Homework 3

Xiaofan Jiao

Question 1. Implementing EM for MNIST dataset.

1). The log-likelihood increases with each iteration, indicating that the EM algorithm is successfully improving the model parameters to better fit the data.

2). After performing the GMM algorithm, the weights for 6' and 2' were 0.52 and 0.49 respectively.

- 3). GMM achieves better performance overall.
 - For digit '2', both GMM and K-means have relatively similar misclassification rates, with GMM being slightly worse (6.4922%) compared to K-means (6.1047%).
 - For digit '6', GMM performs significantly better with a misclassification rate of 0.9395%, whereas K-means has a higher misclassification rate of 7.9332%.
 - The misclassification rates are as follows:

	'2'	'6'
GMM	6.4922%	0.9395%
K-means	6.1047%	7.9332%

Question 2. Optimization

1).

	HW3. Question 2. Optimization
1.	HW3 Question 2. Optimization (1) = \(\subseteq \text{[yi \text{O}^T xi - log (1 + exp(\text{O}^T xi))]} \)
5/25/6	Odifferentiate U(0) with respect to 0
	$\frac{\partial L(\theta)}{\partial \theta} = \sum_{i=1}^{\infty} \left[y^i x^i - \frac{e^{x} p(\theta^T x^i)}{1 + e^{x} p(\theta^T x^i)} x^i \right]$
100	$\frac{\partial \theta}{\partial x} = \frac{1}{1+\exp(\theta x)}$
7 7 7 7	@ Smplify term using & (2) = + exp(-2)
24	$\frac{\exp(\theta^{T}x^{i})}{1 + \exp(\theta^{T}x^{i})} = \delta(\theta^{T}x^{i})$
	3 Thus, the gradient becomes:
200	$\frac{\partial \ell(\theta)}{\partial \theta} = \sum_{i=1}^{\infty} \left[(y^i - \mathcal{S}(\theta^T x^i)) x^i \right]$
(13" A	CIB Z=1 SUMMER AND

2.	O hitialize: 100 mitialize:		
	Set the mitial value of D, define learning rate D=00		
	3 Iterante:		
	Urtil convergence (the change in Dis smaller than a threshold or a max number of iterations) Comparte the gradient of the cost function with respect to D Update D by taking a step in the direction of the gradient. Initialize D = 00		
200	Set learning rate a		
	Repeat until convergence		
136	Egradient = 0		
1	for i = 1 to m { gradient = gradient + (yi - & (0 xi)) xi2		
1	$\theta = \rho + \alpha \times \text{gradient}^3$		
3).			
,	2 2 1 to C		
3.	The Stochastic Gradient Desent (SGI) updates the parameters for each		
	training example instead of the whole dataset		
- 0	Olnitialize:		
	Initialize 0=00		
	Set learning rate a		
	The state of the s		
(Q)	Repeat until convergence		
	· For each training example i=1 to m		
	· Country the anchest		
	9 notient = $(y^{i} - \delta(\theta^{T}x^{i})) x^{i}$		
1	elizate the Department		
	· Update the parameters:		
	$\theta = \theta + \alpha - gradient$		
o Gina	idient Desent uses the entire dithset to compute the gradient,		
	local De 12 more etable comemence but can be computationally		
	THOUSE STATE OF THE PARTY OF TH		
	leading to more stable covergence but can be computationally expensive. For larger chargets, it will require more configuring power.		
• St	expensive for larger contacts, it will require mile confuncting tower		
• St	ochastic Gradient Desent updates the gradient for each		
• St	ochastic Gradient Desent updates the gradient for each training example, making it fister and able to handle		
• St	ochastic Gradient Desent updates the gradient for each		

4. From Previous questions we know that
Log- like Function:
$L(\theta) = \sum_{i=1}^{\infty} \left[y^i \theta^T x^i - \log \left(1 + \exp \left(\theta^T x^i \right) \right) \right]$
Gradient of (10):
$\frac{\partial l(\theta)}{\partial \theta} = \sum_{i=1}^{m} \left[(y^{i} - \varnothing(\theta^{T} x^{i})) x^{i} \right]$
where $\delta(z) = \frac{1}{1 + \exp(-z)}$
Hessian Matrix: Second-order derivative of E(0)
$H(\theta) = \alpha^2 l(\theta)$
in the first mile parties of the 12 hours to straight of
First Lauer clerivative.
$\frac{\alpha(10)}{\alpha\theta} = \sum_{i=1}^{m} (y^{i} - \frac{1}{1 + \exp(\theta^{7}x^{i})}) \lambda^{i}$
$ \frac{\chi^{2}(\theta)}{d\theta} = \sum_{\tau=1}^{\infty} \left(\frac{\chi_{\tau}^{T} \exp(\theta^{T} \chi_{\tau})}{(1 + \exp(\theta^{T} \chi_{\tau}))^{2}} \right) \chi^{\tau}$

Question 3. Bayes Classifier for spam filtering

	HW3 Question 3
1,	· Total messages m = 7
	· No. of span ngan = 3.
	· NO of non-span Nyon-opin = 4.
	Thus P14=0) = Nopam = 3 7 0.429
	The Times The State of the Stat
	P(y=1) = Nnon-span 4
E A	$p(g=1) = 7000-9000 = 47 \approx 0.571$

2).

2,	Given M=7 109-tikelihood function:		
64	Given m=7 log-thelihood function:		
3 1 1 1			
	We introduce Lagrangian multipliers.		
	DC,K =1		

 $\mathcal{L} = \mathcal{L}(\theta) + \lambda_0 \left(1 - \sum_{k=1}^{15} \theta_{0,k}\right) + \lambda_1 \left(1 - \sum_{k=1}^{15} \theta_{1,k}\right)$ $\boxed{0 \text{ Compute Portial Derivatives}} \times \text{Sct to 0}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \frac{\chi_{k}^{(i)}}{\partial_{0,k}} - \lambda_0 = 0 \quad \sum_{i \neq j \neq i} \chi_{k}^{(i)} = \lambda_0 \theta_{0,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \frac{\chi_{k}^{(i)}}{\partial_{1,k}} - \lambda_1 = 0 \quad \sum_{i \neq j \neq i} \chi_{k}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \frac{\chi_{k}^{(i)}}{\partial_{1,k}} - \lambda_1 = 0 \quad \sum_{i \neq j \neq i} \chi_{k}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Use constrains}} = \sum_{i \neq j \neq i} \chi_{k}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \chi_{k}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \chi_{i,i}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \chi_{i,i}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \chi_{i,i}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \chi_{i,i}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \chi_{i,i}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \chi_{i,i}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \chi_{i,i}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \chi_{i,i}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \chi_{i,i}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \chi_{i,i}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \chi_{i,i}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \chi_{i,i}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \chi_{i,i}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \chi_{i,i}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \sum_{i \neq j \neq i} \chi_{i,i}^{(i)} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{ Policy in Schools}} = \lambda_1 \theta_{1,k}$ $\boxed{0 \text{$

```
3).

3. From Prior we know that P(y=1) = \frac{1}{7}
P(y=0) = \frac{3}{7}
```

```
theta_0_1 (secret|spam) = 0.273
theta_0_7 (today|spam) = 0.182
theta_1_1 (secret|non-spam) = 0.059
theta_1_15 (pizza|non-spam) = 0.059
```

Question 4. Comparing classifiers: Divorce classification/prediction 1).

	Model Name	Training Accuracy	Testing Accuracy
4	Naive Bayes	98.529412	94.117647
1	l Logistic Regressor	100.000000	91.176471
2	2 KNN	98.529412	94.117647

The best classifiers are both KNN and Naive Bayes. Because of its ease of use and reliance on the concept of conditional independence, the Naive Bayes classifier is beneficial and appears to perform well on this dataset. By utilizing the local data structure, KNN also exhibits remarkably high performance. Even though logistic regression achieves flawless training accuracy, overfitting causes testing accuracy to

decline. Consequently, Naive Bayes and KNN are the best models; their fair treatment of training and testing accuracy makes them appropriate for this specific classification job.

For this dataset, the Logistic Regressor performs best; this is probably because the PCA modification made the space where logistic regression works best linearly separable. Naive Bayes and KNN also exhibit strong performance, when reduced to two dimensions using PCA. Logistic Regression shows perfect testing accuracy, making it the best model for this dataset.