Link Layer

Dr. Raja Vara Prasad, IIIT Sri City, Chittoor

Link Layer

- Moves datagrams node-to-node
- Link layer protocols: Ethernet, IEEE 802.11 (Wirelss LAN/ Wifi), Token-ring, PPP
- Services
 - Framing
 - Link-access
 - Reliable-delivery
 - Flow Control
 - Error detection
 - Error correction
 - Half-duplex and Full-duplex

Link Layer

Figure 5.1 • Six link-layer hops between wireless host and server

Where is the Link layer implemented

Link Layer Implementation

Software components

- · receiving datagram from network layer
- assembling link-layer addressing information
- · activating the controller hardware

Hardware components

- transfer frame from one adapter to another adapter
- error detection and correction

Error Detection and Correction

- EDC: error detection and correction bits
- Parity checks
- Checksumming methods
- Cyclic redundancy checks (CRC)

Parity Checks

Cyclic Redundancy Check (CRC)

- Bit string can be viewed as a polynomial
- Sender and receiver agree on r+1 bit pattern known as generator \emph{G}
- Most significant bit of G should be 1
- Given data D, sender will choose additional r bits, R and append them to D
- The resulting d + r bit pattern should be divisible by G.
- CRC calculations are done in modulo-2 arithmetic without carries and borrows (XOR operations)

• Find R such that there exists n that satisfies

$$D.2^rXOR R = nG$$

- $R = \text{remainder } \frac{D.2^r}{G}$
- Example:

• International standards define 8-, 16-, 24-, 32-bit generators.

Multiple Access Channels

Multiple Access Protocols

- If multiple nodes transmit frames at same time, packets collide!
- Channel partitioning protocols
 - TDM
 - FDM
- Random access protocols
 - Pure ALOHA
 - Slotted ALOHA
 - Carrier sense multiple access (CSMA), CSMA/CD
- Taking-turns Protocols
 - Polling protocol
 - Token-passing Protocol

Multiple Access Protocols

Desirable characteristics of MAC protocols on a broadcast channel of rate *R* bps:

- When only one node is has frames to send, that node should have throughput of R bps
- When M nodes have frames to send, each node should have throughput of R/M bps
- Protocol is decentralized
- Protocol is simple and inexpensive to implement.

Channel Partitioning Protocol

Key:

All slots labeled "2" are dedicated to a specific sender-receiver pair.

Drawbacks of TDM and FDM

- When only one node is active, it gets throughput of R/N bps.
- Node has to wait for its turn!
- Code division multiple access (CDMA)

Slotted ALOHA

Model and assumptions

- All frame consists of exactly L bits
- Time is divided into slots of size L/R seconds
- Nodes start to transmit frames only at the beginning of slots
- Nodes are synchronized
- If two or more frames collide in a slot, then all nodes can detect the collision before the slot ends

Slotted ALOHA

- When a node has fresh frame to send, it waits for beginning of the next slot and transmits the frame in the slot
- If there is no collision, the node has successfully transmitted the packet and no need to retransmit
- If there is a collision, the node detects it before end of the slot.
 The node retransmits the frame in each subsequent slot with probability p until the frame is transmitted without a collision

Slotted ALOHA: Drawbacks

- Collisions
- Empty spaces
- Efficiency: fraction of successful slots

Efficiency of Slotted ALOHA

- Assume that each node always has a frame to send
- Probability that only one node (out of N) transmits
- $Np(1-p)^{N-1}$
- Efficiency = $Np(1-p)^{N-1}$
- Find p that maximizes efficiency, let it be p^*
- As $N \to \infty$, Efficiency $\to \frac{1}{e}$
- Only 37% of slots are used for successful transmission! a similar analysis show that 37% slots are empty and remaining slots have collisions.

Pure ALOHA

- Unslotted time axis
- Transmit a frame as soon as it arrives
- If there is a collision, node retransmits the frame immediately with probability p. Otherwise, wait for frame transmission time.
- After this wait, it then retransmits the frame with probability p or waits for another frame time with probability 1-p.

Pure ALOHA

• Efficiency : $\frac{1}{2e}$

Carrier Sense Multiple Access

- Listen before speaking: carrier sensing
- If channel is busy, nodes 'backs off' a random amount of time and then senses again.
- If the channel is idle, node transmits the frame
- collision detection: If someone else begins talking at the same time, stop talking

CSMA

CSMA/CD

Taking-Turns Protocol

Polling Protocol

- Master node polls each of the nodes in a round-robin fashion
- Polling delay
- Master node may fail!

Token-passing Protocol

- A special-purpose frame known as a token is exchanged among the nodes
- A node with token can transmit a maximum number of frames and send the token to next node
- A node holds token only if it has frames to transmit
- Very efficient.

Link-Layer Addressing

- Are IP addresses really unique?
- Node's adapter has a link-layer address
- Also known as LAN address or Physical address or MAC address
- MAC address
 - Managed by IEEE
 - Flat structure
 - Broadcast address : FF-FF-FF-FF-FF

Address Resolution Protocol

- Sending node has to provide it's link layer not only IP address of destination but also destination's MAC address
- How does the source node determines the MAC address of it's destination?
- Address Resolution Protocol (ARP)
- Analogous to DNS

IP Address	MAC Address	ΠL	
222.222.222.221	88-B2-2F-54-1A-0F	13:45:00	
222.222.222.223	5C-66-AB-90-75-B1	13:52:00	

ARP

- Suppose node 222.222.222 wants to send a datagram to 222.222.222
- If ARP does not have an entry about the destination, it first constructs an ARP query packet.
- Query:
 - IP addresses of sender and receiver
 - sender's MAC address
 - Broadcast MAC address
- Encapsulated in a link-layer frame and sent in to the subnet
- Each node checks to see if its IP address matches with the destination address
- The one node with a match sends a ARP response packet with desired mapping

Sending a Datagram Off the Subnet

- Destination MAC address should be that of router's MAC on subnet 1
- The router determines the correct interface based on destination IP address
- After processing, router encapsulates the datagram in a frame with destination MAC address.

Ethernet

- Popular wired LAN technology
- Data field: minimum length is 46 bytes and maximum length is 1500 bytes
- Type field: specifies the protocol at network layer
- Preamble:
 - 8-bytes
 - first byte has value 10101010
 - last byte has value 10101011
 - to synchronize the clocks

Ethernet's MAC Protocol: CSMA/CD

- The adapter takes datagram from network layer and prepares Ethernet frame and keeps in adapter's buffer
- If the channel is idle for 96 bit times, it starts to transmit the frame
- If the channel is busy, it waits until it senses no signal energy plus 96 bit times and then starts to transmit the frame
- If the adapter transmits the entire frame without detecting collision, the adapter is finished with the frame
- If the adapter detects a collision, it stops transmitting its frame and instead transmits a 48-bit jam signal

Ethernet's MAC Protocol: CSMA/CD

- After transmitting the jam signal, the adapter enters an exponential backoff phase.
- Exponential Backoff: After experiencing nth collision in a row for a frame, the adapter chooses a value for K at random from $\{0,1,2,\ldots,2^m-1\}$ for $m=\min(n,10)$. The adapter then waits K.512 bit times and then returns to step 2.
- d_{prop} is maximum time it takes signal energy to propagate between any two adapters
- ullet d_{trans} is the time to transmit a maximum size Ethernet frame.
- Efficiency = $\frac{1}{1+5d_{prop}/d_{trans}}$

Wireless Network

Figure 6.1 ♦ Elements of a wireless network

Wireless Network

Figure 6.4 • Hidden terminal problem caused by obstacle (a) and fading (b)

Figure 6.7 ♦ IEEE 802.11 LAN architecture

An IEEE 802.11 ad hoc network

- 1. Beacon frames sent from APs
- Association Request frame sent: H1 to selected AP
- Association Response frame sent:
 Selected AP to H1

a. Active scanning

- 1. Probe Request frame broadcast from H1
- 2. Probes Response frame sent from APs
- Association Request frame sent:
 H1 to selected AP
- Association Response frame sent: Selected AP to H1

Figure 6.9 Active and passive scanning for access points

P3. Suppose the information portion of a packet (*D* in Figure 5.3) contains 10 bytes consisting of the 8-bit unsigned binary ASCII representation of string "Networking." Compute the Internet checksum for this data.

P5. Consider the 7-bit generator, G=10011, and suppose that D has the value 101010101. What is the value of R?

- P8. In Section 5.3, we provided an outline of the derivation of the efficiency of slotted ALOHA. In this problem we'll complete the derivation.
 - a. Recall that when there are N active nodes, the efficiency of slotted ALOHA is $Np(1-p)^{N-1}$. Find the value of p that maximizes this expression.
 - b. Using the value of p found in (a), find the efficiency of slotted ALOHA by letting N approach infinity. *Hint*: $(1 1/N)^N$ approaches 1/e as N approaches infinity.

P17. Recall that with the CSMA/CD protocol, the adapter waits $K \cdot 512$ bit times after a collision, where K is drawn randomly. For K = 100, how long does the adapter wait until returning to Step 2 for a 10 Mbps broadcast channel? For a 100 Mbps broadcast channel?