

Lecture 5: First contact with Transformers

Advanced deep learning

Course organization

Advanced Deep Learning

- Goal: In-depth understanding of important Deep Learning staples
 - Reinforce what you have already seen
 - Introduce state of the art models
- This is a hands-on course in pytorch
 - Minimal math
 - Enough to understand
 - Quite a bit of coding
 - Get comfortable with the standard pipeline

Evaluation

- Hand in one or two lab notebooks
 - Questions + (clean) code
 - 1st notebook: Lab 5 on transformers (Today!)
 - To hand in after vacation (Nov. 4 AoE)
- Written exam at end of semester
 - Little to no code
 - A few exercises on toy examples
 - Questions on aspects of deep learning

Course organization: 10 Lectures

- L1-2: Overview of Deep Learning (F. Precioso)
- L3-4: Fundamentals of Deep Learning (R. Sun)
- L5-6: Transformers (R. Sun)
- L7: Large models (LLMs, VLMs, Generators) (R. Sun)
- L8: Tricks of the trade (R. Sun)
- L9: Ethics of AI (F. Precioso)
- L10: Intro to generative models (P-A. Mattei)

Today!

- Goal: Understand basic deep architectures in-depth
 - Building blocks for everything else in deep learning
 - Deep learning relies on the combination of a lot of very simple blocks
- A few things to take away after these 3 lectures
 - What do we optimize for? How? Why?
 - How do we build and train neural layers?
 - Output
 How do they behave?

Refresher on last week

Example: Tanh MLP

- Simple 1 hidden layer MLP
 - 2 inputs
 - o 2 outputs
 - 4 hidden activations
- Classification problem
 - Outputs probabilities
 - Cross-entropy loss

$$l_{CE}(\hat{y}, y) = -\sum_{i=0}^{\#Classes-1} y_i \log(\hat{y}_i)$$

TP1: Manual Backprop

$$\begin{cases} \tilde{\mathbf{h}} = \mathbf{x} \mathbf{W}^{h^{\top}} + \mathbf{b}^{h} \\ \mathbf{h} = \tanh(\tilde{\mathbf{h}}) \\ \tilde{\mathbf{y}} = \mathbf{h} \mathbf{W}^{y^{\top}} + \mathbf{b}^{y} \\ \hat{\mathbf{y}} = \operatorname{SoftMax}(\tilde{\mathbf{y}}) \end{cases}$$

$$\begin{cases} \tilde{\mathbf{h}} = \mathbf{x} \mathbf{W}^{h^{\top}} + \mathbf{b}^{h} \\ \mathbf{h} = \tanh(\tilde{\mathbf{h}}) \\ \tilde{\mathbf{y}} = \mathbf{h} \mathbf{W}^{y^{\top}} + \mathbf{b}^{y} \\ \hat{\mathbf{y}} = \mathrm{SoftMax}(\tilde{\mathbf{y}}) \end{cases} \begin{cases} \nabla_{\tilde{\mathbf{y}}} = \hat{\mathbf{y}} - \mathbf{y} \\ \nabla_{\mathbf{W}^{y}} = \nabla_{\tilde{\mathbf{y}}}^{\top} \mathbf{h} \\ \nabla_{\mathbf{b}^{y}} = \nabla_{\tilde{\mathbf{y}}}^{\top} \\ \nabla_{\mathbf{h}} = (\nabla_{\tilde{\mathbf{y}}} \mathbf{W}^{y}) \odot (1 - \mathbf{h}^{2}) \\ \nabla_{\mathbf{W}^{h}} = \nabla_{\tilde{\mathbf{h}}}^{\top} \mathbf{x} \\ \nabla_{\mathbf{b}^{h}} = \nabla_{\tilde{\mathbf{h}}}^{\top} \mathbf{x} \end{cases}$$

- Lecture 1 practical correction on Moodle
 - Implement this by hand with basic torch!
 - Careful with batch dimension!


```
1 def init params(nx, nh, ny):
 2
       11 11 11
      nx, nh, ny: integers
       out params: dictionnary
 6
       params = \{\}
 7
       params["Wh"] = torch.randn((nh, nx))*0.3
 8
       params["Wy"] = torch.randn((ny, nh))*0.3
 9
10
       params["bh"] = torch.zeros((nh,1))
       params["by"] = torch.zeros((ny,1))
11
12
13
       return params
```



```
forward(params, X):
3
      params: dictionnary
      X: (n batch, dimension)
 5
6
      bsize = X.size(0)
      nh = params['Wh'].size(0)
      ny = params['Wy'].size(0)
8
9
      outputs = {}
10
11
      outputs["X"] = X
12
      outputs["htilde"] = torch.mm(X, params["Wh"].T) + params["bh"].T
13
      outputs["h"] = torch.tanh(outputs["htilde"])
14
      outputs["ytilde"] = torch.mm(outputs["h"], params["Wy"].T) + params["by"].T
15
      outputs["yhat"] = torch.exp(outputs["ytilde"])
16
      outputs["yhat"] = outputs["yhat"] / outputs["yhat"].sum(dim=-1, keepdim=True)
17
18
19
      return outputs['yhat'], outputs
```



```
1 def backward(params, outputs, Y):
      bsize = Y.shape[0]
      grads = \{\}
 3
 4
 5
      Y tilde grad = outputs["yhat"] - Y
      h tilde grad = torch.mm(Y tilde grad, params['Wy']
 6
                                ) * (1 - torch.pow(outputs['h'], 2))
 8
      grads["Wy"] = torch.mm(Y tilde grad.T, outputs["h"])
      grads["Wh"] = torch.mm(h tilde grad.T, outputs['X'])
10
11
      grads["by"] = Y tilde grad.sum(dim=0,keepdim=True).T
      grads["bh"] = h tilde grad.sum(0, keepdim=True).T
12
13
14
      grads['Wy'] /= bsize
15
      grads['by'] /= bsize
16
      grads['Wh'] /= bsize
17
      grads['bh'] /= bsize
18
19
       return grads
```



```
1 def sgd(params, grads, eta):
2
3    params['Wy'] -= eta * grads['Wy']
4    params['Wh'] -= eta * grads['Wh']
5    params['by'] -= eta * grads['by']
6    params['bh'] -= eta * grads['bh']
7
8    return params
```



```
for j in range(N // Nbatch):
    indsBatch = range(j * Nbatch, (j+1) * Nbatch)
    X = Xtrain[indsBatch, :]
    Y = Ytrain[indsBatch, :]
    Y hat, outputs = forward(params, X)
    loss, accuracy = loss accuracy(Y hat, Y)
    grads = backward(params, outputs, Y)
    params = sgd(params, grads, eta)
```

Part 2: Autograd backward


```
backward(params, outputs, Y):
bsize = Y.shape[0]
grads = {}
Y tilde grad = outputs["yhat"] - Y
h tilde grad = torch.mm(Y tilde grad, params['Wy']
                        ) * (1 - torch.pow(outputs['h'], 2))
grads["Wy"] = torch.mm(Y tilde grad.T, outputs["h"])
grads["Wh"] = torch.mm(h tilde grad.T, outputs['X'])
grads["by"] = Y tilde grad.sum(dim=0,keepdim=True).T
grads["bh"] = h tilde grad.sum(0, keepdim=True).T
grads['Wy'] /= bsize
grads['by'] /= bsize
grads['Wh'] /= bsize
grads['bh'] /= bsize
return grads
```

- Torch.tensor object
 - Np.array like
 - Tracked on a computational graph
 - .grad variable to track gradients
 - .backward to backpropagate gradients through the graph
 - Activate .autograd!

Part 2: Autograd backward


```
def backward(params, outputs, Y):
   bsize = Y.shape[0]
   grads = {}
    Y tilde grad = outputs["yhat"] - Y
   h tilde grad = torch.mm(Y tilde grad, params['Wy']
                            ) * (1 - torch.pow(outputs['h'], 2))
    grads["Wy"] = torch.mm(Y tilde grad.T, outputs["h"])
   grads["Wh"] = torch.mm(h tilde grad.T, outputs['X'])
   grads["by"] = Y tilde grad.sum(dim=0,keepdim=True).T
   grads["bh"] = h tilde grad.sum(0, keepdim=True).T
   grads['Wy'] /= bsize
   grads['by'] /= bsize
   grads['Wh'] /= bsize
   grads['bh'] /= bsize
    return grads
```

```
params['Wh'] = torch.randn(nh, nx) * 0.3
params['Wh'].requires_grad = True
params['bh'] = torch.zeros(nh, 1, requires_grad=True)
params['Wy'] = torch.randn(ny, nh) * 0.3
params['Wy'].requires_grad = True
params['by'] = torch.zeros(ny, 1, requires_grad=True)
```

```
with torch.no_grad():
    params['Wy'] -= eta * params['Wy'].grad
    params['Wh'] -= eta * params['Wh'].grad
    params['by'] -= eta * params['by'].grad
    params['bh'] -= eta * params['bh'].grad

params['Wy'].grad.zero_()
    params['Wh'].grad.zero_()
    params['bh'].grad.zero_()
```

```
Yhat, outputs = forward(params, X)
L, _ = loss_accuracy(Yhat, Y)
L.backward()
params = sgd(params, 0.03)
```

Part 2: Using a computational graph

- Torch keeps track of operations in a dynamic graph
 - Not static like tensorflow
 - Need to tell pytorch to do it
 - .requires_grad=True
 - Have to exclude graph operations
 - With torch.no_grad():
- Gradients are automatically computed
 - L.backward()
 - L is a scalar loss tensor
 - Go back through the graph to fill .grad

Part 3: torch.nn instantiation


```
params = {}

params["Wh"] = torch.randn((nh, nx))*0.3
params["Wy"] = torch.randn((ny, nh))*0.3
params["bh"] = torch.zeros((nh,1))
params["by"] = torch.zeros((ny,1))
```

```
forward(params, X):
    """
    params: dictionnary
    X: (n_batch, dimension)
    """
    bsize = X.size(0)
    nh = params['Wh'].size(0)
    ny = params['Wy'].size(0)
    outputs = {}

    outputs["X"] = X
    outputs["htilde"] = torch.mm(X, params["Wh"].T) + params["bh"].T
    outputs["h"] = torch.tanh(outputs["htilde"])
    outputs["ytilde"] = torch.exp(outputs["h"], params["Wy"].T) + params["by"].T
    outputs["yhat"] = torch.exp(outputs["ytilde"])
    outputs["yhat"] = outputs["yhat"] / outputs["yhat"].sum(dim=-1, keepdim=True)

    return outputs['yhat'], outputs
```

- Torch.nn.Module objects
 - .__init__ creates
 weights and initializes
 them!
 - .forward implements forward operations
 - Default object call
 - model(x)
 - Some global control over model weights

Part 3: torch.nn instantiation


```
params = {}

params["Wh"] = torch.randn((nh, nx))*0.3
params["Wy"] = torch.randn((ny, nh))*0.3
params["bh"] = torch.zeros((nh,1))
params["by"] = torch.zeros((ny,1))
```

```
forward(params, X):
    """
params: dictionnary
    X: (n_batch, dimension)
    """
    bsize = X.size(0)
    nh = params['Wh'].size(0)
    ny = params['Wy'].size(0)
    outputs = {}

    outputs["X"] = X
    outputs["htilde"] = torch.mm(X, params["Wh"].T) + params["bh"].T
    outputs["h"] = torch.tanh(outputs["htilde"])
    outputs["ytilde"] = torch.mm(outputs["h"], params["Wy"].T) + params["by"].T
    outputs["yhat"] = torch.exp(outputs["ytilde"])
    outputs["yhat"] = outputs["yhat"] / outputs["yhat"].sum(dim=-1, keepdim=True)

    return outputs['yhat'], outputs
```

```
model = torch.nn.Sequential(
        torch.nn.Linear(nx, nh),
        torch.nn.Tanh(),
        torch.nn.Linear(nh, ny)
)
loss = torch.nn.CrossEntropyLoss()
```

```
_, indY = torch.max(Y, 1)
L = loss(Yhat, indY)
_, indYhat = torch.max(Yhat, 1)
acc = torch.sum(indY == indYhat.data) * 100 // indY.size(0);
```

```
with torch.no_grad():
    for param in model.parameters():
        param -= eta * param.grad
    model.zero_grad()
```

```
Yhat = model(X)
L, _ = loss_accuracy(loss, Yhat, Y)
L.backward()
model = sgd(model, 0.03)
```

Part 3: Building a network object

- What is a network?
 - Weights to be learned
 - A forward function that uses those weights
- Torch.nn modules implement this
 - Initialize weights in __init__
 - Implement forward
 - Default call of the object: model(x)
 - Large panel of existing layer implementations!
 - Even losses can be made as modules

Part 4: torch.optim optimization


```
def sgd(params, grads, eta):
    params['Wy'] -= eta * grads['Wy']
    params['Wh'] -= eta * grads['Wh']
    params['by'] -= eta * grads['by']
    params['bh'] -= eta * grads['bh']
    return params
```

- Torch.optim objects
 - Tracks learning rates
 - Tracks weights to optimize
 - Performs SGD steps
 - Even cleans up!

Part 4: torch.optim optimization


```
def sgd(params, grads, eta):
    params['Wy'] -= eta * grads['Wy']
    params['Wh'] -= eta * grads['Wh']
    params['by'] -= eta * grads['by']
    params['bh'] -= eta * grads['bh']
    return params
```

```
optim = torch.optim.SGD(model.parameters(), lr=eta)
```

```
yhat = model(X)
L,acc = loss_accuracy(loss,yhat,Y)
optim.zero_grad()
L.backward()
optim.step()
```

Part 4: Using an optimizer object

- What is an optimizer?
 - A way to update gradients
 - Operation on gradients
 - With parameters
 - (Possibly dynamic)
- Torch.optim optimizer
 - Instantiate as an object
 - With weights to track
 - With parameters of the optimization
 - Call optimizer.zero_grad() and optimizer.step()

Lessons to learn

- Training a network requires
 - Weights
 - A forward function
 - A backward function
 - Gradient steps
- Nice pytorch tools
 - Torch.tensor and torch.autograd
 - Torch.nn
 - Torch.optim

How does pytorch work?

- Create neural network
 - Use the torch.nn modules
 - Can use torch.nn.Modules
 - Or create a new class inheriting from torch.nn modules
- In training loop

```
yhat = model(X)
L,acc = loss_accuracy(loss,yhat,Y)
optim.zero_grad()
L.backward()
optim.step()
```

ConvNets for computer vision

- Convolutional layers
 - Local correlations
 - Well suited to images
 - Used sometimes with Transformers now

ConvNets for computer vision

- Classical architecture of computer vision
 - Convolutional layers for feature extraction
 - Dense/linear layers to make decisions from features
 - E.g. LeNet5 (Before 2000!)

TP4b: Computer vision

- A few milestones
 - Load image data
 - Load a classic model
 - Train it!
 - (Finetune a strong model)
- Apply knowledge from TP4a!

RNNs for Language

- Recurrent networks
 - Temporal correlations
 - How to take the past into account?
 - Recent resurgence (SSMs, ...)

RNNs for Language

- Basic RNN model
- Input + hidden stateHidden state remainsfrom input to input

TP4c: NLP

- Making a language processor
 - Tokenize words
 - Create network
 - Train network
 - Apply network
- Apply knowledge from TP4a!

TP4c: NLP


```
lass RNN(nn.Module):
  def init (self, input size, hidden size, output size):
     super(RNN, self). init ()
      self.input size = input size 1
     self.hidden size = hidden size
      ## Your code here ##
      # Create Linear layers
     self.i2o = None
     self.i2h = None
      self.activation = None
  def forward(self, input):
      # Concatenate input and current hidden state 🕨
      concat = None
     # Pass through the two hidden layers the concatenation
      output = None
      hidden = None
     # Save the hidden state for later
      self.hidden = None
      # Compute the output
      output = None
      ########################
      return output
  def init hidden(self): # to reset hidden state
      self.hidden = torch.zeros(1, self.hidden size)
```


Transformers: A new neural architecture

A new type of neural layer

- What is the state of the art in
 - o Computer vision?
 - CNNs
 - Natural language processing?
 - RNNs
 - o Time series?
 - RNNs or TCNs
 - Multimodal problems?
 - Hybrid?

A new type of neural layer for everying

Output

- What is the state of the art in
 - Computer vision?
 - **■** CNNs -> Transformers
 - Natural language processing?
 - **■** RNNs -> Transformers
 - Time series?
 - RNNs or TCNs -> Transformers
 - Multimodal problems?
 - **■** Hybrid? -> Transformers

Transformers use keeps increasing over time

Existing layer: Dense

$$d_{\theta}(x) = \sigma(W_{\theta}x^T + b_{\theta})$$

$$\sigma(x) = ReLU(x) = \max(0, x)$$

Classic layer: CNN

Classic layer: RNN

A new challenger appears!

- RNNs have issues with long term memory
 - Try to allow it to look at past hidden states
 - That is a lot
 - Attention as a solution (~2015)
 - Only look at some past states
- Attention is all you need (Vaswani et al. 2017)
 - The transformer
 - Only attention and dense layers
 - Outperforms RNNs substantially

A new challenger appears!

- Attention is all you need (Vaswani et al. 2017)
 - The transformer
 - Only attention and dense layers
 - Outperforms RNNs substantially
- It gets harder in Computer Vision
 - Multiple attempts since 2017
 - An Image is Worth 16x16 Words (Disovitskyi et al. 2021)
 - (First) Vision Transformer that kind of works
 - With all the data in the world
 - Data efficient Image Transformers (Touvron et al. 2021)
 - Works with reasonable datasets

Attention introduction

- What is a Dog?
 - It is a 4 legged animal with fur and ears and eyes and a head and ...
 - It is on this part of that picture.

NLP example


```
The FBI is chasing a criminal on the run.
The FBI is chasing a criminal on the run.
     FBI is chasing a criminal on the run.
     FBI is chasing a criminal on the run.
The
           is chasing a criminal on the run.
The
     FBI is chasing a criminal on the run.
          is chasing a criminal on the run.
The
     FBI is chasing a criminal on the run.
               chasing a
                          criminal on the run.
              chasing a
                          criminal
The
```

Define a word by other words it relates to

Multimodal example

Define a word by a few similar pictures

Attention mechanism

Core question

- Could be something else!
- How do you define the dog with the picture?

Alignment

• Find the relevant parts of th picture

• Find the relevant parts of the picture

"Expected" representation

Describe "Dog" by combining similar patch tokens

"Expected" representation

Describe "Dog" by combining similar patch tokens

Attention weights

Find an alignment score through dot product

Train up Weights to get good attention

Self-attention

You can compare a sequence to itself!

And even have multiple interpretations

Transformer (Encoder) Block

- Basic encoder block
 - MultiHead attention
 - Skip connection
 - Small MLP applied to each token
 - Skip connection
- Stacked in a transformer

Positional encoding

- What is the order of the tokens?
 - Treated as a set
 - Permutation invariant
- How do keep positional info?
 - Masking

Add a positional encoding

- Sine encoding
- Learned encoding

Takeaway

- Attention: represent objects by similar things
- Mechanism
 - Compute alignment with product

- Learn projection weights
- Transformer block
 - Attention layer
 - MLP on each token/object

What is great about attention?

A freeform operator

- Attention can implement a lot of different operations
 - Little built-in bias
 - As opposed to CNNs
 - Adapts to data
 - Can change depending on the input
- A lot of work has been done to "discover" good operators
 - To little avail
 - But attention kind of does that!

"Dense" Transformers

- Possible to attend to all elements in the sequence
- (Very) loose approximation of dense layer

"Convolutional" Transformers

- Possible to use positional info to have convolutions
- Can be exactly approximated with ConViT (Touvron et al. 2021)

"Recurrent" Transformers

- Possible to just keep attention with past elements
- Default mode of transformer decoder

Very strong expressive power

- Transformers are able to leverage large datasets
 - Because they can learn more adapted relations
 - Becoming more and more adopted
 - Scale very well
- Emerging as the dominant neural network type
- Drawbacks
 - Quadratic cost with the number of tokens
 - Need lots of data or strong regularization

Seminal success: Vaswani et al. 2017

- Completely does away with recurrent units
 - Attention as a firstclass citizen!
 - Introduces element wise MLP for transform
- Transformer
 - throughout the layers
 - Also to blame for BERT, ELMO, DALL-E, ...

Seminal success: Vaswani et al. 2017 Res. WUNIVERSITÉ CÔTE D'AZUR

Very strong results as soon as 2017!

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2\cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.8	$2.3 \cdot 10^{19}$	

A powerful encoder block

- Encoder yields strong features for the inputs
- Often used as standalone
 - No decoder
 - Linear layer or MLP directly plugged on encoder inputs
- Lots of applications!

TP3: Transformers in details

- Detailed explanation of all transformers components
- Implement
 - Alignment score
 - Attention block
 - Encoder block
 - Transformer predictor
- Task: Reverse a sequence
 - With attention visualization!

