પ્રશ્ન 1 [14 ગુણ]

આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરી ખાલી જગ્યાઓ પૂરો:

જવાબ:

પ્રશ્ન	જવાબ	સમજૂતી
(1)	[Ar]4s ¹ 3d ¹⁰	Cu માં 29 ઇલેક્ટ્રોન છે, Aufbau નિયમનો અપવાદ
(2)	14	pH + pOH = 14 (25°C પર)
(3)	કેથોડ	શુદ્ધ તાંબુ નેગેટિવ ઇલેક્ટ્રોડ પર જમા થાય
(4)	Cu	તાંબુ સુરક્ષિત ઓક્સાઇડ સ્તર બનાવે છે
(5)	અર્ધ-ઘન	પીટ અંશતઃ વિઘટિત કાર્બનિક પદાર્થ છે
(6)	ક્યુલોંગ	ક્યુલોંગના સૂત્રથી ઉષ્મીય મૂલ્ય ગણાય
(7)	લિગ્નાઇટ	લિગ્નાઇટમાં સૌથી વધુ ભેજ (35-75%)
(8)	પોઇઝ	ડાયનેમિક વિસ્કોસિટીનો SI એકમ
(9)	ઊંચું	ઊંચું ફ્લેશ પોઇન્ટ ઇગ્નિશન અટકાવે છે
(10)	પાયસ	તેલ-પાણીનું મિશ્રણ પાયસ બનાવે છે
(11)	બેકેલાઇટ	ફિનોલ ફોર્મેલ્ડિહાઇડ = બેકેલાઇટ
(12)	S	વલ્કેનાઇઝેશન માટે સલ્ફર વપરાય છે
(13)	PHBV	PHBV જૈવવિઘટનીય પોલિમર છે
(14)	વોલ્ટ	EMF વોલ્ટમાં માપાય છે

મેમરી ટ્રીક: "રાસાયણિક તાંબુ સુંદર ગુણધર્મો બનાવે"

પ્રશ્ન 2(A) [6 ગુણ]

પ્રશ્ન 2(A)(1) [3 ગુણ]

જુદાં જુદાં ક્ષેત્રોમાં pHની ત્રણ અગત્યતાની સૂચિ બનાવો.

ક્ષેત્ર	મહત્વ	એપ્લિકેશન
લ્કાાકાગ્ર	લોહીનું pH જાળવણું	સામાન્ય pH 7.35-7.45 યોગ્ય શરીરિક કાર્ય માટે
કૃષિ	માટીનું pH ઓપ્ટિમાઇઝેશન	pH 6-7 પાકની વૃદ્ધિ અને પોષણ માટે આદર્શ
ઉદ્યોગ	ગુણવત્તા નિયંત્રણ	pH ખોરાક, કાપડ, દવાઓની ગુણવત્તાને અસર કરે

મેમરી ટ્રીક: "દવા કૃષિ ઉદ્યોગ"

પ્રશ્ન 2(A)(2) [3 ગુણ]

વ્યાખ્યા આપો: બફર દ્રાવણો, અર્ધ-કોષ, વિદ્યુતવિભાજનનો ફેરાડેનો પ્રથમ નિયમ.

જવાબ:

- **બફર દ્રાવણો**: એવા દ્રાવણો જે થોડું એસિડ કે બેઝ ઉમેરવાથી pH બદલાવમાં પ્રતિકાર કરે
- અર્ધ-ક્રોષ: એક ઇલેક્ટ્રોડ તેના આયનિક દ્રાવણમાં ડૂબેલો, ઓક્સિડેશન કે રિડક્શન દર્શાવ
- ફેરાડેનો પ્રથમ નિયમ: ઇલેક્ટ્રોડ પર જમા/મુક્ત થતા પદાર્થની માત્રા વીજળીની માત્રાના સીધા પ્રમાણમાં હોય

મેમરી ટ્રીક: "બફર મદદ ફેરાડે"

પ્રશ્ન 2(A)(3) [3 ગુણ]

ક્ષારણ દર ઉપર અસર કરતાં પરિબળો જણાવો.

જવાબ:

પરિબળ	અસર	વર્ણન
દ્યાતુની શુદ્ધતા	વધુ શુદ્ધતા = ઓછું ક્ષારણ	અશુદ્ધિઓ ગેલ્વેનિક કોષ બનાવે
તાપમાન	વધુ તાપમાન = ઝડપી ક્ષારણ	પ્રતિક્રિયા દર વધારે
લેજ	વધુ ભેજ = વધુ ક્ષારણ	ઇલેક્ટ્રોકેમિકલ પ્રતિક્રિયાઓ પ્રોત્સાહન

મેમરી ટ્રીક: "શુદ્ધ તાપમાન ભેજ"

પ્રશ્ન 2(B) [8 ગુણ]

પ્રશ્ન 2(B)(1) [4 ગુણ]

કક્ષાઓ અને કક્ષકો વચ્ચે સરખામણી કરો (દરેકના ચાર મુદ્દાઓ).

પાસું	કક્ષાઓ	કક્ષકો
વ્યાખ્યા	નિશ્ચિત ગોળાકાર માર્ગ	3D સંભાવના પ્રદેશો
આકાર	ગોળાકાર/અંડાકાર	s,p,d,f આકારો
ଉର୍ଷ	નિશ્ચિત ઊર્જા સ્તરો	ઊર્જા શ્રેણીઓ
ઇલેક્ટ્રોન સ્થાન	યોક્કસ સ્થિતિ	મળવાની સંભાવના

આકૃતિ:

મેમરી ટ્રીક: "નિશ્ચિત આકાર ઊર્જા સ્થાન"

પ્રશ્ન 2(B)(2) [4 ગુણ]

દરેકના એક ઉદાહરણ સાથે તેના સ્ત્રોતો અને ભૌતિક સ્થિતિઓના આદ્યારે ઇંઘણોનું વર્ગીકરણ કરો.

જવાબ:

કોષ્ટક:

વર્ગીકરણ	หรเร	ઉદાહરણ	વર્ણન
સ્ત્રોત આધારિત	કુદરતી	કોલસો	કુદરતી રીતે બન્યું
	કૃત્રિમ	પેટ્રોલ	માનવ નિર્મિત
ભૌતિક સ્થિતિ	ยา	લાકડું	ઓરડાના તાપમાને ઘન
	પ્રવાહી	ડીઝલ	ઓરડાના તાપમાને પ્રવાહી
	ગેસીય	LPG	ઓરડાના તાપમાને ગેસ

મેમરી ટ્રીક: "કુદરતી કૃત્રિમ, ઘન પ્રવાહી ગેસ"

પ્રશ્ન 2(B)(3) [4 ગુણ]

બાયોડીઝલ વિશે ચાર અગત્યના મુદ્દાઓ સમજાવો.

જવાબ:

• સ્ત્રોત: વનસ્પતિ તેલ, પ્રાણીઓની ચરબી અથવા વપરાચેલા રસોઈ તેલમાંથી બને

• પ્રક્રિયા: મેથેનોલ/ઇથેનોલ સાથે ટ્રાન્સએસ્ટેરિફિકેશન પ્રતિક્રિયાથી બને

- ગુણધર્મો: જૈવવિઘટનીય, બિન-ઝેરી, નવીકરણીય ઇંધણ સ્ત્રોત
- ઉપયોગો: ડીઝલ એન્જિનમાં વપરાય, ઉત્સર્જન 75% ઘટાડે

રાસાયણિક પ્રતિક્રિયા:

```
વનસ્પતિ તેલ + મેથેનોલ → બાયો–ડીઝલ + ગ્લિસેરોલ
```

મેમરી ટ્રીક: "સ્ત્રોત પ્રક્રિયા ગુણધર્મો ઉપયોગો"

પ્રશ્ન 3(A) [6 ગુણ]

પ્રશ્ન 3(A)(1) [3 ગુણ]

ઉદાહરણની મદદથી દ્રાવ્ય, દ્રાવક અને દ્રાવણ સમજાવો.

જવાબ:

ย28	વ્યાખ્યા	ઉદાહરણ
દ્રાવ્ય	જે પદાર્થ ઓગળે છે	મીઠું (NaCl)
દ્રાવક	જેમાં પદાર્થ ઓગળે છે	પાણી (H ₂ O)
દ્રાવણ	સમાંગી મિશ્રણ	મીઠાનું પાણી

ઉદાહરણ: ખાંડ + પાણી = ખાંડનું દ્રાવણ

• ખાંડ = દ્રાવ્ય, પાણી = દ્રાવક, ખાંડનું પાણી = દ્રાવણ

મેમરી ટ્રીક: "દ્રાવ્ય દ્રાવક દ્રાવણ"

પ્રશ્ન 3(A)(2) [3 ગુણ]

NaClમાં વિદ્યુતસંચોજક બંધનું નિર્માણ સમજાવો.

જવાબ:

પ્રક્રિયા:

- **પગલું 1**: Na એક ઇલેક્ટ્રોન ગુમાવે → Na+ (કેટાયન)
- **પગલું 2**: Cl એક ઇલેક્ટ્રોન મેળવે → Cl⁻ (આયન)
- **પગલું 3**: Na⁺ અને Cl⁻ વચ્ચે વિદ્યુતસ્થિતિક આકર્ષણ

આકૃતિ:

```
Na \rightarrow Na^{+} + e^{-}
Cl + e^{-} \rightarrow Cl^{-}
Na^{+} + Cl^{-} \rightarrow Na^{+}Cl^{-} (NaCl)
```

મેમરી ટ્રીક: "સોડિયમ ગુમાવે, ક્લોરિન મેળવે, આકર્ષણ બને"

પ્રશ્ન 3(A)(3) [3 ગુણ]

ગેસોલીન માટે ઓક્ટેન આંક સમજાવો.

જવાબ:

પાસું	વર્ણન
વ્યાખ્યા	ઇંધણની નોકિંગ સામે પ્રતિકારશક્તિનું માપ
સ્કેલ	0-100, વધુ = વધુ સારી એન્ટી-નોક ગુણવત્તા
માનક	n-હેપ્ટેન = 0, આઇસો-ઓક્ટેન = 100

ઉપયોગો: ઊંચા ઓક્ટેન ઇંધણ એન્જિન નોકિંગ અટકાવે, કામગીરી સુધારે

મેમરી ટ્રીક: "ઓક્ટેન નોકિંગ વિરોધી"

પ્રશ્ન 3(B) [8 ગુણ]

પ્રશ્ન 3(B)(1) [4 ગુણ]

અશુદ્ધ Cuનું વિદ્યુતશુદ્ધિકરણ રાસાયણિક સમીકરણો અને નામ નિર્દેશનવાળી આકૃતિ સાથે સમજાવો.

જવાબ:

પ્રક્રિયા:

• એનોડ: અશુદ્ધ તાંબુ ઓગળે

• કેથોડ: શુદ્ધ તાંબુ જમા થાય

• **ઇલેક્ટ્રોલાઇટ**: CuSO₄ દ્રાવણ

રાસાયણિક સમીકરણો:

• એનોડ પર: Cu → Cu²+ + 2e⁻

• કેથોડ પર: Cu²+ + 2e⁻ → Cu

આકૃતિ:

મેમરી ટ્રીક: "એનોડ ઓગળે, કેથોડ જમાવે"

પ્રશ્ન 3(B)(2) [4 ગુણ]

રાસાયણિક સમીકરણ સાથે ઇથિનની બનાવટ સમજાવો. તેના બે ગુણદ્યમોં અને બે ઉપયોગો પણ લખો.

જવાબ:

તૈયારી:

 $C_2H_5OH \rightarrow C_2H_4 + H_2O$ (ઇથેનોલનું નિર્જલીકરણ)

ગુણદ્યમોં:

• લોતિક: રંગહીન ગેસ, મીઠી સુગંધ

• રાસાયણિક: અસંતૃપ્ત, ઉમેરણ પ્રતિક્રિયાઓ કરે

ઉપયોગો:

• ઔદ્યોગિક: પોલિઇથિલીન ઉત્પાદન

• કૃષિ: ફળ પકવવા માટે વનસ્પતિ હોર્મોન

મેમરી ટ્રીક: "તૈયારી ગુણધર્મો ઉપયોગો"

પ્રશ્ન 3(B)(3) [4 ગુણ]

રાસાયણિક સમીકરણ સાથે Buna-S રબરની બનાવટ સમજાવો. તેના બે ગુણધર્મો અને બે ઉપયોગો પણ લખો.

જવાબ:

તૈયારી:

બ્યુટાડાયન + સ્ટાયરીન → Buna-S રબર (કોપોલિમેરાઇઝેશન)

રાસાયણિક સમીકરણ:

```
nC_4H_6 + nC_8H_8 \rightarrow [-C_4H_6-C_8H_8-]_n
```

ગુણઘર્મો:

• યાંત્રિક: સારો ઘર્ષણ પ્રતિકાર

• રાસાયણિક: તેલ અને ઇંધણ પ્રતિરોધી

ઉપયોગો:

• વાહન: ટાયર ઉત્પાદન

• ઔદ્યોગિક: કન્વેયર બેલ્ટ, હોઝ

મેમરી ટ્રીક: "બ્યુટાડાયન સ્ટાયરીન મજબૂત રબર બનાવે"

પ્રશ્ન 4(A) [6 ગુણ]

પ્રશ્ન 4(A)(1) [3 ગુણ]

દ્યાતુઓનું ક્ષારણ નિવારવા દ્યાતુકલેડિંગ સમજાવો.

જવાબ:

પાસું	વર્ણન
પ્રક્રિયા	મૂળ ધાતુ પર ક્ષારણ-પ્રતિરોધી ધાતુનું આવરણ
પદ્ધતિઓ	હોટ ડિપિંગ, ઇલેક્ટ્રોપ્લેટિંગ, રોલ બોન્ડિંગ
ઉદાહરણો	ગેલ્વેનાઇઝ્ડ આયર્ન (Fe પર Zn), ટીન પ્લેટિંગ

મિકેનિઝમ: સુરક્ષિત સ્તર મૂળ ધાતુને ઓક્સિજન/ભેજના સંપર્કમાં આવતું અટકાવે

મેમરી ટ્રીક: "આવરણ ધાતુ સુરક્ષિત કરે"

પ્રશ્ન 4(A)(2) [3 ગુણ]

પાણીની સપાટી નીચે થતું ક્ષારણ રાસાયણિક પ્રક્રિયાઓ અને નામનિર્દેશનવાળી આકૃતિ સાથે સમજાવો.

જવાબ:

પ્રિક્રિયા: વિભેદક વાયુકરણ પાણી-હવા સંપર્ક સ્થળે ક્ષારણ કારણે

રાસાયણિક સમીકરણો:

• એનોs: Fe → Fe²+ + 2e⁻

รู่ะมโร: O₂ + 4H⁺ + 4e⁻ → 2H₂O

आङ्गति:

મેમરી ટ્રીક: "પાણી હવા સંપર્ક ક્ષારણ કરે"

પ્રશ્ન 4(A)(3) [3 ગુણ]

સૌર કોષોના કાર્યકારી સિદ્ધાંતને સમજાવો.

જવાબ:

ยรร	รเข้
ફોટોવોલ્ટેઇક અસર	પ્રકાશ ઊર્જા વિદ્યુત ઊર્જામાં ફેરવાય
p-n ช่รยเส	ચાર્જ વિભાજન માટે વિદ્યુત ક્ષેત્ર બનાવે
ઇલેક્ટ્રોન-હોલ જોડી	ફોટોન સેમિકન્ડક્ટર સાથે અથડાય ત્યારે બને

પ્રક્રિયા: પ્રકાશ → ઇલેક્ટ્રોન ઉત્તેજના → પ્રવાહ → વિદ્યુત ઊર્જા

મેમરી ટ્રીક: "ફોટો વોલ્ટેઇક જંકશન પ્રવાહ બનાવે"

પ્રશ્ન 4(B) [8 ગુણ]

પ્રશ્ન 4(B)(1) [4 ગુણ]

આકૃતિ સાથે સીમાવર્તી સ્નેહનનું કાર્ય દર્શાવો.

જવાબ:

કાર્ય: પાતળો આણવિક સ્તર ધાતુની સપાટી પર ચોંટે, સીધો સંપર્ક અટકાવે

મિકેનિઝમ:

• રચના: સ્નેહક અણુઓ ધાતુની સપાટી પર ગોઠવાય

• સુરક્ષા: સપાટીઓ વચ્ચે ઘર્ષણ અને ઘસારો ઘટાડે

• **લોડ બેરિંગ**: પ્રવાહી ફિલ્મ તૂટે ત્યારે લોડ સહન કરે

આકૃતિ:

મેમરી ટ્રીક: "સીમા અવરોધ ધાતુ સંપર્ક અટકાવે"

પ્રશ્ન 4(B)(2) [4 ગુણ]

રેડવુડ વિસ્કોમીટર દ્વારા સિનગ્ધતા કેવી રીતે માપવામાં આવે છે તે નામનિર્દેશનવાળી આકૃતિ સાથે સમજાવો.

જવાબ:

સિદ્ધાંત: નિશ્ચિત કદના છિદ્રમાંથી નિશ્ચિત પ્રમાણ તેલ વહેવામાં લાગતો સમય

કાર્યવિધિ:

• સેટઅપ: તેલ ચેમ્બર ભરો, જરૂરી તાપમાને ગરમ કરો

• **માપ**: 50ml તેલ વહેવાનો સમય નોંધો

• **ગણતરી**: વિસ્કોસિટી = સમય × સ્થિરાંક

આકૃતિ:

મેમરી ટ્રીક: "રેડવુડ સમય નોંધે"

પ્રશ્ન 4(B)(3) [4 ગુણ]

વ્યાખ્યા આપો: અર્ધવાહક, અવાહક પદાર્થ, સ્થિતિસ્થાપક પદાર્થ, યોગશીલ બહુલીભવન.

જવાબ:

શબ્દ	વ્યાખ્યા
અર્ધવાહક	વાહક અને અવાહક વચ્ચેની વિદ્યુત વાહકતા ધરાવતો પદાર્થ
અવાહક પદાર્થ	વિદ્યુત પ્રવાહના વહેણને પ્રતિકાર કરતો પદાર્થ
સ્થિતિસ્થાપક પદાર્થ	લવચીક ગુણધર્મો ધરાવતો પોલિમર, ખેંચાઈને મૂળ આકારે પાછો આવે
યોગશીલ બહુલીભવન	મોનોમર્સ નાના અણુઓ દૂર કર્યા વિના જોડાય

ઉદાહરણો: Si (અર્ધવાહક), રબર (અવાહક), રબર (સ્થિતિસ્થાપક), પોલિઇથિલીન (યોગશીલ)

મેમરી ટ્રીક: "અર્ધ અવાહક સ્થિતિ યોગશીલ"

પ્રશ્ન 5(A) [6 ગુણ]

પ્રશ્ન 5(A)(1) [3 ગુણ]

ઉકેલો: 0.004 M HClના જલીય દ્રાવણની pH અને pOH ગણો. (log 4 = 0.6021)

જવાબ:

આપેલ: [HCl] = 0.004 M = 4 × 10⁻³ M

ઉકેલ:

• HCl મજબૂત એસિડ છે, સંપૂર્ણ આયનીકરણ થાય

• $[H^+] = [HCI] = 4 \times 10^{-3} M$

• pH = $-\log[H^+] = -\log(4 \times 10^{-3})$

• pH = $-\log 4 - \log 10^{-3} = -0.6021 + 3 = 2.398$

• pOH = 14 - pH = 14 - 2.398 = 11.602

જવાબ: pH = 2.40, pOH = 11.60

મેમરી ટ્રીક: "મજબૂત એસિડ, સરળ ગણતરી"

પ્રશ્ન 5(A)(2) [3 ગુણ]

ઉદાહરણ સાથે બાહ્ય અર્ધવાહકો અને તેના પ્રકારો વર્ણવો.

જવાબ:

уѕіг	ડોપન્ટ	મુખ્ય વાહકો	ઉદાહરણ
n-มรเง	દાતા અણુઓ (ગ્રૂપ V)	ઇલેક્ટ્રોન	Si + P
р-явіг	સ્વીકર્તા અણુઓ (ગ્રૂપ III)	હોલ્સ	Si + B

ગુણદ્યમાં:

• n-પ્રકાર: વધારાના ઇલેક્ટ્રોન વાહકતા વધારે

• **p-પ્રકાર**: ઇલેક્ટ્રોન અછત સકારાત્મક હોલ્સ બનાવે

મેમરી ટ્રીક: "n-નેગેટિવ ઇલેક્ટ્રોન, p-પોઝિટિવ હોલ્સ"

પ્રશ્ન 5(A)(3) [3 ગુણ]

ઉષ્માસહ બહુલક અને ઉષ્માસ્થાપિત બહુલક વચ્ચેનાં ફરક આપો. (દરેકનાં ચાર મુદ્દાઓ)

ગુણઘર્મ	ઉષ્માસહ	ઉષ્માસ્થાપિત
રચના	રેખીય/શાખાવાળી સાંકળો	ક્રોસ-લિંક્ડ નેટવર્ક
ગરમીની અસર	ગરમ કરવાથી નરમ પડે	નરમ નથી પડતું
પુનઃઉપયોગ	પુનઃઉપયોગ શક્ય	પુનઃઉપયોગ અશક્ય
ઉદાહરણો	PVC, PE, PS	બેકેલાઇટ, ઇપોક્સી

મેમરી ટ્રીક: "ઉષ્મા-સહ = પુનઃઉપયોગ, ઉષ્મા-સ્થાપિત = કાયમી"

પ્રશ્ન 5(B) [8 ગુણ]

પ્રશ્ન 5(B)(1) [4 ગુણ]

હાઇડ્રોજન બંધ અને તેના પ્રકારો ઉદાહરણો સાથે વર્ણવો.

જવાબ:

વ્યાખ્યા: હાઇડ્રોજન અને વિદ્યુતનેગેટિવ અણુઓ વચ્ચે નબળું વિદ્યુતસ્થિતિક આકર્ષણ

પ્રકારો:

увіғ	વર્ણન	ઉદાહરણ
અંતરઅણવિક	વિવિધ અણુઓ વચ્ચે	H ₂ O···H ₂ O
અંતઃઅણવિક	સમાન અણુમાં	૦-નાઇટ્રોફિનોલ

લક્ષણો:

• **disid**: 5-40 kJ/mol

• જરૂરિયાતો: H, F, O, N સાથે જોડાયેલ

આકૃતિ:

મેમરી ટ્રીક: "હાઇડ્રોજનને FON મિત્રોની જરૂર" (ફ્લોરિન, ઓક્સિજન, નાઇટ્રોજન)

પ્રશ્ન 5(B)(2) [4 ગુણ]

પ્રાથમિક કોષ અને દ્વિતીયક કોષ વચ્ચે તફાવત કરો. (ચાર મુદ્દાઓ)

પાસું	પ્રાથમિક કોષ	द्वितीयङ डोष
રિયાર્જેબિલિટી	રિયાર્જ ન થાય	રિયાર્જ થાય
પ્રતિક્રિયા	અપરિવર્તનીય	પરિવર્તનીય
કિંમત	ઓછી શરૂઆતી કિંમત	વધુ શરૂઆતી કિંમત
ઉદાહરણો	ડ્રાય સેલ, અલ્કલાઇન	લેડ-એસિડ, Li-ion

ઉપયોગો:

• **પ્રાથમિક**: રિમોટ કંટ્રોલ, ફ્લેશલાઇટ

• દ્વિતીયક: કાર, ફોન, લેપટોપ

મેમરી ટ્રીક: "પ્રાથમિક = કાયમી, દ્વિતીયક = પરિવર્તનીય"

પ્રશ્ન 5(B)(3) [4 ગુણ]

નામનિર્દેશવાળી આકૃતિ દોરી લેડ-એસિડ સંગ્રાહક કોષની રચના, કાર્ય અને રાસાયણિક સમીકરણો વર્ણવો.

જવાબ:

રચના:

• **એનોડ**: લેડ (Pb)

• **કેથોડ**: લેડ ડાયઓક્સાઇડ (PbO₂)

• **ઇલેક્ટ્રોલાઇટ**: પાતળું H₂SO₄

રાસાયણિક સમીકરણો:

• **ડિસ્ચાર્જ**: Pb + PbO₂ + 2H₂SO₄ → 2PbSO₄ + 2H₂O

• **ขเซ**์: 2PbSO₄ + 2H₂O → Pb + PbO₂ + 2H₂SO₄

आृहति:

કાર્ય: ડિસ્ચાર્જ દરમિયાન રાસાયણિક ઊર્જા વિધુત ઊર્જામાં ફેરવાય

મેમરી ટ્રીક: "લેડ એસિડ સ્ટોરેજ = પરિવર્તનીય ઊર્જા"