Problem Set 4

Problem 1. (10 points) Least Squares Solution

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -2 & 3 \\ 1 & 5 & -1 \\ -3 & 1 & 1 \end{bmatrix} \qquad b = \begin{bmatrix} 0 \\ 5 \\ 6 \\ 8 \end{bmatrix}$$

Putting A in reduced row echelon form:

$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & -2 & 3 \\ 1 & 5 & -1 \\ -3 & 1 & 1 \end{bmatrix} \xrightarrow{-r_1 + r_3 \to r_3} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -2 & 3 \\ 0 & 3 & 0 \\ -3 & 1 & 1 \end{bmatrix} \xrightarrow{3r_1 + r_4 \to r_4} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -2 & 3 \\ 0 & 3 & 0 \\ 0 & 7 & -2 \end{bmatrix} \xrightarrow{r_4 + r_3 \to r_3} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -2 & 3 \\ 0 & 10 & -2 \\ 0 & 7 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & -2 & 3 \\ 0 & 10 & -2 \\ 0 & 7 & -2 \end{bmatrix} \xrightarrow{5r_2 + r_3 \to r_3} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -2 & 3 \\ 0 & 0 & 13 \\ 0 & 7 & -2 \end{bmatrix} \xrightarrow{r_3/13 \to r_3} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -2 & 3 \\ 0 & 0 & 1 \\ 0 & 7 & -2 \end{bmatrix} \xrightarrow{r_3 + r_2 \to r_2} \begin{bmatrix} 1 & 2 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \\ 2r_3 + r_4 \to r_4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 7 & 0 \end{bmatrix} \xrightarrow{-r_2/2 \to r_2} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 7 & 0 \end{bmatrix} \xrightarrow{-2r_2 + r_1 \to r_1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -7r_2 + r_4 \to r_4 \end{bmatrix}$$

Because the reduced row echelon form of A has 3 pivots, then the columns of A are linearly independent. Hence, A has full rank. Therefore $K = A^T A$ is invertible and positive definite.

$$K = A^{T}A = \begin{bmatrix} 11 & 4 & -5 \\ 4 & 34 & -12 \\ -5 & -12 & 12 \end{bmatrix} \qquad A^{T}b = \begin{bmatrix} -18 \\ 28 \\ 17 \end{bmatrix}$$

Now solving the system $Kx^* = A^Tb$ with matlab (refer to code attached). We get that the least square solution is:

$$x^* = \begin{bmatrix} -1\\2\\3 \end{bmatrix}$$

So we have:

$$Ax^* = \begin{bmatrix} 0 \\ 5 \\ 6 \\ 8 \end{bmatrix} = b \Rightarrow ||Ax - b||^2 = 0$$

Therefore the least squares error is zero.

Problem 2. (10 points) Interpolation for Integration

part (a)

From the question we have that n = 1. Thus we have

$$p_n(x) = f(x_0)L_1(x) + f(x_1)L_2(x)$$

$$p_n(x) = f(x_0) \cdot \left(\frac{x - x_1}{x_0 - x_1}\right) + f(x_1) \cdot \left(\frac{x - x_0}{x_1 - x_0}\right)$$

Integrating we have

$$\int_{a}^{b} p_{n}(x) \ dx = \frac{f(x_{0})}{x_{0} - x_{1}} \int_{a}^{b} x \ dx - \frac{f(x_{0})}{x_{0} - x_{1}} \int_{a}^{b} x_{1} \ dx + \frac{f(x_{1})}{x_{1} - x_{0}} \int_{a}^{b} x \ dx - \frac{f(x_{1})}{x_{1} - x_{0}} \int_{a}^{b}$$

$$\int_{a}^{b} p_{n}(x) dx = \frac{1}{2} \frac{f(x_{0})}{x_{0} - x_{1}} (b^{2} - a^{2}) - \frac{f(x_{0})x_{1}}{x_{0} - x_{1}} (b - a) + \frac{1}{2} \frac{f(x_{1})}{x_{1} - x_{0}} (b^{2} - a^{2}) - \frac{f(x_{1}) \cdot x_{0}}{x_{1} - x_{0}} (b - a)$$

Substituting for $x_0 = a$ and $x_1 = b$:

$$\int_{a}^{b} p_{n}(x) dx = \frac{1}{2} \frac{f(a)}{a - b} (b^{2} - a^{2}) - \frac{f(a)b}{a - b} (b - a) + \frac{1}{2} \frac{f(b)}{b - a} (b^{2} - a^{2}) - \frac{f(b) \cdot a}{b - a} (b - a)$$

$$\int_{a}^{b} p_{n}(x) dx = -\frac{1}{2} f(a) \cdot (b+a) + f(a) \cdot b + \frac{1}{2} f(b) \cdot (b+a) - f(b) \cdot a$$

$$\int_{a}^{b} p_n(x) dx = f(a) \left(\frac{-1}{2} (b+a) + b \right) + f(b) \left(\frac{1}{2} (b+a) - a \right) = \frac{1}{2} \cdot (b-a) \cdot (f(a) + f(b))$$

part (b)

From part a we have:

$$p_n(x) = f(x_0) \cdot \left(\frac{x - x_1}{x_0 - x_1}\right) + f(x_1) \cdot \left(\frac{x - x_0}{x_1 - x_0}\right)$$

Also from part A we have:

$$\int_{a}^{b} p_{n}(x) dx = \frac{1}{2} \frac{f(x_{0})}{x_{0} - x_{1}} (b^{2} - a^{2}) - \frac{f(x_{0})x_{1}}{x_{0} - x_{1}} (b - a) + \frac{1}{2} \frac{f(x_{1})}{x_{1} - x_{0}} (b^{2} - a^{2}) - \frac{f(x_{1}) \cdot x_{0}}{x_{1} - x_{0}} (b - a)$$

Since $x_0 = a + \frac{1}{3}(b-a)$ and $x_1 = a + \frac{2}{3}(b-a)$. Then we have $x_0 - x_1 = -\frac{1}{3}(b-a)$ and $x_1 - x_0 = \frac{1}{3}(b-a)$. Substituting for $x_0 - x_1$ and $x_1 - x_0$ we have:

$$\int_{a}^{b} p_{n}(x) dx = -\frac{3}{2} \frac{f(x_{0})}{b-a} (b^{2}-a^{2}) + 3 \frac{f(x_{0})x_{1}}{b-a} (b-a) + \frac{3}{2} \frac{f(x_{1})}{b-a} (b^{2}-a^{2}) - 3 \frac{f(x_{1}) \cdot x_{0}}{b-a} (b-a)$$

$$\int_{a}^{b} p_{n}(x) dx = -\frac{3}{2} f(x_{0})(b+a) + 3f(x_{0}) \cdot x_{1} + \frac{3}{2} f(x_{1})(b+a) - 3f(x_{1}) \cdot x_{0} = f(x_{0}) \left(-\frac{3}{2}(b+a) + 3x_{1} \right) + f(x_{1}) \left(\frac{3}{2}(b+a) - 3x_{0} \right) dx = -\frac{3}{2} f(x_{0})(b+a) + 3f(x_{0}) \cdot x_{1} + \frac{3}{2} f(x_{1})(b+a) - 3f(x_{1}) \cdot x_{0} = f(x_{0}) \left(-\frac{3}{2}(b+a) + 3x_{1} \right) + f(x_{1}) \left(\frac{3}{2}(b+a) - 3x_{0} \right) dx = -\frac{3}{2} f(x_{0})(b+a) + 3f(x_{0}) \cdot x_{1} + \frac{3}{2} f(x_{1})(b+a) - 3f(x_{1}) \cdot x_{0} = f(x_{0}) \left(-\frac{3}{2}(b+a) + 3x_{1} \right) + f(x_{1}) \left(\frac{3}{2}(b+a) - 3x_{0} \right) dx = -\frac{3}{2} f(x_{0})(b+a) + 3f(x_{0}) \cdot x_{1} + \frac{3}{2} f(x_{1})(b+a) - 3f(x_{1}) \cdot x_{0} = f(x_{0}) \left(-\frac{3}{2}(b+a) + 3x_{1} \right) + f(x_{1}) \left(\frac{3}{2}(b+a) - 3x_{0} \right) dx = -\frac{3}{2} f(x_{1})(b+a) + \frac{3}{2} f(x_{1})(b+a) - 3f(x_{1}) \cdot x_{0} = f(x_{0}) \left(-\frac{3}{2}(b+a) + 3x_{1} \right) + f(x_{1}) \left(-\frac{3}{2}(b+a) - 3x_{0} \right) dx = -\frac{3}{2} f(x_{1})(b+a) + \frac{3}{2} f(x_{1})(b+a) - 3f(x_{1})(b+a) + \frac{3}{2} f(x_{1})(b+a) + \frac{3}{2} f(x_{1$$

Substituting for x_0 and x_1 we have:

$$\int_{a}^{b} p_{n}(x) dx = f(x_{0}) \left(-\frac{3}{2}(b+a) + 3a + 2(b-a) \right) + f(x_{1}) \left(\frac{3}{2}(b+a) - 3a - (b-a) \right) = \frac{1}{2}(b-a)f(x_{0}) + \frac{1}{2}(b-a)f(x_{1})$$

$$\int_{a}^{b} p_{n}(x) dx = \frac{1}{2}(b-a) \left(f(a + \frac{1}{3}(b-a)) + f(a + \frac{2}{3}(b-a)) \right)$$

part (c) First integral:

Actual value:

$$\int_0^1 e^x \, dx = e - 1 \approx 1.71828$$

Using the Trapezoid Rule:

$$\int_0^1 e^x \, dx \approx \frac{1}{2} \cdot (1 - 0) \cdot \left(e^0 + e^1 \right) = \frac{1}{2} (e + 1) \approx 1.85914$$

Using the Open Rule:

$$\int_0^1 e^x dx \approx \frac{1}{2} \cdot (1 - 0) \cdot \left(e^{1/3} + e^{2/3} \right) = \frac{1}{2} \left(e^{1/3} + e^{2/3} \right) \approx 1.67167$$

From the values above we see that the open rule yields a more accurate approximation for $\int_0^1 e^x dx$ than the trapezoid rule does.

Second integral:

Actual value:

$$\int_0^{\pi} \sin(x) \ dx = 2.0$$

Using the Trapezoid Rule:

$$\int_0^{\pi} \sin(x) \, dx \approx \frac{1}{2} \cdot (\pi - 0) \cdot (\sin(0) + \sin(\pi)) = 0$$

Using the Open Rule:

$$\int_0^{\pi} \sin(x) \, dx \approx \frac{1}{2} \cdot (\pi - 0) \cdot (\sin(\pi/3) + \sin(2\pi/3)) = \frac{\sqrt{3}\pi}{2} \approx 2.7207$$

From the values above we see that the open rule yields a more accurate approximation for $\int_0^{\pi} \sin(x) dx$ than the trapezoid rule does.

Problem 3.(10 points) Application of Least Squares to Data Fitting

part (a)

Using the equations given in the problem we have:

$$\vec{r} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix} - \begin{bmatrix} \beta_0^* 1 & \beta_1^* x_1^{(1)} & \beta_2^* x_2^{(1)} & \beta_3^* x_1^{(1)} x_2^{(1)} \\ \beta_0^* 1 & \beta_1^* x_1^{(2)} & \beta_2^* x_2^{(2)} & \beta_3^* x_1^{(2)} x_2^{(2)} \\ \vdots & \vdots & \vdots & \vdots \\ \beta_0^* 1 & \beta_1^* x_1^{(m)} & \beta_2^* x_2^{(m)} & \beta_3^* x_1^{(m)} x_2^{(m)} \end{bmatrix}$$

Rewriting we have:

$$\vec{r} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix} - \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} & x_1^{(1)} x_2^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} & x_1^{(2)} x_2^{(2)} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_1^{(m)} & x_2^{(m)} & x_1^{(m)} x_2^{(m)} \end{bmatrix} \begin{bmatrix} \beta_0^* \\ \beta_1^* \\ \beta_2^* \\ \beta_3^* \end{bmatrix}$$

$$\text{Let } \vec{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix} \text{ and } A = \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} & x_1^{(1)} x_2^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} & x_1^{(2)} x_2^{(2)} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_1^{(m)} & x_2^{(m)} & x_1^{(m)} x_2^{(m)} \end{bmatrix}, \text{ and } \beta^* = \begin{bmatrix} \beta_0^* \\ \beta_1^* \\ \beta_2^* \\ \beta_3^* \end{bmatrix}$$

In other words we are trying to solve the system $A\beta^* = \vec{y}$. Therefore the system of normal equations on β^* is the following:

$$A^T A \beta^* = A^T \vec{y}$$

where \vec{y}, A , and β^* are as defined above.

part (b)

See code attached. Plot is shown below.

Problem 4.(10 points) Polynomial Interpolation

See code attached. Plots are shown below.

Problem 5. (10 points) Stability of the Gram-Schmidt Algorithm

See code attached. Plot is shown below.

$A = [1 \ 2 \ -1; \ 0 \ -2 \ 3; \ 1 \ 5 \ -1; \ -3 \ 1 \ 1]$

$$b = [0; 5; 6; 8]$$

rref(A)

ans =
$$4 \times 3$$

1 0 0

0 1 0

0 0 1

0 0 0

$$K = A' * A$$

$$f = A' * b$$

$$x = K \setminus f$$

ACM/IDS 104 - Problem Set 4 - MATLAB Problems

Before writing your MATLAB code, it is always good practice to get rid of any leftover variables and figures from previous scripts.

```
clc; clear; close all;
```

Problem 3 (10 points) Application of Least Squares to Data Fitting

The dataset carbig, a built-in MATLAB dataset, contains various characteristics for m = 406 automobiles from the 1970s and 1980s. Let x_1, x_2 and y be the Weight, Horsepower and MPG (Miles Per Gallon) respectively. Let us assume the following theoretical model for the data:

$$y = f(x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$
 (*)

Let $\beta^* = (\beta_0^*, \beta_1^*, \beta_2^*, \beta_3^*)^T$ denote the best fit to the data, i.e. the vector that minimizes the Euclidean norm of the residual vector $\mathbf{r} = (r_1, \dots, r_m)^T$, where:

$$r_i = y^{(i)} - f(x_1^{(i)}, x_2^{(i)})$$

Part (a) (5 points)

Derive the system of normal equations on β^* . Do this in your written-up solutions.

Part (b) (5 points)

Find β^* by solving the normal system numerically and plot the scatter plot of the data $\{(x_1^{(i)}, x_2^{(i)}, y^{(i)})\}, i = 1 \cdots m$, together with the fitted surface $y = f(x_1, x_2)$ given by (\star) .

To start, let us load the dataset, define our variables, and perform some necessary cleanup as there exist NaN values. We do this for you :)

```
load carbig;
x1=Weight;
x2=Horsepower;
y=MPG;
clearvars -except x1 x2 y;
% Data cleaning
y=y(x1>0);
x2=x2(x1>0);
x1=x1(x1>0);

y=y(x2>0);
x1=x1(x2>0);
x2=x2(x2>0);

x1=x1(y>0);
x2=x2(y>0);
```

```
y=y(y>0);
```

Now, the dataset is ready for you to solve the normal system. Let us vizualize it. Drag the 3D plot around to get a better sense of the data.

```
figure;
scatter3(x1,x2,y,'MarkerEdgeColor','k','MarkerFaceColor','c');
xlabel('Weight');
ylabel('Horsepower');
zlabel('MPG');
title('Raw Data');
```


Finally, let us find the best surface to fit the data. Remember, in MATLAB, when solving a system, backslash is your best friend. Use scatter3() and fsurf() when plotting.

```
%{
Build the matrix A
Solve for beta
%}
% A is an m by 4 matrix
m = size(y, 1);
A = zeros(m , 4);
for i=1:m
    A(i, :) = [1 x1(i, 1) x2(i,1) x1(i, 1)*x2(i,1)];
end
```

```
K = A' * A;
f = A' * y;
% solving for beta
beta = K \setminus f;
y_pred = A * beta;
%{
Plotting
%}
figure;
scatter3(x1,x2,y,'MarkerEdgeColor','k','MarkerFaceColor','c');
hold on;
xlabel('Weight');
ylabel('Horsepower');
zlabel('f(x1, x2)');
[umin, \sim] = min(x1);
[umax, \sim] = max(x1);
[vmin, \sim] = min(x2);
[vmax, \sim] = max(x2);
func = @(x1,x2) [1, x1, x2, x1*x2]*beta;
fsurf(func, [umin umax vmin vmax])
```

Warning: Function behaves unexpectedly on array inputs. To improve performance, properly vectorize your function to return an output with the same size and shape as the input arguments.

```
hold off;
title('Fitted Surface and Raw Data');
```


Problem 4 (10 points) Polynomial Interpolation

Interpolating polynomials p(x) are used for approximation of complex functions g(x). Intuitively, the larger the degree of the interpolating polynomial, the more accurate the approximation $g(x) \approx p(x), x \in [a, b]$. Generally, this is not true (as you will see in this problem). High degree interpolating polynomials often behave badly, especially near the ends of the interval [a, b]. In practice, piecewise cubic splines are often used instead of high degree polynomials.

Suppose we want to approximate the function:

$$g(x) = \frac{\cos x}{\cosh x}, \ x \in [-a, a]$$

using n points equally spaced between -a and a. Find the interpolating polynomials and plot them versus the function g(x) for a = 1, 5 and n = 3, 5, 10, 15. In your plot, show also the data points used for interpolation. The code should produce a single figure with 8 subplots.

Useful MATLAB functions for this problem:

```
g = @(x) cos(x) ./ cosh(x); % you can define functions like this
a = [1, 5]; % setting interval values
n = [3, 5, 10, 15]; % setting the number of points
sub = 1; % setting the subplot index

%{
Let us see how g(x) looks like on both intervals
%}
figure;
subplot(1, 2, 1);
fplot(g, [-a(1), a(1)], "-c", "lineWidth", 4);
title("$\frac{\cos{x}}{\cosh{x}}{\cosh{x}}$ on $[-1, 1]$","Interpreter","latex");
hold on
subplot(1, 2, 2);
fplot(g, [-a(2), a(2)], "-c", "lineWidth", 4);
title("$\frac{\cos{x}}{\cosh{x}}$ on $[-5, 5]$","Interpreter","latex");
```



```
%{
Complete the nested for-loops
%}
plot_pos = 1;
figure;
for ival = a
    for degree = n-1
    %{
        Select degree+1 points in the interval
```

```
Evaluate q(x) on these points
        Find the polynomial coefficients
        %}
        points = linspace(-ival, ival, degree + 1);
        g_eval = g(points);
        coeffs = polyfit(points, g_eval, degree);
        %{
        PLOTTING
        Plot q(x), the sampled points and interpolating polynomial
        Please use different colors and linestyles
        %}
        subplot(2,4, plot_pos);
        hold on
        fplot(g, [-ival, ival], "-c", "lineWidth", 2);
        title(compose("Fit with n=%d, a=%d", degree+1, ival));
        xlabel("x");
        more_points = linspace(-ival, ival, 100);
        plot(more_points, polyval(coeffs, more_points), "--", "lineWidth", 2);
        scatter(points, g_eval, 15, 'k', "filled");
        legend("g(x)", "poly fit", "sample points", "location", "best");
        plot pos = plot pos + 1;
    end
end
```


Problem 5 (10 points) Stability of the Gram-Schmidt Algorithm

The classical Gram-Schmidt algorithm is numerically unstable. This means that, when implemented on a computer, the round-off errors can cause the output vectors to be significantly non-orthogonal. To explore the issue, perform the following computations for each $n = 10, 20, 30, \dots, 100$:

- 1. Create the Hilbert matrix H_n of size n (using hilb(n)) and consider the columns h_1, \dots, h_n as a basis of \mathbb{R}^n . The matrix H_n is non-singular, and thus its columns indeed form a basis, but it is very close to singular (i.e. its columns are close to being linearly dependent), and this leads to numerical problems.
- 2. Implement the basic Gram-Schmidt algorithm to construct an orthogonal basis $\{v_1, \dots, v_n\}$ of \mathbb{R}^n from h_1, \dots, h_n . Please don't use any advanced built-in function for orthogonalization (such as orthog()) just basic matrix operations. At the end of the process normalize your vectors so that the basis is orthonormal.
- 3. If vectors v_1, \dots, v_n obtained in (2) are orthonormal, then $V = [v_1, \dots, v_n]$ must be orthogonal. As a measure of orthogonality, compute the infinite norm $\delta_V(n) = ||I_n V^T V||_{\infty}$, which is a matrix norm (use norm(A, Inf)). The closer $\delta_V(n)$ is to zero, the closer the columns of V are to being orthogonal.
- 4. Repeat (2) and (3) to construct an orthonormal basis $\{u_1, \dots, u_n\}$ using the modified Gram-Schmidt algorithm (which is numerically more stable) described in lecture 9 (page 46), and compute $\delta_U(n)$.
- 5. To compare the basic and modified Gram-Schmidt algorithms, plot $\delta_V(n)$ and $\delta_U(n)$ versus n.

```
%{
Complete the following for-loop following (1)-(4)
%}
clc; clear;
delta_v = zeros(1, 10);
delta_u = zeros(1, 10);
for n=10:10:100
    %step 1
    H = hilb(n);
    %step 2, Gram-Schmidt (unstable version)
    basis = zeros(n, n);
    basis(:,1) = H(:,1);
    for k = 2:n
        wk = H(:,k);
        sum = zeros(n, 1);
        for i = 1:(k-1)
            vi = basis(:,i);
            sum = sum + dot(wk, vi) * vi / (norm(vi) * norm(vi));
        end
        basis(:, k) = wk - sum;
    end
```

```
%step 3, Gram-Schmidt (unstable version)
    %normalize all vector
    for i = 1:n
        basis(:,i) = basis(:,i) / norm(basis(:,i));
    end
    A = eye(n) - basis' * basis;
    measure_unstable = norm(A, Inf);
    index = cast(n/10, "uint8");
    delta_v(1, index ) = measure_unstable;
    %step 2, Gram-Schmidt (stable version)
    basis = zeros(n, n);
    for j = 1:n
        basis(:, j) = H(:,j)/norm(H(:,j));
        for k = (j+1):n
            H(:,k) = H(:,k) - dot(H(:,k),basis(:, j)) * basis(:, j);
        end
    end
    %step 3, vectors are already normalized
    A = eye(n) - basis' * basis;
    measure_stable = norm(A, Inf);
    index = cast(n/10, "uint8");
    delta u(1, index ) = measure stable;
end
%{
Visualize the comparison as specified in (5)
%}
figure;
hold on
plot(10:10:100, delta_v);
plot(10:10:100, delta u);
legend('$\delta_V (n)$','$\delta_U (n)$', 'Interpreter','latex');
xlabel("n");
ylabel("$\delta (n)$","Interpreter","latex");
```

