

Distributional learning of L2 phonological categories by listeners with different language backgrounds

Bożena Pająk & Roger Levy

[bɔˈʒɛna ˈpajɔ̃k] [ˈɹadʒə ˈlivi]

UC San Diego

BUCLD :: Nov 6, 2011

Background

Question: How do people learn a second language?

- Generally hard, success depends on many factors
- Previous research:
 - focus on explaining difficulties in L2 learning
 - well-studied: L1 as a source of interference
- E.g., non-native speech perception & phonetic category learning (Best, 1995; Best & Tyler, 2007; Flege, 1995; Kuhl & Iverson, 1995)

known result:

hard to
discriminate

Explanation: both e and ε map onto a single /e/ category in L1

Questions

- Less studied: potential benefits of L1
 - known direct benefits: when L1 & L2 have very similar properties, e.g. cognates (e.g., Tréville, 1996)
- General learning literature:
 - people are very good at making generalizations and predictions based on current knowledge (e.g., Tenenbaum et al., 2011)

Our questions:

- Is there any evidence of generalization from L1 about L2 phonetic categories?
- If so, how do these generalizations interact with the distributional cues from L2 input?

Framework

• Learning as hypothesis construction and testing (e.g., Gerken 2010, Tenenbaum & Griffiths 2001, Tenenbaum et al. 2011, Xu & Tenenbaum 2007)

Proposed model: assumptions

Sounds vary along multiple acoustic-phonetic dimensions

- Categorization of sounds achieved through learning from distributional information to:
 - attend to relevant phonetic dimensions
 - disregard other dimensions
 (Kuhl et al., 1992; Jusczyk, 1992; Maye, Werker, & Gerken, 2002; Nittrouer & Miller 1997)

Proposed model: phonetic category learning

combine with previous biases

Pająk, 2010; in prep.

• Is there generalization from L1 in non-native speech perception for naïve listeners?

Pająk, 2010; in prep.

- Task: discriminating between words in a novel language minimal pairs differing in:
 - consonant length kena kenna
 - alveolo-palatal vs. retroflex place (w/o following vowel transition cue)

keça - keşa

There is generalization across segments – even from vowels to consonants!

Experiment

- Pająk, 2010; in prep.: evidence of generalized L1 biases in perception of novel sounds
- Current experiment: do L1 biases change learners' interpretation of distributional cues from novel language input?

Pająk, 2010; in prep.

Current experiment

Experiment: paradigm

- Distributional learning paradigm (Maye & Gerken 2000, Maye, Werker, & Gerken 2002)
 - a tool to probe learners' interpretation of distributional cues in novel input

Pajak & Levy :: UC San Diego

Experiment: paradigm

- Distributional learning paradigm (Maye & Gerken 2000, Maye, Werker, & Gerken 2002)
 - a tool to probe learners' interpretation of distributional cues in novel input

Length

Experiment: instructions

- You'll be learning (sounds from) a new language.
- First, you'll listen to words from that language.
- Then, you'll hear pairs of words and, based on what you learned, decide whether these are two different words or the same word repeated twice.
- The same word can be pronounced a bit differently (e.g., with different intonation) – follow your intuition in deciding what counts as 'different' in this language.

Experiment: ppts & overview

58 Korean speakers & 53 Mandarin speakers

	length short and long sounds	place alveolo-palatal and retroflex sounds
Korean	\checkmark	
Mandarin		1

 Exposing participants to evidence suggesting a novel place contrast, with a less reliable length cue

Experiment: novel language input

Experiment: novel language input

Experiment: materials & design

Training
bimodal-length /
unimodal-length

X

Language

Korean / Mandarin

Contrast

length / place

+ baseline condition (training on fillers with no variability in length)

X

Experiment: training

Experiment: testing

Experiment: testing

Experiment: results

Pajak & Levy :: UC San Diego

Experiment: results

DIFFERENT trials

- Korean ppts biased in favor of length
- Mandarin ppts biased in favor of place
- relative biases the same as in baseline
- Mandarin ppts go up on length
- the relative bias for place the same as in baseline
 - on **length**, Korean ppts go down, and Mandarin ppts go up

Experiment: results

DIFFERENT trials

What does it mean?

Data not entirely clear, but:

- initial biases as predicted
- training didn't override these biases for place
- Korean ppts were able to properly interpret distributional cues for length
- ◆ for Mandarin ppts, mere exposure to variability along the length dimension (in either training) increased sensitivity to length ← not able to use distributional cues?

Experiment: summary

- L1 biases were reflected in categorization of novel sounds
- But categorization was also affected by short exposure to distributional cues in a novel language
- Distinct L1 biases led to different interpretations of distributional cues

Extending the model beyond L2

- The model provides a straightforward way of combining inferences from multiple languages
- This captures the intuition that learning each additional language becomes easier because learners' \mathcal{L}_{any} inferences become sharper

 The model can make predictions about how learners' inferences change after learning each additional language

Pajak & Levy :: UC San Diego

Thank you

Discussion:

Eric Baković, Klinton Bicknell, Sarah Creel, Victor Ferreira, Tamar Gollan, Carolyn Quam, Sharon Rose, Computational Psycholinguistics Lab, Language Acquisition & Sound Recognition Lab, San Diego Phonology Interest Group

Research assistants:

K. Michael Brooks, Hannah Byers-Straus, Nicole Pyon

Funding:

NIH Training Grant T32-DC000041 from the Center for Research in Language at UC San Diego

UC San Diego Academic Senate Grant