Fully implicit Runge-Kutta

Ben Southworth, Oliver Krzysik, Will Pazner, Hans de Sterk

June 9, 2020

Why Runge-Kutta

General Runge-Kutta:

- Multi-stage \mapsto easy implementation.
- Good stability properties.

General Runge-Kutta:

- Multi-stage → easy implementation.
- Good stability properties.

Fully implicit Runge-Kutta:

- High-order (up to 2s for s stages).
- High stage-order (for nonlinear PDEs/DAEs).
- Can compute pairs of stages in parallel.
- Equivalent to DG in time.

Assumptions:

- For Butcher tableaux A_0 , $A_0 + A_0^T$ is SPD.
- Linearized operator \mathcal{L} satisfies $\langle \mathcal{L}x, x \rangle \leq 0$.

Method of lines for PDEs:

$$Mu'(t) = \mathcal{N}(u, t)$$
 in $(0, T]$, $u(0) = u_0$.

Runge-Kutta:

$$\mathbf{u}_{n+1} = \mathbf{u}_n + \delta t \sum_{i=1}^{s} b_i \mathbf{k}_i, \qquad \text{where}$$

$$M\mathbf{k}_i = \mathcal{N} \bigg(\mathbf{u}_n + \delta t \sum_{j=1}^{s} a_{ij} \mathbf{k}_j, t_n + \delta t c_i \bigg).$$

Method of lines for PDEs:

$$M\mathbf{u}'(t) = \mathcal{N}(\mathbf{u}, t)$$
 in $(0, T]$, $\mathbf{u}(0) = \mathbf{u}_0$.

Runge-Kutta:

$$\mathbf{u}_{n+1} = \mathbf{u}_n + \delta t \sum_{i=1}^s b_i \mathbf{k}_i, \qquad ext{where}$$
 $M \mathbf{k}_i = \mathcal{N} \bigg(\mathbf{u}_n + \delta t \sum_{i=1}^s a_{ij} \mathbf{k}_j, t_n + \delta t c_i \bigg).$

Linear(ized) system:

$$\left(\begin{bmatrix} M & 0 \\ & \ddots & \\ 0 & M \end{bmatrix} - \delta t \begin{bmatrix} a_{11}\mathcal{L}_1 & \dots & a_{1s}\mathcal{L}_1 \\ \vdots & \ddots & \vdots \\ a_{s1}\mathcal{L}_s & \dots & a_{ss}\mathcal{L}_s \end{bmatrix} \right) \begin{bmatrix} k_1 \\ \vdots \\ k_s \end{bmatrix} = \begin{bmatrix} f_1 \\ \vdots \\ f_s \end{bmatrix}.$$

Method of lines for PDEs:

$$M\mathbf{u}'(t) = \mathcal{N}(\mathbf{u}, t)$$
 in $(0, T]$, $\mathbf{u}(0) = \mathbf{u}_0$.

Runge-Kutta:

$$\mathbf{u}_{n+1} = \mathbf{u}_n + \delta t \sum_{i=1}^{s} b_i \mathbf{k}_i, \quad \text{where}$$

$$M\mathbf{k}_i = \mathcal{N} \bigg(\mathbf{u}_n + \delta t \sum_{i=1}^{s} a_{ij} \mathbf{k}_j, t_n + \delta t c_i \bigg).$$

Linear(ized) system:

$$\left(\begin{bmatrix} I & & 0 \\ & \ddots & \\ 0 & & I \end{bmatrix} - \begin{bmatrix} a_{11}\widehat{\mathcal{L}}_1 & \dots & a_{1s}\widehat{\mathcal{L}}_1 \\ \vdots & \ddots & \vdots \\ a_{s1}\widehat{\mathcal{L}}_s & \dots & a_{ss}\widehat{\mathcal{L}}_s \end{bmatrix} \right) \begin{bmatrix} k_1 \\ \vdots \\ k_s \end{bmatrix} = \begin{bmatrix} \hat{f}_1 \\ \vdots \\ \hat{f}_s \end{bmatrix}.$$

Step 1:

$$\begin{pmatrix} A_0^{-1} \otimes I - \begin{bmatrix} \widehat{\mathcal{L}}_1 & & \\ & \ddots & \\ & & \widehat{\mathcal{L}}_s \end{bmatrix} \end{pmatrix} (A_0 \otimes I) \begin{bmatrix} k_1 \\ \vdots \\ k_s \end{bmatrix} = \begin{bmatrix} f_1 \\ \vdots \\ f_s \end{bmatrix}.$$

Step 1:

$$\begin{pmatrix} A_0^{-1} \otimes I - \begin{bmatrix} \widehat{\mathcal{L}}_1 & & \\ & \ddots & \\ & & \widehat{\mathcal{L}}_s \end{bmatrix} \end{pmatrix} (A_0 \otimes I) \begin{bmatrix} k_1 \\ \vdots \\ k_s \end{bmatrix} = \begin{bmatrix} f_1 \\ \vdots \\ f_s \end{bmatrix}.$$

Step 2 (for real Schur decomposition $A_0^{-1} = Q_0 R_0 Q_0^T$):

$$\begin{pmatrix} R_0 \otimes I - (Q_0^T \otimes I) \begin{bmatrix} \widehat{\mathcal{L}}_1 & & \\ & \ddots & \\ & & \widehat{\mathcal{L}}_s \end{bmatrix} (Q_0 \otimes I) \end{pmatrix} (R_0^{-1} Q_0^T \otimes I) \mathsf{k} = (Q_0^T \otimes I) \mathsf{f}.$$

Must solve $(\eta > 0)$

$$\begin{bmatrix} \eta I - \widehat{\mathcal{L}}_1 & \phi I \\ -\frac{\beta^2}{\phi} I & \eta I - \widehat{\mathcal{L}}_2 \end{bmatrix},$$

Convergence of Krylov defined by preconditioned Schur complement,

$$S := \eta I - \widehat{\mathcal{L}}_2 + \beta^2 (\eta I - \widehat{\mathcal{L}}_1)^{-1}$$

= $\left((\eta I - \widehat{\mathcal{L}}_2)(\eta I - \widehat{\mathcal{L}}_1) + \beta^2 I \right) (\eta I - \widehat{\mathcal{L}}_1)^{-1}.$

Must solve $(\eta > 0)$

$$\begin{bmatrix} \eta I - \widehat{\mathcal{L}}_1 & \phi I \\ -\frac{\beta^2}{\phi} I & \eta I - \widehat{\mathcal{L}}_2 \end{bmatrix},$$

Convergence of Krylov defined by preconditioned Schur complement,

$$S := \eta I - \widehat{\mathcal{L}}_2 + \beta^2 (\eta I - \widehat{\mathcal{L}}_1)^{-1}$$

= $\left((\eta I - \widehat{\mathcal{L}}_2)(\eta I - \widehat{\mathcal{L}}_1) + \beta^2 I \right) (\eta I - \widehat{\mathcal{L}}_1)^{-1}.$

Consider general preconditioned operator

$$\mathcal{P}_{\delta,\gamma} := \left[(\eta I - \widehat{\mathcal{L}}_2)(\eta I - \widehat{\mathcal{L}}_1) + \beta^2 I \right] (\delta I - \widehat{\mathcal{L}}_1)^{-1} (\gamma I - \widehat{\mathcal{L}}_2)^{-1}.$$

Theorem 1 (Optimal preconditioning)

Suppose $\eta > 0$ and $W(\widehat{\mathcal{L}}) \leq 0$, and suppose $\widehat{\mathcal{L}}$ is real-valued. Let $\kappa(\mathcal{P}_{\delta,\gamma})$ denote the two-norm condition number of $\mathcal{P}_{\delta,\gamma}$, for $\delta,\gamma\in(0,\infty)$, and define γ_* by

$$\gamma_* := \frac{\eta^2 + \beta^2}{\delta}.$$

Then

$$\kappa(\mathcal{P}_{\delta,\gamma_*}) \leq \frac{1}{2\eta} \left(\delta + \frac{\eta^2 + \beta^2}{\delta}\right).$$

Moreover, (i) the bound is tight in the sense that $\exists \widehat{\mathcal{L}}$ that satisfies the bound exactly, and (ii) $\gamma = \gamma_*$ is optimal in the sense that, without further assumptions on $\widehat{\mathcal{L}}$, γ_* minimizes a tight upper bound on $\kappa(\mathcal{P}_{\delta,\gamma})$ over all $\gamma \in (0,\infty)$.

Linear case, $\mathcal{L}_1 = \mathcal{L}_2$, $\gamma, \delta = ?$

Corollary 2 (Optimal preconditioning with $\gamma=\delta$)

A tight upper bound on the condition number of $\mathcal{P}_{\delta,\gamma}$ is minimized over $\delta,\gamma\in(0,\infty)$ with $\delta=\gamma=\gamma_*=\sqrt{\eta^2+\beta^2}$. Furthermore, the condition number of \mathcal{P}_{γ_*} is tightly bounded via

$$\kappa(\mathcal{P}_{\gamma_*}) \leq \sqrt{1 + rac{eta^2}{\eta^2}}.$$

Stages	2	3		4	4	5		
	$\lambda_{1,2}^{\pm}$	λ_1	$\lambda_{2,3}^{\pm}$	$\lambda_{1,2}^{\pm}$	$\lambda_{3,4}^{\pm}$	λ_1	$\lambda_{2,3}^{\pm}$	$\lambda_{ extsf{4,5}}^{\pm}$
Gauss	1.15	1.00	1.38	1.61	1.04	1.00	1.83	1.13
Radau	1.22	1.00	1.51	1.79	1.05	1.00	2.05	1.15
Lobatto	1.41	1.00	1.79	2.12	1.06	1.00	2.42	1.17

Table: Bounds on $\kappa(\mathcal{P}_{\gamma_*})$ for Gauss, Radau IIA, and Lobatto IIIC.

Nonlinear case, $\mathcal{L}_1 = \mathcal{L}_2$, $\delta = \eta$

Corollary 3 (Optimal preconditioning with $\gamma=\delta$)

A tight upper bound on the condition number of $\mathcal{P}_{\eta,\gamma}$ is minimized over $\gamma \in (0,\infty)$ with $\delta = \gamma = \gamma_* = \eta + \frac{\beta^2}{\eta}$. Furthermore, the condition number of \mathcal{P}_{γ_*} is tightly bounded via

$$\kappa(\mathcal{P}_{\gamma_*}) \leq 1 + \frac{1}{2} \frac{\beta^2}{\eta^2}.$$

Ctama	2	3		4		5		
Stages	$\lambda_{1,2}^{\pm}$	λ_1	$\lambda_{2,3}^{\pm}$	$\lambda_{1,2}^{\pm}$	$\lambda_{3,4}^{\pm}$	λ_1	$\lambda_{2,3}^{\pm}$	$\lambda_{4,5}^{\pm}$
Gauss	1.17	1.00	1.46	1.80	1.05	1.00	2.18	1.14
Radau IIA	1.25	1.00	1.65	2.11	1.06	1.00	2.60	1.16
Lobatto IIIC	1.50	1.00	2.11	2.76	1.07	1.00	3.44	1.19

Table: Bounds on $\kappa(\mathcal{P}_{\gamma_*})$ for Gauss, Radau IIA, and Lobatto IIIC.