Lenguajes, Computación y Sistemas Inteligentes

Grado en Ingeniería Informática de Gestión y Sistemas de Información
Escuela de Ingeniería de Bilbao (UPV/EHU)

Departamento de Lenguajes y Sistemas Informáticos
2º curso
Curso académico: 2023-2024
Grupo 16

Tema 2: Sistemas inteligentes
0,600 puntos

Solución

Modelo de examen

Índice

2.1	Algori	tmo de las k-CNF (0,300 puntos)
	2.1.1	Enunciado
	2.1.2	Solución
	2.1.3	Comentarios
2.2		tmo de las k-DNF (0,300 puntos)
	2.2.1	Enunciado
	2.2.2	Solución
	2.2.3	Comentarios

2.1 Algoritmo de las k-CNF (0,300 puntos)

2.1.1 Enunciado

Supongamos que el usuario tiene en mente una fórmula proposicional g que es una 2-CNF y en la cual pueden aparecer las variables proposicionales x_1 , x_2 y x_3 . Por tanto, k = 2 y n = 3.

Indicar, paso a paso, la interacción que se desarrollará entre el algoritmo y el usuario hasta que el algoritmo construya una fórmula proposicional h que sea equivalente a g. Durante el proceso de construcción de h, las valoraciones que —a modo de contraejemplos— el usuario dará al algoritmo son las siguientes:

- $v_1 = (F, F, T)$
- $v_2 = (F, T, T)$
- $v_3 = (T, T, F)$
- $v_4 = (T, F, F)$

Cada vez que el usuario presenta una propuesta h_j que no es equivalente a la fórmula objetivo g, el usuario presenta un contraejemplo v_{j+1} .

En las valoraciones, se ha escrito T y F en vez de True y False.

2.1.2 Solución

A continuación se muestra el diálogo entre el algoritmo (A) y el usuario (U). Se escribirá T y F en vez de True y False:

A: ¿Cuál es el valor de k y de n?

U: k = 2 y n = 3

A: Propuesta inicial:

$$\begin{array}{lll} h_0 & = & () \wedge \\ & & (x_1) \wedge (\neg x_1) \wedge (x_2) \wedge (\neg x_2) \wedge (x_3) \wedge (\neg x_3) \wedge \\ & & (x_1 \vee x_2) \wedge (x_1 \vee \neg x_2) \wedge (x_1 \vee x_3) \wedge (x_1 \vee \neg x_3) \wedge \\ & & (\neg x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_3) \wedge (\neg x_1 \vee \neg x_3) \wedge \\ & & (x_2 \vee x_3) \wedge (x_2 \vee \neg x_3) \wedge \\ & & (\neg x_2 \vee x_3) \wedge (\neg x_2 \vee \neg x_3) \end{array}$$

 $ih_0 \leftrightarrow g$?

U: No. $v_1 = (F, F, T)$ hace que g sea True y h_0 sea False.

A: (Se eliminan las cláusulas de h_0 que son False con v_1 para obtener una fórmula h_1 que tenga el mismo valor que g para la valoración v_1)

$$h_0 = \emptyset$$

$$(x_1) \wedge (\neg x_1) \wedge (x_2) \wedge (\neg x_2) \wedge (x_3) \wedge (\neg x_3) \wedge (x_1 \vee x_2) \wedge (x_1 \vee x_3) \wedge (x_1 \vee x_3) \wedge (\neg x_1 \vee x_2) \wedge (\neg x_1 \vee x_2) \wedge (\neg x_1 \vee x_3) \wedge (\neg x_1 \vee \neg x_3) \wedge (x_2 \vee x_3) \wedge (x_2 \vee x_3) \wedge (\neg x_2 \vee \neg x_3)$$

Por lo tanto, la nueva hipótesis es:

$$h_1 = (\neg x_1) \wedge (\neg x_2) \wedge (x_3) \wedge (x_1 \vee \neg x_2) \wedge (x_1 \vee x_3) \wedge (\neg x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_3) \wedge (\neg x_1 \vee \neg x_3) \wedge (x_2 \vee x_3) \wedge (\neg x_2 \vee x_3) \wedge (\neg x_2 \vee \neg x_3)$$

 $h_1 \leftrightarrow g?$

U: No. $v_2 = (F, T, T)$ hace que g sea True y h_1 sea False.

A: (Se eliminan las cláusulas de h_1 que son False con v_2 para obtener una fórmula h_2 que tenga el mismo valor que g para la valoración v_2)

$$h_{1} = (\neg x_{1}) \land (\neg x_{2}) \land (x_{3}) \land (x_{1} \lor x_{2}) \land (x_{1} \lor x_{3}) \land (\neg x_{1} \lor x_{2}) \land (\neg x_{1} \lor \neg x_{2}) \land (\neg x_{1} \lor x_{3}) \land (x_{2} \lor x_{3}) \land (\neg x_{2} \lor \neg x_{3})$$

Por lo tanto, la nueva hipótesis es:

$$h_2 = (\neg x_1) \wedge (x_3) \wedge (x_1 \vee x_3) \wedge (\neg x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_3) \wedge (\neg x_1 \vee \neg x_3) \wedge (x_2 \vee x_3) \wedge (\neg x_2 \vee x_3)$$

$$ih_2 \leftrightarrow g?$$

U: No. $v_3 = (T, T, F)$ hace que g sea True y h_2 sea False.

A: (Se eliminan las cláusulas de h_2 que son False con v_3 para obtener una fórmula h_3 que tenga el mismo valor que g para la valoración v_3)

$$h_{2} = (\cancel{x_{1}}) \land (\cancel{x_{3}}) \land (x_{1} \lor x_{3}) \land (\neg x_{1} \lor x_{2}) \land (\neg x_{1} \lor \neg x_{3}) \land (x_{2} \lor x_{3}) \land (\neg x_{2} \lor x_{3}) \land (\neg x_{2} \lor x_{3})$$

Por lo tanto, la nueva hipótesis es:

$$h_3 = (x_1 \lor x_3) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_3) \land (x_2 \lor x_3)$$

 $ih_3 \leftrightarrow g?$

U: No. $v_4 = (T, F, F)$ hace que g sea True y h_3 sea False.

A: (Se eliminan las cláusulas de h_3 que son False con v_4 para obtener una fórmula h_4 que tenga el mismo valor que g para la valoración v_4)

$$h_3 = (x_1 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (x_2 \lor x_3)$$

Por lo tanto, la nueva hipótesis es:

$$h_4 = (x_1 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

 $ih_4 \leftrightarrow g?$

U: Sí.

2.1.3 Comentarios

Nótese que el valor de h_0 es False porque tiene la forma $() \land \ldots$, donde el valor de la cláusula vacía () es False. Por equivalencias de la lógica, tenemos que $False \land \gamma \equiv False$ para cualquier fórmula lógica γ . Además de la cláusula vacía, tenemos subexpresiones como $(x_1) \land (\neg x_1)$ y, puesto que se cumple $\delta \land \neg \delta \equiv False$ para cualquier fórmula lógica δ , se puede justificar que h_0 es False también por esas subexpresiones.

2.2 Algoritmo de las k-DNF (0,300 puntos)

2.2.1 Enunciado

Supongamos que el usuario tiene en mente una fórmula proposicional g que es una 2-DNF y en la cual pueden aparecer las variables proposicionales x_1 , x_2 y x_3 . Por tanto, k = 2 y n = 3.

Indicar, paso a paso, la interacción que se desarrollará entre el algoritmo y el usuario hasta que el algoritmo construya una fórmula proposicional h que sea equivalente a g. Durante el proceso de construcción de h, las valoraciones que —a modo de contraejemplos— el usuario dará al algoritmo son las siguientes:

- $v_1 = (F, F, T)$
- $v_2 = (F, T, T)$
- $v_3 = (T, T, F)$
- $v_4 = (T, F, F)$

Cada vez que el usuario presenta una propuesta h_j que no es equivalente a la fórmula objetivo g, el usuario presenta un contraejemplo v_{j+1} .

En las valoraciones, se ha escrito T y F en vez de True y False.

2.2.2 Solución

A continuación se muestra el diálogo entre el algoritmo (A) y el usuario (U). Se escribirá T y F en vez de True y False:

A: ¿Cuál es el valor de k y de n?

- U: k = 2 y n = 3
- A: Propuesta inicial.

 $ih_0 \leftrightarrow g$?

U: No . $v_1 = (F, F, T)$ hace que g sea False y h_0 sea True.

A: (Se eliminan los términos de h_0 que son True con v_1 para obtener una fórmula h_1 que tenga el mismo valor que g para la valoración v_1)

$$h_0 = (x_1) \lor (x_2) \lor (x_2) \lor (x_3) \lor (\neg x_3) \lor (x_1 \land x_2) \lor (x_1 \land \neg x_2) \lor (x_1 \land x_3) \lor (x_1 \land \neg x_3) \lor (\neg x_1 \land x_2) \lor (\neg x_1 \land x_2) \lor (\neg x_1 \land x_3) \lor (\neg x_2 \land x_3) \lor (x_2 \land \neg x_3) \lor (\neg x_2 \land x_3) \lor (\neg x_2 \land \neg x_3) \lor (\neg x_2 \land \neg x_3)$$

Por lo tanto, la nueva hipótesis es:

$$\begin{array}{lll} h_1 & = & (x_1) \ \lor \ (x_2) \ \lor \ (\neg x_3) \ \lor \\ & & (x_1 \land x_2) \ \lor \ (x_1 \land \neg x_2) \ \lor \ (x_1 \land x_3) \ \lor \ (\neg x_1 \land x_2) \ \lor \ (\neg x_1 \land \neg x_3) \ \lor \\ & & (x_2 \land x_3) \ \lor \ (x_2 \land \neg x_3) \ \lor \\ & & (\neg x_2 \land \neg x_3) \end{array}$$

 $ih_1 \leftrightarrow g$?

U: No . $v_2 = (F, T, T)$ hace que g sea False y h_1 sea True.

A: (Se eliminan los términos de h_1 que son True con v_2 para obtener una fórmula h_2 que tenga el mismo valor que g para la valoración v_2)

$$\begin{array}{rcl} h_1 & = & (x_1) \vee (x_2) \vee (\neg x_3) \vee \\ & & (x_1 \wedge x_2) \vee (x_1 \wedge \neg x_2) \vee (x_1 \wedge x_3) \vee (x_1 \wedge \neg x_3) \vee \\ & & (\neg x_1 \wedge x_2) \vee (\neg x_1 \wedge \neg x_3) \vee \\ & & (x_2 \wedge x_3) \vee (x_2 \wedge \neg x_3) \vee \\ & & (\neg x_2 \wedge \neg x_3) \end{array}$$

Por lo tanto, la nueva propuesta es la siguiente:

$$\begin{array}{lll} h_2 & = & (x_1) \vee (\neg x_3) \vee \\ & & (x_1 \wedge x_2) \vee (x_1 \wedge \neg x_2) \vee (x_1 \wedge x_3) \vee (x_1 \wedge \neg x_3) \vee \\ & & (\neg x_1 \wedge \neg x_3) \vee \\ & & (x_2 \wedge \neg x_3) \vee \\ & & (\neg x_2 \wedge \neg x_3) \end{array}$$

 $ih_2 \leftrightarrow g?$

U: No . $v_3 = (T, T, F)$ hace que g sea False y h_2 sea True.

A: (Se eliminan los términos de h_2 que son True con v_3 para obtener una fórmula h_3 que tenga el mismo valor que g para la valoración v_3)

$$\begin{array}{rcl} h_2 & = & (x_1) \vee (\neg x_3) \vee \\ & & (x_1 \wedge x_2) \vee (x_1 \wedge \neg x_2) \vee (x_1 \wedge x_3) \vee \\ & & (\neg x_1 \wedge \neg x_3) \vee \\ & & & (x_2 \wedge \neg x_3) \vee \\ & & & (\neg x_2 \wedge \neg x_3) \end{array}$$

Por lo tanto, la nueva propuesta es:

$$\begin{array}{rcl} h_3 & = & (x_1 \wedge \neg x_2) \vee (x_1 \wedge x_3) \vee \\ & & (\neg x_1 \wedge \neg x_3) \vee \\ & & (\neg x_2 \wedge \neg x_3) \end{array}$$

 $ih_3 \leftrightarrow g?$

U: No. $v_4 = (T, F, F)$ hace que g sea False y h_3 sea True.

A: (Se eliminan los términos de h_3 que son True con v_4 para obtener una fórmula h_4 que tenga el mismo valor que g para la valoración v_4)

$$h_{3} = \underbrace{(x_{1} \wedge \neg x_{2})}_{(\neg x_{1} \wedge \neg x_{3})} \vee \underbrace{(\neg x_{1} \wedge \neg x_{3})}_{(\neg x_{2} \wedge \neg x_{3})} \vee$$

Por lo tanto, la nueva hipótesis es:

$$h_4 = (x_1 \wedge x_3) \vee (\neg x_1 \wedge \neg x_3)$$

$$ilde{h}_4 \leftrightarrow g?$$

U: Sí.

2.2.3 Comentarios

Nótese que el valor de h_0 es True porque tiene la forma () $\vee \dots$, donde el valor del término vacío () es True. Por equivalencias de la lógica, tenemos que $True \vee \gamma \equiv True$ para cualquier fórmula lógica γ . Además del término vacío, tenemos subexpresiones como $(x_1) \vee (\neg x_1)$ y, puesto que se cumple $\delta \vee \neg \delta \equiv True$ para cualquier fórmula lógica δ , se puede justificar que h_0 es True también por esas subexpresiones.