Indian Institute of Technology, Kharagpur End-Autumn Semester Examination: 2018–2019

Date of Examination: April, 2018 Session FN/AN, Duration: 3 Hrs, Subject. No. MA60056 No. of Registered Students 63

Subject Name: REGRESSION AND TIME SERIES MODEL

Department: Mathematics TOTAL MARKS: 50

Specific Chart, graph paper log book etc. required... NO...

Special Instruction:(1) Answer all parts of a question in consecutive places. (2) Full credit will be given to the answers correct up to two decimal places.

ANSWER ALL THE QUESTIONS

1. Let $\{Y_t\}$ be a stationary time series with finite auto-covariance function. Define

$$X_t = \sum_{j=-\infty}^{\infty} \psi_j Y_{t-j}, \text{ where } \sum_{j=-\infty}^{\infty} |\psi_j| < \infty. \text{ Find the auto-covariance between } \{X_t\} \text{ and } \{X_{t+h}\}, \text{ if it exists for } h \in \mathbb{N}.$$

- 2. Consider AR(1) process $X_t = \phi X_{t-1} + Z_t$ where $Z_t \sim WN(0, \sigma^2)$ and $|\phi| < 1$. Prove that the distribution of X_t is a limiting distribution of an $MA(\infty)$ process. [6]
- 3. Let $\{Y_t\}$ be a stationary time series with finite variance σ^2 and $\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty$. Find the value of $Var(\frac{1}{n}\sum_{t=1}^{n}Y_t)$ when $n \uparrow \infty$.
- 4. Consider an AR(1) process $X_t = 0.35X_{t-1} + Z_t$ where $Z_t \sim WN(0, 2.5)$. Suppose the observed values of $X_4 = 2.4$, $X_6 = 1.3$, but X_5 is missing.
 - (a)Approximate the missing value of X_5 based on the available information which minimizes the least squared error.

[3+3]

- (b) Find the mean squared error in approximation of X_5 .
- 5. Consider a time series $\{X_t\}$ with zero mean and $\gamma(0) = 1, \gamma(1) = 0.72, \gamma(2) = -0.67, \gamma(3) = 0.53, \gamma(4) = -0.45, \gamma(5) = 0.36$. When X_5 is predicted by (X_4, X_3, X_2, X_1) then the coefficients are respectively (0.78, 0.42, 0.35, 0.28). Now the observed value of $(X_4, X_3, X_2, X_1, X_0)$ is to be used to predict the value of X_5 .
 - (a) Find the coefficient of X_0 by Durbin-Levinson Algorithm.
 - (b) Find the ratio of the mean squared error when X_5 is predicted by $(X_4, X_3, X_2, X_1, X_0)$ to the same when the prediction is done by (X_4, X_3, X_2, X_1) . [4+2]
- 6. (a) What is the definition of positive definite matrix?
 - (b) What is the definition of positive semidefinite function?
 - (c) Show that an auto-covariance function of a time series is a positive semidefinite function. [2+2+2]
- 7. For the model $\mathbf{Y} = \mathbf{X}\underline{\beta} + \underline{\epsilon}$, where $\underline{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$, $\mathbf{Y} \in \mathbb{R}^n$, $\underline{\beta} \in \mathbb{R}^{(k+1)}$ use Jackknife method to test at 5% level for the null hypothesis that the observation y_5 is not an outlier based on the following estimates. Residual $e_5 = 2.10$, MSResudual = 1.04 and 5^{th} diagonal element of projection matrix $h_{55} = 0.036$, where n = 25, k = 6. State the conclusion. [6]

- 8. State TRUE or FALSE in complete words for the following statements.
- [8]
- (a) If $\{X_t\}$ is a weakly stationary time series, then X_5 and X_7 are identically distributed.
- (b) If $\{W_t\}$ is white noise , then W_i and W_j are always independently distributed for $i \neq j$.
- (c) When $X_t 0.5X_{t-1} = Z_t + 2Z_{t-1}$ and $\{Z_t\}$ is WN then $\{X_t\}$ is an invertible time series
- (d) Innovations algorithm for prediction uses the prediction error of the past data.
- (e) $(X_t X_{t-2}) = (1 B)(1 + B)X_t$
- (f) Diagonal elements of $(\mathbf{X}\mathbf{X}^T)^{-1}$ are indicators of leverage.
- (g) $R_{adjusted}^2$ is always a strictly monotone function of the number of regressors.
- (h) For the model $\mathbf{Y} = \mathbf{X} \underbrace{\beta} + \underline{\epsilon}$, $|\mathbf{X} \mathbf{X}^T| = 0$ always implies multicollinearity.

************** THE END ***********