

Learning Granger Causal Feature Representations

G. Varando, M.Á. Fernández-Torres & G. Camps-Valls Image Processing Lab (IPL) Universitat de València http://isp.uv.es · @isp_uv_es

Climate teleconnections

Learning climate teleconnections with machine learning

- ENSO changes patterns of essential variables like moisture, greenness & precipitation
- **Goal:** Learn causal impact teleconnections of ENSO on greenness
 - NDVI from MODIS in Africa, linear interp, anomalies
 - ENSO3.4 index, focus on 2014-2017

Granger Autoencoder

Learning Granger causal features

No Granger penalization $\beta = 0$

Granger penalization $\beta = 0.01$

Explaining representations

- XAI \rightarrow Neuron Integrated Gradients (NIG) over the Granger Autoencoder
- Spatially-explicit and temporally resolved activation maps per biome

Conclusions and future work

- Methodology proposed is generic and modular
 - Replace GCl by other indices, such as Geweke or conditional independence tests
 - Replace dense network by convolutional and/or recurrent nets
- Study generalization and robustness of causal representations
- Way to gain insights on physical processes from Earth data

Learning Granger Causal Feature Representations

G. Camps-Valls, M.Á. Fernández-Torres & G. Varando Image Processing Lab (IPL) Universitat de València http://isp.uv.es · @isp_uv_es

