A. 文章原理公式及完整实验结果

A.1 第 2.2 节的优化过程

变量 M 和 P 可以如下交替进行求解:

步骤 1: 优化 M 时, 固定 P, 将第 2.2 节 MDC 目标函数 (2) 转换为:

$$\min_{\mathbf{M}} \sum_{k=1}^{c} \sum_{i=1}^{n} \left\| \mathbf{X}_{MSPE}^{i} \mathbf{P} - \mathbf{M}_{k} \mathbf{P} \right\|_{2}$$
(A.1)

引入辅助变量 $h_{ik} = (\|\mathbf{X}_{MSPE}^i\mathbf{P} - \mathbf{M}_K\mathbf{P}\|_2)^{-1}$ 来表示投影空间中 \mathbf{X}_{MSPE}^i 与 \mathbf{M}_K 之间的距离,因此上式可以表示为:

$$\min_{\mathbf{M}} \sum_{k=1}^{c} \sum_{i=1}^{n} \left\| \mathbf{X}_{MSPE}^{i} \mathbf{P} - \mathbf{M}_{k} \mathbf{P} \right\|_{2} = \sum_{k=1}^{c} \sum_{i=1}^{n} \left\| \mathbf{X}_{MSPE}^{i} \mathbf{P} - \mathbf{M}_{k} \mathbf{P} \right\|_{2}^{2} h_{ik}$$
(A.2)

计算公式 (A.2) 对 M_{ι} 的偏导数,可得:

$$\frac{\partial \sum_{k=1}^{c} \sum_{i=1}^{n} \left\| \mathbf{X}_{MSPE}^{i} \mathbf{P} - \mathbf{M}_{k} \mathbf{P} \right\|_{2}^{2} h_{ik}}{\partial \mathbf{M}_{k}}$$

$$= \sum_{i=1}^{n} 2(\mathbf{M}_{k} \mathbf{P} - \mathbf{X}_{MSPE}^{i} \mathbf{P}) \mathbf{P}^{\mathsf{T}} h_{ik}$$

$$= \sum_{i=1}^{n} 2(\mathbf{M}_{k} \mathbf{P} - \mathbf{X}_{MSPE}^{i} \mathbf{P}) \mathbf{P}^{T} h_{ik}$$
(A.3)

令公式 (A.3) 为 0,可得出 M_{ν} :

$$\mathbf{M}_{k} = \frac{\sum_{i=1}^{N} \mathbf{X}_{MSPE}^{i} h_{ik}}{\sum_{i=1}^{N} h_{ik}}$$
(A.4)

(A.5)

步骤 2: 优化 P 时, 固定 M, 将目标函数 (2) 转换为:

$$\min_{\mathbf{P}} \sum_{k=1}^{c} \sum_{i=1}^{n} \left\| \mathbf{X}_{MSPE}^{i} \mathbf{P} - \mathbf{M}_{k} \mathbf{P} \right\|_{2} \\
+ \sigma \sum_{i,j} \left\| \mathbf{X}_{MSPE}^{i} \mathbf{P} - \mathbf{X}_{MSPE}^{j} \mathbf{P} \right\| \mathbf{W}_{ij} \\
+ \varsigma \left\| \mathbf{P} \right\|_{2,1} \\
s.t. \mathbf{P}^{T} \mathbf{P} = \mathbf{I}$$

公式(A.5)可以看作由三部分组成,所以可以将其先拆分成三部分,并逐一分析每个部分的数学含义进行求解:

①第一部分求解:在此通过引入辅助变量 $\tilde{\mathbf{H}}$ 和 $\hat{\mathbf{H}}$,可得:

$$\sum_{k=1}^{c} \sum_{i=1}^{n} \left\| \mathbf{X}_{MSPE}^{i} \mathbf{P} - \mathbf{M}_{k} \mathbf{P} \right\|_{2}^{2}$$

$$= \sum_{k=1}^{c} \sum_{i=1}^{n} \left\| \mathbf{X}_{MSPE}^{i} \mathbf{P} - \mathbf{M}_{k} \mathbf{P} \right\|_{2}^{2} h_{ik}$$

$$= \sum_{k=1}^{c} \sum_{i=1}^{n} \left(\mathbf{X}_{MSPE}^{i} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{i}^{\mathsf{T}} h_{ik} - 2 \mathbf{M}_{k} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{i}^{\mathsf{T}} h_{ik} + \mathbf{M}_{k} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{M}_{k}^{\mathsf{T}} h_{ik} \right)$$

$$= \sum_{i=1}^{n} \mathbf{X}_{MSPE}^{i} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{i}^{\mathsf{T}} \left(\sum_{k=1}^{c} h_{ik} \right) - \sum_{k=1}^{c} \sum_{i=1}^{n} 2 \mathbf{M}_{k} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{i}^{\mathsf{T}} h_{ik}$$

$$+ \sum_{k=1}^{c} \mathbf{M}_{k} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{M}_{k}^{\mathsf{T}} \left(\sum_{i=1}^{N} h_{ik} \right)$$

$$\Rightarrow Tr(\mathbf{X}_{MSPE} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{\tilde{H}}) - Tr(2 \mathbf{M} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{H}) + Tr(\mathbf{M} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{M}^{\mathsf{T}} \mathbf{\hat{H}})$$

$$\Rightarrow Tr(\mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{\tilde{H}} \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{P}) - Tr(2 \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{H} \mathbf{M} \mathbf{P}) + Tr(\mathbf{P}^{\mathsf{T}} \mathbf{M}^{\mathsf{T}} \mathbf{\hat{H}} \mathbf{M} \mathbf{P})$$
(A.6)

② 第 二 部 分 求 解 : 在 此 通 过 引 入 辅 助 变 量 $Q = [q_{ij}]_{n\times n}$, 其 中

$$q_{ij} = \begin{cases} \frac{1}{2 \|\mathbf{X}_{MSPE}^{i} \mathbf{P} - \mathbf{X}_{MSPE}^{j} \mathbf{P}\|_{2}} & \|\mathbf{X}_{MSPE}^{i} \mathbf{P} - \mathbf{X}_{MSPE}^{j} \mathbf{P}\|_{2} \neq 0 \\ 0 & \|\mathbf{X}_{MSPE}^{i} \mathbf{P} - \mathbf{X}_{MSPE}^{j} \mathbf{P}\|_{2} = 0 \end{cases}, \quad q_{ij} \text{ 可以看作是 } \mathbf{W}_{ij} \text{ 增加了一个权重。}$$

 \mathbf{X}_{MSPE}^{i} 距离 \mathbf{X}_{MSPE}^{i} 越远则 \mathbf{W}_{ij} 越小,进一步降低了它们之间的相似性。如果 \mathbf{X}_{MSPE}^{i} 与 \mathbf{X}_{MSPE}^{j} 重合,则 \mathbf{W}_{ii} 是无效的。由此可得:

$$\mu \sum_{i,j} \| \mathbf{X}_{MSPE}^{i} \mathbf{P} - \mathbf{X}_{MSPE}^{j} \mathbf{P} \|_{2}^{2} \mathbf{W}_{ij} q_{ij}$$

$$= \mu \sum_{i,j} (2 \mathbf{X}_{MSPE}^{i} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{i}^{\mathsf{T}} - 2 \mathbf{X}_{MSPE}^{i} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{j}^{\mathsf{T}}) \mathbf{W}_{ij} q_{ij}$$

$$= 2 \mu \sum_{i,j} (\mathbf{X}_{MSPE}^{i} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{i}^{\mathsf{T}} - \mathbf{X}_{MSPE}^{i} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{j}^{\mathsf{T}}) \mathbf{W}_{ij} q_{ij}$$

$$= 2 \mu \sum_{i} \mathbf{X}_{MSPE}^{i} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{i}^{\mathsf{T}} \sum_{j} \mathbf{W}_{ij} q_{ij} - 2 \sum_{i,j} \mathbf{X}_{MSPE}^{i} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{j}^{\mathsf{T}} \mathbf{W}_{ij} q_{ij}$$

$$= 2 \mu Tr(\mathbf{X}_{MSPE} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{R}) - 2 \mu Tr(\mathbf{X}_{MSPE} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{W})$$

$$= 2 \mu Tr(\mathbf{X}_{MSPE} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{\mathsf{T}} (\mathbf{R} - \mathbf{W} \otimes \mathbf{Q}))$$

$$= 2 \mu Tr(\mathbf{X}_{MSPE} \mathbf{P} \mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{L})$$

$$= 2 \mu Tr(\mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{L} \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{L})$$

$$= 2 \mu Tr(\mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{L} \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{P})$$
(A.7)

其中 \otimes 代表 **W** 和 **Q** 的哈达玛积 (Hadamard), **L** = **R** - **W** \otimes **Q** , **L** 是由 **W** \otimes **Q** 求出的拉普拉斯矩阵,由此可得:

$$\mathbf{R} = \begin{bmatrix} R_{11} & 0 & \cdots & 0 \\ 0 & R_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R_{NN} \end{bmatrix}, R_{ii} = \sum_{j} \mathbf{W}_{ij} q_{ij}$$
(A.8)

③第三部分求解:

$$\left\|\mathbf{P}\right\|_{2,1} = 2Tr(\mathbf{P}^{\mathsf{T}}\mathbf{D}\mathbf{P}) \tag{A.9}$$

其中D可表示为:

$$\mathbf{D} = \begin{bmatrix} D_{11} & 0 & \cdots & 0 \\ 0 & D_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D_{MM} \end{bmatrix}, D_{ii} = \frac{1}{2 \|\mathbf{P}\|_{2}}$$
(A.10)

④最后,整合以上三部分可得:

$$\min_{\mathbf{P}} \sum_{k=1}^{c} \sum_{i=1}^{n} \| \mathbf{X}_{MSPE} \mathbf{P} - \mathbf{M}_{k} \mathbf{P} \|_{2} + \sigma \sum_{i,j} \| \mathbf{X}_{MSPE}^{i} \mathbf{P} - \mathbf{X}_{MSPE}^{j} \mathbf{P} \| \mathbf{W}_{ij} + \varsigma \| \mathbf{P} \|_{2,1}$$

$$\Leftrightarrow \min_{\mathbf{P}} Tr(\mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{X}_{MSPE} \mathbf{P}) - Tr(2\mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{M} \mathbf{P})$$

$$+ Tr(\mathbf{P}^{\mathsf{T}} \mathbf{M}^{\mathsf{T}} \mathbf{M} \mathbf{P}) + 2\sigma Tr(\mathbf{P}^{\mathsf{T}} \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{L} \mathbf{X}_{MSPE} \mathbf{P}) + 2\varsigma Tr(\mathbf{P}^{\mathsf{T}} \mathbf{A} \mathbf{P})$$

$$\Leftrightarrow \min_{\mathbf{P}} Tr(\mathbf{P}^{\mathsf{T}} ((\mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{X}_{MSPE} - 2\mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{M} + \mathbf{M}^{\mathsf{T}} \mathbf{M})$$

$$+ 2\sigma \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{L} \mathbf{X}_{MSPE} + 2\varsigma \mathbf{A}) \mathbf{P}$$

$$\Leftrightarrow \min_{\mathbf{P}} Tr(\mathbf{P}^{\mathsf{T}} ((\mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{X}_{MSPE} - (\mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{M} + \mathbf{M}^{\mathsf{T}} \mathbf{X}_{MSPE}) + \mathbf{M}^{\mathsf{T}} \mathbf{M})$$

$$+ 2\sigma \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{L} \mathbf{X}_{MSPE} + 2\varsigma \mathbf{A}) \mathbf{P}$$

$$\mathbf{B} = (\mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{X}_{MSPE} - (\mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{M} + \mathbf{M}^{\mathsf{T}} \mathbf{X}_{MSPE}) + \mathbf{M}^{\mathsf{T}} \mathbf{M})$$

$$+ 2\sigma \mathbf{X}_{MSPE}^{\mathsf{T}} \mathbf{L} \mathbf{X}_{MSPE} + 2\varsigma \mathbf{A})$$
(A.11)

显然, \mathbf{B} 是一个实对称矩阵。因此,可以根据 \mathbf{B} 的特征值分解结果求解 \mathbf{P} ,且所得到的 \mathbf{P} 必然是正交的。 $\mathbf{P} \in R^{2d \times q}$ 由特征向量组成,其对应的特征值是q 的非零最小值。q 代表投影空间中变量的个数。当获得最终优化后的变量 \mathbf{M} 和 \mathbf{P} 后,可根据下式求得第二层样本空间,即由保持降维式聚类模块 MDC 生成的样本空间 \mathbf{X}_{MDC} :

$$\mathbf{X}_{MDC} = \mathbf{MP} \tag{A.12}$$

A.2 第 2.3 节的优化过程

因此,在求解第 2.3 节 DSICM 目标函数(12)时,变量 Φ , Q和 Θ 可以如下交替进行求解:

步骤 1: 优化 Φ 时,固定 \mathbb{Q} 和 Θ ,将公式(12)中的目标函数转换为:

$$\min_{\boldsymbol{\Phi}} \frac{\mathcal{G}}{n^{2}} \boldsymbol{\Phi}^{T} (\mathbf{K}_{MDC} \mathbf{Q} \mathbf{1} (\mathbf{K}_{MDC} \mathbf{Q})^{T} - \mathbf{K}_{MDC} \mathbf{Q} \mathbf{1} (\mathbf{K}_{MDC})^{T}
- \mathbf{K}_{MSPE} \mathbf{1} \mathbf{Q}^{T} (\mathbf{K}_{MDC})^{T}) + \mathbf{K}_{MSPE} \mathbf{1} (\mathbf{K}_{MSPE})^{T} \boldsymbol{\Phi}
+ \frac{1}{n^{2}} [Tr(\boldsymbol{\Phi}^{T} \mathbf{K}_{MDC} \mathbf{Q} \mathbf{D} (\boldsymbol{\Phi}^{T} \mathbf{K}_{MDC} \mathbf{Q})^{T})
+ Tr(\boldsymbol{\Phi}^{T} \mathbf{K}_{MSPE} \mathbf{D} (\boldsymbol{\Phi}^{T} \mathbf{K}_{MSPE})^{T})
- 2Tr(\boldsymbol{\Phi}^{T} \mathbf{K}_{MDC} \mathbf{Q} \mathbf{W} (\boldsymbol{\Phi}^{T} \mathbf{K}_{MSPE})^{T})]
s.t. \boldsymbol{\Phi}^{T} \mathbf{K} \boldsymbol{\Phi} = \mathbf{I}$$
(A.13)

对此可以推导出第 j 次迭代列的解 Φ_j 。通过设置令公式(A.13)对 $\Phi_{j(:,i)}$ 的偏导数为零,得到 Φ_j 中的第 i 列向量:

$$\frac{1}{n^{2}}Tr(\boldsymbol{\Phi}^{\mathsf{T}}\mathbf{K}_{MDC}\mathbf{Q}\mathbf{D}(\boldsymbol{\Phi}^{\mathsf{T}}\mathbf{K}_{MDC}\mathbf{Q})^{\mathsf{T}}) + \mathbf{K}_{MSPE}^{\mathsf{T}}\mathbf{D}(\mathbf{K}_{MSPE}^{\mathsf{T}})^{\mathsf{T}}
- \mathbf{K}_{MDC}\mathbf{Q}\mathbf{W}(\mathbf{K}_{MSPE}^{\mathsf{T}})^{\mathsf{T}} - \mathbf{K}_{MSPE}^{\mathsf{T}}\mathbf{W}\mathbf{Q}^{\mathsf{T}}(\mathbf{K}_{MDC})^{\mathsf{T}})\boldsymbol{\Phi}_{j(:,i)}
+ \frac{\partial}{n^{2}}(\mathbf{K}_{MDC}\mathbf{Q}\mathbf{1}\mathbf{Q}^{\mathsf{T}}(\mathbf{K}_{MDC})^{\mathsf{T}} - \mathbf{K}_{MDC}\mathbf{Q}\mathbf{1}(\mathbf{K}_{MSPE}^{\mathsf{T}})^{\mathsf{T}}
- \mathbf{K}_{MSPE}^{\mathsf{T}}\mathbf{1}\mathbf{Q}^{\mathsf{T}}(\mathbf{K}_{MDC})^{\mathsf{T}} + \mathbf{K}_{MPSE}^{\mathsf{T}}\mathbf{1}(\mathbf{K}_{MPSE}^{\mathsf{T}})^{\mathsf{T}})\boldsymbol{\Phi}_{j(:,i)}
= -\lambda \mathbf{K}\boldsymbol{\Phi}_{j(:,i)}$$
(A.14)

步骤 2: 优化 \mathbf{Q} 时,固定 $\mathbf{\Phi}$ 和 $\mathbf{\Theta}$,将公式(13)中的目标函数转换为:

$$\min_{\mathbf{Q}} \frac{\mathcal{G}}{n^{2}} \mathbf{\Phi}^{T} (\mathbf{K}_{MDC} \mathbf{Q} \mathbf{1} (\mathbf{K}_{MDC} \mathbf{Q})^{\mathsf{T}} - \mathbf{K}_{MDC} \mathbf{Q} \mathbf{1} (\mathbf{K}_{MDC})^{\mathsf{T}} - \mathbf{K}_{MSPE} \mathbf{1} \mathbf{Q}^{\mathsf{T}} (\mathbf{K}_{MDC})^{\mathsf{T}})) \mathbf{\Phi}
+ \frac{1}{n^{2}} (Tr(\mathbf{\Phi}^{\mathsf{T}} \mathbf{K}_{MDC} \mathbf{Q} \mathbf{D} (\mathbf{\Phi}^{\mathsf{T}} \mathbf{K}_{MDC} \mathbf{Q})^{\mathsf{T}}) - 2Tr(\mathbf{\Phi}^{\mathsf{T}} \mathbf{K}_{MDC} \mathbf{Q} \mathbf{W} (\mathbf{\Phi}^{\mathsf{T}} \mathbf{K}_{MSPE})^{\mathsf{T}}))
+ Tr(\mathbf{E}^{\mathsf{T}} (\mathbf{Q} - \mathbf{\Theta})) + \frac{\rho \mathbf{1}}{2} (\|\mathbf{Q} - \mathbf{\Theta}\|_{F}^{2})$$
(A.15)

梯度下降算法(Gradient-Descent)是一种优化方法,通过计算目标函数的梯度并沿着负梯度方向更新参数,逐步调整参数以最小化目标函数值,从而找到最优解,这一过程反复迭代直至满足收敛条件。因此公式(A.15)可以使用梯度下降算法求解变量 \mathbf{Q} 的封闭解,并经过(j+1)次迭代后, \mathbf{Q}_{i+1} 可以转换为:

$$\mathbf{Q}_{j+1} = \mathbf{Q}_{j} - \frac{2}{n^{2}} ((\mathbf{K}_{MDC})^{\mathsf{T}} \mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}} \mathbf{K}_{MDC} \mathbf{Q} \mathbf{D}$$

$$- (\mathbf{K}_{MDC})^{\mathsf{T}} \mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}} (\mathbf{K}_{MSPE} \mathbf{W}) + \mathbf{E} + \rho \mathbf{1} (\mathbf{Q} - \mathbf{L})$$

$$+ \frac{2\partial}{n^{2}} [(\mathbf{K}_{MDC})^{\mathsf{T}} \mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}} \mathbf{K}_{MDC} \mathbf{Q} \mathbf{1} - (\mathbf{K}_{MDC})^{\mathsf{T}} \mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}} \mathbf{K}_{MSPE} \mathbf{1}]$$
(A.16)

步骤 3: 优化 Θ 时,固定 Φ 和Q,将公式(13)中的目标函数转换为:

$$\min_{\mathbf{\Theta}} \ \gamma \|\mathbf{\Theta}\|_{*} + Tr(\mathbf{E}^{\mathsf{T}}(\mathbf{Q} - \mathbf{\Theta})) + \frac{\alpha}{2} (\|\mathbf{Q} - \mathbf{\Theta}\|_{F}^{2})$$
(A.17)

在经过(j+1)次迭代之后, Θ_{j+1} 可以优化为:

$$\mathbf{\Theta}_{j+1} = \min_{\mathbf{\Theta}_{j}} \lambda_{1} Tr(\mathbf{\Theta}_{j}^{\mathsf{T}} \mathbf{\Theta}_{j})^{\frac{1}{2}} + Tr(\mathbf{E}_{1j}^{\mathsf{T}}(\mathbf{Q}_{j} - \mathbf{\Theta}_{j})) + \frac{\alpha_{j}}{2} (\|\mathbf{Q}_{j} - \mathbf{\Theta}_{j}\|_{F}^{2})$$
(A.18)

奇异值阈值(Singular Value Thresholding,SVT)算子是一种矩阵降噪技术,通过保留矩阵的主要奇异值,将其余奇异值置零以减少噪声和冗余信息,从而实现数据压缩和去噪处理。因此公式(A.18)可使用 SVT 算子求解得到最终优化变量 Θ 。

当获得最优变量 Φ 时,通过 \mathbf{X}_{MDC} '=[$\Phi^{\mathsf{T}}\varphi(\mathbf{X}_{OP})^{\mathsf{T}}\varphi(\mathbf{X}_{MDC})$]^T可得到与 MSPE 保持样本数据结构信息的局部和全局一致性后的一次聚类包络样本集,其中d'表示 DSICM 后的样本维数。DSICM 使算法能够在构造多层样本空间的情况下保持样本数据结构信息的局部和全局一致性,从而实现有效的样本转换。

A.3 第 4.2.1 节 MSPE、MDC 和 DSICM 的有效性验证完整实验结果

表 A.1-表 A.4 分别对应本文算法各阶段的样本的质量在 ACC、F1、AUC、AP 的比较。 表 A.1 本文算法各阶段的样本的质量(ACC)

数据集	OF (%)	MSPE (%)	MDC (%)	DSICM (%)	DSJPE (%)
AD	54.00 ± 9.55	64.67 ± 4.47	66.67 ± 7.84	72.67±10.38	75.58±9.59
LSVT	80.48 ± 6.39	94.29 ± 3.98	95.24 ± 4.45	95.80±3.33	96.54±4.48
PD	62.70 ± 1.86	70.75 ± 1.74	66.84 ± 1.52	71.03 ± 1.40	74.14±4.18
Pendigits	98.13 ± 0.05	98.62 ± 0.07	99.09 ± 0.35	98.78 ± 0.12	99.27±0.26
Statlog	86.13 ± 0.53	88.65 ± 0.75	85.86 ± 0.69	86.02 ± 0.75	88.36±0.45
Vehicle	80.35 ± 1.31	83.90±0.19	83.40 ± 0.77	87.30±0.81	87.16±0.81
heart	80.89 ± 4.26	85.56 ± 2.83	90.91 ± 4.08	91.20 ± 4.25	92.44±3.37
Maxlittle	85.54 ± 4.01	86.77±2.57	88.27 ± 3.86	89.23±5.65	91.25±8.39
Urban	79.91±3.87	90.67 ± 2.65	88.27 ± 2.36	93.51±3.35	94.46±1.47
WDBC	95.66±1.52	97.57±1.38	98.59 ± 0.38	98.99±1.09	99.18±0.72
Wisconsin	96.30±1.72	97.18 ± 1.48	97.89 ± 0.79	98.06±0.50	98.41±0.74
PID	70.39 ± 2.74	74.14 ± 4.27	80.08±2.16	82.95 ± 2.25	83.63±2.99
LR	85.84 ± 0.16	89.65 ± 0.21	87.92 ± 0.30	89.06±0.11	89.79±0.34
GSAD	99.20 ± 0.15	99.45±0.09	96.67±1.04	97.45 ± 0.30	96.05±0.60
HAR	98.25±0.32	98.72±0.07	98.36±0.27	98.35±0.15	99.10±0.26

表 A.2 本文算法各阶段的样本的质量(F1)

数据集	OF (%)	MSPE (%)	MDC (%)	DSICM (%)	DSJPE (%)
AD	50.24 ± 8.44	64.78±8.32	72.09±7.55	73.85±9.76	74.12±10.90
LSVT	76.57 ± 4.38	93.61 ± 4.60	94.75 ± 4.86	95.24 ± 6.52	95.77±5.62
PD	60.12 ± 1.65	70.62 ± 1.73	66.89 ± 1.52	70.94 ± 2.46	71.54±3.18
Pendigits	97.74 ± 0.13	99.04±0.09	97.95 ± 0.05	98.03±0.09	99.04±0.09
Statlog	80.98 ± 1.85	85.60±1.07	75.24 ± 0.84	77.26 ± 0.91	85.59 ± 1.05
Vehicle	80.57 ± 0.56	84.55 ± 0.96	90.53 ± 0.83	90.83±1.47	87.40 ± 0.70
heart	79.95 ± 4.23	86.14 ± 2.63	90.43 ± 2.92	90.86 ± 3.72	91.09±3.67
Maxlittle	80.30 ± 4.78	79.36 ± 4.24	79.35 ± 3.67	84.54 ± 8.68	87.15±5.87
Urban	76.06 ± 2.12	90.77 ± 2.76	87.32 ± 1.81	9437±2.37	92.13 ± 3.67
WDBC	95.23±1.33	97.63±1.52	97.31 ± 0.46	98.80 ± 0.69	98.85±1.47
Wisconsin	95.16±1.59	95.95±1.69	97.69 ± 0.84	97.87±0.56	98.11±1.28
PID	71.23 ± 3.96	74.82 ± 2.20	77.43 ± 2.66	74.66±3.16	75.98±1.90
LR	85.83 ± 0.19	89.61±0.23	87.87 ± 0.32	89.01 ± 0.05	90.18±1.26
GSAD	99.16±0.15	99.43±0.10	96.55±0.99	97.37 ± 0.33	96.17±0.47
HAR	98.35±0.29	98.79±0.08	98.46±0.25	98.42±0.14	99.20±0.22

表 A.3 本文算法各阶段的样本的质量(AUC)

数据集	OF (%)	MSPE (%)	MDC (%)	DSICM (%)	DSJPE (%)
AD	58.04±3.75	73.90±7.25	70.00±9.39	78.73 ± 9.24	81.83±8.51
LSVT	79.02 ± 7.72	94.83 ± 3.15	96.75±1.90	93.30 ± 9.26	96.59±3.92
PD	60.14 ± 3.58	71.79 ± 2.96	68.05 ± 1.38	72.12 ± 3.06	72.16±5.66
Pendigits	99.10 ± 0.18	99.52±0.06	98.96 ± 0.07	98.99 ± 0.10	99.47 ± 0.05
Statlog	90.36 ± 0.75	91.98±0.59	87.61 ± 0.65	88.77 ± 0.71	91.29 ± 0.60
Vehicle	87.29 ± 0.68	89.62 ± 1.24	90.53 ± 2.20	92.52 ± 0.42	92.12±1.19
heart	81.64 ± 5.54	86.92 ± 3.04	91.81±3.49	91.95 ± 4.44	92.08±2.67
Maxlittle	93.34 ± 0.94	92.89 ± 0.89	92.66±1.14	83.34 ± 2.46	93.78±1.32
Urban	89.48 ± 1.00	94.63±1.89	92.94 ± 0.56	95.45 ± 0.85	96.25±2.11
WDBC	96.00 ± 1.80	98.77±1.16	98.08 ± 0.36	98.30 ± 0.83	98.61±1.13
Wisconsin	95.81±1.61	96.08±1.12	97.62 ± 1.05	97.29 ± 1.00	98.01±0.57
PID	73.51 ± 4.11	74.43 ± 3.73	80.00 ± 2.35	81.97 ± 2.58	82.21±2.49
LR	92.59 ± 0.09	94.57±0.11	93.66±0.16	94.25 ± 0.05	95.88±0.57
GSAD	99.48 ± 0.09	99.65±0.07	97.78 ± 0.69	98.40 ± 0.21	97.66±0.33
HAR	98.99±0.18	99.27±0.05	99.06±0.15	99.04±0.09	99.51±0.14

表 A.4 本文算法各阶段的样本的质量(AP)

数据集	OF (%)	MSPE (%)	MDC (%)	DSICM (%)	DSJPE (%)
AD	71.46 ± 9.75	78.21 ± 8.08	77.78 ± 10.81	82.42 ± 5.54	84.38±8.77
LSVT	78.08 ± 5.49	93.60 ± 5.58	97.56 ± 2.71	96.78 ± 4.42	97.84±3.33
PD	60.18 ± 3.32	71.60 ± 2.62	66.39±1.93	73.00 ± 3.48	73.76±3.35
Pendigits	99.56 ± 0.03	98.89 ± 0.09	99.58 ± 0.02	99.59 ± 0.04	99.80±0.04
Statlog	95.28 ± 0.24	96.26 ± 0.27	93.96 ± 0.35	94.43 ± 0.44	96.47±0.37
Vehicle	89.93±1.01	92.52 ± 1.30	91.42 ± 0.77	94.12±1.17	93.96 ± 0.72
heart	77.70 ± 7.72	83.15±5.18	89.84 ± 5.37	90.28 ± 5.39	92.02±5.51
Maxlittle	77.01 ± 5.23	76.90 ± 4.37	71.45 ± 8.12	80.63 ± 10.35	81.57±4.15
Urban	94.01 ± 0.84	97.80 ± 0.80	96.61±0.31	98.48±1.04	98.02 ± 1.06
WDBC	94.15 ± 2.05	96.54 ± 2.46	95.94 ± 0.66	97.43 ± 0.64	97.81±1.33
Wisconsin	92.41 ± 2.71	92.56 ± 3.35	95.89 ± 1.47	96.72 ± 0.72	98.10±2.49
PID	74.08 ± 5.54	75.31 ± 5.34	78.05 ± 3.05	75.40 ± 3.60	80.85 ± 2.74
LR	98.96 ± 0.02	99.24 ± 0.04	99.10±0.01	99.15±0.01	99.38±0.09
GSAD	99.59 ± 0.05	99.66±0.09	99.03±0.34	99.09 ± 0.07	96.17±0.65
HAR	99.31±0.16	99.53±0.09	99.34±0.19	99.36±0.09	99.54±0.07

A.5 第 4.2.2 节 MDC 和 DSICM 的有效性验证完整结果

表 A.5-表 A.8 分别对应 MDC 与 KM 在 ACC、F1、AUC、AP 上的比较。

表 4.5	MDC = KMZ	F ACC	上的比较结果
$A \times A \cdot J$		L ACC	

数据集	KM	MDC	KM&DSIM	DSICM	DSICM (ESAE)	DSICM (ESAE)
.,,.,	(%)	(%)	(%)	(%)	(%)	(%)
AD	75.33±7.30	66.67±7.84	66.00±5.96	72.67±10.38	67.33±10.11	76.00±4.35
LSVT	92.86±1.67	95.24 ± 4.45	94.76±2.61	95.80 ± 3.33	96.07 ± 9.85	97.41±5.86
PD	66.21±1.70	66.84 ± 1.52	70.75 ± 3.40	71.03 ± 1.40	69.89 ± 2.74	74.60±4.56
Pendigits	98.64 ± 0.28	99.09±0.35	98.83±1.46	98.78 ± 0.12	98.84 ± 0.57	99.50±0.82
Statlog	85.59 ± 0.76	85.86 ± 0.69	85.13±0.30	86.02 ± 0.75	85.92±1.26	88.57±2.39
Vehicle	79.93 ± 2.93	83.40 ± 0.77	85.67±1.98	87.30±0.81	80.61±4.93	87.30±3.79
heart	90.89 ± 0.50	90.91±4.08	88.44 ± 2.30	91.20 ± 4.25	90.96±5.28	92.67±3.20
Maxlittle	87.69±3.61	88.27 ± 3.86	88.31±3.19	89.23±5.65	88.08 ± 5.57	94.07±2.67
Urban	72.62 ± 2.99	88.27 ± 2.36	76.49±1.90	93.51±3.35	82.31±1.78	94.02±0.46
WDBC	97.99 ± 0.24	98.59 ± 0.38	98.73 ± 0.29	98.99±1.09	98.10±3.70	99.15±2.91
Wisconsin	97.53±1.01	97.89 ± 0.79	97.89 ± 0.85	98.06 ± 0.50	97.86±1.37	99.12±0.44
PID	78.52 ± 2.52	80.08 ± 2.16	81.72±3.13	82.95±2.25	78.95 ± 1.72	82.53 ± 3.79
LR	87.73 ± 0.33	87.92 ± 0.30	89.83 ± 0.15	89.06±0.11	88.09 ± 2.62	90.07 ± 4.46
GSAD	96.60 ± 2.34	96.67±1.04	97.58 ± 0.12	97.45±0.30	97.94 ± 1.57	97.72 ± 0.40
HAR	98.35±0.27	98.36±0.27	98.58 ± 0.16	98.35±0.15	98.81 ± 1.24	99.39±0.15

表 A.6 MDC与 KM在 F1上的比较结果

数据集	KM (%)	MDC (%)	KM&DSIM (%)	DSICM (%)	DSICM (ESAE) (%)	DSICM (ESAE) (%)
AD	53.70±8.28	72.09±7.55	70.01±6.01	73.85±9.76	75.00±11.64	74.59±7.40
LSVT	92.50 ± 5.34	94.75±4.86	94.19±2.92	95.24±6.52	92.18±5.96	94.73 ± 4.27
PD	62.62±1.62	66.89±1.52	70.79 ± 3.44	70.94 ± 2.46	70.81 ± 3.64	75.96±3.31
Pendigits	98.62 ± 0.28	97.95±0.05	96.21±0.41	98.03±0.09	98.99 ± 1.47	99.46±0.73
Statlog	81.49±0.99	75.24 ± 0.84	79.46 ± 1.22	77.26 ± 0.91	85.95 ± 5.78	86.81±1.58
Vehicle	81.51±0.73	90.53±0.83	85.88 ± 2.02	90.83±1.47	86.04 ± 4.18	91.54±2.59
heart	79.77±2.99	90.43 ± 2.92	88.54 ± 2.43	90.86±3.72	91.80 ± 2.70	93.29±2.95
Maxlittle	71.98 ± 3.81	79.35±3.67	83.54 ± 4.60	84.54 ± 8.68	87.54±3.67	91.58±2.33
Urban	72.58 ± 5.98	87.32 ± 1.81	77.31 ± 4.93	9437±2.37	74.98±3.13	75.58 ± 4.98
WDBC	95.94±1.68	97.31±0.46	98.65±0.31	98.80±0.69	99.32±0.47	96.69±1.73

表 A.6 MDC 与 KM 在 F1 上的比较结果(续)

数据集	KM (%)	MDC (%)	KM&DSIM (%)	DSICM (%)	DSICM (ESAE) (%)	DSICM (ESAE) (%)
Wisconsin	93.10±3.17	97.69±0.84	97.72±0.84	97.87±0.56	98.56±0.49	98.57±0.47
PID	72.66 ± 2.95	77.43 ± 2.66	74.54 ± 2.08	74.66 ± 3.16	83.17±3.02	77.03 ± 3.33
LR	87.67±0.35	87.87 ± 0.32	89.91 ± 0.20	89.01 ± 0.05	84.32±6.69	89.77±1.33
GSAD	96.42±2.49	96.55±0.99	97.49 ± 0.10	97.37 ± 0.33	98.42±1.57	95.24 ± 2.58
HAR	98.46 ± 0.25	98.46 ± 0.25	98.65±0.17	98.42 ± 0.14	94.25±1.70	98.98±0.57

表 A.7 MDC与KM在AUC上的比较结果

	KM	MDC	KM&DSIM	DSICM	DSICM	DSICM
数据集	(%)	(%)	(%)	(%)	(ESAE)	(ESAE)
	(70)	(70)	(70)	(70)	(%)	(%)
AD	66.16±7.98	70.00±9.39	69.48±4.42	78.73±9.24	80.50±8.73	80.00±5.86
LSVT	92.14 ± 6.00	96.75±1.90	93.70 ± 4.70	93.30 ± 9.26	91.43±4.96	93.30 ± 5.90
PD	63.78±1.57	68.05±1.38	71.61±4.71	72.12 ± 3.06	69.48±3.77	75.50 ± 3.69
Pendigits	99.70±0.18	98.96 ± 0.07	99.40 ± 2.64	98.99 ± 0.10	99.14±1.49	99.48 ± 0.69
Statlog	90.12±0.67	87.61±0.65	87.20±1.12	88.77 ± 0.71	88.62 ± 7.78	89.72 ± 1.56
Vehicle	88.04±1.32	90.53±2.20	90.98±1.31	92.52 ± 0.42	91.14±3.89	92.99±1.29
heart	80.01±3.36	91.81±3.49	90.92±5.63	91.95±4.44	91.70 ± 2.58	92.94 ± 2.81
Maxlittle	81.09±17.95	92.66±1.14	93.56 ± 0.72	83.34 ± 2.46	93.72±2.11	90.31 ± 4.22
Urban	73.31±2.97	92.94±0.56	84.21±1.77	95.45 ± 0.85	85.14 ± 1.83	98.53±1.37
WDBC	97.67±1.40	98.08±0.36	98.27 ± 0.01	98.30 ± 0.83	99.14±0.60	96.74±1.54
Wisconsin	96.92±1.87	97.62±1.05	97.88±1.37	97.29 ± 1.00	98.57 ± 0.78	98.69 ± 0.72
PID	67.35 ± 10.02	80.00 ± 2.35	81.75±4.77	81.97 ± 2.58	83.23 ± 2.70	76.92 ± 3.33
LR	93.57±0.17	93.66±0.16	94.66±0.08	94.25 ± 0.05	91.72 ± 6.77	94.33 ± 3.07
GSAD	97.48±1.85	97.78±0.69	98.48±0.21	98.40 ± 0.21	93.05±0.92	98.48±0.89
HAR	99.06±0.15	99.06±0.15	99.18±0.10	99.04±0.09	96.48±1.17	99.46±0.24

表 A.8 MDC与KM在AP上的比较结果

数据集	KM (%)	MDC (%)	KM&DSIM (%)	DSICM (%)	DSICM (ESAE) (%)	DSICM (ESAE) (%)
AD	70.18±10.17	77.78±10.81	75.52±1.48	82.42±5.54	81.39±11.74	79.75±2.74
LSVT	91.72±7.58	97.56 ± 2.71	96.24 ± 2.65	96.78±4.42	93.14±5.26	96.33±2.47
PD	61.82±2.17	66.39±1.93	71.63 ± 4.95	73.00 ± 3.48	69.27±6.33	76.40±3.14
Pendigits	99.70 ± 0.05	99.58 ± 0.02	92.57 ± 0.98	99.59 ± 0.04	93.23±1.17	99.65±0.17
Statlog	95.55 ± 0.32	93.96±0.35	95.27 ± 0.55	94.43 ± 0.44	95.98±2.56	95.72 ± 0.21
Vehicle	91.25±0.96	91.42 ± 0.77	92.90 ± 0.66	94.12±1.17	94.17±2.06	95.11±1.56
heart	81.00±4.36	89.84 ± 5.37	87.66±4.77	90.28±5.39	93.24 ± 4.14	93.93±1.76
Maxlittle	57.00±14.15	71.45 ± 8.12	78.74 ± 9.12	80.63±9.35	88.46 ± 4.82	91.61±4.61
Urban	90.12±0.96	96.61±0.31	92.09 ± 0.73	98.48±1.04	94.28 ± 0.64	95.17±1.33
WDBC	95.65 ± 2.46	95.94±0.66	96.92±1.31	97.43±0.64	99.20±0.56	96.96±1.81
Wisconsin	90.11±3.65	95.89 ± 1.47	95.99±1.76	96.72 ± 0.72	97.52±0.73	97.38 ± 0.93
PID	70.31±6.04	78.05 ± 3.05	80.11±4.06	75.40 ± 3.60	82.72±4.60	78.18 ± 0.77
LR	99.09 ± 0.03	99.10 ± 0.01	99.22±0.03	99.15±0.01	94.52 ± 2.83	99.41±0.16
GSAD	98.90 ± 0.51	99.03 ± 0.34	99.14 ± 0.05	99.09 ± 0.07	96.14 ± 0.26	96.34±0.46
HAR	99.34 ± 0.19	99.34±0.19	99.47 ± 0.06	99.36±0.09	97.95 ± 0.96	99.47±0.37

A.6 第 4.3 节算法比较的完整结果

表 A.9-表 A.12 分别对应不同 SAE 算法在 ACC、F1、AUC、AP 上的比较。

1X A.9	-1X A.12))		内 SAE 昇伝 長 A.9 不同 SA			AP	儿儿状。	
	SDSAE	SPSAE	ESGSAE	GSTAE	WGLAE	DSAE	SGAE	DSJPE-
数据集	(%)	(%)	-FF (%)	(%)	(%)	(%)	(%)	ESAE (%)
AD	55.58	57.78	67.33	71.11	52.67	56.67	56.11	76.67
ΑD	± 4.36	± 4.27	± 2.49	± 8.16	± 5.48	± 5.27	± 1.07	±8.16
LSVT	76.62	84.33	92.76	84.66	75.71	72.38	71.59	97.62
LSVI	± 5.29	± 5.36	± 0.62	± 4.32	± 5.43	± 5.48	± 5.77	± 1.68
PD	64.88	64.22	66.72	73.89	64.00	59.63	63.88	75.98
1D	± 1.84	± 2.34	± 0.87	± 4.27	± 6.81	± 3.14	± 1.71	±4.29
Pendigits	75.17	91.60	98.00	93.53	98.85	92.53	90.33	99.54
Tellargits	± 1.88	± 0.57	± 0.12	± 0.77	± 1.24	± 1.22	± 0.30	± 0.11
Statlog	98.60	85.87	87.28	85.42	99.83	85.31	74.13	89.42
Statiog	± 0.34	± 0.86	± 0.12	± 0.38	±0. 12	± 0.50	± 0.24	± 0.81
Vehicle	72.00	74.76	81.91	79.71	83.48	55.25	65.86	87.36
Venicie	± 2.25	± 2.93	± 0.42	± 2.93	± 12.53	± 2.22	± 0.23	±1.15
heart	94.58	88.90	84.67	82.56	80.22	82.67	69.67	94.67
Heart	± 0.53	± 2.53	±1.99	± 3.55	± 9.21	± 1.27	± 3.60	± 2.98
Maxlittle	83.65	91.93	92.00	92.15	89.54	81.23	88.97	98.75
Maxitue	± 0.71	± 4.22	± 3.34	± 4.94	± 6.10	± 1.29	± 2.86	±1.71
Urban	93.20	77.81	83.20	76.98	72.53	70.49	82.90	98.75
Orban	± 1.17	± 1.17	± 1.01	± 0.73	± 8.63	± 2.75	± 0.15	±1.71
WDBC	95.77	93.03	99.81	99.34	95.05	94.29	90.65	98.08
WDBC	± 0.17	± 2.49	± 0.45	± 1.27	± 5.99	± 1.96	± 0.26	± 0.89
Wisconsin	97.65	96.62	97.09	96.92	97.19	96.32	88.97	99.82
vv isconsin	± 0.25	± 2.40	± 1.31	± 1.56	± 2.49	± 0.80	± 0.52	± 0.40
PID	76.17	78.76	72.27	77.81	95.19	69.30	73.29	84.06
TID	± 1.03	± 3.62	± 3.46	± 2.84	± 4.60	± 1.60	± 1.83	± 3.34
LR	93.20	94.88	95.55	92.10	96.18	89.50	84.30	94.38
LIX	± 1.17	± 0.12	± 0.78	± 0.99	± 1.55	± 2.08	± 0.05	± 0.37
GSAD	95.77	98.89	99.07	97.42	98.78	91.17	87.86	96.71
USAD	± 0.17	± 0.59	± 0.36	± 0.43	± 0.17	± 4.31	± 1.22	± 0.33
HAD	97.36	98.13	97.81	98.22	99.0	97.88	97.03	99.51
HAR	±0.72	±0.45	±0.18	±1.10	2±0.11	±0.90	±4.18	± 0.43

			表 A.10 不同	SAE 算法的	比较 (F1)			
数据集	SDSAE	SPSAE	ESGSAE	GSTAE	WGLAE	DSAE	SGAE	DSJPE-
数1/6未	(%)	(%)	-FF (%)	(%)	(%)	(%)	(%)	ESAE (%)
AD	66.99	67.02	69.32	67.19	42.78	54.21	66.67	71.86
AD	± 6.60	± 2.11	± 9.47	± 8.21	± 8.49	± 5.94	± 3.24	± 2.14
LSVT	72.60	81.87	88.92	63.25	73.32	66.70	78.53	95.79
LSVI	± 2.22	± 8.52	± 5.56	± 4.89	± 6.30	± 9.12	± 2.20	± 3.97
PD	63.47	63.93	68.09	67.10	63.87	58.73	65.21	77.07
PD	± 1.69	± 6.80	± 2.00	± 5.91	± 6.82	± 3.52	± 9.46	± 2.90
Pendigits	73.20	91.51	99.36	91.68	98.84	92.56	91.51	99.55
Pendigns	± 2.30	± 2.49	± 0.34	± 0.82	± 1.26	± 1.23	± 0.40	± 0.14
Statlog	72.62	75.75	82.76	81.71	99.80	81.78	75.55	87.81
Statiog	± 6.69	± 3.28	± 0.80	±1.16	± 0.13	± 0.43	± 4.69	± 1.04
Vehicle	74.75	70.19	73.56	70.41	82.58	53.42	68.27	91.61
venicie	± 5.12	± 4.23	± 8.64	± 3.33	± 13.96	± 1.33	± 6.24	± 3.79
haant	79.44	81.24	84.53	82.54	78.95	81.90	57.16	93.61
heart	±1.48	±4.61	±2.04	±4.84	±10.43	±1.26	±4.00	±2.96

表 A.10 不同 SAE 算法的比较(F1)(续)

数据集	SDSAE	SPSAE	ESGSAE	GSTAE	WGLAE	DSAE	SGAE	DSJPE-
	(%)	(%)	-FF (%)	(%)	(%)	(%)	(%)	ESAE (%)
Maxlittle	85.13	87.02	89.09	95.95	83.06	70.88	84.29	92.43
	± 1.64	± 5.10	± 4.87	± 5.04	± 8.45	± 2.88	± 2.52	± 3.25
Urban	72.30	78.29	76.09	72.51	61.58	61.28	81.22	81.31
Orban	± 0.51	± 2.92	± 5.72	± 1.37	± 9.33	± 4.77	± 4.89	±1.99
WDBC	95.05	94.36	94.44	94.30	94.91	93.84	92.83	97.15
	± 4.18	± 3.39	± 2.65	± 1.01	± 6.05	± 2.09	± 3.42	± 1.82
XX '::	97.46	96.81	96.91	95.51	96.97	95.91	84.29	99.13
Wisconsin	± 0.21	± 1.16	± 1.30	± 1.98	± 2.62	± 0.93	± 4.81	± 0.80
PID	73.76	82.04	68.22	69.52	94.92	64.08	66.52	79.75
	± 0.32	± 4.06	± 3.97	± 6.96	± 4.51	± 1.31	± 7.74	±3.29
LR	95.59	96.28	96.34	83.27	92.29	89.74	87.41	90.18
	± 3.49	± 1.76	± 3.05	± 2.27	± 2.79	± 4.32	± 0.01	± 1.26
GSAD	97.83	99.39	99.37	95.35	93.76	91.36	89.50	96.73
	± 1.96	± 0.53	± 0.16	± 2.04	± 0.94	± 1.65	± 0.69	± 0.18
HAR	98.18	98.72	99.08	97.39	93.24	97.31	96.60	99.78
	±1.75	±0.37	±0.69	±0.37	±1.57	±3.37	±3.57	±0.16

表 A.11 不同 SAE 算法的比较(AUC)

数据集	SDSAE	SPSAE	ESGSAE	GSTAE	WGLAE	DSAE	SGAE	DSJPE-
	(%)	(%)	-FF (%)	(%)	(%)	(%)	(%)	ESAE (%)
AD	52.00	58.19	79.00	75.27	37.67	48.49	62.81	82.11
	± 4.47	± 2.27	± 12.94	± 4.69	± 0.96	± 2.37	± 3.00	±3.74
LSVT	66.07	77.50	61.43	75.50	76.00	67.86	66.43	96.62
	± 3.09	± 12.28	± 19.50	± 5.02	± 7.83	± 9.45	± 4.76	± 2.67
PD	60.73	63.93	67.87	71.72	64.13	60.06	63.35	79.30
PD	± 2.72	± 6.80	± 2.00	± 3.83	± 7.09	± 2.86	± 2.61	±4.94
Dandigita	68.64	93.29	99.09	81.42	89.41	86.08	94.35	99.75
Pendigits	± 1.21	± 1.73	± 0.19	± 0.72	± 0.64	± 0.68	± 0.37	± 0.08
Statlog	80.11	87.72	89.62	89.36	83.25	74.19	84.42	92.69
Statiog	± 5.06	± 3.17	± 0.46	± 0.74	± 0.06	± 0.27	± 0.82	± 0.94
Vehicle	67.51	70.96	82.48	74.80	66.68	54.36	60.19	93.11
Venicle	± 3.54	± 1.24	± 5.59	± 2.15	± 6.48	± 1.40	± 3.21	± 0.48
heart	84.90	87.16	84.25	85.25	80.24	81.46	60.19	95.68
Heart	± 1.62	± 1.98	± 1.90	± 4.24	± 0.86	± 1.21	± 5.32	±1.99
Maxlittle	84.12	86.52	87.54	77.19	85.24	68.50	80.77	95.68
Maximie	± 6.31	± 8.29	± 7.49	± 10.06	± 9.85	± 2.98	± 3.79	±1.99
Urban	67.32	75.69	85.17	90.15	72.68	70.05	80.03	90.61
Olban	± 1.12	± 6.72	± 3.89	± 1.43	± 5.53	± 2.35	± 0.53	± 1.94
WDBC	95.25	96.13	96.94	95.07	95.32	94.23	95.57	98.54
	± 3.17	± 1.39	± 2.85	± 0.62	± 5.52	± 1.79	± 3.24	± 1.38
Wisconsin	97.71	96.60	97.42	96.74	97.07	95.95	80.77	99.03
	± 0.27	± 1.48	± 1.04	± 1.34	± 1.82	± 0.66	± 3.79	± 0.94
PID	73.24	78.30	66.41	71.92	95.40	63.72	60.78	82.94
	± 1.21	± 4.39	± 4.47	± 4.06	± 3.77	± 1.27	± 3.80	± 2.16
LR	96.52	95.57	98.08	91.81	91.39	89.93	85.19	97.56
	± 0.54	± 1.75	± 0.83	± 3.04	± 1.27	± 3.79	± 5.29	± 0.14
GSAD	98.48	99.26	99.10	95.75	87.19	92.82	94.46	98.52
ODAD	± 0.34	± 0.01	± 0.28	± 2.59	± 3.09	± 1.11	± 0.14	± 0.16
HAR	98.23	98.42	98.97	97.17	87.11	94.63	95.15	99.67
ПАК	±1.38	±0.34	±0.94	±1.88	±4.40	±1.24	±0.58	±0.08

表 A.12 不同 SAE 算法的比较(AP)

次 A.12 小門 SAL 弄石川 U.C. ト DOAE - OCAE - DOUBLE								
数据集	SDSAE	SPSAE	ESGSAE	GSTAE	WGLAE	DSAE	SGAE	DSJPE-
	(%)	(%)	-FF (%)	(%)	(%)	(%)	(%)	ESAE (%)
AD	60.49	67.05	72.07	69.36	39.20	45.81	58.02	71.86
	± 7.78	± 3.40	± 9.23	± 11.84	± 9.96	± 9.13	± 2.78	± 2.14
LSVT	75.09	84.53	76.71	93.68	82.31	76.45	76.66	97.24
LSVI	± 7.65	± 10.63	± 16.15	± 16.47	± 5.64	± 5.85	± 4.45	± 2.88
PD	60.38	61.50	67.46	74.59	58.39	55.79	64.73	76.91
1 D	± 1.70	± 5.68	± 2.03	± 3.94	± 4.12	± 3.60	± 3.30	± 4.06
Pendigits	88.53	94.35	99.57	90.31	88.99	82.64	87.31	99.92
rendigits	± 0.52	± 0.16	± 0.09	± 0.90	± 1.10	± 1.25	± 0.57	± 0.04
Statlog	90.93	91.16	95.46	97.94	83.14	69.43	86.75	96.77
Statiog	± 2.29	± 1.95	± 0.24	± 0.65	± 0.17	± 0.61	± 6.04	± 0.17
Wahiala	76.13	79.74	87.11	74.46	64.01	42.22	69.43	94.81
Vehicle	± 2.76	± 2.96	± 4.52	± 3.68	± 11.43	± 1.97	± 3.49	± 2.42
haant	82.96	72.83	82.09	88.83	68.34	72.62	60.02	92.46
heart	± 2.94	± 2.01	± 4.75	± 6.58	± 15.66	± 2.09	± 5.27	± 5.83
Maxlittle	87.19	88.55	88.11	93.88	93.19	80.61	80.73	91.41
Maxiittie	± 5.49	± 6.92	± 6.62	± 5.05	± 5.95	± 2.58	± 3.60	±3.88
T I.d	89.13	92.67	94.62	96.18	63.70	60.09	82.57	95.96
Urban	± 0.54	± 2.85	±1.59	± 6.65	± 9.53	± 1.98	± 5.36	± 0.43
MDDG	96.51	96.38	97.50	96.75	90.59	87.39	98.04	97.91
WDBC	± 0.92	± 2.18	± 5.50	± 2.30	± 8.59	± 4.62	± 1.09	± 1.05
****	96.45	92.35	94.97	94.66	93.98	91.46	80.73	98.62
Wisconsin	± 1.55	± 2.50	± 1.44	± 3.61	±6.15	± 2.67	± 3.60	±1.63
DID	72.31	76.70	71.04	75.64	89.83	66.60	61.21	81.11
PID	± 3.81	± 4.61	± 3.56	± 4.69	± 8.10	± 3.78	± 5.93	± 4.00
T.D.	98.08	98.16	99.33	93.99	93.45	92.72	84.17	99.73
LR	± 1.54	± 0.72	±0.94	±4.61	±1.58	± 3.48	± 0.46	± 0.22
CCAD	99.22	99.62	99.30	95.85	90.39	96.68	90.35	97.10
GSAD	± 0.32	± 0.26	±0.39	± 2.59	±1.65	± 0.21	± 0.23	±0.31
HAD	98.70	98.55	99.35	99.34	85.90	96.36	94.22	99.78
HAR	± 0.65	±1.09	± 0.08	± 1.07	±1.26	± 3.33	± 3.00	± 0.09
-								

A.7 第 4.4 节参数分析的完整结果

表 A.13 对应不同 MSPE 拼接数 υ 对算法性能影响的完整结果。

表 A.14 不同 MSPE 拼接数 υ 对算法性能影响(分类精度)

数据集	$\upsilon = 0$	$\upsilon = 1$	$\upsilon = 2$	v=3
AD	54.00±9.55	64.67±4.47	73.33±6.24	71.33±3.80
LSVT	82.38 ± 9.00	96.19±3.61	95.71±5.16	95.71±3.10
PD	62.70 ± 1.86	70.75±1.74	68.10±1.08	69.48±1.93
Pendigits	98.13 ± 0.05	98.62 ± 0.07	99.20 ± 0.24	99.39±0.13
Statlog	86.13±0.53	88.65 ± 0.75	89.13 ± 0.62	89.73±0.81
Vehicle	80.35 ± 1.31	83.90±0.19	87.73 ± 2.46	87.87±3.95
heart	80.89 ± 4.26	85.56 ± 2.83	84.67 ± 3.46	89.11±2.53
Maxlittle	85.54 ± 4.01	86.77 ± 2.57	78.77 ± 3.35	84.00±4.30
Urban	79.91 ± 3.87	73.42 ± 2.48	96.27 ± 2.00	97.42 ± 0.91
WDBC	95.66±1.52	97.57±1.38	99.58 ± 0.24	100.0 ± 0.00
Wisconsin	96.30±1.72	97.18 ± 1.48	98.15±0.85	98.06±0.39
PID	70.39 ± 2.74	74.14 ± 4.27	81.56±1.60	84.38±1.20
LR	85.84 ± 0.16	89.65±0.21	90.41 ± 0.31	92.26 ± 0.17
GSAD	99.20 ± 0.15	99.45±0.09	99.56±0.11	99.59±0.08
HAR	98.25 ± 0.32	98.72 ± 0.07	99.38±0.15	99.68±0.03