Модуль 14.2. Методы приближения функций и обработки экспериментальных данных

Наилучшие приближения в гильбертовых пространствах

Измерение расстояния между функциями в гильбертовом пространстве

С целью решения задачи об отыскании наилучшего приближения функции, заданной в гильбертовом пространстве, приведем сведения из функционального анализа.

Пусть H – гильбертово пространство, в общем случае - бесконечномерное.

Для любых элементов f,g из H определен функционал, именуемый **скалярным** произведением. Этот функционал обозначают символом

$$(f,g)_H \tag{14.1}$$

и в каждом пространстве H этот функционал должен соответствовать **аксиомам скалярного произведения**.

Именно этот функционал определяет «состав» и свойства своего гильбертова пространства.

Функционал, именуемый **нормой** элемента $f \in H$, обозначают символом

$$||f||_H$$

Для элементов гильбертова пространства H норму определяют на основе скалярного произведения (14.1) как корень из скалярного квадрата элемента:

$$||f||_{H} = \sqrt{(f,f)_{H}}$$
 (14.2)

В курсе ФА доказано, что функционал «норма», определяемый по правилу (14.2), будет соответствовать всем аксиомам нормы.

Функционал, именуемый **расстоянием** между элементами f,g из H, обозначают символом

$$\rho(f,g)_H$$

Для элементов гильбертова пространства H расстояние определяют как норму разности элементов:

$$\rho(f,g)_{H} = \| f - g \|_{H} \tag{14.3}$$

В курсе ФА доказано, что функционал «расстояние», определяемый по правилу (14.3), будет соответствовать всем аксиомам расстояния.

Принцип отыскания наилучшего приближения

Для того, чтобы решить задачу об отыскании наилучшего приближения некоторого элемента гильбертова пространства, нужно

- определить **класс элементов**, среди которых необходимо найти такое приближение;

- выбрать в качестве приближения элемент, наиболее близкий к заданному элементу по расстоянию.

Разность элементов называют погрешностью, причем погрешность также является элементом пространства ${\cal H}$.

Норму погрешности используют для описания **качества приближения**: норма погрешности говорит о том, велика погрешность или мала.

Пример пространства, нормы, расстояния

Рассмотрим в качестве примера $H=L_2[0;1]$ – гильбертово пространство функций, определенных на отрезке [0;1] и «суммируемых на данном отрезке с квадратом». То есть функций, для которых существует конечное значение интеграла

$$I = \int_{0}^{1} f^{2}(x) dx$$

Скалярным произведением элементов $f,g\in L_2[\ 0;1]$ является функционал, обозначенный символом

$$(f,g)_{L_2[0;1]}$$

заданный формулой

$$(f,g)_{L_2[0;1]} = \int_0^1 f(x) g(x) dx.$$

Нормой элемента $f \in L_2[\ 0;1]$ является функционал, обозначенный символом

$$\|f\|_{L_2[0;1]}$$

заданный формулой

$$\| f \|_{L_2[0;1]} = \sqrt{(f,f)_{L_2[0;1]}} = \sqrt{\int_0^1 f^2(x) dx}.$$

Расстоянием между элементами $f,g\in L_2[\ 0;1]$ является функционал, обозначенный символом

$$\rho(f,g)_{L_2[0;1]}$$

заданный формулой

$$\rho(f,g)_{L_2[0;1]} = \|f-g\|_{L_2[0;1]} = \sqrt{\int_0^1 [f(x) - g(x)]^2} dx.$$

Расстояние $ho(f,g)_{L_2[0;1]}$ между элементами f,g можно интерпретировать как погрешность приближения одним из элементов

другого элемента: например, погрешность приближения $f \in L_2[\ 0;1]$ элементом $g \in L_2[\ 0;1]$.

Числовой пример

Рассмотрим функции $f(x)=1,\ g(x)=x$. Каждая из них является элементом пространства $H=L_2[0;1]$, и для них верно

$$(f,g)_{L_2[0;1]} = \int_0^1 1 \cdot x \, dx = \frac{1}{2}$$

(скалярное произведение функций $f(x) = 1, \ g(x) = x$ равно $\frac{1}{2}$)

$$\| f \|_{L_2[0;1]} = \sqrt{\int\limits_0^1 1 \cdot 1 \cdot dx} = 1$$

$$\|g\|_{L_2[0;1]} = \sqrt{\int_0^1 x \cdot x \, dx} = \frac{1}{\sqrt{3}}$$

(нормы функций $f(x)=1, \ g(x)=x$ равны 1 и $\frac{1}{\sqrt{3}}$ соответственно)

$$\rho(f,g)_{L_2[0;1]} = \| f - g \|_{L_2[0;1]} = \sqrt{\int_0^1 [1-x]^2 dx} = \frac{1}{3}$$

(расстояние между функциями $f(x) = 1, \ g(x) = x$ в пространстве $L_2[0;1]$ равно $\frac{1}{3}$).

Можно сказать, что функция g(x) = x приближает функцию f(x) = 1 с погрешностью

$$f(x)-g(x)=1-x$$

и норма погрешности в пространстве $L_2[0;1]$ равна $\frac{1}{3}$.

Можно посмотреть иначе: функция f(x) = 1 приближает g(x) = x погрешностью

$$g(x) - f(x) = x - 1$$

и норма погрешности в пространстве $L_2[0;1]$ также равна числу $\frac{1}{3}$.

Пусть H – гильбертово пространство (в общем случае – бесконечномерное).

Пусть $K_n \subset H$ – его подпространство конечной размерности n .

Линейно независимые элементы, образующие базис K_n , обозначим

$$\varphi_i \in H, i = 1, ...n$$
 (14.4)

Тогда любой элемент $\varphi \in K_n$ можно единственным образом представить в виде линейной комбинации базисных элементов

$$\varphi = \alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \dots + \alpha_n \varphi_n \tag{14.5}$$

а подпространство K_n – записать как множество всех линейных комбинаций вида (14.5):

$$K_n = \{ \sum_{i=1}^{n} \alpha_i \cdot \varphi_i \mid \alpha_i \in R, \ \varphi_i \in H, \ i = 1, ... n \}$$
 (14.6)

Определение 1. Пусть $f\in H$ – элемент гильбертова пространства H. Элемент $\varphi\in K_n$ называют **элементом наилучшего приближения** f **в классе** K_n , если для $\forall\,\widetilde{\varphi}\in K_n,\ \widetilde{\varphi}\neq\varphi$, верно

$$\rho(f,\varphi)_{H} \leq \rho(f,\widetilde{\varphi})_{H} \tag{14.7}$$

Читается так: расстояние между f и ϕ не превышает расстояния между f и любым другим элементом класса K_n (все расстояния измерены по правилам пространства H).

Ответ на вопрос о существовании, единственности и способе построения элементов наилучшего приближения содержится в следующем утверждении.

Утверждение 1. Пусть H — гильбертово пространство, $K_n \subset H$ — подпространство конечной размерности n, причем линейно независимые элементы $\varphi_i \in H, \ i=1,...n$ образуют базис подпространства K_n .

Тогда для $\forall f \in H$ элемент $\varphi \in K_n$, обеспечивающий наилучшее приближение f в классе K_n существует, является единственным и может быть представлен в виде (14.5), где коэффициенты α_i , i=1,...n являются решением СЛАУ

$$\begin{bmatrix} (\varphi_{1},\varphi_{1})_{H} & (\varphi_{1},\varphi_{2})_{H} & \dots & (\varphi_{1},\varphi_{n})_{H} \\ (\varphi_{2},\varphi_{1})_{H} & (\varphi_{2},\varphi_{2})_{H} & \dots & (\varphi_{2},\varphi_{n})_{H} \\ \dots & \dots & \dots & \dots \\ (\varphi_{n},\varphi_{1})_{H} & (\varphi_{n},\varphi_{2})_{H} & \dots & (\varphi_{n},\varphi_{n})_{H} \end{bmatrix} \cdot \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \dots \\ \alpha_{n} \end{bmatrix} = \begin{bmatrix} (f, \varphi_{1})_{H} \\ (f, \varphi_{2})_{H} \\ \dots \\ (f, \varphi_{n})_{H} \end{bmatrix}$$

$$(14.8)$$

СЛАУ (14.8) называют нормальной системой уравнений.

Доказательство

Шаг I

Рассмотрим задачу оптимизации, отвечающую за отыскание элемента ϕ .

Элемент ϕ , наилучшим образом приближающий заданный элемент $f \in H$ в классе K_n , должен соответствовать условию (14.7).

Поэтому элемент $\varphi \in K_n$ следует искать как решение оптимизационной задачи

$$\rho(f, \varphi)_H \to \min \tag{14.9}$$

где поиск минимального значения проводится для заданного f из пространства H по всем элементам φ , принадлежащим подпространству K_n .

Заменим (14.9) на эквивалентную задачу минимизации квадрата расстояния:

$$\rho^2 (f, \varphi)_H \to \min \tag{14.10}$$

Используем (14.3) и запишем квадрат расстояния между f и ϕ как квадрат нормы разности элементов:

$$\rho^{2}(f,\varphi)_{H} = \|f - \varphi\|_{H}^{2}$$

Затем используем (14.2) и запишем норму через скалярный квадрат:

$$\|f - \varphi\|_H^2 = (f - \varphi, f - \varphi)_H \tag{14.11}$$

Таким образом, для отыскания элемента $\varphi \in K_n$, наилучшим образом приближающего заданный элемент f из пространства H, нужно решить оптимизационную задачу

$$(f - \varphi, f - \varphi)_H \to \min \tag{14.12}$$

где поиск минимума ведется по всем ϕ из подпространства K_n .

Шаг II

Выясним, как выглядит функционал задачи (14.2).

С помощью заданных базисных функций

$$\varphi_i \in H, i = 1,...n$$

каждый элемент $\varphi \in K_n$ может быть представлен в виде

$$\varphi = \alpha_1 \varphi_1 + \alpha_2 \varphi_2 + ... + \alpha_n \varphi_n$$

Поэтому функционал задачи (14.12) должен зависеть зависит от аргументов $lpha_i$, i=1,...n .

Обозначим эту зависимость $S(\alpha_1, \alpha_2, ... \alpha_n)$ и запишем (14.12) в виде

$$S(\alpha_1, \alpha_2, ... \alpha_n) \underset{\alpha \in \mathbb{R}^n}{\longrightarrow} \min.$$
 (14.13)

При таком способе записи задачи оптимизации поиск минимального значения проводится в пространстве аргументов размерности n.

Используя (14.5) и (14.12), запишем формулу функционала $S(lpha_1,lpha_2,...lpha_n)$:

$$S(\alpha_1, \alpha_2, ... \alpha_n) = (f - \varphi, f - \varphi)_H = (f - \sum_{i=1}^n \alpha_i \varphi_i, f - \sum_{j=1}^n \alpha_j \varphi_j)_H.$$

Раскрывая скалярное произведение, запишем

$$(f,f)_{H} - 2(f,\sum_{i=1}^{n}\alpha_{i}\varphi_{i})_{H} + (\sum_{i=1}^{n}\alpha_{i}\varphi_{i},\sum_{j=1}^{n}\alpha_{j}\varphi_{j})_{H}$$

Далее используем линейные свойства скалярного произведения в гильбертовом пространстве ${\cal H}$.

Сначала из-под знаков скалярных произведений выносим знаки суммирования, а затем за скобками скалярных произведений должны оказаться числовые коэффициенты α_i , i=1,...n . В итоге получим

$$S(\alpha_{1}, \alpha_{2}, ... \alpha_{n}) =$$

$$= (f, f)_{H} - 2\sum_{i=1}^{n} \alpha_{i}(f, \varphi_{i})_{H} + \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \cdot \alpha_{j} (\varphi_{i}, \varphi_{j})_{H}$$
(14.14)

Доказано, что $S(\alpha_1,\alpha_2,...\alpha_n)$ является квадратичной функцией своих аргументов α_i , i=1,...n .

Шаг III и далее

Далее доказательство Утверждения 1 аналогично доказательству утверждений Модуля 14.1 и включает следующие этапы.

1) Точки, подозрительные на экстремум, находим из условий

$$\frac{\partial S}{\partial \alpha_i} = 0, \quad i = 1, \dots n \tag{14.15}$$

Систему уравнений (14.15) называют нормальной системой уравнений.

- 2) Линейная независимость элементов $\varphi_i \in K_n, i=1,...n$ обеспечивает существование и единственность решения нормальной системы уравнений (14.15).
- 3) В силу линейной независимости элементов $\varphi_i \in K_n$, i=1,...n , единственное решение системы (14.15) является точкой локального минимума.

4) В силу свойств квадратичного функционала $S(\alpha_1, \alpha_2, ... \alpha_n)$. единственный локальный минимум является глобальным.

Кратко пройдем эти этапы.

Для функционала (14.14) нормальная система уравнений (14.15) принимает вид

$$\begin{cases} \frac{\partial S}{\partial \alpha_1} = -2(f, \varphi_1)_H + 2\alpha_1(\varphi_1, \varphi_1)_H + 2\sum_{j=2}^n \alpha_j(\varphi_1, \varphi_j)_H = 0 \\ \frac{\partial S}{\partial \alpha_2} = -2(f, \varphi_2)_H + 2\alpha_2(\varphi_2, \varphi_2)_H + 2\sum_{j=1, j \neq 2}^n \alpha_j(\varphi_2, \varphi_j)_H = 0 \\ \dots \\ \frac{\partial S}{\partial \alpha_n} = -2(f, \varphi_n)_H + 2\alpha_n(\varphi_n, \varphi_n)_H + 2\sum_{j=1}^{n-1} \alpha_j(\varphi_n, \varphi_j)_H = 0 \end{cases}$$

Это СЛАУ с неизвестными $\alpha_i, i=1,...n$. Если ее записать в векторном виде, получим (14.8):

$$\begin{bmatrix} (\varphi_1, \varphi_1)_H & (\varphi_1, \varphi_2)_H & \dots & (\varphi_1, \varphi_n)_H \\ (\varphi_2, \varphi_1)_H & (\varphi_2, \varphi_2)_H & \dots & (\varphi_2, \varphi_n)_H \\ \dots & \dots & \dots & \dots \\ (\varphi_n, \varphi_1)_H & (\varphi_n, \varphi_2)_H & \dots & (\varphi_n, \varphi_n)_H \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} (f, \varphi_1)_H \\ (f, \varphi_2)_H \\ \dots \\ (f, \varphi_n)_H \end{bmatrix}$$

Матрица СЛАУ (14.8) является матрицей Грама линейно независимых элементов $\varphi_i \in K_n$, i=1,...n :

$$Gr(\varphi_{1}, \varphi_{2}, ..., \varphi_{n}) = \begin{bmatrix} (\varphi_{1}, \varphi_{1})_{H} & (\varphi_{1}, \varphi_{2})_{H} & ... & (\varphi_{1}, \varphi_{n})_{H} \\ (\varphi_{2}, \varphi_{1})_{H} & (\varphi_{2}, \varphi_{2})_{H} & ... & (\varphi_{2}, \varphi_{n})_{H} \\ ... & ... & ... & ... \\ (\varphi_{n}, \varphi_{1})_{H} & (\varphi_{n}, \varphi_{2})_{H} & ... & (\varphi_{n}, \varphi_{n})_{H} \end{bmatrix}$$

Поэтому указанная матрица не вырождена и положительно определена:

$$\det Gr\left(\varphi_{1},\varphi_{2}...\varphi_{n}\right)\neq0$$

$$Gr(\varphi_1, \varphi_2...\varphi_n) > 0$$

Отсюда следует, что для любого элемента f гильбертова пространства H решение СЛАУ (14.8) существует и единственно.

Функционал $S(\alpha_1,\alpha_2,...\alpha_n)$ имеет единственную точку, подозрительную на экстремум.

Аналогично Утверждениям из Модуля 14.1 доказывается:

Точка, подозрительная на экстремум, является точкой локального минимума функционала $S(\alpha_1,\alpha_2,...\alpha_n)$.

Решение нормальной системы уравнений (14.8), являясь точкой локального минимума функционала $S(\alpha_1,\alpha_2,...\alpha_n)$, является решением задачи минимизации (14.13), то есть глобальным минимумом $S(\alpha_1,\alpha_2,...\alpha_n)$.

Для любого элемента f гильбертова пространства H решение задачи оптимизации (14.13) существует, единственно и может быть найдено в виде (14.5), где коэффициенты α_i , i=1,...n являются решением СЛАУ (14.8).

Считаем, что Утверждение 1 доказано.

Определение 2. Погрешностью приближения элемента f гильбертова пространства H элементом φ конечномерного подпространства $K_n \subset H$ является элемент $z \in H$, определяемый как

$$z = f - \varphi \tag{14.16}$$

Качество приближения характеризуется нормой погрешности, то есть значением

$$||z||_H$$

которое в данном случае является корнем квадратным из минимального значения функционала $S(\alpha_1,\alpha_2,...\alpha_n)$:

$$\left\| \, z \, \right\|_{H} = \left\| \, f - \varphi \, \right\|_{H} = \sqrt{S(\alpha_{1},\alpha_{2},\ldots\alpha_{n})} \, .$$

Следствие. Пусть в условиях Утверждения 1 линейно независимые элементы $\varphi_i \in H, \ i=1,...n$, образующие базис подпространства K_n , ортогональны, то есть $(\varphi_i\,,\,\varphi_j\,)_H=0,\ i\,,\,j=1,...n,i\neq j..$

Тогда для $\forall f \in H$ элемент $\varphi \in K_n$, обеспечивающий наилучшее приближение f в классе K_n существует, является единственным и может быть представлен в виде

$$\varphi = \alpha_1 \varphi_1 + \alpha_2 \varphi_2 + ... + \alpha_n \varphi_n$$

где коэффициенты $lpha_i\,,\,i=1,...n$ являются решением СЛАУ с диагональной матрицей

$$\begin{bmatrix} (\varphi_{1}, \varphi_{1})_{H} & 0 & \dots & 0 \\ 0 & (\varphi_{2}, \varphi_{2})_{H} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & (\varphi_{n}, \varphi_{n})_{H} \end{bmatrix} \cdot \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \dots \\ \alpha_{n} \end{bmatrix} = \begin{bmatrix} (f, \varphi_{1})_{H} \\ (f, \varphi_{2})_{H} \\ \dots \\ (f, \varphi_{n})_{H} \end{bmatrix}$$
(14.17)

Коэффициенты α_i , i=1,...n вычисляются по формулам

$$\alpha_i = \frac{(f, \varphi_i)_H}{(\varphi_i, \varphi_i)_H}, \quad i = 1, \dots n$$
(14.18)

и называются коэффициентами Фурье элемента f по ортогональной системе линейно независимых элементов

$$\varphi_i \in H, i = 1,...n$$
.