Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського"

Теорія складності

Дослідження coNP-повної задачі

Задача визначення того, чи даний граф не має циклу Гамільтона

ФІ-13 Дідух Максим

Фізико-технічний інститут

Кафедра математичних методів захисту інформації

Дослідження coNP-повної задачі

7 грудня 2022

Зміст

1	Вступ	2
	1.1 Постановка задачі	2
	1.2 Історія виникнення та наявні модифікаці	2
2	Практичне застосування	2
3	Доведення складності	2
4	Розв'язок	4
	4.1 Наявні методи розв'язку	4
	4.2 Наявні ефективні часткові розв'язки задачі та модифікацій	4
5	Список використано літератури	4

1 Вступ

Граф G називається *гамільтоновим*, якщо існує цикл, що містить кожну вершину рівно один раз. Такий цикл носить назву гамільтонового. Також слід зазначити, що існує поняття гамільтоновго шляху (це знадобиться при доведенні складності): граф G має *гамільтонів шлях* з вершини s у вершину t, якщо є марштрут між цими вершинами, який містить усі вершини рівно один раз.

Взагалі, це поняття пішло від Вільям Гамільтон (англ. *William Hamiltonian*), який вигадав не дуже вдалу гру під назвою "ікосіанська гра" (англ. *"icosian game"*), завданням якої був пошук гамільтонового циклу на додекаедричному графі (і можливо на його підграфах).

мал. 1 гамільтоновий цикл на додекаедрі change resolution

Хоча означення гамільтонового графу дуже схоже з означенням ойлерового графу, виявляється, що ці дві концепції поводяться досить по-різному. Якщо теорема Ойлера дає нам чіткий критерій ойлеровості, то для гамільтонових графів немає аналогічного твердження. Як з'ясувалось, перевірка графу на наявність гамільтонового циклу $\in NP$ -повною задачею.

1.1 Постановка задачі

Дано: неорієнтований граф G=(V,E), де $V=\{v_1,v_2,\ldots v_n\}$ - множина вершин, $E=\{e_1,e_2,\ldots v_k\}$ - множина ребер. Перевірити, що даний граф не має циклу гамільтона. Цю задачу будемо позначати **NON-HAM-CYCLE** .

- 1.2 Історія виникнення та наявні її модифікації
- 2 Практичне застосування
- 3 Доведення складності

Доведемо, що **NON-HAM-CYCLE** ϵ coNP-повною. Для цього нам знадобиться довести додаткове твердження.

Твердження 1: задача перевірки графа на наявність гамільтонового циклу належить класу NP-повних задач (∂ani : **HAM-CYCLE**)

Спочатку покажемо, що задача перевірки орієнтованого графу на наявність гамільтоновго шляху з вершини s у вершину t (далі **D-HAM-PATH**) є NP-повною.

1. **D-HAM-PATH** ϵ NP-повна?

Нехай G — орієнтований граф. Ми можемо перевірити чи потенційний шлях $s \to \ldots \to t$ є гамільтоновим за поліноміальний час. Тепер спробуємо побудувати поліноміальне зведення $\mathbf{3SAT} \le_p \mathbf{D}$ -**HAM-PATH**, щоб закінчити доведення повноти.

а точно 'множник'?

Нехай $\phi = \bigwedge_{i=1}^m \phi_i$ має n змінних і m множників. Щоб спростити доведення, припустимо, що жоден множник в ϕ не містить змінної x_i і її заперечення $\bar{x_i}$.

- 1. Спочатку, для кожної змінної x_i , ми генеруємо 2m+1 вершину з назвою $v_{i,j}$ і додаємо орієнтовані ребра $(v_{i,j},v_{i,j+1})$ і $(v_{i,j+1},v_{i,j})$, для $0 \le j \le 2m$.
- 2. Далі ми з'єднуємо вершини, пов'язані з різними змінними, додаючи чотири спрямовані ребра $(v_{i,0}, v_{i+1,0})$, $(v_{i,0}, v_{i+1,2m+1}), (v_{i,2m+1}, v_{i+1,0})$ та $(v_{i,2m+1}, v_{i+1,2m+1})$.
- 3. Далі створюємо вершини під назвою c_j . Якщо x_i з'являється у множнику ϕ_j без доповнення, додаємо орієнтовані ребра $(v_{i,2j-1},c_j)$ та $(c_j,v_{i,2j})$. Інакше, якщо x_i міститься з доповненням, то додаємо орієнтовані ребра $(v_{i,2j},c_j)$ та $(c_j,v_{i,2j-1})$.
- 4. В кінці, ми додаємо дві додаткові вершини s і t. Після цього додаємо нові ребра $(s, v_{1,1})$, $(s, v_{1,2m+1})$, $(v_{n,1}, t)$ та $(v_{n,2m+1}, t)$. Граф згенерований G_{ϕ} (див. puc.2). add picture number2

Тепер, треба показати, що ϕ задовільна тоді та лише тоді, коли у графі G_{ϕ} є гамільтонів шлях з s у t. Припустимо, що ϕ - задовільна. Тоді ми можемо відвідати кожну вершину починаючи з s йдучи з $v_{i,0}$ до $v_{i,2m+1}$ з ліва на право, якщо x_i - позитивна, і з $v_{i,2m+1}$ до $v_{i,0}$ з права на ліво, якщо x_i - негативна, і закінчити в t після відвідування $v_{n,0}$ або $v_{n,2m+1}$. Крім того, кожна 'clause' вершина може бути відвідана, згідно з припущенням, що кожна 'clause' ϕ_i має декілька літерлів $l_i = x_k$ або $l_i = \bar{x}_i$, які є позитивними. Кожна вершина c_j може бути відвідана використовуючи ребра $(x_{k,2j-1},c_j)$ або $(c_j,x_{k,2j})$ у першому випадку, і $(x_{k,2j},c_j)$ і $(c_j,x_{k,2j-1})$ у другому випадку, оскільки шлях йде вправо на графі для позитивних змінних, і шлях йде вліво для негативних змінних. Тому G_{ϕ} має гамільтонів шлях, якщо ϕ задовільна.

І навпаки, припустимо, що G_ϕ має гамільтонів шлях (s,t), позначимо його P. Зазначимо, що G_ϕ без clause vertices є гамільтоновим, тому нам потрібно показати, що шлях не "заламається" після відвідування clause vertex. Якщо більш формальніше: потрібно показати, що якщо P відвідує $v_{i,2j-1}, c_j, v$ у відповідному порядку, тоді $v=v_{i,2i}$. Нехай $v\neq v_{i,2i}$. Тоді зазначимо, що єдиними вершинами, які входять в $v_{i,2j}$ є $v_{i,2j-1}, c_j, v_{i,2j+1}$, а виходять з нього лише $v_{i,2j-1}$ та $v_{i,2j+1}$. Тому $v_{i,2j}$ має бути відвідана з $v_{i,2j+1}$, але тепер шлях замається і не може продовжуватись, оскільки $v_{i,2j-1}$ вже відвідано. Аналогічний аргумент показує, що P відвідує $v_{i,2j}, c_j, v$ у відповідному порядку, тому $v=v_{i,2j-1}$. Отже, гамільтонів шлях в G_ϕ відвідує вершини в порядку від x_1 до x_n , чергуючи clause vertices вершини між змінними , пов'язаними з тією самою змінною. Тому, значення змінних $v_{i,2j}$ добре визначається, якщо помітити, у якому напрямку шлях йде через вершини $v_{i,2j}$ у графі $v_{i,2j}$ за побудовою це присвоєння буде задовільняти $v_{i,2j}$ 0, оскільки воно робити літерал у кожній clause позитивним.

Зведення відбувається за O(mn) час, який є поліномом довжини вхідних даних.

2. **HAM-CYCLE** ϵ NP?

Якщо довільна задача, належить класу NP, тоді, маючи «сертифікат», який є розв'язком зієї задачі та екземпляр проблеми (граф G і додатне ціле k, у цьому випадку), ми зможемо верифікувати (перевірити, чи надане рішення правильне чи ні) сертифікат за поліноміальний час. Сертифікат — це послідовність вершин, що утворюють гамільтонів цикл у графі. Ми можемо верифікувати розв'язок, перевіривши, що всі вершини належать графу, і, що кожна пара вершин, що належать розв'язку — суміжна.

Це можна зробити за поліноміальний час, тобто O(V+E), ось псевдокод верифікації сертифікату для графу G(V,E):

```
value = 1 fix spacing для кожної пари \{u,v\} у підмножині V': перевірити, що між цими вершинами є ребро якщо ребра немає, то повернути 0 і завершити цикл
```

```
якщо value = 1:

то повернути 1 (розв'язок коректний)

інакше:

повернути 0 (розв'язок неправильний)
```

3. **HAM-CYCLE** *NP*-складна?

Щоб довести, що **HAM-CYCLE** ϵ NP-складною, ми повинні звести добре відому NP-складну задачу до даної.

- 4 Розв'язок
- 4.1 Наявні методи розв'язку
- 4.2 Наявні ефективні часткові розв'язки задачі та модифікацій
- 5 Список використаної літератури