

Engenharia Informática

DEI - Departamento de Engenharia Informática

Sistemas Computacionais

Aulas Praticas – Bases Numéricas

Nuno Veiga, Rui Vasco Monteiro, Rolando Miragaia (2021/22)

- Sistema Decimal
- Sistema Binário
- Sistema Octal
- Sistema Hexadecimal
- Sistema de Base n
- Cálculos com sistemas
- Conversões de sistemas

- Base de um Sistema de Numeração
- A base de um sistema é a quantidade de algarismos disponível na representação.
- A base 10 é hoje a mais usualmente empregada, embora não seja a única utilizada.
- No comércio pedimos uma dúzia de rosas ou de parafusos (base 12) e também marcamos o tempo em minutos e segundos (base 60).

- Sistema Decimal
- No sistema decimal existem dez símbolos numéricos, "algarismos":
 - 0123456789.
- Através das combinações adequadas destes símbolos, constrói-se os números do Sistema Decimal. A regra de construção consiste na combinação sequencial dos símbolos, de modo que, o valor do número depende da posição dos algarismos.
- A análise da tabela seguinte leva a concluir que um número decimal é um somatório dos seus "algarismos" multiplicados, cada um, por uma base 10 de expoentes sequenciais.

Potências de 10	10 ³	10 ²	10 ¹	10 ⁰	
Valor	1000	100	10	1	
Decimal	1	3	2	7	
resultado	1000 +	300 +	20 +	7 =	1327

- Sistema Binário
- A codificação binária "base 2" é formada apenas por dois símbolos diferentes:
 - o símbolo lógico "0"
 - o símbolo lógico "1"
- Estes "digitos" repetem-se na estrutura da numeração, de acordo com as seguintes regras:
 - o dígito zero "0" significa zero quantidades ou unidades
 - o dígito um "1" significa uma quantidades ou uma unidade
 - o dígito dois "2" e restantes não existem no sistema binário

- Sistemas numéricos
 - Sistema Binário
 - Apareceu em 1703/1705 através de Gottfried Leibniz
 - http://upload.wikimedia.org/wikipedia/commons/thumb/a/ac/ Leibniz_binary_system_1703.png/445px-Leibniz_binary_system_1703.png
 - Usado em TODOS os sistemas informáticos devido a 2 razões:
 - Fácil de converter para sistema mecânico/elétrico;
 - "0" = 0 volt / Aberto;
 - "1" = 5 volt / Fechado;
 - Fácil de "computar" (tem a matemática bem definida);
 - Álgebra booleana;

- Sistema Binário
- Exemplos:
 - O valor decimal 2 é representado em binário por: 1 0
 - diz-se "um, zero"
 - O valor decimal 3 é representado em binário por: 1 1
 - diz-se "um, um"
 - O valor decimal 4 é representado em binário por: 1 0 0
 - diz-se "um, zero, zero"
 - O valor decimal 8 é representado em binário por: 1 0 0 0
 - diz-se "um, zero, zero, Zero"
 - O valor decimal 10 é representado em binário por: 1 0 1 0
 - diz-se "um, zero, um, Zero"
 - O valor decimal 16 é representado em binário por: 1 0 0 0 0
 - diz-se "um, zero, zero, zero, zero"

- Sistema Binário
 - Podemos assim concluir que o valor de cada algarismo binário "digito" varia de modo análogo ao sistema decimal, com uma diferença:
 - A base das potências que multiplicam qualquer posição é de valor 2, "base 2".

211	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
2048	1024	512	256	128	64	32	16	8	4	2	1

- Conversão Binário Decimal
 - Para se efectuar a correspondência entre a numeração binária e a numeração decimal, deveremos ter em conta as seguintes regras:
 - 1. Multiplicam-se todos os dígitos binários pelo valor decimal da potência de 2 correspondente ao peso de cada dígito.
 - 2. Somam-se os resultados obtidos.
 - 3. O resultado da soma é o equivalente decimal do número binário.

Potências de 2	2 ³	2 ²	2 ¹	2 ⁰	
Valor	8	4	2	1	
Binário	1	0	0	1	
resultado	8 +	0 +	0 +	1 +	9

Conversões

Convert the binary number 01110000 to a decimal number.

Note: Work from right to left. Remember that anything raised to the 0 power is 1. Therefore $2^0 = 1$

1	2	3	4	5	6	7	8
128	64	32	16	8	4	2	1

$$0 \times 2^{0} = 0$$

$$0 \times 2^{1} = 0$$

$$0 \times 2^{2} = 0$$

$$0 \times 2^{3} = 0$$

$$1 \times 2^{4} = 16$$

$$1 \times 2^{5} = 32$$

$$1 \times 2^{6} = 64$$

$$0 \times 2^{7} = 0$$

$$112$$

Note: The sum of the powers of 2 that have a 1 in their position

- Conversão Binário Decimal
 - Alguns exemplos:

$$-110101 = 1x25 + 1x24 + 0x23 + 1x22 + 0x21 + 1x20$$

$$= 32 + 16 + 0 + 4 + 0 + 1$$

$$= 53$$

$$-1011101 = 1x26 + 0x25 + 1x24 + 1x23 + 1x22 + 0x21 + 1x20$$

$$= 64 + 0 + 16 + 8 + 4 + 0 + 1$$

$$= 93$$

Conversão Decimal - Binário

Conversão Decimal - Binário

- Conversão Decimal Binário
 - Outra forma: menos "matemática";

$$59_{10} = 32 + 16 + 8 + 0 + 2 + 1$$

= $1x2^5 + 1x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0$
= 111011_2

211	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
2048	1024	512	256	128	64	32	16	8	4	2	1

- Sistema Octal
 - O Sistema octal, tal como o nome indica, é formado por 8 símbolos ou "dígitos" diferentes. Estes símbolos são os dígitos 0, 1, 2, 3, 4, 5, 6, 7 do sistema decimal.
 - Vejamos a correspondência entre três sistemas de numeração:
 - Decimal
 - Binário
 - Octal

Tabela dos primeiros 10 números representados nas Bases 10, 2 e 8.

Decimal (10)	Binária (2)	Octal (8)
0	000	0
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	10
9	1001	11

Conversão Octal – Decimal

 Considere-se X₈ um numero escrito na base 8 constituído por vários símbolos S_i

$$X_8 = S_n S_1 S_0$$

Então X₈ escrito na base 10:

$$X_{10} = \sum_{i=0}^{n} S_i \times 8^i$$

Conversão Octal – Decimal

$$X_{10} = 1 \times 8^2 + 0 \times 8^1 + 7 \times 8^0$$

 $X_{10} = 71$

$$X_{10} = 2 \times 8^2 + 1 \times 8^1 + 5 \times 8^0$$

 $X_{10} = 141$

Conversão Decimal - Octal

Divisões sucessivas pela base 8 até quociente igual a 0.

Sendo X_{10} o número na base 10 e X_8 o número na base 8.

Sendo Q o quociente e R o resto da divisão.

$$X_8 = R_n R_{n-1} ... R_3 R_2 R_1$$

Conversão Decimal - Octal

Exemplo: 71₁₀ ➤ X₈

$$X_8 = 107$$

- Conversão Binário Octal
 - A conversão Binário Octal é feita transformando-se grupos de 3 dígitos binários, no sentido da direita para a esquerda, diretamente em símbolos da base octal.

X ₂ =101111	101	111
X ₈ =57	5	7
X ₂ =1100	001	100

X ₂ =1100	001	100
X ₈ =14	1	4

 Caso o último grupo à esquerda não possua 3 dígitos, deve-se completar com zeros.

- Conversão Octal Binário
 - A conversão de números em base Octal para a base Binária é feita transformando-se os símbolos

X ₈ =45	4	5
X ₂ =100101	100	101
X ₈ =31	3	1
X ₂ =011001	011	001

 Os zeros à esquerda do último grupo da esquerda podem ser omitidos, portanto: X₂=011001 ➤ X₂=11001

- Sistema Hexadecimal
 - O Sistema hexadecimal, tal como o nome indica, é formado por 16 símbolos "dígitos" diferentes. Estes símbolos são os conhecidos dígitos 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 do sistema decimal e as letras A, B, C, D, E, F.
 - Estas letras, em correspondência com o sistema decimal, equivalem aos valores 10, 11, 12, 13, 14, 15, respectivamente.
 - Vejamos a correspondência entre os três sistemas de numeração.

- Sistema Hexadecimal
 - O sistema de numeração hexadecimal é muito utilizado na programação de microprocessadores, especialmente nos equipamentos de estudo e sistemas de desenvolvimento.
 - É também neste sistema que são definidos os MAC ADDRESS de todos os equipamentos de rede, e endereços IPv6.
 - Tal como nos sistemas anteriores, podemos desenvolver qualquer número em potências da sua base, neste caso 16.
 - Símbolos básicos:
 - -0123456789ABCDEF
 - Repetição dos símbolos básicos:
 - 10 19 1A 1B 1C 1D 1E 1F 20 ...

- Sistema Hexadecimal
 - Correspondência entre os três sistemas de numeração:

Decimal	Binário	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	А
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

Conversões

Decimal	Binary	Hexadecimal
0	00000000	00
1	0000001	01
2	0000010	02
3	00000011	03
4	00000100	04
5	00000101	05
6	00000110	06
7	00000111	07
8	00001000	08
9	00001001	09
10	00001010	0A
11	00001011	0B
12	00001100	0C
13	00001101	0D
14	00001110	0E
15	00001111	0F
16	00010000	10
32	00100000	20
64	01000000	40
128	10000000	80
255	11111111	FF

Conversão Hexadecimal – Decimal

$$N^{\circ} = S_y \times 16^n + S_{y-1} \times 16^{n-1} + ... + S_1 \times 16^1 + S_0 \times 16^0$$

Exemplo 1:
$$X_{10}=(2A)_{16}$$

Solução:

$$X = 2 \times 16^1 + A \times 16^0$$

$$A = 10$$

$$X = 2 \times 16^1 + 10 \times 16^0$$

$$X = 32 + 10 = 42$$

Portanto:
$$(2A)_{16} = (42)_{10}$$

Exemplo 2:
$$Y_{10} = (B1)_{16}$$

Solução:

$$Y = B \times 16^1 + 1 \times 16^0$$

$$B = 11$$

$$Y = 11 \times 16^1 + 1 \times 16^0$$

$$Y = 176 + 1 = 177$$

Portanto:
$$(B1)_{16} = (177)_{10}$$

- Conversão Decimal Hexadecimal
 - O processo é idêntico a conversão Decimal Binário, dividindo-se o número Decimal pela base 16 até que o resultado seja zero.

- Conversão Binário Hexadecimal
 - A conversão Binário Hexadecimal é feita transformando-se grupos de quarto dígitos binários, no sentido da direita para a esquerda, diretamente em números hexadecimais.

Caso o último grupo à esquerda não possua 4 dígitos, deve-se completar com zeros.

- Conversão Hexadecimal Binário
 - A conversão de números Hexadecimais em Binários é feita transformando-se os símbolos Hexadecimais diretamente em números binários de 4 dígitos.

Portanto : $(10D)_{16} = (000100001101)_2$ ou $(10D)_{16} = (100001101)_2$

 Os zeros à esquerda do último grupo da esquerda podem ser omitidos.

Tabela dos primeiros 16 números representados nas Bases 2, 8, 10 e 16

Decimal (10)	Binária (2)	Octal (8)	Hexadecimal (16)
0	0	0	0
1	1	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1001	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

- Sistema de base n genérica:
 - Podemos generalizar as bases numéricas para qualquer base n.
 - Qualquer base n possui n símbolos ou "dígitos" diferentes, sendo o primeiro o '0'.
 - Exemplo:
 - Base 6, símbolos: 0, 1, 2, 3, 4, 5
 - Base 11, símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A

Conversão Base n genérica – Decimal

 Considere-se X_n um número escrito na base n constituído por vários símbolos S_i

$$X_n = S_n S_1 S_0$$

Então X_n escrito na base 10, (X_{10}) :

$$X_{10} = \sum_{i=0}^{n} S_i \times B^i$$

Conversão Decimal – Base n

Divisões sucessivas pela base n até quociente igual a 0.

Sendo X_{10} o número na base 10 e X_n o número na base n.

Sendo Q o quociente e R o resto da divisão.

$$X_n = R_n R_{n-1} ... R_3 R_2 R_1$$

Conversão Base n genérica – Decimal

Exemplo:
$$213_6 > X_{10}$$

$$X_{10} = 2 \times 6^2 + 1 \times 6^1 + 3 \times 6^0$$

 $X_{10} = 81$

Conversão Decimal – Base n genérica

$$X_6 = 3 \ 1 \ 1$$

Resumo de conversões entre bases:

- A figura representa:
 - A conversão entre a base decimal e as restantes bases:
 - Binário
 - Octal
 - Hexadecimal
 - Base n
 - A conversão entre binário e:
 - Octal
 - Hexadecimal

- Notação de números Binários Positivos e Negativos (1)
 - Em aplicações práticas, os números binários devem ser representados com sinal. Uma forma de representar é adicionar um bit de sinal ao número (Signed magnitude).
 - Este bit é adicionado à esquerda do número, por convenção se for 0, o número em questão é positivo, caso seja 1, o número é negativo.

- Notação de números Binários Positivos e Negativos (2)
 - Representar em binários sinal-módulo os números 23₁₀, -15₁₀, 11₁₀ e -9₁₀ usando palavras de 8 bits:

```
23_{10} = 10111_2 usando 8 bits temos: 00010111_2 15_{10} = 1111_2 usando 8 bits temos: 00001111_2 como o sinal é negativo vem: -15_{10} = 10001111_2. 11_{10} = 1011_2 usando 8 bits temos: 00001011_2 9_{10} = 1001_2 usando 8 bits temos: 00001001_2, como o sinal é negativo vem: -9_{10} = 10001001_2
```


- Adição com números binários
 - A adição no sistema binário é realizada exatamente da mesma forma que uma adição no sistema decimal.

Exemplos

Créditos

- Nuno Veiga, Rui Vasco Monteiro (2015-2021)
- Nuno Rodrigues, Nuno Veiga (2014-2015 em AC)
- Paulo Costa, 2013