### IM420 Sistemas Embarcados de Tempo Real Notas de Aula – Semana 03

#### Prof. Denis Loubach

dloubach@fem.unicamp.br

Programa de Pós-Graduação em Eng. Mecânica / Área de Mecatrônica Faculdade de Engenharia Mecânica - FEM Universidade Estadual de Campinas - UNICAMP



1º Semestre de 2018

## **Tópicos**

- Motivação
- uC Target
- Ambiente de desenvolvimento
- RTOS
- Referências

## Cooki: a Desktop Robotic Chef That Does Everything



Photo: Evan Ackerman/IEEE Spectrum

You'll never ever have to cook ever again, ever.

Figura: Lançamento na CES 2016, fonte: http://spectrum.ieee.org/automaton/robotics/home-robots/cooki-a-desktop-robotic-chef-that-does-everything

## Visão geral uP

Esta disciplina utilizará um uP da família ARM (*Advanced RISC Machine*), linha Cortex-M: *ARM Cortex-M0+ Core* 32-bit

- Projetado para ser o mais eficiente em consumo de energia da família ARM
- Core pipeline de dois estágios
- Consumo de energia: 9.8uW/MHz
- Debug: Optional JTAG ou Serial-Wire Debug (SWD) ports com até 4 Breakpoints e 2 Watchpoints
- 56 instruções
- Arquitetura ARMv6-M
- Arquitetura de memória Von Neumann (dados e instruções compartilham um barramento)

#### Fonte [1]

## Diagrama de blocos do uP



#### Figura: Cortex-M0+ Processor, fonte:

http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php

#### Kit de desenvolvimento

Esta disciplina utilizará o kit de desenvolvimento FRDM-KL25Z que contém um processador ARM Cortex-M0+

# Principais características do uC Freescale KL25Z Kinetis KL2x (MKL25Z128VLK4):

- 48MHz, 16KB RAM, 128KB FLASH
- USB (Host/Device)
- SPI (x2)
- I2C (x2)
- UART (x3)

- PWM (Timer/PWM Module TPM)
- ADC (16 bit)
- DAC (x1 12bit)
- Touch Sensor
- GPIO (x66)

#### FRDM-KL25Z



Figura: FRDM-KL25Z fonte: [2]

## Diagrama de blocos do uC

#### Kinetis KL2x MCU Family Block Diagram



#### Figura: Família KL2x, fonte:

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/kinetis-cortex-m/l-series/kinetis-kl2x-48-mhz-usb-connectivity-ultra-low-power-mcus:KL2x

## Diagrama de blocos do kit



Figura: Digrama de blocos do kit, fonte: [3]

## Detalhes do uC target, fonte [3]

#### 32-bit ARM Cortex-M0+ core

- até 48 MHz de operação
- porta de acesso de I/O rápida (single-cycle)

#### Memórias

- 128 kB FLASH
- 16 kB SRAM

#### Sistema

- controlador DMA
- Computer operating properly (COP) Watchdog timer

### Detalhes do uC target, fonte [3] (cont...)

#### Clock

- módulo de geração de clock com suporte para FLL e PLL para o sistema e para CPU
- clocks internos de referência de 4 MHz e 32 kHz
- Oscilador do sistema com suporte para cristal externo e resonador
- Oscilador de baixo-consumo de 1 kHz para RTC e COP watchdog
- O uC montado no kit está conectado a um cristal externo de 8 MHz

O uC possui um *on-chip oscillator* compatível com três ranges de frequência de entrada de cristal ou resonador:

- 1 32-40 kHz (modo baixa frequência)
- 3-8 MHz (modo alta frequência, baixo range)
- 3 8-32 MHz (modo alta frequência, alto range)

## Detalhes do uC target, fonte [3] (cont...)

#### Periféricos analógicos

- 16-bit successive approximation (SAR) ADC com suporte DMA
- 12-bit DAC com suporte DMA
- Comparadores de alta velocidade

#### Periféricos de comunicação

- 2x 8-bit serial peripheral interfaces (SPI)
- USB dual-role controller
- USB voltage regulator
- 2x inter-integrated circuit (I<sup>2</sup>C)
- 1x low-power UART module
- 2x standard UART modules

### Detalhes do uC target, fonte [3] (cont...)

#### **Temporizadores**

- 1x 6-channel Timer/PWM module
- 2x 2-channel Timer/PWM modules
- 2-channel Periodic Interrupt Timer (PIT)
- Real time clock (RTC)
- Low-power Timer (LPTMR)
- System tick timer

#### Interface homem-máquina

- General purpose input/output controller
- Capacitive touch sense input interface hardware module

## Serial and Debug Adapter (OpenSDA)

OpenSDA é um adaptador de debug e serial de padrão aberto

Tem o objetivo de interligar as comunicações de *debug* e serial de um USB *host* para o processador embarcado *target* 

Possui um *mass storage device (MSD) bootloader* para carregar tipos diferentes de aplicações SDA:

- programador de flash
- interfaces de controle de debug
- conversor serial-USB

## Diagrama de blocos do OpenSDA



Figure 5. OpenSDA High-Level Block Diagram

Figura: Digrama de blocos do OpenSDA, fonte: [3]

### OpenSDA no kit

Gerenciado por um uC Kinetis K20 contendo um core ARM Cortex-M4

O circuito do OpenSDA conta com um LED de *status* (D4) e um *pushbutton* (SW1)

O SW1 pode ser utilizado para colocar o OpenSDA em modo bootloader

Sinais SPI e GPIO fazem interface com a porta SWD do KL25Z

O circuito do OpenSDA é energizado via conector J7 conectado na USB do computador *host* 

Uma porta serial para propósitos de *debug* é disponibilizada pelo OpenSDA (*USB Communications Device Class* - CDC)

## Principais documentos de referência

- FRDM-KL25Z Quick Start Package
- FRDM-KL25Z User's Manual
- FRDM-KL25Z Pinouts
- FRDM-KL25Z Schematics
- FRDM-KL25Z Design Package
- OpenSDA User's Guide
- Kinetis KL25 Sub-Family
- KL25 Sub-Family Reference Manual

#### Documentos podem ser encontrados em

www.freescale.com/FRDM-KL25Z

### Visão geral do ambiente de desenvolvimento

Esta disciplina utilizará a ferramenta de desenvolvimento de software denominada *Kinetis Design Studio* (KDS) [4]

Ferramenta GNU e baseada em Eclipse

Suporta os dispositivos Kinetis Cortex-M

Integrado ao Processor Expert

Integrado ao Kinetis Software Development Kit (KSDK)

Para adaptadores de debug suporta:

- P&E USB Multilink Universal
- Cortex Microcontroller Software Interface Standard Debug Access Port (CMSIS-DAP)
- outros...

Utiliza a biblioteca de runtime newlib-nano C (ajuda a reduzir o footprint de memória para software embarcado)

#### Tool-chain utilizada

- Cross ARM GCC (GNU Compiler Collection)
- Utilizar como builder o GNU Make Builder
- Utilizar a extensão eabi (embedded-application binary interface)

## Application Programming Interface (API)

#### Kinetis SDK API

Kinetis SDK Block Diagram



Figura: Digrama de blocos do KSDK, fonte: [5]

#### Kinetis SDK

#### Suite contendo:

- interface de hardware
- camadas de abstração de hardware
- drivers de periféricos
- abstrações de RTOS
- pilhas
- middleware

Inclui código fonte completo (open-source license) para todas:

- abstrações de hardware
- driver de periféricos

Não é "caixa-preta"!

### Kinetis SDK (cont...)

#### **CMSIS**

Arquivos de cabeçalho (*header files*) que proveem acesso direto aos registradores e bits dos periféricos

#### Hardware abstraction layer (HAL)

*Driver* simples e sem estados com uma API encapsulando as funções de baixo nível do periférico

#### System Services

Dedicado para recursos centralizados incluindo os gerenciadores de *clock*, interrupções, *low-power* e temporizadores implementados em hardware

### Kinetis SDK (cont...)

#### High-level peripheral drivers

Construídos com base no HAL, podem utilizar um ou mais system services. Utilizados para manipulação do periféricos, em "alto nível" de abstração

#### Operating system abstraction (OSA)

Camada para adaptar a aplicação para utilização de RTOS ou bare-metal

#### Pilhas e middleware

- USB device, host, OTG
- CMSIS-DSP
- Sistema de arquivos
- entre outros

### Kinetis SDK (cont...)

O HAL, *peripheral drivers*, e *system services* podem ser utilizados entre vários produtos Kinetis sem modificações

Os itens configuráveis para cada *driver* (em todos os níveis de abstração) encontram-se encapsulados em estruturas de dados escritas em linguagem C

Os mainline releases incluem suporte para a coleção de uC Kinetis

Os standalone releases incluem suporte para um ou poucos uC

## Principais documentos de referência

- KSDK12APIRM Kinetis SDK v.1.2 API Reference Manual, Rev. 0, April 2015
- KSDK12GSUG Getting Started with Kinetis SDK (KSDK) v.1.2, Rev. 0, April 2015
- KDSUG Kinetis Design Studio V3.0.0- User's Guide, Rev. 1, April 2015

### Lista de versões das ferramentas utilizadas



### Visão geral do RTOS FreeRTOS

Esta disciplina utilizará o RTOS FreeRTOS para a parte de laboratório

## Visão geral do RTOS FreeRTOS

- Opção de escalonamentos preemptivo, colaborativo, round robing com time slicing
- 5~12 kB footprint de FLASH
- Mutexes com herança de prioridade
- Mutexes recursivos
- Semáforos dos tipos contador e binário
- Fila de mensagens
- O código fonte do core conforma com o padrão de codificação MISRA
- Detecção de stack overflow
- Seleção de esquema de alocação de memória

Fonte: http://www.freertos.org

#### Tarefas no FreeRTOS



Valid task state transitions

Figura: Digrama de estados da tarefa no FreeRTOS, fonte: http://www.freertos.org/RTOS-task-states.html

### Descrição dos estados

- Running tarefa encontra-se em execução no processador
- Ready tarefa está pronta para ser executada
- Blocked tarefa está bloqueada por conta de algum evento temporal ou externo (e.g., fila, semáforo)
- Suspended tarefa suspensa não disponível para o escalonamento, após ser explicitamente comandada para este estado por um TaskSuspend e só volta após um TaskResume

## Principais documentos de referência

- Site oficial http://www.freertos.org/[6]
- Tutoriais http://mcuoneclipse.com/2012/09/29/ tutorial-freedom-with-freertos-and-kinetis-1/

### Informação ao leitor

Notas de aula baseadas nos seguintes textos:



ARM Ltd., "Cortex-m0+ processor http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php."



Freescale Semiconductor, Quick Start Guide for FRDM-KL25Z, 1 ed., 2012.



Freescale Semiconductor, FRDMKL25ZUM - FRDM-KL25Z User's Manual, 2 ed., 2013.



Freescale Semiconductor, KDSUG - Kinetis Design Studio V3.0.0- User's Guide, 1 ed., 2015.



Freescale Semiconductor, KSDK12APIRM - Kinetis SDK v.1.2 API Reference Manual, 0 ed., 2015.



Real Time Engineers Ltd., "Freertos - http://www.freertos.org."