# Coins, Partitions, and Generating Functions

Noah Bergam

July 17th, 2022



### Outline

- Change-making Problem
- 2 Generating Functions
- 3 Partitions

# The Change-Making Problem

### Problem (Change-making)

Say we have k cents. How many different ways can we express k cents as a combination of coins (penny, nickel, dime, quarter, etc.)?

#### Related questions:

- (Integer Knapsack problem) What is the minimum number of coins necessary?
- (Optimal Denomination) What series of coins minimizes the average number of necessary coins? (see Shallit 2002: "What this country needs is an 18 cent piece.")



Noah, CC '25

#### Example

We can change 11 cents in four ways.

- 11 pennies
- 2 1 nickel, 6 pennies
- 3 2 nickels, 1 penny
- 4 1 dime, 1 penny (fewest coins)

(Note: greedy approach doesn't always give the fewest coins.)

# Visualizing

| k     | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
|-------|---|---|----|----|----|----|----|----|----|----|----|
| $p_k$ | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| $n_k$ | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 |
| $d_k$ | 1 | 2 | 4  | 6  | 9  | 12 | 16 | 20 | 25 | 30 | 36 |
| $q_k$ | 1 |   |    |    |    | 13 |    |    |    |    | 49 |
| $h_k$ | 1 |   |    |    |    |    |    |    |    |    | 50 |
| $a_k$ | 1 |   |    |    |    |    |    |    |    |    |    |

### Mathematical Formulation

- We have n types of coins with values  $\mathbf{w} = (w_1, w_2, ..., w_n)$ .
- How many distinct  $\mathbf{x} = (x_1, x_2, ..., x_n)$ , with all  $x_i \ge 0$ , such that  $\mathbf{x} \cdot \mathbf{w} = k$ ?

$$\sum_{i=1}^{n} x_i w_i = k$$

For instance,  $(1,5,10,25) \cdot (1,0,2,1) = 46$ 

Noah, CC '25

### Solutions

**Naive Recursion**: Subtract each coin denomination, creating a tree. Treat each subproblem.

•  $\approx O(m^n)$ , where m is the number of coin types

**Dynamic Programming**: Build up solutions from 0 to n (or do recursion with record-keeping).

O(nm)

**Generating functions** can help us find an O(1) solution!

## Motivation of Generating Functions

Recall the process of multiplying binomials (FOIL).

$$(1+x)(1+x) = 1+x+x+x^2$$

Let 1 = "stay still" and x = "take a step forward." Frame it as a choice: "(stay or step) AND (stay or step)." After this choice, there is:

- 1 way to take 0 steps  $(1x^0)$
- 2 ways to take 1 step (2x)
- **3** 1 way to take 2 steps  $(1x^2)$

#### Motivation

Consider the binomial theorem:

$$(1+x)^n = \sum_{k=1}^n \binom{n}{k} x^k$$

After n rounds, there are  $\binom{n}{k}$  ways to have taken k steps.

The moral of the story is:

Polynomials can encode combinatorial information. (+ is "or", \* is "and")

# Finite Change-Making

Say we had 1 penny, 2 nickels, and a dime. We can represent our problem as:

$$(1+x)(1+x^5+x^{10})(1+x^{10})$$

"(0 or 1 penny) AND (0 OR 1 OR 2 nickels) AND (0 or 1 dime)"

$$1 + x + x^5 + x^6 + 2x^{10} + 2x^{11} + x^{15} + x^{16} + x^{20} + x^{21}$$

This encodes that there are TWO ways to get 11 cents (if we start with this set of coins!).

### The natural extension

Say we had INFINITE pennies, INFINITE nickels, and INFINITE dimes. We can represent our problem as follows:

$$(1+x+x^2+...)(1+x^5+x^{10}+...)(1+x^{10}+x^{20}+...)$$

How many ways to represent k cents?

 $\rightarrow$  Find the coefficient of  $x^k$ .

#### **Definition**

### Definition (generating function)

The (ordinary) generating function of a sequence  $(a_0, a_1, ...)$  is given by:

$$A(x) = \sum_{k=0}^{\infty} a_i x^k$$

A generating function is a device somewhat similar to a bag. Instead of carrying many little objects detachedly, which could be embarrassing, we put them all in a bag, and then we have only one object to carry, the bag. (George Polya, Mathematics and plausible reasoning (1954)

12 / 26

Noah, CC '25 Columbia Summer UMS July 17th, 2022

#### A Solution?

We can very easily determine the generating function.

$$A(x) = (1+x+x^2+...)(1+x^5+x^{10}+...)(1+x^{10}+x^{20}+...)(1+x^{25}+x^{50}+...)(1+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+x^{20}+x^{20}+...)(1+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x^{20}+x$$

Recall: 
$$1 + x + x^2 + ... = \frac{1}{1-x}$$

$$A(x) = \frac{1}{(1-x)(1-x^5)(1-x^{10})(1-x^{25})(1-x^{50})(1-x^{100})}$$

 $\approx O(nm)$  runtime to get answer (Maclaurin series)



Noah, CC '25

#### Towards constant-time solution

Since almost all the coin values are divisible by 5, we can shortcut.

$$B(x) = \frac{1}{(1-x)^2(1-x^2)(1-x^5)(1-x^{10})(1-x^{20})}$$

Conveniently, we can write:

$$A(x) = (1 + x + x^2 + x^3 + x^4)B(x^5)$$

$$b_k = a_{5k} = a_{5k+1} = a_{5k+2} = a_{5k+3} = a_{5k+4}$$

(Remember:  $a_n$  is our answer! So it suffices to know  $b_n$ .)

# Solution (P1)

We can write B(x) as follows

$$B(x) = \frac{C(x)}{(1 - x^6)^{20}}$$

where C(x) is a (disgusting, but) finite polynomial.

**Key**: 
$$\frac{1}{(1-x)^n} = \sum_{k=0}^n \binom{n+k-1}{n-1} x^k$$

$$B(x) = C(x) \sum_{k=0}^{n} {k+5 \choose 5} x^{20k}$$

### What is C?

$$\begin{split} C(x) &= \left(1 + x + \dots + x^{10}\right)^2 \left(1 + x^2 + \dots + x^{18}\right) \left(1 + x^5 + x^{10} + x^{15}\right) \\ &\cdot \left(1 + x^{10}\right) \\ &= x^{81} + 2x^{80} + 4x^{79} + 6x^{78} + 9x^{77} + 13x^{76} + 18x^{75} + 24x^{74} + 31x^{73} \\ &+ 39x^{72} + 50x^{71} + 62x^{70} + 77x^{69} + 93x^{68} + 112x^{67} + 134x^{66} \\ &+ 159x^{65} + 187x^{64} + 218x^{63} + 252x^{62} + 287x^{61} + 325x^{60} + 364x^{59} \\ &+ 406x^{58} + 449x^{57} + 493x^{56} + 538x^{55} + 584x^{54} + 631x^{33} + 679x^{52} \\ &+ 722x^{51} + 766x^{50} + 805x^{49} + 845x^{48} + 880x^{47} + 910x^{46} + 935x^{45} \\ &+ 955x^{44} + 970x^{13} + 980x^{42} + 985x^{41} + 985x^{40} + 980x^{39} + 970x^{38} \\ &+ 955x^{37} + 935x^{36} + 910x^{35} + 880x^{34} + 845x^{33} + 805x^{72} + 766x^{31} \\ &+ 722x^{30} + 679x^{29} + 631x^{28} + 584x^{27} + 538x^{26} + 493x^{25} + 449x^{24} \\ &+ 406x^{23} + 364x^{22} + 325x^{21} + 287x^{20} + 252x^{19} + 218x^{18} + 187x^{17} \\ &+ 159x^{16} + 134x^{15} + 112x^{14} + 93x^{13} + 77x^{12} + 62x^{11} + 50x^{10} \\ &+ 39x^9 + 31x^8 + 24x^7 + 18x^6 + 13x^5 + 9x^4 + 6x^3 + 4x^2 + 2x + 1. \end{split}$$

$$C(x) = c_0 + c_1 x + \dots + c_{80} x^{80}$$

Noah, CC '25 Columbia Summer UMS July 17th, 2022 16 / 26

# Solution (P2)

$$B(x) = \left[\sum_{j=0}^{80} c_j x^j\right] \left[\sum_{k=0}^n \binom{k+5}{5} x^{20k}\right]$$

We want  $a_n$ . Suffices to find  $b_n$ . Interested in j, k such that:

$$j + 20k = n$$

$$\implies n \equiv j \mod 20$$

There are at most five such j.

Thus, the solution n is a sum of at most 5 terms.

4□ > 4□ > 4≡ > 4≡ > 900

## **Broader Question**

Suppose we had a one-cent coin, a two-cent coin, a three-cent coin, etc. Then our total generating function would become:

$$A(x) = \prod_{k=1}^{\infty} \frac{1}{1 - x^k}$$

This sort of change-making is equivalent to the idea of **partitioning**. The function above is the **partition generating function**.

### **Definitions**

### Definition (partition)

A partition of  $n \in \mathbb{Z}_{>0}$  is a k-tuple of positive integers  $(a_1, ..., a_k)$ , arranged in descending order, such that

$$\sum_{i=1}^k a_i = n$$

The total number of distinct partitions of n objects into sets of size k is denoted by  $p_{n,k}$ .

Intuitively: how many ways can I arrange n objects into k distinct piles?

#### Illustration



FIGURE 2.13. The fifteen ways to stack seven poker chips.

# Young Diagram



(a) 
$$\lambda = (6, 4, 4, 2, 1)$$
.



(b)  $\lambda' = (5, 4, 3, 3, 1, 1)$ .

FIGURE 2.14. The Young diagram for a partition  $\lambda$ , and its conjugate  $\lambda'$ .

### **Definitions**

### Definition (partition function)

The total number of partitions one can generate from n objects is, naturally, given by:

$$p_n = \sum_{k=1}^n p_{n,k}$$

The first few values of the partition function:

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490...

### Recursive formula

Given any partition of n, denoted  $(a_1, ..., a_k)$ , we know:

- If  $a_k = 1$ , then  $(a_1, ..., a_{k-1})$  is a partition of n-1. The number of such partitions that end with 1 is therefore  $p_{n-1,k-1}$ .
- ② If  $a_k \neq 1$ , then  $(a_1 1, ..., a_k 1)$  is a partition of n k, so there are precisely  $p_{n-k,k}$  partitions that don't end in 1.

This allows us to construct a recursive formula for partitions:

$$p_{n,k} = p_{n-1,k-1} + p_{n-k,k}$$

## **Euler Pentagonal Number Theorem**

The Euler function  $\phi(x)$  is the inverse of the partition generating function.

$$\phi(x) = \prod_{k}^{\infty} (1 - x^{k}) = \sum_{-\infty}^{\infty} (-1)^{n} q^{(3n^{2} - n)/2}$$

Note that the pentagonal numbers are of the form  $(3n^2 - n)/2$ .

$$1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, \dots$$

24 / 26

Noah, CC '25 Columbia Summer UMS July 17th, 2022

### Euler Theorem Result

In particular, this implies:

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + \dots$$

$$p(n) = \sum_{k \neq 0}^{\infty} (-1)^k p(n - g_k)$$

This is a faster way of computing the function.

# Hardy-Ramanujan

The partition function converges quite nicely, as  $n \to \infty$ .

$$p_n \sim rac{e^{\pi \sqrt{2n/3}}}{4n\sqrt{3}}$$

Asymptotic formula obtained by G. H. Hardy and Ramanujan in 1918. Kind of weird.