ниу итмо

ФПИиКТ

Информатика

Лабораторная работа №2

Синтез помехоустойчивого кода

Вариант: 67.

Выполнил: Раевский Григорий Романович

Группа: Р3121

Преподаватель: Болдырева Елена Александровна

Санкт-Петербург

2023г.

Содержание

Задание	2
Решения	3
№1 - 49	3
№2 - 86	3
№3 - 11	4
<i>№</i> 4 - 78	4
№5 - 67	4
№6 - $((49+86+11+78+67)*4)=1164$	5
Вывод	5

Задание

Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.

Показать, исходя из выбранных вариантов сообщений (по 4 у каждого – часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.

На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 15-символьного кода.

Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.

Показать, исходя из выбранного варианта сообщений (по 1 у каждого – часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.

Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.

Решения

Таблицы для решения:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15										
2 ^x	<i>r</i> ₁	r ₂	i ₁	<i>r</i> ₃	i ₂	i ₃	i ₄	r ₄	i ₅	i ₆	i ₇	i ₈	i ₉	i ₁₀	i ₁₁	S		1	2	3	4	5	6	7	
1	Х		Х		Х		Х		Х		Х		Х		Х	S ₁	2 ^x	r,	r ₂	i ₁	<i>r</i> ₃	i ₂	i ₃	i ₄	S
2		X	X			X	Х			X	X			X	Х	S ₂	1	Х		Х		Х		Х	S ₁
4				Х	Х	Х	Х					Х	Х	Х	Х	S ₃	2		Х	Х			Х	Х	S ₂
8								Х	Х	Х	Х	Х	Х	Х	Х	S ₄	4				Х	Х	Х	Х	S ₃

№1 - 49

$$S_1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 1 \oplus 0 \oplus 1 = 0, S_2 = r2 \oplus i1 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 1 \oplus 1 = 0,$$

$$S_3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1.$$

Тогда $S = (S_1, S_2, S_3) = 001 \Rightarrow$ ошибка в $r3 \Rightarrow$ правильное сообщение:1011.

 $S_1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1, S_2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1,$ $S_3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1.$

Тогда $S = (S_1, S_2, S_3) = 111 \Rightarrow$ ошибка в $i4 \Rightarrow$ правильное сообщение:0111.

№3 - 11

 $S_1 = r1 \oplus i1 \oplus i2 \oplus i4 = 1 \oplus 1 \oplus 0 \oplus 0 = 0, S_2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 1 \oplus 0 \oplus 0 = 1,$ $S_3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1.$

Тогда $S = (S_1, S_2, S_3) = 011 \Rightarrow$ ошибка в $i3 \Rightarrow$ правильное сообщение:1010.

№4 - 78

 $S_1 = r1 \oplus i1 \oplus i2 \oplus i4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1, S_2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 0 \oplus 0 \oplus 1 = 1,$ $S_3 = r3 \oplus i2 \oplus i3 \oplus i4 = 0 \oplus 1 \oplus 0 \oplus 1 = 0.$

Тогда $S = (S_1, S_2, S_3) = 110 \Rightarrow$ ошибка в $i1 \Rightarrow$ правильное сообщение:1101.

№5 - 67

 $S_1 = r1 \oplus i1 \oplus i2 \oplus i4 \oplus i5 \oplus i7 \oplus i9 \oplus i11 = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = 0, S_2 = r2 \oplus i1 \oplus i3 \oplus i4 \oplus i6 \oplus i7 \oplus i10 \oplus i11 = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = 1, S_3 = r3 \oplus i2 \oplus i3 \oplus i4 \oplus i8 \oplus i9 \oplus i10 \oplus i11 = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 1, S_4 = r4 \oplus i5 \oplus i6 \oplus i7 \oplus i8 \oplus i9 \oplus i10 \oplus i11 = 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 1.$

Тогда $S = (S_1, S_2, S_3, S_4) = 0111 \Rightarrow$ ошибка в i10 \Rightarrow правильное сообщение:11000110110.

$$N_{2}6 - ((49 + 86 + 11 + 78 + 67)*4) = 1164$$

В сообщении 1164 информационных разряда. Пусть будет г проверочных разрядов, а всего в сообщении 2^r-1 бит. Информационных бит $i=2^r-r-1$.

Тогда для $2^{r-1}-r<1164\leq 2^r-r-1$ найдем подходящее г. Отсюда г = 11. Отсюда, коэффициент избыточности: $\frac{r}{r+i}=\frac{11}{(1164+11)}=\approx 0.009$.

Вывод

В процессе выполнения лабораторной я узнал много подробность про код Хэмминга, научился его анализировать. Я также узнал про синтез помехоустойчивого кода.