Константы

Скорость света, <i>с</i>	$2.998\times 10^8\mbox{m}\mbox{c}^{-1}$
Число Авогадро, N_A	$6.022 imes 10^{23}$ моль $^{-1}$
Элементарный заряд, e	$1.602 \times 10^{-19} \mathrm{K}$ л
Масса электрона, m_e	$9.109 imes 10^{-31}\mathrm{K}$ г
Универсальная газовая постоянная, R	$8.314\mathrm{Дж}\mathrm{моль}^{-1}\mathrm{K}^{-1}$
Постоянная Больцмана, k_B	$1.381 imes 10^{-23}$ Дж K^{-1}
Постоянная Фарадея, F	$96485\mathrm{K}$ л моль $^{-1}$
Постоянная Планка, h	6.626×10^{-34} Дж с
Число пи, π	3.141 592 653 589 793
Температура в Кельвинах (К)	$T_{\rm K} = T_{\rm ^{\circ}C} + 273.15$
Ангстрем, Å	$1 \times 10^{-10} \mathrm{m}$
пико, п	$1 \text{ mM} = 1 \times 10^{-12} \text{ M}$
нано, н	$1 \text{ HM} = 1 \times 10^{-9} \text{ M}$
микро, мк	$1 \text{ MKM} = 1 \times 10^{-6} \text{ M}$

1																	18
1 H 1.008	2											13	14	15	16	17	2 He 4.003
3 Li 6.94	4 Be 9.01											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	3	4	5	6	7	8	9	10	11	12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.63	33 As 74.92	34 Se 78.97	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.95	43 Tc -	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57- 71	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 O S 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 209.0	84 Po -	85 At -	86 Rn -
87 Fr -	88 Ra -	89- 103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg -	112 Cn	113 Nh -	114 Fl -	115 Mc -	116 Lv	117 Ts -	118 Og
			57 La 138.9	58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm -	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
			89 Ac -	90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np -	94 Pu -	95 Am -	96 Cm -	97 Bk -	98 Cf -	99 Es -	100 Fm -	101 Md -	102 No	103 Lr -

Регламент олимпиады:

Перед вами находится комплект задач Республиканской олимпиады 2024 года по химии. **Внимательно** ознакомьтесь со всеми нижеперечисленными инструкциями и правилами. У вас есть **5 астрономических часов (300 минут)** на выполнение заданий олимпиады. Ваш результат — сумма баллов за каждую задачу, с учетом весов каждой из задач.

Вы можете решать задачи в черновике, однако, не забудьте перенести все решения на листы ответов. Проверяться будет **только то, что вы напишете внутри специально обозначенных полей**. Черновики проверяться **не будут**. Учтите, что вам **не будет выделено** дополнительное время на перенос решений на бланки ответов.

Вам разрешается использовать графический или инженерный калькулятор.

Вам запрещается пользоваться любыми справочными материалами, учебниками или конспектами.

Вам **запрещается** пользоваться любыми устройствами связи, смартфонами, смарт-часами или любыми другими гаджетами, способными предоставлять информацию в текстовом, графическом и/или аудио формате, из внутренней памяти или загруженную с интернета.

Вам **запрещается** пользоваться любыми материалами, не входящими в данный комплект задач, в том числе периодической таблицей и таблицей растворимости. На **титульной странице** предоставляем единую версию периодической таблицы.

Вам **запрещается** общаться с другими участниками олимпиады до конца тура. Не передавайте никакие материалы, в том числе канцелярские товары. Не используйте язык жестов для передачи какой-либо информации.

За нарушение любого из данных правил ваша работа будет **автоматически** оценена в **0 бал- лов**, а прокторы получат право вывести вас из аудитории.

На листах ответов пишите **четко** и **разборчиво**. Рекомендуется обвести финальные ответы карандашом. **Не забудьте указать единицы** измерения **(ответ без единиц измерения не будет засчитан)**. Соблюдайте правила использования числовых данных в арифметических операциях. Иными словами, помните про существование значащих цифр.

Если вы укажете только конечный результат решения без приведения соответствующих вычислений, то Вы получите **0 баллов**, даже если ответ правильный. Аналогично, любой ответ приведенный без обоснования будет оценен в **0 баллов** (за исключением тестовых вопросов).

Решения этой олимпиады будут опубликованы на сайтах www.qazcho.kz и daryn.kz.

Рекомендации по подготовке к олимпиадам по химии есть на сайте www.kazolymp.kz.

pV = nRT

Уравнения и законы

Уравнение Менделеева-Клапейрона

	-
Энтальпия, H	H = U + pV
Изменение энтропии	$\Delta S = \int \frac{dQ_{\text{rev}}}{T}$
Энергия фотона	$E = \frac{hc}{\lambda} = hv$
Уравнение Нернста	$E = E^{\oplus} - \frac{RT}{nF} \ln \frac{c_{\text{red}}}{c_{\text{ox}}}$
Уравнение Аррениуса	$k = Ae^{-E_a/RT}$

Уравнение Аррениуса
$$k = Ae^{-E_{a}}$$
 Константа равновесия реакции a A + b В \Longrightarrow c C + d D $K = \frac{[C]^c[I]}{[LABS]^c}$

Волновое число,
$$\tilde{\mathbf{v}}$$

$$\tilde{\mathbf{v}} = \frac{1}{\lambda}$$
 Объем сферы с радиусом r
$$V = \frac{4}{3}\pi r^3$$

Задача №1. Разминка

Bcero	Bec(%)
6	3

Смесь, состоящая из газов A (неполярное вещество) и B (кислый оксид), массой 260 г имеет объем 112 л (при н.у.). Определите химические формулы неизвестных газов, если соотношение химических количеств A и B равно 3:2, а молярных масс -1:1.455. В этой задаче считайте все газы идеальными.

Задача №2. Неизвестные газы

Bcero	Bec(%)
14	4

Газовая смесь A (в одной молекуле содержится 2 атома) и В (в молекуле содержится ковалентная неполярная связь) имеет плотность 1.29 г/л (при н.у.). Определите неизвестные газы, если массовая доля A в смеси равна 46.713%, а M(A): M(B) = 1.071. В этой задаче считайте все газы идеальными.

Задача №3. Неизвестные кристаллогидраты

3.1	3.2	3.3	Всего	Bec(%)
26	22	2	50	14

При сплавливании вещества \mathbf{F} с натриевой солью \mathbf{E} (массовая доля натрия равна 22.33%) при 200 °C и пропускании фтора над ними, образуетя комплексное вещество \mathbf{W} (с координационным числом равным 6-и) и газ (p-ция 5), который далее конденсируется до коричневой жидкости $\mathbf{3}$. Однако, при пропускании газа \mathbf{M} над веществом \mathbf{F} , образуется комплекс \mathbf{K} (массовая доля металла равна 18.38%) с таким же координационным числом в комплексе (p-ция 6), как и у вещества \mathbf{W} . Если кипятить раствор, содержащий 6.42 г вещества \mathbf{K} , на протяжении долгого времени, образуется газ \mathbf{M} объемом 2.24 $\mathbf{\pi}$ (при н.у.) и осадок \mathbf{M} массой 3.12 г (p-ция 7). При пропускании газа \mathbf{M} через такой же раствор вещества \mathbf{K} , образуется серый осадок \mathbf{H} (p-ция 8) массой 1.18 г и раствор, содержащий два образованных вещества.

- 1. Определите неизвестные вещества А-Н.
- 2. Напишите все описанные химические реакции.
- 3. Назовите два отличия между координационными сферами комплексов Ж и К.

Задача №4. Нитраты

4.1	4.2	4.3	Всего	Bec(%)
8	14	5	27	10

Смесь двух неизвестных нитратов массой $157.3\,\mathrm{r}$ (Смесь 1) была прокалена, после чего масса твердого остатка (Смесь 2) составила $83.3\,\mathrm{r}$. Твердый остаток промыли водой, и при этом его масса уменьшилась до $32.7\,\mathrm{r}$ (Смесь 3). Нерастворившуюся часть остатка (Смесь 3) поместили в раствор (рН = 1) соляной кислоты объемом $16\,\mathrm{n}$, и образовался газ объемом $2.24\,\mathrm{n}$ (н.у.). К раствору, полученному после промывки Смеси 2, добавили избыток гидроксида натрия, после чего образовалось $23.6\,\mathrm{r}$ (Смесь 4) осадка. Найдите:

- 1. Химические формулы нитратов в исходной смеси;
- 2. Массовые доли компонентов в Смесях 1-4;
- 3. Массовые доли солей в растворе, полученном после промывки Смеси 2, если для промывки использовали 149.4 г воды.

Задача №5. Изомеры комплексов

5.1	5.2	5.3	5.4	5.5	Всего	Bec(%)
1	3	3	1	2	10	15

0.648 г бинарного вещества **A**, содержащего переходный металл **X**, растворили в воде и добавили избыток этилендиамина (NH₂CH₂CH₂NH₂), карбоната лития и перекиси водорода. В результате реакции количественно образовалось **1.371 г** октаэдрического комплекса **Б**, содержащего **20.41%** азота, **21.46%** металла **X** и **21.86%** углерода по массе; в нем нет лития. **Б**, как и **A**, дает белый осадок с нитратом серебра, при этом если взять одинаковое число молей **A** и **Б**, **A** дает вдвое больше осадка чем **Б**. **Б** содержит два вида лигандов, оба — бидентантные, поэтому оно имеет форму пропеллера и существует в виде двух стереоизомеров. При реакции **Б** с соляной и азотистой кислотой, соответственно, образуются комплексы **В** и **Г**, содержащие такой же контрион как и **Б**; при этом выделяется бесцветный газ **Д**, дающий осадок с известковой водой. Массовая доля азота составляет **19.57%** в **В** и **27.34%** в **Г**. Только один из лигандов вошел в реакцию. Все атомы азота образуют связь с металлом в **Г**. **Г**, так же как и **Б** и **В**, существует в виде двух оптических изомеров, и именно это соединение послужило первым доказательством существования данного вида изомерии, ведь при кристаллизации оно спонтанно образует кристаллы, обогащенные в одном из изомеров. Использование таких обогащенных кристаллов в качестве затравки позволяет в конечном счете получить чистые оптические изомеры **Г**.

- 1. Установите, к какой группе принадлежит неметалл в **A** и формулу **Д**, основываясь на описанных качественных реакциях.
- 2. Установите, какие лиганды присутствуют в **Б**. Используя массовые доли, установите точное число каждого из лигандов в комплексе. Рассчитайте молярную массу металла в **Б** и определите, что это за металл. Определите неметалл в **A** и полную структуру **Б**.
- 3. Приведите структурные формулы одного из оптических изомеров **B** и Γ (помните, что контрион тот же), зная, что тот лиганд, что остался от **Б**, находится в такой же относительной ориентации вокруг металла. Предскажите, во сколько раз увеличится количество осадка, которое 1 моль **B** дает с нитратом серебра по сравнению с 1 молем **Б**.
- 4. Изобразите два оптических изомера Г.

Если же вести синтез используя **A**, избыток аммиака и пропускать кислород через раствор, образуется коричневый катион **Д**, содержащий **43.75** % азота и **36.81** % металла **X** по массе; в нем содержатся два атома металла. Дальнейшее окисление пероксосерной кислотой ведет к окислению мостикового лиганда с образованием такого же по строению комплекса, однако он имеет больший на 1 единицу заряд за счет превращения мостикового лиганда в радикал, что дает зеленый цвет полученному катиону **Ж**.

5. Учитывая использованные реагенты, задумайтесь что здесь является окислителем, что является восстановителем и какой компонент лучше всего подходит под мостиковый лиганд. Используя массовые доли, определите строение Д и Ж.

Задача №6. Коллигативные свойства

6.1	6.2	6.3	Всего	Bec(%)
5	2	3	10	12

37 мл раствора серной кислоты, плотность которого составляет $1.810\,\mathrm{г/mn}$, добавили к $883.0\,\mathrm{mn}$ воды; получившийся раствор кипит при температуре на $4.400\,^{\circ}\mathrm{C}$ выше т. кип. воды ($100.0\,^{\circ}\mathrm{C}$ при $1.000\,\mathrm{atm}$). Если через $117.0\,\mathrm{mn}$ такого же раствора, с плотностью $1.810\,\mathrm{r/mn}$, пропустить $250\,\mathrm{r}$ серного ангидрида, сначала, вся вода будет реагировать с образованием серной килоты, а затем серная кислота — с образованием пиросерной кислоты ($\mathrm{H}_2\mathrm{S}_2\mathrm{O}_7$); такой раствор называют олеумом, он содержит смесь серной и пиросерной кислоты без воды. При этом не весь серный ангидрид вступил в реакцию, и если добавить $37.00\,\mathrm{mn}$ получившегося олеума плотностью $2.000\,\mathrm{r}\,\mathrm{mn}^{-1}\,\mathrm{k}$ $883.0\,\mathrm{mn}$ воды, температура кипения данного раствора будет на $6.050\,^{\circ}\mathrm{C}$ выше т. кип. воды. Если же в $900.0\,\mathrm{mn}$ воды добавить $10.00\,\mathrm{mn}$ такого олеума и эквивалетное количество карбоната кальция для нейтрализации, а потом довести массу растворителя ровно до $1.000\,\mathrm{kr}$, полученный раствор будет кипеть на $0.7000\,^{\circ}\mathrm{C}$ выше т. кип. воды.

- 1. Вычислите массовую долю серной кислоты в изначальном растворе и массовые доли серной и пиросерной кислоты в получившемся олеуме. Также рассчитайте конечную массу раствора после пропускания серного ангидрида и долю прореагировавшего серного ангидрида, если плотность воды составляет $1.000~\rm r\,m^{-1}$, а эбулиоскопическая постоянная воды составляет $2.146~\rm C\,kr\,monb^{-1}$. Серная кислота полностью диссоциирует на протоны и сульфат при этих условиях.
- 2. Рассчитайте разницу в температуре кипения если бы весь получившийся сульфат кальция диссоциировал на ионы. Зная экспериментальную разницу температур кипения, рассчитайте степень диссоциации сульфата кальция на ионы как отношение концентрации ионов ${\rm Ca}^{2+}$ к общей концентрации кальция; в описанных условиях сульфат кальция полностью растворим и не присутствует в виде твердого вещества, а лишь образует ионную пару ${\rm CaSO}_4$ (считайте ее как одну молекулу).
- 3. Рассчитайте, сколько еще граммов серного ангидрида или воды нужно прибавить к **10.00 граммам** получившегося выше олеума, чтобы получить олеум с массовой долей серной кислоты равной 10, 30, 50, 70 или 90%.

Задача №7. Равноправие в термодинамике

7.1	7.2	7.3	7.4	Всего	Bec(%)
6	14	16	5	41	12

Теорема о равнораспределении является одной из основных в термодинамике. Эта теорема гласит, что каждый тип движения молекулы в одном из направлений при температуре T вносит вклад в размере $\frac{1}{2}kT$ в величину ее внутренней энергии, U. Наиболее важные типы движения молекул — mpancляция, вращение и вибрация.

Трансляция — перемещение молекулы. Любая свободная молекула газа может перемещаться в любом направлении, а ее вектор импульса, p, может быть разбит на три составляющих вектора, как показано на рисунке справа. То есть, перемещение молекулы в любом из направлений состоит из различных вкладов движения по трём взаимоперпендикулярным направлениям x, y и z.

Возможность молекулы при трансляции перемещаться в определённом измерении является трансляционной **степенью свободы**, f_T , этой молекулы. Таким образом, молекула, движущаяся в N различных измерений имеет N трансляционных степеней свободы, а движение в каждом из этих измерений, согласно теореме о равнораспределении, вносит вклад в размере $\frac{1}{2}kT$ во внутренюю энергию этой молекулы, где $k=\frac{R}{N_A}$.

1. Рассчитайте трансляционную энергию (в Дж) свободного атома аргона в трёхмерном пространстве при температуре $T=300\,\mathrm{K}$. Считая, что весь вклад трансляционной энергии переходит в кинетическую энергию движения атома аргона, рассчитайте его скорость при этой же температуре. Основываясь на полученных выражениях, выберите верные утверждения из приведенных в листе ответов.

Следующий тип движения молекул — вращение. **Вращение** — это движение объекта, при котором все его точки движутся по концентрическим окружностям. Любой вращающийся объект имеет **ось вращения** — прямую, проходящую через центры этих окружностей. Поместим молекулу водорода (H₂) в начало координат и посмотрим на возможные варианты ее вращения вокруг трёх взаимоперпендикулярных осей:

Возможность молекулы вращаться вокруг одной из N взаимоперпендикулярных осей вращения является вращательной **степенью свободы**, f_R . Такая молекула будет иметь N вращательных степеней свободы, каждая из которых вносит вклад в размере $\frac{1}{2}kT$ во внутреннюю энергию молекулы, согласно теореме. Однако, у линейных молекул есть собственная **ось молекулы** (прямая, проходящая через центры всех атомов) вращение вокруг которой не приносит вращательной степени свободы (рисунок \mathbf{C}). Таким образом, молекула водорода должна иметь **две** вращательных степени свободы, соответствующих вращениям \mathbf{A} и \mathbf{B} .

2. Для каждой молекулы газа, указанной в листе ответов, нарисуйте пространственную структуру и запишите число вращательных степеней свободы, f_R . Также, рассчитайте энергию вращения, E_R (в Дж), каждой из молекул при $T=300\,\mathrm{K}$, и запишите свои ответы в соответствующие поля в листе ответов.

Вибрация — наиболее сложный тип движения в молекулах. Сами по себе молекулы не вибрируют, вибрируют связи между атомами в них. К примеру, в молекуле хлороводорода HCl присутсвует только одна связь, которая может вибрировать только в виде растяжения-сжатия (рисунок справа). Каждый тип вибрации, возможный для определенной молекулы дает вибрационную **степень свободы**, f_V , каждая из которых вносит вклад в размере $\frac{1}{2}kT$ во внутренюю энергию молекулы. Для молекул с числом атомов больше трёх графическим способом

HCl

практически невозможно определить количество типов вибраций, из-за чего их рассчитывают по следующей формуле:

$$f_V = 3N - f_T - f_R$$

где f_V , f_T и f_R — количество вибрационных, трансляционных и вращательных степеней свободы молекулы, а N — количество атомов в молекуле.

- 3. Рассчитайте количество вибрационных степеней свободы для молекул, приведенных в листе ответов. Рассчитайте энергию каждого вида движения для этих молекул и их общую внутренюю энергию, U, при $T=300\,\mathrm{K}$. Считайте, что внутренняя энергия этих молекул складывается из вкладов трансляции, вращения и вибрации.
- 4. Известно, что вибрационная энергия молекул газа становится значительной только при достаточно высоких температурах (> $500 \, \text{K}$). При комнатной температуре ($T = 298 \, \text{K}$) в каждом из двух одинаковых сосудов находятся углекислый газ и окисд азота (I). Какой из этих газов имеет более высокую мольную темплоемкость при данной температуре? Считайте, что внутренняя энергия газов определяется лишь трансляцией, вращением и вибрацией молекул.