Mathematical Proofs for SynGuar

April 5, 2021

1 Preliminaries

A starting point. The number of examples provably sufficient to achieve the (ϵ, δ) -generalization is given by Blumer et al. [1]. We restate this result, which computes sample complexity as a function of (ϵ, δ) and the capacity (or size) of any given hypothesis space H.

Theorem 1.1 (Sample Complexity for (ϵ, δ) -synthesis). For all $\epsilon \in (0, \frac{1}{2})$, $\delta \in (0, \frac{1}{2})$, and hypothesis space H which contains the target program $t \in H$, a synthesis algorithm $\mathcal{A}(S)$ which outputs functions consistent with n i.i.d samples is an (ϵ, δ) -synthesizer, if

$$n > \frac{1}{\epsilon} (\ln|H| + \ln\frac{1}{\delta})$$

Proof. Assume the true concept is f and all I/O examples are consistent with f. Now consider a single hypothesis $h \in H$ first. Let $L_{(\mathcal{D},f)}(h)$ be the true error (expectation of 0-1 loss) $L_{(\mathcal{D},f)}(h) = \mathbb{E}_{x \sim \mathcal{D}} \mathbb{I}[f(x) \neq h(x)]$, and let $L_{(\mathcal{S},f)}(h)$ be the emperical error (emperical average of 0-1 loss) $L_{(\mathcal{S},f)}(h) = \frac{1}{|S|} \sum_{x \in S} \mathbb{I}[f(x) \neq h(x)]$, The following holds:

$$\Pr_{x \in \mathcal{D}}[\mathbb{I}[f(x) \neq h(x)] = 0 \mid L_{(\mathcal{D},f)}(h) \ge \epsilon] \le (1 - \epsilon)$$

Now consider a sample S with size n, the following holds:

$$\Pr_{S \in \mathcal{D}^n} [L_{(\mathcal{S},f)}(h) = 0 \mid L_{(\mathcal{D},f)}(h) \ge \epsilon] \le (1 - \epsilon)^n$$

Then take union bound on all hypothesis in H:

$$\Pr_{S \in \mathcal{D}^n} [\exists h \in H, \ L_{(\mathcal{S},f)}(h) = 0 \mid L_{(\mathcal{D},f)}(h) \ge \epsilon] \le |H| (1 - \epsilon)^n < \delta$$

$$\Rightarrow n > \frac{1}{\epsilon} (\ln |H| + \ln \frac{1}{\delta}) \text{ suffices}$$

So with sample size larger than $\frac{1}{\epsilon}(\ln|H| + \ln\frac{1}{\delta})$, with probability at least $1 - \delta$, all $h \in H$ that have true error larger than ϵ have non-zero emperical loss and will be ruled out and any hypothesis in H that is still consistent with the sample has true error smaller than ϵ .

2 Analysis of SynGuar

SYNGUAR's design is motivated by being able to give a formal generalization guarantee and a bounded sample complexity. For this purpose, we state and prove the following properties:

(P1: Termination) SynGuar always terminates for a finite |H|.

Algorithm 1 SynGuar Synthesis returns a program with error smaller than ϵ with probability higher than $1 - \delta$

```
1: procedure SynGuar(\epsilon, \delta)
           k = 10 // \text{ tunable parameter}
           g \leftarrow \text{PickStoppingCond}
 3:
           S' \leftarrow \varnothing, s \leftarrow 0
 4:
           size_H \leftarrow \text{ComputeSize}(H)
 5:
           n \leftarrow g(size_H)
 6:
           while s \leq n \operatorname{do}
 7:
                S' \leftarrow S' \cup \text{SAMPLE}(k)
 8:
                H_{S'} \leftarrow \text{UpdateHypothesis}(S')
 9:
                size_{H_{S'}} \leftarrow \text{ComputeSize}(H_{S'})
10:
                s \leftarrow s + k
11:
                n \leftarrow min(n, s + g(size_{H_{S'}}))
12:
           end while
13:
          m_{H_{S'}} = \frac{1}{\epsilon} (\ln size_{H_{S'}} + \ln \frac{1}{\delta})
14:
           T \leftarrow \text{SAMPLE}(m_{H_{S'}}(\epsilon, \delta))
15:
           S \leftarrow S' \cup T
16:
           return f program in H_S
17:
18: end procedure
```

(P2: (ϵ, δ) guarantees) If SynGuar returns an f then f is ϵ -far with probability $< \delta$.

(P3: Sample complexity) SynGuar's sample complexity is always within $2\times$ of the optimal.

Theorem 2.1 (P1). SynGuar always terminates for a finite |H|.

Proof. It suffices to prove that the sampling phase (lines 7-13) of SYNGUAR terminates in order to show that SYNGUAR terminates. In each iteration of the sampling phase, let S be the queue storing the user-provided examples, $S_i = S_{i-1} \cup \{s_1, ...s_k\}$. For each S_i , H_{S_i} determines the set of consistent hypothesis that satisfy S_i . Let N_i be the number of I/O examples needed for generalization after iteration i. For iterations i and j where i < j and $\forall g : \mathbb{N} \to \mathbb{Z}$ such that g is monotonically non-decreasing, the following holds:

$$S_i \subset S_j \Rightarrow |H_{S_j}| \leq |H_{S_i}| \Rightarrow g(|H_{S_j}|) \leq g(|H_{S_i}|)$$

 $\Rightarrow N_i \leq N_i \text{ (see line 10 in Alg. 1)}$

Therefore, if $N_1 = g(|H|)$ then in the worst case the loop will terminate at some iteration p such that $|S_p| \ge N_1$.

Theorem 2.2 (P2). If SYNGUAR (ϵ, δ) returns the synthesized program f then f is ϵ -far with probability $< \delta$.

Proof. By Theorem 2.1, we know that the sampling phase terminates with S' samples (see line 14). In lines 14 - 16 SynGuar samples an additional number of I/O examples required to generalize and then synthesizes a program after seeing the additional samples. Therefore, Theorem 2.2 follows from Theorem 1.1.

In order to prove the last property, we define a new quantity $\omega(Q)$. It is the smallest sample size taken by SynGuar (ϵ, δ) for any non-decreasing g used for a sequence of I/O examples Q.

Definition 1 (Smallest dynamic sample size). For any infinite sampled sequence of examples Q, let Prefix Q, be the prefix of Q at which SynGuar (ϵ, δ) terminates. Then,

$$\omega(Q) = \inf\{|m_g| : \forall g, m_g = \text{Prefix}(Q, g)\}$$

Theorem 2.3 (P3). SynGuar uses no more than $2\omega(Q)$ examples on any Q with $g_0(x) = \max\{0, \frac{1}{\epsilon}(\ln(x) - \ln(\frac{1}{\delta}))\}.$

To save space, we provide the proof in supplementary material.

Proof. Let $S' \subset Q$ be the samples in sampling phase. Let P be the samples when $\omega(Q) = \operatorname{PREFIX}(Q,g)$ for some g and let us call this the best stopping point for SynGuar's sampling phase on Q. Then $\omega(Q) = |P| + \frac{1}{\epsilon} (\ln \operatorname{size}_{H_P} + \ln \frac{1}{\delta})$ where $\operatorname{size}_{H_P} = \operatorname{ComputeSize}(H_P)$.

There are two cases to analyze. 1) If SynGuar's phase 1 finishes before the best stopping point and 2) if SynGuar's phase 1 finishes after the best stopping point. We observe that in both cases the $m_{g_0} \leq \omega(Q)$. The full proof is the following:

Let $g_0(x) = \max\{0, \frac{1}{\epsilon}(\ln(x) - \ln(1/\delta))\}, \gamma(Q) = \text{PREFIX}(Q, g_0) \text{ and } S' \subset Q \text{ be the samples in sampling phase.}$

If P be the samples for best stopping point then

$$\omega(Q) = |P| + \frac{1}{\epsilon} (\ln |H_P + \ln \frac{1}{\delta})$$

Case 1: SynGuar using g_0 is stopping earlier in phrase 1 than the best possible stopping point, |S'| < |P|

$$\gamma(Q) - 2 \cdot \omega(Q) = |S'| - 2 \cdot |P| + \frac{1}{\epsilon} \cdot (\log|H_{S'}| - 2 \cdot \log|H_P|)$$
$$- \frac{1}{\epsilon} \cdot \log \frac{1}{\delta}$$
$$\leq -|P| - \frac{1}{\epsilon} \cdot \log \frac{1}{\delta} + \frac{1}{\epsilon} \cdot (\log|H_{S'}|)$$
$$\text{since } |S'| < |P|$$

Observe that, for $g_0(x) = \max\{0, \frac{1}{\epsilon}(\ln(x) - \ln(1/\delta))\}$ the $|S'| \ge \frac{1}{\epsilon} \cdot (\log|H_{S'}| - \log\frac{1}{\delta})$ (see, step 9 in Algorithm 2)

$$\gamma(Q) - 2 \cdot \omega(Q) \le 0$$

Case 2: SynGuar using g_0 is stopping after the best possible stopping point in phrase 1, $|H_P| \ge |H_{S'}|$.

Observe that $|S'| \leq \omega(Q)$. Because for SynGuar using g_0 , after seeing P, it will take no more than $g_0(|H_P|) = \frac{1}{\epsilon}(\ln |H_P| - \ln \frac{1}{\delta})$ examples in phase 1.

$$|S'| \le |P| + g_0(|H_P|)$$

$$\omega(Q) = |P| + \frac{1}{\epsilon} (\ln|H_P| + \ln\frac{1}{\delta})$$

$$\implies |S'| \le \omega(Q)$$

Now,

$$\gamma(Q) - 2 \cdot \omega(Q) = |S'| - 2 \cdot |P| + \frac{1}{\epsilon} \cdot (\log|H_{S'}| - 2 \cdot \log|H_P|)$$

$$- \frac{1}{\epsilon} \cdot \log \frac{1}{\delta}$$
Substituting, $|S'| \le |P| + \frac{1}{\epsilon} (\log|H_P| + \log \frac{1}{\delta})$

$$\le -|P| + \frac{1}{\epsilon} \cdot (\log|H_{S'}| - \log|H_P|)$$

$$< 0 \text{ since, } |H_P| > |H_{S'}|$$

References

[1] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Occam's razor. Information processing letters, 24(6):377-380, 1987.