Stochastic Processes Assignment 6 - Questions

Due on May 28, 2023

- 1. Consider a pure death process on $\{0, 1, 2, \ldots\}$.
 - (a) Write the forward equation.
 - (b) Find $P_{xx}(t)$
 - (c) Solve for $P_{xy}(t)$ in terms of $P_{x,y+1}(t)$.
 - (d) Find $P_{x,x-1}(t)$.
 - (e) Show that if $\mu_x = x\mu, x \geq 0$, for some constant μ , then

$$P_{xy}(t) = \begin{pmatrix} x \\ y \end{pmatrix} \left(e^{-\mu t} \right)^y \left(1 - e^{-\mu t} \right)^{x-y}, \quad 0 \le y \le x.$$

- 2. Consider a general birth and death process with birth rates $\{\lambda_n\}$ and death rates $\{\mu_n\}$, where $\mu_0 = 0$, and let T_i denote the time, starting from state i, it takes for the process to enter state i+1, $i \geq 0$. Compute $E(T_i)$ and $Var(T_i)$. Hint: For i > 0, condition whether the first transition takes the process into state i-1 or i+1.
- 3. Let $\{X(t), t \geq 0\}$ be a continuous-time Markov chain with state space $S = \{0, 1, 2\}$ and the following generator

$$q = \left[\begin{array}{rrr} -2 & 1 & 1 \\ 2 & -3 & 1 \\ 1 & 2 & -3 \end{array} \right]$$

Determine the following quantities:

- (a) the distribution of the holding times for state 1.
- (b) the transition matrix Q of the embedded chain.
- (c) $P(\tau_2 > 1 \mid X(\tau_1) = 1)$ where τ_i is the *i*th transition time and X(0) = 0.
- 4. There are two servers available to process n jobs. Initially, each server begins work on a job. Whenever a server completes work on a job, that job leaves the system and the server begins processing a new job (provided there are still jobs waiting to be processed). Let T denote the time until all jobs have been processed. If the time that it takes server i to process a job is exponentially distributed with rate μ_i , i = 1, 2. Find E(T) and Var(T).
- 5. Customers arrive at a two-server service station according to a Poisson process with rate λ . Whenever a new customer arrives, any customer that is in the system immediately departs. A new arrival enters service, first with server 1 and then with server 2. If the service times at the servers are independent exponentials with respective rates μ_1 and μ_2 , what proportion of entering customers completes their service with server 2? (i.e. what proportion of entering customers completes both services without being interrupted.)
- 6. Teams 1 and 2 are playing a match. The teams score points according to independent Poisson processes with respective rates λ_1 and λ_2 . The match ends when one of the teams has scored k more points than the other. Find the probability that team 1 wins. *Hint:* Relate this to the gambler's ruin problem.