DIVERGENCE

Definition: The divergence of a vector field is a scalar quantity that measures the rate at which the vector field spreads out (diverges) or converges (contracts) at a given point.

Key Characteristics:

- 1. Positive divergence: Indicates a "source," where the field vectors spread out.
- 2. **Negative divergence**: Indicates a "sink," where the field vectors converge.
- 3. Zero divergence: Indicates the field is neither spreading nor converging, such as in an incompressible fluid.

2. Divergence

• Definition:

Divergence measures how much a vector field spreads out (or converges) at a point.

Imagine water flowing out of a hose. If water spreads out in all directions, the divergence is positive. If it flows inward, the divergence is negative.

• Mathematical Expression:

For a vector field $\mathbf{F} = (F_x, F_y, F_z)$:

$$\text{Divergence: } \nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

Derivation:

Divergence is derived by summing the partial derivatives of the vector field components with respect to their respective directions. It tell is the "outflow" rate at a point.

СХ

Question 2: Divergence

Find the divergence of ${f F}=(xy,z,x^2)$.

Solution:

1. The formula for divergence is:

$$abla \cdot \mathbf{F} = rac{\partial F_x}{\partial x} + rac{\partial F_y}{\partial y} + rac{\partial F_z}{\partial z}$$

2. Compute partial derivatives:

$$ullet \ rac{\partial F_x}{\partial x} = rac{\partial (xy)}{\partial x} = y$$

$$ullet rac{\partial F_y}{\partial y} = rac{\partial z}{\partial y} = 0$$

•
$$\frac{\partial F_z}{\partial z} = \frac{\partial (x^2)}{\partial z} = 0$$

3. Add them together:

$$\nabla \cdot \mathbf{F} = y + 0 + 0 = y$$

 \downarrow

Final Answer: y

PARTIAL DERIVATIVES

What are Partial Derivatives?

Partial derivatives involve taking the derivative of a function with respect to one variable, treating all other variables as constants. For example:

- 1. $\frac{\partial}{\partial x}$: Differentiate with respect to x, treat y and z as constants.
- 2. $\frac{\partial}{\partial y}$: Differentiate with respect to y, treat x and z as constants.
- 3. $\frac{\partial}{\partial z}$: Differentiate with respect to z, treat x and y as constants.

HOW TO CALCULATE DIVERGENCE

For Example, You Want To calculate the Divergence of a vector field $F(x,y,z) = x^2 + 2z - y$

Divergence Formula

The divergence of a vector field ${f F}=F_x{f i}+F_y{f j}+F_z{f k}$ is:

$$abla \cdot \mathbf{F} = rac{\partial F_x}{\partial x} + rac{\partial F_y}{\partial y} + rac{\partial F_z}{\partial z}.$$

Here:

- ullet $F_x=x^2$,
- $F_y=2z$,
- $F_z = -y$.

Step-by-Step Partial Derivatives

1. Compute $\frac{\partial F_x}{\partial x}$:

$$F_x=x^2 \quad \Longrightarrow \quad rac{\partial F_x}{\partial x}=2x.$$

Explanation:

- x^2 is a function of x, so we differentiate it normally: $rac{d}{dx}(x^2)=2x$.
- ullet y and z are constants here and do not appear in F_x .

2. Compute $\frac{\partial F_y}{\partial y}$:

$$F_y=2z \quad \Longrightarrow \quad rac{\partial F_y}{\partial y}=0.$$

Explanation:

- 2z does not involve y (it's constant with respect to y), so its derivative is 0.
- 3. Compute $\frac{\partial F_z}{\partial z}$:

$$F_z = -y \quad \Longrightarrow \quad rac{\partial F_z}{\partial z} = 0.$$

Explanation:

• -y does not involve z (it's constant with respect to z), so its derivative is 0.

Step 4: Add the Partial Derivatives

Substitute into the divergence formula:

$$abla \cdot \mathbf{F} = rac{\partial F_x}{\partial x} + rac{\partial F_y}{\partial y} + rac{\partial F_z}{\partial z}.$$

$$\nabla \cdot \mathbf{F} = 2x + 0 + 0 = 2x.$$

Final Answer

The divergence of $\mathbf{F}(x,y,z)=x^2\mathbf{i}+2z\mathbf{j}-y\mathbf{k}$ is:

$$abla \cdot \mathbf{F} = 2x.$$

Key Notes on Partial Derivatives

- 1. When differentiating with respect to one variable, treat all other variables as constants.
- 2. Always carefully substitute into the divergence formula. Each term corresponds to a specific component of the vector field.

Key Points: Gradient vs Divergence

Gradient ($\nabla \phi$):

- Purpose: Shows the direction and rate of steepest increase in a scalar field.
- Input: Scalar field $(\phi(x,y,z))$.
- Output: Vector field ($\nabla \phi$).
- Formula:

$$abla \phi = \left(rac{\partial \phi}{\partial x}, rac{\partial \phi}{\partial y}, rac{\partial \phi}{\partial z}
ight)$$

Real-life analogy: Direction of steepest climb on a hill.

Divergence $(\nabla \cdot \mathbf{F})$:

- Purpose: Measures the rate at which a vector field spreads out (source) or converges (sink) at a
- Input: Vector field ($\mathbf{F}(x,y,z) = F_x \mathbf{i} + F_y \mathbf{j} + F_z \mathbf{k}$).
- Output: Scalar field $(\nabla \cdot \mathbf{F})$.
- Formula:

$$abla \cdot \mathbf{F} = rac{\partial F_x}{\partial x} + rac{\partial F_y}{\partial y} + rac{\partial F_z}{\partial z}$$

• Real-life analogy: Water spreading out from or converging into a point.