Short Answer Questions

1.	Brief the principle of effective stress?
2.	Brief why the settlement of ground occurs after a drop in water table?
3.	Why is it important to calculate the stress increment under a foundation during design?

Calculation Problems

Problem 1

The profile of the ground is shown in Figure 1. The steady ground water table is at a depth of 6 m below the ground surface. 1) Compute the total geostatic stress σ_{cz} , pore pressure u, and then the effective geostatic stress σ'_{cz} at Points A, B, C, D; 2) Plot the total geostatic stress, pore pressure, as well as effective geostatic stress with the depth z.

Figure 1: Schematic diagram of the problem

A rectangular footing ABCD with net pressure q=200 kPa on the ground is shown in Figure 2. Compute σ_z under Points $E,\,F,\,B,$ and G at a depth of 5 m.

Figure 2: Rectangular footing diagram