

LEI - Computação Gráfica

prof. André Perrotta, prof. Evgheni Polisciuc

Exame Recurso

NI	~ ~~	_	
IN	om	e	•

Número:

Duração: 90min

31 de Janeiro, 2024

valor max: 20

Formulário

sejam os vetores $\vec{A}(a_1,a_2,a_3)$ e $\vec{B}(b_1,b_2,b_3)$ produto escalar:

$$\vec{A} \bullet \vec{B} = \sum_{i=1}^{3} a_i b_i = |\vec{A}| |\vec{B}| \cos \theta$$

produto vetorial:

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - b_2a_3)\hat{x} + (a_3b_1 - b_3a_1)\hat{y} + (a_1b_2 - b_1a_2)\hat{z}$$

transformações geométricas:

$$T = \begin{bmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad S = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad R_z = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Proj_{perspectiva_{openGl}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \quad Proj_{ortogonal} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Modelo de Phong para iluminação:

	0°	30°	45°	60°	90°
$\sin(\theta)$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos(\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan(\theta)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undefined

$$\vec{R} = 2(\vec{L} \bullet \vec{N})\vec{N} - \vec{L}$$

$$I_{vertice} = I_{luz_{amb}} K_{mat_{amb}} + I_{luz_{dif}} K_{mat_{dif}} \cos \theta + I_{luz_{spec}} K_{mat_{spec}} \cos \gamma^{ns}$$

Conceitos

Q1 (2 valores)

Em álgebra linear, a matriz de projeção ortográfica é definida como:

$$Proj_{ortogonal} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Porém, em OpenGL, a função glOrtho(...) utiliza a matriz:

(a) (1 valor): O que é determinado pela ordem dos vértices?

$$Proj_{ortogonal_{openGl}} = \begin{bmatrix} \frac{2}{right-left} & 0 & 0 & tx \\ 0 & \frac{2}{top-bottom} & 0 & ty \\ 0 & 0 & \frac{-2}{far-near} & tz \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

-		-	•		, ,	erente de zero, a	pesar de se
tratar	de uma transfo	ormação que con	nverte 3D em	2D?(resposta si	ucinta e objetiv	a)	

Desconsiderando-se os parâmetros de escala e translação (Sx, Sy, tx, ty, tz), Por que, no pipeline poligonal

Q2 (3 valores)

Na programação gráfica utilizando OpenGL, a ordem de especificação dos vértices em um desenho pode afetar significativamente a aparência visual do objeto. Sobre este tema, responda às seguintes perguntas de forma clara, sucinta e objetiva:

,			

Geometria e transformações

Q3 (3 valores)

Determine as transformações geométricas necessárias para transformar o quadrado ABCD circunscrito ao círculo de raio 1 centrado na origem, no quadrado inscrito ao círculo de raio 1 que tangencia perfeitamente os eixos x e y, de forma a manter a ordem dos vértices tal qual representado na figura.

quadrado ABCD circunscrito em r=1 \rightarrow quadrado ABCD inscrito em r=1

(a) (1 valor): Indicação das transformações com valores e ordem correta.

(ex: Translação de 10 em x pode ser escrita como T(10, 0))

(b) (2 valores): Representação da matriz final (M) resultante das transformações.
(b) (2 valores): Representação da matriz final (M) resultante das transformações.
Vigualização, projeção a recento
Visualização, projeção e recorte
Q4 (3 valores)
Considere uma aplicação desenvolvida em OpenGl e configurada com uma janela quadrada (largura=altura). Mais, considere que no inicio do programa é configurado o recorte (glViewPort) para toda a tela e que seu volume de projeção é configurado através da função $glOrtho(left, right, bottom, top, near, far)$ com os seguintes valores:
glOrtho(-1, 1, -1, 1, -2, 2).
(a) (1 valor): Considerando que a matriz Modelview está em suas condições iniciais (identidade). Quais valores de x, y, z podemos atribuir à um vértice de forma a garantir que o mesmo se encontra dentro do volume de projeção?
Considere agora que, para além da projeção, é também definida uma vista da cena utilizando o algoritmo UVN implementado na função $lookat(p\vec{o}s, tar\vec{g}et, u\vec{p})$ com os seguintes valores:
lookat(0,0,1,0,0,0,0,1,0)
E, alteram-se os valores de recorte, utilizando a função $glViewport(x0,y0,width,height)$ com os seguintes valores:
$glViewport(0, \frac{h}{2}, \frac{w}{4}, \frac{h}{2})$, onde w e h referem à largura e altura da janela da aplicação.
Após estas definicões é então desenhada uma linha entre os vértices $A(-\frac{1}{2},0,-1)$ e $B(-\frac{1}{2},0,1)$.

- (b) (1 valor): Qual a distância entre os vértices A e B em coordenadas mundo? (justifique)
- (c) (1 valor): Qual a distância entre os vértices A e B em pixels na janela da aplicação? (justifique)

Iluminação e textura

Q5 (6 valores)

A imagem abaixo mostra uma cena realizada em OpenGl, utilizando o modelo de Phong teórico para o cálculo de iluminação. A cena é composta por um triângulo $\triangle ABC$, duas fontes de luz, L_1 e L_2 , e um observador situado na posição obs(0,1,1). Os vértices do triângulo têm materiais definidos com as cores: A(1, 0, 0), B(0, 1, 1), C(0, 1, 1); os coeficientes de reflexão ambiente k_A , difusa k_D e especular k_S dos materiais dos vértices são iguais a 1 ($k_A = k_D = k_S = 1$) e os coeficientes de especularidade ns também valem 1 (ns = 1). A normal \vec{N} é a mesma em todos os vértices e é perpendicular à face do triângulo. As fontes de luz estão configuradas conforme especificado abaixo.

$$\begin{split} L_{1_{pos}} &= (1,1,0,1) \\ L_{1_{amb}}(R,G,B) &= (0,0,0) \\ L_{1_{dif}}(R,G,B) &= (1,0,0) \\ L_{1_{spec}}(R,G,B) &= (1,0,0) \end{split}$$

$$\begin{split} L_{2_{pos}} &= (0,1,0,0) \\ L_{2_{amb}}(R,G,B) &= (0,0,0) \\ L_{2_{dif}}(R,G,B) &= (0,1,1) \\ L_{2_{snec}}(R,G,B) &= (0,0,0) \end{split}$$

(a) (2 valores): Qual é o vértice com maior intensidade de luz? (justifique)
(b) (2 valores): Qual é o vértice com menor intensidade de luz? (justifique)
(c) (2 valores): Considerando que a cena foi construída utilizando a opção
$glShadeModel(GL_SMOOTH)$, qual a cor e intensidade de luz, em valores (R, G, B) , no ponto P , situado em $\frac{1}{3}$ da mediana h do triângulo (conforme a figura)? (justifique)
3 da mediana // do d'iangaro (comorme a ngara). (Justinque)

Q6 (3 valores)

Complete o pseudo-código com as coordenadas de textura e configuração adequada para obter os resultados conforme as imagens.

observação 1: os parâmetros de configuração podem ser em pseudocódigo, mas devem ser claros e coerentes com as configurações reais possíveis.

observação 2: A imagem está em espaço de coordenadas de textura com dimensão normalizada, eixo t orientado para baixo, eixo s orientado para a direita e origem no topo-esquerdo da imagem.

Figura 1: imagem original

