

Final Project

01205242 Electronic Circuit and System 1

Design and Simulation of Amplifier Circuit

โดย

ชื่อ นายชาวิน คงประสงค์ศิริ

รหัสประจำตัว 6210500391

เสนอ

ผศ.ดร. ชูเกียรติ การะเกตุ

ผศ.ดร. วรดร วัฒนพานิช

ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ ภาคเรียนที่ 2 ปีการศึกษา 2563

ส่วนประกอบของวงจรขยายสัญญาณ

- Buffer Circuit (วงจรรักษาแรงดัน)

เนื่องจากโจทย์ที่ใช้ออกแบบวงจรมีการใช้สัญญาณ input ที่มีความต้านทานขาออกจาก input (R_s) เท่ากับ 10k Ohms ซึ่งมีขนาดที่สูง จึงไม่สามารถสร้างวงจรขยายใน state เดียวได้โดยที่ยังใช้ $R_s=10$ k Ohms ได้ จึงใช้วงจรรักษาแรงดันในการสร้างแรงดันที่ยังใกล้เคียงกับแรงดัน input ตามที่โจทย์ต้องการ โดยทำการ ออกแบบวงจรให้มีอัตราขยายเข้าใกล้ 1 V/V

- Common Emitter Amplifier Circuit (วงจรขยายสัญญาณ)

ใช้สำหรับขยายสัญญาณจากวงจรรักษาแรงดัน โดยจากโจทย์จึงออกแบบให้วงจรนี้มีอัตราขยายที่มากกว่า 15 V/V

- Darlington Configuration Circuit (วงจรขับโหลด)

เนื่องจากโจทย์ที่ใช้ออกแบบวงจรมีการกำหนด Load $R_L=8$ Ohms ซึ่งเป็นความต้านทานที่ต่ำ จึงต้อง ใช้วงจรขับโหลดที่สร้างจาก Transister 2 ตัวโดยออกแบบให้มีกำลังขยายใกล้เคียง 1 V/Vมากที่สุด

ภาพที่ 1.1 วงจรขยายที่ประกอบด้วย 3 state

ทฤษฎีที่ใช้ในการออกแบบวงจร

- Buffer Circuit (วงจรรักษาแรงดัน)

การคำนวณจุดทำงาน (พิจารณาเฉพาะ DC)

KVL ผ่าน BE ;
$$V_{cc} = R_{B1}I_{B1} + R_{E1}(\beta+1)I_{B1} + 0.7$$

จะได้
$$\label{eq:lambda_continuity} |_{\text{B1}} = \frac{V_{\text{cc}}\text{-0.7}}{R_{\text{B1}} + R_{\text{E1}}(\beta + 1)} \quad ------(1.1)$$

KVL ผ่าน CE ;
$$V_{CEQ1} = V_{cc} - I_{B1}R_{E1}(\beta+1)$$
 -----(1.2)

-wbuffer> ***โดยมีเงื่อนไขคือ

$$I_{B1} < \frac{42 \text{ mA}}{(\beta+1)}$$
 , $V_{CEQ} > 0.2$

การคำนวณอัตราขยาย (พิจารณาเฉพาะ AC)

จากกฎของโอห์ม $V_o = (\beta+1)(i)R_{E1}$

- Common Emitter Amplifier Circuit (วงจรขยายสัญญาณ)

คำนวณจุดทำงาน (พิจารณาเฉพาะ DC)

KVL ผ่านขั้ว BE ของ BJT ;

$$\frac{v_{cc}R_{B22}}{R_{B12+}R_{B22}} = I_{B2}(R_{B12}//R_{B22}) + 0.7 + I_{B2}(\beta+1)R_{E1}$$
$$v_{cc}R_{B22}$$

$$R_{B12+}R_{B22}$$
 จัดรูปจะได้ $I_{B2} = \frac{\frac{V_{cc}R_{B22}}{R_{R12+}R_{R22}} - 0.7}{R_{B12}//R_{B22} + (\beta+1)R_{E1}}$ ------(2.1)

KVL ผ่านขั้ว CE ของ BJT ;

$$V_{CEQ2} = V_{cc} - I_B(\beta+1)R_{E1} - \beta I_BR_{C2}$$
 -----(2.2)

***โดยมีเงื่อนไขคือ

$$I_{B2} < \frac{42 \text{ mA}}{(\beta+1)} \quad \text{, } V_{CEQ} > 0.2$$

การคำนวณอัตราขยาย (พิจารณาเฉพาะ AC)

จากกฎของโอห์ม $V_o=-i(\beta+1)R_{C2}$ เมื่อ $i=rac{V_{in}}{Z_{in}}=rac{V_{in}}{r_{pi2}}$ แทน i ลงไปในสมการแรก จะได้

$$A_V = \frac{V_o}{V_i} = -g_m R_{C2} - - - (2.3)$$

- Darlington Configuration Circuit (วงจรขับโหลด)

คำนวณจุดทำงาน (พิจารณาเฉพาะ DC)

KVL ผ่านขั้ว BE ของ BJT ;

$$\begin{split} \frac{V_{cc}R_{B23}}{R_{B13+}R_{B23}} &= I_B(R_{B13}//R_{B23}) + 0.7 + 0.7 + I_B(\beta+1)^2 R_{E4} \\ I_{0}^{**}I_{B} &= \frac{\frac{V_{cc}R_{B23}}{R_{B13+}R_{B23}} - 1.4}{R_{B13}//R_{B23} + (\beta+1)^2 R_{E4}} &------(3.1) \\ KVL ผ่านขั้ว CE ของ BJT ; \end{split}$$

$$V_{CEO3} = V_{cc} - 0.7 - I_B(\beta+1)^2 R_{E4}$$
 -----(3.2)

$$V_{CEQ4} = V_{cc} - I_B(\beta+1)^2 R_{E4}$$
 -----(3.3)

***โดยมีเงื่อนไขคือ

$$I_{B1} < \frac{42 \text{ mA}}{(\beta+1)}$$
 , $V_{CEQ3} > 0.2$

ถ้า Q3 Active Q4 จะ Active ด้วย

การคำนวณอัตราขยาย (พิจารณาเฉพาะ AC)

$$\begin{split} Z_{\text{in3}} &= r_{\text{pi3}} + (\beta + 1) Z_{\text{in4}} \\ Z_{\text{in4}} &= r_{\text{pi4}} + (\beta + 1) (R_{\text{E4}} / / R_{\text{L}}) \\ \text{จากกฎของโอห์ม } V_{\text{o}} &= (\beta + 1)^2 \mathrm{i} (R_{\text{E4}} / / R_{\text{L}}) \\ \\ \text{โดย i} &= \frac{V_{\text{in}}}{Z_{\text{in3}}} = \frac{V_{\text{in}}}{r_{\text{pi3}} + (\beta + 1) (r_{\text{pi4}} + (\beta + 1) (R_{\text{E4}} / / R_{\text{L}}))} \end{split}$$

แทน i ลงไปในสมการแรกจะได้

$$\begin{split} A_V &= \frac{\frac{V_o}{V_i}}{\frac{V_i}{V_i}} = \frac{(\beta + 1)^2 (R_{Ed} / / R_L)}{r_{pi3} + (\beta + 1) (r_{pi4} + (\beta + 1) (R_{E4} / / R_L))} \\ &= \frac{(\beta + 1)^2 (R_{Ed} / / R_L)}{r_{pi3} + (\beta + 1) (r_{pi4}) + (\beta + 1)^2 (R_{E4} / / R_L))} -------(3.4) \\ \Tilde{Number of Number of National Proof of the National Proof of National Proof$$

การออกแบบค่าพารามิเตอร์

- ค่าคงที่ของวงจรที่ใช้รวมถึงโจทย์กำหนด

 V_{cc} = 3.3 V , V_{in} = (6m) AC Volt , f = 10 kHz , R_L = 8 Ohms , Temp. = 80 °C , β = 256 (คำนวณจาก $\frac{I_C}{I_B}$ ขณะ BJT Forward Active) , V_T = 30 mV (kT/q) และ C = 32 microF (Maximum เพื่อตอนคำนวณ AC จะได้สามารถมองเป็นสายเปล่า)

- Buffer State (รักษาแรงดัน)

จากสมการที่ 1.1 และ 1.2 สามารถสังเกตความสัมพันธ์ระหว่างความต้านทานแต่ละตัวในวงจรกับจุด ทำงานของ Transister ได้ ซึ่งในการออกแบบต้องการให้ BJT ทำงานในย่าน Forward Active และจากสมการที่ 1.3 ที่สามารถทราบความสัมพัทธ์ระหว่างอัตราขยายกับความต้านทานในวงจร โดยการออกแบบต้องการให้มี อัตราขยายเข้าใกล้ 1 มากที่สุด

จากสมการที่ 1.3;

$$A_v = rac{V_o}{V_i} = rac{(rac{R_{B1}/\!/Z_{in}}{R_{B1}/\!/Z_{in}+R_s})}{r_{pi1}+(\beta+1)R_{E1}} imes (eta+1)R_{E1} \ ,$$
 ถ้า $R_{B1}/\!/Z_{in} >> R_s$ และ $(eta+1)R_{E1} >> r_{pi1}$ จะได้ $A_v = rac{V_o}{V_i} pprox 1$

ต้องออกแบบให้ $R_{B1}//Z_{in} >> R_s$ เนื่องจาก R_{B1} และ Z_{in} ขนานกันและมองว่า Z_{in} มีขนาดมากแล้วจึงให้ R_{B1} มีขนาดใหญ่ด้วย เพราะฉะนั้นกำหนดให้ $R_{B1} = 1M$ Ohms จากเงื่อนไข $(\beta+1)R_{E1} >> r_{pi1}$ และสมการที่ 1.2 ; $V_{CEQ1} = V_{CC} - I_{B1}R_{E1}(\beta+1) > 0.2$ สามารถออกแบบ R_{E1} ได้ ;

$$V_{CEQ1} = V_{CC} - I_{B1}R_{E1}(\beta+1) > 0.2$$
 , แทน $R_E = 1M$ Ohms และ I_{B1} จากสมการที่ 1.1 จะได้
$$3.3 - \frac{(3.3 - 0.7)(R_E)(257)}{10^6 + R_E(257)} > 0.2$$

จัดรูปได้ R_{E1} > -20k Ohms

เพราะฉะนั้นกำหนดให้ R_{E1} = 1 M ohms

ตรวจสอบจุดทำงานของวงจร

$$I_{B1} = 1.011 \times 10^{-8} \text{ A V}_{CEQ1} = 0.7 \text{ V}$$

ตรวจสอบอัตราขยายของวงจร

$$\begin{split} A_{v} &= \frac{V_{o}}{V_{i}} = \frac{(\frac{R_{B1}//(r_{pi1} + (\beta + 1)R_{E1})}{R_{B1}//(r_{pi1} + (\beta + 1)R_{E1}) + R_{s})} \times (\beta + 1)R_{E1} \quad \text{id} \quad r_{pi1} = \frac{V_{T}}{I_{B}} = \frac{30 \text{ mV}}{1.011 \times 10^{-8}} \approx 3 \text{M ohms} \\ A_{v} &= \frac{V_{o}}{V_{i}} = \frac{(\frac{1M//259M}{1.001259M + 10k})}{259M} \times (257)1M = 0.982 \text{ V/V} \end{split}$$

เพราะฉะนั้น BJT อยู่ในย่านการทำงาน Active Forward ที่มีอัตราขยาย <mark>0.982 V/V</mark>

- Common Emitter Amplifier State (ขยายสัญญาณ)

จากสมการที่ 2.1 2.2 และ 2.3 นำมาหาค่าพารามิเตอร์ที่ใช้พิจารณาเมื่อ BJT ทำงานในย่าน Forward Active และทำการออกแบบอัตราขยายให้มากกว่า 15 V/V เนื่องจากจำนวนพารามิเตอร์ของตัวต้านทานมีมาก เพื่อความสะดวกในการออกแบบวงจรจึงกำหนดค่ากระแสที่ผ่านตัว Transister ให้มีค่าน้อยกว่า 42 mA (กำหนดให้ $I_C=1~\mathrm{mA}$)

การออกแบบค่า R_{B12}, R_{B22} จะพิจารณาสมการที่ 2.1;

$$I_{B2} = \frac{\frac{v_{cc}R_{B22}}{R_{B12+}R_{B22}} - 0.7}{R_{B12+}/R_{B22} + (\beta+1)R_{E1}} \quad \text{in Q2 Active } \frac{v_{cc}R_{B22}}{R_{B12+}R_{B22}} > 0.7$$

ได้ R_{B12} = 40k ohms และ R_{B22} = 36k ohms (จากการสุ่มค่า)

แทนลงในสมการที่ 2.1 แก้สมการหาค่า R_{E1} ;

$$\frac{1 \text{ mA}}{256} = \frac{\frac{3.3 \times 36 \text{k}}{40 \text{k} + 36 \text{k}} - 0.7}{40 \text{k} / (36 \text{k} + (256 + 1)) R_{E1}}$$

แก้สมการได้ R_{E1} = 786 ohms

จากโจทย์ต้องการสร้างวงจรขยายด้วยอัตราขยายมากกว่า 15 จึงเลือกอัตราขยายที่จะสร้างในวงจรเป็น 30 V/V

จากสมการที่ 2.3 ;
$$30 = \frac{V_o}{V_i} = -g_m R_{C2} = \frac{1 \text{mA}}{30 \text{mV}} (R_{C2})$$
 เพราะฉะนั้น $\frac{R_{C2}}{V_i} = 900 \text{ ohms}$

ตรวจสอบจุดทำงานของวงจรด้วยสมการที่ 2.2 ;

$$V_{\text{CEQ2}} = \, V_{\text{cc}} \, \text{--} \, I_{\text{B}}(\beta \! + \! 1) R_{\text{E}1} \, \text{--} \, \beta I_{\text{B}} R_{\text{C}2} > \, 0.2$$

$$3.3 - (1\text{mA})(786) - (1\text{mA})(900) > 0.2$$

ได้ 1.614 > 0.2 เพราะฉะนั้น BJT ทำงานอยู่ในย่าน Active Forward ที่มีอัตราขยาย <mark>30 V/V</mark>

- Darlington Configuration State (ขับโหลด)

ออกแบบวงจรที่สร้างจุดทำงาน Forward Active จากสมการที่ 3.1;

$$\begin{split} I_{B} = \frac{\frac{V_{cc}R_{B23}}{R_{B13+}R_{B23}} - 1.4}{R_{B13}/R_{B23} + (\beta + 1)^{2}R_{E4}} & \text{ถ้า Q3 และ Q4 Active } \frac{V_{cc}R_{B23}}{R_{B13+}R_{B23}} < 1.4 \end{split}$$
 ได้ $\frac{V_{cc}R_{B23}}{R_{B13}} = \frac{15k \text{ ohms}}{R_{B13}} = \frac{1000}{R_{B23}} =$

จากนั้นปรับอัตราขยายให้เข้าใกล้ 1 ด้วยสมการ 3.4 ;

 $V_0 = (\beta+1)^2 (R_{E4}//R_L)$

$$\begin{split} A_V &= \frac{V_o}{V_i} = \frac{(\beta + 1)^2 (R_{E4}/\!/R_L)}{r_{pi3} + (\beta + 1)(r_{pi4}) + (\beta + 1)^2 (R_{E4}/\!/R_L))} \\ &\tilde{\mathfrak{h}} \uparrow \ (\beta + 1)^2 (R_{E4}/\!/R_L) >> r_{pi3} + (\beta + 1)(r_{pi4}) \end{split}$$
 จะได้ $A_V = \frac{V_o}{V_i} \approx 1$

เนื่องจากในสมการ $(\beta+1)^2$ มีขนาดใหญ่มากๆแล้ว จึงต้องทำการออกแบบ $R_{E4}//R_L$ ให้มีค่ามากที่สุด แต่ R_{E4} จะต้องไม่มากเกินไปจนทำให้สัญญาณมี Error Log สูงเกิน 3%

ได้ค่า $R_{E4} = 50 \text{ ohms}$ (จากการปรับหาค่าที่พอเหมาะ) ที่ Error Log = 0.9% ตรวจสอบจุดทำงานของวงจรด้วยสมการที่ 3.2 และ 3.3 ;

ได้ $I_B = 4.3 \times 10^{-7} A$ จากการแทนค่าลงในสมการที่ 3.1

$$V_{CEQ3} = V_{cc} - 0.7 - I_{B}(\beta + 1)^{2}R_{E4} \ = 3.3 - 0.7 - (\ 4.3 \times 10^{-7} \times 256^{2} \times 50\) = 1.5 > 0.2$$

$$V_{CEQ4} = V_{CC} - I_B(\beta + 1)^2 R_{E4} = 3.3 - (4.3 \times 10^{-7} \times 256^2 \times 50) = 2.2 > 0.2$$

ตรวจสอบจุดทำงานของวงจรด้วยสมการที่ 3.4;

$$\begin{split} A_V &= \frac{V_o}{V_i} = \frac{(\beta + 1)^2 (R_{E4} / / R_L)}{r_{pi3} + (\beta + 1)(r_{pi4}) + (\beta + 1)^2 (R_{E4} / / R_L))} = \frac{(256 + 1)^2 (50 / 8)}{\frac{30m}{256 \times 4.3 \times 10^{-7}} + (256 + 1)(\frac{30m}{256 \times 4.3 \times 10^{-7} (256 + 1)}) + (256 + 1)^2 (50 / 8)} \\ A_V &= \frac{V_o}{V_o} = 0.999 \text{ V/V} \end{split}$$

เพราะฉะนั้น BJT ทำงานอยู่ในย่าน Active Forward ที่มีอัตราชยาย <mark>0.999 V/V</mark>

DC Operation Point & AC Analysis

- แรงดันไฟฟ้าที่ตำแหน่งเอาต์พุตของแต่ละเสตจ

Voltage Buffer

Amplifier

Darlington Configuration

- AC Analysis

Buffer State

Amplifier State

Darlington Configuration

- กราฟกระแสไฟฟ้าที่ไหลออกจากแหล่งจ่าย V_{CC}

- ภาพแสดงความเพี้ยน (Error log)

Circuit: * C:\Users\acer\Documents\LTspiceXVII\project final2.asc

WARNING: Less than two connections to node NC_01. This node is used by VCC1. WARNING: Less than two connections to node NC_02. This node is used by VCC3.

Direct Newton iteration for .op point succeeded.

N-Period=100

Fourier components of V(vout) DC component: -3.79417e-007

Harmonic	Frequency	Fourier	Normalized	Phase	Normalized
Number	[Hz]	Component	Component	[degree]	Phase [deg]
1	1.000e+04	1.112e-01	1.000e+00	-177.35°	0.00°
2	2.000e+04	1.138e-03	1.023e-02	-65.02°	112.33°
3	3.000e+04	1.043e-03	9.379e-03	-173.37°	3.98°
4	4.000e+04	1.804e-04	1.622e-03	95.85°	273.20°
5	5.000e+04	2.190e-05	1.969e-04	3.89°	181.24°
6	6.000e+04	8.418e-07	7.567e-06	-74.12°	103.23°
7	7.000e+04	3.295e-06	2.962e-05	-3.75°	173.60°
8	8.000e+04	2.268e-06	2.039e-05	-69.03°	108.31°
9	9.000e+04	2.235e-06	2.010e-05	-159.49°	17.86°
10	1.000e+ <u>05</u>	7.866e-07	7.071e-06	107.23°	284.57°
Total Harmoni	c Distortion: 1.3976	08% (1.399079%)			

Date: Fri Apr 16 15:25:47 2021 Total elapsed time: 5.280 seconds.

tnom = 27temp = 80

method = modified trap totiter = 1900542traniter = 1900526tranpoints = 800265 accept = 480266 rejected = 319999 matrix size = 30 fillins = 0solver = Normal

Matrix Compiler1: 112 opcodes 0.3/[0.2]/0.3 Matrix Compiler2: off [0.2]/0.3/0.3

คำถามในการออกแบบ

- 1. จงอธิบายว่าเหตุใดจึงต้องออกแบบวงจรขยายเป็นแบบหลายเสตจ และน่าจะมีปัญหาอย่างไรถ้านิสิต ทำการออกแบบวงจรขยายเป็นแบบเสตจเดียวเพื่อให้ได้อัตราขยายตามที่ต้องการ

 Ans ถ้าออกแบบวงจรขยายให้มีอัตราขยายตามที่ต้องการสามารถทำได้แต่ไม่สามารถสำหรับโจทย์นี้เพราะว่าใน โจทย์มีการกำหนดความต้านทานขาออกของอินพุตและความต้านที่โหลด ซึ่งการออกแบบอัตราขยายที่มากกว่า 15 และมีการกำหนดตัวต้านทานที่ว่า ซึ่งปัญหาที่ตามมาเมื่อออกแบบวงจรด้วยวงจรเสตจเดียวคือเงื่อนไขไม่ เพียงพอ เช่นที่ตัวต้านทานขาออกจากเอาต์พุตมีขนานสูงเกินไปจนทำให้ศักย์ไฟฟ้าที่เข้าวงจรต่ำลงซึ่งทำให้ อัตราขยายลดลงอย่างมากจึงต้องมีวงจร Buffer State มารองรับปัญหานี้ เป็นต้น
- 2. จงอธิบายหลักการในการออกแบบวงจร Common Collector สำหรับเป็นวงจร Voltage Buffer ใน เสตจที่ 1 นิสิตต้องเลือกที่จะทำการไบอัส Q_1 อย่างไรเพื่อให้เหมาะสมกับความต้านทาน R_S และความต้านทานขา เข้าของวงจรขยายใน State 2
- Ans เนื่องจากตัวต้านทานขาออกจากเอาต์พุตมีขนานสูงเกินไป ($R_S = 10$ k ohms) จนทำให้ศักย์ไฟฟ้าที่เข้าวงจร ต่ำลงซึ่งทำให้อัตราขยายลดลงอย่างมากจึงต้องมีวงจร Buffer State มารองรับปัญหานี้ โดยออกแบบให้วงจร มีอัตรขยายใกล้เคียง 1 ด้วยวงจร Common Colletor
- 3. จงอธิบายว่าเหตุใดจึงควรใช้ Darlington Configuration สำหรับเป็น State Output ในการขับโหลด ถ้านิสิตไม่ใช้วงจรนี้จะกระทบกับการออกแบบวงจรขยายใน State ที่ 3 อย่างไร

 <u>Ans</u> สำหรับการต่อ BJT แบบธรรมดาแล้วสร้างอัตราขยายสูงๆ จะมีผลกระทบที่ Output จะเพี้ยนไม่เป็น sine wave เหมือนเดิม ดังนั้นการใช้ Darlington Configuration จะช่วยให้วงจรสามารถจ่ายกระแสมากๆได้โดยที่ Output ไม่ถูกกระทบ