$EDA_Springleaf_screencast$

December 23, 2019

This is a notebook, used in the screencast video. Note, that the data files are not present here in Jupyter hub and you will not be able to run it. But you can always download the notebook to your local machine as well as the competition data and make it interactive.

```
In [1]: import os
        import numpy as np
        import pandas as pd
        from tqdm import tqdm_notebook
        import matplotlib.pyplot as plt
        %matplotlib inline
        import warnings
        warnings.filterwarnings('ignore')
        import seaborn
In [2]: def autolabel(arrayA):
            ''' label each colored square with the corresponding data value.
            If value > 20, the text is in black, else in white.
            arrayA = np.array(arrayA)
            for i in range(arrayA.shape[0]):
                for j in range(arrayA.shape[1]):
                        plt.text(j,i, "%.2f"%arrayA[i,j], ha='center', va='bottom',color='w')
        def hist_it(feat):
            plt.figure(figsize=(16,4))
            feat[Y==0] .hist(bins=range(int(feat.min()),int(feat.max()+2)),normed=True,alpha=0.8)
            feat[Y==1] .hist(bins=range(int(feat.min()),int(feat.max()+2)),normed=True,alpha=0.5)
            plt.ylim((0,1))
        def gt_matrix(feats,sz=16):
            a = []
            for i,c1 in enumerate(feats):
                for j,c2 in enumerate(feats):
                    mask = (~train[c1].isnull()) & (~train[c2].isnull())
```

1 Read the data

2 Data overview

Probably the first thing you check is the shapes of the train and test matrices and look inside them.

```
In [6]: print 'Train shape', train.shape
        print 'Test shape', test.shape
Train shape (145231, 1934)
Test shape (145232, 1933)
In [10]: train.head()
Out[10]:
            ID VAR_0001
                          VAR_0002
                                    VAR_0003
                                               VAR_0004 VAR_0005
                                                                   VAR_0006
                                                                              VAR_0007 \
             2
                       Η
                               224
                                                                C
         0
                                            0
                                                    4300
                                                                         0.0
                                                                                   0.0
             4
                       Η
                                 7
                                           53
                                                    4448
                                                                В
                                                                         1.0
                                                                                   0.0
             5
                                                                 C
                       Η
                                116
                                            3
                                                    3464
                                                                         0.0
                                                                                   0.0
         3
             7
                       Η
                                240
                                          300
                                                    3200
                                                                 С
                                                                                   0.0
                                                                         0.0
             8
                       R
                                72
                                          261
                                                    2000
                                                                         0.0
                                                                                   0.0
           VAR_0008 VAR_0009
                                       VAR_1926 VAR_1927 VAR_1928
                                                                      VAR_1929 VAR_1930 \
```

0	False	False		98	98	998	99999998	998
1	False	False		98	98	998	999999998	998
2	False	False		98	98	998	999999998	998
3	False	False		98	98	998	999999998	998
4	False	False		98	98	998	999999998	998
	VAR_1931	VAR_1932	VAR_1933	VAR_1934	target			
0	VAR_1931 998	VAR_1932 9998	VAR_1933 9998	VAR_1934 IAPS	target O			
0	-	_			0			
0 1 2	998	9998	9998	IAPS	0			
1	998 998	9998 9998	9998 9998	IAPS IAPS	0			

[5 rows x 1934 columns]

In [11]: test.head()

Out[11]:	II	VAR_C	001 VA	R_0002	VAR_OC	03 VA	R_0004	VAR_OO	05 V.	AR_0006	VAR_000	7 \	
C) 1	_	R	360		25	2251		В	2.0	2.	0	
1	. 3	3	R	74	1	.92	3274		C	2.0	3.	0	
2	: 6	3	R	21		36	3500		C	1.0	1.	0	
3	3)	R	8		2	1500		В	0.0	0.	0	
4	10)	H	91		39	84500		C	8.0	3.	0	
	VAF	8_0008	VAR_000	9	. VA	R_1925	VAR_19	926 VAR	_1927	VAR_19	28 VAR	_1929	\
C)	False	Fals	e		0		98	98			99998	
1		False	Fals	e	•	0		98	98	9	98 9999	99998	
2	?	False	Fals	e	•	0		98	98	9	98 9999	99998	
3	;	False	Fals	e	•	0		98	98	9	98 9999	99998	
4	1	False	Fals	е	•	0		98	98	9	98 9999	99998	
	V.	R_1930	VAR_1	931 VA	R_1932	VAR_1	933 V.	AR_1934					
C)	998	}	998	9998	9	998	IAPS					
1		998	}	998	9998	9	998	IAPS					
2)	998	}	998	9998	9	998	IAPS					
3	;	998	}	998	9998	9	998	IAPS					
4	:	998	;	998	9998	9	998	IAPS					

[5 rows x 1933 columns]

There are almost 2000 anonymized variables! It's clear, some of them are categorical, some look like numeric. Some numeric feateures are integer typed, so probably they are event conters or dates. And others are of float type, but from the first few rows they look like integer-typed too, since fractional part is zero, but pandas treats them as float since there are NaN values in that features.

From the first glance we see train has one more column target which we should not forget to drop before fitting a classifier. We also see ID column is shared between train and test, which sometimes can be successfully used to improve the score.

It is also useful to know if there are any NaNs in the data. You should pay attention to columns with NaNs and the number of NaNs for each row can serve as a nice feature later.

```
In [13]: # Number of NaNs for each object
         train.isnull().sum(axis=1).head(15)
Out[13]: 0
               25
         1
               19
         2
               24
         3
               24
         4
               24
         5
               24
         6
               24
         7
               24
         8
               16
         9
               24
         10
               22
         11
               24
         12
               17
         13
               24
         14
               24
         dtype: int64
In [14]: # Number of NaNs for each column
         train.isnull().sum(axis=0).head(15)
Out[14]: ID
                       0
         VAR_0001
                       0
         VAR_0002
                       0
         VAR_0003
                       0
         VAR_0004
                       0
         VAR_0005
                       0
         VAR_0006
                      56
         VAR_0007
                      56
         VAR_0008
                      56
         VAR_0009
                      56
         VAR_0010
                      56
         VAR_0011
                      56
         VAR_0012
                      56
         VAR_0013
                      56
         VAR_0014
                      56
         dtype: int64
```

Just by reviewing the head of the lists we immediately see the patterns, exactly 56 NaNs for a set of variables, and 24 NaNs for objects.

3 Dataset cleaning

3.0.1 Remove constant features

All 1932 columns are anonimized which makes us to deduce the meaning of the features ourselves. We will now try to clean the dataset.

It is usually convenient to concatenate train and test into one dataframe and do all feature engineering using it.

```
In [15]: traintest = pd.concat([train, test], axis = 0)
```

First we schould look for a constant features, such features do not provide any information and only make our dataset larger.

```
In [16]: # `dropna = False` makes nunique treat NaNs as a distinct value
         feats_counts = train.nunique(dropna = False)
In [17]: feats_counts.sort_values()[:10]
Out[17]: VAR_0213
         VAR_0207
         VAR_0840
         VAR_0847
                     1
         VAR_1428
                    1
         VAR_1165
         VAR_0438
                     2
         VAR_1164
         VAR_1163
         VAR 1162
         dtype: int64
```

We found 5 constant features. Let's remove them.

3.0.2 Remove duplicated features

Fill NaNs with something we can find later if needed.

```
In [19]: traintest.fillna('NaN', inplace=True)
```

Now let's encode each feature, as we discussed.

We could also do something like this:

```
In [33]: # train_enc[col] = train[col].map(train[col].value_counts())
```

The resulting data frame is very very large, so we cannot just transpose it and use .duplicated. That is why we will use a simple loop.

```
In [36]: dup_cols
Out[36]: {'VAR_0009': 'VAR_0008',
          'VAR_0010': 'VAR_0008',
          'VAR_0011': 'VAR_0008',
          'VAR_0012': 'VAR_0008',
          'VAR_0013': 'VAR_0006',
          'VAR_0018': 'VAR_0008',
          'VAR_0019': 'VAR_0008',
          'VAR_0020': 'VAR_0008',
          'VAR_0021': 'VAR_0008',
          'VAR_0022': 'VAR_0008',
          'VAR_0023': 'VAR_0008',
          'VAR_0024': 'VAR_0008',
          'VAR_0025': 'VAR_0008',
          'VAR_0026': 'VAR_0008',
          'VAR_0027': 'VAR_0008',
          'VAR_0028': 'VAR_0008',
          'VAR_0029': 'VAR_0008',
          'VAR_0030': 'VAR_0008',
          'VAR_0031': 'VAR_0008',
          'VAR_0032': 'VAR_0008',
          'VAR_0038': 'VAR_0008',
          'VAR_0039': 'VAR_0008',
```

```
'VAR_0041': 'VAR_0008',
          'VAR_0042': 'VAR_0008',
          'VAR_0043': 'VAR_0008',
          'VAR_0044': 'VAR_0008',
          'VAR_0181': 'VAR_0180',
          'VAR_0182': 'VAR_0180',
          'VAR_0189': 'VAR_0188',
          'VAR_0190': 'VAR_0188',
          'VAR_0196': 'VAR_0008',
          'VAR_0197': 'VAR_0008',
          'VAR_0199': 'VAR_0008',
          'VAR_0201': 'VAR_0051',
          'VAR_0202': 'VAR_0008',
          'VAR_0203': 'VAR_0008',
          'VAR_0210': 'VAR_0208',
          'VAR_0211': 'VAR_0208',
          'VAR_0215': 'VAR_0008',
          'VAR_0216': 'VAR_0008',
          'VAR_0221': 'VAR_0008',
          'VAR_0222': 'VAR_0008',
          'VAR_0223': 'VAR_0008',
          'VAR_0228': 'VAR_0227',
          'VAR_0229': 'VAR_0008',
          'VAR_0238': 'VAR_0089',
          'VAR_0239': 'VAR_0008',
          'VAR_0357': 'VAR_0260',
          'VAR_0394': 'VAR_0246',
          'VAR_0438': 'VAR_0246',
          'VAR_0446': 'VAR_0246',
          'VAR_0512': 'VAR_0506',
          'VAR_0527': 'VAR_0246',
          'VAR_0528': 'VAR_0246',
          'VAR_0529': 'VAR_0526',
          'VAR_0530': 'VAR_0246',
          'VAR_0672': 'VAR_0670',
          'VAR_1036': 'VAR_0916'}
   Don't forget to save them, as it takes long time to find these.
In [37]: import cPickle as pickle
         pickle.dump(dup_cols, open('dup_cols.p', 'w'), protocol=pickle.HIGHEST_PROTOCOL)
```

'VAR_0040': 'VAR_0008',

Drop from traintest.

In [38]: traintest.drop(dup_cols.keys(), axis = 1,inplace=True)

4 Determine types

Let's examine the number of unique values.

In [50]:	nunique = nunique	train.nunique(dropna=False)
Out[50]:	ID	145231
	VAR_0001	3
	VAR_0002	820
	VAR_0003	588
	VAR_0004	7935
	VAR_0005	4
	VAR_0006	38
	VAR_0007	36
	VAR_0008	2
	VAR_0009	2
	VAR_0010	2
	VAR_0011	2
	VAR_0012	2
	VAR_0013	38
	VAR_0014	38
	VAR_0015	27
	VAR_0016	30
	VAR_0017	26
	VAR_0018	2
	VAR_0019	2
	VAR_0020	2
	VAR_0021	2
	VAR_0022	2
	VAR_0023	2
	VAR_0024	2
	VAR_0025	2
	VAR_0026	2
	VAR_0027	2
	VAR_0028	2
	VAR_0029	2
	VAR_1907	41
	VAR_1908	37
	VAR_1909	41
	VAR_1910	37
	VAR_1911	107
	VAR_1912	16370
	VAR_1913	25426
	VAR_1914	14226
	VAR_1915	1148
	VAR_1916	8

VAR_1917	10
VAR_1918	86
VAR_1919	383
VAR_1920	22
VAR_1921	18
VAR_1922	6798
VAR_1923	2445
VAR_1924	573
VAR_1925	11
VAR_1926	6
VAR_1927	10
VAR_1928	30
VAR_1929	591
VAR_1930	8
VAR_1931	10
VAR_1932	74
VAR_1933	363
VAR_1934	5
target	2
VAR_0004_mod50	50
Length: 1935,	dtype: int64

and build a histogram of those values

Let's take a looks at the features with a huge number of unique values:

0+[61].		TD	WAR ASIA	WAR 0007
Out[61]:	^	ID 2	VAR_0212 NaN	VAR_0227 311951
	0	4	9.20713e+10	2.76949e+06
	2	5	2.65477e+10	654127
	3	5 7	7.75753e+10	3.01509e+06
	4	<i>1</i> 8	6.04238e+10	118678
	5	14	7.73796e+10	1.76557e+06
	6		9.70303e+10	80151
	7	16 20	3.10981e+10	853641
	8	21	7.82124e+10	1.40254e+06
	9	22	1.94014e+10	2.2187e+06
	10	23	3.71295e+10	2.77679e+06
	11	23 24	3.01203e+10	434300
	12	25	1.80185e+10	1.48914e+06
	13	26	9.83358e+10	686666
	14	28	9.33087e+10	1.4847e+06
	15	30	2.01715e+10	883714
	16	31	4.15638e+10	2.6707e+06
	17	32	9.17617e+10	2.65485e+06
	18	35	3.81344e+10	487721
	19	36	NaN	2.54705e+06
	20	37	3.27144e+10	
	21	38	1.82142e+10	2.5813e+06
	22	40	7.70153e+10	2.59396e+06
	23	42	4.69701e+10	1.02977e+06
	24	43	9.84442e+10	1.45101e+06
	25	46	NaN	2.37136e+06
	26	50	9.25094e+10	665930
	27	51	3.09094e+10	497686
	28	52		1.95816e+06
	29	54	3.78768e+10	1.62591e+06
	145201	290409	8.80126e+10	1.83053e+06
	145202	290412	4.6152e+10	1.02024e+06
	145203	290414	9.33055e+10	1.88151e+06
	145204	290415	4.63509e+10	669351
	145205	290417	2.36028e+10	655797
	145206	290424	3.73293e+10	1.45626e+06
	145207	290426	2.38892e+10	1.9503e+06
	145208	290427	6.38632e+10	596365
	145209	290429	3.00602e+10	572119
	145210	290431	4.33429e+10	16120
	145211	290432	3.86543e+10	2.08375e+06
	145212	290434	9.21391e+10	1.89779e+06
	145213	290436	3.07472e+10	2.94532e+06
	145214	290439	7.83326e+10	2.54726e+06
	145215	290440	NaN	600318
	145216	290441	2.78561e+10	602505

```
145217 290443 1.90952e+10 2.44184e+06
145218 290445 4.62035e+10 2.87349e+06
145219 290447
                      NaN 1.53493e+06
145220 290448 7.54282e+10 1.60102e+06
145221 290449 4.30768e+10 2.08415e+06
145222 290450 7.81325e+10 2.85367e+06
145223 290452 4.51061e+10 1.56506e+06
145224 290453 4.62223e+10 1.46815e+06
145225 290454 7.74507e+10 2.92811e+06
145226 290457 7.05088e+10 2.03657e+06
145227 290458 9.02492e+10 1.68013e+06
145228 290459 9.17224e+10 2.41922e+06
145229 290461 4.51033e+10 1.53960e+06
145230 290463 9.14114e+10
                          2.6609e+06
```

[145231 rows x 3 columns]

The values are not float, they are integer, so these features are likely to be even counts. Let's look at another pack of features.

Out[64]:	VAR_0541	VAR_0543	VAR_0899	VAR_1081	VAR_1082	VAR_1087	\
0	49463	116783	112871	76857	76857	116783	
1	303472	346196	346375	341365	341365	346196	
2	94990	122601	121501	107267	107267	121501	
3	20593	59490	61890	45794	47568	59490	
4	10071	35708	34787	20475	23647	34708	
5	18877	28055	28455	21139	21139	28055	
6	321783	333565	886886	327744	327744	333565	
7	2961	5181	11084	4326	4326	5181	
8	20359	30114	33434	24969	27128	30114	
9	815	1300	7677	1197	1197	1300	
10	6088	15233	15483	7077	7077	15233	
11	432	1457	2000	621	621	757	
12	383	539	860	752	1158	539	
13	14359	47562	47562	17706	17706	47562	
14	145391	218067	214836	176627	176627	216307	
15	10040	12119	17263	10399	10399	12119	
16	4880	9607	9607	9165	9165	9607	
17	12900	35590	35781	26096	26096	35590	
18	104442	139605	150505	136419	142218	139605	
19	13898	25566	26685	20122	20122	25566	
20	3524	10033	10133	5838	5838	10033	
21	129873	204072	206946	183049	183049	204072	
22	3591	11400	17680	5565	5565	11400	
23	99999999	999999999	-99999	99999999	999999999	99999999	

24	1270	4955	12201	2490	2490	4955
25	2015	2458	2458	2015	2015	2458
	VAR_1179	VAR_1180	VAR_1181			
0	76857	76857	76857			
1	341365	341365	176604			
2	107267	107267	58714			
3	45794	47568	47568			
4	20475	23647	23647			
5	21139	21139	20627			
6	327744	327744	163944			
7	4326	4326	4326			
8	24969	27128	27128			
9	1197	1197	1197			
10	7077	7077	4033			
11	621	621	621			
12	752	1158	1158			
13	17706	17706	17706			
14	175273	175273	91019			
15	10399	10399	5379			
16	9165	9165	9165			
17	26096	26096	19646			
18	136419	142218	142218			
19	20122	20122	20122			
20	5838	5838	5838			
21	183049	183049	96736			
22	5565	5565	5565			
23	999999999	999999999	999999999			
24	2490	2490	2490			
25	2015	2015	1008			

These look like counts too. First thing to notice is the 23th line: 99999.., -99999 values look like NaNs so we should probably built a related feature. Second: the columns are sometimes placed next to each other, so the columns are probably grouped together and we can disentangle that.

Our conclusion: there are no floating point variables, there are some counts variables, which we will treat as numeric.

And finally, let's pick one variable (in this case 'VAR_0015') from the third group of features.

166

7.0

```
8.0
                         97
         -999.0
                         56
          9.0
                         51
          10.0
                         39
          11.0
                         18
          12.0
                         16
          13.0
                          9
          14.0
                          8
          15.0
                          8
          16.0
                          6
          22.0
                          3
          21.0
                          3
          19.0
                          1
          35.0
                          1
          17.0
                          1
          29.0
                          1
          18.0
                          1
          32.0
                          1
          23.0
                          1
         Name: VAR_0015, dtype: int64
In [5]: cat_cols = list(train.select_dtypes(include=['object']).columns)
```

5 Go through

Let's replace NaNs with something first.

```
In [65]: train.replace('NaN', -999, inplace=True)
```

Let's calculate how many times one feature is greater than the other and create cross tabel out of it.

num_cols = list(train.select_dtypes(exclude=['object']).columns)

Indeed, we see interesting patterns here. There are blocks of geatures where one is strictly greater than the other. So we can hypothesize, that each column correspondes to cumulative counts, e.g. feature number one is counts in first month, second -- total count number in first two month and so on. So we immediately understand what features we should generate to make tree-based models more efficient: the differences between consecutive values.

5.1 VAR_0002, VAR_0003

```
plt.ylim((0,0.03))
plt.xlim((-10,1010))
```

Out[59]: (-10, 1010)


```
In [39]: train['VAR_0002'].value_counts()
```

```
Out[39]: 12
                  5264
          24
                  4763
          36
                 3499
          60
                  2899
          6
                  2657
          13
                  2478
          72
                  2243
          48
                  2222
          3
                  2171
          4
                  1917
          2
                  1835
          84
                  1801
          120
                  1786
          1
                  1724
          7
                  1671
          26
                  1637
          5
                  1624
```

```
14
                 1572
          18
                 1555
          8
                 1513
          999
                 1510
          25
                 1504
          96
                  1445
          30
                 1438
          9
                 1306
          144
                 1283
          15
                 1221
          27
                 1186
          38
                 1146
          37
                 1078
          877
                     1
          785
                     1
          750
                     1
          653
                     1
                     1
          784
          764
                     1
                     1
          751
          797
                     1
          926
                     1
          691
                     1
          808
                     1
          774
                     1
          902
                     1
          755
                     1
          656
                     1
          814
                     1
          813
                     1
          685
                     1
          739
                     1
          935
                     1
          906
                     1
          807
                     1
          550
                     1
          933
                     1
          804
                     1
          675
                     1
          674
                     1
          745
                     1
          778
                     1
                     1
          851
          Name: VAR_0002, Length: 820, dtype: int64
In [38]: train['VAR_0003'].value_counts()
Out[38]: 0
                 17436
```

24 12 60 36 72 48 6 1 3 84 2 999 4 120 7 13 18 96 14 8 5 9 30 25 144 15 61 26	3469 3271 3054 2498 2081 2048 1993 1797 1679 1553 1459 1428 1411 1356 1297 1296 1253 1228 1216 1189 1182 1100 1100 1090 1047 1008 929
560 552 550 804 543 668 794 537 531 664 632 709 597 965 852 648 596 466	921 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

```
592
           1
521
           1
533
            1
636
975
973
587
523
584
759
           1
583
           1
570
            1
Name: VAR_0003, Length: 588, dtype: int64
```

We see there is something special about 12, 24 and so on, sowe can create another feature x mod 12.

5.2 VAR_0004

6 Categorical features

Let's take a look at categorical features we have.

```
In [57]: train.loc[:,cat_cols].head().T
Out [57]:
                                                  0
                                                                        1
                                                  Η
         VAR_0001
                                                                        Η
         VAR_0005
                                                  С
                                                                        В
                                                                    False
         VAR_0008
                                             False
         VAR_0009
                                             False
                                                                    False
```

VAR_0010	False	False
VAR_0011	False	False
VAR_0012	False	False
VAR_0043	False	False
VAR_0044	[]	[]
VAR_0073	NaT	2012-09-04 00:00:00
VAR_0075	2011-11-08 00:00:00	2011-11-10 00:00:00
	NaT	
VAR_0156		NaT
VAR_0157	NaT	NaT
VAR_0158	NaT	NaT
VAR_0159	NaT	NaT
VAR_0166	NaT	NaT
VAR_0167	NaT	NaT
	NaT	NaT
VAR_0168		
VAR_0169	NaT	NaT
VAR_0176	NaT	NaT
VAR_0177	NaT	NaT
VAR_0178	NaT	NaT
VAR_0179	NaT	NaT
VAR_0196	False	False
VAR_0200	FT LAUDERDALE	SANTEE
VAR_0202	${ t BatchInquiry}$	${ t BatchInquiry}$
VAR_0204	2014-01-29 21:16:00	2014-02-01 00:11:00
VAR_0214	NaN	NaN
VAR_0216	DS	DS
VAR_0217	2011-11-08 02:00:00	2012-10-02 02:00:00
VAR_0222	C6	C6
VAR_0226	False	False
VAR_0229	False	False
	False	False
VAR_0230		
VAR_0232	True	False
VAR_0236	True	True
VAR_0237	FL	CA
VAR_0239	False	False
VAR_0274	FL	MI
VAR_0283	S	S
VAR_0305	S	S
VAR_0325	-1	H
VAR_0342	CF	EC
VAR_0352	0	0
VAR_0353	U	R
VAR_0354	0	R
	-	
VAR_0404	CHIEF EXECUTIVE OFFICER	-1
VAR_0466	-1	I
VAR_0467	-1	Discharged
VAR_0493	COMMUNITY ASSOCIATION MANAGER	-1
VAR_1934	IAPS	IAPS

	2	3	4
VAR_0001	— Н	Н	R
VAR_0005	C	C	N
VAR_0008	False	False	False
VAR_0009	False	False	False
VAR_0010	False	False	False
VAR_0011	False	False	False
VAR_0012	False	False	False
VAR_0043	False	False	False
VAR_0044	[]	[]	[]
VAR_0073	NaT	NaT	NaT
VAR_0075	2011-12-13 00:00:00	2010-09-23 00:00:00	2011-10-15 00:00:00
VAR_0156	NaT	NaT	NaT
VAR_0157	NaT	NaT	NaT
VAR_0158	NaT	NaT	NaT
VAR_0159	NaT	NaT	NaT
VAR_0166	NaT	NaT	NaT
VAR_0167	NaT	NaT	NaT
VAR_0168	NaT	NaT	NaT
VAR_0169	NaT	NaT	NaT
VAR_0176	NaT	NaT	NaT
VAR_0177	NaT	NaT	NaT
VAR_0178	NaT	NaT	NaT
VAR_0179	NaT	NaT	NaT
VAR_0196	False	False	False
VAR_0200	REEDSVILLE	LIBERTY	FRANKFORT
VAR_0202	${ t BatchInquiry}$	${ t BatchInquiry}$	${ t BatchInquiry}$
VAR_0204	2014-01-30 15:11:00	2014-02-01 00:07:00	2014-01-29 19:31:00
VAR_0214	NaN	NaN	NaN
VAR_0216	DS	DS	DS
VAR_0217	2011-12-13 02:00:00	2012-11-01 02:00:00	2011-10-15 02:00:00
VAR_0222	C6	C6	C6
VAR_0226	False	False	False
VAR_0229	False	False	False
VAR_0230	False	False	False
VAR_0232	True	False	True
VAR_0236	True	True	True
VAR_0237	WV	TX	IL
VAR_0239	False	False	False
VAR_0274	WV	TX	IL
VAR_0283	S	S	S
VAR_0305	P	P	P
VAR_0325	R	H	S
VAR_0342	UU	-1	-1 P
VAR_0352	R	R	R
VAR_0353	R	R	U
VAR_0354	-1	-1	0
VAR_0404	-1	-1	-1

-1	-1	-1	VAR_0466
-1	-1	-1	VAR_0467
-1	-1	-1	VAR_0493
BRANCH	RCC	IAPS	VAR_1934

VAR_0200, VAR_0237, VAR_0274 look like some georgraphical data thus one could generate geography related features, we will talk later in the course.

There are some features, that are hard to identify, but look, there a date columns VAR_0073 -- VAR_0179, VAR_0204, VAR_0217. It is useful to plot one date against another to find relationships.

We see that one date is strictly greater than the other, so the difference between them can be a good feature. Also look at horizontal line there -- it also looks like NaN, so I would rather create a new binary feature which will serve as an idicator that our time feature is NaN.