Отчет по лабораторной работе N_{0} 5 и N_{0} 6 Вариант N_{0} 3

Винницкая Дина Сергеевна

Группа: Б9122-02-03-01сцт

Цель работы

- 1. Реализовать генерацию сплайна благодаря методу моментов
- 2. Сделать таблицу ошибок
- 3. Построить график зависимости абсолютной ошибки от количества узлов
- 4. Написать вывод о поведении ошибки
- 5. Заключение

Входные данные:

1. Функция: $f(x) = x^2 + \ln(x) - 4$

2. Отрезок: [1.5; 2]

Ход работы

Реализация сплайна

Сплайн — это условная функция, которая на каждом узловом отрезке принимает новые коэффициенты для кубического полинома. Для определения этих коэффициентов необходимо получить три массива значений. Для их вычисления используется метод монотонной прогонки.

Инициализация функции

```
def function(x):
    return x ** 2 + np.log(x) - 4

def f_derivative_function(x):
    return 2 * x + 1 / x

def s_derivative_function(x):
    return 2 - 1 / (x * x)
```

Задаем исходную функцию, ее первую и вторую производную. Первая производная функции f(x) равна:

$$f'(x) = 2x + \frac{1}{x} \tag{1}$$

Вторая производная функции f(x) равна:

$$f''(x) = 2 - \frac{1}{x^2} \tag{2}$$

Инициализация функции

```
def build_spline():
2
       c_coefficient_matrix = [0] + [h_values[i] /
3
       (h_values[i] + h_values[i + 1]) for i in range(0, n - 1)] + [0]
4
       a_coefficient_matrix = [0] + [h_values[i + 1] / (h_values[i] +
5
       h_{values}[i + 1]) for i in range(0, n - 1)] + [0]
6
       b_coefficient_matrix = [1] + [2] * (n - 1) + [1]
       rhs = [s_derivative_function(interval[0])] + [
           6 / (h_values[i] + h_values[i + 1]) *
10
           ((y_values[i + 1] - y_values[i]) / h_values[i + 1] \setminus
11
           - (y_values[i] - y_values[i -1]) / h_values[i]) for i in
12
           range(0, n - 1)] + [s_derivative_function(interval[1])]
       alpha = [-c_coefficient_matrix[0] / b_coefficient_matrix[0]]
15
       betta = [rhs[0] / b_coefficient_matrix[0]]
16
17
       moments = [s_derivative_function(interval[1])]
18
19
       for i in range (0, n - 1):
20
           alpha.append(-c_coefficient_matrix[i] / (alpha[i] *
21
           a_coefficient_matrix[i] + b_coefficient_matrix[i]))
22
           betta.append((rhs[i] - betta[i] * a_coefficient_matrix[i])
23
           / (alpha[i] * a_coefficient_matrix[i] + b_coefficient_matrix[i]))
24
25
       for i in range(0, n - 1):
26
           moments.append(alpha[n - i - 1] * moments[i] + betta[n - i - 1])
27
       moments.append(s_derivative_function(interval[0]));
       moments = moments[::-1]
30
       a = moments[:-1:]
31
       b = [(moments[i + 1] - moments[i]) / h_values[i + 1]
32
       for i in range(0, n)]
33
       c = [(y_values[i + 1] - y_values[i])
34
       / h_values[i + 1] - h_values[i + 1] / 6 *
35
       (2 * moments[i] + moments[i + 1]) for i in range(0, n)]
36
37
       return [a, b, c]
38
```

Описание алгортима

1. Определение матриц коэффициентов

- \bullet Матрица коэффициентов c рассчитывается как отношение длины текущего отрезка к сумме длин текущего и следующего отрезков. Начальные и конечные значения этой матрицы равны нулю.
- Матрица коэффициентов a рассчитывается как отношение длины следующего отрезка к сумме длин текущего и следующего отрезков. Начальные и конечные значения этой матрицы также равны нулю.
- Матрица коэффициентов b состоит из единицы в начале и конце, а все промежуточные элементы равны двум.
- 2. **Определение правой части уравнения** Правая часть уравнения рассчитывается как значения второй производной функции на концах интервала, а для внутренних узлов как разница отношений разностей значений функции и длин отрезков, умноженная на 6.

- 3. Инициализация и вычисление массивов α и β
 - Массив α инициализируется как отношение начального элемента матрицы c к начальному элементу матрицы b с отрицательным знаком.
 - Массив β инициализируется как отношение начального элемента RHS к начальному элементу матрицы b.
- 4. **Вычисление моментов** M Массив моментов инициализируется значением второй производной функции на правом конце интервала.
- 5. Обход в прямом порядке для вычисления α и β Для каждого узла (кроме первого и последнего) массивы α и β обновляются на основе значений матриц коэффициентов a, b, c и RHS.
- 6. Обход в обратном порядке для вычисления моментов M Для каждого узла (кроме первого и последнего) массив моментов M обновляется на основе значений массивов α и β .
- 7. Вычисление коэффициентов a, b и c
 - Коэффициенты a равны всем элементам массива моментов M, кроме последнего.
 - ullet Коэффициенты b рассчитываются как разница соседних элементов массива моментов M, деленная на длину соответствующих отрезков.
 - Коэффициенты c рассчитываются как разница значений функции в соседних узлах, деленная на длину соответствующих отрезков, с корректировкой на основе длин отрезков и значений моментов.
- 8. Возврат коэффициентов Функция возвращает массивы коэффициентов a, b и c, которые используются для вычисления непосредственного сплайна.

Реализация сплайна

```
def evaluate_spline(x, i):
      return y_values[i] + spline_coefficients[2][i] * (x - x_values[i])
2
       + spline_coefficients[0][i] * (
3
               x - x_values[i]) ** 2 / 2 + spline_coefficients[1][i]
               * (x - x_values[i]) ** 3 / 6
5
6
  x_values = np.linspace(*interval, 20)
  n = len(x_values) - 1
  h_values = [abs(x_values[_] - x_values[_ - 1]) for _ in range(0, n + 1)]
10
  y_values = [function(_) for _ in x_values]
11
  spline_coefficients = build_spline()
13
14
  for i in range(n):
15
      xl = np.linspace(x_values[i], x_values[i + 1], 10)
16
      yl = evaluate_spline(xl, i)
17
18
      plt.plot(x1, y1)
19
```

Алгоритм

- 1. **Создание сетки значений** x: Генерируется массив из 20 равномерно распределенных значений x на заданном интервале.
- 2. Вычисление длин отрезков h: Вычисляются длины каждого отрезка между узлами.
- 3. Вычисление значений функции y: Вычисляются значения функции f(x) в каждом узле.
- 4. **Построение коэффициентов сплайна**: Вызывается функция build_spline для вычисления коэффициентов сплайна.
- 5. **Визуализация сплайна**: Для каждого интервала вычисляются значения сплайна и строится график на данном интервале.

График

Рис. 1: График сплайна

Ошибки

Реализация

```
def norm(lst):
       return max(list(map(np.fabs, lst)))
2
  ns = [3, 5, 10, 20, 30, 40, 55, 70, 85, 100]
  max_deviations = []
  relative_deviations = []
  for num_intervals in ns:
8
       spline_y_values = []
9
       x_values = np.linspace(*interval, num_intervals)
10
       n = num\_intervals - 1
11
       h_values = [abs(x_values[_] - x_values[_ - 1]) for _ in
12
       range(0, n + 1)]
13
       y_values = [function(_) for _ in x_values]
14
15
       spline_coefficients = build_spline()
16
17
       for i in range(n):
18
           xl = np.linspace(x_values[i], x_values[i + 1], 10)
           yl = evaluate_spline(xl, i)
20
21
           spline_y_values += [*yl]
22
       original_y_values = function(np.linspace(*interval, n * 10))
23
24
       spline_norm = norm(np.array(spline_y_values) - original_y_values)
25
       function_norm = norm(original_y_values)
26
       max_deviations.append(spline_norm)
27
       relative_deviations.append(spline_norm / function_norm * 100)
28
       print(num_intervals, spline_norm, spline_norm
29
       / function_norm * 100, sep='\t')
```

Алгоритм

norm(lst) возвращает максимальное абсолютное значение списка. Задаются числа интервалов (ns) и списки для отклонений. Цикл по числу интервалов

- Для каждого значения num_intervals:
 - Генерация сетки x, вычисление длин отрезков h и значений функции y.
 - Построение коэффициентов сплайна.
 - Вычисление значений сплайна и добавление их в список.
 - Вычисление значений оригинальной функции на плотной сетке.
 - Вычисление максимального и относительного отклонений.
 - Добавление отклонений в списки.

Таблица ошибок

n	Абсолютное отклонение	Относительное отклонение
3	0.05371643350201083	3.9951684278292565
5	0.04343490397994143	3.230478007069501
10	0.022010032911421007	1.6369997568788763
20	0.011168471008359937	0.8306568372238579
30	0.00746909969040388	0.555515497250833
40	0.0056090498036676095	0.417173986148873
55	0.004083074671390463	0.3036793389307547
70	0.00320965733824341	0.23871878354359727
85	0.002644010127457186	0.1966486807744287
100	0.002247842609951256	0.16718365759838455

Таблица 1: Таблица абсолютных и относительных отклонений

График зависимости абсолютной ошибки от количества узлов

Рис. 2: График сплайна

Вывод о поведении ошибок

На основе приведенных данных можно сделать следующие выводы:

- Уменьшение абсолютного отклонения (Δ): С увеличением количества интервалов n, абсолютное отклонение (Δ) последовательно уменьшается. Это свидетельствует о том, что аппроксимация сплайном становится точнее при увеличении числа интервалов.
- Уменьшение относительного отклонения (δ): Аналогично, относительное отклонение (δ) также уменьшается с увеличением числа интервалов. Это показывает, что относительная погрешность аппроксимации снижается, делая аппроксимацию более точной по сравнению с исходной функцией.
- Скорость уменьшения отклонений: Как видно из данных, наиболее значительное снижение отклонений наблюдается при малых значениях n. При больших значениях n уменьшение отклонений становится менее выраженным. Это может свидетельствовать о том, что дальнейшее увеличение числа интервалов приводит к менее значимому улучшению точности аппроксимации.

В целом, результаты подтверждают, что увеличение числа интервалов n улучшает точность аппроксимации сплайном как в абсолютном, так и в относительном выражении.

Заключение

В данной лабораторной работе была проведена аппроксимация функции с использованием кубических сплайнов. Основные этапы включали:

- 1. Разбиение заданного интервала на различные числа интервалов.
- 2. Вычисление значений функции и её производных в узловых точках.
- 3. Построение коэффициентов кубических сплайнов.
- 4. Оценка погрешности аппроксимации путем вычисления максимальных и относительных отклонений.

На основе проведенных экспериментов и анализа полученных данных были сделаны следующие выводы:

- 1. **Точность аппроксимации**: С увеличением числа интервалов n максимальное отклонение (Δ) и относительное отклонение (δ) последовательно уменьшаются. Это свидетельствует о повышении точности аппроксимации кубическим сплайном при увеличении числа интервалов.
- 2. **Скорость сходимости**: Наиболее значительное снижение отклонений наблюдается при малых значениях n. При больших значениях n уменьшение отклонений становится менее выраженным, что указывает на уменьшение эффекта от дальнейшего увеличения числа интервалов.
- 3. **Практическое применение**: Аппроксимация кубическими сплайнами показала свою эффективность для точного представления функций. Метод может быть полезен в различных прикладных задачах, требующих высокой точности аппроксимации.