General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CF-134875) RESULTS OF ACOUSTIC TESTING OF THE JT8D-1(9 REFAN ENGINES (Pratt and Whitney Aircraft) 369 p HC \$10.50

N76-13089

CSCL 20A

Unclas G3/07 02994

RESULTS OF
ACOUSTIC TESTING
OF
THE JT8D-109 REFAN ENGINES

By

E. A. Burdsall, F. P. Brochu, V. M. Scaramella

PRATT & WHITNEY AIRCRAFT
DIVISION OF UNITED TECHNOLOGIES CORPORATION

November 1975

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center Contract NAS3-17840

1. Report No. NASA CR-134875	2. Government Accession	on No.	3. Recipient's Catalog I	No.
. Title and Subtitle	<u> </u>		5. Report Date	
RESULTS OF ACOUSTIC TESTIN	G OF THE JT8D-1	09 REFAN	November 197	
ENGINES			8, Performing Organiza:	tion Code
7. Author(s)			8. Performing Organizat	ion Report No.
E. A. Burdsall, F. P. Brochu, V. M.	Scaramella		PWA-5298	
		1	O. Work Unit No.	
9. Performing Organization Name and Address		_		
Pratt & Whitney Aircraft		1	1. Contract or Grant N	lo.
Division of United Technologies Co	грогаціон		NASA3-17840	
East Hartford, Conn. 06108		1	3. Type of Report and	Period Covered
12. Sponsoring Agency Name and Address			Contractor Rep	ort
National Aeronautics and Space Ad	ministration	<u> </u>	4 Sponsoring Agency	
Washington, D. C. 20546				
15. Supplementary Notes				
Project Manager, Robert W. Schro				
V/STOL and Noise Division, NAS.	A-Lewis Research Co	enter, Cleveland, Ohi	o 44135	
16. Abstract	·			
facility for eight engine/acoustic treated JT8D-109 showed reduction setting.	ns of 6 PNdB at tak	teoff, and 11 PNdB at	i a typical approa	ch power
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
JT8D Quiet Engine				
Single Stage Fan		UNCLASSIFIED -	- UNLIMITED	
Acoustic Treatment				
Jet Noise Level, Fan Noise Level]		
19. Security Classif. (of this report)	20. Security Classif. (c	of this paga)	21. No. of Pages	22. Price*
Unclassified	Unclassified		369	I

^{*} For sale by the National Technical Information Service, Springfield, Virginia 22151

TABLE OF CONTENTS

			Page No.
I.	SUMMA	ARY	1
11.	INTRO	DUCTION	2
III.	BACKO	GROUND	3
IV.	A. B. C. D.	DESCRIPTION Test Configurations Outdoor Noise Test Facility Data Acquisition System Data Reduction System Test Sequence	8 8 10 11 13 14
V.	RESUL A. B. C. D. E. F. G. H.	Comparison With Baseline JT8D Engine Effect of Fan Duct Treatment Effect of Treatment Between the Inlet Guide Vane and the Fan Rotor Effect of McDonnell Douglas Inlet Treatment Effect of McDonnell Douglas Tailpipe Treatment Internal Traverses Internal Core Engine Meas trements Component Noise	15 15 16 18 19 20 21 22 25
VI.	CONC	LUSIONS	31
APPI APPI	ENDIX B	Measured Acoustic Data Predicted Acoustic Data List of Symbols	195 337 361 365
רסזכז	יודוו ופופי	NI LICT	367

INDEX OF TABLES

Table	Title	Page No.
I	Engine Cycle Comparisons	5
II	Geometry Changes Between the JT8D-9 and JT8D-109 Engines	6
III	Performance Comparison	8
IV	JT8D-109 Configurations Tested	9
V	Microphone Locations Recorded	14
VI	Summary of 200 Ft. Sideline Maximum Perceived Noise Levels	17

PRECEDING PAGE BLANK NOT FILMED

PRECEDING PAGE BLANK NOT FILMED

INDEX OF FIGURES

Figu	re <u>Title</u>	Page
1	Airline Fleet Composition, J10544-15	32
2	Effect of Bypass Ratio on Jet Exhaust Noise	33
3	Comparison of Current JT8D Engine and JT8D-100 Series Refanned Engine, SS-19345A	34
4	Effect of Cycle Changes on Jet Velocity	35
5	Effect of Inlet Guide Vanes on Noise Levels \sim JT3D-9 Rig, 200 Ft. Sideline, Hardwall Noise Comparison	36
6a	JT8D-109 Fan Duct Acoustic Treatment	37
6b	JT8D-109 Turbofan Engine Aft Attenuation Spectrum \sim Approach Thrust	38
6c	JT8D-109 Turbofan Engine Predicted Aft Attenuation Spectrum ~ Approach Thrust	39
7	JT8D-109 Inlet Acoustic Treatment	40
8	JT8D-109 Tailpipe Acoustic Treatment	41
9	JT8D-109 Engine Performance ~ Low Rotor Speed	42
10	JT8D-109 Engine Performance ~ Total Airflow	43
11	JT8D-109 Engine Performance ~ Fan Pressure Ratio	44
12	JT8D-109 Engine Performance ~ Engine Jet Velocity	45
13	JT8D-109 Engine Performance ~ Fan Duct Jet Velocity	4€
14	JT8D-109 Internal Acoustic Instrumentation Locations	47
15	Outdoor Noise Test Facility, X-314, Showing Location of Pole Microphones, CN-39419	48
16	Outdoor Noise Test Facility, X-314, Showing Location of Ground Microphor CN-46052	nes, 49
17	Ground Microphone Installation, CN-39174	50
18	JT8D-109 Inlet Acoustic Traverse Probe, CN-42771	51

Figure		Page
19	Outdoor Noise Test Facility, X-314, Meteorological Station, CN-39812	52
20	Acoustic Data Recording Console, CN-39423	53
21	P&WA Standards Laboratory Microphone Calibration System, XPN-39349	54
22	Record/Reproduce and Analysis System, J8458-14	55
23	One Third Octave Band Acoustic Analysis Console, XPN-46960	56
24	Narrowband Acoustic Analysis Console, CN-39822	57
25	Acoustic Computer Operations Flow Chart, 73-4206	58
26	Comparison of Peak Aft PNdB Levels of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle	i 61
27	Comparison of PNdB Directivity of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle ~ Approach Power	62
28	Comparison of PNdB Directivity of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle ~ Cutback Power	63
29	Comparison of PNdB Directivity of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle ~ Takeoff Power	64
30	Comparison of Peak Aft OASPL Levels of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle	65
31	Comparison of OASPL Directivity of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle ~ Cutback Power	66
32	Aft Quadrant Spectral Comparison of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle ~ Cutback Power	67
33	Aft Quadrant Spectral Comparison of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle ~ Takeoff Power	68
34	Comparison of Peak Inlet PNdB Levels of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle	69
35	Inlet Quadrant Spectral Comparison of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle ~ Approach Power	70

Figure		Page
36	Comparison of Current JT8D Engine and Refanned JT8D-109 Engine, Inlet Quadrant	71
37	One-Third Octave Band Aft Quadrant Attenuation Due to Fan Duct Treatment \sim Approach Power	72
38	One-Third Octave Band Aft Quadrant Attenuation Due to Fan Duct Treatment ~ Cutback Power	73
39	One-Third Octave Band Aft Quadrant Attenuation Due to Fan Duct Treatment ~ Takeoff Power	74
40	One-Third Octave Band Attenuation of Blade Passage Frequency Tone (1F1H) Due to Fan Duct Treatment ~ Approach Power	75
41	Effect of Fan Duct Treatment on Measured Noise Levels at Angle of Peak Aft Noise	76
42	Effect of Fan Duct Treatment on Measured Noise Levels at Angle of Peak Aft Noise Compared to Predicted Noise Levels	77
43	JT8D-109 Inlet Narrowband Spectral Comparison Showing Effect of Engine Acoustical Treatment ~ Cutback Power	78
44	JT8D-109 Inlet Narrowband Spectral Comparison Showing Effect of Engine Acoustical Treatment ~ Cutback Power	78
45	JT8D-109 Inlet Narrowband Spectral Comparison Showing Effect of Engine Acoustical Treatment ~ Cutback Power	79
46	JT8D-109 Inlet Narrowband Spectral Comparison Showing Effect of Engine Acoustical Treatment ~ Takeoff Power	79
47	Inlet Quadrant One-Third Octave Band Attenuation Due to Acoustical Treatment Between IGV and Fan ~ Cutback Power	80
48	Inlet Quadrant One-Third Octave Band Attenuation Due to Acoustical Treatment Between IGV and Fan ~ Takeoff Power	81
49	Comparison of Predicted and Measured Attenuation Due to Acoustical Treatment Between IGV and Fan ~ Cutback Power	82
50	Comparison of Predicted and Measured Attenuation Due to Acoustical Treatment Between IGV and Fan ~ Takeoff Power	83
51	Effect of Acoustical Treatment Between IGV and Fan on Peak Inlet PNdB	84

Figure	Title	Page
52	Effect of Acoustical Treatment Between IGV and Fan on Peak Inlet PNdB Directivity - Cutback Power	85
53	Effect of Acoustical Treatment Between IGV and Fan on Inlet Spectra Cutback Power	86
54	Effect of Treated Inlet and Noise Suppression Tube on Peak Inlet Noise Level	87
55	Effect of Treated Inlet and Noise Suppression Tube on Inlet Noise Level \sim Approach Power, 30° Angle	88
56	Effect of Treated Inlet and Noise Suppression Tube on Inlet Noise Level \sim Approach Power, 50° Angle	89
57	Effect of Treated Inlet and Noise Suppression Tube on Perceived Noise Level Directivity ~ Approach Power	90
58	Effect of Treated Inlet and Noise Suppression Tube on Perceived Noise Level Directivity ~ Takeoff Power	91
59	Effect of Treated Inlet and Noise Suppression Tube on Inlet Noise Level ~ Takeoff Power, 30° Angle	92
60	Effect of Treated Inlet and Noise Suppression Tube on Inlet Noise Level ~ Takeoff Power, 50° Angle	93
61	Effect of Treated Inlet and Noise Suppression Tube on Inlet Noise Level 7 Takeoff Power, 70° Angle	94
62	Effect of Tailpipe Treatment on Narrowband Spectra \sim Approach Power, 100° Angle	95
63	Effect of Tailpipe Treatment on Narrowband Spectra \sim Approach Power, 120° Angle	96
64	Effect of Tailpipe Treatment on Narrowband Spectra \sim Approach Power, 140° Angle	97
65	Art Quadrant ~ One-Third Octave Band Attenuation Due to Tailpipe Treatment ~ Approach Power	98
66	Aft Quadrant ~ One-Third Octave Band Attenuation Due to Tailpipe	99

Figure	Title	Page
67	Aft Quadrant ~ One-Third Octave Band Attenuation Due to Tailpipe Treatment ~ Takeoff Power	100
68	Effect of Tailpipe Treatment on Peak Aft Quadrant PNdB	101
69	Effect of Inlet Noise Suppression Tube on Treated Tailpipe Aft Quadrant PNdB ~ Approach Power	102
70	Effect of Inlet Noise Suppression Tube on Treated Tailpipe Aft Quadrant PNdB ~ Cutback Power	103
71	Effect of Inlet Noise Suppression Tube on Treated Tailpipe Aft Quadrant PNdB ~ Takeoff Power	104
72	Radial Distribution of Blade Passage Frequency Tone in Inlet	105
73	Inlet Narrowband Spectra ~ Approach Power, Probe 0 in. from O. D.	106
74	Inlet Narrowband Spectra ~ Approach Power, Probe 2.2 In. from O. D.	107
75	Inlet Narrowband Spectra ~ Approach Power, Probe 4.4 In. from O. D.	108
76	Inlet Narrowband Spectra ~ Approach Power, Probe 6.6 In. from C. D.	109
77	Inlet Narrowband Spectra ~ Approach Power, Probe 8 In. from O. D.	110
78	Inlet Narrowband Spectra ~ Approach Power, Probe 8.7 In. from O.D.	111
79	Inlet Narrowband Spectra ~ Approach Power, Probe 10.2 In. from O.D.	112
80	Inlet Narrowband Spectra ~ Approach Power, Probe 12.4 In. from O. D.	113
81	Inlet Narrowband Spectra ~ Approach Power, Probe 14.6 In. from O. D.	114
82	Inlet Narrowband Spectra ~ Approach Power, Probe 16.7 In. from O.D.	115
83	Inlet Narrowband Spectra ~ Cutback Power, Probe 0 In. from O.D.	116
84	Inlet Narrowband Spectra ~ Cutback Power, Probe 4.4 In. from O.D.	117
85	Inlet Narrowband Spectra ~ Cutback Power, Probe 8 In. from O. D.	118
86	Inlet Narrowband Spectra ~ Cutback Power, Probe 8.7 In. from O.D.	110

Figure	<u>Title</u>	Page
87	Inlet Narrowband Spectra ~ Cutback Power, Probe 12.4 In. from O. D.	120
88	Inlet Narrowband Spectra ~ Cutback Power, Probe 16.7 In. from O. D.	121
89	Inlet Narrowband Spectra ~ Takeoff Power, Probe 0 In. from O. D.	122
90	Inlet Narrowband Spectra ~ Takeoff Power, Probe 4.4 In. from O. D.	123
91	Inlet Narrowband Spectra ~ Takeoff Power, Probe 8 In. from O. D.	124
92	Inlet Narrowband Spectra ~ Takeoff Power, Probe 8.7 In. from O. D.	125
93	Inlet Narrowband Spectra ~ Takeoff Power, Probe 12.4 In. from O. D.	126
94	Inlet Narrowband Spectra ~ Takeoff Power, Probe 16.7 In. from O. D.	127
95	Narrowband Analysis of Far Field Data ~ Approach Power	128
96	Narrowband Analysis of Far Field Data ~ Below Approach Power	129
97	Narrowband Analysis of Far Field Data ~ Cutback Power	130
98	Fan Duct Narrowband Spectra ~ Approach Power, Probe 0.24 In. from O. D.	131
99	Fan Duct Narrowband Spectra ~ Approach Power, Probe 1.8 In. from O. E.). 132
100	Fan Duct Narrowband Spectra ~ Approach Power, Probe 3.6 In. from O. I). 133
101	Fan Duct Narrowband Spectra ~ Approach Power, Probe 5.4 In. from O. D.). 134
102	Fan Duct Narrowband Spectra ~ Approach Power, Probe 7.5 In. from O. I). 135
103	Fan Duct Narrowband Spectra ~ Cutback Power, Probe 0.24 In. from O. I). 136
104	Fan Duct Narrowband Spectra ~ Cutback Power, Probe 3.6 In. from O. D.	137
105	Fan Duct Narrowband Spectra ~ Cutback Power, Probe 7.5 In. from O. D.	138
106	Fan Duct Narrowband Spectra ~ Takeoff Power, Probe 0.24 In. from O. D.). 139

Figure	Title	Page
107	Fan Duct Narrowband Spectra ~ Takeoff Power, Probe 3.6 In. from O. D.	140
108	Fan Duct Narrowband Spectra ~ Takeoff Power, Frobe 7.5 In. from O. D.	141
109	Tailpipe Noise Spectra ~ Kulite Transducer	142
110	Tailpipe Noise Spectra ~ Kulite Transducer	143
111	Splitter Noise Spectra ~ Kulite Transducer	144
112	Combustor Noise Spectra ~ Kulite Transducer	145
113	Cross Correlation of Tailpipe Kulite with Far Field Microphone (120°) \sim Approach Power	146
114	Cross Correlation of Tailpipe Kulite with Far Field Microphone (120°) \sim Takeoff Power	147
115	Cross Correlation of Splitter Kulite with Far Field Microphone (120°) \sim Approach Power	148
116	Cross Correlation of Splitter Kulite with Far Field Microphone (120°) \sim Takeoff Power	149
117	Cross Correlation of Combustor Kulite with Far Field Microphone (120°) \sim Approach Power	150
118	Cross Correlation of Combustor Kulite with Far Field Microphone (120°) ~ Takeoff Power	151
119	Typical Least Squares Curve Fit Through Measured Inlet Fan Noise Data	152
120	Typical Approach Power Aft Quadrant Narrowband Spectra Showing Fan and Turbine Noise Components	153
121	Typical Least Squares Curve Fit Through Aft Fan Noise Data	154
122	Turbine Noise Component \sim Peak 1/3 Octave Band Level as a Function of Observed Rotor Speed	155
123	Turbine Noise Component Directivity	156
124	Turbine Noise Component Spectrum	157

_	Figure	Title	Page
	125	Jet Noise Component Spectra	158
	126	Jet Noise Component Spectra Compared with Model Jet Data	159
	127	Jet Noise Component Spectra Compared with SAE Prediction	160
	128	Jet Noise Component Peak Frequency as a Function of Primary Jet Velocity	161
	129	Jet Noise Component Peak Level as a Function of Primary Jet Velocity	162
	130	Jet Noise Component Directivity Compared with Model Test Data	163
	131	Core Engine Noise Component Spectra	164
	132	Core Engine Noise Component Peak Level	165
	133	Core Engine Noise Component Directivity	166
	134	Comparison of Component Noise Levels to Measured Data where Core Engine Noise is Dominant	167
	135	Comparison of Component Noise Levels to Measured Data where Core and Jet Noise are Comparable	168
	136	Comparison of Component Noise Levels to Measured Data where Jet Noise is Dominant	e 169
	137	Low Frequency Component Noise Levels Compared to Measured Data	170
	138	Summation of Component Noise Levels Compared to Measured Data ~ 3698 N1, 50° Angle	171
	139	Summation of Component Noise Levels Compared to Measured Data \sim 3698 N1, 60° Angle	172
	140	Summation of Component Noise Levels Compared to Measured Data ~ 3698 N1, 70° Angle	173
	141	Summation of Component Noise Levels Compared to Measured Data \sim 3698 N1, 100° Angle	174
	142	Summation of Component Noise Levels Compared to Measured Data ~	175

Figure	Title	Page
143	Summation of Component Noise Levels Compared to Measured Data ~ 3698 N1, 140° Angle	176
144	Summation of Component Noise Levels Compared to Measured Data ~ 5208 N1, 60° Angle	177
145	Summation of Component Noise Levels Compared to Measured Data \sim 5208 N1, 70 $^{\circ}$ Angle	178
146	Summation of Component Noise Levels Compared to Measured Data ~ 5208 N1, 100° Angle	179
147	Summation of Component Noise Levels Compared to Measured Data ~ 5208 N1, 120° Angle	180
148	Summation of Component Noise Levels Compared to Measured Data ~ 5208 N1, 140° Angle	181
149	S ummation of Component Noise Levels Compared to Measured Data \sim 6397 N1, 50° Angle	182
150	Summation of Component Noise Levels Compared to Measured Data ~ 6397 N1, 60° Angle	183
151	Summation of Component Noise Levels Compared to Measured Data \sim 6397 N1, 70° Angle	184
152	Summation of Component Noise Levels Compared to Measured Data \sim 6397 N1, 100° Angle	185
153	Summation of Component Noise Levels Compared to Measured Data \sim 6397 N1, 120° Angle	186
154	Summation of Component Noise Levels Compared to Measured Data ~ 6397 N1, 140° Angle	187
155	Summation of Component Noise Levels Compared to Measured Data \sim 7433 N1, 50° Angle	188
156	Summation of Component Noise Levels Compared to Measured Data \sim 7433 N1, 60° Angle	189
157	Summation of Component Noise Levels Compared to Measured Data ~ 7433 N1.70° Angle	190

Figure	Title	Page
158	Summation of Component Noise Levels Compared to Measured Data \sim 7433 N1, .00° Angle	191
159	Summation of Component Noise Levels Compared to Measured Data ~ 7433 N1, 120° Angle	192
160	Summation of Component Noise Levels Compared to Measured Data ~ 7433 N1, 140° Angle	193

I. SUMMARY

A program was undertaken by Pratt & Whitney Aircraft, under sponsorship of the National Aeronautics and Space Administration, to demonstrate that the JT8D engine could be modified to significantly reduce engine noise without affecting current JT8D powered aircraft performance and the demonstrated reliability and maintainability of the JT8D engine. The resulting engine, designated the JT8D-109, was designed to reduce jet noise levels by 6-8 PNdB at takeoff power without increasing noise levels generated by the fan.

To achieve the program objectives, the two stage fan of the JTSD engine was replaced by a larger diameter single stage fan. Lower jet exhaust velocities were thereby achieved because of the effect of the larger fan on the engine cycle. Advanced acoustical design features were incorporated in the larger single stage fan to minimize noise generation by the fan, and extensive use was made of acoustic treatment to line the fan discharge ducts.

Sea level static noise levels were measured on an outdoor noise test facility for eight different engine/acoustic treatment configurations. The noise levels measured for these configurations were compared with the noise levels of the baseline JT8D-9 engine. The fully treated JT8D-109 engine demonstrated 6 PNdB noise reduction at take off power, and 11 PNdB reduction at a typical approach power setting.

II. INTRODUCTION

The JT8D engine was first introduced into commercial service in 1964 and is used to power the Boeing 727 and 737 airplanes and the McDonnell Douglas DC-9 airplane. Since its introduction into commercial service, over 7000 JT8D engines have been delivered. As illustrated by Figure 1, about 55% of the jet transport airplanes in the U. S. commercial fleet are powered by JT8D engines, these airplanes being used primarily on short and intermediate range domestic routes. Because of the large number of airplanes and their assignment to routes that support several operations per day, a high percentage of the takeoffs and landings over U.S. communities are made by JT8D powered aircraft. Consequently, reductions in noise from the JT8D engine would contribute to significant improvements in the noise levels of communities near airports.

To demonstrate that the JT8D engine could be modified to significantly reduce noise generation without affecting other essential engine performance or durability characteristics, a coordinated program involving the engine and airplane manufacturers was undertaken. Pratt & Whitney Aircraft designed the modifications to the basic engine and conducted performance and static noise tests; McDonnell Douglas conducted fligh ests with a DC-9-30 aircraft; Boeing conducted static tests to determine compatibility with the 727 installation.

Design studies were initiated at Pratt & Whitney Aircraft in August 1972 to establish the extent to which advanced noise technology could be applied to the JT8D engine. The key design feature was the replacement of the existing two stage fan with a new, larger diameter, single stage fan. Hence, the refanned engine (designated as the JT8D-160 series) had an increased bypass ratio that allowed a reduction in jet exhaust noise. The increase in bypass ratio was limited by the engine low rotor shaft torque carrying capabilities and the work extraction capability of the low pressure turbine. Thus, this upper limit of bypass ratio became a primary design constraint and limited the potential jet noise reduction of the refanned engine to 6-8 PNdB at takeoff power. Although these constraints placed limits on the noise suppression that theoretically could be achieved, adherence to them insured that the refanned engine would be compatible with 727, 737 and DC-9 aircraft installations, and that costs associated with engine conversion would be minimized.

Detailed acoustics and performance tests were performed at P&WA using JT8D-109 engines, which are the JT8D-100 series refan derivatives of the production JT8D-9 engines. The purpose of this report (CR-134875) is to summarize the results for the static noise tests which were conducted on an outdoor noise test facility at P&WA. The results of the performance tests are summarized in Ref. 1 (CR-134874).

III. BACKGROUND

The basic JT8D engine design was completed over 11 years ago. Because the JT8D engine employed a turbofan cycle having a bypass ratio of about one, its jet exhaust noise levels were significantly lower than those of the JT8 (J52 military designation) turbojet engine from which it was derived. With the relatively low bypass ratio of one, however, the moderately high velocity of the core engine jet exhaust resulted in jet exhaust rumble being the dominant noise factor for takeoff operation.

After the JT8D engine was introduced into service, the development of noise technology progressed as a result of a variety of government and industry sponsored programs that addressed both jet noise and fan generated noise. Dramatic reductions were achieved in jet exhaust noise levels by the introduction of the high bypass ratio JT9D engine. Figure 2 shows the relationship of reduction in jet noise with increase in engine bypass ratio. Also incorporated in the JT9D engine was a single stage fan having advanced acoustic design features and sound absorbing liners in the engine inlet, discharge ducts and tailpipe. Research conducted by NASA under the Quiet Engine Program (Ref. 2) provided further evidence of the acoustic benefits of high bypass ratio engines installed in treated nacelles. As a result of this work, noise reduction technology developed that could be applied to the design of quieter airplane engines.

In the case of the JT8D engine, fan duct and nacelle liners were beneficial in reduction of fan-generated noise. The reduction of jet noise required modification to the basic engine cycle. Several means are theoretically available to reduce the jet velocity of a less-than-perfectly mixed common-flow exhaust turbofan engine. These may be illustrated by considering the total thrust as the sum of theoretical bypass stream thrust and core stream thrust. (This simplification ignores the partial mixing which produces a gradient layer of air between the higher velocity core stream and the lower velocity bypass stream, for which the total thrust equation is modified when performing actual mixed stream thrust calculations.) At constant thrust, the three general paths that result in decreased primary stream jet velocities, indicated by this simplified illustration, are: increasing core stream airflow, increasing bypass stream jet velocity, or increasing bypass stream airflow.

The retrofit concept involved selecting a path that would require the least total number of parts to be changed. Due to the complexity of the core engine, it was apparent that the configuration changes required to reduce core jet velocity should be restricted to the fan section and bypass ducts. Thus, increasing core stream airflow was ruled out because core compressor modifications would be required. It would also have required reduced turbine temperature to achieve the core jet velocity reduction. This is inconsistent with the fact that the maximum capability of the core engine with respect to pressure, flow, and temperature levels must be used to maintain an efficient, competitive engine.

The selection of increased bypass stream airflow over increased bypass stream jet velocity involved evaluating the characteristics of the various types of noise produced by the engine components and the available means of reducing these noise levels. Increasing bypass stream jet velocity can only be accomplished by increasing the fan pressure ratio which would then increase fan generated turbomachinery noise. While fan noise could be minimized by the proper blade and vane spacing and by the proper choice of the number of blades and vanes in each row, increasing bypass stream jet velocity was not feasible because the single stage fan would not have the necessary pressure rise capability. The addition of a two stage fan for the modified engine would result in an unacceptable increase in engine length due to the large axial spacing required.

A single stage fan with a larger diameter to increase bypass stream airflow was selected. Cross-section drawings of the JT8D-9 and JT8D-109 engines are illustrated in Figure 3. The effects on core engine jet velocity of bypass ratio and fan pressure ratio for the JT8D engine are shown in Figure 4. The increase in fan airflow required more turbine work extraction, which results in lower core engine jet velocity at a given thrust. To minimize the diameter increase and tip speed, the fan was designed for the highest levels of flow per unit area consistent with maintaining high efficiency levels in the range of cruise operation. The design pressure ratio was selected to maintain current stability levels. Bypass airflow was limited by engine low rotor shaft torque carrying capabilities and work extraction capability of the current three stage low pressure turbine.

The fan rotor diameter consistent with the airflow limits would have produced unacceptable stress levels in the rotor if operated at the current JT8D low rotor speed levels. Thus, it was necessary to slow the low rotor down to a speed consistent with acceptable fan stress levels. Although the lower rotor speeds could be accommodated within the new fan rotor design, compensation for the reduced core engine airflow pumping capability was required. Two new core low pressure compressor stages were required to maintain the current JT8D core airflow levels. At the inlet airflow limits used for the cycle selection studies, the torque levels were within the capability of an improved low shaft, and the low pressure turbine efficiency levels were acceptable if the available JT8D-1, -7 fourth turbine blade, 4° open relative to the JT8D-9 blade, was used.

The opportunity to redesign the fan allowed several noise reduction features to be exploited more fully than was possible in the two stage fan of the base engine. Elimination of one fan stage resulted in fewer fan noise sources. Axial separation between rotating and stationary blades and vanes was substantially increased in the JT8D-109 fan section, to at least two projected chord lengths of the adjacent upstream airfoil. Axial separation of blade and vane elements has been shown to be an effective means of reducing the generation of pure tone noise generated by the periodic chopping of fan blades through wakes from inlet guide vanes or by periodic impingement of fan blade wakes on downstream airfoils (Refs. 3, 4, 5). The number of fan exit guide vanes downstream of the JT8D-109 fan also was selected to be high enough so that the acoustic modes excited at blade passing frequency would not propagate down the fan duct (Ref. 3).

In the design of the fan section of the JT8D-109 engine, configurations with and without inlet guide vanes were considered. Although aerodynamic and structural designs were simpler with the inlet guide vanes, either configuration could have been successfully employed. Noise considerations were fully explored. Experience from the JT3D and JT8D two stage fans had shown that the major source of pure tone noise was the result of fan blades chopping through wakes from upstream vanes. Because of this experience, inlet guide vanes were omitted from the fans of the quieter high bypass ratio engines such as the JT9D. More recent noise research by Pratt & Whitney Aircraft on a large scale fan research rig (Refs. 5, 6) had shown, however, that properly designed inlet vanes spaced well forward of the rotor would not generate excessive tone noise. Rig test results summarized in Figure 5 showed that the presence of inlet guide vanes did not materially increase either inlet or aft radiated fan noise.

The selected cycle, obtained by a combination of an increased diameter single stage fan with inlet guide vanes, a full length bypass duct, a single common flow exhaust nozzle, and two new core low compressor stages, doubled the amount of bypass air while maintaining current JT8D levels of core engine airflow, pressure rise, and turbine inlet temperature. This cycle provided increased takeoff thrust and reduced cruise fuel consumption when cruise power requirements are high. Cycle information for the JT8D-109 is compared with the JT8D-9 in Table I.

TABLE I
ENGINE CYCLE COMPARISON

Parameter	JT8D-9	JT8D-109
Thrust-lbs	14,500	16,600
Airflow-lbs/sec	319	467
Turbine Inlet Temp °F	1766	1766
Bypass Ratio	1.05	2.00
Fan Pressure Ratio	1.97	1.67
Core Engine Jet Velocity - ft/sec	1766	1446 -
Fan Exhaust Jet Velocity - ft/sec	1150	985

Table II shows the mechanical features of the JT8D-109 compared with those of the JT8D-9 fan, along with pertinent fan performance. Based on the mechanical and aerodynamic design features of the two fans, the JT8D-109 untreated fan was predicted to generate slightly less noise than the JT8D-9 fan, even though it was larger and operated at a high tip speed. Extensive use was made of acoustic treatment in the refanned JT8D engine and nacelle installation.

TABLE II
GEOMETRY CHANGES BETWEEN THE JT8D-9
AND JT8D-109 ENGINES

Parameter	JT8D-9	JT8D-109
Fan Dia ~ in	40.5	49,2
No. of IGV	19	23
No. of Fan Blades	27/40	34
No. of FEGV	56	84
No. of First Stators	51	56
Spacing/Chord Ratio ⁽¹⁾ IGV/Fan ⁽²⁾ Fan/FEGV ⁽²⁾ Fan/Stator 1 ⁽³⁾	0.71 0.395 0.23	1.95 1.6 0.690
Fan Pressure Ratio	1.97	1.67
Tio Speed	1416	1600

- (1) Axial spacing/true chord of upstream airfoil
- (2) Uses tip chord
- (3) Uses chord @ 50% span

Based on successful applications of acoustic treatment to the recently produced 747, DC-10 and L-1011 airplanes, acoustic liners were designed and installed in the JT8D-109 engine and nacelle. Locations and details of the engine acoustic treatment are shown in Figure 6a. The engine includes treatment on the fan duct inner and outer walls at the locations shown, and within the engine fan section immediately upstream and downstream of the fan rotor. The treatment immediately upstream of the fan blades between the fan rotor

and the inlet guide vanes was designed to attenuate the noise associated with the forward propagation out the inlet duct of shock waves of a transonic rotor. This noise is known as combination tone noise or multiple pure tone noise. The engine treatment downstream of the fan is comprised of perforated sheet, exposed to the flow path and bonded to a cellular honeycomb structure, which is in turn bonded to an impervious septum that serves as the duct pressure vessel wall.

Design of the treatment was based on an analytical procedure developed by Pratt & Whitney Aircraft. A target attenuation spectrum along with duct geometry, length and location of treatment, and flow Mach number were used as input to the lining design program.

This target attenuation spectrum for the JT8D-109 engine was obtained from noise predictions and is shown in Figure 6b. This target concept defines the frequency range to which the treatment should be tuned for maximum PNdB reduction. The computer program first calculated the effective treatment length to duct height ratio from the input geometry. A peak attenuation was then computed as a function of the effective length to height ratio and duct Mach number, assuming optimum backing depths and facing sheet impedance. The optimum backing depth was then selected based on the frequency of peak attenuation, length to height ratio and annular distance between treatments (effective duct height). The attenuation spectrum was then calculated and compared with the design target attenuation spectrum. Iterations were than carried out until a satisfactory solution was obtained. Figure 6c shows the resulting predicted attenuation spectrum.

Finally the facing characteristics comprised of percent open area, plate thickness and the hole diameter were determined as funct. so of flow Mach number, duct sound pressure level and backing depth. A description of the treatment design is presented in Ref. 7.

One of the JT8D-109 acoustic tests was run statically with a treated nacelle. This configuration served as a static baseline test for the flight noise tests conducted by McDonnell Douglas on a DC9-30 airplane. The inlet and tailpipe tested statically conformed to the aerodynamic lines and acoustic treatment designs carried out by the aircraft manufacturer. A static inlet bellmouth shape rather than a flight inlet lip was used upstream of the inlet throat to statically simulate the in-flight flow condition. Figures 7 and 8 show schematically the inlet and tailpipe lines and treatment locations. The details of the inlet and tailpipe are also presented. (Other particulars of the nacelle design can be obtained from Ref. 8.)

IV. TEST DESCRIPTION

A. TEST CONFIGURATIONS

Outdoor static noise tests were conducted on two JT8D-109 engines. Engine performance was also evaluated for both JT8D-109 engines to ensure that the engine was operating normally during the noise testing, and to provide the specific engine performance parameters upon which engine component noise levels are dependent. Since noise levels could be affected by the presence of probes in the engine gas path, complete standard performance instrumentation was not installed during the acoustic tests. Only those probes required to ensure proper engine performance, such as turbine exit pressure and temperature probes, were installed.

Table III presents comparisons of design point performance parameters affecting component noise levels for the JT8D-9, JT8D-109 design, and measured performance on the JT8D-109 engines tested for noise. Figures 9 through 13 show the variation in these parameters with engine thrust. (Detailed engine performance is provided in Ref. 1.)

TABLE III
PERFORMANCE COMPARISON

Parameter	JT8D-9 Design Point	JT8D-109 Design Point	JT8D-109 Engine 1	JT8D-109 Engine 2
Thrust, Fn/δ, lbs	14,500	16,600	16,600	16,600
Low Rotor Speed, $N_1/\sqrt{\theta}$, rpm	8,040	7,450	7,226	7,440
Core Engine Jet Velocity, $V_{je}/\sqrt{\theta}$, ft/sec	1,766	1,446	1,500	1,520
Fan Exhaust Jet Velocity $V_{ m jd}/\sqrt{ heta}$, ft/sec	1,150	985	1,002	957
Airflow, Wa $\sqrt{\theta}/\delta$, lbs/sec	319	467	458	468
Fan Pressure Ratio	1.97	1.67	1.71	1.66
Tip Speed, Utip	1,416	1,600	1,551	1,597

Different configurations were tested to evaluate the effectiveness of the engine inlet and tailpipe acoustic treatment, and to determine engine component noise characteristics. A summary of each configuration is presented in Table IV.

The refan engine makes extensive use of sound absorbing liners in the fan duct. In order to evaluate the effectiveness of this treatment a baseline configuration with hardwall fan ducts was tested. These "hardwall" fan ducts were fabricated by applying a thin layer (0.020 in.) of fiberglass over the treatment panels.

As part of the overall NASA Refan Contract, the refan engine was demonstrated in flight using a DC-9-30 airplane. The flight hardware incorporated an acoustic nacelle with treatment in the tailpipe and a contoured inlet that was designed by McDonnell Douglas Corp. An identically treated nacelle was tested statically at P&WA to serve as a static baseline for the McDonnell Douglas flight test. To evaluate the effectiveness of the nacelle treatment statically, a hardwall nacelle configuration was also tested. The hardwall inlet was achieved by applying aluminum foil tape over the treated panels. A hardwall tailpipe was run in place of the treated tailpipe.

TABLE IV

JT8D-109 CONFIGURATIONS TESTED

Test No.	Run No.	Date	Inlet Noise Suppression Tube	Inlet Treat- ment	Fan Duct Treatment	Tailpipe Treat- ment	Engine No.
1	2267	5/2 - 5/6/74	No	Hard	Soft	Hard	1
2	2268	5/7 - 5/8/74	No	Soft	Soft	Hard	1
3	2269	5/14/74	Yes	Soft	Soft	Hard	1
4	2282	12/5/74	No	Soft	Soft 🚁	Soft	2
5	2287	2/20 - 2/28/75	Yes	Soft	Soft	Soft	2
6	2292	3/18 - 3/19/75	Yes	Soft	Soft	Hard	2
7	2294	3/24 - 3/25/75	No	Hard	Soft	Hard	2
8	2295	4/10/75	No	Hard	Hard	Hard	2

Separation of fan noise into inlet and aft components required blocking the radiation of one of these components while measuring the other. This was accomplished by measuring aft noise levels with an inlet noise suppression tube installed. The tube, 16 feet in diameter and 20 feet in length, was successful in blocking inlet radiated fan noise from the far field at angles greater than 30° from the engine inlet centerline.

To assist in defining and locating the source of core engine and turbine noise, several flush mounted Kulite high response transducers were located internally to the engine. Two of these were located one inch upstream of the tailpipe exit plane. Another two probes were installed in the OD wall of the splitter (that separates the fan and primary air flow downstream of the turbine exit vanes) to measure the core engine noise exclusive of any low frequency fan noise contribution. In addition, two Kulites were located in the primary engine OD wall upstream of the turbine exit vanes.

A transducer was also installed in one of the combustors through an available ignitor port. The purpose of this installation was to obtain a true combustion noise spectrum free of any distortion due to transmission through the turbine.

Radial traverses were conducted to determine the fan blade passage tone sound pressure levels in the inlet and fan duct. The locations of these internal microphones are detailed in Figure 14.

B. OUTDOOR NOISE TEST FACILITY

The P&WA X-314 test stand is a full-scale engine outdoor noise test facility located near the east boundary of Rentschler Field, East Hartford, Conn. The X-314 test stand has been designed to evaluate the noise and performance characteristics of turbofan and turbojet engines. The engine is supported by two large "I" beams cantilevered from a vertical opentruss structure in a manner to provide a noise radiation field free of acoustical shadow zones around the engine. Engines are installed with their centerline at a height of approximately 16 feet above the ground.

The test area provides a cleared and carefully graded controlled ground surface with uniform reflective characteristics. This surface extends from the test pad in a semicircle around the engine (arc of approximately 200 foot radius.) The controlled surface consists of a 12 inch deep layer of 1 to 1 1/2 inch size trap rock provided with a drainage system of four-inch perforated pipe to maintain the water table at least 18 inches below the finished surface. A hard smooth asphalt surface exists on the opposite side of the engine covering an area from 90° through 160° within a 150 foot arc.

1. Instrumentation Description

Far Field Microphones

A far field microphone array is permanently located around the engine on an arc of 150 foot radius. The 20 microphones that comprise the array are at angles of 10° through 150°,

being spaced at 10° intervals of arc measured from an engine centerline extending forward from the engine inlet. The microphones are located with the sensing element at a height approximately in the same horizontal plane as the engine centerline. Figure 15 shows an overall picture of the test stand area. An array of ground level microphones is placed over the asphalt surface on the opposite side of the engine from the pole microphones. They are spaced at no greater than 10° intervals along a 150 foot arc, and are used to obtain clear definition of low frequency noise. Figures 16 and 17 are an overall view of the hard surface measurement area and ground level microphone, respectively.

Internal Measurement Transducers

In addition to the far field noise measurements, engine internal noise measurements were obtained in the inlet, fan duct, combustor section, and primary tailpipe. (Figure 14 is a diagram of the internal transducer locations.) The probe-mounted Kulite high response pressure transducers used for these measurements each provided a useable sound pressure level range of from 110 dB to 199 dB with a resonance frequency in excess of 125 kHz; this was 10 times greater than the highest frequency of interest in the test program.

Inlet duct noise measurements were taken with a P&WA inlet traverse probe shown in Figure 18. The inlet, fan duct, and primary tailpipe measurements were made with Kulite transducers, model CQL-080-25. The combustor section measurements were made using a Kulite transducer, model X-CQL-5-200-25d. Those transducers installed in hot areas were protected by Kistler-type 616m water jackets.

2. Atmospheric Measurements and Corrections

Meteorological measurements of wind speed, wind direction, outside air temperature and relative humidity were obtained at a point 175 feet from the engine and at an angle of 60° from the engine forward centerline. All sensors are positioned at a height of 15 feet from ground level (Figure 19). Wind velocity and direction were recorded continuously during each run, while outside air temperature and relative humidity were sensed during each data acquisition period.

(More detailed information on the X-314 stand facility and instrumentation capability is provided in Ref. 9.)

C. DATA ACQUISITION SYSTEM

The acoustic data recording system was housed in a mobile van located adjacent to the test stand area and was designed to accommodate a large number and variety of inputs. The signal conditioning and recording console provides calibration and monitoring instrumentation, switching capability, variable gain signal conditioning amplifiers, and analog magnetic tape recording capability. Calibrations were carried out prior to and after testing to ensure system measurement reliability, to provide appropriate microphone, cable, and system responses, and to provide a known sound pressure level to the system for an acoustic reference point. Figure 20 is a photograph of the acoustic data recording console.

1. Laboratory Calibrations

Acoustic test instrumentation was calibrated and certified under a system published in a Pratt & Whitney Aircraft document titled, "Instrumentation Standards and Procedures". This procedure is applicable to all instruments and transducers which are traceable to the National Bureau of Standards.

Microphones were calibrated on the system shown in Figure 21 by application of an electrostatic actuator to obtain the microphone open circuit sensitivity and frequency response. The calibration data were processed by a computer program that resulted in a printout of one-third octave band corrections.

The B&K Pistonphone, used for field microphone calibrations, was applied to a WE640AA reference microphone bearing a current calibration certificate from the National Bureau of Standards. The output was then compared to the known sensitivity of the reference microphone to establish the output level of the Pistonphone.

The recording/reproduce system was subjected to an end-to-end electronic certification calibration. Recordings were made by inserting a known wide band random signal (white noise) to the system at the point of each microphone output as shown in Figure 22. The signal was provided by a Model 150 Noise Standard manufactured by Signal Research Inc. The Model 150 Noise Standard is an accurate stable source of noise signals over the frequency range of 0 Hz to 40 kHz. The noise is synthesized from basic probabilistic principles, and yields a stable controlled spectral density and amplitude probability density. The unit is calibrated in power and voltage spectral density and provides an output voltage spectral density of 5mV//Hz within ±0.025 dB. The statistical properties of the output are based on values of frequency and voltage that are calibrated by instruments traceable to the National Bureau of Standards, making the generator a standard of audio noise. The recorded results of this output were reproduced and analyzed by the equipment used during the JT8D-109 test program and, when evaluated, provided a system error in decibels by onethird octave band. These errors were reviewed, system repair effected when required, and all errors determined to be within the tolerance of ±1.0 dB, specified in IEC Publication Number 179.

2. Field Calibrations

Immediately prior to and after each series of recordings, an acoustic calibration was performed by applying the B&K Type 4220 Pistonphone (laboratory calibrated and traceable to the National Bureau of Standards) to each microphone, providing a known sinusoidal sound pressure level to the diaphragm for establishing an acoustic reference level.

In addition, broadband random electronic signals were inserted into each channel of each magnetic tape used during testing at the point of microphone extension cable output to determine system frequency response for each data channel. The frequency response of the installed cathode followers and microphone extension cables from the far field array to the recording console was obtained by a point to point sine wave insertion covering the range of measurement of 45 to 11,000 Hz.

3. Application of Calibrations

Except for the system certification with the wide band random signal, the results of the above calibrations were incorporated into the data reduction sequence to provide correction factors. These factors were applied to the data such that the results represent the sound pressure level existing at the point before the introduction of the microphone. By virtue of these calibrations, the accuracy of the resultant data can be stated to be within the error shown by the results of the wide band random certification which, in no case, was permitted to be out of the ± 1.0 dB tolerance specified in IEC Publication 179.

D. DATA REDUCTION SYSTEM

1. One-Trird Octave Band Analysis System

The one-third octave band analyzer system is shown in Figure 23. This system, which is based on a General Radio Co. Type 1921 Real-Time Analyzer, incorporates locally computer-controlled data processing (GR Type 1762-0490 Computer), 70 dB dynamic range, and frequency capability to nearly 100 kHz. The system is a hybrid analog/digital unit incorporating a front-end analog filter with an output to RMS detector circuits. The detector processes the signals from the filters digitally by converting the results to a digital binary form that is then processed by computer to achieve the RMS levels. This averaging method is true integration and may be selected from a choice of nine integration times from 1/8 second to 32 seconds. This output may then be recorded on a local digital recorder for further computer processing. The system analysis speed is such that transient (e.g., probe traversing) as well as stationary data analyses may be performed.

2. Narrow Band Analysis System

The high speed analog/digital hybrid narrow band analysis system is shown in Figure 24. This unit, Federal Scientific Ubiquitous Analyzer, makes use of an input analog to digital converter followed by an analog constant frequency bandwidth filter. The digital memory serves to provide several order of magnitudes of frequency step-up. This results in the data being translated to a much higher frequency regime where a wider bandwidth filter, with its attendant reduction in required sweep time, may process the data in a fraction of that required for real time narrow band analysis. Results are read out digitally with frequency referenced to the input in a manner suitable for recording or direct plotting.

3. Acoustic Computer Operations

A computer program system has been developed to handle and process the data output of the previously described analysis operations. The flow chart in Figure 25 shows the various analysis systems and the associated programs. Each program is denoted by the use of its program number and is described in synopsis form.

E. TEST SEQUENCE

For each of the hardware configurations tested, the engine was operated on a sea level static part power line. Noise data were taken at 13 or 14 different rotor speeds along this operating line. Data repeatability was established by running the majority of these points twice. Two repeat points were obtained at the relatively more important approach, cutback and take-off power settings. The lowest four rotor speed points, although well below approach power, were run to identify the internally generated low frequency core noise.

In order to prevent the necessity of applying extreme weather corrections to the acoustic data and to prevent large discrete frequency noise level fluctuations, the following limitations were placed upon acoustic data acquisition:

- a) wind speed less than 8 miles per hour
- b) relative humidity between 30% and 90%
- c) no precipitation
- d) engine speed variation ±25 RPM
- e) all engine bleeds closed

Table V shows the corrected low rotor speeds run and the type of noise data recorded for each configuration.

TABLE V
MICROPHONE LOCATIONS RECORDED

N	,/ <i>l</i> ē	3000	3700	4300	4800	5200	5350	5500	5650	5800	6100	6400	6800	7200	Τ/0	MAX POWER
DATA POINTS RECORDED		2	2	2	2	3	2	2	2	2	2	3	1	1	3	1
	1	• =	9 1	2	•#	0,0		•		•=	• #	•	• #	• m	%	• • •
	2	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•
	3			•		• =				•		•=			•=	
NO.	4	• E	%	• •	• <u>•</u>	•=	7	•,"	• •	•=	• • • • • • • • • • • • • • • • • • •	%	• #	•	•=	
TEST	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	6	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	7	• =	• •	• <u>•</u>	•=	• =	• E	• = A	•= •	9 E	• I	• E	O.E.	9 E	• E	
	8	•=	• =	• = A	•=	•=	• •	9 E	• =	• <u>*</u>	•=	• E	•=	•=	%	

- FARFIELD POLE
- # FARFIELD GROUND
- ▲ TAILPIPE INTERNAL FLUSH MOUNTED
- INTERNAL RADIAL
 TRAVERSE

V. RESULTS

A. COMPARISON WITH BASELINE JT8D ENGINE

Results of static testing of the JT8D-109 engine with the treated nacelle are compared to data from similar tests on a JT8D-9 hardwall engine. The hardwall JT8D-9 configuration was chosen because it is representative of the majority of JT8D engine installations now in service. Acoustic test results obtained during outdoor testing on eight JT8D-109 engine configurations are presented in Appendix A.

Figure 26 shows the perceived noise level at the angle of aft peak noise at a 200 ft. sideline distance plotted as a function of engine thrust. At low thrust, typical of the approach condition, the aft fan noise has been reduced in the JT8D-109 engine by the acoustic treatment and is about 11 PNdB lower than the JT8D-9 engine at the same thrust. At the higher thrust levels, the significant reduction in jet noise results in the JT8D-109 engine being 8 PNdB quieter than the JT8D-9 engine at the same thrust. At their respective sea level static takeoff rated thrusts, 14,500 lbs for the JT8D-9 and 16,600 lbs for the JT8D-109, the PNdB difference is about 6, which meets the design goal of the refan engine.

Directivity curves are presented in Figures 27, 28 and 29 at thrusts typical of approach, cutback and takeoff for each engine. It is seen that in the aft quadrant significant reductions in noise level exist at all angles and thrust settings.

A plot of overall sound pressure level (OASPL) vs. thrust is presented in Figure 30 for the two engines. At thrusts above 10,000 lbs the OASPL is controlled by the jet noise component. It is seen that at constant thrust the refan engine is between 6.5 and 8 dB lower than the JT8D-9 baseline engine. A directivity plot of OASPL vs. aft angles at a thrust typicial of refan engine cutback power, Figure 31, shows that the largest reduction in noise level (approximately 8 dB) occurs at 140°, the angle of peak jet noise. A one-third octave band spectral plot at the cutback condition at this peak aft angle, Figure 32, shows that both engines exhibit spectral shapes characteristic of jet noise, with the refan being significantly lower in both peak frequency and level. A one-third octave band spectrum for each engine at takeoff thrust is shown in Figure 33, at an angle representative of peak jet noise. It is seen that the refan engine with its lower primary jet velocity has significantly lower jet noise levels.

Noise levels in the inlet quadrant are compared in Figure 34. PNdB at the angle of peak inlet noise is plotted against engine thrust. The lower noise levels of the refan engine at power settings typical of approach power are primarily due to the reductions in fan fundamental blade passage frequency noise achieved with the inlet treatment. A typical one-third octave band spectral comparison is shown in Figure 35. At higher thrusts, the higher tip speed of the refan engine generates more combination tone noise. Although the inlet treatment remains effective, there is also an effect due to the inlet contour itself (Ref. 10). The main effect of the inlet contour is to reduce the levels of combination tone noise that are radiated from the inlet.

Figure 36 is a comparison of the JT8D-9 engine and the JT8D-109 engine configured with a hardwall contoured inlet. Once again perceived noise level at the angle of peak inlet noise is plotted against engine thrust. It is seen that the refan engine is quieter than the JT8D-9 engine over the entire engine operating range.

Table VI summarizes the inlet and aft quadrant perceived noise levels of the JT8D-9 engine; and the three configurations of the JT8D-109, including the hardwall engine with hardwall nacelle, the treated engine with hardwall nacelle, and the treated engine with treated nacelle. The angles of peak levels are also shown.

Comparison of the baseline JT8D-9 and the treated nacelle JT8D-109 refan engine shows that the noise levels of the refan engine are 6 PNdB lower at takeoff thrust, 7 PNdB lower at cutback thrust and 11 PNdB lower at approach power. Table VI also indicates that at takeoff power, both engines are controlled by jet noise, as evidenced by the angle of peak noise being that of a typical jet. The refanned engine configurations with less acoustic treatment show that even at takeoff power, aft fan noise controls the engine noise levels, having angles of peak noise at 110 to 115 degrees.

At the approach power point, which was the design point for the majority of the fan duct acoustic treatment and the nacelle acoustic treatment, the perceived noise levels at both the inlet and aft angles of peak noise are the same, as seen in Table VI. Thus, a balanced engine acoustic design was achieved.

B. EFFECT OF FAN DUCT TREATMENT

The effects on fan noise of the acoustic treatment in the fan duct were determined by comparing noise data from a simulated hardwall configuration with that from a treated fan duct configuration. These tests were run with a hardwall tailpipe. The majority of the treatment was designed to attenuate fan blade passage frequency noise at an engine power setting typical of aircraft approach.

One-third octave band attenuation spectra for a series of aft quadrant angles that include the aft angle of peak fan noise are presented in Figures 37, 38 and 39 for power settings typical of approach, cutback and takeoff, respectively. The one-third octave band that includes fan blade passage frequency is reduced by about 6-10 dB at the 120° angle with less attenuation in neighboring one-third octave bands and angles. Some attenuation is also observed at the second harmonic of the fan blade passage frequency. A plot of attenuation of the fundamental against angle at approach power (Figure 40) shows that the peak attenuation occurs at 120°, with an abrupt drop in attenuation fore and aft of 120°.

PNdB reductions due to the fan duct treatment vary from 3.5 at approach to 1.5 at takeoff power (Figure 41). Even though one-third octave band fundamental fan tone levels were reduced up to 10 dB, other noise sources such as the turbine at approach and jet at takeoff power limited the PNdB attenuation that could be achieved. However, Figure 42, shows that the measured PNdB level was within 2 PNdB of the predicted level at approach thrust.

TABLE VI
SUMMARY OF 200 FT SIDELINE MAXIMUM PERCEIVED NOISE LEVELS

Configuration	Approach	Cutback	Takeoff
	Inlet Aft Fn/δ <u>× PNdB</u> × PNdB	Inlet Aft $Fn/\delta \stackrel{\checkmark}{=} PNdB \stackrel{\checkmark}{=} PNdB$	Inlet Aft $Fn/\delta \stackrel{\checkmark}{=} PNdB \stackrel{\checkmark}{=} PNdB$
JT8D-9 Hardwall Baseline	6550 60 115 110 118	11850 80 120 115 121	14620 80 119 140 126
JT8D-109 Treated Engine Treated Nacelle	6500 40 107 110 107	11690 50 112 115 114	16600 80 115 140 120
JT8D-109 Treated Engine Hardwall Nacelle	6600 60 110 115 111	11600 70 115 110 116	16450 80 117 110 121
JT8D-109 Hardwall Engine Hardwall Nacelle	6550 60 110 115 114	11640 60 116 115 118	16500 80 117 110 122

The problem of limited attenuation at aft arc angles other than 120° was studied, and, although not verified, is briefly discussed here. It is known that there are two distinct source mechanisms that generate tone noise at blade passage frequency during static engine testing. One of these is the classical interaction tone noise due to the chopping by the fan of the wakes from the inlet guide vanes. The other is generated by the fan interacting with long coherent eddies. These eddies are believed to originate from the large scale eddies present in the atmosphere close to the ground that become stretched and elongated as they enter the fan inlet. Since the blade passage frequency tone-noise due to inlet guide vane wake rotor interaction is propagated through the duct in both a 12 and an 11 circumferential lobe nattern, the far field directivity is more "peaked" than the directivity due to rotor/turbulence interaction which generates tone noise in all the circumferential modes that can exist in the duct (Ref. 11). It is believed that the largest attenuation occurring at 120° results from the treatment successfully suppressing tone noise due to inlet guide vane wake/rotor interaction which peaks at the 120° microphone location. Furthermore, this attenuation is believed to be limited by the relatively uniform tone directivity due to rotor/turbulence interaction, which does not seem to be significantly attenuated by the treatment. This apparent lack of attenuation at angles other than 120°, however, could be due to the possibility that the treatment is attenuating only those rotor/turbulence interaction modes that cannot propagate to the far field because they are reflected back by the common flow tailpipe that has a diameter 20% less than the fan. This reflection due to the geometry also occurs in the hardwall duct. Thus, the attenuation measured in the farfield is small. The idea is made more plausible by the fact that both the treatment and the tailpipe have the greatest effect on modes near cut-off.

If the theory presented here is correct, it means that the apparent limited attenuation at angles other than 120° is due to a contaminating noise source that is present only during static testing. It is believed that in a flight test, the full treatment effectiveness will be realized since the contaminating noise source will be reduced as the inflow to the fan is appreciably "cleaned up".

C. EFFECT OF TREATMENT BETWEEN THE INLET GUIDE VANE AND THE FAN ROTOR

One type of fan noise, combination tone noise, or multiple pure tone noise, is generated from turbofan engines when the relative tip speed of the fan is supersonic. Because the refanned engine operated at higher tip speeds than the current JT8D engine, particular attention was paid to combination tone noise. Unlike the sound field produced by fans at subsonic speeds, where discrete tones are produced at harmonics of blade passage frequency, fans at supersonic speeds generate a multiplicity of tones at essentially all integral multiples of engine rotational frequency.

The essential features of combination tone noise are well established (Refs. 5, 12, and 13). Shock waves are produced at the leading edge of each blade and spiral forward of the fan conveying sound energy out of the inlet to the far field. As shown by the narrowband spectral plot in Figure 43, a large number of tones are present in the far field. Work at Pratt & Whitney Aircraft (Ref. 12) has shown that the tones generated are due to the slight differences in amplitude of each shock causing different spacings to evolve between the

shock waves as they spiral forward in the inlet. This irregular pattern rotating with the fan results in the spectrum composed of a series of tones at harmonics of shaft rotation frequency.

Previous testing at Pratt & Whitney Aircraft (Ref. 5) has shown that combination tone noise levels were significantly reduced by a short length of acoustic treatment located upstream of the fan; therefore, a six inch long segment of treatment was placed in the outer duct wall between the inlet guide vanes and the fan of the JT8D-109 engine.

Narrowband spectra at the inlet angle of peak combination tone noise for the untreated engine are shown in Figures 43 and 45 at engine low rotor speeds typical of airplane cutback and takeoff conditions, respectively. Comparison of these Figures with Figures 44 and 46, for which combination tone treatment was installed, showed that, in general, combination tone levels are from 5 to 8 dB lower than the hardwall noise levels. Plots of one-third octave band attenuation at angles of 40°, 50°, 60°, and 70° from the inlet centerline are shown in Figures 47 and 48 for the same engine operating conditions as the previous figures. They show that the combination tone treatment is effective in the frequency range between 630 and 2500 Hz when tones are present in this range.

Predicted and measured attenuations are compared in Figures 49 and 50 at the angle of peak combination tone noise at rotor speeds of 6400 and 7200 RPM, respectively. They both show that the predicted attenuation was significantly less than the measured data indicated.

Figure 51 shows a plot of the peak inlet perceived noise level (between 20° and 60°) on a 200 ft sideline vs. corrected low rotor speed. Despite the large reduction in combination tone noise, the reductions in perceived noise are modest. This effect is further illustrated in Figure 52, which shows the PNdB directivity plot at 6400 RPM, the speed at which maximum combination tone noise reduction was obtained. Comparison of one-third octave band spectra at this speed, typified by the one comparison shown in Figure 53, shows that at the frequencies controlling the perceived noise level (3150 and 4000 Hz), the levels of the hardwall and treated configurations are very close.

D. EFFECT OF MCDONNELL DOUGLAS INLET TREATMENT

The effectiveness of the inlet treatment on fan noise is evaluated by comparison of the hardwall and treated inlet configurations. Because fan noise is the controlling noise component at rotor speeds simulating aircraft approach thrust, approximately 5500 RPM, the inlet treatment was patterned from the McDonnell Douglas treated inlet, which was designed to attenuate fan blade passing frequency noise at 5500 RPM.

Figure 54 is a plot of the tone corrected perceived noise level (PNLT) at the angle of peak inlet noise along a 200 ft sideline distance from the engine centerline versus corrected low rotor speed. Significant reductions in PNLT are evident at all speeds except the takeoff condition, where the controlling influence is aft radiated low frequency jet noise. Largest reductions are noted at rotor speeds corresponding to approach power.

The third curve in Figure 54 represents noise levels from a configuration in which a 16 foot diameter 20 foot long tube was placed over the inlet bellmouth. The curve is indicative of the noise levels in the inlet quadrant (aft of 20°-30°) that are radiated from the aft engine noise sources. This becomes more evident in some figures that follow.

Examination of ar roach power inlet spectra demonstrates that noise reductions due to inlet treatment are mostly attributable to attenuation of fan blade passage frequency noise (1F1H) and its harmonic (1F2H).

Results at typical inlet angles of 30° and 50° are shown in Figures 55 and 56. The blade passing frequency tones have been reduced by between 6 and 9 dB. It is also interesting to note that some noise reduction is seen over a larger frequency range (1-10 kHz).

By noting that the use of the inlet noise suppression tube further reduces the high frequency noise levels, it can be concluded that aft end noise sources are not limiting the noise reductions attributable to the inlet treatment at this rotor speed.

Figure 57 shows reductions in perceived noise levels at approach power as a function of angle from the inlet centerline. Significant reductions are seen from 20° to 80° with the largest perceived noise level reduction occurring at the inlet angle of peak noise for the hardwall configuration.

At takeoff power corresponding to a corrected rotor speed of approximately 7200 RPM, jet noise controls the far field noise levels, so that effects of inlet treatment should have little effect on far field noise levels. Figure 58 is a plot of PNL at 200 ft sideline versus angle. Inlet treatment is seen to have little effect on inlet perceived noise level, and then only between 20° and 80°. One-third octave band spectra, Figures 59, 60, and 61, show that both blade passing frequency and combination tone noise (1250-2000 Hz range) are well attenuated by the inlet treatment. Below 1250 Hz, all three configurations tested exhibit the same spectral noise levels, confirming that aft end noise is controlling the low frequencies in the forward quadrant at takeoff power.

From the foregoing discussion it is apparent that the treated inlet effectively reduced fan generated inlet noise at all speeds. However, at speeds above 7000 RPM, inlet peak perceived noise levels and tone corrected perceived noise levels were not affected by the inlet treatment because the angles of peak noise in the inlet quadrant are controlled by jet noise.

E. EFFECT OF MCDONNELL DOUGLAS TAILPIPE TREATMENT

The turbine is a significant noise source in the JT8D-109 engine. This noise, produced in much the same manner as fan noise, is the result of turbine blade wakes chopping through downstream vane rows. Because of the high number of turbine blades, this noise is characterized by discrete tones at blade passage frequencies in 6300 Hz and 8000 Hz center frequency one-third octave bands when the engine is operating at approach power.

In order to attenuate the high frequency noise, use was made of acoustic treatment in the JT8D-109 tailpipe. The acoustic treatment was patterned after that designed by McDonnell-Douglas. In order to evaluate the reduction of the discrete tones themselves, data from the

hardwall and treated tailpipe configurations were examined. Figures 62, 63, and 64 show these spectra at three angles while the engine was operating at approach power. Levels of both the fan rotor second harmonic and turbine fundamental discrete tones were substantially lowered.

One-third octave band attenuations for approach, cutback and takeoff thrust operation taken at a series of aft angles (100°, 110°, 120°, and 130°) are shown in Figures 65, 66, and 67. At all conditions, the angles of peak attenuation are at 120° and 130°. It should be noted that due to the broadness in the treatment tuning, the fan rotor fundamental tone is also attenuated. The fact that this tone is lowered in addition to the turbine tones results in a 2 PNdB reduction over the entire operating range of the engine (Figure 68).

In order to substantiate that the treated tailpipe noise levels are not being held up by inlet fan noise radiating rearward, treated tailpipe PNdB levels were compared with and without an inlet noise suppression tube. The results, shown in Figures 69, 70 and 71, clearly indicate that blocking the inlet noise source does not lower aft measured PNdB levels.

F. INTERNAL TRAVERSES

Since knowledge of the radial distribution of fan noise is a benefit to the airframe manufacturer who designs the inlet and tailpipe acoustic treatment, radial traverses were conducted in an axial plane 2.7 inches upstream of the inlet guide vane assembly (Ref. Figure 14) in order to document the inlet radial distribution of the fan rotor's discrete fundamental tone. With the engine in steady state operation, the probe was inserted to several depths. To separate the broadband and discrete portions of the noise signature, it was necessary to analyze these data on a narrow bandwidth filter (32 Hz). Radial variations in fan tone level such as seen in these results are typical of internal traverses conducted in fan rigs. Definition of circumferential and radial mode structure requires phase information and was not addressed in this program.

The variation of blade passage frequency tone level is shown in Figure 72 for rotor speeds corresponding to typical aircraft approach and cutback conditions. At these low speeds, three peaks occur radially, corresponding roughly to the O.D., midspan and I.D. wall. The high fan tone levels predicted at the O.D. were not observed probably due to the six inches of treatment between the fan and inlet guide vanes.

The radial traverse at the cutback speed, 6460 RPM, shows that the blade passage frequency levels are higher than those at approach power as a result of the increase in fan tip speed. At takeoff rotor speed, combination tone noise dominates the spectra. Blade passing frequency noise does not lie above the levels of the combination tones.

Narrowband spectra taken at ten radial positions for approach, cutback and takeoff rotor speeds are presented in Figure 73 through 94. At the low speed, discrete tones are found at the fan fundamental (1F1H), second and third harmonic frequencies (1F2H, 1F3H) over the entire annulus; and, although tones from the first and second low compressor

(1C1H, 2C1H) stages are present near the O.D., the second compressor tone predominates from approximately midspan to the I.D. The presence of these compressor tones, and even the summation of the fan and first compressor blade passage frequency tone, (1F1H + 1C1H), were expected in the near field spectra at low speeds. However, narrowband analysis of the far field data, a sample of which is shown in Figure 95, shows that the predominating tone is that of the fan. At rotor speeds well below that typical of approach power, the other tones are present in the far field; and at some angles, such as the 10° angle shown in Figure 96, the compressor tones are seen to have the highest levels.

Returning to the internal narrowband spectra, the speed typical of cutback power (Figures 83 through 88), reveals the presence of combination tone noise from the O.D. to about nine inches inboard. At this speed, fan blade passage frequency still predominates at all radial locations. In the midspan area of the annulus a relatively broadband "haystack" (spectral peak) appears surrounding a frequency of 56E (i.e., 56 times the shaft rotation frequency). Although there are 56 low compressor inlet guide vanes, the noise generating mechanism is not understood. However, narrowband analysis of the far field data at this rotor speed, Figure 97, does not show any indication of this haystack noise.

Internal narrowband spectra at takeoff power, 7285 RPM, show (Figures 89 through 94) that the combination tones predominate over most of the annulus, with broadband noise controlling near the I.D. Fan blade passage frequency noise is identifiable, but not significant.

Radial traverses similar to those made in the inlet were conducted in the treated fan discharge duct in an axial plane approximately two inches downstream of the aft engine flange (tailpipe attachment flange), as shown in Figure 14. Narrowband band analysis of these data, Figures 98 through 108, showed complete dominance by aerodynamic noise at all speeds and at all radial locations probed.

G. INTERNAL CORE ENGINE MEASUREMENTS

The low levels of jet and fan noise components achieved in the JT8D-109 engine revealed a low frequency broadband noise centered at 400 Hz in the far field noise signature at low engine power settings. High response dynamic transducers were placed internal to the engine to determine the generation source. The locations of these high response Kulite transducers are shown in Figure 14.

Spectra obtained from transducers internal to the engine are difficult to interpret because both aerodynamic noise due to the environment and acoustic signals are present simultaneously. Only the acoustic signals, whether discrete or broadband in nature, propagate to the far field and are of interest. Core engine noise, as defined from far field ground microphone data (see Section V-H, para. 3.2) is broadband in nature and has a peak frequency of about 400 Hz. Thus, the internal noise data of interest in this case are in the area of 400 Hz.

The noise levels within the tailpipe were measured at several engine speeds using a Kulite transducer located one-inch upstream of the nozzle exit plane. One-third octave band plots,

shown in Figures 109 and 110, did not reveal a 400 Hz broadband noise, as defined in the far field. The far field 400 Hz noise did not change with either speed or angle. However, it is to be noted that frequency of peak noise below 1600 Hz varies with engine rotor speed from 1000 Hz at the low speed to 500 Hz at takeoff speed. Thus, the 400 Hz signal of interest was being masked by other phenomena or was not present in the tailpipe.

Further upstream in the engine, noise levels were measured at the O.D. wall of the flow splitter near the mixing plane. One-third octave band analysis at several fan rotor speeds (Figure 111) showed higher levels of noise being measured at this location than at the tailpipe. The one-third octave band levels were generally 10-15 dB higher than those in the tailpipe. Much of this increase in noise may be aerodynamic in nature due to higher flow velocities in this area of the engine. A predominant "haystack" of noise centered around 500 Hz was observed at the tailpipe when low rotor speeds exceeded 6000 RPM (Figures 109 and 110. No such "haystack" was seen at the splitter location (Figure 111). Some indication of the presence of noise at 400 Hz is present, but once again, some masking has occurred.

In the combustor section of the engine noise levels were measured in a spare ignitor in one of the burner cans. One-third octave band levels for a series of engine rotor speeds are shown in Figure 112. A low frequency peak appears in the spectra centered between 400 and 500 Hz.

Although the spectra measured internal to the engine did not show clearcut evidence of the core noise defined from far field data, correlation techniques were applied to the measured data in an attempt to separate the unwanted masking noises from the defined core engine noise. This is discussed in the following paragraphs.

Correlation of Measurements With Internal Kulites and Far Field Microphones

Cross-correlation of the internal Kulites with a far field microphone to determine the location(s) of the source(s) of core engine noise within the engine was accomplished. The cross-correlation results presented in this section were performed at two different engine speeds ($N_1/\sqrt{\theta}$ = 5195 and 7717 RPM). The 120° far field microphone was chosen because this is the angle at which core engine noise was found to peak.

The cross correlations were performed on a SAICOR Correlator Model 43A. In mathematical terms, the normalized cross correlation function is defined as

$$R_{xy}(\tau) = \frac{\lim_{T\to\infty} \frac{1}{T} \int_0^T f_x(t) f_y(t+\tau) dt}{\sqrt{f_x^2} \sqrt{f_y^2}}$$

where $f_X(t)$ is the magnitude of the signal observed at point x at an arbitrary instant of time t; and $f_Y(t+\tau)$ is the magnitude of a signal observed at a point y at time τ later. The term $\sqrt{f_X^2}$ is the rms value of the signal at point x and $\sqrt{f_Y^2}$ is the rms value of the signal

at point y. By varying τ , a complete function of the relationship between the signals at x and y as a function of the time delay, τ , is obtained (i.e., the cross-correlation function). The denominator in the above equation is the term which normalizes the cross correlation. Ideally, what this term does is to take into account the differences in the rms values of the two signals so that a meaningful cross correlation coefficient can be obtained. With regard to the instrumentation (SAICOR Correlator) used to perform these cross correlations, normalization is achieved by attenuating or amplifying the two input signals so that their auto-correlation amplitudes at $\tau=0$ (i.e., their rms values) are equal. In this way, the mean square value of both signals are identical. As a result, the 0 to 1 correlation scale which is defined by the amplitude of the auto-correlation at $\tau=0$ can be directly applied to the cross correlation results.

In addition, the input signals being cross-correlated were filtered through identical phase-matched filters. Since the frequency range of interest for core engine noise was around 400 Hz, a filter bandwidth of 300-500 Hz was used. Band pass filtering of the two signals generated secondary resonant peaks which were produced by the roll-off of the filters. This resonant frequency was found to be a function of the center frequency of the filter bandwidth. Increasing the filter bandwidth lowered the correlation levels, while narrowing the filter bandwidth tended to generate a discrete frequency sine wave.

Figure 113 contains the cross-correlation of the tailpipe Kulite with the far field microphone at an engine speed of 5197 RPM. The full scale time delay range of 0 to 200 milliseconds contains a single distinct correlation peak at a time delay of 136 milliseconds. Multiplying this time delay by the acoustic speed of a sound (1117 ft/sec) yields a distance of 150 feet, which is the distance from the tailpipe to the far field microphone. Therefore, the 136 milliseconds delay time corresponds to an acoustic wave propagating from the tailpipe to the far field. In addition, the correlation level of 32 percent is the equivalent of stating the following: "If the internal noise measured in the tailpipe is uncontaminated by sources other than core engine noise, then the correlated core noise in the far field spectrum is within 5 dB of the total measured noise in the frequency range between 300 and 500 Hz." These results confirm that significant levels of internally generated low frequency core noise do indeed radiate to the far field and contribute to the total far field noise levels.

At a higher engine speed ($N_1/\sqrt{\theta} = 7717$ RPM), the normalized cross-correlation coefficient has decreased to a level of 12 percent. This is due to the increase in jet noise signal, which at this high engine speed almost completely dominates the far field measured spectrum. The delay time obtained from this cross-correlation of the tailpipe Kulite with the far field microphone (Figure 114) is exactly the same as that obtained at the lower engine speed, and this is as it should be, since the external speed of sound did not change.

Figure 115 contains the cross-correlation (at 5195 RPM) of the splitter Kulite with the same 120° far field microphone. This time the correlation peak occurs at a delay time of 137.5 milliseconds. Using the result from Figure 113 implies that the propagation time from the splitter to the tailpipe nozzle exit is 1.5 milliseconds. In addition, the peak correlation value of 16 percent in the 300-500 Hz frequency range again indicates that internally

generated core noise measured at the splitter can be detected in the far field. At the higher engine speed (Figure 116), the cross-correlation coefficient decreases to four percent. This is probably due to internal flow noise contamination and to the increase in externally generated jet noise levels.

The differences in correlation level between Figures 115 and 116 are due to the high levels of low frequency aerodynamic noise generated by the swirling flows coming out of the last stage turbine blade row. Since this low frequency aerodynamic flow noise does not propagate to the far field, its overall effect is to lower the cross-correlation levels between the splitter Kulite and the far field microphone.

Figure 117 contains the cross-correlation of the ignitor Kulite and the 120° far field microphone. The cross-correlation peak occurs at 139 milliseconds which implies that if the noise is generated near the burner ignitor it would take 1.5 milliseconds for the acoustic wave to travel from the ignitor to the splitter Kulite. However, in this region the acoustic speed of sound is difficult to calculate because the acoustic wave must travel through the turbine region, in which large temperature variations exist. These time delays do indicate, however, that the major source of correlated noise is in the burner region, and not in the tailpipe downstream.

At the higher engine speed (Figure 118), the cross-correlation level is three percent, while the correlation delay time is approxately 138 milliseconds. This decrease is delay time is due to the increased internal temperatures, (T_{t4} , T_{t5} , T_{t6} , and T_{t7}), that control the acoustic speed of sound in each of their respective regions of the engine.

These cross-correlation results confirm that internally generated low frequency core noise does indeed radiate from the tailpipe and contributes to the total far field noise levels. In addition, these results indicate that the cross-correlation technique is a useful tool, which can lead to the location of internally generated core noise sources.

H. COMPONENT NOISE

The far field noise signature of a gas turbine engine is primarily comprised of contributions from five noise generation sources: fan-generated noise radiated from the inlet, fan-generated noise radiated from the discharge, turbine, jet, and the core engine noise. Because installation and flight affect the radiated noise levels differently for each of these components, it is necessary to establish static component noise levels. After component noise levels have been determined, appropriate installation and flight effects can be applied to each component, then summed to yield more accurate aircraft noise predictions. Static noise data, obtained while running Test No. 1 (Ref. Table IV), was used to define the refan engine component noise levels. Predicted component levels, determined using the procedures described in this section, are presented in Appendix B.

The following sections discuss the component noise definitions based on the first JT8D-109 engine acoustic tests.

Inlet Fan Noise

The one-third octave band noise data were correlated with low rotor speed on a one-third octave by one-third octave basis for each of the inlet angles. A least-squares curve fit was

made, by computer, for this data. Figure 119 is a typical plot that shows the data points and the curve fit for one 1/3 octave band at one angle. This process smooths the data and allows fan and combination tone one-third octaves to be recalled with a second computer deck.

The second computer deck reads the least squares curves. This is done for the fan portion of the spectra, which extends from one 1/3 octave band below that containing the blade passage tone to the one-third octave band centered at 10 kHz, and for the combination tone portion of the spectra, which extends from two 1/3 octave bands below that containing the blade passage tone to between three and ten 1/3 octave bands below blade passage as a function of tip speed. Below the combination tone region, the fan noise is rolled off at 1 dB per one-third octave.

2. Aft Fan and Turbine Noise

The aft noise spectrum is a complex shape containing levels from the jet, core, turbine and aft fan sources. In order to separate this noise into its components, it is necessary to examine narrow band spectra. Figure 120 is a typical approach power spectrum (110°). The fundamental of fan blade passage frequency (1F1H) is seen at 2.9 kHz.

Turbine tones (4T1H, 2T1H, 3T1H) at fundamental blade passing frequencies are found in the region between 6 and 8 kHz. A large "haystack" (peaked broadband spectrum) of broadband noise is visible in the region surrounding these tones. As the high temperature, high velocity primary jet stream interacts with the slower moving, cooler fan stream, as well as the ambient air, strong shearing effects take place. In order to reach the far field, the turbine tones must pass through this zone of high temperature gradients and pressure gradients. In doing so, the discrete turbine tones are scattered into many other frequency bands surrounding the fundamental. These "sidebands" are so close to each other that even when analyzed with a "narrow" 32 Hz bandwidth filter, they merge into a broadband type spectrum. The locus of these turbine tone sidebands forms a "haystack" shaped spectrum between 5 and 10 kHz, as shown in Figure 120.

In a common flow engine such as the JT8D-109, the fan blade passage frequency must also pass through the external shear layer. Thus it is not unexpected that a "haystack" of broadband noise surrounding the fundamental of fan blade passage frequency is observed (Figure 120).

2.1 Aft Fan Noise

From examination of the narrow band spectra, the aft fan noise spectrum was separated into broadband and discrete portions. The broadband portion was further divided into the "haystack" surrounding the fan blade passage fundamental and a high frequency segment. This high frequency section was determined by fitting a straight line through the lower bounds of the turbine "haystack".

This broadband portion was divided into one-third octave bands and an average level within each band was calculated. Pacause of the bandwidth differences between narrow and one-third octave bands, these broadband levels were corrected by 10 log of the bandwidth ratio (10 log BW/32).

Narrow band levels of the fan blade passage fundamental (1F1H) and its harmonic (1F2H) were then anti-logarithmically added to the broadband noise levels of the one-third octave bands that contained their respective frequencies. It is not necessary to correct these tone levels for bandwidth. Also, since the one-third octave band data has been corrected to an FAA day (77°F, 70% humidity) and corrected for microphone and cable response, the levels derived from the narrow band were similarly corrected in order to be consistent with the total "measured" data.

The low frequency portion of the spectrum (below about 2000 Hz) is controlled by jet and core noise. Spectra from numerous noise tests of fan rigs, which do not contain jet and core noise, indicate that low frequency fan broadband noise levels decrease by about 1 dB per one third octave band in the region below blade passage frequency. This slope was used for the refan engine noise data. The slope was applied to the noise level in the second one third octave band below that containing the fundamental blade passage frequency, as this band is assumed to contain only fan broadband noise. Lower bands contain jet and core noise, while the next higher band noise level may be influenced by the blade passage frequency tone.

Thus, aft quadrant fan noise spectra were determined at several angles and rotor speeds. The data was plotted vs. rotor speed for each one third octave band and angle. Least square fits were generated, and generalized aft fan noise prediction curves were computerized (Figure 121).

2.2 Turbine Noise

The procedure for defining the turbine noise is similar to that for the aft fan. The peak turbine level for a given speed and angle was determined by: 1) finding the one-third octave band into which the average turbine blade passage frequency fell, 2) determining an average sound pressure level for the turbine "haystack" and for the fan broadband in the average turbine blade passage frequency band, 3) subtracting on an anti-logarithmic basis the fan broadband level from the turbine "haystack" level to yield a turbine broadband level, 4) adding the bandwidth correction to the turbine broadband, and 5) adding, on an anti-logarithmic basis, the turbine blade passage tones contained in the band to the turbine broadband. As with the aft fan, these levels were weather, microphone, and cable corrected to be consistent with the total "measured" data.

The above method was used to define a peak turbine level for angles 90°, 100°, 110°, 120°, 130°, and 140° for all speeds where turbine noise could be discerned. Using these levels, an engine rotor speed dependence curve (Figure 122) and a directivity curve (Figure 123) were plotted.

Using these same techniques, the one-third octave bands adjacent to that containing the peak were analyzed to yield a spectrum at each angle and each speed. These spectra were found to be very similar so that one generalized spectrum for all angles was used. The spectrum is shown in Figure 124.

3. Jet And Core Engine Noise

To define the jet and core noise components, detailed data analysis was conducted on the spectra measured with ground microphones at angles from 90° to 150°. The low frequency portion of these spectra have been separated successfully into core engine and jet noise components. All results are presented "as measured" by the ground microphones. A free field definition may be obtained by simply subtracting six dB.

3.1 JT8D-109 Jet Noise Definition

The SAE coaxial jet noise prediction procedure (October 1973) was first compared to measured spectra. Significant differences appeared in both spectra shape and levels, especially at the forward angles (90°-110°). Therefore, it was concluded that the SAE procedure was not applicable to, nor was it developed specifically for, the prediction of jet noise from common flow nozzles.

3.1.1 Jet Noise Spectra – Ground microphone spectra for several high speed conditions were examined at 90°, 100°, 110°, 120°, 130°, 140°, and 150° independently. By positioning the measured spectra in both level and frequency, it was found that very similar shapes resulted at a given angle for all speeds examined. Therefore, a single spectrum shape was assumed to apply at each angle over the speed range. The resulting spectra are shown in Figure 125.

To examine the validity of these spectra, comparisons were made with results from model jet noise tests on a scaled JT8D-109 configuration. A comparison at a simulated engine operating condition (near takeoff-thrust) is shown in Figure 126 for seven angles. Fair agreement is seen at all angles, with the more significant deviations occurring at 90° and 110°.

A similar comparison was made with predictions from the SAE coaxial jet noise prediction procedure (October 1973) at the same power setting as shown in Figure 127. Good agreement is apparent at the further aft angles, but at 90° and 110°, the SAE spectra appear too flat. In addition the peak frequency dependence and levels predicted by the SAE procedure were not in agreement with data and thus had to be redefined. This is discussed in the following paragraphs.

- 3.1.2 Jet Noise Peak Frequency The spectra of Figure 125 were used, together with the data, to define the peak frequency dependence of jet noise for the JT8D-109. The results are shown in Figure 128. Curves have been drawn through these data that always lie within one-half of a one-third octave band from the points shown for each angle. As expected the peak frequency increased with jet velocity and decreased toward the rearward angles.
- 3.1.3 Jet Noise Levels The next step in the analysis of the ground microphone spectra was to determine the noise level behavior with primary jet velocity. Figure 129 shows the peak jet noise sound pressure level at each angle plotted versus jet velocity. A straight line was found to exist at all angles that fell within one dB of the points obtained from the spectra. The slopes and the levels increased with increasing angle.

3.1.4 Jet Noise Directivity — The information contained in Figure 129 was cross-plotted to obtain the directivity of peak jet spectral sound pressure level. Results are shown in Figure 130 for primary jet velocities ranging from about 400 to 2000 ft/sec. Also shown are the directivities obtained from JT8D-109 model jet tests at two conditions simulating the actual engine cycle. Very good agreement between the full scale definition and model jet directivities is apparent.

3.2 JT8D-109 Core Engine Noise Definition

Using the jet noise definition just described, it was possible to obtain a separation of jet and core engine noise from an examination of ground microphone spectra at low engine power settings.

- 3.2.1 Core Engine Noise Spectrum From an analysis of data at low speeds, the spectrum shown in Figure 131 was found to apply at all angles.
- 3.2.2 Core Engine Noise Levels Using the spectrum shown in Figure 131, together with the predicted jet and measured spectra, it was possible to determine core engine noise levels for at least three speeds at all angles, and as many as six speeds at an angle of 120° (near the core engine noise peak angle). Results of this analysis are shown in Figure 132. At 120°, where the most data exist, a smooth curve fit was established through these points when plotted versus thrust. It was also possible to fit the data at the other angles with a curve parallel to that used for 120°. Thus, the core noise was defined for the other angles up to a thrust of 9000 lbs, as shown in Figure 132.
- 3.2.3 Core Engine Noise Directivity Since the core engine noise "slope" with thrust is the same for all angles, the directivity characteristics of JT8D-109 core engine noise are identical at all power settings. Figure 133 shows the points obtained from cross-plotting the information shown in Figure 132. The peak angle occurs at 125° from the inlet axis.

3.3 Results and Discussion

The curves shown in the previous jet and core noise figures were programmed so that overall and perceived noise levels could be obtained for each component. In addition, total low frequency (jet and core) spectra, and overall and perceived noise levels could be obtained on the computer and compared to the measured spectra. Figures 134, 135, and 136 represent a comparison of the total low frequency spectra obtained from the current definition with the measured spectra at three engine operating conditions:

- $N1/\sqrt{\theta} = 3014$ where core engine noise is dominant (Figure 134).
- $N1/\sqrt{\theta}$ = 5195 where the jet and core engine levels are comparable (Figure 135).
- N1/ $/\theta$ = 7226 where the jet noise is the dominate low frequency component (Figure 136).

The comparisons are shown at an angle of 120°, very near where core engine noise peaks (Figure 133). Good agreement is seen at all frequencies for the two speeds (always within 2 dB). Similar agreement was obtained at other angles and engine speeds. Also shown in Figures 134 and 135 are the individual jet and core engine noise spectra.

A comparison of overall sound pressure level (jet and core obtained from the current definition) with measured values is shown in Figure 137 at an angle of 120°. Reasonable agreement is seen. Similar agreement was obtained at other angles and speeds.

4. Comparison With Total Measured Data

Since the only noise component defined for the inlet was the inlet fan, the inlet comparison consists of comparing this definition with the measured inlet pole microphone data. However, in the aft, where all of the components were defined, the components were corrected to simulate pole microphones, where necessary (jet and core), and were antilogarithmically summed to yield total noise. The total noise and its components are compared to the measured aft pole microphone data. Typical comparisons are presented in Figures 138 through 160. Six angles, 50°, 60°. 70°, 100°, 120°, and 140° at four engine speeds, 3698, 5208, 6397, and 7443 RPM were selected as approximations of idle, approach, cutback and takeoff power settings. (Note that since core noise is not defined above 9000 ibs, there is no core component at the cutback and takeoff simulation.) All spectra are at 150 foot radius from the engine.

In general, the inlet fan agrees quite well with the fan and combination tone portion of the measured data. It is apparent that there is low frequency noise in the inlet region, especially at high power, which is unaccounted for by the fan. This is probably due to jet and core noise radiating from the back of the engine.

It is evident that at aft frequencies below about 1600 Hz, the total noise level is controlled by the jet and core engine noise components, while above this frequency the aft fan and turbine components determine the total spectral levels. Generally, the summation of component noise agrees quite well with the total aft quadrant measured data, being within about 2 dB. In the frequency region between 500 and 1250 Hz at the 100° and 120° angles, the combination of jet and core noise is consistently below the measured data, especially at the speeds where the jet and core components are close together in level. At the 140° angle, where the jet component is more dominant, the agreement is better.

The separation of the total noise signature into components required examination of the data at all speeds and all aft angles. Generalized curves were then drawn for each component, and of course, did not agree precisely with each point. Considering this procedure it is concluded that, with minor exceptions, the component agreement with the total noise measured is within 2 dB, representing an accurate assessment of component noise characteristics.

VI. CONCLUSIONS

Based on the results of the JT8D-109 noise test program in which noise characteristics of the jet, fan, turbine, and core engine components were determined, the following conclusions are drawn:

- Jet noise levels of the JT8D-109 engine are about 6 PNdB below that of the JT8D-9 engine at rated sea level static thrust.
- Fan noise levels of the higher tip speed JT8D-109 fan are equal to or lower than those of the JT8D-9 fan over the entire engine operating range.
- Aft quadrant noise levels with the treated fan duct were within 3 PNdB of predicted noise levels.
- Fan duct acoustic treatment was not as effective as original analytical predictions had indicated. It is speculated that apparent lack of attenuation is due to contamination of rotor/turbulence interaction noise at blade passing frequency that occurs only during static testing.
- Tailpipe treatment effectively attenuated turbine blade passage frequency noise at low engine power settings.
- Inlet treatment significantly reduced fan blade passing frequency noise at approach power.
- Positive cross-correlation between internal transducers and far field microphones confirmed the presence of core engine noise in the far field engine noise signature at low engine operating conditions.

Figure 1 Airline Fleet Composition, J10544-15

Figure 2 Effect of Bypass Ratio on Jet Exhaust Noise

Comparison of Current JT8D Engine and JT8D-100 Series Refanned Engine, SS-19345A Figure 3

Figure 4 Effect of Cycle Changes on Jet Velocity

Figure 5 Effect of Inlet Guide Vanes on Noise Levels ~ JT3D-9 Rig, 200 Ft. Sideline, Hardwall Noise Comparison

FAN DUCT	TREATMENT LENGTH IN	PASSAGE HEIGHT IN	LENGTH/HEIGHT	FACE SHEET MATERIAL	TOP SHEET HOLE DIA. IN	TOP SHEET THICKNESS IN	PEAK TUNING
1	7.0	N.A.	N.A.	AMS 4027 (AL)	0.045 - 0.060	0.016	1600
2	6.0	8.7*	1.5	AMS 4027 (AL)	0.045 - 0.060	0.016	2100
3	11.25	6.1		AMS 4027 (AL)	0.045 - 0.060	0.016	4200
4	8.4	6.1	1.6	AMS 4027 (AL) 0.045 - 0.060		0.016	4200
5A & 5B	56.0	8.9	2,5	AMS 4027 (AL)	0.045 - 0.060	0.016	2100
6	11.0	8.4	1.3	AMS 5520 (SST)	0.045 - 0.060	0.016	2650
7	15.6	7.9	1.0	AMS 4027 (AL)	0.045 - 0.060	0.016	2100

FAN DUCT LOCATION	% OPENING FACE SHEET	CORE HONEYCOMB CELL SIZE IN	APPROX. DEPTH OF HONEYCOMB IN	HONEYCOMB FOIL MAT'L	BACK SHEET MAT'L	CASE MAT'L	BONDED (INTEGRAL TO STRUCT)	REMOVABLE (PANEL SEGMENTS)
1-	20	0.375 HEX	1.0	PWA 122**	AMS 4027 (AL)	N.A.	NO	YES
2	12	0.375 HEX	0.5	PWA 122	AMS 4027 (AL).	N.A.	NO	YES
3	12	0,375 HEX	0.25	PWA 122	N.A.	AMS 4153 (AL)	YES	NO
4	12	0.375 HEX	0.25	PWA 122	AMS 4027 (AL)	N.A.	NO	YES
5A & 5B	12	0.375 HEX	0.5	PWA 122	N.A.	SEE Δ BELOW	YES	NO
6	12	0.375 SQ.	0,5	AMS 5520(SST	AMS 5520 (SST)	N.A.	NO	YES
7	12	0.375 HEX	0.5	PWA 122	PWA 411 FIBERGLASS	N.A.	NO	YES

N.A. = NOT APPLICABLE **PWA 122 IS CORROSION RESIS

**PWA 122 IS CORROSION RESISTANT AMS4004 \(\Delta \text{ THREE FAN DUCTS; 2 AMS 4135 (AL), 1 AMS 4027 (AL)} \)

*H_{EFF} = 4.0

Figure 6a JT8D-109 Fan Duct Acoustic Treatment

Figure 6b JT8D-109 Turbofan Engine Aft Attenuation Spectrum ~ Approach Thrust

Figure 6c JT8D-109 Turbofan Engine Predicted Aft Attenuation Spectrum ~ Approach Thrust

TREATMENT LENGTH \sim IN.	% OPEN AREA	BACKING DEPTH ~ IN.	HOLE SIZE ∼IN.	L/H	TREATED AREA ∼SQ. FT.
45.6	6	0 555 – 0.565	0.048 - 0.053	1.65	24

Figure 7 JT8D-109 Inlet Acoustic Treatment

Figure 8 JT8D-109 Tailpipe Acoustic Treatment

Figure 9 JT8D-109 Engine Performance ~ Low Rotor Speed

Figure 10 JT8D-109 Engine Performance ~ Total Airflow

Figure 11 JT8D-109 Engine Performance ~ Fan Pressure Ratio

Figure 12 JT8D-109 Engine Performance ~ Engine Jet Velocity

Figure 13 JT8D-109 Engine Performance ~ Fan Duct Jet Velocity

Figure 14 JT8D-109 Internal Acoustic Instrumentation Locations

Figure 15 Outdoor Noise Test Facility, X-314, Showing Location of Pole Microphones, CN-39419

Figure 16 Outdoor Noise Test Facility, X-314, Showing Location of Ground Microphones, CN-46052

Figure 17 Ground Microphone Installation, CN-39174

Figure 18 JT8D-109 Inlet Acoustic Traverse Probe, CN-42771

Figure 19 Outdoor Noise Test Facility, X-314, Meteorological Station, CN-39812

Figure 20 Acoustic Data Recording Console, CN-39423

Figure 21 P&WA Standards Laboratory Microphone Calibration System, XPN-39349

Figure 22 Record/Reproduce and Analysis System, J8458-14

Figure 23 One Third Octave Band Acoustic Analysis Console, XPN-46960

Figure 24 Narrowband Acoustic Analysis Console, CN-39822

Figure 25 Acoustic Computer Operations Flow Chart, 73-4206 Sheet 1 of 3

Program No. P621 A microphone response and sensitivity calibration calculation program to provide stored calibration data. W461 A jet noise prediction routine based on the SAE jet noise prediction procedure. Noise prediction program derived from FAA fan noise program (DOT-W462 FA69WA-2045). W601 The basic one-third octave band analysis program to perform gain, microphone, system response, and weather corrections to the one-third octave band steady state analyzed raw data. Provides an output of corrected data to the disc storage for other programs. W602 The program designed to update the operational storage disc with current microphone calibrations to be supplied to all programs using microphone corrections. W603 Sideline extrapolation computation program by inverse square and extra air attenuation calculation of one-third octave band data taken on outdoor test stands at 150 foot radius. W604 A program designed to sum one-third octave input data into full octave bandwidths. Used primarily to provide a calculated full octave output to compare to past data analyzed by full octave band. W606 The flyover calculation program written in accordance with Federal Aviation Regulations, Part 36 to calculate Effective Perceived Noise Levels (EPNL). W607 Traverse analysis program to accept digital taped transient one-third octave band data derived from a moving microphone probe to be stored as corrected data for plot programs. W608 A program specifically designed to accept Boeing or Douglas one-third octave band data on IBM punch cards in their output format, convert these data to P&WA format, and provide an input into the direct access disc storage. W611 Noise prediction program to predict steady state engine noise from average engine noise (W612) and predicted jet noise values from either the SAE noise deck W461 or the P&WA current jet noise prediction subroutine. W612 Engine noise averaging program to average one-third octave band data from a number of separate tests to provide an average engine noise characteristic print-out and digitally stored results for further programming.

> Figure 25 Sheet 2 of 3

Program No.	
W613	A prediction computation which uses W612 averaged data to perform scale changes (diameter, T/P area, no fan blades, V_j , etc.) and provide SLS sideline predicted noise values.
W615	A computational program to provide sound power level calculations of selected data from disc storage.
W616	A flyover prediction program which extrapolates 150 foot radius data input from the storage disc to a given altitude and air speed, accounting for distance, time, extra air attenuation, number of engines, and jet velocity effects based on input flight conditions. Tabulated results include the predicted flight EPNL values.
W618	An acoustic treatment prediction program which uses input treatment attenuation values to predict the results of this treatment on an input data set from an engine test.
W620	Fast Fourier transform used to provide power spectral density computation from digitized analog data.
W621	Jet engine noise analysis deck to calculate full octave, one-third octave, discrete tone, and broadband spectrum level from FFT digitized PSD data or the high speed spectrum analyzer data.
W626	An acoustic system calibration computation based on analysis of the white noise standard to be used in conjunction with P&WA "Instrumentation Standards and Procedures" number 3.4005.
W640	A computer plot program to selectively plot requested data from a complete engine test, input from the W601 program stored data. Plots of PNL versus angle, PNLT versus angle, Noys versus one-third octave band, and dB versus one-third octave band are available at the measurement location at extrapolated sideline conditions.
W641	A plotting routine designed to plot selected transient one-third octave band data from W607 program.
W645	Transmission loss calculation of one-third octave band data taken at the noise source and the receiver over an attenuation path. Primarily used for data analysis of the acoustical treated reverberation chamber.

Figure 26 Comparison of Peak Aft PNdB Levels of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle

Figure 27 Comparison of PNdB Directivity of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle ~ Approach Power

Figure 29 Comparison of PNdB Directivity of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle ~ Takeoff Power

Figure 30 Comparison of Peak Aft OASPL Levels of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle

Figure 31 Comparison of OASPL Directivity of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle ~ Cutback Power

Figure 32 Aft Quadrant Spectral Comparison of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle ~ Cutback Power

Figure 33 Aft Quadrant Spectral Comparison of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle ~ Takeoff Power

Figure 34 Comparison of Peak Inlet PNdB Levels of Current JT8D Engine and Refanned JT3D-109 Engine with Treated Nacelle

1 igure 35 Inlet Quadrant Spectral Comparison of Current JT8D Engine and Refanned JT8D-109 Engine with Treated Nacelle ~ Approach Power

Figure 36 Comparison of Current JT8D Engine and Refanned JT8D-109 Engine, Inlet Quadrant

Figure 37 One-Third Octave Band Aft Quadrant Attenuation Due to Fan Duct Treatment ~ Approach Power

Figure 38 One-Third Octave Band Aft Quadrant Attenuation Due to Fan Duct Treatment ~ Cutback Power

Figure 39 One-Third Octave Band Aft Quadrant Attenuation Due to Fan Duct Treatment ~ Takeoff Power

Figure 40 One-Third Octave Band Attenuation of Blade Passage Frequency Tone (1F1H) Due to Fan Duct Treatment ~ Approach Power

Figure 41 Effect of Fan Duct Treatment on Measured Noise Levels at Angle of Peak Aft Noise

Figure 42 Effect of Fan Duct Treatment on Measured Noise Levels at Angle of Peak Aft Noise Compared to Predicted Noise Levels

Figure 43

Figure 44 JT8D-109 Inlet Narrowband Spectral Comparison Showing Effect of Acoustical Treatment ~ Cutback Power

Figure 45

Figure 46 JT8D-109 Inlet Narrowband Spectral Comparison Showing Effect of Acoustical Treatment ~ Takeoff Power

Figure 47 Inlet Quadrant One-Third Octave Band Attenuation Due to Acoustical Treatment Between IGV and Fan ~ Cutback Power

Figure 48 Inlet Quadrant One-Third Octave Band Attenuation Due to Acoustical Treatment Between IGV and Fan ~ Takeoff Power

Figure 49 Comparison of Predicted and Measured Attenuation Due to Acoustical Treatment Between IGV and Fan ~ Cutback Power

Figure 50 Comparison of Predicted and Measured Attenuation Due to Acoustical Treatment Between IGV and Fan ~ Takeoff Power

"AS SHIPPED" ENGINE HARDWALL NACELLE HARDWALL ENGINE HARDWALL NACELLE 200 FT. SIDELINE PERCEIVED NOISE ~ dB

Figure 51 Effect of Acoustical Treatment Between IGV and Fan on Peak Inlet PNdB

CORRECTED LOW ROTOR SPEED \sim RPM

V

Figure 51 Effect of Acoustical Treatment Between IGV and Fan on Peak Inlet PNdB

 $\bigvee_{\Sigma'}$

84

Figure 52 Effect of Acoustical Treatment Between IGV and Fan on Peak Inlet PNdB Directivity - Cutback Power

Figure 53 Effect of Acoustical Treatment Between IGV and Fan on Inlet Spectra Cutback Power

Figure 54 Effect of Treated Inlet and Noise Suppression Tube on Peak Inlet Noise Level (Tone Corrected)

Figure 55 Effect of Treated Inlet and Noise Suppression Tube on Inlet Noise Level ~ Approach Power, 30° Angle

Figure 56 Effect of Treated Inlet and Noise Suppression Tube on Inlet Noise Level ~ Approach Power, 50° Angle

Figure 57 Effect of Treated Inlet and Noise Suppression Tube on Perceived Noise Level Directivity ~ Approach Power

Figure 58 Effect of Treated Inlet and Noise Suppression Tube on Perceived Noise Level Directivity ~ Takeoff Power

Figure 59 Effect of Treated Inlet and Noise Suppression Tube on Inlet Noise Level ~ Takeoff Power, 30° Angle

Figure 60 Effect of Treated Inlet and Noise Suppression Tube on Inlet Noise Level \sim Takeoff Power, 50 $^{\circ}$ Angle

Figure 61 Effect of Treated Inlet and Noise Suppression Tube on Inlet Noise Level ~ Takeoff Power, 70° Angle

Figure 62 Effect of Tailpipe Treatment on Narrowband Spectra ~ Approach Power, 100° Angle

Figure 63 Effect of Tailpipe Treatment on Narrowband Spectra \sim Approach Power, 120° Angle

Figure 64 Effect of Tailpipe Treatment on Narrowband Spectra ~ Approach Power, 140° Angle

Figure 65 Aft Quadrant ~ One-Third Octave Band Attenuation Due to Tailpipe Treatment ~ Approach Power

ONE-THIRD OCTAVE BAND FREQUENCY \sim kHz

Figure 66 Aft Quadrant ~ One-Third Octave Band Attenuation Due to Tailpipe Treatment ~ Cutback Power

Figure 67 Aft Quadrant ~ One-Third Octave Band Attenuation Due to Tailpipe Treatment ~ Takeoff Power

Figure 68 Effect of Tailpipe Treatment on Peak Aft Quadrant PNdB

Figure 69 Effect of Inlet Noise Suppression Tube on Treated Tailpipe Aft Quadrant PNdB ~ Approach Power

Figure 70 Effect of Inlet Noise Suppression Tube on Treated Tailpipe Aft Quadrant PNdB ~ Cutback Power

Figure 71 Effect of Inlet Noise Suppression Tube on Treated Tailpipe Aft Quadrant PNdB ~ Takeoff Power

Figure 72 Radial Distribution of Blade Passage Frequency Tone in Inlet

Figure 73 Inlet Narrowband Spectra ~ Approach Power, Probe 0 in. from O. D.

Figure 74 Inlet Narrowband Spectra ~ Approach Power, Probe 2.2 In. from O. D.

Figure 75 Inlet Narrowband Spectra ~ Approach Power, Probe 4.4 In. from O. D.

Figure 76 Inlet Narrowband Spectra ~ Approach Power, Probe 6.6 In. from O. D.

Figure 77 Inlet Narrowband Spectra ~ Approach Power, Probe 8 In. from O. D.

Figure 78 Inlet Narrowband Spectra ~ Approach Power, Probe 8.7 In. from O. D.

Figure 79 Inlet Narrowband Spectra ~ Approach Power, Probe 10.2 In. from O. D.

Figure 80 Inlet Narrowband Spectra ~ Approach Power, Probe 12.4 In. from O. D.

Figure 81 Inlet Narrowband Spectra ~ Approach Power, Probe 14.6 In. from O. D.

Figure 82 Inlet Narrowband Spectra ~ Approach Power, Probe 16.7 In. from O. D.

Figure 83 Inlet Narrowband Spectra ~ Cutback Power, Probe 0 In. from O. D.

Figure 84 Inlet Narrowband Spectra ~ Cutback Power, Probe 4.4 In. from O. D.

Figure 85 Inlet Narrowband Spectra ~ Cutback Power, Probe 8 In. from O. D.

Figure 86 Inlet Narrowband Spectra ~ Cutback Power, Probe 8.7 In. from O. D.

Figure 87 Inlet Narrowband Spectra ~ Cutback Power, Probe 12.4 In. from O. D.

Figure 88 Inlet Narrowband Spectra ~ Cutback Power, Probe 16.7 In. from O. D.

Figure 89 Inlet Narrowband Spectra ~ Takeoff Power, Probe 0 In. from O. D.

Figure 90 Inlet Narrowband Spectra ~ Takeoff Power, Probe 4.4 In. from O. D.

Figure 91 Inlet Narrowband Spectra ~ Takeoff Power, Probe 8 In. from O. D.

Figure 92 Inlet Narrowband Spectra ~ Takeoff Power, Probe 8.7 In. from O. D.

Figure 93 Inlet Narrowband Spectra ~ Takeoff Power, Probe 12.4 In. from O. D.

Figure 94 Inlet Narrowband Spectra ~ Takeoff Power, Probe 16.7 In. from O. D.

Figure 95 Narrowband Analysis of Far Field Data ~ Approach Power, Treated Fan Duct

Figure 96 Narrowband Analysis of Far Field Data ~ Below Approach Power, Treated Fan Duct

Figure 97 Narrowband Analysis of Far Field Data ~ Cutback Power, Treated Fan Duct

Figure 98 Fan Duct Narrowband Spectra ~ Approach Power, Probe 0.24 In. from O. D.

Figure 99 Fan Duct Narrowband Spectra ~ Approach Power, Probe 1.8 In. from O. D.

Figure 100 Fan Duct Narrowband Spectra ~ Approach Power, Probe 3.6 In. from O. D.

Figure 101 Fan Duct Narrowband Spectra ~ Approach Power, Probe 5.4 In. from O. D.

Figure 102 Fan Duct Narrowband Spectra ~ Approach Power, Probe 7.5 In. from O. D.

Figure 103 Fan Duct Nærrowband Spectra ~ Cutback Power, Probe 0.24 In. from O. D.

Figure 104 Fan Duct Narrowband Spectra ~ Cutback Power, Probe 3.6 In. from O. D.

Figure 105 Fan Duct Narrowband Spectra ~ Cutback Power, Probe 7.5 In. from O. D.

Figure 106 Fan Duct Narrowband Spectra ~ Takeoff Power, Probe 0.24 In. from O. D.

Figure 107 Fan Duct Narrowband Spectra ~ Takeoff Power, Probe 3.6 In. from O. D.

Figure 108 Fan Duct Narrowband Spectra ~ Takeoff Power, Probe 7.5 In. from O. D.

Figure 109 Tailpipe Noise Spectra ~ Kulite Transducer

Figure 110 Tailpipe Noise Spectra ~ Kulite Transducer

Figure 111 Splitter Noise Spectra ~ Kulite Transducer

Figure 112 Combustor Noise Spectra ~ Kulite Transducer

Figure 113 Cross Correlation of Tailpipe Kulite with Far Field Microphone (120°) ~ Approach Power

Figure 114 Cross Correlation of Tailpipe Kulite with Far Field Microphone (120°) ~ Takeoff Power

Figure 115 Cross Correlation of Splitter Kulite with Far Field Microphone (120°) ~ Approach Power

Figure 116 Cross Correlation of Splitter Kulite with Far Field Microphone (120°) ~ Takeoff Power

Figure 117 Cross Correlation of Combustor Kulite with Far Field Microphone (120 $^{\circ}$) \sim Approach Power

Figure 118 Cross Correlation of Combustor Kulite with Far Field Microphone (120°) \sim Takeoff Power

Figure 119 Typical Least Squares Curve Fit Through Measured Inlet Fan Noise Data

Figure 120 Typical Approach Power Aft Quadrant Narrowband Spectra Showing Fan and Turbine Noise Components

Figure 121 Typica! Least Squares Curve Fit Through Aft Fan Noise Data

Figure 122 Turbine Noise Component ~ Peak 1/3 Octave Band Level as a Function of Observed Rotor Speed

Figure 123 Turbine Noise Component Directivity

Figure 124 Turbine Noise Component Spectrum

Figure 125 Jet Noise Component Spectra

Figure 126 Jet Noise Component Spectra Compared with Model Jet Data

Figure 127 Jet Noise Component Spectra Compared with SAE Prediction

Figure 128 Jet Noise Component Peak Frequency as a Function of Primary Jet Velocity

Figure 129 Jet Noise Component Peak Level as a Function of Primary Jet Velocity

Figure 130 Jet Noise Component Directivity Compared with Model Test Data

Figure 131 Core Engine Noise Component Spectra

Figure 132 Core Engine Noise Component Peak Level

Figure 133 Core Engine Noise Component Directivity

Figure 134 Comparison of Component Noise Levels to Measured Data where Core Engine Noise is Dominant

Figure 135 Comparison of Component Noise Levels to Measured Data where Core and Jet Noise are Dominant

Figure 136 Comparison of Component Noise Levels to Measured Data where Jet Noise is Dominant

Figure 137 Low Frequency Component Noise Levels Compared to Measured Data

Figure 138 Summation of Component Noise Levels Compared to Measured Data \sim 3698 N1, 50 $^{\circ}$ Angle

Figure 139 Summation of Component Noise Levels Compared to Measured Data \sim 3698 N1, 60° Angle

Figure 140 Summation of Component Noise Levels Compared to Measured Data \sim 3698 N1, 70 $^{\circ}$ Angle

Figure 141 Summation of Component Noise Levels Compared to Measured Data ~ 3698 N1, 100° Angle

Figure 142 Summation of Component Noise Levels Compared to Measured Data \sim 3698 N1, 120° Angle

Figure 143 Summation of Component Noise Levels Compared to Measured Data ~ 3698 N1, 140° Angle

Figure 144 Summation of Component Noise Levels Compared to Measured Data \sim 5208 N1, 60 $^{\circ}$ Angle

Figure 145 Summation of Component Noise Levels Compared to Measured Data ~ 5208 N1, 70° Angle

Figure 146 Summation of Component Noise Levels Compared to Measured Data ~ 5208 N1, 100° Angle

Figure 147 Summation of Component Noise Levels Compared to Measured Data ~ 5208 N1, 120° Angle

140° ANGLE TURBINE CORE o dB ∼ SOUND PRESSURE LEVEL .050 .063

Figure 148 Summation of Component Noise Levels Compared to Measured Data ~ 5208 N1, 140° Angle

ONE-THIRD OCTAVE BAND FREQUENCY $\,\sim\,$ kHz

Figure 149 Summation of Component Noise Levels Compared to Measured Data \sim 6397 N1, 50 $^{\circ}$ Angle

Figure 150 Summation of Component Noise Levels Compared to Measured Data ~ 6397 N1, 60° Angle

Figure 151 Summation of Component Noise Levels Compared to Measured Data ~ 6397 N1, 70° Angle

Figure 152 Summation of Component Noise Levels Compared to Measured Data \sim 6397 N1, 100 $^{\circ}$ Angle

Figure 153 Summation of Component Noise Levels Compared to Measured Data \sim 6397 N1, 120 $^{\circ}$ Angle

Figure 154 Summation of Component Noise Levels Compared to Measured Data \sim 6397 N1, 140 $^{\circ}$ Angle

Figure 155 Summation of Component Noise Levels Compared to Measured Data \sim 7433 N1, 50 $^{\circ}$ Angle

Figure 156 Summation of Component Noise Levels Compared to Measured Data \sim 7433 N1, 60 $^{\circ}$ Angle

Figure 157 Summation of Component Noise Levels Compared to Measured Data \sim 7433 N1, 70 $^{\circ}$ Angle

Figure 158 Summation of Component Noise Levels Compared to Measured Data ~ 7433 N1, 100° Angle

Figure 159 Summation of Component Noise Levels Compared to Measured Data \sim 7433 N1, 120° Angle

Figure 160 Summation of Component Noise Levels Compared to Measured Data \sim 7433 N1, 140 $^{\circ}$ Angle

APPENDIX A MEASURED ACOUSTIC DATA

APPENDIX A

MEASURED ACOUSTIC DATA

This Appendix presents one-third octave data obtained by P&WA during outdoor testing of two JT8D-109 engines. The testing sequence, and engine configurations, are listed below:

Test No.	Run No.	Date	Inlet Noise Suppression	Inlet Treatment	Fan Duct Treatment	Tailpipe Treatment	Engine No.
1	2267	2-6 May '74	No	Hard	Soft	Hard	1
2	2268	7-8 May '74	No	Soft	Soft	Hard	1
3	2269	14 May '74	Yes	Soft	Soft	Hard	1
4	2282	5 Dec '74	No	Soft	Soft	Soft	2
5	2287	20-28 Feb '75	Yes	Soft	Soft	Soft	2
6	2292	18-19 Mar '75	Yes	Soft	Soft	Hard	2
7	2294	24-25 Mar '75	No	Hard	Soft	Hard	2
8	2295	10 Apr '73	No	Hard	Hard	Hard	2

Sound sensing equipment at the test site included an array of microphones that were positioned on poles or at ground level within 100 or 150 feet of the test engine, plus Kulite transducers inside each engine. Microphone locations are detailed in Table V and Figure 14 of the report. Data obtained at the 150 ft. radius were standardized, i.e., corrected for cable and connection interference, 77°F temperature and 70% humidity; and also extrapolated to a 200 ft sideline. The internal engine data are "as measured".

Tables A-1 through A-272 contain the one-third octave acoustic data. These data are tabulated, in general, at three engine conditions corresponding to approach, cutback and takeoff low rotor speeds; however, data corresponding to lower-than-approach speeds are provided in Tables A-1 through A-8. In addition, Tables A-273 through A-275 present engine performance data applicable to each of the eight acoustic tests.

An index to the contents of the acoustic data tables is provided in Table A (following):

TABLE A
MEASURED ACOUSTIC DATA INDEX

Test	No. Run No. N1 1 2267 ⁽¹⁾ 2957	Farfield ! Micropho 150 ft. radius	nes	Farfield Gro Microphor 150 ft. radius		Nearfield Ground Microphones 100 ft. radius	Farfield I Micropho (Hard Suri 150 ft. radius	nes	
1	2267 ⁽¹⁾	2957 3684 4282 4745	A1 A3 A5 A7	A2 A4 A6 A8					
		5145	A9	A0 A10	A13, A15	A14, A16	AI3	A15	A16
		5147 6402	A11 A21	A12 A22	A17, A19 A27, A29	A18, A20 A28, A30	A17 A27	A19 A30	A20 A30
		6311	A23	A24	A31, A33	A32, A34	A31	A33	A34
		6330 7142	A25 A39	A26 A40	A35, A37 A41, A43	A36, A38 A42, A44	A35 A41	A38 A43	A38 A44
•	2260				*****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7	1.15	24
2	2268	5168 5170	A45 A47	A46 A48					
		5135	A49	A50					
		5139	A5I	A52					
		6354	A53	A54	Not Recorde				
		6362 6358	A55 A57	A56 A58	Same Aft En	gine Configurat	ion as Test 3		
		6364	A59	A50 A60					
		7168	A61	A62					
		7183	A63	A64					
		7150	A65	A66					
3	2269(2)	5205	A67	A68	A71, A73	A72, A74	A71	A73	A74
		5278	A69	A70	A75, A77	A76, A78	A75	A77	A78
		6373	A79	A80	A85, A87	A86, A88	A85	A87	A88
		6420 6455	A81	A82	A89, A91	A90, A92	A89	A91	A92
		7365	A83 A97	A84 A98	A93, A95 A105, A107	A94, A96 A106, A108	A93 A105	A95 A107	A96 A108
		7387	A99	A100	A109, A111	A110, A112	A109	Alli	A112
		7410	A101	A102	A112, A115	A114, A116	A113	A115	A116
		7450	A103	A104					
4	2282	5056 5027	A117 A119	A118 A120	A123 A125	A124 A126			
		5050	A119 A121	A120	A123 A127	A128			
		6200	A129	A130	A135	A136	Not Recorded		
		6207	A131	A132	A137	A138	•		
		6195	A133	A134	A139	A140			
		7232	A141	A142	A147	A148			
		7250 7244	A143 A145	A144 A146	A149 A151	A150 A152			
_						NIJ2			
5	2287	5002 5033	A153 A155	A154 A156					Application of the
		5170	A157	A158	Not Recorded	i			
		6190	A159	A160		ine Configurati	ion as Test 4		
		6198	A161	A162	79.0	·			
		6260	A163	A164			4.0		
	100	7485 7437	A165 A167	A166 A168					t e kilogades
			1.5						
6	2292	5144	A169	A170					March 1
		5110 5113	A171 A173	A172 A174		and the second			e Linear as to the
		3073	A175	A176	Not Recorded	ı		医皮肤 医胚层	
		5100	A177	A178		ine Configurati	ion as Test 7		
٠	$ z_i = 2^{n-1}$	6310	A179	A180			Surface Cartin	u girta filozofi.	
	•	6298	A181	A182					
		6283	A183	A184	i ki ta kahi			أعيف أنائين	to di bas
		6239 7282	A185 A187	A186 A188		111 × 11 × 11 ×			
100	. August A	7365	A189	A100					
		7252	A191	A192					

TABLE A (Cont'd)

7	2294(3)	5104	A193	A194	A199	A200	A199	A199	A200
		5102	A195	A196	A201	A202	A201	A201	A202
		5112	A197	A198	A203	A204	A203	A203	A204
		6281	A205	A206	A211	A212	A211	A211	A212
		6275	A207	A208	A213	A214	A213	A213	A214
		6267	A209	A210	A215	A216	A215	A215	A216
		7320	A217	A218	A223	A224	A2.23	A223	A224
		7325	A219	A220	A225	A226	A225	A225	A226
		7294	A221	A222	A227	A228	A227	A227	A228
8	2295(3)	5097	A229	A230	A235	A236	A235	A235	A236
_		5062	A231	A232	A237	A238	A237	A237	A238
		5120	A233	A234	A239	A240	A239	A239	A240
		6295	A241	A242	A247	A248	A247	A247	A248
		6250	A243	A244	A249	A250	A249	A249	A250
		6308	A245	A246	A251	A252	A251	A251	A252
		7312	A253	A254	A257	A258	A257	A257	A258
		7252	A255	A256	A259	A260	A259	A259	A260
Test No.	P&WA Run No.	NI							il Kulites licrophone"
	2267 ⁽⁴⁾	3000						Δ1	261
1	2267	3684							262
		4282							263
		4262 4745							264
		5145							265
		5493							266
		5778							267
		6115							268
		6330							269
		6780							270
		7142							271
		7635	-						272
		1033						•••	

(1) On Tables A13, A14, A17, A18, A27, A28, A31, A32, A35, A36, A41, A42
On Tables A15, A16, A19, A20, A29, A30, A33, A34, A37, A38, A43, A44
microphone over hard surface.

110° is nearfield microphone at 100 ft. radius.
110° is farfield ground microphone; 111° is farfield pole

(2) On Tables A71, A72, A75, A76, A85, A86, A89, A90, A103, A104, A105, A107, A109, A110, A113, A114

110° is nearfield microphone at 100 ft. radius.

On Tables A73, A74, A77, A78, A87, A88, A91, A92, A95, A96, A107, A108, A111, A112, A115, A116 microphone; I11° is farfield pole microphone over hard surface.

110° is farfield ground

(3) On Ground Microphone Tables, 109° is farfield ground microphone, 110° is farfield pole microphone over hard surface; 111° is rearfield microphone at 100 ft. radius.

(4) 0° is ignitor Kulite; 166, 256 are splitter Kulites at -158° and -248° VFR; 167, 257 are tailpipe Kulites at -158° and -248° VFR

T/	ABLE A	\ -1	2	267 H7	7145 JT	8D-109	QUIE	T ENGI	NE 1	CONF A	. HW C	ONT BH	9 HH 1	/P FAR	LIELD						
	ENGINE MO		= JT60 = 31	/ -00 /5054			TENPE	RATURE	Ī		58.	.O F			TIHE	T TEN		=	57-00 1220 29-74	ı İ	ue
	STAND			(-314			HUMIC	TTY		=	40.	O PER	ct.		HIND	DIRE	CTION	=	S		nue
	DATE		= 05/0	6/14				CTED R							HIVD	VELL	CITY	•	7	MPH	
							FAA F	E TRA	REFER	SENCE C	DAY COR	RECTEC	3 5PL 3	IN DB -	RADI	us =	150.	FT.			
1/3 PC								4 1 CO DOI	2911E A		IN DEGR	ecc									
(HZ)	., 50	30	46	50	60	70	60	90	100	110	120	130	140	150							
50 63 80 100 125 160 250 250 315 400 520 630	78.4 78.7 75.8 74.1 73.5 72.9 72.1 70.9 73.0 73.7 74.2 76.6	74.9 73.1 78.2 74.7 75.7 72.7 70.1 71.4 72.4	77.3 77.9 73.5 72.1 75.4 70.6 69.8 69.4 67.3 73.0 71.5	77.6 76.3 74.8 73.5 76.7 73.2 73.9 73.8 69.9 69.1 70.8 72.7	74.5 73.5 71.7 70.1 74.3 70.6 69.4 71.3 69.7 69.7	74.0 73.0 71.3 78.3 70.4 71.5 71.6 70.9 48.8 70.7 71.0	75.8 74.7 71.8 70.2 69.9 71.5 72.2 72.0 70.4 69.2 70.1 71.2	74.3 71.5 69.7 70.6 72.8 74.1	76.5 75.6 73.0 71.3 71.3 76.2 74.6 75.0 75.5	75.0 74.9 71.2 68.0 72.9 74.7 78.4 76.2 72.4 78.8 77.9	75.8 76.2 72.7 70.7 73.3 76.8 76.6 75.6 78.8 70.4 79.4	74.3 74.6 71.0 69.3 74.6 76.6 60.0 78.2 77.3 80.2 781.3	74.4 73.4 69.1 66.7 75.1 77.1 80.1 78.2 77.3 79.6 77.4	75.2 73.5 69.4 70.0 77.2 77.4 74.6 74.6 74.6 74.6 74.6		3					
1000 1259 1600 2500 2509 3150 4000 5000 6300 10000 0ASPL PNLT	76.8 77.2 60.6 82.6 83.9 81.8 82.0 77.1 92.2	76.6 76.9 51.1 80.3 84.9 84.5 82.6 81.3 79.5 78.2	75.6 75.2 81.1 78.3 79.1 82.8 84.0 81.9 79.4 78.5 76.8 91.6	74.6 74.0 81.6 77.6 79.5 84.5 81.0 78.6 77.9 75.8 91.5	72.1 71.2 76.1 74.0 75.8 81.8 78.5 75.0 74.6 72.6	70.9 69.5 75.4 70.8 71.6 79.0 76.5 71.7 72.1 70.3 86.7	71.1 68.6 72.3 67.6 68.2 71.2 78.7 76.1 59.1 70.3 70.1 86.1 101.5	73.3 73.5 73.1 67.8 68.8 71.9 82.5 80.8 72.0 73.3 74.6 88.4	75.7 73.2 74.1 69.4 73.8 84.5 83.2 75.8 76.6 78.6	77.4 75.9 77.2 72.2 72.6 76.7 88.8 78.3 78.5 80.9 93.1	77.8 75.7 77.1 72.4 73.4 76.5 92.9 89.3 79.0 79.1 81.2 96.0 114.3	78.0 75.0 76.3 72.7 72.8 74.3 88.8 87.6 79.1 83.7 94.4	75.1 72.5 73.3 69.1 69.1 72.0 81.8 81.8 74.2 75.9 77.3	72.3 70.4 71.9 67.0 67.0 69.3 79.7 79.3 70.1 71.5 72.1 88.5 103.2				GIN. 100	AL. Rec	PAL Dad	i is
PNL BAND TCORR	107.7 19	5	16	16	162.9 16 1.8	16	59.8 20 1.7	20	20	20	111.0 20 3.3	20	20	20							

2267 H7145 J180-109 QUIET ENGINE 1 CONF A HW CONT BH HW T/P FAR FIELD

CONDITION = 2962
ALTITUDE = 200. FT SIDELING

1/3 ECT									IDUE 44					
REQUENCY											EN DEGR			
(HZ)	20	30	40	50	28	70	60	. 90	100	110	120	130	140	150
50	66.5	69.5	70.9	72.8	70.7	71.0	73.2	72.3	73.9	72+0	72.0	69.5	68.0	66.7
63	66.6	69.1	71.5	71.5	69.7	70.8	72.1	71-8	73.0	71.9	72.4	69.8	67.5	65.0
BO	63.9	66.3	67.1	70.0	67.9	68.3	69.2	69.0	70.4	68.2	68.9	66.2	62.7	60.0
100	62.2	64.5	65.7	65.7	66-3	65.2	67.6	67.2	68.6	64.9	66.9	64.5	60.3	61.4
125	61.6	69.6	69.Ú	71.9	70.5	70.Z	67.3	68.1	68.7	69.B	69.5	69.2	68.7	68.0
160	61.0	66.1	64.2	68.4	66.8	67.3	68.9		71.2	71.6	73.C	71.8	70.7	68.
200	60.1	67.1	63.4	69.0	65-6	68.4	69.5	71.6	73.5	75.3	75.7	75.1	73.7	68.6
250		.64.1	63+0	68.9	67.5	68.5	69.3	70.B		73.1	72.B	73.3	71.B	66.0
315	60.0	61.4	60.9	65.0	65.9	67.8	67.7			69.3	71.3	72.4	70.9	66.
400	61.6	62.7	63.5	64.2	64.9	65.7	66.5	70.7		75.2	75.0	75.3	73.1	66.
500	62.0	63.7	65.3	65.9	65.7	67.6	67.4			72-7	74.3	74.0	70.9	67.
630	61.9	65-1	67.0	67.8	67.2	67-9	67.4	69.B	72.0	74.8	75.6		72-1	65.
800	64-2	67.2	68.3	69.1	68.3	68.8	68.5		72.8	75.2		75.2	70-7	45.1
1000	64.2	67.6	69.2	69.6	68.2	67.7	68.4		73.0	74.2		73.0	68.5	63.3
1250	64.4		68.5	68.9		66.3	6518	67.9	70.4	72.7	71.6	70-7	65.8	61.
1600	67.6	71.9	74.3	76.5		72.2	67.5			74.0	73-1	71.2	66.5	62.
2000	67-2	70.9	71.4	72-4		67.5	65.0		66.6	68.9		67.5	62.2	57.
2500	68-8	71.6	72.0	73.9	71.1	68.3	65.3			69.3	69.3	67.5	62.0	57.
3150	72.2	74.9	75.5	76.0		71.2	68.3			73.3		48.8	64.7	59
4000	4B.R	74.1	76.4			75.5	75.7				88.5		74-2	69.
5000	66.2	71.9	74.2	75-2		72.9	73.0			82.2	64.9		74.1	68.
6320	65.4	70.0	71.3	72.6	70.4	68-0	65.9						66.1	58.
8000	51.6	67.3	69.8	71.4		68.1							67-2	
10000	56.4				67.2						75.8		67.7	
DASPL	79-2	83-1	84.4	86-1	84.3	83.4	83.3	85.6	87.6	89.6	91.7	88.B	63.7	79.
PHLT	96.5		99.7	102-2	103.4	98.9	98.5	101.9	102.8	106-6	110.0	105.7	97.9	93.
PNL		96.0	98.2	100.2	98-6	97.2	96.8	99.9	101.6	104.3	106.7	103.1	96.3	
BAND	19	5.	16	16	16	16	20	20	29	20	20	20	20	20
TCORR.	1.1	9.7		1.9		1.8	1.7	2.0	2.0	2.3	3.3	2.6	1.6	1,

2267 H7145 JTED-109 QUIET ENGINE 1 CONF A HW CONT BH HW T/P FAR FIELD

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.

OF POOR QUALITY

TABLE A-4

2267 M7145 JTBD-109 DUIET ENGINE 1 CONF A HH CONT SH HH T/P FAR FIELD

CUMDITION # 3696
ALTITUDE # 200, FT SIDELING

1/3 DCT FREQUENCY															
											IP DFG				
(HZ)	20	30	4¢	5è	έü	72	ŧύ	95	100	113	126	130	143	150	
50	59.9	64.6	67.7	66.C	67.8	60.5	71.2	72.3	72.7	72.6	72.4	73.0	74.5	72.8	
63	63.6	65.0	70.3	65.4	67.7								72.6	70.2	
₽¢	57.7	60.5	61.9	61.2			65.5						66-4	64.6	
100	52.9	54.7	59.0		61.6					62.2		63.9	64-8	63.8	
125	56.8	62.1	64.1		66.9								73.1	71.4	
160	62.£	66.4	63.4	69.7	70.7								75-9	72.2	
230	63.5	66.1	65.9									79.1	77.5	71.6	
250	6" . 0	66.7	66.7							76.1			73.7	68.3	
315	59.9	65-1	65.6	66.C						72.4			74.4	68.4	
400	61.0	65.7	67.2							75-7		78.9	74.8	6E.7	
500	62.7	66.4	67.E	68.9									74.2	68.5	
630	65.0	68.5	69.9							77.9			73.9	67.4	
800	67.3	70.6	71.9		72.6							78.7	73.5	67.6	
1000	68-1	71.0	73.2		73.0					77.6			71.5	66-I	
1253	68.1				72.1					75.2			68.2	63.9	
1600	68.3	72.3	72.1		71.4			69.4				71.5	66.1	62.1	
2000	72.2	76.0	79.4								75.7		67.2	63.3	
2500	72.3	75.6	76.6		76.2		70.5		71.2	72.5			64-0	60.2	
3150	73.1	75.8	76.5						70.4				63.E		
4000	74.6	78.0	78.0						74.8	75.6				58.8 61.8	
5000	75.€		80.E		23.4										
6300	69.9		77.B						P4.3					69.8	
8000	67-0	72.8				71.9		71 5	73.4	75 1				70.7	
10000		71+1				73.6		73.0	75.4	76.5				60.3	
*****				1000		1310			1204	1043	1004	15+4	67.4	56.9	
DASPL	82.4	5.68	87.8	89-0	88.6	86.6	:86-2	86.3	93.3	92-0	02.5	91.9	86.6	81.9	
PNLT	97.1	130.0	103.3	104-8	104.7	102-2	101.4	103.3	105-6	107.5	108.3	107.2	00.4	B/ 2	
PNL	96.3	100.6	161.6	103,4	103.1	100.7	136.0	112.0	104.2	105.7	106-0	105.0	97.7	92.4	
BAND	2	24		21	21	17			21				1.1		
TCORR	10.8									21	21			21	
1.004/14	****	3413	1+1	Téa	Tric	143	1.3	1.2	1.4	1.8	2.3	2-1	1.5	1.8	

TABI	LE A-5		,	21.7 PT	/145 JI	Fen-104	ou i	וואי ב	INF t	CONF A	нн с	H9 T#N.	l H₩ T	/P FAR	FIELD	
	EMPINE NI EFCINE NI		- 71£6	-CC 1505÷			TEMPE	RATURE	ì	z	58.	0 F			INLET TEMP TIME OF THY BAPM. PRESSURE	= 55.00 F • 1146 = 29.74 I%. HG.
	STAND DATE		* ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	(-314 (6/74			HUMIC	YTI			40.	939 C	LT.		WIND DIRECTION WIND VELOCITY	= 5 = 7 KPH
	57.1							VED RE		5					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
										ENCE C			SPL 1	IN DB -	RADIUS = 150. F	·7.
1/3 PC																
FREQUEN											IN DEGR					
(HZ)	\$5	35	4	54	60	70	60	υÇ	100	110	120	136	140	150		
50	72.2	73.0	74.5	75.3	73.5	74.9	76.3	77.5	78.1	76.9	74.9	81.5	82.6	64.5		
63	76.3	75.4	76 . F	75.2	73.9	75.4	76.3	76.3	77.6	79.3	79.8	80.5	80.9	82.0		
ēn	72.3		71. 1	72.7	72.4	17.2	72.9	72.5	74.1	74.9	74.0	75.2	75.5	7t.4		
100	67.9	67.9	6F . 1	70.2	66.1	£7.0	67.0	67.2	6[.7	69.3	71.1	72.E	74.0	75.9		
125	70.0	71.1	70.5	72.1	64.7	70.6	76.6	72.2	74.9	77.1	79.6	61.5	81.3	£2.7		
160	76.8	73.3	75.0	75.3	74.4	75.£	76.1	78.7	80.4	82.9	84.3	25.1	84.0	82.5		
200	76.7	74.5	76.7	75.5	75.7	76.L	70.9	86.1	£1.7	54+2	85.7	66.6	64.C	80.3		
250	76 . i	74.6	76.6	76.5	74.9	76.3	76.7	78.5	79.8		82.9	83.6	79.R	77.0		
315	76.4	73.3	74.1	74.5	75.8	76.l	74.8	75.7	77.?	79.4	85-6	84.3	80.9	76.8		
4.0	76.E	76.3	75.3	74-4	73.9	74.5	75-2	78.8	E1	55.ü	85.6	85.7	79.E	76.7		
50.	77-4	77.3	70.6	75.5	75.7	76.€	75.9	76.4	78.7	82.1	84.9	£4.9	79.7	77.0		
634	74.2	74.6	78.7	70+1	76.6	76.3	75.8	77.9	60-0	83.7	85.2	84.6	76.5	75.2		
0.08	42-7	02.3	61.1	79.7	78.4	77.5	76.8	76.0	51.0		85.3	63.0	78.4	75.6		
130r 1250	63.2 83.1	83.8 83.6	87.8	82.2	79.3	78-2	77.3	79.2	81.1	03.1	84.0	82.4 80.3	77.3	74.9		
1600	83.3	14.2	81.8 82.1	80.7	78.5	76.£	74-1	76.4 75.1	77.5	87.1 85.4	86.3	77.8	74.7	72.7 71.1		
2005	84.2	25.0	63.5		85.0		75.0	75.0	77.5	79.7	60.3	76.9	71.8	70.5		
250 ù	90.00		91.6			P6.4	81.7	21.1	82.2	82.8	83.1	80.0	75.9	74.7		
3150	89.1	20.5	ö9.4	88.1	8£.7		78.1	76.5	77.1	79.7	79.2	77.6	72.4	71.4		
450	50.5	89.3	67.3	86.7	84.8		76.8	76.6	77.1	78-2	78.8	76.3	71.5	70.3		
5000	92.5	94.7	54 ac	92.6			83.0	83.2	84.1	F5.7	86.6	83.6	77-1	76.D		
6370	90.2		91.6	91.1	.5 4		63.6	£7.0	90.3	92.5	94 3	95.E	62.7	80.4		
6000	87.6	89.8	47.P	87.2			76.3	EC.1		85.6	87.6	88.2	80.7			
10000	87.4			85			76.3	78.2			81.9	82.3	74.9	71.1		
DASPL	99.7	100.3	49.4	98.5	97.1	93.7	91.5	02.0	95.1	97.3	98.5	97.6	93.3	92.0		
PNLT											113.9					
PNL	113.0	114.3	113.5	112.5	111.3	147.5	1.4.8	160.6	109.0	111.2	112.7	110.5	104.3	102-4		

2267 N7145 JTGC-109 QUIET ENGINE 1 CONF A HW CONT BM HW T/P FAR FIELD

CUNCITION = 4298
ALTITUME = 200, FT SIDELINE

1/3 CCT FREQUENCY							ų	IT CROPE	ICNE AF	iGLFS 1	N DEGR	EES		
(HZ)	Zv	30	444	ъĉ	åû	76	80	98	100	110	126	136	140	150
50	60.4	65.4	68.0	70.5	69.7	71.9	73.7	75.0	75.5	75.9	76.1	76.7	76.4	76.0
63	£4.4	6c •9	7. 4	74.4	76 ∗1	72.9	73.7	73.8	75.0	76.3	76.U	75.7	74.5	73.5
BC	60.4	63.5	64.6	67.9	68.6	69.2	70.3	70.0	71.5	71 - 9		7û.4	69.1	67.8
103	56.0	59.3	61.7	65.4	64.3	63.9	65.3	64.7	66.1	46.2	67.3	68.0	67.6	67.3
125	59.3	62.5	64-1	67.3	65.0	67.5	62.C	69.7	72.3	74.0	75.€	76.7	74-9	74.1
160	64.9	64.7	68.6	70.5	70.6	72.5	73.5	75.7	77.2	78.8	80.5	80.3	77.6	73.9
200	64.7	65.9	76.3	70.6	71.9	72.9	74.2		79.C	£1.1	81.9	81.7	77-6	71.7
250	64.0	0.26	70-2	71.6	71.1	73.2	74,0	76.0	77-1	79.2	79.1	78.7	73.4	64.4
315	64.3	64.6	67.7	69.6	72.0	73.0	72.1	73.2	74+E	76.3	7E.8	79.4	74.5	68-1
400	64.5	67.6	68.8	69.5	70.1	71.4	72.5	76.3	78.3	81.9		80.8	73.3	68.0
50C	65.2	68.6	76.3	76.4	71.9	73.7	73.2	74.4	76.5	79.0		8ŷ.ÿ	73.2	65.3
630	66.9	76.8	72.2	73.2	72.2	73.2	73.1	75.2	77.3	BD-6		79.7	72.0	66.4
800	3.70	72.4	74.5	74.7	74.5	74.4	74.1	76.4	78.3	21.C	81.4		71.5	£6.7
1000	70.6	74.8	76.2	77+2	75.4		74-6	70.6	78.4		Eŭ. 1	77-4	70.7	45.9
1250	7C.3	74.5	75.1	75.4	74.6	73,4	72.4		,75.1	76.9			68.0	63.6
1600	70.2	75.1	75.3	75.6	74.5	72.9	71 -3	72.4	74.7	77.7	76.3	72.7	65 B	61.9
2000	71.B	76.4	76.9	77.5	76.6	74.2	72.7	73.2	74.7	76.4	76.3	71.7	64.9	61-1
2500	77.1	80.8	62.9	83.6	84.9	83.1		78.4					68.E	65.0
315C	74.7	79.5	82.1	83.3	82.5	79.0	75.2	73.7		76.3		71.5	65.1	61.4
4000	73.4	76.9	79.7	81.6	80.4	77.3	73.€	73-1	74.1	74.7	74.4		63.9	
5000	76.9	84-0	B6-3	86.8	87.4	82.6	79.0	80.3	81.0	82.1	82.2		69.4	
0066	73.6	81.3	83.5	85-1	84.8	81.4		83.9		. EB 8			74.6	69-1
8000	69-3	76.6	79.1		79.7			76.9	75.5				72.0	64.9
10000	66.7	74.4	76.8	77.9	77.6	75.0	72-6	74.7	75.9	76.9	76-5	75.2	65.3	57-5
DASPL	84.4	89.8	91.E	72.6	92-5	90.2	88.5	90-1	92.1	93.0	94.5	92.2	86.5	83-1
PNLT	99.4	105.2	107.5	108-1	108.7	106.2	103.5	105.4	157.6	108.9	109.5	106.0	78.I	
PNL	98.1	103.9	106.0	136-8	146-9	154.1	191.6	103.7	106.3	107.7	108-2	104-8	96-B	92.0
BANC	18	21		21		18	18		18			18	18	
TCCRR	1.3	1.3	1-4	1.3	1.8	2-2	1.7	1.6	1.6	1.2	1.2	1.2	1-3	1-3

2767 M7144 JTED-109 DUIET ENGINE 1 CONF A HW CONT BM HW TZD GAD CICID

ENGINE PCDEL = JTCL - JG
ENGINE NUMBER = 375054 TEMPERATURE = 44.0 F INLET TEMP = 47.00 F

STAND = X-314
DATE = 15/46/74 HUHIDITY = 44.0 PER CT. BARM- PRESSURE = 29.78 IN. HG.
CORRECTED RPH = 4700
CORRECTED RPH = 4700
HIND DIRECTION = 6
HPH

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150, GT.

							FFR	PAPT 3	16 KFF	RENCE	DAY CE	DRRECT	D SPL	IN 08	-	RADIU	i\$ =	150.	FT.				
1/3 001																,	_						
FREQUENCY								MICDOC	WENE 4		***												
(HZ)	2.5	30	40	56	دع	73	80	MICROP 90	MUNE A	MOLEZ													
					• • •	• •	611	40	100	110	120	130	140	150									
. 50	74.6	75.8	75.6	76.7	76.0	77.5	72.8	79.5	86.6														
63	77.2	76.2									63.6			92.4									
80	75.5	75.0																					
133	71.3	76.5																					
125	72.6																						
160	77.9	75.6																					
200	77.2	79.1																					
25 '	76 .5																						
315	76.8																						
400	77.2																						
500	70.E																						
630	61.0																						
863	83,9																						
1000	85.2											85.3											
1250	25.4											83.8											
1630	85.5					78.7										_	- m.						
2000	87.5	87.5					78.2									?	7.551	77717	oT A R	. t	盤	171	ľ
2500	~5.8																						.17
3150	92.1	92.2														,	Sec.	275	· A	10	1.1	1971	5.4
4000	Q:.2	90.2					70.6									1	1.7.71	** V	عائدات الر	190		1.1	1
5005	01.7					26.5		72.5				77.6											
6300	92.3	93.9	93.6					67.2				F0.2											
800ú		96.0				£3.7		84.2															
10000	90.9			87.0		02.6			82.5														
												84.0											
DASPL	1:1.5	102.1	191.3	90.0	98.6	4.49	94.5	05.2	60.1	20. 7	101 0	99.8											
PNLT																							
PNL	115.6	116.1	115.3	114-2	113.1	111.2	106-4	100 4	111-1	114.7	114-9	112.0	109.2	107.7									
								- UP-4C	*****	+1441	113.6	110.7	107-8	106+2									
BAND	18	18	18	16	16	18	18	78	18	10	10	**											
TCCRR	2.0	2.2	2.1	2.2	2.5	2.9	2.5	2.1	1.B	18 1•5	18	18	18	18									
				3				201	1.0	1.7	1.1	1.3	1.4	1.5									

TABLE A-8

2267 M7144 JY50-109 CUIFT ENGINE 1 CONF A HW CONT BM HW T/P FAR FIELD

CONDITION = 4800

WEITIGHE - SHOP EL SIDEFINE

1/3 (C)														
FREQUENCY										NGLES	IN DEG	REES		
(H7)	25	30	46.	50	60	75	60	90	140	110	120	130	140	150
50	62.7							77.0	78-3	79.4	79.5	83.6	82.9	83.9
62	65.3				72.3	74.5	75.3	76-2	78.0	79.5				82.1
60	63.6		66.4	70.5	71.3	72.0	72.1	73.8						76.4
100	59.4		64.4	66.9	67.1	67.2	67.2	68-2	69.2					73.9
125	60.7	64.2	60.1	68+3	69:1	70.2	70.6	72.5	74.6	76.0				77.3
160	66.0	67.0	72.9	72.2	76.3	76.3	78.7	80.4	81.9	82.6			64.0	86.4
206	65.3	70.5	73.4	73.4	75.3	76.2	77.7	80.4						78.6
250	64.5	70.2	71.3	74.4	74.2	75-9	77.4	78.6	80.5				79.8	74.6
315	64.7	66.5		71.3		75.2	75.2	75.8	77.5					74.2
400	65.1	70.0	71.6	72,9	73.5	74.4	75.5	78.9						73.1
500	67.4	70.3	71.9	73.4	74.5	76-1	76.3	77-1						72.8
630	68.7	72.4	74.0	75.5	75.2	75.4	75.7						76.B	71.1
800	71.5	74.6	76.0		76.5		76.3	78.2	60.8					70.E
1000	72.6		78 - 1	78.5	77.6	76.7	76.5	78.3	80.4					69.8
1250	72.6	76.0	77.5	78.6	77.8	76.1	75.0	76.3	78.0		81.1	76.B	72.6	68.2
1600	72.4	76.8	77.5	78.3	77.2	75.5	73.8	74.2				74.5		66.4
2000	74-1		79.5	80.1	79.0	76 B	75.4	75.9	77.6	78.1				65.8
2500	82.0	86.6	88-3	89-1	89+4	88.4	85.0	84.1	85.5	84.4		78.2	74.7	76.9
3150	77.7	82.Z	84.4	84.6	84.7	82.¢	79.7	79.6				75.2		67.2
4020	75.1	79.8	81.2	82.1	82.0	79.5	76,6	75.5	76.6					63.6
5000	76.1	£2.6	E4+4	85.1	25.0	82.9	80.1	79.6				74.4	70.0	65.7
6300	75.7	85*6	85.5	85.3	84.0	83.6	82.0	84.1	67.5				75.3	69.9
8000	71.2	77.8	86.4	81.2	80.9	79.7	78-7	81.0	87.0					70.1
10000	69+3	76-2	79.2	79.9	80.0	78.3					£0.3		70.5	62.5
DASPL		91.8		94.3	94.4	93-2	91.6	92.6	95-1	96-3	97.0	94.6	92-1	89.7
PNLT	103.4	108-B	110.1	111.G	111.4	110.7	198-1	107.9	110.3	710-6	110-5	156-4	707.0	97.9
PNL	101.4	106.2	108.6	168.7	105.9	137.8	105+6	105.8	108.2	109.1	109.4	105.1	100.5	95.4
BAND	18	18	18	18	18	18	16	18	18	16	18	18	18	18
TEORE	2.0	2.2	2+1	2.2	2.5	2.9	2.5	2.1	1.8	1.5	1.1	1.3		1.5

TABL	E A-9		:	267 M	7144 JT	8D ~1 09	OUIE	T ENGI	NF 1	CONF A	ни с	CNT BH	HW T	/P F#	R FIEL	.D				
	ENGINE MA		# JT80	-00 15054			TEMPE	RATURE			. 5I.	O F			TIH	ET TEN IC OF C IN PRE	AY		8.00 P 1039 9.78 1	W. HG.
	TAND			(-314			HUNID	LTY			39.	G. PER	CT.		MIN	D DIRE	CTION	A.	£ 4 M	
	DATE		° 35/0	10714				VED PP.			514 520				MTH	ID VELL	7.114	•	** 1	en
							FAA P	ART 36	REFES	ENCE D	AY COR	RECTE	SPL 1	H 05	- RAD	IUS =	150-	ŕτ.		
1/3 001									DAVE 440		5565									
FREQUENC	Y S	10	20	30	40	50	60		. 60	40 eres 1	IN DEGR 95		105	110	115	_120	130	135	140,	.150
50	75.5	76.0	73.9	77-1	76.7	78.4	77.8	79.6	80.4	81.6	81.7	82.6	83.4	84,3	85.0	85.6	87.6	90.3	92,2	95.1
6,3	74.9	76.5	78.0	77-3		77.9		79.2	70.7										90-7	
80 100	74.8 74.3	76.3 74.0	76.2	76.5 73.2	74.9	77.1 74.2	76.2 72.8	77.1 73.3	76.9 72.2	78-8 73-1	78.5 73.4	75.2	80.5	74.0		77.8	82.3 79.5	81.7	86-1 82-8	85-1
125	76.5	75.8	73.6	75.6	74.5	76.1	75.1	75.3	7546	77.0.		79.3	80.0	-81.1L	. 43.2				89.8	
160	82.9	00.0	78.1	80.3	81.0	79.6	81.5	79.9	82.1	84.1	85.4	86.1		87-9	69.6	90.4	91.9	93.2	93.4	
200	B1-1	78.9	79.2	83.0	01.4	82.6	61.3		83.5	85.8	86.9	88-4		90/8	71.7	92.6	93.3 89.1	94.1	72.9 68.0	
250 31 =	_786. 79.8	78.7 78.7		.Bl.eQ.	60.3 79.0	. 80 . 6. 78 . 7			82.4 . 60.0	BO-9	81.8		83.5	84.5	86.5	88.5	89.3	89.0	88.4	85.5
400	80.5	70.7	79.9	80.2	20 1	79.8	79.2	79.1	81.0		84.9		87.9	89.9	90.1	91.2	90.5	89+5	86-7	63.6
500	81.5	81.2			80.4	80-1	6D.3	81.2	81.2	82.0.	82.7	. B4.0	_ B5_3	.: 87.2		89.B	88.4	87.5		
630	82.5	82.3	82.3		81.4	61.7	80.6	40.4	80,7	82.5	83.7		85.7		89.3	90.0		- 86.3		81.7
800	84.9	84.4	86.9	84.2	82.6	82.6	81.3	80.9	60.7				86.9 85.2		88.7	88.9		85-8	83.9	81.3
1000 1250	.0 <u>.0</u> . 86.7	1,69 0.69				_B4.7 B4.9	82.6 83.0	81.6	79.7		<u>832</u> 81.2		83.1		85.3	85-9	83.2	82.5	80-9	78.6
1699	66.9	86.6		86.5	05.7	84-8	82.9	B0 - 4	76.5	78.9	79.5	80.2			83.2	83.8	80.9	80.5	78-9	76.9
2000	89.1	.08.7	. 80.6	88.3	07.3	86.6	.04.7	82.1	80.0	80+6	81.3		02.5	83-1	83.6		#D-1	79.48		.76.29
2500	91.5	93.8	92.9		92.7	92.3	91-1	88.4	84,4	86,3					. 86.7	85.4	62-3	82.6	61-1	80.4
3150 4000	96.4	99-1	98-1	98.1	95.7	97-0	97.3 88.2	93.9 85.2		88.9	. 82.7	89.6		89.9	89.5			85.4	84.8 Q.87	\$3.7 76.5
5000	90.1 90.5	_ 90•9 - 90•7	91.3 91.2			88.9	87.7	85.4				83.6			03.7		79.3	78-0		
6300	93.0	93.4	95.9		94-3	92.9	91-1	89-1	B6.3	88.0	88.5	89.8	89.7	90.8	90.3		85.4	84.0	82.3	80.9
8000	89.59		_90.6				. 87.1		64.3.	B7.e.1	.68.6_	- 91a1	923	94=1					B6-6	
16000	90.0	40.6	90.6	91.2	90.1	89.1	87.7	85.0	81.4	482.2	82.0	84.4	45.7	60.4	88+>	88.5	87.3	82.0	84=Q	19.2
DASPL	102-0	103.1	103.1	103-1	102.7	101.9	100-9	98.5	94.3	97.4	20.1	.27 · t.	100.1		102-1	10Z.5	101.3	101.6	101.2	101.2
PHLT	118.6	120.5	119.8	119.8	120.3	119.4	116.0	116.0	113.1	112.7	113.0	113.9	114.4	115.0	115.5	115.4	112.8	112.6	112-0	130-6
PHL	116.7	118-2	117.8	117.9	117-8	117-1	116.2	113.7	110.8	111-1	111-5	112.5	112.9	113.7	114-2	114-3	111.3	111-2	110-2	108-9
DRA	105-3	103.7	103-5	103,5	103-5	XU2+4	101-4	A0 0.	72.2	. 40.2	96.8	. 9.0pp	40-5	.7YeB	TEAT	IVVOI	. 7116	. 70.5	7340	72.50.
BAND	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	. 19	19	19`	19
TCORR	1.9	2.3	2.0	2.0	2.4	2.3	2.6	2.4	2.3	1.6	1.5_	Let	.1,5	1.3.	1.3	·let	1.5	1,5	1=8	_ 1.8.
	MAXIMUM I MAXIMUM I MAXIMUM MUMIXAM	PHLT	- 1	03.12 20.49 18.24 µ3.67			COMP	SITE SITE LIMI)	SP PNL GRATED	. •	= 100.3 = 120.3 = 129.6	14								

2267 M7144 JTED-109 QUIET ENGINE 1 CONF A HW CONT BM HW T/P FAR FIELD

CONDITION = 5200 ALTITUDE = 200, FT SIDELINE

1/3 OCT FREQUENCY								4168001	KONE AI	NGI ES 1	IN DEGI	res							
1423	_10	20.	. 30	. 40	50	. 60 _							.110	.115	120	130	135 .	140	- 150
	•	• • • •	•	-														٠ <u>٠</u> -	
50 .63																		85.8 84.3	
03	50.6	10R91	CP.s.D.	68.5	77.3	72 4	74 1	74.3	76.3	76.0	77.0		76 K	77 6	77-9	77.5	50.0		
100	56-1						70.2			70.9		72.2			74.0				
125				. 68-1				73.0		76.4			.TB.0.						82.6
160	62.0			74.6		77-7				82.9			£4.8				87.7		83.8
200	60.8	67.2		75.0	77.7		79-3						£7.7		88.8	88-4			
250							78.3			81.6					85.4				
315	60.4	67.0			73.5			77.3		79.2		80.7				B4-4			
400	60.3	67.5		73.6		75.4		, 78-3		82.3			8.63	85.7		85+6			
.500	62.6						78-1			. 8Qal			_EA.L		8640	.83.5			
630	63.5	70.0	73.1				77-3						15.5		86.2	82-9	80.6	78-2	72.9
600	65.3	72.5	75.3				77.8						24.9			81.6	80-1	77.3	72.4
1000	66.6	73,3	77.4	77.3	79.7	70.9	78.4	78.3	EQ.1	80.6	. S1 - H	82.3	12.9	83.3	83.4	79.B	. 78+6	.75.9	71.2
1250	66.1	73.5	76.5	78.4	79.8	79.1	77.7	76.9	78-1	78.6	79.6	80.2	81.1	81 - 8	82.0	78.1	76.7	74.2	69-7
1600	66.0	73.5	77-3	78.9	79.7	78.9	77.2	75-7	76.3	76.8		78.1		79.6	79.8	75.B	74.6	72.1	67.7
2000	57-3	75.2	. 78.9		51.4		7.8.8			78.6		79.5		_E0_0		74.9		71.4	67.5
2500	71.5	79.1	. 63.3	85.6	87-0		85.1				84-6			83.0	81.3		76.5	74.0	70.7
3150		83.7			92.3					86,2		80.5		85.7			7941		73.7
4000				82.6											79.3		72.9		
5000		75.6	79.9	B2.0		83.3		79.2				8C-1			78-8	73.5			
00E6	. 64.6				86.7			#3+I				86.3		86.2		79.4			69.6
<u>80</u> 00	57.6		78.9		82.4			. E0-9			87.7			91-1					
10000	52.4	69.9	77.6	80.5	82.0	82-3.	80.7	77.7	78.7	78.4	8D.7	81.7	62.6	83.7	83+1	60.2	77.6	74.4	65-6
DASPL	74.7	68.3	9218	95.3	96.3	96.6	95.1	93.4	94-6	95.3	96.5	97.0	68.0	98.4	98.4	26.2	95.9	94.6	92.5
PNLT																		104.8	
PNL																		103.0	
OBA																		87.9	
BAND	19	19	19	19	19	19	19	19	19	10	10"	10	19	10	19	19	19	19	19
TCORR	2.7			2.4				2.3	1.6				1.3						

PNLT (INTEGRATED) = 123.35

TABLE	A-11		;	267 M	7144 J	F80-10'	ouie	T ENGI	RE 1	C04F /	NW C	:OHT BI	1 189 1	7P F	IR FIEI	D				
	FRGIRE NI FNGINE N			75054			TEMPE	RATURE			50,	0 F			TI	ET TEA	YAC	•	8.60 F	
	STAND.		= 05/6	1-314 36/74			HUMIC	YFI			· 41.	o PĘB	CT.		MI	H. PRI D DIRI D VELC	CTION	= 2	4.18 1	M. HG. IPH
								VED RE		8	514 520				.,		,00		• •	
							FAA É	ART 36	, REFER	ENCE I	DAY COF	RECTE	SPL 1	EN 'DB	- RAT)1US =	150.	FT.		
1/3 CCT FREQUENCY (HZ)	, ,	10	20	30	40	50	60	II CROPI 70	AA, BACK OB	(GLES 1	IN DEGI 95	REES 160	105	110	115	120	130	135	140	250
50	/5.8	74.9	74.0	77.5	76.7	78.0	77.7	79.7	80.8	82.2	82.4	83.1	83.8	84.4	85.7	85.0	88.4	90.4	92.3	94.É
63	75.4		77.6	.77.7	77.2	77.4	77.4	79.7	7942	81.3	81.6	82.9	83.6	84.2	85.5	85-1	87-4	89-8	90.9	92.9
80	75.0		76.3	76.7	75.5		75.9	76.9	77.2	78 - 6	79-1		80.6	81.7	82-0	81.8	84+0	85.2	87.1	68.1
100 125	74.4	73.5 75.5	72.6 73.7	73.0 75.8	72.8 74.0		72.7	73.3 75.3	72.6	73.5 77.6	74.0 78.1	74.5 79.2	75.2 79.∆	75.8 81.3	77-1 82-3	77.5	79.7	81.2	82-4	86.9
160	82.6		78.3	8D-6	81.3		82.5	80.0	74.7 81.7	84.1	84.7		66.9	81.2	89.3	84.6 90.8	86.5 92.1	88.3 93.0	89.1 93.1	91.0 92.5
200	81-3	77.9	79.3	82-9	82.5		91.2	82.4	1.03	66.1	86.9	88-5	89.3	90.6	93.9	92.6	93.8	94.0	93.3	90.2
250	79-0		79.7	51.2	80.5	80.7	80.2	81.5	02.5	83.B	84.4		56.6	66.0	68.6	89.4	90.2	89-6	88-9	85.7
315	87.0	79.1	79.3	79.3	79.1	78.7	79.9	00.5	60.9	01.2	81.7	82.7	83-2	84.3	86-1	88.4	89-1	89.0	88.4	85.2
400	80.5			80.Z	80.4		79.2	79.4	80.Z	63.7	84.7		07.7	B9.8	89,8	91.4	91.0	89.6	87.7	
500	21.3			61.0	60.6		80-4	81.3	01.2	81.9	B2.6	84.1	85.5	86.9	88-4	90.0	88-0	87.6	86-2	83.1
630	82.7			82.3	81.9		80.7	80.6		B2.9	83.5	85.5	86.5	88.3	89.2	90.6	88.3	86.3	65.3	81.4
800 1000	84.5 88.0			84.5	83.5 86.3		81.5 82.9	81.1 81.6	80-8 81-0	82.8 _02.6	83.5 83.3	85.2 84.4	85.4	87.8 85.7	86.9	88.9 87.2	86.6 84.8	85.7 84.2	84.3 82.0	50.8 79.7
1250	66.6			86.1	85.7		83.3	80.9		80.8	81.3	82.2	83.4	83.9	85.2	85.6	83.4	82.6	B1.4	78.5
1600	86.7			87.1	86.4		83.2	80.B		78.9	79.5	80.3	81.2	82.1	83.3	63.7		80+3	79.2	
2000	88.6	80.5		08.8	58.0		05-1	82.4	80.3	80.0	81.3	.82.2	82.9	83.0	83.5	82.5	80.4	79-7	79.0	
2500	90.1	93.2	92.5	93.2	92+6	91.4		88.6	85-1	86.2	87.0	87.1	87.1	87.3	87.1	85.3	82.0	82.1	81.3	79.6
3153	94.1			98.9	98-2		96.3	94.9		89.1	68.8	89.4		89.3		88.3	86-0	84-8	83.B	
4000	29.4			92-0	91.0		88.3	85.7		82.5.		03.5		D4-1	84-5		80.2	79-4	78-5	76-2
5000 6300	90.1 93.1			91.0	90.0		87.6	65 - 6		82.9		83.3	83.6	83 -4	83.7	83.0	79-4	78.6	77.4	75-5
8000	09.3			96.2 91.2	94.3		91.0	89.2 85.5	86.3 84.1	88.5 87.9	88.7 88.6		99. 7	90.1 92.9	90.5 95.2	70 4 .94 9	85.5 90.4	84+1 .88+7	82.4	80.4 82.7
10000	89.3									82.8	81.8		85.5						84.2	
UASPL	161-1	102.9	102.7	103.7	102.7	101-4	100-4	99.0	96.3	97.7	98.1	99.3	100.1	161.0	102.1	102.5	101-6	101.6	101.3	100.9
PNLT	116-9	120-2	119.1	120.6	119.8	119-1	117.9	116.9	113.1	112.9	11248	113.8	114.2	114.4	115.6	115.3	113.2	112.3	111-4	110.2
PHL	115.4	110.0	117.3	118.5	117.7	116.7	115.7	114.3	110,9	111.4	111.5	112.4	112.9	113.2	114.2	114-1	111.7	111.0	110.1	108.4
DRA	101.3	103.4	103.1	104.1	103.1	101-9	100.8	99.1	95.6	. 96.5	96.8	97.9	78.5	99.1	100-1	100.0	97.4	96.4	95.2	92-5
BAND	19	19	19	29	19	19	19	19	19	19	19	. 19	19	19	19	19	19	19	19	19
TCORR	1=5	2.2	′ 1.8	2+1	5•1	2.4	2.3	2.6	2.2	1.6	1.3	1.4	1.4	1.2	1.4	1.2	1.5	· I.A	1.3	1.7
1	HUHIXAH HUHIXAH HUHIXAH	PNLT PNL,	s 1	03.66 20.60 18.50 04.07			COMPO COMPO PNLT	SITE	SI PNI EGRATEI	L	= 100.; = 120.; = 129.;	26								

2267 H7144 JT80-109 CUIET ENGINE 1 CONF A HW CONT BM HW T/P FAR FIELD

CONDITION = 5262
ALTITUDE = 200. FT SIDELINE

1/3 CCT FREQUENCY								17 70 001	JANE 40	ICLES S	IN DEGI	EEE							
(HZ)	10	20	30	46	50	60	70	11 CKOFI	90	95	1G0	105	110	115	120	130	135	140	150
\$1(2.7	10	. 44	34	70	5.0	-	,,,	0.3	70	75	100	103	110		110	2			200
50	57.1	62.9	69.0	70.3	73.2	73.9	76.7	70.2	79.7	79.9	80.5	81.0	81.4	82.3	82.2	83.6	- 84.9	85.9	86.3
63	57.9	65.7	69.2	76.8	72.6	73.6	76.7	76-6	78.8	79.1	80.3	80.8	81.2.		81.3	82.6		84.5	84_4
80	58.3	64.4	68.1	69.1	72.3	72.1	73.9	74.6	76.1	76.6	77.6	78.0	78.7	78.6	78.0	79.2	79.7	BG.7	79.5
100	55.6	617	64.4	66.4	69-1	68.9	70.2	70.0	71.0	71.5	71.9	72.4	72.7	73.7	73.7	74.9	75.7	76.0	76.3
125	57.6	61.8	67.2	68.5	71.1	71.2	72-2	72.1	75.1	75.6	76.6	76.8	78.2	78-9	80.8		82 - 8	82.7	82,4
160	63.1	66.4	72.0	74.9	76.0	78.7	77.7	79.1	81.6	82.2	83.6	84-1	85.1	85.9	87-0	87.3	87.5	86.7	83.9
20,0	61.8	67.3	74.3	75.1	77.4	77.4	79.3	80.4	83.6	84.4	15.8	86.5	87.5	88.5	80.B	8B.9	88.4	86.9	81.6
250	61.6	67.7	72.6	74.1	75.8	76.4	78.4	79+8	01.3	. 61.8	63.0	83.8	84.9	85.2	85.6	85.3	84.0	82.5	77.1
315	60.8	67.2	70.6	72.7	73.8	76.1	77.4	78-2	78.7	79.1	80.0	80.4	B1.2	82.7	84.6	84.2	83.4	82.G	76.5
408	60.5	68,0	71.5	73.9	75-1	75.4	76.3	77.5	B1.2		63.5	84.9	86.7	86.4	87-6	86-1	84.0	61.2	74-6
500	63,2	69.1	72.3	74-1	75.3	76.6	78.2		79.4	80.0	61.4	B2 - 6	83.8		86.2	£3.1	82.0	79•7	74.4
630	65.3	70.0	73.5	75.4		76.9	77.5	77.9	80.3	20.9		63.6	85.2		66.6	83.4	80.6	78.8	72-6
800	67.1	72.6	75.6	76.9	77.7	77.6	78.0	78-I			82.5	83.6	84.7		B5.0		60.0	77.7	71.9
1000	69.5	73.6	78.3	79.7	79.6	79.0	78.4		80.2		81.7	82.5	82.5	. 83.4	83.3	79.B	78.5	76.3	70+7
1250	67.9	73.6	77+0	79.0	79.6	79.4		77.0	75.2	78 .7	79.4	8u.5	8ú•7	81.7	81.9	78.3	76.8	74.7	49-4
3600	66.5	73.5	77.9	79.6	79.6	79.2	77.6	75.7		76.8	77.5	78.2	78.9	79.7	79.7	76.1	74.4	72.4	67.4
2000	67.1	75 -1	79.4	81.1	81.1	81 - 1	79.1	77.5	78.1	78.6			79-7	79.9	78.5	75.2	73.7	72.1	67_1
2500	70.9	78.7	.83.5	85.5	56. L	86.5	85.3	82.Z		84.2					81.2	77.5	74.0	74.2	49.9
3150	74.9	82.9	88.9	90.9	92.0	92.1	91.5	87.1			86.5	E6:4	85.9	86.2	84-1	80.5	78.5		73,1
4000	65.1	76.3		83.4	03,3		82.2	78.7			8D.5	80.5	E0.6		79.5	74.5		70.9	65 . 8
5000	64	75.4	80.3		82.4			79.3								73.6	71.9		64.0-
6300	64.9			86.2				83.1					86.4				77-1		69-1
8000	56.8				. 8 1. -6		81.5		84.7							83.9	81-2		70.5
10000	51.5	69.4	77.9	80.4	81.2	81.7	81-2	77-6	79.3	78.2	80.7	81.5	81.8	83.7	82.8	£0-0	78.2	74.6	65 - 1
DASEL	79.9	87.9	93.4	95.2	95.9	96.1	95.6	93.4	94.9	95.3	96.4	97.0	97.6	98-4	98.3	96.5	95.8	-94.8	92.2
PNLT	80.9	104.7	110.6	112.5	113.7	113.7	113.5	110-2	110.1	109.9	110.3	111-1	111.0	111.7	110.9	107-8	106.1	104.2	100.4
PNL	94.5	102.9	108.4	110.4	111.2	111.4	110.9	108.0	108.6	108.6	109.4	109-7	109.8	110.3	109.6	106.3	104-7	102-9	98.7
DBA	80-2	68.4	93.8	"95 . T	96.3	96-5	95.7.	92.6	93.7	93.9	94.8	95.3	95-6	96.2	95.7	92. ū	90.2	86.1	82.9
BAND	19	19	10	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19.
TCCBR	.2.3	1.8	2.1	. 2.1	2.4	2.3	2.6	2.2	1.6	1.3	1.4	1.4	1.2	1.4	1.2	1.5	1.4	1.3	1.8
	•		٠.						7.5		100			•					

PNLT (INTEGRATED) = 123.24

CONDITION = . 5195

ALTITUDE = 200. FT SIDELINE

1/3 OCT FREQUENCY						HICR	OPHONE	ANGLES	IN DE	GREES
(HZ)	100	120	140.	150	160	130			•	
50	81.3	85-1	89.1	89.7	86-6	86.7				
63	84.9	85.5	90.0	89.6	86.9	87.2				
80	84.1	86.1	90.2	91.0	84.7	89.3				
100	83.5	85-9	90.3	87.3	81.6	89.5				
125	85.6	28.1	90.3	87.6	20.7	89.0				
160	86.9	90.€	88.4	86.5	78.6	90-8				
200	87.4	89.8	88 B	84.4	72.7	89.9				
250	85.6	88.1	86,5	82-8	73.5	88.6				
315	87.9	90.3	85-6	81.6	71.6	B8 • 6				
400	67.7	89.9	86.5	61.7	73.9	87.6				
500	88.4	90.6	84.8	81.0	75,0	87.2				
630	87.4	89.7	83.5	79.7	72.4	85 + 0				
800	86.5	87.5	82.1	78-2	71.3	82.4				
1000	.85 .8		80.4	76.6	69.8	80.6				
125ů	83.4	84.2	78.9		6847	78.8				
1600	61.4	82.3	76.0	72-9	66.5	76.5				
2006	62.8	80.3	75.4	72.3	. 66.7	75.9				
2500	87-1	62+2	77-7		70.2	78.0				
3150	88.4	63.4	79.3		72.6	78.7				
4000	84.0	_ 80.4	74.2	71.2	65.4					
5000	83.6	79.4	73.4	70.1	65-1	74.2				
6300	89.7	84.6	77.7		68.0					
8000	91.6	89.3	80.1	75.6	66-1	82.3				
10000	84-1	83.4	75.5	70.2	58.3	78.4				
				. ?						
DASPL	100.3	100.9	99.6	97.8		. 9948				
PNLT	113.6			105.4		107.7				
PNL	112.7			104.0		107-1				
480	. 98 • 4	97.2	91.9	68.4	81.B	93+1				
BAND	23	23	.19	19	19	23				
		Ç.9	1.1	1.4	1.6	0.6				
BAND	23 0•9							· :		

PHLT (INTEGRATED) = 120-94

2267 M7144 JTRD-109 QUIET ENGINE T CONF A HW CONT BM HW T/P HARD FIELD

FINCIPIT MODEL . 0 3750 -GO
EMGINE NUMBER = 375054

TEMPERATURE 0 51.0 F

TIME OF DAY 1039

SARM. PRESSURE 1039

SARM. PRESSURE 29.78 IN. MG.

RATHOLOGY
TO A 15/10/74

MIND VELOCITY 0 4 MPH

CORRECTED RPM = 5145

CORRECTED RPM = 5200

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.

```
1/3 CCT
PREQUENCY
(H7)

110 111 90

100 87.3 65.6 65.3
63 00.1 06.0 84.5
80 00.0 95.6 85.1
100 87.7 84.5 85.2
125 90.2 87.0 89.7
160 91.3 05.6 80.7
200 92.0 87.0 89.7
215 90.7 81.6 87.7
215 90.7 82.6 87.7
215 90.7 82.6 87.7
215 90.7 82.6 87.6
4.0 91.7 88.6 87.6
4.0 91.7 88.6 87.6
4.0 91.7 88.6 87.6
4.0 91.7 88.6 87.6
4.0 90.3 90.9 86.0
800 89.5 87.6 86.4
1000 80.5 87.6 86.4
1000 80.5 87.6 86.4
1000 80.5 87.6 86.2
2000 65.7 84.1 83.7
2500 65.6 67.2 89.0
3150 91.0 89.3 91.2
2000 65.7 84.4 83.9
1000 90.3 90.0 86.0
5000 87.7 84.1 83.7
2500 91.6 10.5 88.2
2000 65.7 84.1 83.7
2500 91.6 10.5 89.0
3150 91.0 89.3 91.2
4000 90.3 89.0 86.0
5000 91.6 10.4 91.9
8000 90.1 67.7 88.1 84.2

0ASPL 103.8 102.2 101.3
PNLT 116.0 115.4 115.7
PNL 115.7 114.2 114.4

08A 101.3 10.3 99.6

MAXIMUM CASPL = 103.64 COMPOSITE SPL = 103.96
HAXIMUM PNLT = 116.75 COMPOSITE SPL = 103.96
HAXIMUM PNLT = 115.69
HAXIMUM PNLT = 115.69
PNLT (INTEGRATED) = 120.75
```

TABLE A-16

2267 H7144 JTDC-109 QUIET FNGINE 1 CONF A HW CONT DH HW T/P HARD FIELD

CONDITION = 5200

ALTITUDE = 200. FT SIDELINE

1/3 OCT FREQUENCY (HZ)	170	111	95		ніскорнойє	ANGLES	IN DEGREES
			_				
50	84.3	P2.5	82.8				
63	86.1	85*6	82.û				
86	86.0	82.5	82.6				
100	85.6	80.9	82.7				
125	57.1	73.6	.65.2				
160	88.2	77.5	86.2				
200	99.0	83.9					
250	87.6	86.5	85.2				
315	88.6	69.3	85.3				
400	66.6	85.5	84.5				
500	88.0	42.7	83.9				
630	87.2	87.7	83.4				
800	£6.4	84.4	83.8				
1000.	85.3	85.0	63.0				
1250	83.2	P7-2	81.3				
1600	81.9	80.2	79.6				
2000	4.55	8¢.8	81.0				
2500	86.3	83.8	86.3				
3150	87.6		- 88-4				
4000	82,5		82.1				
5600	81.6		83.3				
6300	27.5	87-6	88-8				
10000	91-1	_96.9	û•88				
Idana	82.9	83.7	80.7		+		
DASPL	100.5	98.7	98.6	. •			
PNLT		111.8					
PNL		110.5					
DBA	97.8	76.7					
	,,,,	,241	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
BAND	19	12	19				
TCORR	1.1	1-2	1.2				
			,				

PRIT ITHTEGRATED) = 117.49

```
TABLE A-17
                                                          2267 M6766 JT08-109 CUIET ENGINE 1 CONF A NW CONT 8H HW T/P HARD FIFLD
                                                                                                                                                                                                           INLET TEMP
TIME OF DAY
BARM. PRESSURE
                FUCLUE HODEL . THEL -CO
                                                                                                   TEMPERATURE
                                                                                                                                                                                                                                                    1025
29.78 IN. HG.
                STAND
DATE
                                                                                                                                                                                                           WIND DIRECTION
WIND VELOCITY
                                                                                                                                                                                                                                                           SE
5 MPH
                                               = X-314
= 05/06/74
                                                                                                   HUNIDITY
                                                                                                   COSERVED RPH
                                                                                                   FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 15G. FT.
1/3 CCT
FREQUENCY
                                                                                                          MICROPHONE ANGLES IN DEGREES
    (HZ)
                         100
                                     110
                                                                          150
                                                                                    84.5 92.1
85.4 91.3
87.9 93.6
89.4 93.7
90.9 95.9
90.9 95.9
91.5 96.0
91.5 96.0
91.5 95.9
92.1 6.6
61.5 95.9
90.4 92.5
89.4 93.5
87.1 92.4
87.1 92.4
87.1 92.4
87.1 92.4
87.1 92.4
87.1 92.4
90.9 97.1
90.9 97.1
90.9 97.1
90.9 97.1
90.9 97.1
90.9 97.1
90.9 97.5
    95-17
97-70
95-67
95-67
95-77
95-77
958-97
958-97
958-98
85-62
85-72
85-84
85-72
85-84
85-72
85-84
                                                                         94.9
93.9
93.9
93.9
95.1
95.2
94.4
93.0
97.1
90.1
                                                 4000
5000
6300
8000
10000
  OASPL
PNLT
PNL
QBA
                      104.4 109.9 106.0 106.0 117.8 123.3 117.7 114.0 116.8 127.3 116.8 113.6 113.6 113.6 132.6 139.0 102.4 48.4
                                                                         106.4 105.5
114.6 113.1
115.0 111.5
97.0 95.3
  PAND
TCDAR
                                                   23 19
1.6 1.2
                                                                            19
1.6
                MAXIMUM CASPL
MAXIMUM PNLT
HAXIMUM PNL
MAXIMUM OBA
                                                                                                   COMPOSITE COMPOSITE PALT ITM
                                                                                                               SITE SPL
SITE PNL
(THTEGPATED)
TABLE A-18
                                                                                               2267 METES JTBD-100 DUIFT ENGINE 1 CONF A HW CONT BH HW T/P HARD FIELD
```

CONDITION = 5197 ALTITUDE = 200. FT SIGELIES

1/3 NCT FREQUENCY (HZ)	120	7,20	.240	150	160	130 130	CROPHONE	ANGLES	IN DEGREES
50	81.9	8.30	88.9	£9.2	85.3	90.1			
63	83.e	87.5	90.7	70-4	67.7	88.5			
ãĎ	85.5	86.1	90.3	40.7	65.3	89-1			
100	89.3	87.9	90.6	88.5	82.2	88.2			
125	8.08	89.3	89.3	.67.7	P1.6	89-1			
160	88.3	89.2	90.0	86.3	79.4	91.3			
200	18.2	~1.1	87.2	84.3	73.2	90.3			
250	88.1	89.6	86.3	82.2	72.4	89.3			
315	RE-B	91.3	85.3	80.6	71.3	89.5			
400	80.7	90.9	85.4	80.5	72.1	88.3			
5៦ជី	89.4	91.4	63.5	79.8	73.1	68-1			
630	60.6	87•F	82.2	78.2	71.5	87.2			
800	87.7	R7.3	81.3	77.0	70.7	25.1			
1000	86.7	85.6	60-1	75.5	68.8	62-8			
1250	84.3	,84.4	78.5	73.5	67.4	81-1			
1670	22.5	02.3	75.8	72.2	66-1	78-5			
2000	84.1	51.0	75.3	71.6	66.2	77.6			*
2500	87.1	83.4	76.9	74.7	69.5	79.5			
3150	89.6	84.8	79.2		71.9	80.5			
4000	25.B	61.2	74.2	69,9	,64-3	76.5			
5000	85.0	83.5	73,2		63.4	75.7	1		100
6300	91.2	67.1	77.6	73.3	67.8	80.3			
6000	93,1	91.6	80.5	74=2	70 - 8	84.4			
10000	85.1	85+3	7617	68.2	60.2	80-4			
OASHA.	101.5	102.0	99.5	97.7	93.4	400.6			
PNL!	114.9			105.0		109.2			
PNL	113.9			103.4		108.6	45.0		
DBA.	97.6			07.5		94.6			
BAND	19	23	19	19	19	23			
TCOPR'	1.9	1.0	1.2	1.6	1.7				

PRIT (INTERDITER) # 199 16

2267 H7144 JT8F-109 GUTET ENGINE 1 COME A HM CONT BM HM TZP HARD FIELD

HICROPHONE ANGLES IN DEGREES

TEMPERATURE = 50.0 F

INLET TEMP = 48.60 F
TIME OF DAY = 1025
BARN- PRESSURE = 29.78 IN. MG.
WIND DERECTION = E
WIND VFLCCITY = 4 MPH

CORRECTED RPM 0 5147 CORRECTED RPM 0 5202

PAA PAPT 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 156. FT.

> MAXIMUM PASPL = 1.5.CD HAXIMUM PALT = 118.17 HAXIMUM PAL = 117.11 HAXIMUM DBA = 162.73

COMPOSITE SPL = 105.0 COMPOSITE PNL = 117.1 PNLT (INTEGPATED) = 121.6

TABLE A-20

2267 H7144 JTED-109 QUIET ENGINE 1 CONF A HW CONT 8H HW T/P HARD FIELD

CONDITION = 5202

MICROPHONE ANGLES IN DEGREES

ALTITUDE = 200. FT SIDELINE

PALT (INTEGRATED) = 118.30

TABLE A-21 2267 H7143 JT8D-109 QUIET ENGINE 1 CONF A HW CONT BH HW T/P FAR FIELD INLET TEMP = 64.00 F TIME OF DAY BARM. PRESSURE WIND DIRECTION WIND VELOCITY = 1555 = 30.08 IN. HG. = SE = 4 HPH TEMPERATURE HURIDITY # X-314 = 05/02/74 STAND OBSERVED RPH FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = . 150. FT. 1/3 GCT FREQUENCY (HZ) MICROPHONE ANGLES IN DEGREES 70 80 90 95 100 105 110 130 135 10 30 40 60 70 70 80 90

86-4 08-3 87-7

87-2 87-0 88-3

85-6 05-8 85-8

82-6 32-3 83-9

83-1 83-8 84-7

86-5 89-2 90-8

90-1 92-7 94-0

91-5 91-5 94-0

90-4 90-6 91-4

69-0 90-6 91-7

88-5 89-5 91-8

90-1 89-6 90-9

87-4 87-9 89-5

87-3 88-6

87-9 87-9 89-5

90-1 91-7 92-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1

100-1 95-6 96-1 89-1387-671-523-6247-655-6445-795-5-5-6247-6-5-795-5-705-5-705-5-705-5-705-5-705-5-705-5-705-5-7 900-464 900-464 900-464 900-464 900-68 900-6 85-0 84-5 84-4 83-7 81-8 82-3 83-2 83-8 86-3 87-4 89-2 90-7 89-1 89-5 87-1 88-3 87-4 87-7 87-0 87-0 86-4 88-3 80-1 91-0 85-6 87-6 87-0 98-0 90-9 92-5 90-9 94-5 97-5 96-1 103-8 101-3 93-4 92-9 97-8 96-6 63 86 100 125 160 200 250 315 400 626 800 1000 1250 1600 821.25.32.45.50.28 6122.53.24.55.28 6122.53.24.65.28 6122.53.24.65 6122.65 612 84.6 84.4 814.2 90.4 2 88.8 88.7 88.8 85.7 90.1 97.1 97.1 87-1 87-4 92-6 99-1 101-2 100-0 98-6 98-7 98-7 98-7 94-5 92-2 90-9 91-1 89-9 91-3 92-4 92-4 93-9 0068945454381777.5620 00689454543109.177.5620 006894543109.1777.5620 73-13 86-0 87-2 86-0 96-9 96-9 99-3 100-7 99-2 99-4 94-8 95-8 95-2 97-8 95-8 91-8 91-8 91-8 91-8 91-2 88-9 91-2 88-9 92-2 89-9 92-5 89-9 92-5 89-9 93-6 94-7 94-6 94-7 94-6 94-7 94-6 94-7 2000 2500 3150 4000 5000 6300 99.9 97.1 105.9 103.0 93.7 90.6 95.2 92.4 99.1 96.0 97.1 95.2 84+3 8030 10000 107.1 106.0 106.3 105.0 103.9 105.6 105.7 107.0 107.6 108.5 109.5 109.7 111.5 112.1 125.7 123.7 125.2 122.8 119.3 119.9 119.7 119.6 119.3 120.7 126.4 120.0 120.1 119.9 122.4 121.1 121.6 120.1 117.6 118.5 118.7 119.6 119.3 120.1 126.4 120.0 119.5 119.9 107.3 105.9 166.3 104.5 102.4 103.2 103.5 104.9 104.7 105.5 106.3 106.1 105.6 106.1 104₄6 107-4 108-9 106-6 122-6 126-2 127-2 125-0 119-7 122-7 124-0 121-8 104-6 107-9 109-2 106-6 PNL 20 20 24 24 10 1.3 1.1 0.0 0.0 0.0 24 24 7 0-6 BAND 20 1.5 24 20 20 20 20 3.3 2.6 COMPOSITE SPL COMPOSITE PHL PNLT (INTEGRATED) MAXIMUM DASPL MAXIMUM PNLT MAXIMUM PNL MAXIMUM DBA 113.64 127.22 123.98 2267 H7143 JTBD-109 QUIET FHGINE 1 CONF A HW CONT BH HW T/P FAR FIELD

5%

TABLE A-22

CONCETION = 6371 ALTITUDE = 200. FT SIDELINE GOOR CUALITY

1/3 DCT FREQUENCY HICROPHONE ANGLES IN DEGREES 80 90 95 100 10 135 140 115 . 120 . 110 50 10 20 36 69.5 71.8 72.5 70.9 86.3 82.4 93.8 95.2 95.7 95.7 95.3 91.7 95.3 91.8 85.6 85.4 85.9 92.8 85.4 85.4 91.8 85.8 86.6 83.3 84.8 81.4 81.3 82.2 85.2 88.3 91.2 91.5 92.1 91.5 92.1 90.6 90.9 89.2 89.6 89.2 89.6 86.0 85.8 86.0 85.8 85.2 85.0 85.9 86.0 85.9 86.0 85.9 86.7 93.2 90.4 87.7 88.7 88.7 88.7 87.98 873.84 57.84 57.85 94-1 910-1 990-1 995-2 905-2 9 76.07 76.07 75.08 75.08 81.08 80.01 77.06 80.07 77.06 80.07 77.06 80.07 78-0 78-0 76-8 76-9 82-7 80-9 80-5 78-9 80-5 78-2 80-2 84-0 96-2 85-3 85-3 85-3 85-3 87-8 83-6 87-9 88-8 97-8 97-4 100-5 94-8 95-0 94-8 95-0 94-8 95-0 94-8 92-2 94-8 92-2 94-8 92-2 84-9 87-1 86-9 87-1 85-8 83-4 85-1 83-4 85-1 83-4 85-1 84-9 85-1 84-9 85-1 84-9 85-1 84-9 85-1 84-9 85-1 84-9 85-1 84-9 85-1 84-9 85-1 84-9 85-1 84-9 85-1 84-9 85-1 84-9 85-1 84-9 85-1 84-9 329-05 379-04 100 125 160 250 250 315 400 500 600 72-9 72-9 75-5 76-9 76-9 76-9 74-5 73-5 71-6 71-6 85-5 90-6 87-8 87-8 87-8 87-8 64-6 67-3 67-3 669-2 66-6 66-0 65-9 63-4 69-5 779-7 643-6 65-6 63-7 96.6 95.4 95.0 95.0 93.0 90.7 87.1 85.4 85.4 85.4 86.6 87.4 85.8 83.9 81.8 80.6 80.4 80.4 83.3 79.3 78.4 80.1 1020 1250 1600 2000 2500 3150 101-5 101-0 102-2 102-9 104-2 104-4 105-2 106-0 105-8 106-6 106-5 114-3 116-3 117-0 116-9 116-6 116-2 117-3 116-7 115-8 114-9 113-8 116-6 116-2 116-7 115-8 114-3 113-8 101-0 99-4 100-4 100-6 101-9 101-6 102-1 102-6 102-0 100-5 100-2 102.0 120.9 117.5 102.0 DASPL PNLT PNL DS: 114.9 115.5 99.7 166.2 20 20 20 20 24 24 10 24 24 7 257. 1.5 1.3 1.0 0.0 0.0 0.6 0.0 0.0 0.0 24 20 0.0 1.2 BAND

PALT (INTEGRATED) = 129-39

TAI	BLE A-	23		2267 H	7144 J	T0D-10	9 QUI	ET FNG	INE 1	CONF	A HW	Сант в	н ни	T/P F	AR FIE	LD					
	FNGINE M		= JT8					ER AT UR				10 F			IN TI	LET TE HE GF	DAY	F -	47.00 953	F	
	STAND DATE			X-314			HUHI	DITY			= 42	∍O PER	£T.		HI	ND DIR	essure Ection		29•78 E	IN. HG.	,
	1.415		= 05/	UO# /4				RVED R			= 63				HI	ND VEL	OCITY	=	4	HPH	
								ECTED			* 63	-									
1/3 0	т						FAA	PARI 3	D KEFF	KENCE	DAY CO	RKECTE	D SPL	IN DB	- RA	DIUS =	150.	FT.			
FREQUEN	EY							HICROP	HONE A	YGLES	IN DEG	REES									
(HZ)	£.	10	20	30	40	50	60	70	60	90	95	100	105	110	. 115	120	130	135	140	150	
50	81.6			82.7	83.5					88-2		89.7	90.4	91.5	91.9	93-2	96.6	99-4	102-1	106.2	
63 80	80.6 02.1			83.8 83.5	84.3			86.0 84.7	86.4 85.1	86.4 86.4			96.5		92.5	93.1	96.7	99.5	102.0	105.3	
100	82.0	81.9		81.0	81.3			81.B	81.0	82.4		86.0 94.0		89.8 85.7	90.1 86.1					101.3 79.2	
125	03.4		81.0	84.1	82.5			82.E	83.6	85.5	87.0	87.9	BB-5		91.3	94.7	97.6	99.8	102-1	105.8	
160 200	86.2 85.7			86.9	86.3 89.0			87.3	89.4	91.4				95.8	97.5	99.6	101.6	103.5	105-0	106.1	
250	84.5		88.1	89.3				90.4 90.7	91.9 91.8	94.2 93.8		96.7		99.6	99.3	102+3	100.3	104.4			
315	2.69		86.1	86.2	87.1	86.6	88.2	88.8	88.5	89.9			92-1		95.6		78-5		100-0		
400 506	86.5		86.2					88.1	89.Z	92.3		95.1	96.4	98.B	98.6		99.1	99.1	98.3		•
63.0	84.4	85.0 85.0	85.4	85.5 86.4	86.5 87.5	86.6 87.3		89.0	89.1 88.8	90-4			93.6		96.6		97.1		97.4		
800	B4-4		85.4	86.6	88.5				89.3	90.2			94.6 93.4	96.4 94.9	97.0 95.2			96≥2 94•8	95•7 93•9		
1000		. 81.3		A3.5	84.5	85.1	85.7	86-3	87.0	88.5		90.1		92.2	92.7			92.6	91.3		
1250 1600	81.8 86.2		83.Q 85.B		84.6				86.0	87-1		88.6	86.9	9ü-6	91.0	91.0	90.8	90.B	87-5		
2000	88.7		69.4	86.4 48.7				87•7 96•3	86.0 86.9	86.6		88.0	88.4 87.9		90.3	90.7	89.5		88.0		
2500	90.0	91.4	90.4	89.3		89.1	90.6	89.4	88.2	87.7		3.88	58.9	89.7 90.8	90.0	89.9 89.6	88.E 88.1	88.5. 87.6	. 87.4 86.9		
3150	99.5			99.6	100-B	98.5	99.6	97-8	94.9	94.1	93.2	93.9	93.7	95.6	93.6	92.1	89.7				
5000 5000	101.0 89.6	101.0 89.1	90.3	101.6 87.6	102.4 59.5	100.5		99.9	96.3	95.8					95.9		90.8	90.5	90.0	88.2	
6300	91-6		92.2	91.5	91.7		89.6 90.5	88.9 89.4	88.9 88.9	90.6 89.4			93.7	95-1	94.2		88-4		86-1		
8000		93.9		94.3			93.1	91.7		90.6					92.1		88.3		84.9 86.3		
16000		90.7	91.3	90.9			89,7	88.2	86.7	87.8	87.9	90.5	92.4	93.9	95.3	94.4	90.2	87.9	87.3	83.B	
GASPL	165.4	105.2	106.2	105.8	106.5	105.2	105.B	104.9	103.5	104.4	104.B	106-2	106.8	108.5	108.9	169-9	110-1	111-2	112-2	113-6	
PNLT PNL	122.7	122.7	123.7	123.5	124.3	122.8	123.4	172.4	119-5	119.4	118-0	119.7	119.7	121.5	120.4	120-1	118.2	118-4	118-4	118.3	
DBA																		110.4			
BAND	20	20	20	20	20	26	20	20	ŹO	20	24	10	10	10	24	24	24	24	24	6	
TCORR	2.5	2.6	2.7	2-8	2.9	2.7	2.6	2.5	1.8	1.4		J=5	0.6	0.7	0.0	0.0	0-0	0.0	0.0	0.5	
	HUHIXAH		a 11	13,61			СПЯРО	SITE	58	L :	= 114.1	30									
	HAXIBUH (PNLT	= 12	24.BG			COMPI	SITE	PNI		= 125.										
	HUHIXAH HUHIXAH	PNĽ DBA		1.43 6.90			PNLT	CINT	GRATE)) :	= 134-3	37									
TAB	LE A-2	4		2	267 H7	144 JT	BO-109	QUIF	r ENGI	iE 1	CONF A	HH C	MB THE	HH T	/P FAI	R FIELI	o o				

CONDITION = .6385
ALTITUDE = 200. FT SIDELINE

							HICROP	HONE A	NGLES	IN DEG	REES							
10	20	30	40	. 5C	. 60	70	ខ្	90	95	100	105	110	115	126	130	135	140	150
			77-1	79-7	81.3	82.6	84.2	85.7	86.4	87.1	87.6	88.5	68.5	89.4	91.8	03.0	95.7	97-7
			77.9	79.9	81.0	83.0	83.8	85.8	86.3	.67.2	87.7							
		74.9	77.3	79.5			82.5	83.9	84.7	85.4	86.2							
64.0	69.2	72.4	74.9	76.8	77.4	78.7	78.4											
64-Q	60.1	75.5	76.1	78.5	78 - 8	79.7	51.0											
66.4	73.4	78-3	79.9	82.4	83.3	84-2												
67.1		80.8	02.6	84.9	85.3	87.3	89.2	91.7										
	76+1	8D.7	82.7	84.7	85.8	87.6	89.1	91.3										
	74.0		80.7	81.7	84.4	85.7	85.8	87-4										
	74.1		79.8		83.7	85-0	86.5	89.8	90.6									
	72.6	76•B	80.0	81,7	B3+3	85.9	86.4	87.9										
	73.1	77.6	81.0	82.4	83.8	84.9	86.1	88-1	E9-4	90.8								
	73.0	77.7			85.7	85.7	26+6	87.6	88.4									
.61 .8	ZQ-4	. 74.5	77.9	80.1	81.B													
61.8	70.2	74.1	77.9	79.7	31-7	82.1	83.2	8445	85.2									
64.3	72.7	77-2	80.2	82.8	24.2	84.5	83-2	84.0										
			62.8	. 85.9	66.9	87.0	84.1	84.9										
			83.0	83.8	86.5	86-1	85.3	85.0										
75.9	86.2	89.6	93.5	93.0	95.4													
_75.7	87.0	91.2	94.8	94.8	96.9	96.4												
62.7	74.7	78.9	87.1	B3.2	85.2	85.3												
62.3	75.6	86.2	83.6	84.2	65.9	85.7	85.7											
61,3	76 • B	. 62.1	. 86.4	87.0	20.1	87.7	86.6									70.0		
52.5	70.6	77.3	81.7	82.7	84.3	83.9	83-0	84.3	84.3	87-1	88.4	89-6	90.5				77.7	
81.7	.91.5	95.6	99-1	99.7	101.5	101.5	100-6	101.7	102-1	103.4	163.8	105.3	105 6	704 B	105 3	***	101 0	
95.9	106.3	110.5	114-0	114-6	116.5	116.4	114.7	115.2	115.2	114.2	116.0	117 4	111.	115 0	112-7	114.0	TITOD	107.2
81.4	91.8	95.7	99.4	99.7	101.7	101.3	99.5	29.9	100-0	101.0	101-1	102.6	102.0	101.8	99.3	98.7	97-4	93.7
20	20				•						* .						. 1.4.	
1.8	2,7	2.8	2.9	2.7	2,6	2.5	1.8	1.5										5 0.5
	63.4 64.8 64.8 66.4 67.7 66.4 66.2 65.2 65.2 65.2 67.1 61.8 67.1 75.7 62.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61	63.0 60.7 63.4 70.5 64.8 70.5 64.0 69.2 64.0 67.1 75.8 66.7 76.0 66.4 74.0 66.4 73.1 66.4 73.1 66.2 73.1 66.2 73.1 66.2 70.2 66.2 70.2 67.7 76.0 67.7 76.0 67.7 75.6 61.8 70.7 67.7 75.6 61.3 70.2 61.6 70.2 61.8 70.6 61.8 70.6 61.8 70.6 61.8 70.6 61.8 70.6 61.8 70.6	63.0 60.7 7h.2 63.4 70.5 75.3 64.8 71.8 74.9 64.0 69.2 72.4 64.0 67.1 75.5 66.4 73.4 78.3 67.1 75.8 80.8 67.7 76.1 77.6 66.4 74.1 78.4 66.4 72.6 76.6 66.2 73.1 77.6 66.2 73.1 77.6 65.4 74.0 77.5 61.8 70.2 74.1 61.8 70.2 74.1 64.3 72.7 77.2 67.7 76.0 79.3 69.1 76.6 79.6 75.9 86.2 89.6 75.7 87.0 91.2 62.7 74.7 78.9 62.3 75.6 86.2 61.3 76.8 82.1 62.3 75.6 86.2 61.3 76.8 82.1 61.3 76.8 82.1 61.3 76.8 82.1 61.3 76.8 82.1 61.3 76.8 82.1 61.3 76.8 82.1 61.3 76.8 82.1 61.3 76.8 82.1 61.3 76.8 82.1	63.0 60.7 74.2 77.1 63.4 70.5 75.3 77.2 64.8 71.8 74.9 77.3 64.0 69.2 72.4 76.9 64.0 60.1 75.5 76.1 66.4 73.4 78.3 79.9 67.1 75.8 80.8 82.6 67.7 76.1 80.7 75.5 80.7 66.4 74.1 78.4 79.8 66.4 74.1 78.5 77.9 66.2 73.1 77.6 81.0 66.2 73.1 77.6 81.0 66.2 73.1 77.6 81.0 66.2 73.1 77.6 81.0 66.2 73.1 77.6 82.7 66.1 70.2 74.1 77.9 61.8 70.2 74.1 77.9 61.8 70.2 74.1 77.9 61.8 70.2 74.1 77.9 61.3 76.6 82.0 79.6 69.1 76.6 79.6 83.0 75.7 86.2 89.6 93.5 75.7 87.0 91.2 94.8 62.7 74.7 78.9 82.1 62.3 75.6 86.2 83.6 61.3 76.8 82.1 66.4 75.5 76.6 77.3 81.7 81.7 91.5 95.6 99.1 97.7 108.9 113.3 116.9 95.9 106.3 119.5 116.9 95.9 106.3 119.5 116.9 95.9 106.3 119.5 114.0 81.4 91.8 95.7 99.4	63.0 68.7 74.2 77.1 79.7 63.4 70.5 72.3 77.9 77.9 78.9 64.8 71.8 74.9 77.3 77.5 64.0 89.2 72.4 74.9 76.8 64.0 69.2 72.4 74.9 76.1 76.5 66.4 73.4 78.3 79.9 82.4 67.1 75.8 80.8 92.6 84.9 67.1 75.8 80.8 92.6 84.9 67.1 75.8 80.8 92.6 84.9 67.1 75.8 80.8 92.6 84.9 67.1 75.8 80.7 81.7 66.7 74.0 77.5 80.7 61.7 66.4 74.1 78.4 79.8 81.9 64.4 74.1 78.4 79.8 81.9 64.4 74.1 77.6 81.0 82.4 69.2 73.1 77.6 81.0 82.4 69.1 77.7 80.1 76.0 77.5 80.7 80.1 76.5 77.9 80.1 61.8 70.2 74.1 77.9 79.7 61.7 61.8 70.2 74.1 77.9 79.7 61.7 64.3 72.7 77.2 80.2 82.8 67.1 76.0 79.2 02.8 85.9 69.1 76.6 79.6 83.0 83.8 75.9 86.2 89.6 93.5 93.0 75.7 80.2 86.2 89.6 83.0 83.8 75.7 87.0 91.2 94.8 94.8 62.7 74.7 74.7 78.9 82.1 83.2 62.3 75.6 86.2 83.6 88.2 61.3 76.8 82.1 66.4 87.0 82.7 97.7 188.9 113.3 116.9 117.3 95.0 106.3 110.5 114.0 117.3 95.7 97.4 99.7 97.7 188.9 113.3 116.9 117.3 95.9 106.3 110.5 114.0 117.3 95.7 97.4 99.7	63.0 60.7 74.2 77.1 79.7 81.3 63.4 70.5 75.3 77.9 79.9 81.0 64.8 71.8 74.9 77.3 79.5 79.7 64.0 69.2 72.4 74.9 76.8 77.4 64.0 69.1 72.4 76.9 76.8 77.4 64.0 69.1 75.5 76.1 78.5 76.8 66.4 73.4 78.9 82.4 83.3 67.1 75.8 80.8 02.6 84.9 85.3 67.1 75.8 80.8 02.6 84.9 85.3 67.1 75.8 80.8 02.6 84.9 85.3 66.7 74.0 77.5 80.7 70.7 84.4 66.4 74.0 74.0 77.5 80.7 70.7 81.9 84.9 63.7 66.4 72.6 76.8 80.0 81.7 83.3 66.2 73.1 77.6 81.0 82.4 83.8 65.2 73.0 77.7 81.9 84.4 85.7 91.8 70.2 74.1 77.9 80.1 81.8 65.2 73.0 77.7 81.9 84.4 85.7 91.8 70.2 74.1 77.9 79.7 01.7 64.3 70.2 74.1 77.9 79.7 01.7 64.3 70.2 74.1 77.9 79.7 01.7 64.3 70.2 74.1 77.9 79.7 01.7 64.3 72.7 72.2 80.2 82.8 86.5 75.9 86.2 89.6 93.5 93.0 95.4 75.7 87.0 91.2 94.8 94.8 96.9 62.7 74.7 78.9 82.1 83.2 85.2 62.3 75.6 80.2 83.6 84.2 65.9 61.3 76.8 82.1 83.6 84.2 65.9 61.3 76.8 82.1 83.4 84.2 65.9 61.3 76.8 82.1 83.4 84.2 65.9 61.3 76.8 82.1 83.4 84.2 65.9 61.3 76.8 82.1 83.4 84.2 65.9 97.7 71.3 81.7 82.7 84.3 81.7 91.5 95.6 99.1 99.7 103.5 97.7 108.9 113.3 116.9 117.2 119.1 95.9 106.3 119.5 114.0 114.6 116.5 81.4 91.8 95.7 99.4 99.7 101.7 20 20 20 20 20 20 20 20 20 20 20 20 20	10 20 30 40 56 60 70 63.0 60.7 76.2 77.1 79.7 81.3 82.6 63.4 70.5 75.3 77.9 79.9 81.0 83.0 64.8 71.8 74.9 77.3 79.5 79.7 81.7 64.0 69.2 72.4 76.9 76.8 77.4 78.7 64.0 69.2 72.4 76.9 76.8 77.4 78.7 66.4 73.4 78.3 79.9 82.4 83.3 84.2 66.4 73.4 78.3 79.9 82.4 83.3 84.2 67.1 75.8 86.8 02.6 84.9 85.3 87.3 66.7 74.0 77.5 80.7 01.7 84.4 85.7 66.4 73.4 78.3 80.7 01.7 84.4 85.7 66.4 73.1 77.6 81.0 82.7 83.8 84.9 66.2 73.0 77.5 81.9 82.4 83.8 84.9 64.2 73.0 77.7 81.9 82.4 85.7 65.7 66.3 74.0 76.9 80.0 81.7 63.3 85.9 66.2 73.1 77.6 81.0 82.4 83.8 84.9 65.2 73.0 77.7 81.9 84.4 85.7 65.7 66.1 70.4 74.5 77.9 80.1 81.8 83.1 61.8 70.2 74.1 77.9 79.7 01.7 82.1 64.3 72.7 77.2 80.2 82.8 84.2 84.5 67.7 70.0 79.2 02.8 85.9 86.9 87.0 69.1 76.6 79.6 83.0 83.8 86.5 86.1 75.9 86.2 89.6 93.5 93.0 95.4 97.4 75.7 87.0 91.2 94.8 94.8 96.9 85.3 62.3 75.6 80.2 83.6 84.2 85.9 86.1 75.7 87.0 91.2 94.8 94.8 96.9 85.3 62.3 75.6 80.2 83.6 84.2 85.9 85.3 62.3 75.6 80.2 83.6 84.2 85.9 85.3 62.3 75.6 80.2 83.6 84.2 85.9 85.3 62.3 75.6 80.2 83.6 87.0 80.1 87.7 52.5 70.5 77.3 81.7 82.7 84.3 83.9 81.7 91.5 95.6 99.1 99.7 101.5 101.5 97.7 108.9 113.3 116.9 117.2 119.1 116.9 95.9 106.3 119.5 114.0 114.6 116.5 116.4 81.4 91.8 95.7 99.4 99.7 101.7 101.3	10 20 30 40 56 60 70 80 63.0 60.7 74.2 77.1 79.7 81.3 82.6 84.2 63.4 70.5 25.3 77.2 79.7 81.0 83.0 83.8 64.8 71.8 74.9 77.3 70.5 77.7 81.7 82.5 64.0 69.2 72.4 74.9 76.8 77.4 78.7 78.4 64.0 69.2 72.4 74.9 76.8 77.4 78.7 78.4 66.4 73.4 78.3 79.9 82.4 83.3 84.2 80.8 67.1 75.8 80.8 02.6 84.9 85.3 87.3 89.2 67.1 75.8 80.8 02.6 84.9 85.3 87.3 89.2 67.7 76.1 80.7 82.7 84.7 85.8 07.6 89.1 66.4 74.1 78.4 79.8 81.9 83.7 85.8 85.9 86.4 66.2 73.1 77.6 81.0 82.4 83.8 84.9 86.8 66.2 73.1 77.6 81.0 82.4 83.8 84.9 86.1 66.2 73.1 77.6 81.0 82.4 83.8 84.9 86.1 61.8 70.2 74.1 77.9 80.1 81.8 83.1 84.3 61.8 70.2 74.1 77.9 70.7 01.7 82.1 83.2 64.3 72.7 77.2 80.2 82.8 84.2 84.5 83.2 65.7 75.0 79.8 93.0 95.4 94.4 92.0 75.7 86.2 89.0 93.5 93.0 95.4 94.4 92.0 75.7 87.0 91.2 94.8 94.8 96.9 85.3 85.7 85.7 62.3 75.6 80.2 83.6 84.2 85.9 86.1 85.3 62.3 75.6 80.2 83.6 84.2 85.9 86.3 83.8 86.9 93.3 63.7 74.7 88.8 84.8 96.9 95.4 94.8 93.3 63.7 75.8 80.2 83.6 84.2 85.3 85.8 86.7 62.3 75.6 80.2 83.6 84.2 85.9 86.3 85.9 86.7 63.3 76.6 82.1 83.2 85.9 86.9 87.0 96.4 93.3 63.7 74.7 88.9 82.1 83.2 85.2 85.3 85.8 85.7 63.3 75.6 80.2 83.6 84.2 65.9 85.0 85.3 85.9 63.3 75.6 80.2 83.6 84.2 65.9 85.3 83.8 84.9 83.8 84.9 85.3 83.8 84.9 85.9 85.9 85.7 85.7 85.7 85.7 85.7 85.7 85.7 85.7	10 20 30 40 56 60 70 80 90 63.0 60.7 74.2 77.1 79.7 81.3 82.6 84.2 85.7 63.4 70.5 25.3 77.9 79.9 81.0 83.0 83.8 85.8 64.8 71.8 74.9 77.3 70.5 77.7 81.7 82.5 83.9 64.0 69.2 72.4 74.9 76.8 77.4 78.7 78.4 79.9 64.0 69.2 72.4 74.9 76.8 77.4 78.7 78.4 79.9 66.0 69.2 72.4 74.9 76.8 77.4 78.7 78.4 79.9 66.4 73.4 78.3 79.9 82.4 83.3 84.2 85.8 88.9 66.4 73.4 78.3 79.9 82.4 83.3 84.2 85.8 88.9 67.1 75.8 80.8 82.6 84.9 85.3 87.3 89.2 91.3 66.7 74.0 77.5 80.7 81.7 84.4 85.7 85.8 87.4 66.4 74.1 78.4 79.8 81.9 83.4 85.7 85.8 87.4 66.4 74.1 78.4 79.8 81.9 83.4 85.7 85.8 87.6 66.2 73.1 77.6 81.0 82.4 83.8 84.9 86.1 86.5 66.2 73.1 77.6 81.0 82.4 83.8 84.9 86.1 86.7 66.2 73.1 77.7 81.9 84.4 85.7 85.7 85.6 87.6 66.2 73.1 77.7 81.9 84.4 85.7 85.1 83.2 84.5 61.8 70.2 74.1 77.9 70.7 81.8 8.8 83.9 83.2 84.5 61.8 70.2 74.1 77.9 79.7 01.7 82.1 83.2 84.5 64.3 72.7 70.0 79.3 22.8 85.9 86.9 87.0 04.1 84.9 69.1 76.5 79.6 83.0 83.8 84.9 94.4 93.3 92.9 60.1 76.5 79.6 83.0 83.8 86.5 86.1 85.3 85.9 62.7 74.7 76.9 93.5 93.0 95.4 94.4 92.0 91.3 75.7 86.2 89.6 93.5 93.0 95.4 94.4 92.0 91.3 75.7 87.0 91.2 94.8 94.8 96.9 94.4 93.3 92.9 62.3 75.6 85.2 83.6 84.2 65.9 85.7 85.7 85.7 85.7 85.7 85.7 85.7 85.7	10 20 30 40 56 60 70 8p 90 95 63-0 60-7 74-2 77-1 79-7 81-3 82-6 84-2 85-7 86-4 63-4 70-5 25-3 77-9 79-9 81-0 83-6 83-8 85-8 86-3 64-8 71-8 74-9 77-3 70-5 70-7 81-7 78-5 83-9 84-7 64-0 69-2 72-4 74-9 76-8 77-4 78-7 78-4 79-9 80-0 64-0 60-1 75-5 76-1 78-5 78-7 78-7 78-4 79-9 80-0 64-0 60-1 75-5 76-1 78-5 78-8 79-7 51-6 83-0 84-5 66-4 73-4 78-3 79-9 82-4 83-3 84-2 86-8 88-9 90-2 67-1 75-8 80-8 80-8 82-6 84-9 85-3 87-3 89-2 91-7 92-3 67-1 75-8 80-8 80-8 81-9 82-7 85-8 87-6 89-1 91-3 91-4 66-7 74-0 77-5 80-7 81-7 84-4 85-7 85-8 87-4 87-8 66-4 73-4 76-8 80-0 81-7 83-3 85-9 86-5 86-5 89-9 90-6 66-4 73-1 76-8 80-0 81-7 83-3 85-9 86-1 88-1 59-4 66-2 73-1 77-6 81-0 82-4 83-8 84-9 86-1 88-1 59-4 66-2 73-1 77-6 81-0 82-4 83-8 84-9 86-1 88-1 59-4 65-2 73-0 77-7 81-9 84-4 85-7 85-7 85-6 87-6 88-6 61-8 70-2 74-1 77-9 80-1 81-8 8-3 83-2 84-6 85-5 61-8 70-2 74-1 77-9 79-7 01-7 82-1 83-2 84-5 85-6 60-1 76-5 79-8 80-2 82-8 84-2 84-5 83-2 84-6 65-7 77-7 00-7 92-3 02-8 83-8 86-5 86-1 85-3 85-0 85-7 63-7 87-0 99-2 02-8 83-8 86-9 87-0 04-1 84-9 84-6 60-1 76-5 79-6 83-0 83-8 83-8 86-5 86-1 85-3 85-0 85-7 75-9 86-2 89-6 83-0 83-8 83-8 86-5 85-7 85-6 87-7 88-6 62-3 75-6 80-2 83-6 84-2 85-9 85-9 85-7 85-7 85-8 62-3 75-6 80-2 83-6 84-2 85-9 85-7 85-7 85-8 62-3 75-6 80-2 83-6 84-2 85-9 85-7 85-7 85-8 62-3 75-6 80-2 83-6 84-2 85-9 85-7 85-7 85-8 62-3 75-6 80-2 83-6 84-2 85-9 85-7 85-7 85-8 63-3 75-6 80-2 83-6 84-2 85-9 85-7 85-7 85-8 63-3 75-6 80-2 83-6 84-2 85-9 85-7 85-7 85-8 61-3 70-3 71-3 81-7 82-7 83-3 83-9 83-0 85-7 85-7 85-8 61-4 71-5 95-6 99-1 99-7 103-5 101-5 100-6 101-7 102-1 97-7 108-9 113-3 116-9 117-3 119-1 118-9 116-5 116-6 115-2 95-9 106-3 113-5 114-0 114-6 116-5 116-6 116-6 115-2 95-9 106-3 113-5 114-0 114-6 116-5 116-6 115-2 95-9 106-3 113-5 114-0 114-6 116-5 116-6 115-2 95-9 106-3 113-5 114-0 114-6 116-5 116-6 115-2 95-9 106-3 113-5 114-0 114-6 116-5 116-6 115-2 95-9 106-3 113-5 114-0 114-6 116-5 116-6 115-2 95-9 106-3 113-5 114-0 114-6 116-5 116-6 115-2 95-9 106-3 113-5 114-0 114-6 116-5 116-6 115-2	10 20 30 40 56 60 70 8p 70 95 100 63-0 60-7 74-2 77-1 79-7 81-3 82-6 84-2 85-7 86-4 87-1 63-4 70-5 25-3 77-9 79-9 81-0 83-0 63-8 85-8 86-3 87-2 64-8 71-8 74-9 77-3 770-5 79-7 81-7 82-5 83-9 84-7 85-4 64-0 69-2 72-4 74-9 76-8 77-4 78-7 78-4 79-9 80-0 81-4 64-0 69-2 72-4 74-9 76-8 77-4 78-7 78-4 79-9 80-0 81-4 64-0 60-1 75-5 76-1 78-5 74-7 78-5 79-7 11-6 83-0 84-5 85-3 66-4 73-4 78-3 79-9 82-4 83-3 84-2 86-8 88-9 90-2 91-2 67-1 75-8 80-8 92-9 82-4 83-3 84-2 86-8 88-9 90-2 91-2 67-1 75-8 80-8 92-8 84-9 85-3 87-3 89-2 91-7 92-3 94-0 67-7 76-1 80-7 82-7 84-7 85-8 07-6 89-1 91-3 91-4 93-4 66-7 74-0 77-5 80-7 81-7 84-4 85-7 85-8 87-4 87-8 88-8 66-4 74-1 78-4 79-8 81-9 83-7 85-0 86-5 89-9 90-6 92-4 66-2 73-1 77-6 81-0 82-4 83-8 84-9 86-1 88-1 90-9 0-6 66-2 73-1 77-5 81-9 84-4 85-7 85-7 85-6 87-6 88-1 90-9 65-2 73-0 77-7 81-9 80-1 81-8 83-8 84-9 86-1 88-1 90-1 61-8 70-2 74-1 77-9 70-7 01-7 82-1 83-2 84-5 85-2 86-5 87-4 61-8 70-2 74-1 77-9 80-1 81-8 83-2 84-5 83-2 84-6 64-7 85-3 64-3 72-7 77-2 80-2 82-8 84-2 84-5 83-2 84-6 65-7 85-7 65-7 87-0 79-2 02-8 83-8 84-9 83-2 84-6 65-7 85-7 65-7 87-0 79-2 02-8 83-8 84-9 83-9 90-9 90-9 62-7 74-7 76-8 93-1 83-2 83-2 84-6 65-7 85-7 63-3 73-6 85-2 83-8 83-8 84-5 83-2 84-6 65-7 85-7 63-3 73-7 73-8 83-8 83-8 83-8 84-5 83-2 84-6 65-7 85-7 63-3 73-7 73-8 83-8 83-8 83-8 84-5 83-2 84-6 65-7 85-7 63-3 73-7 73-8 83-0 83-8 83-8 84-5 83-2 84-6 65-7 85-7 63-7 87-9 86-2 89-6 83-8 83-8 84-5 83-2 84-6 65-7 85-7 63-7 87-9 86-2 89-6 83-8 83-8 84-5 83-2 84-6 65-7 85-7 63-7 87-9 88-2 83-8 83-8 84-5 83-2 84-6 65-7 85-7 63-7 87-9 88-2 83-8 83-8 83-8 83-8 83-8 83-8 83-8	63.0 60.7 74.2 77.1 79.7 81.3 82.6 84.2 85.7 86.4 87.1 87.6 63.4 70.5 75.3 77.9 79.9 81.0 83.0 83.8 85.8 86.3 87.2 87.6 64.0 69.2 72.4 74.9 76.8 77.4 78.7 78.4 79.9 80.0 81.4 81.6 64.0 69.2 72.4 74.9 76.8 77.4 78.7 78.4 79.9 80.0 81.4 81.6 64.0 69.2 72.4 78.9 76.8 77.4 78.5 78.6 79.9 80.0 81.4 81.6 64.0 69.2 72.4 78.9 82.0 82.6 83.3 84.2 85.8 88.9 90.2 91.2 91.4 61.6 64.0 69.1 75.5 76.1 78.5 78.8 79.7 61.0 83.0 84.5 85.3 85.7 66.4 73.4 78.3 79.9 82.0 81.4 81.6 64.0 64.1 75.5 76.1 78.5 78.6 79.7 61.0 83.0 84.5 85.3 85.7 66.4 73.4 78.5 79.8 82.8 83.3 84.2 80.8 88.9 90.2 91.2 91.4 93.4 83.6 66.7 74.0 77.5 80.7 01.7 84.4 85.7 85.8 87.4 87.8 88.8 89.3 66.7 74.0 77.5 80.7 01.7 84.4 85.7 85.8 87.4 87.8 88.8 89.3 66.4 74.1 78.4 79.8 81.9 82.7 85.0 86.5 89.8 90.6 92.4 93.6 66.7 74.0 77.5 80.7 01.7 84.4 85.7 85.8 87.4 87.8 88.8 89.3 66.4 74.1 78.4 79.8 81.9 82.7 85.0 86.5 89.8 90.6 92.4 93.6 66.7 74.0 77.5 80.7 01.7 84.4 85.7 85.8 87.4 87.8 88.8 89.3 66.4 74.1 78.4 79.8 81.9 82.7 85.0 86.5 89.8 90.6 92.4 93.6 66.7 73.1 77.6 81.0 82.4 83.8 84.9 86.1 88.1 99.4 90.8 91.7 65.2 73.0 77.7 81.9 84.8 83.8 84.9 86.1 88.1 99.4 90.8 91.7 65.2 73.0 77.7 81.9 84.8 83.8 84.9 86.1 88.1 99.4 90.8 91.7 65.8 73.0 74.5 74.5 77.9 80.1 81.8 83.1 84.3 85.9 86.5 87.4 87.6 61.8 70.2 74.1 77.9 79.7 01.7 82.1 83.2 84.5 85.2 85.2 85.8 86.0 60.6 63.7 72.7 72.8 80.2 82.8 82.8 84.9 86.1 85.2 85.9 86.5 87.4 87.6 61.8 70.2 74.1 77.9 79.7 01.7 82.1 83.2 84.5 85.2 85.2 85.8 86.0 69.1 69.1 76.6 79.8 62.8 83.8 83.8 86.9 86.0 87.4 87.6 61.8 70.2 74.1 77.9 79.7 01.7 82.1 83.2 84.5 85.2 85.9 85.8 87.4 87.6 61.8 70.2 74.1 77.9 79.7 01.7 82.1 83.2 84.5 85.2 85.9 85.8 87.4 87.6 61.8 70.2 74.1 77.9 79.7 01.7 82.1 83.2 84.5 85.2 85.9 85.3 85.0 87.4 87.6 61.8 70.7 70.7 70.7 82.8 83.8 84.9 80.9 90.9 92.3 93.3 92.1 82.5 85.7 85.7 85.7 85.8 86.0 67.1 87.0 92.1 82.5 85.8 85.8 87.9 86.0 67.1 87.0 92.1 82.5 85.8 85.8 87.7 88.6 60.0 69.1 76.6 70.0 92.2 92.8 82.8 83.8 86.5 85.8 83.8 83.8 87.7 88.6 60.0 92.1 92.1 82.5 85.2 85.2 85.3 85.8 87.7 88.6 60.0 92.1 92.1 92.1 92.1 9	10 20 30 40 50 60 70 80 70 95 100 105 110 63-0 60-7 74-2 77-1 79-7 81-3 82-6 84-2 85-7 86-4 87-1 87-6 88-5 63-4 70-5 75-3 77-2 79-9 81-0 80-0 83-8 85-8 86-3 87-2 87-7 88-7 64-8 71-8 74-9 77-3 79-5 79-7 81-7 82-5 83-9 84-7 85-4 86-8 87-8 64-0 69-2 72-4 74-9 76-8 77-4 78-7 78-4 79-9 80-0 81-6 81-6 82-6 64-0 69-2 72-5 76-1 78-5 78-5 78-7 81-7 81-5 81-6 83-6 85-3 85-3 85-3 85-3 85-3 85-3 85-3 85-3	\$\begin{array}{cccccccccccccccccccccccccccccccccccc	63.0 60.7 74.2 77.1 79.7 81.3 82.6 84.2 85.7 86.4 87.1 87.6 88.5 88.5 89.4 63.4 70.5 75.3 77.2 79.9 81.0 83.0 83.8 85.8 86.3 87.2 87.7 88.7 80.1 89.3 64.8 71.8 74.9 77.3 79.5 79.7 81.7 82.5 83.9 84.7 85.4 86.2 86.8 86.7 86.7 64.0 69.2 72.4 74.9 76.8 77.4 78.7 78.4 79.9 80.0 81.4 81.6 82.6 82.7 84.2 64.0 69.2 72.4 74.9 76.8 77.4 78.5 79.7 81.0 83.0 84.8 85.3 85.3 85.3 85.7 87.3 81.7 82.3 87.9 90.9 66.4 73.4 78.3 79.9 82.4 83.3 84.2 85.8 88.9 84.2 85.3 85.3 85.7 87.3 81.9 90.9 66.4 73.4 78.3 79.9 82.4 83.3 84.2 85.8 88.9 90.2 91.2 91.4 92.7 94.1 95.8 67.1 75.8 80.8 92.6 84.9 85.3 85.3 85.7 87.9 90.9 66.4 73.4 78.3 79.9 82.4 83.3 84.2 85.8 88.9 90.2 91.2 91.4 92.7 94.1 95.8 67.1 75.8 80.8 92.6 84.9 85.3 87.3 89.2 91.7 92.3 94.0 94.8 96.5 97.2 98.5 67.1 75.8 80.8 92.6 84.9 85.3 87.3 89.2 91.7 92.3 94.0 94.8 96.5 97.2 98.5 67.1 75.8 80.8 92.6 84.9 85.3 87.3 89.2 91.7 92.3 94.0 94.8 96.5 97.2 98.5 67.1 75.8 80.8 92.6 84.9 85.3 87.3 89.2 91.7 92.3 94.0 94.8 96.5 97.2 98.5 67.1 75.8 80.8 92.6 84.9 85.3 87.3 89.2 91.7 93.4 93.8 95.5 95.9 96.1 66.4 74.0 77.5 80.7 81.7 84.8 82.8 87.4 87.8 88.8 89.3 90.6 92.2 94.1 66.4 74.0 77.5 80.7 81.7 84.4 85.7 85.8 87.4 87.8 88.8 89.3 90.6 92.2 94.1 66.4 72.6 76.8 80.0 81.7 83.7 85.0 86.5 89.8 90.0 90.7 92.8 93.2 94.7 66.2 73.1 77.6 81.0 82.4 83.8 84.9 86.1 88.1 99.4 90.8 91.7 93.3 93.6 93.9 93.6 93.9 93.6 93.9 93.6 93.9 93.6 93.9 93.6 93.9 93.6 93.9 93.6 93.9 93.6 93.9 93.6 93.9 93.6 93.9 93.6 93.9 93.6 93.9 93.6 93.9 93.0 93.6 93.9 93.6 93.9 93.6 93.9 93.6 93.9 93.6 93.9 93.6 93.9 93.6 93.9 93.0 93.6 93.9 93.6 93.9 93.0 93.6 93.9 93.0 93.6 93.9 93.6 93.9 93.0 93.6 93.9 93.0 93.6 93.9 93.0 93.6 93.9 93.0 93.6 93.9 93.0 93.6 93.9 93.0 93.6 93.9 93.0 93.6 93.9 93.0 93.6 93.9 93.0 93.0 93.9 93.0 93.0 93.9 93.0 93.0	63.0 60.7 74.2 77.1 79.7 81.3 82.6 84.2 85.7 86.4 87.1 87.6 88.5 88.5 89.4 91.8 63.4 70.5 75.3 77.2 79.9 81.0 83.0 63.8 85.8 86.3 87.2 87.7 88.7 89.1 89.3 91.9 64.8 71.8 74.9 77.3 79.5 79.7 81.7 82.5 83.9 84.7 85.4 86.2 86.8 86.7 86.7 88.9 64.0 69.2 72.4 74.9 76.8 77.4 78.7 78.4 79.9 80.0 81.4 81.6 82.6 82.7 84.2 85.2 66.4 73.4 78.3 79.9 82.4 83.3 84.2 86.8 88.9 90.2 91.2 91.4 92.7 94.1 95.8 96.6 67.1 75.8 80.8 92.6 83.3 84.2 86.8 88.9 90.2 91.2 91.4 92.7 94.1 95.8 96.4 67.1 75.8 80.8 92.6 84.9 85.3 85.3 85.7 87.3 87.9 92.8 66.4 73.4 78.3 79.9 82.4 83.3 84.2 86.8 88.9 90.2 91.2 91.4 92.7 94.1 95.8 96.4 67.1 75.8 80.8 92.6 81.9 82.7 84.9 85.3 85.7 85.3 85.7 87.3 87.9 92.9 92.8 66.4 73.4 78.3 79.9 82.4 83.3 84.2 86.8 88.9 90.2 91.2 91.4 92.7 94.1 95.8 96.4 67.1 75.8 80.8 92.6 81.9 83.3 84.2 86.8 88.9 90.2 91.2 91.4 92.7 94.1 95.8 96.4 67.1 75.8 80.8 92.6 81.9 83.3 84.2 86.8 88.9 90.2 91.2 91.4 92.7 94.1 95.8 96.4 67.1 75.8 80.8 92.6 81.9 83.7 88.9 89.2 91.7 92.3 94.0 94.8 95.5 97.2 98.5 98.4 67.1 75.8 80.8 82.6 82.7 84.9 85.3 85.3 85.7 85.8 87.3 89.2 91.7 92.2 92.7 94.1 93.6 66.4 74.1 78.4 79.8 81.9 83.7 85.8 85.8 87.8 88.8 89.3 90.6 92.2 94.1 93.6 66.4 74.1 78.4 79.8 81.9 83.7 85.0 85.8 87.4 87.8 88.8 89.3 90.6 92.2 94.1 93.6 66.4 72.6 76.8 80.0 81.7 83.8 85.9 86.1 88.1 99.3 90.6 92.7 93.2 95.7 94.2 95.6 66.2 73.1 77.6 81.0 82.4 83.8 84.9 89.3 90.6 92.4 93.6 95.7 95.2 96.7 94.2 66.4 72.6 76.8 80.0 81.7 83.8 85.9 86.1 88.1 94.9 90.8 91.7 93.3 93.6 93.9 91.5 64.2 73.0 77.7 81.9 84.4 85.7 85.7 86.7 86.8 84.8 89.0 90.5 91.8 91.7 92.1 89.8 66.2 73.0 77.7 81.9 84.4 85.7 85.7 86.7 86.8 84.5 85.7 85.8 87.6 89.0 89.2 89.6 83.6 83.8 86.5 86.7 86.9 87.0 89.7 89.0 89.9 87.7 85.7 85.8 86.8 86.8 86.7 89.0 89.2 89.6 83.8 88.8 89.8 90.9 90.5 91.8 91.7 92.1 89.8 89.8 93.8 93.9 93.9 93.5 93.9 93.9 93.9 93.9 93.9	63.0 60.7 74.2 77.1 79.7 81.3 82.6 84.2 85.7 86.4 87.1 87.6 88.5 88.5 89.4 91.8 93.9 63.4 70.5 75.3 77.2 79.2 81.0 83.0 83.0 83.8 85.8 86.3 87.2 87.7 88.7 89.7 89.7 89.7 89.7 89.7 89.7	63.0 60.7 74.2 77.1 79.7 81.3 82.6 84.2 85.7 86.4 87.1 87.6 88.5 88.5 89.4 91.8 93.9 95.7 63.4 70.5 75.3 77.9 79.9 81.0 83.0 83.8 85.8 86.3 87.2 87.7 88.7 89.1 89.3 91.9 94.0 95.6 64.8 71.8 74.9 77.3 77.5 79.7 81.7 82.5 83.9 84.7 85.4 86.2 86.8 86.7 84.8 86.7 84.9 89.9 92.1 64.0 69.2 72.4 76.9 76.8 77.4 78.7 78.4 79.9 80.0 81.4 81.6 82.6 82.7 84.2 85.5 87.4 89.9 92.1 64.0 69.2 72.4 76.9 76.8 77.4 78.7 78.4 79.9 80.0 81.4 81.6 82.6 82.6 82.7 84.2 85.5 87.4 89.9 92.1 64.0 69.2 72.4 76.9 76.8 77.4 78.7 78.4 79.9 80.0 81.4 81.6 82.6 82.6 82.7 84.2 85.5 87.4 89.9 76.0 60.4 73.4 78.3 79.9 82.4 83.3 84.2 80.8 88.9 91.4 92.7 94.1 95.8 96.8 98.0 98.0 67.1 75.8 80.8 82.6 82.6 82.7 84.2 85.5 87.4 89.7 60.4 73.4 78.3 79.9 82.4 83.3 84.2 80.8 88.9 90.2 91.2 91.4 92.7 94.1 95.8 96.8 98.0 98.0 67.1 75.8 80.8 82.6 82.6 84.9 85.3 87.2 89.2 91.7 92.3 94.0 94.8 96.5 97.2 98.5 98.4 98.0 98.0 67.1 75.8 80.8 82.6 82.6 83.9 87.2 88.2 91.7 92.3 94.0 94.8 96.5 97.2 98.5 98.4 98.0 98.0 67.1 75.8 80.8 70.7 82.7 84.7 85.8 87.2 89.2 91.7 92.3 94.0 94.8 96.5 97.2 98.5 98.4 96.8 98.0 98.0 66.4 73.1 77.5 80.7 81.9 83.9 83.9 83.2 91.7 92.3 94.0 94.8 95.5 95.9 96.1 95.4 94.3 93.6 66.4 74.1 76.4 87.8 81.9 83.9 83.9 96.6 92.2 94.1 93.6 94.0 93.8 66.4 74.1 76.4 87.8 81.9 83.9 96.6 92.4 93.6 95.7 95.2 96.7 94.2 93.5 91.8 66.4 74.1 76.4 79.8 81.9 83.7 85.0 86.5 89.0 90.6 92.4 93.6 95.7 92.2 94.1 93.6 94.0 93.8 66.4 72.6 76.0 80.0 81.7 83.3 85.9 86.1 86.1 87.9 80.7 90.8 91.7 92.8 93.2 94.7 92.2 92.5 90.9 66.2 73.1 77.6 81.0 80.0 81.7 83.3 85.9 86.1 86.1 89.7 90.8 91.7 92.8 93.2 94.7 92.2 92.5 90.9 66.2 73.0 77.7 81.9 84.4 85.7 85.8 86.9 86.1 86.1 89.7 90.8 91.7 92.3 93.6 93.9 91.5 90.5 89.2 66.2 73.0 77.7 81.9 84.4 85.7 85.8 86.9 87.9 88.7 90.8 91.7 92.3 93.9 84.9 84.8 89.9 91.5 90.5 91.8 91.7 92.1 89.8 89.1 87.3 86.2 86.2 86.0 87.4 87.5 87.7 85.7 85.0 89.2 86.2 86.0 87.4 87.5 87.7 88.8 88.8 89.8 88.9 89.1 87.3 88.8 88.9 89.1 87.3 88.8 88.9 89.1 87.3 88.8 88.9 89.1 87.3 88.8 88.9 89.1 87.3 88.8 88.9 89.1 87.3 88.8 88.9 89.1 87.3 88.8 88.9 89.1 87.3 8

PALT [INTEGRATED] = 128.72

TABLE A-25 2267 H7144 JTBD-169 QUIET FRGINF 1 CORP A HW CORT BH HW T/P FAR FIELD FRGINE MODEL . = JTED -60 ENGINE MIMBER = 375954 INLET TEMP = 48.00 F TIME OF DAY BARH. PRESSURE WIND DIRECTION THE TENT TEHPERATURE HUHICITY E 4 MPH STAND CATE = X-314 = 05/06/74 OBSERVED REH FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT. 1/3 DCT FREQUENCY (HZ) HICROPHONE ANGLES IN DEGREES 70 80 90 95 160
 110
 115
 120
 130
 135
 140
 150

 91.2
 92.6
 92.9
 96.8
 100.3
 102.4
 106.9

 91.8
 92.5
 93.0
 96.6
 100.1
 102.2
 105.4

 90.2
 89.9
 91.1
 93.3
 95.9
 98.5
 101.4

 85.3
 86.1
 87.6
 90.7'
 93.8
 97.4
 100.1
 102.2
 105.9

 96.1
 97.4
 98.7
 91.7
 103.8
 104.9
 105.9

 99.4
 100.7
 103.2
 104.5
 104.9
 105.9

 98.6
 93.8
 99.8
 100.2
 101.0
 99.8
 105.9

 98.6
 93.8
 100.2
 101.0
 99.8
 99.8
 100.2
 101.0
 99.8
 99.8
 99.8
 99.8
 100.2
 101.0
 99.8
 99.8
 99.8
 99.8
 100.2
 101.0
 99.8
 99.8
 99.8
 100.2
 101.0
 99.8
 99.8
 <t 82-9 63-5 83-9 64-1 83-7 83-4 81-0 81-2 82-0 82-0 89-0 88-9 89-1 86-5 87-2 86-5 87-2 86-5 85-9 86-5 83-9 85-7 86-7 89-1 90-3 91-8 88-9 90-5 90-5 99-3 100-9 101-2 94-1 94-9 85.0 66.3 84.6 85.7 83.6 84.6 81.4 61.5 82.6 62.8 88.8 70.7 88.3 89.0 07.2 88.3 87.7 F9.1 87.6 88.4 87.7 90.0 85.6 86.2 84.9 85.5 86.6 87.4 90.4 99.5 90.6 190.7 89.8 97.9 90.8 90.8 97.9 90.8 97.9 90.8 97.9 90.8 97.9 90.8 97.9 90.8 97.9 90.8 97.9 90.8 97.9 90.8 97.9 90.8 97.9 90.8 97.9 90.8 97.9 87.7 88.5 86.6 88.4 85.6 86.6 81.4 82.2 83.4 87.7 91.8 94.5 92.0 93.6 89.2 92.0 89.2 92.0 89.2 92.0 89.2 90.9 86.8 88.8 85.6 87.5 86.4 87.5 88.0 88.3 94.3 94.1 96.0 96.2 88.7 90.0 89.7 90.0 89.7 90.0 89.0 89.7 88.8 90.2 86.9 88.2 82.9 83.7 92.6 93.7 95.2 96.8 90.3 91.7 93.5 92.4 91.2 92.9 91.7 93.5 89.1 80.3 87.2 88.3 87.7 88.1 88.1 93.9 93.3 93.9 95.6 96.5 93.3 93.9 91.3 93.9 84.4 84.2 81.3 82.9 87.2 83.2 81.4 81.2 85.6 84.8 85.6 84.8 87.9 86.2 87.9 85.6 86.1 85.7 85.9 81.7 83.2 81.6 83.6 81.7 83.2 81.7 83.2 109.1 101.2 90.2 90.4 90.2 101.2 89.5 90.6 90.7 95.2 90.6 90.6 90.7 95.2 89.7 89.5 86.7 96.9 85.3 85.4 85.4 96.2 85.4 96.2 96.2 96.2 96.2 630 800 1000 1250 1601 2000 84.F 91.B 98.0 100.8 96.1 91.E 94.4 2500 3156 4000 5000 69.6 96.6 93.7 98.0 6370 105.2 104.5 106.9 105.3 105.6 105.7 105.2 105.2 103.4 106.7 104.9 106.4 107.2 108.7 122.5 121.6 124.6 122.9 123.3 123.3 122.9 123.0 119.3 119.7 110.2 120.0 120.1 121.6 120.7 119.5 121.8 120.3 120.3 120.7 120.3 120.2 117.5 118.4 118.2 119.5 119.5 121.1 105.6 124.8 107.4 105.4 105.4 105.8 105.4 105.1 102.2 103.0 102.9 104.3 104.6 106.2 109.0 109.5 110.2 111.7 112.3 113.7 120.4 119.9 118.2 118.9 118.4 117.7 120.4 119.9 118.2 118.9 118.4 117.7 105.8 105.7 149.4 105.2 104.1 102.6 DASPL PNLT PNL DBA BAND 10 4-6 20 20 2•6 2•6 24 10 0.0 0.5 24 0.0 COMPOSITE SPL COMPOSITE PNL PNLT (INTEGRATED) MAXIMUH PASPL =
MAXIMUH PNLT =
HAXIMUH PNL =
MAXIMUH DBA = 113.72 124.76 121.84 107.45

> CONDITION = 6398 ALTITUDE # 200. FT SIDELINE

2267 H7144 J180-109 QUIFT ENGINE 1 CONF A HW CONT BM HW T/P FAR FIELD

= 125.72 = 134.34

THE RECEIPT OF STATE

1/3 OCT HICROPHONE ANGLES IN DEGREES 80 90 95 100 105 80 90 30

C4.6 86.0 86.5

84.2 85.9 86.3

83.0 86.1 86.2

86.8 89.7 90.4

89.8 99.7 90.1

89.1 92.0 92.7

89.3 91.1 91.7

86.5 90.4 90.9

86.7 88.1 88.2

86.5 88.1 88.2

86.6 88.3 86.5

83.0 86.9 85.1

83.6 86.3 86.5

83.1 85.6 65.3

85.1 85.6 65.3

85.1 85.6 85.0

85.1 85.6 85.0

85.1 85.6 85.0

85.1 85.6 85.0

85.1 85.6 85.0

85.1 85.6 85.0

85.1 85.6 85.0

85.1 85.6 85.0

85.1 85.6 85.0

85.1 85.6 85.0

85.1 85.6 85.0

85.1 85.6 85.0

85.1 85.6 85.0

85.1 85.6 85.0

85.1 85.6 85.0

85.1 85.6 85.0 88,2 89,1 89,1 89,2 89,1 89,2 86,5 87,2 86,5 87,3 82,2 82,7 83,8 87,1 89,4 94,9 94,9 94,5 97,3 97,8 95,5 95,4 96,6 97,3 93,6 93,7 93,7 93,6 93,6 93,7 93,7 93,6 93,6 87,5 87,5 87,6 87,8 86,8 86,7 86,2 85,9 87,5 86,0 85,6 94,1 91,4 87,8 88,1 84,8 86,8 87,5 86,0 85,6 97,1 88,9 88,1 84,9 88,6 77.1 77.0 74.6 76.0 79.6 82.5 70.3 71.3 49.5 69.4 73.7 75.9 74.0 74.0 72.7 71.0 70.4 74.3 74.3 76.6 75.41 775.40 775.77 775.87 775 79.51.486 84.868.896 84.868.806 8 895-53490 9983-99987-00-4683067-33 1004-334-67-33 250 315 400 500 800 1000 1250 82.3 79.9 80.0 79.9 80.6 78.4 79.0 82.3 84.9 93.6 82.4 93.6 82.4 83.7 84.2 81.8 64.6 68.1 69.2 74.6 74.8 63.1 61.9 1600 83.3 84.2 81.6 79.9 86.8 88.1 75.0 75.9 76.9 70.8 4000 5006 4300 81.4 92.2 95.1 98.4 100.2 101.0 101.8 100.5 102.0 102.2 103.6 104.2 105.5 105.5 105.6 105.2 97.3 110.0 112.7 115.9 117.7 118.6 119.6 116.3 116.7 117.4 117.0 117.0 118.4 116.6 115.7 112.9 95.3 167.1 110.1 113.3 115.1 116.0 116.8 114.6 115.6 115.4 116.5 110.4 117.7 116.6 115.7 112.9 20.6 92.6 95.2 98.6 160.3 101.1 101.6 99.3 100.2 100.1 101.3 101.5 102.8 102.1 101.6 99.3 DASPL PHLT PHL DBA 113.0 113.0 99.3 BAND 20 2•6

PNLT (INTEGRATED)

TABLE A-26

```
TABLE A-27
                                        7267 N6785 JT00-109 CUTET ENGINE 1 .CONF A HW CONT BH HW TVP HARD FIELD
           ENGINE MODEL = JTED
ENGINE NUMBER = 37
                                                                                                                                             IHLET TEMP
TIME OF DAY
BARH. PRESSURE
WIND DIRECTION
WIND VELOCITY
                                      T&D -CO
375054
                                                                                                                                                                       = 1555
= 30.GB IN. HG.
= SE
= 4 KPH
           STAND
                                                                    CBSEPVED RPH
CORRECTED RPH
                                                                    FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.
I/3 CCT
FREQUENCY
(H7)
                                                                           MICROPHONE ANGLES IN DEGREES
              111.1 120.7 114.5 119.1 120.1 116.4 116.2 125.6 137.9 122.5 123.2 172.6 120.5 122.6 120.5 122.6 120.5 122.6 120.5 122.6 170.5 122.6 108.3 119.3 109.4 109.2 107.4 104.4 109.3
DASPL
BAND
TÇORP,
                                          24
0.0
                                  24
0.0
                 24
0.c
                                                   24 24
0.5 0.0
          MAXIMUM CASPL
MAXIMUM PHLT
MAXIMUM PNL
MAXIMUM DBA
                                                                   COMPOSITE SPL
COMPOSITE PHL
PNLT (INTEGRATED)
 TABLE A-28
                                                        2267 M6785 JT8D-109 QUIET ENGINE I CONF A HH CONT BR HM T/P HARD FIELD
                                                                                                    CONDITION = 637)
                                                                                                    ALTITUDE = 200. PT SIGELINE
```

1/3 OCT FREQUENCY (HZ)	100	120	140	150	160	130	HICROPHONE	ANGLES	IN DEGREES
50	90.0	`04 4	100 0	102.6		98.2			
63	92.0	77.0	100.0	103.2	70+0	70.2			
βο̈́	93.0	2740	106.6	103.9	77,0	7740			
100	94-1								
125	94.6			104-1		101-2			
îčó	96.6			.102-6					
200	97-4			100-7					
250	97-2			98.7					
315	71 <u>46</u> 97.û	101-6	AUU e 2.	96.5	87.0	101*0			
400	96.3				86.2				
500	96.8	100.7 100.6		93.2	55.7				
630	95.3	98-9			85 <u>e</u>				
800	93.4	95.4			83.3				
1000	92-1				80.8				
1250	91.4	93.7	89.9		77.4				
1650	90.4	91.8	67-8	81.9	74.3				
2000	50.4	90.2			72.3	88.5			
2500	89.9	08.5		79.4	72.2	67.3			
3150	93.5	69.0	83.1	78.6	71.7				
4000		88-0		78.9		86.0			
5000	97+2	89.9		80.7	76-2	86.5			
6300	95.4	84-5	82.3	76.7	75+3				
8000	91-5	87-3		74.6	71.4	84.7			
	92.7	87.2		74.2	69-1	84.4			
10000	92.1	88.5	80.0	72.6	67.1	85.6			
DASPL	108.3	710 7	112 7	111.5	10. F				
PNLT	120.7	116.6	116.6	113.6	.100.5	11111			
PNL	120-7	110.7	110-5	113.6	107-1	11.(43	1000		The second second
DBA	105.4	100 6	1100-	98.6	Tritei	11/03			
	*** E.C.	10503	105 40	7040	210 (Trides			
BAND	24	24	24	24.	24	24			
TCORR	0.0	ō,a		0.0	0.0			1.	
	-74		7,40	200	.540	J.,			

PRET (INTEGRATED) = 131.54

```
TABLE A-29
                                1267 H7143 JT80-109 QUIET ENGINE 1 CONF A HW CONT BH HW T/P HARD FIELD
                                                                                                                                       # 64.00 F
= 1555
= 30.08 IN. HG.
# SE
# 6 MPH
                                                                                                                  INLET TEMP
TIME OF DAY
BARM. PRESSURE
WIND DIRECTION
WIND VELOCITY
         ENGINE MUMPER = 375054
                                                       TEMPERATURE
         STAND
DATE
                                                       FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150- FT.
                                                            MICPOPHINE ANGLES IN DEGREES
              110
  PASPL
PNLT
PNL
DBA
                      24
6•0
  BAND
 TABLE A-30
                                                     2267 H7143 JTRD-109 CUIET FINGINE 1 CONF A HW CONT BH HW T/P HARD FIELD
```

CONDITION = 6371

ALTITUDE = 200- FT SIDELINE

1/3 DCT FREQUENCY				HICROPHONE ANGLES IN DEGREES
(HZ)	113	111	90	
50	92.8	00.2	94.2	
63	94.3	91.8	90.Z	
60	94.4	93.1	90.2	
106	96.5	91.3	92-1	
125	07.1	80.9	95.1	
160	99.3	27.1	95.3	
200	99.6	93.8	96.8	
250	99.7	9.9	96.9	
315	95.0	90.5	95.6	· · · · · · · · · · · · · · · · · · ·
4ባሳ	99.4	95.7	94.6	
569	98.0	93.7	43°c	
630	96.6	95.5	93.1	
800	94.0	92.6	92.1	
1000	92.6	92.2	92.6	
1250	90.4	92.5	90.2	
1600	90.0	80.9	EB.5	
2020	89.0	8E.2	66.8	
2510	88.5	67.0	69.9	
3150		89.0	94.8	and the second of the second o
4000	- 43.0		96.8	
5000	92.0	91.B	94.4	•
6360	0.03	89.7		
8450	90-2	91.3	93.5	
10303	91.4	92.7	91.5	
DASPL			107.4	
PNLT		117.6		
PNL		117-6		しい たいにんしい とんりょうしん かちむかい
DPA	104,7	1 3.6	104.6	
BAND	24	24	24	The second of the second of the second
TCORR	· d.c	0.0		

FNLT (INTEGRATED) = 123,8

```
TABLE A-31
                                                 2267 H6786 JTBD-109 QUIET FHGINE 1 CONF A
                                                                                                                                                                              INLET TEMP
TIME OF DAY
BARM. PRESSURE
WIND DIRECTION
WIND VELOCITY
              ENGINE MODEL FAGINE NUMBER
                                                                                                                                                                                                              # 47.00 F
= 953
= 29.78 IN. HG.
# SE
= 5 MPH
                                                                                     TEMPERATURE
                                        = X-314
= C5/36/74
                                                                                     HUHIDITY
                                                                                     OBSTRVED RPM
CORRECTED RPM
                                                                                     FAA PAPT 36 REFERENCE DAY CORRECTED SPL IN DB -
                                                                                                                                                                             RADIUS = 150. FT.
I/3 DET
FREQUENCY
(HZ)
                                                                                            MICROPHONE ANGLES IN DEGREES
                                                               150
                   63
86
100
128
160
290
250
315
400
630
800
1000
1460
7500
7500
7500
6300
7500
7500
7500
7500
7500
7500
7500
 OASPL
PNLT
PNL
P5A
                  111.2 116.3 114.1 118.1 119.2 118.7 115.4 124.4 126.0 123.2 122.6 122.4 121.1 127.1 124.4 178.0 123.2 122.6 122.4 171.1 122.1 182.7 113.4 189.1 108.4 107.1 135.1 108.7
 BAND
                                                      24 24
0.0 0.0
                      24
0.0
                                24 24
0.0 0.0
                                                                            24
                                                                                     COMPOSITE SPL
COMPOSITE PHL
PNLT (INTEGRATED)
            HAXIMUM CASPL = 1972 HUMIXAM = 179 HUMIXAM = 179 HUMIXAM = 179 HUMIXAM
                                               119-18
128-02
128-02
113-42
                                                                                                                            = 129.68
= 129.15
= 132.40
 TABLE A-32
                                                                               2267 H6786 J78D-IG9 QUIET ENGINE 1 CONF A HW CONT BM HW T/P HARD FIELD
```

CONDITION = 6385
ALTITUDE = 200 FT SIDELINE

1/3 CCT FREQUENCY							ICROPHONE ANGLES IN DEGREES
(H7)	100	120	140	150	160	136	STEADHUNE NAMES IN DESKEES
50	90.6	93.15	100.8	100.2	100-5	96.0	
63	92.5	95.4	101.0	102-4	99.3	97.8	
Ðυ	03°B	97.3	104.2	103.0	98.3	98.9	
100	94.3	96.9	103.8	103.5	99.2	100.7	
125	95.0		102.7			100.4	* • • • •
160	95.6	99.2	151.3	100-6	92.3	101-0	
260	96.9	100.9	100.4			101.0	
250	96.6	100.3	98.3	95.6	87-6	100.2	
315	96.6	99.6	97.4	94.6	£6.8	100-0	
420	97.0	100.1			87.1	99.2	
500	97.1	99.3	96.0	93.5	66.2	97.8	
630	95-6	97.1	94-2	B9.8	84.6	96-1	
800	93.0	94.7		86.6	82.2	94-1	
1000	92.1	92.4	88.7	83.7	78.4	91.2	
1250	91.7	91.2	86.5	81.6	75.8	90.2	
1690	40.4	70.0	84.7	80.1	74.8	88.5	
2000	89.2	69.7			74.1	67.4	
2500	905	E9-2	83.I	79.7	74.5	86.7	
3150	95.0	90.6			75.4		
4000	97.8	91.6	84.6	82.3	76.9	87.0	and the second of the second of
500v	05.7	91.1	52.0	78.5	73.0	85.L	
6300	92.0	89.2	80-1	76.3	71.1	83.3	
8000	93.5	69.4	79.8	75.8	69.6	83.1	
10000	91.7	90-8	78.7	73-3	66.0	83.D	
GASPL	108.4	110.2	111.7	110-6	106-7	110.5	
PHLT	121.0	119.0	115.9	113.3	108.3	117.0	
PNL	121.0					117.0	
DPA .	105.7	105-1	101-8	98-2	92.4	103.6	
BAND	24	24	24	24	24	24	
TEURP	ຄະວ	0.0	0.0	0.0	0.6	0.0	grassijas galaitijas ir i
		199	1.1	100		100	

PNLT (INTEGRATED) = 127.89

```
TABLE A-33
```

2267 H7144 JT8D-109 QUIET ENGINE 1 CONE A HW CONT BH HW T/P HARD FIELD

HICROPHONE ANGLES IN DEGREES

ENGINE HCDFL = J18C --CO
ENGINE HMIMBER = 375054

TEMPERATURE = 48.0 f

TIME CF DAY = 953
EARTH. PRESSURE = 29.78 IH. HG.

STAND = X-314

HUHIDITY = 42.0 PER CT.

HIND DIRECTION = E
HIND DIRECTION = E
HIND VFLOCITY = 4 MPH

FAA PART 36 REFERENCE DAY CORRECTED SPL IN D8 - RADIUS = 150. FT.

1/3 BCT
FREGUENCY
(HZI

110 111 90

50 95.1 92.8 97.2
63 96.7 93.4 92.7
80 95.1 94.1 93.9
106 96.0 92.9 94.8
125 160.1 10.9 97.0
160 100.7 89.2 96.8
200 101.6 96.3 90.1
250 107.1 100.4 96.6
315 101.7 101.3 97.4
400 161.5 97.7 94.7
500 100.4 95.4 95.8
630 98.7 98.4 95.0
1000 95.3 94.1 93.0
105.5 97.2 91.1
1000 95.3 94.1 93.0
105.5 97.2 91.2
1000 95.3 94.1 93.0
105.5 97.2 91.3
2500 92.3 90.4 92.5
3150 97.4 95.9 96.2
6300 97.4 95.9 96.2
6300 97.4 95.9 96.0
6300 97.4 95.9 96.0
6300 95.7 95.1 94.6
6300 95.7 95.1 94.6
6300 95.7 95.1 94.6
6300 95.7 95.1 94.6
6300 95.7 95.1 94.6
6300 95.7 95.1 94.6
6300 95.7 95.1 94.6
6300 95.7 95.1 94.6
6300 95.7 95.1 94.6
6300 95.7 95.1 94.6
6300 95.7 95.1 94.6
6300 95.7 95.1 94.6
6300 95.7 95.1 94.6
6300 95.7 95.1 94.6
6300 95.7 95.1 94.6
6300 95.7 95.6 91.3

OASPL 112.2 109.4 109.3
PNLT 123.4 122.5 122.2
PNL 123.4 121.3 122.2
DBA 178.5 106.6 106.9

 HAXINUM CASPL
 * 112.24
 COMPOSITE
 SPL
 = 112.4

 HAXINUM PNLT
 = 123.64
 COMPOSITE
 SPL
 = 123.4

 HAXINUM PNL
 = 123.64
 PNLT (INTEGRATED)
 = 127.4

 HAXINUM DBA
 = 138.647
 FNLT (INTEGRATED)
 = 127.4

TABLE A-34

7267 M7144 JTEC-109 CUIET FAGINE 1 COMP A HW CONT BH HW T/P HARD FIELD

HICROPHONE ANGLES IN DEGREES

CONDITION = 6385

ALTITUDE = 200+ FF SIDELINE

1/3 OCT
FREQUENCY
(HZ)

50

92-1

89-7

63

93-7

90-3

90-2

80-9

95-9

125

97-0

60-0

97-0

80-0

97-0

80-0

97-0

80-0

97-0

80-0

97-0

80-0

97-0

80-0

97-0

98-0

97-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

98-0

88-0

98-0

88-0

98-0

88-0

98-0

88-0

89-0

89-0

89-0

89-0

89-0

89-0

89-0

89-0

89-0

89-0

89-0

89-0

89-0

89-0

89-0

89-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

90-0

PNLT (INTEGRATED) # 124.28

```
TABLE A-35
                                              2267 H6786 JTRD-109 QUIFT FNGINE I CONF A HW CONT BH HW T/P HARD FIELD
                                                                                                                                                                 INLET TEMP
                                                                                                                                                                 THE OF DAY
BARM, PRESSURE
WIND DIRECTION
WIND VELOCITY
                                                                                                                                                                                              = 1032
= 29.78 IN. HG.
                                     = X-314
= 05/66/74
                                                                               HUMIDITY
             STAND
DATE
                                                                               OBSERVED RPH
CORRECTED RPH
                                                                               FAA PART 36 REFERENCE DAY CORRECTED SPL IN CB - RADIUS = 150. FT.
1/3 CCT
FREQUENCY
(H2)
                                                                                      MICROPHONE ANGLES IN DEGREES
                                       98.4
94.5
93.4
93.2
93.5
95.5
94.0
95.4
  1250
1600
2000
2500
7150
4000
5000
6300
8000
  CASPL
PNLT
PNL
DBA
                  110.8 116.5 113.9 117.6 119.1 117.1 123.2 126.8 122.7 122.4 121.6 119.8 123.2 128.8 122.7 122.4 121.6 119.8 107.9 113.8 108.7 108.2 108.2 103.9
  BAND
                                                   24
0.0
                                         24
0.0
                                                                                COMPOSITE SPL
COMPOSITE PNL
PNLT (INTEGRATED)
                                                                                                                    = 120.53
= 129.76
= 132.31
      TABLE A-36
                                                                       2267 M6786 JTED-109 QUIET FRGINE 1 CONF A HW CONT BH HW T/P HARD FIELD
```

CONDITION = 6391
ALTITUDE = 290. FT SIDELINE

1/3 PCT FREQUENCY							HICROPHONE	ANGLES	IN DEGREES
[142]	100	170	146	150	190	130			
50	89-8	94.4	98.4	100.2	99.0	97.0	:		
Ĝ3	92.4	64.8	101.4	103.6	99.5	97. t	1		
60	92.7	96.5	193.4	104-1	96.8	90.9	,		
153	97.7	97.7	1.3.2	102.9		100.1			
125	95.7		101.5			99.8			
160	ge . p	99.1	101-7			100.6			
200	96.6	100.1	99.4			100-1			
250	97 . 1	100.4	98.7		. 65-2				
315	97.1	00°B		92.7	85.7				
410	00.0	100.0		91.8		98.4			
500	96.0	99.4			84.7				
630	94.7	97.C			82.6				
890	92.3	94.5			80.9				
2002	63°F	92.2							
1255	89.5	93+6			75-1				
1600	39.6	85.4			73.3				
2007	28.7	88.2							
2500	E9.9	87.7						* ***	The second of the
3150	94.3	89.3							
4000	96.7	91-1							
5000	94.7	4).4		77.2	72.4			1 1	
6370	-1.5	88.1						1.0	
8000	°3.1	88.÷							
10030	91.7	90.5	79-1	72-3	67.9	81.	•	·	
DASPL	108.0	110.0	111.2	110-5	105.2	110.	2		
PNLT	120.2	116.5	115.7	112.6	106.6	116.	2.		4
PNL	125.3	110.5	115.7	112.6	146.6	116.	3	An in t	
DBA	105.0	134.7	101.6	97.3	90.9	102.	8	u litte e	
BAND	24	24	24	24	24	24			
TCORP	0.0	0.0	ن ـ ب	0.0	0.0	0.	D	Arage -	
Taranta da la caracteria de la caracteri				Militari	:	77.		·	

ALTITUDE = 20% FT SIDELINE

1/3 FCT FREQUENCY						HICE	OPHONE	ANGLES	IN	DEGRE
(HZ 1	110	111	96							
50	97.1	90.1	89.7							
63	94.1	90.1	69.7							
80	95-1	90.6	91.3							
133	95.4	89.4	92.7							
125	97.1	86.1	94.7							
160	97.9	86.5	94.0							
200	98.F	93.6	95.5							
259	.09.5	97.7	95.7							
315	98.6	50.2	94.9							
4	98.5	93.6	94.2							
500	97.4	93.5	93.3							
630	96.0	04.0	92.3							
REG	94.1	91.6	91.7							
1030	92.3	90.8	90.4							
1250	95.7	66.0	FO.2	1				" -		
1600	P3+4	67.6	88+7							
2933	ŭo-₽	E7.3	86.3							
2500	86.2	86.5	90-1							
3152	94.Û	91.0	95.E			- 3	34		٠.	
4000	95.5		96.8							
5033	94.6	42.7	94.2							
6350	91.1	80.09	91.0					400		
8000	22.3	93.5	93.		-		100			
10000	92 • F	90.7	69.5		1 1	100	100			1. 1. 1.
DASPL	129-3	106.0	206-0			7	1000			
PNLT			119.9	74	10.77	3.13	- A - 4 A	7. 7.1		
PNL	126.4	117.5	119.9	4 1 1		. "			7 .	1.0
É9 A	135.4					× 1				
BAND	24	24	24		1.1			98 J. M	1.	
TCCRR	5.3	6.0	0.6	The second second			Berger	1.500		V .
	- • •			•						100

PNLT (INTEGRATED) = 124.2

TAB	BLE A-3	39	2	26 7 H7	144 J7	0D-109	CUIE	T FNGI	NF 1	CONF /	. ни с	.CHT 840.	HW 1	/P F#	R FIEL	Đ				
	ENGINE NO		= JTCf = 37	-20 15054			TFMPE	RATURE			40.	0 F			TIM	ET TEM E OF D H. PRE	PAY	=	7.00 F 1002	: IN. HG.
	STAND DATE			-314			HUMID	ITY			42.	O PER	CT.		HIN	D DIRE	CTION	<u>.</u>	ε	1PH
	1141-		= (5/2	10714				VED RF CTED R							****	, ,,,,,,				
							FAA P	ART 36	PEFFF	ENCE I	DAY COR	RECTE	SPL 1	IN DB	- RAD	IUS =	150.	FT.		
1/3 OC							u	70004	THE AL	mies 1	EN DEGE	FES								
(HZ)	5	16	20	36	40	50	60 "	70	80	90	95	160	165	110	115	120	130	135	140	150
50	2.43	04.4	P3.7	86.1	P7.0	8.3	88.6	89.0	90.2	91.3	92.6	93.3	94.7	95.4	96.2	97.0	101.B	104.7	107.2	111.2
63	84.3	85.4	86.1	87.5	87.9	88.1	88.9	69.8	90.7	91.9	92.4	93.5	94.9	95.3				105-0		
8.5	25.8	67-1	87.2	88.0	87.5	.68.1	80.1	08.8	89.5	90-6	91.0	92.4	93-6	94.5	94.2	95.7		101.6		
100	86.2	F 64	05.5	85.6	£5.5	86.0	65.5	66-5	05.9 88.7	87.2 90.8		68,2 93.3	88.9 93.8					107-1		
125 160	€€ • 3 • 1 • 4	87.3 89.7	86.4 90.4	92.2	27.7 92.0	68.3 92.4	87.8 92.1	87.7 92.9	74.7	96.7		98.9						111.0		
270	9.60	89.4	93.2	04.0		94.8	94.1	96.0	96.B	99_5	100.3	102-1	103-1	105-1	106.0	107.9	110.3	112.2	113.0	112.4
250	90.3		94.0	95.0	94.6	95.5	95.4	96.7	97. B	99.7	100-1	101.7	102.8	104.9	105.4	106.4	107.3	100.5	16B.4	108.9
315	97.6	91.1	91.5	9;.1	92.6	92.8	94.3	94.9	95.3	96.3	96.7	97.9	98•7	160.4	101.6	104.0	166-0	107.5	108.8	168.1
40.3	92.0	90.9	91.5	92.6	92.5	9Z.9	92•9	94.0	95.3	98.5	99.5	101.6	102.8	105.0	105.3	106.9	107-1	100.0	107.9	108.0
500	01.6	91.8	91.2	92.4	94+0	74.6	95-1	96.5	96.3	97.7	97.7	99.5	100.4	102.3	103-5	104.8	105.4	106.7	107+1	108*6
630	60.0	90.0	91.6	91.3	91.7	92.5	93.0	93.7	94.7	97-0		100-0	101.3	103.3	103.5	104.0	102.4	103.8	166.0	102.7
800	67.2	86.6	95.5	90.5	91.1	92.6	97.8	-3-2	93.2	95 .7	96.5 95.4		97.9	101+0	100.1	101-0	103.0	101.4	107.4	100-1
1005 1256	85.6 84.8	86.6	87•£	89.0 85.6	89.7 89.5	91.9	91.4 91.1	92.4 92.4		94.2			96.4		98.4	79.3			98.9	97.0
3600	85.7		88.3		90.7		91.6	91.5		03.1			95.8	97.2	97.3	97.6				93.8
2000	92.9	93.0	96.3	96.9	96.3	96.1	95.6	94-8		95.6			95.3		96.4	96.6	96.6	95.9	75-1	
2500	90.1	40.8	90,7	93.2	91.4		92.3	92.4	91.9			94.1	94.4		95.3	95.4			93.6	
3150	89.9	99.3	90.3		90.7	90.7	90.4	91.4	92.2	97.1			94.6		94.6	94+6				
4000	dè*B	96.5	96.7		96.9	95.7	95.2	94.6	94.9			97-2			96.4	95-7			92.6 91.3	
5006	69-3	90.6	9:+4		90-4	93.1	90.3	90.9 89.7	92.7	94.4			96.9 95.8		96.6 96.1	96.1 95.6			90.4	
6300 800u	60.0	96.3	90-1		90.1 89.0	89.6 88.0	89.4 87.3	67.8	89.5						94.6	94.4				
10000	88.6 E7.1	87.3	88.9 67.3		87.5	86.5	86.2	86.3					94.1							
OASPL	102.5	100 0	106.0	166.0	30E 4	105.0	106.0	206.6	1.12.2	100-0	3.00.6	111.3	112.1	113.0	114.4	115.7	117.3	118.9	120-1	121.3
PNLT	110.7	127.2	120.0	122.1	121-3	120.6	120-3	121-5	119.3	120-5	121.2	122.6	123.4	124.9	123.8	124.2	124.7	125.5	126.1	125.6
PHL	117.7	116.2	112.7	110_6	119.2	115.9	118-7	118-8	119.3	120-5	121.2	122.6	122.9	124.3	123.6	124.2	124-7	125.5	140.1	125.0
DBA	102.4	102.0	103.7	104.7	104.2	104.3	104.3	104.5	104.9	100.3	106,9	106.5	109.1	110.8	110.6	111.6	112.0	112-5	112.0	112.7
PAND	20	20	17	2.4	20	50	26	20	24	24	24	24	10	to	24	24	24	24	24	24
TEORR	2-1	2-0	7.3	2.3	2.1	1.8	1.6	1.7	9.0	0.0	0.0	0.0	U.5	0.6	0.0	Ú•0	0.0	0.0	0.0	0.0
							COMP	nt 475	-	PL.	= 121.	6.9								
	HUMIKAH HUMIKAH			26.06			COMP		PN		= 127.									
	HUHIXAN	PNL	= 1	16.66					EGRATE		= 135.									
	HAXIHUM	DPA	= 1	12.02																
TAB	LE A-4	0		Ξ.	267 H7	144 JTC	3F-169	OUTE	F ENGI	NF I	CONF A	HW C	ONT 8M	EW T	/P FAI	R FIELI	D			

CONDITION # 7226
ALTITUDE = 230. FT STOELING

1/3 CC1							ш	ITEDAGL	IONE AL	IGLES I	N NEG	FFS								
FREQUENCY	13	23	ιε	46	55	60	73	80	98 98	95	100	105	110	115	120	130	135	140	150	
EH2 }	1,."	23	23	70	53			00	30	7.5	100			*				•		
50	66.6	71.6	77.6	3.08	83.5	£4.8	26.0	67.6	8489			91.9						100.8		
62	67.6	74.2	70.5	81.5	23.3	85 .1	86.8	80-1	89.4	89.9	70.9		92.3	93.0	93.4	96.7		101.0		
Ðυ	69.3	75.3	79.4	81.1	83.3	84.3	B5.0	86.9	1.69	£0.5	89.E	94.2	91.5	70.B	91.9	94.0		97.6		
100	60.5	72.6	77.0	79.1	81.2	81.7	83.1	83.3	84.7	24.7	85.6	86-1	66.B	87.5	89.0	92.3		97-4		
125	69.4	74.5	87.2	81.3	83.5	84.0	84.6	66-1	88.3	27.4	90-7	91.0	92.5	93.8	95.9			103-6		
160	71.7	78.5	63.6	85.6	67.6	88.3	89.8	92.1		95.2	96.3	97-1	98,2	59.7	101.2	104-2	105.5	106.B.	IDP-I	
200	71.3	81.2	85.4	87.5	89-9	70-3	92.9	94.1		97.8	99-4	100.3	102-0	102-6	104-1	105-4	106.6	106.6	103.8	
25 ū	73.€	02.0	£6.4	58.2	90.6	91.6	93.6	95.1	97.2	97.5	99.D	100.0	101.8	102.0	102.6	102.4	102.9	102.0	100-3	
315	77.P	74.4	E3.4	86.2	87.9	90.5		92.3	93.5	94.1								102-4		
413	72.5	79.4	03.9	86.0	RB. €	89.1		92.6	96.0	96.9					103.1					
566	73.2	70.0	63.7	87.5	89.7	91.3	93.4		95-2	75.1	96.B				101.0				99-3	
630	71.2	76.7	82.5	85.2	67-6	89-2	90.6		94.4	95.3	97.3	98.4	100.Z	10ú-1	100.8	100-1	99.0			
800	60.5	77.1	61.6	84.5	87.0	88.9	90.1	01-2	93.1	93.9		97.0					98.1			
1000	67.3	75.2	60.0	83.1	85.4	87.5	89.2	90.5	92.4	92-8		95.0			97-1	76.5	95.7		91.1	
1255	66.7	74.8	79.5	82.8	8-66	87.2	89.7	65°6	91.6	92-0	93.1		94.9				93.5		87.9	
1673	66.1	75.2	81.2	83.4	85.9	P7.6	88.3	80.9	90.5	91.2			94.6				91.4	89-7		
2000	72.4	82.9	67.5	27.4	90.9	91.6	91.5	90.5	70.7		92 ú				92.6					
2500	68.5	76.9	83.5	84.3	E-63	88.2	89.1	69.0	89.9		91.2								80.4	
3150	65.7	75.9	81.2	83.4	85.2	86.6	28.0		90.3		91.9		92.3							
4000	71.2	P1.6	87.5	89.3	90.0	90.8	91.1			93.2		93.0	94.7							
5000	64.2	74.5	£0.3	82.7	84.3	85.9	87.3					93.6						63.6		
6357	61.5	73.5	79.5	PZ.i	83.6	84.8	86.0	87.0				92.4								
8000	55.9	75.6	77.5	80.3	61.5	82.3	83.6	66.L	87.6	80.8	91.0	90.9	91.5	90.2		85.7		81.2		
10033	49.1	66.6	74.8	77.9	79.4	80-5	82.0	84G	B6.6	84.48	90.1	40+1	71.1	29.9	88-7	85.0	5244	80-2	72.4	۰
CASPL		07.4	04.6		100 8	302-0	A-FOT	104.5	106-3	107-0	108-5	109.2	310.7	110.9	111.B	112.4	113.3	113.7	112.7	
PNLT	67.0	71.00	132.3	134-3	115.3	114.6	116-6	116.4	117.7	118.3	119.7	120-3	121.6	120.1	120.2	119.6	119.7	119.4	116-7	
PNL	40.2	100.3	120.0	111 0	777.	714.6	115.4	716.6	117.7	116-3	119.7	110-8	121.0	120-1	120-2	119.6	117.7	119.4	116.7	
DSA	8017	0n 0	10220	211-7	11367	100-2	101.2	102-0	133-6	104-2	105.7	106.1	107-5	107.2	137.6	106.9	106.8	106.3	103-9	
UBA	004	E-7#D	7560	7103	7740	10415	10100	10100	10340	20-102										
BAND	20	17	zo	-20	20	20	20		24		24.	10		24			24			
TEURP	1.9	2.3	2.2	2.1	1.8	1.5	1.1	0.0	0.0	0.0	0.0	0.5	0.6	Ωم.ت	0.0	0.0	0.0	0.0	0.0	
- "																	· · · · ·			

PULT (INTEGRATED) = 131.18

```
TABLE A-41
                                                                                                                                                                      2267 HE766 JTCP-109 CULET ENGINE 1 CONF A HM CONT BH IN TYP HARD FIELD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     INLET TEMP
TIME OF DAY
BARN. PRESSURE
WIND DIRECTION
WIND VELOCITY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               = 48.00 F
= 1002
= 29.78 IN. HG.
= SE
= 5 KPH
                                                                                                                                                                                                                                                                                          TEMPERATURE
                                                                                                                                                                                                                                                                                          KUHIDITY
                                                                                                                                                                                                                                                                                          FAA PART 36 REFERENCE DAY CORRECTED . 'L IN DB - RADIOS = 150. FT.
1/3 CCT
FREOUPNCY
(HZ)
                                                                                                                                                                                                                                                                                                               HICROPHONE ANGLES IN DEGREES
                                                                                                        111
                                                                                                                                                                                                                                               160
                                                               95.6 102.3 100.7 110.4 113.3 116.5 97.5 173.8 162.9 113.5 114.3 115.2 100.1 105.5 105.4 115.0 110.2 112.7 121.1 106.2 107.4 115.0 110.2 112.7 121.1 106.2 107.4 116.6 119.3 112.4 102.9 177.6 11.9 116.6 119.3 112.4 102.9 177.6 11.9 116.6 116.8 116.8 104.3 170.1 109.5 116.2 116.8 116.8 104.7 110.1 109.6 115.1 115.2 110.5 176.4 117.3 110.5 176.4 117.3 108.6 107.1 111.8 170.6 112.4 112.3 108.6 107.3 112.1 111.8 170.6 112.4 112.3 108.6 107.3 112.1 110.5 112.4 109.4 106.4 110.5 110.5 112.4 109.4 106.4 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.
        QASPL
PNLT
PNL
DBA
       BAND
                                                                                                                                                                                        24
5-0
                                                                                                                                                                                                                                                            24
0.0
       TABLE A-42
                                                                                                                                                                                                                                                               2267 H6786 JT8D-109 QUIET ENGINE 1 CONF A HH CONT BH HC T/P HARD FIELD
```

CONDITION = 7218
ALTITUDE = 200. FT SIDELINE

1/3 PCT FREQUENCY							MICROPHONE	ANCI ES	TO THE	CREEC
(HZ)	100	120	146	150	160	130	UTCKOLINIC	SUGET 3	IN DE	unces
50	93.2	96.9	104.0	104.8	104.6	101.7				
63	94.9	99.1	107-1	105.B	103.3	105.1				
BC	97.5	101.6	108.6	109.6	100.8	106.4				
10G	98.5	103.6	110.2	110.7	100.5	107.4				
125	101.3	165.6	111.5	108.8	105.4	108.4				
160	101.7	105-7	109.8	108.2	104.9	107-9				
200	102.0	106-0	108.7	106.6	98.5	107.6				
253.	103.7	106.7	107.1	105.7	97-3	107-6				
315	104.4	106.B	106.0	133.6	96.5	107-1				
403	154.6	107-1	107 8	103.7	97.3 97.9	106.5				
50ถ	103.7	166.4	106.3	103.5	97.9	105-9				
630	102.2	104.5	105.6	101.6	95,6	103.9				
800	100-1				92.3					
1000	99+3				8.5					
1256	46-5		96.1		85.2	96.9				
1600	98.2			88,1						
5000	96.6				51.0					
2500	95.9	96.7			79.7					
3150	96-0			83.1						
4000	98.4			83.7				5.5	1	
5000	95.5	95.3		82-1		89.9				
6350	968	94.7	57-8	80.4	75.6					
8000	94.9			78.2		86.9				
10000	93.5	92.3	85.9	76.2	73•4	55-2				
DASPL.	114-0	116.7	119-3	117.8	112.4	117-7				
PHLT	124.5	124.9	124.6	120.7	115.5	123-7	Carlot Street	100		
PHL	124.5	124.9	124.6	120.7	115.5	123.7			100	
DBA	120.7	112.2	111.6	107-7	101.8	110.B				
BAND	24	24	24	24	24	24	V 11.1 1	375		
TCORR	0.0	0.0	0.0	0.0	0.0			7.5		
							100			

PNLT (INTEGRATED) = 133.09

```
TABLE A-43
                                             2267 H7144 JT80-109 QUIET ENGINE 1 CONF A HH CONT BH HH T/P HARD FIELD
                                                                                                                                                                INLET TEMP
TIME OF DAY
BARM. PRESSURE
WIND DIRECTION
WIND VELOCITY
                                                                                                                                                                                             = 47.00 F
= 1002
= 29.78 IN. HG.
             ENGINE HODEL = JTED -00 FNGINE HUMBER = 375054
                                                                              TEMPERATURE
             STAND
CATE
                                      = X-314
= 05/06/74
                                                                              HUNIDITY
                                                                                                                                                                                                       4 HPH
                                                                              ORSERVED RPH
COPPECTED RPH
                                                                              FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.
1/3 CCT
FREQUENCY
(H2)
                                                                                    HICROPHONE ANGLES IN DEGREES
                             111
                   115
                                         90
                           96.6
96.6
97.7
96.7
96.2
95.2
102.7
107.0
   160-8
162-2
103-2
103-4
106-2
106-9
108-6
108-3
108-1
107-5
105-8
  4000
5000
6300
8000
  OASPL
PNLT
PNL
DBA
                  117.9 115.0 114.7
127.4 124.8 126.6
127.4 124.8 126.6
114.1 111.8 111.9
  BAND
TCORP
                     24 24
0.6 0.0
              HAXTHUM DASPL = MAXIMUM PNLT = MAXIMUM PNL = MAXIMUM DBA =
                                                                                         (INTEGRATED)
   TABLE A-44
                                                                            2267 M7144 JTBD-109 QUIET ENGINE I CONF A HW CONT BH HW T/P HARD FIELD
```

CONDITION = 7226
ALTITUDE = 200. FT SIDELING

MICROPHONE ANGLES IN DEGREES

1/3 ECT
FREQUENCY
(HZ1)

110

111

90

50

55.4

93.5

92.9

62

97.8

93.5

93.5

93.5

100

100.1

102.2

103.8

94.6

103.1

25.0

105.8

105.2

105.6

105.1

105.6

105.1

105.6

105.1

105.6

105.1

105.6

105.1

105.6

105.1

105.6

105.1

105.6

105.7

105.6

105.7

105.6

105.7

105.6

105.7

105.6

105.7

105.6

105.7

105.6

105.7

105.6

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

105.7

1

PNLT (INTEGRATED), = 128.01

TABL	E A-45		2	268 K 7	148 JT	18D-1Q9	OUIFT	ENGIN	E 1 CC	NF B T	RTO CC	NT DM	HW T/ P	FA	R FIEL	D				
	ENGINE NE		□ JT50 □ 37	-54 15054			TEMPE	RATURE			55.	0 F			TIH	ET TEM E OF D M. PRE	AY	•	3.00 F 1229	N. HG.
	STAND DATE		= X	7/74			HUMID	ITY		•	41.	O PER	CT.		MIN	D DIRE	CTION	#	7 8	
								VED RE		0										
							FAA P	ART 36	REFER	ENCE E	AY COR	RECTE	SPL I	N DB	- RAD	IUS =	150.	FT.		
I/3 CC FREQUENT (117)		10	20	30	40	5'0	H 00	IICROPH 70	IDNE AN	GLES 1	N DEGS 95	EF 5 100	105	116	115	120	13Ç	135	. 14D	₁ 150
50 63	76.0 73.9	76 .0 76 .8	75.5 70.2	77.2 77.5	76•9 78•2	76.3 77.0	78.6 77.9	78.5 80.3	81.1 60.7	81.1	83.5 82.7	82.0	62.5 83.9	83.7 86.5	83.8 85.4	87.5	88-1 87-5	89.7 89.4	91.5 89.6	94.6 92.1
80	75.6	76.6	78.1	75.9	76.3	77.3	76.2	77.6	78-1	79.2	79.7	79.8	81.2	82.4	82.3	83.4	33.1	85.9	86.1	89-1
100 125	74.9 75.6	75.2 74.8	73.1 72.3	73.5 73.1	73.4	74.2 72.5	74.1 74.3	75.0 73.2	73.6 74.1	75.3 75.5	73.6 76.9	76.5 79.2	76.9 79.1	70.3	77.2 81.1	60.3 84.5	79.3 87.2	79.8 87.5	82.0	84.6 91.9
160	02.3	79.9	77.5	79.0	79.9	78.5	81.7	78.4	81.9	81.5	84.0	84.6	86.6	86.4	88.9	90.6	92.3	93.5	93.6	92.4
290 250	81.2 79.6	79.6	79.1 81.0	82.5 81.7	81.6 81.1	80.5 80.2	80.5	81.3 81.5	82-6 82-7	85.8 83.3	85.4	88-8 86-3	89.2 86.4	96.4 89.1	92.1 89.0	53.2 90.6	93.4 90.8	94.4 89.9	93.1 88.6	90.9 86.1
315	79.6	77.7	70.7	79.5	79.6	78.5	81.7	81.2	81.5	62.1	81.5	83.2	83.2	84.8	80.5	88.7	90.7	89.8	88.B	86.7
400 500	80.0 80.6	77.6 79.3	80.5	80.1	79.7 79.6	78.0 79.6	79.4 80.7	78.3 80.9	8D.6	82.4	85.1 82.9	05.9 85.1	87.5 85.4	88.3 88.2	89.5 87.5	91-2 90-4	91 - 2 88 - 6	90.2 87.0	88.1 86.0	84.7 83.6
630	81.7	80.6	81.3	81.5	01.0	81.0	80.8	80.7	80.7	82.5	83.7	85.5	86.9	B8 . 6	88.7	90.9	69.4	86.2	85.4	82.3
800 1006	82.6 84.3	81.3 83.7	83.4 85.9	82.6 83.5	81.7 82.4	82.3	80.9	89.9 1.08.	80.5 80.3	82.4	83.2 83.4	84.5	86.2 86.4	86.5 86.2	88.1 84.9	89.1 EB-1	87•7 86•4	85.2 84.2	84.7	81.7 80.1
1250	33.2	82.1	E3.3	82.2	80.e	80.3	79.9	78.8	78.5	80-3	80.3	62.3	83.3	84.3	84.7	86.6	85.0	82.5	61.2	79.0
200u	94.9 86.0	82.5 65.3	84.1	82.8 83.9	81.3	78.9	77.3 78.1	77.1 77.6	76•4 77•7	78.1 79.4	78-3 79-7	79.6 81.6	86.6 82.8	81.5 82.6	82.6 83.1	84.1 82.8	81.7 81.1	79+9 79+0	78.7 77.9	76.3 75.8
2500	89.3	89.2	89.0	85.6	63.7	81.3	79.5	79.8	81.6	84.5	85.1	86.2	86.0	86.4	86.0	85.3	82.1	8.08	79.5	78.1
3150 4000	93.9 68.8	95.1 62.1	94.0	90.1 80.7	87.7 85.9	86.2 83.7	83.2 81.1	84.3 78.7	85.2 78.7	84.9 80.9	86.5	87.8 83.0	88-1 83-7	87.6 83.9	88-1 63-6	87.5 84.9	62.3 61.6	81.6 79.1	80.0 77.9	78•7 75•9
5600	90.0	89-1	96.8	00.0	07.5	84.9	82-6	81.1	80.9	81.8	81.8	83.3	82.8	83.2	82-8	84.5	80.4	78.4	76.6	35-3
6300	91.0	92.1	97.1	93.0	93.4	89.2	87.4	85.4	85.2	87.5	87.7	89.2	69.3	90.6	89.3 93.4	92.0 96.4	86.8 91.7	83.7 89.1	81.6 86.4	81 - 0 83 - 8
1800Q 1800Q	89.5 89.6	80.7 86.7	90.2 90.0	90.6 90.4	09.3 89.8	87.3 87.9	05.0 85.8	84 .4 84.9	83.6 80.5	86.9 81.6	98.1 80.9	90.7 83.8	91 ₋ 5 84-6	93•3 86•5	86.7	89.8	89.0	84.9	84.4	80-1
OASPL PRLT	160+2	100.3	101.7	99.6	98.7	76.5	95.4	94.7	95.0	96.6	97.4	99-1	99.7 113.2	160-9	101.3	103.3	102.1	101-7	101-1	101-1
PNL	114-8	115.1	115.7	113.1	112.6	109.8	108.5	167.7	108.1	109.3	110-1	111.6	112.1	112.7	113.0	115.1	112.3	110.5	109-0	107.3
QBA	100.3	100.5	101.8		98*5	95•7	94.0	43.2	93.2	95.0	95.7	97.4	98.0	98.9	⊕ % 0	100_B	98.2	96.2	94.7	92.5
BAND TCORR	19 1.6	19 2.0	1.6	22 3.6	0.8	19 1.2	27 5.6	19 1.7	19 1.7	7 0.6	23 0.8	19 1•1	19 1.1	23 0.9	19 1.1	1.0	2° 0•7	23 0.6	23 0.6	23 0.6
	HUNIKAH HUNIKAH HUNIKAH HUNIKAH	PNLT	= 11 = 11	03.26 17.29 15.74 01.86			COMPO COMPO PNLT	STTE	SI PNI EGRATEI		= 105. = 118. = 126.	32								
TABL	E A-46	;		2268	H7148	JT8D-	-109 QU	IET EN	GINE 1	CONF	B TRTE	CONT	ви ни	T/P	FAR F	TELD				

									CONDIT!		5198 200. (NAL OR		Last 1			
1/3 CCT FREQUENCY (HZ)	10	20	30	_40	50	60	. 70	IICROPI 80	HONE AI	GLES 1	IN DEGI	REES 105	110	115	120	. 136	135	. 140	150	
50	58.2	63.6	68.7	70.5	71.5	74.8	75.5	78.5	78.6	81.0	79.4	79.7	86.7	80.4	83.7	83.3	. 84.2	85.1	86-1	
63	59.0	66.3	69.0	71 - A	. 72.2	74.1	. 77.3	78.1	78.0	80.2	80.9	91-1	83.5	82.D	82.9	B2.7	83.9	83.2	83.6	
86	50.B	66.2	67.3		72.5						77.2				79.6			79.7		
100	57.3	61.2	64,9		69.4		71.9	71.6	72.8	71.1	73.9	74-1	75.2	73.8	76.5			75.6	76.0	
125	56.9	60.4	.64.5	66.3	67-7		70 -1	71-5	73.6	74.4	76.6	76.3	78-2	77-7	80.7			83+4	83-3	
160	01.9	65.6	70.4	73.5	73.7		75.3		79.0	81.5	82.0	8328	83.3	85.5 88.7	86.8 89.4	87.5 88.5		87.2 86.7	83.8 82.3	
200 250	61.5	67.1	73.9	75.2 . 74.7	75.6	78.2	78 - 2	79.9 80.0		80.B					86-B					
315	61•1 59•4	66.6	70.8	73.2	73.6			78.8					81.7		84-9				78.0	
400	50.2	68.4		73.2		75.6	75-2	77-9			83.2			86-1				81.6	76.0	
500	6.	60.5		73.1		76.9	7.7 8												74.9	
630	61	69.0	72.7	74.5	.76.1	.77-0	77-6	78.0	79.9	81.1	82.8	84.0	85.5	85+3					73.5	
800	62.	71.0	73.7	75.1	75.8	77.0	77.8	77.8				83.3		84.6	85.2	82.7	79.5	78.1	72-8	
1000	£4.	.73.3	74.5	75.8	77-3		76.9	77.6					83.0			81:-4				
1250	62,2	70.5	73.1	74-1	75.2		75.6		77.7	77,7	79.5	80.4	81.1					74.5		
1670	61.0	71.0	73.6	74-5	73.8		73.9				77-0			79.0				71.5		
2000	63.9		74.5	74.9			74.3	74+9			78-5		. 79.3		78.8			71-0	66.4	
2500	66.9	75.2	75.9		74.6		76.5	78.7		8243				82.3				72.4	68.4	
3150	71.4	79-6	80-1	80-4	80.7			82.3			84.9			84.3					6B.7	
4000	63.8	74.6	78+3	78.3	78.0				78.0		80-0						72.6		65.5	
5000 6300	62-7	75.2		79.6 85.3	79.1 83.2			-77-8			80.2 86.0			70.8	87.4	74.6		68.9 73.5	64.6	
8000	63.3 56.3	80.5 71.9	81.7	00.6	80.0		81.7				87.3				91.4			77.7		
10000	50.5	69.3		8ú.2					78-1	77.3	80.1		. 82.2				78.7			
DASPL	76. R	86.6	89-1	91.0	90-A	91.7	91-3	92. T	93.9	94.6	96.1	96-6	97.6	97.6	99-1	96.9	95.9	94.6	92.4	
PHLT	93.5	102-3	103.7	105.7	165.3	104.7	105-9	106-9	107-0	108-1	109.7	110-1	110.3	110.3	111.6	107.2	104.6	102-1	98.2	
PHL													109.4							
ABO													95.4							
BAND TCORR	10 2.0	19	19	22 0.9		22	19	19 1-7	7	23	19 1-1	19		19 1.1	23 1.0	23 0.7	23 0-7	23	23 0.7	
	•	INTEGR					-51				,,,,,									

	ENGINE MI ENGINE M		10TL =	75054			"TEMPE	RATURE		•	55,	.0 F			TIM	ET 769 16 OF 0	Y 6	E,	1314	
	STAND		e. 3 = 3570	K-314			HUHIC	ITY			42.	.O . PER	CT.		WIE	M. PRE ID DIRE ID VCLO	CTION	= 2 = = 2	¥	IN. HG. KPH
	Merc		- 0.71	,,,,,				VED RP		5					****			_	•	
							FAA F	ART 36	REFER	ENCE C	AY CO	RECTE	SPL 1	IŅ DB	- RAT	a sur	150.	FT.		
1/3 001																				
FREQUENT (HZ)	Υ (+	10	20	30	. 40	50	er M	IICROPH 78	00E AN	IGLES) 90	14 DEGI 95	10D	105	110	115	120	130	135	140	150
(III)		10	. 60	31	. 70	20	20	70	80	70	73	Tun	Œ115	110	225	120	250	200	***	
50	77.1		78.8		77.9	76.0	77.2	77-6	61.6	81.0	62-8	81.B	82.6	83.4	85.4		. BB.O	91.2	91.5	
63	78-3			76.7		76.0	77.6	78.4	81.1		81.0	80.9	83.7	83+3		84.4	88.0	86.3	91-5	
80	77.4			76-9	76-6	77.2	77.9	76.2	76.5	77.5	79.2	70.9	81.6	81.7	82-6	80.2	63.5	84.4	86.3	
100 125	75.3 76.6		77.2		74.3		73.8	73.3	73.0 74.5	74.7 75.3	74.0 76.9	74.3 77.6	76.1 79.8	75.6 79.6	77.8 81.5	77.2 83.3	79.4 86.1	80.5 88.0	83-4 89-9	
160	80.7	75.2 79.0	75,3 78.1	74.5 79.8	73.0 78.4	74.7	74.9	73.6 77.9	81-5	83.4	83-4	85.0	96-0	87.2	88.2	90.6	92.1	93-1	93.5	
200	81.1	77.5	79.7	82.2	80.9	81.0	80.8	81.7	83.4	85.6	86+5	88-1	89.9	89.4	91.6	92.4	94.3	95.1	94.0	
250	79.3	70.6	81.2	81.4	79.8	80.5	B0-9	80.7	61.9	84.3		85.9	86.5	87.1	87.9	89.4	89.8	89.7	.87-3	
315	79.1	75.2	78.9	78.5	79.3	78.5	80.4	80.6	79.7	80.7	81.7		83.3	84-1	85.9	88.9	89.0	89.8	88+B	86.3
40C	79.E	77.3	79.9		70.9	79.4	79.7	78.9	79.4	82.9	85.2	86.1	87.2	89.7	89.6	91.4	91.1		87.4	
500	90.3	70.0	80.3	60.3	79.6	79.8	79.9	81.3	80.7	82.7	83.5	BA.3	85.2	86.8	88.7	90.2	68.4		86.3	
630	61.5		81.4		81-1	91.3	70.9	80.7	80-2	83.1	83+8	85.7	87.4	88.B	90.2	91.0	8B.B	87.0	66.0	
800	82.0		83.7	82 . U	61.5	11.2	80.0	80.9	80.0	82.1	63.7		86.9	87-1	88.6	89.7	67.6	86.4	85.0	
1000	63.9		- 84-7		83.9	81.4	80 .B	E0	79.5	82.7	85.1		87-8		86.9	87-9	85-7		83.4	
1250	82.6		83.€	81.4	81.C	60-2	79.1	78-2	78.0	E0.5	81 - 0		83.3 81.2		84-9	26.9 85.2	83.9 80.9		78.6	
160P 2000	84.4 86.6		84.6 85.3		81.3	79.0 79.4	77.4 77.8	76.2 77.2	76.5 77.4	77.9 79.1	78.7		83.2		83.3	83.6	80.6	79.4	77.9	
2500	87.9		87.9	86.5	84.7	82.4	79.B	79.3	80.4	84.4	85.9		86.5		86.6	85.9	81.4	80.4	79.7	
3150	89-2		92.4			87.9	83.9	83.2	82-4	85.6	86.7			87.1	86.6	88.6	82.6		B1.0	
4000	4.93		89.1			B3.4	80.4	27.8	77-9	80.2		83.6		PALD		65.2	5, BD			
5000	90.0		E9 6		B7.€	84.8	82.9	4.03	80.2	81.1	82.4		83-9	02.9	84.0	84.6				
6300	91.3	91.4	94.5	94.5	94.2	89.2	89.3	85.1	84.2	86.7			96.4			72.5		83.0		
8000	80.6					87.3		84-1	83.0	86.1	88.3		93.0				91.1			
10000	89.2			89.4	89.8		86.2		79.B					85.7			88.1			
OASPL	90.3	99.5	100,5	99.9	99.3	96.7	95.6	94.3	94,2	96.4	97.7	99.3	100.3	100.3	102-2	103-7	_101.B	101.9	101-4	100.8
PNLT	112.6	115,9	115.6	115.4	114.4	111-9	110.5	108.6	107.7	110.3	111-1	113.4	113.9	113.0	115.5	117-1	112.4	111.3	109.8	107.7
PNL	112.6	114.2	114.3	113.7	113.2	110.3	109.2	107.0	106.6	109~2	110-4	112.3	112-0	112.2	114.4	115.9	111.7	110.6	109.2	107.0
DBA	99.1	09.7	100.4	99.6	20.0	96.1	94,4	92-8	92.1	94.8	76. Z	98.0	98.7	98.3	100-3	101,-7	97.5	96.0	45*	92.3
BAND	24	19	19	19	19	19	19	19	19	19	23	19	19	23	23	23	23	23	7	23
TCORR	r.o	1.7	1.3	1.6	1.3	1.7	1.3	1.6	1-1	1.1	0.7	1.1	1.2	0.9	1.1	1.1	0.7	0.4	Q.ć	0.7
	MUMIXAM HUMIXAM HUMIXAM HUMIXAM	PNLT PNI,	= 1	07.67 17.07 15.92			COMPI COMPI PNLT		, SI PNI FGRATEI	L .	= 105. * 117. = 126.	65								

2268 H7148 JT80-109 QUIET ENGINE 1 CONF B TRTD CONT SM HM T/P

TABLE A-48

TABLE A-47

2268 M7148 JTED-109 QUIFT ENGINE 1 CONF B TRTO CONT BH HAT T/P FAR FIEL

CONDITION = 5200
ALTITUDE = 200. FT SIDELINE

1/3 OCT FREQUENCY								ICROPH	INNE AN	16: E\$ 1	n nece	eee							
(HZ)	.10	20 .	36	_ 40	50.	69	70	.00			100	105	110	115	120	130	135	140	150
50	57.5	66.9	68.0	71.5	71.2	73.4	24.4	79.0	78-5	80-3	70.2	80.0	80.4	82 ₄ 0	82.9	83.2	· 85.7	85.1	86.3
63	58.7	67.9	68.2	71.9	71.2	73.8	75.4	78.5		78.5			80.3		. 80.6	83.2	82.8	85.1	83.7
ão	60.1	67.4	66.3	70.2	72.4	74.1	73.2	73.7		76.7		78-8	78.7	79.2	76.4	78.7	78.9	79.9	79.D
100	58.0	65.3	64.7	67.9	68.7	70-0	70-2	71.2		71.5		73.3	72.5	74.4	73.4	74.6	75.0	77.0	75.8
125	57.3	69.4		66.6	69.9	71.1	70.5	72.9		74.4		77.0	76.5	78.1	79.5	81.3		83.5	82-1
160	61.0	66.2	71.2	72.0		75.4	74.8	78.9		80.9	62.4	83.2	B4-1	B4 8	86.8	87.3	87.6	87.1	83.3
200	59.4	67.7	73.6	74.5	76.1	77.0	78-6	80.7				87.1	86.3	88.2	88.6	89-4	89.5	87.6	82.2
250	60.7	69.2	72.8	73.4	75.6	77-1	77.6	79-2		81.4	83.2		84.0			84.9	84.1	80.9	77-4
315	59.9	66.8	69.8	72.9	73.6	74.6	77.5	77.0		79-1	80.2	B0.5	81.0	82.5	85.1	54.1	84.2	82.4	77.6
400	58.9	67.8	71.1	72.4	74.5	75.9	75.8	76.7	90.4	82.6	83.4			86.2	87.6		84.9	80.9	76-2
500	60.4	68.1	71.0	73.1	74.9	76.1	78.2	78.0	79.7	30.9	81.6		83,7			B3.5	52.0	79.8	75.2
630	62.1	69.1	72-1	74.6	76.4	76.1	77.6	77.5	80.5	BI.2	83.0	84.5	85.7	86.8		63.9		79.5	73.4
800	62.3	71-3	73.1	74.9	76.2	- 76 -1	77.B	77.3		81.7	82-1	84.0			85.8	82.6		78.4	73.3
1000	63,5	. 72-1	74.5	77.3	76.4	76.9	. 77-4	76.B	80.1	82.5	82-1	82.9		03.4		60.7		76.8	71.5
1250	61.7	71.0	72.3	74.3	75.1	75.2	75+0	75.2		78.4	80+2	b. 4	80-1		83.0	78.8		74-7	69 -7
1600	62.2	71.5	73.2	74.5	73.9	73.4	73.0	73.7	75.3	76.0		78.2				75.8		71.8	67-0
2000	63.8	71.9	73.5	75.₺	74.2	73.8	73.9	74.6	76.4		79.9	80.2		79.7		74-B		71-0	66-1
250C	65.7	74.1	76. B	77.6	77.1	75.7	74.0	77.5	81.7		84.7					76+1		72.6	67+B
3150	70-2	78.0	81.9	82.0	BZ-4	79.7	79.8	79.5	82.B	83.9	86.I		53-7		84.4	77.1		73.7	
4000	63.4	74.0	77.1	78-8	77.7	76.0	74.3	74.9		79.I		81-1		81.2		74+8			
5000	62-1	74.2	77.3	80.1	79.0	78-5	77.0	77.1	76.2	79.4	80.4	80.6	79.3	80-0		73.8		68-9	64.0
OCEA	62.0	77.9		86.1		84.7	814			E5.0		87.0			B7.9		76.6	74-0	
9000	55.2		. 77.4			2,0 - 2	60.1									64.0			71.5
10056	40.2	60.7	75• 8	B0.2	80_8	8.08	80.3	76-1	77.5	77.8	80.4	82.1	81.4	83.5	85.5	81.¢	78.5	74.9	46.2
DASPL	74.2	85.6	89.3	91-5	91.0	71-2	90.9	91.4	93.7	94.9	76.3	97.Ż	96.9	. 98.4	99.4	96.7	96.2	94.9	92.1
PNLT	92.4	101-1	105.C	106.7	106-4	106-1	105.1	104-7	107-5	196.3	110.4	11B	109.5	111-5	112.6	106.7	104 B	102-5	98. D
PNL	90.7	99.8	103-4	105.5	104.7	134.8	103.6	103.7	106.4	107.6	109.3	1ú9-6	108.7	110-4	111.4	106.0	104-1	101.9	97.3
DBA	76.0	85.4	. 89-1	91.1	90-3	90.0	89.3	89.1	91.9	93.3	95.0	. 95.5	94.8	96.4	97.2	92-1	90.5	87.9	82.8
EAND	19	19	19	19	19	10	19	19	19	23	19	. 19	23 -		23	23	23	23	23_
TCORP	1.7		1.7	1.3	1.7	1.3	1.6	1-1	1.1	0.8	1-1	1.2	0.9	1.1	1.2	_0.7	0.7	€,6	6.7
	•																		

PNLT (IN:ECRATED) = 125.65

TAB	LE A-4	9	2	268 M7	7146 J7	80-109	QUIEY	ENGIN	F 1 C	ONF B	TRTD C	.ONT 6M	I KW T	/P F#	R FIEL	.D				
	ENGINE MO		= JTb(□ 37	30 15054			TEMPE	RATURE		-	45.	.0 F			TIH	ET TEN IE OF C	AY		4-00 f 745	: IN. HG.
	STAND			-314			HUHID	YTI			80.	O PER	CT.		MIN	D DIRE	CTION	=======================================	HE	
	DATE		= 4.57	.1714				VED RP		=					***	ID VELL		•	• •	NF11
							FAA F	ART 36	REFER	ENCE O	DAY COR	IRE CT EO	SPL 1	N DB	- RAD	ius =	150.	FT.		
1/3 00									entir ee		IN DEGR									
FREQUEN		1^	20	30	40	50	60	70	80.	90 90	95	100	105	110	115	120	130	1.35	140	150
50	75.5	75.4	75.9	76.1	77.1	77-7	78.7	79.6	80.8	82.0	81.9	83.4	84.0	85.3	85.6	86.3	88.5	90.6	92.6	94.9
63	74.9	75.9	78.4	77.0	78.5	77.2	78-6	79.5	0.03	81.0	81.7	82.9	84.0	84.8	85-1	85.3	87.3	69.2	91.1	93.0
60	74.7	76.2	76.9	76.2	75.8	76.6	76.0	77.1	77.5	78.5	78.8	86.1	86.8	81.3	81.7	81.6	83.3	85.2	86.3	88.3
100	74.5	73.6	73.2	72.5	73.1	73.3	73.1	73.1	72.6	73.6	73.9	74.7	75.5	75.8	77-1	77.7	60.4	81.6	83.4	85-6
125	76.2	75.4	73.5	75.1	74.9	75.3	75.1	74.6	75.6	77.2	78.9	79.1	81.0	81.4	63.3	84.6	87.7	88.4	90-2	
160	02-4	80.0	77.3	80-4	80.6	78.9	81.6	80.1	82.4	84.7	85.6	85.9	87-4	88-2	89-5	90.9 92.7	92.7	93.1 94.0	93.8 93.6	
200	61.1	76.9	79.3	02.8 81.2	81.7	82.2	81.6 80.8	82.3 81.6	84.0 82.7	85.8 83.7	87-2 84-2	85.3	89.8 86.7	90.8 87.7	92.3 88.7	69.0	90.1	89.9	88.5	
250 315	79.7 79.7	78.9 78.9	79.6 79.5	79.0	80.7 79.1	80.8 78.7	80-4	80.7	80.9	80.9	81.9	82.4	83.7	64-9	86.6	88.6	89.8	B9-4	E9.2	
400	80-7	78.4	70.8	80.0	Rú 3	79.7	70.4	79.7	80.7	83.6	85.0	86-2	87.9	89 8	90.2	70.7	70.B	89.4	87.4	84.5
500	01.0	83.8	86.5	80.4	86.3	B0.0	U0 • 3	81.2	81.3	81.7	B2.7	.83.7	85.5	87.0	88.4	89.6	38.9	87.9	86.B	
630	80.9	81-1	61.6	81.0	80-9	81.1	80.2	60-4	80.7	83.0	83.9	85.4	87.1	88.6	89.6	89.7	88.5	86.6	65+3	
800	82.2	82.0	82.6	82.4	81.5	81.4	80.6	80.6	80.6	82.8	63.6	65.3	87+1	88.2	68.7	89.0	87.4	86, 1	84.5	
1000	₽4.6	82.8	63.5	83.8	82.2	B1.8	81-1	40-4	8D.6	82.8	83.1	85.9	7 to 12	86.1	86.5	86 · B	.85.0	84.3	83.0	
1250	62.7	02.1	82.3	81.8	86.6	80.4	79.6	78.6	76.7	80.2	80.9	81.5	44,0	83.9	84.6	85.3	83.4	82.4	81.1	70-7
1600	P4.3	03-1	83.4	82.3	80.7	70.9	77.7	76.7	76.6	77.8	78.7	79-5	31.1	82-1	82.7	83.0	61.0	80-1	78.8	
2000	P6+4	R6.4	84.9	83.7	81.3	79.3	78.2	77.5	77.9	79,6	80.7	81.5	82+8	82.8	83.1	81.7	80-1	79.2 81.3	78.1 80.0	76.1 78.4
2500	07.9	90.0	89.0	88.6	86.3	83.3	82.2	81.1	82.0	85.2 86.1	86+4 87+1	86.7 86.0	86.7	86.8 87.9	86.4 88.4	86.7	81.7 82.9	82.2	81.0	
315D 4000	89.7	93.8	94.4 89.1	93.4 88.6	91.0 86.2	87.6 83.8	86.5 81.5	84.1 79.2	85.3 78.8	81.1	62.4	82.9	84.4	84.1	84.5	83.5	80.7	79.6		75.9
5000	89.5 89.5	70.2	94.2	89.3	67.7	86. C	83.0	82.0	81.7	82.9	83.2	83.6	84.6	84.0	84.4	83.4	80.5	79.6	77.9	
6300	97.5	03.1	94.4	94.7	93.9	91.4	88.4	86.5	86.2	88.9	89.5	90.2	91.2	91.2	91.5	90.7	87.1	85.7	83.6	
8170	90-3	90.1	93.7	91.3	90.6	89.2	86.8	85.7	85.3	88-1	89.4	91.1	93.4	93.7	96.5	95.7	92.5	90.7		
10000	29.9	90.1	98.2	90.8	70 1	89-1	87.1	85.3	82.3	83.1	82.6	84.3	86.4	86.2	86.8	88-1	88-2	87.5	84.9	80.7
DASPL	99.7	100.6	101.1	100.6	99.5	97.8	96.2	95.2	95.4	97.3	98.2	99.2	100-7	101.2	102.5	102.5	102.0	101.8	101.7	101.3
PNLT	113.8	116.1	116.6	116.2	114.B	112.6	111.0	109.4	110-1	110.2	111,5	112.9	114.3	114.3	115,8	115.3	112.9	112.1	110.5	108.5
PNL	113.1	114.8	115.2	114.0	113.2	111.3	109.4	108.0	108.5	110.2	111-0	111.8	113.1	113.3	114.7	114.2	112.2	111.3	102•b	10740
V 9.7	oo e	179.7	161.2	130.7	99.2	97.0	95.2	93.7	8.EP	95.8	96.7	97.6	9.9.	99.2	100.4	99.9	97.8	96.8	95.2	92.9
BAND TCDRR	.6 0.6	19 1.3	19 1.7	19 1.6	19 1.6	19 1.4	19 1.6	19 1.3	19 1.6	24 0.0	23 0.6	19 1.1	19 1.2	23 1.6	23 1.1	23 1.1	23 0.8	23	23 Q.6	23 0.7
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***	•••	•••	•••	•••	**					•••									

2268 H7146 JT8D-109 QUIET ENGINE 1 CONF B TRTD CONT BM HW T/P FAR FIELD

CONDITION = 5210 .

ALTITUDE = 200. FT SIDELINE

1/3 DCT FREGUENCY								ITCRNPI	IONE AN	ISLES I	N DEGE	EES.							
. CHZ1	16	20	36	40	50	60	70	80		95	100		.110	115	120	130.	135	140	150
. 4				17			••												
50	57.6	64.0	68.2	70.7	72.9	74.9	76.6	78.2	79.5	79.4	60.8	81.2	82.3	82-2	82+5	53.7	85.1	46.2	86.4
63	58-1	66.5	68.5	72-1	72.4	74.8		77.4			80.3	81.2	A1.8	81.7	:B1.5	82.5	83.7	-04-T	24.5
80	58.4	65.0	67.6	69.4	71 B	73.0	74.1	74.9	76.0	76.3	77.5	78.0	78.3	78.3	· 78.Q	78.5	79.7	79.9	79.7
100	55.7	61.4	63.9	66.7	68.5	69-3	70.0	70.0	71.1	71.4	72.1		72-7		73-9	75.6	76-1	77.0	77.0
125	57.5	61.6	66.5	68.5	70.5	71,3	71.5	73.0		76.4	76.5	78.2	78.3	79.9	80.8	82.9	82.9	83.8	82-9
160	62.0	65.4	71.6	74.2	74.1	77.0	77.0	79.8			83.3		85.I	86 - 1	87.1	87.9	87.6	87.4	84.1
200	60.B	67.3	74.2	75.3	77-3	77.8	79.2	81.3	83.3	84.7	85.3	87.0	87.7	88.9		89-3	88.4	87.2	82.5
_25Q	60.8	67.6	72.6	74.3	75.9	77.0	78.5	80.0			82.6			85.3		85.2		82-1	
315	60.6	67.4	70.3	72.7	73.8	76.6	77.6		78.4		79.7		B1+8		84.8	849	83.8	02+B	77.8
490	60.0	67.7	71.3	73.8	74.8	75.6					83.5			86.B		85-9	83.8	80.9	75.8
50Q	62.	68.3	71.7	73.8	75.1	76.5	78.1		79.2		81.0	82.6	83.9		. 85.8	84-0	82.3	80.3	75.4
63.9	62.3	68.7	72.2	74-4	76.2		77-3							86.2	85.9	83.6	80.9	78.8	73.5
800	62.9	70.2	73-5	75.2	76.4		77.5	77.9		81.2	82.č			85.2	85.1	82.4	80.4		72.7
1000.	63.3	70.7	74.8	75.6	76.8	77.2	77.2	77.9				. 82.6			82.9	80-0		76.4.	
1250	62-2	69.5	72.7		75.3		75.4					80.1						74.4	69.6
1600	62.5	70.3	73.1	73.9	73.B	73.7	73.5	73.0			76.7			79-1		75.9	74.2		47.3
2000	65.0	71.5	74.3		74.1	74.2	. 74.2	75.1					79.5		. 77•7		73.2		66.7
2500	67.7	76-0	78.9	79.2	78.0				82.5				83.5				75.2		
3150	70-2	90-3	B3.4			82.3			B3+3				84.5			77.4	75.9	73.7	
4000	¢4.5	74.0	78,2	78.6	70_1			. 75.8		77-5		B1.2		80.6	79-1		73-1		65.5
5000	63.8	74.6	78.6		20 <u>-</u> 2		78.4			80-2				80.4		. 74.7			65.5
6300	64.3	78.3	83.4		85.4	83.8	. B2.8	83.0	85.8	86.4	87.D	87.B	87.5		86-1			75.5	70-7
8000	57.5			. Bl.9					84.9	B6-1	87.7	89.8	. 89•T	92-1	90.7	85 - 5	83.2	79.2	72.8
10000	51.9	69.5	77.2	80.5	82.0	81.7	51.0	78.6	79.6	79.0	80.6	02.4	81.9	84.0	82.7	81.1	79.3	15.3	67-1
DASPL	76.8	86.0	90.2	91.8	92.0	91.9	1.8	92.5	94.5	95.4	96+2	97-5	97.8	.98.7	9B ₌ 3	94.9	96.0	95.1	92.6
PNLT	92.6	102-4	106-1	107-1	106-9	106-7	8	107.1	107.3	108.6	109-B	111-1	110.7	111.8	110.9	107-2	105.5	102-9	98.7
PNL	91.2	100.7	104.5	105.5	105.5	105.2	1.4.5	105.5	107.3	108-0	108.8	109.9	109.6	110.7	109-7	106,4	104.7	102.3	78.0
DBA	76.6	86-1	90.1	91.4	91.2	90.8	70.2	90.8	92.9	93.8	94.6	95.B	95.7	76,5	95.6	92.3	20.5	88-1	8315
BARD	19	19	19	19	19	19	19	19	24	23	19	19	23	23		23	23		23
TCORR	1.4	1.7	12.6						0.0	0.6			2.0	1.1	1.1	0.8	0.7	0.7	0.7

PNLT (INTEGRATED) = 125.71

2268 H7146 JT8D-109 QUIET ENGINE 1 CONF 8 TRTD CONT 8H HH T/P FAR FIELD

	INF HODFL INF NUMBER		36, -00. 975054		TEMPERATURE	•	46.0 F		TIME	TEMP. OF DAY Press		#	39,00 · F 807 29.81 · IN.	ur
STAI DATI			X-314 /C7/74		ЧТ ЕДЕНИН		79.0 PER.	ct.	MIND	DIRECT VELCES	FION	=	NE 8 HPH	no.
					OBSERVED RPH CORRECTED RPH	=	5139 5240							
					FAA PART 36 REFERENCE	E DAY	CORRECTED	SPL IN DB	- RADII	JS = 1	150• FT	•		
OCT OUFNCY		•		••	 HICROPHONE ANGLES	S IN :	DEGREES					~=		

FREQUENCY								17585101	ITME A	(G) ES 1	N DEGR	FFC									
(HZ)	7	10	20	30	40	50	.60	70	BO	90	95	100	105	110	115	120	130.	135.	140	.150	
******	•							• •										*			
50	76.8	75.9	77.5	77.0	78.5	78.5	79.8	80.5	81.4	62 ⋅3	83.4	83.5	E4.7	85-3	86.3	86.2	. 88.3	90.7	92.4	95.2	
63	75.0	75.9	70.7	77.0	79.0	77.6	79.2	80.0	80.6	81.3	82.6	83.0	84.3	84.8	85.6	85.3	87.3	29.4	90.9	-93.0	
69	75.4	76.B	77.6	76.5	76.6	77.3	77.9	77.4	78.4	79.3	80.0	80.2	82.1		82.0	02.1		85.1		87-6	
195	75.0	74.3	74.4	73.1	74.4	73.9	74.6	74.0	74.7	74.2	75.4	75.0	76.A		77.B	76-1	BO-1	81.7	83.3		
125	76.5		73.9	74-6	74.9	75.3		74.9	75.6	76.7			80-Z		82.9	84.9		- 88•9	90.0	91.9	
160	B2-5	79.7	77.6	79.8	80-5			79.9				86.0	87.3	87.8	89.3	70.9	92,2	93.2	938		
200	81.0		79.2	82.9				82.4	83.6		87.1		89.6		92.0	92.8		94.3	9313		
25Q	78.6		79.8						82.9		B4-6	85-5			86-8		90.0		E188		
315	79.5		79.3		79.5	78.9		§1.2			61.7			84.4		88.4		89.7	89.0		
490	80.2				80.2			79.8			85.3					91+0			87.2		
500	3.08				80-2			B1-4		82-2				87.0		89.B	88.8	88-2	86 · B		
630		81.2			81-2			60.5			84.D			88.1						82.5 82.0	
800		A2+1			82 C			80-8	86.0		83.7		86.9 . 85.6			87.1				.80-5	
1000. 1250	82.9	83.4	83.4 82.3			81.7 80.5		80.5 78.8	80.7 78.9		83.4 81.1		83.ŭ				63.5			78.9	
1650	84.4		43-3					77.1			78.8						81.0			76.8	
2000	86.6			83.6	81.6			77.7		79.6									78.2		
2500	88.5		89.9		86.8			80.5			86.5		86.7							78.3	
3150	70 B		94.7		91.6			83.5						88.0					81.0		
4000	88-4		87.1	88.5	86.7			79.2		60 B			84.2					79.1		76.1	
5000	89.5		95-1	89.4		85.8		81.8		82.8		64.2							77.B		
6370	92.5							86.6			89+2				91-1				85.3		
Boan	90.6				90.5			84.7			88.9			93.6					87.6	84.8	
10000	69.5			90.4			86.5				81.9		85.7				86.0	84.9	84.6	80.6	
					•																
DASPL	99.8	100.5	101.1	100,7	99.7	97.7	96.3	95.1	95.4	97.2	98.1	99.5	100.5	101.2	102-3	103.0	101.6	101.7	101.5	101-4	
PNLT	114.0	110-3	117.1	115.9	114-9	112.0	111.1	109.2	109.5	110-1	11174	113.3	114.1	114.3	115.4	116.1	112.1	111.2	110.3	10B-5	
PNL	113.4	114.9	115.3	114-4	113.3	111.3	109-6	108±0	108.1	110-1	110.9	112.3	112.9	113.3	114-4	115.0	111.4	110.5	109.7	107.0	
DBA	99.7	100-6	161.2	100.5	99.3	97.1	95.2	93.5	93.6	95.6	96.6	98.1	98.B	. 99•3	100:1	100.7	97.3	96.3	95.1	92.9	٠
BAND	. 6	19	19	19	19	19	19	19	19	24	23	19	19	23	23	.23	23	23	. 23	23	
TCORR	0.6	1.5	1.7	1.4	1.6	1.6	1.5		1.4	0.0	4.0	1.1		0.9	1.1		0.5	0.7	0.6	0.7	
, prive	0.0		401	4.07	100	1.0	***	406		0.0	Vap		404	463	-41		040				

HAXIMUM DASPL = 103.00 HAXIMUM PNLT = 117.06 HAXIMUM PNL = 115.32 COMPOSITE SPL = 105.52 COMPOSITE PHL = 117.95

TABLE A-52

2268 H7146 JT80-109 QUIET ENGINE 1 CONF B TRTD CONT BH HH T/P FAR FIELD

CONDITION = 5240.
ALTITUDE = 200. FT SIDELINE

1/3 001																				
FREQUENC			•						ITCROPI			IN DEGI	REES							
(HZ)	1	ıo	.20	30	40	50	00	70	.80	90	75	100	105	. 110.	115	. 120.	130	135	140	150
56	56	1.1	65.7	68.5	72.1	73.7	76.0	77.5	78.8	79.8	811.9	80.9	81.9	82.3	82.9	62-4	83.5	8542	86-0	86.7
63	58	1.	66-8	68.5	72.4	72.8						80-4							84.5	84.5
86	59	. 0	65.7	67.9	70.2		74-1	74.4				77-6					78.6	79.6	80.0	79.2
100	56	4.6	62.5	64.5	. 68.0			70.9	72.1	71.7				73.3		74.3	75 3	76.2	76.9	77.9
125	53	7.7	62.0	66.2	6B+5	70.5	71.6	71.8	73.0			76.4				BLL			83.6	83.3
160	61	L. 7	65-7	71.2				76.8				83.4				87.1		87.7	87.4	84-1
200	63	.0	67.2	74.3	75.1	77.0			80.9			85.4								82.2
250	.60	8.0	67.8	73.1	75.3	75.8	77.2	78.3				62.8							81.9	78.0
315	60	-6	67.2						75.8	78.6		79.7		81.3		84.6		E1	02.6	77.9
400	60	٥.,٥	67.8	71.6	73.7	74.8	75.7			81.3		83.7				87-2		84.0	80.7	75.9
500.	61	8	68.2	71.6	73.7	75.0		.78.3				81_1				86.0			· 80.2	33.2
630	6	2.4	68.7	72-4		76.3						82.8				86.2		81.0	79.0	73.7
800	63	3-0	70.3	73.6	75.4	76.5	77-1			80.0	31.1	82.6	84.0	85.0	85.1	25.1	82.2	80.5	78-1	73.1
1000	6	4.9	70.8	7.4.8	75.7						80 B	81.7	82-7	82.8	83.2	83.2	BG . 0	-78-8	75.6	
1250	62	2.2	69.5	72.9	.74.1	75.4	76-1	75.6	75.1	77.7	78.5	79.2	1 BC-1	80.7	81.3	B1.7	78.4	70.5	74.4	
1600	5	. 5	70.2	73.3	74.3	73.9	74.1			75,2						79-3		74.4	72.1	67.6
2000	64	. 7	71.6	.75.4	7449		-74-4		35.4			79.3	79.9	79.8	79.5	78.2	74.9.		71.3	67.0
2500	67	1.6	76.1	-78.2	79.7		78-1		79.0		83.7			83.8			76.2		72.8	68.6
3150	70	5	80.3	82.5	84.3	82.9	82-1		81.5		84.2						77.4			
4000	64	i-2	74.0	70-1	77.1	78.0		75.7				80.6					74.5		70.3	65.7
5000	63	6.6					79.6			79.9		01.1			£0.3		73-9		70-1	65.6
6300	63	8.6	76-1					82.9		85.6									75.2	
8000	51	.2	72.1	. 78.8	81.8	82.3	81.4	_ BO. T	81.4	24.6	85.6	88.3	29.2	89.6	91.4	91.9	23.0	81.2	73.9	72.6
10600	51		69.1	75.8	- 80 a 5	81.6	61.1	79.7	78-2	79.0	78.3	31-1	-81-7	82.1	83.4	84.2	73.9	74.7	75.0	47.D
DASPL	76	8.6	86.0	90.1	91.9	92.0	92.0	71.6	92-5	95-5	95.4	96.6	97.4	97.9	98.5	98.8	2.40	96-0	94.9	07.7
PNLT	92		102.6	105.5	107-5	107.1	106.7	105.7	106.5	107.2	108.5	110.3	110.9	110.7	111.5	111.6	106-5	104.7	102.8	98.7
PNL	91	L.3	100.8	104-1	105.9	105.5	105.2	104.5	105.2	107.2	108.0	109.3	109.8	109.8	110.4	110-5	105-6	104.0	102.1	OR D
DBA	70	6.6	86,2	87,0	Ψ1 , 6	91.3	70.8	89.9	90.6	92.7	93.7	95.1	95.6	95.6	96.2	76.3	91.9	90.2	28-0	83.3
BAND		5	19	19	19	19.1	19	19	19	24	23	19	19	23	23	23	.23	234	23	23
TCCRR	1	5	1.8	1.5	L.o	1.6	1,5	1-2	1.4		0.6		1.2	0.9			0.8	0.7	0.7	0.7
100								1.												

PNLT (INTEGRATED) # 125.70

2260 H7149 JTDD-109 QUIET FNTINE 1 CONF 8 TRTD CONT 8H HW T/P FAR FIELD

FRIGINF MCDFL = JT60 -54
ENGINE NUMBER = 375054

STAND = X-314

DATE = G5/07/74

FRIGINF MCDFL = JT60 -54

TEMPERATURE = 54.0 F

TIME OF DAY
1460
BARM. PRESSURE
1460
BARM. PRESSURE
129.80 IN. HG.
NIND VELOCITY = 10 MPH

OBSERVED RPM = 6354 CGRRECTED RPM = 6397

FAA PART 36 REFERENCE DAY FORRECTED SPL IN DB. - RADIUS = 150. FT.

1/3 CCT FREQUENCY							N	I CROPH	ONE AN	GLES 1	N DEGR	ees								
(HZ)	. 5	10	. 20	30	40	50	60	70	80	90	95	100	1.05	110	115	123	130	135	140	150
							86.0	88.4	86.3	UR.4	87.6	89.3	89.6	90.6	93.2	92.4	. 97.6	98.4	101.6	104.6
50	81.4	80-1	81.6	63.1	84.4	83.1		26.7	87.2	89-1	66.5		90-1	92.1	92.7	94.6	96.4		101.6	
63	81.0		84.2	63.8	84.3	84.4	85.2 85.3	84.8	67.3	86.9		87.0	89.3	89.9	89.6	90.3	93.4	93.9	98.9	100-1
8 C	80.5	82.2	84.7	82.5	84-5	04.1		82.7	82.2	83.0	84+8	84.5	85.8	86.5	87.4	87.5	90.5	92.4	96.1	98-1
100	82.0	83.4	82.1	81.0	91-3	82-1	81.6		82.3	04.7	86-7	86.6	87.0	89.0	90.9	92.8		98.5	102.2	10546
125	03.7	82.2	81.2	. 82.6	81.3	82.6	81.6	61.9	87.6	91.5	91.8	92.8	94.2	94.2	96.9	97.6	100.6			
160	86.3	04.5	85.1	86.5	85.9	85.5	86.4	86+4			94.6	96.3	98.2	0R-6		101.2				
200	85.6	84-8	87.9	89.6	88.2	87.9	86.8	89.4	91.3	94.4	94.9	95.9		98.5	09.2	100.2	100.7	100.5	99.6	
250	B4-3	85.7	86*3	89.3	89+1	89-1	89.2	90.6	91.8	93.9 90.1	91.4	91.2	93.6	94-2		97.3				97.9
315	86.1	05.3	B6+1	86.2	67.6	87.2	87.8	89-0	89.0		93.2	94.6	96.9	97.8		100.3	98.5	99-1	99.1	76.6
400	66.9	64.6	86.4	87.4	86.9	86.8	87-7	88.2	89.4 89.4	93.3	91.5	92.3	95.6	96.8	97.4		97.5	98.5	98.4	96.5
500	86.2	84.8	£4.8	86.2	86.4	66.6	87.1	88.6	87.6	90.6	91.9	93.0	95.1	96.6	97.7		96.5	97-1	95.8	
63D	83.1	83.3	85.0	85.5	86.7	86.9	86.7	87.0		89-9	87.9	91.8	93.9	93.9	96.2	96.6	95.5	95.7	94.7	
960	82 -1	83.7	84.2	85.2	85.9	85.1	86.9	87.3	87.5		89-1	89.7	92.0		. 94-1	94.4	93.9	93.B	92.4	89-1
1000	8,08	81.1	82.5	83.8	05.1	E4.2	85.5	05-8	87-4	88.7 87.7	88.4	89.1	90.5	91.2	91.7	92.4	91.3	92.1	90.3	
1250	78.9	79.6	61.3	82.3	83.6	83-5	83.8	84.4	85.9	P6-4	8647	87-4	89-7	90.4	91.1	91.5	8.60	90.3	88.5	85.6
1600	78.9	80.2	60.6	01.0	02.4	82.2	83.3	04-0	84-4	86.1	86.4	86.7		89.7	90.3	90-1	88.9	89.2	87.7	84.5
Sode	81.7	E2.3	B4.5	82.0	84, ú	B2+9	83.3	84.2	84.6		67.3	88.0	B9-8	90.6	70-2	89.9	68.0	88.5		84.6
2500	88.9	90.9	86.6	83.6	84.7	83.5	83.8	85-1	85.9	87.6	91.4	91.7		94.8	92.7	91.2	68.3	88.3		
3150	92.1	95.8	94.5	91.8	97.2	94.7	89.7	88.2	89.6	92.2	94.1	94.7		97.0	94.8	93.2	89-7	89.2		
. 4000	94.5		. 96.6		101-4	98.6	93.1	90-2	91.0	93-7	91 - B	72.9	95.6	95.3	93.9	92.7	88.8	88.1	85.8	
5000	86.3	87-1	07.3	86.9	86.2	86.0	86-1	85.4	87.5	19.9	89.4	89.8	93.3	93.5	91.9	91.1	87.2	86.8		
6300	88.2	29.6	60.7	88.6	89.0	88.5	87.5	86-4	87.7 87.5	90.7	90.7	91-5	74.6		93.3	92.3				83.7
8000	69.1					93.3	89-6	89-8	84.3	87-4		89.4		74.2	94-1		90.1			83.0
10000	87.3	88.3				88.4	65.6	84.5												
DASPL	100-7	102-2	102-0	101.5	104.7	103.1	101.0	101.0	101.8	104.2	104.5	105.5	107.7	108.3	109-1	109.6	110.1	110.8	112.2	113.1
PNLT																				
PRIL																				
AEO	100-0	102.2	101.6	100-4	104-8	102.7	99.4	98.7	99.5	102.0	102.2	103-4	105.3	105.9	145.8	105.8	104.5	104-4	104-2	102.5
42W	10040	10140		2004																5
BAND	20	20	20	20	20	20	20	20	24	24	24	24	24	24	24	2	24	24 0.0	24 0.0	_
TCOPR	1.8	1.7	2.2	2,1	3.7	3.2	1.9	1.1	0.0	0.0	0.0	0.0	0.0	ũ - 0	5.0	0.5	0.0	0.0	ų ėu	J = 0

TABLE A-54

2268 H7149 JTBD-109 QUIET ENTINE 1 CONF 8 TRTD CONT BH HN T/P FAR FIELD

COMPLITION = 6397

ALTITUDE = 200. FT SIDELINE

1/3 PC7 FRFQUENCY							м	TERNE	ense as	GLES 1	IN DEGR	tees							
(H7)	19	76	30	40	50	60.	70	80	90	95	100 -		110	115	120	130	1,35	140	150
50	62-3	69.7	74.6	78.0	78.3	82.2	85.4	83.7	85.9	85-1	86.7	86.8	87.6	89.8	88.6		92.9		
F 6	63.4	72.3	75.3	77.2	79.6	81.4	83.7	. B4+6	86.6	86.0			89-1		90.8		93-1	95.2	
80	64.4	72.8	73.9	78 . 1	79.3	81.5	81.8	84.7	84.4	B4.5	84.4		86.9	86.2,	86.5	88.6	884,4	92.5	91.5
106	65.5	70.2	72.4	74.9	77.3	77.8	79.6	79.6	BQ.5	82.3	81.9	83.0	B3.4	84.0	83.7	85.7	60.9	89.7	89.5
125	64.3	69.3	7,4 . 0	74.9	77.6	78.0	78.6	79+7		84.2	84.0		85.9	87.5	89.0	91.8	93.0	95-8	
160	66.5	73.2	77.9	79.5	80.7	82.6	83.3	85.0		89-3	90-2	91.4	91.1	93.5	94.0	96.0	96.6	98.6	
200	66.7	75.9	81-0	81.8	E3.0	85.0	86.3	88.6						97-5	97.4	98.3	98.2	97.9	95.2
250	67.6	76.7	60.7	82.7	84.2		87.5	89.1	91.4				95.4	95.8	96.4	95.6	94.9	93-2	
315	67.0	74.0	77. 9	01,2	82,3	84.0	85.9	86.3	87.6		88.5	90-8		91.9	93.5	94.6	94.4	93.9	69.2
400	10.2	74.3	70.7	80.4	81.9	83-9	85.I	86.7		90.6	91.9	9441	94. T		96.5	93.6	93.5	92.6	
5úC	66.2	77.6	77.5	79.9	81.7		85.5	86,7	88-2			92.7			94.8	92.6	92.9	91.9	
630	64.5	72.7	76.7	80.2	82.0	82.9	83.9	84.9	98-0				93.5	74.3	94.2	91.6	91.4	87+3	
800	64.6	71.8	76.3	79.3		. 83-0	84-2	84.8						92.7	92.7		90.0	80.1	82.5
1000	61.6		74.8		. 79.2		82.6	84,7					89.5		90.5	88.9	86.1		
1250	50.7		73.2	77.1	78.4	79.9	81.2	83.1		85.8					88.5	86.2	86.3	83.6	
1600	50.6	67.5	72.4		77.1	79.3	8.08	81.6								84.7	E4.4	81.7	
2000	61.+9		72.6	77.1	77.7	79.3	80.9		53.4							83.7	83.2		
2500	68.€	72.8	73.9		78.2	79-7	81.8			84.5			87.3				82.4		
3150	72.2		67.6		B9.2				89.4				91.4				82.0	79.6	
4000		. Al -5		93.8	92.9								93.5			84.0	82.7		
5000	60.7		74.2		. 80*5							92.3				83.0	81-4 79-8	78.1 76.2	
0.0E9		72.1	77.3		62.5	82.9	82+7	84-5	80.0	86.3	86.6	89.9							71.5
REOS		72-0				24.6	B⊅•B	84.4	87.5	6742	RReT	AT**	70.0	90.7	0103	DIOL			69.4
10000	50+1	66.6	75.1	78.8	81.3	80.2	80,2	80.6	63.9	83.3	85.7	90-0	44.4	87.3	0071	63.¢	0054	79.7	67.4
DASPL	79.6	88.0	91.6	97.3	97.6	96.9	97,8	99-0	101-5	101.8	102.7	104.7	105.1	165.5	105.7	105.2	105.2	105-8	104-5
PNLT	94.1	104.3	107-6	116-1	115.6	112.5	111.5	111.6	114.2	114.5	115.1	116.9	117.3	116.3	116.0	112+B	112.4	111.5	109-0
PNL	93.1	102-1	105.5	112.4	112.4	110.6	110.3	111.6	114.2	114.5	115.1	116.9	117.3	116.3	115.4	112.8	112,4	111.5	108-4
OBA	78.2	86.9	90.1	97.3	97-1	95.1	95.3	26.6	99.2	99.4	100.1	102.2	102.5	102-1	101.8	99.4	99.1	97.6	93.5
BAND	20	20	20	20	20	20	20	24	24	24		24	24	24	2	24	24		
TCOPR	. 1.0	2.2	2-1	3.7	3.1	1.9	1-1	0.0	0.0	. 0*0	0.0	0.0	0.0	0*0	0.5	0+0	0.0	6.0	0.6
	_																		4.5

PALT (INTEGRATED) = 125.57

TAE	LE A-	55	i	2266 MT	1146 J1	180-109	QUIET	ENGIN	ie i cc	NF B 1	IRTO CI	NT BM	HW T/P	F,	R FIEL	.0				
	ENCINE M		= JTE	0 -54 75054			TEMPE	PATURE	:		= 55.	.O F			TIP	ET TEN E OF C	PAY	=	3.00 1 1304 9-61	F IN. HG.
	STAND DATE		= 05/3	X-314			HUNIC	LTY			43.	O PER	C1 +		HIR	D DIR	CTION		W	HPH
			- 057					VED RE			636 639								•	
							FAA F	ART 36	REFER	ENCE C	DAY CO	RECTE	SPL 1	N DB	- RAE	a ZUIC	150.	FT.		
1/3 00											-									
FREQUENC (HZ)	. Y	10	20	30	40	50	60	70 70	DNE AN BO	90 90	IN DEGI 95	100	165	116	115	120	130	135	140	150
50	80.3			84.0	84.5	84.3	85.7	86.4	67.9	86.4	89.8	90.8	91.2	92.7	90.9	94.2				104.4
63	E . 69			84.3	83.9	84.9	83.7	2.89	87-1	89.5	88.0	91.8	89.9	92.8	92.3	93.7	95.4			107.1
8	82.1			63.3	85.6	84.9	83.2	87-5 83-6	84.R 82.4	87.6	88.1	89.5 86.5	86.8 84.9	92.1 86.6	91.5 86.5	92.5 88.1	94.5	95.2		101.4
10¢ 125	92.6 83.6			86.0 82.7	89.2 82.3	62.4 82.5	80.5 81.7	62.7	B2 - 8	84.7 85.0	16.2	86.6	88.6	88.0	91.3	93.6		99-8		
168	85.3			84.9	85.5	85.1	86-2	86.2	87.8	89.6	92.6	91.6	94.2	93.8	96.3			104.3		
200	34.9				88.4	88.8	88.1	96.1	91.9	92.6	94.5	96.3	97.9			101.4				
250	13.5		87.7	88.0	89-0	90.2	89.3	91.3	92.0	93.3	94.4	96.7	97-3	98-8		100.7			99.0	
315	85.1			86.6	87.6	6E.7	88-2	91.2	64.5	90.9	90.9	91.9	92.7	94.6	95.5	97.7	100.0	úű.3	100.8	100.0
430	F5.3		F6.7	86.7	46.8	86.8	87.7	88.7	8.83	92.3	94.2	95.5	96.8	97.7		100.3		100.2	78.7	
502	24.9			86-4	86.4	87.1	B7-4	89.4	F9.4	91.3	91.8	93.4	94.6	96.6	96.8	99.0	47.9	98.3	97.8	
630	82.7			85.8	86.5	87.9	67.1	68.5	87.9	89.5	92.4	93.4	95.1	96.5	97.4	98.7	96.6	97.4	96.0	
800	81.0			05.0	85.7	66.0	87.0	88.6	87-2	59.3	90.7	91.5	93.4	94.6	95.5	96.4	95.3	96.0	94.9	
1000	79.3			03-3	84.1	05.2	86.3	87.4	86.4	88.0	89.6	90.4	91.2	92-7	93.0	74.4	93.7	93.6	92.2	
1250	78.2			R2.7	83.3	P4-3	64.ú	86.5	65.3	67.0	88.5	89.6	69.5	91.0	71.1	92.8	91.9	91.9	89.7 87.9	
1606	81.0			82-8	02.3	84.8	63.5	25.1	84.3	85.7	87.2	88-3	50.5 86.2	90.3 89.8	90.2	91.7 90.7	89.9	90.0 89.0	57-2	
2007 2500	95.7 89.4			84.1	83.6 84.8	85.7 85.3	83.2 84.ú	85.1 85.8	83.8 65.3	86.7	86-7 87-7		88.9	90.4	89.7	90.7	88.5	88.4	86.5	
3150	92.4			97.6	93.3	94.2	90.4	88.3	08.6	90.2	91.9	93.0	93.2	95.1	92.7	91.5	88.4	88.3	86.8	
4000	94.3			101.1	97.3	76-6	94.0	89.9	89.0	92.3	94.3	95.9	95.7	96-8	95.5	94.5	90.2	89.2	88.2	
5000	87.0			69.4	86.7	27.5	86.7	86.4	87.5	90.3	92-3	94-6	95-1	95.4	94.4	93.9	89.4	88.2	86.4	
6300	0P.P			91.6	86.7	88.7	86.9	87.¢	87.0	88.8	89.5	91.6	92.1	92.9	92.1	92.1	66.0	86.9	84.9	83.1
8000	90. B			94.2	92.4	91.3	89.2	89.1	87.3	80.6	90.7	93.3	93.9	94.1	93.9	93.3	€9∙3	87.4	85.6	84.0
10000	98.4	88.4	87.2	90.2	88.2	F7.2	86.3	84.6	93+8	86-7	87.1	90.9	93.0	93.2	94.6	94.5	90.9	68.2	86.2	83,2
DASPL	100.8	193.7	102.3	104.9	107.5	103.2	101.1	161.8	101.5	163.4	104.6	106-4	107-2	108.5	109:0	110-0	110.4	111.7	111.9	113-1
PNLT	116+8	120.0	119.G	122.9	120.0	121.1	117.3	114.7	113.8	116.0	117,6	115.2	12u.1	151.5	120.8	12ù•4	118.4	118.9	118.9	, 118 - 1
PNL							115.5	114-1	113.5	116.0	117.6	119.2	119.5	120.7	120.3	120.4	118.4	118-9	118-4	117-6
DBA	110.4	103.8	102.0	165.0	101.0	102-8	99.8	99.4	98.0	101.0	.102.5	104+1	104.7	105-9	105.7	105.4	104.9			102.9
BAND TCOPR	28 1+5	2.2	20 1.9	3.0	20 2.7	23 2•8	20 2•3	23 0-6	24 0.0	24 0-0	24 6.0	24 0•0	10 6. c	7 C•5	16 0.6	24 0.0	24 0.0	24 0•0	7 0.6	0.6
	MUMIKAH MUMIKAM MUPIKAH MUMIKAM		= 1	13.65 22.89 20.70 06.39			COMPO COMPO PILT		SI PNI EGRATEI	<u>.</u>	= 114. = 124. = 132.	93								

CONDITION = 6399

2260 H7348 JT80-109 CUIFT ENGINE 1 CONF B TRTD CONT BH HW T/P

ALTITUDE = 200. FT SIDELINE

1/3 PC7 FREQUENCY																			
(HZ)	10	20	36	40	50		70				IN DEG								
1174	10		50	40	ÞU	60	70	80	90	95	100	105	110	115	120	130	135	140	156
5C	659			78-1	79.5	81.9	B3.4	85.3	85.9	87.3	86.2	E8.4	89.7	87.5	90.4	90.3	93.3	93.8	75.9
63	67.0			77.5	60.1	79.9	85.2	84.5	27.0										
80	67.8			79.2	80.1	79.4	84.5	82.2							26.7				
1/10	67.7			76.B	77.6	76.7	80.5	79.8	82.7	80-8					84.3				
125	65.4			75.9		77.9	79.6	80.2	62.5	83.7					B9-8			94.8	
160	46+8		76.3	79-1		82.4	83-1	65.2	87.1	90-1	89.0								
200	67.0		80.5	82.0	63.9	84.3	87.0	89.2	90.1	92.0	93.6		96.3					98.7	
250	6B.4			82.6	65-9	85.5	88.2	89.3	90.6	91.8	94.0					76.2		93.4	
315	67.6			81.2		84.4	88.1	86.5	88.4	08.3									
400	66+0		78-0				85.6		89.8	91.6	92+8	94.0	94.6	96.2					88.2
500	65.6		77.7	79.9			86.3		88.E	89.2	90.7	91.1	93.5		95.8			91.3	87.4
635	65.3		77-0	80.0			85.4			89.8	90.7	92.2	93.4	94.0		91.7			
. 800	65.1		76.1	79.1		83. I	85.7	84.5	36.7	88.1	8.83	90.5	91.5	92.0				88.3	
1000		70,1	74.3	77.5				83.7	85.4	87.0	87.Z	88.3	89.5	89.5	90.5			85.6	80.4
1256	41.C		73.6	76.6		89*3	83.3	82.5		85.9			87.8	87.6	88.9	86.8	86.1	63.0	
1670	59.9		73.6	75.5		79.5	81.9			84.5	.85.5	85-5	87.1	86.6	87.7	84.R	84-1	81.1	76.5
2090	61-0		74.7	76.7		79.2		81.0		84-0	85. U	85-2	B6.5	86.3	86.7	84.1	53.0	80.3	75.3
2500	68+8		74.2	77.7	60.0	79-9	82.5	82.4			86.3	85.8	87.I	86.0	B6-2	83.2	82.3	79.4	74.7
3150	73.6			86.0	88.7	66.2	84.9	85.7		89.1	90.1	90.1	91.7	88.9	87.3	82.9	62.0	79.5	75.4
4000	74.6			85.7		89.6	86.4				92.9	92.5	93.3	91.6	90.1	84.5	82.7	80.6	75.9
5006	61.7			70.6		82+3	87.8	53.9			91.5	71.8	91.8	90.4	89.5	83.6	81.5	78.7	
6300	61) . 0		79.7	80.6	62-7	82.3	63.3	83.B			88.4	86.7	89.2	88.0	87.5	62.0	79.9	76-B	71.B
8000 00001	50.0			83.7				83.9			89-9				88,3	82.8	79.9	76.5	71.5
100:10	50.2	66.5	76.6	79.6	1.63	80.9	80.3	80.1	83.2	A3.5	67-2	89.0	86.9	59 B	89-1	83.8	80.0	76.6	69.6
DASPL	81.0	88.1	.94-7	75.2	57.0	97.0	98.5	98.7	100-8	102-1	103-6	104-2	105.2	105.4	106-1	105.5	1.406	105.6	106.4
PNLT	40.03	Thirty	115.00	771.00	11707	113-0	111-3	110+9	113-2	114-8	116.2	116.9	117-2	117-1	114-2	113_0	112.6	112.2	100 1
PNL	7.7	1.75.44	11130	1.17	21/-/	111-1	111-7	110.0	713.7	114.9	T16.7	114-4	917.3	714 E	114 7	***	777		
DBA	79.4	87.2	94.6	74.3	97.2	95.6	96+0	°6.0	75.2	99.7	101-1	101.5	102.5	102-0	102.3	99.B	99.4	97-5	73.9
BAND	20	20	20	20	20	20	23	24	24	24	24	10	. 7	10	24	24			
TCOPF	2.1	1.8	3.0	2.7	2-8		0.6	0.0			. 5.0	0.6		0-6	0.0	0.0	24	. 7.	5
				. = .		- 7			\ - ₹5	,,,,	,300		3.5	2.0	400	3.0	V.U	0.6	0.6

PNLT (INTEGRATED) = 126.68

TABLE A-56

TABLE A-57 2260 M7148 JT8D-109 CUIET ENGINE 1 CONF 8 TRTD CONT BH HW T/P INLET TERP ENGINE MODIL . = JIRD -5 ENGINE NUMBER = 37505 TIME OF DAY BARH. PRESSURE WIND DIRECTION WIND VELOCITY 1245 29.81 IH. HG. H 7 HPH CRSERVED RPH FAA PART 36 REFIRENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT. 1/3 CCT FREQUENCY MICROPHONE ANGLES IN DEGREES 70 60 90 95 100 (HZ) 10 83.8 64.3 67.7 6.19 68.0 88.2 88.2 90.4 91.2 90.8 86.2 88.4 93.3 97.7 91.1 96.8 96.4 84.9 89.6 95.3 50 63 80 101-6 105-8 102-3 105-8 98-9 102-7 94-3 97-4 100-4 104-7 104-4 104-5 105-2 102-5 87.5 65.9 84.7 864-3 644-3 644-3 642-5 644-6 644-6 644-6 644-6 644-6 05-172445779 037 055130 675779 037 055130 675779 037 055130 67779 059 84.0 84.9 88.5 69.6 86.6 86.6 85.5 84.9 84.9 23.9 84.6 89.6 89.1 86.9 96.8 87.7 87.1 84.9 83.8 90.37 91.43 91.43 91.49 91.49 91.49 91.49 91.49 91.40 91.40 91.40 91.40 91.40 98.2 93.9 95.2 95.5 96.3 93.9 96.14543863867951.5 25v 315 91.9 91.5 89.5 89.4 89.8 94.6 95.5 95.7 94.7 93.0 91.4 90.1 90.1 93.1 95.5 94.8 92.7 94.9 1000 1600 2000 2500 3156 63.5 84.8 88.8 90.3 66.3 87.0 87.1 95.0 94.4 92.6 94.7 95.8 90.2 89.2 67.3 88.3 69.6 4000 5070 6200 8000 10000 90.6 90.4 91.1 69.1 PF.4 92.6 8 -- 2 6 1 - 5 9 2 - 1 8 6 - 7 103.8 104.6 105.6 116.5 117.3 118.7 116.5 117.3 116.1 101.5 102.2 103.0 107.3 119.6 119.8 105.0 108-2 109-1 110-1 121-0 120-5 120-6 120-4 120-5 120-6 105-5 106-0 106-5 191-1 102-3 193-8 113-9 116-8 116-5 113-9 115-6 116-5 98-9 100-2 101-5 CASEL PNLT PNL PNL CBA 24 20 24 24 10 2+0 1-2 0+0 0+0 0-5 24 0.0 10 0-6 24 0.0 24 0.0 24 0..0 BAND 25 20 2+7 26 2.8 20 2-5 20 2+8 2¢ 1.8 CCHPCSITE SPL CCHPCSITE PHL PNLT (INTEGRATED) 113-22 122-79 120-65 HAYIPUH PNLT MAXIMUM DEA

2268 47148 JTBD-109 QUIST ENGINE 1 CONF B TRTD CONT BH HW TYP

CONDITION = 6401

ALTITUDE = 200. FT SIDELINE

FAR FTFI E

1/3 CCT FREQUENCY HICROPHONE ANGLES IN DEGREES 80 90 95 10G 16 135 -1344101925657642548731 2109867655442107156235 86.6 88.2 86.1 88.4 88.2 65.2 93.3 94.9 93.3 94.0 93.0 94.0 92.5 93.6 88.6 93.6 87.1 88.9 87.1 88.9 86.1 91.5 86.1 86.3 84.8 86.3 84.8 85.3 84.8 85.3 84.8 85.3 84.8 85.3 84.8 85.3 84.8 85.3 78-7 79-1 75-3 82-0 82-0 861-2 861-2 777-5 87-7 76-8 87-5 87-5 82-7 81-1 70-1 70-1 84-2 81-0 81-0 81-9 70-7 77-5 78-8 857-4828714183315381362 857-4828714183315381362 8815265.01814287331520467815265.018766613161678 887-08 87-08 87-08 97-08 97-08 993-8 993-8 993-8 993-8 993-8 993-8 993-8 993-8 993-8 993-8 993-8 993-8 993-8 993-8 73.3 74.8 69.3 72.1 76.0 76.2 77.3 74.1 73.4 72.9 72.5 83-9 76-4 77-8 82-3 64-7 85-9 84-4 63-9 84-5 60.5 67.7 t6.2 65.2 64.4 63.7 71.4 67.9 77.3 77.8 82.5 84.3 72.3 72.3 74.5 65.3 87.0 61.7 60.3 60.5 68.7 83.6 61.5 63.7 63.2 63.2 65.2 74.3 74.3 61.6 1670 710: 2507 3150 28.4 91.7 63.4 62.5 4737 4737 9000 6370 8000 11070 DASPL PNLT PNL DB1 116.4 116.4 BAND

FALT (INTEGRATED) = 178.58

TABLE A-58

TAB	LE A-5	9	:	26E H	71+B J	FBD-10	QUIFT	F ENGI:	le 1 Cr	NF B '	TRTO CE	NT BH	HH T/	• F/	UR FIEI	LĐ				
	ENGINE HI		= JT81 = 31	75054			TEMPE	RATURI			= 55.	.o #			T11	ET TEI	YAC		3.00 I 1302	
	STAND			(- 314			HUMIE	YTE		i	= 42.	O PER	CT.		HIN	H. PRI	ECTION	#	W	IR. HG.
	DATE		► 35/4	1/14				VED AF			= 636 = 640				WI	ND VELO	CITY	•	7 :	apri,
											DAY COR	_	י נפס מ	מת נולד	RAI) TIIS =	168-	ET.		
1/3 001							, ,		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		DATE		J. J. L.					•••		
FREGUENO	Y							(ICROP)	IONE AN	IGLES :	IN DEGR	REES								
(HZ)	۵	10	20	30	40	50	60	70	80	90	95	100	105	110	115	120	130	135	140	150
50	01.7	79.3	02.7	81.9	81.5	64-6	85.7	B5.0	B7-3	86.8	89.4	90.4	91.4	91.7	92.2	94.2	96.7	99.0	102.2	105.5
63 80	±3.5 ₹2.7	AC.3	62.2		86,1	84.6	86.3	£4.9	86.6	86.7	88.6	91.3	90.4	91.0	92.3	71.7	96.9		101-0	
1-10	P2.8	87.5 62.4	84.2 81.4	85.3 81.6	#4.3 61.7	65+0 60-7	84.5 81.6	84.3 81.8	82.G	86.6	86.3 84.4	89.3	90-8 85-5	91.0 85.6	90.4 87.4	90.8 88.6	94.2 91.2	96.9 94.9		
175	13.7	F1.6	01.2	82.6	82.5	02.0	02.8	01.8	81.7	64.4	87.4	88.5	88.2	89.4	91.7	94.2	98.1		102.2	
16)	667.0	82.0	85.0	85.9	86.1	86.0	86.6	87.3	88-2	90-1	92.5	91.3	94.5		98-1	99.2	101.6	102.7	105.7	106-0
296	25.6	83.5	£7.7	88.9	87.1	69.4	88.7	89.9	90.9	93.5	95.0	94.5	98-5			102-1				
250	F4-1	£5.7	89.5	89.5	88.5	29.4	88.2	89.5	92.0	93.6	94.8	96.1	97.5	98.5		101.0				
315	P5C	84.7	85.E	36.0	86.9	26.4	80.2	69-1	88 - 1	69.9	91.0	95.3	92.4	94.0		98.8		100.8		
400	66.0	84.0	₽7.3	87-2	86.2	76.9	88.6	87.4	88.6	07.4		96.2	97.6	98.6		100.3			100.6	97.6
5Ca	85.9	63.4	85.3	86.6	86.5	86.8	87.7	89.2	16-3	40.9	91.9	94.4	95.2	96.2	96.1	98.3		98.3	78.7	
636 800	63.5 61.0	27.3 02.8	85.9 64.J	85.7 85.3	6.00 0.09	87.3 66.0	87.2 87.4	87.8 87.7	87.6 87.0	90.2	92.6 90.4	94.3 93.4	95.6 93.3	95.9 94.1	96.9 95.7	98.2 96.5	97.0	96.9 95.0	97-2	
1000	79.7	96.0	83.6	83.3	64.2	84.3	85.2	86.9	Bh-1	88.3	09.8	92+6	91.9	92.6	92.6	74.4	95.9 94.5	93.3	95.6 93.4	91.7 88.7
1250	78.7	79.4	07.3	82.4	83.5	P3.6	84.3	E4.9	84.7	86.9	88-2	91.8	90.4	98.5	90.6	92.8	92.6		91.8	86.7
160	79.0	79.8	62.0	52-1	83.1	32.6	83.6	B4.2	83.8	85-8	87.4	90.5	89.2	90.0	90.1	92.0	91.1	89.2	89.8	
2005	12.5	#2.2	85.1	52.4	44.3	63.2	83.7	83.9	83.0	85.3	87.3	89-7	58.6	89.2	89.9	70.7	90.0	86.5	88.6	84.0
2500	58.9	91.2	88.8	84.7	84.9	85.9	83.9	84.5	84.3	86.3	88.4	89.3	89.0	90.3	89.5	96.3	89.D	87.9	88.0	83.4
3150	91.7	97.4	97.4	93.6	95.4	96.0	67.û	28.2	88.6	90.5	72.8	91.6	93.5	95.2	92 . 8	91.4	88.9		68-0	
4000	94.5		100.5	96.7	99.6	99.7	89.0	90.6	51.5	92.6		54.5	96.0	97.5	95.4	94.0	90.6		88.5	
500° 830°	67.7	07.2	18.1	59.5	89.0	U7.4	86-1	85.5	86.5	87+7	73.1	95.8	95.3	96.4	94.9	93.5	89.3		86.9	
8550	ÇÇ.0 91.4	99.2	92.3	91.7	69.9 93.2	89.4 93.1	87.3 90.5	86.3 6.88	86.4 67.8	0.88 0.98	89.7 91.2	95.6 96.1	92.4 94.2	93.5 94.8	92.4 94.1	91.9 93.6	87.9 88.8	87.6 88.8	85.6 86.2	
10000	87.7		89.1	88.6	89.4		87.6	84.6	83.7	867.7	87.7	95.7		94.6	95.0	95.2	90.4	90.8	86.6	
OASPL	100.9	103.4	104.3	102.3	103.B	103.9	100.6	10D-8	101.3	103 3	105.1	107.3	107-6	108.5	109-1	110.2	116.5	111.3	112.6	113.5
PNLT	117.0	150.6	122.0	119.0	171.7	121.9	113.7	115.1	115.6	116.0	118.3	119.6	126.5	121.6	120.8	120.3	118.6	118.6	119.1	110.0
PNL OBA			114.5								118.3 103.0									
BAND	23	20	28	26	20	20	23	20	20	24	24	24	lu	10	7	24	24	24	24	5
TCCRC	1.7	2.3	2.6	2.0	2.6	3.0	0.5	1.3	1.3	0.0	0,0	0.0	0.6	0.6	0.6	6.0	0.0	0.6	0-0	
	MAYIHUM 6	74551	= 13	13.48			COMPO	16 TTE	. 51	٠ .	= 114.6									
	HAXIMUM R			21.98			COMP		PNL		= 124-6									
	MAKIHUM			21.63				CINT			= 132.4									
	ниміхан			6.29				,,		. •										
TAB	LE A-6	0		776	8 H714	n Jieo	-100 D	DIET F	NGINE	1 CONF	. 8 TRT	ם כמאיז	8H HB	T/P	FAR	FIELD				
								•												

CONDITION = 6401

ALTITUDE = 200. FT SIDELINE

1/3 CC1 FREQUENCY								47 C D C D	UTSIE E	unies '	IN DEG	DEEK							
EHS)	10	70	30	40	50	60	70 '	80			100	165	110	115	120	130	135	140	150.
5 °,	61.5	76.8	73.4		79.8	81.9	82.0	64.7						86-8		91.9	, 94.1	95.B	9710
63	62.5	70.3	74.3		79.€	82.5	81.9	84.0						88.9				74.6	
e.	65.7	72.3	76.7		80+2	FC.*3		1.E3									91 +4		
101	6	69.5	73.0		75.9			79.4									89.4		
124	63.7		74.0		77.2	77.0	78.7	79+1									. 94.2		
160	65.8	73.1	77.3	79.7	81.2	82.8	84.2			. 90.0			92-1			96.8			
55.7	64	75.7	86.3			84.9			91.0			95.7							
250	67.6	77.5	67.9		84.5		86.4				93.4			95.2		95.3	94.6		
315	67.4	73.7	77.3											93,0		94.5	95 . 2		90.B
400	65.6	75.2	78.5									94.B				95.7			
576	64.3	77.1	77.9					85.6				92.3				92.5	92.7		
634	64-5	77.6											92-L			92.1	91.2		
800	63.7	71.6	74.4										91.0			90.9	89.3		62.B
1000	f .5	71.0		77.6							89.9					89.5		. 86.2	
1253	55	69.5					81.7				89.0								77.6
1605	59.2	69.0	72.9				. E1.C				27.7					· 86.û		. 63.0	
2001	£	71.7					80.6		82.6				85.9				82.5	81.7	74.6
7500	68.9				80.6	70.8	81,2										61.8		73.7
3150	73.6		83.6			82+8		65.7			88.9							, 84.7	74.8
4002	74.		2+43				87-2					92~8		71.5		84.9			75.5
ちじつつ	D i	72.5		. 81.3			61.9					92.0					82.4		72.9
6300		72.8	78.5			62.7					92-4			88.3					70-B
800		74.	74.5				84.3					90.6				82.3			71.2
10000	50+1	. 60.4	75.0	79.8	82.E	. 22-2	80-3	0.03	82.7	84.1	92.0	89.2	90.3	90.2	19.5	B3.3	82.6	77.0	69.3
CASPL																			10449
PMLT																			108-9
PNL	94.0	104.7	106.8	111.4	113.4	108.9	110.4	111.3	113.2	115.5	116.6	116.7	117-6	116.5	116-1	113-3	112.5	112.4	108.4
CBA	70.6	[4 · 6	41.4	96.1	- 7B-1	94.2	95.4	76.0	98.2	100.2	102.3	101.9	102.7	102.0	102.2	100-1	99.1	98.7	93.6
BAND	29	20	20	20	20	23	20	20	24	74	24	10	10				24	24	5
TCORP	7.2	2.5	2.0	2.0	3.5	0.5	1.2	1.3	0.0	9.0	0.0	Ú.6	0.6	0.6	0.0	0-0	5.0	0-0	0.6

PNLT (INTEGRATED) = 128.81

2268 M7148 JT8D-109 QUIET ENGINE 1 CONF 8 TRTD CONT PH HW T/P FAR FIELD

FAA PART 36 REFFRENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.

1/3 GCT																				
FREQUENCY							1	11 CR 0P I	IONE A	NGLFS :	IN DEGI	RES								
(HZ)	ĉ	10	2.2	30	40	50	60	70	80	90	95	نند	105	110	115	120	136	135	140	150
50	84,7	84.9	85.9	85.6	68.C	83.5	90.1	90.1	91.9	91.3	92.1	92.5	94.8	95.0	97.1	97.3	. 99.9	104.9	104.7	108.9
6.3	6.0	H3.2	67.1	87.4	67.9	86.B	88.2	89.3	91.1	90.5	92.1	92.1	95.6	94.8	96.7	97.5	102.3	104.3	106.9	110.0
£0	P7.3	67.7	90.1	88.4	87.8	87.3	80.3	67.8	92.3	91.6	92.6	91.7	94.6	94.5	94.7	94.8	100-1	102.2	105.4	108.1
100	89.2	85.1	87.7	85.6	88.5	65.9	86.0	87.6	87.4	88.2	88.7	89.4	90.5	89.8	92-1	93.4	97.6	100.3	103-2	106.1
125	90.2	68.1	67.2	88-5	87.t	66.3	86.7	E6.9	87.4	69.4	90.3	91.4	93.9	94.1	95.6	98.7	102-9	106.2	108+4	113.6
160	93.6	89.2	£9.3	91.3	70.7	91.8	71.2	91.5	93.1	95.4	95.7	97.2	99.4	200.B	101.3	105.2	108.5	110-4	112.0	114.6
200	BALE	86*0	92.7	94.4	92.0	94.6	93.1	95.3	95.4	98.5	99.4	100.4	102.5	104.1	104.6	108.5	108.9	110.7	111.6	112.0
250	£⇔•ø		94.6	94.6	93.9	94.9	94.7	96.5	97.2	99.8	99.8	100.3	102.9	104.7	105.9	106.8	106.5	10E-1	107.9	108.1
315	61.7		40.4E	9I-4	92.6	03.0	95.1	97.0	95.7	95.B	97.4	96.9	18.8	106.2	102.8	104-6	105.9	108.0	168.3	109.2
ራ ድ ን	Ģ 1, 9		41.9	92.7	92.5	93.0	73.4	94.2	94.2	97.4	99.8	101.3	102.4	104.5	105.2	107.1	105.9	107.4	107.4	148.7
5û v	60.0		92.1	67.7	93.4	94.6	95.3	የተ- ዓ	96.5	98-3			101.4							
630	86.6		90.9	91.3	92.3	92.9	94.7	95.0	94.0	96.6	98.2		100.7							
800	86.R		89.5	90.3	71.1	91.9	92.9	93.8	93.6		96.5		99.7							
1000	60.0		3+69	91.7	90.2		72.6	93. <i>2</i>	93.0		95.9	97.4					101.6			
1255	64.0		87.3	87.2	Pツェヒ	89.4	91.0	92.3	92.6	94.3	94. B	95.9		98.3		100.1		99.4		97.3
1657	P2.0		66.5	87 - 1	89.0	£9.6	96.7	°1.3	91.4	93.D		95.1		97.3	97.9	99.1		97.6	96.5	
2000	89.6		93.2	89.5	93.4	90.2	98.5	90.9	92,6		93.3			96.8	96.9	97.3	9.0-1	95.9	94.8	
2500	67.0		86.8	86.7		88.4	90.0	89.9	90.6		92.B			95.6	76.0			94.7		
3150	87.5	67.8	91.3	89.C		89.1		90.7	91.4					95.3		94.7		92.9	92.1	
4000	9%.1		97.5	93.3		91.2	92.9	91.9	93.0	94.9	96.3	97.2		97.7	98.0	96.0	93.5	92.8	92.2	
5000	84-0		08	85.1	o1 - 3	89.0	96.2	90.1	61.6	94.1	95.9	96.5	95.1	97.3				92.0	91.1	
6300	93.2		00.7	88.4		87.7	88.4	88.6	90.1	92.4		95.5		96.6			92.8	91.2		
8000	82.3		89-0		89.2	66.4	86.5	66-4	86.2		92.3	93.7		94.3			91.9	90.2		
30000	80.1	Po.0	86.3	86.0	67.5	84.9	85.2	84.7	85.8	89.2	90.0	92.5	95.0	93.8	96.4	93.7	91.3	69.7	89.3	86.2
DASPL	142.0	192.4	104.8	104.2	164.9	164.7	105.5	106.4	106.7	108.6	109.6	110.6	112.3	113,5	114.6	116.1	116.6	118.3	119.2	121.3
PNLT	115.4	117.7	12	116.0	119-8	116.2	117.4	117.4	116.7	120.1	121.2	122.8	123.4	124.4	124.7	124.6	124.0	125.u	125.3	126.3
PNL													123.4							
DBA	96.6	100+8	103.3	161.7	103.2	102-1	103.3	163.B	174-7	156.0	107.0	108.2	109.5	110.4	111.4	112.2	111.5	112-3	112.4	113.0
BANT	20	26	25	żυ	17	24	24	24	. 3	24	24	10	24	10	24	24	24	24	24	5
TCCRR	1.5		1.9	1.3	1.5	0.0	2,0	0.0	0.5	C.0					0.0		0.0	6.0		

TABLE A-62

2268 H7148 JTSD-109 GUIET FNGINF 1 CONF B TRTD CONT BH HH T/P FAR FIELD

CONDITION = 7209

ALTITUDE = 200 FT SIDELINE

1/3 PCT FREQUENCY																				
								HICROP			IN DEG	REES								
(HZ)	10	20	30	40	50	69	70	80	90	95,	100	105	110	115	120	136	135	140	150	
55	67.1	74.0	77-1	81.6	78.7	86.3	67.1	89.3	88_8	89.6	89.0	92.0	92-0	93.7	93.5	GE 2	00.4	98.3	100 /	
63	65.4	75.2	78.9	81.5	82.0					89.6									101.5	
63	69.9		79.8	81.4	82.5	85.5	84.8			90.1				91.3				99-0		
001	67.2			82.1	81.1	02.2	84.5											76 B		
175	74.2			81.4	83.5	* 82.9	83.8	84-8					91.0			98.1				
167	71.2	77.4	82-7	B4.3	87.0	87.4							97.7		101.4	103.7	104-0	105-6	105-0	
200	69.9			B5 - 6		E9-3	92.2	92.7				99.7	101-0	101.4	104.7	104-0	105.1	105.3	10020	
250	72.5				91.0	90.9	93.4	94.5	97.3			100-1	101.6	102.5	103-0	101.6	102.5	101.5	100-5	
315	71.3		,82.7		88.1	91.3	93.9	93.0	93.3	94.8	94.2	96.0	97.1	99.4	100.8	101-0	102.4	101-0	100-5	
400	70.8				88-1	89.6	91.1	91.5	95.4	97-2	98.6	99.6	101.4	101.B	103.3	101.0	101.8	100.9	100-0	
500	71.4						93.8	93.8	95.8	95.4		98.5	9.9.4	100.4	101.5	99.7	100.6	100-2	99.6	
630	70.3							91.3	94.0			97.8	99.9	100.9	101.8			99.1		
0.03	46.2						93.7	90.9	93.0	93.9	95.4				99.B		98.6		95-0	
1000	69.6						90.0	90.3	92.1	93.3	94.7			97.0		96.6				
1250	£4.8						89.1	8-68	91.7	92-2	93,1					94.7				
1600	. 63*3		77.9					89.1		91.1	92.3	73.3	94.1	94.3		92.4				
5000	66.7				85.0			87.8	89.8	90.6	91.2			93.3			89.9		82.5	•
2506	69.2				83.1					90.0	90.7	91.6					88.6			
3150			79.0					88.5		70.9	91.5	91.7	91.9	91.7	70-5	87-7				
4000		82.4			85.5		88.4	90=0	92.0	93.4	94.2	94.6	94.2	94.1	91.6	87 · E				
5606	62.3			83.3		65.8	66.5	28.7	91.2	92.9	93.8	94.8	93.7	94.3	92.2	87.2	85.3			
6886		73.1				8.E3			29,3	91.1	92.3	93.8	92.9	93.9	91.4	8.38	84.2	82-2		
860)		77		80.5	79.5	81~5	82.4	84.8	87.3	89-0	90.3	G⊅_Λ	00.3	02.2	80.6	82.6	. DO YE			
10000	47.8	65.6	72-4	77.9	77.8	77.5	85.4	82-1	85.7	86.4	8.88	91.0	89.5	91.6	88.3	84.2	81.5	79.7		
DASPL	82.3	91.6	95-1	98.1	99.7	101-6	103-2	103.9	106-0	106.9	107.8	300.3	110-2	171 -1	112 2	111 2	***	113 0	***	
PNLT	94.2	106.4	100.0	112.5	110.A	113.7	114.1	115.8	117.3	118-6	110.8	120.2	121.0	171 0	11649	11101	1101	115.5	11201	
FNL	7600	エリマムン	TOCOL	11140	110.0	113.2	.114-1	115.3	117.3	118.4	110.3	30A T	776.5	121 A	170 £	710 0	110 1	77B C	71L 8	
DHA	78.9	89.3	92.1	96.1	96.€	99.2	100.5	101.2	103.3	104-3	105.3	106.5	107.2	107-8	108.2	106.5	106.6	.105.8	104.2	
EAND	20	20	20.	17				- 3		24	10.00	24		24		400		100		
TCCRP	1.6	1.9	1.3		C.D			0.5				0-0				24		24		٠
									240		4.5	U+U	~.3	0.0	0.4	0.0	4.0	0.0	0.5	

PNLT (INTEGRATED) # 131.34

TAB	LE A-6	3	a	268 H7	7140 JT	2D-109	QUIFT	ENTIN	F 1 CC	NF 8 1	rto C	ONT BH	HH T/P	F.A	R FIEL	۵.				
	ENGINE MI		= JT8[= 37	-54 15054			TEMPE	RATURE	:		- 56	.0 F			TIM	ET TEN E OF D	YAC	*	4-00 F	: IN• HG•
	STANE			(-314			HUHID	ITY			= 39	.O PER	CT.		HIN	D DIRE	CTION		N Io I	
	STAT		= 7570	7714				VED RP CTED R			= 71 = 72	83 17			74.	ID V. E.		_	•••	
							FAA P	ART 36	REFER	ENCE (DAY CO	RRECTE	5PL 1	N DB	- RAD	2 ZUI	150.	FT.		
1/3 00								ICROP)	MUC AL	inter :	THE DEC	DEEE								
FREDUENS (HZ)	EY E	16	20	36	40	58	60	70	104E AN	90	95	100	105	110	115	12 0	130	135	140	150
(_		-,-		-										ι					
50	86.2		86.6	86.7	87-4	88.7	8.08	89.E		93.5 93.9		92.3		97.2 96.5	97.0	96.7	98.0	103-6	105.8 105.B	110.2
63 60	85.5 86.7		88.4 88.2	86.8 80.3	89.6 88.3	88-6	91.0 89.5	91 2 95 û	92•1 87•5	52.5	91.2	92-0	94.2	93.9	94.2	96.2	97.5	98.3	103.9	107.0
100	87.1					B5-3	86.7	£7.3	85.9	87.5	87.3	91-0	91.6	89-7	92.3	94.6	95.7	96.4	101.4	106.1
125	8R-4		86.4	88.6		6.63	86-9	27.0	88.B	89.3		92.9	94-2	34.5	96.6	99.4	101.6	10541	110-ŭ	113.7
160	91.6	90.3	89.8	91.0			90.4	92-1	94.3	95.3	97.7	98.4	99.5	100.4	102.4	103.2	105.5	109-1	113-1	114.8
200	89.2		92.8	94.0	93.9		93.6	96.1	97.3	99.0	100.7	101.7	102.5	104.9	105.5	107.0	106-2	109-8	113-1	112.3
250	90-6		94.8		95.7	96.3	95-1 94-2	97.1 95.5	98.2 96.5	96.2	100-6	98.9	103-7	101-2	102-2	104-8	105-1	106.0	108.5	108.3
315 460	93.5 92.0		91.7	92-3	73.2 92.6	93.5 92.5	93.5	93+9		96.B	99.5	101-9	104.1	104-2	105.8	107.8	165.2	106.4	108.2	108.5
500	92.B			92.5		04.4	94.6	96.7		97.4	98-1	99.8	102.3	103.0	105.1	106.2	163.7	105.3	107-4	108-5
£30	89.7			90.8		93.5	93.2	93.9		96.4	98.6	100.3	102.5	103.8	104.3	105.3	163.8	104.2	106-0	100.6
800	88.0		89.6			91.9	93.1	93.8	94.1		96.4	98.8	101.1	101.6	102.7	104.4	102.6	102-8	104.9	104.6
1000	87.0					90.6	91.9		93.6	95.1		97-7	99.5	160.0	101.3	102.9	101.0	100.4	101-6	101-1
1250	P5.2			87.5		90.0	90.4	91.9	92.5	93.7	94.5			98.0		99.4		98.5 96.7	96-9	97-8 94-8
1600	F4-2		85.6			80.6	87.8 87.8	90.4		92.6				96.7						
200C 250C	91.1 91.6			91.7		86.9 89.7		90.5		92.3				96.1				93.7		
3150	90.4					88.6		90.7			93.7	95.1		75.6						89.8
4009	94.3							92.0		95.0				98.4	97.4					
5000	80.4			87.8			89.4	90.2	91.8	94.2								70.4		
6300	89.4							28.4		92.7				97.2		95.9		19.7		
8000	87.9						85.5			91.1	92-4	95.2 94.5				95.7 95.2				
10650	86.2			86.2			83.9	84.4											-	
DASPL	103.8	103.4	104-1	104.5	104.8	194.9	105.1	106-3	107.3	108.B	109-1	111.6	113.3	114.0	114.9	116-2	115.5	117.0	120.1	121.6
PNLT	118.6	119-1	119.5	118.7	119.0	118.1	116.8	117.4	118.6	120+2	121.	122.7	125-1	124-4	124-7	125.2	123.0	127.3	12044	126.0
PNL	117.1	117.3	117-5	117.2	117.3	110.0	116.8	117.4	118-6	120.2	141-	122.7 106.9	124.0	110-0	111-B	112-E	110-7	111.1	113.0	113.1
180	177.0	171-8	102+1	162.1	1112.3	162-3	102.0	703+3												_
BAND	20	20	26	20	20 1 - 7	20 1.3	24 0=0	24 0.0	24 0.0	24 0.0	24	24 0 0.0	10 0.5	24 0.0		24 0•0	24 0.0	2	24 0•0	5 0.5
TCORR	1.5	1.8	2.6	1.6	1.0	103	350	340	0.7			- 000	***							-
	MAXIMUM	CASPI	- 1	21.55			СОНР	351TE	5	PL	= 121	.82								
	MAXIMUM			26.50			COMP	DSITE	₽N	L	= 128	.13								
	HUNTARH	PNL	= 1	26.63			PNLT	(INT	EGRATE	G)	= 135	56								
	HUHIKAH	DBA	= 1	13-11																

2268 H7149 JT8D-109 QUIET ENTINE 1 CONF B TRTD CONT BH HH T/P FAR FIEL

CONDITION = 7217
ALTITUDE = 200. FT SIDELINE

50 66.0 74.7 78.2 81.0 83.9 85.0 86.8 26.9 91.0 88.6 89.7 92.1 94.2 93.6 92.9 93.8 97.2 9 63 68.0 76.5 78.3 53.2 83.5 87.2 88.2 29.5 91.4 89.5 90.9 93.2 93.5 97.5 95.3 94.9 98.1 16 86 69.1 76.3 79.7 81.9 65.8 85.7 87.0 86.9 90.0 88.7 89.4 91.4 90.9 90.8 92.4 92.7 92.8 1 100 68.5 74.5 77.9 80.2 80.5 82.9 84.2 83.3 85.0 84.8 88.4 89.0 86.6 88.9 90.8 90.2 92.5 92.5 125 70.0 74.5 60.0 81.4 81.8 83.1 82.9 86.2 86.8 88.4 90.3 91.4 91.4 93.2 95.6 96.8 90.9 90.9 92.9 9 125 70.0 74.5 60.0 81.4 81.8 83.1 82.9 86.2 86.8 88.4 90.3 91.4 91.4 93.2 95.6 96.8 99.6 1 160 72.3 77.9 02.4 84.2 86.4 86.6 89.0 91.7 92.8 95.2 95.8 96.7 97.3 97.0 97.4 100.7 103.6 10 160 72.3 76.9 02.4 84.2 86.4 86.6 89.0 91.7 92.8 95.2 95.8 96.7 97.3 97.0 97.4 100.7 103.2 10	5 161.7 5 98.4 0 97.5 6 165.1 7 106.2 7 103.9 7 100.6 1 99.6 7 99.8 9 99.8
63 68.0 76.5 76.8 83.2 83.5 87.2 88.2 99.5 91.4 89.5 90.9 93.2 93.5 92.5 95.3 94.9 98.1 18 6 69.1 76.3 79.7 81.9 53.8 85.7 87.0 86.9 90.0 88.7 89.4 91.4 90.9 90.6 92.4 92.7 92.8 9100 68.5 74.5 77.9 80.2 80.5 82.9 84.2 83.3 85.0 84.8 88.4 89.0 86.6 86.9 90.8 90.9 92.8 92.7 92.8 915 70.0 74.5 60.0 81.4 81.8 83.1 83.9 86.2 86.8 88.4 90.3 91.4 91.4 93.2 93.6 96.8 99.6 92.6 92.8 92.7 92.8 92.0 92.8 92.7 92.8 92.5 92.8 92.7 92.8 92.5 92.8 92.7 92.8 92.8 92.7 92.8 92.8 92.7 92.8 92.8 92.7 92.8 92.8 92.7 92.8 92.8 92.8 92.7 92.8 92.8 92.8 92.7 92.8 92.8 92.8 92.8 92.8 92.8 92.7 92.8 92.8 92.8 92.8 92.8 92.8 92.8 92.8	5 161.7 5 98.4 0 97.5 6 165.1 7 106.2 7 103.9 7 100.6 1 99.6 7 99.8 9 99.8
86 69.1 76.3 79.7 81.9 63.8 85.7 87.0 86.9 90.0 88.7 89.4 91.4 90.9 90.6 92.4 92.7 92.8 9 100 68.5 74.5 77.9 80.2 80.5 82.9 84.2 83.3 85.0 84.8 88.4 89.0 86.6 88.9 90.9 92.9 92.9 92.9 125 70.0 74.5 60.0 81.4 81.8 83.1 83.9 86.2 86.8 88.4 90.3 91.4 91.4 93.2 95.6 96.8 90.9 92.9 125 70.0 74.5 60.0 81.4 81.8 83.1 83.9 86.2 86.8 88.4 90.3 91.4 91.4 93.2 95.6 96.8 96.8 99.6 160 72.3 77.9 82.8 85.4 87.5 89.2 89.6 93.0 94.6 76.5 98.2 99.8 100.0 101.8 102.1 103.3 104.2 16 250 73.0 82.8 85.4 87.5 89.2 89.6 93.0 94.6 76.5 98.2 99.8 100.0 101.8 102.1 103.3 103.3 104.2 16 250 73.6 82.8 86.9 89.5 91.4 91.3 94.0 95.5 96.8 98.0 99.8 100.5 102.1 102.3 103.0 101.2 160.7 11.3 15 73.6 79.2 83.6 86.8 88.6 90.4 92.4 93.8 93.7 94.0 96.2 96.8 98.1 98.8 101.6 100.2 100.4 14.0 100.2 10	5 98.4 0 97.5 6 105.1 7 106.2 7 103.6 1 99.6 7 99.8 9 99.8
100 68.5 74.5 77.9 80.2 80.5 82.9 84.2 83.3 85.0 86.8 88.4 89.0 86.6 88.9 90.8 90.9 92.9 5.1 125 70.0 74.5 60.0 81.4 81.8 83.1 83.9 86.2 86.2 86.8 88.4 90.3 91.4 91.4 93.2 95.6 96.8 99.6 18 160 72.3 77.9 80.8 84.2 86.4 86.6 89.0 91.7 97.8 99.2 95.8 96.7 97.3 99.0 99.4 100.7 103.6 16 20 70.2 80.8 85.4 87.5 89.2 89.8 93.0 94.6 74.5 98.2 99.6 100.0 101.8 102.1 102.3 103.3 104.2 10 70.2 80.8 85.4 89.5 94.6 94.6 94.5 98.2 99.6 100.5 102.1 102.3 103.3 104.2 10 70.3 10.6 10 70.2 80.8 85.4 89.5 94.0 95.5 96.8 98.0 99.8 100.5 102.1 102.3 103.0 104.2 100.7 103.4 10 70.0 70.6 70.2 80.8 85.6 88.6 90.4 92.8 93.6 94.6 96.3 97.2 99.2 101.3 101.1 102.4 100.2 100.2 100.7 100	0 97.5 6 105.1 7 106.2 7 103.9 7 100.6 1 99.6 7 99.8
125 70.0 74.5 60.0 81.4 81.8 83.1 82.9 86.2 86.8 88.4 90.3 91.4 91.4 93.2 95.6 96.8 99.6 11 160 72.3 77.9 02.4 86.2 86.4 86.6 87.0 91.7 92.8 95.2 95.8 96.7 97.3 97.0 97.4 100.7 103.6 10 70.2 80.8 85.4 87.5 87.2 89.8 93.0 94.6 96.5 98.2 99.0 100.0 101.8 102.1 103.2 103.3 104.2 10 25.0 73.0 82.8 86.4 86.6 87.0 91.3 94.0 95.5 96.8 98.0 99.8 100.5 102.1 102.2 103.2 103.3 104.2 10 25.0 73.6 79.2 86.8 86.4 90.4 92.4 93.6 93.7 94.0 96.2 98.8 100.5 102.1 102.2 103.0 101.2 100.7 11 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0	6 105-1 7 106-2 7 103-9 7 100-6 1 99-6 7 99-8
160 72.3 77.0 02.4 84.2 84.4 86.6 89.0 91.7 92.8 95.2 95.8 96.7 97.3 99.0 99.6 100.7 103.6 10 200 70.2 80.8 85.4 87.5 89.2 89.8 93.0 94.6 96.5 98.2 99.0 100.0 101.8 102.1 103.2 103.3 104.2 10 250 73.0 82.8 86.4 87.5 89.2 89.8 93.0 94.6 96.5 98.2 99.0 100.0 101.8 102.1 102.3 103.3 104.2 10 250 73.6 70.2 03.6 86.8 88.6 90.4 92.4 93.8 93.7 94.0 96.2 96.8 98.1 102.1 102.3 103.0 101.2 100.7 10 215 73.6 70.2 03.6 86.8 88.6 90.4 92.4 93.8 93.7 94.0 96.2 96.8 98.1 98.8 101.0 100.2 100.4 10 22.9 70.6 84.1 86.1 87.6 89.7 90.8 93.6 94.5 94.9 99.2 101.3 101.1 102.4 104.0 100.2 100.4 10 500 73.0 78.6 83.8 87.2 69.5 90.8 93.6 94.5 94.9 95.5 97.1 99.4 99.9 101.7 102.4 98.6 99.7 11 500 70.3 78.7 82.0 85.2 88.6 89.4 90.8 91.5 94.9 95.5 97.1 99.4 99.9 101.7 102.4 98.6 99.7 98.0 90.8 93.8 96.1 98.2 98.5 99.2 100.5 97.6 97.1 100.9 101.5 98.9 98.5 98.0 69.7 77.2 81.3 24.3 86.9 69.2 90.7 91.4 93.0 93.8 96.1 98.2 98.5 99.2 100.5 97.6 97.1 100.9 101.5 98.9 98.5 98.1 125.0 65.9 73.7 78.4 82.0 84.9 88.0 89.1 90.9 92.8 93.1 93.0 94.6 96.8 97.8 99.0 96.0 94.7 125.0 65.9 73.7 78.4 82.0 84.9 86.5 88.7 89.7 91.1 92.3 94.0 95.4 95.3 96.6 97.2 93.9 96.0 96.0 74.7 92.0 96.0 96.0 72.0 96.0 96.0 97.0 96.0 97.0 96.0 97.0 96.0 97.0 96.0 97.0 96.0 97.0 96.0 97.0 96.0 97.0 96.0 97.0 96.0 97.0 96.0 97.0 96.0 97.0 96.0 97.0 96.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97	7 106.2 7 103.9 7 100.6 1 99.6 7 99.8 9 99.8
160 72.3 77.9 C2.4 86.2 86.4 86.6 89.0 91.7 92.8 95.2 95.8 96.7 97.3 97.0 97.4 100-7 103.6 16 200 70.2 80.8 85.4 87.5 89.2 99.2 99.2 99.0 100.0 101.8 102.1 103.2 103.3 104.2 12 250 73.0 02.8 86.9 89.5 91.4 91.3 94.0 95.5 96.8 98.0 99.8 100.5 102.1 102.3 103.0 101.2 100.7 10 315 73.6 79.2 03.6 86.8 88.6 90.4 92.4 93.8 93.7 94.0 99.8 100.5 102.1 102.3 103.0 101.2 100.7 10 315 73.6 79.2 03.6 86.1 88.6 90.4 92.4 93.8 93.7 94.0 99.8 100.5 102.1 102.3 103.0 101.2 100.7 10 315 73.6 79.2 03.6 86.1 88.5 90.4 92.4 93.8 93.7 94.0 99.2 90.2 90.3 90.1 102.3 102.1 102.4 104.0 100.3 104.5 103.0 70.3 76.7 82.0 85.2 88.6 89.4 90.8 93.5 94.5 94.9 95.5 97.1 99.4 99.9 101.7 102.4 98.6 99.7 10.3 70.7 77.2 81.3 24.3 86.9 89.4 90.8 91.5 94.8 96.5 97.6 97.6 97.6 10.7 100.9 101.5 98.9 98.5 98.0 80.0 69.7 77.2 81.3 24.3 86.9 89.2 90.7 91.4 93.0 93.8 96.1 98.2 98.5 99.2 100.5 97.6 97.1 99.0 98.2 90.7 91.4 93.0 93.8 96.1 98.2 98.5 97.2 100.5 97.6 97.1 99.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0	7 103.9 7 100.6 1 99.6 7 99.8 9 99.8
200 70.2 80.8 85.4 87.5 89.2 89.6 93.0 94.6 95.5 98.2 99.0 100.0 101.8 102.1 103.2 1	7 100.6 1 99.6 7 99.8 9 99.8
250 73.0 62.8 86.9 89.5 91.4 91.3 94.0 95.5 96.6 98.0 99.8 100.5 102.1 102.3 103.0 101.2 100.7 11 91.5 73.6 79.2 103.6 86.8 86.6 90.4 92.4 93.8 93.7 94.0 96.2 96.8 96.1 98.8 101.0 100.2 100.4 104.0 100.3 103.0 72.9 79.6 84.1 86.1 87.6 89.7 90.8 93.6 94.5 94.9 97.2 99.2 101.3 101.1 102.4 104.0 100.3 100.8 11 90.0 70.0 73.0 78.8 83.8 87.2 89.8 93.6 94.5 94.9 95.5 97.1 99.4 99.9 101.7 102.4 98.5 99.7 103.0 70.3 78.7 82.0 85.2 88.6 89.4 90.8 91.5 94.8 95.5 97.1 99.4 99.9 101.7 102.4 98.5 99.7 100.0 69.7 77.2 81.3 84.3 86.9 89.4 90.8 91.5 93.8 96.0 97.6 99.6 100.7 100.5 98.9 98.5 90.7 91.4 93.0 93.8 96.1 98.2 98.5 99.2 100.5 97.6 97.1 90.0 68.2 75.7 79.9 83.9 85.6 88.0 89.1 90.9 92.5 93.1 95.0 96.6 96.8 97.8 97.0 97.0 97.1 1250 65.9 73.7 78.4 82.0 84.9 86.5 88.7 89.7 79.1 92.0 93.8 96.6 95.4 95.3 96.6 97.2 93.9 92.7 1250 66.7 72.7 78.4 81.1 83.5 85.8 87.4 88.7 89.7 79.1 92.0 92.9 97.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94	1 99.6 7 99.8 9 99.8
315 73.6 79.2 03.6 86.8 88.6 90.4 92.4 93.6 93.7 94.0 96.2 96.8 98.1 98.8 101.0 100.2 100.4 10 400 72.9 79.6 86.1 86.1 87.6 89.7 90.8 93.6 93.7 94.0 96.2 96.8 98.1 1 02.4 104.0 100.3 100.8 1 500 73.0 78.8 83.8 87.2 69.5 90.8 93.6 94.5 94.9 95.5 97.1 99.4 99.9 101.7 102.4 98.6 99.7 11 630 70.3 76.7 82.0 85.2 88.6 69.4 90.8 91.5 93.8 96.0 97.6 97.6 100.7 100.9 101.5 98.9 98.5 9 600 69.7 77.2 81.3 84.3 86.9 89.2 90.7 91.4 93.0 93.8 96.1 98.5 99.2 100.5 97.6 97.6 97.6 100.7 100.9 101.5 97.6 97.1 100.0 68.2 75.7 79.9 83.9 85.6 88.0 89.2 90.7 91.4 93.0 93.8 96.1 98.5 99.2 100.5 97.6 97.6 97.6 100.0 68.2 75.7 78.4 82.0 84.9 86.5 88.7 89.7 101.1 92.3 94.6 96.8 97.8 99.0 95.0 94.7 1250 65.9 73.7 78.4 82.0 84.9 86.5 88.7 89.7 11.1 92.3 94.6 95.4 95.3 96.6 97.2 93.9 92.9 92.9 100.0 66.7 72.7 78.4 82.0 85.8 87.4 88.7 89.7 90.0 92.0 92.9 94.8 94.8 94.8 94.8 95.4 92.1 90.8 92.0 66.7 72.7 78.4 82.3 85.1 83.5 85.8 87.1 88.7 90.0 92.0 92.0 92.9 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94	7 99.8 9 99.8
\$100 70.3 78.7 82.0 85.2 88.6 99.4 90.8 91.5 93.8 96.0 97.5 97.1 99.4 99.9 101.7 102.4 98.6 99.7 11 60.0 70.3 78.7 82.0 85.2 88.6 194.4 90.8 91.5 93.8 96.0 97.6 97.6 100.7 100.9 101.5 98.9 98.5 90.0 69.7 77.2 81.3 84.3 86.9 89.2 90.7 91.5 93.8 96.0 97.6 97.6 100.7 100.9 101.5 98.9 98.5 90.0 68.2 75.7 79.9 83.9 85.6 88.0 89.1 90.9 92.5 93.1 95.0 96.6 96.8 97.8 99.0 95.0 97.6 97.1 1250 65.9 73.7 78.4 82.0 84.9 86.5 88.7 89.7 11.1 92.3 94.0 95.4 95.3 96.6 97.2 93.9 95.0 96.7 100.0 66.7 72.7 78.4 82.0 84.9 86.5 88.7 89.7 90.0 92.0 92.9 94.8 94.8 94.8 94.8 94.8 95.4 92.1 90.8 92.0 66.7 72.7 78.4 82.8 85.1 83.5 85.8 87.4 88.7 90.0 92.0 92.0 92.9 94.8 94.8 94.8 94.8 95.4 92.1 90.8 92.0 66.7 77.7 82.3 85.1 83.7 85.8 87.1 88.7 89.6 90.4 92.3 93.7 93.4 93.7 94.4 94.7 94.1 94.1 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8	9 99-B
630 70.3 78.7 82.0 85.2 88.6 89.4 90.8 91.5 93.8 96.0 97.6 99.6 100.7 100.9 101.5 98.9 98.5 98.0 80.0 69.7 77.2 81.3 86.3 86.9 89.2 90.7 91.4 93.0 93.8 96.0 97.6 99.6 100.7 100.9 101.5 97.6 97.1 91.0 88.2 75.7 79.9 83.9 85.6 89.2 90.7 91.4 93.0 93.8 96.0 98.6 96.8 97.8 99.2 100.5 97.6 97.1 91.0 88.2 75.7 78.4 82.0 84.9 86.5 88.7 89.7 91.1 92.3 94.6 95.4 95.3 96.6 97.2 93.9 92.7 91.6 90.0 68.7 77.9 82.3 85.1 83.7 85.8 87.4 88.7 89.7 91.1 92.3 94.6 95.4 95.3 96.6 97.2 93.9 92.7 91.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0 92	
800 69,7 77.2 81.3 84.3 86.9 89.2 90.7 91.4 93.0 93.8 96.1 98.2 98.5 99.2 100.5 97.6 97.1 9 100.0 68.2 75.7 79.9 83.9 85.6 88.0 89.1 90.9 92.5 93.1 95.0 96.6 96.8 97.8 99.0 95.0 94.7 9 1250 65.9 73.7 78.4 82.0 84.9 86.5 88.7 89.7 91.1 92.3 94.0 95.4 95.3 96.6 97.2 93.9 92.7 160.0 66.7 72.7 78.4 82.0 84.9 86.5 88.7 89.7 91.1 92.3 94.0 95.4 95.3 96.6 97.2 93.9 92.7 160.0 66.7 72.7 78.4 81.1 83.5 85.8 87.4 85.7 90.0 92.9 94.8 94.8 94.8 94.8 94.8 95.4 92.1 90.8 92.0 68.7 77.9 82.3 85.1 83.7 85.8 87.1 88.4 89.6 90.4 92.3 93.7 93.4 93.7 94.1 94.1 90.4 88.9 1 2500 68.3 76.0 81.1 80.9 94.4 85.5 87.2 88.2 89.6 89.9 91.9 93.0 92.8 92.9 93.2 93.0 87.6 8 150.0 66.2 74.3 78.3 81.1 83.1 85.7 87.2 88.2 89.6 89.9 91.9 93.0 92.2 92.3 92.2 92.0 91.7 87.1 85.7 84.0 97.0 97.0 80.0 80.0 85.3 86.3 87.0 87.5 88.5 90.4 92.1 93.0 93.8 96.0 94.9 93.5 91.9 86.9 85.2 1 50.0 93.4 93.9 93.9 93.9 93.9 93.9 93.9 93.9	.5 97.8
1000 58.2 73.7 79.9 83.9 85.6 88.0 89.1 90.9 92.5 93.1 95.0 96.6 96.8 97.8 99.0 95.0 94.7 9 1250 55.9 73.7 78.4 82.0 84.9 86.5 88.7 89.7 91.1 92.3 94.0 95.4 95.6 97.2 93.9 92.7 9 16.0 66.7 72.7 78.4 81.1 83.5 85.8 87.4 85.7 90.0 92.0 92.0 92.0 94.8 94.8 94.8 95.4 92.1 90.8 92.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93	
1250 65-9 73.7 78.4 82.0 84.9 86.5 88.7 89.7 91.1 92.3 94.0 95.4 95.3 96.6 97.2 93.9 92.7 91.0 1600 64.7 72.7 78.4 81.1 83.5 85.8 87.4 85.7 90.0 92.0 92.0 92.0 94.8 94.8 94.8 95.4 92.1 90.8 92.0 68.7 77.9 82.3 85.1 83.7 85.8 87.1 88.4 89.6 90.4 92.3 93.7 93.4 93.4 93.7 94.1 90.4 88.9 1 2500 68.3 76.8 81.1 80.9 64.4 85.5 87.2 88.2 89.6 89.9 91.9 93.0 92.8 92.9 93.2 89.0 87.6 83.150 66.2 74.3 78.3 81.1 83.1 85.7 87.3 88.6 90.0 90.9 92.2 93.3 92.2 92.0 91.7 87.1 85.7 8 90.0 90.9 92.2 93.3 92.2 92.0 91.7 87.1 85.7 8 90.0 90.9 93.0 93.0 93.8 96.0 94.9 93.5 91.9 86.9 85.2 8000 90.0 83.3 86.3 87.0 87.5 88.5 90.4 92.1 93.0 93.8 96.0 94.9 93.5 91.9 86.9 85.2 8000 93.4 92.7 87.3 88.6 90.8 90.9 93.8 95.7 93.9 92.3 85.7 83.8 85.7 83.8 85.7 87.8 88.7 90.8 93.2 92.3 93.9 92.3 93.9 92.8 93.9 92.3 93.9 92.9 92	-3 95.7
1600 6447 7247 784 8141 8345 6548 8744 8847 9040 9240 9249 9448 9448 9448 9544 9241 9048 92000 6847 7749 8243 6541 8347 8548 8741 8844 8946 9044 9243 9347 9449 9448 9448 9448 9448 9448 9448 94	
1600 66-7 72-7 78.4 81.1 83.5 85.8 87-4 88-7 90:0 92.0 92.9 94.8 94.8 94.8 95.4 92-1 90.8 9 2000 68-7 77.9 82.3 85.1 83-7 85.8 87-1 88-4 89-6 90-4 92.3 93.7 93.4 93.7 94.4 95.7 94-1 90.4 88-9 9 2500 68.3 76.0 81.1 80.9 04.4 85.5 87.2 88.2 89.6 89.9 91.9 93.0 92.8 92.9 93.2 93.4 93.4 95.7 87.1 85.7 8 93.5 93.5 93.6 93.9 93.0 93.8 93.9 93.0 93.7 93.4 93.5 93.7 93.2 89.6 93.9 93.0 93.8 93.9 93.0 93.7 93.8 93.9 93.0 93.7 93.8 93.9 93.0 93.8 93.5 93.8 93.8 93.8 93.8 93.8 93.8 93.8 93.8	88.7
2500 68-3 76.0 81.1 80.9 84.4 85.5 87.2 88.2 89.6 89.9 91.9 93.0 92.8 92.9 93.2 89.0 87.6 8 3150 66.2 74.3 8.3 81.1 83.1 85.7 87.3 88.6 90.0 90.9 92.2 93.3 92.2 92.0 91.7 87.1 85.7 8 4000 70.0 80.0 83.3 86.3 87.0 87.5 88.5 90.4 92.1 93.0 93.8 90.0 94.9 93.5 91.7 87.1 85.7 8 5000 53.4 73.9 79.1 81.4 83.4 85.0 86.6 88.7 91.2 92.3 93.8 95.5 74.1 93.9 92.3 85.7 83.7 83.6 93.0 93.9 92.3 93.9 92.3 93.9 92.3 85.7 83.7 83.7 83.8 93.2 94.7 93.5 93.7 92.3 85.7 83.7 83.7 83.8 93.2 94.7 93.5 93.7 92.3 85.7 83.7 83.7 83.8 93.2 94.7 93.5 93.7 92.3 83.5 83.7 83.7 83.8 93.2 94.7 93.5 93.7 92.3 83.5 83.7 83.7 83.8 93.0 93.8 93.5 94.1 93.5 93.7 92.3 83.6 93.8 93.2 94.7 93.5 93.7 92.3 83.7 83.7 83.8 93.2 94.7 93.5 93.7 92.3 83.7 83.8 93.2 94.7 93.5 93.7 92.3 83.7 83.7 83.8 93.2 94.7 93.5 93.7 92.3 83.7 83.8 93.2 94.7 93.5 93.5 93.5 93.5 93.5 93.5 93.5 93.5	.1 B5.6
3150 66.2 74.3 78.3 81.1 83.1 85.7 87.3 88.6 90.0 90.9 92.2 93.3 92.2 92.0 91.7 87.1 85.7 8 4000 70.0 80.0 83.3 86.3 87.0 87.5 88.5 90.4 92.1 93.0 93.8 96.0 94.9 93.5 91.9 86.9 86.2 9 85.2 9 85.0 93.4 93.9 92.3 93.8 95.5 94.1 93.9 92.3 85.7 83.7 92.3 93.8 95.5 94.1 93.9 92.3 85.7 83.7 92.3 85.7 83.7 92.3 85.7 83.7 92.3 85.7 83.7 92.3 85.7 83.7 92.3 93.8 93.5 93.5 93.5 93.7 92.3 85.7 83.7 92.3 93.8 93.5 93.5 93.5 93.7 92.3 85.7 83.7 92.3 93.8 93.5 93.5 93.5 93.5 93.5 93.7 92.3 85.1 82.7 92.3 93.5 93.5 93.7 92.3 85.1 82.7 92.3 93.5 93.5 93.5 93.5 93.5 93.5 93.5 93	.3 83.2
3150 66.2 74.3 78.3 81.1 83.1 85.7 87.3 88.6 90.0 90.9 92.2 93.3 92.2 92.0 91.7 87.1 85.7 4 4000 70.0 80.0 83.3 86.3 87.0 87.5 88.5 90.4 92.1 93.0 93.8 96.0 94.9 93.5 91.9 86.9 85.2 1 5000 53.4 73.9 79.1 81.4 83.4 85.0 86.6 88.7 91.2 92.3 93.8 95.5 94.1 93.9 92.3 85.7 83.7 1 6300 59.9 72.5 77.7 80.5 81.6 83.3 84.7 87.3 89.6 90.8 93.2 94.7 93.5 93.7 92.3 85.1 82.7 1	6 81.3
5000 53.4 73.9 79.1 81.4 83.4 85.0 86.6 88.7 91.2 92.3 93.8 95.5 94.1 93.9 92.3 85.7 83.7 1 6300 59.9 72.5 77.7 80.5 81.6 83.3 84.7 87.3 89.6 90.8 93.2 94.7 93.5 93.7 92.3 85.1 82.7 1	0 79.8
5000 53.4 73.9 79.1 81.4 83.4 85.0 86.6 88.7 91.2 92.3 93.8 95.5 94.1 93.9 92.3 85.7 83.7 4 6300 59.9 72.5 77.7 80.5 81.6 83.3 84.7 87.3 89.6 90.8 93.2 94.7 93.5 93.7 92.3 85.1 82.7 1	7 79.5
635C 5949 7245 7747 80.5 81.6 83.3 8447 87.3 89.6 90.8 93.2 94.7 93.5 93.7 92.3 85.1 82.7 P	.3 77.9
	.2 76.1
8000 \$5.2 69.2 75.6 79.1 60.1 80.5 82.5 85.5 87.9 88.7 91.8 93.0 91.3 92.1 90.7 83.9 81.1 4	8 74.4
	.2 72.3
CASEL 83.3 91.1 95.4 98.1 99.9 101.2 103.1 104.6 105.2 107.1 108.5 110.3 110.6 111.4 112.4 110.6 111.4 11	.6 11Z.9
PRLT 95.6 105.1 108.7 111.7 112.7 112.6 114.0 115.7 117.4 118.3 119.8 122.0 121.1 121.0 121.2 117.9 118.5 1	
PNL 93-9 103-1 107-2 110-0 111-4 112-6 114-0 115-7 117-4 118-3 119-8 121-5 121-1 121-0 121-2 117-9 117-9 11	4 117.0
ba 79.6 88.2 92.5 95.3 97.0 98.5 100.2 101.6 103.3 104.2 106.0 107.7 107.7 108.2 108.8 105.7 105.4 10	
BAND 20 20 20 20 26 24 24 24 24 24 10 24 24 24 24 2	4 5
FCORP 1-7 1-9 1-5 1-7 1-3 0-0 0-0 0-0 0-0 0-0 0-0 0-5 0-0 0-0 0-0	

PNLT (INTEGRATED) = 131.52

2266 H7147 JTOC-109 QUIET ENGINE 1 CONF B TRTD CONT BH HH T/P FAR FIELD

ENGINE HOTEL ENGINE NUMBER	= J12D -00 = 375054	TERPERATURE	=	49.0 F	INLET TEMP TIME OF DAY BARM. PRESSURE	= 48.00 F = 911 = 29.81 IN. HG.
STAND DATE	= X-314 = C5/C7/74	HUNIDITY	=	57.0 PER CT.	WIND DIRECTION WIND VELOCITY	= N = 8 HPH
7411	- 03/51/14	OBSERVED RPH CORRECTED RPH	<u></u>	7150 7226		

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.

1/3 CCT									oue it	iriet i	IN DEGF									
FREQUENCY (HZ)	r	10	20	36	40	50	60	70	DO DO		95	100	105	116	115	126	130	135	148	150
7002 0	•		20	30	70	20	-	,,,	45	,,,,										
50	05.9	85.7	86.1	87.9	88.4	89.1	89.B	50.8	91.7	92.5	93.4	93.9	95.2	95.6	96.B				107.1	
63	85.B	86.6	87.9	86.5	88.9	89.2	89.8	90-8	91.8	93.1	93.7	\$4.5	95.7	96.0					107.7	
80	67.1	88.4	69.0	89.1	69.1	£9.5	69.6	90.3	91.4	91.8	92.9	93.3	95.1	95. L	96.0				165-2	
100	100.0	20.1	87.2	87.2	67.5	87.6	67.6	B7.5	88.6	86.9	90.4	90.2	91.9	91.7					102-4	
125	po.1	80.2	86.4	87.8	87.1	87.3	67.2	87.5	88.1	89.9	91.5	92,0	93.3		96.3				169.5	
160	77.8	89.7	89.9	91.3	91.0	91.5	91.4	92.2	93.5	95.8	97.0	98.1	99.1	100.2	102.2	104.3	108.9	110.5	113.2	114.6
200	88.4	89.2	92.7	93.9	93.4	93.9	93.5	95.4	97.0	99.2	100.8	101.9	103.2	104.B	146.4	107.4	110.8	111.7	113.2	112.9
250	70-0	91.5	94.5	95.B	95.2	95.B	95.1	96.7	98.3	99.5	101.4	102.3	104.0	105.3	106.5	105.9	107.9	100.7	109-3	109.4
315	-2-4	91.1	91.5	93.2	93.6	93.8	95.2	96.7	96.6	96.1	98.0	98.2	99.8	106.7	102.8	104.6	100-5	107.4	108-9	168.7
490	92.2	90.6	91.7	92.9	92.7	93.0	93.7	94.5		98.5	100.0	101.5	103.3	104.6	106-0	107-1	106.0	108.5	108.9	108.5
569	97.E	90.9	91.3	93.3	93.7	95.4	95.0	96.8	77.0	98.1	99.7	100.7	102.4	103.3	104.B	104.9	105.6	106.6	107-5	105-5
639	69.6	80.3	70.8	91.5	92.4	93.1	94.1	94.9	94.7	96.7		99.7	101.5	102.9	103.8	104.5	105.7	106-1	Iun./	107.0
873	87.B	68.5	89.5	90.7	91.3	91.9	92-8	94.1	93.9	95,6	97-3		100.1							
1000	86.1	87.5	88.1	69.4	90,2	90.9	91.4	93.0		95.3			99.5							
1250	84.7	B6.0	66.9	08.3	89.1	90.0	90.8	92.2							98-3		100-5		99.6	
1600	84.3	R5.3	86,2	87.9	88.3	89.3	90.2	91.5			95.0			97.4	97.0		96.B	98+2	97.7	
2000	96.5	90.4	90.3	92.9	91.5	90.B	90.1	90.9			94.3			96.5	96.7	96.3	97.1	96.6	95.8	
25 0 G	97.2	¢1.1	90•€	90.6	98.7	89.1	89.6	90.8			94.1	94.3	95.4	95.B		95.2	95.7		94-5	
3150	91,9		95.0	91.3	89.5			91.5			94.6			96.0		94.5	94.6		93.3	
4000	94-1		94.6	95.6			92.3	93.2		95.7		97-1	98-4	98.7	97.1	95.4	94.4		92.9	
FGOD	90.0		96.5	91.4	69.0	89.4	89.7	91.1	92.7		96.6			98.5	97.3	95.9	94.0	93.1	92.1	89.6
6300	89.1		69.2				88.3	89.7		93.6				97.9	96.8	95.8	93.5	92.6	91.1	
800%	P8 • 1		58.3	69.3	87.5	87.2		B7.6						95.9	94.9	93.9	92.4		90.3	
10000	66.1	66.5	86.3	87.5	85.3	84.9	84.4	85.4	86.5	89.8	90.7	92.B	94.5	95.D	94.0	92.8	91.7	90-7	89.5	80.7
DASPL	103.7	103.5	104-1	105.3	104.8	105.2	105.4	106.6	107.4	169-0	110-6	111.4	112.9	113.9	114.9	115.5	117.8	118.6	120-4	121.6
PNLT	118-1	118-4	116_8	119.9	118-6	118-1	117-1	118.2	118.9	120.7	122.1	122-6	124.0	124.6	124.3	124.1	125.2	125.7	126.5	126.7
PNL	117.6	117.2	117.4	110.5	117.3	117.1	117-1	118.2	118.9	120.7	122.1	122.6	124.0	124.6	124-3	124-1	125-2	125+7	126.5	126.1
DBA	102.0	102.0	105-1	103.3	102.4	102.6	102.9	104.1	104.6	106.4	107.9	108.7	110-1	110.9	111.2	111.4	112.6	112.9	113.4	113.2
BAND	20	28	20	20	20	20	24	24	24	24	24	24	24	24	24	24	24	24	24	5
TCOPE	1.1			1.4						0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5

TABLE A-66

2268 H7147 JT80-109 QUIFT ENGINE 1 CONF B TRTD CONT BH HH T/P FAR FIELD

CONDITION = 7226
ALTITUDE = 260. FT SIGELINE

1/3 FCT FREQUENCY								i renei	PONE AS	ictes 1	IN DEGI	ees.							
(HZ)	12	20	30	40	50	6ú	70	80	90	95	100	165	110	115	120	17.0	135	140	150
17.4.7	•		-				•••												
56	67.9	74.2	79.4	82.C	84.3	66.0	87.B	89.1	90.0	90.9	91.3	92.4	92.6		93.7			100.7	
63	65.8	76.0	BC.O	82.5	84.4	86.0	87.B	89.2	96.6	91.2	91.9	92.9	93.0		93.6	97.0		101.3	
BG	70.6	77.7	85.5	82.7	84.7	85. B	67.3	88.8	89.3	90.4	90.7	92.3	92.1	92.6	92.5	95.0	96.8	98.8	
100	70.2	75.3	78.6	81.1	82.B	8.68	84.4	66.0	84.4		87.6	89-1	86.6	. 89.5	89•3		94.1	75.0	97-2
125	73.3	74.5	79.2	80.7	82.5	83.4	84.4	85.5	87.4	87.0	87.4		91.1		94.7			103.1	
160	71.7	78.0	82.7	84.6	£6.7	87.6	89-1	90.9	93.3	94.5	95.5	96.3			100.5				
200	71.1	60.7	65.3	87.0	89.0	89.7	92.3	94.3	96.7	98.3	97-2	100.4	101-7	103.0	103.6	105.9	106.1	106.6	104.3
250	73.4	B2.5	87.2	88.8	90.9	91.3	93.6	95.6	97.0	96.8	99.6	101.2	102.2	103.1	103-1	103.0	103-L	102-9	100.0
315	72.8	79.4	84.5	87.2	88.0	91.4	93.1	93.9	°3-6	95 . 4					140.2				
460	72.7	70.6	64.2	86.2	28-1	64-4	91.4	92.5	96.0	97.4					103.3				
500	72.3	79.1		67.2	70.5	91.2	93.7	94.3	95.6	97.1	98.0				101.1				99.B
63C	70-5	78.5	82.7	85.9	88.2		918	92.0	94.1	95.7	97.0				106.7				98.2
830	69-4	77.1	81.8	84.7	86.9	· 88.9	91.0	91.2	93.0	94.7	95.5				98.9	99.5		96.3	95-6
fene	49.0	75.5	50 . 4	83.6	85.9	87.9	89.B	90.6	92.7	94.3	95.0		96=9	96.3		97.5	76.5	95.7	92.1
1250	66.1	74+1	79.2	62.4	84-9	86.4	89.0	8e-8	91.6	93.0	93.6			94.8		95.4	94.2	93.1	88.9
1600	64-7	72 •1	76.7	81.5	84.2	86.2	86.3	88,7	90.6	92.3	92.6					93.7	92.3		8549
5000	69.0	76.9	23.5	64-6	85.6	86.1	87.6	88.4	90+2	91.6	71.9			93.1		91.9	90.6		83.5
2500	68.8	76.0	80.9	81-1	93.E	85.5	87.5	88.3	89.9	91.3	91.4			91.7			69+2		91-6
3150	66.5	75.6	01.3	82.2	3.63	65.0	88-1	89.0	90-7	91.B	91-7				90.3	87-1	87.7		
4000	69.3	79.5	85-2	86.0		37.9	89.7		92.8	94.2						88.7		85.3	20-0
5070	64.0	74.9	80.7	82-1		85-3	87.5		92-2	93.6			.94.9			88.2			
6300	63.4	77.06	79+3	80.6	62.6	83.7	86-7	87.7	90.5	91.9		93.8						83.0	77-5
8000	55.7	7ú•ú	77-1	78.8	80.7		83.4	85.7				92.6							
10000	48.3	65.6	73.9	75.7	77.8	79+0	81.1	B2.E	86.3	87-1	89-1	76.5	90.7	59.2	E7-4	B4.6	82.5	79.9	72-8
OASPL	63-4	91.1	96.0	98.1	100.1	7.77.5	103.5	304-6	106.4	167-9	108-7	110.0	110-6	111.4	111.7	112.9	213.2	113.9	112-9
PNLT	94.9	164.4	109.9	111.3	112.7	112.9	114.E	314-D	117.4	119.3	119.7	120.9	121.2	120-6	120-1	120.1	319.5	119.8	117.7
PNL	93.6	169.5	109.5	116.0	111.4	317-9	114.8	116-0	117.9	119.3	119.7	120.9	121.2	125.6	125.1	120-1	119.8	119.8	117.Z
ORA	70.8	86.2	93.5	95.4	97.3	95.6	100.8	101.7	103.7	105.2	105.€	167.1	107.6	107.6	107-5	107.6	107-2	106-9	104.4
BAND	20	20	Žù	20:	20	24	24	24	24	- 24	24	24	. 24	24	24	24	24	24	. 5
BAND. TCORR	55						0.0												0.5
ILUKK	1.0	1+4	407	143	. 147	U.U	u.u	. 0.0	520	2.0	0.00	9.0	4-0					-	

PNLT (INTEGRATED) = 131.63

2269 H7152 CONF C ANTI RENGEST TUBE HM T/P FAR FIELD

FNGINE MODEL ENGINE NUMBER	= J780 ←00 = 375054	TFHPERATURE		64.0 F	INLET TEMP TIME OF DAY	± 60.00 F = 1056
STAND DATE	= x-314 = 05/14/74	HUHIDITY		43.0 PER CT.	BARH. PRESSURE WIND DIRECTION WIND VELOCITY	= 30.05 IN. HG. = 5 = 5 HPH
		OBSERVED RPH CORRECTED RPM	# #	5205 5199	#### VEEDUSTI	- 2 656

FAA PART 36 REFFRENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.

1/3 CCT																				
FREQUENCY							1	11 CROP	IDNE A	(GLFS)	IN DEGR	REES								
(HZ}	0	Iù	2ù	30	40	50	60	70	80	90	95	100	105	110	115	120	130	135	140	150
F.0																_				
50	78.3		77.7		79.3	79.0		79.6	81.1	82.3	82.6			B5.4		86.7	88.3	90.B	92.3	95.5
63	76 -8	77.3	78-9	7862	80.0	78.8	80.1	79.2	80.7	81.7	81.9	82.9	83.7	84.7	85.2	85.8	67.1	89.3	91.2	92.3
80	76.5		77.7	77.5	77.6	77.7	78.5	77.2	78.6	79.6	79.5	86.4	81.4	B2+0	51.5	82.3	82.7	84.B	80.1	87.U
100	77.1	76.4	75.4	75-9	74.9	74.8	76.4	74.0	74.3	75.6	75.U	75.9	76.2	77.5	77.4	80.2	80.9	53.9	64.6	87.Z
125	79.6		75.8	75.9	75.1	75.4	74.3	74.7	76.4	77.7	79.1	79.7	8,,8	82.4	84.0	86.0	88.0	89.9	90.5	91.7
160	83.0		70.3	79.5	78.0	79.6	80.7	79.6	82.4	83.4	85.5	85.8	67-8	50.4	90.2	91.3	92.6	93.3	94.1	92.3
500	81 . 8		79.1	8,08	81.3	82.6	81.9	82.2	84.1	85.9	87.7	88-4	90.4	91.3	92.6	93.0	93.9		93.7	89-3
250	51.1	78.6	77.9	79.3	79.8	79.9	79.9	81.0	82.3	83-9	84.7	85.8	87.1	87.8	8-4	89.0	89-1	88.5	88.3	65 e U
315	60.1	77.6	77.2	77. L	70.0	77.B	79.5	80.1	80.3	81.2	82.3	82.8		85.3	67.2	89.0	90.1	69.6	89-2	84-7
400	81_0	79.3	78.0	78.6	77.6	77.2	78.0	78.6	85.6	83.5	85.4	86.3		90.0	90.2	90.9	89-7	88.2	87.2	83.2
500	81.7	80.0	79.1	78. ú	77.9	78.3	78.6	80.6	81.2	82.0	83.4	84.6	86.0	87.4	88.8	90.4	89.5	88-1	67.2	83-3
630	83-1	81.6	79.6	78.5	77.3	77.9	78.3	79.3	80.4	82.6	24-1	85.8	87.5	88.7	89.5	90.0	87.9	85.9	85.4	80.8
800	04.5	£2.5	80.2	78.6	78.0	77.8	78.7	79.9	80.7	82.7	84.3	85.5		88-1	88.9	69.3	87.5	85.9	85.0	80.2
1000	86.7	83.4	81.1	80.8	78.5	77.6	77.9	79.0	80.2	82.5	83.6	84.9	86.2	84.3	66.9	87.4	85.5	84-5	83.5	79.0
1250	84.9	83.0	80.6	61.4	76.8	76.5	76.5	77-1	78.3	80-2	81.4	82.6		84.2	85.Ú	86.2	83.7	B2.2	81.5	77.6
1600	87.1	64.4	83.0	79.5	75.3	74.6	75-1	75.8	76.9	78.3	79.9	80.7		82.3	82.9	84.3	81.5	79.9	79.3	75-5
2000	89.4	87.2	84.2	80.9	77.2	74.6	74-9	76.2	77.8	77-1	61.3	62-4	83.6	82.8	82.B	82.7	80.2	75.9	76.6	75.2
2500	91.3	40.2	88.3	84.5	80.I	76.4	76.5	78.0	80.4	83.B	86-4	86.9	87.1	86.9	85.5	85.3	81.3	80.6	80.0	77.3
3150	95.4	95.4	95-3	88.1	84.6			77.4			86.9	88.0		88.1	67.8	87.2	62.5	81.1	79.1	76.9
4000	91.7	90.0	89-0	84-8	79.6			75.6	77.1	79.7	81.0	83-2		85-7	83.C	83.1	79.2	79.7	77.7	74.1
5000	92.2		90-4	85.2			76.4	78.2	83.1	81.1	82.8	83.3	84.1	83.2	83.0	84.0	79.5	78.0	77.4	74.3
6300	96.1	95.0	95.6	70 8	86.0	81.1	79.3	81.3	84.7	87.3	89.0	89.8	90.7	97.3	90.3	91.9	85.5	83.5	82.7	79-3
80D0	92.4	91.2	91.4		83.2	79.3			83.5		87.5	91.3	93-7	93-6	94.9	97.0	90+8	86-5	57.5	83.1
10000	92.3		91.2		82.7	77.2		75-7		£1.0	62.1	84.2		86.5	88.0	90.1	87.8	86.0	84.9	79.C
		• • • •		***-							02.01	U-102	0560	0012	0000	70.01	01.0	6040	6483	1706
DASPL	102.8	101.7	101-4	97.1	94.0	92.0	92-2	92-7	94-6	96-6	6-20	4.00	160,9	10f3	162.6	103-2	101-7	101.6	101.7	100-0
PNLT	118-1	117-7	117.7	112.0	108-9	105-1	103-6	104-5	106-0	100.1	111-9	112.8	114.5	114.3	115.0	114.2	112.2	113.0	110.3	10007
PML	116.8	116-0	115.5	110-B	107-3	104.0	103.6	104.5	104.0	100.1	110.0	111.0	113.3	113 3	112 0	116 7	111 4	110.7	1100.2	10191
.DBA	102.9	101.8	101.5	96-6	02-A	89.4	80.0	00.3	02.3	94.7	06.6	07-0	99.2	11213	11310	11392	111.00			
,,				, .		- /**	27811	7463	7203	784	70.00	7 (40	7706	7703	4401	TOOPE	7163	95.9	7202	7107
BAND	19	19	19	19	19	19	24	24	24	24	19	23	19	23	19	23	23	23	23	23
TCORR	1.3	1.8	2.2	1.2	1.6	1.1	0.0	0.0	0.0	0.0	1.1	0.9	1.3	1.0	1.2	1.1	5.7	0.6	0.6	6.7
-		,						***		74-		707	440	200	***	447	34,	4+0	9.0	~~

 HAXIHUH DASPL = 103.21
 COMPOSITE SPL = 106.01

 MAXIHUH PHLT = 118.12
 COMPOSITE PHL = 118.77

 HAXIHUM PHL = 116.82
 PHLT (INTEGRATED) = 126.40

TABLE A-68

2269 H7152 CONF C ANTI RENGEST TUBE HW T/P FAR FIELD

CONDITION = 5199

ALTITUDE .= 200. FT SIDELINE

1/3 PCT FREQUENCY								HICROP	HOME A	uctes :	TW DEC	DGES							
(HZ.)	10	50	3¢	40	50	60	74	63	90		100	105	110	115	120	130	135	140	150
50	59.6	65.8	70-1	72.9	74.2	76.8	76.6	78.5	79-8	80.1	80-6	81.0	82.4	82.0	82.9	83-5	85.3	85.9	87.0
63	59.5	67.0	69.7	73.6	74.0	76.3	76-2	78-1	79.2						82.0			84-8	
80	59.4	65.8	69.9	71.2	72.9	74.7	74.2	76.0	77.1										
100	58.5	63.5	67.3	66.5	70.0	72.6	70.9	71-7	73.1										
125	59.B	63.9	67.3	48.7	70-6	72.5	71.6									- 03-2			
166	60-1	66-4	70.9	71.6	74.8	74.9			80-9					86.8					
200	58-1	67.1	72.2	74-9	. 77.7	78-1		81.4											
250	60.5	65.9	70.7		75.0		77-9								85.2			81.9	
315	59.3	65.1	68.4	71.6	72.9	75.7	77-0	77.6	78.7										76.0
400	60.9	65.9	69.9	71.1	72.3		75.5		81.0	82.8				86.8					
500	62.2	65.9	69-3	71.4	7/3.4	74-8		78.5								84.6		5v+7	
630	62.8	67.3	69-7	70.B	73.0	74.5		77.7		81.5								78.9	
800	63.4	67.8	69.7	71.4	72.8		76-8												
1000	63.9	68.5	71.0		72.6				79.9			53.3						76-9	
1250	63.1		72.3	70.1		72.6	73.9		77.6			51.2					76.4		68.5
1600	6358	69.9	70.3			71.1						79.3	79-1						
2000	65.8	70.8	71.5	70.3		70-9	72.9					80.6				75.0		71.7	
2500	67.9	74.5	74.8	73.0	71-1							84.0				76.0			
3150	71.8	80.9	78.1	77.3	73.9	74.3			81.7			86.2		84.0		77.3			
4000	66.7	73.9	74.4		70.4	70.4		74-1				3.08			78.7			70-1	
5000	66-3	74 R					74.6					80.8		70.0	79.6	73.7	71 7	69.7	
6370	66.2	79.0	77-5		75-1		77.6			85.9		87.3			87.3				68.5
6006	58.6	73.1	74.9	74.5			76.3			86.2	87.0	90.1			92.0				
10007	53.2			73-1			71.4		77.5		00.5				26.7				
DASPL	77.6	86.1	86.7	86.7	8.48	86.2	89.5	71.7	93.8	95.5	76.4	97-B	95.6	08_3	99-0	- 956	65.7	95-2	92-2
PNLT	94.1	103.2	101.7	101.6	99.6	99.4	201'-1	103.8	104.2	109.0	109 8	111.4	110.7	111.0	111-B	106.5	104.4	167.8	97-3
PNL	92.3	100.9	100.5	100.0	98.5	99.4	101.1	103.8	106.2	108.0	109:0	110-1	109.7	109 B	110-7	105.8	103.7	102-1	96.6
DBA	77.6	36.2	80-1	85-1.	83.9	84.9	86.9	89-3	91.5	93.B	94.8	96-0	95.8	95.8	76.4	91.9	59-8	86-1	81.9
BAND	19	19	19	19	19	24	24	24	24	19	23	19	23	19	23	23	23	23	23
TCORR	1.8	2.2	1.2	1.6	1.1	0-0	0.0	0.0	0.0	1.7	0.9	1.3	1.0			5.7			0.7

PNLT (INTEGRATED) = 119.80

TABLE A-69 2269 H7152 COME C ANTI RENGEST TUBE HW TYP FAR FIELD ENGINE MODEL 1033 30.05 IN. HG. S 5 MPH HURIDITY STAND OBSERVED RPM CORRECTED RPM FAA PAPT 36 REFERENCE DAY CORRECTED SPL IN DS -RADIUS = 150. FT. 1/3 CCT FREQUENCY (HZ) HICREPHONE ANGLES IN DEGREES 70 80 90 95 10 79.1 78.5 76.7 74.0 74.8 80.3 79.6 77.6 77.6 77.6 77.6 77.0 77.0 79.4 777-2 779.4 779.4 779.4 779.5 779 51.8 79.6 74.2 78.9 65.1 87.5 85.5 81.5 77.9 85.1 90.9 93.0 88.8 86.6 91.0 86.4 84.4 90.9 94.0 93.0 87.0 89.4 84.5 81.9 74-93 777-93 777-95-83 777-91-05-65 777-91-05-65 777-91-05-65 823-65 825-65 991-67 91-67 77.199 77.199 77.493 77 60-1 78-1 73-7 75-9 62-2 84-0 62-4 60-5 60-6 81-4 78-5 77-3 81.1 78.5 73.3 77.0 83.7 86.1 83.6 80.8 83.6 82.1 84.5 81.3 75.8 81.5 87.9 90.9 87.5 84.6 89.6 86.9 88.3 58.9 93.2 94.1 89.4 80.6 87.5 90.4 87.1 86.4 85.9 87.5 86.1 140 250 315 420 500 430 82.5 84.9 52.9 83.7 63.4 63.4 70.2 79.1 83.6 84.5 81.8 80.9 87.2 66.7 80.8 68.0 85.9 84.3 82.4 87.0 88.4 83.8 83.7 94.4 87.2 84.0 63.3 85.8 79.5 80.8 86.6 85.6 83.4 82.4 88.6 89.1 84.0 82.4 63.8 87.4 89.9 86.0 84.3 90.8 94.0 78.3 81.0 62.5 79.8 80.6 85.4 84.0 78.9 3150 4000 5700 6960 101.6 110.0 109.4 94.9 DASPL PRET 91.9 92.6 134.9 104.2 103.6 104.2 69.2 90.7 98.0 101.3 102.1 102.5 102.4 117.7 100.5 135.0 107.2 163.9 92.E 89.3 110.2 118.2 PNL

HAXIMUM CASPL = 102.53 MAXIMUM PNL = 116.21 HAXIMUM PNL = 116.39 HAXIMUM DBA = 102.45 COMPOSITE SPL = 105.76 COMPOSITE PNL = 110.77 PNLT (INTEGRATED) = 126.45

TABLE A-70

BAND TCQRR

2269 H7152 CONF C ANTI RENGEST TUBE HW T/P FAR FIELD

CONDITION = 5283

ALTITUDE = 200. FT SIDELINE

23 19 0.8 ·1.5

19 19 23 23 1.1 1.0 1.1 1.1

1/3 DCT									RUE AL		IN DEGR	CCC								
FREQUENCY													116	115	120	130	135	140	150	
(HZ)	10	25	30	46	50	60	70	80	90	95	100	105	110	113	120	150	133	TAIL	130	
50	56.9	65.2	67.7	71.8	73.3	75.3	76.4	78.4	79.4	79.5	80 -4				82.3		85.2		86.7	
63	57-1	66.9	68-3	73-1	73.1	74-7	75.8	77.5	78.6	79.3	60.1	81.3	81.5	82-3	81.7	112.4	83.9	84.6	84.1	
80	57.5	64.9	67.2	70.7	72.0	72.9	74.2	75.5	76.0	77.1	76.8	78.9	78.3	79.0	77.7	76.5	79-U	60.0	78-1	
100	56.7	62-5	64.6	67.5	68.8	7û.2	70.5	71-1	70.8	71.7	71.9	73.0	72.7		74.1	76.1	76.4	70.0	77.2	
125	59.2	63.8	66.0	68.5	70.3	71-0	71.3	73.3	74.5	76-4	76.8	78.0	78.4	Bu.C	81-3	83.6	83.4	84.5	82-7	
160	59.0	66.1	75.6	71.9	75.2	76.4	76-5	77.6	81.2	82.6	83.4	84.7	84.8	86.I	87.1	88-1	87.7	87.6	84.0	
200	57.7	67.1	72-2	75.0	77.6	77.5	79.2	81.3	83.6	85.0	85.9	87-6	87.5	88.7	89.2	89.2	68.5	86.6	81.5	
250	60.7	66.1	76.8	73.5	74.9	76.0	78.0	79.7	51.1	81.9	82.5	84.3		85.2	85.0	64.7	83.8	B1.2	77-2,	
315	59.5	65.4	60.3	71.6	73.C	75.8	77-3	77.8	78.3	79.4	77.9	81.3	81.7		85.0		84.0	82.5	76.9	
400	69.9	64.1	69.6	71.0	72.3	74.0	75.5	77.9	81.3	82.3		65.6	86.5			65.7	83.Ç	80.3	75.2	
506	62-4	66-9	69-2	71.3	73.3	74.8	77-5	78.7	79.6	50.3	81.3		83.5	85.2		84.5	82.5	80.7	75.2	
630	62.8	67.5	69.5	71-1	73.1	74.7	76.2	78.0	80-3				B5-2			83-4	80.6	78+5	72.8	
800	63.3	67.9	69-7	71.6	72.8	75.1	76.8	78.2					84.9		65-2		8u.2	77.8	72.3	
1000	63.B	68.2	71.8	72.2	77.6	74.0	75-3	77.6	79.8	80.7			B2.7				78.5	76-3	70.7	
1250	62.9	6E-0	71.9	70.2	71.4	72.6	73.8	75+7		78.2	79.2			81.3		7B.0	76.4		49.4	
1600	63.9	70.4	70.0	68 . 8	69.5	71.2	72.4	74.5		74.8	77.4			79.2	79,6	76.5	74.1	72.1	67.3	
2000	65.8	73.9	71-1	70.5	69.6	71-1	72-8	75.5		75-1		E0.8		79.2	77.7			71 .u	66.7	
2500	68-0	74.7	74.4	72.9	71.2	72.5	74-3	78.1		83.2				82.0		76.0	74.7	72.5	6B-3	
3150.	72.3	81.5	77.8	76.9	73.9	75.0	75-7	79.0	01.7	83.8		8.48		84.4		77.2		73.4	67.6	
4000	64.6	74.3	74.3	73.4	69.0	70.5	72-0	76.8	78.9	80.5	77-9	82.8	80.3	81.1		74-1		70.6	64.4	
\$000	64.4	74.9	74.2	73.0	70-8	72.3	73.8	77.5		79.4					78.4			69.2	44.2	
.6300	66.9	79.4	79.5	78.1	75.0	74.9	77-9	87.2	84.1	85.5	86-4	87.4	87.0	86.4	86-1			74.3	6B.9	
2000	58.8	73.2	74-7		72-7				. 83.5	B5-8	80-0	90.4	70.4	91.0	95.7	84+8	83.9	78.3	71.5	
10000	53.3	70.7	73.4	73.4	69.7	68.7	70.6	75.2	77-3	78,2	E0.8	83-1	82.9	83.6	83.4	81.00	78.0	75.0	66-1	
DASPL		06 6		44.7	0.6 72	97.0	Dn 3	03 n	. 02 8	95.2	06.2	68-0	97_9	98.4	98.4	96.9	95.8	95.0	92.3	
PHLT	06 E	ל כחו	TAR 2	101 2	50 A	100.7	100.8	104.0	11.6.B	ALROY.	110-2	1771-6	110.8	111.2	11G.8	106.9	104.4	102.5	97.7	
PNL	74.7	*1,50	10722	101+5	77.0	TORE	140.6	404.4	104.5	167-7	118.7	110.5	109.8	110.1	109-8	106.2	103.B	101-9	97.1	
DBA	72.0		DE O	95.7	90.0	3300	DE L	10707	21.0	0.5	04.5	24.3	95.0	26.0	45.6	92.3	89.9	87.8	82.b	
DD.	1140	.0040	6347	9342	767	0254	2320			-240	- 100									
BAND	19	19	19	19.	19	19	24	22	. 22	23	19	19.	23	. 23	23	23	Z3.	23	23	
TCCRR		2.3				1.1			4.0	0.8	1.5	1.1	1.0	1.1	1.1	0.7	0.6	0.6	6.7	. "
7								d v 1775			11.71		100		1.0		70 F N 11	100		

PNLT (INTEGRATED) = 119.81

```
TABLE A-71
                                                                                                                                                                                                                    2269 N6706 CONF C ANTI PENGEST TUBE HW T/P HARD FIELD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                INLET TEMP
TIME OF DAY
BARM. PRESSURE
HIND DIRECTION
WIND VFLOCITY
                                                           ENGINE MODEL
ENGINE NUMBER
                                                                                                                                                                                                                                                                                                                                                                              HUMIDITY
                                                                                                                                                                                                                                                                                                                                                                              DESERVED RPM
                                                                                                                                                                                                                                                                                                                                                                              FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.
1/3 OCT
FREQUENCY
(HZ)
                                                                                                                                                                                                                                                                                                                                                                                                             MICROPHONE ANGLES IN DEGREES 130
                                                                                                                                                                                                                                                                                                                                                                             160
                                                                                                                                                                                                                                                                                                                                150
                                                                                                                                                                                                                                                                                                                                                                      84.6 93.8
84.1 91.9
85.0 92.9
85.2 93.1
60.1 94.9
96.4 96.6
93.7 97.8
88.9 97.3
88.2 97.3
88.2 97.3
87.8 97.3
87.8 97.3
87.8 93.5
83.8 93.8
88.6 97.5
88.6 97.5
88.6 97.5
88.6 95.3
84.5 95.3
95.3 101.7
96.0 105.7
                                                                                                                                                                                                                               870-62

970-82

911-27

911-27

911-27

935-40

955-45

975-45

975-46

875-66

875-60

971-1
                                                                                                                                                                                                                                                                               95.5532311.6996.8996.995.995.995.995.996.887.996.823.78887.8887.8887.8887.8887.8867.89887.8867.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.99887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.89887.898887.898887.89887.89887.898887.898887.898887.898887.898887.898887.89888
              1000
1250
1600
2000
2500
3150
4000
        5000
6300
6000
10000
        DASPL
PNLT
PNL
DBA
                                                                                                                                  101-2 111-6 106-0 105-6 105-3 105-9
114-7 125-2 116-1 113-0 111-8 116-1
113-7 124-2 117-1 112-3 111-1 109-3
99-0 116-1 102-9 97-6 95-7 93-5
         BAND
TCORR
                                                                                                     19 19 23 23 23 23 23 1.1 1.0 1.0 0.9 0.7 0.7 0.7
                                                                                                                                                                                                                                                                                                                                                                                   COMPOSITE SPL
COMPOSITE PNL
PNLT (INTEGRATED)
```

2269 H678B CONF C ANTI RENGEST TUBE HW T/P HARD FIELD

CONDITION = 5199

ALTITUDE = 200. FT SIDELINE

1/3 CCT FREQUENCY							TCO ROLL	nuc succes	IN DEGREES
(HZ)	100	90	120	140	150	160	130	DITE MINELS	In Sconces
50	81.4	.02.1	86.1	8941	87.6	88.4	87,7	•	
63	84.4	816	8.48	90-1	8,68	0.88	86.2		
fic	85.Q	82.5	87.4	89.9	57.9	87-1	87.7		
100	85.2	82.8	87.5	89.8	86.8	84.0	88-8		
125	86.7	85.6	87.4	. 8B.9	86.3	81.6	88.4		
160	88.4	83,4	87.9	88.7	85+1	76.9	90,2		
209	89.1	36.2	89.6	8847	83.5	75.0	90.9		
250	87.0	86.4	89.2	66.2	B1-1	73.3	29.0		
315	88.5	R5.3	91.6	86.4	81.1	71.7	88.5		
400	88.4	85.7	91.2	85.1	79.0	72.5	08.0		
500	89.1	85.3	91.4	83.3	78.7	72.7	27-0		•
630	88-2	84.0	90.6	82.3		71.0	85.7		
800	88.0	84.4	6846	80.4		70.5	84.4		4
1000	87.9		86.6	79.3	74.9	68.7	82.7		
1250	24.9	82-1	85.5		72.7		80.3		
1600	83.9	83.2	83.1	75.1	71.6	66.4	78.5		
2000	83.7	80.6	81.5	73.9	70.0	65-1	76.0		
2500	87.2	85.9	84.3	75.7	72+8	67.2	78.6		
3150	89.3	87.0	84.6	76.9	73.2	57.1	79.1		
4000	84-6	61.9	83.0	72-7	49.2	6215	75_B	A SECTION OF	
5000	63.2		81.2		68.5		75.0		1.00
6300		87.2	57.4	75.7	72.8	65.7	80.1		
6000		86.8	92-D	78.1	73.7	65-1	133-4	5.5	
10000		75.4	85.7		67.D	56.3	70.4		
DASPL	101.2	98.5	102.0		96.7		100.0		-
PHLT	114-6	111-9					108.3		
PNL	113.5	110.9	112.7	105.3	101-5	95.7	107.7	10 pt	
DBA	99.2	76.2	98.7	90.7	66.3	B0.2	93.8	2.7	
BAND	19	19	23		23	24	23		
TCCRR	1-1	1.0	1.0	0.7	0.6	0.0	0.7		

PALT (INTEGRATED) = 123.54

TABLE A-72

```
TABLE A-73

ENGINE MODE
ENGINE NUMBE
STAND
```

2269 H7152 JTED-109 CONF C ANTI RENCEST TUBE HARD FIELD

ENGINE MCDEL = JTED -66
ENGINE NUMBER = 374054

TEMPERATURE = 64.0 F

TIME CF DAY

THE CF

MICROPHONE ANGLES IN DEGREES

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.

1/3 PCT
FREQUENCY
(HZ)

50

88.4

63

69.1

60.0

69.3

60.7

10.6

60.0

60.4

60.0

79.7

20.0

93.0

85.8

25.0

91.4

86.0

91.4

86.0

63.0

91.4

86.0

63.0

91.4

86.0

63.0

91.4

86.0

63.0

91.4

86.0

63.0

91.0

63.0

91.0

63.0

63.0

91.0

86.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

 HAXINUM CASPL
 =
 104.75
 COMPOSITE
 SPL

 HAXINUM PNL
 =
 117.66
 COMPOSITE
 SPL

 HAXINUM PNL
 =
 116.61
 PNLT (INTEGRATED)

 HAXINUM DBA
 z
 102.39

TABLE A-74

2269 H7152 JTBD-109 CONF C ANTI RENGEST TUBE HARD FIELD

CONDITION = 5199

ALTITUDE = 200. FT SIDELINE

HICROPHONE ANGLES IN DEGREES

PHLY (INTEGRATED) = 116.4

= 1033 = 30.05 IN. HG.

6300 6003 10000 DASPL PNLT PNL DBA 102-8 101-5 111-5 105-3 105-0 105-0 15-0 15-0 15-0 15-0 115-0 115-0 112-5 111-0 114-8 114-2 124-0 114-8 111-9 110-4 100-c 99-3 100-9 101-4 97-2 94-9 BAND 23 0.7

HAXINUH DASPL = HAXINUH PNLT = HAXINUH PNL = HAXINUH DBA =

COMPOSITE SPL COMPOSITE PHL PHLT (INTEGRATED)

TABLE A-76

2269 HOTES CONF C ANTI RENGEST TUBE HH T/P HARD FIELD

CONDITION # 5283

ALTITUDE = 200. FT SIDELINE

1/3 CCT FREQUENCY						ш	Tronouñu:	: 1961.55	IN DEGREES
(H7)	100	90	120	140	150	160		KHOLLO	TH DECKEES
50	82.6	83.0	87.3	90 - 1	89.9	87.7	88.3		
63	84.9	83-6	87.6	91.1		87.3	E9.5		
Ř¢.	85.0	82.6	88.3	90.9	90.0	84.48	90.0		
100	85.9	84.0	86.8	69.5		84.3			
125	67.0	86.5	87.4			81.6	89-6		
160	88.2	85.9	90.4	B8.6		77.0	91.0		
200	87.1	87.7	90.5			74.5			
250	86.4.	85.8	88.8	85.4	80.B		88.2		
315	88.7	86.4	90.0			71.4	88.6		
400	67.9	25.8	91.1		75.9		88.5		
590	87.8	84.3	91.5				8769		
630	87.0	83.7	90.3			71.3	85.7		
800	66.5	84.3	88.8	0.08		71.4	83.9		
1000	86.1	85-3	87.0	75.3		69.4			
1250	E3.1	82.3	85.3		71.8	67.6	20-2		
1600	81.3	80.7	83.2	74.3		65.7			•
2000	02.0	81.0	81.7	73.3	68.9	65.1	76-1		
2500	85-B	86.D	87.8	74.7	71-6	68.2	78.0		
3150		87.6	83.3	76.3	72-1	66-0	78.7		and the second
4030	83.3	83-9	80.6	7243	68-1	63.0	.74-9		
5000	81.4	81.9	77.7	71.4	44.0	67.0	73.6		
6300	86.9	87.5	82-7	76.0	70.9	66.1	78.0	100	
6000	88.5	87.5	85.6	76.6	71.3	65.5	79.6		
10000	79.4	75.7	79.0	71.1	64.6	57.0	74.5		
CASPL		96.8	101.4	59.4	97.2	93.5	100.3		
PNLT		112-0	111-5	105.5	101.5	96.0	107-9	Mary and the	
PNL	111.9	111.4					167-2	1	
AEG		96.5	97.4	90.4	85.6	20.4	93.5		
DAND	23	23	23	23	23	24	23	400	
TCOPR	1.0	0.6	8.0	0.6	0.7	0.0	0.6		
					** .		. 44, 11, 14, 11,		

PALT (INTEGRATED)

235

2269 H7152 JTRD-109 CONF C ANTI RENGEST TUDE HARD FIELD

```
INLET TEMP
TIME OF DAY
BARM- PRESSURE
WIND DIRECTION
WIND VELOCITY
FNGINF MCDEL
FNGINF NUMBER
                                                                                                                                                                                                                                                       1033
30.05 IN. HG.
STAND
DATE
                                                                                          HURTOTTY
                                                                                                                                                                                                                                                                 ,
5 MPH
```

FAA FART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS 0 150. FT.

```
1/3 OLT
FREQUENCY
(HZ)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  MICROPHONE ANGLES IN GEGREES
                                                                                                                                                                                                                                                                                                                                                                                                                                    111
                                                                                                                                                                                                                                                                                                110
                                                                                                                                                                                                                                                                                                07.07.25
89.25
91.11
92.65
91.77
92.65
91.77
92.65
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.77
91.
                                                                                                                                                                                                                                                                                                                                                                                                                                    OASPL
PRLT
PNL
DB A
                    BAND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 COMPOSITE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              SPL
```

COMPOSITE PHL PNLT (INTEGRATED)

TABLE A-78

2269 H7152 JT80-109 CONF C ANTI RENGEST TUBE HARD FIELD

ALTITUDE = 200. FT SIDELINE

MICROPHONE ANGLES IN DEGREES

PNLT (INTEGRATED)

7209 H7352 CUNF C ANTI RENGEST TUDE HW T/P FAR FIELD

ENGINE HODEL ENGINE NUMBER	= JT80 -59 = 375054	TEMPERATURE	=	62.0 F	INLET TEMP TIME OF DAY BARM. PRESSURE	= 59.60 F = 1044 = 30.05 IN. HG
STAND	= x=314	HUHIDITY	=	43.0 PER CT.	WIND DIRECTION WIND VELOCITY	= 5 = 5 HPH
DATE	o 15/14/74	OBSERVED RPM CORRECTED RPM	e =	6373 63 73		

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.

1/3 007								rennau	nut 40	C1 E S 11	N DEGRI	FES								
FREQUENCY									86	90	95	146	105	110	115	126	130	135	140	150
EH7)	ز	10	2 +	30	40	50	60	70	Ob	70	7.0									
•								_				89.4	90.5	71 - 4	92.5	93.5.	96.9	99.5	102.4	105-1
50	82.6	80.8	83.C	82.B	04.2	83.9	85.0	85.B	87.4	88.2	89-1		91.1	91.2	92.5	93.6	96.0	99-1	101.2	103.5
63	01.7	81.4	63.7	83.3	E4.8	84.1	85.5	26 - 0	67.2	88.0	89.3	89.6			89.6	90.1	92.2	94.9	97.3	99.1
80	82.4	82.7	84 - 1	63.1	64.5	83.9	84-4	84.4	85.9	86.5	87.3	B7-7	89-3	89.3	87.2	87.8	92.6		97.7	
		82.9	82.4	81.1	81.7	81.4	82-2	81.5	82.3	82.6	83.4	83.5	85.0	85.1			00 6		103.9	
100	84.7		83.6	82.5	82.2	82.6	82.7	82.2	63.5	85.B	87.4	88.1	89.8	93.9	93.4	94.8	77.0	10007	1AE 0	105.8
125	86.9	63.5			86.0	86.6	87-2	87.0	89.5	91.3	92+9	93.7	95•2	76.4	98.6	77.0	10247	10367	103 0	102.3
166	05.4	82-1	85.4	84.6		89.3	89-2	90.4	91.9	94.2	95.8	96.4	98.3		101.3	101-9	103-2	70304	103.7	102.03
200	83.6	82-1	87.C	88.2	28.7		89-2	90.7	92.1	93.8	94.7	95.3	97.0	77.9		99.8			98-8	
250	8378	F2.9	£6.3	BB,4	89.0	89.0		88.7	B9-1	89.B	20.9	91.2	93.0	94.0	97.1	98.3		100.4		98+0
315	63.8	83.8	84.4	85.6		84.9	88.3		89.5	92.5	93-9	94.9	97.0	98.4	99.6	100.2	98.1	98.4	97.7	95.8
400	82.8	82.9	24.7	86.9	86. ú	86.2	86.9	87+2		90.7	91.7	92.3	94.1	95.5	97.5	98.5	98.2	98.7	98-3	
506	83.3	B2-4	64 - 2	85.5	66.4	86.3	87.3	68.5	87.7			93.1	95.0	96.2	97.3	97.5	96.4	96.2	95.5	92.5
0E6	83.4	21.4	34.4	84.9	115.4	06-0	86.5	87.0	88.6	98.7	92.0	92.1	93.8	94.9	96.1	96.2	95.2	94.9	93.4	90.B
800	82.8	8C-2	84.0	84.0	E4.7	85.2	86.3	86.8	88.2	89+8	91.0		71.3	91.8	93.3	93.4	93.0	92.8	91.3	88.3
100ú	96-0	7E . 4	61.8	82.9	B3.4	84. ū	84.8	85.4	87.1	86*B	89.5	89.9		95.2	91.3	91.4	90.8	90.7	89.4	86.1
	£1.7	78.6	61.0	81.7	82.I	82.8	83.8	84.3	85.9	87.5	87.9	88.6	69.6		90.5	70.2	89.3	89-1	87.7	84.5
1250		81.4	81.9	84.4	81.1	81.8	82.9	83.4	85.7	8 6. 5	67-2	88.0	88.9	89.5		89.1	88.3	88.1	86.9	
1676	63.3		94.6	81.3	81.0	81.5	82.5	83.5	85.2	86.6	67.0	67.7	60.3	88.8	69.7		87.6	87-4	66.4	
2000	£7.6	65.6		84+5	02.6	62.0	83.4	84-1	86.4	87.6	67.9	89.0	89.1	89.6	89.9	66.9			B4-5	
2500	92.0	89.6	87.1		88.3	84.7	84-7	84-0	89.6	92+2	91 • B	93.3	93.2	94.4	93.0	90.3	87.8	87.5		
315C	99.0	96-1	97.9	91.4		26.1	E5.3	86.6	90.2	93.8	95.3	93.2	,94.6	95.4	94.7	93.2	90.2	87.9		
4000	195*5	101.1		94.6	91.0		83-3	84.7	88-2	91.8	92.6		94.0	94.8	95.1	92.2	86.5	87-6		
5000	91.6	4.00	89.9	85.0					98-4	70.7			92.1	92.3	93.1	90.6	87.2	86.3		
6370	74.3	92.7	91.9		54 J		82.3	B4+3	68.0					94.3	95.2	92.1	88.1	87.1		
8000	96.5	94.6	94.1	89.2	66.6		81-1						93.7		76.1	93.8	90.0	86.5	86.6	83.7
10000	02.7	91.3	90.6	86.2	. 85 8	79.3	79.5	50.B	64.9											
1									-			***	107 2	100.2	100.5	109.7	110-4	111.3	112.4	112.9
CASPL	1 C & 2	356.P	104.7	130.6	99.5	95.7	99.2	100.1	102-1	104.2	102+1	100.0	10123	10000	120 3	110.4	118.1	118.1	118-0	117.0
	177 7	122.0	100.4	117.3	114-0	110.5	110.6	111.6	114.5	117.2	11942	118+8	11404	120.0	120 3	110.4	110-1	118.1	118.0	117.0
PNLT	16348	1.,,,,,,,	110	115.2	113.5	113.5	110.6	111.6	114.5	117.2	118-1	118.3	114.3	120-0	120.3	100 5	300	106-6	163.	117.0
PNL	121+1	11701	117.0	24545	07.4	05.6	76.2	97.1	99.7	102-2	102.8	103.7	104.7	195.4	100+7	T03.5	10444	10707	4000	101-9
DBA	176-6	105+5	104+7	77.0	7107	,,,,						- 1							24	24
					70	24	24	24	24	24	29	10	10	10	24	24	24	24.		
PAND	20	70	20	20	20	24	3.0					0.5	0.6	0.6	0.0	0.0	0.0	0.0	0-0	U - U
TGORR	2.2	2.3	2.7	2.1	1.6	6.6	ن ون	0.0	0.0											

MAXIMUH DASPL = 112-86 COMPOSITE SPL = 114-35 MAXIMUM PNLT = 123-16 COMPOSITE PNL = 125-07 MAXIMUM PNL = 120-99 PNLT (INTEGRATED) = 131-85 MAXIMUM DNA = 106-64

TABLE A-80

2269 H7152 CONF C ANTI RENGEST TUBE HW T/P FAR FIEL

CONDITION = 6373
ALTITUDE = 200. FT SIDELINE

											. 95501	cc							
1/3 NCT FREQUENCY								CROPHI	ONE AND	95	1 DEGRE 100	105	110	115	120	130	135	140	150.
(HZ)	10	20	30	40	50	60	70	80	40	7.0						92.1.	06-0	96-0	96.6
,,,-,					70.7	81-2	8.58	84.8	85.7	86.6	8.48	87.7			89.7 89.2	91.2	9346	94 B	95.0
50	03 · C	71.1	74-3	77.B	79-1 79-3	81.7		E4-6	65.5	66.8	87-0	88.3		89.1 86.2	66.3	87.4	89.4	9û.9	90-5
63	63.6	71.8	74-8	78.4 78.1	79.1	BQ.6	81.4	83.3	84-0	84.8	85-1	86.5	86.3	83.8	84.0	87.0	88.8	91.3	91.8
80	64.9	72.2	74.5	75.3	76+6	76.4	78.4	79.7	60.1	P.CB	B0.9	82.2	82.A 87.8	90.0	91.0	94.B	95.4	97.5	97.2
100	65 - 0	73-5	72.5 73.9	75-8	77.B	78.9	79-1	20.9	83.3	24.9	55-5	B7.0	93.3	95.2	95.8	98-1	98.4	99.4	97-2
125	65.6	71.7 73.5	76.2	79.6	81.8	83.4	83.9	86.9	88-8	90.4	91.1	95.5	96.6	97.9	98-1	98.3	98.3	97.5	93.7
166	64.1 64.0	75.0	79.6	82.5	84.4	65.4	87.3	89.2	71-7	93.3	93-7	94.2	94.8	95.5	96.0	94.1	93.7		. 89.4 -
200	64.8	74.3	79-8	82.6	84÷1	85-4	87.6	27.4	91.3	92-1	92.6	90.2	90-9	93.7	94.5	94.9	94.6	94.7	89.3
250	55.5	72.3	76.9	80.3	82.3	84.5	85.6	86-4	87.3	88.3 91.3	92.2	94.2	95.3	96.2	96.4	93.2	92.8	91.2	87-1 67-0
315 400	64.5	72-6	78.2	79.5	31.3.	83.I	84.1	86.8	90.0	89.1	89.p	91.2	92.4	74.1	94.7	93.3	93.1	91.5	83.7
500	63 - E	72.0	76. P	79.9	81.4	83-2	85.4	87.0	88-2 88-1	89.4	90.4	92-1	93.1	93.9	93.7	91.5	90.5	89.0 86.8	81.9
630	62-6	72.1	76-1	78.9		82.7	83.7	85.7 85.5	87-2	88.4	89-4	90.9	91.8	72.6	92-3	90.2	87.1	84.7	79-3
800	61.1	71.6	75.1	78.1		192-4	83.7	84.4	B6-2	86.9	87.2	88.4	88* 0	B9.B	89.5	88.0	84.9	82.7	77.0
1000	58-9	69.2	73-9	76.8	79.0	60.9	81-1	83.1	84.9	85.3	85.8	86.7	B7-0	87.E	B7.5	65.7 84.2	83.2	80.9	75.3
1250	58.7	6P.Z	72.6	75-4	77.7	79.9 78.9	80-2	02.4	83.9	84.5	85.2	85.9	85.3	86-9	86.2 85.1	83-1	82.1	85.0	74.4
1600	60-B	68.8	71.2	74-3	76.7	78-5	BO-2	82.4	83.9	84-3	84.9	E5.3	85.5	86.1 86.2	84.8	62.3	81.3	79.3	74.1
2000	64-2	70.6	71.9	74.1	76.7	79.3	80.8	83.5	84.9	85-1	86-1	85.0	86.5	89-2	86.1	82.3	81.2	77.2	72-4
2500	67.5	73.3	74.8	75.5 81.0	79.2	80.5	82.6	86.7	. 89.4	89.0	90.4	90.1	91.9	90.8	88.5		£1.4	80.5	75.7
3150	74.5	83.5	81 -4 84 -2	83.4	80-4	80.9	B3-1		60*8	92.4	90-2		91.2		87.8		81.1	78.6	73.7
4000	75-6	85•7 74•3	74.3	75-1	76-2	78.9	81.I	85.1	88+7		91.8		88.0	89.0	86.0	81.2	79.3		71.6
5660	63.7		75.6	75.9	75.6	77.7	60.6	55-2	87.6	86.9	88.7 70.6	91.0	90.3	90 B	87-1	81.6	79.6		71.5
6300	62.0				75.3	76-1	79.0	84.6	88-3	88-1		89.7		91.3	88,4	02-9	BO-3	77.0	70.1
#630 10000	63-1				.72.2	74.1	76.5	81.2	85-1	84.8	00.00								
TOUNG	5352					- C			***	102.4	103.2	104.3	105.0	105.9	105.5	105.5	105-7	100-0	104.3. 107.9 107.9
DASPL	20.7	90.0	90-9	92.6	93.6	95.3	96.9	99.5	114 5	116.3	115.B	116-7	117.2	116.6	115.3	11Z.B	112-3	1111-5	107.9 107.9 93.0
PNLT	97-4	107:5	107-1	107	105.0	106.4	108-2	111.5	114.4	115.3	115.3	116-1	116.5	116.6	115-3	112.8	112.5	07.3	107.9 93.0
PNL	95.2	104.E	. 105.6	105.6	105-0	106-4	Inber	D6.8	99.4	100.0	100-B	101.5	102.0	102.4	101.4	77-3	7040	7,0-	,,,,,,
DEA	82-5	69.9	89.5	90.1	70-3	92. L	73.0	70.50								25	24	24	93•0 24
						. 1 -	24	24	. 24	20	10	10	10	44	47	2.7			0.0
BANF	20		26	20		0-0	0.0			1.0	0.5	6.6	C.6	0.0	1041				
TOORE	2.2	2 2 7	7 Z.1	1.6	u.u						100		. * *	1. 3. 4					
		•									100								

CNIT (INTEGRATED) = 126.16

TABLE A-81 ENGINE NUMB STAND RATE

2269 H7151 CONF C ANTI-RENGEST TUBE HW T/P FAR FIELD

ENGINE NUMBER	= JTED -00 = 374054	TEMPERATURE	=	61_0 F	INLET TEMP TIME OF DAY	= 58.00.F = 1013
STAND DATE	= X-314 = 05/14/74	HUNIDITY	=	43.0 PER CT.	BARH. PRESSURE WIND DIRECTION WIND VELOCITY	= 30.05 IN, NG. = 5 = 5 MPH
		OBSERVED RPM CORRECTED RPM	z z	6420 6426	#2,10 FCD0211	- 5 AFR

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.

1HZ] 0 10 20 30 40 50 60 70 80 90 95 100 105 110 115 120 130 139 140 1 50 82-5 80-8 82-3 83-7 84-0 83-8 85-4 85-9 87-6 88-5 89-6 89-3 91-0 91-7 92-9 93-4 96-8 99-8 102-3 10 63 81-7 82-3 83-9 84-7 65-1 05-1 86-2 86-5 87-9 88-9 89-7 90-1 91-1 91-5 92-8 93-5 96-7 99-8 102-3 10 64 82-5 83-1 84-4 84-6 84-6 84-6 84-5 84-4 85-7 88-9 89-7 90-1 91-1 91-5 92-8 93-5 96-7 99-8 102-3 10 100 84-2 83-8 62-5 82-6 92-1 82-1 82-1 82-2 81-9 82-5 83-1 83-5 84-4 85-4 86-8 87-3 91-7 94-6 97-8 10 125 07-4 84-1 83-0 84-4 84-6 84-6 84-5 82-8 62-7 83-6 83-3 83-5 84-4 85-4 86-8 87-3 91-7 94-6 97-8 10 126 08-2 82-4 83-1 84-4 84-6 84-6 84-7 82-8 82-8 82-7 83-6 83-3 83-5 84-6 85-8 90-6 92-6 93-9 91-1 00-6 103-7 10 126 08-2 82-4 83-5 84-8 89-6 89-7 89-8 91-2 93-1 92-9 95-4 95-9 98-2 98-8 102-9 104-4 105-4 10 250 83-6 82-8 87-4 89-6 89-2 89-9 99-2 90-5 92-3 94-8 95-9 97-4 99-5 98-2 98-8 102-9 104-4 105-4 10 250 83-6 82-8 87-3 89-6 89-4 89-6 89-7 90-8 92-6 93-9 94-8 95-9 97-4 99-5 99-5 100-3 100-3 104-8 105-1 102-0 103-9 104-8 105-1 102-0 103-9 104-8 105-1 102-0 103-9 104-8 105-1 102-0 103-9 104-8 105-1 102-0 103-9 104-8 105-1 102-0 103-9 104-8 105-1 102-0 103-9 104-8 105-1 102-0 103-9 104-8 105-1 102-0 103-9 104-8 105-1 102-0 103-9 104-8 105-1 102-0 103-9 104-8 105-1 102-0 103-9 104-8 105-1 102-0 103-9 104-8 105-1 102-0 103-9 104-8 105-1 102-0 103-9 104-8 105-1 102-0 103-9 104-8 105-1 102-0 103-9 104-8 103-1 102-0 103-9 104-9 10-9 10-9 10-9 10-9 10-9 10-9 10-9 10	1/3 PCT. FREDUENCY																				
50 82-5 80-8 82-3 83-7 84-0 83-8 85-4 85-9 87-6 88-5 89-6 87-3 91-0 91-7 92-9 93-4 96-8 99-8 102-3 106-8 81-7 82-3 83-9 84-7 05-1 05-1 86-2 86-5 87-9 88-9 89-7 90-1 91-1 91-5 92-8 93-5 96-7 99-8 102-3 106-9 100-8 82-5 83-1 84-4 84-6 04-6 84-5 84-4 85-7 86-4 86-8 87-3 91-0 91-7 90-1 90-2 90-4 93-0 95-4 97-9 10-1 100-8 82-5 83-1 84-4 85-4 85-8 83-1 83-5 84-4 85-4 86-8 86-8 87-3 91-7 94-6 97-8 102-3 106-9 100-8 103-7 10-1 100-8 10-1 100-8 1					••																
63	(nz)	U	10	20	20	40	50	60	70	80	90	95	100	105	110	115	-120	130	135	140	150
63 61-7 82-3 82-9 84-7 65-1 65-1 86-2 86-5 86-7 88-9 89-7 90-1 91-1 91-5 92-8 93-5 96-7 59-5 102-3 10 84 82-5 83-1 84-4 84-6 84-6 84-5 84-5 84-7 86-6 88-7 88-0 89-7 90-1 90-2 90-4 93-0 95-4 97-9 10 100 84-2 83-8 02-5 82-6 02-1 82-0 82-2 01-9 82-5 83-1 83-5 84-4 85-4 86-1 86-8 87-3 91-7 94-6 97-8 10 125 07-4 84-1 63-0 04-4 82-4 83-2 82-8 02-7 63-6 85-3 87-3 86-8 89-8 90-6 92-6 93-9 99-1 100-8 103-7 10 100 85-2 82-4 05-7 86-6 86-1 87-2 87-3 87-7 83-8 91-2 93-1 92-9 95-4 95-9 98-2 98-8 102-9 104-4 164-6 10 100 83-6 82-4 87-4 89-4 89-2 89-9 90-2 90-5 92-3 94-1 95-6 96-6 98-6 99-5 101-1 102-0 103-9 104-4 164-6 103-6 103-7 105-6 103-9 104-8 105-1 10-2 10-2 10-2 10-2 10-2 10-2 10-2 10					83.7	84.0	83.8	85.4	85.9	87.6	88.5	89.6	87.3	91.0	91.7	92.9	93.4	, 96 ₋₈	99R	102.3	105.4
80. 82.5 83.6 84.4 84.6 84.6 84.6 84.5 86.4 86.4 87.7 88.6 89.7 70.1 90.2 90.4 93.0 95.4 97.9 10 10 84.2 83.6 02.5 82.6 02.1 82.0 82.2 11.9 82.5 83.1 83.5 84.4 85.4 86.1 86.8 87.3 91.7 94.6 97.8 10 125 07.4 84.1 63.0 84.4 82.4 83.2 82.8 82.7 63.6 85.3 67.3 66.8 89.8 99.8 99.1 100.8 103.7 10 20 83.6 82.4 87.7 88.6 86.1 87.7 88.6 87.7 90.8 89.6 99.2 97.4 98.6 99.3 106.2 99.4 99.1 98.5 99.9 83.4 82.8 85.6 86.7 86.8 87.4 89.1 89.1 89.7 90.8 91.6 93.6 99.3 106.2 99.4 99.1 98.5 99.9 83.6 82.8 81.3 83.7 85.3 85.1 85.5 86.8 87.5 88.6 87.5 88.6 89.9 91.7 92.5 93.5 94.8 97.3 97.7 96.9 96.4 96.1 95.6 94.5 91.0 91.6 91.8 94.2 94.7 95.9 96.4 96.1 95.6 94.5 91.0 91.6 91.8 94.2 94.7 95.9 96.4 96.1 95.6 94.5 91.0 91.0 91.6 91.8 94.2 94.7 95.9 96.4 96.1 95.6 94.5 91.0 91.0 91.6 91.8 94.2 94.7 95.9 96.4 96.1 95.6 94.5 91.0 91.0 91.6 91.8 94.3 95.8 97.1 97.4 98.8 99.1 91.9 91.9 91.0 91.6 91.8 91.8 91.7 91.9 91.9 91.0 91.0 91.0 91.0 91.0 91.0				83.9	84.7	85.1	05-1	86.2	86.5	87.9											
100 84-2 83-8 82-6 02-1 82-0 82-2 81-9 82-5 83-1 83-5 84-4 85-4 86-1 86-8 87.3 91.7 94-6 97.5 10 125 07-4 84-1 83-0 04-4 82-4 83-2 82-8 82-7 63-6 85-3 67-3 85-8 89-8 90.6 92-6 93-9 93-1 100-8 103-7 10 160 85-2 82-4 05-7 86-6 86-1 87-2 87-3 87-7 89-8 91-2 93-1 92-9 95-4 95-9 98-2 98-8 102-9 104-4 105-4 105- 250 84-4 83-5 87-3 89-6 89-4 89-6 89-7 90-8 92-5 92-9 91-9 95-4 95-9 98-2 98-8 102-9 104-4 105-4 105- 250 84-4 83-5 87-3 89-6 89-4 89-6 89-7 90-8 92-6 93-9 94-8 93-9 97-4 98-7 99-4 99-8 103-3 104-8 105-1 10 250 83-6 82-4 87-4 89-4 89-6 89-7 90-8 92-6 93-9 94-8 93-9 97-4 98-7 99-8 103-3 104-8 105-1 10 250 83-6 82-7 87-3 89-6 89-4 89-6 89-7 90-8 92-6 93-9 97-4 98-7 99-8 103-3 104-8 105-1 10 250 83-6 83-7 83-3 87-6 88-8 89-2 89-4 90-2 90-9 91-6 93-0 94-2 96-2 98-2 100-0 100-6 101-6 9 250 83-6 83-7 83-3 85-6 86-7 86-6 88-7 87-4 89-8 92-5 93-9 94-6 99-5 90-6 99-5 96-2 99-4 99-1 98-5 9 250 83-6 83-7 83-8 85-6 86-7 85-8 87-4 89-1 89-6 92-5 93-9 94-6 99-6 99-8 100-9 91-6 99-8 91-6 99-8 91-6 99-8 91-6 99-8 91-6 99-8 91-6 99-8 91-6 99-8 91-9 91-6 91-6 91-6 91-6 91-6 91-6 91-6		82.5	83+1	84.4	84.6	84.6	84.5	84.4	84.7	86.4	86.8	87.7	88.0								
125		84.2	83.8	82.5	82.6	02.1	82-0	82.2	81.9	82.5											
160 85.6 82.4 87.4 89.4 89.2 89.9 09.2 90.5 92.3 94.1 92.9 95.4 95.9 98.2 98.8 102.9 104.4 106.4 10 250 84.4 83.5 87.4 89.4 89.2 89.9 09.2 90.5 92.3 94.1 95.6 96.6 98.6 99.5 101.1 102.0 103.9 104.8 105.1 10 250 84.4 83.5 87.3 89.6 89.4 89.6 89.7 90.8 92.6 93.9 94.8 95.9 97.4 98.7 99.4 99.8 100.3 100.3 100.3 99.9 9 315 83.7 84.4 85.3 86.9 87.3 87.0 88.8 87.0 87.4 89.0 99.4 90.2 90.9 91.6 93.0 94.2 96.2 98.2 100.0 100.6 101.6 9 60.6 83.7 83.3 87.6 86.7 87.4 87.6 88.6 93.7 93.9 94.4 97.0 98.6 99.3 100.2 99.4 99.1 98.5 9 500 83.4 82.8 85.0 86.7 84.8 89.0 89.1 89.7 90.8 99.3 99.3 100.2 99.4 99.1 98.5 9 500 83.4 82.8 85.0 86.7 84.8 88.8 87.6 87.6 89.0 90.7 92.2 93.5 94.3 95.8 97.1 97.4 98.8 99.1 98.9 9 100.0 82.8 81.3 83.9 85.3 85.1 85.5 86.8 87.5 88.4 89.0 90.7 92.2 93.5 94.3 96.8 97.3 97.7 86.9 98.8 96.1 9 120.0 78.9 78.4 82.4 84.3 84.0 84.2 85.3 86.0 87.4 89.0 89.7 89.8 91.7 92.5 93.1 93.4 94.0 93.4 92.3 8 1600 82.8 81.3 83.8 83.3 83.9 83.2 83.2 84.2 85.3 86.0 87.4 89.0 89.7 89.8 91.7 92.5 93.1 93.4 94.0 93.4 92.3 8 1600 82.6 80.3 87.0 83.8 83.8 83.8 83.8 83.8 83.8 83.8 83				63.0	84.4	62.4	83,2	82.8	02.7												
250 83.6 E2.4 87.4 89.4 89.2 89.9 89.2 90.5 92.3 94.1 95.6 \$6.6 98.6 99.5 101.1 102.0 103.9 104.8 105.1 10 250 84.4 83.5 87.3 89.6 89.4 89.6 89.7 90.8 92.6 93.9 94.8 95.9 97.4 98.7 99.4 99.8 100.3 100.3 100.3 99.9 9 400 83.6 83.7 85.3 86.0 87.3 87.0 88.8 89.2 89.4 90.2 90.9 91.6 93.0 94.2 96.2 98.2 100.0 100.6 101.6 500 83.4 82.8 85.0 86.7 86.6 86.7 67.4 67.8 89.6 92.5 93.9 94.4 97.0 98.6 99.3 100.2 99.4 99.1 98.5 99 630 83.0 81.8 85.0 86.1 85.9 86.3 87.0 87.4 89.0 92.5 93.9 94.4 97.0 98.6 99.3 100.2 99.4 99.1 98.5 99 630 83.0 81.8 84.5 86.1 85.9 86.3 87.0 87.4 89.0 99.7 91.6 91.8 94.3 95.8 97.1 97.4 98.8 99.1 98.5 91 630 82.8 81.3 83.9 85.3 85.1 85.5 86.8 87.5 88.4 89.9 91.7 92.2 93.5 95.3 96.8 97.3 97.7 95.9 98.8 96.1 9 1300 78.9 78.4 82.4 84.3 84.0 84.2 85.3 86.0 87.4 89.0 89.7 89.8 91.7 92.5 93.1 93.4 94.0 99.4 92.3 8 1250 79.6 78.8 81.3 83.1 82.7 83.2 84.3 85.0 88.4 89.9 89.7 89.8 91.7 92.5 93.1 93.4 94.0 93.4 92.3 8 1600 82.8 80.9 82.2 82.0 81.7 83.2 84.3 85.0 88.4 87.5 88.4 88.6 89.9 90.8 91.2 91.2 91.2 91.4 91.4 8 1600 82.6 80.9 82.2 82.0 81.7 83.2 84.3 85.0 88.4 87.5 87.6 87.7 89.5 90.1 90.5 90.6 90.5 90.5 90.5 90.4 90.4 82.8 80 1600 82.6 80.9 82.2 82.0 81.7 83.2 84.3 85.0 88.4 87.5 87.6 87.7 89.5 90.1 90.5 90.6 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5		86*5	82.4	85.7	86.6	86.1	87.2	87+3	87.7	89.8	71.2								104.4	106.4	104-5
250 86.4 83.5 87.3 89.6 89.4 87.6 89.7 70.8 92.6 93.9 94.8 95.9 97.6 98.7 79.4 99.8 100.3 100.3 99.9 9.8 100.3 100.3 99.9 9.8 100.3 100.3 99.9 9.8 100.3 100.3 99.9 9.8 100.3 100.3 99.9 9.8 100.3 100.3 99.9 9.8 100.3 100.6 101.6 9.8 100.8 10		83.6	E7.4	87.4	89.4	89.2	89.9	89+2	90.5	92.3								163.9	104_R	105-1	103-0
315 63-7 86-4 85-3 86-0 87-3 87-0 88-8 89-2 89-4 90-2 90-4 91-6 93-0 94-2 96-2 96-2 100-0 100-6 101-6 9 400 63-6 63-7 63-3 87-6 86-6 86-7 67-4 67-8 89-6 92-5 93-9 94-4 97-0 98-6 99-3 106-2 99-4 99-1 98-5 95 500 83-4 82-8 85-0 86-7 16-9 86-8 87-4 89-1 89-7 90-8 91-6 91-8 94-3 95-8 97-1 97-4 98-8 99-1 98-5 9 631 83-0 81-8 84-5 86-1 85-9 86-3 87-6 87-4 89-0 90-7 92-2 93-5 95-3 96-8 97-3 97-7 98-9 98-8 96-1 9 630 82-8 81-3 83-7 85-3 85-1 85-5 86-8 87-5 88-4 88-9 91-3 92-0 94-2 94-7 95-9 96-4 96-1 95-6 94-5 9 1300 78-9 78-4 82-4 84-3 84-0 84-2 85-3 86-0 87-4 89-0 89-7 89-8 91-7 92-5 93-1 93-4 94-0 93-4 92-3 8 1250 79-6 78-8 81-3 83-1 82-7 83-2 84-3 85-0 86-4 87-5 88-4 88-6 89-9 90-8 91-7 20-5 93-1 93-4 94-0 93-4 92-3 8 1400 82-8 85-1 84-1 83-0 82-3 83-5 84-1 85-3 86-0 87-7 89-5 90-1 90-5 90-6 90-5 90-7 89-8 80-7 89-8 91-7 92-5 93-1 93-4 94-0 93-4 92-3 8 1400 82-6 80-9 82-2 82-0 81-7 82-3 83-5 84-1 85-3 86-3 87-6 87-7 89-5 90-1 90-5 90-6 90-5 89-7 88-8 81-9 83-2 84-3 83-5 84-3 83-6 87-7 87-7 89-5 90-1 90-5 90-6 90-5 89-7 88-8 81-7 87-7 8 1500 91-5 90-1 88-9 85-0 82-6 82-2 83-2 84-3 85-4 86-3 87-3 87-8 88-8 89-9 89-9 89-7 89-5 88-7 87-7 8 3150 97-3 97-3 96-7 90-9 88-4 84-2 85-1 86-4 89-3 90-8 92-0 92-6 93-8 94-9 89-9 89-9 89-8 88-7 88-7 87-7 8 3150 97-3 97-3 96-7 90-9 88-4 84-2 85-1 86-4 89-3 90-8 92-0 92-6 93-8 94-3 92-8 90-4 88-7 88-7 87-7 8 3150 97-3 97-3 96-7 90-9 88-4 84-2 85-1 86-4 89-3 90-8 92-0 93-8 94-3 92-8 90-4 88-7 88-1 87-3 8 1000 90-5 90-2 90-0 95-6 93-2 85-6 85-6 87-1 90-0 92-7 94-8 95-0 93-8 94-1 95-0 93-2 90-4 88-7 88-1 87-3 8 1000 90-5 90-2 90-0 95-6 93-2 85-6 85-6 85-6 87-1 90-0 92-7 94-8 95-0 93-8 94-1 95-0 93-2 90-4 88-7 88-3 87-1 88-3 87-1 88-3 87-1 88-9 80-0 91-7 91-7 91-7 91-7 91-7 91-7 91-7 91-7				87.3	89.6	89.4	89.6	89.7	90.8	92.6						99.4	99.8	100.3	100-3	00.0	.09.7
400 B3-6 B3-7 B5-3 B7-6 B6-6 B6-7 B7-4 B7-8 B9-6 93-5 93-9 94-4 97-0 98-6 99-3 100-2 99-4 99-1 98-5 90-9 B3-4 B2-8 B5-0 B6-7 B6-8 B7-4 B9-1 P9-7 90.0 91-6 91-8 94-3 95-8 97-1 97-4 98-8 99-1 98-9 90-1 98-9 9		83.7	84.4	65-3	86.0	87.3	87.0	88 . B	89.2	89.4						96.2	98.2	100-0	100-6	101.6	98-3
500 83-4 82-8 85-C 86-7 86-9 86-8 87-4 89-1 99-7 90-8 91-6 91-8 94-3 95-8 97-1 97-4 98-8 99-1 98-9 98-8 96-1 98-9 98-8 96-1 98-9 98-8 98-1 88-9 88-9 88-9 88-9 88		83.6	83.7	85.3	87.6	26.6	86.7	67.4	87.8	89.6											
630 83.0 81.8 84.5 86.1 85.9 86.3 87.0 87.4 89.0 90.7 92.2 93.5 95.3 96.8 97.3 97.7 98.9 98.8 96.1 95.0 80.0 82.8 81.3 83.9 85.3 85.1 85.5 86.8 87.5 88.4 89.9 91.3 92.0 94.2 94.7 95.9 96.4 96.1 95.6 94.5 9 120 78.9 78.4 82.4 84.3 84.0 84.2 85.3 86.0 87.4 89.0 89.7 89.8 91.7 92.5 93.1 93.4 94.0 93.4 92.3 8120 79.6 70.8 81.3 83.1 82.7 83.2 84.3 85.0 86.4 87.5 88.4 88.6 89.9 90.8 91.2 91.2 91.2 92.6 91.4 92.4 81.6 82.6 80.9 62.2 82.0 81.7 82.3 83.5 84.1 85.3 86.3 87.6 87.7 87.7 89.5 90.1 90.5 90.6 90.5 90.5 90.7 88.4 88.6 89.9 90.8 91.2 91.2 91.2 91.2 91.4 92.4 81.7 82.3 83.5 84.1 85.3 84.3 87.6 87.7 87.7 89.5 90.1 90.5 90.6 90.5 90.5 90.5 90.6 90.5 88.7 87.7 87.5 90.1 90.5 90.6 90.5 90.7 80.8 81.9 83.2 84.3 85.4 86.3 87.6 87.7 87.5 90.1 90.5 90.6 90.5 88.7 88.7 87.7 87.5 90.1 90.9 89.9 89.7 89.5 88.7 87.7 87.5 90.1 90.9 89.9 89.7 89.5 88.7 87.7 87.5 90.1 90.9 89.9 89.9 89.7 89.5 88.7 87.7 87.5 90.1 90.9 89.9 89.9 89.7 89.5 88.7 87.7 87.5 90.1 90.9 89.9 89.9 89.7 89.5 88.7 87.7 87.5 90.1 90.9 89.9 89.9 89.7 89.5 88.7 87.7 87.5 90.1 90.9 89.9 89.9 89.9 89.7 89.5 88.7 87.7 87.5 90.1 90.9 89.9 89.9 89.9 89.9 89.7 89.5 88.7 87.7 87.5 90.1 90.9 90.9 90.0 95.0 90.0 90		83.4	82.8	85.0	86.7	26.9	86.8	87.4	89.1	29.7											
800		83.0	F1.6	84.5	86-1	85.9	86.3	67.0	87.4	· 89.0											
1950 78.9 78.4 82.4 87.3 84.0 84.2 85.3 85.0 87.4 89.0 89.7 89.8 91.7 92.5 93.1 93.4 96.0 93.4 92.3 8 1250 79.6 76.8 81.3 83.1 82.7 83.2 84.3 85.0 86.4 87.5 88.4 88.6 89.9 90.8 91.2 91.2 91.2 92.0 91.4 90.4 8 1600 82.6 80.9 62.2 82.0 81.7 82.3 83.5 84.1 85.3 86.3 87.6 87.7 89.5 90.1 90.5 90.2 90.2 92.0 91.4 90.4 8 1700 86.8 85.1 84.1 83.0 82.3 81.9 83.2 84.3 85.4 86.3 87.3 87.8 88.8 89.3 89.9 89.7 89.5 88.7 88.7 87.7 8 1750 91.5 90.1 88.9 85.0 82.6 82.2 83.9 84.7 86.4 87.3 87.8 88.3 89.3 89.9 89.7 89.8 88.7 88.7 87.7 8 1750 91.5 90.1 88.9 85.2 82.6 82.2 83.9 84.7 86.4 89.3 90.8 92.0 92.6 93.8 94.3 92.8 90.4 88.7 88.1 88.3 89.3 97.1 89.9 89.2 88.7 88.7 87.8 83.5 90.1 89.9 99.2 99.0 95.4 93.2 85.6 85.6 87.1 90.0 92.5 93.8 94.8 94.3 92.8 90.4 88.7 88.1 87.3 8 1750 97.3 97.3 96.7 90.9 88.6 84.2 85.1 86.4 89.3 90.8 92.0 92.6 93.8 94.3 92.8 90.4 88.7 88.1 87.3 8 1750 97.3 97.3 96.7 90.9 88.6 83.6 85.6 87.1 90.0 92.7 94.8 95.0 96.1 96.3 95.5 93.2 90.4 88.7 88.1 87.3 8 1750 97.3 97.0 90.2 85.9 83.4 82.4 84.0 85.6 88.2 91.0 93.3 94.1 95.9 95.1 95.0 92.9 90.4 89.3 88.9 80.0 92.7 92.8 98.7 88.8 87.8 85.4 87.9 87.4 90.7 92.0 93.3 92.0 92.8 91.7 88.3 87.1 85.9 8 1800 92.7 92.6 92.8 96.9 83.4 82.4 84.0 85.6 88.2 91.0 93.3 94.1 95.9 95.1 95.0 92.9 99.7 80.6 87.8 86.6 87.1 90.0 92.7 92.6 93.3 92.0 92.8 92.7 89.7 80.6 87.8 86.6 87.1 90.0 92.7 92.0 93.3 92.0 92.8 92.8 92.8 92.8 92.8 92.8 92.8 92.8		82.8	81.3	83.9	85.3	85• t	85.5	86,8	87.5												
1256 79.6 76.8 61.3 63.1 62.7 83.2 84.3 85.0 86.4 67.5 88.4 68.6 89.9 90.8 91.2 61.2 92.0 91.4 92.4 76.1 70.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 1		78.9	78.4	22-4	84.3	84.0	84.2	85.3	85.0	87.4	89.0										
1600		79.6	78.8	81.3	83.1	82.7	83.2	84.3	85.3	86.4											
2000 86.8 85.1 84.1 83.0 22.3 81.9 83.2 84.3 85.4 86.3 87.3 87.8 88.8 89.3 89.9 89.7 89.5 86.7 67.7 9 2506 91.5 90.1 88.9 85.6 82.6 82.2 83.9 84.7 85.4 87.0 88.2 88.3 89.5 90.1 89.9 89.2 88.7 88.0 86.7 8 3150 97.3 97.3 97.3 96.7 90.9 88.6 84.2 85.1 86.4 87.8 90.8 92.0 92.6 93.8 94.3 92.8 90.4 88.7 88.1 87.3 8 4000 99.5 99.2 99.0 93.6 93.2 85.6 83.6 87.1 90.0 92.7 94.8 95.0 96.1 96.3 95.5 93.2 90.4 89.3 88.9 88.9 5000 91.0 90.5 90.2 85.9 83.4 82.4 84.0 85.6 88.2 91.0 92.7 94.8 95.0 92.9 95.1 95.6 92.9 89.7 88.6 87.4 86.6 87.4 86.6 87.4 87.4 88.2 91.0 92.7 92.8 95.1 95.5 92.9 89.7 88.6 87.4 86.6 87.4 88.0 92.7 92.8 92.7 92.8 99.7 88.8 87.4 85.6 88.2 91.0 93.3 94.1 95.9 95.1 92.9 89.7 88.6 87.4 85.6 88.2 91.0 92.7 92.8 92.7 89.6 87.4 86.6 87.4 86.0 93.0 92.7 92.8 92.7 92.8 92.7 88.6 87.4 85.6 88.2 91.0 93.3 92.0 92.8 92.8 92.8 92.8 92.8 92.8 92.8 92.8				62.2	82.0	81.7	82.3	83.5	84-1	85.3											
7506 91.5, 90.1 88.9 85.0 82.6 82.2 83.9 84.7 86.4 87.0 88.2 88.3 89.5 90.1 89.9 89.2 88.7 88.0 56.7 8 3150 97.3 97.3 96.7 90.9 88.6 84.2 85.1 86.4 89.3 90.8 92.0 92.6 93.8 94.3 92.8 90.4 88.7 88.1 87.3 8 4000 99.5 99.2 99.0 95.6 93.2 85.6 85.6 87.1 90.0 92.7 94.8 95.0 96.1 96.3 95.5 93.2 90.4 88.3 88.9 8 5000 91.0 90.5 90.2 85.9 83.4 82.4 84.0 85.6 88.2 91.0 93.3 94.1 95.9 95.1 95.0 92.9 89.7 88.6 87.4 8 6300 92.7 92.4 92.5 86.9 83.4 81.5 83.0 85.4 87.9 89.4 90.7 92.0 93.3 92.0 93.3 92.6 92.8 91.7 88.3 87.1 85.9 8 8000 95.1 94.6 94.7 89.1 85.8 81.7 81.4 83.9 87.3 90.2 92.0 93.2 95.1 93.9 94.6 93.0 89.4 87.8 86.6 8 1003 91.5 91.4 91.1 85.9 82.7 79.2 79.9 81.7 84.4 87.6 88.8 91.0 94.4 93.7 95.5 94.1 92.1 89.2 87.6 8 GASPL 104.4 104.0 104.0 101.3 100.1 99.0 99.6 100.5 102.2 103.9 105.8 105.9 107.8 108.4 109.3 109.6 110.9 111.8 113.0 11 PML 126.9 126.4 120.6 118.0 116.7 110.4 111.0 112.2 114.4 116.5 118.1 118.6 120.7 121.0 120.5 119.5 118.7 118.8 118.9 11 DBA 104.5 104.2 104.6 105.0 98.3 95.7 96.6 97.8 99.7 101.5 103.0 103.6 105.3 105.7 106.0 105.6 105.2 105.0 104.7 10		86.E	85.1	84.1	83.0	82.3	81.9	83.2	84.3	85.4	86.3	87.3	87.8								
3150 97.3 97.3 96.7 90.9 88.6 84.2 85.1 86.4 89.3 90.6 92.6 93.6 93.8 94.3 92.8 90.4 88.7 88.1 87.3 8 4000 99.5 99.2 99.0 95.6 93.2 85.6 85.6 87.1 90.0 92.7 94.8 95.0 96.1 96.3 95.5 93.2 90.4 89.3 88.9 8 5000 91.0 90.5 90.2 85.9 83.4 82.4 84.0 85.6 88.2 91.0 93.3 94.1 95.9 95.1 95.0 92.9 89.7 88.6 87.4 8 63.0 92.7 92.4 92.5 86.9 83.4 81.5 83.6 85.4 87.9 89.4 90.7 92.0 93.3 92.6 92.8 91.7 88.3 87.1 85.9 8 8000 95.1 94.6 94.0 94.0 93.0 95.1 95.0 92.9 92.8 91.7 88.3 87.1 85.9 8 1000 95.1 94.6 93.0 83.9 81.7 81.4 83.9 87.3 90.2 92.0 93.2 95.1 93.9 94.6 93.0 89.4 87.8 86.6 87.8 86.6 87.8 86.0 91.5 91.5 91.4 91.1 85.9 82.7 79.2 79.9 81.7 84.4 87.6 88.8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 87.6 8 87.6 8 87.6 8 87.6 8 87.6 8 87.6 8 87.6 8 87.6 8 87.6 8 87.6 8 87.6 8 87.6 8 87.6 8 87.6 8 87.6 8 87.6 8 87.6 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.0 94.4 93.7 95.5 94.1 91.1 89.2 87.8 81.0 94.1 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.8 81.0 94.1 91.1 89.2 87.8 81.0 94.1 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.8 81.0 94.0 94.0 94.0 94.0 93.7 95.5 94.1 91.1 89.2 87.8 81.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94				88.9	85.0	82.6	62.2	83.9	84.7												
4000 99.5 99.2 99.0 95.6 93.2 85.6 85.6 87.1 90.0 92.7 94.8 95.0 96.1 96.3 95.5 93.2 90.4 80.3 88.9 8 50.0 91.0 90.5 90.2 85.9 83.4 82.4 84.0 85.6 88.2 91.0 93.3 94.1 95.9 95.1 95.0 92.9 89.7 88.6 87.4 86.6 87.4 8 80.0 92.7 92.4 92.5 86.9 83.9 81.5 83.0 85.4 87.9 87.9 97.0 93.3 94.1 95.9 92.8 91.7 88.3 87.1 85.9 8 80.0 95.1 94.6 94.7 92.5 86.9 83.0 85.4 87.9 87.0 90.2 92.0 93.3 92.0 92.8 91.7 88.3 87.1 85.9 8 80.0 95.1 94.6 94.7 92.5 86.9 83.7 97.2 79.9 81.7 84.4 87.6 88.6 91.0 94.4 93.7 95.5 94.1 91.1 85.2 87.6 8 86.6 8 80.0 91.5 91.4 91.1 85.9 82.7 79.2 79.9 81.7 84.4 87.6 88.6 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 87.6 8 88.6 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 87.6 8 88.6 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 94.1 91.1 89.		97.3	97.3	96.7	90,9	88.4	84.2	85.1	86.4	89.3	90.8	92.0	92.6	93.8							
5000 91.0 90.5 90.2 85.9 83.4 82.4 84.0 85.6 88.2 91.0 93.3 94.1 95.4 95.1 95.6 92.9 80.7 88.5 87.4 8 63.0 92.7 92.6 92.5 86.5 83.9 81.5 83.0 85.4 87.9 89.4 90.7 92.0 93.3 92.0 92.8 91.7 88.3 87.1 85.9 8 8000 95.1 94.6 94.7 89.1 85.8 81.7 81.4 83.9 87.3 90.2 92.0 93.2 95.1 93.9 94.6 93.0 89.4 87.8 86.6 8 1000 91.5 91.4 91.1 85.9 82.7 79.2 79.9 81.7 84.4 87.6 88.8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 87.6 8 87.6 8 87.6 8 87.6 8 87.6 8 87.4 100.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 87.6 8 8 87.6 8 8 87.6 8 8 87.6 8 8 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 8 91.7 8 8 8 8 8 8 8 8 91.7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8						93.2	85.6	85.6	87.1	90.0	92.7										
6300 92.7 92.4 92.5 86.9 83.9 81.5 83.0 85.4 87.9 89.4 90.7 92.0 93.3 92.8 92.8 91.7 88.3 87.1 85.9 8 8000 95.1 94.6 94.7 89.1 85.8 81.7 81.4 83.9 87.2 90.2 92.0 93.2 95.1 93.9 94.6 93.0 89.4 87.8 86.6 8 10000 91.5 91.4 91.1 85.9 82.7 79.2 79.9 81.7 04.4 87.6 88.8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 86.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 80.8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 80.8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 80.8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 80.8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 80.8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 80.8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 80.8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 80.8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 80.6 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.7 80.6 97.6 8 80.8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0								84.0	85.6	88.2	91.0	93.3									
8000 95.1 94.6 94.7 89.1 85.8 81.7 81.4 83.9 87.3 90.2 92.0 93.2 95.1 93.9 94.6 93.0 89.6 87.8 86.6 8 10033 91.5 91.4 91.1 85.9 82.7 79.2 79.9 81.7 84.4 87.6 88.8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 87.6 8 87.6 8 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.1 89.2 87.6 8 8 8 8 91.0 94.4 93.7 95.5 94.1 91.0 94.4 93.7 95.5 94.1 91.1 81.2 81.0 94.1 91.0 94.4 93.7 95.5 94.1 91.1 81.2 81.0 94.4 93.7 95.5 94.1 91.0 94.4 93.7 95.5 94.1 91.0 94.4 93.7 95.5 94.1 91.0 94.4 93.7 95.5 94.1 91.0 94.4 93.7 95.5 94.1 91.0 94.4 93.7 95.5 94.1 91.0 94.4 93.7 95.5 94.1 91.0 94.4 94.1 94.0 94.4								83.0	85.4	87.9	57.4	90.7	92.0								
0ASPL 104-4 104-0 104-0 101-3 100-1 99-0 99-0 100-5 102-2 103-9 105-3 105-9 107-8 108-4 109-3 109-6 110-9 111-8 113-0 11 PHLT 120-9 120-4 120-6 118-0 116-5 116-4 111-0 112-2 114-4 116-5 116-4 118-6 120-7 121-0 120-5 119-5 118-7 118-8 118-9 11 PHL 19-1 111-0 118-0 118-1 114-2 110-4 111-0 112-2 114-4 116-5 118-1 118-6 120-7 120-4 120-5 119-5 118-7 118-8 118-9 11 DBA 104-5 104-2 104-6 105-0 98-3 95-7 96-6 97-8 99-7 101-5 103-0 103-6 105-3 105-7 106-0 105-6 105-2 105-0 104-7 10 BAND 20 20 20 20 20 20 24 24 24 24 24 24 26 10 10 24 24 24 24 24 24												. 92.0	.93.2	95.1	93.9						
PHLT 120-9 120-4 120-6 118-5 116-7 110-4 111-0 112-2 114-4 116-5 118-1 118-6 120-7 121-0 120-5 119-5 118-7 118-8 118-9 11 PML 119-1 117-6 118-0 115-8 118-2 110-4 111-0 112-2 114-4 116-5 118-1 118-6 120-1 120-4 120-5 119-5 118-7 118-8 118-9 11 DBA 104-5 104-2 104-6 105-0 98-3 95-7 96-6 97-8 99-7 101-5 103-0 103-6 105-3 105-7 106-0 105-6 105-2 105-0 104-7 10 BAND 20 20 20 20 20 24 24 24 24 24 24 24 10 10 24 24 24 24 24 24 24 24 24 24 24 24 24	10030	91.5	91.4	91.1	85.9	82.7	79.2	79.9	81.7	84.4	87.6	. 88.ff	91.0	94.4	93.7						
FRI. 10-9 120-6 120-6 120-6 120-6 110-6 111-0 112-2 114-6 110-5 110-6 120-7 121-0 120-5 110-5 110-5 110-6 120-7 121-0 120-6 12	DASPL	104.4	164.0	104.0	101.3	100.1	99-0	99.6	100-5	102.2	103-9	105-3	105-0	107-8	T08-4	100.3	100.6	110.0		112.0	119 6
DBA 104-5 104-2 104-6 105-0 98-2 95-7 96-6 97-8 99-7 101-5 103-0 103-6 105-3 105-7 106-0 105-6 105-2 105-0 104-7 10 BAND 20 20 20 20 20 24 24 24 24 24 24 24 10 10 24 24 24 24 24 24 27 TORRO 20 20 20 20 24 24 24 24 24 24 24 24 24 26 26 27	PALT	120-9	120-4	124-6	118-5	116.7	110.4	111.0	112-2	114-4	116-5	118-1	118-6	120-7	121-0	120-5	110.5	110.7	1100	113.0	117 6
BAND 20 20 20 20 20 24 24 24 24 24 24 24 10 10 24 24 24 24 24 24 17 10 26 26 27 26 24 24 24 26 26 26 26 26 26 26 26 26 26 26 26 26	PN1.	119.1	111.6	115.6	115-8	114.2	110.4	111.0	112-2	114.4	116.5	110.1	118.4	170-1	120.4	120-5	110.5	110.7	110.0	110.0	117
BAND 20 20 20 20 20 24 24 24 24 24 24 24 10 10 24 24 24 24 24	DBA	104.5	104-2	104.6	105-0	98.3	75.7	96.6	97.8	99-7	101.5	103.0	103.6	105.3	105.7	106.0	105.6	105.2	105.0	104-7	102.5
TOOD 10 10 10 77 77 77 77 10 10 27 27 27 27 27 27 27 27 27 27 27 27 27	BAND																				'
the tot men and one one one one one one the the the the the the the the the th	TCORR																				
											-,-			-40				w 2 U	0.0	Ų.U	

 HAXINUM CASPL = 113.49
 COMPOSITE SPL = 114.70

 HAXINUM PNL = 121.02
 COMPOSITE PNL = 123.96

 HAXINUM PNL = 120.50
 PNLT (INTEGRATED) = 131.57

 HAXINUM DBA 6 105.99

TABLE A-82

2269 H7151 CONF C ANTI-RENGEST TUBE HN T/P FAR FIELD

CONDITION = 6426

ALTITUDE = '200. FT SIDELINE

1/3 DCT								TCDAN	inuc as	161 ES 1	IN DEGR	EEE							
FREQUENCY (HZ)	10	26	Зũ	40	50	60.		80		95	100	105	110	115	120	130	135	140	150.
(nz)	10	20	30	40	34	· · · ·												•	
50	63.0	70.4	75.2	77.6	79.0	81.6	82.9	85.D	· 86.0	87-1	86.7	88.2	88.7		89.6		94.3		
63	64.5	72.0	76.2	78.7	80.3	82.4	B3.5.	B5-3	86-4	87.2	87.5	88.3	88,5		27.7		94.3		
80	65.3	72.5	76.0	78.2	79.7	80.6	81.7	83.8	84.3			86.9	87.1	86.8	86.6	88.2	89-9	91.5	91.6
125	65.9	70.6	74.0	75.7	77-2	78-4	78.8		£0.6		81.8		83.0		83-5			91.4	
125	66-2	71.9	75.8	76.0	78.4		79.6	81.0	. 82;0				87.5	89-2	90-1	94.3		97.3	
160	64.4	73.8	78.0	79-7	82.4	83.5	24.6	87.2		70-6		92.6	92-8	94.8		98.1		100.0	97.9
200	64.3	75.4	8.03	82,8	85.0	85.4	B7+4	89-6		93.1	93-9	95.8		97.7		99-0			
250	65.4	75.3	81.0	83.0	84.7	85.9		87.9			93+2		95.6				94-7		
315	66.1	73.2	78.2	80.9		85.0	66-1	86.7	87-7	88.3		90.2	91-1			95.1	75.0		
400	65.3	73.2,	78 • 9	80.I							37-2			95.9		94.5		92-0	
500	64.2	72.8	78 a G			83.6		. 87, 0				91.4		93.7		93.9		92.4 89.6	
630	63 - 0	72-2	77.3		81.4	83.2	84.3	86.3	1.88			92-4		93.9	93-9		91.1 89.9		
800	62.2	71.5	76.4	78.5			84.4	85.7	87.3	88.7	89.3	91.3			92.5		87.7		
1000	58.9	69.6	75 3			81.4		84-7	86.4	B7.1	87-1	FA**			89-5		65.6		
1250	58.9	68.5		76.0		80.4	81-B	83.6	84.9	85.B	85.8	87.0	87.6						
1600	60.3	69+1	72 . 8			79.5				84.9	84.9	80-5	86-9		86.6		82.7		
2000	63.7	70.7					81.0		. 83.4			65.8	80.0	86.3				79.8	
2500	67.8	75.1			76.9		81.4		84.3		65.4		86-8		86-2				
3150	73.7	82.3	80.9		. 78,7		83.0		88.0	11455	8947	90.7	90.9					81.3	
4000	73.9						83.6		89.8	.71.9	92.0	92-9	72.5	31.00				79.7	
5000	64-1	74.6	75.2	75.7	76.6	79.6	82.0	85-1	88.1	70.3	91.0	92.6	91.5					77.8	
6300	63.6	75.9	75.6	75-8	75.5	78.4	81.7	E4-7	86.3	07.6	86.6	87.9	88.9 89.9				-80-3		
6000			74.9	77.1	75.Z	70.4	. 79.9	83-9	81-0	94-1	07.0	91.5		90.7				78.0	
10000	53.2	70-4	72.3	73.1	72.1	74-5	7764	HO+7	U4» I	42.5	8143	90.4	07.4	7001	0001		0100	,,,,,	
- excest	70.7		01.7		nt. a	05.7	97 £	op 5	101.2	102.4	103.1	104-8	105.2	105-8	105.7	106-0	106.2	106.6	104.9
PNLT	0 t b	100 0	7101	A300	TAE A	106.3	70 8 B	117.5	113.7	115.3	115-6	117.5	117.6	116.7	115.4	113.5	113.0	112.2	108.6
PHL	7240	106 0	100 4	106.0	105.0	104.5	308-8	111-5	113.7	115.3	115.6	116.9	117-0	116.7	215.4	113.5	113.0	112.2	108.6
DBA	79.5	28-9	87-9	91.1	20.5	92.6	94.5	96.8	98.7	100.2	100.7	102.2	102.3	102-3	101.5	100.1	99.2	98.1	93.5
~~~					3777	1.1		100	0.00	100		100	4.1		1.5			4.75	
BAND	.20	20 .	20	20	Z.	24	24	. 24	24	24	2.4	10	10	24	24	,24	24	24	
TCURF	1.6	. 1.8	2+2	. 2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.6	0.0	0.0	. 0+0	0-0	0.0	0-0

PNLT (INTEGRATED) = 126.33

269 H7151 CONF C ANTI-RENGEST TUBE HW TVP FAR FIELD

			2	269 H7	151 CO	NF C A	NTI-RE	NGE ST	TUBE H	H T/P	FAR FI	ELD								
								RATURE	!	-	61.	o F			TIN	ET TEH E OF D H PRE	PAY		6.00 F 939	N. HG.
	STAND						HUHID	ITY		=	48.	O PER	CT.		MIN	D DIRE	CTION	*	S	-
	DATE		= 25/1	4/74			DASER	VED RP	я		645	5			HIN	ID VELE	KITY	=	5 H	IPH
								CTED R												
							FAA P	ART 36	REFER	ENCE D	AY COR	RECTED	5PL 1	N DB	- RAD	IUS =	150.	FT.		
1/3 00								eenen.	1011F 44			cre								
FREQUEN	0	10	26	30	40	50	60 "	70 70	IUNE AN	9û 1	N DEGR 95	100	105	110	115	120	130	135	140-	- 150
11.21	•				•••				-											
50	82.2	61.7	02.3	83.2	63.5	64.2	85.8	86.0	88.0	88.7		89.7		91.5	93.0			100.0		
63	81.5	82.3	83 - 6	84.1	84-9	85-1	86.2	86-6	67.9	88.7	89-4	90-2	91.6	91.7 70.5	93.1 91.0	92.9 91.1	97-1		103.0	
80	82-3	84.0	B4+5	84.3	64.6	84.8	84-7	85.3 82.2	86.1 82.3	87.2 83.3	88-0 83-3	84.3	85.3	86-1	86.9	87.9		93.9		99.8
100 125	65.0 87.2	83.7 84.2	83.0 84.1	82-1 84-1	82.3	81-9 83-3	82.3 82.8	83.3	84-2	86.4	87.8	66.6	90.0	91.1	92-8	94.7		160.9		
160	86.3	82.7	86-1	85.8	06.1	87.6	87.6	B7.7	90.3	92.1	93.1	94.2	95.6		98.3			104-6		
200	84.6	82.9	87.7	88.9	89-3	90-2	89.5	91.0	92.7	94.9	96.0	96.9						105.2		
250	84-8	83-6	87-4	89.3	90.0	89.5	70.1	91.4	92.8	94.2	95.1	96.2	97.5					101-0		
315	84.3	84.4	85.6	86.6	87.3	87.0	88.9	89.4	89.8	90.4	91.3	92-1	93.1	94.4		98.2		101-1		99-1
400	64.5	83.3	85.8	87.6	66.6	86.7	87-2	88.0	90.1	93.1	94.3	95.6	97.3	99.0		100.3		100-3		97.3
500	84.1	83.0	65.2	86.4	86.7	86.7	87.4	89.5	90-1	90.9	92.0	93.0	94.5	96.0		98.3			- 98-9	
630	03.8	B2-5	E4.8	85.8	86.1	B6.2	86.9	87.9	89.2	91.4	92-5	93.7	95.4	96.8	97-3	97.9	97.2	97-5		94.2
840	82.9	82.2	84.0	84.5	85.3	85.6	86.9	87.9	68.2	90.4	91.6	92.6	94.6	95.2	96.0	96.4	96.1			92.2
1000	79.2	78.9	82-4			84-5	85-5	86-3	87.6	89.3	90-0	90.6	91-8	92.6	93.0					89-4. 87-2
1250	79-3		81.3		82.7	83.1	84.4	85.5	66.5	87.9		89.2 88.3	90.1 89.6	90.9 90.3	91.3 90.5	92.0	92.0 90.4			85.7
1600 2000	82.9 86.7	81.3 87.0	25.2	, B1.2 83.1	81.B 82.3	82.1 81.7	83.3 2.68	84.6 84.6	85.4 65.4	86.6 86.6	87.8 87.6	67-8		89.4	20.5 29.8	89.B	E9-5			-84-7
2500		. 87.9	87.8	84.5	82-4	81.8	83.6	85.1	86-4	87.4	60.3	88-7	89.4		89-5	89.5	28.8			
315u	96.5		96.4		86.6	83.6	84.7	86.7	89.1	90.8		92,4	93.6	94.0		90.5	88.4		86.5	
4000	99.8		99.9	95.7	90.8	85.6	85.1	87.0	89.9	93.0	94.5	95.1	95.3	96.4	94.6	93.5			88.2	86.4.
5000	70.6		90-1	85.8	83.0	81.9	83.6	85.6	88.0	91.4	93.1	94.7	95.4	95.7			89.1			
6300	91.9	92.1	91.9	87.0	63.0	60.6	82.2	84.B	27.3	87.3	90.4	91.5	92.6	93-1	92.2	91.0	88.6			
8000	93.9		93.6		84.5	8C.5	80.5	63.1		89.9	91.3	92.5	94. L		93.5	92.0				
10000	95.0		89.7		81.2	77.8		80.7		86.8	87.9	90.7				93.2				
DASPL	104.1	104-0	104-1	101.2	99.6	99.0	99.7	100.8	102.4	104-3	105.4	106.3	107-7	108-7	109-3	110.0	110.9	112.2	113-1	113.9
PNLT	171-7	121.4	121.6	118.5	114.9	110-3	110.7	112-3	114.4	116.8	118.0	119.3	120.3	121.2	120.0	119.8	118.6	110.3	119.0	110-0
bist							110.7	112.3	114.4	116.8	118.0	T19*8	11947	120-0	120.0	11740	120-0	105.6	104-9	703-V
DBA	144-3	104.2	104+I	100.2	97.2	95.6	96.5	98.0	99.6	101.8	102-9	103.9	102*0	TD2-B	10501	_up,E	Tn3-T		TO49D	
BAND	20	20	20_	20_	20	24	24	24	24	24	24	10	10	10	24	24	24	. 24	24	24
TEORR	2.1	2.4	2.5	2.5	2.0	0.0	0+0	0.0	0.0	0.0	0.0	0.5	0.6	0.6	0.0	0-0	0.0	. 0-0	n=O	0.Ω

 HAXIHUH GASPL
 =
 113-93
 COMPOSITE
 SPL
 =
 114-99

 HAXIHUH PHL
 =
 121-64
 COMPOSITE
 PNL
 =
 124-14

 HAXIHUH PHL
 =
 120-59
 PNLT
 (INTEGRATED)
 =
 131-74

TABLE A-84

2269 H7151 COMP C ANTI-RENGEST TUBE HH T/P FAR FIELD

COMPITION = 6473

ALTITUDE = 200. FT SIDELINE

1/3 OCT																				
FREQUENCY							. 1	HICROPI	HONE A	HGLES	IN DEG	REES								
(HZ )	10	20	33	40	50	ຸ໖ວ	70	80	93.	95	100	105	110	115	120	136	135	140	150	
50	63.9	70.4			79.4		a.es			87.5		88.6	88.5	89.6	B9.5	92.5	94.5	96.4	97.5	
53	64.5	71.9	75.6			82-4			86.2			88.8		89.7	89.1	92.3	94-2	96.6	96.5	
80	66.2	72.6	75.7			80.9	82.0	83.5	84.7	85-5	85.8	87.4	87.5	£7.6	67.3	87.3	90.7	93.0	93.0	
100	65.8			75.9			79.1	79.7	80_8	80.8	81.7	82.5	83.0	83.5	84.1	86.1	88.4	89.9	91.2	
125	66.3	72+2	75.5							. 45.3	86.0	, 87.2	88.0	27.4	70.7	93.6	95.4	96.6	97.7	
160	64.7	74.2					64.6	87.7	87.6	90.6	91.6	92.8	93.3	94.9	95.9	97.7	99.1	.99.5	98-3	
200	64.8	75.7		82.9			87.9			193.5	94-2	96.0	97-1	. 95.2	98.7	99.3	9946	99.0	95.4	
250	65.3	75.4	89.7	83.6	84.6	. 86.3	88.3	1 70 1	91.7	92.5	93.5	94:7	95.8	96.0	96.6	95.8	95.4	94.1	95.B	
315	66.1	73.5	77.9	. 80.9	82.1	85.1	86.3	87-1	87.9	68.7	89.4	90.3	91.3	92.B	94.4	94.6	95.5	95.3	90.4	
400	64.9	73.7	78.9	80.1	81.8	83.4	. 84.9	87.4	90.6	91.7	92.9	94.5	.95.9	96.0	96.5	94.B	94.7	.92.5	88.6	
50Ó	64.4	73.0	77.7	80.2	81.E	83,6	86.4	87.4	88.4	87.4	90.3	91.6	92.9	93.7	94.5	93.5	93.B	92.4	28.C	
630	63.7	72.5	77.0	79.6	81.3	83.1	1 84+8	86.5	88.8	89.9	91.0	92.5	93.7	93.9	94-1	92.3	91.0	90-1		
800	63.1	71.6	75-6	78.7	80.6	83.D	84.0	85 - B	87.8	89.0	89.9	91.7	92-1	92.5	92.5	91.1	90.6	88.4		
1000	59.4	69.8	74.6	77.7	79.5	81.6	83.1	84.9	E6.7	87.4	87.9	88-9	89.4	89.5	90.1	88.9	88.5	86.0	20.4	
1250	59.4	64.5	73.2	76.0	78.0	80-5	82.3	83.7	85.3	26.1	86.4	87.2	87.7	87.8	65-1	86.9	86.4	83.B	78.1	
1600	60.7	68.6	72.0	75.0	77.0	79.3	61.4	82.6	84.2	85.1	85.5	86.6	87.1	86.9	86.8	85.3	E4.6	82-1	75.5	
2000	65.6	71.8	73.7	75.4	76.5	79.0	81.3	82.6	83.9	84.9			85.1	86.2						
2500	65.6	74.0	74.8	75.3	76.5	79.5	81.8	83.5	84-7	85.5	85 - 8		87-1			B3 - 5	82.6	50.0	74.5	
3150	73.1	82.0	81.1	79.3	78.1	80.5	.63.3			88.9		. 90.5					61.9	79.2		
4000	74:6	84.8	85-3	83.2	79.9	20.7	53.5	86.9	90.1	91.6	92-1	92-1	92.9	90.7	87.1	84.0				
5000	63.9	74.5	75.1	75.3	76.1	79.2	. B2.0				\$1.6			90.3		83.3				
6300	69.3	75.3	75.7		74.6	77.6	81-I	84.L	86.2	87.3	88.3	89.2	89.4	88.1	87.0	82.6	80.1	77-2	71.7	
8000		75.3	76.7	75.8	, 74.0	75.5	79-1	83.1	86.7	88.0	87-1	70.5	89.8	89.1	-57-0	51.3	79.7	77.0		
10000	52.3	69.0	71.7	71.6	70.7	73,4	76=4	79.6	83.3	84-3	87.0	89-1	89-1	89.5	87,B	81.9		77.0		
DASPL	80=3	89.5	91.6	92-8	95.0	95-8	97.6	97.6	101.6	102-7	103.5	104-7	105.5	105.8	106.1	106.5	106.6	106-6	105-3	•
PHLT	96.9	106.B	108.3	107-5	104.8	106.5	108.9	111.4	114.0	115.2	116.4	117.1	117.B	116.3	115-6	113.4	113.4	112-2	708-9	
PHL	94.5	104.4	105.B	105.5	104.B	106.5	108.9	111.4	114-0	115.2	115.9	116.6	117.2	116.3	115.6	113.4	113.4	112.2	108.9	
DBA	79-5	89.1	90.1	90-0	. 90 <u>- 3</u>	92.4	94-7	96.8	99-0	100-1	101-0	101.9	102.5	102.0	101-8	100.0	99.8	98.2	94.2	
BAND	20	20	20	20	24	24	24	24	24				10	24	24	24	24	24	24	
TEORR	2.3	2.5	2.5	. 2.0	0.0	- 0-0	0.0	0.0	0.0	0.0	0.5	0,6	0.6	0.0	0.0	0.0	0.0	ú.A	0.3	
and the first	. 15.1	100		1.0			1.00	100	4 - 4 - 1		1.0	4. 3	27.0	1.0			100	1.54		

PHLT (INTEGRATED) = 126.37

#### 2269 M6788 CONF C ANTI RENGEST TUBE HW TYP HARD FIELD

```
ENGINE HODEL = JTGD -00
FNGINE NUMBER = 037454

TEMPERATURE = 62.0 F
TIHE OF DAY = 1041
6ARM. PRESSURE = 30.05 IN. HG.
STAND = X-314
HUMIDITY = 43.0 PER CT. MIND DIRECTION = 5 MPH

CORRECTED RPH = 6373.
```

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 15G. FT.

```
1/3 OCT
FREORICY
(HZ)

100

90

110

120

140

150

160

130

50

91.8

91.6

91.8

91.6

98.1

98.0

100.1

100.2

100.1

100.1

100.2

100.1

100.2

100.1

100.2

100.2

100.2

100.2

100.3

100.2

97.0

93.3

102.2

99.6

109.1

110.0

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

110.1

1
```

 HAXIMUM CASPL = 128.6B
 COMPOSITE SPL = 120.692

 HAXIMUM PRLT = 130.32
 COMPOSITE PRL = 131.16

 HAXIMUM PRL = 130.32
 PRLT (INTERPATED) = 133.21

 HAXIMUM DDA = 115.51

TABLE A-86

2269 H6788 CONF C ANTI RENGEST TUBE HN T/P HARD FIELD

CONDITION = 6373

ALTITUDE = 200. FT SIDELINE

FREQUENCY						1	MICROPHONE	ANGLES	IN DEGREES
(HZ)	100	90	120	140	150	160			
50	89.2	89-1	92.2	97.7	99.6	99.7	94.4		
63	91.4		95.1				96-8		
80	91.7	92.2	96.3	102.8	102-9	100.1	98.7		
200	95.3	70.B					101.0		
125	96.0	93.6	76.8	102.0	100.6	96.9	97.6		
160	94.0	94.0		101.3			100-4		
200	95-9	95.1	100.2		96.1	87.5		·	
250	97.2	96.0	100.4		93.9		98.9		100000
315		93.9	99.7		92.3	64-8			
400		95.4			90.9				
500	96.7	93.6			89.5		97.1		1000
630		91.5	96.7		87.6		95-1		
600		91.5			85.6				1.00
1000		70-1	93.0	87.4	82.6				
1250		8B.3	61.3	85_5	80.2	74.3			
1600		87.5			79.2	72.9	87.4		5 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2
2000	89-8				77.2	72.4			100
2505		88.0	88.0		77.4		84.9	·	
3150	95.2				78.6				4.5
4000		73.4		83-1					754 × 114
5000		92.5	87.7		77.0				
6370		87.4			74.4				
6008		38.3			73.7	48-5	81.4 80.4	100	the product of the con-
10000		B3-5	97.0	75 7	71.2			10 to	
	7107	0.5 6.5	0212	13.4	1100	42.7	79.6		4 1
DASPL	108-5	105.7	100.7	770 0	100 E	100 0	109.7		0.00
PNLT		117.5	117 4	114	10703	100-0	115.9		
PNL.		117.5	777 6	114-0	11144	10101	115.9		
DEA		102.4	106.6	300 7	111.0	10(-1	115.9		4.5
	Tonet	70594	104-4	TOOF !	7014	91.0	102.5		
BAND	24	24	24	24	24	24	24	/	
TCORR	0.0	g.0	0.0	ō.n		0.0			

PALT (INTEGRATED) = 129-19

```
TABLE A-87
                                        2269 H7152 JTBD-109 CONF C ANTI RENGEST TUBE HARD FIELD
                                                                                                                                              INLET TEMP
TIME OF DAY
BARM, PRESSURE
WIND DIRECTION
WIND VELOCITY
                                                                                                                                                                        = 59.00 F
= 1041
= 30.05 IN. HG.
          STAND
DATE
                                 = X-314
= 35/14/74
                                                                     HUHIDITY
                                                                                                                                                                                 S MPH
                                                                     FAA PART 36 REFFRENCE DAY CORRECTED SPL IN OB - RADIUS = 150. FT.
1/3 PCT
FREQUENCY
(HZ)
                                                                           HICROPHONE ANGLES IN DEGREES
                 115
                        111
63
89
100
125
160
250
315
470
630
800
1000
2500
3150
4300
5000
5000
1000
CASPL
PNLT
PNL
DBA
           HAXIRUH DASPL
HAXIRUH PNLT
HAXIRUH PNL
HAXIRUH DBA
                                                                      COMPOSITE
                                                                      COMPOSITE PAL
PALT (INTEGRATED)
TABLE A-88
                                                                         2269 H7152 JTRD-109 CONF C ANTI RENGEST TUBE HARD FIELD
                                                                                                                     CONDITION = 6373
                                                                                                                     ALTITUDE = 200. FT SIDELINE
                                                                                                                 ROPHONE ANGLES IN DEGREES
```

I/3 PCT			
REQUENCY (HZ)	116		HICR
1021	II.	111	
50	91.9	89.8	
63	93.8	89.9	
BO	94.5	91.6	
190	95.0	89.9	and the second s
125	97.3	87.2	*
160	96.6	85.5	
270	913-1	92.4	
250	98.5	97.2	
315	97.9	98-1	•
400	97.6	95.1	
500	96.€	91.9	
630	¢5.1	95.3	
870	93.2	91.2	
1000	91.3	91.0	
1250	89.5	89.6	だいとけだと しょくんきゅう ちゃく ちゃく
1690	88-6	87.5	
2000	86.0	87.1	
2590	87.9	86.7	<ul> <li>Compared to the analysis of the second second second</li> </ul>
3150	91-7	70.9	医乳腺素 化二甲基丙基 医二氯酚基二氯酚基
4000	93.B	94.0	
5000	92-2	92.9	
6200	. 88.1	91.1	
2000	88.2		
10000	86.6	96.B	
DASPL	108.3		
PHLT	118-6		samuning gain shinaidh, ann a gear a'
PNL	11E-8		
BBA	103.9	103.3	

PNLT (INTEGRATED) = 122.05

2269 H6788 COMP C ANTI RENGEST TUBE HN TYP HARD FIFLD

# 58.GD.F = 1013 # 30.05 IN. HGs. # S # 5 MPH

FAA PAR. 33 REFERENCE DAY CORRECTED SPL IN DB -RADIUS = 150. FT.

MICROPHONE ANGLES IN DEGREES 118-1 114-3 118-3 118-5 118-6 115-9 139-5 123-4 122-5 121-2 120-1 122-3 130-5 123-4 122-5 121-2 120-1 122-3 115-8 109-3 108-1 105-5 103-5 108-8 DASPL PHLT PHL PHL DBA BAND 24 0.0 COMPOSITE

HAXIHUH CASPL HAXIHUH PNLT-HAXIHUH PHL MAXIHUH DBA COMPOSITE PHL PHLT (INTEGRATED)

TABLE A-90

2269 H6786 CONF C ANTI RENGEST TUBE HW T/P HARD FIELD

ALTITUDE = 200. FT SIDELINE

1/3 DCT								100155	IN DECREES
FREQUENCY								MINORES	THE MEMBERS
(HZ)	100	70	125	140	· 150	160	130		
50	89.8	91.0	94.5	100-2	100.8	.101.5	97.4		. '
63	92.7	88.5	95.5	203.0	100.B	97.9	97.3		
80	93.9	90.5	96.4	103.8	103.6	98.0	160-1	2.5	
100		91.4	98.3	102-9	102.8	78-7	100.9		
125		93.4	99.5	103.1	100.9	98.8	101-0		
160		94-0	100.3	102.5	98.4	93.1	102.0		
200		95.5	99.5	100.7	95.9	87-9	101.2		
250	96 B			78.9	74.0	86.4	99.9		11 · · ·
31F		93.6	100.2		93.1				
450		94.2		97.3		85.0	99-2		
500		93.6	99.8		87.7	83.9	9B.2	1.0	
630		92.5		92.9					
800		92-1	94.9		85.5	80.5	94.1		
1000	92.3			88.4			92.2		
1250	90.5			86.0		73.8	90.2		
1600	E9.9		89.6			72.2	88-7	12.1	
2000		87.5		83.8					
2500		70.0		82.6		72.2			
3150		05.3		83.7			86-5	1. Sec. 15.	
4000		96-3			79.5			٠.	in the same of the
5000		93.9		63.3	77.8	71.3	B6.0		100
6300	92.1		89.7	81.2	75.2	68.0	84.0	•	25.4
8000		91.6		79.2	74.0	65.8	82.6	si s	and the state of the
10010	91.7		91.0	77.4	72.0	61.8	81.7		
				100	4	e jeti i			and the second of
OASPL	108.2	106.5	110.5	111.9	109-9	106-7	111.0		
PHLT		119.4					117.2	100	
PNL		119.4	119.3	115.7	112.1	107.4	117.2	12 B N	
CBA		104.2	.105.3	101.5	96.6	91.0	103-8		
					1 500		eng Silay		and the second
PAND	24	25	24	24	24	24	24		
TCORR	0.0		0.0	0.0	0.0	0.0	0.0		5.5
					1.	11.	F 15	100	
1 12 12	100	ar a tair t		5 1 1 2 4 1			age of the second	1 2 10 7	and the second

LINTEGRATED)

```
TABLE A-91
                                                    2269 H7151 CONF C ANTI RENGEST TUBE HW T/F HARD FIELD
                                                                                           HUHIDITY.
                                           = X-314
F 05/14/74
              STAND
DATE
                                                                                           OBSERVED RPH
CORRECTED RPH
                                                                                            FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.
1/3 CCT
FREQUENCY
(H2)
                                                                                                   HICROPHONE ANGLES IN DEGREES
                      113
                                  111,
                                93.3
93.7
94.3
90.9
95.8
100.6
100.7
98.7
98.7
98.7
94.4
90.6
90.6
97.9
97.9
93.7
95.8
  50
670
1250
1250
2565
4000
5000
10000
1250
2500
2500
40000
6300
6300
10000
10000
                     95.4
97.0
98.5
98.9
100.9
100.9
102.7
102.1
107.6
100.8
97.3
95.7
93.6
93.2
92.9
97.7
100.6
96.0
  OASPL
PNLT
PNL
DBA
                      112.7 109.7
124.5 123.0
124.5 121.8
109.2 107.0
  BAND
TEORP
                          24
                                                                                             COMPOSITE SPL
COMPOSITE PHL
PHLT (INTEGRATED)
                HAXIMUM DASPL = HAXIMUM PNLT = HAXIMUM PNL = HAXIMUM DBA =
                                                    112.70
124.53
124.53
   TABLE A-92
                                                                                                     2269 H7151 CONF C ANTI RENGEST TUBE HW T/P HARD FIELD
                                                                                                                                                              CONDITION = 6426
                                                                                                                                                              ALTITUDE = 200. FT SIDELINE
```

Writinns = 500* El 2105F

1/3 OCT
FREQUENCY
(HZ) 110 111

50 92.4 96.2
63 94.6 90.6
80 95.5 91.2
100 95.8 90.2
125 97.1 87.8
166 97.8 85.8
200 98.7 92.7
250 99.6 97.5
315 99.0 98.6
400 98.5 95.0
500 97.7 92.2
630 95.9 95.5
70 94.2 91.5
100.1 92.5 91.2
1250 96.9 89.0
1600 90.4 87.9
2000 89.9 67.3
2500 89.6 85.9
2000 89.9 67.3
2500 89.9 87.3
2500 89.6 85.9
2000 89.9 67.3
2500 89.9 67.3
2500 97.3 93.2
6303 92.3 89.9
2000 92.4 91.5
1000 92.4 91.5
1000 92.4 91.5
1000 92.4 91.5
1000 92.4 91.5
1000 92.9 91.5

DASPL 109.5 106.4
PRIT 121.1 119.5
PRIM 121.1 119.5
PRIM 121.1 119.5
DBAND 24 12
TCORR 0.0 1.2

PNLT (INTEGRATED) = 123.41

2269 H6788 CONF C AHTI RENGEST TUBE HW T/P HARD FIELD

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT. .

TABLE A-94

2269 H6788 CONF C ANTI RENGEST TUBE HW T/P HARD FIELD

CONDITION = 6478

1/3 OCT FREQUENCY							i	HICROPH	DNE ANGLES IN DEGREE:
(HZ)	100	90		120	140	150 -	160	130	•
50	90.5	88.8		026				97.9	
63	93.4			-0.0				99.6.	
80	93-2	92.2		0.0				100.7	
100	93.7	93.B		0.0				102.0	•
125		94.3.		0.0				101+8	
160		94.7						101-0	and the second
200		96.4		0.0				101.3	
250		97.0		0.0	87.7	95.3	87-2	100.8	
315		95.7		0.0				99.5	
400		95.9		0.0				99.5	
500		95.4	1					99.3	the state of the s
630		93.6		0.0				97 <b>-</b> 0	the second second
800		93.9			79.6			95.6	
1000	72.9			0.0				72-2	the second second
	70 B			0.0				90-2	and the second of the second o
1630		88.9		û.0				87-3	and the second second
	90.0		1.0	0.0				87.5	
2500		89.3						86.9	
3150		93.0			73.0			87.2	
4000		94-2		0.0				87.9	
5000		91.5		0.0				87.2	Carlos Maria Salar
6300		87-9	14.	0.0		0.0	68.5	85.0	and the second second second
8000		86-0		0.0				83_5	
10006	91 -6	83.0		0.0	66.8	0.0	61.5	82.6	
DASPL	108.6	106.9		13.8	100-1	110.9	107-1	111.4	
PNLT		118.5						117.7	
PNL		118.5						117.7	
CBA	105.8	103.6						104,2	
BAND	24	24		24	24	21	24	24	
TCORR	0.0			0.0				0.0	
	. de egi. ₹		í.	, .T.	4.55				

PALT CINTEGRATED) = 128-15

```
2269 M715D COMP C ANTI RENCEST TUBE HW T/P HARD FIELD
TABLE A-95
                                                                                                                                                                  INLET TEMP
TIME OF DAY
BARH. PRESSURE
WIND DIRECTION
WIND VELDGITY
                                                                                                                                                                                                = 56.00 F
= 939
= 30.05 IN. HG.
               ENGINE MODEL = JTED -CO
FNGINE NUMBER = 037454
                                                                                TEMPERATURE
                                                                                                                                                                                                        S
15 MPH
              STAND
DATE
                                       = X-314
= 05/14/74
                                                                                HUNIDITY
                                                                                CBSERVED RPM
CORRECTED RPM
                                                                                 FAA PART 36 REFERENCE DAY CORRECTED SPL IN OB - RADIUS = 150, FT.
                                                                                       MICROPHONE ANGLES IN DEGREES
                                111
      50
63
80
125
160
250
250
715
400
500
500
1000
1250
1600
     4000
5030
6300
8500
14006
     DASPL
PNLT
PNL
DBA
                     112.8 110.4
124.1 123.6
124.1 122.4
169.1 107.7
     BAND
TCORR
                        24 12
0.0 1.2
                HAXIKUM CASPL
HAXIKUM PNLT
MAXIKUM PNL
HAXIKUM DBA
                                                                                  COMPOSITE SPL
COMPOSITE PNL
PNLT (INTEGRATED)
                                                112.84
124.06
124.06
109.06
                                                                                   2269 H7151 CONF C ANTI RENGEST TUBE HW T/P HARD FIELD
  TAB ... A-96
                                                                                                                                    CONDITION = 6473
                                                                                                                                     ALTITUDE = 200. FT SIDELINE
```

.

HICROPHONE ANGLES IN DEGREES

1/3 OCT FREQUENCY		
(HZ)	110	111
50	92.6	90.1
63	94.4	91.1
-80	95-1	91.7
100	95,7	90.6
125	97-6	87.9
160	98.2	86-7
200	99.2	94.3
250	99.9	98.4
315	99.4	79.3
400	99.0	75.4
500	92-2	93-5
63C	96.5	96.5
800	94.4	92-2
1000	92.7	91.9
1250	91.2	90.0
1600	90-6	86.8
5037	89.9	88.3
2500	89.5 93.5	87.7 91.5
3150	95.9	45.0
4000	95.0	93.8
5000 6300	92.6	70.9
6500	90.8	91.2
10000	90.4	91.3
10000		
DASPL	109-7	107-I
PNLT		120.2
PHL	170-7	
DBA		104.2
BAND	24	12
TCCRR	0.0	1.2
	1,5	

PNLT (INTEGRATED) = 123.45

ТАВ	LE A-9	7	ä	269 M7	:151 CO	NF C A	NTI-RE	NCEST	TURF, H	N T/P	FAR F1	ELD								
	ENGINE N		0 JT80 = 37	-00 14054			TEMPE	RATURE	•		59.	0 F			TIF	ET TER SE OF C	PAY	=	54.CO 8 928 30.G5 1	
	STAND			-314			HUMIC	ITY		-	49,	O PER	CT.		WIR	D DIRE	CTION	2	5	
	DATE		= P5/1	4/14				VED RE		=					MTL	4D VELO	i Li i T	Ė	5 1	ırn
							FAA F	ART 36	REFER	ENCE C	AY COF	RECTED	SPL 1	IN DB	- RAT	a ZUIC	150.	FT.		
1/3 PC FREQUEN								I CROPH	ONE AN	101 ES 1	IN NECS	FEE								
(H2)	,	10	2*	30	40	50	60	70	8D	90	95	100	105	110	115	120	130	135	140	150
50	86.1		P6 • 1	86.9	87.3	87.B	89.3	90.1	91.5	92.6	93.5	93.6		95.9	96.9				107.6	
63 30	86.5 87.4	06.6 07.8	67.7 85.5	87.9 88.7	88.5 68.6	88.8 89.0	90.1 89.0	90.6 89.5	90.5	92.B 91.3	93.6 92.1	94.0	95.6 94.5	95.0	97.3 95.4				105.8	
193	89-1	08.7	87.3	86.8	85.6	87-1	86.4	87.0	87.4	QB.4	88.7	88.9	90.9		91.9				104-2	
125	92.4		90.2	69.6	86.4	80.5	68.2	88-1	88.5	90-6	92.3	93.0							111.3	
160	91.4		92.0	92.1	91.0	92.5	92.9	93.1	95.1	96.7	78 · 0								114.2	
200	98-1			93.0	74.2	94.6	94.8	96.3	97.9	99.B	101.3	102.2	104.0	105.5	106.9	108-0	111.3	112.7	113.7	112.6
250	89.3	89.7	93.6	95.6	95.9	95.9	95.9	97.2	98.7	100.2		162.1								
315	90.0	99.0	91.2	92.6	93.7	93.7	95.5	95.7	96.6	96.9										
400	89-3		91.8	93.4	93 · C	93.2	93.6	94.5	96,4			101.9								
500	92.1		92.4		93.9	93.7	94.7	76.7	97.4	5P-3										
630 600	99.3				97-2	93-1	93.9	94.6 94.3	96.1 95.3	97.B 96.8	98.0	100-6							105.8	
1000	87.6		89.7 89.2	90.6 89.6	91.4	92.1 91.0	93.5 92.3	95.0	94.6	96.3	97.1		101.5	100.6	101.7	107-1	103.2	103-2	103-1	103.5
1250	86.6 66.4		87.4	88.2	B9.0	69.7	91.0	92.2	93.8	95.3	96.2	96.7		99.0	99.9				100.5	
1670	87.2		66.0		87.7	88.7	70.1	91.2	92.7	94.0	95.4	96.0	97.6			98.1				
2600	92.2		91.6	89.0	t6.1	87.9	89-3	70.5	92.2	93.4	94.7	95.1	96.4	97.2		101.2				
2500	94.0	94.0	91.7	90.3	87 <b>.</b> 6	87.5	89.2	90.2	92.2	93.2	94.0	94.6	96.6	96.4	96.6		76.4	95.6	94.9	
3150	94.0	94.2	93.0		87.0	87.4	89.2	90.7	92.7	93.7	94.4		95,8	96.1	95.8					
4000	93.9		93.5		67.6	87.7	89.5	91.3	93.9	95.6	96.5	97.1	98.3		97.6		94.B			
5000	93.5		93.0	88.5	86,6	86.4	86.5	90.4	93.4	95.3	96.1	97.3	98.2	98.B	97.9		94.4	93.4		
6331	91-0		91.0	87.2	85-3	B5.1	87+2	89.2	91.9	94.3		96.7 95.0	97.6 96.6	98.6	96.5	97.5 95.4	94.2 93.4	93-1 92-3		
9000 10000	90.2 80.6						84.5 82.5	87+0 64•7	96.2 87.8	92.5 90.9				95.9		94.3				
CASPL	104.6	134.3	104.6	104.9	104.3	104.6	145.5	106.5	108.1	100.6	110.7	111.6	113,4	114.5	115.4	116.0	118.3	119.7	121.1	122-1
PNLT	118.1	110-1	117.7	117.2	114.4	114.5	116.0	117.4	119.4	121.0	122.0	122.8	124.8	125.6	125.0	126.6	125.7	126-4	127.ú	127.2
PHL	118+1	117.7	117.7	115.5	114-4	114.5	116.0	117.4	119.4	121.0	155.0	122.8	124-3	125.0	125-0	125.2	125.7	140.4	127-0	120.0
DBA	163.5	103.5	103.1	101.9	100.9	101.2	102.5	103.7	1.52+2	101.0	I)8+1	109.0	110.0	111.5	115-1	112-3	113.2	113.7	114-1	443-6
DAND	74	17	24	11	24	24	24	24	24	24	24	24	10	10	. 24	17	24	24	24	5
TCTRR	0.0	1.4	ودول	1.7	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.6	0.6	. c.o	1.4	0.0	0.0	0.0	8.5

2269 H7151 CONF C ANTI-RENGEST TUBE HW T/P FAR FIELD

COMPOSITE SPL COMPOSITE PHL PNLT (INTEGRATED)

> CONDITION = 7400 ALTITUDE = 206. FT SIDELINE

1/3 GGT FREQUENCY	,							ITCROPI	ione as	iGLES I	IN DEG	REES								
(, '7)	10	20	30	40	50	60	70	80	90	95	100	105	11û	115	120	130	135.	140	150	
50	67.0	74.7	79.4	80.9	83.3	85.5	87.1	88.9	90-1	91.0	91.2	92.3	92.9	93.5	93.6	97.9	99.3	101.2	102.4	
63	8.84		79.4		84-û		87-6	89.2	90.3				93.0	93.9	94.2	97.B	100.1	101.7	101-6	
28	70			82.2	64.2	85.2	86.5	88.3	88.8	89.5	90.3			92-0	91.6	95.8	96.5	99.4	97-9	
100	70-8	75.4	70.2	80-2	82.3	82.6	83.9	84.8	85.9	86.2	86.3	88-1	87.9	88+5	88.7	92.8	95.5	97.8	98.7	
125	71.2	78.3	11.2	82.0	63.7	84.4	85.0	85.9	28-1	87.8	90.4	92.0	92.8	94.2	95.8	100.7	103-1	104.9	136.1	
160	69.7	60-1	13.5	85.4	87.7		90.0	92.5	94.2	95.5	96.4	97.8	99-0	99.5	101.2	104.7	106.6	107.8	167-1	
200	70.2	81-5	5.2	87-8	89.7		93-2	95.2	97.3	98.8	99.5	101.2	102.4	103.5	144.2	106.4	107-1	107.3	104.0	
250	71.6	81.6	7.0	29.5	91.0	92-1	94-1	96.0	97.7	98.6		101.2								
315	71.7	79-1	43.9	87.3	88.5	91.7	92.6	93.9	74.4	95.3	95.6	97.2	98.1	99.6	100.4	102-1	103-3	103.5	100*0	
400	70.9	79.7	84.7	86.5	88.3	90.0	91.4	93.7	96.7	97.9		101.4								
500	73.9	80.2	89.0	87.4	B8.8	90.9	93.6	94.7	95.8	96.5	97-1	98.8	99.5	101.1	161-1	101.9	102.6	102.2	100.B	
633	69.9	78.4	83.1	85.7	88.2	90-1	91.5	93.4	95.2	96.9	97.9	100.0	100.9	101.5	100.9	101.2	100.6	101.0	98.6	
530	68+6	77.3	81.7	84.0	87.1	89-6	91-2	92.6	94.2	95.4		98.3				100.2	99-8	99.2		
1000	46.6	76.6	80.6	83.9	Eu LO	88.4	89.8	91.9	73.7			96.8				98-1				
1250	65.9	74.6	79.1	82.3	F4.6	87.1	89-0	91.0	92.7				95.€			95.8	94.8		89.7	
1670	£6.1	74.9	78.0	£ú.9	83.6	26.1	86-0	87.9			93.2		95.0		94.1	94.0	92.8		86.6	
2000	73.0	75.2	. C.2	61.2	82.7	85.3	87,2				92.3		93.9						83.9	
2500	71.7	77.9	10.3	80.7	82.2	85.1	86-9	89.3			91.7		`95.1	92.9		91.1	89.5		81.7	
3150	70.6	78.6	16+5	79.7	81.9	85.0	67.3		90.5											
40.20	68+5	78-4	79.11	ED • 0	82-0			90.9			94-1				30-3		B7.5		. Bú . 1	
5000	66.9	77.4	77.5	78.9	80.6			70.3			94.2						86.7		79.0	٠.
OCEA	65.4						85-5				93.5					88.2	86.1			
6000	57.6		73.4	75.û			83.D										84-8		75+9	
10000	50.6	67.7	70.5	72-1	73.3	77-1	80-4	84-1	87.4	87.3	87.9	91-4	91.6	90.6	88.9	85.5	83.4	80.6	73.4	
DASPL	R3 - 6	-01-7	66.0	97.7	0D A	101.6	4_FDT	10513	107-0	70R-7	1080	110-5	111-3	111.0	112-1	111.4	116-1	134-7	113.5	
PNLT	26.2	103.4	107.5	107.2	100.2	111.4	114.0	116.5	118-3	110.7	219-9	121.7	122-3	121.3	122.5	170-6	120.6	120-3	116.2	
PNL																			117-7	
DBA																			105.0	
226	3									100				11.5						
BAND	17	24	11	24	24	24	24	24	24	24	24	10	30	24	17	24	24	24	5	
TEORR	1.4	0.0	17	0.0	0.0		0.5	0.0	: 0.0	0.0	0.0	0.6	0.6	. 0.0	. 1.4	U-0	0.0	0ءون	0.5	
				100		100			11	e difference		1.5			1.3	4.5	13.1.1			

PHLT (INTEGRATED) = 131.78

TIME OF DAY BARH. PRESSURE 932 30.05 IN. HG. STAND DATE HUHIDITY OBSERVED RPM CORRECTED RPM FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS - 150. FT. HICROPHONE ANGLES IN DEGREES 70 80 90 95, 100 105 110 95. 100 105

93.4 93.1 95.1

93.5 94.2 95.5

91.9 92.2 94.3

89.1 89.0 90.3

92.5 93.3 94.7

98.4 98.9 101.1

101.2 102.0 104.2

101.0 102.2 103.7

97.7 98.5 99.6

100.7 102.0 103.8

99.3 100.1 101.5

99.6 100.8 102.6

98.0 99.4 101.2

97.0 98.0 99.3

95.1 96.3 97.3

95.1 96.9 97.7

95.4 95.3 96.0

94.0 94.9 95.5

93.3 95.1 94.8

96.7 97.4 97.7

95.4 97.6 97.7

95.4 97.6 97.7

95.4 97.6 97.7

95.4 97.6 97.7

95.4 96.9 97.3

93.4 95.0 96.1 95-1 95-5 95-5 95-5 94-3 94-7 90-3 90-9 94-7 96-1 101-1 105-2 103-7 105-2 103-7 105-0 99-6 100-8 OASPL PNLT PNL DBA BAND 24 0.0 24 0-0 24 24 24 0.0 0.0 0.0 24 0.0 24 24 0,0 MAXIMUH DASPL HAXIMUH PNLT HAXIMUH PNL HAXIMUH DSA COMPOSITE PHL PNLT (INTEGRATED) TABLE A-100 2269 H7151 CONF C ANTI-RENGEST TUBE HH T/P FAR FIELD

226% H7151 CONF C ANTI-RENGEST TUBE HW T/P FAR FIELD

CONDITION = 7415 ALTITUDE = 200. FT SIDELINE

1/3 ncT								.1CROPH	Inuc At		n DEGE	ese				-			
FREQUENCY	10	2G	30	46	50	60		BO	90	95	100	105	110	115	120	130	135	140	_150_
(1123	10				20		• •								- 1				
50	67.1	74.7	78.2	80.9	82.9'	85.5	57.1	88.7	89.8		90.5	92.3	92.5	93-5	94.0	97.8	. 99.2	101-5	102.0
62	68.4	75-7	79.5	82.0	83.9	86.2	87.9	£9.2	90.2	91.0			92.8	93.8	94.0			101.6	
60	70.0	76.9	79.5	82.3	83.6	84.9	86-5	88.4	88.4	69.4		.91.5	91.7	92.2		95.2		98.7	
100	70.9	75.5	77.8	£0.4	21.9	0.E8	D3.6	85.0	85.6	86.6	B6-4	27.5	87.8	88-4	89.7	93.0			99.3
125	71.4	7,7.9	60.6	81.5	84.0	84.4	€5.2	PE .4	88.2		90.7	91.9	93,0	94.9	96-7	100.6	TOTOT	105.0	106.5
160	69.8	20.0	83.5	85.9	66.4	89.3	89.7	92.4	94.4	75.9	96.3	98-3	98.6	100-7	101.6	102.5	101.05	109*0	10143
200	71.0	E1.4	85-4	88.0	90.1	91.0	93.2	95.0	97-2	98.7	99.3	101-4	102-1	103.0	104.2	100+7	101.0	10/10	10.400
250	72.0	81.3	87.1	£9.4	91.0	92-2	94.4	95.9	97.5		99.5	100.9	101.9	102.7	103.0	103-1	103-3	102-0	101+0
315	71.7	78.7	P3.9	£7.0	28.6	91.7	92.9		94.4	95.1	95.8	96.E	97-7	99.7	100-7	102.4	103.3	10501	100.00
400	71.0	79.6	64.9	86.5	88.2	90.0	91 • 2	93.6	96.6	9B.X	99.3	101.0	102-4	102.8	103-3	TOTAD	10201	102-0	7740
500	73-8	F1.1	68*1	67.5	59.C	91-1	93.5	94.5	95.6	76.7		98.6	99.8	101-1	101+1	102.0	102.0	100-6	10143
630	69.9	78.6	0.50	85.8	86.5	90.1	91.7	93.3	95.2							100.0			98-6 96-6
800	68-1	77.4	81.C	84.	£7.3	89.7	91.4	92.5	94.3	95.4	96.7			99-9					92.8
1600	66.3	76.1	£0.6	83.9	15.1	88.4	90.3	91.9	93.6	94.4	95-3				. 98 1	95.5	95.I		
1250	£6.0	74.7	70.2	82.6	14-8	87.4	89.4	91.0	92.5	93.5	94.1	.94.8	95+8			93.6	92.9		
1600	66.0	75.9	77.9	81.0	93.8	80.1	88.3	£9.9	91.4	92.5	93.5	94.3	95.0			92.1	91.3		
2000	72.8	20-1	70.9	81-3	82.9	85.4	87-6	69.3		91.8	92.5	93.0	93.9	94,1			29.7		BL-3
2500	71.8	77.8	79.6	80-7	82.4		87.3	89.1	90.3	91.2		92.4				87-2	87.9		77.2
3150	69.9	79.3	78.6			85.2		89.4				91.7					27.6		
4000	68.4	70.2	79.2	80-3	82.0	65.2	88.0	90.5	92.6	93.B		94.5	94.6			68.1	86.7		
5000	57.0	77.7	77.7	79.2		84.2		89.7				93.9	94.2			87.7		E2.8	
6300	62.7	75.2	75.8	77.3		82.6		80.1		92.3									
8000	57.6	72.0	73.3				83.0	26-1	58.0	90-1	AT * D	92.5	71-7	7441		84.9		80.0	
10000	50.6	67.7	70.2	72-1	73.5	77.1	80.4	83.5	87-1	. 87.5	87.8	90.6	9013	3000	00.3	5747	0383	5115	1207
DASPL	83.5	91.0	95.6	97-6	99.7	101-7	103.5	105-2	106-9	108-1	109.0	110.3	111.2	112.0	112.3	113.4	114.4	114.8	113.6
PNLT		ACE A	147 0	107 /	700 3	777 6	314.2	116.2	11P.2	770.3	770.1	121-3	121.4	12142	120-6	120-7	IZU.D	120.0	TTIO
PNL	04 6	101 0	* A E . 4	TAT 1	100.3	111 a	114.7	114.5	110.7	110.3	120.1	170.7	121-3	121-2	1ZUe1	LZUAT	IZUeb	120.0	Lifei
DBA	80.9	29.6	92.3	94.2	96.2	98.6	100.7	102-4	104.2	105.3	106.3	107.2	108-1	108.4	108.3	108.0	108.1	107.4	105.1
	1.1	3.3	5 3 Year	24	24		24	4 4 5 4 5 1	24		24			24	1.	24	the second of		24
BAND	17	17	11					0.0	0-7	ຄ.ກ	0.0	0.5			0.0				0.0
TCORP	1.3	1-1	1-4	0.0	. 0.0	0.0	0.0	0.40	250	0.0									

PALT (INTEGRATED) = 131-13

TABLE A-99

**TABLE A-101** 2269 H7151 CONF C ANTI-RENCEST TUBE BY TVP FAR FIELD FRGINE MIDEL ENGINE NUMBER INLET TEMP TIME OF DAY BARH. PRESSURE MIND DIRECTION WIND VELOCITY ≈ 53.00 F TEMPERATURE ETAND HUHIDITY DESERVED REM CORRECTED RPH FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT. TO EVE FREQUENCY (SH) HICROPHONE ANGLES IN DEGREES 70 80 90 95 100 16 80. 70 80 90 95 100 105 110 115 120 130 135 140 150 89.3 90.0 95.4 97.0 98.1 102.5 105.6 108.0 110.6 90.2 96 5 92.0 92.9 93.5 94.1 95.5 95.7 97.3 97.8 102.4 105.5 108.6 110.2 88.9 89.0 90.9 91.2 92.5 94.1 95.5 95.7 97.3 97.8 102.4 105.5 108.6 110.2 88.9 89.0 90.9 91.2 92.5 94.1 95.5 95.7 97.3 97.8 102.4 105.5 108.6 110.2 86.9 86.9 97.2 88.5 89.2 89.4 90.5 91.0 91.9 93.6 98.2 101.4 104.9 107.2 88.3 88.2 84.4 91.1 92.6 93.0 94.9 10.2 91.9 93.6 98.2 101.4 104.9 107.2 88.3 88.2 84.4 91.1 92.6 93.0 94.9 10.2 101.9 100.9 100.9 100.9 100.8 108.7 112.1 114.8 93.1 93.0 95.5 96.9 98.6 98.8 162.6 101.9 103.9 105.9 110.1 112.5 114.6 115.9 95.1 96.3 97.0 100.1 101.5 102.5 104.2 105.5 107.2 108.3 111.3 112.8 114.0 112.5 95.1 96.9 97.1 98.9 100.0 101.2 102.2 103.5 105.0 106.2 106.2 108.0 108.5 109.4 109.8 95.4 95.9 96.5 96.8 98.0 98.7 99.9 101.2 103.4 104.8 107.4 109.1 110.3 109.6 93.9 94.4 94.5 97.3 100.6 101.9 103.0 103.5 105.0 103.1 107.2 108.3 108.8 108.2 95.7 97.3 98.3 99.4 100.1 101.5 102.5 103.0 103.5 105.2 106.1 106.5 107.4 107.4 107.4 107.1 107.3 98.3 99.4 100.1 101.5 102.5 103.4 104.9 105.8 107.1 105.4 105.6 103.5 109.1 103.9 105.9 105.0 106.5 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 1 105 110 115 87.9 68.7 88.7 88.4 69.0 89.3 88.1 88.3 92.1 95.0 93.6 95.0 93.6 93.1 94.4 95.0 93.2 93.1 94.6 92.1 94.6 92.1 89.7 92.1 89.8 91.1 89.8 89.7 87.9 88.6 88.2 87.4 88.4 88.2 87.4 88.4 86.6 85.4 84.1 83.6 84.1 83.6 86.8 08.9 92.8 95.6 97.7 92.6 97.7 92.0 59.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6 07-9 88-6 90-1 90-1 89-2 92-0 86-5 87-4 86-9 92.4 90.9 89.7 89.3 87.4 94.4 93.8 93.5 93.5 93.2 91.8 90.3 95.2 96.0 93.2 93.6 92.0 3150 4000 5006 91.0 90.1 86.4 6300 104-8 104-2 104-9 104-9 104-5 104-6 105-6 106-6 108-3 109-7 111-0 111-8 112-3 118-7 118-9 117-6 117-4 114-8 114-7 116-2 117-6 119-9 121-2 122-5 123-1 124-8 118-7 117-5 117-8 115-7 114-8 114-7 116-2 117-6 119-9 121-2 122-5 123-1 124-2 104-0 103-4 103-1 101-9 101-2 101-2 102-7 103-9 105-8 107-2 108-4 109-2 114-5 DASPL 115.7 125.5 125.5 PNLT PNL DBA BAND 24 0.0 24 11 24 6-0 1-7 0-0 24 24 24 0.0 24 0.0 24 0.0 10 0-5 10 24 0.0 24 0-0 24 0.0 24 0.0 24 0.0 HAXIHUH CASPL HAXIHUH PNLT HAXIHUH PNL HAXIHUH DBA COMPOSITE SPL E 122-57 COMPOSITE PHE PNLT (INTEGRATED)

TABLE A-102

2269 H7151 COMP C ANTI-RENGEST TUBE HW T/P FAR FIELD

CONDITION = 7453 ALTITUDE - 200. FT SIDELI'E



1/3 OCT FREQUENCY HICROPHONE ANGLES IN DEGREES 80 90 95 100 105 90 95 100 105 110 115 120 130 135 140 150

50.1 91.0 90.7 92.2 92.4 93.6 94.3 97.7 100.1 101.6 102.1

90.4 91.4 91.5 92.7 92.7 93.9 94.0 97.6 100.0 101.6 101.7

88.7 90.0 89.9 91.6 91.8 92.4 92.4 94.9 96.0 98.3 97.6

86.0 86.7 86.8 87.7 87.9 88.5 89.8 93.4 95.9 98.5 98.6

88.6 90.1 90.4 92.1 93.1 94.7 96.9 101.0 103.2 105.7 105.2

97.4 96.1 96.2 98.0 98.8 100.5 102.1 105.3 107.0 108.4 107.2

97.6 99.0 99.8 101.4 102.4 103.6 104.5 106.4 107.2 107.6 103.9

97.5 88.6 99.5 100.7 101.9 102.8 103.1 103.1 102.9 102.0 102.2

97.8 98.0 99.2 101.1 102.5 102.9 103.3 102.8 102.7 102.3 99.5

95.8 98.0 99.2 101.1 102.5 102.9 103.3 102.8 102.7 102.3 99.5

95.8 96.9 97.2 98.2 99.5 100.1 101.9 102.5 100.9 100.9 100.9

96.8 98.0 99.2 99.5 101.1 101.5 102.0 102.2 102.9 102.0 101.3

95.6 97.2 98.2 99.5 101.1 101.9 101.4 101.2 100.9 100.9 98.6

94.5 95.9 94.7 98.6 99.6 100.5 100.2 100.2 100.9 100.9 98.6

94.5 95.9 94.7 98.6 99.6 100.5 100.2 100.2 100.9 100.9 98.6

94.5 93.9 94.2 95.0 95.9 96.7 96.5 95.8 95.0 93.7 89.6

91.9 93.0 93.4 94.3 95.2 93.3 98.3 98.3 98.0 97.6 96.6 92.9

90.7 91.6 91.9 92.6 93.3 93.2 72.6 90.8 89.4 87.4 81.6

91.0 91.9 92.1 92.7 93.0 92.4 91.6 89.2 83.6

91.0 91.9 92.1 92.7 93.0 92.4 91.8 88.8 57.9 85.5 78.7

92.8 94.4 94.7 95.3 94.8 93.6 92.2 83.6 89.2 83.6 78.7

92.8 94.4 94.7 95.3 94.8 93.6 92.2 83.8 85.9 83.5 77.4 85.5 78.7

92.8 94.4 94.7 95.3 94.8 93.6 92.2 83.8 85.9 83.5 77.4 85.5 78.7

92.8 94.4 94.7 95.3 94.8 93.6 92.2 83.8 85.9 83.5 77.4 85.5 78.7

92.8 94.4 94.7 95.3 94.8 93.6 92.2 83.8 85.9 83.5 77.4 85.5 78.7

92.8 94.4 94.7 95.3 94.8 93.6 92.4 88.8 86.6 86.7 78.7

92.8 94.4 94.7 95.3 94.8 93.6 92.4 88.8 85.9 83.5 77.4 89.1 90.9 92.4 92.5 83.5 78.7

92.8 94.4 94.7 95.3 94.8 93.6 92.4 88.8 86.6 86.7 78.7

92.8 94.4 94.7 95.3 94.8 93.6 92.4 93.8 86.0 85.9 83.5 77.4 89.1 93.5 94.8 93.6 92.5 83.5 78.8 89.7 94.1 90.3 91.4 92.5 92.5 92.5 93.5 93.5 78.8 93.5 77.4 89.9 93.9 94.9 92.4 88.8 86.6 86.7 78.7 78.7 92.5 87.7 88.7 94.8 93.8 93.6 92.5 93.5 97.4 80.9 72.9 80.9 72.9 80.9 72.9 80.9 72.9 80.9 72.9 50 60 70

83-6 85-5 87-1
83-6 86-4 87-5
84-5 85-1 86-4
82-1 83-1 83-8
85-3 89-3 89-9
70-1 91-9 94-0
88-6 91-6 92-8
88-6 91-6 92-8
88-6 91-6 92-8
88-6 91-7 91-3
88-6 88-4 90-1
86-0 88-4 90-1
86-0 88-4 90-1
86-0 88-4 90-1
86-0 88-4 90-1
86-0 88-4 90-1
86-0 88-4 90-1
86-0 88-4 90-1
86-0 88-4 90-1
86-0 88-4 90-1
86-0 88-4 90-1
86-0 88-4 90-1
86-0 88-4 90-1
86-0 88-6 87-8 89-2
83-5 85-6 88-2
83-6 87-6 88-2
83-6 84-2 86-9
79-4 83-0 85-8
76-5 79-9 83-1
73-6 77-6 80-6 89.5 89.4 88.3 75.9 76.5 75.4 77.8 80.1 91.5 79.4 80.1 78,2 80.3 63.5 82.3 82.6 80.7 01.7 85.7 91.5 85.2 81.6 87.0 79.1 83.9 79.7 84.8 80.2 89.0 78.6 83.2 77.3 81.7 76.7 80.1 74.9 78.3 78.2 80.1 77.9 83.3 78.6 78.7 78.7 77.5 77.4 77.8 75.2 76.2 71.8 73.4 67.7 70.5 88-0-5 89-5-2 85-5-5 85-5-5 85-6-9 85-2-1-3 81-3 81-3 780-4 77-4 72-5 72.0 71.8 70.8 73.4 69.7 68.3 66.5 65.0 73.0 71.5 70.2 1005 1600 3150 4000 5000 68.2 6330 8030 10000 83.5 91.7 96.0 97.9 99.6 101.7 103.4 105.5 207.1 108.4 109.0 110.4 111.4 112.2 112.5 113.5 114.3 115.0 113.6 96.1 103.4 107.5 107.7 109.3 112.1 114.2 116.9 118.6 119.7 120.2 121.7 122.4 121.8 121.0 120.6 120.7 120.5 118.2 94.7 103.4 105.4 107.7 109.3 112.1 114.2 116.9 118.4 119.7 120.2 121.1 121.8 121.8 121.0 120.6 120.7 120.5 117.7 20.9 109.1 92.6 94.4 96.1 98.7 100.6 102.9 104.5 105.7 106.3 107.4 108.4 108.8 108.5 108.2 108.0 107.7 105.1 DASPL PHLT 17 24 11 24 24 24 1.4 0.0 1.7 0.0 0.0 0.0 24 24 24 24 10 0.0 0.0 0.0 0.0 0.0 0.5

PHLT (INTEGRATED) = 131_75

2269 H7151 CORF C ANTI-RENGEST TUBE IN T/P FAR FIELD

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.

1/3 DCT FREQUENCY (HZ) 10 9669 97.6 95.4 92.0 98.7 104.4 107.4 98.2 102.3 105.4 107.4 98.4 102.9 105.2 108.4 98.6 98.7 101.0 104.8 93.2 98.2 101.5 104.8 93.2 98.2 101.5 104.8 93.2 98.2 101.5 104.8 100.6 105.9 105.7 111.7 119.8 106.9 110.7 112.7 119.8 108.4 111.3 112.7 119.8 106.3 107.6 108.1 100.9 106.7 107.2 108.1 105.9 107.2 108.5 109.6 106.9 107.2 108.5 109.6 106.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105.9 105. 88.01400328887.062012.1970.651.7633.09918.778.17653.3288877.6553.32888877.653.32 75.6 9b.4 94.5 95.0 90.7 90.9 95.6 96.2 101.5 102.3 101.5 102.3 103.6 105.2 100.3 101.0 104.3 105.3 102.1 103.0 102.1 103.0 102.1 103.0 103.0 104.1 101.7 102.5 96.3 99.2 97.8 98.4 96.3 96.2 96.3 96.2 96.3 96.2 96.3 96.3 96.4 96.5 96.4 96.5 96.4 96.5 96.4 96.5 17.578.107678.1884.264.18848.499999999988879.888875.84 38968-2-9517683022502345 9968-3-17683022502345 -909-283214826843134478612 -009-28354-6843134478612 90--241 80--2241 80--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90--254 90 86-0 87-6 88-6 89-0 88-6 90-1 92-8 87-3 86-6 86-6 86-1-69 878-9-1-678-89 978-45-53 998-45-53 995-45 995-8-8 995-8-8 995-8-8 995-8-8 901-0 103-3 104-7 107-4 105-5 105-8 105-4 105-9 107-2 125-1 105-0 105-9 107-2 104-1 105-9 105-9 107-2 104-1 105-9 105-9 102-5 104-1 105-9 105-9 102-5 106-1 105-9 102-5 106-1 105-9 102-9 106-1 105-9 102-9 106-1 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 105-9 94.3 94.0 93.6 93.5 92.0 90.5 89.1 2000 2500 3150 91.2 89.8 90.1 89.5 88.9 4000 5000 6300 115-7 116-3 118-4 119-8 121-3 122-2 125-1 124-8 125-7 126-5 127-1 126-7 125-1 124-8 125-7 126-5 127-1 126-7 112-3 112-3 113-1 113-7 114-2 113-7 106.7 117.6 117.6 104.0 208-3 109-7 111-1 111-8 113-7 119-8 121-1 122-6 123-0 125-3 119-8 121-1 122-6 123-0 124-5 105-8 107-1 108-5 109-1 111-0 OASPL PNLT PNL OBA 104.7 104.7 115.1 114.8 115.1 114.8 102-1 101-3 101-4 24 11 24 24 0.0 1.0 0.0 0.0 24 10 0-5 BAND TCORR 24 0 • 0 24 24 0.0

 MAXIMUM DASPL
 =
 122.19
 COMPOSITE
 SPL
 =
 122.55

 MAXIMUM PNLT
 =
 127.10
 COMPOSITE
 PNL
 =
 128.63

 MAXIMUM PNL
 =
 127.10
 PNLT
 (INTEGRATED)
 =
 136.19

 MAXIMUM DBA
 =
 114.024

TABLE A-104

2269 H7151 COMP C ANTI-RENGEST TUBE HW T/P FAR FIELD

CONDITION # 7500 ALTITUDE # 200. FT SIDELINE

1/3 CCT																			
FREQUENCY											IH DECL								'
(HZ I	10	20	30	40	50	60	70	80	90	95 -	100	105	110	115	120	130	135	140	150
50	67.5	74.1	78.0	81.0.	83.2	85.4	87.1	88.7	90.3	91.0	91.0	92.3	92.8	93.5	94.4	97.5	99.9	101.0	103.0
63	48.2	75.8	79.4	82.5	84.3	86.5	87-6	89.3	90.2	91-1	91.7	92.8	93.4	94.2	. 94.6	98.1	99.7	102.0	101-2-
80	69.8	77-1	80-0	82.9	84.6	85.2	86.2	87-9	88.5	89.6	90.1	91.7	92.0	92.0	92.2	94.9	95.9	98.4	97.3
100	70.8	75.7	78.1	8C.5	82-2	83.4	83-8	84.6	85.4	26.3	86.8	87.9	87.8	88.6	89.4	93.4	96.0	98.4	98.7
125	71.5	7.7.8	80.2	81.7		85.0		86.7	88.3	90.6	90.5	92.8	93.1	95.3	96.8	101-1	103.2	105.3	106-1
160	70.0	60.1	63.5	86.1		89.5	70-1	92.9	94.0	96.4	96.8	98.7	99.2	101.0	102.1	105.4	107.0	100.2	107-3
200	70.5	81.5	85.4	88.4	90.0		73.3	95.3	97.5	99.0	99.8	101.6	102-7	104.0	104.6	106-4	107-1	107.4	103.9
25D	72.0		87-1	89.8		92.3	94.0	95-I	97.6	98.5	99.4	100.8	102.1	102.6	102.5	102.7	102.5	102-5	100.9
315	71.8	79.2	83.9	87.5		91.6	92-7	93.8	94.4	95.5	95.9	27.5	97.9	99.9	106-9	102.5	105.6	103,7	100-6
400	71.3	79.9	85.0				91.5	93.9	76.6	98.5	99.2	101-5	102.2	103.0	103.1	102-3	102.5	101.8	99.7
500	73-6	79.9	29.1	. 87.6	89.1	91.4	93.6	94.9	95.7	96.8	97-4	99-2	100.6	101.6	102-1	102.3	102.9	103-1	100-9
630	70+0	78.9	83.3	86.2	88-2	90.2	71-7	93.7	95.4	97.2	98.3	100.1	101.0	101.5	101-1	161.0	100.7	100.8	98.2
ಕಂಡ	68-6	77.8	81.9	85.0	87.2	89-9	91.4	92.0	74.3	95.9	97.0	98.8	99.4	100.6	100-1	100.2	79.B	99.3	76.4
1000	66.8	76.6	80.2	64.2	86-1	88.5	70.3	92.3	93.7	94.6	95.2	97.0	97.4	9B.3	- 45.4	97.9	97.6	95.8	92.7
1250	66.2	74.0	79+3	82.6	84 B	87.4	89+4	- 91-3	72.7	93.8	94.0	95.4	96.0	96.5	96.4	95.7	95.2	93.8	89.4
1600	66.9	75.0	78.0	81.2	83.6	86-1	88.3	90.2	91.7	93.0	93.5	94.8	95.2	95,2	94.7	93.9	. 92.B	91.3	86.4
2000	73.7	78.4	80.2	81.3	B2.8	85-3	87-5.	89.6	90.9	92-3	92.4	93.7	93.9	94.3	93.4	92.3		87.1	83.6
2500	72-Q	77.9	80.7	81.1	82.3	85.3	87-4	89-5	90.6	91.8	91.B	93.2	9342	93.1	92.3	91.0	29.6	87.3	81.5
3150	76.4	78.9	79-1	80.2	82.0	85.2	87.5	90.1	95.8	92.0	92.0	93.3	- 92.8	92.1	71.2	89-1	87.6	85.9	79.8
4000	68,3	78.4	77.4	81.4	82.4	85⊾3	88.2	91.5	92.9	94.4	94.2	95.8	95,4	93.7	92.0	80.8	- 87-4	05.3	79-7
5000	67-1	77.3	78.1	79.5	80.9	84.4	B7.0	90.6	92.2	93.7	94.Z			93.8	92.1	88.3	86.7	84.4	78.8
6300	63.2	75.2	76.3	78.2	79.6	83.0	85.8	89.4	91.4	93.C	93.6	95.2	94.8	93.3	71.7			83.5	
6000		71.9			74.8						91.5							82.5	
10000	50.9	67.5	. 70-8	72.9	74.1	77-6	80.9	84.9	67.5	88.5	89.9	92.4	91.2	90.7	8.89	85.5	83.3	80.9	73,4
DASPL							103.5												
PNLT							114-3												
PNL	95.0	103.6	106.0	105-0	109.4	112.0	.114.3	116.9	718.4	119.8	120.0	131.7	121.7	121.4	120-8	120.6	120.6	120.4	117-7
DBA	81.3	89.2	92.7	74.5	96.2	98.7	100.7	102-9	104.4	105.B	136.3	108.6	108.3	108.7	106-4	108-1	108.0	107-7	104.9
BAHD	17	24	11	24	24	24	24	24	24	24	. 24	10	10	24	24	24	24	24	24
TEORR	1.6	0.0	I.E	0.0	0.0	6-0,	0.0	0.0	0.0	0.0	0.0	0.5	0.5	0.0	0.0	0.0	0.0	0.0	0.0
the second of		1.0				,		**		. 11.2	•								

PALT CINTEGRATED) = 131-72

#### 2269 H6787 CONF C ANTI RENGEST TUBE H/W T/P HAPO FIELD

```
ENCINE MODEL = JTED -00

ENGINE MMBER = 037454

TEMPERATURE = 59.0 F

TIME OF DAY = 928

DARH- PRESSURE = 30.05 IN- MG-

STAND = X-314

HUHIDITY = 49.0 PER CT.

MIND DIRECTION = S

WIND VELOCITY = 5 MPh

COSSERVED RPH = 7365
```

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.

```
| 1/3 | CCT | FREQUENCY | 1/3 | 100 | 90 | 110 | 120 | 140 | 150 | 160 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 |
```

**TABLE A-106** 

2269 M6707 CONF C ANTI RENGEST TUBE H/W T/P HARD FIELD

COMPITION = 7400

ALTITUDE = 200. FT SIDELINE

1/3 OCT FREQUENCY							MYCROPHONE	ANG! ES	IN DIGREES
(HZ)	109	90	120	140	150	160			3.7 3. 3.12.23
50	94.6		98.4	105.8	106.5	104.3	101.8		
63	97.2	95.2	101-1	167.5	108,3	103.6	105.0		
83	97.6	95.9	102.4	110.7	110.9	102.9	107.4		
100	98.3	95.∗8	102.8	111.4	111.2	102.9	107.7		
125		100.B	105-3	112-2	111-0	106.8	108-6		
160		101.0	106.0	110.7	110.2	105.8	108-4		
200		101-4	107.5	109.8	107.0	98.6	108.4		
	.103.6		107.5	108-6	106-3	98.5	107-5		
315	105.3		106.6	108.7	105.5	100.1	. IC6.8		
400	105.7						107.4		
500		102.1	106.5	106.9	164.0	99.9	106-2		
630	102-6						105.3		
900	100-9		104-5	103_0	99.B	94.9	103.8		
1000		99-1	102.2	100.7	96.6	91-1	101.2		
125G	98.5				93.0				The second second
1600	97.9		99.7		90.4				
2000	97.0	97-0	97.9		87 <b>-</b> 8				
2500	96.5		96.B		86.1				1000
3150	96.1		95.6	- 89 <b>-</b> 8	84.9	78.6	91.6		4.1
4000		100-1			84.6				
5000	99.2	99.4	96.0						
2069	97.9		95.7	86.3	82.0	75.3	88.8		A
8000	95.3			83.5			66.6		1.70
10000	92.4	91.7	91.8	80.0	75.3	66.3	B3.7	- i.,	
DASPL-	114.5	113.2	117-1	120.3	119.1	113-6	118-2		ar again the c
PNLT		125.0	125.3	124.7	122.1	116.7	124.4		
PNL		125.0	125.3	124.7	122-1	116.7	124.4		
DBA	111.3	110.7	112.7	112.0	167-1	103.6	111-7		The second
BAND	24	24 🗸	24	24	24	24	24		
TCCRR	0.0	0.0	0.0	0.0	0.0				
				24.					eri Lineari giriliye e

FALT (INTEGRATED) = 134.70

```
TABLE A-107
                                      2269 H7151 CONF C ANYI RENGEST TUBE HW T/P HARD FIELD
                                                                                                                                         INLET TEMP
TIME OF DAY
BARM. PRESSURE
HIND DIRECTION
WIND VELOCITY
                                                                                                                                                                  = 54.00 F
= 928
= 30.05 IN. HG.
= 5
= 15 MPH
          ENGINE HLOFL ENGINE HLOFL
                                                                  TEMPERATURE
          STAND
DATE
                                                                  OBSERVED RPH
                                                                   FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.
1/3 DCT
FREQUENCY
(HZ)
                                                                        MICROPHONE ANGLES IN DEGREES
                 116
                        111
     63
80
 DASPL
PNLT
PNL
DBA
 BAND
                  24
0.0
           HAXIHUH DASPL
HAXIHUH PNLT
MAXIHUH PNL
MAXIHUH DPA
                                                                    COMPOSITE SPL
COMPOSITE PHL
PNLT (INTEGRATED)
   TABLE A-108
                                                                    2269 H7151 CONF C ANTI RENGEST TURE HW T/P HARD FIELD
                                                                                                              CONDITION = 7400
```

ALTITUDE = 200. FT SIDELINE

MICROPHONE ANGLES IN DEGREES

DASPL PHLT PHL DBA HAND TCORR 24

. PHLT (INTEGRATED)

. . 1

```
TABLE A-109
                                         2269 H6787 CORF C ANTI-RENGEST TUBE H/W T/P HARD FIELD
           ENGINE MODEL
ENGINE NUMBER
                                                                      TEMPERATURE
                                                                      OBSERVED RPM
                                                                      FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB
                                                                            HICROPHONE ANGLES IN DEGREES
DASPL
PNLT
PNL
DBA
                                 123-2 121-0 126-4 127-7 125-1 123-6
134-6 129-2 131-6 131-3 129-6 129-8
134-6 129-2 131-6 131-3 128-9 129-8
123-6 116-7 118-7 118-3 115-0 116-8
BAND
TCCRR
                                                              24
0.0
                                    24
D•û
                                             24
0.0
                                                      24
0.0
                                                                       5
0.5
           HAXIHUH CASPL
HAXIHUH PNLT
HAXIHUH PNL
HAXIHUH DBA
                                                                      COMPOSITE SPL
COMPOSITE PNL
PNLT (INTEGRATED)
                                                                      2269 H6787 CONF C ANTI RENGEST, TUBE H/W T/P HARD FIELD
TABLE A-110
                                                                                                                   CONDITION #
```

CONDITION = 7415

ALTITUDE 200. FT SIDELINE

1/3 CCT FREQUENCY (HZ1	100	90	120	140.	150		HICROPHONE	ANGLES	IN	DEGREES
50	93.5						103-0			
63		94.B					104+3			
86		95.5					106.6			**
100		98.1					110-6			
125		100.5					109.0			
160		100.7					109.7			
200		101.4					108,5			
250		103-9					107.4			
315		102.9					<b>∠07</b> -5			
420		102.4					107-1			
520		102.0					106.6			
630		100.7					104.6			
800		100.2					103.3			
1036		98.5					101-2			
1250		97.5					98.9	1		
1600		96.7					97.0			
2000		95.6					95.3			
2500		96-1					94.0	5.00		
3150		96.6	95-6	90.7	85.8	78+0	92.9 91.8			131 B 3
4000		98.6	95.8	90.I	85.5	78.1	91.8			
5000		97.9	95-2				90.7			
6300		95.6					87-8	10.2		e granding in
8006	95.6	92.5	92.9	85.1	79.6	70.4	87.9	ga Tagai	1.7	14472.4
10000	92.3	88.9	70.5	82.0	75.7	65.7	84.7			
DASPL	114.5	113.0	117-2	120.0	119.1	113.2	118-7	1.4		
PNLT	. 125.0	124.0	125-3	124.9	122.3	116.9	124.7		- 7	e e dujiban
PNL	125.0	124.0	125.3	124.9	122.3	116.3	124.7			
DBA	111.3	109.8	112.8	112.2	109.4	102.7	111-8		- 51	
ВАНД	24	24	24	24	24	5	24		j 2.	
TCORR	5.3	2.8	0.0	0.0	0.0	0.5	0.0	Jan 1		
		4-4-3-5-3	100			40.00	Application of the			

PHLT (INTEGRATED) = 134.59

```
TABLE A-111
                                        2269 H7151 CONF C ANTI RENGEST TUBE HW T/P HARD FIELD
                                                                                                                                                                           = 55.00 F
= 932
= 30.05 IN. HG.
= S
= NPH
          ENGINE HEDEL
ENGINE NUMBER
                                = JTUD -80
= 037454
                                                                                                                                                 TIME OF DAY
BARM, PRESSURE
WIND DIRECTION
WIND VELOCITY
                                                                      TEMPERATURE
          STAND
DATE
                                 = X-314
= 35/14/74
                                                                      OBSERVED RPH
CORRECTED RPH
                                                                       FAA PART 36 FEFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.
1/3 OCT
FREQUENCY
(HZ)
                                                                            RICROPHONE ANGLES IN DEGREES
                 110
                          111
   2000
2500
3150
4000
5000
6300
  9000
10000
 OASPL
PÑLT
PNL
DBA
  BAND
TCORR
                                                                        COMPOSITE SPL
COMPOSITE PHL
PNLT (INTEGRATED)
            HAXIHUH DASPL
HAXIHUH PNLT
MAXIHUH PNL
HAXIHUH DBA
   TABLE A-112
                                                                                 2269 H7151 CONF C ANTI RENGEST TUBE HW T/P HARD FIELD
                                                                                                                              COMDITION = 7415
                                                                                                                              ALTITUDE .= 200. FT STOELTHE
```

HICROPHONE ANGLES IN DEGRÉES

1/3 OCT
FREQUENCY
(HZ] 110 111

50 96-1 94-0
63 98-4 94-8
80 100-9 96-2
160 100-6 95-6
125 102-4 93-7
160 103-6 92-7
200 104-6 99-4
250 106-3 104-7
315 106-2 196-2
400 105-8 102-8
500 105-6 100-7
630 103-9 103-8
800. 102-3 99-9
1000 101-0 100-0
1250 99-6 98-1
1600 98-6 98-1
2000 97-7 95-5
2500 96-7 94-2
3150 95-4 93-1
4000 97-5 95-6
5000 97-1 95-2
5000 97-1 95-2
6300 97-1 95-3
8000 97-1 95-3
8000 97-1 95-3
8000 97-1 95-3
8000 97-1 95-2
10000 91-8 91-1
0ASPL 115-6 113-1
PNLT 124-9 122-8
PNL 124-9 122-8
PNL 124-9 122-8
PNL 124-9 122-8
DBA 111-8 109-9

BAND 24 12
TCORR 0-0 1-2

PHLT (INTEGRATED) = 127.41

2269 M6787 CONF C ANTI RENGEST TUBE H/W T/P HARD FIELD

***

FAA PART 36 REFERENCE DAY CORRECTED SPL IN D8 - RADIUS = 150. FT.

1/3 OCT FREQUENCY (HZ) HICROPHONE ANGLES IN DEGREES 150 160 106 140 100.4 98.9 105.0 107.5 117.4 101.3 101.3 101.8 107.0 108.4 117.4 103.9 102.9 103.6 108.7 119.2 103.9 102.6 109.2 110.9 117.9 105.5 105.2 111.6 111.1 116.4 107.0 104.8 113.3 111.1 116.5 108.5 105.4 114.1 110.9 114.7 108.3 104.0 113.3 111.4 113.9 107.6 104.4 114.0 110.3 113.8 106.0 103.3 112.8 109.4 111.8 106.0 103.3 112.8 109.4 111.8 104.5 102.7 112.0 108.5 109.3 102.5 101.3 110.1 106.2 107.1 101.7 100.5 109.0 105.0 104.5 101.0 103.0 108.5 104.5 101.8 99.7 99.0 107.5 102.2 100.6 99.3 98.7 108.8 100.9 99.2 99.4 99.6 106.5 99.8 98.0 104.5 101.7 101.9 108.2 99.8 98.0 101.8 101.1 106.6 99.4 96.7 101.2 99.3 108.9 108.5 99.8 98.0 101.8 101.1 108.6 99.4 96.7 101.2 99.3 108.9 98.7 95.8 99.5 97.4 108.1 96.7 98.7 95.8 99.5 97.4 108.1 96.7 98.7 95.8 99.5 97.4 108.1 96.7 98.7 16.8 177.6 118.7 97.5 107.4 94.2 14.8 250 315 400 500 630 800 1250 1600 104-5 103-3 101-8 100-7 100-6 97-9 99-2 96-4 97-5 95-2 98-0 95-6 96-7 94-5 95-8 93-5 14-3 91-7 14-8 89-4 2000 2500 3150 4000 5000 6300 8000 DASPL 117.5 115.7 123.9 121.3 127.0 128.3 126.2 124.1 128.6 127.1 134.7 129.3 134.6 131.8 130.4 130.4 130.4 128.0 127.1 134.7 129.3 131.2 131.8 129.8 130.4 134.3 124.3 131.8 129.8 130.4 130.4 130.4 130.4 130.4 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 PHLT PHL PHL BAND TCDRR 24 24 22 24 0-0

HAXIMUM DASPL = 128.25 MAXIMUM PNLT = 134.72 HAXIMUM PNL = 134.72 HAXIMUM DBA = 121.31 COMPOSITE SPL * 128.83 COMPOSITE PNL * 136.38 PNLT (INTEGRATED) * 140.62

TABLE A-114

2269 MATRY COME C ANTI RENGEST TUBE HAW TAP HARD FIELD

COMPLITION = 7453

1/3 CCT FREQUENCY HICROPHONE ANGLES IN DEGREES 100 120 140 150 160 130

100.3 106.0 107.1 104.7 102.9 100.8 105.3 104.8 103.7 117.9 101.8 105.3 104.8 103.7 111.0 111.5 104.4 107.1 104.6 111.5 111.4 103.1 107.6 104.9 112.8 111.2 106.2 109.2 107.1 111.5 110.4 105.2 110.3 107.3 103.0 107.8 100.1 109.5 107.3 108.9 107.8 100.1 109.5 107.3 108.9 107.8 100.1 109.5 107.3 108.9 107.8 100.1 109.5 107.1 108.9 107.8 100.1 109.5 107.4 106.0 99.3 108.1 107.6 107.4 106.0 99.3 108.1 107.6 107.4 106.9 99.3 108.1 107.4 106.3 103.1 97.3 106.3 104.9 102.7 101.4 95.4 106.4 105.4 105.3 103.1 97.3 106.3 104.9 102.7 101.4 95.4 106.4 105.4 105.3 103.1 97.5 91.5 102.0 101.1 97.8 94.2 87.8 99.4 102.3 100.5 95.0 91.5 84.4 97.8 98.2 93.7 88.5 81.9 96.0 95.6 92.1 86.7 80.5 94.7 95.6 90.2 85.2 78.7 93.1 95.4 90.4 85.2 78.7 93.1 95.4 90.4 85.2 78.7 93.1 95.0 89.0 83.8 77.3 91.0 94.1 87.7 82.2 75.1 90.2 91.9 5.6 79.5 70.8 88.0 88.6 5.2 75.8 66.1 84.9 117.4 120.6 119.6 114.2 119.2 150 160 94.4 93.5 95.8 94.3 97.8 96.4 98.7 99.3 101.3 101.1 102.8 102.7 104.3 102.3 105.8 102.9 105.8 101.5 104.9 101.9 103.3 100.7 101.8 100.1 101.8 100.1 99.8 97.4 96.9 96.2 98.7 96.2 98.7 96.2 98.7 98.2 98.1 98.2 98.2 98.2 98.3 98.2 98.3 98.2 98.3 98.2 100 125 160 200 250 315 400 500 630 800 1000 5000 6300 120.6 119.6 114.2 119.2 127.9 122.8 117.9 125.4 124.6 122.8 117.2 125.4 112.1 109.9 103.7 112.8 DASPL PHL DBA 24 22 24 5 24 0.0 3.3 0.0 .0.7 0.0

PNLT [INTEGRATED] = 135.46

## 2269 M7151 CONF C ANTI RENGEST TUBE HH T/P HARD FIELD

ENGINE HODEL ENGINE NUMBER	= JTED -00 = 037454	TEMPERATURE	<b></b>	59.0 F	INLET TEMP TIME OF DAY BARM. PRESSURE	= 53.00 F = 902 = 30.05 IN. HG.
STAND	= X-314	HUHIDITY	=	49-0 PER CT.	WIND DIRECTION	=
DATE	= 05/14/74	OBSERVED RPH CORRECTED RPH	=	7410 7453		

PAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.

TABLE A-116

2269 H7151 CONF C ANTI RENGEST TUBE HW T/P HARD FIELD

CONDITION = 7453

PNLT (INTEGRATED) = 127.77

HICROPHONE ANGLES IN DEGREES

TABL	E A-11	7		282 F	HB240	JT80-1	a9 FUL	L TRT	M/HDC	NDSE C	ONE				1	50-174	0			
	ENGINE M		= JTLE = C3	7 -u7 37452			TEMPE	RATURE	İ		77.	0 F			718	ET TEM E OF D H. PRE	AY	=	0.00 F	N's HG.
	STAND DATE		= 12/0	(-314 (5.474			HUMIE	ITY			70.	O PER	CT.		HIN	D DIRE	CTION	= 3	HE 4 H	
	PAIE		- 1271					VED RE		5					H211	ID VELU	6111	•	7 1	ira
							FAA F	ART 36	REFER	ENCE C	AY COR	RECTED	SPL I	N DB	- RAD	IUS =	150.	FT.		
1/3 CC																				
FRFQUFN (HZ)	CY j	10	26	30	40	50 .	60	IZCROPI 70	ENE AN BD	IGLES 1	N DEGR	100	105	116	115	120	136	135 -	140 .	150
		-					•							-				-		
50 63	75.5 74.0		76.1 78.5	75.5 76.2	76.9 78.1	77.0 76.4	78.3 78.3	78.8 78.3	80.2 79.4	80.7 80.0	81.4	61.9 82.0	83.0 83.2	83-9 83-9	85.0 84.4		. 88.4 86.7	89.8	92-8 91-2	
PO	74.9	77.4	76.7	76.4	75.0	76.0	76.2	76.1	77.2	76.3	78 - B	79.4	80.2	80.7	60.B	81.3	82-3	83.4	86.2	86.7
100	74.4		75-2	72+9	72.0		72.8	73-4	72.5	73.4	79.6	74.3	75-4	75 • E	74.7	77-8		81.8	84.3	85.8
125 160	75.6 79.9		73.3 77.4	75.1 80.9	74.7 80.0	75.5	74-8	74.9	75.2 82.4	77.2 84.3	78.3 85.2	79.1 86.6	80.2 87.4	81.3	82.7 89.4	84.8 91.1	87-2 92-1	68.3 93.0	90.7 93.5	
200	79.2		78.8	82.3	80.4	22.4	81.1 01.0	80.5 82.5	B3.3	85.8	86.5	87-8	69.8	85.3 91.1	92.2		93.3	93.6	92.8	92.5 90.4
250	77.1		79.1	80.0	77-5	80.5	80.8		82.7		84.4		86.4	87.3	88-1	08-7	89.3	88-8		86-2
315	78.0		79.2	78.3	78.4	78-3	80.6	80.3	80.7	80.9	82.1	82.7	34-1	84.9	87.2	86.8	89.9	89.6	89.1	
400	79.2		78.5	78.9	78.7	78.8	78.4	78.9	E0.3		84.3		86.9	88.4	89.0	69.6		B7 - E		83.9
516	78.9		78.9	78.5	78-7.		79.5	80-Z	60.2	80.4		82.6	84-2		86.9	88.4		87-2		
630 808	79.5 79.2		79.9	79.4	79.7	79.8	79.6	79.7	80.8	62.9	83-6		86-1	87.3	87.8 87.8	88.0 87.6	85.4 85.9	84.9 84.5	84.1 83.7	
1000	80.3		81.8	79-5	79.5 81.1	80.4	79.5 79.7	79.5 78.7	80.2 79.2	80.4		84.7 82.3	86.4 83.8	84.5		85.0		82.4	81-8	
1256	80-6		80.6	79.9	79.0	76.7	78-2	77.1	77.6	78.8		80.8	81.9		82.7	83.2		60.3	79.8	
1600	E2.0				79.2	78.1	77.4	76.5	77.3			81.4	82. I	82.0	82.3	82.3	79-8	79.1		76.5
2000	85.2		63.0		80.4	77.8	76.9	76-1	77.3	79.0		81.8	83.0		81.9	81.9	78.7	78-0.		75.2
2500	87.6			86.8				78.3		70.3		81.4			62.0		79.3	77.6		75.4
3153 4000	87.5	91.3 89.9				85.9 . 81.6	84.6	80.2 77.0		81.9 76.0	83.D	77.6	85.0 78.9	20.3	85.3	83.8	81.4 77.7	78.9 76.3	80.4 75.3	
5000	90.0		90.7	86.4 89.5		85.9		E1.0		78.9		79.7	80.3		80.0	79.9	77.7	76.4		74.3
6300	94.4		95.7			91.6			83.8	84-7			67.7	87.5	87.3	86.7	83.0	B1.6	80.7	
EGNO	91.3				93.1	91.3	89.7	26.8	84.2	83.8	85.9	87.4	89.7	89.B	91.4	91.1		86.3		81.8
10000	45.1	93.0	94.6	92.9	93.6	92.1	91.8	88.3	85.8	63,8	84.5	84-5	86-0	85.6	86.5	86.5	85.0	64.6	82.B	B0.1
DASPL	160.2	100.B	101.4	100.9	101.0	98.3	97.5	95.2	94.6	95.5	96.6	97.5	98.9	99.5	100.4	100.9	100.B	100.8	101.2	100.7
PNLT	114-3	114.5	115.7	115.7	116.2	112-5	111.4	107.5	107.6	108.7	110.0	110.5	111.9	112.0	112.9	112+6	110.4	109.2	109.6	106.4
PNL			114.6																	
DBA	90.9	100.6	101.0	160.5	100.5	97.3	95.1	93.3	92.2	92.9	94.2	95-0	40*>	96.7.	97.4	47.3	95-7	94.0	73.7	. A1-0
BAND TCORR	22 0.6	0.6	19 1.1	19 1•1	19 1.7	19 143	19 1.3	24 0.0	19 1.2	19 1.4	19 1.4	19 1•2	19 1.3	19 1.3	19 1.5	19	23 6-7	23 0-5	19 1+2	24 û+0
	MUHTXAH			01.42			COMPO				104.4									
	HUHIXAH			16.15			COMP		PNI		= 117.4									
	HUHIXAH HUHIXAH	PNL DBA		14-63 10-97			PHLT	(INT	EGRATEI	?) :	= .125.3	36								
	- A 44	_			<b>_</b> .											4.5	0 3760	ı.		

2282 F M8240 JT80-109 FULL TRT W/HDC NOSE CON

150.1740

CONDITION = . 5203
ALTITUDE = 20G. FT SIDELINE

1/3 CCT FREQUENCY								1 <b>7</b> CB CB4	IONE M	ICLES 1	IN DEGR	rees								
(HZ)	ío	20	30.	40.	50.	60	70	28	93			105	110	115	120 .	136	135	340	150	
					~										57.4	09 4	04.3	86.4	86.0	
50		64-2		70-5	72.2	74.5	75.8	77.6	78.Z	78-9	79.3	80.2	80.9	81.0	87.0	81.9	0703	56.4	83.7	
63	57.5	66.6	677				75.3		77.5	70.4	79-4	80.4	, ZU-7		77.5		77.0	79.8	78.1	
8û 100	59.6		67.8 64.3	68.6		72.4 69.0	70.3	74.6	70.9			77.4 72.6	72.7		74.0	75.3		77.9	77.2	
125	56 - 5 56 - 5	61.3 61.4	66.5	66-5 68-3	69+₽ 70+7		71-8			75.8		77-4	78.2		81.0	82.4	82+8		83.0	
160	61.4	65.5		73.6		77.3		79.8				84.6			87.3			87-1		
200	59.0	66.8		74.0			79.4					87.0				85.4		86.4		
250	59.7		71.4			77.0					03.0	83.6	24.2							
315	93-0	67.1	69.6				77.2					61.3				85.0	84.0			
400	59.3		79.2				75.8					84-1			85.8		82.2	80.1		
550	59.9		69-8	72.2	73.8			77.5	77.9		70 0	81.3	R2-4			83-1	81.6			
630	60-6		70.6				76.6					83.2				81.5	79.2		72.8	
800		67.3	70.6	72.9								83.5				80.9	78.8	77-1	72.1	
1000		69-2		74.5			75.5					80.9		nt.a	81-1	78.5			70-2	
1250	60.2		70.8				73.9								79.3		74.5	73.1	68.4	
1605		68.5	71.3				73.3								78.3		73.2	72.0	67.3	
2000			72.4		772.6	72.9	72.B	74-5	76.3	78.2	79-0	86.0					72.0	70.6	65.8	
2500		74.3			77.5	77-1	75-0	75.8	76.6	77-7	78.5	£0.1	78.5	78 - 3	76.9	74.0	71.5	71.1	65-7	
3150		76.7		83.2	80-4	ED. 4	76-8	78-1	79.1	8042	80.1	81.9	81.1	81.5	79.6	75-9	72.6	73.1	67.l	
4000	. 64.6		76.0			75.9						75.7		75.7	74.8	72.0	69.8	67-7	42-B	
5000		75.1	78.8			79.6						77.0	76.2	76.0	75.5	71.7		68.0	63.6	
6300	45.3	79.1	85.2	88.2	25.6	85.5	82.6	80.6	81.6	83.1	83.7	84.3	83.8	83.2	82.1	77.0		72.6	68.5	
2009	59.5	74-9					82.8	8.68	80.6	82.6	84.0	56-1	85.8	87.0	So.1	-81.4	78.8	75.9	69-6	
10000	54.8	73.9	79.3	84.0	85.0	86.4	B4 • 0	82-1	80.3	80.9	80-8	82.0	81.3	61.7	81-1	77.9,	76.4	73.2	66.5	
DASPL	75. B	*5.4	20-0	07.0	62.3	92.8	O1 -6	01.6	92-7	07. A	95-7	95.9	96.3	968	96.9	95.7	95-1	94.7	92-1	٠.
PNLT	00.7	100-1	305-0	100.4	106.8	106.9	107.0	404.4	105.8	107.1	107.5	100.6	30875	108.9	108.2	104-7	102.8	102.4	96.7	
PNL	50.7	90.0	103.9	106-7	104.4	1.15.4	1113 - 0	103-4	104.4	105.7	136.3	107-3	107-1	107-4	107-0	104-0	102.3	101.2	96.7	
DBA	75.5	85.1	89.5	92.5	31.3	91.5	89.6	E9. 2	90.I	91.3	92-1	93.3	93,3	93.6	93.1	20.4	88.5	8669	H2-1	
		••				***	7.	19	19	19	19	19	15	19	19	23	23	19	24	٠
BAND	.6.	19		19	19,	19	24					1.3		1.5		0.7			0	
TCOPR		***	1-1	1.7	1.03	143	410		1.4	***	102		•••							

PHLT (INTEGRATED) = 126.36

			2	282 F	H8238	J780-1	C9 FUL	L TRT	M/HDG	NOSE C	ONE				1	50.174	o			
	ENGINE NO		= JTED = 37	-00 4652			TEMPE	RATURE		=	77.	Ú F			TIM	ET. TEM E GF D M. PRE	AY	22	4-00 F 913 0-25 II	
	STAND			(-314			HUHID	ITY		-	70.	O PER	CT.		WIN	D DIRE	CTION	=	NE 4 H	
	DATE		= 12/0	35/74				VED RP CTED R		=					MIN	D VELO	LILT	.=	<b>→</b> (1)	rn
							FAA P	ART 36	REFER	EHCE C	AY COR	RECTED	SPL I	N DB	- RAD	IUS =	150.	FT.		
1/3 rc																				
FREQUEN	CY	10	24	36	40	50	40 M	10R0FH <b>7</b> 0	DNE AN ED	60 60 1	95	100	105	110	115	120	1.30	135	248	150
	HP ~	•			76.B	77.6	78+1	70.4	nn. A	80.0	81.7	82-1	83.3	84-0	85.3	86.D	88.5	89.6	92.7	93.0
50 63	74.1	74.6 75.2	75•7 78•5	76.0 76.2	78.3	76.9	76.2	78.8	79.4	80.2		82.3	83.3	83.8	84.3	84-1	86.8	87-B	70.6	91.3
80	74.7		76-3	75.1	75.2	76.8	76.6	75.9	77.3	78.1	78.0	79.0	80.3	£0-5	81-2		B2.4	63-0	85.6 84.5	
100	74.3		72.0	72.3	72.7	73.3	73+0	72.8	72.8	73.1	73.6 78.6	74.3 79.2	80.1	75.6 81.6	76.2 B2.4	84.6	79.9 87.3	81.5 88.5		91.8
125 160	75.6 80.2	74.4 78.2	73.3 78.3	74.9	74.9	81.1	75.2 82.3	74.7 81.4	75.3 82.3	77.3 84.1		86.7	87.7	08.5	89.4	90.8	92.5	93.1	93.6	72.3
200	78.6		70.7	81.7		82.5		82.5	83.3		86.6			91.1	91.8	92.4	93.9	94.1	92.7	
250	77.1		79.1	79.9	80.1	80.7	80.7	82+3	82.2	83.3		85.3		87.3	88-D	88.4	89-6			-86+6
315	70.4		78.9	78.2	78.5	78.6		80.3	80.7	81-1		83.0	83.6	85.2	86.7		90.2 89.4			85.4 83.6
400	78.6		78.3	78.6	78.7	78.5			20.0	80.6	84.2 81.6	82.9		68.2 85.7	88-5	88.6	88.5			63-4
57 v 630	78.4	78.5 79.3	78.8 79.7	78.4 74.3	72.6 79.9	79.B	79.5 80.3	80-3	80.5	83.3	83.7	85.1	86.2	B7.4		87.9		85-1		81.8
800	79.3		79.0	79.5	80.0	79.7		79.4	80-1	82.2	83.6	84.9		87.6		87.B	86-1	84.7	83.5	81.0
1000	79.6		82-3		81.6		79.9	78.8	79.1	80.5	81.4	82+3	83.9	84.4	84.6			82-7		79-0
1250	60.5	79.7		79-1		78.7	78.3	77.2	77.5	78.9		80.9		62.4	82.6	82.9			79.7	77.2 76.2
1600	61.6		81.4		79.2	78-1	77.5	76.6	77,2 77.0	79.3	80.8 60.7		62.0 82.8	81.6 82.4		B1.9 B1.6	80.2 78.7		78.5 77.3	74.0
2001	94.4			81.4		75.1 52.8	77.1	76.3 79.1	78-4		80.3		82.1			80.8				
2500 3150	86.5	90.0	90.7			85-1		85.9	79.9			63.1			84.9		61.4		79-2	78.5
4000	86.9		86.8			62.0		76.9	75.9		.77-1		78.5	79.3	79.2	79-1				. 72-9
5000	89.9					86.1	84.1	80.8	79.6	79.4			80.2		79.7		78.0	76.8		73.8
6300	93.7		95.0			91.4	89.4		84.1	85.2				87.9 90.0		86.7 91.2	83.5	81.9 86.7		79.7 81.9
8000	99.9			92.2			90.0	6.63	84.6 85.8	84.2 84.5	05-7	88-2 85-5	89.4 86.1					85.0		
10000	91.6						91.8	87.9								-			-	
DASPL	99.5	100.5	101-1	100-9	101.5	98.5	97.4	95.1	94.6	95.7	96.7	97.B	98.8	99.6	140.2	100.8	101-1	100-9	101-1	-100 -4
PNLT			***	416 7			*10.2	107.2	106.5	1/10-6	7/10-0	710-K	111.6	117-2	11246	11604	LIVES	IUA=3	INDOL	TOTAL
PNL				111 4	44/ 7	***	100 7	367.3	104.5	307_Я	TOR_7	109.7	11114	110-B	11143	LLLL	TIVED	1445	TODAY	14095
DB A	99.1	100.4	100.4	103.4	101.2	97.3	25.9	93.Z	92.Z	93.5	94.2	95.4	46-3	ADPR	9142	91.03	7040	3447	93.8	
BAND	27 0 - 6	19 1.0	19 1.6	19 1-1	19 2, 2	24 V•0	6 0•6	24 0.0	24 9.0	19 1.6	19 1.2	19 1.1	19 1.2	19 1.4	19 1.5	19 1.1	23 Ú•7	23 0.5	24 0•0	19 1.3.
IGUPA	57 8 42	- 140	150	***		-50														
	HAXINUM	DASPL	= 1	61.52			CORPI				<b>= 104.</b>									
	HUHIXAN	PNLT	= 1	16.85			COMP		PN		× 117.									
	HUNIKAH	PHL OBA		14.68 01.18			PNLT	CINT	EGRATE	0)	= 125,	27								
					2262 F	AFCAN	.tren='	ića Elli	1 TRT	WZHDE	NASE	CONF				:	150.17	40		

TABLE A-120

2262 F M8238 JTED-109 FULL TRT W/HOC NOSE CON

150-1740

CONDITION = 5205 ALTITUDE = 200. FT SIDELINE

1/3 007																			
FREQUENCY								ITCROPH											
(HZ)	10	20	30	40	50	60	70	. 80	90	. 95	100	105	110	115	120	130	135	140	150
50	56-B	63.8	67-5	70-4	72-7	74.3	76.4	78.0	78-4	79-2	79.5	80.5	B1.0	81.9	82.2	83.7	84.1	86.3	85.3
63	57.4		67.7			74.4	75.6	76.8	77.7	79-2	79.7	80.5	80.8	80.9	80.3	82.0	52.3	84.2	82.B
80	58.0	64.4	66.5	68.6	72.0	72.8	72.9	74.7	75.6	76.1		77.5	77.5	77.8	76.8	77.6	77.5	79-2	77-3
100	55.6	60.9	63.7	66.3	68.5	69.2	69.7		70.6	71.1	71.7	72.3	72.5	72.8	73+7	75.1	76.0	78.1	77.6
125	56.5		66.3				71.6		74.8			77.3	78-5	79-0	20.B	E2.5	83.0	84.4	83-2
165	60-2	65.4	72.3		76.3		78.3	79.7	81.6	83.4	84-1	84.9	85.4	86-0	87.0	87.7	87.6	87.2	83.7
20.0	58-6		73.3		77.6		79.4		83.1					88.4	88.6	89.0	88.5	86.3	81.5
250	59.6	67.1	71.3				79.2		80.8	61.8	82.6	83.6	84.2	B4.6.	85.6.	84.7	83.2	81.5	78 <u>-</u> 6
315	59-8	66.8	69.5	72-1			77.2		78.6				82.1		85.1		84.5	82+3	76.7
460			69.9	72.2			75.8		80.5					85.1	85.5	84.5	:8Z+3	79-5	74.9
500	59.9		69.7	72.1	73-7	75.7	77-1	77.5	78.1	79-0	60.2	81.0	82.6	83.3	84,8.	83.6	81.8	79.7	74.2
630	60.5			73.4	74.9	76.5	77.2	77.8	80-7	81-1	82.4	83.3	84-3	84.1	8 <b>4-1</b>	81-7	79.4	77 <b>.</b> 8	73.0
800	59.9	67.4	76.6		74.7			77.4					84.5	84.2	83.9			76.9	
1000	62.1		70.6	75.0		76.0		76.4				81.0	81.2	31.1	81.0	78.3	77.0	75.0	70.0
1250	59.8	67.7			73.6			74.7	76.3	77.3	78.1	78.9	79.2	79-1	79.0	76.7	74.7	73.0	68.1
1602	60-7			72.4	73-0	73.5	73.4	74.4	76.7			79.0			77.9	75.1	73.3	71.7	67.0
2000	63.1	69.4	72.C	73.3	72.9	73-1	73.0	74.Z	76.3	78.0	79.0	"7\$.C	79.1	75.1			72.1		
2500	67.7	74.8	77.7	83.3	77.5	76.6	75.8	75.5	78.5	77.5	78.6	79.0	78.0			74.2		70.5	66.9
3150	68.8	76.3	79.9	85.8	79.6	79.0	77.5	77.0	80.6	79.5	80.2	8C-8		61-1	79-1	75.9	72.9	71.9	
4000	63.4	71.7	75.5	77.7	76.3	75.4	73.4	72.9				75.3		75.3				67.3	
500.			78.8	80.9	80.3	79.7	77.2	76.5	76.5	76.8	- 77.C	76.9	76.3	75.7	75.3	72.2	70.1	68.0	
6300	64.0	70.4	85.3	67.9	B5-4	84.8	82.1	80.9	82-1	83.4	84.2	84.3	84.2	83.2	82.1	77.5		72-8	
BCGD	59.1	74.7	BC - C	84-7	85.0	85.0	82-6	81-2	81.D	82.7	54.B	85-8	. 86.0	E7.0	86.2	82.1		76.1	
10000	54.7	73.6	79.2	84.3	85.4	86.4	83.6	82-1	81.0	81.6	81.8	22.1	81.9	82.0	81.4	78+3	76.8	73.4	66.6
		111	- J. 7. 1			526A	الم الرواد الم		1220							A			
OYSEL	75.8	85.1	89.8	93,5	92.4	92.7	71.0	91.6	93.0	73.9	94.9	33.8	40-3	30.0	10.1	40.0	7304	. 75-0	37-1
PNLT	91 <b>⊬</b> 1	99.7	.105.0	109-1	105.4	105.9	103+8	103.4	106.6	107-0	107-8	106.4	108-7	108-8	TOR-O	105-1	10301	T00*A	98.0
PNL	90.1	98.6	103*4	106.9	105-4	105.3	103.6	103.4	105.0	105.8	104.6	107-1	107.3	107-2	100.3	104+3.	105.2	THE	70-0
DBA	75.6	24-8	84.5	93.3	91.3	91.3	89.5	87.1	90.6	71.4	72.4	93.1	93+4	73-4	33-0	Allen	ER-B	50+8	82-2
BAND	19	30	19	19	24	6	24	24	10	19	19	19	19	19	19	23	23	24	19
TCORP	1.1												1.4		1.1		0-6	Õ.C	1.3
101.128		140	1.02		3.0						10 A								

PNLT (INTEGRATED) = 126,35

TABI	_E A-12	21	2	287 F	HB239	JT8D-1:	G9 FUL	L TRT.	H/HDC I	NOSE C	DHE				. 1	50-174	0			
	ENGINE MO		= JT8D = .37				TEMPE	RATURE			77.	0 F			TIH	ET TEK E OF D Hi PRE	AY	<b>=</b> :	7.00 F 1018 0.25 T	H. HG.
	STAND			-314			HUHID	ITY			70.	O PER	CT.		WIN	D DIRE	CTION	<b>*</b> .		
	DATE		= 12/0	5/14				VED RP		=	505 521				HAII	D VELD		•	7.	
							FAA P	ART 36	REFER	ENCE D	AY COR	RECTED	SPL I	N DB	← RAD	IUS =:	150.	FT.		
1/3 001								tennu	DNE AN		N NEĆD	CEC								
FREQUENT (H7)	-T 0	10	20	20	. 40	50	, 60 ¹¹			.90	95	100	105	110	1.15 .	120	130	135	140 -	.150-
50	75.1		75.4	76.3	76.6							82.1	83.3	84.0	85.2	85.5	. 88.2	89-4	92.4	93.7
63 8.)	74.6 74.9	75.3 76.6	70.2	76.3 75.5	78.3	77+1 76+7	78.6 70.4	79,1 76,4	78.9 77.1	80.2 78.5	81.4 78.8		83.6			81.4	82.B	80+2 - 83-2	85.5	
100	74.8		73.2	72.3	73.3	73.3	73.3	72.9	73.2	73.4	74.2	74.0	75.2	75.8	76.5	77.6	80-1			86-0
125	75.6	74.4	73.0	74.6	74.6	75.3	74.9.		75.2	77.3	77.9		.79.9	61.7	82.3	.E4+7	87.2	88.5	91 ₋₂ .	
160	80.1		77.6	80.6	79.9	80.7	91.6	81.3	B2.5	84.2	84.8	86.6	87-5	88.5	89.4	91.1	92.4	93.1	93.7	
200	79.0			82.2	80.6	82.6	81.2	82.7	83.5	85.7	86+6	68.1	89.7	91.1	92.0	92.8	93.8	94-0		90-3
250	77+1	78-0	79.0		60-2	80.8	81-0	82.6	82.5	83.5	84.2	25.5	6 <i>6</i> -7.	87.4 85.5	88.2	. 4.88 4.80	90.0	89.8	88-8	-86.5 85.6
315	78.2		79.		78-3	78.6	80.3	BD-3	60.9 60.3	81.0 83.0	81.9	83.1 85.8	83.7 87.0	88.5	88.7	69.4	89-8	88.0		83.9
400 500	78.8 78.7		70 4 76 9	78.9 78.4	78.4 78.7	78.5 78.9	78.4 79.7	78•9 80•5	80.3	80.4		82.7	B3.9		86.9		68.1		86.1	
630	79.2		79.7	79.3	79.6	79.7		80.0	80.7		83.2	85.1	65.6	87.4	87.6	88.0	86.7		B4.1	
600	79.1		79.6	79.7	79.7		77.6	79.5	60.4	82.2	83.1	84.9	86.5	87.6	87.7	87.6	86.1		83.5	8.03
1000	79.8	81-6	62.7	77.6	81-1	80.5	79.8	78.9	79.2		81-1	82.3	83.8	84.7	84.3	84.9	.03.4	. Hc . 4		<del>79</del> -0
1250	80.6		Bù-6	79.5	79.2	78.7	78.0	77.2	77.6		79.5	80.8	81.8	82.6	82.4	.83,0	81.8	80-6		77.2
1600	81.7	81.8	81.5	80.3	79.0	78.2		76.5	77,4	79.4	80.1	81.6	82-0	81.9	82.1	82.0	60-2	79.3	78-6	
2000	64-4		82.9	81.7	80.1	78.0		76.3	77.4	79-3		82.0			82-0	81.9	78.9			75-1-
2500	86.4		88.7	B7-4	88.7		. 80*0		78.2	79.8		81.7	83.2		81-8	81.2 84.0	79.2 81.4	78.2	78.0	75.7 77.7
3150		91.5	91.5		.92-7	86.9	83.0	83.3	79.7	82.2	82.6 76.7	83.5 78.2	84.8 78.6	85.0	84.9	79.5.				. 73.1.
4000	26.9		87.7		85.3	82.0 85.7	79.B 83.2	77.2 80.7		76.5 78.7		79.9	80-1	BU.T	79.5	79.9	77.9	76.6		73.9
5000 6300	93.0 93.9		90.4 95.1	89.5 95.9	88.2 95.1		88.7	0.68	83.9	84.7	85+8	86.9	87.4	88-1	86.9	86,7	83.4	81.8		79.5
8000	90.5		72.8		92.9		89.5	86.6		83.9	A5.5	88.0	8944	94.4	91.1	. 91.4	88.4	. 86.B	B4-6	81.7
10000	91.6		94.3		93.5	91.9	91-7	88-3	66.0	84-1	84.3	84.9	85.6	86.3	86,4	86-8	85.0	84.9	82.6	79.B
MASPL	99.6	100.5	101.2	100.8	100.9	98.6	97.1	95.4	94.6	95.5	96.3	97.7	98.49.	99.B.	100-2	100.9	101.0	2000.9	101.2	100-5
PNLT	117 7	446 1	116 4	116 4	114 7	112 7	710 2	100.1	1.45.6	104.7	100_6	110.7	111.7	117.6	111 - 0	1124	LIULI	107-0	103-2	10107
PNL	113.1	113.6	114.3	114.4	114-0	111.7	109-3	107-6	4.30T	107,4	108.2	109-5	110.4	111-1	111-1	111.5	109.9	109.0	108-2	100-3
DBA	99.2	100.3	105.8	100.4	100.5	97.6	95.5	73.6	92.1	93.1	93.8	95•3	96.3	97 <b>-</b> 1	.97.1	97.4	25.9	<b>L</b>	7,50	- 91.5
BAND TCOPR	22 0.6	6	19 1.1	19 1.2	19 2-1	19 1.5	19 1.0	19 1.5	24 0.0	19 1.4	19 ' 1.4	19	19 1.3	19 1-3	19 1.5	19	23 0•7	` 23	19	19 1.1.
1991	HUHTKAH HUHTKAH	OASPL PHLT	= 1	01.19 16.18			COMPO	SITE	SF Phi	<u>'</u> L ;	104. 117.	76 12			•					
	HUHIXAH	PNL		14-37 00-79			PNLI	ITHI	EGRATE	,, .	· 125,	r.o								

2282 F H6239 JT80-109 FULL TRT W/HDC NOSE CON

150,1740

CONDITION = 5213 ALTITUDE = 200. FT SIDELINE

1/3 CCT FREQUENCY							,	ITCRAPH	IONE AN	igi es d	N DECH	EES								
(HZ)	10	20	30	40	50	60			90		100		110	1,15	120	130.	135	140	150	
50	57.4	63.5	67.B	70.2	72-6	74.6	76.0	78-1	78.3	79-1	79.5	80.5	81.6	81 • B	81.7	83.4	83.9	86.0	85.2	
63	57.5	66.3.	67 • B	71.9	72.3		76.1		77.7	78.9	79.4	80.8	80.9	81.1	E0.6	81.7.	82.7	84.5	83.2	
80	58.6	64.5	66.9	68.7	71.7	72-6	73.4	74.5	76.0	76.3	76-7	77.7	78.2		77.6	78.0	77.7	79.1	77.7	
100	55.8	61.3	63,7	66.9	68.5	69.5	69.8	70.6	70.9	71-7		72.4	72.7		73.8	75.3	76.2	77-9	77 - 4	
125	56.5	61.1	66.0	68.2	70-5	71-1	71.4	72.6	74.8	75.4		77-1			, 80-9	8Z.4			83.C	
160	61.0	65.7	72.0	73.5	75.9	77.8	78.2	79.9	81.7	82.3					87-3	87.6		87.3	8.68	
.200	58.7	66.9	73.6	74.2	77.7	77-4	79.6	80.8	83.2				88.0	8B = 6			88.4	86.6	81.7	
250	59.9	67.0	71.9	73.8	75.9	77.2	77.5	79-8	81.0	81.6.			84-3	64.8	54-8	-84.B		81.6-		
315	50.3	66.9	69.6	71.9	73-7	76.5	77.2	78.2		79.3							84.2	82,4	76.4	
400	59.3	65.3	70.2	71.9	73.5	74.6		77.6		81.6.				85.3	85.6	84.9	82.4	80.0	75-2	
500	60.1	66.7	69.7	72.2	74.0	75.9	77.4		77.4			·-81.D		83.5		83-2	81-7	79.6	76-7	
630	60.6	67.4	70-5	73.1	.74.8	76.1	76.9	78.0	80.4		B2.4		84.3	84.2				77.6	72.6	
800	60-1	67.4	70 B	73.1	74.6	75.7	76.4	77-7		_BC-5			84.5	B4 .2		81.1		76.9	71-9	
1000	62.1	70.1	70-6	74.5	75.5	75.9	75-7	76.5	77.9		79.6		81.5	84.08		-78-4		75-1	70,0	
1250	60-1	67.B	70.4	72,3	73.6	74-1	74.0		76.2			78.9		78.9		76.7	74.0	73-I	68.1	
1600	61.2	68.4	71.1	72.2	73-1	73.3	73,3		76.8			79.0	78.7	78.5		75.1	73.4	72.0	67.1	
2000	63.0	69.5	72.3		72.8		.73.0			77-7			79.5			73,7	72-4	70.7	65-7	
2500	66.5	74.9	77.7	81.8	.78.3			75.3	77-1	77.4	78.8	80.1	79-1	78-1			72,1	70.9	66.0	
3150	67.9	7741	80.6	85.4	81-4	78.8	79-9		79.4	79.5	80.6	81-7	81.4	81.1		75.9	73 -4	72.7		
4600	63.5	72-6	76.3	77-7		75.4		72.9	73.6	73.8	. 75 • 2	.75.4	76.6	75.4	72-1	_72-3	70.1	67.5		
5000	64.7	74.8	70.8	80.5	79.9	78.8	77.1	75.5	75.8	76.3	76.8	74.8	76.8	75.5	75.5	72.1	70.1	67.8	63.2	
6370	64.8	78.5	84 6	87.0	86.4	84.1	82.3	80.7	81.5	82.7	83.7	84.0	84.4	82.6	82.1	77.4	74 • E		68-2	٠.
8000	59.0	74.5	80.2	84-2	84.7	84.5	82.6	HO . 7	E0-7	82.2	34.6	85.8	86.4	86.7	86.4	BI-3	77-3			
10000	54.5	73.6	79.4	83.9	84-8	86,3	84.0	82.3	80.6	80.7	81.2	81,6	82.G	51 - 6	BLOG	77.9	76.7	73.0	66.2	-
and Section 1	100	gr 44, f					"									AC 2	. OE - 7	er . **	n1 e	-
DASPL	75.6	. 85.2	89.8	92.9	92.6	92.4	91.9	716	. 7Z⊾8	93.6	74-7	3364	70-2	70.0	705 7	95.Q	102.2	107.7	97.7	
PNLT	90.3	100-2	104.9	108,6	107-4	105.9	105.0	103.3	105-8	106.7	10141	108+4	108.5	100+0	TOG62	105.0	10265	Inter	96.6	
PNL		99.0	103.7	106.5	105.9	104.8	104.1	103.3	104,5	10>-3	100.5	Inter	101.0	10175	10 (+1	104.3	102.0	TOTAL		
AEO	75.3	85.1	89.4	92.6	91.6	90.9	70.0	C9.1	90-2	91.0	92.3	, 42.Z	13.1	3243	A 24T	90.6	90.0	2057	-	
Dates		70			19	19	19	24	19	19	19	19	19	19	19	23	23	. 29	19	
BAND	- 6	Ic		19					1.4							0.7		1.2		
TCORR	9.6	let.	1-2	2.2		1.0	1	210		***	***						•	11,757		

PHLT (INTEGRATED) = 126.37

```
TABLE A-123
                                                 2282 H M8938 9563 JTBD-109 FULL TRT W/MDC MOSE CONE
                                                                                                                                                                                 150,1740
                                                                                                                                                                              INLET TEMP
TIME OF DAY
BARH. PRESSURE
WIND DIRECTION
                                                                                                                                                                                                               =.30,00 E
              ENGINE HUDEL = JTED -00
FNGINE NUMBER = 374052
                                                                                    TEMPERATURE
                                                                                                                                                                                                               = 1118
= 30.24 IN. HG.
              STAND
DATE
                                                                                     HURIDITY
                                                                                                                                   70.0 PER CT.
                                                                                                                                                                                                                         s ybk
                                                                                                                                                                              WIND VELOCITY
                                                                                    DBSERVED KPH
CORRECTED RPH
                                                                                    FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.
1/3 DCT
FREQUENCY
(H2)
                                                                                            MICROPHONE ANGLES IN DEGREES
                               100
                                                     109
                                                               ,120
                                                                                    140
                                                                                               150
                                                                                               97.8
97.8
98.4
96.6
94.7
93.4
91.5
87.5
87.5
                                                                                    64-8
84-3
84-9
86-6
89-0
90-5
89-1
88-4
68-6
88-1
                                                               63
800
125
1600
255
400
500
1000
1000
12500
2500
2150
2150
                                                    4000
5000
6300
8000
10000
                                                                                     78.2
78.7
83.1
86.6
84.4
                    101.2 102.8 104.1 104.4 105.3 104.7 104.9 105.4 114.6 116.6 116.3 116.7 115.7 113.3 110.9 110.6 113.1 114.8 109.0 115.7 114.9 117.0 110.9 109.4 98.5 100.3 93.6 101.6 101.1 98.5 96.2 94.1
  DASPL
PNLT
PNL
DBA
  BAND
                                                                  23
0.8
                                            19 23
1.3 1.0
               HAXIMUM CASPL = MAXIMUM PNLT = HAXIMUM PNL = HAXIMUM DBA =
                                                105.36
116.66
115.70
101.60
                                                                                      COMPOSITE SPL
COMPOSITE PHL
PNLT (INTEGRATED)
                                                                                                                              = 107-84
TABLE A-124
                                                                           2282 H M8938 9563 JT8D-109 FULL TRT W/MOC HOSE CONE
                                                                                                                                                                                                           150-1740
```

CONDITION = 5203

ALTITUDE = 200. FT SIDELINE

1/3 ECT FREQUENCY (HZ)	90	100 .	160	109	120	130	140	IT CROPHONE 150	ÄHGLES	IŅ	DEGR	EE\$
- 59	82.3	83.4	87.3	84.8	85.8	67-3	88.7	89-3				
63	21.8	85-1	86.0	86.2	67.0	87.6	89.5	69-3				
80	82.4	85.4	84.1	86.2	87.7	89-1	90.4	89.B				
. 100	84.1	85.6	80.9	87.0	88.1	69-1	88.0	68.0				
125	66.1	86.1	78.8	87.3	58.4.	88.9	88.4	86.1	4.0			
160	86.5		75.7	68.1	90.3	89.9	88-1	84.8				
200	88.0		73.2	90.0	90.2	89.8	87.6	82.9				
250	85.6	87-1	73.5	88-2	89.9	89.0	85.9	81.2				
315	86.3		73 a B	89.8	91.4	89.1	84-6	80.1				
400	85.9	87.1	74.5	89.2	91.0	88.0	83.6	78.8	and the second			
500	85.9	87.5	73 5	89.8	90.7	86-7	81.8					
630	86.2	86.6	72.0	EB-4	.89.3	84-8	80.4	75.7				
800	85.5		70.7		87.8	83.1	79.0	74.7				
1000	84-0	84.9	69.3	8549	85.4	81-8		72-7				
1250	81.6	83.4	67.3	84-0	83.5	79-1	75.2	70.9				
1600	81.0	83.7	66.2	83.2	81.3	77.6	74.0	70-1				
2000	51.5		65.0		80.0	76-3	72.8	68-8			1.5	
2500	31.3		65.0		80-1		72.6	68.3				
3150		87.3	66.9		82.3	77.3		70.4				
4000	79.0		61.0		78-6	74-7	70-6	65.3				
5000		82.3			78.1	74-5	71.0	65.B	1 4.4	٠		11.
6300	87.3	88.2	65.8	88.4	84.7	79.6	75.0	70.0	1000	200	1.0	
6000		88.9	65.3	91.6	88-2	83.3	77.9	70_5				
10000	83.3	84-6	59.6	84.6	83.0	79.0	74.8	66-7				1111
DASPL	66 E	700.0	D7 7	701-3	101.3	00.0	08 5	96.7			1.1	
PNLT		113.6			111.3							
PHL					110-5					100		
DBA					97-0				4 K. L.	111		7 A
, DDA	45-1	7103	9712	70.0	7840	73.6	0703	0760	100		100	· ·
BAND	19	19	19	23	23	23	24	19	.5			
TCORR	1.6		1.3			0.7	0.0	1.2	1000		, in 15	
BAND	19	19	19	23	23	23	24	19				

PNLT (INTEGRATED) = 119418

```
TABLE A-125
                                                                            2282 H M8937 9562 JTBD-109 FULL TRT W/MDC NOSE CONE
                                                                                                                                                                                                                                                                                                                  = 24.00 F
= 913
= 30.25 1N. HG.
= H
= 4 MFH
                                                                                                                               TEMPERATURE
                                                                                                                                                                                                                                                                     TIME OF DAY
BARM. PRESSURE
WIND DIRECTION
WIND VELOCITY
                      STAND
DATE
                                                                                                                               HURIDITY
                                                              = X-314
= 12/05/74
                                                                                                                               FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB
                                                                                                                                                                                                                                                         - RADIUS = 150. FT.
  1/3 OCT
FREQUENCY
                                                                                                                                         MICROPHONE ANGLES IN DEGREES
150
        CHZ 1
                                                                                                 120
                                                                                                               130
    50
63
80
100
125
160
250
315
400
630
1000
1250
2000
2000
2500
3157
4000
6300
6300
6300
6300
6300
                                                                                88.5
90.0
89.7
89.9
91.1
92.3
93.7
91.9
                                                                                                90.5
91.6
91.6
92.7
94.6
94.6
95.3
95.3
95.3
95.3
95.6
95.6
95.6
                                                                                                              95.6
96.9
975.2
95.4
95.4
95.4
921.4
921.4
921.6
921.6
92.7
921.8
92.7
                                85424890344770131264605520
85566990344770131264605520
85669908888999888888899988
                                               99.6
98.4
95.6
91.9
90.2
84.9
85.2
85.4
                                                                                                                                              97.4
98.3
98.4
97.0
94.8
93.4
91.4
88.4
87.2
                                                                                92-7.
92-7.
92-3
99-4
88-0
89-4
86-1
89-4
84-5
92-6
                                                                84.9
84.3
82.9
81.8
80.0
79.3
78.5
78.9
80.6
75.8
77.2
83.4
63.5
                                                                                                                              82.7
81.6
80.6
50.4
82.0
78.8
79.6
84.0
87.4
                                                                                                84.8
84.9
86.9
63.3
63.1
89.6
    DASPL
PHLT
PNL
DBA
                                                             104.2 105.0 105.8 105.6 105.5 105.4 109.9 117.0 116.1 114.3 112.6 110.7 108.8 116.1 115.3 113.6 111.5 109.6 93.4 102.1 101.6 99.5 96.9 94.1
    BAND
                                                                                  23
0.9
                                                                                                  23
0.8
                                                                                                                 23
0.7
                                                                                                                                23
0.5
                       HAXIHUH DASPL
HAXIHUH PNLT
HAXIAUH PNL
HAXIHUH DBA
                                                                        105.80
117.04
116.14
102.12
                                                                                                                               COMPOSITE COMPOSITE
                                                                                                                                               SITE PNL
(INTEGRATED)
                                                                                                           2282 H H8937 9562 JT80-109 FULL TRT W/MDC NOSE CONE
TABLE A-126
                                                                                                                                                                                                                                                                                                         150-1740
```

CONDITION = 5205

ALTITUDE = 200. FT SIDELINE

1/3 CCT FREQUENCY (HZ)	90	100	160					HICROPHONE	ANGLES	IH	DEGREES
1114	30	100	100	109	129	130	140	150			
50	82.5	83.3	67.7	85.5	86.7	87.9	89.2	88.9			
63	82.9	85.3	66.5			88.5	90.5				
60	82.7	86.0	83.7		87.8	89.6	90.7				
100	83.9	85.9	80 C		88.5	89.7	89.4	88.4			
125	86.3	86.6	72.3		88-9	89.4			1		
160	87.4	87.9	75.5		90.B	90.8	88.7				
200	68.5	68.8	72.9			90.9					
256	86.6	27.3	73.2			89-4					
315	26.9	86.8	73.3					79.7			100
400	86.2		74.2				83+9		100		
500	86-2	87.6	72.7	90.7	91-4			76.9			
630	87.4	8.68	72.D	19-1	89.9		81.1				
800	26.5	87.4	70.5	89.2	28.7			74.6			
1000	84-7	85.0	69.2	86.5	86.2	82-7				100	
1250	82.5	63.B	67.2	84.9	84.0	80.3	76.0	70 B			
1600	81.6	83.4	66.2	83.9	61.9	75.5	74.8	70.0	100		1
2000	51.9	83.8	65.1		8.08	77.2	73.7	68.9	1.5		16 (17 - 62)
2500	82.5		65.1		80.8	76.9	73.3	68.8			
3150	65.8		66.2		82-7	78.4	74.7	70.7			
4000	80.1		40.7	HI.I	76.9	75.3	71.2	65.6	100		200
5800	82.6	82.0				75.3		66,2	4.3		
6300	86.4		66.B		85+0		75.9				
BODC		68.3				B4.4		71.3			
10000	84.5	84.9	59.6	85,4	83.3	80.5	75.1	67.5			
DASPL			41.5						200		
PNLT	99.2	100-1	92.2	101.8	101-9	100.6	99-0	96 - E			
PNL								101-2			
DBA	TTTAL	TITED	77.4	112.	110-9	108.0	104.4	150.0			
UDA	70-0	97-2	(1,43	AB 10	27.5	94.2	20*0	84 <b>-</b> 8			
BAND	19	19	29	23	23	23	23	19		** *	
TCORR	1.5	1.7	ĩ.1			0.7				1	a tira itu

PHLT (INTEGRATED) = 119.56

```
TABLE A-127
                                                   2282 H M8938 9563 JT8D-109 FULL TRT W/MDC NOSE CONE
                                                                                                                                                                                                                 = 27.00 F
= 1018
= 30.24 IN. HG.
= N
= 5 KPH
                ENGINE MODEL = 3760 -06
ENGINE NUMBER = 374052
                                                                                                                                                                                 TIME OF DAY
BARH. PRESSURE
HIND DIRECTION
HIND VELOCITY
                                                                                        TEMPERATURE
                                           = X-314
= 12/65/74
                                                                                        HUMBERTY
                                                                                        CORRECTED RPH
                                                                                        FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB -
  1/3 OCT
FREQUENCY
(HZ)
                                                                                               HICROPHONE ANGLES IN DEGREES
    50
83
80
100
125
160
250
250
315
400
1000
1000
2500
3150
4000
3150
4000
6300
6000
6000
                                 92-8
93-9
93-9
93-2
94-3
92-4
98-3
98-3
85-2
                                                       83.4
82.0
81.5
83.0
80.4
80.1
85.1
    DASPL
PNLT
PNL
DB A
                                                      105.0 105.8
117.2 116.2
116.3 115.4
102.2 101.7
                                            103.5
109.0
107.8
92.3
    BAND
                                               19
1.3
                                                                                          24
                 HAXIMUM CASPL
HAXIMUM PNLT
HAXIMUM PNL
HAXIMUM DBA
                                                                                         COMPOSITE SPL
COMPOSITE PNL
PNLT · (INTEGRATED)
TABLE A-128
                                                                            2202 H MB936 9563 JT8D-109 FULL TRT W/MDC NOSE CONE
                                                                                                                                                                                                             150.1740
```

CONDITION = 5213
ALTITUDE = 200. FT SIDELINE

1/3 PCT FREQUENCY						:		IZCROPHONE	ANGLES	IN	CEGREES
(PZ)	53	166	160	Ju ^o	120	130	140	150			
50	22.4	83.5	16.E	04.7	86.2	87.2	89.0	89.2			
63	62.3	Ef.C	Po+0	86.0	86.8	67.B	89.8	89.2			
80	62.6	£5.7	F2.c	86.6	87.7	E9.0	8-48	09.1			
100	P4.4	86.3	79.7	87.4	88.5	39.1	89.1	88.3			
125	86 E	P6	77.2	£7.7	86.7	88.7	E0.5	65.P			
160	87-1	GE.J	74.7	89-1	90.5	90.4	88.2	E4.4	100		1.
239	8F-4	ee.6	71.3	00.4	90.7	90.3	87.7	82.2			A .
250	87.3	87.7	71.9	88.9	90.3	89.2	85.6	80.5			
315	87.1	E 7.2		90.6	91.9	09.4	84.9	.79.0			
400	F6.6	87.0	72.8	96.0	91.6	88.6	£3.8	77-9			100
500	86.5	BC.1	71.7	90.7	01.5	67.3	82.0	76-1			
630	87.2	87.5	70.7		90.0	85.5	80.7	74.5	-	-	
800	66.3	88.2	69.5	69.2	88.3	8.68	79.3				
1000		66.0	68.3	26.6	86.1	82.3		72_0	in dakt		
1250	82.0	E4.3	66.5	84.E	53.9	80.1	75.5			- 1	
1600	81.5	94.5	65.2	83.0	81.2	70.3	74-4	69.6			and the second
2000	82-0	P5.0	64.2	83-1	- 8C.6	76.B	72.2	68.4	A		100
2500	81.9	84.1	64.4	87.0	BD.E.	76.2	73.0	68.5			
3150	84 8.	87.B	65.7	E.63	E2 . 1	77.5	74.6	70.0			
4000	79.6	P2-1	59.6	81.3	79-0	74.7	70.7	64.7			** *
5000	61.6	12.8	. FG.3	81.0	78.5	74.3	71.3	65.2	100		
6290	97.0	8F.9	65.4	PP.F	85.2	79.1	75-1		S. 40 S.		
8000	86 - C	19.2		92.1	98.0	63.4	78.0	70-2	7 7 7		1.75
16000	63.3	85.6	58.2	85.4	83.7	79.3	74.9	66-4			
OASPL	99.0	160-6	91.5	101.8	101.6	100-1	98-5	96.4		ŝi.	
PALT	111.7	114.2	95.3	113.B	111.9	100.0	104.0	100.7	1 2		1111
PNL		112.5		112-6	111.1	107.3	104-0	c9.5			
ABA		92.1						£4.1	44.4		
A	•	10	10	23	23	23	24	19		) ·	
BAND TCCRR	1.4		17 1.3			0.7	5.0		1.5		
TCCER	1.4	1.7	1.3	1.0	9.8	0.7	0.0	1.2	tara y		Director.

PHLT (INTEGRATED) = 119.60

TABLE A-129

| ENGINE MODEL | STATO | TEMPERATURE | TOO | TOO | TEMPERATURE | TOO | TOO | TEMPERATURE | TOO | TOO | TOO | TOO | TEMPERATURE | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TOO | TO

COMPLITION = 6387
ALTITUDE = 200. FT SIDELINE

ORIGINAL PAGE L.

1/3 OCT								e en e da	ware to		N DEGR	EEC							
FREQUENCY		122				60	76 7	ECKELE	9D 400 - 200	95	100		110	115	120	130.	135	2-0	150.
(HZ)	10	20	36	40	50	. DU	713	au	70	72	100								
	42.2	69-7	73.7	77.3	79.2	81-1	82.9	84.3	85.2	86.0	55.5	17.9	.88.7	89-1.	90.0	92.4.	74.6	76.0	96.2
50 63	62.3	71.2	74.5	77.9	79.5	41.4	82.9	84.0	85.6	8643	26.7			88.4	27.1.	-91-4	V3.0	34.5	. <b>-95.</b> -4.
80	63.9 65.3	71.5	74.3	76.3	78.7	79.6	80.7	82-3	82.9	83.8	84.3	86.2	86.1	86.6	86.D	87.T	8ã, b		71.3
100	64.1	69.4	71.0	74.7	76.3	77.1	77.9	78.5	79.3	79.9	80.7	81.6	81.7	82.4	83.3	85.6	87.6	70.5	91.2
125	64.0	68.9	74.0		77-6	78.7	79.1	80.7	82.9	83.9	85.0	86.1	86.9	. 88.1	90.2	92.6	94,I	96.6	97.0
160	66.2			Just		83.4	84.4	87.3		70.0	91.3	92.1	92.9	74-1	95-1	97.5	97.5	90.6	74.5
200	66-1	75.8	80.5	82-6	24.6	85.7	87.8	89-1	21.2	92.3	43.3	95.1	96.2	97.0	97.6	98.0	95.0	97.5	74.1.
250	67.8	75.9	77.8	61.3	64-3		87.9	19-1	20.6		92.5	93.6	94.9.	195.2	75.3			-92.7	90-4
315	67.1	73.7	77.2	77.9	51.7		85.9		87.0	88.0	G8 • 7	89.7	90.7	72.3	93.7	94.4	94.5	93.9	90-0
400	65.4	74.2	78.2	80.3	81.8		84.8		. 89.6	91.D	92.2	93.7	94.9	94.9	95.4	93.9	72.9	91.1	87.2
500	86.6	73.3	78.0	81.5	82.6	84.9	26.2	16.2			19-0	90.1	91.3	. 92 <b>.</b> 4		-92-7			
630	65.1	73.2	76.8	79.8	81-9		84.3	86.0	28.3		90.3	91.2	92.1	92.0	92.4	70.7	17.7		
800	63.6	71.1	75.5	78.7			83.7	85-1	86.7	88.0		90.4		90.9	70,7	29,7		86.7	
1000	61_6	70.0	74.3		79.8		82.5		45.4	86.4	¥7-3	. 88-2	86.4		. 38.6				
1250	62.5	69.4	73.2		78.8	80.6	81.7	82.7				86.6	87.0		86.8	7-25	34.6	22.4	76.9
1600	59.7	68.7	73.0		78 - 6	79.7	81.0	82.0	83.6	84.6			86.2		85.5		82.9	81.0	75.5
2000	60.3	71.0		76.0		79.2	80-5	81-9	83.0	E4.0		85.2			34.8				74-3-
2500	63.4	72.5	.75.1		79.1		80.8	21.7	83.4	B4.8	. 35.5	85.4		44.6			\$0.9		73-5
3150	71.5	83.2	84.8	90.4	91-2	28.2	88.5	#L 7	BK N	* . # A A	<b>ተ</b> ጵ_ስ	86.7	<b>Я6</b> −2	85.5	84.2	82.0	80 - B	78.4	
4000		81.5	82.B	\$5.3			87.4	25.7	85-1	85,3	46.0	. 46.7	26.4	- 46.3	-84+4	1.32-I	80-5	~~ <del>~</del> 7**	- 73-7-
5030		73.8	78 1	21.5	51.7		82.7		81.9	83.I	8.EB	84.3	25.5	. 54.6	83.0	01.4	1700	10.2	17=2
6300	65-1		21.6		86.8	57-1		25.7	85.0	85.3	- 85.5	85.2	84.9		83-D				71.9
8000	61.1		. 80.4		86.2	86.7	85.6	86.4	27.0	87.4	88.2	89.2	SE-7	- 47.0	*****T	12-4	_ =0.5	72.2	
10000			79.4		85-4	87-2	87.4	45.9	85.2	86.3	87.4	88.8	59.0	90.0	34.5	\$5.0	#2.2	75.9	71.9
10034						14 15							· · · ·	5					***
DASPL	79-1	29.0	12.2	96.3	97.7	77.8	98-5	77-1	100.3	101.3	102-2	103.3	104-1	104.6	10 ***	1054I	105+2	105-7	104.2-
PHLT																			
PNL																			
DBA	77.2	85.4	91.1	95.7	77.0	76.2	96.5	96.4	9742	98.1	29-0	.99.7	100.1	100-3	-100+T		78.2	36,5	93,4
		,			5.7	* 9 7	•	-				14 1	40 1910			100			
BARD	19	19	19	:19	19	17	19	24	24	10		10		24	24	24	24	44	2
TCORR	1.9	2.1	2.0	2.6	. 2.3	17	1.5	0.0	0.0	0.5	0.6	0.6	0.7	0+0		0-0		U.U	
BAND TCORR															270			0.0	. <b></b>

PALT (INTEGRATED) = 128.02

**TABLE A-131** 2282 F M0240 JT80-109 FULL TRT W/HOC HOSE COHE 150,1740 ENGINE MODEL = JT80 +07 ENGINE NUMBER = 037452 TEMPERATURE STAND DATE HUNIDITY OBSERVED RPH FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS - 150. FT. HICROPHONE ANGLES IN DEGREES 70 80 90 95 100 105 110 115 -120 130 128 120 120 10 \$1.3 \$2.5 \$3.2 \$4.3 \$4.6 \$5.4 \$6.7 \$7.4 \$8.5 \$9.2 \$9.9 \$9.9 \$2.4 \$9.5 \$9.5 \$9.6 \$9.2 \$10.0 \$1.5 \$11.0 \$1.5 \$12.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$13.0 \$ 63 80 100 125 160 200 255 400 500 500 1000 1600 2000 2000 2000 4000 5000 6000 1000 102-2 102-3 103-6 102-5 103-2 102-6 101-6 101-4 101-7 102-1 104-0 105-8 106-1 107-1 108-0 108-2 108-2 110-7 112-0 112-7 117-7 118-1 121-1 118-5 117-6 118-2 116-5 116-6 117-0 117-5 117-5 117-5 117-5 117-6 117-7 116-7 116-3 116-5 118-0 116-5 117-3 116-3 114-9 114-6 113-7 116-7 116-7 116-7 116-7 117-5 117-5 117-5 117-6 117-7 116-7 101-8 101-9 103-4 101-6 102-6 101-6 100-1 99-5 99-3 100-1 101-0 101-0 102-7 103-4 103-9 104-3 104-0 103-8 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 103-5 10 PHL

 HAXINUM OASPL #
 112.68
 COMPOSITE SPL # 113.66

 MAXINUM PHLT 4
 120.13
 COMPOSITE PHL # 222.52

 MAXINUM PHL 6
 118.05
 PHLT (INTEGRATED)
 = 130.45

 MAXINUM DDA 104.26

**TABLE A-132** 

BAND

2262 F H8Z40 JT80-109 FULL TRT W/HDC HOSE CONE

150-1740

COMBITION = 4388 ALTITUDE = 200. FT SIDELIHE

1/3 PCT FREQUENCY								4200 dat	SENIE AL	icles :	ru ncc	ICEC								
														***	990	470	126	340	160	
CHZ3	- 0	20	30	. 40	50	60.	74	. EO	YU	72	Tho	TAD	. 110	TID	1¢u.	130	#33 ·	- 240	434	
50	62.7	69.4	74.0	76.8	79.5													96.0		
63	63.5	71.3	74.8	77.6	79-1	80.6	52.2	23.6	85,3	15.7	#6.6	27.0	EE.3	25.3	\$2.6	. #O.\$	-93-0	. 95.4	- 75 D	
80	65.2	71.9	74.1	76.Z	78.2	79.3	50.6	12.1	22.7	43.8	84.6	85.6	85.9	15.9	25.7	87.2	20.1	70.7	90.4	
100	64.0	49.4	72.0	74.2	76.1	77.1	77.9	78.4	79.0	75.8	20.7	81.2	81.9	82.4	\$3·Z	45.8	87.5	90.2	91-1	
125	65.1	69.2	74.2	75.5	77.5	78.5	. 79.2	\$2.0	23.3	24.6.	. ¥5 ₀ 5	\$6.0	. 36.6	. 44.4	-,90.0.		-93.7	· %-7-	- 54 B-	
160	66.4	73.2	78.0	80.3	82.3			87.0					` 9Z+7		95.4		77.5		75.2	
200	66.3	75.8	61.1	.82.3	24.6	85.6	87.6	59.1	91.5	92.2	93.6	95.2	. 96.3	97-2	97.5	97.B	75.1	97.5	93.8	
250	47.6	75.9	80.0	82.1											75.5.	-\$4,2	-92.5	72.5	17.7	
315	67.2	74.1	77.6	79.6											73.7			74.2	29.6	
400	66.6	74.5	78.5	80.2		83.3			87.7		72.0				75,5			70.7	87.0	
506	56.3	73.2	78.2	81.2	82.3	84-7			87.0	. 31.1	29.0	90.0	91.3	-92.2	43-3.	\$3.0	-92.3	* 122	14.2	
630	65.6	73.5	77.1	80.3	82-5	84.0	84.7	86.3	85.4	89.3	90.4	91.4	72-1	92.4	92,3	*****	27.5	55.1	83.3	
800	63.8	71-1	75-2	78.6	50-9	82.7	83.7	45.4	AT-D	. 65.0	89.0	70.4	71-2	90.8	. 70.8	19.5	47.2	26.4	27-3	
1000	62.0	. 70.2	84.5	77.4	79.6	81-3	\$2.4	24.1	15.5	16.4	87.0	27.9	24.6	- 88.5	- 85-7	87-5	-24-2	44.5	-78.8-	
1250	62.0	69.4	73.6	76.5	78.7	80.4	81.6	83.1	84.2	85.2	85.9	86,5	87.0	- 27.0	86.9	15.5	84.0	82.4	76.7	
1600	59.9	480	73.4	75.9	- 78-5	79.7	81.0	82.6	83.B	84.8	25.2	85.9	86.5	26.4	76.1	24.3	82.4	#1.Z	. 75.4	
2000	61.1	70.4	73.1	75.9	77.9	79.1	80.4	82+3	. 23.1	84.2	14.6	.15.8	85.3	85.4	24,9	13.1	81 .5	77.7	74.0	
2500	65.6	72.9	75 B		72.8													.75.6		
3150	71.9	. 83.4	85.2	89.0	89.0	87-5	88,3	85.7	86.4	24-6	87-8	14.6	16,4	- 45.1	84.6	82.2	80.5	75.4	73.5	
4000	68.2	81.3	82.4	\$T.3	88+2	34.4	46.9	14.5	85-1	-45.4	-85-7	24.3	- 46,5	¥6.2		-11.7	- 77,7	77.9	72.0	
5000	63.8	73.3	77.6	81.1	8Z-2	82-3	82.0											77.0		
6300	64.3	76.5		85.9														76.6		
6030.	60.0	74.9	80.4	54.6	25.E	25.8	- 24.7	86.0	86.5	<b>\$7+7</b>	\$7.7	\$8.7	.15.5	18,5	36.7	-12.2	77.8	- 17. F	722	٠
10000	54.7	73.1	79.0	8373	85.7	26.0	24.5	75-2	85.0	26.0	24.9	88.3	` \$2.T	87.3	88.4	23.2	41.8	78-2	71.7	
			17					. **			S. 11.	1							10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
DASPL																			-104-1-	
PHLT																			107-6	
PNL	93.0	103.6	105.5	110.0	110.5	110.7	111.2	110-2	111.7	112.4	115 5	113.3	113.6	113.7	113,3	112.2	111.7	111.0	107.6	
DBA :	77.5	20.4	91.2	95.0	95.9	95.7	. 96.1	.76.4	97.3	78.2	71.9	77.6	100.1	100.2	200.2	-98.7	97.7	-76.4	92-7	
						•										* * .		1.5	3.0	
BAND	19		19	19		19	19	24	24	. 24 ,	10_	10	. 10	.24	. 24	-,24	24		24	
TCORP	1.7	2-1	2.0	2.3	I.B	1.6	1-5	0.0	0.0	0.0	0.5	0.6	0.5	~	0.0	0.0	-0.0	0.0	- 0.0.	
					100															

PALT (INTEGRATED) = 127.86

TABL	E A-13	3	2	28 <b>2</b> F	M8238 -	J78D-1	o9 FUL	L TRT	JOHN.	H05€ C	ONE				1	50-174	U			
	ENGINE HO		= JT8D = 37	-00 4052			TEMPE	KATURE	;	-	77.	o F			TIN	ET. JEK E OF D N. PRE	AY	=	905 905	i Ha HGa
	STAND			-314			HUMID	ITY			70.	O. PER	CT.		HIH	D. DIRE	CTICH		格	
	DATE		= 12/0	5/74				YED RP		=					MIN	D AETO	711T	-	** (	sen.
								CTED R												
							FAA P	ART 36	REFER	EHCE D	AY COR	REGTED	SPL I	и пр	₩ KAN	1102 =	12n+	F1.		
1/3 OCT							н	ICROPH	IONE AN	GLES I	H DECR	EES								
(HZ)	. 0	10	20	30	40	50	60	70.	20	90	95	100	105	110	135	120	130	135	140	720
50	81.1		81.4	82.2	83.5	84.8	85.0	85.4	87-1	88.3	85.7 89.1	\$9.3		91-1		93.4			102.4	
63 86	₹0.3 62.0		83.5 83.9	83.2 82.9	84.2 83.0	84.5 83.6	84.7. 83.5	83.5	84-5	85.7		87.3		87.0	89.5	89.4	91 B	93.7	97.3	99.0
100	82.8		81-2	20,6	81.0	60.9	80.9	81.1	81.2	81.6		63.3	84-0	84.9	86.3	87-5	91.2	93.8	97-7	100.7
125	83.4		81.4	83.2	82.5			82-7	83.9	26.2	. 87.2	88.6	B9-3-	90.9	92.4	- <del>\$4.4-</del>	98.4	100-3	102-4	-106-1
160	85.9	84.3	85.5	87.0	87.1	87.7	87.4	27.9				94.2	95.1	76.3	97.8.	97.5	102-5	103%	105-4	,105.4
200	85.3	84.6	67.6	89.8	89.2	90.3	27.6	91.2			75.2	74.5	97.B	99-4	100.3	101.5	103.1	104.0	104.2	10Z-5
250	6443		83-2	82 -4	85-7	89.8		91.2	92.1	93.2			96.3		96.2	-29-1			100:0	
315	86.4		85.9	86-9		87-1		58.9	89.4	89.8		91.6 94.9	92.8	94.0 97.8		99.3	26.4		97-1	
400	86-4		86.5	87+3	87-0	87+2	87-4	88.2	89.4 89.1				93-2		94.3	-08-D				96 %
. 500	84-7		85.8 85.8	86.4 86.1	88-5 86-5	88.6 87.2	87-5	87.9	89.1	91-4		97.1	94.0	95.1		76.1	95.7			92
63 <u>0</u>	84.2	82.6	63.8	84.5	85.2		86.6		80.0				93.7		94.7		95.0		93.4	
1000	79.8		82.7	83.6		25.0		86.1			. 19.0	90-0.	_90_9	918.						-81.7
1250		82-1				84.1	84.6		86.3	87.3	87.8	88.8	89.5	90.2	90.6	91.0	90.9	90.4	89.2	86.2
1600		80.4	81.6	83.1	82.8	83.7	83.0	84.7		86.8		88.2	82.8	89.6	90.1	90-0	89.5			84.9
2000		82.0	84.5	83.1	82.7	83.4	83.6	84.3	. B5.3	86.3			88.3			-19-1				····BZ~·9·
2500		84.3	85-9	84.7	83.7	83.8	83.4	84.2	85.1	86.4		88,4	88.0	87.8		88.7			85.7	
3150	96-1	94.5	95,6	95.3	98.5	76.0	91.9	91.9	88.7	88.2	89.0		49.8	89.6		28-6	89.2			
4020		6ء 92	93.5	92.5	96.3	74.2	90.8	70.3		87.4	- 47.9	46-8		-85-6	89-7-	-53-9	-57-7	10+b		
5000		89-1	5B.7	88.4	68.1		87-0		85.3	85.5	85.8	86+6	87.1			87-8	E6.7			\$1.8 \$2,8
6300		92.9	92.2	92.5	92.8	92-1	90-4	88.9	85.0	85-1	80.2	88.2	88.3	88-2	00.0	91-3	40 E	87.4	07tj	
8000		92.3	92.1	21:2	52.Z	71.7	70.4	. 25-2	55-5	40-0	70.0	41.0	ATAX	ATOX	97.7	93.2	00.7	89.7	25.1	\$4.9
10000		91.8		,							89.2					1	-			
CASPL	102-1	101.7	102-4	102-3	103.7	102-9	101-6	101-7	101-9	103.3	104-1	105.1	104.1	107-2	. 105-0	.109±0	110.2	111-1	117-3	110.9
PHLT	115-3	117.5	118-6	118-7	121.2	114.4	110.0	110.5	11301	114.3	11240	11040	316.4	116.0	117-4	117.4	117-7	117.9	117.9	116.9
PNL	116-7	117.5	110.0	110.2	101 6	11/+1	11707	11047	11241	11703	100-0	101.0	102.6	103.4	103-9	104-4	304-3	10	مُحدودً.	-102+Q
DBA	101.8	ID1-1	101	101-7	103-2	Tusen	100+0	3301	32.05	20002	104.4	10147	14140	20207						
CHAB	19	19_	19	1 <del>9</del> 2.2	19 2.8	11 2.3	19	1.6	24	24 0.0	24 0.0	10	10	15	24 : 8+0	24	· 24 0.0		24, -0-0	24
TCORR	1.6	1.7	2.0	2-2	2.0	K+3	1.0	7.0	. Date			Cap		***						
	NUNIXAN	(IASPI	x 1	12.95			COMP	SITE	Š	PL .	* 113.	88								
	MAXIMUM			21.20			COHPI		PH	L .	= 122.	31								
	MAXIMUM			18.40					ECRATE	D) :	= 130.	62								
	MAXIMUM			04.35																
T 4 D :				594	3 E WE	238 IT	8D_100	E1# 1	TOT U	MALE MA	ISE CON	F				150	-1740			
IABL	.E A-13	14			- F 46	*70 JI		POLE	101 47	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<b>-</b>	-								

CONDITION = 6415

1/3 DCT																			
FREGRIENCY									HOHE AN		IN DEC	KEE5							150
(HZ 3	10	20	30	46	50	60	70	80	40	95	100	105	110	115	120-	130	133	140-	170-
50	62.6	69.5	73.7	77-I	80.0	31.2	83.0	64,5	65.8	86.2	86.7	87.8	88.1	89-1	89.6	92.1	. 73.9	76.0	
63	63.7		74.7	77.8	79.7	- 80-9	82.4	84.1	25,8	86.6		. 87.6			. <b>33-</b> 4				55-1-
80	65.2	72.0	74.3	76.6	78.5	79.7	80.5	81.9	83.2	83.5	84.7	85.4					88.2		97.4
100	63.6	69.3	72.0	74.6	76.1	77-1		78.6		79.4	80.7						12.3		9.1.1
125	63.9	69.5	74-6	76.1	78.D	78.9	79-6	81.3	43.7	.24.7	26.0	- B6-5						97-2-	
160	66.3	73.6	70.4	80.7	82.9	83.4	84.8	\$7.4	89.6	90.5	91.6	72.3	93.2	94.4				. 99.0	- Stat
200	66.5	75-6	81-2	82.6	85.4	85.8	28.1	89.3	91.8	92.7	93.8	95.0		9649		75.2	94.4	77.8	94 20
250	68.0	75.2	79.1	82.3	84.9	56-0	88-1	17.4	70.7	*1.5	92.5	93.5	94.7	94,-9				-72-5-	위교교
315	67.3	73.8	77.6	40.0	82.2	84.6			87.3				90.9			94.8			91:+2
400	E.66 ·	74.4	75.6	20.5	82.7	53-6		86.7			92.2						. 92.F		8 (-4)
500	66.9	73-1	77.7	82.0	83 a il				87.5				. 91_6	-9Z+9	74.2	43-6	93.0	-91-2-	-87+1-
630	65-6	73.5	77.3	\$D.D					85.5			91.1						88.2	
600	63.5	71.4	75.6	78.6	21.1	82-7	83.9	85.3	87.3	88.3		70.8		91.2	91.0	50.0	#B.7	86.8	/ #1.B
1000	61.6	70-1	74.6	. 77+2	: BO+O	81.5												84-6-	
1250	62.2	69.2	73.5			80.7									87.1				77-1
1600	59.8	68.5	73.9	76.0						84.8	85.4	85.8	86+4	\$6.5	86.0	54.7	83.3		75.7
2000	4.04	71.1	73.7			79.6	41.0	2Z+5		14-2	84-9	85.3	85.2	- 85.4	- 85-3	- 43-4	-2Z-1		74-5
2500	64.Q	72.1	75.0			79.3							84.5	84.7	84.6	£2.6	\$2.0		
3150	70.9	81,2	85.3					85.8		86-2				85.3	84.4	92,7	80.9	71.3	
4000		78-4	82.1			36.4	86.8.			85.0					84.5.			- 77.5	
5000	62.7	73.1	77.7			\$2.6		82.2		82.8			84.2						
6300	64.1	75.6	81.2	84.7	86.1	85.6	85.2	84.8	85.0	85.1	85.0	84.9	84.5	83.9	82-5	50-1	74.2	76.6	71.5
8000	59.7	73.8	.79.7	. B3.5	85.2	85.4	. 54.8	85+1	86,6	87.3	87.6	58.3	. 57.9	-88-3	46.3.	- 52-0	7.7.4.9	77#E	71.49
10000	53.6	72.2	78.3	82.6	84.3	85.4	84.5	84,6	84.7	85.6	26.6	87.8	88.1	44,9	ST#B	23.6	EI-6	72.5	713
CASPL	79-0	57-7	92.3	96.4	97.4	.97-4	78.4	27-1	100.6	101.4	102.4	103.2	104.0	104.5	105.1	105.3	205.5	105-9	104.3.
PHLT	96.0	104-2	108-7	113.9	113.9	112-2	113.0	110-0	121.5	112.2	113,7	113.9	114.1	123.7	.113.3	112.5	112-1	111.2	197-8
PHL	92.3	102-2	106-5	111-r	111.6	110-6	111-5	110.8	111.5	112.2	113.2	113.3	. 113,5	113.7	113.3	112-5	112-1	111.2	107-2
CBA	76-9	86,8	91.0	76.0	74-4	95.7	26.3	96.2	97.4	98-1	-99-0	99.6	100-1	100.3	100+3	_99.2	98.4	96.9	53.1
BAND	19	19	19	19	15	19	17	24	24	24 .		10	10	24	24	.24	24	24	24
TCORR	1.8	2.0		2.E	2.3	1.0	1.6	D.D	.0.0	0.0	0.5	0.5	0.6	6.0		0.0	بار ف	O.Q.	-049-
	_																		

FRET (INTEGRATED) = 127-97

```
TABLE A-135
                                                                                                                      2282 H H8938 9563 JT8D-109 FULL TRT WANDE HDSE COHE
                              ENGINE MODEL = JT8D -60
ENGINE NUMBER = 374052
                                                                                                                                                                                                               TEMPERATURE
                                                                                                                                                                                                                                                                                                                                                                                                                                              TIME OF DAY
BARM, PRESSURE
WIND DIRECTION
WIND VELOCITY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   30-24 IN. HG.
                                                                                                 = X-314
= 12/05/74
                                                                                                                                                                                                               HUHIDITY
                                                                                                                                                                                                              OBSERVED RPM
CORRECTED RPM
                                                                                                                                                                                                               FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADJUS = 150. FT.
                                                                 3 93.2 110.1 94.7 97.7 101.5 106.2 108.3 1 95.0 107.8 96.8 97.6 103.1 108.1 110.3 1 96.1 108.1 108.1 108.1 198.0 107.6 104.5 109.7 111.9 3 96.1 108.1 98.0 100.6 104.5 109.7 111.9 3 96.7 106.5 98.6 101.4 105.7 107.6 112.4 4 97.6 106.5 98.6 101.4 105.7 105.7 106.5 5 98.3 103.8 100.0 103.1 105.3 105.0 105.6 103.8 100.0 103.1 105.3 105.0 105.6 103.8 100.0 103.1 105.3 105.0 105.6 103.8 100.0 103.1 103.9 104.3 104.3 102.7 99.7 99.8 101.7 103.6 103.7 104.3 104.3 103.2 101.7 99.8 91.7 99.7 99.6 102.1 103.9 104.3 104.3 103.2 101.7 99.8 91.7 99.7 99.6 102.1 103.9 103.1 101.9 100.2 8 99.1 97.5 101.7 102.6 101.7 99.8 97.9 95.0 8 99.1 97.5 101.7 102.6 101.7 99.8 97.9 95.0 8 97.6 98.6 99.4 97.7 95.7 92.6 8 99.1 97.5 101.7 102.6 101.7 99.8 97.9 95.0 8 97.6 98.6 98.8 96.2 93.6 91.4 88.2 4 93.9 85.7 94.4 93.7 86.6 94.9 95.0 93.6 91.4 88.2 4 93.9 85.7 94.4 93.7 82.2 90.0 87.1 85.2 94.0 80.1 84.7 93.4 92.1 90.3 88.5 85.6 94.9 95.0 93.6 91.4 88.2 86.1 84.4 93.7 84.6 94.2 92.2 90.3 88.7 86.5 94.0 85.2 86.4 94.6 92.6 90.4 88.7 86.0 93.5 93.6 81.5 85.6 89.2 86.1 84.4 94.6 92.6 90.4 88.7 86.0 93.5 93.5 85.7 95.6 94.8 85.7 97.8 93.3 90.5 89.4 86.0 84.1 85.4 92.7 90.6 88.7 87.9 85.1 86.0 94.1 85.4 92.7 90.6 88.7 87.9 85.1 86.0 94.1 85.7 97.8 93.3 90.5 89.4 86.6 86.7 97.8 93.3 90.5 89.4 86.6 94.2 93.3 90.5 89.4 86.6 94.1 85.7 97.8 93.3 90.5 89.4 86.6
DASPL
PHLT
PHL
DBA
                                                                                                          24 24
                                                                                                                                                             24 24 24
                               HAXIMUM GASPL
MAXIMUM PNLT
MAXIMUM PNL
MAXIMUM DBA
                                                                                                                                                                                                                 COMPOSITE SPL
COMPOSITE PHL
PMLT (INTEGRATED)
                                                                                                                   118.47
122.03
122.03
105.33
TABLE A-136
                                                                                                                                                                 2282 H H8938 9563 JTBD-109 FULL TRT W/MDC HOSE COHE
```

CONDITION = 6387

ALTITUDE = 200 FT SIDELINE

1/3 OCT FREQUENCY								MT/MORUOUS	Auct es	IN DEGREES
(HZ)	90	100	160	209	120	130	140	150	PHOLES	IN DEGREES
58	58.8	00 6	98.2		م شم			00 B		
43		90.6			93-9					
80		92.4	97.9		75.8			101-6.		
100	90-3	93.5	96.2					103.3		
	92.8	94.3						103-4		
125	94.9	95.0	94.7					100-2		
160	95 • 0	95.7	91.9			100-5				
200	96.1	96.4	76.8			100-1				2
250	96.9	97.3	87.5		100-1			94-1		
315	95.3	97.2	88.4			10.7				
400	96.2	97.0	87-5		100-1	98-2	95.4	91.5		
560	95.3							89-2		
619	94.7		62.5					85.2	100	•
80£		94.9	79,2	95.2	94-7	92-7	89.I			
1000		92.7						81.0	ati i i i	
1250	90.7	91.9	73.8	91.5	71.1	82.5	54.7			
1600	89.8	91-1	72.6		89.7		83.2			
2006	89.7	90.9	71.4			85.8	81.7	76.7		
2500	89.8	. 91.2	70.9	90.1	68.0	85.0	81-4	75.9	•	
3150	90.7	91.7	72.2	90.9	88.0	84.8	82.4	76.5		4 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 1
4000	90.9	92.2	71.3	91-1	88.2	84.7	. 81-I	75.6		
5000	89.0	90.4	68.6	87.5	87.2	83-4	80.4	73.7		
6300	90-T	90.9	66 B	89.0				> <b>73</b> .8		April April
8000	9240	93.4	68.4	93.9				74.4		the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
10000	87.3			93.I				73.2		eri e e e gari
OASPL	106.0	107.0	104 4	100.1	100.0	710-1	310.0	109.9		
PHLT	117 6	118 7	105.7	118.7	117.7	714.1	417	111.9		
PHL	117.5	118 7	105.7	110.7	777.7	116 7	111.3	111.9		4.10
DBA								96.0		
JOA.	10343	Trust	7000	*434*	Thistory	10243	7747	30-0		
BAND	24	24	24	24	24	24	24	24	100	连马上 电流流
TCOKR	0.0	. 0.0	0.0	· 0.0	0.0	0-0	0.0	0.0		
		٠.			1.4		: · ·		1.	

PNLT (INTEGRATED) = 125-45

```
TABLE A-137
                                                                                                             2282 H H0938 9563 JT60-109 FULL TRT W/HOC HOSE CORE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          = 30=00 F
= 1144
= 30=24 IN. HG.
= H
= 5 HPH
                              ENGINE MEDFL = ENGINE MUMBER =
                                                                                                                                                                                                                                                                                                                                                                                                   TIME OF DAY
BARH- PRESSURE
WIND DIRECTION
WIND VELOCITY
                                                                                                                                                                                             TEMPERATURE
                                                                                                                                                                                             HUNIDITY
                                                                                                                                                                                             DRSERVED RPH
CORRECTED RPH
                                                                                                                                                                                             FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.
1/3 NCT
FREQUENCY
(HZ)
                                                                                                                                         HICROPHONE ANGLES IN DEGREES
120 130 140 150
                                            90 100 160 109 120 130 140 150

91.4 93.0 110.0 95.1 98.1 102.0 105.6 108.3

91.8 94.6 109.6 96.8 99.3 102.6 107.9 110.2

92.9 96.1 108.9 97.8 100.4 104.4 109.4 112.1

95.4 96.9 108.8 98.9 101.4 105.2 109.3 112.5

97.2 97.5 108.5 98.6 101.8 104.8 108.1 109.4

97.5 98.0 104.7 99.9 102.8 105.1 106.9 107.4

98.5 99.2 99.8 101.2 103.4 104.8 108.1 109.4

99.3 99.8 100.9 101.8 104.2 104.5 104.5 104.5 103.6

97.7 99.6 101.5 101.6 103.8 103.7 103.3 103.2

98.4 99.5 100.9 101.8 104.2 104.5 104.5 103.6 103.6

97.5 98.8 98.3 101.4 102.9 101.7 100.4 99.2

97.3 97.5 95.8 99.3 100.5 100.0 98.5 96.4

96.3 97.4 92.5 98.0 98.6 97.7 96.4 93.8

96.3 97.4 92.5 98.0 98.6 97.7 96.4 93.8

92.4 93.8 86.2 94.5 94.0 92.6 90.7 88.4

92.4 93.8 66.2 94.5 94.0 92.6 90.7 88.4

92.4 93.6 65.2 93.9 93.0 91.3 89.8 87.2

92.4 93.6 65.2 93.9 93.0 91.3 89.8 87.2

92.4 93.6 86.9 94.2 92.4 90.3 89.2 85.6

93.3 94.4 86.9 94.2 92.4 90.3 89.2 87.2

93.4 94.8 86.9 94.2 92.4 90.3 89.2 87.1

93.4 94.8 86.9 94.6 92.9 90.8 90.7 88.4

93.4 94.8 86.9 94.6 92.9 90.8 89.2 87.2

93.9 95.7 86.7 97.0 92.3 90.1 89.5 87.2

93.9 95.7 86.7 97.0 93.3 90.1 89.5 87.0

93.9 95.7 86.7 97.0 93.3 90.1 89.5 87.0

93.9 95.7 86.7 97.0 93.3 90.1 89.5 87.0

93.9 95.7 86.7 97.0 93.3 90.1 89.5 87.0

93.9 95.7 86.7 97.0 93.3 90.1 89.5 87.0
                                                   90
                                                                      100
                                                                                        160
                                                                                                                 109
     50
63
80
125
160
250
315
400
1000
1250
1000
2500
3150
4000
5000
5000
1000
                                            109-3 110-4 117-1 112-1 113-7 114-9 117-2
120-0 121-3 119-5 121-9 121-9 121-3 121-2
170-0 121-3 119-5 121-9 121-9 121-3 121-2
106-0 107-1 104-3 108-1 108-3 107-7 106-9
     OASPL
PNLT
PHL
OBA
                                                                    0•0∙
0•0
     BAND
                                                                                                   24 24
0.0 0.0
                                                                                                                                                 24 24
0.0 0.0
                                 HAXIMUM CASPL
HAXIMUM PHLT
HAXIMUM PHL
MAXIMUM DDA
                                                                                                                                                                                               COMPOSITE SPL
COMPOSITE PHL
PHLT (INTEGRATED)
                                                                                                                                               2282 H M8938 9563 JT80-109 FULL TRT W/MOC HOSE CONE
                                                                                                                                                                                                                                                                                                                                                                                                                                              150-1740
              TABLE A-138
```

COMDITION = 6386 ALTITUDE = 200. FT SIDELINE

1/3 OCT FREQUENCY (HZ)	00	480						HICROPHONE	AMPLES	TM	necoess
FREQUENCY (HZ)	96	420									
(823	00								WMOFFE	211	OCEVEC?
50		100	160.	109	120	130	140	150			
	88.9	4.00	98-7	97.1	94.3	97.2	99.2	99.8			
63	89.3	02.0	97.7	93.5	95.5	97.8	101.5	101-7			
80	90.4		97-u	8_10	96.6	99-6	103.0	103.5			
100	92.9	2202	04.0	0.20	97.6	100.4	102-9	103.9			
			96.6	06 6	98-6	100-0	101-7	100-8			
125	94-7	95.4		06.0	00-0	700-3	300-5	98.8			
160		72.7	7.260	7007	00.6	99.0	99-0	96.2			
200	96.0	90 D	0.00	7006	100 4	00.4	98.1	95.D			
250	96.8	97-1	20.43	70+0.	100 0		06.0	94.5			
315	95-2	75.9	B7+*	70.0	100.40	70.0	05 A	92.7			
400	95.9	96.B	88-8	98+8	200-7	7007	7300	. 00.5			
500	95.0	96 I	Heal	70.7	33-1	. 70-0	7343	90.5	2.4		
<b>63</b> 0	94-7	94.8	03.5	96.2	30-7	33×1	3244	87-6			
600	93.7	94.7	80.1	94.9	94.7	72.1	87.0	84.9			
.1000	92.3	92.6	76-9	93.3	92.9	71-4	45	82-2			100
1250	90.6	91.6	74-4	- 91.9	91.43	ZC- /	52-3	50-2			
1600	89.8	91.0	73.1	91.3	90.0	87-5	83.5	79-2	-		
200C	89.7	90.8	71.8	. 90-7	89.0	86-1	82-5	77-8			-
2500	89.8.	90.8	71.3	. 90.0	88.3	85.1	82.1	76.9	2.00		1.0
3150	017.5	41.5	77.5	90.9	88.2	- 84-8	. 8Z.,1	74.0			a egil e
4000											
5000	40 E	60.2	40-2	. RD. 4	. 27.6	. 23-0		7 7441	5.		
/ 700	ha e	60.3	C# 4	R# 0	94በ	. 87.5	RU -	7403	1.5	111	100
8000									18.0	11	
10000	88.2	71-7	65.2	92.3	27.2	84.1	81.	73-7			
		100					٠.				
DASEL	106.7	107-7	105.2	109-0	109.9	110-0	. 110.	110-2	. 1. 9 1.	1.1	A STATE
PNLT	117-7	118.4	100-8	118-6	117-9	116.2	11+-	112.5		or Marie	1 1 To 12
PNL	117.2	118.4	306-8	11R.6	117.9	116.2	114.	112-5	100		1.7
DBA	107 3	104-3	01.0	104.9	104-6	102-6	100.	97-1			100
DDA	10343	10412	7127						100	5.7	
BAND	94	24	24	24	24	24	24	24	4.7	JAN 1	
	0.0				0.0			0.0.0		100	
TCOKR	0.0	0.0	240	414				- · · · · ·			

OURT STUTECRATERS = 125-40

```
TABLE A-139
                                                                                                  2282 H M8937 9562 JTED-109 FULL TRT W/MDC MOSE COME
                                                                                                                                                                                                                                                                                                                                                                   150-1740
                                                                                                                                                                                                                                                                                                                                                            THLET TEMP
                          ENGINE MODEL = JT8D -60
ENGINE NUMBER = 374052
                                                                                                                                                                                                                                                                                                                                                           TIRE OF DAY
BARM. PRESSURE
                                                                                                                                                                                                                                                                                                                                                                                                                             = 905
= 30.25 IH. HC.
                                                                                                                                                                          TEMPERATURE
                                                                                                                                                                                                                                                                                                                                                            WIND DIRECTION
                                                                                                                                                                          YTIDIKUH
                                                                                = X-314
= 12/05/74
                                                                                                                                                                         OBSERVED RPH
                                                                                                                                                                          FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.
                                                                                                                                                                                       HICROPHONE ANGLES IN DEGREES
1/3 OCT
FREQUENCY
                                      90 10 160 109 120 130 140 150 190 191 91.9 93.6 111.0 95.9 98.6 102.5 106.5 108.9 92.7 94.6 110.0 97.9 100.3 103.7 108.7 110.6 93.5 96.4 108.6 98.0 100.6 104.8 110.0 113.1 95.5 97.0 108.5 99.3 102.0 106.0 109.9 112.7 97.7 97.8 108.8 100.3 102.8 105.7 109.0 109.4 97.9 98.6 104.9 100.6 103.4 105.8 107.7 107.9 99.0 99.7 100.1 101.8 103.9 105.4 106.4 104.9 103.4 107.8 107.0 101.3 102.4 103.9 105.4 106.4 104.9 103.4 97.8 99.0 101.3 102.4 103.9 105.2 104.3 103.1 98.2 99.4 100.4 102.4 104.3 104.4 104.9 103.4 97.8 99.0 101.3 102.4 103.9 105.2 104.3 103.1 99.2 97.5 97.6 92.5 98.9 99.9 100.9 100.2 99.0 99.7 100.9 100.9 100.2 99.0 99.3 103.1 98.2 99.4 98.4 97.0 99.3 99.5 98.4 97.0 99.5 98.4 97.0 93.7 95.0 95.4 89.7 97.2 97.5 96.0 94.6 91.1 92.6 93.7 93.5 96.0 94.5 92.7 89.3 92.6 85.5 95.3 94.5 92.9 91.3 88.1 92.2 92.3 93.6 85.4 93.8 92.9 91.0 89.4 85.4 92.0 93.7 90.0 87.4 89.2 94.3 86.6 94.6 92.7 90.9 90.0 87.4 93.3 94.4 86.0 94.6 92.7 90.9 90.0 87.4 93.3 94.4 86.0 94.6 92.7 90.9 90.0 87.4 94.3 92.8 94.3 92.8 94.6 85.7 88.5 85.1 92.9 91.3 89.7 86.8 85.1 92.9 91.3 89.7 86.8 85.1 92.9 91.3 89.7 86.8 85.1 97.1 94.0 91.3 90.7 87.2
                                                                                                                                                                         140
       (HZ)
    100
125
160
250
315
400
500
1000
1250
1000
2500
4000
5000
6300
6300
6300
6300
6000
    OASPL
PHLT
PHL
DBA
                                      109-5 110-6 117-3 112-7 114-1 115-4 117-9 119-2 170-7 121-2 119-6 122-3 122-1 121-7 121-9 121-6 120-0 121-2 119-6 122-3 122-1 121-7 121-9 121-6 126-1 107-2 104-3 108-7 108-9 108-1 107-5 105-9
    BAND
                                                                                                                                   24
0.0
                                                                                         24
0.0
                                                                                                119.24
122.30
122.30
108.87
                                                                                                                                                                           COMPOSITE SPL
COMPOSITE PAL
PHLT (INTEGRATED)
                                                                                                                                                                                                                                                          = 119.95
= 124.59
= 130.41
                             MAXIMUM CASPL
MAXIMUM PHLT
MAXIMUM PHL
MAXIMUM DBA
    TABLE A-140
                                                                                                                                                                                                                                                                                                                                                                                                                150.1740
                                                                                                                                              2282 H M8937 9562 JT80-109 FULL TRT W/MDC HOSE COME
```

CONDITION = 6415
ALTITUDE = 200. FT SIDELINE

1/3 OCT														
FREQUENCY								HICROPH	ine E	AUC	1 64	TH 1	necsee	5
(HZ)	90	100	160	109	120	130			-			•••		-
11,27	74	700	700	-0.										
50	89.4	90.4	99.1	92.9	74.8	97.7	100+1	100.4						
63	90.2	92.3	98.1	94.9	76.5	98.9	102-3	102-I						
80	91.0	93.8	96.7	95.0	96.8	100.0	103.6	105.5						
100	93.0	94.4	76.6	96.3	98-2	101.2	103.5	204.1						
125	95.2	95.2	96.9	97.3	79.40	100.9	102.6	100.8						
160	95.4	96.0	93.0	97.6	99.6	101.0	101.3	99.3					0.00	
200	76.5	97.0	88.1	95.B	100.1	100.5	100.0	96.3						
250	96.8	97.3	89-1	99-3	100.5	99.5	98.5	948						
315	95.3	97-1	89-2	99.4	100-1	99.3	97.9	94.4						
400		76.T		99.4	100.3	98.5	95.9	92.7						
500	55.4			99.3	99.6	97.4	94.5	90.5						
630	. 74.9	95.1	83.6	96.8	97-1	95.3	92.5	87-4					100	
800	93.9	94.9	8D-1	95.8	. 95.5	93.4	90.4	84-6					100	
1000	92.4	92-7	77.1	94-1	93.6	71.8	.88.0	_ 82_1						
1250	91.0	92-1		92.5				80.2						
1600	90.0	90.8	73.4	92.1	90.5	87.8	84.5				: 1		1.5	
2000	89-6	90.7	72-1	91.4	. 87.7	dade.	83.3			100				1
2500				. 90-5										
3150			72.2			85.4								
4000	90.4	91.4	70-9	91.1	. 88.3	84.9	82.1	. 74.4	P	4, 3				
5000	88.5	89.7	68.7	89.3		83.9	81.I	74-4	2.1	27		114	4.5	
6300	89.8	90.Z		89.0									400	
8000		92.5						74.7						
10000	87.8	92.0	64.4	92.9	BB 6	84.2	81.1	73.6	·	200	111	6.5		
		1.131.5	A1 3 4	· * *		100	3 M.H.	9 50			· .	- 6	11 a s	
.OASPL								110-7						
PHLT	117.2	115.3	106.9	119.0	115-1	116.5	115.2	112.6						1
PHL	117.2	118-3	106.9	119.0	118-1	110.5	115.2	112-6		1	. N.	·		
DBA	103.4	104.4	91.9	105-5	104-9	103,0	100.7	97-1		**				
	100					11-							11	
BAND	24	24	24						1.37					:
TCORR	0.0	6.70	0.0	0-0	0.0	0.0	0.0	0.0		31.1	d.	41, T	. ** ***	1 .
					10.00	100 F		i te jere e	- 14	1. 1.		11.7		100

PHIT (THTEGRITED) = 125.64

**TABLE A-141** 2282 F HBZ40 JT80-109 FULL TRT W/HDC HOSE COME 150-1740 ENGINE MODEL ENGINE NUMBER TIME OF DAY. BARH. PRESSURE WIND DIRECTION WIND VELOCITY = 1113 = 30.22 IH. HG. TEMPERATURE STAND DATE HUNIDITY OBSERVED RPH FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT. 1/3 DCT FRESUENCY (HZ) MICROPHONE ANGLES IN DEGREES TO 80 90 95 100 105__ 110__ 115__ 120 88-3-9 88-230-8 86-230-8 75-8-9 75-8-9 75-8-9 75-8-9 75-8-9 75-8-9 75-8-9 75-8-9 88-2 87-7 88-0 87-7 86-2 86-1 90-1 88-5 94-0 93-5 95-4 95-2 95-3 95-2 93-9 93-4 92-2 93-4 90-6 91-3 89-4 90-2 87-4 88-5 89-7 89-0 89-7 89-0 89-7 89-0 89-8 89-9 90-2 87-8 200 250 315 400 500 630 1000 1250 1600 93.2 92.4 92.1 90.1 48.8 87.7 707-1688198797-16881977-16881977-16881977-16881977-16881977-1 2000 2560 3150 4000 5000 6300 8000 10000 DASPL PHLT PHL DBA 104.2 103.8 105.2 105.1 105.2 105.4 105.9 116.5 118.4 120.2 119.0 118.8 116.7 116.8 116.6 117.4 118.6 117.4 116.7 110.8 102.9 101.8 102.3 102.4 102.3 102.8 20 20 24 1.4 1.4 0.0 24 · 0.0 24 24 24 0-0 

HAXIMUM DASPL = 123.06 CDMPDSITE SRL = 123.1 MAXIMUM PMLT = 127.84 CDMPDSITE PML = 128.6 MAXIMUM PML = 127.33 PMLT (IMTEGRATED) = 135.5 MAXIMUM DDA = 114.56

**TABLE A-142** 

2282 F H8240 JT8D-109 FULL TRT W/MOC HOSE COME

150×1740

COMDITION = /442
ALTITUDE = 200 FT SIDELINE

1/3 OCT FREQUENCY																			
	•-							MICHOP	HOME Y	MGLES	IN DEG	rees				r			
{HZ1,	10	20	30	40.	50	.60	70	. 80	.90	95_	.200	105	, 110	115	120.	130	135	140	150.
50		74.1	78.1	51.3	83.5	85.6	86.7	55.9	89.4	.90.3	.71.0	71.8	42.9	93.9	95.0	. 47.9	79.3	102-5	102.8
.63				82,83	470.4		87.53	COAT	70-1	90.E	92-0	. 97.5	47-4	. 93.2	44.5	47 E - O	- 64.7	すれて、夢	7/17 - 0
80		76.7		21.3	03.7	64.3	85.4	27.0	87.7	89.0	-89.6	91.1	-91.9	92.5	97.9	45.2	96.4	44.1	98.6
100		74.9		79.7	0T+5	82+2	83al	84.1	64.7	65-6	86.1	87.3	88.7	22.0	80.4	97. #	54 . I	60.0	98.8
125		70.1		.82.1	0900	0.50	85.6	87.5	. 19.5	. 20.4	91 5	92.4	. 93.2	- 93.2	Ŷ6R	101-5	102.7	107-0	104.5
160	72.7	80.7	45.4	87.1	89.0	87.7	90.8	93.7	95.3	96.6	97.4	08.2	48.4	300.0	102-0	105.7	104.4	. 108.5	108.0
,200,		82.8		53.8	70.0	71.0	9	75-R	98.2	. 98.48	49.7	101.4	. 107.4	-102.A	TAL .	TAL. P	107 1	107 7	102 0
250	74.4	. 82.9		. 49.5	3147		54-0	96 <u></u> 0	. 97.2	OH_D	. 40.0	3.00.6	101-7	102.7	107.8	707.4	103.0	103-2	107.0
315	73.8	80.9	84.2	56.9	29.0	71.7	92.7	94-0	95.0	96-1	76.7	98.7	99.1	100.8	101.5	102.6	101.6	104-6	102.2
400			92.46	- C0 • ™	07.6	70.I	791.3	. 93.9	76.R	982	99.5	ፕ በበ _ ም	101.	107 7	TO7 4	104.1	<b>የሰን ቀ</b>	404 4	102 6
5QD,	73.0	50.2	. 83.5		. Cua C	71.I	. 72-5		94.0	94.1	. 47.1	. 95.3	00.1	100.5	101.7	707 - 4	JAT. #	107.6	101 0
63p	1443		03+1	4207	4077	57.3	70.0	73.1	75.7	96.4	97.7		すれれょう	7 An K	-ТАП.А	100.5	- A4 K	44.1	- DT. L
\$00	69.6	77.7	31.7	84.7	87.0	19.I	70-1	97.0	93.7	74.9	45.0	47.5	48.7	75.8	40000	200.7	97.1	47.1	7/10
1000																			
1250	66-4	74.9	79.2	82.5	84.7	24.9	18-4	90.7	61.6	97.4	92.3	46.7	01.0	95.2	-3104			- 7***	67.3
1600	64.5	74.0	78.2	82.0	84-2	86-1	87.6	69.4	91.1	01-8	02.3	02.2	94.0	94.1	2:77	. 73.07	72.0	7101	0143
2000	65.2	74-1	79.1		83.4	85.4	86-8	FR_0	00.1	91.	-72.5	7703	1 02 4	7701	7701	7267	7140	EYeu	32.2
2500	64.3.	77.0	80.0	21.9	83.2	N5.2	#5.5	10.2	ta z		. 66 6		7265	71.7	3 2 4 4			444	
3150	67.D	75.3	79.4	21.3	82.6	84.8	25.0	88-2	EU. 3	90.3		27.7	7101	91.1	-21-4	74.0		63e/	2002
4000	68.9	20.7	83.6	45.8	85-7	16.3	846	PR-2	89.1	7776	90.2	2041	-7141	_ <b>70.1</b>	7041	. DE-7	dere	67.0	- (743
5000	63 - 7	75.6	79.4	87-2	P3-3	0.43	25.7	17.1	80 7	40 1	1012	- 3DeX	-711	90.5	74-1				
0056	60.9	74-0	78.7	81.4	82.0	14.5	85.0	97.1	27 6	20.22	-0702	70.00	1000	27.6	4740	41.5	93.T	83.3	
.0008.	58.0	7.1.	77-7	61.7	83.1	16.5	84.6	87.0	87.0	000 4	4440	8702	8742	57.0	85.7	X0.X	27.7	BZit	74.1
10000	51 9.	70-7	75.7	80.7	82.0	24 7	20.7	87.6		.67.0		31.2	4744	. 10.9	6842		- 23.5	#2.0U	74-1
								475.7	F 15				1 To 1 To 1 To 1 To 1 To 1 To 1 To 1 To	6	1.2	444.7			
DASPL	, 83 . S.	92.1	.95.9	98.4	100-4	102-0	103-2	105.1	106.7	107-7	TOR . C	100.0	110-7	111 4	112.2	312.2	114.6	115	11444
PNLT	74.7	105.7	109-0	111.5	111.2	112.6	113.5	115.3	116.6	117.5	110.7	178.0	110 R	120.0	170 1	170.7	120 1	14707	*****
PNL	93.7	104-0	107.6	110.1	111-2	112-6	113-5	115.3	776.6	117.5	110.1	110 P	1170.5	320.0	14001	12012	14001	12002	11007
DBA	79.7	28.7	92.6	_95.3	97.0	98.8	99.9	101.	103.3	104.3	105.0	.106.2	107.0	107.5	107-7	107-6	107.2	107-2	105-8
BAND	20		20	20	-24	24	24	24	24		- 2	21 7 44 1	14				4.5	· . · · · ·	
TCCRR.	1.2		1.4							24 .0.0	24			24	24.	24	24	26	.5
				127	350	270	UAU	340	UAU	.0.0	0.0	0.0	0=0	<b>⊕</b> *0'	-y•b	-0-0	0.0	. 0.0	0.5

PHLT (INTEGRATED) = 130.38

TABLE A-143 2282 F H8240 JT8D-109 FULL TRT W/HDC HOSE CONE ENGINE MODEL TIME OF DAY BARH. PRESSURE WIND DIRECTION WIND VELOCITY TEMPERATURE .22 IH, HG. STAND YTIQIKUH x-314 = 12/05/74 OBSERVED RPM CORRECTED RPM FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT. 1/5 OCT FREQUENCY (HZ) HICROPHONE ANGLES IN DEGREES 70 80 90 95 10 10 20 30 80 90 95 100

91.5 92.3 93.2 93.6

91.8 92.5 93.9 94.4

90.6 90.7 91.9 92.3

87.5 87.3 88.5 88.6

89.6 92.0 92.6 94.0

95.9 97.9 98.5 100.2

98.3 100.8 101.0 102.3

98.8 99.7 101.2 102.1

96.9 97.6 98.4 99.6

96.2 99.4 101.0 102.2

96.8 97.5 98.9 99.6

95.5 97.9 99.1 100.6

94.5 96.3 97.0 98.8

93.7 94.9 96.1 97.0

93.0 94.1 95.2 96.2

92.2 93.7 94.3 95.5

91.5 92.8 93.6 94.6

91.0 92.1 93.0 93.9

91.1 92.1 92.8 94.0

91.2 92.2 92.5 93.5

90.2 91.3 92.4

90.2 92.9 92.3 93.6

90.2 91.8 92.4 93.8 100 105 110 96.0 96.3 -97.7 98.2 102.4-105.0 94.0 94.6 95.9 96.3 99.4 101.4 90.5 91.2 92.4 93.9 97.9 101.8 96.8 96.3 97.8 106.5 105.9 108.8 100.8 102.3 103.7 106.0 109.8 112.6 164.1 105.6 108.9 108.4 107.4 108.4 90.2 90.3 88.9 88.8 86.9 88.8 93.7 93.9 95.6 97.3 95.6 97.3 96.0 96.2 94.1 94.6 94.8 95.9 93.8 94.3 93.2 93.4 92.0 92.9 91.1 91.9 90.5 91.1 89.7 90.5 89.6 90.1 89.6 90.1 89.6 89.2 89.5 89.2 63 80 88-2 69-3 88-0 97-9 92-0 94-6 94-9 93-2 92-4 90-1 88-0 87-2 89-1 88-5 86-9 88-3 93-3 95-1 96-2 93-8 94-1 93-8 88.4370021110656888546744333210988988899888988988988988988988988989898 88.0 86.3 89.6 94.1 95.8 93.2 92.0 92.0 92.0 90.8 89.6 87.8 87-7 88-6 91-4 92-6 92-9 92-9 92-9 97-2 87-2 85-6 91-9 93-9 67-2 87-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 67-9 105.0 105.9 102.8 104.0 103.5 104.0 101.8 102.5 99.7 100.6 98.2 98.7 97.5 98.7 95.1 96.9 95.2 95.8 94.8 95.1 95.1 95.0 94.0 93.6 94.0 93.6 94.5 95.4 96.0 91.5 90.7 89.7 89.5 89.1 88.9 89.4 90.2 89.7 90.7 99.7 98.0 96.7 95.6 94.3 94.1 93.4 98.0 95.8 95.8 94.9 94.6 94.4 93.6 93.4 88-0 90-7 89-7 95-6 91-6 90-5 91-5 89.3 94.2 90.8 69.6 90.1 89.3 8000 10000 DASPL PNLT PNL DBA 104.1 104.0 105.1 105.2 105.5 105.7 106.0 106.6 107.8 109.3 110.3 111.4 112.7 114.0 115.0 116.0 118.0 119.7 121.9 123.2 117.9 118.1 120.0 119.1 118.8 118.1 116.9 117.1 118.2 119.4 120.1 121.3 122.3 123.1 123.7 124.2 125.1 126.1 127.4 126.6 117.0 118.4 117.7 117.6 117.1 116.9 117.1 118.2 119.4 120.1 121.3 122.3 123.1 123.7 124.2 125.1 126.1 127.1 127.4 127.4 127.4 127.5 127.4 127.4 127.5 127.4 127.5 127.4 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 BAND 20 20 1-2 1-0 24 0.0 24 0_0 24 0-0 0.0 24 0.0 24 0.0 24 24 0.0 0.0 24 0_0 MAXIHUH DASPL HAXIHUH BHLT HAXIHUH PHL HAXIHUH DBA 123.19 127.37 127.37 114.76 COMPOSITE PHL PHLT (INTEGRATED) **TABLE A-144** 2282 F H8240 JTED-109 FULL TRT W/HDC HOSE COME 150.1740

COMDITION = 7461
ALTITUDE = 200. FT SIDELINE

1/3 OCT FREQUENCY									HONE AI	ueree :	, acc	ere							
(HZ)	10	20	30.	40	50	60	70	1104011			100		110	716	T 20	130	126	340	***
ITTE!	Iu	20	au.	40	20	60	.70	άv	An	73	TUU	102	220	117					
50	67.3	73.7	78.6	81.3	83.8	85.5	57.0	. 55.9	89.8	70.7	<del>5</del> 1.0	92.0	92.8	93.5	-94.6	97.4	99.5	102.2	102.6
63	68.5	76-B	79-7	82.7	83.7	26.4	.67.3	89-2	90.0	91.4	91.8	93.2	93.3	94.3	94.4	. 97.6.	-29.5	L02.8	1014.
80	70.6	77.4	79.4	82.1	83.6	85-1	8.50	BB . 0	88.2	87.4	89.7	91-2	91.6	92.5	92.5	94.6	95.9	98.7	97.7
100	69.8	76.1	77.7	80.5	61.5		83.6	84.9				87.7				93.1	96.3	99.9	99.2
125	70.B	76.0	81.0	81.9	83.9			87.0								101.1	103.3	107-0	107-1
160	73-6	50-1	85.5	46.9	89.2	19-9	90.8	93.3	95.4	96.0	97.6	95.0	59.2	100-3	102.2	105.0	107-1	108-7	108-1
200	72.3		86.7	88.7		91-8													104.6
250	74.5	02-9	67-2	89.8	92.3	93-0			: 97-2										103.0
315	74.3	80.B	84.5	87.4	89.2	92.2	93-1	94.2	95.1	95.8	96.9	98.1	99.0	100.4	101.8	102-5	103.8	104.8	103.5
400	73.9	80.9	85.3	87.6	89.2	98.3				98.4	99.5	100.9	101-9	102.5	102.B	102.9	103.5	104.2	103.3
500	73.3	80.0	84.0	87.3	88.9	91.0	. 72. 8	94.1	95.0	76.3	97.2	98.3	. 27.7	100.8	101.5	101.7	102.4	102.7	102.5
630	71.6	80.1	83.2	86.2	88.6	90.0	91.2	92.5	95.3	96.5	97.9	99.1	100.4	100-6	100.5	100.2	91.6	99.2	97.7
800	70.1	77.7	81.9	24.9	87-2	89.3	70.3				96.1	97.5	95.7	99.0	99.2	79.3	98.4	97.4	95.0
1000	67.8	76.4	80.6	24-1	86-3	85-1	. 89.7	91.0	92.3	93.5	94.3	95.6	96.5	97-1	97.4	97.0	96.0	-95-0	-91-5
1250	66-3	75.2	79-2	83.0	85-1	87.2	88.7	90.2	91.5	92.6	93.4	94.4	95.0	95.2	95.4	94.6	93.3	91.9	87.8
1600	65.0	74.1	78.6	82.7	84.4	86.5	87.9	89.4	91.1	91.6	92.7	93.7	94.3	94.5	94.0	72.9	91.5	29.9	84.9
2000	65.2	74.6	79.5	82.2	83.8	85.7	. 87-2.	25.7	. 90-1	90.9	91.5	72.6	72.8	93.3	72-8	915	90.0	25.1	82.5
2500	69.2	76.9	79-0	81.8			86.8					91.5			91.7	70.3	88.7	86.5	80.7
3150	67.3	75.3		82,1			86.3					91.2		51,3					77.6
4000	68.4	8015		85.8		86.2						. 51.4							79.1
5000	63.5	76.0	1.08				85.9									87.6			
6300	60.B		78.3				85.5									66.7			
8000	57.9	73.2																	76.4.
10000	51.7	. 70,4	75.7	80.7	12-3	64.2	- 2415	86.9	, 88.3	80+6	90-1	91.1	71.1	91.2	89.4	65.7	84.6	82-1	75-4
DASPL																			-114-6
PKLT	93.7	105.5	109-1	111.5	112.7	112-7	113.8	115.2	116,6	117.4	118.4	119.2	119.7	120.1	120.2	120.0	120.3	120.4	118.4
PNL	93.7	103.9	107.7	110.3	111.7	112.7	113-8	115.2	116.6	117.4	118.4	119.2	119.7	120.1	120.2	120-0	120.3	120.4	118.4
DBA																			106.0
BAHD	24	20	20	20	20	24	24	24	24	24	24	24	24	24	24	.24	24	24	24
TCORR	0.0	1.6	1.4	1.2	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			

PNLT (INTEGRATED) = 130.47

**TABLE A-145** 150-1740 2282 F M8239 JT60-109 FULL TRT W/HDC HOSE CONE ENGINE MODEL . = JT6D ENGINE HUMBER = 37/ THUST TEMP # 1012 # 30:25 IN: HGP # M. HPH ± 27-00 E 780 -00 374052 TIME OF DAY BARM- PRESSURE WIND DIRECTION TEMPERATURE 70.0 PER CT. HUMIDITY WIND VELOCITY OBSERVED RPH CORRECTED RPM FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT. 1/3 DET FREQUENCY (HZ) HICROPHONE ANGLES IN DEGREES 70 .80 .90 .95 .100 .105 .110 .115 .120 .130 .135 .140 .150 ... 30 50 50 60 70 80 90 95 100 105 110 115 120 130 135 140 150 87.1 87.2 88.4 89.2 90.1 91.2 92.7 92.9 93.9 95.3 96.4 77.4 98.5 102.6 105.0 108.4 110.7 87.9 87.5 88.6 88.5 89.7 90.3 91.4 93.0 93.2 94.3 95.5 96.8 97.5 98.3 102.3 105.2 108.2 110.1 87.9 87.5 88.6 88.5 88.5 80.1 90.0 91.0 91.2 92.4 93.8 95.5 96.8 97.5 98.3 102.3 105.2 108.2 110.4 106.5 86.4 86.6 86.3 86.6 87.1 87.8 78.1 88.7 90.4 91.0 92.0 93.9 98.2 102.0 106.2 108.2 89.8 89.0 89.1 89.0 88.5 90.0 92.1 92.8 100.0 101.1 102.3 103.8 105.0 106.4 108.9 113.2 115.4 94.0 93.7 94.0 93.8 94.1 95.6 97.3 98.3 100.8 101.1 102.5 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 10 20 30 50. 50. 85.1 85.5 88.2 87.9 88.5 87.9 80.6 86.3 87.8 89.8 92.3 95.6 94.8 95.6 92.7 93.0 92.7 93.0 92.7 93.0 92.7 93.5 92.0 90.7 87.6 88.3 87.1 87.7 88.8 90.8 89.9 90.9 90.3 89.7 89.2 90.7 89.2 88.1 90.2 92.6 90.0 91.5 94.4 93.6 100 125 87.6 88.9 91.0 90.5 92.5 92.0 91.8 90.4 87.1 160 200 250 315 400 92.6 90.3 88.3 85.9 85.5 84.7 500 630 800 1000 1250 86.3 85.8 2000 2500 3150 4000 5000 6300 85.6 91.2 69.4 92.8 89.2 88.6 89.5 88.9 85.8 86.4 91.0 91.9 90.0 90.5 90.4 90.4 8000 10000 103.9 103.9 104.8 105.2 105.2 105.6 105.9 105.6 107.7 109.4 110.0 111.3 112.9 113.9 115.0 115.9 118.0 119.8 121.8 123.1 117.7 118.2 119.5 119.6 118.3 118.0 116.8 117.0 117.9 119.5 120.0 120.9 122.4 122.7 123.5 124.0 125.2 126.1 127.0 127.3 116.4 117.1 117.9 117.9 117.9 117.1 116.9 116.8 117.0 117.9 119.5 120.0 120.9 122.4 122.7 123.5 124.0 125.2 126.1 127.0 127.3 101.3 102.0 102.5 102.5 102.4 102.5 102.9 103.5 104.5 106.1 106.7 107.8 107.5 110.2 111.1 111.5 112.5 113.1 113.9 114.7 OASPL PHLT PHL DBA BAND TEORR COMPOSITE , SPL COMPOSITE PHL PHLT (INTEGRATED) HAXINUH CASPL HAXINUH PNLT HAXINUH PNL HAXINUH DBA 123.15 127.27 127.27 114.65 = 123.26 = 128.51 = 135.46 2282 F M8239 JT80-109 FULL TRT WANCE HOSE CONE **TABLE A-146** 150-1740

CONDITION = 7478
ALTITUDE = 200. FT SIDELINE

1/3 DCT FREQUENCY (HZ) MICKOPHONE ANGLES IN DEGREES 100 ... 90 . 95 100 ... 105 )10 ... 115 78.6 81.4 83.6 85.4 87.1 88.6 90.2 90.4 91.3 92.5 93.4 94.0 94.7 97.8 99.5 102.0 102.2 79.4 82.4 84.0 85.9 87.3 88.8 90.5 90.7 91.7 92.7 93.8 94.2 94.5 97.5 99.7 102.4 101.6 79.3 81.1 83.8 84.7 86.1 87.4 88.5 88.7 89.8 91.0 92.0 92.2 92.5 94.4 96.1 98.3 97.9 77.7 80.0 81.8 82.5 83.5 84.5 85.2 85.6 86.1 87.6 87.9 88.6 90.1 93.4 96.5 99.8 99.6 81.2 82.6 84.3 85.2 85.6 84.5 87.6 85.1 87.6 87.9 88.6 90.1 93.4 96.5 99.8 99.6 81.2 82.6 84.3 85.2 85.6 87.4 87.6 90.3 91.5 92.6 93.5 94.7 96.1 93.4 96.5 99.8 99.6 81.2 82.6 84.3 85.2 85.6 87.4 87.6 90.3 91.5 92.6 93.5 94.7 96.1 103.1 103.1 103.4 104.8 107.3 87.0 88.9 91.2 91.8 94.2 95.6 98.3 98.6 99.9 101.2 102.5 103.6 104.5 105.0 107.2 103.6 107.6 87.0 88.9 91.2 91.8 94.2 95.6 98.3 98.6 99.9 101.2 102.5 103.6 104.5 106.0 107.1 107.6 105.0 87.2 89.0 91.2 93.0 94.6 95.5 97.1 98.0 99.4 101.0 102.5 102.7 102.7 102.7 102.8 103.9 104.7 103.2 89.0 91.2 93.0 94.6 95.5 95.1 96.0 96.9 96.1 99.1 100.7 101.5 102.8 103.9 104.7 103.2 85.1 87.3 89.5 90.0 92.6 93.9 97.1 98.0 99.4 101.0 102.1 102.1 102.4 102.7 102.7 102.7 102.5 102.5 83.3 85.9 88.6 89.6 99.6 93.9 97.1 98.0 99.4 101.0 102.1 102.1 102.4 102.7 102.7 102.5 102.5 83.3 85.9 88.6 89.6 99.6 93.9 95.1 96.0 96.9 98.1 99.7 100.9 101.7 102.5 102.9 103.9 104.7 103.2 83.8 83.8 87.3 89.6 91.0 92.8 93.9 95.1 96.0 96.9 98.1 99.7 100.9 101.0 102.1 102.1 102.4 102.5 102.5 102.5 102.5 83.3 85.9 88.6 89.6 91.2 92.8 93.9 95.1 95.0 97.0 98.7 102.9 100.9 101.0 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 1 10 20 30 . 40 . 50 120. - 60 67-3 73-6 68-7 76-3 70-5 76-6 69-7 74-7 71-0 75-9 73-0 60-4 72-4 82-3 74-4 82-3 73-6 80-5 73-6 80-5 73-2 80-1 71-6 79-7 160 250 73.2 8G.1 71.6 79.7 70.0 77.6 65.4 74.8 65.2 74.0 65.0 74.2 68.7 77.0 68.3 74.9 68.7 79.8 63.6 73.1 63.6 73.1 63.6 73.1 63.6 73.1 63.6 73.1 63D 1600 78-P 82-5 79-4 82-3 79-2 81-9 79-0 81-6 84-4 85-0 79-6 81-9 77-9 81-2 27-4 81-5 2500 3150 5000 5000 0000 0000£ 83.9. 91.8 93.8 105.0 93.8 103.5 79.9 88.5 9611 98.5 100.6 102.0 103.5 104.9 106.8 107.4 108.5 11c.4 110.8 111.6 112.1 113.1 114.2 115.4 114.5 107.6 111.0 112.5 112.6 113.6 115.0 116.7 117.2 118.1 119.3 119.5 119.9 120.0 120.1 120.3 120.3 120.3 107.9 107.9 107.5 112.6 113.6 113.6 115.0 116.7 117.2 118.1 119.5 119.5 119.9 120.0 120.1 120.3 120.3 118.3 92.8 95.3 97.3 98.8 100.2 107.6 103.4 104.0 105.0 106.5 107.6 107.5 107.6 107.5 107.4 107.3 105.9 DASPL PHLT PHL DBA SAND 

PHLT (INTEGRATED) = 130.37

```
TABLE A-147
                                                                    2282 H H8938 9563 JT80-109 FULL TRT W/HDC HOSE CONE
                   ENGINE MODEL
ENGINE NUMBER
                                                                                                                                                                                                                                                  INLET TEKP
                                                                                                                     TEMPERATURE
                                                                                                                                                                                                                                                 TIME OF DAY
BARH. PRESSURE
WIND DIRECTION
WIND VELOCITY
                                                                                                                    HUMIDITY
                                                                                                                    FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB -
                                                                                                                              MICROPHCHE ANGLES IN DEGREES
                        100.6 102.7

103.3 103.4

103.4 104.2

103.6 106.7

105.5 107.6

105.5 107.6

105.3 107.0

105.3 105.2

103.3 104.5

101.4 102.4

100.5 102.0

99.6 100.0

99.6 100.3

98.5 99.7

98.7 99.4

97.0 97.0

97.0 97.6

96.2 98.4
                                                                                                  103.0
101.2
99.4
98.4
97.6
97.5
95.5
94.9
                                                       97-2 102-9
94-5 101-2
92-4 101-2
91-5 100-1
91-3 99-6
91-6 99-5
89-2 97-3
89-6 97-6
89-7 98-0
                                                                                                                   101.7
99.4
97.7
95.5
95.5
95.5
95.1
94.2
94.2
                                                                                   102.6
101.0
99.9
99.3
99.0
98.1
97.1
96.2
96.2
   3150
4000
5000
6300
 8000
OASPL
PHLT
PHL
DBA
                         115-6 117-0 125-7 118-9 121-1 123-5 126-9 127-9
125-8 126-9 129-6 127-8 128-9 129-9 131-8 131-6
125-8 126-9 129-6 127-8 128-9 129-9 131-8 131-6
112-4 113-7 116-5 115-1 116-3 116-7 118-4 118-4
BAND
                                                           24
0-0
                                                                         24 24
0.0 0.0
                                                                                                      24
0.0
                                                                                                                     24
                 MAXIMUM DASPL
HAXIMUM PHLT
HAXIMUM PHL
HAXIMUM DBA
                                                                                                                   COMPOSITE PHL
PNLT (INTEGRATED)
TABLE A-148
                                                                                            2282 H H8938 9563 JT80-109 FULL TRT W/HDC HOSE COKE
                                                                                                                                                                                                                                                                              150,1740
```

CONDITION = 7442
ALTITUDE = 200. FT SIDELINE

| 1/3 OCT | FREQUENCY | 1/1 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 |

PHLT (INTEGRATED) = 132.83

```
TABLE 63-149
                                                                                                                   2262 H H8938 9563 JTBD-109 FULL TRT W/HDC HOSE CONE
                                                                                                                                                                                                                                                                                                                                                                                                                         150.1740
                                                                                             = JT8D -00
= 374052
                                                                                                                                                                                                                                                                                                                                                                                                                  INLET TEMP
                                 ENGINE HODEL
ENGINE NUMBER
                                                                                                                                                                                                                                                                                                                                                                                                                 THE OF DAY
BARM. PRESSURE
WIND DIRECTION
                                                                                                              374052
                                                                                                                                                                                                    TEMPERATURE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           = 1134
= 36.24 IN. HG.
                                STAND
DATE
                                                                                              = X-314
= 12/05/74
                                                                                                                                                                                                    HUHIDITY
                                                                                                                                                                                                                                                                                                                                                                                                                  HIND VELOCITY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .
5 MPH
                                                                                                                                                                                                   OBSERVED RPH
CORRECTED RPH
                                                                                                                                                                                                    FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = . 150. FT.
 1/3 PCT
FREQUENCY
(HZ)
                                                                                                                                                                                                                    MICROPHONE ANGLES IN DEGREES
150
                                                                                                                                                                                                    140
                                           96.0 98.1 116.4 100.1 103.8 105.4 112.2 114.6 96.7 99.7 116.4 102.3 105.8 110.4 115.5 116.8 98.1 101.3 115.3 103.4 107.6 112.9 117.9 119.6 100.7 102.7 113.9 104.4 103.6 112.9 117.9 119.6 103.0 103.6 117.1 106.2 109.6 114.8 117.7 119.6 103.4 107.6 114.8 117.7 119.6 103.4 107.6 114.8 117.7 119.6 103.4 107.5 106.6 114.0 116.1 115.9 105.5 105.0 111.1 107.5 110.6 114.0 116.1 115.9 105.5 105.0 111.1 107.5 110.6 114.0 116.1 115.9 105.1 107.8 114.8 110.4 111.7 113.8 115.8 116.7 105.1 106.5 107.8 114.8 110.0 111.4 113.4 115.8 116.7 105.1 106.5 107.8 108.6 107.0 111.2 114.0 116.8 117.2 105.4 107.0 112.6 105.1 107.5 107.0 112.2 114.1 116.6 107.5 105.1 106.5 107.5 107.0 103.5 103.1 107.6 107.5 107.0 110.5 111.0 110.7 103.5 104.5 103.3 106.0 107.8 108.2 107.9 106.7 103.5 104.5 103.3 106.0 107.8 108.2 107.9 106.7 99.9 100.9 93.6 102.5 105.6 101.6 99.9 97.1 99.5 100.3 91.7 101.6 101.2 99.9 98.1 74.8 99.5 90.8 99.6 99.6 102.5 106.8 95.9 93.1 98.7 99.5 90.8 99.8 99.4 97.7 95.8 91.9 97.9 98.9 99.5 90.8 99.8 99.4 97.7 95.8 91.9 97.9 98.9 99.6 99.6 99.6 99.6 99.5 90.8 99.8 99.4 97.7 95.8 91.9 97.9 98.9 99.6 98.5 99.8 99.4 97.7 95.8 91.9 97.9 98.9 99.6 98.5 98.8 99.4 97.7 95.8 91.9 97.9 98.9 99.6 98.5 97.8 99.5 99.8 99.5 90.8 99.6 99.5 90.8 99.6 99.5 90.8 99.6 99.5 90.8 99.6 99.5 90.8 99.6 99.5 90.8 99.9 99.4 97.7 95.8 91.9 97.9 98.9 90.6 98.7 99.5 90.8 99.8 99.4 97.7 95.8 91.9 97.9 98.9 90.6 98.7 98.5 96.8 95.7 94.5 91.0 97.0 97.1 88.9 97.5 96.2 95.0 94.3 91.6 96.1 97.8 88.9 98.0 96.1 94.5 94.5 94.5 92.2
           50
63
80
100
125
160
250
315
400
500
1000
1250
1600
           2000
2500
3150
      4000
5006
6300
8000
      DASPL
PHLT
PHL
DBA
                                              115.8 117.0 125.6 119.1 121.2 124.3 127.5 128.5 126.0 126.9 129.2 128.0 129.0 130.6 132.2 132.0 126.0 126.9 129.2 128.0 129.0 130.6 132.2 132.0 122.6 113.6 113.5 115.9 115.3 116.4 117.6 118.7 118.8
      BAND
TCORR
                                                                                                      24 24 24 24
0.0 0.0 0.0 0.0
                                                                                                                                                                                                        24
                                                                                                                                                                                                      COMPOSITE SPL
COMPOSITE PAL
PALT (INTEGRATED)
                                   MAXIMUM DASPL = 
MAXIMUM PNLT = 
MAXIMUM PNL = 
MAXIMUM DBA =
                                                                                                                128.50
132.23
132.23
118.82
                                                                                                                                                                                                                                                                                                                                                                                                                                                              150-1740
     TABLE A-150
                                                                                                                                                       2282 H H8938 9563 JT8D-109 FULL TRT W/HDC HOSE CONE
```

CONDITION = 7461 ALTITUDE = 200. FT SIDELINE

1/3 OCT FREQUENCY (HZ)	90	100	160	109	120	130	140	MICROPHONE 150	ANGLES	IN	DECRÉES
50	93.5	95.5	104.5	97.1	100.0	103.6	105.8	106.1			
63	94.2	97.1	105.5	99.3	102-0	105.6	109-1	108.3			
86	95.6	98.7	103.4	100.4	103.B	108-1	111-	5 111.0			
100	98.2	100-1	102.0	101.4	104.9	110.0	112,	2 112.6			
125	100.5	101.0	105.2	103.2	106.0	110-0	113.3	3,111.0			
160	100.9	101.7	105.1	103.5	106.3	110.0	111.	110.4			
280	102.0	102.3	99.1	104-5	106.8	109-1	10%	7 107.3			
250	103.4	103.6	100-0	104.4	107-9	178-6	109-0	105.4			
315	103.6	105.1	102.7	107.0	107.6	108-5	109.	4 108.B			
400	102.6	104-2	102.5	106.0	107.4	169-1	110-	3 10B.5			
500	102.9	104.3	99.8	106.8	3440£	107-3	107-	5 10519			
630	102.0	102.4	95.3	104.4	105.2	105.6	10+-	101.9			
600	190.9	101.8	90.9	102.9	103.9	103.2	101.	97-6			
1000	97-4	99.5	67.1	101.5	102-4	101.3	98-	2 94-0	-		
1250		99.3	83.0	100-2	160.3	98,3	95.	90-6			
1600	97.3		80.5			96.5					
2000	96.B		78.3			. 94.7					
2500	96.3					93,3					
3150	96-1		76.4	96.6				9 82-5			
4000	95.8		76.3	95.I	95-0	92-0	85.	2 81.5	150	2	
5000		95.B	75.0	95.2	94.1	91.0	87.	5 80.7			
6300		94.2		93.7		89.7					
8000	93.8	73.7		93.6			. 55.	6. 79.4		+ 1	
10000	92.6	o4.l	68.2	93.8	90.7	87.4	84.	9 78.6			
DASPL	113.3	114.3	113-6	116.0	117-5	119-4	121-	1 119.9			
PHLT	123.2	124.0	116.7	124.8	125-1	125-5	1420	6 123-1	1.0		0.00
PAL	123.2	124.0	116.7	124.8	175+1	123.5	1420	6 123-1	1.5		
DBA	110-0	110.8	103.7	112.2	112.5	112.5	1124	2 110-1			
BAHD	24	24	24	24	24	241	24	24			
TCORR	5.0							0.0	De la		- 1. P
tenuv	-	924									•

PNLT (INTEGRATED) = 133-13

```
TABLE A-151
                                                                                                               2282 H Hagas 9562 JTPD-109 FULL TET WANDE NOSE CONE
                                                                                                                                                                                                                                                                                                                                                                                                          150,1746
                                                                                                                                                                                                                                                                                                                                                                                                   INLET TEHP
TIME OF DAY
BARM. PRESSURE
WIND DIRECTION
WIND VELOCITY
                               ENGINE MODEL
ENGINE NUMBER
                                                                                         = JTRD -00
= 374052
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         = 1012
= 30.24 1N. HG.
= N
= 5 RPH
                                                                                                                                                                                             TEMPERATURE
                                                                                          = X-314
= 12/05/74
                                                                                                                                                                                             HUMIDITY
                                                                                                                                                                                            UBSERVED FPM
CORRECTED RPM
                                                                                                                                                                                             FAA PART 36 REFFRENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.
1/3 CCT
FREQUENCY
(HZ)
                                                                                                                                                                                                           HICPOPHONE ANGLES IN DEGREES
                                                                                                                                                                                            146
                                        95.6 97.8 116.0 100.1 103.5 107.9 117.5 114.3 96.7 99.4 115.3 101.5 105.4 109.8 115.2 116.6 98.1 101.0 114.0 103.2 107.9 117.5 119.2 100.7 102.7 112.9 104.5 105.4 109.8 115.2 116.6 98.1 101.0 114.0 103.2 107.2 112.6 117.5 119.2 100.7 102.7 112.9 104.5 108.3 114.4 118.2 120.8 103.5 103.6 117.7 105.9 109.2 114.1 117.3 118.4 104.6 105.0 100.1 107.7 100.3 113.2 115.9 114.9 105.6 105.0 100.1 107.7 110.3 113.2 115.9 114.9 105.6 105.0 106.8 117.3 109.9 111.3 113.2 115.2 116.0 105.0 106.8 115.3 109.1 111.3 113.6 115.2 116.0 105.0 106.8 115.3 109.1 111.3 113.6 116.2 105.2 107.1 112.7 109.9 110.2 111.3 113.6 116.2 105.2 106.8 175.3 109.1 111.3 113.6 116.2 104.2 105.1 108.3 107.1 109.0 109.5 110.6 110.1 102.9 104.6 104.3 105.8 107.5 107.5 107.5 107.7 106.1 101.3 102.9 104.6 104.3 105.8 107.5 107.5 107.5 107.7 106.1 101.3 102.7 103.0 104.6 102.3 103.0 104.6 102.7 103.0 104.6 102.7 103.0 104.6 102.7 103.0 104.6 102.7 103.0 104.6 102.7 105.9 103.0 104.6 102.7 103.0 99.3 99.3 99.3 99.3 99.3 99.9 97.3 95.3 92.6 97.5 94.9 99.6 91.3 99.9 99.7 98.2 96.2 93.2 93.9 97.3 95.3 92.6 97.9 99.0 91.4 98.7 98.6 96.8 95.2 91.5 97.3 98.7 99.9 97.9 99.0 91.4 98.7 98.6 96.8 95.2 91.5 97.3 98.7 89.9 97.9 97.5 94.0 93.5 90.3 95.8 98.6 88.6 97.0 95.4 93.3 93.7 90.3 95.8 98.6 88.6 97.0 95.4 93.3 93.7 90.3 95.8 98.6 88.6 97.0 95.4 93.3 93.7 90.3 95.8 98.6 88.6 97.0 95.4 93.3 93.7 90.3
             50
63
80
100
         125
160
200
250
315
400
500
630
1000
1250
         2000
2500
3150
4000
    5006
6300
8000
10000
    DASPL
                                           115.6 117.0 125.5 119.0 121.0 123.7 127.0 127.9 125.5 126.8 130.0 127.6 128.7 129.8 131.7 131.5 125.5 126.8 129.5 127.6 128.7 129.8 131.7 131.5 112.2 113.6 116.4 115.1 116.2 116.7 118.2 118.2
         PHLT
PHL
DBA
    BAND
TCORR
                                                  24 24
0.0 0.0
                                                                                                 6 24 24 24
0.5 0.0 0.0 0.0
                                                                                                                                                                                                24
0.0
                               HAXIHUH DASPL
HAXIHUH PNLT
HAXIHUH PNL
HAXIHUH DBA
                                                                                                          127.89
131.71
131.71
118.24
                                                                                                                                                                                             COMPOSITE
                                                                                                                                                                                                                                                         SPL
                                                                                                                                                                                             COMPOSITE PHL
PNLT (INTEGRATED)
    TABLE A-152
                                                                                                                                          2282 H M8938 9563 JT80-109 FULL TRT W/MDC HOSE CONE
                                                                                                                                                                                                                                                                                                                                                                                                                                    150-1740
```

COMDITION = _7478

ALTITUDE = 200 - PT SIDELINE

TO ENE FREQUENCY (ISH).	90	100	160	109	120	130		NICROPHONE 150	ANGLES	IH	DEGREES
50	93.1	95-2	104-1	97-1	99.7	103.1	136-1	105.8			
63.	96.7	96.R	103.4	40分。5	101-6	105-0	10R.4	107.6			
50	95.6	98.4	102-1	100-2	103.4	107-7	111.1	110/6			
100	9842	100-1	101-0	101.5	104-5	109.6	111.6	112.2			
125	101-0	101.0	105.8	102-9	105.4	109-3	117-5	110.0			
160	101.1	101.7	105-2	103-3	106-1	109-3	110-9	107.8			
200								106-3			
250	103.1	103.9	100.3	106.4	107-7	108.4	108.5	107.6			
315	103:0	104.9	102.8	105-9	107.5	107-7	108-8	107-3			1.0
400	102.5	104-1	103.2	106-1	107.3	108-2	109-5	107-9	٠	+	
500	102-7	104,4	100.5	106.9	106-4	106.4	107-1	105-5			
630	101.6	102.4	96.b	104.0	105.2	104-6	104-1	101.3			
E00	100.3	101.9	91.9	102.7	103.9	10245	101.1	97-2			
1000	98.7	100-0		101.4	102-2	100.7	-98:0	73.7	100		
1250	97.6	99.2	83.9	99.9	100.1	97.6	94.9	90.4			•
1600	96.7	78.0	81.2	98.8	96.3	96.0	92.6	87.8			
2000	96-I	97-4	78.8	-97-9	96 8	94-2	90.6	. 25-5	1		
2500	95.5	96.7	77.5	96.6	25.6	92.9	27.1	83.5 82.6	. ""		
3150	95.5	, 96.4	76.5	96.0	14.7	91.8	88.0	82.6			
ADDÚ	95+0	96.0	76.3	. 95.2	. 94.Z	#1.I	87.6	11.4:			
5000	-4-4	95.6	76.3	1.10	67.1	. NO:0	87.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
6300	93-2	94.3	72.1	93.0	71.8	68.6	85.6	76.6 78.1			
2000	93.4	94 Z	70.5	-93.0	90.4	87-5	14.1	78-1			
10000	92.3	. 94.9	67.9	92.8	70.0	84.2	84.2	77-1	2.5		
DASPL	113.0	114.3	113.5	115.9	117.1	115.5	120-6	.119.3	s 1000		.751 ×
PHLT	122-8	123,9	117.5	124.4	124.8	124.8	125.1	122.5			· /
PHL								122.5			
DEA	109-5	110.8	104.2	111-9	112-3	111.7	111.7	109.5	# 11	٠.	Walter State
BAND	24	24	6	24	24	24	24	24			at e in a
TCORR	۵.,۵	0.0	0.5	0.0							
	100										

MILT (INTEGRATED) * 132.72

**TABLE A-153** 2207 F PD179 JT8D-109 TRT TLPIPE W/INLET TUBE 150-1740 ENGINE HODEL = JTED -09 ENGINE MUHBER = 374-54 INLET TOUP TEHPERATURE IN. HG. STAND DATE X-314 = 02/28/75 HUHIDITY 70.0 PER CT. 3 HPH COSERVED RPM FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT. I/3 DCT FREQUENCY (HZ) MICROPHONE ANGLES IN DEGREES 70 80 90 95 10 .105 120 130 10 91.1 89.2 83.5 84.5 90.6 93.7 92.3 86.8 85.6 76.8 775.4 75.4 75.4 80.4 777.6 81.4 777.6 777.6 777.6 87.7 775.5 79.7 85.7 85.7 83.6 77.8 76.9 72.3 75.4 881.1 79.0 78.6 775.2 775.2 775.2 775.3 776.3 78.6 775.6 775.6 772.8 83.5 83.5 83.5 779.6 779.6 775.0 775.0 775.0 775.0 775.0 775.0 775.0 775.0 81.-2 80.-61 773.-8 86.-2 86.-2 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.-9 81.05 817-53 773-42 86.00 884-09 884-09 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-04 881-88.1 80.8 80.8 92.9 93.4 89.0 90.5 88.7 82.9 80.2 76.4 76.4 90.2 91.8 87.8 86.8 81.7 78.1 73.9 80.5 87.7 83.9 80.3 78.6 85.8 91.1 92.9 88.4 89.1 57.8 62.3 83.5 89.8 93.6 93.3 88.0 82.9 655.8 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657.9 657 92.2 200 250 84.93.8 83.8 84.8 85.8 862.8 81.7 81.9 81.9 81.9 85.9 81.5 315 400 500 630 800 1000 1250 1600 2500 2500 3150 87.6 87.3 88.5 84.9 82.9 88.9 86.2 86.2 83.4 81.8 79.9 78.7 79.9 81.0 77.1 76.9 82.6 87.7 81.9 82.2 83.1 78.9 79.0 85.3 89.3 81.7 83.8 64.1 79.0 79.0 85.8 4000 5000 6300 8000 10000 92.1 96.0 92.6 93.1 93.5 95.4 96.2 97.3 98.4 104.3 107.8 109.0 109.8 109.4 104.3 106.7 107.7 108.7 109.4 90.4 92.7 93.6 94.7 95.6 100.9 110.3 109.6 95.7 100.7 100.5 109.0 108.1 108.4 107.5 94.5 93.2 101-2 104-1 101-3 97-1 115-3 120-7 116-1 111-4 114-6 118-2 114-6 110-7 101-0 104-6 101-1 ,96-5 93.2 91.6 106.9 103.1 106.3 103.1 91.6 88.6 91.3 102.5 101.9 92.3 103.8 103.2 89.1 99.8 100.0 110.7 111.1 110.7 110.4 97.0 96.8 100.7 111.4 110.7 97.0 DASPL PHLT 24 0.0 BAND TCORR 23 0.7 23 23 0.7 23 23 6 0.6 24 0*0 55 HAXIBUH ÇASPL HAXIBUH PRL HAXIBUH PRL HAXIBUH DBA 104.11 120.66 118.24 104.63 COMPOSITE SPL = 106.16 COMPOSITE PHL PHLT (INTEGRATED) = 120.07 = 125.05

**TABLE A-154** 2287 F PO179 JT8D-109 TRT TLP1PE W/INLET TUBE

150.1740

ALTITUDE # 200. FT SIDELING

1/3 GCT								aanl											
FREQUENCY								41CROPH									***	140	
(HZ)	10	50	30	40	50	6,0	70	86	90	95	100	105	110	115	120	130	135	140	150
50	56.6	62-4	68.0		72.6			77.3	78.7		79.7		.80.9		81.5			84.7	85.4
63	56.9	65.3	67.8.	30.9	72+Z	73.2	74.8	76.5	77.9	78 5	79.1		79.7		80-1	81.4	82.3	82.8	82.3
60	57.4	63.7	66.7	68 B	70.4	71.1	72.0	73.7	74.1	75.0		76.7		76.8	76.5	76.6	76.8	77.1	76.0
IGU	57.2	61.7	04.2	66.Ö	67.9	60.5	69.6	69.2	70.6	70 8				73.0	74.8	76.0	78.0		78.1
125	58.8	64.1.	66.7	49.4		71.6	72.7	74.2	'76.3	76.9		78.5	79.5	8P.3		83.3		_ 84 - 2	83.6
160	60.0	68.6	72.6	74.0	76.6	73.8	80.4	81.2	82.9	83.7	85-1	55.8	66.5	86.8	87.3	88.1	68.1	87.3	83.6
200	58.3	67-2	71.6	74-B	77.9		79.7	81-3	83.5	84.4	85.2	86.B	88 <b>-1</b>	88.4	89.1		. 87•7	25.9	80.6
250	58.7	65.8	70.3	. 72.7.	74.5	75.8	77.9	79.5	80.7	81.4	82.2	83.4		_84.4		84el		80.4	76.8
315	59.3	65-1	68.6	70.9	72.9	75.3	76.4	76.9	78.5	79.6	80.6	81.1	82,5	83.4	85.3	85.6	84.4		76.3
400	60.0	64.9	69.3	71.1	72.2	74.2	75.9	78.1	80.7	81.2	82.7		84.5	84.8	85.3	83.8	81.0		74.3
500	61.5	65.8	69.0	.70.1	72.8	74+8	76.5	77.2	78,9	79.3	. 80 _* 7	82-1				84.0		79.4	74.4
630	61.9	06.5	69.6	70.9	73-2	74.6	76-1	77.9	80.3	80.8	81.44	82.5		: 63.9	84.2	81.3	79.2	77.4	72.8
800	61.1	65.6	69.5	70-7	72.8	74.5	75.9	78-0	80.7	82.0	83.1	84.3	85.5	. 65.0	84.4	81,2	78.8	76.7	71.5
1000	61.5	66.1	70.9.	70.4	.72.3	73.3	74.6	76.5	76.7.	. 79.3	_ 80 <u>-1</u>	81.0	82.1	Blat.	81.16			74.3	62.6
1250	01.1	07.0	69.5	68.5		72.0	73.3	74.7				79.1	79.9	79.4	79.5	76.7	74.B	72.8	67.0
1600	61.9	67.5	67.5	67-7	69.B	71.2	73.1	74.6	77.3	78.2	70.9	78.7	79.0	75.9			73.3		66.8
2000	64.8	. 68.2	70.9	. 68.4	69.1	70.7	72.4	74-2	77.1	77.9	78.9	79.3	. 79.6	78.1	77.9	73.5	72.0	70.3	65.7
2560	75.4.	75.9	75.7	72.6	71.7	71.6	73.7	75.2	77.3	78.0		79.9	81.0	80.1	78.1	74.6	73.5		66.9
3150	75.4	77.0	76.7	73.3	72.1	71.2	73.9	75.1	78.3	79.8	80.3	80.2			75 - 5		74.3	72.1	67.4
4000	63.9	. 72.4	71.8	69.9		68.1	69.9	71.4	72.8	73.7	74.6	750.	.76.2	: 75.1	_ 74.5	71.4	69+2	66.8	61.T
5000	65,7	75.8		73.0		. 69.7	71.9	73.5	75.1	75.4	75.5	75.B	76.4	75.0	74.6	71.1	68.9		61.5
6300	67.2	79-7	79.8	.77.4	73.9	72.5	74.3	76.8	80.1	81.1	82-1	82.3	83.2	81.7	80.7	76.6	73.2	70.8	65.0
8000	60.0	74.1	75.7	74.4	. 71.47	71+4	73.2	75.8	75.•7	79.8	. 81.7	83-7			. 84.3		77.5	74.7	
10000	54.9	72.6	75.2	74.0	71.0	70.9	73.7	76.5	75.6	78.9	.7948	80.1	61.3	80.4	50.D	77+7	74-7	71.4	64.1
DASPL	80.0	85.4	. 56.5	05.9	86.4	87.4	89.1	90.7	92.8	93.5	74.5	75-4	96.5		96.8	95.9	95.1	94.0	91.5
PHLT			100.8	99.2	97.6	98.3	100-4	101.3	105.0	106.2	106.9	106.2	107.8	107.3	107.0	104.6	102.8	100.9	97.1
PHL	94.5	99.2	100.1	98.7	97.6	97.7	99.8	101.3	103.9	104.9	105.7	106.Z	107.2	106.6	106.3	103.9	102-2	100.3	76.l
DBA	80.7	25.3	85.8	83.9	83.4	83.9	85.8	87.5	90.0	90.8	917	92.5	93 • 6		. 92.9	90-4	8,8.+5.	80.4	81.6
BANO	19	18	22	22	24	6	6	24	19	19	19	24	23	23	23	23	23	23	19
TCORK	2-5	1.4	0.7	0.6	0.0	0.6	0.6	.0.0	1.1	1.3	1.2	$Q_{\Delta}G$	0.6	0.7	.0.7	0.7	0.4	0.6.	1.0
									1.5	4.0		* *							

PRLT (INTEGRATED)

TABLE	A-15	5	22	267 F 1	P0179 .	JT8D-10	19 TFT	TLPIP	B MVINI	.et 18,	BE				1	50.174	5				
EN	GINE NO	DEL .	JTRD 374	-04 4-54			TEMPE	RATURE			77.5	2 5			TIH	ET TEH E OF D H. PRE	NY.	*	0.0 f 730 9.99 I	N. HG.	
ST DA	AND TE		= X• • 02/21	-314 3/75			HUM10	•	_	£		D PER (	CT.		HIN	D DIRE	CTION	*	E 3 H	PH	
							CORRE	VED RPI	PH		520	5									
							FAA P	ART 36	REFER	ENCE D	AY CORI	RECTED	SPL I	H 0B	⊷ RAD	ius =	150.	FŢ.			
1/3 OCT FREGUENCY (HL)	0	10	20	30	40	50	60 60	ICROPH: 70	DNE AN 80	GLES I	N DEGRI 95	EES 100	105	110	115	120	130	135	160	150	
50 63 80	75.4 74.8 73.8 75.9	73.8 74.4 74.7 74.5	74.5 77.5 73.2 72.9	76.4 76.5 74.3 72.6	77.2 77.9 75.1 72.3	77.2 76.8 74.7 72.1	77.6 77.1 74.6 72.6	78.3 77.4 74.2 72.4	79.8 79.0 75.4 71.8	80.7 79.7 75.8 73.2	81.2 80.3 76.0 73.8	81.2 81.1 76.7 74.3	82.6 81.7 77.9 75.1	83.3 82.5 78.6 76.0	84.1 82.9 79.0 77.7	65.4° 83.3 78.9 79.5	85.5 80.2 82.3	89.4 87.1 81.0 84.3	90.6 88.6 82.3 86.0	93.3 90.4 83.6 88.4	
125 160	80.9	76.5 77.2	75.9 79.	76.2 81.6	76.1 80.4	76.2 81.2	75.9 83.0	76.2 84.1	77.6 84.2	79.6 85.5 85.6	80.7 86.5 86.8	81.5 87.5 87.5	82.6 88.9 89.1	63.5 59.8 90.4	84.9 90.7 91.7	86.2 91,4 92.0	69.2 93.2 93.2	90.3 93.8 92.8	91.2 93.7 91.9	93.0 92.3 88.6	
200 250 315	79.1 79.2 76.0	75.9 76.8 77.3	79.2 77.9 76.9	80.4 78.6 77.3	81.8 79.2 76.9	82.9 79.3 77.9	81.3 79.8 79.3	82.8 80.5 78.4	84.3 81.7 79,1	81.1 81.7	82.2 83.1	82.6 84.7	83.6	83.9 87.5	85.2	85.8 89.3	87.7 91.3	87.2 90.6	85.7 85.7	85.8 84.6 84.0	
400 500 630	78.0 79.3 61.8	77.8 78.9 79.6	76.4 77.7 78.7	78.1 77.6 78.5	77.9 76.6 77.3	77.6 77.7 76.3	78.3 78.6 79.0	79,6 78.8 79.2	81.2 80.0 80.6	81.5 81.6	82.3 83.0 82.7	83.2 84.5 84.8	84.2 86.4 85.7	85.7 87.9 87.0	86.7 68.8 87.9	87.8 89.2 87.9	88.3 89.6 87.9	87-1 87-7 86-5	86.0	63.3 82.3	
1000	80.3 83.0	79.2 80.1	77.9 78.2	78-4 80-2	77.0 76.8	77.5 77.0	78.4 77.2	78.2 77.3	80.7 79.6	82.5 81.4	84.0 82.5 80.0	84.8 82.7 80.3	86.7 84.5 82.1	84.8 84.8	87.9 85.6 82.9	86.9 85.3 82.8	85.8 83.5 82.0	84.2 82.2 80.5	82.8 60.9 79.7	80.1 78.7 76.9	
1250 1600 2660	81.2 83.3 85.6	80.8 82.4 85.7	80.0 80.0	76.7 76.7 80.9	75.1 74.3 74.9	75.6 74.9 74.0	76.2 75.4 74.6	75.7 75.4 74.6	77.6 77.6 77.9	78.5 78.7 78.4	80.3 80.5	80.5 80.7	81.8 82.4	81.3 81.8	82.5 81.8	82.0 81.6	60.1 78.8	78.9 77.7	78.3 77.1	75.9 74.9	
25G0 3150	90.5 92.3	92.7 95.0	88.2 90.9	86.9 89.3	80.0 82.0 76.5	78.0 79.8 73.2	75.9 76.4 72.4	75.6 76.1 72.4	78.2 78.2 74.3	78.7 80.0 74.7	80.3 82.3 76.6	80.6 81.9 76.4	83.3 83.5 78.3	83.0 83.0 78.2	84.0 63.9 79.1	81.2 02.2 78.2	80.7 82.3 77.1	79.6 81.2 75.6	77.6 73.7 74.3	75.4 76.4 72.0	
4000 5000 6300	88.4 91.7 95.3	89.4 92.4 97.2	87.6 91.2 96.3	87.4 85.7 91.7	80.6 85.3	75.7 79.8	73.8 77.1	74.4 77.3	76.5 80.1	76.4 B1.5	78.3 64.0	77.5 83.8	79.2 85.8	78.3 85.3	76.9 85.8	78.4 84.6 88.4	77.0 82.4 87.4	75.2 80.0 84.7	73.9 78.8 83.0	72.2 76.7 79.9	
10000 8000	91.B 92.3	92.8 93.5	92.5 93.3	88.2 69.2	82.8 83.4	78.1	76.5 76.4	76.7 77.3	79.4 80.0	80.7 80.5	83.4 82.5	84.0		84.0	85.4	84.4	85.0	82.4	80.8	77.4	
UASPL PNLT PNL PBA		117.3 116.0	114-6		107.5 106.2	103.9	103.0				96.1 108.8 107.5 93.4	107.7	110.1	110.1	111.1	110.7 110.0	110.8 109.6	109.6	100.4 107.8 107.2 93.2	105.4	
BAND TCERR	22 0• <i>6</i>	19 1.3	19 1.3	19 1.6	19 1.3	19 1-4	6 0•6	6 0.7	24 0.0	1.1 1.1	19 1.3	19 1-1	23 0.6	7 0.6	23 0.7	23 0.7	19 1.1	19 1.2	· 0•6	24 0.0	
:લ સ મ	AXIRUH S HUHIXA HUHIXA	MLT	= 11	12.66 17.27 15.95 12.73			COMPO COMPO PALT		SI PNI EGRATEI	. 1	= 105=2 = 118+0 = 124+1	39									
TABLE	A-15	i6		22	67 F P	0179 J	T8D~10	9 TRT	TLPIPE	H/INL	et tus	F				15	0.1740	l			- TC
																	ORI	GLN.	Aī.		TOTAL
										NDITIO		206					(D)	roc		UAL	is III
									AL	TITUDE	± 2	ao. FT	SIDEL	int							
1/3 FREOK (H)	JENCY	10	20	30	40	50	60	70 HI	CROPHO 80	NE AND	iles II	DFGRE		110	115	120	130	135	140	150	

1/3 DCT								ICKOPH	an 11	cice T	D DECE	EEE							
FREQUENCY									90 90	95	100	105	110	115	120	130	135	140	150
{HZ}	10	20	30	40	50	60	70	80	70	75	Iuo	. 400,					:		
50	56.0	62.6	67.9	70.B	72.4	73.8	75.3	77.2	78.2	78.7	78.6	79.0	80.3	80-7	81.6	82.5		84.2	84.6
63	56.0	05.0	6B-0	71.5	72.0	73.3	74.4	76.4	77-2	77.8	78.5	78.9	79.5	79.5	79.5	80.7	81.6	82.2	81.9
80	56.9	63.3	65.7	68-7	69.9	70.8	71.2	72.8	73.3	73.5	74.1	75-1	75.6	75.6	75.1	75.4	75.5	75.9	75.0
	56.6	61.0	64.0	65.9	67-3	68-8	69.3	67.2		71.3	71.7	72.3	72.9	74.3	75.7	77.5	78.8	79.6	79.8
100	55.6	64 0	67.6	69.7	71.4	72.1	73.1	75.0	77-1	78.2	76.9	79-8	80.4	81.5	82.4	84.4	84.8	84.8	84.4
125		67.8	73.0	74.0	76.4	79.2	81.0	81-6	83.0	84.D	84.9	86-1	86.7	87.3	87.6	88.4	88.3	87.3	83.7
160	59.2			75.4	78.0	77.5	79.7	81.6	83.1	84.3	84.8	86.3	87.3	88.3	88.2	88.3	87.2	85.5	80.0
500	57.6	67.2	71.6		75.4	76.0	77.4		78.5	79.6	79.9	80.8	80.8	81.B	82.0	. 52.8	81.6	80.0	77-2
250	58.7	65.9	70.0	72.8	73.0	75.5	75.3	10.4	79.Z	80.5	82.0	83.1	84.4	84.6	85.5	86.4	85.0	82.5	75.9
315	59.0	64.8	68.6	70.5			76.5	78.5	79-1	79.7	80.5	81.4	82.6	83.3	84.0	83.4	81.5	79.2	75.3
400	59.4	44.3	69.4	71.4	72 - 7	74.5		77.3	79.0	90.4	81.8	83.5	84.8	85.4	85.4	84.7	52-1	79.5	75.6
500	40.3	45.5	65.4	70.3	72.8	74.8	75.7		79.0	80-1	82-1	82.8	63.9	84.5	84.1	83.D	80.8	.78.5	73.5
630	60.B	ú6.4	69.7	70.B	73.4		76.1	77.9		81.4	82-1	83.6	83.8	84.4	83.0	80.B	78.5	76.2	71.2
800	60 I	65.5	69.5	70,4	72.5	74.5	75-1	78.0	79.9	79.9	80.0	81.6	81.6	82.1	81.4	78.5	70.5	74.3	69.7
1460	40.4	65.0	71.2	70.2	72.0	73.3	74.1	76.9	78.8		77.5	79.2	79.0	79.4	75.9	76.9	74.7	73.0	67.8
1250	6 <b>0.</b> 9	67.3	69.0	6B . 4	70.5	72.3	72.5	74.8	75.9	77.4	77.7	78.8	78.1		78.0	75.0	73.0	71.5	66-7
1600	61-8	66.9	67.5	67.5	69.B	71-4	72.2	74.8	76.1	77.6		79.4	78.5	78.2	77.6		71.7	70.2	65.5
2000	64.3	67.6	71-5	68.0	68.8	70.6	71.3	74.5	75.7	77.8	77.9		19.7	80.3	77-1	75.4	73.5	70.5	65.7
2500	70.4	74.4	77•2	72.9	72.7	71.8	72.3	75.3	76.0	77.5	77.7	80.2		80.1	78.0	76.8	74.9	71.4	66.4
3150	71.4	76.5	79.3	74.7		72.2	72.7	75.3	77.2	79.5	79.0		79.6	75.2	73.0	71.4	69.1	66.7	61.6
4000	64.I	72.5	72.Q	6B <b>-</b> 9	67.5	68,0	68.9	71+2	71.0	73.7	73.4		74.7	74.9	74.0	71.2	68.5	66.2	61.5
5000	64-6	75.6	75.0	72.9	69.9	67.4	70.8	73.4	73.5	75.3	74.4	75.9		81.7	80.0	76.4	73.0	70.7	65.4
6300	68.4	79.7	80.4	77.2		72.5	73.6	76.9		80.9	80.6	82.4	B1.6		83.4	80.9	77.2	74.3	57.7
6000	60.2	74-2	76.D	74.1	71.7		72-7	76.0		80.1		84-1		84+8	79.0	77.9		71.2	63.8
10000	55.3	72.6	75.6	73.8	71.0	71.0	73.0	76.3	77+0	78.9	78.3	80.3	1441	80.6	1740	1107	1702	1105	0540
														04 E	06. 7	84.0	DK 1	0.40	91.5
CASPL	77.5	85.1	87.2	85.9		87.6	88.0	70.8	92.0	93.4	33.49	72.4	93.5	70.7	7004	105.2	103.4	94.0	96.6
PHLT	93.3	100.3	102.6	99.9	99.8		99+7	101-5	104.0	100.0	10: •5	106.9	100+8	10142	100+2	102.2	103 E	100.0	96-1
PHL	91.9	99.0	101.0	98.6	98. <del>4</del>	95.1		101.5	102.9	104.7	104.7	106.3	100.0	100.0	103.0	T04+5	10207	86.3	
10A	77.7	65,0	£6.7	24.0	83.6	84.1	65.0	87.4	88.9	70.6	90.9	92-7	42.5	7202	7.202	90.7	00+0	4445.	0210
	•	*			•	i i	100		74.1				_	22	23	19	19	2.3	23
BAND	19	-19	19		19	6	΄ Δ.	24	19	19	19	23		23		1.1	1.2	0.6	0.5
TOORR	1.4	1.3	1.6	1.3	1.4	0.0	0.7	0,0	1.1	1.3	1-1	. 0.6	0.6		441	1 1 1	146	5.0	

PALT (INTEGRATED) = 116.53

TAB	LE A-1	57	2	28 <b>7</b> F	PD176	JT8D-1	CY TRT	TLPIP	E W/IN	LET TO	₽₽				1	50-174	٥			
	ENGINE NO		= JTtD = 37	-66 4054			TEMPE	RATURE				0 F			TIM BAR	ET TEH E OF D H. PRE	AY SSURE	# 2		N. HG.
	STAND			-314			HUNID	ITY			70,	O PER	CT.			D DIRE D VELO		*	¥ 7 H	PH
	DATE		= 02/2	0715				VED RP CTED R			517 524				***	,,,,,,,				
							FAA P	ART 36	REFER	ENGE C	AY COR	RECTE	SPL I	N DB	- RAD	aus =	150.	FT.		
1/3 00	ī										<b>_</b>									
FREGUEN	EY	10	26	30	40	50	60 H	1600PH 70	DNE AND RO	GLES 1	N DEGA 95	100	105	110	115	120	130	135	140	150
(HŽ)	·	FO		20								_						•		
50	76.5	70.2	77.1	17-0	78.4	78+4 78-2	79.3	79.4	0.08 0.03	61.8 81.2	82.1	83.1 82.7	83.7	84+6 1/3+6	84.8 64.3	85.7. 84.6	86.8	89.6 87.9	91.5 89.4	94.8 91.8
63 80	80.5 75.4	76.6 76.7	71.1	77.9 76.5	80.5 77.2	77.4	76.6 77.6	77.4	77.8	78.7	78.5	79.3	80.0	110.7	80.2	BD.6	81.6	82.7	84.1	85.9
100	77.1		75.4	74.6	74.9	14.7	75.0	74.6	73.9	75.1	74.3	75.3	75.7	16.1	76.9	78.8	81.2	82.5	84.9	87-4
125		77.2	76.6	75.1	74.2	75.4	75.5	75.9	76.4	78.6	80.0	80.8 87.8	81.3	83.1 89.3	83.B 90.1	85.8 91.2	88.7 92.7	89.8 93.7	90,9 94 <b>,</b> 1	93.1 93.3
160	B1 - 0	76.9	78.7	80.6 60.7	79.0 81.7	80.3 83.0	82.4 81.6	83.8 83.1	84.4 84.4	85.7 86.5	86.6 87.4	88.7	88•2 89•8	91.2	92.1	92.7	93.9	94.3	93.2	70.1
200 250	78.U 79.8	76.1	79.6 78.7	80.3	E0-4	80.2	80.9	82.1	82.9	64.1	84.4	85.7	86.0	87.1	87.4	88.3	89.5	88.7	88.0	86.3
315	77.6	77.1	77.6	77.6	78.7	78.6	E0.4	B0.4	BO.4	80.9	82.3	65.4	84.1	85.9	86.8	88.8	30.0	90.4	89.3	85.5
<b>↔6</b> 0	78.2	77.3	77.3	78.4	77.4	77.3	76.2	79.0	BO.9	83.2	83.6	85.7	85.7	87.4	87.7	88.4	89.0 90.1	87.6 88.8	86.1 87.2	83.8 83.7
500	78.7	78-9	77.4	77-3	77.0	78.4	79.6	80.6	61.0 81.5	81.6	82.T	84.2 85.8	85.6 85.2	68.1 87.5	88.1 87.4	89.7 87.7	87.5	85.8	84.8	81.9
0£4 008	80.4	01.2 79.2	76•7 77•7	78.L 75.0	77.5	78.3 75.0	80.0 79.3	80.3 79.8	81.2	83.8	85.0	86.3	87.2	88.7	88.1	88.0	26.9	85.1	84.0	81.4
2000	80,0 82,4		70.7	£0.8	70.4	77.3	77.7	78.7	79.7	81.7	82.6	83.9	84.4	85.9	85.4	85.6	83.6	83-0	81.7	77.0
1250	31.7		80.5	70.6	76.2	76.5	77.0	77.6	78 • 4	60-1	80.6	81.6	65.5	83.5	83.2	83.5	82.2	81.2	80.5	77.7
1600	84.3	82.7	86.9	77.6	75.6	75.8	76.0	77.0	77.9	79.9	81.0	87-1	82.3	82.4 84.4	82.7 83.1	82.9 83.3	80.7 80.1	80.1 79.3	79.2 78.6	76.8 76.4
2000	86.5	65.0	61.8	81.0	76-4	75.2	76.0 76.1	76.8 77.3	78.3 78.5	81.3	82.6 81.3	84.1 83.3	84.3 84.4	85.2	85.0	82.8	80.5	79.7	78.6	76.4
25UC	68-1		92.6	84.6	78.6 82.5	76.0 70.9	77.6	79.0	80.6	82.7	83.1	64.9	B5.0	85.1	85.4	84.0	82.8	82.9	81.1	70.9
3150 4000	92.3 89.0		86.2	63.0	78.1	74.2	73.7	74.5	75.6	77.0	77.9	79.0	79.6	80.8	80.7	80.2	78.6	77.3	76.2	73.6
5000	91.5		40.3	84.6	79.5	75.0	74.0	75.3	76.5	77.9	78.1	78.8	79.0	79.4	79-1	79.0	77.1	76.0 79.8	74.9	72.7 76.1
6300	96.3		95.9	90.9	15.2	1705	76.6	77.5	79.5	82.5	63.0 92.9	84 - 1 84 - B	86.4	85.1 87.7	85.0	84.3 98.8	81.5 66.1	84-5	82.7	78.8
8000	90.0 90.7		91.4 92.5	86.3	81.6 82.7	76.7	75.0 74.1	75.8	78.C 77.4	81.1 79.7	BO . 2	81.2	82.1	83.1	83.6	83.9	83.9	82.2	50.5	
10000																				
DASPL	101.2	100.9	101.0	97.4	93.5	3.19	92.1	93.0	94.0	95.R	96.6	97.9	98.5	99 B	100-0	100.6	101.2	101.2	101.1	101-1
PNLT													111.0							
PNL	111	11	114.5	111.5	166.4	103-5	88.8	80.8	90.9	93-0	94.0	95.4	95.9	97.1	96.9	97.0	96.1	95.1	94 D	91.4
DEA	101-1	100-0	166.7	41.0	41.0	DD +4:	5540	0.741)	,,,,		,									
BAND	19	19	19	19	19	19	6	19	19	19	19	19	19	19	23 0.7	23 0•8	19 1.1	19 1.5	19 1•2	19 1.3
TCOAR	1.3	1.1	1.6	2.3	1.4	1.3	0.6	1.3	1.2	1.3	1.2	1,3	1.0	1.0	U. /	Uab	1.1	1.5	1.00	143
	HURIXAN	UASHE.	- 1	ul.22			COMPO	1517E	Sf		= 1 4.									
	HAXIHUH		= 1	16.30			COMPO	SITE	PNI		= 117.									
	HUNIXAH	PNL		15.13			PNLT	(INT	EGRATE	"	= 12 .	כם								
	HUHIXAH	ARD	= 1	01.06																
TAI	176 J1	80-109	TRT T	LPIPE	H/INL	ויעד ד	•				150	1740								

ALTITUDE - 200. FT SIDELINE

PRINT (INTEGRATED) = 117.76

TABLE	E A-15	9 .		228 <b>7</b> F	60100	JTaD-	169 TR	T TLPI	PE W/I	NLET T	บอะ					150.17	40			
	ENGINE H		= J78					ERATUR				7•0 F			IN IT	LET TE HE OF	HP Day	=	27.00 908	F
	STAND			X-314			HUHI	PITY			= 70	O.D PER	CT.			rh. Pr HD Dir			30,00 S	IH. HG.
	DATE		= ú?/	28/75				RVED R ECTED				190			MI	ND VEL	DCITY	•	3	HPH
										RENCE		RRECTE	n 50:	TN DB	- R4	ntiis =	150.	ET.		
1/3 001	r										<b>-</b> ,		J 4. E							
FREQUENC							1	HICKOP	HONE A	NGLES	IN DEC	REES								
(H\$)	0	16	20	30	40	50	60	70	80	90	95	100	105	110	115	120	130	135	140	150
50	B1+2				82-1	83.9	84.6											98.7	101-1	104.3
63 80	80.7 80.8				63.6	84.0		85-1							91.6					102.8
100	83.4				82.4	82.9	62.7	82.9												
125	85.1			60.3	80.3	80.5	80.1	80.4							85.4					101.0
160	84.3			32.7	82-6	83.0	82.7	82.6							92.3			100.4	102.3	106.1
200	83.9				86.8	B7-8		88.0								99.1	102.0	103.7	104.8	105.2
250					87.2	89.6	89.0	90.6									103.1			
	83.4				88.7	68.5	89.2	90.5							97.9	98.4	99.2			78.1
315	82.9			85.8	86.6	86.2	67.6	88.3			90.9			93.6	95.3			99.3	100.2	97.5
400	03+3			85.7	86.5	86.1	66.6	87.7										97.7	96.9	95.1
500	85.1			86.6	86.6	86.7	87.4	86,3								97.9	98.2	98.6	97.3	94.8
630	83-2			85.4	B5.6	86.0	86.4	86.9								95.3	75.4	95.3	94.1	
800	81.5			84.4	84.6	85.4	86.2	86.8	· 68+3	90.6	91.7			95.0	94.8	94.7	74.6	93.7	92.9	59.7
1000	79.9			83.7.		84.5	84.7	85.7	67.0	BB.8	89.6	90.5	91.3	92.2	92 .1	92.9	92.5	91.6	70.9	
1250	60.6			82.4	82.4	83.6	84.2	85.3	86.4	87.7	88.5			90.7	70.7			90.0		
1600	82.8	61.6	82.4	61.7	82.0	1.7.9	83.5	84.6	85.9	87.3	87.9	88.7		90.0	90.0	89.8			87.7	
\$800	83.2	83.0		82+2	81.4	Jee I	83.1	84.0	85.5						89.2					
2500	89.0	90.2	89.1	84.9	81.8	81.0	87.7	83.9								88.5			65.5	
3150	99.6	99.4		92.3	87.6	83.4	62-6	83.7						90.7	90.0					
4600	47.6	97.7	94.6	91.2	86.2	82.4	82.1	82.9												
5000	42.1			84.5	81.0	79.0	80.5	82.0					86.8	67.6		B7.1				
6300	94.5			88.8	84.7	80.h	80.B	82.7								85.9				
8000	94.6				115.5	81.2	86.7	82.3							91.1					
10000	74.0				85.0	81.1	80-9	87.3							92.4				84.7 86.7	
													-							
DASPL	104.6	145.6	103.2	100.6	49.0	96.5	98.9	99.8	101.5	103.2	104.2	105.2	106.0	107.1	107-8	108.5	109.9	110.8	111.5	112.4
PHLT	140.7	120.7	*TG*T	112-0	112.0	109.3	107.4	110.4	112.1	113.9	115.0	116.0	116.5	117.2	117-2	117.1	. 117.3	117.5	117.3	116.7
PHL	119.1	116.9	116.9	114.4	111.4	109.3	109.4	110-4	112.1	113.9	115-0	116.0	116.5	117.2	117.2	117.1	117.3	117.5	117.3	116.2
UBA	104.8	104.0	102.7	99.3	94.4	95.2	95.6	96.0	98.3	100.0	101.0	102.0	102.6	103.5	103.6	104.0	103.9	103.7	103.1	101.2
BAND	19	19	19	19.	19	24	24	24	- 24	24	24	24	24	24	24	24	24	24	24	24
TCORR	1.8	1.7		1.4	1.2	0.0	0.0	0.0					0.0	0.0	0.0	0.0			0.0	
	HAXIHUH I			12.45			COMPO				<b>= 113.</b>									
	HAXIHUH			20.95			COHPO		PH		= 123.									
	HÜHEKAH	PNL		19.12			PNLT	CINT	EGRATE1	D) 1	× 129.	5B								
HAKIMUM CBA = 104.78																				
TABLE	A-16	0		2287	F P01	ង២ <b>រ</b> ុក្	D-109	TRT TE	LPIPE &	//INLE?	TUSE					150.	1740			
		_																		

CCADITION = 6390 ALTITUDE = 200. FT SIDELINE

100 125 160 200 250 315 400 500 600 1000 1250 2000 23150 4000 5000 24 24 24 24 24 0.0 0.0 0.0 0.0 0.0

ر ک

> **TABLE A-161** 1287 F POIGC JTSD-169 IRT TUPIPE WAINLET TURE 150.1740 ENGINE NUMBER = 28.00 F TEMPERATURE TIME OF DAY BARM. PRESSURE WIND DIRECTION WIND VELOCITY 930 = 30.00 IN. HG. STAND DATE # X-314 = 07/25/75 HUMIDITY DESERVED RPM CORRECTED RPM FAA PALT 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT. 1/3 DCT FREQUENCY (HZ) MICROPHONE ANGLES IN DEGREES 70 80 90 95 10 105 110 99.4 101-2 104-5
> 98.9 100-9 103-2
> 93.9 95.8 98.8
> 94.0 96.7 100-3
> 99.9 102.1 105-6
> 103.5 104-9 105-5
> 104-3 103.8 102.1
> 199.2 99.1 98.3
> 98.9 100.5 98.0
> 98.3 97.3 94.9
> 95.1 94-3 91.8
> 94.0 93.1 90.0
> 91.9 91.2 87.6
> 90.2 89.3 85.7
> 88.8 87.7 84.3
> 86.9 85.7 82.8
> 86.5 85.4 82.8
> 86.5 85.4 82.8
> 86.5 85.4 82.8
> 86.5 85.4 82.8
> 86.5 85.4 82.8
> 86.5 85.4 82.8
> 86.5 85.4 82.8 85.34 653.43 653.43 6653.47 6653.47 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 670.55 6 87.9 86.7 85.9 94.4 93.9 94.4 92.7 89.8 90.8 87.2 86.7 86.7 86.8 86.8 87.7 88.7 93.1 96.9 92.5 96.0 89.4 92.2 86.7 90.8 101.3 103.4 97.4 98.4 97.3 97.6 97.4 98.4 97.4 97.9 97.6 97.9 95.8 95.6 92.7 92.7 92.7 92.7 92.7 92.7 88.6 87.7 88.8 87.4 88.9 87.4 87.3 86.3 86.3 85.5 90.5 91.6 88.88 85.89 817.21 83.37 999 991.43 887.72 887.73 887.73 887.73 887.73 887.73 887.73 887.73 887.73 887.73 887.73 887.73 887.73 91.3 998.5 95.8 95.8 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 997.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907.3 907 91.9 91.8 85.4 92.1 97.6 100.3 98.0 95.3 95.3 94.5 92.2 90.9 90.9 90.9 90.9 90.9 83.9 02.6 80.7 87.6 67.0 84-13 80-5-6 87-6 89-3-9 87-6 87-6 87-6 87-6 87-6 87-6 81-6 81-6 81-6 81-6 61.2 82.1 82.1 82.1 81.7 62.9 83.5 83.5 83.5 82.4 62.4 62.4 65.5 65.5 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 84.74 82.40 67.95 89.13 89.13 86.35 86.37 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 88.70 80 80 80 80 80 80 80 80 80 80 80 80 61.2 13.7 85.2 84.5 73.9 83.0 184.1 84.2 184.2 179.5 80.6 200 250 215 400 500 630 800 1000 1250 1600 69.2 86.3 66.4 85.5 84.8 84.1 83.2 61.9 79.4 79.7 81.4 83.2 90.1 99.3 97.9 82.2 81.6 81.7 87.4 86.2 81.6 63.1 68.8 96.7 97.0 93.1 2000 2500 3150 4000 5000 6300 94.5 94.9 94.7 84.6 (5.9 85.9 6000 10000 99.1 98.6 98.9 100.0 101.2 103.1 104.0 105.3 105.9 107.1 107.9 108.7 110.1 110.9 111.6 112.6 117.6 119.2 109.1 110.6 111.7 113.8 114.7 116.8 116.8 117.7 117.5 117.2 117.6 117.7 117.4 116.4 111.4 109.2 109.1 110.6 111.7 113.8 114.7 116.3 116.3 117.2 117.5 117.2 117.6 117.7 117.4 116.4 96.5 96.7 96.5 96.8 98.0 100.0 100.8 102.2 102.5 103.5 103.7 103.4 104.1 103.7 103.3 101.4 104.4 104.9 103.6 100.6 120.4 170.6 118.0 115.3 110.7 119.6 117.2 114.1 CASPL PNLT HIL DAND TOORR 19 24 1.2 0.0 74 0.0 24 0.0 24 0.0 HAXIMUM CASPL MAXIMUM PNLT MAXIMUM PNL MAXIMUM DBA COMPOSITE SPL COMPUSITE PNL FNLT (INTEGRATED) 112.50 120.65 119.01 104.97 **TABLE A-162** 2287 F POSSO JTBO-109 TRT TLPIPE W/INLET TUBE 150.1740

> > CONDITION = 6391
> > ALTITUDE = 200. FT SIDELINE

1/3 OCT FREQUENCY								etcono	AUNE VI	untee :	LN DEGF								
(42)	10	20	30	40	50	60	70		90		100		110	115	120	125	135	140	150
,,,_,		,		,-								-							•
50	62.5	69.6	74.1	76.5	79.1	80.6	82.3	84.0	85.4	86.3	86.8	87.2	88.3	88.5	89.3	92.1	93.9	94.8	96.0
63	03.4	70.6	74.4	77.5	79.2	61.1	82.4	84.0	85+8	86.3			87.9			91.2			94.7
80	64.5	70.7	73.8	76.2	77.9	79.3	80.3	82.3	83.2						85.6				
100	64.9	64.7	71.0	74.3	75.6	76.5	77.6	78.2				80.6			82.9	86.0	88.5	90.3	
125	64.2	71.2	74.0	76+2	78-0	78.7	79.2	81+1	83.4			86.2		88.7	89.9	93.3	94.4	95.7	97.0
160	63.7	74.1	77.51	80.6	63.1		85 0	87.7		90.6		92.1			95.0	97.4	98.0	98.5	96-9
200	64.8	75.1	79.9	63.0	84.6		87.6	89•3		92.B		94.9			97.5	98.5	98.7		93.5
250	45.7	74.5	79.5	82.8	84.2			87.4		91,-7			94.7	94.9	95.5	94.7	93.6	92.7	
315	45.2	72.0	77.U	80.4		64.I				88.1	89.1	89.5		91.9	93.6		93.3	94.1	89.3
460	64.4	72.4	77.9	79.8		82.8		86.9		90.6				94.6	95.4		92.7		86.6
500	46.6	72.3	77.7	79.9		83.5				88.2			91.7				92.6		86.2
630	63.3	72.0	76 • B			82-6	B4.0	86.1		89.2	90.7	90.6	91.0		92.0				83.0
800	62.B	70.7	75.5	78.2	80.5		53.8	85.3				90.6			91.0		88.3		
1000	59.9		75.0	77.5	79.6		82.6	84.1			67-9								
1250	59.8	69.0	73.6	76.5	70.6		82.2	83.3	R5-1		86.7		B7•4		67.0	85.9	84.4		76.6
340D	60.B	69.0		75.4	77.6		81.5	82.8		85.0				86.6		84.6			
2600	61.8		72-9	74.7	76,8	78.5	80.7	82.2		84.5		65 -4			85.1			79.8	74.1
2500	67 · B		75.0	74-6	76.5	78.4	80.7			Ę5.3		85.7							
3150	75.7		81.5	80-1		77.9	80.6	82.0						86.4			80.2		
4000		.79.9	80.3	70.6		77.2	79.6	81.3								81-7	80.0		71-9
500D	63 . B	73.7	74.2	73.3	74.0	76.2	78.7		81.0		83+4			23.9		80-5	78.4		
6500	66.6		77.9	76.5		76.4		81.7			84.7					79.5	77.3	75.4	
9000		77.3	78-2	77.2		76.3					87.5			87.6		81.7		77.0	
10000	57.4	74.5	77.1	76.3	74.6	76.2	78.9	. BI -2	84.2	85+1	6.69	87.7	88.7	64.¢	87.6	04+0	O.L.C	78-2	70.5
DASPL	80.5	B8.4	90.8	92.3	93.6	95.b	96.8	98.5	. 100.5	101.3	102.5	103.0	104.0	104.4	105.9	105.2	105.3	105.2	104.0
PNLT	97.1	134-1	105-4	35.3	103.0	105.0	107.2	108.8	111.0	111.0	113.9	113.7	214.4	113.8	113.1.	112.5	111.5	110.7	107.4
PNL			164-1	2	103-6	105.0	107-2	108.8	111.0	111.9	113.4	113.2	113.9	113.8	113.I	112.5	111.9	110.7	107-4
D5A			88.9	7	90.0	91.5	93.5	95.1	97.3	98.0	99.3	99.4	100-2	100.3	100.1	99.0	98 <b>-</b> 0	96.7	92.5
DAND	10	19	19	**	- 24	24	24	24	24	24	10	10	10	24	24	24	24	24	24
TCORR	1.8	1.4	1.3	1	0.0	0.0	0.0	6.0				0.5				0.0			
, tablit	1.00	497	123			3.0	5.0	-		5.00						,,,,,,			

PNLT (INTEGRATED) = 123.55

TABLE A-163 2267 F PD177 JT60-109 TRT TLPIPE W/INLET TUBE ENGINE MODEL ENGINE NUMBER TIME OF DAY BARM. PRESSURE WIND DIRECTION WIND VELOCITY 948 30.11 IN. HG. **TEMPERATURE** HUHIDITY NH 6 HPH COSERVED RPM PAM PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT. 1/3 DCT-FREQUENCY (HZ) HICROPHUNE ANGLES IN DEGREES 70 80 90 95 100 105 50 10 101.8 105.1 101.0 104.3 96.9 100.0 95.4 99.5 101.8 105.9 105.8 105.9 105.8 105.9 105.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106.8 106 71.7 72.2 89.7 89.8 89.3 91.0 95.6 97.1 99.2 100.6 98.7 99.7 98.0 98.3 95.4 96.6 95.9 96.1 94.7 94.7 92.5 92.6 91.0 91.3 90.6 91.1 89.3 90.1 89.3 90.1 89.3 90.3 90.6 90.7 90.1 90.5 87.7 88.3 86.8 86.8 887.15655347.1952825675655341.55341.952825675655.66 90.89 90.94 90.94 90.95 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 90.97 84.99 101.71 81.71 87.92 889.70 889.70 889.79 889.83 883.83 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 883.93 8 89.82295837327095148252512 89.5837327095148252512 89.5837327095148252512 84.0 81.2 93.4 82.3 99.4 80.7 99.4 80.7 99.4 80.7 99.4 80.7 99.4 80.7 99.4 80.7 79.4 79.4 79.4 79.4 79.4 81.9 943.3 463.4 463.4 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 4 65.8 84.4 83.6 84.4 1600 2000 2500 3150 4000 5000 6300 10000 88.8 87.6 85.2 86.2 88.4 87.0 93.6 95.2 93.5 99.0 100.0 109.2 110.4 109.2 110.4 95.8 96.8 101.4 103.3 112.0 114.0 112.0 114.0 98.1 100.1 107.4 117.9 117.4 103.7 DASPL PNLT PNL DEA 98.7 109.3 109.3 95.4 24 0.0 10 0.5 10 0•6 10 10 24 24 0.6 0.6 0.0 0.0 BAND TCURK 24 0.0 24 0•0 24 0.0 HAXIHUH DASPL HAXIHUH PNLT HAXIHUH PNL HAXIHUH DBA 113.10 120.31 118.43 104.93 COMPOSITE SPL COMPOSITE PNL PNLT (INTEGRATED) 2287 F PO177 JTBD-109 TRT TLPIPE W/INLET TUBE 150-1740 TABLE A-164

CONDITION = 6409

ALTITUDE = 200. FT SIDELINE

1/3 CCT								TERREH	DHE AN	GIES I	N DEGR	EES								
FREQUENCY (HZ)	10	. 20	30	40	50	60	70	80	90	95	100	105	.110	115	120	130	135	140	.150	
	-			i. i					ar 5		87.3	87.7	88.7	89.1	2.93	92.5	93.5	95.4	96.6	
50	63.9	70.1	75-0	76.7	79.0	81.0	82.6	84-6	86.0			88.0	85.7	88.8		91.7	93.5	94.6	95.8	
63	65.1	71.2	75.5	77.5		B1.I.	B3.1	84.6	86-0		87.2 85.6	86-1	86.7	86.4	B6 .8	BB.O	2.88	90.5	91.4	
80	1. که	71.3	74.7	76.8	79.2	80-7	82.0	83.1	84.5	84.4	81.6		82.3	82.4	B3 -4	85.3	87-1	89.0	90.9	
100	65.8	70.0	73.5	74.9	77.0	77.3	78.9	79.8	80.6	80-3				87.6	89.5	92.6	93.9	95.4	97.3	
125	65.4	72.0	73.0	75.6	77.5	77,9	76.5	80.2	82.0	B3 • b			92.5	93.7	95.0	97.1	78.1	98.6	97.2	
160	4.44	73.B	77.1	79.3	82.2	<b>#3.3</b>	84.1		89-1	90.0	90.9		96.1	97.2	97.8	98.2	98.8	97-6	94.3	
200	64.6	74.9	79.9	82.5	84.4	85.1		89.5		93-0	94.1	95.1			96.1	95.3	94.4	93.0	90.2	
250	65.5	75.1	80.5.		_84.5	65.4	87.7	87.6		92.2	73.6		.95×6. 90×8	92.3	93.7	94.0	94.2	93.9	70.1	
315	65.4	72.5	77.9	81.1	82.3	44.9	B6.3	87.0	87.8	87.9	89-0	87.6	94.9	94.9	95.9	94.2	93.3	91.3	87.6	
400	64.7	73-1	78-1	79.8	81.4	63.2	84.2	86.4	29.9		92.6	93.9		93.2	94.1	93.1	92.8	91.2	57.0	
500	68.3	73,3	. 791.	80.3	81.7	83.6	85+8	87.0		BB-1		20-4		92.7	92.5	91.2	90.1	88.7	84.0	
630	63.7	72.5	76.9	79.2	.81.8	83.1	84.7	86.0	88 - 5	89.6					91.0	89.8	55.7	87.2	82.2	
800	63.6	`71.2	76.0	78.5	50.7	82.5		85.6	87.3	B8-2	89.3	90.7		91.2	19.4	87.9	55.8	85.0	79-5	
1000	60.5	70.5	75.7	77.7	. 79.9.	81.4		84.0	56.9	87.1	48.2		. 89.3		87.6	85.9	84.9	82.9	77.7	
1250	59.9	69.3	74.1	76.5	79.1	8.00	82.4	83.8	85.6		86-7	87.2		57.8		84.8	83.5	81.3	76-2	
1600	61.9	70.3	¥3.5	75.9	78.4	79.9	81.9	83.2	85.2		86.3	B6 6	87.4	87.5	86.8	83.4	82.2			
2000	63.4	70.3	74.0	74.9	77.5	79.3	81.0	82.7	84.5		85.6	85.8		86.5	85.9	82.7	81.4	79.1	73.9	
2500	69.0	74.0	74.5	74.6	-77.0	78.9	80.7	82.6	84.8	86.0	86.9			85.5	85.1	82.0	80-7		73.7	
3150	75.4	81.7	82.5	79.1	77.8	78-2	80.3	82.5	84.8	86.0	87.3			. 86.9	85,3	81.7	80.2		72.9	
4000	73.7	81.2	82.4	79.0	77.0	77.5		; <b>81.7</b>		.84.7	85.5			86.6	84.9	80.4	78.6	76.0	70.5	
5600	64.0	73.0	74.7	73.2	74.0	75.8	78.1	79.9	81.6	82,2	. A3-1	83.4		84.3	83.3		76.8	74.7		
6300	64.8	76.7	77.0	74.8	- 73.3		78.5	80.8	82.7	83.1	83.3		83.1	82.7	81.4	78-6	77-7			
8000	62.6	76.3	77.7			74.3			84.3	85-1	85.7	. 86,4	86-3				79.3	76.3		
10000	55.3	72.2	75.2	73.7.	71.3	73.3	76.2	78.9	82.1	83.4	84.6	85.9	20-8	87.5	86.3	82.3	1703	1003	4744	
= '														-1			705 E		102 6	
DASPL	80.9	88.5	91.3	92.2	93.7	95.1	96.9	98.7	100.7	101.4	105.2	103.3	104.3	104.7	105.2	10202	102.5	110747	104.5	
PHLT																				
PHL																				
DBA	50.4	87.8	. E9. 7	89-1	· 90,2	91.7	93.6	95.3	97,4	98.1	99.2	99.7	100-2	100.6	100->	4441	70.7	91.00	72.5	
,			- 1			*	- '	3 4				1 1 1 1					24	24		
BANO	11	19	19	24	24		24	24			10		10					6.0		. '
TCORR	1.5	1.4	1.4	0.0	.0.0	. 0.0	. 0.0	. 0,0	0.0	0.5	. Ç.6	0.6	0,6	0.0	0.0	0.0	.040	0.0	0.5	
<del>-</del>																				

**TABLE A-165** 150,1740 2207 F PO177 JTDD-109 TRT TLPIPE M/INLET TUBE = 34.00 F = 915 = 30.11 lW. HG. STAND DATE OBSERVED RPM FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB -RADIUS = 150. FT. 1/3 SCT FREQUENCY (HZ) MICROPHONE ANGLES IN DEGREES 70 80 90 95 100 105 ΙQ 92.0 93.3 92.5 94.1 67.8 86.6 90.4 92.5 97.1 98.8 99.7 101.9 99.6 101.0 97.7 98.6 97.3 100.7 98.4 99.1 96.8 97.9 94.6 95.9 94.6 95.9 94.6 95.9 94.8 92.7 93.9 92.7 93.9 92.7 93.9 92.7 93.9 92.7 93.9 92.8 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 990-628256545005771382211098764-2554500577138221109876-5 63 80 100 125 160 250 250 315 460 560 1000 1250 1600 2500 2150 400 87.3 84.8 864.8 90.4 91.4 91.5 91.5 87.5 185.2 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 941.8 9 99.7 101.3 102.8 100.4 101.9 103.4 98.9 100.5 102.0 97.7 98.8 99.9 96.8 97.6 98.7 96.2 97.2 98.3 95.5 96.3 97.1 94.8 95.4 96.2 94.3 95.0 95.6 92.4 93.3 94.2 91.0 91.8 92.5 91.3 92.2 93.2 5000 6300 8000 10000 108.8 119.0 119.0 105.7 111.3 121.3 121.3 108.2 112.6 122.2 122.2 109.3 DASPL PNLT PNL Dha 24 0.0 24 0.0 BAND HAXIMUM DASPI HAXIMUM PNLT HAXIMUM PNL MAXIMUM DBA 128.65 128.65 116.36

**TABLE A-166** 

2207 F PO177 JT8D-109 TRT TLPIPE W/INLET TUBE

150.1740

CONDITION = 7672

ALTITUDE = 200. FT SIDELINE

1/3 CCT FREQUENCY	·								ATCOMBI	HONE A!	um = 0 :	IN DECI	DEEC								
(HZ)	•	10	20	30	40	50	60	70	80	90		100	105	110	115	120	130	135	140	150	
1774 1		***		**									•	••-					4.3-	•	
50		68.3	74.6	79.7	51.7	84.1	85.1	87.8	89.4	90.8	91.3	92.0	93.1	94.0	94.4	95.4	98.5	.100-2	101.8	103.3	
63		69.5	76.2	80,8	02.9	85-3	86.3	80.0	89.9	91.6	91.7	92.3	<b>+3.4</b>	94.1	94.9	95.8	9,8.8	101-2	102.4	103.0	
60		70.4	77.3	80.3	82.2	84.9	85.6										96.0				
100		71.4		78.8	81.0	85*8	83.2		85.2								94.3				
125		71.0	76.8	61.4	83.4	84.B	85.6				90.9				95.6		102.3				
160		70.8		85.7	87.9	89.9	90.B								101.4						
200		72.1		87.6	90.0	91.6	92.7		97.0						104.4						
250		73.3	82.6	89.0		92+3									103.5						
315		73.3	80-2	85.8	89.2	90.3	93.1								101.8						
400		73.5	80.4	66.0	87.9	89.3	90.7								103.3						
560		73.0	8U-1	65.1	88.2	90.1		94.3							102.5						
630		70.5	79.9	84.3	86.8	89.6			94.1		97+8				101.9						
600		68.7	78.3		85.7		90.3		93.6		96.3				100-5						
1000		47.0		82.2	85.2	87.7		90.8							98a5			97.7			
1250		65-2			83.4	86.4	88-2				94.2				97.0				93-5		
1600		04.0		77-1	02.4	85.2							95.3				94.6				
2000			. 74.2		81.4	84+2					92.8		94.1 93.1		94,9	93.0	92.9	91,			
2500		68.1			80.4	03.3									92.5		90.2	89.9			
3150 4000		65.5													92.3		29.3	88.4		79.6	
5000		69.0		79.4 76.2		81.4 79.5			87.0						91.1				84.0		
6300							80.7						89.0			88.3			82.8		
8606		56.3	71.7					62.5													
10000		50.B						81.2													
Idood		an-R	00.3	. (142	(6.3	(4.5	10.0	81.02	0441	D.F. B.U	0111	88.5	0746	04.00		0143	03.3	02.1	91.41	1240	
DASPL		4 20	. P2 A	ar r	40 · n	707 6	162 6	104-4	104 1	1000.0	108.7	100 0	111.0	112.1	112.7	772.2	114.7	715 .	114 7	116.0	
PNLT								114-1													٠.
PAL																				119.7	
DEA								101.1													
BLA		7.	C C 4 7	7407	77.67	2100	7761	10791	10247	10751	10222	20040	10,10	Tobeo	*****	10741	10701	10710	10742	10110	
BAND		26	20.	. 24	24	24	24	. 24	24	24	24	24	24	24	24	24	.26		74	24	
TCORR		1.3			0.0	0.0			0.0	0.4		0.0			0.0			0.0		0.0	
				-:-		340															

PNLT (INTEGRATED) = 131.26

															150	1740				
TABLE	Δ-167	,		17 F PD1		n_+ 04	TOT TO	LPIPE 1	//INLE	T TURE								= 27	.00 F	
IMDLE	7-101		228	7 F PD1	190 716	U-1117	14								INLET	TEMP			902	
											77.0	£			TIME	OF DA	I C119€	= 30	.00 IN	, HG.
£ \$11.	INE MODE		JTGD -	-00		*	EMPERA	TURE		=	11.00	•			BARM	PRES	TTAN		S	
£ 14.0	INE NUMB	ER S	374*	-54		-					70.0	PER C	ī .		HIND	DIKER	177	-	3 HPI	H
Euro	THE HOUSE					и	UNIDIT	Y		-	(0.0		••		MIND	VELOC				
STA	ALT4		X-	314							7437									
DAT		=	02/20.	/75			RSERVE	D RPH		=	7477									
UK	16					7	CHRECT	LD RPF	1	=	1011						150. F	T-		
						_					v cntR	FCTED	SPL IN	ps	RAUL	US	2,00	•-		
							AA PAS	(T 36 F	REFERE	NCE UA	t Com			ps						
										•••	DECRE	23			_		130	135	140	150
							HI	CROPHO	NE ANG	LES IN	DEGRE	160	105	110	115	120				
1/3 GCT						56	60	70	90	90	40	100	•			an •	103-5	105.7	108-2	111.3
FREQUENCY	0	10	26	36	40	50	*-			•	A2 A	94.3	95.4			95 D.	103.7	105.8	108-5	110-1
[HZ]	•					BB • 7			92.0	92.9		95.0	95.9	96.B	97.7	70.D	90.7	101.6	103.3	106.Z
**	86.5		86-1				90.4		92.0	93.2				95.2	95.7	30 · I	100-0	103.7	107.3	109•*
50	86.3	86.4	67.8				19.0	4n E	90.8	91.4			90.6	91.3	92.4	99.0	108.3	110-9	114.0 116.7 115.0	117.
63		88.3	88.7				8.40	87.2	B7.6	88+4	05 3	95.7	96.9	98.2	99.8	101.7	111.A	114.3	116.7	118-0
BO		69.2	H7.9			40.5	90.3	90.0	91.5	93.0	42.1	101-5	102.6	103.4	105.3	100.7	112.3	114.3	116.7 115.0 110-5	114-5
160		69.0	41.1	90.7		95.6	95.2	95.5	07.7	99.6	Inner	****		4 OA - K	107.7	10300	*****			117-8
125		89.1	93.7	94.7			96.9													
160		90.4	94.4	46.0		96.9	97.1	98.3	99.4											
200	90.6	42.6	94.3	96.7		94.5	96.2	96.8	97.1	98.5	1000-			TOR B	105.8	TODEO				113.2
250	41.7	91.5	92.3	94.0		43.B	94.7	95.5	97.7	100.5	TOTAL.		- A7 E	104-9	100+2	TOLOG		E	104.0	10841
315	90.9	90.4	42.2	94.2	93.9	94.9	95.7	96.9	97.0	77.4			4	103-8	10446	TOTO			106.3	エレンムツ
400	92.2	93. T	94.4	43.3		93.9	94.4	95.1	96.9	98.7	00.5	100-6	102.2	103.5						102.0
500	91.2	89.6	91.0	93.0		93.2	94.0	94.7	96.2	98.3	07.6	QR.4	100.1		101.0	100.8	100-8	100.5	99.6	98.5
630	67.8	87.9	90.5	91.9	92.1	92.2	92.6	93.7	95.1	76.7	96.7	77.5	98.8				99.2	98.6		
800	26.1	B6+1	89.6		91.4	91.0	91.9	93.1	94.5	95.8				98.9					95.7	93.4
1000	n5.0	85.1	88.2	89-1	89.4	90.0	91.1	92.5	73.7	95.3					97+6				74.2	91.4
1250	84.4	85.0	67.5	58.2	89.0	89.0	y0.1	91.4	93.1	94.3				96.6						90.3
1660	86-1	B8.5	87.9	88.5	86.2	88.4	89.7	91.0	92.6					96.2					92.6	
2000	88.2.	84.4	b8-1	87.7	87-5		88.6	90.2	92.0					76.5					91.5	
2500	90.5	90.5	66.5	87.3	86.7	87-2		89.P	91.6					95.0					D 90•9	08-3
3150	95.2	95.9	94.5		87.6	85.6			90.3					93.7					5 90.1	
4000	41.2	91.2	90.4						89.5					2 93.4	93.					0 68.6
5000				85.4	R4.1				B9.7	91.	92			94	7 94.5	9 73+				·
6300				) 65.B	1844	83.A			89+7	91.	920	,					o 119.	4 121.	2 123-	0 124.0
8000 10000	90-1	90.4	90.3	3 86.0	2406	030			_			s 112.	6 113.	9 115	0 1150	0 110,	6 126.	3 127.	4 128-	0 124.5 0 128.6 0 128.6 4 116.3
10000						105.7	106.4	107-4	108	/ 1100	121	4 122.	3 123.	2 124.	2 12	2 124	6 1.6.	3 127.	4 1284	0 128-6 4 116-3 24
decor	104-0	103-9	104-	B 105.2	10200	115-1	116.1	117.3	118.	9 12U-:	5 121.	. 122.	3 123.	2 124.	2 1Z4•	3 127	7 113	7 114.	5 115.	4 116.3 0 0.0
CASPL	116-9	119.5	119	3 117.0	11400	115.1	116-1	117.3	118.	9 150.	3 168.	3 109.	2 110.	5 111.	5 111.	A Tree				
PHLT PHL	117.4	117-1	, 117.	6 115.9	11700	102.1	103.6	104.	L 165.	6 101.	2 1004						2/	. 24	. 24	24
DBA	101.48	162-1	102+	1 101.0	i Intes	1010-					74	. 24				·	'nā	0	,0 0,	,0 0.0
MAG	202-				24	74	24				0 0	n 0	0.	0 0	0 0.	.0 0				
0.44/0	20	2 •	, 50					0.0	0.	0 0-	U 0.		-							
BAND	i-s	1.	7 1.	7 1.	1 0.0	,														
TCORR	:										= 124	14.2								
							CON	PD51TE		SPL	= 12	7.79								
	MUNIKAN	DASPL		124.50				nne * * *		HL.	= 13									
	HUHIXAH	PHLT	₽	128.59			PNL	T (IN	TEGRA	1601										
	NUMERAH	PNL	=	126.59																
	HUHIXAH	DBA		116-28												25	0.1740			
										u/thi 5	т тивя					130				
T 4 F	1 E A	162		≥26	7 F PO	LRG JT	60 <b>1-</b> 09	TRT T	Think	m/ 21165										
IAE	LE A-	100																		

150.1740

CONDITION : 7677 A TITUDE # 200. FT SIDELINE

HICROPHONE ANGLES IN DEGREES ED 90 95 100 105 NO DEGREES
100 105 110 115 120

91.7 92.6 93.4 93.7 95.0

92.4 93.1 93.8 94.3 95.0

92.4 93.1 93.8 94.3 95.0

90.2 91.1 92.2 97.3 92.3

86.9 87.8 88.2 89.5 91.0

93.1 94.1 95.1 96.4 98.1 1

98.9 9.8 100.3 101.9 103.1 1

98.9 9.8 100.3 101.9 103.1 1

98.9 90.8 100.3 101.9 103.1 1

98.9 101.1 102.1 102.5 103.4 1

98.2 99.7 100.2 101.6 102.2 1

1 100.4 101.7 102.7 102.4 103.0 1

2 98.5 99.7 100.2 101.6 102.2 1

2 98.5 99.7 100.2 101.6 103.2 1

2 98.5 99.7 100.4 102.3 103.6 1

9 99.1 10.6 101.8 102.8 103.2 1

9 99.3 99.3 100.4 100.3 100.6 101.1 1

2 98.7 97.9 99.3 100.4 100.3 100.6 101.1 1

9 97.9 99.3 100.4 100.3 100.6 101.1 1

9 97.9 99.3 100.4 100.3 100.6 101.1 1

9 97.9 99.3 100.4 100.3 100.6 101.1 1

9 97.9 99.3 100.4 100.8 101.4 100.8 101.6 101.1 1

9 97.9 99.3 100.9 100.8 101.9 101.9 101.0 1

6 93.2 93.8 94.2 94.0 94.1 1

6 90.4 91.0 91.4 90.8 90.2 1

6 90.4 91.0 91.4 90.8 90.2 1

6 90.4 91.0 91.4 90.8 90.2 1

6 90.8 89.6 89.6 89.1 88.5 1

9 109.8 111.0 111.9 112.4 113.0 0 90.4 91.4 90.7 91.6 BB-9 B9-3 B6-4 91.0 92-6 97.8 99.1 100.3 97.9 96.0 97.6 98.0 98.1 97.9 96.1 97.9 93.2 94.1 92.7 93.2 94.1 92.7 93.2 91.6 92.6 91.0 91.4 90.1 91.4 88.9 89.6 B8.1 B8.0 E8.9 (HZ) 83.4 85.5 84.5 82.5 81.6 91.5 92.6 85.6 85.0 87.0 85.0 85.1 85.2 85.4 85.1 87.2 85.1 87.5 74.5 74.5 74.2 75.6 76.8 76.0 81.6 82.3 60.2 70.5 70.1 70.5 74.1 77.0 74.5 74.3 74.3 74.4 74.6 74.6 74.6 74.6 50 63 80 100 125 166 250 250 315 400 500 1000 1250 2600 2500 3150 5000 6300 6000 16000 102.5 104.2 106.0 107.8 108.9 109.8 111.0 111.9 112.4 113.0 314.5 115.6 116.6 112.0 114.0 116.1 117.7 118.6 119.4 120.2 120.8 120.6 120.9 121.7 121.6 121.4 122.0 114.0 116.1 117.7 118.6 119.4 120.2 120.8 120.6 120.9 121.2 121.6 121.4 120.0 120.8 108.9 120.8 108.7 108.8 108.9 99.0 100.9 102.8 104.6 105.6 106.4 107.5 108.3 108.4 108.7 108.7 108.8 108.9 100.8 DASPL PNLT PNL PNL DFA 24 0.0 24 0.0 24 0.0 BAND

PNLT (INTEGRATED)

**TABLE A-169** 2292 F POIBS JIBD-109 TRT INLET WANDISE SUP TUBE TRT FAN DUCT HOMEL TEP1150.1740 ENGINE MODEL . = JTUU -GG ENGINE MURBER = 374054 TIKE OF DAY BARH. PRESSURE WIND DIRECTION WIND VELOCITY = 1153 = 30.44 IN. HG. TEMPERATURE = X-314 = 63/18/75 5 HPH STAND DATE OBSERVED RPH FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS . 150. FT. 1/3 DET FREQUENCY (HZ) MICROPHONE ANGLES IN DEGREES 70 80 90 95 100 130 135 80.7 62.1 80.3 81.4 78.4 79.1 74.7 75.6 76.8 78.6 83.9 86.9 84.1 86.3 82.7 85.1 80.1 80.7 80.6 87.6 80.7 82.5 81.2 82.5 79.9 81.5 79.0 80.8 80.3 87.4 81.7 85.0 85.1 87.9 78.6 80.6 81.7 83.0 81.7 83.0 81.7 83.0 81.7 83.0 81.7 83.0 81.7 83.0 81.7 83.0 81.7 83.0 81.7 83.0 81.7 83.0 81.7 83.0 81.7 83.0 81.7 83.0 81.7 83.0 50 63 80 100 125 160 200 250 315 400 500 630 600 1000 1256 82...726 86...7206 86...94 86...8 87...8 87...8 87...9 87...9 88...9 87...9 88...9 87...9 88...9 87...9 88...9 87...9 88...9 88...9 87...9 88...9 87...9 88...9 87...9 88...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87...9 87. 53.5898570628347357479666796466567433344833466679937 84.25 81.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 801.43 80-1 78-9 77-5 80-2 80-3 78-5 78-5 78-7 78-7 75-9 75-9 80-4 75-9 80-4 77-1 77-1 77-1 80-4 77-1 77-1 79.0 78.8 770.5 770.5 770.5 770.8 80.4 80.0 81.3 80.6 81.5 84.6 84.6 84.6 894.6 89.8 80.1 78.7 76.4 77.4 77.5 80.7 77.9 77.9 78.0 78.6 78.2 78.9 78.7 80.9 87.5 93.1 86.9 87.5 79.1 75.6 75.9 79.5 79.9 77.3 77.7 78.1 77.9 78.3 76.9 78.8 84.6 83.5 89.6 92.9 92.3 86.4 87.6 1600 1600 2000 2500 3150 4000 5000 6300 8000 88.2 82.6 84.6 91.4 87.3 88.4 96.0 91.9 92.5 102.0 101.5 101.0 100.9 115.5 114.0 111.2 110.6 114.1 112.9 110.6 109.5 99.9 98.7 76.3 95.3 95.3 97.1 110.0 112.5 108.3 110.5 93.4 95.5 99.3 100.6 100.9 113.6 114.1 114.0 112.1 112.9 112.9 97.7 99.0 98.9 98.2 113.2 111,3 96.6 92,5 106.0 104.7 89.7 93.9 107.7 106.3 91.5 102.7 101.4 101.0 118.0 116.9 116.5 116.5 115.2 114.5 102.7 101.3 100.7 97.1 93.7 112.5 108.2 110.8 106.6 96.4 91.9 DASPL PHLT PHL DBA 109.8 108.3 93.4 19 17 19 19 19 1.5 1.2 1.1 1.4 1.2 19 19 19 19 2.0 1.7 1.6 1.4 BAND-TCORR COMPOSITE SPL COMPOSITE PNL PNLT (INTEGRATED) HAXIHUH QASPL HAXIHUH PNLT HAXIHUH PNL HAXIHUH DAA 102.73 116.04 116.49 102.73

TABLE A-170

2292 F POIBS JIBD-109 TRT INLET W/HOISE SUP TUBE TRT FAN DUCT HOWLL TLP1150.1740

COMDITION = 5184

ALTITUDE = 200. FT SIDELINE

ORIGINAL PAGE IS OF FOOR QUALITY

1/3 OCT							.,	TOROPH	DNE AN	GLFS I	N DEGR	EES			,					
FREQUENCY	• • •	20	30	40	50	60	. 70	80	90	95	100	105	110	115	120.	130	135	140	150	
(HZ)	10	30	30	40 .	20	٠.												'		
	61.7	67.2	72.6	73.9	75.3	76.7	77.8	78-1	79.6	50.4	80.5	21.0	51.4	62.0			64.2		85.6	
50 63	61.2	66.2	70.6	73.5	75.3	76.6	77.1	77.7		80.1	50.0		£1.2.	80∙7	87.4	82.0		83-1	83.1 77.3	
60	61.0	66.8	69.6	71 9	74.1	75.2	76.0	75.8	76.6	77.3	77.6	7B.0	78.5	78-3	78.2	78-1	78.9	78.2		
100	60.1	65.0	67-2	69.7	71.7	72.7	73.3	72.1	73.1	74.1	74-1	74.1	74.3	74-7	74.5	75.4	76.1	77,1	77.2	
125	60.6	65.5	67.3	69.8	72.2	72.7	73.5	74.2	76-1	.77.3	77.6	75.0	78.2	<b>79</b> .9	79.9	82.5	82.6	83-2	82.5	
160	59.5	.67.6	70.9	73.3	75.4	77.4	80.1	81.3	82.4	83.2	84.0	84.7	84.5	86-1	86.0		87.0	86.5	78.5	
200	58.2	68.7	71.3	75.0	77.7	77.4	79.6	81.4	B3.8	84-8	85.5	86.9	87.5	88.7	85.9	88-8	88-4	65.9		
250	59.0	67.0.	71.3	73 a.B	75.4	76.B	78.5	80.0	EQ.6	81.7	8242	83.2				84.2	83.7	50.0	75.3 74.5	
315	59.7	65.8	68.6	72.1	73.7	76.5	77.7	77.4	78.2	79.4	80.4	81.8	81.6	83.4	84.8	84.5	83-1	81.2	73.0	
400	60.4	65.1	69.0	70.B	77.6	74.0	75.7	77.9	4.08	B1.0	82.I	63.4	8464	44.7		53.2	82.0	78.4 78.8	73.2	
500	61.8	65.8		71.2	73.4	75.3	77.6	78.0	78.7	79.7		82-2.					81.4	76.7	71-1	
630	62.0	66.3	69.3	71.2	73.8	74.9	76.8	78.5	79.9	81.0	62.1	83.4	84.2	84.4	84.5	81.3	79.9	75.9	.70.2	
800	61-1	65.8	69.0	71.4	73-3	75.3	77.2	7B.5	80.2	81.8	83.2		85.3		84-1	81.0	79+L	73.6	68.5	
1000	61.8	66.3	7A - 3.	71.2	72.6	74.1	75.6	77.2		79.7		. 31.8		-82.4.	. 21.2	78.2	75.2	72.2	67.2	
1250	60.7	65.4	69.2.	69.4	71.6	73.0	74.5	75.8	77.4	78.3	79.2		BO-1	50.7	80-5		73.6	70.6	66.4	
1600	61.2	67.0	67.7	68.6	70.8	72.3	74.5	76.2	78 • 2	79.3	79.9		79.5	79.9	78.9		72.9	70.2	66.Q	
2000	63.3	67.5	69.4	69.2	70.7	72.5	75,1	77.5			81.6	81.7		79.7	75.2 79.5	75.4	73.8	71.4	66.8	
2500	67.5	73.7	73.9	71.9	72.0	73.2		78.8	80.3	80.6	82.0	83.3	82.4	81.5	82.3	77.4	76.1	74.5	69.7	
3150	70.8	78.7	78.2	75.8	75.0	75.2		82.2		85.5		85.6			78-1	73.8	72.0	68.4	64.5	
4000	63.2	71.8	72.2	70,2		70,3				78.9	80-1	- 80.1		8Q+4	77.9	73.5	71.1	68.2	64.3	
5000	63.4	73.7	73.5	71.7	70.5	71.6					79.9		80.1 86.7		84.6	78.7			67.8	
6300	66.7	74.4	60.1	77.3	74.4		78.4	81.5	63.8					91.1	88.3	63.1	79.8	76.4	69.8	
8000	59.0	73.6	75.1		72.6			80.9	84.3	86.2	88+3.		89.7			80.0	77.2		64.9	
10000	54.5	71.8	74. B	73.7	70.6	70.8	74.4	77.3	79.8	80.9	95.1	83.7	03+1	0710	02.00			,		
4				1.			1			- AF. 3	ne 3	07.6	07.4	04.3	67.4	95.9	95.2	93.7	72.1	
CASPL	76.9	. 85.3	86.6	. 84.5	. 87•4	88.6	90.6	92.4	77.3	77.0	70.5	110 0	110.4	177 6	100.6	105-5	104.4	93.7	97.7	
PHLT	93.2				99.2														96.6	
PNL	91.4																		31.1	
UBA	76.5	95.0	65 <b>-</b> 7	84.3	84.3	85.4	88+1	90,4	72 - 1	33=1	7701	7201	7,767	. ,,,,	2.44-		:,	86.3		
						•••	`••	19	19	19	19	19	19	19	19	.23	19	19	19	
BAND	19	19	19	19	19	19											1.1	1.45	1.4	
TCURR	1.8	2.1	1.7	1.6	1-4	1-1	.1.4	" Tel	2.0	10.7				•		11.	•			
* .						4 To 100	- "				2.77			- 1		100	100			٠

PALT (INTEGRATED) = 120.07

TABI	LE A-1	71	22	92 F I	PD186 .	)T8D-10	9 TRT	INLET	W/NOIS	E SUP	TUBE 1	IRT FAI	OUCT	HOHLL	TLPI1	0.1740	)			
	ENGINE MOI		a Jteo				TEMPÉ				77.0				INLE TIKE	T TEK	LY		4.00 F 1149 0.44 I	W. HG.
	STAND			-314			HUHID	TY		=	70.0	PER (	CT.		MIHI	DIREC	HOITS	#	₩ 5 KI	
I	DATE		= 03/11	3/75				ED RPI		E	5110 518						•			
									REFERI				SPL I	H DB ·	- RAD	IUS =	150.	FT.		
							FAA F	KK1 30	ACTEN		,,,			•						
1/3 OCT FREQUENC (HZ)		10	20	30	40	50	60 H	ICROPHI 70	ONE ANI	GLES I	N DEGR	EPS 100	105	11,0	115	120	130	135	140	150
50	78.3	80.5	77,6	80-1	79.6	81.0	79.8	83.3		83.7	62.3	84.6	83.6	85.5	85-1	87.1.	86.8	91.4 89.7	91.2 89.8	98.0 96.0
دُنَّهُ	79.7.		78.6	79.9	80.2	61.6	79.3	82.3		83.5	82.0 78.9	.84.0 81.3	83.2 80.6	84.5 81.9	84.3 81.2	85.2 82.7	82.6	56.0	84.8	93.9
80	76.6	79.9	77.4	78.4	73.9 75.6	80.2 70.9	77.5 74.9	80.3 79.2	78.2 73.7	51.3 79.7	74.9	78.5	76.2	79.0	77.4	80.2	80.7	84.6	84-0	93.2
100 125	77.7 80.5	79.7 79.5	75 B 76 4	77.1 76.5	76.2	78.6	75.8	79.5	75.9	80.4	79.6	81.3	81.1	82.4	83.5	65.4	87.9	89.6	90.0 93.2	93 <b>.8</b> 93.4
160	81.4	78.1	79.0	79.9	79.8	B1.6	81.6	84-1	B3+9	85.5	85.5	67-0	87.8	88.3	89.8	90.7 92.4	92.3 93.5	92.8 93.7	92.5	90.5
200	79.9	77.0	80.3	80.9	81.7	83.0	81.3	83.6		86.4	87.2 84.3	88.2 84.7	89.8 66.0	90.9 67.1	92•3 87•9	35.3	89.0	88-1	67.0	87.6
250	79.8	77.4	78.6	B1.0	aD-3	60,8 79.1	80.2 80.3	81.9	83.0 81.0	83.2 80.9	82.0	83.0	84.3	85.4	87.2	88.5	90.2	89.3	88.4	86.7
315	78.0 78.6	77.9 78.5	77.6 75.8	78.7 78.8	78•4 77•6	78.0	77-8	79.3	80.7	82.7	83.8	84.7	86.3	87.2	88.1	86+6	88.4	86.4	85.6	85.3
400 500	79.8	74.6	78.0	78.5	77.6	78.4	79.3	80.4	81.4	81.5	82.3	83.7	85.1	86.5	87.5	88.3	89.1 86.7	87.3 85.1	86.3 84.1	84.4 82.4
630	81.9	80.4	78.6	78.9	.77.6	78.7	79.0	80.0	81.5	83-1	83.5	64-5	85.B	86.7 87.9	87:4 88.2	87.6 67.7	36.6	83.9	53.4	81.4
B00	81.3	79.7	78.1	76.5	77.9	78.7	79.3	79.5	81.4	83.5	84.4 82.4	85.6	87.0	85.3	85.8	85.6	83.8	01.6	81.3	79.7
1000	83.0	31,4	78.8	80.2	77.49	78.0 77.0	78.0 76.7	78.4 77.4	60.1 76.8	82.0 80.2	81.0	81.9	82.9	83.5	84.0	34.3	82.4	80.2	79.8	
1250	82-1	82.2	78.6 80.3	78.7 77.5	76.0	76.3	76.4	77.4	79.3	81.3	62.4	62.8	83.1	63.0	83.4	62-7	81.0	79.0		77.6 77.1
1600 2000	85.0 87.1	85.6	81.2	79.8	76.1	76.1	76.8	78.D	80.5	03.0	84.3	84.5	84.4	83.0	83.4	82.1 83.7	60.3 81.5	78.2 79.4	78.3 79.5	77.9
2500	91.1.	89.6	87.7	84-4	79-7	77.4	77.5	79.1	81.8	83.6	83.9	85.0	85.8 88.0	85.9 88.2	85.1 88.5	86.5	84.0	81.0	82.7	
3150	95.0	93.8	93.2	89.3	84.2	80.7	80-1	B1.8	84-5	88.5 81.1	80.6 82.3	88.3 82.8	83-5	84.6	84.4	02.9	80.5	77.8	77.3	76.3
4000	90.2	68.0	87.3	82,7	78-1	75.4 76.3	75.3 76.4.	76.2 78.2	78.8 80.0	81.4		82.6	83.0	63.9		82.3	80.1	77.4	76.8	76.3
5000	91.7	90.3 95.7	89.3 96.1	84.6 91.3	79.6 85.5	80.5	79.1	01.5	84.3	87.0	88.0	88+6	89.7	90.5	70.9	89.1	85-2	62-3	81.4	
6300 8000	96.6 92.1	91.9	91.7	87.2	82.6	79.1	79.0	81.2	83.9	67.7		91.0		93.9	95-0	93.3	90.6 88.2	87.0 84.6	86.1 83.6	
10000	92-9	92.0	92.5	86.2	83.6	77.9	76.2	78.3			. 84.4	85.5		68.2	69.1				,	
_					93.9		00 (	04.3	O5 - 2	97.6	QR_2	99.2	100.0	101.0	101.8	101.5	101.3	101.1	100.7	103.7
DASPL	102.4	101.5	101-0	97.4	93.9 108.8	104-4	105.7	107-6	109-5	113.1	113.3	113.4	113.4	114.0	115.1	113.9	112.3	110.3	110.6	509.7
PNLT PNL	117.0	115.0	116-5	111.0	108-8	105.0	104.5	106.2	108.1	111.0	111.5	111.9	112.3	113.1	113.6	112-9	121.3	104.3	107.1	4 1.0
DBA	102.4	101-4	100.6	96-8	92.2	89.9	89.7	91.1	93.3	95.9	96.8	97.4	98•Z	99.0	77.0		7720			
BA!ID	19	19	19	19	19	19	19	19	19	19	19	19	19	23	19 1.3	.19	19 1.0	19 1.1	19 1.4	19
TCORR	1.5			149	1.6	1.4	1.2	1.4	1.4	2-1	1.6	1.5	1.1	0.8	712	101	•••			
			_				-cour	ne 776	·SI	DI	= 106.	49								
	HUHIXAM			03.71 17.60				DSITE DSITE	PN		= 118.									
	HAXINIH	PNL PNL		16.15			PNLT	(INT	EGRATEI		= 126.									
	HUHIXAN	DBA		02.43																
			-		292 F I		IT0D_*		TUI ÉT	u /NOT	SE 5110	THRE	TRT FA	N DUCT	HOWLL	TLPI1	50.174	0		
TA	BLE A	-172		2	242 F	-01B0	0:00-L	DA IKI	THE	47.101										

CONDITION = 5185 ALTITUDE = 200. FT SIDELINE

1/3 OCT								*********	eue iu	r: = c ¥	N DEGR	223								
FREQUENCY													110	115	120	130	135	750	150	
(HZ)	10	20	30	40	50	60	70	80	- 90	95	100	105	110			***				
											'-			47 7	83.3	83.3	#8.4	84.8	89.5	
50	62.7	65.7	71.6	73.2	76.8	76.0	80.3			79.8	82.0-	9048	82.07	40.0	E1.4	02.0			87.5	
.63	.62+2	66.7	71.4	73.8	76.8	75.5	77.3	78.2	81.0	79.5		. 004		40.9	78.9	77.8	8045	78.4	85.3	
80	62.1	65.5	69.8	71.5	75.4	73.7	77.3	75.6	78.0	76.4	75-7	77.5	78.9	77.8		75.9	79.1	77.6	84.6	
100	61.8	63.9	68.5	69.2	74.1	71.1	76.1	71.1	77.2	72-4	76.2	73.4	75.9	74.0	76.4	83.1	84-1	83.6	85.2	
125	41.6	64.5	67.9	69.8.	73.8	72.0	76 - 4	73.3	77,9	77.1	78.7		79.3	50.1	81.6			66.8	84.8	
160	60.1	67.1	71.3	73.4	76.8	77.8	81.0	81.3	83.0	63.0		·85-D		Unq4	86.9	87.5	87.3			
200	58.9		72.3	75.3	78.1	77.5	80.5	81.4	83.9	84.7	85.5	87.0	87.8	88.9	88.6	88-6	50.1	86.1	81.7	
250	59.3	66.6			75.9	76.4	78.8	80.3	80.7	81.7	82.0	. 832	84.0	. 84a5.			. #2.5	40.6	77+2	
315	49-6	65.5	70.0	72.0	74.2	76.5	77.0	78.3	78.4	79.4	80.3	81.5	B2+3	83.5	84.7	85.3	83.7	82-0	78-0	
400	60.1	64.7	70-1	71.1	73.1	74.0	76.2	78.0	80.2	31.2	82.0	83.5	84.1	84.T	84.B	83.5	80.0	79.1	76.6	
	61.0	65 B		71.1	73.5	75.5	77.3	7847	79,0	79.7	81.0	. 82,2	B3.4	84-1	84.5	84.2		79.8	75 47	
500	61.6	66.3	70.1	71.1	73.8	75.2	76.9	78.0	80-5	80.9	81.8	82.9		84.0		81.8	79.4	77.6	73.4	
630			69.6	71.3	73.7	75.4	76.4	78.7	80.4	81.8	82.9	84.1	84.8	84.7	83.8	82.6	78.2	76.8	72.5	
800	60.6			71.3	73.0	74.1	75.2	77.4	79.4	79.B		01,5	82.1	82,3	51.7	70.0	75.9	74,7	70,7	
1000	61.9	66.2			71.9	72-8	74.2	76.0		. 78.4	79.1	8010	80.3	80.5	80.4	77.3	74.4	73.1	69.5	
1250	60.6	65.8	69.6	69.3			74.2	76.5		79.7		80.1	79.8	79.B	78-7	75.9	73.1	71.8	68.4	
1600	61.6	67.2	68.3	68.6	71.2	72-4					82.0		79.7	79.8	78.1	75.1	72.2	71.4	67.7	
2000.	64.2	67.8		. 69.2	70.9	.72.8		77.7		81.1		12.7		81.4	79.6	76.2	73.3	72.4	68.2	
2500	67.3,	73.9	74.7	72.6	72.1	73.4	75.8	78.9			85.4	84.9		84.7	12.3	78.5	75.5	75 4	70.5	
3150	70-2	78,8	79-3	76.9	75.2	75.9	78.4	81.6	85.7			80.3		80.5	1.5	74.8	.71.3	69.7	65.7	
4000	63.5	72.2	72.3	70.5	69.7	70.9	72.7	75.8		79.4		79.7		8Q.5	77.9	74.3	70.7	49.1	65.6	
5000	63.9	73-7	73.9	71.9	70.5	72.0	74.6		78.5		79.5		86.8	\$6.8	84.5	79.2	75.3	73.3	67.1	
6300	66.9	79.5	80.0	77.4	74.5	74.5	77.8	81.1	83.9	84.9		. 56.3			88.3			77.4		
8000	59.3	73.4		73.9		74.0	77.2		84,5		87.6	.48.4		70+0	12.0	41.1	76.4	74.0		
	56.6	71.8	74.6	74-0	70.8	70.0	74.0	76.9	79.9	50.5	81.8	82.7	83.9	07.0	04.67		1007	.750		
<b>77</b> 777						- 1	·. ·					14.4				46.4	-E L	44.1	44.1	
DASPL	77-0	85.3	87.0	86.6	85,0	85.4	91.1	92.4	. 95+9	95.4	96.3	76.7	77.0	70,0	A ( + 2	70+6	. 7747	7774	100 1	
PHL	92.B	99.5	100.9																	
DBA	76.4		.86.2		84:5	85.6	87.7	90,4	93.1	93.9	94.4	95.0	95.5	75.7	95.Z	91,0	55.7	. 4116	03.3	
. pen	10,17	0.77	. ,000	-,,,,,,		, _,			100								_:_			
BAND	19	19	19	19	19	19	19	19	19	19	1.9	19	23	• 29	17	19	· 17		17.	
TCORR	1.6							1.4	2.1	1.8	1.5	1.1	0.9	1.3	1.1	1.0	1.1	1,4	142	٠,
- Lunn	740	.,,								100		12					* *			
																		100		

: PNLT (INTEGRATED) = 120.06

TAB	LE A	-173
	ENGINE	MUDEL

2292 F PUING JTBD-109 TRT INLET MANDISE SUP TUBE TRT FAM DUCT HOWLE TEP1150-1740

ENGINE MUDEL ENGINE NUMBER	■ JT6D =00 ■ 374054	TEMPERATURE	•	77.0 F	INLET TEMP TIME OF DAY BARN. PRESSURE	= 43.00 F * 1130 = 30.44 Th. HG.
STAND DATE	= X-314 = 03/18/75	TELOTHOR	=	70.0 PER CT.	WIND DIRECTION WIND VELOCITY	= H = 5 HPH
		OBSERVED RPM CCRRECTED RPM	=	5113 5193		

FAA PART 36 REFERENCE DAY CORRECTED SPL IN D8 - RADIUS = 150. FT.

1/3 OCT																				
FREQUENCY		10	20	30	10			TICROFI 70	NE AUGH Og	1GLES 1	IN DEGI 95			***		120	120	135	140	150
-1921	0	Th	20	30	40	50	60	fU	70	40	75	100	105	110	115	120	130	133	140	150
50	75.9	75.1	75.2	76.8	77.9	77.6	78-5	78.5	80.0	8,00	81.5	82.3	83.1	84.2	84.8	85.7	88.1	89.4	91.2	94.1
6,3	78.6	75.3	77.5	76.5	78.2	77.0	77.7	78.5	79.3		81.1	02.1	62.7	83.4	83.8	84.4	86.5	87,9		
80	74.1	75.6	76.3	75.6	75.0	76.1	76.1	76.7			77.9	79.0	60.0	80.9	81.2	81.4	82 <b>.</b> 2	83.1	B4.6	85.2
100	76.1	75.2	73.7	73.2	73.6	73.4	73.7	73.6		73.9	73.5	74.0	74.7	75.6	76.0	77.2	79.6	81.3	83.1	85.3
125	79.4	76.5	74.9	74.2	74.4	74.7	74.3	74.4	74.9		78.1	79.1	.79.9	80.8	82.2	84.0		87.9	89.5	91.3
160	80.8	75.8	78.9	76.8	79.3	79.6	82.1	82.9	B3 • 1		85.2		86.9	87.9	88.9	90.1		92.6	92.9	
200	79.3	74.8	79.8		60.0	81.6	80.4	82.0	83.2	86.1	86.6	60.2	89.4	91.0	91.8	92.4	93.9	93.B	92.6	
. 250	79.2	76.0		79.4	79.7	79.4	79.9	81.2		83.7	83.7	85.3	85.7	87.5	88.2	88.8	89.5	89.1	86+8	65.5
315	77.6	77.4	77.3	76.7	77.9	77.6	80.2	60.1	79.7	E0.4	Bl.3	82.4	83.4	84.4	86.1	88.4	90.2	89.4	88.4	84.5
400	78.1	77.0	76.5	77.4	76.7	76.0	77.8	77.9	79.8	82.7	82.9	85.0	85.8	87.3	88.1	88.8	89+3	87.4	₿ <b>* .</b> 3	83-1
560	79.2	79.3	77.5	77.2	76.9	77.7	78.7	79.B	80.3	80.7	81.4	82.8	84.1	8.23	86.3	88.3	88.9	67.	15.9	82.8
£ 30	81.C	79.7	78.1	77.7	77.1	78.1	78.9	78.9	8,08	83.3		84-6	84.9	87.1	87.4	68.1	87.2	85.	83.0	61.1
€00	80.5	79.4	77.7	77-8	77.5	77.7	79.1	79.4	80.5	83.2	83.8		86.5	88.2	09.2	88.0	87,0	84.9	83.3	80.5
1000	82.O	80-1	70.1	79.3	77.6	77.3	77.9	77.9	79.4	61.7	81.7	83.0	B3.6	85.2	85.3	85.6	83.9	82.5	81.2	78.7
1250	8.08	80.1	78.5	76.2	75.D	76+5	76.9	77.1	78.1	80.1	80.4	81.9	82-4	83.5	63-6	84.5	82.7	61.1	BD+C	77.5
1600	84.0	4.18	79,9	76.6	75.2	75.7	76.6	77.2		81.6	81.9	83.0	83.0	82.9	B3.0	83.0	81.3	80.0	8+6'	76.9
2000	66.4		80.8	79-1	76.1	75.5	76.8	77.7		83.5	83.8	85.0	84.5	83.5	82.8	82.6	80.7	79.2	8.2	
2500	90.5.		87.8	83.5	. 79.4	77.5	77.6	78-8		84.5	63.7	85.2	85.9	86+4	85.2	83.5	81.0	80.6	79.4	77.6
3150	94.8		93.1		83.9	81.0	79.9	81-7	85.0		88.7	86-7		88.4	88.2		84.7	83.3		80-4
4000		89.3		82.3	78.2	75.2	75.2	75.0	78.5	81.4	61.8	53.2	83.4	84.4	84.2	83.0	B1.1	78+7.		75.3
5000	91.2		89.0	84.1	79.4	76.1	76.6	77.9			81.9	83.0	82.9	89.8	84.0	82.E	80.5	7B-2		74.9
6300	95.8	96.1		90.7	85.1	80.1	79-1			87.8	B7.6	89-0	59-5	90.1	90.8	69.2	85.5	83.2	B1.7	
9000	91.2	91.6			82-1		78.7					91.1		93.5	94-5	93.6		67.7	86.5	82.8
10000	91.7	92.1	91.7	87-1	82.8	7p.4	75.3	76.9	79.8	83.3	83.4	84.9	86.3	86,9	88*0	37.8	55.0	85.5	84.0	79.0
DASPL	101-7	101.5	100-6	'AL_4	03.2	91.7	92.1	92.0	94.7	97-5	97.7	99.1	99.7	100 - R	101-3	307.4	101.5	100-9	100.5	100-2
PNLT	117-5	116.6	136-2	111-8	168.9	106-0	105.4	106-9	100.4	113.3	113.7	113-5	113.4	113_A	114.6	114.3	112.6	111.1	110.3	108-4
PHI.																			109.0	
OBA											96.4									91.7
204	14100			,,,,,	7100	4747	,	,400	.540	,500					- / 65					
BAND	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19
TCORP	1.6	í	2.0		1.7	1.6	1.2	1.5	1.6		2.0	1.5	1.2	1.0	1.2	1.3	1.1	1.2	1.4	1.3
					'															

**TABLE A-174** 

2292 F F0186 JT8D-109 TRT INLET W/MOISE SUP TUBE TRT FAM DUCT HOWLL TLP1150-1740

CONDITION = 5193

ALTITUDE = 200. FT SIDELINE

1/3 OCT FREEVENCY							i	HICRÓP	HONE AL	GLES '	IN DEG	REES							
(HZ)	10	26	30	40	50	-60	70	80	. 90	95	100	105	110	115	120	130	235	140	150
50	, ,3	63.3	- 68.3	71.5	72.8	74.7	75.5	77.4	78.3	79.0	79.7	80.3	81,2	81.4	81.9	49.3	83.9	84.8	85.6
1/3	31.5	65.6	68.0	71.8	73.0			76.7		78.6							52.4		
03	57.8	64.4	67.0	69.5	71.3	72.3	73.7	74.4		75.4									76.6
100	57.3	61.8	64.6	67.2	68.6	69.4	70.5	70.2		71.0						74.8	75.8	76.7	76.7
125	58.6	63.0	65.6	68.0	69.9	70.5	71.3	72.3						78.8		82.6			82.7
160	57.8	67.0	70.2	72.9	74.8	78.3	79.8	80.5	82.1	82.7	83.7			85.3					83.3
200	56.7	67.B	70.8	74.4	76.9	76.6	78.9	80-5	83.6	84.1	85.5	86.6		88.4					80.5
250	57.9	.05-1	70.8	73.3	74.5	74.1	78.1	79.6	81.2	81.1	8246	82.9				84.6			76.9
315	59.1	65.2	68.0	71.5	72.9	76.4	77.0	77.0	77.9	78.7	79.7	80.6							75.8
400	59.4	64.4	65.7	70.2	71.9	74.0	74.8	77.1	60.2	80.3	82.3	83.0	84.2				81.5		74.4
500	60.7	65,3	.68.5	70.4	.72.8	74.9	76.7	77.6	78.2	78.8	80.1	81.2				84.0			74.1
630	60.9	65.8	69.9	70.6	73.2	75.1	75.8	78.1	80.7	80.2	82.I	82.0	84.0				79.7		72.3
800	60.3	65.3	6B.∙9	70.9	72.7	75.2	76.3	77.8	80.6	81.2	82.9	83.6	85.1			82.0	79.2		71.6
1000	ት#Ωስ.	65.5	70.3	71.0	.72.3	74.0	74.7	76.7	79.1	79.1	80.3	80.7	82.0	81.8	81.7	78.9	74.8		69.7
1250	60.2	65.7	69.1	69.1	71.4	73.0	73.9	75.3	77.5	77.8	79-1	79.5	50.3	80.1					68.4
1600	61.0	66.8	67.4	68.4	70.6	72.6	74.0	76.0	79.0	79.2	80.2	80.0	79.7	79.4		76.2	74.1		67.7
2000	63.9	07.4	69.7	69.2	70.3	72.B	74.4	77.2	. 60.B	81.1	82.2	81.5	80.2		. 78.6	75.5	73.2		. 67.2
2500	67.5	74.0	73.0	72.3	72-2	73.5	75.5	78.8	81.8	80.9	82.3	82.8	83.1	81.5					
3150	70.7	78-7	77.9	76.6	75.5	75.7	78.3	82.1	86.3	85.9	85.8	85.2	85.0	84.4			77.0	75.1	70.4
.4QQQ	.64.0	71.8	.71.9	70.6	69.5	70.8	72.3	- 75.5	78.5	78.9	80,2	80.2	80.9	60.3	7816	75.4	72.2	69.7	64.9
5000	63.6	73.4	73.4	71.7	70.3	72.2	74.3	76.8	79.4	78.9	79.9	79.6	80.2	80.0		74.7	71.5	69-2	64.2
00.66	67.3					74.5		81.1	64.7	84.5	85.8	86.1	86.4	. 86.7	84.6	79.5	74.2	73.6	68.2
.8000						. 73.7		80.0	64.6	8.28	87.7	88.4	89.5	90.1	88-6	84.3		77.8	70.6
10000	53.9	,71.D	73.5	73.2	69.3	69.9	72.,6	76.1	79.8	79.8	81.2	82.3	82.6	83.2	82.4	80.9	77.3	74.4	65.4
DASPL	76.5	84.9	65.9	85.0	86.5	88.1	89.7	91.8	94.7	94.9	96.1	96.5	97.4	97.6	97-3	96-4	95.1	93.9	91.5
PHLT	42.eB	101.3	101.4	101.0	100.5	101.2	103.6	106.6	110.5	110.3	110-6	110.2	110.4	110.6	109.9	106.9	104.9	103-7	98.7
PNL	91.1	99.2	99.7	99.3	49.0	100.0	102-1	105.0	108.4	108.3	109-1	109.0	109.4	109.4	108-5	105-8	103.7	101.1	97.3
DBA	74-5	84.9	<b>65+3</b>	84.3	84.0	85,5	87.3	90.1	93.5	93.5	94.6	94.8	95.4	95.3	94.4	91.8	89.3	87.1	82.1
BAND	19	19	19	19	15	19	19	19	19	. 19	19	19	19	19	19	19	19	19	19
TCCRR	1.7	2.1	1.7			1.2					1.5		î.o				1.2		

PHLT (INTEGRATED) = 120.01

2292 F PD188 JTDD-109 TRT INLET MANDISE SUP TUDE TRT FAN DUCT HOWEL TEP1150-1740 **TABLE A-175** 34,00 F 811 30.09 IN. HG. ENGINE MEDEL . TIME OF DAY BARM. PRESSURE WIND DIRECTION WIND VELOCITY HUMIDITY **6** нрн FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150, FT-1/3 OCT FREQUENCY (HZ) MICROPHONE ANGLES IN DEGREES 70 90 90 95 10 105 110 79.9 77.9 73.1 73.1 782.3 62.3 62.3 80.8 80.8 80.5 80.5 80.6 80.6 79.8 79.4 81.8 79.4 81.8 79.4 84.8 83.0 78.6 78.9 78.3 73.7 73.8 81.9 81.9 81.3 77.8 79.3 77.8 77.4 77.4 78.2 76.5 81.6 74.2 81.63 78.57 76.52 85.29 86.49 86.49 87.73 81.79 81.79 81.69 81.69 82.61 82.66 87.91 77-63 773-8 779-8 779-8 779-9 778-4 776-5 776-7 776-7 776-7 776-7 776-7 776-5 82.7 79.6 75.1 78.5 85.6 88.1 86.2 82.2 85.5 92.7 85.3 82.96 175.267 178.67 178.67 178.67 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 178.69 78.3 770.1 73.2 76.6 776.6 776.6 777.0 777.0 777.0 776.9 776.9 776.9 780.1 83.6 85.5 885.5 885.6 885.6 885.6 885.6 76.9 77.0 76.9 77.2 77.6 77.6 77.6 77.3 77.3 77.1 76.8 75.6 75.6 75.6 75.7 783.5 87.3 73.6 74.9 77.6 20.3 76.4 77.2 76.7 76.2 76.2 76.2 76.2 76.2 79.6 92.6 98.7 90.5 90.5 90.2 90.2 85.6 81.8 83.6 84.6 85.6 87.5 83.8 89.5 90.3 83.7 100.7 101.2 101.3 101.4 113.7 114.4 114.2 112.5 112.9 113.2 112.9 111.3 98.8 99.2 98.7 97.0 98.1 113.8 111.8 96.9 100.9 110.8 109.8 95.4 DASPL PNLT PNL DBA 19 19 19 23 2.1 1.7 1.3 0.8 19 1.5 14 19 19 1.5 1.3 COMPOSITE SPL COMPOSITE PNL PNLT (INTEGRATED)

TABLE A-176

2292 F PC186 JTED-109 TRT INLET WANDISE SUP TUBE TRT FAN DUCT HOWLL TLP1150.1740

CONDITION = 5199

ALTITUDE - 200. FT SIDELINE

1/3 OCT								TOUR	BNE AN	GLES I	N DEGR	EES								
FREQUENCY						60	70	80	90	95	100	105	110	115	120	130	135	140	150	
(HZ)	14	50	30	44	50	r u	10													
		_			- ·	·	75.9	77 2	79.2	70.4	80-2	80.3	81.3	81.3	81.5	83.4	B3.7	84.8	65.3	
50		±3•+		70.9	72.6	74.5	75.3	77.2	79.1	79.2	60.1	E0.1	8.00	80.6	80.4	81.9	82.6	8Z+8	83.2	
63	57.9	65.9		71.9		. 73.A		75.3	75.8	76.1	77.0	77.8	78.0	70.2	77.8	77.9	78.3	78+4	77.8	
80	58.4	43.7	cb.4	69.7	71.7	72.5	73.3	70.5	71.5	71.6	72.5	72.3		72.9	73.5	74.4	75.6	76.1	76.8	
100	58.2	01.7	60.3	o7.u	69-1		76.6		74.0	75.1	75.9	74.4	77.7	78.4	79.5	82.4	82.4	B3.1	82.7	
125	90.7	42.0	60 - 6	67.0	h4.5	70.0	70.7	72.1	80-7	62.0	83.0	83-8	84.5	85.3	86.3	87.3	87.2	86.8	83.5	
160	57-0	65.7	8.64	72.2	75.0	70.0	77-1	78.6		84.3	65.4	86.9	87.8	88.2	88.6	29.2	68.3.	86.9	61.5	
200	56.0	ob.2	69-1	74.3	76.0	76=6	76.8	80.6	83.4	82.1	83.5	84.4	85.0		85.4		63.6	81.5	77.7	
2514	58.2	66.3	09.0	73-4	74.5	74-1	78.2	79.9	51-3		79.5	80.3	61.0	82.2	84-1	54.3	83.6	81.6	77.0	
خاد	59.4	64.7	68.6	71.4	73.1	76.1	77.1	77.6	77.9	78.8 81.1	R2.8	83.9	85.0	84.7	85.1	84.7	82.5	79.6	74.9	
400	59.2	64.3	08.6	70-1	72.2	73.6	74.7	77.1	80.4			81.1	82.4	83.2	84.4	83.6	51.5	79.6	74.6	
560	60.9	64.4	66 <b>.</b> 5	70.7	72.7	74.6	76.7	77.6		78.6	80.0		84.0	84.1	83.7	82.0	79.3	77.2	72.2	
620	40.7	64.9	68.3	70.5	73.5	74.1	75.5	77.e	80.7	81.2	82.5	BZ-9	84.8	84.3	83.7	81.5	79.2	77.0	71.7	
ŁŮU	4.03	64.2	67.9	70.6	72.F	74.5	76.2	77.6	79.9	80.8	82.3	53.7	81.6		81.3	78.3	76.6	74.7	70.0	
1000	40.0	65.6	68.6	70.3	72.1	73.5	74.6	76.3	76.5	79+3	80.1	81.0		79.7	BO.0	77.0	74.9	73.1	68.5	
1256	58-2	66.4	66.5	59.Z	71.3	72.5	73.7	75.0	77.1	78.0	79.0	79.8	79.9	77.4	78.7	75.7	74.0	72.0	68-1	
1600	60.D	67.5	66.0	68.6	71.0	72.5	74.2	76.0		79 B	80 B	81.0	80.4		78.4	75.1	73.2	71.6	67.2	
2000	62.2	67.7	66.5	60.1	76.6	72.3	74.1	76.6		61.5	81.B	81.0	80.5	79+2	79.9	76.5	74.6	73.2	69.0	
2503	66.7.	78.6	73.8	73.0	72.9	73.9	76.4	79.0	₽I-B	81.8	62.7	83.3		82.0	83.3	79.2	76.6	75.6	71.3	
3150	69.1	£2.3		76.3	75 . 3	75.7	78+8	81.9	5.3	86.8		85.7	85.0	84.6		75.0	72.2		65.4	
4600	64.2	73.2	70.0	70-8	69.7	71.7	73.0		. 9.5				81.0		78 - 6	75.1	72+2	70.0	65.5	
5660	05.6	14.9	72.1	73.1	71-1	72.0	75.0	77.5	77.7		80.7	80.7	81.3	80.8	79.3		76.4	74.2	69.6	
6300	68-4	79.6		77-7	73.9	75.1	77.9	B1.6	84.8	85.5		86-8	66.8	87.0	84.9	79.7	80.2		71.0	
6000			71.6		71.8	73.6	75. ?	79.6	83.9	85.6	80.0	8B.0		69+6	88.4	83.9		73.0		
20000	53.3		70.0		67.3	67.1	71. 7	75.2	78.6	79.0	80.0	81.3	81.7	91.5	81.3	79.5	75.9	1210	0201	
TOUCO										. 1		1								
M C C DI	74. 2	BA-B	54_R	B6-2	86.5	67.7	89.6	91.7	94.5	95,3	96.2	96+8	97.3	97.5	97.2	96.3	72.2	94.2	7101	
OASPL PNLT																				
PNL	00.4	101.5	4A.A	49.2	44.6														70.0	
	76.0	07.3	94.0	84.5	84-1	85.3	87.5	90.0	93.3	94.0	94.7	95.1	95.3	95.3	94,3	91.6	89.3	87.3	02.7	
DUA	10+0	OIL	3-40	0-00	<b>U-V</b>															
		•6.	. 19	19	19	19	19	19	19	19	19	19	23	19	19	19	19	19	19	
BAND	14	19		1.5	1.3	1.0				2.1	1.7	1.3	0.8	1.2	1.3	1.2	1.1	1.3	1.4	
TCOAK	1.2	2.5	1.6		10-	140	•••										- '			
																Acres 1				

PALT (INTEGRATED) = 120-19

2292 F PC186 JTRC-109 TRT THLET WANCESE SUP TUBE TRT FAN DUCT HONL! TLP1150-1740

ENGINE MURBER	= 374054	TEMPERATURE	in:	77,D F	INLET TEMP TIME OF DAY BARN. PRESSURE	= 39.00 F = 1036 = 30.44 IN. HG.
STAND Date	a X-314 = U3/16/75	YTIGIMUH	n	70.0 PER CT.	WIND DIRECTION WIND VELOCITY	m W
		OBSERVED RPM COURECTED RPM	=	5100 5201		•

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.

1/3 OCT FRECUENCY								47¢0	optic 4	VC1 E C	IN DEGI									
(92)	ō	10	20	30	40	50	60	76	א פורטור מפ	90 90	95	100	105	110	115	120	130	135	140	150
	_				***		~~					100	••••	110		120	150	100	140	230
50	75.1	74.3	74.7	76.2	77.1	77.3	78.6	78.8	79.6	80.6	81.4	82.4	83.2	84.0	64.8	65.6	88-1	69.2	91.2	93.6
63	78.4	74.1	77.4	76.1	70.2	77.4	77.4	78.4	79.5	00.7	81.6	81.9	82.8	83.7	84.4	85.0		88.4	89.4	91.9
80	74.3	75.3	75.6	75.4	76.2	76.3	76.3	76.3	77.7	78.5	78.6	79.6	80.4	81.5	81.7	81.9	83.3	83.8	85.3	86.8
100	76.5	75.7	77.6	73.5	73.6	77.7	73.4	74.0	73.3	73.8	74.1	75.1	75.4	75.9	76.8	77.2	79.1	80.7	81.8	84.8
125	79.5	75.9	74.3	73.8	74.1	74.1	73.7	73.9	74.5	75.7	77.4	77.7	78.9	79.8	81.3	83.2	86.3	87.9	88.9	90.9
160	81.1	75.1	38.2	78.0	76.8	79.7	80.4	80.7	82.1	83.3	34.5	85.1	86.6	87.2	88.6	89.9	92.0	92.6	92.8	91.9
200	78.5	74.8	79.6	79.2	80.6	81.7	80.2	81.7	83.6	85.5	86.9	BR.1	89.3	90.6	91.8	92.4	93.9	93.9	93.3	89.8
250	78.6	75.3	78.7	79.3	79.4	79.4	79.7	81.0	82.5	83.9	84.7	85.9	86.7	87.9	88.7	89.3	90.3	89.4	68-1	85.9
315	76.4	76.8	77.1	76.7	77.4,	76.2	00.3	80.4	80.4	80.6	81.5	82.2	83.1	83.8	85.9	88.1	89.5	89.3	86.2	65.3
400	77.1	76.9	76.2	77.4	76+6	77-1	77.8	77.9	79.9	82.7	6329	85.4	86.8	<b>87.</b> 9	88.5	89.4	90.2	88.4	86.3	83.4
500	78.2	78.4	76.8	77.0	77.2	77.8	78.6	B <b>0</b> •0	60.0	80.7	61.5	82.6	83.7	85.3	86.3	88.1	88.3	67.2	85.6	82.7
0E4	81.6		77.4	77.4	77.1	76.3	78.6	79.1	80.7	83.2	84.1	85.7		87.5	85.1	50.1	87.6	85.6	84.3	81.2
800	79.0	79.1	76.8	77.3	77.3	77.H	78.7	79.6	80.5	82.4	83.7	84.7	86.1	87.8	87.9	87.9	86-6	85.0	83.3	80.5
1000	31.2	79.9	70.8	79.8	77.1	77.1	77.7	78.0	79.2		82.0	83.0	84.0	64.8	85.2	05.6	53.5	82.7	61.3	78.9
1250	80.6	79.7	74.2	77.8	75.7	76,4	76.B	77.0	78.1	79.7	80.9	81.7	82.8	83.3	83.6	64.3	82.4	80.9	79.9	77.6
1660	£3.6	61.6	79.6	76.5	75.4	75.9	76.7	77.2	78.9	81.5	82.3	83.5	83.6	83.5	63.1	82.9	81.0	80.0	78.9	76.9
5000	85.9	85.4	80.9	40.2	70.0	75.5	76.9	77.8	79.9	63.5	84.4	85.1	85.1	84.1	83.2	63.1	80.6	79.4	78.4	76-3
2500	88.4	63-1	91.5	H6.7	78.0	78.1	77.7	79.2	61.6	84.1	84.6	85.3	85.6	86.5	1.48	84.2	01.9	60.6	79.7	78.0
3150	92.1	91.3	97.3	92.0	B1.1	et.4	79.8	82.3	84.5	88.6	89.2	89.0	89.0	88.5	86.7	80.2	84.7	82.5	82.5	80.6
4000	84 <b>- 1</b>	86.9	80.4	81.9	77.6	75.3	75.3	76.5	78.6	81.4	82.5	83.6	83.9	84.8	84+8	83.7	80.9	79.0	77.6	75.5
5000	90.6	90.6	50.2	P4.6	74.1	76-2	76,5	76.6	80.4	82.1	82.7	83.3	83.4	84.3	84.7	63.6	80.6	78.6	77.1	75.2
6200	95.7	45.7	45.0	41.0	84.6	79.0	76.5	80.8	84.3	87.1	87.9	₽8.6	89.6	90.1	90.8	89.2	85.1	83.0	81.5	79.4
6000	89.5	90.4	40.2	85.4	80∙8	77.0	77.4	79.1	62.5	86.4	90.7	90.7	91.2	92.4	94.0	93.3	89.6	87.1	85.5	82.3
10000	89.6	41.G	40 <b>.</b> 3	65.7	B1-1	74.7	73.5	75.8	78.7	A1.5	82.9	83.9	85.2	86.1	87.3	a7.3	86.6	84.6	82.6	78.3
DASPL	100.0	100.6	101.7	97.4	92.5	91.6	91.7	92.8	94.6	96.9	98.0	99.0	99.7	100.5	101.4	101.5	101.9	100.9	100.6	100.2
PNLT						106.5														
PNL	114.6	114.3	116.2	111.9	105.7	104.7	104.0	165.7	107.7	110.8	111.6	112.1	112.6	112.8	113.3	113.0	111.1	109.7	109.0	107.3
DBA	100.6	100.5	102.0	97.4	40.8	89.5	89.4	90.6	92.9	95.8	96.7	97.6	98.2	98.7	99.3	98.9	96.9	95.4	94.2	91.7
BAND	19	22	19	19	14	19	19	19	19	19	19	19	19.	23	19	19	19	23	19	19
TÇORR	1-1	0.0	2.7	7.6	1.1	1.7	1.1	1.5	1.5	2.0	1.9	1.5	1.3	0.8	1.1	1.4	1.1	0.6	1.3	1.3

 HAXIHUH GASPL =
 101.65
 COMPOSITE
 SPL
 = 135.1

 MAXIHUM PNLT =
 118.90
 COMPOSITE
 PNL
 = 118.8

 HAXIHUM PNL
 =
 116.19
 PNLT (INTEGRATED)
 = 126.10

**TABLE A-178** 

2292 F PU186 JT8D-109 TRT INLET W/MOTSE SUP TUBE TRT FAN DUCT HOWLL TLP1150.1740

COMDITION = 5201
ALTITUDE = 200. FT SIDELINE

1/3 UCT FREQUENCY								HECRRE	HONE AT	HILLES	IN DEG	REES							
(H2)	Įθ	26	30	40	50	60	70	80	90	95		.105	110	115	120	130	135	140	150
50	56.5	62.8	67.7	70.7	72.5	74.2	75.0	77+0	70.1	78.0	79.8	gn 4		. 01 4			83.7	64.8	85.1
63	56.3			71.8	72.6					79.1		80.0					82.9		
80	57.5			69.8	71.5		73+3					77.6							78.2
100	27.4	61.9		67.2	68.9	69.6	70.9	75.7		71.6									76.2
125	58.0		65.2	67.7	69.3		70.8	71.9		74.9		76.1		77-9					82.3
160	57.1	66.3		72.4			77.6							75.2				86.4	83.3
200	56.7	67.6		74-2	76 B	76.4	78.6	80.9	63.0	84.4		86.5						86.9	81.2
250	57.2		70.7	73.0	74.5	75.9	77.9	79.8		82.1		83.9					.83.5		77.3
315	58.5			71.5	73.3	76.5	77.3		78.1	78.9		80.3					83.7	81.8	76.6
400	58.5	64-1		70-1	77.2			77.2	80.2	81.3		84.0						79.8	74.7
500	59.6	44.6		70.7	72.9	74.8	76.9	77.0	78.2	78.9		80-8				83.4		79.1	74.0
630	61.2			70.6	73.4	74.8	76.0	78.0	80.6										72.4
800	60.0			70-7	72.8	74.8	76.5	77.8		. 81.1									71.6
1000		2.00						76.5						81.7					
1250	59.8			69.0	71.3			75.3		78.3		79.9				77.3			68.5
1600	61.0	66.5		68.6	70.8			76.1		79.6									67.7
2000	64.0	67.5		69.1	70.3			77.1		81.7		82-1							66.9
2500		77.7		70.9		73.6					82.4			82.4					68.3
3150	67.7			73.8	76.4			81.6											70.6
4000	63.6	73.3		70.0			73.0			79.6		50.7			79.3				65.1
5000	4.4	73.7		71.4	70.4		75.0		· 79.2	79.7			80.7				71.9		64.5
6300	66.9	70.4		76.5	73.0	73.9	77.1		84.0		85.6								48.1
£000	56.3	71.9		72.1		72.4					87.3								
16000	52.B	69.6		71.5							80.2							73.0	
DASPL	75.5	36.5	87.0	85.3	86.5	87.7	89.6	91.7	94.2	95.2	96.0	96-6	97.2	97.6	. 97.4	96-3	95.2	94.1	91.5
PHLT	90.5	164.4	104-5	99.I	101.G	100-9	103.8	106.2	109.9	110.7	110.7	110.7	110.2	110.5	110.7	106.8	104.0	103.1	98.8
PNL		101.0			99.3	99.8	102.3	104-8	108.0	108-8	109.2	109.4	109.4	109.5	108-8	105.6	103.4	101.9	97.5
UBA	75.3		£7.0		84.1						94.6								82.3
BAND	19	19	19	19	14	19	19	19	19	19	19	19	23	19	19	19	23	19	19
TCORR	1.0	2.8		1.1	1.7	1.1				1.9		1,3		1.1	1.4		0.6	1.3	1.3

PNLT (INTEGRATED) = 120.12

TAE	LE A	-1	79		2292 F	PU187	JT&D-1	109 TRT	INLET	W/NOI	SE SUI	P TURE	TRT FA	IN BUST	r HOWLE	. TLPII	50.174	÷0			
	ENGINE ENGINE				D -09 374-54			TEMPE	RATURE	:	,	• 77.	,0 F			TIF	ET TEI KE OF ( KH. PRI	PAY		5.00   1207	F IN. HG.
	STAND			E 03	X-314			KUMIO	ITY		•	<b>7</b> 0.	O PER	CT.		WIN	D DIR	CTION		5	KPH
	DATE			# US.	10/75				VED RE			631 639				MAL	ACT!	LIIT	•	•	nrn
								FAA P	ART 36	REFER	ENCE 1	DAY COS	RECTE	SPL 1	IN DB	- RAS	oius =	150.	FT.		
1/3 OC FREQUEN (HZ)		<b>)</b>	10	20	30	40	50	6D	ICROPF 70	IONE AN	GLES :	IN DEGI 95	REES 100	105	110	115	120	130	135	140	150
50	81.	3	80.5	61.		82.9	83.2	84.4	84.8	86.7	85.7	88.7	86.9	90.2	91.1	91.9	93.3	96.8			104-7
63 83	81. 80.		81.4	82.			83.8 53.2	84.2 83.6	85.4 83.7	86.3 85.0	86.0	88.3 86.5	87.1 85.1	90.1 88.1	90.7 88.9	91.9	93.1 89.8	95.8	98.4 93.0		103.1 97.2
100	63 e		82.6	81.		61.0	6D-4	80.7	80.B	80.9	79.6	87.2	81.0	83.7	64.4	65.8	87.2	90.6	93.7	96.3	100.6
125	85 e		82.4	42+			02.2 87.0	81.7 86.6	81.7 87.4	82.2 69.0	82.5	85.5 71.6	85.2 91.3	87.8 94.0	89.7 95.5	92.0 97.3	94-2	98.1			105.5
16D 200	84. 83.		81.0	85.		88.7	89.1	87.7	89.4	91.3	91.7	94.4	93.9	97.5		100.2	100.7		103.3		
250 715			82.3	86.		88.0	66.7	89.0 88.0	90.2 88.1	91.7 88.8	90.7 87.0	94.1 90.3	92.8 89.0	96.5	97.2 93.4	98.4 95.7	98•9 97•5	99.1 99.5	98.4		
400	82.		63.4	1/40		86.4 85.6	66.7 65.4	86.1	86.8		. 89.0	92.7	92.2	95.8	97.0	97.7	98.5	97.9	97.4	96.6	
500	iib.	1	63.0	D •• • I	1 17.7	00.7	R6.5	R6.9	88.4	89.2	87.4	90.3	89.5	93.0	14.7	96.2	78.0	98-1	98.0	96.9	
630 800	83. 82.		61.0 E.13	84.5 63.5		85.2 84.7	86.2 85.7	85.9 85.9	86.5 86.7	88.4 87.9	88.8 87.7	91.7 90.6	90.6 90.3	93.9	94.9 94.7	95.5 94.8	95.B 94.9	95.4 94.6	95-1 93-3	93.6	
1000	79.	Đ.	78-9	82.	83.6	83.7	64-5	84.7	85.5	86.9	8-48	89.2	88.0	91.3	92.3	92.7	,72.9	92.2	91.3	B9 . B	87.0
1256 1600	61. 62.		79.7 87.6	81.		82.8 82.2	83.4	84.2 83.7	64.9 84.6	86.1 85.6	85.6	89.1 67.7	86.9 86.5	89.9 89.4	90.6 90.2	91.3 90.8	91.2 90.2	90.4 89.2	89.5 88.3	88.2	
2000	55.		84.9	02.	82.4	81.8	82.t	83.4	84.3	85.8	85.5	87.5	86.2	89.0	89.3	90.3	89.4	88,1	87.2	86.0	83+3
2500	69.		9.60	87.		82.6	83.3	84.0	85.2	87.1	87.1 90.0	90.4 92.8	90.4 92.1	91.7 93.5	90.2 94.1	89.9 92.3	89.7 70.6	88.3	87.0 87.6	86.1 86.7	
3150 4000			′98.3 100.3	95.4		86.7 87.9	64.6 84.9	84.9 84.8	86.7 86.6	89.5 89.6	90.8	93.1	92-0	95.5	95.3		92.1	89.4	56.3	87+2	
5000	90.	.3	84.4	P5-	64.4	91.9	81.9	82,6	64.5	86.9	88.2	90.9	90.0	92.9	93.4	93.1	91.5	83.7	87.0	85.7	
6300 8000	93. 94.		93.1 95.4	42.1 44.			81.1 81.5	01.9 61.9	84.0	87.1 87.8	87.1 89.4	89.2 91.9	68.3 91.0	90.6 93.6		90.7 95.4	89.3	87.2	85.6 67.2	84.3 86.4	
10000	93		93.9	92.			80.6	81.1	82.7	85.5	87.1			93.9	94.8		94.4		89.7	88.1	
CASPL	104,	2	204.5	103.	100.2	98.6	98.7	98.9	95.9	101.7	101.8	104.5	103.7	106.8	107.6	108.5	108.9	110.0	110.5	111.3	112.4
PHLT PHL					115.9																
DBA			105.1			96.3		96.2	97.4	99.5	99.8	102.4	101.6	104,4	105.0	105.2	104.8	104.2	103.6	102.9	101.3
BAND TCGRK	20 1	6.	20 2.1	20 1-	20 1.7	1•5 50	24 0.0	24 0.0	24 0•0	24 0.0	24 0.0	24 0.0	24 0.0	10 0.5	24 0.0	24 0•0	24 0.0	24 0.0	24 0.0	24 0•0	24 0.0
	TUHIKAM TUHIKAN TUHIKAH TUHIKAN	₹ P		E	112.30 121.40 119.71 105.25			COHPO COHPO PNLT	STIE	SF PHI EGRATET		= 113.6 = 123.6 = 130.5	83								

2292 F PO167 JTP0-109 TRT INLET W/HOISE SUP TUBE TRT FAM DUCT HOWLL TLP3150.1740

CONDITION = 6396

ALTITUDE = 200. FT SIDELINE

1/3 OLT FREGUENCY								urc non		NGLES	*** 050	nete							
	•.•					•							***	***	***	***			***
(HZ)	10	20	30	40	50	60	70	60	90	95	100	105	110	115	120	130	135	140	150
50	62.7	69.4	73.7	76.5	78.4	80.6	81.8	84.1	83.2	86.2	84.3	87.4	88,-1	88.5	89.5	92.0	. 93.5	94.8	96.2
63	63.6	70.0	74.7	77.2	79.0	80-4	82.4	83.7	83.5	85.8	84.5	87.3	87.7	88.5	89.3	91.0	92.9	93.8	94.6
80	64.5	70.9	73.6	76.4	78.4	79.8	80.7	82.4	81.3	84.0	82.5	85.3	85.9	86.0	86.0	87.0	87.5	89.2	88.6
100	64.9	69.3	72.0	74.6	75.6	76.9	77.7	78.3	77.1	79.7	78.4	80.9	81.3	82.4	83.4	85.8	88.2	89.9	92.0
125	44.5	70.6	73.0	75.4	77-4	77.9	78.6	79.6	80.0	83.0	82.6	85.0	86.6	88.6	90.4	93.3	94.4	95.6	96.9
160	03.6	73.2	76.7	79.5	82.2	82.8	84.3	86.4	85.6	89-1	88.7	91.2	92.4	93.9	95.3	97.3	97.8	95.4	96.6
200	63.7	74.6	79.1	82.3	84.2	83.9	86.3	88.6	89.2	91.9	91.2	94.7	95.6	96.8	95.9	97.9	97.7	96.8	92.9
250	64.2	74.0	79.3	. 82.2	8.88	85.2	87.1	89.0	88.4	91.5	90.1	93,7	94.1	95,0	95.1	94.Z	92.8	91,5	89.5
315	45.1	71.9	77.0	80.0	B1.4	84.2	85.0	86.1	85	8T.7	86.3	89.3	90.3	92.3	93.7	94.6	94.3	93.8	88.7
400	63 <b>.</b> 8	72.2	77.9	79.1	81.0	87.3	83.7	85.9	87.4	90.1	89.5	93.0	93.9	94.3	94.7	93.0	91.5	90.1	86.6
500	04.4	72.6	79.0	79.7	81.6	82.1	55.3	86.5	84.9	87.7	86∗8	90-1	91.6	92.8	94.2	93.2	92.4	90.4	85+7
630	62.B	72.0	.76.5	78.7	81.3	82.1	. 83.4	85.7	2.63	89.1	87.9	91.0	91.6	92-1	92.0	90.5	87.4	67.1	82.5
800	62.2	70.8	75.5	78.1	80.7	8Z.Q	83.6	85.2	85-1	86.0	87.6	90.6	91.6	91.3	91.0	89.6	87.6	85.4	80.4
1660	59.4	69.9	74.6	77.1	79.5	80.8	82.3	84.2	84.2	86.6	85.3	88.4	69.1	89.2	89.0	87.2	85.6	83.2	78.0
1756	59.8	69.0	73.4	70.1	78.9	80.3	81.7	B3+3	63.0	85.5	54.1	87.0	87.4	87.8	87.3	85.3	83.7	51.4	76.1
1600	62.0	69.1	72.7	75.4	78.3	79.7	81.4	82.8	82.7	85.0	83.7	86.4	87.0	87.2	86.2	84.1	62.4	80-1	74.9
2000	63.5	69.U	73-0	74.9	77.6	74.4	81.0	83.0	82.8	84.9	83,4	86.0	86.0	86.7	85+4	82.9	61.2	79.1	73.7
2500	67.3.	73.2	74.6	75.5	78.0	79.9	81.9	84.2	B+++	87.6	87.5	BBoo	86.9	86.2	85.6	83.0	80.9	79.0	74.0
3150	74.7	81.0	80.5	79+4	79.1	80.7	83.3	86.6	87.2	90.0	89.2	90.4	90.7	88.5	66.4	63.1	81.3	79-4	74.9
4000	75.0	81.9	82.1	60.3	75.2	. BO.4	83.1	86.8	BT.9	90.2	89.0	92,3	. 91.8	90.6	87.7	_ 83.7	81.8	. 79.6	75.3
500û	63.5	73.1	73.7	74.2	76.1	78.2	80.9	83.B	85.3	87.9	86.9	89.6	89.6	89-1	87.1	82.9	80.3	78.0	72.9
6300	64,3	75.4	75.5	74.9	75-1	77+3	40.8	83.9	84.0	86-1	85-1	87.2	87.0	86.6	84.7	81.2	75.6	76.2	70.8
50G0	62.0	76.0	76.9	76.3	75.0	76.9	80.0				87.6	90.0	89.9	91.0	88.1	82.5	79.7	77-7	71.7
10000	55.7	72.1	74.4	74.3	73.5	75.7	78.4	. Bl.8	B3.6	86-7	86.4	89.9	90.5	91.2	89.0	85.2	81.5	78.5	71.3
DASPL	80.5					94.4													
PNLT	96.7	104.1	105.7	105.3	104.7	100.	108.4	111.2	111,8	114.3	113.3	116.7	116.2	115.9	114.6	112.5	111.0	110.5	107.4
PNL	94.8	102.6	104.1	104-1	104-7	106.2	108.4	111-2	111-8	114-3	113.3	116-1	116.2	115.9	114.6	112.5	111.6	110.5	107.4
DEA						92,1													
BAND	20	20	20	20	24	24	24	24	24	24	24	10	24	24	24	24	24	. 24	24
TCORR	1.9	1.6	1.7	1.2	6.6	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0		0.0	
		-						7.1		* * : :=:					·				

PNLT (INTEGRATED) = 124.86

## 2292 F POISS STRO-169 TRT INLET W/NDISS SUP TURE TRT FAN DUCT HOWLL TEP1150-1740

ENGINE MUDEL ENGING NUMBER	= JTAF -66 = 374054	TEMPERATURE	Ė	77.0 F	INLET TEMP TIME OF DAY	= 43.00 F = 1139
STAND DATE	= X=314 + 03/18/75	HURIDITY	E	70.0 PER CT.	BARM. PRESSURE WIND DIRECTION	= 30.44 IN. NG. = W
towite	- 03/10/15	GBSERVED RPM		6298	WIND VELOCITY	± 5 MPH

CORRECTED RPM - 6397

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.

1/3 CC FREGUERA											<b></b>									
		• •									IN DEC									
(HZ)	0	16	20	36	40	50	60	70	60	90	95	200	105	110	115	120	130	135	140	150
50	₩3 <b>-</b> ₩				84.5	85.9	<b>05.7</b>	86.3	87.4	88.3	89.2	89.2	90.4	91.1	92.1	93.2	. 96.7	98.9	101.3	104.7
63	04.0				85.1	85.9	85.6	46.4	67.3	88.4	B9.0	69.2	90.6	70.8	91.9	92.4			99.7	102.6
130	N3.1		64.3		84.2		84+3	85.2	85.7	86.2	87.0	87.1	88.4	88.6	89.2	89,2	91.2	92.4	94.5	96.8
100	₽ <b>4.</b> ]	£ 4. l	65.8	85.0	82.4	82.9	82.2	82.8	82.4	82.6	83.7	83.3	85.0	84.9	86.9	87.B	92.5	95.1	9B.9	101.9
125	86.0		83.4	83.1	83.2	83.0	83.3	83.4	64.1	86.1	87.0	88.3	89.2	91.0	92.9	9/1.1	99.5	100.9	103.6	105.9
160	84.8		65.5	85.9	86.6	87.6	BB.O	88.D	90.2	91.9	92.5	93.9		96.0	98.2		102.6			
200	83.7		06.5	68.0	89,0	89.5	89.2	90.5	92.3	94.4	95.1	96.8	97.7	99.0	100.8					
,:50	63.3		\$6.0	68.1	88.8	00.9	87.1	90.3	91.9	93.4	94.1	95.1	96.6	96.9					98.7	
115	83.1				06.5	86.1	88.2	86.3	88.7	89.7	90.6	91.7	92.8	93.9	96.6	97.9	99.9	99.7	100.2	97.0
400	υ <b>2.</b> D		83.8		115.4	85.9	86.6	86.9	89.4	92.5	92.7	94.6	96.0	96.5	98.0	98.1	98.0	97.1	97.4	95.3
560	06.2		114.2	86.3	86.5	8p.5	87.6	88.3	89.5	89.9	90.7	92.4	93.7	95.5	96.7	78.4	98.3	97.9	97.4	94 1
630	83.6		33.8	84.9	85-6	86.2	B6.4	86.7	88.6	91.3	91.8	93.0	94.0	74.5	95.7	95.7	96.3	95.3	94.9	91.0
<b>DDO</b>	63.2		U2.7	84.0	84.9	85+4	86.2	06.9	88.4	90.6	91.3	93.0	93.8	94.0	95.0	94.9	94.7	93.3	92.9	88.8
.1000	4,03	78,7	81.9	63.2	84.1	04.5	85,0	85.7	87.2	89.2	89.4	90.7	91.6	92.1	92.B	93.2	92.3	90.9	90.6	86.5
1250	81.8		81.2	02.3	'83 • I	84.0	84.5	. 85-2	P6+4	66.2	88.6	89.4	90.4	90.4	91.6	91.4	90.6	89.2	88.9	84.7
1600	£4.0		U1.6	81.2	62.6	83.3	83.6	84.6	86.2	87.8	88.1	89.0	90.0	89.6	90.8	90.2	89.1	87.8	87.5	83.5
2000	E. 49		82.0	81.5	82.2	82.7	83-7	84.6	80 1	87.9	88.1	88.7	89.5	88.8	90.3	89.5	88.2	86.8	86.7	82.8
2500	90.3			84.6	02.7		84.0	85.2	87.4	89.6	70.5	92.2	92.1	89.5	90.3	89.9	88.0	86.7	86.3	82.9
3150	98,4				87.0	84.5	84.8	86.7	89.7	92.2	93.0	93.9	94.1	93.6	92.9	91.0	88.5	87.3	87.2	84-6
4000	49 <b>-</b> 7			97.4	68.2	84.7	84.7	86.6	90.0	93.3	93.8	94.2	95.8	94.9	94.9	92.5	89.3	88.3	87.7	85.4
5060		148.₽		84.3	81.4	61.5	82.6	84.3	87.0	90.5	91.5	92.2	93.2	92.6	93.7	91.8	88.6	86.9	86.2	83.3
6300	93.7		71.5	86.8	83.2	80.R	82.0	84.1	87.0	89.3	89.6	90.0	91.0	90.1	91.3	89.4	87.1	85.2	84.8	81.8
8000	45.4			₩9 <b>-2</b>	B5.0		82.3	83.9	87.8		92.6	93.1	94.3	93.3	95.5	93.2	89.3	87.1	87.0	83.9
10000	93.6	92.4	92.4	87.9	04.1	3.08	81.3	85*8	85.8	B9.4	91.2	92.5	94.6	94.4	96.5	94.8	92.3	89.6	88.6	85.0
DASPL	104.9	103.4	102.8	100.3	99.2	99.0	99.4	100.3	102.1	104.3	105.0	106-1	107.2	107-5	108.9	109-1	110-2	110-6	111.8	112-5
PHLT	121.1	119.7	118.6	115.B	113.0	110.2	110.6	112.0	114.4	117-1	117.7	118.5	119.7	119.3	120.1	119.0	117.0	117.3	117.7	116.5
PAL	119.4	117.9	117-1	114.2	111 . b.	110.2	110.6	112.D	114.4	117.1	117.7	118.5	119.7	119.3	120.1	119.0	117-8	117.3	117.7	116.5
ABQ			102-4																	
DAND	20	20	20	20	20	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
TCURR	1.6		1.6	1.6	1.3	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0				0.0
	<b>МИНТХАН</b>	DASPL	<b>= 1</b>	12.50			СОНР	SITE	5	PL :	× 113.	77								

 MAXIMUM CASPL
 0
 112.50
 COMPOSITE
 SPL
 * 112.7

 MAXIMUM PNL
 120.07
 COMPOSITE
 PNL
 * 123.61

 MAXIMUM, DBA
 0
 105.60
 PNLT (INTEGRATED)
 * 130.7

**TABLE A-182** 

2242 F P0186 JT0D-104 TRT INLET W/NDISE SUP TUBE TRT FAN DUCT HOWLL TLP1150-1740

CONDITION = 6397

ALTITUDE = 200. FT SIDELINE

1/3 LCT FREQUENCY								HICPOP	HONE A	NGLES	IN DEG	REES							
(HZ)	10	20	30	40	. 50	60		. 80	90		100	105	110	115	120	130	135	140	150
50	65.5	72.1	76.4	78-1	81.1	81.9	83.3	84.8	85.8	86.7	86.6	87.6	88.1	68.7	89.4	91.9	93.4	94.9	96.2
63	65.4	77.9	76.7	78.7	81.1	81.8	83.4	84.7	85.9			87.8	87.8	. 88.5	89.0				
ab a	55.9	72.4	75.7	77.8	00.5	80-5	82.2	83.1	83.7	84.5	84.5	85.6			85.4				
140	66.2	70.9	74.2	76.0	78.1	78 . 4	79.7	79.8	80.1	81.2	80.7	82.2	81.8	83.5	84.0	87.7	89.6	92.5	93.3
125	65,3	71.5	74.5	76,8	79.0	79.5	80.3	81.5	83.6	84.5	85.7	86.4	87.9	89.5	91.3	94.7			
160	64.1	73.6	77.3	80.2	82.8	84.2	84.9	87.6	89.4	90.0	92.3	92.1	92.9	94.8	95.8	97.8	98.3		
200	63.7	74.5	79-4	82.6	84.6	85.4	87.4	89.6	91.9	92.6	94.1	94.9	95.9	97.4	97.2		1 97.4		
750	84.3	<u></u> 74.0	79.5	82,4	Q 4B.	85+3	87.2	89.2	90.9	91.5	92.4	93.B	93.8	95.2	94.9		92.3	92.3	
315	64.4		76.5	00-1	B1.2	84.4	85.2	86.0	87.2	88.0								93.6	
4 <b>0</b> 0	63.4	71.7	77.4	79.4	61.0	22.E	83.8	86.7	90.0	90.1	91.9	93.2	93.4	94.6	94.3	93.1	91 5	90.9	46.6
500	64.1	72.0	77.6	AC.D	82.6	83.6	85.2	86.8	87.4	86.1	89.7	90.8	92.4		94.6			90.9	85.4
<b>63</b> 0	02.4	71.5	76-1	79.1	81.3	82.6	83.6	86.1	88,7	89.2	90.3			92.3	91.9				
B00	61.7	70.3	75.1	78.3	80.4	82.3	83,8	85.7	88.0	55.7	90.3	90.9		91.5			87.6		
1000	59,, 2	69.3	74.2	77.5	79.5	81.1	82.5	84.5	86.6	86.8	89.0	88.7	88.9			87.3	85.2	84.D	
1250	60.1	60.4	73.2	76.4	78.9	80.6	62.0	83.6	85.6	86.0	86.6	87.5	87.2						75.6
1600	61.3	60.5	72.0	75.6	78.2	79.8	81.4	83.4	85.2	85.4	86.2	87.0	86.4	87.2	86.2		81.9		
2000	62.8	68.6	72.1	75.3	77.5	79.7	81.3	. 63.3	85.2	B5.4	85.9	66.5	85.5		B5.5		80.8	77.8	
2500	96.A	72.7	74.9	75.6	77.8	79.9	81.9	84.5			89.3	89.0				82.7			
3150	73.0		80.7	79.7	79.0	80.6	83.3	36.8	89.4	90.2	'91.0	91.0	90.2						
4000	72,9	. 51.5	. 85*0	80.6	79.0	. 80.3	83.1	87.0	90.4	90.9	91.2	92.6	91.4	91.0	58-1	83.6	81.8	80.1	75.0
3000	6.54	72.6	73.6	74.2	75.7	78.2	80.7	83.9	87.6	88.5	89.1	87.7	89.0		87.4		80.2		72.6
630U	63.1	74.4	75.5	75.1	74.6	77.4	EO_+	83.6	86.2	85.5	86.8	87.6	86.4	87.2	84.8	81.1	78.2	76.7	70.5
400b	61.47	75.7	77.0	76.3	74.8	77.3	79.4	84. 7	≎8.3	89.3	89.7	90.7	87.3	91.1	88.2	82.E	79.6	78.3	71.7
10000	54.2	71-7	74.3	74.5	73.5	75.9	78.5	85-1	85.9	87.6	88.8					85.2			
DASPL	79.6	88.1	90.7	92.4	94.0	95.5	97.1	29.4	101.6	102-2	103.2	104-2	104.3	105.4	105.2	105-3	105.0	105.4	10349
PNLT	95.0	103.8	105.7	105.7	104.7	105.4	108.6	111.5	114.3	114.9	115.5	116.6	115.9	116.3	114.	1.2.4	111.5	110.9	107.4
PNL	93.5	102.2	104.1	1040	104.7	106.4	108.6	111.5	114.3	114.9	115.5	116.6	115.9	176.3	174-B	112.6	111.5	110.9	107.4
DBA	78.7	07.2	C8.7	39.4	40.5	92.3	94.2	. 96.8	99.4	100.0	100.9	101.7	101-2	101.9	100.9	99.2	97.6	96.8	92.1
BAND	20	20	26	-20	24	24	24	24	24	24	24	26	24	24	24	24	24	24	24
CURR	1.5	1,5		1.2						0.0			0.0						

PNLT (INTEGRATED) = 125.31

2292 F PDIRG JTDD-169 TRY INLET WANDISE SUP TUBE TRY FAN DUCT HOWLL TEP1150-1740 **TABLE A-183** = 40.00 F ENGINE MODEL . TIME OF DAY BARH. PRESSURE WIND DIRECTION WIND VELOCITY = 1054 = 30.44 IN. HG. = H = 5 HPH TEMPERATURE HUMIDITY CORRECTED RPM FAA PART 26 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT. */3 DCT FREQUENCY HICROPHONE ANGLES IN DEGREES 70 80 90 95 100 (H2) 97.0 98.6 101.1 95.8 96.3 100.3 92.0 96.6 95.7 89.6 91.8 94.9 96.9 98.8 101.2 101.1 102.7 104.5 102.7 103.6 103.6 99.1 99.0 98.2 98.4 99.2 100.3 98.1 98.0 96.8 97.2 97.5 97.3 95.3 95.1 93.7 94.3 93.7 92.7 91.8 91.3 90.5 90.2 88.8 88.7 88.8 88.3 87.3 87.8 87.2 86.3 87.9 87.2 86.3 88.3 87.3 87.4 87.9 87.2 86.3 88.3 87.9 87.6 87.6 87.7 85.7 81.9 90.8 90.2 90.5 90.5 90.7 80.7 87.6 84.8285.85 83.85 83.85 86.69 86.69 86.69 86.69 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 86.70 8 85.3 85.7 83.7 81.1 81.6 87.2 90.0 90.0 88.6 86.6 86.8 83.8 83.2 81.4 81.4 85.6 86.4 90-3 883-6 97-0 97-2 96-1 95-4 95-4 95-4 91-2 81-5 81-5 81-5 94-8 84-5 84-5 84-6 84-2 95-0 95-0 91-6 91-6 63 08 83.3 62.5 92.7 82.6 82.0 82.5 83.5 83.7 61.9 81.9 81.9 91.2 79.2 97.2 97.2 97.2 97.2 02-3 00-7 81-3 54-6 87-4 08-3 85-6 86-1 48-0 81.0 82.0 86.6 88.6 100 175 160 200 250 315 400 500 630 86.77 92.89 94.99 94.99 97.09 97.09 97.09 97.09 97.09 97.09 97.09 97.09 97.09 97.09 700.0 98.5 95.0 95.3 95.4 92.1 90.9 90.0 89.8 92.4 94.6 93.1 90.6 94.8 85.9 86.3 86.5 85-6 05-3 05-5 05-5 05-5 04-2 02-7 02-7 02-7 02-7 03-1 03-1 03-1 03-1 800 1000 1256 1600 2000 64-1 83-8 62-5 81-6 82-4 64-4 90-8 91-4 64-1 86-8 84.9 84.4 83.7 83.7 83.6 85.0 85.0 85.6 85.3 84.9 85.7 87.3 86.9 84.5 84.3 87.8 87.7 89.2 92.0 93.1 90.2 89.1 90.5 68.0 90.2 89.4 89.0 91.7 93.9 95.7 92.7 92.8 92.9 67.8 96.3 97.6 80.6 91.5 2500 3150 4000 5000 84.8 82.7 81.0 81.0 79.5 90.2 92.5 6300 8000 10000 98.7 98.9 110.2 110.5 110.2 110.5 96.0 96.2 100.1 101.6 103.7 104.8 112.1 114.1 116.7 117.8 112.1 114.1 116.7 117.8 97.6 99.3 101.8 102.9 DASPL 105.0 103.0 121.t 119.3 119.5 117.6 105.4 102.9 118.7 119.8 120.3 118.2 119.3 119.7 103.6 104.3 104.9 PM.T 112.3 10 0.5 10 10 0.5 0.6 BAND 20 1.1 24 0.0 24 0.0 24 0+0 24 0.0 24 0.0 24 0.0 24 0.0 24 0.0 24 0.0 24 0.0 MAXIBUR DASPL HAXIBUR PHLT HAXIBUR PHL "AXIBUR DEA COMPOSITE SPL COMPOSITE PNL PNLT (INTEGRATED) 2292 F PD186 JTBD-109 TRT INLET NANDIAF SUP TUBE TRT FAN DUCT HOWLL TEP1150.1740 TABLE A-184 CUNDITION = 6401 ORNGINAL, PACE IS ALTITUDE = 200. FT STOELINE OF POOR QUALKIN 1/3 OCT FREQUENCY (HZ1

76.4 78.8 77.4 79.2 76.8 76.5 75.0 76.2 75.0 77.2 79.2 81.8 82.0 83.9 82.3 83.7 80.2 81.6 78.8 81.6 78.8 81.6 78.9 81.6 78.5 79.3 75.6 78.5 79.4 79.5 79.9 79.3 74.3 76.3 75.1 74.8 75.1 74.8 75.1 74.8 91.20 91.28 91.28 91.28 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.29 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 80.5 82.3 81.0 82.7 77.4 80.7 77.0 78.0 77.7 78.5 83.1 84.1 84.6 86.9 84.1 85.5 83.3 85.1 82.5 83.7 82.1 83.8 81.0 82.4 80.5 82.1 79.7 81.6 80.1 82.4 81.0 82.4 81.0 82.4 81.0 82.7 81.6 80.9 81.77.7 81.6 866.35111122672324985310542 866.359111122672324985310542 8699281809763591110542 869928185591110542 856529-138616821479136755688747-7 83.9 83.9 82.2 76.6 86.8 86.8 87.7 85.7 63 100 125 160 200 250 315 400 500 1000 1250 1600 74.2 73.7 72.1 72.7 76.6 78.8 79.7 76.9 77.4 79.3 76.2 74.8 73.4 72.4 73.6 74.7 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 3150 4000 5000 81.0 73.4 75.5 76.1 72.8 6300 8000 10000 98.8 101.0 102.1 102.7 103.6 111.1 113.9 114.9 115.8 116.6 111.1 113.9 114.9 115.3 116.1 76.4 99.0 100.1 100.6 101.2 DASPL PHLT PHL DFA 80.9 .. 88.4 90.3 97.0 104.5 104.8 95.3 102.8 103.5 80.8 88.0 88.5 20 24 1.0 0.0 24 24 0,0 0.0 24 24 0.0 0.0 24 0.0 10 0.5 10 10 0-6

PALT (INTEGRATED) # 125.31

TABL	E A-	18	5		7247 F	PC185	JT8D-	109 TR	T INLE	T W/NO	ISF SU	IP TUI	E TAT F	AN DUC	T HDWL	L TLPI	150.17	4D			
	engine Engine			s J16 2 3	U -00 74054			TEMP	ERATUR	Ē		<b>=</b> 1	77.0 F			TÌ	LET TE	DAY	=	31.00 907	-
	STAND DATE			s 03/	X-314 18/75			HUMI	DITY			B 1	70.0 PER	CT.		HI	RM. PR ND DIR ND VÆL	ECTION	=	N	ik. Hg. Mph
									RVED R E <b>ct</b> ed I				5239 5414			71	HD AEL	56411	-	•	ara
								FAA	PART 3	6 REFE	RENCE	DAY (	ORRECTE	D SPL	IN DB	- RA	DIUS ≈	150.	FT.		
1/3 GC FREUVEN									MICROP	NUNE A	NC1 EC	tu ni	COEEC								
(PZ)		٥	Lo	20	30	40	50	60	70	80	90	9		105	110	11-	120	130	135	140	150
50	61	. 1	80.6	A1.0	82.0	. 82.6	83.6	85.0	85.4	87.1	88.0	88.	9 89.1	60.2		92.4	^3 3	01.0	00.0		
63		.0	8.09	02.5		03.0	84.0	84.8			88.0						92.6	96.4		101.2	
ุยม		•4	02.3	82.44		82.6	113.6	83.4			85.6					67.8	89.9	92.5	94.2		
100	53		62.6	81.3		40.6	80.7				81.7	82.			85.2		86.8	89.9	92.7		
125	65		Ľ2. u	02.6	81.0		52-1	€2.0												101.6	
160 200	85 193	•3	61.4	£5.3	84.9	85.8	67.0	87.6		69.9	91.4				95.6	97.1	98.8	101.5	103-1	104.7	105.3
250	82		03.1	86.2	87.7 88.3	00.0	80.8	89.7			93.0 93.1						101.0				
315	62		U3.0	84.0	85 · B	20.0		88.2	88.7	41.6					98.1 93.6	98.5 95.5	97.4	99.1	99.2 99.5		98.4
400	82		82.6	£4.3		05.4	85.7	86.2							97.4		98.9	98.6	98.3		98.4 96.1
540	85	•6	b3•2	£4,U	07.3	86.4	86.4	87.6	68.6		89.5				94.8		97.7	97.8	97.9		
63D	03		82.1	E4.5		65.3	00.4	26.5		88.7		914			95.3	95.6	95.9	95.7	95.2		
850	81		61.0	62,8	83.0	84.6	85.6	B6.4		88.1	89.8				94.8	94.3	94.6	94.7	94.0		90.2
1000 1250	79		7.9.7	82.2	83.5	. B3.6	Ç4 - B	85.2	85.7		89.8				92.2	92.1	92.8	92.2	91.6		
1600	69 83		79.7	81.7 82.0		83.2	84.2	84.7		86.3	87.8				90-9	90-9	91.0	90.5	90.0		
2000	B4		05.5	82.6		82.2	83.6 83.2	84.3 84.3	85.0	86.1	87.6 87.6				90.6 89.7	90.5	90.3	89.5	88-6		
2500		. <del>7</del> .	89.9	87.7	84.3	82.6	83.6	85.1	B1-1	87.5	89.2				90.8	90.1	89.5 89.8	88.5	87.7 87.4		24.3 24.4
3150	48	.9	98.3	97.4	93.6	87.7	85.1	86.0							95.1	92.8	91.1	89.0	88.2		
4660	AB		48.Q	97.1	93.1	87+6	85.0	85.7	87.7	90.4	93.4				96.3	95.1	92.7	90.0	89.0		
5000	90		90.3	0B-7		82.4	82.3	83.7	85.7	87.6	90.5				94.1	93.5	92.0	89.2	67.8	86.7	84.5
6300 0008	93 93		93.3	92.5	88.7	83.5	81.1	82.7	05.3	67.7	89.5				91.3	70.9	89.4	87.2	85+8		
10000	, 45		94.3 93.2	92.6	87.9	84.5 83.4	81.2 79,7	82.5 81.2	84.4 83.0						94.5 95.1	95•3 95•4		89.1 91.8	87.5 89.7		
GASPL	164	• 2	104.0	103.4	100.9	98.8	95.7	99.4	100.6	102.0	103.9	105.	1 106-1	107.0	108-1	108.4	109.0	109.9	110.6	111.5	112-0
PNLT	170	- 7	119.7	114-3	116.6	111.4	110.3	111.2	112.7	114.6	116.9	110.	2 119.4	120.3	120.8	119.9	119.0	118.0	117.B	117.7	117.5
PNL,	118	-7	110.2	117-7	115.0	111.4	110.5	111.2	127.7	114.6	116.9	118	2 118.9	119.7	120.3	119.9	119.0	118.0	117-8	117.7	117.0
DHA	104	•4	104.2	103.3	100.0	76.5	96.D	96.9	A1, * 2	99.8	102.0	103,	3 104.2	104.8	105.5	105.2	104.9	104.3	103.9	103.5	101.9
BAND	21	9	19	19	19	24	24	24	24	24	24	24	10	10	10	24	24	24	24	24	5
TCOKR		. 5	1.5	1.7	1.6	0.0	0.0	0.0	0.0	0.0	0.0				0.5	0.0	0.0	0.0	0.0		0.5
	UHIXAM	<b>4</b> (	ASEL.	e 1:	12.77			COMP	DSITE	S	PL	= 113	. 81								

2292 F F0105 JT00-109 TRT INLET W/MOISE SUP TUBE TRT FAN DUCT HOWLL 1LP1150.1740

CONDITION = 6414
ALTITUDE = 200. FT SIDELINE

<b>FF.EGUENCY</b>								MICROP	HONE A	NG1 F.S	IN DEG	REES							
(HZ)	10	. 50	. 3D.	,, ∀0	50	60	70	60	90	95	100	105	110	115	120	130	.135.	. 140	150
50		. 49.1	73.5	76.4	78.8	81.2	82.4	84.5	85.5	86.4	86.5	87.5	88.4	59.0	89.5	62.1	93.4	94.8	96.5
63	63.0			77,2	75.2	61.0	82-4							88.4					
80	64.5					7916	F1.0	82.3	83.1	83.7									
100	04.7				75.9	77,2	78.2	70.4	79.2	79.7									
125	64-1		73,7		77.3	78.2	79.3	80.6	82.6						89.8		93.7		
. 160	63.4					83.8	85.1	87.3											
200	63.6			62.4															
250	65.0							69-1	90.6	91.4	92.6	93.6	45.0	95.1					
315	65.3							85.9	86.7	87.7	88.6								
400	64.2	72.2							89.7	90.6	92.1	93.4	94.3	94.4	95.1				
5QD	64.6	71 P					85.5	86.8	87,0	67.7	87.0	. 70.3	91.7	92.4	93.9	92.9			
630	63.3	72.2					83.9	86.0	89.4	89.3	90.6	91.3			92.1				
800	61.9	70.4	74.9				84.0	85.4	87.2	88.4	89.5	90.7	91.7		70.7				
1000	60,2		74.5							86.8			. 89.0	_88.6	. 88.9	87.2	85.9		
1250	59.3	9119	73.2		79.1		82.3	83.5			86.0		87.7	87.4	87-1	85.4	84.2		
1600	01.5	6H+9	72.7								86.6		87.4	86.9	86.3	84.4	82.9	80.9	75.B
2000,	64.2	65.5	73.6								86.3		86,4	86.5	85.5	83.3	81.7	BD-1	74.9
2500	67.6		74.6		78.3						87.7	88.5	87.5	86.3	P5.7	83.1	81.3	79.7	
3150	74.7		63.6		79.6	81.B	54.5			91.3	92.0	91.Z	91.7	69.0	86.9	83.5	01.9	80.2	76.3
4000		82.0	82.7	60.0		81.3			90.5		91.9	92-9	92.a	91.2	.88.3	84.3	82.5	80.4	76.3
500u	64.4	73.1	74.5		76.5	79.3								89.5	87.6	83.4	81.1	79.0	73.8
6300	64.5		77.4			70-1	81.6					87.4			84,8	81.2	78.8	76.9	11.6
30008 8000		.75.5			. 74.7	77.5	80.4					90.3			88.2	82.6	80.0	77.9	71.9
10000	55.0	71.9	74.3	73.8	72.B	75-8	78.7	81.7	85.3	87-2	88.88	89.8	90.8	90.6	88.9	84.7	81.5	78.7	71.5
DASPL	0.03	88.6	91-1	92,0	93.7	95.5	97.4	99.2	101.2	102.4	103.3	104.0	104.6	104.R	105.1	105-0	105.0	105-0	104.7
PNLT	700	104-7	TOUR	104.2	104+4	107.0	109.3	111.6	114.1	115.3	116.5	117.2	777.6	116-1	116_R	*******	111-Q	310. Q	4.00.4
PNL	74.0	10372	103-0	104-1	104.3	107.0	109.3	111.6	114.1	115.3	115:0	T14.4	114.0	116_1	††&_a	1112 4	111.0	TTA A	707 O
AEC	79.6	88-3	1.9,8	89.4	90.7	55*8	94.8	96.9	99.2	100.5	101.3	101.6	102.1	101.5	100.8	97.1	98.1	96.8	92.9
BAND	19	19	19	24	24	24	24	24	24	24	10	10		24	24	24	24	24	_
TCORR	1.5	1.7		0.0					0,0				. 0.5						. 0.5

PHLT (INTEGRATED) * 125-78

2292 F PC186 J188-109 TRY INLET WANCISE SUP TUBE TRY FAN DUCT HOWLL TUP1150-1740 TABLE A-187 TIHE OF DAY BARH. PRESSURE = 1029 = 30.44 IN. HG. TEMPERATURE WIND DIRECTION WIND VELOCITY HUMIDITY , 5 HPH = X-314 = 03/18/75 STANL FAA PART 36 REFERENCE DAY CORRECTED SPL IN OB - RADIUS - 150. FT. 1/3 CCT FREQUENCY (15H) HICROPHONE ANGLES IN DEGREES 70 80 90 95 100 90 95 100 105 110 115 120

92.1 93.0 93.1 94.1 95.5 96.5 98.2 1

92.6 93.4 94.3 94.9 95.8 97.1 98.3 1

90.9 91.3 92.3 93.7 94.4 95.4 95.4

90.4 91.2 92.6 93.3 95.3 96.8 99.7 1

90.7 97.3 98.7 99.7 100.9 102.9 104.9 1

90.6 100.5 101.8 102.8 106.5 106.2 107.5 1

90.3 99.7 101.0 102.3 104.1 105.1 106.1 1

96.3 97.3 98.6 99.5 101.1 102.8 104.5 1

98.4 99.7 101.2 102.8 104.2 104.9 105.7 1

96.8 97.4 99.0 100.2 101.6 103.1 105.1 1

97.6 98.4 100.0 101.2 102.7 103.1 105.1 1

95.8 96.8 98.2 99.5 100.9 10.3 103.8 105.1 1

95.8 96.8 98.2 99.5 100.9 10.1 103.8 103.8 1

95.9 95.4 96.6 97.6 97.7 98.9 99.4 100.8 1

93.7 94.2 95.4 96.2 97.2 97.3 97.3 93.4 93.8 94.7 95.0 97.8 96.5 96.3 98.9 98.9 93.7 94.2 98.9 98.9 93.3 93.3 93.7 94.3 94.8 95.2 97.5 96.0 95.9 96.0 96.6 97.6 98.9 96.0 95.9 96.1 95.5 94.8 95.2 96.2 96.2 96.1 95.5 96.8 96.6 97.4 98.9 99.0 97.5 96.0 95.9 96.7 97.8 96.2 98.9 98.9 96.4 96.7 97.8 98.2 98.9 98.9 96.4 96.7 97.8 98.2 98.9 98.9 96.4 96.7 97.8 98.2 98.9 98.9 97.5 96.0 95.9 96.7 97.8 96.0 95.9 96.4 96.5 97.5 94.8 95.2 96.2 96.1 95.5 96.8 96.4 96.7 97.8 98.2 98.9 97.5 96.0 95.9 96.7 97.8 96.0 95.9 98.9 97.5 96.0 95.9 96.7 97.8 96.8 98.9 98.9 96.4 93.9 98.9 96.4 93.5 94.9 95.5 94.8 109.2 110.9 111.2 112.2 113.5 114.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4 1 120 - 130 135 105 110 115 60 10 20 30 40 50 89.68 89.68 86.64 96.29 96.29 95.30 91.66 91.81 91.81 80.11 91.0 910.4 970.8 697.8 977.8 977.8 977.8 977.8 977.8 977.8 977.8 977.8 977.8 977.8 977.8 977.8 977.8 977.8 977.8 977.8 50 63 80 100 125 160 65.4 65.6 69.0 91.6 90.7 87.1 86.9 65.8 88.5 71.1 92.2 92.1 90.1 90.3 90.2 90.1 86.5 87.8 87.7 86.5 91.8 94.8 94.8 91.6 91.6 91.6 88-9 98-7 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 97-8 69.7 69.4 89.1 88.4 92.0 91.6 91.1 69.8 88.8 400 500 104-3 103-9 101-1 99-2 97-3 95-8 94-9 94-2 94-7 94-4 93-2 92-2 90.3 69.0 630 800 1000 84.4 03.6 64.9 90.0 90.5 90.4 95.6 91.2 89.2 89.4 88.7 86.6 86.3 88.3 68.6 87.5 87.9 87.3 87.2 89.1 85.9 62.1 67.4 66.8 88.2 87.5 87.5 90.4 67.0 64.8 84.2 83.8 1250 94.0 93.0 92.5 92.6 92.0 90.8 2000 2500 3150 4000 5000 6300 49.8 49.8 89.4 94.2 96.0 86.2 88.3 87.7 9000 10000 104-8 106-0 107-5 109-2 115-8 117-2 119-6 171-2 115-8 117-2 119-6 121-2 102-0 103-3 105-1 106-8 112.2 113.5 123.8 124.8 123.8 124.8 109.5 110.6 103.2 103.6 103.3 103.5 118.9 116.9 118.3 116.6 117.3 117.3 116.8 115.0 161.0 101.9 101.3 100.3 103.6 104-5 DASPL 124.6 124.6 111.9 PNLT PNL DBA 24 0,0 24 0.0 . 0.0 24 24 0.0 24 0.0 24 0.0 24 0.0 24 0.0 24 0.0 24 0.0 BAND 20 24 24 1-1 0-0 0-0 24 0+0

٠.

MAXIMUM DASPL = 122.45 MAXIMUM PNLT = 126.72 MAXIMUM PNL = 126.72 MAXIMUM DDA = 114.07 COMPOSITE SPL = 122.61 COMPOSITE PHL = 128.47 PNLT (INTEGRATED) = 135.50

TABLE A-188

2292 F POI86 JT80-109 TRT INLET WANDISE SUP TUBE TRT FAN DUCT HOWLL TEP1150-1740

CONDITION = 7432

ALTITUDE = 200. FT SIDELINE

TO ENT FREQUENCY (1)Z. MICRUPHONE ANGLES IN DEGREES 80 90 95 100 105 110 115 120 130 135 140 150 89.6 90.5 90.5 91.3 92.5 93.1 94.4 97.3 99.2 100.7 1
90.1 90.9 91.7 92.1 92.8 93.7 94.5 97.3 99.2 100.7 1
88.4 88.8 89.7 90.9 91.4 92.0 92.3 94.7 95.7 97.4
88.4 88.5 86.2 87.2 87.4 88.4 89.2 92.1 95.2 97.1
67.9 88.7 99.0 90.5 92.2 93.4 95.9 99.6 102.5 104.3
94.2 94.8 96.1 96.9 97.8 99.5 101.1 103.9 106.1 107.2
94.2 94.8 96.1 96.9 97.8 99.5 101.1 103.9 106.1 107.2
94.2 94.8 96.1 96.9 97.8 99.5 101.1 103.9 106.1 107.2
95.9 97.1 98.3 99.5 101.0 101.7 102.3 102.1 102.0 102.7
96.8 97.1 98.3 99.5 101.0 101.7 102.3 102.1 102.0 102.7
95.9 97.1 98.5 100.0 101.1 101.5 101.9 102.1 102.7 103.3
95.9 97.1 98.3 99.6 99.7 101.3 100.9 101.8 101.5
95.9 97.1 98.5 100.0 101.1 101.5 101.9 102.1 102.1 103.0
94.3 94.8 96.3 97.3 98.3 99.6 99.7 100.0 99.4 98.8 98.2
93.2 94.2 95.5 96.6 97.8 97.8 97.8 98.7 98.9 97.8 98.7
93.2 94.2 95.5 96.6 97.8 97.8 98.7 99.9 101.3 102.9 101.8 101.5
91.6 92.1 92.8 93.7 94.8 95.7 95.9 96.2 96.1 95.0 93.7
91.6 92.1 92.8 93.7 94.8 95.7 95.9 96.2 96.1 92.4 90.9
91.4 91.5 92.6 93.2 94.0 93.7 93.3 92.2 90.4 88.6 85.9
90.7 91.1 91.9 92.0 92.5 92.9 92.3 90.4 88.1 85.2
93.0 92.4 93.3 93.1 92.7 91.7 90.6 88.7 87.0 85.2
93.7 94.5 95.0 95.8 96.4 93.6 91.6 89.0 87.2
93.0 93.7 94.7 94.9 95.3 94.0 92.0 98.6 88.6 85.9
93.9 93.7 94.5 95.0 95.8 26.4 93.6 91.6 89.0 87.2
88.8 89.6 90.2 91.2 91.1 90.7 88.7 85.1 82.3 80.1 20 30 50 60 77.9 79.2 76.4 77.8 79.2 62.9 85.0 86.3 83.3 83.3 82.9 82.3 85.57 62.48 88.82 91.12 91.28 90.91 91.28 90.91 91.28 90.91 91.28 90.91 91.28 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 91.34 88572921473258514716633 999999999999988899907644 _75.0. 75.9 74.9 70-2 74-9 69-9 76,6 69-4 79-2 69-9 80-2 72-7 80-1 71-4 76-0 71-0 78-0 71-5 72-0 67-0 76-1 64-9 75-2 63-9 74-0 64-3 73-2 69-4 75-0 68-2 74-5 66-8 75-0 70-3 79-1 100 125 160 200 250 315 400 500 630 1000 1250 1600 2000 2500 79.8 78.3 77.6 76.6 77.8 77.5 80.0 76.3 73.5 72.0 70.2 80.5 79.2 77.0 3150 4000 5000 6300 8000 79.1 74.4 71.6 70.0 67.0 99.5 100.9 102.8 104.7 106.5 107.3 108.4 109.3 110.3 109.8 111.6 113.9 116.6 118.4 119.1 119.9 120.7 121.4 109.8 111.6 113.9 116.6 118.4 119.1 119.9 120.7 121.4 96.3 97.9 100.0 102.2 104.0 104.7 105.7 106.5 107.3 110.3 11019 111.6 112.4 121.4 120.5 119.9 119.5 121.4 120.5 119.9 119.5 107.3 107.2 107.3 106.9 DASPL PALT PAL DBA 24 Q.0 24 0.0 24 0,0 24 0.0 24 0.0 24 24 24 0.0 0.0 0.0 24 0.0 BAND 0.0

PNLT (INTEGRATED) = 130.60

TABL	_E A-18	39	:	?292 F	PD167	JTED-1	US TRT	INLET	M/NDI	SE SUI	TURF	TRT F	וא סטכז	HONLE	. TLPII	50.174	0			
	ENGINE ME		= JT61 = 3	74 <b>-</b> 54			TEMPE	RATURE	:		<b>- 7</b> 7.	.0 F			TIP	ET TEN IE OF C	AY	=	6.00 ! 1230	: [H. HG.
	STAND DATE		E 03/	K-314			HUHIO	YTĮ		•	= 70	O PER	ÇT.		HIR	D DIRE	CTION	= .	\$	1911
	DATE		- 037	10713				VED RE			= 736 = 749				MIL	ID ACTO	T		6 /	1711
											DAY CO		1 921 1	ru na	- RAT	itric e	180.	ET.		
1/3 00	7							A	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, <b>, ,</b>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1171	7205 -	1300	•••		
FREQUEN								LICROPH	IONE AS	GLES :	IN DEG	REES								
(HZ)	Φ.	10	20	30	40	50	60	70	90	90	95	100	105	110	11.	120	130	135	140	150
50	85.6		85.2					89.7			93.0			95.5	96.7			105.2		
63		05.6		87.5	87.9	88.9	89.3	89.7		92.9			.94.9					105.0		
80 100	86.2 88.4		88.1		86.2 86.4	B6+3	86.6 6.68	6847 67.0	90.5 87.4	91.1 87.5	91.4	92.5 88.7	93.2	94.1 90.5				100.6		
125	71.6			66.3 88.1	87.8	86.4	87.7	87.6		91.4	88.0 92.3		94.0	05.0				101.8		
160	40.7					93.6	92.7	92.8	95.1	97.1	98.1	99.2	100.1	101-6	103-1	105.3	100-5	112-4	114.2	116-1
200	87.7					95.0	93.8	95.9	90.1	100-0	101-0	101.7	103.4	104.9	106.3	107-2	110.6	112.1	113.4	112.1
250		90.7		95.0			95.5	96.6	98.1	99.6	100.1	101.1	102.7	103.8	105.4	105.5	106.9	107-3	108-9	110.4
315		90.1		92.0	¥3.5	93.1	95.2	95.B	96.2	96.9	100.1 97.8	99.0	100.2	101.4	103.3	104.9	104.8	108.6	110.0	111.0
400	11.61			92.4	72.1	92.3	92.9	93.4	95.5	99.2	100.0	101.4	103.3	104.4	105.0	105.5	106.8	107.4	109.3	111.2
5,00	40.5	89.6	41.4	91.9	92.9	43.4	93.9	95.5	96.9	97.4	98.2	99.7	101.2	102.8	104.1	105.4	106.6	107.8	108.5	111.2
630	09.3	86.6	40.6	91.4	91.7	92.5	92.9	93.6			98.7	100.0	101.7	102.7	103.6	103.4	104.4	104.6	104.9	105-9
800	86.7	86.1	89.4	90.3	90.B	91.7	92.3	93.2	94.5	96.7	97.5		100.4							103.0
1000	85.4		8.6			90.8	91.4	92.2	93.8	95.8			. 98 - 3		100.0	100.7	101.0	100.4		
1250	64.4		67.3			89.8	90.3	91.5	93.0	94.9			97.2		98.6				97.2	
1600	85.1		87.1				27.8	91.1	92.8	94.3				97.2						
5000	89.7			68.1		6B+4	1.7.2	90.4	92.4	94.1		94.9			96.5		95.5	94.7	93.6	
2500	90.7		68-6			68.1	89.2	90.5	92.3	93.9				95.1	95.4		94.5		92.4	
3150		89.7					69-3			95.6			96.5		95.3		93.B	93.1	91.9	
.4000 5000	95.4		90.5	89.9		68.0	89.4	91.9	94.7 93.3		97.3		_99.3		97.2	95.6	93.9		92.2 91.3	
6300	41.7 90.3		08.6		85.7 83.9	86.3 84.5	87.4 05.0	90.1 08.2		96.5 94.2			98.B 97.2	98.7 96.8	77•7 76•7	95.7 94.9	93.6	92.5 91.6	90.5	
8000	90.3				_83.4						93.9		96.2		96.1		92.4			
10000	90.7		89.B		B3+4		84.3		89.9	93.4	94.1	95.1	97.1	96.5	97.0	95.0	93.3		90.8	88.3
DASPL	103.6	103.1	103.8	103.7	103.9	104.5	104.9	106.0	107.8	109.9	110.4	111.4	112.8	113.7	114.7	115.4	117.6	119.2	120.8	122.5
PNLT	118-9	115-7	118.7	115.0	114.2	114.6	115.6	117.4	119.7	122.0	122.2	123.2	124.3	124.6	124.4	123.9	124.8	125.5	126.2	126.7
PN1.							115.6													
DBA	102.2	101,8	161.8	100,6	100.5	101.2	101.9	103.4	105.3	107.6	107.9	108.9	110.1	110,7	111.1	111.2	111.9	112.3	113.0	114.1
BAND	20	20	20	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
TCORE	1.3	1.6	1,5	. ,0.0	. 0+0	0.0	.0,0	0.0	0.0	.0.0	0.0	.0.0	0.0	0.0	. 0+0	0.0	0.0	0.0	0.0	0.0
	HUBIXAH HUBIXAH HUBIXAH HUBIXAH	PNLT PNL	= 1	22.50 26.66 26.66 14.08			COMPO COMPO PNLT	ISITE	SI PNI GRATEI		= 122.° = 128.° = 135.°	54								

2242 F PUIET JT60-109 TRT INLET M/NOISE SUP TUBE TRT FAN DUCT MONLE TEP1150-174

CONDITION = 7459

ALTITUDE = 200. FT SIDELINE

1/3 GGT FREQUENCY								41CROP	HONE A	IGLES	IN DEGI	REES							
(HZ)	10	20	30	, 40	50	ĄΩ	70	80	90	95	100	105	, 110	115	.120	. 130	. 135.	140	15Q
50	06.3	73.3	77.7	80.4	83.0	84.7	86.7	88.5	90.0	90.5	91.2	91.7	92.5	93.3	94.2	97.3	99.7	100.3	102-1
63	67.8	74.9	79.0	81.5	84, 1	85.5	86.7	B8.8	90.4	90.9	- 91.4	92.1	92.4	93.6	93.8	97.6	99.5	101.1	100.5
ďŪ	49.3	76.2	78.7	81.8	83.5	84.8	85.7	87.9	88.6	88.9	89.9	90.4	91.1		91.8	94.3	95.3	97.4	96.1
100	70.3	75.6	77.7	80.0	81.8	82.6	83.9	84.8	85.0	85.5	.86.1	86.9	87.4	88.5	89.8	92.4	96.3	97.8	99.6
1,25	70 1	77.0	79.5	81.4	43.6	63.9	84.5	85.9	88.9	89.8	91.Q	91,2	92.7	93.9	96.5	10D.3	103.1	105.1	106.7
·166	69.3	79.8	63.3	E6 • 1	88.8	86.9	89.7	92.5	94.6	95.6	96.6	97.3	98.5	99.7	101.5	104.7	106.9	107.8	107.5
200	69.9	80.5	85.1	87.0	90.1	90.0	92.B	95.4	97.5	98.5	99.0	100.6	101.8	102.9	103.4	105.7	106.5	107.0	103.5
250	72.6	80.5	86.4	88.9	90.3	71.7	93.5	95.4	97.1	97.5	98.4	99.9	100.7	102.0	101.7	102.0	101.7	102.5	101.8
315	71 - 8	75.6	33.3	87.1	88-2	91.4	92.7	93.5	94.4	95.2	96.3	97.4	98,3	99.9	101.1	101.9	103.0	103.6	102.3
400	71.6	78.9	03.7	85.6	87.4	89.1	90.3	97.8	96.7	97.4	98.7	100.5	101.3	101.6	101.7	101.9	101.8	102.8	102.5
500	71.0	74.2	63.2	86.4	88.5	90.1	92.4	94.2	94.9	95.6	97.0	98.3	99.7	100.7	101.6	101.7	102.2	102.0	102.5
630	69.8	78.3	82.6	85.2	87.6	89.1	90.5	92.7	95.6	96.1								98.4	
800	67.0	77.0	81_4	84.2	86.7	88.4	90.1	91.8	94.1	94.9	96.0		98.3			98.7			
1000	65.7	76.0	80.4	83,4	85.B	87.5	89.0	91.1	93.2	93.5	94.2	95.4	96.3	96.5	96.8	95.0	94.7	93.3	90.4
1250	64.5	74.5	78.9	87.2	84.7	86.4	88.3	90.2	92.3	92.B	93.3	94.3	94.6	95.1	95.1	93.7	92.2	90.5	86.5
1600	54-2	74.0	- 78. I	81.3	63.9	85-8	87.9	90.0	-91.7	92-1	92.7	93.7	94-0	93.9	93.2	92.0	90.3	88.3	83.7
2000	69.2	75.4	78.7	81.L	83.2	85.2	87.1	. 89.4	91.4	91.6	92.1	92.7	92.9	92.9	92.0	90.3	88.7	86.7	81.4
2500	69.5	74.8	78-1	80.1	82.6	85.1	87.2	89.4	91.2	91.3	91.8	91.9	91.8	91.7	90.9	89.2	87.5	85.3	79.9
3150	46.1	74.9	77+0	79.6	82.9	B5-1	68.2	90.7	92.8	92.7	93.5	93.4	92.6	91.5	90.2	88.3	86.8	B4.6	79.5
4000	69.7	79.3	.79.5	80.2	82,3	85.0	88.4	91.7	94.6	94.4	95.2	96.1	95.7	93.3	91.2	88.2	86.7	84.6	79.9
5000	04.4	74.9	76-2	78.0	80.5	83.D		90.2	93.6	93.7	94.4	95.5	95.1	93.7	91.3	87.8	ā5.8	83.6	78.6
6300	40.4	72.2	74.0	75.8	76.5	81.2	84.5	87.8	91.1	91.6	92-7	93.8	93.1	92.6	90.3	87.0	84.6	82-4	76.9
8000	57-1	71-1	. 73-1	74.7	76.8	79.7	83,3	87.6	90.5	90.6	91.0	92.6	91.6	91.7	88.9	85.9	83.8	81.8	75.5
10000	51.9	69.1	72.1	73.B	75.0	78.9	82.4	86.2	89.9	90.5	91.4	93.1	92.2	92.2	B9-6	86.2	83.6	81.2	74.7
DASPL	82.4	90.8	94.7	97.4	99.5	101-0	102.9	105.1	107.2	107.6	108-7	109.9	110.6	111.2	111.5	112.7	113.6	114.3	113.9
PNLT																			117.7
PAL																			117.7
DEA							100.1												
BAND	50,	26	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
TCCRR	1.5					0.0	0.0							0.0		0.0			0.0

PNLT (INTEGRATED) = 130.76

TAB	LE A-	191	2	292 F	PD185	JT8p-1:	69 TRT	INLET	W/NDI:	SE SUP	TUBE	TRT FA	N OUCT	HONLL	TLPII	50-174	ю			
	ENGINE HO		= JTAD					RATURE				0 F			ihl Tik	ET TEN E OF D H. PRE	IP IÁY	-	852 852	: LH. HG.
	STAND			-314			нинто	ITY			70,	Q PER	CT.		HIH	D DIRE	CTION		H	4211
	DATE		= 03/1	0/75				VED RP							MAII	D 4550		_		
								CTED R				-		U A6	_ 040	731E -	160.	ET.		
							FAA P	ART 36	REPER	FWLF I	IAT CUP	INCL I CL	, 255 1	H DB	- 1142	103 -				
1/3 DET FREGUENC								ICROPH			N DEGE	REES				•••		135.	140	150 .
(HZ)	G	10	70	34.	40	50	60	70	80	90	95	100	105	110	,	120				
50 63	85.5 85.2	84.8 85.6	65.3 86.9	86.5 87.6	87.0 87.6	88.1 88.4	89.3 89.5	90.3 90.0	90.5 90.8	92.5	92,8 92,9	93.6		95.9 95.9	96.7	97.9	102.6	105.1	107.7	110.5
86	66.7	17.5	88.1	87.2	98.0	87.9	86.7	88.7	69.9	90 B	91.2	92.3		94.1	95.2	96.0	99.2	101.5	103.8	106.9
100	89.1	6H-0	86.8	66.0	86.2	86.3	86.1	86.4	86.8	86.9	87.6		89.8	90.6	91.5	93.2	97.4	100.7	104.5	107-7
125	91.3	87.0	84.5	88.6	87.9	68.6	87.9	88.3		91.4	72.3	93.0	94.4	95,5	97.7	99.4	105.3	10/44	114.2	115.2
160	90.4	87.8	91.4	92.4	92.3	93.7	93.2	93.7	95.6	97.5	90.1	99.2	100.3	101.6	103.3	107.7	107.7	117.0	117.4	113.0
200	87.3	88.2	92.4	94.0	94.3	95.0	94.6	96.8			101-1	101.9	103.3	104.6	100.3	101.4	110.3	TOR. 2	102.5	110.9
250	68.7		92.5	94.7	95.1	94.7	95,3	96.4	97.8	99.0	97.7	101.0	102.0	100-7	103-2	104.5	106.7	108-1	110.2	111.4
315	89.6		90.4	91.7	42.4	92.8	95.2	95.1			. 71.0	101.4	102.0	104.0	104.7	105.3	106-0	108-2	110-0	111.6
400	69.1	£14+4	90.5	72.1	91.8	92.2	92.7	93.5	95.2	98.4 96.9	7707	20107	100.7	102.3	103.7	104-8	106.4	107.2	108.7	110.8
500	90.4	89.6	90.7	11.3	92.8	93.1	94.2	95.6		97.4		20.0	101-4	102-5	103.2	103.3	104.2	204.6	105.0	106.4
630	09.3		90-7	91.2	91.5	92.2 91.5	93.0 92.4	93.7 93.0	94.1		97.3	98.6	100-0	101.3	101.9	102.4	103.8	103.4	103.4	103.4
600	86.6	86.4	88.9	69+8	90.7	30.0	91.3	92.2	93.4		95.8		97.9	99.0	99.6	100.3	100.9	100.5	100.4	99.7
1000	85.4		88.1 87.2	88.9 87.6	87.9 89.0	89.9	90.6	91.5	92.7	94.2	94.5			97.7	98.3	98.6	98.7	98.3	97.0	96.1
1250	84.3		87.0		80.1	69.1	89.9	91.3	92.4	93.9	95.0			97.1	97.5	97.1				93.4
1660 2060	85.7 89.2		89.1		68.1	88.8		90.6	91.6	93,5						96-0				
2500		90.2	UB-8		87.6	88.5	89.8	91.0	92.2	93.4								94.1		70.6
3150	91.1		89.7		87.4	88.5	90.3	92.1	93.5	95.1						94.2				
4000	96.5		95.0			88,7		92.4	95.1	97.6						.95.7			93+2	
5000	92.1		90.5		86.5	87.1	88.6	90-8	93.7	96.8										89.2
6300	90.6		89.2		84.7	85.2	86.9	88.9	91.2		95.1	96.0				95.0		91.5		88.2
8000	90.5	90.4	89.6		83.9	83.7	85.5	87.8	90.7	93.2	94.0	74.5	95.7	7701	7: 40	94.3				86.4
10000	90-4					82.7					•	94.7					_			-
DASPL	103.7	103.4	103,8	103.8	103.9	104-4	105.2	106.2	107.6	109.5	110.4	111-4	112.6	113.6	114-5	115.2	117.5	125.4	120-1	122.7 127.7
PNLT	119.7	119.4	119.1	116.9	114.6	115.0	116.2	117.7	119.7	121.B	122.6	123+1	15401	124.0	12/ 4	123.0	174.6	125.6	126	127-7 127-1
₽NL																				
DEA	102.5	102-2	101.9	100,9	100.6	161.2	102.3	103.6	102+5	101.5	TOUST	Indeo	20750	*****						
BAND	20	20	20	20	74	24	24	24	24	24		. 24	24	24	24	24	24	24	24	. 0.6.
TCORR	1.6		1.6		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0		
		PNLT PNL	= 1 = 1	22.70 27.69 27.10			COMP	OSTTE OSTTE (INT	PN	L	= 122. = 126. = 135.	73								
	HAXIHUH	DBA	= 1	14.28																

2202 F PRISS ATRO-109 TRT INLET WANDISE SUP TUBE TRT FAN OUCT HOWLL TEPTISO-1740

CONDITION = 7463

ALTITUDE = 200. FT SIDELINE

1/3 OCT							itranal	TONE AN	GLES T	N DEGR	EES								
FREQUENCY (HZ)	1020	30.	40	50	. 94						105	110	115	150	130	135	140	150	
	67±0 73						4				61.7	97.9	93.6	94-3	97.8	-99.5	100.9	102.4	
50	67.8 . 75.	4 78.0	10.0	03.3	07+7	01+3	0107	70.0	7013	01.4	92-2	92.9	93.3	74.1	97.5	99.6	101.3	102.0	
53.	67.8	0. (1-1		0.3+0	D2 • 1	0140	97 7	Sort.	70.7	40.7	90.5	91 1	91.8	92.7	94.4	96.0	97.4	-98-3	
80	69.7 76.			83-T	84.9	0200	01.5	9012	OF 1	0F D	87.0	87.5	88.1	10.4	92.6	95.2	98-1	99.1	
160	70.1 74.			81-5	82.3	83.3	84.5	00.0	0241	00.4	07.4	92.4	94.3	85.6	100-5	102.4	105.1	106.6	
125	69 • 977			43.8	84-1	82.2	00.6	OF O	05.6	7047	07 5	98.5	90.9	101.1	104-6	106.3	107.8	107-1	
160	69.8 79.		85-9	88.9	87.4	70.6	73.0	72.0	77.0	20.0	100.5	101.5	102.9	103.6	705-4	106.4	107.0	104.4	
200	70.1 80.	4 B5 4	87-9	90.1	90.0	73.7	75.3	Y fab.	7040	77.2	10000	100	701.4	102.1	102.0	102.6	102.4	102-3	
250	72,8 80	586.41	88.7	. 89,8.	91.5	93+3	. 75 L	. 70.0	7/*4	70.0	77.00	47.645	20401	100.7	101.8	102.3	103.8	102-7	
315	71.6 78.	3 83.0	86.5	57.9	91.4	92.0	73.0	93.7.	12+ L	70.0	7/01	97.7	101.3	101.5	101.4	102-6	103-5	102-9	
400	71.0 78.	4 83-4	85.3	. 87-3	88.9	90.4	97-5	72.7	71.3	70.1	TODAT	99.2	100.3	107.0	101.5	201.6	102.2	102-1	
500	71-0 <u>7</u> 8			88,2	90.4	92.5	. 93 · B	7707	72.2	70.0	. 7145	9746.	TOO	105 K	60.3	CR 9	98.5	97.6	
630		4 82-4				90.6	92.5	74.8	70.1	77.2	70.0	99.4	7740	07 8	DQ . A.	9717	96.8	94.5	
800		5 80.9		56.5	88.5	89.9	91.4	93.5	74.7	72.7	7(01	98.2	70.7	7047	05 G	62		90.7	
1000	65-375			8546;	57.4	89.0	90.7	92.4	73.2	.9.4.0.	9540		70.4	70.7	77 67 D2 (4	7740	01 1	17.0	
1250	63.9 74	4 78-7		84.8	86.7	88.3	89.9	91.6	91.9	92.0	73.7	94.5	7740	77.6	92.2	50 L	85.0	76-7	
1600	65.6 73			84.0	85.9	88-1	89.6	91.3	92.3	92.7	73,*	93.9	7367	4397	72.02				
2000	70.1 75.	7 80.4	.81-2.	83.¢	85.5	. 87.3	89.4	90.8	91.7	92.43	72+4	92.6	73.0	. 72.0	70.0	84.0	86.3	80.7	
2500	67.9 75	.0 78.1	80.5	83.2	B5.7	87.7	89 7	90,7	91.5	91.7	71.7	91.9	71.7	71.0	57-2	00.0			1.
3150	66.6 75	3 78-2	80.1	23 A	. RA.T	78.7	•	97.3	93.0	93.6	:93.1	92.9	71.0	An an	0040	.04.0	0200		
4000	70.6 . 29	981.2	81.1	83.0	85.9	88.9	9:+1	94.7	95.7	95.2	95.9	96,2	95 • 1.	71.3	8701	81.45	83.0	81.0	
5000	65.0 74	9 77.3	78.8	81.3	01 7	977	0n. A	07.0	94.5	95.1	95.3	95.4	94.0	71.0	0040	CD+D	9741	79.7	
6300	61.5 72	6 74.5	76.6	79.2	82.3	85.2	88.0	70.8	92.0	92.8	93.2	73.2	92.5	90.4	6740	02.4	00.0	77.7	
8000	57.B., 71	.3 73.3	1 75.2	. 77.2	80.5	07.0	87.3	60 - U	On.7	91.1	· 92-1	91.7	.9L.Z	88-7	80.2	リチェリ	06.03	. 10eV	
10000	51.9 68	7 72.0	73.8	75.6	79-2	82.3	85.7	89.3	90.3	91.0	92.3	92.0	91.6	58.7	86.3	. 83.5	81.0	1448	
Diebi	82.6 90	.7 94.5	97-3	99.4	101-2	103.1	104-9	106-B	107.8	108.6	109.6	110.4	111.1	111.4	112.6	113.4	. 114,5	114.1	
DASPL PRLT	AF 2 361	4 107 6	****** L	100 6	115.0	774.7	114.7	. 119.0	119.7	120-Z	170.9	121.	12001	11701	11.00	11751		T1001	
PHL DBA	79-4 BT	8 91.4	93.8	. 76 J	98,3,	100,3	102.3	1:4.4	105.3	106-0	106.8	107,3	107+4	107.0	106.9	106.7	106.8	105.5	. '
- T577, 853		Section 1985							·			24				70 17	24		2.5
BANG	20 2	0 20 .6 .1.1	24	24	Z**	- 47	27	0.0	0.0	. 5.0	6.0	0.0	0.0	0.0					
ICOBA	L-01		0.0	U,U	hen		0.0	040	,u.v		2.6	242		+9					
	of an exercise of	1.0	- 1 To 14	化邻苯甲酚	4.71				1 152	2.34	2 4	<ul> <li>3.5</li> </ul>							- 1

PHLT (INTEGRATED) = 130.87

TABL	.E A-19	3	a	244 F	PD 191	J180-1	40H PO	LL THE	ET AS	SHIPPE	D ENG	MDWLL	TLPIPE		1	50 <b>. 17</b> 0	0			
	ENGINE HO		= 4160 = - 37				TEMPE	RATURE			77.	0 ·F			TIM	ET TEX E OF D M. PRE	AY	•	2.00 F 1027	N. HG.
	STAND			-314			HUMID	ITY		•	70.	O PER	CT.		WIH	O DIRE	CTION			
	DATE		= 03/2	:5775				VED RP CTED R			===				MIU	D AETO	P111	•		rn
							FAA P	ART 36	REFER	ENCE D	AY COR	REC TES	SPL 1	N OB	- RAD	īµs =	150.	FT.		
1/3 00	т																			
FREQUEN	.4	10	20	30.	40	50	60 60	ICROPH 70		GLES I	N DEGR	EES 100	105	110	115	120	130	135	140	150
	•		-				-					-							•	
50 63	75.5 77.4	75.3 75.4	75.7 77.6	76.2 76.3	70.4 77.5	76.9	78.3 78.1	79.0 78.8	80.0 79.4		81.3 81.0	82.2 82.0	82.5	83 9 83 7		86.0	16.7	89.6	91.3 85.5	94 1 92 2
80	74.4	76.0	76.9	76.0	75.9	76.3	77.2	75.9	77.6		78.9	79.3	80.6	80.9	81.9	81.9	82.4	83.6	84.6	66.5
100	74.0	74.1	74.2			73.8	73.7	73,2	73.0	73.0	73.8	74.6		75 · B		77.1	79.3	80.4	82.5	84.7
125	74.4	73.0	72.8	74,3	74.2	74.2		73.9	74.0	75 - 8	76.9	78.0	79.2	80+1 87-5	88.9		92.1	87.5 92.5	89 <u>12</u> 93.0	90.9 91.8
16C	79.6 78.6	78-1 77-2	78.9	81.7	74.9 80.8	60.0 82.4	80.3	82.2	83.7	53.7 85.8	85.1	88.2	87.6	91.1	92.4	92.9	72.1	94.1	93.1	90.0
250	77-1	77.8		81.2		8D.7	80.5	81.4	83.1	84-0	85.0	85.9	87.0	88.0	88.9	89.4		89.3	67-5	85.7
315		78.0		78.4		78.8	80.1	80.7	80.2	80.1	*81.3.	82.1	B2.9	84-1	86.2	88.3	89.B.	89.3	88.4	84.9
400	79.1	77.3		78.8		76.5	78 1	78.2	70.0	82.6	83.6	85.3	86.2	87.9	88.8	89.5	89-0	88.0	85.3	83.2
500	79.5	78-7			79.0	78.9	79.7	, BO.4	80.5	60.B		82.7	85.9	86.0	87.2	89-0		87.8	86.2	B3+2
63Q 800	80.1 81.5	81.6	81.7	80.0 81.0	79.5 80.6	80.5	80.0 80.1	77.5	80.6	83.5		85.7		88.6	88.3 89.1	88.5	86.8	85.3	83.5	80.9 80.5
1000	86.4			84.3		82.6	81.2	80-0	79.8	81.8	82-3	83.1	84.1	85.3	85.6	86.2		82.7		78.9
1250	04.0				83.5	63.1	81.3	79.4	7B.9	80.3	81.1	81.8	B2.5	83.3	84.0	84.6		81.0		77.9
1600	64.1		85.0	05.6	P3.8	83.1	80.8	79.7	79.9	81.6	83.0	. B3.5	83.3	83.6	84.4	83.5	81.2	80.3		77.0
2000	86.1	86.9	86.7		. 82*0	84-1	82.3	80.9	80.8	82.0	84.3	84.6		83.7		83.6	80.9	,79.6		76.7
2500		64.4				. 98.3	89.6 94.5	8548	90.3	84+4		90.7		85.2 89.9	91.4	84.7	82.1 66.5	80.7 84.8		79.1 83.4
3150 4000	88.0	92.1		93.0 90.4	96.0	87.9	86.0	23.2	81.2	82-0	83.1	83.9	83.9	84.6		83.6	51.1	79.9	75.4	76.8
5000	89.4			91.2	90.4	B9.4	88.0	85.4	83.4			84.4	84.3	85.2	85.8	84.5	81.6	79.9		77.4
6300	93.4	94-0	97.3	98.4	95.7	93.9	91.7	€9•1	87.8	88.7	89.7	90.2	90.6	91.0	92.2	90.8	86.5	84.9		82.6
6000	68.0		90.3	91.3	84.9	89-1	87.9	85.6	85.3	87.8	90.1	91.2	91.8	92-8	95 -1	94.5	90.2	88.0	65.7	43.4
10000	87.3	₿ <b>8.9</b>	85*8	91.2	89.4	. BB - 6	87.1	84+8	82.2	62.7	83.9	. 54.3	85.4	86.2	80.42	0140	80.0	.0707	0210	79.6
OASPL	99.4	100.5	102.4	102.4	101.7	99.9	99.5	97.I	96.8	97.7	98-8	99.5	100.1	100.9	102.2	102.1	101.4	101-1	100.7	100-5
PHLT	114.5	114.7	117.8	117.7	118.0	115.4	116.7	113.5	113.6	114.3	115.2 112.8	115.0	114.8	115-1	116.7	115.9	113.5	112.2	111.5	110.4
PNL	113.2	114.0	116.3	116.5	116.1	113.9	114.4	111.5	111.2	111.9	112.B	113.0	113.1	113.5	114.7	114.0	111.8	110.7	107.5	108-6
DBA	99.4	100.6	102.7	102.3	101.9	99.9	99.7	90.7	45.0	40.8	97.9	48.00	- AH+ O	77.2	TODE	. 4440	75.5	70.0	7740	7201
BAND TCORK	14 1.2	22 0.7	19	22 1•2	19 1.9	19 1.5	79 2.4	19 2•0	19 2.4	19 2.4	. 19 2.4	19 2.0	19 1.7	1.7		1.9		19	19 1,7	19
			= 1	02.42 17.98 16.52 02.66			COMPO COMPO PNLT	ISI TE	SF PN1 EGRATEC	. 1	= 105.1 = 118.6 = 128.6	35								

ALTITUDE = 200. FT SIDELINE

1/3 UCT									101		655									
FREQUENCY									IONE AN									***	3.00	
(HZ)	10	20.	. 30	40	೬೮	60	70	6.0	90	95	100	105	110	115	150	130	135	140	150	
50	57.5	63.6	67.7	70.0	72.1	74.5	76.0	77.4	76.2	76.8	79.6	79.7	80.9	81.5	82.2	83.1	84.1	84.9	85.6	
63	57.6	45.7	67.0	71.1	72.4	74.3	75.8	76.8	77.9	78.5	79.4	80.1	80.7	81.0	81-1	81.9	82-6	83.1	83.7	
AD .	58.4	. 65 G	67.4	49.5	71.5	72.4	72.9	75.0	75.7	76.4	76.7	77.8	77.9	78.5	78.1	77.6	78.1	78.2	77.9	
100	56.2		64.3			64.9	70.1	70.4			72.0	72.5	72.7	73-1	73.3	74.5	75.1	76.1	76.1	
115	25.9		65.7		69.4	70.3	70.3		72.3	74.4	75.4	76.4	77.0	78.5	80.0	82.1	82.0	82 . 8	82.3	
160	50 · 1	67.ú				76.	7t-6	00.6	E1.2	82.6	03.7	- 84-2	84.4	85.5	86.5	87.3	87.0	86.6	83.2	
200	59.1	67.5		74.4		76.7			83.2		85.5	86.5		89.0	89.1	. 89.0	88.5	86.7	61.4	
25G	59.7	61.1		74.3		70.7		H( .4			83.2	84.2	84.9	85.5	85.6	84.6	83.7	81-1	77.1	
315	59.7		69.7	72.5		74.3					79.4	. PO-1	81.0	8.SG	84.5	84.7	R3.7	82.Q	76.2	
400	58.9		70.1		73.£	74.3	75.1	77.2		81.0	82.6	83.4	. 84-8	85.4	85-7	84-1	82.4	78.9	74.5	
500	60-1	66.8	70.2	72.5	74.0	75.0	77.3	77.6	78.3			81.0	82.9	83.8	85.2	84.0	82.2	79.7	74.5	
056	62.2		71.2	73.0	75.2		76.4	77.9	80.9	21.9	82.5	63.0	84.3	64.9	84.7	82.2	79.6	77.4	72.1	
860	62.3	70.6	72.1	74.0	75.5	76.2	77.2	77.9	LO.7	81.7	87.0	E4-2	85.5	25.6	24.6	81.8	79.5	76.9	71.6	
1000	64.0	70.4	75.3	76.6	77.6	77.3	76.0	77.1	79.2	79.7	ē≎.4	P1.2	82.1	82.1	82.3	78.7	77.6	7. 7		
1250	63.6	76.4	75.0	76.8	70.0	77.4	76.2	76.1	77.7	78.5	79.0	79.6	80.1	80.5	80.7	77.3	75.2		66.8	
1600	03.6	71.9	70.4	77.0.	70.D	76 .P	76.5	77.1	79.0	10.3	.80 _* 7	RO.3	80.4	80.B	79.5	76.1		71.9	67.B	
2000	65.5	73.3	77.1	78.1	75.9	71.2	77.6		EC.1					81.0		75.7		71.5	67.3	
250u	67.1	78.1	79.4	65.9	63.C	65.5	62.5	62.3	81.7	8242	62.0	-82.9	81.49	82.1	80 6	76.8	74.6	72.9	67.4	
3150	A6.5	. 61.3	83.O	88.7	87.1	90.3	B7.0	87.4	£7.6	88.4	87.0	87.0	86.5	87.6	85-7	81.0	78.5	76.9	73.4	
4000	65.8	75.3		8Z.0	H2-2	#1.6	79.7	75.2	79.1	80.7	80.9	80.7			79-2	75.4	73.4	70.8	66.4	
5000	64.3	74.3	60.5	82.7	83.6	83.6	8.18	80.5	40.8	61-1	81.3	RI.O	81.6	Al_A	80.1			70.9	66.7	
6300	65.2	10.7	87.1	87.6	87.9	87.1	85.4	84.6	85.6						86.2			75.5		
8000	56.8	72.0	79.1	11.2	67.6	H2.9	67.6	87.9			87.8			90.7		83.7			71.2	
10000	50.7	54-1	77.0	74.B	£1.5	81.7	80.5	76.5	79.2	80.3	80.6	81.4	81.9	83.4	62.4	79.5	76.7	73.0	66.0	
2.2.37	42.5							1112	122								or =			
DASPL	75+5	47.3	91,7	74.1	94.2	95.2	73.6	97.9	P5-0	96.40	96.0	76.9	9765	78-4	78.0	70+3	70.5	44.1	91.7	
PRLT	91.2	103• <b>↔</b>	107.1	110.0	100.0	112.0	110-1	110-7	111.5	112.4	117-1	111.7	111.	115.4	Trr*t	TON-O	105.7	104.3	100.7	
FNL	90-4	101-6	It'r.	108.7	10, *2	110*1	108.1	100.7	109.1	110.0	110-1	110.0	110.0	1117-0	107.B	100.4	104.4	105-0	98.8	. :
Dha	76.5	57.6	91.7	94.4	94.1	95.3	93.2	93.0	64.0	95.0	95.3	75.4	95.7	76.5	45.5	91.9	89.8	87.5	83.0	
BANG	22	16	24	19	19	19	19	10	19	19	19	19	19	19	19	19	19	19	19	
TCOLR	ű.Ł	1.5					2.0				2,0		1.7		1.4				1.8	
1 Prun	a	10.	402	. 4.7	.402	E 970	2.0													
					100					100			4000	11.0		7				

**TABLE A-195** 2294 F PO191 JT8D-109 HOHLL INLET AS SHIPPED ENG HOWLL TLPIPE # 40.00 F = 1011 = 29.58 IN. HG. = SH = 1 HPH ENGINE MODEL ENGINE NUMBER INLET TEHP TIME OF DAY BARN. PRESSURE WIND DIRECTION WIND VELOCITY **TEMPERATURE** STAND DATE = X-314 = 03/25/75 OBSERVED RPH CORRECTSO RPH FAA PART 36 REFERENCE DAY CORRECTED SPL IN OB RADIUS = 150. FT. 1/3 OCT HICROPHONE ANGLES IN DEGREES 70 80 90 95 100 105 130 75.5 774.1 74.1 74.1 779.3 779.6 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105 75.9 76.9 76.1 72.0 78.9 79.9 79.2 78.3 78.3 81.5 82.1 83.1 84.4 86.4 97.6 97.6 97.6 97.6 97.6 97.6 79.9 79.4 773.1 83.1 83.5 800.8 800.8 800.7 800.7 800.7 800.7 800.7 800.7 800.7 800.7 800.7 800.7 800.7 800.7 800.7 77.8 77.2 74.0 74.7 80.4 84.9 87.4 77.4 903.3 93.7 88.3 88.3 88.1 84.0 84.9 83.9 84.7 903.6 904.7 74-5 75-8 74-9 77-2 77-2 77-2 77-2 80-9 81-9 96-0 96-0 93-9 60.42 783.1488 7755.856.2.464 860.2.466 860.466 860.466 860.466 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.478 860.47 80.3 88.323 880.34 97.42 97.42 97.84 97.85 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 887.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877.8 877. 86.8 83.3 79.1 86.9 92.5 94.0 89.7 87.6 89.0 88.9 87.3 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 80-8 77-7 78-7 779-2 80-9 80-9 82-8 84-9 95-5 89-4 89-1 86.7 83.7 82.5 81.2 80.8 82.5 83.8 81.7 80.1 78.8 78.6 80.2 2000 2500 3150 4000 5000 6300 8000 92.8 83.5 85.6 89.7 86.5 90.4 84.0 78.5 78.8 83.8 86.0 10000 107.6 98.0 100... 119.7 115.3 118.1 117.3 112.9 115.4 103.0 97.9 100.8 DASFL PHLT PHL DBA 101.2 100.0 103.0 102.8 101.0 107.6 117.6 114.9 119.1 119.1 117.7 119.7 115.9 113.7 117.1 117.3 115.6 117.3 101.7 106.1 105.3 103.2 101.2 103.0 97.8 97.3 99.6 98.7 114.5 114.7 115.1 115.0 112.0 112.1 113.1 112.7 97.0 96.8 98.5 97.7 100.2 102.2 102.0 115.0 115.9 116.3 113.3 114.0 114.4 98.7 99.8 100.1 101.0 112.2 110.7 95.9 101.5 113.6 112.0 97.4 110.6 108.7 92.7 115.2 113.6 99.3 BAND TCORR 19 HAXIRUH DASPL HAXIRUH PRLT HAXIRUH PRL HAXIRUH DBA 102.99 119.72 117.33 103.25 COMPOSITE SPL COMPOSITE PNL PNLT [INTEGRATED] = 105.83

**TABLE A-196** 

2294 F PU191 J180-109 KONLL INLET AS SHIPPED ENG HOWLL TLPIPE

150-1740

CONDITION = 5198

ALTITUDE . = 200. FT SIDELINE

1/3 OCT									ions di	ici ce 1	LN DEGR								-
FREQUENCY (HZ)	10	20	30	40	50	60	70	80 80			100		110	115	120	170	135	1'40	150
/ut/	10	ZU	. 50	40	20		,	-	,,,			100		, ,				A-136, 1	., ., .,
50	57.7	64.1	67.4	71.1	72.2	75.7	75.0	78.5	77.4	79.6	78.7	81.0	79.7	82:4	81 -2	84.7	-82-6	1 57.8	02%8
63	59.6	64.5	68.4	71.4	73.4	75.0	75.4	774B	76.8	79.9	78.7	80.7	80.4	81.5	81.0	83.5	81.3	85-5	81.3
.80	56.3		00.2	70.8	71.1	72.7	744.3	75.6	74.9	77.3	76.3	78.5	77.3	79.0	78.1.	77.4	77.8	80.5	76.7
100	56.2	61.5		167.6		69.7	70.3	70.5	70.6	72.1	71.2	73.5	71.7	74.0	72.5	75.5	73.6,	77.9	74.0
125	56.B	62.5	64,2	68.3		70.0	70.8	72.8	71.5	75 2	74.7	77.1	76.2	79.7		82,6			
140	62.6	69.8	70.3	74.0	74.5	78.3	77.4	81.2	80.7	83.4	8247	84.4	83.9	86.9					84.6
200	60.2	70.7	71.3	76.8	76.3						84.3					E7.1			
250	59.0	69.4	71.3	74.4.	76.3	77.8	.77.7	81.3	80.6	83.7	B2,4	5,50	83.9	86.3	.84.9	.85,1	84+1.	79.3	. 19,1
315	59.6	66.2	70.5	72.6	74.3	7618	77.1	77.5	78.0	. 79.3	78.¢`	81.1	79.9	84.7	82.5	83.9	84.0	78.5	79.6
400	60.8	66.9	69.6	72.2	74.0	74.5	75.0	79.7	77.5	82.6	81-1	85.2	83.2	85.9	85.2				
500	61.0	66.9	70.7	72.7	74.5	76.7	76.B	77.9	78.3	. 80-0	78.8	83.0	<u>B</u> 1.1	85.3	83.5	82.2			
630	61.3	67.7	72.7	73.7	74,9	75.7	77-0	80.7	78-1	82.8	81.7	85. O	8218	85 <b>•</b> Z	84.7	80.9	81.6	74.5	75.3
. 800	62.4	69.0	73.3	74.3	76.0	74.4	~ 77. ţ	80.4	77.9.	82.9	· 81.6	85.5	84.0	84.B	85.4	80.0		73.8	74.9
1000	5.66	, 71.B	74-1	75.8	78.6	76.1	78.1	78.9	.77.3	80.6	79.5	82-6	B1.0	.82,6	81.9	. 77,5.	78.0	· . ₹2 x2.	.7747
1250	64.2	71.6	74.0	76.6	76.2	74.9	78.0	77.3	76.6	: 79.3	78.3	40+5	79-3	81.2	80.3	75.8	76.7	71.3	72.0
1600	63.8	72.5	75.7	76.0	78.8	75.7	77.8	78.6	77.5	81.0	79.9	B1.0	80,2	80.4	80.2	75.2	75.3	70.3	69-6
2000	65.1	73.0	77.2	77.4	80.2	77.0	79.0	79.7	78.2	81.7	61.1	. 81 - 0	81.3	80,2	80.3	.74.5	_ <u>74×8</u> _	70.0	67.2
2500	6644	78.8	83.4	83.8	87.8	84-I	68-1	81.9	84-0	83.1	82.3	82.4	82.9	8175	81.5	75.7	75.4	72.4	70.5
3150	68.3	82.6	87.5	88.2	92.5	8846	92.7	87.8	89-0	89.O	88.I	86.9	86.9	86-1	86.7	77.4	80.5	76.4	74.0
4000					83.5				78+5	. 80.*3	79.0	81.5	8□ <u>.</u> 5			73.9			
5000	63.9	75.6	80.5	81.7	84.4	81.2	84.5	BO-6	80.6	81.5	80.8	82+0	. 80*R	80.4	81 -1	74.0			68.1
6300	65.0	61.1	64.9	. 86.2	89.6	85.1	88.9	85.7	84.9	87.3	86.4	87.6	87.2	86.6	87-1	78.7	79.5	74.5	72.5
8000					83.8				81.8	88.4	86.2	89.6	B7•8	90,2	89.5.	B1.44	32.9	74.8	73.0
10000	49.5	64.7	77.2	79.4	83•3	78.8	83.7	79.3	78.5	81.2	79.7	B247	81.0	83.1	8Z.0	78.4	78.3	67.7	69.5
DASPL	78'-5	67.9	97.4	93.4	96.9	93.7	97.0	94-9	94.5	96.8	95.8	97.9	96.8	98.5	97.8	96.0	95.7	94.0	92.0
PHLT	91.4	104.7	109.1	110.4	114.2	111.1	114.7	111.5	111.9	112.3	112-1	112.1	111.6	112.1	112.1	106.8	107.4	103.4	101.6
PNL	90.5	102.6	107.2	108.2	111.8	108.6	112.0	109.1	109.3	110.3	109.7	110.5	109.8	110.3	110.2	105.3	105.8	101.6	100.0
DBA	76.3	88.2	92.b	93.7	97.4	93.6	97.3	94.0	94.0	95+6	94.7	96.1	95.2	95.9	95.8	90.6	91.2	85.6	E5-1
T-10 T-70 1 - 10	10.77				A				- 1	100	200		1-1		100		1.2	Weiler	그 관련하다
BAN/D	19	19	19	19	19	19	17		19			19	19_		19	1,9	19	19	19
TCDAR	. 1.2	2.0	1.	2.1	2.4	2,5	2.7	2.5	2.6	2.0	2-3	1.6	1.7	1.7	1.9	1.5	1.6	I.B	1.6
	18.5	W.	A.		1.50				1		1.4		Walio di	A SHIP		y i i	F. 30.	1	1. 45.85

PNLT (INTEGRATED) = 123.63

					2794 F	PĎ191	J186-1	LOS HOW	LL IN	ET AS	SHIPPE	D ENG	HOHEL	TLPIPE	•	1	50.174	0			
STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE  STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAND DATE STAN										_											:
STAND DATE  = 4324  HURIDITY  = 70.0 PER CT.  HIND DIRECTION = SH HIND VELCCITY  = 1 MPH  CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION PH CORRECTION		ENGINE N	UMBER	* 3	74054			TEMPE	RATURE	•	•	77.	.O F						_		Na HGa
TRESERVED RPH CURRECTE! RPH = 5102  FAA PART 36 REFERENCE DAY COPRECTED SPL IN DB - RADIUS = 150. FT.  1/3 LCT FREQUENCY (HZ)  0 16 70 56 46 56 60 76 80 90 97 100 105 110 115 120 130 135 140 150  50 76.0 75.3 76.0 76.8 77.1 77.8 76.5 79.2 80.3 81.1 81.6 82.0 83.0 83.9 85.2 85.8 88.0 89.6 91.4 94.7 63 76.1 75.0 76.1 77.6 77.2 76.1 77.1 76.5 76.3 77.4 76.5 76.8 17.4 83.1 86.0 85.2 85.2 85.8 88.3 90.3 92.3 65.7 76.5 76.3 76.1 76.0 75.9 77.1 76.5 76.3 77.4 76.5 76.8 79.8 80.3 81.2 81.8 82.3 83.0 84.1 85.2 85.1								HUHID	ĮTY.		•	70.	O PER	CT.		MIN	ID OTRE	CTION		SH	
FAA PART 36 REFERENCE DAY COPRECTED SPL IN DB - RADIUS = 150. FT.  1/3 LCT FREQUENCY (H2)  0 16 20 56 46 56 60 76 80 90 95 100 105 110 115 120 130 135 140 150  50 76.0 75.3 76.0 76.8 77.1 77.8 78.5 79.2 80.3 81.1 81.6 82.0 83.0 83.9 85.2 85.8 88.0 89.6 91.4 94.7 83.1 75.9 76.1 77.2 76.1 77.1 76.3 79.5 79.7 80.8 81.4 83.1 86.0 85.2 85.2 85.8 88.0 89.6 91.4 94.7 83.1 74.5 76.3 76.1 76.1 76.2 77.3 75.5 76.3 77.4 78.5 78.8 79.8 80.3 81.2 81.8 82.3 83.0 84.1 85.2 85.1				- 0,,	, ,,,,											44	10 11.11		-		1719
1/3 LCT FREQUENCY (HZ)  U 1L 20 5C 4G 5L 60 70 80 90 95 100 105 110 115 120 130 135 140 150  5U 76.0 75.3 76.0 77.2 76.1 77.8 78.5 79.7 80.8 81.7 82.0 83.0 83.9 85.2 85.8 88.0 89.6 91.4 94.7 83.2 85.6 87.2 88.3 90.3 92.3 85.0 76.1 76.5 76.3 77.2 76.1 77.1 76.3 79.5 79.7 80.8 81.4 82.4 83.1 84.0 85.2 85.1 87.2 88.3 90.3 92.3 85.0 76.5 76.5 76.5 76.5 77.4 76.5 76.8 77.4 78.5 78.8 79.8 80.3 81.2 81.8 82.3 83.0 84.1 85.2 85.1																	· -	***			
HIGHOPHONE ANGLES IN DEGREES  (HZ) U 10 CO 30 40 50 60 70 RO 90 9F 100 105 110 115 120 130 135 140 150  50 76-0 75-3 76-0 76-8 77-1 77-0 70-3 79-2 80-3 81-1 81-6 82-0 83-0 83-9 85-2 85-8 88-0 89-6 91-6 94-6 91-6 91-6 91-6 91-6 91-6 91-6 91-6 91								FAA P	AK 1 30	, KEPER	ENGT L	A) CUP	WEC 1EI	) 26F 1	n up	- 14	)102 ×	120*	F1.		
(H2) U 10 20 26 46 50 60 70 80 90 95 100 105 110 115 120 130 135 140 150 50 76.0 75.3 76.0 76.0 77.4 76.8 77.1 77.6 76.5 79.2 80.3 81.1 81.6 82.0 83.0 83.9 85.2 85.8 88.0 89.6 91.4 94.7 63 76.1 75.0 77.6 77.2 76.1 77.1 70.3 79.5 79.7 80.8 81.4 82.4 83.1 86.0 85.2 85.1 87.2 88.3 90.3 92.3 60.7 74.5 76.1 76.1 76.0 75.5 76.3 77.4 78.5 78.8 79.8 80.3 81.2 81.8 82.3 83.0 84.1 85.2 86.1									766001	inte At		n neec	ECE								
50 76.0 75.3 74.0 76.8 77.1 77.6 78.5 79.2 80.3 81.] 81.6 82.0 83.0 83.9 85.2 85.8 88.0 89.6 91.4 94.5 63 76.] 75.6 77.6 77.7 76.] 77.6 70.3 79.5 79.7 80.8 81.4 82.4 83.1 84.0 85.2 85.1 87.2 88.3 90.3 92.5 60 74.5 76.0 76.1 76.0 75.9 77.1 76.5 76.3 77.4 78.5 78.8 79.8 80.3 81.2 81.8 82.3 83.0 84.] 85.2 86.3			16	20	36	40	٥Ĺ							105	110	115	120	130	135	140	150
03 76.1 75.0 77.4 77.7 76.1 77.1 70.3 79.5 79.7 60.8 81.4 82.4 83.1 84.0 85.2 85.1 87.2 88.3 90.3 92.3 66 74.5 76.0 76.1 76.0 75.9 77.1 76.5 76.3 77.4 78.5 78.8 79.8 80.3 81.2 81.8 82.3 83.0 84.1 85.2 86.7		74.6					23 6	**	**								••		•	~• .	
to 74.5 lead 76.1 76.0 75.9 77.1 76.5 76.3 77.4 78.5 78.8 79.8 80.3 81.2 81.8 82.3 83.0 84.1 85.2 06.1																					
																					26.7
	106	74.1	74 1	74.1	73.1	75.4	74.6	73.3	72.2	73.0	73.1	73.B	74.7	75.1	76+1	76.5	77.3	78.6	80.8	82.5	60.4
175 75.0 76.0 73.1 74.4 74.7 74.9 74.0 74.1 74.3 75.9 77.6 78.4 79.7 80.6 82.3 83.9 86.5 88.0 89.4 91.6												77.6									91.6
																					92.4
																					90.3
																					85.0
																					85.2
																					83.5
																					83.4
																					81.1
																					51.0
1600 66.4 14.6 17.0 65.0 64.1 13.4 63.7 81.4 79.6 80.3 81.6 82.5 83.0 84.7 85.4 85.9 85.9 83.8 82.7 81.7 79.6 1250 03.1 84.6 63.4 84.1 13.4 63.0 81.6 79.4 79.7 80.4 01.7 82.2 82.9 83.5 84.1 84.4 82.4 80.9 80.4 78.6																					79.2
																					78.0 77.1
																					77.1
																					79.7
																					84.2
																					7.7.2
																					77.9
																					83.2
																					83.6
	10000	58.7	1 .4د	90.4	91.0	40.3	84.5	87.7	85.4		82.9	84.0	84.6	85.9	86.3	88.3	87.6	87.1	85.0	43.4	79.9
OASPL 100.0 101.4 102.5 102.1 102.6 101.7 99.8 97.8 96.8 97.8 98.9 99.6 100.5 101.1 102.3 102.1 101.5 101.2 101.1 100.	DASPL	100.0	101.4	102.3	103.1	102.6	101.7	99.8	97.8	96.8	97.8	98.9	99.6	100.5	101.1	102.3	102.1	101.5	101-2	101-1	100.9
PNLT 116.4 117.4 110.2 110.5 114.6 117.7 117.2 114.6 117.4 114.1 115.0 114.7 115.6 115.3 116.7 115.4 113.6 112.3 112.4 111.1		116.5	117.4	lidez	110.5	114.6	117.7	117.2	114.6	117.4	114.1	115.0	114.7	115.6	115.3	116.7	115.4	113.6	112.3	112.4	111-1
PNL 115.1 115.0 116.6 116.0 117.5 115.0 114.8 117.4 111.7 111.8 112.7 112.9 117.7 113.6 114.8 113.8 112.0 110.8 110.6 109.	PNL	115.1	115.9	111.6	116.9	117.5	115.0	114.B	117.4	111.2	111.8	112.7	112.9	113.7	113.6	114.8	113.8	112.0	110.B	110.6	109-1
DEA 106-8 101-0 107-0 103-1 103-2 101-2 100-0 97-5 96-1 96-8 97-8 98-3 99-2 99-3 100-5 99-6 97-4 96-0 95-2 93-1	DŁA	166.8	111.0	Li., . tı	160	163.7	101.3	300.0	97.5	96•1	96•R	97.8	9B.3	99.2	99.3	100.5	99.6	97.4	96.0	95.2	93.1
LANG 19 19 19 19 19 19 19 19 19 19 19 19 19	E AND	19	19	19	19	19	14	19	19	19	19	. 19	19	19	19	19	19	19	19	19	19
		1.8	1.2	1.7	1.6						2.3	2.3					1+6				1.9
			5.4 F. A																		
HAYIMUM (ASPL = 162-67 CHIMPOSITE SPL = 106-12																					
MAXIBUM PNLT = 119-01 CCMPOSITE PNL = 119-71																					
MAXIMUM PNL = 117.46 PNLT (INTEGRATED) = 129.07 MAXIMUM DDA = 103.20								PALT	£ 11/13 (	COMMITTE	,, ,	154.0	**								
TOTALIST DOT - EDIEGO		DUNTAGE	3011		U.34EU																

2294 F PU391 JTGD-109 HDWLL INLET AS SHIPPED ENG HOWLL TLPIPE

150.1740

**TABLE A-198** 

CONDITION = 5208

ALTITUDE = 200. FT SIDELINE

1/3 OCT							м	TCROPH	DNE. AN	GLES I	N DEGR	EES		,		100				
FREQUENCY	10	20	20	- 40	50	60			90	95	100	105	110	115	120	130	135	140	150	
(HZ)	10	20	30	. 40	20		•				100							6		
50	67.5	64.1	66.3	70.7	73.0	74.7	76.2	77.7	78-6	79.1	79.4	80.2	60.9	81.8	82.0	83.2	.04.2	85.0 83.9	99.6	
63	5B.0	65.7		71.7	73.0	74.5	76.5	77-1	78.3	78.9	79.8	80.3	81.0	81.8	01.05	. D. + + C.	D440	0247	78.1	
08	58.2	64.9	67.4	69.5		72.7	73.3		76.0	76.3		77.5			78+5	78.2	(0.0	75.B		
100	56.2	62.2	64.5		69.2	69.5	70.1	70.2	70.6	71.3	72.1		73.0	73 - 1		74.0				
125	56.1	61.2	66.3	68.3	70.1	70.2		71.7	73.4	75 - 1	75.8		77-5.			81.7	82+5		83.0 83.8	
160	59.6	57.4	73.3	73.7	76.1	76.4	78.3	BO.5	81.2	87.7	83.7	84.4	84.6	85.8	86.8	87.0	87-1	86.8		
200	59.0	68-1	74.3	74.6	78.4	77.0	79.0	B1.0	83.2	84.7	85.6	87.0	88.3	88.9	89-5	89.3	66.6	87.3 82.0		
250	60.1	60.1	72.8	74 - B	76.2	76.8	78.8	80.3	61.7	. FZ.7	83+6	84.3	B7+4	8504	U2.Y	57.4				
315	59.6	67.4	69.7	72.9	74.7	76.6	77.4	77.9	77.6	78.8	79.5	80+3		83.1		84.5	83.6		74.5	
400	56.8	66.4	70.6	72.5	73.9	74.5	75.2	77-5	80.2	81.3	82.7	83+7	R>-0	85.6	85.6	84.7				
500		67.4	70.0	72.8	74.5	76.7	77.4	78.0	78-3	78 8	80.0	21.4	Br- g	83.9	85-0	0.347	79.7		72.3	
630	62.3	69.6	71.5	73.3	75.4				80.7	81.6	82.7	83.I	84.5	84.4	87+3	81.6		77.4	72.1	
Bud		69.7	72.3	74.4	74.0		77.2			82.0	83.2	104.5	82.0	. 97,7	27.6	70.0		75.1		
1000	65.3	70.4	76.0	77.5	78.7	77.5	74.6	77.6	79.2	79.9	31.1		80.7	0247	02 V	77.3	75.1	73.7	b8.9	
1250	64.1	70.6	75.0	76.7	77.9		75.2	76-4	77.8	78.6	17-4	80.0	80.4	24.5	79.6	76.2	74-3	73.7	67.9	
1600	63.6	72.0	76.5	77.0	78.5			77-2		80.0	80.5	80.5	80.4			75.8			67.7	
2000	65.3	73.4	772		79.3			78.0		01.0	81.7 82.3	01.	111.1			77.0		74.0	70.0	
2560	68.9	78.0	82.0			85.7	83.6	81.9	81.4	21-7	06.0	03.7	34.48	87.5	84.7	81.2	78.7	78-2		٠.
3150		B1.B			89.8	90.9	88.4	# /··	. 0(-2	00 PT	0152	01.3	B1 4	81.4	70.5	7548	73.3	71.3	66.8	
4000		75.5	80.3	B2 4	82.2	83.5	80.6	18.1	79.5	01 3	91.6	91.5	81.9	AT B	80.2	75.9	73.4	71.4	67.2	
5000		75.6		02.8	84.2	57.4	82.3	85.1	05.0	07.0	87-3	88.3	87-3	EB.1	85.7	80.6	77.9	75.8		1
6300	65.6	77.B	87.0	88.2	89.0	82.6	80.5	0.207	07.7	90.0	87.0	AR. 7	89.0	91.0	89.5	83.8	80.4	77.5	71.4	æ.
8000	56.8	72.4	79+1	61.8	83.2	65.0	8101	20.0	1 20 4	an. A	80.9	81 0	82.0	83.5	82.2	80.0	76.B	73.8	66.3	
10000	50.9	69.7	78.0	10.7	82.4	82.3	91+1	1370	1707	00.5-	.,,,,,	2241								
						95.5	0.2	67.0	95.6	94.0	96:6	97.4	97-7	98.6	98.0	96.4	95-4	94.6	92.2	
DASPL																				٠.
PNLT																				
PNL	92.2	102.0	106.7	110-1	11110	110.3	107.0	03.1	03.0	94.0	95.3	96.0	95.8	96.6	95.2	92.0	89.8	88.1	53.4	
DBA	77.8	. 67-6	72+1	33.0	, y D+0	77.1	7440	,,,,,	,			11.17.7								٠.
	• •	• • •	**	19	19	19	19	19.	19	19	19	19	19	19	19	1,9	. 17		17.	٠
BAND	-19		1.7			2.5			2.3	2.3	1.6	1.9	1.7	1.9	1.6	1.6	1.5	_ T.8	1,9	
TCOFR	1.6	101	101	A ***						24.57	1.7177	200	The second	7.7			100	100		

2244 H PD542 JTAD-104 HOWLL INLET AS SHIPPED ENG HOWLL TLPIPE

ALTITUDE = 200. FT SIDELINE

1/3 CCT											
FREQUENCY						2.0					N DEGREES
(HZ)	90	. 100	109	110		120	130	140	150	160	
50	62.1	63.6	86.3	84.3		87.1	88.4	89.1	90.0	88.2	
63	. 83.9	86.0	87.8	85.7		88.1	89.2	90.1	89.7	87.0	
. 80	[4.3	85.7	87.7	63.5		56.0	89.5	89.8	89.6	84.3	
100	84.1	85.5	67.9	81.6		88.4	90.1	89.3	68.1	82.5	
125	84.9	1 . 6B.	87.8	77.4		88.6	89.3	89.0	85.0	80.0	
160	85.6	67.5	86.8	77.7		90.4	90.0	88.2	65+0	77.0	
200	88.4	89.1	96.6	86,0		91.4	90.4	88.0	83.9	74-1	
750	87.0	86.8	60.8	68-1		90.4	89.3	. 86.4	81-8	72.6	
315	86.7	២৪-ព	90.0	90.4		91.7	89.2	85.1	80.4	72.5	
400	66.4	66.5	3.08	85.3		91.2	88.0	53.9	78.9	73.1	
500	76.0	88.5	89.8	85.4		91.3			78.0		
630	400£	87.2	89.2	1.88		89.6	85.7	81,4	77.0	71.5	
800	85.9	88.6	82.9	84.48						70.8	
1000	84.6	85.3	86.1	84.6		85.9	82.2	. 78.5	74.3	69.0	
1250.	4.68	84.6	64.6	82.5		84.1				67.7	
1600	84.6	86.6	65.2	81.6		83.4				67.9	
2000	85.2	80.4	84.0	80.6						67.9	
2500	87.8	67.5	90.0	84 - R	·	84.7	80.4	76.4	73.2	69.5	J. 11 (2.4 in 1
3150	93.B	93.0	91-5	87.6		86.8	84-1	79-9	77.3	73.6	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4000	95.7	66-2	86.3	83,1			78.8	74.3	71.0	65.4.	
5000	86 -	. 66.eB	85.1	62.5		82.1				65.7	
6300		92.8		: 87.49						70.0	in the second second
8000	91.2	94.3	42.3	91.0						67.7	
10000	83.3	86,0	83.7	83.3		84.7	60.5	73.5	68.4	59.4	
DASPL	107'.1	102-2	102.4	97.6		102.2	100.6	98.9	97-1	93.0	
PALT				113.0						100.4	1000
PHL				111.7						98.3	
DBA				97.5		98.7					
BAND	19	19	19	19	3.16	19	19	19	19	19	
TCORR	2.4			1.3		ĩ.7					
				•••	·					.,	er de la companya de la companya de la companya de la companya de la companya de la companya de la companya de
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000	1515			1000	26.75%	25 7 5 5	100	4.0	4. 4. 4	ingur dibi

PALT (INTEGRATED)

**TABLE A-199** 

```
TABLE A-201
                                                                                                                                                                                                              2294 H PO542 JTBD-169 HDWLL INLET AS SHIPPED ENG HOHLL TLPIPE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            150.1740
                                                                 ENGINE MODEL = JTED -00
ENGINE NUMBER = 374054
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                TIME OF DAY
BARN. PRESSURE
HIND DIRECTION
HIND VELOCITY
                                                                                                                                                                                                                                                                                                                                                           TEHPERATURE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                = 1011
= 29.59 IH. HG.
                                                                                                                                                                                                                                                                                                                                                           HUHIDITY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  HH
2 HPH
                                                                                                                                                                                                                                                                                                                                                           DESERVED RPH
CORRECTED RPM
                                                                                                                                                                                                                                                                                                                                                           FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RAQIUS = 150. FT.
                 */> UCT
                                                                                                                                                                                                                                                                                                                                                                                       HICROPHONE ANGLES IN DEGREES
140 150 160
             AL RNCY
                                                                                                                                                                                                                                                                                                                                                         1,30
                                                                                                    90
                                                                                                                                       100
                                                                                                                                                                                  109
                                                                                                                                                                                                                                                                                                                91.1 93.3
92.0 94.0
91.8 94.4
92.4 94.7
92.7 94.1
95.1 95.8
95.1 95.8
95.1 95.8
94.1 94.4
95.4 94.0
95.1 91.8
93.6 90.7
91.6 85.2
88.2 85.7
88.2 85.7
85.2 85.1
85.3 89.1
97.3 89.1
97.3 89.1
97.3 87.8
                                                                                                                                                                                                                                                                                                                                                                                                   95.6
96.6
96.2
                                                                                                                                                                                                                                                                                                                                                                                                                                           98.6 100.3

98.4 99.9

98.4 96.3

98.4 96.3

98.7 94.4

94.5 91.6

92.4 86.2

92.4 86.2

92.4 86.2

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0

85.8 86.0
                                                                                                                                                                                                                                                             92.0
93.2
73.9
93.7
95.7
95.6
95.6
97.0
97.1
96.8
96.5
94.5
92.6
97.6
97.6
97.6
97.6
100.4
                                                                                              64.1
67.0
67.3
87.1
87.7
88.4
91.1
09.6
                                                                                                                                                                             911-5302-1715-13-5-7-4-6-5-13-1-1-15-13-1-1-15-13-1-1-15-13-1-1-15-13-1-1-15-13-1-1-15-13-1-1-15-13-1-1-15-13-1-1-15-13-1-1-15-13-1-1-15-13-1-1-15-13-1-1-15-13-1-1-15-13-1-1-15-13-1-1-15-13-1-1-15-13-1-1-15-13-1-1-15-13-1
                                                                                                                                     850-9980-455-3765-69998-851-3765-69999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-9999-8-999-8-999-8-999-8-999-8-999-8-999-8-999-8-999-8-999-8-999-8-999-8-999-8-999-8-999-8-999-8-999-8-999-8-999-8-999-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-99-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-9-8-8-9-8-9-8-
                                                                                                                                                                                                                                                                                                                                                                                                   100
125
200
250
315
400
500
1000
1250
2500
3150
4000
5000
6000
10000
                                                                                                                                                                                                                                                                                                              92.47
95.116
95.16
95.66
95.66
95.66
95.66
95.66
95.66
95.66
95.66
95.86
95.86
95.86
95.86
                                                                                              89-1
88-5
88-6
87-1
86-3
87-1
67-5
90-7
96-7
80-2
94-4
94-4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CENTERNAL PAGE II
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ON FOOR STALLY
                                                                                      103.9 105.2 105.7 102.9 110.6 106.3 105.7 105.6 105.9 105.2 120.5 120.7 119.6 116.1 126.4 119.1 116.6 115.6 114.9 116.6 118.1 118.7 118.3 114.9 123.2 117.6 115.3 114.0 113.1 112.6 102.6 103.9 103.5 100.9 109.1 103.6 100.3 98.2 96.8 96.8
                DASPL
PRLT
                               PNL
DBA
                 BAND
                                                                                                      19 19 19 19 19 19 19 2.4 2.6 1.3 1.2 1.2 1.5
                                                                                                                                                                                                                                                                                                                                                      19 19 19
1.4 1.6 1.8
                                                                  HAXIMUM CASEL = HAXIMUM PNL1 = HAXIMUM PNL = HAXIMUM DDA =
                                                                                                                                                                                                                                                                                                                                                               COMPUSITE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SPL
                                                                                                                                                                                                                                                                                                                                                              COMPOSITE PAL
PALT (INTEGRATED)
                               TABLE A-202
                                                                                                                                                                                                                                                       2294 H PD542 JT80-109 HOWLL INLET AS SHIPPED ENG HOWLL TUPIPE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      150.1740
```

CONDITION = 5198

HICROPHONE ANGLES IN DEGREES					1/3 UCT
					FREQUENCY
120 130 140 150 160	110	109	100	90	(HZ)
87.3 88.5 89.2 90.1 88.4	84.2	86.3	83.7	61.6	50
	85-8			84.5	63
	83.5				80
RRLA RD.O PO.7 AB.T R7.5	81-6				100
80.9 89.3 88.9 85.9 79.9	77.6				1,15
90.5 90.3 88.5 85.1 77.5	77-8	89.3	57.B	85.9	160
91.3 90.9 88.3 83.8 74.2	85.7	91.0	8849	88.6	200
90.3 89.5 86.7 81.5 73.1	87.9	87.2	86.9	87-1	250
91.8 89.1 85.4 80.5 72.6	90.3	90.1	87.9	86.7	315
91-1 88-3 84-2 78-9 73-4	85.4				400
	85.2				500
				86.2	
87.7 84.2 80.4 75.6 70.8	84.6	89.0	88.7	85.9	zoo
	84.4			84.5	
64.2 . 80.6 76.6 72.6 67.9				83.7	1250
	81.4				1600
	80.6				2000
84-5 80.2 77-4 73-6 70-4	84.6				2500
88-3 83-6 81-0 77-7 74-2				93.9	
82.9 78.9 74.7 70.9 65.6	82.4	86.0	86.3	85.3	4000
82.2 79.0 74.5 71.0 65.8	82.3	85.0	86.9	86.4	5000
87.7 83.1 70.5 75.6 70.1	99.1	DC - L	02.7	01.7	00E3
90.8 85.5 79.2 74.9 67.6	91-4	92.4	94.1	91.0	8000
85.3 80.7 73.6 68.2 59.5	83.4	63.9	85.9	83.3	10000
102.3 100.7 99.1 97.2 93.1	79.5	102.5	102.3	101.1	DASPL
114-9 111-3 106-6 105-3 100-8	112.7	126.3	117.8	117.8	PNLT
113.4 109.9 106.9 103.5 98.7	111.5	115.0	115.7	115.3	PHL
98.7 95.0 91.2 87.2 82.1	97.4	100-2	160.9	100.0	DBA
19 17 19 19 19	14	19	19	19	BAND
1.5 1.4 1.6 1.8 2.1	1,2	1.3	2.0	2,4	TCORR

...

```
150.1740
TABLE A-203
                                                                                                                                                                   2244 H PU542 JTBD-104 HOWLL INLET AS SHIPPED ENG HOWLL TLPIPE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  INLET TEHP
                                                  ENGINE HUMBER .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  TIHE OF DAY
BARM. PRESSURE
WIND DIRECTION
WIND VELOCITY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               955
29-59 IH- 199-
HH
2 HPH
                                                                                                                                                                                                                                                                                     TEMPERATURE
                                                    STAND
DATE
                                                                                                                                       = X-314
= ∪3/25/75
                                                                                                                                                                                                                                                                                     CBSERVED RPH
CORRECTED RPH
                                                                                                                                                                                                                                                                                     FAA PART 26 REFERENCE DAY CORRECTED SPL IN DB -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                RADIUS = 150. FT.
        1/3 DCT
FREQUENCY
                                                                                                                                                                                                                                                                                                            HICROPHONY ANGLES IN DEGREES
140 150 160
                                                                                                                                                                                                                                                                                     130
                                                                                                                                                                             110
                                                                                                                                                                                                                 111
                                                                                                                                                                                                                                                    120
                                                                                                                                             109
                                                                                  70
                                                                                                            100
                                                                                                                                                                                                                                                                                                                      99882495998121442858124573324822473
                                                                                                                                                                                                                                                                                     89.072
85.21.072
81.072
939.18
91.59
939.18
939.18
939.18
939.18
939.18
939.18
939.18
939.18
939.18
939.18
939.18
939.18
939.18
939.18
939.18
939.18
939.18
939.18
939.18
939.18
939.18
939.18
                                                                                                                                                                                                                92.78
92.84
93.84
93.84
93.84
95.6.84
97.6.2
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.82
96.
                                                                                                           106.3 105.7 105.7
118.9 116.8 116.0
117.4 115.3 114.1
102.9 100.3 98.2
                OASPL
PHLT
                            PHL
DBA
                 BAHO
TCORR
                                                                                                                                                                                                                         19
                                                         HAXIHUH DASPL
HAXIHUH PHLT'
HAXIHUH PHL
MAXIHUH DBA
                                                                                                                                                                                                                                                                                           COMPOSITE PHL
PHLT (INTEGRATED)
                                                                                                                                                                                                                    2294 H PC142 JT60-109 HOWLL INLET AS SHIPPED ENG HOWLL TLPIPE
                                   TABLE A-204
```

CONDITION = 5208

ALTITUDE = 200. FT SIDELINE

1/3 ULT FREQUENCY										I DEGREES
(HZ)	46	110	Luu	110	120	130	140	150	160	
- 50	Al.U	F 2	86.7	C4.5	87.6	88.3			86.3	
63	E4.0	bb.f.	01.0	16.0	Eu-1		90.4		B7.1	
とし	£4.4	20.5	86.2	63.7	67.4		90.4		84.7	
1ut	L4.3	t 5 . t	41.04	c2 . 1	Eb.f			P E.		
1.5	13.2	re-4	117.4	78.0	11.90			86.0	60.6	
160	liu-1	67.9	84.2	17.9	96.4	90.3			77.5	and the second
200	UB-6	111.4	91.0	85.6	91.2	40.9	8F - 1	33.9		, ,
250	87.2	1.7.0	0.03	80-1	20.4	89.4	86.5	.81 . 8	73.0	
315		81.4	46.0	90.6	91.6	89.4	85.5	60.5	77.8	
406			E0.6		01.2	EE.2	64.3	79.0	73.3	
500			90.1		42.4	87.0	87.6	77.9	74.1	
630			89.3		89.7	85.6	61.7	77.1	71.7	
,Bug				84.E	87.7	84.0	80.5		-71-1	
1000			P6.4		85.9	82.1	75.5	74.4	69.2	
1250			25.0		14.3	85.5	76.7	72.6	68.3	
1600				b1.L	62.5	79.7	76.4	72.8	68-0	•
2006	64.6				12.B	79.2	75.4	72.4	68.0	. 1
2500				84.5	84.1	80.0	77.4	73.6	169.€	
3150				87.5		83.8			73.6	*
4000	65.6				82.9	79.1	74.5	71-2	:65.8	
5000				£5.8	62.3	79.1	74.5	71.1	45.9	and the area.
<b>3</b> uE				£8.u	£7.7	53.0	74.	75-5	70-31	
8606				91.8		85.6	78.8	75.0	67.6	
10000				83.8	85.3	81.1	73.6	68.4	59.8	
10000	UD44	~~~					F			
DASPL	100.0	TOT.A	102-6	99.8	102.3	100.7	90.2	97.4	93.2	in Bearing as a
PALT	116.9	177.F	116-4	113.0	114.7	111.4	108-9	105.3	100.5	- 4
PNL	114.7	114.4	115-2	111.7		110.0	167.1	103.5	.98.5	
DEA				97.6	78.7	94.7	91'-2	37.2	87.0	A C. Maria
al Din	3745					- Ag - 1	7 - 7			30 H 50 T
BAND	19	10	. 19	12	. 19	19	19	19	19	
TCCRR	7.7		1.3					1.8	2.0	1.00

	ENGINE N		8 JT6	0 ~09 74054			TEMP	ERATUR	E		<b>.</b> 77.	.0 F				LET TEI			42.00 1018	F
	STAND			X-314			HUMI	DITY			70	O PER	ÇT.		BRI Hi	KM. PRI ND OIRI	ESSURE ECTION		29.58 SV	
	DATE		= 63/	23/19				RVED R			621 631				MIL	VD VEL	DCITY		1	HPH
							FAA 8	PART 3	6 REFEI	RENCE (	DAY CO	RECTE	ISPL :	EN DB	, RAS	DIUS =	150.	FT.		
1/3 OC								utenns	uffur a	uet C C .		ece.								
(HZ)	0	10	20	30	40	50	.00	70	80	90	IN DECI	100	105	- 110	115	120	130	135	.140	150
50	80.6				83.0	83.5	84.5	84.8	85.4	87.7	88.4	89.1	89.9	90.8	92-1	93.1	96.2	98.5	100.9	104.1
63	81,1				83.7	24.4	84.4		86.9	87.8	88,5	89.2	90.1	91.0	91.9	92.5	.95.9	97-9	100.7	103.7
50 100	81.4 81.5				63.2 61.8	83.6	83.6 81.4	83.7	85.1	85.5 81.9	86.6	87.1 83.3	88.3 83.7	89.D	89.9	89.9	92.1		96.5	
125.	82.5				52.1	81.7		81.3		84 2	85.8	86.7	67.7	84.8 89.3	91.1	93.5	08.7 96.7	99.0	94.5	
160	84.8			85.9	65.9	86.6	86.5	86.9	89.2	91.0	92.0	73.0	93.8	95.3	96.9	99.0	101.2 102.7	102.9	104.3	104.1
200	84-3					88.9	.88.0	89.9	91.3		94.5	96.0	97.4		99.8	101-1	102.7	103.3	104-1	102.
250 315	85.8				88.8 86.4	88.8 86.2	89.3	90.3 88.7	92.1	93+3 89-2	94.3	95.4 90.8	96.4	97.9 93.0	98 • 4 94 • B	99-1		98.3	98+6	97.1
400	85.9				86.2	86.3	86.3	86.8		71.9	92.6	74.2	95.4	75.9	97.6	98+7	98 • 1 97 • 7	99.3	99.9	94.5
500	68.0					94.2	88.0	93.3			90,3	91.8	93.1	95.7	96.5	99.5	98.7	99.8		
630	84.6					89.8	88.8	89.4	89.3	91.3	91.9	93.1	94+1	95.5	95.6	96.2	95.3	4++B		
800	85.4				90-5	,89.3	91.5	88.7			91.7	92.7	94.3	95.0	95 . 1	94+8	24.1	93.4		
1000 1250	80.8 86.2				85.3 84.6	85.9	85.7 84.8	85.0	86.7	88 • 6 87 • 7	.89.4	90-1	91.2 89.7	92-1	92+2	92.7				. 27.
1600	84.5				85.8	87.0	89.1			68.C	88.1	88.7 69.0		90.5	90.7	90.8	89.7 88.6	89.4 88.0		
2000		88 6				88.1	90.2	B9.5	38-4	88.6	86.6	88.9	89.4	70.3	90.5	90-1	87.9	87.4		
2500	872	. 92.0	90.5	88.2	90.3	90-1	89.3	88.6	89.2	89.8	91.6	, 88.9 92.7	91.7	90.4	90.2	90.1 90.3	88.0			
3150	93.3				. 97.2	99-1	95.9	95.5		93.5	94.7	94.6	94.1	94.3	92.3	91.2	89.5	89.1		
4000 5000	94.0 90.5			. 98.3		99.4		96-1				95-3	96.9	96.4	94.8	93.1	90-4	90 x 1		
0000	91.0				93.3		88.9 90.4	86.7 89.8		91.0	92.2 90.9	92.7	93.6 91.3	93.B 91.3	93.2	92.1				
8000	92.0					92.6			90.0			97.B	94.2	94.3	95.4		88.8		86.9	
10000	89.0			91.0				86.6	86 • 7	4.86	90.3		93.1		94.5	93.6			87.2	
DASPL	<b>201.</b> 6	103.2	104.0	104-1	104.4	105.2	103.6	103.5	103.2	104-4	105.3	105-9	106.9	107.8	108.3	109-1	109.6	110-4	111.3	112-7
PALT	117.0	119.6	126.3	120.5	170.2	121.9	119.8	119.4	117.9	117.8	110.8	110.9	121.0	120.2	119.7	119.3	117.8	119.0	117.9	116.2
PHL	115.8	118.0	118.6	118.7	118.7	119.R	11 B . O	117.7	116.9	117.8	11048	1.1R. O	120.0	120.2	119.7	117.3	117-8	117-8	117.9	116.1
DBA	101.2	103.3	10461	103.9	104 - 1	105.2	103.3	102.8	101.9	102.8	103.7	104.1	104.9	105.3	105.2	165.2	104-0	103.9	103.4	101-1
BANO TCORR	15 1.2	20 1.6	20 1.7	20 1.8	19 1.5	20	20	11	20	24	24	24	20	24	24	24	24		24	24
1 CUAR	1.2	1+0	1	1.0	1.5	2.2	1.0	1.7	1.0	0+0	0.0	0+0	1.0	0.0	0.0	0.0	0.0	1.3	0.0	0.0
	RAXIRUN			12.24			COHPO		\$1		113.	58								
	HAXIMUH			21.94			COMP	DSITE	. PNI	<u>.</u>	123.	55								
	HUMÍXAM MUHIXAM			20.19 05.32			PNLT	THE	EGRATEI	, (0	132	40								

7294 F PD191 JT60-109 HOWLL INLET AS SHIPPED ENG HOWLL TLPIPE

150-1740

CONDITION = 6392

ALTITUDE = 200, FT SIDELINE

REQUENCY											IN DECP				120	130	135	140	150
(HZ)	16	26	36	40	50	90	70	80	90	95	100	105	110	115	120	130	133	YALL	1130
50-	61.0	69.1	73.3	76.6	78.7	80.7	81.8	83.8	85.2	85.9	86.5				89.3				
63	63.4	71.0	74.7	77.3	79.6	80.6	81.9	84.3			86.6	87.3	88.0		88.7			94.3	
80	64.8	72.0	74.4	76.8	75.8	80.O	80.7	82.5	.83.0		84.5	85.5	E6.0			87.3	87.8		90.4
10¢	63.7	70.1	72.1	75.4	77.0	77.6	77.9	78.7	79.4		80.7		81.7		82.7		86.4		
12!	63.1	4.86	73.6	75.7	76.9	77.5	78.2	70.8	81.7		84.1	84.9	86.2	87.7	897	91.9		. 94+6	
160	45.5	72.5	77.3	79.5	81.B	82.7	63.6	86.6	08.5	89.5	90.4	91.0		93.5	95.2				
200	65.3	75.2	80.5	82.3	84.0	84.2		86.6	91.1		93.3	94.6		96-4	97.3	97.8		97.7	
250	67.2	76.1	80.0	82,4	83.9	65.5	87.2		90.8		92.7			95.0	95.3			_ 92.2	
315	66.6	73.6	77.4	60.0	81.3	84.2		86.0	86,7		28.1	89+1			93.1				89.1
400	65.3	73.5	78.1	79.7	81.4	62.5	83.7			90.0			93.8		94.9		91-5	90.3	86.2
500	69.8	73.5	79.4	84.9	89.3	84.2	90.2				89-1	90.2	92.6			93.B		90.8	
630	67.5	73.5	76.8	81:5	84.7	85.0	86,3		88.7			91.2		92.2		90.4		87.5	
800	65.5	73.4	78.2	83.9	44.3	87.6				89-1		91.4		91.6		89-1			
1000	62.6	70.7	75.3	78.7	81.0	81.b	-82.8	B4.0	86.0	86.6	87.4	8.3		88.7		86.6			78.2
1250	62.3	71.2	75.4	77,9		40.9	81.8	83.4	85.1	85-5	85.7		. 87.3			84.6			
1600	64.6	71.9	75.7	79.0			84.7						87.I			83.5			
2060	67.2	75.3	77 - 2	81.6	82.9.	86.2	86.2	85.6	85.9	85.9			87.0			82.7			
2500		- 76-7			. 84 . R	85.2	85.3	86.3	87.1	_88.8	89.8	88.6	B7.1			82-7			77.5
3150		: 63.4				91-7		70.6			91.7				87.0				78.0
4000	72.3	63.0			93.7		72.6			73.1						84.7			
5000						84-5		85.9		99-5				89.2		03.0			
6300	62.7					85.8				87.8	87.6	87.9		86.B					72-8
8000		75.0				86.2		86-6	88.7	89-5	R9.4	. 9046	90.3	71.0	88.3	0000	80.0		
10000	51.6	69.7	77.4	81.0	, B2.6	83.7	82.3	83.0	85+1	85.7	87.3	84+1	84-5	70.0	- 00.22	8307	9043	1110	,,,,,,
DASPL	50.4	1.Q.A	94.0	97-1	99.B	99.4	106-2	100.3	101.6	102.5	103.1	103.9	104.6	104.7	105.2	104.6	104-8	104.9	103.6
PHLT		37.E .	****	117 7	. 11£ ./.	11C.E	116.0	114-9	715.A	115.9	115-9	117-B	II6.B	III DAU	115-1	112.3	LLD.U	TTTPT	TOLFI
PRL	4.9 64	101 1	1 00 E	111 2	114.2	712 4	114.2	ס.דוו	715.0	175.9	115.9	116.8	110-8	116.U	115.1	11203	11101		***
DEA	79.5	69.3	93.6	96.7	. 99.6	99.0	99.4	98.9	100.0	100.9	101-1	101.8	101.9	101.5	101.1	98.8	98.1	96.7	92,7
V <u>1</u> 1224 (4)			Arrivation	·	e ji ey					5 S 1 1 5 5	24	tally a second	24	6 10 13 13 1	3 24	1.5		24	1000
EAND TCORR	20 1.5	20 1.3	20	11		20	- <del></del> -	1.0	- 0.0	0.0	0.0				D.0		1.3		0.0

PHLT (INTEGRATED) = 127.61

TAB	LE A-2	07	i	294 F	F8191	J169-1	.09 HBW	LL IN	.ET AS	SHIPPE	D ENG	HOWLL	TLPIPE		,	50.174	0			
	ENGINE H		= J1t1	*09 74054			TEHPE	RATURE	ŧ	•	77.	.O F			711	ET TEN IE OF D IN. PRE	IAY		1005	F JH. HG.
	STAND DATE		= 03/2	K-314			HUNIC	ITY		•	70.	O PER	CT.		WĮH	D DIRE	CTION	<u> </u>	SIE	крн
	DATE		- 037					VEO RE CTED F											•	
							FAA F	ART SE	REFER	ENCE I	KY COF	RECTE	SPL 1	H 08	- RAD	SUI w	150.	FTe		
1/3 00							3.	*****	inic st	elica e e	N DEGI	DE/EC								
FREQUENI (H2)	0	10	20	30	40	50	40	70		90		tóp	105	110	115	120	130	135	140	1 <u>5</u> 0
50	81.0	79.7	86.9	81.9	62.9	83.5						88.7		90.9	92.4					104.3
<u>ሮ</u> ል 08	01.7		82.7	83.3 83.2	84.2	83.9 83.7	84.7 83.1	85.1 83.7		87.7 85.8	86.5		90.1 88.2	90.7	92.0 90.0	92.6	95.6			103 <u>.6</u> 98.9
100	81.5 01.8				61.6	81.8	81.5	81.5	81.2	81.8	82.5	83.0	83.9	84.6		86.6				99.0
125	62.4	UU-7	80.4	82.3	81.6	01.5	81.4	81.3	82.2	84.0	85.8	86-9	87.7	69.0	90.6					104.9
196	84.0				85.8	B6. B	86.B	87.1	69-0	91.0	91+9	93.2	94.1	95.1	97+0	98-7	101.6	103.0	104.	104.7 102.0
21/0 250	84.2 63.7		86.0 87.9	89.3 88.5	68.3 88.6	86.8 88.8	88.0 89.1	89.6 90.1	91.4 91.9	93.6	94.7	95.9 95.0	97.3	97.8	98.6	98.7	29.1	98.6		
315	85.0		85.5	86.1	80.0	86.6	B7-9	88.6	68 .8	88.8	89.9	90.9	91.8	93.1	94.8	96.9	78.5		100.	
400	85.6		85.5	86.0	85.1	66.2	86.3	86.8	88 ∗5	91.7	92.7	94,2	95.5	96.9	97.9		97.7		94-1	
500	87.7				91.0		. 88.3	97.6	90.5	90.3			93-1	95-7	96.4	97.5	98.6		97.	
63Q	F4.2		85,6		A7.7	89.0 68.1		\$8.8 86.3	E8.6 88.5	91.1	91.9 91.6		74.0 94.0	95.2 95.2	95.5 94.8	95.6 94.7	95.3	94.7 93.2		
80u 1000	85.3 60.8				89.3 85.1	86.0	91.0 85.8	86.0	86.7	89.6	89.2		91.1	92.2		92-8	71.7	91.2	70.	
1250	85.7			84.7	84.2	05.7	85.0		86.0	87.4	RB + O		89.6	90.6	90.7	90.8	70.0	89.1	88.	. 55.4
1600	84.5				85.3	87.1	86.9		87.3	87.9			89.4	90.3	90.4	90.1	88.0	88.0	87.	
2000	84.9				87-7	b8-3	91.0	89.6	88.4	88.6 89.7	91.6	· 89.1	99.4 91.6	90.4 90.5	90.6 90.5	90.0	88.2 88.2		87 <u>.</u> 1	
2500 3150	8 <b>7.</b> 6		09.7 100.1	68.3	90.9 97.3	91.7 98.2	87.6 97.8	86.8 96.0	74.9	97.8			93.9	94.0	93.0	90.7				~ A7. Ž
4000	95.5		100.3		90.2	98.0	98.1	96.1	95.7	94,9	96.3		96.8	96.2	95.3	92,6	90.7	70,0	69.	. 40.3
5000	89.3				90.0		90.1	89.4	68.9	90.8	92.4		93.6	93.7		92.1				
6300	92.1				92.3	92.0	91.0	90.6 90.7	19. F	90.4	91.1		91.4 94.3	91.5	91.1 95.5	89.4 93.5	87.6		85.	
0000 00001	92.9 09.3				93.1 90.3		89.4				90.8			94.1		94.0			07.	
							_													
DASPL	102.3	102.4	105.1	103.9	104.3	104.4	104.4	103.7	103.5	104.3	105.3	106.1	106.9	107-8	108 • 5	109.0	109.7	110.4	111	112.2
PNLT PNL	117.8	117-0	110.6	110.4	110.5	110-1	119.0	117.8	117-5	117.5	118.0	119.1	119.9	120.1	120.0	119.0	118.0	117.7	117.	7 116.8 7 116.8
DBA	102.0	102.3	105.5	103.7	104.1	10445	104.3	103.1	102.5	107.8	103.9	104.3	104.6	105.3	105.4	105-1	104.1	193.9	103,	101.6
04110	20	20	2	19	20	11	20	11	20	24	24	24	20	24	24	24	24	- 11	24	24
BAND TCORR	1.2		20 2.3		1.5	5.0	1.8	1.9						0.0		0.0				
	НИНІКАН НИНІКАН НИНІКАН НИНІКАН		= 1	12.24 22.12 20.10 65.51			COMPI COMPI FNLT	SITE	SI PNI EGRATEI	Ĺ	= 113. = 123. = 132.	96								

2294 F POI91 JEO-109 HOHLL INLET AS SHIPPED ENG HOWL! TLPIPS

150,1740

CONDITION = 6393 ALTITUDE = 200. FI SIDELINE

173 DCT PREQUENCY (HZ)	10	. <b>2</b> 0	30	49	50		70		DHE AN	GLES 1	N DEGR	REES 105	110	115	120.	230	_135 _	140	150_	
50	61.9	69.0	73.4	76.5	78.7		82.2	83-7	84.8	86.0	86-1	. 87.1	87-9	89.0		91.4		94.6		
43				77.8	7 -1	80.9	82.1	84.1	85.2	85.0	£664	. 87•3	57,7	8 <u>5.6</u> .	37.0	7048	2244	74 1	25.1	
80	64 9	71-6	74.6	.76.8	78.9	79.3		82.5	83,3	84.0	85.0	65.4	85.9	86.6		87.1		89.4	90.3	
100	63.5	70.2	72.3	75.2	77.0	77.7	78.4	78.6	79.3	BO.0	80.4	81.1	81.5		. 8Z B	84-3	80.2	88.5	90.4	
125	62.B	68.5	73.7	75.2	76.7	77.6	70.2	79.6	81,5	_83.3	84,3	84.9	85.9	87-4	89 . 7.	. <u>93.0</u> .	.23.3	24.9	26.3.	
160	65-1	72.4	7744	79.4	82.0	83.0			88.5					93.5			97.5	95-1	96.3	
200	65.I	74.9	60.7	81.9	83.9	84-2		88.7	. 72.1	92.2	93.2	94.5	95.7	96.7	97-1	97.8	77.47	97I	73.4	
250	57.2	75.9	- 80.0	82.2			_87.D	89.2	90.7	91.2	72.3	93.5	94.7	95.2	24.7	94.27	_93<91	-22-4	R2.2.	
315	55.2	73.4	77.4	80.2	81.7	84.1	85.7	84.1	86.3	87.3	68.2		90.0		93.1		73.7.			
400	65.0			79.6	81.3	82.5	83+7	85.8	89,2	90.1	.91.5,	92.7	93.5	94.5		. 92+8	91.7	70,4	86.3	
500	69.2	73.5	79.0		88.6	84.5	20.5	87.8	87.8	87.6	87.2	20.2	97.6	73,0	. 75:1	_93.7		90.8	86.4	
630	67.0	73.3	76.6	81.2	84-1	24.4	85.7	8519	. 88.5	89.3	90,2	,.91.1	92.1				19.0		22.5	
\$40 <u>,</u>	65.4	73.2	77.2	82.7	03.1	67.I	85.2	85.8.	. 85.0	87.0	. 90.7	71.1	92°I		70.8	89-3		56.5	5048	
1000	42.2	70,6	75.2	78.5	81.0	. 81.9°	82-8	84,0	86.0	86.6	87.	- 58.2	67.0	90.Q	88 × E	96.7	- 65454	07.2	78•1 76•3	
1250	61.17	70.9		77.5	80.6	. 81.1	BI-7	83.2	84,8	. 8214	50.4	86.7	87-4	8/52			83.3		75.0	
1600	65.3			78.5	82.0	84.0	85.3	84.5	85.3	85.6	86.0	80.4	27.1	86.8		23-7		80.7		
2000	67 <b>.</b> 1	74.3	77+0	80.8	B3-1	87.0	86.3	85.6	85.4	8630	86.3	, <u>, , , , , , , , , , , , , , , , , , </u>	87-1	47.5		83.0		80.1		
2500		7549	78.0	83 8	86.4 97.7	85.5	85.5	86,1	87.0	88*12	7 D - 1	28.5	BTéz	86.0	2000	82-9	82.8	79.8 81.3	74.6	
3150		. 85 . 7	87.1	30.0	92.7	93.6	92.5		770	9Z.0	9Z•U	70.8	70.0	84.5	00.3	84.4			77.2	
4000		85.2	87.4	90.6	92.3	73.7	92.6	92.7		93.4	192.7	73.6	77.1			85.0	81.2	79.1	74.2	
3000	62.3				83.6	85.7	85.3	85.8	87.9	89.4	89.8	90.3	90+1			81.6			72.7	
6300	62.4	75.1	81.3	84.2	86.0	86.4	86.9	80.0	87.3	88.0	08.0	88.0	87-5	87-0					72.9	
8000	59.8	74.3	81,2	84.4	86-1	86.6	86+7	87.0	00.7	E(	67+7	70.7	70.4	Alet	on 7	9640.	AO.R	77.0	71.1	
10000	51-0	49.B	77.4	80.7	82.3	. 0,5 a C	83.3	83.3	85-5	0.02	8840	87.4	67.6	.70 .4		0742	4040	****	,,,,,,	
nachi		.02. 6	1 02 8	- 07 N	20 7	300-1	100.3	100.4	202.6	102.6	103.2	103.9	104-5	106.9	105.2	104-7	104-8	104.9	103.4	
DASPL	04.0	107.0	T10.0	112 0	115.6	114-6	116.3	116.1	114.9	116.1	116.2	117.B	116.7	116.3	114.8	112.7	113.0	110.9	207.7	
PHLT	24 0	40.0	200	111 6	112 4	114.7	17 L L	774.4	114.Q	716.1	316.0	116.8	116.7	116.3	114.5	112-7	TILLO	110 - 7	TUIDI	
	70.4	Qn.R	93.4	76.7	98.9	100.0	90.6	99.5	100.0	101.0	101.4	101.7	101.9	101.6	101.0	99.0	98.1	96.7	92.4	
DBA	1940	2040	- 34-	- 3. 1							- 4	S				7 7			2.00	
BANO	11	19	19	20	11	20	11		24-		A 24	20		24	24			24	24	
TCORR	1.1	1.7			2.0				0.0		0.0	1.0	0.0	D.0	0.0	0.0	1.2	0.0	0.0	
	• • •				. 777	+.				-										

PNLT (INTEGRATED) = 127-77

TAE	BLE A-	209		2294 F	PD189	J780-	169 HD	KLL IN	LET AS	SHIPP	FD ENG	HOWLL	TLPIP	F	1	L5D <b>-17</b>	40			
	FNGINE M		316 = 3	D -00 74054			ÌEND	ERATUR	E		= 77	•0 F			TIE	ET TE	DAY		932	
	STAND DATE			X-314			HUHI	PITY			= 70	•O PER	CT.		VII	H. PRI ID DIRI	ECTION	-	5	TH. HG.
	DATE		B 03/	K47 F3				RVED R			= 62 = 63				HI	id Veli	OCITY	•	2	mph
							FAA i	PART 3	6 KEFEI	REMCE	DAY, CO	RREGTE	D SPL	IN OB	- RAC	orus =	150.	FF.		
17% OC FREQUEN								utenan	10hm 44											
thei	0	10	20	30	40	50	60	30 HTCKCM	HUME AT EQ	90 90	IN DEG	REES 100	105	110	115	120	130	135	149	. 150
50	51.4	80.2	£0.6	80.1	03.4	83.9	84.2	85.5	86-0	87.6	88.2	88.3	89.9	'	91.6	-	96.3	T		104.5
63 00	82.1		82.7		84.0	84.1	84.5	85.1	85.0	87.6	68.3	88.6	89.9	90.4	91.3	92.1	:95.6	97.9	100.2	103.0
100	81.6 82.3				87.8 81.1		83.3 60.9	83.6	84.4 80.1	85.4		87.4	87.3		88.7	89.1	91.2			97-8
125	83.3		HD.4		82.2		82.1	82.1		85.1	86.3	87.4	88.2	90.1	91.2	, 86.7 93.7	89.6 97.6	92+5	7207	99.7
160	85.6		£4.7	85.3	E6.5	87.1	87.5	88.0	89.9	91.3		93.3	94.2	95.7	97.2	78 7	101.6	102.9	104-6	105,1 105,0
260 250	84.7 84.3		57.2	88+4	86.8	89.4	88+7	90.6	91.7	93.7	94.8	95.0	97.4	99.0	100.0	100.6	102.6	103.2	103.5	101.2
315	86.6		65.7		89.1 66.5		89.4 87.8	40.5 88.7	91.6	93.0	93.6	94.4	95,9	97.1	2844	28.0	. 99,2	75.6		28.1
400	86.7			66.5	66.6		86.9	87.4	88.9	91.9				490.6	95.4	97.1	95.5	97.5		97.8 95.3
500	90.6		15.6	88.9	92,3	94.6	90.7	93.6	90.7	90.2	91.0	92.2	93.4	.95-4	96.9	99.4	99.3	79. B		95.7
630 008.	35.4		85.7		68.5	P9.4	90.0	89.4				92.4	73.7	74.6	95.3	95.5	95.6	94.9	94.2	91.8
1000	86.0 81.3		03.6	84.1	80.4 80.1		91.4	89-8	69.5	90.9	91.7	92.5	94.0	95.0	95.1	94.5	94+6	93.3		27.6
1250	35.3		03.1	84.2	84.3	85.5	80.4 85.9	86.2 85.8	86.9	88.4 87.5	67.9	89.9		91.9	92.2	72 · 4 90 · 7	91.9 90.1	91.1 89.4		07±0. '85•3
1600	85.B		46.0		07.0		88.3	88.1		87.8		69.8	89.2	89.9	90.4	89.9		88+2	87.4	
2000	85+4		69.2		66.3	66.3	69.3	88.9	89.2	88.6	88.5	. 88-9	89.1	.90.0	90,5	89.9	88.5	87.7		84.4
2500 3150	89*5 96•6	92.1 97.4	90.4 97.0				89.6	89.1	68 . 8		21+2	92.3				90.0		87.4		84.1
4000	97.1		77.4		99.4		96.2 96.7	96.4	94.9 94.9	94.1 95.4		94.2 94.9	93.4		92.4		89.4	88-9		
5000	89.7	49.3	49.5		70.4		89.0	88.4	A8 1	90.5						91.6	68.9	89,8		<u>87.3.</u> 84.0
63DD	92.2		91.6		92.2	71.4	90.5	90.2	88.9	8+60	90.0	90.0	90.5	91.0	90.6	89.1	87.2	85-8		82.8
8000 10000	93.1		93.2	93.4	93.5	72.0	90,8	. 90.6	89.3	91.2	92.2	, 92.2	93.4	93.6 94.2	. 95.2	93.0	88.6	87.0	86.3	84.1
20000		90.1					86.8													84.4
DASPL	103.4	103.4	103.6	103.5	105.2	104.5	103.6	104.0	103.2	104.4	105.0	105.6	106.7	107.5	.108.3	108.8	109.8	110-4	111.3	112.3
PHLT	119.4	120.4	114.9	119.5	121.5	121.1	119.8	120.1	118.6	119.6	118.4	118.5	119.4	119.7	119.6	118.8	118.0	110.9	117,6	116.7
PNL DBA	11144	TIGOD	11002	111.47	117.0	118*8	114.1	118.7	117.1	118-0	116.6	118.5	179.4	119.7	119.6	11R_R	11R_A	117.7	117.4	776.7
	10242	104-1	24540	YOULD	,Luga I	10412	10394	\$11.244		10247	103.4	TOSP 1	104.4	thara	105*1*	104.0	10443	103.4	. 193.4	-16Î ep
BAND TCORR	11 1.5	•	20 1.7	20 1.6	19 1.7	11 2.2	20 1.7	20 1.9		20	24 0.0	24 0.0	. 24 0.0		24. 0-0	24 0.0	24 0,0	, 1.2	24 0.0	
		PHLT. PHL	e 13	12.26 21.45 19.75			COHPI COHPI PNLT		SI PRI GRATE		= 113. = 123. = 132.	43								
	MAXINUH .	uDA.	= 1(	5.15																

2294 F PD189 JTSD-109 HDHLL INLET AS SHIPPED ENG HOHLL TEPIPE

150.1740

CONDITION = 6397
ALTITUDE = 200. FT SIDELINE

1/3 OCT FREQUENCY																			
						_				MGLES !									
(HZ)	10	20	Зυ.	40	50	00	70	#O	90	95	100	105	110	115	120	<b>, 130</b> ,	135	. 14 <u>0</u>	150.
50	62.4	68.9	71.6	77.0	79.1	80.4	82.5	85.4	85.1	85.7	85.7	87.1	87.6	88+2	89.3	. 91.5	93.1	74.3	96.0
63	63.3		72.3	77.6	74.3	E0.7	82-1	83.4	85.1	85.8	86.0	87.1	87.4	87.9	88.3	90.8	92.4	93.8	24.5
60	65.6	71.P	72.5	76.4	78.5	76 -	80.6	81.6	82.9	83.0	84.0	84.5	85.I	85.3		86.4		89.2	
146	63.5	69.5	71.0	74.7	76.4	77.1	78.3	78.2	78.8	79.1	79.8	80.5				84.8			91.2
129	63.5	6E.5	72.8	75.8	77.3	78.3	79.0	80.5	82.6	83.8	84.8	85.4		87.8				95.2	
160	66.0	72.8	76.7	80.1	82.3	83.7		. 87.3						93.0		96.8		28.2	
200	65.6	75.2	79.8	82.4	84.5	84.9								90.6	96.8			97.1	93.2
250	66+9	76.2	79.3	.82.7	54.0	85+6		85.9						95.0			93.0		89.5
315	66.5	73.6	77-1	80.1	81.3	84.0	85.6	85.7	86.5	87.4					93.3		93.7		
40B	65.7	73.6	77.8	20.1	81.6	83.1	84.3	86.2		89.8			93.5						
500	72.1	73.4	60.2	A5.8	89.7	66.9	90.5	88.0	67.7	88.4			92.3		95.6				87.0
630	67.6	73.4	77.1	82.0				86.3		89.5					91.7			87.7	
600	05.7	73.3	77.6	81.8	64.3			86.6		89.1					90.6			. 86.3	
1000	62.6	71.0	75.1	79.5	61.1		63.0			86.4				89.7				83.6	
1250	61.8	70.3	75.1		80.4		82.6			85.3				67-1		85.0		81.8	
1660	64.ž	72.9	76.8	81.0	B3.1	84.3	14.9	44.4		B5.4			86.7					80.6	
2000	67.2	75.9	77.3	61.4	83.1	85.7	85.6			85.8					85.9				
2500	69.E	76.6	76.6	82.5	84.6	85.5	85-8	85.9		88.4					85.9			79.4	
3150	73.8	62.6	56.2	92.1	92.3			91.3		91.4		90.3	70.3						
4000	73.2	82.3	86.6	41.4	92.1	92.3	93.3	91.4				92.7			87.9		83.3	81.4	
5000	4.5.4	73.9	60.1	02.7	63.5	84.6	84.8	85.0	87-6	88.E		89.5		88.8	87-2			78.3	
430 <b>0</b>	62.3	75.0	HG. 9	84.1	85.4	85.9	tine5	85.7	06.7	85.9	PA - B	87.I		86.5				76.7	
8000	59.B	74.4	81-2	B4+8	85.5	85.8	86.6	85.9			88.8	87.8	89.6	90.8	88.0			77.6	71.9
10000	51.9	70.1	77.7	81.5	b2.4	83.4	83.5	. 53.0	85.2	86.8	87.4	89-2	89.9	90.2	88.5	84.4	80.7	77.5	70.8
DASPL	81.1	69.2	43.4	97.B	99-1	99.6	100.7	100-4	101.7	102.3	102 R	103.6	104.3	104.8	9-405	104.6	104.8	104-8	103.6
PNLT	90.0	104.4	109.3	114.2	115.6	115.6	116.6	115.6	116.7	115.4	115.6	116.2	116.3	115.9	114.4	112.4	112.9	110.9	107.4
FNL	94.8	103.6	107.7	112.5	113.4	113.9	114.B	114.1	115.1	115.4	115.4	116.2	116.3	115.0	114.4	112.6	111.7	110.8	107.4
GBA	80.3	uu*e	93.6	47.7	98.7	99.1	99.9	99.1	100,1	100.6	100.B	101.3	101.5	161.4	100.8	99.2	98.1	95.7	92 -6
BAND	11	20	19	19	- 21	20	20	20	20	24	24	24	24	24	24	24	11	. 24	24
TCORR	1.6	1.2	1.6	. 1.7				1.5		0.0			7.0					. 0.0	

PALT (INTEGRATED) = 127.50

COMPITION = 6392'
ALTITUDE = 200. FT SIDELINE

303

2294 H PO542 JT8D-109 HOWLL INLET AS SHIPPED ENG HOWLL TLPIPE

150-1740

4

COMMITTION = 6393 ALTITUDE = 200. FT STOELINE

										1/3 001
								•		FREQUENCY
90 100 109 110 120 130 140 150 160	1,60	150	140	130	120	110	109	100	70	1821
88.4 90.7 93.0 91.3 95.1 97.4 95.7 100.2 98.7	98-7	100-2	95.7	97.4	95.1	71.3	93.6	90.7	88.4	50
70.6 97.4 94.6 91.5 95.9 99.1 101.5 101.8 97.9	97.9	101.8	101-5	99.1	95.9		94.8	97.4	70.6	63
92.2 93.5 95.6 91.2 96.3 99.1 102.5 102.9 96.8										80
92.6 93.8 95.7 90.3 97.7 100.8 102.5 103.3 97.2										160
93.1 96.5 96.7 86.4 98.5 100.2 101.5 99.7 96.0	04.7	00.7	101.5	100.2	OR 5					125
73.8 95.0 97.3 86.8 98.9 100.3 99.9 92.2 92.0	93-0	44.3	0.40	100.3	98.2					146
193.4 76.5 98.6 94.1 99.6 99.8 98.7 95.7 (86.8	7640	06.7	25.7							260
76-1 76-4 78-7 98-1 100-2 99-3 97-8 94-0 86-9			75.1	40.0		03.1	68.7	96.4	24.4	250
76.1 76.4 78.7 98.1 100.2 97.3 97.8 97.0 86.9 75.1 96.2 98.9 99.0 100.1 98.6 96.8 93.6 86.4		77.4	7 ( 9 0	37-5		00.0	. 68-6	94.2	05.1	315
		73.0	7040	70.0	10001			OF E	75.4	400
		71.7	7747	70.4	77.7					500
74.8 76.5 98.8 94.5 99.6 96.8 93.6 90.4 85.5	02.02	70.4	7340	70.5	77.0	77.2	70.0	70.0	77.0	430
93.7 95.7 96.7 95.5 96.8 95.4 91.9 87.6 82.4	82.4	6746	91.49	72.4	70.0	7242	.70.1	2701	73-1	
93.7. 95.1 95.1 92.3 74.5 93.3 89.8 85.1 79.6		85.1	27.8	33.3	24.5	32.43	17291	. 7.51	73.7	800
91.1 92.7 93.1 91.1 93.2 91.3 871 82.3 76.4		82 <b>.</b> 2	871	91.3	93.2	91,1	_73.X	72.7	71 K	1000
91.3 91.9 91.8 89.9 91.3 89.2 84.9 80.2 74.8										1250
91.2 92.2 91.8 85.8 90.3 58.2 84.1 79.5 73.5	73.8	79.5	84.1	88.2	70.3					1600
91.5 91.9 91.2 88.2 90.1 87.5 83.5 79.2 74.0	74.0	79.2	83,5	87.5	90.1					2000
92.5 91.1 91.6 58.4 89.7 87.4 83.4 79.2 74.4	. 74.4	79.2	B3.4	87,4	89.7					2500
76.3 95.7 93.7 90.9 91.3 88.0 56.7 81.4 75.7	775.7	81.4	24.7	88.0	91.3	90.9	93•7	95.7	76.3	3150
99.0 98.5 95.8 .92.6 91.9 .88.7 85.1 81.5 76.8	75.8	31.5	85.1	* 88.7	91.9	. 92 . 6	95.8	98.5	99 · 0	4004
94.9 95.8 94.1 91.1 91.1 87.4 82.6 78.5 73.0	73.0	78.5	82.6	87.4	71.1	91.1	94.1	95.8	94.9	5000
92-5 93-3 90-0 83-2 88-5 85-2 80-2 76-8 71-0						, 99°5	90.0	93.3	92.5	6300
94.0 95.6 92.2 91.7 89.2 84.9 79.8 76.4 69.7						91.7	92.2	95.6	74.0	2000
90.3 93.3 91.2 91.0 89.7 84.3 77.9 73.3 65.0						71.0	91.2	93.3	70 × 3	10000
707.8 108.6 109.5 106.6. 110.1 110.2 110.5 109.8 105.1	105-1	109.8	110.5	110.2	110.1	106.6	109.5	108.6	107.5	DASPL
122.6 121.8 120.7 117.7 119.1 117.2 114.6 112.6 107.0						117-7	120.7	121.8	122.6	FHLT
121.4 121.8 120.7 117.7 119.1 117.2 114.6 112.6 107.0										PHL
106/0 106.6 105.9 103.4 105.1 103.2 100.3 96.9 91.3										And
20 24 24 24 24 24 24 24 24	36	26	24	. 24	24	24	24	. 24	20	E/ANO
			0.0				0.0			TCORR

PHLT (INTEGRATED) = 130.20

```
TABLE A-215
                                                                                                                                                                                                  2294 H PO546 JT8D-109 HOWLL INLET AS SHIPPED ENG HOWLL TLPIPE
                                                          ENGINE HLDEL
ENGINE HUMBER
                                                                                                                                                                                                                                                                                                                                         TEMPERATURE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              932
29.89 IN. HG.
S
3 KPH
                                                                                                                                                                                                                                                                                                                                         HUHIDITY
                                                                                                                                                                                                                                                                                                                                      OBSERVED RPH
CORRECTED RPH
                                                                                                                                                                                                                                                                                                                                        FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        RADIUS . 150. FT.
                                                                                                                           100
                                                                                                                                                                    169
           63 80 0 1250 1250 2515 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 1250 0 
                                                                                                                                                                                                                                              100.8
102.1
102.4
103.2
104.6
                                                                                                                                                         99.7
100.3
100.8
101.6
102.2
103.7
103.6
103.7
                                                                                                                                                                                                                                                                                                                            104.7
105.4
105.6
105.5
104.9
104.8
                                                                                                                95.5
94.7
94.5
95.0
96.1
98.1
100.6
98.0
95.4
97.0
     6300
8000
10000
     OASPL
PHLT
                  PNL
DBA
     BAND
TEOKR
                                                                                                                                                                                                                                                                                                                                                                                 24
0.0
                                                                                                                                                                                                                                                       24
9+0
                                                                                                                                                                                                                                                                                                24
0.0
                                                                                                                                                                                                                                                                                                                                         24
0.0
                                                                                                                                                                                                                                                                                                                                                                                                                          24
0.0
                                                                                                                                                                                                                                                                                                                                  COMPUSITE SPL
COMPOSITE PNL
PNLT (INTEGRATED)
        TABLE A-216
                                                                                                                                                                                                                                                     2294 H POS40 JT80-109 HOHLL INLET AS SHIPPED ENG HOHLL TLPIPE
```

COMMITTION = 4397
ALTITUDE = 200 FT SIDELING

1/3 007		
FREQUENCY		HICROPHONE ANGLES IN DEGREES
thž)	90, 100 109 110	120 130 140 150 160
, 50	38,8 91.0 93.3 91.d	94.9 98.2 100.0 100.4 99.2
53	50.5 .92.8 .95.5 .91.6	96.2 98.9 101.4 101.9 98.4
80	92.2 93.9 96.7 91.6	96.8 99.9 102.8 104.1 97.8
100	92.8 94.2 97.3 90.9	97.8 100.6 103.1 103.7 98.3
125	93.7 .94.7 97.8 86.3	98.4 100.8 101.4 100.5 96.6
200	94.4 .95.7 98.6 96.6 95.6 94.4 99.2 94.2	99.1 100.7 100.0 98.6 92.1
200	95.6 94.4 99.2 94.2	99.5 99.9 9827 9610 87.1
250	26.3. 97.0 100.7 98.5	100.5 99.9 98.1 94.9 88.0
315	95.7 96.6 100.6 99.1	59.9 99.2 96.9 94.5 57.3
400	96.2 94.2 100.7 94.4	99.9 98.3 95.5 92.9 87.5
.500	25-6 27-6. 100-5 95-0	99.5 97.1 93.9 91.2 85.8
630	93.9 95.5 98.2 95.9	96.0 95.6 92.2 88.4 89.7
ndo	93.6 95.5 97.1 92.1	94.6 93.6 89.4 85.6 79.9
1000	92.0 92.5 95.0 91.2	92.7 91.6 87.5 82.5 76.6
1250	91.3 91.9 93.8 89.9	91.8 89.5 85.3 80.8 75.2
1600	90.8 91.7 93.3 88.8	90.3 88.1 86.0 79.7 73.9
2000	92-1 92-2 93-2 88-2	89.8 87.6 83.7 79.4 74.3
2504	92.9 93.2 93.5 40.4	89.6 87.4 83.5 79.5 74.3
3150	9548 95.2 95.3 90.4	90.7 88.0 83.9 82.5 76.0
4000	94.5 97.6 97.1 92.2	91.5 88.5 84.3 83.1 76.3
5000	94.5 94.9 95.6 91.0	90.3 86.6 81.7 78.2 72.2
.6380	91.7 92.2 92.3 87.7	87.5 84.2 79.3 75.7 69.7
10000	93-2 94-4 95-2 90-8	88.2 83.8 78.6 75.3 68.6
19000	89.9 92.8 94.8 90.4	89.0 83.7 .77.1 72.9 54.7
Todah.	A	D. 10 (130) (130) (40) 540)
DASPL		110-1 110-5 110-7 110-4 105-8
	122.4 121.3 122.3 117.5	118.9 117.2 114.6 113.1 107.5
	121.2 121.3 122.3 117.5	118.9 117.2 114.6 113.1 107.5
ABO	105.9 106.2 107.7 103.3	105.0 103.3 100.3 97.6 91.8
VUA.	TANEN WAREN CREEK TRYES!	Sandra senson reason asset asset
BAND	20 24 24 24	24 24 24 24 24
TCORR	1-1 0-0 0-0 0-0	0.0 0.0 0.0 0.0 0.0
		The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

PNLT (INTEGRATED) = 130,40

TABLE	A-217		5	294 F	P0191	JT8D-1	OY HOW	L INL	ET AS	SHIPPE	D ENG I	HONEL	TLPIPE		1	50.174	0			
	ENGINE HU		= JT8U # 37	-09 4054			TERPE	RATURE			77.	0 F			TIH	ET TEH E OF D H. PRE	ΑÝ		4.00 F 1117 9.58 1	
	STAND			-314.			HUMID	ITY			70.	O PER	СТ.		WIN	D DIRE	CTION		SH	
	DATE		= 03/2	2/12			CORRE			=									_	
							FAA P	ART 36	REFER	ENCE Ó	AY COR	RECTED	SPL I	N 08	- RAD	IUS =	150.	FT+		
1/3 CCT							22	rensu	MNE AN	istes 1	N DEGR	FFS'							-	
FREQUENC (H21	т о	16	24	36	40	50	۵۵ .,	70	80	90	95		105	110	115	120	130	135	140	150 .
50	85.4	84.4	85.5	86.1	67-4	87.7	88.7	89.5	91.0	92.1	93.1	93.5	94.6	95 • 8	96.7	98.4	102.2	104.8	107.3	111.0
63	85.9	86.2	67.2	67.B	28.7	88.8	89.3	0.3	91.5	92.9	93.4.	94.1	95.3	95.7	97.6	98 . 1.	102.7	105.3	100.7	110.5
80	116.6	16.2	£6.7	1.84	87.9	88.6	88.5		90.0		91.6	92.5		94.4	95.7	96.3	99.3	101.7	102.7	100-4
100	<b>67.</b> H	67.7	67.7	66.6	67.5	87.4	86.7	B6.7	87.3	87.5	88.3	89.4	90.3	91.00	41.44	93.1	105.2	107.5	111.3	114-6
125	89.2	87.4	86.2	48.5	67.6	67.7	87.3	87.1	88.1	40.5	47.7	00.4	72.7	77.3	103.4	105.4	100.2	111.4	114.1	115.0
160	91.3	90.3	90.0		92+2		97•4 94•5	72.0,	97.0	100.0	100.0	102-1	103.3	105.1	106-2	107.8	110.7	112-2	113.2	112.7
200	89.3	91.8 191.8	93.6 95.2	95.2 96.1	94.7 96.5	94.9	97.3	07.2	OD. 7	00.7	100.34	101-0	103.0	104.6	10546	106.2	107.2	107.8	102+0	LIUER
250 315	94.2	91.0	42.4	93.I	93.6	93.7		n	DI D	04.3	07.4	0A_4	00.7	101-0	103.1	104.6	106-6	108.2	110-1	111.2
400	92.8	91.4	92.2	93.8	93.1	93.3	93.2	93.1	95.3	98.7	99.9	101.5	102.R	104.5	105.2	105.0	100.7	10141	TOAPD	11147
500	43.2	92.0	91.7	93.3		94.2	95.9	95.9	96.8	96.8	07_R	20.3	100.B	102.5	103.9	105.5	106.6	107.5	100 - 7	Illei
630	90.8	92.8		91.7	94.8	96.0	96.4	93.9	95.3	-98-1	99.0	100.4	101.B	103.3	103.9	103.9	104.6	104.5	104.9	106.3
500	8843	69.3	90.0	90.7	91.6	92.3	92.7	93.1	94.4	96.1	97.4	98.A	100.5	101.8	102-2	102.8	103.8	103.2	103+3	103+3
1000	86.3	87.6	89.2	90.4	91.0	92.0	91.9			95.2	96.0	25±8	78.4	99.3	10001	100.6	TOYET	100,5	100°3	77.7
1250	85.6	86.7	88.4	89.2	90.7	96.9	90.B			94.2	95.0	95.9	76.8		98.5	99.9	9756	98.0 96.3		
1600	67.0			44.4	92.6	42.F	93.4	93.0	93.4	94.1	94.8	95.8	70 · 0	97.4 96.5	94.9	96.5	95.9			
2000	88 <b>.7</b>	91.6		94+2	93.7	93.8	44.3		93.3		74.3	. 95.0 95.0	95.3		96.1					
2500				93.0	92.2	94.7	94-4 92-1	92.3	93.8	94.0 95.1			95.9	96.1		94.9	94.2			
3150	91.7	92.9		92.8 95.7	92.9 94.8	95.1	94.2		95.3						97-1	95.6			92,7	
4000 5000	93.2 91.6			92.9		92.1	92.3			97-1	97.9	98.5		98.8	97.9	96.0	94.5		92.5	
6300	89.8			90.5		90.3	90.1	90.4	92.1	94.7	95.8	96.7	97+4	97.8				. 92.6	91.7	87.3
8000	68.2				69. t	88.8	88.4	88.8	91.1	93.3	94.1	94.6	95.7	95.7			92.5	91.5	90.6	87.0
10000	87-1	87.7	88.6	88.7	87.9	87.3	86.8	86.9	89.2	92.0	93 • 4	94.0	95.2	95.5				90.8		
DASPL	104.0	104.4	105.5	106.1	106-1	106.6	106.8	106.9	108.0	109.6	110.5	111.5	112.7	113.9	114.8	115.6	117.6	118.9	120.8	122.5
PHLT	116.9	118.1	120.2	119.2	118.8	119.7	118.9	118.9	120.1	121.7	122.5	123.0	122.7	124.3	124.4	124.1	124-9	125.5 125.5	126.3	126.9
PHL	116.9	118.1	119.1	119.2	115.8	119.2	118.9	118.9	150°T	107 2	108-1	109-0	109.9	110.8	111.2	111.5	112.1	112.3	113.1	114.2
DBA	102-1	103.1	104.2	104.5	104+3	204.8	104.4	104.0				•						•		5
BAND TCORR	24 0•0	24 0•0	20 1-1	24 0.0	24 0.0		24 0•0	24 0.0	24 0.0	24 0.0	24 0+0	24 0.0		24 0.0	24 0•0	24 0.0	24 0.0	24 0.0	0.0	
	HUHIKAH HUHIKAH HUHIKAH HUHIKAH		E ]	22.52 17.44 26.87 14.19		•	COMPI COMPI PNLT	SITE	S PN EGRATE	L	= 122. = 128. = 135.	59								

2294 F PO191 JTBD-109 HOHLL THLET AS SHIPPED ENG HOWLL TLPIPE

150-1740

and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec

ALTITUDE = 200. FT SIDELINE

1/3 OCT																				
FREQUENCY							. H	ICROPHI	OHE YM	. 62 1	H DEGR	CES	,110	116	120	. 921	135	140	_150	
1421	10	20	-30	40	50	. 60 ∠	70	<b>.</b> 80	90	-24 6	Tho	Tos	110			4 1				
LE SERVI		7								00.4	00.0	92-0	92.8	93.3	24.6	97.4	99.3	100.9	102.5	
50	66.6	73.6	77.6	B1.0	82-9	64.9	86.5	DB - 4	87.6	70.0	91.5	92.5	92.7	94,2	94.3	97.9	<b>*99</b> ,8	101.7	TASEA	
63	68.4	75.3	79.3	82.3	84.0		37.3	88.9	90.4	70,7	89.9	91.0	91.4	92.3	92.5	94.5		97.5		
80	70.4	76.B	7945	81.5	8.65	34.7		B7+*	88.8	77.1		87-5	87.9	00.5	10.3	92.2	94.4	97.6	98.0	
100	69.8	75.8	78.0	61.1°	82.6	82-9	83.6	B4.7	85.0	87.0		21.1	92.2	93.9	95.9	100.5	162.0.	104.7	106.0	
125	69.9	74.3	79.9	81.2	82-9	\$3 <b>.</b> 5	84.0	95.5	E7.7	DYAC.	- A	A7 1	60.7	100.D	1በት ፌ	104-4	105.9	107-7	10/62	
160	72.3	78.9	85	85.8	88,2	88.6	89.7	92.4	94-0		- Mer. 1	100 6	102.0	107.5	104.0	105.8	106.6	105.5	ID-101	
200	71.8	81.8	86.6	88.3	90.0	90.7	93.3	95.2	97.5	70.7	AA 10.	1 44 2	TAT E	102.2	107.6	107.3	102.6	102.0	IVA	
250	73.7	83.7	57.5	90,1	92.6	93,5	74.5	76.0	97.2	21.	AF .7	AL 0'	97.9	99.7	100.8	101.77	T05*0	TODAL	TOTOS	
315	73.5	80.3.	84.4	87-2	88 - B		93.0						101 4	101_8	107.8	101	10/01	102.0	TOTOL	
400	73.0	80.1	85.1	4.68	88.4	89-4	90.D	92.6	76.2	97.3		~~ ~	40 £	100 K	101.7	101.7	.2	10202	10687	
500	74.0	79.5	84.6	87.9	82.3	92.1	92.8	744.	94.0	77 - 4	7040	00.0	trin.2	100.5	1004	99.7	95.8	98.4	97.5	
630	74.0	79.8	3Z.9	88.3	.91.1		70 B	9Z+6	95.5	7047	96.1	97.4	96.7	78.7	98.9	98.8	97.5	96-7	94.4	
800	70.2	77.6	81.8	85.0	27.3				93.5	77.0	70.1	7 J V V	04-1	36.6	96.9	96.1	74.8.	93.7	. 90.4	
1000	68.3	76.6	81.4	64.4	87.0	88,•0	. B9-1	90,8	42.0	75.7	94.1		94.6	95.0	95.1	93.7	92.2	91.0	86.9	
1250	66.3	75.6	50.1	. B4.0		56.9	88.3	90.4	91-6	72-4				94.2	93.6	92.5	90.4	88.5	83.7	
1600	67.0	74.7	85.2	85.8	87-7		87.8	90.6	91-5	42.1	93.0	73.0		93.3	92.5	90.7	88.9	87.2	81.8	:
2000	70.2	79.6	84.8	86.8	88.4	90.3	71.6	90.5	71.0	41.0	92.2	72.7	92.5	- 92.4	91.7	07.6	88-1	50.1	80.6	
2500	69.8	61.2	633	. 85.1	88.5	90.3	20.0	71.0	. 91.3	71.7	92.1	92.8		91.7		80.7	27.0	.85.1	7949	
3150		76.9	82.8	85.6	87.7		88.9	90-9	92.3	72-1	94.5	0/ 5	0424	93.7	91.2	88.T		85.1	80.3	١.
4000	70.1	81.1	85.3	87.2	87.4		90.5	92.3	94.2	74.7	7702	95.6	95.2	93.9	91.6	08.7	86.7	84.5	79.6	
5000	65.8	76.9	82.Z			87.9	89.0	91.6	94.2					93.3			85.6	83.6	75.0	
6300	60.7	73-9	79.2	82.2	84.3	85.5	86.7	88.9	91.6	92.7	72.07	97.0		91.5			84.0	81.7	75.6	
6000	56.0	71.3	77.2	80.4	82.3	B3 • 4	84.8	87.7	90.1	90,8	91.2	01 7	61.9	91.4	84.28					
10000	49.5	67.9	75.1	78.3	80.2	BL.4	82.6	82.2	00.0	0.140	,,,,,								100	
				T	100			- 1					***	111 2	111.4	112.7	113.3	114.4	113.5	
DASPL	-84.2	92.3	96.9	99.3	101.5	102.8	103.7	105-3	107.0	107-6	100-0	120-6	120.9	120-7	120-0	119.B	119.7	117.6	118.5	
PHLT	94.7	105.7	107.2	1111-0	11400	11401	17255	44144	* TO - 1			SER. L	120.0	120.7	120-0	119.8	119.7	117.6	117.7	
PNL	74.7	104.7	109.2	111.5	113.7	114.7	115.5	117.2	118.7	119.7	120-1	120.0	107.6	107.7	107.5	107-0	106.6	106.6	105-4	
DBA	31 · Ì	90.2	94+8	97.3	99.5	100.8	101.5	102.9	104.6	105.3	100-1	100*4	Total	10111	*****	20,00			105-4	
		1				5 4 5 5				·	-			. 26	74.	24		24	5.5	
BAND	24	20	24	24	8	24	24 .	24	24	. Z4	24	47	2.7	ີ ຄືກ	ō.a			0.0	0.6	
TCORR		1.0	. 0.0	. 0.0	0.5	8.0	0.0	0.0	0.0	0.0	0.0	0.0							F '2 '	
							1.0		41.											

PHLT (INTEGRATED) = 131.50

TABLE	: A-219	3	:	294 F	P0191	J180-1	09 HDH	LL INL	ET AS	SHIPPI	D ENG	HOWLL	ŢLPĮPE	Ē	1	50.174	0			
	ENGINE H	NAPEE .	= JTLI = 37	) -04 74054,			TEMPE	RATURE	!		- 77	.0 F			TIH	ST TEHE	YAC		4.00 f	: IN. HG.
	STAND	•		¢-314			HUHIO	ITY			70	O PER	CT.		HIN	D DIRE	CTION		SH _	
	DATE		± 03/2	25/75				VŁD RF CTED R		;	73: 74:				HIU	ID. VELC	IC I I Y	•	.I. f	) Pri
							FAA P	ART 36	REFER	ENCE I	DAY CO	RRECTE	SPL :	N DB	- RAD	e ZUIC	150.	FT.		
1/3 007								Të bant	INUE SU		ru neci									
FREQUENC (HZ)	.T 0	10	20	30.	40	50	60	70	IDNE AN	90		100	105	110	135	120	130	135	. 140_	150
50	85.7	85.1	85.3	86.1	87.4	B8.1	88.7	89.7	00.0	92.0		93.3		95.5	-	. 08.3	102.2	•	٠,	
63	86.0		87.4		08.7	88.6	89.5	90.0		92.9			94.9				102.2			
90	67.2		BB-B	08.0	88.1	88.9	88.8	89.0	90.6	91.0	91.B	92.7	93.7	94.7	95.8	96.3	99.5	101.8	104.2	107.3
100	68.3		07.6			87.3		67.0		87.6			90.4	91.2	92.0	93.2	96.7	100.3	103.0	107-1
125	39-4		Un-3	88.4	67.6	87.6	B7-5		88.2					75.1	97.0	79.7	104.0	197.6	111,2	-173-1
160 200	91.6		90.6 93.5	92 9 94 9	92.3 94.3	92.6 95.0	92.4 94.5.	92.8 96.3	94.9	96.9	97.6	101.0	7744	101.4	104-61	107.6	110-5	111-0	113.4	113-0
250 250	89.7 91.3		94.8	75.8	96-3	97.3	97.5	97.7	98.4	99.4	100.7	101.9	103.1	104.4	105.5	106-1	107-1	108-1	108.7	110-7
315	94.4		92.1	93.0	93.5	93.7	95.4	95.8	95.9	96.3	97.3	98.7	99.0	101.1	103.1	104.7	106.6	108-1	109.9	111.6
400	93.3		92.1	93.9	93.0		93.3	93.3	95.3	98.5	100.0	101.5	103.0	104.5	105-1	105.B	106.5	107.8	109.5	111.6
500	43.6	93.0	41.5	42.8	94.6	74.7	96.3	95.9	96.7	96.B	97.9	99.2	100.7	102.3	103.9	195.5	106.4	107.5	108,5	.111-1
630	91.2		41.6		95.2	95.9	95.4	93.8	95.2	98.1		100.5								
BUÜ	<u>86.7</u>		09.5	46.7			92.7	97.3			97.3	99.0	100.4	101.8	102.2	102.7	103.8	103.3	103.1	103-4
1000	86.7						91.7	2.2		95.1		97-0								
1250	05.2		8B-1	89+1	91-0	91.7	91.3	91.6	93.0 93.1					97•7. 97•3	97.6		97.0		97.6' 95.3	
1600 2000	87.5 89.3		93.6	93.2 95.3	92.5 43.3		92.9	92.7	93.9			. 95.1			96.9	96.5		95.1		92.6
2500		43.1	95.1	92.5	92.3	94.6	93.7	94.0	94.4				95.3	95.9	96.1	95.9				
3150	91.6		42.2		92.0		91.8	92.9	93.6					96.1	95.7					
4000	94.3		45.0		95.1	45.6		94.4		97.1						95.7		93.8	92.9	90,9
5000	91.5	92.5	42.5		91.4	92.5	91.7	92.7	94.7					98.7	98.1			93.7	92.3	90-4
6300	90.1				90.1	40.3		96.6		94.0			. 97.1		97.3					
8000	89.0				89.1	86.9	89.3	89.1		93.6			95.6		96.2					. 87 . 8
10000	<b>87∙</b> 7	68.1	88.5	88.5	87.8	87.4	66.7	67.4	89.3	92.2	93.4	94.2	95.1	95.5	96.2	94.1	92.4	90-9	84.4	87.5
OASPL	104.4	104.6	105.3	105.9	106.1	105.7	106.7	107.0	108.0	109.6	110.5	111.6	112-6	113.8	114.B	115.6	117.4	118.9	120.8	122.7
PHLT	117.5	118.7	119.8	118-9	118.9	119.A	118+8	117.1	120.3	121.0	122.5	123.1	123.7	124.2	124+5	129.1	124.0	120-0	104.4	127.1
PNL DBA												109.0								
BAND	24	24	20	24	24	24	24	24	24	24	24	24	24	24	24	24	24.	24	24	5
TCORR	0.0					1 0 0	0.0	Ç.O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	o,o	0-0	0,6
	HUHIXAH HUHIXAH HUHIXAH HUHIXAH	PHLT. PHL	= 1 = 1	22.75 27.68 27.08 14.36			COHPI COHPI PNLT	STTE	SI PNI EGRATEI	L"	= 122. = 128. = 135.	72								

2294 F PO191 JTBD-109 HONLL INLET AS SHIPPED ENG HONLL TEPIPE

150.1740

CONDITION = 7433

ALTITUDE = 200. FT SIDELINE

1/3 DCT FREQUENCY								arenna)	ONE A!	uctes 1	tú Nec	DEEE								
(HZ)	10	. 20	30	. 40	50	- 60	, 70 °	80		95	100	105	110	115	120	130	. 135	140	150	
50	49.3	~~ .	77.6				. 46 7	00.3	. 89.5	PA 1	00.7	92.5	92.5	93.6	04.5	97.4	90.9	101.0	102.2	
63	49.0				83 B				90.4									101.6		
80	70.7	76.9			64.1				88.5									97.B		
100	70.1	75.7		80.7			83.9		85.1									97.4		
125	76.1		79.5	81.2	82.8		84.5		87.7									104 B		
160	72.4	78.7		85.9			39.7	92.3	94.4	05.7								107.7		
200	72.2	81.5		87.9					97.2	08.4	90.5	100.4	101.5	103.2	103.4.	105.6	106.3	107.0	104-4	
250	73.9	82.8	87.2	89.9	92.4		74.6											102-3		
315	73.B	80.0		87.1	88.8													103.5		
400	73.3	80.0		86.5	88.6		90.2											103.0		
500	74.4		84.1	88.1	69.3			94.0										102.0		
630	74.2	79.5			91.0													98.4		
800	70.4	77.1			87.5			71.5						98.7						
1000	48.4								92.5					96.5				93.7	70.7	
1250	66.4								91.7			93.9	94.5	95.0	95.2	93.6	92.4	90.9	86.9	٠,
1600	67.0	75.5	64.Q	85.7	87.6	88.9	89.5	90.3	91.5	92.0	92.8	93.6	94.1	94.0	93.7	91.9	.90.6	88-5	84-0	
2000	69.8	60.2	85.9	85.4	89.0	91.0	91.4	91.1	91.7.	91.7	92.3	. 92.7	93.1	93.3	92.5	90.6	89.1	87.4	82,2	
2500	70.8	.81.3	82.8	85.2	89.3	89.6	70.7	91.5	- 91.8	91.8	92.3	92.2	92.6	92.4	91.8	89-7	88.2	. 86.2		
3150	68.7	77.8	82-1	85.5	87.6	87.6	87.5	90.7	92.3	. 72+5	93.3	92.7			90.8				. 8041	
4000	70.0	80.5	84,8						94.2			94,5	94.3	93.4	91.3	86.8	87.3	85.3	8C.5	
5000	66.1	76.9							94.3					94.1			87.0			
00E4	61.2		79.3	82.0	84.3	85.2	86.9	89.0	1 91.5	92+6	93-5	93.7	. 93.8	93.2	91.2	87.8	85.7	83.6	7B.1	
8006			77.3																	Ċ
10000	49.9	67.8	74.9	78.2	80.3	81.3	63.1	85.6	88.7	89.8	90.5	91.1	91-2	71.4	88.7	85.3	82.7	80.3	73.9	
DASPL	84.4	92.1	96-7	99.3	101.6	102.8	103.B	105.3	106.9	107-8	108.8	109.7	110.6	111.4	111.7	112.5	113.3	114.3	114.1	
PHLT			108.9																	
PAL	94.8	104.3	108-9	111.6	114.0	114.6	115.7	117.4	119.0	119.7	120-1	120.5	120.9	120.B	120.0	119.7	119.7	119.7	118.1	
DBA	81.2	90.0	9446	97.3	99.7	100.7	101.6	103.0	104.6	105.3	106-2	105.8	107.5	107.7	107.5	106-9	106.6	106.5	105.5	
BANG	24	20	24	24	24	24	24	. 24	24	24	24	24	24	24	24.	24	24	24	5	
TCORR	0.0		0.0						0.0			. 0.0						0,0	0.6	١.
			100				:	5		1. 5.1	- 757	100	241	,	9 10 7					Ċ

PNLT (INTEGRATED) = 131.52

**TABLE A-221** 2294 F POINS JTBD-109 HOHLL INLET AS SHIPPED ENG HOHLL TEPIPE 'ENGINE HODEL ENGINE NUMBER STÅND DATE HUMIDITY S 2 HPH DBSERVED RPM CORRECTED RPM RADIUS = 150. FT. PAR PART 36 REFERENCE DAY CORRECTED SPL IN DB 1/3 DCT FREQUENCY (HZ) 89.6 86.3 87.6 93.6 97.0 97.8 95.2 93.6 95.4 87.0 88.6 66.9 66.5 91.2 93.0 94.4 47.6 91.4 91.7 92.2 89.7 80.9 88.4 87.6 86.6 88.2 92.9 94.3 95.5 93.5 93.5 91.0 91.1 4000 5000 6300 8060 10000 OASPL PNLT PNL DBA 24 24 24 0.0 0.0 6.0 BAND 24 24 24 24 6•0 0•0 0•0 20 1.2 24 COMPOSITE SPL COMPOSITE PNL PNLT (INTEGRATED) HAXIHUH DASPL HAXIHUH PNLT HAXIHUH PNL HAXIHUH DDA

**TABLE A-222** 

2294 F P0189 JT80-109 HOWLL INLET AS SHIPPED ENG HOWLL TLPIPE

150.1740

CONDITION = 7453

ALTITUDE - 2000 FT SIDELINE

1/3 OCT								.ianan	1011 <b>5</b> 41			neee : :							1.1	
FREQUENC	10	50	30	40	50	50	. 70	IICROPI 80	90				110	115	120	130	135	140	150	٠.
- 50.	66.3	73.3	73-7	80:6	83.2	84.6	86.7	87.9	89.3	90.3	90.3	91.3	72.3	9249	93.9	97.4	- 99.0	100-7	101.8	
63	68-1	75.1	75.7	82.0	83.6	84.9	86.6	88.5	89.9	90-2	41.0	91.4	92.5	92.8	24.0	96.7	99.3	100.0	100.8	
80	70.0	76.7	76.6	81.2	83.5	84.4	85.3	86.8	87.0	88.1			90.5		91.1	93-6	94.6	. 96.3	96.3	
200.	69.0	75.0	75.7	80.2	51.8			- 83.6					86.9					98.7		
125	69.7	74.6	78.7	81.6	63.0	84-1	114.5	86.3	_ 88.6	90.0	90.7	91.9	92.9	. 94.5	. 96.2.	100.5	102.8	105.5	106.5	
160	72.2	79.3	83.4	85.5	88.4	89.5	70.5	92.5	~ ~~.4	95.5	96.2	97.6	9015	200.0	101.0	104.2	106.2	107.6	106.9	
20G	71.4	81.6	65.5	57.9															103.4	
250	73.2	82.4	86.4	90.0	92.6	73.4	94.7	95.4	.96.6	97.5	, 98.4.	99,4	100.3	101.2	102,0	101.4	102.0	102.4	101.	
315	73.0	79.9	83.9	85.9	88.4	90.8			93.7	94.8	95.8	97.2	97.9	99,4	100.5	101.2	102-7	103.6	102.3	
400	72.7		84.5			89.4		92.8											102.0	٠.
500	72.7		83.2		88.5		92.3												102.2	
630	73.1		53.7		90.5		91.6						99.2	99.2	99.2	98.8	98.6	98 J	76.6	
800	70.0						89.9	91.5	4.EP	94.4	95.8	.97,0	78.3	98.0	98.4	98.3	97.3	96.1	93.5	٠.
1000		76.3				87.5													49.9	
1250	66.3		80.4		86.4			89.6		92.1							. 92-1			
1600	67.3	76.4						90.4								91.8			83.4	
2000	69.2	75.0						70-1	71.0	71.I	91,5	92.1	92.6	92.5					51.6	
2500		. 48-5	82-1			88.0		90.3	91.1	71.0	91.4	91.8	92.0	91.7	71.2				-10.0	
3150		. 77.3												91.2				85.0		
4000		81.2				90.3													79.6	٠.
5000				84.5				90.6											78.5	
6300	40°I			81.9	83.5	84.7	85.9	87.9	90.5	91.6	92.4	93.2	93.0	92.0	90.4	87.2	84.8		76.9	
8000		71.0												90.6					74.8	
10000	50.1	68.4	75.7	79-3	8C-6	82.D	82.9	35.2	88.4	89.5	70.2	91.5	91.1	90-4	- 44.5	85.0	82.1	80.1	13.7	
DASPL	Ú5.7	92.9	96.1	99.5	101.4	102.3	103.6	104.9	106.7	107.4	108.3	109-5	110.2	110.7	111.2	112,1	413.3	114,3	113.6	٠.
PXLT	95.7	105.7	110.4	113.3	114.7	114.5	115.5	116.9	-118.6	119.3	119.6	120.2	120-4	119,9	119-4	119.2	119.5	.119.5	117.4	
PHL	94.6	104.4	149.1	112.1	113.7	114.5	115.5	116.9	115.6	119.3	117.6	120.2	120.4	117.7	119.4	219.2	119.5	119.5	117.4	
28A	50,7	85.6	94.4	97.6	. 99.4	100-2	101.2	102.5	104,3	104.9	105.5	106.4	107-0	106,8	107,0	106.5	106-4	104,4	105.0	
CHAR	20	20	20	20	- 20	24	. 24	24	24	24	. 24	24	24.	24	24/	Z4	24	24	24	
TCORR	1.1							0.0									0.0		0.0	
7.77				7.1575		: <i>177</i>	-0.577		11:177			-77 T.		serio (E)	er de				177.47	

PHLT (INTEGRATED) = 131.16

**TABLE A-223** 

2294 H P0542 JTBD-109 HDWLL INLET AS SHIPPED ENG HDWLL TLPIPE

150.1740

CONDITION = 7428

LLTITUDE - 200. FT STOELINE

1/3 OCT												
PRECUENCY											IN	DEGREES
{HZ},	90	100	105	ric		120	130	140,	150	160		
50	92.7	95.0	97.8	96.2		100.7	103.8	106.2	106.8	105.5		
63	94.8	74.9	100.0	96.9	2.0	102.4	106.3	109.0	108.7	104.5		
80	96.7	98.4	101.7	97.0		103.4	107.7	110.7	110.2	202.8		
100	98.1			95.8						104.6		
.125	98.9	100.2	103.2	92.6		165.2	109-1	112.2	109.7	107.1		
140				92.5	1					105.8		
200	101-1	102.1	105.3	99.6						75:1		
250	102-1	102.5	106.1	104-9		107-2	108-1	108.9	107-2	79.8		
315				106.3		107-2	107.5	108.6	107.2	100.0		
400				101.6		106.6	107.8	109-9	107-4	102.6		1.
500	162.5	104.2	167.0	162.2	1	106.3	106.2	107-5	106-9	101.4	-	* *
630	101.2	102.3	104.7	103.4		105-0	105.7	104.6	102:R	96.8		
800	100.0	101.7	102.7	99.3		103.3	103.1	101.6	98.5	92.7		
1000	98.7	79.8	100.9	98.7						88.3		** 1
1250				97.4		99 6	98.2	95.1	91.4	84-6		1.50
1600	97.6	96.7	99.1	70.1		98.2	96.7	93.1	88.7	82.1		
2000	97.4	97.9	98.2	94.9						80.8		
2500	97.4	98.0	97.5	93.9		96.6	94.3	90.7	85.6	80.1	277	
3150	98.5	. 99.4	97.5	9442				70.1			٠,	100
4000	100.D	101.2	78.7	95,4	·			90.4				
5000	100-7	101.8	98.9	96-1		96.4	94-1	89.8	85.3	79.5		"." ;
6300	98.0	99.8	97.7	95.7				87.9				este di Ligari
6000	196.3	98.0	94.4	95.7		94.0	91.0	85.7	81.4	73.5		Mark the
10000	94.5	97.0	93 B	93.4		93 - 1	89.2	83.6	79.3	70.4	•	12
DARM	***				100	::	1951		21200		٠٠	
DASPL	113.2	114.5	116.4	113.2						114.3		10000
	125.I					125.3	125.3	125.4	123.0	117-5		
	125.1									117.5		100
DSA	110.4	115'0	112.5	109.7		112.3	112.0	111.9	110.0	104.3	, 5	Q 25 25 7 7
BAND	24	24	24	9	500	24	24	24	24	24		
TCORR	0.0			0.5		0.0		0,0				100
		577										- m - 200 mil

PHLT (INTEGRATED)

```
TABLE A-225
                                            2294 H PO542 JTBD-109 HOWLL INLET AS SHIPPED ENG HOWLL TLPIPE
                                                                                                                                                  INLET TEHP
TIME OF DAY
BARH. PRESSURE
HIND DIRECTION
HIND VELOCITY
               ENGINE NUMBER . =
               STAND
DATE
                                                                         DASERVED APM
                                                                         CURRECTED RPM
                                                                                                                                                 RADIUS = 150. FT.
                                                                         FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB -
     1/3 UCT
FREQUENCY
(HZ)
                                                                               MICROPHONE ANGLES IN DEGREES
140 150 (160
                   50
63
80
1100
125
166
250
250
315,
400
500
1250
3150
4000
3150
4000
6300
6300
6300
6300
      BAND
                MAXIMUM CASPL
MAXIMUM PNLT
MAXIMUM PNL
MAXIMUM DBA
                                                                          COMPOSITE SPL
COMPOSITE PNL
PNLT (INTEGRATED)
```

2284 H PUSAZ JTBD-109 HOWLL INLET AS SHIFPED ENG HOWLL TEPIPP

50.1740

cómpition = 7433

ALTITUDE = 200. FT SIDELINE

1/3 DCT								HTC LOOK	ICNE AN	ini ES	IN DEGREES
FREUUFNCY	*		240			170			150		
(HZ)	90	100	100	110		174	120				
50	43. I	45.0	97.6	95.9		100.2					
63				96.3					108.3		
BO				97.3		103.2	108.2	111.0	110.4	102.5	
100				46.3		104.3	149.0	111.8	112.1	103.1	
125				92.4		105-4	109.3	112.1	109.9	106.5	
160				92.4		105.8					
200				99.6		106.7	10B.6	108.9	106.5	97.6	
250				104.9		107.2	10B.Z	100.6	107.2	99.2	1.1
315				166.7		107.3	107.B	108.8	107.2	99.9	
400				162.0		166.7	108.0	109.7	107.8	102.3	•
500				101.6		106.3	106.5	107.8	106.9	101-1	and the first of the second
630				103.3		105.0	105.3	104.8	103,1	. 96.B	
500				44.0					98.5		
1000				98.7		101.9	100.9	98.3	95.1	88.1	
1250				97.3		99.7	98.3	94.9	91.3	B4.5	ri i
1600				95.9		90.1	95.4	93.0	88.4	81.7	
2000	96.49	96.0	911.9	94.6		97.1	95.1	91.5	- 86.4	80.3	
2500				93.5		94.2	94.1	90.3	85.I	. 79.3	f :
3150	98.1	60.1	41.6	93.5		95.6	93.4	89.5	85,2	. 79.1	
4000	66.3	100.4	oc. 7	94.6		95:8	93.7	89.6	86.3	79.5	r e
5000	160-6	31.7.7	100.43	95.1		45.5	93.2	89.1	85.O	78.5	real programme and the
6300	97.1		99.0	94.2		94.7	91.4	86.6	52-1	75.3	
8000	95.1	46.5	64 - 11	92-1		42.4	B9.2	84.0	79.5	71.6	yr i ffyydd (th
2000	92.7	US. O	940	90 B		40.A	66.6	81.4	76.9	67.9	
10000									· 1		The second second
CASPL	iii.d	114.9	. 124.5	113.1	1000	117-0	119.0	12045	119.4	114.0	<ul> <li>1.1</li> </ul>
PHLT	124.5	125 B	124.7	122-8		124.9	125.2	125.2	123.0	117-1	
PNL	176.4	125.8	126.7	122.2		124.9	125.2	125.2	123.0	117.1	
UBA	110.4	171.7	113.2	109.5		117.7					
UDA	1100	4444			1.00						
BAND	24	24	24	9		24	24	24	24	24	e in Table at the
TCORK				0.5	1 . T	0.0			0.0	0.0	}
10000				,							147 Sept. 1
	1.50	4.00	5.1 3.	44 S. A. S.		1. 1.45		J. 4 14		127	and the second of

PAUT (INTEGRATED) = 135.53

2294 H F0540 JTFD-109 HDWLL INLET AS SHIPPED ENG HOWLE TLPIPE 150.1740 = 37.00 F = 910 = 29.89 IN. HG. = S = 3 KPH ENGINE MUUPL = JTAD -60 ENGINE MUMPER' = 374654 INLET TEMP TIME OF DAY BARM. PRESSURE HIND DIRECTION HIND VELOCITY TERPLRATURE STAND DATE DESERVED REM CORRECTED RPH FAA PART 26 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT. 1/3 DCT FREQUENCY (HZ) MICRIPHINE ANGLES IN DEGREES 140 150 160 100 125 16b 200 250 315 400 500 636 800 1600 1250 1600 2000 8000 10000 GASPL PNLT PNL DBA 119-6 117-6 120-1 116-1 192-7 120-6 123-6 126-7 128-4 126-7 127-1 128-4 130-1 126-4 135-5 126-5 130-0 131-6 132-4 129-9 127-1 128-4 120-1 125-4 120-5 126-5 130-0 131-6 132-4 129-9 113-6 114-6 118-6 112-6 119-8 119-7 116-5 118-2 119-4 116-6

MAXIMUM GASPL = 128-35 MAXIMUM PNL 1 135-57 MAXIMUM PNL = 132-51 MAXIMUM GBA = 119-85

74 17 0.6 1.6 24 0.0 74 0.6 24 0.0

COMPUSTTE

24 0,0

COMPOSITE FAL PALT (INTEGRATED)

2244 H FO140 JTEO-109 HOHLL INLET AS SHIPPED FNG HOHLL TLPIPE

SPL

150.1740

TABLE A-228

BAND TCURR

CONDITION = 7443
ALTITUDE = 200. FT SIDELINE

= 128.75 = 135.62 = 140.33

1/3 DCT FREQUENCY	ŧ			-				IICROPI	IDNE AL	NGLES I	N DEGREES
(H2)	90.	100	104	110		126		140			
50	93.3	95.2	47.6	45.1						104.9	
63				94.5						104.1	
80				96.7						103.4	
106				96.0						104.9	100 miles
125	98.4	100.6	103.4	42.4						107.2	
160	49.4	101.3	104.2	42.4						104-8	
200	100.8	101.9	164.5	99.6						97.4	
250	102.4	103.1	107.1	104-9		107.3	108.2	108.9,	107.R	100.1	- 1, t
315	102.7	103.5	107.8	106.5		106.8	107.7	104.9	107-9	100.6	Jan. 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 199
400	102.5	103.2	107.0	102.0						102.5	
500	102.7	164.6	167.5	101.6		166.0	106.4	107.5	107.6	101.0	
636	101.0	102.7	165.2	103.3		164.8	105.0	104.7	103.4	97.1	and the second second
600	99.7	101.6	103.6	98.9	5.0	103.0	102.8	100.8	98.9	92.6	
1000	98.3	. 99.7	162.2	48.7		161.2	100.6	96.3	95.3	88.4	
1250				97.3		99-6	98.I	95.1	91.U	84.8	
1600				95.7		97.7					<ul> <li>3</li> </ul>
2000				94.3		96.4	94.7	90.4	86.7	4.08	
2500				93.5		95.7	94-1	89.9	85.5	79.5	14 A March
3150				43.4		95.0	93.2	80.0	85.4	79-1	
4000				94.7						79.6	
5000				94.9		94.4	92.3	P7.8	84.2	78-0	e de la digital
6300				43.B		43.2	90.4	85.4	81.4	74.4	
8000	43.4					91.0	£6.3	83.0	79.2	71.3	1.5
10u00				y1.3		89.7	86.3	81.5	78.0	69.0	
									200	1000	
DASPL	415.G	114.2	117.6	113.0	1.	116.8	118.7	120.3	119.7	x14.1	
	124.4					124.5	124.9	125.0	122.4	117-3	era e i se ja
Phil	124.4				40.00	124.5	124-9	125.0	173.4	117-3	10 N 19 N
USA				109.4		111.8	111.8	111.8	110.6	104-2	
									7777		
BAND	74	74	74	12	to the w	24	24	24	. 24	24	and the State of the
TCORR	0.0			1.0						0.0	
,25,,,,				·	11					٠	

PHLT (INTEGRATED) = 135445

**TABLE A-229** 2245 F TAPE POS?2 UTED-109 HOWLL INLET, FAN DUCT- AND TEPIPE 150.1740 ENGINE MUDEL # TIME OF DAY BARM. PRESSURE HIND DIRECTION WIND VELOCITY TEMPERATURE = 1042 = 29.92 IN. HG. N 3 HPH STAND DATE = X-314 = 64/16/75 GDSERVED RPH FAA PART 36 PEFERENCE DAY CORRECTED SPL IN DB - RADJUS = 150. FT. 1/3 UCT MICROPHONE ANGLES IN DEGREES 70 80 90 95 100 FREQUENCY (HZ) 105 140 150 110 115 120 130 135 79.8 80.3 79.6 79.0 77.3 77.0 74.9 73.0 82.5 83.6 81.2 82.1 60.4 79.6 77.9 79.9 79.6 60.8 80.5 60.7 61.9 61.7 62.7 62.7 83.0 63.3 67.6 85.2 84.5 85.2 85.2 86.4 85.2 76.1 77.7 77.4 74.9 75.0 79.5 82.6 80.6 76.8 76.8 76.9 80.4 80.9 87.0 82.2 80.3 87.7 92.3 94.0 89.7 90.4 84.0 80.8 76.1 80.2 87.4 90.5 83.7 65.7 87.4 85.8 46.3 87.9 93.1 88.9 93.1 63 78.7 77.9 76.4 75.8 80.4 03.8 61.2 76.7 76.4 79.3 80.3 73.9 78.2 85.1 84.0 84.0 81.5 83.4 84.0 84.0 85.9 87.7 92.6 87.3 90.6 97.3 76.4 75.2 80.3 80.1 77.8 78.4 79.6 79.4 80.2 83.6 85.4 85.4 85.6 74.4 74.2 80.6 81.4 80.1 76.7 75.6 79.2 PC.4 91.5 63.2 74.07.48260.857.05899.35511.7 78.07.48260.857.05899.35511.7 78.07.058999.35511.7 250 315 400 500 630 800 1000 1250 1600 2000 86.6 87.1 88.3 86.1 85.9 86.4 87.1 90.9 95.0 93.9 95.4 91.5 85.4 86.5 88.0 91.8 65.0 65.4 67.4 71.3 95.7 91.1 90.5 91.0 91.6 85.7 85.7 86.6 96.7 94.8 68.7 69.9 94.5 91.2 85.2 86.0 88.7 92.4 87.7 88.7 92.2 92.9 86.3 70.6 85.8 86.7 90.6 91.7 95.6 91.3 91.5 96.2 91.5 2500 3150 4000 5000 96.2 90.7 91.6 97.0 92.4 93.6 8000 10006 DASPL PALT PAL DBA 102.4 103.0 107.1 101.3 99.9 117.6 118.6 117.8 117.3 116.1 116.4 117.0 116.3 115.6 114.3 102.6 103.1 102.2 161.4 100.0 BAND 19 19 19 1.5 1.7 1.8 14 1.9 19 1.6 19 1.6 19 1.7 19 1.5 HAXIHUH DASPL (INTEGRATED)

TABLE A-230

2295 F TAPE PC537 JT60-109 HOWLL INLET. FAN DUCT, AND TLPIPE

150.1740

CONDITION = 5198
ALTITUDE = 200. FT SIDELINE

OMERICAL PAGE TO OF POOR QUALTER

1/3 001																				
FREQUENCY											N DEGP					444	***	4.0	150	
(KZ)	10	20	342	440	. 0	hu	70	UΩ	. 90	.95	100	105	110	115	120	130	132	140	120	
				•								*** A		. 01 3.	01 7	93.0	A3.0.	85.1	- RS_R	
50	A . B .	u5 .3	76.5			. 73•7	76.8	77.7	75 . 0	(9-3	17.3	80.0	00.0	CT+5	DT.	0200		67.3	82.5	
63	5B.5		76.2		72.5	74.6	76.6	76.4	78.2	18.6	79.0	27 2	31.0	77.5	70.1	77.4	78.6	77.8	77.7	
նե	59.5	むりゅう	4.3	64.3	7, 46	77.8	74.3	74.4	75.8	72.6	Atem.	1143	1140	1143		75.5	76.0	77.7	76.7	
100	58.5	63-1	47.L	60.0			71.0	70.4	71.7	71.4	72.5	15.1	73.0	16-1			82.7			
125	26.5	604	67.2			70.4	71.0	72.5	73.4	75.7	75.6	77.3	111-1	14.5	17.8					į.
166	60.3	65.7	71.6	73.6	74.7	76.7	77.6	. 50.6	80 B	82.6	83.2	84+6	84.3	85.5	86.0	87.5		87.2		
260	60.4	66.7	75.2	75.0	77.7	77.3	79.4	£6.9	82.9	84.5	85.1	87.0	87.5		88.5		88.3	86.3	B1-1	
250	59.7	67.4	72.5	73.7	75.7	76.4	78.1	74.4	8+08	81.4	82.6	63.4	84.4	84.3	84.8	84.8	83.6		77.1	
315	59 6	60.5	70.6	72.3	73.4	75.4	77.3	74.4			79.7	80 - 8	80.6		8.68		83.8		76.6	
400	59.2		76.2		73.3	74 • I	74.B	77.2	79.7	B1-1	82.7	83.2	84.5	84.4	85+1		82.7	79.1	74.5	
Eub	60.0	66.9	70.6	72.7	74.0	75.3	76.8	77.4	78.2	78.9	80.0	20.9	82.6	83.2	84.4	84+0	81.6		73.9	
630		66.5					74.5	78-1	E0.2	80.8	R2.3	82.6	84-3	83.7	84.0	81.6	79.3		72.3	
800		64.6						76.2	60.0	81.6	82.5	F3.6	84.6	24.8	83.9	81.7		77.1	72.0	
1000		70.6					77.4		79.79	80.7	81.5	92-1	82.6	82.6	82.3	80.0			70.9	٠,
1250	64.2					74.4	78.7	76.4	80.4	81.4	8.58	A2.6	82.6		82.6		77.8		70.9	
1600		17.6			AGGA	86.4	79.5	74.4		81.9	82.6	82 - B	83.1	. 82.8	82.6	80.1	77.9	75.0	70.5	
2000	66.1				` 59. A	61-6	80-5	1.0.5	82.4	83.2	8.60	83.9	83.7			80.8			71.I	
2500		77.9			64-4	65.7	64.3	83.1	64.0	E4.9	. 85.7	85.8	B5.6	67.2	86 -4		BO.2	77.1	73,1	
3150	oB -2		36.2				87.5	H6.A	PR - 3	89.5	. 00.6	89.2	89.7	917	90.6	86.9	84.3		76.9	
4000		- PP - 12		45 6	1.2 C	115 E	Rt 2	46.9	82 B	83.7	84.6	84.3	85.1	25.1	84.1	82.0	79.3	75.5	70.9	
500b	64 L	16.00	10.3	113 6	Br. T	96.4	8/-7	62.1	03.8	84.3	85.4	B5.2	86.4	86.0	85.2	42.9	80.0	76.0	70-9	,
6300		79.0		67.4		.7.6	86.1	96-0	86.5	87.5	88.7	88.7	89.7	69.B	88.7	86.2	83.6	79.8	74+3	
							60.7	0.2 5	46.4	87.6	89.1	89.5	90.5	91.0	90.6	86.4	83.2		73,7	
8000	28.1	1406	UAL	82.03	4.5.7	04.0	63.1	01.5		83.7	85-1	85.7	86.6	86.7	85.3	84-6	82.0	77.6	70,4	
10000																				
					Sec. 15	OF E	94.8	04.4	00	97-1	98.0	98.3	99.0	99.6	99.3	97.9	96.4	94.9	92.2	
DASPL																				
PNLT	91.5	163.2	11/0-2	110.9	111-27	111.4	109-4	100 4	11100	117.2	111.8	111.0	112.5	113-6	113.0	110.5	108-2	105.3	101.2	
FNL	40.4	ICI+8	I uf u	109-0	TILLET	. Late 1.	94.6	103.0	06 4	05.4	07.3	- 67 2	98.0	98.7	98.1	95.4	72.8	87.8	B5-1	
DEX	76.5	. 7.5	12.6	94.7	45°F	721 O	79.0	7.3.0	7324	704	142			, 3						٠
1 2275								14	19	19	19	19	19	19	19	19	19	19	19	
EAND	22	14	14		14				17,	1.7	7.5	7.4	3.5			1.4	1.5	1.5	1.6	
TCORK	0.7	1.4	. 1.7	1.5	1.7	1.8	1.9	1.6		101	, , , ,	10-7	***							ŀ

PN/1 (INTEGRATED) = 127-36

TAB	LE A-2	31		2245 F	PU531	JTED~	169 ዘበ	WLL IN	LET FA	א סעכד	HQHF!	L TLPIP	E			150.17	40			
	ENGINE I			D +00 74052			TEMP	ERATUK	E		- 7	7.0 F			IN	LET TE HE OF	HP	æ )	32.00 824	F
	STAND LATE			X-314 10/75			HUHI	DITY			= 76	).0 PER	CT.		WI		ECTION	=	29.93 H	TH. HG.
	,							RVED R				762 199			HI	ND VEL	GETTY	•	5	HPH
							FAA	PART 3	6 REFE	PENCE	DAY C	ORRECTE	D SPL	IN, DB	- RA	DIUS =	150.	FT.		
1/3 OC FREGUEN								MICROPI	HONE A	טפו לכ	THE DE	beee								
(HZ1	0	1.c	50	36	40	۰٥	60	70	80	90	95		105	110	115	120	130	135	140	150
50 63	75.4													84.6		86.1	88.3	89.8	91.7	94.6
60	76 - 1 74 - 2				77.9 75.7			79.0 76.5						84.0				88.6	89.8	92.3
100	74.1				73.4		72.8	72.8	77•6 73•1				80.1 74.9	80.9 75.7		81.6 77.8		83.5	84-8	86.3
125	75.2				74.4			74.1	75.5					. 81.1		84.5		81.49 88.5	83.0 89.7	86.1 91.8
166	±03				BD . 2		80.0	80.9	43.3	84.6	84.9	86.4	67+3			90.5		93.2	93.3	92.6
200 250	78.3 77.3				60.4			82.3	83.B		86,6					92.9	96.1	94.2	93.1	90.4
315	77.6				50.1	80.A 78.7		51.1 6∪.0	82.5				B7-0			. 89.0		19.4	88.1	86.3
400	78•4		76.4			. 7E.	77.9	76.2	60.6 60.4				56.9	, 64.5		88,3		. B9-2	88.5	85.9
500	79.4				74.5	75.0		80.1	81.1	81.7			83.9	88.1 85.5	88.4	89:7 68:8	89.6 88.2	87.2	85.7	83.8
630	80.1		80.Y	80+4	86.6		79.5	77.6	61.6				86.0	87.4		88.1		84.9	84-0	83.4 81.6
100	95.0				01.7	81.5	80.B	80.2	81.9		84.2	85.8	86.9	88.3	B8 • 5	88.5			83.6	81.4
1000 1250	82 - 8		62.7		63.3			. 80.6	81.4					86.1	86.2	86.5	84.8	83.7	82.5	80,3
1600	63.7 84.6				£5.2	84.7		81.4	52.5	54.2			85.9	86.3	86.1	87.1	85.3	83.4	02.2	80.3
2000	to.1			67.5	67.5	56.6	64.3 85.7	62.4 83.9	63.1 64.3	84.6 85.4			64.4	86.5	66.8	87-1		83.4	81.8	80.2
2506	88.5				93	92.2	96.6	88.4	07.2			88.9	87.2 89.7	97.4 90.6		87.9 91.7	86+2	83.9	82.5	80.8
3150	91.0	93,2	96.3	96.7	95.9	95.4	93.6	91.5	90.1	92.1			92.5	93.9	94.2	95.3	92.3	87.0 90.4	84.5 87.7	83•4 86•5
4000	48.1		90.6		40.E	EH.4		85.2	85.2	86.7			68.4	89.0		88.9		85.2	83.1	81.0
5000 6300	70-4				91.2	64.7		86.7	66.7			. 88.6	67.7	90.5	90.6	90.3	89.0			81.7
5000	93.2 88.9		96.1 91.6	48.0 42.1	9t.6	93.5	91.9		E9.5	90,4			93.1	93.5	94.4		.92+3	90.3	87.9	85.3
10000	89.7					90.2 90.6	88.9 89.3	87.4	67.4 86.1					94.7 91.2		95.8 91.9	92.2	90.3 89.9	88.9 87.6	66.0 84.0
DASPL	.99.6	100.4	102.6	103.4	102-7	101.3	99.9	98.3	GR - 2	100.0	100.5	101.1	102 1	102 0	105 6	104 0	102 2	102 6	101 -	***
PALT	74002		11000	. 116.7	11041	1111	110.0	11444	113.0	115-6	115	115.0	114.6	117.0	110.4	110 2	117 2	411E D	112	
PHL	4444	12747		11106	11000	1124	114	112-7	112.3	114-1	711	714.7	3 T G . F	114.5	114 0	117 4	114 ^		***	
DBA	99.6	100.6	162.H	163.6	102.9	101.5	100.0	98•1	97.7	99.5	99.6	100.4	101.2	102.1	102.5	102.8	101-1	99-1	97.2	95.1
BAND	6	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19
TCDRR	0.6	1.1	1.5	1.7	1.5	1.7	1.7	1.6	1.3	1.5			1.2	1.4	1.4	2.7	1.3		1,3	1,4
	HUHIXAH HUHIXAH HUHIXAH HUMIXAH		= 11 = 11	04.00 19.31 17.65 03.58			COMPI COMPI PNLT		PN	L	= 106. = 119. = 129,	26.								

22°5 F PUS71 JT6D-109 HOWLL INLET FAN DUCT HOWLL TLPIPE

150.1740

CONDITION = 5199
ALTITUDE = 200. FT SIDELINE

1/3 UCT																			
FREQUENCY								MYCROS	HONE A	MAI EE	IN DEC								
(HZ)	10	20	36	40	50	66	70	80	70	95	100	105	110	115	120	130	135	140	150
50	57.	L 63.6	ab.	70.5	72.6	74.1	74.	5 20.2	. ~~ ~										
63	57.5	46.2	69.4	71.5	72.5	74. 4	74 (	7 7 7	4 (70)	19+4	RD*5	80.5	81.6	85.7	82.3	83	5 84-5	3 . 85.	86.1
80	58.2	44.5	67.1	1 69.3	72.2	72.7		75.2							81.0	82.1	- 83 - 1	83.4	83.8
100	55.1	61.4	64.6	67.1	. Aist														77.7
125	50.3	60.6	66.2	68.0			71	70.5	(1.00	71.0	77.0	72.1	72.6		74.0	. 75.1	76.4	76.4	77.5
160	60.2		72.3			76.2					10.2		7K.0	78.6					
200	58.4	67.2	74.0			76.4	. ,,,,,	, ,,,,,	82.53	82.4	. 83-8	84.5	85.0	85.6	86.7		P7-7	7 # A	
250	54.4				75.7	10.44	79.2		83.8	0.40			, H.A. G	99.7	90				
-315	5ê.5	66.5		72.3	73.0	75.9	78,0	79.8	81.3	81.9	83-2								
400		66.3		75.3	77.7	12.3	(0,7	77.9	78 - 5	79-1	- 00-1	80.5	81.4	82.8	84.5	84.9	97.4	42.1	77.2
500			7	72	74.1	14.1	12.1												75.1
630	61.5	. AR-1	71.4	74.3	75.5	12.3	77.0	78.4									81.4	70.1	74.7
<b>Ֆ</b> սն	62.4	69.6	75.0	75.1	77.0	13.4 [	- 70,55	78.9	81.4	81.2	82.8	83.1	84.3	84.2	84.3	82.0	79.2	777	72.1
1000	63.3	70.1	744	74.7	77 4	10.7	. 11+T	78.7	いてゅつ	OTED	. 63-1	840	· 85.7	EF D	84.6	81.9	70.5	77.0	
1250	63.4	71.3	75.	70.6	71.40	(1+0	1(04	79.7											71.3
1600	63.6	72.0	77 1	70.2	17.0	(4.4	78.7	79.7							83.2	80.2	77.6	75.5	
2000		74.4	75	60.6	50.2	nn•3	79.7	40.3	82.2	95.5	83.4	83.0 83.4	83.3	83 2	83-1	- 80. t	77.5	75.0	
2506	68.3	70.6	12.4	00.0	0144	4 97 - 1	80.6	81.5	83.2	. E2.6	84.4	84.2	84.1	83.8	89.0	81.0	77 0	70.4	71.0
3150	69.6	81.u	4. 7	50 4	00.9	80-2	85-1	84.3	85.7	85.6	86.0	86.6	87.3	87.0	87.4	84.0			
4000	63.9	75.7	70.7	60.0	04.4	47.4	100-1	87.2	89.3	87.4	89.0	89.4	90.5	90.4	91.1	86.8	84.1	400	73.7
5000	63.4	75.0	1701	0342	82.7	82.3	81.7	82.2	83.8	93.9	84.6	85.2	85.5	85.9	94.5		AA47	2000	76.5
6300	14.3	70.4		55+5	83.9	84+1	B3.1	113.6	84.9	84.7	85.5	85.2 86.4	86.9	86.6	A T.O	42.2	70 6		70.0
8000	57.2	73.3	20.0	60.1	87.5	87.3	86.2	86.3	67.8	85.0	08.E	87.7	89.8	90.3	88.7	86.2	1710	(0.3	. 71.0
16000	62.4	71 2	7.7	63.2	53+Y.	83.4	83.0	84.5	87.6	88.1	69.2	87.7 90.4	90.7	d1 2	20 B		02+2	17.0	14.0
	J. 44	11.2		RE*!	. 83.7	83.9	83-1	. 82.4	24.3	84.3	85.5	90.4 86.7	86.0	87 7	91.6	- DOS /.	92.5	80.2	
DASPL	76.5	07.4					되는 것		•	t da zi	· · · · · · · · · · · · · · · · · · ·					0201	. ir.i	78.0	70.4
PALT	41.0	103.2	72013	77.0	75.7	95.5	94.B	95.3	97.2	97.3	98.1	98.9	99,5	99.7	00 8	00 A	212		92.5
PNL	UII D	103.7	1.7	110.7	115-0	111-7	110.9	110.6	112.B	112.9	113.0	113.5	114.5	114 4	115 7	70.0	70.7	37.9	92.5 102.7
DSA	70.1	10246	Theel	104.3	110.3	110.1	107.3	109.3	111.3	111.4	111.7	112.3	113.1	113.1	112 4	170 6	107.5	10545	102.7
	1040	C ( 4.7		45.3	9569	95.7	94.7	94.7	96.6	96.7	97.3	98.0	98.5	OR A	TIDET.	41 Å 9 3	109-0	102.5	101.2
BAND	10	19	•			1.5		1, 141,1							70.63	45.0	72-7	87.5	. 55.2,
TCCRR			17	19	19	19	19	19	19	19	19	19	10.	70	10		••		
. 45/16	***	1.5	1+1	1.5	1.7	1.7	1.6	1.3	1.5	1.5	1.2	1.5	1.4	1 4	***		1.4	177	19
	100	4700	100	" , T		7 T	6 G A A						***	4.0	1	. 4,3	1.4	1.3	19
												1.5						100	

PNLT (INTEGRATED) = 122-30

2295 F TAPE PO532 JIBU-109 HOWLL INLET, FAN DUCT, AND TLPIPE

150.1740

TABLE A-234

CONDITION = 5711

1/3 061											. 9545								•	
FREGUENCY					4.7	_			IDNE AN				110	115	120	130	135	140	150	
(HZ)	10	26	20	46	50	60.	70	AO.	90	95	100	100	110	***	120	220	200	2		
	45.5			20.0	73.1	76 4	74.4	77.4	78.5	70.0	79.9	81.2	81.2	B1 - B	82.3	83.2	B4.2	85.3	86.4	
56	5B.7	65.5	71.6	72.2	7244	73.5	74.4	77.4	78.5	80.0	00.4	81.5	B1.5	81.7	81.5	82.6	83.2	83.9	84-2	
63	. 59.3		76. 2		73.3	76.6	74.6	76.2	76.7	78-1	78-1	79.2	79.2	79.3	78.9	79.4	78.9	79.6	78.5	
.60		titia4	66.6		70.6	72.2	71.7	72.0		73.6		74.7	74.1		.74.1	, 75.3	75.5	.76.2	76.7	
100	56.9	63.8 61.6		46.3		71.3		71.8		74.6		76.3		78.2		81.4	82-3	82.9	82.7	
125 160	60.1	65.4	71.8	74.0	75.2			79.6	80.2	81.6	82.9	83.5	83.9		85.7	86.9	B7.0	86.8	84.0	
200	59.2	67.3	74.0	74.5	77.4		76.7		82 0			86.7	87.8	88.3	89.0	89.2	88.5	57.1	82,3	
250	60.6			74.0	75-7		78.2	70.8	81.5	82.3		84.6	85.6	85.2	85.7		84.5	82-1		
315		64.8	70.1	72.9	74-7	76.5		74.4	78-1	79,1	30 · I	80.5	81.0	82.4	84.1	84.9	83.8	82.3	77.3	
400	54.4		76.6	72.2	73.5		75.2		79.8			23.9	85.0	85.0	86-0	85+8		80.8	75.6	
รับย์	60.4	67-6	70.7	73.2	74.5		77.1		79.2			81.9	83.8	83.8	84.7	83.2	° 61.5	79.6	74-7	
430	62-1		72.0		75.7	76.4	77.0		80.0			83.0	54.B	84.2	184.5	82.5	79.9	78.3		
800	63.2	70.0				77.4	77.6	78.6	E0.0	51.4	82.4	63.3	B4.5	84.2	83.9	82.2	79.7	77.8	72.7	
1000	04.3	71.0	74.9		77.5				80.2			82.A		83.1				76.5	71 · 4	
1250	64.2	72.U	76.0	78.8	100.5	79.8		79.9	80.4		82.7	83.2		83.3		80.6		76.3	71.3	
1600	64.9	72.7		70.0	BO-B	FO.F	79.7	79.9	£0.7	82.2	82.6	83.3	B3-3	83.4	82.8	BO.7		75-6		
2000	66.3	74.4		80.6	£1.9	E1.F	80.7	21.2	82.9	. 84.2	84.8	64.9	84.4	84.5		51.4			71.4	
2500	67.2	.77.7		P4.4	84.8	R4 4	83.2	83.1	83.9	85-1	82.0	90.0	02.7		92.0	03.6		77++	72.5	
3150		BLaB			90.7	RY.5	88.6	88.0	89.3	90.3	90.1	89.6	91.1	91.4	92,1	88.7	84.8	82.3		
4000		77.1			B3.7	55.3	82.3	B2-1	83.2	84.4	85.3	85.4	85.8	86.0	84.4	82.9		76.5	71.2	
5000		76.2		83.0	33.6.	<b>53.7</b>	82.7	82.5	83.5	64.5	85.3	85.9	86.3	86.4	84.9	83.0		76.4.		
6300	00.9			5.93			86.9	65.7	86.5	87.9	88.8	89.7	90.0	90.6	88-4		83.3	80.4	74-2	
8000		74.0			\$4.0	13.4	62.9	83.8	86.5	88.3	89.4	90.5	91.1	92.0	90.2	87.0	82.6	80.Z	73.5	
10000		72.4			44.5	P4.4	83.5	85.2	83.6	84.8	85.8	67.1	58.1	88.1	86.7	86-0	B23	73.1	71.0	
				4 14 14 14 14 14 14 14 14 14 14 14 14 14		1. 1	4 4 5 6	2.		10.40					2.00	2.				
DASPĹ	77.2	80-1	92.9	95.7	96.0	95.6	94.9	45. O	94.3	97.6	78.3	98.9	. 49.7	100.0	99.6	98.3	96.5	95.3	92.7	
PNLT																				
PNL					777	11. 3	15.0.	100.4	710.7	1111	112-2	111	113.4	113+1	11301	111.	T 110 = -	TARRE		1
ULĀ	77.2	16.5	93.1	- 06.1	96.2	95.7	94.7	44.5	95.8	97.0	97.6	98.0	98.7	99.0	98.4	95-2	92.9	70.5	85.3	1
	7177	1,5							*		* , *	1000				4.7			- 1 To 1	
BANO	19	19	19	19	19	19	19	14	1.9	19	19		19	19	19		19		19	
TEUFR	1.2		1.9	2.2	2.2	1.9	2.0	1.8	1.9	1.8	1.5	1.3	1.8	1.8	2.3	1.0	1.8	1.8	1.8	٠.
			·			- 177	1000	100	- 19 N T	1000	H 11	1.19	1. 1. 1.	7 ( )		1.74		100	- 10 A	

PHLT LINTEGRATED! = 127-61

```
2295 H TAPE PC545 JTHD-109 HOHLE INLET, FAN DHCT, AND TZP GP HIKES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      150.1740
                                                                                INGINE HUDEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              TIME OF DAY
BARM. PRESSURE
WIND DIRECTION
WIND VELOCITY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  29-92 TH. HG.
                                                                                STAND
DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    PUNIDITY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DESERVED RPM
LORFECTED RPM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FAA FART 36 REFERENCE DAY CORRECTED SPL IN D8 - RADIUS = 150. FT.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                MICHOPHONE ANGLES IN DEGREES
146 150 160
              (HZ)
                                                                                                                                      90
                                                                                                                            63.6
66.4
86.7
                                                                                                                                                                                                                                                                                                                                                                                                       91.27
92.46
92.45
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
95.46
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          95.0
96.2
95.0
95.0
95.0
95.6
91.5
91.5
91.6
98.2
86.8
85.7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           L9-0-0
60-0
61-0
91-0
91-1
91-1
59-1
90-1
90-9
64-4
90-9
64-6
91-9
64-6
91-9
64-6
91-9
                                                                                                                                                                                                                                                                           90.600

940.100

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00

91.00
                                                                                                                            16.3
87.6
18.6
93.6
65.1
                      160
125
160
250
250
315
400
630
630
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      45.9
40.5
40.5
40.5
         1606
2000
2500
3150
  0002
3023
0003
0000
GASPI.
         PHLT
PHL
DEA
  BANG
TCURR
                                                                                                                                                                                                                                                                                    16 19
1.5 -1.4
                                                                                                                                                                                                                                                                                                                                                                                                                           19
1.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  19
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         14
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                19
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1.0
                                                                                1928D HUHLKAP
TIMH MUHLKAH
IMH HUHLKAH
ARU HUHLKAH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  COMPOSITE SPL
CCMPDSITE PNL
PNLT (INTEGRATED)
                                                                                                                                                                                                                                                                                                               113.25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     = 113.66
```

CCADITION = 5198 ALTITUDE = 200. FT SIDELINE

2295 H TAPE POSA STED-109 HORLL INLET. FAN DUCT, AND TYP GP MIKES

94.3 110.7 104.2 97.1

101.3 115.0 115.5 77.7

120 87.4 90.0 97.3 88.6 86.1 85.1 85.1 #4.1 05.6 64.1 61.9 78.0 77.5 85.6 87.5 90.1 89.8 90.2 89.8 50.1 86.2 85.5 63.9 81.9 80.5 79.6 76.7 87.0 67.0 47.1 67.2 80.8 96.3 86.4 85.5 63 100 125 160 250 250 315 400 500/ 636 1060 88.0 87.8 68.2 88.3 90.7 90.7 91.3 90.8 90.7 67.8 65.5 65.5 87.5 88.7 66.4 65.6 14.4 17.7 84.8 F5.3 84.5 F4.2 14.4 18.2 91.6 10.6 65.2 65.7 66.5 65.5 65.6 92.6 91.6 91.6 94.6 94.6 94.6 94.6 94.6 1250 1600 2066 2566 3150 91.3 95.5 89.2 84.9 93.5 92.8 89.2 94.6 89.4 09.7 92.1 93.2 67.2 86.4 £7.1 69.5 91.9 86.7

> PNLT (INTEGRATED) = 126.74

121.0 116.5 119.6 117.2 107.9 102.2

19 19 2.0 1.3

**TABLE A-235** 

TABLE A-236

OASPL PNLT PNL DBA

BAND

150.1740

```
TABLE A-237
                                           2245 H TAPE PC544 JTUD-109 HOWLL INLET, FAN DUCT, AND TYP GP MIKES
                                                                                                                                                                                    31.00 F
624
29-93 IN- HG-
             ENGINE MODEL
                                                                                                                                                      TIME OF DAY
BARM. PRESSURE
HIND DIRECTION
HIND VELOCITY
                                                                          TEMPERATURE
                                    s X-314
= 04/10/75
                                                                         HURIDITY
                                                                         FAA PART 36 REFFRENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.
                                                                               MICROPHONE ANGLES IN DEGREES
140 150 160
                            260
                                              110
                                                       111
                                                                1:0
                                                                50
63
63
100
125
125
200
250
3150
630
1000
1250
1400
2500
3150
4000
5000
5000
                                                     92.9
92.5
93.6
95.6
95.6
95.6
96.5
96.9
96.5
96.9
92.5
45.3
45.3
47.5
101.3
101.3
103.6
101.5
                  DASPL
PNLT
PNL
DBA
  BAND
TCURR
                                                                                    19
1.8
                                                                                           19
2.7
                                     19 19
                                                         19 19
1.7 1.7
                                                                           19
1.5
  TABLE A-238
                                                2245 H TAPE PUSHA JEBE-109 HOWLE INLETY FAN DUCT, AND TYP GP HIKES
```

CONDITION = 5204
ALTITUDE = 200. FT SIDELINE

1/3 CCT FREGUENCY						. н	ichi Ph	DNE AN	GLES IN	DEGREES
(HZ)	40	100	164	110	126	170	16HE PH 140	150	160	
	62.7	1440	1-6-6	64.U	real		8946	40.4	88.1	
50		67-6		66.1	63.4	49.7	90.9	40.4	86.5	
63	15.1		97.°	#3 · ·	67.3	39.3	90.0	89.5	83 B	
ŧv	44.4		4.747		61.7		69.6	DB.4	79+7	
100	: 4.7		17.1	76.7	66.9	19.4		P6.3	77.5	
125	L>-7		89.3	RU-1	Luci	46.5		85.1	75.7	
160	87-1				40.4	90.5	67.7	P2.9	71.4	
\$ 60	19.3		70.5	67.5 68.6	90.3		85.4	81.2	70.9	
250	u7•4				41.0	FE-7	84.6	10.1	71 .B	- 1
315	67.5	Lu-I	44.3	70-5	90.0	2.4	83.3	70.7	72.5	
400	16.4			14.0	70.7	D4 7	62.0	77.6	71.9	
500	16.3	90.0		67.6	14.0		60.3	76.2	71.0	
630	16.8			87.5		02+4	200	. 75.7		
860	50.4			M2 = 7	*7.3	11345	79.1	74.6		1. 1.
1600	86.2			65.1	How			75.1		
1250	66.6		17.7	b5.1	46.3	82.3			70.0	
1500	1.7.4				66.4		74.0		70.5	francis,
2ພົບບ	19.7	£6.44		£5.2	1.0+9		71.4			
2500	92.0	41.5	42.5	きりゃら	411.9		61+6		77.6	
31:0	95.7	44.4		72.5		89.3	P 5 - 1		75.4	
4000	24.3	76.4		07.4	Edel		77.4		F8*5	Ta f
Stitti	06.3	41.4	41.	⊾a.7	80.5	54.6	75.0	74.6		
6360	93-I	44.1.	1/2.4	91+1			#B.6			
£սնն	43.2	De	C 5 . C.	42+b		€6.6				
10000	38+5	46.1	70.0	154.2	PL.•7	84.3	76.2	71.4	62.0	tra in the
		164-1	1	173 - D	105.7	101-3	44.5	97.6	92.4	
DASPL	163.1	111401	1111	116.A	3111-4	114.6	110.8	107.2	100.9	
PNLT	110.3	114.0	11.4-1	11040	117.7	117.1	109-0	105.5	50.2	544 July 200
PNL	117.5	11	11107		111	47 6	82.4	96.9	PP.F	
UEA	102+5	163.2	1112.42	11.0.7	Trita	71.74		1		
HANL	19	14	10	19	19	19	15	19	19	
TEEN!	1 8		1.2	1.3	1.7	1-5	2.6	1.7	1.7	4.1

PALT CINTELRATED . = 124.40

CONDITION = 5211
ALTITUDE = 200. FT SIDELINE

FRELLINLY († Z) MICROPHONE ANGLES IN DEGREPS 140 150 160 87.6 88-22-916 89-29-16 89-29-16 89-65 89-65 89-65 89-65 89-65 89-65 89-65 89-65 89-65 89-65 89-65 89-65 89-65 89-65 89-65 89-65 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 89-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 890-4 900-4 900-9 69-6 69-6 69-6 69-6 69-6 69-6 771-6 771-5 771-6 771-6 61.3 163.4 16.1 16.7 16.3 16.3 16.3 16.1 16.1 16.1 15.4 15.4 15.4 25.6 27.7 17.7 90-132-9 66-32-9 66-42-8 67-77-77-4-0 67-77-77-4-0 77-77-7-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-7-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-1-4-0 77-90.8 90.2 91.4 90.6 89.1 67.5 66.6 60.6 87.2 91.2 After E7-1 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 18-47 1 15.4 41.2 46.0 97.2 167.5 105.6 DASHL PAUT PAU U: Z 102.6 163. 104.5 119.6 120.5 119.6 119.5 111.5 111.1 102.2 165.2 162.2 BAND 10 14 16 2-1 1-1 1-4

PALE | INTERNALIE | = 129425

```
1995 F TARE PUSSE STROWLDS HENLE INLET, FAM DUCT, AND TEPIPE
TABLE A-241
              ENGINE MODEL a JING -OC
ENGINE NUMBER a STAUSS
                                                                                              TEMPERATURE
                                                                                              HUNTERTY
                                             = \ \hat{\pm-314} = 64/10/75
               STAND
                                                                                               FAA PART 26 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. Ft.
                                                                                                       HICROPHONE ANGLES IN DEGREES
70 00 90 95 100
                                                                                                                                                                       105
                                                                                                                                                                       90.1
90.2
88.0
07.0
93.6
95.6
95.8
95.8
95.8
90.8
91.0
90.8
97.8
97.8
97.8
97.8
97.8
97.2
97.2
97.2
97.2
                                                                                                                                                          89.1
69.5
63.4
63.4
66.4
92.9
95.9
95.9
95.1
93.1
93.1
93.1
91.1
93.6
93.0
93.0
93.0
                                                                                                           250
250
250
400
500
630
1000
1400
1400
2500
3150
                                                                                       94.6
95.6
96.7
92.9
92.2
92.6
       4000
5000
6300
8000
16000
       DASPL
PRILT
                                                                                                                                                                                           24 20
0.0 1.2
                                                                                                                                                                   24 10
0.0 0.5
            PNL
                                                                                                                                                       24
0.0
                                                                                                                                            24
0.0
                                                                                15
                                                                                                                                0.0
         BAND
                                                                                                       COMPOSITE SPL
COMPOSITE PNL
PNLT (INTEGRATED)
                        192AU HUHIXAH
LIAG HUHIXAH
1844 HUHIXAH
AAU HUHIXAH
                                                                                                                                                                                                                          150.1740
```

2195 F TAPE FURSS JTHE-109 HOWEL INLET, FAN OUCT, AND TEPIPE

150-1741

CONDITION = 6400 ALTITUDE = 200 FT SIDELINE

						•				-c 14	BEGRE	ES			120	130	135	140	150	
1/3 007					50	CŮ.	410 70	ROPHOI PO	IE ANGI 90	95	DEGRE 100			115 88.5	87.4	92.2	93.8	95.1 94.1	95.4	
FREGUENCY (HZ)	10	24	36	40	,,		2.5 1			86.2	86.5 86.9	87.3	87.5	88.4	88.3	90.9 °	92.8 88.1	89.6	90 B	
50	62.1				79.5 B 79.4 D	1.7 4	2.1	B3 9	85.0 83.?	86.1 84.0	64.6	B5.4	85.9 81.8	85.9 62.1	€6.1 63.0.	84.8	86.9	88.7 95.1	90.T	
63	43.0			27.2	74 L E	0.0 0		74.2	79.1	20.3	80+8 84-1	81.2 84.2	85.7	87.2	89,1	92.2	93.5	98-1	96.5	
to Ito	. 64.44 64.44	74.7	72.2			7.4	10.1	74.2	81-7 87-7	82.7	Q0.3	90.8	91.B	96.2	96.9	97.8	98-0	97.4	93.7 89.7	
125	13.0	72.3	73.5 76.6	19.0	BU-4			85.4 87.7	90.4	91.7	93.2	93.0	94.5	.95.0	93.1		93.7 93.8	93.5	87.7	
700 160	65.4	74.0	79.9	61.B		64.8	6.8	68.7	90.2 86.3	91.5 67.3	*88+5	89.0	89.9 93.7	91.5	74.7	93.7	92.6		87.2 66.2	
250	67.1	76.3 73.0	74.8	E0. 7	B1.6		45.3 113.4	£(D	£9.1	90.2	91.8 89.2	92.6	92.1	92.6	94.3 92.0	92.5	89.3	87-8	83-1	
315 400	05.4	14	77.4	79.7 85.3			h7.2	86.2	88.1	68.5 68.6	90.4	90.5		91.8	21.1	89.3	88.3			
500	66.6	75.6	77.0	112.4		86.U 84.7	85.5 89.3	88-1	8 · 8	89.0 87.2	90.6 B8.1		88.3	88.6	88.6	87.0	86.0	83.4	79.0	
630 666	66.8	75.2	79.5	64+3 61+6		55-2	56.7 40.8	87.0	65.6 68.5.	87.8	89.3	RB-1		88-3	B7-7	85.			77.4	٠
1000	63.5	72.5	63.0	18.6	91.5	91.8 93.2	90.6	. B4.3	£8.2	88.5 88.3		87.	86.1	88.6		140	5 82.1	8 Bl.		
1250 1600	67.4	74.h	1.5u	99.3 90.0	40.H	73.3	90.2	90.2 89.8	88.4	87-7	90.	89. 7 92.		93.	91.			1 83.	9 79 T	
2000	72.G 75.l	.79.7	84.0	87.6	90.1	92.2 93.1	91.3	89.9	91.4		94.	5 00	0 94.	95		9 64.	82.	_ት 80.	0 75.1 2 74.1	
3150 3150	71.9		46.7	40.3	91.6	43.4 67.7	92.2	90.B 87.1	88.5	89.	90	3 90. 8 29.		1 89.	5 88.			3 61.	1 75-0	
4u60 5u60	70.9 65.2	75.4	42.7	£6.4	₽7•1	37.6	R6.7	Bo.9	AE 3	. on.	5 91.	6 91.	6 92•		4 91.	1 87	2 83	9 PD:		
6360	43-3	75.4	81.0	30,46	66-1	bb.£	86.3	65.7	88.	, 87+	5 91.	14.	7 92.		105	A 105	0 105	1 105	,1 104.6	
Ֆսևն 10060	54+3	72.2	80.1	83.4	84+1	69.0		103.6	102.	2 103	0 104	1 104	2 10%	7 119	3 118	5 116	0 114	7 111	7 108.5	į
	£1.	90.4	, 45.	99.1	100.8 116.0 114.1 2 100.8	102,5	116.1	114	1150	7 116	4,117	4 117	3 117	7 118	1 117	4. 99	S 75	.9 97	1 104.0 7 107.0 7 108.5 3 93.4 4' 5	
DASFL PNLT	96.	7 lue •	2 110-	, 114.4 , 112.4	114.1	110.2	115.	114.	, 117. 3 101.	0 101	6 102	7 102	.3 10Z.	P Lus	•		. 2	o 2	, 5	_
PNL	95. 81.	5 41	C + 1+	1 59.	2 1Ch B	102.0	101+				. 2	. 1	0 . 2	, z	0 2	1 . 1	.z i	.2, Ç	.0 0.5	•
EEA					13	. 15	15				.a 0	.0 0	5 0	.0 11		77		. 1 s s		
PAND	11				1 1.5	1-4			٠.						٠	1.7 -			10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to	. *
TCERK				digital	478412		JW 1	1.	347			147.15		4, 144				11 jul		٠
	DNI T	LINIT	RATED	<b>F</b>	129.63					- P.				44.7					1.7	

TABLE	A-24	3	2	295 F	F0531	JТ8р−1	.09 must	LL INL	ET FAH	BUCT	HDHEL	TLPIPE	Ŧ			150-17	40			
	ENGINE M			-00 74052			+ EHPE	RÅTURE	·		- 77.	0 F			71	LET TE	DAY		23.00 F 100 29.23 I	
	STAND			(~314			HUMIC	ITY		-	70,	O PER	CT+		MX	MO PER	essure ection		H. SH	
	DATE		□ 04/1	10775				VED RE			62				MT	WO ASÉ	DCT11	-	γ'n	mr 1/4
								CTEO, P			6.4)									
							FAA P	ART 36	HEFE	KENGE (	DAY CUI	KRECTEL	) 26F 1	M.OD	- RA	Dius •	' 150 _e	μĹ		
1/3 OCT FREQUENC							,			IGLES 1	IN DEGI	REES .								
(HZ)	٥	10	50	. 30	40	50	60	70	80	90	. 95.	100	105	110	115	120	130_	135 _	140	_150
50	80.9		80.7	82.0	83.2	23-8	84.4	85.3		88.7									101.T	
63 80	80.7 81.4		82.7 83.9	83.2 82.9	84.0 83.2	84.0	84,6 83.4	84.9 83.8		88.7 86.4		87.5	90,2	88.9	89.3	89.9	126.0 91.8	93.5	95.8	71.2
160	82.0	81.4	81.6	60.4	81.4	81.2	90.6	00.9	81.6	82.3	62.6	89.3	83.9	84.9	85+7	97.0	90.1	92.8	75.8	100.0
125	62.3	61.0				81.9		81.4	83+2	85.5	86.0	87.1 93.2	98.1	. 89.6 95.2	.21.4	23 ₂₋₇	_ 27.4	97,3	101.8	.1032.
160 200	85.2		86.7			88+6	86.2 BB.0	8647 8948		91.7			94.3	7244	700-0	700.7	102.2	103.4	204,X	100212
250 250	84.6 84.3	85.2	87.6		88.5	88-7	86.8	19.9	91.5	92.7	93.6		24.4	.27.7	. 20.1	90.0	19.2	94.0	1.	94.4
315	86.1	84.5		85.0		86.2			89 1	89.4	90.2	91.1	92-2	92.9	95.1	96.9	78.6	97.4	100.3	
400	86.1					86.0		86.6		92.4			95.8	97.2	97.6	98.8	98-3			
500	£4.4				90.4	92.1	90.4	.91.9	87.9	91-1	90-7	91.,7 9249	93.0	- 끊 ‡	9_+9	200	<del>27</del> <del>-</del> 2	70.0	74.7	
630 630	84.4 65.3					88 a.b.	89.3 94.4		91.2	92.5	92.2	94.8	96.0	95.1	32	95-	94.8	774.2	73.5	10.9
1000	83.2			86.9				90.4			90.D	21.0		91.9	. 92.2	92.6	92.3		بقملاك أدي	
1250	87.3					97.0	96.9	94.4	94.4	91.1	90.7	92.1	91.8	92-0	93.5	92.2	93.B	71.4	., 50*2	* P * B
1600	90.1					98.3	97.5		94.0	93.6	91.5	92.4	91.2	91.7	91.8	92.1	90-7	91.4	. 59.7	
2000	91.2	93.6				97.0	95.9	95.2	93.5	91,5	71.1	. 41.2	91.1	. 76 6			20.7	7.5	89.6	
2500 3150	93.5	96.7	92.Q 95.3			94•3 94•2	98.3	97.9	96.0	97.5	95.2	97.7	96.3	97.0	90-3	497.	-93-1	9143		
4000		96.0				96.2	97.9		95.9	97.0	96.6	97,5	97.2	97.5	98.4	98.0	. 75.2	.94.1	9Z. 4_	
5000	95.3			93.4	93.8	73.7	92.2	91.0	91.3	92.6	93.0	93.7	94.1	94.6	94.2		9T-2			26.0
6300	92.3	92.6	42.4	93-1	92.7	92 - 5	92.2	91-0	91.5	92.6	92+5	93.4	93.7	94 0	94.0	93,-	91.2	87.3	97 B	N548
6000 10000	92-2	92.1	- 43.5	93.4	93.3	92,2	91.3	90.3	91.6	94+1	94.L	94.4	92.7	- 95 .9	9102	76	96.2	92.1	V90.3	27.5
10000	41.5	,4201	72.3		72.0	71.0	.70.0	. 5763	7012	42.00	7540	. 2460	*****	74.00				2.5	190.3	. 3
DASPŁ	103.6	104.9	104.0	105.3	106-6	106-5	106.6	105.9	105.3	106.3	106.1	107.2	107.5	108.5	109.2	109.	110.3	11/69	111.7	117.7
PNLT	117.4	120-7	. 170-5	119.7	121.8	121.3	122.2	121.3	119.0	120.2	119.6	121.2	121.2	121+8	122.0	122.0	122.0	LZIeZ	117.2	11707
PNL	117.4	118.8	119.4	119.7	120.2	119.6	120.4	119.9	119.0	120.2	117.0	120.7	120.7	121.5	1224	102.	TENET	12000	119.2	107-7
DBA	102.6	105-2	105*5	105.0	100* 1	Tno-1	100*4	ThatA	10464	102.2	104.3	tnoer								
BAND	24	11		24	15	1.3	13	11	24	24	24	10	10	10	. 24	. 24	20	4.20	24	24
TCORR	0.0	1.9	. 1.1	0.0	, 1.6	1.6	1.7	1.4	0.0	0.0	. 0.0	0.5	0,5	. 945	÷0+0	اولان. ا	120		0.0	
	HAXIHUH	DASPL	<b>=</b> 1	12.71			CORPO	BSITE		PL :	<b>= 114.</b>	13								
	HUHIXAH		<b>= 1</b>	22.17			COMP	OSITE	PN	L i	= 124.	15								
	HUHIKAH			21.97			PN1 -	THE	EGR∳TE	10	<b>= 133.</b>	<b>5</b> 2								
	HAXIHUH	DBA.	.e 1	07,11																
TARI	E A-24	14		9	295 F	20531	1780-1	กอ ผกษ	11 149	CT 6144	DUCT	uriur i	TI DIE-					_		
1770		• •		2				A UPM		CI PAN	100	NUMEL	4 PLTLE			1	150.274	u		

ALTITUDE - 200. FT SIDELINE

ORIGINAL PAGE IS OF POOR QUALITY

1/3 OCT PREQUENCY																			
	**								HONE AI										
(HZ)	10	20	30	40	50	60	70	ĐC	90	95	100	, 105	110	115	120	130	135_	140	150
50	62.8	68.8	73.5	74.8	79.0	80.6	82.3	85-0	86-2	86-6	. 86.6	87.7	88.4	RRÍA		97.3	.03.7	45.3	06.4
63	64.1	. 70.8	74.7	77.6	79.2	81.0	81.9	84.3	86.2	86.2	. B4 B	87.4	87.9	49.3		01 2	03.0	7203	7004
80		72.0				79.6	80.8	82.9	87.0	83-8	84.7	95.4	85.9	25 D	OL 1	07 D	. 27 IX	7707	
100	64.0	69.7	71.4	75.0	76-4	. 77.0	77.8	79.0	79.8	80.1	10.7	91.1	. 81.8	82.3	03.5	106.7	00.0	D76-7	90.2
125	63.1	68.3		75.5	777-1	77.5	78.3	80.4	83.0	83.5	2 - 49	05.2	OL E		200,0	07.3	07.0	07.4	96.4
160						82.4	83.6	87.1	80.2	RO.A	4.00	61.5	92.1	03.6	DE 10	7,510		2713	
200	65.7	74.7	79.9	81 .6	83.7	84.2	84.7	AR-9	91.6	01.0	92.0	74.F	95.6	75.5	7707	70,7	7147		
250	67.1	75.6	79.2	82.1	83.8	85.0	86.8	88.8	90.2	ái h	22.2		94.6	, 70 5	04 0	71.07	70.0	7702	93.6
315	66.2	73.1	76.3	80.2	81.3	83.8	84-B	86.4	86.9	87.6	22.4	4.08	89.4	01 7	7749	93.7	- 75 4 G		_ 07:0.
400	65.9	73.4		79.6	81.1	. 82.3	A3.5	86.4	49.0	90.4	OL A	02.0	94.1	1 24.5	2247	52.4	7340	7247	CATE
500	72.I	72.5	77.5	63.9	87.2	86.6	88.A	87.9	A 64	RA-1	90.0	60 1	92.0	04 5	72.00	.3304	72.0	7000	-0102
<b>630</b>	66.8	73.1		82.1	53.7	85.5	85.7	187.D	89.3	89.0	90.2	הַ דַּם	92.0	76.7	02 7	Z 2 • V	72.6	37481	127.
`002	66.2			84.D	89.4	90.5	80.8	88.5	zó 6	ROLA	702.3	01.1	92.0	71.0	36.47	70,3	AY OT	0 ( 6.7	63.2
1000	65.8	71.3				85.2	87.2	86.5	87.6	BT	68.3	80.3	88.7	88.7	68.7	87 3	1	0113	79.3
1250	67.1	74.6	82.6	91.0	91.9	93.0	91.2	191.6	88.5	88.1		· 80.0	\$В.В	90.0	20.3	86.7		83.8	
1600	70.4	81.2	- 83.4	90.4	93.2	93.5	92.6	91.2	91.6	AR.R	APLA:	BA . 2	SR E	88.3	88.1	AR L	EX.£	99 0	
2000	72.2	81.0	84.2	88.4	91.8	91.9	91.9	90.7	89.1	88.4	AR.L	*8F-1	AB. O	98.4	88.0	95.5	25 3	92.7	77.7
2500	75.3	79.1	24.7	86.5	89.0	91.4	91.0	90.6	89.7	80.0	90.8	89.9	89-1	AB. 42	80.7	A 5 7	93.7	81.0	
3150	73.1	.83.9	-88.2	90.6	90.7	94.1	94.5	93.1	94.7	97.4	94_R		9.4	0L 2	D . 3	97 £	# 5 0	49 /	
4000	71.3	82.2	87-2	89-9	90.5	93.5	93.8	92.9	94.7	93.7	94.5	94.0	94.0	26.	03.6	00.7	87 4	0.340	70.7
5000+	66 dt	76.7	82.7	Bo.I	.87.7	87.8	87.4	88.2	. 89.7	90.0	90.6	90.8	91.0	90.2	80.3	25.4	_V112	20.3	- 1741 '176 9
4300	02+0	13.0	91.40	24.0	10.5	87.6	87.3	68.3	89.7	87.4	90.2	マハュマ	90.3	HQ.Q	99.Я	. 85.9	. 62 3	70 7	71 5
. 8300	00-8	1144	01.2	B4 • 6	85.7	86.3	Bb. 3	88.2	9049	Qn_R	91.5	o. 10	67.0	92.8	200 7	46.7			77.00
10000	53.9	71.6	79.2	82.9	54.4	85.1	85. O	86.5	89.3	87.4	90.9	; 91.8	92.2	92.1	91.0	B7.3	84.2	80.7	74.0
OASPL*					10 miles (10 miles)				15		,							4 700	
PHLT	97.8	106.2	100.7	114.5	115 0	110 0	1000	10200	103.0	10242	10463		102.5	105*0	197+7	105,2	105.2	105.2	104.1
PNL	ÚS É	206.1	106 7	112 0	112.0	114 0	1114	11001	11107	110.0	11000	110-1	11045	118.2	117.5	116.6	115.0	112,1	108.5
DBA	85.1	00.0	- OF 4	115.47	707	110-6	11005	110.1	1.7.7	110*8	TILT	117.5	117.8	118*5	117.8	115.3	113.8	112-1	108.5
~~~	02.1	20.0	72.4	4743	TATES	TOSTU	102.6	102*0	TA A	TOS-I	103+1	102+7	103-1	103.3	102.9	100.3	99-2	97.6	93.6
BAND	11	19	24	15	13	13	11	24	24	74	in	10	10	72	24	20			
TCORR	1.9								0.0				0.5			1.2	20	0.0	24
•			11.31	. 1711												4.5			~-~

TAB	LE A-2	245		4562 E	TAPE	P0532 .	JT#D-1	C9 FIDWI	LL INE	ET, FA	N DUCT	, AND	TLPIPE			150.17	40			
	ENGINE N		2 J16	∪ -06 74052			TEMPI	ERATURI	•		= 77	•0 F			TI	LET TE	DAY	=	41.00 1123	
	STAND DATE		= 04/	X-314			HUMI	DITY			= 70	.O PER	CT.		HI	RHL PRI ND DIR	ECTION	=	N	iņ. HG.
	UA11.		- 547	73413				RVED R			= 63				M1	ND VEL	UCITY	6	3	HPH
							•	CTED F			₽ 6 4									
	_						PAA I	PART 30	S REFFI	RENCE	DAY CO	RRECTE	D SPL	IN DB	- RA	DIUS '=	150.	FT.		
1/3 OC FREGUEN								HICROPH	ICNE AL	NGLES	IN DEG	REES								
(HZ)	0	. 10	20	30	46	ŧG.	£G	70	RO	70	95	100	105	110	115	120	130	135	140	150
50	80.4		81,3				84.5	85.5	86.4				90.3	91.6	92.3	93.1	97.1	98.8	101.8	104-8
63	81.4						04.5	85.7	86.5	8.0			90.6	91.4	91.9		96.5		101.3	
80 160	21.5		84.1				63.4		84.7	86.2			88.8	89.6	89.7		92.3			100.0
125	62.4 82.6		62.2 80.5		61.7 81.7		61.2	81.9	80.9	82.2		83.9	84.3	85.5		86.7	90-1	92.B		99.3
166	84.8		114.4		65.4		81.5	81.0	88.9	84.0 90.2		96.5	87.8 94.0	08 • 6 94 • 5	91.D	92.5	97.6			105.0
200	E4.2		86.9				87.6	89.4		93.0		95.9	97.2	98.5	96.5 99.8	97.8	101.3	103.8	104.9	103+3
250	54-1		U6.1				88.8	89.9	91.3				96.6	98.0	98.5	99.0	99.9		99.2	98.5
315	65.7	64.4	65.9		16.7		67.9	bE.7	4.83	89.2		91.4	92.2	93.2	95.0			99.5		98.7
400	16.2	64.4	25.4	86.3	5b-1		86-4	86.4	80.5	91.7		94.8	95.7	97.2		98+6	96.9	99.1	9729	96.7
500	05.3	89.I	95.7	87.0	69.9	91.9	89.9	91.0	88.9				93.0	90.1	76.1	98-1		98.2	97.3	95.1
630	84.6	85.9	85.9	85.6	6.84		40.I	88.6	89.3	90.7			93.9	95.0	95.3	95.9	95.6	95.3	94.5	92.4
800	87.5		88.2		92.6	94 • B	94.3	92.5	91.5	91.5		93.7	94.7	94.9	95.0	94.8	94.9	94.5	93 B	91.2
1000	84.0		65.4	d6.l			90.1	90.6	98.9	87.6			91.4	92.2		92.6		72.3	91.6	
1250	07-9		68.7		94.4		96.2	95.1	92.3	91.0			91.0	92.3	92.4	92.9	92.3	92.4	90.7	
1600	19.7		41.4	42.3	44.2		96.4	95.4	93.1	91.8		91.9	91.2	92.0	92.2	92.2	90.9	91+2	89.5	85.6
260D 2566	92-1	93.9	93.7		94.7		96.6	93.8		91.2	45.0		41.3	92.0	92,9	92.3	90.9	90.6	89-5	87.5
3250	93.9 93.7		93.0 97.6		94-1		95.0	93.7	92.8	92.1		93.6	92.8	92.8		. 92.4	90.3	89.6	88.4	
4000	95.2		97.5	97.0	94.0		96.0 97.9	96.0 98.3	93.3 94.7	94.7		96.7	95.9	96.5	96.9	96.3	92.6	91-1	90.0	88.3
5000	75.1		. 42.4				92.2	91.5	90.3	96.8 92.3		98.1 94.1	97.9	97.8 95.0	99.2	99.1 94.0	96.2	94.4	92.7	
6366	92.1	42.7	42.7		92.6		91.3	40.B	70-1				93.2	93.9	93.7	93.2	91.0	70.0 86.9		86-2 65-5
8000	42.3		94.5				90.9	90.7	40.5	93.5			95.3	96+2	97.0			91.3		87.0
16660	91.2	95.2	97.9		92.0		89.8	69.3					95.5	96-7			94.3		87.9	86.9
GASPL	103.6	104.9	105.5	105.7	165.6	105.7	106.2	105.6	104.3	105.4	106.2	107.2	107.6	108.6	109.2	109.7	110.5	111.0	112.0	112.8
PKL7	118.7	120.3	122.1	1:1.6	171.2	121.9	121.5	121.4	117.9	120.4	110.9	120-9	121.5	121.4	123.4	123-6	122.4	121-4	120-6	110.3
PNL	117.6	114.0	120.3	120.4	114.4	120.2	120-1	114.9	117.9	119.3	119.9	120.9	120-9	121.4	122.2	122.3	120.9	120-2	119.4	118-2
DBA	103.7	105.3	165.7	105.4	105.7	166.9	106.4	105.6	163.7	104.5	105.1	106.0	106.0	166.6	107.1	107.1	105.6	105.3	104.5	103,0
BAND	13	11	20	20	• 13	13	13	20	24	20	24	24	10	24		20	20	20	20	20
TCCKK	1-2	1.3	1.6	1.3	1.4	1.6	1.4	1.5	0.0	1-1	0.0	0.0	0.5	0.0	1.7	1.3	1.4	1.3	1 • 2	1.2
	HUMIXAH HUMIXAH MUMIXAH MUMIXAH		= 1.	12.74 23.62 72.31 70.70			CUMPO COMPO PNLT		SI PNI GRATEI	Ļ i	= 114. = 124. = 134.	63								

2245 F TAPE PUS32 JT60-109 HOHLL INLET, FAN DUCT, AND TLPIPE

150.1740

COMDITION = 642C ALTITUDE = 200. FT SIDELINE

1/3 UCT FREGUENCY								vrehen		NGLES :										
"(HZ)	10	20	3ú	40																
(112)	LU	741	20	40	50	681	70	86	90	. 95	166	105	110	115	120	130	135	140	150	
50	62.1	6.4.4	73.0	77.4	74.3	60.7	82.5	83.8	84.8	86.5	B6.9	87.5	6.83	68.9	89.3	92.3	. 13.3	95.4	96.3	
63	63.2	71	14.0	77.6	74.6	80.7	82.7	83.9	85.5	86.5	87.2	87.8	88.4	88.5				94.9		
ŁU	65.4	72.7	74.7	76.8	79.3	79.6	81.2	82.1								87.5			91.4	
160	64.6	70.3	72.5	75.3	76.0	77.4	78.8	76.3	79.7	80.0	81.3	81.5				85.3		89.2	90.7	
125	63.6	ರಟ್ಟರಿ	72.0	75.3	70.6	77.7	77.9	74.7			83.9				88.7		93.6			
100	65.7	77.1	76.2	79.0	€0.B	62.4	83.1	86.3			90.0			93.1	94.0		27.4		95.7	
240	45.3	74.5	74.4	81.5	83.5	63.0	46.3			92.1	93.2		95.4						94.3	
250	UD-7	76.1	74.4	82.3	83.B	85.0	86.8		90.5				94.9		95.2				87.9	
315	66.1	73+H	77.7	80.3	61.5	54.1	85.6				88.7							94.2		
460	66.Q	75.6	77.0	79.6	61.1	47.0	63.3	85.H	89+2		92-1	92.9								
500	70.5	73.u	76.3	83.4	17.0	£6.1	F.7.9	86.2			89.7									
630	67.1	73.6	77.6	82-1	54.2	16-3	65.7	Et.6		89.2				91.9	92.1	90.7			83.6	
but	6003	75.E	.7A . 6	86.0	89.6	90.4	89.4	88.8			91.0			91.5	90.9			87.2		
1660	45.9	72.6	77.1	81.4	86.1	80.2	87.4	86.2		87.8						87.7				
1250	69.7	75.9	62.4	87.7	51.8	92.3		89.5		89.4					89.0				79.9	
1600	69.4	70.3	13.1	67.4	92.3	97.4	97.2	96.3			89.1				88.2		85.3		79.6	
2666	72.5	-0.3	14.5	67.6	91.E	92.6				E9.3			88.7			85.7				
2500	75.5	75.2	64.6	£7.0	90.4	(41.7	40.4			89.9		89.7	89.5					81.3	76.9	
3150	72.2	113.4	27.1	HH.7	90.1		92.6	90.4	91.9	92.7	93.8				92.1				78.3	١,
46(1)	72.6	U+ 11	18.7	40.4	91.9	93.5				94.1									80.3	
54:60	16.4	76.5	43.3	85+6	17.5	117.F	97.0	67.2	19.4	90.3			91.4				83.3		75.5	٠,
6300	63.7	10-3	£2-2	44.5	45-6	BA.7	b7-1	86.0	68.9	89.3	P0-1		90.2			85.0			74.2	
LLLO	4.00	70.1	12.2	£4.5	EG.L	1:24	Eb.7	87.1	90.3	90.7	h1.6	91.7	92.2			86.7				
10006	£4.6.	72.2	80.0	52.4	L4-7	64.4	£5.0	85.5	88.6	89.4	80.8	91.5	92.4	92.0				80.3		
1.0		4 1 4 4			1.5		200			6 to 15 a f		i si ka	1.10		4 × 75	1.0	· .	4.17	34.75	
DASPL	162.3	91.0	7: .6	¥8•+	101.3	102.1	162.3	101.4	102.7	103.4	104.3	1.04.6	105.3	105.6	105.7	105-5	105.3	105-5	104.2	
PNLT	47.7	167.3	111	113.9	110.3	117.2	116.6	114.5	117.6	117.0	117.9	118.3	118.0	119.7	119.4	116.9	115.3	113.5	109.9	
#AL	46.6	105.6	110.2	112.5	114.1	115.6	116.5	114.9	116.5	117.6	117.9	117-8	118-0	118.4	IIR.I	115.5	114.0	112-3	108.8	
DbA	t 2.1	71.1	75.6	48.5	101.5	102.3	102.3	106.4	101.6	102.3	103.0	102.E	103.2	103.3	102.9	100.5	99.3	97.7	93.9	
60 191 6	27 - 5 - 1	11.	1	1	44° , 4° ,	16. 8.	200	$M \subseteq \mathbb{R}$. 1 519		70.70		7.77							
BAND	11	2.0	20	13	13	13	20	24	20	24	24	20	24	` 20	20	20	20	20	20	
TCCKN	3.5	1.7	1.2	1.4	1.6	1.4	3.5	0.0	1.1	0.0	0.0	0.5	0.0	1.2	1.3	T-4	1.3		7.1	
	200		4.10km	100	71 July 1		100				. 1. 71.		. 14.1777	1, 70%						

PACT CINTEGRATEDS = 129.65

```
TABLE A-247
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         150-1740
                                                                                                                                                                      2295 H TAPE PO546 JT0D-109 HOWLL INLET, FAN DUCT: AND T/P GP MIKES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              INLET TEHP
TIHE OF DAY
DARM. PRESSURE
WIND DIRECTION
WIND VELOCITY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           42.00 F
1143
29.85 IN. HG.
                                                       ENGINE HEDIL = J160 -60
ENGINE HUNUR = 374052
                                                                                                                                                                                                                                                                                        TEMPERATURE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               7 HPH
                                                                                                                                           = X-214
4 04/10/75
                                                                                                                                                                                                                                                                                        HUMIDITY
                                                     STAND
                                                                                                                                                                                                                                                                                        COSERVED RPH
                                                                                                                                                                                                                                                                                         FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS = 150. FT.
          1/3 DCT
FREQUENCY
(HZ)
                                                                                                                                                                                                                                                                                                             MICROPHONE ANGLES IN DEGREES
140 150 160
                                                                                                       16u 169 110 111 126 130 140 150 160

93.1 94.9 93.4 97.7 98.7 107.3 106.5 108.4 110.1 95.4 96.9 94.0 99.2 99.6 103.2 108.1 110.1 109.7 98.5 97.7 98.4 100.4 100.1 104.0 169.0 112.5 109.1 98.7 98.4 92.8 101.7 108.9 105.2 109.3 112.4 109.1 97.5 94.8 99.5 89.5 102.2 102.0 164.9 108.0 108.9 108.1 107.1 98.2 99.9 88.9 103.1 102.7 105.0 106.9 107.1 103.5 98.2 99.9 88.9 103.1 102.7 105.0 106.9 107.1 103.5 99.2 101.7 100.5 104.7 104.3 105.1 104.5 98.2 99.2 101.8 103.0 102.7 104.3 105.1 104.5 98.2 99.2 101.8 105.0 102.7 104.3 105.1 104.5 98.2 99.2 101.8 101.9 105.0 102.7 104.3 105.1 104.5 98.2 99.2 101.8 101.9 105.3 103.3 103.0 107.0 101.2 100.3 109.0 101.7 98.0 105.3 103.3 103.0 107.0 101.2 100.3 109.9 101.5 100.6 99.6 96.1 97.9 90.6 94.9 105.5 102.8 101.5 100.6 99.6 96.1 97.9 90.6 94.9 102.6 98.4 98.0 96.5 94.8 92.2 103.5 106.5 100.0 98.3 96.7 93.6 97.9 90.6 94.9 102.6 98.4 98.0 96.5 94.8 92.2 92.3 103.3 103.0 103.3 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 103.0 10
                                                                                                                                                                                                                                                  126
                                                                                                                                                                                                                                                                               130
                 DASPL
PNLT
PNL
DNA
                                                                          TIT+4 112.6 112.9 110.1 118.1 114.3 115.0 117.2 118.8 117.0 126.5 128.0 126.7 123.6 133.2 128.2 125.2 124.0 123.5 121.5 125.4 126.7 125.7 122.5 122.0 126.5 123.8 122.8 122.8 122.5 120.3 110.3 110.5 107.7 116.8 110.9 108.6 107.6 106.8 104.7
                  BAND
                                                                                                                     20 20
1.3 1.0
                                                                                                                                                                                      20
1.1
                                                                                                                                                                                                                         . 20
1. 3
                                                                                                                                                                                                                                                                                           COMPOSITE SPL
COMPOSITE PAL
PALT (INTEGRATED)
                                                                                                                                                                    118.83
139.24
131.98
116.85
                                                          HAXIMUM DASPL = HAXIMUM PNLT := HAXIMUM PNL := HAXIMUM DBA =
```

COMPITION = 6400

2245 H TAPE POSA6 JT88-109 HUNLL INLET. FAN DUCT, AND T/P GP HIKES

ALTITUDE = 200. FT SIDELINE

1/3 CCT FRECUENCY						1.1		{ICREP}	IDNE AN	GLES IN	DEGRE
(HZ)	90	100	109	110 .		120			150		
50	08.7	96.5	91.9	40.4		94.9	97.5	106.1	99.9	98.2	
63	90.3	92.6	93.9	91-0	5				101.6		
20	92.3	03.4	44.7	91.4						97.2	
	22.4	94.1	44.4	19.7					103.F		
160	93.0		60.3	66.4		49.9	100.1	101.6	100.3	96.2	
125	93.0	95.4	41.4	85.8		60.0	106.2	100.5	96.5	91.6	5
160	95.0		47.6	42.5	*			46.7			100
200		96.5	90-7	97.4					. 44.4		
250	96.0			75.5		OU. 7	09.7	97 1	94.6	67.5	
315	45.0			94.9		- DL 1	Dr. 1	95.5	92-5	88.2	
460	95.3		46.7		· .			94.1		85.9	100
500	44.7			96.1				91.8		63.3	
630	94.1	04.9	94.1						65.9		
860		45.7							22.9		
1000	92.6		93.7	91.2		72.7	00.7	4.49	82.2	75.7	19.0
1250			93.0						61.4		
1600	93.3								80.8		100
2000		43.5					07 7	0.2	60.6	74.6	200
2500		44.3			1.4				83.4		
3150		100.5		44.1				00.2	84.3	77 6	100
4000				95.4			92.5				
5000	95.3					91,7	87.1	4.1.4	70.3	77.0	
6300				- AU-T	100	91.6	65.4	. 01+1	77.5	10.0	
8660		75.6				. 65.0	1.5.6	£1-5	77.6	(1) -4	
10000	92.7	93.5	47.5	, n5° F	11.0	40.5	34.2	74.6	75.6	01-4	
arian in the	100		100	A. L. Sansay	259 E. S.	122 1				105 1	
DASPL				106.8	1 1	110.4	110-1	TLD-H	110.2	107.1	
PNLT				170.2		124.0	119.6	110.0	113.4	10143	T
PNL	122.6	122.7	122.5	119.1		lei.	110.4	11:	113.4	10/43	337
DBA	107.5	166.4	107-2	104.3	100	106-2	103.5	100.F	97.7	91.9	
BAND	20	26	20	20		20			24		
TEORR	1.1	1.3			100	1.8	1.4	1.1	6.6	0.0	A 11.5

PRET (INTEGRATED) = 137.5

TABLE A-248

```
TABLE A-249
                                                             2295 H JAPF POS44 JT80-109 HOWLL INLET, PAN DUCT, AND T/P GP HIKES
                                                                                                                                                                                                                     INLET TEMP
TIME OF DAY
BARM. PRESSURE
WIND DIRECTION
WIND VELOCITY
                                                                                                                                                                                                                                                            * 33.00 F
# 900
* 29.93 IN. HG.
                 ENGINE MODEL .= JTED -00
ENGINE MOMBER = 374057
                                                                                                        TEMPERATURE
                                                                                                        OBSERVED RPM
CURRECTID RPM
                                                                                                        FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS
                                                                                                                                                                                                                                           150. FT.
                                                                                                                 MICROPHONE ANGLES IN DEGREES
140 150 160
   50
63
86
165
165
200
315
400
800
1000
1250
2500
3150
6300
6000
6300
6000
                                                                                                     101-6
101-9
96-17
95-7
93-6
92-9
93-0
94-0
94-6
93-6
                                                                                                                                  91.5
90.8
90.2
91.0
94.1
94.1
90.7
89.9
90.2
   DASPL
PHLT
PHL
DBA
                         Î1Î.7 113.1 113.7 110.5 117.0 114.4
125.7 127.1 1.6.6 127.6 131.4 127.8
125.7 127.1 126.6 127.6 131.4 126.3
110.6 112.6 111.4 108.1 116.4 116.4
   BAND
                                                                   24
0ون
                             24 24
                                                       74
11.0
                                                                                24
0.6
                                                                                                           20
1.3
                                                                                                         COMPOSITE SPL
COMPOSITE PNL
PNLT (INTEGRATED)
                                                                                                                                                        = 121.03
= 132.23
= 136.37
                  HAXİMUM DASPL
HAXIMUM FNLT
HAXIMUM PNL
HAXIMUM UFA
```

2295 H TAPE PO544 JT80-109 HOWLL INLET, FAN DUCT, AND T/P GP HIKES

150.174

CONDITION =, 6412
ALTITUDE = 200. FT SIDELINE

1/3 OCT FREQUENCY							. 1	HICROP	HONE AN	GLES T	H DEGREES
(HZ }	90.	100	109	110		120			. 150		
50	88.9	91.3	92.7	90.7		94.9	97.5	99.6	100-7	98.3	
63	91.1	93.0	94.8	91.8					102.1		
80	92.4	93.6	95.5	71.3		96.1	99+1	102.5	103.8	96.0	
100	92.7	94.4	46.4	87.6		97.8	101-2	102.7	104.3	95-2	
125	93.7	95.2	96.9	P5.6		78.7	100.4	101.5	100.1	34.8	
160	94.9	96.1	47.6	88.3		99.2	100.6	100.2	99.5	71.5	
200	95.9	96.3	98.6	45.4		99.4	99.8	. 98.0	46.6	85.4	
250	76.3	76.p	99.0	48.5		100.3	99.1	97.1	94.9	86.9	
315			46.5	98.5		99.6	98.7	96.1	- 94 T	5.05	
400			76.7	72.5		99.4	97.9	94.4	92.5	85.7	
500			98.5	76-1		99.4 98.4	96.7	92.7	90.9	84.2	
630	93.9	94.5	96.4	94.E		76.0	95.0	90.6	88.5	82.0	
500	94.4	45.3	45.6	93.2		94.0	93.1	88.6	86-5	80.1	
1000	92.7	93.2	93.9	90.9		92.4	90.7	86.4	86.5 53.2	776.5	1 1 1
1250	94.9	94.6	94.3	90.8	e jilar	91.9	89.7	87.7	82.4	76.9	2016/09/2015
1600	93.0	93.8	43.6	90.0		91.5	88.5	84.9	81.6	75.8	
2000	94.0	93.6	93.I	89.2	. ,	91-1	87.7	84.6	80.0	75.2	F - F 1 F 1
2500	95.1	95.1	93.7	69.7		71.3	87.7	83.7	81.3	75.3	1.00
3150	99-3	101.3	99.2	95.2		97.6	90.8	85.7	84.1	75.3 77.4	
4000	100.3	101.9	99.6	95.4	-	98.4	93.3	86.0	34.5	77.43	
5000	96.1	96.9	95.7	91.6		92.2	86.2	82.7	10.D	72.7	Later Affects
0064	94.7	55.9	94.5	91.1	. T	91.6	55.9	#1-1	78.6	71.1	r Mañ III.
	75 E					92.5	47.8	81.4	78.7	70.2	
10000	43.9	95.8	95.4	42.8	: 1	41.6	116.5	79.3	76-6	67.0	14.5
DASPL	109.0	110.2	110.5	167.3	<u>"</u>	110.4	110.3	110-5	110.6	104.4	
PHLT	122.9	124-1	173.2	119.4		123.6	120.2	115.1	113.9	105-5	
PNL				119.4						106.5	
DBA	167.B	luy.u	105.1	104.7	100					91.1	
BAND	24	24	24	24	11.5	20	26	24	.24	24	
TCDRR	0.0	0.0	0.0			1.5	2.3	0.0	0.0		

PNET (INTEGRATED) = 132.47

```
TABLE A-251
                                                                                                                                                               2295 H TAPE POSAS JTDD-109 HOWEL THLET, FAN DUCT, AND TYP GP HIKES
                                           ENGINE MODEL .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 = 1113
= 29.92 IH. HG.
= H
= 3 HFH
                                                                                                                                                                                                                                                                                    TEMPERATURE
                                                                                                                                    = X-314
= 04/10/75
                                                                                                                                                                                                                                                                                    LBSERVED RPH
CLRRECTED RPH
                                                                                                                                                                                                                                                                                    FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB - RADIUS # 150. FT.
1/3 UCT
FREGUENCY:
(HZ)
                                                                                                                                                                                                                                                                                                           HIGROPHONE ANGLES IN DEGREES
140 150 160
                                                                                                 50
00
100
125
160
255
400
630
1050
1600
2550
3150
4000
4000
500
500
        6300
8000
10060
                                                                111.9 117.8 112.5 110.1 116.4 114.5 115.3 117.3 119.0 127.3 128.4 127.5 124.1 133.5 128.6 125.7 124.1 123.7 126.1 127.2 126.1 127.2 126.2 127.3 126.4 127.2 127.1 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 
         DASPL
                                                                                                                20 20 20 20 20 20 20
1.5 1.0 1.5 1.2 1.9 1.4
         BAND
TCOKR
                                                                                                                                                                                                                                                                                                                          SITE SPL
SITE PNL
(INTEGRATED)
```

CONDITION = 6420

2245 H TAPE POSAS JIRD-109 HOHLL INLET, FAN DUCT, AND T/P GP HIKES

ALTITUDE = 200. FT SIDELINE

REQUENCY						-11		TERCH	SUNE AN	11.C5 II	I DEGREE!
tHZ1	90	100	105	110	- 1	150	130	140	150	100	
50	£6.7	96.8	92.5	90.6		9443	97.5	99.8	100.4	78.7	
63		42.4		91.4		95.9	99.1	101.4	102.1	97.2	1.5 15 11.25
60		93.4		91.6		46.0	74.6	102.7	10?•T	96.5	5.00
166	92.4	94.u	40.6	40.5		97.0	100,9	103.5	103.7	96.4	100
125		94.B	46.4	86.4	'	44.1	106.3	101.7	100.6	95.2	4 2 2 2 2
160	94.5		97.5	56-1		98.9	100.5	100.5	98.5	92.1	
200		96.2	96.1	45.7		49.5	100.4	99.4	96.3	86.5	
250	96.2		99.1	47-S	:	160.3	99.2	97.8	94.9	87.3	
315	95.1		98.8	96.7		Lou-L	48.7	96.4	94.5	87.4	
466	195.0		98.9	44.3		74.4	96.1	95.5		87.3	
500	9406		94.4	¥3.7		94.0	46.9	43.7	91,1	85.1	
630	94.1		94.4		100	.96.7	. 95.4	91.6	-88+3	82 5	*
bùù				92.7	1.05	94.5	93.3	89.5	85.8	80.0	8 July 14 9
1000	93.1			91.4	San San	47.2	91.3	87.2	83-1	76.7	
1250	45.2		43.6			92.4	B9. B	86.3	. #2.I	76.6	5.0
1666		43.4		49.0		41.6	69.0	84.9	61.3	75.8	-
2000				F4.5	etant, k	41.7	88.6	84.8	80.8	75.9	10 to 500 ft 10
2500	-5. C				Bartis.	91.0	86.2	84+2	80.8	75.5	transfer in
3150	99.2					97.3	85.8	86.0	63.2	77.2	
4000	101.2					99.6	93.2	86.2		77.9	
5000	96.5	41.7	95.5	91.0	. Taran	42.7	.80.1	83.5	79.7	72.9	
636G	94.4	44.4	43.7	46.1	1. d. l.	91.1	86.3	bl5	∵77-8	70 • B	
EUUU				42-6		41.4	86.B	81.6	75.0	64.0	
10500				40.8	2. 4.5	*U-5	85.3	79.3	75.0	66.3	100
D. C. (1)	100.7	¥10.0	110-7	106.9		110-6	110.4	110.5	110.4	104.6	# · · · · ·
DASPL				120.7		124. A	120.4	117.0	114.5	106.5	
PNLT				119.4		122.7	118.9	115.4	113.5	106-9	
FNL LLA	148.2	108.9	107.5	104		167.2	163.8	160 .1	97.9	91.6	- 4,7
uun	. 13.			17.3	*.	81.47					
EAND	20			20		20	50	20			
TCORF	1-1	1.2	1.0	1.3	100	1.9	1.4		. 1.0	0.40	era e i e i

PRET (INTEGRATED) = 135.9P

TABLE A-252

TAB	LE A-2	253		2245 F	TAPE	PG133	I-dùTL	ሁን ተ ሁዘ	LL INL	FT. FA	N DUCT	+ AND	TLPIPE			150-17	4D			
	ENGINE M		a - JTŁ	Ն ⊷0ն 74կ52			TEMP	ERATUR:	F		<u> </u>	•0 F			TI	LET TE	DAY	=	1207	
	STAND		= = 04/	X-314			HUMI	TTY			# 70	.O PER	CT.		HI	RH. PR	ECTION	•	H.	IN. HG.
	1-ALL		- (,	10715				KVEL RI ECTED I				12 27			WI	ND VEL	CITY	-	7	KPH
							FAA	PART 3	6 REFEI	RENCE	DAY CO	RRECTE	D SPL	IN DB	- RAI	0105 <u>÷</u>	15G.	FT.		
1/3 OC FREGUEN								uterte	MENT A		IN DEG									
(42)	t	10	Żυ	36	40	56	66	70	90	90	9è	100	105	110	115	120	150	135	140	150
50	85.1	h4.3							90.7			93.0	94.0	95.1	96.0	97.9	101.7	104.8	106.8	110.8
63 61	1.5.1 86.0	25.7			18.1		89.2	P.b. et.								97.B	101.8	104.9	107.3	110.1
166	67.3				17.9 16.4		8P.3 66.0	84.7	89.6		91.2 87.7				94.8			106.7	103.9	106-5
125	88.6					£1.7		67.7		90.5	91.6		93.4		71.5	96.7	104.7	100.8	110.4	107.9
160	90.7							92.1			97.4		99.5	101-1	102.5	104.5	108.3	110.4	113.2	115.6
260	bB.4	64.1			73.4				96.R	99.1	100.1	101.5	102.4	104-1	105.5	107.2	110-0	111.0	112.0	112-4
756	90.7			. 96+1	47.5	96.1	96.1	48-5	98.3	98.9	100.6	101.7	102.2	103.6	104.4	105.7	106.5	108.2	108-7	11G.A
315 400	93.4				13.2	43.0	44.3		95,1	75.11	97.3	78.7	99.4	160.4	102.6	104.5	106.2	. 108.3	109-6	1111.9
5 ե Մ	92.L 42.4	91.4 91.4		94.5 92.3	44. 2	93.8 93.7		95.3	95.3	98 4	100.0	101.7	102-4	103.6	104.5	105.5	106.9	108.2	109.9	112.3
630	90.7				140.5			95.0		· ባሉ 7 የየ B		100.4	99.0	102.0	103.0	105.1	105.2	100.9	107-6	110.8
866	8846	89.6		- 70.b	42.4			93.2		95.3	96,9	100.7	100.9 99.1	102.0	103.5	103.9	104.1	104.5	104.9	106-8
1000	47.2	64.7			73.3	97.0		94.0	93.0			96.9	97 R	98-4	99.2	100-2	100.6	100.6	100.1	10343
1250	46.7	67.5	55.0					42.9		93.8			96.4	97.2	97.9	98.7	98.5	98.3	97.4	
1000	88.₺				45.6	45.1	94.1	94.2	93.7	94.1					97.3		97.1	96.5	95.5	93.4
2000	£9-3			94.7	73 •	44.7	93.4	93.8		, 93.A			95.5	96-1		96.5	95.8		94.0	
2566	94.B			43.9	93.1	44.7		92.7		94.4			95.7		76.2	95.9	95.0	94.4	93.2	90.6
3156 4000	92.7	93.4			73. b	43.5	92.6	95.3	94.2				96.7				94.5	93.7	72.7	
5000		45.0			94.3 92.3	94.0	43.9 41.6	94.5	96.4 94.3				101.2					96.3	97	
6340	90.1				40.7				92.3			91:49	99.5 97.7	99-1	99.5	98.8		96.3		
8000	89.3					69.5	69.3				95.7	94.5	97.4	97.0		96.7		94.1 93.6	92.4 92.1	
10000	89.4						69.1	114.4	41.1	93 .6	95.5	6.4	97•B	97.7	78.6	97.3	95.7		92.5	B9.8
DASPL	104.4	103	105.0	166.1	167.7	167.0	106.9	167.2	167.8	109.4	110.6	111.9	112-4	113.5	114.4	115.	117.1	118.9	120.3	122.7
PNLT	11806	11/00	11000	110.7	171.4	121.2	1,0.2	117.2	120.5	122.4	123.4	125.7	120.0	126.5	127.2	127.5	125 b	125.B	126.2	127.5
JA4 Adu	111.00	1111.0	111.00	116.7	114.1	117.3	115.9	119.7	120.5	127.4	123.4	124.6	124.9	125.4	126.0	126.2	125.4	125 B	124-2	127.5
	103+0	10342	162.7	10446	105.5	100.2	105.1	105.3	105.4	107.5	108.5	109.7	110.1	110-8	111.4	111.0	111.9	112.5	112.9	114.5
BAND Teukk	16 1.1	24 6•6	24 6.1	24 0.0	12	12 1.6	12 1.3	24 6.0	24 0.0	24 0-0	24 0.0	20 1 • 1	20 1.0	20 1.1	26 . 1•2	20 1.4	24 0.0	24 0.0	24 0.0	24 0•0
	HAXÎHUM (HAXINUM 1 HAXÎHÎM HAXÎHUH	PNLT	= 1	22.71 27.53 27.47 14.56			COMPI COMPI PNLT		ħN1	L	= 177. = 129. = 127.	19								

150.1740

1/3 UCT FREQUENCY																				
(HZ)	• •	_	1.5					HICKOR	HCHE A	NGLES.	IN DEG	REES								
(nz)	16	20	50	40	. 50	£O	70	ti L	90	75	160	105	. 110	115	120	130	135	140	150	
ង្គប	66.5			20.7	02.9	84=6	65.8	68.1	69.0	90.3	90.4	91.2	92.1	62 - A	DA - 1	D4 0		100 /	102.3	
63	68.1	74.0	70.7	81.7	03.5	15.4	86.6	PR-1	89.6	90.5	61.2	01.7	02. 1	42.2	7791	. 70e 4	7703	100	102.3	
80		76.4	76.5	£1-5	63.6	54.5	85.2	67.0	A7.4	68.7	กจิร	90.4	un 7	7205	74+0	7/40	77.4	100.9	101.6	
100	49.2	75.0	77.0	10.0	61.7	82.2	83.0	83.7	P4.3	B5.9	85.8	200-7	07 1	71.47	27+1	1 277 6	95.2	41.5	99.3	
125	69.5	74.3	70.7	81.4	62.9		14.6	85.4	80.0	00.1	DO 5	0.0	0141	00 • 1	00.9	, ,,,,	95.3	96.9	106.6	
164	71.6	76.3		55.4				91.4	92.7	04.0	D. 2	06.3	3101	7744	77.44	.99.4	102.3	104.0	107.2	
246	71.0	81.0	و.50				93.0	94.1	44.4	U7. 4	00.0	70 £	101 0	- 47 - I	100-7	. 103.5	105.4	106.8	107.2	
250	72.9	62.3	67.5	91.1	93.2	96.3	94.4	64.4	94.4	60 O	-0.2	77.0	TOTEO	105 1	103.4	105.1	106,3	106.5	103.8	
215	12.7	74.6		40.5	66.1	46.5	42. T	92.6	93.3	04 7	99.0	77.4	100,5	101.0	101.9	101.6	102.6	102.3	102.0	
400	73.0	t U. U	3: 3		80.9	29.4	90.2	45.6	46.0	67.4	96.0	7020	100 5	95.2	100.7	101.3	102.7	.103.2	103.2	
ti in	72.0	29.5	dã. n	67.7		011 **	45.6	D3: 1	96.3	714 T	77.0	77.0	100+3	101.1	191.7	105.0	102.6	103.4	103.4	
u20	73.6	74.5	14.0	42.7	46.1	o÷ n	61.0	93.6	96.2	75° t	7049	70.7	40.4	77.6	101.3	100.3	101.3	101.1	102.1 78.0	
GUG	70.5		11.9		812	H.S. A.	90.1	41.3	42.7	04.2	41.4	70.0	444.0	100-1	100-1	99.2	98.8	98.4	98.O	
1000	70.2		.3.6	86.7	92.0	St. n	41 1	7 DA 3	76.1		44.2	40.2	7(40	97.5	98.3	. 98.2	97.4	95.2	94.4	
1; 50	67.6		41.2	HL-T	Mine	16.	FO: 7	96.4	92.00	73+0	93.3	444	95.2	95.7	46.4	95.0	94.9		70.8	
1466	69.6		72.8	117.0	41.0	Dr 2	91.0	96.4	71.02	5.5	73.3	73.5	94.0	94.4	94.8	93.4	92.5	. 40.7		
2006	70.0		15.5		h0. 0	59,4	71. 6	7047	41.02	92.4	93.0	93.0	95.6	93 7	43.3	92.0	90.6	88.7	84.2	
2500	76.6				64.4	59.6			01 5	02.0	62.3	77.+5	92-B	93.1	92.5	90.6	87-1	87.1	82-1	
315U	69.€		64.6	54.5	. 25.16		HO O	7141	71.0	72.0	92.7	92.47	72.7	97.5	91.8	89.7	88-3	86.1	80.9	-
4606	68.5		43.6	20.2	146.3	00 5	00.0	7142	72.0	96.9	94.3	93.6	73.4	92.5	91.6					
5666		76.4		A	54: 5	07.2	70.0	73.7	70.0	95.1		98.0	97.8	97.7	97.0	92.4	69.8	87+1	82.9	
6300	61.2	77.7	76-3	. 65	200	4142	07-3	71.00	3341	77.1	45.8	96.2	95.5	95.5	94.4	91.8	B9.6	86.5	61.0	
600 C	-7-4	71.1	77.	1.1 5	117.07	***	11 ()	0.74 L	71.5		93.B	44.3	93.9	93.7	.92.1	89.1	87.1	84.3	78.7	Ċ
16000																				
				4047	L.L.	72-1	0507	0.444	An • I	71.4	92.7	43*5	93.4	93.8	91.9	88.6	86.2	82.9	76 - 2	
DASPL	63.9	91.8	96.E	100.4	102-4	105.0	104.1	106.6	105.0	202 6	104.1	*00 F	444			Alberta.	449.7	100	- 1 to 1 to 1 to 1 to 1 to 1 to 1 to 1 t	
PNLT	94.7	164.6	lug-B	114.2	111-7	114	115.6	117.5	116.4	250 4	172.F	107.7	110.3	110.9	111.6	112,1	113.2	113.9	114.1	
FNL	94.7	104-1	10fn	111.9	113.9	114.7	116.0	117.5	11710	150.0	121.7	122-11	123-1	123.4	153*3	120.0	120.0	119.5	118.5	
UPA	81.2	50.1	45.tr	UN. S	100.0	161 6	162.0	1.5	117.0	120+6	151.1	161.1	125°D	172.2	122.0	120.0	120-0	119.5	11B.5	
						101.0	102.0	102.0	TUNE	105-1	The H	107.0	107.5	107.7	107.8	106.8	106.7	106.3	105.7	÷
PAND	24	2+	24	12	12	12	24	24	24	24	20	20	3 70							•
TCGHK	0.0	0.1		2.3							1.1	1.0		50	20	24	24	24	24	
	NLT (INTEGA.	ATEL 1	= 1	33.17							***	***	1.2	1.4	U.D	0.0	0.0	0.0	i.i

TABL	.E A-2	55	:	?245 F	P0521	JTAD-I	09 HDW	ILL IN	ET FAN	DUCT	HOHEL	TLPIPE			1	50-174	•0			
	ENGINE M		= JTH6 = 31	1 -00 74652			TEMPE	RATURE	:		77,	.0 F			TI	ET TEN	PAY	*	83.00	
	STAND		c (4/)	(-314			HUHIC	YTE			70	O PER	£7.		HIP	IH. PRE ID DIRE ID VELC	CTION	*	H	IN. HG. MPH
	DATE		E (47)	11.7.13				VED RE										_	-	
							PAA P	ART 36	REFER	ENCE (DAY COR	RECTEC	SPL 1	N DB.	- RAT)1U\$ =	150.	FT.		
1/3 001																				
FREQUENC	iY U	16	20	30	40	50	60	70	18 HUD? 08	ODLES .	N DEGA 95	10u	105	110	115	120	130	135	140	150
5Ò	84.7	H4.7	L4.7	86.1	87.4	68.1	9A_7	89.7	41.7	92.7	92.B	93.3	94.5	95 . 6	96.5	98.3	102.4	104 ₋ 8	107.3	111.2
63	34.6		47.2	87.b	€.83	88.6	89.0	90.0				94.0		96.1	97.0	98.0	102.3	105.0	107-5	110-1
80	26.3	66.1	10.3	67.7	:7.5	66.2	56.0	84.1	90.4	91.1	91,3	92.2	93.7	94.3						105.9
160	67.3		56.5	86.7	£0	86.5	85.9	86.5	67,1			88.6	89.7	90.3						108.1
125	118 - 4		86.1		117.6	87.6	87.3	87.4			41.9	93.1	74.2	101 3	102:1	105 1	100 0	117-3	112.6	115.3
160	41.3		96.6		92.1	42.4	42.2	92.7	75.0	77.40	97.8	101.8	100.5	104.5	105.0	107.3	110-5	111.4	113.0	112.3
200 250	88.5 90.9			74.3 96.5	43.9 97.6	94.7 97.5	94.5 98.2	98-1	77.4	700+6	101.1	101.9	102-8	107.0	105-0	105.5	106.7	107.3	108.6	110.3
230 315	43.5			42.5	93.4	95.4	94.6	95.4		96.6	97.6	98.7	99.6	100.9	103.2	104.3	106.7	108.2	110-1	III.6.
40Ú	92.6		41.0	43.3	93.1	42.9	92.9	97.0		49.4	99.9	101.5	102.7	103.9	104.8	105.5	106-7	107.8	109.	111,3
500	92.2				94.7	94.0	94.4		46.4	07.5	97.8	98.4	100-1	102.2	103.6	105.0	106.0	107.1	108.3	110.2
630	96.6		92.3		160.5	99.2	97.8	94.5		98.5	99.0	100.6	101.5	102.6	103+3	103.4	104.2	104.4	104.5	105.7
aub	80.5	89.5	119.0		93.5	95.0	93,7	93.6	94.7			98.2			101.5	102.3	103.4	103.1	102-9	202.7
1000	17.5	66.7	04.9		44.7	94. I	94.6			96.5				98.9						79.3
1250	67.0		ドメ・ ロ		95.0	9: .6	93.9	93.0		94.7				97.5						95.8
1600	68.6		40.0	43.B	94.4	95.5	95+3	94.7					96.5	97.1			97.2 95.9	96.6 95.2		
50ng	P9.4		41.4		94.6	44.4	94.2	92.7		94.7		95.7	95.0	96.5 96.3						
25GG 3150	45.2		95.1 92.5	43.4 43.4	94.5 93.5	94.3 93.6	93.8	92.6	05.7	95.2 97.0	95.2 96.8		97.1					94.0		
4000	54.0 43.6		44.5		94.5	92.0	94.1	95.0	98.1	100.2	100.3	107.0	101.9	102.3	161.9		97.8			
5660	42.4			93.0	77.5	92.4	91.4	42.5		98.1			100.0	79.8		79.1				
6306	70.		5U.4		40.0	40.3	40.3					97.2						93.8	92.1	
Butt	19.3			4.9			69.2		93.7		95.8	96.4	97.2	96.9	97.8	96-8	94.7			
10600	89.4	50.0	85.6	84.7	85.9	56"A	88.7	84.2	92.1	94.6	95.4	96.4	97.5	97.4	98.0	96.7	95.5	93.6	92 -	5 87.6
DASPL	104.5	164.6	165-1	106 1	107.5	100.0	107.2	107.4	LOE . D	110.5	110.9	112.0	112.9	113.8	114.8	115.5	117.5	110.0	120.	7 122-5
PNLT	118.9	1114	119.2	117.5	171.5	121.4	120.4	120.6	171-8	123.5	123.7	126.2	120.5	127.2	127.5	127.9	120+5	12201	1200	5 127-1
PNL	117.6	IItaa	116**	114.0	114.5	11443	114-1	11"+0	102.0	100 4	100 0	17240	110 4	111.2	111.7	111.0	112.1	112.4	113-1	5 127.1 1 114.1
LEA	163.3	10000	Interp	144 o f	THUPL	TOC	102.0	10210	101.00	Inven	Inne	10747	11010	11146	11147		****			
EAND	16	24	18	e	12	12	12	14	24	24	24	20 1.2	20	20	20	20	24	24	.24	
TCLAR	1.2	U=0	1-1	0.5	2.2	1.4	1.3	1.7	0.0	0.0	0.0	1.2	1.1	1.2	1.2	Ì.5	0.0	0.0		J 010
	HUHIXAH HUHIXAH HUHIXAH HUHIXAH		= 1 = 1	22.49 27.41 27.66 14.66			COHPI COHPI PNLT	DSITE	S PN EGRATE	L	= 122. = 129. = 137.	33						. •		

295 F 10531 J160-109 HOHLL INLET FAN DUCT HOHLL TEPTFF

150.1740

CONDITION = 7440

	1/5 001																		:		
	FRELULNCY						100		icenei	IONE AT	ictes s	IN DECI	PEES					100			
	(117.)	1Ċ	Ζt	L	40	50	60	76	ř.	90		160	105	110	115	120	130	135	140.	150	
	56	60.4	72.6	77.1	41.0	82.3	£4.4	86.7	89.1		90.3						97.6				
	63	4.80	75.3	70.0	81.9	H F	15-4	67.0	89.2	90.9	90.9		92.6				97.5				
	RL	70.5	76.4	79.1	11.1	£ .4	14.2	85.1	87.C	88.6	8.30	H4.6	90.9	91.3	91.6		93.8			97.3	
	100	69.4	74.4	76 - 1	70.4	ul.7	07-1	63.4	84.5	65+1	45.4	86.0		87.7			92.4				
	125	L7.7	7400	14.1	1.1.2	17.L	F.2.	1.4.3	そんわ	14.2	84.4	90.5					100.5				
	100	71.7	78.7	43.7	15.7	67.0	EE.A	. 64.6	43.6	45.0	9	96.3	97.5	96.1	49.7	101.3	104.3	105.8	107.4	106.7	
	260	71.6	bl.:	F: -7	£7.5	44.4	40.7	93.0	95.4	97.7	97.9	99.1	100.1	101.4	102.5	103.5	105-6	106.0	106.6	103.7	
	150	73.6		87.7	41.5	9 6	44.4	45.0	45.49	47.6	915	- 99.2	160.0	100.8	101.6	101.7	101-8	101.7	102.2	101.7	
	315	73.2	10.4	13.4	· 1/7.40	141.5	90.F	92.3	92.4	. 44.3	95.(96.0	96 8	97.8	94.8	100.5	101.8	102.6	103.7	102.9	
	400	72.9	74.7		4.60		1493					-10.8°									
	Suti	73.3	77-1		67.7	6 -1	50.00	92.2	94.2	. 95.0	95.2	96.2					101.1				
	430		- 50.0				44.0														
	h6G:	70-4	77.2	h1.4			149.4					95.5								94.0	٠.
	1666	66.7	77.3	1.7	18.1	41	40.7	92.8	91.5	73.9	93.3	04.0	95.3	95.7	76.0		95.7			70.3	
	1250	67.9	76.2		86.3		96.0		91.2			93.1		94.3			93.6				
	1660	69.1	77.7	: 14.1.	6.1	41.04	91.3	41.5	. 91.0	42.7	47.4	43.1	93.5	93.0							
	2666	70.4	71.1	. 14.5	67.1	64.7	96.2	64.9	91.2	92.0	92.0	92.7	0, 4	93.2	93.4	92.7	90.7	89.2	67.4	82.3	
	2510				97.4		\$4.7		47.0	42.5	97.4	02° E	92.4	93.G	. 93.0	92.2	89.9	86.3	86.5	ûl.l	
	2156	71.2	75.1	115.00	46.2	1.6-1	1.1.7	90.1	92.1	44.2	94.0	44.6	94.0	94.0	43.0	91.9	89.2		85.6	80.8	
	4000	49.5	79.2	84.5	87.2	R - 2	14.7	91.5	95.1	97.3	97.4	44.0	98.7	OH.A	96 D	97.6	92.1	70.2	. 17.5	83.3	٠,
	ანნი		77.2	62.3	14.0	br. A	h7a±	H0.2	77.5	45.2	95.2	-6.0	96.7	96.2	95.7	94.7	91.7	89.2		81.2	12.
	631-0		72 •1	25.5	12.7		4.3	レブ・さ	90.2	02.A	93.1	04.0	94.5	04.0	93.8			86.8		79.0	
	ECUL	57.6	72.4	77.7	81.2	1 .1	F4.2	65.9	60.4	-2.3	42.5	92.0	93.6	92.0	99344	91.8	68.2	85.7	63.8	77.5	
	LOCKO	I . A	64.1	10.1	3 ،10	61.8	112.2	64.9	FF.4	41.I	-1.5	42.7	43.5	98-1	93.2	91.3	86.4	£5.4	82.9	76.2	
	DALFL	Ru . S	41.4	Sec. in	166.6	765 - 6	103.2	104.2	100.6	167.F	106-2	109-2	109.9	110.6	111.3	111.6	112.5	113.2	114.2	113.9	
	PLLT	15.6	16.5.3	109.5	114.5	111.4	116.7	117.4	110.6	120.7	126.9	123.3	123.4	123.8	123.7	123.7	120.1	114.8	119.8	118-0	•
	PNL	. us	1.14.	1.15	112.4	114.4	114.4	114.2	Harali	126.7	120-9	122-0	122.7	122.6	172.5	122.3	120.1	119.8	119.8	118.0	
. '	124	1 E	1 706	75.0	19.1	101.5	1.1.	102.3	10-1	105.9	164.0	107.0	107.5	167.9	108-1	107.9	107.0	106.6	106.6	105.3	
		111			100								45		1	. *	•	100			
	BAND	24	1£		1.7	1.7	12	14	24	24	24				20				24	24	
j.	TLUIK	C.L	1-1	 ⇒	£+i	le*	1.1	1.2	0.0	0.0	0.0	1.7	,1.1	1.2	1.2	1.5	0.0	0.0	0.0	0.0	v i

PNLT (INTEGRATEL) = 105.27

```
TABLE A-257
                                          7295 H TAPE POSAN JIBD-109 HOWLE INLET, FAN DUCT, AND TYP GP MIKES
                                                                                                                                                     INLET TEMP
TIME OF DAY
BARM. PRESSURE
HIND DIRECTION
WIND VELOCITY
                                                                                                                                                                                = 43.00 F
= 1207
= 29.85 IN. HG.
                                                                        TEMPERATURE
           STANL
                                                                        HUNIDITY
                                  c (14/10/75
                                                                        FAA PART 36 REFERENCE DAY CORRECTED SPL IN OB. -
1/2 CL)
FREGUENCY
(F2)
                                                                              MICROPHONE ANGLES IN DEGREES,
140 150 160
DASPL
PNLT
PNL
DBA
LAND
TCOL
                                    24
U.ŭ
                                                                         24
(1.0
                                                                                  74
0.0
                                                                                           24
0.0
           MAXIMUM CASPL
MAXIMUM POLT
MAXIMUM POL
MAXIMUM OF A
```

2295 H TAPE PO546 JT6D-109 HOWLL INLET. FAN DUCT, AND T/P GP MIKES

150.174

CONDITION = 7427

MICROPHONE ANGLES IN DEGREES	MICHOSUOUS AND			1/3 CCT FREQUENCY
100 109 110 120 130 140 150 160		109 116	100	
7 95.3 97.6 96.3 99.5 103.0 106.0 105.9 104.1		97.6 96.3	95.3	50 92.7
2 97.0 100.1 96.9 101.5 105.4 108.6 108.2 103.5				
+ 98.6 101.0 98.0 103.0 107.0 110.9 110.8 102.4				
5 99.2 161.6 96.6 103.6 108.7 111.8 112.3 103.5		LC1.6 96.6	99.2.1	100 47.5
1 104.5 103.2 44.2 104.9 109.0 112.1 110.4 106.8		03.2 44.2	104.5 1	125 99.1
2 101.3 104.2 93.1 105.4 108.7 110.2 109.7 104.8		104-2 43-1	101.3 L	160 100.2
b 1U1.o 1C4.7 100.2		164.7 IOD.2	101.0 1	200 100.6
0 102.6 106.5 105.5 106.8 107.5 108.2 107.0 99.5	106-8 107-5 108-2 107-0	LU6.5 105.5 ·	102.6 1	250 102.0
2 104.6 107.2 107.8 106.4 107.3 108.8 107.8 100.0	106.4 107.3 108.8 107.8 10	07.2 107.8	104.6 1	315 102+2
7 103.5 166.8 163.3 166.3 107.6 109.4 108.7 102.3	106.3 107.6 109.4 108.7 1	E.E.1 3.00	103.5 1	400 101.7
5 104.9 167.4 107.0 105.9 106.2 107.9 107.5 101.0	105.9 106.2 107.9 107.5 1	167.4 102.0	104.9 1	500 101.6
0 102.6 104.9 105.0 104.5 104.8 104.3 103.7 97.4	104.5 104.8 104.3 103.7	LO4.4 105.0	102.6 1	630 101.0
8 101.7 103.6 49.8 102.6 102.5 100.6 99.5 91.8	102.6 102.5 100.6 99.5	103.6 49.8	161.7 1	800 95.8
9 99-9 101-8 99-6 101-1 100-2 97-6 95-8 87-7	101.1 100.2 97.6 95.8	101-B 99.6	99-9-1	1000 98.9
0 99.0 101.0 98.0 99.2 97.7 94.6 91.9 84.1	90.2 97.7 94.6 91.9	L01.0 98.0	99.0.1	1250 98.0
0 96.9 100.4 96.9 97.7 96.3 92.2 89.1 81.3				
7 48.5 94.9 95.6 96.5 94.6 90.7 86.5 79.4	96.5 94.6 90.7 86.5			
4 98-6 99-7 95-4 95-9 93-7 89-4 85-6 78-8	95.9 93.7 89.4 85.6	99.7 95.4	76-6	2560 98.4
4 99.6 100.0 96.1 95.7 93.2 88.9 85.6 78.9	95.7 93.2 88.9 85.6	100.0 96.1	99.6 1	3150 99-4
4 104.4 103.7 100.7 102.2 96.8 90.8 87.2 81.0	102.2 96.8 90.8 87.2	103.7 100.7	104.4 1	4000 102.4
6 101.0 102.0 98.4 98.0 95.0 88.9 85.7 78.4	98.0 95.0 86.9 65.7	102.0 98.4	101.0 1	5000 100.6
4 47.7 49.6 46.6 93.7 91.5 86.1 82.6 74.9	93.7 91.5 86.1 82.6			
1 95.9 97.8 95.8 92.4 89.2 83.6 50.8 72.5		97.8 95.B	45.4	8660 96.1
3 93.6 96.1 94.9 90.6 57.9 81.6 79.4 70.5	50-6 57.9 81.5 79.4	46-1 94-4	93.6	100tD 94-3
그는 이 이 가는 사람, 그는 이 것 같습니다. 하는 사람들이 되는 사람들이 모든 이 없어 때문에 그래요? 그렇게 하는 것 같습니다.				
3 114.7 117.0 114.4 116.6 118.4 120.3 117.7 113.6	116.6 118.4 120.3 119.7 1	117.0 114.4	114.7	DASPL TIX.3
0 126-6 128-4 126-5 126-5 125-0 124-9 123-6 117-0		128-4 126-5	126.6 1	PNLT 126.0
6 127.4 128.4 125.3 126.7 125.0 124.9 123.6 117.0	120.7 125.0 124.9 123.6 1	121.4 125.3	127.4 1	PRL 126.0
2 112.4 114.0 111.3 112.2 111.7 111.7 110.7 104.0				
				BAND 24
0 1.4 0.6 1.2 1.8 0.0 0.0 0.0 0.0	1.8 0.0 0.0 0.0	0.6 1.2	1-4	TCORK 0.0

PHUT (INTEGRALED) = 137.68

```
TABLE A-259
                                                                                                                                                                                                                                           1295 H TAFE PC544 JT80-109 HOWLL INLET, FAN DUCT, AND T/P GP MIKES
                                                                      ENGINE WORLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              TIME OF DAY
BARH. PRESSURE
HIND DIRECTION
                                                                                                                                                                                                                                                                                                                                                                                                               TEMPERATURE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  . 29.93 IN. HG.
                                                                      STAND
DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ,
HQH 2
                                                                                                                                                                                                                                                                                                                                                                                                             DBSERVED PPM
                                                                                                                                                                                                                                                                                                                                                                                                               CORRECTED REM
                                                                                                                                                                                                                                                                                                                                                                                                               FAA PART 26 REFERENCE DAY CORRECTED SPL IN DB. - RADIUS = 150. FT.
                                                                                                                                                                                                                                                                                                                                                                                                                                                MICROPHONE ANGLES IN DEGREES
140 150 166
                                                                                                                                             130
                                                                                        98.2 99.4 102.9 99.7 101.0 109.5 10.0 10.5 10.5 10.6 99.5 10 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1
                        250
315
400
500
600
1000
1256
1606
2006
                        2500
3150
4000
5060
6300
                         BGOO
                 10000
                                                                                                                                                 117.4 114.2 116.5 127.4 126.7 123.4 126.2 132.7 111.6 126.5 136.6 137.6 131.2 131.2 131.2 131.6 137.3 139.4 131.1 130.1 131.2 131.6 131.2 131.6 131.2 131.6 131.7 13.8 131.6 131.7 13.8 131.6 131.7 13.8 131.6 131.7 13.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.
                 DASPL
                         PNLT
                                PAL
DHA
                 . BAND
TCUKK
                                                                                                                                                                                                                                                                      76
1.2
                                                                                                                                                                                                                                         120.17
136.62
135.64
120.57
                                                                                                                                                                                                                                                                                                                                                                                                                    COMPOSITE COMPOSITE
                                                                                                                                                                                                                                                                                                                                                                                                                                                               SITE PNL
(INTEGRATED)
                   TABLE A-260
                                                                                                                                                                                                                                                                                                                     1295 H TAPE POS44 JIBD-109 HOWLE INLET. FAN DUCT. AND TYP GP HIKES
```

CONDITION = 7448
ALTITUDE = 200. FT SIDELINE

MICROPHONE ANGLES: IN DEGREES 140 150 160 126 130 146 150 160

99.5 103.7 104.2 106.9 104.6
101.0 106.0 108.7 108.4 103.2
102.3 107.3 110.3 110.4 103.2
102.3 107.3 110.3 110.4 101.4
102.4 109.7 111.4 110.2 105.4
105.8 108.8 109.6 104.5
105.8 108.8 109.6 106.7 98.2
106.3 108.1 108.1 106.7 98.2
106.4 107.3 108.1 107.1 100.4
107.3 107.8 10.0 106.7 98.2
106.6 107.3 108.1 107.1 106.2 100.3
106.0 107.3 108.1 107.1 106.2 100.3
106.0 107.3 108.1 107.1 106.2 100.3
106.0 107.3 108.1 98.2 91.8
101.7 101.9 100.1 98.2 91.8
101.1 99.4 97.3 94.4 67.5
99.1 97.2 94.0 90.5 83.8
97.9 95.3 91.9 87.9 81.3
96.4 93.6 90.2 85.6 79.7
95.8 92.6 86.3 85.0 79.2
95.0 92.6 88.9 85.3 79.3
102.2 96.7 90.8 87.3 81.3
96.1 94.7 89.2 85.3 78.7
95.0 91.5 86.6 82.4 75.3
96.1 94.7 89.2 85.3 78.7
96.1 89.9 86.7 80.7 72.8
95.1 88.8 83.1 79.2 70.6 95.8 97.3 97.3 49.9 98.4 100.5 99.7 101.4 100.7 102.6 101.7 103.7 100 125 160 200 250 315 144.2 101.3 400 500 630 806 1000 1250 2000 2500 3150 47.9 78.5 98.3 98.7 99.5 99.0 102.4 105.1 100.5 102.3 98.1 44.5 96.0 98.2 4000 5000 6360 8606 10000 DASPL 125.9 124.5 123.0 124.9 124.5 123.0 111.4 111.1 109.7 20 1.0 24 1.5 BAND

PNET (INTEGRATED) = 127.65

```
ENGINE HOUSE
ENGINE NORSER
                                                                                                                                                                                                                                                        THLET TERP
                                                                                                                                                                                                                                                       TIME OF DAY
BARH, PRESSURE
WIND GIRECTION
WIND VELOCITY
                                                                                                                                                                                                                                                                                                     = 1130
= 29.78 IN. HG.
= - SE
= 5 HPH
                                                                                                                           HUHIDITY
                                                                                                                          DESERVED RPH
                                                                                                                                                    SPL IN DB, AT THE HIKE
    1/3 DCT
FREGUENCY
(HZ)
                                                                                                                                    MICROPHONE ANGLES IN DEGREES
       50
63
80
125
160
200
250
500
500
1000
1250
1600
2000
3150
4000
6000
6000
6000
6000
                                108.7,122.8
111.0 121.4
       UASPL
PNLT
PNL
DBA
                                141.2 152.3 145.0 153.2 149.0
157.0 169.1 159.8 162.6 164.0
153.7 146.0 156.5 161.3 161.9
140.5 152.8 144.2 148.7 148.6
       BAND
TEORR
                                                  21
3-1
                                                                                23
1.2
                                                                                               20
2-1
                                                                 4
3.3
                        HWXIHUH GASPL
HAXIHUH PNLT
HAXIHUH PNL
HAXIHUH DBA
                                                                       153.15
169.06
165.97
152.82
                                                                                                                                                                                  = 155.88
= 169.24
= 171.40
                                                                                                                           COMPOSITE
                                                                                                                                                                 SPL
                                                                                                                           COMPOSITE PHL
PHLT (INTEGRATED)
TABLE A-262
                                                                            2267 M6786 J186-109 QUIET ENGINE 1 CONF A
                                                                                                                                                                                                                                                          INLET TEMP
TIME OF DAY
BARM. PRESSURE
HIND DIRECTION
WIND VELOCITY
                         FHGINE HOUSE
ENGINE HOUSE
                                                                                                                                                                                                                                                                                                      = 56.00 F
= 1139
= 29.78 IN. HG.
                                                                                                                             TEMPERATURE
                         STAND
                                                               = X-314
= 65/66/74
                                                                                                                             HUMIDITY
                                                                                                                            OBSERVED RPH
                                                                                                                                                      SPL IN DB; AT THE HIKE
            '3 UCT
...UENCY
(HZ)
                                                                                                                                      HICROPHONE ANGLES IN DEGREES
              50
63
80
100
125
160
                                106-8 125-1 168-4
110-7 124-5 111-1
108-8 124-4 112-2
112-2 129-9 114-2
115-1 117-9 117-8
116-2 129-1 117-3
117-6 128-8 117-9
119-5 130-6 119-8
121-6 132-4 121-3
121-2 132-8 121-3
                                                                              143.0
141.3
139.8
           200
250
315
400
500
630
800
1000
1250
1600
2000
          2500
3150
4000
5000
6300
8000
                                 143.0 154.0 146.6 156.1 153.5
157.7 169.2 161.7 167.4 169.4
155.6 167.6 158.9 167.4 166.6
142.4 154.2 146.0 152.9 153.4
         DASPL
           PILLT
PHL
LBA
         B AND
TC DRR
                                                                                  24
0.0
```

COMPOSITE SPL COMPOSITE PNL PALT (INTEGRATED)

2.0

HAXIHUH DASPL HAXIHUH PHLT HAXIHUH FNL HAXIHUH DHA

164,45 167,59 154,20

```
TABLE A-263
                                                            2267 Notes Jied-109 QUIET ENGINE 1 CONF A HN CONT BH HN T/P INTERNAL
                ENGINE HOGEL ...
                                                                                                                                                                                                                     INLET TEMP
TIME OF DAY
BARM. PRESSURE
WIND DIRECTION
WIND VELOCITY
                                                                                                                                                                                                                                                               1145
29.76 1H. HG.
                                                                                                       TEMPERATURE
               STAND
DATE
                                                                                                       HUHIDITY
                                                 = X-514
= 05/06/74
                                                                                                                                                                                                                                                                       SE
5 HPH
                                                                                                       OBSERVED RPH
CORRECTED RPH
                                                                                                                             SPL IN OB, AT THE HIKE
1/3 UCT
FREQUENCY
(HZ)
                                                                                                                HICROPHONE ANGLES IN DEGREES
   50
63
80
100
125
140
200
215
400
630
800
1000
1250
2000
2500
 4000
5000
4300
4300
10006
                     143.2 151.3 145.9 157.3 154.9
157.8 165.9 159.9 167.5 169.9
156.7 165.6 158.6 167.5 168.4
142.5 151.6 144.9 153.6 154.4
 DASPL
PHLT
PHL
DHA
 BAND
TOOKR
               MAXIHUH DASPL
HAXIHUH PNLI
HAXIHUH PNL
HAXIHUH DDA
                                                         157.27
169.69
168.42
154.38
                                                                                                      COMPOSITE SPL
COMPOSITE PNL
PHLT (INTEGRATED)
    TABLE A-264
                                                             2267 H6786 JT6D-109 QUIET ENGINE 1 CORF A
                                                                                                                                                              HE CORT BH HE TYP INTERNAL
                                                                                                                                                                                                                     INLET TEHP
TIME OF DAY
BARM. PRESSURE
WIND DIRECTION
WIND VELOCITY
                 ENGINE MODEL
ENGINE NUMBER
                                                                                                        TEMPERATURE
                                                                                                                                                                                                                                                             ж 944
ж 29.78 IK. НG.
                 STAND
DATE
                                                                                                        HUMIDITY
                                                                                                                                                                 44.0 PER CT.
                                                                                                        OBSERVED RPH
CORRECTED RPH
                                                                                                                              SPL IN DB, AT THE HIKE
IAS OCT
FREQUENCY
                                                                                                                 HICROPHONE ANGLES IN DEGREES
     (HZ)
      50
63
80
100
                      110-3 125-4 114-6 144-6
113-4 125-6 117-7 143-9
116-2 128-5 118-0 143-6
116-5 129-0 119-5 140-1
117-4 131-1 121-6 138-1
122-3 130-7 123-3 138-2
122-1 131-1 123-1 140-3
123-3 133-0 124-1 146-5
125-6 134-9 126-1 138-7
     125
160
200
250
315
400
500
630
800
1000
1250
1600
2500
3150
     4600
5000
6300
                        155.1 159.3 146.4 151.6 157.8
157.5 172.8 158.5 157.0 171.2
157.5 170.9 158.5 155.7 169.8
144.3 158.6 145.5 141.9 157.1
   DASPL
     PNLT
PNL
DBA
                                                       24 16
6=0 1+3
```

COMPOSITE SPL COMPOSITE PHL PHLT (INTEGRATED)

HAZIHUH DASPL HAZIHUH PNLT HAZIHUH PNL HAZIHUH DEA

```
HH CONT EM
                                                                                                                                                        HH TYP INTERNAL
                                                                                      CUTET ENGINE 1 CONF A
  TABLE A-265
                                                 2267 H6786 J180-109
                                                                                                                                                                                                                 m 49.00 F
= 1039
= 29.78 IN. HG.
= 5E
= 5 MPH
                                                                                                                                                                                TIME OF DAY
HARM. PRESSURE
WIND DIRECTION
HIND VELOCITY
             ENGINE HUBEL
ENGINE HUBBEF
                                                                                      TEMPERATURE
                                                                                     HUHILITY
            STAND
                                                                                     ABSERVED RPH
                                                                                                        SPL IN Db. AT THE HIKE
1/3 ULT
FREQUENCY
(HZ)
                                                                                             MICROPHINE ANGLES IN DEGREES
                     159
                                150
   149.8
                              127.0 121.1 146.7
137.0 121.1 146.7
133.3 122.0 143.1
133.5 123.4 144.5
134.4 125.5 147.7
136.4 125.5 149.5
137.3 127.2 149.3
                     146.4 155.1 147.7 160.4 160.4
160.1 160.6 161.1 171.9 172.3
152.9 166.6 159.8 171.9 170.6
145.7 155.2 146.7 157.7 157.4
   DASPL
PHLT
PHL
DBA
    BAND
                                    24
0+0
                                                                                         CUMPUSITE SPL
CCMPOSITE RNL
PNLT (INTEGRATED)
                 HUHIXAH
HUHIXAH
HUHIXAH
                              PNLF
PhL
Uba
                                                   172.25
171.87
157.73
                                                                                                                                       HW CONT BH HW T/P INTERHAL
                                                      2267 H6785 JTBD-109 QUIET ENGINE 1 COMP A
       TABLE A-266
                                                                                                                                                                                      INLET TEMP
                                                                                                                                                                                                                      * 63.00 F
* 1548
* 30.08 IH. HG.
                                                                                                                                                                                     TIME OF DAY
BARH. PRESSURE
WIND, DIRECTION.
                                                    760 -06
375654
                 FHOIRE HUNDER
                                                                                          TERPERATURE
                                                                                          HUHIDITY
                                                                                                                                                                                              VELOCITY
                  STAND
                                                                                          OBSERVED RPH
                                                                                                             SPL IN DB. AT THE HIKE
    1/3 OCT
FREQUENCY
(HZ)
                                                                                                   HICROPHONE ANGLES IN DEGREES
         50
63
80
106
125
160
250
315
406
500
630
800
1030
1250
1666
                                                         147.3 131.6
148.3 131.4
145.8 133.8
142.0 134.5
         2000
2500
3150
4000
5005
          6300
        10000
        DASPL
PHLT
PHL
DBA
         BAND
                                        21
1.0
                                                   19
                                                            22
1-2
```

SITE PAL (1HTEGRATED)

MAXIMUM UASPL

PNLT PHL SHA

```
TABLE A-267
                                                  2267 M6785 J185-109 QUILT ENGINE 1 CONF A
                                                                                                                                  HW CONT BH HW T/P INTERNAL
                                                                                                                                                                                INLET TEHP
TIME OF DAY
BARM- PRESSURE
WIND DIRECTION
WIND VELOCITY
              EMI-INE MUDEL
EMI-INE NUMBER
                                                                                                                                                                                                                * 61.00 F
= 1510
* 30.08 In. hg.
* SE
# 4 MPH
                                                                                      TEMPERATURE
              STAND
                                                                                     HUNICITY
                                         a X-314
a 05/02/74
                                                                                                       SPL IN UB. AT THE MIKE
I/A UCT
FREQUENCY
                                                                                            HICROPHUNE ANGLES IN DEGREES
    (HL)
   4006
5060
6366
8000
10000
 CASPL
PHLT
PHL
DBA
 BAND
                                           24
0.0
              HAXIHUM CASPE
HAXIMUM PNLT
HAXIHUM PNL
HAXIHUM LPA
                                               176.60
177.65
163.55
 TABLE A-268
                                                · 2267 HB785 JTBU-IO9 QUIET ENGINE 1 CONF A HW CONT BH HW T/P .INTERNAL
               ENGINE MUDEL
ENGINE MUHBER
                                        = JT80 =00
= 375054
                                                                                                                                                                                 TIME OF DAY
BARH. PRESSURE
HIND DIRECTION
                                                                                       TEMPERATURE
                                                                                                                                                                                                                    30.08 IN. HG.
               STAND
                                         = X-314
= 05/01/74
                                                                                      HUHIDITY
                                                                                      OBSERVED RPH
                                                                                                        SPL IN DE AT THE HIKE
 1/3 OCT
FREQUENCY
                                                                                             HICROPHONE ANGLES IN DEGREES
     (HZ)
   50
63
80
125
160
250
315
406
506
630
1000
1250
1400
2500
5000
6300
5000
6300
1000
                    120-7 133-6 123-6 149-8
120-7 133-6 122-6 149-8
123-2 133-5 125-3 150-9
124-8 134-9 120-3 145-9
125-7 136-2 125-9 144-3
125-6 136-6 125-3 145-4
129-1 137-9 129-0 149-2
```

DASPL PHLT PHL DBA

BAND

HAXIMUH DASPL HAXIMUH PNL HAXIMUH PNL HAXIMUH DBA 166.69 186.23 178.99 165.27

33

```
TABLE A-269
             ENGINE HOUSE
ENGINE NUMBER
                                                                                                                                                                      IHLET TEHP
TIHE OF DAY
BARM. PRESSURE
HIND DIRECTION
WIND VELOCITY
             STAND
                                                                                 RUNIPITY
                                                                                                                              40.0 PER CT.
                                                                                 OBSERVED RPH
CORRECTED RPH
                                                                                                  SPL IN DB. AT THE HIKE
1/3 DCT
FREQUENCY
                                                                                        MILROPHUNE ANGLES IN DEGREES
                   159
                              158
 1600
2006
2500
3150
4000
5000
6300
8000
10006
 BAND
TEUK
                                                   24
U=0
                                         Uell
            HAXIHUH CASPL
TINY HUHIXAH
HILIAH
HILIAH
HILIAH
                                                                                                          SPL
                                             176.61
176.61
163.67
                                                                                           ITE PHL
(INTEGRATED)
                                                                                                                      = 178.25
= 160.89
   TABLE A-270
                                                                                      QUIET ENGINE I CONF A
                                                                                                                                HN CONT BH HN T/P INTERNAL
                                                                                                                                                                          IRLET TEHP
TIME OF DAY
BARH. FRESSURE
WIND DIRECTION
WIND VELOCITY
                 ENGINE HUDEL
ENGINE NUMPER
                                                                                      TEMPERATURE
                                                                                      HUHIOITY
                                                                                      OBSLAVED RPM
                                                                                                      SPL IN DB, AT THE HIKE
     1/3 OCT
FREUVENCY
(HZ)
                                                                                             HIGRUPHONE ANGLES IN DEGREES
       2003
2560
3156
4000
5000
6300
8009
```

151-1 164-7 151-9 162-0 166-4 164-1 176-1 164-9 770-6 178-5 163-5 178-1 164-2 170-6 178-5 149-7 164-6 150-6 157-9 165-8

10000

PHL

```
TABLE A-271
                                                                     2267 No786 JT8U-109 QUIET ENGINE 1 CONF
                                                                                                                                                                                                                                                   INLET TEHP
TIME OF DAY
BARN. PRESSURE
HIND DIRECTION
WIND VELOCITY
                   ENGINE MODEL
ENGINE NUMBER
                                                                                                                                                                                                                                                                                                = 1002
= 29.78 IN. HG.
= SE
= 5 HPH
                                                                                                                        TEMPERATURE
                                                                                                                        HUHIDITY
                   STAND
                                                                                                                        OBSERVED RPH
                                                                                                                        CORRECTED RPH
                                                                                                                                             SPL IN OB, AT THE MIKE
1/3 GCT
FREQUENCY
(HZ)
                                                                                                                                  MICROPHONE ANGLES IN DEGREES
     50
63
80
105
160
250
250
315
400
500
1046
125p
1600
2500
4000
5000
6000
6000
                                         137.6 130.3 145.5
139.6 130.9 143.3
141.4 132.5 140.6
142.9 133.3 137.9
142.3 134.5 136.8
143.7 135.3 137.6
144.8 140.5 137.7
146.2 143.2 135.0
147.4 144.3 134.2
148.1 146.7 133.6
147.7 146.1 132.3
147.5 145.1 134.0
                           126.1
128.4
132.1
133.5
133.0
135.1
141.0
143.4
143.3
    10000
   DASPL
PHLT
PHL
DBA
                            154.0 166.3 155.3 152.8 168.1
165.5 178.8 166.5 163.4 180.1
165.5 176.8 166.5 161.1 160.1
152.2 165.7 153.6 147.7 167.4
    BAND
TCURR
                                              0.0
                                                               24
0.0
                                                                        16
2.3
                                                                                             24
0.0
                     HAXIHUH UASPL
HAXIHUM PHLT
HAXIHUH PHL
HAXIHUH DBA
                                                                    168.13
180.10
160.10
167,43
                                                                                                                        COMPOSITE SPL
COMPOSITE PML
PMLT (INTEGRATED)
                                                                                                                                                                               = 160.17
= 180.17
= 182.73
    TABLE A-272
                                                                           2767 M6786 JT60-169 QUIET ENGINE 1 CONF A HH CONT. 8M HH TVP INTERNAL
                                                                                                                                                                                                                                                         INLET TEMP
TIME OF DAY
BARM. PRESSURE
HIND DIRECTION
HIND VELOCITY
                                                                                                                                                                                                                                                                                                      = 46.00 F
= 1018
= 29.78 IN. KG.
= SE
5 MPH
                         ENDINE MUDEL
ENGINE MUNDER
                                                                                                                              TEMPERATURE
                                                                                                                              HURIBITY
                                                                                                                                                                                              41.0 PER CT.
                         STAND
DATE
                                                               = X-314
= 05/06/74
                                                                                                                              OBSERVED RPM
CORRECTED RPM
                                                                                                                                                      SPL IN DB, AT THE HIKE
      L/3 UC1
FREQUENCY
(HL)
                                                                                                                                       HICRUPHUME ANGLES IN DEGREES
                                                  156
           50
63
80
105
160
200
315
400
500
1000
1250
4000
4000
4000
8100
8100
                                               141.4 130.6
141.0 131.3
141.6 131.3
142.9 134.2
144.6 136.4
145.2 137.5
144.5 139.4
145.7 144.4
147.2 146.5
                                 120-1
127-3
128-2
130-7
134-9
136-6
127-2
143-7
145-3
```

(INTEGRATED)

F 186.40

160.0

156.4 166.2 156.3 167.2 168.8 166.8 166.4 166.2 182.9 160.7 166.6 160.4 166.2 181.3 160.7 154.3 167.6 156.3 166.6 167.9

lot-bi

10006

DASPL PHLT PHL UBA

BAND TECKK

TABLE A-273

SEA LEVEL STATIC PERFORMANCE PARAMETERS USED FOR **ACOUSTICS TEST NOS. 1 THROUGH 3**

Standard Day

N1 Fn	rpm ibs	3014 2000	3698 3000	4298 4140	4800 5280	5200 6400	5493 7410	5778 8740	6097 10370	6398 12050	6788 14150	7226 16600	7661 18450	7717 18610
Pt2.4/Pt2	psia	1,095	1.143	1.195	1.249	1.296	1.342	1.401	1.474	1.542	1.638	1.75	1.822	1.828
VJE	ft/sec	463	574	676	757	835	900	991	1092	1200	1325	1500	1615	1624
AND	ft/sec	384	462	530	595	645	685	743	812	871	932	1002	1067	1070
Pt5/Pt6	psia	1.86	2.08	2,23	2.30	2.35	2.37	2.39	2.40	2.41	2.41	2.41	2.41	2.41
Pt6/Pt7	psia	1.57	1.84	2.09	2.32	2.50	2.63	2.78	2.93	3.07	3.21	3.37	3.41	3.42
Tt5	°R	1508	1620	1720	1794	1855	1906	1968	2035	2103	2206	2350	2502	2523
Tt6	° R	1280	1352	1420	1473	1520	1560	1608	1665	1723	1810	1932	2036	2047
Tt7	°R	1143	1180	1213	1240	1262	1277	1299	1326	1362	1417	1499	1582	1592
Δ hlt	Btu/lb	23.5	30.0	49.8	59,5	68.0	74.9	82.0	90.0	97.3	107.0	118.0	130.0	132.7
Wat	lb/sec	160.3	196.8	233.8	265.2	294.3	318	344	372	399	431	458	473	475
Wgeng	lb/sec	36,0	50.8	64.5	75.3	85.7	93	100.1	109.1	118.4	132.5	146.6	157.4	158.4
Pt2.5/Pt2	psia	1.083	1.129	1.178	1.23	1.278	1.324	1.379	1.444	1.510	1.605	1.715	1.785	1.790
Waduct	lb/sec	124.3	146	169.3	189.9	208.6	226.1	245.2	264.4	282,3	300.5	313.9	318.5	319.5
Pt4/Pt2	psia	2.40	4.55	5.73	6.78	7.72	8.54	9.49	10.6	11.83	13.42	15.38	16.93	17.08
Tt2.4/0t2	°R	534	544	554	563	570	576	584	593	601	612	625	637	639
AJD	in ²	720	713	706	701	694	630	684	678	673	667	663	662	662
AJE	in ²	444	451	458	463	470	474	480	486	491	497	501	502	502
Pt7/Pt2	psia	1,056	1.09	1.128	1.169	1.216	1.25	1.305	1.378	1.460	1.583	1.747	1.88	1.893

TABLE A-274

SEA LEVEL STATIC PERFORMANCE PARAMETERS USED FOR ACOUSTICS TEST NOS. 4 THROUGH 7

Standard Day

8.0-6	18 18 18 18 18 18 18 18 18 18 18 18 18 1		0000				1.23.2								
Ν1	rpm	3000	3700	4300	4800	5200	5350	5500	5650	5800	6100	6400	6800	7200	7440
Fn	lbs	1939	2990	4200	5272	6505	7177	7650	8260	8932	10201	11578	13566	15437	16600
Pt2.4/Pt2	psia	1.095	1.14	1.185	1.226	1.28	1.3	1.325	1.35	1.38	1.435	1.495	1.57	1.645	1.687
VJE	ft/sec	440	550	650	740	840	885	930	973	1020	1100	1190	1317	1445	1520
V)D	ft/sec	370	440	507	565	627	652	677	703	730	775	820	880	930	957
Pt5/Pt6	psia	2.14	2.23	2.29	2.32	2.33	2.34	2.34	2.34	2.34	2,34	2.34	2.34	2.33	2.33
Pt6/Pt7	psia	1.52	1.75	1.99	2.2	2,43	2.52	2.61	2.69	2.78	2.94	3.08	3.25	3.41	3.49
Tt5	٥R	1290	1450	1580	1665	1755	1800	1835	1870	1905	1955	2055	2155	2260	2325
Tt6	°R	1070	1190	1290	1360	1435	1470	1500	1530	1560	1625	1685	1745	1855	1915
Tt7	٥B	970	1050	1124	1156	1194	1212	1230	1246	1264	1298	.33	1384	1434	1476
Δhlt	Btu/lb	23.0	33,0	43.0	52.5	62.5	67.0	70.5	74.5	78.0	86.0	94.5	104.5	114.5	120.5
Wat	lb/sec	161	205	248	277	305	322	329	341	353	377	400	430	455	468
Wgeng	lb/sec	39.3	52.7	66.1	75.2	84.4	88.0	91.6	95.6	100.2	108.4	117.6	129.9	141.7	148.9
Pt2.5/Pt2	psia	1.083	1.125	1.174	1.216	1.266	1.288	1.312	1.336	1.360	1.412	1.464	1.540	1.614	1,660
Waduct	lb/sec	122.0	153.0	182.0	202.0	221.0	235.0	238.0	246.0	254.0	270.0	284.0	302.0	316.0	322.0
Pt4/Pt2	psia	3.50	4.60	5.60	6.50	7.55	8.00	8.45	8.90	9.40	10.40	11.45	13.00	14.55	15.47
AJD	in ²	756	750	743	736	727	724	721	718	716	711	707	702	699	699
AJE	in ²	443	450	457	464	472	476	479	481	484	489	493	498	501	501
Tt4/0t2	°R	775	845	904	944	988	1006	1022	1038	1054	1086				
Tt4/Tt2	°R	1.500	1.635	1.740	1.830	1.910	1,945	1.975				1118	1164	1212	1241
Tt2.4/0t2	°R	535	543	550		-			2.050	2.035	2,100	2.160	2.245	2.335	2.390
114.4/012	П	ยงย	040	ລວບ	557	565	568	572	575	578	585	592	603	612	618

TABLE A-275

SEA-LEVEL STATIC PERFORMANCE PARAMETERS USED FOR ACOUSTIC TEST NO. 8

STANDARD DAY

N ₁	tpm	3268	3750	4342	4812	5224	5522	5672	6145	6426	6813	7216	7474
Fn	lbs	2227	3120	4222	5290	6463	7576	8335	10484	11497	13660	15324	16679
Pt2.4/Pt2 2	psia	1.0980	1.1317	1.1811	1,2300	1.2817	1.3276	1.3533	1.4387	1.4945	1.5681	1,6482	1.6858
VJE	fps	470.2	590.4	687.0	767.7	851.0	933.6	988.0	1142.2	1194.4	1351.1	1433.2	1539.1
VJD	fps	373.8	436.5	509.4	552.0	607.9	657.9	703.5	778.4	803.6	880.7	922.0	955.5
Pt5/Pt6	psia	2.12	2.18	2.27	2.36	2.40	2.40	2.40	2.39	2,38	2.35	2.37	2.36
Pt6/Pt7	psia	1.53	1.75	1,99	2.18	2.38	2.53	2.61	2.86	3.01	3.22	3.36	3.45
Tt5	(°R)	1401.0	1509.1	1612.5	1687.0	1774.8	1857.8	1889.7	2009.7	2081.2	2190.6	2285.3	2346.6
Tt6	(°R)	1163.7	1247.1	1322.8	1375.2	1444.5	1514.4	1540.6	1644.3	1706.8	1805.0	1881.6	1935.2
Tt7	(°R)	1068.2	1115.5	1150.2	1167,2	1195.1	1235.1	1252.1	1307.1	1345.9	1398.9	1441.8	1482.8
Δhlt	Btu/lb	22,51	31.68	42.42	51.94	63.05	71.30	73.87	87.46	94.24	107.18	117.24	121.21
Wat	lbs/sec	179.27	210.47	243.55	278.51	307.68	331.50	341.74	381.60	402,37	429.57	455.16	468.71
Wgeng	lbs/sec	46.81	54.17	64,54	74.34	83.53	90.39	94.56	107.18	115.19	125.61	138.42	146.74
Waduct	lb/sec	132.46	156.30	179.02	204.17	224.15	241.11	247.18	274.42	287.18	303.97	316.74	321.97
Pt4/Pt2	psia	3.76	4.52	5.59	6.60	7.62	8.45	8.92	10.45	11.44	12.83	14.46	15.55
AJE	_{in} 2	432,5	415,9	432.4	427.5	434.6	438.8	450.5	450.0	459.5	463.1	478.8	485.1
AJD	in ²	767.0	783.6	767.1	772.0	765.0	760.7	749.0	749.5	740.0	736.4	720.7	714.4
Tt4/0t2	(°R)	803.8	849.7	906.7	955.7	1002.5	1037.3	1051.1	1102.2	1132.0	11 76.1	1227.8	1254.8
Tt4/Tt2	(°R)	1.55	1.64	1.75	1.84	1.93	2.00	2.03	2.12	2.18	2.27	2,37	2.42

APPENDIX B
PREDICTED ACOUSTIC DATA

APPENDIX B

PREDICTED ACOUSTIC DATA

The data presented in this Appendix are predicted sea level static component and overall noise levels for the as-shipped (acoustically treated fan duct) engine fitted with a hardwall simulated flight inlet and hardwall reference tailpipe. Results of the full scale JT8D-109 engine noise tests were used in the computer prediction program to obtain these noise levels. These predictions were made for the following conditions:

- (a) 1000 ft. altitude, takeoff rating
- (b) 370 ft. altitude for two approach powers (one each for 727-200 and DC-9-32)
- (c) 200 ft. sideline for a sea level part power line consisting of takeoff power, 4 intermediate points, and two approach powers.

TABLE B-1
ESTIMATED GROUND TEST NOISE FOR JT8D-109 ENGINE —
INDEX OF TABLES

	Corrected Total Noise Table No.	Corrected Fan Noise Table No.	Turbine Noise Table No.	Core Engine Noise Table No.	Jet Noise Table No.
Takeoff (1000 ft.)	B2	B3	B4	*	B5
727 App. (370 ft.)	В6	B7	B8	B9	B10
DC-9 App. (370 ft.)	B11	B12	B13	B14	B15
200 Ft. Sideline					
Takeoff 7440 rpm	B16	B17	B18	*	B19
Int. 1 - 7200 rpm	B20	B21	B22	*	B23
Int. 2 — 6800 rpm	B24	B25	B26	*	B27
Int. 3 — 6400 rpm	B28	B29	B30	*	B31
Int. 4 — 6100 rpm	B32	B33	B34		B35
727 App. 5500 rpm	B36	B37	B38	B39	B40
DC-9 App. 5350 rpm	B41	B42	B43	B44	B45

^{*} Low frequency core cannot be identified above 9,000 lbs.

JT80-109, TAKEOFF, NIC2=7440, CORRECTED TOTAL NOISE

STOELINE = 1000.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

		10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0	110.0	120.0	130.0	140.0	150.0
	50	53.7	59.8	64.B	68.7	70.4	72.3	73.0	74.8	75.4	75.B	76.B	82.2	84.0		86.8
1	63	54.5	61.2	66.5	69.4	70.7	72.7	73.9	75.5	74.1	74.4	75.5	80.9	83.2	85.9	86.1
1	80	56.3	63.2	66.8	69.1	70.5	71.9	72.9	74.7	71.3	71.4	72.7	77.7	80.3	93.6	83.7
3	100	55.8	62.2	64.6	67.3	69.3	70.0	70.3	71.5	71.4	71.5	72.8	77.5	80.2	43.9	83.6
	125	56.4	62.2	67.8	69.8	71.5	72.3	72.0	73.4	77.5	77.6	79.2	83.7	86.2	89.9	89.2
0	160	57.5	64.8	70.0	71.9	74.0	75.0	75 • 7	78.5	92.5	92.5	84.2	88.5	90.7	93.3	92.3
С	200	56.9	67.5	72.5	74+0	76.6	77.1	79.7	81.2	84-1	84.2	86.2	89.8	91-2	92.9	91.8
T	250	58.9	68.9	73.5	75.8	78.7	80.2	81-2	82.7	81.3	81.7	83.8	86.7	87.5	88.0	86.4
A	315	57.8	66.3	70.7	73.0	75.4	78.0	79.4	80.1	80 - 2	81.5	83.5	85.5	86-1	85.5	83.5
٧	400	56 .8	66.2	70.9	73.0	75.0	74.8	78.1	79.9	32 . 2	84.7	86 1	87.8	88-0	86.9	84.5
Ε	500	56.4	64.7	70.5	73.7	76.4	78.7	80.5	90.9	78 • 6	81.1	82.8	83.9	83.9	82.1	79.7
	630	52.8	63.3	68.1	71.2	74.0	76.0	77.5	78.7	78.5	81.0	82.5	93.5	83.2	80.9	76.
C	800	48.9	60.3	66.4	70.7	73.5	76.0	77.3	78.6	77.1	79.5	80.9	81.2	81.1	78 - 1	74.9
ε	1000	43.8	57.1	63.0	67.4	70.4	73.5	75.3	77.2	76.4	78.1	79.4	79.8	79.3	76.1	73.8
N	1250	41.9	55.1	61.8	66.7	70.1	72.5	74.4	76.0	75.5	77.2	70.2	78.0	77.3	73.8	71.8
Т	1600	38.2	54.4	62.3	67.1	70.B	72.8	74.0	75.1	73.6	75.2	75.9	75.4	74.5	70.5	6B • 4
E	2000	41.6	59.7	66.5	71.5	73.2	75.4	74.5	75.2	71.4	73.4	74.3	72.9	71.5	67.3	64.9
R	2500	34.1	51.9	59.3	64.0	66.8	68.3	69.7	71.2	70+6	72+2	73.1	71.1	69.3	64.6	61.9
	3150	27.3	50.6	59.1	63.5	65.8	68.4	69.7	71.7	74.4	76.8	77.1	72.8	69.4	65.0	60.9
F	4000	21.7	50.3	61.0	65.8	68.5	70.5	71.6	72.7	73.5	77.2	77.5	73.0	67.4	62.0	57.0
R	5000	9.5	40.5	52.5	57.8	60.9	63.5	66.3	69.2	5.86	72.4	73.5	69.9	63.5	57.8	52.5
E	6300	0.0	33.2	47.4	53.9	57.6	60.3	62.6	64.6	65 -1	68.7	69.9	65.7	59.9	53.6	47 + 2
ō	8000	0.0	24.6	41.5	50.3	54.4	57.5	59.9	62.1	61.5	65.1	65.3	62.2	54.5	48.1	39.7
-	10000	0.0	7.1	30.1	41.0	46.5	50.5	53.3	56.1	56 . 0	60.7	59.5	57.3	47.4	39.9	28.9
	DASPL	67.3	76-1	81.1	83.9	86.3	88.1	89.4	90.8	91.4	92.6	94.2	96.6	97.8	99.2	98.2
	PNDB	69.1	81.9	88.7	92.9	95.3	97.4	98.1	99.5	100.0	102.3	103.2	103.3	103.0	102.9	101.2

TABLE B-3

JT80-109, TAKEOFF, N1C2=7440, CORRECTED FAN NOSE

SIDELINE = 1000.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN OB

ANGLE IN DEGREES

	• • •	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0	110.0	120.0	130.0	140.0	150.0	
	. :	300	3 1/15	4.15		1.33			3.5	٠.	Šajtaja.	1.1	4.5	10,21	sign is a		
	50	42.4	47.5	50.6	53.4	55.0	55.9	56.8	58.1	51.7	56.1	57.7	54.5	50.7	47.8	45.5	
	1. 63	3 43.3	48.4	51.6	54.3	56.0	56.9	57.8	59.1	52.7	57.1	58.7	55.5	51.7	48.7	46.5	
٠,	/ 80	0 44-1	49.3	52.5	55.3	56.9	57.B	50.8	60.1	53.7	58.1	59.7	56.4	52.6	49.7	47.4	1,0
	3 10	44.9	50.2	53.5	56.2	57.9	58.8	59.7	61.0	54.7	59.0	60.6	57.4	53.6	50.6	48.4	
	12	5 45.7	51.1	54.4	57.2	58.9					60.0					49.3	
- (16	3 46.4	51.9	55.3	58.1	59.8	60.7	61.6	62.9	56.6	60.9	62.5	59.3			50.2	
	C 201	47.0	52.7	56.2	59.0	60.7	61.6	62.6	63.9	57.5	61.9	63.5	60.2	56.4		51.1	
		47.5	53.5	57.0	59.9	61.6	62.5	63.5	64.8	58.5	62.8	64.4	61.1	57.3	54.3		
	A 31	5 47.8	54.2	57.8	60.7	62.5	63.4	54.4	65.7	59.4	63.7	65.3	62.0	58.2	55.1	52.7	÷
	V 40	3 49.9	59.3	64.7	58.7	71.53	73.7	74.9	76.2	59.1	64.5	06.1	62.9	59.0	55.9	53.4	
٠	E 501	0 49.9	59.8	65.4	69.4	72.1	74.5	75.8	77.0	60.0	65.4	67.0	63.7	59.8	56.6		
	63	0 49.6	60-L	65.9	70.1	72.8	75.3	76.6	77.8	60.8	66.2	67.8	64.5	60.5	57.3		
	C 80i	48.9	60.3	65.4	70.7	73.5	76.0	77.3	78.6	61.5	67+0	68.5	65.2	61.2	57.9	55 · I	
• •	E 100	43.8	57.1	63+0	67.4	70.4	73.5	75 . 3	77.2	62.2	67.7	69.2	65.8	61.8	58.4	55.4	
		0 41.9	55.1	61.8	66.7	70.I	72.5	74.4	76.0	63.5	. 68.3	69.7	66.3	62+2	58.7	55.6	
	T 160	38.2	54.4	62.3.	67.1	70.8	72.8	74.0	75.1	54.3	68.7	70.1	66.7	62.5	58.8	55.4	
:	E 200	0 41.6	59.7	66.5	71.5	73.2	75.4	74.5	75.2	62.1	69.0	70.5	. 46.9	62.6	58.8	55.0	
	R 250		51.9				68-3										
	315	0 27.3	50.6	59-1	63.5	65.8	68.4	69.7	71.7	73.4	76.3	76.6	71.8	. 57 • 4	63.5	58.7	:
		0 21.7					70.5									- 55.4	
	R 500	9.5	40.5	52.5	57.8	60.9	63.5	66.3	69.2	66 .8	72.1	73.5	69.5			50.6	
	E 630	0.0	33.2	47.4	53.9	57.6	60.3	62.6	64.6	63 · B	68+3	69 - 7	65.3	58-8	52 8	45.7	٠.
i. i	0 800	0.0	24.6	41.5	50.3	54.4	57.5	59 . 9	62.1	60+3	64.8	65.1	61.9	53.5	47.5	38.7	
٠	1000	0.0	7.1	30-1	41.0	46.5	50.5	53.3	56-1	54.7	60.3	59.0	56.9	46.3	39.4	29.1	
j	DASP	L 58.9	68.8	74.B	79.2	81.8	84 - 1	85.3	86.6	76.4	d2.6	83.5	79.4	74.5	70.5	66.8	
	PND	8 61.7	78.6	85.7	90.5	92.9	95.2	95.7	97.1	93.0	97.2	97.9	93.7	89.5	34.2	79.7	

TABLE B-4

JT80-109, TAKEOFF, N1C2-7440, TURBINE NOISE

SIDELINE = 1000.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

	50	0.0	0.0	0.0	0.0	0.0	0.0	
1		0.0	0.0	0.0	0.0	0.0	0.0	0.0
1		0.0	0.0	0.5	0.0	0.0		0.0
3	100	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	125	0.0	0.0	0.0	0.0		0.0	0.0
0	160	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C	200	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Т	250	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A		0.0	0.0	0.0		0.0	0.0	0.0
٧		0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ė	500	0.0	0.0		0.0	0.0	0.0	0.0
_	630	0.0	0.0	0.0	0.0	0.0	0.0	0.0
¢	800	0.0		0-0	0.0	0.0	0.0	0.0
Ē	1000	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N	1250		0.0	0.0	0.0	0,0	0.0	0.0
ï	1600	0.0	0.0	0.0	0.0	0.0	0.0	0.0
É	2000	0.0	0.0	0.0	0.0	0.0	0.0	0.0
R		0.5	5.3	6.8	6.7	0.1	0.0	0.0
ı	2500	7.7	12.5	13.9	13.7	7.0	0.3	0.0
F	3150	14.6	19.4	20.7	20.5	13.5	6.5	0.0
	4000	21.1	25.9	27.1	26.7	19.5	12.1	2.3
R	5000	28.3	33.0	34.2	33.7	26.3	18.6	8.4
	6300	34.2	38.9	39.9	39.2	31.5	23.2	11.9
Q	8000	39.0	43.6	44.5	43.4	35.1	25.9.	12.9
	10000	42.3	46.8	47.4	45.8	36.7	26.1	10.6
								10.0
	DASPL	44.5	49.1	49.8	48.6	40.0	30.4	17.5
	PNDB	46.8	53.9	55.0	53.6	40.5	0.0	0.0

TABLE B-5

JT80-109, TAKEOFF, N1C2=7440, TOTAL JET NOISE

SIDELINE = 1000.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

STOELINE = 370.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

```
20.0
                               40.0 50.0 60.0
                                                     70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0
                      30.0
                                       69.7
                                                                                                     80.8
                                                                                                                     83.0
                                                                      70.0
69.8
                                                       71.7
                                                               72.7
                                                                              72.3
                                                                                      73.2
         55.4
                61.9
                        65.6
                               67.4
                                       69.1
                                               70.7
                                                                                              74.6
                                                                                                                     79.1
                                                                                      73,1
                        62.0
                                       66-4
                                                              68.1
  125
         53.9
                59.3
                       64.0
68.0
                               65.9
                                       67.6
                                               68.3
                                                       69.2
                                                              70.3
                                                                      75.8
80.7
                                                                                      79.0
                                                                                             80.3
                                                                                                     81.6
                63.9
                                       72.4
                                               73.9
                                                       74.5
                                                              77.0
                                                                              82.4
                                                                                      83.5
                                                                                              85.0
                                                                                                     85.2
  160
         58.0
                               70.4
                        70.5
                                               75.2
                                                       76.5
76.3
                                                                      82.0
                                                                              83.4
79.7
                                                                                      84.3
81.0
                                                                                                     85.7
         57.5
                        69.8
                                       73.5
                                                                      78.7
                                                                                                     81.9
  250
                                                              78.0
                                                                                             83.0
                        68.1
                        68.8
                                       72.0
                                               73.1
73.7
                                                                      79.8
76.6
                                                                              81.1
77.6
                                                                                      82.6
  400
                64.5
                               70.4
                                                       74.1
                                                              76.0
                                                                                                     83.2
                                                       75.5
                               70.4
                                                               76.4
  500
                                                                      76.6
75.5
74.8
                                                                                      79.2
77.8
                                       73.1
                        70.2
                                                       74.7
                                                              75.3
  800
         58.3
                66.0
                               72.2
                                       74.0
                                               74.6
                                                                              76.3
                                                                                             79.6
 1000
                66.6
                        70.8
                                       73.9
                                                                                      76.8
                        69.9
70.2
                                                       73.1
71.8
                                                              73.3
71.7
                                                                      74.3
72.9
                                                                              74.7
73.6
                                                                                      76.0
74.7
 1250
                                       73.7
                                               73.7
                                                                                                     75.1
 1600
         56.3
                66.0
                               72.7
                                       73.0
                                               73.3
                                                                                      73.9
77.6
80.2
 2000
                                               75.7
                                                       73.8
                                                                      73.2
                                                                              73.0
                                                                                                     70.B
 2500
3150
                                                              77.0
                                                                              77.3
                                                                                              75.2
77.6
                                                                                                     71.8
         58.9
                70.5
                               77.7
                                       78.9
                                               79.6
                                                       78.5
                                                                      77.2
                                                                                                             68.0
                        81.9
                                       85.9
                                               86.3
                                                              92.9
                 76.4
 4000
5000
                        76.4
73.5
                               78.6
                                       80 - 1
77 - 1
                                               80.7
77.6
                                                       79.0
76.8
                                                              76.5
75.3
                                                                      75.0
73.9
                                                                              76.6
75.2
                                                                                      76.5
                                                                                              74.7
         55 - 7
                70.8
                                                                                                     70.0
                                                                                                             65.6
                67.0
                                                                                                     69.5
         50.6
                                                                                      78.3
83.9
                                                               78.0
                                                                              77.5
                                                                                              77.B
                                                                                                     71.B
                                                                                                             46.0
                                                                                                                     60.3
 6300
                                                                      78.4
72.5
                                                                              82.7
75.7
 8000
                63.0
                        71.7
                                       76.7
                                               76.8
                                                       76 - 4
                                                               75.5
                                                                                              83.6
                                                                                                     76.9
                                                                                                             70.1
10000
                                                       90.5
                                                              90.0
                                                                      90.7
                                                                              92.2
                                                                                     93.2
DASPL
                               88.9
                                       90.3
                                               90.9
         70 .B
                81.1
                        86.4
                96.2 101.6 104.2 105.6 106.2 105.5 104.1 103.6 104.3 104.7 104.4 101.3
 PNDB
```

TABLE B-7

JTBD-109, 727 APPROACH, N1C2=5500, CORRECTED FAN NOISE.

SIDELINE = 370.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

```
10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0
                                                      58.7
                                                                     56.4
57.4
58.4
                                                                            56.9
57.9
                                                                                    57.8
58.8
                                                                                                    51.0
                                                                                                           48.0
                                      61.3
62.3
63.3
        49.3
50.3
               56.0
57.0
                       58.8
59.8
                               60.9
                                              61.7
                                              62.7
63.7
                                                      60.7
61.7
                                                             60.0
61.0
   80
                                                                             58.9
                                                                                    59.8
                                                                                                           49.9
  100
                58.0
                        60.7
                               62.8
                                                                                                    54.0
                                                                     59.4
60.4
                                                                                    60.8
                                                                                            58.1
                               63.8
                                       64.3
                                                              62.0
                                                                            59.9
        52.1
53.0
                58.9
                        6L.7
   125
                                                                                                    54.9
55.9
                                                                             60.9
                                                                                    61.7
                                                              63.0
                                       65.2
                                              65.6
                                                      63.6
                                                                                    62.7
                                                      64.6
   200
         53.9
                60.8
                        63.6
                               65.B
                                       66.2
                                              66.6
                                                                     62.4
                                                                             62.8
                                                      65.6
                                                              64.9
                        64.6
                               66-7
   250
         54.7
                61.7
                                                              65.9
         55.5
                        65.5
                               67.7
                                       68-2
                                              68.6
                                                      66.6
                                                                                                    58.8
                                       69.1
                                                                     64.3
65.3
                                                                             64.8
65.7
                                                                                     65.6
                                                                                            63.0
  400
300
                63.5
                        66.4
         F6.2
                               68.6
                                                                                     66.6
                                              70.5
73.7
                                       70.1
                                                      68.5
                                                              67.8
                                                       73.7
                                                                                                    60.7
                        69.4
         58.0
                 05.3
                               71.3
                                       73.1
                                                      74.7
74.0
                                                                     65•6
66•6
                                                                                     68.5
                                                                                            65.8
                        70.2
                                                              75.3
                                                                             67.6
                55.0
  ADD
         58 - 3
                                                                             68.5
                        70.0
                                       73.9
73.7
                                                              74.7
 1000
                                                                             69.4
70.3
                                                                                                    63.3
                                               73.7
                                                       73.1
                                                                      67.0
                                                                                     70.3
 1250
1600
                 66.0
                        69.9
                               72.1
                                                                                     71.1
                                                      71.8
73.8
                                                                      67.4
                                               73.3
                                                              71.7
         56.3
                14.00
                                                              73 • 2
77 • 0
                                                                                     71.9
77.1
                                                                                            69.2
73.8
                                                                      70.7
 2000
2500
3150
         57 .3
58.9
                                       75.1
                                               75.7
                                       78.9
                 70.5
                                                                      80.9
                                                                              80.5
                                                                                                    73.1
                                                                                                            69.3
                                                              82.9
                                               86.3
                                                       85.4
                        81.9
                                       85.9
                                                                              76.3
                                                                                     76.1
74.3
                                                                                            74.0
72.9
                                                                                                    68.8
                                78.6
                                       BD.L
 4000
                 70.8
                        76.4
                                                                                                                   59.4
                                               77.6
79.6
                                       77-1
                                                       76 - B
                                                              75.3
                                                                      73.0
                                                                              74.2
 5000
         50.6
                                                                                                    67.3
                                                                                                            62.4
                                                                                                                   58.4
                                                       79.2
                                                              78.0
 6300
                 67.9
                        75.6
                               78-4
                                                                                     72.8
 BOOD
                 63 - 0
                                                               72.4
10000
         29.3
                                                                                                                   71.5
                                                                                            83.2
                                                                                                    78.6
                                                                            85.5
                                                                                    85.5
                                                                      84-B
DASPL
                80.8
                       86.0
                                      89.9
                                              90.3 89.4
                                                              87.9
                 $5.9 101.2 103.8 105.1 105.5 104.5 102.7 100.0 100.4 100.3
FREE #25
```

TABLE B-8

JT8D-109, 727 APPROACH, N1C2=5500, TURBINE NOISE

SIDELINE = 370.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
50
63
80
                          0.0
                                          0.0
                                                  0.0
                                                          0.0
          0.0
                                  0.0
  100
          0.0
                          0.0
                                  0.0
                                          0.0
                                                  0.0
                                  0.0
                                          0.0
  160
          0.0
                          0.0
                                          0.0
                  0.0
                                  0.0
  315
          0.0
                  0.0
                          0.0
                                  0.0
                                          0.0
  400
500
          0.0
                  0.0
                          0.0
                                  0.0
                                          0.0
  630
         0.0
                 0.0
21.0
                         0.0
22.6
                                         0.0
                                 0.0
 1000
 1250
1600
         24.0
31.9
                28.9
36.7
                         30.4
38.2
                                 30.6
                                         24.4
32.1
 2000
                                 38.4
                44.5
 2500
         47.4
                         53.7
61.3
                                         47.4
54.8
 3150
                                 53.8
         55 0
 4000
         62.8
70.2
                 67.6
75.0
                         69.0
                                        62.5
69.6
                                                 56.1
63.1
 5000
                                 69.0
                                                         48.3
6300
                         76.4
                                 76.3
10000
                                        77.7
                                                 70.9
                                                         62.2
OASPL
                 83.5
                        84.8
                                 84.6
```

TABLE B-9

JT88-109, 727 APPROACH, N1C2-5500, LOW FREQUENCY CORE NOISE

SIDELINE = 370.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN LEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
58.0
55.4
55.7
    63
80
                     61.6
                               64.3
61.7
                                          65.8
63.2
                                                    64.7
62.1
                                                              61.0
58.4
                                                                         55.6
53.0
   100
125
160
                      59.3
                                                               58.6
                                                    69.3
75.0
77.5
           62.6
68.4
                               68.9
74.6
77.1
                                                              65.5
71.3
                      66.2
                                          70.3
76.1
                                                                         60.1
  200
250
                                                               73.8
71.9
           70.9
69.1
                      74.4
                                          78-6
                                75.3
75.9
79.6
                                                     75.7
                                                                         66.5
                                          76.8
  315
400
           69.6
                     73.2
77.0
                                          77.4
81.1
                                                    76.3
80.0
           73.4
70.7
70.9
69.3
                                                               76.2
                                                    77.3
77.5
75.9
  630
800
                               77.1
                                          78.6
77.0
                                                               73.6
72.0
                               74.3
73.0
 1000
           48.1
                                                               69.3
 1250
           66.8
                      70.3
                                                     73.2
 2000
2500
           61.8
                                67.9
                                          69.3
                                                     68.0
                                                               64.0
                                                                         58.0
                                                     66.1
                                66.1
           58-1
55-7
                      61.6
59.2
                                                    64.1
                                                                         53.5
50.4
 3150
 4000
                                61.8
                                          63.0
 5000
                                                    59.4
56.7
                                57.3
                                          58.4
55.7
                                                               52.0
 6300
                      54.8
10000
DASPL
```

JT80-109, 727 APPROACH, NIC2=5500, TOTAL JET NOISE

TABLE B-10

SIDELINE = 370.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
72.5
                                     77.1
76.3
                                             19.9
77.9
                       82.9
                              84.4
                                     84.8
                                             84.4
                              85.4
                                      85.0
 200
               82.8
                       83.4
                                      80.7
                              80.3
                                      78.7
                                              76.1
                              82.3
 400
                              78.3
                                      76-0
                                      75.0
1250
                              70.0
2000
                                      60.7
                       61.7
                              63.5
4000
                              58.8
                       55.3
6300
```

TABLE B-11

JT80-109, DC-9 APPROACH, NIC2=5350, CORRECTED TOTAL NOISE

SIDELINE = 370.FT

FAA PART 36 REFERENCE DAY COPRECTED SPL IN DB

ANGLE IN DEGREES

```
60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0
                                                               73.1
70.0
                                                                                            79.3
75.6
                                                                                                  52.0
78.4
                                                                              73.1
                                           HQ.R
                                                  70.7
                            66.6
                                   68.2
  100
 125
                                                        69.4
75.9
                                                                             78.3
82.2
                                                                                    79.7
84.1
                                                                75.6
                                                                                            80.1
                                                                                            83.8
                                                                80.7
                                                                                           80.6
  200
                                                                76.9
                                                                              79.2
                                                                                    81.4
 250
                                                                       78.7
  315
                                                                78.1
                                                                       80.2
                                                                              81.0
                                                                                     83.2
                                                                                            82.1
                                                                              78.0
                                                                       76.7
 500
                                                                              78.0
                                                                                     79.8
                                                                                            7B.6
                                                                                            76.8
 800
                                                                73.8
                                                                              76.7
                                                                                     78.1
 0001
                                                                                     75.8
73.9
                                                                                            74.3
 1600
                                                                                            70.1
                                                                                            71.3
 2500
       58.B
               70.3
                                           79.2
                                                  77.9
                                                         76.3
                                                                76.8
                                                                              77.0
 3150
 4000
                                           80.1
                                                  78.3
                                                                73.4
                                                                                     73.6
                                                                                            69.0
                                                                72.9
5000
       50 -4
 6300
 8000
10000
                                                        89-1
                                                               89.7
                                                                       91.4
                                                                              92.3
                                                                                    93.3
                                   89.8
                                          90.3
                                                  89.8
                     85.9
                           88.4
              95.7 101.1 103.7 105.1 105.6 104.8 103.3 102.6 103.5 103.8 103.8 100.4
PNDB
```

TABLE B-12 JT80-109, DC-9 APPR

JT80-109, DC-9 APPROACH, N1C2-5350, CORRECTED FAN NOISE

SIDELINE = 370.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGPEES

```
70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0
                                                                                58.2
          48.9
49.9
                    55.5
56.5
                              58.3
59.3
                                        60.3
                                                   60.7
                                                            61.0
62.0
                                                                      59.0
                                                                                59.2
                                                                                           57.0
                                                            63.0
63.9
                                        62.2
63.2
                                                                                60.2
                                                                                          58.0
                                                   62.7
                                                                      61.0
                                                                      62.0
62.9
63.9
                                                   63.7
  125
160
          51.7
52.6
                    58.4
                              61.2
                                                   64.6
65.6
                                                            64.9
65.9
                                                                                          60.0
61.0
                                        65.2
           55.1
55.8
                                        67.1
                                                                                          62.9
                     63.0
                                                             69.8
70.7
73.8
                                                                      67.8
69.7
73.9
                                                                                67.0
68.0
                                                                                          64.9
65.8
                                                   69.5
  630
800
                    64.6
65.6
                                        69.8
71.6
                                                   70.4
                                                                                          64.8
65.8
                                                   73.4
73.2
72.5
74.5
                                                                       73.3
72.3
71.1
73.1
                                                                                 73.9
72.5
                                                             73.6
73.0
                               70.5
                                        71.6
72.3
73.8
77.5
 1250
1600
                               69.6
                     65.7
                                                                                 70.8
72.4
76.3
                                                             72.7
                                                                                           66.6
 2000
                                                                                                               76.6
79.1
74.5
73.0
                                                                                                    76.6
79.6
 2500
                                                                                 82.1
75.6
74.7
77.4
                                                                                          80.0
72.9
72.0
                                         84.0
78.0
75.3
                                                   85.4
79.6
77.0
79.4
 3150
                     75.9
70.4
                                                             85.8
80.1
                                                                       84.7
78.3
                                                                                                     74.8
73.0
 4000
                                                                       76.4
78.7
                                        78.2
74.8
 6300
                     67.8
                               75.4
                                                             79.3
 8000
10000
                                        88.1
                                                   89.4
                                                             89.8
           83.1 95.5 100.8 103.3 104.6 105.0 103.8 101.9
                                                                                           99.2 99.6
```

TABLE B-13

JT8D-109, DC-9 APPROACH, NIC2=5350, TURBINE NOISE

SIDELINE = 370.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

	.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	63	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	80	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	100	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-	125	0.0	0.0	0.0	0.0	0.0	0.0	0.0
D	160	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ľ,	200	0.0	0.0	0.0	0.0	0.0	0.0	0.0
î	250	0.0	0.0	0.0	0.0	0.0		0.0
A	315	0.0	0.0		0.0		0.0	0.0
٧	400	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ė		0.0			0.0		0.0	
7	630	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C	800	0.0	0.0	0.0	0.0		0.0	0.0
E		0.0		0.0	0.0		0.0	0.0
N		16.5			23.1	16.9	11.2	4.4
T	1600	24.3	29.2		30 - ≎		18.9	12.0
Ė	2000	32.2	,-	38.5	38.7	32.4	26.6	19.6
Ř	2500	39.9		46.3		40.1	34.2	
•	3150	41.7	52.5	54.0	54-1	47.7	41.6	34.3
F	4000	35.3	60.1	61.6	61.6		48.9	41.2
R	5000	63.	67.9				56.4	
Ë	4. 1 7.7	70.5	75.3		76.6	69.9	63.4	55.2
ō		77.7	82.5	63.8	83.6	76.7	69.8	61.0
٦.	10000	68.5	73.2	74.4	74.0	66.8	59.4	49.7
٠.,		0000			1700	00.00	33.44	7701
	DASPL	79.0	83.8	85.1	84.9	78.0	71.2	62.5
À	PNDB	87.7	92.5	93.8	93.7	86.9	80.0	71.2

SIDELINE = 370.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DER" ES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
66.1
   63
80
100
125
160
                                                            60.4
                     58.4
58.7
                     65.6
71.4
73.8
           62.0
67.8
   200
250
315
                     72.0
72.6
           68.5
69.0
   400
500
                     76.4
73.6
73.9
           70.1
   630
   800
                     72.3
71.0
 1000
 1250
 1600
 2500
3150
                     61.0
                              63.6
                                                  63.5
 4000
5000
                     56.6
 6300
 8000
10000
DASPL
                    83.5
                              86.2 87.6
                                                 B6.5
```

TABLE B-15

JT80-109, DC-9 APPROACH, N1C2=5350, TOTAL JET NOISE

SIDELINE = 370.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGPERS

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
82.0
78.4
                    70.2
  160
200
250
                                               83 3
83 5
79 2
          80.2
                                      83.8
79.8
  315
400
                                                78.8
  630
 1000
1250
                                               68.2
 2000
2500
 3150
 4000
                                               56.7
                                                         50.2
 5000
 6300
 8000
10000
DASPL
```

JT88-109, TAKESFF, NIC2-7440, CORRECTED TOTAL NOISE

TABLE B-16

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN OB

ANGLE IN DEGREES

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.3 130.0 140.0 150.0 98.1 100.4 101.0 97.3 100.0 100.3 94.5 97.7 97.9 94.4 98.1 97.8 94.9 91.8 80.7 B3.5 84.8 86.7 88.0 89.6 88.2 88.5 89.6 77.5 81.0 96.0 87.0 88.8 85.4 85.5 86.8 83.2 70.6 81.5 83.5 84.1 85.7 85.5 91.7 85.7 36.9 93.3 91.6 94.4 98.1 97.8 100 76.7 B4.D 85.7 86.4 87.6 125 71.4 82.1 86.1 91.8 98.4 102.7 105.0 107.6 106.7 89.9 92.8 96.7 98.4 100.4 104.1 105.5 107.3 106.3 96.0 98.1 101.1 101.9 102.5 101.1 82.3 88.4 90.3 95.4 97.0 200 87.0 90.9 91.4 93.9 98.4 95.6 93.1 95.5 88.2 250 95.9 97.9 100.0 100.6 100.2 99.2 100.7 102.4 102.7 101.7 95.8 97.5 98.7 98.8 97.2 92.5 93.8 94.4 96.8 400 74.0 B1.B 86.0 87.B 89.7 91.4 92.7 93.5 80.7 95.2 93.3 83.9 89.2 91.0 32.4 93.6 93.3 95.9 97.4 98.5 98.4 96.3 93.7 96.4 96.5 93.8 77.6 91.2 92.2 96.1 800 69.4 82.6 86.4 88.9 92.5 90.6 92.6 91.8 93.5 95.4 95.1 1250 66.2 74.3 83.5 86.4 88.6 90.3 91.7 91.3 92.9 94.1 94.1 93.6 90.6 89.3 90.5 92.4 1600 75.1 80.9 84.7 91.4 89.9 91.5 92.0 90.4 2000 90.0 88.3 91.3 90.3 69.3 05.R 91.0 69.4 88.1 2500 69.3 76.7 80.6 83.7 85.6 86.6 87.6 88.9 83.3 93.1 96.1 92.2 89.2 82.6 92.1 59.3 4000 70.9 82.2 87.2 90.4 91.5 92.9 93.6 97.4 98.0 94.0 85.4 63.2 85.5 86.5 90.2 89.1 93.4 94.8 91.9 82.6 80.3 83.9 5000 74.6 63.2 87.9 87.6 93.4 90.0 85.5 81.4 78.9 BUDD 83.9 A5.2 86.5 88.2 87.4 91.2 10000 92.8 97.3 99.9 102.0 103.6 104.8 106.1 106.5 108.2 109.6 111.4 112.3 113.6 112.7 DASPL 84.5 PNDB 95.0 105.1 110.0 112.5 114.2 115.6 116.5 117.7 117.9 120.7 121.7 120.4 119.2 119.0 117.6

TABLE B-17

JT80-109: TAKEOFF, N1C2=7440, CORRECTED FAN NOSE

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 70.9 72.2 65.8 50 - B 60.7 73.2 49.5 65.8 . 62.B 71.9 65.8 68.4 70.9 57.0 02.6 70.1 70.5 53.6 66.€ 71.1 71.9 72.9 74.2 67.8 72.2 73.2 73.8 80 58.8 63.6 71.5 72.5 64 • 8 65 • 6 67.B 62.6 70.4 72.1 72.9 73.8 75.2 68.8 100 74.2 75.7 76.7 68.8 73.1 125 60.7 65.6 68.7 71.4 74.9 75.9 77.2 78.1 75.8 70.3 69.7 160 66.6 61.6 74.5 75.5 70.7 65.6 76.8 73.4 70.7 75.0 72.8 73.8 76.9 250 63.5 68.5 71.7 315 72.6 79.8 75.4 83.5 77.0 77.9 78.8 80.1 79.1 80.1 70.7 90.7 73.7 88.3 89.5 74.9 75.8 85.0 400 91.7 92.7 89.3 80.8 500 67.9 91.5 75.7 88.0 90.3 630 B1 -7 85.5 76.6 80.4 70.6 88.9 92.5 93.7 82.1 83.7 91.2 800 69.4 77.6 82.6 86.4 83.1 83.6 86.2 89.1 92.6 1000 66.0 88.6 90.3 85.6 92.4 78.5 66.2 1250 74.3 79.3 83.5 86.4 80.9 87.B 89.4 90,5 91.5 91.4 92.2 80.4 85.0 86.6 83.3 75.1 84.7 1600 80.4 79.0 84.3 85.2 86.3 90.0 91.0 92.8 2000 81.3 85.6 86.6 82.6 86.9 89.5 2500 3150 69.3 83.7 76.7 80.6 85.9 87.8 88.7 90.5 92 . 1 92.9 93 • 0 97.8 93.6 88-1 84.4 91.5 92.1 4000 70.9 82.2 87.2 89.2 90.4 91.5 65.0 93.1 87.6 83.9 85.5 90.2 87.7 80.3 82.6 5000 63.2 74.6 A0.4 77.4 87.6 86 .6 79.1 79.3 36.1 6300 73-2 81.7 83-2 84-0 89.6 88.2 R6.2 8000 58.0 73.3 82.8 B5 D 81.8 83.4 84.7 86.7 10000 50.9 68.9 80.4 89.2 94.0 97.2 99.0 100.8 101.8 103.1 97.9 102.2 103.1 99.7 71.3 MASPL 80 .0 PNDB 93.0 103.2 108.2 110.9 112.4 113.8 114.7 115.8 112.3 116.8 117.7 114.0 108.9 105.6 102.9

JT80-109, TAKEOFF, NIC2=7440, TURBINE NOISE

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

	50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ı	63	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	80	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	100	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	125	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0	160	0.0	U.0	0.0	0.0	0.0	0.0	0.0
C	200	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ŧ	250	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Α	315	0.0	0.0	0.0	0.0	0.0	0.0	0.0
٧	400	0.0	0.0	0.0	0.0	0.0	0.0	0.0
£	500	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	630	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ç	800	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E	1000	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N	1250	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ŧ	1600	9.5	14.3	15.9	16-1	10.0	4.3	0.0
Ë	2000	17.4	22.3	23.8	24.1	17.9	12.2	5.5
R	2500	25.4	30.2	31.8	32.0	25 .B	20.0	13.2
	3150	33.3	38+2	39.7	39.9	33.6	27.8	20.9
F	4000	41.2	46.1	47.6	47.7	41.4	35.5	28.5
R	5000	49.2	54.0	55.5	55.7	49.3	43.4	36.2.
Ę	6300	57.O	61.9	63.4	63.5	57.1	51.0	43.6
Q	8000	64.9	69.7	71-1	71.1	64.6	58.4	50.7
	10000	72.6	77.4	78.8	78.7	72.0	65.5	57.3
	DASPL	73.4	78.2	79.6	79.5	72.9	66.4	58.3
	PNDB	79.0	83.9	85.3	85.3	78.6	71.9	63.5

TABLE B-19

JT80-109, TAKEUFF, NIC2=7440, TOTAL JET NOISE

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
50 89.5 89.9 90.8 96.2 98.1 100.4 101.0 1 63 88.2 88.4 89.5 94.9 97.3 100.0 100.3 1 00 85.4 85.4 85.4 91.6 94.5 97.7 97.9 125 91.7 91.7 93.2 97.8 100.4 104.1 103.5 160 96.7 96.8 98.4 102.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 105.0 107.6 106.7 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106.3 106
```

PNDB 114-1 115-2 116-3 117-8 118-3 118-1 117-1

JT80-109, POINT 1, NIC2=7200, CORRECTED TOTAL MOISE

TABLE B-20

SIDELINE = 200.FT

FAA PART 36 REFERENCE PAT CORRECTED SPL IN DB

ANGLE IN DEGREES

30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 20.0 85.3 86.4 81.2 83.2 88.4 87.7 93.5 85.6 87.0 87.0 88.7 89.9 82.2 83.6 67.6 74-1 96.2 97.7 85.9 79.B 81.9 83.6 84.9 86-1 96.8 96.6 80.1 82.1 82.7 85.6 87.0 90.2 93.0 69.2 77.4 300 75.0 96.4 74.9 82.1 83.7 84.5 84.4 86.1 90.5 91.8 93.3 125 91.9 101.3 103.6 106.1 104.0 88.2 89.0 78.3 83.1 85.2 87.2 102.7 104.1 87.5 98.0 100.0 80.9 85.8 200 71.4 95.5 100-5 95.6 88.9 91.3 88.5 92.8 93.9 250 73.5 98.6 99.2 18.7 91.2 315 73.0 80.2 84.2 86.6 98.9 101.3 97.3 101.0 86.5 90.0 93.1 80.4 400 72.4 97.3 97.4 95.7 79.3 76.8 84.3 82.8 500 87.2 89.6 91.8 97.1 97.0 92.3 94.9 85.6 630 91.9 93.2 95.0 91.1 85.3 R7.7 89.8 10.9 92.0 76.9 800 68.9 87.9 93.7 90.8 75.1 74.3 85.3 1000 66.2 79.5 83.0 92.3 90.6 92.7 82.9 87.4 88.7 90.0 90.1 91.4 1250 66.3 90.3 86.7 83.7 89.4 88.9 80.3 P.FR 86.4 87.9 88.6 1600 89:6 90.4 87.3 88.3 89.3 89.0 88.0 84.4 71.4 88.6 2000 81.2 85.1 89.4 88.2 85.9 86.9 87.6 88.5 87.4 99.2 77.3 2500 89.7 88.4 85.2 82.6 90.8 87.4 69.8 79.6 83.9 86.2 93.0 88.4 92.9 93.1 93.2 96.5 97.1 88.3 90.2 72.0 83.2 4000 92.5 90.7 90.3 85.5 81.5 89.0 88.7 5000 63.7 75.2 80.8 83.0 84.2 85.6 37.3 87.8 87.5 92.5 89.1 84.5 80.4 84.5 85.6 6300 62.2 74.7 80.6 83.1 79.7 83.6 85.7 86.8 88.1 86.9 8000 92.0 86.4 85.3 10000 70.2 78.0 81.6 82.9 84.3 99.2 101.1 102.7 103.7 104.9 105.4 107.0 108.4 110.0 111.0 112.2 110.5 96.7 OASPL 92.1 95.2 105.3 110.3 112.7 114.2 115.6 116.3 117.1 117.2 119.5 120.5 119.3 117.9 117.6 114.9

TABLE B-21

JT8D-109, PDINT L. N1C2=7200, CORRECTED FAN NOISE

SIDELINE = ZOO.FT

PAA PART 36 REFERENCE DAY CORRECTED SPL IN OB

ANGLE IN DEGREES

60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 50.0 30.0 40.0 10.0 20.0 71.9 59.9 70.3 68.6 62.0 57.8 66.3 68.9 70.4 69.6 65.9 72.9 73.8 72.2 73.8 67.5 71.3 58.8 80 70.6 74.8 68.5 72.3 58.2 70.9 72.4 73.2 67.9 75.8 69.5 73.3 71.6 69.2 125 60.7 66.2 70.5 74.3 74.4 75.3 160 75.2 75.B 76.8 61.6 75.8 73.6 69.A 76.8 75.2 67-0 76.2 200 68.1 71.2 73.9 70.8 78-7 72.5 76.2 63.5 250 75.6 79.7 73.1 79.0 78.8 70.0 75.9 77.3 78.2 76.6 B9.0 73.5 78.2 79.8 72.8 69.9 82.4 66.6 400 74.2 79.2 73.8 .80.8 74.5 500 85.B 87.9 88.9 90.0 80.2 81-8 78.6 74.8 75.7 88.9 630 68.2 76.0 80.9 84.4 86.8 79.5 89.8 90.9 92.0 76.4 81.2 82.8 76.9 81.8 800 90.9 73.8 82.2 79.5 79.0 89.2 75.7 83.0 85.3 87.9 1000 84.7 85.7 77.6 90.0 83 .1 R1.5 74.7 1250 66.3 65.4 74.5 80.3 83.9 86.4 87.9 88.6 89.4 80.4 84.1 B9. 1 96.6 93.4 79.5 76.5 89.6 2000 2500 71.4 85.1 81.2 88.6 80.4 85.9 86.9 87.6 84.5 42.3 86.0 87.6 84.3 86.6 83.9 90.4 89.1 89.7 90.8 3150 69.8 79.6 83.9 86.2 87.4 93.L 92.7 96.4 97.0 92.7 87.3 83.6 80.8 90.2 88.3 4000 72.0 83.2 90.7 84.2 84.5 92.3 5000 80.8 83-0 85.6 67.3 89.0 B7 .5 8.68 18 B 83.5 79.7 76.5 85.6 87.8 6300 62.2 74.7 80.4 83.1 85.8 88-1 85.9 90.1 88.8 82.1 8000 59.0 10000 81.6 82.9 84.3 85.3 86-4 84.7 89.4 94.1 97.0 98.7 100.3 101.0 101.9 97.6 101.4 102.3 98.9 93.7 90.4 93.6 103.9 108.8 111.3 112.8 114.1 114.7 115.4 112.1 115.9 116.8 113.1 108.0 104.7 102.0 PNDB

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

TABLE B-23

JT80-139, POINT 1, NICZ=7200, TOTAL JET NOISE

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
50 88.3 90.1 91.1 94.8 96.7 98.9 101.6 1 63 87.0 88.6 89.8 93.5 95.9 98.5 100.9  
80 84.1 85.7 96.9 90.4 93.1 96.2 97.7  
3 100 84.2 85.4 86.8 90.2 93.0 96.6 96.8  
125 90.5 91.7 93.2 96.4 99.0 102.6 101.2  
0 160 95.5 96.6 98.4 101.3 103.6 106.1 104.0  
C 200 97.2 98.0 100.0 102.7 104.1 105.8 102.8  
7 250 94.4 95.4 97.3 99.7 100.5 101.0 97.6  
A 315 93.4 94.9 96.3 98.6 99.2 98.7 94.9  
400 95.6 97.2 98.8 101.0 101.3 100.2 96.2  
E 500 92.0 93.6 95.0 97.3 97.4 95.7 91.7  
630 92.0 93.3 94.7 97.0 97.0 94.8 89.8  
C 800 90.9 91.5 92.8 94.9 95.1 92.3 88.6  
E 1000 90.4 90.6 91.5 93.8 93.6 90.7 87.1  
N 1250 89.8 89.7 90.3 92.4 92.1 89.0 85.8  
1 1600 89.2 87.7 88.2 90.0 89.8 86.3 83.3  
E 2000 86.6 85.4 85.9 87.6 87.3 83.6 80.7  
R 2500 85.8 84.2 84.6 85.9 85.7 81.6 70.9  
3150 84.8 82.9 93.0 84.1 83.8 79.5 76.9  
F 4000 83.5 81.2 81.8 18.9 81.7 77.0 74.6  
F 5000 82.4 79.6 79.4 80.0 79.8 74.8 72.5  
E 6300 81.0 77.9 76.5 77.8 77.7 72.2 70.0  
G 8000 79.9 76.3 75.7 75.6 75.5 69.6 67.4  
10000 78.4 74.4 73.7 73.2 73.0 66.5 64.1  
GASPL 104.6 105.6 107.2 109.7 110.9 112.1 110.5
```

PNDB 112.9 113.2 114.3 116.4 116.9 116.6 114.0

JT80-109, POINT 2, NIC2=6800, CORRECTED TOTAL NDISE

TABLE B-24

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

30.0 40.0 50.0 60.D 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 86.2 86.4 97.8 98.0 73.9 72.3 79.7 77.6 81.6 79.6 82.9 80.3 an 67.5 84.2 85.5 83.6 81.4 82.1 81.1 83.4 84.6 125 72.1 160 80.7 83.2 94.3 70-1 76.2 85.1 86.4 97.1 90.1 93.2 98.8 100.9 102.2 101.1 85.7 100.2 83.6 88.6 90.5 92.4 250 86.3 89.8 70.6 81.8 84.3 85.B 88.7 89.8 90.6 91.2 92.7 93.9 400 500 90.6 98.5 90.6 91.4 70.3 76.9 81.6 84.4 86.7 88.8 89.B 87.7 83.7 88.7 89.8 91.3 80.4 79.0 ឧកភ 68.1 75.8 83.4 87.4 88.2 1000 82.0 66.4 84.0 86.0 86.8 88.2 88.4 89.0 88.0 88.4 85.6 87.3 86.2 87.6 86.9 85.3 1600 65.3 74.5 79.4 82.7 85.5 87.3 2000 83.2 86.5 88.8 87.4 86.4 86.8 2500 3150 86.5 91.0 93.0 91.9 92.6 71.7 81.3 85.7 88.1 89.4 90.7 90.4 93.1 93.5 99.7 86 .6 4000 93.6 95.1 95.7 86.7 87.2 87.9 91.1 5000 76.0 81.5 83.3 85-6 86.6 87.9 92 82.5 6300 76.7 85.0 97.6 86.1 86.8 36 8 99.3 91.1 97.7 82.9 78.4 75.7 8000 89.0 10000 79.6 83.0 84.2 85.4 85.8 85.6 85.5 89.6 89.4 81.4 DASPL 95.9 98.5 100.0 101.4 102.1 103.0 103.5 105.0 106.2 107.7 108.2 108.7 107.6 PNDB 95.4 105.6 110.5 112.9 114.3 115.5 115.8 116.0 115.9 117.9 118.8 117.4 115.4 113.8 112.2

TABLE B-25

10.0 20.0

30.0

JT80-109, POINT 2, N1C2-6800, CORRECTED FAN NOISE

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN OB

ANGLE IN DEGREES

40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 70.7 71.7 71.6 72.6 71.7 71.9 72.9 70.5 71.5 57.8 63.8 69.4 68.9 70.4 67.1 69.9 68.2 100 73.6 73.7 73.4 66.B 72.4 74.6 74.6 74.9 69.1 71.9 70.2 160 75.9 72.9 70.1 200 76.8 77.8 68.7 75.6 76-6 76.6 73.8 75.4 76.6 77.6 77.6 72.1 74.8 73.2 74.2 315 400 80.5 78.4 79.4 84.5 85.2 86.2 73.1 76.8 85.5 77.8 76.2 87.2 82.5 86.5 88.2 78.8 85.7 88.2 79.8 89.2 76.0 81.4 1000 80.8 88.2 82.3 78.4 78.6 81.7 82.7 84.3 66.2 Bl.B 85.5 86.3 87.3 86.2 81.0 2000 83.2 86.5 88.8 87.3 87.6 83.7 81.6 87.6 86.2 87.3 87.4 81.9 34.6 86.2 93.3 92-9 79.0 75.9 82.5 3150 85.7 92 9 89.0 85.2 4000 89.5 91.5 92.6 93-6 93.6 93.0 92.3 95.0 95.6 85.6 87.2 90.9 92.3 89.3 82.8 86.1 87.6 89-1 6300 63 - 7 82.5 คร.ก 86 B 8000 87.5 10000 98.5 99.7 100.0 100.3 97.2 100.0 100.9 97.5 92.3 89.0 94.3 104.7 109.5 112.0 113.3 114.4 114.5 114.5 111.7 114.5 115.4 111.7 104.6 103.3 100.6

FAA PART 36 REFERENCE DAY COPRECTED SPL IN 08

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
63
80
         0.0
                0.0
                        0.0
                               0.0
                                       0.0
                                              0.0
                                                      0.0
 125
160
         0.0
                 0.0
                        0.0
                               0.0
                                       0.0
                                              0.0
                                                      0.0
                 0.0
                        0.0
  250
                               0.0
                 0.0
                        0.0
                 0.0
  500
  630
  AOD
                 0.0
                        0.0
                               0.0
 1000
 1250
         0.0
                 0.0
                        0.0
                               0.0
 1600
        13.7
                18.5
                       20.1
                              20.3
 2000
                       28.0
        29.6
37.5
 2500
3150
                34.4
                       36.0
43.9
                              36,2
44.1
                                      30.0
                                     45 • 6
53 • 5
                       51.8
                              51.9
 5000
                                             47.6
        53.4
                58.2
                       59.7
                              59.9
                                                     40.4
6300
                66.1
 8000
                                      8.83
                                             62.6
10000
GASPL
                                     77.1
                                             70.6
                                                     62.5
                                             76.3
                88.1
                       89.5
                              89.4
                                      82.7
                                                     68.1
```

TABLE B-27

JT80-109, PCINT 2, NICZ=6800, TOTAL JET NOISE

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90-0 100-0 110-0 120-0 130-0 140-0 150-0

```
91.0
87.9
                 86.3
                                        93.1
                                                97.8
95.2
                                                        98.0
94.8
                         87.3
  80
100
                 83.4
         81.9
88.2
                 B3.1
                         84.3
                                 87.7
                                         90.2
  125
160
200
                 89.4
                         90.7
                                 93.9
                                         96.2
                                                 99.3
         93.2
                                 98.8
                                               102.2
                 95.7
                         97.5
                               100.2
97.2
                                       101.3
                                               101.4
  250
315
                 93.1
                         94.8
                                                 96.6
                 92.6
                         93.8
                                 96.1
                         96.3
                                 98.5
                                        98.5
                                                 95.5
  500
630
                                                 90.9
         89.7
                 91.0
                                94.5
92.4
                         92.2
                                                 89.7
  800
                                         92.3
                                                 87.4
                                                         85.7
                         89.0
87.8
 1000
         BA.I
                 88.3
                                91.3
                                                84.0
                                89.9
                                        89.3
 1600
2000
         85.9
                                                        90.4
                                85.1
83.4
                 83.1
                         83.4
 2500
                         82.1
                                         B2.9
                                                 76.6
         82.5
81.2
                 80.6
78.9
 3150
                         80.5
                                         81.0
 4000
                         78.6
                                79.4
77.5
                                        78.9
77.0
 5000
         80.1
                                                69.8
                                                        69.6
 6300
         78.7
                 75.6
                         74.0
73.2
                                75.3
10000
DASPL 102-3 103-3 104-7 107-2 108-1 108-6 107-6
```

PNDB 110.6 110.9 111.8 113.9 114.1 112.4 111.1

FAA PART 36 REFERENCE DAY CORRECTED SPL IN OB

ANGLE IN DEGREES

10-0 20-0 30-0 40.0 50.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 60.0 70.0 85.2 63.5 70.3 71.7 75.0 75.6 78.1 77.5 79.5 81.6 80.7 85.5 83.3 82.1 83.3 81.2 82.3 83.4 86.4 8 . 00 92.0 91.6 80.9 83.2 86.1 88.2 41.4 90.7 77.8 82.9 78.6 89.4 74.1 78.3 80.9 94.0 97.8 125 64.3 69.4 76.2 79.3 87.0 88.0 92.1 96.1 95.1 68.2 74.0 81.1 85.0 91.8 84.3 92.6 94.1 96.7 99.0 97.9 81.3 81.3 83.5 200 67.6 76.2 85.3 87.9 250 77.2 85.2 68.6 86.6 88.3 90.1 89.6 91.0 92.0 94.1 94.3 93.4 91.5 83.0 86.0 89.4 90.7 92.6 92.5 91.1 88.8 400 67.3 75.5 79.9 81.6 83.4 84.9 85.0 90.1 500 6B.0 74.6 79.0 81.6 83.8 85.7 87.5 86.6 90.8 88.5 87.8 88.9 90.4 87.7 85.6 630 68.0 78.9 81.7 87.6 800 67.2 74.7 79.1 81.7 63.5 85.1 85.6 85.7 86.2 87.0 88.4 84.4 1000 66.4 74.3 78.4 80.9 82.6 85.7 85.2 85.6 86.1 86.2 81.2 1250 66.1 77.8 78.5 80.6 73.7 82.7 83.6 83.9 74.0 82.4 83.3 82.9 93.2 94.3 85.2 83.1 79.2 78.0 2000 68.8 81.5 81.9 86.9 91.2 85.6 92.0 2500 69.2 78.3 84-9 86-2 87.2 86.5 83.8 83.3 80.9 75.4 73.0 82.4 87.0 89.2 90.6 91.6 90.6 91.3 91 -6 98.0 84.5 81.5 79.1 4000 5000 74.0 85.1 90.0 92.1 93.2 93.7 81.9 64.6 76.5 83.5 84.7 85.5 85.8 85.5 87.1 89.6 91.0 88.0 81.9 78.0 75.3 87.2 6300 87.5 87.9 86.0 89.7 81.2 86.2 8000 60.9 82.4 85.2 B6-1 86.4 85.9 86.7 85.6 88.5 10000 80.6 83.8 85 B 84.6 85.4 89.0 B9.2 88.8 B1 -4 77.0 DASPL 97.9 99.3 100.4 100.7 101.0 101.6 102.9 103.9 104.9 105.1 105.5 104.4 81.5 90-8 95.5 95.3 105.6 110.5 112.8 114.1 115.1 115.0 114.7 114.6 116.0 116.8 115.1 112.4 111.0 109.3

TABLE B-29

JT8D-109, POINT 3, N1C2=6400, CORRECTED FAN NDISE

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 70.2 69.8 64.7 57.7 58.7 65.2 67.1 68.0 69.6 70.6 70.7 70.8 65.7 67.5 69.1 45.8 62.1 63.1 57.1 59.2 71.7 72.7 71.8 72.8 66.7. 67.7 72.5 72.2 68.5 70.1 66.8 60.2 58.0 66.2 100 59.6 69.0 73.1 69.5 71.0 67.8 64.1 61.2 125 73.7 74.7 60.6 70.0 74.5 75.5 74.1 75.1 72.6 73.8 68.7 70.5 65.1 68.8 62.2 60.0 160 61.5 73.6 74.8 69.7 71.5 73.0 69.8 70.8 62.4 69.1 72-0 70.7 72.4 74.0 64.2 67.0 250 63.4 73.0 70.1 75.6 76.6 77.1 76.7 73.4 75.0 71.8 68.0 315 64.2 78.1 77.7 72.7 74.4 76.0 72.8 69.0 400 72.0 76.3 77.3 78.8 80.9 73.8 70.0 67 - 1 500 65.7 72.9 79.8 81.9 83.6 76.4 77.4 83.2 84.5 73.7 78.0 630 66.5 73.8 78.2 79.1 85.5 79.0 72.0 72.9 69.1 75.8 85.6 64.5 81.7 83.8 85.1 86.5 76.7 70.0 1000 66.4 79.4 85.7 76.6 80.9 77.7 73.9 77.8 78.5 1250 82.7 82.4 66.1 73.7 80.6 83.6 78-2 80.3 81.9 78.7 74.8 1600 83.3 82.9 83.2 81.3 75.8 81.5 81.9 68.8 78.0 82.3 76.7 77.6 83.B A.OB 73.7 2500 69.2 78.3 84.9 86.2 87.2 86.9 86.5 81.5 3150 4000 73.0 74.0 90.6 91.6 91.2 90-6 91.0 91.5 91.9 87.6 73.2 85.1 90.0 92.1 93.6 89.9 84.5 80.8 78.0 5000 76.5 83.5 85.5 85 . B 85.5 86.7 89,5 90.9 81.4 74.7 6300 64.8 78.1 83.9 87.2 87.5 85.6 87.7 89.6 86.0 80.7 82.4 85.2 86.1 86.4 86.7 85.1 10000 85.9 85.8 DASPL 98.5 99.4 98.9 95.8 98.6 99.5 96.1 90.9 87.6 94.6 105.1 109.8 112.2 113.4 114.3 114.0 113.3 111.3 113.1 114.0 110.3 105.2 101.9

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
0.0
                                    0.0
                                            0.0
          0.0
                   0.0
                            0.0
                                                     0.0
                                                     0.0
 100
125
                           0.0
                   0.0
  160
200
          0.0
                   0.0
                            0.0
  315
400
          0.0
                            0.0
          0.0
  500
                            0.0
  630
                   0.0
          0.0
1000
1250
          0.0
         16.2
24.1
32.1
40.0
47.9
1600
2000
                  21.0
                          22.6
30.5
 2500
                           46.4
54.3
3150
4000
                  44.9
52.8
                                   46.6
54.4
                                            40.3
                                                    42.2
50.1
                                   62.4
70.2
                                                             42.9
 5000
         55.9
                  60.7
                           62.2
                                           56.0
                                            63.8
6300
8000
                  68.6
                           70.1
10000
                           85.5
                                   85.4
                                                             65.0
CASPL
                                   86.2
                           92.0
                                   91.9
                                           85.3
                                                    78.8
                                                             70.6
```

TABLE B-31

JT8D-109, POINT 3, NIC2=6400, TOTAL JET NOISE

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
85.2
83.9
  63
80
100
                  85.4
                           86.2
                                   89.6
         81.0
                  82.1
81.8
                           83.2
                                   86.4
                                            88.8
                                                    92.0
                                   86.0
                                            88.2
         86.9
91.8
93.0
                           89.3
94.1
95.4
  125
160
                  92.6
                                                    99.0
  200
                                            98.1
                           91.9
90.5
92.5
  250
315
         89.5
87.8
                  90.9
                  89.3
                                   92.6
  400
500
         90.0
                           88.5
87.8
         86.4
                  87.5
                                   90.7
89.9
                                            90.3
89.7
  630
                  86.9
 800
1000
         85.3
84.5
                  85.4
84.4
                           86.0
84.5
                                   88.1
                                   86.5
                                            85.9
 1250
         82.5
80.8
 1600
                  81.1
79.2
                           81.3
79.1
                                   82.8
                                            82.2
79.8
                                                    78.1
75.4
                                   80.4
 2000
 2500
3150
          80.0
                  77.-9
                                   76.9
74.7
          79.0
                  76.6
                           76.1
                                            76.3
74.2
 4000
                                                    68.8
 5000
6300
         76.6
                  73.3
                           71.5
70.7
                                   72.8
                                            72.3
                                                             66.4
63.9
                                                    66.6
                                                    64.0
 8000
                  7040
10000
          72.6
                  68.1
                           66.9
                                   66.0
                                            65.5
DASPL
         99.9 100.7 101.9 104.3 104.9 105.4 104.4
PNDB 107-5 107-6 108-2 110-2 110-4 109-2 107-9
```

JTBD-109, POINT 4, N1C2=6100, CORRECTED TOTAL NOISE

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 10.0 20.0 30.0 40.0 50.0 60.0 80.2 73.7 74.0 78.0 77.8 69.2 80.1 81.9 82.1 83.5 92.2 79.2 80 63.8 70.2 75.9 80.5 81.6 79.2 80.3 81.3 84-2 86.5 89.6 89.7 70.8 79.0 73.5 76.2 77.0 80.1 62.3 68.0 125 62.6 67.7 72.4 72.3 74.3 79.4 76.0 Bl.3 76.7 82.7 77.6 83.4 85.1 89.9 91.7 95.5 89.9 93.7 86.2 92.1 90.7 96.6 93.5 B3.5 79.3 77.4 81.5 79.8 250 66.8 75.2 83.0 84.4 86.1 87.9 87.7 99.0 91.9 92.0 91.0 315 73.6 81.0 83.9 85.0 85.7 86.0 88.6 90.4 90.2 88.7 66.4 81.5 81.7 400 65.6 79.7 82.8 83.9 88+2 66.3 77.2 77.5 79.7 85.3 500 73.0 83.5 86.3 84.8 85.8 86.7 88.6 88.0 85.3 80.4 73.7 80.3 82.0 800 66.6 73.8 78.0 77.9 80.4 82.3 83.4 83 · B 93.9 85.3 82.7 83.3 1000 66.3 80.1 81.6 82.8 83.9 83.3 83.5 83.8 80.2 73.8 1250 81.7 64.9 67.9 1600 73.6 77.8 80.5 81.1 61.8 81.0 92.3 80.4 83.9 2000 76.9 80.4 83.2 81.4 78.9 2500 3150 69.1 75.8 86 . 4 93 . 5 85.5 83 B 90 6 81.9 84.9 86 . L 87.0 85.1 82.5 85.8 90.4 92.4 93.4 90 . R 90.7 83.3 1.08 94.1 4000 70.2 86.L 90.1 64.6 65.1 76 - 7 78 - 7 83.5 86.7 84.7 87.6 85.3 87.7 84.3 87.0 79.6 80.2 72.6 72.0 5000 82.0 85.2 84.8 86.6 87.5 85.4 75.6 85.4 6300 87.8 84-2 86.3 8000 85.7 86.2 88.9 85.9 10000 80.9 84.0 85.1 85 4 83.7 83.0 86.0 85.8 85.4 78.6 DASPL 81.0 90.5 95.2 97.4 98.6 99.4 99.4 99.4 99.8 100.9 101.8 102.9 102.8 103.1 101.5 95.7 105.7 110.3 112.5 113.7 114.5 114.2 113.4 113.0 113.7 114.1 112.9 110.5 108.7 105.7

TABLE B-33

JTBD-109, POINT 4, NICZ-6100, CORRECTED FAN NOISE

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 70.1 68.4 68.1 52.9 57.5 59.4 67.2 70.3 71.3 71.1 69.4 70.3 63.9 8D 64.4 69.7 69.1 65.7 65.4 100 70.7 70.1 65.9 60.6 66-6 57.7 55.5 59.4 60.3 125 69.2 71.3 61.6 58.7 56.5 160 67.4 70.2 74.1 75.1 72.3 73.3 66.9 72.7 73.3 68-6 73.0 68.8 69.6 63.5 60.7 250 62.2 69.3 72.2 74.7 75.2 76.1 74.3 79.8 74.0 68.9 70.6 315 78.4 80.6 71.6 72.6 63.4 70.1 74.2 76.6 79.5 70 • 4 71 • 4 70.8 400 76.2 500 65.1 72.0 78.5 80.4 81.5 81 . B 82.6 72.4 73.3 73.6 82.8 630 65.9 72.9 77.1 79.5 81.4 82.5 83.6 73.8 74.6 68.5 78.0 77.9 80.4 82.3 83.8 82.8 800 66.6 73.8 83.4 1000 66.3 73.8 80 a I 82.7 76.5 83.9 75.3 75.8 77.2 77.8 1250 82.1 76.4 76.7 1600 64.9 73.6 80.5 81.1 81.8 81.0 81.2 2000 67.9 80.4 76.9 83.2 83.9 84.9 83.1 77.7 79.4 82.9 78.7 76.9 70-2 2500 3150 69.1 75.8 78.4 81.9 84.9 86 - 1 87.0 86.4 85.8 90.4 92.4 93.4 94.1 93.5 91.7 90.4 90.7 90.6 87.0 82.9 4000 86.1 89.0 86.6 86.7 88-0 89.7 90.0 86.6 81.2 74.7 5000 64.6 76.7 78.7 82.0 83.5 85.3 85.2 87.8 84.3 87.0 84.3 86.4 87.3 6300 65 . L 84.5 87.7 83.4 85.3 86.4 83.7 78.7 71.4 8000 10000 55.0 73.2 80.9 84.0 85.1 85.9 83.7 DASPL 80.2 90.1 94.7 96.9 98-1 98-7 98-2 97-4 94-9 95-1 96.5 93.8 88.7 85.3 PNDB 95.3 105.3 109.9 112.1 113.1 113.8 113.3 112.1 109.6 110.4 110.6 197.6 103.1

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
100
125
  630
800
1000
1250
2000
2500
 3150
          58.0
 4000
 5000
                                               66.1
                                                        60.2
                   78.7
86.5
6300
8000
                             80.2
10000
                                                                  65.8
DASPL
```

TABLE B-35

JT9D-109, POINT 4, NIC2=6100, TOTAL JET NOISE

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
89.6
86.5
 80
100
       79.1
78.8
              80.2
79.9
                                           93.7
                             89.9
                                    91.7
              90.7
 200
                             91.9
                                    92.0
                             88.5
                      86.5
                                           78.4
                             80.6
2000
                                            71.0
3150
4000
                             72.5
                                    70.0
5000
6300
10000
               98.8 99.9 102.1 102.6 103.0 101.5
 PNDB 105.6 105.7 106.2 108.0 108.1 106.8 103.9
```

354

JT88-109, 727 APPROACH, NIC2=5500, CORRECTED TOTAL NOISE

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 76.0 73.0 77.1 73.4 78.1 73.5 75.4 78.6 78.4 79.9 79.6 82.6 85.2 B3.4 70.3 71.8 58.9 83.1 85.7 87.0 160 75.8 77.9 79.3 79.9 82.4 86.1 87.8 88.9 90.4 90.7 90.0 80.6 200 81.9 83.4 84.1 85.1 86.4 88.4 87.3 87.5 85.4 70.1 75.7 76.8 79.7 80 - a 81.3 82.8 84.1 86.1 83.2 88.1 88.7 82.1 83.1 84.8 86.9 85.3 80.3 84.8 71.0 78.7 630 85.2 83.3 82.1 80.3 80.9 81.1 83.4 79.5 79.9 80.4 80.4 81.1 82.4 1000 65.9 72.8 78.5 79.6 79.6 80.9 78.9 1600 7842 79.0 79.2 77.7 78.A 79.4 80.6 81.0 81.3 81.8 2000 80.7 66.2 83.4 87.0 85.3 92.5 85.9 83.4 81.5 78.2 80.4 3150 84-6 89-2 92.8 91.B 89.3 87.4 86.6 84.1 83.2 77.0 4000 80.0 83.2 76.7 79.7 5000 76.6 B1.8 83.7 82.1 80.7 82.0 82.5 81.8 72.1 68.6 85.3 81.8 84.8 85.7 87.2 6300 78.8 86.7 87.5 86.6 65.0 84.7 R6.3 90.6 85.5 10000 80.5 83 - 9 81.3 81.3 85.2 99.1 DASPL 93.9 97.5 96.9 96.1 96.7 98.3 99.4 100.3 98.0 96.5 94.6 104.4 109.0 111.1 112.3 112.7 111.9 110.5 109.9 110.6 111.2 111.4 107.8 104.6 101.6

TABLE B-37

30.0

JT8D-109, 727 APPROACH, NIC2-5500, CORRECTED FAN NOISE

SIDELINE = 200 FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 54.8 55.8 61.4 68.0 58.4 69.0 100 63.4 68.7 56.7 66-1 68.2 66.4 63.5 64.4 65.4 68.1 69.1 70.2 71.2 64.5 160 58.6 70.7 71.0 66.3 67.1 60.4 57.3 200 73.0 70.1 63.3 315 6L.3 58.2 71.0 73.2 74.0 70.2 500 70:1 76.0 69.5 65.3 630 77.9 78.5 800 80.2 80.3 80.9 71.4 67.2 1000 65.9 79.6 79.9 79.6 80.4 68.2 72.8 76.7 76.6 78.3 74.3 70.1 1600 72.7 78.B 79.0 79.2 73.3 76.1 66.9 2000 81.5 2500 68.8 78.2 85.3 85.9 83.1 82.8 83.0 83.3 80-1 3150 84.4 BO.0 85.9 85.7 83.2 81.0 83.0 80.R 80.0 5000 76.6 81.8 83.2 84.3 B4.7 83.7 82.1 79.8 81.0 74.9 70.7 6300 8000 80.0 10000 97.1 96.0 94.4 91.3 92.2 92.1 90.1 85.6 DASPL 79.2 89'-0 93.7 95 B 96.8 31.8 94.2 104.1 108.6 110.8 111.8 112.1 111.0 109.2 106.4 106.8 106.7 104.3 100.1

JT80-109, 727 APPROACH, N1C2-5500, TURBINE NOISE

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
0.0
                                                           0.0
  80
          0.0
          0.0
                                   0.0
   160
  200
                                                   0.0
  250
315
                                  0.0
                                           0.0
  500
                                  0.0
                                          0.0
                                                   0.0
                                                           0.0
         0.0
21.9
29.9
37.8
                  0.0
26.7
 1000
                          0.0
28.3
                                 0.0
28.6
                                         22.4
30.4
                                                 16.8
24.7
                                                          10.2
                 34.7
42.7
 1600
 5000
                                         38.3
46.2
                                 44.5
52.4
                                                  32.6
40.4
 2500
3150
                                                          33.6
         53.7
                 58.6
                         60.1
68.0
                                 60.3
                                         54.0
                                                  48.2
                 66.5
                                         61.8
                                                 55.9
                                                          48.9
 5000
                                 76.L
                                                  63.8
                                                          56.6
 6300
                 82.3
                         83.8
91.5
                                                  71.4
78.8
                                 83.9
 8000
10000
GASPL 86.5
               91.4
                         92.8 92.8
        95.1 100.0 101.4 101.4
```

TABLE B-39

JT80-109, 727 APPROACH, NICZ=5500, LOW FREQUENCY CORE NOISE

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
70.6
69.7
         63.4
                                   71.1
                                           70.1
                                                   66+3
                                                            61.0
                 64.7
71.6
77.4
79.8
78.0
         61.1
                                  68.8
75.7
                                                   64.0
70.9
  100
  125
         68.0
  160
200
         73 · 8
76 • 3
                                  81.5
84.0
                                           80.5
82.9
                          80.0
                          82.5
                  78 6
82 4
  315
400
         75.1
78.9
                          81.3
85.1
                                  82.8
                                           81.7
85.5
  500
630
                                                    79.0
79.3
                  79.7
                                   83.9
                  80.0
                          82.7
         76 . 4
                                   84.2
                                           83.1
                  78.5
                                   82.6
                                  81.4
80.2
77.7
1000
1250
                  76.0
                          78.7
                                           79.0
                                                    75.2
         72.5
1600
                                                    70.3
 3150
                  68.0
                          70.6
                                   72.0
                                           70.7
                                                    66.7
                                                             60-8
 4000
                  65.9
                          68.5
                                  69.8
                                           68.5
                                                             58.4
5000
6300
         58.5
                                   66.0
                                           64.6
                                                    60.3
                                                             53.9
10000
DASPL
 PNDB
                 97.7 100.4 101.8 100.7
```

FAA PART 46 REFERENCE DAY CORRECTED SPL IN 08

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
63
80
                    80.6
77.3
                                       62.7
79.5
                                                 86.1
82.5
                                                          88.8
           75.0
                              78.1
                                                          85.2
                                       79.1
85.2
89.8
                                                           83.3
          80.9
85.8
87.0
                    82.7
87.3
   125
                              83.8
                                                 86.7
                                                          87.4
                              88.3
                                                 90.3
                                       90.8
87.2
85.7
87.8
83.8
   200
250
                              88.8
64.9
                    88.2
                                                 90.4
                    84.1
82.4
                                                 86.1
           83.5
                                                 84.1
85.8
   400
500
                    84.2
79.9
          84.0
80.4
                             84.B
80.4
                                                           82.7
                                       83.0
81.2
79.6
78.4
75.9
73.5
           80.4
79.3
78.5
                              79.8
77.8
   630
800
                                                 80.6
78.3
                     79.6
                    78.0
                                                 76.9
75.5
 1000
                     76.9
 1250
           78.0
                    75.6
73.7
                              75.4
73.3
                    71.7
                                                 70.7
 2000
                              71.0
                                                           65.6
                              69.6
68.1
 2500
           74.0
                                                           63.6
                                                           61.5
                                       67.8
65.9
 4000
           71.7
                    67.4
65.8
                              65.2
                                                 65.2
                                                                     58.9
                                                 63.3
61.2
59.0
 5000
           70.6
                                                           56.8
                    64.1
                              62.7
 6300
 8000
           6B - 1
DASPL
                              95.3
                                       97.4
                                                 97.4
                    94.6
 PND8 101.4 100.8 101.0 103.2 102.3 100.1
```

TABLE 8-41

JT80-109, DC-9 APPROACH, NICZ-5350, CORRECTED TOTAL NOISE

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

10.0 20.0 30.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 40.0 50.0 50 63 80 79.9 78.8 74.1 71.9 69.4 70.5 74.8 76.3 75.1 72.1 73.0 78.4 79.5 78.7 79.7 76.5 76.2 59.6 60.1 74.3 67.0 70.6 66.6 70.0 76.1 72.4 77.1 72.5 81.2 83.7 100 57.9 58.7 62.7 70.9 68.7 72.5 72.3 77.0 74.8 81.3 82.0 86.6 85.1 89.5 85.5 89.3 0.66 0.88 85.4 200 62.2 69.8 70.0 76.8 76.1 78.8 77.8 82.B 82.I 80.5 86.0 74-5 74-9 75-0 78.5 77.4 78.0 85.9 88.7 85.3 62.3 61.6 69.1 72.5 73.4 76.4 76.6 80.1 85.6 82.2 500 630 30.5 70.3 76.4 77.3 77.8 79.0 78.8 79.4 63.8 83.7 82.6 1.08 81.1 82.3 82.4 72.5 76.4 78.0 77.5 79.6 78.2 76.6 1000 79.1 79.3 1250 78.8 78.6 78.0 77.0 79.0 80.1 78.1 78.5 80.7 85.0 1600 80.1 84.0 90.9 65.8 68.7 2000 77.B 81.1 85.5 79.1 78.4 82.4 78.1 93.0 78.4 83.1 2500 84 - 1 79 - 6 3150 88.7 92.0 92.3 91.1 B8.5 83.9 85.3 4000 68.L 86.6 85.0 82.3 81.9 81.1 80.4 81.2 86.9 80.0 76.0 5000 6300 83.0 78.7 84.5 84.5 87.3 86.9 86.1 8000 10000 96.7 97.0 96.2 95.2 95.7 DASPL 79.1 88.8 93.5 95.6 98.5 99.4 97.9 96-7 94.1 103.9 108.5 110.6 111.8 112.1 111.2 109.6 108.9 109.8 110.7 110.9 107.2 103.7 100.6

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

```
20.0
                       30.0 40.0 50.0
                                                60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0
         53.4
54.4
55.4
                                                                                                       55.0
    63
                 6D.9
                        63.7
                                65.6
                                        66.1
67.1
                                                66.3
67.3
                                                        64.4
                                                               63.6
                                                                       62.4
                                                                               61.9
                                                                                       62.8
                                                                                               60.1
                                                                                                               52.8
  80
100
                                                                               62.9
                                                                                               61.1
                                                                                                       57.0
                                                                                                               53.8
                                                                                                                       51.6
                        65.6
66.6
         56.3
                 62.9
                                67.6
                                        68-1
69-1
                                                68.3
                                                                65.6
                                                                        63.4
                                                                                                               54.8
                                                                                                                       52.6
         57.3
                 63.9
                                66.6
                                                        67.3
                                                                                       65.7
                                                                65.6
                                                                        64.4
                                                                               64-9
                                                                                               63.1
                                                                                                       59.0
                                                                                                               55.8
                                                                                                                       53.6
  160
                64.9
         58.2
                         67.6
                                69.6
                                                                        65,4
                                                                               65.9
                                                                                       66.7
                                                                                               64.1
                                                                                                       60.0
                                                                                                               56.8
                                                                                                                       54.4
         59.1
                                70.6
71.6
                        68.6
                                        71.0
                                                        69.3
                                                               68.5
                                                                       66.4
                                                                               66.8
                                                                                       67.7
                                                                                               65.1
                                                                                                               57.8
  250
         60.1
                                                                                               66.I
                                                                                                       61.9
                                                                                                               58+8
59+8
  315
                        70.5
71.5
                                72.6
73.5
                                        73.0
74.0
         60.9
                 67.7
                                                73.3
                                                                70.5
         61.8
                 68.7
                                                74.3
                                                                71.5
                                                                                               68.1
                                                        72.3
                                                                       69.4
                                                                               69.8
                                                                                       70.7
                                                                                                       63.9
                                74.5
75.5
77.3
  500
630
                 69.6
70.5
                        72.5
73.4
         62.6
                                                                72.5
                                                                        70.4
                                                                                70.8
                                                                                       71.7
                                                                                               69.1
                                                                                                       64.9
65.9
                                                                                                               61.7
62.7
                                                                                                                      59.5
         63.4
                                        76.0
79.0
                                                76.3
79.4
                                                        74.3
79.5
                                                                73.5
80.1
                                                                                               70 - 1
  800
         64.8
                         75.5
                                                                                       73.7
                                                                        70-4
                                                                                               71.0
72.0
                                                                                72.8
                                                                                                       66.8
                                                                                                               63.6
                                                               79.6
78.2
                                78
77.5
78.4
 1000
         65.7
                        76.4
                                        79.1
79.0
                                                79.3
78.8
                                                                                73.8
                                                                                                       67.8
                                                                                                               64.6
65.5
 1250
                 72.1
                                                                               74.7
75.7
                                                                                       75.6
                                                                                               73.0
73.9
                                                        78.0
                                                                        71.8
                                        78.5
80.7
85.0
 1600
        64.4
                 72.4
                        76.3
                                                                        72.5
                                                                                                       69.7
                                                                                                               66.4
                        77.8
81.3
                                                        79.1
84.1
                                                               78.4
82.4
                                                                               76.7
82.7
                 74.4
                                80.1
                                                81.1
                                                                        76.2
                                                                                                        70.6
 2500
                 78.0
                                                85.5
                                                                                                       75.7
                                                                       82.6
                                                                                       82.8
                                                                                               79.7
                                                                                                               72.2
75.4
                84,1
79.6
                        88.7
 3150
         74.4
                                90.9
                                        92.0
                                                92.3
                                                        91.1
                                                                                86.0
                                                                                       85.5
                                                                                               82.8
                                                                                                                       72.7
 4000
         68-1
                                        86.6
84.2
87.3
                                                        85.0
                                85.3
                                                86.9
                                                                82.3
                                                                        79-5
                                                                               79.8
                                                                                       81.2
                                                                                               79.6
                                                                                                               70.7
5000
6300
                 76.5
78.7
75.3
         64.1
64.7
                        81.7
                                                84.4
                                                                81.5
                                                                                       79.9
79.9
                                                        83.3
                                                                        78.8
                                                                                               79.0
                                                                                                       74.0
                                                                                                               69.7
                                                                                                                      66.7
                        84-5
                                86.5
                                                26.9
                                                        86.1
                                                                        78.5
                                                                                               79.0
                                                                                                               69.9
 8000
                        81.8
                                        85.0
                                                        83.8
                                                                82.7
                                                                        78.1
                                                                               80.2
                                                                                        79.9
                                                                                                                       66.0
10000
                                                                               80.5
                                                                                       80.0
                                                                                               80.0
                                                                                                                       65.4
DASPL
                                        96.4
                                                96.5
                                                       95.3
                                                               93.5
                                                                       90.6
                                                                               91.3
                                                                                       91.3
                                                                                                               81.0
         93.8 103.7 108.2 110.3 111.4 111.6 110.3 108.3 105.6 106.0 105.9 103.6
```

TABLE B-43

JT80-109, DC-9 APPROACH, N1C2=5350, TURBINE NDISE

SIDELINE = 200.FT

FAA PART 36 REFERENCE DAY COPRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
0.0
                         0.0
                                 0.0
                                        0.0
                                                0.0
                                                        0.0
   80
          0.0
  100
          0.0
                  0.0
                         0.0
                                 0.0
                                        0.0
                                                0.0
  125
                  0.0
                         0.0
                                        0.0
                                 0.0
                                                        0.0
  160
          0.0
                  0.0
  500
                  0.0
                         0.0
                                                        0.0
                                 0.0
                                        0.0
  250
315
          0.0
                  0.0
                         0.0
                                 0.0
  400
                         0.0
                                 0.0
  500
          0.0
                  0.0
                                        0.0
                                                0.0
          0.0
                  0.0
                                        0.0
                                                0.0
                                                        0.0
        0.0
  800
 1000
                  0.0
                        0.0
28.6
                                 0.0
                                       0.0
22.7
                                                0.0
                                                        0.0
 1250
                                26.9
                                               17.1
                                                       10.5
                        36.6
44.5
52.5
60.4
        30.2
38.1
46.1
54.0
 1600
                 35.0
                                36.8
                                       30.7
                                               25.0
 2000
                 43.0
                                               32.9
                                44.8
52.7
                                       38.6
                                                       26.2
 2500
3150
                50.9
58.9
                                60-6
                                       54.3
62.1
                                               48.5
                                                       41.6
 4000
                                68.4
                                               56.2
5000
        69.9
                                       70.0
77.8
                 74.7
                        76.2
                                76.4
                                               64.1
6300
         77+7
                82.6
                        84.1
                                84.2
                                               71.7
                                                       64.3
71.4
8000
10000
                 82-1
                        83.5
DASPL
        86 - B
               71.7 93.1
                               93.1
                                       86.5
                                               80.4
```

95.4 100.2 101.7 101.7

FAA PART 36 REFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
70.3
76.1
   125
                                      75.1
80.9
  200
250
315
           73.9
74.5
                                                80.5
                                                         76.8
                             80.1
                                      81.6
  400
500
630
                                      86.0
83.3
 1000
                                      80.8
                                                78.4
76.0
 2500
3150
                                      73.1
71.4
 5000
6300
                                      67.4
                                                66.0
                                                         61.9
 8000
10000
DASPL
                                                92.1
                             99.8 101.2 100.1
```

TABLE B-45

JTBD-109, DC-9 APPROACH, N1C2=5350, TOTAL JET NDISE

SIDELINE = 200.FT.

FAA PART 36 PEFERENCE DAY CORRECTED SPL IN DB

ANGLE IN DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0

```
84.6
81.0
80.2
                                                            87.3
83.7
                                                                      86.9
                                        79.3
78.9
  100
125
160
          74.6
                                                  85 - 2
88 - 8
                                                            85.9
          85.1
85.6
81.4
79.7
                    86.1
97.0
                              86.8
                                        88.8
89.2
                                                            88.3
  200
250
315
400
                                                            87.5
82.7
                                        85.2
83.4
85.2
                               80.4
                                                  84.3
80.0
                                                            81..
76.3
                    83.0
                                        80.7
80.2
           78.3
                    78.4
                                                             72.8
                                         76.5
                                                            69.5
66.8
 1250
                                         72.7
70.3
                               70.3
 2000
2500
3150
4000
                               6B.0
                                         68.6
                                                             60.0
                                        66.8
                                                   65.8
                     66.2
                                        62.7
                                                             55.3
 5000
 6300
                     62.9
                               59.8
 8000
10000
                                                   95.9
                                        95.8
DASPL
                               98.8 101.1 100.7
```

APPENDIX C LIST OF SYMBOLS AND NOMENCLATURE

APPENDIX C

LIST OF SYMBOLS AND NOMENCLATURE

A cross section area
AJD, Ajd duct jet area
AJE, Aje engine jet area
BPF blade passing frequency
DB, dB decibels

dBA "A" weighted decibels

E shaft rotating frequency
F thrust
f frequency
FEGV fan exit guide vane

Fn net thrust $Fn/\delta t2$ corrected thrust FFT fast Fourier transform Fx(t) magnitude of signal at point x

Hz Hertz

"haystack" broadband spectral peak
I.D. inner diameter
IGV inlet guide vane
L/H length/height ratio

N rotational speed
N₁ low pressure compressor speed
N1C2 low rotor shaft speed corrected to engine station 2,

 $N1C2 = N1 \sqrt{\theta}T2$

OASPL overall sound pressure level octave band sound

O.D. outside diameter
P&WA Pratt & Whitney Aircraft
PNdB perceived noise

PNLT tone corrected perceived noise level

PSD power spectral density

RMS (rms) root mean square

RPM (rpm) revolutions per minute

R (t) cross correlation function

S/I sideline distance

APPENDIX C (Cont'd)

SPL	sound pressure level				
t	time				
t/p	tailpipe				
T	temperature				
T _t	total temperature				
11	rotor tip speed				
u V	air velocity				
VFR	view from rear				
Vmix	mixed jet velocity				
VJD, Vjd	corrected fan jet velocity				
VJE, Vje	corrected primary jet velocity				
W	weight flow				
Wad, Wa duct	duct airflow				
Wae Wa eng, Wg	engine airflow				
WAT (Wat)	total airflow				
11112 (1140)	10 to 2 to 3 to 3 to 3 to 3 to 3 to 3 to 3				
Wjet fan	fan airflow at station 7				
Wjet prim	engine airflow at station 7				
1C1H	first compressor tone, first harmonic				
1F1H	first fan tone, first harmonic				
1F2H	first fan tone, second harmonic				
** ***					
1F3H	first fan tone, third harmonic				
2C1H	second compressor tone, first harmonic				
2T1H	second turbine tone, first harmonic				
3 T1H	third turbine tone, first harmonic				
4T1H	fourth turbine tone, first harmonic				
δ	relative absolute pressure, static or total, p/p_0				
$oldsymbol{ heta}$	relative absolute temperature				
Δ	finite difference				
$oldsymbol{ au}$	time delay				
本	angle				
75 A					
√tx*	RMS value of signal at point x				
$\sqrt{ty^2}$	RMS value of signal at point y				
$\sqrt{\theta_{t2}/\delta_{t2}}$	correction factor				
$\Delta hIt/\theta t2$	corrected low turbine work				

APPENDIX C (Cont'd)

Subscripts

a	air
am(b)	ambient
duct	fan duct
eng	engine
g	gas
· ·	

mix mixed flow prim primary total

Subscripts relative to engine station location

2.0	engine inlet case entry
2.4	fan rotor exit
2.5	fan exit guide vane exit
3.0 4.0	low-pressure compressor exit high-pressure compressor exit
5.0	high-pressure turbine entry
6.0	low-pressure turbine entry
7.0	exhaust duct entry (primary or fan)

REFERENCES

REFERENCES

- "Summary and Analysis of Performance and Stability Characteristics of JT8D-109 Refan Engine," NASA CR-134874, PWA 5284, September 1975.
- 2. W. G. Cornell, "Experimental Quiet Engine Program Summary Report", CR-2519, March 1975.
- 3. J. M. Tyler, T. G. Sofrin, "Axial Flow Compressor Noise Studies" SAE Transactions, Vol. 70, 1962.
- 4. T. G. Sofrin, J. C. McCann, "Pratt & Whitney Aircraft Experience In Compressor-Noise Reduction", Acoustical Society of America Preprint 2D2, 1966.
- 5. E. A. Burdsall, R. H. Urban, "Fan-Compressor Noise: "Prediction, Research, and Reduction Studies", FAA-RD-71-73. February 1971.
- 6. "Final Phase I Engine Definition and Characteristics of the JT3D-9 Engine," PWA 4609, Dec. 14, 1972.
- 7. "Final Report on Phase II Program for Refan JT8D Engine Design, Fabrication and Test," NASA CR-134876, PWA-5299, November 1975.
- 8. "DC-9/JT8D Refan Phase I Final Report", NASA CR-121252, MDCJ5738, November 1973.
- 9. M. P. McMahon, "Static Noise Measurements of Full Scale Jet Engines", Naval Air Propulsion Test Center Environmental Conference, Trenton, New Jersey, May 21-22, 1974.
- 10. D. C. Mathews, R. T. Nagel, "Inlet Geometry and Axial Mach Number Effects of Fan Noise Propagation," AIAA Paper No. 73-1022, Seattle, Washington, Oct. 15-17, 1973.
- 11. G. F. Pickett, "Effects of Non-Uniform Inflow on Fan Noise" Acoustical Society of America Paper, New York City April 23-26, 1974.
- 12. T. G. Sofrin, G. F. Pickett, "Multiple Pure Tone Noise Generated By Fans Operating at Supersonic Tip Speeds", International Symposium on Fluid Mechanics of Turbomachinery, Penn State, 1970.
- G. F. Pickett, "The Prediction of the Spectral Content of Combination Tone Noise", AIAA Paper No. 71-730, Salt Lake City, Utah, June 14-18, 1971.