Recommending Citations: Translating Papers into References

Wenyi Huang¹ Saurabh Kataria² Cornelia Caragea¹ Prasenjit Mitra¹ C. Lee Giles¹ Lior Rokach³

¹Information Sciences & Technology The Pennsylvania State University

²Xerox Research Center Webster

³Information Systems Engineering Ben-Gurion University of the Negev

The Conference on Information and Knowledge Management, 2012

- Introduction
 - Problem
 - Motivation
 - Related Work
- Citation Translation Model
 - Building Up Dictionary
 - Reference Recommendation Using Dictionary
- 3 Experiment
 - Dataset and Metrics
 - Evaluation

- Introduction
 - Problem
 - Motivation
 - Related Work
- Citation Translation Model
 - Building Up Dictionary
 - Reference Recommendation Using Dictionary
- 3 Experiment
 - Dataset and Metrics
 - Evaluation

- What is citation recommendation?
- Citation Recommendation:
 - based on a partial list of reference
 - based on the content of a manuscript.

- What is citation recommendation?
- Citation Recommendation:
 - based on a partial list of reference.
 - based on the content of a manuscript.

- What is citation recommendation?
- Citation Recommendation:
 - based on a partial list of reference.
 - based on the content of a manuscript.

- What is citation recommendation?
- Citation Recommendation:
 - based on a partial list of reference.
 - based on the content of a manuscript.

- Introduction
 - Problem
 - Motivation
 - Related Work
- Citation Translation Model
 - Building Up Dictionary
 - Reference Recommendation Using Dictionary
- 3 Experiment
 - Dataset and Metrics
 - Evaluation

Motivation

A research paper is written using two different "languages":

- Descriptive language, consisting of citation words used in the paper before the reference section;
- Reference language, consisting of references, where each referenced paper is considered as a "word".

Motivation

A citation's context contains explicit words explaining the citation

Figure: An example of translation from the descriptive language to the reference language

- Introduction
 - Problem
 - Motivation
 - Related Work
- Citation Translation Model
 - Building Up Dictionary
 - Reference Recommendation Using Dictionary
- 3 Experiment
 - Dataset and Metrics
 - Evaluation

- None Content Based
 - Collaborative filtering (McNee, et al., 2002).
- Content Based
 - Feature Based (Strohman, et al., 2007; Bethard and Jurafsky. 2010)
 - Topic Model based recommendation: cite-PLSA-LDA (Kataria, et al., 2010),
 - Citation Context Based (He, 2010; He, 2011)

- None Content Based
 - Collaborative filtering (McNee, et al., 2002).
- Content Based
 - Feature Based (Strohman, et al., 2007; Bethard and Jurafsky, 2010)
 - Topic Model based recommendation: cite-PLSA-LDA (Kataria, et al., 2010),
 - Citation Context Based (He, 2010; He, 2011)

- None Content Based
 - Collaborative filtering (McNee, et al., 2002).
- Content Based
 - Feature Based (Strohman, et al., 2007; Bethard and Jurafsky, 2010)
 - Topic Model based recommendation: cite-PLSA-LDA (Kataria, et al., 2010),
 - Citation Context Based (He, 2010; He, 2011)

- None Content Based
 - Collaborative filtering (McNee, et al., 2002).
- Content Based
 - Feature Based (Strohman, et al., 2007; Bethard and Jurafsky, 2010)
 - Topic Model based recommendation: cite-PLSA-LDA (Kataria, et al., 2010),
 - Citation Context Based (He, 2010; He, 2011)

- None Content Based
 - Collaborative filtering (McNee, et al., 2002).
- Content Based
 - Feature Based (Strohman, et al., 2007; Bethard and Jurafsky, 2010)
 - Topic Model based recommendation: cite-PLSA-LDA (Kataria, et al., 2010),
 - Citation Context Based (He, 2010; He, 2011)

- None Content Based
 - Collaborative filtering (McNee, et al., 2002).
- Content Based
 - Feature Based (Strohman, et al., 2007; Bethard and Jurafsky, 2010)
 - Topic Model based recommendation: cite-PLSA-LDA (Kataria, et al., 2010),
 - Citation Context Based (He, 2010; He, 2011)

Translation Model

Many tasks in IR and NLP also adopt the translation model to estimate the relationship between two different objects:

- Question answering (Murdock 2004)
- Sentence retrieval (Murdock and Croft, 2005)
- Tag suggestions (Liu, et al., 2011)

Translation Model

Many tasks in IR and NLP also adopt the translation model to estimate the relationship between two different objects:

- Question answering (Murdock 2004)
- Sentence retrieval (Murdock and Croft, 2005)
- Tag suggestions (Liu, et al., 2011)

Translation Model

Many tasks in IR and NLP also adopt the translation model to estimate the relationship between two different objects:

- Question answering (Murdock 2004)
- Sentence retrieval (Murdock and Croft, 2005)
- Tag suggestions (Liu, et al., 2011)

- Introduction
 - Problem
 - Motivation
 - Related Work
- Citation Translation Model
 - Building Up Dictionary
 - Reference Recommendation Using Dictionary
- 3 Experiment
 - Dataset and Metrics
 - Evaluation

Constructing Parallel Dataset

Suppose a descriptive language with k citation contexts $d = [c_1, \dots, c_k]$ and the reference language $r = [r_1, \dots, r_m]$, We construct the parallel data:

Parallel Data

where $t_{C_i,j}$ is the *j*th term appearing in the *i*th citation context of d and r_i is the *i*th cited paper in r.

Learning Translation Model

Using IBM Model-1 models, the alignment from source language $d = [t_1, \dots, t_l]$ to target language $r = [r_1, \dots, r_m]$ is described by a hidden variable $A = [a_1, \dots, a_m]$.

Translation Model

Maximize
$$\Pr(r|d) = \sum_{a_1=1}^{I} \cdots \sum_{a_m=1}^{I} \prod_{i=1}^{m} \Pr(r_i|t_{a_i})$$

Subject to $\sum_{i=1}^{m} \Pr(r_i|t_j) = 1$ $j = 1, 2, \dots, I$

where $Pr(r_i|t_{a_i})$ is the probability of citing r_i given a term t_{a_i} .

- Introduction
 - Problem
 - Motivation
 - Related Work
- Citation Translation Model
 - Building Up Dictionary
 - Reference Recommendation Using Dictionary
- 3 Experiment
 - Dataset and Metrics
 - Evaluation

Reference Recommendation Using Dictionary

- Translation table between two vocabularies in the form of triplet entries $\langle t_i, r_j, Pr(r_j|t_i) \rangle$
- Given Query $Q = [t_1, \dots, t_l]$, the task is to recommend a list of references $R = [r_1, \dots, r_m]$.

$$\mathsf{Pr}(r_i|\mathcal{Q}) = \sum_{i=1}^{I} \mathsf{Pr}(r_i|t_j) \, \mathsf{Pr}(t_j|\mathcal{Q})$$

Reference Recommendation Using Dictionary

- Translation table between two vocabularies in the form of triplet entries ⟨t_i, r_j, Pr(r_i|t_i)⟩
- Given Query $Q = [t_1, \dots, t_l]$, the task is to recommend a list of references $R = [r_1, \dots, r_m]$.

Ranking Function

$$Pr(r_i|Q) = \sum_{i=1}^{l} Pr(r_i|t_j) Pr(t_j|Q)$$

Reference Recommendation Using Dictionary

- Translation table between two vocabularies in the form of triplet entries ⟨t_i, r_i, Pr(r_i|t_i)⟩
- Given Query $Q = [t_1, \dots, t_l]$, the task is to recommend a list of references $R = [r_1, \dots, r_m]$.

Ranking Function

$$Pr(r_i|Q) = \sum_{j=1}^{l} Pr(r_i|t_j) Pr(t_j|Q)$$

- Introduction
 - Problem
 - Motivation
 - Related Work
- Citation Translation Model
 - Building Up Dictionary
 - Reference Recommendation Using Dictionary
- 3 Experiment
 - Dataset and Metrics
 - Evaluation

Dataset

CiteSeer used used for citation recommendation by Kataria, et al (2010), Tang and Zhang (2009).

CiteULike from November 2005 to January 2008.

Data	D	С	W_{C}	R	N _c
CiteSeer	3,312	26, 597	21,982	2,138	18.01
CiteULike	14,418	40,720	52,631	5,484	8.61

Table: D is the number of documents, C is the number of citation contexts, W_C is the number of unique words in citation contexts, R is the number of unique references, and \bar{N}_C is the number of average citations a paper has.

Metrics

Precision, Recall, F-measure

$$p. = \frac{|R_g \cap R_r|}{R_r}, r. = \frac{|R_g \cap R_r|}{R_g}, f. = \frac{2p. \times r.}{p. + r.}$$

Binary Preference Measure (Bpref)

$$\mathsf{Bpref} = \frac{1}{|R|} \sum_{r \in R} 1 - \frac{|i \text{ ranked higher than } r|}{|S|}$$

Mean Reciprocal Rank (MRR)

$$MRR = \frac{1}{|Q|} \sum_{q \in Q} \frac{1}{rank_q}$$

- Introduction
 - Problem
 - Motivation
 - Related Work
- Citation Translation Model
 - Building Up Dictionary
 - Reference Recommendation Using Dictionary
- 3 Experiment
 - Dataset and Metrics
 - Evaluation

Runtime and Comparing Results

	Tra	ining	Recommending		
	CiteSeer	CiteULike	CiteSeer	CiteULike	
link-LDA	622.490s	20824.61s	1.790s	34.865s	
CRM	-	-	2006.032s	3012.003s	
cite-LDA	594.115s	8949.210s	1.845s	20.154s	
TM	573.891s	866.227s	6287.421s	9972.11s	
CTM	53.372s	71.460 s	1.480s	4.904s	

Table: Runtime on CiteSeer and CiteULike dataset.

	Cite	Seer	CiteULike	
	Bpref	MRR	Bpref	MRR
link-LDA	0.064	0.028	0.027	0.013
CRM	0.097	0.238	0.054	0.072
cite-LDA	0.459	0.285	0.260	0.143
TM	0.422	0.288	0.393	0.285
CTM	0.645	0.529	0.627	0.467

Table: Bpref and MRR metrics on CiteSeer and CiteULike dataset with 20 recommended paper.

Comparing Results

Figure: Precision, recall and F-measure of different methods on CiteSeer dataset with recommended citations range from 1 to 20.

Comparing Results

Figure: Precision, recall and F-measure of different methods on CiteULike dataset with recommended citations range from 1 to 20.

Contribution

- We propose to represent the cited papers by unique IDs,regarding them as "words" in a novel language, and then use translation model to estimate the translation probability of a ID given citing words.
- CTM increase the precision, recall and f-measure by at least 5% to 10%, respectively, compared with the state-of-the-art approaches.
- On large datasets, CTM runs at least 100 times faster in the training stage and 5 to 600 times faster in the recommending stage.

Contribution

- We propose to represent the cited papers by unique IDs,regarding them as "words" in a novel language, and then use translation model to estimate the translation probability of a ID given citing words.
- CTM increase the precision, recall and f-measure by at least 5% to 10%, respectively, compared with the state-of-the-art approaches.
- On large datasets, CTM runs at least 100 times faster in the training stage and 5 to 600 times faster in the recommending stage.

Contribution

- We propose to represent the cited papers by unique IDs,regarding them as "words" in a novel language, and then use translation model to estimate the translation probability of a ID given citing words.
- CTM increase the precision, recall and f-measure by at least 5% to 10%, respectively, compared with the state-of-the-art approaches.
- On large datasets, CTM runs at least 100 times faster in the training stage and 5 to 600 times faster in the recommending stage.

Q&A

Thank you!

RefSeer

http://refseer.ist.psu.edu/