Simplex Algorithm

Notation: Ein Exponent in Klammer zeigt einen Index an, keine Operation, z.B. $\vec{x}^{(2)}$ oder $\vec{z}^{(i)}$

Benötigt ein lineares Programm in der inequality Form. Bedenke dass dieser Algorithmus das Maximum findet. Für Minim

Definiere folgende Variablen: - A: Matrix aus der linken Hälfte der Ungleichheiten - \vec{b} : Vetor aus der rechten Hälfte der Ungleichheiten. - \vec{c} : Vektor aus der Optimierungsfunktion - Bedenke dass dieser Algorithmus das Maximum findet. Für Minimum, berechne $min\{-cx: x \in P\} = -max\{cx: x \in P\} - \vec{v}^{(0)}$: Startvektor

- 0. Bestimme A_B und \vec{b}_B welche jeweils den Zeilen des Index der Startgleichung bestehen
- 1. Berechne
- A_B^{-1} $\vec{v}^{(i)} = A_B^{-1} \vec{b}_B$ 2. Berechne die reduzierten Kosten \vec{u}^T

$$\bullet \quad \vec{u}^T = c^T A_B^{-1}$$

- 3. Ist $\vec{u} \leq \vec{0}$, dann STOP.
 - $\vec{v}_{(i)}$ ist optimal
- 4. Wähle $j \in B$ mit $\vec{u}_j < 0$ und berechne die Richtung \vec{d}

•
$$\vec{d} = -(A_B^{-1})_j$$

- $\vec{d} = -(A_B^{-1})_j$ 5. Bestimme alle λ^* für alle Gleichungen, mit

 $\lambda_i = \frac{b_i a_i v_i}{a_i d_i}$ für $d_i \leq 0$ muss keine Berechnung vorgenommen werden.
- 6. Ist $max\{\lambda^*\} = \infty$, STOP
 - Kann nur der Fall sein wenn $A\vec{d} \leq \vec{0}$
- 7. Berechne $\lambda_{min} = min\{\lambda_*\}$
 - Das Minimum ist an einem Index k
- 8. Bestimme die neue Basisselektion B'
 - $B' = B \{j\} \cup \{k\}$
- 9. Setzte B = B' und gehe zu Schritt 1.

Folgende Tabelle kann für die Berechnung verwendet werden:

Mit A, \vec{b} , \vec{c} und $\vec{v}^{(0)}$

$$i \mid B^{(i)} \mid b_B^{(i)} \mid A_{B^{(i)}} \mid A_{B^{(i)}}^{-1} \mid \vec{v}^{(i)} \mid \vec{u}^{(i)} \mid j \mid d \mid \lambda^* \mid k$$