轻量级分组密码 PRESENT

1 PRESENT

PRESENT 是一个轻量级分组密码算法,由 Bogdanov、Knudsen 等人在 2007 年设计。

PRESENT 采用 SPN 结构设计,分组长度为 64 比特,密钥长度包括 80 比特和 128 比特两种,一共 31 轮。作者认为在 RFID 标签、传感器等物联网低功耗节点中,80 比特的密钥能够提供足够的安全性,因此推荐使用 80 比特的密钥,128 比特的密钥可以用在安全性要求更高的场景。

1.1 加密算法

PRESENT 加密算法的结构如图 1 所示。算法先将轮函数迭代 31 次,轮函数包括轮密钥加(addRoundKey)、非线性置换 S 层(sBoxLayer)、线性置换 P 层(pLayer),再经过一步轮密钥加后得到密文。

设 64 比特的明文

$$P = p_{63} \cdots p_2 p_1 p_0$$

其中 p_0 表示最低比特位, p_{63} 表示最高比特位。轮函数各步操作如下:

- ① 轮密钥加完成 64 比特中间状态 与 64 比特轮子密钥异或;
- ② 设 S 层输入 $W = w_{63} \cdots w_2 w_1 w_0$,输出 $V = v_{63} \cdots v_2 v_1 v_0$,则:

$$v_3 v_2 v_1 v_0 = S(w_3 w_2 w_1 w_0)$$

$$v_7 v_6 v_5 v_4 = S(w_7 w_6 w_5 w_4)$$

.

$$v_{63}v_{62}v_{61}v_{60} = S(v_{63}v_{62}v_{61}v_{60})$$

S 盒的取值如表 1;

③ P 层将输入的每一比特映射到 输出的另一比特,取值如表 2 所示;

图1 PRESENT 加密结构

表1	PRESENT S	盒 直值表
1	INDULITO	m. ++ 1H. 1/

X																
S(x)	С	5	6	В	9	0	Α	D	3	Ε	F	8	4	7	1	2

表2 P 层置换表

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
P(i)	0	16	32	48	1	17	33	49	2	18	34	50	3	19	35	51
i	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
P(i)	4	20	36	52	5	21	37	53	6	22	38	54	7	23	39	55
i	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
P(i)	8	24	40	56	9	25	41	57	10	26	42	58	11	27	43	59
i	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
P(i)	12	28	44	60	13	29	45	61	14	30	46	62	15	31	47	63
P(i)	12	28	44	60	13	29	45	61	14	30	46	62	15	31	47	63

P 层表示为公式如 1)所示。

$$P(i) = \begin{cases} (16 \times i)\% 63 & , i \neq 63 \\ 63 & , i = 63 \end{cases}$$
 1)

1.2 解密算法

解密先将解密轮函数迭代 31 次,最后经过一次轮密钥加得到明文。与加密不同的是:

- ① 解密轮函数依次是:轮密钥加、线性置换逆P 层(P^{-1})、非线性置换逆S 层:
- ② 轮密钥加实现中间状态与轮子密钥异或,轮子密钥的使用顺序与加密相反,依次是 rk_{32} 、 rk_{31} 、.....、 rk_2 ,最后一步轮密钥加使用 rk_1 ;
- ③ P^{-1} 层表示为公式如 2);

$$P^{-1}(i) = \begin{cases} (4 \times i)\%63 & , i \neq 63\\ 63 & , i = 63 \end{cases}$$
 2)

④ 逆 S 层依次将连续 4 比特经过逆 S 盒 (S^{-1}) , S^{-1} 的取值如表 3。

 表3 PRESENT S^{-1} 盒真值表

 x
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 A
 B
 C
 D
 E
 F

 $S^{-1}(x)$ 5
 E
 2
 8
 C
 1
 2
 D
 B
 4
 6
 3
 0
 7
 9
 A

1.3 密钥扩展算法

- 2 软件实现
- 2.1 基本实现
- 2.2 一个分组并行实现
- 2.3 64 分组并行

代码

- [1] 基本实现: https://github.com/michaelkitson/Present-8bit
- [2] 分组内部并行: https://github.com/bozhu/PRESENT-C
- [3] 分组之间并行: https://github.com/pfasante/present
- [4] https://github.com/pfasante/present 给出了几种实现方式