M. ARTIN, A. GROTHENDIECK, J.-L. VERDIER avec la participation de P. DELIGNE, B. SAINT-DONAT

THÉORIE DES TOPOS ET COHOMOLOGIE ÉTALE DES SCHÉMAS TOME 2 $\begin{array}{lll} \textit{M. ARTIN, A. GROTHENDIECK, J.-L. VERDIER, avec la participation de,} \\ \textit{P. DELIGNE, B. SAINT-DONAT} \end{array}$

M. ARTIN, A. GROTHENDIECK, J.-L. VERDIER avec la participation de P. DELIGNE, B. SAINT-DONAT

 $Rcute{e}sumcute{e}.$ —

 $\boldsymbol{Abstract.}$ — à compléter

TABLE DES MATIÈRES

Exposé v	COHOMOLOGIE DANS LES TOPOS par J.L. Verdier	1
	Introduction	1
	0. Généralités sur les catégories abéliennes	2
	1. Modules plats	5
	2. Cohomologie de Čech. Notation cohomologique	13
	3. La suite spectrale de Cartan-Leray relative à un recouvrement	19
	4. Faisceaux acycliques	22
	5. Les $\mathbf{R}^q u_*$ et la suite spectrale de Cartan-Leray relative à un morphisme de	
	topos	27
	6. Ext locaux et cohomologie à supports	29
	7. Appendice : Cohomologie de Čech	37
	8. Appendice. Limites inductives locales (par P. Deligne)	49
		63
Exposé vbis	TECHNIQUES DE DESCENTE COHOMOLOGIQUE par B. Saint-Donat	63
	Introduction	63
	1. Préliminaires	65
	2. La méthode de la descente cohomologique	74
	3. Critères de descente	88
	4. Exemples	02
	5. Applications	07
	Références1	16
Exposé vi	CONDITIONS DE FINITUDE. TOPOS ET SITES FIBRES. APPLICATIONS AUX TECHNIQ	QUES
	DE PASSAGE A LA LIMITE par A. Grothendieck et JL. Verdier $\dots \dots \dots 1$	19
	0. Introduction	19
	1. Conditions de finitude pour les objets et flèches d'un topos	21
	2. Conditions de finitude pour un topos	37
	3. Conditions de finitude pour un morphisme de topos	
	4. Conditions de finitude dans un topos obtenu par recollement	
	5. Commutation des foncteurs $H^i(X, -)$ aux limites inductives filtrantes 19	67
	6 Limites inductive et projective d'une catégorie fibrée	69

7. Topos et sites fibrés	178
8. Limites projectives de topos fibrés	197
9. Appendice. Critère d'existence de points	
Références	
Exposé vii site et topos étales d'un schéma par A. Grothendieck	231
1. La topologie étale	
2. Exemples de faisceaux	234
3. Générateurs du Topos étale. Cohomologie d'une lim de faisceaux	236
4. Comparaison avec d'autres topologies	
5. Cohomologie d'une limite projective de schémas	
Exposé viii foncteurs fibres, supports, étude cohomologique des morphi	
FINIS par A. Grothendieck	
1. Invariance topologique du topos étale	247
2. Faisceaux sur le spectre d'un corps	
3. Foncteurs fibres relatifs aux points géométriques d'un schéma	
4. Anneaux et schémas strictement locaux	
5. Application au calcul des fibres des $\mathbf{R}^q f_*$	258
6. Supports	
7. Morphismes de spécialisation des foncteurs fibres	
8. Deux suites spectrales pour les morphismes entiers	
9. Descente de faisceaux étales	
Index terminologique	277
Index des notations	281

COHOMOLOGIE DANS LES TOPOS

par J.L. Verdier

Table des matières

Exposé v cohomologie dans les topos par J.L. Verdier	1
Introduction	1
0. Généralités sur les catégories abéliennes	2
1. Modules plats	
2. Cohomologie de Čech. Notation cohomologique	13
3. La suite spectrale de Cartan-Leray relative à un recouvrement	19
4. Faisceaux acycliques	22
5. Les $\mathbf{R}^q u_*$ et la suite spectrale de Cartan-Leray relative à un	
morphisme de topos	27
6. Ext locaux et cohomologie à supports	29
7. Appendice : Cohomologie de Čech	37
8. Appendice. Limites inductives locales (par P. Deligne)	49
Références	

Introduction

On présente dans cet exposé les invariants cohomologiques commutatifs et élémentaires des topos. Dans le n° 1, on étudie les modules plats et les morphismes plats de topos annelés. Les démonstrations sont faites en utilisant l'hypothèse, le plus souvent vérifiée dans la pratique, que les topos ont suffisamment de points (IV 6). Ces démonstrations sont reprises dans le cas général dans l'appendice n° 8 où Deligne, à l'aide de la technique des limites inductives locales, généralise en outre au cas des topos, le théorème de D. Lazard sur la structure des modules plats. Les théorèmes de cet exposé, sont des théorèmes d'existence de suites spectrales reliant les différents invariants cohomologiques (N° 3, 5, 6). On sait que, même pour les espaces topologiques, la cohomologie de Cech ne coïncide pas en général avec la cohomologie des

faisceaux [11]. On introduit dans l'appendice n° 7, un calcul de Cech modifié permettant d'obtenir, à l'aide de recouvrement, la cohomologie des faisceaux dans un topos quelconque. On est amené dans cet appendice à utiliser des recouvrements simpliciaux (hyper-recouvrements) dont les invariants homotopiques ont été étudiés dans [1] (cf. aussi [17]).

Les invariants cohomologiques introduits sont élémentaires en ce sens que nous n'utilisons pas les catégories dérivées [12]. Le lecteur familier avec ce langage fera immédiatement la traduction des différents énoncés de cet exposé et pourra alors les généraliser aux complexes et à l'hypercohomologie. Ce langage des catégories dérivées est d'ailleurs utilisé dans la suite de ce séminaire.

On se limite ici à la cohomologie commutative. Pour le H¹ non commutatif, utilisé dans ce séminaire, et pour le H² non commutatif, nous renvoyons à [9]. Les foncteurs qu'on dérive sont additifs; on reste muet sur les structures multiplicatives (cf. [7]).

0. Généralités sur les catégories abéliennes

Dans ce numéro nous rappelons quelques lemmes dont la plupart se trouvent dans [11].

3

Proposition 0.1. — Soit $\mathfrak A$ une catégorie abélienne possédant un générateur. Les conditions suivantes sont équivalentes :

i) La catégorie $\mathfrak A$ vérifie l'axiome AB 5): Les petites sommes directes sont représentables et si (X_i) , $i \in I$, est une petite famille filtrante croissante de sous-objets d'un objet X de $\mathfrak A$ et Y est un sous-objet de X, on a

$$(\sup_{i} X_{i}) \cap Y = \sup_{i} (X_{i} \cap Y).$$

ii) Les petites limites inductives pseudo-filtrantes (I.2.7) sont représentables et commutent aux limites projectives finies.

De plus, si les conditions ci-dessus sont remplies, les petites limites inductives filtrantes sont universelles (I 2.6).

Preuve. — Il est clair que (ii) \Rightarrow (i). Pour montrer que i) \Rightarrow (ii), et pour prouver l'assertion supplémentaire, il suffit d'utiliser que $\mathfrak A$ est une sous-catégorie pleine d'une catégorie de modules $\mathscr M$ sur un anneau convenable, telle que le foncteur d'inclusion $u: \mathfrak A \to \mathscr M$ admette un adjoint à gauche v exact [5]. La vérification est alors triviale.

0.1.1. On sait [11] qu'une catégorie abélienne $\mathfrak A$ possédant un générateur et vérifiant l'axiome AB 5) possède suffisamment d'injectifs i.e. tout objet se plonge dans un objet injectif. De plus, d'après le résultat déjà cité [5], les petits produits sont représentables dans $\mathfrak A$ (axiome AB 3) *).

4

Proposition 0.2. — Soient \mathfrak{A} et \mathfrak{B} deux catégories abéliennes et $\mathfrak{A} \stackrel{v}{\longleftrightarrow} \mathfrak{B}$ deux foncteurs adjoints (u est adjoint à gauche de v). Considérons les deux propriétés :

i) Le foncteur u est exact.

V

- ii) Le foncteur v transforme les objets injectifs de $\mathfrak B$ en objets injectifs de $\mathfrak A$.
 - 1) On a toujours l'implication (i) \Rightarrow (ii).
 - Si, de plus, tout objet non nul de \mathfrak{B} est source d'un morphisme non nul dans un objet injectif, alors (ii) \Leftrightarrow (i).
 - 2) Supposons que :
 - a) la catégorie B possède suffisamment d'injectifs.
 - b) l'une des deux conditions équivalentes (i) et (ii) ci-dessus soit remplie.
 - c) le foncteur u soit fidèle.

Alors, la catégorie A possède suffisamment d'injectifs.

Preuve. — La preuve est laissée au lecteur.

Remarque 0.2.1. — La catégorie des groupes commutatifs possède suffisamment d'injectifs. Appliquant le lemme 0.2 on en déduit que toute catégorie de modules unitaires sur un anneau à élément unité possède suffisamment d'injectifs. Appliquant alors le résultat de [5] (utilisé dans la preuve de 0.1) et 0.2, on en déduit que toute catégorie abélienne possédant un générateur et des petites limites inductives filtrantes exactes possède suffisamment d'injectifs; ce qui fournit une nouvelle démonstration de ce fait.

Proposition 0.3. — Soient \mathfrak{A} , \mathfrak{B} , \mathfrak{C} trois catégories abéliennes et $u: \mathfrak{A} \to \mathfrak{B}$, $v: \mathfrak{B} \to \mathfrak{C}$ deux foncteurs additifs exacts à gauche. Supposons que \mathfrak{A} , et \mathfrak{B} possèdent suffisamment d'objets injectifs. Les deux propriétés suivantes sont équivalentes :

i) Il existe un foncteur spectral dont le terme $\mathbb{E}_2^{p,q}$ est :

$$\mathbf{R}^p v \mathbf{R}^q u$$

et qui aboutit à $\mathbb{R}^{p+q}vu$ (convenablement filtré).

ii) Le foncteur u transforme les objets injectifs de $\mathfrak A$ en objets acycliques pour le foncteur v.

Preuve. — (i) \Rightarrow (ii) est trivial car il suffit d'appliquer le foncteur spectral à un objet 5 injectif. L'implication (ii) \Rightarrow (i) est démontrée dans [11].

Proposition 0.4. — Soient $\mathfrak A$ et $\mathfrak B$ deux catégories abéliennes et $u:\mathfrak A\to\mathfrak B$ un foncteur additif exact à gauche. Soit M un sous-ensemble de l'ensemble des objets de $\mathfrak A$ possédant les propriétés suivantes :

- 1) Tout objet de A se plonge dans un élément de M.
- 2) $Si X \oplus Y$ appartient à M, l'objet X appartient à M.

3) Si

6

$$0 \longrightarrow X' \longrightarrow X \longrightarrow X'' \longrightarrow 0$$

est une suite exacte et si X' et X appartiennent à M, alors X'' appartient à M et la suite

$$0 \longrightarrow u(X') \longrightarrow u(X) \longrightarrow u(X'') \longrightarrow 0$$

est exacte. Les objets nuls appartiennent à M.

Alors tout injectif appartient à M, et les objets de M sont acycliques pour u, i.e. pour tout $q \neq 0$ et tout objet X de M, on a $R^q u(X) = 0$. (En particulier les résolutions par des objets de M permettent de calculer les foncteurs dérivés de u.)

Pour la preuve voit [11] 3.3.1.

Proposition 0.5. — Soient $\mathscr{U} \subset \mathscr{V}$ deux univers, \mathfrak{A} (resp. \mathfrak{B}) une \mathscr{U} -catégorie (resp. V-catégorie) abélienne vérifient l'axiome AB 5) relativement à \mathscr{U} (resp. à \mathscr{V}) et possédant une famille génératrice \mathscr{U} -petite (resp. \mathscr{V} -petite). Soit $\varepsilon : \mathfrak{A} \to \mathfrak{B}$ un foncteur exact et pleinement fidèle. Les conditions suivantes sont équivalentes :

- 1) Il existe une famille génératrice $(X_i)_{i\in I}$ de $\mathfrak A$ telle que la famille $(\varepsilon(X_i))_{i\in I}$ soit génératrice dans $\mathfrak B$.
- 1') Tout objet de \mathfrak{B} est isomorphe à un quotient d'un objet du type $\bigoplus_{\alpha \in A} \varepsilon(Y_{\alpha})$ où $A \in V$.

Sous ces conditions, on a la propriété suivante :

2) ε transforme les produits \mathscr{U} -petits en produits (donc commute aux limites projectives \mathscr{U} -petites).

De plus, sous les conditions équivalentes 1) ou 1'), les conditions suivantes sont equivalentes :

- a) Pour tout objet Y de \mathfrak{A} , tout sous-objet de $\varepsilon(Y)$ est isomorphe à l'image par ε d'un sous-objet de Y.
- a') Il existe une famille génératrice $(X_i)_{i\in I}$ de $\mathfrak A$ telle que la famille $(\varepsilon(X_i))_{i\in I}$ soit génératrice dans $\mathfrak B$ et telle que pour tout $i\in I$, tout sous-objet de $\varepsilon(X_i)$ soit isomorphe à l'image par ε d'un sous-objet de X_i .
- b) Tout objet de \mathfrak{B} est isomorphe à un sous-objet d'un objet du type $\prod_{\alpha \in A} \varepsilon(Y_{\alpha})$ où $A \in \mathcal{V}$.
- c) ε commute aux sommes directes $\mathscr U$ -petites (donc commute aux limites inductives $\mathscr U$ -petites.

De plus, sous les conditions 1) et a') on a :

d) ε transforme les objets injectifs en objets injectifs.

Remarque 0.5.1. — Lorsque dans 0.5 on a $\mathscr{U} = \mathscr{V}$, les conditions 1) et a') entraînent que ε est une équivalence de catégories (car on a alors b), 2) et a)).

V

0.5.2. Nous nous bornerons à donner des indications sur la démonstration. Les implications $1)\Leftrightarrow 1'),\ 1)\Rightarrow 2)$, sont laissées au lecteur. Il est clair que $a)\Rightarrow a')$. Montrons que a') entraı̂ne d). Soit M un injectif dans \mathfrak{A} . Pour tout $i\in I$ et tout sous-objet $Y\hookrightarrow X_i$ de X_i , l'homomorphisme $\operatorname{Hom}(X_i,M)\to\operatorname{Hom}(Y,M)$ est surjectif. Donc, en vertu de a') et de la pleine fidélité de ε , pour tout sous-objet $U\hookrightarrow \varepsilon(X_i)$, l'homomorphisme $\operatorname{Hom}(\varepsilon(X_i),\varepsilon(M))\to\operatorname{Hom}(U,\varepsilon(M))$ est surjectif. Comme les $\varepsilon(X_i)$ forment une famille génératrice de $\mathfrak{B},\ \varepsilon(M)$ est injectif [11]. Montrons que $a')\Rightarrow b$). Quitte à augmenter la famille des X_i , on peut supposer que pour tout $i\in I$, tout quotient de X_i est isomorphe à un X_j pour un j convenable. Soit alors, pour tout $i\in I$, $X_i\hookrightarrow M_i$ un monomorphisme dans un objet injectif. La famille $(\varepsilon(X_i))_{i\in I}$ est stable par quotient et pour $i\in I$, le morphisme $\varepsilon(X_i)\hookrightarrow \varepsilon(M_i)$ est, d'après d), un monomorphisme dans un objet injectif. On vérifie alors immédiatement que, la famille $\varepsilon(X_i)$ étant génératrice, la famille $(\varepsilon(M_i))_{i\in I}$ est cogénératrice, d'où b).

Montrons que b) \Rightarrow c). Soit $(Z_{\alpha})_{\alpha \in A}$ une famille \mathscr{U} -petite d'objets de \mathfrak{A} et montrons que le morphisme canonique

$$\bigoplus_{\alpha \in A} \varepsilon(Z_{\alpha}) \longrightarrow \varepsilon(\bigoplus_{\alpha \in A} Z_{\alpha})$$

est un isomorphisme. Comme la famille des objets $\varepsilon(Y)$ est cogénératrice, il suffit 7 montrer que pour tout objet Y de \mathfrak{A} , l'homomorphisme

$$\operatorname{Hom}(\varepsilon(\underset{a}{\oplus}\operatorname{Z}_a),\varepsilon(\operatorname{Y})) \longrightarrow \operatorname{Hom}(\underset{a}{\oplus}\varepsilon(\operatorname{Z}_a),\varepsilon(\operatorname{Y}))$$

est un isomorphisme ce qui résulte de la pleine fidélité de ε . Il reste à montrer que $c) \Rightarrow a$). Soit Z un sous-objet de $\varepsilon(Y)$. Il existe, en vertu de 1'), une famille \mathscr{U} -petite Y_{α} d'objets de \mathfrak{A} et un épimorphisme de $\bigoplus_{\alpha} \varepsilon(Y_{\alpha})$ sur Z. Comme ε commute aux sommes directes U-petites, il existe donc un épimorphisme $\varepsilon(Y') \to Z$. Notons $u : \varepsilon(Y') \to Z \to \varepsilon(Y)$ le morphisme composé. On a Z = Im(u). Comme est pleinement fidèle. on a $u : \varepsilon(v)$ et par suite $Z = Im(\varepsilon(V)) = \varepsilon(Im(v))$.

Exercice 0.5.2. — Soit $\text{Sex}_{\mathscr{V}}(\mathfrak{A})$ la catégorie des foncteurs contravariants de \mathfrak{A} dans la catégorie des \mathscr{V} -groupes commutatifs qui commutent aux limites inductives \mathscr{U} -petites. Montrer que sous les conditions 1) et a') le foncteur canonique de \mathfrak{B} dans $\text{Sex}_{\mathscr{V}}(\mathfrak{A})$ est une équivalence.

1. Modules plats

Définition 1.1. — Soit (E, A) un topos annelé (IV 11.1.1). Un \mathscr{A} -Module à droite (resp. à gauche) M est dit plat si le foncteur $M \otimes_A$. (resp. $\otimes_A M$) de la catégorie des A-Modules à gauche (resp. à droite) dans la catégorie des faisceaux abéliens de E, est exact.

Proposition 1.2. — Soit M un B-A bi-Module.

1) Les propriétés suivantes sont équivalentes :

- i) Le module M est A-plat à gauche
- ii) Pour tout B-Module injectif I, le A-Module à gauche $\mathscr{H}om_B(M,I)$ est injectif.
- 2) Un module M, limite inductive pseudo-filtrante (I 2.7.1) de Modules plats, est plat.
- 3) Enfin, si $M = \dots M_{i+1} \to M_i \dots$ est un complexe acyclique de modules plats $(M_i = 0 \text{ pour } i < i_0)$, alors pour tout Module F, le complexe :

$$M. \otimes_A F = \dots M_{i+1} \otimes_A F \longrightarrow M_i \otimes_A F \dots$$

est acyclique.

8

Preuve. — D'après (IV 12.12) on a un isomorphisme d'adjonction :

$$\operatorname{Hom}_{\operatorname{B}}(\operatorname{M} \otimes_{\operatorname{A}} ., .) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{A}}(., \mathscr{H}om_{\operatorname{B}}(\operatorname{M}, .)).$$

Il suffit alors d'appliquer 0.2 pour obtenir l'équivalence (i) \Leftrightarrow (ii). Cet isomorphisme d'adjonction montre par ailleurs que le produit tensoriel commute aux limites inductives. Le fait que les limites inductives pseudo-filtrantes soient exactes (0.1) entraı̂ne la deuxième assertion. Pour montrer que le complexe $M. \otimes_A F$ est acyclique, il suffit de montrer que pour tout faisceau abélien injectif I le complexe $Hom_{\mathbf{Z}}^{\bullet}(M. \otimes_A F, I)$ est acyclique. Ce complexe est isomorphe, en vertu des formules d'adjonction, au complexe $Hom_{\mathbf{A}}^{\bullet}(F, \mathcal{H}om_{\mathbf{Z}}(M., I))$. Or d'après l'équivalence (i) \Leftrightarrow (ii), le complexe de faisceaux

$$\mathcal{H}om_{\mathbb{Z}}(M.,I)$$

est un complexe acyclique dont les objets sont injectifs, d'où la conclusion.

Proposition 1.3.1. — Soient (E, A) un topos annelé, H un objet de E, M un $A_{/H}$ -Module plat. Alors $j_{H!}M$ est un A-Module plat. En particulier A_H est plat à droite et à gauche.

Supposons, pour fixer les idées, que M soit un $A_{/H}$ -Module à droite. Pour tout A-Module à gauche P, on a un isomorphisme canonique (IV 12)

$$P \otimes_A j_{H!}M \simeq j_{H!}(P \otimes_{A_{/H}} M).$$

Les foncteurs $j_{\rm H!}$ et $j_{\rm H}^*$ sont exacts (IV 11.3.1 et 11.12.2) et par hypothèse, le foncteur $-\otimes_{\rm A_{/H}} {\rm M}$ est exact. Par suite le foncteur ${\rm P} \to {\rm P} \otimes_{\rm A} j_{\rm H!} {\rm M}$ est exact et $j_{\rm H!} {\rm M}$ est plat.

Proposition 1.3.2. — (Formule de projection pour les immersions fermées) :

Soient (E, A) un topos annelé, $i: F \to E$ un sous-topos fermé de E. Posons $i^*A = A_{/F}$. Pour tout $A_{/F}$ -Module (à droite) M et tout A-Module (à gauche) P, on a un isomorphisme fonctoriel

$$i_*(M \otimes_{A_{/F}} i^*P) \simeq (i_*M) \otimes_A P$$

Soient U l'ouvert complémentaire de F et $j: U \to E$ le morphisme canonique d'immersion. On a $j^*(i_*M \otimes_A P) \simeq 0 \otimes_{A_{/U}} j^*(P)$ (IV 12); par suite $i_*M \otimes_A P$ a son support dans F. Donc le morphisme d'adjonction $i_*M \otimes_A P \to i_*i^*(i_*M_AP)$ est un isomorphisme (IV 14). On a $i^*(i_*M \otimes_A P) \simeq i^*i_*M \otimes_{A_{/F}} i^*P$ (IV 12) et comme $i: F \to E$ est une immersion fermée, $i^*i_*M \simeq M$ (IV 14); d'où l'isomorphisme annoncé.

Corollaire 1.3.3. — Pour tout $A_{/F}$ -Module plat M, i_*M est plat.

V

Il résulte de 1.3.2, et de (IV 14) que le foncteur $P \mapsto (i_*M) \otimes_A P$ est un foncteur exact.

1.4. Soient (E, A) un topos annelé, $x: P \to E$ un point de E (IV 6.1), vois(x) la catégorie des voisinages de x (IV 6.8). A tout objet V de vois(x) correspond un objet de E, encore noté V, et un point $x_V: P \to E/V$ de E/V. De plus, à tout morphisme $u: V \to W$ de vois(x), correspond un diagramme essentiellement commutatif de morphisme de topos (IV 6.7)

(1.4.1)
$$P \xrightarrow{x_{V}} E/V$$

$$\downarrow j_{u}$$

$$E/W .$$

Soit N un A_x -module (resp. un ensemble). Du diagramme (??), on déduit un diagramme de A_x -modules (resp. d'ensembles) :

$$(1.4.2) x_{W}^{*} \times_{W^{*}} N \xrightarrow{\operatorname{ad}_{W}} N$$

$$\phi(u) \qquad \operatorname{ad}_{V}$$

$$x_{V}^{*} \times_{V^{*}} N$$

où ad_W et ad_V sont les morphismes d'adjonction. De plus, on vérifie immédiatement que $\phi(uv) = \phi(v)\phi(u)$. On a donc un foncteur de la catégorie filtrante vois $(x)^\circ$ dans la catégorie des A_x -modules (resp. ensembles) et un homomorphisme :

$$\Lambda(\mathbf{N}): \varinjlim_{\mathbf{V} \in \operatorname{Vois}(x)^{\circ}} x_{\mathbf{V}}^{*} \times_{\mathbf{V}*} \mathbf{N} \longrightarrow \mathbf{N}.$$

Proposition 1.5. — Pour tout A_x -modules (resp. ensemble) N, $\Lambda(N)$ est un isomorphisme.

Cette proposition est un cas particulier d'une proposition due à Deligne (8.2.6). Donnons-en une démonstration directe. En passant aux ensembles sous-jacents il suffit de démontrer la proposition lorsque N est un ensemble (I 2.8). La catégorie cofiltrante $\operatorname{Fl}(\operatorname{vois}(x))$ des flèches de $\operatorname{vois}(x)$ est fibrée sur la catégorie $\operatorname{vois}(x)$ par le foncteur $p:\operatorname{Fl}(\operatorname{vois}(x))\to\operatorname{vois}(x)$ qui, à une flèche, associe son but. Soit D une catégorie et $F:\operatorname{Fl}(\operatorname{vois}(x))\to\operatorname{D}$ un pro-objet (I 8.10). Pour tout objet V de $\operatorname{vois}(x)$, notons F_V le pro-objet obtenu en restreignant le foncteur F à la catégorie fibre $\operatorname{vois}(x)/V$. A tout morphisme $m:U\to V$ de $\operatorname{vois}(x)$, le foncteur changement de base par m associe un morphisme du pro-objet F_U dans le pro-objet F_V et les morphismes canoniques de pro-objets $F\to F_V$ déterminent un morphisme de pro-objets :

$$(1.5.1) F \longrightarrow \varprojlim_{V \in \mathrm{vois}(x)^{\circ}} F_{V}$$

dont on vérifie immédiatement que c'est un isomorphisme. Appliquons cette remarque au pro-objet d'ensembles pointés :

$$(1.5.2) (U, V, m) \longmapsto x_V^*(\mathfrak{w}) = F(U, V, m),$$

on obtient un isomorphisme de pro-objets :

d'où, pour tout ensemble N, une bijection

11

$$(1.5.4) \qquad \underset{\operatorname{Fl}(\operatorname{vois}(x))^{\circ}}{\varinjlim} \operatorname{Hom}(x_{\operatorname{V}}^{*}(m), \operatorname{N}) \simeq \underset{\operatorname{vois}(x)^{\circ}}{\varinjlim} \underset{(\operatorname{vois}(-x)/\operatorname{V})^{\circ}}{\varinjlim} \operatorname{Hom}(x_{\operatorname{V}}^{*}(m), \operatorname{N})_{\circ}$$

Mais, pour V fixé, $\varinjlim_{(\mathrm{vois}(x)/\mathrm{V})^{\circ}} \mathrm{Hom}(x_{\mathrm{V}}^{*}(m), (\mathrm{N}))$ s'identifie à $x_{\mathrm{V}}^{*} \times_{\mathrm{V}*} \mathrm{N}$. En effet, on a $x_{\mathrm{V}}^{*} x_{\mathrm{V}*} \mathrm{N} \simeq \varinjlim_{\mathrm{vois}(x_{\mathrm{V}})^{\circ}} \mathrm{Hom}_{\mathrm{E}/\mathrm{V}}(\mathrm{W}, x_{v*}\mathrm{N})$ d'après IV 6.8.1 donc, par adjonction, on a $x_{\mathrm{V}}^{*} x_{\mathrm{V}*} \mathrm{N} \simeq \varinjlim_{\mathrm{vois}(x_{\mathrm{V}})^{\circ}} \mathrm{Hom}(x_{\mathrm{V}}^{*}(w), \mathrm{N})$ et de plus la catégorie $\mathrm{vois}(x_{\mathrm{V}})$ est équivalente à la catégorie $\mathrm{vois}(x)/\mathrm{V}$ (IV 6.7.2). Enfin, les applications canoniques de transition $\varinjlim_{(\mathrm{vois}(x)/\mathrm{U})^{\circ}} \mathrm{Hom}(x_{\mathrm{U}}^{*}(m), \mathrm{N}) \to \varinjlim_{(\mathrm{vois}(x)/\mathrm{V})^{\circ}} \mathrm{Hom}(x_{\mathrm{V}}^{*}(n), \mathrm{N})$ dans (1.5.4) s'identifient aux applications canoniques $x_{\mathrm{U}}^{*} x_{\mathrm{U}*} \mathrm{N} \to x_{\mathrm{V}}^{*} x_{\mathrm{V}*} \mathrm{N}$ (1.4.3) ainsi que le lecteur voudra bien le vérifier. On a donc une bijection

$$(1.5.5) \qquad \underset{\mathrm{Fl}\,(\mathrm{vois}(x))^{\circ}}{\varinjlim} \mathrm{Hom}(x_{\mathrm{V}}^{*}(m), \mathrm{N}) \simeq \underset{\mathrm{vois}(x)^{\circ}}{\varinjlim} x_{\mathrm{V}}^{*} x_{\mathrm{V}*} \mathrm{N}$$

et l'application $\Lambda(N)$: $\varinjlim_{\text{vois}(x)^{\circ}} x_{V}^{*}x_{V*}N \to N$ (1.4.3) composée avec la bijection (1.5.5). provient des applications $\operatorname{Hom}(x_{V}^{*}(m), N) \to N$ qui a une application $r: x_{V}^{*}(m) \to N$ associe l'image par r du point marqué de $x_{V}^{*}(m)$. Pour démontrer la proposition, il suffit alors de remarquer que tout objet (U, V, m) de $\operatorname{Fl}(\operatorname{vois}(x))$ est minoré par $(U, U, \operatorname{id}_{U})$ et que $x_{U}^{*}(\operatorname{id}_{U})$ est réduit à un élément ou, en d'autres termes, que le morphisme canonique de pro-objet constant réduit à un élément dans F est un isomorphisme de pro-objets.

Proposition 1.6. — Soient (E, A) un topos annelé, M un A-Module.

- 1) Lorsque M est plat, pour tout point $x : P \to E$ de E, le A_x -module M_x est plat.
- 2) Soit $(x_i)_{i \in I}$ une famille conservatrice de point de E telle que pour tout $i \in I$, M_{x_i} soit un A_{x_i} -module plat.

Alors M est plat.

V

Lemme 1.6.1. — Soient M un Module plat et V un objet de E. Le A/V-Module j_V^*M est plat.

Il faut montrer que le foncteur $P \mapsto P \otimes_{A/V} j_V^*M$ est exact. Comme le foncteur prolongement par zéro $j_{V!}$ est exact et fidèle (IV 11.3.1), il suffit de montrer que le foncteur $P \mapsto j_{V!}(P \otimes_{A/V} j_V^*M)$ est exact. On a un isomorphisme fonctoriel $j_{V!}(P \otimes_{A/V} j_V^*M) \simeq j_{V!}(P) \otimes_A M$ (IV 12.11) et par suite le foncteur $P \mapsto j_{V!}(P) \otimes_A M$ est exact (IV 11.3.1).

1.6.2. Démontrons 1). Supposons pour fixer les idées que M soit un A-Module à gauche plat et soit $x: P \mapsto E$ un point de E. Montrons que le foncteur $N \mapsto N \otimes_{A_x} M_x$ de la catégorie des A_x -modules à droite dans la catégorie des groupes commutatifs est exact. Il suffit pour cela de montrer que ce foncteur est exact à gauche. Avec les notations de 1.4, soient V un voisinage de x et $j_V: E/V \to E$ le morphisme de localisation. On a, pour tout A_x -module $N, x_V^* x_{V*} N \otimes_{A_x} M_x \simeq x_V^* x_{V*} N \otimes_{A_x} v_{V(j_V^*}^* M \simeq x_V^* (x_{V*} N \otimes_{A_x} j_V^* M)$ (IV 12.11). Donc le foncteur $N \mapsto x_V^* x_{V*} N \otimes_{A_x} M_x$ est exact à gauche. Par suite, le foncteur $N \mapsto N \otimes_{A_x} M_x$, limite inductive filtrante de foncteurs exacts à gauche (1.5), est exact à gauche. Démontrons 2). Soit $0 \to P' \to P \to P'' \to 0$ une suite exacte de A-Modules et montrons que la suite $0 \to P' \otimes_A M \to P \otimes_A M \to P'' \otimes_A M \to 0$ est exacte. Il suffit pour cela de montrer que pour tout $i \in I$, la suite obtenue en passant aux fibres en x_i est exacte (IV 6). Or la suite des fibres en x_i est la suite (IV 13.5) $0 \to P'_{x_i} \otimes_{A_x} M_x \to P_{x_i} \otimes_{A_{x_i}} M_{x_i} \to P''_{x_i} \otimes_{A_{x_i}} M_{x_i} \to 0$ et comme M_{x_i} est plat, cette suite est exacte.

Proposition 1.7. — Soient (E, A) un topos annelé, $u : E' \to E$ un morphisme de topos et posons $A' = u^*A$. Soit M un A'-Module à droite (resp. à gauche). Les conditions suivantes sont équivalentes :

- i) Le foncteur $N \mapsto M \otimes_{A'} u^*N$ (resp. $N \mapsto u^*N \otimes_{A'} M$) de la catégorie des A-Modules à gauche (resp. à droite) dans la catégorie des faisceaux abéliens de E' est exact.
 - ii) M est un A'-Module plat.

Il est clair que ii) \Rightarrow i).

Montrons que i) \Rightarrow ii). Nous ne ferons la démonstration que dans le cas où E' possède une famille conservatrice de points $(x_i)_{i\in I}$. Le cas général est traité en (8.2.7). Dans ce cas particulier, qui couvre la plupart des applications, on est ramené au cas où E' est le topos ponctuel et où, par suite, le morphisme u, qu'on notera x, est un point de E (1.6 et IV 11.3.1). Nous nous bornerons au cas où M est un A'-Module à

12

droite. Le cas où M est un A'-Module à gauche s'y ramène en passant aux anneaux opposés. Soient V un voisinage de x et V_x sa fibre en x. On a, avec les notations de 1.4, un diagramme essentiellement commutatif de morphismes de topos :

où x/V est le morphisme déduit de x par localisation sur V (IV 5.10) et j est le morphisme déduit du point marqué de V_x . Montrons que le foncteur $N' \to M \otimes_{A'} x_V^* N'$ est exact. On a $x_V^* - j^*(x/V)^*$ et id $= j^* j_{V_x}^*$ et par suite, on a un isomorphisme canonique $M \otimes_{A'} x_V^* N' \simeq j^* (j_{V_x}^* M \otimes_{A'/V_x} (x/V)^* N')$. Comme le foncteur j^* est exact et comme le foncteur $j_{V_x!}$ est exact et fidèle (IV 11.3.1), il suffit de montrer que le foncteur $N' \mapsto j_{V_x!}$ ($j_{V_x}^* M \otimes (x/V)^* N'$) est exact, et par suite (IV 12.11), il suffit de montrer que le foncteur $N' \mapsto M \otimes_{A'} x^* j_{V!} N'$ est exact par hypothèse. Pour tout A'-module Q, on a un isomorphisme fonctoriel (1.5) :

$$Q \simeq \varinjlim_{\mathrm{vois}(x)^{\circ}} x_{\mathrm{V}}^{*} x_{\mathrm{V}*} Q.$$

D'après ce qui précède, le foncteur $Q\mapsto M\otimes_{A'}Q$ est limite inductive filtrante de foncteurs exacts à gauche. Il est donc exact à gauche et par suite M est plat.

Corollaire 1.7.1. — Soient $u: (E', A') \to (E, A)$ un morphisme de topos annelés M un A-Module plat. Alors u^*M est un A'-Module plat.

Résulte du critère donné dans 1.7 et de la formule (IV 13.4.5).

- **Corollaire 1.7.2.** Soit $u:(E',A') \to (E,A)$ un morphisme de topos annelés. Les conditions suivantes sont équivalentes :
 - i) le $u^{-1}(A)$ -Module à droite (resp. à gauche) A' est plat.
 - ii) le foncteur u* de la catégorie des A-Modules à gauche (resp. à droite) dans la catégorie des A'-Modules à gauche (resp. à droite) est exact.

L'équivalence résulte de 1.7 et de la définition de u^* (IV 13.2.1).

Définition 1.8. — Un morphisme de topos annelé qui possède les propriétés équivalentes de 1.7.2 est appelé un morphisme de topos plat à gauche (resp. à droite).

Proposition 1.9. — Soient $\mathscr{U} \subset \mathscr{V}$ deux univers, C un \mathscr{U} -site, $\tilde{C_{\mathscr{U}}}$ et $\tilde{C_{\mathscr{V}}}$ les catégories des \mathscr{U} et \mathscr{V} -faisceaux d'ensembles respectivement, $\varepsilon: \tilde{C_{U}} \to \tilde{C_{\mathscr{V}}}$ le foncteur d'inclusion canonique, A un \mathscr{U} -faisceau d'anneaux sur C.

- 1) Le foncteur ε commute aux limites inductives et projectives \mathscr{U} -petites de Modules. Le foncteur ε est conservatif et pleinement fidèle sur les catégories de Modules.
 - 2) Pour tout objet H de $\tilde{C_{\mathscr{U}}}$, il existe un isomorphisme canonique $\varepsilon(A_H) \simeq \varepsilon(A)_{\varepsilon(H)}$.
- 3) Tout A-Module injectif à gauche ou à droite est transformé par ε en $\varepsilon(A)$ -Module injectif.
- 4) Tout A-Module plat à droite ou à gauche est transformé par ε en $\varepsilon(A)$ -Module plat.
- 5) Le foncteur ε commute à la formation du produit tensoriel et du faisceau des homomorphismes.

La formation du faisceau associé ne dépend pas de l'univers (II 3.6). Il résulte alors de la construction des limites inductives et projectives dans les catégories de faisceaux (II 4.1 et 6.4) que le foncteur ε commute aux \mathscr{U} -petites limites projectives d'ensembles ou de Modules, d'où 1). Démontrons 2). En prenant une \mathscr{U} -petite sous-catégorie génératrice de $C_{\mathscr{U}}$, on peut se ramener au cas où C est \mathscr{U} -petite (III 4.1). Il résulte alors de (II 6.5) que le A-Module libre engendré par H s'obtient en formant le préfaisceau de A-modules libres engendré par H, formation qui commute à l'agrandissement des univers, puis en formant le faisceau associé, opération qui elle aussi commute à l'agrandissement des univers (II 3.6). Pour démontrer 3) il suffit de montrer, en vertu de 0.5, que tout sous \mathcal{V} -faisceau d'un \mathcal{U} -faisceau est un \mathcal{U} -faisceau ce qui est bien clair. Démontrons 4). Soit M un A-Module plat. Il suffit de montrer que pour tout $\varepsilon(A)$ -Module injectif J, le faisceau abélien $\mathscr{H}om_{\varepsilon(A)}(\varepsilon(M),J)$ est injectif (1.2). En vertu de 0.5, J est sous-objet, donc facteur direct d'un objet du type $\prod_{\alpha} \varepsilon(I_{\alpha})$, où les I_{α} sont injectifs. On peut donc supposer que $J = \varepsilon(I)$ où I est un objet injectif. Si l'homomorphisme $\varepsilon(\mathcal{H}om(M,I)) \to \mathcal{H}om_{\varepsilon A}(\varepsilon M,\varepsilon I)$ est un isomorphisme on en déduit que $\mathcal{H}om_{\varepsilon(A)}(\varepsilon(M), \varepsilon(I))$ est injectif d'après 3). Il reste donc à démontrer 5). Le fait que la formation du produit tensoriel commute au foncteur ε résulte de IV 12.6 et du fait que la formation du faisceau associé commute à l'agrandissement de l'univers (II 3.6). Pour tout objet X de C_U^{\sim} et tout couple de A-Modules M et N de C_U^{\sim} on a donc

 $\operatorname{Hom} C^{\sim}_{\operatorname{U}}(\varepsilon X, \mathscr{H}om_{\operatorname{A}}(M,N)) \simeq \operatorname{Hom}_{C^{\sim}_{\operatorname{U}}}(X, \mathscr{H}om_{\operatorname{A}}(M,N)) \simeq \operatorname{Hom}_{\operatorname{A}}(Z_X \otimes_Z M,N)$ en vertu de la pleine fidélité de ε , puis

$$\operatorname{Hom}_{A}(Z_{X} \otimes_{Z} M, N) \simeq \operatorname{Hom}_{\varepsilon A}(\varepsilon(Z_{A} \otimes_{Z} M), \varepsilon N) \simeq \operatorname{Hom}_{\varepsilon A}(\varepsilon Z_{A} \otimes_{Z} \varepsilon M, \varepsilon N)$$

en vertu de la pleine fidélité de ε et de ce qui précède. Utilisant alors 2) et IV 12.14, on obtient en définitive un isomorphisme

$$\operatorname{Hom}_{C_{11}^{\sim}}(\varepsilon X, \varepsilon \operatorname{\mathscr{H}\!\mathit{om}}_A(M, N)) \simeq \operatorname{Hom}_{C_{11}^{\sim}}(\varepsilon X, \operatorname{\mathscr{H}\!\mathit{om}}_{\varepsilon A}(\varepsilon M, \varepsilon N));$$

d'où l'isomorphisme annoncé.

v

15

1.10. Soient E un topos, $\mathscr{U} = (U_i \to X)_{i \in I}$ une petite famille de morphismes de même but. Pour tout ensemble fini $\Delta_n = [0, \dots, n]$, posons

$$S_n(\mathscr{U}) = \coprod_{f:\Delta \to I} U_{f(1)} \times_X \cdots \times_X U_{f(n)},$$

la somme étant prise sur l'ensemble des applications de Δ_n dans I. Soient m et n deux entiers, $g:\Delta_m\to\Delta_n$ une application. On définit un morphisme

$$(1.10.1) s(g): S_n(\mathscr{U}) \longrightarrow S_m(\mathscr{U}),$$

de la manière suivante : pour tout $f: \Delta_n \to I$, la restriction de s(g) à $U_{f(1)} \times_X \cdots \times_X U_{f(n)}$ est le morphisme composé de l'inclusion canonique

$$U_{f(g(1))} \times_{X} \cdots \times_{X} U_{f(g(m))} \hookrightarrow S_{m}(\mathscr{U}),$$

et de l'unique morphisme

$$s_f(g): \mathrm{U}_{f(1)} \times_{\mathrm{X}} \cdots \times_{\mathrm{X}} \mathrm{U}_{f(n)} \longrightarrow \mathrm{U}_{f(g(1))} \times_{\mathrm{X}} \cdots \times_{\mathrm{X}} \mathrm{U}_{f(g(m))}$$

tel que pour tout $i \in \Delta_m$

$$\operatorname{pr}_{f(g(i))} s_f(g) = \operatorname{pr}_{f(g(i))}$$

 $(\operatorname{pr}_a$ désigne la a-ème projection). On obtient ainsi un foncteur contravariant $\Delta_n \mapsto S_n$ de la catégorie des ensembles finis dans E; autrement dit un complexe semi-simplicial $S.(\mathscr{U})$ d'objets de E. Notons que ce complexe est canoniquement augmenté vers X. Tout foncteur de E dans une catégorie C transforme $S.(\mathscr{U})$ en un objet simplicial de C. En particulier si E0 est un Anneau de E1, le foncteur « E1. A-Module libre engendré » transforme E2. E3 en un complexe simplicial de E4. A-biModules augmenté vers E5 et noté E6. On a

(1.10.2)
$$\mathbf{A}_{n}(\mathscr{U}) = \bigoplus_{f:\Delta_{n} \to \mathbf{I}} \mathbf{A}_{\mathbf{U}_{f(1)}} \times_{\mathbf{X}} \cdots \times_{\mathbf{X}} \mathbf{U}_{f()}.$$

Ce complexe sera souvent noté

1.10.3
$$\cdots \xrightarrow{\begin{array}{c} s_0 \\ \hline s_1 \\ \hline \end{array}} \bigoplus_{i,j} A_{U_i} X_{U_j} \xrightarrow{\begin{array}{c} s_0 \\ \hline \end{array}} \bigoplus_i A_{U_i} \longrightarrow A_X$$

où les flèches de (1.10.3) (sauf la dernière qui est l'augmentation) représentent les opérateurs faces du complexe simplicial $A.(\mathcal{U})$, c'est-à-dire les morphismes correspondants aux applications injectives croissantes de Δ_n dans Δ_{n+1} (s_i évite l'entier i). Au complexe $A.(\mathcal{U})$, on associe un complexe différentiel augmenté vers A_X :

1.10.4
$$\cdots \xrightarrow{d} \bigoplus_{i,j} A_{U_i \times_X U_j} \xrightarrow{d} \bigoplus_i A_{U_i} \longrightarrow A_X,$$

17 en posant

1.10.5
$$d = \sum (-1)^i s_i$$

Proposition 1.11. — Lorsque la famille $\mathscr{U} = (U_i \to X)_{i \in I}$ est épimorphique, le complexe différentiel (1.10.4) est acyclique et fournit une résolution de A_X .

Notons \mathbf{Z} le faisceau constant de valeurs \mathbf{Z} . Par définition du foncteur « A-Module libre engendre », on a, pour tout objet H de E.

$$A_H \simeq \mathbf{Z}_H \otimes_{\mathbf{Z}} A$$
,

d'où

$$A.(\mathcal{U}) \simeq \mathbf{Z}.(\mathcal{U}) \otimes_{\mathbf{Z}} A.$$

Comme les composantes de \mathbf{Z} .(\mathscr{U}) sont des \mathbf{Z} -Module plats (1.3.1), il suffit de montrer la proposition lorsque $\mathbf{A} = \mathbf{Z}$.

Supposons tout d'abord que E soit le topos des ensembles. Alors le complexe augmenté $S.(\mathcal{U})$ est somme directe de complexes augmentés du type

$$\cdots \Longrightarrow S \times S \times S \Longrightarrow S \times S \Longrightarrow S \longrightarrow \{e\} \qquad (\{e\} \text{ ensemble á un élément}).$$

Chacun de ces complexes augmentés est homotopiquement trivial. Donc $S.(\mathcal{U})$ est un complexe augmenté homotopiquement trivial et par suite son homologie est triviale d'où la proposition dans ce cas.

Soit maintenant $p: \operatorname{Ens} \to \operatorname{E}$ un point de E. Comme la formation du complexe $\mathbf{Z}.(\mathscr{U})$ commute aux foncteurs image inverse par les morphismes de topos, $p^*(\mathbf{Z}.(\mathscr{U})) \simeq \mathbf{Z}.(p^*(\mathscr{U}))$ est une résolution de $\mathbf{Z}_{p^*X} \simeq p^*(\mathbf{Z}_X)$; d'où la proposition lorsque E possède suffisamment de foncteurs fibres (IV 4.6). Ceci est le cas en particulier lorsque E est un topos de préfaisceaux C^ car pour tout objet X de C, $\Gamma(X, -)$ est un foncteur fibre. Dans le cas général, E est équivalent à un topos de faisceaux sur un petit site C (IV 1) et la famille épimorphique $\mathscr{U} = (U_i \to X)_{i \in I}$ est image, par le foncteur « faisceau associe », d'une famille épimorphique $\mathscr{U} = (U'_i \to X')_{i \in I}$. Par suite $\mathbf{Z}.(\mathscr{U}) \simeq \mathbf{Z}.(\mathscr{U}')$ est une résolution de $\mathbf{Z}_{X'} \simeq \mathbf{Z}_X$.

2. Cohomologie de Čech. Notation cohomologique

2.1. Notation générale. —

2.1.1. Soient (E, A) un topos annelé, M, N deux A-Modules (à gauche pour fixer les idées). On note $\operatorname{Ext}_A^q(E; M, N)$ la valeur en N du q-ième foncteur dérivé droit du foncteur $\operatorname{Hom}_A(M,.)$ [11]. Les foncteurs $\operatorname{Ext}_A^q(E; M, N)$ $q \in \mathbf{N}$, forment un δ -foncteur en la variable N. C'est aussi un δ -foncteur contravariant en la variable M. On a, par définition, $\operatorname{Ext}_A^0(E; M, N) = \operatorname{Hom}_A(M, N)$.

2.1.2. Soit X un objet de E. Lorsque $M = A_X$, le A-Module libre engendré par X (IV 12), on pose $\operatorname{Ext}_A^q(E;A_X,N) = \operatorname{H}^q(X,N)$. On remarquera que dans cette nouvelle notation, l'anneau A ne figure plus. Ceci ne peut prêter à confusion car nous montrerons (3.5) que la formation des $\operatorname{H}^q(X,.)$ commutent à la restriction des scalaires. Le foncteur $\operatorname{H}^q(X,.)$ est le q-ième foncteur dérivé droit du foncteur $\operatorname{Hom}_A(A_X,.) = \operatorname{Hom}_E(X,.)$ encore noté $\Gamma(X,.)$. Lorsque M = A, on pose $\operatorname{Ext}_A^q(E;A,N) = \operatorname{H}^q(E,N)$.

2.2. Localisation. — Soient X un objet de E, $j: E_{/X} \to E$ le morphisme de localisation (IV 8). Le foncteur j_X^* pour les Modules, est exact (4.11) et admet un foncteur adjoint à gauche $j_{X!}$ exact (4.11). Par suite il transforme les Modules injectifs en Modules injectifs. On a donc, pour un A-Module variable N de E et un A|X-Module M variable de $E_{/X'}$ des isomorphismes fonctoriels

(2.2.1)
$$\operatorname{Ext}_{A|X}^{q}(E_{/X}; M, j_{X}^{*}N) \simeq \operatorname{Ext}_{A}^{q}(E; j_{X!}M, N).$$

En particulier, on a des isomorphismes canoniques

19

$$H^q(E_{/X}, j_X^*N) \simeq H^q(X, N).$$

Pour tout objet X de E et tout couple M et N de A-Modules, on pose :

$$(2.2.2) \hspace{1cm} \operatorname{Ext}\nolimits_{\mathcal{A}}^{q}(\mathcal{X};\mathcal{M},\mathcal{N}) \simeq \operatorname{Ext}\nolimits_{\mathcal{A}|\mathcal{X}}^{q}(\mathcal{E}_{/\mathcal{X}};\mathcal{M}|\mathcal{X},\mathcal{N}|\mathcal{X}).$$

D'aprés ce qui précède, les foncteurs $\operatorname{Ext}_A^q(X;M,.)$ sont les foncteurs dérivés des foncteurs $N \mapsto \operatorname{Hom}_{A|X}(M|X,N|X)$. Le foncteur $(M,N) \mapsto \operatorname{Ext}_A^q(X;M,N)$, q>0, forment un δ -foncteur par rapport à chacune des variables.

2.3. Cas des topos de préfaisceaux, Cohomologie d'un recouvrement. —

2.3.1. Soient C une petite catégorie munie d'un préfaisceau d'anneaux A, C le topos des préfaisceaux sur C, X un objet représentable sur C . Le foncteur qui associe à un A-Module M le groupe $\Gamma(X,M)=M(X)$ est exact (I 3). Par suite $H^q(X,M)=0$ pour tout q>0 et tout A-Module M ou encore que A_X est un A-Module projectif.

2.3.2. Soit S un préfaisceau sur C. On a un isomorphisme canonique pour tout A-Module M (I 2) :

$$\Gamma(S,M) \simeq \varinjlim_{C/S} M|S$$

De plus, pour tout A-Module injectif M, le A|S-Module M|S est injectif (2.2). Par suite, les groupes $H^q(S,M)$ sont les valeurs en M|S des foncteurs dérivés à droite du foncteur $\varinjlim_{C/S}$. En notant $\varinjlim_{C/S}$ ces foncteurs dérivés, on a des isomorphismes canoniques :

$$H^q(S, M) \simeq \underset{C/S}{\varinjlim}^q M|S.$$

En particulier, on a des isomorphismes canoniques

$$H^q(\widehat{C}, M) \simeq \underset{\widehat{C}/S}{\varprojlim}^q M.$$

2.3.3. Soient X un objet de C et $\mathscr{U} = (U_i \to X)$, $i \in I$, une famille de morphismes de C telle que pour tout $i \in I$, $U_i \to X$ soit quarrable (I 10). Notons A, le complexe simplicial étudié en 1.10 :

$$\mathbf{A}. = \cdots \implies \coprod_{(i,j) \in \mathbf{I} \times \mathbf{I}} \quad \mathbf{A}_{\mathbf{U}_i}_{\mathbf{X}} \mathbf{U}_j \implies \coprod_{i \in \mathbf{I}} \quad \mathbf{A}_{\mathbf{U}_i}.$$

Pour tout A-Module M, on pose $C^{\bullet}(\mathcal{U}, M) = Hom_A(A, M)$:

$$(2.3.3.1) C'(\mathcal{U}, M) : \prod_{i \in I} M(U_i) \longrightarrow \prod_{(i,j) \in I \times I} M(U_i|_X U_j) \longrightarrow \cdots$$

On pose $H^q(\mathcal{U}, M) = H^q(C^{\bullet}(\mathcal{U}, M).$

Proposition 2.3.4. — 1) Avec les notations de 2.3.3, soit $R \hookrightarrow X$ le crible engendré 20 par la famille $(U_i \to X)$, $i \in I$. On a un isomorphisme canonique

$$H^q(\mathcal{U}, M) \simeq H^q(R, M).$$

2) Les foncteurs $H^q(\mathcal{U}, .)$ commutent aux restrictions des scalaires.

Comme R est un sous-objet de X dans \widehat{C} , les produits fibrés $U_{i_1} \times_R U_{i_2} \times \cdots \times_R U_{i_n}$ et $U_{i_1} \times_X U_{i_2} \times \cdots \times_X U_{i_n}$ sont canoniquement isomorphes. Il résulte de 1.11 que le complexe $A_{\mathscr{U}}$. est une résolution de A_R et de 2.3.1 que les composants de $A_{\mathscr{U}}$. sont des Modules projectifs. Les groupes de cohomologies de $\widehat{C}(\mathscr{U}, M)$ sont donc canoniquement isomorphes à $\operatorname{Ext}_A^q(\widehat{C}; A_R, M)$, d'où l'isomorphisme. L'assertion 2) résulte immédiatement de la description de $\widehat{C}(\mathscr{U}, M)$ (2.3.3.1).

Corollaire 2.3.5. — Soient $\mathscr{U} = (U_i \to X, i \in I)$ et $\mathscr{U}' = (U'_j \to X, j \in J)$ deux familles de morphismes de but X; Soient $\phi = (\phi : I \to J, m_i : U_i \to U'_{\phi(i)})$ et $\phi' = (\phi' : I \to J, m'_i : U_i \to H'_{\phi(i)})$ deux morphismes (au-dessus de X) de \mathscr{U} dans \mathscr{U}' . Les morphismes ϕ et ϕ' induisent les morphismes ϕ^q et $\phi'^q : \phi'^q : H^q(\mathscr{U}, M) \to H^q(\mathscr{U}', M)$. Les morphismes ϕ^q et ϕ'^q sont égaux. En particulier si les familles \mathscr{U} est \mathscr{U}' sont équivalentes (i.e. s'il existe un morphisme se \mathscr{U} dans \mathscr{U}' et un morphisme de \mathscr{U}' dans \mathscr{U}) les A-Modules $H^q(\mathscr{U}, M)$ et $H^q(\mathscr{U}', M)$ sont canoniquement isomorphes.

Preuve. — En effet, soient R et R' les cribles de X engendrés par les familles \mathscr{U} et \mathscr{U}' . Les morphismes ϕ et ϕ' définissent un même morphisme de R dans R' et induisent donc deux morphismes homotopes entre les résolutions projectives $A_{\mathscr{U}}$. et $A_{\mathscr{U}'}$.

Exercice 2.3.6. — (Résolution standard)

a) Soit C une petite catégorie. Pour tout entier n > 0, on note $\operatorname{Fl}^n(C)$ l'ensemble des suites de morphismes de $C:(u_1,\ldots,u_n)$ telles que pour tout i, 0 < 1 < n, le but de u_i soit égal à la source de u_{i+1} de sorte que les morphismes u_i et u_{i+1} sont

composables. Définir un ensemble semi-simplicial

dont les opérateurs faces $s_i : \operatorname{Fl}^n(\mathbb{C}) \to \operatorname{Fl}^{n-1}(\mathbb{C})$ sont les suivants :

$$s_0(u_1, \dots, u_n) = (u_2, \dots, u_n),$$

 $s_i(u_1, \dots, u_n) = (u_1, \dots, u_{i+1}u_i, \dots, u_n), 0 < i < n,$
 $s_n(u_1, \dots, u_n) = (u_1, \dots, u_{n-1}).$

- b) Montrer que lorsque C possède un objet initial ou un objet final, le complexe ES(C) est homotopiquement trivial.
- c) Pour tout objet X de C, on note $X \subset C$ la catégorie des flèches de source X. Définir un préfaisceau semi-simplicial $\mathscr{ES}(C)$ dont la valeurs en tout objet X de C soit $ES(X \subset C)$. On note $Z_{\mathscr{ES}(C)}$ le préfaisceau semi-simplicial abélien libre engendré par $\mathscr{ES}(C)$. Il est muni d'une augmentation canonique $Z_{\mathscr{ES}(C)} \to Z$ dans le préfaisceau constant de valeur Z. Montrer que, en passant au complexe différentiel associé, le complexe $Z_{\mathscr{ES}(C)}$ est une résolution de Z et que les composants de ce complexe sont des préfaisceaux abéliens projectifs.
- d) Pour tout préfaisceau abélien M, on pose $ST^{\bullet}(M) = Hom(Z_{\mathscr{E}\mathscr{S}(C)}, M)$. Expliciter les composants de $ST^{\bullet}(M)$. Montrer que pour tout entier $q \geq 0$, $H^{q}(ST^{\bullet}(M)) = H^{q}(C^{\hat{\bullet}}, M)$.
- e) Montrer que pour tout faisceau S sur C les foncteurs $H^q(S,.)$ commutent aux restrictions des scalaires.
- f) Remarquer que lorsque C est un groupe, $Z_{\mathscr{E}\mathscr{S}(C)}$ est la résolution standard du module trivial Z, [3].
- g) Montrer que pour tout préfaisceau abélien M sur C, $Z_{\mathscr{E}\mathscr{S}(C)}\otimes M$ est une résolution (à gauche) de M. Définir le foncteur \varinjlim_{C} sur les préfaisceaux. Montrer qu'il est exact à droite. Noter $H_q(C,M)$ ses foncteurs dérivés à gauche. Montrer que les composants du complexe $Z_{\mathscr{E}\mathscr{S}(C)}\otimes M$ sont acycliques pour \varprojlim_{C} . En déduire, en notant ST.(M) le complexe $\varprojlim_{C}(Z_{\mathscr{E}\mathscr{S}(C)}\otimes M)$, des isomorphismes $H_q(ST.(M)\sim H_q(C,M))$.
- h) Soit $u: \mathbb{C}^{\widehat{}} \to \operatorname{Ens}$ l'unique morphisme du topos $\mathbb{C}^{\widehat{}}$ dans le topos ponctuel. On note $U_!: \mathbb{C}^{\widehat{}}_{\mathbf{Z}} \to \operatorname{Ab}$ l'adjointe à gauche du foncteur $u^*: \operatorname{Ab} \to \mathbb{C}^{\widehat{}}_{\mathbf{Z}}$. Montrer que pour tout préfaisceau abélien $M, u_!M = \varinjlim_{\mathbb{C}} M$.
- i) On note dorénavant $ST^{\bullet}(C, M)$ et ST.(C, M) les complexes notés $ST^{\bullet}(M)$ et ST.(M). Un préfaisceau M sur C est dit localement constant s'il transforme tous les morphismes de C en isomorphismes. Associer à tout préfaisceau localement constant M un préfaisceau localement constant M sur la catégorie C° (catégorie opposés à C) tel que pour tout morphisme u de C, $M(u) = M(u)^{-1}$. Trouver un isomorphisme canonique entre les complexes $ST^{\bullet}(C, M)$ et $ST^{\bullet}(C^{\circ}, M)$ (resp. ST.(C, M) et $ST.(C^{\circ}, M)$)

22

j) Soit C une petite catégorie possédant un objet initial (resp. une petite catégorie filtrante). Montrer que pour tout préfaisceau constant M, $H^q(C^{\hat{}}, M) = 0$ pour q > 0 (resp. $H_q(C, M) = 0$ pour q > 0).

2.4. Cas des petits sites, Cohomologie de Čech.—

v

2.4.1. Soient (C, A) un \mathscr{U} -site annelé, C le topos des faisceaux sur C, $\varepsilon: C \to C$ le foncteur canonique qui associe à un objet de C le faisceau associé au préfaisceau représenté par cet objet. Par abus de notation, pour tout objet X de C et tout faisceau de A-modules M nous poserons $H^q(X,M)=H^q(X,M)$ (cf. .2.3.1). Rappelons que lorsque la topologie de C est moins fine que la topologie canonique, ce qui est toujours le cas dans la pratique, le foncteur ε est pleinement fidèle et permet d'identifier C avec son image par ε .

2.4.2. On note $\mathcal{H}^{\circ}: C_{A}^{\sim} \to C_{A}^{\circ}$ le foncteur d'inclusion des faisceaux de A-modules dans la catégorie des préfaisceaux de A-modules. Pour tout faisceau de A-modules M on a donc par définition :

$$\mathscr{H}^{\circ}(M)(X) = H^{\circ}(X, M) = M(X),$$

pour tout objet X de C. Le foncteur \mathcal{H}° est exact à gauche. Ses foncteurs dérivés à droite sont notés \mathcal{H}^{q} . Comme pour tout objet X de C, le foncteur « section dur X » est exact dans la catégorie des préfaisceaux, on a

$$(2.4.2.2) \mathcal{H}^q(M)(X) = H^q(X, M),$$

pour tout objet X de C et tout faisceau de A-modules M, de sorte que le préfaisceau $\mathcal{H}^q(M)$ n'est autre que le préfaisceau $X \mapsto H^q(X, M)$.

2.4.3. On suppose que (C, A) est un petit site annelé de sorte que C est un topos auquel on peut appliquer les résultats de 2.3. Soit X un objet de C et $R \hookrightarrow X$ un crible couvrant. Pour tout préfaisceau de A-modules G, les groupes $H^q(R, G)$ (qui sont donc calculés dans le topos C) sont appelés les groupes de cohomologie de Čech du préfaisceau G relatifs au crible couvrant R. Lorsque $R \hookrightarrow X$ est le crible engendré par une famille couvrante $\mathscr{U} = (\mathscr{U}_i \to X)_{i \in I}$ de morphismes quarrables ces groupes peuvent de calculer à l'aide du complexe $C^{\bullet}(\mathscr{U}, G)$ (2.3.3) appelé complexe de Čech de G relatifs à la famille couvrante \mathscr{U} . (ou du recouvrement \mathscr{U}). Les groupes $H^q(\mathscr{U}, G) = H^q(R, G)$ (2.3.4) sont alors appelés groupes de cohomologie de Čech de G relatifs à la famille couvrante \mathscr{U} .

2.4.4. Soit M un faisceau de A-modules sur C. Le groupes $H^q(\mathcal{U}, \mathcal{H}^{\circ}(M))$ sont le plus souvent notés, abusivement, $H^q(\mathcal{U}, M)$ et appelés groupes de cohomologie de Ĉech du faisceau M relatifs à la famille couvrante \mathcal{U} .

2.4.5. On note $\mathscr{H}^{\circ}: \widehat{C_A} \to \widehat{C_A}$ l'extension naturelle aux préfaisceaux de A-modules, du foncteur L décrit en II. On a donc, par définition, pour un préfaisceau G et un

objet X de C:

 $\mathbf{24}$

$$(2.4.5.1) \qquad \qquad \check{\mathscr{H}}^{\circ}(G)(X) = \varinjlim_{R \hookrightarrow X} G(R),$$

la limite inductive étant prise suivant les cribles couvrant X. Il résulte de (2.4.5.1) que le foncteur $\check{\mathcal{H}}^{\circ}$ est exact à gauche. Les foncteurs dérivés à droite de $\check{\mathcal{H}}^{\circ}$ sont notés $\check{\mathcal{H}}^q$. Comme les foncteurs « section sur X » et « limite inductive filtrante » sont exacts, il résulte de (2.4.5.1) qu'on a

(2.4.5.2)
$$\check{\mathscr{H}}^{q}(G)(X) = \varinjlim_{R \hookrightarrow X} H^{q}(R, G),$$

la limite étant prise suivant les cribles couvrant X.

Les préfaisceaux $\check{\mathcal{H}}^q$ sont appelés les préfaisceaux de cohomologie de Čech. Pour tout objet X de C, on pose

$$(2.4.5.3) \qquad \qquad \check{\mathbf{H}}^q(\mathbf{X}, \mathbf{G}) = \check{\mathscr{H}}^q(\mathbf{G})(\mathbf{X}).$$

Les groupes $\check{H}^q(X, G)$ sont appelés les groupes de cohomologie de \check{C} ech. Lorsque la topologie de C est définie par une prétopologie, ce qui est le plus souvent le cas dans la pratique, on a, compte tenu de 2.3.4,

(2.4.5.4)
$$\check{\mathrm{H}}^{q}(\mathrm{X},\mathrm{G}) \simeq \varinjlim_{\mathscr{U}} \mathrm{H}^{q}(\mathscr{U},\mathrm{G}),$$

la limite inductive étant prise suivant les familles couvrantes quarrables préordonnées par la relation d'ordre naturelle sur les cribles qui leur correspondent (2.3.5).

2.4.6. Soit M un faisceau de A-modules. On pose, abusivement

$$(2.4.6.1) \qquad \check{\mathrm{H}}^{q}(\mathrm{X},\mathrm{M}) = \check{\mathrm{H}}^{q}(\mathrm{X},\check{\mathscr{H}}^{\circ}(\mathrm{M}),\check{\mathscr{H}}^{q}(\mathrm{M})) = \check{\mathscr{H}}^{q}(\check{\mathscr{H}}^{\circ}(\mathrm{M})),$$

et les groupes $\check{H}^q(X, M)$ sont appelés groupes de cohomologie de Ĉech du faisceau M. Signalons que si les foncteurs \check{H}^q sont des foncteurs dérivés sur la catégorie des préfaisceaux, ils ne forment pas, en général, un δ -foncteur sur la catégorie des faisceaux.

2.5. Changement d'univers. Cohomologie de Cech dans le cas des \mathcal{U} -sites.

2.5.1. Soient (C, A) un \mathscr{U} -site annelé et \mathscr{V} un univers contenant \mathscr{U} . Le site (C, A) est alors un \mathscr{V} -site et on a un \mathscr{U} -topos $C_{\mathscr{U}}$, un V-topos $C_{\mathscr{V}}$ et un foncteur canonique d'inclusion $\varepsilon: C_{\mathscr{U}} \hookrightarrow C_{\mathscr{V}}$. Le foncteur ε est exact et pleinement fidèle sur les catégories de Modules et transforme les Modules injectifs en Modules injectifs (1.9). Pour tout couple de U-faisceaux de A-modules on a donc des isomorphismes canoniques

$$(2.5.1.1) \operatorname{Ext}_{A}^{q}(\widetilde{C_{\mathscr{U}}}; M, N) \simeq \operatorname{Ext}_{\varepsilon_{A}}^{q}(\widetilde{C_{\mathscr{V}}}; \varepsilon M, \varepsilon N), \quad q \geqslant 0.$$

En particulier, pour tout \mathscr{U} -faisceau d'ensembles R sur C, on a des isomorphismes canoniques (2.1.1)

(2.5.1.2)
$$H^q(R, M) \simeq H^q(\varepsilon R, \varepsilon M), \quad q \geqslant 0,$$

26

et plus particulièrement encore, pour tout objet X de C, on a des isomorphismes canoniques (2.4.1)

$$(2.5.1.3) Hq(X, M) \simeq Hq(X, \varepsilon M).$$

En termes vagues, on peut donc dire que la cohomologie des faisceaux ne dépend pas du choix des univers et on peut toujours, pour la nécessité d'une démonstration où d'une construction, augmenter l'univers pour calculer la cohomologie d'un faisceau.

2.5.2. Soient (C, A) un $\mathscr U\text{-site}$ annelé et $\mathscr V$ un univers contenant $\mathscr U.$ Notons $\mathrm{C}^\sim_\mathrm{A}$ la catégorie des \mathscr{U} -faisceaux $\widehat{\varepsilon}: \widehat{C_{A,\mathscr{U}}} \to \widehat{C_{A,\mathscr{V}}}$ le foncteur d'inclusion des U-préfaisceaux dans les \mathscr{V} -préfaisceaux de A-modules. Le foncteur $\widehat{\varepsilon}$ est exact et par suite les foncteurs dérivés du foncteur $\widehat{\varepsilon}\mathscr{H}^{\circ}: C_{A} \to C_{A,\mathscr{V}}$) sont les foncteurs $\widehat{\varepsilon}\mathcal{H}^q$, $q \geqslant 0$. Par abus de notation, nous noterons encore $\mathscr{H}^q: \hat{\mathcal{C}_A} \to \hat{\mathcal{C}_{A,V}}, \, q \geqslant 0$, les foncteurs $\widehat{\varepsilon}\mathscr{H}^q$. Cet agrandissement de l'univers présente lorsque C est \mathscr{V} -petit l'avantage suivant : La catégorie $\widehat{C_{\mathscr{U}}}$ n'est pas en général un \mathscr{U} -topos et les \mathscr{U} -préfaisceaux de A-modules ne sont pas nécessairement des sous-modules de \mathscr{U} -préfaisceaux injectifs, alors que la catégorie des \mathcal{V} -préfaisceaux est un topos (un \mathcal{V} -topos) et que par suite tout \mathcal{V} -préfaisceau de A-modules est un sous-objet d'un \mathcal{V} -préfaisceau injectif (0.1.1). Ainsi pour tout \mathcal{V} -préfaisceau d'ensembles R (et en particulier lorsque R est un \mathcal{U} préfaisceau) et pour tout \mathscr{U} -faisceau de A-modules M, les groupes $H^q(\mathbb{R}, \mathscr{H}^q(\mathbb{M}))$ sont définis par 2.1.1 et il résulte de (2.5.1.2) que ces groupes ne dépendent pas de l'univers \mathscr{V} considéré. De même, pour tout couple d'entiers $\geqslant 0$ p et q, les préfaisceaux $\mathcal{H}^p(\mathcal{H}^q(M))$ sont définis par 2.4.5 et il résulte de (2.5.1.2)) et de ((2.4.5.4) que ces préfaisceaux ne dépendent pas de l'univers ${\mathscr V}$ utilisé pour les définir.

3. La suite spectrale de Cartan-Leray relative à un recouvrement

Proposition 3.1. — Soient (C, A) un \mathscr{U} -site annelé, \mathscr{V} univers contenant \mathscr{U} . Le foncteur $\mathscr{H}^{\circ}: \widetilde{C_A} \to \widehat{C_{A,\mathscr{V}}}$ (2.5.2) transforme les A-Modules injectifs en préfaisceaux injectifs. Pour tout entier q > 0, et tout A-Module M, le faisceau associé au préfaisceau $\mathscr{H}^q(M)$ est nul.

Notons $_{\mathscr{V}}$ le foncteur « faisceau associe » pour les \mathscr{V} -préfaisceaux et $\varepsilon: C_{A} \hookrightarrow C_{A,\mathscr{V}}$ le foncteur d'inclusion des \mathscr{U} -faisceaux dans les \mathscr{V} -faisceaux. On a $_{\mathscr{V}}\mathscr{H}^{\circ} = \varepsilon$ (II 3.6) et comme les foncteurs $_{\mathscr{V}}$ et ε sont exacts, on a $_{\mathscr{V}}\mathscr{H}^{q} = 0$ pour tout entier q > 0. Pour tout \mathscr{U} -faisceau M et tout \mathscr{V} -préfaisceau N on a un isomorphisme fonctoriel $\operatorname{Hom}_{C_{A,\mathscr{V}}}(N,\mathscr{H}^{\circ}(M)) \simeq \operatorname{Hom}_{C_{A,\mathscr{V}}}(_{\mathscr{V}}N,\varepsilon M)$. Lorsque M est injectif, εM est injectif (1.9) et comme le foncteur $_{\mathscr{V}}$ est exact, le foncteur $_{V} \mapsto \operatorname{Hom}_{C_{A,\mathscr{V}}}(N,\mathscr{H}^{\circ}(M))$ est exact. Par suite $\mathscr{H}^{\circ}(M)$ est injectif.

Théorème 3.2. — Soient (C, A) un \mathscr{U} -site annelé, R un \mathscr{U} -préfaisceau d'ensembles sur C, M un faisceau de A-Modules. Il existe une suite spectrale, fonctorielle en R et

en M:

(Lorsque C n'est pas \mathscr{U} -petit, le terme $H^p(R, \mathscr{H}^q(M))$) doit être interprété comme la cohomologie du préfaisceau $\mathscr{H}^q(M)$ dans le topos $\widehat{C_V}$ où V est un univers contenant \mathscr{U} tel que C soit \mathscr{V} -petit (2.5.2)).

Par définition du foncteur « faisceau associe » (cf. II) on a un isomorphisme de foncteur $H^{\circ}(R,M) \simeq H^{0}(R,\mathscr{H}^{\circ}(M))$. Le foncteur \mathscr{H}° transforme les objets injectifs en objets injectifs. La suite spectrale des foncteurs composés (0.3) est la suite spectrale cherchée.

Corollaire 3.3. — Soient X un objet de C et $\mathscr{U} = (U_i \to X)$, $i \in I$, une famille couvrante telle que pour tout $i \in I$, le morphisme $U_i \to X$ soit quarrable. On a alors une suite spectrale (dite de Cartan-Leray):

Soit $R \hookrightarrow X$ le crible engendré par \mathscr{U} . Comme ce crible est couvrant, le faisceau associé à R est le faisceau associé à X (II 5.2). Compte tenu de 2.4.1, on a $H^{p+q}(R,M) = H^{p+q}(X,M)$. Le corollaire résulte alors de 2.3.4.

Corollaire 3.4. — Il existe une suite spectrale fonctorielle en le faisceau M et l'objet X de C

Cette suite spectrale fournit, lorsque X varie dans C, la suite spectrale de préfaisceaux :

$$(3.4.2) \mathscr{H}^{p+q}(M) \longleftarrow E_2^{p,q} = \check{\mathscr{H}}^p(\mathscr{H}^q(M)).$$

Ces suites spectrales fournissent des morphismes fonctoriels (morphismes de coin) :

$$(3.4.3) \Phi^q(M) : \mathcal{H}^q(M) \longrightarrow \mathcal{H}^q(M),$$

$$\Phi_{\mathbf{x}}^{q}(\mathbf{M}): \mathbf{H}^{q}(\mathbf{X}, \mathbf{M}) \longrightarrow \mathbf{H}^{q}(\mathbf{X}, \mathbf{M}).$$

Les morphismes Φ^q et Φ^q_X sont des isomorphismes lorsque q égale 0 où 1. Les morphismes Φ^2 et Φ^2_X sont des monomorphismes. Plus généralement, lorsque les préfaisceaux $\mathscr{H}^i(M)$ sont nuls pour 0 < i < n, les morphismes $\Phi^q(M)$ et $\Phi^q_X(M)$ sont des isomorphismes pour $0 \le q \le n$ et des monomorphismes pour q = n + 1.

La première suite spectrale s'obtient en passant à la limite inductive dans la suite spectrale (3.2.1) sur les cribles $R \hookrightarrow X$ couvrant X (2.4.5.2). La deuxième suite spectrale s'en déduit aussitôt (2.4.5.3). Les faisceaux associés aux préfaisceaux $\mathcal{H}^q(M)$ sont nuls lorsque q > 0 (3.1). On a donc $\check{\mathcal{H}}^{\circ}\check{\mathcal{H}}^q(M) = 0$ pour tout q > 0 (II.3.4).

Par suite $\check{\mathscr{H}}^{\circ}\check{\mathscr{H}}^{q}(\mathrm{M})=0$ pour q>0 (II 3.2). Les assertions sur les morphismes Φ^{q} et Φ^{q}_{X} s'en déduisent aussitôt.

Corollaire 3.5. — Soient (E, A) un topos annelé et M un A-module (à gauche pour fixer les idées). Notons \mathscr{M} le Groupe abélien sous-jacent à M. Le foncteur $M \mapsto \mathscr{M}$ est exact et par suite, pour tout objet X de E, l'isomorphisme canonique

$$H^\circ(X,M) \xrightarrow{\sim} H^\circ(X,\mathscr{M})$$

se prolonge en des morphismes

v

$$H^q(X, M) \longrightarrow H^q(X, M) \qquad q \geqslant 0.$$

Ces morphismes sont des isomorphismes.

Pour tout objet Y de E, on a (2.4.5.4):

$$\mathrm{H}^p(\mathrm{Y},\mathrm{M}) = \varinjlim_{\mathscr{U}} \mathrm{H}^p(\mathscr{U},\mathrm{M}) \quad , \quad \mathrm{H}^p(\mathrm{Y},\mathscr{M}) = \varinjlim_{\mathscr{U}} \mathrm{H}^p(\mathscr{U},\mathscr{M})$$

la limite inductive étant prise sur les familles épimorphiques $\mathcal{U} = (Y_i \to Y), i \in I$.

Par suite, l'homomorphisme canonique $\check{H}^p(Y,M) \to \check{H}^p(Y,\mathscr{M})$ est un isomorphisme (2.3.4). Donc (2.4.5.3), l'homomorphisme canonique $\check{\mathscr{H}}^p(M) \to \check{\mathscr{H}}^p(\mathscr{M})$ est un isomorphisme. Si M est un A-Module injectif, on a $\check{\mathscr{H}}^p(\mathscr{M}) = 0$ pour p > 0; d'où $\mathscr{H}^1(\mathscr{M}) = 0$ et par récurrence sur p, $\mathscr{H}^p(\mathscr{M}) = 0$, p > 0 (3.4). Donc $H^p(X,\mathscr{M}) = 0$ pour p > 0 (2.4.2.2)) et (2.5. Par suite, le foncteur $M \mapsto \mathscr{M}$ transforme les objets injectifs en objets acycliques pour le foncteur $H^\circ(X,.)$, d'où l'isomorphisme annoncé.

Exercice 3.6. — Soient G un groupe topologique et B_G son topos classifiant (IV 2.5). Notons E_G l'objet de B_G constitué par l'espace topologique sous-jacent à G muni de l'opération de translation à gauche par les éléments de G. Le morphisme canonique de E_G dans l'objet final e_G de B_G est un épimorphisme; d'où un recouvrement $\mathscr{U} = (E_G \to e_G)$ et, pour tout faisceau abélien F de B_G , une suite spectrale

qu'on se propose d'étudier.

1) Montrer que pour tout entier n, le topos

$$B_{G/E_G \times E_G \times \cdots \times E_G}$$
 (*n* facteurs)

est canoniquement équivalent su topos (IV 2.5)

$$TOP(G \times G \times G \times \cdots \times G) \quad (n-1) \quad factours$$

Pour tout entier n, notons F_n le faisceau sur l'espace topologique $G \times \cdots \times G$ (n 29 facteurs) induit par F.

28

2) En déduire que le terme $E_2^{p,q}$ de (3.6.1) est canoniquement isomorphe au p-ème groupe de cohomologie d'un complexe du type

$$H^q(e, F_\circ) \longrightarrow H^q(G, F_1) \longrightarrow H^q(G \times G, F_2) \longrightarrow \cdots$$

qu'on explicitera (e désigne l'espace topologique réduit à un point).

3) En déduire que la cohomologie du topos classifiant B_G à valeur dans les faisceaux localement constants est isomorphe à la cohomologie singulière correspondante des type $G \times G \times \cdots \times G$, la cohomologie des faisceaux localement constants coïncide avec la cohomologie singulière correspondante (Ce qui est le cas lorsque, par exemple, G est localement contractile); (Pour les espaces classifiants, on pourra consulter [15]).

4. Faisceaux acycliques

- **Définition 4.1.** Soient (E, A) un topos annelé, F un A-Module, S une famille topologiquement génératrice de E. On dit que F est S-acyclique si pour tout objet X de S, et tout entier q > 0, on a $H^q(X, F) = 0$. Lorsque S est égal à ob E, les faisceaux S-acycliques sont appelés les faisceaux flasques.
- **4.2.** Soient (C, A) un *W*-site annelé, F un faisceau de A-modules sur C. On dit que F est *C-acyclique* si F est S-acyclique où S est la famille des faisceaux associés aux objets de C.
- **Proposition 4.3.** Soient (C, A) un \mathscr{U} -site annelé, F un faisceau de A-modules. Notons $\mathscr{H}^{\circ}: C_A^{\circ} \to C_A^{\circ}$ le foncteur d'inclusion des A-Modules dans la catégorie des préfaisceaux de A-modules (il s'agit ici des \mathscr{V} -préfaisceaux où \mathscr{V} est un univers tel que C soit \mathscr{V} -petit). Les conditions suivantes sont équivalentes :
- i) F est C-acyclique.

30

ii) Pour tout objet X de C et tout crible couvrant $R \hookrightarrow X$, on a :

$$H^q(R, \mathcal{H}^{\circ}(F)) = 0 \text{ pour tout } q > 0.$$

iii) Pour tout objet X de C, on a :

$$\check{\mathbf{H}}^q(\mathbf{X}, \mathbf{F}) = 0$$
 pour tout $q > 0$;

- i \Rightarrow ii) : Comme F est C-acyclique, les préfaisceaux $\mathscr{H}^q(F)$ sont nuls pour q>0. La suite spectrale (3.2.1) fournit alors un isomorphisme $H^q(R,\mathscr{H}^\circ(F)) \simeq H^q(X,F)$ pour tout q. Par suite $H^q(R,\mathscr{H}^\circ(F)) = 0$ pour q>0.
 - $ii \Rightarrow iii$): clair par passage à la limite inductive.
- iii \Rightarrow i) : on démontre par récurrence sur q que les préfaisceaux $\mathcal{H}^q(F)$ sont nuls pour q > 0. Pour cela, on utilise (3.4.2).

4.4. Il résulte du critère 4.3 ii) et de 3.5 que la propriété de S-acyclicité ne dépend que du faisceau abélien sous-jacent. En particulier, un faisceau de A-modules est flasque si et seulement si le faisceau abélien sous-jacent est flasque.

Corollaire 4.5. — Soient (E, A) un topos annelé et F un A-Module. Les propriétés suivantes sont équivalentes :

i) F est flasque;

V

ii) Pour toute famille épimorphique $\mathfrak{X} = (X_i \to X)_{i \in I}$,

$$H^q(\mathfrak{X}, F) = 0$$
 pour tout $q > 0$.

Dans 4.2, on prend pour C le topos E lui-même. Le corollaire résulte alors de l'équivalence i) \Leftrightarrow ii) de 4.2.

4.6. Les faisceaux injectifs sont flasques. Les faisceaux flasques sont S-acycliques pour tout famille topologiquement génératrice S. Les faisceaux flasques ne sont pas nécessairement injectifs (prendre pour topos E le topos des ensembles). Les faisceaux S-acycliques ne sont pas nécessairement flasques (exercice 4.1.3).

Proposition 4.7. — Soient (E, A) un topos, F un A-Module flasque, X un objet de E. Pour tout sous-objet Y de X l'homomorphisme canonique $H^{\circ}(X, F) \Rightarrow H^{\circ}(Y, F)$ est 31 surjectif.

Soit Y un sous-objet de X tel que le morphisme $H^{\circ}(X, F) \to H^{\circ}(Y, F)$ ne soit pas surjectif. Soit Z l'objet obtenu en recollant deux copies X_1 et X_2 de X le long de Y. L'objet Z est recouvert par les deux sous-objets X_1 et X_2 on a X_1 $X_2 = Y$. Notons $\mathfrak{X} = (X_1, X_2)$ le recouvrement ainsi obtenu. On constate aussitôt que $H^1(\mathfrak{X}, F) \neq 0$. Contradiction.

4.8. La propriété décrite dans 4.7 ne caractérise pas, dans le cas des topos généraux, les faisceaux flasques (exer. 4.15). Elle la caractérise cependant dans le cas des topos engendrés par leurs ouverts et en particulier dans le cas des topos associés aux espaces topologiques (exer. 4.16). La terminologie de flasque adoptée ici coïncide dans le cas des espaces topologiques avec la terminologie de [7] (exer. 4.16).

Proposition 4.9. — Soient $u: (E, A) \to (E', A')$ un morphisme de topos annelés.

- 1) Le foncteur u_* transforme les A-Modules flasques en A'-Modules flasques.
- 2) Soient S et S' des familles topologiquement génératrices de E et E' respectivement telles que $u^*(S') \subset S$. Le foncteur u_* transforme les A-Modules S-acycliques en A'-Modules S'-acycliques.
- 3) Lorsque u est un morphisme plat (1.8) le foncteur u_* transforme les A-Modules injectifs en A'-Modules injectifs.

32

V

Soient X un objet de E', $\mathfrak{X}=(X_i\to X)_{i\in I}$ une famille épimorphique, F un A-Modules flasque, $C^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}(\mathfrak{X},u_*F)$ le complexe de Čech du recouvrement \mathfrak{X} . On a un isomorphisme canonique $C^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}(\mathfrak{X},u_*F)\simeq C^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}(u^*(\mathfrak{X}),F)$ en utilisant l'adjonction de u_* et de u^* et le fait que u^* commute aux produits fibrés. De plus u^* commute aux limites inductives et par suite $u^*(\mathfrak{X})=(u^*X_i\to u^*X)_{i\in I}$ est une famille épimorphique. Comme F est flasque, on a $H^q(u^*(\mathfrak{X}),F)$ pour q>0 et par suite $H^q(\mathfrak{X},u_*F)=H^q(C^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}(\mathfrak{X},u_*F))=H^q(C^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}(\mathfrak{X},F))=0$ pour q>0. Donc u_*F est flasque.

Démontrons 2). Lorsque S' est stable par produits fibrés une démonstration analogue à celle qui précède permet de démontrer 2). Dans le cas général, nous utiliserons la suite spectrale du morphisme u (5.3.2)). L'assertion 2 ne sera pas utilisée avant (5.3.2). Soit F un faisceau S-acyclique. Les faisceaux $R^q u_*F$ sont les faisceaux associés aux préfaisceaux $X \mapsto H^q(u^*X, F)$. Comme S' est une famille topologiquement génératrice et comme F est S-acyclique, on a $R^q u_*F = 0$ pour tout q > 0. La suite spectrale (5.3.2) fournit alors un isomorphisme, pour tout objet X de $E': H^q(X, u_*F) \simeq H^q(u^*X, F)$ et par suite, pour tout X dans S', $H^q(X, u_*F) = 0$.

Démontrons 3). Lorsque le morphisme u est plat, le foncteur u^* pour les Modules est exact (1.8). Par suite le foncteur u_* adjoint à droite de u^* transforme les objets injectifs en objets injectifs (0.2).

Proposition 4.10. — Soient F un A-Modules du topos annelé (E, A), G un A-Modules injectif.

- 1) Le foncteur $F \mapsto \mathcal{H}om_A(F,G)$ est exact.
- 2) Le groupe abélien $\mathcal{H}om_A(F,G)$ est flasque.

Preuve. — Montrons

1) Soit:

$$0 \longrightarrow F' \longrightarrow F \longrightarrow F'' \longrightarrow 0$$

une suite exacte, Il nous faut montrer que la suite :

$$0 \longrightarrow \mathscr{H}\mathit{om}_A(F'',G) \longrightarrow \mathscr{H}\mathit{om}_A(F,G) \longrightarrow \mathscr{H}\mathit{om}_A(F',G) \longrightarrow 0$$

est exact et pour cela il suffit de montrer que pour tout objet H de E, la suite :

$$0 \longrightarrow \operatorname{Hom}_{\operatorname{E}}(\operatorname{H}, \mathscr{H}\mathit{om}_{\operatorname{A}}(\operatorname{F}'', \operatorname{G})) \longrightarrow \operatorname{Hom}_{\operatorname{E}}(\operatorname{H}, \mathscr{H}\mathit{om}_{\operatorname{A}}(\operatorname{F}, \operatorname{G})) \\ \longrightarrow \operatorname{Hom}_{\operatorname{E}}(\operatorname{H}, \mathscr{H}\mathit{om}_{\operatorname{A}}(\operatorname{F}', \operatorname{G})) \longrightarrow 0$$

est exacte. Or (IV 6.12) cette dernière suite est isomorphe à la suite

$$0 \longrightarrow \operatorname{Hom}_{A}(A_{H} \otimes_{A} F'', G) \longrightarrow \operatorname{Hom}_{A}(A_{H} \otimes_{A} F, G) \longrightarrow \operatorname{Hom}_{A}(A_{H} \otimes_{A} F', G) \longrightarrow 0$$
 et le A-Module A_{H} est plat $(1.3.1)$.

2) Montrons que $\mathcal{H}om_{A}(F,G)$ est flasque. Soit :

$$\mathfrak{X} = (X_i \longrightarrow X), i \in I,$$

V

une famille épimorphique de E, et

$$\mathrm{C.}(\mathfrak{X}):\cdots \implies \coprod_{i,j} \mathbf{Z}_{\mathrm{X}_i \times \mathrm{X}_j} \implies \coprod_{i} \mathbf{Z}_{\mathrm{X}_i}$$

le complexe défini en 1.5. Ce complexe est une résolution plate de l'objet \mathbf{Z}_{X} qui est 33 lui-même plat (1.4 et 1.3).

Calculons alors les groupes :

$$\mathrm{H}^q(\mathfrak{X},\mathscr{H}\!\mathit{om}_\mathrm{A}(\mathrm{F},\mathrm{G})) \xrightarrow{\sim} \mathrm{H}^q(\mathrm{Hom}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}_\mathbf{Z}(\mathrm{C}.(\mathfrak{X}),\mathscr{H}\!\mathit{om}_\mathrm{A}(\mathrm{F},\mathrm{G})) \xrightarrow{\sim} \mathrm{H}^q(\mathrm{Hom}_\mathrm{A}(\mathrm{C}.(\mathfrak{X}) \otimes_\mathbf{Z} \mathrm{F},\mathrm{G})).$$

Le complexe

$$C.(\mathfrak{X}) \otimes_{\mathbf{Z}} F$$

est acyclique en degré $\neq 0$, car $C.(\mathfrak{X})$ est une résolution plate d'un module plat. Par suite $Hom(C.(\mathfrak{X}) \otimes_{\mathbf{Z}} F, G)$ est acyclique en degré $\neq 0$.

Proposition 4.11. — Soient (E, A) un topos annelé, F un faisceau flasque (resp. injectif) de A-modules.

- 1) Pour tout objet X de E le A|X-Module j_X^*F est flasque (resp. injectif)
- 2) Pour tout fermé Z de E, le faisceau des sections de F à supports dans Z (IV 14) est flasque (resp. injectif).

L'assertion 1) résulte de 4.5 lorsque F est flasque. Le foncteur j_X^* admet un adjoint à gauche exact $j_{X!}$ (IV 11). Par suite, lorsque F est injectif, j_X^*F est injectif (0.2). Démontrons 2). Notons $i: Z \to E$ le morphisme d'inclusion. Le faisceau des sections de F à support dans Z est alors le morphisme d'inclusion. Le faisceau des section de F à support dans Z est alors le faisceau $i_*i^!F$ (IV 14). Le foncteur $i_*i^!$ est adjoint à droite au foncteur i_*i^* qui est exact (IV 14). Par suite il transforme faisceau injectif en faisceau injectif. Soient U l'ouvert complémentaire de Z, $j: U \to E$ le morphisme d'inclusion et F un faisceau flasque. On a une suite exacte (IV 14):

$$(4.11.1) 0 \longrightarrow i_* i' F \longrightarrow F \longrightarrow j_* j^* F.$$

Pour tout objet X de E, on a $j_*j^*F(X) = F(X \times U)$ et le morphisme $F(X) \to j_*j^*F(X)$ induit par la dernière flèche de (4.11.1) provient de l'injection canonique $X \times U \hookrightarrow X$. Comme F est flasque, ce morphisme est surjectif (4.7) et par suite, la dernière flèche de (4.11.1) est un épimorphisme de préfaisceaux. Pour tout objet X de E, la suite exacte de cohomologie déduite de (4.11.1) fournit $H^q(X, i_*i^!F) = 0$ pour q > 0 et par suite $i_*i^!F$ est flasque.

4.12. La propriété pour un faisceau d'être flasque (resp. injectif) se localise (4.11.1). Mais ce n'est pas, en général, une propriété de caractère local (exer. 4.15). Cependant, c'est une propriété de caractère local dans le cas des topos engendrés par leurs ouverts et en particulier dans le cas des topos associés aux espaces topologiques (exer. 4.16).

Exercice 4.13. — Soient X un espace localement compact et F un faisceau c-mou [7]. En utilisant le caractère local de la mollesse (loc. cit.), montrer que la restriction de F à tout ouvert paracompact de X est un faisceau mou. Montrer que les ouverts paracompacts forment une base de la topologie de X. En déduire que, en notant S la famille des ouverts paracompacts de X, le faisceau F est S-acyclique. Montrer que le faisceau des fonctions continues sur X est S-acyclique mais n'est pas flasque lorsque X n'est pas discret.

Problème 4.14. — Étudier les topos totalement acycliques, i.e. les topos tels que $H^q(X, F) = 0$ pour tout q > 0, tout objet X, tout faisceau abélien F.

Exercice 4.15. — Soient G un groupe discret, B_G son topos classifiant (IV 2.4). Montrer que pour tout faisceau abélien F et tout monomorphisme $X \hookrightarrow Y$, l'homomorphisme $F(Y) \to F(X)$ est surjectif. Soit E(G) le groupe G considéré comme espace homogène sous lui-même. C'est un objet de B_G . Le topos $B_{G/E(G)}$ est équivalent au topos ponctuel (IV 8). Le morphisme $E(G) \to e$ (e objet final de B_G) est un épimorphisme. Pour tout faisceau abélien F de B_G , le faisceau F|E(G) est flasque. En déduire que la propriété d'être flasque ou injectif n'est pas de caractère local.

Exercice 4.16. — On dit qu'un topos E est engendré par ses ouverts si les ouverts de E (i.e. les sous-objets de l'objet final e de E) forment une famille génératrice (I 7). Un tel topos possède la propriété suivante :

(P) Toute famille épimorphique $X_i \to X$, $i \in I$, est majorée par une famille épimorphique $U_j \to X$, $j \in J$, où les $U_j \to X$ sont des monomorphismes.

35

- a) Existe-t-il des topos qui possèdent la propriété (P) et qui ne sont pas engendrés par leurs ouverts? Les topos associés aux espaces topologiques sont engendrés par leurs ouverts. Si E est engendré par ses ouverts (resp. jouit de (P)), pour tout objet X de E, $E_{/X}$ est engendré par ses ouverts (resp. jouit de (P)). Tout sous topos d'un topos engendré par ses ouverts est engendré par ses ouverts. La propriété (P) n'est pas une propriété de caractère local
- b) Soient E en topos, Ouv(E) la catégorie des ouverts de E munie de la topologie induite. Le foncteur d'inclusion $Ouv(E) \to E$ est un morphisme de sites, d'où un morphisme de topos $\Pi : E \to Ouv(E)^{\sim}$. Le foncteur Π^* est pleinement fidèle. Le morphisme Π possède vis à vis de la 2-catégorie des topos engendrés par leurs ouverts une propriété universelle que le lecteur explicitera.
- c) Soient E un topos engendré par ses ouverts et Point(E) l'ensemble des points à isomorphismes près de E. Montrer que Point(E) est petit. Mettre une topologie sur Point(E) et définir un morphisme $Top(Point(E)) \to Ouv(E)^{\sim}$ faisant de Top(Point(E)) un sous-topos de $Ouv(E)^{\sim}$. Pour tout espace topologique X, montrer que tout morphisme de Top(X) dans E fournit un morphisme de Top(X) dans Top(Point(E)). Montrer qu'un topos engendré par ses ouverts est équivalent à un topos Top(X) (X espace topologique) si et seulement s'il possède suffisamment de

points. Montrer qu'il existe des topos engendrés par leurs ouverts qui ne sont pas équivalents à des topos Top(X) où X est un espace topologique.

- d) Soit E un topos possédant la propriété (P). Pour qu'un faisceau abélien F sur E soit flasque, il faut et il suffit que pour tout monomorphisme $X \hookrightarrow Y$, l'homomorphisme $F(Y) \to F(X)$ soit surjectif.
- e) Soit E un topos possédant la propriété (P). Montrer que la propriété pour un faisceau F d'être flasque est une propriété de nature locale.
- f) Soient E un topos engendré par ses ouverts, e l'objet final de E. Pour qu'un faisceau abélien F soit flasque il faut et il suffit que pour tout ouvert U de e, le morphisme canonique $F(e) \to F(U)$ soit surjectif.

Exercice 4.17. — (Faisceaux flasques et changement d'univers)

v

36

Soient C un \mathscr{U} -site (par exemple un \mathscr{U} -topos) et \mathscr{V} un univers contenant \mathscr{U} . Notons $\varepsilon: C^{\sim}_{\mathscr{U}} \to C^{\sim}_{\mathscr{V}}$ les catégories de faisceaux correspondantes et l'injection canonique. Soit F un \mathscr{U} -faisceau abélien flasque sur C. On se propose de montrer que εF est flasque. On remarque tout d'abord que pour tout objet X de $C^{\sim}_{\mathscr{U}}$ on a $H^q(\varepsilon X, \varepsilon F) = 0$ pour q > 0. Tout objet Y de $C^{\sim}_{\mathscr{V}}$ admet une famille épimorphique $\varepsilon X_i \to Y, i \in I$ où les $\varepsilon X_i \to Y$ sont des monomorphismes. On en conclut que $H^q(Y, \varepsilon F) = \varinjlim_{\varepsilon X \hookrightarrow Y} F(X)$. Pour montrer que ces $\varprojlim_{\sigma} q$ sont nuls pour $q \neq 0$, on peut s ramener au topos $\operatorname{Ouv}(C_{\mathscr{V}/Y})^{\sim}$ et utiliser le fait que pour ce topos, un faisceau es flasque s'il l'est localement.

5. Les $\mathbf{R}^q u_*$ et la suite spectrale de Cartan-Leray relative à un morphisme de topos

5.0. Soient $u: (E, A) \to (E', A')$ un morphisme de topos annelés, $u_* = E \to E$ le foncteur image directe. La notation u_* désignera encore l'extension aux Modules du foncteur image directe. Le foncteur u_* pour les Modules (à gauche pour fixer le idées) est exact à gauche. Ses foncteurs dérivés droits sont notés $R^q u_*$, $q \ge 0$.

Proposition 5.1. — 1) Pour tout A-Module M, le faisceau R^qu_*M est le faisceau associé au préfaisceau $X' \mapsto H^q(u^*X', M)$ $(X' \in ob E')$.

- 2) La formation des foncteurs $\mathbb{R}^q u_*$ commute aux restrictions des scalaires.
- 3) La formation des foncteurs R^qu_* commute aux localisations. De manière précise, pour tout objet X' de E', si on désigne par $u_{/X}: E_{/u^*X'} \to E'_{/X'}$ le morphisme déduit de u par localisation (IV 8), on a, pour tout A-Module M, un isomorphisme canonique

(5.1.1)
$$R^{q}(u_{/X'})_{*}(M|u^{*}X') \simeq R^{q}u_{*}(M)|X' \qquad q \geqslant 0.$$

Désignons par $\hat{u_*}: E^{\hat{}} \to E'^{\hat{}}$ le foncteur image directe pour les \mathscr{U} -préfaisceaux $(\hat{u_*M} = M \circ u^*)$. Comme u^* et u_* sont adjoints, on a un isomorphisme

$$u_* \simeq u_*^{\circ}$$
,

où est le foncteur faisceau associé pour E'. Comme les foncteurs et $\hat{u_x}$ sont exacts, on a

$$R^{q_{u_*}} \simeq \hat{u_*} \mathcal{H}^q$$
,

ce qui est une autre manière d'énoncer 1). L'assertion 2) résulte alors de 1) et de 3.5. Par définition du morphisme $u_{/X'}$ on a isomorphisme canonique (5.1.1) pour q = 0. Le cas général s'en déduit en remarquant que les foncteurs de localisation (IV 8) sont exacts et transforment les objets injectifs en objets injectifs (4.11).

Proposition 5.2. — Soient $u : E \to E'$ un morphisme de topos et S' une famille génératrice de E'. Les faisceaux M acycliques pour les foncteurs $H^{\circ}(u^*X',.)$, $X' \in S'$, sont acycliques pour le foncteur u_* . En particulier, les faisceaux flasques sont acycliques pour u_* .

Résulte de 5.1. 1).

38

Proposition 5.3. — Soient $u: E \to E'$ un morphisme de topos et M un Groupe abélien de E. On a une suite spectrale :

(5.3.1)
$$E_2^{p,q} = H^p(E', R^q u_* M) \Longrightarrow H^{p+q}(E, M).$$

Plus généralement, pour tout objet X' de E', on a une suite spectrale :

(5.3.2)
$$E_2^{p,q} = H^p(X', R^q u_* M) \Rightarrow H^{p+q}(u^* X', M).$$

Par définition des foncteurs images directe et réciproque, on a un isomorphisme $H^{\circ}(X', u_*M) \simeq H^{\circ}(u^*X', M)$. Le foncteur u_* transforme les objets injectifs en faisceaux flasques (4.6 et 4.9). Les suites spectrales proposées sont donc des suites spectrales de foncteurs composés (0.3).

Proposition 5.4. — Soient $u : E \to E'$ et $v : E' \to E''$ deux morphismes de topos. On a une suite spectrale

$$R^p v_* R^q u_* \Longrightarrow R^{p+q} (v \circ u)_*.$$

On a $v_*u_* \simeq (vu)_*$ et le foncteur u_* transforme les objets injectifs en faisceaux flasques (4.9) donc acycliques pour v_* (5.2). On a donc une suite spectrale des foncteurs composés (0.3).

6. Ext locaux et cohomologie à supports

6.0. Soient (E, A) un topos annelé, M un A-Module, à gauche pour fixer les idées. Le foncteur $N \mapsto \mathscr{H}om_A(M,N)$, sur la catégorie des A-Modules à gauches et à valeurs dans la catégorie des Groupes abéliens est exact à gauche (IV 12). Ses foncteurs dérivés droits sont notés :

(6.0.1)
$$\mathscr{E}xt_{\mathsf{A}}^{q}(\mathsf{M},\mathsf{N}).$$

En particulier, on a

v

(6.0.2)
$$\mathscr{E}xt^{\circ}_{\Lambda}(M,N) = \mathscr{H}om_{\Lambda}(M,N).$$

Par définition, on a des isomorphismes canoniques (2.1 et IV 12).

$$(6.0.3) \qquad \qquad H^{\circ}(E, \mathscr{E}\!\mathit{xt}_{A}^{\circ}(M, N)) = \operatorname{Ext}_{A}^{\circ}(E; M, N) = \operatorname{Hom}_{A}(M, N).$$

Plus généralement, pour tout objet X de E, on a (2.2)

Proposition 6.1. — 1) La formation des foncteurs $\mathcal{E}xt_A^q$ commute aux localisations. De manière précise, pour tout objet X de E, on a des isomorphismes fonctoriels :

$$(6.1.1) \qquad \qquad \mathscr{E}\!\mathit{xt}_{A}^q(M,N)|X \simeq \mathscr{E}\!\mathit{xt}_{A|X}^q(M|X,N|X).$$

- 2) Le faisceau $\mathcal{E}\mathit{xt}_A^q(M,N)$ est isomorphe au faisceau associé au préfaisceau $X \mapsto \operatorname{Ext}_A^q(X;M,N)$.
 - 3) Il existe une suite spectrale

$$(6.1.2) \qquad \qquad \operatorname{Ext}_{\mathbf{A}}^{p+q}(\mathbf{E};\mathbf{M},\mathbf{N}) \Longleftarrow \mathbf{E}_{\mathbf{2}}^{p,q} = \mathbf{H}^{p}(\mathbf{E},\mathscr{E}xt_{\mathbf{A}}^{q}(\mathbf{F},\mathbf{G})).$$

Plus généralement, pour tout objet X de E, on a une suite spectrale fonctorielle en 39 X et en les arguments M et N

$$(6.1.3) \qquad \operatorname{Ext}_{A}^{p+q}(X;M,N) \Longleftarrow E_{2}^{p,q} = \operatorname{H}^{p}(X, \operatorname{\mathscr{E}\!\mathit{xt}}_{A}^{q}(M,N)).$$

Par définition, on a un isomorphisme (6.1.1) lorsque q=0 (IV 12). Le cas général s'en déduit compte tenu de fait que les foncteurs de localisation sont exacts et transforment les Modules injectifs en Modules injectifs (2.2). Le foncteur $N\mapsto \mathscr{H}om_A(M,N)=\mathscr{E}xt_A^\circ(M,N)$ transforme les Modules injectifs en faisceaux flasques donc en faisceaux acycliques pour $H^\circ(X,.)$ (4.10). Les suites spectrales (6.1.2)) et ((6.1.3) sont des suites spectrales de foncteurs composés compte tenu de (6.0.3)) et ((6.0.4). Lorsque X varie dans E, la suite spectrale (6.1.3) fournit une suite spectrale

de préfaisceaux, d'où en passant aux faisceaux associés, une suite spectrale de faisceaux. Comme les faisceaux associés aux préfaisceaux $X \mapsto H^p(X, .)$ sont nuls lorsque $p \neq 0$ (3.1), cette suite spectrale dégénère et fournit l'isomorphisme annoncé dans 2).

Proposition 6.2. — Les foncteurs $(M, N) \mapsto \mathcal{E}xt_A^q(M, N)$, $q \geqslant 0$, forment un δ -foncteur en la variable M et la variable N. De manière explicite, pour toute suite exacte $0 \to N' \to N \to N'' \to 0$ (resp. $0 \to M' \to M \to M'' \to 0$) on a des longues suites exactes : (6.2.1)

$$\cdots \longrightarrow \mathscr{E}xt_{\mathcal{A}}^{q}(\mathcal{M}, \mathcal{N}') \longrightarrow \mathscr{E}xt_{\mathcal{A}}^{q}(\mathcal{M}, \mathcal{N}) \longrightarrow \mathscr{E}xt_{\mathcal{A}}^{q}(\mathcal{M}, \mathcal{N}'') \xrightarrow{\delta} \mathscr{E}xt_{\mathcal{A}}^{q+1}(\mathcal{M}, \mathcal{N}') \longrightarrow \cdots$$

$$(resp.$$

$$(6.2.2)$$

$$\cdots \longrightarrow \mathscr{E}xt_{\mathcal{A}}^{q}(\mathcal{M}'', \mathcal{N}) \longrightarrow \mathscr{E}xt_{\mathcal{A}}^{q}(\mathcal{M}, \mathcal{N}) \longrightarrow \mathscr{E}xt_{\mathcal{A}}^{q}(\mathcal{M}', \mathcal{N}) \xrightarrow{\delta} \mathscr{E}xt_{\mathcal{A}}^{q+1}(\mathcal{M}'', \mathcal{N}) \longrightarrow \cdots).$$

Il résulte des propriétés générales des foncteurs Ext^q que pour tout objet X de E, les foncteurs $(M, N) \mapsto \operatorname{Ext}_A^q(X; M, N)$, $q \ge 0$, forment un δ -foncteur en chacun des arguments, d'où l'assertion, en faisant varier X et en prenant le faisceau associé (6.1).

6.3. Soient (E, A) un topos annelé, M un A-Module, Z un fermé de E (IV 9), U l'ouvert complémentaire. On note $H_Z^{\circ}(E, M)$ le groupe des sections de M dont le support est contenu dans Z (IV 14) et $\mathscr{H}_Z^{\circ}(M)$ le sous-faisceau de M défini par les sections de M « à supports dans Z » (IV 14). Les foncteurs $H_Z^{\circ}(E, .)$ et $\mathscr{H}_Z^{\circ}(.)$ sont exacts à gauche (IV 14). Les foncteurs dérivés sont notés $H_Z^q(E, .)$ et $H_Z^q(.)$ respectivement et appelés les groupes (resp. faisceaux) de cohomologie de M à supports dans $Z^{(*)}$.

On a des isomorphismes canoniques (IV 14)

$$(6.3.1) \qquad \qquad H_Z^{\circ}(E,M) \simeq \operatorname{Hom}_A(A_Z,M) \simeq \operatorname{Ext}_A^{\circ}(E;A_Z,M),$$

$$\mathscr{H}_Z^\circ(M) \simeq \mathscr{H}\!\mathit{om}_A(A_Z,M) \simeq \mathscr{E}\!\mathit{xt}_A^\circ(A_Z,M),$$

d'où des isomorphismes pour tout $q \geqslant 0$

40

(6.3.3)
$$H_{\mathbf{Z}}^{q}(\mathbf{E}, \mathbf{M}) \simeq \operatorname{Ext}_{\mathbf{A}}^{q}(\mathbf{E}; \mathbf{A}_{\mathbf{Z}}, \mathbf{M}),$$

(6.3.4)
$$\mathscr{H}_{\mathbf{Z}}^{q}(\mathbf{M}) \simeq \mathscr{E}xt_{\mathbf{A}}^{q}(\mathbf{A}_{\mathbf{Z}}, \mathbf{M}).$$

On remarquera que A_Z étant un biModule, les faisceaux $\mathscr{E}\!\mathit{xt}_A^q(A_Z,M) \simeq \mathscr{H}_Z^q(M)$ sont munis canoniquement de structures de A-Module.

Pour tout objet X de E, notons $Z_{/X}$ le sous-topos fermé de $E_{/X}$ déduit de Z par localisation (c'est le complémentaire de $U \times X$). Par définition, on a des isomorphismes canoniques

$$(6.3.5) \qquad \qquad H^{\circ}(X, \mathscr{H}_{Z}^{\circ}(M)) \simeq \mathscr{H}_{Z/X}^{\circ}(E_{/X}, M|X).$$

 $^{^{(*)}}$ Comparer avec SGA 2 I pour le cas des espaces topologiques ordinaires, ainsi que l'exposé de Hartshorne cité p-80 plus bas.

On pose

v

$$(6.3.6) \qquad \qquad H^q_Z(X,M) \simeq H^q_{Z/X}(E_{/X},M|X).$$

Compte-tenu de (6.3.2), on a des isomorphismes canoniques

(6.3.7)
$$H_Z^q(X, M) \simeq \operatorname{Ext}_A^q(X; A_Z, M).$$

Proposition 6.4. — 1) La formation des foncteurs \mathscr{H}_Z^q commute à la localisation. **41** De manière précise, pour tout objet X de E, et tout A-Module M, on a des isomorphismes canoniques

(6.4.1)
$$\mathscr{H}_{Z}^{\circ}(M)|X \simeq \mathscr{H}_{Z/X}^{q}(M|X).$$

- 2) Le faisceau $\mathscr{H}^q_Z(M)$ est le faisceau associé au préfaisceau $X \mapsto H^q_Z(X,M)$.
- 3) Il existe une suite spectrale:

(6.4.2)
$$H_{\mathbf{Z}}^{p+q}(\mathbf{E}, \mathbf{M}) \longleftarrow H^{p}(\mathbf{E}, \mathscr{H}_{\mathbf{Z}}^{q}(\mathbf{M})).$$

Plus généralement, pour tout objet X de E, il existe une suite spectrale

On ne fait que traduire la proposition 6.1 à l'aide du dictionnaire 6.3.

Proposition 6.5. — Avec les notations de 6.3, notons $j: U \to E$ le morphisme canonique. Pour tout A-Module M, il existe une suite exacte de faisceaux :

$$(6.5.1) \hspace{1cm} 0 \longrightarrow \mathscr{H}_{\mathbf{Z}}^{\circ}(\mathbf{M}) \longrightarrow \mathbf{M} \longrightarrow j_{*}(\mathbf{M}|\mathbf{U}) \longrightarrow \mathscr{H}_{\mathbf{Z}}^{1}(\mathbf{M}) \longrightarrow 0,$$

et des isomorphismes pour $q\geqslant 2$:

(6.5.2)
$$\mathscr{H}_{\mathbf{Z}}^{q}(\mathbf{M}) \simeq \mathscr{E}xt_{\mathbf{A}}^{q-1}(\mathbf{A}_{\mathbf{U}}, \mathbf{M}) \simeq \mathbf{R}^{q-1}j_{x}(\mathbf{M}|\mathbf{U}).$$

On a de plus, une longue suite exacte

$$(6.5.3) \quad \cdots \longrightarrow \mathrm{H}^q_\mathrm{Z}(\mathrm{E},\mathrm{M}) \longrightarrow \mathrm{H}^q(\mathrm{E},\mathrm{M}) \longrightarrow \mathrm{H}^q(\mathrm{U},\mathrm{M}) \longrightarrow \mathrm{H}^{q+1}_\mathrm{Z}(\mathrm{E},\mathrm{M}) \longrightarrow \cdots (*)$$

et plus généralement, pour tout objet X de E, on a une longue suite exacte

$$(6.5.4) \cdots \longrightarrow \operatorname{H}^q_{\operatorname{Z}}(\operatorname{X}, \operatorname{M}) \longrightarrow \operatorname{H}^q(\operatorname{X}, \operatorname{M}) \longrightarrow \operatorname{H}^q(\operatorname{X} \times \operatorname{U}, \operatorname{M}) \longrightarrow \operatorname{H}^{q+1}_{\operatorname{Z}}(\operatorname{X}, \operatorname{M}) \longrightarrow \cdots$$

Par définition de A_Z, on a une suite exacte (IV 14)

$$0 \longrightarrow A_U \longrightarrow A \longrightarrow A_Z \longrightarrow 0.$$

Les foncteurs $\mathscr{E}\!\mathit{xt}^q_A(A,.)$ sont nuls pour q>0. On a $\mathscr{H}\!\mathit{om}_A(A_U,M)\simeq j_*(M|U)$ 42

 $^{^{(*)}}$ cette suite exacte précise le rôle des invariants cohomologiques globaux $H^q_Z(E,N)$ comme des « groupes de cohomologie de Emodulol'ouvert U, à coefficient dans M ».

32 J.L. VERDIER v

(IV 14) et par suite (2.2) $\mathscr{E}xt_A^q(A_U, M) \simeq R^q j_*(M|U)$. Enfin $\mathscr{E}xt_A^q(A_Z, M) \simeq \mathscr{H}_Z^q(M)$ (6.3.4). La longue suite exacte (6.2.2) fournit dans ce cas (6.5.1) et (6.5.2). Les suites exactes (6.5.3) et (6.5.4) résultent du dictionnaire 6.3 et de la longue suite exacte du δ -foncteur $\operatorname{Ext}_A^q(X; \cdot, M), q \geqslant 0$, associée à (6.5.5).

Proposition 6.6. — 1) Les faisceaux flasques sont acycliques pour les foncteurs \mathscr{H}_{Z}° et $H_{Z}^{\circ}(X,.)$.

2) Les foncteurs \mathscr{H}_{Z}° et $H_{Z}^{\circ}(X,.)$ commutent aux restrictions des scalaires.

Soit M un faisceau flasque. La suite exacte (6.5.4) fournit des égalités $H_Z^q(X, M) = 0$ pour tout X et tout $q \ge 2$ et une suite exacte

$$0 \longrightarrow H_{\mathbf{Z}}^{\circ}(X, M) \longrightarrow H^{\circ}(X, M) \longrightarrow H^{\circ}(X \times U, M) \longrightarrow H_{\mathbf{Z}}^{1}(X, M) \longrightarrow 0.$$

Mais le faisceau M étant flasque, le morphisme $H^{\circ}(X,M) \to H^{\circ}(X \times U,M)$ est surjectif 4. Par suite $H^1_Z(X,M) = 0$ et M est acyclique pour $H^{\circ}_Z(X;M)$. En passant aux faisceaux associés, on en déduit que M est acyclique pour le foncteur $\mathscr{H}^{\circ}_Z(6.4)$. Il est clair que les foncteurs \mathscr{H}°_Z et $H^{\circ}_Z(X,.)$ commutent aux restrictions des scalaires et comme les faisceaux flasques sont acycliques pour ces deux foncteurs, la propriété 2) en résulte.

Proposition 6.7. — Soient (E, A) un topos annelé, Z un fermé de E, U l'ouvert complémentaire, M et N deux A-Modules. Il existe des isomorphismes fonctoriels en M et N compatibles avec les changements de fermés :

$$H_Z^{\circ}(\mathscr{H}\mathit{om}_A(M,N)) \simeq \mathscr{H}\mathit{om}_A(M,\mathscr{H}_Z^{\circ}(N)) \simeq \mathscr{H}\mathit{om}_A(M \otimes_A A_Z,N).$$

Résulte de (IV 14) compte-tenu de (6.3.2).

6.8. On pose

43

(6.8.1)
$$\mathscr{H}om_{A,Z}(M,N) = \mathscr{H}_{Z}^{\circ}(\mathscr{H}om_{A}(M,N)).$$

Le foncteur $N \mapsto \mathscr{H}om_{A,Z}(M,N)$ est exact à gauche. Ses foncteurs dérivés sont notés $\mathscr{E}xt^q_{A,Z}(M,N)$: ce sont les faisceaux $\mathscr{E}xt$ à supports dans Z. On a donc

(6.8.2)
$$\mathscr{E}xt_{A,Z}^{\circ}(M,N) = \mathscr{H}om_{A,Z}(M,N).$$

Posons $M_Z = M \otimes_A A_Z$. Il résulte de IV 14 que M_Z est l'image directe sur E de l'image réciproque sur Z de M. On a donc, compte tenu de 6.7 des isomorphismes

(6.8.3)
$$\mathscr{E}xt_{A,Z}^{q}(M,N) \simeq \mathscr{E}xt_{A}^{q}(M_{Z},N).$$

Passons maintenant aux invariants globaux. On pose

(6.8.4)
$$\operatorname{Hom}_{A,Z}(M,N) = \operatorname{Ext}_{A,Z}^{\circ}(E;M,N) = \operatorname{H}_{Z}^{\circ}(E,\mathscr{H}om_{A}(M,N)).$$

Le groupe $\operatorname{Hom}_{A,Z}(M,N)$ est le sous-groupe du groupe des morphismes de M dans N dont le support est dans Z (IV 14) i.e. qui sont nuls sur U. Plus généralement, pour tout objet X de E, on pose

(6.8.5)
$$\operatorname{Ext}_{\Lambda}^{\circ}(X; M, N) = \operatorname{H}_{Z}^{\circ}(X, \mathcal{H}om_{\Lambda}(M, N)).$$

Les foncteurs $N \mapsto \operatorname{Ext}_{A,Z}^{\circ}(X;M,N)$ sont exacts à gauche. Les foncteurs dérivés sont notés $\operatorname{Ext}_{A,Z}^q(X,M,N)$. Ce sont les *groupes* Ext à supports dans Z. Les définitions (6.3.6), (6.8.1) et (6.8.5) et les isomorphismes 6.7 fournissant des isomorphismes

$$(6.8.6) \qquad \qquad \operatorname{Ext}_{A,Z}^{\circ}(X;M,N) \simeq \begin{cases} \operatorname{H}^{\circ}(X, \mathscr{H}om_{A,Z}(M,N)), \\ \operatorname{Ext}^{\circ}(X;M, \mathscr{N}_{Z}^{\circ}(N)), \\ \operatorname{Ext}^{\circ}(X;M_{Z},N). \end{cases}$$

v

Le dernier isomorphisme de (6.8.6) fournit des isomorphismes

$$(6.8.7) \qquad \qquad \operatorname{Ext}\nolimits_{A,Z}^q(X;M,N) \simeq \operatorname{Ext}\nolimits_A^q(X;M_Z,N).$$

Proposition 6.9. — 1) Il existe deux suites spectrales fonctorielles en M et N compatibles avec les changements de fermés

$$(6.9.1) \qquad \mathscr{E}\!\mathit{xt}_{\mathrm{A},\mathrm{Z}}^{p+q}(\mathrm{M},\mathrm{N}) \Longleftarrow \begin{cases} \mathrm{E}_{2}^{p,q} = \mathscr{H}_{\mathrm{Z}}^{p}(\mathscr{E}\!\mathit{xt}_{\mathrm{A}}^{q}(\mathrm{M},\mathrm{N})), \\ '\mathrm{E}_{2}^{p,q} = \mathscr{E}\!\mathit{xt}_{\mathrm{A}}^{p}(\mathrm{M},\mathscr{H}_{\mathrm{Z}}^{q}(\mathrm{N})). \end{cases}$$

2) Il existe trois suites spectrales fonctorielles en X, M et N compatibles avec les 44 changements de fermés

$$(6.9.2) \qquad \operatorname{Ext}_{A,Z}^{p+q}(M,N) \Longleftrightarrow \begin{cases} \operatorname{E}_{2}^{p,q} = \operatorname{H}_{Z}^{p}(X,\mathscr{E}xt_{A}^{q}(M,N)), \\ '\operatorname{E}_{Z}^{p,q} = \operatorname{H}^{p}(X,\mathscr{E}xt_{AZ}^{q}(M,N)), \\ "\operatorname{E}_{2}^{p,q} = \operatorname{Ext}_{A}^{p}(X;M,\mathscr{H}_{Z}^{q}(N)). \end{cases}$$

3) Les faisceaux $\mathcal{E}\!xt_{A,Z}^q(M,N)$ sont canoniquement isomorphes aux faisceaux associés aux préfaisceaux $X \mapsto \operatorname{Ext}_{A,Z}^q(X;M,N)$.

Lorsque N est injectif, le faisceau $\mathcal{H}om_{A}(M,N)$ est flasque 4.10 donc acyclique pour \mathcal{H}_{Z}° (6.6). La première suite spectrale de (6.9.1) est une suite spectrale de foncteurs composés (6.8.1). De même, lorsque N est injectif, $\mathcal{H}_{Z}^{\circ}(N)$ est injectif (4.11) et la deuxième suite spectrale de (6.9.1) est une suite spectrale de foncteurs composés déduite de 6.7. Les suites spectrales de (6.9.2) sont des suites spectrales de foncteurs composés déduites de la définition (6.8.5) et les deux premiers isomorphismes de (6.8.6). Enfin, en faisant varier X dans la deuxième suite spectrale de (6.9.2) et un prenant les faisceaux associés, on obtient une suite spectrale de faisceaux qui dégénère grâce à 3.1 et qui fournit les isomorphismes de 3).

Proposition 6.10. Les foncteurs $(M,N) \mapsto \mathscr{E}xt_{A,Z}^q(M,N), \ q \geqslant 0, \ et \ (M,N) \mapsto \operatorname{Ext}_{A,Z}^q(X;M,N), \ q \geqslant 0, \ sont \ des \ \delta$ -foncteurs en chacune des variables M et N. En

notant M_U le faisceau $M\otimes_A A_U$ (cf. IV 11), on a une longue suite exacte (6.10.1)

$$\ldots \xrightarrow{\delta} \mathscr{E}\!\mathit{xt}_{A,Z}^q(M,N) \longrightarrow \mathscr{E}\!\mathit{xt}_A^q(M,N) \longrightarrow \mathscr{E}\!\mathit{xt}_A^q(M_U,N) \xrightarrow{\delta} \mathscr{E}\!\mathit{xt}_{A,Z}^{q+1}(M,N) \longrightarrow \ldots$$

et une suite exacte analogue par les groupes Ext.

Les foncteurs $\mathscr{E}xt_A^q(.,.)$ et $\operatorname{Ext}_A^q(X;.,.)$ forment des δ -foncteurs par rapport à chacune des variables (6.2) et le foncteur $M \mapsto M_Z$ est exact car A_Z est plat (1.3.3). La première assertion résulte donc des isomorphismes (6.8.3) et (6.8.7). La suite exacte (6.10.1) et la suite exacte analogue pour les groupes Ext est la longue suite exacte du δ -foncteur

$$\mathscr{E}xt_{A}^{q}(.,N), q \geqslant 0 (resp. \operatorname{Ext}_{A}^{Q}(X;.,N), q \geqslant 0)$$

relative à la suite exacte $0 \to M_U \to M \to M_Z \to 0$, compte tenu de (6.8.3) et (6.8.7).

6.11. Indiquons brièvement comment on peut étendre ces résultats au cas des familles de supports. Soit E un topos. Pour tout objet X de E désignons par Fer(X) l'ensemble des fermés du topos $E_{/X}$. Cet ensemble est en correspondance biunivoque, par passage au complémentaire, avec l'ensemble des ouverts du topos $E_{/X}$, i.e. avec l'ensemble des sous-objets de X (IV 8). Le préfaisceau Fer : $X \to Fer(X)$ est en fait un \mathscr{U} -faisceau ainsi qu'on le vérifie immédiatement, il est donc représentable. En d'autres termes, il existe un objet de E noté encore Fer et un fermé Z_{Fer} de $E_{/Fer}$ tel que pour tout X, tout élément de Fer(X) se déduise de Z_{Fer} par un changement de base par un morphisme $u_Z : X \to Fer$ uniquement déterminé par Z.

Définition 6.12. — On appelle famille de supports de E un sous-ensemble Φ de l'ensemble des fermés de E qui possède les propriétés suivantes :

- (S1) La réunion d'une famille finie d'éléments de Φ appartient à Φ
- (S2) Tout fermé de E contenu dans un élément de Φ est un élément de Φ .

6.12.1. Soient E un topos, Φ une famille de supports de E, X un objet de E. On désigne par $\Phi(X)$ la plus petite famille de supports de $E_{/X}$ qui contient les fermés de $E_{/X}$ déduits de fermés de Φ par le changement de base $X \to e$ (e objet final de E). Le foncteur $X \to \Phi(X)$ est un sous-préfaisceau du faisceau Fer. Il est donc séparé.

6.12.2. On dit qu'une famille Φ de supports de E est de caractère local si elle possède la propriété suivante :

(CL) Pour toute famille épimorphique $(X_i \to e)$, $i \in I$ (où e est l'objet final de E) la suite d'ensembles

$$\Phi \longrightarrow \prod_i \Phi(\mathbf{X}_i) \rightrightarrows \prod_{i,j} \Phi(\mathbf{X}_i \times \mathbf{X}_j)$$

est exacte.

46

Soit le faisceau associé au préfaisceau $X \mapsto \Phi(X)$ (6.12.1). La condition (CL) est équivalente à la condition que le morphisme canonique $\Phi \to (e)$ soit une bijection. (cf. la construction du faisceau associé dans II dans le cas d'un préfaisceau séparé).

47

Pour vérifier (CL) on peut donc se limiter à une famille finale de familles épimorphiques $(X_i \to e), i \in I$.

Exemple 6.12.3. — 1) Soit Z un fermé de E. L'ensemble des fermés de E contenus dans Z est une famille de supports de E. Elle est de caractère local.

- 2) Soit T un espace topologique et Φ une famille de supports paracompactifiants de T [7]. La famille Φ n'est pas, en général, de caractère local.
- 3) Soient T un espace topologique et p un entier. La famille de Φ_p des fermés de T de codimension de Krull $\geqslant p$, est une famille de supports de T. Elle est de caractère
- 4) Soit E un topos possédant la propriété suivante : toute famille épimorphique $(X_i \to e), i \in I$, est majorée par une famille épimorphique finie. Alors toute famille de supports de E est de caractère local. En effet, en utilisant l'exemple 1), il suffit de montrer qu'une limite inductive filtrante Φ_{λ} de familles de caractère local est une famille de caractère local, ce qui résulte immédiatement du passage à la limite inductive sur la suite d'ensembles

$$\Phi_{\lambda} \longrightarrow \prod_{i} \Phi_{\lambda}(\mathbf{X}_{i}) \rightrightarrows \prod_{i,j} \Phi_{\lambda}(\mathbf{X}_{i} \times \mathbf{X}_{j}),$$

- où $(X_i \to e)$, $i \in I$, est une famille épimorphique finie. En effet d'après 6.12.2 et l'hypothèse sur E, on peut se limiter à des familles épimorphiques finies pour vérifier les conditions (CL) et comme les limites inductives filtrantes commutent aux limites projectives finies (I 2), l'exactitude de ces suites d'ensembles est conservée par passage à la limite inductive.
- 5) Soit E un topos cohérent (VI 2.3). Alors d'après ce qui précède toute famille de support de E est de caractère local.
- 6.13. Soient (E, A) un topos annelé, Φ une famille de supports de E, N un A-Module (à gauche pour fixer les idées), X un objet de E. On pose

(6.13.1)
$$\mathscr{H}_{\Phi}^{\circ}(N) = \lim_{\longrightarrow} \mathscr{H}_{Z}^{\circ}(N),$$

$$\begin{split} \mathscr{H}_{\Phi}^{\circ}(N) &= \varinjlim_{Z \in \Phi} \mathscr{H}_{Z}^{\circ}(N), \\ (6.13.2) & H_{\Phi}^{\circ}(E,N) &= \varinjlim_{Z \in \Phi} H_{Z}^{\circ}(E,N). \end{split}$$

Soit M un A-Modules à gauche, on pose :

v

(6.13.3)
$$\mathscr{E}xt_{A,\Phi}^{\circ}(M,N) = \mathscr{H}om_{A,\Phi}(M,N) = \lim_{\substack{\longrightarrow\\Z \in \Phi}} \mathscr{E}xt_{A,Z}^{\circ}(M,N),$$

$$(6.13.3) \qquad \mathscr{E}xt_{A,\Phi}^{\circ}(M,N) = \mathscr{H}om_{A,\Phi}(M,N) = \varinjlim_{Z \in \Phi} \mathscr{E}xt_{A,Z}^{\circ}(M,N),$$

$$(6.13.4) \qquad \operatorname{Ext}_{A,\Phi}^{\circ}(X;M,N) = \operatorname{Hom}_{A|X,\Phi(X)}(M|X,N|X) = \varinjlim_{Z \in \Phi} \operatorname{Ext}_{A,Z}^{\circ}(X;M,N).$$

On a des isomorphismes canoniques:

(6.13.5)
$$\mathscr{E}\!\mathit{xt}_{A,\Phi}^{\circ}(M,N) \simeq \mathscr{H}_{\Phi}^{\circ}(\mathscr{E}\!\mathit{xt}_{A}^{\circ}(M,N)),$$

J.L. VERDIER

(6.13.6)
$$\operatorname{Ext}_{A,\Phi}^{\circ}(X;M,N) \simeq \operatorname{H}^{\circ}((X,\mathscr{E}xt_{A}^{\circ}(M,N)).$$

36

48

Lorsque Φ est la famille des fermés contenus dans un fermé Z, on a des isomorphismes:

$$\begin{cases} H_{\Phi}^{\circ} \simeq \mathscr{H}_{Z}^{\circ} \\ H_{\Phi}^{\circ} \simeq H_{Z}^{\circ} \\ \mathscr{E}xt_{A,\Phi}^{\circ}(.,.) \simeq \mathscr{E}xt_{A,Z}^{\circ}(.,.) \\ \operatorname{Ext}_{A,\Phi}^{\circ}(X;.,.) \simeq \operatorname{Ext}_{A,Z}^{\circ}(X;.,.). \end{cases}$$
 Les limites inductives qui définissent les foncteurs précédences foncteurs sont exacts à gauche. Leurs foncteurs dérivés

Les limites inductives qui définissent les foncteurs précédents sont filtrantes. Par suite ces foncteurs sont exacts à gauche. Leurs foncteurs dérivés droites sont notés :

(6.13.8)
$$\mathcal{H}_{\Phi}^{q}, \mathcal{H}_{\Phi}^{q}, \mathscr{E}xt_{A,\phi}^{q}(.,.), \operatorname{Ext}_{A,\Phi}^{q}(X;.,.).$$

Ils se calculent eux aussi par limites inductives des foncteurs \mathcal{H}_{Z}^{q} , H_{Z}^{q} , etc. pour Z parcourant Φ .

Des isomorphismes (6.13.5) et (6.13.6), on tire deux suites spectrales par passage à la limite inductive sur la première suite spectrale de (6.9.1) et la première suite spectrale de (6.9.2):

(6.13.9)
$$\mathscr{E}xt_{\Lambda,\Phi}^{p+q}(M,N) \Leftarrow E_2^{p,q} = \mathscr{H}_{\Phi}^p(\mathscr{E}xt_{\Lambda}^q(M,N)),$$

(6.13.10)
$$\operatorname{Ext}_{A \Phi}^{p+q}(X; M, N) \Leftarrow \operatorname{E}_{2}^{p,q} = \operatorname{H}_{\Phi}^{p}(X, \operatorname{\mathscr{E}xt}_{A}^{q}(M, N)).$$

6.14. Avec les notations de 6.13, on a, sans hypothèse sur Φ , un morphisme fonctoriel

$$(6.14.1) \theta: H^{\circ}_{\Phi}(N) \longrightarrow H^{\circ}(E, \mathscr{H}^{\circ}_{\Phi}(N)).$$

Ce morphisme est toujours injectif mais n'est pas en général un isomorphisme. Cependant, si Φ est de caractère local, le morphisme θ est un isomorphisme ainsi qu'on le vérifie immédiatement. De même si Φ est de caractère local, on a un isomorphisme

(6.14.2)
$$\theta' : \operatorname{Ext}_{A,\Phi}^{\circ}(E; M, N) \simeq \operatorname{H}^{\circ}(E, \operatorname{\mathscr{E}\!\mathit{xt}}_{A,\Phi}^{\circ}(M, N)).$$

Proposition 6.15. — Soient (E, A) un topos annelé, tel que E soit cohérent (VI) Φ une famille de supports de E, M et N deux A-Modules. Il existe deux suites spectrales :

(6.15.1)
$$\mathbf{H}_{\Phi}^{p+q}(\mathbf{E}, \mathbf{N}) \Leftarrow \mathbf{E}_{2}^{p,q} = \mathbf{H}_{\Phi}^{p}(\mathbf{E}, \mathscr{H}_{\Phi}^{q}(\mathbf{N})),$$

(6.15.2)
$$\operatorname{Exp}_{A \Phi}^{p+q}(E; M, N) \Leftarrow E_2^{p,q} = H^p(E, \mathscr{E}xt_{A \Phi}^q(M, N)).$$

Ces suites spectrales se déduisent de la suite spectrale (6.4.2) et de la deuxième suite spectrale (6.9.2) par passage à la limite inductive sur les fermés Z de Φ , compte tenu de ce que la cohomologie d'un topos cohérent commute aux limites inductives de faisceaux (IV 5).

V

6.16. Signalons, sans démonstration, qu'on peut étendre au cas des famille de supports la deuxième suite spectrale de (6.9.1) et la troisième suite spectrale de (6.9.2) (avec X= objet final de E) en supposant que le topos E est cohérent et que le Module M est parfait [13].

Enfin on peut aussi généraliser la notion de familles de supports en introduisant les préfaisceaux de familles de supports, les faisceaux de familles de supports et les groupes et faisceaux de cohomologie correspondants^(*).

7. Appendice : Cohomologie de Čech

En développant une idée due à P. Cartier, on montre dans ce paragraphe comment on peut dans un topos quelconque, calculer la cohomologie d'un faisceau à l'aide de recouvrements. Pour la théorie classique des espaces paracompacts, on renvoie à [7]; pour une autre méthode qui s'applique à certains topos, et en particulier au topos étale, voir [14].

7.1. Squelette et cosquelette. —

7.1.0. Soit \triangle la catégorie des simplexes types (les objets de \triangle sont les ensembles ordonnés $\Delta_n = [0, \dots, n]$, les morphismes sont les applications croissantes). Soient E un \mathscr{U} -topos et \triangle (E) de catégorie des préfaisceaux sur \triangle à valeur dans E, autrement dit la catégorie des objets semi-simpliciaux de E. Désignons par $\triangle[n]$ la sous-catégorie pleine de \triangle définie par les objets Δ_p , $p \leq n$, par $i_n : \triangle[n] \to \Delta$ le foncteur d'inclusion et par \triangle E[n] la catégorie des préfaisceaux sur $\triangle[n]$ à valeur dans E, autrement dit, la catégorie des objets semi-simpliciaux tronqués à l'ordre n de E. Dáprès I 5.1, on a une suite de trois foncteurs adjoints (I 5.3)

$$\triangle \mathbf{E}[n] \xrightarrow{i_{n}!} \triangle \mathbf{E}$$

$$i_{n*} \longrightarrow \triangle \mathbf{E}$$

où le foncteur i_n^* est le foncteur restriction à la catégorie $\Delta[n]$, et où les foncteurs i_{n*} et $i_{n!}$ sont respectivement ses adjoints à droite et à gauche. On notera que ΔE et $\Delta E[n]$ sont des \mathscr{U} -topos (IV 1.2) et que (i_n^*, i_{n*}) est un morphisme de topos (IV 3.1) qui est un plongement de $\Delta E[n]$ dans ΔE (I 5.6. et IV 9.1.1).

Définition 7.1.1. — On note sk_n (resp. cosk_n) et on appelle foncteur squelette d'ordre n (resp. foncteur cosquelette d'ordre n) le foncteur $i_n!i_n^*$ (resp. $i_{n*}i_n^*$) de $\triangle_{\operatorname{E}}$ dans $\triangle_{\operatorname{E}}$.

Les foncteurs squelette et cosquelette sont d'un usage constant en théorie des ensembles semi-simpliciaux [3].

49

^(*)cf. [12] chap.IV, § 1 (Lecture Notes 20, Springer) pour le développement de ces notions sous forme de fugue avec variations.

Proposition 7.1.2. — 1) Le morphisme d'adjonction $\operatorname{sk}_n \to \operatorname{id}$ est en monomorphisme. Les morphismes canoniques $\operatorname{sk}_n \operatorname{sk}_m \to \operatorname{sk}_n (\operatorname{resp.} \operatorname{cosk}_n \to \operatorname{cosk}_n \operatorname{cosk}_m)$ sont des isomorphismes lorsque $n \leq m$ (resp. $n \geq m$).

2) Soit $u : E \to E'$ un morphisme de topos. Le foncteur u^* , prolongé aux objets semi-simpliciaux et semi-simpliciaux tronqués, commute aux foncteurs $i_n!$, i_n^* , sk_n , cosk_n .

La première assertion résulte immédiatement des définitions. Pour démontrer 2), il suffit de constater que, d'après I 5.1, les foncteurs $i_{n!} \dots, \cos k_n$ se calculent à l'aide de limites inductives et de limites projectives finies.

7.2. Un lemme d'acyclicité. —

51

7.2.0. Soit M un groupe abélien de E. L'homologie d'un objet semi-simplicial K de k, à coefficients dans M, se définit de la manière usuelle : On considère d'abord A(K), le groupe semi-simplicial abélien libre engendré par K, puis in forme le produit tensoriel $M \otimes_Z A(K)$; on obtient ainsi un groupe semi-simplicial abélien de E. On considère alors le complexe de groupes abélien associé (en formant le somme alternée des opérateurs bord) et on en prend l'homologie. Les objets d'homologie sont notés $H_i(K, M)$. Ce sont des groupes abéliens de E.. Lorsque M est le groupe Z_E (groupe abélien libre engendré par l'objet final de E), on note plus simplement $H_i(K)$. Les groupes $H_i(K)$ sont appelés les groupes d'homologie de K. On dit qu'un objet semi-simplicial K est acyclique si pour tout groupe abélien M de E, les groupes $H_i(K, M)$ sont nuls (i > 0) ou, ce qui est équivalent, si les groupes $H_i(K, M)$ sont nuls (i > 0).

La formation de l'homologie commute aux images réciproques par les morphismes de topos.

Le but de ce numéro est de prouver le lemme suivant :

Lemme 7.2.1. — Soient E un topos, K. et L. deux objets semi-simpliciaux de E, v.: K. \rightarrow L. un morphisme d'objets semi-simpliciaux, n un entier $\geqslant 0$. On suppose que le morphisme v possède les propriétés :

- 1) Pour tout entier $p < n \ (p \geqslant 0)$ le morphisme $v_p : K_p \to L_p$ est un isomorphisme.
- 2) Le morphisme $K_n \xrightarrow{v_n} L_n$ est un épimorphisme.
- 3) Les morphismes canoniques $K. \to \operatorname{cosk}_n(K.)$, $L. \to \operatorname{cosk}_n(L.)$ sont des isomorphismes.

Alors, pour tout entier p, le morphisme v_p est un épimorphisme et le morphisme v. induit un isomorphisme sur les objets d'homologie.

Remarque. — La démonstration montre en fait, qu'en adoptant une définition convenable de l'homotopie dans les topos, le morphisme v. est une équivalence d'homotopie.

Preuve. — On peut supposer que E est le topos des faisceaux sur un petit site C (IV 1) et que par suite E est un sous-topos d'un topos E' ayant suffisamment de foncteurs

fibres (par exemple le topos C^). Notons $a^* : E' \to E$ le foncteur image inverse par le morphisme de plongement $E \hookrightarrow E'$. Soit

$$v \cdot [n] : \mathbf{K} \cdot [n] \longrightarrow \mathbf{L} \cdot [n]$$

le morphisme d'objets semi-simpliciaux tronqués obtenu en tronquant v. à l'ordre n. Notons $L \cdot [n]'$ l'image (dans E') de $K \cdot [N]$ par $v \cdot [n]$, $v \cdot [N]' : K \cdot [n] \to L \cdot [n]'$ le morphisme induit par $v \cdot [n]$. Posons $L! = i_{n*}L \cdot [n]'$, $K! = i_{n*}K \cdot [n]$, $v! = i_{n*}v \cdot [n]'$ (le foncteur i_{n*} est ici relatif à E'). D'après 1), le morphisme $v! : K! \to L!$ possède les propriétés 1), 2), 3) du lemme. De plus, d'après 2), 3) et 7.1.2, le morphisme $a^*v!$ n'est autre que V. Il suffit donc de démontrer le lemme pour v! et par suite on peut supposer que E possède suffisamment de foncteurs fibres; donc, en utilisant ces foncteurs fibres, on peut se ramener au cas où E est la catégorie des ensembles.

On constate tout d'abord que les hypothèse du lemme sur le morphisme V· sont stables par tout changement de bases M. \rightarrow L. où M. est un cosquelette d'ordre n. Par suite la fibre P. de v. en un point base quelconque de L. est du type i_{n*} P.[n] où P.[n] est un complexe non vide tronqué à l'ordre n de la forme

$$(7.2.2) P_n \longrightarrow e \longrightarrow e \longrightarrow e \longrightarrow \cdots \longrightarrow e.$$

Notons, pour tout entier i, δ_i l'ensemble semi-simplicial bord du simplexe . Tout morphisme de δ_i dans P. se prolonge en un morphisme de i dans P. En effet, la propriété est évidente si $i \geq n$ car P. est un cosquelette d'ordre n et elle est claire pour i < n d'après la description (7.2.2). Comme P. est un complexe de Kan, P. est homotopiquement trivial [6]. Notons que le morphisme v est une fibration au sens de Kan [6]. Comme les fibres de cette fibration sont homotopiquement triviales, v induit un isomorphisme sur les groupes d'homotopie de K. et L. en tous les points bases de K.. D'après le théorème d'Hurwitz, ceci implique que v induit un isomorphisme sur l'homologie [6]. Ceci démontre la deuxième assertion de lemme. Pour démontrer la première assertion, on remarque que tout morphisme d'un complexe tronqué à l'ordre n dans L.[n] se relève en un morphisme dans K.[n]. Par suite, d'après 3), tout morphisme d'un complexe dans L. se relève en un morphisme dans L.. Donc v est surjectif.

7.3. Hyper-recouvrements. —

7.3.0. Soit C un site, appartenant à l'univers U, où les produits fibrés et les produits de deux objets soient représentables. Désignons par $C^{\hat{}}$ le topos des U-préfaisceaux sur C et par $C^{\hat{}}$ le topos des U-faisceaux sur C. Un objet K de $C^{\hat{}}$ est dit semi-représentable s'il est isomorphe à une somme directe de préfaisceaux représentables.

Soit SR(C) la sous-catégorie pleine de C définie par les objets semi-représentables. Dans la catégorie SR(C) les limites projectives pour des catégories d'indices finies non vides sont représentables, et le foncteur d'inclusion $SR(C) \hookrightarrow C$ commute à ces limites projectives finies. D'après une remarque déjà faite, on en déduit que si K. est

un objet semi-simplicial tronqué à l'ordre n de C dont tous les objets sont semi-représentables, le prolongement $i_n^+(K)$ possède la même propriété. Donc si K. est un objet semi-simplicial de C dont tout objets sont semi-représentables, alors pour tout n, l'objet $\cosh_n(K)$ possède la même propriété.

7.3.1. Définitions et notation. —

53

54

- 7.3.1.1. Soit p > 0 un entier. Un objet semi-simplicial K. de C est appelé un hyper-recouvrement de type p de C, ou lorsqu'aucune confusion n'en résulte, un hyper-recouvrement de type p, s'il possède les propriétés suivantes :
 - HR1) Pour tout entier $n \ge 0$, K_n est semi-représentable.
 - HR2) Le morphisme canonique $K. \to cosk_p(K.)$ est un isomorphisme.
- HR3) Pour tout entier $n \ge 0$ le morphisme canonique de préfaisceaux : $K_{n+1} \to (\cos k_n(K.))_{n+1}$ est un isomorphisme couvrant de préfaisceaux (II 6.2). Le morphisme canonique de préfaisceaux $K_{\circ} \to e$, où e est l'objet final de C, est un morphisme couvrant de préfaisceaux.
- 7.3.1.2. Un hyper-recouvrement de type p est un hyper-recouvrement de type q pour tout $q \ge p$. Un objet semi-simplicial K. sera appelé un hyper-recouvrement (de C) s'il possède les propriétés HR 1) et HR 3).
- 7.3.1.3. On désignera par HR_p (resp. HR) et on appellera catégorie des hyperrecouvrements de type p (resp. catégorie des hyper-recouvrements) la catégorie suivante :
- a) Les objets de HR_p (resp. HR) sont les hyper-recouvrements de type p (resp. les hyper-recouvrements).
- b) Soient K. et L. deux objets de HR_p (resp. HR). Un morphisme de HR_p (resp. HR) de source K. et de but L. est un morphisme $v.: K. \to L$. d'objets semi-simpliciaux de \widehat{C} .
- 7.3.1.4. Soient C un site où les produits fibrés soient représentables et X un objet de C. Un hyper-recouvrement de X (resp. un hyper-recouvrement de type p de X) sera un hyper-recouvrement du site C/X (resp. un hyper-recouvrement de type p de C/X). On définit de même la catégorie des hyper-recouvrements de X (resp. du hyper-recouvrement de type p de X). On a une suite de foncteurs d'inclusion :

$$\cdots \operatorname{HR}_p \hookrightarrow \operatorname{HR}_{p+1} \hookrightarrow \cdots \hookrightarrow \operatorname{HR}.$$

Ces foncteurs sont pleinement fidèles. Nous noterons HR_{∞} la limite inductive des catégories HR_p .

7.3.1.6. Désignons, pour tout entier $n \geq 0$, par $\binom{c}{n}$ l'objet semi-simplicial type de dimension n à valeur dans la catégorie des ensembles, i.e. le foncteur sur \triangle représenté par l'ensemble ordonné [0,n]. On désigne par $\binom{c}{n}$ le préfaisceau sur C (à valeur dans la catégorie des ensembles semi-simpliciaux constant de valeur n. Le préfaisceau $\binom{c}{n}$ est donc un préfaisceau d'ensemble semi-simplicial. Les deux injection canoniques de Δ_0

dans Δ_1 définissent deux morphismes de préfaisceaux semi-simpliciaux :

$$\underline{\Delta}_0^{\circ} \xrightarrow{e_0} \underline{\Delta}_1^c,$$

et définissent, par suite, pour tout préfaisceau semi-simplicial K., deux injections canoniques :

$$K. \xrightarrow{e_0} K. \times \underline{\Delta}_1^c.$$

Deux morphismes K. $\xrightarrow{u_0}$ L. de préfaisceaux semi-simpliciaux sont dits morphismes homotopes s'il existe un morphisme

$$v: \mathcal{K}. \times \stackrel{c}{_1} \longrightarrow \mathcal{L}.$$

tel que les diagrammes :

v

soient commutatifs. Le morphisme v est appelé une homotopie reliant u_0 à u_1 . La relation : u_0 et u_1 sont deux morphismes homotopes de K. dans L., n'est pas, en général, une relation d'équivalence. Cependant la relation d'équivalence engendrée par cette relation est compatible avec la composition des morphismes. Cela nous permet donc de définir la catégorie des préfaisceaux semi-simpliciaux à homotopie près, en passant au quotient par la relation d'équivalence engendrée par la relation d'homotopie.

7.3.1.7. On définit ainsi les catégories \mathcal{HR}_p , \mathcal{HR}_∞ , \mathcal{HR} , catégories des hyper recouvrements à homotopie près.

Théorème 7.3.2. — Soit C un site satisfaisant aux conditions 7.3.0.

- 1) La catégorie \mathscr{HR}_p° (resp. \mathscr{HR}°) est filtrante (I 2.7).
- 2) Soient K. un objet de HR_p (resp. de HR), n un entier tel que $0 \le n \le p$ (resp. $0 \le n$), et

$$u: \mathbf{X} \longrightarrow \mathbf{K}_n$$

un morphisme couvrant de préfaisceaux. Il existe un objet L. de HR_p (resp. de HR) et un morphisme $f: L. \to K.$, tels que le morphisme

$$f_n: L_n \longrightarrow K_n$$

se factorise par u.

3) Les faisceaux semi-simpliciaux associés (II 3.5) aux hyper-recouvrements sont acycliques (7.2.0) en degrés strictement positifs. Le 0-ème faisceau d'homologie est isomorphe au faisceau associé au faisceau constant \mathscr{Z} .

Preuve. — Démontrons 3). Soit K^{\sim} , le faisceau semi-simplicial associé à K.. Le foncteur « faisceau associé » commute au foncteur $\cosh_n(7.1.2.2)$). Par suite le faisceau semi-simplicial K^{\sim} , possède les propriétés suivantes :

- a) Le morphisme canonique $K_0 \rightarrow e$ est un épimorphisme de faisceaux.
- b) Pour tout entier $n \ge 0$, le morphisme canonique $K_{n+1} \to (\operatorname{cosk}_n(K_n))_{n+1}$ est un épimorphisme de faisceaux.

Posons alors, pour $n \ge 0$, L._n = $\cosh_n K^{\sim}$.. On a alors, pour tout n, une suite de morphismes de faisceaux semi-simpliciaux :

$$K.^{\sim} \xrightarrow{u_n} L._n \xrightarrow{v_n} L._{n-1} \cdots \longrightarrow L._0 \xrightarrow{v_0} e \cdot,$$

et pour tout j, $0 \le j \le n$, v_j possède les propriétés de 7.2.1. De plus, le morphisme u_n induit un isomorphisme sur les composants de degré $\le n$. On déduit alors de 2.1 par récurrence sur n, que K· est acyclique.

Pour démontrer 1) et 2) nous introduirons une terminologie.

56

Définition 7.3.3. — Soit $f: X. \to Y$. un morphisme de préfaisceaux semi-simpliciaux. On dit que f est spécial de type p (resp. spécial) si :

- 1) Les objets X. et Y. sont canoniquement isomorphes à leurs cosquelettes d'ordre p et $cosk_p(f) = f$ (resp. pas de conditions sur f, X^* et Y^*).
- 2) Pour tout entier n tel que $0 \le n \le p$ (resp. $0 \le n$), le morphisme Φ_{n+1} figurant dans le diagramme ci-après est couvrant :

(Les flèches verticales sont définies par les morphismes canoniques $X. \to \operatorname{cosk}_n X$. et $Y. \to \operatorname{cosk}_n Y.$. L'objet P_{n+1} est le produit fibré et Φ_{n+1} est l'unique flèche rendant le diagramme commutatif).

3) Le morphisme $f_0: X_0 \to Y_0$ est couvrant.

58

V

Un préfaisceau semi-simplicial K. est dit spécial de type p (resp. spécial) si le morphisme canonique :

$$K. \longrightarrow e.$$
 (e. est l'objet semi-simplicial final)

est spécial de type p (resp. spécial) i.e. si K. satisfait les conditions HR 2) et HR 3) (resp. HR 3)) de 7.3.1.1.

Lemme 7.3.4. — 1) Le composé de deux morphismes spéciaux (resp. spéciaux de 57 type p) est un morphisme spécial (resp. spécial de type p).

2) Soient K. un préfaisceau semi-simplicial spécial (resp. spécial de type p), X. \xrightarrow{f} Y. un morphisme spécial (resp. spécial de type p) et $u: K. \to Y$. un morphisme de complexes. Alors le produit fibré $P. = K._{X} X.$ est spécial (resp. spécial de type p).

La preuve de ce lemme est laissée au lecteur.

7.3.5. Démonstration de l'assertion 2) de 7.3.2. : On peut tout d'abord supposer que X est semi-représentable. Pour tout objet semi-simplicial L., désignons par $\operatorname{Hom}_{(X)}(L,K)$ l'ensemble des morphismes d'objets semi-simpliciaux munis d'une factorisation $L_n \to X \xrightarrow{u} K_n$. Le foncteur $\operatorname{Hom}_{(X)}(.,K)$ est représentable. En effet ce foncteur transforme les limites inductives en limites projectives, et la catégorie $\Delta(C)$ est un topos. On désignera par P un objet qui représenta ce foncteur. Pour un objet Z de C, dédaignons de même par $j_n^+(Z)$ l'objet qui représente le foncteur. L. $\mapsto \operatorname{Hom}(L_n, Z)$ sur ΔC , dont la construction par \varprojlim est explicitée dans III 1.1. On constate ici que cette construction ne fait intervenir que des \varprojlim finies, d'où on conclut aussitôt que j_n^+ transforme préfaisceaux semi-représentables en préfaisceaux semi-simpliciaux à composantes semi-représentables, et morphismes couvrants $Z' \to Z$ en morphismes spéciaux (7.3.3).

Par définition de P., on a un carré cartésien :

P.
$$\longrightarrow j_n^+(X)$$

$$\downarrow \qquad \qquad \downarrow j_n^+(u)$$
K. $\longrightarrow j_n^+(K_n)$.

D'après ce qu'on vient de signaler, les objets semi-simpliciaux $j_n^+(X)$ et $j_n^+(K_n)$ sont semi-représentables et le morphisme $j_n^+(u)$ est un morphisme spécial de type n. Il suffit alors pour conclure d'appliquer 3.4. et le sorite 7.3.0.

7.3.6.0. Soient M. et N. deux préfaisceaux semi-simpliciaux. Le foncteur :

$$L. \mapsto Hom(L. \times M., N.)$$

est représentable. Le préfaisceau semi-simplicial qui le représente sera noté

$$\mathcal{H}om.(M., N.).$$

Le préfaisceau composant de degré n de cet objet sera noté $\mathscr{H}om_n(\mathcal{M}.,\mathcal{N}.)$. On a un isomorphisme canonique

$$\mathscr{H}om_n(M., N.) \xrightarrow{\sim} \mathscr{H}om_0(M. \times {}^c_n, N).$$

Lemme 7.3.6. — Soit

$$M. \xrightarrow{M.} N.$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\operatorname{sk}_{n} {}^{c}_{n+1} \longleftarrow u \longrightarrow {}^{c}_{n+1} \qquad (u \text{ l'injection canonique})$$

un diagramme co-cartésien de préfaisceaux semi-simpliciaux.

Pour tout hyper-recouvrement L., le morphisme :

$$\mathscr{H}om_{\circ}(N.,L.) \longrightarrow \mathscr{H}om_{\circ}(M.,L.)$$

est couvrant.

59

Preuve. — On a un diagramme cartésien :

$$\mathscr{H}om_o(\mathbf{N}_{\boldsymbol{\cdot}},\mathbf{L}_{\boldsymbol{\cdot}}) \xrightarrow{} \mathscr{H}om_o(\mathbf{M}_{\boldsymbol{\cdot}},\mathbf{L}_{\boldsymbol{\cdot}})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathscr{H}om_o(^c_{n+1},\mathbf{L}_{\boldsymbol{\cdot}}) \xrightarrow{(x)} \mathscr{H}om_o(\operatorname{sk}_n(^c_{n+1},\mathbf{L}_{\boldsymbol{\cdot}}).$$

Il suffit donc de montrer que le morphisme (*) est couvrant. Or le morphisme (*) est isomorphe au morphisme :

$$L_{n+1} \longrightarrow (\operatorname{cosk}_n L.)_{n+1}$$

qui est couvrant par hypothèse,

C.Q.F.D.

7.3.7. Démonstration de l'assertion 1) de 7.3.2. : Le produit de deux objets HR_P (resp. de HR) est encore un objet de HR_p (resp. de HR) (7.3.4). Pour démontrer que la catégorie \mathscr{HR}_p° (resp. \mathscr{HR}°) est filtrante, il suffit de montrer qu'étant donnés deux morphismes de HR_p (resp. HR)

$$K_{\bullet} \xrightarrow{u_0} L.$$

il existe un morphisme $v: \mathcal{M}. \to \mathcal{K}.$ de \mathcal{HR}_p (resp. de \mathcal{HR}) tel que les morphismes :

$$\mathbf{M.} \xrightarrow{u_0 v} \mathbf{L.}$$

soient homotopes, i.e. tel qu'il existe $w: \mathcal{M}. \times {}^c_1 \to \mathcal{L}.$ rendant commutatifs les diagrammes

$$\begin{array}{cccc}
\mathbf{M} \cdot & & e_i & & \mathbf{M} \cdot \times \underline{\Delta}_1^c \\
\downarrow & & & & \downarrow w \\
\mathbf{K} \cdot & & u_i & & \downarrow u_i & & i = 0, 1 .
\end{array}$$

v

Soit alors, pour tout objet semi-simplicial M. de C (non nécessairement un hyper-recouvrement), F(M.) l'ensemble des couples $(v,w):v:M.\to K.,w:M.\times_1^c\to L.$ tels que les diagrammes (x) soient commutatifs. Le foncteur M. \mapsto F(M.) est un foncteur contra cariant en M. qui transforme les limites inductives en limites projectives, et qui par suite est représentable par un objet semi-simplicial F.. L'objet F. est évidemment le sommet d'un diagramme cartésien :

où π est défini par les deux inclusions de $^c_\circ$ dans c_1 . Il suffit donc, pour démontrer l'assertion, de montrer que F. est un objet de HR_p (resp. de HR) et pour cela, d'après 7.3.4 2) et le sorite 7.3.0, il suffit de montrer que

- a) $\mathcal{H}om.(^{c}_{1}, L.)$ est semi-représentable,
- b) le morphisme π est spécial de type p (resp. spécial).

On vérifie tout d'abord immédiatement que $\mathscr{H}om.(^{c}_{1},L.)$ est un objet semi-simplicial semi-représentable. En effet les composantes de cet objet se calculent par limites projectives finies à partir des L_{n} , et par suite sont semi-représentables. Vérifions maintenant b). Tout d'abord on montre que, lorsque L. est spécial de type p, le morphisme

$$\mathscr{H}om.(^{c}_{1},L.) \longrightarrow \operatorname{cosk}_{p} \mathscr{H}om.(^{c}_{1},L.)$$

est un isomorphisme; ce qui permet de vérifier la propriété 1) de 7.3.3. Ensuite, le morphisme :

$$\pi_{\circ}: \mathscr{H}om_{\circ}(^{c}_{1}, L.) \longrightarrow L_{\circ} \times L_{\circ}$$

est isomorphe au morphisme canonique :

$$L_1 \xrightarrow{(d_\circ, d_1)} L_\circ \times L_\circ$$

qui est couvrant par hypothèse (L. est hyper-recouvrement).

60

Il reste donc à vérifier la propriété 2) de 7.3.3, i.e. à vérifier que $\forall\,n,$ dans le diagramme

 $(P_{n+1} \text{ est le produit fibré})$, le morphisme Φ_{n+1} est couvrant. Or un « adjoint foncteurs chasing » simple montre que :

$$P_{n+1} \xrightarrow{\sim} \mathscr{H}om_{\circ}(\operatorname{sk}_{n+1}({}^{c}_{n+1} \times {}^{c}_{1}), L.),$$

$$\mathscr{H}om_{n+1}({}^{c}_{1}, L.) \xrightarrow{\sim} \mathscr{H}om_{\circ}({}^{c}_{n+1} \times {}^{c}_{1}, L.),$$

et que le morphisme Φ_{n+1} est isomorphe au morphisme

$$\mathscr{H}om_{\circ}(^{c}_{n+1}\times^{c}_{1},L.)\longrightarrow \mathscr{H}om_{\circ}(\operatorname{sk}_{n+1}(^{c}_{n+1}\times^{c}_{1}),L.)$$

provenant de l'injection

$$\operatorname{sk}_{n+1}\binom{c}{n+1} \times \binom{c}{1} \hookrightarrow \binom{c}{n+1} \times \binom{c}{1}$$
.

Or il existe une suite de sous-objets de $^c_{n+1}\times^c_1$:

$$\operatorname{sk}_{n+1}(^{\boldsymbol{c}}_{n+1}\times^{\boldsymbol{c}}_1)=\operatorname{M}_{\circ}\hookrightarrow\operatorname{M}_1\hookrightarrow\ldots\hookrightarrow\operatorname{M}_k=^{\boldsymbol{c}}_{n+1}\times^{\boldsymbol{c}}_1,$$

telle que pour tout $0 \le i \le k$, le morphisme

$$M_i \hookrightarrow M_{i+1}$$

s'insère dans un diagramme cocartésian :

$$\begin{array}{ccc}
\mathbf{M}_{i} & \longrightarrow \mathbf{M}_{i+1} \\
\uparrow & & \uparrow \\
& & \downarrow \\
\mathbf{sk}_{n+1} & \underline{\Delta}_{n+2}^{c} & \longrightarrow \underline{\Delta}_{n+2}^{c}
\end{array}$$

(On ajoute l'un après l'autre les simplexes non dégénérés de dimension n+2 de $n+1 \times 1$). D'après 7.3.6 le morphisme Φ_{n+1} est un composé de morphismes couvrants et par suite est lui-même couvrant, ce qui achève la démonstration de 7.3.2.

7.4. Le théorème d'isomorphisme. —

7.4.0. Soit F un préfaisceau en groupes abéliens sur un site C satisfaisant à la condition 7.3.0. Pour tout hyper-recouvrement K., on posera :

$$H^q(K.,F) = H^q(Hom_{\mathbf{C}^{\wedge}}(K.,F)).$$

Les $H^q(K., F)$ forment un δ -foncteur sur la catégorie des préfaisceaux abéliens sur C, mais ils ne sont pas, en général, les foncteurs dérivés du foncteur $H^{\circ}(K., F)$.

Posons alors: 62

(7.4.0.1)
$$\overset{\stackrel{\vee}{\text{H}^q}}{\overset{\vee}{\text{H}^q}}(\mathbf{C}, \mathbf{F}) = \varinjlim_{\mathbf{H}\mathbf{R}_r} \mathbf{H}^q(., \mathbf{F})(r \text{ peut être infini}),$$

et

v

(7.4.0.2)
$$\overset{\mathbb{V}}{H^{q}}(C, F) = \varinjlim_{HR} H^{q}(., F).$$

Les $\overset{r}{H^q}(C,F)$ (resp. $\overset{\forall}{H^q}(C,F)$) forment encore un δ -foncteur car la catégorie \mathscr{HR}_p° (resp. \mathscr{HR}°) est filtrante (7.3.2). Comme les catégories \mathscr{HR}_p ne sont par nécessairement des U-catégories, ces δ -foncteurs sont à valeurs dans la catégorie des V-groupes abéliens, pour un univers V convenable.

Supposons maintenant que le préfaisceau F soit un faisceau, Comme le faisceau semi-simplicial associé à un hyper-recouvrement est acyclique (7.3.2), on a une suite spectrale fonctorielle en F et en K.

(7.4.0.3)
$$H^{p}(K_{\cdot}, \mathcal{H}^{q}(F)) \Rightarrow H^{p+q}(C^{\sim}, F).$$

D'où, en passant à la limite, des suites spectrales :

(7.4.0.4)
$$\overset{r}{\overset{r}{\overset{}_{V}}}(C, \mathscr{H}^{q}(F)) \Rightarrow H^{p+q}(\tilde{C}, F),$$

$$\overset{\psi}{\overset{}_{H}}(C, \mathscr{H}^{q}(F)) \Rightarrow H^{p+q}(\tilde{C}, F).$$

Théorème 7.4.1. — Soient C un site satisfaisant la condition 7.3.0, F un faisceau abélien sur C.

1) Les suites spectrales (7.4.0.4) définissent des isomorphismes

$$\overset{r}{\overset{\vee}{\text{H}}}^{q}(\text{C},\text{F}) \xrightarrow{\sim} \text{H}^{q}(\text{C}^{\sim},\text{F}), \quad q \leqslant r+1$$

et un monomorphisme

$$\overset{r}{\overset{\vee}{H}}^{r+2}(C,F) \longrightarrow H^{r+2}(C^{\sim},F).$$

63

2) On a un isomorphisme de δ -foncteurs :

$$\overset{\vee}{\operatorname{H}^{q}}(\operatorname{C},\operatorname{F})\overset{\sim}{\longrightarrow}\overset{\vee}{\operatorname{H}^{q}}(\operatorname{C},\operatorname{F})\overset{\sim}{\longrightarrow}\operatorname{H}^{q}(\operatorname{C}^{\sim},\operatorname{F})\quad(pour\ tout\ q).$$

3) Soient G un préfaisceau de groupes abéliens et F le faisceau associé. Il existe des isomorphismes de foncteurs :

$$\operatorname*{H}^{r}(\mathbf{C},\mathbf{G}) \xrightarrow{\sim} \mathrm{H}^{q}(\mathbf{C}^{\sim},\mathbf{F}), \quad q \leqslant r - 1,$$

et un monomorphisme

48

64

$$\overset{r}{\overset{\vee}{\mathrm{H}}}{}^{r}\left(\mathbf{C},\mathbf{G}\right)\xrightarrow{\sim}\mathrm{H}^{q}(\mathbf{C}^{\sim},\mathbf{F}).$$

Lorsque G est un préfaisceau séparé, ce dernier morphisme est un isomorphisme et il existe un monomorphisme :

$$\overset{r}{\operatorname{H}}^{r+1}(\operatorname{C},\operatorname{G}) \longrightarrow \operatorname{H}^{r+1}(\operatorname{C}^{\sim},\operatorname{F}).$$

4) On a des isomorphismes:

$$\overset{\heartsuit}{\mathrm{H}^q}(\mathrm{C},\mathrm{G}) \xrightarrow{\sim} \overset{\mathbb{W}}{\mathrm{H}^q}(\mathrm{G},\mathrm{G}) \xrightarrow{\sim} \mathrm{H}^q(\mathrm{C}^{\sim},\mathrm{F}) \quad (tout \ q).$$

Preuve. — Il suffit de montrer que si N est un préfaisceau abélien dont le faisceau associé est nul, on a $\overset{r}{H^q}(C,N)=0$ pour $q\leqslant r$ (resp. $\overset{\forall}{H^q}(C,N)=0$ pour tout q); ce qui se fait immédiatement en utilisant 3.2.

Remarque 7.4.2.— 1) On notera que pour les sites satisfaisants à la condition de 7.3.0, les hyperrecouvrements de type 0 sont les recouvrements ordinaires er les

foncteurs $\overset{\circ}{H}^q$ ne sont autres que les foncteurs $\overset{\vee}{H}^q$ introduits en (2.4.5.1).

2) Soit C un site à limites projectives finies représentables tel que pour tout objet X de C et tout famille couvrante $(X_i \to X)$, $i \in I$, il existe un $i_o \in l$ tel que $X_{i_o} \to X$ soit couvrant. On peut montrer alors que les hyper-recouvrements de type p dont les composants sont représentables sont cofinaux dans $\mathscr{H}\mathscr{R}_p$. De même, les hyper-recouvrements K. tels qu'il existe un entier p tel que K. soit de type p et tels que les composants de K. soient représentables, sont cofinaux dans $\mathscr{H}\mathscr{R}$. (On peut le démontrer en s'inspirant de 3.5). Ces hyper-recouvrements à composants représentables suffisent donc, dans le cas envisagé, pour calculer la cohomologie des faisceaux associés aux préfaisceaux.

8. Appendice. Limites inductives locales (par P. Deligne)

Le rédacteur recommande au lecteur d'éviter, en principe, de lire cet appendice. Il expose une technique qui permet parfois d'étendre à des topos n'ayant pas assez de points des assertions que l'existence de points rend triviales. Cette technique permet d'obtenir une variante faisceautique de théorème de D. Lazard affirmant que les modules plats sur un anneau sont les limites inductives de modules libres de type fini.

8.1. Catégories localement filtrantes. —

V

8.1.0. Si $\mathcal B$ est une catégorie et si $p:\mathcal A\to\mathcal B$ est une catégorie sur $\mathcal B$, on utilisera les notations suivantes

- Pour U ∈ Ob, $\mathscr{A}_{\mathbf{U}}$ est la catégorie fibre $p^{-1}(\mathbf{U})$
- Pour $f: U \to V$ dans \mathscr{B} et $\lambda, \mu \in Ob \mathscr{A}$ tels que $p(\lambda) = U$ et $p(\mu) = V$, on pose

$$\operatorname{Hom}_f(\lambda,\mu) = p^{-1}(f), \text{ où } p : \operatorname{Hom}(\lambda,\mu) \longrightarrow \operatorname{Hom}(U,V).$$

Définition 8.1.1. — Soit $\mathscr S$ un site. On appelle catégorie localement co-filtrante (ou localement filtrante à gauche) sur $\mathscr S$ une catégorie $p:\mathscr L\to\mathscr S$ sur $\mathscr S$ telle que :

- $(\mathcal{L}0)$ Quels que soient $f: U \to V$ dans \mathscr{S} et $\mu \in Ob \mathcal{L}_V$, il existe $\lambda \in Ob \mathcal{L}_V$ tel que $Hom_f(\lambda, \mu) \neq \emptyset$,
- $(\mathcal{L}1)$ Quels que soient $U \in Ob \mathcal{L}$ et la famille finie (\mathcal{L}_i) d'objets de \mathcal{L}_U , il existe un recouvrement $f_j : U_j \to U$ de U et des objets $\mu_j \in Ob \mathcal{L}_{U_j}$ tels que pour tout i et j, on ait $Hom_{f_j}(\mu_j, \lambda_i) \neq \emptyset$,
- $(\mathcal{L}2)$ Quelles que soient $f: \mathbb{U} \to \mathbb{V}$ dans \mathscr{S} et la double flèche $(\phi_0, \phi_1): \mathscr{S} \rightrightarrows \mu$ 6 au-dessus de f, il existes un recouvrement $f_j: \mathbb{V}_j \to \mathbb{V}$ de \mathbb{V} et des flèches ψ_j de but λ telles que $p(\psi_j) \neq f_j$ et que $\phi_0 \psi_j = \phi_1, \psi_j$,
- 8.1.1.1. Cette définition se simplifie lorsque $\mathcal L$ est fibrée sur $\mathcal S^*$: l'axiome
 - (\mathscr{L}_*0) est alors satisfait, et (\mathscr{L}_1) , (\mathscr{L}_2) , peuvent s'énoncer :
- $(\mathcal{L}'1)$ Quels que soient $U \in ObS$ et la famille finie λ_i d'objets de \mathcal{L}_U , localement sur U, il existe μ s'envoyant dans tous les λ_i .
- $(\mathcal{L}'2)$ Quel que soit $U \in Ob S$, toute double flèche $(\phi_0, \phi_1) : \lambda \rightrightarrows \mu$ dans \mathcal{L}_U peut, localement sur U, être égalisée par une flèche de but λ .
- 8.1.2. Soient $\mathscr S$ un site, $\mathscr L$ une catégorie sur $\mathscr S$ et e un champ sur $\mathscr S$. On désigne par e la catégorie des sections globales $\mathscr Hom_{\mathscr S}^{\operatorname{cart}}(\mathscr S,\mathbf C)$ de e. Si $\mathscr S$ a un objet final S, e « n'est autre » que e_S.

Définition 8.1.2.1. — La catégorie dans systèmes projectifs locaux d'objets de C, indexés par \mathscr{L} est la catégorie $\mathscr{H}om_{\mathscr{L}}(\mathscr{L}, \mathbf{e})$.

Désignons par c (« système projectif local constant associé ») le foncteur composé

$$C = \mathscr{H}om_{\mathscr{L}}^{\mathrm{cart}}(\mathscr{S}, C) \hookrightarrow \mathscr{H}om_{\mathscr{L}}(\mathscr{S}, C) \xrightarrow{u \mapsto u \circ p} \mathrm{Hom}_{\mathscr{L}}(\mathscr{L}, C)$$

Lorsqu'on devra expliciter la dépendance en \mathcal{L} , on écrira plutôt $c_{\mathcal{L}}$.

Définition 8.1.3. — Le foncteur limite projective locale, noté $\varprojlim_{\lambda \in \mathscr{L}}$, est le foncteur partiellement défini adjoint à droite au foncteur c.

Le foncteur

$$\lim : \mathscr{H}om_{\mathscr{L}}(\mathscr{L}, \mathbf{C}) \longrightarrow \mathbf{e}$$

vérifie donc

66

$$\operatorname{Hom}(\mathbf{X}, \varprojlim_{\lambda \in \mathscr{L}} \mathbf{X}_{\lambda}) \simeq \operatorname{Hom}(c(\mathbf{X}), (\mathbf{X}_{\lambda})_{\lambda \in \mathscr{L}}).$$

Définition 8.1.4. — Un \mathscr{S} -foncteur $F: \mathscr{L} \to \mathscr{M}$ entre catégories localement cofitrantes sur \mathscr{S} est dit cofinal s'il vérifie les deux conditions suivantes :

(C§1) Quels que soient $U \in Ob \mathscr{S}$ et $\mu \in Ob \mathscr{M}_U$, il existe un recouvrement $f_j : U_j \to U$ de U et des objets $\lambda_j \in Ob \mathscr{L}_{U_j}$ tels que $Hom_{f_j}(F(\lambda_j), \mu) \neq \varnothing$.

(C§2) Quels que soient $f: U \to V$ dans \mathscr{L} et la double flèche $(\phi_0, \phi_1): f(\lambda) \rightrightarrows \mu$ au-dessus de f, il existe un recouvrement $f_j: U_j \rightrightarrows U$ de U et des flèches ψ_j de but λ dans \mathscr{L} telles que $p(\psi_j) = f_j$ et que $\phi_0 F(\psi_j) = \phi_1 F(\psi_j)$.

Le composé de deux foncteurs cofinaux est un foncteur cofinal; les équivalences de catégories localement filtrantes sont cofinales (la démonstration est laissée au lecteur).

Proposition 8.1.5. — Soient $F: \mathcal{L} \to \mathcal{M}$ un foncteur cofinal de catégories localement cofiltrantes sur \mathcal{S} , e un champ sur \mathcal{S} et $(X_{\mu})_{\mu \in \mathcal{M}}$ un système projectif local indexé par \mathcal{M} . Alors, le morphisme de foncteurs en X de ΓC dans (ens):

$$F^* : Hom(c_{\mathscr{M}}(X), (X_{\mu})_{\mu \in \mathscr{M}}) \longrightarrow Hom(c_{\mathscr{L}}(X), X_{F(\lambda)})_{\lambda \in \mathscr{L}})$$

est un isomorphisme, de sorte que

$$F^*: \varprojlim_{\mathscr{M}} X_{\mu} \longrightarrow \varprojlim_{\mathscr{L}} X_{F(\lambda)}$$

est un isomorphisme, les deux membres étant simultanément définis ou non définis.

La démonstration utilise le lemme suivant, laissé au lecteur :

Lemme 8.1.6. — Si F: $\mathcal{L} \to \mathcal{M}$ est cofinal, alors, quels que soient $f: U \to V$ dans \mathcal{L} et les flèches au-dessus de $f \phi_i: F(\lambda_i') \to \mu$ (i = 1, 2) il existe un recouvrement

 $f_j: U_j \to U$ de U, des objets $\lambda_j' \in \operatorname{Ob} \mathscr{L}_{U_j}$ est des diagrammes commutatifs

$$U_j \xrightarrow{f_j} U \longrightarrow V$$

de projection (f_j, f) dans \mathscr{S} .

67

Quels que soient $U \in \text{Ob} \mathscr{S}$ et $\mu \in \mathscr{M}_U$, il existe par $(C\mathfrak{F}1)$ un recouvrement $f_j: U_j \to U$ de U et des flèches $\phi_j: F(\lambda_j) \to \mu$ au-dessus des f_j . Si

$$\psi = (\psi_{\lambda}) \in \operatorname{Hom}(c_{\mathscr{L}}X, (X_{F(\lambda)})_{\lambda \in \mathscr{L}}) : \psi_{\lambda} : X | p(\lambda) \longrightarrow X_{F(\lambda)}$$

est image de

$$\phi = (\phi_{\mu}) \in \text{Hom}(c_{\mathscr{M}}X, (X_{\mu})_{\mu \in \mathscr{L}}) : \phi_{\mu} : X|p(\mu) \longrightarrow X_{F(\mu)},$$

les diagrammes

sont commutatifs, de sorte que les ϕ_{μ} sont déterminés, localement, par ψ ; puisque e est un champ, on conclut que F* est injectif. Pour prouver F* surjectif, partons de ψ et construisons ϕ tel que $\psi = F^*\phi$. La construction précédente fournit les flèches composées :

$$\phi_{\mu,j}:\phi_j\circ\psi_{\lambda j}:X|U_j\longrightarrow X_\mu|U_j.$$

Vérifions que ces flèches se recollent, de sorte qu'il existe $\phi_{\mu}: X|U \to X_{\mu}$ tel que $\phi_{\mu}|U_j = \phi_{\mu,j}$. Soit un diagramme commutatif dans

Pour vérifier que $\phi_{\mu,n}|\mathbf{U}_{ij}=\phi_{\mu,i}|\mathbf{U}_{ij}$, il suffit de le faire localement sur \mathbf{U}_{ij} , ce qui permet, d'après 8.1.6 et $(\mathcal{L}0)$, de se limiter au cas où il existe un diagramme commutatif

au-dessus du précédent. Le diagramme

est alors commutatif, et il existe (ϕ_{μ}) tel que, quel que soit $\phi : F(\lambda) \to \mu$ au-dessus de $f : V \to U$, le diagramme

soit commutatif. Si $\sigma: \mu \to \mu'$ est une flèche de \mathscr{M} , on aura $(\sigma|V)(\phi_{\mu}|V) = (\sigma|V)\phi \cdot \psi_{\lambda} = (\sigma\phi|V) \cdot \psi_{\lambda} = \phi_{\mu'}|V$ et dès lors, $\phi = (\phi_{\mu})$ est un morphisme de foncteur tel que $\psi = F^*$ comme requis.

Si E est un ensemble ordonné, on désignera encore par E la catégorie. ayant E pour ensemble d'objets, telle que $\operatorname{Hom}(i,j)$ est réduit à l élément ou vide selon que $i \leqslant j$ ou non.

Proposition 8.1.7. — Soit \mathcal{L} une catégorie localement cofiltrante sur un site \mathcal{L} . Il existe un ensemble ordonné E et un foncteur F de E dans \mathcal{L} tel que

- (i) E, regardé comme catégorie sur $\mathscr S$ à l'aide de $p^F: E \to \mathscr S$, est localement cofiltrante.
 - (ii) Le foncteur F est cofinal.

V

Soit \mathcal{L}' la catégorie localement cofiltrante produit de \mathcal{L} est de la catégorie définie par l'ensemble ordonné \mathbf{Z} . La projection de \mathcal{L}' dans \mathcal{L} est cofinale, de sorte qu'il suffit de prouver (8.1.7) pour \mathcal{L}'

Si X est un ensemble fini de flèches dans \mathcal{L}' , on désignera par X° l'ensemble des extrémités des flèches dans X. Soit E l'ensemble des parties finies non vides de Fl (\mathcal{L}') , telles qu'il existe $\mathscr{S}_X \in \operatorname{Ob} \mathcal{L}'$ vérifiant

- a) aucune flèche de X, sauf 1_{λ_X} , n'aboutit à λ_X ,
- b) si $\mu \in X^{\circ}$, alors $1_{\mu} \in X$ et $\operatorname{Hom}(\mathscr{S}_{X}, \mu) \cap X \neq \varnothing$,
- c) Tout diagramme du type

de flèches de X est commutatif.

On ordonne E par la relation opposée à la relation d'inclusion. Si $X \in E$, et si $\mu \in X^{\circ}$, il existe une et une seule flèche de λ_X dans μ qui se trouve dans X. Si X,

 $Y \in E$ et $X \supset Y$, soit $\lambda_{X,Y}$ l'unique flèche dans X de λ_X vers λ_Y . Les fonctions $X \mapsto \lambda_X$ et $(X \supset Y) \mapsto \lambda_{X,Y}$ forment un foncteur de E dans \mathscr{L}' .

70 Lemme 8.1.8. — La catégorie E est localement cofiltrante sur $\mathscr S$ et le foncteur λ : $E \to \mathscr L'$ est cofinal.

Il faut vérifier successivement les axiomes :

- (i) axiome ($\mathcal{L}0$) Soit $f: V \to U$ et $X \in E_U$. Il existe $\lambda \in Ob \mathcal{L}'_V$ et $\phi \in Hom_f(\lambda, \lambda_X)$. De plus, on peut choisir λ tel que $\lambda \notin X^\circ$ (ici sert $\mathcal{L}' = \mathcal{L} \times \mathbf{Z}$). Soit $X' = X \cup \{1_{\lambda}\} \cup Y$ où Y est l'ensemble des flèches composées $\lambda \xrightarrow{\phi} \lambda_X \xrightarrow{\psi} \mu$ ($\psi \in X$). Alors, $X' \in E$, $\lambda_{X'} = \lambda$ et $Hom(X', X) \neq \emptyset$.
- (ii) $axiome (\mathcal{L}1)$ Soit X_i une famille finie d'objets de E_U . Il existe un recouvrement $f_j: U_j \to U$, des objets $\lambda_j \in \text{Ob}\,\mathcal{L}_{U_j}$ et des flèches $\phi_{ji} \in \text{Hom}_{f_j}(\lambda_j, \lambda_{X_i})$. Si $x \in X_a^{\circ} \cap X_b^{\circ}$, il existe pour chaque j un recouvrement $g_{jk}: U_{jk} \to U_j$ et des flèches $\psi_{jk}: \lambda_{jk} \to \lambda_j$ telles que $p(\psi_{jk}) = g_{jk}$ et qui égalisent la double flèche $\lambda_j \rightrightarrows x$, où une flèche appartient à X_a , l'autre à X_b . On peut s'arranger pour que les λ_{jk} n'appartiennent à aucun des X_i° . Remplaçons les $(f_j, \lambda_j, \phi_{ji})$ par les $(f_jg_{jk}, \lambda_{jk}, \phi_{ji}\psi_{jk})$, et répétons cette construction pour tous les x dans une intersection de X_i . On obtient un nouveau système $(f_j, \lambda_j, \phi_{ji})$; posons

$$X_j = \cap_i X_i \cup \{1_{\lambda_i}\} \cup Y_j$$

où Y_j est l'ensemble des flèches composées

$$\lambda_j \xrightarrow{\phi_{ji}} \lambda_{X_i} \xrightarrow{\psi} x \quad (\psi \in X_i).$$

Alors, $X_j \in E_{V_j}$, et ces X_j vérifient (£1).

- (iii) axiome ($\mathcal{L}3$) Trivial, faute de doubles flèches non triviales!
- (iv) axiome (C $\mathfrak{F}1$) Trivial, car le foncteur λ est surjectif.
- ((v) axiome (C32) Soient $f: U \to V$ et une double flèche $(\phi_0, \phi_1): \lambda_X \rightrightarrows \lambda$ audessus de f. Il existe un recouvrement $f_j: U_j \to U$ de U et des flèches $\psi_j: \lambda_j \to \lambda_X$ telles que $p(\psi_j) = f_j$, ϕ_0 , $\psi_j = \phi_1 \psi_j$ et $\lambda_j \notin X^\circ$. Soit $X_j = X \cup \{1_{\lambda_j}\} \cup Y_j$, où Y_j est l'ensemble des flèches composées

$$\lambda_j \xrightarrow{\psi_j} \lambda_X \xrightarrow{\psi} \mu \quad (\psi \in X).$$

71 Alors, $X_j \in E_{V_j}$, et $F(\lambda_{X_j,X}) = \psi_j$ égalise (ϕ_0, ϕ_1) .

8.1.9.0. Supposons que \mathscr{S} soit (le site des ouverts non vides de) l'espace topologique réduit à un point. Une catégorie localement cofiltrante sur \mathscr{S} n'est alors autre qu'une catégorie filtrante à gauche (i.e. telle que \mathscr{S}° soit filtrante au sens de I 2.7), les foncteurs cofinaux correspondant aux foncteurs cofinaux de catégories filtrantes à gauche (I 8). La proposition 8.1.7 se reformule

Proposition 8.1.9. — Pour toute catégorie cofiltrante \mathcal{L} il existe un ensemble ordonné cofiltrant E et un foncteur cofinal de E dans \mathcal{L} .

72

Dans ce cas particulier, la démonstration de 8.1.7 se réduit essentiellement à la démonstration de (8.1.9) donnée dans I 8.

8.1.10. Soient $\mathcal{T} \to \mathcal{S}$ un morphisme de sites et $p: \mathcal{L} \to \mathcal{S}$ une catégorie localement cofiltrante sur \mathcal{S} . Désignons par \mathcal{L}^* la catégorie suivante :

- (i) un objet de \mathscr{L}^* est un quadruple (V, U, ϕ, λ) tel qu $V \in Ob \mathscr{T}$, $U \in Ob \mathscr{S}$, $\phi \in Hom(V, q^*U)$ et $\lambda \in Ob \mathscr{L}_U$.
- (ii) une flèche $f:(\mathbf{V},\mathbf{U},\phi,\lambda)\to (\mathbf{V}',\phi',\mathbf{U}',\lambda')$ est un triple (f_1,f_2,f_3) avec $f_1\in \mathrm{Hom}(\mathbf{V},\mathbf{V}'),\ f_2\in \mathrm{Hom}(\mathbf{U},\mathbf{U}'),\ f_3\in \mathrm{Hom}(\lambda,\lambda')$ et $q^*f_2\circ\phi=\phi'\circ f_1,\ p(f_3)=f_2.$ Le foncteur $f\mapsto f_1$ fait de \mathscr{L}^* une catégorie aur $\mathscr{T}.$

Lemme 8.1.11. — La catégorie \mathcal{L}^* est localement cofiltrante sur \mathcal{T} .

L'axiome ($\mathcal{L}0$) est trivial. Vérifions ($\mathcal{L}1$):

Soit une famille finie $L_i = (V, U_i, \phi_i, \lambda_i)$. Les ϕ_i définissent un morphisme de V dans le faisceau $q^*a \prod U_i = a \prod q^*U_i$, de sorte qu'il existe des diagrammes commutatifs

tels que les f_j recouvrent V.

v

Soit λ_{ji} vérifiant $\operatorname{Hom} p_{ij}(\lambda_{ji}, \lambda_i) \neq \emptyset$. D'après $(\mathcal{L}1)$, quitte à raffiner U_j (et V_j), on peut prendre $\lambda_{ji} = \lambda_j$ indépendant de i, et les $L_j = (V_j, U_j, \psi_j, \lambda_j)$ vérifient $(\mathcal{L}1)$.

Vérifions ($\mathscr{L}2$). Soit $(f_1, f_2) : L^1 \rightrightarrows L^2$, avec $L^i = (V^i, U^i, \phi^i, \lambda^i)$ et $f = (f, g_i, h_i)$. Les ϕ_i définissent un morphisme de V dans le faisceau $q^*a \operatorname{Ker}(U^1 \rightrightarrows U^2) = a \operatorname{Ker}(q^*U1 \rightrightarrows q^*U_2)$, de sorte qu'il existe des diagrammes commutatifs

tels que les f_j recouvrent V. Soit $\chi_j : \lambda_j \to \lambda^1$ tel que $p(\chi_j) = p_j$. D'après ($\mathcal{L}2$) appliquée aux $(\lambda_1 \chi_j, h_2 \chi_j)$, quitte à raffiner U_j (et V_j), on peut se débrouiller pour que h, $\chi_j = h_2 \chi_j$, et les $L_j = (V_j, U_j, \psi_j, \lambda_j)$ vérifient (\mathcal{L}_2).

56

73

Proposition 8.1.12. — Soit $t^*: \mathscr{S}^* \to \mathscr{S}$ une catégorie localement cofiltrante sur \mathscr{S} , et munissons \mathscr{S}^* de la topologie induite par celle de \mathscr{S} à l'aide de t^* . Alors, t^* est une équivalence de sites $t: \mathscr{S} \to \mathscr{S}^*$.

J.L. VERDIER

Par construction, $t_x: \mathscr{F} \to \mathscr{F} \circ t^*$ transforme faisceaux sur \mathscr{S} en faisceaux sur \mathscr{S}^* . D'après $\mathscr{L}0$, et $\mathscr{L}1$ appliqué à la famille vide, tout objet « assez petit » de \mathscr{S} est dans l'image de t^* (i.e. l'image de t^* est un *crible couvrant* dans \mathscr{S}). donc par le « lemme de comparaison » (III 4) l'inclusion dans \mathscr{S} de sa sous-catégorie pleine définie par $t^*(\mathrm{Ob}\,\mathscr{S}^*)$ est une équivalence de sites, ce qui permet de supposer t^* surjectif sur les objets.

Soit \mathscr{F} un faisceau sur \mathscr{S}^* .

(i) Soient $f_j: U_j \to U$ un recouvrement dans \mathscr{S} , \mathscr{S}^1 et \mathscr{S}^2 dans \mathscr{S}^*U et $f_j^i \in \operatorname{Hom}_{f_j}(\mu_j, \lambda^i)$ pour i = 1, 2. Alors, $\mathscr{F}(\mathscr{S}^1)$ et $\mathscr{F}(\mathscr{S}^2)$ ont même image dans $\prod_i \mathscr{F}(\mu_j)$.

Soit en effet $x = (x_j)$ dans l'image de $\mathscr{F}(\mathscr{S}^1)$. Pour que x soit dans celle de $\mathscr{F}(\lambda^2)$, il suffit que pour tout diagramme commutatif

 x_j et x_k aient même image dans $\mathscr{F}(\mu)$. Puisque \mathscr{F} est un faisceau, il suffit de vérifier cela après avoir remplacé μ par les différents objets d'un de ses recouvrements ; d'après $(\mathscr{L}2)$, ceci permet de supposer les diagrammes analogues au précédent, avec \mathscr{S}^2 remplacé par \mathscr{S}^1 , également commutatifs, auquel cas l'assertion est évidente.

(ii) Soient $f: U \to V$ dans \mathscr{S}^* , $\lambda \in \mathrm{Ob}\,\mathscr{S}^*_{\mathrm{U}}$ et $\mu \in \mathrm{Ob}\,\mathscr{S}^*_{\mathrm{V}}$. Il existe alors un recouvrement $f_j: U_j \to U$, un objet $\mu' \in \mathrm{Ob}\,^*_{\mathrm{U}}$ et des flèches

sur

$$U_i \xrightarrow{f_j} U \xrightarrow{f} V.$$

D'après (i), il existe une et une seule flèche \overline{f} rendant commutatif le diagramme suivant :

$$\mathcal{F}(\mu) \xrightarrow{\overline{f}} \mathcal{F}(\lambda)$$

$$\psi \downarrow \qquad \qquad \downarrow \phi_j$$

$$\mathcal{F}(\mu') \xrightarrow{\psi_j} \mathcal{F}(\mathcal{S}_j)$$

Le flèche \overline{f} ne change pas quand on remplace (f_j) par un recouvrement plus fin donné par $f_k: U_k \to U_{j(k)}$, qu'on remplace λ_j par \mathscr{S}_k , muni de $\phi_k \in \operatorname{Hom}_{f_k}(\lambda_k, \lambda_{j(k)})$, et 74 qu'on remplace $\phi_j(\psi_j)$ par $\phi_{j(k)} \circ \phi_k(\psi_{j(k)} \circ \phi_k)$.

On laisse qu'elle soin d'en déduire que \overline{f} ne dépend que de f.

(iii) Prouvons que \overline{f} est fonctoriel en f. Soient donc

$$W \xrightarrow{h} V \xrightarrow{g} U$$

dans $\mathscr S$ et $\lambda^\circ,\ \mu^\circ,\ \nu^\circ$ dans ${\rm Ob}\,\mathscr S_{\rm U},\ {\rm Ob}\,\mathscr S_{\rm V}$ et ${\rm Ob}\,\mathscr S_{\rm W}$ respectivement. Il existe un diagramme commutatif

tel que

- a) $t^*(\nu^i),\,t^*(\mu^i),\,t^*(e^i_{jk}),\,t^*(f^i_j)$ ne dépendent pas de i,
- b) i étant fixé, les e_{ik}^i recouvrent W et les f_i^i recouvrent V.

On construit tout d'abord μ^1 , ν^1 et ν^2 par $(\mathcal{L}0)$, et les μ_j comme en (ii). Soit W'_{jk} un recouvrement de W s'envoyant dans le recouvrement $V_j = t^*(\mu_j)$ comme requis par le diagramme. Raffinant W'_{jk} et appliquant $(\mathcal{L}0)$ et $(\mathcal{L}1)$, on obtient un diagramme non nécessairement commutatif, du type requis, vérifiant a) et b).

Raffinant encore et appliquant ($\mathcal{L}2$), on le rend commutatif.

Reste alors à contempler le diagramme commutatif suivant :

(iv) Il est clair que \overline{g} est fonctoriel en \mathscr{F} : tout faisceau \mathscr{F} sur \mathscr{S}^* est donc image directe par t d'un préfaisceau \mathscr{F}_{\circ} (uniquement déterminé) sur \mathscr{S} , et tout morphisme de faisceau $f:\mathscr{F}\to\mathfrak{g}$ est image d'un et d'un seul morphisme de préfaisceau $f_{\circ}:\mathscr{F}_{\circ}\to\mathfrak{g}_{\circ}$.

Il en résulte déjà que t_* est pleinement fidèle; il reste à prouver que \mathscr{F}_{\circ} est un faisceau. Si $f_j: U_j \to U$ est un recouvrement, ce recouvrement est image d'un recouvrement dans \mathscr{S}^* , de sorte que $\mathscr{F}_{\circ}(U)$ s'injecte dans $\prod_j \mathscr{F}_{\circ}(U_j)$. Si des $x_j \in \mathscr{F}_{\circ}(U_j)$ se recollent, alors, à fortiori, ils se recollent dans \mathscr{S}^* donc proviennent d'un élément de $\mathscr{F}_{\circ}(U)$. Ceci achève la démonstration de (8.1.12).

8.1.13.0. Soient $q: \mathcal{T} \to \mathcal{S}$, $p: \mathcal{L} \to \mathcal{S}$ et \mathcal{L}^* comme en (8.1.10) et e un champ sur \mathcal{T} . Le champ q_* e sur \mathcal{S} est le champ « défini » par $(q_*$ e)_U = $\mathbf{e}_q x_U$.

Si $(X_{\lambda})_{\lambda \in \mathscr{L}}$ est un système projectif local indexé par \mathscr{L} et à valeur dans $e: (X_L)_{L \in L^{\times}}$ par la formule

$$X_L = \phi^* X_\lambda \text{ pour } L = (V, U, \phi, \lambda).$$

On laisse au lecteur le soin de vérifier que :

Proposition 8.1.13.1. — Avec les notations précédentes, on a

$$\varprojlim_{\lambda \in \mathscr{L}} X_{\lambda} \varprojlim_{L \in \mathscr{L}^*} X_{L}$$

les deux membres étant simultanément définis ou non.

Soient \mathscr{S} un site et $p^*: \mathscr{S}^* \to \mathscr{S}$ une catégorie localement filtrante sur \mathscr{S} . Si e est un champ sur \mathscr{S} , alors p_* e est un champ sur \mathscr{S}^* (8.1.13.0); de plus, le foncteur identique : $\mathscr{S}^* \to \mathscr{S}^*$ est une catégorie localement filtrante sur \mathscr{S}^* , muni de la topologie induite, et tout système inductif local (X_{λ}) indexé par λ^* définit un système inductif local, indexé par \mathscr{S}^* , sur \mathscr{S}^* .

On vérifie aisément :

75

76 Proposition 8.1.14. — Avec les notation précédentes, on a

$$\varprojlim_{\lambda \in \mathscr{S}^*/\mathscr{S}} X_{\lambda} = \varprojlim_{\lambda \in \mathscr{S}^*/\mathscr{S}^*} X_{\lambda},$$

les deux membres étant simultanément définis ou non..

8.2. Limites inductives locales dans les catégories de faisceaux. —

8.2.0. Soit $p: \mathcal{T} \to \mathcal{S}$ un morphisme de sites. Soit e le champ sur \mathcal{S} suivant

- (i) Un objet de ${\tt e}$ est un couple (U, ${\mathscr F})$ d'un objet de ${\mathscr S}$ et d'un faisceau ${\mathscr F}$ sur $p^*{\rm U}.$
- (ii) Une flèche $f:(U,\mathcal{F})\to (V,g)$ est un couple formé d'une flèche $f_\circ:U\to V$ et d'un morphisme de \mathcal{F}/U -faisceaux :

$$f_1: p^*(f_0)^*g \longrightarrow \mathscr{F}$$

(iii) Le foncteur de e dans \mathscr{S} est donné par $f \mapsto f_0$.

On prendra garde que \mathbf{e}_{U} est la catégorie opposée de la catégorie des faisceaux sur $p^*\mathrm{U}$.

Soit \mathcal{L} une catégorie localement cofiltrante (à gauche) sur s.

Définition 8.2.1. — Avec les notations précédentes, la catégorie des systèmes inductifs locaux, indexés par \mathcal{L} , de faisceaux sur \mathcal{I} , est la catégorie $\operatorname{Hom}_{\mathscr{S}}(\mathcal{L},\mathsf{e})^{\circ}$.

Le foncteur « limite projective » de 8.1.3 s'appelle ici foncteur « limite inductive locale » . C'est un foncteur de $\operatorname{Hom}_{\mathscr{S}}(\mathscr{L}, e)^{\circ}$ dans $(\Gamma e)^{\circ} = (\mathscr{T})^{\sim}$.

Théorème 8.2.2. — Le foncteur « limite inductive locale » de la catégorie des systèmes inductifs de faisceaux sur \mathcal{T} , indexés par \mathcal{L} , dans la catégorie des faisceaux sur \mathcal{T} , est partout défini, commute aux limites projectives finies et commute aux limites inductives quelconques.

Les propositions 8.1.13, 8.1.14 et 8.1.12 permettent de se ramener au cas où $\mathscr{S} = \mathscr{T} = \mathscr{L}$. Un système inductif local est alors la donnée, pour chaque $U \in Ob \mathscr{S}$, d'un faisceau \mathscr{F}_U sur s/U et, pour chaque flèche $f: V \to U$ dans \mathscr{S} dûne flèche, fonctorielle en f, de $f^*\mathscr{F}_U$ dans \mathscr{F}_V .

Pour de tels systèmes inductifs, les <u>lim</u> se calculent comme suit :

Lemme 8.2.3. — Soit $U \to \mathscr{F}_U$ une section de la catégorie des préfaisceaux sur les objets de \mathscr{S} . On a

$$a(\mathbf{U} \mapsto \Gamma(\mathbf{U}, \mathscr{F}_{\mathbf{U}})) \simeq \varprojlim_{\mathbf{U}} a\mathscr{F}_{\mathbf{U}}.$$

Par définition, le second membre représente le foncteur qui, à chaque faisceau \mathscr{F} sur \mathscr{S} , associe l'ensemble des systèmes cohérents de flèches $\phi_{\mathrm{U}}: \mathscr{F}_{\mathrm{U}} \to \mathscr{F}|_{\mathrm{U}}$. A son tour, une flèche ϕ_{U} est un système cohérent de flèches ϕ_g , une pour chaque $g: \mathrm{V} \to \mathrm{U}$, $\phi_g: \mathscr{F}_{\mathrm{U}}(\mathrm{V}) \to \mathscr{F}(\mathrm{V})$. Appliquons 8.1.11 au foncteur identique de \mathscr{S} , obtenant ainsi \mathscr{S}^* localement filtrante sur \mathscr{S} . On a vu que

$$\varinjlim_{g\in\mathscr{S}^*}\mathscr{F}_{\mathrm{U}}(\mathrm{V}_g)^{\sim}\simeq\varinjlim_{\mathrm{U}}a\mathscr{F}_{\mathrm{U}},$$

où V_g est la source de g et $^{\sim}$ le foncteur « faisceau constant engendré ». Le foncteur $U\mapsto 1_U$ de $\mathscr S$ dans $\mathscr S^*$ est cofinal, d'où encore par 8.1.5

$$\underset{\mathrm{U}}{\varinjlim} \mathscr{F}_{\mathrm{U}}(\mathrm{U})^{\sim} \simeq \underset{\mathrm{U}}{\varinjlim} a\mathscr{F}_{\mathrm{U}}.$$

Revenant aux définitions, on trouve enfin

$$\varinjlim_{U} \mathscr{F}_{U}(U)^{\sim} = a(U \mapsto \Gamma(U, \mathscr{F}_{U})).$$

Ceci montre que dans le cas auquel on s'est réduit, le foncteur \varinjlim est partout défini, et qu'il se calcule comme composé du foncteur « faisceau engendré par un préfaisceau » et du foncteur $(\mathscr{F}_U) \mapsto (U \mapsto \Gamma(U, \mathscr{F}_U))$. Ces deux foncteurs commutent aux limites projectives finies, et le foncteur \varinjlim commute de plus aux limites inductives quelconques de par sa définition comme foncteur adjoint.

Le lemme 8.2.3 fournit un procédé systématique pour démontrer des propriétés du foncteur limite inductive locale à partir des propriétés analogues du foncteur « faisceau associé à un préfaisceau ». On trouve ainsi :

Proposition 8.2.4. — Soit \mathcal{T} , \mathcal{S} et \mathcal{L} comme précédemment, \mathcal{A}_{λ} un système inductif local de faisceaux d'anneaux sur \mathcal{T} , \mathcal{L}_{λ} (resp. \mathcal{M}_{λ}) un système inductif local de faisceaux de modules à droite (resp. à gauche) sur \mathcal{A}_{λ} , tous trois indexés par \mathcal{L} .

On a

78

$$\varinjlim(\mathscr{L}_{\lambda}\otimes_{\mathscr{A}_{\lambda}}\mathscr{M}_{\lambda})=\varinjlim\mathscr{L}_{\lambda}\underset{\varinjlim\mathscr{A}_{\lambda}}{\otimes}\varinjlim\mathscr{M}_{\lambda}.$$

(Se ramener au cas $\mathcal{T}=\mathcal{S}=\mathcal{L}$, et noter que les deux membres coïncident avec le faisceau engendré par le préfaisceau de

$$\mathscr{L}_{\mathrm{U}}(\mathrm{U}) \underset{\mathscr{A}_{\mathrm{U}}(\mathrm{U})}{\otimes} \mathscr{M}_{\mathrm{U}}(\mathrm{U})).$$

Proposition 8.2.5. — Soit $\mathscr{T}_1 \xrightarrow{q} \mathscr{T}_2 \to \mathscr{S}$ deux morphismes de sites, et (F_{λ}) un système inductif local de faisceau sur \mathscr{T}_2 indexé par une catégorie localement cofiltrante \mathscr{L} sur \mathscr{S} . On a

$$q^* \underset{\lambda \in \mathscr{L}}{\varinjlim} F_{\lambda} \simeq \underset{\lambda \in \mathscr{L}}{\varinjlim} q^* F_{\lambda}.$$

Ceci résulte aussitôt de ce que q^* admet un adjoint à droite q_* .

Soient $\mathscr S$ et $\mathscr T$ deux sites dans lesquels les \varprojlim finies sont représentables, soit $p:\mathscr T\to\mathscr S$ un morphisme de sites tel que $p^*:\mathscr F\to\mathscr T$ commute aux \varprojlim finies, et $\mathscr L$ la catégorie localement cofiltrante sur $\mathscr T$ ayant pour objets les triples (V,U,ϕ) où $V\in \mathrm{Ob}\,\mathscr T,\,U\in \mathrm{Ob}\,\mathscr S$ et $\phi\in \mathrm{Hom}(V,p^*\mathrm U)$. On l'obtient en appliquant 8.1.11 à $1_{\mathscr S}:\mathscr S\to\mathscr S$.

Proposition 8.2.6. — Pour tout faisceau \mathscr{F} sur \mathscr{T} , on a

$$\mathscr{F} = \varinjlim_{\lambda \in \mathscr{L}} \phi^* \phi_* \mathscr{F}$$

79

où, par abus de notation, ϕ désigne le morphisme induit par p de \mathcal{T}/V dans s/V.

Soit ϕ' le foncteur image réciproque au sens des préfaisceaux; de 8.2.3, on tire

$$\varinjlim_{\lambda \in \mathscr{L}} {\phi'}^* \phi_* \mathscr{F} = \varinjlim_{\lambda \in \mathscr{L}} a \phi' \phi_* \mathscr{F} = \varinjlim_{\lambda \in \mathscr{L}} \mathscr{F}(V)^{\sim} = \varinjlim_{V} \mathscr{F}(V)^{\sim} = \mathscr{F}.$$

Proposition 8.2.7. — Soient $p: T \to S$ un morphisme de topos, \mathcal{O}_S un faisceau d'anneaux sur S et \mathcal{O}_T son image réciproque sur T. Pour qu'un \mathcal{O}_T -Modules à droite \mathscr{M} soit plat sur \mathcal{O}_T , il faut et il suffit que le foncteur

$$(8.2.7.1) \mathcal{N} \longrightarrow \mathcal{M} \underset{\mathcal{O}_{\mathrm{T}}}{\otimes} p^* \mathcal{N}$$

de la catégorie des \mathcal{O}_S -Modules à gauche dans celle des faisceaux abéliens sur T soit exact.

L'assertion « il faut » est triviale; supposons donc le foncteur (8.2.7.1) exact, et prouvons que \mathcal{M} est plat.

On peut supposer p défini par un morphisme de sites $p: \mathcal{T} \to \mathcal{S}$ vérifiant les hypothèses faites en 2.6. Soit $V \in \mathrm{Ob}\,\mathcal{T}$, $U \in \mathrm{Ob}\,\mathcal{S}$ et $\phi: V \to p^*U$. On désigne encore par ϕ le morphisme de sites induit : $\phi: \mathcal{T}/V \to \mathcal{S}/U$.

Lemme 8.2.8. — Le foncteur $\mathcal{N} \mapsto \mathcal{M}|V \underset{\mathcal{O}_{V}}{\otimes} \phi^{*} \mathcal{N}$, de la catégorie des $\mathcal{O}_{S}|U$ -Modules sur s/U dans celle des $\mathcal{O}_{T}|V$ -Modules sur \mathcal{T}/V , est exact.

On se ramène à prendre $V=p^*U$. Soient j et j' les « morphismes d'inclusion » : $j: \mathcal{S}/U \to \mathcal{S}$ et $j': \mathcal{T}/p^*U \to \mathcal{T}$. On a :

$$j'_{!}(\mathscr{M}|V\underset{\mathscr{O}_{V}}{\otimes}\phi^{*}\mathscr{N})=\mathscr{M}\underset{\mathscr{O}_{T}}{\otimes}p^{*}j_{!}\mathscr{N},$$

d'où 8.2.8 puisque $j_!$ et $j_!'$ sont exacts et fidèles.

Soit alors Q un \mathcal{O}_T -Modules. On a (8.2.6)

$$Q = \varinjlim_{\phi: V \to P^*U} \phi^* \phi_* Q | V$$

de sorte que (8.2.4)

v

$$\mathscr{M} \underset{\mathscr{O}_{\mathbf{T}}}{\otimes} \mathbf{Q} = \varinjlim_{\phi: \mathbf{V} \to p^* \mathbf{U}} \mathscr{M} | \mathbf{V} \underset{\mathscr{O}_{\mathbf{S}_{\mathbf{V}}}}{\otimes} \phi^* \phi_* \mathbf{Q} | \mathbf{V}.$$

D'après 8.2.8, les foncteurs $Q \mapsto \mathcal{M}|V \underset{\mathscr{O}_{V}}{\otimes} \phi^{*}\phi_{*}Q|V$ sont exacts à gauche, de sorte que **80** $\mathcal{M} \underset{\mathscr{O}_{T}}{\otimes} Q$ est exact à gauche en Q, donc exact.

Corollaire 8.2.9. — Soit $f:(T, \mathscr{O}_T) \to (S, \mathscr{O}_S)$ un morphisme de topos annelés. Alors, l'image réciproque par f d'un faisceau de modules (à droite) plats est un faisceau de modules plats.

62 J.L. VERDIER v

Factorisant f par $(T, f^*\mathcal{O}_S)$, on se ramène au cas $\mathcal{O}_T = f^*\mathcal{O}_S$. Soit alors \mathcal{M} un faisceau de modules plats sur S. D'après 8.2.7, pour vérifier que $f^*\mathcal{M}$ est plat, il suffit de vérifier l'exactitude du foncteur

$$\mathcal{N} \mapsto f^* \mathcal{M} \underset{\mathcal{O}_{\mathbf{T}}}{\otimes} f^* \mathcal{N} = f^* (\mathcal{M} \underset{\mathcal{O}_{\mathbf{S}}}{\otimes} \mathcal{N})$$

d'où l'assertion, puisque f^* est exact.

Lemme 8.2.10. — Soit (S, \mathcal{O}_S) un topos annelé, \mathscr{F} un faisceau de modules à gauche localement de présentation finis, \mathscr{G} un faisceau de bimodules et \mathscr{H} un faisceau plat de modules à gauche. Alors, la flèche canonique

$$\mathscr{H}om(\mathscr{F},\mathscr{G})\otimes\mathscr{H}\longrightarrow\mathscr{H}om(\mathscr{F},\mathscr{G}\otimes\mathscr{H})$$

est un isomorphisme.

La question est locale sur S, ce qui permet de supposer que ${\mathscr F}$ admet une présentation finie

$$\mathscr{F}_1 \longrightarrow \mathscr{F}_0 \longrightarrow \mathscr{F} \longrightarrow 0.$$

La première ligne du diagramme suivant est exacte, cas ${\mathscr H}$ est plat :

d'où l'assertion. Faisant $\mathscr{G}=\mathscr{A}$, on déduit de 8.2.10 :

81 Lemme 8.2.11. — Tout morphisme d'un faisceau de modules localement de présentation finie dans un faisceau de modules plat se factorise, localement sur S, par un faisceau libre $\mathscr{O}^n_S(n \in \mathbf{N})$.

Théorème 8.2.12. — (D. Lazard). Pour qu'un faisceau de modules \mathcal{M} sur un site annelé (S, \mathcal{O}_S) soit plat, il faut et il suffit qu'il soit limite inductive locale de modules libres de type fini.

Le « il suffit » résulte de 8.2.2, 8.2.4.

Quel que soit $U \in Ob \mathscr{S}$, soit $\mathscr{L}_0(U)$ (resp. $\mathscr{L}_1(U)$) la catégorie des faisceaux de modules libres de type fini (resp. de présentation finie) sur U, munis d'une application linéaire dans $\mathscr{M}|U$. Pour toute flèche $f:V \to U$ dans \mathscr{S} , soit f^* le foncteur de restriction de $\mathscr{L}_i(U)$ dans $\mathscr{L}_i(V)$. Les foncteurs définissent une catégorie \mathscr{L}_i , fibrée sur \mathscr{S} , dont les fibres sont les catégories opposées des catégories $\mathscr{L}_i(U)$.

Le lecteur vérifiera que la catégorie \mathcal{L}_1 est localement filtrante sur $\mathcal S$ et que

$$\mathscr{M} = \varinjlim_{(\mathcal{M}, f) \in \mathscr{L}_1} \mathcal{M}$$

Si \mathcal{M} est plat, l'inclusion de $\mathcal{L}0$ dans $\mathcal{L}1$ est pleinement fidèle et, d'après 8.2.11, vérifie (C $\mathfrak{F}1$) de 8.1.4. Elle vérifie dès lors automatiquement (e $\mathfrak{F}2$), et $\mathcal{L}0$ est localement filtrante. D'après 8.1.5, on a

$$\mathscr{M} = \varinjlim_{(\mathcal{M}, f) \in \mathscr{L}_2} \mathcal{M},$$

d'où l'assertion 8.2.12.

V

Références

82

- [1] M. Artin et B.Mazure : Etale Homotopy Theory, Lecture Notes n°, Springer Verlar.
- [2] Blum et Herrera : Article à paraître aux Inventiones.
- [3] H. Cartan et S. Eilenberg : Homological Algebra.
- [4] P. Deligne : Théorie de Hodge (Publication de 1'I.H.E.S).
- [5] P. Gabriel et N. Popescu : CRAS.
- [6] P. Gabriel et M. Zisman: Homotopie Theory and Calculus of Fraction, Ergebnisse der Mathematik, Bd 35.
- [7] R. Godement : Théorie des faisceaux. Herman.
- [8] J. Giraud : Méthode de la Descente. Mémoire de la S.M.F.
- [9] J. Giraud : Algèbre homologique non commutative (à paraître).
- [10] A. Grothendieck : On the De Rham Cohomology of Algebraic Varieties, I. H. E. S n° 29.
- [11] A. Grothendieck : Sur quelques points d'Algèbre Homologique, Tohoku, Math. Journal.
- [12] R. Hartshorne : Residues and Duality. Lecture notes n° 20, Springer Verlag.
- [13] L. Illusie : SGA 6 I.
- [14] S. Lubkin: On a Conjecture of A. Weil. Am. J. of Math. p.456, 1967.
- [15] G. Segal : Classifying spaces and Spectral Sequences, I.H.E.S. n° 34.
- [16] Séminaire Cartan 1957-1957.
- [17] D.Sullivan: Geometric Topology, part I, Notes miméographiées. M.I.T. 1970.

TECHNIQUES DE DESCENTE COHOMOLOGIQUE

par B. Saint-Donat

Table des matières

Introduction

1. Soit X un espace topologique et $\mathscr{U}=(\mathrm{U}_i)_{i\in\mathrm{I}}$ un recouvrement de X, que l'on 84 suppose soit ouvert, soit fermé et localement fini. Si \mathfrak{F} est un faisceau abélien sur X, la suite spectrale de Leray :

(1.1)
$$\overset{\vee}{\mathrm{H}^p}(\mathscr{U},\mathscr{H}^q(\mathfrak{F})) \Rightarrow \mathrm{H}^*(\mathrm{X},\mathfrak{F})$$

définie par \mathscr{U} [[5] II (5.2.4) et (5.4.1)] peut se décrire de la façon suivante :

Le recouvrement \mathscr{U} définit une résolution « Cěchiste » $\mathscr{C}^*(\mathscr{U}, \mathfrak{F})$, fonctorielle en \mathfrak{F} (ibid (5.2.1)). D'autre part, on dispose, pour tout \mathfrak{F} d'une résolutions « flasque canonique », $C^*(\mathfrak{F})$, fonctorielle en \mathfrak{F} (ibid (4.3)). Avec ces notations, la suite spectrale (1.1) s'obtient, dans le cas où \mathscr{U} est ouvert, à partir du complexe double

(1.2)
$$\Gamma(X, \mathscr{C}^*(\mathscr{U}, \mathscr{C}^*(\mathfrak{F}))).$$

Dans le cas où ${\mathscr U}$ est fermé et localement fini, on considère le complexe double

(1.3)
$$\Gamma(X, \mathscr{C}^*(\mathscr{C}^*(\mathscr{U}, \mathfrak{F}))).$$

2. Cherchons une description unifiée de ces doubles complexes. Désignons par X_{\circ} l'espace topologique somme disjointe des U_i et par X_n $(n \ge 0)$ le produit fibré itéré $(n+1)^{\text{ieme}}$ de X_{\circ} avec lui-même au-dessus de X

$$(2.1) X_n = \prod_{i_0 \dots i_n \in I} U_{i_0} \cap \dots \cap U_{i_n} = \prod_{\sigma \in \text{Hom}([n], I)} \bigcap_{i=0}^{n} U_{\sigma(i)}.$$

Les X_n forment un système simplicial d'espaces topologiques, et si j_n désigne la projection de X_n sur X, on a

(2.2)
$$\mathscr{C}^n(\mathscr{U},\mathfrak{F}) = j_{n*}j_n^*(\mathfrak{F}).$$

Notons que la formation des résolutions flasques canoniques commute à la restriction à un ouvert et à l'image directe par une immersion fermée. Dès lors :

(a) si \mathscr{U} est ouvert

(2.3)
$$\mathscr{C}^{q}(\mathscr{U}, \mathcal{C}^{n}(\mathfrak{F})) = j_{q*} j_{q}^{*} \mathcal{C}^{p}(\mathfrak{F}) = j_{q*} \mathcal{C}^{p}(j_{q}^{*} \mathfrak{F})$$

(b) si \mathscr{U} est fermé et localement fini

(2.4)
$$C^{p}(\mathscr{C}^{q}(\mathscr{U},\mathfrak{F})) = C^{p}(j_{q*}j_{q}^{*}\mathfrak{F}) = j_{q*}C^{p}(j_{q}^{*}\mathfrak{F}).$$

Ainsi, pour obtenir une description unifiée de (1.2) et (1.3), on voit qu'il suffit de prendre la résolution « flasque canonique » de $j_q^*(\mathfrak{F})$ sur X_q pour tout q, puis d'appliquer le foncteur j_{q*} à cette résolution.

3. La description précédente garde un sens pour tout système simplicial d'espaces topologiques au-dessus de X :

(3.1)
$$\Delta^{\circ} \longrightarrow \operatorname{Top}/X$$
$$[n] \longrightarrow X_n$$

non nécessairement de la forme (2.1). Toutefois le double complexe, coaugmenté par \mathfrak{F}

$$\mathfrak{F} \longrightarrow (j_{q*}C^p(j_q^*(\mathfrak{F})))_{p,q}$$

ne définira pas en général une résolution de \mathfrak{F} .

Ce travail est consacré à la recherche de conditions suffisantes pour que (3.2) définisse une résolution de \mathfrak{F} . Dans ce cas, la suite spectrale (1.1) se généralise en une suite spectrale

$$(3.3) \qquad \overset{\vee}{\mathrm{H}^p}\left(\mathrm{H}^q(\mathrm{X}_p,j_p^*(\mathfrak{F}))\right) \longrightarrow \mathrm{H}^{p+q}(\mathrm{X},\mathfrak{F})$$

dite « suite spectrale de descente ».

86

Dans le cas de « coefficients constant », des suites spectrales analogues ont été ob-

tenues par Segal (cf. [8]), par d'autres méthodes et pour d'autres « théories cohomologiques », telles que la K-théorie. Segal se place dans la catégorie des C.W.complexes : il utilise un foncteur « réalisation géométrique » qui, à un complexe semi-simplicial d'espaces topologiques, associe un nouvel espace topologique; ce nouvel espace doit se comparer au topos associé à un topos simplicial [cf. (1.2.12)].

4. Au paragraphe 5, nous illustrons les critères obtenus en construisant pour tout espace analytique X sur C, via la résolution des singularités, un système simplicial d'espaces analytiques non singuliers au-dessus de X,

$$[n] \longrightarrow X_n$$

tel que (3.2) définisse une résolution de \mathfrak{F} . Si l'on prend pour \mathfrak{F} le faisceau contient \mathbf{C} , on obtient en particulier une suite spectrale

(4.1)
$$H^{q}(X_{p}, \mathbf{C}) \longrightarrow H^{p+q}(X, \mathbf{C})$$

qui exprime la cohomologie complexe de X en terme de la cohomologie complexe d'espaces analytiques non singuliers. De plus, si X est projectif, on peut supposer que tous les X_p sont projectifs : c'est là l'ingrédient essentiel qui permet d'obtenir une espèce de « théorie de Hodge » pour X (cf. [2]).

5. Les constructions qui précédent s'étendent telles quelles lorsqu'on remplace le faisceau \mathfrak{F} par un complexe borné inférieurement de faisceaux. Elles conduisent à des techniques de « localisation » dans les catégories dérivées :

On sait que pour X_{\circ} donné par (2.1), la flèche

$$j_{\circ}^*: \mathrm{D}^b(\mathrm{X}) \longrightarrow \mathrm{D}^b(\mathrm{X}_{\circ})$$

n'est pas fidèle en général; on montrera qu'une donnée plus précise que celle de $j_{\circ}^{*}(K^{*})$ (pour $K^{*} \in D^{+}(X)$), faisant intervenir les X_{n} , permet parfois de reconstituer le complexe K^{*} .

Les énoncés obtenus seront utilisés dans l'appendice de l'exposé XVII pour étendre la définition du foncteur $Rf_!$ (f morphisme séparé de type fini entre schémas) au cas où f n'est pas supposé compactifiable.

Dans cette application, il n'est pas possible de ne considérer que des espaces topologiques remplacés ici par des sites étales de schémas. D'autre part, pour mener à bien les démonstrations, il sera nécessaire de considérer aussi bien des systèmes simpliciaux d'espaces que des systèmes multi-simpliciaux. Ceci explique, justifie ou excuse le degré d'hypergénéralité dont on partira.

1. Préliminaires

1.1. Notations. —

1.1.1. Dans tout ce qui suit, $\mathscr U$ est univers tel que $\mathbf Z \in \mathscr U$: tous les topos considérés seront des $\mathscr U$ -topos.

Soient T et T' deux topos : un morphisme $\varphi: T \to T'$ consiste en la donnée d'un couple de foncteurs $\varphi_*: T \to T'$ et $\varphi^*: T' \to T$, muni d'une adjonction $\operatorname{Hom}_{T'}(.,\varphi_*) \xrightarrow{\operatorname{Hom}_T}(\varphi^*.,.)$, tel que φ^* soit exact à gauche (i.e. préserve les limites projectives finies).

Soient (T, \mathcal{O}_T) et $(T', \mathcal{O}_{T'})$ deux topos annelés : un morphisme de (T, \mathcal{O}_T) dans $(T', \mathcal{O}_{T'})$ est un couple (φ, θ) où $\varphi : T \to T'$ est un morphisme de topos et $\theta : \mathcal{O}_{T'} \to \varphi_*(\mathcal{O}_T)$ est un morphisme d'anneaux.

1.1.2. Nous ferons un usage constant du langage des catégories fibrées tel qu'il est exposé dans [SGA 1 VI]; le lecteur pourra aussi se reporter à [4]. Fixons simplement quelques notations : si $E \to B$ est un foncteur fibrant (resp. cofibrant), pour un morphisme $m: i \to j$ dans B, nous noterons $m^*: E_j \to E_i$ (resp. $m_*: E_i \to E_j$) le foncteur « image réciproque » (resp. « image directe ») qui lui est associé; chacun de ces foncteurs est définit à un unique isomorphisme fonctoriel près. Si $\varphi: E \to E'$ est un B-foncteur, pour tout objet i de B, nous noterons $\varphi_i: E_i \to E'_i$ le foncteur restriction de φ à E_i .

1.1.3. Enfin, nous désignerons par Δ la catégorie suivante : les objets de Δ sont les ensembles ordonnés $[n] = \{0, 1, ..., n\}$ et les morphismes de Δ sont toutes les applications croissantes (au sens large). Δ^+ (resp. Δ^-) désignera la catégorie dont les objets sont ceux de Δ et dont les flèches sont les monomorphismes (resp. les épimorphismes) de Δ . Nous utiliserons librement et au fur et à mesure des besoins les notations classiques introduites à propos de Δ [cf. [3] II 2].

1.2. D-topos. —

88

89

Définition 1.2.1. — Soient D une catégorie et $E \to D$ un foncteur fibrant et cofibrant. Nous dirons que E est bifibrée en topos au-dessus de D où que E est un D-topos si les conditions suivantes sont réalisées :

- (a) Pour tout objet i de D la catégorie fibre E_i est un topos.
- (b) Pour tout morphisme $m: i \to j$ dans D, il existe un morphisme de topos $f: E_i \to E_i$ tel pue $f_* = m^*$ et $f^* = m_*$.

Remarque. — La condition (b) peut encore s'exprimer, compte tenu de (a), en disant que le foncteur m_* est exact à gauche.

Lorsque D = Δ (resp. $\Delta \times \Delta$) on parlera de topos simplicial (resp. simplicial double) pour désigner un Δ -topos (resp. un $\Delta \times \Delta$ -topos).

Dans la pratique, nous rencontrerons des D-topos grâce aux considérations suivantes :

Définition 1.2.2. — Soit & une catégorie fibrée et cofibrée au-dessus de D. Nous dirons

90

que $\mathscr E$ est bifibrée en duaux de topos au-dessus de D si $\mathscr E^\circ$ est un D°-topos.

Remarque 1.2.3. — Explicitement, \mathscr{E} est bifibrée en duaux de topos au-dessus de D si et seulement si les conditions suivantes sont réalisées :

- (a) Pour tout objet i de D, la catégorie duale de la catégorie fibre \mathcal{E}_i est un topos.
- (b) Pour tout morphisme $m: i \to j$ dans D, le foncteur m^* est exact à droite.
- 1.2.4. Le lecteur trouvera au paragraphe 4 des exemples de catégories bifibrées en duaux de topos.
- 1.2.5. Soient $\mathscr{E} \to B$ une catégorie bifibrée en duaux de topos au-dessus de B et X : D° → B un foncteur. Alors on laisse au lecteur le soin de vérifier que (D° $_{B}\mathscr{E}$)° est un D-topos que nous noterons \overline{X} .
- 1.2.6. Nous dirons souvent qu'un foncteur X : D° → B est un D-objet de B et nous désignerons par X_i l'image par ce foncteur d'un objet i de D ; les D-objets de B forment une catégorie notée D°B. Si S est un objet de B, un D-objet de B/S s'appellera un D-objet de B augmenté vers S. La donnée d'un D-objet de B augmenté vers S est trivialement équivalente à la donnée d'un morphisme fonctoriel X → C_S^D où X est un D-objet de B et C_S^D le D-objet de B constant de valeur S.

Lorsque $D = \Delta$, on parlera d'objet simplicial (resp. objet simplicial augmenté). Nous utiliserons aussi des objets simpliciaux doubles (en faisant $D = \Delta \times \Delta$).

1.2.7. Supposons maintenant que la catégorie B possède des produits fibrés finis. Soit $f: \mathbf{R} \to \mathbf{S}$ une flèche dans B : le bifoncteur

$$([n], X) \rightsquigarrow \operatorname{Hom}_{\operatorname{Ens}}([n], \operatorname{Hom}_{\operatorname{S}}(X, R))$$

de $\Delta^{\circ} \times (B/S)^{\circ}$ dans Ens définit un foncteur :

$$[n] \rightsquigarrow X_{[n]} = X_n$$

en prenant pour \mathbf{X}_n un représentant du foncteur

$$Z \rightsquigarrow \operatorname{Hom}_{\operatorname{Ens}}([n], \operatorname{Hom}_{\operatorname{S}}(Z, R))$$

$$(\mathbf{X}_n \simeq \overbrace{\mathbf{R} \times_{\mathbf{S}} \times \mathbf{R} \times \cdots \times_{\mathbf{S}} \mathbf{R}}^{n+1 \text{ fois}})$$

Nous désignerons par $[R|_fS]$ ou [R|S] l'objet semi-simplicial augmenté vers S ainsi construit.

Enfin, si X et X' sont deux objets semi-simpliciaux de B (ou de B/S) et $u: X \to X'$ un morphisme fonctoriel nous introduirons pour des raisons techniques l'objet $[X|_uX']$ calculé dans la catégorie $\Delta^{\circ}B$. Celui-là s'interprète comme un objet simplicial double de B que nous noterons alors $[[X|_uX']]$: On dispose en effet d'un isomorphisme canonique de catégories :

$$\Delta^{\circ}(\Delta^{\circ}B) \xrightarrow{\sim} (\Delta \times \Delta)^{\circ}B.$$

Nous allons revenir maintenant à la notion générale de D-topos.

1.2.8. Soient E un D-topos : nous désignerons par (E) la catégorie $\mathcal{H}om_{\mathcal{D}}(\mathcal{D}, \mathcal{E})$. Soit $f:\mathcal{D}'\to\mathcal{D}$ un foncteur : la catégorie $\mathcal{D}'_{\mathcal{D}}$ E est un \mathcal{D}' -topos et, par composition avec f, on obtient un foncteur

$$f^* : (E) \longrightarrow (D'_{D}E).$$

Dans le cas où D' est réduite à un objet i de D (avec pour seul morphisme l'identité de i) et pour f l'inclusion canonique notée e_i , on peut prendre pour D' E la catégorie fibre E_i et e_i^* s'identifie alors au foncteur « évaluation en i ».

Proposition 1.2.9. — Si D' est une \mathcal{U} -petite catégorie, le foncteur f^* possède un adjoint à droite et à gauche (notés respectivement f_* et $f_!$).

Cela résulte d'une légère généralisation du lemme de Kan [III 1.1], dont nous ferons un usage constant.

Lemme 1.2.10. — Soient I, J et A trois catégories au-dessus dûne même catégorie B : on suppose que I est \mathscr{U} -petite et que A est fibrée et cofibrée au-dessus de B. On se donne un B-foncteur $f: I \to J$ et l'on désigne par f^* le foncteur

$$\mathscr{H}om_{\mathrm{B}}(\mathrm{J},\mathrm{A}) \longrightarrow \mathscr{H}om_{\mathrm{B}}(\mathrm{I},\mathrm{A})$$

défini par composition avec f. Alors si dans chaque fibre de A au-dessus de B, les \mathscr{U} -limites inductives (resp. projectives) existent, f^* possède un adjoint à gauche (resp. à droite).

Preuve. — Nous n'indiquerons que la démonstration de l'existence du foncteur adjoint à gauche, la partie resp. du lemme s'en déduisant par dualité. Nous utiliserons le fait suivant, dont la vérification est laissée au lecteur :

Lemme 1.2.10.1. — Soient A une catégorie bifibrée au-dessus d'une catégorie B, b un objet de B et $(F_{\lambda})_{\lambda \in \Lambda}$ un foncteur d'une catégorie Λ dans la fibre A_b ; quels que soient G dans $A_{b'}$, et $u:b' \to b$ (resp. $u:b \to b'$) dans B, on a une bijection :

$$\operatorname{Hom}_{u}(G, \operatorname{lim} F_{\lambda}) \xrightarrow{\sim} \operatorname{lim} \operatorname{Hom}_{u}(G, F_{\lambda})$$

(resp. $\operatorname{Hom}_u(\varinjlim F_{\lambda}, G) \xrightarrow{\sim} \varprojlim \operatorname{Hom}_u(F_{\lambda}, G)$) chaque fois que le premier membre est défini.

92

+ Ceci étant, soit I $\coprod_f \mathbf{J}$ la catégorie sur B définie par :

$$ob(I\coprod_f J) = ob(I) \coprod ob(J)$$

$$\operatorname{Hom}(x,y) = \begin{cases} \operatorname{Hom}_{\mathrm{I}}(x,y) & \text{si } x,y, \in \operatorname{ob}(\mathrm{I}) \\ \operatorname{Hom}_{\mathrm{J}}(x,y) & \text{si } x,y, \in \operatorname{ob}(\mathrm{J}) \\ \operatorname{Hom}_{\mathrm{J}}(f(x),y) & \text{si } x \in \operatorname{ob}(\mathrm{I}) \text{ et } y \in \operatorname{ob}(\mathrm{J}) \\ \varnothing & \text{si } x \in \operatorname{ob}(\mathrm{J}) \text{ et } y \in \operatorname{ob}(\mathrm{I}). \end{cases}$$

- + La catégorie $\mathscr{H}om_B(I \coprod_f J, A)$ est équivalente à la catégorie des triples formés d'un B-foncteur F de I dans A, d'une B-foncteur G de J dans A et d'un morphisme φ de B-foncteur de F dans $G \circ f = f(G)$.
- + Pour tout objet j de J, on désigne par I/j la catégorie des objets de I « placés par f au-dessus de j » : les objets de I/j sont les couples (i,α) où i est un objet de I et $\alpha: i \to j$ une flèche dans $I\coprod_f J/j$, les morphismes de I/j étant ceux de $I\coprod_f J/j$. Si p_I et p_J sont les projections de I et J sur B, et si (i,α) est un objet de I/j, on désignera par $\alpha_*: A_{p_I(i)} \to A_{p_J(j)}$ le foncteur $p_J(\alpha)_*$.
- + Se donner un B-foncteur de I $\coprod_f J$ dans A revient encore à se donner $F \in \operatorname{Hom}_B(I, A), G \in \operatorname{Hom}_B(J, A)$ et un morphisme fonctoriel en j

$$\psi_j: \varinjlim_{(i,\alpha)\in \mathcal{I}/j} \alpha_*(\mathcal{F}(i)) \longrightarrow \mathcal{G}(j).$$

(La fonctorialité en j du membre de gauche résulte de (1.2.10.1)). L'adjoint à gauche de f^* est donc donné par la formule :

$$f_!(\mathbf{F})(j) = \varinjlim_{(i,\alpha) \in \mathbf{I}/j} \alpha_*(\mathbf{F}(i)).$$

Corollaire 1.2.11. — Soient E un D-topos et i un objet de D; le foncteur e_i^* admet 93 un adjoint à gauche (resp. à droite défini par) :

$$e_{i!}(a)(j) = \coprod_{\alpha \in \operatorname{Hom}(i,j)} \alpha_*(a) \left(\text{resp. } e_{i*}(a)(j) = \prod_{\alpha \in \operatorname{Hom}(j,i)} \alpha^*(a) \right)$$

où a est un objet de E au-dessus de i

Proposition 1.2.12. — Soient D une \mathscr{U} -petite catégorie et E un D-topos : alors la catégorie (E) est un \mathscr{U} -topos.

- + On vérifie « fibre par fibre », à l'aide de (1.2.10.1), que la catégorie (E) possède les propriétés suivantes :
 - a) Les limites projectives finies sont représentables.
- b) Les sommes directes indexées par un élément de $\mathscr U$ sont représentables. Elles sont disjointes et universelles.
 - c) Les relations d'équivalence sont effectives universelles.
- + Il reste à montrer que (E) possède un système de générateurs indexé par un élément de \mathscr{U} : or, si pour tout objet i de D, $(G_{i\lambda})_{\lambda \in \wedge_i}$ est un système de générateurs de E_i (où \wedge_i est un ensemble \mathscr{U} -petit), la famille $(e_{i!}(G_{i\lambda}))_{i,\lambda}$ est un système de générateurs de (E).
- 1.2.13. Nous allons introduire maintenant la notion de morphisme entre D-topos. Précisons tout d'abord que si F et F' sont deux catégories au-dessus d'une même catégorie B et si T : F \rightarrow F' est un B-foncteur, un B-adjoint à gauche à T sera un foncteur S : F' \rightarrow F adjoint à gauche à T tel que les morphismes canoniques $1 \rightarrow$ T°S

et $S \circ T \to 1$ soient des B-morphismes de foncteurs. Sous ces conditions, on vérifie trivialement que T est cartésien et que S est cocartésien.

Définition 1.2.14. — Soient E et E' deux D-topos : un morphisme de E dans E' est un couple de D-foncteurs Φ_* : E \to E' et Φ^* : E' \to E, muni d'une D-adjonction $Hom(\Phi^*,,) \xrightarrow{\xi} (.,\Phi_*)$, tel que pour tout objet i de D, le couple (Φ_{*_i},Φ_i^*) , muni de l'adjonction induite par ξ , soit un morphisme de topos de E_i dans E_i' .

Proposition 1.2.15. — Soient E et E' deux D-topos et (Φ_*, Φ^*) : E \to E' un morphisme. On suppose que D est une \mathscr{U} -petite catégorie, alors le couple $(\Gamma(\Phi_*), \Gamma(\Phi^*))$: $(E) \to (E')$ est un morphisme de topos.

Découle trivialement de la définition précédente.

Le lemme suivant, dont la démonstration est laissée au lecteur, permet de construire des morphismes de D-topos.

Lemme 1.2.16. — Soient E et E' deux catégories bifibrées au-dessus d'une même catégorie D, et Φ un D-foncteur cartésien de E dans E' tel que, pour tout objet i de D, $\Phi_i : E_i \to E'_i$ possède un adjoint à gauche. Alors, le choix pour tout i, d'une adjoint à gauche à ϕ_i détermine canoniquement un D-foncteur $\Psi : E' \to E$, D-adjoint à gauche à Φ .

Scholie 1.2.17. — Sous les conditions de (1.2.16), supposons que E et E' soient deux D-topos et que pour tout i objet de D, tout adjoint à gauche du foncteur Φ_i soit exact à gauche : alors, si $\psi : E' \to E$ est un D-adjoint à gauche à Φ , le couple $(\Phi, \psi) : E \to E'$ est un morphisme de D-topos.

Soient maintenant $\mathscr{E} \to B$ une catégorie bifibrée en duaux de topos au-dessus de B, X et X' deux D-objet de B et $\alpha: X \to X'$ un morphisme fonctoriel. Alors le choix de clivages normalisés pour \mathscr{E} et \mathscr{E}° détermine canoniquement un morphisme $(\alpha_*, \alpha^*): \overline{X} \to \overline{X}'$ de D-topos tel que, pour tout objet i de $D(\alpha_{*_i}, \alpha_i^*): \overline{X}_i \to \overline{X}'_i$ soit égal à $(\alpha_{i*}^{\circ}, \alpha_i^{*^{\circ}})$, où $\alpha_i: X_i \to X'_i$ est la flèche de B donnée par α . Pour deux choix différents de clivages pour \mathscr{E} et \mathscr{E}° , il existe un unique D-isomorphisme entre les morphismes ainsi obtenus. (Pour la vérification de ces faits, le lecteur pourra se reporter à ([4] - (1.17)).

1.3. D-topos annelé. —

95

Définition 1.3.1. — Un D-topos annelé est un couple (E, A) où E est un D-topos et A un anneau de (E).

On vérifie alors que pour tout objet i de D, A_i est u anneau du topos E_i et que pour tout morphisme $m: i \to j$ la flèche canonique $A_i \to m^*(A_j)$ est un homomorphisme d'anneaux.

Définition 1.3.2. — Soient (E, A) et (E', A') deux D-topos annelés : un morphisme de (E, A) dans (E', A') est un couple (Φ, θ) où $\Phi : E \to E'$ est un morphisme de D-topos et $\theta : A' \to \Gamma(\Phi_*(A))$ est un homomorphisme d'anneaux.

Remarque 1.3.3. — Un morphisme $\Phi: (E, A) \to (E', A')$ de D-topos annelés induit un morphisme $(\Gamma(\Phi), \theta): ((E), A) \to ((E), A')$ de \mathscr{U} -topos annelés lorsque D est une \mathscr{U} -petite catégorie (cf. 1.2.15).

1.3.4. Soit $\mathscr{E} \to B$ une catégorie bifibrée en duaux de topos au-dessus de B et \mathscr{O} un anneau de $\underline{\Gamma}(\mathscr{E}^{\circ}) = \mathscr{H}om_{B^{\circ}}(B^{\circ}, \mathscr{E}^{\circ})$. Si $X : D^{\circ} \to B$ est un D-objet de B, le D-topos \overline{X} (cf. (1.2.5)) est naturellement annelé par $(\mathscr{O}.X)^{\circ} : D \to \mathscr{E}$ et l'on désignera par $(\overline{X}, \mathscr{O})$ le D-topos annelé ainsi construit. Si $\alpha : X \to X'$ est un morphisme fonctoriel, le morphisme $(\alpha_*, \alpha^*) : \overline{X} \to \overline{X}'$ (cf. 1.2.17) induit canoniquement un morphisme $(\overline{X}, \mathscr{O}) \to (\overline{X}', \mathscr{O})$ de D-topos annelés encore noté α .

1.3.5. Un D-topos annelé (E, A) définit canoniquement une catégorie $\operatorname{Mod}(E,A)$ bifibrée en catégorie abéliennes au-dessus de D dont la fibre en un objet i de D est la catégorie $\operatorname{Mod}(E_i,A_i)$ des modules sur le topos annelé (E_i,A_i) . Avec ces notations, la catégorie des modules de (E) sur A, notée $\operatorname{Mod}((E),A)$ s'identifie à la catégorie $\operatorname{\mathscr{H}om}_D(D,\operatorname{Mod}(E,A))$.

1.3.6. Soit $\varphi = (\Phi, \theta) : (E, A) \to (E', A')$ un morphisme de D-topos annelés. Il définit deux foncteurs $\varphi_* : \underline{\mathrm{Mod}}(E, A) \to \underline{\mathrm{Mod}}(E', A')$ et $\varphi^* : \underline{\mathrm{Mod}}(E', A') \to \underline{\mathrm{Mod}}(E, A)$ entre les catégories de modules correspondantes :

– Soit M un objet de Mod(E, A) au-dessus d'un objet i de D : $\Phi_*(M)$ est un module sur $\Phi_*(A_i)$ et, grâce au morphisme $\theta_i : A_i' \to \Phi_*(A_i)$, on en déduit un module sur A_i' noté $\varphi_*(M)$. Ce foncteur φ_* sera appelé le foncteur image directe par le morphisme φ .

– Soit M' un objet de $\operatorname{Mod}(E',A')$ au-dessus d'un objet i de D : $\Phi^*(M')$ est un module sur $\Phi^*(A_i')$ et $\varphi^*(M') = \Phi^*(M') \otimes_{\phi^*(A_i')} A_i$ est canoniquement muni d'une structure de module sur A_i . Au moyen de (1.2.16), on définit ainsi un foncteur φ^* , adjoint à gauche à φ_* , et appelé foncteur image réciproque par le morphisme φ .

1.3.6.1. Nous dirons que φ est plat si le foncteur $\Gamma(\varphi^*)$ est exact.

Proposition 1.3.7. — Soient $f: D' \to D$ un foncteur et (E, A) un D-topos annelé. Alors le foncteur canonique

$$f^*:\operatorname{Mod}((\mathbf{E}),\mathbf{A}) \longrightarrow \operatorname{Mod}((\mathbf{E}_{\mathbf{D}}\mathbf{D}'),\mathbf{A}\circ f)$$

possède un adjoint à droite et à gauche si D' est une \mathscr{U} -petite catégorie. En particulier, il est exact.

Cela résulte immédiatement de (1.2.10) et de l'identification $\mathscr{H}om_D(D,\operatorname{Mod}(E,A)) \simeq \operatorname{Mod}((E),A)$.

Conformément aux notations générales, nous noterons $f_!$ (resp. f_*) l'adjoint à 97

gauche (resp. à droite) de f^* .

1.3.8. Les considérations qui suivent nous fournissent un procédé de calcul commode pour les foncteurs dérivés du type $R^+\Gamma(\varphi_*): D^+((E), A) \to D^+((E'), A')$, où $\varphi: (E, A) \to (E', A')$ est un morphisme de D-topos annelé (cf. (1.3.6)). [Si (S, \mathscr{O}_S) est un topos annelé, nous notons $D^+(S, \mathscr{O}_S)$ la catégorie dérivée de la catégorie des \mathscr{O}_S -modules de S].

1.3.9. Ce calcul formel pourra d'ailleurs s'appliquer à d'autres contextes tels que la « descente en cohomologie ℓ -adique » (cf. SGA 5).

Proposition 1.3.10. — Soit D une \mathscr{U} -petite catégorie. Si (E, A) est un D-topos annelé, on désigne par $I_{(E,A)}$ l'ensemble des objets de Mod((E), A) isomorphe à un objet de la forme $\prod_{i \in ob(D)} e_{i*}(Q_i)$, où, pour tout objet i de D, Q_i est totalement acyclique (cf. V $4.1)^{(*)}$; $I_{(E,A)}$ vérifie les propriétés suivantes :

- (i) Pour tout objet F de Mod((E), A) et tout objet i de D, $e_i^*(F)$ est totalement acyclique.
 - (ii) Tout objet de Mod((E), A) s'injecte dans un objet de I_(E,A).
 - (iii) I_(E,A) est stable par sommes directes finies.
- (iv) Pour tout morphisme $\varphi: (E,A) \to (E',A')$ de D-topos annelés, le foncteur $\Gamma(\varphi_*)$ transforme tout complexe acyclique de $C^+(\underline{\Gamma}(E),A)$, formé d'objets de $I_{(E,A)}$, en un complexe acyclique formé d'objets de $I_{(E',A')}$.

$\underline{D\'{e}monstration}$

- (i) Compte tenu de l'expression explicite de e_{i^*} (cf. (1.2.1.1)), il suffit de montrer lemme suivant :
- **Lemme 1.3.10.1.** Soient (S, \mathcal{O}_S) un topos annelé et $(F_t)_{t\in T}$ une famille de \mathcal{O}_S modules totalement acycliques indexée par un ensemble $T \mathscr{U}$ -petit. Alors $\prod_{t\in T} F_t$ est
 totalement acyclique.

Soit X un objet de S : il existe une suite spectrale

(1.3.10.2)
$$H^p(X, \prod_{t \in T}^{(q)} F_t) \longrightarrow \prod_{t \in T} H^{p+q}(X, F_t)$$

où $\prod_{t\in T}^{(q)}$ désigne le q-ième dérivé du foncteur « produit indexé par T ». Comme $\prod_{t\in T}^{(q)} F_t$ est le faisceau associé au préfaisceau U $\xrightarrow{t\in T} \prod_{t\in T} H^q(U, F_t)$, (1.3.10.2) dégénère et on obtient des isomorphismes

(1.3.10.3)
$$H^{n}(X, \prod_{t \in T} F_{t}) \xrightarrow{\sim} \prod_{t \in T} H^{n}(X, F_{t})$$

d'où finalement $H^n(X, \prod_{t \in T}) = 0$ pour tout n.

^{(*) «} Flasque » dans la terminologie de V.

(ii) Soit F un objet de Mod((E), A); on choisit pour tout i un monomorphisme $F_i \to Q_i$, où Q_i est totalement acyclique dans $Mod(E_i, A_i) : e_{i*}(F_i) \to e_{i*}(Q_i)$ est alors un monomorphisme (puisque e_{i*} possède un adjoint à gauche), et la flèche canonique :

$$(1.3.10.4) F \longrightarrow \prod_{i \in Ob(D)} e_{i*}(F_i) \longrightarrow \prod_{i \in Ob(D)} e_{i*}(Q_i)$$

est encore un monomorphisme, comme on le vérifie trivialement.

- (iii) Démonstration laissée au lecteur.
- (iv) On laisse aussi au lecteur le soin de vérifier que $\Gamma(\varphi_*)$ transforme un objet de $I_{(E,A)}$ en un objet de $I_{(E',A')}$. Ce point établi, il suffit, compte tenu de (i), de vérifier le lemme suivant :

Lemme 1.3.10.5. — Si $0 \to F \to G \to H \to 0$ est une suite exacte courte dans $\operatorname{Mod}((E), A)$, avec $F \in I_{(E,A)}$ et $G \in I_{(E,A)}$, la suite $0 \to \Gamma$ $(\varphi_*)(F) \to \Gamma((\varphi_*)(G)) \to \Gamma(\varphi_*)(H) \to 0$ est exacte dans $\operatorname{Mod}((E'), A')$.

Il suffit de remarquer que $e_i^*(H)$ est acyclique pour tout objet i de D et que le calcul de $\Gamma(\varphi_*)$ se fait fibre par fibre, ce qui achève la démonstration de (1.3.10).

Corollaire 1.3.11. — Soit $\varphi: (E, A) \to (E', A')$ un morphisme de D-topos annelés. On peut calculer le foncteur $R^+\Gamma(\varphi_*)$ au moyen de résolutions formées d'objets de $I_{(E,A)}$.

Soit $L \subset K^+((E), A)$ la sous-catégorie pleine des complexes fermés d'objets de $I_{(E,A)}$: L est une sous-catégorie triangulée en vertu de ((1.3.10), (ii)) et on peut lui appliquer le théorème (5.1) de [7] - Chap.1].

Corollaire 1.3.12. — Soit $\varphi : (E, A) \to (E', A')$ un morphisme de D-topos annelés; pour tout objet i de D on désigne par $\varphi_i : (E_i, A_i) \to (E'_i, A'_i)$ le morphisme de D-topos annelé induit par φ au-dessus de i. Alors le diagramme

$$D^{+}(\Gamma(E), A) \xrightarrow{R^{+}(e_{i}^{*})} D^{+}(E_{i}, A_{i})$$

$$R^{+}\Gamma(\varphi_{*}) \downarrow \qquad \qquad \downarrow R^{+}\varphi_{i*}$$

$$D^{+}(\Gamma(E'), A') \xrightarrow{R^{+}(e_{i}^{*})} D^{+}(E'_{i}, A'_{i})$$

est essentiellement commutatif.

On dispose d'un morphisme

$$R^+(e_i^*) \circ R^+ \Gamma(\varphi_*) \longrightarrow R^+ \varphi_{i*} \circ R^+(e_i^*)$$

dont on vérifie que i est un isomorphisme, grâce à (1.3.10).

100 Remarque 1.3.13. — Désignons par $\mathfrak{a}_{(E,A)}$ l'ensemble des objets F de $\operatorname{Mod}((E),A)$ tels que $e_i^*(F)$ soit totalement acyclique pour tout objet i de D. Il résulte de la démonstration de (1.3.10) que l'on peut calculer $R^+\Gamma(\varphi_*)$ au moyen de résolutions formés d'objets de $\mathfrak{a}_{(E,A)}$; i est ce que l'on fait en particulier dans l'introduction en utilisant la « résolution flasque canonique » (*). D'après [(1.3.10)(i)], on a $I_{(E,A)} \subset \mathfrak{a}_{(E,A)}$, mais nous utiliserons explicitement $I_{(E,A)}$ dans le paragraphe 2.

2. La méthode de la descente cohomologique

Dans ce numéro, D est une catégorie *W*-petite.

2.1. Généralités. Notations. —

2.1.1. Soit (S, \mathscr{O}_S) un topos annelé. La catégorie $S \times D$, muni de la projection canonique $S \times D \to D$, est un D-topos ; de plus la section de valeur constante \mathscr{O}_S définit un D-topos annelé $(S \times D, \mathscr{O}_S)$ appelé D-topos annelé constant de valeur (S, \mathscr{O}_S) . Avec ces notations, la catégorie $Mod((S \times D), \mathscr{O}_S)$ s'identifie à la catégorie des foncteurs covariants de D dans $Mod(S, \mathscr{O}_S)$.

On définit un foncteur exact :

$$\varepsilon^* : \operatorname{Mod}(S, \mathscr{O}_S) \longrightarrow \operatorname{Mod}((S \times D), \mathscr{O}_S)$$

en associant à tout module F sur S le foncteur constant de valeur F. Le foncteur ε^* possède un adjoint à droite ε_* qui associe à tout foncteur $H: D \to \operatorname{Mod}(\mathscr{O}_S)$ sa limite projective, le morphisme d'adjonction $F \to \varepsilon_* \varepsilon^*(F)$ étant celui qui envoie F dans la limite projective du foncteur constant de valeur F; ainsi ε^* est pleinement fidèle si et seulement si D est connexe.

101 Définition 2.1.2. — Soit (E, A) un D-topos annelé; une augmentation de (E, A) est un morphisme (de D-topos annelés) de (E, A) dans un D-topos annelé constant. Un D-topos annelé muni d'une augmentation sera appelé un D-topos annelé augmenté.

 $\mathcal{Q}.1.3$. Soit $\mathscr{E} \to B$ une catégorie bifibrée en duaux de topos et \mathscr{O} un anneau de $(\mathscr{E}^{\circ}) = \mathscr{H}om_{B^{\circ}}(B^{\circ}, \mathscr{E}^{\circ})$. Soit S un objet de B; un foncteur $D^{\circ} \to B/S$, c'est-à-dire un morphisme fonctoriel $X \xrightarrow{\theta} C_S^D$, où X est un foncteur $D^{\circ} \to B$ (cf. (1.2.6)), induit une augmentation :

$$\theta: (\overline{X}, \mathscr{O}) \longrightarrow (\mathscr{E}_{S}^{\circ} \times D, \mathscr{O}_{S})$$
 (cf. (1.3.4)).

désignerons par la même lettre que le morphisme fonctoriel qui lui donne naissance.

2.2. La descente cohomologique. —

^(*)cf. exposé XVII pour la généralisation de cette notion.

2.2.1. Soit $\theta: (E, A) \to (S \times D, \mathcal{O}_S)$ un D-topos annelé augmenté, on pose, avec les notations de (1.3.6) et (2.1.1),

$$\overline{\theta}^* = \Gamma(\theta^*) \circ \varepsilon^* : \operatorname{Mod}(S, \mathscr{O}_S) \longrightarrow \operatorname{Mod}((E), A)$$

et $\overline{\theta}^* = \varepsilon_* \circ \Gamma(\theta^*) : \operatorname{Mod}((E), A) \to \operatorname{Mod}(S, \mathscr{O}_S).$

L'image de $\overline{\theta}^*$ se trouve dans la sous-catégorie pleine de Mod((E), A) formée des sections cocartésiennes de (D, Mod(E, A)): nous noterons $^{cocart}(D, Mod(E, A))$ cette dernière catégorie.

Définition 2.2.2. On dit que θ est une augmentation de descente effective si $\Gamma(\theta^*) \circ \varepsilon^* : \operatorname{Mod}(S, \mathscr{O}_S) \to {}^{\operatorname{cocart}}(D, \operatorname{Mod}(E, A))$ est une équivalence de catégories.

2.2.3. Avec les notations de (2.2.1), supposons que θ soit plat, de sorte que $\overline{\theta}^*$ est exact et passe trivialement aux catégories dérivées : soit $\mathbf{L}^+(\overline{\theta}^*)$ le foncteur ainsi obtenu. Avec ces notations :

Lemme 2.2.3.1. — Il existe deux morphismes fonctoriels

$$\alpha: \mathrm{id}_{\mathrm{D}^+(S,\mathscr{O}_S)} \longrightarrow \mathrm{R}^+(\overline{\theta}_*) \circ \mathbf{L}^+(\overline{\theta}^*) \ et \ \beta: \mathbf{L}^+(\overline{\theta}^*) \circ \mathrm{R}^+(\overline{\theta}_*) \longrightarrow \mathrm{id}_{\mathrm{D}^+((E),A)}$$

mettant ces deux foncteurs en adjonction.

(cf. [9] (3.3)).

Définition 2.2.4. — On dit que θ est une augmentation de 1-descente cohomologique si

- 1°) θ est plat
- 2°) Le foncteur $\mathbf{L}^{+}(\overline{\theta}^{*})$ est pleinement fidèle.

Remarque 2.2.5. — La condition 2°) la définition précédente peut aussi s'exprimer en disant que le morphisme α dans (2.2.3.1) est un isomorphisme.

Définition 2.2.6. — On dit que θ est une augmentation de 2-descente cohomologique (ou de descente cohomologique effective) si θ est à la fois une augmentation de descente effective et une augmentation de 1-descente cohomologique.

La terminologie précédente est justifiée par le résultat suivant :

Proposition 2.2.7. — Soit θ une augmentation de descente cohomologique effective. Alors, l'image essentielle de $\mathbf{L}^+(\overline{\theta}^*)$ est la sous-catégorie pleine de $D^+((E), A)$ formée des complexes F^* tels que pour tout i, $H^i(F^*)$ soit une section cocartésienne de Mod(E, A).

Nous dirons, pour abréger, qu'un complexe F^{\bullet} vérifiant les conditions précédentes est une donnée de descente cohomologique. Il est clair que si $K^{\bullet} \in D^{+}(S, \mathscr{O}_{S})\mathbf{L}^{+}(\overline{\theta}^{*})(K^{\bullet})$

est une donnée de descente cohomologique : il suffit donc de montrer que pour toute donnée de descente cohomologique F^{*}, le morphisme canonique

$$\beta(F^{\bullet}): \mathbf{L}^{+}(\overline{\theta}^{*}) \circ R^{+}(\overline{\theta}_{*})(F^{\bullet}) \longrightarrow F^{\bullet}$$

103 est un isomorphisme dans $D^+((E), A)$.

- a) Cas où F'est borné : on raisonne par récurrence sur la longueur ℓ de l'intervalle des entiers i où $\mathrm{H}^i(\mathrm{F}^*) \neq 0$:
 - pour $\ell \leqslant 1$ l'assertion est vraie parce que θ est de descente effective.
 - supposons $\ell > 1$ et soit n le plus grand entier tel que $H^n(F^{\bullet}) \neq 0$: on dispose d'un triangle distingué^(*)

tel que l'hypothèse de récurrence s'applique à F'^{\bullet} ; $\beta(H^n(F^{\bullet})[-n])$ et $\beta(F'^{\bullet})$ étant des isomorphismes, il en est de même de $\beta(F^{\bullet})$.

b) Cas général : désignons par $\sigma_{\leq}(F^{\bullet})$ le complexe

$$\dots F^{n-1} \longrightarrow F^{n-1} \longrightarrow \operatorname{Ker} d^n \longrightarrow 0 \longrightarrow 0 \dots,$$

(cf. [7] (7.1)), de sorte que l'on dispose pour tout n d'un diagramme commutatif :

$$\mathbf{L}^{+}(\overline{\theta}^{*}) \circ \mathbf{R}^{+}(\overline{\theta}_{*})(\sigma_{\leq n}(\mathbf{F}^{*})) \xrightarrow{\sim} \sigma_{\leq n}(\mathbf{F}^{*})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbf{L}^{+}(\overline{\theta}^{*}) \circ \mathbf{R}^{+}(\overline{\theta}_{*})(\mathbf{F}^{*}) \xrightarrow{\sim} \mathbf{F}^{*}$$

et il suffit de voir que le morphisme

$$R^+(\overline{\theta}_*)(\sigma_{\leq n}(F^{\bullet})) \longrightarrow R^+(\overline{\theta}_*)(F^{\bullet})$$

induit un isomorphisme sur les H^i pour $i \leq n$. Or, on dispose d'un triangle :

^(*) pour tout complexe K', K'[-n] désigne le complexe $T^{-n}(K')$, où T est le foncteur translation.

105

avec $H^i(F''^{\bullet}) = 0$ pour $i \leq n$. On en déduit alors que $H^i(R^+(\overline{\theta}_*)(F''^{\bullet})) = 0$ pour $i \leq n$, puis que $H^i(R^+(\overline{\theta}_*)(\sigma_{\leq n}(F^{\bullet}))) \to H^i(R^+(\overline{\theta}_*)(F^{\bullet}))$ est un isomorphisme pour $i \leq n$, ce qui achève la démonstration.

Nous allons maintenant exposer une méthode de calcul explicite de $R^+ \bar{\theta}_*$ fort utile dans la démonstration de certains critères de descente cohomologique, ainsi que dans l'exploitation de la dite notion.

2.3. Un procédé de calcul pour $R^+ \varepsilon_*$. — Nous commencerons par deux sorites.

2.3.1. Soient D une \mathscr{U} -petite catégorie et Ab la catégorie des groupes abéliens appartenant à \mathscr{U} . On désigne par r_D le foncteur $D \to (\mathscr{H}om(D,Ab))^{\circ}$ défini par la relation

$$r_{\mathrm{D}}(i)(j) = \mathbf{Z}^{\mathrm{Hom}(i,j)}$$

pour tout couple (i, j) d'objets de D. On construit alors, pour tout couple (i, X) formé d'un objet de D et d'un objet de $\mathcal{H}om(D, Ab)$ un isomorphisme canonique et fonctoriel :

$$\operatorname{Hom}(r_{\mathbf{D}}(i), \mathbf{X}) \xrightarrow{\sim} \mathbf{X}(i)$$

2.3.1.1. Soient A une catégorie additive (cf. Tohokû) et F un foncteur $D \to A$; on définit un foncteur $\overline{F} : (\mathscr{H}om(D,Ab))^{\circ} \to A^{\circ}$ Ens par la relation

$$\overline{F}(X)(a) = \operatorname{Hom}_{\mathscr{H}om(D,Ab)}(X,\operatorname{Hom}_A(a,F(.)))$$

de sorte que le diagramme suivant, où $h_{\rm A}$ désigne le foncteur canonique :

 $\begin{array}{c|c} D & \xrightarrow{r_D} & (\mathscr{H}om(D, Ab))^{\circ} \\ \downarrow & & & \downarrow \overline{F} \\ \downarrow & & & \downarrow \overline{F} \\ A & \xrightarrow{h_A} & \mathscr{H}om(A^{\circ}, Ens) \end{array}$

soit essentiellement commutatif.

On laisse au lecteur le soin de vérifier que \overline{F} transforme les somme directes finies de $\mathscr{H}om(A,Ab)$ en produits et que, si l'on désigne par \mathbf{Z} le foncteur constant $D\to Ab$ de valeur \mathbf{Z} , on a $\overline{F}(\mathbf{Z})=\lim F$.

Enfin la correspondance $F \leadsto \overline{F}$ définit un foncteur covariant

$$\mathscr{H}om(D, A) \longrightarrow \mathscr{H}om((\mathscr{H}om(A, Ab))^{\circ}, \mathscr{H}om(A^{\circ}, Ens)).$$

2.3.1.2. On désigne par Add(D) la sous-catégorie pleine de $(\mathcal{H}om(D, Ab))^{\circ}$ définie par les objets de la forme $r_{D}(i)$, où i est un objet de D, et leurs sommes directes finies. La catégorie Add(D) est additive et le foncteur $r_{D}: D \to Add(D)$ vérifie la propriété universelle suivante :

2.3.1.3. Pour tout catégorie additive A, le foncteur $G \to G \circ r_D$ induit une équivalence de la sous-catégorie pleine de $\mathscr{H}om(Add(D),A)$ formée par les foncteurs additifs sur la catégorie $\mathscr{H}om(D,A)$.

La catégorie Add(D), définie à équivalence près par (2.3.1.3) s'appellera la catégorie additive engendrée par D.

2.3.2. Soient A une catégorie abélienne et k un complexe double que nous considérons comme un objet de $C^+(C^+(A))$, le premier indice correspondant au premier signe C^+ : on désigne par $(K^{\bullet \bullet})_s$ le complexe simples associé (cf. Tohokû (2.4), dont nous conserverons les notations). On définit ainsi un foncteur

$$(2.3.2.1) ()s: C+(C+(A)) \longrightarrow C+(A)$$

et on laisse au lecteur le soin de vérifier le lemme suivant :

Lemme 2.3.2.2. — Le foncteur $(\)_s$ définit un foncteur triangulé :

$$K^+(C^+(A)) \longrightarrow K^+(A)$$

qui préserve les quasi-isomorphismes; il définit donc un foncteur triangulé :

$$D^+(C^+(A)) \longrightarrow D^+(A),$$

encore noté $()_s$.

Remarque. — On a le même résultat pour le foncteur $(\)_s: C(C^b(A)) \to C(A)$ car la suite spectrale que l'on envisage est birégulière par (EGA III (11.3.3)).

2.3.3. Ceci étant, soient (S, \mathcal{O}_S) un topos annelé et D une \mathcal{U} -petite catégorie. Soit $Z^* \in C^+(Add(D))$ un complexe de cochaînes tel que $Z^n = 0$ pour n < 0.

Tout objet F de $\operatorname{Mod}((S \times D, \mathscr{O}_S), \mathscr{O}_S)$ (qui s'identifie à un foncteur $D \to \operatorname{Mod}(S, \mathscr{O}_S)$ d'après (2.1.1)) définit, par la propriété universelle de $\operatorname{Add}(D)$ un objet $\varepsilon_Z \cdot_*(F)$ de $C^+(S, \mathscr{O}_S)$ qui varie fonctoriellement avec F d'après (2.3.1.3).

On définit ainsi un foncteur triangulé :

De plus, il résulte de (2.3.2.2) que le foncteur composé :

$$()_s \circ \mathrm{K}^+(\varepsilon_{\mathrm{Z}^{\bullet_*}}) : \mathrm{K}^+((\mathrm{S} \times \mathrm{D}), \mathscr{O}_{\mathrm{S}}) \longrightarrow \mathrm{K}^+(\mathrm{S}, \mathscr{O}_{\mathrm{S}})$$

transforme les objets acycliques en objets acycliques. Il définit donc un foncteur triangulé :

$$(2.3.3.2) \qquad \qquad R^+ \, \varepsilon_{\mathbf{Z}^{\bullet_*}} : D^+((S \times D), \mathscr{O}_S) \longrightarrow D^+(S, \mathscr{O}_S)$$
 vérifiant la relation $Q \circ (\)_s \circ K^+(\varepsilon_{\mathbf{Z}^{\bullet_*}}) = R^+ \, \varepsilon_{\mathbf{Z}^{\bullet_*}} \circ Q^{\ (*)}$

^(*)Pour toute catégorie abélienne A, la lettre Q désigne le foncteur canonique $K^+(A) \to D^+(A)$.

108

2.3.4. Les données précédentes sont conservées. On considère Z^{\bullet} comme un complexe de chaînes dans $\mathscr{H}om(D, Ab)$. Soit $t: Z^{\circ} \to \mathbf{Z}$ un morphisme de Z° dans le foncteur constant de valeur \mathbf{Z} tel que le morphisme composé

$$(2.3.4.1) Z1 \longrightarrow Z0 \xrightarrow{t} \mathbf{Z}$$

soit nul.

Par fonctorialité (cf. (2.3.1.1)), on en déduit un morphisme $\varepsilon_*(F) \to \varepsilon_Z \cdot_*(F)^\circ$ tel que le morphisme composé

soit nul.

Il existe alors un morphisme canonique de foncteurs triangulés :

$$(2.3.4.3) Q \circ K^{+}(\varepsilon_{*}) \xrightarrow{j} Q \circ ()_{s} \circ K^{+}(\varepsilon_{Z^{*}_{*}}) = R^{+} \varepsilon_{Z^{*}_{*}} \circ Q$$

Proposition 2.3.5. — Les conditions et notations de (2.3.3) et (2.3.4) sont conservées; on suppose en outre que le complexe augmenté

$$\mathbf{Z}^n \longrightarrow \mathbf{Z}^{n-1} \dots \mathbf{Z}^1 \longrightarrow \mathbf{Z}^0 \xrightarrow{t} \mathbf{Z}$$

définisse une résolution de Z.

un isomorphisme. Il s'agit de voir que la suite :

Alors, pour tout complexe F' formé d'objets de $I_{(S \times D, \mathcal{O}_S)}$ (cf. 1.3.10),

$$j(\mathbf{F}^{\bullet}): \mathbf{G} \circ \mathbf{K}^{+}(\varepsilon_{*})(\mathbf{F}^{\bullet}) \longrightarrow (\mathbf{R}^{+} \varepsilon_{\mathbf{Z}^{\bullet} *} \circ \mathbf{Q})(\mathbf{F}^{\bullet})$$

est un isomorphisme.

+ Soit i un objet de D et \mathbf{Q}_i un module sur $(\mathbf{S}, \mathcal{O}_{\mathbf{S}})$: montrons que $j(e_{i*}(\mathbf{Q}_i))$ est

$$(2.3.5.1) 0 \longrightarrow Q_i \longrightarrow \varepsilon_{Z^{\bullet}*}(e_{i*}(Q_i))^{\circ} \longrightarrow \varepsilon_{Z^{\bullet}*}(e_{i*}(Q_i))^1 \longrightarrow \dots$$

est exacte.

Pour cela il suffit de montrer que, pour tout objet X de $Mod(S, \mathcal{O}_S)$, la suite : (2.3.5.2)

$$0 \longrightarrow \operatorname{Hom}(X, Q_i) \longrightarrow \operatorname{Hom}(X, \varepsilon_{Z^{\bullet_*}}(e_{i*}(Q_i))^{\circ}) \longrightarrow \operatorname{Hom}(X, \varepsilon_{Z^{\bullet_*}}(e_{i*}(Q_i))^1) \longrightarrow \dots$$

est exacte. Or un calcul immédiat montre que (2.3.5.2) se réduit à :

$$(2.3.5.3) \quad 0 \longrightarrow \operatorname{Hom}(\mathbf{Z}, \operatorname{Hom}(X, Q_i)) \longrightarrow \operatorname{Hom}(\operatorname{Hom}_{\operatorname{Add}(D)}(Z^{\circ}, i), \operatorname{Hom}(X, Q_i)) \longrightarrow \\ \operatorname{Hom}(\operatorname{Hom}_{\operatorname{Add}(D)}(Z^{1}, i), \operatorname{Hom}(X, Q_i)) \longrightarrow \dots.$$

+ Si pour tout objet i de D, Q_i est un module totalement acyclique, on voit, en appliquant le foncteur $\prod_{i \in Ob(D)}$ aux complexes (2.3.5.1), que l'on obtient encore un complexe acyclique d'après (1.3.10.1). Ainsi $j(\prod_{i \in Ob(D)}(e_{i*}(Q_i)))$ est un isomorphisme.

+ On laisse au lecteur le soin de déduire de ceci que $j(\mathbf{F}^*)$ est un isomorphisme lorsque $\mathbf{F}^n \in \mathcal{I}_{(\mathbf{S} \times \mathbf{D}, \mathscr{O}_{\mathbf{S}})}$ pour tout n (par suites spectrales, par exemple).

Corollaire 2.3.6. — Sous les conditions de (2.3.5), le morphisme j définit $R^+ \varepsilon_Z \cdot_*$ comme le foncteur dérivé de ε_* .

La sous-catégorie de $K^+((S \times D), \mathscr{O}_S)$ définie par les complexes formés d'objets de $I_{(S \times D, \mathscr{O}_S)}$ vérifie les conditions du théorème (5.1) de [[7], I], pour le foncteur $K^+(\varepsilon_*)$, en vertu de (1.3.10) et (2.3.5) : le corollaire résulte immédiatement de cette remarque.

Corollaire 2.3.7. — Sous les conditions de (2.3.5), soient (E, A) un D-topos annelé et $\theta : (E, A) \to (S \times D, \mathcal{O}_S)$ une augmentation; il existe un isomorphisme canonique

$$R^+ \, \overline{\theta}_* \xrightarrow{\sim} R^+ \, \Gamma(\theta_*)^\circ \, R^+ \, \varepsilon_Z {\boldsymbol{\cdot}}_*.$$

Cela résulte de [7] - I - 5.4].

Remarque 2.3.8. — On savait a priori que $R^+ \varepsilon_*$ existe et que l'on a un isomorphisme $R^+ \overline{\theta}_* \xrightarrow{\sim} R^+ \Gamma(\theta_*) \circ R^+ \varepsilon_*$, vu que $\Gamma(\theta_*)$ et ε_* sont induits par des morphismes de topos annelés (cf. (1.3.6) et (2.1.1)). Cependant le calcul précédent s'avérera fort utile et applicable à d'autres contextes, car, dans la pratique, les conditions de (2.3.5) seront toujours vérifiées.

Nous allons maintenant donner les exemples fondamentaux où l'on pourra appliquer (2.3.5).

2.3.9. Dans $Add(\Delta)$, on pose $Z^n = [n]$ et on définit $d^n : Z^n \to Z^{n+1}$ par la formule

(2.3.9.1)
$$d^{n} = \sum_{i=0}^{n+1} (-1)^{i} \partial^{i}$$

où $\partial^i:[n]\to[n+1]$ est la *i*-ème face [cf. [3] II 2]. On prend pour $t:\mathbf{Z}^\circ\to\mathbf{Z}$ l'augmentation naturelle évidente.

La condition de (2.3.4) est trivialement vérifiée. La condition de (2.3.5) résulte de $([5] \ I \ (3.7.4))$.

110 2.3.10. Dans $\mathrm{Add}(\Delta \times \Delta)$, on considère le complexe simple associé au complexe double :

$$(2.3.10.1) \qquad \begin{array}{c} \left([n],[m+1]\right) & \xrightarrow{s_1^{n,m+1}} \left([n+1],[m+1]\right) \\ \\ s_2^{n,m} & \\ \left([n],[m]\right) & \xrightarrow{s_1^{n,m}} \left([n+1],[m]\right) \end{array}$$

VBIS

avec

(2.3.10.2)
$$\begin{cases} S_1^{n,m} = \sum_{i=0}^{n+1} (-1)^i (\partial^i, id_{[m]}) \\ S_2^{n,m} = \sum_{i=0}^{m+1} (-1)^j (id_{[n]}, \partial^j). \end{cases}$$

On laisse au lecteur le soin de vérifier (en utilisant (2.3.9)) que le complexe ainsi défini, muni de l'augmentation naturelle évidente, vérifie les conditions de (2.3.5).

 $\textit{2.3.11.} \ \ \text{On traite de manière analogue le cas multi-simplicial (avec } \Delta \underbrace{\times \Delta \times \cdots \times \Delta}_{p\text{-fois}}.).$

2.4. La descente cohomologique relative. —

2.4.0. Soient $\mathscr{E} \to B$ une catégorie bifibrée en duaux de topos et \mathscr{O} un anneau de (\mathscr{E}°) .

Ces données définissent canoniquement une catégorie fibrée et cofibrée en catégories abéliennes, notée $\operatorname{Mod}(\mathscr{E}^{\circ}, \mathscr{O})$, au-dessus de B° (cf. (1.3.3) et (1.3.4)) : dans tout ce qui suit, les foncteurs « images directes » et « image réciproques » seront toujours pris par rapport au foncteur fibrant et cofibrant : $\operatorname{Mod}(\mathscr{E}^{\circ}, \mathscr{O}) \to \operatorname{B}^{\circ}$.

Définition 2.4.0.1. — Nous dirons qu'un morphisme $f: T \to S$ dans B est plat (relativement à $(\mathscr{E}, \mathscr{O})$) si $f_*: \operatorname{Mod}(\mathscr{E}_S^{\circ}, \mathscr{O}_S) \to \operatorname{Mod}(\mathscr{E}_T^{\circ}, \mathscr{O}_T)$ est un foncteur exact.

2.4.1. Soit G une sous-catégorie fibrée et cofibrée de $\operatorname{Mod}(\mathscr{E}^{\circ}, \mathscr{O})$ telle que, pour tout objet S de B, G_S soit une sous-catégorie épaisse (cf. Tohokû (1.11)) de $(\operatorname{Mod}(\mathscr{E}^{\circ}, \mathscr{O}))_S$ - Le lecteur trouvera au paragraphe 4 des exemples de telles situations.

Si S est un objet de B, nous désignerons par $D^+(S)$, la catégorie dérivée de $\operatorname{Mod}(\mathscr{E}_S^{\circ},\mathscr{O}_S)$: on introduit, suivant [[7] (I § 4)], la catégorie $D_{G_S}^+(S)$, qui s'identifie à la sous-catégorie pleine de $D^+(S)$ formée par les objets X' tels que $H^n(X') \in G_S$ pour tout n.

Nous supposerons que la condition suivante est toujours vérifiée.

2.4.1.1. Pour tout morphisme $h: T \to S$ dans B, le foncteur $R^+(h^*): D^+(T) \to D^+(S)$ est tel que $R^+(h^*)(F) \in D^+_{G_S}(S)$ si $F \in G_T$.

D'après [[7] (I. (7.3). (ii))], cette condition entraı̂ne que $R^+(h^*)(D^+_{G_T}(T)) \subset D^+_{G_S}(S)$.

2.4.2. Soit D une \mathscr{U} -petite catégorie : nous supposerons dans tout ce qui suit que l'on s'est donné un complexe Z' de Add(D) vérifiant les conditions de (2.3.5) (dans les applications, on aura en fait D = Δ ou D = $\Delta \times \Delta$).

Si $X : D^{\circ} \to B$ est un D-objet de B, on désigne par $\operatorname{Mod}_{G}((\overline{X}), \mathscr{O})$ la sous-catégorie pleine de $\operatorname{Mod}((\overline{X}), \mathscr{O})$ formée par les objets F tels que $e_{i}^{*}(F) \in G_{i}$ (= $G_{X_{i}}$) pour tout objet i de D : $\operatorname{Mod}_{G}((\overline{X}), \mathscr{O})$ est une sous-catégorie épaisse de $\operatorname{Mod}((\overline{X}), \mathscr{O})$. Nous désignerons par $K_{G}^{+}((\overline{X}), \mathscr{O})$ (resp. $D_{G}^{+}((\overline{X}), \mathscr{O})$) la sous-catégorie pleine de $K^{+}((\overline{X}), \mathscr{O})$

111

82 B. SAINT-DONAT VBIS

(resp. $D^+((\overline{X}), \mathscr{O})$) formée des objets X^{\bullet} tels que $H^n(X^{\bullet}) \in Mod_G((\overline{X}), \mathscr{O})$ pour tout n.

2.4.3. Soient X et X' deux D-objets de B et $\alpha: X \to X'$ un morphisme fonctoriel. Rappelons (cf. (1.3.4)) que nous notons encore $\alpha: (\overline{X}, \mathscr{O}) \to (\overline{X}', \mathscr{O})$ le morphisme de D-topos annelés correspondant.

Définition 2.4.3.1. — Nous dirons que $\alpha: X \to X'$ est plat si le morphisme de D-topos annelés correspondant est plat au sens de (1.3.6.1).

On a alors le lemme évident :

Lemme 2.4.3.2. — Pour que $\alpha: X \to X'$ soit plat, il faut et il suffit que, pour tout objet i de D, $\alpha_i: X_i \to X'_i$ soit un morphisme plat (cf. (2.4.0.1)).

2.4.4. Soit $\alpha: X \to X'$ un morphisme, il définit un foncteur

Lemme 2.4.4.2. — Le foncteur

$$K^{+}(\Gamma(\alpha_{*}))|K_{G}^{+}((\overline{X}),\mathscr{O}):K_{G}^{+}((\overline{X}),\mathscr{O})\longrightarrow K^{+}((\overline{X}'),\mathscr{O})$$

possède un foncteur dérivé à droite, noté $R_G^+\Gamma(\alpha_*)$, et le morphisme canonique

$$R_G^+\Gamma(\alpha_*) \longrightarrow R^+\Gamma(\alpha_*)|D_G^+((\overline{X}), \mathscr{O})$$

113 est un morphisme.

De plus
$$R_G^+(D_G^+((\overline{X}), \mathscr{O})) \subset (D_G^+((\overline{X}'), \mathscr{O})).$$

La première partie résulte de (1.3.10) et de [[7] - (I.(5.2))]. Pour vérifier la dernière assertion, il suffit de montrer, en vertu de [[7] -(I.(7.3).(ii))], que $R^+\Gamma(\alpha_*)(F) \in D^+_G((\overline{X}'), \mathscr{O})$, lorsque $F \in Mod_G((\overline{X}), \mathscr{O})$ ce qui résulte du calcul explicite de $R^+\Gamma(\alpha_*)$ donné par (1.3.1.1) et de l'hypothèse (2.4.1.1).

2.4.5. Soit S un objet de B : le D-topos annelé $(\overline{C_S^D}, \mathscr{O})$ (cf. (1.2.6)) s'identifie au D-topos annelé constant $(\mathscr{E}_S^\circ \times D, \mathscr{O}_S)$ et on a le lemme suivant qui résulte de [[7] (I. (7.3). (ii))] :

Lemme 2.4.5.1. — Le foncteur $R^+ \varepsilon_Z \cdot_* | D^+_G((\overline{C^D_S}), \mathscr{O})$, noté $R^+_G \varepsilon_Z \cdot_*$, est à valeurs dans $D^+_{G_S}(S)$ et s'identifie un foncteur dérivé à droite du foncteur

$$K^+(\varepsilon_*)|K^+_G((\overline{C^D_S}),\mathscr{O}):K^+_G((\overline{C^D_S}),\mathscr{O})\longrightarrow K^+(S).$$

Proposition 2.4.6. — Soit $\theta: X \to C_S^D$ un D-objet de B augmenté : le foncteur $K^+(\overline{\theta}_*)|K_G^+()(\overline{X}), \mathscr{O}$, possède un foncteur dérivé à droite, noté $R^+\overline{\mathscr{O}}_*$, qui prend ses valeurs dans $D_{G_S}^+(S)$. De plus, il existe un isomorphisme canonique

$$R_G^+ \overline{\mathscr{O}}_* \xrightarrow{\sim} R_G^+ \varepsilon_Z \cdot_* \circ R_G^+ \Gamma(\theta_*).$$

Démonstration laissé au lecteur à partir de ce qui précède.

Nous sommes maintenant en mesure de donner les définitions relatives à la descente cohomologique.

2.4.7. Soit $\theta: X \to C_S^D$ un D-objet de B augmenté. Supposons que θ soit plat, de sorte que la restriction à $D_{G_S}^+(S)$ du foncteur $\mathbf{L}^+\overline{\theta}^*$ prend ses valeurs dans $D_G^+((\overline{X}), \mathscr{O})$: nous noterons $\mathbf{L}_G^+\overline{\theta}^*$ cette restriction. Avec ces notations :

Lemme 2.4.7.1. — Il existe deux morphismes fonctoriels $\alpha: \mathrm{id}_{\mathrm{D}^+_{\mathrm{G}_{\mathrm{S}}}(\mathrm{S})} \to \mathrm{R}^+_{\mathrm{G}} \, \overline{\theta}_* \circ \mathbf{L}^+_{\mathrm{G}} \overline{\theta}^*$ et $\beta: \mathbf{L}^+_{\mathrm{G}} \overline{\theta}^* \circ \mathrm{R}^+_{\mathrm{G}} \, \overline{\theta}_* \to \mathrm{id}_{\mathrm{D}^+_{\mathrm{G}}((\overline{\mathrm{X}}),\mathscr{O})}$ mettant ces deux foncteurs en adjonction.

Cela résulte immédiatement de (2.2.3.1) et (2.4.6).

Définition 2.4.8. — On dit que θ est une augmentation de 1-descente cohomologique relativement à G si

- 1°) θ est plat.
- 2°) Le foncteur $\mathbf{L}_{G}^{+}\overline{\theta}^{*}$ pleinement fidèle.

Remarque 2.4.9. — La condition 2°) de la définition précédente peut encore s'exprimer en disant que le morphisme α dans (2.4.7.1) est un isomorphisme.

Définition 2.4.10. — Soit $\theta: X \to C_S^D$ un D-objet de B augmenté. On dit que θ est une augmentation de descente effective relativement à G si le foncteur

$$\Gamma(\theta^*) \circ \varepsilon^* : G_S \longrightarrow {}^{Cocart}(D, G)$$

est une équivalence de catégories.

Définition 2.4.11. — On dit que θ est une augmentation de 2-descente cohomologique (ou de descente cohomologique effective) relativement à G si θ est à la fois une augmentation de 1-descente cohomologique et de descente effective relativement à G.

On déduit alors de la démonstration de (2.2.7) le résultat suivant :

Théorème 2.4.12. — Soit $\theta: X \to C_S^D$ une augmentation de 2-descente cohomologique relativement à G. Alors l'image essentielle de $\mathbf{L}_G^+\overline{\theta}^*$ est la sous-catégorie pleine de $D_G^+(\overline{X}), \mathcal{O}$) formée des complexes F^* tels que pour tout n, $H^n(F^*)$ soit une section cocartésienne de G.

La proposition suivante, dont la vérification est laissée au lecteur, permet de transcrire la définition (2.4.10) dans le langage de ([4], 6):

Proposition 2.4.13. — Pour que $\theta: X \to C_S^D$ soit une augmentation de descente effective relativement à G, il faut et il suffit que le foncteur $D^{\circ} \to B/S$ au-dessus de B, défini par θ , induire une équivalence entre la catégorie des sections cartésiennes de G° au-dessus de B/S et la catégorie des sections cartésiennes de G° au-dessus de D° .

Corollaire 2.4.14. — Supposons que les produits fibrés finis soient représentables dans B et soit $f: R \to S$ un morphisme : pour que l'objet semi-simplicial augmenté $[R|_fS]$ (cf. (1.2.7)) soit de descente effective relativement à G, il faut et il suffit que f soit un morphisme de descente effective pour la catégorie fibrée G° au-dessus de B.

Cela résulte de (2.4.13) et de ([4]-9).

116

Définition 2.4.15. — Supposons que les produits fibrés finis soient représentables dans B et soit $f: R \to S$ un morphisme. Nous dirons que f est un morphisme de i-descente cohomologique relativement à G (i = 1, 2) si l'objet semi-simplicial augmenté $[R|_fS]$ est de i-descente cohomologique relativement à G.

Définition 2.4.16. — Supposons que les produits fibrés finis soient représentables dans B et soit $\theta: X \to C_S^D$ une augmentation : nous dirons que θ est une augmentation de i-descente cohomologique universelle (i=1,2) relativement à G si, pour tout morphisme $T \to S$, l'augmentation $X_T \xrightarrow{\theta_T} C_T^D$ obtenue par changement de base est une augmentation de i-descente cohomologique relativement à G.

La notion de morphisme de i-descente cohomologique universelle relativement à G se déduit immédiatement des deux définitions précédentes.

Nous emploierons souvent la terminologie « augmentation de G-i-descente cohomologique » à la place de « augmentation de i-descente cohomologique relativement à G ».

2.5. La suite spectrale de descente. —

2.5.1. Soit A une catégorie abélienne. On désigne par F(A) la catégorie dont les objets sont les objets de A, munis d'une filtration discrète et codiscrète, et dont les morphismes sont les morphismes filtrés de A : la catégorie F(A) est une catégorie additive (mais non abélienne).

La catégorie K(F(A)) des complexes filtrés de A, de filtration discrète et codiscrète degré par degré, est une catégorie triangulée et les foncteurs canoniques

$$(2.5.1.1) Gr_n : K(F(A)) \longrightarrow K(A)$$

sont triangulés. L'ensemble Σ des morphismes f de K(F(A)) tels que $Gr_n(f)$ soit un quasi-isomorphisme pour tout n est donc un système multiplicatif saturé [cf. [9]. § 2. n° 1].

En inversant les flèches de ce système, on obtient une nouvelle catégorie triangulée notée DF(A) et les foncteur Gr_n se prolongent en des foncteurs

$$(2.5.1.2) Gr_n : DF(A) \longrightarrow D(A).$$

Nous ne considérerons, par la suite, que des complexes bornés inférieurement : on introduit naturellement les notations $K^+(F(A))$ et $D^+F(A)$.

2.5.2. Soit B une sous-catégorie épaisse de A et désignons par $K_B^+(F(A))$ la sous-catégorie pleine de $K^+(F(A))$ dont les objets sont les complexe X^* tels que $H^i(Gr_j(X^*)) \in B$ pour tout couple d'entiers $(i,j): K_B^+(F(A))$ est une sous-catégorie triangulée localisante de K(F(A)) [cf. [7]. (I. § 5)]. Nous désignerons par $D_B^+F(A)$ la sous-catégorie pleine de DF(A) dont les objets sont les complexes bornés inférieurement X^* tels que $H^j(Gr_j(X^*)) \in B$ pour tout couple (i,j): d'après (loc. cit.), $D_B^+F(A)$ s'identifie à la catégorie de fractions $K_B^+(F(A))_{\Sigma \cap K_B^+(F(A))}$.

Le foncteur « oubli des filtrations » :

$$\iota: \mathrm{K}^+(\mathrm{F}(\mathrm{A})) \longrightarrow \mathrm{K}^+(\mathrm{A})$$

est triangulé. De plus, il résulte de [[5]. I. (4.7)] que $\iota(f)$ est un quasi-isomorphisme si $f \in \Sigma$ et que $\iota(K_B^+(F(A)) \subset K_B^+(A)$. Le foncteur ι s'étend ainsi en un foncteur triangulé

$$(2.5.2.1) \iota : D^{+}F(A) \longrightarrow D^{+}(A)$$

tel que $\iota(D_B^+F(A)) \subset D_B^+(A)$.

Notons enfin qu'il existe un foncteur spectral canonique $D_B^+F(A) \to B$, aboutissant à $H^n \circ \iota$, et dont le terme E_1 est donné par $H^{p+q} \circ Gr_p$ [cf. [5] I. (4.2)].

Nous revenons maintenant aux notations de (2.3) en supposant $D = \Delta : Z^{\bullet}$ désignera le complexe de $Add(\Delta)$ défini par (2.3.9.1).

Proposition 2.5.3. — Soit (S, \mathcal{O}_S) un topos annelé. Le foncteur $R^+ \varepsilon_{Z^{\bullet_*}} : D^+((S \times D), \mathcal{O}_S) \to D^+(S, \mathcal{O}_S)$ possède une factorisation canonique

$$D^+(\Gamma(S\times D),\mathscr{O}_S)\xrightarrow{F^{R^+}{}^\varepsilon Z}\xrightarrow{\bullet} D^+F(S,\mathscr{O}_S)\xrightarrow{\iota} D^+(S,\mathscr{O}_S).$$

De plus, pour tout entier i, le diagramme suivant est commutatif :

Considérons le foncteur $C^+(C^+(S, \mathscr{O}_S)) \xrightarrow{(\)_s} C^+(S, \mathscr{O}_S)$: si $X^{\cdot \cdot}$ est un objet de $C^+(C^+(S, \mathscr{O}_S))$, on muni $(X^{\cdot \cdot})_s$ de sa deuxième filtration canonique [cf. [5]. I.4.8] ; on obtient ainsi une factorisation :

$$(2.5.3.1) \qquad ()_{s}: C^{+}(C^{+}(S, \mathcal{O}_{S})) \longrightarrow C^{+}(F(S, \mathcal{O}_{S})) \xrightarrow{\iota} C^{+}(S, \mathcal{O}_{S})$$

qui passe aux catégories K⁺:

$$(2.5.3.2) ()_s : \mathrm{K}^+(\mathrm{C}^+(\mathrm{S}, \mathscr{O}_{\mathrm{S}})) \longrightarrow \mathrm{K}^+(\mathrm{F}(\mathrm{S}, \mathscr{O}_{\mathrm{S}})) \xrightarrow{\iota} \mathrm{K}^+(\mathrm{S}, \mathscr{O}_{\mathrm{S}})$$

car une homotopie de $C^+(C^+(S, \mathcal{O}_S))$ induit une homotopie filtrée.

On a alors un diagramme :

et on vérifie qu'il existe un foncteur

$$_{F} R^{+} \varepsilon_{Z^{\bullet}_{*}} : D^{+}((S \times \Delta), \mathscr{O}_{S}) \longrightarrow D^{+} F(S, \mathscr{O}_{S})$$

et un seul rendant commutatif (2.5.3.3).

Le reste de la proposition est évident.

Proposition 2.5.4. — Soient (E,A) un topos semi-simplicial annelé et $\theta:(E,A) \to (S \times \Delta, \mathcal{O}_S)$ une augmentation: pour tout entier i, on désigne par $\theta_i:(E_i,A_i) \to (S,\mathcal{O}_S)$ le morphisme de topos annelé induit par θ au-dessus de i.

Le foncteur $R^+ \overline{\theta}_* : D^+((E), A) \to D^+(S, \mathscr{O}_S)$ possède une factorisation canonique

$$D^+((E), A) \xrightarrow{F R^+ \overline{\theta}_*} D^+F(S, \mathscr{O}_S) \xrightarrow{\iota} D^+(S, \mathscr{O}_S)$$

telle que pour tout entier i, le diagramme canonique

$$D^{+}((E), A) \xrightarrow{R^{+} e_{i}^{*}} D^{+}(E_{i}, A_{i})$$

$$\downarrow^{F} R^{+} \overline{\theta}_{*} \qquad \qquad \downarrow^{R^{+} \theta_{i*}}$$

$$D^{+}F(S, \mathscr{O}_{S}) \xrightarrow{Gr_{i}} D^{+}(S, \mathscr{O}_{S})$$

 $so it\ essentiellement\ commutatif.$

Résulte de ce qui précède et de (1.3.1.2).

Proposition 2.5.5. — Soient (E,A) un topos semi-simplicial annelé et $\theta:(E,A) \to (S \times \Delta, \mathscr{O}_S)$ une augmentation de 1-descente cohomologique. Soit $H:(S,\mathscr{O}_S) \to (R,\mathscr{O}_R)$ un morphisme de topos annelés. Alors il existe un foncteur spectral de $D^+(S,\mathscr{O}_S)$ dans $Mod(R,\mathscr{O}_R)$:

$$\mathrm{E}_{1}^{pq} = \mathrm{R}^{q}(\mathrm{H} \circ \theta_{p})_{*} \circ \mathrm{L}^{+}\theta_{p}^{*} \longrightarrow \mathrm{R}^{p+q}\mathrm{H}_{*}$$

appelé foncteur spectral de descente.

120

Soit $H \circ \theta : (E, A) \to (R \times \Delta, \mathcal{O}_R)$ l'augmentation déduite canoniquement de θ par composition avec H; on a

$$(2.5.5.1) \overline{(H \circ \theta)}_* = H_* \circ \overline{\theta}_*$$

de sorte que le diagramme

est essentiellement commutatif.

$$(R^+ \, \overline{(H \circ \theta)}_* \xrightarrow{\sim} R^+ \, H_* \circ R^+ \, \overline{\theta}_* \text{ et } \operatorname{id}_{D^+(S,\mathscr{O}_S)} \xrightarrow{\sim} R^+ \, \overline{\theta}_* \circ \mathbf{L}^+ \overline{\theta}_*).$$

Grâce à (2.5.4), on dispose pour tout i, d'un diagramme essentiellement commutatif:

Le foncteur spectral annoncé, s'obtient en considérant le foncteur spectral canonique 121 sur $D^+F(R, \mathscr{O}_R)$ que l'on compose avec ${}_FR_*^{+(\overline{H}\circ\overline{\theta})}\circ \mathbf{L}^+(\overline{\theta}^*).$

On laisse au lecteur le soin de vérifier la proposition suivante :

Proposition 2.5.6. — Avec les notations précédentes, le terme E_2^{pq} du foncteur spectral précédant s'écrit :

$$\check{\mathbf{H}}^p \circ \mathbf{R}^q \Gamma((\mathbf{H} \circ \theta)_*) \circ \mathbf{L}^+ \overline{\theta}^*$$

où $\check{H}^p: Mod((R \times \Delta), \mathscr{O}_R) \to Mod(R, \mathscr{O}_R)$ est le foncteur qui associe à tout foncteur $\Delta \xrightarrow{F} Mod(R, \mathscr{O}_R)$ l'objet d'homologie en degré p du complexe associé (noté $\varepsilon_{Z^{\bullet_*}}(F)^{\bullet}$ dans (2.3.3)).

Nous revenons maintenant à la terminologie introduite dans (2.4) : grâce au sorite (2.5.2), toutes les considérations précédentes vont se transcrire mot pour mot en plaçant la lettre G en indice partant ou cela a un sens. Les détails sont laissés aux soins du lecteur; on obtient en particulier :

Proposition 2.5.7. — Soient $\mathscr{O}: X \to C_S^D$ une augmentation de 1-descente cohomologique relativement à G et soit $h: S \to R$ un morphisme de B; il existe un foncteur spectral de $D_{G_S}^+(S)$ dans G_R :

$$\mathrm{E}_{1}^{pq} = \mathrm{R}_{\mathrm{G}}^{q}(h \circ \theta)_{*} \circ \mathbf{L}_{\mathrm{G}}^{+} \theta_{p} * \longrightarrow \mathrm{R}_{\mathrm{G}}^{p+q} h_{*}$$

 $avec \ \mathbf{E}_2^{pq} = \check{\mathbf{H}}^p \circ \mathbf{R}_{\mathbf{G}}^q \Gamma((h \circ \theta)_*) \circ \mathbf{L}_{\mathbf{G}}^+ \overline{\theta}^*.$

3. Critères de descente

3.0. Notations. — Dans tout ce qui suit, nous conserverons les notations de (2.4). Nous supposerons toujours que les produits fibrés finis sont représentables dans B. Nous supposerons de plus que B vérifie la condition suivante

3.0.0. Les sommes directes existent dans B, sont disjointes, universelles et des familles de &-descente effective et G°-descente effective [cf. [4] (9.23) (9.25) et (9.27)].

3.0.1. Rappelons maintenant quelques notations classiques sur les objets semi-simpliciaux d'une catégorie [cf. ([3] Chap II) et (V. appendice)].

Soit E une catégorie possédant des limites projectives finies Δ °E désigne la catégorie des objets semi-simpliciaux de E (cf. (1.2.6)).

Soit n un entier : on désigne par Δ (resp. Δ , Δ) la sous-catégorie pleine de Δ (resp. Δ^+ , Δ^-) formés par les objets [p] tels que $p \leq n$.

Le foncteur restriction

$$(3.0.1.1) i_n^* : \Delta^{\circ} \mathbf{E} \longrightarrow \underline{\Lambda}_n^{\circ} \mathbf{E}$$

possède un adjoint à droite i_{n*} , puisque les limites projectives finies existent dans E (cf. (1.2.10)). On note cosk_n et on appelle foncteur cosquelette d'ordre n le foncteur $i_{n*} \circ i_n^*$; par abus de notations, nous utiliserons aussi la notation cosk_n pour le foncteur i_n .

Pour tout entier p, désignons par Δ (resp. Δ^+) la sous-catégorie pleine $\Delta_{[p]}$ (resp. $\Delta^+_{[p]}$) des objets de Δ (resp. Δ^+) au-dessus de [p], définie par les objets [q] au-dessus de [p] tels que $q \leq n$; on laisse au lecteur le soin de vérifier que l'on a :

$$(3.0.1.2) \qquad (\operatorname{cosk}_n(\mathbf{X}))_p = \varprojlim_{\Delta_{n[p]}} \mathbf{X}_q \xrightarrow{\sim} \varprojlim_{\Delta_{n[p]}^+} \mathbf{X}_q.$$

3.0.2. Soient X et X' deux objets de Δ °E et $f, g: X \rightrightarrows X'$ deux morphismes. Une homotopie de f vers g consiste en la donnée pour tout n d'une application $h_n: \operatorname{Hom}_{\Delta}([n],[1]) \to \operatorname{Hom}_{E}(X_n,X'_n)$ vérifiant les deux conditions suivantes :

(3.0.2.1)
$$h_n(\partial^1) = f_n \text{ et } h_n(\partial^\circ) = g_n \text{ pour tout } n.$$

3.0.2.2. pour toute flèche $[n] \rightarrow [p]$ dans Δ , on a un diagramme commutatif:

N.B.: La relation ainsi introduite sur l'ensemble des morphismes de X dans X' n'est pas une relation d'équivalence; on peut palier à cet inconvénient en introduisant la notion d'homotopie composé [cf. [3] chap III] : nous n'utiliserons pas cette dernière notion.

Lemme 3.0.2.3. — Soient X et X' deux objets de $\Delta^{\circ}E$, f, $g: X \Rightarrow X'$ deux morphismes et $F: E \to C$ un foncteur où C est une catégorie abélienne. Une homotopie simpliciale de f vers g induit une homotopie sur les morphismes de complexes de cochaînes canoniquement associés à F(f) et F(g).

On est ramené au cas où C est la catégorie des modules sur un anneau et on applique [[5] I. (3.7.1)].

Lemme 3.0.2.4. — Soient n un entier, X et X' deux objets de Δ °E. Soient f et g deux morphismes de X dans X' tels que $f_p = g_p$ pour p < n: alors il existe une homotopie simpliciale de $\operatorname{cosk}_n(f)$ vers $\operatorname{cosk}_n(g)$.

On définit $h_p : \operatorname{Hom}_{\Delta}([p], [1]) \to \operatorname{Hom}(X_p, X'_p)$ par l'application constante de valeur $f_p = g_p$ pour p < n, puis $h_n : \operatorname{Hom}_{\Delta}([n], [1]) \to \operatorname{Hom}(X_n, X'_n)$ en envoyant tous les éléments de $\operatorname{Hom}_{\Delta}([n], [1])$, sauf ∂° , sur f_n , et ∂° sur g_n . On remarque ensuite

que $\operatorname{Hom}_{\Delta}([k],[1]) = \varprojlim_{\substack{[q] \to [k] \\ q \geqslant n}} \operatorname{Hom}([q],[1])$ pour k > n, ce qui permet de définir canoniquement h_k .

3.1. Comparaison de deux augmentations du point de vue de la 1-descente cohomologique. — Soit S un objet de B : on désigne par $Hom_{plat}(D^{\circ}, B/S)$ la sous-catégorie pleine de $Hom(D^{\circ}, B/S)$ dont les objets sont les augmentations plates [cf. (1.2.6) et (2.4.3.1)].

Proposition 3.1.1. — Soient $X \xrightarrow{n} C_S^D$ et $X' \xrightarrow{n'} C_S^D$ deux objets de $\mathscr{H}om_{\mathrm{plat}}(D^{\circ}, B/S)$. Soit $f: X \to X'$ un morphisme au-dessus de S (i.e. un morphisme de $\mathscr{H}om(D^{\circ}, B/S)$); il lui correspond de façon naturelle un morphisme fonctoriel

$$\eta_{\mathrm{G}}^{f}: \mathrm{R}_{\mathrm{G}}^{+} \, \overline{u}'_{*} \circ \mathbf{L}_{\mathrm{G}}^{+} \overline{u}'^{*} \longrightarrow \mathrm{R}_{\mathrm{G}}^{+} \, \overline{u}_{*} \circ \mathbf{L}^{+} \overline{u}^{*}$$

 $tel\ que\ le\ diagramme\ suivant\ soit\ commutatif:$

125 De plus, si $D = \Delta$, η_G^f ne dépend que de la classe d'homotopie (cf. (3.0.2)) de f dans $\mathscr{H}om(\Delta^\circ, B/S)$.

Il est clair que nous pouvons supposer que $G = \text{Mod}(\mathscr{E}^{\circ}, \mathscr{O})$ pour la construction de η_G^f .

Soit I la catégorie définie par le type de diagramme

$$(3.1.1.1) x \longrightarrow x .$$

On désigne par $r_0: D \to \Gamma \times D$ (resp. r_1) le foncteur pleinement fidèle défini par $r_0(i) = (0, i)$ (resp. $r_1(i) = (1, i)$).

En vertu de l'isomorphisme canonique

$$(3.1.1.2) \qquad \mathscr{H}om((I \times D)^{\circ}, B/S) \xrightarrow{\sim} \mathscr{H}om(I^{0}, \mathscr{H}om(D^{0}, B/S))$$

les données de (3.1.1) définissent une augmentation plate

$$(3.1.1.3) XfX' \xrightarrow{ufu'} C_S^{I \times D}.$$

126

Soit F un objet de $\operatorname{Mod}(\mathscr{E}_S^{\circ},\mathscr{O}_S)$, le morphisme canonique

$$(3.1.1.4) \hspace{1cm} \mathscr{E}^*_{\mathrm{I} \times \mathrm{D}}(\mathrm{F}) \longrightarrow \Gamma((u f u')_*) \circ \Gamma((u f u')^*) (\mathscr{E}^*_{\mathrm{I} \times \mathrm{D}}(\mathrm{F})).$$

peut s'interpréter comme un triangle commutatif dans $\mathrm{Mod}((\overline{\mathbf{C}^{\mathrm{D}}_{\mathrm{S}}}), \mathscr{O})$:

d'où un morphisme fonctoriel $\overline{u}'_*\circ\overline{u}'^*\xrightarrow{\alpha_f}\overline{u}_*\circ\overline{u}^*$ tel que le diagramme

 $(3.1.1.6) \qquad {}^{1}\operatorname{Mod}(\varepsilon_{\operatorname{S}}^{\circ}, \mathscr{O}_{\operatorname{S}}) \qquad \alpha_{f}$ $\overline{u}_{*}^{\prime} \circ \overline{u}^{\prime*}$

soit commutatif.

On obtient par suite un morphisme fonctoriel tel que le diagramme

soit commutatif.

(Remarquons que $K^+(\alpha_f)$ peut aussi s'obtenir formellement par adjonction en utilisant l'isomorphisme $K^+(\Gamma(f^*)) \circ K^+(\overline{u}'^*) \xrightarrow{\sim} K^+(\overline{u}^*)$).

Soient F' un complexe de K⁺(S) et ξ : K⁺($\overline{ufu'^*}$)(F') \to J' un quasi-isomorphisme tel que, pour tout entier n, Jⁿ soit totalement acyclique objet par objet (cf. (1.3.13)). D'après (loc. cit.) les flèches canoniques

$$\mathrm{K}^+(\overline{u}^*)(\mathrm{F}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}) \longrightarrow r_1^*(\mathrm{J}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}) \ \mathrm{et} \ \mathrm{K}^+(\overline{u}^*)(\mathrm{F}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}) \longrightarrow r_0^*(\mathrm{J}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}})$$

sont des quasi-isomorphismes (cf. (1.2.8) pour les notations). On obtient par suite un morphisme

$$R^+ \overline{u}'_* \circ \mathbf{L}^+ \overline{u}'^* (F^{\bullet}) \xrightarrow{\eta^f (F^{\bullet})} R^+ \overline{u}_* \circ \mathbf{L}^+ \overline{u}^* (F^{\bullet})$$

tel que le diagramme suivant soit commutatif dans $D^+(S)$:

Il est clair que $\eta^f(F^*)$ ne dépend pas de la résolution choisie et on vérifie qu'il est fonctoriel en F^* variant dans $D^+(S)$.

Pour achever la démonstration de (3.11), il suffit de montrer le lemme suivant :

128 Lemme 3.1.1.9. — Soient $X \xrightarrow{u} C_S^{\Delta}$ et $X' \xrightarrow{u'} C_S^{\Delta}$ deux objets de $\mathscr{H}om_{\mathrm{plat}}(\Delta^{\circ}, B/S)$. Soient $f, g: X \to X'$ deux morphismes dans $\mathscr{H}om(\Delta^{\circ}, B/S)$: s'il existe une homotopie simpliciale de f vers g, on a $\eta^f = \eta^g$.

Soit $h_n = \operatorname{Hom}_{\Delta}([n], [1]) \to \operatorname{Hom}_{B/S}(X_n, X'_n)$ une homotopie simpliciale de f vers g. Soit $\overline{1 \times D}$ la catégorie obtenue à partir de $\overline{1 \times D}$ en ajoutant les flèches $(1, n) \to (0, n)$ correspondant bijectivement à $h_n(\operatorname{Hom}([n], [1]))$ et les relations imposées par la compatibilité des h_n pour n variable. Les données du lemme définissent une augmentation plate $\overline{XfX'} \xrightarrow{t} C_S^{\Gamma \times \overline{D}}$. Soit F un complexe de $C^+(S)$ et J une résolution de $C^+(t^*)(F)$ telle que pour tout entier n, J^n soit totalement acyclique objet par objet : il existe

une homotopie simpliciale entre

$$C^+(\Gamma(u'_*))(r_0^*(J^{\bullet})) \rightrightarrows C^+(\Gamma(u_*))(r_1^+(J^{\bullet}))$$

d'où une homotopie lorsqu'on passe aux complexes « condensés ». (cf. (3.0.2.3)).

Définition 3.1.2. — Avec les notations de (3.1.1), nous dirons que f est une équivalence pour la G-1-descente cohomologique si η_G^f est un isomorphisme.

3.1.3. Nous noterons dans ce qui suit par $L_i : \Delta \to \Delta \times \Delta$ (resp. $c_i : \Delta \to \Delta \times \Delta$) le foncteur canonique défini par $[n] \to [n] \times [i]$ (resp. $[n] \to [i] \times [n]$).

Proposition 3.1.4. — Soient $X \xrightarrow{u} C_S^{\Delta \times \Delta}$ et $X' \xrightarrow{u'} C_S^{\Delta \times \Delta}$ deux objets de $\mathscr{H}om_{\mathrm{plat}}((\Delta \times \Delta)^{\circ}, B/S)$. Soit $f: X \to X'$ un morphisme au-dessus de S: on suppose que $f_* \mathrm{id}_{L_i}: X \circ L_i \to X' \circ L_i$ (resp. $f_* \mathrm{id}_{c_i}: X \circ c_i \to X' \circ c_i$) est une équivalence pour de la G-1-descente cohomologique pour tout entier i. Alors f est une équivalence pour a G-1-descente cohomologique.

D'après la description de η^f (cf. démonstration de (3.1.1)) il s'agit de montrer qu'un certain morphisme de complexes triples induit un isomorphisme sur la cohomologie des complexes condensés : un raisonnement standard par suite spectrales permet alors de conclure.

Proposition 3.1.5. — Soient X et X' deux objets de $\mathscr{H}om_{\text{plat}}(\Delta^{\circ}, B/S)$. Soit $f: X \to X'$ un morphisme fonctoriel tel que $f_n: X_n \to X'_n$ soit un morphisme de G-1-descente cohomologique. Alors le morphisme canonique $[[X|_f X']] \to [[X'|_{\text{id}} X']]$ (cf. (1.2.7) est une équivalence pour la G-1-descente cohomologique.

Résulte de (3.1.4) et du lemme suivant, dont la démonstration est laissée au lecteur :

Lemme 3.1.5.1. — Soient $f: R \to S$ un morphisme plat $Y \xrightarrow{u} C_S^{\Delta}$ et $Y \xrightarrow{v} C_R^{\Delta}$ deux augmentations plates telles que le diagramme suivant soit commutatif dans $\mathscr{H}om(\Delta^\circ, B)$:

 $Si\ v\ est\ une\ augmentation\ de\ G-1-descente\ cohomologique,\ c'est\ une\ équivalence\ pour\ la\ G-1-descente\ cohomologique.$

Dans les applications, nous combinerons (3.1.4) et (3.1.5) avec le résultat suivant :

Proposition 3.1.6. — Soit $X \xrightarrow{u} C_S^{\Delta \times \Delta}$ une augmentation plate. Pour que u soit une augmentation de G-1-descente cohomologique, il suffit que $X \circ L_i \xrightarrow{u*id_{L_i}} C_S^{\Delta}$ (resp. $X \circ C_i \xrightarrow{u*id_{C_i}} C_S^{\Delta}$) le soit pour tout entier i.

Cela résulte de la construction explicite de $R_G^+ \overline{u}_*$ (cf. (2.3.10)).

Corollaire 3.1.7. — Soit $X \xrightarrow{u} C_S^{\Delta}$ une augmentation pour que u soit de G-1-descente cohomologique, il faut et il suffit que $[[X|_{id}X]] \to C_S^{\Delta \times \Delta}$ le soit.

3.2. Critères de localisation. —

Proposition 3.2.1. — Soit $Y \xrightarrow{v} C_S^{\Delta}$ une augmentation de G-1-descente cohomologique. Pour qu'une augmentation plate $X \xrightarrow{u} C_S^{\Delta}$ soit de G-1-descente cohomologique, il suffit qu'elle le devienne après tous les changements de base $Y_n \to S$.

Au moyen des changements de base $Y_n \to S$, on construit un objet semi-simplicial double X_S Y augmenté vers S. D'après (3.1.4) et (3.1.5.1) le morphisme canonique X_S Y \longrightarrow [[X|idX]] est une équivalence pour la G-1-descente cohomologique : en vertu de (3.1.7), il suffit de montrer que l'augmentation de X_S Y vers S est de G-1-descente cohomologique. Or ceci résulte du fait que le morphisme canonique X_S Y \longrightarrow [[Y|idY]] est une équivalence pour la G-1-descente cohomologique : on utilise encore (3.1.4), (3.1.5.1) et (3.1.7).

3.2.2. Soit

130

$$(3.2.2.1) \qquad \begin{array}{c} Y' & \xrightarrow{\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad Y \\ \downarrow & & \downarrow & \downarrow \\ f' & & & \downarrow \\ X' & \xrightarrow{\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \\ X' & \xrightarrow{\qquad \qquad X \end{array}$$

un diagramme commutatif dans B et soit F un objet de $\operatorname{Mod}(\mathscr{E}^0_S, \mathscr{O}_S)$: il existe un morphisme et un seul $\varphi(F): g_*(f^*(F)) \to f' * (g'_*(F))$ tel que le diagramme suivant

(dans $\operatorname{Mod}(\mathscr{E}^0, \mathscr{O})$), soit commutatif :

Si l'on suppose maintenant que toutes les flèches de (3.2.2.1) sont plates, on définit 131 de la même manière un morphisme, dit de *changement de base* :

$$(3.2.2.3) \xi_{\mathbf{G}} : \mathbf{L}_{\mathbf{G}}^{+} g_{*} \circ \mathbf{R}_{\mathbf{G}}^{+} f^{*} \longrightarrow \mathbf{R}_{\mathbf{G}}^{+} f'^{*} \circ \mathbf{L}_{\mathbf{G}}^{+} g'_{*}.$$

Définition 3.2.2.4. — On dit que le diagramme (3.2.2.1) vérifie le théorème du changement de base relativement à G si f, g, f', g' sont des morphismes plats et si $\xi_{\rm G}$ est un isomorphisme.

3.2.3. Soient $h: S \to S'$ un morphisme plat dans B, $X \xrightarrow{u} C_S^{\Delta}$ et $X' \xrightarrow{u'} C_{S'}^{\Delta}$ deux augmentations plates. Soit $f: X \to X'$ un morphisme fonctoriel tel que le diagramme (dans $\mathscr{H}om(\Delta^0, B)$)

$$(3.2.3.1) \qquad \begin{array}{cccc} X & & f & & \\ & \downarrow & & \downarrow & \\ & \downarrow & & \downarrow u' \\ & & \downarrow & & \\ & & \downarrow u' & & \\ & & & \downarrow u' & \\ & & & \downarrow u' & \\ & & & & & \downarrow u' & \\ & & & & & \downarrow u' & \\ & & & & & & \downarrow u' & \\ & & & & & & \downarrow u' & \\ & & & & & & \downarrow u' & \\ & & & & & & \downarrow u' & \\ & & & & & & \downarrow u' & \\ & & & & & & \downarrow u' & \\ & & & & & & \downarrow u' & \\ & & & & & & \downarrow u' & \\ & & & & & & \downarrow u' & \\ & & & & & & \downarrow u' & \\ & & & & & & \downarrow u' & \\ & & & & & & \downarrow u' & \\ & & & & & & \downarrow u' & \\ & & & & & & \downarrow u' & \\ & & & & & & \downarrow u' & \\ & & & & & & \downarrow u' & \\ & & & & & \downarrow u' & \\ & & & & & \downarrow u' & \\ & & & & & \downarrow u' & \\ & & & & & \downarrow u' & \\ & & & & & \downarrow u' & \\ & \downarrow u$$

soit commutatif. (h_c désigne le morphisme fonctoriel constant défini par h). Soit K^{*} un complexe de D⁺(S') : le morphisme

$$\eta_{\mathbf{G}}^f(\mathbf{K}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}): \mathbf{R}^+ \, \overline{u}'_* \circ \mathbf{L}^+ \overline{u}'^*(\mathbf{K}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}) \longrightarrow \mathbf{R}^+ (\overline{h_c \circ u})_* \circ \mathbf{L}^+ (\overline{h_c \circ u}) * (\mathbf{K}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}})$$

induit, compte tenu des identités :

$$R^+(\overline{h_c \circ u})_* \simeq R^+ h^* \circ R^+ \overline{u}_* \text{ et } \mathbf{L}^+(\overline{h_c \circ u})^* \simeq \mathbf{L}^+(\overline{u}^*) \circ \mathbf{L}^+ h_*$$

un morphisme $\mathrm{ch}_{\mathrm{G}}^{f,h}(\mathrm{K}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}),$ fonctoriel en K $^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}},$ tel que le diagramme suivant soit commutatif : (3.2.3.2)

$$\mathbf{L}_{\mathbf{G}}^{+}h_{*} \circ \mathbf{R}_{\mathbf{G}}^{+} \overline{u}_{*}^{\prime} \mathbf{L}_{\mathbf{G}}^{+} \overline{u}^{\prime *}(\mathbf{K}^{\bullet}) \xrightarrow{\mathbf{ch}_{\mathbf{G}}^{f,h_{(\mathbf{K}^{\bullet})}}} \mathbf{R}_{\mathbf{G}}^{+} \overline{u}_{*} \circ \mathbf{L}_{\mathbf{G}}^{+} \overline{u}^{*} \circ \mathbf{L}_{\mathbf{G}}^{+} h_{*}(\mathbf{K}^{\bullet})$$

$$\mathbf{L}_{\mathbf{G}}^{+}h_{*}(\alpha(\mathbf{K}^{\bullet}))$$

$$\mathbf{L}_{\mathbf{G}}^{+}h_{*}(\mathbf{K}^{\bullet})$$

132 Lemme 3.2.3.3. — Supposons que, pour tout entier i, le diagramme

$$\begin{array}{ccc}
X_i & & f_i & & X_i' \\
u_i & & & \downarrow u_i' \\
S & & h & & S'
\end{array}$$

vérifie le théorème du changement de base relativement à G. Alors $\mathrm{ch}_{\mathrm{G}}^{f,h}$ est un isomorphisme.

On peut calculer $\operatorname{ch}_{\operatorname{G}}^{f,h}(\operatorname{K}^{\:\raisebox{.3ex}{\text{\circle*{1.5}}}})$ de la manière suivante : on considère l'augmentation $\operatorname{X} f\operatorname{X}' \xrightarrow{(h_c \circ u)fu'} \operatorname{C}_{\operatorname{S}}^{\Delta'}(\operatorname{cf.}(3.1.1.2))$ et l'on choisit une résolution $\operatorname{J}^{\:\raisebox{.3ex}{\text{\circle*{1.5}}}} \operatorname{de} \operatorname{K}^+(\overline{(h_c \circ u)fu'}^*)(\operatorname{K}^{\:\raisebox{.3ex}{\text{\circle*{1.5}}}})$ telle que, pour tout entier n, J^n soit totalement acyclique objet par objet.

On obtient un quasi-isomorphisme

$$\theta: \mathrm{K}^+(\Gamma(f^*))(r_0^*\mathrm{J}^{\bullet}) \longrightarrow r_1^*(\mathrm{J}^{\bullet})$$

et un morphisme

$$t: \mathrm{K}^+(\Gamma(h_c^*)) \circ \mathrm{K}^+(\Gamma(u_\alpha'))(r_0^*(\mathrm{J}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}})) \longrightarrow \mathrm{K}^+(\Gamma(u_*))(r_1^*(\mathrm{J}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}))$$

qui admet la factorisation :

$$\mathrm{K}^+(\Gamma(h_c^*)) \circ \mathrm{K}^+(\Gamma(u_*'))(r_0^*(\mathrm{J}^{\:\raisebox{1pt}{\text{\circle*{1.5}}}})) \xrightarrow{\varphi} \mathrm{K}^+(\Gamma(u_*)) \circ \mathrm{K}^+(\Gamma(f^*))(r_0^*(\mathrm{J}^{\:\raisebox{1pt}{\text{\circle*{1.5}}}})) \xrightarrow{\mathrm{K}^+(\Gamma(u_*))(f_0^*(\mathrm{J}^{\:\raisebox{1pt}{\text{\circle*{1.5}}}}))}$$

$$\longrightarrow \mathrm{K}^+(\Gamma(u_*))(r_1^*(\mathrm{J}^{\:\raisebox{1pt}{\text{\circle*{1.5}}}}))$$

133 et $\operatorname{ch}^{f,h}(K^{\bullet})$ s'obtient en prenant l'image de t par le foncteur $R^{+}\varepsilon_{Z^{\bullet *}}$.

Or, la factorisation précédente montre que, t s'identifie « objet par objet » aux morphismes de changement de base relatifs aux diagrammes :

on en déduit, par suites spectrales, que $\operatorname{ch}_G^{f,h}(K^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}})$ est un isomorphisme, ce qui achève la démonstration.

Ceci nous conduit à un second critère de localisation :

Proposition 3.2.4. — Soit $X \xrightarrow{u} C_S^{\Delta}$ un objet de $\mathcal{H}om_{\mathrm{plat}}(\Delta^{\circ}, B/S)$. Pour que u soit une augmentation de G-1-descente cohomologique, il suffit qu'elle le devienne après « suffisamment pour G » (*) de changements de base plats $h: S' \to S$ tels que les diagrammes cartésiens

vérifient le théorème du changement de base relativement à G.

La proposition (3.2.4) est évidente à partir de (3.2.3.3), compte tenu du diagramme (3.2.3.2).

3.3. Propriétés des morphismes de descente cohomologique. — Dans ce numéro, nous supposons que l'ensemble des morphismes plats dans B est stable par changement de base.

Proposition 3.3.1. — i = 1, 2.

- a) Tout morphisme plat qui possède une section est un morphisme de G-2-descente cohomologique universelle.
- b) Soient $f: X \to S$ un morphisme plat, $g: S' \to S$ un morphisme de G-i-descente cohomologique, $X' = X_S S'$, $f' = f_{(S')}: X' \to S'$. Pour que f soit de G-i-descente cohomologique universelle, il faut et il suffit que f' le soit.

^(*)L'expression « suffisamment pour G » signifie qu'il existe une famille $(S_{\alpha} \xrightarrow{h_{\alpha}} S)_{\alpha \in A}$ de morphismes plats vérifiant les conditions précédentes et tels que la famille de foncteurs $(h_{\alpha*}: G_S \to G_{S_{\alpha}})_{\alpha \in A}$ soit conservative.

- c) Si le composé de deux morphismes $f: X \to Y$, $g: Y \to Z$ est de G-i-descente cohomologique universelle, g est de G-i-descente cohomologique universelle.
- d) Le composé de deux morphismes de G-i-descente cohomologique universelle est un morphisme de G-i-descente cohomologique universelle.
- e) Si $f: X \to X'$ et $g: Y \to Y'$ sont deux S-morphismes de G-i-descente cohomologique universelle, f g est de G-i-descente cohomologique universelle.
- f) Soit $(u_{\alpha}: X_{\alpha} \to Y_{\alpha})_{\alpha \in A}$ une famille de morphismes de G-i-descente cohomologique. Alors $\coprod u_{\alpha}: \coprod_{\alpha \in A} X_{\alpha} \to \coprod_{\alpha \in A} Y_{\alpha}$ est un morphisme de G-i-descente cohomologique.
- 135 Démonstration. En ce qui concerne la descente effective relativement à G nous renvoyons à [4].
 - a) Au moyen d'une section s de f on compare les objets semi-simpliciaux augmentés vers $S: [X|_f S]$ et $[S|_{id} S]$; grâce à (3.0.2.4) on obtient une équivalence pour la G-1-descente cohomologique.
 - b) Résulte de (3.2.1).
 - c) Résulte de a) et b).
 - d) Soient $f: X \to Y$ et $g: Y \to S$ deux morphismes de G-1-descente cohomologique universelle. Posons $h = g \circ f$ et considérons le produit fibré :

g' possède une section $s: X \to R$ tel que $h' \circ s = f$. D'après c) h' est de G-1-descente universelle et il en est de même de h d'après b).

- e) Résulte formellement de b) et d).
- f) Soit $(Z_{\lambda})_{\lambda \in \Lambda}$ une famille d'objets de B. Il résulte des hypothèses (3.0.0) que l'on dispose d'un équivalence canonique

$$\operatorname{Mod}\left(\mathscr{E}_{\coprod_{\lambda} Z_{\lambda}}^{0}, \mathscr{O}_{\coprod_{\lambda} Z_{\lambda}}\right) \xrightarrow{\sim} \prod_{\lambda} \operatorname{Mod}(\mathscr{E}_{Z_{\lambda}}^{\circ}, \mathscr{O}_{Z_{\lambda}})$$

induisant une équivalence

$$G_{\coprod_{\lambda} Z_{\lambda}} \xrightarrow{\sim} \prod_{\lambda} G_{Z_{\lambda}}.$$

De plus, si $(Q_{\lambda})_{\lambda} \in \prod_{\lambda} \operatorname{Mod}(\mathscr{E}_{Z_{\lambda}}^{0}, \mathscr{O}_{Z_{\lambda}})$ est totalement acyclique, Q_{λ} est totalement acyclique pour tout λ .

Soit maintenant $(u_{\lambda}: X_{\lambda} \to Y_{\lambda})_{{\lambda} \in \Lambda}$ une famille de morphismes de G-1-descente cohomologique : puisque les sommes directes dans B sont disjointes et universelles, on

a pour tout n, une identification

$$\left[\coprod_{\lambda} \mathbf{X}_{\lambda}|_{\coprod u_{\lambda}} \coprod \mathbf{Y}_{\lambda}\right]_{n} \simeq \coprod_{\lambda} [\mathbf{X}_{\lambda}|_{u_{\lambda}} \mathbf{Y}_{\lambda}]_{n}$$

qui est fonctorielle en n. On déduit alors des remarques précédentes et du calcul explicite de $R_G^+\theta_*$ (cf. (2.3)) que $\coprod_{\lambda}u_{\lambda}$ est un morphisme de G-1-descente cohomologique : les détails sont laissés au lecteur. On laisse aussi à ce dernier le soin de vérifier que $\coprod_{\lambda}u_{\lambda}$ reste de G-1-descente cohomologique après tout changement de base s'il en est de même de u_{λ} pour tout λ .

3.3.2. Si l'on associe à chaque objet X de B l'ensemble des familles de morphismes $(X_{\alpha} \to X)_{\alpha \in A}$ telles que $\coprod_{\alpha} X_{\alpha} \to X$ soit un morphisme de G-i-descente cohomologique universelle on définit, en vertu de (3.3.1), une prétopologie sur B.

La topologie engendrée par cette prétopologie s'appelle la topologie de la G-i-descente cohomologique. Il résulte de [(3.3.1)-c)] que les morphismes couvrants pour cette topologie sont exactement les morphismes de G-i-descente cohomologique universelle. Notons enfin que la topologie de la G-2-descente cohomologique est moins fine que la topologie de la G°-descente [cf. [4] (6.23)].

Théorème 3.3.3. — On suppose que toutes les flèches de B sont plates. Soit S un objet de B; tout hyperrecouvrement de S, pour la topologie de la G-1-descente co-homologique, dont tous les objets sont représentables (cf. V appendice) définit une augmentation de G-1-descente cohomologique universelle.

La démonstration se fait en deux étapes : précisons que tous les cosquelettes seront calculés dans la catégorie $\rm B/S.$

Lemme 3.3.3.1. — Soit X un objet de $\mathscr{H}om(\Delta^{\circ}, B/S)$ pour que X soit de 1-descente 1 cohomologique (resp. universelle), il suffit que $\cosh_n(X)$ le soit pour tout n assez grand.

Soit en effet $\alpha_n: X \to \operatorname{cosk}_n(X)$ le morphisme canonique : on vérifie alors que si K' est un complexe de $\operatorname{D}^+_{G_S}(S)$ tel que $\operatorname{H}^j(K^{\bullet}) = 0$ pour j < N, $\operatorname{H}^i(\eta_G^{\alpha_n})$ est un isomorphisme pour i < N + n, d'où l'assertion.

Lemme 3.3.3.2. — Soient n un entier $\geqslant 0$, X et X' deux objets simpliciaux de B/S. Soit $f: X \to X'$ un morphisme. On suppose que :

- (i) $X \to \operatorname{cosk}_{n+1}(X)$ est un isomorphisme.
- (ii) $X' \to \operatorname{cosk}_{n+1}(X')$ est un isomorphisme.
- (iii) $f_i: X'_i \to X_i$ est un isomorphisme pour $i \leq n$.
- (iv) f_{n+1} est un morphisme de G-1-descente cohomologique universelle.

Alors si X est de G-1-descente cohomologique universelle, il en est de même de X'.

Il est clair que (3.3.3.1) et (3.3.3.2) démontrent le théorème (3.3.3) par récurrence.

Lemme 3.3.3.3. — Sous les hypothèses de (3.3.3.2), les morphismes f_p sont tous de G-1-descente cohomologique universelle.

C'est trivial pour $p \leq n+1$. Pour p > n+1, X_p (resp. X_p') peut s'écrire comme $\varprojlim_{n+1[p]} \Delta_{n+1[p]}^+ X_q$ (resp. $\varprojlim_{n+1[p]} \Delta_{n+1[p]}^+ X_q$). Or pour toute flèche $\iota: i \to j$ de $\Delta_{n+1[p]}^+$ on a un diagramme commutatif à lignes exactes :

dont le carré de gauche est cartésien (ou bien i=n+1=j et $\iota=\mathrm{id}$, ou bien i< n+1 et f_i est un isomorphisme). Utilisant alors (3.3.1) on voit que α_ι est un morphisme de G-1-descente cohomologique universelle. On achève la démonstration en remarquant que f_p s'identifie au morphisme canonique $\bigcap_{\iota} \mathrm{K}'_{\iota} \xrightarrow{\mathrm{X}\alpha_{\iota}} \bigcap_{\iota} \mathrm{K}_{\iota}$.

Soit $[X'/X]^p$ le produit fibré itéré (p+1)-uple de X' au-dessus de X. Grâce à (3.3.3.3), il suffit de vérifier (3.3.3.2) après un changement de base $[X'/X]^p \to X$. Après un tel changement de base, les hypothèses de (3.3.3.2) sont encore vérifiées, et de plus f_{n+1} admet une section. On peut alors appliquer (3.0.2.4) pour achever la démonstration.

En ce qui concerne la descente effective, on a :

Proposition 3.3.4. — Soit $X : \Delta^0 \to B/S$ un foncteur. On suppose que $X_0 \to S$ est un morphisme de G^0 -2-descente universelle ainsi que les morphismes $X_{n+1} \to (\cos k_n(X))_{n+1}$ pour n=0,1. Alors le foncteur X est G^0 -2-fidèle et le reste après tout changement de base (autrement dit X définit une augmentation de descente effective universelle au sens de (2.4.11)).

D'après [4] (7.12), il suffit de voir que $i_2^*(X)$ est G^0 -2-fidèle et on utilise pour ce faire les lemmes suivants :

139 Lemme 3.3.4.1. — Soient X et X' deux foncteurs $\Delta_2^0 \longrightarrow B/S$ et un diagramme com-

mutatif:

tel que k soit un morphisme de G° -0-descente. Alors si X est G° -2-fidèle, il en est de même de X'.

Évident.

Lemme 3.3.4.2. — Soient X et X' deux foncteurs $\Delta^0 \longrightarrow B/S$ et un diagramme commutatif

tel que f_1 soit de G^0 -1-descente et f_2 de G° -0-descente. On suppose de plus que $X_2 \xrightarrow{\sim} (\cos k)_1(X'))_2$. Alors si X est G° -2-fidèle, il en est de même de X'.

Soient $X_1''=X_1'$ X_1' , $\partial_0:X_1''\to X_1'$ et $\partial_1:X_1''\to X_1'$ les deux projections.

Grâce à la définition d'un cosquelette, on définit une flèche $\varphi: X_1'' \to X_2'$ telle que :

$$\begin{cases} \partial_0 \circ \varphi = \partial_0 \\ \partial_1 \circ \varphi = \partial_1 \\ \partial_2 \circ \varphi = \sigma_0 \partial_1 \partial_0 = \sigma_0 \partial_1 \partial_1. \end{cases}$$

Soit maintenant une donnée de descente sur X'; d'où un objet sur X_0 , deux objets sur X_1 , un isomorphisme entre eux sur X'_1 . Grâce à φ , on voit que les deux images réciproques de ces isomorphismes sur X''_1 sont égales. Puisque f est de 1-descente, on attrape un isomorphisme entre les deux objet sur X_1 ; cet isomorphisme est une donnée de descente (grâce au fait que $X'_2 \to X_2$ est de 0-descente), et on a gagné.

Corollaire 3.3.5. — On suppose que toutes les flèches de B sont plates : tout hyperre-couvrement de S, pour la topologie de la G-2-descente cohomologique, dont les objets sont représentables, définit une augmentation de G-2-descente cohomologique universelle.

4. Exemples

4.1. Faisceaux de groupes abéliens sur les espaces topologiques. —

4.1.0. Dans ce numéro Top désigne la catégorie des espaces topologiques [éléments de l'univers fixé \mathscr{U}]: on définit une catégorie \mathscr{E} bifibrée en duaux de topos au-dessus de Top en prenant pour objets les couples (X,F), où X est un espace topologique et F un faisceau d'ensembles sur X, et pour morphismes les couples $(f,\varphi):(X,F)\to (Y,H)$ où $f:X\to Y$ est une application continue et $\varphi:H\to f_*(F)$ un morphisme de faisceaux. On prend pour $\mathscr O$ la section de $\mathscr E^0$ au-dessus de Top 0 qui associe à chaque espace topologique le faisceau constant $\mathbf Z_X$: on posera $G=\mathrm{Mod}(\mathscr E^0,\mathscr O)$ de sorte que, pour tout espace topologique X, G_X s'identifie à la catégorie des faisceaux de groupes abéliens sur X.

Rappelons qu'un morphisme $f: X \to Y$ est séparé si la diagonale de $X_{\overline{Y}}X$ est fermée. Un morphisme propre est un morphisme séparé et universellement fermé (prendre garde que cette définition est plus restrictive que celle de Bourbaki).

La démonstration du « théorème de changement de base » ci-dessous est inspirée de ([5] II(4.11.1).

Théorème 4.1.1. — Soient $f: X \to Y$ un morphisme propre, F un faisceau abélien sur X et un diagramme cartésien

$$\begin{array}{ccc} X' & & g' & & X \\ & & & \downarrow f & & \downarrow f \\ Y' & & & g & & Y. \end{array}$$

Alors, l'application canonique (XII 4.2) ou (3.2.2.3)

$$g^* \mathbf{R}^i f_* \mathbf{F} \xrightarrow{\sim} \mathbf{R}^i f'_* {g'}^* \mathbf{F}$$

est un isomorphisme.

141

Ce théorème équivaut au corollaire suivant (le corollaire s'obtient en faisant Y' = (Point); le théorème s'obtient en appliquant le corollaire à f et f').

Corollaire 4.1.2. — Soient $f: X \to Y$ un morphisme propre, F un faisceau abélien sur X et $y \in Y$. L'application canonique

$$(R^i f_* F)_y \longrightarrow H^i (f^{-1}(y), F)$$

est bijective.

Par définition, pour U parcourant les voisinages de Y, on a

$$(R^i f_* F)_y = \lim_{ \to \infty} H^i(f^{-1}(U), F).$$

Puisque f est fermé, les $f^{-1}(U)$ forment un système fondamental de voisinages de $f^{-1}(y)$ et (4.1.3) résulte du lemme suivant.

Lemme 4.1.3. — Soient X un espace topologique, $K \subset X$ et F un faisceau abélien sur 14 X. On suppose que K est compact et que deux points distincts quelconques de K ont, dans X, des voisinages disjoints. Alors, pour U parcourant les voisinages de K, on a (4.1.3.1) $\lim_{\longrightarrow} H^i(U,F) \xrightarrow{\sim} H^i(K,F)$.

Nous traiterons d'abord le cas i = 0. Dans ce ces, il est clair que (4.1.3.1) est injectif. Pour la surjectivité, nous utiliserons

Lemme 4.1.4. — Sous les hypothèses de (4.1.3), si A et B sont deux fermés de K et W un voisinage de $A \cap B$ dans X, il existe des voisinages U et V de A et B dans X tels que $U \cap V \subset W$.

Nous traiterons d'abord le cas où A est réduit à un point a. L'assertion est triviale si $a \in B$ (prendre U = W). Si $a \notin B$ il existe pour chaque $b \in B$ des voisinages ouverts disjoints U_b et V_b de a et b dans X. On prend pour V une réunion finie de V_b qui comme B, et pour U l'intersection des U_b correspondants.

Dans le cas général, pour chaque $a \in A$, il existe des voisinages ouverts U_a et V_a de a et B dans X avec $U_a \cap V_a \subset W$. On prend pour U une réunion finie des U_a , qui couvre A, et pour V l'intersection correspondante des V_a .

Revenons à (4.1.3). Si $s \in H^{\circ}(K, F)$, il existe un recouvrement ouvert U_i de K dans X et des $s_i \in H^{\circ}(U_i, F)$ tels que $s_i = s$ sur $U_i \cap K$. On peut supposer les U_i en nombre fini. Soit (K_i) un recouvrement fermé de K, avec $K_i \subset K \cap U_i$. Soit W_j l'ouvert de $U_i \cap U_j$ où $s_i = s_j$; on a $K_i \cap K_j \subset W_{ij}$. Appliquons (4.1.4) à tous les couples (K_i, K_j) et aux W_{ij} : on trouve des ouverts V_{ij} avec $K_i \subset V_{ij} \subset U_i$ et $V_{ij} \cap V_{ji} \subset W_{ij}$. Soit $U'_i = \bigcap_j V_{ij}$: on a $K_i \subset U'_i \subset U_i$, et $s_i = s_j$ sur $U'_i \cap U'_j$. Les s_i se recollent donc sur le voisinage de K réunion des U'_i , et (4.1.3.1) est surjectif (donc bijectif) pour i = 0.

Lemme 4.1.5. — Si F est flasque, le faisceau F|K sur K est mou.

Soit $A \subset K$ un fermé dans K. Toute section de F sur A se prolonge à un voisinage, d'après ce qui précède. Puisque F est flasque, elle se prolonge à X, et a fortiori à K. Prouvons (4.1.3). Soit F^* une résolution flasque de F. On a

$$\underbrace{\varinjlim}_{\stackrel{\text{(4.1.5)}}{\longrightarrow}} H^i(\mathcal{U}, \mathcal{F}) = \underbrace{\varinjlim}_{\stackrel{\text{(4.1.5)}}{\longrightarrow}} H^i(\Gamma(\mathcal{U}, \mathcal{F}^*)) = H^i \underbrace{\varinjlim}_{\stackrel{\text{(4.1.5)}}{\longrightarrow}} \Gamma(\mathcal{U}, \mathcal{F}^*) = 4.1.3(i = 0)H^i\Gamma(\mathcal{K}, \mathcal{F}^*)$$

Corollaire 4.1.6. — Soit $f: X \to Y$ un morphisme propre et surjectif d'espaces topologiques. Alors, f est de G-1-descente cohomologique.

Résulte de (4.1.2) et (3.2.4).

Corollaire 4.1.7. — Soit $\mathscr{U} = (U_i)_{i \in I}$ un recouvrement fermé localement fini d'un espace topologique X. Alors le morphisme canonique $f : \coprod_{i \in I} U_i \to X$ est un morphisme de G-1-descente cohomologique.

En effet f est propre et surjectif. En appliquant (2.5.6), on retrouve la suite spectrale de [5]. II (5.2.4) (cf. l'introduction).

Proposition 4.1.8. — Soit $f: X \to Y$ un homomorphisme local surjectif d'espace topologique. Alors f est un morphisme de G-1-descente cohomologique universelle.

Par localisation sur Y (cf. (3.2.4)), on est ramené au cas où f possède une section.

144 Corollaire 4.1.9. — Soit $\mathscr{U} = (U_i)_{i \in I}$ un recouvrement ouvert d'un espace topologique X. Alors le morphisme canonique $f : \coprod_{i \in I} U_i \to X$ est un morphisme de G-1-descente cohomologique universelle.

La suite spectrale de descente donne alors [[5] II (5.4.1)] (cf. l'Introduction).

Remarque 4.1.10. — Les démonstrations de (VIII 9) montrent que l'on peut remplacer « 1-descente cohomologique » par « 2-descente cohomologique » dans tous les énoncés qui précèdent.

4.2. Modules quasi-cohérents sur les schémas. —

4.2.0. Soit $(Sch)_s$ la catégorie dont les objets sont les schémas éléments de \mathscr{U} et les flèches les morphismes quasi-compacts et quasi-séparés : on définit une catégorie \mathscr{E} bifibrée en duaux de topos au-dessus de $(Sch)_s$ en prenant pour objets les couples (X, F) où X est un schéma et F un faisceau sur X (pour la topologie de Zariski), et pour morphismes les couples $(f, \varphi) : (X, F) \to (Y, G)$, où $f : X \to Y$ est une application continue et $\varphi : G \to f_*(F)$ un morphisme de faisceaux. On prend pour \mathscr{O} la section de \mathscr{E}^0 au-dessus de $(Sch)_s^0$ qui associe à tout schéma son faisceaux structural; on prend pour G la sous-catégorie de $Mod(\mathscr{E}^0, \mathscr{O})$ telle que pour tout schéma X, G_X soit la catégorie des modules quasi-cohérents sur X.

Proposition 4.2.1. — Tout morphisme $f: X \to Y$ fidèlement plat quasi-compact et quasi-séparé est un morphisme de G-2-descente cohomologique universelle.

D'après [SGA I (VIII 5.2)], f est un morphisme de G^0 -descente effective. En vertu de [EGA IV (1.7.21)], on peut appliquer (3.2.4) au carré cartésien :

4.3. Faisceaux étales sur les schémas. —

4.3.0. Soit (Sch) la catégorie de tous les schémas appartenant à \mathscr{U} : on définit donc une catégorie \mathscr{E} bifibrée en duaux de topos au-dessus de (Sch) en prenant pour objets les couples (X,\mathfrak{F}) , où X est un schéma et F un faisceau étale sur X, et pour morphismes les couples $(f,\varphi):(X,\mathfrak{F})\to (Y,\mathscr{G})$, où $f:X\to Y$ est un morphisme de schémas et $\varphi:\mathscr{G}\to f_*(\mathfrak{F})$ est un morphisme de faisceaux.

Soit n un entier ≥ 0 : on désigne par \mathcal{O}_n la section de \mathcal{E}^0 au-dessus de (Sch)⁰ qui associe à tout schéma X le faisceau constant $(\mathbf{Z}/n\mathbf{Z})_{\mathrm{X}}$. On posera $\mathbf{F}_n = \mathrm{Mod}(\mathcal{E}^0, \mathcal{O}_n)$ de sorte que, pour tout schéma X, $\mathbf{F}_{n_{\mathrm{X}}}$ s'identifie à la catégorie des faisceaux de $(\mathbf{Z}/n\mathbf{Z}$ -modules sur X.

4.3.1. Soit maintenant $(Sch)_s$ la sous-catégorie de (Sch) dont les objet sont les schémas éléments de \mathscr{U} et dont les flèches sont les morphismes quasi-compacts et quasi-séparés. On désigne par \mathscr{E}_s la catégorie bifibrée en duaux de topos au-dessus de $(Sch)_s$ déduite de \mathscr{E} par le changement de base $(Sch)_s \to (Sch)$; on désigne encore par \mathscr{O}_0 la restriction de \mathscr{O}_0 à $(Sch)_s$. Soit $G \subset \mathrm{Mod}(\mathscr{E}_s^0, \mathscr{O}_0)$ la sous-catégorie fibrée et cofibrée de $\mathrm{Mod}(\mathscr{E}_s^0, \mathscr{O}_0)$ telle que pour tout schéma X, G_X soit la catégorie des faisceaux abéliens de torsion sur X: le lecteur notera que la condition (2.4.1.1) est vérifiée.

Proposition 4.3.2. — Soit $f: X \to Y$ un morphisme propre surjectif. Alors f est un morphisme de F_n -2-descente cohomologique universelle pour $n \ge 1$. Considéré comme morphisme de $(\operatorname{Sch})_s$, f est un morphisme de G-2-descente cohomologique universelle.

D'après (VIII 9.4) f est un morphisme de F⁰-descente effective et d'après (XII.(5.1)), **146** on peut appliquer (3.2.4) au diagramme cartésien :

Proposition 4.3.3. — Soit $f: X \to Y$ un morphisme surjectif de schémas. On suppose que l'une des hypothèses suivantes est vérifiée :

- a) f est entier.
- b) Y est localement noethérien, f est universellement ouvert et localement de présentation finie.
 - c) f est plat et localement de présentation finie.

Alors f est un morphisme de F_n -2-descente cohomologique, pour tout $n \ge 0$.

a) On recopie la démonstration de (4.3.2) en remplaçant (XII. (5.1)) par ((VIII 5.6)).

- b) La question étant locale sur Y, on peut supposer que Y est noethérien. On applique (EGA IV (14.5.10)). Par (3.3.1) et a) on se ramène au cas où tout point y de Y possède un voisinage U tel que $f^{-1}(U) \to U$ possède une section et on gagne par (3.2.4).
- c) Il s'agit de montrer que f est un morphisme de F-1-descente cohomologique (on sait par ((VIII 9.4)) que f est un morphisme de F⁰-descente effective).

Par localisation sur Y (cf. (3.2.4)), on peut supposer que Y est affine d'anneau A. On peut alors écrire Spec $A = \varprojlim_{i \in I} \operatorname{Spec} A_i$, où I est un ensemble ordonné filtrant et A_i un anneau noethérien pour tout i, avec $X = \varprojlim_{i \in I} X_i$, où, pour tout i, X_i est un schéma plat et localement de présentation finie sur $\operatorname{Spec} A_i$ tel que $f_i : X_i \to \operatorname{Spec} A_i$ soit $\operatorname{surjectif}$; de plus, les diagrammes :

147 sont cartésiens.

Soit $\mathfrak F$ un faisceau abélien sur Y : on a $\mathfrak F=\varinjlim_i u_i^*u_{i*}(\mathfrak F)$ de sorte que, par un passage à la limite standard, on est ramené au cas où $\mathfrak F$ provient d'un faisceau sur Spec A_i pour un certain i, et b) permet de conclure.

Remarque 4.3.4. — Si $f: X \to Y$ est entier, on a $\mathbb{R}^q f_* = 0$ pour q > 0. On en conclut facilement qu'il n'est pas nécessaire de se limiter aux complexes bornés inférieurement pour faire de la descente au moyen de f.

Corollaire 4.3.5. — Soit $(X_{\alpha} \xrightarrow{u_{\alpha}} X)_{\alpha \in A}$ une famille couvrante pour la topologie étale. Alors $\coprod_{\alpha \in A} X_{\alpha} \to X$ est un morphisme F_n -2-descente cohomologique universelle pour tout $n \ge 0$.

En effet, il existe une factorisation

où h est un morphisme étale surjectif.

5. Applications

5.1. Construction d'objets simpliciaux. —

5.1.0. Jusqu'au numéro (5.1.3) compris, H est une catégorie où les limites projectives finis non vides existent et où les sommes finies existent, sont disjointes et universelles. Si $X:\Delta^0\to H$ est un objet simplicial de H, nous noterons $d_i^k:X_k\to X_{k-1}$ (resp. $s_i^k:X_k\to X_{k+1}$) pour $i\in [k]$ et $0\leqslant k$ les flèches correspondantes aux opérateurs « faces » $\partial_k^i:[k-1]\to [k]$ (resp. aux opérateurs de dégénérescence $\sigma_k^i:[k]\to [k+1]$) (cf. [3] II 2).

Définition 5.1.1. — Un objet simplicial $X : \Delta^0 \to H$ de H est σ -scindé s'il existe une famille de sous-objets NX_j des X_j $(j \ge 0)$ telle que les morphismes

$$h_i: \coprod_{\substack{\operatorname{Hom}_{\Delta^-}([i],[j])\\j \leqslant i}} \operatorname{NX}_j \longrightarrow \operatorname{X}_i$$

soient des isomorphismes.

De même, un objet simplicial k-tronqué $X : \Delta_k^0 \to H$ est σ -scindé s'il existe des NX_i $(0 \le j \le k)$ vérifiant la condition précédente pour $i \le k$.

Les NX_j sont uniquement déterminés par X. En effet, si X est σ -scindé, les opérateurs de dégénérescence $s_\ell^{k-1}: \mathrm{X}_{k-1} \to \mathrm{X}_k$ sont des isomorphismes de X_{k-1} avec des facteurs directs de X_k , et

$$NX_k = \bigcap_{\ell}$$
 (complément de $s_{\ell}^k(X_{k-1})$).

Pour k = 0, $NX_0 = X_0$.

5.1.2. Pour X un objet simplicial (n+1)-tronqué σ -scindé de H, nous désignerons par $\alpha_n(X)$ le triple consistant en

- a) la restriction $i_n^*(X)$ de X à Δ_n^0
- b) NX_{n+1} ,

149

c) l'application évidente de NX_{n+1} dans $(\cos q_n(X))_{n+1}$

Ce triple (Y, N, β) vérifie la condition suivante

(*) Y est un objet simplicial n-tronqué σ -scindé de H, et β est une application de N dans $(\cos q Y)_{n+1}$.

Proposition 5.1.3. — Soit (Y, N, β) un triple vérifiant (*) ci-dessus.

- (i) A isomorphisme unique près, il existe un et un seul $X : \Delta_{n+1}^0 \to H$ σ -scindé, avec $\alpha_n(X) \simeq (Y, N, \beta)$,
- (ii) Il revient au même de se donner un morphisme f de X dans un objet simplicial tronqué $Z:\Delta^0_{n+1}\to H$, ou de se donner
 - a) un morphisme $f': Y \to i_n^*(Z)$;

b) un morphisme $f'': \mathbb{N} \to \mathbb{Z}_{n+1}$ tel que le diagramme

$$\begin{array}{ccc}
N & \longrightarrow (\cos q_n Y)_{n+1} \\
f'' & \downarrow f' \\
Z_{n+1} & \longrightarrow (\cos q_n Z)_{n+1}
\end{array}$$

soit commutatif.

Construisons X.

On pose : $Y'_n = (\operatorname{cosk}_n Y)_{n+1}$ et on note $d'^{n+1}_i : Y'_{n+1} \to Y_n$ (resp. $s'^n_i : Y_n \to Y'_{n+1}$) les opérateurs de face (resp. de dégénérescence) obtenu par fonctorialité. + On pose $Y_{n+1} = N \coprod (\coprod_{\operatorname{Hom}_{\Delta^-_{\ell \leqslant n}}([n+1],[\ell])} NY_\ell)$ et soit $\alpha : Y_{n+1} \to Y'_{n+1}$ la flèche

dont les composantes sont β et les flèches $MY_{\ell} \to Y_{\ell} \to Y'_{n+1}$ pour tout épimorphisme $[n+1] \to [\ell]$ avec $\ell \leqslant n$.

+ Soit $s_i^n: \mathcal{Y}_n \simeq \coprod_{\mathbf{Hom}_{\Delta_{\ell' < n}^-}([n], [\ell'])} \mathcal{NY}_{\ell'} \to \mathcal{X}_{n+1}$ la flèche induite par σ_n^i , de sorte 150

(I)
$$\alpha \circ s_i^n = s_i^n$$
.

On pose (II)
$$d_i^{n+1} = d_i^{n+1} \circ \alpha$$
.

+ Pour montrer que l'on définit ainsi un objet de $\mathcal{H}om(\Delta_{n+1}^0, H)$, il suffit, d'après [3]. II (2.4)] de vérifier les formules.

a)
$$d_i^n \cdot d_j^{n+1} = d_{j-1}^n \cdot d_i^{n+1}$$
 $i < j$

b)
$$s_i^n \cdot s_j^{n-1} = s_{j+1}^n \cdot s_i^{n-1}$$
 $i \le j$

a)
$$d_i^n \cdot d_j^{n+1} = d_{j-1}^n \cdot d_i^{n+1}$$
 $i < j$
b) $s_i^n \cdot s_j^{n-1} = s_{j+1}^n \cdot s_i^{n-1}$ $i \le j$
c) $d_i^{n+1} \cdot s_j^n = \begin{cases} s_{j-1}^{n-1} \cdot d_i^n & i < j \\ \text{id} & i = j \text{ ou } i = j+1 \\ s_j^{n-1} \cdot d_{i-1}^n & i > j+1. \end{cases}$

Les formules a) et c) sont évidentes en vertu de (I) et (II), car on sait que a) et c) sont vérifiées si l'on remplace d_i^{n+1} par d_i^{n+1} et s_i^n par s_i^n .

La formule b) est vérifiée par construction.

On laisse au lecteur le soin de vérifier que l'objet X obtenu vérifie 5.1.3.

+ On prendra garde que le foncteur construit dans la démonstration de 5.1.3, de la catégorie des triples vérifiant (5.1.2) (*) dans les objets simpliciaux n + 1-tronqués, est fidèle mais non pleinement fidèle.

La proposition 5.1.3 fournit un procédé très commode pour construire par induction des objets simpliciaux de H. Dans la fin de ce numéro, nous formalisons cette remarque sous la forme qui sera utilisé en 5.2 et 5.3.

5.1.4. Soient $E \xrightarrow{\pi} B$ un foncteur tel que pour tout objet b de B, la catégorie fibre E_b soit non vide et vérifie les conditions de (5.1.0).

Soit Q une propriété d'un objet de E, stable par isomorphisme : on suppose que les conditions suivantes sont réalisées :

- a) Pour tout objet b de B il existe un objet x de E_b vérifiant Q.
- b) Pour tout objet b de B et tout couple (x,y) d'objets de E_b vérifiant Q, il existe un objet z de E_b vérifiant Q et des morphismes $z \to x$, $z \to Y$ dans E_b .
- c) Pour tout morphisme $b' \xrightarrow{t} b$ de B et tout objet x de E_b vérifiant Q, il existe un objet x' de E_b , vérifiant Q et un morphisme $x' \to x$ au-dessus de t.

Soit d'autre part P une propriété d'une flèche de E au-dessus d'une identité stable par isomorphisme : on suppose que les conditions suivantes sont réalisées :

- d) Pour tout objet b de B et tout objet x de E_b il existe une flèche $y \to x$ dans E_b vérifiant P.
 - e) Pour tout objet G de B, tout diagramme dans E_b de la forme

où f et g vérifient P, peut se compléter en un diagramme commutatif dans E_b

où h vérifie P.

f) Pour tout morphisme $b' \xrightarrow{t} b$ de B et tout morphisme $x \xrightarrow{f} y$ de E_b vérifiant P, il existe un morphisme $x' \xrightarrow{f'} y'$ de $E_{b'}$ vérifiant P et un diagramme commutatif

où α et β sont des morphismes au-dessus de t.

Définition 5.1.5. — Avec les notations de (5.1.4), nous dirons qu'un objet X de $\mathscr{H}om(\Delta^0, E)$ vérifie la condition (APQ) si les conditions suivantes sont remplies :

- (i) L'image de $\pi \circ X$ est l'objet simplicial constant défini par un objet G de B.
- (ii) En tant qu'objet de $\mathscr{H}om(\Delta^0, \mathcal{E}_b)$, X est σ -scindé.
- (iii) X_0 vérifie la condition Q.
- (iv) Pour tout entier n, la flèche $NX_{n+1} \to (\cos q_n X)_{n+1}$ vérifie la condition P.
- 5.1.6. On désigne par $E_{(APQ)}$ la sous-catégorie de $\mathscr{H}om(\Delta^0,E)$ dont les objets sont les objets simpliciaux vérifiant (APQ) et dont les morphismes sont les morphismes $X \xrightarrow{\alpha} Y$ de $\mathscr{H}om(\Delta^0,E)$ tels que $\pi(\alpha_n):\pi(X_n)\to\pi(Y_n)$ soit le même morphisme de B pour tout n. Il existe alors un foncteur canonique $\pi:E_{(APQ)}\to B$.
- **Proposition 5.1.7.** Le foncteur $\overline{\pi}$ est surjectif. De plus, pour tout objet b de B et tout couple (X,Y) d'objets de $E_{(APQ),b}$, il existe un diagramme

dans $E_{(APQ),b}$.

La démonstration est triviale à partir de (5.1.3), en vertu des hypothèses faites en (5.1.4).

Proposition 5.1.8. — Soient C une catégorie et F un foncteur $E_{(APQ)} \to C$; on introduit les conditions suivantes pour F:

(i) Pour tout objet b de B, la restriction de F à $E_{(APQ),b}$ se factorise à travers la catégorie grossière (*) définie par les objets de $E_{(APQ),b}$.

 $^{^{(*)}}$ Une catégorie est dite *grossière* si pour tout couple (x,y) d'objets, $\operatorname{Hom}(x,y)$ est réduit à un élément et un seul.

(ii) Pour tout morphisme $t: b' \to b$ de B et tout couple $(X' \to X, Y' \to Y)$ de morphismes au-dessus de t, le diagramme suivant est commutatif:

où α et α' sont les flèches déterminées par la condition (i).

Alors, le foncteur $G \to G \circ \overline{\pi}$ induit une équivalence entre la catégorie $\mathscr{H}om(B,C)$ et la sous-catégorie pleine de $\mathscr{H}om(E_{(APQ)},C)$ définie par les foncteurs vérifiant les conditions (i) et (ii).

Les détails de la démonstration sont laissés au lecteur. Indiquons simplement la manière dont on procède pour montrer que le foncteur précédent est essentiellement surjectif.

Soit $F: E_{(APQ)} \to C$ un foncteur vérifiant les conditions (i) et (ii) : pour tout objet b de B, on choisit un objet X de $E_{(APQ),b}$ et on pose $\overline{F}(b) = F(X)$; on vérifie alors que $\overline{F}(b)$ varie fonctoriellement avec b.

- 5.2. Cohomologie singulière d'un schéma de type fini sur un corps de caractéristique nulle. Dans ce numéro, k désignera un corps de caractéristique nulle.
- 5.2.0. Nous désignerons par Sch_f/k (resp. Ann) la catégorie des schémas localement de type fini sur k (resp. des espaces analytiques complexes). Tous les objets simpliciaux de Sch_f/k (resp. Ann) seront considérés comme objets simpliciaux de Top grâce au foncteur canonique $\operatorname{Sch}_f/k \to \operatorname{Top}$ (resp. Ann $\to \operatorname{Top}$). Nous conservons les données de (4.1.0) relatives à la descente cohomologique.

Suivant les notations usuelles, nous noterons $S \to S^{an}$ le foncteur canonique $\operatorname{Sch}_f/\mathbb{C} \to \operatorname{Ann}$ défini dans G.A.G.A.

5.2.1. Soit X un objet simplicial de Sch /k (resp. Ann) : les compatibilités usuelles pour la construction du complexe de De Rham d'un morphisme de schéma (resp. d'espaces analytiques) permettent de construire un complexe $\Omega^{\operatorname{Zar}}_{X/k}$ (resp. $\Omega^{\scriptscriptstyle{\bullet}}_{X/\mathbf{C}}$) de $\mathrm{D}^+((\overline{X},\mathbf{Z}))$ tel que pour tout entier $i,\ \mathrm{R}^+e_i^*(\Omega^{\operatorname{Zar}}_{X/k})$ (resp. $\mathrm{R}^+e_i^*(\Omega^{\scriptscriptstyle{\bullet}}_{X/\mathbf{C}})$) soit le complexe De Rham $\Omega^{\operatorname{Zar}}_{X/k}$ (resp. $\Omega^{\scriptscriptstyle{\bullet}}_{X/\mathbf{C}}$).

Soit X $\stackrel{u}{\to}$ C_S^{Δ} un objet simplicial de Sch_f /k (resp. Ann) muni d'une augmentation. On définit $H_{DR}^{Zar} \cdot (u)$ (resp. $H_{DR}^{\bullet}(u)$) et $H^{\bullet}(u, \mathbf{C})$) comme étant les groupes d'hypercohomologie du complexe $R^+ \overline{u}_+(\Omega_{X/k}^{Zar})$ (resp. $R^+ \overline{u}_*(\Omega_{X/\mathbf{C}}^{\bullet})$ et $R^+ \overline{u}(\mathbf{C})$).

5.2.2. Si X \xrightarrow{u} C_S^{Δ} est un objet semi simplicial de $\operatorname{Sch}_f/\mathbf{C}$, on dispose de trois morphismes canoniques :

155

156

$$H_{\mathrm{DR}}^{\mathrm{Zar}}\cdot(u) \xrightarrow{\alpha} H_{\mathrm{DR}}^{\bullet}(u^{\mathrm{an}})$$

$$H^{\bullet}(u^{\mathrm{an}}, \mathbf{C}) \xrightarrow{\beta} H_{\mathrm{DR}}^{\bullet}(u^{\mathrm{an}})$$

$$H^{\bullet}(\mathbf{S}^{\mathrm{an}}, \mathbf{C}) \xrightarrow{\gamma} H^{\bullet}(u^{\mathrm{an}}, \mathbf{C}).$$

Proposition 5.2.3. — Supposons, avec les notations de (5.2.2) que X_n soit lisse pour tout n: alors α et β sont des isomorphismes. Si de plus $X^{an} \xrightarrow{u^{an}} C_{S^{an}}^{\Delta}$ est un hyperrecouvrement de S^{an} pour la topologie de la 1-descente cohomologique universelle, γ est un isomorphisme.

Le fait que α soit un isomorphisme résulte de [[6], Th, 1']. Il résulte du lemme de Poincaré que β est un isomorphisme. La dernière partie de la proposition résulte de (3.3.3).

5.2.4. Nous allons maintenant appliquer (5.1.4) au cas où $B = \operatorname{Sch}_f/k$ et où E est la catégorie au-dessus de B telle que pour tout schéma B, la catégorie fibre B soit la catégorie des schémas de B de B

- (i) être somme d'une famille de morphismes étales et surjectifs
- (ii) être somme d'une famille de morphismes propres et surjectifs.

Nous dirons qu'un schéma X de E_S vérifie la propriété Q si le morphisme structural $X \to S$ vérifie la propriété P.

On laisse au lecteur le soin de vérifier, via la résolution des singularités, que toutes les conditions de (5.1.4) sont vérifiées.

La donnée des groupes $\mathcal{H}_{\mathrm{DR}}^{\mathrm{Zar}}\cdot(u)$ définit un foncteur contravariant de la catégorie $\mathcal{E}_{\mathrm{(APQ)}}$ dans la catégorie des groupes abéliens gradués, noté $\mathcal{H}_{\mathrm{DR}}^{\mathrm{Zar}}\cdot$.

Proposition 5.2.5. — Le foncteur H_{DR}^{Zar} vérifie les conditions de (5.1.8).

Par le principe de Lefschetz, on est ramené au cas ou $k = \mathbf{C}$. Dans ce cas, pour tout morphisme $S' \xrightarrow{t} S$ et tout couple $(u' \to u, v' \to v)$ de morphismes au-dessus de

t, on dispose d'un diagramme commutatif :

ce qui achève la démonstration.

Définition 5.2.6. — Le foncteur contravariant défini par (5.1.8) à partir de H_{DR}^{Zar} sera noté $H^{\bullet}(*,k)$. Pour tout schéma S localement de type fini sur k, le groupe abélien gradué $H^{\bullet}(S,k)$ s'appellera la cohomologie singulière de S.

5.2.7. Nous allons terminer ce numéro par une illustration des principes généraux qui y ont été introduits. Rappelons tout d'abord que si S est un espace analytique complexe, la cohomologie de De Rham de S, notée $\mathbf{H}_{DR}^{\bullet}(S)$ est par définition l'hypercohomologie du complexe de De Rham $\Omega_{S/C}^{\bullet}$.

Proposition 5.2.8. — (Blum-Herrera). Soit S un schéma localement de type fini sur 157 C, la flèche canonique

$$H^{\bullet}(S^{an}, \mathbf{C}) \longrightarrow \mathbf{H}^{\bullet}_{DR}(S^{an})$$

possède une rétraction (dans la catégorie des groupes abéliens gradués) fonctorielle en S.

En vertu de (5.1.8) il suffit de considérer le morphisme $H^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}(+, \mathbf{C}) \circ \overline{\pi} \to \mathbf{H}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}_{\mathrm{DR}} \circ \overline{\pi}$ obtenu à partir du précédent par composition avec $\overline{\pi}$.

En utilisant, pour toute augmentation $X \xrightarrow{u} C_S^{\Delta}$, le morphisme canonique $\mathbf{L}\overline{u}^+(\Omega_{S/C}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}) \to \Omega_{X/C}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}$, on définit un morphisme fonctoriel $\mathbf{H}_{DR}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} \circ \overline{\pi} \to \mathbf{H}_{DR}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}$, de sorte que le diagramme suivant soit commutatif :

ce qui fournit la rétraction cherchée.

Remarque 5.2.9. — L'énoncé (5.2.8) reste valable pour tout espace analytique, dès que l'on dispose de la résolution des singularités dans le cadre analytique.

5.3. Théories de Hodge mixtes. — Nous donnons ici un résultat de nature technique qui joue un rôle clef dans [2].

k est un corps de caractéristique nulle.

5.3.1. Soit $\operatorname{Sch}_{fs}/k$ la catégorie des schémas séparés et de type fini sur k; on désigne par \to $\operatorname{Sch}_{fs}/k$ la catégorie au-dessus de $\operatorname{Sch}_{fs}/k$ définie de la façon suivante :

+ Si S est un objet de Sch_{fs} /k, un objet de E_S est un triple (\overline{X}, X, i) où \overline{X} est un schéma réduit projectif au-dessus de k, X un schéma propre au-dessus de S et $i: X \to \overline{X}$ une immersion ouverte au-dessus de k telle que i(X) soit dense dans \overline{X} .

+ Si $t: S' \to S$ est un morphisme de schémas, (\overline{X}, X, i) un objet au-dessus de S et (\overline{X}', X', i') un objet au-dessus de S', un morphisme de (\overline{X}, X, i) dans (\overline{X}', X', i') au-dessus de t est un couple (\overline{h}, h) où $h: \overline{X}' \to \overline{X}$ est un morphisme au-dessus de k, et $h: X' \to X$ un morphisme au-dessus de S, tel que le diagramme suivant soit commutatif.

N.B. : on remarque qu'il résulte des hypothèses de propreté que $\overline{h}^{-1}(i(\mathbf{X}))=i(\mathbf{X}').$

Lemme 5.3.2. — Pour tout objet S de Sch_{fs}/k , la catégorie E_S est non vide, possède des limites projectives non vides et des sommes directes finies qui sont disjointes et universelles.

Le fait que la catégorie $\mathcal{E}_{\mathcal{S}}$ soit non vide résulte du lemme de Chow.

Nous n'indiquerons que la construction du produit direct de deux objets (\overline{X}, X, i) et (\overline{X}', X', i') de E_S .

La flèche canonique $j: X_S X' \longrightarrow \overline{X}_k \overline{X}'$ est une immersion et on désigne par T le sous-schéma réduit de $\overline{X}_k \overline{X}'$ ayant pour espace sous-jacent l'adhérence de l'image de $j: (T, X_S X'_{\rm red}, j_{\rm red})$ vérifie la propriété universelle voulue.

5.3.3. Soit S un objet de $\operatorname{Sch}_{fs}/k$: nous dirons qu'un objet (\overline{X}, X, i) de E_S vérifie la propriété Q si \overline{X} est lisse sur k et si i(X) est le complémentaire d'un diviseur à

croisement normaux. Nous dirons qu'un morphisme $(\overline{h}, h) : (\overline{X}', X', i') \to (\overline{X}, X, i)$ vérifie la propriété P si \overline{h} est surjectif et si (\overline{X}', X', i') vérifie la propriété Q.

Proposition 5.3.4. — Avec les notations de (5.3.3), toutes les conditions de (5.1.4) sont vérifiées.

Les conditions a) b) d) et c) se vérifient facilement en utilisant la résolution des singularités. De plus c) est conséquence de f) : il reste donc à vérifier f).

Il s'agit de voir que tout diagramme commutatif :

où (\overline{X}, X, i_X) et (\overline{Z}, Z, i_Z) sont des objets de E_S avec \overline{h} surjectif, peut se compléter en un diagramme commutatif :

où $(\overline{\mathbf{X}}',\mathbf{X}',i_{\mathbf{X}'})$ et $(\overline{\mathbf{Z}}',\mathbf{Z}',i_{\mathbf{Z}'})$ sont des objets de $\mathbf{E}_{\mathbf{S}'}$ avec $\overline{h'}$ surjectif. On considère un diagramme

où φ est propre et ψ projectif : par changements de base on en déduit un diagramme :

où p et q sont des immersions ; il suffit alors de remplacer \overline{Z}_k \overline{T}_{red} et \overline{X}_k \overline{T}_{red} pour les images fermées de p et q pour avoir le diagramme voulu, ce qui achève la démonstration de (5.3.4).

Références

- T. Blum M. Herrera: De Rham Cohomology of an analytic Space. Inv. Math. vol 7. Fas 4-1969. p.275-296.
- [2] P. Deligne : Théorie de Hodge III (I.H.E.S).
- [3] P. Gabriel M. Zisman : Homotopy theory and calculus of fractions Ergebnisse der Mathematik Band 35 Springer 1967.
- [4] J. Giraud : Méthode de la descente : Mémoires de la S.M.F. 2. 1964.
- [5] R. Godement : Théorie des faisceaux. Publications de l'Institut de Mathématique de l'Université de Strasbourg. Hermann 1964.
- [6] A. Grothendieck : On the De Rham Cohomology of Algebraic Varieties, Publications de 1' I.H.E.S n° 29.
- [7] R. Hartshorne : Residues and Duality. Springer Lecture Notes n° 20.
- [8] G. Segal : Classifying spaces and Spectral sequences Publications de 1'I.H.E.S. $\rm n^{\circ}$ 34.
- [9] J.L.Verdier : Catégories dérivées Etat 0 (I.H.E.S)

CONDITIONS DE FINITUDE. TOPOS ET SITES FIBRES. APPLICATIONS AUX TECHNIQUES DE PASSAGE A LA LIMITE

par A. Grothendieck et J.-L. Verdier

Table des matières

Exposé vi	CONDITIONS DE FINITUDE. TOPOS ET SITES FIBRES. APPLICATIONS
	AUX TECHNIQUES DE PASSAGE A LA LIMITE par A. Grothendieck
	et JL. Verdier
	0. Introduction
	1. Conditions de finitude pour les objets et flèches d'un topos 121
	2. Conditions de finitude pour un topos
	3. Conditions de finitude pour un morphisme de topos
	4. Conditions de finitude dans un topos obtenu par recollement 155
	5. Commutation des foncteurs $\mathbf{H}^{i}(\mathbf{X}, -)$ aux limites inductives filtrantes
	167
	6. Limites inductive et projective d'une catégorie fibrée 169
	7. Topos et sites fibrés
	8. Limites projectives de topos fibrés
	9. Appendice. Critère d'existence de points
	Références

${\bf 0.}\ \, {\bf Introduction}$

Dans le présent exposé, nous étudions deux genres de questions intimement liées. Tout d'abord, nous faisons une étude systématique des conditions de finitude pour les topos, en étudiant successivement la notion de quasi-compacité, de quasi-séparation et de cohérence (= quasi-compacité + quasi-séparation), inspirée des notions analogues bien connues en théorie des schémas, dans le cas d'un objet X d'un topos et celui d'une flèche $u: X \to Y$ d'un topos (§ 1), puis pour le topos E lui-même (§ 2), enfin pour un morphisme de topos $f: E \to E'$ (§ 3). Le § 4 étudie ces notions dans le cas particulier d'un topos obtenu par le procédé de recollement de deux topos (IV

9). Pour les paragraphes suivants, ce qu'il suffit essentiellement de retenir de ces développements un peu techniques, c'est la définition d'un topos cohérent comme un topos équivalent à un topos de la forme C^{\sim} , où C est un petit site dans lequel les limites projectives finies sont représentables et où toute famille couvrante admet une sous-famille couvrante finie; et celle d'un morphisme cohérent $f: E \to E'$ de topos cohérents comme étant un morphisme qui peut se décrire (à équivalence près) comme un morphisme associé à un morphisme de sites $f: C \to C'$, où C et C' sont comme ci-dessus, et où le foncteur correspondant $f^*: C' \to C$ est exact à gauche.

Il est sans doute utile de noter qu'avec les notions de finitude utilisés ici, et notamment celle de topos cohérent, nous nous éloignons résolument (et pour la première fois) des espaces topologiques familiers aux analystes et aux « topologues » (*). Ainsi le topos associé (IV 2.1) à un espace topologique séparé X n'est cohérent que si X est un ensemble fini! C'est dire que le présent exposé est entièrement orienté vers les types de topos provenant de la géométrie algébrique et l'algèbre. En fait, tous les topos utilisés jusqu'à présent dans ces disciplines (sauf bien sûr pour la géométrie algébrique par voie transcendante sur le corps des complexes!) se trouvent être localement cohérents.

En deuxième lieu; nous développons deux théorèmes de passage à la limite inductive pour la cohomologie des topos. L'un (5.2) nous dit que les foncteurs $H^{i}(E, -)$ sur un topos cohérent commutent aux limites inductives de faisceaux abéliens. L'autre (8.7) dit essentiellement que si un topos X est représenté comme une limite projective filtrante de topos cohérents X_i , avec des morphismes de transition $f_{ij}: X_j \to X_i$ cohérents, alors la cohomologie de X (à coefficients dans un faisceau abélien quelconque) se calcule comme limite inductive des cohomologies des X_i . Pour donner un sens précis à cet énoncé, il convient surtout de préciser la notion de « limite projective de topos », ce qui est fait dans les § § 7.8. C'est là une notion géométrique fort utile, y compris sans doute dans d'autres contextes que celui des limites projectives de schémas (qui avait servi de modèle à M.ARTIN dans sa définition initiale de cette notion). Nous montrons par exemple (8.4) comment on peut unifier les diverses notions de « localisé en un point » (d'un espace noethérien, d'un schéma pour sa topologie habituelle, voire pour sa topologie étale), en le définissant comme la limite projectives des « voisinages » de ce point, -en parfait accord avec l'idée intuitive de la notion de localisation en un point.

Les deux théorèmes de passage à la limite seront réexplicités dans l'exposé suivant dans le cadre particulier de la cohomologie étale des schémas (VII 3.3 et 5.7); dans ce cas, ils seront d'ailleurs constamment utilisés dans toute la suite de ce Séminaire, et pratiquement partout où on a travaillé jusqu'à présent avec la cohomologie étale. Le lecteur disposé à admettre ces deux théorèmes, dans le cas particulier où ils sont

^(*)Les guillemets indiquent qu'il s'agit d'un « . . . » qui ignore la notion de topos (cf. IV 0.4 pour le sens du mot « topologie »).

énoncés dans l'exposé VII, et intéressé exclusivement par les applications de la cohomologie étale, peut donc omettre la lecture du présent exposé. Il est vrai que la notion d'objet constructible d'un topos (i.e. dont le morphisme structural $X \to e$ dans l'objet final e est cohérent) jouera également un rôle important dans toute la suite du séminaire (alors qu'elle ne joue qu'un rôle très secondaire dans le présent exposé, ne serait-ce que parce que dans le cas d'un topos cohérent, elle coïncide avec la notion d'objet cohérent, qui a ici la vedette). Mais cette notion est développée dans l'exposé IX, dans le cas particulier des faisceaux étales sur les schémas, d'une façon indépendante de l'étude générale faite dans le présent exposé, et elle présente d'ailleurs dans ce des phénomènes spéciaux fort utiles, qui ont servi de base à l'exposé qui en est fait dans IX (à commencer par la définition IX 2.3). La rédaction de IX étant antérieure de cinq années à la présente rédaction de l'exposé VI, et néanmoins fort utilisable pour l'usager, nous nous sommes bornés à la fin de l'exposé IX de prouver l'équivalence de la notion de constructibilité utilisée dans IX avec celle introduite ici.

167

1. Conditions de finitude pour les objets et flèches d'un topos

Définition 1.1. — Soit C un site. Un objet X de C est dit quasi-compact si pour toute famille couvrante $(X_i \to X)_{i \in I}$, il existe une partie finie J de l'ensemble d'indices I telle que la sous-famille $(X_i \to X)_{i \in J}$ soit encore couvrante.

Comme un \mathcal{U} -topos E est toujours considéré comme un site (IV 1.1.1), la définition précédente s'applique en particulier à un objet de E. On se ramène d'ailleurs à ce cas, grâce à la

Proposition 1.2. — Soient C un \mathscr{U} -site, $\varepsilon : C \to C^{\sim}$ le foncteur canonique, X un objet de C. Alors X est un objet quasi-compact du site C si et seulement si $\varepsilon(X)$ est un objet quasi-compact du topos C^{\sim} .

Supposons que X soit quasi-compact, prouvons que $\varepsilon(X)$ l'est. Soit $(F_i \to \varepsilon(X))_{i \in I}$ une famille épimorphique. Prenons pour tout $i \in I$ une famille épimorphique $\varepsilon(X_{ij}) \to F_i$, $j \in J_i$. Le composé $\varepsilon(X_{ij}) \to \varepsilon(X)$ s'identifie à un élément α_{ij} de $\varepsilon(X)(X_{ij})$; on ne peut affirmer en général qu'il provient d'un morphisme $X_{ij} \to X$, mais par construction du faisceau associé $\varepsilon(X)$, on sait que l'on peut trouver (pour i, j fixés) une famille couvrante $Y_k \to X_{ij}$ telle que les éléments images de α_{ij} dans les $\varepsilon(X)(Y_k)$ proviennent d'éléments de $X(Y_k)$, i.e. de morphismes $Y_k \to X$. Donc quitte à raffiner la famille épimorphique $\varepsilon(X_{ij}) \to F_i$, on peut supposer que les composés $\varepsilon(X_{ij}) \to \varepsilon(X)$ proviennent de morphismes $X_{ij} \to X$. Pour i, j variables, la famille des $\varepsilon(X_{ij}) \to \varepsilon(X)$ est épimorphique, donc (II 4.4) la famille des $X_{ij} \to X$ est couvrante. Par hypothèse sur X, elle admet une sous-famille couvrante finie, et il résulte de nouveau une

famille épimorphismes correspondants $\varepsilon(X_{ij}) \to \varepsilon(X)$ forment une famille épimorphique. Comme ceux-ci se factorisent par un nombre fini des morphismes $F_i \to \varepsilon(X)$, cette famille finie est déjà épimorphique. Cela prouve que $\varepsilon(X)$ est quasi-compact.

Le fait que $\varepsilon(X)$ quasi-compact implique X quasi-compact est d'autre part trivial, grâce à loc. cit.

Le résultat précédent montre donc que la notion de quasi-compacité dans les sites de ramène à la notion en question dans les topos.

Proposition 1.3. — Soient C un site, $(X_i \to X)_{i \in I}$ une famille couvrante finie, avec les X_i quasi-compacts. Alors X est quasi-compact.

Pour le voir, on peut supposer grâce à 1.2 que C est un topos. Soit $(X'_j \to X)$ une famille couvrante i.e. épimorphique dans C, alors pour tout $i \in I$ la famille déduite par le changement de base $X_i \to X$ est épimorphique, donc (puisque X_i est quasicompact) admet une sous-famille épimorphique finie, correspondant à une partie finie $J_i \subset J$ de l'ensemble d'indices J. Posant $J' = \bigcup_{i \in I} J_i$, J' est une partie finie de J puisque I est fini, et la famille $(X'_j \to X)_{j \in J'}$ est déjà épimorphique puisqu'elle l'est localement, C.Q.F.D.

169 Corollaire 1.4. — Soit $(X_i)_{i\in I}$ une famille d'objets d'un topos E, et soit X la somme. Pour que X soit quasi-compact, il faut et il suffit que tous les X_i soient quasi-compacts, et que tous les X_i sauf un nombre fini soient isomorphes à « l'objet vide » \varnothing_E de E.

La suffisance résulte en effet aussitôt de 1.3 (car la somme ne change pas quand on laisse tomber les commandes vides). Pour la nécessité on note qu'une sous-famille finie $(X_i)_{i\in J}$ doit couvrir X, ce qui implique que pour $i\in I-J$ on a $X_i=X_i$ $\coprod_{j=J}X_j=\coprod_{j=J}X_i$ $\coprod_{j=J}X_j=\varnothing$ (II 4.5.1); d'autre part, pour montrer que tout X_i est quasi-compact, on note que $X\simeq X_i$ \coprod X'_i , et que toute famille couvrante $Y_j\to X_i$ de X_i définit une famille couvrante Y_j \coprod $X'_i\to X_j$ \coprod $X'_i=X$ de X, qui admet une sous-famille finie couvrante, ce qui implique évidemment que la famille finie correspondante des $Y_j\to X_i$ est aussi couvrante, ce qui montre que X_i est quasi-compact.

Remarque 1.5.1. — Le fait pour un objet X d'un topos E d'être quasi-compact ne dépend que du topos induit $E_{/X'}$ et signifie que l'objet final de ce dernier est quasi-compact. De même, un objet X d'un site C est quasi-compact si et seulement si l'objet final du site induit $C_{/X}(III 5.1)$ est quasi-compact.

1.5.2. Soit X un objet d'un topos E. Pour que X soit quasi-compact, il faut et il suffit que toute famille filtrante croissante $(X_i)_{i\in I}$ de sous-objet de X couvrant X contienne un X_i égal à X. Cette condition ne dépend donc que de l'ensemble ordonné des sous-objets de l'objet X (i.e. des ouverts du topos induit $E_{/X}$).

- 1.5.3. Considérons une famille génératrice $(X_i)_{i\in I}$ de E. Il résulte alors des définitions et de 1.3 que : pour qu'un objet X de E soit quasi-compact, il faut qu'il admette une famille couvrante par un nombre fini des X_i , i.e. que X soit isomorphe à un objet quotient d'une somme finie d'objets de E, et cette condition est suffisante si les X_i sont quasi-compacts. Notons d'autre part qu'avec l'hypothèse faite sur E, on peut évidemment, quitte à remplacer la famille génératrice envisagée par une sous-famille, supposer que $I \in \mathcal{U}$. Utilisant le fait que l'ensemble des quotients d'un objet de E est petit (I 7.5), on trouve alors que la sous-catégorie pleine E_{qc} de E formée des objets quasi-compacts de E est équivalente à une catégorie $\in \mathcal{U}$, i.e. que le cardinale de l'ensemble des classes d'isomorphie d'objets de E_{qc} est $\in \mathcal{U}$.
- **Exemple 1.6.1.** Soit X un espace topologique. Un ouvert U de X est un objet quasi-compact du site Ouv(X) des ouverts de X si et seulement si U est un espace quasi-compact pour la topologie induite par X. Plus généralement, un faisceau F sur X est un objet quasi-compact du topos Top(X) si et seulement si l'espace étalé X' sur X associé à F est quasi-compact. (Cela résulte de l'assertion précédente, de 1.5 et du fait que $Top(X)_{/F}$ est équivalent à Top(X') (IV 5.7)).
- 1.6.2. Considérons sur la catégorie (Sch) des schémas (éléments de \mathcal{U}) une des topologies T_i de [6] 6.3 (par exemple la topologie de Zariski, ou la topologie étale, ou la topologie fppf, ou la topologie fpqc). Pour qu'un schéma soit quasi-compact au sens de cette topologie, il faut et il suffit que ce soit un schéma quasi-compact au sens habituel. (Avec les notations de loc. cit., on utilise seulement le fait que toute famille $\in P'$ est finie.)
- **Définition 1.7.** Soient E un topos, $f: X \to Y$ une flèche de E. On dit que f est un morphisme quasi-compact si pour toute flèche $Y' \to Y$, avec Y' quasi-compact, l'objet X' = X Y' est également quasi-compact. On dit que f est quasi-séparé si le morphisme diagonal $X \to X$ X est quasi-compact. On dit que f est cohérent si f est quasi-compact et quasi-séparé.
- 1.7.1. Explicitant la définition d'un morphisme $f: X \to Y$ quasi-séparé on voit qu'elle signifie aussi que pour toute double flèche $g_1, g_2: X' \rightrightarrows X$ « au-dessus de Y » i.e. telle que $fg_1 = fg_2$, X' quasi-compact implique $Ker(g_1, g_2)$ quasi-compact.

Proposition 1.8. — Soit E un topos.

- (i) Tout isomorphisme dans E est un morphisme cohérent, i.e. est quasi-compact et quasi-séparé. Le composé de deux morphismes quasi-compacts (resp. quasi-séparés, resp. cohérents) est quasi-compact (resp. quasi-séparé, resp. cohérent).
- (ii) Soient $f: X \to Y$ et $g: Y' \to Y$ des morphismes dans E, et $f': X' = \mathbf{172}$ $X \to \mathbf{172}$ $Y' \to \mathbf{172}$ déduit de f par le changement de base g. Si f est quasi-compact (resp. quasi-séparé, resp. cohérent), il en est de même de f'.

(iii) Soient $f: X \to Y$ et $g: Y \to Z$ et $Y \to Z$ des morphismes dans E. Si gf est quasi-séparé, f est quasi-séparé.

(iv) Soient $f: X \to Y$ et $g: Y \to Z$ des morphismes dans E, avec g quasi-séparé. Si gf est quasi-compact (resp. cohérent), alors f est quasi-compact (resp. cohérent).

Les démonstrations sont bien connues (Cf. EGA IV 1 ou EGA I 2ème édition). Les énoncés (i) et (ii) dans le cas « quasi-compact » résultent trivialement des définitions ; dans le cas « quasi-séparé », la stabilité par changement de base (ii) résulte aussitôt de la définition et du cas précédent, de même que le fait que tout isomorphisme soit quasi-séparé. La stabilité par composition $X \to Y \to Z$ se voit à l'aide du diagramme

à carré cartésien. Par hypothèse $\Delta_{Y/Z}$ est quasi-compact, donc aussi u qui s'en déduit par changement de base, et $\Delta_{Y/Z}$ est quasi-compact, donc aussi le composé $u\Delta_{X/Y} = \Delta_{X/Z}$. Cela établit (i) et (ii), le cas « cohérent » résultant de la conjonction des deux cas précédents. Pour prouver le premier cas envisagé dans (iv), on considère le diagramme suivant à carrés cartésiens

Par l'hypothèse g est quasi-séparé, $\Delta_{Y/Z}$ est quasi-compact, donc Γ_F est quasi-compact par changement de base; de même par hypothèse gf est quasi-compact, donc pr_2 l'est aussi par changement de base; par suite $f = \operatorname{pr}_2 \Gamma_f$ est quasi-compact comme composé de deux morphismes quasi-compacts. Le cas respé de (iv) résulte

aussitôt du cas précédent et de (iii), qu'il reste à prouver maintenant. Pour ceci on reprend le diagramme (*), en notant que l'hypothèse gf quasi-séparé signifie que $\Delta_{\mathrm{X/Y}} = u\Delta_{\mathrm{X/Y}}$ est quasi-compact, et que la conclusion f quasi-séparé signifie que $\Delta_{\mathrm{X/Y}}$ est quasi-compact, et que la conclusion f quasi-séparé signifie que $\Delta_{\mathrm{X/Y}}$ est quasi-compact, ce qui résulte de (iv) une fois qu'on a prouvé que u est quasi-séparé. Or u est manifestement un monomorphisme, et on a en effet le résultat trivial :

174

Corollaire 1.8.1. — Tout monomorphisme est quasi-séparé.

En effet, si $u: X \to Y$ est un monomorphisme, $\Delta_{X/Y}$ est un isomorphisme donc est quasi-compact, C.Q.F.D.

Corollaire 1.8.2. — Soient $f: X \to Y$, $f': X' \to Y'$ deux S-morphismes dans E. Si f, f' sont quasi-compacts (resp. quasi-séparés, resp. cohérents), il en est de même de $f_S f': X_S X' \longrightarrow Y_S Y'$.

Cela résulte de façon bien connue de la conjonction de (i) et (ii).

Remarque 1.9.1. — Soient E une catégorie quelconque, Q une partie de ob stable par isomorphisme (la donnée de Q revient donc à celle d'une sous-catégorie strictement pleine de E), jouant les rôle d'objets « quasi-compacts ». Supposons que dans E les produits fibrés soient représentables. Alors on peut paraphraser la définition 1.7 pour définir la notion de morphismes Q-quasi-compacts, Q-quasi-séparés, et Q-cohérents. Alors 1.8 et 1.8.1. sont valables, et 1.8.2 également lorsque dans E les produits de deux objets sont représentables.

175

1.9.2. Soient S un objet de E, et $f: X \to Y$ un morphisme de $E_{/S}$. Il résulte aussitôt de la remarque 1.5 que pour que f soit quasi-compact (resp. quai-séparé, resp. cohérent) il faut et il suffit que le morphisme correspondant dans E (déduit de f par le foncteur « oubli de S ») le soit. En particulier, si $f: X \to Y$ est un morphisme dans E, prenant ci-dessus S = Y, on voit que f est quasi-compact (resp. quasi-séparé, resp. cohérent) si et seulement si le morphisme structural de l'objet (X, f) du topos induit $E_{/Y}$, de but l'objet final dudit topos, est quasi-compact (resp. quasi-séparé, resp. cohérent). On dit aussi que (moyennant le morphisme structural f) X est quasi-compact (resp. quasi-séparé, resp. cohérent) au-dessus de Y, locution qu'on peut interpréter indifféremment comme se rapportant au topos E, ou au topos induit $E_{/Y}$ (dont Y est considéré comme un objet final).

1.9.3. Un objet X d'un topos ob E sera dit constructible s'il est cohérent au-dessus de l'objet final. Tout morphisme d'un objet constructible dans un autre est cohérent (1.8 (iv)). La sous-catégorie pleine E_{cons} de E formée des objets constructibles de E est stable par lim finies, comme il résulte aussitôt de 1.8.2 et 1.8 (ii).

1.9.4. Les notions 1.7 n'ont guère d'intérêt que dans les topos E qui admettent une famille génératrice formée d'objets quasi-compacts. Dans ce cas, ces notions sont « de nature locale en bas » (IV 8.5.4), comme on va voir maintenant.

Proposition 1.10. — Supposons que le topos E admette une sous-catégorie génératrice C formée d'objets quasi-compacts, et soit $f: X \to Y$ un morphisme dans E.

- (i) Pour que f soit quasi-compact, il faut et il suffit que pour tout morphisme $S \to Y$, avec $S \in Ob C$, $X_{\overline{V}}S$ soit quasi-compact.
- (ii) Soit $Y_i \to Y$, $i \in I$, une famille couvrante. Pour que f soit quasi-compact (resp. quasi-séparé, resp. cohérent) il faut et il suffit que pour tout $i \in I$, $f_i : X_i = X Y_i \longrightarrow Y_i$ le soit.

Prouvons (i). La nécessité est triviale par définition. Pour la suffisance, il faut prouver que pour tout objet quasi-compact Y' et tout morphisme $Y' \to Y$, $X' = X_{\overline{Y}}Y'$ est quasi-compact. Or il existe une famille couvrante $S_i \to Y'$, les S_i dans Ob C, et comme Y' est quasi-compact, on peut prendre la famille couvrante en question *finie*. Alors par hypothèse les $X'_i = X_{\overline{Y}}S_i \simeq X'_{\overline{Y}'}S_i$ sont quasi-compacts, et comme ils couvrent X' (les S_i couvrant Y'), X' est quasi-compact en vertu de 1.3.

Prouvons (ii). Il suffit de traiter le cas « quasi-compact », car le cas « quasi-séparé » s'en déduit par la définition 1.7, et le cas « cohérent » également, par conjonction des deux cas précédents. Le « il faut » a déjà été vu dans 1.8 (ii), il reste à voir que si les f_i sont quasi-compacts, alors f l'est, i.e. que pour tout Y' quasi-compact et tout morphisme Y' \rightarrow Y, l'objet X' = X Y' est quasi-compact. Or comme (Y_i \rightarrow Y) est couvrante, il existe des S_{\alpha} au-dessus de Y couvrant Y', tels que les morphismes composés S_{\alpha} \rightarrow Y' \rightarrow Y se factorisent chacun par un Y_i. Comme C est génératrice, on peut prendre les S_{\alpha} dans Ob C, et comme Y' est quasi-compact, on peut prendre la famille couvrante finie. Alors les X' Y' S_{\alpha} forment une famille couvrante finie de X', et on est réduit par 1.3 à prouver que chaque X' S_{\alpha} = X S_{\alpha} est quasi compact. Or, choisissant une factorisation de S_{\alpha} \rightarrow Y par un Y_i, l'objet envisagé est aussi isomorphe à X_i S_{\alpha} est quasi-compact puisque X_i est quasi-compact sur Y_i et S_{\alpha} est quasi-compact.

Corollaire 1.11. — Soient $g: Y \to Z$ un morphisme dans le topos E, $(f_i: X_i \to Y)_{i \in I}$ une famille couvrante de morphismes de but Y. Alors:

- (i) Supposons I finie. Si les gf_i sont quasi-compacts, il en est de même de g.
- (ii) Supposons les f_i quasi-compacts. Si les gf_i sont quasi-séparés, il en est de même de g. Si I est fini, et si les gf_i sont cohérents, g est cohérent.

Le cas (i) résulte aussitôt des définitions et de 1.3, (sans hypothèse sur E). Pour prouver (ii), il suffit en vertu de (i) de traiter le cas non respé. Considérons le diagramme 1.8 (*) avec X remplacé par un X_i . Comme la famille des f_i est couvrante, il

en est de même de la famille des f_i zid $_{\rm Z}$ id $_{\rm Y}$ qui s'en déduit par changement de base, donc en vertu de 1.10 (ii), pour prouver que $\Delta_{\rm Y/Z}$ est quasi-compacte, il suffit de prouver que les Γ_{f_i} le sont. Or gf_i étant quasi-séparé par hypothèse, il en est de même de ${\rm pr}_2: {\rm X}_i$ ${\rm Y} \longrightarrow {\rm Y}$ qui s'en déduit par changement de base, d'autre part ${\rm pr}_2 \Gamma_{f_i} = f_i$ est quasi-compact par hypothèse. Il en est donc de même de Γ_{f_i} en vertu de 1.8 (iv) appliqué au morphisme composé de ${\rm pr}_2$ et de Γ_{f_i} , C.Q.F.D.

Corollaire 1.12. — Soient $(X_i)_{i\in I}$ une famille finie d'objets de E, X la somme des X_i , $f_i: X_i \to Y$ des morphismes dans E, et $f: X \to Y$ le morphisme correspondant. Pour que f soit quasi-compact (resp. quasi-séparé, resp. cohérent) il faut et il suffit que les f_i le soient; dans le cas « quasi-séparé », l'hypothèse « I finie » peut-être omise.

La suffisance de la condition est un cas particulier de 1.11, compte tenu que les morphismes canoniques $f_i: X_i \to X$ forment une famille couvrante finie, et que ce sont des morphismes quasi-compacts, comme il résulte aussitôt de la définition et de 1.4. La nécessité résulte de la transitivité 1.8 (i), compte tenu que les f_i sont même cohérents (car ils sont quasi-séparés en vertu de 1.8.1).

Définition 1.13. — Soit X un objet d'un topos E. On dit que X est un objet quasi-séparé du topos E si pour tout objet S quasi-compact de E, tout morphisme de S dans X est quasi-compact, i.e. (1.7) si pour deux objets quasicompacts S, T de E et des morphismes $S \to X$, $T \to X$, le produit fibré S T est toujours quasi-compact. On dit que X est un objet cohérent du topos E si X est quasi-compact et quasi-séparé.

Proposition 1.14. — Soit $f: X \to Y$ un morphisme dans un topos E.

(i) Si Y est quasi-compact, alors f quasi-compact implique X quasi-compact. Si Y est quasi-séparé, alors X quasi-compact implique f quasi-compact. Si Y est cohérent, f quasi-compact équivaut à X quasi-compact.

179

(ii) Si Y est quasi-compact (resp. quasi-séparé, resp. cohérent) et si f est quasi-compact (resp. quasi-séparé, resp. cohérent) alors X est quasi-compact (resp. quasi-séparé, resp. cohérent).

Les premières deux assertions de (i) sont contenues trivialement dans les définitions de morphisme quasi-compact (1.7) resp. d'objet quasi-séparé (1.13), la troisième résulte de la conjonction des deux premières. Le premier cas de (ii) n'est qu'une redite, le troisième résulte encore de la conjonction des deux premiers, reste à traiter le cas quasi-séparé. Soit donc S un objet quasi-compact de E et $g: S \to X$ un morphisme, prouvons que f est quasi-compact. Comme Y est quasi-séparé, fg est quasi-compact, et comme f est quasi-séparé, il en résulte (1.8 (iii)) que g est quasi-compact,

181

Corollaire 1.15. — Tout sous-objet d'un objet quasi-séparé de E est quasi-séparé. Soit $(X_i)_{i\in I}$ une famille d'objets de E, avec $I\in U$; alors $X=\coprod_i X_i$ est quasi-séparé (resp. cohérent) si et seulement si les X_i le sont.

La première assertion résulte de 1.14 (ii) et de 1.8.1, mais est également triviale sur la définition. Pour la deuxième non respée, comme les $X_i \to X$ sont des monomorphismes, il reste à prouver le « il suffit », qui résulte facilement des définitions et de 1.3; le cas respé résulte du cas traité et de 1.4.

Corollaire 1.16. — Sous les conditions de 1.10 (ii), si les Y_i sont cohérents, alors f est quasi-compact si et seulement si les $X_i = X_{\overline{Y}} Y_i$ sont des objets quasi-compacts de E.

En effet, en vertu du critère 1.10 (ii), il faut exprimer que les $f_i: X_i \to Y_i$ sont quasi-compacts, ce qui équivaut à X_i quasi-compacts en vertu de 1.14 (i).

Corollaire 1.17. — Soient E un topos admettant une famille génératrice formée d'objets quasi-compacts, et $(g_i: Y_i \to Y)_{i \in I}$ une famille couvrante (resp. couvrante finie) dans E, avec les Y_i cohérents. Pour que Y soit quasi-séparé (resp. cohérent), il faut et il suffit que pour tout $i \in I$, g_i soit quasi-compact, ou encore que pour tout couple d'indices $i, j \in I$, $Y_i Y_j$ soit un objet quasi-compact de E.

Le cas respé résulte aussitôt du cas non respé et de 1.3. La nécessité de la première condition est triviale par définition, prouvons qu'elle est suffisante. Soit donc $f: X \to Y$ un morphisme, avec X quasi-compact, prouvons que f est quasi-compact. Or comme les g_i sont quasi-compacts, il s'ensuit que les $X_i = X_{\widehat{Y}} Y_i$ sont quasi-compacts, ce qui implique que f l'est en vertu de 1.16. Exprimant enfin la quasi-compacité des g_i à l'aide du même critère 1.16, on trouve le deuxième critère de 1.17. En particulier :

Corollaire 1.17.1. — Soient E comme dans 1.17, X un objet cohérent de E, $\mathscr{R} \rightrightarrows X$ une relation d'équivalence dans X, $Y = X/\mathscr{R}$. Alors les conditions suivantes sont équivalentes :

- (i) Y est cohérent,
- (ii) $f: X \to Y$ est quasi-compact,
- (iii) \mathcal{R} est quasi-compact.

Corollaire 1.18. — Soient E un topos admettant une sous-catégorie génératrice C formée d'objets quasi-compacts, Y un objet de E. Pour que Y soit quasi-séparé, il faut et il suffit que tout morphisme $X \to Y$, avec $X \in ob C$, soit quasi-compact.

La nécessité est triviale par définition, les $Y \in ob C$ étant quasi-compacts par hypothèse. Pour prouver la suffisance, soit Z un objet quasi-compact de E, prouvons que tout morphisme $Z' \to Y$ est quasi-compact. Pour ceci, il suffit en vertu de 1.10 (i) de vérifier que pour tout $X \to Y$, avec $X \in ob C$, Z_X est quasi-compact, ce qui

résulte en effet du fait que les $X \to Y$ sont quasi-compacts par hypothèse, et que Z est quasi-compact.

Corollaire 1.19. — Soient E un topos admettant une sous-catégorie génératrice formée d'objets quasi-compacts, $(g_i : Y_i \to Y)_{i \in I}$ une famille couvrante dans E, avec les Y_i quasi-séparés et les g_i quasi-compacts. Alors Y est quasi-séparé.

En effet, soit X un objet quasi-compact de E, montrons que tout morphisme $f: X \to Y$ est quasi-compact. En vertu de 1.10(ii) il suffit de prouver que les morphismes induits $f_i: X_i = X_{\overline{Y}} Y_i \longrightarrow Y_i$ sont quasi-compacts. Or comme g_i est quasi-compact, X_i est quasi-compact (X l'étant), et comme Y_i est quasi-séparé, il s'ensuit bien que f_i est quasi-compact.

Remarque 1.20.1. — Le lecteur habitué à l'usage des termes « quasi-compact » et « quasi-séparé » en géométrie algébrique s'attendra à certaines autres relations entre les notions « absolues » (concernant les objets du topos E) et les notions « relatives » (concernant des flèches de E) envisagées, par exemple : si $f: X \to Y$ est un morphisme dans E tel que X soit quasi-compact-séparé, alors f est quasi-séparé. De telles propriétés ne sont valables que moyennant des conditions de finitude restrictive sur le topos E, plus fortes que celles envisagées dans 1.10, conditions que nous étudierons au numéro suivant.

1.20.2. Il résulte encore de 1.5 que le fait que pour un objet X du topos E d'être quasi-séparé ne dépend que du topos induit $E_{/X}$, et signifie que l'objet final dudit topos est quasi-séparé, i.e. que dans $E_{/X}$, le produit de deux objets quasi-compacts est quasi-compact.

1.21. Cas des sites. — Soient C un \mathscr{U} -site, E le topos des \mathscr{U} -faisceaux sur C, f une flèche de C, X un objet de C. On dit que f est un morphisme quasi-compact (resp. quasi-séparé) du site C si $\varepsilon(f)$ est un morphisme quasi-compact (resp. quasiséparé) du topos E; et de même que X est un objet quasi-séparé du site C si $\varepsilon(X)$ est un objet quasi-séparé du topos E (comparer 1.2). Lorsque C est un *U*-topos muni de sa topologie canonique, alors le foncteur canonique $\varepsilon: C \to E$ est une équivalence de catégories, et par suite la définition précédente est compatible avec les définitions antérieures 1.7 et 1.13. Notons également que la définition envisagée ne change pas quand on remplace l'univers \mathscr{U} par un autre univers \mathscr{V} tel que C soit aussi un \mathscr{V} -site, du moins lorsque C admet une famille topologiquement génératrice formée d'objets quasi-compacts. Pour le voir, on est ramené aussitôt au cas où $\mathcal{U} \subset \mathcal{V}$, donc E est une \mathcal{V} -site, et à prouver que pour toute flèche f du \mathcal{U} -topos E, f est quasi-compacte (resp. quasi-séparé) si et seulement si elle définit une flèche quasi-compacts dans le topos E' des V-faisceaux sur E, et de même que pour tout objet X de E, X est quasi-séparé si et seulement si l'objet correspondant de E' est quasi-séparé. Notons que nous connaissons déjà (sans hypothèse sur E) l'énoncé analogue pour le cas d'un

185

186

objet quasi-compact (1.2). Le cas « f quasi-compact » s'en déduit, grâce au critère 1.10 (i) appliqué successivement dans E et dans E', pour la même famille génératrice $(X_i)_{i\in I}$ de E formée d'objets quasi-compacts; d'où également le cas « f quasi-séparé », qui signifie que le morphisme diagonal correspondant est quasi-compact. Enfin pour le cas « X quasi-séparé », on est encore ramené au cas « X quasi-compact », grâce au critère 1.18.

1.22. Exemples. Reprenons l'exemple 1.6.2 de la catégorie (Sch) avec une topologie T_i , qui est un \mathscr{V} -site pour \mathscr{V} convenable, admettant la sous-catégorie des schémas affines comme catégorie génératrice topologique formée d'objets quasi-compacts. On laisse au lecteur le soin de vérifier qu'une flèche $f: X \to Y$ de ce site est quasi-compacte (resp. quasi-séparé) si et seulement si c'est un morphisme quasi-compact (resp. quasi-séparé) de schémas au sens habituel ([3] ou [4]); de même un objet du site est quasi-compact (resp. quasi-séparé) si et seulement si c'est un schéma quasi-compact (resp. quasi-séparé) au sens habituel de loc.cit. Il y a lieu de dire d'ailleurs, comme ici, morphisme cohérent de schémas, schémas cohérent, au lieu de « morphisme quasi-compact et quasi-séparé de schémas », « schéma quasi-compact et quasi-séparé », comme on le fait d'ailleurs dans EGA I $2^{\text{ème}}$ édition.

1.22.1. Pour un schéma donné $X \in \mathcal{U}$, on peut aussi regarder le topos Top(X) associé à l'espace topologique sous-jacent, ou le topos $Top(X_{et})$ (resp. $Top(X_{fppf})$), associé au site des X-schémas étales (resp. localement de présentation finie) éléments de \mathcal{U} , avec la topologie étale (resp. fppf). C'est un \mathcal{U} -topos qui admet une famille génératrice formée d'objets cohérents, correspondants aux objets affines du site de définition ;

Ceci dit, l'objet final de ce topos est quasi-compact (resp. quasi-séparé, resp. cohérent) si et seulement si le schéma X est quasi-compact (resp. quasi-séparé, resp. cohérent). De même, un morphisme du site des espaces étalés sur X (resp. du site $X_{\rm et}$ des schémas étales sur X, resp. du site $X_{\rm fppf}$ des schémas localement de présentation finie sur X) est quasi-compact (resp. quasi-séparé, resp. cohérent) si et seulement si c'est un morphisme de schémas qui est (au sens habituel de loc. cit.) quasi-compact (resp. quasi-séparé, resp. cohérent).

Théorème 1.23. — Soient E un \mathscr{U} -topos, X un objet de E.

(i) Pour que X soit quasi-compact, il faut et il suffit que pour tout système inductif filtrant $(Y_i)_{i\in I}$ de E, avec $I\in \mathscr{U}$, l'application naturelle

$$(1.23.1) \qquad \qquad \lim_{i \to \infty} \operatorname{Hom}(X, Y_i) \longrightarrow \operatorname{Hom}(X, \lim_{i \to \infty} Y_i)$$

soit injective.

- (ii) Supposons que E admette une sous-catégorie génératrice C formée d'objets quasi-compacts. Pour que X soit cohérent, il faut que pour toute donnée comme dans (i), l'application (1.23.1) soit bijective.
- (i) Nécessité. Supposons X quasi-compact, il faut prouver que si $i \in I$ et f_i , g_i :

 $X \rightrightarrows Y_i$ sont tels que les composés f, g de f_i, g_i avec $Y_i \to Y = \varinjlim Y_j$ sont égaux, alors il existe $j \geqslant i$ tel que les composés f_j, g_j avec $Y_i \to Y_j$ sont déjà égaux. Or comme dans E les limites inductives filtrantes commutent aux limites projectives finies, et en particulier aux noyaux, on a

$$\operatorname{Ker}(f,g) = \lim_{j \geqslant l} \operatorname{Ker}(f_j,g_j).$$

Par hypothèse Ker(f, g) = X, donc X est la limite de la famille filtrante croissante de ses sous-objets $Ker(f_j, g_j)$, donc comme X est quasi-compact, il est égal à un de ces sous-objets, donc il existe $j \ge i$ tel que $f_j = g_j$.

<u>Suffisance</u>. Pour prouver que X est quasi-compact, il revient au même (1.5.2) de prouver que pour toute famille filtrante croissante $(X_i)_{i\in I}$ de sous-objets de X dont la \varinjlim est X, il existe $i \in I$ tel que $X_i = X$. Or comme dans E tout monomorphisme est effectif (II 4.0), il s'ensuit que

$$X_i = Ker(f_i, g_i : X \rightrightarrows X \coprod_{X_i} X).$$

Soit $Y_i = X \coprod_{X_i} X$, et considérons le système inductif formé par les Y_i . Si Y en est la limite inductive, on a $Y \simeq X \coprod_{\varinjlim X_i} X = X \coprod_X X = X$. Par suite, pour un $i \in I$ fixé, f_i , g_i donnent le même élément de $\operatorname{Hom}(X,Y)$, donc par hypothèse il existe $j \geqslant i$ tel que $f_j = g_j$ i.e. $X_j = X$,

(ii) Il reste à prouver que sous les conditions indiquées, tout morphisme $X \to Y$ provient d'un morphisme $X \to Y_i$ pour un $i \in I$ convenable. Comme C engendre E et que les Y_i couvrent Y, nous pouvons couvrir X par des objets X_α de C, de telle façon que chacun des composés $X_\alpha \to X \to Y$ se factorise par un des Y_i . Comme X est quasi-compact, on peut supposer la famille des X_α finie, donc que les morphismes $X_\alpha \to Y$ se factorisent par un Y_i fixe en des $g_{\alpha i}: X_\alpha \to Y_i$. Comme X est quasi-séparé, les $X_\alpha X_\beta$ sont quasi-compacts. D'ailleurs pour tout (α, β) , les composés de pr₁ et pr₂ sur $X_\alpha X_\beta$ avec $X_\alpha, X_\beta \to Y_i$ sont

tels que leurs composés avec $Y_i \to Y$ sont égaux. En vertu de(i), il existe donc un $j \geqslant i$ tel que les composés avec $Y_i \to Y_j$ soient déjà égaux. Comme l'ensemble des couples (α,β) est fini, on peut prendre j indépendant de ce couple. Par suite les morphismes $g_{\alpha j}$ proviennent par composition d'un morphisme $g_j: X \to Y_j$, dont le composé avec $Y_j \to Y$ est d'ailleurs le morphisme $X \to Y$ donné, puisqu'il en est ainsi après composition avec les $Y_j \to X$. Cela achève la démonstration.

Remarques 1.23.2. — L'hypothèse sur E dans (ii) peut être remplacée par une hypothèse supplémentaire *sur* X, savoir que X admet un système fondamental de familles couvrantes par des objets quasi-compacts.

188 Corollaire 1.24. — Soient E un topos, et soit C une sous-catégorie strictement pleine de E formée d'objets cohérents. Utilisant le fait que dans E les \mathscr{U} -limites inductives sont représentables, on trouve (I 8.6.1) un foncteur canonique.

$$(1.24.1) Ind(C) \longrightarrow E.$$

Ce foncteur est pleinement fidèle. Si E admet une sous-catégorie génératrice formée d'objets cohérents, et si C est stable par facteurs directs, alors les conditions suivantes sont équivalentes :

- (i) Le foncteur (1.24.1) est essentiellement surjectif, i.e. c'est une équivalence de catégories.
 - (ii) C est une sous-catégorie génératrice de E, stable par limites inductives finies.
- (iii) La catégorie C est égale à la sous-catégorie pleine $E_{\rm coh}$ de E formée de tous les objets cohérents de E, et la condition nécessaire 1.23 (ii) de cohérence pour un objet de E est aussi suffisante.

Soit $E_{\rm PF}$ la sous-catégorie pleine de E définie dans I 8.7.6. En vertu de I 8.7.5 a), l'énoncé 1.23 (ii) équivaut à la deuxième inclusion de

$$C \subset E_{coh} \subset E_{PF}$$

et l'inclusion composée $C \supset E_{PF}$ signifie que (1.24.1) est pleinement fidèle. Comme par hypothèse la sous-catégorie E_{coh} de E est génératrice, il en est a fortiori de même de E_{PF} ; d'autre part dans E les limites projectives finies sont représentables, de sorte que nous pouvons appliquer E_{PF} . La condition (iii) de E_{PF} et équivaut à la condition E_{PF} , qui n'est autre que la condition (ii bis) de loc. cit. (compte tenu que par hypothèse, E_{coh} donc E_{PF} est une sous-catégorie génératrice de E_{PF}). De même la condition (ii) de E_{PF} 0 est autre que la condition (iii bis) de loc. cit.. Donc l'équivalence des conditions (i), (ii bis) et (iii bis) dans loc. cit. donne l'équivalence des conditions (i), (ii) et (iii) de E_{PF} 0.

La démonstration (ou plus précisément, l'invocation de I 8.7.7 (ii bis)) fournit également la partie a) du

Corollaire 1.24.2. — Soit E un topos admettant une sous-famille génératrice formée d'objets cohérents, et soit E_{PF} la sous-catégorie strictement pleine des objets X de E tels que le foncteur covariant $\mathrm{Hom}(X,-)$ qu'il représente commute aux limites inductives filtrantes. Alors :

a) Le foncteur naturel

$$\operatorname{Ind}(E_{\operatorname{PF}}) \longrightarrow E$$

est une équivalence de catégories.

- b) Pour qu'un objet X de E appartienne à $E_{\rm PF}$, il faut et il suffit qu'il soit isomorphe à un facteur direct (= image d'un projecteur (I, 10.6)) du conoyau d'une 190 double flèche $X_1 \rightrightarrows X_0$, avec X_1 et X_0 cohérents.
- c) La sous-catégorie E_{PF} de E est stable par limites inductives finies, et est équivalente à une petite catégorie.

Il reste à prouver b) et c). La première assertion de c) est triviale grâce à I 2.8, et implique le « il suffit » de b) grâce à 1.23 (ii). Pour le « il faut », on utilise 1.23 (i) qui montre que X est quasi-compact, d'où l'existence d'un épimorphisme $X_0 \to X$, avec X_0 cohérent, compte tenu du fait que E_{coh} engendre E et est stable par sommes finies. Soit $R = X_0$ X_0 , de sorte que X s'identifie au conoyau de $R \rightrightarrows X_0$. En vertu de a), on a $R = \varinjlim_X R_i$, limite inductive filtrante des coker $(R_i \rightrightarrows X_0) = X_i$. D'après l'hypothèse $X \in Ob E_{PF}$, pour i assez grand le morphisme $u_i : X_i' \to X$ admet une section $v : X \to X_i'$. Soit $w = vu_i : X_i' \to X_i'$, de sorte que $w^2 = w$ et $X \simeq Coker(w, id_{X_i'} : X_i' \rightrightarrows X_i')$. Comme R_i est à nouveau quasi-compact, on le couvre par $X_1 \to R_i$ avec X_i cohérent, d'où $X_i \simeq Coker(X_1 \rightrightarrows X_0)$, ce qui prouve b).

Enfin, comme $E_{PF} \subset E_{qu.cpct}$, la dernière assertion de c) résulte de 1.5.3.

Corollaire 1.25. — Soit E un topos tel que la sous-catégorie pleine C de E formée des objets cohérents soit génératrice. Considérons le foncteur canonique

$$\varphi: \operatorname{Ind}(c) \longrightarrow \mathcal{E}.$$

Les conditions suivantes sont équivalentes :

(i) Le foncteur φ est essentiellement surjectif, i.e. tout objet de E est limite inductive filtrante d'objets cohérents.

191

- (i bis) Le foncteur φ est une équivalence de catégories.
- (ii) Toute limite inductive finie dans E d'objets cohérents est un objet cohérent.
- (ii bis) Le conoyau dans E d'une double flèche d'bjets cohérents est un objet cohérent.
 - (iii) La réciproque de 1.23 (ii) est valable.

C'est un cas particulier de 1.24, compte tenu que C est stable par sommes finies (1.4), ce qui implique l'équivalence de (ii) et de (ii bis), et compte tenu du

Lemme 1.25.1. — Soit E un topos. Tout facteur direct X' d'un objet cohérent X de E est cohérent.

En effet, X' est quasi-compact comme quotient de X (1.3), et quasi-séparé comme sous-objet de X (1.15).

Corollaire 1.26. — Soit E un topos satisfaisant aux conditions équivalentes 1.25. Alors, il en est de même de tout topos induit.

Cela résulte aussitôt du critère (ii), compte tenu de 1.20.2 et du fait que l'existence d'une sous-catégorie génératrice de E formée d'objets cohérents implique manifestement la même propriété pour un topos induit.

Remarque 1.27. — Parmi les exemples importants de topos satisfaisant les conditions de 1.25, signalons les topos noethériens (2.14), et le topos zariskien ou étale (VII 1) d'un schéma X (cf. IX, note p.42). Mais même lorsque le topos E est cohérent(2.3) (i.e. la sous-catégorie pleine C des objet cohérents est génératrice et stable par limites projectives finies), il n'est par toujours vrai que C soit parfait (2.9.1) i.e. satisfasse aux conditions équivalentes de 1.25; cf. 1.28 ci-dessous.

Exercice 1.28. — Soient E un topos, p_1 , p_2 : $X_1 \Rightarrow X_0$ une double flèche dans E. Définir une suite croissante de sous-objets R_n $(n \ge 0)$ de $X_0 \times X_0$ par la condition $R_0 = \operatorname{Sup}(\operatorname{Im}(p_1,p_2),\operatorname{Im}(p_2,p_1))$, et $R_n = \operatorname{pr}_{13}(\operatorname{pr}_{12}^{-1}(R_{n-1}),\operatorname{pr}_{23}^{-1}(R_{n-1}))$ pour tout $n \ge 1$, où $\operatorname{pr}_{ij}(1 \le i < j \le 3)$ désignent les projections qu'on devine du produit triple de X_0 vers le produit double.

a) Montrer qu'on obtient ainsi une suite croissante de sous-objets de $X_0 \times X_0$, que $R = \varinjlim R_n$ est un graphe d'équivalence (I 10.4) dans X_0 , et que le morphisme canonique

$$X = Coker(p_1, p_2) \longrightarrow X_0/R$$

est un isomorphisme.

- b) En conclure que si X_0 est quasi-compact et $X = \operatorname{Coker}(p_1, p_2)$ est quasi-séparé (donc cohérent), alors la suite des R_n est stationnaire. Inversement, si cette suite est stationnaire, et si on suppose X_0 cohérent et X_1 quasi-compact alors X est cohérent. (Pour ce dernier point, écrire $R_n \simeq (R_{n-1}, \operatorname{pr}_2)_{X_0}(R_{n-1}, \operatorname{pr}_1)$ et en conclure que R_n est quasi-compact sur X_0 pour tout n, puis utiliser 1.19.)
- c) Construire un exemple de deux applications d'ensembles $p_1, p_2 : X_1 \rightrightarrows X_0$, telles que la suite des (R_n) ne soit pas stationnaire.
- d) Soit C une petite catégorie où les limites inductives finies et les limites projectives finies sont représentables, et où tout morphisme se factorise en un épimorphisme effectif suivi d'un monomorphisme. Répéter pour une double flèche (p_1, p_2) de C la construction des R_n . Munissant C de la topologie canonique, montrer que le foncteur canonique $\varepsilon: C \to C^{\sim}$ est exact, et commute par suite à la formation des R_n .
- e) Prendre pour C une petite sous-catégorie pleine de (Ens), stable à isomorphisme près par limites projectives finies et limites inductives finies, et contenant les ensembles X_0 , X_1 de c). En conclure que le topos C^{\sim} (qui est un topos cohérent (2.3), i.e. engendré par la sous-catégorie de ses objets cohérents, laquelle est stable par limites projectives finies) ne satisfait pas aux conditions équivalentes de 1.25.
- f) Soient k un corps, C le site fppf des schémas localement de présentation finie sur k (SGA 3 IV 6.3). Montrer qu'il existe un schéma affine réduit X sur k qui admit un automorphisme f qui n'est pas d'ordre fini (prendre par exemple l'espace affine E^2

muni de l'automorphisme f(x) = x, f(y) = x+y). Montrer que si $p_1, p_2 : X_1 \rightrightarrows X_0$ est une double flèche dans C, telle que la double flèche correspondant dans $(\operatorname{Ens})p_1(\overline{k}) : p_2(\overline{k}) : X_1(\overline{k}) \rightrightarrows X_0(\overline{k})$ donne une suite (R_n) non stationnaire, alors il en est de même de la double flèche de C^{\sim} définie par p_1, p_2 , donc, si X_0 est de type fini sur k, alors le conoyau dans C^{\sim} de (p_1, p_2) n'est pas cohérent. En conclure que le conoyau dans C^{\sim} du couple (f, id_X) n'est pas cohérent, donc que le topos C^{\sim} ne satisfait par aux conditions équivalentes de 1.25. En conclure plus généralement que si S est un schéma non vide, C le site fppf des schémas localement de présentation finie sur S, alors le topos C^{\sim} ne satisfait pas aux conditions de 1.25. (On fera attention que, contrairement à l'apparence, C^{\sim} n'est donc noethérien (2.11) que si S est vide, comme il résulte de ce qui précède et de 2.14.

Définition 1.30. — Soit E un topos. Un objet X de E est dit un objet prénoethérien^(*) du topos E s'il satisfait aux deux conditions équivalentes suivantes :

- (i) Tout sous-objet de X est quasi-compact.
- (ii) Toute suite croissante de sous-objets de X est stationnaire.
- 1.30.1. L'équivalence des conditions (i) et (ii) est claire. On notera que ces conditions ne dépendent encore que du topos induit $E_{/X}$, et même seulement de l'ensemble ordonné des ouverts de $E_{/X}$, isomorphe à l'ensemble ordonné des sous-objets de X. Elles sont stables par passage à un sous-objet de X.
- **1.31.** On prouve comme pour 1.3 et 1.4 les faits suivantes : si $(X_i \to X)$ est une famille couvrante finie, avec les X_i prénoethériens, alors X est prénoethérien ; en particulier un quotient d'un objet prénoethérien de E est prénoethérien. Si $(X_i)_{i\in I}$ est une famille d'objets de E, alors leur somme X est un objet prénoethérien de E si et seulement si tous les X_i sauf un nombre fini sont isomorphes à \emptyset_E , et tous les X_i sont prénoethériens.
- 1.32. Évidemment un objet prénoethérien d'un topos E est quasi-compact; lorsque E admet une famille génératrice formée d'objets prénoethériens, la réciproque est vraie (comme il résulte aussitôt de 1.31) : les objets prénoethériens de E sont alors ses objets quasi-compacts.

Supposons que E admette une famille génératrice $(X_i)_{i\in I}$ formée d'objets quasicompacts, alors les trois conditions suivantes sont équivalentes :

- (i) Les X_i sont prénoethériens.
- (ii) Tout objet quasi-compact de E est prénoethérien.
- (iii) Tout monomorphisme dans E est quasi-compact.

(On vient de voir l'équivalence de (i) et (ii), (ii) \Rightarrow (iii) est trivial à partir des définitions, et (iii) \Rightarrow (ii) sur la définition 1.30 (i).)

^(*) Par la notion plus forte d'objet noethérien, cf. 2.11 ci-dessous.

On notera que (iii) a comme conséquence que tout morphisme de E est quasiséparé; donc (1.14 (ii)) tout objet X de E au-dessus d'un objet quasi-séparé X de E est lui-même quasi-séparé.

Exemple 1.33. — (Topos classifiant d'un groupe). Soient G un groupe $\in \mathcal{U}$, B_G son topos classifiant (IV 2.4) i.e. la catégorie des ensemble $\in \mathcal{U}$ où G opère à gauche. Les objets connexes-non vides de B_G (IV 4.3.5) sont les ensembles à opérateurs qui sont non vides et sur lesquels G opère transitivement, et tout objet E de B_G est somme de ses composantes connexes, qui sont les sous-objets non vides minimaux de E (savoir les orbites de G dans E). Par suite E est un objet quasi-compact de B_G si et seulement si l'ensemble $\pi_0(E)$ des orbites de G dans E est fini, et alors E est même un objet prénoethérien de B_G . Ces objets (et même le seul objet G_s , qui est connexe non-vide) forment une sous-catégorie génératrice de B_G . Pour que l'objet final e de B_G soit quasi-séparé, i.e. pour que le produit de deux objets quasi-compacts de B_G soit quasicompact, il faut et il suffit que le produit $G_s \times G_s$ soit quasi-compact, ce qui équivaut manifestement au fait que G est fini. On en conclut, plus généralement, qu'un objet E de B_G est quasi-séparé si et seulement si les stabilisateurs de ses points sont des sous-groupes finis de G; i.e. s'il est isomorphe à une somme d'espaces homogènes G/H, avec H fini.) En effet, en vertu de 1.15 on peut supposer dans ce critère E connexe, mais si $x \in E$ a comme groupe de stabilité G_x , on sait (IV 5.8) que B_G/E est équivalent au topos B_{G_x} , donc son objet final est quasi-séparé si et seulement si G_x est fini. On conclut de ce critère que tout objet de B_G qui se trouve au-dessus d'un objet quasi-séparé est quasi-séparé, a fortiori, le produit de deux objets quasi-séparés de B_G est quasi-séparé. On conclut aussi que les objets cohérents de B_G sont les objets isomorphes à des sommes finies d'espaces homogènes G/H, avec H fini. Comme G_s est cohérent, on voit que les objets cohérents de B_G forment déjà une sous-catégorie génératrice de B_G. De plus, cette sous-catégorie est stable par produits fibrés (comme il résulte de fait que tout objet au-dessus d'un objet quasi-séparé est quasi-séparé). (Dans la terminologie 2.11 plus bas B_G est un topos localement noethérien, mais il n'est quasi-séparé que si G est fini, et alors B_G est même noethérien.)

On voit tout de suite qu'un morphisme $f: E' \to E$ est quasi-compact si et seulement si l'application induit $\pi_0(f): \pi_0(E') \to \pi_0(E)$ pour les ensembles d'orbites est propre i.e. à fibres finies; on retrouve qu'un monomorphisme est quasi-compact (1.32), donc tout morphisme est quasi-séparé. Par suite les morphismes cohérents dans B_G sont simplement les morphismes quasi-compacts, qu'on vient de caractériser.

Soit E un objet du topos B_G . On vérifie facilement que E est une limite inductive filtrante d'objets cohérents de B_G si et seulement si les stabilisateurs des points de E sont des groupes ind-finis (i.e. limites inductives filtrantes de leurs sous-groupes finis). En particulier, si G n'est pas ind-fini (par exemple si $G = \mathbf{Z}$), l'objet final du topos B_G n'est pas limite inductive d'objets cohérents; plus précisément, pour que le topos B_G satisfasse aux conditions équivalentes de 1.25, il faut et il suffit que son objet

197

final soit limite inductive filtrante d'objets cohérents, ou encore que le groupe G soit ind-fini.

2. Conditions de finitude pour un topos

Proposition 2.1. — Soit E un \mathscr{U} -topos. Les conditions suivantes sont équivalentes

- (i) Il existe une sous-catégorie pleine génératrice C de E, formée d'objets quasicompacts, et stable par produits fibrés.
- (ii) Il existe un \mathscr{U} -site C, tel que tout objet de C soit quasi-compact, que dans C les produits fibrés soient représentables, et que E soit équivalent à la catégorie des faisceaux C^{\sim} .

Supposons que ces conditions sont satisfaites. Alors on peut même choisir dans (i) (resp. (ii)) la catégorie C \mathscr{U} -petite. D'autre part, pour tout $X \in ob C$, l'objet X (resp. $\varepsilon(X)$) du topos E est cohérent.

L'implication (i) \Rightarrow (ii) résulte de IV 1.2.1., et le fait que dans (i) (resp. (ii)) on peut prendre C \mathscr{U} -petite se voit aussitôt par l'argument de IV 1.2.3 appliqué à une petite sous-catégorie pleine génératrice au sens topologique (II 3.0.1) de C. Il reste à prouver (ii) \Rightarrow (i) et la dernière assertion de 2.1, ce qui résulte aussitôt du

Corollaire 2.1.1. — Soit C un \mathscr{U} -site où les produits fibrés soient représentables et dont tout objet soit quasi-compact, et soient $E: C^{\sim}$, $\varepsilon: C \to E$ le foncteur canonique. Alors pour tout $X \in ob C$, $\varepsilon(X)$ est un objet cohérent de E. La sous-catégorie pleine de E formée des objets cohérents de E qui se trouvent au-dessus de quelque $\varepsilon(X)$ est stable par produits fibrés (et est évidemment génératrice dans E).

On sait déjà que $\varepsilon(X)$ est quasi-compact (1.2), prouvons qu'il est quasi-séparé. Soient donc F, G deux objets quasi-compacts de E et F $\to \varepsilon(X)$, G $\to \varepsilon(X)$ deux morphismes, prouvons que le produit fibré F G est quasi-compact. Recouvrant F et G par un nombre fini d'objets de la forme $\varepsilon(Y_i)$ resp. $\varepsilon(Z_j)$, et procédant comme dans 1.2 pour nous ramener au cas où les composés $\varepsilon(Y_i) \to \varepsilon(X)$, $\varepsilon(Z_j) \to \varepsilon(X)$ proviennent de morphismes $Y_i \to X$ resp. $Z_j \to Y$, on est ramené grâce à 1.3 au cas où les morphismes F $\to \varepsilon(X)$ et G $\to \varepsilon(X)$ sont les transformés par ε de morphismes Y $\to X$, Z $\to X$. Mais comme les produits fibrés sont représentables dans C et que ε y commute, on est réduit à prouver que $\varepsilon(Y_X)$ est quasi-compact, ce qui a été déjà noté plus haut pour tout objet de la forme $\varepsilon(U)$.

Soient maintenant $G \to F$, $H \to F$ des morphismes d'objets cohérents de E, tels qu'il existe un morphisme $F \to \varepsilon(X)$, pour quelque $X \in ob C$, prouvons que G H est cohérent. Comme G et H sont quasi-compacts et F quasi-séparé, il résulte déjà des définitions que le produit fibré est quasi-compact. Reste à voir qu'il est quasi-séparé,

202

ou ce qui revient au même (1.15) que G $_{\varepsilon(X)}$ H est quasi-séparé. Cela résulte du fait plus général :

Corollaire 2.1.2. — Sous les conditions de 2.1.1, pour tout objet quasi-séparé G de E, tout morphisme $G \to \varepsilon(X)$ est quasi-séparé. Si $H \to \varepsilon(X)$ est un deuxième morphisme, avec H quasi-séparé, alors G H est quasi-séparé.

La première assertion implique la deuxième, car elle implique par changement de base que G $_{\varepsilon(X)}$ H est quasi-séparé, donc, puisque H est quasi-séparé, G $_{\varepsilon(X)}$ H l'est aussi (1.14 (ii)). Pour prouver que G $\to \varepsilon(X)$ est quasi-séparé, nous allons utiliser le

Lemme 2.1.3. — Soient E un topos, $f: X \to Y$ un morphisme dans E. Supposons que E admette une famille génératrice d'objets quasi-compacts, et qu'il existe une famille couvrante $(g_i: X_i \to X)_{i \in I}$ de X telle que les X_i soient quasi-compacts, et que pour tout couple d'indices $i, j \in I$, $X_i \ _Y X_j$ soit quasi-séparé. Alors, si X est un objet quasi-séparé de E, f est un morphisme quasi-séparé.

En effet, la famille $(g_i_{_Y}g_j: X_i_{_Y}X_j \longrightarrow X_{_Y}X)_{(i,j) \in I \times I}$ est couvrante, donc pour voir que le morphisme $\Delta_{X/Y}: X \to X_{_Y}X$ est quasi-compact, il suffit de voir que pour tout $(i,j) \in I \times I$, le morphisme qui s'en déduit par changement de base $g_i_{_Y}g_j$ l'est $(1.10 \ (ii))$. Or ce dernier n'est autre que le morphisme canonique $X_i_{_X}X_j \longrightarrow X_i_{_Y}X_j$; comme par hypothèse X est quasi-séparé et les X_i sont quasi-compacts, $X_i_{_X}X_j$ est quasi-compact, donc comme $X_i_{_Y}X_j$ est quasi-séparé par hypothèse, le morphisme $X_i_{_X}X_j \longrightarrow X_i_{_Y}X_j$ est bien quasi-compact, $X_i_{_X}X_j \longrightarrow X_i_{_Y}X_j$ est bien quasi-compact, $X_i_{_X}X_j \longrightarrow X_i_{_Y}X_j$ est bien quasi-compact, $X_i_{_X}X_j \longrightarrow X_i_{_X}X_j$ est bien quasi-compact,

Nous pouvons maintenant terminer la démonstration de 2.1.2, en prouvant que tout morphisme $f: G \to \varepsilon(X)$, avec G avec G quasi-séparé, est quasi-séparé. Pour ceci, couvrons G par des objets $\varepsilon(X_i)$, tels que les morphismes composés $\varepsilon(X_i) \to \varepsilon(X)$ proviennent de morphismes $X_i \to X$. En vertu de 2.1.3, comme les $\varepsilon(X_i)$ sont quasi-compacts, il suffit de vérifier que les produits fibrés $\varepsilon(X_i)_{\varepsilon(X)} \varepsilon(X_j) = \varepsilon(X_i X_j)$ sont quasi-séparés. Or on a déjà vu que tout objet de E de la forme $\varepsilon(U)$ est cohérent. Cela prouve 2.1.2 et achève la démonstration de 2.1.

Proposition 2.2. — Soit E un topos contenant une sous-catégorie pleine génératrice C formée d'objets cohérents. Les conditions suivantes sur E sont équivalentes :

- (i) Tout objet quasi-séparé de E est quasi-séparé sur l'objet final.
- (i bis) Pour tout morphisme $f: X \to Y$ dans E, X quasi-séparé implique f quasi-sépare.
- (i ter) Tout objet X de C est quasi-séparé sur l'objet final de E, i.e. le morphisme diagonal $X \to X \times X$ est quasi-compact.
 - (ii) Le produit de deux objets quasi-séparés de E est quasi-séparé.

(ii bis) Le produit dans E de deux objets de C est quasi-séparé.

Ces conditions impliquent que la sous-catégorie pleine $E_{\rm coh}$ de E formée des objets cohérents de E est stable par produits fibrés (et à fortiori, que E satisfait aux conditions équivalentes de 2.1).

Évidemment (i bis) \Rightarrow (i), et l'implication inverse résulte de 1.8 (iii). On a (i) \Rightarrow (ii) par un argument déjà fait : si X et Y sont quasi-séparés, comme par l'hypothèse (i) X est quasi-séparé sur e, X × Y est quasi-séparé sur Y par changement de base, donc X est quasi-séparé en vertu de 1.14 (ii). Le même argument montre que (i ter) \Rightarrow (ii bis), et d'autre part (i) \Rightarrow (i ter) et (ii) \Rightarrow (ii bis) sont triviaux, de sorte qu'il reste à établir (ii bis) \Rightarrow (i). Mais si X est un objet quasi-séparé de E, recouvrant X par des objet X_i de C (ce qui est possible, C étant génératrice), comme les X_i sont quasi-compacts par hypothèse sur C, on peut appliquer 2.1.3 au morphisme $X \rightarrow e$, de sorte que pour prouver que ce dernier est quasi-séparé, on est ramené précisément à voir que les $X_i \times X_j$ sont quasi-séparés, ce qui est l'hypothèse (ii bis).

Remarque 2.2.1. — La condition (i ter) équivaut aussi à la condition (i quater). Pour toute double flèche $g_1, g_2 : Y \rightrightarrows X$ dans C, le noyau dans E est quasi-compact (ou encore (1.15) cohérent).

Pour le voir, il suffit d'appliquer le critère 1.10 (i) au morphisme diagonal $X \to X \times X$ 203 envisagé dans (i ter).

- **Définition 2.3.** Un topos E satisfaisant les conditions équivalentes de 2.2 (resp. de 2.1) est appelé un topos algébrique (resp. un topos localement algébrique, ou localement cohérent). Un objet E d'un topos E est appelé objet algébrique du topos E si le topos induite E_{/X} est algébrique. Un topos E est dit quasi-séparé (resp. cohérent) s'il est algébrique et si son objet final est quasi-séparé (resp. cohérent).
- 2.3.1. C'est dans les topos algébriques que les notions de finitude développées au n° 1 ont des propriétés pleinement satisfaisantes, analogues aux propriétés des notions de même nom dans la catégorie des schémas. Tous les topos localement algébriques (= localement cohérents) rencontrés en pratique sont en fait algébriques, donc l'intérêt pratique de cette notion semble pour l'instant assez réduit. On peut cependant construire des topos localement algébriques et non algébriques (2.17 f).
- 2.4. Voici quelques remarques générales concernant les notions introduites dans 2.3, qui convaincront le lecteur (du moins on l'espère) que la terminologie introduite est cohérente.
- 2.4.1. Sous les conditions de 2.1 (i) resp. (ii), pour tout $X \in C$, X (resp. $\varepsilon(X)$) est un objet (cohérent) algébrique de E (2.1.2 et 1.19.2), en d'autres termes le topos induit $E_{/X}$ (resp. $E_{\varepsilon(X)} \cong (C_{/X})^{\sim}$) est algébrique, donc cohérent. Il revient au même de dire que lorsque C admet un objet final, alors E lui-même est algébrique, donc cohérent.

2.4.2. Si E est un topos algébrique, alors tout topos induit $E_{/X}$ est également algébrique (2.2 (i bis)); pour qu'un topos E soit localement algébrique = localement cohérent, il faut et il suffit qu'il existe une famille $(X_i)_{i\in I}$ d'objets de X, couvrant l'objet final, telle que les X_i soient algébriques (resp. cohérents) i.e. telle que les topos induits $E_{/X_i}$ soient algébriques (resp. cohérents). -La suffisance résulte aussitôt des définitions, la nécessité des observations 2.4.1. Bien entendu, un topos algébrique est localement algébrique, et si E est un topos localement algébrique, tout topos induit $E_{/X}$ est localement algébrique.

2.4.3. Si X est un objet algébrique d'un topos E, alors tout objet X' de E qui se trouve au-dessus de X est encore algébrique (cf. 2.4.2). En particulier, tout objet d'un topos algébrique est algébrique, et inversement bien sûr.

2.4.4. La sous-catégorie pleine de E formée des objets quasi-séparés qui sont algébriques est stable par produits fibrés et par sous-objets (1.15), donc aussi par noyaux. Si E est algébrique, cette catégorie (qui n'est alors autre que la catégorie des objets quasi-séparés de E sans plus) est également stable par produit de deux objets. Si E est quasi-séparé (et alors seulement) cette catégorie est stable par limites projectives finis quelconques, ou encore contient l'objet final de E.

La sous-catégorie pleine C de E formée des objets cohérents qui sont algébriques est stable par produits fibrés. Si E est localement algébrique i.e. localement cohérent, dire que E est algébrique revient à dire que C est également stable par noyaux de doubles flèches (2.2.1); et dire que E est quasi-séparé revient à dire que de plus C est stable par produit de deux objets (cf. 1.17). Enfin dire que E est cohérent revient à dire que C est stables par limites projectives finies quelconques, ou encore qu'il contient l'objet final de E.

2.4.5. Soit E un topos. Pour que E soit localement cohérent (resp. algébrique, resp. quasi-séparé, resp. cohérent) il faut et il suffit qu'il admette une sous-catégorie pleine génératrice C formée d'objets quasi-compacts (qui seront automatiquement cohérents (2.1)), et qui soit stable par produits fibrés (resp. par produits fibrés et par noyaux, resp. par produits fibrés et par produits de deux objets, resp. par limites projectives finies quelconques); ou encore que E soit équivalent à un topos C^{\sim} , où C est un \mathscr{U} -site dont tout objet est quasi-compact, et où les produits fibrés et les produits de deux objets (resp. toutes les limites projectives finies) sont représentables. (Pour la nécessité, on prend pour C la catégorie des objets de E qui sont cohérents et algébriques, et on applique 2.4; pour la suffisance, on applique 2.2 (i ter)). Dans cet énoncé, on peut évidemment supposer encore C \mathscr{U} -petit.

2.4.6. Soit E un topos, Si E est algébrique, un objet X de E est quasi-séparé (resp. cohérent) si et seulement si le topos induit $E_{/X}$ l'est. Lorsque E n'est plus supposé algébrique, on peut dire seulement que $E_{/X}$ est quasi-séparé (resp. cohérent) si et seulement si

205

206

X est quasi-séparé (resp. cohérent) et *algébrique*. Ce n'est pas grave, vu qu'on n'aura sans doute pas à utiliser ces notions en dehors du cas E algébrique.

2.4.7. Pour que la notion d'objet cohérent (resp. quasi-séparé d'un topos E ait des propriétés satisfaisantes, il faut se borner aux objets qui sont de plus algébriques, condition automatiquement satisfaite si E est algébrique. Comme nous n'aurons sans doute jamais à travailler avec des E localement algébriques qui ne soient algébriques, la question de réviser la terminologie introduite dans 1.13, en la réservant éventuellement aux seuls objets algébriques, ne se pose donc pas en termes bien aigus!

D'autre part, nous sommes abstenus de définir la notion de topos quasi-compact. Dans l'esprit du présent numéro, il s'imposerait d'appeler ainsi les topos *algébriques* sont l'objet final est quasi-compact.

Nous avons hésité à introduire un tel usage, car si X est un espace topologique, il ne serait pas vrai que X est quasi-compact si et seulement si le topos associé $\operatorname{Top}(X)$ l'est. On notera à ce propos que $\operatorname{Top}(X)$ est localement cohérent si et seulement si X admet une base d'ouverts formée d'ouverts quasi-compacts U tels que pour U_j , $U_k \subset U_i, \, U_j \cap U_k$ soit encore quasi-compact (et alors $\operatorname{Top}(X)$ est même algébrique). Cette conditions est vérifiée pour les espaces topologiques sous-jacents aux schémas, mais rarement pour les espaces rencontrés par les analystes, fussent-ils (les espaces) compacts. Explicitons encore, pour la commodité des références :

Proposition 2.5. — Soit E un topos algébrique, $f: X \to Y$ un morphisme dans E. Si Y est un objet quasi-séparé (resp. cohérent) de E, alors, pour que X soit un objet quasi-séparé (resp. cohérent) de E, il faut et il suffit que le morphisme f soit quasi-séparé (resp. cohérent).

La suffisance a déjà été vue dans 1.14(ii), et est vraie sans hypothèse sur E. La nécessité dans la cas non respé est vraie sans supposer même Y quasi-séparé, et n'est autre que la définition 2.3 via 2.2 i bis). Il reste à prouver que si Y est cohérent et X cohérent, alors f est cohérent. Comme on sait déjà que f est quasi-séparé, il suffit de voir que f est quasi-compact, ce qui résulte du fait que X est quasi-compact et Y quasi-séparé (1.13).

Corollaire 2.6. — Soient E un topos algébrique, $f: X \to Y$ un morphisme dans E, $(Y_i \to Y)_{i \in I}$ une famille couvrante, avec les Y_i quasi-séparés (resp. cohérents). Pour que f soit quasi-sépare (resp. quasi-compact, resp. cohérent) il faut et il suffit que pour tout $i \in I$, $X_i = X_Y Y_i$ soit un objet quasi-séparé (resp. quasi-compact, resp. cohérent) de E.

Il suffit de conjuguer 1.10 (ii) et 2.5 dans le cas « quasi séparé » ou « cohérent » ; le cas « quasi-compact » a déjà été vu dans 1.16. On notera que la nécessité de la condition énoncée dans 2.6 est également valable sans hypothèse sur le topos E.

On trouve comme cas particulier de 2.6 :

Corollaire 2.7. — Soient E un topos cohérent, X un objet de E. Pour que X soit un objet quasi-compact (resp. quasi-séparé, resp. cohérent) de E, il faut et il suffit qu'il soit quasi-compact (resp. quasi-séparé, resp. cohérent) au-dessus de l'objet final (1.9.2).

En particulier, X est constructible (1.9.2) si et seulement s'il est cohérent.

Corollaire 2.8. — Soient E un topos localement cohérent, $f: X \to Y$ un morphisme dans E. Pour que f soit quasi-séparé, il faut et il suffit que pour tout objet quasi-séparé Y' de $E_{/Y}$, $f^*(Y') = X_{\overline{Y}} Y'$ soit un objet quasi-séparé de $E_{/X}$ (ou de E, cela revient au même (1.20.2)).

Le « il faut » est valable sans condition sur E, car si Y' est quasi-séparé, comme $f': X' = X_{\stackrel{}{Y}}Y' \longrightarrow Y'$ est quasi-séparé par changement de base, X' est quasi-séparé (1.14 (ii)). Pour la réciproque, notons qu'il existe une famille couvrante $Y_i \to Y$ de Y par des objets quasi-séparés et algébriques. En vertu de 1.10 (ii), pour vérifier que f est quasi-séparé, il suffit de vérifier que les $f_i: X_i = X_{\stackrel{}{Y}}X_i \longrightarrow Y_i$ le sont. Or l'hypothèse sur f^* implique que les X_i sont quasi-séparés, donc les f_i le sont puisque $E_{/Y_i}$ est un topos algébrique.

Remarque 2.8.1. — Les énoncés 2.5 et 2.6 restent valables si on y remplace l'hypothèse « E algébrique » par l'hypothèse plus générale « Y est algébrique », comme on voit trivialement en appliquant l'énoncé primitif au topos induit $E_{/Y}$, qui est algébrique. De même, dans 2.8 il suffit de supposer que $E_{/Y}$ (au lieu de E) soit localement cohérent.

Proposition 2.9. — Soient E un topos, C une sous-catégorie de E. Les conditions suivantes sont équivalentes :

- (i) E est localement cohérent (resp. cohérent), satisfait aux conditions équivalentes de 1.25, et C est la sous-catégorie pleine $E_{\rm coh}$ de E formée des objets cohérents.
- (ii) C est une sous-catégorie strictement pleine génératrice de E, stable par limites inductives finies et par produits fibrés (resp. et par limites projectives finies), et est formée d'objets quasi-compacts.

L'implication (i) \Rightarrow (ii) résulte trivialement des définitions et de la forme 1.25 (ii) des conditions envisagées dans 1.25; prouvons l'implication inverse. Le fait que C soit une sous-catégorie pleine génératrice, formée d'objet quasi-compacts, et stable par produits fibrés (resp. par limites projectives finies) implique, par définition, que E est localement cohérent (resp. cohérent). Le fait que de plus C soit strictement pleine et stable par limites inductives finies implique alors que $C = E_{coh}$ (en vertu de 1.24 (ii) \Rightarrow (iii)), et que la condition 1.25 (ii) est satisfaite, C.Q.F.D.

Définition 2.9.1. — Un \mathscr{U} -topos E est dit parfait s'il est cohérent (2.3) et s'il satisfait aux conditions équivalentes de 1.25. i.e. si la sous-catégorie $E_{\rm coh}$ de E formée des objets cohérents de E est stable par limites inductives finies. On dit que E est localement

parfait s'il existe une famille $(X_i)_{i\in I}$ d'objets de E couvrant l'objet final, telle que pour tout $i\in I$, le topos induit $E_{/X_i}$ soit parfait.

2.9.2. Il résulte aussitôt de cette définition qu'un topos parfait (resp. localement parfait) est cohérent (resp. localement cohérent). Comme exemples de topos parfaits (resp. localement parfaits), signalons les topos noethériens (resp. localement noethériens) introduits dans 2.11 ci-dessous (cf. 2.14), le topos zariskien et le topos étale d'un schéma cohérent (resp. d'un schéma quelconque) (IX, note page 42). Comme contre-exemple, signalons le topos fppf d'un schéma S, qui est localement cohérent (et même cohérent si S est un schéma cohérent, i.e. quasi-compact et quasi-séparé) (VII 5.6), mais qui n'est pas localement parfait si $S \neq \emptyset$ (1.28 f)).

Dans un topos localement parfait, la notion d'objet constructible est particulièrement stable (2.9.3 ci-dessous), ce qui est une raison pourquoi la notion semble intéressante. Une autre raison est dans le fait que comme celle de topos cohérent ou localement cohérent, la notion de topos parfait ou localement parfait est stable par rapport à la formation du sous-topos fermé complémentaire d'un ouvert (4.6), et qu'elle se comporte de façon particulièrement simple pour l'opération de recollement de topos (4.11, 4.14).

Proposition 2.9.3. — Soit E un topos localement parfait (2.9.1). Alors la sous-catégorie pleine E_{cons} de E formée des objets constructibles de E (1.9.3) est stable par limites inductives finies (et aussi par limites projectives finies bien sûr, en vertu de (1.9.3)).

Comme la propriété pour un objet de E d'être constructible est locale sur E (1.10 (ii)), on est ramené au cas où E est un topos parfait. Mais alors $E_{\rm cons} = E_{\rm coh}$ (2.7), et la conclusion résulte de la définition 2.9.1.

Corollaire 2.9.4. — Soit E un topos localement parfait. Alors E est parfait si et seulement si E est cohérent. Pour tout objet X de E, le topos induit $E_{/X}$ est localement parfait.

Problème 2.9.5. — Il est concevable que les topos parfaits soient assez particuliers pour se prêter à une théorie de structure aussi explicite (suivant un modèle proposé par M.ARTIN à l'époque du séminaire oral). Appelons topos fini un topos équivalent à un topos de la forme \hat{C} , où C est une catégorie finie (cf. exercice 3.11), et topos profini un topos qui est une limite projective filtrante de topos finis (au sans de 6. plus bas, qui s'applique grâce à 3.12 c)). Comme un topos fini est noethérien (2.17 g)) donc parfait, et qu'une limite projective filtrante de topos parfaits est parfait (6.), on voit qu'un topos profini est parfait. La question qui se pose serait de savoir si réciproquement tout topos parfait est profini. Cela équivaut à la question si toute sous-catégorie finie de $E_{\rm coh}$ est contenue dans une sous-catégorie pleine F_0 de $E_{\rm coh}$ qui est équivalente à une catégorie $F_{\rm coh}$, où F est un topos fini (cf. 3.11). (Si la réponse était négative, il y aurait lieu de trouver des conditions intrinsèques supplémentaires maniables pour un

214

topos parfait qui assurent qu'il est profini.) Il resterait enfin à étudier la structure des topos profinis en termes d'une notion convenable de « catégorie profinie karoubienne », inspirée de IV 7.6 h). Cette étude n'a pas été faite encore même dans le cas particulier où E est le topos zariskien, ou étale, d'un brave schéma cohérent X, et devrait donner alors des invariants plus fins que l'espace compact $X_{\rm cons}$ (EGA IV 1.) associé à X.

Dans le même ordre d'idées, signalons la questions suivante : Soit E un topos parfait, E' le topos induit sur un ouvert de E, et E'' le sous-topos fermé correspondant (IV 9.9). Si E' et E'' sont des topos finis, en est-il de même de E?

Proposition 2.10. — Soit E un topos. Les conditions suivantes sont équivalentes :

- (i) E admet une sous-catégorie pleine génératrice stable par produits fibrés, formée d'objets prénoethériens de E.
- (ii) E admet une sous-catégorie pleine génératrice formée d'objets prénoethériens quasi-séparés (i.e. prénoethériens cohérents).
- (iii) E est localement cohérent (2.3) et tout objet quasi-compact de E est prénoe-thérien.
- (iii bis) E est localement cohérent et admet une famille génératrice formée d'objets prénoethériens de E.
- L'équivalence de (iii) et (iii bis) résulte de 1.32, et il est trivial que (i) \Rightarrow (iii bis) et (iii) \Rightarrow (i), donc (i) équivaut à (iii) et (iii bis). Enfin (i) \Rightarrow (ii) résulte de la dernière assertion de 2.1, et il reste à prouver (ii) \Rightarrow (i). Cette implication résulte du fait que la sous-catégorie pleine de E formée des objets noethériens quasi-séparés, si elle est génératrice, est stable par produits fibrés, car un tel produit fibré est quasi-compact en vertu des définitions, donc noethérien par la première assertion de 1.32; et il est quasi-séparé par la dernière assertion de 1.32.
- **Définition 2.11.** Un topos E est dit topos localement noethérien s'il satisfait aux conditions équivalentes de 2.10, noethérien si de plus son objet final est cohérent (ou ce qui revient au même (1.32)) prénoethérien et quasi-séparé). Un objet X d'un topos E est dit objet noethérien de E si le topos induit $E_{/X}$ est un topos noethérien.
- **2.12.** Si E est un topos localement noethérien, alors il en est de même de tout topos induit $E_{/X}$; inversement, si on peut trouver une famille (X_i) couvrant l'objet final telle que les E_{X_i} soient localement noethériens, il en est de même de E. Si C est une sous-catégorie pleine génératrice de E formée d'objets prénoethériens et stable par produits fibrés (2.11 (i)), alors pour tout $X \in C$, $E_{/X}$ est un topos noethérien, i.e. les objets de C sont même noethériens, (car si E est localement noethérien et $X \in Ob E$, alors $E_{/X}$ est noethérien si et seulement si X est cohérent). Il s'ensuit qu'un topos E est localement noethérien si et seulement si on peut recouvrir l'objet final de E par des objets noethériens X_i .

- 2.13. Dans un topos localement noethérien E, tout monomorphisme est quasi-compact, et tout morphisme est quasi-séparé (1.32). A fortiori, E est un topos algébrique (2.3) et non seulement localement cohérent i.e. localement algébrique. Donc un topos E est noethérien si et seulement si il est localement noethérien et cohérent (2.3). En d'autres termes, si E est un topos localement noethérien, alors les objets noethériens de E ne sont autres que les objets cohérents de E.
 - **2.14.** Soit E un topos localement noethérien, Si E est quasi-séparé, i.e. si son objet final est quasi-séparé, alors *tout* objet de E est quasi-séparé (1.32), donc les objets prénoethériens de E sont identiques aux objets noethériens (i.e. cohérents) de E. Comme un objet quotient d'un objet prénoethérien est prénoethérien, il s'ensuit que E satisfait aux conditions équivalentes de 1.25 (puisqu'il satisfait la condition 1.25 (ii bis)). En particulier, si C est la sous-catégorie pleine de E formée des objets noethériens (cohérents) de E, alors le foncteur naturel

$$Ind(C) \longrightarrow E$$

est une équivalence de catégories. On conclut de ceci qu'un topos noethérien est parfait (2.9.1), donc qu'un topos localement noethérien est localement parfait.

Si on suppose seulement E localement noethérien, il sera encore vrai que tout objet de E est limite inductive de ses sous-objets prénoethériens (car dans un topos admettant une sous-catégorie génératrice formée d'objets quasi-compacts, tout objet est limite inductive filtrante de ses sous-objets quasi-compacts). Mais comme un objet prénoethérien de E n'est plus nécessairement cohérent, cet énoncé n'a alors qu'une utilité très limitée, et on sait (1.33) que les conditions de 1.25 ne sont plus nécessairement vérifiées.

216

217

Exemple 2.15. — (Espaces topologiques.) Soit X un espace topologique. Alors les conditions suivantes sont équivalentes : (i) l'espace topologique X est noethérien (i.e. tout ouvert de X est quasi-compact), i.e. toute suite croissante d'ouverts de X est stationnaire) ; (ii) le topos Top(X) est noethérien ; (iii) l'objet final X de Top(X) est noethérien ; (iv) l'objet final X de Top(X) est prénoethérien.

En effet, on a trivialement (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Leftrightarrow (i), d'autre part (i) implique que la sous-catégorie génératrice ouv(X) de Top(X), qui est stable par limites projectives finies, est formée d'objets prénoethériens, d'où (ii).

On voit de même que l'espace topologique X est localement noethérien (i.e. est réunion d'ouverts noethériens) si et seulement si le topos $\mathrm{Top}(X)$ est localement noethérien.

2.15.1. Ainsi, nos définitions 1.30, 2.11 sont compatibles avec la terminologie reçue pour les espaces topologique. D'autre part, nous avons tenu dans le cas général à donner au terme « objet noethérien » un sens plus fort que celui de la notion plus naïve de 1.30, pour que l'ensemble des propriétés qui s'attachent à cette notion (plutôt

que la seule structure grammaticale de la définition) soit bien en accord avec l'intuition qui s'attache aux espaces topologiques et aux schémas noethériens.

Le lecteur trouvera d'autres exemples dans les exercices suivants.

Exercice 2.16. — (Espaces à opérateurs et topos classifiants).

Soit X un espace topologique sur lequel opère un groupe discret G, d'où (IV 2.3) un topos E = Top(X,G). On interprète les objets X' de ce topos comme des espaces étalés sur X à groupe d'opérateurs G, et on note que le topos induit $E_{/X}$, est canoniquement équivalent à Top(X',G).

- a) Pour que l'objet final du topos E soit quasi-compact, il faut et il suffit que l'espace topologique quotient X/G soit quasi-compact (Utiliser IV 8.4.1).
- b) Soit P l'objet de E définit par l'espace étalé trivial $X \times G$ avec opération diagonale de G. Montrer que le topos induit $E_{/P}$ est équivalent au topos Top(X) (comparer IV 5.8.3). En conclure que E est localement cohérent (resp. localement noethérien) si et seulement si Top(X) est localement cohérent (cf. 2.4.7) (resp. localement noethérien (cf. 2.15)). Montrer que si E est localement cohérent, i.e. localement algébrique, il est même algébrique, en utilisant la famille génératrice formée des objets T_U , où U est un ouvert cohérent de X, $T_U = G \times U$ avec opération $g \cdot (u, g') = (u, gg')$ de G, et la morphisme structural $p_U : T_U \to X$ défini par $P_U(u, g) = g \cdot u$.
- c) Supposons E algébrique, i.e. Top(X) algébrique (2.4.7). Montrer que le morphisme structural $P \to e$ est quasi-séparé. Montrer que E est quasi-séparé si et seulement si Top(X) est quasi-séparé (ou encore l'espace topologique X est quasi-séparé, i.e. l'intersection de deux ouverts quasi-compacts de X est un ouverts quasi-compact), et G est fini ou X vide. (Comparer 1.33.)
- d) Montrer que le morphisme structural $P \to e$ est quasi-compact si et seulement si G est fini. Montrer que E est cohérent (resp. noethérien) si et seulement si Top(X) l'est, et G est fini ou X vide.
- e) Soient E un topos, G un Groupe de E, d'où un topos classifiant B_G (IV 2.4). Faire l'étude des conditions de finitude dans B_G , en s'inspirant de ce qui précède. Même question lorsqu'on part d'un pro-groupe strict $\mathscr{G} = (G_i)_{i \in I}$ de E. En particulier, on verra que si E est cohérent (resp. noethérien) et les G_i sont cohérents, alors $B_{\mathscr{G}}$ est cohérent (resp. noethérien).
- **Exercice 2.17.** (Topos de la forme \widehat{C} .) Soient C une catégorie équivalente à une catégorie $\in \mathcal{U}$, et $E = \widehat{C}$ la catégorie des préfaisceaux sur C. Par le foncteur canonique $\varepsilon : C \to \widehat{C}$, on identifie C à une sous-catégorie pleine de E.
- (a) C est une sous-catégorie génératrice de E formée d'objets quasi-compacts. Pour que ceux-ci soient prénoethériens (cf. 1.32), il faut et il suffit que pour tout objet X de C, tout crible de X soit engendré par une famille finie de morphismes $X_i \to X$ de C. Pour que l'objet final de E soit quasi-compact (resp. prénoethérien), il faut et il suffit qu'il existe une sous-catégorie finale de C dont l'ensemble d'objets soit fini (resp. que

218

219

tout crible de C soit engendré par une sous-catégorie de C dont l'ensemble d'objets soit fini).

(b) Pour que E admette une sous-catégorie génératrice formée d'objets cohérents (ou encore, quasi-séparés), il faut et il suffit que les objets de C soient cohérents dans E, ou encore que pour deux flèches Y \xrightarrow{f} X, Z \xrightarrow{g} X dans C, l'objet Y Z de E soit quasi-compact i.e. on peut trouver une famille finie de carrés commutatifs dans C

telle que tout autre carré commutatif dans C

provienne d'un morphisme $T \to T_i$. (Noter que si $(F_i)_{i \in I}$ est une famille génératrice $\mathbf{2}$ de E, tout $X \in ob C$ est isomorphe à un facteur direct d'un des F_i .)

(c) Pour que E soit localement cohérent, i.e. soit engendré par une famille d'objets cohérents et algébriques, il faut et il suffit que les objets X de C soient des objets cohérents et algébriques de E, i.e. que la condition de b) soit vérifiée, ainsi que la condition suivante : pour toute double flèche $f, g: Y \rightrightarrows Z$ de C au-dessus d'un objet X de C, le noyau de cette double flèche dans E est un objet quasi-compact de E, i.e. il existe une famille finie de diagramme commutatifs dans C

$$T_i \longrightarrow Y \xrightarrow{f,g} Z$$

telle que tout autre diagramme commutatif dans C

$$T \longrightarrow Y \xrightarrow{f,g} Z$$

provienne d'un morphisme $T \to T_i$. Pour que E soit algébrique, il faut et il suffit qu'il satisfasse à la conditions de b) et à la condition précédente, mais où on prend une double flèche quelconque (f,g) de C (pas nécessairement au-dessus d'un objet X de C). Pour que E soit quasi-séparé, il faut et il suffit qu'il satisfasse les conditions

de b), et que de plus pour deux objets $X, Y \in ob C$, le produit $X \times Y$ dans E soit quasi-compact. Pour que E soit cohérent, il faut et il suffit qu'il satisfasse aux deux conditions précédentes, et qu'il existe un sous-catégorie finale de C dont l'ensemble sous-jacent soit fini.

221

- (d) Donner un exemple où les objets de la sous-catégorie génératrice C de E sont prénoethériens, mais où E n'admet pas de famille génératrice formée d'objets cohérents (i.e. (b)) où les objets de C ne sont pas tous cohérents). Prendre pour ceci pour C la catégorie ayant des objets X, T_i $(i=0,1,\dots)$ et e (l'objet final), les seuls morphismes entre ces objets en plus des morphismes structuraux dans e et des identités, étant des morphismes $u_i: T_i \to X, \ v_i: X \to T_i$ soumis aux conditions $u_i v_i = \mathrm{id}_X$, et enfin $p_i = v_i u_i$ (satisfaisant nécessairement $p_i^2 = \mathrm{id}_{T_i}$). On vérifie que les seuls cribles de X ou d'un T_i sont les deux cribles triviaux, et que e admet exactement un crible non trivial, donc en vertu de a), les objets de C sont des objets prénoethériens de E. Cependant, le produit $X \times X$ dans E n'est pas quasi-compact, car il ne satisfait pas au critère de b).
- (e) Donner un exemple où la sous-catégorie génératrice C de E est formée d'objets cohérents de E, mais où E n'est pas localement cohérent. Prendre pour ceci pour C la catégorie dont l'ensemble des objets est formée d'objets distincts e (l'objet final), Y, Z et T_i ($i=0,1,\ldots$), avec comme seuls morphismes entre ces objets, en plus des morphismes dans l'objet final e et des morphismes identiques, des morphismes $f, g: Y \rightrightarrows Y$, soumis aux conditions $fu_i = gu_i$. On vérifiera que C satisfait à la condition de b) (avec un peu de patience; on trouve que tous les produits fibrés d'objets de C sont isomorphes à \varnothing_E ou sont dans C, à l'exception de Z Z et Y Z qui sont recouverts par deux éléments de C), mais évidemment Ker(f,g) ne satisfait pas à la condition de c).

222

- (f) Donner un exemple où C est stable par produits fibrés (a fortiori, E est un topos localement cohérent i.e. localement algébrique) mais où E n'est pas un topos algébrique. (Prendre l'exemple donné dans d), et la sous-catégorie pleine C' de E formée des objets Y, Z, T_i (i > 0) et \varnothing_E).
- (g) Supposons la catégorie C finie. Prouver que le topos E est noethérien, que ses objets noethériens (i.e. quasi-compacts) sont les contrafoncteurs $F: C^{\circ} \to (Ens)$ tels que pour tout objet X de C, F(X) soit un ensemble *fini*, et que les foncteurs fibres sur E transforment objets noethériens en ensembles finis (cf. IV 7.6. h)).
- (h) Supposons que tout morphisme $f: X \to X$ de C se factorise en un composé ip, où i est un monomorphisme et où p admet un inverse à droite. Soit X un objet de C, I(X) l'ensemble de ses sous-objets au sens de C, considéré comme un ensemble ordonné, S(I(X)) l'ensemble des parties U de I(X) telles que pour deux éléments X', $X'' \in I(X)$, $X' \in U$ et $X'' \leq X'$ implique $X'' \in U$. Montrer que l'ensemble ordonné des sous-objets dans E de X est isomorphe à l'ensemble S(I(X)) (ordonné par inclusion). En conclure que si I(X) est fini, alors X est un objet prénoethérien de E. En

particulier, si (en plus de la conditions de factorisation ci-dessus) C est stable par produits fibrés (resp. par limites projectives finies) et si pour tout $X \in ob C$, l'ensemble I(X) des sous-objets de X dans C est fini, alors le topos E est localement noethérien (resp. noethérien).

223

- (i) Soit C la catégorie des ensembles finis (ou, au choix, des ensembles finis non vides) $\in \mathcal{U}$, de sorte que $E = \widehat{C}$ est la catégorie des ensembles simpliciaux augmentés (resp. des ensembles simpliciaux tout court). Montrer que E est un topos noethérien. (Utiliser h).) Prenant un pro-objet $(X_i)_{i\in I}$ non essentiellement constant de C, montrer que E admet des foncteurs fibres qui ne transforment pas objets noethériens en objets noethériens (i.e. en ensembles finis).
- (j) On considère le diagramme d'implications suivant de propriétés pour un topos E :

Montrer que toutes les implications de ce diagramme sont strictes, et qu'il n'y a pas entre les notions envisagées d'autres implications que les implications composées du diagramme précédent. Ici E_{coh} , E_{quepet} , $E_{prénocth}$, E_{cohalg} désignent respectivement les sous-catégories pleines de E formées des objets cohérents, resp. quasi-compacts, resp. prénoethériens, resp. cohérents et algébriques de E. (On se bornera à des topos de la forme \widehat{C} , en utilisant les résultats énoncés dans d), e), f).)

224

(k) Résoudre la question suivante (dont le rédacteur de ces lignes ignore la réponse) : $E = \widehat{C}$ peut-il être localement noethérien sans que les $\operatorname{Hom}(X,Y)$ (pour X, $Y \in \operatorname{ob} C$) soient finis ?

Exercice 2.18. — Soit E un topos.

a) Soit X un objet prénoethérien de E. Montrer que X est isomorphe à une somme finie d'objets connexes (IV 4.3.5) de E. (Montrer par l'absurde qu'une suite croissante de partitions de X (IV 8.7) est stationnaire.)

- b) Soient X un objet de E, $(f_i: X_i \to X)_{i \in I}$ une famille couvrante de X. Montrer que si chacun des X_i est isomorphe à une somme d'objets connexes de E, il en est de même de X. (Se ramener au cas où les X_i sont connexes, puis au cas où ce sont des sous-objets de X, et considérer alors sur l'ensemble d'indices I la relation d'équivalence R engendrée par la relation $X_i \cap X_j \neq \phi_E$, et montrer que si J = I/R, X est somme des $X(i) = \sup_{i \in I} X_i$.)

 c) Conclure de b) que si on désigne par $(X_i)_{i \in I}$ une famille génératrice de E, alors
- c) Conclure de b) que si on désigne par $(X_i)_{i\in I}$ une famille génératrice de E, alors E est localement connexe (IV 8.7. ℓ)) si et seulement si chacun des X_i ($i \in I$) est isomorphe à une somme d'objets connexes de E.
- d) Conclure de a) et c) que si E admet une sous-catégorie génératrice formée d'objets prénoethériens, en particulier si E est localement noethérien, alors E est localement connexe, et a fortiori est isomorphe au topos somme (IV 8.7 b)) d'une famille de topos connexes (IV 8.7 e)) i.e. dont l'objet final est connexe. (En particulier, on peut associer à E, pour tout morphisme $f: P \to E$, où P est un topos « connexe non vide et simplement connexe » (IV 2.7.5) un pro-groupe fondamental $\pi_1(E, f)$; on notera que si E est localement noethérien « non vide » on peut toujours trouver un tel f, avec P le topos ponctuel, grâce à DELIGNE ([9]).

3. Conditions de finitude pour un morphisme de topos

- **Définition 3.1.** Soit $f: E' \to E$ un morphisme de topos. On dit que f est quasi-compact (resp. quasi-séparé) si pour tout objet quasi-compact (resp. quasi-séparé) X de E, $f^*(X)$ est quasi-compact (resp. quasi-séparé). On dit que f est cohérent si f est quasi-compact et quasi-séparé.
- 3.1.1. On notera que si f possède une des propriétés précédentes, alors tout morphisme de topos isomorphe à f possède la même propriété. Il est trivial également que le composé de deux morphismes de topos quasi-compacts (resp. quasi-séparés, resp. cohérents) est encore quasi-compact (resp. quasi-séparé, resp. cohérent).
- **Proposition 3.2.** Avec les notations de 3.1, soit $(X_i)_{i\in I}$ une famille génératrice d'objets quasi-compacts (resp. cohérents) de E. Supposons, dans le cas respé, que E' admette une famille génératrice formée d'objets quasi-compacts. Pour que f soit quasi-compact (resp. cohérent), il faut et il suffit que pour tout $i \in I$, $f^*(X_i)$ soit quasi-compact (resp. cohérent).

La nécessité de la condition est triviale. Pour la suffisance dans le premier cas, on note que pour tout objet quasi-compact X de E, il y a une famille épimorphique finis de morphismes $X_i \to X$, donc il y a une famille épimorphique finie $f^*(X_i) \to f^*(X)$, avec les $f^*(X_i)$ quasi-compacts par hypothèse, donc $f^*(X)$ est quasi-compacts (1.3). Dans le deuxième cas, il reste à voir que si X est un objet quasi-séparé de E, alors $f^*(X)$ est quasi-séparé. L'hypothèse sur X peut s'exprimer (1.17) par l'existence

d'une famille épimorphique de morphismes $X_i \to X$ telle que les $X_i \atop X$ soient quasi-compacts. Ceci dit, on aura une famille couvrante $f^*(X_i) \to f^*(X)$, telle que les produits fibrés $f^*(X_i) \atop f^*(X)$ sont quasi-compacts (puisque en vertu de a), f^* transforme objets quasi-compacts en objets quasi-compacts). Comme les $f^*(X_i)$ sont cohérents, on conclut encore à l'aide de 1.17.

Corollaire 3.3. — Soient C et C' deux \mathscr{U} -sites où les produits fibrés soient représentables et où toute famille couvrante admet une sous-famille couvrante finie, $g: C \to C'$ un morphisme de sites (IV 4.9.1). Alors le morphisme de topos $f: C^{\sim} \to C'^{\sim}$ défini par g est cohérent.

En effet, $\varepsilon_{\mathbf{C}}(\mathbf{C})$ (resp. $\varepsilon_{\mathbf{C}'}(\mathbf{C}')$) est une famille génératrice de \mathbf{C} (resp. de \mathbf{C}') satisfaisant les conditions respées de 3.2 (2.1.1).

Proposition 3.4. — Soient E un topos localement cohérent (2.3), $f: X \to Y$ une flèche de E, d'où un morphisme de topos induits (IV (5.5.2)) $E_{/X} \to E_{/Y}$. Pour que ce dernier soit un morphisme de topos quasi-compact (resp. quasi-séparé, resp. cohérent), il faut et il suffit que f soit un morphisme quasi-compact (resp. quasi-séparé, resp. cohérent).

Le cas « quasi-compact » est trivial en vertu des définitions (sans condition sur E), le cas « quasi-séparé » n'est autre que 2.8, enfin le cas « cohérent » résulte de la conjonction des deux cas précédents.

Proposition 3.5. — Soit $f: E' \to E$ un morphisme de topos localement cohérents. Soit $(X_i)_{i \in I}$ une famille génératrice dans E formée d'objets cohérents algébriques. Les conditions suivantes sont équivalentes :

- (i) Pour toute flèche u quasi-compacte de E, $f^*(u)$ est quasi-compacte.
- (i bis) Pour toute flèche $u: X_i \to X_j$, $f^*(u)$ est quasi-compacte.
- (ii) Pour tout objet cohérent Y' de E', tout objet cohérent algébrique Y de E, et toute flèche $v: Y' \to f^*(Y)$, le morphisme de topos correspondant

$$f_v: \mathrm{E}'_{/\mathrm{Y}'} \longrightarrow \mathrm{E}_{/\mathrm{Y}}$$

composé du morphisme de localisation $E'_{/Y'} \to E'_{/f^*(Y)}$ déduit de Y (IV (5.5.2)) et 228 du morphisme $E'_{/f^*(Y)} \to E_{/Y}$ induit par f (IV (5.10.1)) est cohérent.

(ii bis) Même condition que dans (ii), mais en se bornant à un ensemble de données $v_{\alpha}: Y'_{\alpha} \to f^*(Y_{\alpha})$ tel que les Y'_{α} soient algébriques et recouvrent l'objet final de E'.

(ii ter) (Lorsqu'on se donne une famille génératrice $(X'_{i'})_{i' \in I'}$ dans E' formée d'objets cohérents, et pour tout $i' \in I'$, un $i \in I$ et une flèche $v_{i'} : X'_{i'} \to f(X_i)$.) Pour tout $i' \in I'$, le morphisme de topos $E'_{(X',i')} \to E_{/X}$ défini par v_i est cohérent.

Comme toute flèche $X_i \to X_j$ est quasi-compacte, il est évident que (i) \Rightarrow (i bis). Inversement, supposons (i bis) vérifié et prouvons (i). Soit $u: X \to Y$ une flèche quasi-compacte de E. En termes d'une famille épimorphique $X_i \to Y$, l'hypothèse sur

230

u s'exprime donc par le fait que les $X_Y^-X_i$ sont quasi-compacts (1.16), i.e. qu'il existe pour chaque i une famille finie épimorphique de morphismes $X_j \to X_Y^-X_i$ (1.3). Alors on a une famille épimorphique correspondante $f^*(X_i) \to f^*(Y)$, telle que pour tout i on ait une famille épimorphique finie $f^*(X_j) \to f^*(X_Y^-X_i) \simeq f^*(X)_{f^*(Y)}^-f^*(X_i)$, dont le composé avec la projection pr_2 dans $f^*(X_i)$ est un morphisme quasi-compact $f^*(X_j) \to f^*(X_i)$, grâce à l'hypothèse (i bis). Il s'ensuit (1.11 (i)) que pour tout i, $\operatorname{pr}_2: f^*(X)_{f^*(Y)}^-f^*(X_i)$ est quasi-compact, donc (1.10 (ii)) $f^*(u): f^*(X) \to f^*(Y)$ est quasi-compact.

Il reste à prouver les implications (i) \Rightarrow (ii) et (ii bis) \Rightarrow (i), l'implication (ii) \Rightarrow (ii bis) étant triviale, et (ii ter) étant un cas particulier de (ii bis). L'implication (i) \Rightarrow (ii) est immédiate : en effet, un objet X de $E_{/Y}$ est quasi-compact (resp. quasi-séparé) si et seulement si le morphisme structural $X \to Y$ (resp. le morphisme diagonal $X \to X_X$) est quasi-compact (2.7), et on a le même critère de quasi-compacité et de quasi-séparation pour $f_Y^*(X')$. Prouvons enfin (ii bis) \Rightarrow (i). Soit donc $u: X \to Y$ une flèche quasi-compacte dans E, prouvons que $f^*(u)$ est quasi-compacte. Comme les Y'_{α} recouvrent l'objet final de E', il suffit de prouver que les $f^*(u)|Y'_{\alpha}$ sont quasi-compacts (1.10 (ii)). Or, ces morphismes ne sont autres que les $f^*_{v_{\alpha}}(u|Y_{\alpha})$, et on est donc réduit à prouver ceci :

Corollaire 3.6. — Soit $f: E' \to E$ un morphisme cohérent de topos localement cohérents. Alors pour tout flèche quasi-compacte u de E, $f^*(u)$ est quasi-compacte.

Grâce à l'implication (i bis) \Rightarrow (i) de 3.4 déjà prouvée, il suffit de prouver que si $u: X \to Y$ est une flèche de E, avec X, Y cohérents, alors $f^*(u)$ est un morphisme quasi-compact, ce qui résulte aussitôt de l'hypothèse sur f, impliquant que $f^*(X)$ et $f^*(Y)$ sont également cohérents.

Définition 3.7. — Soit $f: E' \to E$ un morphisme de topos localement cohérents. On dit que f est localement cohérent s'il satisfait aux conditions équivalentes de 3.5.

Remarquons que « localement » signifie localement en haut.

3.7.1. Cette notion ne dépend encore que de la classe d'isomorphie du morphisme de topos f, et elle est manifestement stable par composition de morphismes de topos. De plus, en vertu de 3.5, si f est cohérent il est localement cohérent, la réciproque étant vraie si E' et E sont cohérents (en vertu de 3.5 (ii bis)). Du critère 3.5 (ii bis) résulte aussitôt le critère suivant :

Corollaire 3.7. — Soient $f: E' \to E$ un morphisme de topos localement cohérents, $(Y_i)_{i \in I}$, $(Y'_i)_{i \in I}$ deux familles d'objets de E et de E', et pour tout $i \in I$ $v_i: Y'_i \to f^*(Y_i)$ un morphisme, d'où un morphisme de topos

$$f_{v_i}: \mathbf{E}'_{/\mathbf{Y}'_i} \longrightarrow \mathbf{E}_{/\mathbf{Y}_i}.$$

Supposons que les Y'_i recouvrent l'objet final de E'. Alors f est localement cohérent si et seulement si pour tout $i \in I$, f_{v_i} l'est.

En particulier, appliquant ceci au morphisme identique d'un topos induit, on trouve :

Corollaire 3.8. — Soient E un topos localement cohérent, $v: X \to Y$ une flèche de E. Alors le morphisme des topos induits $E_{/X} \to E_{/Y}$ défini par v est localement cohérent.

Remarque 3.9. — Il semble que tous les morphismes de topos algébriques qu'on ait rencontrés en pratique soient localement cohérents (c'est pourquoi le terme « localement cohérent » n'est pas appelé sans doute à un très grand usage). Il revient au même d'affirmer que les morphismes de topos cohérents qu'on a rencontrés en pratique sont cohérents. On peut cependant construire des morphismes non cohérents de topos cohérents, et plus particulièrement, un morphisme non cohérent du topos ponctuel (IV 2.2) dans un topos noethérien E, cf. 2.17 i).

Exemples 3.10. — (Topos associés aux schémas.) Reprenons l'exemple 1.22 de la catégorie (Sch) avec des topologies T_i de SGA IV 6.3. Soit, pour tout schéma X, X_{T_i} le $\mathscr V$ -topos défini par le site induit $(Sch)_{/X}$. Alors le morphisme de schémas $f: X \to Y$ définit un morphisme de topos $f_{T_i}: X_{T_i} \to Y_{T_i}$, et il résulte de 3.4 et de 1.22 que ce dernier morphisme de topos est quasi-compact (resp. quasi-séparé, resp. cohérent) si et seulement si le morphisme de schémas f est quasi-compact (resp. quasi-séparé, resp. cohérent) au sens habituel de EGA IV 1. En tout état de cause, f_{T_i} est localement cohérent en vertu de 3.8.

On peut aussi associer à un schéma X les \mathscr{U} -topos Top(X) et $Top(X_{\acute{e}t})$ comme dans 1.22.1, et à tout morphisme de schémas $f: X \to Y$ sont alors associés des morphismes Top(f) et $Top(f_{\acute{e}t})$ des topos correspondants. Soit T(f) l'un de ces deux morphismes de topos. On vérifie immédiatement via 3.2 que ce morphisme de topos est toujours localement cohérent, et qu'il est quasi-compact (resp. quasi-séparé, resp. cohérent) si et seulement si le morphisme de schémas f est quasi-compact (resp. quasi-séparé, resp. cohérent) au sens habituel.

232

Ces observations montrent donc encore que la terminologie introduite dans le présent numéro est compatible avec la terminologie reçue en théorie des schémas, et mérite donc d'être acceptée par le lecteur le plus récalcitrant.

Exercice 3.11. — (Topos cohérents et prétopos.)

- a) On appelle \mathscr{U} -prétopos (ou simplement prétopos), une catégorie C satisfaisant aux conditions suivantes :
 - 1) Les limites projectives finies dans C sont représentables.
 - 2) Les sommes finies dans C sont représentables, elles sont disjointes et universelles.

234

- 3) Les relations d'équivalence dans C sont effectives, et tout épimorphisme dans C est effectif universel.
 - 4) C est équivalente à une catégorie $\in \mathcal{U}$.

Montrer que si E est un \mathscr{U} -topos cohérent, alors la sous-catégorie pleine $E_{\rm coh}$ de E formée des objets cohérents de E est un \mathscr{U} -prétopos, et que le foncteur d'inclusion $E_{\rm coh} \to E$ est exact à gauche, commute aux sommes finies et au passage au quotient par des relations d'équivalence. (Utiliser 1.5.3, 1.15 et 1.17.1). Montrer que la topologie induite par E sur C est la topologie « précanonique », i.e. la topologie dont les familles couvrantes $X_i \to X$ sont celles qui admettent une sous-famille *finie* couvrantes pour la topologie canonique de C. Par suite E se reconstitue à équivalence près par la connaissance du prétopos $C = E_{\rm coh}$, comme le topos C^{\sim} (C étant munie de sa topologie précanonique).

- b) Soit C un \mathscr{U} -prétopos. Munissons C de la topologie précanonique. Montrons que tout morphisme f de C se factorise en f''f', avec f' un épimorphisme et f'' un monomorphisme. Montrer que le topos $E = C^{\sim}$ est cohérent, et que la foncteur canonique $\varepsilon : C \to E$ induit une équivalence de C avec la sous-catégorie $E_{\rm coh}$ de E. (Montrer d'abord que ε est un foncteur pleinement fidèle exact à gauche commutant aux sommes finies et au passage au quotient par une relation d'équivalence, puis qu'un sous-objet cohérent dans E d'un objet de C est dans l'image essentielle de C.) Par suite, le \mathscr{U} -prétopos C se reconstitue à équivalence de catégories prés quand on connaît le \mathscr{U} -topos associé $E = C^{\sim}$.
- c) Soient C et C' deux \mathscr{U} -prétopos. Montrer que pour qu'un foncteur $\varphi: C' \to C$ soit un morphisme de sites de C dans C' (pour les topologies précanoniques), il faut et il suffit que φ soit exact à gauche, et commute aux sommes finies et au passage un quotient par une relation d'équivalence.
- d) Avec les notations de c), supposons que C et C' soient associés à deux \mathcal{U} -topos cohérents E, E' comme dans a). Montrer que le foncteur canonique (IV 4.9.3)

$$Morsite(C, C') \longrightarrow \mathcal{H}omtop(E, E')$$

induit une équivalence de premier membre (explicité dans C)) avec la sous-catégorie pleine de deuxième formé des morphismes de topos $E \to E'$ qui sont *cohérents*, un foncteur quasi-inverse étant obtenu en associant à tout morphisme cohérent de topos $f: E \to E'$ le foncteur $E'_{coh} = C' \to E_{coh} = C$ induit par F^* .

e) Soient C un \mathscr{U} -prétopos et $E=C^{\sim}$. Exprimer directement en termes de propriétés d'exactitude de C les conditions équivalentes de 1.25 (Consulter 1.28 b.) Montrer qu'un objet X de C est noethérien dans E si et seulement si toute suite croissante de sous-objets de X dans C est stationnaire, donc que E est noethérien si et seulement si tout objet de C satisfait à la conditions précédente.

Exercice 3.12. — Un topos E est appelé un topos fini s'il existe une catégorie finie C telle que E soit équivalent à \widehat{C} .

- a) Pour que E soit un topos fini, il faut et il suffit que E admette suffisamment de points essentiels (IV 7.6 b)), et que la catégorie *Pointess*(E) des points essentiels de E soit équivalente à une catégorie finie. (Utiliser IV 7.6 d) et h).)
- b) Supposons E fini. Prouver que tout point de E est essentiel. Prouver que les 2-foncteurs $E \mapsto \mathscr{P}oint(E)$ et $C \mapsto \widehat{C}$ établissent des 2-équivalences entre la 2-catégorie des topos finis E, et la 2-catégorie des catégories karoubiennes (IV 7.5 a)) C qui sont équivalentes à des catégories finies, et que tout morphisme de topos finis est essentiel (IV 7.6 a)). (Utiliser a) et IV 7.6 h).)
- c) Supposons E = C, avec C équivalente à une catégorie finie, et soit F un topos cohérent. Rappelons (IV (4.6.3.1.)) que les morphismes de topos $f : E \to F$ correspondent aux foncteurs $u : C \to \mathscr{P}oint(F)$. Montrer que pour que f soit cohérent, il faut et il suffit que f transforme point cohérent de E (3.1) en point cohérent de F, ou encore que pour tout $X \in ob C$, u(X) soit un point cohérent de F. (Utiliser 3.2 et 2,17 g).) En conclure que tout morphisme $f : E \to F$ d'un topos fini dans un topos fini est cohérent.
- d) Soit X un espace topologique sobre (IV 4.2.1). Pour que le topos Top(X) (IV 2.1) soit fini, il faut et il suffit que X soit un ensemble fini. (Utiliser IV 7.1.6)

4. Conditions de finitude dans un topos obtenu par recollement

Le Présent paragraphe ne sera plus utilisé dans la suite du Séminaire.

4.1. Soient E un topos, U un ouvert de E (i.e. un sous-objet de l'objet final de E), et considérons les sous-topos ouverts et fermés correspondants de E (IV 9)

236

$$E' = E_{/U}, E'' = E_{/U}.$$

Nous désignerons par

$$j: \mathbf{E}' \longrightarrow \mathbf{E}, i: \mathbf{E}'' \longrightarrow \mathbf{E}$$

les morphismes de topos canoniques. Rappelons (3.4) que pour que j soit un morphisme quasi-compact (resp. cohérent) de topos, il faut et il suffit que l'inclusion

$$j: \mathbf{U} \longrightarrow e$$

de U dans l'objet final de E (inclusion que nous noterons également j) soit un morphisme quasi-compact (resp. cohérent) dans E; d'autre part, $j: E' \to E$ est toujours quasi-séparé (car $j: U \to e$ l'est (1.8.1)). Nous nous proposons de donner des critères pour que le topos E" soit cohérent, et le morphisme de topos $i: E'' \to E$ soit cohérent. Notons d'abord :

Proposition 4.2. — Les notations étant celles de 4.1, le morphisme d'inclusion $i: E'' \to E$ est quasi-compact, i.e. pour tout objet quasi-compact X de E, l'objet $i^*(X)$ de E'' est quasi-compact; de plus, si X est prénoethérien (1.30), $i^*(X)$ est prénoethérien.

Cela résulte de la définition 1.1 et du

238

239

Lemme 4.2.1. — L'application $Y \mapsto i^*(Y)$ induit un isomorphisme d'ensembles ordonnés entre l'ensemble des sous-objets de X qui contiennent le sous-objet $X_U = X \times U$ de X, et l'ensemble des sous-objets de $i^*(X)$.

Notons que, i_* étant conservatif (car pleinement fidèle) et exact à gauche (en particulier, commuant aux produits fibrés), il s'ensuit aussitôt qu'un morphisme $u: Y \to Z$ dans E" est un monomorphisme si et seulement si $i_*(u): i_*(Y) \to i_*(Z)$ l'est . Il s'ensuit aussitôt, identifiant (par i_*) E' à la sous-catégorie pleine de E formée des objets Z satisfaisant aux conditions équivalentes de IV 9.7 1), que les sous-objets sans E' de l'objet Z de E" s'identifient aux sous-objets Y de Z dans E qui veulent bien appartenir à E", ou, ce qui revient au même, qui contiennent $Z_U \xrightarrow{\sim} U$. Or pour Z de la forme $i_*i^*(X) = X_{\complement U}$ donné par la somme amalgamée IV (9.5.1),

$$i_*i^*(\mathbf{X}) = \mathbf{X}_{\mathsf{C}\mathbf{U}} = \mathbf{X} \coprod_{\mathbf{X}_{\mathbf{U}}} \mathbf{U},$$

la donnée d'un sous-objet Y de ce dernier dans E équivaut à la donnée d'un couple formé un sous-objet Y_1 de X et d'un sous-objet Y_2 de U, avec la condition que les images inverses de ces sous-objets dans X_U coïncident. La condition que Y contienne U signifie alors que $Y_2 = U$, et la condition qui reste sur Y_1 est que Y_1 contienne X_U . Cela établit donc une bijection entre l'ensemble des sous-objets de $i^*(X)$ dans E'', et l'ensemble des sous-objets de X qui contiennent X_U . Il est clair que c'est un isomorphisme d'ensembles ordonnés, et que l'application inverse est bien celle annoncée dans 3.14.1.

Corollaire 4.3. — a) Soit X un objet de E. Pour que X soit quasi-compact, il suffit que $i^*(X)$ et $j^*(X)$ le soient, et cette condition est également nécessaire si $j: U \to e$ est quasi-compact.

b) Soit Y un objet de E''. Pour que Y soit quasi-compact, il suffit que $i_*(Y)$ le soit, et cette condition est également nécessaire si U est quasi-compact.

Démonstration

- a) La suffisance résulte de la définition 1.1 et du fait que le couple (i^*, j^*) est conservatif (IV 9.11 3)). La nécessité résulte du fait que i et j sont quasi-compacts (en vertu de 3.14 et de l'hypothèse que j est quasi-compact).
- b) Comme Y $\simeq i^*i_*(Y)$, la suffisance résulte de 4.2. La nécessité résulte de la suffisance dans a), compte tenu que $i^*i_*(Y) \simeq Y$ et $j^*i_*(Y) \simeq U$.

Corollaire 4.4. — Soit Y un objet de E". Si U est quasi-compact ou si E admet une famille génératrice formée d'objets quasi-compacts, alors pour que Y soit quasi-séparé (resp. cohérent), il suffit qu'il en soit ainsi de $i_*(Y)$. Si U est quasi-séparé (resp. cohérent) et si $j: U \to e$ est un morphisme quasi-compact, alors pour que Y soit quasi-séparé (resp. cohérent), il faut que $i_*(Y)$ le soit.

Le cas respé résulte du cas non respé, compte tenu de 4.3 b). Supposons $i_*(Y)$

quasi-séparé, et prouvons qu'il en est de même de Y, sous l'une des deux hypothèses faites. Il faut donc prouver que pour deux objets quasi-compacts Y' et Y" au-dessus de Y, le produit fibré Y' $_{Y}$ Y" est quasi-compact. Lorsqu'on suppose Y quasi-compact, on note qu'il suffit de prouver que $i_*(Y'_{Y}Y'')$ est quasi-compact (4.3 b)), ce qui résulte du fait que $i_*(Y')$ et $i_*(Y'')$ le sont (4.3 b)), utilisant ici la quasi-compacité de U), que i_* commute aux produits fibrés, et l'hypothèse $i_*(Y)$ quasi-séparé. Lorsqu'on suppose que E admet une famille génératrice formée d'objets quasi-compacts, alors $i_*(Y')$ est limite inductive filtrante de ses sous-objets quasi-compacts X'_{α} , donc $Y' \simeq i^*i_*(Y')$ est limite inductive filtrante de sous-objets $i^*(X'_{\alpha})$, et comme Y' est quasi-compact, il est égale à un des $i^*(X'_{\alpha})$. De même Y" est de la forme $i^*(X''_{\beta})$, où X''_{β} est un sous-objet quasi-compact de $i_*(Y'')$. Mais alors $Y'_{Y}Y'' = i^*(X'_{\alpha})_{i_*Y}X''_{\beta}$, et comme X'_{α} $i_*(Y)$ quasi-séparé, il s'ensuit que Y' $i_*(Y)$ l'est aussi en vertu de 4.2.

Inversement, supposant U quasi-séparé et $j:U\to e$ quasi-compact, montrons que si Y est quasi-séparé, il en est de même de $i_*(Y)$, i.e. que pour deux objets X', X'' quasi-compacts au-dessus de $i_*(Y)$, le produit fibré $X'_{i_*(Y)}$ X'' est quasi-compact. Pour ceci, appliquant 4.3 a), il suffit de prouver que son image par i^* est quasi-compact (ce qui résulte de 4.2 et de l'hypothèse que Y est quasi-séparé) et que son image par j^* est quasi-compact; or cette dernière est $j^*(X') \times j^*(X'')$, et est bien quasi-compacte car $j^*(X')$ et $j^*(X'')$ le sont (j étant quasi-compact) et U est quasi-séparé.

Corollaire 4.5. — Supposons que E admette une sous-catégorie génératrice formée d'objets quasi-compacts (resp. prénoethériens), alors il en est de même de E".

Cela résulte de 4.2 et du

Lemme 4.5.1. — $Si(X_{\alpha})_{\alpha}$ est une famille génératrice dans E, alors $(i^*(X_{\alpha}))_{\alpha}$ est une famille génératrice dans E''.

Cela signifie en effet que la famille des foncteurs

$$Y \longrightarrow Hom(i^*(X_\alpha), Y)$$

sur E'' est conservative, or on a $\operatorname{Hom}(i^*(X_\alpha), Y) \simeq \operatorname{Hom}(X_\alpha, i_*(Y))$, et il suffit d'utiliser le fait que le foncteur i_* est conservatif.

Proposition 4.6. — Les notations sont celles de 4.1.

- a) Si E admet une famille génératrice formée d'objets cohérents, il en est de même pour le sous-topos fermé E'', et le morphisme d'inclusion $i: E'' \to E$ est cohérent.
- b) Supposons que le morphisme $j: U \to e$ dans E soit quasi-compact. Si E est localement cohérent (resp. cohérent, resp. quasi-séparé, resp. localement noethérien, resp. noethérien, resp. localement parfait, resp. parfait) il en est de même de E'', et le morphisme d'inclusion $i: E'' \to E$ est cohérent.

- a) La première assertion résultera de la seconde et de 4.5.1. En tous cas, 4.5 implique que E" admet une famille génératrice formée d'objets quasi-compacts, donc 3.2 s'applique et nous montre qu'il suffit de vérifier que pour tout objet cohérent X de E, l'objet $i^*(X)$ de E" est cohérent. Utilisant la compatibilité de la formation du topos complémentaire d'un ouvert avec la localisation (IV 9.13 b)), on est ramené au cas où X est l'objet final de E, donc à prouver que l'objet final de E" est cohérent. Or, 4.4 s'applique, donc il suffit de prouver que $i_*(e_{E''}) = e_E$ est cohérent, ce qui est bien le cas.
- b) Comme sous chacune des hypothèses faites dans b), E admet une famille génératrice formée d'objets cohérents, il résulte déjà de a) que $i: E'' \to E$ est cohérent. De plus, 4.5.1 implique alors que E'' admet la sous-catégorie pleine E''_{coh} formée de ses objets cohérents comme sous-catégorie génératrice. Supposons E cohérent, et montrons que E'' l'est aussi, i.e. (2.4.5) montrons que la sous-catégorie E''_{coh} de E'' est stable par limites projectives finies, sachant qu'il en est ainsi pour la sous-catégorie E_{coh} de E; or cela résulte aussitôt du critère 4.4 respé (qui s'applique, car U est maintenant cohérent, e l'étant et $j: U \to e$ étant quasi-compact), compte tenu que i_* est exact à gauche. Par localisation, utilisant encore IV 9.13 b), on en conclut que si E est localement cohérent, il en est de même de E''. Si E est quasi-séparé, alors E'' l'est aussi : en effet son objet final est quasi-séparé en vertu de 4.4, celui de E l'étant, et il reste à prouver que le produit de deux objets quasi-séparés de E'' est quasi-séparé (sachant qu'il en est ainsi dans E''), ce qui résulte encore du critère 4.4 et du fait que i_* commute aux produits (compte tenu que le sous-objet U de e est quasi-séparé, e l'étant, de sorte que 4.4. s'applique).

Comme un topos est localement noethérien (resp. noethérien) si et seulement si il est localement cohérent (resp. cohérent) et admet une famille génératrice formée d'objets prénoethériens (2.10 (iii bis)), il résulte de ce qui précède et de 4.5 que si E est localement noethérien (resp. noethérien), il en est de même de E". Supposons maintenant E parfait, et prouvons que E" l'est. Comme on sait déjà qu'il est cohérent, il reste à vérifier qu'il satisfait au critère 1.25 (i), i.e. que tout objet Y de E" est limite inductive filtrante d'objets cohérents, sachant que l'énoncé analogue est vrai dans E; or $i_*(Y)$ étant limite inductive filtrante d'objets cohérents X_α , $Y \simeq i^*i_*(Y)$ est limite inductive filtrante des objets cohérents $i^*(X_\alpha)$. Par localisation (IV 9.13 b)) on en conclut que si E est localement parfait, il en est de même de E". Cela achève la démonstration de 4.6.

243 Remarque 4.6.1. — En fait, dans 4.6 b) l'hypothèse que j : U → e soit quasi-compact est inutile, sauf peut-être dans le cas « E quasi-séparé ». Il suffit en effet, en vertu de la démonstration qui précède, de voir que E cohérent implique E" cohérent. Or U est limite inductive filtrante de ses sous-objets quasi-compacts U_α, et on vérifiera alors dans 7. qu'alors E" s'identifie au topos limite projective (au sens de 7.) des sous-topos fermés E" complémentaire des E_{/U;}, qui en vertu de 4.6 b) sont des topos cohérents

à morphismes de transition cohérents. Il s'ensuit alors que E'' est un topos cohérent (7).

Corollaire 4.7. — Supposons que la sous-catégorie $E_{\rm coh}$ de E formée des objets cohérents soit génératrice, et soit X un objet de E.

- a) Pour que X soit quasi-séparé, il faut que $i^*(X)$ et $j^*(X)$ le soient, et cette condition est aussi suffisante si $j: U \to e$ est quasi-compact.
- b) Supposons que $j: U \to e$ soit quasi-compact. Alors X est cohérent si et seulement si $i^*(X)$ et $j^*(X)$ le sont.
- c) Supposons E cohérent et $j: U \to e$ quasi-compact. Alors E est parfait (2.9.1) si et seulement si E' et E'' le sont.
- a) On a signalé dans 4.1 que $j: E' \to E$ est quasi-séparé, et d'autre part on sait par 4.6 a) qu'il en est de même de i, d'où la nécessité. Pour la suffisance, soient X' et X'' des objets quasi-compacts au-dessus de X, il faut prouver que X' X'' est quasi-compact, et pour ceci il suffit de prouver que ses images par i^* et j^* le sont (4.3 a)). Comme i et j sont quasi-compacts, en vertu de 4.2 et de l'hypothèse $j: U \to e$ quasi-compact, la conclusion résulte alors du fait que i^* et j^* commutent aux produits fibrés, et de l'hypothèse que $i^*(X)$ et $j^*(X)$ sont quasi-séparés.
 - b) Résulte de la conjonction de a) et de 4.3 a).
- c) La nécessité a été déjà vue (4.6 b)). La suffisance résulte du fait que, E étant cohérent, E' et E'' le sont (4.6 b)), de sorte que pour un des topos envisagés, le fait qu'il soit parfait signifie que la catégorie de ses objets cohérents est stable par \varinjlim finies. On conclut donc par b).
- **Exercice 4.8.** a) Résoudre la question suivante (dont le rédacteur avoue à sa confusion ignorer la réponse) : avec les notations de 4.1, si E est quasi-séparé (resp. algébrique) en est-il de même de E''?
- b) Supposons que E soit équivalent à un topos de la forme \widehat{C} , où C est une catégorie équivalente à une catégorie $\in \mathcal{U}$. Prouver directement, en utilisant 2.17 c) et IV 9.24, que si E est localement cohérent (resp. cohérent, resp. algébrique, resp. quasi-séparé, resp. localement noethérien, resp. noethérien) il en est de même de E''.
- **4.9.** Gardons les notations de 4.1, et rappelons (IV 9.16) que la donnée d'une situation (E, U), formée par un topos E et un ouvert U de E, équivaut essentiellement à celle d'un triple (E', E'', f), où E' et E'' sont des topos et où

245

$$(4.9.1) f: E' \longrightarrow E''$$

est un « foncteur de recollement », i.e. un foncteur exact à gauche et accessible ; partant de (E, U) comme dans 4.1, le foncteur de recollement associé est donné par

$$(4.9.2) f = i^* j_*.$$

Nous nous proposons d'exprimer, en termes des données E', E'', f le fait que E soit un topos cohérent (resp. parfait) et que U soit un objet quasi-compact, ou ce qui revient au même, que E et E' soient cohérents. Nous savons déjà que ceci entraine que E'' est également cohérent (4.6 b)), de sorte que la question revient à la suivante : étant donnés deux topos cohérents E' et E'' et un foncteur de recollement f (4.9.1), à quelles conditions sur f le topos recollé E est-il cohérent (resp. parfait)? Nous savons d'ailleurs (4.7 c)) que E est parfait si et seulement si E est cohérent, et E' et E'' sont parfaits; donc le cas respé du problème posé se ramène au cas non respé. Signalons cependant que la solution (4.10) de ce dernier est plus jolie si on suppose déjà E' parfait.

4.9.3. Notons d'abord que si E est cohérent, alors on reconstruit la sous-catégorie pleine $E_{\rm coh}$ de E formée des objets $X=(X',X'',u:X''\to f(X'))$ de E qui sont cohérents, comme étant la sous-catégorie E_0 de E formée des X pour lesquels $X'=j^*(X)$ et $X''=i^*(X)$ sont cohérents (4.7 b)). Une condition nécessaire pour que E soit cohérent est donc que la sous-catégorie E_0 précédente soit génératrice. Cette condition est également suffisante, car en vertu de 4.3 a) E_0 est formée d'objets quasi-compacts, d'autre part il est clair que E_0 est stable par limites projectives finies, et on conclut par 3.4.5.

Rappelons maintenant (IV 9.18) que la donnée d'un foncteur de recollement (4.9.1) équivaut à celle d'un faisceau sur E'', à valeurs dans $Pro(E')^0$:

$$(4.9.4) \hspace{1cm} G \in \mathscr{F}aisc(E'', Pro(E')^0), G: E''^0 \longrightarrow Pro(E'^0),$$

ou ce qui revient au même, à celle d'un foncteur $g = G^0$,

$$(4.9.5) g: E'' \longrightarrow Pro(E')$$

qui commute aux limites inductives. Si C est une sous-catégorie génératrice de E", qu'on munit de la topologie induite, on sait (II 6.10) que la donnée de G équivaut aussi (à isomorphisme unique près) à celle d'un faisceau sur C à valeurs dans $Pro(E')^0$

$$(4.9.6) G_{C} \in \mathscr{F}aisc(C, \operatorname{Pro}(E')^{0}), G_{C} : C^{\circ} \longrightarrow \operatorname{Pro}(E')^{0},$$

ou, ce qui revient au même, à celle d'un foncteur $g_{\rm C}={\rm G}_{\rm C}^0,$

$$(4.9.7) g_{\rm C}:{\rm C}\longrightarrow {\rm Pro}({\rm E}'),$$

satisfaisant aux conditions d'exactitude à gauche qu'on sait (II 6.2.1)). Bien entendu, $g_{\rm C}$ n'est autre que la restriction de g (4.9.5) à C. Le cas le plus intéressant pour nous est celui où on prend ${\rm C}={\rm E}'_{\rm coh}$, d'où des objets

$$(4.9.8) G_0 \in \mathscr{F}aisc(E''_{coh}, Pro(E')^0), G_0 : E''_{coh} \longrightarrow Pro(E')^0,$$

$$(4.9.9) g_0 = G_0^0 : E_{coh}'' \longrightarrow Pro(E'),$$

dont chacun revient encore à la donnée de f.

4.9.10. Supposons la sous-catégorie pleine génératrice C de E" formée d'objets quasicompacts et qu'elle soit stable dans E" par sommes finies, par passage au quotient par des relations d'équivalence, et par produits fibrés : c'est le cas par exemple pour $C = E''_{coh}$ (1.15 et 1.17.1). Il est alors immédiat, si P est une catégorie où les limites projectives finies sont représentables (par exemple $P = Pro(E')^0$), qu'un foncteur $G_C : G^0 \to P$ est un faisceau à valeurs dans P si et seulement si le foncteur $g_C =$ $G_C^0 : C \to P^0$ commute aux sommes finies et au passage au quotient par une relation d'équivalence. Ceci précise en particulier quels sont les faisceaux (4.9.6) (exprimant donc les foncteurs de recollement $f : E' \to E''$).

Ces rappels étant posés, nous pouvons donner la solution au problème posé dans 4.9 :

Proposition 4.10. — Soient E', E'' deux topos cohérents, et $f: E' \to E''$ un foncteur de recollement (IV 9.10), i.e. un foncteur exact à gauche et accessible. Soit E le topos qu'on en déduit par recollement (IV 9.16), et désignons par E'_{coh} (resp. E'_{PF}) la souscatégorie strictement pleine de E' formée des objets cohérents (resp. des objets X tels que le foncteur covariant Hom(X, -) représenté par X commute aux petites limites inductives filtrantes). Considérons les conditions suivantes :

- (i) E est cohérent.
- (ii) Pour tout objet X' de E', il existe une famille de morphismes

$$v_{\alpha}: \mathbf{Y}'_{\alpha} \longrightarrow \mathbf{X}'$$

de but X', à sources des objets cohérents de E', telle que la famille des

$$f(v_{\alpha}): f(Y'_{\alpha}) \longrightarrow f(X')$$

dans E" soit couvrante.

(ii bis) f commute aux (petites) limites inductive inductives filtrantes, et (ii) est vrai pour tout $X' \in Ob E'_{PF}$.

(ii ter) Le foncteur canonique (IV 9.20.1)

$$(4.10.1) \pi: \mathscr{P}oint(E'') \longrightarrow Pro(E')$$

défini par le foncteur de recollement f se factorise (à isomorphisme près) par $\operatorname{Pro}(E'_{\operatorname{coh}})$ (via le foncteur pleinement fidèle $\operatorname{Pro}(E'_{\operatorname{coh}}) \to \operatorname{Pro}(E')$ provenant de l'inclusion $E'_{\operatorname{coh}} \to E'$):

$$(4.10.2) \pi_0: \mathscr{P}oint(E'') \longrightarrow Pro(E'_{coh}).$$

(iii) Le foncteur f commute aux (petites) limites inductives filtrantes.

249

(iii bis) Le foncteur g_0 (4.9.9) se factorise (à isomorphisme près) par un foncteur

$$(4.10.3) E''_{coh} \longrightarrow Pro(E'_{PF}),$$

via le foncteur pleinement fidèle $\operatorname{Pro}(E'_{\operatorname{PF}}) \to \operatorname{Pro}(E')$ déduit de l'inclusion $E'_{\operatorname{PF}} \to E'$.

251

(iii ter) Le foncteur canonique π (4.10.1) se factorise (à isomorphisme prés) en (4.10.4) $\pi_1: \mathscr{P}oint(E'') \longrightarrow Pro(E'_{PF}).$

(iv) Le foncteur g_0 (4.9.9) se factorise (à isomorphisme prés) par un foncteur (4.10.5) $E''_{coh} \longrightarrow Pro(E'_{coh}).$

On a alors le diagramme d'implications :

$$(4.10.6) \qquad (iv) \Rightarrow (i) \Leftrightarrow (ii) \Leftrightarrow (ii) bis) \Leftrightarrow (iii) ter) \Rightarrow (iii) \Leftrightarrow (iii) bis) \Leftrightarrow (iii) ter).$$

Signalons tout de suite le

Corollaire 4.11. — a) Supposons que E' soit parfait. Alors toutes les conditions envisagées dans 4.10 sont équivalentes, en particulier E est cohérent si et seulement si f commute aux limites inductives filtrantes, ou encore si et seulement si le foncteur g_0 (4.9.9) se factorise (à isomorphisme près) par $\operatorname{Pro}(E'_{\operatorname{cub}})$.

b) Pour que E soit parfait, il faut et il suffit que E' et E'' le soient, et que f (resp. g_0) satisfasse à la condition énoncée dans a).

En effet, a) résulte du fait que E' parfait signifie $E'_{coh} = E'_{PF}$, de sorte que (iii bis) implique (iv). L'assertion b) s'ensuit, comme il résulte des remarques préliminaires de 4.9.

4.12. Démonstration de 4.10. —

a) Explicitons la condition équivalente à (i) obtenue dans 4.9.3, savoir que la souscatégorie pleine E_0 de E est génératrice i.e. que pour tout objet $X = (X', X'', u : X'' \rightarrow f(X'))$ de E, la famille de tous les morphismes

$$v = (v', v'') : Y = (Y', Y'', v : Y'' \longrightarrow f(y')) \longrightarrow X,$$

avec $Y \in Ob E_0$ i.e. Y', Y'' cohérents, est épimorphique. Comme le couple de foncteurs (i^*, j^*) est conservatif, cela signifie aussi que la famille des morphismes correspondants $Y' \to X'$ est épimorphique dans E', et que la famille des morphismes correspondants $Y'' \to X''$ est épimorphique dans E''. Or c'est clair pour la première, comme on voit en prenant des $Y \in Ob E_0$ au-dessus de U i.e. tels que $Y'' = \emptyset_{E''}$: on trouve la famille de toutes les flèches dans E' de but X', à source cohérente, qui est bien épimorphique puisque E' est cohérent donc la cous-catégorie E'_{coh} est génératrice. Il reste donc à exprimer que la famille des $Y'' \to X''$ est épimorphique, quel que soit l'objet donné X de E.

b) Or supposons satisfaite la condition (ii) pour l'objet X' envisagé ici. Il en résulte que l'on peut trouver une famille épimorphique de morphismes $Y''_{\beta} \to X''$, dont les composées avec $u: X'' \to f(X')$ se relèvent chacun en un morphisme $Y''_{\beta} \to f(Y'_{\alpha})$

pour $\alpha = \phi(\beta)$ convenable; comme E''_{coh} est une sous-catégorie génératrice de E'', on peut même supposer les Y''_{β} cohérents. Mais alors les diagrammes commutatifs

fournissent la famille cherchée de morphismes dans E, donnant une famille épimorphique $Y''_{\beta} \to X''$. Donc (ii) \Rightarrow (i).

Réciproquement, supposons (i) et prouvons (ii). On applique la condition explicitée dans a) au cas de l'objet

$$X = j_*(X') = (X', f(X'), id = f(X') \xrightarrow{\sim} f(X'));$$

comme les $Y'' \to X'' \simeq f(X')$ forment une famille épimorphique, il en est de même a fortiori de la famille des $f(v'): f(Y') \to f(X')$, d'où la conclusion, puisque les Y' sont cohérents par hypothèse. Donc

$$(i) \Leftrightarrow (ii)$$
.

c) Notons maintenant que la condition (iv) signifie aussi que pour tout objet X'' 252 de F'', le foncteur pro-représentable

$$q(X''): X' \longrightarrow \text{Hom}(X'', f(X'))$$

sur E' est pro-représentable par un pro-objet dont les composants sont dans E'_{coh} , ou ce qui revient au même, qu'il existe dans la catégorie $E'_{/g(X'')}$, formée des couples d'un objet X' de E' et d'un élément $u \in g(X'')(X') = \operatorname{Hom}(X'', f(X')), \ u : X'' \to f(X'),$ un ensemble cofinal d'objets $(X'_{\alpha}, u_{\alpha}), \ u_{\alpha} : X'' \to f(X'_{\alpha}),$ avec $X''_{\alpha} \in \operatorname{Ob} E'_{\operatorname{coh}}$. La condition de cofinalité, comme la catégorie $E'_{/g(X'')}$ est filtrante, signifie simplement que pour tout objet $(X', u), \ u : X'' \to f(X')$ de $E'_{/g(X'')}$ il existe un morphisme d'un (X'_i, u_i) dans l'objet précédent, i.e. un morphisme $v'_{\alpha} : X'_{\alpha} \to X'$ rendant commutatif le triangle

$$(*) \qquad u_{\alpha} \qquad f(x'_{\alpha}) \\ \downarrow f'(v'_{\alpha}) \\ X'' \longrightarrow f(X').$$

Donc la condition (iv) équivaut à ceci :

(iv bis) Pour tout flèche $u: X'' \to f(X')$, avec $X' \in \operatorname{Ob} E'$ et $X'' \in \operatorname{Ob} E'_{\operatorname{coh}}$, il existe une flèche $v: Y' \to X'$ dans E' telle que u se factorise à travers $f(v'): f(X') \to f(X')$.

254

255

VI

Or il est clair que la condition (iv bis) implique (ii), puisque pour X' fixé, la famille des $u: X'' \to f(X')$ de source un objet cohérent est épimorphique, de sorte qu'il en est a fortiori ainsi de la famille de tous les $f(v'_{\alpha})$ dans les diagrammes correspondants (*). Donc

$$(iv) \Rightarrow (i)$$
.

d) Explicitons la condition (ii ter). Soit p un point de E", alors par définition $\pi(p)$ est le pro-objet de E' qui pro-représente le foncteur $h: X' \to f(X')_p$, ou encore la pro-objet défini par le foncteur canonique $E'_{/h} \to E'$, où $E'_{/h}$ désigne la catégorie des couples (X', u), avec $X' \in \text{Ob}\,E'$ et $u \in h(X')$ i.e. $u \in f(X')_p$. Dire que ce pro-objet est isomorphe à un pro-objet provenant de $\text{Pro}(E'_{\text{coh}})$ signifie que la sous-catégorie de $E'_{/h}$ formée des (X', u) avec $X' \in \text{Ob}\,E'_{\text{coh}}$ y est cofinale, i.e. que pour tout objet (X', u), $u \in f(X')_p$, de $E'_{/h}$, il existe un objet (X'_0, u_0) qui le majore, avec X'_0 cohérent, i.e. qu'il existe un morphisme $X'_0 \to X'$ (X'_0 cohérent) tel que u soit dans $\text{Im}(f(X'_0) \to f(X'))$. Dire que ceci est vrai pour tout point p signifie que pour tout objet X' de E', la famille des $f(X'_0) \to f(X')$, avec $f(X'_0)_P \to f(X')_P$ soit surjective. Comme on verra dans l'appendice (10.) qu'un topos cohérent E'' a assez de points, on voit que la condition obtenue signifie aussi que pour tout $X' \in \text{Ob}\,E$, la famille des $f(X'_0) \to f(X')$ est épimorphique. Mais cela n'est autre que la condition (ii), donc

$$(ii) \Leftrightarrow (ii \text{ ter}).$$

e) La condition que f commute aux limites inductives filtrantes (condition (iii)) équivaut, comme la famille des foncteurs fibres de E'' est conservative, à celle que les foncteurs composés $h: X' \to f(X')_P$ le sont. Prouvons que cela signifie que le proobjet $\pi(p)$ qui pro-représente ce foncteur est dans l'image essentielle de $\operatorname{Pro}(E'_{\operatorname{PF}})$: cela prouvera alors les implications

$$(iii) \Leftrightarrow (iii \text{ ter}) \Leftarrow (iii \text{ ter}) \Rightarrow (iii \text{ bis}).$$

Nous sommes donc amenés à prouver le

Lemme 4.12.1. — Soient E' un topos tel que la sous-catégorie E'_{coh} y soit génératrice, et $X' \in Ob \operatorname{Pro}(E')$. Pour que X' appartienne à l'image essentielle de $\operatorname{Pro}(E'_{PF})$, il faut et il suffit que le foncteur $h : E' \to (Ens)$ qu'il pro-représente commute aux limites inductives filtrantes.

Comme une limite inductive filtrante de foncteurs commutant aux limites inductives filtrantes possède la même propriété, la suffisance résulte de la définition de E'_{PF} . Pour la nécessité, il faut prouver que si le foncteur h commute aux limites inductives filtrantes, alors dans la catégorie filtrante $E'_{/h}$ des couples (X', u) avec $u \in h(X')$, la sous-catégorie formée des couples (X', u) avec $X' \in Ob E'_{PF}$ est cofinale, i.e. pour tout (X', u) dans $E'_{/h}$, il existe un morphisme $X'_0 \to X'$, avec $X'_0 \in Ob E'_{PF}$, tel que $u \in Im(h(X'_0) \to h(X'))$. Or on sait que X' est limite inductive filtrante d'objets X'_i de E'_{PF} (1.24.2 a)), donc h(X') est limite inductive filtrante des $h(X'_i)$, d'où la conclusion.

f) Il reste seulement à prouver les implications

$$(ii bis) \Rightarrow (ii) et (iii) \Leftrightarrow (iii bis).$$

La première implication résulte trivialement du fait que tout objet X' de E' est limite inductive filtrante d'objets X'_i de E'_{PF} . Pour la deuxième, il suffit de noter que la famille des foncteurs

$$Y'' \longmapsto Hom(X'', Y''),$$

pour X" \in Ob E"_{coh}, est conservative et formée de foncteurs commutant aux limites inductives filtrantes (1.23 (ii)), donc le foncteur $f: E' \to E''$ commute aux limites inductives filtrantes si et seulement s'il en est ainsi des foncteurs composés X' \to Hom(X', f(X')) = Hom_{Pro(E')}($g_0(X''), X'$), ce qui équivaut au fait que les $g_0(X'')$ sont dans l'image essentielle de Pro(X'_{PF}), en vertu de 4.12.1. C.Q.F.D.

Remarque 4.13. — Il convient de préciser, en langage faisceautique, la signification de la condition 4.10 (iv). Considérons le diagramme commutatif de foncteurs

où les signes \vee désignent les catégories de foncteurs à valeurs dans (Ens), et la deuxième flèche horizontale γ est la flèche de restriction des foncteurs, toutes les autres flèches désignant les foncteurs pleinement fidèles bien connus. Notons que la flèche d'inclusion α ne commute pas en général aux limites projectives, mêmes finies, donc en général un faisceau F sur un site C (tel que E") définit un préfaisceau $\alpha \circ F$ sur ce même site, à valeurs dans $\operatorname{Pro}(E'')^0$, qui n'est pas nécessairement un faisceau. Néanmoins, si un préfaisceau F sur C à valeurs dans $\operatorname{Pro}(E'_{\operatorname{coh}})^0$ est tel que le préfaisceau αF correspondant à valeurs dans $\operatorname{Pro}(E')^0$ est un faisceau, alors F est lui-même un faisceau. Cela provient en effet du fait que la condition d'être un faisceau est une propriété d'exactitude à gauche (II 6.2 1)), et que les foncteurs β , β_0 et γ commutent aux petites limites projectives.

D'autre part, il résulte de la caractérisation 4.9.10 des faisceaux sur E''_{coh} à valeurs dans une catégorie P quelconque, que pour tout foncteur $\alpha: P \to Q$ tel que $\alpha^0: P^0 \to Q^0$ commute aux sommes finies et au passage au quotient par des relations d'équivalence, le foncteur $g \mapsto \alpha \circ g'$ de $\operatorname{Hom}(E''^0_{\operatorname{coh}}, P)$ dans $\operatorname{Hom}(E''^0_{\operatorname{coh}}, Q)$ transforme faisceaux en faisceaux. D'autre part, nous savons que dans $\operatorname{Hom} E'_{\operatorname{coh}}$ et dans E' les sommes finies et les quotients par les relations d'équivalence sont représentables, et que le foncteur d'inclusion $E'_{\operatorname{coh}} \to E'$ y commute (1.15 et 1.17.1). Il en est donc

de même pour les catégories $\text{Pro}(E'_{\text{coh}})$ et Pro(E') et le foncteur d'inclusion entre ces catégories (I 8.9.5 b) et 8.9.7), lequel n'est autre que α^0 , où α est le foncteur intervenant dans (4.13.1). De ceci on conclut que si

$$(4.13.2) \varphi : {\rm E'}_{\rm coh}^0 \longrightarrow {\rm Pro}({\rm E}_{\rm coh}')^0$$

est un foncteur, alors φ est un faisceau sur E''_{coh} à valseurs dans $Pro(E'_{coh})^0$ si et seulement si $\alpha \circ \varphi$ est un faisceau sur E''_{coh} à valeurs dans $Pro(E')^0$. Donc la catégorie des foncteurs de recollement $f: E' \to E''$ qui satisfont à la condition 4.10 (iv) est canoniquement équivalente à la catégorie des faisceaux φ sur E''_{coh} à valeurs dans $Pro(E'_{coh})^0$. On en conclut, compte tenu de 4.10, qu'un tel faisceau φ définit canoniquement un foncteur de recollement (à isomorphisme unique près), et que le topos E déduit de ce dernier est cohérent; de plus (4.11) si E' est parfait, on obtient ainsi tous les topos cohérents qu'on peut déduire des topos E', E'' par recollement.

Notons d'autre part que E'_{coh} est équivalente à une petite catégorie et est stable par limites projectives finies, de sorte que (I 8.10.14) $Pro(E'_{coh})^0$ est équivalente, par le foncteur pleinement fidèle β_0 de (4.13.1), à la sous-catégorie pleine de $E'_{coh} = Hom(E'_{coh}, (Ens))$ formée des foncteurs qui sont exacts à gauche. Donc la donnée d'un faisceau (4.13.2) équivaut à celle d'un foncteur

$$(4.13.3) \hspace{3.1em} F: E''^0_{coh} \times E'_{coh} \longrightarrow (Ens)$$

qui soit un faisceau par rapport au premier argument et qui soit exact à gauche en le second argument ; ou encore, à celle d'un foncteur

$$(4.13.4) f_0: \mathbf{E}'_{\mathrm{coh}} \longrightarrow \mathbf{E}''$$

qui soit exact à gauche. Si f est le foncteur de recollement satisfaisant à la condition 4.10 (iv) associé à φ , on vérifie immédiatement que f_0 est canoniquement isomorphe à la restriction du foncteur $f: E' \to E''$. On voit donc que sous les conditions envisagées f_0 détermine f (à isomorphisme canonique près). Signalons enfin, pour résumer le contenu de 4.11:

Corollaire 4.14. — Lorsque E' est un topos parfait, alors la catégorie des foncteurs de recollement $f: E' \to E''$ qui donnent par recollement un topos cohérent E est équivalente par $f \mapsto f_0 = f/E'_{\rm coh}$ à la catégorie des foncteurs $f_0: E'_{\rm coh} \to E''$ qui sont exacts à gauche, ou encore à la catégorie des faisceaux φ sur le site $E''_{\rm coh}$ (ou, ce qui revient au même, sur le topos E'') à valeurs dans la catégorie $Pro(E'_{\rm coh})^0$ (cf. 4.9.10).

On observera que la première assertion résulte également 4.10 en notant que $E' \cong \operatorname{Ind}(E'_{\operatorname{coh}})$ (1.25), donc que la catégorie des foncteurs $f: E' \to P$ commutant aux limites inductives filtrantes (où P est une catégorie où les petites limites inductives filtrantes sont représentables) est équivalente, par le foncteur restriction, à la catégorie des foncteurs quelconque $f: E'_{\operatorname{coh}} \to P$; il est immédiat que sous ces conditions, si dans P les \varinjlim finies sont représentables, que f est exact à gauche si et seulement si f_0 l'est.

258

259

Remarques 4.15. — a) La démonstration donnée de 4.10 montre qu'on obtient des conditions équivalentes à (ii ter) resp. (iii ter) en remplaçant la catégorie $\mathscr{P}oint(E'')$ par une sous-catégorie qui définisse une famille conservative de foncteurs fibres.

b) Prenant pour E'' le topos ponctuel (IV 2.2), on voit aussitôt que les conditions (ii ter) et (iii ter) ne sont équivalentes $que\ si\ E'_{\rm coh}=E'_{\rm FF}$, i.e. si E' est parfait. Donc la condition « E cohérent » n'équivaut à la condition « f commute aux limites inductives filtrantes » que si E' est parfait. Par contre, prenant plus généralement pour E'' un topos cohérent de la forme \hat{C} , on voit que f can la condition (i) équivaut à (iv) f pour tout E'. En fait, le rédacteur n'est pas arrivé à construire dans le cas général un exemple où E soit cohérent, sans que la condition (iv) soit vérifiée. C'est honteux!

5. Commutation des foncteurs $H^i(X, -)$ aux limites inductives filtrantes

260

Théorème 5.1. — Soient E' un topos algébrique (2.3), E un topos localement cohérent (2.3), $f: E' \to E$ un morphisme cohérent de topos (3.1). Alors, pour tout entier q, les foncteurs $\mathbb{R}^q f_*$ (V 5.0) commutent aux limites inductives filtrantes de faisceaux abéliens.

Corollaire 5.2. — Soit E' un topos cohérent (2.3). Pour tout entier q, le foncteur $H^q(E', -)$ commute aux limites inductives filtrantes de faisceaux abéliens.

Corollaire 5.3. — Soient E un topos (resp. un topos algébrique) (2.3), X un objet de E algébrique et cohérent (resp. cohérent) (2.3). Pour tout entier q, le foncteur $H^q(X, -)$ commute aux limites inductives filtrantes de faisceaux abéliens.

Le corollaire 5.2, se déduit de 5.1 en prenant pour E le topos ponctuel et pour $f: E' \to E$ l'unique morphisme (IV 2.2). Montrons que 5.2 entraı̂ne 5.3. Soit $j_X: E_{/X} \to E$ le morphisme de localisation. On a un isomorphisme canonique, fonctoriel en le faisceau abélien (V 2.2.1) $H^q(X, F) \simeq H^q(E_{/X}, j_X^*F)$. Le foncteur j_X^* commute aux limites inductives et le topos $E_{/X}$ est cohérent (2.4.6) d'où 5.3. Montrons que 5.3 entraı̂ne 5.1. Soit E_{cohalg} la sous-catégorie pleine de E définie par les objets algébriques et cohérents de E. C'est une catégorie génératrice (2.4.5). Pour tout faisceau abélien $F, R^q f_*F$ est le faisceau associé au préfaisceau $X \mapsto H^q(f^*X, F)$ ($X \in \text{ob C}$) (V 5.1). Comme f est cohérent, f^*X est cohérent pour tout objet X de X

résultat classique de [7], il suffit pour démontrer 5.2, de montrer qu'une limite inductive filtrante de faisceaux acycliques pour le foncteur $H^{\circ}(E',-)$ est acyclique pour $H^{\circ}(E',-)$. Ceci résulte du lemme suivant appliqué au cas où $C=E'_{\rm coh}$ ':

261 Lemme 5.4. — Soient E un topos localement cohérent (2.3), C une sous-catégorie pleine de E, génératrice et stable par produit fibré telle que tout objet de C soit quasicompact (1.1). Une limite inductive filtrante de faisceaux C-acycliques (V 4.2) est un faisceau C-acyclique.

Soit $(F_i)_{i\in I}$, un système inductif filtrante de faisceaux C-acycliques et notons F sa limite inductive. Tout objet Y de C est cohérent (2.1) et par suite $F(Y) = \varinjlim_i F_i(Y)$ (1.2.3). Pour montrer que F est C-acyclique, il suffit de montrer que $\check{H}^q(Y,F) = 0$ pour tout q > 0 et tout Y de C (V 4.3). Soient X un objet de C, $\mathscr{X} = (X_\alpha \to X)_{\alpha \in A}$ une famille couvrante finie par des objets de C'. On a $H^q(\mathscr{X},F) = H^q(C^{\bullet}(\mathscr{X},F))$ (V 2.4.3). D'après ce qui précède, et en utilisant le fait que $C^{\bullet}(\mathscr{X},F)$ ne fait intervenir que des produits finis de groupes (V 2.3.3), on a $C^{\bullet}(\mathscr{X},F) = \varinjlim_i C^{\bullet}(\mathscr{X},F_i)$. Donc $H^q(\mathscr{X},F) = H^q(C^{\bullet}(\mathfrak{X},F)) = H^q(\varinjlim_i C^{\bullet}(\mathfrak{X},F_i)) = 0$ pour q > 0 (V 4.3). Par suite $\check{H}^q(X,F) = \varinjlim_i H^q(\mathfrak{X},F) = 0$.

Corollaire 5.5. — Soient E un topos cohérent (2.3), $(X_i)_{i\in I}$ une famille filtrante décroissante de sous-objets cohérents de l'objet final. Notons Φ la famille des fermés de E (IV 9) contenue dans le fermé complémentaire de l'un des X_i . La famille Φ est une famille de supports de E (V 6.12) et pour tout entier q, les foncteurs $H^q_{\Phi}(E, -)$ et $H^q_{\Phi}(V 6.13)$ commutent aux limites inductives filtrantes.

Soit Z_i le fermé complémentaire de X_i . Pour tout faisceau abélien F on a une suite exact (V 6.5) :

$$0 \longrightarrow H^0_{\mathbf{Z}_i}(\mathbf{E},\mathbf{F}) \longrightarrow H^0(\mathbf{E},\mathbf{F}) \longrightarrow H^0(\mathbf{X}_i,\mathbf{F}) \longrightarrow H^1_{\mathbf{Z}_i}(\mathbf{E},\mathbf{F}) \longrightarrow \dots \quad .$$

Les foncteurs $H^q(E, F)$ et $H^q(X_i, F)$ commutent aux limites inductives de l'argument F (5.2, 5.3). Par suite $H^q_{Z_i}(E, F)$ commute aux limites inductives filtrantes de l'argument F, d'où la propriété analogue pour les foncteurs $H^q_{\Phi}(E, F)$, en passant à la limite inductive sur les Z_i (V 6.13). L'assertion concernant les foncteurs \mathscr{H}^q_{Φ} s'en déduit en localisant et en passant au faisceau associé.

Définition 5.6. — Soient E un topos annelé d'anneau A et q un entier. Un A-Module G est dit de q-présentation finie s'il existe une famille X_i d'objets de E couvrant l'objet final de E, telle que pour tout i on ait une suite exacte de Modules sur $E_{/X_i}$:

$$(5.5.1) L_q \longrightarrow L_{q-1} \longrightarrow \cdots L_1 \longrightarrow L_0 \longrightarrow G_{/X_i} \longrightarrow 0$$

où pour tout p, $L_p = A_{/X_i}^{n_p}$, n_p entier.

Proposition 5.7. — Soit G un faisceau de q-présentation finie. Pour tout $i \leq q-1$, le foncteur $\mathcal{E}xt_A^i(G,-)$ commute aux limites inductives filtrantes de A-Modules.

Le problème est local sur E (V 6.1). On peut donc supposer, quitte à se localiser aux $E_{/X_i}$, qu'on a une suite exacte du type (5.5.1). Posons $L = L_q \to \cdots L_1 \to L_0$. On a $\mathscr{E}\!xt_A^i(G,F) : \mathscr{H}^i(\mathscr{H}\!\mathit{om}_A(L,F))$ et le foncteur $F \mapsto \mathscr{H}\!\mathit{om}_A(L,F)$ commute aux limites inductives, d'où la proposition.

Corollaire 5.8. — Soient (E, A) un topos annelé, G un faisceau de A-Modules de q-présentation finie, X un objet algébrique et cohérent de E. Les foncteurs $F \mapsto \operatorname{Ext}_A^i(X;G,F)$, tels que $\frac{i(i-1)}{2} \leqslant q-1$, commutent aux limites inductives filtrantes de l'argument F.

Se déduit de 5.7, et de 5.3 par la suite spectrale (V 6.1.3).

5.9. Soient (E, A) un topos annelé, Φ une famille de supports de E (V 6.12), G un A-module de r-présentation finie (5.6), X un objet de E algébrique et cohérent (2.3). En passant à la limite inductive sur les fermés de Φ dans les dernières suites spectrales de V 6.9.1 et V 6.9.2 respectivement, on obtient deux suites spectrales (V 6.13)

$$(5.9.1) \qquad \begin{cases} '\mathrm{E}_{2}^{pq} = \varinjlim_{\mathrm{Z} \in \Phi} \mathrm{Ext}_{\mathrm{A}}^{p}(\mathrm{X}; \mathrm{G}, \mathrm{H}_{\mathrm{Z}}^{q}\mathrm{F}) \Rightarrow \mathrm{Ext}_{\mathrm{A}, \Phi}^{p+q}(\mathrm{X}; \mathrm{G}, \mathrm{F}), \\ ''\mathrm{E}_{2}^{pq} = \varinjlim_{\mathrm{Z} \in \Phi} \mathscr{E}xt_{\mathrm{A}}^{p}(\mathrm{G}, \mathrm{H}_{\mathrm{Z}}^{q}\mathrm{F}) \Rightarrow \mathscr{E}xt_{\mathrm{A}, \Phi}^{p+q}(\mathrm{G}, \mathrm{F}). \end{cases}$$

Il résulte de 5.7 et de 5.8 qu'on a des isomorphismes canoniques

(5.9.2)
$$\begin{cases} ' \mathbf{E}_2^{pq} \simeq \mathbf{Ext}_{\mathbf{A}}^p(\mathbf{X}; \mathbf{G}, \mathbf{H}_{\Phi}^q \mathbf{F}) &, \frac{p(p-1)}{2} \leqslant r - 1, \\ " \mathbf{E}_2^{pq} \simeq \mathscr{E}xt_{\mathbf{A}}^p(\mathbf{G}, \mathbf{H}_{\Phi}^q \mathbf{F}) &, p \leqslant r - 1. \end{cases}$$

Corollaire 5.10. — On utilise les hypothèses et les notations de 5.5. Soient A un Anneau de E et G un A-Module de q-présentation finie. Pour tout entier i tel que $\frac{i(i-1)}{2} \leqslant r-1$, les foncteurs $F \mapsto \operatorname{Ext}_{A,\Phi}^i(E;G,F)$ et $F \mapsto \operatorname{\mathscr{E}\!\mathit{xt}}_{A,\Phi}^i(G,F)$ (V 6.13) commutent aux limites inductives filtrantes.

Se déduit de 5.5 et 5.7 par les premières suites spectrales de V 6.9.1 et V 6.9.2 respectivement.

6. Limites inductive et projective d'une catégorie fibrée

6.0. Nous supposons que le lecteur est familier avec la théorie des catégories fibrées [5]. Ce numéro a essentiellement pour but de fixer la terminologie et les notations concernant les catégories fibrées. Toutes les catégories considérées dans ce numéro appartiendront, sauf mention contraire, à un univers fixé \mathscr{U} .

Soient $\mathscr{F}, \mathscr{G}, \mathscr{E}$ trois catégories, $\pi : \mathscr{F} \to \mathscr{E}$ et $\pi' : \mathscr{G} \to \mathscr{E}$ deux foncteurs. On désigne par $\mathscr{H}om_{\mathscr{E}}(\mathscr{F},\mathscr{G})$ la catégorie dont les objets sont les foncteurs $u : \mathscr{F} \to \mathscr{G}$

265

tels que le diagramme

soit commutatif, et dont les morphismes sont les \mathscr{E} -morphismes de foncteurs, i.e. les morphismes de foncteurs transformés par π' en morphismes identiques.

Soit ξ un objet de $\mathscr E$ au-dessus. Les objets X de $\mathscr F$ tels que $\pi(X)=\xi$ sont appelés les objets de $\mathscr F$ au-dessus de ξ . Soit $f:\xi\to n$, un morphisme de $\mathscr E$. Les morphismes m de $\mathscr F$ tels que $\pi(m)=f$ sont appelés les morphismes de $\mathscr F$ au-dessus de f. Soient $f:\xi\to\eta$ un morphisme de $\mathscr E$ et X un objet de $\mathscr F$ su-dessus de ξ , Y un objet de $\mathscr F$ au-dessus de η ; on désigne par $\mathrm{Hom}_f(X,Y)$ l'ensemble des morphismes de X dans Y au-dessus de f.

Définition 6.1. — 1) Un morphisme $m: X \to Y$ de \mathscr{F} est dit cartésien si pour tout morphisme $p: Z \to Y$ au-dessus de $\pi(m)$, il existe un unique morphisme $q: Z \to X$ au-dessus de l'identité de $\pi(X)$ tel que mq = p.

2) La catégorie \mathscr{F} est dite préfibrée par π au-dessus de $\mathscr E$ si pour tout morphisme $f:\xi\to\eta$ de $\mathscr E$ tout objet de $\mathscr F$ au-dessus de η est but d'un morphisme cartésien au-dessus de f.

3) La catégorie $\mathscr F$ est dite fibrée par π au-dessus de $\mathscr E$ si elle est préfibrée et si le composé de deux morphismes cartésiens composables de $\mathscr F$ est un morphisme cartésien.

6.1.1. Soit ξ un objet de \mathscr{E} . On appelle *catégorie fibre* de \mathscr{F} en ξ , et on désigne par \mathscr{F}_{ξ} , la sous-catégorie de \mathscr{F} dont les objets sont les objets de \mathscr{F} au-dessus de ξ et les morphismes sont les morphismes de \mathscr{F} au-dessus de id $_{\xi}$. Soient deux objets X et Y de F_{ξ} , on désigne par $\operatorname{Hom}_{\xi}(X,Y)$ l'ensemble des morphismes de X dans Y dans \mathscr{F}_{ξ} .

6.1.2. Soit $f:\xi\to\eta$ un morphisme de $\mathscr E$. Un objet de Y au-dessus de η est but d'un morphisme cartésien au-dessus de f, si et seulement si le foncteur défini sur la fibre $\mathscr F_\xi$ à valeur dans les ensembles

$$Z \mapsto \operatorname{Hom}_f(Z, Y) \quad Z \in \operatorname{ob}(\mathscr{F}_{\xi}),$$

est représentable. Lorsque la catégorie ${\mathscr F}$ est préfibrée, le foncteur

$$Y \mapsto \operatorname{Hom}_f(.,Y) \quad Y \in \operatorname{ob}(\mathscr{F}_{\eta}),$$

à valeurs dans la catégorie des préfaisceaux d'ensembles sur \mathscr{F}_{ξ} , est en fait à valeurs dans la catégorie des foncteurs représentables sur \mathscr{F}_{ξ} , et définit donc, à isomorphisme unique près, un foncteur $f^*:\mathscr{F}_{\eta}\to\mathscr{F}_{\xi}$, qui est appelé le foncteur image réciproque

pour f. Supposons que la catégorie \mathscr{F} soit préfibrée et choisissons pour tout morphisme f de $\mathscr E$ un foncteur changement de base f^* . La catégorie $\mathscr F$ est alors fibrée au-dessus de $\mathscr E$ si et seulement si pour tout couple f et g de morphismes composables de $\mathscr E$ le foncteur composé f^*g^* est un foncteur image réciproque. Soit alors

$$(6.1.2.1) C_{f,g}: f^*g^* \longrightarrow (gf)^*$$

l'isomorphisme canonique. Les isomorphismes $C_{f,g}$ vérifient une condition de cocycles, provenant de l'associativité de la composition des morphismes dans $\mathscr E$:

(6.1.2.2)
$$C_{f,hg}: (f^* \circ C_{g,h}) = C_{gh,f}(C_{f,g} \circ h^*)$$

6.1.3. Réciproquement lorsqu'on se donne pour tout objet ξ de $\mathscr E$ une catégorie $\mathscr F_{\xi}$, pour tout morphisme $f: \xi \to \eta$ un foncteur $f^*: \mathscr F_{\eta} \to \mathscr F_{\xi}$, et pour tout couple (f,g) de morphismes de $\mathscr E$ un isomorphisme de foncteurs $C_{f,g}: f^*g^* \to (fg)^*$, tels que les $C_{f,g}$ vérifient la condition (6.1.2.2), on peut construire de manière essentiellement unique une catégorie $\mathscr F$ fibrée au-dessus de $\mathscr E$ dont les fibres « sont » les catégories $\mathscr F_{\xi}$ et dont les foncteurs changement de base peuvent être choisis « égaux » aux foncteurs donnés à l'avance [5].

6.1.4. Soient \mathscr{F} et \mathscr{G} deux catégories au-dessus de \mathscr{E} . On désigne par

$$\mathscr{H}om_{\operatorname{cart}}/\mathscr{E}(\mathscr{F},\mathscr{G})$$

la sous-catégorie pleine de $\mathscr{H}om_{\mathscr{E}}(\mathscr{F},\mathscr{G})$ définie par les foncteurs qui transforment les morphismes cartésiens de \mathscr{F} en morphismes cartésiens de \mathscr{G} . Les objets de $\mathscr{H}om_{\operatorname{cart}/\mathscr{E}}(\mathscr{F},\mathscr{G})$ sont appelés $foncteurs\ cartésiens$.

Soient C et C' deux catégories et S un ensemble de morphismes de la catégorie C. On désigne par $Hom_{S^{-1}}(C,C')$ l'ensemble des foncteurs de C dans C' qui transforment les morphismes de S en isomorphismes.

Désignons par (Cat) la catégorie dont les objets sont les catégories appartenant à l'univers et dont les morphismes sont les foncteurs entre ces catégories (la catégorie (Cat) n'appartient pas à l'univers).

Soient $\mathscr F$ une catégorie au-dessus de $\mathscr E$ et S l'ensemble des morphismes cartésiens de $\mathscr F$. La catégorie $\mathscr F$ définit deux foncteurs sur (Cat) à valeur dans la catégorie des ensembles appartement à l'univers :

$$C \mapsto \operatorname{Hom}_{S^{-1}}(\mathscr{F}, C) \quad C \in \operatorname{ob}(\operatorname{Cat})$$

 $C\mapsto \operatorname{Hom}_{\operatorname{Cart}/\mathscr{E}}(\mathscr{F},C\times\mathscr{E})=\{\text{Foncteurs cart\'esiens de }\mathscr{F}\text{ dans }C\times\mathscr{E}\}$

(la catégorie $C \times \mathscr{E}$ est considérée comme une catégorie au-dessus de \mathscr{E} par le foncteur deuxième projection).

Proposition 6.2. — Les foncteurs (Cat) \rightarrow (Ens) :

$$\begin{split} C &\mapsto \operatorname{Hom}_{S^{-1}}(\mathscr{F},C) \\ C &\mapsto \operatorname{Hom}_{\operatorname{Cart}}/_{\mathscr{E}}(\mathscr{F},C\times \mathscr{E}) \end{split}$$

sont canoniquement isomorphes. Ils sont représentables.

Preuve. — Pour prouver la première assertion, il suffit de remarquer que les morphismes cartésiens de $C \times \mathscr{E}$ sont les morphismes de la forme $m \times f$, où m est un isomorphisme de C. Pour prouver la seconde assertion, il suffit de prouver que le foncteur $\mathrm{Hom}_{S^{-1}}(\mathscr{F},.)$ est représentable. Ceci résulte de [1]. Indiquons simplement l'idée de la démonstration. On adjoint formellement aux morphismes de \mathscr{F} les inverses des morphismes de \mathscr{F} et les inverses formels des morphismes de \mathscr{F} et les inverses formels des morphismes de \mathscr{F} (catégorie des chemins). On passe au quotient par les relations provenant des relations entre morphismes de \mathscr{F} et les relations du type :

$$s^{-1}s = id$$
 , $ss^{-1} = id$ $s \in S$.

La catégorie ainsi obtenue est notée $\mathscr{F}(S^{-1})$ munie du foncteur canonique $Q = \mathscr{F} \to \mathscr{F}(S^{-1})$ représente le foncteur $\operatorname{Hom}_{S^{-1}}(\mathscr{F},.)$.

Définition 6.3. — Lorsque \mathscr{F} est fibrée au-dessus de \mathscr{E} le foncteur $\operatorname{Hom}_{S^{-1}}(\mathscr{F},.)$ est noté $\varinjlim_{\mathscr{E}^{\circ}}\mathscr{F}$ et est appelé le foncteur limite inductive de \mathscr{F} au-dessus de \mathscr{E}° . La catégorie qui le représente est encore notée $\varinjlim_{\mathscr{E}^{\circ}}\mathscr{F}$ et est appelée la catégorie limite inductive de \mathscr{F} au-dessus de \mathscr{E}° .

6.4.0. Supposons \mathscr{F} fibrée au-dessus de \mathscr{E} ; choisissons pour tout morphisme f de \mathscr{E} un foncteur changement de base au-dessus de f et soit

$$Q: \mathscr{F} \longrightarrow \varinjlim_{\mathscr{E}^{\circ}} \mathscr{F}$$

le foncteur canonique. Les foncteurs d'inclusions des fibres de \mathscr{F} dans \mathscr{F} composés avec le foncteur Q fournissent, pour tout objet ξ de \mathscr{E} , un foncteur

$$u_{\xi}: \mathscr{F}_{\xi} \longrightarrow \varinjlim_{\mathscr{E}} \mathscr{F}$$

et pour tout morphisme $f:\xi\to\eta$ de $\mathscr E$ un diagramme commutatif à isomorphisme canonique près :

La catégorie $\varinjlim_{\mathscr{E}^{\circ}}\mathscr{F}$ apparaît alors comme la limite inductive au sens des pseudo foncteurs [5] du pseudo-foncteur $\mathscr{E}^{\circ} \to \operatorname{Cat}$ qui associe à tout $\xi \in \operatorname{ob}$, \mathscr{F}_{ξ} et à tout $f: \xi \to \eta$, le foncteur $f^*: \mathscr{F}_{\eta} \to \mathscr{F}_{\xi}$. On notera toute-fois que même lorsque $\xi \mapsto \mathscr{F}_{\xi}$ est un véritable foncteur, la catégorie $\varinjlim_{\mathscr{E}^{\circ}}\mathscr{F}$ n'est pas en général la limite inductive au sens de I 2 du foncteur $\xi \mapsto \mathscr{F}_{\xi}$ (cf. 6.8).

Proposition 6.4. — Soit \mathscr{F} une catégorie fibrée au-dessus de \mathscr{E} . On suppose que la catégorie \mathscr{E} possède les propriétés suivantes :

L1) Tout diagramme

s'insère dans un diagramme commutatif:

L2) Pour tout couple de morphisme $u, v : \cdot \Rightarrow \cdot$ tel qu'il existe un morphisme t vérifiant la relation tu = tv, il existe un morphisme w vérifiant la relation uw = vw.

(Notons que si la catégorie \mathcal{E}° est pseudo-filtrante (I 2.7), elle possède les propriétés L1) et L2)). L'ensemble S des morphismes cartésiens de \mathscr{F} possède alors les propriétés :

Fr1) L'ensemble S est stable par composition. Les isomorphismes appartiennent à S.

Fr2) Tout diagramme

où s appartient à S, peut se compléter en un diagramme commutatif

où t appartient à S.

Fr3) Pour tout couple de morphismes $u, v : \cdot \Rightarrow \cdot$ tel qu'il existe un morphismes $s \in S$ vérifiant le relation su = sv, il existe un morphisme $t \in S$ tel que ut = vt.

Preuve. — Laissée au lecteur à titre d'exercice.

Proposition 6.5. — Soient \mathscr{F} une catégorie, S un ensemble de morphismes de \mathscr{F} possédant les propriétés Fr1), Fr2) et Fr3) (6.4). Pour tout objet X de \mathscr{F} , désignons par S(X) la catégorie des morphismes de S de but S. La catégorie S(S) est cofiltrante (I 2.7). La catégorie $\mathscr{F}(S^{-1})$ (qui représente le foncteur $Hom_{S^{-1}}(\mathscr{F},\cdot)$) peut alors se décrire comme suit :

- a) Les objets de $\mathscr{F}(S^{-1})$ sont les objets de \mathscr{F} .
- b) Soient X et Y deux objets de $\mathscr{F}(S^{-1})$. On a

$$\operatorname{Hom}_{\mathscr{F}(S^{-1})}(X,Y)=\varinjlim_{S(X)}\operatorname{Hom}_{\mathscr{F}}(.,Y).$$

c) Soient $f: X \to Y$ et $g: Y \to Z$ deux morphismes de $\mathscr{F}(S^{-1})$. Soit

(resp.

un diagramme dans \mathscr{F} dont l'image est f (resp. g). Soit

un diagramme commutatif dont l'existence est assurée par Fr2). L'image dans $\operatorname{Hom}_{\mathscr{F}(S^{-1})}(X,Z)$ du diagramme

270

est le morphisme composé gf.

Soit

$$Q: \mathscr{F} \longrightarrow \mathscr{F}(S^{-1})$$

le foncteur canonique.

- d) Le foncteur $Q^*: \mathscr{F}(S^{-1})^{\widehat{}} \to \mathscr{F}^{\widehat{}}$ (F \mapsto F \circ Q I 5.0) est pleinement fidèle et injectif sur les objets.
- e) Le foncteur $Q_!: \widehat{\mathscr{F}} \to \mathscr{F}(S^{-1})$ (adjoint à gauche au foncteur Q^* (I 5.1) est exact à gauche. (Il en est donc de même du foncteur Q lorsque dans \mathscr{F} les limites projectives finies sont représentables).

Preuve. — Nous renvoyons pour la preuve à [1].

Exercice 6.6. — Soient $\mathscr F$ une catégorie, S un ensemble de morphismes de $\mathscr F$ possédant les propriétés Fr1), Fr2) et Fr3). Pour tout objet X de $\mathscr F$, on note S(X) la catégorie des morphismes de but X.

- a) La catégorie S(X) est cofiltrante (I 2)
- b) Pour tout objet X de \mathscr{F} , désignons par $J_S(X)$ l'ensemble des cribles de X qui contiennent un crible engendré par un morphisme de S. Les $J_S(X)$ définissent sur \mathscr{F} une topologie T.
 - c) Pour la topologie T, les morphismes de S sont bicouvrants (II 5.2).
- d) Pour tout objet X de \mathscr{F} , désignons par $\mathscr{J}^2(X)$ la catégorie des morphismes bicouvrants de but X. Le catégorie S(X) est cofinale dans $\mathscr{J}^2(X)$ (I 8).
- e) Soit G un préfaisceau d'ensemble sur \mathscr{F} . Soit le foncteur associé pour la topologie T. Pour tout objet X de \mathscr{F} , on a un isomorphisme canonique

$$G(X) \xrightarrow{\sim} \frac{\lim}{S(X)} G(\cdot).$$

Un préfaisceau est un faisceau si et seulement s'il transforme tout morphisme de S en isomorphisme.

- f) On choisit le foncteur faisceau associé de façon que sa restriction à \mathscr{F} soit injective sur les objets. Désignons par \mathscr{F} la sous-catégorie pleine de la catégorie des faisceaux d'ensembles sur \mathscr{F} définie par les faisceaux associés aux préfaisceaux représentés. La catégorie \mathscr{F} est isomorphe à la catégorie $\mathscr{F}(S^{-1})$ décrite dans 6.5. Les objets de \mathscr{F} forment une famille de générateurs du topos \mathscr{F}^{\sim} des faisceaux d'ensembles sur \mathscr{F} . La topologie induite sur \mathscr{F} par la topologie canonique de \mathscr{F}^{\sim} est la topologie grossière (II 1.1.4).
- g) Soit $Q: \mathscr{F} \to \mathscr{F}$ le foncteur canonique. Le foncteur Q est un morphisme du site \mathscr{F} (topologie grossière) dans le site \mathscr{F} (topologie T de b)) (IV 5.9) et induit un isomorphisme sur les topos correspondants.
- h) Soit $u: \mathscr{F} \to \mathcal{C}$ un foncteur. Le foncteur u est continu, si et seulement s'il transforme les morphismes de S en isomorphismes (III 1.1)
- i) Soit $u: \mathscr{F} \to \mathbf{C}$ un foncteur transformant les morphismes de S en isomorphismes. Le foncteur u se factorise d'une manière unique en

(On utilisera III 1.4).

j) Soit $\operatorname{Pro}_S \mathscr{F}$ la sous-catégorie pleine de $\operatorname{Pro} \mathscr{F}$ (I 8) définie par les proobjets dont les morphismes de transition sont dans S. Montrer que le foncteur Q se factorise en

$$\mathscr{F} \stackrel{i}{\longleftarrow} \operatorname{Pro}_{\mathbf{S}} \mathscr{F} \stackrel{j}{\longrightarrow} \mathscr{F}_{\mathbf{S}^{-1}}$$

où j est la restriction à $\operatorname{Pro}_{\mathbf S} \mathscr F$ de $\operatorname{Pro} \mathbf Q.$ Montrer que le foncteur j admet un adjoint à gauche pleinement fidèle

$$A: \mathscr{F}_{S^{-1}} \longrightarrow \operatorname{Pro}_{S} \mathscr{F}.$$

Montrer que pour tout objet X de \mathscr{F} , AQ(X) est le pro-objet

$$Y \longrightarrow X \in S(X) \mapsto Y$$
.

- **Proposition 6.7.** Soient & une catégorie cofiltrante (I 8.7) et $\mathscr{F} \to \mathscr{E}$ une catégorie fibrée (6.1.3).
 - 1) Soient ξ un objet de \mathscr{E} et \mathscr{F}/ξ la catégorie fibrée sur \mathscr{E}/ξ obtenue par le changement de base $\mathscr{E}/\xi \to \mathscr{E}$. Le foncteur canonique $\varinjlim_{\mathscr{E}/\xi} \mathscr{F}/\xi \to \varinjlim_{\mathscr{E}} \mathscr{F}$ est une équivalence de catégorie.

2) Soit plus généralement $\mathcal{E}' \to \mathcal{E}$ un foncteur cofinal (I 8). Soit $\mathcal{F}' \to \mathcal{E}'$ la catégorie fibrée déduite de $\mathcal{F} \to \mathcal{E}$ par le changement de base $\mathcal{E}' \hookrightarrow \mathcal{E}$. Le foncteur canonique :

$$\varinjlim_{\mathscr{E}'}\mathscr{F}'\longrightarrow \varinjlim_{\mathscr{E}}\mathscr{F}$$

est une équivalence de catégories.

Preuve. — Exercice.

Exercice 6.8. — 1) Soient $g: \mathscr{E}^{\circ} \to \operatorname{Cat}$ un foncteur et $\mathscr{G} \to \mathscr{E}$ la catégorie fibrée correspondante [5]. Montrer qu'il existe un foncteur canonique $\varinjlim_{\mathscr{E}^{\circ}} \mathscr{G} \to \varinjlim_{\mathscr{E}^{\circ}} g$. Montrer que ce foncteur n'est pas nécessairement une équivalence de catégories. (On pourra prendre pour g le foncteur constant dont la valeur est l'objet final de Cat et pour \mathscr{E} la catégorie associée à un groupe).

2) On supposons que la catégorie \mathscr{E}° est pseudo-filtrante. Montrer qu'alors le foncteur canonique $\varinjlim_{\mathscr{E}^{\circ}} \mathscr{G} \to \varinjlim_{\mathscr{E}^{\circ}} g$ est une équivalence de catégories.

Proposition 6.9. — Soit $\mathscr{F} \to \mathscr{E}$ une catégorie fibrée (6.1). Le foncteur (Cat) \to (Ens) :

$$C \mapsto \operatorname{Hom}_{\operatorname{Cart} / \mathscr{E}}(C \times \mathscr{E}, \mathscr{F})$$

est représentable par la catégorie $\mathscr{H}om_{\operatorname{Cart}/\mathscr{E}}(\mathscr{E},\mathscr{F})$.

Soient C une catégorie, $F: C \times \mathscr{E} \to \mathscr{F}$ un \mathscr{E} -foncteur cartésien (6.1.4), X un objet de C. Le foncteur $\xi \mapsto F((X,\xi))$ est un foncteur cartésien noté F'(X) de \mathscr{E} dans \mathscr{F} qui dépend fonctoriellement de X. D'où une application $F \mapsto F'$ de $\operatorname{Hom}_{\operatorname{Cart}/\mathscr{E}}(C\mathscr{E},\mathscr{F})$ dans $\operatorname{Hom}(C, \mathscr{H}om_{\operatorname{Cart}/\mathscr{E}}(\mathscr{E},\mathscr{F}))$ fonctorielle en C dont on vérifie immédiatement que c'est une bijection.

- **6.10.** La catégorie $\mathcal{H}om_{\operatorname{Cart}/}(\mathscr{E},\mathscr{F})$ est appelée la catégorie des sections cartésiennes de la catégorie fibrée \mathscr{F} . Elle est aussi appelée parfois la catégorie limite projective de \mathscr{F} suivant \mathscr{E}° . Elle est alors notée $\lim_{\varepsilon \to \varepsilon} \mathscr{F}$ [2].
- **6.11.** Choisissons un scindage de la catégorie fibrée $\mathscr{F} \to \mathscr{E}$, i.e. choisissons pour toute flèche $f: \xi \to \eta$ de \mathscr{E} un foncteur changement de base $f^*: \mathscr{F}_{\eta} \to \mathscr{F}_{\xi}$. Pour tout objet ξ de \mathscr{E} , notons

$$v_{\xi}: \varprojlim_{\mathscr{E}^{\circ}} \mathscr{F} \longrightarrow \mathscr{F}_{\xi}$$

le foncteur d'évaluation en ξ . Pour tout morphisme $f: \xi \to \eta$, on a un diagramme de foncteurs commutatif à isomorphisme canonique prés :

La catégorie $\varprojlim_{\mathscr{E}^{\circ}}\mathscr{F}$ apparaît ainsi comme la limite projective au sens des pseudo foncteurs de $\xi \to \mathscr{F}_{\xi}$. Même lorsque $\xi \mapsto \mathscr{F}_{\xi}$ est un véritable foncteur (i.e. même lorsque le scindage choisi est un clivage [5]) les catégories $\varprojlim_{\mathscr{E}^{\circ}}\mathscr{F}$ (6.10) et $\varprojlim_{\mathscr{E}^{\circ}}\mathscr{F}_{\xi}$ (I 2) ne sont pas, en général, équivalentes.

7. Topos et sites fibrés

7.1. Topos fibrés. —

Définition 7.1.1. — Soit \mathscr{U} un univers. Un \mathscr{U} -topos fibré sur une catégorie I est une catégorie fibrée sur I (6.1):

$$p: \mathcal{F} \longrightarrow \mathcal{I}$$

dont les fibres sont des \mathscr{U} -topos, et dont les foncteurs images inverses^(*) relatifs aux morphismes $f: i \to j$ de I sont des foncteurs $f^*: \mathcal{F}_j \to \mathcal{F}_i$ images inverses de morphismes de topos $f \cdot : \mathcal{F}_i \to \mathcal{F}_j$ (IV 3.1.2).

7.1.2. Il revient au même de dire qu'un \mathscr{U} -topos fibré sur une catégorie I est une catégorie fibrée $p: F \to I$ dont les fibres sont des \mathscr{U} -topos et dont les foncteurs images inverses sont exacts et commutent aux limites inductives (IV 1.6).

7.1.3. Choisissons pour tout morphisme $f: i \to j$ de I un foncteur image inverse $f^*: \mathcal{F}_j \to \mathcal{F}_i$. On a alors, pour tout couple $i \xrightarrow{f} j \xrightarrow{g} k$ de morphismes composables de I, un isomorphisme canonique $c_{f,g}: f^*g^* \to (gf)^*$ (6.1.2.1) et les $c_{f,g}$ possèdent la propriété de cocycle (6.1.2.2). Choisissons de plus, pour tout $f: i \to j$ un foncteur adjoint à droite $f_*: \mathcal{F}_i \to \mathcal{F}_j$ au foncteur $f^*: \mathcal{F}_j \to \mathcal{F}_i$. Le foncteur $f_*: \mathcal{F}_i \to \mathcal{F}_j$ est défini à isomorphisme canonique prés par sa propriété d'être adjoint à droite à f^* . On en déduit, par les résultats généraux sur les foncteurs adjoints, des isomorphismes canoniques;

$$(7.1.3.1) c'_{g,f}: g_*f_* \longrightarrow (gf)_*.$$

^(*) pour la structure fibrée (6.1.2).

qui possèdent une propriété de cocycle analogue à la propriété 6.2.2.2 et qu'on laisse au lecteur le soin d'expliciter. En appliquant alors les résultats de 6.1.3, on obtient une catégorie fibrée sur I° :

$$(7.1.3.2) p': F' \longrightarrow I^{\circ}.$$

On vérifie facilement que la catégorie fibrée $p': F' \to I^{\circ}$ ne dépend pas à I°-isomorphisme unique prés des différents choix utilisés pour la construire^(*). La fibre en tout objet i de I° de la catégorie fibrée $p': F' \to I^{\circ}$ est canoniquement isomorphe au \mathscr{U} -topos F_i et est identifiée à ce dernier. Les foncteurs images inverses de la catégorie fibrée $p': F' \to I^{\circ}$ sont des foncteurs images directes par des morphismes de topos.

7.1.4. Soit $p: F \to I$ un \mathscr{U} -topos fibré. Choisissons pour chaque $f: i \to j$ un morphisme de topos (IV 3.1.2) $f \cdot : F_i \to F_j$ tel que le foncteur image inverse f^* (par $f \cdot$) soit l'image inverse pour la structure fibrés (6.1). On obtient alors des cocycles $c_{f,g}$ reliant ces morphismes de topos (7.1.3.1) et (7.1.3.2). La collection des morphismes $f \cdot f \in FI(I)$, et des cocycles $c_{f,g}$ est appelée un biscindage du topos fibré $F \to I$. Le choix d'un biscindage permet d'associer au topos fibré $F \to I$ un pseudo-foncteur $i \mapsto F_i$ de la catégorie I dans la 2-catégorie des \mathscr{U} -topos. On peut alors lui associer de manière essentiellement unique (cf. [5]) un \mathscr{U} -topos fibré $F \to I$ muni d'un biscindage tel que le pseudo-foncteur correspondant soit canoniquement isomorphe à $i \mapsto F_i$. Dans la pratique on notera le plus souvent un \mathscr{U} -topos fibré $F \to I$ par la notation $(F_i)_{i \in I}$ en supposant implicitement qu'on a choisi un biscindage. On notera cependant que les constructions qu'on effectue sur les topos fibrés (telles que le topos total associé (7.4), la limite projective (8.1)) ne dépendent que des topos fibrés et non pas des biscindages éventuellement choisis.

Définition 7.1.5. — Soient $p: F \to I$ et $q: G \to I$ deux \mathscr{U} -topos fibrés sur I. Un morphisme m de topos fibrés de (F,p) dans (G,q) consiste en la donnée d'un I-foncteur $m^*: G \to F$ (6.1.4) et en la donnée pour tout i objet de I d'un adjoint à droite $m_{i*}: F_i \to G_i$ au foncteur $m_i^*: G_i \to F_i$ obtenu en restreignant aux fibres en i le foncteur m^* . Cette donnée doit être de plus soumise à la condition suivante : Pour tout objet i de I le couple de foncteurs adjoints (m_i^*, m_{i*}) est un morphisme du topos F_i dans le topos G_i .

7.1.6. Soient $m: (F,p) \to (G,q)$ un morphisme de \mathscr{U} -topos fibrés sur I et $p': F' \to I^{\circ}$, $q': G' \to I^{\circ}$ les catégories fibrées associées par le procédé 7.1.3 aux topos fibrés (F,p) et (G,q) respectivement. Choisissons des biscindages de F et G (7.1.4), notés dans les deux cas $(f:i\to j)\mapsto f.: (f^*,f_*)$, de F_i dans F_j et de G_i dans G_j respectivement. Comme $f^*: G \to F$ est un I-foncteur, on a, pour tout morphisme $f: i\to j$, un morphisme de foncteurs (morphisme de transition)

$$(7.1.6.1) b_f: f^*m_i^* \longrightarrow m_i^* f^*,$$

^(*)Le rédacteur présente ses excuses pour le caractère non intrinsèque de cette construction.

et pour tout couple $i \xrightarrow{f} j \xrightarrow{g} k$ de morphismes composables, on a

$$(7.1.6.2) m_i^*(c_{f,g})b_f^*f^*(b_g) = b_{gf}c_{f,g}.$$

En passant aux foncteurs adjoints, on obtient des morphismes

$$(7.1.6.3) b'_f: f_* m_{i*} \longrightarrow m_{j*} f_*$$

qui satisfont à des relations analogues aux relations (7.1.6.2). Comme les foncteurs f_* sont des foncteurs images inverses des catégories fibrées (F', p') et (G', q') (7.1.3), on peut construire un I°-foncteur :

$$(7.1.6.4) m_*: \mathbf{F}' \longrightarrow \mathbf{G}',$$

dont les restrictions aux fibres sont les foncteurs m_{i*} et dont les isomorphismes de transition sont les b'_f . On vérifie avec un peu de patience que le foncteur m_* ainsi construit ne dépend pas du choix des morphismes de topos $f^{(*)}$.

7.1.7. On note $\operatorname{Homtop_I}(E,G)$ l'ensemble des morphismes de topos fibrés entre le topos fibré (F,p) et le topos fibré (G,q). L'ensemble $\operatorname{Homtop_I}(F,G)$ est l'ensemble des objets d'une catégorie notée $\operatorname{\mathscr{H}omtop_I}(F,G)$: Si m et n sont deux morphismes de topos fibrés, un morphisme de m dans n est un I-morphisme de foncteur n^* dans le foncteur m^* . On en déduit d'ailleurs par adjonction un I°-morphisme du foncteur m_* dans le foncteur n_* (7.1.6). On a donc en définitive deux foncteurs

$$(7.1.7.1) \mathscr{H}omtop_{\mathtt{I}}(\mathrm{F},\mathrm{G}) \longrightarrow \mathscr{H}om_{\mathtt{I}}(\mathrm{G},\mathrm{F})^{\circ}$$

$$(7.1.7.2) \mathcal{H}omtop_{\mathsf{I}}(\mathsf{F},\mathsf{G}) \longrightarrow \mathcal{H}om_{\mathsf{I}^{\diamond}}(\mathsf{F}',\mathsf{G}')$$

qui associent à tout morphisme $(m^*, (m_{i*})_{i \in ObI})$, d'une part le foncteur $m^* \in Hom_I(G, F)$, et d'autre part le foncteur $m_* \in Hom_{I^\circ}(F', G')$ obtenu en recollant les m_{i*} comme en (7.1.6). Le foncteur $m^* : G \to F$ (7.1.7.1) est appelé le foncteur image inverse par le morphisme de topos fibré $m : F \to G$; le foncteur $m_* : F' \to G'$ (7.1.7.2) est appelé le foncteur image directe par le morphisme de topos fibré $m : F \to G$. Il résulte immédiatement des définitions que les foncteurs $m \mapsto m^*$ et $m \mapsto m_*$ sont pleinement fidèles et que leurs images essentielles sont, d'une part, l'ensemble des I-foncteurs de G dans F qui, fibre par fibre, sont exacts et commutent aux limites inductives et, d'autre part, l'ensemble des I^0 -foncteurs de I^0 -foncteurs de

On note $\mathcal{H}omtop_{\mathrm{Cart}/\mathrm{I}}(\mathrm{F},\mathrm{G})$ la sous-catégorie pleine de $\mathcal{H}omtop_{\mathrm{I}}(\mathrm{F},\mathrm{G})$ engendrée par les morphismes m tels que m_* (ou ce qui est équivalent m^*) soit un foncteur

277

^(*)voir note du bas de la page 179

cartésien (6.1.4). De tels morphismes sont appelés des *morphismes cartésiens*. On a donc des foncteurs pleinement fidèles, induits par (7.1.7.1) et (7.1.7.2)

$$(7.1.7.3) \qquad \mathscr{H}omtop_{\operatorname{Cart}/I}(F,G) \longrightarrow \mathscr{H}om_{\operatorname{cart}/I}(G,F)^{\circ},$$

$$(7.1.7.4) \qquad \mathscr{H}omtop_{\operatorname{Cart}/I}(F,G) \longrightarrow \mathscr{H}om_{\operatorname{cart}/I^{\circ}}(F',G').$$

7.1.8. Soient $p: F \to I$, $q: G \to I$, $r: H \to I$ trois $\mathscr U$ -topos fibrés sur I et $m: F \to G$, $n: G \to H$ deux morphismes de $\mathscr U$ -topos fibrés. On définit comme en IV 3.3 le composé des deux morphismes m et n, qu'on note $nm: F \to H$, et si $\mathscr V$ est un univers tel que $\mathscr U \in \mathscr V$, on définit une catégorie $(\mathscr V - \mathscr U - \operatorname{Top}_{/I})$ dont les objets sont les $\mathscr U$ -topos fibrés sur I à catégories fibres éléments de $\mathscr V$, et dont les morphismes sont les morphismes de $\mathscr U$ -topos fibrés sur I. De plus, comme en IV 3.3.2, l'application de composition

$$\operatorname{Homtop}_{/I}(F,G) \times \operatorname{Homtop}_{/I}(G,F) \longrightarrow \operatorname{Homtop}_{/I}(F,H)$$

est l'application induite sur les objets par un « foncteur de composition de morphismes » :

$$\mathscr{H}omtop_{/I}(F,G)\,\mathscr{H}omtop_{/I}(G,H)\longrightarrow \mathscr{H}omtop_{/I}(F,H)$$

et les considérations de IV 3.3 et IV 3.4 s'étendent sans changement au cas des U-topos fibrés. Le lecteur aura d'ailleurs remarqué que lorsque I est une catégorie ponctuelle (un objet, un morphisme identique) un \mathscr{U} -topos fibré sur I « n'est autre » qu'un morphisme de \mathscr{U} -topos, et un morphisme de \mathscr{U} -topos fibrés « n'est autre » qu'un morphisme de \mathscr{U} -topos et les constructions précédentes se réduisent à celles de IV 3.

7.1.9. Soient $p: F \to I$ un \mathscr{U} -topos fibré et $\phi: J \to I$ un foncteur. La catégorie fibrée $p_J: F_J \to J$ déduite de (F,p) par le changement de base $\phi: J \to I$ est un \mathscr{U} -topos fibré sur J. Soient $p': F' \to I^\circ$ et $(p_J)': (F_J)' \to J^\circ$ les catégories fibrées déduites respectivement de (F,p) et (F_J,p_J) par la construction de 7.1.3. On vérifie immédiatement que la catégorie $((F_J)',(p_J)')$ est canoniquement isomorphe à la catégorie $(p')_J: (F')_J \to J^\circ$ déduite de $p': F' \to I^\circ$ par le changement de base $\phi: J^\circ \to I^\circ$. Ces deux catégories fibrées sur J° seront par la suite identifiées et notées $p'_J: F'_J \to J^\circ$. L'opération de changement de base est fonctorielle, et même 2-fonctorielle, par rapport à son argument: pour tout couple $p: F \to I$ et $G \to I$ de \mathscr{U} -topos fibrées sur I, on a deux diagrammes commutatifs se catégories et foncteurs:

$$(7.1.9.1) \begin{tabular}{ll} $\mathscr{H}omtop_{\rm I}({\rm F},{\rm G}) & \longrightarrow \mathscr{H}om_{\rm I}({\rm G},{\rm F})^{\circ} \\ & & \downarrow & & \downarrow \\ \mathscr{H}omtop_{\rm J}({\rm F}_{\rm J},{\rm G}_{\rm J}) & \longrightarrow \mathscr{H}om_{\rm J}({\rm G}_{\rm J},{\rm F}_{\rm J})^{\circ}, \\ \end{tabular}$$

278

$$(7.1.9.2) \begin{tabular}{ll} $\mathscr{H}omtop_{\rm I}({\rm F},{\rm G}) & \longrightarrow \mathscr{H}om_{{\rm I}^{\circ}}({\rm F}',{\rm G}') \\ & & \downarrow & & \downarrow \\ \mathscr{H}omtop_{\rm J}({\rm F}_{\rm J},{\rm G}_{\rm J}) & \longrightarrow \mathscr{H}om_{{\rm J}^{\circ}}({\rm F}'_{{\rm J}^{\circ}},{\rm G}_{{\rm J}^{\circ}}) \\ \end{tabular}$$

où les foncteurs verticaux sont des foncteurs changement de base et où les foncteurs horizontaux sont respectivement dans (7.1.9.1) les foncteurs « morphisme \mapsto image inverse » (7.1.7.1), et dans (7.1.9.2) les foncteurs « morphisme \to image directe » (7.1.7.2).

7.2. Sites fibrés. —

7.2.1. Un \mathscr{U} -site fibré C sur une catégorie I est une catégorie fibrée $p: C \to I$ dont les fibres sont munies de topologies faisant de celles-de des \mathscr{U} -sites (IV 3.0.2) telles que pour tout morphisme $f: i \to j$ de I, le foncteur image inverse $f^*: C_j \to C_i$ soit un morphisme de site C_i dans le site C_j (IV 4.9.1).

7.2.2. Soient $p: C \to I$ et $q: D \to I$ deux \mathscr{U} -sites fibrés sur I. Un morphisme de \mathscr{U} -sites fibrée de C dans D est un I-foncteur (6.0) $m: D \to C$ tel que pour tout objet i de I, le foncteur $m_i: D_i \to C_i$ soit un morphisme du site C_i dans le site D_i . On désigne par MorsiteI(C,D) l'ensemble des morphismes de sites fibrés de C dans D. Un foncteur continu du site fibré D dans le site fibré C est un I-foncteur de D dans C qui induit sur les fibres des foncteurs continus (III 1). On note $Cont_I(D,C)$ l'ensemble des foncteurs continus du site fibré D dans le site fibré C. On désigne par $Morsite_I(C,D)$ la sous-catégorie pleine de $\mathcal{H}om_I(D,C)$ ° définie par l'ensemble d'objets $Morsite_I(C,D) \subset Hom_I(D,C)$. On désigne de même par $\mathcal{C}ont_I(D,C)$, la sous-catégorie pleine de $\mathcal{H}om_I(D,C)$. On désigne de même par $\mathcal{C}ont_I(D,C)$ chomI(D,C). On a donc deux foncteurs pleinement fidèles et injectifs sur les objets

$$(7.2.2.1) \qquad \mathscr{M}orsite_{\mathrm{I}}(\mathrm{C},\mathrm{D}) \hookrightarrow \mathscr{C}ont_{\mathrm{I}}(\mathrm{D},\mathrm{C})^{\circ} \hookrightarrow \mathscr{H}om_{\mathrm{I}}(\mathrm{D},\mathrm{C})^{\circ}.$$

On définit, de même qu'en 7.1.7, les morphismes *cartésiens* du site fibré C dans le site fibré D. On a un diagramme de sous-catégories pleines

$$(7.2.2.2) \qquad \mathcal{M}orsite_{\mathrm{Cart}\,/\mathrm{I}}(\mathrm{C},\mathrm{D}) \hookrightarrow \mathcal{H}om_{\mathrm{Cart}\,/\mathrm{I}}(\mathrm{D},\mathrm{C})^{\circ}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{M}orsite_{\mathrm{I}}(\mathrm{C},\mathrm{D}) \hookrightarrow \mathcal{H}om_{\mathrm{I}}(\mathrm{D},\mathrm{C})^{\circ}.$$

7.2.3. Les morphismes de \mathscr{U} -sites fibrés se composent. Ceci permet de définir la catégorie (\mathscr{V} - \mathscr{U} -Site/I) dans les objets sont les \mathscr{U} -sites dont les fibres appartiennent à un univers \mathscr{V} (dont \mathscr{U} est un élément). La catégorie \mathscr{V} - \mathscr{U} -site est d'ailleurs munie

d'une structure de 2-catégorie et en particulier la composition des morphismes de \mathscr{U} -sites fibrés est fonctorielle par rapport aux morphismes entre morphismes. Pour tout foncteur $\phi: J \to I$ et tout site fibré $p: C \to I$, la catégorie $p_J: C_J \to J$ déduite de (C,p) par le changement de base $\phi: J \to I$, est munie canoniquement d'une structure de \mathscr{U} -site fibré sur J. L'opération de changement de base est 2-fonctorielle.

7.2.4. Soit $p: C \to I$ une catégorie fibrée dont les fibres sont munies de topologies faisant de celles-ci des \mathscr{U} -sites. Supposons que les limites projectives soient représentables dans les catégories fibrées. Pour que $p: C \to I$ soit un \mathscr{U} -site fibré il suffit que les foncteurs images inverses soient exacts à gauche et transforment familles couvrantes en familles couvrantes, et cette condition est aussi suffisante lorsque les topologies des fibres sont moins fines que la topologie canonique (IV 4.9.2). Tous les sites fibrés utilisés dans ce séminaire seront du type décrit ci-dessus. De même, soient $p: C \to I$ et $q: D \to I$ deux sites fibrés tels que les limites projectives finies dans les catégories fibres soient représentables. Un foncteur cartésien $m: D \to C$ qui induit sur les catégories fibres des foncteurs exacts à gauche et qui transforme les familles couvrantes des catégories fibres en familles couvrantes est un morphisme de sites fibrés de C dans D, la réciproque étant vraie si les topologies fibres de C sont moins fines que la topologies canonique (IV 4.9.2). Tous les morphismes de sites fibrés utilisés dans ce séminaire seront du type décrit ci-dessus.

7.2.5. Un \mathscr{U} -topos fibré $p: F \to I$ est un \mathscr{U} -site fibré lorsqu'on munit les fibres de la topologie canonique, ce que nous ferons toujours par la suite. Soit $m: F \to G$ un morphisme de \mathscr{U} -topos fibrés. Le foncteur image inverse $m^*: G \to F$ (7.1.7) est un morphisme du \mathscr{U} -site fibré F dans le \mathscr{U} -site fibré G. On a donc un foncteur $(\mathscr{V}-\mathscr{U}-\mathrm{Top}_{/I}) \to (\mathscr{V}-\mathrm{U}-\mathrm{Site}_{/I})$, foncteur qui n'est pas fidèle en général. Mais ce foncteur de prolonge en fait naturellement en un 2-foncteur qui induit, pour deux \mathscr{U} -topos fibrés F et G sur F, un foncteur :

$$(7.2.5.1) \mathcal{H}omtop_{\mathbf{I}}(\mathbf{F}, \mathbf{G}) \longrightarrow \mathcal{M}orsite_{\mathbf{I}}(\mathbf{F}, \mathbf{G})$$

qui est une équivalence de catégories, ainsi qu'il résulte immédiatement des définitions. D'ailleurs le foncteur (7.2.5.1) composé avec l'inclusion canonique $\mathscr{M}orsite_I(F,G) \hookrightarrow \mathscr{H}om_I(G,F)^\circ$ n'est autre que le foncteur (7.1.7.1) qui, à un morphisme de topos fibrés, associe son image inverse.

7.2.6. Soit $p: C \to I$ un \mathscr{U} -site fibré. Choisissons pour tout morphisme $f: i \to j$ de I un foncteur changement de base $f^*: C_i \to C_i$. En passant aux catégories de \mathscr{U} -faisceaux, le foncteur f^* de prolonge en un foncteur $\text{Top}(f)^*: C_j^{\sim} \to C_i^{\sim}$, où $\text{Top}(f): C_i^{\sim} \to C_j^{\sim}$ est un morphisme de topos (IV 4.9.1.1), rendant commutatif à

isomorphisme près le diagramme :

Soient

$$(7.2.6.2) c_{f,g}: f^*g^* \longrightarrow (gf)^*$$

les isomorphismes canoniques (6.1.2.1) et

$$(7.2.6.3) b_f : \operatorname{Top}(f)^* \varepsilon_j \longrightarrow \varepsilon_i f^*$$

les isomorphismes qui « rendent commutatifs » les diagrammes (7.2.6.1). En utilisant le fait que les foncteurs $\text{Top}(f)^*$ commutent aux limites inductives, on vérifie immédiatement que pour tout couple de morphismes composables : $i \xrightarrow{f} j \xrightarrow{g} k$, il existe un et un seul isomorphisme :

(7.2.6.4)
$$\operatorname{Top}(c_{f,g}) : \operatorname{Top}(f)^* \operatorname{Top}(g)^* \longrightarrow \operatorname{Top}(gf)^*$$

tel qu'on ait

(7.2.6.5)
$$\varepsilon_i(c_{f,g})b_f \operatorname{Top}(f)^*(bg) = b_{gf} \operatorname{Top}(c_{f,g}).$$

De plus, les isomorphismes (7.2.6.4) satisfont automatiquement la condition de cocycles de 6.2.2.2. On peut donc construire une catégorie fibrée

$$(7.2.6.6) p^{\sim}: \mathbf{C}^{\sim/\mathbf{I}} \longrightarrow \mathbf{I}$$

dont les fibres sont canoniquement isomorphes aux \mathscr{U} -topos C_i^{\sim} (6.1.3), et un foncteur cartésien

(7.2.6.7)
$$\varepsilon_{c/I}: \mathcal{C} \longrightarrow \mathcal{C}^{\sim/I}$$

qui induit sur les fibres les foncteurs $\varepsilon_i: C_i \to C_i^{\sim}$. Il résulte immédiatement des définitions que $p^{\sim}: C^{\sim/I} \to I$ est un $\mathscr U$ -topos fibré sur I, que $\varepsilon_{c/I}$ est un morphisme cartésien de $\mathscr U$ -sites fibrés de $C^{\sim/I}$ dans C, et que le $\mathscr U$ -topos fibré $C^{\sim/I} \to I$ et le foncteur cartésien $\varepsilon_{C/I}$ ne dépendent pas, à isomorphisme canonique prés, des différents choix utilisés pour les construire (choix des foncteurs changement de base f^* et choix des prolongements $Top(f)^*$). Le $\mathscr U$ -topos fibré $C^{\sim/I}$ est appelé le $\mathscr U$ -topos fibré associé au $\mathscr U$ -site fibré.

7.2.6.8. On vérifie que la formation du \mathcal{U} -topos fibré associé à un site fibré « commute » aux opérations de changement de catégorie base.

Proposition 7.2.7. — Soient E un \mathscr{U} -topos fibré sur I et C un \mathscr{U} -site fibré sur I. Le foncteur $m \mapsto m^* \varepsilon_{C/I}$, associant à tout morphisme de topos fibrés $m : E \to C^{\sim/I}$ le composé avec $\varepsilon_{C/I}$ du foncteur image inverse associé $m^* : C^{\sim/I} \to E$, induit une équivalence de catégories préservant les objets cartésiens

$$\mathscr{H}omtop_{\mathbf{I}}(\mathbf{E},\mathbf{C}^{\sim/\mathbf{I}}) \xrightarrow{\approx} \mathscr{M}orsite_{\mathbf{I}}(\mathbf{E},\mathbf{C}).$$

Lorsque dans les catégories fibres de C les limites projectives finies sont représentables, le foncteur pleinement fidèle correspondant

$$\mathscr{H}omtop_{\mathtt{I}}(E, C^{\sim/\mathtt{I}}) \longrightarrow \mathscr{H}om_{\mathtt{I}}(C, E)^{\circ}$$

a comme image essentielle l'ensemble des I-foncteurs $g: C \to E$ qui sont exacts à gauche fibre par fibre et qui transforment les familles couvrantes des catégories fibres en familles épimorphiques des catégories fibres correspondantes.

Cette proposition ne fait que généraliser au contexte fibré la proposition IV 4.9.4, et la démonstration donnée en IV 4.9.4 se généralise immédiatement.

7.3. Exemple. —

282

Exemple 7.3.1. — (le topos fibré des morphismes d'un topos)

Soient E un \mathscr{U} -topos, Fl(E) la catégorie des morphismes de E et $p: \mathrm{Fl}(E) \to E$ le foncteur qui associe à un morphisme son but. La catégorie (Fl(E), p) est un \mathscr{U} -topos fibré sur E. (7.1.1 et IV 5.1). La fibre en tout objet X de E est le topos $E_{/X}$. Le foncteur image inverse $f^*: E_{/Y} \to E_{/X}$ par un morphisme $f: X \to Y$ est le foncteur produit fibré. A tout foncteur $\phi: I \to E$, on peut donc associer le \mathscr{U} -topos fibré sur I

$$(7.3.1.1) p_{\mathbf{I}} : \mathrm{Fl}(\mathbf{E})_{\mathbf{I}} \longrightarrow \mathbf{I},$$

obtenu par le changement de base $\phi: I \to E$, dont la fibre en tout objet i de I est $E_{/\phi(i)}$ (7.1.9). Si $\mathscr V$ est un univers dont E est un élément, on a, avec les notations de 7.1.8, une application

$$(7.3.1.2) \qquad \operatorname{Hom}(I, E) \longrightarrow \operatorname{ob}(\mathscr{V} - \mathscr{U} - \operatorname{top}_{/I}),$$

qui associe à tout foncteur $\phi \in \operatorname{Hom}(I, E)$ le $\mathscr U$ -topos fibré sur I déduit de $(\operatorname{Fl}(E), p)$ par le changement de base $\phi : I \to E$. Soient ϕ_1 et ϕ_2 deux foncteurs de I dans E et $m : \phi_1 \to \phi_2$ un morphisme de foncteurs. Notons $p_1 : \operatorname{Fl}(E)_1 \to \operatorname{I}$ et $p_2 : \operatorname{Fl}(E)_2 \to \operatorname{I}$ les $\mathscr U$ -topos fibrés sur I déduits de $p : \operatorname{Fl}(E) \to E$ par les changements de base $\phi_1 : I \to E$ et $\phi_2 : I \to E$ respectivement. Choisissons, pour tout objet i de I, un morphisme de topos (IV 5.5.2)

283

(7.3.1.3)
$$\operatorname{loc}(m(i)) : \mathcal{E}_{\phi_1(i)} \longrightarrow \mathcal{E}_{\phi_2(i)}.$$

On vérifie alors facilement qu'il existe un et un seul $^{(*)}$ morphisme cartésien de topos fibrés sur I :

$$(7.3.1.4) \qquad \qquad \log(m) : F1(E)_1 \longrightarrow F1(E)_2,$$

qui induise sur les topos fibrés les morphismes loc(m(i)). Le morphisme loc(m): $Fl(E)_1 \to Fl(E)_2$ est déterminé à isomorphisme canonique près par le morphisme de foncteurs $m: \phi_1 \to \phi_2$. Si $n: \phi_2 \to \phi_3$ est un morphisme de foncteurs, on a un isomorphisme

$$(7.3.1.5) c(m,n): loc(n) loc(m) \simeq loc(nm),$$

et les morphismes c(m, n) possèdent une propriété de cocycle analogue à (6.1.2.2).

Exemple 7.3.2. — (Le site fibré des morphismes d'un site).

Soient C un \mathscr{U} -site où les produits fibrés sont représentables, Fl(C) la catégorie des morphismes de C et $p: Fl(C) \to C$ le foncteur qui associe à un morphisme son but. La catégorie fibrée (Fl(C), p) est un \mathscr{U} -site fibré sur C lorsqu'on munit les catégories fibres des topologies induites (II 5.2). Soient $\varepsilon_C: C \to C^{\sim}$ le foncteur canonique de C dans la catégorie des \mathscr{U} -faisceaux sur C. En notant Fl(ε_C) l'extension naturelle de ce dernier foncteur aux catégories de morphismes, on a un diagramme commutatif de catégories et foncteurs :

(7.3.2.1)
$$\begin{array}{c} \operatorname{Fl}(C) & \xrightarrow{\operatorname{Fl}(\varepsilon_{\mathbf{C}})} \operatorname{Fl}(C^{\widetilde{}}) \\ p & & \downarrow p \\ C & \xrightarrow{\varepsilon_{\mathbf{C}}} C^{\widetilde{}} \end{array}$$

284 d'où un foncteur cartésien entre catégories fibrée sur C :

(7.3.2.2)
$$Fl(C) \xrightarrow{p} Fl(C^{\tilde{}})_{C}$$

où $p_{/C}: \mathrm{Fl}(\mathrm{C}^{\sim})_{\mathrm{C}} \to \mathrm{C}$ est déduite de $\mathrm{Fl}(\mathrm{C}^{\sim}) \to \mathrm{C}^{\sim}$ par le changement de base $\varepsilon_{\mathrm{C}}: \mathrm{C} \to \mathrm{C}^{\sim}$. Le foncteur $\mathrm{Fl}(\mathrm{C}) \to \mathrm{Fl}(\mathrm{C}^{\sim})_{\mathrm{C}}$ de (7.3.2.2) est un morphisme du site fibré $\mathrm{Fl}(\mathrm{C}^{\sim})_{\mathrm{C}}$ dans le site fibré $\mathrm{Fl}(\mathrm{C})$ (7.2.2), d'où par 7.2.7 un morphisme de topos fibrés sur C :

$$(7.3.2.3) can : Fl(C^{\sim})_{C} \longrightarrow Fl(C)^{\sim/C},$$

où $Fl(C)^{\sim/C}$ est le topos fibré sur C associé au site fibré $Fl(C) \to C$ (7.2.6). Il résulte de la définition du topos fibré associé (7.2.6) et de II 5.5 que le morphisme can de (7.3.2.3) est une C-équivalence de \mathscr{U} -topos fibrés sur C, i.e. il existe un morphisme

^(*) l'unicité provient de ce qu'on exige, avec les notations de (IV 5.5.3), la formule : $(gf)_1 = g_1 f_1$.

 $\Theta: Fl(C)^{\sim/C} \to Fl(C^{\sim})_C$ de \mathscr{U} -topos fibrés sur C tel que les composés $\Theta \circ$ can et can $\circ \Theta$ soient C-isomorphes à l'identité.

Soit $\phi: I \to C$ un foncteur. On en déduit par changement de base un site fibré sur I:

$$(7.3.2.4) p_{\rm I}: {\rm Fl}({\rm C})_{\rm I} \longrightarrow {\rm I}$$

et comme la formation du topos fibré associé commute au changement de base (7.2.6), on a une I-équivalence de \mathcal{U} -topos fibrés

$$(7.3.2.5) can_{I} : Fl(C^{\sim})_{I} \longrightarrow Fl(C)_{I}^{\sim/I}$$

où $\mathrm{Fl}(\mathrm{C}^{\sim})_{\mathrm{I}} \to \mathrm{I}$ est le \mathscr{U} -topos fibré obtenu par le changement de base $\varepsilon_{\mathrm{C}} \circ \phi :\to \mathrm{C}^{\sim}$. Soient enfin $\phi_1: \mathrm{I} \to \mathrm{C}$ et $\phi_2: \mathrm{I} \to \mathrm{C}$ deux foncteurs et $m: \phi_1 \to \phi_2$ un morphisme de foncteurs. Notons $\mathrm{Fl}(\mathrm{C})_1$ et $\mathrm{Fl}(\mathrm{C})_2$ les sites fibrés sur I déduits de $p: \mathrm{Fl}(\mathrm{C}) \to \mathrm{C}$ par les changements de base ϕ_1 et ϕ_2 respectivement. On construit comme en 7.3.1 un morphisme de sites fibrés sur I :

$$(7.3.2.6) \qquad \qquad \log(m) : Fl(C)_1 \longrightarrow Fl(C)_2.$$

Notons $Fl(C^{\sim})_1 \to I$ et $Fl(C^{\sim})_2 \to I$ les \mathscr{U} -topos fibrés sur I obtenus par les changements de base $\varepsilon_C \circ \phi_1$ et $\varepsilon_C \circ \phi_2$ respectivement. On a un diagramme commutatif à isomorphisme près de morphismes sur I :

(7.3.2.7)
$$\begin{array}{c} \operatorname{Fl}(\mathbf{C}^{\sim})_{1} \xrightarrow{-\operatorname{loc}(\varepsilon_{\mathbf{C}} * m)} \operatorname{Fl}(\mathbf{C}^{\sim})_{2} \\ \downarrow & \downarrow \\ \operatorname{Fl}(\mathbf{C})_{1} \xrightarrow{-\operatorname{loc}(m)} \operatorname{Fl}(\mathbf{C})_{2} \end{array}$$

où les morphismes verticaux se déduisent par changement de base des morphismes de (7.3.2.2).

Exercice 7.3.3. — (Petit site et gros site fibrés).

Cet exercice est une suite à l'exercice IV 4.10.6 dont on utilise les hypothèses et les notations. On note \mathbf{M} la sous-catégorie pleine de $\mathrm{Fl}(S)$ définie par les morphismes de \mathscr{M} , et $p:\mathbf{M}\to S$ le foncteur qui associe à un morphisme son but.

- 6°) Montrer que (\mathbf{M}, p) est un site fibré sur S et que, lorsque dans S les produits fibrés sont représentables, le foncteur d'inclusion $\mathbf{M} \to \mathrm{Fl}(S)$ est un morphisme cartésien du site fibré $\mathrm{Fl}(S) \to S$ dans le site fibré $\mathbf{M} \to S$.
- 7°) Soit $\mathbf{M}^{\sim/S}$ → S le topos fibré associé à \mathbf{M} → S. Montrer qu'on a avec les notations de 7.3.2, un morphisme canonique $g: \mathrm{Fl}(S^{\sim})_{/\mathrm{S}} \to \mathbf{M}^{\sim/\mathrm{S}}$ de topos fibrés sur S qui induit sur chaque fibre en X ∈ ob(S) le morphisme ($\mathrm{Prol}_{\mathrm{X}}, \mathrm{Res}_{\mathrm{X}}$) (IV 4.10.6 4°)). Montrer que, bien que pour tout X ∈ ob(S) le morphisme $g_{\mathrm{X}}: \mathrm{S}^{\sim}_{/\mathrm{X}} \to \mathrm{S}(\mathrm{X})^{\sim}$ admette une section (loc. cit.), le morphisme g n'admet pas en général de section.

7.4. La topologie totale d'un topos ou d'un site fibré. —

Définition 7.4.1. — Soit $p: C \to I$ un \mathscr{U} -site fibré et pour tout $i \in ob(I)$, notons $\alpha_{i!}: C_i \to C$ le foncteur d'inclusion de la catégorie fibre C_i dans C. On appelle topologie totale sur C la topologie la moins fine sur C qui rende continu les foncteurs $\alpha_{i!}$ pour $i \in ob(I)$ (III 3.6). On appelle site total la catégorie C munie de la topologie totale.

Proposition 7.4.2. — Soient $p: C \to I$ un \mathscr{U} -site fibré, T la topologie totale sur C et pour tout $i \in ob(I)$, T_i la topologie de la fibre C_i .

- 1) Soit X un objet de C au-dessus d'un objet i de I. Une famille $(X_{\beta} \to X)_{\beta \in B}$ est couvrante pour T si et seulement si elle est raffinée par une famille couvrante pour $T_i(Y_{\gamma} \to X)_{\gamma \in \Gamma}$ de C_i .
 - 2) La topologie T induit sur les catégories C_i , les topologies T_i .
 - 3) Pour tout $i \in ob(I)$, le foncteur $\alpha_{i!} : C_i \to C$ est cocontinu.

7.4.2.1. La propriété 3) résulte de 1) et de III 2.1. Démontrons 1). Soit, pour tout objet X de C, J(X) l'ensemble des cribles de C/X décrits dans 1). On vérifie que les J(X) possèdent les propriétés T 1), T 2), T 3 de II 1.1, et qu'ils définissent par suite une topologie T' sur C. La topologie T' est la moins fine des topologies sur C pour lesquelles les familles couvrantes pour les topologies T_i sont couvrantes. La topologie T' est donc moins fine que T (III 1.6). Pour montrer que T' = T, il suffit donc de montrer que pour tout objet i de I, le foncteur $\alpha_{i!}: C_i \to C$ est continu lorsqu'on munit C de la topologie T'; ou encore, il suffit de montrer que la topologie induite par T' sur la catégorie C_i est la topologie T_i , ce qui démontrera en même temps la propriété 2). Soit T'_i la topologie sur C_i induite par T', et $u: R \hookrightarrow X$ un crible couvrant pour T'_i . D'après III 3.2 le morphisme $\alpha_{i!}(u):\alpha_{i!}(R)\to\alpha_{i!}(X)$ est bicouvrant et en particulier couvrant, ce qui revient à dire, d'après la définition de T', que le crible $R \hookrightarrow X$ est couvrant pour T_i . La topologie T'_i est donc moins fine que T_i , et pour démontrer que T'_i est plus fine que T_i , il suffit, par définition de la topologie induite (III 3.1), de montrer que le foncteur $\alpha_{i!}: C_i \to C$ est continu lorsqu'on munit les catégories C_i et C des topologies T_i et T' respectivement. En résumé, pour démontrer les propriétés 1) et 2), il suffit, via III 1.2 et 1.5, de démontrer le lemme suivant :

Lemme 7.4.2.2. — Avec les hypothèses et notations de 7.4.2 et 7.4.2.1, soient X un objet de C au-dessus de i et $R \xrightarrow{u} X$ un morphisme de $\widehat{C_i}$. Les propriétés suivantes sont équivalentes :

- i) Le morphisme $R \to X$ est bicouvrant pour T_i .
- ii) Le morphisme $\alpha_{i!}(u): \alpha_{i!}(R) \to \alpha_{i!}(X)$ est bicouvrant pour T'.
- i) \Rightarrow ii) : Il est clair que si R \rightarrow X est bicouvrant pour T_i, le morphisme $\alpha_{i!}(u)$ est couvrant pour T'. Il reste à montrer qu'il est bicouvrant (II 5.2). Soit Y un objet de C au-dessus d'un objet j de I, m et n n : Y $\Rightarrow \alpha_{i!}(R)$ deux morphismes de C tels que

 $\alpha_{i!}(u)m = \alpha_{i!}(u)n$, et posons $f = p(\alpha_{i!}(u)m)$. Comme le foncteur $\alpha_{i!}$ commute aux limites inductives (I 5.4.3)), on a (I 3.4):

$$\operatorname{Hom}_{\operatorname{C}^{\widehat{}}}(Y,\alpha_{i!}(R)) \simeq \varinjlim_{\operatorname{C}_i/R} \operatorname{Hom}_{\operatorname{C}}(Y,\alpha_{i!}(.)).$$

Comme pour tout objet Z de C_i , on a avec les notations de 6.1.1 :

$$\operatorname{Hom}_{\mathbf{C}}(\mathbf{Y}, \mathbf{Z}) \simeq \coprod_{w \in \operatorname{Hom}(j,i)} \operatorname{Hom}_{w}(\mathbf{Y}, \mathbf{Z}),$$

on en déduit

$$\underset{\mathrm{C}_{i}/\mathrm{R}}{\varinjlim} \mathrm{Hom}(\mathrm{Y},\alpha_{i!}(.)) \simeq \underset{w \in \mathrm{Hom}(j,i)}{\coprod} \underset{\mathrm{C}_{i}/\mathrm{R}}{\varinjlim} \mathrm{Hom}_{w}(\mathrm{Y},\alpha_{i!}(.)).$$

Mais pour tout $w \in \operatorname{Hom}(j,i)$, on a un foncteur image inverse $w^*: C_i \to C_j$, et on a $\operatorname{Hom}_w(Y,\alpha_{i!}(.)) \simeq \operatorname{Hom}_{C_j}(Y,w^*(.))$. D'où en notant encore $w^*: \widehat{C_i} \to \widehat{C_j}$ le prolongement de w^* aux préfaisceaux (qu'on devrait noter d'après I 5.4 $(w^*)_!$) et en remarquant que le foncteur $w^*: \widehat{C_i} \to \widehat{C_j}$ commute aux limites inductives (I 5.4.3)), on obtient un isomorphisme :

$$\operatorname{Hom}_{\operatorname{C}^{\widehat{}}}(\mathbf{Y},\alpha_{i!}(\mathbf{R})) = \coprod_{w \in \operatorname{Hom}(j,i)} \operatorname{Hom}_{\operatorname{C}^{\widehat{}}_{j}}(\mathbf{Y},w^{*}(\mathbf{R})).$$

Dans cet isomorphisme, les morphismes m et $n: Y \rightrightarrows \alpha_{i!}(R)$ correspondent à deux morphismes m' et $n': Y \rightrightarrows f^*R$ tels que $f^*(u)m' = f^*(u)n'$. Comme le foncteur image inverse est un morphisme de topos, il est en particulier continu et par suite $f^*(u)$ es bicouvrant (III 3.2). Il existe donc une famille couvrante de C_j $(Y_\delta \xrightarrow{V_\delta} Y)_\delta$ telle que pour tout δ on ait $m'v_\delta = n'v_\delta$. On en déduit que $mv_\delta = nv_\delta$ pour tout δ , et par suite que $\alpha_{i!}(u)$ est bicouvrant pour T'.

ii) \Rightarrow i) : Supposons que $\alpha_{i!}(R) \xrightarrow{\alpha_{i!}(u)} \alpha_{i!}(X)$ soit bicouvrant. Le foncteur $\alpha_{i!}$: $C_i \to C$ est cocontinu (III 2.1). Par suite $\alpha_i^* \alpha_{i!}(u)$ est bicouvrant (III 2.3.2) et (II 5.3 ii)). Le foncteur $\alpha_{i!}$: $C_i \to C$ possède la propriété (PPF) de I 5.14. Par suite on a diagramme cartésien des $\widehat{C_i}$ (I 5.14 3)) :

$$\begin{array}{ccc}
R & \longrightarrow \alpha_i^* \alpha_{i!}(R) \\
u & & \downarrow \alpha_i^* \alpha_{i!}(u) \\
X & \longrightarrow \alpha_i^* \alpha_{i!}(X).
\end{array}$$

Par suite, u est bicouvrant (II 5.2).

Remarque 7.4.3. — 1) La proposition 7.4.2 peut s'énoncer et se démontrer dans un cadre un peu plus général que celui des sites fibrés, main apparemment sans intérêt : au lieu d'un site fibré $p: C \to I$, on considère une catégorie fibrée $p: C \to I$ dont les fibres sont munies de topologies et dont les foncteurs images inverses sont continus

pour ces topologies (alors que dans le cas des sites fibrés on exige de plus que ces foncteurs images inverses soient des morphismes de sites (IV 4.9)).

- 2) On peut démontrer que la topologie totale d'un site fibré est la topologie la plus fine rendant cocontinus les foncteurs $\alpha_{i!}: C_i \to C$ (III 2).
- 3) Soit $p: C \to I$ un \mathscr{U} -site fibré au-dessus d'une catégorie équivalent à une catégorie \mathscr{U} -petite. Alors le site total C est un \mathscr{U} -site (II 3.0.2). En effet, si pour tout objet i de I $(X_{\beta})_{\beta \in B_i}$ est une petite famille topologiquement génératrice de C_i , la famille $(X_{\beta})_{\beta \in \Pi_i B_i}$ est topologiquement génératrice pour C et est \mathscr{U} -petite. On appelle $Topos\ total$ et on note Top(C) le topos des faisceaux sur le site total.
- 4) Soit $p: C \to I$ un \mathscr{U} -site fibré sur une petite catégorie. Comme le foncteur $\alpha_{i!}: C_i \to C$ est cocontinu, il donne naissance à un morphisme de topos $\alpha_i = (\alpha_i^*, \alpha^{i*})$ de C_i^{\sim} dans Top(C) (IV 4.7). Comme de plus le foncteur $\alpha_{i!}: C_i \to C$ est continu, le foncteur $\alpha_i^*: \text{Top}(C) \to C_i^{\sim}$ admet un adjoint à gauche noté encore $\alpha_{i!}: C_i^{\sim} \to \text{Top}(C)$ qui prolonge le foncteur $\alpha_{i!}: C_i \to C$ (III 1.2 iv)).

Proposition 7.4.4. — Soit $p: C \to I$ un \mathscr{U} -site fibre sur une petite catégorie I.

- 1) Un préfaisceau F sur C est un faisceau pour la topologie totale si et seulement si pour tout objet i de I, le préfaisceau $F \circ \alpha_{i!} = F|C_i$ est un faisceau sur C_i .
- 2) Un foncteur m de C dans un site D est un foncteur continu du site total C dans le site D si et seulement si pour tout objet i de I le foncteur $m|C_i = m \circ \alpha_{i!} : C_i \to D$ est continu.

Si F est un faisceau pour la topologie totale, le préfaisceau F $\circ \alpha_{i!}$ est un faisceau sur C_i car $\alpha_{i!}$: C_i \to C est continu. Supposons que pour tout i, F $\circ \alpha_{i!}$ soit un faisceau sur C_i. Soit X un objet de C au-dessus d'un objet i de I. Pour tout crible couvrant R de C_i/X, on a F(X) \simeq F $\circ \alpha_{i!}$ (R) et par suite F(X) \simeq F($\alpha_{i!}$ (R)). Soit R' \hookrightarrow X le crible de C/X image du morphisme canonique de préfaisceaux $\alpha_{i!}$ (R) \to X. Le morphisme $\alpha_{i!}$ (R) \to R' est un épimorphisme de préfaisceaux et par suite F(R') \to F($\alpha_{i!}$ (R)) est injectif. Comme F(R') \to F($\alpha_{i!}$ (R)) est aussi surjective, l'application F(R') \to F($\alpha_{i!}$ (R)) est bijective, et par suite l'application F(X) \to F(R') est bijective. Comme les cribles couvrants X (7.4.2.1)), le préfaisceau F est un faisceau, car en revenant à la construction du faisceau associé (II 3) on constate que F est isomorphe à son faisceau associé (II 3.3). La deuxième assertion se déduit immédiatement de la première et de la définition de la continuité (III 1.1).

7.4.5. Soient $p: \mathcal{C} \to \mathcal{I}$ un \mathscr{U} -site fibré sur une catégorie I équivalente à une petite catégorie et

$$f: i \longrightarrow j$$

une flèche de la catégorie d'indices I. En notant encore $f: C_i^{\sim} \to C_j^{\sim}$ le morphisme de topos déterminé par la structure de site fibré, on a (avec les notations de 7.4.3.4)

un diagramme de morphismes de \mathscr{U} -topos

$$(7.4.5.1) \qquad C_{i} \xrightarrow{\alpha_{i}} \operatorname{Top}(\mathbf{C})$$

$$f \downarrow \qquad \qquad \alpha_{j}$$

$$C_{i}$$

où Top(C) est le topos total (7.4.3.3). Le diagramme (7.4.5.1) n'est pas commutatif **290** en général. Nous allons définir un morphisme canonique de morphismes de topos :

$$(7.4.5.2) \rho_f: \alpha_i \longrightarrow \alpha_i \circ f.$$

Il suffit de définir un tel morphisme au niveau des images inverses, i.e. de définir un morphisme de foncteurs :

$$\beta_f^*: f^* \circ \alpha_i^* \longrightarrow \alpha_i^*,$$

où encore, en utilisant l'adjonction entre les foncteurs f^* et f_* , il suffit de définir un morphisme de foncteurs :

$$(7.4.5.4) \gamma_f : \alpha_i^* \longrightarrow f_* \alpha_i^*.$$

Soient donc Y un objet de C_j et F un faisceau sur le site total C. On a, par définition, $\alpha_j^* F(Y) = F(\alpha_{j!}(Y))$ et $f_* \alpha_i^* F(Y) - F(\alpha_{i!} f^*(Y))$, où dans le deuxième membre f^* : $C_j \to C_i$ désigne le foncteur image inverse pour la structure fibrée. Mais, par définition de ce foncteur image inverse, on a un morphisme cartésien canonique :

$$(7.4.5.5) m_{\mathbf{Y}}: \alpha_{i!} f^* \longrightarrow \alpha_{j!};$$

d'où, en appliquant le foncteur F, une application fonctorielle en Y;

(7.4.5.6)
$$\gamma_f(F)(Y) = F(m_Y) : \alpha_i^* F(Y) \longrightarrow f_* \alpha_i^* F(Y),$$

application définissant un morphisme de faisceaux sur C_i :

(7.4.5.7)
$$\gamma_f(\mathbf{F}): \alpha_i^* \mathbf{F} \longrightarrow f_* \alpha_i^* \mathbf{F};$$

d'où le morphisme de foncteurs γ_f de (7.4.5.4).

Soient alors $f:i\to j$ et $g:j\to k$ deux morphismes composables de I. On a un 291 isomorphisme canonique :

$$c'_{q,f}:g_*f_*\longrightarrow (gf)_*$$

et on vérifie immédiatement la formule de compatibilité :

$$(7.4.5.8) c'_{g,f} \circ g_*(\gamma_f) \circ \gamma_g = \gamma_{gf}.$$

7.4.6. Introduisons alors le \mathscr{U} -topos fibré $p^{\sim/I}: C^{\sim/I} \to I$ associé à $p: C \to I$ (7.2.6) et la catégorie fibrée sur I° correspondante $(p^{\sim/I})': (C^{\sim/I})' \to I^{\circ}$ (7.1.3.2). Les considérations précédentes permettent d'associer à tout objet F de Top(C) une famille $F_i = (\alpha_i^* F)_{i \in ob(I)}$ d'objets des C_i^{\sim} et une famille de morphismes

$$\gamma_f F : F_j \longrightarrow f_* F_i, \quad f \in F1(I), \quad f : i \longrightarrow j,$$

cette famille de morphismes étant soumise aux conditions de compatibilités de (7.4.5.8). On a donc associé à F un I°-foncteur de la catégorie I° dans la catégorie $(C^{\sim/I})'$ i.e. un objet $\Theta_C(F)$ de la catégorie $\mathscr{H}om_{I^{\circ}}(I^{\circ}, (C^{\sim/I})')$. Comme cette construction est fonctorielle en F, on a en définitive un foncteur :

$$(7.4.6.1) \qquad \Theta_{\mathbf{C}} : \mathrm{Top}(\mathbf{C}) \longrightarrow \mathscr{H}om_{\mathbf{I}^{\circ}}(\mathbf{I}^{\circ}, (\mathbf{C}^{\sim/\mathbf{I}})').$$

Proposition 7.4.7. — Soit $C \to I$ un \mathscr{U} -site fibré avec I équivalente à une petite catégorie. Le foncteur Θ_C (7.4.6.1) est une équivalence de catégories.

Nous nous contenterons de décrire un foncteur quasi-inverse à $\Theta_{\mathbb{C}}$. Soit $\sigma \in \operatorname{Hom}_{\mathrm{I}^{\circ}}(\mathrm{I}^{\circ}, (\mathbb{C}^{\sim})')$ i.e. un I° -foncteur $i \mapsto \sigma(i)$ de I° dans $(\mathbb{C}^{\sim/1})'$. Pour tout objet X de C au-dessus de $p(\mathrm{X}) = i \in \mathrm{ob}(\mathrm{I})$, on dispose d'un faisceau $\sigma(p(\mathrm{X})) \in \mathrm{ob}\,\mathbb{C}_{i}^{\sim}$; d'où un ensemble $\sigma(p(\mathrm{X}))(\mathrm{X})$. Soit $m:\mathrm{X} \to \mathrm{Y}$ un morphisme de C au-dessus du morphisme $f:i \to j$ de I . Le morphisme m se factorise d'une manière unique en un morphisme $m':\mathrm{X} \to f^{*}\mathrm{Y}$ de C_{i} et le morphisme cartésien canonique $f(\mathrm{Y}) \to \mathrm{Y}$. De même le morphisme $\sigma(f)$ se factorise de manière unique en un morphisme $\gamma_{f}(\sigma):\sigma(p(\mathrm{Y})) \to f_{*}\sigma(p(\mathrm{X}))$ et le morphisme I° -cartésien canonique $f_{*}\sigma(p(\mathrm{X})) \to \sigma(p(\mathrm{X}))$. On a donc application de $\sigma(p(\mathrm{Y}))(\mathrm{Y})$ dans $\sigma(p(\mathrm{X}))(\mathrm{X})$, obtenue en composant les applications:

$$\sigma(p(Y))(Y) \xrightarrow{\gamma_f(\sigma)(Y)} f_*(p(X))(Y) = \sigma(p(X))(f^*Y) \xrightarrow{\sigma(p(X))(m')} \sigma(p(X))(X).$$

On a donc associé à tout objet X de C un ensemble $\sigma(p(X))(X)$ et à tout morphisme $m: X \to Y$ une application $\sigma(p(X))(Y) \to \sigma(p(X))(X)$. On vérifie qu'on a bien déterminé ainsi un préfaisceau sur C, préfaisceau qui ne dépend pas du choix des foncteurs images inverses utilisés pour le construire. Il résulte de 7.4.4 que le préfaisceau $X \mapsto \sigma(p(X))(X)$ est un faisceau sur le site total C, et il est clair que ce faisceau dépend fonctoriellement de l'objet σ de $\mathscr{H}om_{I^{\circ}}(I^{\circ}, (C^{\sim/I})')$. Il est aussi clair, en revenant à la définition du foncteur Θ_{C} , qui le foncteur de $\mathscr{H}om_{I^{\circ}}(I^{\circ}, (C^{\sim/I})')$ dans Top(C) qu'on vient de construire est un foncteur quasi-inverse de Θ_{C} .

Remarque 7.4.8. — Il résulte en particulier de 7.4.7 que la catégorie $\mathscr{H}om_{I^{\circ}}(I^{\circ},(C^{\sim/I})')$ est un \mathscr{U} -topos. Ce dernier fait peut se voir directement. On voit immédiatement, en utilisant I 9.21.10, que les conditions a), b) et c) de IV 1.1.2 sont satisfaites, et l'existence d'une petite catégorie génératrice résulte de I 9.25.

7.4.9. Soient $p: C \to I$ et $q: D \to I$ deux \mathscr{U} -sites fibrés sur une petite catégorie et soit m un morphisme du site fibré C dans le site fibré D (7.2.2). Notons $m^{\sim/I}: C^{\sim/I} \to D^{\sim/I}$ le morphisme correspondant entre les \mathscr{U} -topos fibrés associés. Le morphisme de topos fibrés $m^{\sim/I}$ est défini à isomorphisme canonique près (7.2.7). Il lui correspond un foncteur image directe $m_*^{\sim/I}: (C^{\sim/I})' \to (D^{\sim/I})'$ (7.1.7) qui fournit, en passant aux sections sur I° , un foncteur :

$$(7.4.9.1) \qquad \operatorname{Hom}_{\operatorname{I}^{\circ}}(\operatorname{I}^{\circ}, m_{*}^{\sim/\operatorname{I}}) : \mathscr{H}om_{\operatorname{I}^{\circ}}(\operatorname{I}^{\circ}, (\operatorname{C}^{\sim/\operatorname{I}})') \longrightarrow \mathscr{H}om_{\operatorname{I}^{\circ}}(\operatorname{I}^{\circ}, (\operatorname{D}^{\sim/\operatorname{I}})').$$

Par ailleurs, le foncteur m est un foncteur continu entre les sites totaux (7.4.4) et par suite fournit, par composition, un foncteur $m_* : \text{Top}(C) \to \text{Top}(F)$.

En résumé, on a un diagramme de foncteurs :

Proposition 7.4.10. — Le diagramme (7.4.9.2) est commutatif à isomorphisme près. **2** Lorsque m est cartésien, m est un morphisme du site total C dans le site total D.

Nous laissons au lecteur le soin de vérifier la commutativité à isomorphisme près du diagramme (7.4.9.2). Pour montrer que m est un morphisme entre les sites totaux, il suffit, compte tenu de 7.4.7, de montrer que le foncteur adjoint à gauche au foncteur $\operatorname{Hom}_{\Gamma^{\circ}}(\Gamma^{\circ}, m_{*}^{\sim /1})$ est exact à gauche. Nous allons tout d'abord décrire le foncteur image inverse du morphisme $m^{\sim /I}$ (7.2.7), et pour tout objet i de I, notons $m_{i}^{*}: D_{i}^{\sim} \to C_{i}^{\sim}$ le foncteur induit par $(m^{\sim /i})^{*}$ sur les fibres en i. Choisissons pour tout morphisme $f: i \to j$ de I des morphismes de topos, notés dans les deux cas $(f^{*}, f_{*}): C_{i}^{\sim} \to C_{j}^{\sim}$ et $(f^{*}, f_{*}): D_{i}^{\sim} \to D_{j}^{\sim}$. Comme $(m^{\sim /I})^{*}$ est un I°-foncteur cartésien, on a, pour tout $f: i \to j$, un isomorphisme canonique

$$(7.4.10.1) m_i^* f_* \longrightarrow f^* m_i^*,$$

et comme les foncteurs f^* et f_* sont adjoints, on a des morphismes canoniques (morphismes d'adjonction)

$$\phi: \mathrm{id} \longrightarrow f_* f^*$$

$$(7.4.10.2) \qquad \qquad \psi: f^* f_* \longrightarrow \mathrm{id} \,.$$

Considérons alors la suite de morphismes fonctoriels :

$$(7.4.10.3) m_i^* f^* \xrightarrow{(1)} f_* f^* m_i^* f_* \xrightarrow{(2)} f_* m_i^* f^* f_* \xrightarrow{(3)} f_* m_i^*,$$

295

où le morphisme (1) est déduit de ϕ , le morphisme (2) est déduit de l'isomorphisme (7.4.10.1)) et le morphisme (3 est déduit de ψ . En composant les différents morphismes de la suite (7.4.10.3), on obtient un morphisme fonctoriel :

$$(7.4.10.4) \operatorname{can}_f: m_i^* f_* \longrightarrow f_* m_i^*.$$

Soit alors τ un objet de $\mathscr{H}om_{I^{\circ}}(I^{\circ}(D^{\sim/I})')$. On a donc, pour tout objet i de I un objet $\tau(i)$ de D_{i}^{\sim} et pour tout morphisme $f: i \to j$, un morphisme

(7.4.10.5)
$$\gamma_f(\tau): \tau(j) \longrightarrow f_*\tau(i),$$

où la famille des $\gamma_f(\tau)$ possède une propriété de compatibilité analogue à (7.4.5.8)). Posons alors $\sigma(i=m_i^*(\tau(i)))$ et notons

(7.4.10.6)
$$\gamma_f(\sigma): \sigma(j) \longrightarrow f_*\sigma(i)$$

le morphisme composé $m_j^*\tau(j) \xrightarrow{m_j^*\gamma_f(\tau)} m_j^*f_*\tau(i) \xrightarrow{\operatorname{can}_f(\tau(i))} f_*m_i^*\tau(i)$. On vérifie que les $\gamma_f(\sigma)$ possèdent la propriété de compatibilité de (7.4.5.8) et par suite qu'on a défini ainsi un objet de $\mathscr{H}om_{I^\circ}(I^\circ, (\mathbb{C}^{\sim/I})')$. Un « adjoint functor chasing » montre alors que le foncteur de $\mathscr{H}om_{I^\circ}(I^\circ, (\mathbb{D}^{\sim/I})')$ dans $\mathscr{H}om_{I^\circ}(I^\circ, (\mathbb{C}^{\sim/I})')$ qu'on vient de construire est adjoint à gauche au foncteur $\operatorname{Hom}_{I^\circ}(I^\circ, m_*^{\sim/I})$. Reste à montrer que cet adjoint à gauche commute aux limites projectives finies, ce qui résulte immédiatement du fait que dans les catégories de sections les limites projectives se calculent fibre par fibre et que tous les foncteurs utilisés pour construire cet adjoint à gauche commutent aux limites projectives finies.

Corollaire 7.4.11. — Soient $p: C \to I$ un \mathscr{U} -site fibré sur une petite catégorie, $p^{\sim/I}: C^{\sim/I} \to I$ le \mathscr{U} -topos fibré associé (7.2.6), $\varepsilon_I: C \to C^{\sim/I}$ le morphisme canonique de \mathscr{U} -site fibré $C^{\sim/I}$ dans le \mathscr{U} -site fibré C. Le morphisme ε_I induit une équivalence $Top(\varepsilon_I): Top(C) \to Top(C^{\sim/I})$ entre les topos totaux correspondants

Résulte de la commutativité du diagramme (7.4.9.2) et du fait que le morphisme $\varepsilon_{\rm I}$ fournit une équivalence entre les \mathscr{U} -topos fibrés associés.

Remarque 7.4.11.1. — Il résulte de 7.4.11 que dans les questions concernant le topos total on peut remplacer les sites fibrés par les topos fibrés correspondants.

Lemme 7.4.12. — Soient $p: C \to I$ un site fibré sur une petite catégorie I et i un objet final de I (I 10). Le foncteur $\alpha_{i!}: C_i^{\sim} \to \text{Top}(C)$ (7.4.3.4) est exact et pleinement fidèle. Les couples de foncteurs $\beta_i = (\alpha_{i!}, \alpha_i^*): \text{Top}(C) \to C_i^{\sim}$ et $\alpha_i = (\alpha_i^*, \alpha_{i*}): C_i^{\sim} \to \text{Top}(C)$ sont des morphismes de topos. Le morphisme composé $\beta_i \alpha_i: C_i^{\sim} \to C_i^{\sim}$ est isomorphe au morphisme identique.

Pour tout objet j de I, notons $f_j: j \to i$ l'unique morphisme de j dans i. En utilisant l'équivalence $\Theta_{\mathbf{C}}: \mathrm{Top}(\mathbf{C}) \xrightarrow{\sim} \mathscr{H}om_{\mathbf{I}^{\circ}}(\mathbf{I}^{\circ}, (\mathbf{C}^{\sim/\mathbf{I}})')$ (7.4.7) on voit que pour tout objet \mathbf{X} de \mathbf{C}_i , $\alpha_{i!(\mathbf{X})}$ est le section $j \to f_i^*(\mathbf{X})$ et que pour tout section $j \mapsto \sigma(j) \in \mathrm{Hom}_{\mathbf{I}^{\circ}}(\mathbf{I}^{\circ}, (\mathbf{C}^{\sim/\mathbf{I}})')$, $\alpha_i^*(j \mapsto \sigma(j))$ est l'objet $\sigma(i)$. Par suite $\alpha_i^*\alpha_{i!}$ est isomorphe à

l'identité. Donc $\alpha_{i!}$ est pleinement fidèle. Comme les foncteurs f_j^* sont exacts à gauche, le foncteur $\alpha_{i!}$ est exact à gauche. Donc β_i est un morphisme de topos, et comme $\alpha_i^*\alpha_{i!}$ est isomorphe à l'identité, le morphisme $\beta_i\alpha_i$ est isomorphie au morphisme identique.

Théorème 7.4.13.1. — Soient $p: C \to I$ et $q: D \to I$ deux \mathscr{U} -sites fibrés sur une petite catégorie I et $m: D \to C$ un I-foncteur. Pour que m soit un morphisme du site fibre C dans le site fibré D (7.2.2), il suffit que m soit un morphisme du site total C dans le site total D.

7.4.13.2. Il faut montrer que si un I-foncteur $m: D \to C$ est un morphisme du site total C dans le site total D, le foncteur m est un morphisme du site fibré C dans le site fibré D, i.e. pour tout objet i de I, le foncteur $m_i: D_i \to C_i$ induit par m sur les fibres en i est un morphisme du site C_i dans le site D_i . La démonstration de cette dernière assertion occupe les alinéas 7.4.13.3 à 7.4.13.7.

7.4.13.3. Montrons que pour tout objet i de I, le foncteur $m_i: D_i \to C_i$ est continu. En effet on a un diagramme commutatif:

et il suffit de montrer que pour tout crible couvrant $R \hookrightarrow X$ de C_i/X , le morphisme $m_{i!}(R) \to m_i(X)$ est bicouvrant (III 1.2 et 1.5). Mais, en vertu de la commutativité du diagramme de la page 195 et du fait que les foncteurs $\alpha_{i!}$ et m sont continus, le morphisme $\alpha_{i!}m_{i!}(R) \to \alpha_{i!}m_i(X)$ est bicouvrant. L'assertion résulte donc de 7.4.2.2.

7.4.13.4. Réduction au cas où C et D sont des \mathscr{U} -topos fibrés. Comme les foncteurs m_i sont continus, ils admettent des prolongements naturels aux catégories de faisceaux que nous noterons $m_i^*: D_i^{\sim} \to C_i^{\sim}$ (III 1.2 iv)). Soient $D^{\sim/I}$ et $C^{\sim/I}$ les \mathscr{U} -topos fibrés associés aux sites fibrés D et C respectivement, et pour tout morphisme f de I, notons f^* les foncteurs images inverses pour les quatre catégories fibrées C, D, $C^{\sim/I}$ et $D^{\sim/I}$. Comme le foncteur m est un I-foncteur, on a pour tout $f: i \to j$ un morphisme canonique

$$f^*mj \leftarrow m_i f^*$$
.

Comme les foncteurs f^* , m_i et m_j sont continus, on en déduit, en passant aux catégories de faisceaux, des isomorphismes canoniques

$$f^*m_j^* \longleftarrow m_i^*f^*.$$

Ces isomorphismes possèdent des propriétés de compatibilité, permettant de construire un foncteur cartésien $m^*: D^{\sim/I} \to C^{\sim/I}$ qui induit sur les topos fibres les foncteurs

VI

 m_i^* . De plus, le diagramme

est commutatif à isomorphisme près. Comme les foncteurs $\varepsilon_{\rm I}$ induisent des équivalences sur les topos totaux (7.4.11) et comme m est un morphisme entre les sites totaux, le foncteur $m^*: {\rm D}^{\sim/{\rm I}} \to {\rm C}^{\sim/{\rm I}}$ est un morphisme entre les sites totaux. On est donc ramené à démontrer l'assertion de 7.4.13.2 lorsque D et C sont des \mathscr{U} -topos fibrés, ce que nous supposerons désormais.

7.4.13.5. Pour tout objet i de I, le foncteur $m_i : D_i \to C_i$ transforme l'objet final de D_i en l'objet final de C_i . Notons $m : D^{\sim} \to C^{\sim}$ le prolongement naturel de m aux topos totaux (III 1.2). Utilisant les équivalences $\Theta_D : D^{\sim} \to \mathscr{H}om_{I^{\circ}}(I^{\circ}, D')$ (7.4.7), on vérifie immédiatement que m associe à toute section $\sigma \in \operatorname{Hom}_{I^{\circ}}(I^{\circ}, D')$ la section $(i \mapsto m_i \sigma(i)) \in \operatorname{Hom}_{I^{\circ}}(I^{\circ}, C')$. Comme m est un morphisme de sites, le foncteur m est exact à gauche et en particulier transforme l'objet final de $\mathscr{H}om_{I^{\circ}}(I^{\circ}, C')$. Pour tout objet i de I, notons e_i un objet final de D_i . Un objet final de $\mathscr{H}om_{I^{\circ}}(I^{\circ}, D')$ est la section $i \mapsto e_i$. Donc la section $i \mapsto m_i(e_i)$ est un objet final de $\mathscr{H}om_{I^{\circ}}(I^{\circ}, C')$ et par suite, pour tout objet i de I, $m_i(e_i)$ est un objet final de C_i .

7.4.13.6. Réduction au cas où i est un objet final de I. Soit i un objet de I. Le foncteur $\alpha_{i!}: D_i \to D$ se factorise en

$$D_i \xrightarrow{\overline{\alpha}_{i!}} D_{/e_i} \xrightarrow{loc(e_i)} D,$$

où $\overline{\alpha}_i$ est le foncteur évident et $loc(e_i)$ le foncteur d'oubli. Notons $m/i: D_{/e_i} \to D_{m(e_i)}$ le foncteur qui associe à tout objet $u: X \to e_i$ de $D_{/e_i}$, l'objet $m(u): m(X) \to m(e_i)$ de $C_{/m(e_i)}$. On a un diagramme commutatif:

$$\begin{array}{c|c} \mathbf{D}_{i} & \xrightarrow{m_{i}} & \mathbf{C}_{i} \\ \hline \overline{\alpha}_{i!} & & & \overline{\alpha}_{i!} \\ \hline \mathbf{D}_{/e_{i}} & \xrightarrow{m/i} & \mathbf{C}_{/m(e_{i})} \end{array}$$

Comme e_i et $m(e_i)$ sont des objets finaux de D_i et C_i respectivement (7.4.13.5), les catégories $D_{/e_i}$ et $C_{/m(e_i)}$ sont des \mathscr{U} -topos fibrés sur $I_{/i}$ et le foncteur $m_{/i}$ est un $I_{/i}$ -foncteur. Comme la propriété pour un foncteur d'être un morphisme de sites se localise (IV 4.9), le foncteur $m_{/i}$ est un morphisme du site total $C_{/m(e_i)}$ dans le site

total $D_{/(e_i)}$. On est donc ramené à démontrer que m_i est un morphisme de topos lorsque i est un objet final de I, ce que nous supposerons désormais.

298

299

7.4.13.7. Fin de la démonstration. Notons $\alpha_{i!}: D_i \to D^{\sim}$, $m^{\sim}: D^{\sim} \to C^{\sim}$, $\alpha_{i!}: C_i \to C^{\sim}$, les prolongements naturels aux catégories de faisceaux des foncteurs $\alpha_{i!}$ et m. On a un diagramme commutatif à isomorphisme prés :

Comme i est un objet final, le foncteur $\alpha_i^*\alpha_{i!}: C_i \to C_i$ est isomorphe à l'identité (7.4.12) et par suite m_i est isomorphe à $\alpha_i^*m^{\sim}\alpha_{i!}$. De plus les foncteurs α_i^* , m^{\sim} et α_i^* sont exacts à gauche (7.4.12). Par suite m_i est exact à gauche et est donc un morphisme de site C_i dans le site D_i .

Exercice 7.4.14. — Soient $X = (X_i)_{i \in I}$ un topos fibré sur I et T un topos. Montrer que les catégories $\mathscr{H}omtop(X_i,T)$ sont les fibres d'une catégorie fibrée qu'on notera $\mathscr{H}omtop_I(X,T\times I)$. Montrer que la catégorie des sections sur I de $\mathscr{H}omtop_I(X,T\times I)$ est canoniquement équivalente à $\mathscr{H}omtop_I(Top(X),T)$ où Top(X) est le topos total de X.

Exercice 7.4.15. — Soit $X = (X_i)_{i \in I}$ un topos fibré sur I. Définir un morphisme cartésien m de X dans le topos fibré constant de fibre (Ens). Montrer que le topos total du topos fibré constant de fibre (Ens) est canoniquement équivalent à $\widehat{\Gamma}$. En déduire un morphisme de topos

$$Top(m) : Top(X) \longrightarrow \widehat{I}$$
.

Soit $F = (F_i)_{i \in I}$ (où $F_i = F|X_i$) un objet de Top(X) (7.4.7). Montrer que

$$Top(m)(F) = (i \mapsto \Gamma(X_i, F_i)).$$

Déduire de 7.4.12 que si F est abélien injectif, F_i est abélien injectif pour tout $i \in \text{ob I}$. En déduire que

$$R^q \operatorname{Top}(m)(F) = (i \mapsto H^q(X_i, F_i)).$$

Montrer que la suite spectrale de Cartan-Leray du morphisme m (V 5) est :

$$H^{p+q}(Top(X), F) \Leftarrow \varprojlim_{I}^{(p)} H^{q}(X_{i}, F|X_{i}).$$

8. Limites projectives de topos fibrés

8.1. Généralités. —

Définition 8.1.1. — Soient \mathscr{U} un univers et $p: F \to I$ un \mathscr{U} -topos fibré. Un couple (C,m) constitué par un \mathscr{U} -topos C et un morphisme cartésien $m: C \times I \to F$ de \mathscr{U} topos fibrés sur I est appelé une limite projective du topos fibré F si pour tout \mathscr{U} -topos D, le foncteur

$$(8.1.1.1) \hspace{1cm} \mathscr{H}omtop(D,C) \longrightarrow \mathscr{H}omtop_{cart\ /I}(D\times I,F)$$

obtenu en composant le foncteur de changement de base

$$\mathscr{H}omtop(D,C) \longrightarrow \mathscr{H}omtop_I(D \times I,C \times I)$$

et le foncteur de composition avec m (7.1.8), es une équivalence de catégories. (cf. 8.1.3.3 pour une formulation plus « géométrique »).

8.1.2. On utilise les notations de 8.1.1. Soient D un \mathscr{U} -topos et $m_{\mathbb{I}}: D \times I \to F$ un morphisme de \mathcal{U} -topos fibrés. En traduisant la définition 8.1.1, on constate aussitôt qu'il existe un morphisme de topos $n: D \to C$, et un isomorphisme de morphismes de topos fibrés sur I, $\gamma: m_1 \xrightarrow{\sim} m_{\circ}(n \times \mathrm{id_I})$, rendant commutatif le diagramme :

De plus, si (n', γ') est un autre couple possédant la propriété ci-dessus, il existe un unique isomorphisme $\eta: n \xrightarrow{\sim} n'$ tel que

$$(8.1.2.2) \gamma \circ m(n \times id) = \gamma'.$$

De là résulte que, si (D, m_1) est une limite projective de F, n est une équivalence de \mathscr{U} -topos (IV 3.4) et que la donnée supplémentaire de l'isomorphisme γ faisant commuter le diagramme (8.1.2.1) détermine le couple (n, γ) isomorphisme canonique prés. L'existence de la limite projective sera démontrée en 8.2.3 lorsque I est cofiltrante.

8.1.3. On note

300

$$\varprojlim_{\mathsf{I}} \mathsf{top} \; \mathsf{F} \; \mathsf{ou} \; \varprojlim_{\mathsf{I}} \mathsf{top} \; \mathsf{F}_i \; \mathsf{ou} \; \mathsf{encore} \; \underbrace{\mathsf{F}}_i$$

 $\varprojlim_{\mathbf{I}} \mathbf{F} \text{ ou } \varprojlim_{\mathbf{I}} \mathbf{F}_i \text{ ou encore } \underbrace{\mathbf{F}}_i$ une limite projective du topos fibré $\mathbf{F}, \mu : (\varprojlim_{\mathbf{r}} \mathbf{top} \ \mathbf{F}) \times \mathbf{I} \to \mathbf{F}$ le morphisme canonique, et pour tout objet i de I on note

$$\mu_i : \underline{F} \simeq \underline{F} \times i \longrightarrow F_i$$

le morphisme de topos induit par μ sur les fibres en i.

Choisissons un biscindage de F (7.1.4) i.e. pour tout $f: i \to j$ un morphisme de topos $f \cdot = (f^*, f_*) : F_i \to F_j$ tel que f^* soit un foncteur image inverse pour la structure fibrée. On a alors, pour tout couple $i \xrightarrow{f} j \xrightarrow{g} k$ de morphismes composables de I, un isomorphisme de morphismes de topos (7.1.3)

$$c_{f,g}: g.f. \simeq (gf).$$
 .

Comme μ est un morphisme cartésien de topos fibrés, on a pour tout morphisme $f: i \to j$ de I, un isomorphisme de morphismes de topos (7.1.6)

$$(8.1.3.1) b_f: f.\mu_i \xrightarrow{\sim} \mu_j,$$

et la famille des b_f satisfait à des relations analogues aux relations (7.1.6.2)

8.1.3.2. Soient D un \mathcal{U} -topos, $m: D \times I \to F$ un morphisme de topos fibrés, $m_i: D = D \times \{i\} \to F_i$ les morphismes induits par m sur les fibres et pour tout $f: i \to j$:

$$b'_f: f.m_i \xrightarrow{\sim} m_i,$$

l'isomorphisme de transition. Il résulte de 8.1.2 qu'il existe un morphisme de topos $n: \mathcal{D} \to \creat{F}$ et une famille d'isomorphismes :

301

$$\gamma_i: m_i \xrightarrow{\sim} \mu_i n \quad i \in \text{ob I},$$

tels que pour tout $f: i \to j$ on ait :

$$b_f \circ f.(\gamma_i) = \gamma_i \circ b'_f.$$

De plus, le morphisme n et la famille des γ_i , $i \in ob(I)$ sont déterminés à isomorphisme unique près (8.1.2).

Réciproquement lorsqu'on se donne un topos \underline{F} , des morphismes $\mu_i : \underline{F} \to F_i$ et des isomorphismes b_f (8.1.3.1.), satisfaisant aux conditions de compatibilités usuelles, et lorsque toutes ces données possèdent la propriété universelle décrite ci-dessus, il existe un unique morphisme $\mu : \underline{F} \times I \to F$ de topos fibrés qui donnent naissance aux μ_i et aux b_f et (\underline{F}, μ) est une limite projective du topos fibré F.

8.1.3.3. Soit \mathscr{V} un univers tel que $\mathscr{U} \in \mathscr{V}$. Les considérations ci-dessus permettent donc d'interpréter les limites projectives de topos fibrés comme des « limites projectives », au sens des 2-catégories, des pseudo-foncteurs à valeurs dans la 2-catégorie des \mathscr{U} -topos fibrés éléments de \mathscr{V} déduits de la structure fibrée en choisissant les morphismes f.. Toutefois le lecteur prendra garde de ne pas confondre cette notion de « limite projective » au sens des 2-catégories (avec isomorphisme de commutation) avec la notion stricte (ou naïve) de limite projective (commutation stricte de diagrammes). Même lorsque la notion stricte a un sens (lorsque le pseudo-foncteur est un vrai foncteur) les notions de « limite projective » généralisée et de limite projective stricte ne coïncident pas en général.

303

8.1.4. Soient $p: F \to I$ et $q: G \to I$ deux \mathscr{U} -topos fibrés et $m: F \to G$ un morphisme de topos fibrés. Supposons que les topos fibrés F et G possèdent des limites projectives (8.1.1). Il résulte alors immédiatement de la définition 8.1.1 qu'il existe un morphisme de topos :

$$(8.1.4.1) \underline{m}: \underline{F} \longrightarrow \underline{G},$$

et un isomorphisme de morphismes de topos fibrés $\gamma: m \circ \mu \xrightarrow{\sim} \mu \circ \underline{m} \times \mathrm{id}_{\mathrm{I}}$, rendant commutatif le diagramme

$$(8.1.4.2) \qquad \underbrace{F} \times I \xrightarrow{\mu} F$$

$$\underbrace{m} \times id_{I} \qquad \qquad \uparrow \qquad \downarrow m$$

$$G \times I \xrightarrow{\mu} \swarrow G$$

De plus, si $(\underline{m}', \gamma')$ est un autre couple possédant la propriété ci-dessus il existe un unique isomorphisme $n: \underline{m} \xrightarrow{\sim} \underline{m}'$ de morphismes de topos tel que

$$\gamma \circ \mu(\eta \times id) = \gamma'$$
.

8.1.5. Soient $p: F \to I$ un \mathscr{U} -topos fibrés élément de \mathscr{V} , $\phi: I' \to I$ un foncteur élément de \mathscr{V} , $p_{\phi}: F_{\phi} \to I'$ le \mathscr{U} -topos fibré déduit de (F, p) par le changement de base ϕ (7.1.9). Soit (F, μ) une limite projective de F. On obtient par changement de base un morphisme de topos fibrés sur I':

$$\mu': \underline{F} \times I' \longrightarrow F.$$

Soit $(\underline{F}_{\phi}, \mu_{\phi})$ une limite projective de F_{ϕ} . On a alors, par la propriété universelle de la limite projective (8.1.2) un morphisme de topos

$$m_{\phi}: \underline{F} \longrightarrow \underline{F}_{\phi},$$

et un isomorphisme de morphismes de topos fibrés sur I' :

$$\gamma: \mu' \xrightarrow{\sim} \mu_{\phi} \circ (m_{\phi} \times \mathrm{id}_{\mathrm{I}'}).$$

Le couple (m_{ϕ}, γ) est déterminé à isomorphisme unique prés.

8.1.6. Soient $p: F \to I$ un \mathscr{U} -site fibré sur une petite catégorie I, $F^{\sim/I} \to I$ le \mathscr{U} -topos fibre associé (7.2.6) et D un U-topos. On a tout d'abord un foncteur

$$(8.1.6.1) \mathcal{H}omtop_{cart/I}(D \times I, F^{\sim/I}) \longrightarrow \mathcal{M}orsite_{cart/I}(D \times I, F),$$

qui associe à tout m le foncteur composé de m^* avec $\varepsilon_{F/I}$ (7.2.7). De plus, par définition de la catégorie $\mathcal{M}orsite_{\operatorname{cart}/I}(D \times I, F)$ (7.2.2.2), on a un foncteur

$$(8.1.6.2) \qquad \mathscr{M}orsite_{\operatorname{cart}/I}(D\times I,F) \longrightarrow \mathscr{H}om_{\operatorname{cart}/I}(F,D\times I)^{\circ}.$$

Enfin, par définition de la limite inductive (6.3), on a un foncteur

$$(8.1.6.3) \qquad \mathscr{H}om_{\operatorname{cart}/I}(F, D \times I)^{\circ} \longrightarrow \mathscr{H}om(\varinjlim_{T} F, D)^{\circ}.$$

Notons

$$(8.1.6.4) \qquad \Theta: \mathscr{H}omtop_{\operatorname{cart}/I}(D\times I, F^{\sim/I}) \longrightarrow \operatorname{Hom}(\varinjlim_{I^{\circ}} F, D)^{\circ}$$

le foncteur composé de ces trois derniers foncteurs et

$$\Pi: F \longrightarrow \varinjlim_{I^{\circ}},$$

le foncteur canonique.

Proposition 8.1.7. — Le foncteur Θ est pleinement fidèle. Son image essentielle est l'ensemble des foncteurs $m: \underline{\lim}_{\Gamma} F \to D$ tel que le foncteur

$$(m \circ \Pi, p) : \mathcal{F} \longrightarrow \mathcal{D} \times \mathcal{I}$$

soit un morphisme du site total $D \times I$ dans le site total F.

Il résulte de 7.2.7 que le foncteur (8.1.6.1) es une équivalence de catégories, de 7.2.2 que le foncteur (8.1.6.2) est pleinement fidèle et de 6.3 que le foncteur (8.1.6.4) est une équivalence de catégories. Par suite Θ est pleinement fidèle. Un foncteur m: $\varinjlim_{\Gamma} F \to D$ est isomorphie à l'image par $\mathscr{H}om_{\operatorname{cart}/I}(F, D \times I)^{\circ} \to \mathscr{H}om(\varinjlim_{\Gamma} F, D)^{\circ}$ du foncteur $(m \circ \Pi, p)$, et un tel foncteur est dans l'image essentielle de (8.1.6.2) si et seulement s'il est un morphisme du site total $D \times I$ dans le site total F (7.4.13.1); d'où la proposition.

8.2. Construction de la limite projective lorsque la catégorie d'indice est cofiltrante.—

Lemme 8.2.1. — Soient I et I' deux catégories cofiltrantes (I 8.1) et $\phi: I' \to I$ un foncteur tel que $\phi^{\circ}: I'^{\circ} \to I^{\circ}$ soit cofinal (I 8.1). Soient de plus $p: F \to I$ un \mathscr{U} -topos fibré, D un \mathscr{U} -topos, $m: D \times I \to F$ un morphisme cartésien de topos fibré, $m': D \times I' \to F$ le morphisme de topos fibrés déduit de m par le changement de base ϕ (7.1.9). Le couple (D, m) est une limite projective de F si et seulement si (D, m') est une limite projective de F'.

La démonstration n'est qu'une vérification de routine assez longue. Elle est laissée au lecteur patient, qui pourra utiliser le point de vue des limites projectives de pseudofoncteurs (8.1.3.3).

304

Lemme 8.2.2. — Soient $p: F \to I$ un \mathscr{U} -site fibré sur une petite catégorie cofiltrante, F la Limite inductive de la catégorie fibrée F (6.3.9), $\pi: F \to F$ le foncteur canonique. Munissons F de la topologie la moins fine rendant continu le foncteur π (III 1). Soit D un \mathscr{U} -site et $n: F \to D$ un foncteur. Les propriétés suivantes sont équivalentes :

i) n est un morphisme de sites $D \to F$.

- ii) $n \circ \pi$ est un morphisme de sites (où F est muni de la topologie totale).
- iii) $(n \circ \pi, p) : F \to D \times I$ est un morphisme du site total $D \times I$ dans le site total F.
- iv) Pour tout objet i de I, le foncteur composé $F_j \xrightarrow{\alpha_{i!}} F \xrightarrow{n \circ \pi} D$ est un morphisme de sites.

On a i) = ii) d'après (6.6) et iii) = iv) d'après (7.4.13). Montrons que iii) = ii). Il suffit pour cela de montrer que le foncteur première projection $\operatorname{pr}_1: \operatorname{D} \times \operatorname{I} \to \operatorname{D}$ est un morphisme de sites. Notons $\operatorname{D}^{\simeq}$ le topos des faisceaux sur D. Il résulte de (7.4.7) que $(\operatorname{D} \times \operatorname{I})^{\sim}$ est équivalent au topos $\mathscr{H}om_{\operatorname{I}^{\circ}}(\operatorname{I}^{\circ},\operatorname{D}^{\sim} \times \operatorname{I}^{\circ}) = \mathscr{H}om(\operatorname{I}^{\circ},\operatorname{D}^{\sim})$. De plus, on constate immédiatement que le prolongement naturel de $\operatorname{pr}_1: \operatorname{D} \times \operatorname{I} \to \operatorname{D}$ aux faisceaux (III 1.2) est le foncteur de $\mathscr{H}om(\operatorname{I}^{\circ},\operatorname{D}^{\sim})$ dans D^{\sim} qui associe au foncteur $i \to \sigma(i)$ Hom($\operatorname{I}^{\circ},\operatorname{D}^{\sim}$) l'objet $\varinjlim_{\operatorname{I}^{\circ}} \sigma(i)$. Comme I° est filtrante, les limites inductives suivant I° sont exacts (II 4) et par suite pr_1 est un morphisme de sites (IV 4.9). Il reste à démontrer que ii = iv). Traitons tout d'abord le cas où D est un \mathscr{U} -topos et F un \mathscr{U} -topos fibré sur I. Soit i un objet de I. En raisonnant comme dans 7.4.13.6, on voit que le foncteur $\alpha_{i!}: \operatorname{F}_i \to \operatorname{F}$ se factorise en un morphisme $\overline{\alpha}_{i!}: \operatorname{F}_i \to \operatorname{F}/\alpha_{i!}(e_i)$ et le foncteur de localisation $\operatorname{F}/\alpha_{i!}(e_i) \to \operatorname{F}$, où e_i est un objet final de F_i . Il suffit donc de montrer que le foncteur composé $f/\alpha_{i!}(e_i)$ $\xrightarrow{n \to \pi}$ D est un morphisme de sites. Mais on a un diagramme commutatif à isomorphisme près :

Comme la propriété d'être un morphisme se localise (IV 5.10), il suffit de montrer que $n \circ \pi \circ \alpha_{i!}(e_i)$ est un objet final de D. Pour tout morphisme $f: j \to k$ de I, il existe un et un seul morphisme $e_f: \alpha_{j!}(e_j) \to \alpha_{k!}(e_k)$ au-dessus de f et ce morphisme est cartésien. On a donc une section cartésienne $j \mapsto \alpha_{j!}(e_j)$ de F sur I. Par suite le morphisme canonique $n \circ \pi \circ \alpha_{i!}(e_i) \to \varinjlim_{1} n \circ \pi \circ \alpha_{j!}(e_j)$ est un isomorphisme, car π transforme les morphismes cartésiens en isomorphismes. Par ailleurs $\varinjlim_{1} \alpha_{j!}(e_j)$, où la limite inductive est prise dans \widehat{F} , est un objet final de \widehat{F} . Comme $n \circ \pi$ est un morphisme, il transforme l'objet final de \widehat{F} en un objet final de D. Par suite $\varinjlim_{1} n \circ \pi \circ \alpha_{j!}(e_j)$ est un objet final de D, ce qui achève le démonstration dans ce cas. Dans le cas général, le foncteur $(n\pi, p) : F \to D \times I$ est cartésien et continu (7.4.4). De plus, le foncteur $n \circ \pi$ est le foncteur composé

$$F \xrightarrow{(n\pi,p)} D \times I \xrightarrow{pr_1} D.$$

En passant aux \mathcal{U} -topos fibrés associés, on obtient un diagramme commutatif à isomorphisme près :

Comme $(n\pi,p)^{\sim/I}$ est cartésienne, il est du type $(n'\pi',p')$ où $p': F^{\sim/I} \to I$ et $\pi': F^{\sim/I} \to \varinjlim_{i} F_{i}^{\sim}$ sont les foncteurs canoniques. On a donc $\operatorname{pr}_{I^{\circ}}(n\pi,p)^{\sim/I} = n'$. Comme les foncteurs $\varepsilon_{F/I}, \varepsilon_{D}$ induisent une équivalence sur les topos de faisceaux (7.4.11), les foncteurs n et n' donnent des foncteurs isomorphes en passant aux faisceaux associés (III 1.2) et par suite n' est un morphisme de sites. D'après ce qui précède, le foncteur $(n\pi,p)^{\sim/I}$ induit sur les fibres des morphismes de topos. C'est donc un morphisme de site total F dans le site total $D^{\sim} \times I$ (7.4.13). Comme les foncteurs $\varepsilon_{F/I}, \varepsilon_{D} \times i$ dinduisent des équivalences sur les topos totaux (7.4.11), le foncteur $(n\pi,p)$ est un morphisme de sites fibrés (7.4.13), d'où l'assertion.

Théorème 8.2.3. — Soient $p: F \to I$ un \mathscr{U} -site fibré sur une catégorie cofiltrante essentiellement petite (I 8.1).

1) Notons \xrightarrow{F} le site dont la catégorie sous-jacente est la limite inductive de la catégorie fibrée $F \to I$ (6.3) et dont la topologie est la topologie la moins fine rendant continu le foncteur canonique $\pi: F \to F$. Alors F est un $\mathscr U$ -site et

$$(\pi, p) : \mathbf{F} \longrightarrow \mathbf{F} \times \mathbf{I}$$

est un morphisme du site fibré $\underline{F} \times I$ dans le site fibré F.

2) Soit $\mu: \xrightarrow{\Gamma} \times I \to F^{\sim}/I$ le morphisme de \mathscr{U} -topos fibrés déduit de (π, p) en passant aux \mathscr{U} -topos fibrés associés. Le couple $(\xrightarrow{\Gamma}, \mu)$ est une limite projective de $F^{\sim/I}$.

Remarque 8.2.4. — 1) Vu les notations introduites en 8.1.3, on peut poser

$$\varprojlim_{\mathbf{T}} \mathsf{top} \; F^{\sim} = \underset{\mathbf{T}}{\overset{\sim}{\mathsf{F}}} {}^{\sim}$$

2) Il résulte de 7.4.4 que la topologie sur $\xrightarrow{\mathbf{F}}$ est aussi la topologie la moins fine rendant continue la famille des foncteurs $\pi_j: \mathbf{F}_j \to \mathbf{F} \xrightarrow{\pi} \xrightarrow{\mathbf{F}}, j \in \text{ob I}$.

Définition 8.2.5. — Le site \xrightarrow{F} introduit dans 8.2.3 est appelé le site limite projective du site fibré F.

A titre d'exercice, le lecteur pourra comme en 8.2.1 définir la notion de limite projective d'un site fibré et vérifier que le site \underline{F} est bien une limite projective du

308

site F. La deuxième assertion du théorème peut donc se paraphraser ainsi : Le topos des faisceaux sur le site limite projective est équivalent à la limite projective du topos fibré associé.

8.2.6. Démonstration du théorème : Réduction au cas d'une petite catégorie d'indices. — Nous nous bornerons à donner des indications. Soit I' une sous-catégorie pleine de I telle que I'° soit cofinale dans I°. Notons $F' \to I'$ la catégorie fibrée déduite de F par le changement de base $I' \to I$, $\pi' : F' \to \underline{F}'$ le foncteur canonique. On constate tout d'abord que les catégories \underline{F} et \underline{F}' sont équivalentes et que la topologie sur \underline{F}' déduite de la topologie de \underline{F} par cette équivalence est la topologie la moins fine rendant continue le foncteur $\pi' : F' \to \underline{F}'$. L'assertion 1) du théorème en résulte alors lorsqu'elle est démontrée dans le cas où I est petite. L'assertion 2) dans le cas général de déduit alors de l'assertion 2) dans le cas où I est petite par le lemme 8.2.1.

8.2.7. Fin de la démonstration de théorème. — La première assertion résulte du lemme 8.2.2 appliqué au cas où $D = \underline{F}$ et n = id. Soit D un \mathscr{U} -topos. On a un diagramme commutatif à isomorphisme près :

où les foncteurs du type (1) sont des équivalences (IV 4.9.4 et 7.2.7), les foncteurs du type (2) sont pleinement fidèles (IV 4.9.1 et 7.2.2), les foncteurs du type (3) sont des foncteurs de changement de base, les foncteurs du type (4) sont des foncteurs de composition (avec μ , resp. (π, p)) et le foncteur (5) est l'équivalence déduite de la propriété universelle de la limite inductive (6.3). Pour montrer que le foncteur $\mathscr{H}omtop(D, (\underline{F})^{\sim}) \xrightarrow{(4)\circ(3)} \mathscr{H}omtop_{/I}(D\times I, F^{\sim/I})$ est une équivalence, il suffit de montrer que le foncteur

$$\mathcal{M}orsite(D, F) \xrightarrow{(4)\circ(3)} \mathcal{M}orsite_{/I}(D \times I, F)$$

est une équivalence de catégories ou encore il suffit de montrer que les deux foncteurs pleinement fidèles

$$\mathscr{M}orsite(D, \underline{F}) \xrightarrow{(5)\circ(2)} \mathscr{H}omcart_I(F, D \times I)^{\circ}$$

$$\mathscr{M}orsite_{/I}(D \times I, F) \xrightarrow{(2)} \mathscr{H}omcart_I(F, D \times I)^{\circ}$$

ont mêmes images essentielles, ce qui résulte immédiatement du lemme 8.2.2.

8.2.8. Soient $p: F \to I$ un $\mathscr U$ -topos fibré sur une catégorie I, $(\varprojlim_{\overline{I}} \operatorname{topos} F_i, \mu)$ une limite projective de F. On a donc un morphisme cartésien de $\mathscr U$ -topos fibrés sur I :

$$\underset{\mathbf{I}}{\mu \underset{\mathbf{I}}{\varprojlim}} \text{top } \mathbf{F}_i \times \mathbf{I} \longrightarrow \mathbf{F},$$

d'où, en passant aux catégories fibrées aux I° par les foncteurs images directes (7.1.3), un foncteur cartésien :

$$\mu_*: \varprojlim_{\mathbf{I}} \operatorname{top} \, \mathbf{F}_i \times \mathbf{I}^{\circ} \longrightarrow \mathbf{F}'$$

qui est le foncteur image directe par μ (7.1.7). On a donc, par définition de la limite projective d'une catégorie fibrée (6.10), un foncteur canonique

$$(8.2.8.1) \qquad \qquad \Theta: \varprojlim_{\overline{I}} \operatorname{top} \, \mathcal{F}_i \longrightarrow \varprojlim_{\overline{I}, f_*} \mathcal{F}_i = \mathscr{H}om_{\operatorname{cart}/\mathcal{I}^{\circ}}(\mathcal{I}^{\circ}, \mathcal{F}').$$

Théorème 8.2.9. — On utilise les notations de 8.2.8, et on suppose que I est une catégorie cofiltrante essentiellement petite. Alors le foncteur Θ est une équivalence de catégories. Supposons I petite. Posons $\varprojlim_{\mathbb{I}} F_i = (F_i)^{\sim}$ (ce qui est licite d'après 8.2.3 et 8.2.4) et interprétons la catégorie $\mathscr{H}om_{\mathbb{I}^{\circ}}(\mathbb{I}^{\circ}, F')$ comme la catégorie des faisceaux sur le site total F (7.4.7). Alors le foncteur composé

$$(\underline{F})^{\sim} = \varprojlim_{\mathbf{I}} \mathrm{top} \ F_{i} \xrightarrow{\Theta} \mathscr{H}om_{\mathrm{cart}\,/\mathbf{I}^{\circ}}(\mathbf{I}^{\circ}, \mathbf{F}') \hookrightarrow \mathscr{H}om_{\mathbf{I}^{\circ}}(\mathbf{I}^{\circ}, \mathbf{F}') \cong \mathbf{F}^{\sim},$$

n'est autre que le foncteur image directe par le morphisme de sites défini par le foncteur

$$\pi: \mathcal{F} \longrightarrow \underline{\mathcal{F}}$$
.

8.2.10. Quelques commentaires avant la démonstration du théorème 8.2.9. A part la solution du problème d'existence des limites projectives dans le cas où la catégories d'indices est cofiltrante, solution qui curieusement n'est pas triviale dans cette théorie, les théorèmes 8.2.3 et 8.2.9 apportent deux informations supplémentaires essentielles pour le maniement dans la pratique des topos limites projectives. Tout d'abord le théorème 8.2.3 interprète le topos limite projective comme le topos des faisceaux sur un site donc la catégorie sous-jacente est la catégorie limite inductive des catégories F_i suivant le système des foncteurs images inverses. Dans les applications, on saura interpréter concrètement cette catégorie et sa topologie. D'autre part, le théorème 8.2.9 affirme qu'un faisceau de la limite projective est connu lorsque'on connaît le système de ses images directes dans le topos F_i (qui fournit une section cartésienne sur I° de la catégorie $(F^{\sim/I})'$). Ce théorème affirme de plus que réciproquement lorsqu'on se donne pour tout objet i de I un faisceau X_i sur F_i et pour tout morphisme $f: i \to j$ de I un isomorphisme $X_i \simeq f_*X_i$, ces isomorphismes étant soumis à des conditions

de compatibilité, il existe essentiellement un seul faisceau de la limite projective qui donne naissance par images directes au système des X_i .

8.2.11. L'assertion 2) de 8.2.3 et la première assertion de 8.2.9 peuvent être résumées dans la formule frappante :

$$(8.2.11.1) \qquad \qquad \varprojlim_{\mathbf{I},f_*} \mathbf{F}_i^{\sim} \approxeq \varprojlim_{\mathbf{I},f_*} \mathbf{f}_i^{\sim} \approxeq (\varinjlim_{\mathbf{I}^{\circ},f_*} \mathbf{F}_i)^{\sim}.$$

8.2.12. Démonstration du théorème 8.2.9 Pour démontrer la première assertion, on se ramène au cas où la catégorie I est petite en utilisant 8.2.1 et un lemme analogue sur les limites projectives de catégories fibrées. Nous laissons les détails au lecteur. Supposons désormais que I est une petite catégorie. On site que le foncteur

$$\pi: \mathcal{F} \longrightarrow \varinjlim_{\mathcal{I}^{\circ}} \mathcal{F}_{i}$$

est un morphisme de sites (8.2.2). Le foncteur image directe

$$\pi_*: (\varinjlim_{\Gamma^{\circ}} \mathcal{F}_i)^{\sim} \longrightarrow \mathcal{F}^{\sim}$$

qu'il définit sur les topos est alors pleinement fidèle, et son image essentielle est l'ensemble des faisceaux sur F qui transforment les morphismes cartésiens de F en isomorphismes (6.6). Or il est immédiat que ces faisceaux correspondent dans l'équivalence $F^{\sim} \simeq \mathscr{H}om_{I^{\circ}}(I^{\circ}, F')$ aux sections cartésiennes de F' sur I° (7.4.7). De plus, pour tout $j \in \text{ob}(I)$, notons $\alpha_{j!} : F_{j} \to F$ le foncteur d'inclusion qui donne naissance aux trois foncteurs $(\alpha_{j!}, \alpha_{j}^{*}, \alpha_{j*}) : F_{j} \xrightarrow{\longrightarrow} F$ (7.4.3). Il résulte de la définition de l'équivalence $F' \simeq \mathscr{H}om_{I^{\circ}}(I^{\circ}, F)$ (7.4.7) qu'à un faisceau X sur $\varinjlim_{I^{\circ}} F_{i}$ correspond par le foncteur $(\varinjlim_{I^{\circ}} F_{i})^{\sim} \xrightarrow{\pi_{*}} F \simeq \mathscr{H}om_{I^{\circ}}(I^{\circ}, F')$ la section cartésienne $j \mapsto \alpha_{j}^{*}\pi_{*}(X)$. Or il résulte de la description du foncteur $\mu : (\varinjlim_{I^{\circ}} F_{i})^{\sim} \times I \to F$ donnée dans 8.2.3 que pour tout objet j de I, le foncteur $\mu_{j*} : (\varinjlim_{I^{\circ}} F_{i})^{\sim} \to F_{j}$ image directe par le morphisme $\mu_{j} : (\varinjlim_{I^{\circ}} F_{i})^{\sim} \to F_{j}$ déduit de μ par passage aux fibres en j, n'est autre que le foncteur $\alpha_{j}^{*}\pi_{*}$. Par suite le foncteur $(\varinjlim_{I^{\circ}} F_{i})^{\sim} \xrightarrow{\pi_{*}} F \simeq \mathscr{H}om_{I^{\circ}}(I^{\circ}, F')$ n'est autre que le foncteur $(\varinjlim_{I^{\circ}} F_{i})^{\sim} \xrightarrow{\Theta} \mathscr{H}om_{\operatorname{cart}/I^{\circ}}(I^{\circ}, F') \hookrightarrow \mathscr{H}om_{I^{\circ}}(I^{\circ}, F')$, d'où le théorème.

8.3. Topologie du site limite projective : Cas des topos cohérents. —

8.3.1. Dans ce numéro, $p: F \to I$ est un \mathscr{U} -site fibré sur une catégorie cofiltrante essentiellement petite, dont les foncteurs images inverses $f^*: F_i \to F_j$ commutent aux produits fibrés. On se donne de plus, pour tout objet X d'une catégorie fibre F_i , un ensemble Cov(X) de familles couvrantes pour la topologie de F_i qui possèdent les propriétés (PTO) et (PT1) de II 1.3 et qui engendrant la topologie de F_i . Enfin on suppose que pour tout $f: i \to j$, tout $Y \in ob F_j$, et toute famille $(Y_\alpha \to Y)_{\alpha \in A}$ de Cov(Y), la famille $(f^*(Y_*) \to f^*(Y))_{\alpha \in A}$ appartient à $Cov(f^*(Y))$. Ces conditions sur Cov(X) sont vérifiées par exemple si on prend $Cov(X) = \{$ toutes les familles

couvrantes de X dans F_i }. On se propose d'étudier dans ce numéro le site limite 311 projective de F sous des hypothèses de finitude convenables (8.3.13).

8.3.2. Soient $\pi: F \to \underline{F}$ le foncteur canonique et Y un objet de \underline{F} . Désignons par Cov(Y) l'ensemble des familles $(Y_{\alpha} \xrightarrow{n_{\alpha}} Y)_{\alpha \in A}$ du type suivant :

Il existe un $i \in I$, un objet X de F_i , une famille $(X_{\alpha} \xrightarrow{n'_{\alpha}} X)_{\alpha \in A} \in Cov(X)$, un isomorphisme $\phi : \pi(X) \simeq Y$ et une famille d'isomorphismes $\phi_{\alpha} : \pi(X_{\alpha} \simeq Y_{\alpha}), \alpha \in A$, tels que pour tout $\alpha \in A$ on ait un diagramme commutatif:

Proposition 8.3.3. — 1) L'ensemble des familles $\in Cov(Y)$, $Y \in ob \xrightarrow{F}$, engendre la topologie du site limite projective (8.2.5).

2) La famille $Y \mapsto Cov(Y)$, $Y \in ob \xrightarrow{F}$, possède les propriétés (PTO) et (PT1) de II 1.3.

Nous aurons besoin du lemme suivant :

Lemme 8.3.4. — Soient i un objet de I, $n: X' \to X$ un morphisme quarrable de F_i tel que pour tout $f: j \to i$, $f^*(n)$ soit quarrable. Alors $\pi(n)$ est quarrable. Les foncteurs :

$$\pi_i : \mathcal{F}_i \hookrightarrow \mathcal{F} \xrightarrow{\pi} \mathcal{F}, \quad j \in \text{ob I},$$

commutent aux produits fibrés.

Rappelons que tout objet Y de \underline{F} est égal à un objet $\pi(Z)$, $Z \in ob F$, et que tout morphisme $m: Y \to \pi(X)$ est de la forme :

$$\pi(\mathbf{Z}) \xrightarrow{\pi(s)^{-1}} \pi(\mathbf{Z}') \xrightarrow{\pi(m')} \pi(\mathbf{X}),$$

où s est un morphisme cartésien de F. Par suite, pour montrer que $\pi(n)$ est quarrable, il suffit de montrer que le produit fibré de tout diagramme

$$\pi(\mathbf{X}') \qquad \qquad \pi(\mathbf{X}') \\ \downarrow \pi(u) \\ \pi(\mathbf{Z}') \longrightarrow \pi(\mathbf{X})$$

est représentable. Mais le morphisme $m': \mathbf{Z}' \to \mathbf{X}$ se factorise en $\mathbf{Z}' \xrightarrow{m''} \mathbf{X}'' \xrightarrow{s'} \mathbf{X}$, où p(m'') est l'identité de $p(\mathbf{Z}') = j$ et où s' est cartésien au-dessus de p(s') = f. Posons $\mathbf{X}''' = f^*(\mathbf{X}'), \ n' = f^*(n)$. On a alors un diagramme commutatif

$$X''' \xrightarrow{s''} X'$$

$$\downarrow n' \qquad \qquad \downarrow n$$

$$X'' \xrightarrow{s'} X,$$

d'où un diagramme commutatif dans F :

$$\pi(\mathbf{X}''') \xrightarrow{\sim} \pi(\mathbf{X}')$$

$$\pi(u') \downarrow \qquad \qquad \downarrow \\ \pi(n)$$

$$\pi(\mathbf{Z}') \xrightarrow{\pi(m')} \pi(\mathbf{X}'') \xrightarrow{\sim} \pi(\mathbf{X})$$

où n' est un morphisme quarrable de F_j . Pour montrer que $\pi(n)$ est quarrable, il suffit donc de montrer que le produit $\pi(Z') \times_{\pi(X'')} \pi(X''')$ est représentable, et par suite il suffit de montrer que $\pi_j : F_j \hookrightarrow F \to \underline{F}$ commute aux produits fibrés.

Soient

$$\begin{array}{ccc} \mathbf{Y'} & \longrightarrow \mathbf{X'} \\ \downarrow & & \downarrow \\ \mathbf{Y} & \longrightarrow \mathbf{Y} \end{array}$$

un diagramme cartésien de F_j et W un objet de F au-dessus de $k \in \text{ob I}$. On a (6.5) :

$$\mathscr{H}om(\pi(\mathbf{W}), \pi(\mathbf{Y}')) \simeq \underset{j}{\varinjlim} \mathscr{H}om_{\mathbf{F}_{\ell}}(g^*(\mathbf{W}), f^*(\mathbf{Y}'))$$

313 Mais comme $f^*: \mathcal{F}_j \to \mathcal{F}_\ell$ commute aux produits fibrés, on a

$$\text{Hom}(g^*(W), f^*(Y')) \simeq \text{Hom}(g^*(W), f^*(Y)) \times_{\text{Hom}(g^*(W), f^*(X))} \text{Hom}(g^*(W), f^*(X')).$$

Utilisant alors la commutation des limites filtrantes aux produits fibrés (I 2) et la formule (6.5) on obtient un isomorphisme :

$$\operatorname{Hom}(\pi(W), \pi(Y')) \simeq \operatorname{Hom}(\pi(W), \pi(Y)) \times_{\operatorname{Hom}(\pi(W), \pi(X))} \operatorname{Hom}(\pi(W), \pi(X')),$$

ce qui montre que le diagramme :

est cartésien dans \underline{F} .

8.3.5. Démonstration de 8.3.3. Démontrons d'abord la deuxième assertion. Il résulte de 8.3.4 que les familles de Cov(Y), $Y \in \underline{F}$, sont composées de morphismes quarrables, d'où la propriété (PTO). Pour montrer que ces familles possèdent la propriété (PT1) (stabilité par changement de base), on est ramené, en procédant à une suite de réductions comme dans la démonstration de 8.3.3, à démontrer l'assertion suivante :

Pour tout $i \in \text{ob I}$, tout $Y \in \text{ob F}_i$, tout $(Y_\alpha \to Y)_{\alpha \in A} \in \text{Cov}(Y)$, et tout morphisme $u : Z \to Y$ de F_i , la famille $(\pi(Z) \times_{\pi(Y)} \pi(Y) \to \pi(Z)_{\alpha \in A}$ appartient à Cov((Z)).

Cette dernière assertion résulte du fait que les $\pi_i: F_i \hookrightarrow F \xrightarrow{\pi} \underline{F}$ commutent aux produits fibrés (8.3.3) et que les familles $X \mapsto \text{Cov}(X)$ de F_i sont stables par changement de base. Démontrons la première assertion. Il est clair que les familles qui appartiennent aux $\text{Cov}(Y), Y \in \underline{F}$, sont couvrantes pour la topologie T la moins fine rendant continu le foncteur π (III 1). Donc la topologie T' engendrée par ces familles est moins fine que T. Pour montrer qu'elle est plus fine que T (et par suite égale à T), il suffit de montrer que tout faisceau M pour T' est tel que $M \circ \pi$ est un faisceau sur F, ou encore (8.2.4) que $M \circ \pi_i$ est un faisceau sur F_i pour tout i ob I. Or, comme les foncteurs $\pi_i: F_i \to \underline{F}$ commutent aux produits fibrés (8.3.4), M est un faisceau pour T' si et seulement si (II 2.3 et I 2.12) pour tout $i \in \text{ob I}$, pour tout $Y \in \text{ob F}_i$, pour tout Y

$$M(\pi_i(Y)) \longrightarrow \prod_{\alpha \in A} M(\pi_i(Y_\alpha)) \Rightarrow \prod_{(\alpha,\beta) \in A \times A} M(\pi_i(Y_{\alpha_Y} Y_\beta))$$

est exacte, i.e. (loc. cit.) si et seulement si pour $i \in \text{ob I}$, $M \circ \pi_i$ est un faisceau sur F_i .

Proposition 8.3.6. — On utilise les notations et hypothèses de 8.3.1 et 8.3.2. Si pour tout $i \in \text{ob I}$, $X \mapsto \text{Cov}(X)$ est une prétopologie sur F_i (II 1.3) et si pour tout $X \in \text{ob } F_i$, les familles couvrantes de Cov(X) sont finies, alors pour tout $Y \in \underline{F}$, les familles couvrantes de Cov(Y) sont finies et $Y \mapsto \text{Cov}(Y)$ est une prétopologie sur F.

8.3.7. La seule chose à démontrer est que les familles $Y \mapsto \text{Cov}(Y)$ possèdent la propriété (PT2) de (II 1.3) (stabilité par composition). Soit $i \in \text{ob I}$, Y un objet de F_i , $(Y_{\alpha} \to Y)_{\alpha \in A} \in \text{Cov}(Y)$. Soient de plus i_{α} , $\alpha \in A$, une famille d'objets de I, pour tout α , I0 un objet de I1, et I1 et I2 et I3 une famille de I4 covI3 une famille de I4 covI4 et I5 et I6 et I7 et I8 et I9 et I

Enfin donnons nous pour tout $\alpha \in A$, un isomorphisme $\phi : \pi(Z_{\alpha}) \xrightarrow{\sim} \pi(Y_{\alpha})$. En revenant à la définition des familles de Cov(X), $X \in ob \xrightarrow{F} (8.3.2)$, on voit qu'il s'agit de démontrer que la famille

$$(\pi(\mathbf{Z}_{\alpha\beta}) \xrightarrow{\pi(n_{\alpha}) \circ \phi_{\alpha} \circ \pi(n_{\alpha\beta})} \pi(\mathbf{Y}))_{\alpha\beta \in \coprod_{\mathbf{A}} \mathbf{B}_{\alpha}}$$

appartient à $Cov(\pi(Y))$ ce que nous ferons après cinq réductions.

8.3.8. Réduction au cas où pour tout $\alpha \in A$, on a $\phi_{\alpha} = \pi(m_{\alpha})$, $m_{\alpha} : Z_{\alpha} \to Y_{\alpha}$. Pour tout $\alpha \in A$, on a $\phi_{\alpha} = \pi(m_{\alpha})\pi(s_{\alpha})^{-1}$ (6.5) où s_{α} est un morphisme cartésien au-dessus de $f_{\alpha} : i'_{\alpha} \to i_{\alpha}$. On a donc des diagrammes commutatifs

$$Z_{\alpha\beta} \longleftarrow \begin{array}{c} s_{\alpha\beta} \\ \\ \\ n_{\alpha\beta} \\ \\ \\ Z_{\alpha} \longleftarrow \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ f_{\alpha}^{*}(n_{\alpha\beta}) \\ \\ \\ \\ \\ \end{array} \\ \alpha\beta \in \coprod_{A} B_{\alpha},$$

315 qui fournissant des diagrammes commutatifs

$$\pi(\mathbf{Z}_{\alpha\beta}) \xrightarrow{\sim} \pi(f_{\alpha}^{*}(\mathbf{Z}_{\alpha\beta}))$$

$$\downarrow^{\pi(n_{\alpha\beta})} \qquad \qquad \downarrow^{\pi(f_{\alpha}^{*}(m_{\alpha\beta}))}$$

$$\pi(\mathbf{Z}_{\alpha}) \xrightarrow{\sim} \pi(f_{\alpha}^{*}(\mathbf{Z}_{\alpha})) \xrightarrow{\pi(m_{\alpha})} \pi(\mathbf{Y}_{\alpha}), \quad \alpha\beta \in \coprod_{\mathbf{A}} \mathbf{B}_{\alpha}.$$

Comme les familles $(f_{\alpha}^*(\mathbf{Z}_{\alpha\beta}) \xrightarrow{f^*(n_{\alpha})} f^*(\mathbf{Z}_{\alpha}))$ appartiennent à $Cov(f_{\alpha}^*(\mathbf{Z}_{\alpha}))$, on peut se ramener au cas où pour tout α , on a $\phi_{\alpha} = \pi(m_{\alpha})$.

8.3.9. Réduction au cas où, pour tout $\alpha \in A$, $i_{\alpha} = j$ et $p(m_{\alpha}) = k : j \to i$. Posons $g_{\alpha} = p(m_{\alpha})$. Comme I est cofiltrante et comme A est fini, il existe un objet j de I et des morphismes $h_{\alpha} : j \to i_{\alpha}$ tels que pour tout couple (α, α') on ait $g_{\alpha}h_{\alpha} = g_{\alpha'}h_{\alpha'} = k$. En utilisant les foncteurs images inverses h_{α}^* comme en 8.3.8, on se ramène au cas décrit.

8.3.10. Réduction au cas où i=j et $k:j\to i$ est l'identité. On a, pour tout $\alpha,$ un diagramme commutatif :

$$Z_{\alpha} \xrightarrow{m'_{\alpha}} k^{*}(Y_{\alpha}) \xrightarrow{t_{\alpha}} Y_{\alpha}$$

$$\downarrow k^{*}(n_{\alpha}) \qquad \qquad \downarrow n_{\alpha}$$

$$\downarrow k^{*}(Y) \xrightarrow{t} Y,$$

où les morphismes t et t_{α} , $\alpha \in A$, sont cartésiens, où m'_{α} est au-dessus de l'identité de j et où $t_{\alpha} \circ m'_{\alpha} = m_{\alpha}$. En remplaçant la famille $(Y_{\alpha} \to Y)\alpha \in A$ par la famille $(k^*(Y_{\alpha}) \to k^*(Y))_{\alpha \in A} \in Cov(k^*(Y_{\alpha}))$, et les morphismes m_{α} par les morphismes m'_{α} , on est ramené au cas décrit.

Lemme 8.3.11. — Soient j un objet de I et $m: X' \to X$ un morphisme de F_j tel que $\pi(m)$ soit un isomorphisme. Il existe un morphisme $\ell: j' \to j$ tel que $\ell^*(m)$ soit un isomorphisme.

Montrons qu'il existe un morphisme $f: i \to j$ et un morphisme $q: f^*(X) \to f^*(X')$ tels que $f^*(m)q = \mathrm{id}_{f^*(X)}$ et tels que $\pi(q)$ soit un isomorphisme. En effet, il existe un isomorphisme $n: \pi(X) \to \pi(X')$ tel que $\pi(m) \circ n = \mathrm{id}_{\pi(X)}$. Il existe donc (6.5) deux morphismes $X \overset{s_1}{\longleftrightarrow} Y_1 \overset{q_1}{\to} X'$, où s_1 est cartésien, tels que $n = \pi(q_1)\pi(s_1)^{-1}$. On a donc $\pi(m) \circ \pi(q_1) = \pi(s_1)$. Les morphismes mq_1 et s_1 de Y_1 dans X ont même image dans F. Par suite (cf. la description des morphismes dans la limite inductive (6.5)), il existe un morphisme cartésien $s_2: Y_2 \to Y_1$ tel que $mq_1s_2 = s_1s_2$. Posons $q_1s_2 = q_2$ et notons s_3 le morphisme cartésien s_1s_2 . On a donc $mq_2 = s_3$. Le morphisme $q_2: Y_2 \to X'$ se factorise de manière essentiellement unique en $Y_2 \overset{q}{\to} Y_3 \overset{s_4}{\to} X'$ où s_4 est cartésien et où q est au-dessus de l'identité de $p(Y_2)$. On a donc un diagramme commutatif

$$(8.3.11.1) Y_3 \longleftarrow {}^q \qquad Y_2 \\ \downarrow s_4 \qquad \qquad \downarrow s_3 \\ \chi' \longrightarrow {}^m \qquad X..$$

Posons $p(s_4) = p(s_3) = f : i \to j$. On a $f^*(X') \simeq Y_3$, $f^*(X') \simeq Y_2$, et $f^*(m) : Y_2 \to Y_3$ rend commutatif le diagramme :

On a donc $s_3 = s_3(f^*(m) \circ q)$; comme s_3 est cartésien et comme $f^*(m) \circ q$ est au-dessus de l'identité de $p(Y_2)$, on a $f^*(m) \circ q = \mathrm{id}_{Y_2}$. De plus, il résulte de la commutativité du diagramme (8.3.11.1) que $\pi(q)$ est un isomorphisme.

Appliquons alors le résultat précédent au morphisme $q: f^*(X) \to f^*(X'):$ il existe un morphisme $f': j' \to i$ et un morphisme $q': f'^*(X') \to f'^*(X)$, tels que $f'^*(q)q' = \mathrm{id}_{f'^*(f'^*(X'))}$. Mais en posant $\ell^* = ff'$; on a un isomorphisme $f'^*f^* \simeq \ell^*$. On a donc un morphisme $f'^*(q): \ell^*(X) \to \ell^*(X')$ et un isomorphisme $f'^*f^* \simeq \ell^*$. On a

donc un morphisme $f'^*(q): \ell^*(X) \to \ell^*(X')$ et un morphisme $q': \ell^*(X') \to \ell^*(X)$, tels que $\ell^*(m)f'^*(q) = \mathrm{id}_{\ell^*(X)}$ et $f'^*(q)q' = \mathrm{id}_{\ell^*(X')}$. Par suite $\ell^*(m)$ est un isomorphisme. 8.3.12. Fin de la démonstration. Comme I est cofiltrante et A fini, il résulte de 8.3.11 qu'il existe un foncteur image inverse ℓ^* qui transforme tous les morphismes m_{α} , $\alpha \in A$, en isomorphismes. On se ramène donc au cas où les m_{α} sont des isomorphismes. Mais alors les familles couvrantes $(Z_{\alpha\beta} \to Z)_{\alpha\beta\in B_{\alpha}}$ sont déduites par le changement de base $m_{\alpha}: Z_{\alpha} \to Y_{\alpha}$ de familles couvrantes $(Y_{\alpha\beta} \to Y_{\alpha})_{\alpha\beta\in B_{\alpha}} \in \mathrm{Cov}(Y_{\alpha})$. On est donc ramené au cas où $Z_{\alpha} = Y_{\alpha}$ et $\Phi_{\alpha} = \mathrm{id}_{\pi(Y_{\alpha})}$. Mais dans ce cas la famille $(Y_{\alpha\beta} \xrightarrow{n_{\alpha} \circ n_{\alpha\beta}} Y)_{\alpha\beta\in \coprod_A B_{\alpha}}$ appartient à $\mathrm{Cov}(Y)$ (propriété (PT2)). Donc son image par π appartient à $\mathrm{Cov}(\pi(Y))$ (8.3.2).

Théorème 8.3.13. — Soient $p: F \to I$ un \mathscr{U} -topos fibré sur une catégorie cofiltrante essentiellement petite. Si pour tout objet i de I le topos fibre F_i est cohérent (2.3) et si pour tout morphisme $f: i \to j$, le morphisme de topos $f \cdot = (f^*, f_*): F_i \to F_j$ est cohérent (3.1), alors le topos $\varprojlim_{I} F_i$ est cohérent et pour tout objet i de I, le morphisme canonique de topos

$$\mu_i : \varprojlim_{\mathbf{I}} \operatorname{top} \, \mathbf{F}_i \longrightarrow \mathbf{F}_i$$

est cohérent.

318

De plus, en notant F_{coh} la sus-catégorie pleine de F définie par les objets de F qui sont cohérents dans leur fibre (1.13), la catégorie F_{coh} est fibrée sur F_{coh} est canoniquement équivalente à la catégorie des objets cohérents de F_{coh} est canoniquement équivalente à la catégorie des objets cohérents de F_{coh} est canoniquement équivalente à la catégorie des objets cohérents de F_{coh} est canoniquement équivalente à la catégorie des objets cohérents de F_{coh} est canoniquement équivalente à la catégorie des objets cohérents de F_{coh} est canoniquement équivalente à la catégorie des objets cohérents de F_{coh} est canoniquement équivalente à la catégorie des objets cohérents de F_{coh} est canoniquement équivalente à la catégorie des objets cohérents de F_{coh} est canoniquement équivalente à la catégorie des objets cohérents de F_{coh} est canoniquement équivalente à la catégorie des objets cohérents de F_{coh} est canoniquement équivalente à la catégorie des objets cohérents de F_{coh} est canoniquement équivalente à la catégorie des objets cohérents de F_{coh} est canoniquement équivalente à la catégorie des objets cohérents de F_{coh} est canoniquement équivalente à la catégorie des objets cohérents de F_{coh} est canoniquement équivalente de F_{coh} est cohérente de F_{coh} est cohérente

Pour tout $i \in \text{ob I}$, notons $(F_i)_{\text{coh}}$ le \mathscr{U} -site (muni de le topologie induite) des objets cohérents de F_i (1.13). Comme F_i est cohérent, F_i est le topos des faisceaux sur $(F_i)_{\text{coh}}$. Pour tout morphisme $f: i \to j$, les morphismes $f \cdot = (f^*, f_*)$ sont cohérents et par suite $f^*(F_j)_{\text{coh}} \subset (F_i)_{\text{coh}}$. On a donc un \mathscr{U} -site fibré $p_{\text{coh}}: F_{\text{coh}} \to I$, dont les sites fibres sont les sites $(F_i)_{\text{coh}}$ et dont le topos fibré associé est équivalent à $p: F \to I$. Par suite on a (8.2.3):

$$(8.3.13.1) \qquad \qquad \underset{i,f.}{\varprojlim} \text{top } F_i \cong (\underline{F}_{coh})^{\sim}$$

Comme les topos F_i sont cohérents, les produits finis et les produits fibrés sont représentables dans $(F_i)_{\text{coh}}$ (2.2). De plus les foncteurs $f^*: (F_i)_{\text{coh}} \to (F_j)_{\text{coh}}$ sont exacts à gauche. Enfin, comme les objets de $(F_i)_{\text{coh}}$ sont quasi-compacts, les familles couvrantes finies forment une prétopologie. Il résulte alors de (8.3.4) que les produits finis et les produits fibrés sont représentables dans $\varprojlim_{I^\circ,F}(F_i)_{\text{coh}}$ (remords au lemme 8.3.4.: Montrer que les foncteurs canoniques $(F_i)_{\text{coh}} \to F_{\text{coh}}$ transforment l'objet final en l'objet final) et de (8.3.6) que les objet de F_{coh} sont quasi-compacts. Par suite (2.4.5), F_{coh} (F_i) est cohérent. Enfin les morphismes canoniques F_{coh} improp F_{coh} canoniques F_{coh} canoniques F_{coh} sont quasi-compacts.

 F_i se déduisent, par passage aux topos des faisceaux, des morphismes de sites (8.2.3):

$$(F_i)_{coh} \longrightarrow \underline{F}_{coh}$$

donc (3.3) les morphismes μ_i sont cohérents.

appartient à F_{coh}.

Démontrons la dernière assertion. On a (8.3.13.1)

$$\varprojlim_{\mathscr{I}} \operatorname{top} (F_i) \simeq (\underbrace{F_{\operatorname{coh}}})^{\sim}.$$

Soit X un objet cohérent de $(F_{coh})^{\sim}$. Comme X est quasi-compact, il existe une famille couvrante finie $(Y_{\alpha} \to X)$ où $Y_{\alpha} \in \text{ob } \underline{F}_{\text{coh}}$ (1.1). Quitte à prendre un indice $i \in \text{ob } I$ assez petit, on peut supposer que les Y_{α} sont les images par $\mu_i: F_{icoh} \to \underline{F}_{coh}$ d'une famille Y'_{α} d'où, en prenant la somme directe des Y'_{α} (1.15), on voit qu'il existe un indice $i \in \text{ob I}$, un $Y' \in F_{i\text{coh}}$ et un morphisme surjectif $\mu_i(Y') \to X$. La relation d'équivalence $R = \mu_i(Y')_{\mathbf{v}} \mu_i(Y')$ est alors un objet cohérent car $(\underline{F}_{coh})^{\sim}$ est un topos cohérent (2.2). Montrons tout d'abord que R est un objet de \underline{F}_{coh} . Par définition R est un sous-objet de $\mu_i(Y' \times Y')$ et comme R est cohérent, on peut, quitte à changer l'indice i, trouver une flèche $m: \mathbb{Z} \to (\mathbb{Y}' \times \mathbb{Y}')$ de $\mathbb{F}_{i \text{coh}}$ telle que $\operatorname{Im}(\mu_i(m)) = \operatorname{R.}$ Il en résulte que, F_i étant cohérent, $\operatorname{Im}(m)$ est cohérent dans F_i (1.17.1) et par suite appartient à F_{icoh} . Il existe donc un indice i et un diagramme $R \xrightarrow{p_1} Y'$ de F_{icoh} tel que $\mu_i(R) \xrightarrow{\mu_i(p_1)} \mu_i(Y')$ soit une relation d'équivalence et tel que $X = \mu_i(Y')/\mu_i(R)$. Posons $X_i = \operatorname{coker}(p_1, p_2)$ et $R' = Y'_{X'}Y'$. On a un morphisme canonique dans $F_i: u: R \to R'$. De plus $\mu_i^*(u)$ est un isomorphisme. Donc, quitte à changer l'indice i, on peut supposer que R = R', i.e. que R est une relation d'équivalence. Mais alors X_i appartient à F_{icoh} (1.17.1) et par suite $X = \mu_i(X_i)$

Corollaire 8.3.14. — Soient I une catégorie cofiltrante essentiellement petite, $p: F \to I$ et $q: G \to I$ deux $\mathscr U$ -topos fibrés sur I tels que pour tout objet i de I les topos F_i et G_i soient cohérents et tels que pour tout morphisme $f: i \to j$ les morphismes $f: F_i \to F_j$ et $G_i \to G_j$ soient cohérents. Soit de plus $m: F \to G$ un morphisme cartésien de $\mathscr U$ -topos fibrés tels que pour tout $i \in ob(I)$, $m_i: F_i \to G_i$ soit cohérent. Alors le morphisme \underline{m} déduit de m par passage à la limite projective est cohérent.

Pour tout objet i de I, le morphisme m_i induit un foncteur $m_{i, \text{coh}}^* : G_{i, \text{coh}} \to F_{i, \text{coh}}$, d'où un foncteur cartésien $m_{\text{coh}}^* = G_{\text{coh}} \to F_{\text{coh}}$ qui est un morphisme du site fibré F_{coh} dans le site fibré G_{coh} (7.4.13). Le foncteur $\varinjlim_{\text{Io}} m_{\text{coh}}^* : \varinjlim_{\text{Io}} G_{\text{coh}} \to \varinjlim_{\text{Io}} F_{\text{coh}}$ est un morphisme de sites qui fournit en passant aux topos correspondants le morphisme \underline{m} . L'assertion résulte alors de 8.3.13 et de 3.3.

Exercice 8.3.15. — Avec les notations de 8.3.13, montrer que si les F_i , $i \in I$, sont algébriques (2.3) et si les morphismes $f: F_i \to F_j$, $f \in Fl(I)$, sont cohérents, $\varprojlim_{T} F_i \to F_i$ 3

est algébrique et que $(\underset{\overline{I}}{\varprojlim} \operatorname{top} F_i)_{\operatorname{coh}} \xrightarrow{\sim} \underset{F}{\xrightarrow{\operatorname{coh}}}.$

8.4. Exemple: Topos locaux. —

8.4.1. Soit $X = (X_i)_{i \in I}$ un topos fibré sur une catégorie I. On en déduit un topos fibré sur la catégorie Pro(I) (I 8.10) par la formule

(8.4.1.1)
$$\mathbf{X}_{\alpha} = \varprojlim_{\mathbf{I}_{\alpha}} \mathbf{top} \ \mathbf{X}_{i\alpha}$$

pour tout pro-objet $\alpha = (i_{\alpha})$ de I (pour voir ceci on pourra généraliser aux pseudo foncteurs l'exercice I 8.2.8).

8.4.2. Soient E un topos et $p: Fl(E) \to E$ le topos fibré considéré dans 7.3.1. En prolongeant comme en 8.4.1, on obtient un topos fibré $\overline{Fl(E)} \to Pro(E)$. La catégorie Point(E) s'envoie par un foncteur pleinement fidèle dans Pro(E) (IV 6.8.5), d'où, par changement de base (7.1.9), un topos fibré $Loc(E) \to Point(E)$. La fibre $Loc_p(E)$ en un point p de E est appelée le topos localisé de E en le point p. Ce topos dépend, d'après ce qui précède, de façon covariant du point p. On a, par définition,

(8.4.2.1)
$$\operatorname{Loc}_{p}(\mathbf{E}) = \varprojlim_{\mathbf{X} \in \operatorname{Vois}(p)} \mathbf{E}_{/\mathbf{X}},$$

où Vois(p) est la catégorie des voisinages de p (IV 6.8).

8.4.3. Soit $m: p' \to p$ un morphisme de Point(E) (IV 6). On en déduit, pour tout $X \in Vois(p)$ un point p'_X de $E_{/X}$, d'où, par la propriété universelle de \varprojlim top 8.1 un point $\theta_p(m)$ de $Loc_p(E)$. On définit ainsi un foncteur

(8.4.3.1)
$$\theta_p : \operatorname{Point}(E)_{/p} \longrightarrow \operatorname{Point}(\operatorname{Loc}_p(E)),$$

dont on constate immédiatement que c'est une équivalence de catégories. Par suite $\operatorname{Point}(\operatorname{Loc}_p(\mathbf{E}))$ est canoniquement équivalent à la catégorie des générisations de p (IV 7.1.8). On a de plus une équivalence canonique de topos :

$$\operatorname{can} \cdot : \operatorname{Loc}_{\theta(m)}(\operatorname{Loc}_p(\operatorname{E})) \longrightarrow \operatorname{Loc}_{p'}(\operatorname{E}),$$

qui s'insère dans un diagramme commutatif à isomorphisme près

où ϕ est le morphisme canonique (8.4.2.1).

321

8.4.4. Les topos localisés ne semblent présenter un intérêt que dans le cas des topos provenant de la géométrie algébrique ou tout au moins que dans le cas des topos possédant des propriétés de finitude convenables. Ainsi, lorsque E est le topos des faisceaux sur un espace topologique séparé, on constate immédiatement (à l'aide par exemple de 8.2.9) que les topos localisés sont des topos ponctuels. Par ailleurs dans ce cas, la catégorie Point(E) est discrète et la situation décrite en 8.4.2 est triviale. En revanche, soient E = Top(X) le topos des faisceaux pour la topologie de Zariski sur un schéma X, x in point de X, O_x l'anneau local de X en x, $Y = spec(O_x)$. On constate que

$$Loc_x(E) = Top(Y).$$

Pour d'autres exemples provenant de la topologie étale, nous renvoyons à l'exposé VIII du présent séminaire.

8.4.5. Lorsque E est localement cohérent (2.3), les topos localisés $\operatorname{Loc}_p(E)$ sont cohérents (on peut dans (8.4.2.1) se borner aux $X \in \operatorname{Vois}(p)$ qui sont algébriques et cohérents et appliquer alors 8.3.13). Pour tout morphisme de points $m: p' \to p$, le morphisme de topos $m \cdot : \operatorname{Loc}_{p'}(E) \to \operatorname{Loc}_p(E)$ est cohérent (8.3.14).

8.4.6. On appelle topos local un topos X tel que le foncteur $\Gamma(X,-)=$ « section sur X » (IV 4.3) soit un foncteur fibre (IV 6). Le point correspondant à ce foncteur fibre est appelé le centre du topos local. Lorsque E est localement cohérent, les topos localisés sont des topos locaux (1.2.3, 8.5.2 et 8.5.7). Le centre de $\text{Loc}_p(E)$ est canoniquement isomorphe à $\theta_p(\text{id}_p)$ (8.4.3.1)). L'image du centre de $\text{Loc}_p(E)$ dans E est isomorphe à p. Le topos localisé $\text{Loc}_p(E)$ muni du morphisme canonique $\text{Loc}_p(E) \to E$ est la solution du problème universel (2-universel!) qui consiste à envoyer des topos locaux dans E de façon à envoyer le centre « sur » p.

8.4.7. A propos des topos locaux, il se pose un certain nombre de problèmes que les rédacteurs n'ont pas abordés. Ainsi, si X est un topos local, l'objet final e de X possède un ouvert maximal $U \neq e$. Le complémentaire Y de U est un topos local qui ne possède pas d'ouvert non trivial. Un tel topos est-il ponctuel? Soit U un topos et $X = (U, \Phi : U \rightarrow (Ens))$ en topos obtenu par recollement. Quelles sont les conditions sur le foncteur de recollement Φ pour que X soit un topos local?

8.5. Structure des faisceaux d'une limite projective filtrante de topos. —

8.5.1. Dans ce numéro, $\mathcal{F}=(\mathcal{F}_i)_{i\in\mathcal{I}}$ est un \mathscr{U} -topos fibré sur une petite catégorie cofiltrante I. On choisit un biscindage (7.1.4) de \mathcal{F} , i.e. pour tout $f\in\mathcal{F}l(\mathcal{I}):i\to j$ on choisit des morphismes des topos $f:\mathcal{F}_i\to\mathcal{F}_j$ tels que $f^*:\mathcal{F}_j\to\mathcal{F}_i$ soit le foncteur image inverse pour la structure fibrée. On a alors des isomorphismes canoniques $c_{f,g}$ possédant une propriété de cocycles (7.1.3). On note \mathcal{F} la limite projective du topos fibré \mathcal{F} (8.2.3) et pour tout $i\in\mathcal{F}$ 0 note

322

le morphisme canonique (8.1.3). On note Top(F) le topos total de F (7.4.3,3). D'après 8.2.9, le foncteur canonique $F \to \underline{F}$ définit un morphisme de topos

$$(8.5.1.2) \hspace{3.1em} Q: \underline{F} \longrightarrow Top(F).$$

Le topos F s'identifie à $\mathcal{H}om_{\text{Cart}/I^{\circ}}(I^{\circ}, F')$ (8.2.9) et le topos Top(F) s'identifie à $\mathcal{H}om_{I^{\circ}}(I^{\circ}, F')$ (7.4.7). Ces identifications faites, le morphisme Q n'est autre que le morphisme de plongement de $\mathcal{H}om_{\text{cart}/I^{\circ}}(I^{\circ}, F')$ dans $\mathcal{H}om_{I^{\circ}}(I^{\circ}, F')$ (8.2.9) et pour tout objet M de F, on a

(8.5.1.3)
$$Q_*(M) = (i \longrightarrow \mu_{i*}(M)).$$

D'après 7.4.3.4, on a pour tout $i \in \text{ob I}$, un morphisme de topos

$$(8.5.1.4) \alpha_i : \mathcal{F}_i \longrightarrow \mathcal{T}op(\mathcal{F}).$$

323 Le diagramme

n'est pas commutatif en général (même à isomorphisme près). Mais on a, par définition des morphismes en présence, un isomorphisme canonique

$$\alpha_i^* \mathbf{Q}_* \simeq \mu_{i*}.$$

Lorsque i est un objet final de I, α_i est un plongement admettant une rétraction $\beta_i : \text{Top}(F) \to F_i$ (7.4.12) et le diagramme

(8.5.1.7)
$$F \xrightarrow{\mu_i} F_i$$

$$Top(X) ,$$

est commutatif à isomorphisme canonique prés.

Proposition 8.5.2. — Soit $j \mapsto M_j$ un objet de Top(F). Il existe un isomorphisme fonctoriel

(8.5.2.1)
$$Q^*(j \mapsto M_j) \simeq \varinjlim_{I^{\circ}} \mu_*^j M_j.$$

Un objet de Top(F) (7.1.3) consiste en la donnée d'une application $j \mapsto M_j$, $M_j \in$ ob F_j , et en la donnée, pour tout morphisme $f : i \to j$, d'un morphisme

$$(8.5.2.2) \beta_f: \mathbf{M}_i \longrightarrow f_* \mathbf{M}_i$$

ou de manière équivalence par adjonction, d'un morphisme

$$(8.5.2.3) \beta_f': f^* \mathbf{M}_j \longrightarrow \mathbf{M}_i,$$

les morphismes β'_f étant soumis à la condition que pour tout couple de morphismes composables $i \xrightarrow{f} j \xrightarrow{g} k$, le diagramme ci-après soit commutatif :

$$(8.5.2.4) f^*g^*M_k \xrightarrow{f^*\beta'_g} f^*M_j$$

$$c^*g,f \bigg| \bigg| \bigg| \bigg| \beta'_f \bigg|$$

$$(gf)^*M_k \xrightarrow{\beta'_{gf}} M_i$$

Rappelons de plus (8.1.3.1.) que pour tout morphisme $f: i \to j$, on a un isomorphisme $b_f: f.\mu_i \xrightarrow{\sim} \mu_j$, et que pour tout couple de morphismes composables $i \xrightarrow{f} j \xrightarrow{g} k$, on a un diagramme commutatif:

$$(8.5.2.5) g \cdot f \cdot \mu_i \xrightarrow{c_{g,f}} (gf) \cdot \mu_i$$

$$\downarrow^{g \cdot (b_f)} \qquad \downarrow^{b_{gf}}$$

$$g \cdot \mu_j \xrightarrow{b_g} \mu_k$$

Soit alors $f: i \to j$ un morphisme de I. Notons

$$(8.5.2.6) t_f: \mu_i^*(\mathbf{M}_i) \longrightarrow \mu_i^*(\mathbf{M}_i)$$

le morphisme composé $\mu_j^*(\mathbf{M}_j) \xrightarrow{b_f^*} \mu_j^*(f^*(\mathbf{M}_j)) \xrightarrow{\mu_i^*(\beta_f')} \mu_i^*(\mathbf{M}_i)$. Nous laissons au lecteur le soin de vérifier que la commutativité des diagrammes (8.5.2.4)) et ((8.5.2.5) entraı̂ne que pour tout couple de morphismes composables $i \to j \to k$, on a

$$(8.5.2.7) t_f t_g = t_{gf}.$$

Par suite on a défini un foncteur $I^{\circ} \to \underline{F}$ dont on peut considérer la limite inductive $\underline{\lim}_{I^{\circ}} \mu_i^*(M_i)$. Soit alors N un objet de \underline{F} . On a

(8.5.2.8)
$$\operatorname{Hom}(\varinjlim_{I^{\circ}} \mu_{i}^{*}(\mathbf{M}_{i}), \mathbf{N}) \simeq \varprojlim_{I^{\circ}} \operatorname{Hom}(\mu_{i}^{*}(\mathbf{M}_{i}), \mathbf{N}),$$

d'où, par adjonction, un isomorphisme

(8.5.2.9)
$$\operatorname{Hom}(\varinjlim_{\overline{I}^{\circ}} \mu_{i}^{*}(M_{i}), N) \simeq \varprojlim_{\overline{I}^{\circ}} \operatorname{Hom}_{F_{i}}(M_{i}, \mu_{i*}(N)).$$

On se propose d'interpréter le deuxième membre de (8.5.2.9). Pour cela, notons, pour tout morphisme $f: i \to j$, par

$$d_f: \operatorname{Hom}_{F_s}(M_i), \mu_{i*}(N)) \longrightarrow \operatorname{Hom}_{F_s}(M_i, \mu_{i*}(N)).$$

le morphisme de transition du système projectif qui figure dans (8.5.2.9)). Il résulte de la définition des morphismes t_f ((8.5.2.6) que l'application d_f associe à un morphisme

$$u_i: \mathbf{M}_i \longrightarrow \mu_{i*}(\mathbf{N})$$

le morphisme

$$d_{\mathbf{F}}(u_i): \mathbf{M}_j \longrightarrow \mu_{j*}(\mathbf{N}),$$

obtenu en composant les morphismes

$$M_i \xrightarrow{\beta_f} f_*(M_i) \xrightarrow{f_*(u_i)} f_*\mu_{i*}(N) \xrightarrow{b_f} \mu_{j*}(N).$$

Par suite un élément du deuxième membre de (8.5.2.9) s'interprète comme une famille de morphismes $u_i: \mathcal{M}_i \to \mu_{i*}(\mathcal{N}), i \in \text{ob I}$, telle que pour tout $f: i \to j$, le diagramme

$$\begin{array}{c|c} \mathbf{M}_{j} & \longrightarrow f_{*}(\mathbf{M}_{i}) \\ \downarrow u_{j} & & \downarrow f_{*}(u_{i}) \\ \downarrow \mu_{j*}(\mathbf{N}) & \stackrel{\sim}{\longrightarrow} f_{*}\mu_{i*}(\mathbf{N}) \end{array}$$

soit commutatif, c'est-à dire comme un morphisme de la section $(i \mapsto M_i) \in \mathcal{H}om_{I^{\circ}}(I^{\circ}, F')$ dans la section $Q_*(N)$. On a donc un isomorphisme fonctoriel

$$\operatorname{Hom}(\varinjlim_{i \to i} \mu_{i*}(M_i), N)) \simeq \operatorname{Hom}((i \mapsto M_i), Q_*(N));$$

d'où la proposition par adjonction.

Proposition 8.5.3. — Si pour tout $f: i \to j \in Fl(I)$ les foncteurs $f_*: F_i \to F_j$ commutent aux petites limites inductives filtrantes, on a, pour tout section $(i \mapsto M_i) \in Hom_{\Gamma}^{\circ}(I^{\circ}, F')$:

(8.5.3.1)
$$Q_*Q^*(i \mapsto M_i) \simeq i \mapsto \lim_{\substack{f:j \to i \\ f:j \to i}} f_*M_j.$$

Nous laissons au lecteur le soin d'expliciter en termes des β_f (8.5.2.2) et des $c_{f,g}$ (8.5.1) les morphismes de transition des systèmes inductifs $(f:j \to i) \mapsto f_*(M_j)$ et les morphismes de transition de la section $i \mapsto \varinjlim_{f:j \to i} f_*M_i$. Comme les foncteurs f_* commutent aux limites inductives filtrantes, la section $i \mapsto \varinjlim_{f:j \to i} f_*M_j$ est cartésienne. De plus on a un morphisme naturel u de $(i \mapsto M_i)$ dans la section $(i \mapsto \varinjlim_{f:j \to i} f_*M_j)$, et il est clair que tout morphisme de $(i \mapsto M_i)$ dans une section cartésienne se factorise d'une manière unique par u, d'où l'isomorphisme (8.5.3.1).

Corollaire 8.5.4. — Sous les hypothèses de 8.5.3 le foncteur Q_* commute aux petites limites inductives filtrantes.

Soit $\alpha \mapsto N^{\alpha}$ un petit système inductif filtrant de F. Posons $M^{\alpha} = Q_*(N^{\alpha})$, de sorte que M^{α} est une section $i \mapsto M_i^{\alpha}$. On a $N^{\alpha} \simeq Q^*Q_*(N^{\alpha})$ et comme Q^* commute aux limites inductives, on a $\varinjlim_{\alpha} N^{\alpha} \simeq Q^*(\varinjlim_{\alpha} M^{\alpha})$. Les limites inductives dans $Top(F) = Hom_{I^{\circ}}(I^{\circ}, F')$ se calculent fibre par fibre. On a donc $\varinjlim_{\alpha} M \simeq (i \mapsto \varinjlim_{\alpha} M_i^{\alpha})$. En vertu de (8.5.3.1), on a

$$\mathbf{Q}_*(\varinjlim_{\alpha}\mathbf{N}^{\alpha}) \simeq \mathbf{Q}_*\mathbf{Q}^*(\varinjlim_{\alpha}\mathbf{M}^{\alpha}) \simeq i \mapsto \varinjlim_{f:j \to i} f_*(\varinjlim_{\alpha}\mathbf{M}_j^{\alpha}).$$

Comme les foncteurs f_* commutent aux limites inductives filtrantes, il vient :

$$\mathbf{Q}_*(\varinjlim_{\alpha}\mathbf{N}^{\alpha}) \simeq i \mapsto \varinjlim_{f:j \to i} \varinjlim_{\alpha} f_*(\mathbf{M}_j^{\alpha}) \simeq i \mapsto \varinjlim_{\alpha} \varinjlim_{f:j \to i} f_*(\mathbf{M}_j^{\alpha}) \simeq \varinjlim_{\alpha} \mathbf{Q}_*(\mathbf{N}^{\alpha}).$$

Corollaire 8.5.5. — Si les foncteurs $f_*: F_i \to F_j$ commutent aux petites limites inductives filtrantes, on a, pour tout objet i de I et pour tout $M_i \in ob F_i$

(8.5.5.1)
$$\mu_{i*}\mu_i^*(\mathbf{M}_i) \simeq \varinjlim_{f:j \to i} f_*f^*(\mathbf{M}_i).$$

Quitte à faire le changement de base $I/i \to I$, on peut supposer que i est un objet final de I (8.2.1). Le morphisme $\mu_i : \xrightarrow{\mathbf{F}} \to \mathbf{F}_i$ est alors le morphisme composé des 327 morphismes (8.2.9) et (7.4.12) :

$$Q: \underbrace{F} \longrightarrow F^{\sim},$$

$$\beta_i: (\alpha_{i!}, \alpha_i^*): F^{\sim} \longrightarrow F_i.$$

On a donc $\mu_i^*(M_i) \simeq Q^*\beta_i^*(M_i)$, où $\beta_i^*(M_i)$ est la section $(f: i \to j) \mapsto f^*(M_i)$ dont les morphismes de transition sont déduits des $c_{f,g}$. L'assertion résulte alors de 8.5.3.

Corollaire 8.5.6. — Sous les hypothèses de 8.5.5, les foncteurs

$$\mu_{i*}: \underline{F} \longrightarrow F_i$$

 $commutent\ aux\ limites\ inductives\ filtrantes.$

Le foncteur μ_{i*} est composé du foncteur Q_* qui commute aux limites inductives filtrantes, et du foncteur « restriction à la fibre en i », qui commute aux limites inductives.

Corollaire 8.5.7. — Sous les hypothèses de 8.5.3, soient i un objet de I et X un objet de F_i tel que le foncteur Hom(X, -) sur F_i commute aux limites inductives filtrantes. Alors le foncteur $Hom(\mu_i^*(X), -)$ commute aux limites inductives filtrantes et pour tout objet M_i de F_i on a

(8.5.7.1)
$$\operatorname{Hom}(\mu_i^*(\mathbf{X}), \mu_i^*(\mathbf{M}_i)) \simeq \varinjlim_{f:j \to i} \operatorname{Hom}(f^*(\mathbf{X}), f^*(\mathbf{M}_i)).$$

Pour tout objet $(j \mapsto M_j)$ de Top(F) on a

(8.5.7.2)
$$\operatorname{Hom}(\mu_i^*(X), Q^*(j \mapsto M_j)) \simeq \varinjlim_{f: j \to i} \operatorname{Hom}(f^*(X), M_j).$$

Le foncteur $\operatorname{Hom}(\mu_i^*(X), -)$ est isomorphe au foncteur $\operatorname{Hom}(X, \mu_{i*}(-))$ et ce dernier commute aux limites inductives filtrantes (8.5.4). D'après (8.5.5.1), on a

$$\operatorname{Hom}(\mu_i^*(X), \mu_i^*(M_i)) \simeq \operatorname{Hom}(X, \mu_{i*}, \mu_i^*(M_i)) \simeq \operatorname{Hom}(X, \varinjlim_{f:j \to i} f_* f^*(M_i)),$$

d'où la formule (8.5.7.1)). De même, d'après ((8.5.3.1), on a

$$\operatorname{Hom}(\mu_i^*(\mathbf{X}), \mathbf{Q}^*(j \mapsto \mathbf{M}_j)) \simeq \operatorname{Hom}(\mathbf{X}, \mu_{i*} \mathbf{Q}^*(j \mapsto \mathbf{M}_j)) \simeq \operatorname{Hom}(\mathbf{X}, \varinjlim_{f:j \to i} f_*(\mathbf{M}_j)),$$

328 d'où la formule (8.5.7.2).

Proposition 8.5.8. — Soient $G \to I$ un \mathscr{U} -topos fibré et $m : F \to G$ un morphisme cartésien de topos fibrés (7.1.15). On utilise pour G les notations introduites en 8.1.1. Soit $\underline{m} : \underline{F} \to \underline{G}$ le morphisme déduit de m par passage à la limite projective (8.1.4). Le diagramme de topos et de morphismes de topos :

$$(8.5.8.1) \qquad \begin{array}{c} F & \xrightarrow{Q} & \operatorname{Top}(F) \\ \downarrow^{\underline{m}} & & \downarrow^{m^{\sim}} \\ G & \xrightarrow{Q} & \operatorname{Top}(G) \end{array}$$

est commutatif à isomorphisme près. Pour tout objet N de F, on a

(8.5.8.2)
$$\underline{\underline{m}}_*(N) \simeq \varinjlim_{I^{\circ}} \mu_j^* m_{j*} \mu_{j*}(N).$$

La commutativité du diagramme (8.5.8.1) résulte immédiatement des définitions (8.2.8 et 8.5.1). On a $\underline{m}_*(N) \simeq Q^*Q_*\underline{m}_*(N)$ et, en vertu de la commutativité de (8.5.8.1)), $\underline{m}_*(N) \simeq Q^*m_*^{\sim}Q_*(N)$. Par suite, on a un isomorphisme $\underline{m}_*(N) \simeq Q^*m_*^{\sim}(j \mapsto \mu_{j*}(N))$. Le foncteur m_*^{\sim} n'est autre que le foncteur $\mathrm{Hom}_{I^{\circ}}(I^{\circ}, m_*)$ (7.4.10), et par suite on a un isomorphisme canonique $\underline{m}_*(N) \simeq Q^*(j \mapsto m_{j*}\mu_{j*}(N))$. La formule (8.5.8.2) résulte alors de 8.5.2.

Proposition 8.5.9. — Avec les hypothèses et notations de 8.5.8, on suppose de plus que pour tout objet i de I, le foncteur $m_{i*}: F_i \to G_i$ commute aux limites inductives filtrantes et que pour tout morphisme $f: i \to j$ de I le foncteur $f_*: F_i \to F_j$ commute aux limites inductives filtrantes. Alors le foncteur $m_*: F \to G$ commute aux limites

inductives filtrantes, et pour tout objet $(i \mapsto M_i)$ de Top(F) on a un isomorphisme canonique :

(8.5.9.1)
$$\underline{m}_* \mathbf{Q}^* (i \mapsto \mathbf{M}_i) \simeq \varinjlim_{\mathbf{I}^{\circ}} \mu_j^* m_{j*} (\mathbf{M}_j).$$

La première assertion résulte de (8.5.8.2)) et de (8.5.6. D'après (8.5.8.2)) et ((8.5.3.1), 329 on a un isomorphisme fonctoriel :

$$\underline{\underline{m}}_* \mathbf{Q}^* (i \mapsto \mathbf{M}_i) \simeq \varinjlim_i \mu_i^* m_{i*} (\varinjlim_{f:j \to i} f_*(\mathbf{M}_j)).$$

En utilisant la commutation des m_{i*} aux limites inductives filtrantes et les isomorphismes $m_{i*}f_* \simeq f_*m_{j*}$ (7.1.6), on obtient :

$$\underline{m}_* \mathbf{Q}^* (i \mapsto \mathbf{M}_i) \simeq \varinjlim_i \mu_i^* (\varinjlim_{f:j \to i} f_* m_{j*} (\mathbf{M}_j)).$$

Comme les foncteurs μ_i^* commutent aux limites inductives, il vient :

$$\underline{\mathcal{M}}_* \mathbf{Q}^* (i \mapsto \mathbf{M}_i) \simeq \lim_{i \to j} \lim_{f: j \to i} \mu_i^* f_* m_{j*}(\mathbf{M}_j).$$

Ce dernier objet peut être interprété comme une limite inductive sur la catégorie $Fl(I)^{\circ}$ où Fl(I) est la catégorie des morphismes de I. Soit alors $\phi: I \to Fl(I)$ le foncteur qui associe à tout objet i de I le morphisme identique de I. Le foncteur $\phi^{\circ}: I^{\circ} \to Fl(I^{\circ})$ est cofinal et par suite (I 8.1) on a un isomorphisme canonique

$$\underbrace{m_* \mathbf{Q}^* (i \mapsto \mathbf{M}_i)} \simeq \varinjlim_{\mathbf{I}^{\circ}} \mu_j^* m_{j*}(\mathbf{M}_j).$$

Corollaire 8.5.10. — Sous les conditions de 8.5.9, pour tout objet i de I et tout objet M_i de F_i , on a un isomorphisme canonique

(8.5.10.1)
$$\underline{m}_* \mu_i^*(\mathbf{M}_i) \simeq \varinjlim_{f:j \to i} \mu_j^* m_{j*} f^*(\mathbf{M}_i).$$

La démonstration est analogue à celle du corollaire 8.5.5.

Remarque 8.5.11. — Rappelons que le foncteur image directe par un morphisme cohérent entre topos cohérents commute aux limites inductives filtrantes (5.1). Par suite les propositions 8.5.3 à 8.5.7 et 8.5.9, 8.5.10 s'appliquent lorsque les topos fibrés envisagés sont cohérents et les morphismes de topos fibrés envisagés sont cohérents.

8.6. \mathcal{U} -topos fibrés annelés. —

considéré.

331

VI

8.6.1. On dit qu'un \mathscr{U} -topos fibré est annelé s'il est muni d'un faisceau d'anneaux sur le site total (7.4.1). Soit $p: F \to I$ un \mathscr{U} -topos fibré. Choisissons un biscindage (7.1.4). Il résulte de 7.4.7 que se donner un faisceau d'anneaux sur F revient à se donner, pour tout objet i de I, un anneau A_i de F_i , et pour tout morphisme $f: i \to j$, un morphisme $\phi_f: A_j \to f_*A_i$, la famille des ϕ_f étant soumise à des conditions de compatibilité explicitées dans loc. cit.. Les morphismes de topos $f: F_i \to F_j$ sont donc des morphismes de topos annelés (respectivement par A_i et A_j) (IV 11), et la structure annelé sur F et le choix des morphismes f. fournit un pseudo-foncteur de I dans la 2-catégorie des topos annelés. Réciproquement, lorsqu'on se donne un tel pseudo-foncteur, on peut reconstruire un \mathscr{U} -topos fibré annelé qui lui donne naissance.

8.6.2. On peut comme en 8.1, définir la notion de limite projective d'un \mathscr{U} -topos annelé $(F_i, A_i, i \in I)$. Nous supposerons que cette généralisation immédiate a été faite et nous appliquerons librement à cette situation le langage introduit dans 8.1. Lorsqu'elle existe, cette limite projective est un \mathscr{U} -topos annelé (H, B), et on a pour tout objet i de I des morphismes de topos annelés $\mu_i: (H, B) \to (F_i, A_i)$. Si le topos fibré F (non annelé) admet une limite projective $\varprojlim_{I} \mu_i^*(A_i)$ admet une limite inductive $\varinjlim_{I} \mu_i^*(A_i)$ dans la catégorie des anneaux de $\varprojlim_{I} \mu_i^*(A_i)$ admet une limite inductive $\liminf_{I} \mu_i^*(A_i)$ alors le topos annelé $\liminf_{I} \mu_i^*(A_i)$ est de façon évidente une limite projective du topos fibré annelé

8.6.3. Les formules du numéro 8.5. établies pour les faisceaux d'ensembles sont valables pour les faisceaux abéliens. Elles sont aussi valables pour les faisceaux de modules, à condition d'interpréter les foncteurs images inverses qui y figurent comme des foncteurs images inverses au sens des faisceaux de modules (IV 1.1). Nous en laissons la vérification au lecteur.

8.6.4. Soit $(p: F \to I, A)$ un \mathscr{U} -topos fibré annelé sur une catégorie cofiltrante. On dit que $(p: F \to I, A)$ est \mathscr{U} -topos fibré annelé plat à droite (resp. à gauche) si pour tout morphisme $f: i \to j$, le morphisme $f: (F_i, A_i) \to (F_j, A_j)$ est un morphisme plat à droite (resp. à gauche) de topos annelés (V 1.8). Supposons I essentiellement petite. Alors le morphisme de topos annelé Q: $(\varprojlim_{\Gamma} F_i, (\varinjlim_{\Gamma} \mu_i^*(A_i)) \to F_i)$

(Hom_{I°} (I°, F'), A) (8.5.1) est plat à droite (resp. à gauche), comme il résulte de la définition et de 8.5.2, et ceci est valable sans hypothèses de platitude sur les morphismes de transition f. Si on suppose de plus que $(p: F \to I, A)$ est un \mathscr{U} -topos fibré annelé plat à droite (resp. à gauche), les morphismes $\mu_i: (\varinjlim_{I} \mu_i^* A_i) \to (F_i, A_i)$ sont plats à droite (resp. à gauche). Ceci résulte de ce que l'image inverse d'un module plat est plat (V 1.7.1), et de ce qu'une limite inductive filtrante de Modules plats est un Module plat. On démontre par les mêmes arguments le fait suivant :

Si $m: (F_i, A_i, i \in I) \to (G_i, A_i, i \in I)$ est un morphisme cartésien de \mathscr{U} -topos fibrés annelés sur une catégorie cofiltrante essentiellement petite et si pour tout objet $i \in \text{ob}(I)$, le morphisme m_i est plat à droite (resp. à gauche), alors le morphisme \underline{m} déduit de m par passage à la limite projective est plat à droite (resp. à gauche).

8.7. Cohomologie des faisceaux d'une limite projective de topos. —

8.7.1. Dans ce numéro, I désigne une petite catégorie cofiltrante, $(p: F \to I, A)$ et $(q: G \to I, B)$ deux \mathscr{U} -topos fibrés annelés, $m: (p: F \to I, A) \to (q: G \to I, B)$ un morphisme de U-topos fibrés annelés. On suppose que pour tout morphisme $f: i \to j$ de I, les foncteurs dérivés $R^n f_*$, $n \in \mathbb{N}$, du foncteur $f_*: \operatorname{Mod}(F_i, A_i) \to \operatorname{Mod}(F_j, A_j)$ pour les modules, commutent aux limites inductives filtrantes, et que pour tout objet $i \in I$, les foncteurs dérivés $R^n m_{i*}$ du foncteur $m_{i*}: (F_i, A_i) \to (G_i, B_j)$ pour les modules commutent aux limites inductives filtrantes. Rappelons que ces hypothèses sont satisfaites lorsque les catégories F_i , G_i $(i \in \operatorname{ob}(I))$ sont cohérentes et lorsque les morphismes $f: F_i \to F_j$, $(f: i \to j \in F1(I))$ et $m_i: F_i \to G_i$, $(i \in I)$ sont cohérents (5.2). On utilise les notations de 8.5.1. De plus on note A (resp. A) le faisceau A0 limit A1 pour désigner l'image inverse au sens des faisceaux abéliens en réservant la notation A2 pour l'image inverse au sens des Modules (IV 11).

Lemme 8.7.2. — Soit $j \mapsto M_j$ un A-Module injectif de Top(F). Alors $Q^*(j \mapsto M_j)$ 332 est un A-Module acyclique pour \underline{m}_* et pour tout $i \in ob(I)$, M_i est flasque.

Soient $i \in \text{ob}(I)$ et e_i un objet final de F_i . Le U-topos fibré $F_{/e_i} \to I_{/i}$ est déduit de $F \to I$ par le changement de base $I_{/i} \to I$. Le faisceau $j \to M_j$ étant injectif est flasque (V 4.6). Sa restriction au topos localisé $F_{/e_i}$ est flasque (V 4.12). Le foncteur de restriction de $F_{/e_i}$ à F_i est un foncteur image directe par un morphisme de topos (7.4.12). Par suite, il transforme les Modules flasques en Modules flasques (V 5.2). Donc M_i est flasque.

Démontrons la première assertion du lemme. Posons $N' = Q^*(j \mapsto M_j)$. D'après (8.5.3.1)), on a, pour tout $i \in ob(I$

$$\mu_{i*}(\mathbf{N}') = \mu_{i*}\mathbf{Q}^*(j \mapsto \mathbf{M}_j) \simeq \varinjlim_{f:j \to i} f_*(\mathbf{M}_j).$$

En utilisant l'hypothèse (8.7.1), on voit que le faisceau N' possède la propriété suivante :

(P) Pour tout objet $i \in \text{ob}(I)$, $\mu_{i*}(N')$ est m_{i*} -acyclique, et pour tout morphisme $f: i \to j$ de I, $\mu_{i*}(N')$ est f_* -acyclique.

Il suffit de montrer que tout objet N' qui possède la propriété (P) est \underline{m}_* -acyclique. Comme les injectifs possèdent la propriété (P), il suffit de vérifier les deux propriétés

^(*)Pour fixer les idées nous prendrons les modules à gauche.

334

suivantes (V 0.4) : Pour tout suite exacte $0 \to N' \to N'' \to 0$, où N' et N possèdent la propriété (P), (a) N'' possède la propriété (P) et (b) $m_*(N) \to m_*(N'')$ est un épimorphisme. La vérification de (a) est triviale. Vérifions (b). Posons $K = \operatorname{coker}(Q_*(N') \to Q_*(N))$ de sorte que K est la section $(i \mapsto K_i = \operatorname{coker}(\mu_{i*}(N') \to \mu_{i*}(N)))$. Pour tout $f: i \to j$, on a un diagramme commutatif

$$0 \longrightarrow f_*\mu_{i*}(\mathbf{N}') \longrightarrow f_*\mu_{i*}(\mathbf{N}) \longrightarrow f_*(\mathbf{K}_i) \longrightarrow 0$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$0 \longrightarrow \mu_{j*}(\mathbf{N}') \longrightarrow \mu_{j*}(\mathbf{N}) \longrightarrow \mathbf{K}_j \longrightarrow 0.$$

Comme $\mu_{i*}(N')$ est f_* -acyclique, la suite horizontale du haut est exacte. Comme $i \mapsto \mu_{i*}(N')$ et $i \mapsto \mu_{i*}(N)$ sont des sections cartésiennes, les deux premiers morphismes verticaux sont des isomorphismes. Par suite le morphisme canonique $K_j \to f_*(K_i)$ est un isomorphisme et $i \mapsto K_i$ est une section cartésienne. Donc K est de la forme $Q_*(K')$, et les morphismes canoniques $Q_*(N) \to K$ et $K \to Q_*(N'')$ sont de la forme $Q_*(u)$ et $Q_*(v)$ respectivement, car Q_* est pleinement fidèle. Comme Q^* est exact et comme Q^*Q_* est isomorphe à l'identité, v est un isomorphisme et par suite $Q_*(v)$ est un isomorphisme. La suite $0 \to Q_*(N') \to Q_*(N) \to Q_*(N'') \to 0$ est donc exacte et par suite, pour tout objet i de I, la suite $0 \to \mu_{i*}(N) \to \mu_{i*}(N') \to \mu_{i*}(N'') \to 0$ est exacte. Comme $\mu_{i*}(N')$ est m_{i*} -acyclique, la suite $0 \to m_{i*}\mu_{i*}(N') \to m_{i*}\mu_{i*}(N) \to m_{i*}\mu_{i*}(N) \to m_{i*}\mu_{i*}(N'') \to 0$ est exacts. De plus on a un isomorphisme $\underline{m}_* \simeq \underline{\lim}_{I^o} \mu_{j}^{-1} m_{j*} \mu_{j*}(8.5.8.2)$. Le foncteur μ_j^{-1} est exact et les limites inductives filtrantes sont exactes. Donc la suite $0 \to m_*(N') \to m_*(N') \to m_*(N'') \to 0$ est exacte.

Théorème 8.7.3. — Les notations et hypothèses sont celles de 8.7.1. Pour tout entier $n \in \mathbf{N}$, le foncteur dérivé $\mathbf{R}^n \underline{m}_*$ commute aux limites inductives filtrantes, et on a un isomorphisme fonctoriel pour tout A-Module $j \mapsto \mathbf{M}_j$:

(8.7.3.1)
$$\mathbf{R}^n m_* \mathbf{Q}^* (j \longrightarrow \mathbf{M}_j) \sim \varinjlim_{\mathbf{I}^{\circ}} \mu_j^* \mathbf{R}^n m_{j*} (\mathbf{M}_j).$$

On a $Q^{-1}(A) = \underline{A}$, et par suite l'image réciproque pour les Modules est isomorphe à l'image réciproque pour les faisceaux abéliens. On en déduit par 8.5.8.2 que pour toute section $j \mapsto M_j$, on a un isomorphisme canonique $\varinjlim_{\Gamma_0} \mu_j^{-1}(M_j) \simeq \varinjlim_{\Gamma_0} \mu_j^*(M_j)$. De plus, sous les hypothèses de 8.7.1, on a un isomorphisme canonique (8.5.9.1) $\underline{m}_*Q^*(j \mapsto M_j) \simeq \varinjlim_{\Gamma_0} \mu_j^{-1}m_{j*}(M_j)$. Comme pour tout injectif $j \mapsto M_j$, les M_j sont flasques et $Q^*(j \to M_j)$ est acyclique pour \underline{m}_* (8.7.2), on a un isomorphisme $R^n\underline{m}_*(Q^*(j \mapsto M_j)) \simeq \varinjlim_{\Gamma_0} \mu_j^{-1}R^nm_{j*}(M_j)$, d'où la formule (8.7.3.1) en utilisant ce qui précède. La première assertion résulte immédiatement de la formule (8.7.3.1).

Corollaire 8.7.4. — On a des isomorphismes fonctoriels pour $n \in \mathbf{Z}$:

(8.7.4.1)
$$R^{n} \underset{\underline{I}^{\circ}}{\underbrace{m}_{*}(N)} \simeq \underset{\underline{I}^{\circ}}{\varinjlim} \mu_{j}^{*} R^{n} m_{j*} \mu_{j*}(N)).$$

En effet N est isomorphe à $Q^*(j \mapsto \mu_{j*}(N))$.

Corollaire 8.7.5. — Pour tout objet i de I, pour entier n et tout A_i -Module M_i , on a un isomorphisme fonctoriel

(8.7.5.1)
$$R^{n} \underbrace{m}_{*} \mu_{i}^{*}(M_{i}) \simeq \underset{f:j \to i}{\varinjlim} \mu_{j}^{*} R^{n} m_{j*} f^{*}(M_{i}).$$

Quitte à faire le changement de base $I_{/i} \to I$, on peut supposer que i est un objet final de I (8.2.1). L'objet $\mu_i^*(M_i)$ est alors isomorphe à $Q^*(f:j \to i) \mapsto f^*(M_i)$ (cf. 8.5.5).

Corollaire 8.7.6. — Soit i un objet de I et n un entier. On a un isomorphisme fonctoriel en la section $j \mapsto M_j$:

(8.7.6.1)
$$R^n m_{i*} Q^*(j \mapsto M_j) \simeq \lim_{\substack{j \to j \\ f:j \to i}} R^n f_*(M_j).$$

On a un isomorphisme en le $\underline{\underline{\mathsf{A}}}$ -Module N :

(8.7.6.2)
$$R^n \mu_{i*}(N) \simeq \lim_{\substack{f:j \to i}} R^n f_* \mu_{j*}(N).$$

On a un isomorphisme fonctoriel en le A_i -Module M_i :

(8.7.6.3)
$$R^n \mu_{i*} \mu_i^*(M_i) \simeq \varinjlim_{f:j \to i} R^n f_* f_*(M_i).$$

Les foncteurs $\mathbb{R}^n \mu_{i*}$ commutent aux limites inductives filtrantes.

En faisant le changement de base $I_{/i} \to I$ on se ramène au cas où i est un objet final de I. Les formules (8.7.6.1) et ((8.7.6.2) sont alors des cas particuliers des formules (8.7.3.1)), ((8.7.4.1) et (8.7.5.1), respectivement obtenus en prenant pour G le topos fibré constant de fibre F_i et pour morphisme m le morphisme $(f, f \in ob(I_{/i}))$. La dernière assertion résulte de (8.7.6.2) compte tenu de (8.5.4).

Corollaire 8.7.7. — Soient i un objet de I, X un objet de F_i tel que les foncteurs 335 $H^n(X,-)$, $n \in \mathbb{N}$, commutent aux limites inductives filtrantes. On a pour tout n un isomorphisme canonique fonctoriel en le A_i -Module M_i :

(8.7.7.1)
$$H^{n}(\mu_{i}^{*}(X), \mu_{i}^{*}(M_{i})) \simeq \lim_{\substack{f \to i \to i} \\ f \neq i \to i}} H^{n}(f^{*}(X), f^{*}(M_{i}))$$

et les foncteurs $H^n(\mu_i^*(X), -)$ commutent aux limites inductives filtrantes. En particulier si les foncteurs $H^n(F_i, -)$ commutent aux limites inductives filtrantes, les foncteurs $H^n(F_i, -)$ commutent aux limites inductives filtrantes, et on a des isomorphismes canoniques, fonctoriels en les A_i -Modules M_i

(8.7.7.2)
$$\operatorname{H}^{n}(\underline{F}, \mu_{i}^{*}(\mathbf{M}_{i})) \simeq \varinjlim_{f:j \to i} \operatorname{H}^{n}(\mathbf{F}_{j}, f^{*}(\mathbf{M}_{i})).$$

Il résulte de (V 5.3) qu'on a deux suites spectrales

$${}^{\prime}\mathbf{E}_{2}^{p,q} = \underset{f:j \to i}{\underset{f \to j}{\overset{}{\longrightarrow}}} \mathbf{H}^{p}(\mathbf{X}, \mathbf{R}^{q} f_{*} f^{*}(\mathbf{M}_{i})) \Rightarrow \underset{f:j \to i}{\underset{f \to j}{\overset{}{\longrightarrow}}} \mathbf{H}^{p+q}(f^{*}(\mathbf{X}), f^{*}(\mathbf{M}_{i}))$$
$${}^{\prime\prime}\mathbf{E}_{2}^{p,q} = \mathbf{H}^{p}(\mathbf{X}, \mathbf{R}^{q} \mu_{i*} \mu_{i}^{*}(\mathbf{M}_{i})) \Rightarrow \mathbf{H}^{p+q}(\mu_{i}^{*}(\mathbf{X}), \mu_{i}^{*}(\mathbf{M}_{i})),$$

et de (8.5.7.1) qu'on a un morphisme entre ces deux suites spectrales. Comme les $H^{p+q}(X,-)$ commutent aux limites inductives filtrantes, il résulte de (8.7.6.2) que ce morphisme de suites spectrales est un isomorphisme au niveau des $E_2^{p,q}$. Par suite il induit un isomorphisme sur les aboutissements, d'où (8.7.7.1). Pour tout A-Module N, on a une suite spectrale (V 5.3).

$$E_2^{p,q} = H^p(X, R^q \mu_{i*}(N)) \Rightarrow H^{p+q}(\mu_i^*(X), N).$$

La condition aux limites inductives filtrantes des foncteurs $H^n(\mu_i^*(X, -))$ résulte alors des propriétés analogues des foncteurs $H^n(X, -)$ et $\mathbb{R}^n \mu_{i*}$ (8.7.6).

Remarque 8.7.8. — Lorsque les topos F_j , $j \in ob(I)$ sont cohérents et lorsque les morphismes de transition sont cohérents, l'hypothèse faite sur X (resp. F_i) dans 8.6.7 est satisfaite lorsque X (resp. F_i) est cohérent (5.2). On sait d'ailleurs que dans ce cas $\mu_i^*(X)$ (resp. F) est cohérent (8.3.13).

Corollaire 8.7.9. — Soient i un objet I, M_i un A_i -Module à gauche, L_i un A_i -Module à droite possédant la résolution du type :

$$P_{i,k} \longrightarrow P_{i,k-1} \longrightarrow \cdots \longrightarrow P_{i,0} \longrightarrow L_i \longrightarrow 0$$

où, pour tout entier k, $P_{i,k}$ est isomorphe à une somme directe finie d'objets de la forme $A_{i|X}$ (IV 11.3.3), où X vérifie les hypothèses de 8.7.7. Si, outre les hypothèses de 8.7.1, le topos fibré F est plat à droite (8.6), on a des isomorphismes canoniques, pour $n \leq k-1$:

(8.7.9.1)
$$\operatorname{Ext}_{\underline{A}}^{n}(\underline{F}), \mu_{i}^{*}(L_{i}), \mu_{i}^{*}(M_{i})) \simeq \lim_{\substack{f: j \to i}} \operatorname{Ext}_{A_{j}}^{n}(F_{j}, f^{*}(L_{i}), f^{*}(M_{i})).$$

Notons $P_{i,.}$ la résolution de L_i . Comme F est plat à droite, pour tout $f: j \to i, f^*(P_{i,.})$ est une résolution de $\mu_i^*(L_i)$ (8.6). Ces résolutions permettent de construite deux suites spectrales qui convergent respectivement vers les deux membres de (8.7.9.1), et un morphisme entre ces deux suites spectrales. Au niveau des $E_1^{p,q}$ ce morphisme est un isomorphisme (8.7.7.1). Il induit donc un isomorphisme sur les aboutissements.

9. Appendice. Critère d'existence de points

par P. Deligne

Proposition 9.0. — Tout topos localement cohérent S a assez de points.

La question étant locale sur S, on peut supposer le topos S défini par un site \mathscr{S} , dans lequel est limites projectives finies sont représentables et tel que tout recouvrement $f_i: \mathcal{U}_i \to \mathcal{U}$ admette un sous-recouvrement fini. Il suffit de prouver que si $f: \mathscr{F} \to \mathscr{G}$ n'est pas un monomorphisme, alors, il existe un point x de \mathscr{S} tel que f_x ne soit pas injectif. Par hypothèse, il existe $u \in \text{ob } \mathscr{S}$ et \mathscr{S} , $\mathscr{S}' \in \mathscr{F}(\mathcal{U})$ tels que $\mathscr{S} \neq \mathscr{S}'$ et $f(\mathscr{S}) = f(\mathscr{S}')$. Remplaçant \mathscr{S} par \mathscr{S}/\mathcal{U} , on se ramène au

Lemme 9.1. — Si $\mathscr S$ et $\mathscr S'$ sont deux sections globales distinctes d'un faisceau $\mathfrak F$ sur un site $\mathscr S$ vérifiant les hypothèses précédentes, alors, il existe un point x de $\mathscr S$ tel que $\mathscr S_x \neq \mathscr S'_x$.

Soit $P = (U_i)_{i \in I}$ un système projectif dans \mathscr{S} , indexé par un ensemble ordonné filtrant I. Pour tout faisceau \mathscr{H} sur \mathscr{S} , on pose $P(\mathscr{H}) = \varinjlim \mathscr{H}(U_i)$, et pour tout $V \in Ob \mathscr{S}$, on pose $P(V) = \varinjlim Hom(U_i, V)$. Les foncteurs $P(\mathscr{H})$ et P(V) commutent aux produits fibrés. Si le foncteur P(V) transforme les recouvrements en familles surjectives de fonctions, c'est un morphisme de sites du topos ponctuel dans \mathscr{S} , et $P(\mathscr{H})$ est le foncteur fibre correspondant.

Si $P = (U_i)_{i \in I}$ et $Q = (V_j)_{j \in J}$ sont deux systèmes projectifs dans \mathscr{S} , on dit que Q raffine P si I est une partie de J munie de l'ordre induit et si P est la restriction de Q à J. On dispose alors de morphismes de foncteurs de $P(\mathscr{H})$ dans $Q(\mathscr{H})$ et de P(V) dans Q(V).

Quel que soit P comme plus haut, on notera \mathscr{S}_p et \mathscr{S}'_p les images dans $P(\mathscr{F})$ de \mathscr{S} et \mathscr{S}' . Le lemme 9.1 résulte du lemme suivant, dans lequel on prend pour P le système projectif indexé par $\{0\}$ et réduit à l'objet final de \mathscr{S} .

Lemme 9.2. — Quel que soit P comme plus haut vérifiant $\mathscr{S}_p \neq \mathscr{S}'_p$, il existe Q raffinant P, vérifiant $\mathscr{S}_q \neq \mathscr{S}'_p$, et tel que, quels que soient le recouvrement $f_i : V_i \to V$ et $f \in Q(V)$, f soit dans l'image d'un des $Q(V_i)$.

On prouvera tout d'abord :

Lemme 9.3. — Soient $P = (U_i)_{i \in I}$ vérifiant les hypothèses du lemme 9.2, $f_i : V_i \to V$ un recouvrement fini dans \mathscr{S} , et $f \in P(V)$. Il existe Q raffinant P, vérifiant $\mathscr{S}_Q \neq \mathscr{S}_Q'$ et tel que l'image de f dans Q(V) soit dans l'image de l'un des (V_i) .

Il existe $i_{\circ} \in I$ et $f' \in \text{Hom}(U_{i_{\circ}}, V)$ qui définissent f. Pour $i \geq i_{\circ}$, posons $U_{i,k} = U_{i_{N}} V_{k}$, ce produit fibré étant défini par f'. On sait que (V_{k}) est un recouvrement de

V, donc que $U_{i,k}$ est un recouvrement de U_i ; la flèche suivante sera injective (pour $i>i_\circ$) :

$$\mathscr{F}(\mathbf{U}_i) \longrightarrow \prod_k \mathscr{F}(\mathbf{U}_{i,k})$$

Passant à la limite, compte tenu de ce que les produits *finis* commutent aux limites inductives filtrantes, on voit que

$$P(\mathscr{F}) \longrightarrow \prod_{k} \varinjlim_{k} \mathscr{F}(U_{i,k})$$

est injectif, donc qu'il existe k tel que \mathscr{S}_p et \mathscr{S}_p' aient des images distinctes dans $\varinjlim_{i>i_\circ}\mathscr{F}(\mathrm{U}_{i,k})$. Soit alors $\mathrm{I}_\circ=\{i|i\geqslant i_\circ\text{ et }i\in\mathrm{I}\}$, et $\mathrm{J}=\mathrm{I}\coprod\mathrm{I}_\circ$. On ordonne J en disant que $j'\leqslant j''$ si les images de j' et j'' dans I satisfont à $j'\leqslant j''$ et si on n's pas $j'\in\mathrm{I}_\circ$, $j''\in\mathrm{I}$. Les U_i et $\mathrm{U}_{i,k}$ sont indexés par J , et forment un raffinement Q de P , tel que $\mathscr{S}_\mathrm{Q}\neq\mathscr{S}_\mathrm{Q}'$, et que l'image de f dans $\mathrm{Q}(\mathrm{V})$ soit dans l'image de $\mathrm{Q}(\mathrm{V}_k)$.

Lemme 9.4. — Soit $P = (U_i)_{i \in I}$ vérifiant les hypothèses du lemme 9.2. Il existe Q raffinant P, tel que $\mathscr{L}_Q \neq \mathscr{L}_Q'$, et tel que pour tout recouvrement fini (V_k) d'un ouvert V de S, et tout $f \in P(V)$, l'image de f dans Q(V) soit dans l'image de l'un des $Q(V_k)$.

Soit E l'ensemble des triples formés d'un ouvert V de S, d'un recouvrement fini (V_k) de V et de $f \in P(V)$. Soient \leq un bon ordre sur E et \overline{E} l'ensemble déduit de E par adjonction d'un plus grand élément, noté ∞ . On va définir par récurrence transfinie sur $e \in \overline{E}$ des raffinements Q_e de P, vérifiant $\mathscr{S}_{Q_e} \neq \mathscr{S}'_{Q_e}$ et tels que

- (i) si $e' \leq e$, alors Q_e raffine $Q_{e'}$.
- (ii) si $e = (V, (V_k), f)$, alors l'image de f sans $Q_e(V)$ se trouve dans l'images de l'un des $Q_e(V_k)$.

Supposons les $Q_{e'}$ déjà définis pour e' < e. Si e est le premier élément de E, posons $Q'_e = P$. Si e a un prédécesseur e - 1, posons $Q'_e = Q_{e-1}$. Sinon, soit Q'_e le système projectif d'ensemble d'indices $\bigcup_{e' < e} I_{e'}$ qui raffine les $Q_{e'}$ pour e' < e. Dans ce cas, on a

$$\mathbf{Q}'_e(\mathscr{F}) = \varinjlim_{e' < e} \mathbf{Q}_{e'}(\mathscr{F})$$

de sorte que, dans tous les cas, Q'_e raffine les $Q_{e'}$ pour e' < e et vérifie $\mathscr{S}_{Q'_e} + \mathscr{S}'_{Q'_e}$.

On obtient le système projectif Q_e requis en appliquant le lemme 9.3 à $Q_{e'}$ et à $e = (V, (V_k), f)$ (resp. en prenant $Q_e = Q'_e$ si $e = \infty$).

Le système projectif Q_{∞} vérifie le lemme 9.4.

Le lemme 9.4. permet de définir, par récurrence sur n, une suite $Q_n = (U_i)_{i \in I_n}$ de systèmes projectifs dans $\mathscr S$ telle que

(i) $Q_{\circ} = P$

339

- (ii) Q_{n+1} raffine Q_n
- (iii) $\mathcal{S}_{\mathbf{Q}_n} \neq \mathcal{S}'_{\mathbf{Q}^n}$

(iv) Quels que soient le recouvrement $f_k: V_k \to V$ et $f \in Q_n(V)$, l'image de f dans $Q_{n+1}(V)$ se trouve dans l'image de l'un des $Q_{n+1}(V_k)$.

Le système projectif Q, d'ensemble d'indices la réunion des I_n , qui prolonge les différents Q_n , vérifie alors le lemme 9.2. La démonstration montre de plus que :

Corollaire 9.5. — Soit $\mathscr S$ un site, dans lequel les produits fibrés sont représentables et tel que tout recouvrement dans $\mathscr S$ admette un sous-recouvrement fini. Soit e le cardinal $\sup(\)_{\circ}$, $\operatorname{card}(\operatorname{Fl}\mathscr S)$). Alors il existe un ensemble très dense de points de $\mathscr S$, tel que

- (i) $\operatorname{card}(X) \leq 2^c$
- (ii) $si \ x \in X \ et \ U \in Ob \mathscr{S}, \ alors \ card(U_x) \leqslant c.$

Références

340

- P.Gabriel et M.Zisman: Homotopy Theory and Calculus of Fraction, Ergebnisse der Mathematik, Bd 35.
- [2] J. GIRAUD: Méthode de la descente. Mémoire de la S.M.F.
- [3] A. Grothendieck et J. Dieudonne : Eléments de Géométrie Algébrique I, 2ème édition.
- [4] A. Grothendieck et J. Dieudonne : Eléments de Géométrie Algébrique IV I, I.H.E.S. n°
- [5] SGA . 1 VI, par A. Grothendieck, I.H.E.S.
- [6] SGA . 3 IV 6.3 par M. Demazure, Lecture Notes $n^{\circ},$ Springer Verlag.
- [7] A. GROTHENDIECK: Sur quelques points d'algèbres homologiques, Tohoku Math. J.

SITE ET TOPOS ÉTALES D'UN SCHÉMA

par A. Grothendieck

Table des matières

Exposé vii SITE ET TOPOS ÉTALES D'UN SCHÉMA par A. Grothendieck

	231
1. La topologie étale	231
2. Exemples de faisceaux	234
3. Générateurs du Topos étale. Cohomologie d'une <u>lim</u> de faisceau	ux
	$\dots 236$
4. Comparaison avec d'autres topologies	237
5. Cohomologie d'une limite projective de schémas	240

Dans le présent exposé et le suivant, nous développons les propriétés les plus élémentaires relatives à la topologie et la cohomologie étales. Les développements du présent exposé concernent certaines propriétés valables pour l'essentiel pour d'autres topologies très différentes, telle la « topologie fppf ». Dans l'exposé suivant seront développées des propriétés assez spéciales à la topologie étale, tenant à la nature très particulière des morphismes étales.

Nous suivons partiellement ici trois exposés oraux de J.E. Roos (qui n'avaient pu être rédigés par lui), notamment dans la démonstration, de VIII 6.3.

Sauf mention expresse du contraire, il sera sous-entendu que les schémas envisagés dans le présent exposé er les suivants sont éléments de l'univers fixé \mathscr{U} .

1. La topologie étale

1.1. Nous désignerons par (Sch) la catégorie des schémas (éléments de l'Univers fixé \mathscr{U}). Rappelons qu'un morphisme $f: X \to Y$ dans (Sch) est dit étale s'il est localement 343 de présentation finie, plat, et si pour tout $y \in Y$, la fibre X_y est discrète, et ses anneaux locaux sont des extensions finies séparables de k(y). Il revient au même de dire que f

est localement de présentation finie, et que pour tout Y - schéma Y' qui est affine (au sens absolu) et pour tout sous-schéma Y_0' défini par un Idéal nilpotent, l'application

$$\operatorname{Hom}_Y(Y',X) \longrightarrow \operatorname{Hom}_Y(Y'_0,X)$$

est bijective. Pour les propriétés les plus importantes de cette notion, je renvoie à EGA IV §§17 et 18, et en attendant à SGA 1 I et IV.

1.2. On appelle topologie étale sur (Sch) la topologie engendrée par la prétopologie pour laquelle, pour tout $X \in (Sch)$, l'ensemble Cov X est formé des familles $(X_i \xrightarrow{u_i} X)_{i \in I}$ (indexées par un $I \in U$), telles que les u_i soient étales et $X = \bigcup_i u_i(X_i)$ (au sens ensembliste).

Il est commode d'associer à tout X la sous-catégorie $\operatorname{Et}_{/X}$ de $(\operatorname{Sch})_{/X}$ formée des flèches $X' \to X$ qui sont étales. On la munira de la « topologie induite » (III) par la topologie étale de (Sch), (appelée encore « topologie étale sur X ») et on désignera par $X_{\text{\'et}}$ le site ainsi obtenu (« site étale » de X) ^(*). Notons que tout morphisme de $\operatorname{Et}_{/X}$ est étale (SGA 1 I 4.8), d'où s'ensuit qu'une famille $(X'_i \xrightarrow{u_i} X')_{i \in I}$ dans $X_{\text{\'et}}$ est couvrante si et seulement si elle est surjective i.e. $\bigcup_i u_i(X'_i) = X'$. On voit aussitôt (cf. 3.1) que $X_{\text{\'et}}$ est un \mathscr{U} -site donc les résultats des Exp. I à VI sont applicables. Le topos $\widehat{X}_{\text{\'et}}$ des U-faisceaux sur $X_{\text{\'et}}$ est le topos étale de X.

- 1.3. Pour la suite, sauf mention expresse du contraire, toutes les notions topologiques que nous envisagerons dans Et_{/X} ou (Sch), s'entendent au sens de la topologie étale. D'ailleurs, dans le langage et les notations, on écrira couramment X au lieu de X_{ét} ou Et_{/X}. Ainsi, on appellera « faisceau sur X » (sous-entendu : pour la topologie étale) un faisceau sur le site X_{ét}. On désignera par X_{ét} la catégorie de ces faisceaux, qui est un W-topos. Si F est un faisceau abélien sur X, on désignera par Hⁱ(X, F) ses groupes de cohomologie, qui seraient notés Hⁱ(X_{ét}, F) dans Exp. V.
 - **1.4.** Soit $f: X \to Y$ un morphisme de schémas. Alors le foncteur image inverse

$$f^*: \mathbf{Y'} \mapsto \mathbf{Y'}_{\mathbf{Y}} \mathbf{X}$$

induit un foncteur

$$f_{\text{\'et}}^* : \text{Et}_{/Y} \longrightarrow \text{Et}_{/X}$$

qui commute aux \varprojlim finies et transforme familles couvrantes en familles couvrantes ; c'est par suite un morphisme de sites

$$f_{\mathrm{\acute{e}t}}^*: \mathbf{X}_{\mathrm{\acute{e}t}} \longrightarrow \mathbf{Y}_{\mathrm{\acute{e}t}},$$

 $^{^{(*)}}$ Notons cependant qu'il serait préférable de désigner par $X_{\text{\'et}}$ le topos $\widetilde{X_{\text{\'et}}}$ défini par le site étale de X. Pour des raisons pratiques, nous nous en tiendrons dans ce Séminaire aux notations introduites ici (qui sont celles du séminaire primitif).

induisant donc un foncteur sur la catégorie des faisceaux :

$$f_*^{\text{\'et}}: \widetilde{\mathbf{X}_{\text{\'et}}} \longrightarrow \widetilde{\mathbf{Y}_{\text{\'et}}}$$

par

$$f_*^{\text{\'et}}(\mathbf{F}) = \mathbf{F} \circ f_{\text{\'et}}^*.$$

De plus $f_*^{\text{\'et}}$ admet un adjoint à gauche

$$f_{\operatorname{\acute{e}t}}^*: \widetilde{\mathbf{Y}_{\operatorname{\acute{e}t}}} \longrightarrow \widetilde{\mathbf{X}_{\operatorname{\acute{e}t}}}$$

prolongeant celui envisagé dans (*), et commutant aux \varinjlim quelconques et aux \varprojlim 345 finies i.e. $f_{\text{\'et}}^*$ définit un morphisme de topos

$$f_{\text{\'et}}: \widetilde{\mathbf{X}_{\text{\'et}}} \longrightarrow \widetilde{\mathbf{Y}_{\text{\'et}}}.$$

Évidemment, pour un composé de deux morphisme de schémas

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

on a des isomorphismes canoniques

$$\begin{cases} (gf)_*^{\text{\'et}} \simeq g_*^{\text{\'et}} f_*^{\text{\'et}} &, \quad \text{d'où} \\ (gf)_{\text{\'et}}^* \simeq f_{\text{\'et}}^* g_{\text{\'et}}^* &, \quad \text{i.e. on a un isomorphisme} \\ (gf)_{\text{\'et}} \simeq g_{\text{\'et}} f_{\text{\'et}} &, \end{cases}$$

(de sorte qu'on obtient un « pseudo-foncteur » (SGA 1 VI 8) de la catégorie (Sch) dans la catégorie (Top) des topos $\in \mathcal{U}'$, où \mathcal{U}' est le plus petit univers tel que $\mathcal{U} \in \mathcal{U}'$; comparer IV).

1.5. Notations. — Dans la suite nous écrirons souvent f^* , f_* au lieu de $f^*_{\text{\'et}}$, $f^{\text{\'et}}_{\text{\'et}}$. Si $f: X \to Y$ est un morphisme de schémas, les foncteurs $R^i f^{\text{\'et}}_*$ seront donc simplement notés $R^i f_*$. Rappelons avec ces notations la suite spectrale de Leray pour f, et un faisceau abélien F sur X (V 5):

$$H^*(X,F) \longleftarrow E_2^{p,q} = H^p(Y, R^q f_*(F)).$$

De même si l'on a deux morphismes $f: X \to Y$ et $g: Y \to Z$, on a une suite spectrale de Leray (suite spectrale de foncteurs composés)

$$R^*(gf)_*(F) \longleftarrow E_2^{p,q} = R^p g_*(R^q f_*(F)).$$

1.6. Lorsque $f: X \to Y$ est lui-même un morphisme étale, on peut considérer X **346** comme objet de $Y_{\text{\'et}}$, et on a un *isomorphisme de sites* canonique

$$X_{\text{\'et}} \xrightarrow{\sim} (Y_{\text{\'et}})_{/X}$$
.

Moyennant cet isomorphisme, la foncteur $f_{\text{\'et}}^*: Y' \mapsto Y'_{Y}X$ de (*) s'identifie au foncteur changement de base interne dans la catégorie $\text{Et}_{/Y}$. Il s'ensuit que le foncteur

$$f^*: \widetilde{\mathbf{Y}_{\mathrm{\acute{e}t}}} \longrightarrow \widetilde{\mathbf{X}_{\mathrm{\acute{e}t}}}$$

VII

est alors isomorphe au foncteur « restriction à Y »

$$f^*(\mathbf{F}) \simeq \mathbf{F} \circ i_{\mathbf{X}/\mathbf{Y}},$$

où F est un faisceau sur $Y_{\text{\'et}}$, et $i_{X/Y} = X_{\text{\'et}} \to Y_{\text{\'et}}$ est le foncteur évident (consistant à regarder un schéma étale sur $X, u : X' \to X$, comme un schéma étale sur Y par $fu : X' \to Y$).

1.7. Questions d'Univers. — On notera que si $X \neq \emptyset$, alors $X_{\text{\'et}}$ n'est pas élément de l'univers choisi \mathscr{U} . Cependant, comme nous avons signalé, on voit facilement (3.1) que l'on peut trouver une sous-catégorie pleine C de $X_{\text{\'et}}$, élément de \mathscr{U} , satisfaisant aux conditions du « lemme de comparaison » (III), de sorte que le foncteur restriction induise une équivalence $\widetilde{C} \to \widetilde{X}_{\text{\'et}}$. Ainsi, le topos étale est équivalent à un topos définie en termes d'un site $C \in \mathscr{U}$. En d'autres termes, $X_{\text{\'et}}$ est un U-site donc en vertu de loc. cit. les résultats des Exposés I à VI sont applicables à ce site.

2. Exemples de faisceaux

347

348

a) Soit $F\in \mathrm{Ob}(\mathrm{Sch})_{/X}$ un schéma sur X, et pour tout X' sur X, posons

$$F(X') = \operatorname{Hom}_X(X', F).$$

Le foncteur $(Sch)_{/X}^{\circ} \to (Ens)$ ainsi défini est un faisceau pour la topologie étale (et même pour la topologie plus fine fpqc étudiée dans SGA 3 IV). En d'autres termes la topologie étale sur (Sch) est moins fine que la topologie canonique. C'est en effet, essentiellement, le contenu de SGA 1 VIII 5.1 (cf. aussi SGA 3 IV 6.3.1). A fortiori, la restriction de ce faisceau à $X_{\text{ét}}$ est un faisceau. On le désignera encore par F, lorsqu'aucune confusion n'est à craindre (*). Noter aussi que le foncteur ainsi obtenu

$$(\$) \qquad (Sch)_{/X} \longrightarrow \widetilde{X_{\text{\'et}}}$$

commute aux \varprojlim finies (c'est trivial). Cela implique par exemple que lorsque F est un schéma en groupes (resp. . . .) sur X, alors le faisceau qu'il définit est un faisceau en groupes (resp. . . .). Notons que le foncteur $\operatorname{Et}_{/X} \to X_{\operatorname{\acute{e}t}}$ induit par (*) n'est autre que le foncteur canonique, associant à tout $X' \in \operatorname{Ob} X_{\operatorname{\acute{e}t}}$ le foncteur sur $X_{\operatorname{\acute{e}t}}$ qu'il représente. C'est donc un isomorphisme de la catégorie $\operatorname{Et}_{/X}$ sur une sous-catégorie pleine du topos étale $X_{\operatorname{\acute{e}t}}$, par laquelle nous identifions généralement un $X \in \operatorname{Ob} X_{\operatorname{\acute{e}t}}$ au faisceau correspondant, qui sera noté \widetilde{X} ou simplement X.

Évidemment on aura $H^{\circ}(X, F) = \operatorname{Hom}_{(Sch)_{/X}}(X, F)$.

Donnons également une interprétation de $H^1(X,F)$ lorsque F est un préschéma en groupes sur X (commutatif si l'on veut, de sorte que la définition de $H^1(X,F)$

^(*) Mais on fera attention que si $X \neq \emptyset$, le foncteur φ qui a $F \in Ob(Sch)_{/X}$ associe le faisceau correspondant $\varphi(F)$ n'est pas pleinement fidèle, ni même fidèle, et qu'on ne peut reconstituer F (mod. isom.) connaissant $\varphi(F)$. Par exemple; si $S = Spec \, k$, k corps alg. clos, la connaissance de $\varphi(F)$ équivaut à celle de l'ensemble sous-jacent à F seulement (en vertu de VIII 2.4). Comparer IV

relève de Exp. V; pour le cas général on pourra consulter la thèse de J. Giraud $^{(*)}$). Alors des raisonnements bien connus, que je me dispense de répéter ici, montrent que $\mathrm{H}^1(\mathrm{X},\mathrm{F})$ est canoniquement isomorphe au groupe des classes (mod. isomorphisme) de faisceaux d'ensembles sur $\mathrm{X}_{\mathrm{\acute{e}t}}$ principaux homogènes sous $\mathrm{F}^{(**)}$. Lorsque F est affine sur X, alors SGA 1 VIII 2.1 implique (toujours par des arguments standards, cf. thèse de J. Giraud) que $\mathrm{H}^1(\mathrm{X},\mathrm{F})$ est aussi le groupe des classes de schémas P sur X, sur lesquels F opère à droite et qui sont « fibrés principaux homogènes sur X au sens de la topologie étale » i.e. localement triviaux dans le sens de la topologie étale $^{(****)}$.

Remarques 2.1. — On fera attention que si l'on désigne, pour tout schéma Z sur X, par $\varphi_X(Z)$ le faisceau associé sur $X_{\text{\'et}}$, et si $f: Y \to X$ est un morphisme de schéma, on a un homomorphisme évident (fonctoriel en Z)

$$(*) f^*(\varphi_{\mathbf{X}}(\mathbf{Z})) \longrightarrow \varphi_{\mathbf{Y}}(\mathbf{Z}_{\mathbf{Y}}), \quad \mathbf{Z}_y = \mathbf{Z}_{\mathbf{Y}}\mathbf{Y},$$

i.e. un homomorphisme évident

$$\varphi_{\rm X}({\rm Z}) \longrightarrow f_*(\varphi_{\rm Y}({\rm Z}_{\rm Y})),$$

savoir l'homomorphisme fonctoriel en $X' \in \operatorname{Ob} X_{\text{\'et}}$

$$\operatorname{Hom}_{X}(X',Z) \longrightarrow \operatorname{Hom}_{Y}(X'_{Y},Z_{Y}).$$

Mais on fera attention qu'en général (*) n'est pas un isomorphisme, i.e. la formation du faisceau étale associé à un schéma relatif ne commute pas aux foncteurs images inverses. Cependant (*) est un isomorphisme dans le cas particulier où Z est étale sur X. De même, le foncteur

$$\varphi_{X}: Sch_{/X} \longrightarrow \widetilde{X_{\text{\'et}}}$$

n'est pas fidèle si $X \neq \emptyset$ (*); cependant sa restriction à $X_{\text{\'et}}$, qui n'est autre que le foncteur canonique $X_{\text{\'et}} \to X_{\text{\'et}}$, est pleinement fidèle, car en vertu de a) la topologie de $X_{\text{\'et}}$ est moins fine que sa topologie canonique.

b) Notons que (*) commute également aux sommes directes indexées par les $I \in \mathcal{U}$, comme on vérifie facilement. En particulier, si pour tout ensemble I, on désigne par I_X le X schéma constant défini par I (SGA 3 I 1.8), somme directe de I copies de X, alors le faisceau associé n'est autre que le faisceau constant $I_{X_{\text{ét}}}$ (somme directe de I copies du faisceau final sur $X_{\text{ét}}$). Comme le foncteur $I \mapsto I_X$ commute également aux \varprojlim finies, on voit qu'il transforme groupe en groupe, groupe commutatif en groupe commutatif etc... Si G est un groupe commutatif ordinaire, on écrira simplement $H^i(X,G)$ au lieu de $H^i(X,G_X)$. Supposons, par exemple, que G soit un groupe fini, alors G_X est fini donc affine sur X, donc en utilisant la remarque finale de a) on obtient une interprétation de $H^1(X,G)$ comme l'ensemble des classes de revêtements

^(*)

 $^{(**) \}mathrm{ou}$ F-torseurs dans la terminologie de loc. cit..

^(***) ou F-torseurs représentables dans la terminologie maintenant reçue

^(*)Cf. pour ceci la note au bas de la page 234

351

principaux galoisiens de groupe G (SGA 1 V 2.7). Lorsque X est connexe et muni d'un point géométrique a, alors en termes du « groupes fondamental » $\pi_1(X, a)$ (SGA 1 V 7) on obtient l'isomorphisme canonique

(où on a supposé G commutatif).

On peut dire qu'en passant de la cohomologie de Zariski à la topologie étale, « on a fait ce qu'il fallait » pour obtenir « le bon » H^1 (qui figure au 2ème membre de (*)) pour un groupe de coefficients constant fini G. C'est un fait remarquable, qui sera démontré par la suite de ce séminaire, que cela suffit également pour trouver les « bons » $H^i(X,G)$ pour tout groupe de coefficients de torsion (du moins si G est premier aux caractéristiques résiduelles de X).

c) Soit F un \mathcal{O}_X -Module sur X, au sens de la topologie de Zariski. Alors (avec les notations de SGA 3 I 4.6) on définit un foncteur

$$W(F): (Sch)^{\circ}_{/X} \longrightarrow (Ens)$$

par

$$W(F)(X') = \Gamma(X', F \otimes_{\mathscr{O}_X} \mathscr{O}_{X'}).$$

Ce foncteur est encore un faisceau pour la topologie étale (et même pour la topologie fpqc) comme il résulte encore de SGA 1 VIII 1.6 et SGA 3 IV 6.3.1. A fortiori, la restriction de W(F) à $X_{\text{\'et}}$ est encore un faisceau, qu'on notera encore W(F). Par définition on aura donc $H^{\circ}(X,W(F)) = \Gamma(F) = H^{\circ}(X,F)$. Mais on a mieux si F est quasi-cohérent, cf. 4.3

3. Générateurs du Topos étale. Cohomologie d'une lim de faisceaux

Proposition 3.1. — Soient X un schéma, C une sous-catégorie pleine de $X_{\text{\'et}}$, telle que pour tout X' étale sur X qui est affine, C contienne un objet isomorphe à X'. Alors C est une « famille de générateurs topologiques » du site $X_{\text{\'et}}$ donc une famille de générateurs du topos $\widetilde{X}_{\text{\'et}}$, et le foncteur restriction $\widetilde{X}_{\text{\'et}} \to \widetilde{C}$ est une équivalence de catégories (où C est muni de la topologie induite par celle de $X_{\text{\'et}}$).

Trivial à l'aide du « lemme de comparaison ».

Corollaire 3.2. — Supposons que X soit quasi séparé. Appelons site étale restreint de X la sous-catégorie pleine C de X_{ét} formée des schémas étales sur X qui sont de présentation finie sur X, munie de la topologie induite par X_{ét}. Alors :

- (i) C est stables par produits fibrés, et est un site de type fini si X est quasi-compact.
- (ii) Le foncteur restriction $X_{\mathrm{\acute{e}t}} \to \widetilde{C}$ est une équivalence de catégories.

L'assertion (i) est triviale, et (ii) résulte de 3.1 car C satisfait à la condition de 3.1 grâce au fait que X est quasi-séparé, qui implique que si X' est quasi-compact, par

exemple affine, il est quasi-compact sur~X (EGA IV 1.2.4, où on fait $Z = \operatorname{Spec} \mathbf{Z}$), donc de présentation finie sur X si X' est localement de type fini sur X.

Proposition 3.3. — Supposons X quasi-compact et quasi-séparé. Alors les foncteurs $H^q(X_{\operatorname{\acute{e}t}},F)$ sur la catégorie des faisceaux abéliens sur $X_{\operatorname{\acute{e}t}}$ commutent aux \varinjlim .

En effet, on peut remplacer $X_{\text{\'et}}$ par C en vertu de 3.2 (ii), or comme X est quasi-compact on a $X \in Ob C$, et la conclusion résulte de 3.2 (i) et VI 6.1.2 (3) .

4. Comparaison avec d'autres topologies

4.0. Tout d'abord notons que les exemples de faisceaux sur $X_{\text{\'et}}$ considérés au N° 2 sont en fait de façon naturelle des *restrictions* de faisceaux définis sur $(Sch)_{/X}$ muni 352 de sa topologie étale (ou même de la topologie fpqc). Soit de façon générale

$$u^*: X_{\text{\'et}} \longrightarrow (Sch)_{/X}$$

le foncteur d'inclusion, qui est continu (III) et commute aux \varprojlim finies, donc définit un morphisme de sites

$$u: (Sch)_{/X} \longrightarrow X_{\text{\'et}},$$

d'où un foncteur

$$u_* : (\widetilde{\operatorname{Sch}})_{/\mathbf{X}} \longrightarrow \widetilde{\mathbf{X}_{\operatorname{\acute{e}t}}}$$

sur les catégories de faisceaux associées :

$$u_*(F) \longrightarrow F \circ u$$
,

et un foncteur adjoint à gauche $\ensuremath{^{(*)}}$ de ce dernier

$$u^*: \widetilde{\mathbf{X}_{\mathrm{\acute{e}t}}} \longrightarrow \widetilde{\mathbf{Sch}_{/\mathbf{X}}}$$

Ceci posé:

Proposition 4.1. — (i) Le foncteur u^* est pleinement fidèle, donc pour tout faisceau G sur $X_{\text{\'et}}$, l'homomorphisme canonique $G \mapsto u_*u^*(G)$ est un isomorphisme.

(ii) Soient G (resp. F) un faisceau abélien sur $X_{\rm \acute{e}t}$ (resp. (Sch)/X). Alors les homomorphismes canoniques (définis par exemple comme edge-homomorphismes de la suite spectrales de Leray suivants sont des isomorphismes :

 $^{(*)}$ En toute rigueur, comme (Sch)/X est une \mathscr{U} -catégorie mais pas un \mathscr{U} -site on ne peut invoquer III pour l'existence se u^* ; Cependant, on construit facilement u^* par

$$u^*(\mathbf{F})(\mathbf{X}') = (p_{\mathbf{X}'})^*_{\mathrm{\acute{e}t}}(\mathbf{F})(\mathbf{X}') \quad (\mathbf{X}' \in \mathrm{Ob}\,\mathrm{Sch}_{/\mathbf{X}}),$$

où $p_{X'}$ désigne le morphisme structural $X' \to X$. D'autre part, pour donner un sens à 4.1 (ii) et justifier la démonstration indiquée de 4.1, il y a lieu d'introduire un univers $\mathscr V$ tel que $\mathscr U \in \mathscr V$, et de considérer les faisceaux intervenant dans les formules 4.1 (i) comme des faisceaux à valeurs dans $\mathscr V$ -(Ens). On peut aussi, si on ne veut travailler qu'avec des U-sites, remplaces $(\operatorname{Sch})_{/X}$ par une sous-catégorie pleine $(\operatorname{Sch})_{/X}$ stable par \varprojlim finies, contenant C de 3.1, et qui soit U-petite.

$$H^*(X_{\operatorname{\acute{e}t}}, F \circ u) \xrightarrow{\sim} H^*((\operatorname{Sch})_{/X}, F)$$

$$H^*(X_{\operatorname{\acute{e}t}}, F \circ u) \xrightarrow{\sim} H^*((\operatorname{Sch})_{/X}, F).$$

En effet, le foncteur u est un comorphisme et on peut alors appliquer (III).

Ainsi, (i) montre que pour l'étude de la cohomologie des faisceaux, il est essentiellement équivalent de travailler avec le « petit » site étale $X_{\text{\'et}}$, ou le « gros » site étale $(Sch)_{/X}$.

- 4.2. D'autre part, il y a lieu d'introduire dans (Sch) (donc dans les (Sch)_{/X}) diverses autres topologies que la topologie étale, dont les plus utiles sont définies dans SGA 3 IV 6.3. La plus grossière parmi ces dernières est la topologie de Zariski (Zar), définie par la prétopologie où les familles couvrantes sont les familles surjectives d'immersions ouvertes; elle est moins fine que la topologie étale. La plus fine de ces topologies est la topologie « fidèlement plat quasi-compacte », en abrégé (fpqc), qui est la moins fine des topologies pour lesquelles les familles couvrantes au sens de Zariski, ainsi que les morphismes fidèlement plats quasi-compacts, sont couvrants; la topologie fpqc est plus fine que la topologie étale. Comme nous l'avons déjà remarqué, les divers exemples de faisceaux sur (Sch)/X envisagés au N° 2 sont en fait déjà des faisceaux pour la topologie fpqc.
- 4.2.1. On fera attention cependant que pour un faisceau abélien F sur $(Sch)_{/X}$ pour la topologie (fpqc), (ou une topologie, telle fppf, envisagée dans SGA 3, les groupes de cohomologie de F pour la topologie fpqc (resp. . . .) ne sont pas toujours isomorphes aux groupes de cohomologie pour la topologie étale, et ceci même si X est le spectre d'un corps k, et F est représentable par un groupe algébrique sur k, même en ce qui concerne le H^1 . De façon générale, on peut montrer que la topologie étale donne les « bons » groupes de cohomologie pour les groupes de coefficients qui sont des schémas en groupes étales, ou plus généralement lisses, sur $X^{(*)}$, mais il n'en est plus de même pour des schémas en groupes tels que les groupes radiciels sur S, pour lesquels il y a lieu de remplacer la topologie étale, encore trop grossière, par la topologie fpqc, ou fppf.
- 4.2.2. Comme exemple des relations entre les cohomologies relatives à des topologies différentes, signalons ici le cas des topologies de Zariski et de la topologie étale. Nous désignerons par $X_{\rm Zar}$ le site des ouverts de Zariski de X, de sorte qu'on a un foncteur d'inclusion canonique

$$u^*: X_{Zar} \longrightarrow X_{\text{\'et}}$$

qui définit un morphisme de sites

$$u: X_{\operatorname{\acute{e}t}} \longrightarrow X_{\operatorname{Zar}},$$

 $^{^{(*)}}$ Cf. A Grothendieck, Le groupe de Brauer III th 11.7, in « Dix exposés sur la topologie des schémas », North Holland Pub. Cie

d'où des foncteurs correspondants image directs

$$f_*: \widetilde{\mathbf{X}_{\operatorname{\acute{e}t}}} \longrightarrow \widetilde{\mathbf{X}_{\operatorname{Zar}}} \quad (f_*(\mathbf{F}) = \mathbf{F} \circ u),$$

et image inverse

$$f^*: \widetilde{\mathbf{X}_{\mathbf{Zar}}} \longrightarrow \widetilde{\mathbf{X}_{\mathrm{\acute{e}t}}},$$

adjoints l'un de l'autre; géométriquement, il y a lieu d'interpréter le couple (f_*, f^*) comme un morphisme de topos

$$f: \widetilde{\mathbf{X}_{\operatorname{\acute{e}t}}} \longrightarrow \widetilde{\mathbf{X}_{\operatorname{Z}ar}}.$$

On en déduit un homomorphisme de foncteurs cohomologiques

$$\mathrm{H}^*(\mathrm{X}_{\mathrm{Zar}},f_*(\mathrm{F})) \longrightarrow \mathrm{H}^*(\mathrm{X}_{\mathrm{\acute{e}t}},\mathrm{F})$$

et une suite spectrale de Leray

$$H^*(X_{\text{\'et}}, F) \longleftarrow H^p(X_{Zar}, R^q f_*(F)),$$

où F est un faisceau abélien sur $X_{\text{\'et}}$. Cette suite spectrale résume les relations générales entre cohomologie étale et cohomologie de Zariski. Bien entendu, pour des faisceaux de coefficients F tel que des faisceaux de coefficients constants, cette suite spectrale en général est loin d'être triviale, i.e. en général on aura $R^q f_*(F) \neq 0$ (prendre notamment le cas où X est le spectre d'un corps). Cependant :

Proposition 4.3. — Soit F un faisceau de modules variable sur le préschéma X (faisceau au sens de la topologie de Zariski), d'où un faisceau $F_{\mathrm{\acute{e}t}}$ sur $X_{\mathrm{\acute{e}t}}$ (cf. 2, c) et un homomorphisme de foncteurs cohomologiques

$$H^*(X,F) \longrightarrow H^*(X_{\text{\'et}},F_{\text{\'et}}).$$

Lorsque F est quasi-cohérent, l'homomorphisme précédent est un isomorphisme.

En effet, le premier membre n'est autre que $H^*(X_{Zar'}f_*(F_{\acute{e}t}))$, et avec les notations précédentes, il suffit de prouver qu'on a

$$R^q f_*(F) = 0 \quad \text{pour} \quad q > 0.$$

Cela résulte aussitôt, grâce au procédé de calcul des $\mathbb{R}^q f_*$ et grâce au fait que les ouverts affines forment une base de la topologie de X, du

Corollaire 4.4. — Si X est affine, on a

$$H^{\it q}(X_{\rm \acute{e}t},F_{\rm \acute{e}t})=0 \quad {\it pour} \quad {\it q}>0.$$

Pour le voir, soient $C = X_{\text{\'et}}$, C' la sous-catégorie pleine formée des X' affines, alors en vertu de 3.1 on aura

$$H^q(C, F_{\text{\'et}}) \simeq H^q(C', F|C').$$

Il suffit donc de prouver que F|C' est C'-acyclique V 4.1, ou encore satisfait la condition de V 4.3 i.e. que pour tout $X' \in Ob C'$ et tout famille couvrante $\mathscr{R} = (X'_i \to X')_i$ dans C', on a $H^q(\mathscr{R}, F) = 0$ pour q > 0. Or on peut supposer $(X'_i)_i$ fini,

puis, quitte à remplacer les X_i' par leur somme, que la famille couvrante consiste en un morphisme $X_i' \to X'$ qui est couvrant, i.e. (étale et) surjectif. Donc on est ramené à prouver que si $f; X \to Y$ est un morphisme étale surjectif de schéma affines et F un module quasi-cohérent sur X, alors

(*)
$$H^{q}(X/Y, F) = 0 \quad \text{pour} \quad q > 0.$$

Or ceci est démontré dans TDTE I, B, 1.1. (dans FGA, cf. ref [4] de IX).

Remarques 4.5. — En fait, par loc. cit., pour avoir (*) il suffit que $X \to Y$ soit surjectif, et plat (au lieu de étale). Cela permet de montrer par la démonstration précédente, qu'on a encore des isomorphismes analogues à celui de 3.3, en y remplaçant le site étale $X_{\text{ét}}$ par $(Sch)_{/X'}$ muni d'une quelconque des topologies plus fines que celle de Zariski envisagées dans SGA 3 IV 6.3, par exemple la topologie fpqc.

5. Cohomologie d'une limite projective de schémas

5.1. Soit I un ensemble préordonné filtrante croissant,

$$\mathfrak{X} = (X)_{i \in I}$$

un système projectif de schémas, les morphismes de transition $u_i: X_i \to X_j \ (i \ge j)$ étant affines. Rappelons (EGA IV 8...) que sous ces conditions, la limite projective

$$X = \lim X_i$$

existe dans la catégorie des schémas, (et même dans la catégorie des espaces annelés en anneaux locaux) et peut se construire ainsi : on choisit $i_0 \in I$, de sorte que pour $i \ge i_0$, on a un X_{i_0} - isomorphisme (EGA II 1.2 et 1.3)

$$X_i = \operatorname{Spec} \mathscr{A}_i$$

où \mathcal{A}_i est une Algèbre quasi-cohérente sur X_i , les \mathcal{A}_i $(i \geqslant i_0)$ formant donc un système inductif de telles Algèbres. Posant

$$\mathscr{A} = \varinjlim_{i} \mathscr{A}_{i},$$

on peut prendre

357

$$X = \operatorname{Spec} \mathscr{A}$$
.

D'ailleurs, désignant par esp S l'espace topologique sous-jacent à un schémas S, on montre (EGA IV $8\ldots$) que l'application canonique

$$\operatorname{esp} X \longrightarrow \operatorname{lim} \operatorname{esp}(X_i)$$

est un homéomorphisme et que l'homomorphisme canonique de faisceaux d'anneaux

$$\varinjlim_{i} \gamma_{i}^{-1}(\mathscr{O}_{\mathbf{X}_{i}}) \longrightarrow \mathscr{O}_{\mathbf{X}}$$

est bijectif, où $\gamma_i: X \to X_i$ est l'application continue canonique.

5.2. De façon imagée, on peut résumer le contenu de EGA IV 8, 9 en disant que, lorsque X_{i_0} est quasi-compact et quasi-séparé, alors « toute donnée de nature schématique sur X, de présentation finie sur X », est équivalente à une donnée de même nature sur un des X_i , « pour i assez grand ». Ainsi, on prouve (EGA IV 8 . . .):

358

(a) si $i_1 \in I$ et si X'_{i_1} , X''_{i_1} sont deux schémas de présentation finie sur X_{i_1} , alors posant pour tout $i \geqslant i_1$

$$X'_i = X'_{i_1} X_{i_1} X_i, \quad X' = X'_{i_1} X_{i_1} X,$$

et définissant de même X_i'' , X'', l'application canonique

$$\varinjlim_{i \geqslant i_1} \operatorname{Hom}_{\mathbf{X}_i}(\mathbf{X}_i', \mathbf{X}_i'') \longrightarrow \operatorname{Hom}_{\mathbf{X}}(\mathbf{X}', \mathbf{X}'')$$

est bijective.

(b) Pour tout schéma X' de présentation finie sur X, il existe un indice $i_1 \in I$, un schéma X'_{i_1} de présentation finie sur X_{i_1} , et un X-isomorphisme

$$X' \simeq X'_{i_1} X_{i_1} X$$
.

5.3. On peut exprimer le résultat précédent, et les résultats de nature analogue contenus dans EGA IV 8, dans le langage des \varinjlim de catégories fibrées introduit dans VI. Pour ceci, considérons la catégorie $\mathscr F$ des morphismes $f: \mathcal T \to \mathcal S$ de présentation finie de schémas, et le « foncteur but »

$$\pi: \mathscr{F} \longrightarrow (\mathrm{Sch}),$$

qui est évidemment un foncteur fibrant, les catégories fibres étant d'ailleurs équivalentes à des catégories \mathscr{U} -petites. Considérons l'image inverse de la catégorie fibrée $\mathscr{F}/(\mathrm{Sch})$ par le foncteur

$$i \mapsto X_i : cat(I) \longrightarrow (Sch)$$

(où cat(I) est la catégorie associée à I, avec $\operatorname{Hom}(i,j) \neq \emptyset$ si et seulement si $i \geqslant j$), 359 d'où une catégorie fibrée

$$\pi_{\mathfrak{X}}: \mathscr{F}_{\mathfrak{X}} \longrightarrow \operatorname{cat}(\mathrm{I}),$$

dont la fibre en chaque $i \in I$ est canoniquement isomorphe à la sous-catégorie pleine \mathscr{F}_{X_i} de $(Sch)_{/X_i}$ formée des schémas de présentation finie sur X_i , le morphisme de changement de base $\mathscr{F}_i \to \mathscr{F}_j$ relatif à $j \geqslant i$ n'étant autre que $X_i' \mapsto X_j' = X_{i_{X_i}}' X_j$. Ceci posé, associant à tout X_i' de présentation finie sur X_i son image inverse sur X_i'

$$\varphi(\mathbf{X}_i') = \mathbf{X}_{i|\mathbf{X}_i}' \mathbf{X},$$

on trouve un foncteur naturel

$$\varphi: \mathscr{F}_{\mathfrak{X}} \longrightarrow \mathscr{F}_{X'},$$

361

qui transforme évidemment morphisme cartésien de $\mathscr{F}_{\mathfrak{X}}$ en isomorphisme, donc par définition se factorise de façon unique par un foncteur canonique

$$\psi: \varinjlim_{\mathscr{F}_{\mathbf{X}}/\operatorname{Cat} \mathbf{I}} \mathscr{F}_{\mathfrak{X}} \longrightarrow \mathscr{F}_{\mathbf{X}}.$$

Compte tenu de la description du premier membre, le résultat de EGA IV 8 rappelé plus haut peut s'énoncer alors en disant que (*) est une équivalence de catégories.

- **5.4.** L'énoncé a) de 5.2. ci-dessus peut de préciser de diverses façons, en introduisant quelque ensemble (\mathscr{M}) de morphismes de schémas, stable par changement de base, et en énonçant que pour un X_{i_1} -morphisme donné $u_{i_1}: X'_{i_1} \to X''_{i_1}$, le morphisme correspondant $u': X' \to X''$ est $\mathscr{E}(\mathscr{M})$ si et seulement si il existe $i \geq i_1$ tel que le X_i -morphisme $u_i: X'_i \to X''_i$ soit $\mathscr{E}(\mathscr{M})$. L'énoncé obtenu ainsi est vrai par exemple lorsque (\mathscr{M}) est l'un des ensembles de flèches suivants : morphismes propres (respectivement projectifs, resp. quasi projectifs, resp. affines, resp. affines, resp. finis, resp. quasi finis, resp. radiciels, resp. surjectifs, resp. plats, resp. lisses, resp. étales, resp. non ramifiés). Le lecteur trouvera les énoncés correspondants dans EGA IV par 8 (pour les 9 premiers) par. Il (pour le cas plat) par. 17 (pour les trois derniers cas).
- **5.5.** Remplaçons alors $\mathscr{F} \to (\operatorname{Sch})$ par la sous catégorie fibrée \mathscr{G} formée des morphismes étales de présentation finie, dont la catégorie fibre \mathscr{G}_{S} , pour tout schéma S, n'est autre que la catégorie des schémas étales de présentation finie sur S, et formons de même la catégorie fibrée $\mathscr{G}_{\mathfrak{X}}$ sur $\operatorname{cat}(I)$, dont la catégorie fibre en tout $i \in I$ est la catégorie \mathscr{G}_{X_i} . En vertu de 3.2 (ii), les topos étales $\widetilde{X_{i_{\operatorname{et}}}}$, $\widetilde{X_{\operatorname{\acute{et}}}}$ sont aussi canoniquement équivalents à $\widetilde{\mathscr{G}_{X_i}}$, $\widetilde{\mathscr{G}_{X}}$, (où tout \mathscr{G}_{S} est muni de la topologie induite par $S_{\operatorname{\acute{et}}}$). De plus, par 3.2 (i), chaque \mathscr{G}_{X_i} est un site de type fini, d'ailleurs équivalent à un site \mathscr{W} -petit. Compte tenu des topologies sur les \mathscr{G}_{X_i} , \mathscr{G} devient un site fibré sur $\operatorname{cat}(I)$. Ceci posé, on peut énoncer le

Lemme 5.6. — Le foncteur canonique

$$\varinjlim_{\mathscr{G}_{\mathfrak{X}}/\operatorname{cat}(I)}\mathscr{G}_{\mathfrak{X}}\longrightarrow\mathscr{G}_{X}$$

définit une équivalence, respectant les topologies, du site \varinjlim des sites étales restreints (3.2) des X_i , avec le site étale restreint de $X = \varprojlim_i X_i$.

Le fait qu'on obtient une équivalence de catégories est l'un des énoncés rappelés dans 5.4 (celui où (\mathcal{M}) est l'ensemble des morphismes étales dans (Sch)). L'assertion relative aux topologies s'obtient de même en prenant (\mathcal{M}) = ensemble des morphismes surjectifs dans (Sch).

Le résultat précédent nous permet d'appliquer les résultats de à la situation présente. On trouve en particulier

Théorème 5.7. — Soit $\mathfrak{X}=(X_i)_{i\in I}$ un système projectif de schémas, avec I ensemble préordonné filtrant croissant. Supposons que les morphismes de transition $u_{ij}: X_j \to X_i$ sont affines (de sorte que le schéma $X=\varprojlim X_i$ est défini (5.1)), et que les X_i sont quasi-compacts et quasi-séparés. Considérons le site fibré $\mathscr G$ sur $\operatorname{cat}(I)$ explicité dans 5.5, dont la fibre $\mathscr G_i$ en $i\in I$ est canoniquement isomorphe au « site étale restreint » de X_i (formé des schémas étales de présentation finie sur X_i). Soit F un faisceau abélien sur $\mathscr G$ (i.e. (3)) un foncteur $\mathscr G^0 \to (\operatorname{Ab})$ dont la restriction F_i à chaque $\mathscr G_i$ est un faisceau, i.e. un faisceau sur X_i). Sont $F_\infty = \varinjlim_i u_i^*(F_i)$ le faisceau induit sur X, où $u_i: X \to X_i$ est le morphisme canonique. Alors les homomorphismes canoniques

$$\varinjlim_{i} \operatorname{H}^{n}(X_{i}, F_{i}) \longrightarrow \operatorname{H}^{n}(X, F_{\infty})$$

sont des isomorphismes.

Compte tenu de 5.6, cela résulte de la conjonction de VI 8.7.3 et VI 8.5.2. On 362 appliquera surtout 5.7 dans le cas particulier suivant, explicité également dans

Corollaire 5.8. — Avec les hypothèses et notations précédentes pour $(X_i)_{i\in I}$, X, u_{ij} , u_i , sont $i_0 \in I$, et soit F_{i_0} un faisceau abélien sur X_{i_0} . Pour tout $i \geqslant i_0$, soit $F_i = u_{i_0i}^*(F_{i_0})$, soit de plus $F_{\infty} = u_i^*(F_{i_0})$. Sous ces conditions, les homomorphismes canoniques

$$\varinjlim_{i} \operatorname{H}^{n}(\mathbf{X}_{i}, \mathbf{F}_{i}) \longrightarrow \operatorname{H}^{n}(\mathbf{X}, \mathbf{F}_{\infty})$$

sont des isomorphismes.

Voici cependant un cas parfois utile qui relève de 5.7 et non de 5.8 :

Corollaire 5.9. — Avec les hypothèses et notations de 5.7 pour $(X_i)_{i \in I}$, X, u_{ij} , u_i , soit G_{i_0} un schéma en groupes commutatifs localement de présentation finie sur X_{i_0} (où $i_0 \in I$ est donné). Pour tout $i \geqslant i_0$, soit $G_i = G_{i_0} X_i$, et soit de même $G_{\infty} = G_{i_0} X_i$. Alors les homomorphismes canoniques

$$\varinjlim_{i} \operatorname{H}^{n}(X_{i}, G_{i}) \longrightarrow \operatorname{H}^{n}(X, G_{\infty})$$

sont des isomorphismes.

En effet, nous savons que G_{i_0} définit un faisceau sur $(\operatorname{Sch})_{/X_{i_0}}$ (cf. 2 (a)), et supposant que i_0 est un plus petit objet pour I (ce qui est loisible), d'où un foncteur canonique $\mathscr{G} \to (\operatorname{Sch})_{/X_{i_0}}$, on trouve par composition un foncteur contravariant F sur \mathscr{G} , dont la restriction à \mathscr{G}_i est canoniquement isomorphe au faisceau sur X_i défini par G_i . En particulier F est un faisceau sur \mathscr{G} , et nous pouvons lui appliquer 5.7. L'hypothèse que G_{i_0} est localement de présentation finie sur X_{i_0} sert à assurer que le faisceau F_{∞} de 5,7 est isomorphe, par l'homomorphisme naturel $F_{\infty} \to \operatorname{faisc}(G_{\infty})$, au faisceau faisc G_{∞} 0 défini par G_{∞} 0 (comme il résulte en effet aussitôt de EGA IV

8.8.2 (i), en regardant les valeurs des faisceaux envisagés sur les objet du site étale restreint de G_{∞} et appliquant 5.6). Cela achève de prouver 5.9.

A. GROTHENDIECK

Corollaire 5.10. — Avec les hypothèses et notations de 5.7 pour $(X_i)_{i \in I}$, X, u_{ij} , u_i , soit F un faisceau en groupes commutatifs sur X, alors les homomorphismes canoniques

$$\varinjlim_{i} \operatorname{H}^{n}(X_{i}, u_{i*}(F)) \longrightarrow \operatorname{H}^{n}(X, F)$$

sont des isomorphismes.

Les énoncés 5.7 à 5.10 se généralisent en des énoncés correspondants pour les Ext^i de faisceaux de Modules, grâce à VI 8.7.9, que nous nous dispensons de répéter dans le cas particulier présent. Nous allons par contre expliciter, pour références ultérieures, les variantes de 5.8 et 5,9 en termes de foncteurs $\operatorname{R}^n f_*$.

Corollaire 5.11. — Soient I un ensemble préordonné filtrant croissant, $(X_i)_{i \in I}$ et $(Y_i)_{i \in I}$ deux systèmes projectifs de schémas, à morphismes de transition affines, $X = \varprojlim_i X_i$, $Y = \varprojlim_i Y_i$, $(f_i)_{i \in I}$ un système projectif de morphismes $f_i : X_i \to Y_i$ quasi-compacts et quasi-séparés, $i_0 \in I$, F_{i_0} un faisceau sur X_{i_0} . Pour tout $i \geqslant i_0$, soit F_i le faisceau sur X_i image inverse de F_{i_0} . Soit de même $f : X \to Y$ déduit de (f_i) et F le faisceau sur X image inverse de F_{i_0} . Sous ces conditions, l'homomorphisme canonique

$$\varinjlim_{i} u_{i}^{*}(\mathbf{R}^{n} f_{i*}(\mathbf{F}_{i})) \longrightarrow \mathbf{R}^{n} f_{*}(\mathbf{F})$$

est un isomorphisme (où $u_i: X \to X_i$ est le morphisme canonique).

On peut supposer que i_0 est un plus petit objet de I, et la question étant locale sur Y_{i_0} , que Y_{i_0} est affine, de sorte que les Y_i et les X_i sont quasi-compacts et quasi-séparés. On est alors sous les conditions d'application de VI 8.7.3 (où on se ramène à 5.8, compte tenu du calcul des $\mathbb{R}^n f_*$ comme faisceaux associés à des préfaisceaux, On prouve de même :

Corollaire 5.12. — Même énoncé que 5.11, à cela près que maintenant F_{i_0} désigne un schéma en groupes commutatifs localement de présentation finie sur X_{i_0} , et F_i , F ses images réciproques (au sens du changement de base pour les schémas).

On fera attention que 5.9 (resp. 5.12) n'est pas un cas particulier de 5.8 (resp. 5.11), cf. 2 a) remarque 2.1.

Corollaire 5.13. — Avec les notations de 5.11, soit F un faisceau en groupes abéliens sur X. Alors les homomorphismes canoniques

$$\underset{i}{\varinjlim} v_i^*(\mathbf{R}^n f_{i*}(u_{i*}(\mathbf{F}))) \longrightarrow \mathbf{R}^n f_*(\mathbf{F})$$

sont des isomorphismes, (où $u_i: X \to X_i$ et $v_i: Y \to Y_i$ sont les homomorphismes canoniques).

364

La démonstration est essentiellement la même que précédemment.

Remarques 5.14. — a) Les résultats de passage à la limite précédents sont valables pour le H^0 resp. les f_* , pour des faisceaux d'ensembles (au lieu de faisceaux abéliens), et pour le H^1 resp. les R^1f_* pour des faisceaux de groupes (non nécessairement commutatifs), - où les H^1 et R^1f_* non commutatifs sont définis comme d'habitude en termes de torseurs (où fibrés principaux homogènes) (cf. thèse de Giraud (*)). Cela peut se vérifier directement dans le contexte général de Il est certainement possible (et sans doute utile) de donner également une variante pour les H^2 non commutatifs de « liens », étudiés par Giraud.

b) Les résultats de passante à la limite pour les sites fibrés développés dans VI supposaient seulement que la catégorie base était une catégorie filtrante sans qu'il ait été nécessaire de supposer qu'elle sont associée à un ensemble préordonné filtrant. Le cas d'une catégorie d'indices filtrante arbitraire est également le cadre naturel pour les énoncés développés dans le présent n°. Si nous nous sommes placés dans un cadre trop restrictif, cela était pour pouvoir donner des références correctes à EGA IV, où l'on suppose malencontreusement dans les questions de passage à la limite (à partir du par. 8) que la catégorie d'indices est définie en termes d'un ensemble préordonné filtrant. Nous admettrons cependant par la suite que tous les résultats utilisés de EGA IV sont valables pour des catégories d'indices filtrantes quelconques, (les démonstrations données dans loc. cit. étant valables, essentiellement sans changement, dans ce cas plus général). Aussi, nous utiliserons également sans autre commentaire les résultats du présent n° dans le cas où I est remplacé par une catégorie d'indices filtrante arbitraire.

365

^(*) citée p.235 note de bas de page (*)

FONCTEURS FIBRES, SUPPORTS, ÉTUDE COHOMOLOGIQUE DES MORPHISMES FINIS

par A. Grothendieck

Table des matières

1. Invariance topologique du topos étale

Théorème 1.1. — Soit $f: X' \to X$ un morphisme entier surjectif radiciel. Alors le 367 foncteur changement de base

$$f^*: X_{\text{\'et}} \longrightarrow X'_{\text{\'et}}$$

est une équivalence de sites (i.e. une équivalence de catégorie, qui est continue ainsi que tout foncteur quasi-inverse). Par suite les foncteurs

$$f_*: \widetilde{\mathbf{X}'_{\operatorname{\acute{e}t}}} \longrightarrow \widetilde{\mathbf{X}_{\operatorname{\acute{e}t}}}$$
$$f^*: \widetilde{\mathbf{X}'_{\operatorname{\acute{e}t}}} \longrightarrow \widetilde{\mathbf{X}'_{\operatorname{\acute{e}t}}}$$

sont des équivalences de catégories, quasi-inverses l'une de l'antre.

La première assertion est bien connue (SGA IX 4.10 et 4.11) lorsque f est présentation finie ou que f est plat; le cas général se réduit à celui où f est de présentation finie. En effet, on sait déjà que le foncteur f^* est pleinement fidèle (SGA 1 IX 3.4).

VIII

Il suffit de prouver que f^* est essentiellement surjectif, i.e. que tout Z' étale sur X' « provient » d'un Z étale sur X. Utilisant le fait que f est un homéomorphisme universel, et la pleine fidélité de f^* , on est ramené au cas où X, X', Z' sont affines, spectres d'anneaux A, A', B'. Écrivant A' comme limite inductive de ses sous-A-algèbres de type fini A'_i , B' provient d'une algèbre étale B'_i sur un A'_i (cf. EGA IV 8), ce qui nous ramène au cas où A' est entière et de type fini sur A, donc finie sur A. On a alors un A isomorphisme $A' \simeq A''/J$, ou $A'' \simeq A[t_1, \ldots t_n]$ et J est un idéal de A''. Écrivant J comme limite inductive de ses sous-idéaux J_i de type fini, et posant $A'_i = A''/J_i$, on aura encore $A' = \varinjlim_i A'_i$, donc B' provient d'une algèbre étale B'_i sur un A'_i (lococitato). D'autre part, comme Spec $A' \to Spec A$ est surjectif, il en est de même des Spec $A'_i \to Spec A$, de plus on vérifie facilement que puisque Spec $A' \to Spec A$ est radiciel, il en est de même de Spec $A'_i \to Spec A$ pour i assez grand (appliquer EGA IV 1.9.9 à Spec $A^{(*)}$). Cela nous ramène au cas où A' est un des A'_i , donc de présentation finie sur A.

Cela prouve la première assertion de 2.1. Le fait que f_* et f^* soient des équivalences quasi-inverses l'une de l'autre en résulte aussitôt.

Corollaire 1.2. — Soient F un faisceau abélien sur X, F' son image inverse sur X', alors les homomorphismes canoniques

sont des isomorphismes. De même, si F' est un faisceau abélien sur X', F son image sur X, les homomorphismes canoniques (*) sont des isomorphismes.

369 Exemples 1.3. — Voici des exemples d'application fréquents de 1.1 :

- a) X' est un sous-schéma de X ayant même ensemble sous-jacent que X, i.e. défini par un nil-Idéal I.
- b) X est un schéma sur un corps séparablement clos k, k' est une clôture algébrique de k, et $X' = X \otimes_k k'$.
- c) Soit X un schéma géométriquement unibranche (par exemple une courbe algébrique sur un corps k, n'ayant comme singularités que des singularités « cuspidales », à l'exclusion en particulier de points doubles ordinaires). Alors, si X' est le normalisé de $X_{\rm red}$, par définitions $X' \to X$ est radiciel, donc 2.1 s'applique.

^(*)Soit $S_i \subset S = \operatorname{Spec} A$ l'ensemble des $s \in S$ tels que la fibre de $X_i = \operatorname{Spec} A_i'$ ens soit de rang séparable 1. Alors, les S_i sont des parties constructibles de S (EGA IV 9.7.9) formant une famille croissante, leur réunion est S d'après l'hypothèse sur $S' = \operatorname{Spec} A' \to S$ et le fait que les fibres de S_i' sont des schémas noethériens. On a donc $S = S_i$ pour i assez grand, par EGA IV 1.9.9, C.Q.F.D..

Remarques 1.4. — Un morphisme f comme dans 1.1 est un homéomorphisme universel, i.e. est un homéomorphisme et reste tel par toute extension de la base. Réciproquement, si f est un homéomorphisme universel on prouve que f satisfait aux hypothèses de 2.1 (*), ce qui explique le titre du présent numéro.

Signalons expressément, à propos de l'exemple 2.3 c), que si X est une courbe algébrique (sur un corps algébriquement clos k pour fixer les idées) ayant au moins un point singulier qui n'est pas « unibranche » (par exemple un point double ordinaire), alors (X' désignant le normalisé de X_{red}) la conclusion de 2.2 est déjà en défaut pour les H^1 et des coefficients constants (comparer SGA 1 I 11 a) et SGA 1 IX 5).

2. Faisceaux sur le spectre d'un corps

Proposition 2.1. — Soient k un corps, \overline{k} une clôture séparable de k, $\pi = \operatorname{Gal}(\overline{k}/k)$ son groupe de Galois topologique, $X = \operatorname{Spec} k$, $\overline{X} = \operatorname{Spec} \overline{k}$ (sur lequel π opère à gauche). Considérons le foncteur canonique

$$i: X_{\text{\'et}} \longrightarrow \widetilde{X_{\text{\'et}}}$$

 $(\text{d\'efini par } i(X')(X'') = \operatorname{Hom}_X(X',X'')), \ \text{et le foncteur canonique}$

$$i:\widetilde{\mathbf{X}_{\mathrm{\acute{e}t}}}\longrightarrow\mathscr{B}_{\pi}$$

de la catégorie des faisceaux sur $X_{\text{\'et}}$ dans la catégorie \mathscr{B}_{π} (cf. IV 2.7) des ensembles (discrets) sur lesquels π opère continûment à gauche, défini par

$$j(\mathbf{F}) = \varinjlim_{\alpha} \mathbf{F}(\operatorname{Spec}(k_{\alpha})),$$

où k_{α} parcourt les sous-extensions finies de \overline{k} . Alors i et j sont des équivalences de catégories. (Par suite, le topos $\widetilde{X}_{\text{\'et}}$ est équivalent (IV 3.4) au « topos classifiant » \mathscr{B}_{π} .)

Le foncteur composé

$$ji: X_{\text{\'et}} \longrightarrow \widetilde{X_{\text{\'et}}} \longrightarrow (\pi\text{-Ens})$$

est une équivalence de catégories, d'après le théorème fondamental de la théorie de Galois (sous la forme de SGA I V). Comme \mathcal{B}_{π} est évidemment un topos (II 4.14), il en est donc de même de $X_{\text{\'et}}$. D'ailleurs une famille $(X_i \to X)$ de morphismes dans $X_{\text{\'et}}$ est couvrante si et seulement si elle est surjective, i.e. son image dans \mathcal{B}_{π} est surjective, ou ce qui revient au même, couvrante pour la topologie canonique de \mathcal{B}_{π} ce qui montre que la topologie de $X_{\text{\'et}}$ est bien sa topologie canonique. Par suite i est une équivalence, et il en est donc de même de j.

Corollaire 2.2. — Le foncteur j de 2.1 induit un équivalence de la catégorie des faisceaux abéliens sur $X = \operatorname{Spec} k$, et la catégorie des π -modules galoisiens.

^(*) Cf. EGA IV 8.11.6 si f est de présentation finie, et EGA IV 18.12.11 dans le cas général.

En effet, ces derniers sont justement les « groupes abéliens » du topos \mathscr{B}_{π} . On voit de même, par « transport de structure » :

Corollaire 2.3. — Soient F un faisceau abélien sur $X = \operatorname{Spec} k$, M = j(F) le π -module galoisien associé, alors on a un isomorphisme canonique de ∂ -foncteurs en F:

$$H^*(X, F) \simeq H^*(\pi, M),$$

(où le deuxième membre désigne la cohomologie galoisienne, étudiée par exemple dans le cours de Serre C.G.).

Corollaire 2.4. — Supposons k séparablement clos. Alors le foncteur

$$\Gamma: \widetilde{X_{\operatorname{\acute{e}t}}} \longrightarrow (\operatorname{Ens})$$

est une équivalence de catégorie. Si F est un faisceau abélien sur $X=\operatorname{Spec} k$, on a $\operatorname{H}^i(X,F)=0$ pour $i\neq 0$. (En d'autres termes, le topos $\widetilde{X}_{\operatorname{\acute{e}t}}$ est un « topos ponctuel » (IV 2.2).)

Corollaire 2.5. — Soit k' une extension séparablement close d'un corps séparablement clos k, $X = \operatorname{Spec} k$, $X' = \operatorname{Spec} k'$, $u : X' \to X$ le morphisme canonique. Alors le foncteur

$$u^*: \widetilde{\mathbf{X}'_{\operatorname{\acute{e}t}}} \longrightarrow \widetilde{\mathbf{X}'_{\operatorname{\acute{e}t}}}$$

est une équivalence de catégories.

3. Foncteurs fibres relatifs aux points géométriques d'un schéma

3.1. Soit X un schéma. Nous appellerons point géométrique de X tout X schéma ξ qui est le spectre d'un corps Ω séparablement clos. La donnée d'un tel point équivaut donc à celle d'un point ordinaire $x \in X$, et d'une extension séparablement close Ω du corps résiduel k(x) de x. Le cas le plus fréquent pour nous sera celui où Ω est une clôture séparable de k(x), que nous dénoterons alors généralement par $\overline{k(x)}$, le point géométrique correspondant de X étant alors noté \overline{x} . Pour $x \in X$ donné, les $\overline{k(x)}$ (resp. \overline{x}) sont déterminés à k-isomorphisme (resp. X- isomorphisme) non unique près.

Remarques 3.2. — Dans la plupart des questions géométriques, il est plus naturel de se borner au cas Ω algébriquement clos. La convention différente utilisée ici est spéciale à l'étude de la topologie étale. C'est la convention que nous avions adoptée dans la définition du groupe fondamental SGA 1 V 7. Mais on notera que les développements de loco citato sont également valables avec la convention adoptée ici (car la propriété de Ω qui y est utilisée est que tout revêtement étale du spectre Ω est trivial, i.e. justement que Ω est séparablement clos).

372

Définition 3.3. — Soient X un schéma, ξ un point géométrique de X, $u: \xi \to X$ son morphisme structural. On appelle foncteur fibre (géométrique) relatif à ξ , et on note $F \mapsto F_{\xi}$, le foncteur

$$\widetilde{X_{\text{\'et}}} \longrightarrow (Ens)$$

composé de

$$\widetilde{\mathbf{X}_{\mathrm{\acute{e}t}}} \xrightarrow{u^*} \widetilde{\xi_{\mathrm{\acute{e}t}}} \xrightarrow{\Gamma_{\xi}} (\mathrm{Ens}).$$

On peut dire aussi que, grâce à 2.4, un point géométrique ξ de X définit un point du topos $X_{\text{\'et}}^{\sim}$ (IV 6.1), dont on prend simplement le foncteur fibre associé (loc. cit.).

3.4. Comme le foncteur Γ_{ξ} (foncteur sections sur ξ) est une équivalence de catégories (12.4), la connaissance des foncteurs fibres $F \mapsto F_{\xi}$ équivaut essentiellement à celle des foncteurs images réciproques u^* . Notons d'ailleurs qu'il résulte aussitôt de 2.5 que si ξ est un point géométrique de X tel qu'il existe un X-morphisme $\xi' \to \xi$ (i.e. ξ' correspond à une extension séparablement close Ω' de Ω) alors l'homomorphisme canonique $F_{\xi} \to F_{\xi'}$ est un isomorphisme fonctoriel

$$F_{\xi} \simeq F_{\xi'}$$
.

Cela montre que pour l'étude des foncteurs fibres, on peut (quitte à remplacer Ω par la clôture algébrique séparable de k dans Ω) se borner au cas où $\omega = k(\xi)$ est une clôture séparable $\overline{k(x)}$ de k(x), et que les foncteurs fibres correspondant aux points géométriques de X localisés en un même $x \in X$ sont isomorphes entre aux (de façon non unique).

On désignera, conformément aux conventions de 3.1, par $F_{\overline{X}}$ un foncteur fibre correspondant an choix d'une clôture séparable $\overline{k(x)}$ de k(x).

Signalons une propriété de transitivité évidente (qui montre l'utilité technique à ne pas se borner exclusivement à des points géométriques définis par des clôtures séparables de corps résiduels) : Soient $f = X' \to X$ un morphisme de schémas, u': $\xi' \to X'$ un point géométrique de X, alors u = fu': $\xi' \to X$ est un point géométrique de X que nous noterons ξ ; relativement à ces points géométriques on a un isomorphisme fonctoriel en $F \in \operatorname{Ob} \widehat{X}_{\operatorname{\acute{e}t}}$:

$$f^*(\mathbf{F})_{\xi'} \simeq \mathbf{F}_{\xi}$$
.

Cela résulte en effet de la formula de transitivité des foncteurs images inverses

$$(fu)^* \xrightarrow{\sim} u^* f^*.$$

Théorème 3.5. — Soit X un schéma.

a) Pour tout point géométrique ξ de X, le foncteur fibre $F \to F_{\xi}$ $X_{\text{\'et}} \to (Ens)$ commute aux \varinjlim quelconques (indexées par des catégories $\in \mathscr{U}$) et aux \varinjlim finies^(*). En particulier, il transforme faisceaux en groupes (resp. faisceaux abéliens, etc...) en groupes (resp. groupes abéliens, etc...).

373

 $^{^{(*)}\}mathrm{C}$ 'est donc bien un « foncteur fibre » au sens de Exp. IV

b) Lorsque x parcourt les points de X, les foncteurs fibres $F_{\overline{X}}$ forment une famille de foncteurs « conservative », i.e. si $u: F \to G$ est un homomorphisme de faisceaux sur X, u est un isomorphisme si et seulement si pour tout $x \in X$, l'homomorphisme correspondant $u_{\overline{x}}: F_{\overline{x}} \to G_{\overline{x}}$ l'est (*).

Notons tout de suite, compte tenu des propriétés d'exactitude de a), les conséquences formelles suivantes de b) :

Corollaire 3.6. — Soit $u : F \to G$ un homomorphisme de faisceaux. Alors u est un monomorphisme (resp. un épimorphisme) si et seulement si pour tout $x \in X$, $u_{\overline{x}} : F_{\overline{x}} \to G_{\overline{x}}$ est injectif (resp. surjectif).

Corollaire 3.7. — Soient $u, v : F \to G$ deux morphismes de faisceaux sur X, alors u = v si et seulement si pour tout $x \in X$, on a $u_{\overline{x}} = v_{\overline{x}} : F_{\overline{x}} \to G_{\overline{x}}$. En particulier, si u, v sont deux sections de F, on a u = v si et seulement si on a $u_{\overline{x}} = v_{\overline{x}}$ dans $F_{\overline{x}}$ pour tout $x \in X$.

Corollaire 3.8. — Soit $F \to G \to H$ une suite de deux homomorphismes de faisceaux sur X, alors la suite est exacte si et seulement si pour tout $x \in X$, la suite correspondante $F_{\overline{x}} \to G_{\overline{x}} \to H_{\overline{x}}$ l'est.

Nous laisserons au lecteur le soin de déduire les corollaires (*), qui seront d'ailleurs prouvés partiellement dans la démonstration qui suit.

L'assertion a) résulte des propriétés d'exactitude déjà signalées dans (VII 1.4) pour tout foncteur image réciproque, tel $u^*: \widetilde{X_{\mathrm{\acute{e}t}}} \to \widetilde{\xi_{\mathrm{\acute{e}t}}}$, et du fait que $\widetilde{\xi_{\mathrm{\acute{e}t}}} \to (\mathrm{Ens})$ est une équivalence. Pour prouver b), notons la formule suivant, qui donne un procédé de calcul des foncteurs fibres :

Proposition 3.9^(**). — Soit $\xi \xrightarrow{u} X$ un point géométrique de X, et soit C_{ξ} la catégorie des « X-schémas étales ξ -ponctués », i.e. des couples (X', u'), o $X' \in Ob X_{\acute{e}t}$ est un schéma étale sur X, et u' un X-morphisme $\xi \to X'$. Alors la catégorie opposée C_{ξ}^{0} est filtrante et pour un faisceau F (resp. préfaisceau P) variable sur X, on a un isomorphisme fonctoriel canonique

$$F_{\xi} \simeq \varinjlim_{C_{\xi}^{0}} F(X'), (\text{resp. } (aP)_{\xi} \simeq \varinjlim_{C_{\xi}^{0}} P(X')),$$

 $(où aP = faisceau \ associ\'e \ \grave{a} \ P).$

^(*)Il y a donc « suffisamment de foncteurs fibres » de la forme $F \mapsto F_{\overline{x}}$, dans la terminologie de IV 6.5.

^(*)Cf. IV 6.5.2.

^(**)Cf. IV 6.8.3

En effet, notons d'abord que pour tout préfaisceau P sur $\xi_{\text{\'et}}$, si aP est le faisceau associé, l'homomorphisme naturel

$$P(\xi) \longrightarrow aP(\xi)$$

est un isomorphisme, comme il résulte par exemple aussitôt du calcul explicite de aP comme L(LP) (II 3.19). Soit $\varphi: \widetilde{X_{\mathrm{\acute{e}t}}} \to \widetilde{\xi_{\mathrm{\acute{e}t}}}$ le foncteur « image réciproque », alors $u^* = \varphi^*$ n'est autre (III 2.3. (d)) que le composé a φ 'i, où $i: \widetilde{X_{\mathrm{\acute{e}t}}} \to \widetilde{X_{\mathrm{\acute{e}t}}}$ est le foncteur inclusion, et $a: \widehat{\xi_{\mathrm{\acute{e}t}}} \to \widetilde{\xi_{\mathrm{\acute{e}t}}}$ le foncteur « faisceau associé ». Par le remarque précédente on trouve

$$u^*(F)(\xi) = (\varphi i(F))(\xi),$$

de sorte qu'il suffit d'appliquer l'expression explicite de φ^* donnée dans la démonstration de. Le cas respé, où on part avec un préfaisceau P sut X, se prouve de même, en utilisant l'isomorphisme fonctoriel $\varphi^*a(P) \simeq a\varphi^*(P)$. Le fait que la catégorie C_ξ est filtrante (qui reste valable pour tout X-schéma ξ , pas nécessairement réduit à un point géométrique) résulte aussitôt du fait que dans C_ξ les limites projectives finies existent, ce qui résulte du fait que $X_{\text{ét}}$ est une sous-catégorie de (Sch)/X stable par limites projectives finies.

Soit maintenant $u: F \to G$ un homomorphisme de faisceaux sur X, tel que pour tout $x \in X$, $u_{\overline{x}}: F_{\overline{x}} \to G_{\overline{x}}$ soit un monomorphisme, prouvons que u est un monomorphisme. Pour ceci, on doit prouver que si $X' \in Ob X_{\operatorname{\acute{e}t}}, \varphi, \psi \in F(X')$ sont tels que $u(\varphi) = u(\psi)$, on a $\varphi = \psi$. Remplaçant X par X' et utilisant le transitivité des foncteurs fibres, on peut supposer X = X'. Pour tout $x \in X$, on aura $u(\varphi)_{\overline{x}} = u(\psi)_{\overline{x}}$ i.e. $u_{\overline{x}}(\varphi_{\overline{x}}) = u_{\overline{x}}(\psi_{\overline{x}})$, donc $\varphi_{\overline{x}} = \psi_{\overline{x}}$ puisque $u_{\overline{x}}$ est un monomorphisme, Utilisant 3.9 il s'ensuit qu'il existe un $X'_x \in Ob X_{\operatorname{\acute{e}t}}$, dont l'image contient x, tel φ et ψ aient même image inverse sur X'_x . Comme pour x variable dans X, les X'_x forment une famille couvrante de X, il s'ensuit que $\varphi = \psi$.

Cela prouve que si les $u_{\overline{x}}$ sont des monomorphismes, il en est de même de u. Supposons de plus que les $u_{\overline{x}}$ soient des épimorphismes, prouvons qu'il en est de même de u, donc que u est un isomorphisme. Il reste à prouver que pour tout $X' \in \text{Ob } X_{\text{\'et}}$, et tout $\psi \in G(X')$, il existe $\varphi \in F(X')$ tel que $u(X')(\varphi) = \psi$. On peut encore supposer X' = X, et utilisant 3.9 on voit que pour tout $x \in X$, existe $X'_x \in \text{Ob } X_{\text{\'et}}$ tel que l'image de X'_x dans X contienne x, et un $\varphi_x \in F(X'_x)$ dont l'image dans $G(X'_x)$ soit l'image inverse de ψ . Utilisant le fait que u est un monomorphisme, on voit que les φ_x coïncident sur les X'_x X'_x $(x,y \in X)$ donc proviennent d'un $\varphi \in F(X)$ bien déterminé, et on aura alors $u(\varphi) = \psi$ puisque les images inverses sur les X'_x coïncident.

Scholie 3.10. — Le théorème 3.5 implique que la collection des « foncteurs fibres » pour la topologie étale jouit des même propriétés essentielles que dans la théorie des faisceaux habituelle sur un espace topologique. Nous utiliserons très fréquemment

378

3.5 et ses corollaires, et pour cette raison nous dispenserons généralement d'y référer explicitement.

3.11. Pour tout $x \in X$ nous désignerons aussi, par abus de langage, par x le X-schéma Spec k(x), pour le morphisme structural habituel

$$i_x: x = \operatorname{Spec} k(x) \longrightarrow X.$$

Il donne lieu à un foncteur canonique

$$i_x^*: \widetilde{\mathbf{X}_{\operatorname{\acute{e}t}}} \longrightarrow \widetilde{x_{\operatorname{\acute{e}t}}}.$$

Si F est un faisceau sur X, nous poserons $F_x = i_x^*(F)$, c'est donc un faisceau sur $x = \operatorname{Spec} k(x)$ (et à ce titre peut s'identifier aussi à un schéma étale sur x, en vertu de 2.1). Il dépend fonctoriellement de F, et le foncteur $i_x^* : F \mapsto F_x$ commute encore aux lim quelconques, et lim finies, en vertu de VII 1.4.

Si $\overline{x} = \operatorname{Spec} \overline{k(x)}$, le foncteur fibre $F \mapsto F_{\overline{x}}$ est canoniquement isomorphe au composé du foncteur $F \mapsto F_x$ et du foncteur j de 1.1 (compte tenu que ce dernier est isomorphe au foncteur fibre relatif au point géométrique $\operatorname{Spec} \overline{k}$ de $\operatorname{Spec} k$). Il résulte aussitôt de ceci et de 3.5 que le système des foncteurs $(F \mapsto F_x)$ $(x \in X)$ est encore conservatif. D'ailleurs, si k(x) est séparablement clos, i.e. $x = \overline{x}$, les notations F_x et $F_{\overline{x}}$ sont en toute rigueur contradictoires (la première désignant un objet de $\widetilde{x_{\operatorname{\acute{e}t}}}$, la deuxième un ensemble), mais en vertu de 1.1 c'est là une contradiction inessentielle.

3.12. On voit par les remarques qui précèdent que si $\overline{x} = \operatorname{Spec} k(x)$, alors pour tout faisceau F sur X, le groupe $\pi_x = \operatorname{Gal}(\overline{k(x)}/k(x))$ opère de façon naturelle (à gauche) sur l'ensemble fibre $F_{\overline{x}}$, de sorte que $F \mapsto F_{\overline{x}}$ peut en fait être considéré comme un foncteur

$$\widetilde{\mathbf{X}_{\mathrm{\acute{e}t}}} \longrightarrow \mathscr{B}_{\pi_x}$$

dont la connaissance équivaut essentiellement (grâce à 1.1) à celle du foncteur $F \mapsto F_x$. Cela montre, dans un cas particulier important, que contrairement à ce qui a lieu dans le cas des faisceaux sur les espaces topologiques, les « foncteurs fibres » admettent en général des automorphismes non triviaux. De façon générale, nous déterminerons dans 7.9 tous les homomorphismes d'un foncteur fibre dans un autre.

Remarque 3.13. — Voici une généralisation parfois utile 3.5 b). Considérons une partie E de X telle que pour tout morphisme étale $f: X' \to X$, $E' = f^{-1}(E)$ soit « très dense » dans X' (EGA IV 10.1.3), i.e. que pour tout f comme ci-dessus, tout ouvert U de X' qui contient E' soit égal à X'. Alors les foncteurs fibres $F_{\overline{x}}$ sur $X_{\text{\'et}}$, pour $x \in E$, forment déjà une « famille conservative » (et par suite les corollaires 3.6, 3.7 et 3.8 restent valables en se bornant à y choisir $x \in E$). Cela se voit immédiatement en reprenant la démonstration donnée de 3.5 b). Le résultat précédent s'applique notamment dans les situations suivantes :

- a) X est un schéma de Jacobson (EGA IV 10.4.1.), par exemple localement de type fini sur un corps, ou sur $\operatorname{Spec}(\mathscr{Z})$, et E est l'ensemble des points fermés de X.
- b) X est localement de type fini sur un schéma S, et E est l'ensemble des points de X qui sont fermés dans leur fibre.
- c) X est localement noethérien, et E est l'ensemble des $x \in X$ tels que \overline{x} soit un ensemble fini (i.e. un schéma semi-local de dimension ≤ 1) cf. EGA IV 10.5.3 et 10.5.5.

4. Anneaux et schémas strictement locaux

- **4.1.** Rappelons qu'on dit, avec Azumaya, qu'un anneau local A est *hensélien* s'il satisfait aux conditions équivalentes suivantes :
- (i) Toute algèbre B finie sur A est composée directe $\prod_i B_i$ d'anneaux locaux (les B_i sont alors nécessairement isomorphes aux $B_{\mathcal{M}}$, o \mathcal{M}_i parcourt les idéaux maximaux de B).

(ii) Toute algèbre B sur A qui est localisée d'une algèbre de type fini C sur A en un idéal premier $\mathscr P$ au-dessus de l'idéal maximal $\mathscr M$ de A, et telle que B/ $\mathscr M$ B soit fini sur $k=A/\mathscr M$, est finie sur A.

(iii) Comme (ii). mais en supposant C étale sur A en $\mathscr P$ et $k\to B/\mathscr MB$ un isomorphisme.

(iv) Le « lemme de Hensel » sous la forme classique est valable pour A, i.e. pour tout polynôme unitaire $F \in A[T]$, désignant par $\dot{F} \in k[T]$ le polynôme réduit correspondant, et pour toute décomposition

$$\dot{\mathbf{F}} = \dot{\mathbf{F}}_1 \dot{\mathbf{F}}_2$$

de F en produit de deux polynômes unitaires étrangers, F_1 , et F_2 se relèvent (de façon nécessairement unique) en des F_1 , $F_2 \in A[T]$, tels que $F = F_1F_2$.

Pour la démonstration de ces équivalences et les propriétés générales des anneaux henséliens, cf. EGA IV 18.5.11. Rappelons que si A est un anneau local quelconque, on montre (Nagata) que l'on peut trouver un homomorphisme local,

$$\mathbf{A} \longrightarrow \mathbf{A}^h$$

avec A^h hensélien, qui est universel pour les homomorphismes locaux de A dans des anneaux locaux noethériens. L'anneau A^h est appelé le hensélisé de A. La construction donnée dans EGA IV 18.6 (différente de celle de Nagata) consiste à poser

$$\mathbf{A}^h = \varinjlim_i \mathbf{A}_i,$$

où A_i parcourt les A-algèbres essentiellement de type fini et essentiellement étales sur A (i.e. localisées d'une algèbre étale sur A) telles que $A \to A_i$ soit un homomorphisme local et l'extension résiduelle $k(A_i)/k(A)$ soit triviale. Cette construction montre en

256

382

particulier que \mathbf{A}^h est plat sur \mathbf{A} et que si \mathbf{A} est noethérien, il en est de même de sa clôture hensélienne.

Définition 4.2. — Un anneau local A est dit strictement local s'il satisfait l'une des conditions équivalentes suivantes :

- (i) A est hensélien (4.1) et son corps résiduel est séparablement clos.
- (ii) Tout homomorphisme local $A\to B$, où B est localisé d'une algèbre étale sur A, est un isomorphisme.

Un schéma est dit schéma strictement local s'il est isomorphe au spectre d'un anneau strictement local.

L'équivalence de (i) et (ii) résulte aussitôt de 4.1. Notons que, sous forme géométrique, 4.2 (ii) (resp. 4.1 (iii)) s'exprime en disant que pour tout schéma étale X sur $Y = \operatorname{Spec} A$, et tout point x de la fibre X_y (respectivement tout point de X_y rationnel $\operatorname{sur} k(y)$), où y est le point fermé de Y, il existe une section de X sur Y passant par y (section qui est d'ailleurs nécessairement unique).

Définition 4.3. — Soient X un schéma, $\mathscr{O}_{X_{\operatorname{\acute{e}t}}}$ le faisceau sur $X_{\operatorname{\acute{e}t}}$ défini par

$$\mathscr{O}_{X_{\text{\'et}}}(X') = \Gamma(X', \mathscr{O}_{X'})$$

(comparer VII 2. c)), $u: \xi = \operatorname{Spec}(\Omega) \to X$ un point géométrique de X. On appelle anneau strictement local de X en ξ , et on note $\mathscr{O}_{X,\xi}$ ou simplement \mathscr{O}_{ξ} , la fibre du faisceau $\mathscr{O}_{X_{\operatorname{\acute{e}t}}}$ en le point ξ . Son spectre est appelé localisé strict de X en ξ .

En vertu de 3.9, on a la description de la fibre $\mathcal{O}_{X,\epsilon}$:

$$\mathscr{O}_{X,_{\varepsilon}} = \underline{\lim} \, \Gamma(X', \mathscr{O}_{X'}),$$

où X' parcourt la catégorie filtrante opposée de la catégorie des schémas étales sur X qui sont ξ - ponctués, i.e. munis d'un X-morphisme $\xi \to X'$. D'après la transitivité des limites inductives, on peut remplacer au deuxième membre $\Gamma(X', \mathcal{O}_{X'})$ par $\mathcal{O}_{X',x'}$, ou x' est l'image de ξ dans X', et on trouve l'expression

$$\mathscr{O}_{\mathrm{X},_{\xi}} = \varinjlim_{i} \mathrm{A}_{i}$$

où A_i parcourt les algèbres essentiellement de type fini et étales sur $A = \mathcal{O}_{X,x}$ munies d'un k-homomorphisme $k(A_i) \to \Omega$. (N.B. x désigne l'image de ξ dans X). Bien entendu les homomorphismes de transition entre les A_i sont les homomorphismes locaux de A-algèbres $A_i \to A_j$ qui rendent commutatif le triangle correspondant

ce qui implique que s'il existe un homomorphisme admissible de A_i dans A_j , ce dernier est unique. Donc la limite inductive (**) est une limite relative à un ensemble d'indices ordonné filtrant croissant.

4.4. La description (**) montre que l'anneau local strict de X en ξ ne dépend essentiellement que de l'anneau local habituel $A = \mathcal{O}_{X,x}$ $(x = u(\xi))$, et de l'extension Ω de k = k(A). On l'appelle aussi anneau hensélisé strict de A (relativement à l'extension séparablement close considérée ω de k) et on le notera A^{hs} . On renvoie à EGA IV 18.8 pour les propriétés générales de A^{hs} . Signalons simplement que la construction donnée montre encore que A^{hs} est plat sur A, et qu'il est noethérien si A l'est. D'autre part, on montre facilement (loc. cit.) que l'homomorphisme local

$$A \longrightarrow A^{hs}$$

muni du k-homomorphisme

$$k(\mathbf{A}^{hs}) \longrightarrow \Omega$$

est solution de problème universel, relatif à la donnée de A et de l'extension Ω de k, correspondant à la recherche des homomorphismes locaux

$$A \longrightarrow A'$$

avec A' strictement local, munis d'un k-homomorphisme

$$k(A') \longrightarrow \Omega$$
.

En particulier, A^{hs} est bien un anneau strictement locale (ce qui justifie la terminologie 4.3).

4.5. Gardons les notations des 4.3 et choisissons un voisinage ouvert affine U de x. Notons que dans 3.9 on peut évidemment se borner aux X' qui sont affines au-dessus de U. Ces derniers forment alors un système projectif pseudo-filtrant de schémas affines, de sorte que nous sommes dans la situation générale de VII 5 (cf. VI 5.12 b). **384** En vertu de l'expression (*) pour $O_{X,\xi}$, on aura un X-isomorphisme

$$\varprojlim_{X' \text{\'etale} \atop \text{affine sur } U, \\ x'^{\varepsilon} - \text{ponctu\'e}} X' \simeq \operatorname{Spec} O_{X,\xi}$$

ce qui précise la signification géométrique intuitive de $\operatorname{Spec}(\mathscr{O}_{X,\xi})$ comme « limite des voisinages étales de ξ ».

Proposition 4.6. — Soit X un schéma strictement local, x son point fermé, qui est donc un point géométrique de X. Alors le foncteur $F \mapsto \Gamma(X,F) : X_{\text{\'et}} \to (Ens)$ est canoniquement isomorphe au foncteur fibre $f \mapsto F_x$, et par suite commute aux \varinjlim quelconques (*).

^(*) pas nécessairement filtrantes!

En effet, en vertu de déf 4.2 (ii), l'objet final X de la catégorie des X' étales xponctués sur X envisagée dans 3.9 majore tous les autres objets, donc $\varinjlim F(X')$ est
canoniquement isomorphe à F(X), C.Q.F.D.

En particulier, le foncteur induit par Γ sur la catégorie des faisceaux abéliens est exact, donc en conclut

Corollaire 4.7. — Sous les conditions des 4.6 on a pour tout faisceau abélien F sur X :

$$H^q(X, F) = 0$$
 pour $q \neq 0$.

Corollaire 4.8. — Soient X un schéma, ξ un point géométrique de X, $\overline{X} = \operatorname{Spec} O_{X,x}$ le schéma localisé strict correspondant, F un faisceau variable sur X, \overline{F} son image inverse sur \overline{X} , alors on a un isomorphisme fonctoriel

$$F_{\xi} \simeq \Gamma(\overline{X}, \overline{F}).$$

En effet, ξ peut être considéré comme un point géométrique de \overline{X} également, et il suffit d'appliquer 4.6 et la transitivité des fibres (3.4).

5. Application au calcul des fibres des $\mathbb{R}^q f_*$

5.1. Soient

$$f: \mathbf{X} \longrightarrow \mathbf{Y}$$

un morphisme de schémas, F un faisceau abélien sur X, on se propose de déterminer les $R^q f_*(F)$. En vertu de 3.5, il revient au même, à peu de choses près, de connaître les fibres géométriques $R^q f_*(F)_{\overline{y}}$, pour $y \in Y$. Or $(V 5.1) R^q f_*(F)$ est le faisceau associé au préfaisceau

$$\mathscr{H}^q: Y' \mapsto H^q(X_{_{\stackrel{}{Y}}}Y',F)$$

sur Y, et par suite (3.9)

$$R^q f_*(F)_{\overline{y}} = \varinjlim_{Y'} \mathscr{H}^q(Y'),$$

où la limite inductive est prise suivant la catégorie filtrante opposée de la catégorie des Y' étales sur Y ponctués par \overline{y} . Choisissant un voisinage ouvert affine U de y, on peut se limiter dans la limite du deuxième membre à la catégorie cofinale des Y' qui sont affines et au-dessus de U. On obtient ainsi

(5.1.1)
$$R^{q} f_{*}(F)_{\overline{y}} \simeq \varinjlim H^{q}(X_{\overline{Y}}Y', F),$$

où Y' varie dans la catégorie précédente.

Introduisons

$$\overline{Y} = \operatorname{Spec}(\mathscr{O}_{Y, \overline{y}}) = \lim Y'$$

(cf. 4.5), et

$$\overline{X} = X_{V} \overline{Y}.$$

Notons que dans le système projectif des X_YY' (déduite de celui des Y' par changement de base $X \to Y$) les morphismes de transition sont affines, on est donc dans les conditions générales de VII 5.1, et on voit aussitôt, par construction de \varprojlim dans loc. cit., que l'on a un isomorphisme canonique

$$\overline{X} = \varprojlim X_{V} Y'.$$

Désignons par \overline{F} le faisceau sur \overline{X} image réciproque de F, alors on obtient un homomorphisme canonique

$$\varinjlim_{Y'} H^q(X_{\stackrel{}{Y}}Y',F) \longrightarrow H^q(\overline{X},\overline{F})$$

d'où en comparant avec (5.1.1), un homomorphisme canonique

(5.1.2)
$$R^q f_*(F) \overline{y} \longrightarrow H^q(\overline{X}, \overline{F}),$$

évidemment fonctoriel en F.

Supposons maintenant $f: X \to Y$ quasi-compact et quasi-séparé, alors il en est de même de $X'_{Y}Y' \longrightarrow Y'$, et comme Y' est affine, les $X_{Y}Y'$ sont quasi-compacts et quasi-séparés. Utilisant (5.1.1) et le théorème de passage à la limite VII 5.8, on obtient alors :

Théorème 5.2. — Soient $f: X \to Y$ un morphisme quasi-compact et quasi-séparé de schémas, F un faisceau abélien sur X, y un point de Y, \overline{y} le point géométrique audessus de y, relatif à une clôture séparable $k(\overline{y})$ de k(y), $\overline{Y} = \operatorname{Spec}(\mathscr{O}_{Y,\overline{y}})$ le schéma localisé strict correspondant, $\overline{X} = X$ \overline{Y} , \overline{F} l'image inverse de F sur \overline{X} . Alors homomorphisme canonique (5.1.2) est un isomorphisme :

$$R^q f_*(F)_{\overline{u}} \simeq H^q(\overline{X}, \overline{F}).$$

Cet énoncé ramène pratiquement la détermination des fibres d'un faisceau $\mathbf{R}^q f_*(\mathbf{F})$ à la détermination de la cohomologie d'un préschéma au-dessus d'un schéma strictement local, et sera constamment utilisé par la suite. Techniquement, c'est 5.2 qui explique le rôle important des anneaux henséliens et des anneaux strictement locaux dans l'étude de la cohomologie étale.

Remarque 5.3. — L'énoncé reste valable pour $R^0f_*(F) = f_*(F)$, pour un faisceau d'ensembles quelconque. D'autre part, 5.2 reste également valable pour $R^1f_*(F)$, lorsque F est un faisceau en groupes (pas nécessairement commutatif), en prenant la définition habituelle du $R^1f_*(F)$ (cf. Thèse de Giraud).

5.4. Supposons maintenant que f soit un morphisme fini. Alors $\overline{f}: \overline{X} \to \overline{Y}$ est un morphisme fini, et comme \overline{Y} est strictement local, il s'ensuit que \overline{X} est une somme finie de schémas strictement locaux \overline{X}_i . Par suite, utilisant 4.7 on trouve

(5.4.1)
$$H^{q}(\overline{X}, \overline{F}) = 0 \text{ pour } q \neq 0.$$

D'autre part, notons que les composantes \overline{X}_i de \overline{X} correspondent aux points \overline{x}_i de \overline{X} au-dessus du point fermé \overline{y} de \overline{Y} , i.e. aux points de $\overline{X}_{\overline{y}} = X_y \otimes_{k(y)}, k(\overline{y})$. D'ailleurs, ces points peuvent être considérés comme des point géométriques de X, et \overline{X}_i n'est alors autre que le schéma localisé strict de X en \overline{x}_i . On a donc (4.8)

$$H^0(\overline{X}_i, \overline{F}) \simeq F_{\overline{x}_i}$$

d'où

389

(5.4.2)
$$H^{0}(\overline{X}, \overline{F}) = \prod_{i} F_{\overline{x}_{i}},$$

qui est un isomorphisme fonctoriel en le faisceau d'ensembles F (inutile ici de se restreindre aux faisceaux abéliens). Tenant compte de 5.2 et 5.3, les formules précédentes (5.4.1) et (5.4.2) donnent :

Proposition 5.5. — Soient $f: X \to Y$ un morphisme fini de préschémas, y un point de Y. Alors pour tout faisceau F sur X, on a un isomorphisme (fonctoriel en F)

$$f_*(\mathbf{F})_{\overline{y}} \simeq \prod_{\overline{x} \in \mathbf{X}_y \otimes_{k(y)}(\overline{y})} \mathbf{F}_{\overline{x}},$$

(par suite la formation de $f_*(F)$ commute à tout changement de base $y' \to Y$), et si F est un faisceau abélien, on a

$$R^q f_*(F) = 0 \text{ si } q > 0.$$

On notera que la première formule 5.5 est en fait indépendante de 5.2. et du théorème de passage à la limite général VII 5.7, et qu'elle implique (grâce à 3.5) que $F \mapsto f_*(F)$ est un foncteur exact sur la catégorie des faisceaux abéliens, d'où encore $\mathbb{R}^q f_*(F) = 0$ pour $q \neq 0$. Voici une légère variante de 5.5 :

Corollaire 5.6. — Soit $f: X \to Y$ un morphisme entier. Alors pour tout faisceau abélien F sur X, on a

$$R^q f_*(F) = 0$$
 pour $q \neq 0$.

De plus, le foncteur f_* sur les faisceaux d'ensembles commute à tout changement de base $Y' \to Y$.

En effet, on est ramené grâce à 5.2 à prouver que lorsque Y est strictement local, on a $H^q(X, F) = 0$ pour tout faisceau abélien sur X. Or on aura $Y = \operatorname{Spec} A$, $X = \operatorname{Spec} B$, B étant une algèbre entière, et écrivant $B = \varinjlim B_i$, où B_i parcourt les sous-algèbres de type fini de B, (qui sont même finies sur A), on aura $X = \varprojlim_i X_i$, où $X_i = \operatorname{Spec} B_i$. En vertu de VII 5.13, on est ramené à prouver que $R^q f_*(F_i) = 0$ pour $q \neq 0$, F_i un faisceau abélien sur X_i , ce qui résulte de 5.5. La dernière assertion de 5.6 se prouve par la même méthode de réduction à 5.5.

Corollaire 5.7. — Soit $f: X \to Y$ un morphisme d'immersion. Alors pour tout faisceau F sur X, le morphisme canonique

$$f^*f_*(F) \longrightarrow F$$

est un isomorphisme.

Comme f se factorise en le produit d'une immersion ouverte et d'une immersion fermée, et que 5.7 est trivial dans le cas d'une immersion ouverte (IV n° 3), on est ramené au cas où f est une immersion fermée. On est ramené à prouver que pour tout $x \in X$, l'homomorphisme correspondant

$$(f^*f_*(F))_{\overline{x}} \longrightarrow F_{\overline{x}}$$

est bijectif, or par transitivité des fibres (3.4) le premier membre n'est autre que la fibre $f_*(F)_{\overline{x}}$, donc il faut vérifier que l'homomorphisme canonique

$$f_*(\mathbf{F})_{\overline{x}} \longrightarrow \mathbf{F}_{\overline{x}}$$

est bijectif, ce qui résulte aussitôt de 5.5.

Remarque 5.8. — Utilisant 5.5 et procédant encore comme dans 5.6, on prouve facilement que si $f: X \to Y$ est un morphisme entier, F un faisceau en groupes sur X (pas nécessairement commutatif), alors $R^1f_*(F)$ est le faisceau final sur Y (comparer remarque 5.3).

6. Supports

390

Soit U un ouvert de Zariski du schéma X. Alors $I \in Ob \, X_{\operatorname{\acute{e}t}}$, et en fait U est un sous-objet de l'objet final X de $X_{\operatorname{\acute{e}t}}$, donc définit un sous-objet \widetilde{U} de l'objet final de $X_{\operatorname{\acute{e}t}}$, i.e. un « ouvert » du topos étale $X_{\operatorname{\acute{e}t}}$ de X (IV 8.3).

Proposition 6.1. — L'application précédente $U \mapsto \widetilde{U}$ est un isomorphisme de l'ensemble ordonné des ouverts (au sens de Zariski) de X, sur l'ensemble des ouverts du topos étale $\widetilde{X}_{\mathrm{\acute{e}t}}$.

Comme $X_{\text{\'et}} \to \widetilde{X_{\text{\'et}}}$ est pleinement fidèle, on voit aussitôt que l'application $U \mapsto \widetilde{U}$ conserve les structures d'ordre i.e. $(U \subset V) \Leftrightarrow (\widetilde{U} \subset \widetilde{V})$, en particulier l'application précédente est injective. Pour prouver qu'elle est surjective, considérons un sousfaisceau F du faisceau final \widetilde{X} , et considérons les objets de $X_{\text{\'et}/F}$, i.e. les schémas étales X' sur X tels que $F(X') \neq \varnothing$. Comme $X' \to X$ est étale, c'est une application ouverte (EGA IV 2.4.6), en particulier son image (au sens ensembliste) Im(X') est ouverte. Soit U l'ouvert réunion des Im(X') ($X' \in Ob X_{\text{\'et}/F}$). Comme la famille des $X' \to U$ ($X' \in Ob X_{\text{\'et}/F}$) est surjective, donc couvrante, on conclut que $U \in Ob X_{\text{\'et}/F}$, donc $X_{\text{\'et}/F'} = X_{\text{\'et}/U}$, donc F = U,

Compte tenu de 6.1, nous pouvons donc parler sans ambiguïté d'un « ouvert » de X, sans préciser si nous entendons cette notion au sens habituel de Zariski ou au sens de la topologie étale.

Corollaire 6.2. — Soient U un ouvert de X, $j:U\to X$ l'immersion canonique, alors le foncteur

$$j^*: \widetilde{\mathbf{X}_{\mathrm{\acute{e}t}}} \longrightarrow \widetilde{\mathbf{U}_{\mathrm{\acute{e}t}}}$$

induit une équivalence de catégories

391

$$\widetilde{X_{\mathrm{\acute{e}t}}}/\widetilde{U}\longrightarrow \widetilde{U_{\mathrm{\acute{e}t}}}.$$

En effet on vérifie aussitôt que pour tout site C où les \varprojlim finies existent, et pour tout sous-objet U de l'objet final e de C, considérant le foncteur $j:C\to C_{/U}$ défini par $j(S)=S\times U,\ j$ est un morphisme de sites et $j^*:\widetilde{C}\to \widetilde{C/U}$ induit une équivalence $\widetilde{C}/\widetilde{U}\to \widetilde{C/U}$. Il suffit alors de conjuguer ce fait général et le fait que $U_{\mathrm{\acute{e}t}}$ es canoniquement isomorphe à $X_{\mathrm{\acute{e}t/U}}$.

De façon imagée, on peut exprimer 6.2 en disant que les opérations de « s'induire sur un ouvert », au sens habituel des schémas d'une part, et au sens des topos de l'autre, sont compatibles. Voici une compatibilité analogue pour les opérations de « restriction à un fermé » :

Théorème 6.3. — Soient X un schéma, Y un sous-schéma fermé de X, U = X - Y muni de la structure induite, $i: Y \to X$ et $j: U \to X$ les immersions canoniques. Alors le foncteur

$$i_*:\widetilde{\mathrm{Y}_{\mathrm{cute{e}t}}}\longrightarrow\widetilde{\mathrm{X}_{\mathrm{cute{e}t}}}$$

est pleinement fidèle, et si $F \in Ob\widetilde{X}_{\acute{e}t}$, F est isomorphe à un faisceau de la forme $i_*(G)$ sss $j^*(F)$ est isomorphe au faisceau final \widetilde{U} sur U.

Démonstration. Comme i_* et i^* sont adjoints l'un de l'autre, le fait que i_* soit pleinement fidèle équivaut aussi au fait que l'homomorphisme fonctoriel

$$i^*(i_*(G)) \longrightarrow G$$

est un isomorphisme, ce qui n'est autre que 5.7. D'autre part, si $G \in Ob\widetilde{Y}_{\acute{e}t}$, alors on vérifie trivialement grâce à 6.2 que $j^*(i_*(G))$ est le faisceau final sur U. Inversement, si $F \in Ob\widetilde{X}_{\acute{e}t}$ est tel que $j^*(F)$ soit le faisceau final, prouvons que F est isomorphe à un faisceau de la forme $i_*(G)$, ou ce qui revient au même, que l'homomorphisme canonique

$$G \longrightarrow i_* i^* G$$

est un isomorphisme. Or il suffit de vérifier encore que pour tout $x \in X$, l'homomorphisme induit sur les fibres géométriques en \overline{x} est un isomorphisme. Lorsque $x \in \mathcal{U}$, cela n'est autre que l'hypothèse faite sur G. Lorsque $x \in \mathcal{Y}$, par transitivité des fibres on est ramené à vérifier que l'homomorphisme sur les fibres en \overline{x} induit par

$$i^*(G) \longrightarrow i^*(i_*i^*(G))$$

est un isomorphisme, or l'homomorphisme précédent est un isomorphisme d'après 5.7 appliqué à $F = i^*G$ et à i. Cela achève la démonstration de 6.3.

Corollaire 6.4. — Le foncteur i_* induit une équivalence de la catégorie des faisceaux abéliens sur Y avec la catégorie des faisceaux abéliens sur X dont la restriction à U = X - Y est nulle.

Conformément à l'usage courant nous identifierons donc souvent un faisceau abélien sur Y à un faisceau abélien sur X nul sur U.

6.5. En vertu de 6.1 nous savons donc (si X est un schéma) interpréter les « ouverts » du topos $\mathscr{E} = \widetilde{X}_{\mathrm{\acute{e}t}}$ comme ouverts U de X au sens habituel, et en vertu de 6.3 avec cette identification le « topos résiduel » $\mathscr{E}_{\complement}U$ de IV 3 est équivalent canoniquement au topos $\widetilde{Y}_{\mathrm{\acute{e}t}}$, où Y = X - U est muni d'une structure induite quelconque, faisant de Y un schéma. Nous pouvons par suite appliquer à cette situation les résultats de IV 3., notamment la description IV 3.3 des faisceaux F sur X en terme des triplets (F',F'',u) où F' est un faisceau sur Y, F'' un faisceau sur U et u un homomorphisme de F' dans $i^*j_*(F')$. Nous utiliserons librement par la suite les notations $i^!,j_!$ de IV.3, qui désignent des foncteurs

$$j_{!}: \widetilde{(\mathrm{U}_{\operatorname{\acute{e}t}})}_{\operatorname{ab}} \longrightarrow \widetilde{(\mathrm{X}_{\operatorname{\acute{e}t}})}_{\operatorname{ab}},$$
$$i^{!}: \widetilde{(\mathrm{X}_{\operatorname{\acute{e}t}})}_{\operatorname{ab}} \longrightarrow \widetilde{(\mathrm{Y}_{\operatorname{\acute{e}t}})}_{\operatorname{ab}},$$

où l'indice « ab » dénote la catégorie des faisceaux abéliens. Ces foncteurs donnent lieu aux deux suites exactes IV 3.7.

6.6. Compte tenu des développements qui précédent et de la terminologie générale introduite dans IV 8.5, il y a lieu d'introduire, pour un faisceau abélien F sur X, ou une section φ d'un tel faisceau, la notion de *support de* F resp. de φ , comme étant le fermé (au sens habituel, i.e. de Zariski) complémentaire du plus grand ouvert sur lequel l'objet en question s'annule.

Dans la situation actuelle, il s'impose également de remplacer les notations générales V 4.3 $H^q(\mathscr{E}_{U}F)$, $\mathscr{H}^q_{U}(F)$ par les notations $H^q_{Y}(X,F)$, $\mathscr{H}^q_{Y}(F)$, le premier désignant un groupe abélien, le deuxième un faisceau abélien sur Y (ou encore un faisceau abélien sur X, nul sur U). Ainsi, on a $\mathscr{H}^q_{Y} = R^{q_y!}$ etc...

Je revoie à V 6 pour les propriétés générales des foncteurs précédents.

7. Morphismes de spécialisation des foncteurs fibres

7.1. Nous avons vu au N° 4 comment on associe, à tout point géométrique ξ du schéma X, un x-schéma strictement local

$$\overline{X}(\xi) = \operatorname{Spec} \mathscr{O}_{X,\xi},$$

393

ne dépendant, en fait, que du point géométrique au-dessus de l'image x de ξ défini par la clôture séparable $\overline{k(x)}$ de k(x) dans $\Omega = k(\xi)$. Nous nous restreindrons souvent par la suite aux points géométriques $\xi = \operatorname{Spec} \Omega$ algébriques séparables sur X, i.e. tels que Ω soit une clôture séparable de k(x), i.e. $\xi = \overline{x}$. Appelons un X-schéma Z un localisé strict de X s'il est X-isomorphe à un schéma de la forme $\operatorname{Spec} \mathscr{O}_{X,\overline{x}}$, on voit donc que

VIII

$$\xi \mapsto \operatorname{Spec} \mathscr{O}_{X,\xi} = \overline{X}(\xi)$$

est une équivalence de la catégorie des points géométriques algébriques séparables sur X, avec la catégories des X-schémas qui sont des localisés stricts de X, quand on prend comme morphismes dans l'une et l'autre catégorie les seuls isomorphismes.

Ce dernier énoncé n'est plus exact quand on prend comme morphismes tous les X-morphismes, car dans la seconds catégorie il peut y avoir des X-morphismes qui ne sont pas des isomorphismes. On pose alors la

Définition 7.2. — Soient ξ , ξ' deux points géométriques du schéma X, on a appelle flèche de spécialisation de ξ' à ξ tout X-morphisme entre les localisés stricts correspondants

$$\overline{X}(\xi') \longrightarrow \overline{X}(\xi).$$

On dit que ξ est une spécialisation de ξ' ou que ξ' est une générisation de ξ , s'il existe une flèche de spécialisation de ξ' à ξ .

On notera que les flèches de spécialisation se composent de façon évidente, de sorte qu'en prenant pour morphismes les flèches de spécialisation, les points géométriques de X forment une catégorie, équivalente (ainsi que la sous-catégorie pleine formée des points géométriques algébriques et séparables sur X) à la sous-catégorie pleine de (Sch)/X formée des localisés stricts de X.

Lemme 7.3. — Soient X un schéma, Z un X-schéma qui est isomorphe à une limite projective pseudo-filtrante de X-schémas étales X_i , avec des morphismes de transition affines (VII 5.1), ξ' un point géométrique de X, $Z' = \overline{X}(\xi')$ le localisé strict correspondant. Alors :

a) L'application de restriction

$$\operatorname{Hom}_{X}(Z',Z) \longrightarrow \operatorname{Hom}_{X}(\xi',Z)$$

est bijective.

395

- b) Pour que les deux membres soient non vides, il faut et il suffit que l'images x' de ξ' dans X soit dans celle de Z.
- c) Soit T un Z-schéma, pour que T soit un localisé strict de Z, il faut et il suffit qu'il soit un localisé strict de X.

Démonstration.

- a) on est ramené aussitôt au cas où Z est un des X_i , i.e. où Z est étale sur X, et par le changement de base $Z' \to X$ on peut supposer que $Z' \xrightarrow{\sim} X$, d'où la conclusion par 4.2 (ii).
- b) On note que si x' est l'image d'un point z de Z, alors k(z) est nécessairement une extension algébrique séparable de k(x'), donc il existe un k(x')-homomorphisme de cette dernière dans $k(\xi')$, d'où la conclusion.
 - c) La démonstration est un exercice facile laissé au lecteur.

396

On conclut de 7.2 et 7.3:

Proposition 7.4. — Soient ξ , ξ' deux points géométriques du schéma X. Alors l'application de restriction définit une bijection de l'ensemble $\operatorname{Hom}_X(\overline{X}(\xi'), \overline{X}(\xi))$ des flèches de spécialisation de ξ' dans ξ , avec l'ensembles des X-morphismes de ξ' dans $\overline{X}(\xi)$.

Corollaire 7.5. — Pour que ξ soit une spécialisation de ξ' , il faut et il suffit qu'il en soit de même pour les images x, x' de ξ , ξ' dans X, i.e. que x appartienne à l'adhérence de $\{x'\}$.

Comme Spec $\mathcal{O}_{X,\xi} \to \operatorname{Spec} \mathcal{O}_{X,x}$ est fidèlement plat (4.4) il est surjectif, et il suffit donc d'appliquer la deuxième assertion de 7.3.

Corollaire 7.6. — Pour tout schéma X, soit Pt(X) la catégorie des points géométriques sur X (ou encore, des points géométriques algébriques séparables sur X), les morphismes étant les flèches de spécialisation. Soit alors ξ un point géométrique d'un schéma $X, \overline{X}(\xi)$ le localisé strict correspondant, on a alors une équivalence des catégories

$$\operatorname{Pt}(\overline{X}(\xi)) \xrightarrow{\sim} \operatorname{Pt}(X)_{/\xi},$$

obtenue en associant, à tout point géométrique ξ' de $\overline{X}(\xi)$, le point géométrique correspondant sur X, avec le morphismes de spécialisation dans ξ déduit du morphisme structural $\xi' \to \overline{X}(\xi)$ grâce à 7.4.

En d'autres termes, la donnée d'une générisation ξ' du point géométrique ξ équivaut essentiellement à la donnée d'une point géométrique de $\overline{X}(\xi)$. Notons d'ailleurs qu'en vertu de 7.3 c), l'homomorphisme correspondant $\overline{X}(\xi') \to \overline{X}(\xi)$ fait de $\overline{X}(\xi')$ le localisé strict de $\overline{X}(\xi)$, relativement à ξ' .

397

7.7. Interprétons maintenant, pour tout point géométrique ξ de X et tout faisceau F sur X, la fibre F_{ξ} comme étant $\Gamma(\overline{X}(\xi), \overline{F}(\xi))$, où $\overline{F}(\xi)$ est l'image inverse de F sur $\overline{X}(\xi)$ (4.8). Alors on voit que toute flèche de spécialisation

$$u: \xi' \longrightarrow \xi$$

induit un homomorphisme, fonctoriel en F:

$$u^*: \mathcal{F}_{\xi} \longrightarrow \mathcal{F}_{\xi'},$$

398

appelé homomorphisme de spécialisation associé à la flèche de spécialisation u. Il est évident, d'après la transitivité des images inverses de faisceaux, que l'on a pour une flèche de spécialisation composée :

$$(wu)^* = u^*w^*.$$

7.8. Si \mathscr{E} est un topos, rappelons (IV) qu'on a appelé « foncteur fibre », ou (par abus de langage) « point » du topos &, tout morphisme de « topos final » (Ens) (isomorphe à la catégorie des faisceaux sur un espace réduit à un point!) dans &, i.e. tout foncteur

$$\varphi = \mathscr{E} \longrightarrow (\mathrm{Ens})$$

qui commute aux lim inductives quelconques, et aux lim projectives finies. Il y a lieu de considérer l'ensemble des foncteurs fibres de & comme l'ensemble des objets d'une sous-catégorie pleine de $\mathcal{H}om(\mathcal{E}, (Ens))$, appelée catégorie des foncteurs fibres du topos E, dont l'opposés est appelée catégorie des points de \mathscr{E} , et notée Pt(E), cf. (IV 6.1).

Lorsque E est de la forme $\widetilde{X}_{\text{\'et}}$ où X est un schéma, nous avons défini dans 3.3 et 7.7 un foncteur

$$(*) Pt(X) \longrightarrow Pt(\widetilde{X}_{\acute{e}t}),$$

où le premier membre est défini dans 7.6. Ceci posé, on a le

Théorème 7.9. — Soit X un schéma. Le foncteur précédent (*) est une équivalence de la catégorie des points géométriques sur X (avec comme morphismes les flèches de spécialisation) avec la catégorie des points du topos étale Xét (opposée de celle des foncteurs fibres sur X_{ét}).

Comme ce théorème ne servira plus dans la suite du séminaire, nous nous bornons ici à une esquisse de démonstration, où nous nous permettrons certaines libertés avec les questions d'univers.

a) Le foncteur envisagé est pleinement fidèle. Pour tout $X \in \operatorname{Ob} X_{\operatorname{\acute{e}t}},$ soit $\overset{\vee}{X}:$ $X_{\rm \acute{e}t} \rightarrow ({\rm Ens})$ défini par

$$\overset{\vee}{X}(F)=\mathrm{Hom}(X,F)=F(X).$$

Notons que le foncteur fibre

$$\mathscr{E}_{\xi}: F \longrightarrow F_{\xi}$$

peut s'écrire

$$\mathscr{E}_{\xi} \simeq \varinjlim_{i} X_{i}^{\vee}$$

 $\mathscr{E}_\xi \simeq \varinjlim_i \mathbf{X}_i^\vee,$ où les \mathbf{X}_i sont des schémas affines étales sur \mathbf{X} , indexés par une certaine catégorie filtrante (cf. 4.3 et 4.5). On a donc pour tout foncteur $\varphi: X_{\text{\'et}} \to (Ens)$:

$$\operatorname{Hom}(\mathscr{E}_{\xi}, \varphi) \simeq \varprojlim_{i} \operatorname{Hom}(\mathbf{X}_{i}^{\vee}, \varphi),$$

d'autre part il est bien connu que l'on a un isomorphisme bifonctoriel

$$\operatorname{Hom}(X_i^{\vee}, \varphi) \simeq \varphi(X_i).$$

Lorsque φ est de la forme $\mathscr{E}_{\xi},$ donc

$$\varphi \simeq \varinjlim_{j} \mathbf{X'}_{j}^{\vee},$$

399

on a donc une bijection naturelle

$$(*) \qquad \qquad \operatorname{Hom}(\mathscr{E}_{\xi},\mathscr{E}_{\xi'}) \simeq \varprojlim_{i} \varinjlim_{j} \operatorname{Hom}_{\mathbf{X}}(\mathbf{X}'_{j},\mathbf{X}_{i}).$$

D'autre part on a (dans la catégorie des schémas)

$$\overline{\mathbf{X}}(\xi) = \varprojlim_{i} \mathbf{X}_{i}, \quad \overline{\mathbf{X}}(\xi') = \varprojlim_{j} \mathbf{X}'_{j},$$

d'où

$$\operatorname{Hom}_{X}(\overline{X}(\xi'), \overline{X}(\xi)) \simeq \varprojlim_{i} \operatorname{Hom}_{X}(\overline{X}(\xi'), X_{i}),$$

d'autre part, comme X_i est localement de présentation finie sur X, on a

$$\operatorname{Hom}_{\mathbf{X}}(\overline{\mathbf{X}}(\xi'),\mathbf{X}_i) \simeq \varinjlim_{j} \operatorname{Hom}_{\mathbf{X}}(\mathbf{X}_j,\mathbf{X}_i),$$

d'où

$$(**) \qquad \operatorname{Hom}_{\mathbf{X}}(\overline{\mathbf{X}}(\xi'), \overline{\mathbf{X}}(\xi)) \simeq \varprojlim_{i} \varinjlim_{j} \operatorname{Hom}_{\mathbf{X}}(\mathbf{X}'_{j}, \mathbf{X}_{i}).$$

La comparaison de (*) et (**) donne la conclusion voulue (moyennant une vérification de compatibilités, laissée au lecteur).

b) Le foncteur envisagé est essentiellement surjectif.

7.9.1. Remarquons d'abord que si C est un site où les \varprojlim finies sont représentables, $\widetilde{C} = \mathscr{E}$ le topos correspondant, alors tout foncteur fibre φ sur \mathscr{E} peut se représenter comme une « limite inductive filtrante » de foncteurs de la forme

$$\check{Y}(F) = F(Y) = \operatorname{Hom}(\widetilde{Y}, F), Y \in \operatorname{Ob} C,$$

(où \widetilde{Y} est le faisceau associé à Y), de la façon suivante (*). On considère la catégorie $C_{/\varphi}$ des couples (Y,ξ) , avec $Y\in Ob\,C$, $\xi\in\varphi(\widetilde{Y})$ (les morphismes se définissant de la façon évidente), et on note qu'on a un homomorphisme évident

$$\underset{(Y,\xi)\in C^0_{/\varphi}}{\varinjlim} \check{Y} \longrightarrow \varphi$$

en remarquant que

$$\operatorname{Hom}(\varinjlim_{C_\varphi}\check{Y},) \simeq \varprojlim_{C_{/\varphi}}\operatorname{Hom}(\check{Y},\varphi) \simeq \varprojlim_{C_{/\varphi}}\varphi(\check{Y}).$$

^(*) C'est un cas particulier de IV 6.8.3.

Or on a un élément canonique dans $\varprojlim_{C_{/\varphi}} \varphi(\widetilde{Y})$, en associant à tout (Y, ξ) l'élément ξ de $\varphi(Y)$. Utilisant le fait que les \varprojlim finies existent dans C, et que le foncteur $Y \mapsto \varphi(\widetilde{Y})$ y commute, on voit que dans $C_{/\varphi}$ les \varprojlim finies existent ; a fortiori $C_{/\varphi}^0$ est filtrant. Utilisant que tout faisceau F est limite inductive des faisceaux de la forme \widetilde{Y} , et utilisant le fait que φ commute aux limites inductives, on conclut aisément que l'homomorphisme de foncteurs (*) est bijectif, et donne donc la représentation annoncée.

7.9.2. Remarquons également que si $\mathscr E$ est un topos, Y un objet de $\mathscr E$, d'où un topos $\mathscr E_{/Y}$, alors la donnée d'un foncteur fibre φ pour $\mathscr E_{/Y}$ équivaut à la donnée d'un couple (φ,ξ) , où φ est un foncteur fibre pour $\mathscr E$, et $\xi\in (Y)$. Au foncteur fibre $\psi:\mathscr E_{/Y}\to (Ens)$ on associe le couple (φ,ξ) , où φ est le composé $Z\mapsto \varphi(Z)=\psi(Z\times Y)$, et où $\xi\in \varphi(Y)=\psi(Y\times Y)$ est l'image de l'unique élément de $\psi(Y)$ par le morphisme diagonal de $Y\times Y$.

7.9.3. Revenons maintenant au cas du site $C = \widetilde{X}_{\text{\'et}}$, et soit $\varphi : \widetilde{X}_{\text{\'et}} \to (Ens)$ un foncteur fibre sur le topos étale de X. Considérant la restriction de φ à la sous-catégorie pleine de $\widetilde{X}_{\text{\'et}}$ formée des ouverts de ce topos, ou ce qui revient au même (6.1) des ouverts U de X, on trouve une application

$$\varphi_0: \mathscr{U}(X) \longrightarrow \{0,1\}$$

commutant aux sup quelconques et aux inf finis. (On note que pour $u \in \mathcal{U}(X)$, $\varphi(U)$ est vide ou réduit à un point, et on prend $\varphi_0(U) = 0$ ou 1 suivant qu'on est dans l'un ou l'autre cas).

On voit facilement, grâce au fait que tout fermé irréductible de X a un point générique et un seul (*), que φ_0 est défini à l'aide d'un unique $x \in X$, par la condition

$$\varphi_0(\mathbf{U}) = 1 \quad \text{sss} \quad x \in \mathbf{U},$$

i.e.

402

$$\varphi(\mathbf{U}) = \varnothing \Leftrightarrow x \in \mathbf{U}.$$

Soit $F \in Ob X_{\acute{e}t}$, alors l'image de F dans le faisceau final X est un ouvert; et comme

$$\varphi(F) \longrightarrow \varphi(U)$$

est surjectif, on voit que $\varphi(F) \neq \emptyset$ sss $\varphi(U) \neq \emptyset$, i.e. sss $x \in U$. Soit alors $C_{/\varphi}$ la catégorie des couples (X',ξ) où $X' \in Ob X_{\text{\'et}}$, et $\xi \in \varphi(X')$. On a signalé dans 7.9.1 que $C_{/\varphi}^0$ est filtrante connexe. De plus, grâce à 7.9.2 et à ce qui précède appliqué à X' au lieu de X, si $(X',\xi) \in Ob X_{\text{\'et}}$, il lui est associé un unique point $x' \in X'$, tel que pour un morphisme étale $X'' \to X'$, ξ est dans l'image de $\varphi(X'') \to \varphi(X')$ sss x' est dans celle de X''. On conclut de ceci que le schéma \varprojlim des X' suivant la catégorie C des (X',ξ) existe et est un localisé strict Z de X, correspondant donc à point géométrique ξ et un foncteur fibre $\mathscr{E}_{\mathcal{E}}$. Pour tout faisceau F, on a alors

^(*) i.e. X est sobre dans la terminologie de IV 4.2.1. L'assertion faite est un cas particulier de IV 4.2.3.

$$\mathscr{E}_{\xi}(F) \simeq \varinjlim_{C_{\varphi}}(F)(X').$$

Compte tenu de 7.9.1 on en conclut que φ est isomorphe à \mathscr{E}_{ξ} , ce qui achève la démonstration de 7.9.

8. Deux suites spectrales pour les morphismes entiers

Proposition 8.1. — Soient $f: X \to Y$ un morphisme entier surjectif, F un faisceau abélien sur Y. Pour tout entier i, soit $\mathscr{H}^i(F)$ le préfaisceau sur $(Sch)_{/Y}$ défini par

$$\mathcal{H}^i(F)(Z) = H^i(Z, F_Z),$$

où F_Z est l'image inverse de F sur Z. Alors il existe une suite spectrale (fonctorielle en F)

$$H^*(X,F) \longleftarrow E_2^{pq} = H^p(X/Y, \mathcal{H}^q(F))$$

(« suite spectrale de descente »).

Bien entendu, le symbole $H^p(X/Y, G)$, pour un préfaisceau G sur $(Sch)_{/Y}$, désigne le p-ème groupe de cohomologie de Čech relatif, défini à l'aide du complexe des $C^n(X/Y, G) = G(X^{n+1})$, où X^m désigne la puissance m. ième dans $(Sch)_{/Y}$. Pour établir 8.1, soit $p_n: X^{n+1} \to Y$ la projection, et posons

$$A^n = p_{n*}(\mathscr{Z}_{X^{n+1}}),$$

où $\mathscr{Z}_{X^{n+1}}$ désigne le faisceau constant \mathscr{Z} sur X^{n+1} . Alors les A^n sont les composantes d'un faisceau abélien simplicial sur Y, donc d'un complexe de faisceaux abéliens A^* sur Y. Notons qu'on a un homomorphisme évident

$$\mathscr{Z}_{Y} \longrightarrow A^{0}.$$

Ceci posé, on a le

403

Lemme 8.2. — Le complexe (A^*) muni de l'homomorphisme (*) est une résolution de \mathscr{Z}_Y . Plus généralement pour tout faisceau abélien F sur Y, $A^* \otimes_{\mathscr{Z}} F$ est une résolution de F.

Démonstration : On peut supposer Y affine, donc Y = Spec A, X = Spec B, où B est une A algèbre entière. On aura B = $\varinjlim_i B_i$, où B_i parcourt les sous-algèbres de type fini donc finies de B, d'où X = $\varprojlim_i X_i$, où X_i = Spec B_i . Utilisant VII 5.11, on voit que le complexe augmenté $A^*(X/Y)$ est alors la limite inductive des complexes augmentés $A^*(X_i/Y)$. Cela nous ramène au cas où f est fini. Il suffit de prouver que pour tout point géométrique \overline{y} de Y, le complexe A_y^* est une résolution de $\mathscr{Z}_{\overline{y}}$, et le reste après tensorisation par un F. Mais si $X_{\overline{y}}$ est la fibre de X en \overline{y} , il résulte de 5.5 que le complexe $A_{\overline{y}}^*$ n'est autre que le complexe analogue $A^*(X_{\overline{y}}/\overline{y})$. Cela nous ramène au cas où Y est le spectre d'un corps séparablement clos k. Utilisant 1.3 a) et b), on peut même supposer k algébriquement clos, et X réduit, donc X de la forme

 I_Y , où I est un ensemble fini. Mais alors le complexe $A^* \otimes F$ s'identifie au complexe de cochaînes trivial de l'ensemble d'indices I à coefficient dans $F_{\overline{y}}$, donc c'est bien une résolution de $F_{\overline{y}}$.

Nous obtenors donc, comme conséquence de 8.2, une suite spectrale

$$H^*(Y, F) \longleftarrow E_2^{pq} = H^p(H^q(Y, A^* \otimes F)),$$

et il reste à expliciter le terme initial. Or on a un homomorphisme canonique

$$A^n \otimes F \longrightarrow p_{n_*} p_n^*(F),$$

et ce dernier est un isomorphisme, comme on voit encore par réduction au cas f fini et passage aux fibres. Utilisant 5.5, on en conclut

$$H^q(Y, A^n \otimes F) \simeq H^q(X^{n+1}, p_n^*(F)) \Longrightarrow \mathcal{H}^q(F)(X^{n+1}),$$

ce qui donne bien le terme initial annoncé dans 8.1.

Remarque 8.3. — a) Lorsque l'on se donne un recouvrement localement fini de Y par des ensembles fermés Y_i , et qu'on pose $X = \coprod_i Y_i$ alors le morphisme canonique $f: X \to Y$ est fini, et la suite spectrale 8.1 a un terme initial qui s'explicite comme la cohomologie du complexe défini par les $H^q(Y_{i_0...i_p}, F|Y_{i_0...i_p})$, où $Y_{i_0...i_p} = Y_{i_0} \cap \cdots \cap Y_{i_p}$. C'est donc là l'analogue de la suite spectrale de Leray pour un recouvrement fermé localement fini d'un espace topologique ordinaire (TF Chapitre II 5.2.4). Cette dernière peut d'ailleurs se généraliser également en une suite spectrale relative à un morphisme « fini » i.e. propre à fibres finies, en procédant comme dans 8.1.

b) On notera l'analogie de la suite spectrale de 8.1 avec la suite spectrale de Leray d'un recouvrement (X_i) de Y (en l'occurrence par des X_i étales sur Y); cette dernière s'obtiendrait formellement en écrivant la suite spectrale 8.1 pour $X = \coprod_i X_i$. Il est probable en fait que ces deux suites spectrales admettent une généralisation commune, qui serait valable chaque fois qu'on aurait une famille de morphismes $(X_i \to Y)$, qui soit « famille de descente effective universelle » pour la catégorie fibrée des faisceaux étales sur un schéma de base variable (cf. n° 9 ci-dessous). La question analogue se pose d'ailleurs en topologie ordinaire, à propos d'une généralisation commune des deux espèces de suites spectrales de Leray d'un recouvrement, supposé soit ouvert, soit fermé localement fini (*).

Proposition 8.4. — Soient Y un schéma, π un groupe profini, $(\pi_i)_i$ le système projectif des groupes quotients finis discrets de π , $(X_i)_{i\in I}$ un système projectif de revêtements principaux de Y, de groupes les π_i , les homomorphismes de transition $X_j \to X_i$ étant compatibles avec les homomorphismes $\pi_j \to \pi_i$ sur les groupes d'opérateurs, $X = \varprojlim X_i$ (cf. VII 5.1), de sorte que le groupe π opère sur le Y-schéma X, F un faisceau

405

^(*)Depuis la rédaction de ces lignes, P.Deligne a fait une théorie générale des « suites spectrales de descente », cf. Exp. V bis.

abélien sur Y. Alors on a une suite spectrale « de Hochschild-Serre » (fonctorielle en F)

$$\mathrm{H}^*(\mathrm{Y},\mathrm{F}) \Longleftarrow \mathrm{E}_2^{pq} = \mathrm{H}^p(\pi,\varinjlim_i \mathrm{H}^q(\mathrm{X}_i,\mathrm{F}_{\mathrm{X}_i})),$$

où F_{X_i} est l'image inverse de F sur X_i , et $H^p(\pi,-)$ désigne la cohomologie galoisienne.

Le terme E_2^{pq} écrit ici est également (par définition de $H^p(\pi, -)$ et transitivité des limites inductives) isomorphe à

$$\mathbf{E}_{2}^{pq} = \varinjlim_{i} \mathbf{H}^{p}(\pi_{i}, \mathbf{H}^{q}(\mathbf{X}_{i}, \mathbf{F}_{\mathbf{X}_{i}})),$$

ce qui nous montre qu'il suffit de trouver un système inductif de suites spectrales (dépendant de l'indice i)

$$H^*(Y, F) \iff {}^iE_2^{pq} = H^p(\pi_i, H^q(X_i, F_{X_i})).$$

Cela nous ramène à définir la suite spectrale dans le cas où π est fini. Alors $f: X \to Y$ est un morphisme couvrant dans $Y_{\text{\'et}}$, donc on peut écrire la suite spectrale de Leray de ce morphisme. Compte tenu des isomorphismes canoniques :

$$X^n \simeq X^G G^n$$
,

un calcul bien connu montre alors que pour tout préfaisceau \mathscr{H} sur $X_{\text{\'et}}$, transformant somme en produits, $C^*(X/Y, \mathscr{H})$ n'est autre que le complexe des cochaînes homogènes de G à coefficients dans $\mathscr{H}(X)$, d'où la forme annoncés pour le terme initial.

Une variante de cette démonstration, évitant tout calcul, consiste à considérer $E \mapsto X_{\pi} E$ comme un morphisme du site des π -ensembles finis dans le site étale de Y, et à écrire la suite spectrale de Leray de ce morphisme. Enfin, lorsque π est fini, on peut également regarder la suite spectrale de Hochschild-Serre comme étant un cas particulier de 8.1 relativement au morphisme $f: X \to Y$.

Corollaire 8.5. — Supposons Y quasi-compact et quasi-séparé, alors la suite spectrale de 8.4 s'écrit

$$H^*(Y, F) \longleftarrow E_2^{pq} = H^p(\pi, H^q(X, F_X)).$$

En effet, en vertu de VII 5.8, on a alors des isomorphismes canoniques

$$\varinjlim_{i} H^{q}(X_{i}, F_{X_{i}}) \simeq H^{q}(X, F_{X}).$$

Corollaire 8.6. — Soient Y un schéma local hensélien de point fermé y, F un faisceau abélien sur Y, F_0 le faisceau induit sur $Y_0 = \operatorname{Spec}(k(y))$. Alors les homomorphismes canoniques

$$H^n(Y,F) \longrightarrow H^n(Y_0,F_0)$$

sont des isomorphismes.

Soit en effet \overline{y} un point géométrique sur y, correspondant à une clôture séparable $k(y) = k(\overline{y})$ de k(y); comme Y est hensélien, le localisé strict X de Y en \overline{y} est la limite projective des revêtements étales galoisiens connexes \overline{y} -ponctués X_i , de sorte qu'on est sous les conditions d'application de 8.5. Comme $H^q(X, F_X) = 0$ pour q > 0 en vertu de 4.7, on en conclut des isomorphismes

$$H^n(Y, F) \stackrel{\sim}{\leftarrow} H^n(\pi, F(X))$$

où π est le « groupe de Galois » de X sur Y, isomorphe à celui de $\overline{k(y)}$ sur k=k(y). On trouve de même (ou par 2.3)

$$H^n(Y_0, F_0) \stackrel{\sim}{\leftarrow} H^n(\pi, F_0(X_0)),$$

où $X_0=X_{Y_0}Y\simeq \operatorname{Spec}(k(\overline{y}))$. Or l'homomorphisme de restriction $F(X)\to F_0(X_0)$ est un isomorphisme en vertu de 4.8, d'où résulte aussitôt la conclusion 8.6.

9. Descente de faisceaux étales

Le présent numéro ne servira plus dans la suite de ce Séminaire, et peut être omis en première lecture.

Proposition 9.1. — Soit $f: X' \to X$ un morphisme surjectif (resp. universellement submersif (SGA I IX 2.1)) de schémas. Alors le foncteur $f^*: X_{\text{\'et}} \to X'_{\text{\'et}}$ est fidèle et « conservatif » (cf. 3.6) (resp. induit un foncteur pleinement fidèle de la catégorie des faisceaux sur $X'_{\text{\'et}}$ dans la catégorie des faisceaux sur $X'_{\text{\'et}}$ munis d'une donnée de descente relativement à $f: X' \to X$).

Le premier point résulte aussitôt de la transitivité des foncteurs fibres (3.4) et de (3.7), le deuxième (qui s'énonce aussi en disant que f est un morphisme de descente relativement à la catégorie fibrée des faisceaux étales sur des schémas variables), signifie aussi que pour deux faisceaux F, G sur Y, le diagramme naturel

$$(*) \qquad \qquad \operatorname{Hom}(F,G) \to \operatorname{Hom}(F',G') \rightrightarrows \operatorname{Hom}(F'',G'')$$

est exact, où F' et G' (resp. F" et G") sont les images inverses de F et G sur X' (resp. sur X" = X' $_{_{X}}$ X'). Prenant pour F le faisceau final, l'énoncé donne le

Corollaire 9.2. — Soit $f: X' \to X$ un morphisme universellement submersif. Alors pour tout faisceau F sur X, le diagramme

$$\Gamma(X,F) \to \Gamma(X',F') \rightrightarrows \Gamma(X'',F'')$$

 $\mathit{est\ exact},\ o\`{u}\ X'' = X'_{X}X',\ \mathit{et\ o\`{u}}\ F',\ F''\ \mathit{sont\ les\ images\ inverses\ de}\ F\ \mathit{sur}\ X',\ X''.$

Nous prouverons 9.1 en utilisant le

Lemme 9.3. — Supposons f universellement submersif. Soit F un faisceau sur X, désignons par S(F) l'ensemble des sous-faisceaux de X, et définissons de façon analogue S(F'), S(F''). Alors le diagramme d'applications naturelles

$$S(F) \rightarrow S(F') \rightrightarrows S(F'')$$

est exact.

409

Démonstration. Le fait que $S(F) \to S(F')$ est injectif résulte aussitôt du fait que le foncteur f^* est conservatif; car si F_i (i=1,2) sont deux sous-faisceaux de F tels que $f^*(F_1) = f^*(F_2)$, alors les inclusions $F_3 = F_1 \cap F_2 \to F_i$ (i=1,2) sont des isomorphismes, car elles deviennent telles après application du foncteur f^* , donc $F_1 = F_2$. Il reste à prouver que si G' est un sous-faisceau de F' tel que $\operatorname{pr}_1^*(G') = \operatorname{pr}_2^*(G')$, alors G' est l'image inverse d'un sous-faisceau de F. Notons que l'on peut trouver un épimorphisme $F_1 \to F$ dans $X_{\operatorname{\acute{e}t}}$, ou F_1 est représentable par un schéma étale sur X. Introduisons $F_2 = F_1$ F_1 , et de même F'_1 , F''_1 , F''_2 , F''_2 , faisceaux donnant lieu à un diagramme d'ensembles

dans lequel les colonnes sont exactes, grâce aux propriétés d'exactitude dans la catégorie des faisceaux sur X, X', X'' respectivement. Un diagram-chasing standard montre alors que, pour prouver que la première ligne est exacte, il suffit de le prouver pour les lignes 2 et 3. Or pour la ligne 2 cela résulte du fait que F_1 est représentable, $X' \to X$ universellement submersif, et de SGA IX 2.3. D'autre part, F_2 est également représentable, car c'est un sous-faisceau de F_1 K_1 qui est représentable, et on applique 6.1. Donc la ligne 3 est aussi exacte,

410

Prouvons maintenant 9.1, i.e. que tout morphisme $u': F' \to G'$, compatible avec les données de descente sur F', G', u' provient d'un morphisme $u: F \to G$. Soit $H = F \times G$, donc $H' = F' \times G'$, $H'' = F'' \times G''$, alors le graphe de u' est un sousfaisceau Γ' de H', dont les deux images inverses sont égales au graphe d'un même morphisme $u'': F'' \to G''$. Donc en vertu de 9.3. Γ' provient d'un sous-faisceau Γ de H. Je dis que Γ est le graphe d'un morphisme $u: F \to G$, i.e. que le morphisme $p: \Gamma \to F$ induit par pr_1 est un isomorphisme : en effet, il devient un isomorphisme après le changement de base $X' \to X$, et on applique la partie déjà prouvée de 9.1. Le morphisme $u: F \to G$ répond alors à la question, C.Q.F.D.

Théorème 9.4. — Soit $f: X' \to X$ un morphisme surjectif de schémas. On suppose que l'une des hypothèses suivantes est vérifiée :

- a) f est entier.
- b) f est propre.
- c) f est plat et localement de présentation finie (*).
- d) X est discret (p.ex. le spectre d'un corps).

Alors f est un morphisme de descente effective pour la catégorie fibrée ℱ sur (Sch) des faisceaux étales sur des schémas variables, i.e. le foncteur f* induit une équivalence de la catégorie des faisceaux sur X avec la catégorie des faisceaux sur X', munis d'une donnée de descente relativement à f: X' → X.

9.4.1. Soit F' un faisceau sur X', muni d'une donnée de descente relativement à $f: X' \to X$. On définit alors un foncteur

$$G: X^0_{\operatorname{\acute{e}t}} \longrightarrow (Ens)$$

par la formule

412

$$G(Y) = Ker(F'(Y') \Longrightarrow F''(Y'')).$$

On constate aussitôt que G est un faisceau pour la topologie étale, d'autre part on a un homomorphisme canonique injectif $G \to f_*(F')$, d'où un homomorphisme $f^*(G) \to F'$, et ce dernier est évidemment compatible avec les données de descente. Il reste à examiner si cet homomorphisme est un isomorphisme. Noter que G est aussi définissable par l'exactitude de

$$G \to f_*(F') \Longrightarrow g_*(F''),$$

donc pour tout changement de base Y \xrightarrow{h} X qui commute à la formation de $f_*(F')$ et $g_*(F'')$, $h^*(G) = G_Y$ s'identifie au faisceau « descendu » de $F'_{Y'}$ par Y' \to Y, et bien entendu l'homomorphisme $f_Y^*(G_Y) \to (F_Y)'$ est celui déduit de $f^*(G) \to F'$ par changement de base. Or supposons que le changement de base $f: Y = X' \to X$ commute à la formation de $f_*(F')$ et $g_*(F'')$, et notons que comme Y' = X' X' a une section sur Y' = X', donc $Y' \to Y$ est un morphisme de descente effective pour toute catégorie fibrés, en particulier pour \mathscr{F} , il s'ensuit que $f_Y^*(G_Y) \to (F_Y)'$ est un isomorphisme, donc $f^*(G) \to F'$ devient un isomorphisme après changement de base Y' = X' $X' \to X'$. Comme ce dernier a une section, $f^*(G) \to F'$ est un isomorphisme, donc la donnée de descente envisagée sur F' est effective.

9.4.2. Ceci prouve le théorème 9.4 dans le cas a), grâce à 5.6. Le cas b) résulte également du fait que si f est propre, alors f_* commute à *tout* changement de base $Y' \to Y$, (qui sera prouvé dans un exposé ultérieur (XII 5.1 (i))).

^(*) Il est probable que cette deuxième hypothèse est en fait superflue.

- 9.4.3. Dans le cas c), la question étant locale sur X on peut supposer X affine, et qu'il existe un schéma affine X_1' , de présentation finie, quasi fini et fidèlement plat sur X, et un X-morphisme $X_1' \to X'$, ce qui nous ramène au cas où f est quasi-fini. Quitte à localiser encore sur X, au sens de la topologie étale cette fois, on voit qu'il existera un ouvert X_1' de X' tel que $X_1' \to X$ soit fini et surjectif, ce qui nous ramène au cas où f est fini et surjectif, déjà traité dans a).
- 9.4.4. Dans le cas d), on peut supposer (en se localisant sur X) que X est réduit à un seul point, et même compte tenu de 1.1, qu'il est spectre d'un corps k. De plus, f est universellement ouvert (EGA IV 2.4.9) donc on est sous les conditions de 9.1, et le raisonnement de 9.4.1 s'applique encore, en prenant un changement de base avec $Y = \operatorname{Spec} k$, où k = k(x), pour un $x \in X$. Mais alors il est encore vrai que f_* commute au changement de base $Y \to X$, comme nous verrons ultérieurement (XVI 1.4 et 1.5). Ceci achève la démonstration de 9.4.

INDEX TERMINOLOGIQUE

Algébrique (topos, objet)	VI 2.3
Augmentation de descente effective	V^{bis} 2.2.2
Biscindage	VI 7.1.4
Cartésien (morphisme)	VI 6.1
Cartésiens (foncteurs)	VI 6.1.4
Catégorie localement filtrante	V 8 1.0
Centre (d'un topos local)	VI 8.4.6
Cohérent (morphisme)	VI 1.7
	VI 1.21
Cohérent (morphisme de topos)	VI 3.1
	VI 8.3.14
	VI 3.3
Cohérent (topos)	VI 8.3.13
	VI 2.3
	VI 5.2
Cohérent (topos localement -)	VI 2.3
Cohomologie à support dans Z (groupe de , faisceau de)	V 6.3
Cohomologie de Čech (groupe)	V 2.4.3
Cohomologie de Čech (préfaisceau)	V 2.4.5
Complexe de Čech	V 2.4.3
Constructible	VI 1.9.3
	VI 1.21
Descente cohomologique effective	V^{bis} 2.2.6
Descente cohomologique relative	$V^{bis} 2.4$
G-1 descente cohomologique	V^{bis} 3.1.2
Faisceaux acycliques	
Faisceaux C-acycliques	V 4.1

Faisceaux Ext à supports dans Z	V 6.8.2
Faisceaux flasques	V 4.1
Famille de supports	V 6.12
Famille de supports de caractère local	V 6.12.2
Fibrée (catégorie)	VI 6.1
Fibre (catégorie)	V 6.1.1
Foncteur cofinal (entre catégories localement filtrantes)	V 8.1.4
Foncteur fibre	VIII 3.3
Groupe Ext à s supports dans Z	V 6.8.5
Homologie	V 7.2.0
Homotopie	V 7.3.1
Hyper-recouvrement	V 7.3.1
Limite inductive (d'une catégorie fibrée)	VI 6.3
Limite inductive locale	V 8.2.1
Limite projective (d'une catégorie fibrée)	VI 6.10
Limite projective de topos fibrés	VI 8.1.1
Localisé strict	VIII 4.3
Morphismes de \mathcal{U} -sites fibrés	VI 7.2.2
Morphismes cartésiens de \mathscr{U} -sites fibrés	VI 7.2.2
Morphisme spécial (de préfaisceaux simpliciaux)	V 7.3.3
Noethérien	VI 2.11
Objet semi-simplicial tronqué	V 7.1.0
Parfait (topos)	VI 1.27
Plats (modules)	V 1.1
Plat (morphisme de topos)	V 1.8
Point géométrique	VIII 3.1
Prénoethérien	VI 1.30
Quasi-compact (objet)	VI 1.1
· · · · · · · · · · · · · · · · · · ·	VI 1.21
Quasi-compact (morphisme)	VI 1.7
· · · · · · · · · · · · · · · · · · ·	VI 1.21
Quasi-compact(morphisme de topos)	VI 3.1
Quasi-séparé (morphisme)	VI 1.7
	VI 1.21
Quasi-séparé (morphisme de topos)	VI 3.1
Quasi-séparé (topos)	VI 2.3
Résolution standard	V 2.3.6
Sections cartésiennes	VI 6.10
Semi-représentable 7.3	
<i>W</i> -site fibré	VI 7.2.1

Site total Squelette, Cosquelette Strictement local (anneau, schéma) Suite spectrale de Cartan-Leray (relative à un morphisme de topos)	VI 7.4.1 V 7.1.1 VIII.4.2 V 5.3
Suite spectrale de Cartan-Leray (relative à un recouvrement)	V 3.2
Suite spectrale de descente	VIII 8.1
Topologie de Zariski	VII 4.2
Topologie étale	VII 1.2
Topologie fidèlement plate quasi-compacte	VII 4.2
Topologie totale (d'un \mathcal{U} -site fibré)	VI 7.4.1
D-topos	V^{bis} 1.2.1
D-topos annelé	V^{bis} 1.3.1
Topos classifiant	VIII 2.1
Topos étale	VIII 1.2
Topos fibré	VI 7.1
Topos fibré annelé	VI 8.6.1
Topos fibré annelé plat	VI 8.6.4
\mathcal{U} -topos fibré associé	VI 7.2.6
Topos fini, profini	VI 2.9.4
Topos local	VI 8.4.6
Topos localisé	VI 8.4.2
Topos simplicial	V^{bis} 1.2.1
Topos total	VI 7.4.3.3

INDEX DES NOTATIONS

A he	37111 4 4
Ahs	VIII 4.4
$A \cdot (\mathcal{U})$	V 1.10.3
C~/I	VI 7.2.6.6
$C \cdot (\mathscr{U}, M)$	V 2.3.3.3.1
E_{coh}, E_{PF}	VI 1.2.4
	VI 8.3.13
\mathcal{E}_{cons}	VI 2.9.3
$\mathrm{E}t_{\mathrm{X}}$	VII 1.3
$\operatorname{Ext}\nolimits_{\operatorname{A}}^q(\operatorname{E},\operatorname{M},\operatorname{N})$	V 2.1.1
$\operatorname{Ext}_{\mathrm{A.Z}}^q(\mathrm{E,M,N})$	V 6.8.5
$\operatorname{Ext}_{\mathrm{A},\Phi}^{q'}(\mathrm{E},.,.)$	V 6.13.8
$\mathscr{E}xt_{\mathtt{A}}^{q}(\mathrm{M},\mathrm{N})$	V 6.0.1
$\mathscr{E}xt_{\mathrm{A,Z}}^{\widetilde{q}}(.,.)$	V 6.8.2
$\mathscr{E}xt_{\mathrm{A},\Phi}^{q}(.,.)$	V 6.13.8
$F \mapsto F_{\mathcal{E}}$	VIII 3.3
$\underline{\underline{F}}, (\underline{\underline{F}})^N$	VI 8.2.3
$F \mapsto F_i$, $F \times I \to F$	V 8.1.3
f^*, f_*	VII 1.4
(fpqc)	VII 4.2
$\mathfrak{F}(S^{-1})$	VI 6.2
	VI 6.5
$H^*(\pi, M)$	VIII 2.3
$H^i(X,F)$	VII 1.3
HR_p	V 7.3
$\underline{\mathrm{HR}}_p^r$	V 7.3.1.6
$ \stackrel{\vec{V}}{\text{H}}^q, \stackrel{\vec{V}}{\text{H}}^q $	V 7.40
Π^{z} , Π^{z}	V 7.4.0

$H^{q}(E, N)$ $H^{q}(\mathcal{U}, M)$ $H^{q}(X, M)$ $H^{q}(X, N)$ H^{q}_{Φ} \underline{H}^{p}_{Φ} $H^{q}_{Z}(E, .)$ $\underline{H}^{q}_{Z}(.) V 6.3$	V.2.1.1 V 2.3.3 V 2.4.1 V 2.1.1 V 6.13.8 V 6.13.8 V 6.3
$\mathscr{H}^q(M)$	V 2.4.2.2
\mathcal{H}^{q} $\mathcal{H}om_{Cart/I}(F,G)$ $Hom_{f}(X,Y)$ $\mathcal{H}om_{I}(F,G)$ $Hom_{\xi}(X,Y)$ $\mathcal{H}omtop_{Cart/I}(F,G)$ $\varprojlim_{\mathcal{E}^{\circ}}$	V 2.4.2.2 VI 6.1.4 VI 6.9 VI 6.0 VI 6.0 VI 6.1.1 VI 7.1.7 V 2.3.1 VI 6.3
\varprojlim top F, \varprojlim top F _i , \widecheck{F}	VI 6.9
I Loc _p (E) Morsite _{Cart/I} (C, D) Morsite _I (C, D) Q: FT \rightarrow Top(F) $R^{r}u_{*}$ $[R _{f}S], [R S]$ (Sch) $sk_{n}, cosk_{n}$ $S.(\mathscr{U})$ Top(C) $X_{\acute{e}t}$ $X_{\acute{e}t}$ $[[X_{u}X']]$ X_{Zar} $\alpha_{i}: F_{i} \rightarrow F$ $\Delta, \Delta(E), \Delta[n], \Delta E[n], \Delta_{n}$	VII $8.4.2.1$ VI $7.2.2.2$ VI $7.2.2$ VI $8.5.1.2$ V 5.0 V ^{bis} $1.2.7$ VII 1.1 V $7.1.1$ V 1.10 VII $7.4.3.3$ VII 1.2 VII 1.2 VII 1.2 VII 1.2 VII 1.2 VII 1.2 VII 1.2 VII 1.2 VII 1.2
$\varepsilon_{\mathrm{C/I}}:\mathrm{C} ightarrow \mathrm{C}^{\sim/\mathrm{I}}$	VI 7.2.6.7

VI 7.4.11