Project: Outliers Himalayan Expeditions

Aston Yong, Catherine Ning, and Matthew Hawkins

Introduction and Motivation

- Our topic centers around expeditions that have climbed in the Nepal Himalaya
- Motivation: Discover what are necessary factors potentially leading to a safe expedition to ensure the success of the expedition
- Research question: What expedition factors are most predictive of safe and successful expeditions and what is the probability of success given these predictors?

The Dataset

Our datasets consists of 3 csv files:

- Expeditions Main dataset
- Members
- Peaks

```
Rows: 8,770
Columns: 11
$ height_metres
                                                                           <dbl> 6055, 6055, 6055, 6814, 6814, 6814, 6814, 681...
$ member count
                                                                           <dbl> 5, 9, 11, 5, 6, 4, 2, 4, 2, 6, 10, 6, 5, 6, 8...
$ hired staff
                                                                          <dbl> 0, 1, 2, 0, 1, 2, 2, 0, 2, 0, 3, 0, 2, 2, 0, ...
$ oxygen_used
                                                                           <lgl> FALSE, FALSE
$ year
                                                                           <dbl> 2015, 2018, 2015, 2000, 2000, 2000, 2000, 200...
                                                                           <chr> "Autumn", "Autumn", "Autumn", "Spring", "Spri...
$ season
$ trekking_agency
                                                                          <fct> Cosmo Treks, Other, Other, Other, Other, Asia...
                                                                           $ member_deaths
<dbl> 22.400, 44.333, 49.091, 30.600, 33.167, 40.25...
$ success_expedition <fct> 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, ...
```

Data manipulation:

- Join grouped members info and peak height into expeditions
- Create the the variable "success expedition" using termination reason
- Select useful variables and remove null values

Exploratory Data Analysis Highlights

- Through manipulation and classification of data, examined distribution of response variable, the expedition outcome (shown below)
 - 55.1% of expeditions classified as successes
- Analyzed distributions of important predictor variables, such as use of oxygen, number of members in the expedition, and season
- Found important summary statistics to describe the distribution of number of members in expedition
 - Mean: 5.953
 - SD: 5.428
 - o IQR: 6
 - o Right-skewed distribution
- Distribution of Season:
 - Unsurprisingly, primarily Spring and Summer

Final Model

- Forward selection BIC with quadratic mean_age_cent
- Mean centered variables
- Conditions checked drop in deviance, emplogitplots, etc
- Predictive power and fit: AUC = 0.747

term	estimate	$\operatorname{std.error}$	statistic	p.value	conf.low	conf.high
(Intercept)	-0.12853	0.11233	-1.14423	0.25253	-0.34879	0.09158
$oxygen_usedTRUE$	-0.77096	0.25250	-3.05335	0.00226	-1.26556	-0.27532
$height_metres_cent$	-0.00063	0.00004	-17.59754	0.00000	-0.00071	-0.00056
$member_count_cent$	0.06468	0.00521	12.41366	0.00000	0.05456	0.07499
$mean_age_cent$	-0.02315	0.00388	-5.96951	0.00000	-0.03077	-0.01556
$mean_age_cent_sq$	-0.00219	0.00036	-6.10579	0.00000	-0.00290	-0.00150
$hired_staff_deaths$	-0.81198	0.16755	-4.84619	0.00000	-1.15379	-0.49903
year	-0.00155	0.00321	-0.48284	0.62921	-0.00785	0.00474
$oxygen_usedTRUE:height_me$	$etres_cen 0.00098$	0.00012	8.18924	0.00000	0.00075	0.00122
$oxygen_usedTRUE:year$	0.06035	0.00674	8.94971	0.00000	0.04715	0.07359

Interesting Findings

- Baseline odds of success are higher than expected
- Log odds decrease with year since 1971
- Oxygen use is a key indicator of expedition failure
- Oxygen use and year interaction term
 - Experience? Technology?
- Impact of mean_age_cent reaches maximum at
 -5.29 years (33.2 years)

Conclusions and Future Work

- Significant Predictors:
 - Peak height, number of members, mean member age, staff deaths, year of expedition, and oxygen use
- P-values below 0.05 for all variables but year
 - Drop-in-deviance test to confirm validity of the year variable
- Limitations:
 - Unable to examine all interactions between variables
 - Missing value data points
 - Other potential models with better fit
 - Concerns of independence
 - Expeditions on certain mountains might have higher/lower odds of success
- Future Work:
 - Analyze more of the interactions between different variables
 - Trying different models to explain the variance in the success of an expedition more effectively
 - Examining potential independence problems