

Prêt à dépenser

Objectif: construction d'un modèle de scoring

Katrin-Misel Ponomarjova OpenClassrooms parcours Ingénieur IA

1. Problématique métier

Prêt à dépenser :

- Propose des crédits à la consommation pour des personnes ayant peu ou pas d'historique de prêt
- L'entreprise souhaite mettre en oeuvre un outil de scoring qui calcule la probabilité qu'un client rembourse le crédit ou pas

Description de l'outil :

- Un algorithme de classification capable de décider si un prêt peut être accordé à un client
- Le modèle doit être facilement interprétable avec une mesure de l'importance des variables

- Coût d'un crédit non remboursé est 10x plus que le coût d'un crédit non accordé à un client qui avait la possibilité de rembourser
- Éviter d'accorder des crédits à des clients qui ne sont pas capables de le rembourser
- Un client refusé peut faire une nouvelle demande de crédit

2. Description du jeu de données

TRAIN ET TEST

- Dans le fichier principal, application_train, nous avons :
 - o 307 511 prêts
 - o 122 features
 - dont TARGET, indiquant si le client a remboursé (TARGET=0) ou pas (TARGET=1)
- Dans le fichier application_test, nous avons :
 - 48 744 prêts et pas de colonne TARGET

```
train.dtypes.value_counts()

v 0.1s

float64 65
int64 41
object 16
dtype: int64
```


- La plupart des prêts sont des cash loans et sont souscrit par des femmes.
- Ne possèdent pas de voiture mais possèdent de l'immobilier
- Des ouvriers et ne sont pas accompagnés à la signature du prêt
- En moyenne, les clients ont travaillé pendant 6 ans et ont en moyenne 44 ans

Domain knowledge d'un ancien analyste Home Credit*:

- Les clients HC sont domiciliés en Russie, Vietnam, Chine, Indonésie, etc.
- Très peu d'informations bureau / bancaires
- Current loan et previous loan plus fiables
- Surtout des loans CASH et non pas revolving loan (credit card) populaires aux Etats-Unis

^{*}https://www.kaggle.com/c/home-credit-default-risk/discussion/63032

TARGET : classes déséquilibrés et biais

3. Transformation du jeu de données (nettoyage et feature engineering)

Nettoyage

Gestion des anomalies :

- DAYS_EMPLOYED = 365243
- Créer des flags, remplacer par 0

Supprimer les features avec plus de 60 pourcent valeurs manquantes

Remplacer les valeurs manquantes restantes avec :

- o la médiane pour les variables numériques continues
- o "Unknown" pour les variables catégorielles

Nettoyage

Encodage des variables catégorielles :

- Label Encoder: pour les variables avec 2 valeurs possibles
- One Hot Encoder: pour les variables avec plusieurs valeurs possibles

Aligner test et train

Sélection des variables

Nouvelles features

Exemples:

- income_per_person = amt_income_total / cnt_children
- employed_birth_ratio = days_employed / days_birth
- credit_price_ratio = amt_credit / amt_goods_price
- annuity_revenue_ratio = amt_annuity / amt_income_total
- credit_income_ratio = amt_credit / amt_income_total
- docs_submitted
- neg_feats

Features polynôme:

- ext_sources = ext_source_2^2 + ext_source_3^2
- ext_sources_2 = ext_source_2^2 * days_birth^2 + ext_source_3^2

Gérer la colinéarité: 23 features qui nous restent

Métrique personnalisée :

- F2 score à maximiser
- Recall à maximiser au prix de la précision
- Le taux des faux négatifs à minimiser au prix de maximiser les faux positifs

4. Comparaison et synthèse des résultats pour les modèles utilisés

Modèle de référence

- Stratégie : most_frequent
- fbeta_score = 0.0

		precision	recall	f1-score	support
	0	0.92	1.00	0.96	189399
	1	0.00	0.00	0.00	16633
accui	racy			0.92	206032
macro	avg	0.46	0.50	0.48	206032
weighted	avg	0.85	0.92	0.88	206032

Comparaison de modèles de classification

	Model Name	Mean fit time	Mean score time	Mean precision	Mean recall	Mean ROC AUC	Mean F2
0	$(SMOTE(),\ Linear SVC(dual = False,\ random_state = 4$	1.871222	0.031562	0.122744	0.688222	0.668269	0.358181
1	$(SMOTE (),\ Decision Tree Classifier (random_state=$	3.638697	0.033104	0.128016	0.209135	0.542245	0.185546
2	(SMOTE(), LogisticRegression(random_state=42))	1.128781	0.025532	0.118966	0.677515	0.659022	0.349371
3	(RidgeClassifier(random_state=42))	0.070350	0.020332	0.000000	0.000000	0.726955	0.000000
4	(SMOTE(), RidgeClassifier(random_state=42))	0.389963	0.023731	0.147962	0.528592	0.684429	0.349000
5	$(SMOTE (),\ Random Forest Classifier (n_estimators =$	37.168294	0.643051	0.218891	0.102649	0.692700	0.114829
6	$(Random Forest Classifier (class_weight='balanced\\$	13.857474	0.558079	0.542377	0.008284	0.719331	0.010315
7	$(SMOTE (), Gradient Boosting Classifier (random_st$	62.150082	0.068528	0.231164	0.086887	0.693583	0.099185
8	$({\sf SMOTE}(), {\sf XGBClassifier}({\sf base_score} = {\sf None}, {\sf boost}$	20.323182	0.083777	0.335223	0.061223	0.703421	0.073163
9	(SMOTE(), LGBMClassifier(objective='binary', r	1.766468	0.153192	0.347372	0.047687	0.720489	0.057625
10	(LGBMClassifier(class_weight='balanced', objec	0.775529	0.124667	0.173895	0.602754	0.737634	0.403652

• Sans nos nouvelles features, nous obtenons:

```
• LightGBM ROC AUC = 0.7040081671738827
```

- o Recall = 0.7067877111765767
- \circ F2 = 0.4358109360518999

• Avec nos nouvelles features :

- LightGBM ROC AUC = 0.7166815849424928
- o Recall = 0.7239824445379667
- o F2 = 0.45061631379240663

LightGBM avant optimisation sur le jeu de **training**

F2 = 0.45061631379240663

• Faux négatifs : 2.2%

• Faux positifs: 26.6%

• Vrai négatifs : 5.8%

• Vrai positifs: 65.3%

- StratifiedKFold avec 5 folds
- RandomizedSearchCV avec 8 hyperparamètres à tester

LightGBM après optimisation sur le jeu de **training**

F2 = 0.5173439756263984

- Faux négatifs : 1.7% (avant : 2.2%)
- Faux positifs: 22.5% (avant: 26.6%)
- Vrai négatifs : 6.3% (avant : 5.8%)
- Vrai positifs: 69.4% (avant: 65.3%)

·	precision	recall	f1-score	support
0	0.98	0.75	0.85	189399
1	0.22	0.78	0.34	16633
accuracy			0.76	206032
macro avg	0.60	0.77	0.60	206032
weighted avg	0.91	0.76	0.81	206032

LightGBM après optimisation pour F2 sur le jeu de **testing**

F2 = 0.4139734303439763

• Faux négatifs : 3%

• Faux positifs: 23.4%

• Vrai négatifs : 5%

• Vrai positifs: 69%

		precision	recall	f1-score	suppor
	0	0.96	0.75	0.84	9328
	1	0.18	0.62	0.28	819
accura	асу			0.74	10147
macro a	avg	0.57	0.68	0.56	10147
weighted a	avg	0.89	0.74	0.79	10147

5. Interprétabilité du modèle

Interprétation avec LIME

AMT_REQ_CREDIT_BUREAU_YEAR	0.20
CODE_GENDER_F	1.00
income_per_pers	0.01
credit_price_ratio	0.11
annuity_credit_ratio	0.61
annuity_revenue_ratio	0.09
credit_income_ratio	0.03
docs_submitted	0.25
neg_feats	0.17
ext_sources	0.63
ext_sources_2	0.22

Feature	Value
AMT_ANNUITY	0.08
AMT_GOODS_PRICE	0.11
REGION_POPULATION_RELATIVE	0.09
DAYS_BIRTH	0.20
DAYS_EMPLOYED	0.05
DAYS_REGISTRATION	0.13
DAYS_ID_PUBLISH	0.51
CNT_FAM_MEMBERS	0.16
REGION_RATING_CLIENT_W_CITY	1.00
EXT_SOURCE_2	0.19

Recommandations

- Utiliser un autre moyen d'optimisation des hyperparamètres
- Domain knowledge
- Algorithmes d'imputation plus performantes sur les données manquantes