Green

Seja F = (P, Q) um campo vectorial em \mathbb{R}^2 e $C \subset \mathbb{R}^2$ uma curva descrita por um caminho, $\gamma : [a, b] \to \mathbb{R}^2$, seccionalmente regular. No que se segue, escrevemos

$$\int_C Pdx + Qdy$$

para denotar o integral de linha do campo F ao longo de γ , ou seja

$$\int_{C} Pdx + Qdy = \int_{a}^{b} F(\gamma(t)) \cdot \gamma'(t) dt.$$

Definição: Diz-se que um conjunto $R \subset \mathbb{R}^2$ é um domínio elementar se existirem funções contínuas $f_1 : [a,b] \to \mathbb{R}$, $f_2 : [a,b] \to \mathbb{R}$, $g_1 : [c,d] \to \mathbb{R}$, $g_2 : [c,d] \to \mathbb{R}$, seccionalmente de classe C^1 , tais que

$$R = \{(x,y) \in \mathbb{R}^2 : a \le x \le b \land f_1(x) \le y \le f_2(x)\}$$

= \{(x,y) \in \mathbb{R}^2 : c \le y \le d \land g_1(y) \le x \le g_2(y)\}.

Exercício: Mostre que se F=(P,Q) é um campo vectorial de classe C^1 , definido num aberto $U\subset \mathbb{R}^2$, e $R\subset U$ é um domínio elementar, então

$$\int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) = \oint_{\partial R} P dx + Q dy,$$

quando a curva ∂R é percorrida no sentido anti-horário.

Resolução: Como

$$\int_{R} \frac{\partial Q}{\partial x} = \int_{c}^{d} \left(\int_{g_{1}(y)}^{g_{2}(y)} \frac{\partial Q}{\partial x} (x, y) dx \right) dy$$

$$= \int_{c}^{d} (Q (g_{2}(y), y) - Q (g_{1}(y), y)) dy$$

$$= \int_{c}^{d} Q (g_{2}(y), y) dy - \int_{c}^{d} Q (g_{1}(y), y) dy$$

$$= \int_{c}^{d} (0, Q (g_{2}(y), y)) \cdot (g'_{2}(y), 1) dy - \int_{c}^{d} (0, Q (g_{1}(y), y)) \cdot (g'_{1}(y), 1) dy$$

$$= \int_{C_{2}} 0 dx + Q dy + \int_{C_{1}} 0 dx + Q dy$$

$$= \oint_{C} 0 dx + Q dy,$$

e, de forma análoga,

$$\int_{R} \frac{\partial P}{\partial y} = \int_{a}^{b} \left(\int_{f_{1}(x)}^{f_{2}(x)} \frac{\partial P}{\partial y}(x, y) \, dy \right) dx$$

$$= \int_{a}^{b} \left(P(x, f_{2}(x)) - P(x, f_{1}(x)) \right) dx$$

$$= \int_{a}^{b} P(x, f_{2}(x)) \, dx - \int_{a}^{b} P(x, f_{1}(x)) \, dx$$

$$= \int_{a}^{b} \left(P(x, f_{2}(x)), 0 \right) \cdot (1, f'_{2}(x)) \, dx - \int_{a}^{b} \left(P(x, f_{1}(x)), 0 \right) \cdot (1, f'_{1}(x)) \, dx$$

$$= -\int_{C_{2}} P dx + 0 dy - \int_{C_{1}} P dx + 0 dy$$

$$= -\oint_{C} P dx + 0 dy,$$

obtemos

$$\int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) = \int_{R} \frac{\partial Q}{\partial x} - \int_{R} \frac{\partial P}{\partial y}
= \oint_{C} 0 dx + Q dy + \oint_{C} P dx + 0 dy
= \oint_{C} P dx + Q dy.$$

Definição: Uma curva $C \subset \mathbb{R}^n$ é dita de Jordan, quando pode ser descrita por um caminho, $\gamma : [a,b] \to C$, injectivo em]a,b[e tal que $\gamma(a) = \gamma(b)$. Quando o caminho γ é seccionalmente regular, diz-se que C é uma curva de Jordan seccionalmente regular.

Teorema de Green (para uma região do plano limitada por uma curva de Jordan seccionalmente regular): Seja U um aberto de \mathbb{R}^2 , $F=(P,Q):U\to\mathbb{R}^2$ um campo vectorial de classe C^1 e $C\subset U$ uma curva de Jordan seccionalmente regular. Designe-se por R a região do plano formada pelos pontos que se encontram na parte interna de C e admita-se que $R\subset U$. Nestas condições verifica-se a igualdade

$$\int \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{C} P dx + Q dy,$$

onde o integral de linha se toma ao longo de C no sentido anti-horário.

Exercício: Considere o campo vetorial $F: \mathbb{R}^2 \to \mathbb{R}^2$ definido por F(x,y) = (-2y,x) e o conjunto

 $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1 \land y > |x| \}.$

Calcule o trabalho realizado por F ao longo da fronteira do conjunto D no sentido antihorário.

Resolução: Como F(x,y) = (P(x,y), Q(x,y)), com P(x,y) = -2y e Q(x,y) = x, o Teorema de Green garante que

$$\oint_{\partial D} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint_{D} 3 dx dy$$

$$= 3 \iint_{D} 1 dx dy = 3 \text{vol}_{2}(D) = \frac{3\pi}{4}.$$

Exercício: Use o Teorema de Green para calcular a área do conjunto

$$R = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + \frac{y^2}{4} < 1 \land x > 0 \right\}.$$

Resolução: Consideremos o campo F(x,y) = (P(x,y), Q(x,y)), com P(x,y) = 0 e Q(x,y) = x. Como

$$\operatorname{vol}_{2}(R) = \int \int_{R} 1 dx dy = \int \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy,$$

o Teorema de Green garante que

$$\operatorname{vol}_{2}(R) = \oint_{\partial R} P dx + Q dy = \int_{C_{1}} P dx + Q dy + \int_{C_{2}} P dx + Q dy$$
$$= \int_{C_{1}} F \cdot d\gamma_{1} + \int_{C_{2}} F \cdot d\gamma_{2},$$

com $\gamma_1:[-2,2]\to\mathbb{R}^2$ e $\gamma_2:[-\frac{\pi}{2},\frac{\pi}{2}]\to\mathbb{R}^2$ definidos por $\gamma_1(t)=(0,-t)$ e $\gamma_2(t)=(\cos t,2\sin t)$. Logo

$$\begin{aligned} \operatorname{vol}_{2}\left(R\right) &= \int_{-2}^{2} F\left(\gamma_{1}\left(t\right)\right) \cdot \gamma_{1}'\left(t\right) dt + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} F\left(\gamma_{2}\left(t\right)\right) \cdot \gamma_{2}'\left(t\right) dt \\ &= \int_{-2}^{2} F\left(0, -t\right) \cdot \left(0, -1\right) dt + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} F\left(\cos t, 2\sin t\right) \cdot \left(-\sin t, 2\cos t\right) dt \\ &= \int_{-2}^{2} \left(0, 0\right) \cdot \left(0, -1\right) dt + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(0, \cos t\right) \cdot \left(-\sin t, 2\cos t\right) dt \\ &= \int_{-2}^{2} 0 dt + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2\cos^{2} t dt = 0 + \pi = \pi. \end{aligned}$$

Teorema de Green (para uma região do plano limitada por n curvas de Jordan seccionalmente regulares): Seja U um aberto de \mathbb{R}^2 , $F=(P,Q):U\to\mathbb{R}^2$ um campo vectorial de classe C^1 e $C_1,...,C_n\subset U$ n curvas de Jordan seccionalmente regulares nas seguintes condições:

- a) Duas quaisquer curvas não se intersectam.
- b) As curvas $C_2, ..., C_n$ situam-se na parte interna de C_1 .
- c) A curva C_i situa-se na parte externa de C_j para $i \neq j, i > 1, j > 1.$

Designe-se por R a região do plano formada pelos pontos que se encontram na parte interna de C_1 e na parte externa de cada $C_2, ..., C_n$, e admita-se que $R \subset U$. Nestas condições verifica-se a igualdade

$$\int \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{C_1} P dx + Q dy + \sum_{i=2}^{n} \oint_{C_i} P dx + Q dy,$$

quando C_1 é percorrida sentido anti-horário, e cada C_i , com i > 1, é percorrida no sentido horário.

Exercício: Considere o campo vectorial $F : \mathbb{R}^2 \setminus \{(-1,0),(1,0)\} \to \mathbb{R}^2$

$$F(x,y) = \left(\frac{-y}{(x-1)^2 + y^2} + \frac{y}{(x+1)^2 + y^2}, \frac{x-1}{(x-1)^2 + y^2} + \frac{-(x+1)}{(x+1)^2 + y^2}\right).$$

Calcule o trabalho realizado por F ao longo de cada uma das linhas seguintes percorridas no sentido horário:

- a) Circunferência definida pela equação $(x+1)^2 + y^2 = 1$;
- b) Circunferência definida pela equação $(x-1)^2 + y^2 = 2$
- c) Elipse definida pela equação $\frac{x^2}{4} + y^2 = 1$.

Resolução: Consideremos os campos vectoriais $G : \mathbb{R}^2 \setminus \{(1,0)\} \to \mathbb{R}^2$ e $H : \mathbb{R}^2 \setminus \{(-1,0)\} \to \mathbb{R}^2$ definidos por

$$G(x,y) = \left(\frac{-y}{(x-1)^2 + y^2}, \frac{x-1}{(x-1)^2 + y^2}\right) \in H(x,y) = \left(\frac{y}{(x+1)^2 + y^2}, \frac{-(x+1)}{(x+1)^2 + y^2}\right)$$

Note-se que F = G + H, e que qualquer destes campos é fechado já que

$$\frac{\partial G_1}{\partial y}(x,y) = \frac{y^2 - (x-1)^2}{\left((x-1)^2 + y^2\right)^2} = \frac{\partial G_2}{\partial x}(x,y) \in \frac{\partial H_1}{\partial y}(x,y) = \frac{(x+1)^2 - y^2}{\left((x+1)^2 + y^2\right)^2} = \frac{\partial H_2}{\partial x}(x,y)$$

a) A circunferência definida pela equação $(x+1)^2+y^2=1$ (percorrida no sentido antihorário) é descrita pelo caminho $\gamma:[0,2\pi]\to\mathbb{R}^2,\ \gamma(t)=(-1+\cos t,\sin t)$. Como o campo G é fechado no seu domínio, o Teorema de Green garante que

$$\int G \cdot d\gamma = 0,$$

pelo que

$$\int F \cdot d\gamma = \int G \cdot d\gamma + \int H \cdot d\gamma = 0 + \int H \cdot d\gamma$$

$$= \int_0^{2\pi} H(\gamma(t)) \cdot \gamma'(t) dt = \int_0^{2\pi} H(-1 + \cos t, \sin t) \cdot (-\sin t, \cos t) dt$$

$$= \int_0^{2\pi} \left(\frac{\sin t}{\cos^2 t + \sin^2 t}, \frac{-\cos t}{\cos^2 t + \sin^2 t} \right) \cdot (-\sin t, \cos t) dt$$

$$= \int_0^{2\pi} (\sin t, -\cos t) \cdot (-\sin t, \cos t) dt = \int_0^{2\pi} (-\sin^2 t - \cos^2 t) dt$$

$$= \int_0^{2\pi} -1 dt = -2\pi.$$

Logo o trabalho realizado por F ao longo desta circunferência quando é percorrida no sentido horário é $-\int F \cdot d\gamma = 2\pi$.

b) A circunferência definida pela equação $(x-1)^2 + y^2 = 2$ (percorrida no sentido antihorário) é descrita pelo caminho $\gamma: [0, 2\pi] \to \mathbb{R}^2, \ \gamma(t) = (1 + \sqrt{2}\cos t, \sqrt{2}\sin t)$. Como o campo H é fechado no seu domínio, o Teorema de Green garante que

$$\int H \cdot d\gamma = 0,$$

pelo que

$$\int F \cdot d\gamma = \int G \cdot d\gamma + \int H \cdot d\gamma = \int G \cdot d\gamma + 0$$

$$= \int_0^{2\pi} G(\gamma(t)) \cdot \gamma'(t) dt = \int_0^{2\pi} G\left(1 + \sqrt{2}\cos t, \sqrt{2}\sin t\right) \cdot \left(-\sqrt{2}\sin t, \sqrt{2}\cos t\right) dt$$

$$= \int_0^{2\pi} \left(\frac{-\sqrt{2}\sin t}{2}, \frac{\sqrt{2}\cos t}{2}\right) \cdot \left(-\sqrt{2}\sin t, \sqrt{2}\cos t\right) dt$$

$$= \int_0^{2\pi} \left(\sin^2 t + \cos^2 t\right) dt$$

$$= \int_0^{2\pi} 1 dt = 2\pi.$$

Logo o trabalho realizado por F ao longo desta circunferência quando é percorrida no sentido horário é $-\int F\cdot d\gamma=-2\pi$.

c) Sejam C_1 e C_2 as circunferências das alíneas anteriores (percorridas no sentido horário) e C_3 a elipse definida pela equação $\frac{x^2}{4} + y^2 = 1$ (percorrida no sentido horário).

Como o campo ${\cal F}$ é fechado, o Teorema de Green garante que

$$\int_{C_3} F = \int_{C_1} F + \int_{C_2} F = 2\pi - 2\pi = 0.$$

Homotopia

Definição: Seja U um aberto de \mathbb{R}^n . Dados dois caminhos fechados $\alpha, \beta : [0,1] \to U$, diz-se que α é homotópico a β em U, se existe uma aplicação contínua $H : [0,1] \times [0,1] \to U$ tal que:

- 1) $H(0,t) = \alpha(t)$, para $t \in [0,1]$
- 2) $H(1,t) = \beta(t)$, para $t \in [0,1]$
- 3) H(s,0) = H(s,1), para $s \in [0,1]$

Observação: A relação de homotopia num aberto U de \mathbb{R}^n é uma relação de equivalência. Isto significa que, para quaisquer caminhos fechados $\alpha:[0,1]\to U,\ \beta:[0,1]\to U$ e $\gamma:[0,1]\to U,$ são válidas as seguintes afirmações :

- 1) α é homotópico a α em U;
- 2) Se α é homotópico a β em U, então β é homotópico a α em U;
- 3) Se α é homotópico a β em U, e β é homotópico a γ em U, então α é homotópico a γ em U.

Exemplo: No conjunto aberto $U = \mathbb{R}^2 \setminus \{(0,0)\}$, qualquer caminho fechado $\alpha : [0,1] \to U$ é homotópico em U ao caminho $\beta : [0,1] \to U$, definido por $\beta (t) = \frac{1}{\|\alpha(t)\|} \alpha (t)$. Com efeito, podemos considerar a aplicação contínua $H : [0,1] \times [0,1] \to U$, definida por

$$H\left(s,t\right) = \frac{s\left(\left\|\alpha\left(t\right)\right\|-1\right)+1}{\left\|\alpha\left(t\right)\right\|}\alpha\left(t\right),$$

para concluir que β é homotópico a α em U.

Exemplo: No conjunto aberto $U = \mathbb{R}^3 \setminus \{(0,0,z) : y \in \mathbb{R}\}$, qualquer caminho fechado $\alpha = (\alpha_1, \alpha_2, \alpha_3) : [0,1] \to U$ é homotópico em U ao caminho $\beta : [0,1] \to U$, definido por $\beta (t) = (\alpha_1 (t), \alpha_2 (t), 0)$. Com efeito, podemos considerar a aplicação contínua $H : [0,1] \times [0,1] \to U$, definida por

$$H\left(s,t\right)=\left(\alpha_{1}\left(t\right),\alpha_{2}\left(t\right),s\alpha_{2}\left(t\right)\right),$$

para concluir que β é homotópico a α em U.

Definição: Diz-se que um conjunto aberto $U \subset \mathbb{R}^n$ é simplesmente conexo se qualquer caminho fechado $\alpha: [0,1] \to U$ é homotópico em U a um caminho constante $\beta: [0,1] \to U$.

Exemplo: Um conjunto aberto convexo (ou estrelado) de \mathbb{R}^n é simplesmente conexo. Com efeito, se $P \in U$ e $\gamma : [0,1] \to U$ é um caminho fechado, podemos considerar a aplicação contínua $H : [0,1] \times [0,1] \to U$, definida por

$$H(s,t) = P + s(\gamma(t) - P),$$

para concluir que o caminho constante $\alpha:[0,1]\to U,$ com $\alpha(t)=P,$ é homotópico a γ em U.

Teorema: Seja U um aberto de \mathbb{R}^n e $F:U\to U$ um campo vectorial de classe C^1 fechado no seu domínio. Se dois caminhos fechados $\alpha,\beta:[0,1]\to U$ são homotópicos em U, então

$$\int F \cdot d\alpha = \int F \cdot d\beta.$$

Teorema: Um campo vectorial $F: U \to U$ de classe C^1 , definido num aberto simplesmente conexo de \mathbb{R}^n , é um potencial no seu domínio se e só se é fechado.

Exercício: Considere o campo vectorial H definido por

$$H(x, y, z) = \left(\frac{z}{x^2 + z^2} + x, y, \frac{-x}{x^2 + z^2} + z\right).$$

- a) Calcule o trabalho realizado por H ao longo da elipse definida por $2(x-1)^2 + \frac{y^2}{4} = 1, z = 0$ percorrida num sentido à sua escolha.
- b) Calcule o trabalho realizado por H ao longo da linha definida por $x^2 + z^2 = 2, y + z = 1$, percorrida no sentido horário para um observador colocado no ponto (0, 10, 0).
- c) Será H um gradiente no seu domínio?

Resolução: Comecemos por notar que o campo H é fechado no seu domínio,

$$D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + z^2 \neq 0\} = \mathbb{R}^3 \setminus \{(0, y, 0) : y \in \mathbb{R}\}.$$

- a) A elipse definida pelas equações $2(x-1)^2 + \frac{y^2}{4} = 1, z = 0$ está contida no aberto simplesmente conexo $S = \{(x,y,z) \in \mathbb{R}^3 : x > 0\}$. Como $S \subset D$, o trabalho realizado por H longo da elipse é nulo.
- b) A linha definida pelas equações $x^2+z^2=2, y+z=1$, percorrida no sentido horário para um observador colocado no ponto (0,10,0), é descrita pelo caminho $\alpha:[0,2\pi]\to D$, definido por $\alpha(t)=\left(\sqrt{2}\cos t,1-\sqrt{2}\sin t,\sqrt{2}\sin t\right)$. Como α é homotópico em D a $\gamma:[0,2\pi]\to D$, com $\gamma(t)=(\cos t,0,\sin t)$, obtemos

$$\int H \cdot d\alpha = \int H \cdot d\gamma = \int_0^{2\pi} H(\cos t, 0, \sin t) \cdot (-\sin t, 0, \cos t) dt$$
$$= \int_0^{2\pi} (\sin t + \cos t, 0, \sin t - \cos t) \cdot (-\sin t, 0, \cos t) dt = \int_0^{2\pi} -1 dt = -2\pi.$$

c) Como o trabalho realizado por H ao longo de um caminho fechado pode ser não nulo, o campo não é um gradiente.

Exercício: Considere o campo vectorial F definido por

$$F(x,y,z) = \left(\frac{3y}{x^2 + y^2} - 2y, \frac{-3x}{x^2 + y^2} + 5x, z^2\right).$$

- a) Calcule o trabalho de F ao longo do caminho $g(t) = (1, 1, t), t \in [0, 5].$
- b) Calcule o trabalho de F ao longo da curva dada pelas equações $y=1,\ x^2+z^2=1,$ orientada num sentido à sua escolha
- c) Calcule o trabalho de F ao longo da curva dada pelas equações $9x^2+4y^2=1$, x+y+z=1, orientada no sentido anti-horário quando observada do ponto (0,0,10).

Resolução: O campo F não é fechado no seu domínio,

$$D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \neq 0\} = \mathbb{R}^3 \setminus \{(0, 0, z) : z \in \mathbb{R}\},\$$

mas pode ser escrito na forma F=G+H, onde $G:D\to\mathbb{R}^3$ é o campo fechado definido por

$$G(x,y,z) = \left(\frac{3y}{x^2 + y^2} + 5y, \frac{-3x}{x^2 + y^2} + 5x, z^2\right)$$

e $H: D \to \mathbb{R}^3$ é definido por H(x, y, z) = (-7y, 0, 0).

a) Basta notar que

$$\int F \cdot dg = \int_0^5 F(g(t)) \cdot g'(t) dt = \int_0^5 F(1, 1, t) \cdot (0, 0, 1) dt$$
$$= \int_0^5 t^2 dt = \left[\frac{t^3}{3}\right]_0^5 = \frac{5^3}{3}.$$

b) A linha definida pelas equações $y=1, x^2+z^2=1$ é descrita pelo caminho $\alpha:[0,2\pi]\to D$, definido por $\alpha(t)=(\cos t,1,\sin t)$. Como a linha está contida no aberto simplesmente conexo $\{(x,y,z)\in\mathbb{R}^3:y>0\}\subset D$, e G é fechado em D, o trabalho realizado por G longo desta linha é nulo. Logo

$$\int F \cdot d\alpha = \int G \cdot d\alpha + \int H \cdot d\alpha = 0 + \int H \cdot d\alpha = \int_0^{2\pi} H(\alpha(t)) \cdot \alpha'(t) dt$$

$$= \int_0^{2\pi} H(\cos t, 1, \sin t) \cdot (-\sin t, 0, \cos t) dt = \int_0^{2\pi} (-7, 0, 0) \cdot (-\sin t, 0, \cos t) dt$$

$$= \int_0^{2\pi} (-7, 0, 0) \cdot (-\sin t, 0, \cos t) dt = \int_0^{2\pi} 7 \sin t dt = 0.$$

c) A linha definida pelas equações $9x^2+4y^2=1,\ x+y+z=1,$ orientada no sentido anti-horário quando observada do ponto (0,0,10), é descrita pelo caminho $\alpha:[0,2\pi]\to D$, definido por $\alpha(t)=\left(\frac{1}{3}\cos t,\frac{1}{2}\sin t,1-\frac{1}{3}\cos t-\frac{1}{2}\sin t\right)$. Como α é homotópico em D a $\gamma:[0,2\pi]\to D$, com $\gamma(t)=(\cos t,\sin t,0)$, e G é fechado em D, obtemos

$$\int G \cdot d\alpha = \int G \cdot d\gamma = \int_0^{2\pi} G(\cos t, \sin t, 0) \cdot (-\sin t, \cos t, 0) dt$$

$$= \int_0^{2\pi} (8\sin t, 2\cos t, 0) \cdot (-\sin t, \cos t, 0) dt = \int_0^{2\pi} (2\cos^2 t - 8\sin^2 t) dt$$

$$= \int_0^{2\pi} (10\cos^2 t - 8) dt = -16\pi + \left[5x + \frac{5}{2}\sin 2x \right]_0^{2\pi} = -6\pi.$$

Logo

$$\int F \cdot d\alpha = \int G \cdot d\alpha + \int H \cdot d\alpha = -6\pi + \int_0^{2\pi} H(\alpha(t)) \cdot \alpha'(t) dt$$

$$= -6\pi + \int_0^{2\pi} H(\alpha(t)) \cdot \alpha'(t) dt =$$

$$= -6\pi + \int_0^{2\pi} \left(-\frac{7}{2} \sin t, 0, 0 \right) \cdot \left(-\frac{1}{3} \sin t, \frac{1}{2} \cos t, \frac{1}{3} \sin t - \frac{1}{2} \cos t \right) dt$$

$$= -6\pi + \frac{7}{6} \int_0^{2\pi} \sin^2 t dt = -\frac{29}{6} \pi.$$