Nome:	Nº:

Universidade de Coimbra

Multimédia (LEI)

5 de Junho de 2018 Prova de Avaliação

Duração: 2h30

N

lo	tas prévias: 1) Exame com consulta restringida: apend 2) Não são permitidos meios electrónicos 3) Qualquer tentativa de fraude conduziro 4) Escolha múltipla: as respostas erradas 5) As cotações das questões poderão sofre	(computador, etc.). á à anulação da prove s subtraem 25% da c	a para todos os int cotação da pergur	tervenientes. nta.
1.	(2.5%) Na fase de design de projectos multir ☐ um conjunto de textos narrando a história ☐ o layout detalhado de cada ecrã da aplicaçã ☐ o layout genérico de cada ecrã da aplicaçã ☐ o layout genérico de cada ecrã da aplicaçã ☐ nenhuma das anteriores	a de uma animação ção, com notas de des ío, sem notas de desi	sign gn	
2.	(2.5%) Em ECMAScript 2015, qual o evento ☐ "videoended" ☐ "videostopped" ☐		rodução de um vi □ "ended"	deo chega ao fim? □ "videoover"
3.	(5%) No exemplo abaixo (código HTML e EC a largura da mesma. O código ECMAScript indicado erro no inspector do browser. Caso test.html: html <html> <head></head></html>	<pre>t contém algum erro contrário escolha a test.js: main(); function main() { var img = docu img.addEventLi } function imgClickHa { ev.currentTarg console.log(ev.) }</pre>	o? Se sim, selecci opção "não há ne: mment.getElementBy stener("click", in midler(ev) get.width *= 2; trarget);	one a linha onde será nhum erro". yId("img"); imgClickHandler);
1.	(2.5%) No codec JPEG, em que canal(ais) é r ☐ Y. Opcional. ☐ Cb e Cr. Opcional. ☐ Cb e Cr. Obrigatória.	ealizada a sub-amost		ória ou opcional?
5.	(2.5%) Com o objectivo de arquivar fotogra ser usado? Escolha a melhor opção. □ JPEG □ PNG □ SV	ifias para memória h	istórica, qual dos	seguintes codecs <u>deve</u>

6.	(2.5% ☐ MJF ☐ MP	PEG	frames B podem servir de referência a outras frames no codec: ☐ Em toda a família MPEG ☐ MPEG-2 e MPEG-4 ☐ MPEG-4								5-4 AV	′C						
7.	(2.5%) Na designação de vídeo com notação:						om q	n qualidade HD standard (<u>não</u> Full HD), utiliza-se habitualmento						nente a				
	□ 57 <i>€</i>				720p			1280)p		l 1080	p	[□ 216	0p			
8.	8. (2.5%) Na compressão destrutiva de áudio, qual o mecanismo utilizado pelo codec mp3 na ge					estão	do pré-											
	eco? □ Temporal Noise Shaping □ Long Term Prediction							☐ Perceptual Noise Substitution☐ Não há nenhum mecanismo par					<u>=</u>					
9.	(2.5%) No codec AAC, a análise em frequência é feita com recurso a que transformada? □ DFT □ MDCT, após filtragem passa-banda □ MDCT, sem filtragem passa-band □ DCT, após filtragem passa-banda								ı-banda									
10.							tativa	da coi	r HSB c	om H	= 165°	$S = \epsilon$	66.679	%, B =	30%,	segur	ndo o	modelo
	de cor □ R = □ R =	38, G	G = 77	B = 2	5	?			25, G = 25, G =				[□ R =	64, G	= 77,	B = 38	3
11.	caract	erísti ão da	icas: 2	25 fps, ca em	resol	lução 1? Con	Ultra sidere	HD, b	itrate (1000.	de 40		e con		ensão		a 80		guintes . Qual a
12.	Pictur stream	es) é ning,	deter o qua	minac l corre	da pel ompei ia frar	os pai u total	âmet ment causa	ros <i>M</i> e a seg	= 4 e <i>l</i>	V = 12 frame com a	, ocori P do G	reu ur GOP. Ç	n erro Juanta	na tr	ansm nes fic	issão carão	de da corro	roup of idos via mpidas ores
13.	. (5%) ı	está	para (CoreP	NG	[⊐ MPI		está pai está pa				□ M	PEG-4	· AVC	está p	ara C	orePNG
14.	a qual	repr z <i>Q</i> (esent abaix	a a DC o, dir	CT par eita).	ra o ca Qual	anal Y o err	. Poste o na	eriorm desco	ente, e	esses o	coefic	ientes	forar	n qua	ntizao	dos us	uerda), sando a la DCT,
	Y_{DCT} =	= 165	45	1	-6	3	-2	4	3	Q =	16	11	10	16	24	40	51	61
		-5	14	-2	3	-3	1	1	2	-	12	12	14	19	26	58	60	55
	-	14	-1	3	-2	-2	-1	-1	2	1	14	13	16	24	40	57	69	56
	=	0	2	-1	-1	1	-1	0	1		14	17	22	29	51	87	80	62
	=	4	0	0	1	0	1	-2	-1		18	22	37	56	68	109	103	77
		0	1	-2	-1	0	0	0	1		24	35	55	64	81	104	113	92
		0	0	-1	1	2	1	1	0		49	64	78	87	103	121	120	101
	Ĺ	-1	-1	-1	-2	0	-1	0	0		72	92	95	98	112	100	103	99
	□ 4, 0	, 1		□ -4	, 1, 0			1 , 0,	-5	I	□ 1, -5	5, 0] 1, 5,	1		
15.	-	-				-			_	-					-		-	n = 1, 2, o é dado

pela **equação** $x_p[n+1] = a_1x[n] + a_2x[n-1](x_p[n+1])$ é o valor previsto para a amostra x[n+1]; e que os

 $\Box a_1 = 1/2, a_2 = 3/2$

resíduos e[n], n = 4, 5 são $\{1, -1\}$, quais os valores dos coeficientes do modelo de previsão, a_1 e a_2 ? $\Box \ a_1 = 3/4, a_2 = -1/4 \quad \Box \ a_1 = 0, a_2 = 1 \quad \Box \ a_1 = -2/3, a_2 = 4/3$

 $\Box a_1 = 1, a_2 = 0$

16. (2.5%) Um diagrama de navegação pode ser estruturado de forma a apresentar o mapa de navegação de acordo com a navegação real do utilizador. Como se designa essa forma de estruturação?
17. (5%) Na gestão de projectos, em que consiste um diagrama de Gantt? Que informação deve conter?
18. (5%) Qual o efeito <u>audível</u> de baixar o número de bits de quantização no armazenamento de música em formato digital?
19. (7.5%) No família MPEG, de que forma são codificados os vectores de movimento? Porquê?
20. (10%) Uma dada imagem contém a sequência de bytes indicada abaixo. Sabendo que a imagem será codificada segundo o codec PNG e que {x1, x2, x3} = {230, 30, 200}, qual o impacto de se utilizar o modelo de previsão Sub na codificação de x1, x2 e x3? 150 178 139 201 100 x1 x2 x3
21. (10%) Imagine que criou uma imagem que representa um tabuleiro de xadrez. O tabuleiro consiste numa grelha de 8x8 quadrados pretos e brancos, em alternância (todos com a mesma dimensão). A dimensão total da imagem é de 280x280. Sabendo que deseja gravar a imagem como mapa de bits, qual será o codec mais adequado para a representar? Justifique.

CONSULTA

- HTML: manipulação dinâmica do conteúdo HTML, estilos, etc. → utilização da DOM (Document Object Model)
- HTML5 canvas: modos de operação
 - o Modo imediato e modo retido

• Conversão RGB → HSB

RGB \in [0,1], H \in [0 $^{\circ}$, 360 $^{\circ}$], S \in [0, 1], V \in [0, 1]

$$h = \begin{cases} 0 & \text{if } \max = \min \\ 60^{\circ} \times \frac{g - b}{\max - \min} + 0^{\circ}, & \text{if } \max = r \text{ and } g \ge b \\ 60^{\circ} \times \frac{g - b}{\max - \min} + 360^{\circ}, & \text{if } \max = r \text{ and } g < b \\ 60^{\circ} \times \frac{b - r}{\max - \min} + 120^{\circ}, & \text{if } \max = g \\ 60^{\circ} \times \frac{r - g}{\max - \min} + 240^{\circ}, & \text{if } \max = b \end{cases}$$

$$s = \begin{cases} 0, & \text{if } \max = 0\\ \frac{\max - \min}{\max} = 1 - \frac{\min}{\max}, & \text{otherwise} \end{cases} \quad v = \max$$

• Conversão HSB → RGB

 $H \in [0^{\circ}, 360^{\circ}], S \in [0, 1], V \in [0, 1], RGB \in [0, 1]$

$$H_{i} = \left\lfloor \frac{H}{60} \right\rfloor \mod 6$$

$$f = \frac{H}{60} - H_{i}$$

$$p = V(1 - S)$$

$$q = V(1 - fS)$$

$$t = V(1 - (1 - f)S)$$
if $H_{i} = 0 \rightarrow R = V, G = t, B = p$
if $H_{i} = 1 \rightarrow R = q, G = V, B = p$
if $H_{i} = 2 \rightarrow R = p, G = V, B = t$
if $H_{i} = 3 \rightarrow R = p, G = q, B = V$
if $H_{i} = 4 \rightarrow R = t, G = p, B = V$
if $H_{i} = 5 \rightarrow R = V, G = p, B = q$

• Conversão CMYK→RGB e RGB→YCbCr

$$Y = 0.3R + 0.6G + 0.1B$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} C \\ M \\ Y \end{bmatrix}$$

$$Cb = \frac{B-Y}{2} + 0.5$$

$$Cr = \frac{R-Y}{1.6} + 0.5$$

• Profundidade de cor

True color = 24 bits, high color = 16 bits

• JPEG: sub-amostragem

- Notação = Yref : factor Cr: factor Cb
 - Referência para a amostragem horizontal
 - Factor horizontal (em relação ao 1º dígito)
 - Factor horizontal (em relação ao 1º dígito), excepto quando é 0 (igual ao 2º dígito e Cr e Cb são ambos subamostrados 2:1 na vertical)
- JPEG: DCT em blocos 8x8, quantização dos coeficientes da DCT
- JPEG: Codificação Diferencial do Coeficiente DC

 $DIFF = DC_i - DC_{i-1}$

 JPEG: Codificação entrópica dos restantes 63 coeficientes

 GIF: palete de 256 cores, transparência de índice

• PNG: modelos de previsão

			·
Bytes	Туре	Name	Filter Function
СВ	0	None	Filt(x) = Orig(x)
a x	1	Sub	Filt(x) = Orig(x) - Orig(a)
	2	Up	Filt(x) = Orig(x) - Orig(b)
	3	Average	<pre>Filt(x) = Orig(x) - floor((Orig(a) + Orig(b)) / 2)</pre>
	4		<pre>Filt(x) = Orig(x) - PaethPredictor(Orig(a), Orig(b), Orig(c))</pre>

p = a + b - c
pa = abs(p - a)
pb = abs(p - b)
pc = abs(p - c)
if pa <= pb and pa <= pc then Pr = a
else if pb <= pc then Pr = b
else Pr = c
return Pr</pre>

PNG: transparência alfa

CONSULTA

- Qualidade de CD: fs ≥ 44100 Hz, 16 bits, stereo
- FLAC: codificação mid-side
- FLAC: modelos de previsão (até à ordem 32)

$$e[n] = x[n] - Q\left\{ \sum_{k=1}^{M} \hat{a}_k x[n-k] - \sum_{k=1}^{N} \hat{b}_k e[n-k] \right\}$$

- FLAC: codificação mid-side
- mp3: bitrate típica=128kbps, máxima=320kbps
- mp3: nr. de canais = stereo ou 5.1
- mp3: janelas de 1152 amostras por canal
- mp3: filtragem passa-banda = 32 bandas
- mp3: MDCT aplicada ao resultado de cada filtro
- mp3: mascaragem de sons
- mp3: joint stereo: intensity stereo ou mid-side
- AAC: MDCT pura
- AAC: algumas melhorias face ao mp3
 - o Temporal Noise Shaping
 - o Perceptual Noise Substitution
 - o Long-Term Prediction
- Vídeo: codecs lossless
 - CorePNG, FFV1, HuffYUV, Lagarith, SheerVideo, ...
- MPEG-1: macroblocos 16x16
- MPEG-1: modelo de cor YUV

 MPEG-1: resíduos e compensação de movimento, codificação de vectores de movimento, análise no canal de luminância

- MPEG-1: GOP típico IBBBPBBBBBBBI...
 (M=4, N = 12)
- MPEG-1: bitrate aproximada ≤ 1.5 Mbps
- MPEG-2: algumas melhorias face ao MPEG-1
 - precisão nos vectores de movimento (1/2 pixel)
 - Precisão seleccionável na DCT (até 10 bits de quantização)
 - o Escalabilidade: Scalable video coding
- MPEG-2: bitrate aproximada ≤ 15 Mbps
- MPEG-4 Part 2 (ASP Advanced Simple Profile)
- MPEG-4 ASP: alg. melhorias face ao MPEG-2
 - o Global motion compensation
 - Qpel (quarter pixel motion compensation)
- MPEG-4 Part 10 (AVC Advanced Video Coding)
- MPEG-4 AVC: alg. melhorias face ao MPEG-2
 - Compensação de movimento: até 16 frames de referência nas frames P
 - Blocos de dimensão variável (4x4 a 16x16)
 - Vários vectores por macro-bloco
 - Qpel
 - Frames B podem servir de referência a outras