S.-T. Yau College Student Mathematics Contests 2023

Probability and Statistics

Solve every problem.

- 1. The sequence $(X_1, X_2, \ldots, X_n, \ldots)$ is a Dirichlet process with base distribution G_0 and concentration parameter $\alpha_0 > 0$ if G_0 is a probability distribution on R and satisfies:
 - $X_1 \sim G_0$
 - Conditional on X_1, X_2, \ldots, X_n , the distribution of X_{n+1} is $\alpha_0 G_0 + \sum_{i=1}^n \delta_{X_i}$, appropriately normalized, where δ_x is the Dirac measure with probability 1 on singleton $\{x\}$.

Assume that G_0 has finite first and second moments.

- (a) Derive the distribution of $X_n, n \ge 1$.
- (b) Let $Y_n = I(X_n > 0)$. Prove or disprove $(Y_n)_{n \ge 1}$ forms a Dirichlet Process. If $(Y_n)_{n \ge 1}$ forms a Dirichlet Process, determine its concentration parameter and its base distribution.
- 2. Suppose X and Y are non-negative random variables on a probability space (Ω, \mathcal{F}, P) . Let H(x, y) be a function on $[0, \infty)^2$ such that $E(|H(X, Y)|) < \infty$. Define function $\phi(u) = u/(1+u)$ for $u \ge 0$. For integer $n = 0, 1, 2, \ldots$, let

$$U_n = \sum_{j=1}^{2^n} \frac{j-1}{2^n} I\left(\frac{j-1}{2^n} \le \phi(X) < \frac{j}{2^n}\right), \quad V_n = E(H(X,Y)|U_n).$$

Prove or disprove that there exists a random variable Z such that as $n \to \infty$, V_n converges to Z almost surely. If there exists such a Z, show the expression of Z (in the sense of almost surely).

3. Let X_1, X_2, \ldots, X_n be a sequence of i.i.d. random variables with a uniform distribution on (0, 1). Define the events A_1, A_2, \ldots by

$$A_n = \{X_n = \max(X_1, \dots, X_n)\}.$$

Define $R_n = \sum_{k=1}^n I(A_k)$. Let (m_n) be a sequence of positive numbers such that $\lim_{n\to\infty} m_n = \infty$. Compute the following limit

$$\lim_{n \to \infty} P\Big(|R_n - \log n| > m_n \sqrt{\log n}\Big)$$

4. Denote by \mathcal{B} the Borel sigma field on the real line R, and let (Ω, \mathcal{F}) be a measurable space. Define a mapping Q(t, A) for $t \in R$ and $A \in \mathcal{F}$ such that $Q(t, \cdot)$ is a probability measure on (Ω, \mathcal{F}) for each $t \in R$, and $Q(\cdot, A)$ is a Borel function for each $A \in \mathcal{F}$.

Denote by Π a probability measure on (R, \mathcal{B}) , P a probability measure on (Ω, \mathcal{F}) , and T a random variable on (Ω, \mathcal{F}, P) . Assume that Π , P and T satisfy $\Pi = P \circ T^{-1}$, and for $A \in F$,

$$P(A) = \int_{R} Q(t, A) \Pi(dt),$$

where $P \circ T^{-1}$ denotes the induced probability measure by T. Prove or disprove the following statement:

For any
$$A \in \mathcal{F}$$
, $P(A|T) = Q(T, A)$ almost surely.

- 5. Four statisticians I, II, III and IV play a sequence of games. For each game, the winning probabilities of I, II, III and IV are $(1-\theta)/2$, $(1-\theta)/2$, $\theta/2$ and $\theta/2$, respectively, where $0 < \theta < 1$. There is only one winner in each game and no tie is allowed. Assume that outcomes of games are independent of each other. For a fixed integer $r \geq 2$, the stopping rule is to terminate as soon as one of the following conditions hold: (1) I and II together win r games; (2) III and IV together win r + 1 games. At the time of termination, let X_1, X_2, X_3 and X_4 denote the numbers of games won by I, II, III and IV, respectively.
 - (a) Prove or disprove the statistic $T = (X_1 + X_2, X_3 + X_4)$ is complete.
 - (b) Find a uniformly minimum variance unbiased estimator of θ .
- 6. A system of interest involves three random variables, X, Y, and S, where S has a Poisson distribution with mean 2λ , for a parameter $\lambda > 0$, and where X and Y are conditionally independent Bernoulli variables, given S = s, with

$$P(X = 1|S = s) = \frac{1}{2^{s+1}}$$
 and $P(Y = 1|S = s) = \frac{\theta}{2^s}$,

where $\theta \in (0,1)$ is a second parameter. The random variable S is unobservable. We have n i.i.d. copies (X_i, Y_i) of (X, Y).

- (a) An intuitive estimator for θ is $\hat{\theta}_n = \bar{Y}_n/(2\bar{X}_n)$, where $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$. Derive its asymptotic distribution.
- (b) Consider the hypothesis testing problem

$$H_0: \theta = 1/2$$
 versus $H_1: \theta \neq 1/2$.

Construct an exact test statistic. As θ moves away from 1/2, describe all sources of increasing power that you can think of.