TD 5 - Anneaux, partie 1

Exercice 1. Soit Ω un ensemble. On note $\mathcal{P}(\Omega)$ l'ensemble des parties de Ω . Pour toute partie X de Ω , on note X^c le complémentaire de X dans Ω . Pour $X,Y \in \mathcal{P}(\Omega)$, on définit la différence symétrique de X et de Y par $X\Delta Y := (X^c \cap Y) \cup (X \cap Y^c)$. Montrer que $(\mathcal{P}(\Omega), \Delta, \cap)$ est un anneau commutatif. Est-il unitaire?

Exercice 2. Soit $n \ge 1$ un entier naturel. Montrer que l'ensemble $\mathcal{M}_n(\mathbb{Z})$ des matrices carrées de taille n à coefficients entiers est un anneau non commutatif et déterminer ses éléments inversibles.

Exercice 3. Soit $d \ge 1$ un entier naturel. On considère l'ensemble

$$\mathbb{Z}[i\sqrt{d}] := \left\{ a + i\sqrt{d}b \in \mathbb{C} \mid a, b \in \mathbb{Z} \right\}.$$

- 1. Montrer que $\mathbb{Z}[i\sqrt{d}]$ est un sous-anneau de \mathbb{C} .
- 2. Soit $z \in \mathbb{Z}[i\sqrt{d}]$. Montrer que z est inversible dans $\mathbb{Z}[i\sqrt{d}]$ si et seulement si |z|=1.

Exercice 4. Soit $(A, +, \cdot)$ un anneau. On dit que A est un anneau de Boole si pour tout $a \in A$, on a $a^2 = a$.

- 1. Soit Ω un ensemble. Montrer que $(\mathcal{P}(\Omega), \Delta, \cap)$ est un anneau de Boole.
- 2. Soit $(A, +, \cdot)$ un anneau de Boole.
 - (a) Montrer que a + a = 0 pour tout $a \in A$.
 - (b) Montrer que A est commutatif.
 - (c) Montrer que $A^{\times} = \{1_A\}.$
 - (d) Montrer que A est intègre si et seulement si Card(A) = 2.

Exercice 5. Soit $n \ge 1$ un entier naturel.

- 1. Déterminer $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
- 2. Montrer que $\mathbb{Z}/n\mathbb{Z}$ est intègre si et seulement si n est un nombre premier.

Exercice 6. Soit $f: \mathbb{R} \to \mathbb{R}$ un morphisme d'anneau.

- 1. Montrer que pour tout $n \in \mathbb{Z}$, on a f(n) = n. En déduire que pour tout $x \in \mathbb{Q}$, on a f(x) = x.
- 2. Soit $x \in \mathbb{R}_+$, montrer que $f(x) \ge 0$ (indication: utiliser la racine carrée).
- 3. En déduire que pour tout $x, y \in \mathbb{R}$ tels que $x \leq y$, on a $f(x) \leq f(y)$.
- 4. Montrer que, pour tout $x \in \mathbb{R}$, on a f(x) = x.

Exercice 7. Soit $A = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ l'anneau des fonctions infiniment dérivables de \mathbb{R} dans \mathbb{R} , muni de l'addition définie par (f+g)(x) = f(x) + g(x) pour tout $x \in \mathbb{R}$ et de la multiplication définie par $(f \cdot g)(x) = f(x)g(x)$ pour tout $x \in \mathbb{R}$.

Montrer que $\{f \in A \mid f(0) = f'(0) = 0\}$ est un idéal de A mais que $\{f \in A \mid f'(0) = 0\}$ n'en est pas un.

Exercice 8. 1. Soient A un anneau commutatif et I un idéal de A. Montrer que I = A si et seulement si I contient un élément inversible de A.

2. Montrer que tout anneau commutatif intègre ayant un nombre fini d'idéaux est un corps.

Exercice 9. Soient A un anneau commutatif intègre et $a, b \in A$. Montrer que les idéaux (a) et (b) sont égaux si et seulement s'il existe $u \in A^{\times}$ tel que a = ub.

Exercise 10. Soient A un anneau commutatif et $a, b \in A$. Montrer que a divise b si et seulement si $(b) \subset (a)$.

Exercice 11. Soit A un anneau commutatif intègre. Une partie multiplicative de A est une partie de A stable par multiplication, contenant 1_A et ne contenant pas 0_A . On pose

$$A_S := \left\{ \frac{a}{s} \in \operatorname{Frac}(A) \mid a \in A, s \in S \right\}.$$

- 1. Montrer que A_S est un sous-anneau de Frac(A).
- 2. Soit B un anneau, et $f:A\to B$ un morphisme d'anneaux tel que $f(s)\in B^\times$ pour tout $s\in S$. Montrer qu'il existe un unique morphisme d'anneaux $\widetilde{f}:A_S\to B$ tel que $\widetilde{f}(\frac{a}{1_A})=f(a)$ pour tout $a\in A$.
- 3. Soit $I \subset A$ un idéal premier de A. Montrer que le complémentaire $S := A \setminus I$ de I dans A est une partie multiplicative.
- 4. Que vaut $A_{A\setminus\{0_A\}}$?
- 5. Soient $s \in A \setminus \{0_A\}$ et $S = \{s^n \mid n \in \mathbb{N}\}$. Montrer que S est une partie multiplicative de A, puis que $A_S \simeq A[X]/(sX-1_A)$.

Exercice 12 (Pour avoir les idées claires). Les objets suivants existent. Donnez en au moins un exemple, en justifiant.

- 1. Un idéal d'un anneau.
- 2. Deux idéaux d'un anneau dont la réunion n'est pas un idéal.
- 3. Un anneau non intègre.
- 4. Un anneau intègre qui n'est pas un corps.
- 5. Un anneau sur lequel il existe un polynôme non nul ayant une infinité de racines.
- 6. Un anneau dans lequel tout élément non nul est inversible, mais qui n'est pas un corps.
- 7. Un anneau intègre dont un quotient n'est pas intègre.
- 8. Un anneau sur lequel tout polynôme non constant admet une racine.
- 9. Un anneau dans lequel l'ensemble des éléments non inversibles n'est pas un idéal.
- 10. Un anneau dans lequel l'ensemble des éléments non inversibles est un idéal.
- 11. Un anneau sur lequel il existe des polynômes de degré arbitrairement grand n'ayant aucune racine.
- 12. Deux entiers $m, n \ge 1$ tels que $\mathbb{Z}/mn\mathbb{Z} \not\simeq \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.
- 13. Deux entiers $m, n \ge 1$ tels que $\mathbb{Z}/mn\mathbb{Z} \simeq \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.
- 14. Deux idéaux I et J d'un anneau commutatifs tels que $\{xy \mid x \in I, y \in J\}$ ne soit pas un idéal.
- 15. Un idéal premier non maximal d'un anneau.
- 16. Un idéal maximal d'un anneau.
- 17. Un idéal non premier d'un anneau intègre.
- 18. Deux anneaux intègres dont le corps des fractions est $\mathbb{Q}(X)$.
- 19. Un anneau intègre A et un idéal premier I de A tels que le corps de fractions de A/I ne soit pas isomorphe à un quotient de Frac(A).