Se S_i gera $W_i, i \in \mathbb{N}_n$, mostre que $\bigcup_{i=1}^n S_i$ gera $\sum_{i=1}^n W_i$.

 S_1 gera W_1 . (I)

Vamos supor que $\bigcup_{i=1}^p S_i$ gera $\sum_{i=1}^p W_i$, p < n, mostremos que $\bigcup_{i=1}^{p+1} S_i$ gera $\sum_{i=1}^{p+1} W_i$

Seja w um elemento de $\sum_{i=1}^{p} W_i$.

Se w' é um elemento de W_{p+1} , w + w' é um elemento de $\sum_{i=1}^{p+1} W_i$.

w+w' é uma combinação linear de $\bigcup_{i=1}^p S_i$ e S_{p+1} , logo combinação linear de $\bigcup_{i=1}^{p+1} S_i$. (II)

Com (I) e (II), por indução finita, provamos.

 $Quod\ Erat\ Demonstrandum.$

Documento compilado em Thursday 13th March, 2025, 20:40, tempo no servidor.

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

Licença de uso: $\bigoplus_{\text{BY}} \bigotimes_{\text{NC}} \bigcirc_{\text{SA}}$ Atribuição-Não Comercial-Compartilha
Igual (CC BY-NC-SA).