Exercises 5

Exercise 1 (Quantifier Elimination in PA). Apply quantifier elimination as seen in the Lectures to the following formulas:

- $\exists x, y. 2x + 3y < 7 \land x < y$
- $\exists x, y. 2x + 3y < 7 \land y < x$
- $\exists x, y. 3x + 3y < 8 \land 8 < 3x + 2y$
- $\bullet \ \exists x,y.\, x=2y \land \exists z.x=3z$

Solution: In PA we have that:

$$\exists y. \, 2x + 3y < 7 \land x < y$$

$$\equiv \exists y. \, 3x < 3y \land 3y < 7 - 2x$$

$$\equiv \exists y'. \, 3x < y' \land y' < 7 - 2x \land 3 \mid y'$$

$$\equiv \bigvee_{i=1}^{3} 3x + i < 7 - 2x \land 3 \mid 3x + i$$

We can then proceed with the second quantifier:

$$\exists x. \bigvee_{i=1}^{3} 3x + i < 7 - 2x \land 3 \mid 3x + i$$

$$\equiv \bigvee_{i=1}^{3} \exists x. 3x + i < 7 - 2x \land 3 \mid 3x + i$$

$$\equiv \bigvee_{i=1}^{3} \exists x. 5x < 7 - i \land 3 \mid 3x + i$$

$$\equiv \bigvee_{i=1}^{3} \exists x. 15x < 21 - 3i \land 15 \mid 15x + 5i$$

$$\equiv \bigvee_{i=1}^{3} \exists x'. x' < 21 - 3i \land 15 \mid x' + 5i \land 15 \mid x'$$

$$\equiv \bigvee_{i=1}^{3} \bigvee_{j=1}^{15} 15 \mid j + 5i \land 15 \mid j$$

Similarly we have for the second sentence:

$$\exists y. \ 2x + 3y < 7 \land y < x$$

$$\equiv \exists y. \ 3y < 7 - 2x \land 3y < 3x$$

$$\equiv \exists y'. \ y' < 7 - 2x \land y' < 3x \land 3 \mid y'$$

$$\equiv \bigvee_{i=1}^{3} 3 \mid i$$

We then have:

$$\exists x. \bigvee_{i=1}^{3} 3 \mid i \equiv \bigvee_{i=1}^{3} \exists x. 3 \mid i \equiv \bigvee_{i=1}^{3} 3 \mid i$$

For the third sentence:

$$\exists y. \, 3x + 3y < 8 \land 8 < 3x + 2y$$

$$\equiv \exists y. \, 8 - 3x < 2y \land 3y < 8 - 3x$$

$$\equiv \exists y. \, 24 - 9x < 6y \land 6y < 16 - 6x$$

$$\equiv \exists y'. \, 24 - 9x < y' \land y' < 16 - 6x \land 6 \mid y'$$

$$\equiv \bigvee_{i=1}^{6} 24 - 9x + i < 16 - 6x \land 6 \mid 24 - 9x + i$$

We then have:

$$\exists x. \bigvee_{i=1}^{6} 24 - 9x + i < 16 - 6x \land 6 \mid 24 - 9x + i$$

$$\exists x. \bigvee_{i=1}^{6} 8 + i < 3x \land 6 \mid 24 - 9x + i$$

$$\exists x. \bigvee_{i=1}^{6} 24 + 3i < 9x \land 6 \mid 24 - 9x + i$$

$$\exists x. \bigvee_{i=1}^{6} 24 + 3i < x' \land 6 \mid 24 - x' + i \land 9 \mid x'$$

$$\exists x. \bigvee_{i=1}^{6} \bigvee_{j=1}^{72} 6 \mid 24 - j + i \land 9 \mid j$$

Finally:

$$\exists x, y. \ x = 2y \land \exists z.x = 3z$$
$$\equiv \exists x, 2 \mid x \land 3 \mid x$$
$$\equiv \bigvee_{i=1}^{6} 2 \mid i \land 3 \mid i$$

 \Diamond

Exercise 2 (Satisfiability algorithm for Presburger arithmetic). Consider the formula F(x) given by

$$F(x) = \bigwedge_{i=1}^{n} a_i < x \land \bigwedge_{j=1}^{n} x < b_j \land \bigwedge_{i=1}^{n} K_i | (x + t_i).$$

Recall that the terms a_i, b_j, t_i may in general contain other variables than x.

- 1. Assume all a_i, b_j, t_i are integer constants. Give an algorithm that, given any formula of the form above, returns:
 - \bullet a value for x, if such value exists, and
 - "UNSAT" if no such value exists

Solution: Since

$$F(x) \equiv \bigvee_{i=1}^{\operatorname{lcm}(\{K_i\}_i)} F(\max_i a_i + i)$$

The algorithm checks for all i in that range whether $F(\max_i a_i + i)$ holds, and output one of them if it exists. Otherwise it returns UN-SAT. \Diamond

- 2. Give a recursive algorithm that, given a formula in the above form returns
 - one map from variables to integers for which formula evaluates to true, if such a map exists, and
 - "UNSAT" if no such map exists.

Solution: Applying the quantifier elimination procedure gives us a formula of the form

$$\bigvee_{i_1=1}^{N_1}\cdots\bigvee_{i_k=1}^{N_k}\varphi$$

During the procedure, we record for each quantifier $\exists x_j$ the associated term $t_j = \max_i a_i$. The latter allows us to compute the range for each variable. We then try all possible assignments using backtracking on $F(\overline{x})$ to find a suitable one. \Diamond

Exercise 3 (Quantifier elimination for rationals). In this exercise we will devise a quantifier elimination method for rational numbers. We consider formulas over the signature $(\mathbb{Q}, <, \leq, =, +, -)$, i.e. with constant symbols among \mathbb{Q} , interpreted over the standard structure of rational numbers.

1. Show that for any formula F, there exists a formula F_1 such that

$$F \iff Q_1x_1,\ldots,Q_nx_n,Q_{n+1}y.F_1$$

Where Q_i are either \exists or $\neg \exists$, i.e. existential quantifiers that can be separated by negations and where F_1 is built only from $(\land, \lor, \mathbb{Q}, <, =, +, -, k \cdot _)$. In particular it is quantifier-free and contains no negation!

Solution: We can find such a formula by applying the following steps.

- (a) Pushing all the quantifiers to the beginning of the formula.
- (b) Changing $\forall x_i. \varphi \text{ in } \neg \exists x_i. \neg \varphi.$
- (c) Pushing negations to atomic subformulas, applying De Morgan laws and converting $\neg a < b$ into $b \le a$, $\neg a \le b$ into b < a and $\neg a = b$ into $b < a \lor a < b$.
- (d) Substituting all occurences of $a \le b$ by $a < b \lor a = b$.

 \Diamond

2. Do we need to add the divisibility relation as in the PA case? Why?

Solution: No, because in this case, variables are rationals and not integers anymore, so they can be divided by an arbitrary integer. \Diamond

3. Show that there exist a formula F_2 such that $F_1 \iff F_2$ and every atom of F_2 is of the form:

or

y < t

or

$$t = y$$

for some term t

Solution: In each atom, we can move around all the varibles expect y in order to end up with atoms of the form $k \cdot y < t$, $t < k \cdot y$ or $t = k \cdot y$. By multiplying both sides by 1/k we obtain the desired result. \Diamond

4. Show that there exists a formula F_3 that is quantifier-free such that

$$(\exists y.F_2) \iff F_3$$

Solution: There are several ways to tackle this problem. We present

here the most similar to Presburger Arithmetic quantifier elimination. We start by converting F_2 in DNF and distribute the existential quantifier over the disjunction afterwards. We therefore end up with subformulas of the form:

$$\exists y. \bigwedge_{i \in I} t_i < y \land \bigwedge_{j \in J} y < t_j \land \bigwedge_{k \in K} t_k = y$$

If $K \neq \emptyset$, we can just replace every occurrence of y by one of the t_k . Otherwise we eliminate the quantifier by reducing each conjuction to:

$$\bigwedge_{i \in I} \bigwedge_{j \in J} t_i < t_j$$

 \Diamond

Exercise 4 (PA without divisibility). Show that Presburger Arithmetic without the divisibility relationship does not admit quantifier elimination with the following steps:

1. Find a quantified formula of one free variable F(y) such that F(y) is true for infinitely many positive integers and false for infinitely many positive integers. I.e., $S_F = \{n \in \mathbb{N} | F(n)\}$ is infinite and $\mathbb{N} \setminus S_F$ is infinite.

Solution: $\exists x. \, 2x = y$ is such formula as it is true for all even numbers and false for odd ones. \Diamond

2. Show that for any quantifier-free formula of one free variable G(y), either S_G is finite or $\mathbb{N} \setminus S_G$ is finite.

Solution: Since:

- x = y can be written as y 1 < x < y + 1;
- we can push negations down to atomic formula;
- we can distribute ANDs over ORs;

any quantifie-free formula is equivalent to

$$\bigwedge_{i} ai < n_i \cdot y \wedge \bigwedge_{j} n'_j \cdot y < b_j$$

which is itself equivalent

$$\bigwedge_{i} ai \cdot \left(\frac{N}{n_{i}}\right) < N \cdot y \wedge \bigwedge_{j} N \cdot y < b_{j} \cdot \left(\frac{N}{n'_{j}}\right)$$

where $N = \text{lcm}(\{a_i\}_i, \{b_j\}_j)$.

When $\{a_i\}_i$ is not empty we can merge all the bounds to a single one ending up with:

$$\max_i \left(ai \cdot \left(\frac{N}{n_i} \right) \right) < N \cdot y$$

Similarly if $\{b_j\}_i$ is not empty we have:

$$N \cdot y < \min_{j} \left(b_{j} \cdot \left(\frac{N}{n'_{j}} \right) \right)$$

We end up with 3 possibilities:

- either $\{b_i\}_i = \emptyset$, in which case $S_G = \left\{ y \in \mathbb{N} \mid y > \left\lceil \frac{\max_i \left(a_i \cdot \left(\frac{N}{n_i} \right) \right)}{N} \right\rceil \right\}$, which is a cofinite set;
- either $\{a_i\}_i = \emptyset$, in which case $S_G = \left\{ y \in \mathbb{N} \mid y < \left\lfloor \frac{\max_j \left(b_j \cdot \left(\frac{N}{n'_i} \right) \right)}{N} \right\rfloor \right\}$, which is a finite set;
- either both are non empty in which case S_G is the intersection of the two sets above and is therefore finite as well.

 \Diamond

Conclude.

Solution: This shows that we cannot find for any formula F, an equivalent quantifier-free formula G that is equivalent to it. Indeed, our quantifier elimination procedure produces formulas with subformulas of the form $k \mid f(\overline{x})$ which admit an existential quantifier under the hood. \Diamond

Exercise 5 (Structure of sets). Consider the structure $(\mathcal{P}(\mathbb{N}), \subseteq, = \cap, \cup, _^c)$ whose base set is the set of all sets of natural numbers and where $_^c$ denotes complement. Is it possible to eliminate quantifiers from arbitrary first order formulas on this structure? For example, $\exists B.A \subseteq B \land B \subseteq C$ is equivalent to $A \subseteq C$. Show a quantifier elimination procedure, or give an example of a quantified first-order logic formula that has no equivalent formula without quantifiers, and prove it.

Solution:

Quantifier elimination is not possible as there exist formulas that have no quantifier-free equivalent. For example we can express $\exists Y. X \cap Y^c \neq \emptyset \land$

 $X \cap Y \neq \emptyset$, which is satisfied for all X containing at least two elements. However, without quantifiers we can only express $X = \emptyset$, $X = \mathbb{N}$ or boolean combinations of both.

 \Diamond

Exercise 6 (A rational arithmetic formula). Consider the following formula G(x, z) where the variables range over rational numbers \mathbb{Q} :

$$\forall y.((x < y \land y < z) \longrightarrow \forall u.(x \neq u + u + u))$$

Find a quantifier-free formula equivalent to G(x, z).

Solution:

$$\forall y.((x < y \land y < z) \longrightarrow \forall u.(x \neq u + u + u))$$

$$\equiv \neg \exists y.(x < y \land y < z \land \exists u.(x = u + u + u))$$

$$\equiv \neg \exists y.(x < y \land y < z)$$

$$\equiv \neg (x < z)$$

 \Diamond