Wall Following in TESSE

RSS-2021 | Lab 3 | Team 11

Lab Goals

- Move from 2D to 3D simulations
- Complete both wall following tracks with TESSE
- Maximize speed of car

There are additional considerations when moving from 2D to 3D

2D Case

There are additional considerations when moving from 2D to 3D

3D Case

Maybe show our initial sim when just using code from lab 2 on tesse

-short video of sim, car oscillates, speed not maximized

Combining PID, RANSAC, and Turn Detection builds a more robust controller

- Simulator extracts a laserscan message
- RANSAC algorithm uses this to calculate distance the car is from the wall
- This is compared w/ the desired distance from the wall to generate the error
- The error is fed through a PID controller which sets the steering command
- This is all fed through a turn detector which acts as an arbitrator detecting upcoming turns and setting appropriate steering and velocity commands

The RANSAC algorithm can make wall detection more robust to outliers


```
from sklearn import linear_model, datasets
```

```
# Robustly fit linear model with RANSAC algorithm
ransac = linear model.RANSACRegressor()
ransac.fit(X, y)
```

Altering the speed of the car improves how the car handles turns

- split scan into two section, "control" section and look-ahead section
- control used to generate RANSAC line, look-ahead looks for distance jumps in the scan to determine when a turn is approaching
- car slows when turn is approaching

Tuning (PID + Turn Detection)

- P drives the system towards the setpoint, increases disturbance rejection
- I drives the steady-state-error of the system near zero
- D stabilizes P and I to prevent overshoot + oscillation

***Used the above when tuning the PID Parameters

 Turn detection lookahead angles and velocities were tuned with trial and error

https://www.researchgate.net/figure/PID-Block-Diagram-PID-stands-for-Proportional-Integral-Derivative-control-A-PID fig1 316709017

Need to set parameters in the two regions, straight-line and during a turn

Setting velocity of car from turn detection (distance to turn):

$$V_f^2 = V_i^2 + 2*a*D$$

 $a = (V_f^2 - V_i^2)/2*D$

D - distance to the wall

V_f - tuned turn speed @ 2m/s

V_i - current car velocity

a - desired acceleration to publish

Current progress on system

- Car goes around the simple track!!!
 - This is w/ Linear Regression (not RANSAC) basic PD tuning (no integral), and turn detection
 - No other intelligence or filtering in the system
 - o Kp = 1.0, Ki = 0, Kd = 0.44
- Also tested w/ initial implementation of turn-detection + initial RANSAC tests
- Video shows lap of the track in the TESSE simulator
- Needs some more tuning

Goals for Friday

Base Goals:

- Start w/ implementing the same controller as above w/ the RANSAC algorithm
- Increase the speed and attempt to tune the PID to the highest speed achievable with just PID gains
- Do this for both tracks

Reach Goals:

- Implement turn detection and kinematics for turn control based on previous description
- Have car run at higher speed along the track and slow down as we approach a wall at a specified acceleration to turn
- Optimize on both tracks