

Universidade Federal do Ceará Faculdade de Economia

Métodos Quantitativos

Vicente Lima Crisóstomo

Fortaleza, 2020

Sumário

- Introdução
- Estatística Descritiva
- Probabilidade
- Distribuições de Probabilidades
- Amostragem e Distribuições Amostrais
- Estimação
- Testes de Significância
- Análise de Variância
- Teste de Significância para Proporções
- Testes Não Paramétricos
- Correlação e Regressão

Distribuições de Probabilidades

- Uma Distribuição de Probabilidades é
 - Uma distribuição de freqüências para os resultados de um espaço amostral
 - Uma distribuição de freqüências para os resultados de uma variável aleatória
- As freqüências de uma DP
 - São relativas
 - São probabilidades
 - Tais probabilidades indicam
 - Percentagem de vezes que se pode esperar a ocorrência dos vários resultados de uma variável aleatória num grande número de observações

Variável aleatória

- Variável aleatória
 - Variável tem valores que variam de uma observação para outra devido à chance
 - Função com valores numéricos
 - Valor determinado por fatores de chance
 - Deve ser definida associada a uma amostra ou experimento
 - VA pode ter um número infinito de valores possíveis

Variável aleatória

- Exemplos de variáveis aleatórias
 - Número de caras no lance de uma moeda
 - Número de caras no lance de três moedas
 - Número de clientes que entram na agência bancária a cada 30 min
 - Peso dos clientes de uma academia de ginástica
 - Salário dos funcionários de uma empresa
 - Número de acidentes de trânsito por dia em certa região da cidade
 - Número de aparelhos defeituosos por remessa
 - Conteúdo de garrafas de suco industrializado
 - Tempo de conexão de chamadas telefônicas
 - Rentabilidade de empresas brasileiras

Variável aleatória

- Variável aleatória
 - Variável aleatória DISCRETA
 - Valores podem ser contados
 - Exemplos
 - Número de ocorrências (enfermidades, acidentes, chamadas...)
 - Variável aleatória CONTÍNUA
 - Pode tomar qualquer valor em certo intervalo
 - Exemplos
 - Peso, altura, salário, rentabilidade, endividamento ...

Valor esperado de uma variável aleatória

- Variável aleatória Discreta e Contínua
 - Distinção importante entre VA Discreta e Contínua
 - Tipo de variável determina o modelo (distribuição) de probabilidades
 - Valor esperado de uma variável aleatória
 - Em função do número de ocorrências
 - O valor esperado é uma média a longo prazo
 - Média que leva em consideração as ocorrências e respectivas probabilidades

$$E(x) = \sum_{i=1}^{n} p_i x_i$$

Valor esperado de uma variável aleatória

Número de acidentes em um cruzamento em certo período de tempo

N. Acid. (x _i)	Freq. Relativa (P(x))		
0	0,10		
1	0,15		
2	0,20		
3	0,30		
4	0,20		
5	0,05		
	1,00		

x _i * P(x)			
0,00			
0,15			
0,40			
0,90			
0,80			
0,25			
E(x)=2,50 acidentes			

$$E(x) = \sum_{i=1}^{n} p_i x_i = 2,5$$

Distribuições de Probabilidades

- Se sabe-se o número possível de ocorrências
 - Pode-se calcular o Valor Esperado sem observações
 - Quando é possível estimar o número de ocorrências
 - Jogadas de um dado equilibrado
 - Retirada de cartas de um baralho sem vícios
- A maioria das situações não são como estas
 - Prazo para execução de um projeto
 - Retorno financeiro de um projeto
 - Retorno financeiro do investimento em ações
 - Arrecadação de impostos de um governo
 - Número de falhas de certo modelo de equipamento

Distribuições de Probabilidades

- Uma Distribuição de Probabilidades é
 - Uma distribuição de freqüências para os resultados de espaço amostral
 - Uma distribuição de freqüências para os resultados de uma variável aleatória
 - As freqüências são relativas, ou probabilidades
 - Probabilidade total atribuída a um espaço amostral (1 ou 100%)
 - É distribuída pelos diversos resultados possíveis
 - Mostra a proporção das vezes que a VA tende a assumir cada um dos diversos valores

V.A. = Número de coroas (C) em duas jogadas de uma moeda equilibrada

Resultado	Valor de VA	Probabilidade de cada valor de VA	P(x)
KK	0	0,25	0,25
KC	1	0,25	0,50
CK	1	0,25	
CC	2	0,25	0,25
		1,00	1,00

V.A. = Número de coroas (C) em duas jogadas de uma moeda equilibrada

Resultado	Valor de VA	Probabilidade de VA	P(x)	P(x) acumulada
KK	0	0,25	0,25	0,25
KC	1	0,25	0,50	
CK	1	0,25		0,75
CC	2	0,25	0,25	1,00
		1,00	1,00	

Distribuições de Probabilidades

- Normalmente n\u00e3o se calcula probabilidades individuais para obter uma DP
- Há tabelas de probabilidades
- Importante
 - Usar DP para solucionar situações
 - Explicar algo, algum fenômeno
- Aplicação de uma DP a um problema
 - Depende do grau de aproximação
 - Situação real e conjunto de condições admitidas na DP

Distribuições de Probabilidades

- Essência da Análise Estatística
 - Confrontar hipóteses de uma DP com especificações de determinado problema
- <u>Distribuições DESCONTÍNUAS</u>
 - DP que envolvem VA discretas
 - VAs discretas estão submetidas a contagem
- Distribuições CONTÍNUAS
 - DP que envolvem VA discretas com grande número de resultados possíveis
 - VAs contínuas

Distribuições *Descontínuas* de Probabilidades

- Envolvem variáveis aleatórias discretas
 - VA relativas a dados que podem ser contados
 - Número de ocorrências por amostra
 - Número de ocorrências por intervalo de tempo
 - Número de ocorrências num espaço geográfico
- Distribuição BINOMIAL
 - Resultados podem ser agrupados em duas classes, ou categorias
- Distribuição de POISSON
 - Útil para descrever probabilidade de ocorrências num certo campo ou intervalo

- Resultados agrupados em duas categorias
 - Dados Nominais
- Categorias Mutuamente Excludentes
 - Clara pertinência de observações a classes
- Categorias Coletivamente Exaustivas
 - Nenhum outro resultado afora os dois é possível
- Exemplos
 - Respostas a testes Verdadeiro ou Falso
 - Respostas Sim ou Não
 - Produto com ou sem defeito
 - Empresa listada ou n\u00e3o na Bolsa de Valores
 - Empresa do setor Têxtil ou não
 - Empresa exporta para o mercado internacional ou não
 - País localizado no continente americano ou não

- Mesmo resultados de VA contínuas podem ser enquadrados em classes mutuamente exclusivas
 - Indivíduos com colesterol acima do valor X
 - Empresas com total de ativos superior à mediana do grupo
 - Indivíduos com idade superior a Y
 - Velocidade de tráfego do veículo dentro do limite permitido
 - País com renda per capta acima de um valor de referência ou não
 - Tempo usado pelo atleta no percurso superior a Z
 - Resultado do experimento (prova), ou, categorias de uma Distribuição Binomial
 - SUCESSO ou FRACASSO/FALHA

- Condições para uso da Distribuição Binomial
 - N observações, ou provas, realizadas em condições idênticas
 - Cada prova tem somente dois resultados possíveis
 - Probabilidade p de sucesso e (1 p) de falha são constantes em todas as provas
 - Resultados das provas são independentes
- Duas formas, ou métodos, para encontrar probabilidades de uma VA com distribuição binomial
 - Fórmula Binomial
 - Tabelas de probabilidades binomiais

■ Fórmula Binomial

- Mensurar P(Sucesso)
- "Mapear" resultados possíveis (Sucessos e Fracassos)
- Calcular a P de cada resultado (Sucesso e Fracasso)
- Somar as probabilidades (trata-se de alternativas)
- Necessita-se
 - Probabilidade de sucesso de cada experimento
 - Número de observações
 - Número de sucessos desejados/esperados que deseja-se saber a probabilidade de ocorrência.

Exemplo

- Qual a probabilidade de 2 sucessos em 4 provas de certo experimento, sendo a probabilidade de sucesso em cada prova de 60%?
- P(sucesso) = 0.6 e P(fracasso) = 1 0.6 = 0.4

Resultados

Provas 1 -> 4 Probabilidade

```
P(S \in S \in F \in F) = P(S) \times P(S) \times P(F) \times P(F) = (0,6) \times (0,6) \times (0,4) \times (0,4) = (0,6) \times (0,6)
SSFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0,0576
SFSF
                                                                                                                                                                                                                                                                                                                         P(S \in F \in S \in F) = P(S) \times P(F) \times P(S) \times P(F) = (0,6) \times (0,4) \times (0,6) \times (0,4) = (0,6) \times (0,4) \times (0,6) \times (0,6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0,0576
                                                                                                                                                                                                                                                                                                                         P(S \in F \in F \in S) = P(S) \times P(F) \times P(F) \times P(S) = (0,6) \times (0,4) \times (0,4) \times (0,6) =
SFFS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0,0576
                                                                                                                                                                                                                                                                                                                         P(F \in S \in S \in F) = P(F) \times P(S) \times P(S) \times P(F) = (0,4) \times (0,6) \times (0,6) \times (0,4) =
FSSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0,0576
                                                                                                                                                                                                                                                                                                                         P(F \in S \in F \in S) = P(F) \times P(S) \times P(F) \times P(S) = (0,4) \times (0,6) \times (0,4) \times (0,6) = (0,4) \times (0,6) \times (0,6)
FSFS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0,0576
FFSS
                                                                                                                                                                                                                                                                                                                           P(F \in F \in S \in S) = P(F) \times P(F) \times P(S) \times P(S) = (0,4) \times (0,4) \times (0,6) \times (0,6) = (0,4) \times (0,4) \times (0,6) \times (0,6) = (0,4) \times (0,6) \times (0,6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0,0576
                                                                                                                                                                                                                                                                                                                           P(SSFF ou SFSF ou SFFS ou FSSF ou FSSS) =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0,3456
```

- Fórmula Binomial
 - Considerar todos os sucessos ocorrendo inicialmente
 - Depois as falhas
 - Para 2 sucessos e 2 falhas:
 - $(0,6).(0,6).(0,4).(0,4) = (0,6)^2.(0,4)^2 = 0,0576$
 - Há seis possibilidades de resultados
 - $P(2S e 2F) = 6 \times 0.0576 = 0.3456$
 - Levando em consideração
 - Número de maneiras de resultados e
 - probabilidade de uma delas

- Fórmula Binomial
 - n número de provas (observações)
 - x número de sucessos
 - p probabilidade de sucesso em cada observação

$$P(x) = \binom{n}{x} [P(sucesso)]^x [P(falha)]^{n-x}$$

Onde (ⁿ_x) é o número de formas de obter-se x sucessos e (n – x) falhas em n provas

$$C_{n,x} = \binom{n}{x} = \frac{n!}{x! (n-x)!}$$

- Observe-se que se deseja
 - x sucessos em n provas
 - Tem-se então (n x) falhas nas n provas
 - P(sucesso) + P(falha) = 1
 - P(falha) = 1 P(sucesso)

- Para o exemplo anterior
 - Qual a probabilidade de 2 sucessos em 4 provas sendo a probabilidade de sucesso em cada prova de 60%?
 - n = 4 (número de provas (observações))
 - x = 2 (número de sucessos ao longo do experimento)
 - p = 0,6 (probabilidade de sucesso em cada prova)

$$P(2) = {4 \choose 2} (0,6)^2 [(1-0,6)]^{4-2} = 0,3456$$

■ Tabelas de Distribuição BINOMIAL

■ Tabelas de Probabilidades

- Cálculos prévios de probabilidades para um conjunto de situações
 - Número de provas (n)
 - Número de sucessos que se deseja (x)
 - Probabilidade individual de sucesso
- Resultados individualizados
 - Obtém-se a probabilidade de um valor específico
 - Função de distribuição de probabilidades individuais
- Resultados acumulados
 - Obtém-se a probabilidade combinada de um conjunto de resultados
 - Função de distribuição de probabilidades acumuladas

Tabela de Distribuição BINOMIAL

Probabilidade individual de sucesso em um experimento

n	X	<u>0,0500</u>	<u>0,1000</u>	<u>0,1500</u>	<u>0,2000</u>	<u>0,2500</u>	<u>0,3000</u>	<u>0,3500</u>	<u>0,4000</u>	<u>0,4500</u>	<u>0,5000</u>	<u>0,5500</u>	<u>0,6000</u>
1	0	0,9500	0,9000	0,8500	0,8000	0,7500	0,7000	0,6500	0,6000	0,5500	0,5000	0,4500	0,4000
1	1	0,0500	0,1000	0,1500	0,2000	0,2500	0,3000	0,3500	0,4000	0,4500	0,5000	0,5500	0,6000
2	0	0,9025	0,8100	0,7225	0,6400	0,5625	0,4900	0,4225	0,3600	0,3025	0,2500	0,2025	0,1600
2	1	0,0950	0,1800	0,2550	0,3200	0,3750	0,4200	0,4550	0,4800	0,4950	0,5000	0,4950	0,4800
2	2	0,0025	0,0100	0,0225	0,0400	0,0625	0,0900	0,1225	0,1600	0,2025	0,2500	0,3025	0,3600
3	0	0,8574	0,7290	0,6141	0,5120	0,4219	0,3430	0,2746	0,2160	0,1664	0,1250	0,0911	0,0640
3	1	0,1354	0,2430	0,3251	0,3840	0,4219	0,4410	0,4436	0,4320	0,4084	0,3750	0,3341	0,2880
3	2	0,0071	0,0270	0,0574	0,0960	0,1406	0,1890	0,2389	0,2880	0,3341	0,3750	0,4084	0,4320
3	3	0,0001	0,0010	0,0034	0,0080	0,0156	0,0270	0,0429	0,0640	0,0911	0,1250	0,1664	0,2160
4	0	0,8145	0,6561	0,5220	0,4096	0,3164	0,2401	0,1785	0,1296	0,0915	0,0625	0,0410	0,0256
4	1	0,1715	0,2916	0,3685	0,4096	0,4219	0,4116	0,3845	0,3456	0,2995	0,2500	0,2005	0,1536
4	2	0,0135	0,0486	0,0975	0,1536	0,2109	0,2646	0,3105	0,3456	0,3675	0,3750	0,3675	0,3456
4	3	0,0005	0,0036	0,0115	0,0256	0,0469	0,0756	0,1115	0,1536	0,2005	0,2500	0,2995	0,3456
4	4	0,0000	0,0001	0,0005	0,0016	0,0039	0,0081	0,0150	0,0256	0,0410	0,0625	0,0915	0,1296

- Consulte a tabela de Distribuição Binomial
 - Qual a probabilidade de um vendedor autônomo realizar nenhuma venda, em 4 visitas. Estudos prévios mostram que a probabilidade de sucesso em uma venda é de 25%?
 - 31,64%
 - E a probabilidade de 1 venda?
 - 42,19%
 - E a probabilidade de 2 vendas?
 - 21,09%
 - E a probabilidade de 3 vendas?
 - 4,69%
 - E a probabilidade de 4 vendas?
 - 0,39%

■ Tabelas de Distribuição BINOMIAL

- Seja p(x) =
- Resultados individualizados
 - Função de probabilidades

$$f(x|\lambda) = P(X=x) = \binom{n}{x} \lambda^x [1-\lambda]^{n-x}$$

- Resultados acumulados
 - Função de probabilidades

$$f(x|\lambda) = P(X \le x) = \sum_{i=0}^{x} {n \choose i} \lambda^{i} [1-\lambda]^{n-i}$$

Tabelas de Distribuição BINOMIAL

- Buscar na tabela de Distribuição BINOMIAL
 - Sejam:
 - P(s) = probabilidade de sucesso em cada observação
 - n = número de observações
 - x = número de sucessos

$$P(s) = 0.30$$
; $n = 5$; $x = 3$; $P(x = 3) = 0.1323$

$$P(s) = 0.45$$
; $n = 7$; $x = 6$; $P(x = 6) = 0.0320$

$$P(s) = 50\%$$
; $n = 6$; $x = 5$; $P(x = 5) = 0.0937$

$$P(s) = 25\%$$
; $n = 7$; $x = 0$; $P(x = 0) = 0.1335$

$$P(s) = 25\%$$
; $n = 7$; $x = 3$; $P(x = 3) = 0.1730$

■
$$P(s) = 25\%$$
; $n = 7$; $x = 7$; $P(x = 7) = 0,0001$

■
$$P(s) = 0.5\%$$
; $n = 5$; $x = 0$; $P(x = 0) = 0.0313$

$$P(s) = 0.5\%$$
; n = 5; x = 3; $P(x = 3) = 0.3125$

■
$$P(s) = 0.5\%$$
; $n = 5$; $x = 5$; $P(x = 5) = 0.0312$

$$P(x) = \binom{n}{x} [P(sucesso)]^x [P(falha)]^{n-x}$$

Tabela de Distribuição BINOMIAL Acumulada

Probabilidade individual de sucesso em um experimento

P(SUCESSO EM UM EXPERIMENTO)

```
n x 0,0500 0,1000 0,1500 0,2000 0,2500 0,3000 0,3500 0,4000 0,4500 0,5000 0,5500 0,6000
1 0 0,9500 0,9000 0,8500 0,8000 0,7500 0,7000 0,6500 0,6000 0,5500 0,5000 0,4500 0,4000
1 1 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
2 0 0,9025 0,8100 0,7225 0,6400 0,5625 0,4900 0,4225 0,3600 0,3025 0,2500 0,2025 0,1600
2 1 0,9975 0,9900 0,9775 0,9600 0,9375 0,9100 0,8775 0,8400 0,7975 0,7500 0,6975 0,6400
2 2 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
3 0 0,8574 0,7290 0,6141 0,5120 0,4219 0,3430 0,2746 0,2160 0,1664 0,1250 0,0911 0,0640
3 1 0,9928 0,9720 0,9393 0,8960 0,8438 0,7840 0,7183 0,6480 0,5748 0,5000 0,4253 0,3520
3 2 0,9999 0,9990 0,9966 0,9920 0,9844 0,9730 0,9571 0,9360 0,9089 0,8750 0,8336 0,7840
3 3 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
4 0 0,8145 0,6561 0,5220 0,4096 0,3164 0,2401 0,1785 0,1296 0,0915 0,0625 0,0410 0,0256
4 1 0,9860 0,9477 0,8905 0,8192 0,7383 0,6517 0,5630 0,4752 0,3910 0,3125 0,2415 0,1792
4 2 0,9995 0,9963 0,9880 <mark>0,9728</mark> 0,9492 0,9163 0,8735 0,8208 0,7585 0,6875 0,6090 0,5248
4 3 1,0000 0,9999 0,9995 0,9984 0,9961 0,9919 0,9850 0,9744 0,9590 0,9375 0,9085 0,8704
4 4 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
```

Tabelas de Distribuição BINOMIAL

- Buscar na tabela de Distribuição BINOMIAL acumulada
 - Sejam:
 - P(s) = probabilidade de sucesso em cada observação
 - n = número de observações
 - x = número de sucessos
- P(s) = 0.2; n = 4; $x \le 2$; $P(x \le 2) = P(x = 0 \text{ ou } x = 1 \text{ ou } x = 2) = P(x = 0) + P(x = 1) + P(x = 2) = 0.9728$
- P(s) = 50%; n = 6; $x \le 5$; $P(x \le 5) = 0.8555$
- P(s) = 25%; n = 7; x < 4; P(x < 4) = P(x = 0 ou x = 1 ou x = 2 ou x = 3) = P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3) = 0,9294
- P(s) = 35%; n = 6; $1 < x \le 4$; P($1 < x \le 4$) = P(x = 2 ou x = 3 ou x = 4) = P(x = 2) + P(x = 3) + P(x = 4) = 0,6586 = P($x \le 4$) P($x \le 4$) = 0,9777 0,3191 = 0,6586

$$P(x) = \binom{n}{x} [P(sucesso)]^x [P(falha)]^{n-x}$$

■ Gráfico de Distribuição BINOMIAL

P(s) = 50%; n = 5; x = 0 ou 1 ou 2 ou 3 ou 4 ou 5

■
$$P(s) = P(f) = 50\% => equilíbrio$$

Gráfico de Distribuição BINOMIAL: N = 6

- Características da Distribuição BINOMIAL
 - Média de uma DB é a média a longo prazo, ou o valor Esperado de uma VA Binomial
 - Desvio Padrão de um DB indica até que ponto os valores amostrais tendem a afastar-se da média
 - Média e Desvio Padrão de uma DB podem ser expressos em função do número, ou percentagem, de sucessos

- Características da Distribuição BINOMIAL
 - Em uma Distribuição Binomial
 - Média e Desvio Padrão podem ser expressos em função do número de sucessos, e/ou da percentagem de sucessos

	Média	Desvio Padrão
Número de sucessos	n. p	$\sqrt{n.p(1-p)}$
Percentagem de sucessos	P	$\sqrt{\frac{p.(1-p)}{n}}$

Distribuição de POISSON

- Uma Distribuição de Poisson
 - Distribuição discreta de probabilidade aplicável a ocorrências de um evento em um intervalo especificado
 - Descreve probabilidades de ocorrência num campo, ou intervalo, contínuo

Distribuição de Poisson

Exemplos:

- Defeitos por metro quadrado
- Unidades vendidas por dia
- Cabeças de gado por hectare
- Cirurgias cardíacas realizadas por dia
- Chamadas recebidas por hora em um call-center
- Número de carros que chegam a um posto por hora
- Número de navios que atracam em um porto por semana

37

Número de requisições a um servidor Web por minuto

Métodos Quantitativos

- Distribuição de Poisson
 - Unidade é contínua
 - A variável é aleatória

Métodos Quantitativos 38

Distribuição de Poisson

- Baseada em hipóteses
 - 1. Probabilidade de ocorrência igual em todo o campo de observação
 - 2. Probabilidade de mais de uma ocorrência num único ponto é aproximadamente zero
 - 3. Número de ocorrências em qualquer intervalo independe do número de ocorrências em outros intervalos
- Características da Distribuição de Poisson
 - Limite inferior do número de ocorrências:
 - Zero
 - Limite superior do número de ocorrências
 - Teoricamente infinito

 DP representa a <u>probabilidade de que o evento</u> <u>ocorra um determinado número de vezes em</u> <u>um intervalo</u>, quando a <u>taxa de ocorrência é</u> <u>fixa</u>

$$P(x) = \frac{e^{-\lambda t}(\lambda t)^x}{x!}$$

- x = número de ocorrências do evento no intervalo a calcular-se a probabilidade de ocorrência
- λt = taxa média (esperada) λ de ocorrências no intervalo dado t
 - Referido por μ (= λt)
- e = base dos logaritmos naturais

Gráfico de uma Distribuição de Poisson

A taxa média esperada deve ter a maior probabilidade

Gráfico de uma Distribuição de Poisson

A taxa média esperada deve ter a maior probabilidade

Métodos Quantitativos 42

Exemplo: Suponha que os defeitos em peças de tecido possam ser aproximados por um processo de Poisson com média de 0,2 defeitos por m². Verificando-se peças de tecido de 6m², determine qual a probabilidade de encontrar-se 2 defeitos.

$$P(x=2) = \frac{e^{-\lambda t}(\lambda t)^x}{x!} = \frac{e^{-0.2.6}(0.2.6)^2}{2!} = 0.21686$$

$$e = 2,71828183$$

Exemplo: Suponha que as chegadas de navios ao porto Delta possam ser aproximados por um processo de Poisson com média de 1,3 atracações por dia. Analisando-se um período de 3 dias, qual a probabilidade de ter-se 5 navios a atracar neste período.

$$P(x=5) = \frac{e^{-\lambda t}(\lambda t)^x}{x!} = \frac{e^{-1.3.3}(1.3.3)^5}{5!} = 0.15219$$

$$e = 2,71828183$$

Tabela de Distribuição de Probabilidades POISSON

 $\lambda t = \mu$ (taxa média esperada)

<u>x</u>	1	1,2	2,1	3	3,9	4,3	7	14	
0	0,36788	0,30119	0,12246	0,04979	0,02024	0,01357	0,00091	0,00000	
1	0,36788	0,36143	0,25716	0,14936	0,07894	0,05834	0,00638	0,00001	
2	0,18394	0,21686	0,27002	0,22404	0,15394	0,12544	0,02234	0,00008	
3	0,06131	0,08674	0,18901	0,22404	0,20012	0,17980	0,05213	0,00038	
4	0,01533	0,02602	0,09923	0,16803	0,19512	0,19328	0,09123	0,00133	
5	0,00307	0,00625	0,04168	0,10082	0,15219	0,16622	0,12772	0,00373	
6	0,00051	0,00125	0,01459	0,05041	0,09893	0,11913	0,14900	0,00870	
7	0,00007	0,00021	0,00438	0,02160	0,05512	0,07318	0,14900	0,01739	
8	0,00001	0,00003	0,00115	0,00810	0,02687	0,03933	0,13038	0,03044	
9	0,00000	0,00000	0,00027	0,00270	0,01164	0,01879	0,10140	0,04734	
10	0,00000	0,00000	0,00006	0,00081	0,00454	0,00808	0,07098	0,06628	
11	0,00000	0,00000	0,00001	0,00022	0,00161	0,00316	0,04517	0,08436	
12	0,00000	0,00000	0,00000	0,00006	0,00052	0,00113	0,02635	0,09842	
13	0,00000	0,00000	0,00000	0,00001	0,00016	0,00037	0,01419	0,10599	
14	0,00000	0,00000	0,00000	0,00000	0,00004	0,00011	0,00709	0,10599	
15	0,00000	0,00000	0,00000	0,00000	0,00001	0,00003	0,00331	0,09892	
Métodos Quantitativos 45									

Exemplo: Suponha que os defeitos em peças de tecido possam ser aproximados por um processo de Poisson com média de 0,2 defeito por m². verificando-se peças de tecido de 6m², determine qual a probabilidade de encontrar-se menos de 2 defeitos.

$$P(x < 2) = P(x \le 1) =$$

$$P(x=0) + P(x=1) = \frac{e^{-0.2.6}(0.2.6)^0}{0!} + \frac{e^{-0.2.6}(0.2.6)^1}{1!} = 0.301 + 0.361 = 0.662$$

$$e = 2,71828183$$

Tabela de Distribuição de Probabilidades POISSON

X	0,01	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
0	0,99	0,951	0,905	0,819	0,741	0,67	0,607	0,549	0,497	0,449	0,407
1	1	0,999	0,995	0,982	0,963	0,938	0,91	0,878	0,844	0,809	0,772
2		1	1	0,999	0,996	0,992	0,986	0,977	0,966	0,953	0,937
3				1	1	0,999	0,998	0,997	0,994	0,991	0,987
4						1	1	1	0,999	0,999	0,998
5									1	1	1
X	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2
0	0,368	0,333	0,301	0,273	0,247	0,223	0,202	0,183	0,165	0,15	0,135
1	0,736	0,699	0,663	0,627	0,592	0,558	0,525	0,493	0,463	0,434	0,406
2	0,92	0,9	0,879	0,857	0,833	0,809	0,783	0,757	0,731	0,704	0,677
3	0,981	0,974	0,966	0,957	0,946	0,934	0,921	0,907	0,891	0,875	0,857
4	0,996	0,995	0,992	0,989	0,986	0,981	0,976	0,97	0,964	0,956	0,947
5	0,999	0,999	0,998	0,998	0,997	0,996	0,994	0,992	0,99	0,987	0,983
6	1	1	1	1	0,999	0,999	0,999	0,998	0,997	0,997	0,995
7					1	1	1	1	0,999	0,999	0,999
8									1	1	1

Exemplo: Suponha que os defeitos em peças de tecido possam ser aproximados por um processo de Poisson com média de 0,2 defeito por m². verificando-se peças de tecido de 6m², determine a probabilidade de encontrar-se de 2 ou mais defeitos.

$$P(x \ge 2) = 1 - P(x < 2) =$$

$$1 - [P(x = 0) + P(x = 1)] = 1 - 0,662 = 0,338$$

$$e = 2,71828183$$

Tabela de Distribuição de POISSON

