4.7. Поворот плоскости орбиты

Импульс скорости $\Delta \mathbf{V}$, который лежит в плоскости орбиты, может изменить ее размер или форму или может повернуть линию апсид. Если же нужно изменить положение плоскости орбиты в пространстве, необходима проекция приращения скорости $\Delta \mathbf{V}$, перпендикулярная плоскости орбиты.

В самом деле, чтобы повернуть плоскость орбиты, необходимо изменить направление векторной константы площадей ${m c} = {m r} imes {m V}$. Это означает, что векторы ${m c}$ и $\Delta {m c}$ неколлинеарны, т.е. ${m c} imes \Delta {m c}
eq 0$. Но

$$c \times \Delta c = c \times (r \times \Delta V) = r(c \cdot \Delta V) - \Delta V(c \cdot r) = r(c \cdot \Delta V)$$
.

Таким образом, должно выполняться условие $\mathbf{c} \cdot \Delta \mathbf{V} \neq 0$, т.е. вектор $\Delta \mathbf{V}$ действительно должен иметь ненулевую проекцию на нормаль к плоскости орбиты (на вектор \mathbf{c}).

Рассмотрим специфический орбитальный маневр, приводящий только к изменению плоскости орбиты. Такая ситуация имеет место, если в результате приложения импульса $\Delta {f V}$ абсолютная величина скорости V и угол между вектором скорости и местным горизонтом сохраняют свои значения. Действительно, эксцентриситет и фокальный параметр орбиты

$$e = \sqrt{1 + h\frac{c^2}{\mu^2}}, \qquad p = \frac{c^2}{\mu}$$

не изменяются, поскольку

$$h = V^2 - \frac{2\mu}{r}$$
, $c^2 = r^2 V^2 \cos^2 \alpha$,

где α - угол между вектором скорости и горизонтом.

Заметим, что если при этом необходимо также сохранить и ориентацию орбиты, которая определяется направлением вектора Лапласа, то такой импульс следует прикладывать в одной из апсидальных точек орбиты. В самом деле, пусть импульс приложен в перицентре. Имеем

$$f = V \times c - \mu \frac{r}{r} .$$

Поскольку в перицентре векторы ${\bf r}$, ${\bf V}$ и ${\bf c}$ образуют правую тройку (векторное произведение ${\bf V}$ и ${\bf c}$ направлено вдоль ${\bf r}$), а их модули не изменяются в результате приложения импульса скорости, то и вектор Лапласа не изменяется.

Примером подобного орбитального маневра может служить переход с орбиты с ненулевым наклонением на экваториальную орбиту (Рис. 4.15). В результате однократного включения двигателя плоскость орбиты поворачивается на угол θ . Начальная и конечная скорости в точке приложения импульса равны по величине. Они образуют вместе с ΔV равнобедренный треугольник. Зная V и θ , выразим величину требуемого импульса

$$\Delta V = 2V \sin \frac{\theta}{2} \ . \tag{12}$$

Кроме того, если мы хотим преобразовать орбиту в экваториальную, импульс ΔV следует прикладывать в одном из узлов, поскольку именно в узле спутник пересекает плоскость земного экватора.

Рис. 4.15

Рассмотрим задачу поворота плоскости орбиты более подробно. При этом для простоты будем считать орбиту круговой. В случае простого одноимпульсного поворота плоскости орбиты величина потребного импульса дается формулой (12), где $V=V_{\kappa p}=\sqrt{\mu/r_0} \ - \text{скорость на круговой орбите. Вводя безразмерный импульс скорости } \Delta \tilde{V}=\Delta V/V_{\kappa p}$, перепишем (12) в виде

$$\Delta \tilde{V} = 2\sin\frac{\theta}{2} \ . \tag{13}$$

Очевидно, одноимпульсный поворот круговой орбиты является приемлемым только при сравнительно малом угле θ (Рис. 4.16). Большие углы приводят к очень большим значениям потребных импульсов скорости.

Рис. 4.16

Например, чтобы повернуть плоскость орбиты на 60° , приращение скорости должно быть равно круговой скорости, т.е. $\Delta \tilde{V}=1$. Для осуществления такого маневра требуется

слишком много топлива. Поэтому представляет интерес рассмотреть другие возможные схемы поворота плоскости орбиты. Такие схемы могут оказаться значительно более сложными в реализации и потребуют многократного включения двигателя, т.е. это уже будут многоимпульсные маневры. Но в то же время они могут дать существенную экономию топлива.

4.8. Трехимпульсный поворот плоскости орбиты

Из (12) видно, что чем меньше скорость тела, тем легче изменить плоскость его орбиты. Поэтому возникает идея трехимпульсного поворота плоскости орбиты (Рис. 4.17).

Рис. 4.17

Сначала, в результате действия касательного импульса скорости ΔV_1 , аппарат переводится на первую орбиту перехода - компланарную эллиптическую орбиту с перицентром в точке приложения первого импульса. Двигаясь по этой промежуточной орбите, аппарат удаляется от притягивающего центра и его скорость уменьшается. В апоцентре промежуточной орбиты (точка B) скорость тела минимальна и поэтому именно

здесь выгоднее всего поворачивать плоскость орбиты. Второй импульс ΔV_2 , не изменяя абсолютной величины скорости тела, поворачивает вектор скорости таким образом, что плоскость орбиты поворачивается на угол θ . В результате аппарат оказывается на второй орбите перехода, точно такой же, как и первая орбита перехода, но лежащей в плоскости конечной круговой орбиты. Перицентры обеих орбит перехода совпадают (точка A), т.к. плоскость орбиты поворачивается вокруг общей линии апсид первой и второй орбит перехода. Поэтому третий импульс ΔV_3 , как и первый, является касательным, но направлен против скорости, т.е. является не разгоняющим, а тормозящим. По величине третий импульс равен первому, $\Delta V_3 = \Delta V_1$. Третий импульс переводит аппарат на конечную круговую орбиту того же радиуса, что и исходная, но расположенную в плоскости, составляющей с плоскостью исходной орбиты угол θ .

Основная идея трехимпульсного поворота орбиты аналогична идее биэллиптического перехода между компланарными круговыми орбитами. Расчет строится на том, что дополнительные затраты характеристической скорости, требующиеся для перевода аппарата на первую промежуточную орбиту и для схода со второй промежуточной орбиты на конечную круговую орбиту, окажутся меньше того выигрыша, который получается в результате уменьшения второго импульса, обеспечивающего собственно поворот плоскости орбиты.

Суммарный импульс скорости при осуществлении трехимпульсного маневра, разумеется, зависит от выбора промежуточной орбиты перехода, которая, в свою очередь, полностью определяется величиной апоцентрического расстояния r_{α} . Сравним величину суммарного импульса при трехимпульсном маневре

$$\Delta V_{\Sigma} = \Delta V_1 + \Delta V_2 + \Delta V_3$$

с величиной (12), которая обеспечивает простой маневр поворота.

Пусть $r_{\pi} = OA = r_0$, $r_{\alpha} = OB = r$, тогда обе промежуточные орбиты (первая и вторая) полностью определены и имеют место соотношения

$$\begin{split} p &= \frac{2r_{\pi}r_{\alpha}}{r_{\pi} + r_{\alpha}} = \frac{2r_{0}r}{r_{0} + r} \,, \\ V_{\pi} &= \frac{\sqrt{\mu p}}{r_{\pi}} = \sqrt{\frac{\mu}{r_{0}}} \sqrt{\frac{2r}{r_{0} + r}} = V_{\kappa p} \sqrt{\frac{2\tilde{r}}{1 + \tilde{r}}} \,, \\ V_{\alpha} &= \frac{\sqrt{\mu p}}{r_{\alpha}} = \sqrt{\frac{\mu}{r_{0}}} \sqrt{\frac{2r_{0}^{2}}{r(r_{0} + r)}} = V_{\kappa p} \sqrt{\frac{2}{\tilde{r}(1 + \tilde{r})}} \,, \end{split}$$

где $\tilde{r}=r/r_0$ - безразмерный радиус апоцентра. Величины импульсов скорости ΔV_1 , ΔV_2 и ΔV_3 задаются выражениями

$$\Delta V_1 = \Delta V_3 = V_{\pi} - V_{\kappa p} = V_{\kappa p} \left(\sqrt{\frac{2\tilde{r}}{1+\tilde{r}}} - 1 \right),$$

$$\Delta V_2 = 2V_{\alpha} \sin \frac{\theta}{2} = 2V_{\kappa p} \sqrt{\frac{2}{\tilde{r}(1+\tilde{r})}} \sin \frac{\theta}{2}$$

или в безразмерном виде

$$\Delta \tilde{V_1} = \Delta \tilde{V_3} = \sqrt{\frac{2\tilde{r}}{1+\tilde{r}}} - 1,$$

$$\Delta \tilde{V_2} = 2\sqrt{\frac{2}{\tilde{r}(1+\tilde{r})}} \sin\frac{\theta}{2}.$$
(14)

Таким образом, для осуществления маневра требуется суммарный импульс

$$\Delta \tilde{V}_{\Sigma} = 2 \left[\sqrt{\frac{2\tilde{r}}{1+\tilde{r}}} - 1 + \sqrt{\frac{2}{\tilde{r}(1+\tilde{r})}} \sin \frac{\theta}{2} \right]. \tag{15}$$

Заметим, что здесь $\tilde{r} \ge 1$, причем если $\tilde{r} = 1$, то (15) совпадает с (13). Это означает, что трехимпульсный поворот вырождается в одноимпульсный. Действительно, в этом случае промежуточные орбиты совпадают с начальной и конечной куговыми орбитами и первый и третий импульсы уже не нужны (как видно из (14), $\Delta \tilde{V_1} = \Delta \tilde{V_3} = 0$).

Сравнивая (13) и (15), приходим к следующему результату. Трехимпульсный маневр выгоднее, чем простой поворот орбиты, т.е. $\Delta \tilde{V}_{\scriptscriptstyle \Sigma} < \Delta V$, если

$$f\left(\tilde{r}\right) = \frac{\sqrt{\frac{2\tilde{r}}{1+\tilde{r}}} - 1}{1 - \sqrt{\frac{2}{\tilde{r}\left(1+\tilde{r}\right)}}} < \sin\frac{\theta}{2} \ . \tag{16}$$

Переписав функцию $f(\tilde{r})$ виде

$$f(\tilde{r}) = \sqrt{2} \frac{\tilde{r} - 1}{\sqrt{\tilde{r}(1 + \tilde{r})} - \sqrt{2}} - 1,$$

легко показать, что она является монотонно возрастающей, т.к.

$$f'(\tilde{r}) = \left[\frac{\sqrt{2\tilde{r}} - \sqrt{1 + \tilde{r}}}{\sqrt{\tilde{r}(1 + \tilde{r})} - \sqrt{2}} \right]^2 \frac{1}{\sqrt{2\tilde{r}(1 + \tilde{r})}} > 0.$$

Кроме того, при $\tilde{r} \to +\infty$ $f(\tilde{r}) \to \sqrt{2} - 1$ и $f'(\tilde{r}) \to 0$; при $\tilde{r} \to 1$, раскрывая неопределенность типа 0/0, получаем $f(\tilde{r}) \to 1/3$, $f'(\tilde{r}) \to 1/18$. Качественный вид функции показан на Рис. 4.18.

Таким образом, плоскость $(\tilde{r},\sin\theta/2)$ делится на две области. Выше кривой имеет место условие $\Delta \tilde{V_{\Sigma}} < \Delta \tilde{V}$ и более экономичным является трехимпульсный маневр. Ниже кривой оптимальным является простой одноимпульсный поворот плоскости орбиты $(\Delta \tilde{V_{\Sigma}} > \Delta \tilde{V})$. Заметим, что при

$$\sin\frac{\theta}{2} > \sqrt{2} - 1 \qquad \left(\theta > 48.94^{\circ}\right)$$

трехимпульсный поворот выгоднее всегда (при любом \tilde{r}), а при

$$\sin\frac{\theta}{2} < \frac{1}{3} \qquad \left(\theta < 38.94^{\circ}\right)$$

всегда предпочтительнее одноимпульсный маневр. Если же

$$\frac{1}{3} < \sin \frac{\theta}{2} < \sqrt{2} - 1$$
,

то результат зависит от величины \tilde{r} . В то же время ясно, что уменьшая \tilde{r} , всегда можно обеспечить выполнение условия (16), т.е. сделать трехимпульсный поворот более экономичным, чем одноимпульсный.

 $\it 3adaчa:$ При каком импульсе скорости орбита сохраняет свою форму и размеры, но поворачивается в своей плоскости? В какой точке орбиты надо дать импульс скорости, чтобы повернуть линию апсид на угол $\it \alpha$? Определить величину и направление $\it \Delta V$.