

Indian Statistical Institute

PGDBA 2021-23

Load Prediction using Time Series

Submitted To

Prof. Smarajit Bose

Submitted By

Parag Agrawal (21BM6JP10) Sanket Biswas (21BM6JP36)

TIME SERIES DATA

The 5216 rows dataset is about the Power Consumption of the three zones of the Tetuan City for the year 2017.

- The objective is to predict the total power consumption of all the zones of the Tetuan City. To make the required variable univariate, the Z₁PC, Z₂PC & Z₃PC columns will be summed up for our calculations.
- For the given data, the sample time is 10 minutes, which makes the total number of 144 data points for a single day, hence, to make the data less complex, the sample time has been reduced to an hour.

Wind Speed	general diffuse flows	diffuse flows	Z1PC	Z2PC	Z3PC
0.083	0.051	0.119	34055.69620	16128.87538	20240.96386
0.083	0.070	0.085	29814.68354	19375.07599	20131.08434
0.080	0.062	0.100	29128.10127	19006.68693	19668.43373
0.083	0.091	0.096	28228.86076	18361.09422	18899.27711
0.081	0.048	0.085	27335.69620	17872.34043	18442.40964

https://archive.ics.uci.edu/ml/datasets/Power+consumption+of+Tetouan+city

- **Training Dataset:** First 18 days of the year i.e January 1st 2017 to January 18th, 2017, constituting 432 rows.
- **Testing Dataset:** Next two days of the training data, i.e. January 19th & 20th 2017.

EXPLORATORY ANALYSIS

21 days electricity consumption plot for Tetuan city in January 2017.

EXPLORATORY ANALYSIS

ACF plot of training data without removing seasonality.

EXPLORATORY ANALYSIS

Trend: Looking at the data seems like there is a slight upward trend.

Seasonality: There is a seasonality with the period of one day that is 24 data points.

Mean: Figure-2 shows that the rolling mean is constant.

Variance: The variance is almost constant.

Conclusion: Pertaining to the seasonality with period of a day, the time series does not have stationarity.

AUGMENTED DICKEY FULLER (ADF) TEST

Results of dickey fuller test	
Test Statistics	-7.904235e+00
p-value	4.107309e-12
No. of lags used	1.800000e+01
Number of observations used	4.130000e+02
critical value (1%)	-3.446283e+00
critical value (5%)	-2.868564e+00
critical value (10%)	-2.570511e+00
dtype: float64	

- Applying the Augmented Dickey Fuller (ADF) Test on the training data to check whether the data is stationary.
- We get a highly significant p value, i.e. 4.1+e-12 and test statistic as -7.90.
- Hence, we need to accept the alternative hypothesis i.e. data is stationary.
- However, this test doesn't seem to consider the seasonality in finding the stationarity.

TRAINING DATA & TESTING DATA

	DateTime	consumption			
0	01-01-2017 00:00	70425.53544			
6	01-01-2017 01:00	60937.36065			
12	01-01-2017 02:00	54290.73952			
18	01-01-2017 03:00	49783.65137			
24	01-01-2017 04:00	47930.28589			
2850	1/20/2017 19:00	97881.98310			
2856	1/20/2017 20:00	96194.23179			
2862	1/20/2017 21:00	98114.90754			
2868	1/20/2017 22:00	94066.76339			
2874	1/20/2017 23:00	83507.12040			
480 rows × 2 columns					

FITTING MODEL AFTER REMOVING SEASONALITY

Plot after log differencing.

```
data['consumption']=data['consumption'].apply(lambda x:np.log(x))
data_shift=pd.DataFrame(data['consumption']-data['consumption'].shift(24))
```


FITTING MODEL WITHOUT REMOVING SEASONALITY

original

- 1 from statsmodels.tsa.arima_model import ARIMA
- model = ARIMA(traindata, order=(2,0,4))
- result_AR = model.fit(disp = 0)
- plt.plot(result_AR.fittedvalues, color='red')

FITTING MODEL WITHOUT REMOVING SEASONALITY

Fitting ARMA (2,2) Model

Dep. Variable:	consumption	No. Observations:	432
Model:	ARMA(2, 2)	Log Likelihood	-4335.330
Method:	css-mle	S.D. of innovations	5500.316
Date:	Tue, 01 Mar 2022	AIC	8682.661
Time:	15:33:51	BIC	8707.071
Sample:	01-01-2017	HQIC	8692.298
	- 01-18-2017		

	coef	std err	z	P> z	[0.025	0.975]
const	6.747e+04	341.918	197.330	0.000	6.68e+04	6.81e+04
ar.L1.consumption	1.8356	0.023	81.115	0.000	1.791	1.880
ar.L2.consumption	-0.9086	0.022	-40.521	0.000	-0.953	-0.865
ma.L1.consumption	-0.6777	0.054	-12.593	0.000	-0.783	-0.572
ma.L2.consumption	-0.2307	0.053	-4.374	0.000	-0.334	-0.127

- The predicted curve is a simple sinusoidal curve, which only predicts the overall seasonality of the of the data.
- We are getting high RSS (Sum of Residual Squares) in this case.

RSS: 13122326065.528435

• Hence, a better fitting model has be looked for.

FITTING MODEL WITHOUT REMOVING SEASONALITY

FITTING MODEL WITHOUT REMOVING SEASONALITY

Fitting SARIMA (2,1,4) (1,1,1,24) Model

SARIMAX Results								
	Dep. V	ariable:		cons	umption	No. Obse	ervations:	432
	Model: SARIM		RIMAX(2, 1	IMAX(2, 1, 4)x(1, 1, [1], 24)			ikelihood	-3508.849
		Date: Time:		Tue, 01 Mar 2022 16:21:27			AIC	7035.697
							BIC	7071.777
	s	Sample:		01-01-2017			HQIC	7049.976
				- 01-18-2017				
Covariance Type:				opg				
		coef	std err	z	P> z	[0.025	0.975]	
	ar.L1	0.2939	7.270	0.040	0.968	- 13.954	14.542	
	ar.L2	0.3700	5.549	0.067	0.947	-10.506	11.246	
	ma.L1	-0.3191	7.264	-0.044	0.965	-14.556	13.918	
	ma.L2	-0.3658	5.724	-0.064	0.949	-11.585	10.853	
	ma.L3	-0.0634	0.130	- 0.487	0.626	-0.319	0.192	
	ma.L4	-0.0299	0.517	-0.058	0.954	-1.042	0.983	
	ar.S.L24	0.4539	0.082	5.508	0.000	0.292	0.615	
	ma.S.L24	-0.6008	0.091	-6.622	0.000	- 0.779	-0.423	
	sigma2	1.792e+06	7.91e+04	22.640	0.000	1.64e+06	1.95e+06	

- The model seems to be a very close and best prediction to the testing data.
- We are getting comparatively low RSS (Sum of Residual Squares) than the ARMA(2,2) model.

RSS: 10260343156.844927

• Hence, we consider this as a fitting model.

CONCLUSION

MODEL	RSS Value		
ARMA (2,2)	13122326065.5284		
SARIMA (2,1,2) (1,1,1,24)	10475061221.7473		
SARIMA (2,1,3) (1,1,1,24)	10301488099.4280		
SARIMA (2,1,4) (1,1,1,24)	10260343156.8449		
SARIMA (2,1,5) (1,1,1,24)	10276348078.6051		

- Tabel shows the RSS values for different models.
- It shows that the minimum value of RSS is when we select the SARIMA model with ordering (2,1,4)(1,1,1,24).
- Hence the model is fitting the best values.

THANK YOU