Exercise 6.1

Consider $K := \mathbb{Q}(\sqrt{-10})$.

1. Show that $(2) = \mathfrak{p}^2$ for some prime ideal $\mathfrak{p} \subset \mathcal{O}_K$ and find the generators of \mathfrak{p} explicitly.

Proof. Because $-10 \equiv 2 \mod 4$, the ring of integer of K is $\mathcal{O}_K = \mathbb{Z}[\sqrt{-10}]$. The minimal polynomial of $\sqrt{-10}$ is $X^2 + 10$ and we have

$$X^2 + 10 \equiv X^2 \mod 2.$$

Thus,
$$(2) = (2, \sqrt{-10})^2$$
.

2. Prove that the ideal \mathfrak{p} you just found is prime, but not principal. Deduce the order of $[\mathfrak{p}] \in \mathrm{Cl}(K)$ is 2.

Proof. $(2, \sqrt{-10})$ being prime arises from the theorem that gives the method of computation. Now assume $(2, \sqrt{-10})$ is principal, then there is an $\alpha \in \mathcal{O}_K$ that divides 2. Using the multiplicativity of the norm gives $N(\alpha)$ divides N(2) = 4, so $N(\alpha) = 2$, but this is impossible. So 2 is irreducible in \mathcal{O}_K and clearly $\sqrt{-10}$ is not a multiple of 2. Hence the generators do not share a divisor and $(2, \sqrt{-10})$ is principal. Moreover, because $(2, \sqrt{-10})^2 = (2)$ is principal (and all principal ideals are equivalent to (1)), the order of $(2, \sqrt{-10})$ is 2.

3. Prove that (3) $\subset \mathcal{O}_K$ is prime. Using Minkowski's bound, deduce that $\operatorname{Cl}(K) \simeq \mathbb{Z}/2\mathbb{Z}$.

Proof. Similarly as in 1., we have

$$X^2 + 10 \equiv X^2 + 1 \mod 3$$

which is irreducible in $\mathbb{Z}/3\mathbb{Z}$, so (3) is prime. The Minkowski's bound for K is

$$M_K = \sqrt{|D_K|} \left(\frac{4}{\pi}\right)^{r_2} \frac{n!}{n^n} = \sqrt{40} \frac{4}{\pi} \frac{2}{4} = \frac{4\sqrt{10}}{\pi} = 4.03.$$

So the ideal class group is generated by the prime ideals with norm not exceeding M_K . For a prime ideal $\mathfrak p$ where $N(\mathfrak p) < 4$, $\mathfrak p$ divides (2) or (3). While 3 is prime, (2) decomposes as $(2) = (2, \sqrt{-10})$. Thus, Cl(K) is generated by [(1)] and $[(2, \sqrt{-10})]$ and we have $Cl(K) \simeq \mathbb{Z}/3\mathbb{Z}$.

6.2

Let K be a number field with ring of integers \mathcal{O}_K . Suppose $\mathfrak{p} \subset \mathcal{O}_K$ is nonzero prime ideal and $p \in \mathbb{N}$ a prime number. Denote the numerical norm of some ideal $\mathfrak{a} \subseteq \mathcal{O}_K$ by $N_{K/\mathbb{Q}}$. Show that the following are equivalent.

- 1. $N_{K/\mathbb{Q}}(\mathfrak{p}) \equiv 0 \mod p$.
- $2. \ \mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}.$
- 3. \mathfrak{p} appears in the factorization of $(p) \subseteq \mathcal{O}_K$ into prime ideals.

Proof. 1. 3. \Rightarrow 1. Let (p) decomposes into \mathfrak{pa} where \mathfrak{p} is a prime ideal and \mathfrak{a} is an integral ideal. If \mathfrak{a}^{-1} is a fractional ideal with $\mathfrak{aa}^{-1} = (1)$, we have

$$\mathrm{N}_{K/\mathbb{Q}}(\mathfrak{p})=\mathrm{N}_{K/\mathbb{Q}}((p))\mathrm{N}_{K/\mathbb{Q}}(\mathfrak{a}^{-1})=|\mathcal{O}_K/(p)|\mathrm{N}_{K/\mathbb{Q}}(\mathfrak{a}^{-1}).$$

Now, $|\mathcal{O}_K/(p)|$ is divisible by p, we have that $N_{K/\mathbb{O}}(\mathfrak{p}) \equiv 0 \mod p$.