(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-323026 (P2001-323026A)

(43)公開日 平成13年11月20日(2001.11.20)

	- In the same way and		= nn (*/+3-*)
(51) Int.Cl. ⁷	識別記号	FI	テーマコード(参考)
C08F 30/08		C 0 8 F 30/08	2 H 0 0 6
A61L 27/00		A 6 1 L 27/00	D 4C081
C07F 7/08		C 0 7 F 7/08	X 4H049
C 0 8 F 290/06		C 0 8 F 290/06	4 J 0 2 7
G 0 2 B 1/04	ger.	G 0 2 B 1/04	4 J 1 0 0
3,00	,,		OL (全 9 頁) 最終頁に続く
(21)出願番号	特願2000-140443(P2000-140443)	(71)出願人 0000031	
		東レ株式	公会社
(22)出願日	平成12年5月12日(2000.5.12)	東京都中	中央区日本橋室町2丁目2番1号
		(72)発明者 中村 🏻	E孝
		滋賀県力	大津市園山1丁目1番1号 東レ株
		式会社》	送賀事業場内
		(72)発明者 藤澤 和	叩彦
		滋賀県大	大津市闖山1丁目1番1号 東レ株
		式会社》	接賀事業場内
		(72)発明者 下山 正	算樹
		' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	大津市園山1丁目1番1号 東レ株
			故賀事業場内
		72,112	antere 4. Nine ages 4
			最終頁に続く

(54) 【発明の名称】 モノマー、ポリマーおよび眼用レンズ

(57)【要約】

【課題】高い酸素透過性を有し、なおかつ低弾性率を有するポリマー用のモノマーを提供すること。また該モノマーからなるポリマーおよび眼用レンズを提供すること。

【解決手段】下記式(a)で表されることを特徴とする モノマー。

【化1】

$$H_2C = C$$
 $C - O - (CH_2)_n - A$ (a)

[式(a)中、RはHまたはメチル基を表す。Aはシロキサニル基を表す。nは4~20の整数を表す。]

【特許請求の範囲】

【請求項1】下記式(a)で表されることを特徴とする モノマー。

【化1】

$$R$$
 $H_2C = C$
 $C - O - (CH_2)_n - A$ (a)

[式(a)中、RはHまたはメチル基を表す。Aはシロ キサニル基を表す。nは4~20の整数を表す。]

【請求項2】式(a)中、Aが下記式(A)で表される 置換基であることを特徴とする請求項1に記載のモノマ ー

【化2】

[式(A)中、 $A^{1}\sim A^{11}$ はそれぞれが互いに独立に H、置換されていてもよい炭素数 $1\sim 20$ のアルキル 基、置換されていてもよい炭素数 $6\sim 20$ のアリール基 を表す。kは $0\sim 200$ の整数を表し、a、b、c はそれぞれが互いに独立に $0\sim 20$ の整数を表す。ただしka=b=c=0の場合は除く。]

【請求項3】式(a)中、Aがトリス(トリメチルシロキシ)シリル基、メチルビス(トリメチルシロキシ)シリル基およびジメチル(トリメチルシロキシ)シリル基から選ばれた1つの置換基を表し、nが4~11の整数を表すことを特徴とする請求項1または2に記載のモノマー。

【請求項4】請求項1~3いずれかに記載のモノマーを 重合成分として含むことを特徴とするポリマー。

【請求項5】請求項4に記載のポリマーを用いてなる眼 用レンズ。

【請求項6】請求項5に記載のポリマーを用いてなるコンタクトレンズ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、モノマー、ポリマーおよびそれを用いた眼用レンズに関するものである。本発明はコンタクトレンズ、眼内レンズ、人工角膜などの眼用レンズとして特に好適に用いられる。

[0002]

【従来の技術】近年高い酸素透過性を有するポリマー 用、特に眼用レンズ用のモノマーとして3-メタクリロ キシプロビルトリス (トリメチルシロキシ) シランが広 く利用されている(特開昭60-142324号公報、 特開昭54-24047号公報)。しかしながら、3-メタクリロキシプロピルトリス(トリメチルシロキシ) シランから得られるポリマーは弾性率が高く、ソフトコ ンタクトレンズとしては使用しにくいものであった。 1 . 1.

[0003]

【発明が解決しようとする課題】本発明は、かかる課題を解決し、高い酸素透過性を有し、なおかつ低弾性率を有するポリマー用のモノマーを提供することを目的とする。また該モノマーからなるポリマーおよび眼用レンズを提供することを目的とする。

[0004]

【課題を解決するための手段】上記の目的を達成するために、本発明のモノマー、ポリマーおよび眼用レンズは、下記の構成を有する。

「〔1〕下記式(a)で表されることを特徴とするモノ マー

【0005】

【化3】

$$H_2C = C'$$
 $C - O - (CH_2)_n - A$ (a)

【0006】[式(a)中、RはHまたはメチル基を表す。Aはシロキサニル基を表す。nは4~20の整数を表す。]

〔2〕〔1〕に記載のモノマーを重合成分として含むことを特徴とするボリマー。

〔3〕〔2〕に記載のポリマーを用いてなる眼用レンズ。

〔4〕〔2〕のポリマーを用いてなるコンタクトレン ズ。」

[0007]

【発明の実施の形態】以下、本発明の実施の形態を説明する。

【0008】本発明のモノマーは下記式(a)で表されることを特徴とする。

[0009]

【化4】

$$H_2C = C'$$
 $C - O - (CH_2)_n - A$ (a)

【0010】[式(a)中、RはHまたはメチル基を表す。Aはシロキサニル基を表す。nは $4\sim20$ の整数を表す。]

式(a)中、RはHまたはメチル基を表す。Rはどちらであっても好ましいが、化学的、熱的安定性の点であえて比較するとメチル基の方が好ましい。

「00111卦(~)由 () けいわをみつりせき中央

本明細書においてシロキサニル基とは、少なくとも1つのSi-O-Si結合を有する基を表す。シロキサニル基としては下記式(A)で表される置換基が好ましく使用される。

[0012]

【化5】

【0013】 「式(A)中、A1~A11はそれぞれが互 いに独立にH、置換されていてもよい炭素数1~20の アルキル基、置換されていてもよい炭素数6~20のア リール基を表す。kは0~200の整数を表し、a、 b、cはそれぞれが互いに独立に0~20の整数を表 す。ただしk=a=b=c=0の場合は除く。] 式(A)中、A1~A11はそれぞれが互いに独立にH、 置換されていてもよい炭素数1~20のアルキル基、置 換されていてもよい炭素数6~20のアリール基が、そ の具体的な例としてはH、メチル基、エチル基、プロピ ル基、イソプロピル基、ブチル基、イソブチル基、se c-ブチル基、tーブチル基、ヘキシル基、シクロヘキ シル基、2-エチルヘキシル基、オクチル基などのアル キル基、フェニル基、ナフチル基などのアリール基を挙 げることができる。これらの中で最も好ましいのはメチ ル基である。

【0014】式(A)中、kは $0\sim200$ の整数であるが、好ましくは $0\sim50$ 、さらに好ましくは $0\sim10$ である。a、b、cはそれぞれが互いに独立に $0\sim20$ の整数であるが、好ましくはa、b、cがそれぞれが互いに独立に $0\sim5$ の整数である。k=0の場合、好ましいa、b、cの組み合わせはa=b=c=1、a=b=1かつc=0、およびa=1かつb=c=0である。

【0015】式(A)で表される置換基の中で、工業的に比較的安価に入手できることから特に好適なものは、トリス(トリメチルシロキシ)シリル基、メチルビス(トリメチルシロキシ)シリル基、ポリジメチルシロキサン基、ポリメチルシロキサン基およびボリーコーメチルシロキサンージメチルシロキサン基などである。

【0016】式(a)中、nは4~20の整数を表すが、該モノマーから得られるポリマーの高酸素透過性と低弾性率をバランスさせるという点ではmは4~11が好ましい。

【0017】一般式(a)で表されるモノマーの合成法の一個としては、以下の方法を挙げることができる。ま

ず、式 (a1)

[0018]

【化6】

$$H-O-(CH_2)_{n-2}-CH=CH_2$$
 (a1)

【0019】[式(a1)中、nは4~20の整数を表す。]で表される化合物を(メタ)アクリル酸や(メタ)アクリル酸ハロゲン化物などと通常のエステル化反応条件により反応させて、式(a2)

[0020]

【化7】

$$H_2C = C'$$
 $C - O - (CH_2)_{n-2} - CH = CH_2$ (a2)

【0021】[式(a2)中、RはHまたはメチル基を表す。nは $4\sim20$ の整数を表す。]で表される化合物を得る。次に式(a2)で表される化合物と式(a3)【0022】

【化8】

$$\begin{array}{c|c} A^{3} & (O \cdot \overset{A^{3}}{S} i)_{a} - A^{9} \\ A^{1} & A^{5} \\ A^{2} & A^{7} & A^{5} \\ A^{7} & A^{6} & A^{6} \\ (O \cdot \overset{A}{S} i)_{c} - A^{11} \\ A^{8} & A^{8} \end{array}$$
 (a3)

【0023】で表される化合物を白金系に代表されるヒ ドロシリル化触媒の存在下で反応させて一般式(a)で 表されるモノマーが得られる。このとき式(a5)で表 される化合物のかわりにクロロシラン化合物を用いるこ ともできる。クロロシラン化合物としては例えばトリク ロロシラン、アルキルジクロロシラン、ジアルキルクロ ロシラン、アリールジクロロシラン、ジアリールクロロ シランなどが使用可能である。クロロシラン化合物を用 いた場合は、得られるクロロシラン付加物と、アルコキ シシラン化合物またはクロロシラン化合物を水の存在下 で縮合させることによって一般式(a)で表されるモノ マーが得られる。ここで使用されるアルコキシシラン化 合物またはクロロシラン化合物とは、例えばトリアルキ ルアルコキシシラン、トリアリールアルコキシシラン、 アリールジアルキルアルコキシシラン、ジアルキルアル コキシシラン、ジアリールアルコキシシラン、アリール アルキルアルコキシシラン、トリアルキルクロロシラ ン、トリアリールクロロシラン、アリールジアルキルク ロロシラン、ジアルキルクロロシラン、ジアリールクロ ロシラン、アリールアルキルクロロシランなどである。 【0024】本発明のポリマーは、式(a)で表される

 合する場合の共重合モノマーとしては、共重合さえ可能であれば何ら制限はなく、(メタ)アクリロイル基、スチリル基、アリル基、ビニル基および他の共重合可能な炭素炭素不飽和結合を有するモノマーを使用することができる。

【0025】以下、その例をいくつか挙げるがこれらに 限定されるものではない。(メタ)アクリル酸、イタコ ン酸、クロトン酸、桂皮酸、ビニル安息香酸、メチル (メタ)アクリレート、エチル(メタ)アクリレートなどの アルキル(メタ)アクリレート類、ポリアルキレングリコ ールモノ(メタ)アクリレート、ポリアルキレングリコ ールモノアルキルエーテル(メタ)アクリレート、ポリ アルキレングリコールビス (メタ) アクリレート、トリ メチロールプロバントリス (メタ) アクリレート、ペン タエリスリトールテトラキス (メタ) アクリレート、両 末端に炭素炭素不飽和結合を有するシロキサンマクロマ ーなどの多官能(メタ)アクリレート類、トリフルオロ エチル(メタ)アクリレート、ヘキサフルオロイソプロピ ル(メタ)アクリレートなどのハロゲン化アルキル(メタ) アクリレート類、2-ヒドロキシエチル(メタ)アクリレ ート、2、3-ジヒドロキシプロピル(メタ)アクリレー トなどの水酸基を有するヒドロキシアルキル(メタ)アク リレート類、N、Nージメチルアクリルアミド、N、N ージエチルアクリルアミド、N,N-ジ-n-プロピル アクリルアミド、N、N-ジイソプロピルアクリルアミ ド、 N、Nージnーブチルアクリルアミド、Nーアク リロイルモルホリン、Nーアクリロイルピペリジン、N ーアクリロイルピロリジン、N-メチル (メタ) アクリ ルアミドなどの (メタ) アクリルアミド類、スチレン、 α-メチルスチレン、ビニルピリジンなどの芳香族ビニ ルモノマー、マレイミド類、Nービニルピロリドン、N ービニルカプロラクタム、N-ビニルオキサゾリドン、 1-ビニルイミダゾール、N-ビニルカルバゾール、ビ ニルピリジン、ビニルピラジンなどのヘテロ環ビニルモ **ノマー、N-ビニルホルムアミド、N-ビニルアセトア** ミド、NーメチルーNービニルアセトアミドなどのNー ビニルカルボキサミド類、酢酸ビニルなどのビニルエス テル類、3-[トリス (トリメチルシロキシ) シリル] プロピル(メタ)アクリレート、3-「ビス(トリメチ ルシロキシ) メチルシリル] プロピル (メタ) アクリレ ート、3-[(トリメチルシロキシ)ジメチルシリル] プロピル (メタ) アクリレート、3 - [トリス (トリメ チルシロキシ)シリル] プロピル (メタ) アクリルアミ ド、3ー [ビス(トリメチルシロキシ)メチルシリル] プロピル (メタ) アクリルアミド、3-[(トリメチル シロキシ) ジメチルシリル] プロピル (メタ) アクリル アミド、[トリス(トリメチルシロキシ)シリル]メチ ル(メタ)アクリレート、[ビス(トリメチルシロキ シ)メチルシリル]メチル(メタ)アクリレート、

タ) アクリレート、[トリス(トリメチルシロキシ)シリル] メチル(メタ) アクリルアミド、[ビス(トリメチルシロキシ) メチルシリル] メチル(メタ) アクリルアミド、[(トリメチルシリル] メチル(メタ) アクリルアミド、[トリス(トリメチルシリル] スチレン、[ドリス(トリメチルシロキシ) ジメチルシリル] スチレン、「「カリメチルシロキシ) ジメチルシリル] スチレン、「アロピル」カルバミン酸ビニル、Nー〔3ー[ビス(トリメチルシロキシ) メチルシリル] プロピル」カルバミン酸ビニル、Nー〔3ー[ドリメチルシロキシ) ジメチルシリル] プロピル」カルバミン酸ビニルはよび下記式(c1)~(c3) の化合物などである。

[0026]

【化9】

$$\begin{array}{c|c} R^{11} & OH & Me_{3-s} \\ \hline O & Si(OSiMe_3)_s & (c1) \end{array}$$

【0027】[式(c1)~(c3)中、R¹¹はHまたはメチル基を表す。sは1~3の整数を表す。]本発明のポリマーにおいては、良好な機械物性が得られ、消毒液や洗浄液に対する良好な耐性が得られるという意味で、1分子中に2個以上の共重合可能な炭素不飽和結合を有するモノマーを共重合成分として用いることが好ましい。1分子中に2個以上の共重合可能な炭素炭素不飽和結合を有するモノマーの共重合比率は0.1重量%~70重量%が好ましく、0.2重量%~40重量%がより好ましい。

【0028】また、高酸素透過性と高含水率を両立させるという点からは、本発明のポリマーは式(a)で表されるモノマーを共重合して用いることが好ましく、その場合の式(a)で表されるモノマーの共重合比率は30重量%~97重量%、より好ましくは50重量%~95重量%、最も好ましくは60重量%~90重量%である。式(a)で表されるモノマーの共重合比率が低すぎる場合はポリマーの酸素透過性が低くなり、高すぎる場合は含水率が低くなる傾向が有る。

【0029】本発明のポリマーは、紫外線吸収剤や色素、着色剤などを含むものでもよい。また重合性基を有せない。また重合性基を有せない。

有してもよい。

【0030】本発明のポリマーの重合方法、成形方法としては、公知の方法を使用することができる。例えば、一旦、丸棒や板状等に重合、成形しこれを切削加工等によって所望の形状に加工する方法、モールド重合法、およびスピンキャスト重合法などである。

【0031】本発明のポリマーを(共)重合により得る際は、重合をしやすくするために過酸化物やアゾ化合物に代表される熱重合開始剤や、光重合開始剤を添加することが好ましい。熱重合を行う場合は、所望の反応温度に対して最適な分解特性を有するものを選択して使用する。一般的には10時間半減期温度が40~120℃のアゾ系開始剤および過酸化物系開始剤が好適である。光重合開始剤としてはカルボニル化合物、過酸化物、アゾ化合物、硫黄化合物、ハロゲン化合物、および金属塩などを挙げることができる。これらの重合開始剤は単独または混合して用いられ、およそ1重量%くらいまでの量で使用される。

【0032】本発明のポリマーを(共)重合により得る 際は、重合溶媒を使用することができる。溶媒としては 有機系、無機系の各種溶媒が適用可能であり特に制限は 無い。例を挙げれば、水、メチルアルコール、エチルア ルコール、ノルマルプロピルアルコール、イソプロピル アルコール、ノルマルブチルアルコール、イソブチルア ルコール、tert‐ブチルアルコール等のアルコール 系溶剤、メチルセロソルブ、エチルセロソルブ、イソプ ロピルセロソルブ、ブチルセロソルブ、プロピレングリ コールモノメチルエーテル、エチレングリコールジメチ ルエーテル、ジエチレングリコールジメチルエーテル、 トリエチレングリコールジメチルエーテル等のグリコー ルエーテル系溶剤、酢酸エチル、酢酸ブチル、酢酸アミ ル、乳酸エチル、安息香酸メチル等のエステル系溶剤、 ノルマルヘキサン、ノルマルヘプタン、ノルマルオクタ ン等の脂肪族炭化水素系溶剤、シクロヘキサン、エチル シクロヘキサン等の脂環族炭化水素系溶剤、アセトン、 メチルエチルケトン、メチルイソブチルケトン等のケト ン系溶剤、ベンゼン、トルエン、キシレン等の芳香族炭 化水素系溶剤、石油系溶剤等各種のものであり、これら は単独あるいは混合して使用することができる。

【0033】本発明のポリマーの重合方法、成形方法としては、公知の方法を使用することができる。例えば、一旦、丸棒や板状等に重合、成形しこれを切削加工等によって所望の形状に加工する方法、モールド重合法、およびスピンキャスト重合法などである。

【0034】一例として本発明のポリマーをモールド重合法により得る場合について、次に説明する。

【0035】モノマー組成物を一定の形状を有する2枚のモールドの空隙に充填する。そして光重合あるいは熱重合を行ってモールドの形状に賦型する。モールドは、樹脂、ガラス セラミックス 金属等で製作されている

が、光重合の場合は光学的に透明な素材が用いられ、通 常は樹脂またはガラスが使用される。ポリマーを製造す る場合には、多くの場合、2枚の対向するモールドによ り空隙が形成されており、その空隙にモノマー組成物が 充填されるが、モールドの形状やモノマーの性状によっ てはポリマーに一定の厚みを与えかつ充填したモノマー 組成物の液モレを防止する目的を有するガスケットを併 用してもよい。空隙にモノマー組成物を充填したモール ドは、続いて紫外線のような活性光線を照射されるか、 オーブンや液槽に入れて加熱されて重合される。光重合 の後に加熱重合したり、逆に加熱重合後に光重合する両 者を併用する方法もありうる。光重合の場合は、例えば 水銀ランプや捕虫灯を光源とする紫外線を多く含む光を 短時間 (通常は1時間以下) 照射するのが一般的であ る。熱重合を行う場合には、室温付近から徐々に昇温 し、数時間ないし数十時間かけて60℃~200℃の温 度まで高めて行く条件が、ボリマーの光学的な均一性、 品位を保持し、かつ再現性を高めるために好まれる。

【0036】本発明のポリマーは、種々の方法で改質処理を行うことができる。表面の水濡れ性を向上させるためには、該改質処理を行うことが好ましい。

【0037】ポリマーの具体的な改質方法としては、電磁波(光を含む)照射、プラズマ照射、蒸着およびスパッタリングなどケミカルベーパーデポジション処理、加熱、塩基処理、酸処理、その他適当な表面処理剤の使用、およびこれらの組み合わせを挙げることができる。これらの改質手段の中で、簡便であり好ましいのは塩基処理および酸処理である。

【0038】塩基処理または酸処理方法の一例としては、ポリマーを塩基性または酸性溶液に接触させる方法、ポリマーを塩基性または酸性ガスに接触させる方法等が挙げられる。そのより具体的な方法としては、例えば塩基性または酸性溶液にポリマーを浸漬する方法、ポリマーに塩基性または酸性溶液または塩基性または酸性溶液をヘラ、刷毛等で塗布する方法、ポリマーに塩基性または酸性溶液をスピンコート法やディップコート法で塗布する方法などを挙げることができる。最も簡便に大きな改質効果が得られる方法は、ポリマーを塩基性または酸性溶液に浸漬する方法である。

【0039】ポリマーを塩基性溶液または酸性溶液に浸漬する際の温度は特に限定されないが、通常-50 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 200 $^{\circ}$ 程度の温度範囲内で行われる。作業性を考えれば-10 $^{\circ}$ $^{\circ}$ $^{\circ}$ 150 $^{\circ}$ $^{\circ}$ 00温度範囲がより好ましく、-5 $^{\circ}$ $^{\circ}$ $^{\circ}$ 60 $^{\circ}$ 0が最も好ましい。

【0040】ポリマーを塩基性または酸性溶液に浸漬する時間については、温度によっても最適時間は変化するが、一般には100時間以内が好ましく、24時間以内がより好ましく、12時間以内が最も好ましい。接触時間が長すぎると 作業性および生産性が悪くなるげかり

でなく、酸素透過性の低下や機械物性の低下などの悪影響が出る場合がある。

【0041】塩基としてはアルカリ金属水酸化物、アルカリ土類金属水酸化物、各種炭酸塩、各種ホウ酸塩、各種リン酸塩、アンモニア、各種アンモニウム塩、各種アミン類、およびポリエチレンイミン、ポリビニルアミン等の高分子量塩基などが使用可能である。これらの中では、低価格であることおよび処理効果が大きいことからアルカリ金属水酸化物が最も好ましい。

【0042】酸としては、硫酸、燐酸、塩酸、硝酸などの各種無機酸、酢酸、ギ酸、安息香酸、フェノールなどの各種有機酸、およびポリアクリル酸、ポリメタクリル酸、ポリスチレンスルホン酸、ボリスルホメチルスチレンなどの高分子量酸が使用可能である。これらの中では、処理効果が大きく他の物性への悪影響が少ないことから高分子量酸が最も好ましい。

【0043】塩基性または酸性溶液の溶媒としては、無 機、有機の各種溶媒が使用できる。例えば、水、メタノ ール、エタノール、プロバノール、2-プロバノール、 ブタノール、エチレングリコール、ジエチレングリコー ル、トリエチレングリコール、テトラエチレングリコー ル、ポリエチレングリコール、グリセリンなどの各種ア ルコール類、ベンゼン、トルエン、キシレンなどの各種 芳香族炭化水素、ヘキサン、ヘプタン、オクタン、デカ ン、石油エーテル、ケロシン、リグロイン、パラフィン などの各種脂肪族炭化水素、アセトン、メチルエチルケ トン、メチルイソブチルケトンなどの各種ケトン類、酢 酸エチル、酢酸ブチル、安息香酸メチル、フタル酸ジオ クチルなどの各種エステル類、ジエチルエーテル、テト ラヒドロフラン、ジオキサン、エチレングリコールジア ルキルエーテル、ジエチレングリコールジアルキルエー テル、トリエチレングリコールジアルキルエーテル、テ トラエチレングリコールジアルキルエーテル、ポリエチ レングリコールジアルキルエーテルなどの各種エーテル 類、ジメチルホルムアミド、ジメチルアセトアミド、N ーメチルー2ーピロリドン、ジメチルイミダゾリジノ ン、ヘキサメチルホスホリックトリアミド、ジメチルス ルホキシドなどの各種非プロトン性極性溶媒、塩化メチ レン、クロロホルム、ジクロロエタントリクロロエタ ン、トリクロロエチレンなどのハロゲン系溶媒、および フロン系溶媒などである。中でも経済性、取り扱いの簡 便さ、および化学的安定性などの点で水が最も好まし い。溶媒としては、2種類以上の物質の混合物も使用可 能である。

【0044】本発明において使用される塩基性または酸性溶液は、塩基性物質または酸性物質および溶媒以外の成分を含んでいてもよい。

【0045】本発明において、ポリマーは、塩基または 酸処理の後、洗浄により塩基性または酸性物質を除くこ とができる

【0046】洗浄溶媒としては、無機、有機の各種溶媒 が使用できる。例えば、水、メタノール、エタノール。 プロパノール、2-プロバノール、ブタノール、エチレ ングリコール、ジエチレングリコール、トリエチレング リコール、テトラエチレングリコール、ポリエチレング リコール、グリセリンなどの各種アルコール類、ベンゼ ン、トルエン、キシレンなどの各種芳香族炭化水素、ヘ キサン、ヘプタン、オクタン、デカン、石油エーテル、 ケロシン、リグロイン、パラフィンなどの各種脂肪族炭 化水素、アセトン、メチルエチルケトン、メチルイソブ チルケトンなどの各種ケトン類、酢酸エチル、酢酸ブチ ル、安息香酸メチル、フタル酸ジオクチルなどの各種エ ステル類、ジエチルエーテル、テトラヒドロフラン、ジ オキサン、エチレングリコールジアルキルエーテル、ジ エチレングリコールジアルキルエーテル、トリエチレン グリコールジアルキルエーテル、テトラエチレングリコ ールジアルキルエーテル、ポリエチレングリコールジア ルキルエーテルなどの各種エーテル類、ジメチルホルム アミド、ジメチルアセトアミド、N-メチルー2-ピロ リドン、ジメチルイミダゾリジノン、ヘキサメチルホス ホリックトリアミド、ジメチルスルホキシドなどの各種 非プロトン性極性溶媒、塩化メチレン、クロロホルム、 ジクロロエタントリクロロエタン、トリクロロエチレン などのハロゲン系溶媒、およびフロン系溶媒などであ る。一般的には水が最も好適である。

【0047】洗浄溶媒としては、2種類以上の溶媒の混合物を使用することもできる。洗浄溶媒は、溶媒以外の成分、例えば無機塩類、界面活性剤、および洗浄剤を含有してもよい。

【0048】該改質処理は、ポリマー全体に対して行っても良く、例えば表面のみに行うなどポリマーの一部のみに行ってもよい。表面のみに改質処理を行った場合にはポリマー全体の性質を大きく変えることなく表面の水濡れ性のみを向上させることができる。

【0049】本発明のポリマーは、酸素透過性は、酸素透過係数が 55×10^{-11} (cm^2/sec) [mLO_2 /($mL\cdot hPa$)]以上が好ましい。酸素透過係数をこの範囲にすることにより、コンタクトレンズとして使用した場合に目に対する負担をより軽減することができ、連続装用が容易になる。

【0050】弾性率は、65kPa~1000kPaが 好ましく、150kPa~1000kPaがより好ましい。弾性率が低すぎると軟らかすぎて形状保持性が悪く なり取り扱いが難しくなるために好ましくない。弾性率 が高すぎると硬すぎてコンタクトレンズとして使用した 場合に装用感が悪くなるために好ましくない。

【0051】本発明のモノマーおよびポリマーはコンタクトレンズ、眼内レンズ、人工角膜などの眼用レンズとして特に好適に用いられる。

100501

【実施例】以下、実施例により、本発明を具体的に説明 するが、本発明はこれによって限定されるものではない。

【0053】〔測定方法〕本実施例における各種測定は、以下に示す方法で行った。

【0054】(1)プロトン核磁気共鳴スペクトル 日本電子社製のEX270型を用いて測定した。溶媒に クロロホルムーdを使用し、クロロホルムのピークを内 部標準(7.26ppm)とした。

【0055】(2)酸素透過係数

理化精機工業社製の製料研式フィルム酸素透過率系を用いて35℃の水中にてフィルム状サンプルの酸素透過係数を測定した。

【0056】(3)弹性率

, Y

規定の打抜型を用いてコンタクトレンズ形状のものから切り出したサンプル〔幅(最小部分) $5\,\mathrm{mm}$ 、長さ $14\,\mathrm{mm}$ 、厚さ $0.2\,\mathrm{mm}$ 程度〕を使用し、オリエンテック社製のテンシロンRTM-100型を用いて測定した。引張速度は $100\,\mathrm{mm}$ min n b c c mm c b c mm c b c c

【0057】〔実施例1〕

5-メタクリロキシペンチルトリス (トリメチルシロキシ) シランの合成

(1)300mLのナスフラスコに4ーペンテン-1-オール(21.3g)、酢酸エチル(30mL)、トリエチルアミン(37.5g)、4ーメトキシフェノール(31mg)を加え、0℃に冷却した後、アクリル酸クロリド(38.7g)を滴下した。反応溶液を0℃で30分損拌した後、沈殿をろ過し、得られたろ液を飽和炭酸水素ナトリウム水溶液で1回、飽和食塩水で1回洗浄し、硫酸マグネシウムで乾燥し、エバボレータを用いて減圧下で溶媒を留去した。得られた液体を減圧蒸留により精製し、4ーペンテニルメタクリレートを無色透明液体として得た。

【0058】(2)200mLのナスフラスコに(1)で得た4-ベンテニルメタクリレート(10.6g)、トルエン(70mL)、塩化白金酸(IV)六水和物(35.4mg)、2.6-ジーセーブチルー4-メチルフェノール(15.1mg)を加え、トリクロロシラン(9.3g)を滴下した。室温で3時間攪拌した後、エバポレータを用いて減圧下で溶媒を留去し、得られた液体を減圧蒸留で精製し、5-メタクリロキシペンチルトリクロロシランを無色透明液体として得た。

【0059】(3)300mLのナスフラスコに5-メタクリロキシベンチルトリクロロシラン(14g)、メトキシトリメチルシラン(33g)と混合し、水(40mL)、ペキサン(20mL)、メタノール(20mL)の混合溶液に0℃で滴下した。反応溶液を室温で8時間攪拌した後、水層を捨て、有機層を飽和炭酸水素ナトリウム水溶液で3回、飽和食塩水で1回洗浄し、硫酸

マグネシウムで乾燥させ、エバボレータを用いて減圧下で溶媒を留去した。得られた液体を減圧蒸留により精製し、微黄色透明液体を得た。この液体のプロトン核磁気共鳴スペクトルを測定し分析した結果、O. 1 pp m付近(2 T H)、O. 4 pp m付近(2 H)、1. 4 pp m付近(4 H)、1. 7 pp m付近(2 H)、1. 9 pp m付近(3 H)、4. 1 pp m付近(2 H)、5. 5 pp m付近(1 H)および6. 1 pp m付近(1 H)にピークが検出されたことから5 - メタクリロキシペンチルトリス(トリメチルシロキシ)シランであることを確認した。

【0060】〔実施例2〕

5-アクリロキシペンチルトリス (トリメチルシロキシ)シランの合成

メタクリル酸クロリドのかわりにアクリル酸クロリドを使用する他は、実施例1と同様に行って微黄色透明液体を得た。この液体のプロトン核磁気共鳴スペクトルを測定し分析した結果、O. 1 ppm付近(2 T H)、O. 4 ppm付近(2 H)、1. 7 ppm付近(2 H)、4. 1 ppm付近(2 H)、5. 8 ppm付近(1 H)、6. 2 ppm付近(1 H) および6. 4 ppm付近(1 H)にピークが検出されたことから5-アクリロキシペンチルトリス(トリメチルシロキシ)シランであることを確認した。

【0061】〔実施例3〕

4-メタクリロキシブチルトリス (トリメチルシロキシ)シランの合成

4-ペンテン-1-オールのかわりに3-ブテン-1-オールを使用する他は、実施例1と同様に行って微黄色透明液体を得た。この液体のプロトン核磁気共鳴スペクトルを測定し分析した結果、<math>0.1ppm付近(27H)、0.4ppm付近(2H)、1.4ppm付近(16H)、1.7ppm付近(2H)、1.9ppm付近(3H)、4.1ppm付近(2H)、5.5ppm付近(1H)および6.1ppm付近(1H)にピークが検出されたことから<math>4-メ9クリロキシブチルトリス(トリメチルシロキシ)シランであることを確認した。

【0062】〔実施例4〕

11-メタクリロキシウンデシルトリス (トリメチルシロキシ) シランの合成

4-ベンテン-1-オールのかわりに10-ウンデセンー1ーオールを使用する他は、実施例1と同様に行って微黄色透明液体を得た。ただし、最終段階の精製はシリカゲルカラムクロマトグラフィーによって行った。この液体のプロトン核磁気共鳴スペクトルを測定し分析した結果、0.1ppm付近(2H)、1.4ppm付近(2H)、1.7ppm付近(2H)、1.9ppm付近(3H)、4.1ppm付近(2H)、5.5ppm付近(1H)および6.1

ppm付近(1H)にピークが検出されたことから11 ーメタクリロキシウンデシルトリス(トリメチルシロキシ)シランであることを確認した。

【0063】〔実施例5〕実施例1で5ーメタクリロキ シペンチルトリス(トリメチルシロキシ)シラン(60 重量部)、N、N - ジメチルアクリルアミド(40重量 部)、トリエチレングリコールジメタクリレート (1重 量部)、ダロキュア1173(チバ・スペシャリティー ・ケミカルズ社製、0.5重量部)およびジエチレング リコールジメチルエーテル (10重量部)を混合し撹拌 した。均一で透明なモノマー混合物が得られた。このモ ノマー混合物をアルゴン雰囲気下で脱気した。窒素雰囲 気のグローブボックス中で透明樹脂 (ボリ4ーメチルペ ンテン-1)製のコンタクトレンズ用モールドに注入 し、捕虫灯を用いて光照射(1mW~cm2、10分 間)して重合し、コンタクトレンズ状サンプルを得た。 得られたサンプルを、大過剰量のイソプロビルアルコー ルに60℃、16時間浸漬した後、大過剰量の純水に2 4時間浸漬した。その後、清浄な純水に浸漬して保存し た。得られたサンブルは透明で濁りが無かった。このサ ンプルの酸素透過係数と弾性率を表1に示した。高酸素 透過性および低弾性率を有していた。

【0064】〔実施例6~8〕5~メタクリロキシペンチルトリス(トリメチルシロキシ)シランのかわりに、それぞれ、5~アクリロキシペンチルトリス(トリメチルシロキシ)シラン、4~メタクリロキシブチルトリス(トリメチルシロキシ)シランを用いつカンデシルトリス(トリメチルシロキシ)シランを用いる他は実施例5と同様にしてコンタクトレンズ状サンプルを得た。得られたサンプルはいずれも透明で濁りが無かった。これらのサンプルの酸素透過係数と弾性率を表1に示した。いずれも高酸素透過性および低弾性率を有していた。

./ .

【0065】(比較例1)5-メタクリロキシペンチルトリス(トリメチルシロキシ)シランのかわりに、3-メタクリロキシプロビルトリス(トリメチルシロキシ)シランを用いる他は実施例5と同様にしてコンタクトレンズ状サンプルを得た。得られたサンプルは透明で濁りが無かった。このサンプルの酸素透過係数と弾性率を表1に示した。高酸素透過性を有していたが、実施例5~8と比較して高弾性率であった。

[0066]

【表1】

表1

酸素透過係數	弹性率
(cm²/sec) [mLO ₁ /(mL·hPa)]	k P a
64×10 ⁻¹¹	760
6 6 × 1 0 -11	3 5 0
6 6 × 1 0 ⁻¹¹	970
60×10 ⁻¹¹	480
69×10-''	117
	(cm ² /sec) [mLO ₂ /(mL·hPa)] 64×10 ⁻¹¹ 66×10 ⁻¹¹ 60×10 ⁻¹¹

[0067]

【発明の効果】本発明のモノマーにより、高い酸素透過

性を有し、なおかつ低弾性率を有するポリマーおよび眼 用レンズが得られる。

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

テーマコード(参考)

G O 2 C 7/04

GO2C 7/04

(72)発明者 横田 満

滋賀県大津市園山1丁目1番1号 東レ株 式会社滋賀事業場内 ドターム(参考) 2H006 BB03 BB05 BB07 BB10 BC07 4C081 AB21 AB23 BB09 CA081 CA271 CC01 4H049 VN01 VP04 VQ30 VQ78 VR21 VR23 VR41 VR43 VU20 VW02 4J027 AF04 AF05 BA04 BA05 BA06 BA07 BA08 BA13 BA14 BA15 BA25 BA26 BA27 CD04 4J100 AL08P BA75P BA77P CA01

CA04 JA33

		s . ,, ,
·		-