GUÍA PARA TRAZAR DIAGRAMAS DE BODE MEDIANTE MÉTODO ASINTÓTICO

Para obtener el diagrama de BODE de amplitud y fase de una función de transferencia $F_{(P)}$, la misma deberá tener el formato expresado en la ecuación (1) para poder emplear el método **asintótico** para el trazado.

$$F_{(P)} = \frac{Kte \bullet P^n \bullet (P+\alpha) \bullet (P+\beta) \bullet \bullet \bullet \bullet (AP^2 + BP + C)}{P^m \bullet (P+a) \bullet (P+b) \bullet \bullet \bullet \bullet (aP^2 + bP + c)}$$

Describiremos a continuación los pasos a seguir para la obtención del diagrama de BODE de amplitud y fase, de una función de transferencia, cuyo formato es similar al indicado en la expresión anterior.

PASO 1: Ordenar la función de transferencia F_(P).

A) Si no existen en la función de transferencia $F_{(P)}$, ni en el numerador, ni en el denominador funciones de segundo grado del tipo $(AP^2 + BP + C)$, transformar las expresiones del tipo $(P+\alpha)^{\pm 1}$ del siguiente modo:

$$(\mathbf{P} + \alpha)^{\pm 1} = \alpha^{\pm 1} (\mathbf{P} + \alpha)^{\pm 1}$$

Los términos del tipo $\alpha^{\pm 1}$ pasarán a formar parte de la constante total (Kte). El procedimiento anterior de transformación se realiza para poder representar los términos $(P+\alpha)^{\pm 1}$ en forma asintótica (ver Teórico).

B) Si existen en la función de transferencia $F_{(P)}$, ya sea en el numerador, o en el denominador funciones de segundo grado del tipo $(AP^2 + BP + C)$ además de funciones de primer grado del tipo $(P+\alpha)^{\pm 1}$, tratar a estas últimas exáctamente igual como se indicó en el **PASO 1-A**.

En las funciones de segundo grado debemos realizar el siguiente cambio:

$$(AP^2 + BP + C) = A (P^2 + B'P + C')$$

en donde **A** pasará a formar parte de la constante total (Kte.).

Luego, debemos determinar el tipo de función de segundo grado (amortiguamiento crítico, sobreamortiguamiento ó subamortiguamiento), para ello recordar que:

Con estas relaciónes, obtener el valor de ξ , e identificar la función de segundo grado de acuerdo a la Tabla 1.

VALOR DE ξ	TIPO DE FUNCIÓN	CASO	PARA TRAZADO DE BODE
$\xi = 1$	$(P+\alpha)^2$	AMORTIGUAMIENTO CRÍTICO	TRAZAR ASÍNTOTA DE SEGUNDO GRADO
ξ<1	$(P+\alpha+j\beta)(P+\alpha-j\beta)$	SUBAMORTIGUADO	TRAZAR ASÍNTOTA DE SEGUNDO GRADO Y CORREGIR DE ACUERDO AL VALOR DE \$ MEDIANTE GRÁFICO
ξ > 1	(P+α) (P+β)	SOBREAMORTIGUADO	TRATAR COMO DOS RAICES SEPARADAS COMO SE INDICÓ EN EL PASO 1 A)

TABLA 1.

Si $\xi > 1$ obtener el valor de las raices de la función de segundo grado y tratar los términos, como se indicó en el **PASO 1-A**, es decir :

$$(P + \alpha)^{\pm 1} (P + \beta)^{\pm 1} = \alpha^{\pm 1} * \beta^{\pm 1} (P + 1)^{\pm 1} (P + 1)^{\pm 1}$$

Los términos del tipo $\, \alpha^{\!\pm \! 1} * \beta^{\!\pm \! 1} \,$ pasarán a formar parte de la constante total (Kte).

Si $\xi \le 1$ se realizará el siguiente ordenamiento:

$$(P^2 + B'P + C') = C' (P^2 + B'P + 1)$$

El término **C'** pasa a formar parte de la constante total (Kte.).

Al trazar las asíntotas en el **PASO 5**, se trazará una asintota de segundo grado con pendiente de + 40 dB o -40 dB de acuerdo a que se trate de función en numerador (ceros) o en el denominador (polos) respectivamente.

<u>PASO 2</u>: Realizar el escaleo para determinar las dimensiones de amplitud, fase y frecuencia (ω), mínimos y máximos aproximados de la función de transferencia para realizar la graduación de los ejes del gráfico.

<u>ESCALEO EN AMPLITUD</u>: Los elementos que determinan la escala de amplitud mínima y máxima son la constante (Kte.), la cantidad de ceros y polos al origen y la alternancia y grado de los ceros y polos fuera del origen.

Recordemos como ejemplo que si un cero y un polo se encuentran en la misma década, la amplitud resultante del módulo, no superará los \pm 20 dB y que si se encuentran a una década de distancia la amplitud resultante del módulo, no superará los \pm 40 dB.

Por otro lado si la constante (Kte.) está entre 0.1 y 10 debemos agregar \pm 20 dB respectivamente a lo expuesto anteriormente.

<u>ESCALEO EN FASE</u>: Los elementos que determinan la escala de fase mínima y máxima aproximada, son los ceros y polos al origen y la alternancia y grado de los ceros y polos fuera del origen.

Por otro lado es importante determinar a partir de la función de transferencia la fase para t=0 y para t=∞, lo cuál puede dar en conjunto con la alternancia de polos y ceros fuera del origen un idea de fase mínima y máxima.

Recordemos como ejemplo que si un cero y un polo se encuentran en la misma década, la fase resultante, no superará los $\pm 90^{\circ}$ y que si se encuentran a una década de distancia la fase resultante del módulo, no superará los $\pm 180^{\circ}$.

NOTA: este paso puede resultar algo complicado al principio pero con la práctica, se lograrán buenos resultados.

<u>ESCALEO EN FRECUENCIA</u>: estará determinado por las singularidades cuyas frecuencias de cortes sean la mínima y la máxima de la función de transferencia $F_{(P)}$, pues se debe recordar que la asintota de fase comienza una década antes de la frecuencia de corte y finaliza una década despues. De este modo, la frecuencia mínima estará determinada por la singularidad (cero o polo), cuya frecuencia de corte sea la menor, se tomará como mínimo, una década antes de este valor y la frecuencia máxima estará determinada por la singularidad (cero o polo), cuya frecuencia de corte sea la mayor, se tomará como mínimo, una década más, después de este valor.

<u>PASO 3</u>: Marcar sobre los gráficos de amplitud y fase, las posiciones de los ceros y polos de la función de transferencia.

A continuación damos un ejemplo que puede ser tomado como referencia:

Como orientación, se recomienda ceros y polos en el origen marcarlos por encima de $\omega=1$ con un tamaño menor que los ceros y polos que no están en el origen, a los cuales se los marca sobre el eje de frecuencias (ω), sobre la frecuencia de corte correspondiente. A las funciones de segundo grado, como orientación las marcamos con el indicador de grado y si estamos en un caso donde debemos hacer la corrección de ξ la encerramos en un cuadrado.

NOTA: Se da por sobreentendido que el alumno puede adaptar la simbología de marcación a su gusto, lo anterior, es solo una orientación.

PASO 4: Obtener el módulo de la constante total.

Recordar que:

/Kte.TOTAL/_{dB} = 20 LOG₁₀ (Kte *
$$\alpha^{\pm 1}$$
 * $\beta^{\pm 1}$ * . . . * $\Omega^{\pm 1}$)

Como resultado se obtendrá un valor positivo en decibeles, si la constante total (Kte.TOTAL) es mayor que 1 y un valor negativo en decibeles, si es un valor menor que 1.

PASO 5: Trazar las asintotas.

Comenzar trazando la asíntota que corresponde a la constante, (*para evitar olvidarla*). Luego trazar las asintotas de los ceros y polos en el origen . Por ultimo trazar las asintotas del resto de las singularizades de la función de transferencia comenzando desde la parte izquierda del eje de frecuencias .

Al trazar las asintotas correspondientes al módulo recordar :

- Las asintotas de ceros y polos en el origen, tienen pendiente de +20 dB/década y -20 dB/década respectivamente, aumentando en forma proporcional de acuerdo al grado. (Ejemplo: ±40 dB/dec.→ grado 2, ±60 dB/dec.→ grado 3, etc). Estas asíntotas pasan por 0 dB para ω = 1.
- Las asintotas correspondientes a ceros y polos fuera del origen, valen 0dB hasta la frecuencia de corte y luego de acuerdo al grado, tendrán una pendiente de ±20 db/dec. →grado 1 ó de ±40 dB/dec. →grado 2, etc.

Al trazar las asintotas correspondientes a la fase recordar:

• No es necesario trazar la asintota de fase de la constante pues vale cero grados para todas las frecuencias. Trazar en primer lugar la asintota de fase correspondiente a los ceros y polos en el origen, la misma será una línea horizontal que pasa por +90° ó -90° respectivamente si el grado es uno, ó por +180° ó -180° respectivamente si el grado es dos, etc., para todos los valores de frecuencia.

Trazar las asíntotas de fase de los ceros y polos fuera del origen recordando que la fase vale cero grados hasta una década anterior a la frecuencia de corte correspondiente, a partir de allí la pendiente crece con +45°/dec. (ceros) ó -45°/dec. (polos), tomando el valor de $\pm 45^\circ$ en la frecuencia de corte y de $\pm 90^\circ$ en la década siguiente a la misma. A partir de la década siguiente a la frecuencia de corte, y hasta $\omega = \infty$, la fase valdrá $\pm 90^\circ$ (ceros) y -90° (polos) . Lo antes explicado se multiplica por n= 1,2, etc. de acuerdo al grado de la función ($P+\alpha$) $^{\pm n}$.

Recordar:

PASO 6 : Sumar asíntotas comenzando desde la izquierda y hacia la derecha.

- **A)** Si la función de transferencia $F_{(P)}$ no tiene ni ceros ni polos en el origen, comenzar a sumar desde la asíntota de la constante. *Recordar que se suman las pendientes de las asíntotas*.
- **B**) Trazado del Módulo: Si la función de transferencia $F_{(P)}$ tiene ceros ó polos en el origen, trasladar la asíntota correspondiente, en foma paralela, para que toque a la síntota de la constante, en ω =1; esto equivale a sumar la asíntota del cero ó polo al origen, con la asíntota de la constante. Continuar sumando desde ésta asíntota trasladada, las restantes asíntotas de izquierda a derecha.

Trazado de la fase: Si la función de transferencia $F_{(P)}$ tiene ceros ó polos en el origen, comenzar a sumar desde la asintota de fase, del cero ó el polo al origen. Continuar sumando desde ésta asíntota, las restantes asíntotas de izquierda a derecha.

C) Si existen funciones de segundo grado en el númerador o en el denominador de la función de transferencia $F_{(P)}$, que pertenezcan al caso sub-amortiguado ($\xi < 1$), obtener en primer lugar la resultante total a partir de la suma de todas las asíntotas y por último realizar la corrección del gráfico con el ξ correspondiente, utilizando la gráfica de funciones de segundo grado (Ver Guía de trabajos Prácticos de la Cátedra).

PASO 7: Análisis y Conclusiones.En este paso, se determinará las características de Módulo y Fase de la función de transferencia F_(P) bajo estudio.

Es muy importante en este paso verificar si los gráficos de amplitud y fase están bien trazados, para ello observamos las pendientes y valores de los gráficos para frecuencias muy bajas $\omega \to 0$ y para frecuencias elevadas $\omega \to \infty$, y comparamos los resultados, haciendo lo propio en forma analítica con la función de transferencia $F_{(P)}$.

Como referencia, en la Tabla 2, se indica como debe comenzar y terminar el módulo y la fase cundo se analiza una función de transferencia $F_{(P)}$, para ω =0 y ω = ∞ .

FRECUENCIAS BAJAS $(\omega \rightarrow 0)$			
$\mathbf{F}_{(\mathbf{P})}$	MÓDULO	FASE	
$ \mathbf{F}_{(\mathbf{P})} _{\boldsymbol{\omega}=0}=\mathbf{K}\mathbf{t}\mathbf{e}.$	±#dB	0 °	
	Pendiente 0°	Pendiente 0°	
$\mathbf{F}_{(\mathbf{P})} _{\boldsymbol{\omega}=0}=\mathbf{P}^{\mathbf{n}}$	Pendiente de	n*(+90°)	
	n*(+20db/dec.)	Pendiente 0°	
$ \mathbf{F}_{(\mathbf{P})} _{\boldsymbol{\omega}=0} =\mathbf{P}^{\mathbf{n}}$	Pendiente de	n*(-90°)	
	n*(-20db/dec.)	Pendiente 0°	

FRECUENCIAS ALTAS (ω→∞)			
$\mathbf{F}_{(\mathbf{P})}$	MÓDULO	FASE	
$ \mathbf{F}_{(\mathbf{P})} _{\boldsymbol{\omega}=\boldsymbol{\infty}}=\mathbf{K}\mathbf{te}.$	±#dB	0°	
	Pendiente 0°	Pendiente 0°	
$ \mathbf{F}_{(\mathbf{P})} _{\boldsymbol{\omega}=\boldsymbol{\infty}}=\mathbf{P}^{\mathbf{n}}$	Pendiente de	n*(+90°)	
, ,	n*(+20db/dec.)	Pendiente 0°	
$ \mathbf{F}_{(\mathbf{P})} _{0=\mathbf{\infty}} = \mathbf{P}^{-\mathbf{n}}$	Pendiente de	n*(-90°)	
	n*(-20db/dec.)	Pendiente 0°	

TABLA 1.

NOTA: Finalmente: la gráfica del Módulo no puede comenzar ni terminar, con pendientes distintas de $0 \text{ d}\beta$ /dec. o un múltiplo entero de $\pm 20 \text{ d}B$ /dec.

La gráfica de la fase por su parte no puede comenzar ni terminar, con una pendiente distinta de 0° , ni tener valores angulares distintos de 0° o un múltiplo entero de $\pm 90^{\circ}$.