2º curso / 2º cuatr.

Grado en

Ing. Informática

Arquitectura de Computadores

Seminario 0. Entorno de programación: atcgrid y gestor de carga de trabajo

Material elaborado por los profesores responsables de la asignatura:

Mancia Anguita – Julio Ortega

Licencia Creative Commons

AC A PIC

- Cluster de prácticas (atcgrid)
- Gestor de carga de trabajo (workload manager)
- Ejemplo de script

AC NATC

- Cluster de prácticas (atcgrid)
 - > Componentes
 - > Placa madre
 - > Chips de procesamiento (procesadores)
 - > Acceso
- Gestor de carga de trabajo
- Ejemplo de script

Cluster de prácticas (atcgrid): componentes

AC A PTC

Nodos de cómputo (atcgrid[1-4]):

→ Tres servidores rack SuperMicro
SuperServer 6016T-T (atcgrid[1-3])
http://www.supermicro.com/products/system/10/6016/SYS-6016T-T.cfm

→ Un servidor rack SuperMicro SYS-6019U-TR4 1U (atcgrid4) https://www.supermicro.com/products/system/

1u/6019/SYS-6019U-TR4.cfm

Nodo *front-end* (host, master): Asus RS300-E9-PS4

Cluster de prácticas (atcgrid): componentes

Cluster de prácticas>nodos atcgrid[1-3]: placa madre

Cluster de prácticas>nodos atcgrid[1-3]: chip de procesamiento

Intel Xeon E5645 (6 cores/12 threads, 12M L3 Cache compartida, 2.40 GHz cada core, 5.86 GT/s Intel® QPI) http://ark.intel.com/products/48768?wapkw=(E5645)

Cluster de prácticas> nodo atcgrid4: placa

https://www.supermicro.com/en/products/mothe
rboard/X11DPU

Intel® C621 Chipset Product Specifications

Cluster de prácticas (atcgrid4): chip de procesamiento de la CPU

Intel® Xeon® Silver 4216 (16 cores/32 threads, 22MB L3 Cache compartida, 2.10 GHz máxima 3,2 GHz, cada core, 9.6 GT/s Intel® UPI)

Cluster de prácticas (atcgrid): acceso

- Cada usuario tiene un home en el nodo front-end del clúster atcgrid. Se puede acceder al home:
 - > Para ejecutar comandos (srun, sbatch, squeue...), con un cliente ssh (secure shell):
 - Linux: \$ ssh -X username@atcgrid.ugr.es (pide password del usuario "username")
 - Para cargar y descargar ficheros (put hello, get slurm-9.out, ...), con un cliente sftp (secure file transfer protocol)
 - Linux: \$ sftp username@atcgrid.ugr.es (pide password del usuario "username")

AC N PTC

- Cluster de prácticas (atcgrid)
- Gestor de carga de trabajo
- > Ejemplo de script

Ejemplos con comandos slurm

AC A PIC

> Se ejecutarán en el *front-end* con conexión **ssh**

Ejemplo	Explicación
<pre>srun -pac -Aac ./hello srun -p ac4 -A ac lscpu</pre>	srun envía a ejecutar un trabajo (en los ejemplos, el ejecutable hello, y lscpu) a través de una cola slurm. Si aparece $-p$, se envía a nodos de la cola especificada con $-p$ (un trabajo solo puede usar un nodo de la cola ac).
<pre>sbatch -p ac script.sh sbatch -p acwrap "echo Hola" sbatch -p acwrap "./hello" sbatch -p acwrap "echo Hola; ./hello"</pre>	sbatch envía a ejecutar un script (en este caso script.sh, "echo Hola", "./hello" y "echo Hola; ./hello") a través de una cola slurm. La salida se devuelve en un fichero. La ejecución con srun es interactiva, con sbatch es en segundo plano. Se recomienda usar sbatch
squeue	Muestra todos los trabajos en ejecución y los que están encolados
scancel jobid	Elimina el trabajo con identificador "jobid"
sinfo	Lista información de las particiones (colas) y de los nodos
sinfo -pac -o"%10D %10G %20b %f"	Lista los nodos (D), los recursos (G), y las características activas (b) y disponibles (f) en la partición especificada (-p) (%[[.]size]type[suffix])

Tabla resumen: https://slurm.schedmd.com/pdfs/summary.pdf
Páginas de manual: https://slurm.schedmd.com/man_index.html

Particiones slurm (colas) en atcgrid


```
$ sinfo
PARTITION AVAIL
                              NODES
                                      STATE NODELIST
                  TIMELIMIT
                       1:00
                                       idle atcgrid[1-3]
ac*
              up
ac4
                       1:00
                                       idle atcgrid4
              up
                                       idle atcgrid[1-3]
                       2:00
aapt
              up
                       1:00
                                       idle atcgrid[1-3]
acap
              up
```

* significa que ac es la cola utilizada por defecto, es decir, cuando no se usa -p

AC N PTC

- Cluster de prácticas (atcgrid)
- Gestor de carga de trabajo
- > Ejemplo de script

Ejemplo hello OpenMP

AC N PTC

- Cada thread imprime su identificador
 - > El identificador se obtiene
 con la función OpenMP
 omp get thread num()

HelloOMP.c

```
/* Compilar con:
gcc -O2 -fopenmp -o HelloOMP HelloOMP.c
#include <stdio.h>
#include <omp.h>
int main(void) {
#pragma omp parallel
  printf("(%d:!!!Hello world!!!)",
            omp get thread num());
return(0);
```

Script para la ejecución del ejemplo HelloOMP en atcgrid

script_helloomp.sh

```
#!/bin/bash
#Órdenes para el Gestor de carga de trabajo:
#1. Asigna al trabajo un nombre
#SBATCH -- job-name=helloOMP
#2. Asignar el trabajo a una partición (cola)
#SBATCH --partition=ac
#2. Asignar el trabajo a un account
#SBATCH --account=ac
#Obtener información de las variables del entorno del Gestor de carga de trabajo:
echo "Id. usuario del trabajo: $SLURM JOB USER"
echo "Id. del trabajo: $SLURM JOBID"
echo "Nombre del trabajo especificado por usuario: $SLURM JOB NAME"
                                                                                                        Gestor de
echo "Directorio de trabajo (en el que se ejecuta el script): $$LURM_SUBMIT_DIR"
echo "Cola: $SLURM JOB PARTITION"
                                                                                                     de trabajo
echo "Nodo que ejecuta este trabajo: $SLURM SUBMIT HOST"
echo "Nº de nodos asignados al trabajo: $STURM_JOB_NUM_NODES"
echo "Nodos asignados al trabajo: $SLURM JOB NODELIST"
echo "CPUs por nodo: $SLURM JOB CPUS PER NODE"
#Instrucciones del script para ejecutar código:
echo -e "\n 1. Ejecución helloOMP una vez sin cambiar nº de threads (valor por defecto):\n"
srun ./HelloOMP
echo -e "\n 2. Ejecución helloOMP varias veces con distinto nº de threads:\n"
for ((P=12;P>0;P=P/2))
do
   export OMP NUM THREADS=$P
   echo -e "\n - Para $P threads:"
   srun ./HelloOMP
done
```

carga nstrucciones de

No olvidar poner **srun** delante del ejecutable

Utilidades

AC S PTC

- > Formateo de código a insertar en los cuadernos:
 - https://pinetools.com/syntax-highlighter,
 - https://highlight.hohli.com/index.php,
 - https://tohtml.com/