Math Notation

see conventional math notation

this note describes my custom <u>math notation</u>, meant to solve inconsistencies in <u>conventional</u> <u>math notation</u>. it is not meant to be a fully formal system of <u>mathematics</u>; rather, it is built to be easy to understand and intuitive to use by mere humans.

principles

- all equality <u>operators</u> check for equality and return a <u>boolean</u>, and it is implied that an <u>expression</u> on its own must evaluate to ⊤. this allows for <u>boolean logic operators</u> to be applied on equalities explicitly as opposed informally
- <u>sets</u> are <u>functions</u> that return a <u>boolean</u> (<u>sets</u> are <u>predicates</u>). this way, <u>boolean logic</u> <u>operators</u> and <u>set operators</u> are one and the same. other <u>data structures</u> that work similarly include <u>vectors</u>, <u>matrixes</u>, <u>sequences</u>, <u>multisets</u>, <u>ordered pairs</u>...
- some <u>operators</u> are identical but have different precedence as "more brackets means more explicit, but less brackets means less complex and less confusing"
- $\lfloor a \rfloor$ returns both positive and negative square roots $(\lfloor q2 \rfloor \equiv \because q)$. the same is true for other reciprocals
- superscripts are modifiers (subscripts with special meanings). this distinction is especially useful when working with <u>forward propagation</u> and <u>backpropagation</u> in <u>neural networks</u>, for example
- <u>derivatives</u> are not to be written as y', but rather as their complete form $\delta y \delta x$. this makes <u>calculus notation</u> way more intuitive
- all indices start at 0, as they always should have
- <u>rank polymorphism</u> is supported over all <u>operators</u>

notation

also see <u>trigonometric functions</u> and <u>calculus notation</u>

let:

- M be a $\underline{\text{matrix}}$
- V be a <u>vector</u>
- P be an <u>ordered pair</u>

- M' be a <u>multiset</u>
- G be a graph
- E be an expression
- x be a <u>variable</u>
- f be a function
- \bullet A be a <u>sequence</u>
- B be a <u>series</u>
- a, b be any mathematical objects
- A, B be any mathematical objects with ranks greater than 1
- n, i be <u>natural</u> numbers
- b be a <u>boolean</u>
- ω be any <u>number</u>
- o be any operator

operator descriptions

notation	description	notes
a:b	addition or disjoint union	
$a\cdot b$	subtraction	
\therefore and \therefore	\pm and \mp	
$a \mid b \text{ and } a \mid b$	multiplication	
a- b and $a-b$	division	
[a]b	exponentiation	represents a power by convention
a[b]	exponentiation	represents an exponential by convention
$\lfloor a \rfloor b$	b th root of a	b=2 if b is omitted
$\lceil a ceil b$	base- $b \underline{\text{logarithm}}$ of a	b = e if b is omitted
x o E	function literal	$f=x ightarrow E\equiv f{\leftarrow}x=E$
$f {\leftarrow} E$	function application	uncommon, shorthand preferred
a = b	equality	numerical equality by convention
$egin{aligned} a < b ext{ and } \ a > b \end{aligned}$	strict inequality	
$a \leq b \text{ and } a \geq b$	non-strict inequality	
$a \wedge b$	logical AND or min function	

notation	description	notes	
$a \lor b$	logical OR or max function		
$a \ / \ b$	logical difference	$a \wedge b = \bot$	
$a\equiv b$	equality	logical equality by convention	
a imes b	nonequality	also serves as logical XOR	
$a \vdash b$	implication, subset	a implies b , b for all a	
$a\dashv b$	reverse implication, superset	a for all b , b implies a	
$a_0 \circ a_1 \circ \dots a_n$	with $n=3,a_0\circ a_1\circ a_2\circ a_3$	step size is $\because 1$ if $a_1 \circ$ is omitted	
$a_0 \dots a_n$	with $n = 3, a_0, a_1, a_2, a_3$	step size is $\because 1$ if a_1 is omitted	
$a \circ \dots$	the <u>reduce function</u> of \circ on a		
x_{sub}	the <u>variable</u> x with a subscript $_{sub}$		
V^n	the n th component of V		
A^i	the i th element of A		
B^i	the i th element of B		
$M^{\langle i,j angle}$	the i, j th element of M	uncommon, shorthand preferred	
M^\intercal	the transpose of M		
M^-	the multiplicative inverse of ${\cal M}$		
P^b	the b th element of P		
$S\ a$	whether a is element of S		
M' a	the number of elements a in M'		
G a	whether vertex a is in G		
$G^{\langle a,b angle}$	the number of edges from a to b in G	uncommon, shorthand preferred	

shorthands

shorthand	definition	notes
$a ot b, \ a eq b, \ a ot ot ot ot ot ot ot ot ot ot$	$/(a dash b), \ /a = b, \ /a \leq b, \ /a < b$	
$x\omega$	$[x]\omega$	
ax	$a_{\mid}x$	
f x	$f {\leftarrow} x$	common, longhand discouraged

shorthand	definition	notes
$x\: y o E$	x o y o E	
⟨⟩	$\langle\langle\;\rangle\rangle$	see <u>empty set</u>
()	(())	see <u>multiset</u>
V^x,V^y,V^z	V^0,V^1,V^2	
$M^{i,j}$	$M^{\langle i,j angle}$	common, longhand discouraged
$M^{i,}$	the i th row of M	
$M^{,j}$	the j th column of M	
$S = \langle \langle a \dots b angle angle$	$Sx\equiv x=a\vee\ldots x=b$	see <u>set</u>
$P=\langle f,t angle$	$P^\perp = f \wedge P^ op = t$	see <u>ordered pair</u>
$M = egin{bmatrix} a & b \ c & d \end{bmatrix}$	matrix literal	see <u>matrix</u>
$M^\prime = ((1,2,2,2,3,3))$	multiset literal	see <u>multiset</u>
$x \to (a < x < b)$	the interval from a to b	
$A\circ B$	$A x \circ B x$ for all x	commonly $\equiv \dashv \vdash \underline{\#think}$
$A\circ B$	$x \to A \ x \circ B \ x$	see <u>rank polymorphism</u>
$\delta y - \delta x$	the <u>derivative</u> of y with respect to x	δ should be used instead of d
$\int y \mid \delta x$	the antiderivative of y with respect to x	δ should be used instead of d

constants

constant	definition	notes
Ø	undefined	see <u>improved expression</u> <u>evaluation</u>
Т	logical true	
\perp	logical false	
au	the ratio of the circumference of a $\underline{\text{circle}}$ to its radius	using π is discouraged
e	Euler's constant	see <u>eulers constant</u>
ι	$\lfloor \cdot 1 \rfloor$	see <u>imaginary</u> , using i is discouraged
П	the <u>pi function</u>	using fact is discouraged

operator properties

in order of high to low precedence

operator	associativity	unary identity	unary description
$() \hspace{0.1cm} \langle \rangle \hspace{0.1cm} \left[\hspace{0.1cm} \right] \hspace{0.1cm} x \hspace{0.1cm} x_a^i$			
1 -	left	1	inverse
You can't use 'macro parameter character #' in math mode	right-ish		
$i + \nabla \cdot \lambda$	left	0	negation
-	left	1	inverse
$\int \lim \ldots \to \mod$	right		
=#>><<	AND	0	is (not) 0
	left	Т	logical NOT
\wedge \vee	left		
⊣ ⊢	left		
$\equiv \times$	AND	Т	logical NOT
,			

note: above,

- x represents <u>variables</u>
- ullet x_a^i represents subscripts and superscripts
- $\bullet \leftarrow \text{represents } \underline{\text{function}} \text{ application}$
- ullet \rightarrow represents <u>function</u> literals
- represents matrix literals

note: unary <u>operator</u>s have identical precedence to their binary counterparts, but are right associative

definition: let \circ be an <u>operator</u> with AND associativity. then, $a \circ b \circ c \circ \ldots \equiv a \circ b \wedge b \circ c \wedge c \circ \ldots$

variable scope

<u>variable scope</u> is currently entirely context-dependent. this is know to cause occasional issues, such as with <u>derivatives</u>: $\delta f x - \delta x$ could represent both the <u>derivative</u> of f with respect to x in the general sense, or the <u>derivative</u> of f with respect to x at the **point** x as $(x \to \delta f x - \delta x) x \equiv \delta f x - \delta x$.

examples

<u>quadratic formula</u>: $b: |b2 \cdot 4ac| - 2a$

definition of the set of complex numbers: $\mathbb{C}x \equiv x = a : b\iota \wedge \mathbb{R}a \wedge \mathbb{R}b$

definition of the implication / subset / superset / "for all" symbol: $a \vdash b \equiv /a \lor b$ and $a \dashv b \equiv a \lor /b$

in <u>set theory</u>, if U is a sub<u>set</u> of V and V is a sub<u>set</u> of U, then V is U. in this math notation: $(U x \vdash V x) \land (U x \dashv V x) \equiv U = V$

the probability density of the normal distribution in <u>conventional math notation</u>: $\frac{1}{\sqrt{2\sigma^2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

compared to in my math notation: $-\lfloor \tau \sigma 2 \rfloor - e[[x \cdot \mu]^2 - 2\sigma^2]$

definition of factorials: fact $n = 1 \mid \dots n$

the negation of an implication in my math notation: $B \vdash C \times B / C$ (B implying C equals not (B without C) or implication is the negation of set difference or the negation of "for all B, C" is "there exists a B such that not C")

compared to <u>conventional math notation</u>: $\neg(B \to C) = B \land \neg C$ or $(a \in B \to a \in C) \iff a \notin B \backslash C$ or $B \subset C \iff \forall a \in C, a \notin B$

the resonant frequency of an LC circuit in <u>conventional math notation</u>: $f = \frac{1}{2\pi\sqrt{LC}}$

compared to in my math notation: $f = -\tau |LC|$

see random math notation formulas for more examples