Lecture 5

Unsupervised learning Clustering |

Golnaz Taheri, PhD
Senior Lecturer, Stockholm University

How good is a clustering?

- Several metrics for assessing the quality of a cluster
- External evaluation
- Internal evaluation

External Evaluation

- Clustering is evaluated based on external information, such as class labels of the clustered objects
- Metrics in this category typically assess how close is the clustering to the predefined classes
- Example of such measures:
 - Purity
 - Rand Index
 - Jaccard Index
 - Mutual Information

Cluster Purity

- Each cluster is assigned to the class label that is most frequent in the cluster
- Purity is measured by counting the number of correctly assigned objects and dividing by the total number of objects

How good is purity?

- Cluster purity
 - Simple!
 - Intuitive
- Trade-off between number of clusters and purity?
 - If each object belongs to its own cluster, then purity is 1.0
 - Is that desirable?
- Cannot trade-off the quality of clusters against the number of clusters
- Alternatives:
 - Rand Index
 - Normalized Mutual Information

- Computes how similar are the clusters to a set of given class labels
- Measures the percentage of correct decisions taken by the clustering algorithm
- Decision: given a pair of objects, is it assigned to the same cluster?

	Same Cluster	Different Clusters
Same Class	TP	FN
Different Classes	FP	TN

TP: all pairs of objects assigned to the same cluster and also belong to the same class

TN: all pairs of objects assigned to different clusters and also belong different classes

FP: all pairs of objects assigned to the same cluster but belong to different classes

FN: all pairs of objects assigned to different clusters but belong to the same class Stockholms

- Computes how similar are the clusters to a set of given class labels
- Measures the percentage of correct decisions taken by the clustering algorithm
- Decision: given a pair of objects, is it assigned to the same cluster?

	Same Cluster	Different Clusters
Same Class	TP	FN
Different Classes	FP	TN

$$Rand Index = (TP + TN) / (TP + FP + FN + TN)$$

	Same Cluster	Different Clusters
Same Class	TP	FN
Different Classes	FP	TN

- What are all the positives? TP + FP?
- all pairs that are correctly or incorrectly placed in the same cluster?

$$egin{pmatrix} n \ k \end{pmatrix} = rac{n!}{k!(n-k)!}$$

$$TP + FP = \begin{pmatrix} 6 \\ 2 \end{pmatrix} + \begin{pmatrix} 6 \\ 2 \end{pmatrix} + \begin{pmatrix} 5 \\ 2 \end{pmatrix} = 40$$

	Same Cluster	Different Clusters
Same Class	TP	FN
Different Classes	FP	TN

- What are the TP?
- all pairs that are correctly placed in the same cluster?

$$TP = \begin{pmatrix} 5 \\ 2 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 20$$

	Same Cluster	Different Clusters
Same Class	TP	FN
Different Classes	FP	TN

So:

$$TP = 20$$

$$FP = 20$$

	Same Cluster	Different Clusters
Same Class	TP	FN
Different Classes	FP	TN

What are all the negatives? TN + FN?

all pairs that are correctly or incorrectly placed in different clusters?

$$TN + FN = 6*6 + 6*5 + 6*5 = 96$$

	Same Cluster	Different Clusters
Same Class	TP	FN
Different Classes	FP	TN

What are the FN?

all pairs that are incorrectly placed in a different cluster?

$$FN = (5+4) + (2+3) + (2*5) = 24$$

Hence:
$$TN = 96 - FN = 96 - 24 = 72$$

	Same Cluster	Different Clusters
Same Class	TP	FN
Different Classes	FP	TN

	Same cluster	Different clusters
Same class	TP = 20	FN = 24
Different classes	FP = 20	TN = 72

$$RI = (20 + 72) / (20 + 72 + 20 + 24) = 92/136 = 0.68$$

Internal Evaluation

- The clustering is evaluated based on merely the data that was used for the clustering
- Metrics in this category typically assess the intra-cluster and intercluster similarities
- Example of such measures:
 - Dunn Index
 - Silhouette coefficient

The Dunn Index

- Does not assume any class distribution or assignment to the objects
- It is based on the principle objective of clustering:
 - Intra-cluster distance (or spread) is minimized
 - Inter-cluster distance is maximized
- Many ways of defining the spread (or diameter) of a cluster
 - Maximum distance between the objects
 - Mean distance between the objects
 - Total distance of all objects from their mean

The Dunn Index

- Many ways of quantifying the inter-cluster distance
 - Distance of the two closest objects
 - Distance of the two farthest objects
 - Distance between the centroids of the two clusters
- The family of Dunn Indices DI_m
 - Given a set of m clusters
 - Let δ(C_i, C_j) be a chosen inter-cluster metric for two clusters C_i and C_j
 - Let Δ_i be a chosen intra-cluster metric for cluster C_i

$$DI_m = \frac{\min_{1 \le i < j \le m} \delta(C_i, C_j)}{\max_{1 \le k \le m} \Delta_k}.$$

The Dunn Index

- In other words:
 - the Dunn Index is the minimum inter-cluster distance divided by the maximum intra-cluster distance
- Since the demoninator contains a "max" term:
 - if all clusters are compact enough except for one
 - then DI will be relatively small
- Hence, it is a worst-case indicator and should be used with caution

$$DI_m = \frac{\min_{1 \le i < j \le m} \delta(C_i, C_j)}{\max_{1 \le k \le m} \Delta_k}.$$

What if we don't have class labels?

- o a(i): average dissimilarity (distance) of object i with all other objects from the same cluster
- o b(i): the *lowest average dissimilarity (distance)* of object i to any other object in all clusters where i is not a member
- Takes values between -1 and 1 if b(i) >> a(i) then s(i) = 1if b(i) << a(i) then s(i) = -1

Total Silhouette: average silhouette value of all objects

Finding the correct number of clusters

- Silhouete can be used to identify the correct number of clusters
- How?

Green: Well separated cluster

K=3 clusters

Red: No clear cluster structure

Best number of clusters

Finding the correct number of clusters

- K-means:
 - Run K-means with different number of values for K
 - Identify the clustering that produces the highest average Silhouette
- Hierarchical clustering:
 - You can choose a view of the dendrogram that provides the highest average Silhouette value

Finding the correct number of clusters

- K-means:
 - Run K-means with different number of values for K
 - Identify the clustering that produces the highest average Silhouette
- Hierarchical clustering:

 You can choose a view of the dendrogram that provides the highest average Silhouette value

Clustering aggregation

- Many different clusterings for the same dataset!
 - Different objective functions
 - Different algorithms
 - Different number of clusters

- Which clustering is the best?
 - Aggregation: we do not need to decide, but rather find a reconciliation between different outputs

The clustering-aggregation problem

- Input
 - n objects $X = \{x_1, x_2, ..., x_n\}$
 - m clusterings of the objects $\{C_1, \dots, C_m\}$
 - clustering: a collection of disjoint sets that cover X
- Output
 - a single clustering C, that is as close as possible to all input clusterings
- How do we measure closeness of clusterings?
 - disagreement distance

Disagreement distance

• For two partitions C and P, and objects x, y in X define

$$I_{C,P}(x,y) = \begin{cases} 1 & \text{if } C(x) = C(y) \text{ and } P(x) \neq P(y) \\ & \text{OR} \end{cases}$$

$$I_{C,P}(x,y) = \begin{cases} 1 & \text{if } C(x) = C(y) \text{ and } P(x) \neq P(y) \\ & \text{otherwise} \end{cases}$$

U	С	P
X_1	1	1
X_2	1	2
X ₃	2	1
X ₄	3	3
X ₅	3	4

- if $I_{C,P}(x,y) = 1$ we say that x,y create a disagreement between clusterings C and P
- The disagreement distance between C and P is:

$$D(C,P) = \sum_{(x,y)} I_{C,P}(x,y)$$

Clustering aggregation

• Given m clusterings C_1, \dots, C_m find C such that

$$D(C) = \sum_{i=1}^{m} D(C, C_i)$$
 aggregation cost

is minimized

U	C_1	C ₂	C ₃	C
x_1	1	1	1	1
X ₂	1	2	2	2
X ₃	2	1	1	1
X ₄	2	2	2	2
X ₅	3	3	3	3
X ₆	3	4	3	3

Why clustering aggregation?

Clustering categorical data

U	City	Profession	Nationality
x_1	New York	Doctor	U.S.
X_2	New York	Teacher	Canada
X ₃	Boston	Doctor	U.S.
X ₄	Boston	Teacher	Canada
X ₅	Los Angeles	Lawer	Mexican
X ₆	Los Angeles	Actor	Mexican

- Consider each categorical attribute as a cluster
- Merge clusters to an aggregate clustering

Why clustering aggregation?

- Detect outliers
 - outliers are defined as points for which there is no consensus by the clusterings
- Improve the robustness of clustering algorithms
 - different algorithms have different weaknesses
 - combining them can produce a better result

Complexity of Clustering Aggregation

- The clustering aggregation problem is NP-hard
 - the median partition problem [Barthelemy and LeClerc 1995]
- Look for heuristics and approximate solutions
- A simple 2-approximation algorithm: BEST
 - select among the input clusterings the clustering C* that minimizes

$$D(C^*)$$

Today ...

Metrics for assessing the quality of a cluster

What is external evaluation?

What is internal evaluation

Finding the correct **number** of clusters

Clustering aggregation

TODOs

Main course book: chapter 7

Lab 2

Sep 14

Quiz 2

Coming up next

Thursday

Lab 2 – Clustering using Python

Lecture 6 - Classification I

Friday

Thanks!

golnaz.taheri@dsv.su.se

