tare topologic

Proiectarea algoritmilor

Tema de casă nr. 1

Cuprins

Sortare topologică
Considerații generale
Algoritm BFS
Exemplu
Complexitatea timp
Sarcini de lucru și barem de notare
Bibliografie

Sortare topologică - considerații generale

- Se aplică la secvențe cu elemente din mulțimi parțial ordonale.
- Exemplu de relație de ordine este parțială: $a_1 < a_0, a_1 < a_2 < a_3$.
- Problema constă în a crea o listă liniară care să fie compatibilă cu relația de ordine, adică, dacă $a_i < a_j$, atunci a_i va precede pe a_j în lista finală.
- Pentru exemplul nostru, lista liniară finală va putea fi (a_1, a_0, a_2, a_3) , sau (a_1, a_2, a_0, a_3) , sau (a_1, a_2, a_3, a_0) .
- **Definiție:** Fie (S, \leq) o mulțime parțial ordonată finită și $a = (a_0, a_1, \ldots, a_{n-1})$ o liniarizare a sa. Spunem că secvența a este *sortată topologic*, dacă $\forall i, j : a_i < a_j \Rightarrow i < j$.

Multimi partial ordonate finite și digrafuri aciclice

- Există o legătură strânsă între mulțimile parțial ordonate finite și digrafurile aciclice (digrafuri fără circuite numite pe scurt dag-uri).
- Un graf este o pereche G = (V, E), unde V este o multime ale cărei elemente sunt numite vârfuri, iar E este o mulțime de perechi neordonate $\{u,v\}$ de vârfuri, numite muchii
- Un digraf este o pereche D = (V, A), unde V este o mulțime de vârfuri, iar A este o mulțime de perechi ordonate (u, v) de vârfuri, numite arce.
- Orice multime partial ordonată (S, <) definește un dag D = (S, A), unde există arc de la a la b, dacă a < b și nu există $c \in S$ cu proprietatea a < c < b.
- Reciproc, orice dag D = (V, A) defineste o relație de ordine parțială < peste V, dată prin: $u \le v$, dacă există un drum de lungime ≥ 0 de la u la v.
- De fapt, < este închiderea reflexivă și tranzitivă a lui A (se mai notează $<=A^*$).
- Sortarea topologică a unui dag constă într-o listă liniară a vârfurilor astfel încât dacă există arc de la u la v, atunci u precede pe v în listă, pentru oricare două vârfuri u și ν.
- Vârfurile care candidează pentru primul loc în lista sortată topologic au proprietatea că nu există arce incidente spre interior (care sosesc în acel vârf) și se numesc surse.

Reprezentarea digrafurilor prin liste de adiacență

- Reprezentarea prin liste de adiacență exterioară:
 - Digraful D este reprezentat printr-o structură asemănătoare cu cea de la matricele de adiacență.
 - Matricea de adiacență este înlocuită cu un tablou unidimensional de n liste liniare, implementate prin liste simplu înlănțuite și notate cu D.a[i] pentru i = 0,...,n-1.
 - Lista D.a[i] conține vârfurile destinatare ale arcelor care pleacă din i (= lista de adiacență exterioară).
- Reprezentarea prin liste de adiacență interioară:
 - Lista D.a[i] conține vârfurile surse ale arcelor care sosesc în i (= lista de adiacență interioară).

Exemplu de reprezentare a digrafurilor prin liste de adiacență exterioară

Figura 1: Digraf reprezentat prin liste de adiacență exterioară înlănțuite

Sortare topologică - metoda BFS

- Presupunem că pentru dag-ul D sunt create atât listele de adiacență interioară, cât si cele de adiacentă exterioară.
- Listele de adiacență interioară vor fi utilizate la determinarea vârfurilor sursă (vârfuri fără predecesori); acestea au listele de adiacentă interioară vide.
- Descrierea algoritmului:
 - 1. Initializează coada cu vârfurile sursă.
 - 2. Extrage un vârf u din coadă pe care-l adaugă la lista sortată parțial.
 - 3. Elimină din reprezentarea (acum parțială) a lui D vârful u și toate arcele (u, v).
 - 4. Dacă pentru un astfel de arc lista de adiacență interioară a vârfului v devine vidă, atunci v va fi adăugat la coadă.
 - 5. Repetă pașii 2-4 până când coada devine vidă.

Sortare topologică - algoritm BFS

- Extindem structura D, care reprezintă digraful D, cu tabloul np[1..n].
- D.np[u] conține numărul predecesorilor vârfului u.
- L este lista care conține varfurile digrafului D în ordine topologică.

```
procedure sortareTopologicaBFS(D,np)
   coadaVida(C) //initializeaza coada C
   // insereaza in C varfurile fara predecesori
   for n \leftarrow 0 to D.n-1 do
       if D.np[u]=0 then insereaza(C.u)
   // construieste lista varfurilor (afiseaza) in ordine topologica
   for k \leftarrow 0 to D.n-1 do
       if esteVida(C)
           then return ("Graful contine cicluri")
       u \leftarrow elimina(C)
       inserează(L, u) // inserarea se face la sfarsitul listei
       p \leftarrow D.a[u]
       while p≠NULL do
           v \leftarrow p\text{->elt }//v este un succesor imedial al lui u
           D.np[v] \leftarrow D.np[v]-1
           if D.np[v]=0
              then insereaza(C,v)
           p ← p->succ
```


Sortare topologică

0000 00 00•0000

FINAL!

varfuri afisate: AFBCDE

Complexitatea timp

- Compusă din timpul pentru:
 - identificarea vârfurilor fără predecesori: O(n)
 - ștergerea muchiilor: O(m)
 - afisarea varfurilor: O(n)
- Timp total : O(n+m)

Sarcini de lucru și barem de notare

Sarcini de lucru:

1. Scrieți un program C/C++ care sortează topologic vârfurile unui digraf aciclic D=(V,A).

Barem de notare:

- 1. Construirea listelor de adiacență: 3p
- 2. Implementarea algoritmului de sortare topologică : 6p
- 3. Baza: 1p

Bibliografie

Lucanu, D. și Craus, M., Proiectarea algoritmilor, Editura Polirom, 2008.