Задание на одиннадцатую неделю.

- 1. Рассмотрим задачу максимизации функции x + y на множестве неотрицательных x и y таких, что 2x + y < 3 и x + 3y < 5. Какая задача будет двойственной к этой задаче? Найдите оптимальное значение функции в прямой задаче и докажите его оптимальность с использованием двойственности.
- ${f 2}.$ Задана сеть, в которой для каждой вершины ${f v}\in V$ задано число $\varepsilon_{\nu} \in [0,1]$ такое, что суммарный выходящий из вершины поток равен произведению ε_{ν} на суммарный входящий поток. Число $1-\varepsilon_{\nu}$ можно трактовать как долю потерь в вершине у. Предложите полиномиальный алгоритм поиска максимального потока в сети с потерями.
- 3. На плоскости заданы точки (1,3), (2,5), (3,7), (5,11), (7,14), (8,15), (10, 19). Требуется провести по этим точкам наименее уклоняющуюся прямую, т. е. такую прямую ax+by+c=0, что a,b,c являются решениями задачи $\min_{(a,b,c)\in\mathbb{R}^3}\max_{1\leq i\leq 7}|ax_i+by_i+c|$. Предложите способ решения этой задачи с помощью вспомогательной задачи $\Lambda\Pi$. Запишите эту задачу ЛП для указанной системы точек.
- 4. Многогранник P_{ϵ} задан неравенствами $0 \leq x_1 \leq 1$, $\epsilon x_1 \leq x_2 \leq$ $1-\epsilon x_1,\ \epsilon x_2 \leq x_3 \leq 1-\epsilon x_2,$ где $\epsilon \in \left(0;\frac{1}{2}\right)$. Геометрически P_ϵ — это деформированный куб. Покажите, что в этом многограннике есть путь по рёбрам, стартующий из начала координат и проходящий по всем вершинам, в котором величина координаты x_3 монотонно возрастает.
- 5. Пусть $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Покажите, что при ненулевом векторе b система $\begin{cases} Ax \leq b; \\ x \geq 0 \end{cases}$ совместна тогда и только тогда, когда несовместна система $\begin{cases} A^Ty \geq 0; \\ y \geq 0; \\ b^Ty < 0. \end{cases}$

местна система
$$\begin{cases} A^T y \geq 0; \\ y \geq 0; \\ b^T y < 0. \end{cases}$$

6. Пусть $A \in \mathbb{R}^{m \times n}$. Докажите, что однородная система $\begin{cases} Ax \leq 0; \\ x \geq 0; \\ x \neq 0 \end{cases}$ совместна тогда и только тогда, когда несовместна система $\begin{cases} A^Ty > 0; \\ y \geq 0. \end{cases}$

7. Доказать, что если не модифицировать построение двойственной задачи и не обрабатывать отдельно неравенства вида $x_i \leq 0$ и $x_j \geq 0$, то двойственная задача к двойственной задаче может не совпадать в точности с исходной. Доказать, что при указанной на семинаре обработке таких простейших неравенств двойственная к двойственной задача уже будет совпадать с исходной.

Замечание. Двойственная к двойственной задача всегда может быть приведена к исходной исключением некоторых переменных.

 $8~(\mbox{Доп})$. Выясните связь двойственности $\mbox{$\Lambda\Pi$}$ и теоремы о максимальном потоке и минимальном разрезе. Можно следовать задаче 7.25~из книги $\mbox{$\Delta$}$ асгупты.