Attribute Closures

Designing Schemas

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Kevin C.C. Chang, Professor Computer Science @ Illinois

Learning Objectives

By the end of this video, you will be able to:

- Define the concept of attribute closure.
- Describe how and why attribute closure is useful.
- Find the closure of a set of attributes given a set of FDs.
- Determine keys of a relation using attribute closures.

Reasoning: Is {drinker, bar} a Superkey?

- We are asking:
 - Can {drinker, bar} determine all attributes?
- We may ask, more fundamentally:
 - What attributes can {drinker, bar} determine?
 - This is called the **closure** of {drinker, bar}.

- Given:
 - drinker, bar, beer → season
 - drinker, bar \rightarrow beer
 - bar, beer → price
- Decide: Is {drinker, bar} a Superkey?

Closure of Attributes

- Problem: What can these attributes determine?
 - Given a set of attributes $\{A_1, \dots, A_n\}$ and a set of dependencies F
 - Find all attributes B_1, \dots, B_m such that any relation that satisfies F also

satisfies:

$$A_1, \ldots, A_n \longrightarrow B_1, \ldots, B_m$$

• The closure of $\{A_1, ..., A_n\}$ is $B_1, ..., B_m$, i.e., $\{A_1, ..., A_n\}^+ = \{B_1, ..., B_m\}$

- Given:
 - drinker, bar, beer \rightarrow season
 - drinker, bar \rightarrow beer
 - bar, beer \rightarrow price
- Decide: Is {drinker, bar} a Superkey?
- Ex: What can {drinker, bar} determine with the given FDs?
 - {drinker, bar}+
 - = {drinker, beer, beer, season, price}

Finding Attribute Closures

- Given a set of attributes $\{A_1, \dots, A_n\}$ and a set of dependencies F
- $C = \{A_1, ..., A_n\}$
- Repeat until *C* does not change:
 - If $X_1, ..., X_m \rightarrow Y$ is in F, and $X_1, ..., X_m$ are all in C, and Y not in C:
 - C := C + Y
- Ex: {drinker, bar }⁺ = ?
 - *C* = {drinker, bar}
 - Add beer, : drinker, bar → beer
 - Add season, : drinker, bar, beer → season
 - Add price, : bar, beer \longrightarrow price
 - $C = \{drinker, bar, beer, season, price\}$

- Given:
 - drinker, bar, beer → season
 - drinker, bar → beer
 - bar, beer → price
- Decide: Is {drinker, bar} a Superkey?

Reasoning: {drinker, bar} Is a Key

- {drinker, bar}⁺ = {drinker, bar, beer, season, price}
 - So, {drinker, bar} is a superkey.
- {drinker}⁺ = {drinker}
 - So, {drinker} is not a superkey.
- $\{bar\}^+ = \{bar\}$
 - So, {bar} is not a superkey.
- So, {drinker, bar} is a key!

Food for Thought

Can you use attribute closure to determine if an FD $A \rightarrow B$ holds? How?