

## **Description**

The VST04N013 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of  $R_{\text{DS(ON)}}$  and  $Q_g$ . This device is ideal for high-frequency switching and synchronous rectification.

#### **General Features**

•  $V_{DS}$  =40V, $I_{D}$  =200A  $R_{DS(ON)}$ =1.3mΩ (typical) @  $V_{GS}$ =10V



- Very low on-resistance R<sub>DS(on)</sub>
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

## **Application**

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification





Schematic Diagram

## **Package Marking and Ordering Information**

| Device Marking | Device    | Device Package | Reel Size | Tape width | Quantity |
|----------------|-----------|----------------|-----------|------------|----------|
| VST04N013-TC   | VST04N013 | TO-220C        | -         | -          | -        |

## Absolute Maximum Ratings (T<sub>c</sub>=25℃unless otherwise noted)

| Parameter                                        | Symbol                | Limit      | Unit                   |  |
|--------------------------------------------------|-----------------------|------------|------------------------|--|
| Drain-Source Voltage                             | V <sub>DS</sub>       | 40         | V                      |  |
| Gate-Source Voltage                              | V <sub>G</sub> s      | ±20        | V                      |  |
| Drain Current-Continuous (Silicon Limited)       | I <sub>D</sub>        | 200        | А                      |  |
| Drain Current-Continuous(T <sub>C</sub> =100 ℃)  | I <sub>D</sub> (100℃) | 150        | А                      |  |
| Pulsed Drain Current (Package Limited)           | I <sub>DM</sub>       | 800        | А                      |  |
| Maximum Power Dissipation                        | P <sub>D</sub>        | 270        | W                      |  |
| Derating factor                                  |                       | 1.8        | W/°C                   |  |
| Single pulse avalanche energy (Note 5)           | E <sub>AS</sub>       | 1692       | mJ                     |  |
| Operating Junction and Storage Temperature Range | $T_{J}$ , $T_{STG}$   | -55 To 175 | $^{\circ}\!\mathbb{C}$ |  |

### **Thermal Characteristic**

| Thermal Resistance,Junction-to-Case <sup>(Note 2)</sup> | R <sub>θJC</sub> | 0.56 | °C/W |
|---------------------------------------------------------|------------------|------|------|
|---------------------------------------------------------|------------------|------|------|



# Electrical Characteristics (T<sub>C</sub>=25°C unless otherwise noted)

| Parameter                          | Symbol              | Condition                                                          | Min | Тур    | Max  | Unit |
|------------------------------------|---------------------|--------------------------------------------------------------------|-----|--------|------|------|
| Off Characteristics                |                     |                                                                    | •   |        |      | •    |
| Drain-Source Breakdown Voltage     | BV <sub>DSS</sub>   | V <sub>GS</sub> =0V I <sub>D</sub> =250µA                          | 40  |        | -    | V    |
| Zero Gate Voltage Drain Current    | I <sub>DSS</sub>    | V <sub>DS</sub> =40V,V <sub>GS</sub> =0V                           | -   | -      | 1    | μΑ   |
| Gate-Body Leakage Current          | I <sub>GSS</sub>    | $V_{GS}$ =±20 $V$ , $V_{DS}$ =0 $V$                                | -   | -      | ±100 | nA   |
| On Characteristics (Note 3)        |                     |                                                                    | •   |        |      | •    |
| Gate Threshold Voltage             | $V_{GS(th)}$        | $V_{DS}=V_{GS}$ , $I_{D}=250\mu A$                                 | 2   |        | 3.8  | V    |
| Drain-Source On-State Resistance   | R <sub>DS(ON)</sub> | V <sub>GS</sub> =10V, I <sub>D</sub> =100A                         | -   | 1.3    | 1.6  | mΩ   |
| Forward Transconductance           | <b>g</b> FS         | V <sub>DS</sub> =5V,I <sub>D</sub> =100A                           |     | 90     | -    | S    |
| Dynamic Characteristics (Note4)    |                     |                                                                    | •   |        |      |      |
| Input Capacitance                  | C <sub>lss</sub>    | V <sub>DS</sub> =20V,V <sub>GS</sub> =0V,                          | -   | 5834.6 | -    | PF   |
| Output Capacitance                 | Coss                |                                                                    | -   | 2320.5 | -    | PF   |
| Reverse Transfer Capacitance       | C <sub>rss</sub>    | F=1.0MHz                                                           | -   | 70     | -    | PF   |
| Switching Characteristics (Note 4) |                     |                                                                    | •   |        |      |      |
| Turn-on Delay Time                 | t <sub>d(on)</sub>  |                                                                    | -   | 14.5   | -    | nS   |
| Turn-on Rise Time                  | t <sub>r</sub>      | $V_{DD}$ =20V, $I_D$ =100A<br>$V_{GS}$ =10V, $R_G$ =1.6 $\Omega$   | -   | 8      | -    | nS   |
| Turn-Off Delay Time                | t <sub>d(off)</sub> |                                                                    | -   | 58     | -    | nS   |
| Turn-Off Fall Time                 | t <sub>f</sub>      |                                                                    | -   | 10     | -    | nS   |
| Total Gate Charge                  | Qg                  | V <sub>DS</sub> =20V,I <sub>D</sub> =100A,<br>V <sub>GS</sub> =10V | -   | 91     | -    | nC   |
| Gate-Source Charge                 | Q <sub>gs</sub>     |                                                                    | -   | 29.4   |      | nC   |
| Gate-Drain Charge                  | Q <sub>gd</sub>     | V <sub>GS</sub> -10V                                               | -   | 19     |      | nC   |
| Drain-Source Diode Characteristics |                     |                                                                    | •   |        |      |      |
| Diode Forward Voltage (Note 3)     | V <sub>SD</sub>     | V <sub>GS</sub> =0V,I <sub>S</sub> =100A                           | -   |        | 1.2  | V    |
| Diode Forward Current (Note 2)     | Is                  |                                                                    | -   | -      | 200  | Α    |
| Reverse Recovery Time              | t <sub>rr</sub>     | $T_J = 25$ °C, $I_F = I_S$                                         | -   | -      | 38   | nS   |
| Reverse Recovery Charge            | Qrr                 | $di/dt = 100A/\mu s^{(Note3)}$                                     | -   | -      | 125  | nC   |

### Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board,  $t \le 10$  sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25  $^{\circ}\text{C}$  ,VDD=20V,VG=10V,L=0.5mH,Rg=25 $\Omega$







**Figure 1 Output Characteristics** 



**Figure 2 Transfer Characteristics** 



Figure 3 Rdson-Drain Current



Figure 4 Rdson-Junction Temperature



Figure 5 Gate Charge



Figure 6 Source- Drain Diode Forward





Figure 7 Capacitance vs Vds



Figure 9 Power De-rating



**Figure 8 Safe Operation Area** 



Figure 10 Current De-rating



**Figure 11 Normalized Maximum Transient Thermal Impedance**