Московский государственный университет имени М.В Ломоносова Физический факультет Кафедра квантовой статистики и теории поля

Получение основных закономерностей поведения многочастичных систем на основе численного моделирования

Выполнил студент 407 группы, Супонин В.А. Научный руководитель: д. ф. – м. н. проф. Савченко А.М.

Введение в проблематику

- · порядка N Авогадро частиц
- свойство аддитивности
- с течением времени при фиксированных условиях обязательно достигает термодинамического равновесия

Цели проводимого исследования

- исследовать влияние количества и вида взаимодействия молекул на эволюцию статистической системы
- оценить характерное время релаксации
- оценить число соударений, необходимое для наступления равновесия
- оценить влияние размерности пространства на эти параметры
- найти и проверить критерии нарушения Н-теоремы Больцмана

Расстояние Кульбака - Лейблера

KL дивергенция – несимметричная положительная мера удаленности друг от друга двух вероятностных распределений

$$D_{KL}(P||Q) \stackrel{\text{def}}{=} \sum_{i=1}^{n} p_i \log \frac{p_i}{q_i}$$

$$D_{KL}(P||Q) \stackrel{\text{def}}{=} \int p(x) \log \frac{p(x)}{q(x)} dx$$

где Q, P — истинное и предполагаемое распределения p(x), q(x) — функции плотности вероятности

Описание модели взаимодействия молекул

Рассмотрим систему молекул идеального газа, любое взаимодействие в

которой вводится через потенциал

$$U(r) = c_{ab} \left(\frac{1}{r^a} - \frac{1}{r^b} \right)$$

$$\vec{F} = -gradU(r) = -\frac{\vec{r}}{r}\frac{\partial U(r)}{\partial r}$$

$$U_{min}(r_0, c_{ab}) = -1$$

$$\ddot{\vec{r}}_i = \sum_{j \neq i} \vec{F}_{ij}$$

где c_{ab} - нормировочный коэффициент r_0 - точка минимума U(r)

Рис. 1. Анимация движения 100 частиц, при степенях потенциала a=12, b = 6

Интегрирование уравнений движения

Интегрирование уравнений движения будет производиться с помощью алгоритма Верле в скоростной форме

$$r(t + \Delta t) = r(t) + v(t)\Delta t + \frac{f(t)}{2}\Delta t^{2}$$

$$v(t + \Delta t) = v(t) + \frac{f(t + \Delta t) + f(t)}{2} \Delta t$$

Основные свойства:

- имеет 2-й порядок точности по скорости и 3-й по координате
- принадлежит классу одношаговых линейных алгоритмов
- является обратимым
- сохраняет объем фазового пространства
- малая флуктуация энергии на больших временах

Приведенные переменные

Используемые приведенные переменные

- \cdot единица длины σ
- \cdot единица энергии arepsilon
- единица массы т

$$t = \sigma \sqrt{\frac{m}{\varepsilon}} t'$$
 $U(r') = \varepsilon U'(r')$

$$T = \frac{\varepsilon}{k_b} T' \qquad \qquad v = \sqrt{\frac{\varepsilon}{m}} v'$$

Величина	Приведенные	СИ
время	$\Delta t = 0.005$	$\Delta t' = 1.09 \times 10^{-14} c$
длина	r = 1	$r' = 3.405 \times 10^{-10} M$
температура	T = 1	T' = 119.8 K
скорость	v = 1	$v' = 6.3 \times 10^{-3} \mathrm{M/c}$

Рис. 2. Перевод величин в приведенных единицах в реальные единицы СИ для аргона

Описание модели взаимодействия молекул

Рассмотрим систему гранулярного газа. Молекулы взаимодействуют путем

упругих или неупругих соударений.

$$\vec{v}_1' = \vec{v}_1 - \frac{1}{2}(1 + \epsilon)(\vec{v}_{12} \cdot \vec{e})\vec{e}$$

$$\vec{v}_2' = \vec{v}_2 + \frac{1}{2}(1 + \epsilon)(\vec{v}_{12} \cdot \vec{e})\vec{e}$$

$$\in = 1 - c_1 |\vec{v}_{12} \cdot \vec{e}|^{\frac{2}{5}} + c_2 |\vec{v}_{12} \cdot \vec{e}|^{\frac{2}{5}} \pm \cdots$$

где ∈- коэффициент реституции

 c_1 , c_2 - постоянные, зависящие от параметров молекул

Рис. 4. Анимация движения 200 частиц в пространстве при неупругом взаимодействии

Взаимодействие со стенками

Во всех задачах реализовано упругое взаимодействие со стенками. При достижении определенных координат молекулами, проекция их скорости меняется на противоположную

Периодические стенки

Потенциальные стенки

Н-теорема Больцмана

Н-теорема описывает необратимость статистических систем

$$H \stackrel{\mathrm{def}}{=} \sum_{i=1}^n p_i \ln p_i$$
 $H \stackrel{\mathrm{def}}{=} \int p(v) \ln p(v) d^3v$ $S \stackrel{\mathrm{def}}{=} -N \ k \ H$ $d^H/_{dt} \leq 0$ $d^H/_{dt} \leq 0$ $d^H/_{dt} \leq 0$ $d^H/_{dt} \leq 0$

Фундаментальные критерии применимости

• бинарные упругие столкновения

Тройные столкновения

Интеграл столкновений не равен нулю при:

- тройные столкновения
- последовательность нескольких двойных столкновений

Рис. 5. модель тройных столкновений

Результаты

Результаты

Результаты

Спасибо за внимание!