학번
 확

 이름
 분반

 1
 2

[Automata Homework #1]

Example1.14] Grammar G가 다음과 같이 정의되었다. $G=(\{A,S\},\{a,b\},S,P),P\colon S\to aAb|\lambda,A\to aAb|\lambda$ $L(G)=\left\{a^nb^n\,|\,n\geq 0\right\}$ 이 됨을 증명하시오.

Exercises 1.2.11] Find a grammar for $\Sigma = \{a, b\}$ that generate the set of all strings with exactly one a.

Exercises 1.2.13] What language does the grammar with there products generates? $S \to Aa, \ A \to B, \ B \to Aa$

학번				확 이	확 이	
이름		분반		1	2	

[Automata Homework #2]

Example2.13] Convert nfa to an equivalent dfa.

Excercise 2.1.7] Find dfa for the following language on $\Sigma = \{a,b\}$

$$L = \{w : |w| \mod 3 = 0\}$$

Excercise 2.1.13] Show that the language $L = \{a^n : n \ge 0, n \ne 4\}$

Excercise 2.24] In Figure 2.9, find $\boldsymbol{\delta}^*(q_0, 1011)$ and $\boldsymbol{\delta}^*(q_1, 01)$

Excercise 2.3.8] Find an nfa without λ -transition and with a single final state that accepts the set $\{1\} \cup \{0^n | n \ge 1\}$

학번		확이	확 이	
이름	분반	1	2	

[Automata Homework #3]

Example 3.6] Find a regular expression for the language

 $L = \{w \in \{0,1\}^* : w \text{ has no pair of consecutive zeros}\}$

Exercises 3.1.1] Find all strings in $L((a+b)^*b(a+ab)^*)$ of length less than four.

Exercises 3.2.1] Use the construction in Theorem 3.1 to find an nfa that accepts the language $L(ab^*aa + bba^*ab)$

Exercises 3.3.2] Find a regular grammar that generates the language $L(aa^*(ab+a)^*)$

학번		확 이	확 이	
이름	분빈	1	2	

[Automata Homework #4]

Example 4.12] Use pumping lemma to prove that $L = \{a^n b^k c^{n+k} | n \ge 0, k \ge 0\}$ is not regular.

Example 4.13] Use pumping lemma to prove that $L = \{a^n b^l | n \neq l\}$ is not regular.

Exercises 4.3.3] Use pumping lemma to prove that $L = \{w | n_a(w) = n_b(w)\}$ is not regular.

Exercises 4.3.4] Prove that $L = \{w \mid n_a(w) \neq n_b(w)\}$ is not regular.

[Automata	2012	- 2	Homework]
-----------	------	-----	-----------

학번		확 이	확 이	
이름	분반	1	2	

[Automata Homework #5]

Exercises 5.1.3] Give a derivation tree for w = abbbaabbaba for the grammar in Example 5.2

Exercises 5.1.7] Find context-free grammars for the language $L = \{a^n b^m \mid n \neq m-1\}$

Exercises 5.2.1] Find an s-grammar for $L = (aaa^*b + b)$

Exercises 5.2.13] Show that the following grammar is ambiguous. $S \rightarrow aSbS|bSaS|\lambda$

학번				확 이	확 이	
이름		분반		1	2	

[Automata Homework #6]

Exercises 6.1.8] A grammar is given below.

$$S \to aA|aBB, \ A \to aaA|\lambda, \ B \to bB|bbC, \ C \to B$$

(1) Remove all unit-productions, all useless productions, and all λ -productions.

(2) Change to Chomsky Normal Form.

(3) Use CYK algorithm to check the grammar generates a^5

Automata	2012 -	- 2	Homework]
Automata	ZU1Z -		LIGHTEWOLK

학번		확 이	확 이	
이름	분반	1	2	

[Automata Homework #7]

Exercises 7.1.3] Construct an npda that accepts the regular language $L(aaa^*b)$

Exercises 7.2.4] Construct an npda that accepts the language generated by the grammar $S \rightarrow aSSS \mid ab$

Exercises 7.3.3] Is the language $L = \{a^n b^n : n \ge 1\} \cup \{b\}$?

학번				확 이	
이름	퉌	분반	— 인 1	2	

[Automata Homework #8]

Example 8.3] Prove that $L = \{a^{n!} \mid n \ge 0\}$ is not context free.

Example 8.4] Prove that $L = \{a^n b^j | n = j^2\}$ is not context free.

Exercises 8.1.8] Determine and Prove whether or not $L = \{a^n b^n c^j \mid n \leq j\}$ is context free.

Exercises 8.1.11] Prove that $L = \{a^n b^n a^m b^m \mid n, m \ge 0\}$ is context free but not linear.

학번		확 이	확 이	
이름	분반	1	2	

[Automata Homework #9]

Exercises 9.1.5] Construct a Turing machine that will accept the following language on $\{a, b\}$.

 $L = \{w : |w| \text{ is a multiple of } 3\}$