Master AIGLE, IMAGINA et MIT

Générateur semi-automatique de quizz basés sur Wikipedia

avec mise en oeuvre de patterns syntaxiques et construction d'ontologies

TER.

Réalisé le 26 avril 2017,

Meryll Essig Tristan Cossin Tamara Rocacher Dorine Tabary

meryll.essig@etu.umontpellier.fr tristan.cossin@etu.umontpellier.fr tamara.rocacher@etu.umontpellier.fr dorine.tabary@etu.umontpellier.fr

Sous la responsabilité de Pierre Pompidor

Université Montpellier Faculte des sciences, section informatique 2 Place Eugène Bataillon, 34090 Montpellier

Table des matières

L	- In	troduction
	1.1	- Le sujet
		1.1.1 - En phase d'enrichissement
		1.1.2 - En phase d'exploitation :
		1.1.3 - Langages/technologies:
	1.2	- Travail réalisé
	1.3	- Difficultés rencontrées
		1.3.1 - Travailler en synergie
		1.3.2 - Gestion de l'immense quantité d'information de Wikipédia
		1.3.3 - Apprentissage d'un nouvel environnement MEAN
2	- Pl	hase d'études
	2.1	- Les articles scientifiques
	2.2	- Gestion de l'extracteur
	2.3	- Nos choix
3	Le 1	programme
	3.1	Plan général
	3.2	Côté serveur
		3.2.1 Extraction des données
		3.2.2 Génie Logiciel
	3.3	Côté client
		3.3.1 IHM
		3.3.2 Interprétation
4	La t	théorie
	4.1	intéret
	4.2	reformulation en terme de cliques
		4.2.1 Kesako
		4.2.2 résolution exacte grâce au branch and bound
	4.3	reformulation en terme de couverture d'ensembles
		4.3.1 Kesako
		4.3.2 résolution exacte grâce aux ϕ -approximation
5	con	clusion
•	5.1	travail réalisé
	5.2	Notre approche
	5.3	ce que le projet nous a apporté
	5.0	eve de recherche

Chapitre 1- Introduction

1.1- Le sujet

Le but du projet est de construire parallèlement des quizz via Wikipédia et une ontologie structurant la thématique des questions posées dans ces quizz.

1.1.1- En phase d'enrichissement

Nous devions:

- récupérer aléatoirement un lot d'articles sous Wikipédia :
 - ne conserver l'article que si :
 - l'article possède au moins une photo d'illustration;
 - l'article présente une taille (en caractère) minimale à déterminer.
 - extraire via des patrons syntaxiques :
 - la réponse;
 - la définition directe telle que des définitions dérivées soient aussi construites.
- présenter l'image, la réponse et la définition à un administrateur qui va :
 - vérifier/corriger les éléments présentés;
 - il faut automatiser la recherche d'autres images si celle présentée est rejetée;
 - permettre à l'administrateur de varifier les définitions dérivées;
 - attacher l'article à une ontologie (et si nécessaire compléter cette ontologie);
 - affecter une difficulté à la question.

1.1.2- En phase d'exploitation :

Nous devions:

- demander au joueur :
 - le nombre de questions (fixé par défaut à 10) et le nombre de thèmes (fixé par défaut à 5);
 - faire choisir les thèmes via l'ontologie ou les tirer aléatoirement dans les superthèmes
- construire et faire jouer le quizz en présentant les images comme questions :
 - calculer les points à accorder suivant une formule de valuation;
 - donner la correction après chaque validation;
- mémoriser le score du joueur;
- gérer un tableau de bord (statistiques, évolutions de l'expertise du joueur par thème...).

1.1.3- Langages/technologies:

 $Architecture\ Mean: MongoDB + Express + Angular + Nodejs.$

1.2- Travail réalisé

1.3- Difficultés rencontrées

1.3.1- Travailler en synergie

Notre groupe est composé d'étudiants ayant choisi des formations très différentes (master MIT, AIGLE et IMAGINA).

Plusieurs compétences ont été primordiales comme :

- l'organisation qui a permis le travail de groupe malgré plusieurs emplois du temps très différents;
- la communication nécessaire pour partager des idées avec d'autres personnes aux formations hétérogènes;
- l'adaptation inévitable pour transposer nos connaissances au projet.

1.3.2- Gestion de l'immense quantité d'information de Wikipédia

1.3.3- Apprentissage d'un nouvel environnement MEAN

Chapitre 2- Phase d'études

2.1- Les articles scientifiques

2.2 <u>Gestion de l'extracteur</u>

Pourquoi pas MultiWiki/Webedia.

2.3- Nos choix

Chapitre 3Le programme

3.1Plan général

3.2Côté serveur

3.2.1Extraction des données

Connaissance théorique

Lemmatisation et racinalisation (stemming))

Expressions régulières

Commandes couvrantes

en pratique

3.2.2Génie Logiciel

Application Web

3.3Côté client

3.3.1IHM

3.3.2Interprétation

Chapitre 4La théorie

- 4.1 intéret
- 4.2reformulation en terme de cliques
- 4.2.1Kesako
- 4.2.2résolution exacte grâce au branch and bound
- 4.3reformulation en terme de couverture d'ensemble
- $4.3.1 \underline{\text{Kesako}}$
- 4.3.2 résolution exacte grâce aux ϕ -approximation

Chapitre 5 conclusion

5.1travail réalisé

5.2Notre approche

Nous avons voulu rentabilisé les compétences de chacun et fournir ainsi des perspectives multiples de ce problème.

5.3ce que le projet nous a apporté

5.4axe de recherche

Bibliographie

Table des figures