RSS LAB 4

Isaac, Joshua, Lilly, Mario

Four modules focused on computer vision and controls.

- 1. Cone Detection via Color Segmentation
- 2. Homography Transformation
- 3. Cone Detection and Parking In Tesse
- 4. Line Detection via Hough Transforms

$$s \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

Module 1:
Cone Detection via
Color Segmentation

Using OpenCV to Conduct Color Segmentation

IOU Score Validation of Color Segmentation Bounding Boxes

test9.img

test17.img

Determining Pixel-wise Error Between Bounding Box and Cone With Respect to the Midpoint of the Bottom Edge

Module 2: Homography Transformation Homography Transformation computes reverse projection from pixel coordinates into ground plane coordinates.

Calculating the homography matrix

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
(1)

2D Image Coordinates

Intrinsic **Properties**

Extrinsic **Properties**

3D World Coordinates

3D World Coordinates Homography Matrix

2D Image Coordinates

Exrinsic matrix =
$$\begin{bmatrix} 0 & -1 & 0 & 0.05 \\ 0 & 0 & -1 & 1.03 \\ 1 & 0 & 0 & -1.5 \end{bmatrix}$$

Rotation **Translation**

Module 3: Parking Controller

Parking Controller subscribes to Cone Location, and publishes Ackermann Drive

Pure Pursuit Controller gets steering angle from cone location

Velocity Curve **increases** with Distance and **decreases** with Steering Angle

$$v_{d} = \frac{1}{D_{park}} (d - D_{bumper})$$

$$v_{\delta} = sech(\frac{\delta}{\frac{\pi}{4}})$$

$$v(d, \delta) = |V_{max}| v_{d}(d) v_{\delta}(\delta)$$

Module 4: Line Follower

Color Segmentation Mask

Original

Mask

Hough Line Transform

$$\rho = x \cos \theta + y \sin \theta$$

Average Line

Hough Lines -

Average Line —

Summary of takeaways / future work on computer vision and controls modules

$$s \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

