

Analyzing the impact of Baselines in Integrated Gradients method for BERT-based text classification task

Chuhuan Shen

Content

- Introduction
- Highlights
- Implement and Results
- Discussion

Introduction

- Neural Networks are differentiable, and the output can be written as a function of the parameters and input.
- The gradient can be used for Sensitivity Analysis: How sensitive is the output $f(\cdot)$ w.r.t to a small change in the input x? $\frac{\partial f(x;\theta)}{\partial x}$
- The Vanilla Gradient method suffers from saturation problem: Gradients of input features may have small magnitudes around a sample even if the network depends heavily on those features.
- Improved Approach ---- Integrated Gradients

Introduction

$$IG_i(x, x') = (x_i - x_i') \cdot \int_0^1 \frac{\partial F(x_i' + \alpha \cdot (x_i - x_i'))}{\partial x_i} d\alpha$$

- x is input
- x' is baseline
- $\frac{\partial F(x)}{\partial x_i}$ is the gradient of F along the i^{th} dimension at x.
- Path $\gamma(a) = x' + \alpha(x x')$ for $\alpha \in [0, 1]$
- Interpolation along linear path

Introduction

Discretized Integrated Gradients (DIG)

Input: the movie was good!

- Linear interpolated points are not necessarily representative of the discrete word embedding distribution
- Nonlinear interpolation paths

Highlights

- Investigate the impact of different baselines and integration paths on the results
- Explore the distinction between text task and image task

Inplements and Results

- The Zero Baseline
- The Constant Baseline
- The Maximum Distance Baseline
- The Blurred Baseline
- The Uniform Baseline
- Results on DIG

The Zero Baseline

- Zero represents black in image
- [PAD] is just an empty tokens


```
Legend: Negative Neutral Positive  

Neutra
```

The Zero Baseline DIG(greedy)

Leibniz
Leibniz
Universität
Hannover

- Original baseline in the paper
- Also, the only convergent baseline in DIG

Legend: ■ Negative □ Neutral ■ Positive

Baseline	[CLS]	[PAI	D]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[SEP]
α =0.2	[CLS]	[PA	D]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[SEP]
$\alpha = 0.4$	[CLS]	[PA	D]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[SEP]
$\alpha = 0.6$	[CLS]	[PAI	D]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[SEP]
$\alpha = 0.8$	[CLS]	[PAI	D] [[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[PAD]	[SEP]
Input	[CLS]	un	##fl	##in	##chir	ng ##ly	bleak	and	despera	te [SE	:P]

The Constant Baseline

- Randomly select a token from the input sentence
- Like constant color in the image
- Blind to the baseline token

Legend: ■ Negative □ Neutral ■ Positive [CLS] ##fl ##fl ##fl [SEP] Baseline ##fl [CLS] ##fl ##fl ##fl [SEP] $\alpha = 0.2$ [CLS] ##fl ##fl ##fl [SEP] $\alpha = 0.4$ ##ching ##ly bleak and desperate [SEP] [CLS] ##fl $\alpha = 0.6$ [CLS] un ##fl ##in ##ching ##ly bleak and desperate [SEP] $\alpha = 0.8$ ##in ##ching ##ly bleak and desperate [SEP] Input

The Constant Baseline

DIG(greedy)

Leibniz
Lo 2 Universität
Lo 0 4 Hannover

Not satisfy the axiom

completeness

$$\sum_{i=1}^{n} \mathsf{IntegratedGrads}_i(x) = F(x) - F(x')$$

- Not converged
- Maybe not enough samples

Legend: ■ Negative □ Neutral ■ Positive

Baseline	[CLS]	##fl	##fl	##fl	##fl	##f	l ##fl	##fl	##fl	[SEP]	
α =0.2	[CLS]	##fl	##fl	##fl	##fl	##f	l ##fl	##fl	##fl	[SEP]	
$\alpha = 0.4$	[CLS]	##fl	##fl	##fl	##fl	##f	l ##fl	##fl	##fl	[SEP]	
$\alpha = 0.6$	[CLS]	##fl	##fl	##fl	##fl	##f	##fl	##fl	##fl	[SEP]	
$\alpha = 0.8$	[CLS]	##fl	##fl	##fl	##fl	##f	##fl	##fl	##fl	[SEP]	
Input	[CLS]	un	##fl	##in	##ch	ing	##ly	bleak	and	desperate	[SEP]

The Maximum Distance Baseline

- k-nearest neighbors
- Euclidean distance
- 500 nearest neighbors for each token

Sum of Cumulative Grads

The Maximum Distance Baseline

DIG(greedy)

- Not converged
- Interpolation changes
 significantly only at big α

Sum of Cumulative Grads

Legend: ■ Negative □ Neutral ■ Positive Baseline [CLS] helen [unused558] ##ma [unused651] seventh 1998 [unused668] [SEP] [CLS] helen [unused558] ##ma [unused651] seventh 1998 [unused668] [SEP] $\alpha = 0.2$ helen [unused558] ##ma [unused651] seventh 1998 [unused668] [SEP] $\alpha = 0.4$ helen [unused558] ##ma [unused651] seventh 1998 [unused668] [SEP] $\alpha = 0.6$ helen [unused558] ##ma [unused651] seventh **૩** 1998 [unused668] [SEP] $\alpha = 0.8$ Input [CLS] un ##fl ##in ##ching ##ly bleak and desperate [SEP]

The Blurred Baseline

1.0

0.8

Sum of Cumulative Grads alpha

0.6

0.4

- How to blur text?
 - Use DistilBertForMaskedLM to predict synonym
 - Replace the mask token with the predict token

0.0

0.2

The Blurred Baseline

DIG(greedy)

Not converged

[CLS] ing Baseline [CLS] ing $\alpha = 0.2$

Legend: ■ Negative □ Neutral ■ Positive

[CLS] ing $\alpha = 0.4$

[CLS] ing $\alpha = 0.6$

[CLS] ing $\alpha = 0.8$ [SEP]

Input ##in ##ching ##ly bleak and desperate [SEP]

The Uniform Baseline

Leibniz
Log 2 Universität
Log 4 Hannover

Random sampling among
 500 neighbor tokens

Sum of Cumulative Grads

Legend: ■ Negative □ Neutral ■ Positive

Baseline	[CLS]	lon	don	1947	21	##3	in	187	72	becam	Э	facilitate	[SEP]
α =0.2	[CLS]	lon	don	1947	21	##8	in	18	372	becan	ne	facilitate	[SEP]
α =0.4	[CLS]	lon	don	1947	21	##8	in	187	72	became	9 1	facilitate	[SEP]
α =0.6	[CLS]	un	##fl	##in	##c	hing	##I	y b	oleal	k and	de	esperate	[SEP]
$\alpha = 0.8$	[CLS]	un	##fl	##in	##0	ching	##	ly I	blea	ak and	d	esperate	[SEP]
Input	[CLS]	un	##fl	##in	##c	hing	##	ly l	blea	k and	d	esperate	[SEP]

The Uniform Baseline

DIG(greedy)

Leibniz Universität Hannover

Not converged

High magnitude gradients accumulate at big values of a

Sum of Cumulative Grads

Baseline [CLS] london 1947 21 ##8 1872 facilitate [SEP] became [CLS] london 1947 21 ##8 1872 became facilitate [SEP] $\alpha = 0.2$ [CLS] london 1947 21 ##8 1872 became facilitate [SEP] $\alpha = 0.4$ $\alpha = 0.6$ [CLS] london 1947 21 ##8 1872 became facilitate [SEP] in [CLS] london 1947 21 ##8 in 1872 became facilitate [SEP] $\alpha = 0.8$ desperate [CLS] un ##fl ##in ##ching ##ly bleak and Input

Results

Order of token ablation

desperate

bleak

IG

'un', '##fl', '##in', '##ching', '##ly', 'bleak', 'and', 'desperate'

##ly

un

##ching

##fl

##in

and

Results

Order of token ablation

desperate

bleak

DIG

'un', '##fl', '##in', '##ching', '##ly', 'bleak', 'and', 'desperate'

##ching

##fl

##in

and

##ly

un

Discussion

- The results of the integrated gradient depend heavily on the selection
 of path γ and baseline, which is strongly artificial and not an exact
 verity result.
- Identifying significant features alone may not be sufficient to understand model behavior. Interactions between features is also vital.

Thanks for your attention