## **PUCP**

#### FACULTAD DE CIENCIAS SOCIALES

MATEMÁTICAS PARA ECONOMISTAS IV

PRÁCTICA DIRIGIDA 2

PROFESOR: JORGE R. CHÁVEZ

JEFES DE PRÁCTICA: JOAQUÍN RIVADENERYA & MARCELO GALLARDO

SEMESTRE 2022-2

FECHA 13-09-2022

# Relaciones de preferencias

1. Sea P=(1,1). Trace para cada relación de preferencia, representada a través de la función de utilidad U, los conjuntos  $I_P$  y  $\overline{C}_P$ . Luego, determine si  $\leq$  es convexa.

1.1) 
$$U(x, y) = \min\{x, y\}.$$

1.2) 
$$U(x, y) = xy$$
.

1.3) 
$$U(x, y) = x + y$$
.

En los 3 casos, la relación de preferencias es convexa. En efecto:

1.1) Definimos  $z = \theta x + (1 - \theta)y$ ,

$$\min\{z_1, z_2\} = \{\theta x_1 + (1 - \theta)y_1, \theta x_2 + (1 - \theta)y_2\}.$$

Luego, como  $x \leq y$ , mín $\{x_1, x_2\} \leq \min\{y_1, y_2\}$ 

$$x_1 < \theta x_1 + (1 - \theta)y_1$$

y

$$x_2 \le \theta x_2 + (1 - \theta) y_2.$$

Así,

$$\min\{x_1, x_2\} \le \min\{z_1, z_2\} \implies x \le z.$$

1.2) Sea  $x \leq y$ , queremos  $z = \theta x + (1 - \theta)y \succeq x$ . Definimos  $c_x = x_1x_2$  y  $c_y = y_1y_2$  y

 $c_z = z_1 z_2 \text{ con } z_1 = \theta x_1 + (1 - \theta) y_1, z_2 = \theta x_2 + (1 - \theta) y_2.$  Entonces,

$$c_z = (\theta x_1 + (1 - \theta)x_2) \left( \theta \frac{c_x}{x_1} + (1 - \theta) \frac{c_y}{y_1} \right)$$

$$= \theta^2 c_x + \theta (1 - \theta) \frac{x_1}{y_1} c_y + \theta (1 - \theta) \frac{y_1}{x_1} c_x + (1 - \theta)^2 c_y$$

$$\geq \left( \theta^2 + \theta (1 - \theta) \left( \frac{x_1}{y_1} + \frac{y_1}{x_1} \right) + (1 - \theta)^2 \right) c_x.$$

Luego, como  $(a+b)^2 \ge 0$ 

$$\frac{a^2 + b^2}{2} \ge \sqrt{a^2 b^2}$$
$$\frac{a^2 + b^2}{ab} \ge 2$$
$$\frac{a}{b} + \frac{b}{a} \ge 2.$$

Finalmente, el resultado previo,

$$z_1 z_2 \ge (\theta^2 + 2\theta(1 - \theta) + (1 - \theta)^2)c_x$$
  
=  $c_x$   
=  $x_1 x_2$ .

Con esto, concluimos lo solicitado.

1.3) Si  $x \leq y \Leftrightarrow x_1 + x_2 \leq y_1 + y_2$ . Luego, usando la definición de  $\theta x + (1 - \theta)y$  dada en (??)

$$\theta x_1 + (1 - \theta)y_1 + \theta x_2 + (1 - \theta)y_2 = \theta(x_1 + x_2) + (1 - \theta)(y_1 + y_2)$$

$$\geq \theta(x_1 + x_2) + (1 - \theta)(x_1 + x_2)$$

$$= x_1 + x_2.$$

Por ende, se cumple que  $\leq$  es convexa.

En relación a  $I_P$  y  $\overline{C}_P$ , estos corresponden a la curva de indiferencia y control superior asociados al punto P=(1,1). Para  $U(x,y)=\min\{x,y\},\ U(1,1)=1$ . Por ende



En el caso U(x,y)=xy, representamos  $\{(x,y)\in\mathbb{R}^2_+:\ xy=1\}$ 



Es la curva en el cuadrante morado intersecando el azul pues  $x,y\geq 0.$ 

Finalmente, en el caso  $U(x,y)=x+y,\,U(1,1)=2$  y así,



Nuevamente, es la curva (recta) en el cuadrante morado intersecando el azul pues  $x,y\geq 0.$ 

- 2. Provea una ejemplo de relación de preferencia que no es continua pero que sí es racional. Considere las referencias lexicográficas definidas de la siguiente manera, si  $x_1^1 > x_1^2$ ,  $x_1 > x_2^2$ . Si  $x_1^1 = x_1^2$ , se analiza  $x_2^1$  versus  $x_2^2$ , y así sucesivamente.
  - Son transitivas.
  - Son completas.
  - No son continuas.

Considere  $x_n = (1/n, 0, ..., 0)$  y  $y_n = (0, 1 + 1/n, 0, ..., 0)$  y verifique que la definición de preferencias continua no cumple.

### Funciones convexas y cóncavas

- **3.** Analice la convexidad o concavidad de las siguientes funciones sobre su dominio de definición. Sugerencia: use los teoremas de aritmética y composición de funciones convexas y cóncavas.
- 3.1)  $f(x_1, x_2) = \ln(x_1 + x_2)$ .
- 3.2)  $f(x_1, x_2) = \sqrt{x_1 + x_2}$ .
- 3.3)  $f(x_1, x_2, x_3) = \exp(x_1^2 + x_2^2 + x_3^2 + 5).$

La función  $f(x_1, x_2) = \ln(x_1 + x_2)$  es cóncava pues es la composición de una función cóncava creciente  $\ln(\cdot)$  con una función cóncava (las funciones lineales son convexas y

cóncavas a la vez). Análogamente,  $f(x_1, x_2) = \sqrt{x_1 + x_2}$  es cóncava pues  $\sqrt{\cdot}$  es cóncava y creciente. Finalmente, la función  $f(x_1, x_2, x_3) = \exp(x_1^2 + x_2^2 + x_3^2 + 5)$  es convexa pues es la composición de la función creciente y convexa  $\exp(\cdot)$  con la suma de 3 funciones convexas y una constante,  $x_1^2 + x_2^2 + x_3^2 + 5$ . Note que se hace uso del teorema de composición y aritmética de funciones convexas y cóncavas.

4. Pruebe usando la definición que la función:

- 4.1)  $\frac{1}{x}$ ,  $x \in \mathbb{R}_{++}$  es estrictamente convexa.
- 4.2)  $\sqrt{x}, x \in \mathbb{R}_+$  es estrictamente cóncava.
- 4.1) Queremos probar que, dado  $\theta \in [0, 1]$ ,

$$\frac{1}{\theta x + (1 - \theta)y} \le \frac{1}{\theta x} + \frac{1}{(1 - \theta)y}.$$

Esto es lo mismo que,

$$\frac{1}{\theta(x-y)+y} \le \frac{\theta(y-x)+x}{xy}.$$

Multiplicando por xy y  $\theta(x-y) + y$ , se obtiene

$$xy \le (\theta(x-y) + y)(\theta(y-x) + x)$$

$$= -\theta^{2}(x-y)^{2} + \theta y(y-x) + \theta x(x-y) + xy$$

$$= -\theta^{2}(x-y)^{2} + \theta(x-y)^{2} + xy$$

$$= \theta(1-\theta)(x-y)^{2} + xy.$$

4.2) Se tiene que probar que, dado  $\theta \in [0, 1]$ 

$$\theta\sqrt{x} + (1-\theta)\sqrt{y} \le \sqrt{\theta x + (1-\theta)y}$$
.

Elevamos al cuadrado,

$$(\theta\sqrt{x} + (1-\theta)\sqrt{y})^2 \le \theta x + (1-\theta)y.$$

Luego,

$$\theta^2 x + 2\theta (1 - \theta) \sqrt{xy} + (1 - \theta)^2 y \le \theta x + (1 - \theta) y.$$

Esto es equivalente a

$$2\theta(1-\theta)\sqrt{xy} < \theta(1-\theta)x + \theta(1-\theta)y$$
.

Dividiendo por  $\theta(1-\theta)$  (ojo, si  $\theta=0$  o  $\theta=1$  es trivial)

$$2\sqrt{xy} \le x + y$$
.

Elevando al cuadrado,

$$4xy \le x^2 + 2xy + y^2.$$

O sea,

$$0 < x^2 - 2xy + y^2 = (x - y)^2$$
.

Lo cual es cierto pues  $a^2 \geq 0$  para cualquier  $a \in \mathbb{R}$ .

5. Analice si la función norma f(x) = ||x|| es estrictamente convexa, para  $x \in \mathbb{R}^n$ .

Veamos que se trata de una función convexa. Sea  $\theta \in [0, 1]$ 

$$||\theta x + (1 - \theta)y|| \le ||\theta x|| + ||(1 - \theta)y||$$
$$= \theta ||x|| + (1 - \theta)||y||.$$

Se hace simplemente uso de la desigualdad triangular.

- **6.** Utilizando argumentos de epígrafo o hipógrafo, analice la convexidad o concavidad de la función:
- 6.1)  $f(x) = -x^2$ . Cóncava sobre todo su dominio, pues su hipógrafo es un conjunto convexo.
- 6.2)  $f(x) = x^3$ . No es convexa ni cóncava, puesto que ni su epígrafo ni su hipógrafo es un conjunto convexo.

## Funciones convexas y cóncavas diferenciables

- 7. Usando criterios de diferenciabilidad, analice la convexidad o concavidad de las siguientes funciones. Sugerencia: calcule la matriz Hessiana en cada caso.
- 7.1)  $f(x) = x \ln x$ ,  $\text{Dom}(f) = (0, +\infty)$ . Estrictamente convexa, pues  $f''(x) = \frac{1}{x}$  es estrictamente positiva para todo el dominio de la función.
- 7.2)  $f(x_1, x_2) = x_1 x_2$ ,  $Dom(f) = \mathbb{R}^2_{++}$ . No es cóncava ni convexa, pues  $H = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$  es una matriz indeterminada (no es positiva ni negativa), pues su determinante es negativo.

7.3)  $f(x_1, x_2) = x_1^2 - x_2^2$ ,  $Dom(f) = \mathbb{R}^2$ . No es cóncava ni convexa, pues  $H = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$  es una matriz indeterminada (no es positiva ni negativa), pues su determinante es negativo. 7.4)  $f(x_1, x_2) = e^{x_1^2 + x_2^2}$ ,  $Dom(f) = \mathbb{R}^2$ . Es estrictamente convexa, pues

$$H = \begin{pmatrix} 4x^2e^{x^2+y^2} + 2e^{x^2+y^2} & 4xye^{x^2+y^2} \\ 4xye^{x^2+y^2} & 4y^2e^{x^2+y^2} + 2e^{x^2+y^2} \end{pmatrix}$$

es una matriz positivo definida (hállese sus valores característicos o verifíquese que sus menores principales conducentes son todas estrictamente positivas).

7.5)  $f(x_1, x_2) = \ln(x_1 x_2)$ ,  $\text{Dom}(f) = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 x_1 > 0\}$ . Es estrictamente cóncava, pues  $H = \begin{pmatrix} \frac{1}{-x^2} & 0\\ 0 & \frac{1}{-x^2} \end{pmatrix}$  es una matriz negativo definida (hállense sus valores

característicos o verifíquese que sus menores principales conducentes son todas de signo intercalado y distintas de cero).

7.6)  $f(x,y,z) = \ln(x+y)$ ,  $\text{Dom}(f) = \{(x,y) \in \mathbb{R}^2 : x+y>0\}$ . Es cóncava, pues

$$H = \begin{pmatrix} -\frac{1}{(x+y)^2} & -\frac{1}{(x+y)^2} \\ -\frac{1}{(x+y)^2} & -\frac{1}{(x+y)^2} \end{pmatrix}$$

es una matriz negativo semidefinida (hállense sus valores característicos o verifíquese que sus menores principales conducentes son todas de signo intercalado o iguales a cero).

7.7)  $f(x,y) = \sqrt{x+y}$ ,  $Dom(f) = \{(x,y) \in \mathbb{R}^2 : x+y \ge 0\}$ . Es cóncava, pues

$$H = \begin{pmatrix} -\frac{1}{4(x+y)^{2/3}} & -\frac{1}{4(x+y)^{2/3}} \\ -\frac{1}{4(x+y)^{2/3}} & -\frac{1}{4(x+y)^{2/3}} \end{pmatrix}$$

es una matriz negativo semidefinida (hállense sus valores característicos o verifíquese que sus menores principales arbitrarios son todas de signo intercalado o iguales a cero).

7.8)  $f(x,y) = x + y - e^x - e^y$ ,  $Dom(f) = \mathbb{R}^2$ . Es estrictamente cóncava, debido a que  $H = \begin{pmatrix} -e^x & 0 \\ 0 & -e^y \end{pmatrix}$  es una matriz negativo definida (hállense sus valores característicos

o verifíquese que sus menores principales conducentes son todas de signos intercalados y distintas a cero).

7.9)  $f(x, y, z) = x^2 + 12y^2 + 4z^2 - 6xy - 2xz + 12yz$ ,  $Dom(f) = \mathbb{R}^3$ . Es convexa, debido a que  $H=\begin{pmatrix}2&-6&-2\\-6&24&12\\-2&12&8\end{pmatrix}$  es una matriz positivo semidefinida (hállense sus valores

característicos o verifíquese que sus menores principales arbitrarios son todas positivas o iguales a cero).

7.11)  $f(x,y,z) = -x^2 - 6y^2 - 3z^2 + 4xy + 2xz - 8yz$ ,  $Dom(f) = \mathbb{R}^3$ . Es cóncava, debido a que  $H = \begin{pmatrix} -2 & 4 & 2 \\ 4 & -12 & -8 \\ 2 & -8 & -6 \end{pmatrix}$  es una matriz negativo semidefinida (hállense sus valores

característicos o verifíquese que sus menores principales arbitrarios son todas de signo intercalado o iguales a cero).

8. Diga para qué valores de a y b son cóncavas o convexas (sobre su dominio de definición) las siguientes funciones:

8.1) 
$$f(x, y, z) = 2x^2 + 3y^2 - az^2 + 4xy + 3yz$$

La matriz hessiana  $H = \begin{pmatrix} 4 & 4 & 0 \\ 4 & 6 & 3 \\ 0 & 3 & -2a^2 \end{pmatrix}$  es una matriz cuyos menores arbitrarios son:  $m_1^{23} = 4, m_1^{13} = 6, m_1^{12} = -2a, m_2^1 = \begin{vmatrix} 6 & 3 \\ 3 & -2a \end{vmatrix}, m_2^2 = \begin{vmatrix} 4 & 0 \\ 0 & -2a \end{vmatrix}, m_2^1 = \begin{vmatrix} 4 & 4 \\ 4 & 6 \end{vmatrix}, m_3 = |H|.$ 

$$m_1^{23} = 4, \ m_1^{13} = 6, \ m_1^{12} = -2a, \ m_2^1 = \begin{vmatrix} 6 & 3 \\ 3 & -2a \end{vmatrix}, \ m_2^2 = \begin{vmatrix} 4 & 0 \\ 0 & -2a \end{vmatrix}, \ m_2^1 = \begin{vmatrix} 4 & 4 \\ 4 & 6 \end{vmatrix}, \ m_3 = |H|.$$

La función no puede ser cóncava, pues para ello los menores de orden impar deberían ser negativos todos, y hay por lo menos dos que no lo son:  $m_1^{23} = 4 > 0$  y  $m_1^{13} = 6 > 0$ .

Para que sea convexa, todos los menores arbitrarios deberían ser positivos o iguales a 0, y esto solo se cumple para  $a \leq -9/4$ .

8.2) 
$$f(x, y, z) = x^2 + 3y^2 + az^2 - 3bxy$$
.

La matriz hessiana  $H = \begin{pmatrix} 2 & -3b & 0 \\ -3b & 6 & 0 \\ 0 & 0 & 2a \end{pmatrix}$  es una matriz cuyos menores arbitrarios son:  $m_1^{23} = 2, m_1^{13} = 6, m_1^{12} = 2a, m_2^1 = \begin{vmatrix} 6 & 0 \\ 0 & 2a \end{vmatrix}, m_2^2 = \begin{vmatrix} 2 & 0 \\ 0 & 2a \end{vmatrix}, m_2^3 = \begin{vmatrix} 2 & -3b \\ -3b & 6 \end{vmatrix}, m_3 = |H|.$ 

$$m_1^{23} = 2, \ m_1^{13} = 6, \ m_1^{12} = 2a, \ m_2^1 = \begin{vmatrix} 6 & 0 \\ 0 & 2a \end{vmatrix}, \ m_2^2 = \begin{vmatrix} 2 & 0 \\ 0 & 2a \end{vmatrix}, \ m_2^3 = \begin{vmatrix} 2 & -3b \\ -3b & 6 \end{vmatrix}, \ m_3 = |H|$$

La función no puede ser cóncava, pues para ello los menores de orden impar deberían ser

negativos todos, y hay por lo menos dos que no lo son:  $m_1^{23}=2>0$  y  $m_1^{13}=6>0$ . Para que sea convexa, todos los menores arbitrarios deberían ser positivos o iguales a 0, y esto solo se cumple para  $a \geq 0 \wedge 4a - 3b^2 \geq 0 \wedge -\sqrt{4/3} \leq b \leq \sqrt{4/3}$ 

9. Determine el mayor conjunto S sobre el cual la función f sea convexa.

9.1) 
$$f(x, y, z) = x^2y^2 + 4x^2$$
.

La matriz hessiana  $H=\begin{pmatrix}2y^2+8&4xy\\4xy&2x^2\end{pmatrix}$  es una matriz cuyos menores arbitrarios son:  $m_1^2=2y^2+8,\ m_1^1=2x^2,\ m_2=|H|=4x^2(4-3y^2).$ 

Para que sea convexa, todos los menores arbitrarios deberían ser positivos o iguales a 0. Los menores de orden 1 siempre lo son, pero el menor de orden 2 solo es positivo o igual a cero para  $\frac{-2}{\sqrt{3}} \le y \le \frac{2}{\sqrt{3}}$ . Es decir, f(x, y, x) es convexa sobre

$$S = \{(x, y) \in \mathbb{R}^2 : \frac{-2}{\sqrt{3}} \le y \le \frac{2}{\sqrt{3}}\}$$

9.2) 
$$f(x,y) = \sqrt{2x+y}$$
.

9.3) 
$$f(x,y) = x^3 - xy + 3y^3 + 5$$
.

# Ejercicios adicionales no evaluables en calificadas.

1. El problema de la maximización del beneficio puede expresarse de la siguiente manera,

$$\max \Pi = \sum_{i=1}^{n} p_i y_i = \boldsymbol{p} \cdot \boldsymbol{y}$$
$$y \in Y.$$

En este caso, se incorpora en el vector y tanto los insumos como los productos, y en el vector p, tanto el precio de los bienes fabricados, como el de los insumos. El conjunto Y se conoce como conjunto de producción. Demuestre que la función de beneficios  $\Pi$  es convexa en precios.

Supongamos que y maximiza los beneficios a los precios p y y' los maximiza a los precios p'. En ese caso,

$$\Pi(\mathbf{p}'') = \mathbf{p}''\mathbf{y}'' = (t\mathbf{p} + (1-t)\mathbf{p}')\mathbf{y}'' = t\mathbf{p}\mathbf{y}'' + (1-t)\mathbf{p}'\mathbf{y}''.$$

Pero, de acuerdo con la definición de la función de beneficios,

$$tpy'' \le tpy$$
$$(1-t)p'y'' \le (1-t)p'y'.$$

Sumando estas expresiones, se concluye que

$$\Pi(\mathbf{p}'') \le t\Pi(\mathbf{p}) + (1-t)\Pi(\mathbf{p}').$$

Así, si un precio fluctúa con probabilidad q tomando un valor  $p_1$ , y con probabilidad 1-q tomando un valor  $p_2$ , ¿es beneficioso para la empresa fijar el precio a  $\overline{p} = qp_1 + (1-q)p_2$ ? Dada la convexidad de  $\Pi$ ,

$$q\Pi(p_1) + (1-q)\Pi(p_2) \ge \Pi(qp_1 + (1-q)p_2) = \Pi(\overline{p}).$$

Por ende, la empresa pierde con esa política de estabilización de precios.

- **2.** Plantee el problema de minimización del gasto y pruebe que la función de gasto  $e(p, \overline{u})$  es cóncava en p. Sugerencia: no intente obtener una expresión analítica para e.
- **3.** Sean  $x_1, ..., x_n > 0$ . Pruebe que

$$\left(\prod_{i=1}^{n} x_i\right)^{1/n} \le \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Sugerencia: use la concavidad de la función logaritmo neperiano y luego, aplique la desigualdad de Jensen.

Definimos  $\theta_i=1/n$  para todo i. Ciertamente  $\sum_{i=1}^n \theta_i=1$ . Así, como l<br/>n es cóncava

$$\sum_{i=1}^{n} \theta_i \ln(x_i) \le \ln \left( \sum_{i=1}^{n} \theta_i x_i \right)$$

o sea,

$$\frac{1}{n} \left( \sum_{i=1}^{n} \ln(x_i) \right) \le \ln \left( \sum_{i=1}^{n} \frac{x_i}{n} \right).$$

Pero recordando que  $\ln(\prod_{i=1}^n x_i) = \sum_{i=1}^n \ln(x_i)$  (logaritmo del producto es la suma de logaritmos), y el hecho que  $a \ln x = \ln x^a$ , tenemos

$$\ln\left(\prod_{i=1}^{n} x_i\right)^{1/n} \le \ln\left(\frac{1}{n} \sum_{i=1}^{n} x_i\right).$$

Finalmente, como  $\exp(\cdot)$  es creciente, aplicando en ambos lados esta función, se concluye que

$$\left(\prod_{i=1}^{n} x_i\right)^{1/n} \le \frac{1}{n} \sum_{i=1}^{n} x_i.$$

**4.** Demuestre que, si f(x) y g(x) son convexas,

$$\phi(x) = \max\{f(x), g(x)\}\$$

es convexa. Luego, análogamente, demuestre que, si f(x) y g(x) son cóncavas,

$$\psi(x) = \min\{f(x), g(x)\}\$$

es cóncava.

Sea  $\theta \in [0,1], x, y \in S$ . Entonces, como f y g son convexas,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

$$q(\theta x + (1 - \theta)y) < \theta q(x) + (1 - \theta)q(y).$$

Luego

$$\begin{split} \phi(\theta x + (1 - \theta)y) &\leq \max\{f(\theta x + (1 - \theta)y), g(\theta x + (1 - \theta)y)\} \\ &\leq \max\{\theta f(x) + (1 - \theta)f(y), \theta g(x) + (1 - \theta)g(y)\} \\ &\leq \theta \max\{f(x), g(x)\} + (1 - \theta) \max\{f(y), g(y)\} \\ &= \theta \phi(x) + (1 - \theta)\phi(y). \end{split}$$

Es análogo para el caso de la función  $\psi$ .