

Data Mining -- Association Rules

Instructor: Jen-Wei Huang

Office: 92528 in the EE building jwhuang@mail.ncku

FP-Growth [1]

- Mining frequent patterns without candidate generation
 - Depth-first search approach
- Grow long patterns from short ones using local frequent items only
 - "abc" is a frequent pattern
 - Get all transactions having "abc", i.e., project DB on abc: DB|abc
 - "d" is a local frequent item in DB|abc → abcd is a frequent pattern

Construct FP-tree

TID	Items bought
100	$\{f, a, c, d, g, i, m, p\}$
200	$\{a, b, c, f, l, m, o\}$
300	$\{b, f, h, j, o, w\}$
400	$\{b, c, k, s, p\}$
500	$\{a, f, c, e, l, p, m, n\}$

 $min_support = 3$

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Sort frequent items in frequency descending order, f-list

Header Table		
<u>Item</u>	frequency h	ead
$\mid f \mid$	4	
c	4	
a	3	
b	3	
m	3	
p	3	

F-list = f-c-a-b-m-p

Data Mining & Social Network Analysis 2021/02/24

3

Construct FP-tree

TID	Items bought (ord	lered) frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$	min_support = 3
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$	

3. Scan DB again, sort items in the transaction by frequency and construct FP-tree

Partition Database

- Frequent patterns can be partitioned into subsets according to f-list
 - F-list = f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - 0
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundency

Data Mining & Social Network Analysis 2021/02/24

_

Conditional Pattern Bases

- Starting at the least frequent item in the header table
- Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of the item to form its conditional pattern base

Conditional pattern bases

item	cond. pattern base	
\boldsymbol{c}	f:3	
a	fc:3	
\boldsymbol{b}	fca:1, f:1, c:1	
m	fca:2, fcab:1	
p	fcam:2, cb:1	

Data Mining & Social Network Analysis 2021/02/24

Conditional FP-trees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Mining Conditional FP-tree

Cond. pattern base of "cam": (f:3) $\begin{cases} \{\} \\ f:3 \end{cases}$ cam-conditional FP-tree

Single Prefix Path

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
 - Reduction of the single prefix path into one node
 - Concatenation of the mining results of the two parts

Data Mining & Social Network Analysis 2021/02/24

Benefits of FP-tree

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not count nodelinks and the count field)

FP-Growth Algorithm

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition
- Method
 - For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Problems of FP-Growth

- What about if FP-tree cannot fit in memory?
 - DB projection
- First partition a database into a set of projected DBs
- ▶ Then construct and mine FP-tree for each projected DB

11

ECLAT [3]

- Mining by exploring vertical data format
- Vertical format: $t(AB) = \{T_{11}, T_{25}, ...\}$
 - tid-list: list of trans.-ids containing an itemset
- Deriving frequent patterns based on vertical intersections
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - \circ t(X) = {T₁, T₂, T₃}, t(XY) = {T₁, T₃}
 - Diffset (XY, X) = {T₂}

Data Mining & Social Network Analysis 2021/02/24

13

Basic Extensions

- Max-pattern [5]
 - R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98.
- Closed-pattern [6]
 - N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
 Discovering frequent closed itemsets for association rules. ICDT'99.
- Sequential pattern [7]
 - R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95

Closed Patterns and Max-Patterns

- A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{1}{100} + \binom{1}{100} + \ldots + \binom{1}{1000} = 2^{100} 1 = 1.27*10^{30}$ sub-patterns!
- Solution: Mine closed patterns and max-patterns instead
- An itemset X is closed if X is frequent and there exists no super-pattern Y > X, with the same support as X
 - Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X

Data Mining & Social Network Analysis 2021/02/24

15

Examples

- Exercise. DB = $\{\langle a_1, ..., a_{100} \rangle, \langle a_1, ..., a_{50} \rangle\}$
 - Min_sup = 1.
- What is the set of closed itemset?
 - \circ <a₁, ..., a₁₀₀>: 1
 - \circ < a_1 , ..., a_{50} >: 2
- What is the set of max-pattern?
 - \circ <a₁, ..., a₁₀₀>: 1
- What is the set of all patterns?

0 |

Computational Complexity

- How many itemsets are potentially to be generated in the worst case?
 - The number of frequent itemsets to be generated is sensitive to the min_sup threshold
 - When min_sup is low, there exist potentially an exponential number of frequent itemsets
 - The worst case: M^N where M: # distinct items, and N: max length of transactions
- The worst case complexity vs. the expected probability
 - Ex. Suppose Walmart has 10⁴ kinds of products
 - The chance to pick up one product 10⁻⁴
 - The chance to pick up a particular set of 10 products: ~10-40
 - What is the chance this particular set of 10 products to be frequent 10³ times in 10⁹ transactions?

17

References

- ▶ [1] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD' 00
- ▶ [2] G. Grahne and J. Zhu, Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03), Melbourne, FL, Nov. 2003
- ▶ [3] M. J. Zaki, Scalable Algorithms for Association Mining. IEEE Transactions on Knowledge and Data Engineering, 12(3):372–390. May/June 2000
- ▶ [4] M. J. Zaki and Karam Gouda, Fast Vertical Mining Using Diffsets. In 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 2003.
- ▶ [5] R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98.
- [6] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. ICDT'99.
- [7] R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95

References

- Slides from Prof. J.-W. Han, UIUC
- ▶ Slides from Prof. M.–S. Chen, NTU
- ▶ Slides from Prof. W.–Z. Peng, NCTU

