Basic Electronic Circuits (IEC-103)

Lecture-17

Transistor Biasing Circuits

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC}$$

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC}$$

$$V_E = V_B - 0.7 V$$

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC}$$

$$V_E = V_B - 0.7 V$$

$$I_E = \frac{V_E}{R_E}$$

Assume that $I_2 > 10I_{B^{\bullet}}$

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC}$$

$$V_E = V_B - 0.7 V$$

$$I_E = \frac{V_E}{R_E}$$

Assume that $I_{CQ} \cong I_E$ (or $h_{FE} >> 1$). Then

Assume that $I_2 > 10I_{B^{\bullet}}$

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC}$$

$$V_E = V_B - 0.7 V$$

$$I_E = \frac{V_E}{R_E}$$

Assume that $I_{CQ} \cong I_E$ (or $h_{FE} >> 1$). Then

$$V_{CEQ} = V_{CC} - I_{CQ} \left(R_C + R_E \right)$$

Which value of h_{FE} to use?

Transistor specification sheet may list any combination of the following h_{FE} : max. h_{FE} , min. h_{FE} , or typ. h_{FE} . Use typical value if there is one. Otherwise, use

Which value of h_{FE} to use?

Transistor specification sheet may list any combination of the following h_{FE} : max. h_{FE} , min. h_{FE} , or typ. h_{FE} . Use typical value if there is one. Otherwise, use

$$h_{FE(\text{ave})} = \sqrt{h_{FE(\text{min})} \times h_{FE(\text{max})}}$$

The Q-point of voltage divider bias circuit is less dependent on h_{FE} than that of the base bias (fixed bias).

The Q-point of voltage divider bias circuit is less dependent on h_{FE} than that of the base bias (fixed bias).

For example, if I_E is exactly $10~\mathrm{mA}$, the range of h_{FE} is $100~\mathrm{to}~300$. Then

The Q-point of voltage divider bias circuit is less dependent on h_{FE} than that of the base bias (fixed bias).

For example, if I_E is exactly $10~\mathrm{mA}$, the range of h_{FE} is $100~\mathrm{to}~300$. Then

At
$$h_{FE} = 100$$
, $I_B = \frac{I_E}{h_{FE} + 1} = \frac{10 \text{mA}}{101} \cong 100 \mu\text{A}$ and $I_{CQ} = I_E - I_B \cong 9.90 \text{mA}$

The Q-point of voltage divider bias circuit is less dependent on h_{FE} than that of the base bias (fixed bias).

For example, if I_E is exactly $10~\mathrm{mA}$, the range of h_{FE} is $100~\mathrm{to}~300$. Then

At
$$h_{FE} = 100$$
, $I_B = \frac{I_E}{h_{FE} + 1} = \frac{10 \text{mA}}{101} \cong 100 \mu\text{A}$ and $I_{CQ} = I_E - I_B \cong 9.90 \text{mA}$

At
$$h_{FE} = 300$$
, $I_B = \frac{I_E}{h_{FE} + 1} = \frac{10 \text{mA}}{301} \cong 33 \mu\text{A}$ and $I_{CQ} = I_E - I_B \cong 9.97 \text{mA}$

Load Line for Voltage Divider Bias

Circuit values are from previous example

Load Line for Voltage Divider Bias

Circuit values are from previous example

Load Line for Voltage Divider Bias

Circuit values are from previous example

Circuit recognition: The voltage divider in the base circuit.

Circuit recognition: The voltage divider in the base circuit.

Advantages: The circuit Q-point values are stable against changes in h_{FF} .

Disadvantages: Requires more components than most other biasing circuits.

Applications: Used primarily to bias linear amplifier.

Load line equations:

Load line equations:

$$I_{C(\text{sat})} = \frac{V_{CC}}{R_C + R_E}$$
$$V_{CE(\text{off})} = V_{CC}$$

Load line equations:

$$I_{C(\text{sat})} = \frac{V_{CC}}{R_C + R_E}$$
$$V_{CE(\text{off})} = V_{CC}$$

Q-point equations (assume that $h_{FE}R_E > 10R_2$)

Load line equations:

$$I_{C(\text{sat})} = \frac{V_{CC}}{R_C + R_E}$$
$$V_{CE(\text{off})} = V_{CC}$$

Q-point equations (assume that $h_{FE}R_E > 10R_2$)

$$\begin{aligned} V_B &= V_{CC} \, \frac{R_2}{R_1 + R_2} \\ V_E &= V_B - 0.7 \, \mathrm{V} \\ I_{CQ} &\cong I_E = \frac{V_E}{R_E} \\ V_{CEQ} &= V_{CC} - I_{CQ} \left(R_C + R_E \right) \end{aligned}$$

Other Transistor Biasing Circuits

- Emitter Bias Circuits
- □ Feedback Bias Circuits
 - Collector Feedback Bias
 - Emitter Feedback Bias

$$I_{B} = \frac{V_{EE} - 0.7V}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_{B} = \frac{V_{EE} - 0.7V}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_C = h_{FE}I_B$$

$$I_{B} = \frac{V_{EE} - 0.7V}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_C = h_{FE}I_B$$

$$I_E = (h_{FE} + 1)I_B$$

$$I_{B} = \frac{V_{EE} - 0.7V}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_C = h_{FE}I_B$$

$$I_E = (h_{FE} + 1)I_B$$

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E + V_{EE}$$

Assume that the transistor operation is in active region.

$$I_{B} = \frac{V_{EE} - 0.7V}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_C = h_{FE}I_B$$

$$I_E = (h_{FE} + 1)I_B$$

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E + V_{EE}$$

Assume that $h_{FE}>>1$.

Assume that the transistor operation is in active region.

$$I_{B} = \frac{V_{EE} - 0.7V}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_C = h_{FE}I_B$$

$$I_E = (h_{FE} + 1)I_B$$

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E + V_{EE}$$

Assume that $h_{FE} >> 1$.

$$V_{CE} \cong V_{CC} - I_C \left(R_C + R_E \right) + V_{EE}$$

Load Line for Emitter Bias Circuit

Load Line for Emitter Bias Circuit

$$I_{C(\text{sat})} = \frac{V_{CC} - (-V_{EE})}{R_C + R_E} = \frac{V_{CC} + V_{EE}}{R_C + R_E}$$

Load Line for Emitter Bias Circuit

$$I_{C(\text{sat})} = \frac{V_{CC} - (-V_{EE})}{R_C + R_E} = \frac{V_{CC} + V_{EE}}{R_C + R_E}$$

$$V_{CE(off)} = V_{CC} - \left(-V_{EE}\right) = V_{CC} + V_{EE}$$

Circuit recognition: A split (dual-polairty) power supply and the base resistor is connected to ground.

Circuit recognition: A split (dual-polairty) power supply and the base resistor is connected to ground.

Advantage: The circuit Q-point values are stable against changes in h_{FE} .

Disadvantage: Requires the use of dual-polarity power supply.

Applications: Used primarily to bias linear amplifiers.

Load line equations:

Load line equations:

$$I_{C(\text{sat})} = \frac{V_{CC} + V_{EE}}{R_C + R_E}$$
$$V_{CE(\text{off})} = V_{CC} + V_{EE}$$

Load line equations:

$$I_{C(\text{sat})} = \frac{V_{CC} + V_{EE}}{R_C + R_E}$$
$$V_{CE(\text{off})} = V_{CC} + V_{EE}$$

Q-point equations:

Load line equations:

$$I_{C(\text{sat})} = \frac{V_{CC} + V_{EE}}{R_C + R_E}$$
$$V_{CE(\text{off})} = V_{CC} + V_{EE}$$

Q-point equations:

$$I_{CQ} = (h_{FE}) \frac{-V_{BE} + V_{EE}}{R_B + (h_{FE} + 1)R_E}$$

$$V_{CEQ} \cong V_{CC} - I_{CQ} (R_C + R_E) + V_{EE}$$

$$V_{CC} = (I_C + I_B)R_C + I_BR_B + V_{BE}$$

$$V_{CC} = (I_C + I_B)R_C + I_BR_B + V_{BE}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{(h_{FE} + 1)R_{C} + R_{B}}$$

$$V_{CC} = (I_C + I_B)R_C + I_BR_B + V_{BE}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{(h_{FE} + 1)R_{C} + R_{B}}$$

$$I_{CQ} = h_{FE}I_B$$

$$V_{CC} = (I_C + I_B)R_C + I_BR_B + V_{BE}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{(h_{FE} + 1)R_{C} + R_{B}}$$

$$I_{CO} = h_{FE}I_B$$

$$\begin{split} V_{CEQ} &= V_{CC} - \left(h_{FE} + 1\right) I_B R_C \\ &\cong V_{CC} - I_{CO} R_C \end{split}$$

Circuit Stability

Circuit Stability

 h_{FF} increases

 I_C increases (if I_B is the same)

 V_{CF} decreases

 I_B decreases

 I_C does not increase that much.

Good Stability. Less dependent on h_{FF} and temperature.

Circuit recognition: The base resistor is connected between the base and the collector terminals of the transistor.

Circuit recognition: The base resistor is connected between the base and the collector terminals of the transistor.

Advantage: A simple circuit with relatively stable Q-point.

Disadvantage: Relatively poor ac characteristics.

Applications: Used primarily to bias linear amplifiers.

$$I_{B} = \frac{V_{CC} - V_{BE}}{(h_{FE} + 1)R_{C} + R_{B}}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{(h_{FE} + 1)R_{C} + R_{B}}$$

$$I_{CQ} = h_{FE}I_B$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{(h_{FE} + 1)R_{C} + R_{B}}$$

$$I_{CQ} = h_{FE}I_B$$

$$V_{CEQ} \cong V_{CC} - I_{CQ} R_C$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (h_{FE} + 1)R_E}$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (h_{FE} + 1)R_E}$$

$$I_{CQ} = h_{FE}I_B$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (h_{FE} + 1)R_E}$$

$$I_{CQ} = h_{FE}I_B$$

$$I_E = (h_{FE} + 1)I_B$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (h_{FE} + 1)R_E}$$

$$I_{CQ} = h_{FE}I_B$$

$$I_E = (h_{FE} + 1)I_B$$

$$\begin{split} V_{CEQ} &= V_{CC} - I_C R_C - I_E R_E \\ &\cong V_{CC} - I_{CQ} \left(R_C + R_E \right) \end{split}$$

Circuit Stability

Circuit Stability

h_{FF} increases I_C increases (if I_B is the same) V_F increases I_R decreases I_C does not increase that much.

 I_C is less dependent on h_{FE} and

temperature.

Circuit recognition: Similar to voltage divider bias with R_2 missing (or base bias with R_E added).

Circuit recognition: Similar to voltage divider bias with R_2 missing (or base bias with R_E added).

Advantage: A simple circuit with relatively stable Q-point.

Disadvantage: Requires more components than collectorfeedback bias.

Applications: Used primarily to bias linear amplifiers.

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_{CQ} = h_{FE}I_B$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_{CQ} = h_{FE}I_B$$

$$V_{CEQ} \cong V_{CC} - I_{CQ} \left(R_C + R_E \right)$$