CS/ECE/ME532 Activity 4

Estimated Time: 15 min for P1, 10 min for P2, 15 min for P3

- - a) What is the rank of X? Rank ≥ 2

- b) Find a set of linearly independent columns in X. Is there more than one set? How many sets of linearly independent columns can you find?
- c) A matrix $\mathbf{A} = \begin{bmatrix} 1 & 0 & a \\ 1 & 1 & b \\ 0 & 1 & -1 \end{bmatrix}$. Find the relationship between b and a so that $rank\{A\} = 2$. Hint: find a, b so that the third column is a weighted sum of the

first two columns. Note that there are many choices for a, b that result in rank 2.

$$C_{1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_{2} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ b \\ -1 \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{1} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} a \\ b \\ -1 \end{bmatrix} \qquad \begin{array}{l} a = 2 \\ b = 1 \end{array}$$

- 2) Solution Existence. A system of linear equations is given by Ax = b where A = b

 - a) Suppose $b = \begin{bmatrix} 8 \\ 6 \\ -2 \end{bmatrix}$. Does a solution for x exist? If so, find x. $\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 8 \\ 6 \\ -2 \end{bmatrix}$ b) Suppose $b = \begin{bmatrix} 4 \\ 6 \\ 1 \end{bmatrix}$. Does a solution for x exist? If so, find x. $\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 8 \\ 6 \\ -2 \end{bmatrix}$ b) Suppose $b = \begin{bmatrix} 4 \\ 6 \\ 1 \end{bmatrix}$. Does a solution for x exist? If so, find x. $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 1 \end{bmatrix}$ No solution exists.

 - c) Consider the general system of linear equations Ax = b. This equation says that b is a weighted sum of the columns of A. Assume A is full rank. Use the definition of linear independence to find the condition on rank $\{[A \ b]\}$ that guarantees a solution exists.

Rank { A} = Rank { [A : b] ?

b must be linearly dependent on the matrix A for it to be a weighted 1 of 2 sum of the columns of A.

3) Non Unique Solutions.

a) Consider
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 where $\mathbf{A} = \begin{bmatrix} 1 & -2 \\ -1 & 2 \\ -2 & 4 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ -2 \\ -4 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

- i) Does this system of equations have a solution? Justify your answer.
- ii) Is the solution unique? Justify your answer.
- iii) Draw the solution(s) in the x_1 - x_2 plane using x_1 as the horizontal axis.
- b) If the system of linear equations Ax = b has more than one solution, then there is at least one non zero vector w for which x + w is also a solution. That is, A(x + w) = b. Use the definition of linear independence to find a condition on rank $\{A\}$ that determines whether there is more than one solution.

a)i.
$$\begin{bmatrix} 1 & -2 \\ -1 & 2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ -4 \end{bmatrix}$$

$$\begin{bmatrix} x_1 - 2x_2 \\ -x_1 + 2x_2 \\ -7x + 4x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ -4 \end{bmatrix} = \begin{bmatrix} 4 - 2(1) \\ -4 + 2(1) \\ -1 - 4x_1 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ -4 \end{bmatrix}$$

ii. The solution is unique. Rank (A3=2 which is the dimension of the matrix. (alca. num of columns)

b)
$$A(x+w) = b$$
 $(Ax-b) + Aw = 0$
 $Ax + Aw = b$ $Ax = b$

2 of 2

Aw= 0 Non unique if columns of A are linearly dependent so if rank & A & < dim (A)