Analog to Digital Conversion

Gary J. Minden October 1, 2013

Analog to Digital Conversion

- Analog -- A voltage between V_{low} and V_{high}
- Digital -- A fraction between 0.0 and 1.0 with K bits
 - In the case of the LM3S1968, K = 10 and there are 1,024 steps.
 - Fraction: Values between 0.0 and 0.999023

• Integer: Values between 0 and 1,023 with scale factor of 2⁻¹⁰

Binary Point

Challenge #1 -- Compare Voltage

- Vin is input Voltage
- ullet Range is V_{low} to V_{high}
- V<i> is "test" Voltage
- How to compare Vin to V<i>?
- That is, is Vin < V<i> or not?

Comparator

- If Vin > V<i>, then VT<i is True (1)
- A logic signal

Array of Comparators

- Set up array of comparators
- Each comparator tests Vin
- Each has a differentV<i>>
- Each comparator generates a logic value, 0 or 1

Results

v<9>	v<8>	v<7>	V<6>	V<5>	v<4>	V<3>	v<2>	v<1>	v<0>	R<3>	R<2>	R<1>	R<0>
0	0	0	0	1	1	1	1	1	1	0	1	0	1
0	0	0	0	0	0	0	1	1	1	0	0	1	0
0	1	1	1	1	1	1	1	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0

Problems and Approach

- This does not scale for a large number of "steps"
 - E.g. 1,024 or 4,096
- Successively generate V<i>, a test Voltage, over several trials
 - What sequence of V<i> to use
 - How do you generate V<i>?

- Vin is input Voltage
- Range is 0.0 1.0 V
- Assume 1,024 steps
- V<0> is first test Voltage
- Start in the middle
- If Vin < V<0>, decrease test voltage
- If Vin >= V<0>, increase test voltage
- Vin > V<0>, increase

- Vin is input Voltage
- Range is 0.0 1.0 V
- Assume 1,024 steps
- V<1> is test voltage
- If Vin < V<1>, decrease test voltage
- If Vin >= V<1>, increase test voltage
- Vin < V<1>, decrease test voltage

- Vin is input Voltage
- Range is 0.0 1.0 V
- Assume 1,024 steps
- V<2> is test voltage
 - Start in the middle
 - If Vin < V<2>, decrease V<i>
 - If Vin >= V<2>, increase V<i>
 - Vin >= V<2>, increase

- Vin is input Voltage
- Range is 0.0 1.0 V
- Assume 1,024 steps
- V<9> is test Voltage
 - If Vin < V<9>, decrease test voltage
 - If Vin >= V<9>, increase test voltage
 - Done

Successive Approach with DAC

Technology Center

i	S<9>	s<8>	s<7>	s<6>	S<5>	S<4>	s<3>	S<2>	s<1>	s<0>	V <i>></i>	Comp
0	1	0	0	0	0	0	0	0	0	0	0.5	1
1	1	1	0	0	0	0	0	0	0	0	0.75	0
2	1	0	1	0	0	0	0	0	0	0	0.625	1
3	1	0	1	1	0	0	0	0	0	0	0.688	0
4	1	0	1	0	1	0	0	0	0	0	0.656	0
5	1	0	1	0	0	1	0	0	0	0	0.641	1
6	1	0	1	0	0	1	1	0	0	0	0.648	0
7	1	0	1	0	0	1	0	1	0	0	0.645	0
8	1	0	1	0	0	1	0	0	1	0	0.643	1
9	1	0	1	0	0	1	0	0	1	1	0.644	1
D	1	0	1	0	0	1	0	0	1	1	0.644	

Compare == 1 if Vin >= V < i >

i	s<9>	s<8>	s<7>	S<6>	S<5>	S<4>	s<3>	S<2>	s<1>	s<0>	V <i>></i>	Comp
0	1	0	0	0	0	0	0	0	0	0	0.5	1
1	1	1	0	0	0	0	0	0	0	0	0.75	0
2	1	0	1	0	0	0	0	0	0	0	0.625	1
3	1	0	1	1	0	0	0	0	0	0	0.688	O
4	1	0	1	0	1	0	0	0	0	0	0.656	0
5	1	0	1	0	0	1	0	0	0	0	0.641	1
6	1	0	1	0	0	1	1	0	0	0	0.648	0
7	1	0	1	0	0	1	0	1	0	0	0.645	0
8	1	0	1	0	0	1	0	0	1	0	0.643	1
9	1	0	1	0	0	1	0	0	1	1	0.644	1
D	1	0	1	0	0	1	0	0	1	1	0.644	

Compare == 1 if Vin >= V < i >

i	S<9>	s<8>	s<7>	s<6>	S<5>	S<4>	s<3>	S<2>	S<1>	s<0>	V <i>></i>	Comp
0	1	0	0	0	0	0	0	0	0	0	0.5	1
1	1	1	0	0	0	0	0	0	0	0	0.75	0
2	1	0	1	0	0	0	0	0	0	0	0.625	1
3	1	0	1	1	0	0	0	0	0	0	0.688	0
4	1	0	1	0	1	0	0	0	0	0	0.656	0
5	1	0	1	0	0	1	0	0	0	0	0.641	1
6	1	0	1	0	0	1	1	0	0	0	0.648	0
7	1	0	1	0	0	1	0	1	0	0	0.645	0
8	1	0	1	0	0	1	0	0	1	0	0.643	1
9	1	0	1	0	0	1	0	0	1	1	0.644	1
D	1	0	1	0	0	1	0	0	1	1	0.644	

Compare == 1 if Vin >= V < i >

i	s<9>	S<8>	S<7>	s<6>	S<5>	S<4>	s<3>	S<2>	s<1>	s<0>	V <i>></i>	Comp
0	1	0	0	0	0	0	0	0	0	0	0.5	1
1	1	1	0	0	0	0	0	0	0	0	0.75	O
2	1	0	1	0	0	0	0	0	0	0	0.625	1
3	1	0	1	1	0	0	0	0	0	0	0.688	0
4	1	0	1	0	1	0	0	0	0	0	0.656	0
5	1	0	1	0	0	1	0	0	0	0	0.641	1
6	1	0	1	0	0	1	1	0	0	0	0.648	0
7	1	0	1	0	0	1	0	1	0	0	0.645	0
8	1	0	1	0	0	1	0	0	1	0	0.643	1
9	1	0	1	0	0	1	0	0	1	1	0.644	1
D	1	0	1	0	0	1	0	0	1	1	0.644	

Compare == 1 if Vin >= V < i >

i	s<9>	s<8>	s<7>	s<6>	S<5>	S<4>	S<3>	S<2>	S<1>	s<0>	V <i>></i>	Comp
0	1	0	0	0	0	0	0	0	0	0	0.5	1
1	1	1	0	0	0	0	0	0	0	0	0.75	0
2	1	0	1	0	0	0	0	0	0	0	0.625	1
3	1	0	1	1	0	0	0	0	0	0	0.688	0
4	1	0	1	0	1	0	0	0	0	0	0.656	0
5	1	0	1	0	0	1	0	0	0	0	0.641	1
6	1	0	1	0	0	1	1	0	0	0	0.648	0
7	1	0	1	0	0	1	0	1	0	0	0.645	0
8	1	0	1	0	0	1	0	0	1	0	0.643	1
9	1	0	1	0	0	1	0	0	1	1	0.644	1
D	1	0	1	0	0	1	0	0	1	1	0.644	

Compare == 1 if Vin >= V < i >

Result Value Format

Scale Factor

2^-1	2^-2	2^-3	2^-4	2^-5	2^-6	2^-7	2^-8	2^-9	2^-10
1/2	1/4	1/8	1/16	1/32	1/64	1/128	1/256	1/512	1/1024
1	0	1	0	0	1	0	0	1	1

R = 1/2 + 1/8 + 1/64 + 1/512 + 1/1024 = 0.644

ADC Architecture

Analog Sources

Successive Approach with DAC

Technology Center

Measured Voltage

 $V_{Measured} = R * V_{Ref}$

Internal $V_{Ref} = 3.0 V$

LM3S1968 ADC Features

- Eight analog input channels
- Single-ended and differential-input configurations
- On-chip internal temperature sensor
- Sample rate of one million samples/second
- Four programmable sample conversion sequences from one to eight entries long, with corresponding conversion result FIFOs
- Flexible trigger control
 - Controller (software), Timers, Analog Comparators, PWM, GPIO
- Hardware averaging of up to 64 samples for improved accuracy
- Converter uses an internal 3-V reference
- Power and ground for the analog circuitry is separate from the digital power and ground

Stellaris ADC Architecture

ADC Control

- Enable
- Interrupt generation
- DMA operation
- Sequence prioritization
 - Each sequencer has a priority, 0-3, 0 is highest
- Trigger configuration
 - Processor (default), analog comparators, an external signal on GPIO PB4, a GP Timer, a PWM generator, and continuous sampling.
- Comparator configuration
- External voltage reference
- Sample phase control

ADC Sequencer Characteristics

Table 11-3. Samples and FIFO Depth of Sequencers

Sequencer	Number of Samples	Depth of FIFO
SS3	1	1
SS2	4	4
SS1	4	4
SS0	8	8

Most of the ADC control logic runs at the ADC clock rate of 14-18 MHz. The internal ADC divider is configured automatically by hardware when the system XTAL is selected. The automatic clock divider configuration targets 16.667 MHz operation for all Stellaris devices.

Differential Inputs

Table 11-4. Differential Sampling Pairs

Differential Pair	Analog Inputs
0	0 and 1
1	2 and 3
2	4 and 5
3	6 and 7

The voltage sampled in differential mode is the difference between the odd and even channels: ΔV (differential voltage) = V_{IN} (even channels) – V_{IN} (odd channels), therefore:

- If $\Delta V = 0$, then the conversion result = 0x1FF
- If $\Delta V > 0$, then the conversion result > 0x1FF (range is 0x1FF–0x3FF)
- If $\Delta V < 0$, then the conversion result < 0x1FF (range is 0–0x1FF)

The differential pairs assign polarities to the analog inputs: the even-numbered input is always positive, and the odd-numbered input is always negative. In order for a valid conversion result to appear, the negative input must be in the range of \pm 1.5 V of the positive input. If an analog input is greater than 3 V or less than 0 V (the valid range for analog inputs), the input voltage is clipped, meaning it appears as either 3 V or 0 V, respectively, to the ADC.

Differential Inputs

deltaV = ADCeven - ADCodd

Used for common voltage rejection

ADC Initialization

Enable ADC0

```
unsigned long ulValue;
SysCtlPeripheralEnable( SYSCTL PERIPH ADC0 );
                                         Config. ADC0/Seq0 Prog. Trig.
//
// Enable the first sample sequencer to capture the value of channel 0 when
// the processor trigger occurs.
//
ADCSequenceConfigure(ADC0 BASE, 0, ADC TRIGGER PROCESSOR, 0);
ADCSequenceStepConfigure(ADC0 BASE, 0, 0,
                        ADC CTL IE | ADC CTL END | ADC CTL CHO);
ADCSequenceEnable(ADCO BASE, 0);
void ADCSequenceConfigure(unsigned long ulBase,
                           unsigned long ulSequenceNum,
                           unsigned long ulTrigger,
                           unsigned long ulPriority)
void ADCSequenceStepConfigure(unsigned long ulBase,
                           unsigned long ulSequenceNum,
                           unsigned long ulStep,
                           unsigned long ulConfig)
```

ADC Step Configuration

```
unsigned long ulValue;
                                    Config. ADC0/Seq0
                                                         Step Index
SysCtlPeripheralEnable( SYSCTL PERIPH ADC0 );
//
// Enable the first sample sequencer to capture the value of channel 0 when
// the processor trigger occurs.
//
ADCSequenceConfigure(ADCO BASE, 0, ADC TRIGGER PROCESSOR, 0);
ADCSequenceStepConfigure(ADCO BASE, 0, 0,
                        ADC CTL IE | ADC CTL END | ADC CTL CHO);
ADCSequenceEnable(ADCO_BASE, 0);
                                                             ADC0/Ch0
                      Int. Enable
void ADCSequenceConfigure(unsigned long ulBase,
                                                      Last Step
                           unsigned long ulSequenceNum,
                           unsigned long ulTrigger,
                           unsigned long ulPriority)
void ADCSequenceStepConfigure(unsigned long ulBase,
                           unsigned long ulSequenceNum,
                           unsigned long ulStep,
                           unsigned long ulConfig)
```

© G. J. Minden 2013

ADC Trigger, Wait, Read Result

```
//
// Trigger the sample sequence.
//
ADCProcessorTrigger(ADCO_BASE, 0);

//
// Wait until the sample sequence has completed.
//
while(!ADCIntStatus(ADCO_BASE, 0, false))
{
}

//
Read the value from the ADC.
//
ADCSequenceDataGet(ADCO_BASE, 0, &ulValue);
Read Date
```


Sensor Value Mapping

- Sensor is electronic device
 - Thermistor, Photo-Transistor, Microphone, ...
- Each sensor has a physical measurement range
 - E.g. -40° C to 120°C
- Each sensor maps measurement range a voltage range based on sensor and electronic circuit
 - E.g. Map -40° C to 120°C to 0.0 V to 2.5 V
- Micro-controller measures voltage
 - E.g. Voltage between 0.0 V and 3.0 V on LM3S1968
- Program has to interpret voltage measurement

Sensor to Voltage Mapping

ADC Voltage to Value Mapping

Sensor to Voltage Mapping

ADC Voltage to Value Mapping

LM3S1968 Temperature Sensor

Figure 11-5. Internal Temperature Sensor Characteristic

LM3S1968 Datasheet, pg. 400

LM3S1968 Temperature Sensor

Figure 11-5. Internal Temperature Sensor Characteristic

ADC Voltage to Value Mapping

ADC Voltage to Value Mapping

 $666/1024 * 3.0 V = 0.6504 * 3.0 = 1.95 V = V_{Sensor}$

LM3S1968 Temperature Sensor

Figure 11-5. Internal Temperature Sensor Characteristic

$$V_{Sensor} = 1.95 V$$

Temp = -
$$((V_{Sensor} - 2.7 V) * 75) - 55 = 1.25 C$$

Non-Linear Sensors

BMP 180 -- Reading Raw Values

BMP 180 -- Calculate Temperature

T=	150	temp in 0.1°C	long
B5 =	2399		long
X2=	-2344		long
X1 =	4743		long
		bmp180_get_ter	n perature

BMP 180 -- Calculate Pressure

calculate true pressure
B6 = B5 - 4000
$X1 = (B2 * (B6 * B6 / 2^{12})) / 2^{11}$
X2 = AC2 * B6 / 2 ¹¹
X3 = X1 + X2
B3 = (((AC1*4+X3) << oss) + 2) / 4
X1 = AC3 * B6 / 2 ¹³
X2 = (B1 * (B6 * B6 / 2 ¹²)) / 2 ¹⁸
$X3 = ((X1 + X2) + 2) / 2^2$
B4 = AC4 * (unsigend long)(X3 + 32768) / 215
B7 = ((unsigned long)UP - B3) * (50000 >> oss)
if (B7 < 0x80000000) { p = (B7 * 2) / B4 }
else {p = (B7 / B4) * 2}
$X1 = (p/2^8) * (p/2^8)$
X1 = (X1 * 3038) / 2 ¹⁶
$X2 = (-7357 * p)/2^{18}$
$p = p + (X1 + X2 + 3791)/2^4$

		BMP180_calpressure
B6 =	-1601	long
X1 =	1	long
X2=	56	long
X3 =	57	long
B3 =	422	long
X1 =	2810	long
X2=	59	long
X3 =	717	long
B4=	33457	unsigned long
B7 =	1171050000	unsigned long
p =	70003	long
		long
X1 =	74529	long
X1 =	3454	long
X2=	-7859	long
p=	69964	press. in Pa long

BMP 180 -- Altitude

altitude = 44330 *
$$\left(1 - \left(\frac{p}{p_0}\right)^{\frac{1}{5.255}}\right)$$

Thus, a pressure change of Δp = 1hPa corresponds to 8.43m at sea level.

Figure 5: Transfer function: Altitude over sea level - Barometric pressure

