GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA

Control Digital

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Octavo Semestre	40804	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al alumno los conocimientos necesarios para analizar, diseñar e implementar sistemas digitales de control.

TEMAS Y SUBTEMAS

- Fundamentos matemáticos del control digital.
- 1.1 Elementos básicos de un sistema de control digital
- Ventajas de los sistemas de control digital 1.2
- 1.3 Ejemplos de control digital
- Definición de la transformada Z 1.4
- 1.5 Transforma da Z de funciones elementales
- Transformada Z inversa 1.6
- 1.7 Método de la transformada Z para la solución de ecuaciones en diferencias
- 1.8 Empleo de software para la solución de transformada Z
- 2. Representación discreta de sistemas continuos.
- 2.1 Cuantificación y errores de cuantificación
- 2.2 Dispositivos de muestreo y retención
- 2.3 Convertidores A/D v D/A
- 2.4 Teorema de muestreo
- 2.5 Retenedor de orden cero
- Análisis de estabilidad en sistemas discretos.
- Análisis de la respuesta transitoria y permanente 3.1
- 3.2 Método del lugar de las raíces
- 3.3 Estabilidad y diseño en el dominio de la frecuencia
- Estabilidad de sistemas lineales de control digital, definiciones y teoremas
- 4. Controlabilidad, observabilidad y alcanzabilidad.
- 4.1 Definiciones
- 4.2 Relaciones entre controlabilidad, observabilidad y funciones de transferencia
- 4.3 Ecuación característica, eigenvalores y eigenvectores
- 4.4 Métodos para el cálculo de la matriz de transición de estados
- 4.5 Diseño con retroalimentación de estado empleando observadores de estado
- 5. Diseño e implementación de controladores digitales.
- 5.1 Controlador PI, PD y PID
- 5.2 Simulación empleando software especializado de control
- Implementación de controladores digitales 5.3

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor, en donde presente conceptos y resuelva ejercicios. Laggesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y los retroproverz Investigación bibliográfica en libros de texto y otras fuentes de consulta.

Asignación de tareas que refuerzan el material visto en el salón de clases.

Diseño y simulación de circuitos usando paquetes computacionales y prácticas de Laborat

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

La evaluación del curso comprenderá tres calificaciones parciales y una calificación final.

Para cada calificación parcial se deberá considerar un examen oral o escrito, tareas y prácticas de laboratorio. La calificación final deberá incluir un examen oral o escrito y un proyecto final de aplicación o de investigación, con temas estrictamente afines a la materia.

Los porcentajes correspondientes, en los aspectos considerados para las calificaciones parciales y la final, se definirán el primer día de clases, con la participación de los alumnos.

BIBLIOGRAFÍA

Libros básicos:

- Sistemas De Control En Tiempo Discreto. Ogata, Katsuhiko Mexico: Prentice Hall Hispanoamericana, 1996.
- Sistemas De Control Digital. Kou, Benjamin C. Mexico: Cecsa, 1997.
- Digital Control System Analysis And Design. Phillips, Charles L. \ Nagle H. Troy Usa: Prentice-Hall, 1984.
- Labview Graphical Programming: Practical Applications In Instrumentation And Control Johnson, Gary W. \Jennings, Richard USA: MCGRAW-HILL, 2001.

Libros de consulta:

- Digital Signal Processing and Microcontroller. Grover, Dale \ Deller Jack USA: Prentice-Hall, 1999.
- Digital Control Systems: Theory, Hardware, Software. Houpis, Constantine H. \ Lamont Gary B. USA: McGraw-Hill, 1992.
- Computer-Controlled Systems: Theory and Design. Astrom, Karl Johan \ Wittenmark, Bjorn. USA: Prentice Hall, 1997.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniería en Electrónica con Maestría o Doctorado en el área de control o procesamiento de señales.

