Clustering via Non-Negative Matrix Factorization (NNMF)

Projet réalisé par :

Fezoui Yacine - Paul-Arthur NGUYEN - Stephane WU

Introduction

• Motivation :

- <u>La méthode NNMF</u>: pour réduire la dimension des données, facilitant ainsi l'identification de clusters.
- <u>La segmentation</u>: pour identifier des groupes au sein des données et de mettre en évidence des tendances importantes.

• À propos du problème :

- Identifier des groupes aux comportements similaires à partir du jeu de données.

State of the Art

• Méthodes courantes pour la réduction de dimensionnalité :

- <u>NMF simple : Réduction de dimensions</u> Utilise la factorisation de matrice pour réduire les dimensions des données tout en conservant leur structure.
- <u>Sparse NMF : Factorisation avec parcimonie</u> Contraint les matrices factorielles pour obtenir des représentations plus interprétables et adaptées.
- <u>Multiview PCA : Analyse multi-vues</u> Combine des données provenant de différentes sources tout en appliquant une analyse en composantes principales.

Méthodes courantes pour le clustering :

- **K-means**: Méthode qui permet d'identifier les clusters dans un ensemble de donnée en fonction de k.
- **DBSCAN** : Clustering basé sur la densité, adapté aux formes complexes de clusters.
- **Agglomerative clustering**: Méthode hiérarchique créant un arbre de décision pour le clustering.
- Gaussian Mixture Models (GMM): Modèle probabiliste où chaque cluster suit une distribution normale.

Méthodologie

- Étapes pour résoudre le problème :
- 1. Prétraitement des données
- 2. Application de NNMF
- 3. Nombre de segments
- 4. Clustering (K-means)
- **5.** Analyse des clusters

- Dataset : Mall Customer Dataset (Standard)
 - 200 clients, colonnes : Age, Revenu annuel, Spending Score.
- Protocole:
- Exclusion de la variable Genre (qualitative).
- Imputation des valeurs manquantes par la moyenne.
- * Traitement des outliers avec la méthode IQR.
- ❖ Normalisation des données avec la formule :

$$X_{norm} = rac{X - X_{min}}{X_{max} - X_{min}}$$

Les données après prétraitement :

Age	Annual Income (k\$)	Spending Score (1-100)
0.500000	0.567568	0.193878
0.423077	0.648649	0.122449
0.961538	0.297297	0.479592
0.307692	0.792793	0.224490
0.326923	0.531532	0.724490

2. Application de NNMF simple : Réduction des dimensions.

 Décomposition NMF : fonction NMF du module decomposition : bibliothèque sklearn.

 Resultat : W (matrice des caractéristiques latentes) et H (matrice des bases).

 La matrice W est exploitée comme entrée pour l'étape : de clustering.

• But ?

0.8	0.3
0.8	0.2
0.1	1.1
0.2	1.2
0.7	0.9
0.8	0.8

3. Deuxieme methode sparse:

- La Sparse NMF est une variante de la NMF classique qui introduit une contrainte de parcimonie pour obtenir des matrices avec davantage de zéros.
- Réalisée avec sklearn.decomposition.NMF, ajoute le paramètre l1_ratio=0.5 pour contrôler le niveau de parcimonie.
- Comparée à la NMF classique, elle produit des résultats similaires tout en forçant une représentation plus sparse (compacte).
- Cette méthode permet de mieux identifier les composantes essentielles en éliminant les contributions mineures des variables.

4. Nombre de segment : Déterminer en combien de groupe on peut segmenter notre population

La méthode du coude :

- Mise en œuvre avec KMeans de sklearn.
- Le graphe montre un coude clair pour k=3, car k=2 manque de granularité et k=4 n'apporte pas une valeur ajoutée significative.
- Résultats confirmés par la méthode du score de silhouette, assurant la cohérence du choix.

- 5. Clustering (K-means): Regroupement des clients en clusters.
- Clustering effectué avec KMeans de sklearn.
- Nombre de clusters fixé à 3 à partir des analyses préalables (coude et silhouette).
- Utilisation de la matrice réduite W issue de NMF pour la classification.
- Les clusters sont attribués à chaque client dans le dataset initial.
- Résultat présenté avec : CustomerID, Genre, Âge, Revenu, Score de dépenses et Cluster :

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
0	1	Male	19	15	39	0
1	2	Male	21	15	81	1
2	3	Female	20	16	6	2
3	4	Female	23	16	77	1
4	5	Female	31	17	40	2

- Analyse des clusters : Interprétation des groupes formés :
- Clusters formés basés sur l'âge, le revenu et le Score de Dépenses.

Tableau des moyennes et des comptes par cluster :

	Age	Annual Income (k\$)	Spending Score (1-100)	Nombre d'éléments	male	female
Cluster						
0	41.112245	58.704082	47.489796	98	37.755102	62.244898
1	30.196429	68.017857	82.357143	56	42.857143	57.142857
2	44.565217	55.434783	16.826087	46	58.695652	41.304348

• Discussion:

Cluster 0 (48.5%):

- Caractéristiques : Classe moyenne
 - Attentifs à leurs dépenses
 - Ils peuvent se permettre des achats plus élevés occasionnellement, mais uniquement si cela en vaut vraiment la peine ou si c'est un besoin essentiel.
- Stratégie marketing : Mettre en avant des produits de qualité avec un bon rapport qualité/prix, des offres limitées et des promotions exceptionnelles pour les inciter à faire des achats occasionnels plus importants.

Cluster 1 (28.5%):

- Caractéristiques : Jeunes adultes revenu élevé.
 - Se laisse facilement séduire par des **tentations** et **dépense sans trop réfléchir**.
 - Prêts à faire des achats impulsifs et privilégient les **produits tendance** et **marques populaires**.
- Stratégie marketing : Mettre l'accent sur des produits très promus sur les réseaux sociaux ou marques connues.
 - Plats préparés et des solutions rapides
 - Promotions limitées et des offres attractives

Cluster 2 (23%):

- Caractéristiques : Dépensent très peu.
 - Achats spécifiques.
 - Articles associé au magasin.
 - **Promotions attractives, produits de niche**, ou des articles difficiles à trouver ailleurs.
 - Réalisent leurs achats dans d'autres enseignes
- Stratégie marketing : Élargir la gamme pour couvrir davantage de besoins et renforcer l'image d'un "magasin complet".
 - Proposer des promotions ciblées.
 - Une analyse des données d'achat.
 - **Programmes de fidélité** récompensant les achats fréquents avec des **avantages** (réductions cumulatives, cadeaux, ou accès à des offres exclusives) peuvent inciter ces clients à revenir régulièrement et à élargir leur **panier d'achat.**

Conclusion

• Résumé:

- NNMF est une méthode efficace pour la segmentation.
- Les clusters obtenus offrent des insights utiles pour des stratégies marketing ciblées.

• Perspectives :

- Tester avec d'autres datasets pour valider la robustesse.
- Intégrer d'autres méthodes de clustering comme DBSCAN.

Bibliographie

- On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering
- <u>Mall Customer Segmentation Data</u>
- <u>Sklearn Documentation</u>
- K Means Documentation