SUPERVISED MACHINE LEARNING: REGRESSION

MODULE1:

INTRODUCTION TO SUPERVISED MACHINE LEARNING AND LINEAR REGRESSION

TABLE OF CONTENTS

Introduction to Supervised Machine Learning	
Models and Parameters	2
Training a Model	3
Trade-off: Interpretation vs Prediction	
Linear Regression	4
Implementation in Python (scikit-learn)	
Data Transformations	
Key Takeaways	8

Introduction to Supervised Machine Learning

- Machine Learning (ML) enables computers to learn from data instead of being explicitly programmed.
- Unlike traditional statistical models (where we often know the data-generating process), ML deals with complex or unknown processes.
- ML is a subset of **Artificial Intelligence (AI)**, focusing on **learning ability**.

Two main types of Supervised Learning:

- **Regression**: predicts a **continuous variable** (e.g., house prices, movie revenue).
- Classification: predicts a categorical variable (e.g., churn, spam detection, face recognition).

Models and Parameters

• **Model**: a simplified representation of reality that captures important relationships.

Concept	Definition	Example
Variable	A symbol or placeholder representing data values.	x_1, x_2, y
Coefficient	A numeric value that represents the weight/strength of a feature's impact on the target.	β1,β2
Argument	A concrete value passed into a function or model.	$f(3) \rightarrow 3$ is argument
Parameter	Quantities the model learns from data, define how the model maps inputs to outputs.	coefficients β
Hyperpara meter	Settings chosen before training, which control the model's structure or learning process.	<pre>learning_rate=0. 01, epochs=50</pre>

Training a Model

- 1. Collect labeled data (X,y)(X,y)(X,y).
- 2. Split into **training** and **testing** sets to prevent overfitting.
- 3. Train the model by finding parameters that minimize the **loss function**

General formula:

$$y_p = f(\Omega, x)$$

where Ω are learned parameters.

- Loss function: $J(y, \hat{y})$ measures the error between predictions and actual values.
- Example (linear regression):

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2$$

Trade-off: Interpretation vs Prediction

- **Interpretation**: explain model + feature impact (sales drivers, safety, marketing).
- **Prediction**: maximize accuracy, accept black-box models (churn, defaults, purchases).
- **Trade-off**: balance depends on business goals; both can complement each other.
- Examples:
 - \circ Housing prices \rightarrow interpret feature importance vs predict prices.
 - \circ Customer churn \rightarrow understand reasons vs predict who leaves.

Linear Regression

• Model:

$$y_{\beta}(x) = \beta_0 + \beta_1 x$$

• Sum of Square Error (SSE):

$$\sum_{i=1}^{m} \left(y_{\beta}(x^{(i)}) - y_{obs}^{(i)} \right)^{2}$$

• Total Sum of Squares (TSS):

$$\sum_{i=1}^{m} \left(\overline{y_{obs}} - y_{obs}^{(i)} \right)^2$$

• Coefficient of Determination (R2):

$$1 - \frac{SSE}{TSS}$$

Implementation in Python (scikit-learn)

Import libraries

```
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
```

• Split train and test set

```
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=42)
```

• Train model

```
lr = LinearRegression()
lr.fit(X_train, y_train)
```

Predict

```
y_pred = lr.predict(X_test)
```

Evaluate

```
print("R2:", r2_score(y_test, y_pred))
```

Data Transformations

- To improve target distribution, common transformations include:
 - Log transform: y'=log(y+1)

• Square root transform: $y'=\sqrt{(y+c)}$

• **Box-Cox transform** (chooses optimal λ automatically)

- Example with Box-Cox:
 - o Import libraries

from scipy.stats import boxcox
from scipy.special import inv_boxcox

o Transform target variable

y_train_bc, lam = boxcox(y_train)

• Inverse transform predictions

y_pred = inv_boxcox(y_pred_bc, lam)

Key Takeaways

- Machine Learning: a subset of AI that learns from data.
- Supervised Learning:
 - **Regression** → predicts numbers (continuous).
 - \circ Classification \rightarrow predicts categories.
- Concept:
 - Variable
 - Coefficient
 - Argument
 - o Parameter
 - o Hyperparameter
- Train/Test Split: needed to avoid overfitting.
- Interpretation vs Prediction: trade-off between explainability and accuracy.
- Linear Regression: basic supervised model, minimizes MSE.
- R² Score: measures how much variance the model explains.
- Transformations: log, sqrt, Box-Cox.
- Python (scikit-learn): simple tools for training, predicting, evaluating.