МГТУ им. Баумана

Дисциплина основы электроники

Лабораторная работа №3

Работу выполнила: студентка группы ИУ7-31Б Варламова Екатерина **Цель работы:** получение и исследование статических и динамических характеристик германиевого и кремниевого полупроводниковых диодов с целью определение по ним параметров модели полупроводниковых диодов, размещения моделей в базе данных программ схемотехнического анализа. Приобретение навыков расчета моделей полупроводниковых приборов в программах **Multisim** и **Mathcad** по данным, полученным в экспериментальных исследованиях, а также включение модели в базу компонентов.

Диод моего варианта:

```
* Variant 04
.model D2d2998a D(Is=2.978u Rs=2.654m Ikf=14.37 N=1 Xti=3 Eg=1.11 Cjo=2.789n
+ M=.3852 Vj=.75 Fc=.5 Isr=6.189m Nr=2 Bv=14.93 Ibv=1.293m
+ Tt=100.1n)
```

Добавим диод в базу для работы в **Multisim** Создадим новое семейство, где будут размещаться добавленные компоненты

Окно находится по данному пути: Tools -> Database -> Database Manager

Далее запустим мастер создания компонента: **TOOLS -> Component Wizard.** Добавим имя для нового компонента, также можно указать имя автора

Далее видим окно с выбором количества выводов компонента

Выбираем вид Диода:

Задаем параметры контактов

Теперь добавляем описание диода из библиотеки диодов в соответствии со своим вариантом

Для правильной работы модели необходимо назначить узлы графического изображения и модельного представления для однозначного соответствия одному другому

Теперь добавим диод в добавленное ранее семейство компонентов

Строим стенд моделирования и производим замеры тока и напряжения через мультиметры

Произведем настройку для построения ВАХ

Построим ВАХ для прямого включения

Схема и график для обратной цепи

Исследование ВАХ диода с помощью осциллографа и генератора

Собираем стенд

Настраиваем приборы и запускаем осциллограф

Передаем данные в GrapherView

Дальше точки переводим файл с расширение dlm и передаем его в Mathcad

Рассчитаем параметры диода через *Given Minerr* и сравним экспериментальную BAX с теоретической

Исследование выпрямительных свойств диода с помощью осциллографа Собираем стенд моделирования и настраиваем осциллограф

Показания осциллографа

Подключаем свой диод в схему

Показания осциллографа с диодом

Добавим в схему накопительный конденсатор

