International Olympiad in Informatics 2013

6-13 July 2013 Brisbane, Australia Day 2 tasks

robots

Norwegian — 1.0

Maritas lillebror har lagt igjen leker over hele stuegulvet! Heldigvis har Marita utviklet spesialroboter for å rydde bort lekene. Hun trenger din hjelp med å avgjøre hvilke roboter som burde plukke opp hvilke leker.

Det finnes [T] leker, hver med en heltallsvekt [W[i]] og heltallsstørrelse [S[i]]. Det finnes to typer roboter: svake (weak) og små (small).

- Det finnes A svake roboter. Hver svake robot har en vektbegrensning Xii], og kan bære en hvilken som helst leke som veier strengt mindre enn Xii]. Lekens størrelse har ingen betydning.
- Det finnes B små roboter. Hver lille robot har en størrelsesbegrensning Y[i], og kan bære en hvilken som helst leke som har størrelse strengt mindre enn Y[i]. Lekens vekt har ingen betydning.

Hver av Maritas roboter bruker ett minutt på å rydde bort en leke. Forskjellige roboter kan rydde bort forskjellige leker samtidig.

Oppgaven din er å avgjøre om Maritas roboter kan rydde vekk alle lekene, og i så fall, hva som er den minste tiden de trenger for å gjøre det.

Eksempler

Som et første eksempel, anta at det er A = 3 svake roboter med vektbegrensninger X = [6, 2, 9], B = 2 små roboter med størrelsesbegrensninger Y = [4, 7], og T = 10 leker som følger:

Lekenummer	0	1	2	3	4	5	6	7	8	9
Vekt	4	8	2	7	1	5	3	8	7	10
Størrelse	6	5	3	9	8	1	3	7	6	5

Den minste tiden som trengs for å rydde bort alle lekene er tre minutter:

	Svak robot 0	Svak robot 1	Svak robot 2	Liten robot 0	Liten robot 1
Første minutt	Leke 0	Leke 4	Leke 1	Leke 6	Leke 2
Andre minutt	Leke 5		Leke 3		Leke 8
Tredje minutt			Leke 7		Leke 9

Som et andre eksempel, anta at det er A = 2 svake roboter med vektbegrensninger X = [2, 5], B = 1 liten robot med størrelsesbegrensning Y = [2], og T = 3 leker som følger:

Lekenummer	0	1	2
Vekt	3	5	2
Størrelse	1	3	2

Ingen robot er i stand til å plukke opp leken med vekt 5 og størrelse 3, så det er umulig for robotene å rydde bort alle lekene.

Implementasjon

Du skal sende inn en fil som implementerer funksjonen putaway () som følger:

Din function: putaway()

```
C/C++ int putaway(int A, int B, int T, int X[], int Y[], int W[], int S[]);

Pascal function putaway(A, B, T : LongInt; var X, Y, W, S : array of LongInt) : LongInt;
```

Beskrivelse

Denne funksjonen skal beregne det minste antallet minutter som robotene trenger for å rydde bort alle lekene, eller så skal den returnere [-1] hvis dette ikke er mulig.

Parametre

- A: Antallet svake roboter.
- B: Antallet små roboter.
- T: Antallet leker.
- X: Et array med lengde A som inneholder heltall som spesifiserer vektgrensen for hver svake robot.
- Y: Et array med lengde B som inneholder heltall som spesifiserer størrelsesgrensen for hver lille robot.
- W: Et array med lengde T som inneholder heltall som gir vekten av hver leke.
- S: Et array med lengde T som inneholder heltall som gir størrelsen til hver leke.
- Returnerer: Det minste antallet minutter som kreves for å rydde bort alle lekene, eller
 1 hvis dette ikke er mulig.

Sample Session

The following session describes the first example above:

Parameter	Value
A	3
В	2
T	10
x	[6, 2, 9]
Y	[4, 7]
W	[4, 8, 2, 7, 1, 5, 3, 8, 7, 10]
s	[[6, 5, 3, 9, 8, 1, 3, 7, 6, 5]]
Returns	3

The following session describes the second example above:

Parameter	Value
A	2
В	1
T	3
x	[2, 5]
Y	[2]
W	[3, 5, 2]
S	[1, 3, 2]
Returns	-1

Constraints

■ Time limit: 3 seconds

■ Memory limit: 64 MiB

■ $1 \le T \le 1,000,000$

■ $0 \le A, B \le 50,000$ and $1 \le A + B$

■ $1 \le X[i], Y[i], W[i], S[i] \le 2,000,000,000$

Subtasks

Subtask	Points	Additional Input Constraints
1	14	T = 2 and A + B = 2 (exactly two toys and two robots)
2	14	B = 0 (all robots are weak)
3	25	$T \le 50$ and $A + B \le 50$
4	37	$T \le 10,000$ and $A + B \le 1,000$
5	10	(None)

Experimentation

The sample grader on your computer will read input from the file [robots.in], which must be in the following format:

```
■ line 1: A B T
```

For instance, the first example above should be provided in the following format:

```
3 2 10
6 2 9
4 7
4 6
8 5
2 3
7 9
1 8
5 1
3 3
8 7
7 6
10 5
```

If A = 0 or B = 0 then the corresponding line (line 2 or line 3) should be empty.

Language Notes

```
C/C++ You must #include "robots.h".

Pascal You must define the unit Robots. All arrays are numbered beginning at 0 (not 1).
```

See the solution templates on your machine for examples.