Central Tendency

This comic was created in the course of the research project Comixplain, funded by St. Pölten UAS in the course of the Innovation Call 2022.

Project Team:

Victor-Adriel De-Jesus-Oliveira Hsiang-Yun Wu Christina Stoiber Magdalena Boucher Alena Ertl

Contact:

victor.oliveira@fhstp.ac.at

Illustrations:

Magdalena Boucher & Alena Ertl

Not really... I collected a lot of data, but I only have a few minutes to present everything!

But there are so many interesting aspects! I just don't know what to focus on...

Okay, see these apples? Let's say we measured their weight. The weight is our variable, and we have different values.

These are our six apples here:

200 180 190 190 190 180

To calculate the mean, we add all the weight values together...

200 + 180 + 190 + 190 + 190 + 180

...and then divide by the number of apples we have...

(200 + 180 + 190 + 190 + 190 + 180)

There is one more thing to explain:
If we add this whole basket of tiny
apples to our set, the first tiny
apple is not an outlier* anymore.

* Outliers are extreme values that can be errors in measurement, or accurate reports of rare events.

The mode defines the most frequently occuring value(s) in a dataset.

In this case, we have multiple modes, but there can also be just one, or even no mode at all.

You can apply mean, median, and mode to different samples of apples. But often, some will represent the data better than others.

Mode

70 480 190 200

70, 180, 181, 190, 191, 191, 200

180, 180, 190, 190, 190, 200

M = 171.8 good MD = 190 parameters Mode = 191 v 60, 70, 70, 70, 80, 180, 180, 190, 190, 190, 200

M = 134.5 good MD = 180 parameter Mode = 70 & 190

Okay, thank you... I've learned a lot. Now I just have to apply this to the data I have to present. It's from an app that tracks heart rate measurements.

User ID	Heart Rate (bpm)	Time of Use ©	User Rating ★★★
1	45	13:00	1
2	50	9:00	5
3	55	10:00	3
4	57	9:00	4
5	63	14:00	5
6	70	15:00	5
7	65	16:00	4
8	75	15:00	2

That should be doable - take a look at your data and follow the same steps we just did with the apples! You can use the next page for your calculations.

HEART RATE

Calculating the MEAN:

$$\frac{45+50+55+57+63+70+65+75}{8 \text{ users}} = \frac{480}{8} = 60 \text{ bpm}$$

Calculating the MEDIAN:

If there are two central values, the mean of the two values is the median: (57+63)/2 = 60bpm)

Calculating the MODE:

45, 50, 55, 57, 63, 70, 65, 75

Each value only exists once there is no mode!

If the distribution of the values is symmetrical, without any distortions, the mean is equal to the median.

MOST FREQUENT TIME OF USE

Calculating the MEAN:

$$\frac{9+9+10+13+14+15+15+16}{8 \text{ users}} = \frac{101}{8} = 12.6?$$

Calculating the MEDIAN:

Time of use is not a quantitative value - so calculating mean and

Calculating the MODE:

9:00, 10:00, 13:00, 14:00, 15:00, 16:00

2x 1x 1x 1x 2x 2 modes:

9:00 & 15:00

Mode is not only suited for multimodal distributions, but also

when working with ordinal and

categorical data.

STAR RATING

Calculating the MEAN:

$$\frac{1+2+3+4+4+5+5+5}{8 \text{ users}} = \frac{29}{8} = 3.6 \text{ stars}$$

Calculating the MEDIAN:

Calculating the MODE:

For datasets with a skewed distribution, the median is a better way to describe central tendency.

Sources: Downey, A. (2014). Think stats: exploratory data analysis. O'Reilly Media, Inc. Field, A. (2022). An adventure in statistics: The reality enigma. Sage.

Central Tendency © 2022 by Comixplain Team: Victor-Adriel De-Jesus-Oliveira, Hsiang-Yun Wu, Christina Stoiber, Magdalena Boucher, and Alena Ertl, with illustrations by Magdalena Boucher and Alena Ertl, all employed by Sankt Pölten University of Applied Sciences is licensed under CC BY-SA 4.0. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/