Network Security

8. Digital Signatures

Digital Signatures

RQ

- have looked at message authentication
 - o but does not address issues of lack of trust
- digital signatures provide the ability to:
 - o verify author, date & time of signature
 - authenticate message contents
 - o be verified by third parties to resolve disputes
- hence include authentication function with additional capabilities

Digital Signature Properties

- must depend on the message signed
- must use information unique to sender
 - o to prevent both forgery and denial
- must be relatively easy to produce
- must be relatively easy to recognize & verify
- be computationally infeasible to forge
 - o with new message for existing digital signature
 - o with fraudulent digital signature for given message
- be practical save digital signature in storage

RQ

Digital signature approaches

- A variety of approaches has been proposed for the digital signature function.
- These approaches fall into two categories
 - Direct Digital Signature

RQ

Arbitrated Digital Signature

·

Direct Digital Signatures

- involve only sender & receiver
- assumed receiver has sender's public-key
- digital signature made by sender signing entire message or hash with private-key
- can encrypt using receivers public-key
- important that sign first then encrypt message & signature

RQ

security depends on sender's private-key

Direct Digital Signatures

- Problems with direct signatures:
 - Validity of scheme depends on the security of the sender's private key
 sender may later deny sending a certain message.
 - Private key may actually be stolen from X at time T, so timestamp may not help.

RQ

Arbitrated Digital Signatures

- involves use of arbiter A
 - o validates any signed message
 - o then dated and sent to recipient
- requires suitable level of trust in arbiter
- can be implemented with either private or public-key algorithms
- arbiter may or may not see message

RQ

Digital Signature Standard (DSS)

- US Govt approved signature scheme
- designed by NIST & NSA in early 90's
- published as FIPS-186 in 1991
- revised in 1993, 1996 & then 2000
- uses the SHA hash algorithm

RQ

DSS is the standard, DSA is the algorithm

.

Digital Signature Algorithm (DSA)

- creates a 320 bit signature
- with 512-1024 bit security
- smaller and faster than RSA
- a digital signature scheme only
- security depends on difficulty of computing discrete logarithms

RQ

Summary

- have discussed:
 - digital signatures
 - o digital signature algorithm and standard

2