

Document Title Annex 1 - Data Management Plan (DMP)

Deliverable number
D6.4
Version
1.0

Action Number: 101079338

Action title: Towards Excellent Robotics and Artificial Intelligence at a Slovak

University

Action Acronym: TERAIS

Deliverable 6.4 Data Management Plan Annex 1

WP6 - Project Management

Authors: Daniela Olejarova, Valentina Pasquale, Carlo Mazzola, Hassan Ali, Viktor Kocur, Xenia Daniela Poslon, Martin Takac, Sara Finocchietti, Igor Farkas

Lead participant: UKBA (Comenius University Bratislava)

Date: 20/02/2024

Dissemination level: public **DMP Annex 1 Version:** 1.0

Status of the Document: Submitted (not yet accepted)

Deliverable Number D6.4

Version 1.0

Table of Contents

1. Introduction	2
2. List of datasets	3
3. Abbreviations & keywords	8

1. Introduction

This Annex to Data Management Plan (DMP) of TERAIS project, specifies all the datasets related to studies published under the TERAIS acknowledgement. Datasets are organized as follows: six parent datasets, two for each partner of the consortium, are listed in the main document of the DMP and reports all main features that are valid for the child datasets that are connected to them. Child datasets are listed in this Annex (Annex 1). For each child-dataset, features such as the dataset name, authors, related publication, keywords, repository, level of Confidentiality / Accessibility policies, and PID are specified in Table 1.

Deliverable Number D6.4	
Version 1.0	

2. List of datasets

Here below are listed the child datasets of the TERAIS project, each connected to:

- 1) a parent dataset (PD) whose features are listed in the main document of the DMP
- 2) a specific publication acknowledging TERAIS.

Table 1. Summary of the TERAIS research datasets

#	DATASET NAME	PARENT DATASET	AUTHOR(S) (email + ORCID)	KEYWORDS	TITLE & OA PID of related publication	SIZE	REPOSITORY, PID & ACCESSIBILITY	EXPECTED IMPACT
1	TERAIS_SL S-SuperSam pl_code	PD 2 UKBA code	lukas.gajdosech@f mph.uniba.sk 0000-0002-8646-21 47		Supersampling of Data from Structured-light Scanner with Deep Learning https://doi.org/10.48550/ arXiv.2305.05215	-	Zenodo, https://doi.org/10.5281/zenodo.106 88235 Restricted (collaboration with private sector)	The code used to evaluate 3D point cloud supersampling methods. Restricted access due to collaboration with the private sector.
2	TERAIS_SL S-SuperSam pl_data	PD 1 UKBA Exp Data	lukas.gajdosech@f mph.uniba.sk 0000-0002-8646-21 47		Supersampling of Data from Structured-light Scanner with Deep Learning https://doi.org/10.48550/ arXiv.2305.05215	-	Zenodo, https://doi.org/10.5281/zenodo.106 88199 Restricted (collaboration with private sector)	The data used to evaluate 3D point cloud supersampling methods. Restricted access due to collaboration with the private sector.
3	BillBoardLam ac_code	PD 2 UKBA code	viktor.kocur@fmph. uniba.sk 0000-0001-8752-26 85		Evaluating the Significance of Outdoor Advertising from Driver's Perspective Using Computer Vision https://arxiv.org/abs/2311.07390	12.0 kB	Zenodo, https://zenodo.org/doi/10.5281/zenodo.org/doi/O.5281/zenodo.org/doi/O.5281/zenodo.OA	The code can be used with conjunction with the published data to create models for assessing significance of roadside advertisements as well as for similar assessment for other types of objects
4	BillBoardLam ac_data	PD 1 UKBA Exp Data	viktor.kocur@fmph. uniba.sk 0000-0001-8752-26 85		Evaluating the Significance of Outdoor Advertising from Driver's Perspective Using Computer Vision https://arxiv.org/abs/2311.0 7390	1.5 MB	Zenodo, https://zenodo.org/doi/10.5281/zenodo.o.10689664 OA	The data can be used to research aspects of roadside advertisement such as its significance in terms of driver's attention

Deliverable Number D6.4

5	TERAIS_ST D-Noise_cod e	PD 2 UKBA code	lukas.gajdosech@f mph.uniba.sk 0000-0002-8646-21 47	Enhancement of 3D Camera Synthetic Training Data with Noise Models https://doi.org/10.48550/ arXiv.2402.16514	60.4 MB	Zenodo, https://doi.org/10.5281/zenodo.105 81562 OA	The provided code can be used to estimate the parameters of 3D camera noise models. The code can also be used to train Deep CNN with synthetic noise added and evaluation of the trained model.
6	TERAIS_ST D-Noise_dat a	PD 1 UKBA Exp Data	lukas.gajdosech@f mph.uniba.sk 0000-0002-8646-21 47	Enhancement of 3D Camera Synthetic Training Data with Noise Models https://doi.org/10.48550/ arXiv.2402.16514	6.5 GB	Zenodo, https://doi.org/10.5281/zenodo.105 81278 OA	The dataset can be used to estimate noise parameters of three different types of 3D cameras. The dataset can also be used to train and evaluate DeepCNNs for object segmentation from depth maps featuring an object for which its precise 3D model is available.
7	SnaptureGR _code	PD 6 UHAM code	hassan.ali@uni-ha mburg.de 0000-0001-9907-18 34	Snapture—a Novel Neural Architecture for Combined Static and Dynamic Hand Gesture Recognition https://doi.org/10.1007/s/12559-023-10174-z	435.4 kB	Zenodo, https://zenodo.org/doi/10.5281/zen odo.10679196 OA	The code can be used to train a gesture recognition model which can enhance the robot's human-awareness using non-verbal cues.
8	SnaptureGR _data	PD 5 UHAM Exp Data	hassan.ali@uni-ha mburg.de 0000-0001-9907-18 34	Snapture—a Novel Neural Architecture for Combined Static and Dynamic Hand Gesture Recognition https://doi.org/10.1007/s 12559-023-10174-z	190.6 kB	Zenodo, https://zenodo.org/doi/10.5281/zenodo.org/doi/O.5281/zenodoi/O.5281/zenodoi/O.5281/zenodoi/O.5281/zenodoi/O.5281/zenodoi/O.5281/zenodoi/O.5281/zen	The repository refers to the public datasets used for this study. Other gestures recognition models can be trained using the same data.
9	SafeRL_cod e		igor.farkas@fmph.u niba.sk 0000-0003-3503-20 80	Safe Reinforcement Learning in a Simulated Robotic Arm https://doi.org/10.48550/ arXiv.2312.09468	9.8 MB	Zenodo, https://zenodo.org/doi/10.5281/zen odo.10694747 OA	The repository contains code for the paper enabling further research into various RL approaches in robotics.
10	SynthGaze_ code		igor.farkas@fmph.u niba.sk 0000-0003-3503-20 80	Appearance-based gaze estimation enhanced with synthetic images using deep neural networks	109.2 kB	Zenodo, https://zenodo.org/doi/10.5281/zen odo.10696083 OA	This repository contains code to train and evaluate NNs for eye gaze estimation.

Deliverable Number D6.4

				https://doi.org/10.48550/ arXiv.2311.14175			
11	whatisthis_c ode		lucny@fmph.uniba. <u>sk</u> 0000-0001-6042-74 34	Tuning-less Object Naming with a Foundation Model https://doi.org/10.48550/ arXiv.2311.04924	13.9 kB	Zenodo https://doi.org/10.5281/zenodo.107 02868 OA	This repository contains code to run the system for the tuning-less object naming and can be used by the research community.
12	whatisthis_d ata		lucny@fmph.uniba. <u>sk</u> 0000-0001-6042-74 34	Tuning-less Object Naming with a Foundation Model https://doi.org/10.48550/ arXiv.2311.04924		Zenodo https://zenodo.org/doi/10.5281/zen odo.10841424 OA	A set of images collected during interaction with the robot naming objects
13	BinGen_cod e	PD2_UKBA code	lukas.gajdosech@f mph.uniba.sk 0000-0002-8646-21 47	Novel Synthetic Data Tool for Data-Driven Cardboard Box Localization https://doi.org/10.48550/arXiv.2305.05215	-	Zenodo https://doi.org/10.5281/zenodo.106 49535 Restricted (collaboration with private sector)	The code in this repository can be used to generate synth data and train a neural network for semantic segmentation.
14	BinGen_data	PD1_UKBA Exp Data	lukas.gajdosech@f mph.uniba.sk 0000-0002-8646-21 47	Novel Synthetic Data Tool for Data-Driven Cardboard Box Localization https://doi.org/10.48550/ arXiv.2305.05215	3.4 GB	Zenodo https://doi.org/10.5281/zenodo.106 50158 OA	The data in this repository can be used to train neural networks for bin pose estimation.
15	WSL-SegTee th_code	PD2_UKBA code	viktor.kocur@fmph. uniba.sk 0000-0001-8752-26 85	Processing and Segmentation of Human Teeth from 2D Images using Weakly Supervised Learning https://doi.org/10.48550/ arXiv.2311.07398	-	Zenodo https://doi.org/10.5281/zenodo.106 88264 Restricted (collaboration with private sector)	The code in this repository can be used to train a deep neural network for human teeth keypoint detection and segmentation. Restricted access due to collaboration with the private sector.
16	WSL-SegTee th_data	PD1_UKBA Exp Data	viktor.kocur@fmph. uniba.sk 0000-0001-8752-26 85	Processing and Segmentation of Human Teeth from 2D Images using Weakly Supervised Learning https://doi.org/10.48550/arXiv.2311.07398	-	Zenodo https://doi.org/10.5281/zenodo.106 88365 Restricted (collaboration with private sector)	This dataset contains images of human oral cavities with annotated keypoints of teeth. Few samples also have mask annotations. Restricted access due to collaboration with the private sector.

Deliverable Number D6.4

17	QuasiNet_co de	PD2_UKBA code	kristina.malinovska @fmph.uniba.sk 0000-0001-7638-02 8X	Neural network with trainable product layers https://doi.org/10.48550/arXiv.2401.06137	7.0 kB	Zenodo https://doi.org/10.5281/zenodo.107 02248 OA	Code for the proposed neural network implementation. The repository also contains experiments from the paper for replication.
18	GANShift_co de	PD2_UKBA code	kristina.malinovska @fmph.uniba.sk 0000-0001-7638-02 8X	Controlling the Output of a Generative Model by Latent Feature Vector Shifting https://doi.org/10.48550/ arXiv.2311.08850	47.5 MB	Zenodo https://doi.org/10.5281/zenodo.107 08458 OA	Repository contains the code for the proposed method to be used by the research community.
19	VR_SDM_co de	PD2_UKBA	ivan.polasek@fmph .uniba.sk 0000-0001-6004-70 1X	Collaborative software design and modeling in virtual reality https://doi.org/10.1016/j.infsof.2023.107369	-	Zenodo https://doi.org/10.5281/zenodo.107 06814 Restricted (collaboration with private sector)	Code for the system proposed in the paper.
20	VR_SDM_da ta	PD3_UKBA	ivan.polasek@fmph .uniba.sk 0000-0001-6004-70 1X	Collaborative software design and modeling in virtual reality https://doi.org/10.1016/j.infsof.2023.107369	-	Zenodo https://doi.org/10.5281/zenodo.107 06914 Restricted (collaboration with private sector)	Data from human evaluations of the proposed method.
21	Xmodels_co de	PD2_UKBA code	lukas.radosky@fmp h.uniba.sk 0000-0003-3909-32 19 ivan.polasek@fmph .uniba.sk 0000-0001-6004-70 1X	Executable Multi-Layered Software Models https://doi.org/10.1145/3 643660.3643938	644.9 MB	Zenodo https://zenodo.org/doi/10.5281/zen odo.10710970 OA	The code in this repository is a software modelling tool using fusion of static and dynamic models, that is also able to generate source code in Python

Deliverable Number D6.4

22	SynthGaze_ data		igor.farkas@fmph.u niba.sk 0000-0003-3503-20 80	Appearance-based gaze estimation enhanced with synthetic images using deep neural networks https://doi.org/10.48550/arxiv.2311.14175	16.95 GB	Zenodo https://doi.org/10.5281/zenodo.107 11777 OA	Synthetically generated gaze images which can be used for training of Gaze Estimation neural networks.
23	MHS-MXP_c ode	PD2_UKBA code	martin.homola@fm ph.uniba.sk 0000-0001-6384-97 71	Merge, Explain, Iterate: A Combination of MHS and MXP in an ABox Abduction Solver https://doi.org/10.5281/z enodo.10724508	315.8 MB	Zenodo https://doi.org/10.5281/zenodo.107 08157 OA	Code for the methods presented in the paper.
24	ImAssocRob _code	PD2_UKBA	andrej.lucny@fmph. uniba.sk 0000-0001-6042-74 34	Robot at the mirror: learning to imitate via associating self-supervised models https://doi.org/10.48550/arXiv.2311.13226	18.6 kB	Zenodo https://doi.org/10.5281/zenodo.107 13544 OA	Code for the methods presented in the paper. Can be used by the research community.
25	ImAssocRob _data	PD2_UKBA	andrej.lucny@fmph. uniba.sk 0000-0001-6042-74 34	Robot at the mirror: learning to imitate via associating self-supervised models https://doi.org/10.48550/ arXiv.2311.13226	575.7 MB	Zenodo https://doi.org/10.5281/zenodo.108 41497 OA	A set of simulated robot poses recorded during learning imitation at the mirror for various parameter setups
26	EduDrone_c ode	PD2_UKBA	pavel.petrovic@fmp h.uniba.sk 0000-0001-8308-00 66	Using Programmable Drone in Educational Projects and Competitions https://doi.org/10.48550/arXiv.2402.17409	1.9 MB	Zenodo https://doi.org/10.5281/zenodo.107 15699 OA	Code for the methods presented in the paper. Can be used by the research community.

Deliverable Number D6.4 Version 1.0

27	DL Addressee Estimation Model for HRI - data	PD3_IIT_da ta	<u>carlo.mazzola@iit.it</u> 0000-0002-9282-98 73	To Whom are You Talking? A Deep Learning Model to Endow Social Robots with Addressee Estimation Skills https://doi.org/10.48550/arXiv.2308.10757	16.1 GB	Zenodo https://doi.org/10.5281/zenodo.107 11588 OA	Data derived from deep learning Addressee Estimation model trained on Vernissage Corpus
28	DL Addressee Estimation Model for HRI - code		carlo.mazzola@iit.it 0000-0002-9282-98 73	To Whom are You Talking? A Deep Learning Model to Endow Social Robots with Addressee Estimation Skills https://doi.org/10.48550/arXiv.2308.10757	58.3 kB	Zenodo https://doi.org/10.5281/zenodo.107 09858 OA	Code to train a deep learning Addressee Estimation model on Vernissage Corpus
29	NICOL_Soft ware	PD 6 UHAM code	matthias.kerzel@un i-hamburg.de	NICOL: A Neuro-Inspired Collaborative Semi-Humanoid Robot That Bridges Social Interaction and Reliable Manipulation https://doi.org/10.1109/A CCESS.2023.3329370	-	UHH	NICOL robot software and CAD/URDF files, including everything needed to run the CoppeliaSim simulation
30	cycleik_code	PD 6 UHAM code	jan-gerrit.habekost @uni-hamburg.de	CyclelK: Neuro-inspired Inverse Kinematics https://doi.org/10.1007/ 978-3-031-44207-0_38	-	GitHub https://github.com/jangerritha/Cycle IK	Implementation of CycleIK reproduce the results of the paper

3. Abbreviations & keywords

Table 6. Abbreviations and keywords.

Deliverable Number D6.4
Version

Abbreviation/ Keyword	Definition
CD	Child-Dataset
DMP	Data Management Plan
DOI	Digital Object Identifier
IIT	Italian Institute of Technology
PD	Parent-Dataset
PID	Persistent Identifier
TERAIS	Towards Excellent Robotics and Artificial Intelligence at a Slovak university
UKBA	Comenius University Bratislava (Univerzita Komenského v Bratislave)
UHAM	University of Hamburg