SBML Model Report

Model name: "Bruggeman2005_AmmoniumAssimilation"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 3 format. This model was created by the following three authors: Lukas Endler¹, Vijayalakshmi Chelliah² and Frank Bruggeman³ at November 28th 2008 at 5:24 p. m. and last time modified at August nineth 2012 at 4:34 p. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	22
events	0	constraints	0
reactions	16	function definitions	0
global parameters	98	unit definitions	2
rules	4	initial assignments	0

Model Notes

This a model from the article:

The multifarious short-term regulation of ammonium assimilation of Escherichia coli: dissection using an in silico replica.

¹EMBL-EBI, lukas@ebi.ac.uk

²EMBL-EBI, viji@ebi.ac.uk

³The University of Manchester, frans.bruggeman@manchester.ac.uk

Bruggeman FJ, Boogerd FC, Westerhoff HV. <u>FEBS J.</u> 2005 Apr;272(8):1965-85. 15819889 , **Abstract:**

Ammonium assimilation in Escherichia coli is regulated through multiple mechanisms (metabolic, signal transduction leading to covalent modification, transcription, and translation), which (indirectly affect the activities of its two ammonium-assimilating enzymes, i.e. glutamine synthetase (GS) and glutamate dehydrogenase (GDH). Much is known about the kinetic properties of the components of the regulatory network that these enzymes are part of, but the ways in which, and the extents to which the network leads to subtle and quasi-intelligent regulation are unappreciated. To determine whether our present knowledge of the interactions between and the kinetic properties of the components of this network is complete - to the extent that when integrated in a kinetic model it suffices to calculate observed physiological behaviour - we now construct a kinetic model of this network, based on all of the kinetic data on the components that is available in the literature. We use this model to analyse regulation of ammonium assimilation at various carbon statuses for cells that have adapted to low and high ammonium concentrations. We show how a sudden increase in ammonium availability brings about a rapid redirection of the ammonium assimilation flux from GS/glutamate synthase (GOGAT) to GDH. The extent of redistribution depends on the nitrogen and carbon status of the cell. We develop a method to quantify the relative importance of the various regulators in the network. We find the importance is shared among regulators. We confirm that the adenylylation state of GS is the major regulator but that a total of 40% of the regulation is mediated by ADP (22%), glutamate (10%), glutamine (7%) and ATP (1%). The total steady-state ammonium assimilation flux is remarkably robust against changes in the ammonium concentration, but the fluxes through GS and GDH are completely nonrobust. Gene expression of GOGAT above a threshold value makes expression of GS under ammonium-limited conditions, and of GDH under glucose-limited conditions, sufficient for ammonium assimilation.

This version of the model originates from JWS online . The original model can be retrieved here .

This model originates from BioModels Database: A Database of Annotated Published Models. It is copyright (c) 2005-2009 The BioModels Team.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not..

To cite BioModels Database, please use Le Novre N., Bornstein B., Broicher A., Courtot M., Donizelli M., Dharuri H., Li L., Sauro H., Schilstra M., Shapiro B., Snoep J.L., Hucka M. (2006) BioModels Database: A Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems Nucleic Acids Res., 34: D689-D691.

2 Unit Definitions

This is an overview of six unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name mins

Definition 60 s

2.2 Unit milliMolar

Name mM

Definition $mmol \cdot l^{-1}$

2.3 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.4 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.5 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.6 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment	compartment		3	1	litre	Ø	

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

Name compartment

4 Species

This model contains 22 species. The boundary condition of ten of these species is set to true so that these species' amount cannot be changed by any reaction. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion
PII	PII	compartment	$\text{mol} \cdot l^{-1}$		
UTP	UTP	compartment	$\text{mol} \cdot l^{-1}$		
PIIUMP	PIIUMP	compartment	$\text{mol} \cdot l^{-1}$		
PPi	PPi	compartment	$\text{mol} \cdot l^{-1}$		
GLN	GLN	compartment	$\text{mol} \cdot 1^{-1}$		
PIIUMP2	PIIUMP2	compartment	$\text{mol} \cdot l^{-1}$		
PIIUMP3	PIIUMP3	compartment	$\text{mol} \cdot l^{-1}$		\Box
UMP	UMP	compartment	$\text{mol} \cdot l^{-1}$		
GS	GS	compartment	$\text{mol} \cdot l^{-1}$		
AMP	AMP	compartment	$\text{mol} \cdot 1^{-1}$		
NH4	NH4	compartment	$\text{mol} \cdot 1^{-1}$		
KG	KG	compartment	$\text{mol} \cdot 1^{-1}$		
NADPH	NADPH	compartment	$\text{mol} \cdot l^{-1}$		
GLU	GLU	compartment	$\text{mol} \cdot l^{-1}$		
NADP	NADP	compartment	$\text{mol} \cdot l^{-1}$		
AZGLU	AZGLU	compartment	$\text{mol} \cdot 1^{-1}$		
ATP	ATP	compartment	$\text{mol} \cdot 1^{-1}$		
ADP	ADP	compartment	$\text{mol} \cdot 1^{-1}$		
AZglu	AZglu	compartment	$\text{mol} \cdot l^{-1}$		
AZGLN	AZGLN	compartment	$\text{mol} \cdot l^{-1}$		\Box
AZgln	AZgln	compartment	$\text{mol} \cdot l^{-1}$		

	n n n r r	したこと
	2001	200
	1	2
	<u> </u>	2
Γ	[] []	1

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
$P_{-}i$	P_i	compartment	$\text{mol} \cdot l^{-1}$		

5 Parameters

This model contains 98 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
UT	UT	$6 \cdot 10^{-4}$	\overline{Z}
kcatut	kcatut	137.000	$ \overline{\checkmark} $
Kglnut	Kglnut	0.070	$ \overline{\checkmark} $
Kutipii	Kutipii	0.002	
Kutpii	Kutpii	0.003	
Kutpiiump	Kutpiiump	0.004	
Kututp	Kututp	0.040	
Kutippi	Kutippi	0.114	$ \overline{\checkmark} $
UR	UR	$6 \cdot 10^{-4}$	$ \overline{\checkmark} $
kcatur	kcatur	5.500	
Kurpiiump	Kurpiiump	0.002	$ \overline{\checkmark} $
Kurump	Kurump	8.400	$ \overline{\checkmark} $
Kglnur	Kglnur	0.070	$ \overline{\mathbf{Z}} $
a1	a1	10^{-22}	$\overline{\mathbf{Z}}$
b1	b1	0.517	$\overline{\mathbf{Z}}$
c1	c1	0.597	$\overline{\mathbf{Z}}$
d1	d1	0.039	$\overline{\mathbf{Z}}$
Vad	Vad	0.500	$ \overline{\checkmark} $
Kadpiikg	Kadpiikg	$1.052 \cdot 10^{-5}$	
Kadgln	Kadgln	0.971	
Kadgs	Kadgs	0.002	$ \overline{\checkmark} $
e1	e1	10^{-22}	$ \overline{\checkmark} $
f1	f1	2.766	
g1	g1	3.323	
h1	h1	0.215	
i1	i1	10^{-22}	
j1	j1	10^{-22}	
k1	k1	10^{-22}	
11	11	0.023	
m1	m1	0.882	\mathbf{Z}
n1	n1	8.491	
o1	o1	0.879	
Vdead	Vdead	0.500	$ \overline{\checkmark} $
Kdeadpiikg	Kdeadpiikg	$2.274 \cdot 10^{-6}$	$ \overline{\checkmark} $
Kdeadgln	Kdeadgln	0.044	$\overline{\mathbf{Z}}$
Kdeadpiiu	Kdeadpiiu	$1.805 \cdot 10^{-5}$	$\overline{\mathbf{Z}}$
Kdeadgsa	Kdeadgsa	$2.015 \cdot 10^{-4}$	\mathbf{Z}

Id	Name	SBO	Value	Unit	Constant
Vgdh	Vgdh		360.000		
Kgdhkg	Kgdhkg		0.320		$\overline{\mathbf{Z}}$
Kgdhnh	Kgdhnh		1.100		<u></u>
Kgdhglu	Kgdhglu		10.000		$\overline{\mathbf{Z}}$
Kgdhnadph	Kgdhnadph		0.040		$\overline{\mathbf{Z}}$
Kgdhnadp	Kgdhnadp		0.042		$\overline{\mathbf{Z}}$
Keqgdh	Keqgdh		1290.000		$\overline{\mathbf{Z}}$
Kgdhazglu	Kgdhazglu		2.500		$\overline{\mathbf{Z}}$
Vgog	Vgog		85.000		$\overline{\mathbf{Z}}$
Kgoggln	Kgoggln		0.175		$\overline{\mathbf{Z}}$
Kgogkg	Kgogkg		0.007		$\overline{\mathbf{Z}}$
Kgognadph	Kgognadph		0.002		$\overline{\mathbf{Z}}$
Kgogglu	Kgogglu		11.000		$\overline{\mathbf{Z}}$
Kgognadp	Kgognadp		0.004		$\overline{\mathbf{Z}}$
Kgogaz	Kgogaz		0.650		$\overline{\mathbf{Z}}$
Vgs	Vgs		600.000		$\overline{\mathbf{Z}}$
aamp	aamp		10.000		$\overline{\mathbf{Z}}$
bamp	bamp		2.367		$\overline{\mathbf{Z}}$
camp	camp		0.101		$\overline{\mathbf{Z}}$
damp	damp		10.869		$\overline{\mathbf{Z}}$
n1amp	n1amp		1.146		$\overline{\mathbf{Z}}$
n2amp	n2amp		19.217		$\overline{\mathbf{Z}}$
Kgseq	Kgseq		460.000		$\overline{\mathbf{Z}}$
Kgsatp	Kgsatp		0.350		$\overline{\mathbf{Z}}$
Kgsglu	Kgsglu		4.100		$\overline{\mathbf{Z}}$
Kgsnh	Kgsnh		0.100		$\overline{\mathbf{Z}}$
Kgsadp	Kgsadp		0.059		$\overline{\mathbf{Z}}$
Kgspi	Kgspi		3.700		$\overline{\mathbf{Z}}$
Kgsgln	Kgsgln		5.650		$\overline{\checkmark}$
Keq	Keq		460.000	dimensionless	$ \overline{\checkmark} $
Vgludem	Vgludem		120.000		<u></u>
Kgludemglu	Kgludemglu		8.000		$\overline{\mathbf{Z}}$
Kgludemeq	Kgludemeq		10^{10}		$ \overline{\checkmark} $
Kgludemazglu	Kgludemazglu		0.500		$\overline{\checkmark}$
Vglndem	Vglndem		70.000		$ \overline{\checkmark} $
Kglndemgln	Kglndemgln		2.000		$\overline{\mathbf{Z}}$
Kglndemeq	Kglndemeq		10^{10}		$\overline{\mathbf{Z}}$
Kglndemazgln	Kglndemazgln		0.250		$\overline{\mathbf{Z}}$
Vazglndem	Vazglndem		20.000		$\overline{\mathbf{Z}}$
_	n Kazglndemazgln		1.000		$\overline{\mathbf{Z}}$
Kazglndemeq	Kazglndemeq		10^{10}		$\overline{\mathbf{Z}}$
Kazglndemazin	t eK azglndemazinter		0.500		$\overline{\mathbf{Z}}$

Id	Name	SBO	Value	Unit	Constant
Vazgludem	Vazgludem		30.000		\overline{Z}
Kazgludemazgl	Lu Kazgludemazglu		0.300		
Kazgludemeq	Kazgludemeq		10^{10}	dimensionless	
Kazgludemazin	nt ek azgludemazinter		0.500	dimensionless	
Vadp	Vadp		100.000		
Kadp	Kadp		0.500		
ATPtot	ATPtot		5.370		
GStot	GStot		0.014		
PIItot	PIItot		0.003		
Kd1	Kd1		0.005		$ \overline{\mathbf{Z}} $
Kd2	Kd2		0.150		
Kd3	Kd3		0.150		$ \overline{\mathbf{Z}} $
Kd1piiump	Kd1piiump		0.025		
Kd2piiump	Kd2piiump		0.150		
Kd3piiump	Kd3piiump		0.150		
$vAPP_GS$	maxRateGS		0.000		\Box
\mathtt{nAMP}	AdenylationStateGS		0.000		
PIIKG1	PIIKG1		0.000		
PIIUMP3KG3	PIIUMP3KG3		0.000		

6 Rules

This is an overview of four rules.

6.1 Rule vAPP_GS

Rule vAPP_GS is an assignment rule for parameter vAPP_GS:

$$vAPP_GS = \frac{aamp \cdot camp}{\left(1 + 12^{n1amp} \cdot \left(\frac{[AMP]}{bamp \cdot GStot}\right)^{n1amp}\right) \cdot \left(1 + 12^{n2amp} \cdot \left(\frac{[AMP]}{damp \cdot GStot}\right)^{n2amp}\right)} \cdot Vgs \quad (1)$$

6.2 Rule nAMP

Rule nAMP is an assignment rule for parameter nAMP:

$$nAMP = \frac{12 \cdot [AMP]}{GStot}$$
 (2)

6.3 Rule PIIKG1

Rule PIIKG1 is an assignment rule for parameter PIIKG1:

$$PIIKG1 = \frac{\frac{3 \cdot [PII] \cdot [KG]}{Kd1}}{1 + \frac{3 \cdot [KG]}{Kd1} + \frac{3 \cdot [KG]^2}{Kd1 \cdot Kd2} + \frac{[KG]^3}{Kd1 \cdot Kd2 \cdot Kd3}}$$
(3)

6.4 Rule PIIUMP3KG3

Rule PIIUMP3KG3 is an assignment rule for parameter PIIUMP3KG3:

$$PIIUMP3KG3 = \frac{\frac{[PIIUMP3] \cdot [KG]^3}{Kd1piiump \cdot Kd2piiump \cdot Kd3piiump}}{1 + \frac{3 \cdot [KG]}{Kd1piiump} + \frac{3 \cdot [KG]^2}{Kd1piiump \cdot Kd2piiump} + \frac{[KG]^3}{Kd1piiump \cdot Kd2piiump \cdot Kd2piiump}}$$
(4)

7 Reactions

This model contains 16 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

Νō	Id	Name	Reaction Equation SBO
1	vut1	vut1	PII + UTP GLN, PIIUMP2, PIIUMP3 PPi PIIUMP +
2	vur1	vur1	$PIIUMP \xrightarrow{GLN, PIIUMP2, PIIUMP3} PII + UMP$
3	vut2	vut2	PIIUMP + UTP GLN, PII, PIIUMP3 PIIUMP2 + PPi
4	vur2	vur2	$PIIUMP2 \xrightarrow{GLN, PIIUMP3} PIIUMP + UMP$
5	vut3	vut3	PIIUMP2 + UTP GLN, PII, PIIUMP PPi PIIUMP3 +
6	vur3	vur3	$PIIUMP3 \xrightarrow{GLN, PIIUMP} PIIUMP2 + UMP$
7	vad	vad	$GS \stackrel{GLN, PII, KG}{\longleftarrow} AMP$
8	vdead	vdead	$AMP \xrightarrow{GLN, PII, PIIUMP3, KG} GS$
9	vgdh	vgdh	$NH4 + KG + NADPH \Longrightarrow GLU + NADP$
10	vgog	vgog	$GLN + NADPH + KG \xrightarrow{AZGLU} 2 GLU + NADP$
11	vgs	vgs	$GLU + ATP + NH4 \rightleftharpoons P_i + GLN + ADP$
12	vgludem	vgludem	$GLU \Longrightarrow AZGLU$
13	vazgludem	vazgludem	AZGLU ← AZglu
14	vglndem	vglndem	$GLN \Longrightarrow AZGLN$
15	vazglndem	vazglndem	$AZGLN \Longrightarrow AZgln$

N⁰	Id	Name	Reaction Equation	SBO
16	vatpase	vatpase	$ADP \Longrightarrow ATP$	

7.1 Reaction vut1

This is a reversible reaction of two reactants forming two products influenced by three modifiers.

Name vut1

Reaction equation

$$PII + UTP \xrightarrow{GLN, PIIUMP2, PIIUMP3} PIIUMP + PPi$$
 (5)

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
PII	PII	
UTP	UTP	

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
GLN	GLN	
PIIUMP2	PIIUMP2	
PIIUMP3	PIIUMP3	

Products

Table 8: Properties of each product.

Id	Name	SBO
PIIUMP	PIIUMP	
PPi	PPi	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = vol \, (compartment) \\ \cdot \frac{kcatut \cdot UT \cdot [UTP] \cdot [PII]}{Kutipii \cdot Kututp \cdot \left(1 + \frac{[GLN]}{Kglnut}\right) \cdot \left(1 + \frac{[UTP]}{Kututp} + \frac{[PII] + [PIIUMP] + [PIIUMP2]}{Kutipii} + \frac{[UTP] \cdot ([PII] + [PIIUMP] + [PIIUMP2])}{Kutipii \cdot Kututp} + \frac{[PPi] \cdot [UTP]}{Kutipii} + \frac{[PPi] \cdot [PPi]}{Kutipii} + \frac{[PPi] \cdot [PPi]$$

7.2 Reaction vur1

This is a reversible reaction of one reactant forming two products influenced by three modifiers.

Name vur1

Reaction equation

$$PIIUMP \xrightarrow{GLN, PIIUMP2, PIIUMP3} PII + UMP$$
 (7)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
PIIUMP	PIIUMP	

Modifiers

Table 10: Properties of each modifier.

Id	Name	SBO
GLN	GLN	
PIIUMP2	PIIUMP2	
PIIUMP3	PIIUMP3	

Products

Table 11: Properties of each product.

Id	Name	SBO
PII	PII	
UMP	UMP	

Kinetic Law

Derived unit contains undeclared units

$$\begin{array}{c} v_{2} = vol \, (compartment) \\ \\ \cdot \frac{kcatur \cdot UR \cdot [PIIUMP]}{Kurpiiump \cdot \left(1 + \frac{Kglnur}{[GLN]}\right) \cdot \left(1 + \frac{\left(1 + \frac{[UMP]}{Kurump}\right) \cdot ([PIIUMP] + [PIIUMP2] + [PIIUMP3])}{Kurpiiump} \right)} \end{array} \tag{8}$$

7.3 Reaction vut2

This is a reversible reaction of two reactants forming two products influenced by three modifiers.

Name vut2

Reaction equation

$$PIIUMP + UTP \xrightarrow{GLN, PII, PIIUMP3} PIIUMP2 + PPi$$
 (9)

Reactants

Table 12: Properties of each reactant.

Id	Name	SBO
PIIUMP	PIIUMP	
UTP	UTP	

Modifiers

Table 13: Properties of each modifier.

Id	Name	SBO
GLN	GLN	
PII	PII	
PIIUMP3	PIIUMP3	

Table 14: Properties of each product.

Id	Name	SBO
PIIUMP2	PIIUMP2	
PPi	PPi	

Derived unit contains undeclared units

$$v_{3} = vol \, (compartment) \\ \cdot \frac{kcatut \cdot UT \cdot [UTP] \cdot [PIIUMP]}{Kutipii \cdot Kututp \cdot \left(1 + \frac{[GLN]}{Kglnut}\right) \cdot \left(1 + \frac{[UTP]}{Kututp} + \frac{[PII] + [PIIUMP] + [PIIUMP2]}{Kutipii} + \frac{[UTP] \cdot ([PII] + [PIIUMP] + [PIIUMP2])}{Kutipii \cdot Kututp} + \frac{[PPi] \cdot [UTP]}{Kutipii} + \frac{[PPi] \cdot$$

7.4 Reaction vur2

This is a reversible reaction of one reactant forming two products influenced by two modifiers.

Name vur2

Reaction equation

$$PIIUMP2 \xrightarrow{GLN, PIIUMP3} PIIUMP + UMP$$
 (11)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
PIIUMP2	PIIUMP2	

Modifiers

Table 16: Properties of each modifier.

Id	Name	SBO
GLN	GLN	
PIIUMP3	PIIUMP3	

Table 17: Properties of each product.

Id	Name	SBO
PIIUMP	PIIUMP	
UMP	UMP	

Derived unit contains undeclared units

$$v_{4} = vol (compartment) \\ \cdot \frac{kcatur \cdot UR \cdot [PIIUMP2]}{Kurpiiump \cdot \left(1 + \frac{Kglnur}{[GLN]}\right) \cdot \left(1 + \frac{\left(1 + \frac{[UMP]}{Kurump}\right) \cdot ([PIIUMP] + [PIIUMP2] + [PIIUMP3])}{Kurpiiump}\right)}$$
(12)

7.5 Reaction vut3

This is a reversible reaction of two reactants forming two products influenced by three modifiers.

Name vut3

Reaction equation

$$PIIUMP2 + UTP \xrightarrow{GLN, PII, PIIUMP} PIIUMP3 + PPi$$
 (13)

Reactants

Table 18: Properties of each reactant.

Id	Name	SBO
PIIUMP2	PIIUMP2	
UTP	UTP	

Modifiers

Table 19: Properties of each modifier.

Name	SBO
GLN	
PII	
PIIUMP	
	GLN PII

Table 20: Properties of each product.

Id	Name	SBO
PIIUMP3	PIIUMP3	
PPi	PPi	

Derived unit contains undeclared units

$$v_{5} = vol \, (compartment) \\ \cdot \frac{kcatut \cdot UT \cdot [UTP] \cdot [PIIUMP2]}{Kutipii \cdot Kututp \cdot \left(1 + \frac{[GLN]}{Kglnut}\right) \cdot \left(1 + \frac{[UTP]}{Kututp} + \frac{[PII] + [PIIUMP] + [PIIUMP2]}{Kutipii} + \frac{[UTP] \cdot ([PII] + [PIIUMP] + [PIIUMP2])}{Kutipii \cdot Kututp} + \frac{[PPi] \cdot [UTP]}{Kutipii} + \frac{[PPi] \cdot [PPi]}{Kutipii} + \frac{[PPi]$$

7.6 Reaction vur3

This is a reversible reaction of one reactant forming two products influenced by two modifiers.

Name vur3

Reaction equation

$$PIIUMP3 \xrightarrow{GLN, PIIUMP} PIIUMP2 + UMP$$
 (15)

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
PIIUMP3	PIIUMP3	

Modifiers

Table 22: Properties of each modifier.

Id	Name	SBO
GLN	GLN	
PIIUMP	PIIUMP	

Table 23: Properties of each product.

Id	Name	SBO
PIIUMP2 UMP	PIIUMP2 UMP	

Derived unit contains undeclared units

$$v_{6} = vol (compartment) \\ \cdot \frac{kcatur \cdot UR \cdot [PIIUMP3]}{Kurpiiump \cdot \left(1 + \frac{Kglnur}{[GLN]}\right) \cdot \left(1 + \frac{\left(1 + \frac{[UMP]}{Kurump}\right) \cdot ([PIIUMP] + [PIIUMP2] + [PIIUMP3])}{Kurpiiump} \right)}$$
 (16)

7.7 Reaction vad

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name vad

Reaction equation

$$GS \xrightarrow{GLN, PII, KG} AMP$$
 (17)

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
GS	GS	

Modifiers

Table 25: Properties of each modifier.

Id	Name	SBO
GLN	GLN	
PII	PII	
KG	KG	

Product

Table 26: Properties of each product.

Id	Name	SBO
AMP	AMP	

Kinetic Law

Derived unit contains undeclared units

$$v_{7} = vol\left(compartment\right) \\ Vad \cdot \left[GS\right] \cdot \left(\frac{b_{1} \cdot \left[GLN\right]}{Kadgln} + \frac{3 \cdot a_{1} \cdot \left[KG\right] \cdot \left[PII\right]}{Kadpiikg \cdot Kd_{1} \cdot \left(1 + \frac{3 \cdot \left[KG\right]}{Kd_{1}} + \frac{\left[KG\right]^{3}}{Kd_{1} \cdot Kd_{2}} + \frac{\left[KG\right]^{3}}{Kd_{1} \cdot Kd_{2}} + \frac{\left[KG\right]^{3}}{Kd_{1} \cdot Kd_{2} \cdot Kd_{3}}\right)} + \frac{3 \cdot \left[KG\right] \cdot \left[GLN\right] \cdot \left[PII\right]}{Kadgln \cdot Kadpiikg \cdot Kd_{1} \cdot \left(1 + \frac{3 \cdot \left[KG\right]}{Kd_{1}} + \frac{3 \cdot \left[KG\right]^{3}}{Kd_{1} \cdot Kd_{2} \cdot Kd_{3}}\right)} \\ \cdot \left(Kadgs + \left[GS\right]\right) \cdot \left(1 + \frac{\left[GLN\right]}{Kadpiikg} + \frac{3 \cdot \left[KG\right] \cdot \left[PII\right]}{Kadpiikg \cdot Kd_{1} \cdot \left(1 + \frac{3 \cdot \left[KG\right]}{Kd_{1}} + \frac{3 \cdot \left[KG\right]^{3}}{Kd_{1} \cdot Kd_{2}} + \frac{\left[KG\right]^{3}}{Kd_{1} \cdot Kd_{2}} + \frac{3 \cdot \left[KG\right] \cdot \left[GLN\right] \cdot \left[PII\right]}{d_{1} \cdot Kadgln \cdot Kadpiikg \cdot Kd_{1} \cdot \left(1 + \frac{3 \cdot \left[KG\right]}{Kd_{1}} + \frac{3 \cdot \left[KG\right]^{2}}{Kd_{1} \cdot Kd_{2}} + \frac{\left[KG\right]^{3}}{Kd_{1} \cdot Kd_{2}} + \frac{3 \cdot \left[KG\right] \cdot \left[GLN\right] \cdot \left[PII\right]}{d_{1} \cdot Kadgln \cdot Kadpiikg \cdot Kd_{1} \cdot \left(1 + \frac{3 \cdot \left[KG\right]}{Kd_{1}} + \frac{3 \cdot \left[KG\right]^{2}}{Kd_{1} \cdot Kd_{2}} + \frac{\left[KG\right]^{3}}{Kd_{1} \cdot Kd_{2}} + \frac{3 \cdot \left[KG\right]^{3}}{Kd_{1} \cdot Kd_{2}} + \frac{3 \cdot \left[KG\right]^{3}}{Kd_{1$$

7.8 Reaction vdead

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name vdead

Reaction equation

$$AMP \xrightarrow{GLN, PII, PIIUMP3, KG} GS$$
 (19)

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
AMP	AMP	

Modifiers

Table 28: Properties of each modifier.

Id	Name	SBO
GLN	GLN	
PII	PII	

Id	Name	SBO
PIIUMP3	1 1101/110	
KG	KG	

Product

Table 29: Properties of each product.

Id	Name	SBO
GS	GS	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = vol\left(compartment\right) \\ \cdot \frac{Vdead \cdot \left[AMP\right] \cdot \left(\frac{f1 \cdot \left[GLN\right]}{Kdeadgln} + \frac{3 \cdot e1 \cdot \left[KG\right] \cdot \left[PII\right]}{Kd1 \cdot Kdeadpiikg \cdot \left(1 + \frac{3 \cdot \left[KG\right]^2}{Kd1} + \frac{\left[KG\right]^3}{Kd1 \cdot Kd2 \cdot Kd3}\right)} + \frac{3 \cdot h1 \cdot \left[KG\right] \cdot \left[GLN\right] \cdot \left[PI\right]}{Kd1 \cdot Kdeadgln \cdot Kdeadpiikg \cdot \left(1 + \frac{3 \cdot \left[KG\right]^2}{Kd1} + \frac{\left[KG\right]^3}{Kd1 \cdot Kd2 \cdot Kd3}\right)} + \frac{3 \cdot \left[KG\right] \cdot \left[EI\right]}{Kd1 \cdot Kdeadgln \cdot Kdeadpiikg \cdot \left(1 + \frac{3 \cdot \left[KG\right]^2}{Kd1} + \frac{\left[KG\right]^3}{Kd1 \cdot Kd2 \cdot Kd2} + \frac{\left[KG\right]^3}{Kd1 \cdot Kd2 \cdot Kd2}\right)}{Kd1 \cdot Kdeadgln \cdot Kdeadpiikg \cdot \left(1 + \frac{3 \cdot \left[KG\right]^2}{Kd1} + \frac{\left[KG\right]^3}{Kd1 \cdot Kd2 \cdot Kd2} + \frac{\left[KG\right]^3}{Kd1 \cdot Kd2 \cdot Kd2}\right)} + \frac{3 \cdot \left[KG\right] \cdot \left[EI\right]}{Kd1 \cdot Kdeadgln \cdot Kdeadpiikg \cdot \left(1 + \frac{3 \cdot \left[KG\right]^2}{Kd1} + \frac{\left[KG\right]^3}{Kd1 \cdot Kd2 \cdot Kd2} + \frac{\left[KG\right]^3}{Kd1 \cdot Kd2 \cdot Kd2}\right)} + \frac{3 \cdot \left[KG\right] \cdot \left[EI\right]}{Kd1 \cdot Kdeadgln \cdot Kdeadpiikg \cdot \left(1 + \frac{3 \cdot \left[KG\right]^2}{Kd1} + \frac{\left[KG\right]^3}{Kd1 \cdot Kd2 \cdot Kd2} + \frac{\left[KG\right]^3}{Kd1 \cdot Kd2 \cdot Kd2} + \frac{3 \cdot \left[KG\right] \cdot \left[EI\right]}{Kd1 \cdot Kd2 \cdot Kd2 \cdot Kd2}}\right)}$$

7.9 Reaction vgdh

This is a reversible reaction of three reactants forming two products.

Name vgdh

Reaction equation

$$NH4 + KG + NADPH \Longrightarrow GLU + NADP \tag{21}$$

Reactants

Table 30: Properties of each reactant.

Id	Name	SBO
NH4	NH4	
KG	KG	
NADPH	NADPH	

Products

Table 31: Properties of each product.

Id	Name	SBO
GLU	GLU	
NADP	NADP	

Kinetic Law

Derived unit contains undeclared units

$$\begin{aligned} v_9 &= vol\left(compartment\right) \\ &\cdot \frac{Vgdh \cdot \left(\left[KG\right] \cdot \left[NADPH\right] \cdot \left[NH4\right] - \frac{\left[NADP\right] \cdot \left[GLU\right]}{Keqgdh}\right)}{Kgdhkg \cdot Kgdhnadph \cdot Kgdhnh \cdot \left(1 + \frac{\left[NADP\right]}{Kgdhnadp} + \frac{\left[NADPH\right]}{Kgdhnadph}\right) \cdot \left(1 + \frac{\left[NH4\right]}{Kgdhnh}\right) \cdot \left(1 + \frac{\left[KG\right]}{Kgdhkg} + \frac{\left[GLU\right]}{Kgdhglu}\right)} \end{aligned}$$

7.10 Reaction vgog

This is a reversible reaction of three reactants forming two products influenced by one modifier.

Name vgog

Reaction equation

$$GLN + NADPH + KG \stackrel{\underline{AZGLU}}{\longleftarrow} 2GLU + NADP$$
 (23)

Reactants

Table 32: Properties of each reactant.

Id	Name	SBO
GLN	GLN	
NADPH	NADPH	
KG	KG	

Modifier

Table 33: Properties of each modifier.

Id	Name	SBO
AZGLU	AZGLU	

Id	Name	SBO

Products

Table 34: Properties of each product.

Id	Name	SBO
GLU	GLU	
NADP	NADP	

Kinetic Law

Derived unit contains undeclared units

$$\begin{aligned} \nu_{10} &= vol\left(compartment\right) \\ &\cdot \frac{\left[KG\right] \cdot \left[NADPH\right] \cdot Vgog \cdot \left[GLN\right]}{Kgoggln \cdot Kgogkg \cdot Kgognadph \cdot \left(1 + \frac{\left[NADP\right]}{Kgognadp} + \frac{\left[NADPH\right]}{Kgognadph}\right) \cdot \left(1 + \frac{\left[AZGLU\right]}{Kgogaz}\right) \cdot \left(1 + \frac{\left[KG\right]}{Kgogkg} + \frac{\left[GLU\right]}{Kgogglu}\right) \cdot \left(1 + \frac{\left[RG\right]}{Kgogglu}\right)}{Kgogglu} \cdot \left(1 + \frac{\left[RG\right]}{Kgognadph}\right) \cdot \left(1 + \frac{\left[RG\right]}{Kgoglu}\right) \cdot \left(1 + \frac{\left[RG\right]}{Kgog$$

7.11 Reaction vgs

This is a reversible reaction of three reactants forming three products influenced by one modifier.

Name vgs

Reaction equation

$$GLU + ATP + NH4 \xrightarrow{AMP} P_{-}i + GLN + ADP$$
 (25)

Reactants

Table 35: Properties of each reactant.

Id	Name	SBO
GLU	GLU	
ATP	ATP	
NH4	NH4	

Modifier

Table 36: Properties of each modifier.

Id	Name	SBO
AMP	AMP	

Products

Table 37: Properties of each product.

Id	Name	SBO
$P_{-}i$	P_i	
GLN	GLN	
ADP	ADP	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = vol \left(compartment\right) \\ \cdot \frac{(26)}{aamp \cdot camp \cdot Vgs \cdot \left(\left(\frac{[P.i] \cdot [ADP] \cdot [GLN]}{Keq}\right) + [E.i] \cdot [ADP]} + \frac{[ADP] \cdot [ADP]}{Kgsatp \cdot Kgsglu \cdot Kgsnh} \cdot \left(1 + \frac{[P.i]}{Kgspi} + \frac{[ADP]}{Kgsadp} + \frac{[P.i] \cdot [ADP]}{Kgsadp \cdot Kgspi} + \frac{[ATP]}{Kgsatp}\right) \cdot \left(1 + \frac{[NH4]}{Kgsnh} + \frac{[GLN]}{Kgsgln} + \frac{[NH4] \cdot [GLN]}{Kgsgln \cdot Kgsnh} + \frac{[GLN]}{Kgsgln} + \frac{[GLN]}{Kgsgln \cdot Kgsnh} + \frac{[GLN]}{Kgsnh} + \frac{[GLN]}{K$$

7.12 Reaction vgludem

This is a reversible reaction of one reactant forming one product.

Name vgludem

Reaction equation

$$GLU \Longrightarrow AZGLU$$
 (27)

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
GLU	GLU	

Table 39: Properties of each product.

Id	Name	SBO
AZGLU	AZGLU	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol (compartment)} \cdot \frac{\text{Vgludem} \cdot \left(\left(\frac{[\text{AZGLU}]}{\text{Kgludemeq}} \right) + [\text{GLU}] \right)}{\text{Kgludemglu} \cdot \left(1 + \frac{[\text{AZGLU}]}{\text{Kgludemazglu}} + \frac{[\text{GLU}]}{\text{Kgludemglu}} \right)}$$
(28)

7.13 Reaction vazgludem

This is a reversible reaction of one reactant forming one product.

Name vazgludem

Reaction equation

$$AZGLU \Longrightarrow AZglu$$
 (29)

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
AZGLU	AZGLU	

Product

Table 41: Properties of each product.

Id	Name	SBO
AZglu	AZglu	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}\left(\text{compartment}\right) \cdot \frac{\text{Vazgludem} \cdot \left(\left(\frac{[\text{AZglu}]}{\text{Kazgludemeq}}\right) + [\text{AZGLU}]\right)}{\text{Kazgludemazglu} \cdot \left(1 + \frac{[\text{AZglu}]}{\text{Kazgludemazinter}} + \frac{[\text{AZGLU}]}{\text{Kazgludemazglu}}\right)} \quad (30)$$

7.14 Reaction vglndem

This is a reversible reaction of one reactant forming one product.

Name vglndem

Reaction equation

$$GLN \rightleftharpoons AZGLN$$
 (31)

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
GLN	GLN	

Product

Table 43: Properties of each product.

Id	Name	SBO
AZGLN	AZGLN	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{14} = vol\left(compartment\right) \cdot \frac{Vglndem \cdot \left(\left(\frac{[AZGLN]}{Kglndemeq}\right) + [GLN]\right)}{Kglndemgln \cdot \left(1 + \frac{[AZGLN]}{Kglndemazgln} + \frac{[GLN]}{Kglndemgln}\right)} \tag{32}$$

7.15 Reaction vazglndem

This is a reversible reaction of one reactant forming one product.

Name vazglndem

Reaction equation

$$AZGLN \Longrightarrow AZgln$$
 (33)

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
AZGLN	AZGLN	

Product

Table 45: Properties of each product.

Id	Name	SBO
AZgln	AZgln	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{15} = vol\left(compartment\right) \cdot \frac{Vazglndem \cdot \left(\left(\frac{[AZgln]}{Kazglndemeq}\right) + [AZGLN]\right)}{Kazglndemazgln \cdot \left(1 + \frac{[AZgln]}{Kazglndemazinter} + \frac{[AZGLN]}{Kazglndemazgln}\right)} \quad (34)$$

7.16 Reaction vatpase

This is a reversible reaction of one reactant forming one product.

Name vatpase

Reaction equation

$$ADP \rightleftharpoons ATP \tag{35}$$

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
ADP	ADP	

Table 47: Properties of each product.

Id	Name	SBO
ATP	ATP	

Derived unit contains undeclared units

$$v_{16} = \text{vol}\left(\text{compartment}\right) \cdot \frac{\text{Vadp} \cdot [\text{ADP}]}{\text{Kadp} + [\text{ADP}]}$$
 (36)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

8.1 Species PII

Name PII

Initial concentration $0.0030 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in vut1 and as a product in vur1 and as a modifier in vut2, vut3, vad, vdead).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PII} = |v_2| - |v_1| \tag{37}$$

8.2 Species UTP

Name UTP

Initial concentration $0.5 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vut1, vut2, vut3), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{UTP} = 0\tag{38}$$

8.3 Species PIIUMP

Name PIIUMP

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in vur1, vut2 and as a product in vut1, vur2 and as a modifier in vut3, vur3).

$$\frac{d}{dt}PIIUMP = |v_1| + |v_4| - |v_2| - |v_3|$$
(39)

8.4 Species PPi

Name PPi

Initial concentration $0.05 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a product in vut1, vut2, vut3), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PPi} = 0\tag{40}$$

8.5 Species GLN

Name GLN

Initial concentration $1 \text{ mol} \cdot l^{-1}$

This species takes part in eleven reactions (as a reactant in vgog, vglndem and as a product in vgs and as a modifier in vut1, vur1, vut2, vur2, vut3, vur3, vad, vdead).

$$\frac{d}{dt}GLN = |v_{11}| - |v_{10}| - |v_{14}| \tag{41}$$

8.6 Species PIIUMP2

Name PIIUMP2

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in vur2, vut3 and as a product in vut2, vur3 and as a modifier in vut1, vur1).

$$\frac{d}{dt}PIIUMP2 = |v_3| + |v_6| - |v_4| - |v_5|$$
 (42)

8.7 Species PIIUMP3

Name PIIUMP3

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in vur3 and as a product in vut3 and as a modifier in vut1, vur1, vur2, vur2, vdead).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PIIUMP3} = v_5 - v_6 \tag{43}$$

8.8 Species UMP

Name UMP

Initial concentration $0.01 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a product in vur1, vur2, vur3), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{UMP} = 0\tag{44}$$

8.9 Species GS

Name GS

Initial concentration $0.014 \text{ mol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in vad and as a product in vdead).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GS} = |v_8| - |v_7| \tag{45}$$

8.10 Species AMP

Name AMP

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vdead and as a product in vad and as a modifier in vgs).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AMP} = |v_7| - |v_8| \tag{46}$$

8.11 Species NH4

Name NH4

Initial concentration $0.05 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in vgdh, vgs), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NH4} = 0\tag{47}$$

8.12 Species KG

Name KG

Initial concentration $0.2 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in vgdh, vgog and as a modifier in vad, vdead), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}KG = 0\tag{48}$$

8.13 Species NADPH

Name NADPH

Initial concentration $0.15 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in vgdh, vgog), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NADPH} = 0\tag{49}$$

8.14 Species GLU

Name GLU

Initial concentration $1 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in vgs, vgludem and as a product in vgdh, vgog).

$$\frac{d}{dt}GLU = v_9 + 2 v_{10} - v_{11} - v_{12}$$
 (50)

8.15 Species NADP

Name NADP

Initial concentration $0.05 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a product in vgdh, vgog), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NADP} = 0\tag{51}$$

8.16 Species AZGLU

Name AZGLU

Initial concentration $1 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vazgludem and as a product in vgludem and as a modifier in vgog).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AZGLU} = v_{12} - v_{13} \tag{52}$$

8.17 Species ATP

Name ATP

Initial concentration 2.685 mol·l⁻¹

This species takes part in two reactions (as a reactant in vgs and as a product in vatpase).

$$\frac{d}{dt}ATP = |v_{16} - v_{11}| \tag{53}$$

8.18 Species ADP

Name ADP

Initial concentration $2.685 \text{ mol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in vatpase and as a product in vgs).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ADP} = |v_{11}| - |v_{16}| \tag{54}$$

8.19 Species AZglu

Name AZglu

Initial concentration $0.1 \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a product in vazgludem), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AZglu} = 0\tag{55}$$

8.20 Species AZGLN

Name AZGLN

Initial concentration $1 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in vazglndem and as a product in vglndem).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AZGLN} = v_{14} - v_{15} \tag{56}$$

8.21 Species AZgln

Name AZgln

Initial concentration $0.1 \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a product in vazglndem), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AZgln} = 0\tag{57}$$

8.22 Species P_i

Name P_i

Initial concentration $10 \text{ mol} \cdot 1^{-1}$

This species takes part in one reaction (as a product in vgs), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{P}_{-}\mathbf{i} = 0 \tag{58}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany