Tutorato 02

Giulio Umbrella

Interpretazione coefficiente binomiale

Che cosa fa il coefficiente binomiale? Prendiamo come esempio un mazzo con 52 carte e consideriamo le disposizioni e le combinazioni.

Disposizioni

disposizioni =
$$52 \star 51$$

Combinazioni

combinazioni =
$$\binom{52}{2}$$
 = $\frac{52!}{2!(52-2)!}$ = $\frac{52 \times 51}{2}$

Concetti base relativi alla probabilita'

Dato uno spazio campionario, valgono le seguenti proprieta'

- \triangleright $P(\Omega) = 1$
- $P(\emptyset) = 0$
- $P(A) = 1 P(A^c)$
- ▶ Se $A \cap B$ = allora $P(A \cup B) = P(A) + P(B)$
- $P(A) = \frac{|\Omega|}{|A|}$

In particolare, vale la seguente proprieta'

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Se E, E^c formano una partizione di Ω allora $P(A) = P(A \cap E) + P(A \cap E^c)$

Sia
$$P(A)=0.4, P(B)=0.7, P(A \cup B)=0.9$$
, trovare:

- 1. $P(A \cap B)$
- 2. $P(A^c \cap B)$
- 3. $P(A \setminus B)$
- 4. $P(A^c \setminus B)$
- 5. $P(A^c \cup B)$
- 6. $P(A \cap (B \cup A^c))$

Si consideri l'esperimento in cui si lancia una moneta tre volte. Calcolare la probabilita' dei seguenti eventi:

- 1. $A = \{Escano esattamente due teste\}$
- 2. $B = \{Non esca nessuna testa\}$
- 3. $C = \{Esca una sola testa\}$
- 4. $D = \{Escano tre teste\}$
- 5. $E = \{Esca almeno una testa\}$

Ex 02 Spazio campionario

Moneta 2	Moneta 3
Т	T
T	C
C	T
C	C
T	T
T	C
C	Τ
С	С
	T T C C T T

Ex 02 Commento

NB l'evento esca almeno una testa e' l'unione di altri eventi. Quali?

NB il lancio delle monete corrisponde alla ripetizione dello stesso elemento. Quando avremo strumenti piu' sofisticati -variabili aleatorie binomiali- potremo risolvere esercizi come questo molto piu' velocemente.

NB In tutte le soluzioni il denominatore ha lo stesso valore 8. Quindi possiamo dire che sta **normalizzando** ciascuna soluzione perche' abbia un valore compreso fra 0 e 1. Rivredremo questo concetto quando introdurremo la **probabilita' condizionata**.

Si lanciano due dadi distinti. Calcolare le seguenti probabilita'

- 1. La somma dei due valori sia 5
- 2. Escano due 1
- 3. Il risultato del secondo dado e' streattamente piu' piccolo del secondo

Ex 03 Spazio campionario

	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Si consideri il lancio di 3 dadi distinti a 6 facce. Calcolare la probabilita' che il numero 5 esca solo una volta.

Ex 04 Spazio campionario

- Costruire lo spazio campionario e contare tutte le volte in cui il 5 appare una volta sola.
- ▶ **Problema** spazio campionario e' dato da 6 * 6 * 6 = 216 elementi
- Soluzione In alternativa, possiamo usare il calcolo combinatorio.

Ex 04 Calcolo combinatiroio

 $A = \{II \ numero \ 5 \ esce \ solo \ una \ volta\} \ e \ riscriviamolo \ come \ unione \ di \ tre \ eventi.$

 $A = \{5 \text{ primo elemento}\} \cup \{5 \text{ secondo elemento}\} \cup \{5 \text{ terzo elemento}\}$

Un'urna contiene 10 palline bianche, 20 palline rosse e 30 nere. Calcolare la probabilita' che venga estratta una pallina bianca oppure una pallina nera.

Un'urna contiene 6 palline rosse e 4 bianche. Vengono estratte **successivamente** due palline. Calcolare la probabilita' che siano entrambe rosse nell'ipotesi che ci sia o non ci sia reimmissione.

Ex 06 Spazio campionario

- Spazio campionario con elementi (Colore prima pallina, Colore seconda pallina).
- $\Omega = \{\{R,R\},\{R,B\},\{B,R\},\{B,B\}\}.$ Il testo ci chiede di calcolare la probabilita' di $\{R,R\}.$

Ex 06 Spazio campionario 01

- ► Tuttavia, conviene ragionare in modo diverso, pensando alla palline come se fossero **identificabili**, ad esempio numerate.
- ▶ Il risultato non viene influenzato, ma ci aiuta ad utilizzare gli strumenti del calcolo combinatorio.
- $\qquad \qquad \Omega = \{ \text{R-01,R-02,R-03,R-04,R-05,R-06,B-07,B-08,B-09,B-10} \}$

Ex 06 Con reimmissione

Grazie alla numerazione delle palline, lo spazio campionario e' formato da $10 \star 10 = 100$ elementi.

- \triangleright (R,R), 6 * 6 = 36
- ► (R,B), 6 * 4 = 24
- \triangleright (B,R), 4 * 6 = 24
- ► (B,B), 4 * 4 = 16

La probabilita' e' quindi $P(A) = \frac{36}{100}$

Ex 06 Senza reimmissione

- Per la prima estrazione abbiamo 10 palline mentre per la seconda 9 per un totale di 10 * 9 = 90 valori.
- ightharpoonup (R,R), 6 * 5 = 30
- \triangleright (R,B), 6 * 4 = 24
- ► (B,R), 4 * 6 = 24
- ► (B,B), 4 * 3 = 12

La probabilita' e' quindi $P(A) = \frac{30}{90}$

Ex 06 Commento

- Possiamo formalizzare un esperimento aleatorio in diversi modi ottenendo gli stessi risultati. Conviene fermarsi a riflettere su quale sia la forma che conviene scegliere.
- I concetti di probabilita' condizionata e indipendenza saranno utili per risolvere questo tipo di esercizi.

Un'urna contiene 6 palline rosse e 4 bianche. Vengono estratte **contemporaneamente** due palline. Calcolare la probabilita' che le palline siano delle stesso colore.

Ex 07 Sol

Anche in questo caso conviene pensare alla palline come numerate, quindi usiamo la stessa notazione R-01,R-02,R-03,R-04,R-05,R-06,B-07,B-08,B-09,B-10.

Ma differenza del precedente esercizio, prendiamo due palline alla volta. Questo significa che la cardinalita' dei possibili risultati si riduce. Infatti prima le coppie $\{R-01,B-07\}$ e $\{B-07,\ R-01\}$ erano diverse perche' estratte in due momenti, mentre adesso corrispondono allo stesso elemento. Non esiste infatti distinzione fra prima e seconda.

La cardinalita' dello spazio campionario e' quindi data da $\Omega=\binom{6+4}{2}$

L'evento di interesse puo' essere pensato come l'unione di due eventi disgiunti; infatti posso pescare due palline rosse oppure due palline bianche. Possono quindi considerare le due probabilita' in modo separato e fare la somma.

Per le palline rosse ho $\binom{6}{2}$ modi distinti di pescarle, mentre per le bianche sono $\binom{4}{2}$.