Elementary Particle Physics from the context of the courses PHY 493: Elementary Particle Physics

Kaedon Cleland-Host

January 12, 2023

Contents

	0.1	The SI System	1
1	Fun	damental Particles	2
	1.1	Fermions and Bosons	2
	1.2	Feynman Diagrams	2

0.1 The SI System

In physics it's often important to have precisely defined units for the purposes of making very accurate measurements or simply having a coherent unit system. It's possible to derive all necessary units from five measurements of **length**, **mass**, **time**, **current**, **and temperature**. The standard SI units for these properties are listed bellow:

Type	Unit	Definition						
Length	Meter(m)	Length of distance light in a vacuum travels in $\frac{1}{299792458}$ seconds						
Mass	Kilogram(kg)	Defined by fixing the Planck's constant $h = 6.62607015 \times 10^{-34} kg \ m^2 s^{-1}$						
Time	Second(s)	Defined by fixing the ground-state hyperfine transition frequency of the caesium-133						
		atom, to be $9192631770s^{-1}$						
Current	Ampere(A)	Defined by fixing the charge of an electron as $1.602176634 \times 10^{-19} A \cdot s$						
Temperature	$\operatorname{Kelvin}(K)$	Defined by fixing the value of the Boltzmann constant k to $1.380649 \times 10^{-23} kg \cdot m^2 s^{-2} K^{-1}$						

Common prefixes are listed bellow:

Prefix	Symbol	Definition
mega	M	10^{6}
kilo	k	10^{3}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}

Additionally, the following are defined constants:

	,,
Symbol	Definition
\hbar	$h = \frac{h}{2\pi} \approx 1.0546 \times 10^{-34} kg \ m^2 s^{-1}$

Chapter 1

Fundamental Particles

1.1 Fermions and Bosons

Definition 1.1.1. A **fermion** is a particle with half integer spin.

Definition 1.1.2. The **color** of a particle is a quantum number that can be in 7 possibles states: colorless, red, green, blue, anti-red, anti-green, and anti-blue.

Definition 1.1.3. A quark is a fermion with color charge.

Definition 1.1.4. An **anti-quark** is a fermion with anti color charge.

Table 1.1.5. Quarks and Anti-Quarks Table of quarks and anti-quarks and there corresponding properties.

Name	Sym.	S	Q	B_a	T_3	I_3	C	S	T	B_o	Mass (MeV/c^2)
Up	u	1/2	2/3	1/3	1/2	1/2	0	0	0	0	2.3
Anti-Up	\overline{u}	1/2	-2/3	-1/3	-1/2	-1/2	0	0	0	0	2.3
Down	d	1/2	-1/3	1/3	-1/2	-1/2	0	0	0	0	4.8
Anti-Down	\overline{d}	1/2	1/3	-1/3	1/2	1/2	0	0	0	0	4.8
Charm	c	1/2	2/3	1/3	1/2	0	1	0	0	0	1.275×10^{3}
Anti-Charm	\overline{c}	1/2	-2/3	-1/3	-1/2	0	-1	0	0	0	1.275×10^3

S is spin (\hbar) , Q is electric charge (e), B_a is baryon number, I_3 is strong isospin, T_3 is weak isospin, C is charmness, S is strangeness, T is topness, B_o is bottomness.

Definition 1.1.6. a **lepton** or an **anti-lepton** is a fermion with no color charge.

Table 1.1.7. Leptons and Anti-Leptons Table of leptons and anti-leptons and their corresponding properties.

Definition 1.1.8. A **Boson** is a particle with integer spin.

Table 1.1.9. Bosons Table of bosons and their corresponding properties.

1.2 Feynman Diagrams

Definition 1.2.1. A feynmann diagram is a pictorial representation of and interaction between particles.