

Art of Problem Solving 2007 Iran MO (2nd Round)

National Math Olympiad (Second Round) 2007

Day 1	
1	In triangle ABC , $\angle A = 90^{\circ}$ and M is the midpoint of BC . Point D is chosen on segment AC such that $AM = AD$ and P is the second meet point of the circumcircles of triangles ΔAMC , ΔBDC . Prove that the line CP bisects $\angle ACB$.
2	Two vertices of a cube are A, O such that AO is the diagonal of one its faces. A n -run is a sequence of $n+1$ vertices of the cube such that each 2 consecutive vertices in the sequence are 2 ends of one side of the cube. Is the 1386—runs from O to itself less than 1386—runs from O to A or more than it?
3	In a city, there are some buildings. We say the building A is dominant to the building B if the line that connects upside of A to upside of B makes an angle more than 45° with earth. We want to make a building in a given location. Suppose none of the buildings are dominant to each other. Prove that we can make the building with a height such that again, none of the buildings are dominant to each other. (Suppose the city as a horizontal plain and each building as a perpendicular line to the plain.)
Day 2	
1	Prove that for every positive integer n , there exist n positive integers such that the sum of them is a perfect square and the product of them is a perfect cube.
2	Tow circles C, D are exterior tangent to each other at point P . Point A is in the circle C . We draw 2 tangents AM, AN from A to the circle D (M, N) are the tangency points.). The second meet points of AM, AN with C are E, F, F respectively. Prove that $\frac{PE}{PF} = \frac{ME}{NF}$.
3	Farhad has made a machine. When the machine starts, it prints some special numbers. The property of this machine is that for every positive integer n , it prints exactly one of the numbers $n, 2n, 3n$. We know that the machine prints 2. Prove that it doesn't print 13824.

www.artofproblemsolving.com/community/c3891

Contributors: sororak