2011-2012 学年线性代数 I (H) 期末

任课老师: 统一命卷 考试时长: 120 分钟

- 一、 $(10 \, \text{分})$ 求 $a, b, c, d, e, f \in \mathbf{R}$, 使 $(1, 1, 1)^{\mathbf{T}}$, $(1, 0, -1)^{\mathbf{T}}$, $(1, -1, 0)^{\mathbf{T}} \in \mathbf{R}^{3}$ 是矩阵 $\begin{pmatrix} 1 & -1 & 1 \\ a & b & c \\ d & e & f \end{pmatrix}$ 的特征向量.
- 二、 (10 分) 记线性映射 σ 的核为 ker σ , 像为 im σ . 设 $\sigma_1, \sigma_2: V \to V$ 是线性映射. 证明:
 - (1) ker $\sigma_1 \subseteq \ker (\sigma_2 \circ \sigma_1)$.
 - (2) im $(\sigma_2 \circ \sigma_1) \subseteq \text{im } \sigma_2$.
- 三、 $(10 \, \text{分})$ 设 $B = \{v_1, v_2, v_3\}$ 是线性空间 V 的一组基, 线性映射 $\sigma: V \to V$ 定义如下:

$$\sigma(v_1) = v_2 + v_3, \sigma(v_2) = v_3, \sigma(v_3) = v_1 - v_2.$$

- (1) 给出 σ 关于基 B 的矩阵表示.
- (2) 证明 $B' = \{v_2, v_3 + v_1, v_1 v_2\}$ 是 V 的另一组基.
- (3) 给出 σ 关于基 B' 的矩阵表示.
- 四、 $(10 \, \mathcal{G})$ 设 $\{v_1, v_2, \dots, v_n\}$ 是欧氏空间 V 的一组单位正交基. 证明: 对于任何 $u \in V$,成立

$$|u|^2 = (u, v_1)^2 + (u, v_2)^2 + \dots + (u, v_n)^2.$$

- 五、 $(10 \, \text{分})$ 记 $P_2(\mathbf{R})$ 为次数小于等于 2 的实多项式线性空间.
 - (1) 证明: $(f,g) = \int_{-1}^{1} f(x)g(x)dx$ 是 $P_2(\mathbf{R})$ 的内积.
 - (2) 将 Schmidt 正交化过程应用于 $S=\{1,x,x^2\}$, 求出 $P_2(\mathbf{R})$ 的一组单位正交基 B.
- 六、(10 分)设 $\sigma: V \to V$ 是有限维线性空间 V 上的一个同构映射. 记 $V(\sigma; \lambda)$ 为 σ 的属于特征值 λ 的特征子空间.
 - (1) 如果 $\lambda \in \sigma$ 的特征值,证明: $\lambda \neq 0$.
 - (2) 证明 λ 是 σ 的特征值,证明: $V(\sigma; \lambda) = V(\sigma^{-1}; \lambda^{-1})$.
 - (3) 证明 " σ 可对角化"的充要条件是 " σ^{-1} 可对角化".
- 七、(10分) 求下面实对称矩阵的秩,正惯性指数和负惯性指数.

$$(1) \begin{pmatrix} 1 & -2 & 3 \\ -2 & 6 & 9 \\ 3 & -9 & 4 \end{pmatrix};$$

$$(2) \begin{pmatrix} 1 & 1 & -2 & -3 \\ 1 & 2 & -5 & -1 \\ -2 & -5 & 10 & 9 \\ -3 & -1 & 9 & -14 \end{pmatrix}.$$

- 八、 $(10 \, \text{分})$ 设 A, B 都是域 **F** 上的 n 阶对角矩阵,且 A 的对角元是 B 的对角元的一个置换. 证明:
 - (1) A 相似于 B.
 - (2) A 相合于 B.
- 九、(20分)判断下面命题的真伪. 若它是真命题, 给出一个简单证明; 若它是伪命题, 举一个具体的反例将它否定.
 - (1) 若 S 是线性空间 V 的线性相关子集,则 S 的每个向量都是 S 的其他向量的线性组合.
 - (2) 域 F 上的全体 n 阶可逆阵构成 $M_{n\times n}(F)$ 的一个子空间.
 - (3) 若存在正整数 n, 使得方阵 A 的 n 次幂 $A^n = 0$, 则 A 的行列式 |A| = 0.
 - (4) 对任意的 n 阶实对称阵 A, 总存在 ϵ , 使得 $E_n + \epsilon A$ 是正定矩阵.