Credit Default Prediction Report

Finance Club Open Project Summer 2025

Shubh Garg 23124035 BSBE

SECTION 01

Introduction and Project Overview

This project develops a machine learning model to predict credit card defaults (next_month_default) for a bank, using a dataset of ~25,000 training records and ~5,000 validation records. Features include credit limit (LIMIT_BAL), repayment status (pay_0-pay_6), bill amounts (Bill_amt1-Bill_amt6), payment amounts (pay_amt1-pay_amt6), and demographics (age, sex, education, marriage).

Key Deliverables:

- Comprehensive Jupyter notebook with EDA, preprocessing, feature engineering, modeling, and SHAP explainability
- Prediction file (final_predictions.csv) with Customer_ID and next_month_default for validation set • This comprehensive report summarizing methodology, findings, and business implications

25K

TRAINING RECORDS

5K

VALIDATION RECORDS

22%

DEFAULT RATE

ROC-AUC

PRIMARY METRIC

SECTION 02

Exploratory Data Analysis

2.1 Data Characteristics

The training dataset contains 25,000 records with 24 features. Missing values were limited to age (~5%), which were imputed with the median value of 35 years. The dataset exhibits a class imbalance with a 22% default rate, necessitating resampling techniques like SMOTEENN.

2.2 Key Findings

Customers with pay_0=0 (no delay) have 10% default rate, while those with pay_0≥2 exceed 50% default rate

Repayment Behavior

Credit Limits

Lower credit limits (<50,000) show default rates up to 30%, compared to 15% for higher limits (>200,000)

Demographics

Males have slightly higher default rate (24%) than females (20%), with education level showing similar patterns

SECTION 03

Preprocessing and Feature Engineering

3.1 Preprocessing Steps

Missing Values Imputed age with training median **Outliers**

Capped at 99th percentile

Encoding One-hot encoded categorical variables

Class Balance Applied SMOTEENN (60%

defaults, 40% non-defaults)

Scaling Standardized using StandardScaler

(35)

3.2 Feature Engineering

Behavioral features were engineered to capture repayment and utilization patterns:

mean_util

delay_count Number of delayed months

Average credit utilization

bill_trend Slope of bill amounts over time delay_x_mean_util

Interaction between delays and

SECTION 04

Model Development and Evaluation

4.1 Model Comparison

Model	Accuracy	Precision	Recall	F1-Score	ROC-AUC
Logistic Regression	0.774	0.433	0.598	0.502	0.814
Decision Tree	0.704	0.338	0.579	0.427	0.704
Random Forest	0.767	0.422	0.606	0.498	0.823
XGBoost	0.774	0.431	0.577	0.493	0.809
LightGBM	0.785	0.450	0.570	0.503	0.823

4.2 Threshold Selection

Multiple thresholds were evaluated to balance precision and recall:

0.3 Precision: 0.410 Recall: 0.650

0.4 Precision: 0.443 Recall: 0.577

SELECTED

0.5 Precision: 0.474 Recall: 0.550

0.6

Precision: 0.495 Recall: 0.518

A threshold of 0.4 was selected to maximize recall (0.577) while maintaining reasonable precision (0.443), prioritizing the detection of risky customers.

SECTION 05

Business Implications

Risk Mitigation

High-risk customers (delay_count≥2, mean_util>0.7) can be flagged for interventions like credit limit reductions or payment reminders

Cost Trade-offs

The 0.4 threshold increases recall but also false positives. Higher thresholds may reduce unnecessary interventions

Customer Segmentation Younger customers with delays and high

utilization require targeted credit education or stricter limits

Monitoring Dashboard SHAP insights can be integrated into

real-time dashboards for dynamic risk assessment

SECTION 06

Key Learnings

Critical Success Factors

- Risk Drivers: Repayment delays (pay_0, delay_count) and credit utilization (mean_util) are the strongest predictors • Model Choice: LightGBM outperforms simpler models due to its ability to handle complex, non-linear patterns • Interpretability: SHAP provides clear insights enhancing stakeholder trust
- Threshold Tuning: Balancing recall and precision is critical for business alignment

Future Work

SECTION 07

Temporal Features

Incorporate seasonal patterns and macroeconomic indicators

Combine LightGBM and XGBoost for improved performance

Ensemble Models

Deploy SHAP-powered live risk dashboard

Real-Time Integration

Incorporate misclassification costs for financial optimization

Cost-Sensitive Learning

CONCLUSION **Project Summary**

The LightGBM model, with a cross-validated ROC-AUC of **0.8208 ± 0.0055**, effectively predicts credit defaults by leveraging key behavioral features like delay_count and mean_util. The selected threshold of 0.4 balances risk detection (recall: 0.577) with actionable precision (0.443),

supported by SHAP insights for model interpretability. This solution equips the bank with a robust tool for managing credit risk, providing clear strategies for risk mitigation and future enhancements. The final predictions for the validation set have been successfully generated and saved in final_predictions.csv.