WHAT IS CLAIMED IS:

1	1. For use with a valve stem assembly, a snap-in grommet, the
2	grommet comprising:
3	a grommet body comprising;
4	a nose section at a first end of the grommet body, the nose
5	section having a substantially conical shape to provide for insertion of the grommet
6	body into an inflation hole of a vehicle wheel rim;
7	an annular section at a base of the nose section, the annular
8	section projecting radially outward from the base of the nose section;
9	a cylindrical section sized to match the inflation hole and
10	having a first end adjoined to the annular section;
11	a flange section projecting radially outward from a second end
12	of the cylindrical section; and
13	an axial bore passing centrally through the grommet body; and
14	an integral sleeve located within the grommet body bore, the sleeve
15	having an outer surface configured to match the grommet body bore, and having a
16	bore configured to receive a valve stem.
1	2. The grommet of claim 1 wherein the integral sleeve has a
2	length configured to limit compression of the grommet body during installation of
3	a retention nut to the valve stem.
1	3. The grommet of claim 1 wherein the grommet is retained in
2	the inflation hole by compression of the annular section against an outside surface
3	of the wheel rim and compression of the flange section against an inside surface of
4	the wheel rim.
1	4. The grommet of claim 1 wherein at least one interface seal is
2	formed on a surface of the flange section opposite to the cylindrical section, the at
3	least one seal implemented as a hemispherical projection located concentrically about
4	a center axis of the grommet and configured to interface with a substantially flat
5	surface of a flange of the valve stem.

1	5. The grou	nmet of claim 1 wherein the integral sleeve is		
2	implemented using one of a hig	gh temperature plastic, aluminum, brass or copper.		
1	6. The grom	nmet of claim 1 wherein the integral sleeve comprises		
2	a separate component inserted	into the bore.		
1	7. The snap	-in grommet of claim 1 wherein the grommet body		
2	is over-molded over the sleeve.			
1		mmet of claim 1 wherein an outer surface of the		
2	•	integral sleeve comprises at least one of at least one ridge extending in a longitudinal		
3	direction relative to the sleeve,	direction relative to the sleeve, cross-hatchings and knurling.		
1	9. The gron	nmet of claim 1 wherein the grommet body comprises		
2	a synthetic rubber.			
	40			
1		d of reducing air leakage at a vehicle tire valve stem		
2	·			
3		in grommet into an inflation hole in a vehicle wheel		
4	·	nprises a grommet body having;		
5		ection at a first end of the grommet body, the nose		
6	section having a substantially c	onical shape to provide for insertion of the grommet		
7	body into an inflation hole of a	vehicle wheel rim;		
8	an annul	ar section at a base of the nose section, the annular		
9	section projecting radially outward from the base of the nose section;			
10	a cylind	rical section sized to match the inflation hole and		
11	having a first end adjoined to t	having a first end adjoined to the annular section;		
12	a flange	section projecting radially outward from a second end		
13	of the cylindrical section; and			
14	an axial l	bore passing centrally through the grommet body; and		

15	an integral sleeve located within the grommet body bore, the	
16	sleeve having an outer surface configured to match the grommet body bore and	
17	having a bore configured to receive a valve stem; and	
18	inserting the valve stem through the sleeve bore of the snap-in	
19	grommet from an inside of the vehicle wheel rim to an outside of the vehicle wheel	
20	rim; and	
21	tightening a retaining nut assembly onto a threaded portion of the	
22	valve stem from the outside of the vehicle wheel rim, wherein the tightening	
23	compresses a substantially flat surface of the flange section opposite the first end	
24	against a substantially flat surface of a flange of the valve stem.	
1	11. The method of claim 10 wherein the integral sleeve has a	
2	length configured to limit compression of the grommet body during the tightening	
3	of the retention nut assembly to the valve stem.	
1	12. The method of claim 10 wherein at least one interface seal is	
2	formed on a surface of the flange section opposite to the cylindrical section, the at	
3	least one seal implemented as a hemispherical projection located concentrically about	
4	a center axis of the grommet and configured to interface with a substantially flat	
5	surface of a flange of the valve stem.	
1	13. The method of claim 10 wherein the snap-in grommet is	
2	inserted into the inflation hole of the vehicle wheel rim from the inside of the wheel	
3	rim, until the annular section of the grommet passes through the outside of the wheel	
4	rim.	
1	14. For use with a valve stem assembly, a grommet, the grommet	
2	comprising:	
3	a grommet body comprising:	
4	a nose section at a first end of the grommet body, the nose	
5	section having a substantially conical shape to provide for insertion of the grommet	
6	body into an inflation hole of a vehicle wheel rim;	

7	a cylindrical section having a first end adjoined to the nose		
8	section;		
9	a flange section that projects radially outward from the surface		
10	of the second end of the grommet body;		
11	an axial bore passing centrally through the grommet body; and		
12	an integral sleeve located within the grommet body bore, the sleeve		
13	having an outer surface configured to match the grommet body bore and a bor		
14	configured to receive a valve stem.		
1	15. The grommet of claim 14 wherein the integral sleeve has a		
2	length configured to limit compression of the grommet body during installation of		
3	a retention nut to the valve stem.		
1	16. The grommet of claim 14 wherein the grommet is retained in		
2	the inflation hole by compression of the flange section against an inside surface of		
3	the wheel rim.		
1	17. The grommet of claim 14 wherein at least one interface seal		
2	is formed on a surface of the flange section opposite to the cylindrical section, the		
3	at least one seal implemented as a hemispherical projection located concentrically		
4	about a center axis of the grommet and configured to interface with a substantially		
5	flat surface of a flange of the valve stem.		
1	18. The grommet of claim 14 wherein the integral sleeve is		
2	implemented using one of a high temperature plastic, aluminum, brass or copper.		
1	19. The grommet of claim 14 wherein the integral sleeve		
2	comprises a separate component inserted into the bore.		
1	20. The snap-in grommet of claim 14 wherein the grommet body		
2	is over-molded over the sleeve.		