Advanced Algorithms for Programming Contests Lecture 8. Sweeping algorithms

Bakhodir Ashirmatov, Thilo Stier, Philip Schär

University of Göttingen Institute of Computer Science

07.06.2018

Overview

Line sweep algorithms

General definition

Examples

Problem: Password

Problem: Intervals

• Problem: Balance

• Problem: Journey

Line sweep algorithm

- A line sweep algorithm is an algorithm, that uses a coneptual sweep line or window to solve various problems.
- Calculations are only performed at the sweep line.
- In practice we cannot simulate all points in time and so we consider only some discrete points.

- Given a password b ($1 \le |b| \le 10^5$), an algorithm encrypts this password using the following 3 steps (in this given order):
 - **1** Swap two characters of the given password ≥ 0 times.
 - 2 Append any number of lower case English letters at the beginning.
 - 3 Append any number of lower case English letters at the end.

Problem

• Given an encrypted password a and an original password b ($|b| \le |a|$), check whether a may result from encrypting b by the above algorithm.

Idea

Letters may only be added at the end or the beginning.

Naive algorithm

- Iterate over all subdivisions a = L + M + R
 - Check if M is a permutation of b
 - If this is the case, return true.
- If no match was found, return false.
- Algorithm works in $|a|^3$ too slow

Idea

- We know |M| = |b|.
- If we know M, we already know L and R.
- Move a window of size |b| from beginning to end of a.

Algorithm

- Let *M* be the substring of the first |b| characters of a.
- Iterate over string:
 - Check if *M* is a permutation of *b*.
 - Add symbol after end of window to *M*.
 - Remove first symbol from M.

Solution

```
int cnta[128], cntb[128], alen;
bool solve(const string &a, const string &b) {
  for (int i = 0; i < b.length(); i++)
   cntb[b[i]]++:
  for (int i = 0; i < b.length(); i++)
    if (++cnta[a[i]] <= cntb[a[i]])
      alen++:
  for (int beg = 0, end = b.length(); end <= a.length(); beg++, end++) {
    if (alen == b.length())
      return true:
    if (end < a.length() && ++cnta[a[end]] <= cntb[a[end]])</pre>
      alen++;
    if (cnta[a[beg]] -- <= cntb[a[beg]])</pre>
      alen --;
  return false;
```

Complexity: O(|a|)

$$a = \begin{bmatrix} x & x & y & x & z & z & y \\ & x & y & z & & x & y & z \\ & & & & & & & \\ cnta = \begin{bmatrix} 0 & 0 & 0 & & \\ & 0 & 0 & & \\ \end{bmatrix} & cntb = \begin{bmatrix} 0 & 0 & 0 & \\ & 0 & 0 & \\ \end{bmatrix} & alen = 0$$

$$a = \begin{bmatrix} x & x & y & x & z & z & y \end{bmatrix} \qquad b = \begin{bmatrix} z & x & y & z \\ \hline x & y & z & x & y & z \\ \hline cnta = \begin{bmatrix} 3 & 1 & 0 \end{bmatrix} \qquad cntb = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix} \qquad alen = 2$$

$$a = \begin{bmatrix} x & x & y & x & z & z & y \\ & x & y & z & & x & y & z \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

$$a = \begin{bmatrix} x & x & y & x & z & z & y \\ & x & y & z & & x & y & z \\ & & x & y & z & & x & y & z \\ & & x & y & z & & x & y & z \\ & & x & y & z & & x & z & z \\ & & x & y & z & & z & z \\ & & x & y & z & & z & z \\ & & x & y & z & & z & z \\ & & x & y & z & & z & z \\ & & x & y & z & & z & z \\ & & x & y & z & & z & z \\ & & x & y & z & & z \\ & & x & y & z & & z \\ & & x & y & z & & z \\ & & x & y & z & & z \\ & & x & y & z & & z \\ & x & y & z & z \\ & x$$

- Given N intervals $[l_i, r_i]$ and M points x_i $(1 \le N, M \le 10^5, 1 \le l_i \le r_i \le 10^9, 1 \le x_i \le 10^9)$
- Check if for every interval $[l_i, r_i]$ you can assign a x_j with $x_j \in [l_i, r_i]$ that is not assigned to any other interval. (Every interval wants to have it's own point only for itself but not all points must be used.)

Naive solution

- Brute force O(M!) too slow
- Graph matching $O(N^3)$ too slow

Naive solution

- Brute force O(M!) too slow
- Graph matching $O(N^3)$ too slow

Idea

- Sweep over coordinates.
- Keep set of intervals starting to the left of the sweep line that do not yet have their own point.
- When sweep line hits a point, give it to the interval from the set that ends first.
- Check, whether every interval got a point.

Algorithm

- Struct containing: coordinate, type (0 = interval; 1 = point), index
- Initialize vector v of those structs.
 - Add $(l_i, 0, i)$ for every interval $[l_i, r_i]$
 - Add $(x_i, 1, i)$ for every point x_i
- Sort v lexicographically by coordinate and type.
- Initialize multiset $s = \emptyset$.
- Iterate over elements (coord, type, index) of v:
 - If type == 0 (interval): add r_{index} to s.
 - If type == 1 (point): find first $r \in s$ with $r \geq coord$.
 - If it exists, increase number of matched intervals.
 - Remove newly matched interval from s and all smaller ones.
- Return whether number of matched intervals is N.

```
struct point {
  int coord, type, index;
};
bool operator < (point a, point b) {
  if (a.coord == b.coord)
    return a.type < b.type;
  return a.coord < b.coord;
}
int l[MAXN], r[MAXN]; // intervals
int p[MAXM]; // points
int N, M; // number of intervals / points</pre>
```

```
Solution
bool solve() {
  vector < point > v;
  for (int i = 0; i < N; i++) v.push_back({1[i], 0, i});
  for (int i = 0; i < M; i++) v.push_back({p[i], 1, i});</pre>
  sort(v.begin(), v.end());
  multiset < int > s:
  int cnt = 0:
  for (point pt : v) {
    if (pt.type == 0)
      s.insert(r[pt.index]);
    else while (!s.empty()) {
        int pr = *s.begin();
        s.erase(s.begin());
        if (pr >= pt.coord) {
          cnt++: break:
  return (cnt == N);
Complexity: O((N+M) \cdot \log(N+M))
```

- Given an array a of N integers a_i ($a_i \ge 0, \sum_i a_i = N, 1 \le N \le 10^5$)
- You can perform the following operation:
 - Take any c, d with $0 \le c, d, c + d \le a_i$.
 - Set $a_i := a_i (c + d)$ and $a_{i-1} := a_{i-1} + c$ as well as $a_{i+1} := a_{i+1} + d$ (i.e. distribute some quantity from a_i to a_{i-1} and a_{i+1}).
- Find minimum number of steps needed to transform a to an (1, ..., 1).

- Given an array a of N integers a_i ($a_i \ge 0, \sum_i a_i = N, 1 \le N \le 10^5$)
- You can perform the following operation:
 - Take any c, d with $0 \le c, d, c + d \le a_i$.
 - Set $a_i := a_i (c + d)$ and $a_{i-1} := a_{i-1} + c$ as well as $a_{i+1} := a_{i+1} + d$ (i.e. distribute some quantity from a_i to a_{i-1} and a_{i+1}).
- Find minimum number of steps needed to transform a to an (1, ..., 1).

Idea

- Sweep over array and only look, whether you have to move elements over the sweep line.
- Look, whether you can combine two movements to one.

- Let *balance* := 0, *prevbalance* := 0 (number of elements that have to be moved from left to right over the sweep line to reach equilibrium).
- Number of operations cnt = 0.
- Iterate over a_i (from 1 to n):
 - balance := balance + $a_i 1$
 - If balance \neq 0, we have to move elements
 - If balance > 0 and prevbalance < 0, we can combine moves.
 - Otherwise cnt := cnt + 1.
 - lastbalance := balance
- Return cnt.

```
Solution
int v[MAXN]:
int solve() {
  int prevbalance = 0;
  int balance = 0;
  int cnt = 0;
  for (int i = 0; i < n; i++) {
    balance += v[i] - 1;
    if (balance != 0 && !(balance > 0 && prevbalance < 0))
      cnt++;
    prevbalance = balance;
  return cnt;
Complexity: O(N)
```

- We are in a universe with planets named binary strings of length N.
- We want to fly from planet t to s ($s, t \in \{0, 1\}^N, 1 \le N \le 1000$)
- Flights only exist between planets with names differing by one bit.
- There are N universal taxes c_i.
- The cost of flying from planet a to b is the sum of the taxes you have to pay at b, so $\sum_{i=1}^{N} b_i c_i$ (where a and b differ by one bit).
- Find the cheapest route from s to t!

Naive solution

- Use Dijkstra to find shortest path
- Number of planets is $O(2^N)$
- N could be as large as 1000 too slow

Naive solution

- Use Dijkstra to find shortest path
- Number of planets is $O(2^N)$
- N could be as large as 1000 too slow

Idea

- It is always worse to fly on a route that adds a bit twice.
- If we fix, which bits we add / remove on the journey, we can calculate the travel cost greedily.
- If we remove bits, it is best, to remove the most expensive first.

Algorithm

- Divide bits in three groups
 - Remove bits that are in s, but not in t (should be removed)
 - Add bits that are in t, but not in s (should be added)
 - Common bits that are both in s and t
- Sort common bits by their cost
- While true
 - Sort remove decreasing
 - Sort add increasing
 - Remove bits in decreasing order, add bits in increasing order
 - Compare with minpath
 - If common bits > 0 erase largest from common bits and add it to remove and add
 - Flse break

```
void solve() {
    vector<long long> remove, add, common;
    long long sum = 0;
    for (int i = 0; i < n; i++) {
        if (s[i] == '1')
            sum += cost[i];
        if (s[i] == '1' && t[i] == '0')
            remove.push_back(cost);
        if (s[i] == '0' && t[i] == '1')
            add.push_back(cost);
        if (s[i] == '1' && t[i] == '1')
            common.push_back(cost);
}
sort(common.begin(), common.end());
long long mincost = INF;</pre>
```

Solution

```
while (1) {
    sort(remove.begin(), remove.end(), greater<int>());
    sort(add.begin(), add.end());
    long long allcost = 0;
    long long tempsum = sum;
    for (int i = 0; i < remove.size(); i++)
        tempsum -= remove[i], allcost += tempsum;
    for (int i = 0; i < add.size(); i++)
        tempsum += add[i], allcost += tempsum;
    mincost = min(mincost, allcost);
    if (common.size() > 0) {
        remove.push_back(common.back());
        add.push_back(common.back());
        common.pop_back();
    else
        break:
```

Complexity: $O(N^2 \log(N))$

Do your homework!

