Find the general solution to the following differential equations:

1.
$$y' + 2y = 0$$

$$r+2=0 - r=-2$$
 $y=ce^{-2t}$

2.
$$y'' - 9y = 0$$
.

$$r^2 = 0 - 9 r = \pm 3$$
 $y = 4 e^{3t} + 6 e^{3t}$

3.
$$y'' + 4y' - 5y = 0$$
.

$$r^{2}+4r-5=0 \rightarrow r=-511$$
 $y=c_{1}e^{-5t}+c_{2}e^{t}$ $(r+5)(r-1)$

4.
$$y'' - y' - 11y = 0$$

$$y'' - y' - 11y = 0$$
.
 $r^2 - r - 11 = 0$ $\Rightarrow r = \frac{1}{2} \pm \frac{3\sqrt{5}}{2}$ $y = C_1 e^{(\frac{1}{2} + \frac{3\sqrt{5}}{2})} + C_2 e^{(\frac{1}{2} - \frac{3\sqrt{5}}{2})} + C_3 e^{(\frac{1}{2} - \frac{3\sqrt{5}}{2})} + C_4 e^{(\frac{1}{2} + \frac{3\sqrt{5}}{2})} + C_5 e^{(\frac{1}{2} + \frac{3\sqrt{5}}{2})} + C_6 e^{(\frac{1}{2} + \frac{3\sqrt{5}}{2})$

5.
$$y'' - 4y' + 7y = 0$$
.

$$y'' - 4y' + 7y = 0$$
. (2+3i)t (2-3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t (2-3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t (2-3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t (2-3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t (2-3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t (2-3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t (2-3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t (2-3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t (2-3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t (2-3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t (2-3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t (2-3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t (2-3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t (2-3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t (2-3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t (2-3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t
 $y'' - 4y' + 7y = 0$. (2+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3i)t
 $y'' - 4y' + 7y = 0$. (3+3

6.
$$y'' + 7y = 0$$
.

$$y = 0.$$
 $y = c_1 e^{-\sqrt{7}it} + c_2 e^{-\sqrt{7}it} = c_3 \cos(\sqrt{7}t) + c_4 \sin(\sqrt{7}t)$

7. Solve the initial value problem: y'' + y' = 0, y(0) = 2, y'(0) = 1.

$$r^{2}+r=0$$
 so general soln: $y(0) = c_{1}+c_{2}=2$ $y = 3-e^{-t}$
 $y = c_{1}+c_{2}e^{-t}$ $y'(0) = -c_{2}=1$

8. Solve the initial value problem: y'' - 4y' + 4y = 0, y(1) = 1, y'(1) = 1

$$r^{2}$$
 - $4r + 4 = 0$ | So general soln:
 $y(1) = (1e^{2} + (2e^{2} = 1))$
 $y = (1e^{2} + (2e^{2} + 2e^{2} +$

9. Solve the initial value problem:
$$y'' + 9y = 0$$
, $y(0) = 1$, $y'(0) = 1$.

$$r^2+9=0$$
 | general soln:
 $r=\pm i3$ | $y=C_1\cos(3t)+C_2\sin(3t)$

problem:
$$y'' + 9y = 0$$
, $y(0) = 1$, $y'(0) = 1$.

general soln:

 $y = C_1 \cos(3t) + C_2 \sin(3t)$
 $y = \frac{1}{3} \sin(3t) + \cos(3t)$

10. Find the general solution to the differential equation
$$y''' - y'' + y' + 3y = 0$$
. (+ry e^{rt} again)

$$r^3 - r^2 + r + 3 = 0$$

note -1 is a root
 -9 $r = -1$, $1 \pm i\sqrt{8}$

$$r^3 - r^2 + r + 3 = 0$$
 $y = c_1 e^{-t} + c_2 e^{t} \cos(\sqrt{\epsilon}t)$
 $y = c_1 e^{-t} + c_2 e^{t} \cos(\sqrt{\epsilon}t)$
 $y = c_1 e^{-t} + c_2 e^{t} \cos(\sqrt{\epsilon}t)$

11. Consider the initial value problem: y'' + y' - 6y = 0, y(0) = a, y'(0) = 1. For what values of a does the solution go to infinity as t goes to infinity? For what values of a does the solution go to zero as t goes to infinity? For what values of a does the solution go to negative infinity as t goes to infinity?

$$y(0) = C_1 + C_2 = a$$

 $y'(0) = -3C_1 + 2C_2 = 1$

$$5C_2 = 3a + 1$$
 $C_2 = 3a + 1$

- general soln: $y(0) = C_1 + C_2 = a$ $\Rightarrow C_1 = 2a 1$ $\Rightarrow C_2 = 1$ $\Rightarrow C_1 = 2a 1$ $\Rightarrow C_2 = 1$ $\Rightarrow C_1 = 2a 1$ $\Rightarrow C_2 = 1$ $\Rightarrow C_1 = 2a 1$ $\Rightarrow C_2 = 1$ $\Rightarrow C_1 = 2a 1$ $\Rightarrow C_2 = 1$ $\Rightarrow C_2 = 1$ $\Rightarrow C_3 = 2a 1$ $\Rightarrow C_4 = 2a 1$
 - (a) If the Wronskian is nonzero at a point t_0 , what does that tell you about the system of equations:

$$\begin{bmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}? \quad \text{has ansalution}.$$

- (b) Explain why if the Wronskian is nonzero at a point t_0 then y_1 and y_2 are linearly independent. (From this we see that if the Wronskian is nonzero at a point the two functions are linealy independent.)
- (c) Suppose y_1 and y_2 solve the differential equation y'' + ay' + by = 0. Show that the $y(t) = c_1y_1(t) + c_2y_2(t)$ also satisfies the differential equation.
- (d) Following part (3), show that if the Wronskian is 0 at a point t_0 then y(t) solves the initial value problem: y'' + ay' + by = 0, $y(t_0) = 0$, $y'(t_0) = 0$.
- (e) Explain why this means that y(t) is zero everywhere. Explain why this means that the Wronskian is zero every-
- (f) We have shown that if y_1 and y_2 solve the same ODE and the Wronskian is 0 at a point, then we have constants c_1 and c_2 not both zero such that $c_1y_1(t) + c_2y_2(t) = 0$ for all t, thus y_1 and y_2 are linearly dependent.

(b) if
$$y_2(t) = Cy_1(t)$$
 then $y_2'(t) = Cy_1'(t) \rightarrow W = 0$ everywhere.

(d) I think this question insant that if w=0 then the matrix in (a) has a non-trivial solution, so choosing that circ solves the initial value problem.

(e) Then all higher demuatives are zero too (differentiate the ODE) -> y=0 everywhere