Исследование непараметрических методов проверки гипотез с помощью статистического моделирования

Сальников Дмитрий Игоревич, гр. 622

Санкт-Петербургский государственный университет Прикладная математика и информатика Статистическое моделирование

Научный руководитель: д.ф.-м.н., профессор Мелас В.Б. Рецензент: доктор технических наук, профессор Григорьев Ю. Д.

Санкт-Петербург 2019г.

- в последнее время при проверке гипотез приобрели популярность перестановочные критерии, обладающие высокой мощностью, гибкостью и универсальностью;
- теоретическое сравнение мощности подобных критериев является сложной задачей, часто неразрешимой;
- в работе введен ряд новых перестановочных критериев для проверки гипотезы равенства двух распределений;
- с помощью статистического моделирования установлено, что для многих типичных распределений один из введенных критериев является наиболее мощными.

Постановка задачи

$$X = \left(X_1, \dots, X_{n_1} \right)^{\mathrm{T}} \sim F_1, \ Y = \left(Y_1, \dots, Y_{n_2} \right)^{\mathrm{T}} \sim F_2$$
 независимые выборки, где F_1 и F_2 — непрерывные функции распределения.

Гипотеза о равенстве двух распределений

$$H_0: F_1 = F_2,$$
 (1)

$$H_1: F_1 \neq F_2.$$
 (2)

Без потери общности положим $n_1 = n_2 = n$.

Перестановочные критерии. Обозначения

Определим вектор

$$Z = Z(\pi_0) = (X_1, \dots, X_n, Y_1, \dots, Y_n)^{\mathrm{T}}.$$
 (3)

Введем множество перестановок элементов вектора Z:

$$\left\{ Z(\pi_k) = \left(\underbrace{X_1(\pi_k), \dots, X_n(\pi_k)}_{X(\pi_k)}, \underbrace{Y_1(\pi_k), \dots, Y_n(\pi_k)}_{Y(\pi_k)} \right)^{\mathrm{T}} \right\}_{k=1}^{(2n)!}.$$
(4)

Степенные критерии

Определим статистики на векторах (3), (4) при $\gamma > 0$:

$$K_{\gamma}(Z(\pi_k)) = K_{\gamma}(X(\pi_k), Y(\pi_k)) = \sum_{i,j=1}^{n} |X_i(\pi_k) - Y_j(\pi_k)|^{\gamma}.$$

Алгоритм проверки H_0 (1) при альтернативе H_1 (2):

- ullet пусть d общее число перестановок, r число перестановок π_{k_1} для которых $K_{\gamma}(Z(\pi_k)) \geq K_{\gamma}(Z(\pi_0))$;
- ullet если $rac{r}{d}<lpha$, то H_0 отвергается в пользу H_1 с уровнем значимости α .

K_1 и K_2 : известные результаты

Согласно Corain et al. 2013 [1] критерий K_2 эквивалентен

$$\widetilde{K}_2(Z(\pi_k)) = \left(\overline{X}(\pi_k) - \overline{Y}(\pi_k)\right)^2,$$

где $\overline{X}(\pi_k)$, $\overline{Y}(\pi_k)$ — выборочные средние.

Из работ [2], [3] и [4] получены следующие выводы:

- ullet критерий K_1 обладает высокой мощностью для широкого набора распределений;
- K_1 особенно эффективен в случае симметричных распределений с совпадающими центрами;
- ullet мощность критерия K_2 близка к мощность классического критерия Стьюдента.

Степенные критерии. Постановка экспериментов

- ullet уровень значимости lpha=0.05;
- ullet критерии: K_{γ} , $\gamma=0.5,1,1.5,2$, критерий Стьюдента;
- распределения: нормальные, Коши, Вейбулла;
- ullet объем выборок: $n_1=n_2=n=30$;
- ullet m=1000 независимых испытаний в каждом случае;
- ullet d=800 случайных перестановок в каждом испытании (Keller-McNulty, Higgins 1987 [5], Marozzi 2004 [6]).

Степенные критерии. Выводы

- ullet критерий $K_{0.5}$ является наиболее мощным в случаях
 - распределений Коши;
 - нормальных распределений с совпадающими центрами;
 - распределений Вейбулла, различающихся параметром формы;
- ullet критерий $K_{0.5}$ является наименее мощным в случаях
 - нормальных гомоскедастичных распределений;
 - распределений Вейбулла, различающихся параметром масштаба;
- ullet среди остальных рассмотренных критериев мощность критерия K_1 является наибольшей или статистически равна мощности лидирующего критерия.

Степенные критерии. Графические результаты

Мощность критериев, объем выборок n=30

Логарифмические критерии

Введем семейство статистик на векторах (3), (4):

$$L_{\gamma}(Z) = \sum_{i,j=1}^{n} \ln(1 + |X_i - Y_j|^{\gamma}), \quad \gamma > 0,$$

 $L_{\infty}(Z) = \sum_{i,j=1}^{n} \ln(|X_i - Y_j|).$

Алгоритм проверки гипотезы H_0 (1), H_1 (2) для критериев L_γ такой же, как и для критериев K_γ .

Логарифмические критерии. Асимптотика

$$\frac{L_{\gamma}(Z(\pi_k))}{K_{\gamma}(Z(\pi_k))} = \underbrace{\max_{1 \le i < j \le 2n} |Z_i - Z_j| \to 0} 1, \quad \gamma > 0,$$

$$\frac{L_{\gamma}(Z(\pi_k))}{\gamma L_{\infty}(Z(\pi_k))} = \underset{1 \le i < j \le 2n}{\min} |Z_i - Z_j| \to \infty \quad 1, \quad \gamma > 0.$$

Логарифмические критерии. Нормировка

Введем нормирующий множитель

$$C(Z) = \frac{\sum_{1 \le i < j \le 2n} |Z_i - Z_j|}{n(2n - 1)}.$$

Расширим семейство L_γ критериями со статистиками

$$L_{\gamma}^{C}(Z(\pi_{k})) = \sum_{i,j=1}^{n} \ln\left(1 + \left(\frac{|X_{i}(\pi_{k}) - Y_{j}(\pi_{k})|}{C(Z)}\right)^{\gamma}\right), \quad \gamma > 0.$$

Логарифмические критерии. Постановка экспериментов

- уровень значимости $\alpha = 0.05$;
- ullet критерии: L_{γ} и L_{γ}^{C} при $\gamma=0.5,1,2$, L_{∞} ;
- распределения: нормальные, Коши, Вейбулла;
- ullet объем выборок: $n_1=n_2=n=30$;
- ullet m=1000 независимых испытаний в каждом случае;
- ullet d=800 случайных перестановок в каждом испытании.

Логарифмические критерии. Табличные результаты

Таблица: Мощность критериев L_{γ} , $\gamma=0.5,1,2,\infty$, объем выборок n=30

F_1	F_2	$L_{0.5}$	L_1	L_2	L_{∞}	
C(0,1)	C(1.5,1)	0.9	0.902	0.901	0.89	
C(0,1)	C(0,4)	0.899	0.902	0.902	0.889	
N(0,1)	N(1,1)	0.916	0.936	0.953	0.869	
N(0,1)	N(0, 2.5)	0.888	0.898	0.901	0.86	
W(5,1)	W(2,1)	0.852	0.814	0.378	0.817	
W(1,3)	W(1,1)	0.934	0.943	0.954	0.887	

Жирным шрифтом выделены критерии, различие мощностей которых с лидирующим критерием статистически незначимо с вероятностью 0.95.

Логарифмические критерии. Выводы

- в большинстве рассмотренных случаев:
 - ullet критерий L_{∞} является наименее мощным среди рассмотренных логарифмических критериев;
 - мощность критерия L_1 заключена между значениями мощностей критериев $L_{0.5}$ и L_2 ;
- критерий L_1 является наиболее универсальным среди рассмотренных логарифмических критериев в случае отсутствия априорной информации о распределениях;

Сравнение перестановочных и классических критериев. Постановка экспериментов

- уровень значимости $\alpha = 0.05$;
- ullet критерии: $K_{0.5}$, K_1 , L_1 , L_1^C , Стьюдента, Манна-Уитни, Колмогорова-Смирнова;
- распределения: нормальные, Коши, смеси 90% нормального и 10% Коши, Вейбулла, Фишера, Парето;
- объем выборок: $n_1 = n_2 = n = 5, 30, 50;$
- ullet m=1000 независимых испытаний в каждом случае;
- d=800 случайных перестановок в каждом испытании при n=30,50.

Сравнение перестановочных и классических критериев. Табличные результаты

Таблица: Мощность критериев, объем выборок $n=5\,$

F_1	F_2	$K_{0.5}$	K_1	L_1	L_1^C	t.test	M-U	K-S
C(0,1)	C(5,1)	0.80	0.73	0.82	0.79	0.45	0.51	0.41
C(0,1)	C(0, 20)	0.7	0.22	0.73	0.66	0.03	0.06	0.05
N(0,1)	N(2,1)	0.72	0.78	0.73	0.74	0.77	0.67	0.38
N(0, 1)	N(0,9)	0.77	0.25	0.77	0.73	0.05	0.06	0.04
NC(0,1)	NC(2,1)	0.68	0.70	0.68	0.69	0.66	0.61	0.34

Сравнение перестановочных и классических критериев. Графические результаты

Мощность критериев, объем выборок n=30

Выводы

- мощность перестановочных критериев выше мощности неперестановочных в большинстве рассмотренных случаев;
- преимущество перестановочных критериев особенно велико в случае выборок малого объема (n=5) (аналогичные выводы смотри, например, в Ludbrook, Dudley 1998 [7]);
- среди рассмотренных перестановочных критериев:
 - ullet критерий L_1 является наиболее мощным для большинства рассмотренных распределений;
 - преимущество критерия L_1 особенно велико в случаях распределений Коши и распределений Парето с параметром формы, равным единице.

New insights on permutation approach for hypothesis testing on functional data / L. Corain, V. Melas, A. Pepelyshev, L. Salmaso // Advances in Data Analysis and Classification.— 2014. — Vol. 8. — P. 339–356.

Sirsky M. On the Statistical Analysis of Functional Data Arasing from Designed Experiments: Ph. D. thesis / M. Sirsky; University of Manitoba.—
2012.

Sturino J., Zorych I., Mallick B. et al. Statistical methods for comparative phenomics using high-throughput phenotype microarrays // The International Journal of Biostatistics. — 2010. — Vol. 6(1). — P. 29.

Мелас В.Б., Сальников Д.И., Гудулина А.О. Численное сравнение перестановочных и классических методов проверки статистических гипотез // Вестник СПбГУ. — 2016. -

T. 3(61). -C. 415-423.

Keller-McNulty S., Higgins J. Effect of tail weight and outliers on power and type-I error of robust permutation tests for location // Communications in Statistics — Simulation and Computation. —

1987. -

Vol 16 —

P 17-35

Marozzi M. Some remarks about the number of permutations one should consider to perform a permutation test // Statistica. — 2004. —

Vol. 64, no. 1. — P. 9.

Ludbrook J., Dudley H. Why Permutation Tests Are Superior to t and F Tests in Biomedical Research // American Statistician. —

1998. —

Vol. 52. —

P. 127–132