Better Retrieval for Generation

CS6803 - Topics in NLP Dr. Maunendra Sankar Desarkar

By:

Aaryan - CO21BTECH11001 Abhishek Kumar - AI21BTECH11003

Work Allocation and Index

- Aaryan: Fine-tuning and evaluation of retrievers on domain-specific data
 - Dataset and EDA
 - Evaluation Setup
 - Evaluation of pre-trained models
 - Fine-tuning strategies
 - Current Results
- Abhishek: Multimodal RAG
 - Literature review (FROMAGe paper and uniMUR paper)
 - Experimentation with FROMAGe to identify its limitations

Dataset and EDA

- MedQuAD dataset:
 - 7873 reachable document urls
 - o **36925** questions
- Scraping and cleaning of webpages
 - Using BeautifulSoup
 - o Removed extra line characters and whitespaces
- Number of tokens in documents (<u>nomic</u> tokenizer):
 - o Min: **531**, Max: **7952**
 - o Mean: **1918**, Median: **1770**

Evaluation Setup

- If required, documents are chunked
- Embeddings of documents are **pre-computed** and stored
- Chunks are retrieved using cosine-similarity
- Metrics
 - o Recall@k

$$Recall-k = \frac{\text{Number of relevant chunks in top } k}{\text{Number of relevant chunks}}$$

o MRR@k

$$MRR-k = \sum_{\text{chunk} \in \{\text{relevant chunks}\}} \frac{1}{\text{Index of chunk in top k retrieved chunks}}$$

Evaluation of pre-trained models

- paraphrase-mpnet-base:
 - Context Window: 512, 109M parameters
 - o 33545 chunks formed
- nomic-embed-text, bge-m3
 - Context Window: 8192
 - No need of chunking

Model Name		Red	all		MRR				
	Recall@1	Recall@3	Recall@10	Recall@100	MRR@1	MRR@3	MRR@10	MRR@100	
paraphrase-mpnet-bas									
е	19.55	38.02	52.22	66.98	78.83	84.79	85.57	85.62	
nomic-embed-text	88.6	97.76	99.19	99.69	89.02	92.98	93.18	93.18	
bge-m3	89.58	97.99	99	99.56	99.02	93.64	93.78	93.79	

Fine-tuning strategies

- Adapter fine-tuning
 - Freeze the model weights
 - Train a light-weight adapter on top
 - Multiple Negatives Ranking Loss used
 - o 8 mins per epoch (1.4 GB)
- LoRA
 - Freeze the model weights
 - Add matrices of low rank
 - Cosine Similarity Loss used
 - o 14 mins per epoch (20 GB)

Current Results

- Used **20k** queries for training and **5k** for testing
- Two layer Adapter
 - Small improvements
- LoRA
 - o Poor performance than pre-trained
 - Possible reason: Catastrophic Forgetting

Model Name			Red	all		MRR			
		Recall@1	Recall@3	Recall@10	Recall@100	MRR@1	MRR@3	MRR@10	MRR@100
Adapter	Training	19.67%	38.17%	54.03%	69.20%	79.50%	85.12%	85.90%	85.93%
	Testing	20.18%	36.86%	50.54%	65.19%	78.04%	84.34%	85.31%	85.43%
LoRA	Training	0.46%	0.96%	2.11%	8.90%	1.82%	2.65%	3.39%	4.11%
	Testing	0.47%	1.04%	2.27%	8.03%	1.74%	2.67%	3.38%	3.93%

Upcoming experiments

- Finetune bigger adapters to check generalization
- Try different loss functions while fine-tuning using LoRA
- Try other approaches like QLoRA / OLoRA

Literature Review and a bit of experimentation

Sources :-

https://arxiv.org/pdf/2301.13823 (fromage) https://aclanthology.org/2024.findings-eacl _105/ (uniMUR)

Multimodal RAG (I/O - image and text interleaved)

Casual Masked Multimodal Model of the Internet

- 1. Earliest prior work proposing Model with Multimodal I/Os
- 2. Generally not available to the public
- 3. With 384 GPUs(nvidia A100 model), training for 24 days large computational resources
- 4. Poor performance on VIST (visual storytelling text-image) dataset . Most outputs produced by CM3 are not interpretable or relevant wrt to their inputs .

Frozen Retrieval Over Multimodal Data for Autoregressive Generation

FROMAGe

- 1. Open source
- 2. 97% parameters frozen (leverages pre-trained LLM) . hence computationally more efficient .Single gpu(nvidia A100) , training for 1 day .
- 3. Generates outputs semantically meaningful wrt inputs . thus ,outperforms CM3.
- 4. Language modelling and contrastive learning objectives.
- 5. It can handle a variety of zero shot and few shot tasks.

Limitations:-

Fromage exhibits a stronger bias towards generating text only tokens - avoiding [RET] token (primarily used to retrieve the relevant image) because of LLM bias not to generate [RET] token (generating text only outputs)

Experimentation with FROMAGe - limitations

a)Text bias of the LLM

b) Inconsistent -image with text outputs

Unified Embeddings for Multimodal Retrieval

uniMUR

- 1. closed source
- 2. 98% frozen parameters, thus even more computationally efficient than FROMAGe.4 * V100 GPU, training for less than 16 hours.
- 3. Mitigates the text only bias of the FROMAGe using unified embeddings. Also the coherency increase between image output and text output and overall outputs and the input. thus outperforms FROMAGe.
- 4. Language modelling and contrastive learning objectives
- 5. It is not optimised for few shot tasks directly . focus on zero shot tasks .

Future Work

- Implementing uniMUR's logic
- Training ,testing and verifying the details mentioned in the paper like recall etc
- Finally making the uniMUR's code open source