

# Softwareprojektpraktikum Maschinelle Übersetzung

Matthias Huck, Daniel Stein {huck,stein}@i6.informatik.rwth-aachen.de

Besprechung 2. Aufgabe 06. Mai 2010

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany





## Was ist statistische maschinelle Übersetzung?

"It must be recognized that the notion of a *probability of a sentence* is an entirely useless one, under any interpretation of this term."

Noam Chomsky, 1969





## Was ist statistische maschinelle Übersetzung?

#### **▶** Gegeben:

- parallele Sätze von vorübersetztem Trainingsmaterial
- Beispiel: politische Reden im Europäischen Parlament,
   Bücher, die bereits in verschiedene Sprachen übersetzt wurden (z.B. die Bibel, Handbücher, Patente),

. . .

- ► Typische Größen (in Anzahl der parallelen Sätze):
  - ▶ klein: 40 K (IWSLT)



#### ► Ziel:

▶ Die beste (d.h.: wahrscheinlichste) Übersetzung eines unbekannten Satzes zu finden



#### **Ansatz**

- ► Idee: die Übersetzung als Entschlüsselungsproblem zu sehen
- lacksquare Für einen gegebenen Quellsatz  $f_1^J=f_1\dots f_j\dots f_J$ 
  - $ilde{f b}$  berechne  $Pr(e_1^I|f_1^J)$  für alle möglichen Zielsätze  $e_1^I=e_1\dots e_i\dots e_I$
  - ho wähle den Satz  $\hat{e}_1^{\hat{I}}$ , der die Wahrscheinlichkeit maximiert

$$egin{aligned} \hat{e}_1^{\hat{I}} &= rg\max_{e_1^I} \left\{ p(e_1^I|f_1^J) 
ight\} \ &= rg\max_{e_1^I} \left\{ p(e_1^I) \cdot p(f_1^J|e_1^I) 
ight\} \end{aligned}$$





## Bestandteile der Maschinellen Übersetzung

- ► Fünf integrale Bestandteile:
  - $\triangleright$  Training: Wort-Alignment für  $f_j \# e_i$  Wortpaare
  - **► Extraktion:** Suche nach Fragmenten in einem bilingualen Trainings-Corpus
  - ightharpoonup Log-linear model: Kombination möglicher Abhängigkeiten zwischen  $f_1^J$  und  $e_1^I$
  - hicktriangle Suche: Finden des wahrscheinlichsten, "plausibelsten" Zielsatzes  $e_1^I$
  - Optimierung: automatische Bewertung der Ausgabe und Optimierung
- Ähnlichkeiten zur Spracherkennung, aber
  - ▶ Nicht-monotone Suche
  - ▶ Ausgabe schwerer zu interpretieren (z.B. bei Synonymen, anderer Grammatikstruktur, ...)



### **Wort-Alignment**

- ► Eingeführt von IBM 1989–1993
  - **⊳** Sequenz von IBM-1, ..., IBM-5 Modellen
  - ▶ Berechnung durch den EM-Algorithmus
- Erweiterungen der RWTH
  - ▶ Zusätzliches Modell (HMM), statt IBM-2
  - > Effiziente Implementierung
  - ▶ Open Source Toolkit: GIZA++





### Annahmen der Zero-Order Alignment-Modelle

$$egin{aligned} Pr(f_1^J|e_1^I) &= p(J|I) \cdot Pr(f_1^J|J,e_1^I) \ &= p(J|I) \cdot \sum_{a_1^J} Pr(f_1^J,a_1^J|J,e_1^I) \ &= p(J|I) \cdot \sum_{a_1^J} \prod_{j=1}^J p(a_j|j,J,I) \cdot p(f_j|e_{a_j}) \end{aligned}$$



#### Annahmen der Zero-Order Alignment-Modelle

$$Pr(f_1^J|e_1^I) = p(J|I) \cdot \sum_{a_1^J} \prod_{j=1}^J p(a_j|j,J,I) \cdot p(f_j|e_{a_j})$$

► Längenmodell: Abhängigkeit der Länge J nur vom Zielsatz  $e_1^I$ :

$$Pr(J|e_1^I) = p(J|I)$$

► Alignment Model: Abhängigkeit nur an der absoluten Position j (und den Längen J und I):

$$Pr(a_{j}|a_{1}^{j-1},J,e_{1}^{I})=p(a_{j}|j,J,I)$$

Lexikon Wahrscheinlichkeit: Abhängigkeit nur von  $e_i$  in der Position  $i=a_j$ :

$$Pr(f_j|f_1^{j-1},a_1^J,J,e_1^I) = p(f_j|e_{a_j})$$





## Übung 2

- ► Ziel: Konstruktion eines (einfachen) Übersetzers für Italienisch-Englisch
- ► Eingabe: unbekannte Sätze in Italienisch
- ► Ausgabe: Übersetzung in Englisch





#### Berechnung der minimalen Kosten

- ► Einfach: Berechnung des Satzes mit den minimalen Kosten
- ► Semi-Einfach: Berechnung der nächsten Alternative für einfache Übergänge
- Problematisch: Berechnung der nächsten Alternative für beliebig lange Übergänge





### Berechnung der minimalen Kosten

► Einfach: (langweilig)

► Semi-Einfach: (langweilig)

**▶** Problematisch: Eure Aufgabe





#### A\*-Suche

- ► single-best Berechnung einfach: jeweils besten Pfad abspeichern
- ▶ n-best Berechnung durch den A\*-Suchalgorithmus
  - > informierter Suchalgorithmus
  - untersucht Knoten zuerst, die am vielversprechendsten sind
  - $\triangleright$  benötigt *optimistische* Schätzungsfunktion f(x)
- lacksquare in unserer Übersetzung: f(x)=g(x)+h(x), mit
  - hd g(x) sind die Übersetzungskosten
  - $\triangleright h(x)$  sind die besten Pfade zum Knoten



1.5 # X Y # A A
1.4 # X # B
1.2 # X # C
Tabelle: 1.2 # Y # D
1.3 # Y # E
2.5 # Y Z # G G
1.1 # Z # F





1.5 # X Y # A A
1.4 # X # B
1.2 # X # C
Tabelle: 1.2 # Y # D
1.3 # Y # E
2.5 # Y Z # G G
1.1 # Z # F





1.5 # X Y # A A
1.4 # X # B
1.2 # X # C
Tabelle: 1.2 # Y # D
1.3 # Y # E
2.5 # Y Z # G G
1.1 # Z # F

| hyp | f(x) | g(x) | h(x) |
|-----|------|------|------|
| F   | 2.6  | 1.1  | 1.5  |
| G G | 2.7  | 2.5  | 1.2  |

⇒ expandiere F





| 1.5 | # | XY | # | AA |
|-----|---|----|---|----|
| 1.4 | # | X  | # | В  |
| 1.2 | # | X  | # | C  |
| 1.2 | # | Y  | # | D  |
| 1.3 | # | Υ  | # | E  |
| 2.5 | # | ΥZ | # | GG |
| 1.1 | # | Z  | # | F  |

Tabelle:

| hyp | f(x) | g(x) | h(x) |
|-----|------|------|------|
| AAF | 2.6  | 2.6  | 0    |
| DF  | 3.5  | 2.3  | 1.2  |
| EF  | 3.6  | 2.4  | 1.2  |
| GG  | 2.7  | 2.5  | 1.2  |

- $\Rightarrow$  gib A A F aus
- $\Rightarrow$  expandiere G G





|         | 1.5 | # | X I | # | AA  |
|---------|-----|---|-----|---|-----|
| abelle: | 1.4 | # | X   | # | В   |
|         | 1.2 | # | X   | # | C   |
|         | 1.2 | # | Υ   | # | D   |
|         | 1.3 | # | Υ   | # | Ε   |
|         | 2.5 | # | ΥZ  | # | G G |
|         | 1.1 | # | Z   | # | F   |

V V # A A

| hyp | f(x) | g(x) | h(x) |
|-----|------|------|------|
| DF  | 3.5  | 2.3  | 1.2  |
| EF  | 3.6  | 2.4  | 1.2  |
| BGG | 2.9  | 2.9  | 0    |
| CGG | 2.7  | 2.7  | 0    |

- $\Rightarrow$  gib C G G aus
- $\Rightarrow$  gib B G G aus
- $\Rightarrow$  expandiere D F





## Fragen?

Ihr wisst wo unser Büro ist :-)

