Atelier prédiction génomique : premiers pas

Vincent Segura (INRAE)

d'après 'premiers-pas.Rmd' de Timothée Flutre (INRAE)

Introduction

R, rmarkdown, RStudio

- Cette présentation a été générée à partir d'un fichier texte au format Rmd utilisé par le logiciel libre R
- La fonction render du package <u>rmarkdown</u> permet de générer le fichier html à partir du fichier Rmd

```
library(rmarkdown)
render("premiers-pas-slides.Rmd")
```

- · Il est généralement plus simple pour faire ça d'utiliser le logiciel RStudio
- Le format Rmd permet également d'utiliser le language LaTeX pour écrire des équations

Packages

 Cette présentation nécessite par ailleurs le chargement des packages MASS et stats4 qui sont généralement inclus par defaut dans R

library(MASS)
library(stats4)

Notation et vocabulaire

- L'inférence avec un modèle statistique consiste généralement à estimer les paramètres, puis à s'en servir pour prédire de nouvelles données
- · Lorsqu'on propose un modèle, on commence par expliquer les **notations**
- Conventions :
 - lettres grecques pour les paramètres (non-observés), par exemple θ
 - lettres romaines pour les données observées, y
 - lettres romaines surmontées d'un tilde pour les données prédites, \tilde{y}
 - les **ensembles** de données ou de paramètres sont généralement notés en **majuscule**, $\mathcal{D}=\{y_1,y_2,y_3\}$ ou $\Theta=\{\theta_1,\theta_2\}$
 - s'il y a plusieurs paramètres ou données, ils se retrouvent mathématiquement dans des **vecteurs**, en **gras**, θ et y
 - les vecteurs sont en colonne

La notion de vraisemblance

- · Une fois les notations établies, on écrit la **vraisemblance** (*likelihood*), souvent présentée comme étant la *"probabilité des données sachant les paramètres"*
- · Si les données sont des **variables continues**, c'est la densité de probabilité des données sachant les paramètres, notée $p(y|\theta)$
- · La vraisemblance est une fonction des **paramètres**, d'où le fait qu'on la note $\mathcal{L}(\theta)$ ou $\mathcal{L}(\theta|y)$
- · la méthode du **maximum de vraisemblance** cherche à identifier la valeur du paramètre, notée $\hat{\theta}$ par convention, qui maximise la vraisemblance

$$\hat{\theta} = \operatorname{argmax}_{\theta} \mathcal{L} \iff \frac{\partial \mathcal{L}}{\partial \theta} (\hat{\theta}) = 0$$

Comprendre la vraisemblance

- Supposons que l'on étudie une quantité physique dont la valeur résulte de la somme d'une très grande quantité de facteurs indépendants, chacun ayant un faible impact sur la valeur finale
- · On prend trois mesures de cette quantité d'intérêt
- Comme il y a de la variation, on choisit d'introduire une **variable aléatoire** Y correspondant à la quantité d'intérêt, et on dénote par y_1 , y_2 et y_3 les trois observations, vues comme des réalisations de cette variable aléatoire :

$$y_1$$
 = 4.374, y_2 = 5.184, y_3 = 4.164

• Etant donné les caractéristiques du phénomène, il est raisonnable de supposer que la variable Y suit une **loi Normale** (c.f. le <u>théorème central limite</u>

- · Cette distribution de probabilité est caractérisée par deux paramètres, sa **moyenne** que l'on note généralement μ , et sa **variance** que l'on note généralement σ^2 (σ étant l'écart-type)
- · En terme de notation, on écrit $Y \sim \mathcal{N}(\mu, \sigma^2)$, et la densité de probabilité de la réalisation y de Y s'écrit :

$$Y \sim \mathcal{N}(\mu, \sigma^2) \Leftrightarrow p(Y = y \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(y - \mu)^2}{2\sigma^2}\right)$$

· L'intérêt de ce modèle paramétrique est de pouvoir "résumer" les données, par exemple un million de mesures, par seulement 2 valeurs, les paramètres

- Mais, nous ne connaissons pas les valeurs de paramètres!
- · La moyenne μ peut prendre toutes les valeurs entre $-\infty$ et $+\infty$, et la variance σ^2 n'a pour seule restriction que d'être positive
- · La loi Normale peut être assez différente selon les valeurs de ces paramètres

Comparaison de deux lois Normales ($\sigma = 1$)

Comparaison de deux lois Normales ($\mu = 3$)

- Revenons à nos trois mesures : 4.374, 5.184, 4.164
- Parmi toutes les valeurs possibles des paramètres, quelles sont celles pour lesquelles la loi Normale est une bonne description du mécanisme qui a généré ces données?
- Pour simplifier, supposons que l'on connaisse déjà la variance : $\sigma^2 = 1$, il ne nous reste plus qu'à trouver la moyenne : μ .
- · Pour la première observation, $y_1 = 4.374$:

· D'après le graphique précédent : $p(y_1 \mid \mu = 5, \sigma = 1) > p(y_1 \mid \mu = 2, \sigma = 1)$

- · Cela se vérifie si l'on fait le calcul avec la formule :
 - $p(y_1 \mid \mu = 5, \sigma = 1) = 0.328$
 - $p(y_1 \mid \mu = 2, \sigma = 1) = 0.024$
- · Au final, nous pouvons conclure pour la première observation, que la vraisemblance $\mathcal{L}(\mu=5,\sigma=1)$ est plus grande que $\mathcal{L}(\mu=2,\sigma=1)$

* Comme on dispose de **plusieurs observations**, $\{y_1, y_2, y_3\}$, et qu'on suppose qu'elles sont toutes des réalisations de la même variable aléatoire, Y, il est pertinent de calculer la **vraisemblance** de toutes ces observations **conjointement** plutôt que séparément :

$$\mathcal{L}(\mu, \sigma) = p(y_1, y_2, y_3 \mid \mu, \sigma)$$

· Si l'on fait aussi l'hypothèse que ces observations sont **indépendantes**, cela se simplifie en :

$$\mathcal{L}(\mu, \sigma) = p(y_1 \mid \mu, \sigma) \times p(y_2 \mid \mu, \sigma) \times p(y_3 \mid \mu, \sigma)$$
$$= \prod_{i=1}^{3} p(y_i \mid \mu, \sigma)$$

 Il n'est pas très pratique de maximiser la vraisemblance directement, on préfère passer au log (qui est monotone, donc le maximum de l'un est aussi le maximum de l'autre):

$$l(\mu, \sigma) = \log \mathcal{L}(\mu, \sigma)$$

$$= \sum_{i=1}^{3} \log p(y_i \mid \mu, \sigma)$$

$$= \sum_{i=1}^{3} \log \left[\frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(y_i - \mu)^2}{2\sigma^2}\right) \right]$$

$$= -3 \log \sigma - \frac{3}{2} \log(2\pi) - \frac{1}{2\sigma^2} \sum_{i=1}^{3} (y_i - \mu)^2$$

• En pratique, on écrit une **fonction** qui calcule la **log-vraisemblance**, et on cherche le **maximum** de cette fonction

```
compute.log.likelihood <- function(parameters, data){</pre>
  mu <- parameters[1]</pre>
  sigma <- parameters[2]</pre>
  y <- data
  n <- length(y)</pre>
  \log.lik < --n * \log(sigma) - (n/2) * \log(2 * pi) - sum(((y - mu)^2) / (2 * sigma^2))
  return(log.lik)
compute.log.likelihood(c(5,1), y)
## [1] -3.32
compute.log.likelihood(c(2,1), y)
## [1] -13
```

 Dans le cas de la loi Normale, il existe déjà dans R des fonctions implémentant la densité de probabilité, ce qui nous permet de vérifier que nous n'avons pas fait d'erreur

```
sum(dnorm(x=y, mean=5, sd=1, log=TRUE))

## [1] -3.32

sum(dnorm(x=y, mean=2, sd=1, log=TRUE))

## [1] -13
```

Ecrire le modèle

Notations

- $\cdot n$: nombre d'individus (diploïdes, supposés non-apparentés)
- : i: indice indiquant le i-ème individu, $i \in \{1, ..., n\}$
- $\cdot y_i$: phénotype de l'individu i pour la caractère d'intérêt
- μ : moyenne globale du phénotype des n individus
- $\cdot f$: fréquence de l'allèle minoritaire au marqueur SNP d'intérêt
- · x_i : génotype de l'individu i à ce SNP, codé comme le nombre de copie(s) de l'allèle minoritaire, $\forall i \ x_i \in \{0, 1, 2\}$
- \cdot β : effet additif de chaque copie de l'allèle minoritaire en unité du phénotype

Notations (suite)

- · ϵ_i : erreur pour l'individu i
- σ^2 : variance des erreurs
- Données : $\mathcal{D} = \{(y_1 \mid x_1), \dots, (y_n \mid x_n)\}$
- Paramètres : $\Theta = \{\mu, \beta, \sigma\}$

Vraisemblance

On suppose que le génotype au SNP d'intérêt a un effet additif sur la moyenne du phénotype, ce qui s'écrit généralement :

$$\forall i \ y_i = \mu + \beta x_i + \epsilon_i \text{ avec } \epsilon_i \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(0, \sigma^2)$$

· Une autre façon équivalente de l'écrire :

$$\forall i \ y_i \mid x_i, \mu, \beta, \sigma \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\mu + \beta x_i, \sigma^2)$$

Simuler des données

· Initialisation:

On utilise un générateur de nombres pseudo-aléatoires qui peut être initialisé avec une graine (seed), ce qui est très utile pour la reproductibilité des analyses

set.seed(1866) # année de parution de l'article de Mendel fondant la génétique

· Nombre d'individus :

n <- 200

· Moyenne générale :

mu <- 50

· **Génotypes** (on suppose que la population est à l'équilibre d'Hardy-Weinberg) :

```
Genotype frequencies
## 1
    Calculate the genotype frequencies at a locus assuming the Hardy-Weinberg equilibrium
## '
    (https://en.wikipedia.org/wiki/Hardy%E2%80%93Weinberg principle).
## '
## 1
    Oparam maf frequency of the minor allele, a
    @return vector of genotype frequencies
   @author Timothee Flutre
calcGenoFreq <- function(maf){</pre>
  stopifnot(is.numeric(maf), length(maf) == 1, maf >= 0, maf <= 0.5)
  geno.freq <- c((1 - maf)^2,
                2 * (1 - maf) * maf.
                maf^2)
  names(geno.freq) <- c("AA", "Aa", "aa")</pre>
  return(geno.freg)
f < -0.3
genotypes <- sample(x=c(0,1,2), size=n, replace=TRUE, prob=calcGenoFreq(f))
```

```
head(genotypes)
## [1] 2 0 1 0 1 1
table(genotypes)
## genotypes
## 102 80 18
sum(genotypes) / (2 * n) # estimate of the MAF
## [1] 0.29
var(genotypes) # important for the estimate of beta
## [1] 0.426
```

· Effet du génotype sur le phénotype, β :

```
(beta <- rnorm(n=1, mean=2, sd=1))
## [1] 2.45
```

• Erreurs, ϵ (par simplicité, on fixe σ à 1):

```
sigma <- 1
errors <- rnorm(n=n, mean=0, sd=sigma)</pre>
```

· Nous avons maintenant tout ce qu'il faut pour **simuler les phénotypes**, y, via l'**équation** précédente : $y_i = \mu + \beta x_i + \epsilon_i$

```
phenotypes <- mu + beta * genotypes + errors</pre>
```

· Il est habituel dans R d'organiser les données dans un tableau

```
dat <- data.frame(x=genotypes, y=phenotypes)
head(dat)</pre>
```

```
## X y
## 1 2 52.7
## 2 0 50.2
## 3 1 53.6
## 4 0 49.1
## 5 1 51.7
## 6 1 52.9
```

Réaliser l'inférence

Visualisation graphique

· Distribution du phénotype

· Relation génotypes - phénotypes

Implémentation (facile)

 Sous R, la fonction lm implémente l'estimation par maximum de vraisemblance

```
fit <- lm(y \sim x, data=dat)
```

 Vérification des hypothèses du modèle (homoscédasticité, normalité, indépendance)

```
par(mfrow=c(2, 2), mar = c(4, 4, 2, 1))
plot(fit)
```


summary(fit)

```
##
## Call:
## lm(formula = y \sim x, data = dat)
##
## Residuals:
## Min 10 Median 30 Max
## -3.411 -0.701 0.055 0.688 2.399
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 50.1085 0.0981 511.0 <2e-16 ***
## x 2.2814 0.1125 20.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.04 on 198 degrees of freedom
## Multiple R-squared: 0.675, Adjusted R-squared: 0.673
## F-statistic: 411 on 1 and 198 DF, p-value: <2e-16
```

· Représentation graphique du modèle

Implémentation (plus difficile)

· Il faut d'abord écrire une fonction calculant l'opposé de la log-vraisemblance

```
negLogLik <- function(mu, beta, sigma){
  - sum(dnorm(x=dat$y, mean=mu + beta * dat$x, sd=sigma, log=TRUE))
}</pre>
```

• Puis demander à la fonction **mle** de la maximiser (en spécifiant que le paramètre σ ne peut pas être négatif ou nul)

summary(fit2)

```
## Maximum likelihood estimation
##
## Call:
## mle(minuslogl = negLogLik, start = list(mu = mean(dat$y), beta = 0,
      sigma = 1), method = "L-BFGS-B", nobs = nrow(dat), lower = c(-Inf,
##
      -Inf, 10^{(-6)}, upper = c(+Inf, +Inf, +Inf)
##
##
## Coefficients:
##
        Estimate Std. Error
## mu
           50.11 0.0976
## beta 2.28 0.1119
## sigma 1.03 0.0515
##
## -2 log L: 579
```

Evaluer les résultats

Sélection de modèles

- · Evaluation de l'ajustement du modèle aux données
- · Dans notre cas de régression linéaire simple, on peut utiliser le coefficient de détermination \mathbb{R}^2

summary(fit)\$r.squared

[1] 0.675

 On peut facilement vérifier que cette valeur renvoyée par la fonction lm correspond à la formule :

$$R^{2} = \frac{\hat{\beta}^{2} Var(x)}{\hat{\beta}^{2} Var(x) + \hat{\sigma}^{2}}$$

```
(coefficients(fit)[2]^2 * var(dat$x)) /
  (coefficients(fit)[2]^2 * var(dat$x) + summary(fit)$sigma^2)
```

x ## 0.674

Estimation des paramètres

• Prenons l'exemple de β , comme nous avons simulé les données, nous connaissons sa vraie valeur

```
beta
```

```
## [1] 2.45
```

· Après avoir ajusté le modèle avec la fonction lm, nous pouvons récupérer l'estimation de ce paramètre $(\hat{\beta})$

```
(beta.hat <- coefficients(fit)[2])</pre>
```

```
## x
## 2.28
```

- Pour comparer les deux, on définit une **fonction de perte** (*loss function*) reliant le **paramètre** ($\hat{\beta}$) à **son estimation** ($\hat{\beta}$)
- · On utilise une fonction quadratique, dont on prend l'espérance, ce qui donne l'erreur quadratique moyenne (mean squared error)

$$MSE = E\left((\hat{\beta} - \beta)^2\right)$$

 On calcule sa racine carrée pour que le résultat soit dans la même unité que le paramètre

```
(rmse.beta <- sqrt((beta.hat - beta)^2))</pre>
```

X ## 0.172

Prédiction de données

 On peut aussi calculer l'erreur quadratique moyenne avec les phénotypes déjà observés (on parle de in-sample predictions)

```
y <- phenotypes
y.hat <- (coefficients(fit)[1] + coefficients(fit)[2] * genotypes)
errors <- y - y.hat
(rmse.y <- sqrt(mean(errors^2)))
## [1] 1.03</pre>
```

On peut aussi utiliser la fonction predict

```
errors <- phenotypes - predict(fit)
(rmse.y <- sqrt(mean(errors^2)))
## [1] 1.03</pre>
```

· Le vecteur *errors* correspond aux **résidus** du modèle

```
head(errors)

## 1 2 3 4 5 6

## -1.9859 0.0643 1.2021 -0.9601 -0.6865 0.5462

head(resid(fit))

## 1 2 3 4 5 6

## -1.9859 0.0643 1.2021 -0.9601 -0.6865 0.5462

(rmse.y <- sqrt(mean(resid(fit)^2)))

## [1] 1.03
```

- De façon plus intéressante, on souhaiterait évaluer les **prédictions** phénotypiques sur $n_{\rm new}$ **nouveaux individus**
- · Pour cela, on commence par simuler de nouvelles données, $\mathcal{D}_{\text{new}} = \{(y_{i,\text{new}} \mid x_{i,\text{new}})\}, \text{ toujours avec les } \textit{mêmes "vraies" valeurs des paramètres, } \Theta = \{\mu, \beta, \sigma\}$

```
set.seed(1944) # année de découverte de l'ADN comme support des gènes
n.new <- 100
x.new <- sample(x=c(0,1,2), size=n.new, replace=TRUE, prob=calcGenoFreq(f))
y.new <- mu + beta * x.new + rnorm(n=n.new, mean=0, sd=sigma)</pre>
```

 Puis on utilise les estimations des paramètres obtenues précédemment pour prédire les nouveaux phénotypes à partir des nouveaux génotypes,

$$\tilde{\mathcal{D}}_{\text{new}} = \{(\tilde{y}_{i,\text{new}} = \hat{\mu} + \hat{\beta} x_{i,\text{new}})\}$$
 (out-of-sample predictions)

```
y.new.tilde <- (coefficients(fit)[1] + coefficients(fit)[2] * x.new)</pre>
```

· Enfin, on calcule l'erreur quadratique moyenne de prédiction

```
errors.tilde <- y.new - y.new.tilde
(rmspe <- sqrt(mean(errors.tilde^2)))</pre>
```

[1] 0.8

Graphiquement:

Perspectives

Explorer les simulations possibles

- La simulation est un outil particulièrement utile pour explorer comment un modèle répond à des changements dans les données et les paramètres
- On pourrait par exemple avoir envie de savoir ce qui se passe si la taille de l'échantillon (n) varie
- · Idem, que se passe-t-il si, à n et σ fixés, on modifie β ?

Annexe

print(sessionInfo(), locale=FALSE)

```
## R version 4.2.1 (2022-06-23)
## Platform: x86 64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.1 LTS
##
## Matrix products: default
         /usr/lib/x86 64-linux-gnu/blas/libblas.so.3.10.0
## BLAS:
## LAPACK: /usr/lib/x86 64-linux-gnu/lapack/liblapack.so.3.10.0
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] MASS 7.3-58
##
## loaded via a namespace (and not attached):
##
   [1] digest 0.6.31 R6 2.5.1
                                    jsonlite 1.8.4 evaluate 0.20
## [5] highr 0.10 cachem 1.0.6 rlang 1.0.6
                                                    cli 3.6.0
   [9] rstudioapi_0.14 jquerylib_0.1.4 bslib_0.4.2
                                                   rmarkdown 2.20
##
## [13] tools_4.2.1 xfun_0.37 yaml_2.3.7
                                                    fastmap 1.1.0
## [17] compiler 4.2.1 htmltools 0.5.4 knitr 1.42
                                                    sass 0.4.5
```