EE 236: Experiment 3 Photodiode Characteristics and Applications

Jatin Kumar, 22B3922

August 24, 2024

1 Aim

- To study the forward and reverse bias I/V characteristics of a Photodiode.
- To measure the response of the Photodiode for different lights and different intensities. (4 LEDs are provided, along with their current vs intensity data)
- To use the Photodiode as an optical signal sensor in combination with an Infra-red LED.

2 Parts of the Experiment

2.1 Part 1

2.1.1 Circuit

2.1.2 I-V data

$V_{-}pd$	I_pd (mA)	$\ln(\mathrm{abs}(\mathrm{I_pd}))$
0	0	
0.05	0	
0.1	0	
0.15	0	
0.2	0	
0.26	0	
0.46	0.65	-7.3385
0.543	1.98	-6.2247
0.567	2.83	-5.8675
0.572	3	-5.8091
0.578	3.22	-5.7384
0.588	3.58	-5.6324
0.592	3.74	-5.5887
0.603	4.16	-5.4822
0.62	4.89	-5.3206
0.63	5.44	-5.2140
0.653	6.66	-5.0116
0.672	7.89	-4.8422
0.708	10.88	-4.5208
0.759	16.77	-4.0882
0.766	17.91	-4.0224

 \bullet Ideality factor: 3.7531

2.1.3 Plots

2.2 Part 2

2.2.1 Circuit

2.2.2 Data

	$\operatorname{Vout}(\operatorname{V})$			
Intensity(lux)	IR	Red	Green	Blue
1000	4.51E-03	2.00E-03	1.88E-04	3.01E-04
1500	5.17E-03	3.00E-03	2.94E-04	4.16E-04
2000	6.28E-03	4.00E-03	3.71E-04	5.72E-04

	IR	Red	Green	Blue
Lambda (m)	9.50E-07	7.50E-07	5.20E-07	4.50E-07

2.2.3 Plots

2.2.4 Vout vs Wavelength

2.2.5 Vout vs Intensity

2.2.6 Efficiency

Intensity	IR/Intensity	Red/Intensity	Green/Intensity	Blue/Intensity
1000	1.91E-03	5.90E-03	2.18E-02	9.97E-03
1500	1.27E-03	4.35E-03	1.31E-02	5.93E-03
2000	9.85E-04	3.50E-03	9.70E-03	4.02E-03
Lambda	9.50E-07	7.50E-07	5.20E-07	4.50E-07

Most efficient: Green

2.3 Part 3

2.3.1 Circuit

2.3.2 Data

Frequency (Hz)	Rise time (us)	Fall time (us)
1000	15.37	15.72
5000	11.37	11.62
10000	11.98	11.34
15000	12.31	12.15
20000	12.19	12.03

2.3.3 Observations and Reasoning

- Distortion: Distortion is observed to become too large at 20 kHz.
- Reason for Slow Photodiode Response: A photodiode has a "detection bandwidth" associated with it, which determines the speed at which its output can vary in response to a varying input signal. This bandwidth depends on two factors:
 - 1. Junction capacitance in the diode.
 - 2. Transit time of the photocurrent in the junction.

2.4 Observation Pictures Taken in LAB DSO

3 Completion Status

The experiment was thoroughly conducted and successfully completed within the lab setting. All objectives were met, and the procedures were carried out as planned, yielding the expected results.