Agriculture Project

Christian Davis and Matthew Oehler

Brigham Young University

March 5, 2018

Problem Intro

Background

- Water scarcity is a problem for many regions of the United States
- Crop water stress index (CWSI) is widely used indicator to estimate the crop water status
- Soil water content (SWC) helps indicate how much water to add
- CWSI is much easier to measure

Goal: Use the CWSI to predict the SWC

Agriculture Data

Problems/Issues

Data is not linear

Solutions:

- Polynomial Regression
- Basis Function
 Expansion: B-splines
- Kernel Smoothing

Model

Polynomial Regression

$$\mathbf{y} = eta_0 + eta_1 \mathbf{x} + eta_2 \mathbf{x}^2 + \epsilon$$
 where $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$

 $\mathbf{y} = \text{response vector} \quad (nx1)$

 $\mathbf{x} = \text{CWSI values} \quad (1xp)$

 $\beta =$ model coefficients (px1)

 $\epsilon = ext{errors} \quad (nx1)$

Model Assumptions

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x} + \beta_2 \mathbf{x}^2 + \epsilon$$

Still just a linear model – linear in the β s

- Independence
- Normality of the Standardized Residuals
- Equal Variance

How Model Achieves Goals

- Easily fit non-linear data
- Can predict SWC from CWSI simply

Model Assumptions

Model Justification

Degree of Polynomial Regression

- x^3 term is not significant
- Performed cross validation to select the degree of polynomial regression

Comparison of Cubic and Quadratic Models:

	Cubic	Quadratic
Bias	8e-04	-6e-04
RPMSE	0.2591	0.2526
Coverage	0.9457	0.949
PIW	1.0285	1.0204
R^2	0.9689	0.9689

Results

Table of Significant Quadratic Model Coefficients

	•			
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	28.3500	0.0900	328.87	0.0000
poly(cwsi, 2, raw = T)1	-13.0200	0.3900	-33.57	0.0000
poly(cwsi, 2, raw = T)2	8.8300	0.3700	24.03	0.0000

Note: Practical interpretability of coefficients is lost when using polymonial regression.

Quadratic
-6e-04
0.2526
0.949
1.0204
0.9689

Results

Model Application

How much water to add for a CWSI of 0.4?

$$28.35 + -13.02 \times \mathbf{0.4} + 8.83 \times \mathbf{0.4}^2 = 24.56$$

Conclusions

Conclusions:

- Goals:
 - We fit a model that can be used by farmers to optimize their water usage
- Shortcomings:
 - Loss of coefficient interpretability
- Next steps:
 - Gather more data to be explore the relationship of SWC and volume of water sprinkled.

Distribution of Work

Problem Statement and Understanding	Christian
Describe the method/model(s) that are used	Christian
Model Justification and Performance Evaluation	Matt
Results	Matt
Conclusions	Joint
Code	Joint