① 数学検定 解答

2級2次(No.1)

(選 択)

問題

番 号

1

2 ()

3 ()

4 () 5 ()

選択した番 号の○内を ぬりつぶし てください。 $y^2 = \frac{9 - x^2}{3} \quad \cdots \quad (1)$

 $y^2 \ge 0$ であるから

 $9 - x^2 \ge 0$

 $-3 \le x \le 3 \quad \cdots \ 2$

①を $x+y^2-1$ に代入すると $x+y^2-1=x+\frac{9-x^2}{3}-1$

 $= -\frac{1}{3}x^2 + x + 2$

 $f(x) = -\frac{1}{3}x^2 + x + 2 \ge \dagger \le \ge$

 $f(x) = -\frac{1}{3}(x^2 - 3x) + 2$ $= -\frac{1}{3}(x - \frac{3}{2})^2 + \frac{11}{4}$

②の範囲において f(x) は

 $x = \frac{3}{2}$ のとき最大値 $\frac{11}{4}$

x=-3のとき最小値-4をとる。

ここで、①より

 $x = \frac{3}{2}$ のとき

 $y^2 = \frac{9}{4}$, $\pm x + 5$ $y = \pm \frac{3}{2}$

x = -3のとき

であるから, $x + y^2 - 1$ は

 $x = \frac{3}{2}$, $y = \pm \frac{3}{2}$ のとき最大値 $\frac{11}{4}$

x=-3, y=0のとき最小値-4

をとる。

(答) $x = \frac{3}{2}$, $y = \pm \frac{3}{2}$ のとき最大値 $\frac{11}{4}$

x = -3, y = 0のとき最小値-4

ふと ぶぶん かなら きにゅう 太わくの部分は必ず記入してください。

ここにバーコードシールを 貼ってください。

2級2次

ふりがな		じゅけんは 受検 者	んごう 番号
姓	名	_	
生年月日	(昭和)(平成)(令和)(西暦)	^{ねん} ガラ 年 月	rt jst 日 生
性別(□をぬりつぶしてください)男□ 女□ 2		年 齢	au 歳
じゅう しょ 住 所			
住 所			5

(選 択)

問題

番 号

4 ()

5 ()

選択した番 号の○内を ぬりつぶし てください。 (1) さいころを3回振って1の目が1回,6の目が1回,2,3,4,5のいずれかの目が1回出るときの目の出方の総数は,3!・4(通り)である。

したがって、求める確率は

$$3! \cdot 4 \cdot \frac{1}{4} \cdot \frac{1}{12} \cdot \frac{1}{6} = \frac{1}{12}$$

(答) $\frac{1}{12}$

- (2) さいころを3回振って、出た目の数の積が12となるのは
 - (i) 1, 2, 6の目が1回ずつ出る
 - (ii) 1, 3, 4の目が1回ずつ出る
 - (iii) 2の目が2回, 3の目が1回出る
 - のいずれかのときであり、これらは互いに同時には起こらない。

(i)が起こる確率は、
$$3! \cdot \frac{1}{4} \cdot \frac{1}{6} \cdot \frac{1}{12} = \frac{1}{48}$$

(ii)が起こる確率は、
$$3! \cdot \frac{1}{4} \cdot \left(\frac{1}{6}\right)^2 = \frac{1}{24}$$

(iii)が起こる確率は、
$$_3$$
C $_1$ · $\left(\frac{1}{6}\right)^3 = \frac{1}{72}$

よって、求める確率は

$$\frac{1}{48} + \frac{1}{24} + \frac{1}{72} = \frac{3+6+2}{144} = \frac{11}{144}$$

(答) 11/144

(選 択)

問題

番 号

5

選択した番

(1) 円 Cの方程式を変形すると

$$(x-4)^2 + (y+3)^2 = 3^2$$

であるから、中心Aの座標は(4, -3)、半径は3である。

よって、
$$2$$
点 P 、 A 間の距離 d は

$$d = \sqrt{(4+1)^2 + (-3-9)^2} = \sqrt{25+144} = 13$$

(答) d = 13

(2) 条件を満たす円を C_1 , その半径をrとする。

(1)の結果(dがCの半径3より大きい)より、円 C_1 の中心Pは円Cの外側にあるから、2つの円C、 C_1 が接して、かつr>dとなるのは、2つの円が内接する場合である。

このとき、
$$d=r-3$$
より

$$r = 13 + 3 = 16$$

よって、円 C_1 の方程式は

$$(x+1)^2 + (y-9)^2 = 256$$

(答)
$$(x+1)^2 + (y-9)^2 = 256$$

(選 択)

問題

番号

(1) n = 1 のとき

$$a_1 = S_1 = 2^{1+1} - 1 - 2 = 1$$

$$n \ge 2$$
 のとき
$$a_n = S_n - S_{n-1}$$

$$= 2^{n+1} - n - 2 - \{2^{n-1+1} - (n-1) - 2\}$$

$$=2^{n}-1 \cdots ①$$

$$= n-1 \text{ を保ましたときの式の値は1つ } 3$$

①にn=1を代入したときの式の値は1で、これは a_1 に等しい。 よって, $a_n = 2^n - 1$ である。

選択した番 号の○内を

(2)
$$\sum_{k=1}^{n} \frac{1}{a_k + 1} = \sum_{k=1}^{n} \frac{1}{2^k - 1 + 1} = \sum_{k=1}^{n} \left(\frac{1}{2}\right)^k$$

これは、初項 $\frac{1}{2}$ 、公比 $\frac{1}{2}$ の等比数列の初項から第n項までの和であるから

$$\sum_{k=1}^{n} \frac{1}{a_k + 1} = \frac{1}{2} \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} = 1 - \frac{1}{2^n}$$

(答)
$$1 - \frac{1}{2^n}$$

(選 択)

問題

番号

- 1 ()
- 2()
- 3 ()
- 4 ()
- 5

選択した番 号の○内を ぬりつぶし てください。

- (1) (答) (a, b, c) = (2, 3, 3)のときM = 64
- (2) (答) (a, b, c) = (3, 5, 6)のときM = 1000(a, b, c) = (4, 7, 9)のときM = 21952

●問題6,7は必須問題です。

2級2次 (No.4)

問題6

(1) $\triangle ABC$ において、余弦定理より $CA^2 = AB^2 + BC^2$

$$-2 \cdot AB \cdot BC \cdot \cos B$$

であるから

$$(x+1)^{2} = (x-1)^{2} + x^{2}$$
$$-2 \cdot (x-1) \cdot x \cdot \frac{2}{7}$$

$$\frac{3}{7}x^2 - \frac{24}{7}x = 0$$

$$x(x-8) = 0$$

$$x = 0$$
, 8

$$(答) x = 8$$

(2) (1)の結果より

$$AB = 7$$
, $BC = 8$, $CA = 9$

$$\triangle ABC$$
において、 $\sin B > 0$ より

$$\sin B = \sqrt{1 - \left(\frac{2}{7}\right)^2} = \frac{3\sqrt{5}}{7}$$

 \triangle ABCの面積をSとすると

$$S = \frac{1}{2} \cdot AB \cdot BC \cdot \sin B$$
$$= \frac{1}{2} \cdot 7 \cdot 8 \cdot \frac{3\sqrt{5}}{7}$$
$$= 12\sqrt{5} \quad \cdots \text{(1)}$$

 \triangle ABCの内接円の半径 $_r$ を用いる

$$S = \frac{1}{2} r (AB + BC + CA)$$
$$= \frac{1}{2} r (7 + 8 + 9)$$
$$= 12 r \cdots (2)$$

①, ②より

$$12\sqrt{5} = 12r$$

$$r = \sqrt{5}$$

(答)
$$r = \sqrt{5}$$

問題7(必須)

(1) $f(x) = x^3 - 9x^2 + 15x + 7$ を微分して

$$f'(x) = 3 x^{2} - 18 x + 15$$
$$= 3 (x - 1)(x - 5)$$

より、f(x)の増減表は右のようになる。

よって、
$$f(x)$$
は $x=1$ のとき極大値

$$f(1) = 1 - 9 + 15 + 7 = 14$$

x=5のとき極小値

$$f(5) = 125 - 225 + 75 + 7 = -18$$

をとる。

$$x$$
 ...
 1
 ...
 5
 ...

 $f'(x)$
 +
 0
 -
 0
 +

 $f(x)$
 \nearrow
 極大
 \searrow
 極小
 \nearrow

(答) x=1 のとき極大値 14, x=5 のとき極小値 -18

(2) (答) 7 < k < 14