HW6TEST_Jeffrey

Jack Jeffrey

Homework 6

2.1 Describe Y: PR system

```
setwd("/Users/jackjeffrey/Documents/Poli502_Jeffrey/Data")
world.data <- read.csv("world.csv")</pre>
# load data
table(world.data$pr_sys)
No Yes
124 67
# view table
# change labels
world.data$pr <- factor(world.data$pr_sys,</pre>
                         levels = c("Yes", "No"),
                         labels = c("PR System", "Non-PR"))
table(world.data$pr)
             Non-PR
PR System
       67
                124
# view table for variables
```

2.2 Describe X: Ethnic fractionalization

62

62

64

```
table(world.data$frac_eth3)
         High
               Low Medium
     3
           62
                 62
                         64
# view table
tail(world.data[c("country", "frac_eth3")])
                country frac_eth3
186
                Vietnam
                              Low
187
          Western Samoa
                              Low
                  Yemen
188
189 Serbia & Montenegro
                           Medium
190
                 Zambia
                           High
191
               Zimbabwe
                           Medium
# view table with country names
world.data$frac_eth3_ord <- factor(world.data$frac_eth3,</pre>
                                   levels = c("Low", "Medium", "High"), # order it in this w
                                   ordered = TRUE)
table(world.data$frac_eth3_ord)
   Low Medium
                High
    62
           64
                  62
# order the variable names
table(world.data$frac_eth3)
         High
                 Low Medium
```

table(world.data\$frac_eth3_ord)

```
Low Medium High 62 64 62
```

```
# compare tables
table(world.data$frac_eth3, world.data$frac_eth3_ord)
```

	Low	Medium	High
	0	0	0
High	0	0	62
Low	62	0	0
Medium	0	64	0

created two-by-two table

2.3 Describe X-Y

```
# Ensure gmodels is installed and loaded
if (!require("gmodels")) install.packages("gmodels")
```

Loading required package: gmodels

```
library(gmodels)

# Create CrossTable for PR system and ethnic fractionalization
CrossTable(world.data$pr, world.data$frac_eth3_ord)
```

```
Cell Contents

------

N |
Chi-square contribution |
N / Row Total |
```

```
| N / Col Total |
| N / Table Total |
```

Total Observations in Table: 188

world.data\$frac_eth3_ord							
world.data\$pr	Low	Medium	High	Row Total			
PR System	23	27	15	65			
I	0.114	1.073	1.932	1			
I	0.354	0.415	0.231	0.346			
I	0.371	0.422	0.242	1			
I	0.122	0.144	0.080	1			
Non-PR	39	37	47	123			
I	0.060	0.567	1.021	1			
I	0.317	0.301	0.382	0.654			
I	0.629	0.578	0.758	1			
I	0.207	0.197	0.250	1			
Column Total	62	l 64	l 62	188			
I	0.330	0.340	0.330	1			

```
|-----|
| N / Col Total |
```

|-----|

Total Observations in Table: 188

world.data\$frac_eth3_ord							
world.data\$pr	Low	Medium	High	Row Total			
PR System	23	27	15	l 65 l			
I	0.371	0.422	0.242	l I			
Non-PR	39	37	47	123			
I	0.629	0.578	0.758	l I			
Column Total	62	64	62	188			
I	0.330	0.340	0.330	l I			

Statistics for All Table Factors

Interpretation: chi-squared equals 4.76 with 2 degrees of freedom and a p-value of # 0.092. We could reject the null at a 90% confidence level.

3. Correlation

3.1 Describe Y: labor freedom

summary(world.data\$free_labor)

```
20.00 50.10 60.80 62.08 75.90
                                          98.90
                                                    18
# view statistics for free labor variable, variable has 18 NA's
if (!require("tidyverse")) install.packages("tidyverse")
Loading required package: tidyverse
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr 1.1.4 v readr
                                  2.1.5
v forcats 1.0.0 v stringr
v ggplot2 3.5.1 v tibble
v lubridate 1.9.3 v tidyr
                                  1.5.1
                                3.2.1
                                  1.3.1
            1.0.2
v purrr
-- Conflicts ----- tidyverse conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
               masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
library(tidyverse)
# loaded tidyverse package
g <- ggplot(world.data, aes(x = free_labor)) + geom_histogram()
g <- g + ylab("Number of countries") + xlab("Labor freedom") + theme_bw()
```

NA's

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Warning: Removed 18 rows containing non-finite outside the scale range (`stat_bin()`).

Warning: Removed 18 rows containing non-finite outside the scale range $(\dot stat_bin()\dot)$.

graphed variable without NAs and new binwidth value

3.2 Describe X: union density

```
summary(world.data$unions)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 2.00 11.45 19.10 24.74 30.80 96.10 100
```

```
# numerical summary for union variable, 100 NAs found
g <- ggplot(world.data, aes(x = unions)) +
  geom_histogram(na.rm = TRUE) + # use statbin to remove NAs
  ylab("Number of countries") +
  xlab("Percent laborers in unions") +
  theme_bw()
g</pre>
```

[`]stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

saved the plot

3.3 Describe X-Y

```
g <- ggplot(world.data, aes(x = unions, y = free_labor)) + geom_point() + theme_bw()
g <- g + ylab("Labor freedom") + xlab("Percent laborers in unions")
g</pre>
```

Warning: Removed 100 rows containing missing values or values outside the scale range (`geom_point()`).

plotted an X-Y scatterplot graph using geom_point

Calculate test-statistic & p

```
lab.uni.mat <- as.matrix(world.data[c("unions", "free_labor")])
# create a new matrix
if (!require("Hmisc")) install.packages("Hmisc")</pre>
```

Loading required package: Hmisc

Attaching package: 'Hmisc'

The following objects are masked from 'package:dplyr':

src, summarize

The following objects are masked from 'package:base':

format.pval, units

```
library(Hmisc)
# loaded Hmisc package
rcorr(lab.uni.mat, type = "pearson")
           unions free_labor
unions
             1.00
                       0.18
free_labor
             0.18
                        1.00
n
           unions free_labor
                          91
unions
               91
free_labor
               91
                         173
Ρ
           unions free_labor
unions
                  0.0913
free_labor 0.0913
# Interpretation: for the Pearson's test we see that the correlation coefficient is
# positive at 0.18, with a total of 91 observations present in both X and Y variables.
# The p-value of 0.0913 indicates that our expectations of more labor unions correlating
# to more labor freedom is statistically significant at the 90% level but not at the 95%.
```

4. Adding lines and labels to a graph

[1] 24.73846

```
lab.data <- world.data[!is.na(world.data$unions) & !is.na(world.data$free_labor), ]
# created a new object with NAs removed
mean.y <- mean(lab.data$free_labor)
mean.x <- mean(lab.data$unions)

mean.y

[1] 61.65714</pre>
mean.x
```

```
# calculate the means - mean for Y equals 61.66, mean for X equals 24.74

g <- ggplot(lab.data, aes(x = unions, y = free_labor)) + geom_point() + theme_bw()

g <- g + ylab("Labor freedom") + xlab("Percent laborers in unions")

g <- g + geom_hline(aes(yintercept = mean.y))

g <- g + geom_vline(aes(xintercept = mean.x))

g</pre>
```



```
# scatterplot using hline and vline to draw lines at the X and Y means
# Optional: Add country labels for readability using ggrepel
if (!require("ggrepel")) install.packages("ggrepel")
```

Loading required package: ggrepel

```
library(ggrepel)
options(ggrepel.max.overlaps = Inf)

g <- ggplot(lab.data, aes(x = unions, y = free_labor)) +
        geom_point() +
        geom_label_repel(aes(label = country)) +
        ylab("Labor freedom") + xlab("Percent laborers in unions") +</pre>
```

```
geom_hline(aes(yintercept = mean.y)) +
geom_vline(aes(xintercept = mean.x)) +
theme_bw()
g
```


Final scatterplot with country labels for readability