Limiti

Data una funzione $f: A \subset f: A \subset f:$

 $\int \int x \int x_0^x = 1$

teorema dell'unicità del limite

Se \$I_1\$ e \$I_2\$ con \$I_1, I_2 \in \mathbb{R}\$

 $\int \int (x \cot x_0) f(x) = I_1 \quad \int (x \cot x_0) f(x) = I_2$

allora deve essere \$I_1 = I_2\$ cioè il limite è unico.

limiti infiniti

- $\lim_{x \to -\inf y} f(x) = I$; \qquad $\lim_{x \to -\inf y} f(x) = I$; \qquad $\lim_{x \to -\inf y} f(x) = I$ \$
- $\lim_{x \to x_0} f(x) = -\inf_{x \to x_0} f(x) = -\inf_{x \to x_0} f(x) = \inf_{x \to$
- \$\lim_{x \to -\infty} f(x) = \pm\infty; \qquad \lim_{x \to +\infty} f(x) = \pm\infty; \qquad \lim_{x \to \infty}
 f(x) = \infty\$

limite destro e sinistro

se $\lim_{x \to 0} f(x) = 1$ allora deve valere:

 $\lim_{x \to 0^-} f(x) = 1 \qquad \lim_{x \to 0^-} f(x) = 1$

teorema confronto (carabinieri)

Se $f(x) \le g(x) \le g(x)$

- se $\lim_{x \to 0} f(x) = 1$ e $\lim_{x \to 0} h(x) = 1$ allora vale $\lim_{x \to 0} g(x) = 1$
- se $\lim_{x \to 0} f(x) = + \inf_{x \to 0} g(x) = + \inf_{x \to 0} g(x) = + \inf_{x \to 0} g(x)$
- se $\lim_{x \to 0} h(x) = \inf s \lim_{x \to 0} g(x) = \inf s$

algebrea dei limiti

limite della somma

Se $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = m \in \mathbb{R}$ allora vale

 $\int \int \int (f(x) + g(x)) = I + m$

Più in generale:

	\$m \in \mathbb{R}\$	\$m = +\infty\$	\$m = -\infty\$
\$I \in \mathbb{R}\$	\$I+m\$	$I = +\inf $	\$I = -\infty\$

_		\$m \in \mathbb{R}\$	$m = + \inf y$	\$m = -\infty\$
_	\$I = +\infty\$	$I = +\infty$	\$I = -\infty\$	\$f.i.\$
-	\$I = -\infty\$	\$I = -\infty\$	\$f.i.\$	\$I = -\infty\$

limite del prodotto

Se $\lim_{x \to g(x) = I \in \mathbb{R}} e \lim_{x \to g(x) = m \in \mathbb{R}} allora vale$

 $\lim_{x \to 0} (f(x) \cdot g(x)) = I \cdot g(x)$

Più in generale:

	\$m < 0\$	\$m = 0\$	\$m > 0\$	\$m = +\infty\$	\$m = - \infty\$
\$1 < 0\$	\$I \cdot m\$	\$0\$	\$I \cdot m\$	\$-\infty\$	\$+\infty\$
\$1 = 0\$	\$0\$	\$0\$	\$0\$	\$f.i.\$	\$f.i.\$
\$1 > 0\$	\$I \cdot m\$	\$0\$	\$I \cdot m\$	\$+\infty\$	\$-\infty\$
\$I = +\infty\$	\$-\infty\$	\$f.i.\$	\$+\infty\$	\$+\infty\$	\$-\infty\$
\$I = -\infty\$	\$+\infty\$	\$f.i.\$	\$-\infty\$	\$-\infty\$	\$+\infty\$

limite del quoziente

Se $\lim_{x \to x_0} f(x) = I \in \mathbb{R}$ allora vale:

 $\ \lim_{x \to x_0} \frac{1}{f(x)} = \frac{1}{l}$

	\$m < 0\$	\$m = 0^\pm\$	\$m > 0\$	\$m = +\infty\$	\$m = - \infty\$
\$1 < 0\$	\$I / m\$	\$\pm \infty\$	\$I / m\$	\$0\$	\$0\$
\$1 = 0\$	\$0\$	\$f.i.\$	\$0\$	\$0\$	\$0\$
\$1 > 0\$	\$I / m\$	\$\pm \infty\$	\$I / m\$	\$0\$	\$0\$
\$I = +\infty\$	\$-\infty\$	\$\pm \infty\$	\$+\infty\$	\$f.i.\$	\$f.i.\$
\$I = -\infty\$	\$+\infty\$	\$\mp \infty\$	\$-\infty\$	\$f.i.\$	\$f.i.\$

Funzioni continue

definizione

Sia la funzione $f: A \subset \mathbb{R} \setminus \mathbb{R}$

- se \$x_0\$ è un **punto di accumulazione** per \$A\$ allora diremo che \$f\$ è **continua** in \$x_0\$
- se \$x_0 \in A\$ è un punto isolato di \$A\$, allora \$f\$ è continua anche in \$x_0\$
- diremo che \$f\$ è continua se è continua in ogni punto del suo dominio

operazioni tra funzioni continue

Date due funzioni \$f, g: A \to \mathbb{R}\$, allora

- \$h = f + g\$ è continua
- \$h = f \cdot g\$ è continua
- \$h = \frac{f}{g}\$ è continua
- \$g = |f|\$ è continua

limiti importanti delle funzioni elementari

```
\  \ \lim_{x \to x_0} x^a = \left( a < 0 \right) $$ \left( a < 0 \right) $$
```

```
\  \ \lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{se} n \text{pari} 0 & \text{s} 0 < a < 1 \end{cases} $$
```

```
\  \ \lim_{x \to +\infty} a^x = \begin{cases} -\infty & \text{se} a > 1 0 & \text{se} 0 < a < 1 \end{cases} $$
```

```
\ \lim_{x\to +\infty} x^a= \begin{cases} +\infty & \text{se} \ a > 0 \ 0 & \text{se} \ a < 0 \end{cases} $$
```

definizione

procedura

tramite un esempio: sia \$\lim_{x\to-2}x^2=4\$ i passaggi sono:

- trovare \$|x^2 -4| < \epsilon\$
- per la proprietà del valore assoluto abbiamo \$-\epsilon < |x^2-4| < \epsilon\$
- isolando la \$x\$ otteniamo \$\sqrt{4-\epsilon} < x < \sqrt{4+\epsilon}\$
- a questo punto ci interessa trovare \$|x-2| < \delta\$
- sottraiamo \$2\$ ai due membri \$\sqrt{4-\epsilon}-2 < x-2 < \sqrt{4+\epsilon}-2\$
- ricomponiamo il valore assoluto e troviamo la soluzione \$|x-2| < \sqrt{4-\epsilon} -2\$

limiti infiniti

quando abbiamo limiti per $x \to \pm \in \pm \cdot \pm$

procedura

sia $\lim_{x \to \infty} \frac{x+1}{x}=1$ i passaggi sono:

dobbiamo trovare \$M\$

limiti notevoli

funzione continua

- se \$x 0 \in A\$ è un **punto di accumulazione** di \$A\$ diremo che \$f\$ è **continua** in \$x 0\$
- se \$x_0 \in A\$ è un **punto isolato** di \$A\$ allora \$f\$ è continua anche in \$x_0\$
- \$f\$ è continua se + continua in ogni punto del suo dominio

alcune proprietà

date due funzioni continue \$f,q: A \rightarrow \mathbb{R}\$ allora

- \$h = f + g\$ è continua
- \$h = f \cdot g\$ è continua
- \$h = \frac{f}{g}\$ è continua
- \$h = |f|\$ è continua
- se una funzione è monotona (sempre crescente o sempre decrescente) allora la sua inversa è continua
- Le funzioni elementari $y=x^a$, $y=a^x$, $y=\log_{a}x$, $\sin(x)$, $\cos(x)$, $\tan(x)$ sono continue

teoremi fondamentali

teorema degli zeri

Siano $a < b = f : [a;b] \rightarrow \{b\} = f(a) \cdot \{b\}$

teorema dei valori intermedi

Sia \$f \ : \ [a;b] \rightarrow \mathbb{R}\$ una funzione *continua*. Allora l'immagine \$Imf\$ è un **intervallo** e \$f\$ assume tutti i valori all'interno di quell'intervallo.

teorema di Weierstrass

Se \$f\$ è una funzione continua in un insieme \$A\$ chiuso e limitato, allora assume massimo e minimo in \$A\$, ovvero, esistono un punto \$c\$ e un punto \$d\$ di \$A\$ tali che:

- \$f(c)\$ sia il massimo dell'immagine di \$f\$: \$f(c) = \max_{x \in A} f(x)\$
- \$f(d)\$ sia il minimo dell'immagine di \$f\$: \$f(d) = \min_{x \in A} f(x)\$

limiti notevoli

tipi di forme indeterminate

- \$[\infty \infty], \ [0 \cdot \infty], \ [\frac{\infty}{\infty}], \ [\frac{0}{0}]\$
- \$1^\infty\$
- \$[0^0]\$
- \$[\infty^0]\$

limiti notevoli

\$\lim_{x \to 0} \frac{\sin(x)}{x} = 1\$: prestare attenzionec he \$x\$ sia in radianti e \$x \to 0\$ e NON \$x \to \infty\$

• $\lim_{x \to \infty} (1+\frac{1}{x})^x = e$: \$e\$ corrisponde al numero di **Neplero** e vale \$e \approx 2.71828\$

• $\lim_{x \to \infty} \frac{x + \inf y}{\frac{(x)}{x} = 0}$