311651052 吳挺宇 電物所 碩二

Ex4-1

- 1. 先使用 verilog 轉 spice 的方式合成出 convolution 電路。
- 2. Timing report:

	.o	
	0.00	356.55 f
add_0_root_add_0_root_add_19_3/U1_6/CON (FAx1_ASAP7	'_75t_R)	
	22.90	379.45 r
add 0 root add 0 root add 19 3/U4/Y (INVx1 ASAP7 75	it R)	
	15.27	394.72 f
add 0 root add 0 root add 19 3/U1 7/CON (FAx1 ASAP7	75t R)	
	20.30	415.02 r
add 0 root add 0 root add 19 3/U3/Y (INVx1 ASAP7 75	it R)	
	15.27	430.29 f
add 0 root add 0 root add 19 3/U1 8/SN (FAx1 ASAP7	75t R)	
	37.50	467.79 f
add 0 root add 0 root add 19 3/U11/Y (INVx1 ASAP7 7	'5t R)	
	8.03	475.82 r
add 0 root add 0 root add 19 3/SUM[8] (Convolution	DW01 add 0)	
	0.00	475.82 r
Output[8] (out)	0.00	475.82 r
data arrival time	0.00	475.82
data di lival time		473.02
max delay	500.00	500.00
output external delay	0.00	500.00
data required time	0.00	500.00
- data required cline		
data required time		500.00
data arrival time		-475.82
data arrival tille		-4/J.8Z
clack (MET)		24.18
slack (MET)		24.18

輸入電壓後檢查邏輯後發現是正確的。

由 timimg Report 得知 worst case delay

```
Operating Conditions: PVT_0P7V_25C Library: asap7sc7p5t_INVBUF_RVT_TT_08302018
Wire Load Model Mode: top

Startpoint: INW_3[2] (input port)
Endpoint: Output[8] (output port)
Path Group: (none)
Path Type: max
```

用下圖程式碼測量 delay power

```
vdd
                                  tf
                                                    tpd
                                                    alter#
                 power
                                  temper
   0.4000
                  1.410e-09
                                  -9.538e-10
                                                     2.279e-10
                  2.361e-04
                                    25.0000
   0.4500
                  1.284e-09
                                  -9.811e-10
                                                    1.514e-10
                  1.883e-04
                                    25.0000
                                                    1
   0.5000
                  1.074e-09
                                  -1.002e-09
                                                     3.604e-11
                  1.696e-04
                                    25.0000
   0.5500
                  1.284e-09
                                  -1.002e-09
                                                    1.413e-10
                  1.650e-04
                                    25.0000
   0.6000
                  1.283e-09
                                  -1.000e-09
                                                     1.413e-10
                  1.643e-04
                                   25.0000
   0.6500
                  1.282e-09
                                  -9.997e-10
                                                     1.412e-10
                  1.647e-04
                                    25.0000
                                                    1
                                  -1.000e-09
   0.7000
                  1.282e-09
                                                    1.408e-10
                  1.653e-04
                                    25.0000
                                                    1
```

EDP-voltage figure

$$EDP = PDP \times T_d$$
$$PDP = P_{avg} \times T_d$$

由上述公式計算在不同 VDD 下的 EDP 並畫 EDP 對 VDD 關係圖。

由上圖可知在 voltage=0.5V 時 EDP 最小。

4-2:

- 1. 如同 4-1 先使用 verilog 轉 spice 的方式合成出 Comparator 電路。
- 2. 驗證他的邏輯:

在 wire 端和輸出端加入助教要求電容。 後再 a0-a63 和 b0-b63 中加入 buffer。 用下列函數測量:

測量 PPA 後得出的結論:

0.7V:

使用 BUFx24_ASAP7_75t_R 來降低 delay:

```
$DATA1 SOURCE='HSPICE' VERSION='Q-2020.
$OPTION MEASFORM=2
.TITLE '*************************
delay = 4.071e-10
rise = 1.588e-11
fall = 1.067e-11
power = 6.440e-05
temper = 25.0000
alter# = 1
```

0.4V:

使用 BUFx12 ASAP7 75t R 來降低 delay: