

TECHNIK MACHT KÜNSTLICH INTELLIGENT

DI Dr. Alexander Nemecek
Leitung Studiengang Robotik

fhwn.ac.at/bro
robotikfhwn

WORKSHOP MOBILE ROBOTIK

FACHHOCHSCHULE WIENER NEUSTADT

Inhalt

- Fachhochschule
- Mobile Roboter
- Software
- Sim #1 Pfadplanung
- Sim #2 Lidar Scan
- Sim #3 Navigation
- Sim #4 SLAM

Simulation mit <30 Zeilen Code

Fachhochschule

WIRTSCHAFT

TECHNIK

SPORT

Allgemeine Informationen

Fachbereiche und Institute

SICHERHEIT

fhwn.ac.at

• FH

• 15.000+ Absolventen

4.000+ Studierende

Bibliothek

ROBOTER

• 1.330+ Referenten

100 Partnerhochschulen

International Office

FH Activities

Forschungstochter FOTEC

Next - Mobile Roboter

• SIM #1 - PFAD

• SIM #2 - LIDAR

• SIM #3 - NAVI

• SIM #4 - SLAM

SOFTWARE

80+ Nationen

4 Standorte

5 Fakultäten

FH Start-Up Center

Mensa, Wohnheim, ...

Mobile Roboter

Workshop Mobile Robotik

fhwn.ac.at/bro

Mobi - Plattform

Antrieb Rad, Kette, Omniwheel – 4WD brushless DC Motors

Power Lithium Ion, 12V & 5V regulated, fused charging

Sensorik Ultraschall, Lidar, Inertial, 2D- & 3D-Kamera, Positioniersystem

Software Ubuntu Mate, ROS Noetic, Python

Controller Rasperry Pi 4

Schnittstellen Wifi, Bluetooth, LAN, CAN

Abmessungen $302 \text{mm} \times 308 \text{mm} \times 112 \text{mm}$

Masse Roboter 9kg / Last 15kg

Anwendungen Lehre, R&D

Umgebung Indoor & Outdoor (GPS)

• FH

• ROBOTER

• SOFTWARE

• SIM #1 - PFAD

• SIM #2 — LIDAR

• SIM #3 – NAVI

• SIM #4 – SLAM

Software

Mathworks - MATLAB©

Software MATLAB MATrix LABratory

Download Homepage

License Campus, free trial 30 days

Installation PC local

MATLAB ist die Plattform für Programmierung und numerische Berechnungen, die von Millionen von Ingenieuren und Wissenschaftlern zur Analyse von Daten, Entwicklung von Algorithmen und Erstellung von Modellen verwendet wird.

Workshop Mobile Robotik

de.mathworks.com

• FH

• ROBOTER

• SOFTWARE

• SIM #1 - PFAD

• SIM #2 — LIDAR

• SIM #3 – NAVI

• SIM #4 - SLAM

#1 - Pfadplanung

Workshop Mobile Robotik

FACHHOCHSCHULE WIENER NEUSTADT Austrian Network for Higher Education

Dubins-Pfad

... ist der kürzeste gesuchte Vorwärts-Pfad eines mobilen Roboters der einen Anfangs- und einen Endpunkt in der xy-Ebene mit beschränktem Wenderadius *r* verbindet.

- FH
- ROBOTER
- SOFTWARE
- SIM #1 PFAD
- SIM #2 LIDAR
- SIM #3 NAVI
- SIM #4 SLAM

Simulation #1 - Pfad

Workshop Mobile Robotik


```
fhwn.ac.at/bro
```

- Workshop Mobile Robotik Simulation - Pfad clc; clear all; close all; % löschen disp('Pfad mobiler Roboter') % Ausgabe %% Pfad $start = [0 \ 0 \ 0];$ % Start [x y theta] goal = [1 1 pi]; % Ziel [x y theta] dub = dubinsConnection; % Pfad definieren % min. Wenderadius - variieren! dub.MinTurningRadius = 0.5; [path,costs] = connect(dub,start,goal); % Pfad berechnen %% Plot figure(1); show(path{1}); % Pfad darstellen grid on; axis('equal'); xlabel('x [m]'); ylabel('y [m]'); title('Pfadplanung');
- FH
- ROBOTER
- SOFTWARE
- SIM #1 PFAD
- SIM #2 LIDAR
- SIM #3 NAVI
- SIM #4 SLAM

#1 - Pfadplanung

Workshop Mobile Robotik

Start = $[0, 0, 0^{\circ}]$

$$Ziel = [1, 1, 180^{\circ}]$$

min. Wenderadius r = 0.5m

min. Wenderadius r = 0.2m

- FH
- ROBOTER
- SOFTWARE
- SIM #1 PFAD
- SIM #2 LIDAR
- SIM #3 NAVI
- SIM #4 SLAM

#2 - Lidar Scan

Workshop Mobile Robotik

Light Detection And Ranging – Lidar

Triangulation

<u>Time Of Flight – TOF</u>

$$x = \frac{c \ t_{TOF}}{2}$$

- FH
- ROBOTER
- SOFTWARE
- SIM #1 PFAD

• SIM #2 — LIDAR

- SIM #3 NAVI
- SIM #4 SLAM

```
______
  Workshop Mobile Robotik
   Simulation - Lidar
   ______
clc; clear all; close all;
                                       % löschen
disp('Karte mit Lidar')
                                       % Ausgabe
%% Bild
image = imread('playpen map.pgm');
                                       % Bild laden
image = image(750:1250,750:1250);
                                      % Bild zuschneiden
figure(1); imshow(image);
                                       % Bild darstellen
      title('Bild Grayscale');
%% Belegungsplan
bw = 1-imbinarize(image);
                                       % Binär-Bild
map = binaryOccupancyMap(bw,20);
                                       % Belegungsplan erstellen
figure (2); show (map);
                                       % Belegungsplan darstellen
      grid on;
      title('Belegungsplan');
%% Lidar
rsensor = rangeSensor;
                                       % Sensor definieren
pose = [5 \ 5 \ pi/2];
                                       % Sensor Pose X, Y, Winkel
[ranges, angles] = rsensor(pose, map);
                                      % Sensor Werte
scan = lidarScan(ranges, angles);
                                      % Lidar-Objekt zuweisen
figure(3); plot(scan)
                                       % Lidar-Scan darstellen
      axis([-5 20 -20 5]);
      grid on;
      title('Lidar-Scan');
```


- FH
- ROBOTER
- SOFTWARE
- SIM #1 PFAD
- SIM #2 LIDAR
- SIM #3 NAVI
- SIM #4 SLAM

#2 - Lidar Scan

Workshop Mobile Robotik

fhwn.ac.at/bro

FACHHOCHSCHULE WIENER NEUSTADT

Belegungsplan

- FH
- ROBOTER
- SOFTWARE
- SIM #1 PFAD
- SIM #2 LIDAR
- SIM #3 NAVI
- SIM #4 SLAM


```
______
  Workshop Mobile Robotik
   Simulation - Navigation
   ______
clc; clear all; close all;
                                       % löschen
disp('Navigation')
                                       % Ausqabe
%% Belegungsplan
load exampleMaps.mat;
                                       % Karte laden
map = binaryOccupancyMap(simpleMap, 2);
                                      % Karte binär
robotRadius = 0.5;
                                       % Roboter Größe
inflate(map, robotRadius);
                                      % Karte aufblasen
figure (1); show (map); grid on;
                                      % Karte darstellen
           title('Belegungsplan');
%% Logische Karte
                                         Probabilistic Roadmap
                                       % PRM definieren
prm = mobileRobotPRM;
prm.Map = map;
                                       % Karte laden
prm.NumNodes = 100;
                                      % #Knoten festlegen
prm.ConnectionDistance = 4;
                                      % max. Entfernung
figure (2); show (prm); grid on;
                                       % PRM darstellen
           title('Logische Karte');
%% Navigation
start = [2 1];
                                       % Start
qoal = [12 \ 10];
                                       % Ziel
path = findpath(prm, start, goal)
                                       % Navigation berechnen
figure (3); show (prm); grid on;
                                       % Navigation darstellen
           title('Navigation');
```


- FH
- ROBOTER
- SOFTWARE
- SIM #1 PFAD
- SIM #2 LIDAR
- SIM #3 NAVI
- SIM #4 SLAM

#3 - Navigation

Workshop Mobile Robotik

Austrian Network for Higher Education

- FH
- ROBOTER
- **S**OFTWARE
- SIM #1 PFAD
- SIM #2 LIDAR
- SIM #3 NAVI
- SIM #4 SLAM

→ #4 - SLAM

```
______
  Workshop Mobile Robotik
   Simulation - SLAM
   ______
clc; clear all; close all;
                                     % löschen
disp('SLAM')
                                      % Ausgabe
%% Lidar-Scans
load('offlineSlamData.mat');
                                    % Lidar-Daten laden
slamAlg = lidarSLAM;
                                    % LidarSLAM definieren
slamAlq.LoopClosureThreshold = 210; % SLAM-Parameter festlegen
slamAlq.LoopClosureSearchRadius = 8;
                                     % SLAM-Parameter festlegen
for i=10:length(scans)
   addScan(slamAlq, scans{i}); % Scans einlesen
end
figure(1); show(slamAlq); % Scans darstellen
    title('Laser-Scans mit Roboter-Pfad');
%% STAM
[scans, poses] = scansAndPoses(slamAlq); % Scans & Posen berechnen
map = buildMap(scans, poses, 20, 8); % SLAM-Karte erstellen
figure (2); show (map); hold on; % SLAM-Karte darstellen
      show(slamAlq.PoseGraph, 'IDs', 'off');
      grid on; hold off;
      title('Belegungsplan mit Lidar SLAM');
```


- FH
- ROBOTER
- SOFTWARE
- SIM #1 PFAD
- SIM #2 LIDAR
- SIM #3 NAVI
- SIM #4 SLAM

Workshop Mobile Robotik

fhwn.ac.at/bro

FACHHOCHSCHULE WIENER NEUSTADT Austrian Network for Higher Education

Simultaneous Localization and Mapping

- FH
- ROBOTER
- SOFTWARE
- SIM #1 PFAD
- SIM #2 LIDAR
- SIM #3 NAVI
- SIM #4 SLAM

WORKSHOP MOBILE ROBOTIK

FACHHOCHSCHULE WIENER NEUSTADT

Inhalt

- Fachhochschule
- Mobile Roboter
- Software
- Sim #1 Pfadplanung
- Sim #2 Lidar Scan
- Sim #3 Navigation
- Sim #4 SLAM

Simulation mit <30 Zeilen Code

TECHNIK MACHT KÜNSTLICH INTELLIGENT

DI Dr. Alexander Nemecek
Leitung Studiengang Robotik

fhwn.ac.at/bro
robotikfhwn