Section 1.1

1) Represent the following values in the form a + bi, where $a, b \in \mathbb{R}$.

$$(1+2i)^3$$
, $\frac{5}{-3+4i}$, $\left(\frac{2+i}{3-2i}\right)^2$, $(1+i)^n + (1-i)^n$

In this case, we assume $n \in \mathbb{N}_0$.

Solution:

$$(1+2i)^3 = (-3+4i)(1+2i) = \boxed{-11-2i}$$

$$\frac{5}{-3+4i} = \frac{5}{-3+4i} \cdot \frac{-3-4i}{-3-4i} = \frac{-15-20i}{25} = \boxed{-\frac{3}{5} - \frac{4}{5}i}$$

$$\left(\frac{2+i}{3-2i}\right)^2 = \frac{2+i}{3-2i} \cdot \frac{2+i}{3-2i} = \frac{3+4i}{5-12i} = \frac{3+4i}{5-12i} \cdot \frac{5+12i}{5+12i} = \frac{-33+56i}{169}$$

$$= \boxed{-\frac{33}{169} + \frac{56}{169}i}$$

Using the binomial theorem, we see that

$$(1+i)^n + (1-i)^n = \sum_{k=0}^n \binom{n}{k} i^k + \sum_{k=0}^n \binom{n}{k} (-i)^k = \sum_{k=0}^n \binom{n}{k} \left[i^k + (-i)^k \right].$$

Since $i = (-i)^3$ and $-i = i^3$, we have that $i^k + (-i)^k = 0$ for odd k, thus it suffices to consider the even terms of the sum. Additionally, since $i^2 = (-i)^2 = -1$ and $i^4 = (-i)^4 = 1$, we have $i^k + (-i)^k = 2(-1)^k$ for even k. This gives us

$$(1+i)^n + (1-i)^n = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} 2(-1)^{2k}$$

and thus we obtain a real number for all values of n.

2) Letting z = a + bi for $a, b \in \mathbb{R}$, find the real and imaginary parts for the following complex numbers:

$$z^4$$
, $\frac{1}{z}$, $\frac{z-1}{z+1}$, $\frac{1}{z^2}$

Solution:

$$z^{4} = (a+bi)^{4} = (a+bi)^{2}(a+bi)^{2} = (a^{2}+2abi-b^{2})^{2}$$
$$= \boxed{a^{4} - 6a^{2}b^{2} + b^{4} + (4a^{3}b - 4ab^{3})i}$$

$$\frac{1}{z} = \frac{1}{a+bi} \cdot \frac{a-bi}{a-bi} = \frac{a-bi}{a^2+b^2} = \boxed{\frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i}$$

$$\frac{z-1}{z+1} = \frac{a-1+bi}{a+1+bi} \cdot \frac{a+1-bi}{a+1-bi} = \frac{(a-1+bi)(a+1-bi)}{(a+1)^2+b^2} = \frac{a^2+b^2-1+2bi}{(a+1)^2+b^2}$$

$$= \boxed{\frac{a^2+b^2-1}{(a+1)^2+b^2} + \frac{2b}{(a+1)^2+b^2}i}$$

$$\frac{1}{z^2} = \frac{1}{(a+bi)^2} = \frac{1}{a^2-b^2+2abi} = \frac{1}{a^2-b^2+2abi} \cdot \frac{a^2-b^2-2abi}{a^2-b^2-2abi}$$

$$= \frac{a^2-b^2-2abi}{a^4+2a^2b^2+b^4} = \boxed{\frac{a^2-b^2}{(a^2+b^2)^2} - \frac{2ab}{(a^2+b^2)^2}i}$$

3) We have that

$$\left(\frac{-1 \pm i\sqrt{3}}{2}\right)^3 = \left(\frac{\pm 1 \pm i\sqrt{3}}{2}\right)^6 = 1$$

for all combinations of + and - with the \pm signs.

Proof: Interpreting the complex numbers inside the parentheses as points in \mathbb{R}^2 , we see that they lie on the unit circle for all possible combinations of + and -. The following picture demonstrates this:

Since multiplication of two complex numbers adds their angles and multiplies their magnitudes, it is easy to see that the equation holds.

Section 1.2

1) Compute the values of the following complex square roots:

$$\sqrt{i}$$
, $\sqrt{-i}$, $\sqrt{1+i}$, $\sqrt{\frac{1-i\sqrt{3}}{2}}$

Solution: We use the following formula to compute $\sqrt{a+bi}$:

$$\sqrt{a+bi} = \pm \left(\sqrt{\frac{a+\sqrt{a^2+b^2}}{2}} + i\frac{b}{|b|}\sqrt{\frac{-a+\sqrt{a^2+b^2}}{2}}\right)$$

This results in the following values:

$$\sqrt{i} = \boxed{\pm \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)}, \quad \sqrt{-i} = \boxed{\pm \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right)},$$

$$\sqrt{1+i} = \boxed{\pm \left(\sqrt{\frac{1+\sqrt{2}}{2}} + i\sqrt{\frac{-1+\sqrt{2}}{2}}\right)},$$

$$\sqrt{\frac{1 - i\sqrt{3}}{2}} = \sqrt{\frac{1/2 + \sqrt{1/4 + 3/4}}{2}} - i\sqrt{\frac{-1/2 + \sqrt{1/4 + 3/4}}{2}} = \boxed{\pm \left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)}$$

2) Find all four values of $\sqrt[4]{-1}$.

Solution: We first consider the values of $\sqrt{-1}$, which happen to be $\pm i$. Since $\sqrt[4]{-1} = \sqrt{1} = \sqrt{\pm i}$, we have that the four values of $\sqrt[4]{-1}$ are given as follows:

$$\boxed{\pm \left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right), \ \pm \left(\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}\right)}$$

3) Find all four values of $\sqrt[4]{i}$ and $\sqrt[4]{-i}$.

Solution: Recalling the previously determined values for \sqrt{i} and $\sqrt{-i}$, we find $\sqrt[4]{i}$ and $\sqrt[4]{-i}$ as follows:

$$\sqrt[4]{i} = \sqrt{\sqrt{i}} = \sqrt{\pm \left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right)}$$

$$= \boxed{\pm \left(\sqrt{\frac{2+\sqrt{2}}{4}} + i\sqrt{\frac{2-\sqrt{2}}{4}}\right), \ \pm \left(\sqrt{\frac{2-\sqrt{2}}{4}} + i\sqrt{\frac{2+\sqrt{2}}{4}}\right)},$$

$$\sqrt[4]{-i} = \sqrt{\sqrt{-i}} = \sqrt{\pm \left(\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}\right)}$$

$$= \boxed{\pm \left(\sqrt{\frac{2+\sqrt{2}}{4}} + i\sqrt{\frac{2-\sqrt{2}}{4}}\right), \ \pm \left(\sqrt{\frac{2-\sqrt{2}}{4}} + i\sqrt{\frac{2+\sqrt{2}}{4}}\right)}$$

4) Given $a, b \in \mathbb{C}$, solve the following quadratic equation for z:

$$z^2 + az + b = 0$$

Solution: We can complete the square as follows:

$$z^{2} + az = (z + a/2)^{2} - a^{2}/4 = -b,$$

and since square roots of complex numbers are defined, we can solve for z as follows:

$$z = \pm \sqrt{\frac{a^2}{4} - b} - \frac{a}{2} = \frac{-a \pm 2\sqrt{a^2/4 - b}}{2} = \frac{-a \pm \sqrt{a^2 - 4b}}{2},$$

which is equivalent to the standard real valued quadratic equation for monic quadratic polynomials.

Section 1.3

1) Let F be set of all matrices in $\mathbb{R}^{2\times 2}$ that take the form

$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix},$$

then F is a field under the operations of matrix addition and multiplication, and furthermore is isomorphic to \mathbb{C} .

Proof: The zero matrix and the identity matrix act as the 0 and 1 of F, respectively. It is also easy to verify that F is closed under addition and multiplication. We

additionally have that

$$\begin{bmatrix} -a & -b \\ b & -a \end{bmatrix} \text{ and } \begin{bmatrix} a/(a^2 - b^2) & b/(a^2 - b^2) \\ -b/(a^2 - b^2) & a/(a^2 - b^2) \end{bmatrix}$$

serve as the additive and multiplicative inverses respectively. Finally,

$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix} \begin{bmatrix} c & d \\ -d & c \end{bmatrix} = \begin{bmatrix} ac - bd & ad + bc \\ -ad - bc & ac - bd \end{bmatrix} = \begin{bmatrix} c & d \\ -d & c \end{bmatrix} \begin{bmatrix} a & b \\ -b & a \end{bmatrix},$$

which verifies the commutativity of F.

Having shown that F is a field, we turn our attention to the function $\phi: F \to \mathbb{C}$ defined as follows:

$$\phi\left(\begin{bmatrix} a & b \\ -b & a \end{bmatrix}\right) = a + bi$$

Fixing two matrices in F, we see that the following are true:

$$\phi\left(\begin{bmatrix} a & b \\ -b & a \end{bmatrix} + \begin{bmatrix} c & d \\ -d & c \end{bmatrix}\right) = \phi\left(\begin{bmatrix} a+c & b+d \\ -b-d & a+c \end{bmatrix}\right) = a+c+(b+d)i$$

$$= (a+bi) + (c+di) = \phi\left(\begin{bmatrix} a & b \\ -b & a \end{bmatrix}\right) + \phi\left(\begin{bmatrix} c & d \\ -d & c \end{bmatrix}\right),$$

and

$$\phi\left(\begin{bmatrix} a & b \\ -b & a \end{bmatrix} \begin{bmatrix} c & d \\ -d & c \end{bmatrix}\right) = \phi\left(\begin{bmatrix} ac - bd & ad + bc \\ -ad - bc & ac - bd \end{bmatrix}\right) = ac - bd + (ad + bc)i$$
$$= (a + bi)(c + di) = \phi\left(\begin{bmatrix} a & b \\ -b & a \end{bmatrix}\right)\phi\left(\begin{bmatrix} c & d \\ -d & c \end{bmatrix}\right).$$

Since ϕ is obviously a bijection, we have shown that $F \cong \mathbb{C}$.

2) Let I be the ideal in $\mathbb{R}[X]$ generated by $X^2 + 1$, then $\mathbb{R}[X]/I \cong \mathbb{C}$.

Proof: For convenience, denote $\bar{p} = p + I$ for all $p \in \mathbb{R}[X]$. We know that this quotient ring is a field since $X^2 + 1$ is irreducible in $\mathbb{R}[X]$, and thus $(X^2 + 1)$ is a maximal ideal. Additionally, we know that this field is equal to the set $\{\overline{a + bX} : a, b \in \mathbb{R}\}$ of remainders of polynomial division with $X^2 + 1$, and by the division algorithm, any element $\bar{p} \in \mathbb{R}[X]/I$ can be uniquely represented in the form $\overline{a + bX}$. This shows that $\mathbb{R}[X]/I$ is in bijection with \mathbb{C} , hence we are led to consider the function $\phi : \mathbb{R}[X]/I \to \mathbb{C}$ defined as follows:

$$\phi(\overline{p}) = \phi\left(\overline{a+bX}\right) = a + bi.$$

Let $\overline{a+bX}$ and $\overline{c+dX}$ be elements in $\mathbb{R}[X]/I$, then

$$\phi\left(\overline{a+bX}+\overline{c+dX}\right) = \phi\left(\overline{a+c+(b+d)X}\right) = (a+c)+(b+d)i$$
$$= (a+bi)+(c+di) = \phi\left(\overline{a+bX}\right)+\phi\left(\overline{c+dX}\right).$$

It can also be seen that

$$\overline{a + bX} \cdot \overline{c + dX} = \overline{ac + (ad + bc)X + bdX^2}.$$

and by calculating the remainder of this polynomial divided by $X^2 + 1$, we obtain.

$$\overline{ac + (ad + bc)X + bdX^2} = \overline{ac - bd + (ad + bc)X}.$$

This allows us to see that

$$\phi\left(\overline{a+bX}\cdot\overline{c+dX}\right) = \phi\left(\overline{ac-bd+(ad+bc)X}\right) = ac-bd+(ad+bc)i$$
$$= (a+bi)(c+di) = \phi\left(\overline{a+bX}\right)\phi\left(\overline{c+dX}\right),$$

which proves that ϕ is an isomorphism and $\mathbb{R}[X]/I \cong \mathbb{C}$.

Section 1.4

1) Evaluate

$$\frac{z}{z^2+1}$$

at z = a + bi and z = a - bi and conclude that the two values are conjugate.

Solution: We have that

$$\frac{a+bi}{(a+bi)^2+1} = \frac{a+bi}{a^2-b^2+1+2abi} = \frac{a+bi}{a^2-b^2+1+2abi} \cdot \frac{a^2-b^2+1-2abi}{a^2-b^2+1-2abi}$$
$$= \frac{(a+bi)(a^2-b^2+1-2abi)}{(a^2-b^2+1)^2+4a^2b^2} = \frac{a(a^2-b^2+1)+2ab^2+[b(a^2-b^2+1)-2a^2b]i}{(a^2-b^2+1)^2+4a^2b^2}$$

and

$$\frac{a-bi}{(a-bi)^2+1} = \frac{a-bi}{a^2-b^2+1-2abi} = \frac{a-bi}{a^2-b^2+1-2abi} \cdot \frac{a^2-b^2+1+2abi}{a^2-b^2+1+2abi}$$
$$= \frac{(a-bi)(a^2-b^2+1+2abi)}{(a^2-b^2+1)^2+4a^2b^2} = \frac{a(a^2-b^2+1)+2ab^2-[b(a^2-b^2+1)-2a^2b]i}{(a^2-b^2+1)^2+4a^2b^2},$$

thus their conjugacy has been established.

2) Find the absolute values of the following complex numbers:

$$-2i(3+i)(2+4i)(1+i)$$
, and $\frac{(3+4i)(-1+2i)}{(-1-i)(3-i)}$

Solution:

$$|-2i(3+i)(2+4i)(1+i)| = |-2i| \cdot |3+i| \cdot |2+4i| \cdot |1+i| = 2\sqrt{10}\sqrt{20}\sqrt{2}$$

$$= 2\sqrt{400} = \boxed{40}$$

$$\left| \frac{(3+4i)(-1+2i)}{(-1-i)(3-i)} \right| = \frac{|3+4i| \cdot |-1+2i|}{|-1-i| \cdot |3-i|} = \frac{5\sqrt{5}}{\sqrt{2}\sqrt{10}} = \frac{50}{20} = \boxed{\frac{5}{2}}$$

3) Prove that

$$\left| \frac{a-b}{1-\overline{a}b} \right| = 1$$

if either |a| = 1 or |b| = 1.

Proof: First, assume that |a| = 1. In this case we have that

$$\left| \frac{a-b}{1-\overline{a}b} \right| = \frac{|a|^2 + |b|^2 - 2\operatorname{Re}(a\overline{b})}{|1|^2 + |\overline{a}b|^2 - 2\operatorname{Re}(a\overline{b})} = \frac{1 + |b|^2 - 2\operatorname{Re}(a\overline{b})}{1 + |b|^2 - 2\operatorname{Re}(a\overline{b})} = 1.$$

Otherwise, we assume |b| = 1. Similarly, we find

$$\left| \frac{a-b}{1-\bar{a}b} \right| = \frac{|a|^2 + |b|^2 - 2\operatorname{Re}(a\bar{b})}{|1|^2 + |\bar{a}b|^2 - 2\operatorname{Re}(a\bar{b})} = \frac{|a|^2 + 1 - 2\operatorname{Re}(a\bar{b})}{1 + |\bar{a}|^2 - 2\operatorname{Re}(a\bar{b})}$$
$$= \frac{|a|^2 + 1 - 2\operatorname{Re}(a\bar{b})}{|a|^2 + 1 - 2\operatorname{Re}(a\bar{b})} = 1,$$

thus proving the equality.

4) Consider the equation

$$az + b\overline{z} + c = 0,$$

with complex coefficients a, b, and c. Find the conditions on the coefficients under which the equation has a unique solution.

Solution: Consider a solution z to the equation.

5) Fix complex numbers a_i and b_i for $1 \leq i \leq n$, then we have that

$$\left| \sum_{i=1}^{n} a_i b_i \right|^2 = \sum_{i=1}^{n} |a_i|^2 \sum_{i=1}^{n} |b_i|^2 - \sum_{1 \le i < j}^{n} |a_i \bar{b}_j - a_j \bar{b}_i|^2.$$

Proof: