CS 430 - Computer Graphics

Lecture 1 – Part 3 Line Drawing

Motivation

- Most graphics applications allow us to specify vertex attributes (locations, colors, etc..) and then it is the job of the graphics pipeline to draw the desired shape
 - The user specifies the shape type (i.e. line, point, triangle, etc..)
- In this part of the lecture we will start with how to render the pixels of a line given the endpoints

Line Drawing

Scan-Conversion Algorithms

- Scan-Conversion
 - Compute pixel coordinates for *ideal* line on 2D raster grid

Drawing a Line

- We are typically given two endpoints: (x_s, y_s) and (x_e, y_e)
 - From which we can compute the slope

$$m = \frac{\Delta y}{\Delta x} = \frac{(y_e - y_s)}{x_e - x_s}$$

Then we start at point (x_s, y_s) and compute the points along the way until we reach (x_e, y_e)

Drawing a Line

- Let's assume we choose to move along the x-direction by some fixed integer amount n
- Then given the current point (x_i, y_i) we can find the next point (x_{i+1}, y_{i+1}) by:
 - Compute the next x position x_{i+1} as:

$$x_{i+1} = x_i + n$$

• Then we could compute the next y position, y_{i+1} as

$$y_{i+1} = mx_{i+1} + b$$

• Or since $\Delta y = y_{i+1} - y_i$ we can compute y_{i+1} $y_{i+1} = y_i + \Delta y = y_i + mn$

- And the round y_{i+1} to an integer value.
- Problem:
 - This is expensive (inefficient)
 - Involves a lot of multiplications

Drawing a Line

If we decide to increment x such that n=1, we can make this:

$$x_{i+1} = x_i + 1$$
$$y_{i+1} = y_i + m$$

No more multiplication!

Deciding on Increment Direction

- We don't want our line to have too harsh of jumps
- What would happen if m = 10 and we decide to increment in the x-direction by 1?

Digital Differential Analyzer (DDA)

- If |m| is less than 1
 - $\Delta x = 1$ and $\Delta y = m$
 - And start at left-most point
 - End at right-most point
- Else
 - $\Delta y = 1$ and $\Delta x = 1/m$
 - And start at the bottom-most point
 - End at top-most point
- Check for vertical line case
 - $m = \infty$
- Compute
 - $x_{k+1} = x_k + \Delta x$
 - $y_{k+1} = y_k + \Delta y$
 - Round (x,y) for pixel location (but must keep track of float values too)
- Issue
 - We'd like to avoid floating point operations!

- Another incremental scan-conversion algorithm
 - But performs integer-only arithmetic!
- Based on the *implicit* equation of a line:

- Just like with the DDA algorithm we'll have to deal with different slope situations
- For the following example let's assume the slope is $0 \le m \le 1$
 - So just like in DDA we want to use $\Delta x = 1$
- What we're about to show is called the *midpoint* approach where we
 - Compute the midpoint and observe the cost
 - Base on the cost, decide where we should go

- Let's assume we are currently at pixel (p_x, p_y)
- Since (for $0 \le m \le 1$) we're incrementing in the x direction we have two choices of pixels to go to next:
 - East (E): $(p_x + 1, p_y)$
 - North East (NE): $(p_x + 1, p_y + 1)$
- ▶ Let *M* be midway between *E* and *NE*:
 - $M = \left(p_x + 1, p_y + \frac{1}{2}\right)$

- ▶ We can then evaluate the implicit function at *M* to determine if it's above or below the line
 - If f(x, y) < 0 then we're above the line
 - If f(x,y) > 0 then we're below the line
 - If f(x,y) = 0 then we're one the line
- What does it mean to be "above" the line?
 - If it's a vertical line or slope m < 0, then compute a vector V from the endpoint with the smaller y coordinate to the one with the larger y coordinate.
 - Otherwise compute a vector V from endpoint with the smaller x value to the one with the larger
 - The direction of the normal to V, $N = (V_y, -V_x)$, is going towards points with f(x, y) > 0

- So we evaluate f(M) in order to make our decision
- I like to think that since we want f(x,y) = 0 that we want to go the opposite way of f(M) so that we're closer to f(x,y) = 0
- Therefore
 - If f(M) > 0 then the midpoint is below the lien so we should go NE $\rightarrow (p_x + 1, p_y + 1)$
 - If f(M) < 0 so go E $\rightarrow (p_x + 1, p_y)$

But to compute the midpoint we had to divide by 2!

$$M_{y} = p_{y} + \frac{1}{2}$$

- Wasn't the whole point of not doing DDA to avoid doing division/multiplication?
- Let's see how we can get around this...
- Returning to the implicit function of a line....

$$f(x,y) = ax + by + c = 0$$

Lets modify this by multiplying each side by two:

$$f(x,y) = 2ax + 2by + 2c = 0$$

$$f(x,y) = 2ax + 2by + 2c = 0$$

- Now let's create a *decision variable D* where *D* is the value of *f* at the midpoint $M = \left(p_x + 1, p_y + \frac{1}{2}\right)$:
 - $f(M) = f(p_x + 1, p_y + \frac{1}{2})$
 - $= 2a(p_x + 1) + 2b(p_y + \frac{1}{2}) + 2c$
 - $= 2ap_x + 2bp_y + (2a + b + 2c)$
- But what are a, b, c?

- Given two points q and r let
 - $d_x = r_x q_x$ //the x component of the line
 - $d_y = r_y q_y$ //the y component of the line
- From point slope form we have

$$(y - r_y) = \frac{d_y}{d_x}(x - r_x)$$

Converting this to a general equation

$$f(x,y) = ax + by + c = 0$$

we get:

•
$$f(x,y) = d_y x - d_y r_x - d_x y + d_x r_y = 0$$

•
$$f(x,y) = d_{y}x - d_{x}y + (d_{x}r_{y} - d_{y}r_{x}) = 0$$

- So
 - \circ $a = d_y$
 - $b = -d_x$
 - $\circ c = d_x r_y d_y r_x$

Therefor for a line with slope $0 \le m \le 1$ our decision rule on where to go next is:

$$D = f(M) = 2d_y p_x - 2d_x p_y + (2d_y - d_x + 2(d_x r_y - d_y r_x))$$

Generalized Algorithm

5 Different Cases:

- 1. Vertical line
- 2. $0 \le m \le 1$
 - If $q_x > r_x$, swap points
 - This is what we just did (always increment x, conditionally increment y)
- 3. m > 1
 - If $q_v > r_v$, swap points
 - Always increment y, conditionally increment x
- 4. $-1 \le m < 0$
 - If $q_x > r_x$, swap points
 - Always increment x, conditionally decrement y
- 5. m < -1
 - If $q_v > r_v$, swap points (vertical scan)
 - Always decrement y, conditionally increment x
- The D = f(M) equations will be different for each case
 - Do the math!

Example

- Let's apply the algorithm for the line that's specified by endpoints (0,0) and (7,5)
- What's our values for a, b, c, d_x, d_y ?
- Ok let's do it!

Assignment 1

Assignment Details

- Throughout this course we will
 - Read in data from a simple graphics form file, PostScript (.PS)
 - Simulate writing to a frame buffer by creating XPM images.
 - As we go we will
 - Draw lines
 - Draw polygons
 - Clip lines and polygons
 - Fill polygons
 - Simulate viewports
 - Allow for 2D and 3D transformations
 - Allow for 3D projection
 - Perform 3D depth cueing
 - Perform 3D depth buffering

Data Structures

- Think about how to structure your assignments early
 - Need to read in augmented postscript file
 - Need to write out XPM file
- Also need data structures for
 - Frame buffer data
 - Drawable objects
 - 2D Lines
 - 3D Lines
 - 2D Polygons
 - 3D Polygons
 - 3D Camera objects
- Might be a good opportunity to flex your OOP skills
 - Inheritances, polymorphism etc...

Programming Assignment 1

- Input PostScript-like file
- Output B/W (for now) XPM
- Create data structure to hold points and lines
- Implement line drawing

XPM Format

- Encoded pixels
- Actually C Code as an ASCII Text file

XPM Format

- View image (run code) as
 - Linux: display
 - Windows: Use IrfanView program (will also need all the plugins)
 - Mac: Install and run Xquartz. Then do ssh -x onto tux
- Or convert to image type that's more readable on your machine via:

http://www.files-conversion.com/image/xpm

XPM Basics

- X PixelMap (XPM)
- Native file format in X Windows
- Files are C source code
- Read by compiler instead of a viewer
- Successor of X BitMap (XBM) B/W format
- Supports color

XPM: Defining Colors

- Each pixel specified by an ASCII char
- Key describes the context this color should be used within
 - Use "c" for color
- Colors are specified as:
 - color name
 - "#" followed by the RGB code in hex
- ▶ RGB 24 bits (2 characters 0-f for each color)

XPM: Example

- Array of C strings
- The XPM format assumes the origin (0,0) is the upper-left hand corner
- First string is "width height ncolors cpp"
- Then you have "ncolors" strings associating characters with colors
- And last you have "height" strings of "width"* "cpp" characters

```
/* XPM */
static char *sco100[] = {

/* width height num_colors chars_per_pixel */
"7 7 4 1",

/* colors */
"- c #ffffff",
"# c #ffe0e0",
"a c #ffb7b7",
"X c #010101",

/* pixels */
"X-###--",
"-##a##-",
"##aaa##",
"##aaa##",
"##aaa##",
"##aaa##",
"-##a##-",
"-##a##-",
"-##a##-",
"-##a##-",
"-##a##-",
"-##a##-",
"-##a##-",
"-##a##-",
"-##aa##",
"-##aa##",
"-##aa##",
"-##aa##",
"-##aa##",
"-##aa##",
"-##aa##",
"-##aa##",
"-##aa##",
"-##a##-",
"-###--"
```


Simplified Post Script File Format

- We will only handle the command (for now!) of
 - x1 y1 x2 y2 Line
- ▶ The text of these commands are between the %%% BEGIN and %%%END markers
- Postscript assumes the origin (0,0) is at the lower-left corner of the window)
- Example:

```
%%BEGIN
375 100 300 230 Line
499 0 0 250 Line
170 450 400 350 Line
350 300 120 400 Line
%%END
```

Assignment Tasks

- Your program will allow you to
 - Read data from a PostScript file that specifies endpoints for lines.
 - Draw lines into a virtual frame buffer
 - Save the software frame buffer to an XPM file