Application No.: 12/064,654

Amendment dated September 15, 2011

Response to Final Office Action dated July 8, 2011

Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

- 1. (previously presented) A method for inerting an aircraft fuel tank, said method comprising the steps of:
- (a) contacting compressed air with one or more first membrane modules at conditions effective to produce a first nitrogen-enriched air stream;
- (b) introducing said first nitrogen-enriched air stream into said fuel tank during periods of low demand for nitrogen-enriched air;
- (c) contacting compressed air with one or more second membrane modules at conditions effective to produce a second nitrogen-enriched air stream;
 and
- (d) introducing said second nitrogen-enriched air stream into said fuel tank during periods of high demand for nitrogen-enriched air,

wherein said first membrane modules have a lower O_2 permeance and a higher O_2/N_2 selectivity than said second membrane modules, and

wherein at least one of said first nitrogen-enriched air stream and said second nitrogen-enriched air stream is introduced directly into the fuel in said fuel tank at conditions effective to liberate at least a portion of dissolved O_2 in the fuel.

- 2. (original) The method according to claim 1, wherein said low demand periods include cruising.
- 3. (original) The method according to claim 1, wherein said high demand periods include ascent or descent or both.
 - 4. (canceled)

Application No.: 12/064,654

Amendment dated September 15, 2011

Response to Final Office Action dated July 8, 2011

5. (previously presented) The method according to claim 1, wherein said first nitrogen-enriched air stream is introduced directly into the fuel in the fuel tank to liberate at least a portion of dissolved O2 in the fuel.

- 6. (original) The method according to claim 1, wherein said first nitrogenenriched air stream has a lower flow rate than said second nitrogen-enriched air stream.
- 7. (original) The method according to claim 1, wherein said first nitrogenenriched air stream has a flow rate of 0.05 to 20 lbs/min at 9% by volume O_2 or less, and said second nitrogen-enriched air stream has a flow rate of 5 to 100 lbs/min at 9% by volume O_2 or less.
- 8. (original) The method according to claim 7, wherein said first nitrogenenriched air stream has a flow rate of 0.5 to 2.0 lbs/min at 5% by volume O_2 or less, and said second nitrogen-enriched air stream has a flow rate of 5 to 50 lbs/min at 9% by volume O_2 or less.
- 9. (original) The method according to claim 1, wherein said first membrane modules have an O_2 permeance of at least 10 GPU and an O_2/N_2 selectivity of at least 4.0, and said second membrane modules have an O_2 permeance of at least 100 GPU and an O_2/N_2 selectivity of at least 1.5.
- 10. (original) The method according to claim 9, wherein said first membrane modules have an O_2 permeance of at least 30 GPU and an O_2/N_2 selectivity of at least 5.0, and said second membrane modules have an O_2 permeance of at least 200 GPU and an O_2/N_2 selectivity of at least 2.

Application No.: 12/064,654

Amendment dated September 15, 2011

Response to Final Office Action dated July 8, 2011

11. (original) The method according to claim 1, wherein said compressed air comprises bleed air.

- 12. (original) The method according to claim 1, wherein said compressed air has a pressure of 10 to 300 psig.
- 13. (original) The method according to claim 1, which comprises introducing said first nitrogen-enriched air stream and said second nitrogen-enriched air stream into said fuel tank during periods of high demand for nitrogen-enriched air.
- 14. (previously presented) A method for inerting an aircraft fuel tank, said method comprising the steps of:
- (a) contacting compressed air with one or more first membrane modules at conditions effective to produce a first nitrogen-enriched air stream;
- (b) introducing said first nitrogen-enriched air stream into said fuel tank during cruising;
- (c) contacting compressed air with one or more second membrane modules at conditions effective to produce a second nitrogen-enriched air stream; and
- (d) introducing said second nitrogen-enriched air stream into said fuel tank during ascent or descent or both,

wherein said first membrane modules have a lower O_2 permeance and a higher O_2/N_2 selectivity than said second membrane modules, and

wherein at least one of said first nitrogen-enriched air stream and said second nitrogen-enriched air stream is introduced directly into the fuel in said fuel tank at conditions effective to liberate at least a portion of dissolved O₂ in the fuel.

15. (canceled)

Application No.: 12/064,654

Amendment dated September 15, 2011

Response to Final Office Action dated July 8, 2011

16. (previously presented) The method according to claim 14, wherein said first nitrogen-enriched air stream is introduced directly into the fuel in the fuel tank to liberate at least a portion of dissolved O₂ in the fuel.

- 17. (original) The method according to claim 14, wherein said first nitrogenenriched air stream has a lower flow rate than said second nitrogen-enriched air stream.
- 18. (original) The method according to claim 14, wherein said first nitrogenenriched air stream has a flow rate of 0.05 to 20 lbs/min at 9% by volume O_2 or less, and said second nitrogen-enriched air stream has a flow rate of 5 to 100 lbs/min at 9% by volume O_2 or less.
- 19. (original) The method according to claim 18, wherein said first nitrogen-enriched air stream has a flow rate of 0.5 to 2.0 lbs/min at 5% by volume O_2 or less, and said second nitrogen-enriched air stream has a flow rate of 5 to 50 lbs/min at 9% by volume O_2 or less.
- 20. (original) The method according to claim 14, wherein said first membrane modules have an O2 permeance of at least 10 GPU and an O_2/N_2 selectivity of at least 4.0, and said second membrane modules have an O_2 permeance of at least 100 GPU and an O_2/N_2 selectivity of greater than 1.5.
- 21. (original) The method according to claim 20, wherein said first membrane modules have an O_2 permeance of at least 30 GPU and an O_2/N_2 selectivity of at least 5.0, and said second membrane modules have an O_2 permeance of at least 200 GPU and an O_2/N_2 selectivity of at least 2.

Application No.: 12/064,654

Amendment dated September 15, 2011

Response to Final Office Action dated July 8, 2011

22. (original) The method according to claim 14, wherein said compressed air comprises bleed air.

- 23. (original) The method according to claim 14, wherein said compressed air has a pressure of 10 to 300 psig.
- 24. (original) The method according to claim 14, which comprises introducing said first nitrogen-enriched air stream and said second nitrogen-enriched air stream into said fuel tank during ascent or descent or both.
- 25. (previously presented) A system for inerting an aircraft fuel tank, said system comprising:
- (a) one or more first membrane modules for separating compressed air into a first permeate stream comprising oxygen-enriched air and a first retentate stream comprising nitrogen-enriched air;
- (b) a first conduit for conveying said first retentate stream into said fuel tank during periods of low demand for nitrogen-enriched air;
- (c) one or more second membrane modules for separating compressed air into a second permeate stream comprising oxygen-enriched air and a second retentate stream comprising nitrogen-enriched air;
- (d) a second conduit for conveying said second retentate stream into said fuel tank during periods of high demand for nitrogen-enriched air; and
- (e) a third conduit for introducing at least one of said first retentate stream and said second retentate stream directly into the fuel in said fuel tank to liberate at least a portion of dissolved O_2 in the fuel,

wherein said one of more first membrane modules have a lower O_2 permeance and a higher O_2/N_2 selectivity than said one or more second membrane modules.

Application No.: 12/064,654

Amendment dated September 15, 2011

Response to Final Office Action dated July 8, 2011

26. (canceled)

- 27. (original) The system according to claim 25, wherein said first membrane modules have an O_2 permeance of at least 10 GPU and an O_2/N_2 selectivity of at least 4.0, and said second membrane modules have an O_2 permeance of at least 100 GPU and an O_2/N_2 selectivity of at least 1.5.
- 28. (original) The system according to claim 27, wherein said first membrane modules have an O_2 permeance of at least 30 GPU and an O_2/N_2 selectivity of at least 5.0, and said second membrane modules have an O_2 permeance of at least 200 GPU and an O_2/N_2 selectivity of at least 2.
- 29. (original) The system according to claim 25, wherein said first membrane modules and said second membrane modules are arranged in a bundle-in-bundle configuration.
- 30. (original) The system according to claim 29, wherein said first conduit and said second conduit have common portions.
- 31. (previously presented) A system for inerting an aircraft fuel tank, said system comprising:
- (a) one or more first membrane modules for separating compressed air into a first permeate stream comprising oxygen-enriched air and a first retentate stream comprising nitrogen-enriched air;
- (b) a first conduit for conveying said first retentate stream into said fuel tank during periods of low demand for nitrogen-enriched air;
- (c) one or more second membrane modules for separating compressed air into a second permeate stream comprising oxygen-enriched air and a second retentate stream comprising nitrogen-enriched air;

Application No.: 12/064,654

Amendment dated September 15, 2011

Response to Final Office Action dated July 8, 2011

(d) a second conduit for conveying said second retentate stream into said fuel tank during periods of high demand for nitrogen-emiched air;

wherein said first and/or second conduits are connected to introduce said first and/or second retentate stream, respectively, directly into the fuel in said fuel tank to liberate at least a portion of dissolved O_2 in the fuel; and

wherein said one or more first membrane modules have a lower 0_2 permeance and a higher $0_2/N_2$ selectivity than said one or more second membrane modules.