KMS states and Tomita-Takesaki Theory

Iván Burbano

Universidad de los Andes

September 26, 2017

Outline

- Introduction
- Classical and Quantum Mechanics as Probability Theories
 - Classical Mechanics
 - Quantum Mechanics
- Quantum Probability
 - EPR Paradox
 - Bell's Inequalities

Elements of Classical Mechanics

A classical mechanical system has

- a locally compact Hausdorff space of pure states X;
- observables taking the form continuous real-valued functions $\mathcal{C}(X)$ on X;
- ullet states which take the form of probability measures on X.

With this structure we may define the expected value of $f \in C(X)$ by

$$\langle f \rangle_P = \int f dP.$$
 (1)

And by the identification of points $p \in X$ with Dirac measures δ_p , we have a compatible notion of pure state in which

$$\langle f \rangle_{\delta_p} = f(p).$$
 (2)

Ensembles

With this approach we may define ensembles to be mappings $y \mapsto \mu_y$ from a space of macroscopic measurements Y to the finite measure on X. Then we have

- the partition function $Z(y) = \mu_y(X)$ which we can use to normalize the measure μ_y and obtain a probability measure P_y ;
- the entropy of the induced state

$$S(P_y) = -\int_{supp(P_y)} \log\left(\frac{dP_y}{d\mu}\right) dP_y = -\langle \log\left(\frac{dP_y}{d\mu}\right) \chi_{suppP_y} \rangle_{P_y}$$
 (3)

given there is a natural measure μ on X and the Radon-Nikodým derivative exists.

A classical system described by $(\{p\}, \{\{p\}, \emptyset\}, \delta_p)$ equipped with an ensemble $y \mapsto \delta_p$, the state δ_p has null entropy.

→ロト → □ ト → 三 ト → 三 ・ りへで

Elements of Quantum Mechanics

A quantum mechanical system has:

- a separable Hilbert space \mathcal{H} ;
- ullet observables taking the form of self-adjoint operators on ${\cal H}$;
- states represented by density operators (non-negative self-adjoint of unit trace).

With this structure we may define the expected value of an observable ${\cal A}$ in a state ρ to be

$$\langle A \rangle_{\rho} = tr(A\rho) \tag{4}$$

and the entropy of a state ρ to be

$$S(\rho) = -tr(\log(\rho)\rho) = \langle \log \rho \rangle_{\rho}. \tag{5}$$

A pure state ρ_{ψ} is a projection onto the $span\{\psi\}$ for some $\psi \in \mathcal{H}$. These have null entropy.

4 D > 4 A > 4 B > 4 B > B 900

Suppose Quantum Mechanics is Complete

- Einstein, Podolsky and Rosen considered that an element of physical reality was one whose outcome in a measurement could be predicted without actually performing the experiment. They defined that a physical theory was complete if to every element of physical reality there corresponded an object in the theory.
- Then two non-commuting observables A and B cannot have a simultaneous realities due to Heisenberg's uncertainty relations

$$\Delta_{\rho} A \Delta_{\rho} B \ge \frac{1}{2} |\langle [A, B] \rangle_{\rho}|. \tag{6}$$

Polarization of photons

- To describe the linear polarization of a photon we may consider the Hilbert space \mathbb{C}^2 on which the projection $P(\theta)$ onto the span of $|\theta\rangle = \cos(\theta)(1,0) + \sin(\theta)(0,1)$ representing the proposition "the photon is linearly polarized at an angle θ (1 means that this is the case and 0 that it isn't)" acts.
- We may consider the composite system represented by the tensor product and the state

$$\psi = \frac{1}{\sqrt{2}} (|0\rangle \otimes |\pi/2\rangle - |\pi/2\rangle \otimes |0\rangle)
= \frac{1}{\sqrt{2}} (|\pi/4\rangle \otimes |3\pi/4\rangle - |3\pi/4\rangle \otimes |\pi/4\rangle).$$
(7)

Contradiction!

- If we measure that the first photon has horizontal polarization we know the second one has a vertical polarization.
- If we measure that the first one has a polarization at an angle $\pi/4$ we know the second one has an angle of $3\pi/4$.
- Since the photons are far apart, measurements on the first one cannot affect the second one.

Therefore both states $|\pi/2\rangle$ and $|3\pi/4\rangle$ describe the same physical reality and we are forced to conclude that $P(\pi/2)$ and $P(3\pi/4)$ have simultaneous realities. Nonetheless since $|\pi/2\rangle$ is not orthogonal to $|3\pi/4\rangle$ the two projections don't commute arriving to a contradiction.

Lattices of Propositions

Definition

An order relation on a set P is a relation \leq on X which satisfies for all $p, q, r \in P$:

- reflexivity: $p \le p$;
- antisymmetry: $p \le q$ and $q \le p$ implies p = q;
- transitivity: $p \le q$ and $q \le r$ implies $p \le r$.

The pair (P, \leq) is called a partially ordered set or poset. Given $p, q \in P$ we define the meet $p \wedge q$ to be the supremum of $\{p, q\}$ and the join $p \vee q$ to be the infimum of $\{p, q\}$. If the infimum of P is 0 and the supremum is 1, we define a complement of $p \in P$ to be an element $q \in P$ such that $p \wedge q = 0$ and $p \vee q = 1$

Lattices of Propositions

Definition

A poset (P, \leq) is said to be a lattice if for every $p, q \in P$ there exists $p \wedge q$ and $p \vee q$. It is a distributive lattice if for every $p, q, r \in L$ we have $p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$ and $p \vee (q \wedge r) = (p \vee r) \wedge (p \vee r)$.

Theorem

In a distributive bounded lattice (L, \leq) elements have at most one complement.

Proof.

Suppose q and r are complements of $p \in L$. Then

$$q = q \wedge 1 = q \wedge (p \vee r) = (q \wedge p) \vee (q \wedge r) = 0 \vee (q \wedge r) = q \wedge r \quad (8)$$

and therefore $q \le r$. Exchanging the roles of q and r one finds that $r \le q$ and therefore by antisymmetry q = r.

Bell's inequalities

We ask that the set of propositions in a complete theory of physical reality has the structure of classical propositions, that is of a Boolean algebra (a distributive bounded lattice). Denoting the complement of a proposition p by p' we may consider the following logical function

$$f(p,q) = (p \wedge q) \vee (p' \wedge q'). \tag{9}$$

If we assign to every proposition p a degree of plausibility $P(p) \in \mathbb{R}$ such that if $p \leq q$ then $P(p) \leq P(q)$ we find the Bell inequalities

$$P(f(p_1,q_1)) \leq P(f(p_1,q_2) \vee f(p_2,q_2) \vee f(p_2,q_1)). \tag{10}$$

Lattice of Projections on a Hilbert space