

Część 6

Kryptografia asymetryczna na krzywych eliptycznych

GRUPA

```
Grupę (G, o) tworzy zbiór G z operacją binarną o spełniający
następujące aksjomaty:
    1*) \forall a, b, c ∈ G : a o (b o c) = (a o b) o c
                 (łączność operacji o)
   2^*) \exists e \in G \forall a \in G : a \circ e = e \circ a = a
                 (istnienie elementu tożsamościowego dla o)
   3^*) \forall a ∈ G \exists a ^{-1} ∈ G \exists a o a ^{-1} = a ^{-1} o a = e
                 (istnienie elementu odwrotnego do elementu a)
Grupoid – wystarczy określenie G i o
Półgrupa – spełnienie 1*)
Monoid - spełnienie 1*) i 2*)
Grupa (G, o) jest grupą abelową (albo przemienną) wtedy,
gdy dodatkowo:
   4^*) \forall a, b \in G : a \circ b = b \circ a
                 (przemienność operacji o)
```

W.Chocianowicz, T.Hyla - 2022/23 - Część 6

WŁASNOŚCI GRUPY

Jeżeli wartość | G | (moc zbioru) jest skończona, to grupa G jest grupą skończoną, zaś liczba elementów tej grupy jest rzędem grupy.

Podgrupą H grupy G jest taki niepusty podzbiór H grupy G, który także z operacją o tworzy grupę.

Jeżeli ponadto H ≠ G, to H jest podgrupą właściwą grupy G.

 $\exists a \in G \ \forall b \in G \ \exists i \in Z : b = a^i \Rightarrow$

G jest grupą cykliczną, zaś a jest generatorem grupy cyklicznej G

$$(a^i = a \circ a \circ \dots \circ a)$$

a powyżej po prawej stronie występuje i razy

UWAGA: Z faktu, że e ∈ G wynika, że ∃ i ∈ Z : e = a i , stąd grupą cykliczną może być wyłącznie grupa skończona.

Podgrupą cykliczną generowaną przez element a ∈ G jest zbiór:

$$< a > = \{ b \in G : b = a^{i} \}, gdzie i \in Z$$

W.Chocianowicz, T.Hyla - 2022/23 - Część 6

Rzędem elementu $a \in G$, oznaczanym jako ord (a), jest najmniejsza dodatnia liczba całkowita t taka, że $a^t = e$. Jeżeli taka liczba nie istnieje, to ord (a) = ∞ .

(G jest grupą)
$$\land$$
 (a \in G) \land (ord(a) = t $\lt \infty$) \Rightarrow $|\lt a \gt|$ = t

Twierdzenie Lagrange'a

Jeżeli G jest grupą skończoną i H jest podgrupą G, to | H | | | G |. Wynika stąd, że jeśli a ∈ G, to ord(a) | | G |.

Każda podgrupa grupy cyklicznej G jest grupą cykliczną. Jeżeli G jest grupą cykliczną rzędu n, to G zawiera dokładnie jedną podgrupę rzędu d, gdzie d jest dodatnim dzielnikiem n.

Niech G będzie grupą i a ∈ G.

$$ord(a) = t \Rightarrow ord(a^k) = t / gcd(t, k)$$

(G jest grupą cykliczną rzędu n) \land (d | n) \Rightarrow G zawiera dokładnie ϕ (d) elementów rzędu d (w szczególności ϕ (n) generatorów).

Przykład 1:

Zbiór Z_n z operacją dodawania modulo n tworzy skończoną przemienną grupę addytywną $(Z_n, +)$, gdyż:

$$\forall a, b, c \in \mathbb{Z}_n : (a + (b + c))(mod n) = ((a + b) + c)(mod n)$$

elementem tożsamościowym jest e = 0:

$$\forall \ a \in \mathbb{Z}_n : (a + 0) \ (mod \ n) = (0 + a) \ (mod \ n) = a$$

elementem odwrotnym do elementu a jest $-a = (n - a) \pmod{n}$:

$$\forall a \in Z_n : (a + (-a)) \pmod{n} = ((-a) + a) \pmod{n} = (a + n - a) \pmod{n} = n \pmod{n} = 0$$

a ponadto:

$$\forall a, b \in \mathbb{Z}_n : (a + b) \pmod{n} = (b + a) \pmod{n}$$

Przykład 1 (cd.):

Rząd grupy $(Z_n, +)$ wynosi n.

Niech n będzie liczbą parzystą. Wówczas podzbiór liczb parzystych należących do zbioru Z_n (wraz z elementem tożsamościowym e=0) tworzy podgrupę właściwą z operacją dodawania $modulo\ n$.

Generatorem grupy $(Z_n, +)$ jest element a = 1, natomiast generatorem cyklicznej podgrupy właściwej zawierającej liczby parzyste należące do Z_n , gdzie n jest liczbą parzystą, jest element a = 2.

Uogólniony wniosek

Z twierdzenia Lagrange'a wynika, że każdy dzielnik liczby *n* jest generatorem cyklicznej podgrupy właściwej, zaś jej elementami są wszystkie wielokrotności generatora < *n* i liczba *0*.

Przykład 2:

Zbiór Z_n^* z operacją *mnożenia modulo n* tworzy skończoną przemienną grupę multiplikatywną $(Z_n^*, .)$, gdyż:

$$\forall a, b, c \in \mathbb{Z}_{n}^{*} : (a (b c))(mod n) = ((a b) c)(mod n)$$

elementem tożsamościowym jest e = 1:

$$\forall \ a \in \mathbb{Z}_{n}^{*} : (a \cdot 1) \ (mod \ n) = (1 \cdot a) \ (mod \ n) = a$$

elementem odwrotnym do elementu a jest a -1 (mod n):

$$\forall a \in \mathbb{Z}_{n}^{*}$$
: $(a a^{-1}) \pmod{n} = (a^{-1} a) \pmod{n} = 1$

a ponadto:

$$\forall a, b \in \mathbb{Z}_n^*$$
: (a b) (mod n) = (b a) (mod n)

Rząd grupy $(Z_n^*, .)$ wynosi $\phi(n)$.

Przykład 3:

Niech n = 19.

$$Z^*_{19} = \{ 1, 2, 3, ..., 18 \}$$
 $\phi(19) = 18$

$$\phi(19) = 18$$

Grupa (Z*₁₉, .) jest grupą cykliczną.

Dzielniki $\phi(19)$ to liczby: 1, 2, 3, 6, 9 i 18.

Istnieje zatem 6 podgrup cyklicznych, odpowiednio rzędu: 1, 2, 3, 6, 9 i 18 (przy czym ostatnia z podgrup nie jest podgrupą właściwą, lecz jest tożsama z grupą Z^*_{10}).

Poniższa tabela przedstawia wszystkie podgrupy cykliczne Z^*_{19} i ich generatory.

Podgrupa	Generatory	Rząd d	 \$\phi(d)\$
{1}	1	1	1
{ 1, 18 }	18	2	1
{1, 7, 11}	7, 11	3	2
{ 1, 7, 8, 11, 12, 18 }	8, 12	6	2
{ 1, 4, 5, 6, 7, 9, 11, 16, 17 }	4, 5, 6, 9, 16, 17	9	6
<i>{ 1, 2, 3,, 18 }</i>	2, 3, 10, 13, 14, 15	18	6

W.Chocianowicz, T.Hyla - 2022/23 - Część 6

Przykład 4:

WŁASNOŚCI GRUPY (cd.)

Niech n = 15.

$$Z^*_{15} = \{ 1, 2, 4, 7, 8, 11, 13, 14 \}$$
 $\phi(15) = \phi(3) \bullet \phi(5) = 8$

$$\phi(15) = \phi(3) \bullet \phi(5) = 8$$

Grupa (Z₁₅*, .) jest skończoną grupą multiplikatywną ale nie jest grupą cykliczną.

Dzielniki $\phi(15)$ to liczby: 1, 2, 4 i 8.

Mimo że każdy z elementów grupy generuje pewną podgrupę cykliczna, to żaden nie jest generatorem grupy (Z*₁₅, .).

Poniższa tabela przedstawia wszystkie podgrupy cykliczne Z^*_{15} i ich generatory.

Podgrupa	Generatory	Rząd podgrupy (d)	φ(d)
{1}	1	1	1
{1, 4}	4	2	1
{1, 11}	11	2	1
{1, 14}	14	2	1
{1, 2, 4, 8}	2, 8	4	2
{1, 4, 7, 13}	7, 13	4	2

WŁASNOŚCI GRUPY (finał)

Czy każda grupa skończona jest grupą cykliczną?

NIE !!!

PIERŚCIEŃ

Pierścień (R, +, ×) tworzy zbiór R z dwoma operacjami binarnymi, arbitralnie oznaczonymi jako + (dodawanie) i × (mnożenie), spełniający następujące aksjomaty:

(R, +) jest grupą przemienną z elementem tożsamościowym oznaczanym jako 0 (element zerowy, neutralny):

$$\forall$$
 a, b, c \in R : a \times (b \times c) = (a \times b) \times c
(łączność operacji \times)
 \exists e \in R : (e \neq 0) \wedge (\forall a \in R: a \times e = e \times a = a)

Operacja × jest rozdzielna względem operacji +, tzn.:

$$\forall$$
 a, b, c \in R: $a \times (b + c) = (a \times b) + (a \times c)$
 \forall a, b, c \in R: $(b + c) \times a = (b \times a) + (c \times a)$

Pierścień (R, +, ×) jest pierścieniem przemiennym wtedy, gdy ponadto:

$$\forall$$
 a, b \in R : a \times b = b \times a (przemienność operacji \times)

PIERŚCIEŃ (cd.)

Element $a \in R$ pierścienia jest nazywany elementem odwracalnym, jeżeli istnieje element $b \in R$ taki, że $a \times b = 1$.

Zbiór elementów odwracalnych pierścienia R tworzy z operacją x grupę elementów odwracalnych R.

Przykłady:

Zbiór Z ze zwykłymi operacjami dodawania i mnożenia liczb całkowitych jest pierścieniem przemiennym.

Zbiór Z_n z operacjami dodawania i mnożenia *modulo n* jest pierścieniem przemiennym.

Grupą elementów odwracalnych pierścienia Z_n jest zbiór Z_n^* .

CIAŁO

Ciałem F jest pierścień przemienny, którego wszystkie niezerowe elementy są elementami odwracalnymi.

Charakterystyka ciała wynosi 0, jeżeli dla żadnego m ≥ 1 wynik operacji m-krotnego dodawania elementów 1 nie jest równy elementowi zerowemu. W przeciwnym przypadku charakterystyka ciała jest równa najmniejszej dodatniej liczbie całkowitej m takiej, że:

$$\sum_{i=1}^{m} 1 = 0$$

Charakterystyka ciała $m \neq 0 \Rightarrow m$ jest liczbą pierwszą.

CIAŁO SKOŃCZONE

Ciało skończone to ciało F zawierające skończoną liczbę elementów. Liczba ta jest rzędem ciała skończonego.

F jest ciałem skończonym ⇒ F zawiera p^m elementów, gdzie p jest pewną liczbą pierwszą, zaś m liczbą naturalną.

Dla każdej potęgi naturalnej liczby pierwszej p^m istnieje unikalne (z dokładnością do izomorfizmu) ciało skończone rzędu p^m, oznaczane jako F_p^m albo GF(p^m) (GF - Galois Field - ciało Galois).

Izomorfizm oznacza (nieformalnie), że ciała są strukturalnie identyczne (mimo odmiennej reprezentacji elementów ciała). Stąd między innymi wynika, że każde ciało rzędu p jest izomorficzne z ciałem Z_p.

Niech F_q będzie ciałem skończonym rzędu $q = p^m$. Wtedy każde podciało ciała F_q jest rzędu p^n , dla pewnego n będącego dodatnim dzielnikiem m.

WŁASNOŚCI CIAŁA SKOŃCZONEGO

Jeżeli n jest dodatnim dzielnikiem m, to istnieje dokładnie jedno podciało ciała F_{α} rzędu p^{n} .

Element $a \in F_a$ należy do podciała F_p^n wtedy i tylko wtedy, gdy

$$a^{p} = a$$

Niezerowe elementy ciała F_q tworzą grupę z mnożeniem, nazywaną grupą multiplikatywną ciała F_q i oznaczaną jako F_q^* .

F_q* jest grupą cykliczną rzędu q−1. Stąd a ^q = a dla wszystkich a ∈ F_q.

Jeżeli $a, b \in F_q$, gdzie F_q jest ciałem skończonym charakterystyki p,

to
$$(a+b)^p = a^p + b^p$$
 dla wszystkich $t \ge 0$.

PRZYKŁAD

TEORIA: Istnieje ciało skończone GF(2²).

Czy zbiór $Z_4 = \{0, 1, 2, 3\}$ z operacjami dodawania modulo 4 i mnożenia modulo 4 jest ciałem ?

Z₄ z operacją dodawania modulo 4 jest grupą przemienną.

Operacja dodawania modulo 4 jest łączna.

Elementem tożsamościowym jest 0.

Elementami odwrotnymi są odpowiednio:

$$0 \Leftrightarrow 0$$
, $1 \Leftrightarrow 3$, $2 \Leftrightarrow 2$.

$$1 \Leftrightarrow 3$$

Operacja dodawania modulo 4 jest przemienna.

Operacja mnożenia modulo 4 jest łączna.

Operacja mnożenia modulo 4 jest rozdzielna względem operacji dodawania modulo 4.

Elementem tożsamościowym jest 1.

Elementy 1 i 3 są odwracalne $(1^{-1} = 1, 3^{-1} = 3)$.

Element 2 nie jest odwracalny (ani nie jest tożsamościowym dla dodawania).

Zbiór $Z_4 = \{0, 1, 2, 3\}$ z operacjami dodawania modulo 4 i mnożenia modulo 4 nie jest ciałem (ale jest pierścieniem przemiennym) !!!

KRZYWE ELIPTYCZNE "WKRACZAJĄ" DO KRYPTOLOGII

W 1985 roku Neal Koblitz i Victor S. Miller zaproponowali wykorzystanie w kryptografii krzywych eliptycznych nad ciałem K, tzn. krzywych, dla których współrzędne punktów spełniają (w zależności od charakterystki ciała K, do którego należą współczynniki odpowiednich wielomianów, a także współrzędne punktów) następujące równania:

$$y^2 = x^3 + ax + b (1)$$

$$y^2 + cy = x^3 + ax^2 + b$$
 (2)

$$y^2 + xy = x^3 + ax^2 + b$$
 (3)

$$y^2 = x^3 + ax^2 + bx + c$$
 (4)

(dokładniej: krzywą eliptyczną jest zbiór wszystkich punktów spełniających jedną z powyższych zależności oraz element O, zwany "punktem w nieskończoności").

Każda krzywa eliptyczna nad dowolnym ciałem *K* może być opisana równaniem:

$$y^{2} + axy + by = x^{3} + cx^{2} + dx + e$$

(ten opis nie musi być jednoznaczny i nazywa się modelem afinicznym krzywej eliptycznej).

Jeśli charakterystyka ciała *K* ∉ {2, 3}, to powyższe równanie afiniczne

można uprościć do postaci:

$$y^2 = x^3 + ax + b$$

(jest to tzw. postać Weierstrassa).

KRYPTOLOGIA

W 1987 roku Peter L. Montgomery "pochylił się" nad krzywymi eliptycznymi nad ciałem K opisywanymi równaniem:

by
$$^2 = x^3 + ax^2 + x$$
,
gdzie $b(a^2 - 4) \neq 0$

(jest to tzw. postać Montgomery'ego, która i tak ma swoją ekwiwalentną krzywą Weierstrassa ...

W 2007 roku Harold Edwards "zajął się" krzywymi eliptycznymi nad ciałem K opisywanymi równaniem:

$$x^{2} + y^{2} = c^{2}(1 + dx^{2}y^{2}),$$

gdzie $cd(1 - c^{4}d) \neq 0$

(a zastosowania krzywych Edwardsa i skręconych (twisted) krzywych ___

Edwardsa w kryptologii są badane intensywnie przez min. D.L.Bernsteina

i T.Lange – głównie ze względu na efektywność implementacji sprzętowych).

DODAWANIE PUNKTÓW NA KRZYWEJ ELIPTYCZNEJ

Punkty krzywej eliptycznej *E* (wraz z punktem *O*) tworzą grupę przemienną (abelową) ze względu na dodawanie, które jest zdefiniowane następująco:

Niech będą dane punkty P i Q należące do krzywej E.

Definicja elementu przeciwnego i neutralnego (zera)

Jeżeli P = O, to -P = O, a ponadto dla każdego $Q \neq P$ zachodzi:

$$P + Q = Q$$

Punkt O jest elementem tożsamościowym (neutralnym) tej grupy. Jeżeli $P \neq O$ i jest określony parą współrzędnych (x_P, y_P) , to elementem przeciwnym, czyli punktem P, jest punkt o współrzędnych (x_P, y_P) (także należący do krzywej E, co łatwo sprawdzić).

UWAGA: współrzędna – y jest w ciele K elementem przeciwnym względem dodawania dla współrzędnej y.

Przykład dla K = R (zbiór liczb rzeczywistych z "klasycznym" dodawaniem i mnożeniem)

$$y^2 = x^3 - x$$

$$y^2 = x^3 + 0.25x + 1.25$$

Definicja dodawania dla punktów różnych od elementu neutralnego

Niech P ma współrzędne (x_P, y_P) , punkt Q ma współrzędne (x_Q, y_Q) , zaś punkt R = P + Q ma współrzędne (x_R, y_R) .

Przypadek 1:

Jeżeli $x_P \neq x_Q$, to prosta poprowadzona przez punkty P i Q przetnie krzywą eliptyczną dokładnie w jednym punkcie S = -R o współrzędnych $(x_P, -y_P)$.

Przykład dla K = R

Przypadek 2:

Jeżeli $x_P = x_Q$ oraz $y_P = -y_Q$ (a zatem wtedy, gdy P = -Q), to suma tych punktów musi być elementem neutralnym O, czyli "punktem w nieskończoności".

Przykład dla K = R

Przypadek 3:

Jeżeli $x_P = x_Q$ oraz $y_P = y_Q$ (a zatem wtedy, gdy P = Q), to suma tych punktów jest wyznaczana jako punkt przeciwny do punktu S, w którym krzywą eliptyczną przecina prosta styczna do tej krzywej w punkcie P = Q.

Tak wyznaczony punkt R = P+Q określa się także jako R = 2P.

Przykład dla K = R

Przypadek szczególny

Jeżeli $x_{P'} = x_{Q'}$ zaś $y_{P''} = y_{Q'} = 0$ (w ciele K), to styczna przetnie krzywą w "punkcie w nieskończoności", a zatem w tym przypadku 2P = O(!!!).

Stosując "podwajanie" punktu i dodawanie punktów określa się mnożenie punktu przez skalar (liczbę całkowitą):

$$R = kP = (P + P + ... + P)$$
 (k składników sumy dla $k > 0$);
 $R = -kP = -(P + P + ... + P)$;
 $R = 0P = O$ ("punkt w nieskończoności").

Wprowadza się także pojęcie logarytmu dyskretnego na krzywej eliptycznej (*ECDL*):

jeżeli
$$R = kP$$
, to $log_P R = k$.

Tak, jak w każdej grupie, określa się rząd każdego punktu ord(P) jako najmniejszą liczbę k > 0, dla której kP = O, oraz generator grupy G, czyli punkt, dla którego ord(G) jest równy rzędowi grupy (liczbie punktów na krzywej).

Takich generatorów może być oczywiście w każdej grupie więcej niż jeden, albo grupa może nie posiadać żadnego generatora.

KRYPTOLOGIA

W kryptografii mają zastosowanie krzywe eliptyczne nad ciałami skończonymi F_p^m, dla których zaproponowano między innymi odpowiedniki algorytmów RSA, Diffiego-Hellmana, ElGamala i inne.

Podstawą ich konstrukcji jest konstatacja faktu, że odpowiednikiem operacji potęgowania w ciele skończonym F_p , jest operacja mnożenia przez stałą całkowitą punktów na krzywej eliptycznej E nad pewnym ciałem F_n^m :

$$\{y = x^k, \text{ gdzie } x, y \in F_p\} \leftrightarrow \{Q = kP, \text{ gdzie } P, Q \in E\}.$$

Wyznaczenie takich ciał o odpowiednio dużej liczbie punktów leżących na danej krzywej *E* nie jest zadaniem łatwym.

Z punktu widzenia zastosowań kryptograficznych "najciekawszymi" (jak dotąd) krzywymi eliptycznymi, czyli grupami addytywnymi, których elementami są punkty na krzywej, są:

- krzywe eliptyczne nad ciałem skończonym F_p, gdzie p jest liczbą pierwszą;
- krzywe eliptyczne nad ciałem skończonym F₂^m, gdzie m jest dowolną liczbą naturalną, czyli nad ciałem wielomianów stopnia (m-1) o współczynnikach z Z₂ (ze względu na reprezentację tych wielomianów przez m-bitowe ciągi binarne, krzywe te są atrakcyjne dla implementacji w "klasycznych" urządzeniach informatycznych).

LICZBA PUNKTÓW NA KRZYWEJ ELIPTYCZNEJ (1/4)

Ślad Frobeniusa

Dla krzywej eliptycznej nad ciałem F_p^m liczba punktów #(E) wynosi: #(E)= p^m+1-t ,

gdzie liczba t to tzw. ślad Frobeniusa dla $q = p^m$.

Twierdzenie Hasse'go 1

Dla krzywych eliptycznych *E* nad ciałem **GF(p)**, gdzie **p** jest liczbą pierwszą, rząd grupy *#(E)* spełnia zależność:

$$p+1-2\sqrt{p} \le \#\big(E\big) \le p+1+2\sqrt{p}$$

Twierdzenie Waterhouse'a 1

Każda liczba całkowita n z przedziału określonego w powyższym twierdzeniu jest rzędem pewnej grupy punktów na krzywej eliptycznej nad ciałem GF(p).

LICZBA PUNKTÓW NA KRZYWEJ ELIPTYCZNEJ (2/4)

Twierdzenie Hasse'go 2

Dla krzywych eliptycznych E nad ciałem $GF(2^m)$, gdzie m jest liczbą naturalną, rząd grupy #(E) spełnia zależność:

$$2^{m} + 1 - 2\sqrt{2^{m}} \le \#(E) \le 2^{m} + 1 + 2\sqrt{2^{m}}$$

Twierdzenie Waterhouse'a 2

Niech t będzie liczbą całkowitą spełniającą zależność $|t| \le 2\sqrt{2^m}$. Istnieje krzywa eliptyczna rzędu nad ciałem $GF(2^m)$ wtedy i tylko wtedy, gdy zachodzi jeden z poniższych warunków:

- 🚺 jest liczbą nieparzystą
- **m** jest liczbą nieparzystą i (t = 0 albo $t^2 = 2^{m+1}$)
- **m** jest liczbą parzystą i (t = 0 albo $t^2 = 2^{m+2}$ albo $t^2 = 2^m$)

LICZBA PUNKTÓW NA KRZYWEJ ELIPTYCZNEJ (3/4)

Twierdzenie Hasse'go 3

Dla krzywych eliptycznych *E* nad ciałem **GF(p^m)**, gdzie **p** jest liczbą pierwszą zaś **m** jest liczbą naturalną, rząd grupy *#(E)* spełnia zależność:

$$p^{\boldsymbol{m}} + 1 - 2\sqrt{p^{\boldsymbol{m}}} \le \#(E) \le p^{\boldsymbol{m}} + 1 + 2\sqrt{p^{\boldsymbol{m}}}$$

Twierdzenie Waterhouse'a 3

Niech t będzie liczbą całkowitą spełniającą zależność $|t| \le 2\sqrt{p^m}$. Istnieje krzywa eliptyczna rzędu $q=p^m+1-t$ nad ciałem $GF(p^m)$ wtedy i tylko wtedy, gdy zachodzi jeden z poniższych warunków:

- t jest liczbą nieparzystą
- m jest liczbą nieparzystą i (t = 0 albo ($t^2 = 2q$ i p = 2) albo ($t^2 = 3q$ i p = 3))
- m jest liczbą parzystą i ($(t = 0 \text{ i } p \neq 1 \mod 4)$ albo ($t^2 = q \text{ i } p \neq 1 \mod 3$) albo $t^2 = 4q$)

KRYPTOLOGIA

LICZBA PUNKTÓW NA KRZYWEJ ELIPTYCZNEJ (4/4)

Krzywa eliptyczna nad ciałem $GF(q=p^m)$, dla której $\#(E) = p^m+1-t$, nazywa się krzywą supersingularną wtedy, gdy $p \mid t$ (co jest równoważne warunkowi $\#(E) \equiv 1 \mod p$).

Z punktu widzenia "klasycznej" kryptografii krzywe supersingularne nie są bezpieczne i należy ich unikać w "klasycznych ECC" (natomiast takie krzywe są "przyjazne" z punktu widzenia systemów kryptograficznych wykorzystujących odwzorowania dwuliniowe – "pairings", tzw. PBC – Pairing Based Cryptosystems).

Krzywa eliptyczna nad ciałem $GF(q=p^m)$, dla której ślad Frobeniusa t wynosi 1 (wtedy #(E) = q), nazywa się krzywą anomalną.

Z punktu widzenia kryptografii krzywe anomalne nie są bezpieczne i należy ich unikać.

Dla punktu P należącego do grupy addytywnej punktów na krzywej eliptycznej E najmniejsza liczba całkowita n taka, że nP = O, jest rzędem tego punktu ord(P).

Z twierdzenia Lagrange'a wynika, że ord(P)|#(E).

Wartość h = #(E)/ord(P) określa się mianem kofaktora.

GRUPY PUNKTÓW NA KRZYWYCH ELIPTYCZNYCH NAD F_D (1/4)

Grupy te, to zbiory punktów P = (x, y) spełniających równanie:

$$y^2 \mod p = (x^3 + ax + b) \mod p$$
 $(x, y, a, b \in \mathbb{Z}_p),$ oraz punkt O "w nieskończoności".

Warunkiem istnienia grupy jest: $(4a^3 + 27b^2) \mod p \neq 0$.

Punktem "przeciwnym" do punktu P = (x, y) jest punkt (x, p - y).

Współrzędne punktu R = P + Q, gdzie $P \neq Q$ i $P \neq -Q$, a ponadto oba punkty są różne od punktu O, określane są następująco:

$$s = (y_P - y_O)(x_P - x_O)^{-1} \mod p$$

gdzie s jest nachyleniem prostej łączącej punkty P i Q;

$$x_R = s^2 - x_P - x_Q \mod p$$
,
 $y_R = -y_P + s (x_P - x_R) \mod p$.

GRUPY PUNKTÓW NA KRZYWYCH ELIPTYCZNYCH NAD F_D (2/4)

Współrzędne punktu R = 2P określane są następująco:

$$s = (3x_P^2 + a)(2y_P)^{-1} \mod p$$

gdzie s jest nachyleniem stycznej do krzywej w punkcie P;

$$x_R = s^2 - 2x_P \bmod p;$$

$$y_R = -y_P + s (x_P - x_R) \mod p$$
.

Przykłady krzywych eliptycznych nad F₂₃

Źródło: http://www.certicom.com/index.php/ecc-tutorial

GRUPY PUNKTÓW NA KRZYWYCH ELIPTYCZNYCH NAD F_p (3/4) Przykład dodawania punktów krzywej eliptycznej nad F₂₃

Źródło: http://www.certicom.com/index.php/ecc-tutorial

GRUPY PUNKTÓW NA KRZYWYCH ELIPTYCZNYCH NAD F_p (4/4)

Przykładowe praktycznie zalecane wartości parametrów dla krzywych eliptycznych nad $F_{\rm p}$ (FIPS 186-2)

```
P-224: p = 2^{224} - 2^{96} + 1, a = -3, h = 1
S = 0 \times BD713447 99D5C7FC DC45B59F A3B9AB8F 6A948BC5
r = 0 \times 50056 \text{C/R} 11DD68F4 0469EF7F 3C7A7D74 F7D12111 6506D031 218291FB
x = 0 \times B70E0CBD 6BB4BF7F 321390B9 4A03C1D3 56C21122 343280D6 115C1D21
v = 0x BD376388 B5F723FB 4C22DFE6 CD4375A0 5A074764 44D58199 85007E34
P-256: p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1, a = -3, h = 1
S = 0 \times C49D3608 86E70493 6A6678E1 139D26B7 819F7E90
b = 0x 5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6 3BCE3C3E 27D2604B
n = 0x pppppppp 00000000 pppppppp pppppppp pcp6paad a7179p84 p3p9cac2 pc632551
    0x 6B17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81 2DEB33A0 F4A13945 D898C296
v = 0x 4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE3357 6B315ECE CBB64068 37BF51F5
P-384: p = 2^{384} - 2^{128} - 2^{96} + 2^{32} - 1, a = -3, h = 1
S = 0 \times A335926 A A319A27 A 1D00896 A 6773A482 7ACDAC73
r = 0 \times 79 \text{D1E655} \text{ } \text{F868F02F } \text{FF48DCDE } \text{E14151DD } \text{B80643C1 } \text{406D0Ca1 } \text{0DFE6FC5 } \text{2009540a}
       495E8042 EA5F744F 6E184667 CC722483
b = 0 \times B3312 PA7 E23 EE7 E4 988 E056 BE3 P82 D19 181 D906 E FE81 4112 031 408 8 F 5013 875 A
       C656398D 8A2ED19D 2A85C8ED D3EC2AEF
       581a0DB2 48B0a77a ECEC196a CCC52973
x = 0x \text{ AA87CA22 BE8B0537 8EB1C71E } \text{F320AD74 6E1D3B62 8BA79B98 59F741E0 82542A38}
       5502F25D BF55296C 3A545E38 72760AB7
v = 0x 3617DE4A 96262C6F 5D9E98EF 9292DC29 F8F41DED 289A147C E9DA3113 B5F0B8C0
       0A60B1CE 1D7E819D 7A431D7C 90EA0E5F
```

- p liczba pierwsza określająca ciało F_p;
- S losowe "ziarno" wykorzystywane do generowania współczynników krzywej eliptycznej (zgodnie z algorytmem przedstawionym w ANSI X9.62);
- r "wyjście" SHA-1(zgodnie z tym samym algorytmem, co powyżej);
- a,b współczynniki krzywej eliptycznej y² = x³+ax+b, przy czym rb² ≡ a³(mod p);
- n rząd (liczba pierwsza) punktu bazowego P;
- h kofaktor;
- x, y współrzędne punktu P.

GRUPY PUNKTÓW NA KRZYWYCH ELIPTYCZNYCH NAD F₂^m (1/3)

Grupy te, to zbiory punktów P = (x, y) spełniających równanie:

$$y^2 + xy = x^3 + ax^2 + b$$
 $(x, y, a, b \in F_2^m, b \neq 0),$ oraz punkt O "w nieskończoności".

Istnieją dwie formy reprezentacji punktów na takich krzywych: wielomianowa i za pomocą optymalnej bazy normalnej.

Punktem "przeciwnym" do punktu P = (x, y) jest punkt (x, x + y).

Współrzędne punktu R = P + Q, gdzie $P \neq Q$ i $P \neq -Q$, a ponadto oba punkty są różne od punktu O, określane są następująco:

$$S = (y_P - y_O)(x_P + x_O)^{-1},$$

gdzie s jest nachyleniem prostej łączącej punkty P i Q;

$$X_R = S^2 + S + X_P + X_Q + a;$$

 $Y_R = S(X_P + X_R) + X_R + Y_P$

GRUPY PUNKTÓW NA KRZYWYCH ELIPTYCZNYCH NAD F₂^m (2/3)

Współrzędne punktu R = 2P, gdy $P \neq O$, określane są następująco:

$$S = X_P + Y_P(X_P)^{-1}$$

gdzie s jest nachyleniem stycznej do krzywej w punkcie P;

 $P(g^3, g^4)$

 $Q(g^{10}, g^9)$

 $R(g^{6}, g^{6})$

$$X_R = S^2 + S + a;$$

 $Y_R = X_P^2 + (S + 1) X_R.$

15 solutions

$$l = (y_p + y_Q) * (x_p + x_Q)^{-1}$$

$$= (g^4 + g^9) * (g^3 + g^{10})^{-1}$$

$$= g^{14} * g^{-12}$$

$$= g^2$$

$$x_R = l^2 + l + x_p + x_Q + a$$

$$= g^4 + g^2 + g^3 + g^{10} + g^2$$

$$= g^6$$

$$= g^{6}$$

$$y_{R} = l * (x_{p} + x_{R}) + x_{R} + y_{p}$$

$$= g^{2} * (g^{3} + g^{6}) + g^{6} + g^{4}$$

$$= g^{2} * g^{2} + g^{6} + g^{4}$$

$$P+Q=R=(g^6, g^6).$$

Poly Rep. $1 = (0\ 0\ 0\ 1)$ $g = (0\ 0\ 1\ 0)$ $g^2 = (0\ 1\ 0\ 0)$ $g^3 = (1\ 0\ 0\ 0)$ $g^4 = (0\ 0\ 1\ 1)$ $g^5 = (0\ 1\ 1\ 0)$ $g^6 = (1\ 1\ 0\ 0)$ $g^7 = (1\ 0\ 1\ 1)$ $g^8 = (0\ 1\ 0\ 1)$ $g^9 = (1\ 0\ 1\ 1)$

 $g^{11} = (1\ 1\ 1\ 0)$

 $g^{12} = (1\ 1\ 1\ 1)$

 $g^{13} = (1\ 1\ 0\ 1)$ $g^{14} = (1\ 0\ 0\ 1)$ Przykład krzywej eliptycznej nad F₂⁴

UWAGA: osie "wyskalowane" w potęgach generatora grupy multiplikatywnej ciała F₂⁴

Źródło: http://www.certicom.com/index.php/ecc-tutorial

GRUPY PUNKTÓW NA KRZYWYCH ELIPTYCZNYCH NAD F₂^m (3/3)

Przykładowe praktycznie zalecane wartości parametrów dla krzywych eliptycznych nad F₂^m (FIPS 186-2)

```
B-163: m = 163, f(z) = z^{163} + z^7 + z^6 + z^3 + 1, a = 1, h = 2
S = 0x85E25BFE 5C86226C DB12016F 7553F9D0 E693A268
          0x 00000004 00000000 00000000 000292FE 77E70C12 A4234C33
          0x 00000003 F0EBA162 86A2D57E A0991168 D4994637 E8343E36
          0x 00000000 D51FBC6C 71A0094F A2CDD545 B11C5C0C 797324F1
B-233: m = 233, f(z) = z^{233} + z^{74} + 1, a = 1, h = 2
S = 0 \times 74 D59 FF0 \ 7F6B413D \ 0EA14B34 \ 4B20A2DB \ 049B50C3
b = 0 \times 00000066 647 \text{EDE6C} 332 \text{C7F8C} 0923 \text{BB58} 213 \text{B333B} 20 \text{E9CE42} 81 \text{FE115F} 70 \text{8F90 AD}
m – stopień "rozszerzenia" ciała F<sub>2</sub><sup>m</sup>;
x = 0x 000000FA C9DFCBAC 8313BB21 39F1BB75 5FEF65BC 391F8B36 F8F8EB73 71FD558B
v = 0x 00000100 6A08A419 03350678 E58528BE BF8A0BEF F867A7CA 36716F7E 01F81052
                                                                                                                                                                                                                                     f (z) – wielomian "redukujący" stopnia m;
B-283: m = 283, f(z) = z^{283} + z^{12} + z^7 + z^5 + 1, a = 1, h = 2
S = 0 \times 77 \times 2 \times 073 \times 70 \times 074 \times 
                                                                                                                                                                                                                                     a,b – współczynniki krzywej eliptycznej
b = 0 \times 027B680A C8B8596D A5A4AF8A 19A0303F CA97FD76 45309FA2 A581485A F6263R3
                                                                                                                                                                                                                                      y^2 + xy = x^3 + ax^2 + b
                 3B79A2F5
n = 0 \times 03 ffffff ffffffff ffffffff fffffff 399660fc 938A9016 5B042A7c
                                                                                                                                                                                                                                     n – rząd (liczba pierwsza) punktu
x = 0x 05F93925 8DB7DD90 E1934F8C 70B0DFEC 2EED25B8 557EAC9C 80E2E198 F8CDBECD
                                                                                                                                                                                                                                      bazowego P;
                 86B12053
                                                                                                                                                                                                                                      h - kofaktor;
y = 0x 03676854 FE24141C B98FE6D4 B20D02B4 516FF702 350EDDB0 826779C8 13F0DF45
                                                                                                                                                                                                                                     x, y – współrzędne punktu P.
B-409: m = 409, f(z) = z^{409} + z^{87} + 1. a = 1. h = 2
S = 0 \times 4099 B5 A4 57 F9 D69 F 79213 D09 4 C4 B CD4 D 4262210 B
b = 0 \times 0021 \text{ASC2} C8EE9FEB 5C4B9A75 3B7B476B 7FD6422E F1F3DD67 4761FA99 D6AC27C8
                 A9A197B2 72822F6C D57A55AA 4F50AE31 7B13545F
F33307BE 5FA47C3C 9E052F83 8164CD37 D9A21173
x = 0 \times 015 \text{D4860 } \text{D088DDB3 } 496 \text{B0C60 } 64756260 \ 441 \text{CDE4A } \text{F1771D4D } \text{B01FFE5B } 34 \text{E59703}
                  DC255A86 8A118051 5603AEAB 60794E54 BB7996A7
v = 0 \times 0061 \text{B1CF} AB6EE5F3 2BBFA783 24ED106A 7636B9C5 A7BD198D 0158AA4F 5488D08
                  38514F1F DF4B4F40 D2181B36 81C364BA 0273C706
```

KRYPTOLOGIA

ALGORYTMY PODPISU DSA I ECDSA (1/2)

<u>Digital Signature Standard - DSS</u> (National Institute of Standards and Technology - NIST - 1991 r.)

Elliptic Curve Digital Signature Algorithm - EC-DSA

Generowanie kluczy:

Podmiot A wybiera:

- liczbę pierwszą q, mającą ok. 160 bitów (tak, jak wartości funkcji SHA-1);
- liczbę pierwszą p = 1 (mod 4), o długości od 512 do1024 bitów;
 (obecnie sugerowana jest długość ok. 1024 bitów oraz "dłuższe" funkcje skrótu:
 SHA-256, SHA-384, SHA-512, również q musi być wtedy odpowiednio większa)
- ${}^{\bullet}$ generator grzędu qjedynej podgrupy cyklicznej grupy ${\it \textbf{g}}^{*}_{p}$ taki, że:

 $g(p-1)/q \mod p \neq 1;$

(wynika to ze znanych ataków na system podpisu ElGamala)

• losową liczbę x ($\theta < x < q$), która będzie jego *kluczem prywatnym*, *kluczem publicznym* jest wtedy liczba $y \equiv g^{x} \pmod{p}$ oraz g, q i p.

Generowanie kluczy:

Podmiot A wybiera:

- krzywą eliptyczną E zdefiniowaną nad \mathfrak{Z}_p , gdzie p jest liczbą pierwszą; liczba punktów $E(\mathfrak{Z}_p)$ powinna być podzielna przez dużą liczbę pierwszą n;
- punkt P rzędu n należący do E;
- unikalną i "nieprzewidywalną" losową liczbę *d* należącą do **3****p*;
- ullet oblicza punkt Q=dP; kluczem prywatnym jest liczba d; kluczem publicznym są E, P, Q i n.

KRYPTOLOGIA

ALGORYTMY PODPISU DSA I ECDSA (2/2)

Podpisywanie:

• przekształca się wiadomość jawną m przez funkcję skrótu (SHA-x), uzyskując :

$$0 < h = f(m) < q;$$

• wybiera się pewną liczbę losową k ($0 \le k \le q$) i oblicza:

$$r = [g \ k \ mod \ p] \ mod \ q;$$

• wyznacza się liczbę:

$$s = [k-1(h + xr)] \mod q;$$

Podpisem jest para (r, s), a odbiorcy wysyła się (m, h, r, s).

Weryfikacja podpisu:

• oblicza się dwie wielkości :

$$u_1 = s^{-1}h \mod q$$
 i $u_2 = s^{-1}r \mod q$;

• jeżeli $[g \, u_1 \, y \, u_2 \, mod \, p \equiv r] \, mod \, q$ to uznaje się autentyczność podpisu.

Podpisywanie:

• przekształca się wiadomość jawną m przez funkcję skrótu, uzyskując :

$$h = SHA-x(m);$$

• wybiera się unikalną i "nieprzewidywalną" losową liczbę losową k ($0 \le k \le n-1$) i oblicza punkt kP = (x1, y1) oraz liczbę:

$$r = x1 \mod n \ (r \neq 0);$$

• wyznacza się liczbę $s = [k-1(h + dr)] \mod n \quad (s \neq 0);$

Podpisem jest para (r, s), a odbiorcy wysyła się (m, h, r, s).

Weryfikacja podpisu:

- oblicza się dwie wielkości : $u_1 = s^{-1} h \mod q$ i $u_2 = s^{-1} r \mod q$;
- wyznacza punkt $u_1P + u_2Q = (x0, y0)$ oraz liczbę $v = x0 \mod n$; jeżeli r = v, to uznaje się autentyczność podpisu.

Porównanie siły algorytmów w zależności od parametrów (1/2)

(Darrel Hankerson, Alfred Menezes, Scott Vanstone -Guide to Elliptic Curve Cryptography)

Poziom bezpieczeństwa (bity)										
	80	112	128	192	256					
	(SKIPJACK)	(3DES)	(AES-128)	(AES-192)	(AES-256)					
Parametr q DL	160	224	256	384	512					
Parametr <i>n</i> EC	160	224	256	384	512					
Moduł n RSA	1024	2048	3072	8192	15360					
Moduł p DL	1024	2048	3072	8192	15360					

W.Chocianowicz, T.Hyla - 2022/23 - Część 6

Porównanie siły algorytmów w zależności od parametrów (2/2)

(Ian Blake, Gadiel Seroussi, Nigel Smart - Krzywe eliptyczne w kryptografii)

1024 bity "konwencjonalne" - 173 bity "eliptyczne"
4096 bitów "konwencjonalnych" - 313 bitów "eliptycznych"

"BEZPIECZNE" KRZYWE ELIPTYCZNE

W wielu różnych normach *de facto* i *de jure* zaleca się zestaw krzywych eliptycznych "godnych zastosowania" w ECC, np.:

ANSI X9.62 (1999)

IEEE P1363 (2000)

NIST FIPS 186-2 (2000)

Informationstechnik

Brainpool – RFC 5639 (2005)

NSA Suite B (2005)

ANSSI FRP256V1 (2011)

LSECURI

ED STATES OF AMERI

Głównym celem "selekcjonerów" było zapewnienie, że na wskazanych krzywych problem wyznaczania logarytmu dyskretnego (ECDLP) jest trudnym problemem obliczeniowym.

Użyteczny link: https://safecurves.cr.yp.to

"BEZPIECZNE" KRZYWE ELIPTYCZNE (cd.)

Istnieje jednak "subtelna" różnica między trudnością ECDLP a bezpieczeństwem ECC.

Istnieje wiele ataków, które łamią realnie implementowane ECC bez rozwiązywania ECDLP. Podstawowym problemem jest to, że implementując zalecane w tych normach krzywe nie uwzględnia się faktu, że implementacja może:

- nieprawidłowo realizować obliczenia dla niektórych punktów na krzywych eliptycznych;
- powodować "wyciek" tajnych danych, gdy dane wejściowe nie są punktami krzywej;
- być podatna na "side-channels-attacks" (timing attacks, SPA, DPA, fault introduction/induction attacks, itp.);
- powodować "wyciek" tajnych danych z pamięci podręcznej (cache).

"BEZPIECZNE" KRZYWE ELIPTYCZNE (cd.)

												-
		Parameters:			ECDLP security:				ECC security:			
Curve	Safe?	<u>field</u>	<u>equation</u>	<u>base</u>	<u>rho</u>	<u>transfer</u>	disc	<u>rigid</u>	<u>ladder</u>	<u>twist</u>	complete	<u>ind</u>
Anomalous	False	True✓	True✓	True✓	True✓	False	False	True✓	False	False	False	False
M-221	True✓	True✓	True✓	True✓	True✓	True✓	True✓	True✓	True✓	True√	True✓	True✓
E-222	True✓	True✓	True✓	True✓	True✓	True✓	True✓	True 🗸	True✓	True✓	True✓	True✓
NIST P-224	False	True✓	True✓	True✓	True✓	True✓	True✓	False	False	False	False	False
Curve1174	True✓	True✓	True✓	True√	True✓	True✓	True✓	True✓	True✓	True√	True✓	True✓
Curve25519	True✓	True✓	True✓	True✓	True✓	True✓	True✓	True 🗸	True✓	True✓	True✓	True✓
BN(2,254)	False	True✓	True✓	True✓	True✓	False	False	True✓	False	False	False	False
brainpoolP256t1	False	True✓	True✓	True✓	True✓	True✓	True✓	True✓	False	False	False	False
ANSSI FRP256v1	False	True✓	True✓	True✓	True✓	True✓	True✓	False	False	False	False	False
NIST P-256	False	True✓	True✓	True✓	True✓	True✓	True✓	False	False	True✓	False	False
secp256k1	False	True✓	True✓	True✓	True✓	True✓	False	True✓	False	True✓	False	False
E-382	True✓	True✓	True✓	True✓	True✓	True✓	True✓	True✓	True✓	True√	True✓	True✓
M-383	True✓	True✓	True✓	True✓	True✓	True✓	True✓	True 🗸	True✓	True✓	True✓	True✓
Curve383187	True✓	True✓	True✓	True✓	True✓	True✓	True✓	True✓	True✓	True✓	True✓	True✓

Źródło: https://safecurves.cr.yp.to

ODWZOROWANIA DWULINIOWE - PAIRINGS (1/8)

Niech n będzie liczbą pierwszą, G₁ i G₂ addytywnymi grupami przemiennymi rzędu n, zaś G₃ multiplikatywną grupą cykliczną rzędu n. Odwzorowanie dwuliniowe/biliniowe (pairing):

$$e: G_1 \times G_2 \rightarrow G_3$$

jest odwzorowaniem o niżej wymienionych własnościach.

Dwuliniowość (Bilinearity):

$$e(P+P',Q) = e(P,Q)e(P',Q)$$
 $\forall P,P' \in G_1, Q \in G_2$

$$\forall P, P' \in G_1, Q \in G_2$$

$$e(P,Q+Q') = e(P,Q)e(P,Q')$$
 $\forall P \in G_1, Q,Q' \in G_2$

$$\forall P \in G_1, Q, Q' \in G_2$$

Niezdegenerowanie (*Non-Degeneracy*):

$$\forall P \neq O \land P \in G_1, \exists Q \in G_2 : e(P,Q) \neq 1.$$

$$\exists Q \in G_2$$

$$e(P,Q) \neq 1$$
.

$$\forall \quad Q \neq O \quad \land \quad Q \in G_2, \qquad \exists \quad P \in G_1 : \qquad e(P,Q) \neq 1.$$

$$Q \in G_2$$

$$\exists P \in G_1$$
 :

$$e(P,Q) \neq 1$$
.

ODWZOROWANIA DWULINIOWE - PAIRINGS (2/8)

1)
$$e(P,0) = e(0,Q) = 1$$

2)
$$e(-P,Q) = e(P,Q)^{-1} = e(P,-Q)$$

3)
$$e([a]P,Q) = e(P,Q)^a = e(P,[a]Q) \quad \forall \quad a \in \mathbb{Z}$$

4)
$$e([a]P,[b]Q) = e(P,Q)^{ab} \quad \forall a,b \in \mathbb{Z}$$

Z – zbiór liczb całkowitych

[x]P - (x-1)-krotne "dodawanie do siebie" elementu P $R^y - (y-1)$ -krotne "mnożenie przez siebie" elementu R

ODWZOROWANIA DWULINIOWE - PAIRINGS (3/8)

Wykorzystanie addytywnych grup punktów na krzywych eliptycznych do konstrukcji odwzorowań dwuliniowych

Niech *E* będzie krzywą eliptyczną nad F_{q.}

Niech *P* będzie ustalonym punktem rzędu *n* na tej krzywej, (*n* jest liczbą pierwszą).

Niech *k* będzie rzędem *q* mod *n*.

Wtedy k jest także najmniejszą liczbą całkowitą spełniającą warunek $n \mid (q^{k} - 1)$.

k jest nazywane stopniem osadzenia (embedding degree).

Odwzorowanie dwuliniowe będzie miało postać:

$$e:\langle P\rangle\times\langle P\rangle\rightarrow\mu_n\subseteq F_{q^k}^*$$

Ponadto wymaga się, by $e(P,P) \neq 1$.

ODWZOROWANIA DWULINIOWE - PAIRINGS (4/8)

Wykorzystanie addytywnych grup punktów na krzywych eliptycznych do konstrukcji odwzorowań dwuliniowych (cd.)

Przykładami odwzorowań dwuliniowych na krzywych eliptycznych są np. iloczyn Weil'a i iloczyn Tate'a.

Przy założeniu, że stopień osadzenia *k* jest mały, oba odwzorowania są łatwo obliczalne.

Dla losowych krzywych eliptycznych wykorzystywanych w "klasycznej" kryptografii stopień osadzenia $k \approx n$, czyli stanowczo zbyt duży.

<u>Twierdzenie</u>: Jeżeli *E* jest supersingularną krzywą eliptyczną, to stopień osadzenia $k \le 6$.

ODWZOROWANIA DWULINIOWE - PAIRINGS (5/8)

Wykorzystanie addytywnych grup punktów na krzywych eliptycznych do konstrukcji odwzorowań dwuliniowych (cd.)

"Kamienie milowe"

1988

Burt Kaliski w swojej pracy doktorskiej zastosował iloczyn Weila'a do konstrukcji generatora pseudolosowych ciągów binarnych.

1993

Alfred Menezes, Tatsuaki Okamoto i Scott Vanstone zastosowali iloczyn Weil'a sprowadzając atak na logarytm dyskretny na krzywych eliptycznych do ataku na logarytm dyskretny w grupie multiplikatywnej ciała GF(p^k).

Najlepsze algorytmy dla krzywych eliptycznych- $O(\sqrt{n})$. Najlepsze dla GF() – subwykładnicze (index calculus).

ODWZOROWANIA DWULINIOWE - PAIRINGS (6/8)

Wykorzystanie addytywnych grup punktów na krzywych eliptycznych do konstrukcji odwzorowań dwuliniowych (cd.)

"Kamienie milowe"

2000

Antoine Joux przedstawił trójstronny jednoprzebiegowy protokół uzgadniania sekretu.

- 1) Alice wysyła [a]P do Boba i Chrisa
- 2) Bob wysyła [b]P do Alice i Chrisa
- 3) Chris wysyła [c] P do Alice i Boba
- 4) Wszyscy mogą obliczyć klucz e(P,P)abc

(Na przykład: Alice oblicza $e([b]P,[c]P)^a$)

ODWZOROWANIA DWULINIOWE - PAIRINGS (7/8)

Wykorzystanie addytywnych grup punktów na krzywych eliptycznych do konstrukcji odwzorowań dwuliniowych (cd.)

"Kamienie milowe"

2001

Dan Boneh, Ben Lynn i Hovav Schacham przedstawiają schemat krótkich podpisów cyfrowych.

Parametry: E,e,P oraz funkcja skrótu $H_1:\{0,1\}^m \to \langle P \rangle$.

"Setup": Kluczem prywatnym jest liczba całkowita r.

Kluczem publicznym jest R = [r]P.

Podpisywanie wiadomości M: $S = [r]H_1(M)$.

Weryfikacja podpisu: sprawdzenie, czy $e(P, S) = e(R, H_1(M))$.

Uzasadnienie poprawności weryfikacji:

 $e(P, S) = e(P, [r]H_1(M)) = e([r]P,H_1(M)) = e(R,H_1(M))$

ODWZOROWANIA DWULINIOWE - PAIRINGS (8/8)

Wykorzystanie addytywnych grup punktów na krzywych eliptycznych do konstrukcji odwzorowań dwuliniowych (cd.)

"Kamienie milowe"

2001

Dan Boneh i Franklin przedstawiają schemat szyfrowania oparty na tożsamości (IBE – Identity Based Encryption).

Parametry: E, P, e i dwie funkcje skrótu: $H_1: \{0,1\}^m \rightarrow \langle P \rangle$

$$H_2: \mathcal{F}_{q^k} \to \{0,1\}^m$$

"Setup": Klucz publiczny Alice $K_{\Delta} = H_1(ID_{\Delta})$.

TA (Trusted Authority) ma klucz prywatny s i klucz publiczny S=[s]P.

TA przekazuje Alice jej tajny klucz deszyfrujący $D_A = [s]K_A$.

Szyfrowanie: W celu zaszyfrowania wiadomości M Bob wybiera losową wartość r i oblicza R = [r]P oraz $c = M \oplus H_2(e(K_A, S)^r)$. Wysyła Alice (R, c).

Deszyfrowanie: Alice wykorzystując swój klucz prywatny DA oblicza

 $c \oplus H_2(e(D_A,R)) = c \oplus H_2(e([s]K_A,[r]P)) = c \oplus H_2(e(K_A,S)^r) = M.$

Koniec części 6

