More SQL: NULL, Outer Joins

Announcements

Tuesday: Homework 2 (electronic)

Will post solutions online on Thursday

Project I Part 3: Posted today

Today: End of midterm content

Tuesday: Additional SQL; midterm review

Thursday: Example problems

NULL

```
(null > 0) = null
```

$$(null + I) = null$$

$$(null = 0)$$
 = null

null is null = true

Some truth tables

AND	Т	F	NULL
Т	Т	F	NULL
F	F	F	F
NULL	NULL	F	NULL

OR	Т	F	NULL
Т	Т	Т	Т
F	Т	F	NULL
NULL	Т	NULL	NULL

NULL comparisons: unknown

Null is "unknown" or "maybe"

null > 16? Unknown!

left AND right: True if BOTH left and right are true;

NULL AND true? Could be true if NULL was true: = NULL

NULL AND false? Can only be false

left OR right: True if any one is true

NULL OR true? Must be true, no matter what value

NULL OR false? Could be true if NULL was true: = NULL

JOINS

```
SELECT [DISTINCT] target_list
FROM tableA, tableB
WHERE tableA.col = tableB.col AND ...
```

```
SELECT [DISTINCT] target_list
FROM tableA JOIN tableB
ON tableA.col = tableB.col
WHERE ...
```

(explicit) JOINS

```
SELECT [DISTINCT] target_list
FROM table_name
    [INNER {LEFT | RIGHT | FULL} {OUTER}] JOIN table_name
    ON qualification_list
WHERE ...
```

INNER is default Difference is how to deal with NULL values

PostgreSQL documentation: http://www.postgresql.org/docs/9.4/static/tutorial-join.html

Inner/Natural Join

```
SELECT s.sid, s.name, r.bid

FROM Sailors S, Reserves r

WHERE s.sid = r.sid

SELECT s.sid, s.name, r.bid

FROM Sailors s INNER JOIN Reserves r

ON s.sid = r.sid

SELECT s.sid, s.name, r.bid

FROM Sailors s NATURAL JOIN Reserves r
```

Natural Join means equi-join for each pair of attrs with same name

Sailor names and their reserved boat ids

SELECT s.sid, s.name, r.bid
FROM Sailors s INNER JOIN Reserves r
ON s.sid = r.sid

Sailors

<u>sid</u>	name	rating	age
1	Eugene	7	22
2	Luis	2	39
3	Ken	8	27

Reserves

<u>sid</u>	<u>bid</u>	<u>day</u>
	102	9/12
2	102	9/13

sid	name	bid
1	Eugene	102
2	Luis	102

Sailor names and their reserved boat ids

SELECT s.sid, s.name, r.bid
FROM Sailors s INNER JOIN Reserves r
ON s.sid = r.sid

Sailors

<u>sid</u>	name	rating	age
	Eugene	7	22
2	Luis	2	39
3	Ken	8	27

Reserves

<u>sid</u>	<u>bid</u>	<u>day</u>
	102	9/12
2	102	9/13

Result

sid	name	bid
1	Eugene	102
2	Luis	102

Prefer INNER JOIN over NATURAL JOIN. Why?

Sailor names and their reserved boat ids

SELECT s.sid, s.name, r.bid
FROM Sailors s INNER JOIN Reserves r
ON s.sid = r.sid

Sailors

<u>sid</u>	name	rating	age
1	Eugene	7	22
2	Luis	2	39
3	Ken	8	27

Reserves

<u>sid</u>	<u>bid</u>	<u>day</u>
I	102	9/12
2	102	9/13

Result

sid	name	bid
1	Eugene	102
2	Luis	102

Notice: No result for Ken!

Left Outer Join (or No Results for Ken)

Returns all matched rows and all unmatched rows from table on left of join clause

(at least one row for each row in left table)

```
SELECT s.sid, s.name, r.bid
FROM Sailors s LEFT OUTER JOIN Reserves r
ON s.sid = r.sid
```

All sailors & bid for boat in their reservations Bid set to NULL if no reservation

Left Outer Join

SELECT s.sid, s.name, r.bid
FROM Sailors s LEFT OUTER JOIN Reserves r
ON s.sid = r.sid

Sailors

<u>sid</u>	name	rating	age
I	Eugene	7	22
2	Luis	2	39
3	Ken	8	27

Reserves

<u>sid</u>	<u>bid</u>	<u>day</u>
1	102	9/12
2	102	9/13

sid	name	bid
I	Eugene	102
2	Luis	102
3	Ken	NULL

Can Left Outer Join be expressed with Cross-Product?

Sailors

<u>sid</u>	name	rating	age
I	Eugene	7	22
2	Luis	2	39
3	Ken	8	27

Reserves

<u>sid</u> <u>bid</u> <u>day</u>

Sailors x Reserves

Sailors s LEFT OUTER JOIN Reserves r ON s.sid = r.sid

Result

sid	name	bid
-----	------	-----

sid	name	bid
I	Eugene	NULL
2	Luis	NULL
3	Ken	NULL

Right Outer Join

Same as LEFT OUTER JOIN, but guarantees result for rows in table on right side of JOIN

```
SELECT s.sid, s.name, r.bid
FROM Sailors s LEFT OUTER JOIN Reserves r
ON s.sid = r.sid

SELECT s.sid, s.name, r.bid
FROM Reserves r RIGHT OUTER JOIN Sailors S
ON s.sid = r.sid
```

RIGHT OUTER JOIN

SELECT s.sid, s.name, r.bid
FROM Sailors s RIGHT OUTER JOIN Reserves r
ON s.sid = r.sid

Sailors

<u>sid</u>	name	rating	age
I	Eugene	7	22
2	Luis	2	39
3	Ken	8	27

Reserves

<u>sid</u>	<u>bid</u>	<u>day</u>
1	102	9/12
2	102	9/13
4	109	9/20

Result

sid	name	bid
I	Eugene	102
2	Luis	102
NULL	NULL	109

Why is sid NULL?

FULL OUTER JOIN

Returns all matched or unmatched rows from both sides of JOIN

```
SELECT s.sid, s.name, r.bid
FROM Sailors s FULL OUTER JOIN Reserves r
ON s.sid = r.sid
```

FULL OUTER JOIN

SELECT s.sid, s.name, r.bid
FROM Sailors s Full OUTER JOIN Reserves r
ON s.sid = r.sid

Sailors

<u>sid</u>	name	rating	age
I	Eugene	7	22
2	Luis	2	39
3	Ken	8	27

Reserves

<u>sid</u>	<u>bid</u>	<u>day</u>
I	102	9/12
2	102	9/13
4	109	9/20

Res	ш	1
1/62	u	ıu

sid	name	bid
I	Eugene	102
2	Luis	102
3	Ken	NULL
NULL	NULL	109

Left Right

JOIN Advice

Prefer "FROM TableA, TableB WHERE ..."

Except when you need OUTER JOIN (rare)

Integrity Constraints

Conditions that every legal instance must satisfy
Inserts/Deletes/Updates that violate ICs rejected
Helps ensure app semantics or prevent inconsistencies

We've discussed

domain/type constraints, primary/foreign key
general constraints —

Beyond Keys: Table Constraints

Additional checks to ensure all data in table is valid

```
CREATE TABLE Sailors(
   sid int,
   PRIMARY KEY (sid),
   CHECK (rating >= 1 AND rating <= 10)</pre>
CREATE TABLE Reserves(
   sid int,
   bid int,
   day date,
   PRIMARY KEY (bid, day),
   CONSTRAINT no_red_reservations
   CHECK ('red' NOT IN (SELECT D.color
                       FROM Boats B
                       WHERE B.bid = bid))
```

Nested subqueries Named constraints

WHAT!

So many things we can't express or don't work!

Nested queries in CHECK constraints

Advanced Stuff

User defined functions

Triggers

WITH

Views

Advanced Stuff aka Not On the Midterm

User defined functions

Triggers

WITH

Views

User Defined Functions (UDFs)

Custom functions that can be called in database Many languages: SQL, python, C, perl, etc

CREATE FUNCTION function_name(p1 type, p2 type, ...)
RETURNS type

User Defined Functions (UDFs)

Custom functions that can be called in database Many languages: SQL, python, C, perl, etc

```
CREATE FUNCTION function_name(p1 type, p2 type, ...)
RETURNS type
AS $$
-- logic
$$ LANGUAGE language_name;
```

User Defined Functions (UDFs)

Custom functions that can be called in database Many languages: SQL, python, C, perl, etc

```
CREATE FUNCTION function_name(p1 type, p2 type, ...)
RETURNS type
AS $$
-- logic
$$ LANGUAGE language_name;
```

A simple UDF (lang = SQL)

```
CREATE FUNCTION mult1(v int) RETURNS int
     AS $$
                                            Last statement
     SELECT v * 100;
                                            is returned
     $$ LANGUAGE SQL;
CREATE FUNCTION function_name(p1 type, p2 type, ...)
RETURNS type
AS $$
-- Logic
$$ LANGUAGE language_name;
```

A simple UDF (lang = SQL)

```
CREATE FUNCTION mult1(v int) RETURNS int
AS $$
SELECT v * 100;
$$ LANGUAGE SQL;

SELECT mult1(S.age)
FROM sailors AS S
```

Sailors

<u>sid</u>	name	rating	age
I	Eugene	7	22
2	Luis	2	39
3	Ken	8	27

int4
2200
3900
2700

A simple UDF (lang = SQL)

```
CREATE FUNCTION mult1(int) RETURNS int
AS $$
SELECT $1 * 100;
$$ LANGUAGE SQL;

SELECT mult1(S.age)
FROM sailors AS S
```

Sailors

<u>sid</u>	name	rating	age
I	Eugene	7	22
2	Luis	2	39
3	Ken	8	27

int4
2200
3900
2700

Process a Record (lang = SQL)

```
CREATE FUNCTION mult2(x sailors) RETURNS int
AS $$
SELECT (x.sid + x.age) / x.rating;
$$ LANGUAGE SQL;

SELECT mult2(S.*)
FROM sailors AS S
```

Sailors

<u>sid</u>	name	rating	age
I	Eugene	7	22
2	Luis	2	39
3	Ken	8	27

int4
3.285
20.5
3.75

Process a Record (lang = SQL)

```
CREATE FUNCTION mult2(sailors) RETURNS int
AS $$
SELECT ($1.sid + $1.age) / $1.rating;
$$ LANGUAGE SQL;

SELECT mult2(S.*)
FROM sailors AS S
```

Sailors

<u>sid</u>	name	rating	age
1	Eugene	7	22
2	Luis	2	39
3	Ken	8	27

int4
3.285
20.5
3.75

Procedural Language/SQL(lang = plsql)

```
CREATE FUNCTION proc(v int) RETURNS int

AS $$

DECLARE

-- define variables

BEGIN

-- PL/SQL code

END;

$$ LANGUAGE plpgsql;
```

Procedural Language/SQL(lang = plsql)

```
CREATE FUNCTION proc(v int) RETURNS int
AS $$
DECLARE
    -- define variables. VAR TYPE [= value]
    qty int = 10;
BEGIN
    qty = qty * v;
    INSERT INTO blah VALUES(qty);
    RETURN qty + 2;
END;
$$ LANGUAGE plpgsql;
```

Procedural Code (lang = plpython2u)

```
CREATE FUNCTION proc(v int) RETURNS int
AS $$
import random
return random.randint(0, 100) * v
$$ LANGUAGE plpython2u;
```

Very powerful – can do anything so must be careful

run in a python interpreter with no security protection

plpy module provides database access

```
plpy.execute("select 1")
```

Procedural Code (lang = plpython2u)

```
CREATE FUNCTION proc(word text) RETURNS text
AS $$
import requests
resp = requests.get('http://google.com/search?q=%s' % v)
return resp.content.decode('unicode-escape')
$$ LANGUAGE plpython2u;
```

Very powerful – can do anything so must be careful

run in a python interpreter with no security protection

plpy module provides database access

```
plpy.execute("select 1")
```