

A Modified MPPT Algorithm with Integrated Active Power Control for PV-Battery Systems

Fulong Li
Power Electronics, Machines and Power System
Aston University
lif12@aston.ac.uk

Aston University

Birmingham

- Introduction
- Configuration of the system
 - Analysis of battery charging
 - Analysis of two operating points
 - Analysis of the modified MPPT algorithm
- Experiment results
- Conclusions

- Introduction
- Configuration of the system
 - Analysis of battery charging
 - Analysis of two operating points
 - Analysis of the modified MPPT algorithm
- Experiment results
- Conclusions

- Cleanness
- Sustainability

Maximum power point tracking (MPPT)

Objective: limit PV output power

Why?

- Grid-tie PV systems
 - Causing the grid overloaded
- Off-Grid PV systems
 - Overcharging the battery
 - Battery lifespan
 - Mainly reduced by improper control method
 - Causing the instability

6

Contents

- Introduction
- Configuration of the system
 - Analysis of battery charging
 - Analysis of two operating points
 - Analysis of the modified MPPT algorithm
- Experiment results
- Conclusions

A typical off-grid PV energy storage system

- DC/DC converter
- Batteries
- Digital controller

battery protection algorithm

Battery charging analysis

Bulk charge stage

- Absorption stage
 - Voltage limit
- Float stage

When PV output power is LOW→MPP
When PV output power is HIGH→NO MPP

Modified MPPT with Active Power Control

P&O MPPT method

 PV output limitation

Contents

- Introduction
- Configuration of the system
 - Analysis of battery charging
 - Analysis of two operating points
 - Analysis of the modified MPPT algorithm
- Experiment results
- Conclusions

Experimental setup

- PV emulator (62050H-600S)
- Four 12V VRLA batteries (YPC33-12)
- Boost converter
- TMS320F28335 micro-controller

12

Left operating point when limiting the output of PV

Experimental waveforms of PV output,(a) left operating point;(b) dynamic process of left operating point

Experiment results

Two possible operating point when limiting the output of PV

5th International Conference on Renewable Energy Research and Applications

BIRMINGHAM, United Kingdom

Experimental waveforms of PV output,(a) right operating point;(b) dynamic process of right operating point

Experiment results

 $600W/m^2 \rightarrow 1000W/m^2$

Compare two possible operating point when fast changing in PV's output

LOP: slower, more smooth

ROP: quicker, less smooth

 The proposed modified MPPT algorithm is experimentally verified

- Two possible operating points are compared:
 - LOP: smooth & steady transition period
 - ROP: quicker response to irradiance change

Thank you! Questions?