Základy složitosti a vyčíslitelnosti NTIN090

Petr Kučera

2022/23 (7. přednáška)

Více zdrojů, více síly

Prostor (důsledky)

Prostorová hierarchie

Věta (o deterministické prostorové hierarchii)

Pro každou prostorově konstruovatelnou funkci $f: \mathbb{N} \to \mathbb{N}$ existuje jazyk A, který je rozhodnutelný v prostoru O(f(n)), nikoli však v prostoru o(f(n)).

Důsledek

Jsou-li $f_1, f_2 : \mathbb{N} \to \mathbb{N}$ funkce, pro které platí, že $f_1(n) \in o(f_2(n))$ a f_2 je prostorově konstruovatelná, potom

$$SPACE(f_1(n)) \subseteq SPACE(f_2(n))$$

Polynomy a související funkce

Důsledek

Pro každá dvě reálná čísla $0 \le \epsilon_1 < \epsilon_2$ platí, že

$$SPACE(n^{\epsilon_1}) \subsetneq SPACE(n^{\epsilon_2})$$

- Je-li ϵ_2 racionální číslo, pak
 - n^{e2} je prostorově konstruovatelná
 - Lze jednoduše ukázat pro přirozená čísla
 - Lze ukázat i pro racionální čísla
 - Ostrá inkluze plyne z prostorové hierarchie
- Je-li ϵ_2 iracionální číslo
 - Racionální čísla jsou hustá v reálných číslech
 - Existuje racionální číslo ϵ splňující $\epsilon_1 < \epsilon < \epsilon_2$
 - Z prostorové hierarchie a prostorové konstruovatelnosti n^{ϵ}

$$SPACE(n^{\epsilon_1}) \subseteq SPACE(n^{\epsilon}) \subseteq SPACE(n^{\epsilon_2})$$

Logaritmický, polynomiální a exponenciální prostor

Důsledek

 $NL \subsetneq PSPACE \subsetneq EXPSPACE = \bigcup_{k \in \mathbb{N}} SPACE(2^{n^k}).$

Čas

Časová složitost Turingova stroje

Připomenutí

Nechť $f: \mathbb{N} \to \mathbb{N}$ je funkce, která je definovaná pro každý vstup

- Deterministický Turingův stroj M pracuje v čase f(n), pokud výpočet M nad libovolným vstupem x délky |x| = n skončí po provedení nejvýše f(n) kroků.
- TIME(f(n)) je třída jazyků přijímaných Turingovými stroji, které pracují v čase O(f(n))

Věta (Věta o deterministické časové hierarchii)

Pro každou časově konstruovatelnou funkci $f: \mathbb{N} \to \mathbb{N}$ existuje jazyk A, který je rozhodnutelný v čase O(f(n)), nikoli však v čase $o(f(n)/\log_2 f(n))$.

Časová konstruovatelnost

Definice

Funkci $f: \mathbb{N} \to \mathbb{N}$, kde $f(n) \in \Omega(n \log_2 n)$, nazveme časově konstruovatelnou, je-li funkce, která zobrazuje 1^n na binární reprezentaci f(n) vyčíslitelná v čase O(f(n)).

- Funkce obvykle používané pro měření časové složitosti jsou časově konstruovatelné, například
 - $[n \log_2 n]$
 - $\lceil n\sqrt{n} \rceil$
 - polynomy
 - 2ⁿ

Efektivní počítání kroků

Předpokládejme, že f(n) je časově konstruovatelná strojem M_f

- Se vstupem x
- 2 Sestav řetězec $w = 1^n$
 - Každý znak x změň na 1
- 3 Vypočítej k = f(n)
 - Spusť $M_f(w)$
- 4 Inicializuj binární čítač hodnotou k
 - Používá [log₂ k] bitů
- Sniž hodnotu čítače o jedna po každém kroku a skonči pokud dosáhne hodnota čítače nuly

Pracuje v čase $O(f(n) \cdot t(\lceil \log_2 k \rceil))$, kde $t(\lceil \log_2 k \rceil)$ je čas potřebný k aktualizaci hodnoty čítače s $\lceil \log_2 k \rceil$ bity.

Idea důkazu

Věta (Věta o deterministické časové hierarchii)

Pro každou časově konstruovatelnou funkci $f: \mathbb{N} \to \mathbb{N}$ existuje jazyk A, který je rozhodnutelný v čase O(f(n)), nikoli však v čase $o(f(n)/\log_2 f(n))$.

ldea důkazu

- Podobný postup jako v případě prostoru
- Je potřeba simulovat M(x) s počítáním kroků
- Manipulace s čítačem kroků přidává faktor $\Theta(\log_2 f(n))$

Předpokládáme, že všechny stroje mají jednu pásku.

Stroj D

Výpočet *D* se vstupem *x*

- 1 $n \leftarrow |x|$
- 2 Vypočti f(n) pomocí časové konstruovatelnosti
- 3 Inicializuj binární čítač hodnotou $\lceil f(n)/\log_2 f(n) \rceil$
- 4 Sniž hodnotu čítače o 1 po každém kroku při provádění kroků 7-8
- 5 if čítač dosáhne nulové hodnoty then odmítni
- 6 if x není tvaru $\langle M \rangle 10^*$ then odmítni
- 7 Simuluj M(x)
- $\mathbf{8}$ if M přijal then odmítni else přijmi

Definujeme A = L(D)

Čas výpočtu D

- f(n) lze vypočítat v čase O(f(n)) díky časové konstruovatelnosti
- $\lceil f(n)/\log_2 f(n) \rceil$ (binárně) lze vypočítat v čase O(f(n))
- Ověření, zda x má tvar $\langle M \rangle 10^*$ lze provést v čase O(n) = O(f(n))

Implementační detaily

- ① Jak provést simulaci M(x) tak, aby jedna instrukce M byla provedena v c_M krocích simulace
 - kde c_M je konstanta závisející na M
- 2 Jak snížit hodnotu čítače o 1 po každém kroku D v čase $O(\log_2 f(n))$

Simulace s konstantním zpožděním

- Předpokládejme $M = (Q, \Sigma, \delta, q_0, F)$
- Předpokládejme vstup x tvaru (M)10*
- $\langle M \rangle$ kóduje přechodovou funkci δ
- |⟨M⟩| je konstantní, je-li M zafixovaný
- Při simulaci jednoho kroku M(x)
 - D hledá v $\langle M \rangle$ přechod pro aktuální displej
 - Nejprve musí hlava D najít začátek $\langle M \rangle$ na pásce
 - D potřebuje také rychlý přístup k aktuálnímu stavu M

 $\langle M \rangle$ a stav stroje M musí být v každém okamžiku poblíž hlavy D.

Páska D

Páska stroje D má dvě stopy

Simulace s konstantním zpožděním

Páska D má dvě stopy:

Stopa 1 páska M, každý znak je zakódován $b = \lceil \log_2 |\Sigma| \rceil$ bity Stopa 2 aktuální stav q stroje M a přechodová funkce $\langle M \rangle$

- Vždy zarovnaná s hlavou M
- Po odsimulování jednoho kroku M může být potřeba obsah stopy 2 posunout
- Simulace jednoho kroku M pak zabere čas c_M pro nějakou konstantu c_M , která závisí na M
 - Nalezení instrukce v čase $O(|\langle M \rangle|^2)$
 - Posunutí stopy 2 v čase $O(|\langle M \rangle|^2)$
 - Konstantní čas pro fixní TS M

Pokud M pracuje v čase g(n), jeho simulaci lze provést O(g(n)).

Aktualizace čítače kroků

- Čítač má $O(\log_2 f(n))$ bitů
- Snížení hodnoty o 1 lze provést v lineárním čase vzhledem k počtu bitů
- Nejprve však musí hlava M přejít k čítači na pásce

Čítač musí být neustále poblíž hlavy D

- Přidáme novou stopu pro uložení čítače
- Po každém kroku simulace je stopa posunuta posunuta, aby čítač byl u hlavy D

Třetí stopa pásky stroje D

Stopa 3: Binární čítač $O(\log_2 f(n))$ bitů

Zarovnaná s hlavou D

Posouvá se po každém kroku simulace

Stopa 2 obsahuje dvojici $q \mid \langle M \rangle$

- Na začátku simulace kroku M musí být zarovnaná s blokem pod hlavou M
- Poté, co D dokončí simulaci kroku M, je stopa posunuta podle toho, kam se pohne hlava M

Stopa 3 obsahuje čítač

- Na začátku každého kroku D v rámci simulace musí být zarovnaná s hlavou D
- Jeden krok M je proveden pomocí c_M kroků simulace
- Po každém kroku simulace dojde k posunu čítače
- Čítač se tedy posune c_M -krát během simulace jednoho kroku M

Stopa 3 je zarovnaná s hlavou D při simulaci

Stopa 2 je zarovnaná s blokem pod hlavou ${\cal M}$

Pokud se hlava M pohne, stopa 2 je posunuta

Stopa 3 se posunula spolu s hlavou D

Časová složitost D

- Simulace M je ukončena nejpozději po provedení $\lceil f(n)/\log_2 f(n) \rceil$ kroků simulace
 - D tedy odsimuluje zhruba $\frac{f(n)}{c_M \log_2 f(n)}$ kroků M
- Hodnota čítače se sníží o 1 a případně je posunut po každém kroku simulace
 - $O(\log_2 f(n))$ kroků stačí pro snížení hodnoty
 - $O(\log_2 f(n))$ kroků stačí na posunutí
- Dohromady dostáváme čas

$$O\left(\frac{f(n)}{\log_2 f(n)}\log_2 f(n)\right) = O(f(n))$$

TS D pracuje v čase O(f(n)).

Časová složitost rozhodování A (horní odhad)

Jazyk A = L(D) lze rozhodnout v čase O(f(n)).

Ukážeme, že A nelze rozhodnout v čase $o(f(n)/\log_2 f(n))$.

Menší čas nestačí

- Nechť $M = (Q, \Sigma, \delta, q_0, F)$ je TS, který pracuje v čase $g(n) = o(f(n)/\log_2 f(n))$
- Ukážeme, že $A \neq L(M)$
- Dříve jsme ukázali, že

Simulaci M(x) lze provést pomocí $c_M g(n)$ kroků, kde c_M je konstanta, jež závisí na M.

Menší čas nestačí

• Z toho, že $g(n) = o(f(n)/\log_2 f(n))$, plyne

$$(\exists n_0 \in \mathbb{N})(\forall n \geq n_0)[c_Mg(n) \leq f(n)/{\log_2 f(n)}]$$

- Předpokládejme vstup $x = \langle M \rangle 10^{n_0}$
- Tedy $|x| > n_0$
- D simuluje M po $f(n)/\log_2 f(n)$ kroků
 - Simulace M se vstupem $x = \langle M \rangle 10^{n_0}$ skončí a
 - D(x) přijme, právě když M(x) odmítne

$$L(D) \neq L(M)$$

Časová hierarchie

Věta (Věta o deterministické časové hierarchii)

Pro každou časově konstruovatelnou funkci $f: \mathbb{N} \to \mathbb{N}$ existuje jazyk A, který je rozhodnutelný v čase O(f(n)), nikoli však v čase $o(f(n)/\log_2 f(n))$.

Důsledek

Jsou-li $f_1, f_2 : \mathbb{N} \to \mathbb{N}$ funkce, pro které platí, že $f_1(n) \in o(f_2(n)/\log_2 f_2(n))$ a f_2 je časově konstruovatelná, potom

$$TIME(f_1(n)) \subsetneq TIME(f_2(n))$$

Polynomy a související funkce

Důsledek

Pro každá dvě reálná čísla $1 \le \epsilon_1 < \epsilon_2$,

$$TIME(n^{\epsilon_1}) \subsetneq TIME(n^{\epsilon_2})$$

- Je-li ϵ_2 racionální číslo, pak
 - n^{ε2} je časově konstruovatelná
 - Lze jednoduše ukázat pro přirozená čísla
 - Lze ukázat i pro racionální čísla
 - Ostrá inkluze plyne z časové hierarchie
- Je-li ϵ_2 iracionální číslo
 - Racionální čísla jsou hustá v reálných číslech
 - Existuje racionální číslo ϵ splňující $\epsilon_1 < \epsilon < \epsilon_2$
 - Z časové hierarchie a časové konstruovatelnosti n^{ϵ}

$$TIME(n^{\epsilon_1}) \subsetneq TIME(n^{\epsilon}) \subseteq TIME(n^{\epsilon_2})$$

Polynomiální vs. exponenciální čas

Důsledek

 $P \subseteq EXPTIME$

- Pro každé $k \in \mathbb{N}$ platí $TIME(n^k) \subseteq TIME(2^n)$
- Podle časové hierarchie tedy

$$P \subseteq TIME(2^n) \subsetneq TIME(2^{n^2}) \subseteq EXPTIME$$

Vztahy mezi třídami

- Jedna z inkluzí $NL \subseteq P \subseteq NP \subseteq PSPACE$ musí být ostrá
- Jedna z inkluzí P ⊆ NP ⊆ PSPACE ⊆ EXPTIME musí být ostrá

Nevíme, která z inkluzí je ostrá

Další věty o hierarchii

- Věta o deterministické časové hierarchii lze ukázat i pro k-páskové stroje
 - Faktor $\log_2 f(n)$ je způsoben redukcí počtu pásek z k na 2
- Věty o hierarchiích platí též pro RAM nebo pro nedeterministické třídy složitosti
 - Ve větách o časové hierarchii není třeba faktor $\log_2 f(n)$

Splnitelnost a Cookova-Levinova věta

Výroková formule

- Spočetná množina výrokových proměnných {x₀, x₁,...}
- Logické spojky {¬, ∧, ∨, →, ↔}

Definice (Výroková formule)

- Proměnná je formule
- Jsou-li φ a ψ formule, pak $\neg \varphi$, $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \rightarrow \psi$ a $\varphi \leftrightarrow \psi$ jsou též formule
- Nic jiného nejsou formule

Ohodnocení a splnitelnost

- Ohodnocení a přiřazuje výrokovým proměnným hodnoty true/false (1/0, ⊤/⊥)
- Ohodnocení a splňuje formuli φ pokud se $\varphi(\mathbf{a})$ vyhodnotí na true
- Říkáme též, že jde o model formule φ
- Formule je splnitelná, pokud má model
- V opačném případě je formule nesplnitelná

Příklad

Formule

$$(x \lor y) \land (\neg x \lor z) \land (\neg y \lor \neg z)$$

je splněná ohodnocením $\{x \mapsto 1, y \mapsto 0, z \mapsto 1\}$

Konjunktivní normální forma

Literál je proměnná x nebo její negace $\neg x$

Klauzule je disjunkce literálů

- Například $x \vee \neg y \vee \neg z$
- Prázdná klauzule je sporná (false, ⊥)

KNF formule je v konjunktivní normální formě pokud jde o konjunkci klauzulí

Příklad

Následující formule je v KNF

$$\varphi = \neg x \land (y \lor \neg z) \land (x \lor \neg y) \land (x \lor y \lor z) \land (\neg x \lor z)$$

Nesplnitelná KNF

Následující formule v KNF je nesplnitelná

$$\varphi = \neg x \land (y \lor \neg z) \land (x \lor \neg y) \land (x \lor y \lor z) \land (\neg x \lor z)$$

Nesplnitelnost lze ukázat rezolucí

Splnitelnost

SPLNITELNOST (SAT)

Instance: Formule φ v KNF.

Otázka: Je φ splnitelná?

SAT patří do NP

 V polynomiálním čase lze ověřit, zda dané ohodnocení splňuje danou formuli

Cookova-Levinova věta

Věta (Cookova-Levinova)

SAT patří do P právě když P = NP.

ldea důkazu:

- 1 Zavedeme pojem polynomiální převoditelnosti
 - m-převoditelnost, kde převodní algoritmus pracuje v polynomiálním čase
- Zavedeme pojem NP-úplného problému
 - Nejtěžší problémy v NP vzhledem k polynomiální převoditelnosti
 - Je-li nějaký NP-úplný problém v P, pak P = NP
- 3 Ukážeme, že SAT je NP-úplný problém

Polynomiální převoditelnost

m-převoditelnost (princip)

Polynomiální převoditelnost (princip)

Polynomiální převoditelnost (definice)

Definice

Jazyk B je polynomiálně převoditelný na jazyk A ($B \leq_m^P A$), pokud existuje funkce $f: \Sigma^* \to \Sigma^*$ vyčíslitelná v polynomiálním čase, pro kterou platí

$$(\forall w \in \Sigma^*) [w \in B \iff f(w) \in A]$$

Polynomiální převoditelnost (vlastnosti)

Definice

Jazyk B je polynomiálně převoditelný na jazyk A ($B \leq_m^p A$), pokud existuje funkce $f: \Sigma^* \to \Sigma^*$ vyčíslitelná v polynomiálním čase, pro kterou platí

$$(\forall w \in \Sigma^*) [w \in B \iff f(w) \in A]$$

- \leq_m^p je reflexivní a tranzitivní (kvaziuspořádání)
- Je-li $B \leq_m^P A$ a $A \in P$, pak $B \in P$.
- Je-li $B \leq_m^P A$ a $A \in NP$, pak $B \in NP$.

Neznáme-li žádný polynomiální algoritmus pro ${\it B}$, pak neumíme zkonstruovat ani polynomiální algoritmus pro ${\it A}$.

Polynomiální převoditelnost (reflexivita)

Lemma (Reflexivita polynomiální převoditelnosti)

Pro každý jazyk A platí, že $A \leq_m^p A$.

Důkaz.

- Funkce identity id(x) = x je vyčíslitelná v polynomiálním čase
- Pro každý řetězec $x \in \Sigma^*$ platí

$$x \in A \Leftrightarrow id(x) \in A$$

Polynomiální převoditelnost (tranzitivita)

Lemma (Tranzitivita polynomiální převoditelnosti)

Pro každé tři jazyky A, B a C: $A \leq_m^P B \land B \leq_m^P C \implies A \leq_m^P C$

- $A \leq_m^P B$ funkcí g
- $B \leq_m^P C$ funkcí h
- Definujme funkci f(x) = h(g(x))
 - f je vyčíslitelná v polynomiálním čase
- Pro každý řetězec $x \in \Sigma^*$ platí

$$x \in A \underset{A \leq_m^P B}{\longleftrightarrow} g(x) \in B \underset{B \leq_m^P C}{\longleftrightarrow} h(g(x)) \in C \underset{f(x)=h(g(x))}{\longleftrightarrow} f(x) \in C$$

• $A \leq_m^P C$ funkcí f

Polynomiální převoditelnost srovnává dle obtížnosti

Lemma

Pokud $A \in P$ a $B \leq_m^p A$, pak $B \in P$.

- Uvažme TS M_A, který rozhoduje A v polynomiálním čase
- Popíšeme TS M_B, který rozhoduje B v polynomiálním čase

```
Výpočet M_B se vstupem x

1 y \leftarrow f(x)  // f ukazuje, že B \leq_m^P A

2 Pusť M_A(y)

3 if M_A přijal then

4 | přijmi

5 else

6 | odmítni
```

Polynomiální převoditelnost srovnává dle obtížnosti

Lemma

Pokud $A \in NP$ a $B \leq_m^P A$, pak $B \in NP$.

- Uvažme polynomiální verifikátor $V_A(x, y)$ pro jazyk A
- Popíšeme polynomiální verifikátor $V_B(x, y)$ pro jazyk B

Výpočet verifikátoru V_B se vstupem x a certifikátem y

- 1 $z \leftarrow f(x)$ // f ukazuje, že $B \leq_m^p A$
- 2 Pusť $V_A(z,y)$
- $\mathbf{3}$ if V_A přijal then
- 4 přijmi
- 5 else
- 6 odmítni

3-SAT

3-KNF formule φ je v 3-KNF, pokud je v KNF a každá klauzule obsahuje právě 3 literály

3-SAT

Instance: Formule φ v 3-KNF.

Otázka: Je φ splnitelná?

Vrcholové pokrytí

VRCHOLOVÉ POKRYTÍ

Instance: Neorientovaný graf G = (V, E) a celé číslo $k \ge 0$.

Otázka: Existuje množina vrcholů $S \subseteq V$ velikosti nejvýš k, která obsahuje alespoň jeden vrchol z každé hrany $\{u,v\}$ \in

E (tedy $\{u,v\} \cap S \neq \emptyset$)?

Desetistěn má vrcholové pokrytí velikosti k = 12

3-SAT a Vrcholové pokrytí

Věta

3-SAT je polynomiálně převoditelný na Vrcholové pokrytí.

 φ je splnitelná \longleftrightarrow G má vrcholové pokrytí velikosti k

Převod 3-SAT na Vrcholové pokrytí

- Nechť φ je 3-KNF, která má
 - n proměnných x_1, \ldots, x_n
 - *m* klauzulí *C*₁,...,*C*_m
 - Každá klauzule má právě 3 literály
- Popíšeme, jak sestrojit graf G = (V, E) a číslo k

Příklad

Uvažme například 3-KNF

$$\varphi = \underbrace{(x_1 \vee \neg x_2 \vee x_3)}_{C_1} \wedge \underbrace{(x_2 \vee \neg x_3 \vee x_4)}_{C_3} \wedge \underbrace{(\neg x_2 \vee x_3 \vee \neg x_4)}_{C_4}$$

Konstrukce grafu (krok 1)

Pro každou proměnnou x_i , i = 1, ..., n

• přidáme dva vrcholy pro literály x_i , $\neg x_i$ a hranu $\{x_i, \neg x_i\}$

$$x_1 \quad \neg x_1$$

$$x_3 \qquad \neg x_3$$

$$x_4 \qquad \neg x_4$$

Konstrukce grafu (krok 2)

Pro každou klauzuli C_j , j = 1, ..., m

• Přidáme trojúhelník na nově přidané trojici vrcholů u_j, v_j, w_j

$$x_4 \qquad \neg x_4 \\ \bullet \qquad \bullet$$

Konstrukce grafu (krok 3)

Pro každou klauzuli $C_j = (l_1 \lor l_2 \lor l_3)$ s literály l_1, l_2, l_3

• Přidáme hrany $\{u_j, l_1\}, \{v_j, l_2\}, \{w_j, l_3\}$

Hodnota k

$$k = 2m + n$$

- 1 vrchol je třeba k pokrytí každé hrany $\{x_i, \neg x_i\}, i = 1, \dots, n$
- 2 vrcholy jsou třeba k pokrytí každého trojúhelníku $\{u_j, v_j, w_j\}$, $j = 1, \ldots, m$
- Vrcholové pokrytí musí obsahovat alespoň 2m + n vrcholů

Graf G má vrcholové pokrytí velikosti k=2m+n právě když formule φ je splnitelná.

Důkaz " ⇒ "

- Nechť $S \subseteq V$ je vrcholové pokrytí velikosti k = 2m + n
- Každá hrana $\{x_i, \neg x_i\}, i = 1, ..., n$ je pokryta právě jedním vrcholem
- Definujeme ohodnocení a tak, že pro každý index i = 1,...,n

$$\mathbf{a}(x_i) = \begin{cases} 1 & x_i \in S \\ 0 & \neg x_i \in S \end{cases}$$

Model daný vrcholovým pokrytím

Model daný pokrytím: $\{x_1 \mapsto 1, x_2 \mapsto 0, x_3 \mapsto 0, x_4 \mapsto 1\}$

Každá klauzule obsahuje splněný literál

\mathbf{a} splňuje φ

- Uvažme klauzuli $C_j, j \in \{1, \ldots, m\}$
- Předpokládejme, že $C_j = (l_1 \lor l_2 \lor l_3)$
- S obsahuje dva vrcholy trojúhelníku $\{u_j, v_j, w_j\}$
- Jeden vrchol trojúhelníku $\{u_i, v_i, w_i\}$ není v S
- Nechť $u_i \notin S$
 - Případy se zbylými dvěma vrcholy jsou symetrické
- Uvažme hranu {u_i, l₁}
- Protože $u_i \notin S$, l_1 musí být v S
- \implies **a**(l_1) = 1
- $\implies C_j$ je splněna ohodnocením ${f a}$

Ohodnocení a splňuje každou klauzuli $C_i \in \varphi$, jde o model.

```
Důkaz "← "
```

K danému splňující ohodnocení a definujeme množinu vrcholů S takto

- Pro každé *i* = 1,..., *n*
 - Přidáme do S vrchol x_i pokud $\mathbf{a}(x_i) = 1$
 - Přidáme do S vrchol $\neg x_i$ pokud $\mathbf{a}(x_i) = 0$
- Pro každý trojúhelník $\{u_i, v_i, w_i\}, j = 1, \dots, m$
 - Uvažme klauzuli $C_i = (l_1 \vee l_2 \vee l_3)$
 - Jeden z literálů je splněný ohodnocením a
 - Předpokládejmé, že literál l_1 je splněný
 - Případy s ostatními literály jsou symetrické
 - Hrana $\{l_1, u_i\}$ je již pokrytá vrcholem $l_1 \in S$
 - Zbylé vrcholy v_i , w_i přidáme do S

S je vrcholové pokrytí G velikosti k = 2m + n.

Vrcholové pokrytí dané modelem

Předpokládejme model: $\{x_1 \mapsto 1, x_2 \mapsto 0, x_3 \mapsto 0, x_4 \mapsto 1\}$

Vrcholové pokrytí dané modelem

Předpokládejme model: $\{x_1 \mapsto 1, x_2 \mapsto 0, x_3 \mapsto 0, x_4 \mapsto 1\}$

V každé klauzuli vybereme splněný literál

Vrcholové pokrytí dané modelem

Předpokládejme model: $\{x_1 \mapsto 1, x_2 \mapsto 0, x_3 \mapsto 0, x_4 \mapsto 1\}$

Trojúhelníky pokryjeme zbylými vrcholy