

IT와 비즈니스혁신

W8-9. 마이닝 기법 I: 분류 (앙상블) & 평가

의사결정나무 예시: 선거 예측

185 to 36.

OBAMA GRAPHIC.html?scp=5&sq=Decision%2520Obama%2520clinton&st=cse

의사결정나무 예시: 누가 잔디깎기 기계를 살 것인가?

● 분할 기준 1: LotSize >= 19,000

● 분할 기준 2: Income = \$84,000

● 완전 분할 후

Contents

- I. 앙상블 (Ensemble) 모델
- Ⅱ. 분류 실습
- Ⅲ. 모델 평가

I. 앙상블 (Ensemble) 모델

의사결정나무 생성 과정

- 분류(Class 0 과 1을 구분)를 위한 의사결정나무 생성
- 나무의 깊이(Depth) 가 깊을수록 정확도가 향상되지만 과적합(overfitting)되는 경향이 있음
- → 이를 해결하기 위해서 단일 의사결정나무 대신 앙상블 방법 사용

depth = 9

□ 여러 개의 모델을 조합하여 성능 향상

- 배깅 (Bagging)
 - 여러 개의 모델을 만들어 서로 다른 학습데이터로 학습 시킨 후(bootstrap), 동일한 테스트 데이터를 예측하고 집계(aggregating) → 특히 과적합 문제를 완화하고 성능 향상

● 부스팅 (Boosting)

- 병렬적으로 학습하는 배깅과 다르게 동일한 모델을 순차적으로 학습해서 (학습 데이터를 보강해 가면서) 여러 개의 모델을 만든 후 가중 투표를 통해 예측값 결정

■ 랜덤 포레스트 (Random forest)

- 의사결정나무를 '랜덤하게' 여러가지로 만들고 이들의 <mark>평균</mark>을 이용하는 방법으로 과적합 문제 완화
 - 모델을 만들기 위해 사용하는 샘플 데이터를 "랜덤하게" 선택
 - 모델에 이용하는 변수(feature)를 "랜덤하게" 선택

○ 장단점

- 성능이 매우 뛰어나고 매개변수 튜닝을 많이 하지 않아도 잘 작동함
- 대량의 데이터는 여러 개의 CPU에 나누어 손쉽게 병렬 처리 가능
- n_estimators(나무의 수)는 클수록 성능은 좋아지나 훈련 시간이 오래 걸림
- 랜덤하므로 결과 모델이 매번 달라짐
- 텍스트 데이터처럼 차원이 높고
 희소한 데이터에는 잘 동작하지 않음
 (선형모델이 더 적합)

□ 그래디언트 부스팅 (Gradient Boosting)

- 랜덤한 방식으로 앙상블을 구하는 것이 아니라 이전의 트리의 성능을 단계적으로 보완하여 오차를 줄이는 방식으로 나무 생성
- 가장 성능이 좋은 알고리즘으로 분류 및 예측에 모두 사용됨
- 장단점
 - 보통 5 이하의 깊지 않은 나무 (약한 학습기, weak learner)를 사용함으로써 학습 속도가 빠름
 - 이전 나무의 오차를 얼마나 강하게 보정할 것인지를 제어하는 학습 속도(learning rate)를 미세하게 조정해야 함
 - 희소한 고차원 데이터에 대해서는 잘 동작하지 않음
- XGBoost, LightGBM, CatBoost
 - XGBoost(eXtreme Gradient Boosting): 대용량 데이터를 다룰 수 있도록 분산 컴퓨팅 활용, 확장성이 뛰어남
- LightGBM (Light Gradient Boosting Methods): XGBoost 보다 학습에 걸리는 시간과 메모리 사용량이 적음
- CatBoost (Categorical Boosting): 범주형 데이터의 경우 예측 성능이 우수함

$Performance\ Comparison\ using\ SKLearn's\ 'Make_Classification'\ Dataset$

(5 Fold Cross Validation, 1MM randomly generated data sample, 20 features)

Ⅱ. 분류 실습

■ 목적: 분류 (암진단: 양성, 악성)를 위한 의사결정나무 모델 생성

- 위스콘신대에서 제공하는 암진단 데이터
- 스노우보드에서 wisc bc data.csv 파일 다운로드 받기
- 캐글 사이트에서 다운로드: https://www.kaggle.com/uciml/breast-cancer-wisconsin-data

●데이터 정보

- id : 환자 아이디
- diagnosis :진단 결과 (타겟 변수)
 - M (malignant, 악성)
 - B (benign, 양성)
- 세포에 관한 30개 변수 :

radius, texture, perimeter, area, smoothness, compactness, concavity, points, symmetry, dimension 에 대한 _mean(평균), _se(표준편차), _worst(가장 큰 값 3개의 평균)

Id, 타겟 변수(diagnosis), 30개 변수(feature)

id	diagnosis	radius_mean	texture_mean	:
87139402	В	12.32	12.39	:
8910251	В	10.69	18.95	:
905520	В	11.04	16.83	:
868871	В	11.28	13.39	:
9012568	М	15.19	13.21	:
	:	:	:	:
	:	:	:	:
	:	:	:	:
	:	:	:	:
569행				

■ 데이터 준비 (전처리)

- 데이터 인코딩(Ecoding): 범주형 데이터를 수치형으로 변환
 - 범주형 (A/B/C 등)을 수치형(1/2/3, ..)으로 변경 또는 더미 변수화
- 결측치 처리, 데이터 스케일 조정, 불균형 데이터 처리 등

□ 시각화를 통한 데이터 탐색

➡ 사이킷 런 라이브러리의 함수 DecisionTreeClassifier 이용

- 모델의 시각화가 직관적이어서 설명하기에 좋음
- 데이터의 스케일에 영향을 받지 않으므로 정규화나 전처리가 필요 없음
- 변수의 데이터 타입이 이진(binary)이나 연속값, 또는 이들이 혼합되어 있어도 잘 동작함
- 단점은 사전 가지치기 (예. 나무의 깊이 줄이기)를 사용해도 과적합(overfitting)되는 경향이 있음

• 파라미터 설정

- criterion: 분할시 순수도 계산 방법 (gini, entropy, default: gini)
- splitter: 각 노드에서 분할을 선택하는 데 사용되는 전략 (best, random, default: best)
- max_depth: 나무의 최대 깊이 (default: none)
- min_samples_split: 자식 노드를 분할하는데 필요한 최소 샘플 수 (default: 2)
- min_samples_leaf: 마지막 잎 노드에 있어야 할 최소 샘플 수 (default: 1)
- max_features: 각 노드에서 분할에 사용할 변수의 최대 수 (auto, sqrt, log2, default: None)
- random_state: 난수 seed 설정 (max_features 만큼의 변수 선택시)
- max_leaf_nodes: 잎 노드의 최대수 (default: none)

┗ 핵심 문법

```
# 1. 학습/테스트 분할
from sklearn.model_selection import train_test_split
X train, X test, y train, y test=train test split(df[features], df[response var], test size=0.2)
#2.데이터 전처리
#3. 의사결정나무 모델 구축 및 예측
                                                                * 수치 추정을 위해서는
from sklearn.tree import DecisionTreeClassifier
                                                                DecisionTreeRearessor 이용
dt_model = DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=4,
     max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0,
     min_impurity_split=None, min_samples_leaf=1, min_samples_split=2,
     min weight fraction leaf=0.0, presort=False, random state=None, splitter='best')
dt model.fit(x train. v train)
test preds = dt model.predict(x test)
#4. 성능 평가
from sklearn.metrics import classification_repor, accuracy_score, precision_score, recall_score
print(classification_report(y_test, test_preds))
print('[Test] Accuracy: %0.4f' % accuracy_score(y_test, test_preds))
print('[Test] Precision: %0.4f' % precision_score(y_test, test_preds))
print('[Test] Recall: %0.4f' % recall_score(y_test, test_preds))
```


□ 모델을 구축하기 위한 데이터(학습용) 와 모델 평가를 위한 데이터 (시험용) 로 분할

- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, stratify=y, random_state=42)
 - random_state : random 으로 분할시 사용되는 난수 seed 숫자

□ 시험용 데이터에 모델을 적용하여 정확도 계산

• tree.score(X_test, y_test) = 0.94 (시험용 데이터의 94%를 정확하게 분류함)

붓꽃 데이터를 이용한 분류 모델 구축과 평가 과정

(Advanced) 교차 검증 (k-fold cross validation)

□ k번 교차 검증

- 최적의 모델 도출을 위해 사용 (특히, 데이터 수가 충분치 않을 때 중첩된(Nested) 방식으로 최적의 모델 찾기)
- 데이터를 무작위로 한 번만 나누게 되면 분류하기 쉬운 데이터만 학습에 이용될 수도 있고, 반대로 분류하기 어려운 데이터로만 이용할 수도 있음

*학습용 데이터를 k개 fold 로 나눈 후, k-1 folds는 학습에 이용하고 1 fold는 모델 검증에 이용하는 방식을 k번 반복해서 이 k번의 성능 평균 파악

□ k번 수행한 교차 검증 결과의 평균값 이용

• dt_scores = cross_val_score(모델, X_train, y_train, cv=10, scoring='accuracy')

```
# 교차 검증을 10번 수행하여 10번의 교차 검증 평균 정확도를 비교 (10-fold cross validation)
from sklearn.model_selection import cross_val_score
dt_scores = cross_val_score(tree_model2, X_train, y_train, cv=10, scoring='accuracy')
rf_scores = cross_val_score(tree_model3, X_train, y_train, cv=10, scoring='accuracy')
print("Accuracy")
print("Decision tree: ", dt_scores)
print("Random forest: ", rf_scores)
print("Accuracy mean")
print("Decision tree :{:.3f}".format(dt scores.mean()))
print("Random forest :{:.3f}".format(rf_scores.mean()))
Accuracy
Decision tree: [0.771 0.752 0.732 0.726 0.752 0.72 0.694 0.782 0.756 0.788]
Random forest: [0.732 0.758 0.752 0.732 0.764 0.752 0.707 0.75 0.776 0.756]
Accuracy mean
Decision tree :0.747
Random forest: 0.748
```

* dt_scores에 10개의 accuracy 성능이 들어감

□ 그리드 서치를 이용하여 최적의 파라미터 조합 찾기

● 최고의 성능을 가지는 모델을 찾기 위해서 여러 파라미터들을 변경해 보면서 최적의 파라미터 조합을 찾는 함수

```
from sklearn.model_selection import GridSearchCV
parameters = {'max_depth':[2,3,4,5,6], 'max_features':[3,4,5,6,7,8,9]}
rf_tree = RandomForestClassifier(n_estimators = 100, random_state = 0)
grid = GridSearchCV(rf_tree, param_grid = parameters, cv = 10, n_jobs = -1)
print(grid)
grid.fit(X_train, y_train)
print('GridSearchCV 최적 파라미터:', grid.best_params_)
print('GridSearchCV 최고 정확도: {0:.4f}'.format(grid.best_score_))
```

- * n estimators = 나무의 개수
- * n jobs = -1 병렬처리

GridSearchCV 최적 파라미터:{(max_depth': 2, 'max_features': 3) GridSearchCV 최고 정확도: 0.7511

□ 적합한 모델 선택 (학습용, 시험용 데이터에 적용시 정확도 측정하기)

	모델	파라미터 변경	정확도
Decision	DecisionTreeClassifier(random_state=0)	max_depth= none	학습: 시험:
Tree	DecisionTreeClassifier(max_depth=4, random_state=0)	max_depth= 4로 제한	학습: 시험:
Random Forest	RandomForestClassifier(n_estimators=100, random_state=0)		학습: 시험:
	GradientBoostingClassifier(random_state=0)	max_depth= 3 n_estimators=100 learning_rate=0.1	학습: 시험:
Gradient Boosting	GradientBoostingClassifier(random_state=0, max_depth=1)	max_depth= 1로 제한	학습: 시험:
	GradientBoostingClassifier(random_state=0, learning_rate=0.01)	learning_rate=0.01로 감소	학습: 시험:

Ⅲ. 모델 평가

- 정오분류표
- ROC 곡선과 AUC

정오분류표 (Confusion Matrix)

□ 모델을 이용한 분류 결과의 요약

- ●모델을 이용하여 구한 예측 분류와 실제 분류를 비교하여 발생 빈도수를 보여줌
- ●이진 (binary) 분류인 경우 다음과 같이 4 가지 결과로 요약됨

		실제 분류		
		positive	negative	
예측분류	Υ	TP (True Positive, 참긍정)	FP (False Positive, 거짓긍정)	
ν∥⊣止π	N	FN (False Negative, 거짓부정)	TN (True Negative, 참부정)	

선거결과 예시

Country별		실제 분류		
선거결과/예측		오바마승	오바마 패	
예측	오바마승	TP (True Positive, 참긍정) 80	FP (False Positive, 거짓긍정) 40	
분류 오바마 패		FN (False Negative, 거짓부정) 20	TN (True Negative, 참부정) 60	

■ 분류 결과의 정확도 평가 척도

- 최적의 분류 모델을 선택하기 위한 평가 척도
- 민감도와 재현율은 같은 값을 가짐
- 실제 문제에서 오분류에 대한 위험성 또는 비용이 동일하지 않기 때문에 비용을 고려하여 적절한 평가 척도를 선택해야 함.
 - 예. 질병 예측의 경우, 실제 양성인 경우를 음성으로 분류하는 거짓부정이 실제 음성인 경우를 양성으로 분류하는 거짓긍정보다 오분류 비용이 큼

Country별 선거결과/예측		실제분류		
		오바마승 오바마패		
예측	오배마승	TP (True Positive, 참긍정) 80	FP (False Positive, 거짓긍정) 40	
분류	오바마패	FN (False Negative, 거짓부정) 20	TN (True Negative, 참부정) 60	

평가 척도	정의	계산식
정확도 (accuracy)	전체 데이터 중 올바르게 분류한 경우의 비율	(TP+TN) / (TP+FP+FN+TN) = (오바마 승예측& 승결과+오바마 패예측&패결과)/전체
오분류율	오분류된 경우의 비율	(FP+FN) / (TP+FP+FN+TN) =1 - 정확도 = (오바마 승예측&패결과+오바마 패예측&승결과)/전체
민감도 (sensitivity)	실제로 긍정인 경우 중 긍정이라고 분류한 경우의 비율	TP / (TP+FN)= 오바마 승예측/(오바마 승예측&승결과+패예측&승결과)
특이도 (specificity)	실제로 부정인 경우 중 부정으로 분류한 경우의 비율	TN / (TN+FP) = 오바마 패예측/(오바마 승예측&패결과+패예측&패결과)
정밀도 (precision)	긍정이라고 분류한 경우 중 실제로 긍정인 경우의 비율	TP / (TP+FP) = 오바마 승결과/(오바마 승예측&패결과+승예측&승결과)
재현율 (recall)	실제로 긍정인 경우 중 긍정이라고 분류한 경우의 비율	TP / (TP+FN)
F1-measure	정밀도와 재현율의 조화평균	2 X (Precision X Recall) / (Precision + Recall)

● 연습문제 1. 분류 결과를 보고 각 평가척도의 값을 구하시오.

	실제분류	예측분류
1	n	N
2	р	Υ
3	n	N
4	n	N
5	n	N
6	р	Y
7	n	N
8	n	N
9	n	N
10	р	N
11	n	N
12	n	Υ
13	р	N
14	р	Υ

평가 척도	계산값
정확도 (accuracy)	
오분류율	
민감도 (sensitivity)	
특이도 (specificity)	
정밀도 (precision)	

□ 연습문제 1 답안

	실제분류	예측분류
1	n	N
2	р	Υ
3	n	N
4	n	N
5	n	N
6	р	Υ
7	n	N
8	n	N
9	n	N
10	р	N
11	n	N
12	n	Υ
13	р	N
14	р	Y

평가 척도	계산값
정확도 (accuracy)	11/14
오분류율	3/14
민감도 (sensitivity)	3/5
특이도 (specificity)	8/9
정밀도 (precision)	3/4

□ 민감도와 특이도의 관계를 표현한 그래프

- ●일반적으로 민감도와 특이도를 동시에 증가시키는 것은 불가능
- ●모델의 분류기준값(cutoff)을 조정해 가면서 1-특이도 (x축)와 민감도(y축)를 도식화 하여 보여줌
- ●하나의 분류 문제에 대해 여러 분류 모델을 비교하여 가장 적합한 모델 선택 가능
 - 예. 질병 예측의 경우, 여러 평가 척도 중 민감도 (실제로 양성인 경우 양성으로 분류하는 비율) 가 중요하므로 이를 고려하여 모델 선택
- * ROC 곡선은 2차 세계 대전 당시 레이더 화면에 뜬 광점이 적선인지 무해한지를 판별하는 레이더 운영원들의 능력을 측정하기 위해 개발됨

False Positive Rate(거짓긍정 비율, 긍정오류)

- =1- 특이도(specificity)
- = FP / (TN+FP)

ROC 곡선 그리는 방법

- 분류 결과를 분류의 신뢰도 또는 점수 에 따라 내림차순으로 정렬
- 첫 행부터 차례대로 긍정으로 분류될 경우의 결과에 대한 TP(p 경우의 수), FP(n 경우의 수) 누적수를 계산
- 각 행의 누적 TP, FP 수를 이용하여 민감도, 1-특이도를 계산하고 x, y 값으로 하여 산점도 그리기
- 각 점들을 연결하여 곡선 만들기

ROC 곡선과 AUC (Area Under the Curve, 곡선 아래 면적)

ROC 곡선의 비교

- ●ROC 곡선의 아래 면적이 클수록 민감도와 특이도의 정확도가 높으므로 더 우수한 모델이라 할 수 있음
- ●그림 (a): 같은 (1 특이도) 값에 대해 민감도 값이 가장 높음
- 그림 (c): 모델 사용의 효과가 전혀 없음 (대각선의 경우 50%)
- 여러 분류 모델을 동시에 비교 가능

● 연습문제 2. 분류기준값(cutoff)를 변경하면서 ROC 곡선을 그리고, 다음 빈 칸을 채우시오.

ca se	질병판정 실제결과 p:yes n:no	판정 예측 확신도 confidence (yes)	민감도	1-특이도
1	р	0.65	0.1	0.0
2	р	0.56	0.2	0.0
3	р	0.55	0.3	0.0
4	n	0.51	0.3	0.1
5	р	0.50	0.4	0.1
6	n	0.47	0.4	0.2
7	р	0.47	0.5	0.2
8	р	0.45	0.6	0.2
9	n	0.44	0.6	0.3
10	р	0.44	0.7	0.3
11	n	0.42	0.7	0.4
12	р	0.42		
13	n	0.38	8.0	0.5
14	n	0.38	8.0	0.6
15	n	0.38	8.0	0.7
16	n	0.37	8.0	8.0
17	р	0.36	0.9	8.0
18	n	0.33	0.9	0.9
19	р	0.31	1.0	0.9
20	n	0.29	1.0	1.0

양성 판정의 분류기준값 (cuoff)이 0. 42 인 경우, 민감도(sensitivity)= 80 % 특이도(specificity) = 60 %.

□ 연습문제 2. 분류기준값(cutoff)를 변경하면서 ROC 곡선을 그리고, 다음 빈 칸을 채우시오.

ca se	질병판정 실제결과 p:yes n:no	판정 예측 확신도 confidence (yes)	예측 결과	민감도	1-특이도
1	р	0.65	Р	0.1	0.0
2	р	0.56	Р	0.2	0.0
3	р	0.55	N	0.3	0.0
4	n	0.51	Ν	0.3	0.1
5	р	0.50	N	0.4	0.1
6	n	0.47	N	0.4	0.2
7	р	0.47	N	0.5	0.2
8	р	0.45	N	0.6	0.2
9	n	0.44	N	0.6	0.3
10	р	0.44	N	0.7	0.3
11	n	0.42	N	0.7	0.4
12	р	0.42	N		
13	n	0.38	N	0.8	0.5
14	n	0.38	N	0.8	0.6
15	n	0.38	Ν	8.0	0.7
16	n	0.37	N	0.8	8.0
17	р	0.36	N	0.9	0.8
18	n	0.33	N	0.9	0.9
19	р	0.31	N	1.0	0.9
20	n	0.29	N	1.0	1.0

양성 판정의 분류기준값 (cuoff)이 0. 56 인 경우, 민감도(sensitivity)= 2(실제 p& 예측P)/10 (실제 p)=0.2 특이도(specificity) = 10(실제 n & 예측 N)/10 (실제 n)= 1 1-특이도 = 0

□ 연습문제 2. 분류기준값(cutoff)를 변경하면서 ROC 곡선을 그리고, 다음 빈 칸을 채우시오.

ca se	질병판정 실제결과 p:yes n:no	판정 예측 확신도 confidence (yes)	예측 결과	민감도	1-특이도
1	р	0.65	Р	0.1	0.0
2	р	0.56	Р	0.2	0.0
3	р	0.55	Р	0.3	0.0
4	n	0.51	Р	0.3	0.1
5	р	0.50	Р	0.4	0.1
6	n	0.47	Р	0.4	0.2
7	р	0.47	Р	0.5	0.2
8	р	0.45	Р	0.6	0.2
9	n	0.44	Р	0.6	0.3
10	р	0.44	Р	0.7	0.3
11	n	0.42	Р	0.7	0.4
12	р	0.42	Р		
13	n	0.38	N	0.8	0.5
14	n	0.38	N	0.8	0.6
15	n	0.38	N	0.8	0.7
16	n	0.37	N	0.8	0.8
17	р	0.36	N	0.9	0.8
18	n	0.33	N	0.9	0.9
19	р	0.31	N	1.0	0.9
20	n	0.29	N	1.0	1.0

양성 판정의 분류기준값 (cuoff)이 0. 42 인 경우, 민감도(sensitivity)= 8 (실제 p& 예측P) /10 (실제 p) =0.8 특이도(specificity) = 6 (실제 n& 예측N)/10 (실제 n)= 0.6 1- 특이도 = 0.4

'코로나19 환자 증상 발현 전 전파율 40%"

2020.04.28 15:41

【 임시선별검사소 코로나19 검사법 3종 안내 】

구분	비인두도말 PCR법	신속항원검사법	타액 PCR법
시간	24시간 이내	30분 이상 (양성시, 추가 24시간 필요)	24시간 이내
민감도/ 특이도*	민감도 : 98% 이상 특이도 : 100%	민감도 : 90% 특이도 : 96%	민감도 : 92% 특이도 : 100%
검체	비인두도말	비인두도말	타액(침)
절차	검체채취 → PCR ⇒ 확진	검체채취 → 현장검사 ⇒ (양성) → 검체 재채취 → PCR ⇒ 확진	타액 채취 → PCR ⇒ 확진

* 현재까지 허가 또는 긴급사용승인된 제품에 대한 민감도 및 특이도

그러면서 그는 "다양한 플랫폼을 이용해 치료제가 발굴되거나 개발된다고 하더라돋 이 치료제가 대량으로 사용될 경우 약제 내성도 등장할 수 있다고 전문가들은 경고한다"며 "비유하자면 아직 첫 번째 산을 넘기도 전이지만 그 뒤에 연달아 또다른 산들이 기다리고 있음을 알고 있고 또 긴장하고 있다"고 말했다. 결국 백신이 개발돼 지역사회 접종이 완료될때까지는 방심할 수 없는 상황이 지속될 것이라는 판단이다.

항체 검사 시기와 실시 지역, 방법에 대해서는 아직 정해지지 않았다. 권 부본부장은 "대구, 경북 지역이 가장 사례수가 많은 지역이기 때문에 우선적으로 항체 검사를 실시하는 것이 합리적이라는 생각을 하고 있다"며 "장기적으로 전국민 또는 합리적인 표본을 대상으로 시행하는 것도 필요할 것"이라고 말했다.

권 부본부장은 또 "항체 검사를 할 때 결정해야 할 기술적이고 전문적인 내용이 많다"며 "시약의 정확도와 민감도, 특이도 등을 해석해 합리적인 결과가 나올 수 있는 시약이 필요하고 검체 확보 방안과 시기 등을 고려해야 한다"고 말했다.

그는 또 "설령 아주 소규모의 환자나 또는 그런 집단발병의 단초만 보인다 하더라도 훨씬 더 많은 환자가 있을 수 있다는 생각을 해야 한다"며 "접촉자가 있게 되면 90% 이상을 찾아 내서 관리를 해야만 전파를 차단했다고 얘기할 수 있다고 전문가들이 얘기하기 때문에 전체 신규 환자 규모가 줄어들고 있다 하더라도 방역에 최선을 기울이도록 하겠다"고 덧붙였다.

http://dongascience.donga.com/news.php?idx=36351 https://www.docdocdoc.co.kr/news/articleView.html?idxno=2005869

□ 모델을 이용한 분류 결과의 정확도를 평가하는 방법

- ●정오분류표를 이용하여 분류 결과와 실제 값을 비교하여 나타냄
- ●종합적인 평가 척도인 정확도 외에 민감도, 특이도, 정밀도, 재현율 등 다양한 평가 척도 사용 가능
- ROC 곡선과 AUC를 사용하여 다양한 모델의 특성을 비교, 요구조건에 적합한 모델 선택 가능