

CS/IS F214 Logic in Computer Science

MODULE: INTRODUCTION

Complexity Classes – P and NP

21-08-2018 Sundar B. CS&IS, BITS Pilani 0

Time Complexity

- We talk about the time complexity of an algorithm (or a program) as
 - the <u>time taken to run the algorithm</u> on its worst case input, as a <u>function of the size of the input</u>
 - alternatively, the <u>maximum time taken by the</u> <u>algorithm on any input</u>, as a function of the size of the input
- One way of strictly defining the complexity of an algorithm is to
 - count the number of steps the Turing machine (designed for that algorithm)

RECALL: Computability

- Questions:
 - Does a Turing machine exist for every algorithm (or program)?
 - Is there a Turing machine to solve any problem?
- Recall:
 - Computable is same as Turing-Computable, which is same as <u>computable using a general purpose computer</u>.

Complexity Classes

- Define
 - TIME(f(n)) = $\{\pi \mid \pi \text{ is a problem that can be solved in time at most f(n)}$ where n is the input size $\}$
- Note:
 - " π can be solved" means "that a solution for π can be computed for a given input"
 - i.e. there exists an algorithm to solve π
 - i.e. there exists a Turing machine for π that takes a given input and produces the solution as output
- Define
 - P = TIME(f(n)) where f is a polynomial function in n.

Problems and Solutions

- Intuitively:
 - <u>solving a problem</u> is harder than <u>verifying a given</u> <u>solution</u>.
- e.g.
 - Consider the problem of computing factors of a given integer:
 - i.e. given **N**, find its factors, say **x** and **y** such **x** * **y** = **N**.
 - Alternatively, consider the problem of verifying whether given numbers are factors of another number:
 - i.e. given N, x, and y, verify whether x * y = N

Complexity Classes

- Define
 - NTIME(f(n)) =

 $\{\pi \mid \pi \text{ is a problem } \underline{\text{that can be verified in time }} \text{ at most } \mathbf{f(n)} \text{ where } \mathbf{n} \text{ is the input size } \}$

- Note:
 - $\pi can be verified means$ that
 - given an input x and a (purported) solution $S_{\pi}(x)$
 - it can be decided (i.e. computed)
 - whether indeed $S_{\pi}(x)$ is a solution for π on x
- Define
 - NP = NTIME(f(n)) where f is a polynomial function in n.

P ?= **NP**

- $P \subseteq NP$?
 - Why?
 - If a problem π is in P,
 - then it can be solved in polynomial time and the length of the solution cannot be more than polynomial time (why?)
 - i.e. a certificate (i.e. as evidence for the solution) exists such that
 - it can be verified in polynomial time.
 - i.e. π is in P

P ?= **NP**

- Is **P = NP**?
 - An open question:
 - There is no known problem proven to be:
 - in **NP \ P**
 - There are plenty of problems
 - proven to be in NP but for which
 - there are no known polynomial time algorithms.

NP ?= EXP

- Define EXP =
 - $\{\pi \mid \pi \text{ is a problem that can be solved in exponential time i.e. in time proportional to 2ⁿ for input size n \}$
- Is $NP \subseteq EXP$?
 - If a problem π is in **NP**,
 - then a certificate (i.e. as evidence for the solution) exists such that
 - it can be verified in polynomial time, say g(n)
 - i.e. a certificate of length f(n) exists where f is polynomial in input size n
 - Construct all potential certificates (i.e. all possible bit strings) of length at most f(n) for a given input of size n:
 - each potential certificate can be verified in polynomial time
 - i.e. in time 2^{f(n)} * g(n) one can find the correct certificate (corresponding to the solution)
 - i.e. π is in **EXP**

Computability and Complexity

- •We know $P \subseteq NP \subseteq EXP$
- •We know $P \subset EXP$ i.e. there are problems that can be solved in exponential time but not in polynomial time (e.g. board-games like chess)
- From this we can infer $P \subset NP$ or $NP \subset EXP$ but we do not have a proof of either!

- Although these ideas were discussed as early as 1950s by Turing, Godel, and von Neumann:
 - these complexity classes and the question (Is P = NP?) were formulated in the early 70s.

