PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-109260

(43) Date of publication of application: 25.04.1995

(51)Int.Cl.

C07D213/73 C07D213/75 C07D213/76

(21)Application number : 05-254464

(71)Applicant: FUJI PHOTO FILM CO LTD

(22)Date of filing:

12.10.1993

(72)Inventor: JINBO YOSHIHIRO

(54) PRODUCTION OF 5-AMINO-2-NITROPYRIDINE DERIVATIVE AND 5-DIAMOND-3-HYDROXYPYRIDINE DERIVATIVE

(57) Abstract:

PURPOSE: To easily synthesize in a high yield the derivative as an important intermediate.

CONSTITUTION: A compound of formula I [R0 and R2 are each H, halogen, alkyl, aryl, N(R4)C(=O)R3, N(R4)C (=O)OR3, N(R4)C(=O)NR3R5, N(R4)SO2R3 or OR1 (R4 is H, alkyl or aryl; R1, R3 and R5 are each alkyl or aryl); X is H or substituent], e.g. 3-benzyloxy-2-nitropyridine is reacted with a compound of formula H2N-Y (Y is eliminable group) in the presence of a base to obtain the objective compound of formula II (e.g. 7 5-amino-3-benzyloxy-2-nitropyridine). Using the compound of the formula II as starting material, the other objective 2,5-diamino-3-hydroxypyridine derivative of formula III [R6 and R7 are each C(=O)R8, C(=O)OR8, C(=O)NR8R9 or

SO2R8 (R8 and R9 are each H, alkyl or aryl); X' is the same as X] useful as a coupler or an intermediate thereof can be easily synthesized in a high yield.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of

(19)日本国特許庁 (JP) (12) 公開. 特許公報(A)

(11)特許出願公開番号

特開平7-109260

(43)公開日 平成7年(1995)4月25日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

C 0 7 D 213/73 213/75 213/76

審査請求 未請求 請求項の数4 OL (全 15 頁)

(21)出願番号

特願平5-254464

(22)出願日

平成5年(1993)10月12日

(71)出願人 000005201

富士写真フイルム株式会社

神奈川県南足柄市中沼210番地

(72)発明者 神保 良弘

神奈川県南足柄市中沼210番地 富士写真

フイルム株式会社内

(54)【発明の名称】 5-アミノー2-ニトロピリジン誘導体及び2,5-ジアミノー3-ヒドロキシピリジン誘導体 の製造方法

(57)【要約】

(修正有)

【目的】5-アミノ-3-ヒドロキシ-2-ニトロピリ ジン誘導体および2.5-ジアミノ-3-ヒドロキシー 2-二トロピリジン誘導体の容易かつ、高収率な合成法 を提供する。

【構成】一般式(I)の3-アルコキシ-2-ニトロピ リジン誘導体を塩基性条件下一般式(II)のアミノ化試 薬でアミノ化し、一般式(III)で表わされる5-アミ ノー3-アルコキシー2-二トロピリジン誘導体を得る 方法。当該5-アミノ-3-アルコキシ-2-ニトロピ リジン誘導体を原料とし、一般式(IV)で表わされる 2. 5-ジアミノー3-ヒドロキシピリジン誘導体を得 る方法。

H: N-Y (11)

(III).

〔式中、R^o, R² はH, F, C1, Br、アルキル、 アリール、-N(R4)COR3-N(R4)SO2R 5 . -OR¹ を:R⁴ はH、アルキル、アリールを:R 1, R⁵ はアルキル、アリールを; R³ はアルキル、ア リール、アルコキシ、アルキルアミノ等を;R⁶,R⁷ は-COR®、-SO2 R®を:R®はR®と同様の意 義を;R⁹ はR⁵ と同様の意義を;X, X'は水素また は置換基を:Yは脱離基を:それぞれ表わす)

【特許請求の範囲】

【請求項1】 一般式(I)で表される化合物と一般式 (II)で表される化合物を塩基の存在下反応させることを 特徴とする一般式(III)で表される化合物の製造方法。 【化1】

ル基、アリール基、-N(R4)C(=0)R3 、-N(R4)C(=0)OR3、 -N(R⁴)C(=0)NR³R⁵、-N(R⁴)SO₂R³ または -OR¹を表し、 R¹は水素原子、アルキル基、アリール基を表し、 R¹ 、R³ 、R⁵ は各々アルキル基またはアリール基を 表し、Xは水素原子または置換基を表す。)

【化2】

一般式(II) $H_2 N - Y$ (式中、Yは脱離基を表す。)

【化3】

(式中、R⁰、R²、Xは一般式(I)と同じ意味であ る。)

【請求項2】 一般式(I) および(III) において-R⁰ が -OR1 であることを特徴とする請求項1に記載の一般 式(III) で表される5-アミノ-3-ヒドロキシピリジ ン誘導体の製造方法。(式中、R1 はアルキル基または アリール基を表わす。)

【請求項3】 一般式(III) で表される化合物を出発原 料とする一般式(IV)で表わされる2,5-ジアミノ-3 ーヒドロキシピリジン誘導体の製造方法。

【化4】

(式中、R² は一般式(I)と同義であり、R⁶ 、R⁷ は各々 -C(=0)R⁸ 、-C(=0)OR⁸ 、-C(=0)NR⁸R⁹ 、-SO₂R⁸ を表わし、X′はXと同義であり、R⁸、R⁹は水素原 子、アルキル基またはアリール基を表わす。)

【請求項4】 請求項における一般式(III) で表される 化合物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は5-アミノー2-ニトロ ピリジン誘導体、該誘導体の製造方法および2,5-ジ [0002]

【従来の技術】3-ヒドロキシ(またはアルコキシ)ピ リジンにおいて、その2.5位の両方が窒素原子で置換 された化合物の製造法は特開平1-315736号に記 載されているのみである。この方法では工程数が長い、 低収率の工程がある等の問題点があった。一方、ニトロ 基の置換したペンゼン、ナフタレン類を直接アミノ化す る方法がこれまでにもいくつか報告されている。例えば シンセティックコミュニケーション(Synth. Commun.) (式中、R⁰、R² は水素原子、ハロゲン原子、アルキ 10 第19巻、511頁(1989年)、ジャーナル・オブ ・オーガニック・ケミストリー(J. Org. Chem.) 第51 巻、5039頁(1986年)、ジャーナル・オブ・オ ーガニック・ケミストリー(J. Org. Chem.) 第57巻、 4784頁(1992年)に記載がある。しかしながら これらの反応はニトロ基の置換したピリジン環をアミノ 化する適用例が無い。これは合成技術的に非常に困難で あったことが最大の問題であった。

[0003]

【発明が解決しようとする課題】従って本発明の目的 20 は、第一に、重要な合成中間体である5-アミノー2-ニトロピリジン誘導体の簡便な合成法及び該誘導体を提 供することにある。また第二に、この5-アミノ-3-ヒドロキシー2-二トロピリジンを合成原料とする2, 5-ジアミノ-3-ヒドロキシピリジン誘導体(カプラ ーまたはその中間体)の合成法を提供することにある。

【課題を解決するための手段】本発明の目的は一般式 (I)で表される化合物と一般式(II)で表される化合物 を塩基の存在下反応させることを特徴とする一般式(II

30 I) で表される化合物の製造方法より達成することがで きた。

[0005] 【化5】

[0004]

【0006】(式中、R⁰、R² は水素原子、ハロゲン 原子、アルキル基、アリール基、-N(R⁴)C(=0)R³、-N(R 40 ¹)C(=0)OR³、-N(R⁴)C(=0)NR³R⁵、-N(R⁴)SO₂R³ または -OR1 を表し、R4 は水素原子、アルキル基、アリール基 を表し、R³、R⁵ は各々アルキル基またはアリール基 を表し、Xは水素原子またはカップリング離脱基を表 す。)

[0007]

【化6】

一般式(II) $H_2 N-Y$ 【0008】(式中、Yは脱離基を表す。)また本発明 [0009]【化7】

【0010】(式中、R⁰ は-OR¹を表し、R² 、Xは一 般式(I)と同じ意味を表し、R1はアルキル基、アリ ール基を表す。)

[0011]

[化8]

【0012】(式中、R² は一般式(I)と同義であ り、R⁶ 、R⁷ は各々 -C(=0)R⁸ 、-C(=0)OR⁸ 、-C(=0) NR®R®、-SO2R®を表わし、X′はXと同義であり、 R®、R®は各々水素原子、アルキル基またはアリール れる化合物により達成された。

【0013】次に本発明に用いられる一般式(I)の化 合物について詳細に説明する。

【0014】R0、R2で表されるハロゲン原子は塩素 原子が好ましい。R⁰、R²で表されるアルキル基は炭 素数1から20のアルキル基が好ましく、例えばメチ ル、エチル、プロピル、メトキシエチル、エトキシエチ ルが挙げられる。Rº、Rºで表されるアリール基は炭 素数6から20のアリール基が好ましく、例えばフェニ ル、クロルフェニルが挙げられる。

【0015】R1 で表されるアルキル基およびアリール 基は置換基を有していてもよく塩基性条件下安定であ り、その後の反応の後、容易に脱保護できるものが好ま しい。R1 で表されるアルキル基は炭素数1から7のア ルキル基が好ましく例えばメチル、メトキシメチル、メ トキシエトキシメチル、メチルチオメチル、テトラヒド ロピラニル、フェナシル、シクロプロピルメチル、アリ ル、イソプロピル、シクロヘキシル、第3プチル、ペン ジル、ニトロペンジルが挙げられ、ペンジルが特に好ま しい。R¹ で表されるアリール基はフェニル基が好まし 40 11

【0016】R³、R⁴、R⁵で表されるアルキル基は 炭素数1から20のアルキル基が好ましく、例えばメチ ル、エチル、プロピル、ドデシル、tert-オクチル、シ クロヘキシル、アリル、ピニル、プロパルギル、ベンジ ルが挙げられる。R³、R¹、R⁵で表されるアリール 基は炭素数6から20のアリール基が好ましく、例えば フェニル、ナフチル、トリル、アニシル、フリルが挙げ

窒素、イオウ原子を介して脂肪族基、芳香族基、複素環 基とを結合する基、ハロゲン原子または芳香族アゾ基、 などである。さらに好ましくはハロゲン原子(例えばフ ッ素、塩素、臭素)、アルコキシ基(例えばエトキシ、 ドデシルオキシ、メチルスルホニルエトキシ)、アリー ルオキシ基(例えば4-クロロフェノキシ、4-メトキ シフェノキシ)、脂肪族、芳香族もしくは複素環チオ基 (例えばフェニルチオ、テトラゾリルチオ)、含窒素へ テロ環(例えばイミダゾリル、ピラゾリル、トリアゾリ 10 ル、テトラゾリル、ヒダントイニル)、芳香族アゾ基 (例えばフェニルアゾ) がある。これらの置換基として は特開平1-315736号公報に記載されているカッ プリング離脱基が好ましく用いられる。Xは水素原子が 特に好ましい。

【0018】次に一般式(II)で表される化合物について 説明する。Yで表される脱離基は、酸素、窒素あるいは イオウ原子でアミノ基と結合する基が好ましく、置換基 を有していてもよく、また環(ヘテロ環、芳香環又は脂 肪族)を形成していてもよい。酸素原子を介して結合す 基を表わす。)また上記の本発明は一般式(III) で表さ *20* る例としてYはヒドロキシ基が好ましい。窒素原子を介 して結合するYとして、1,2,4-トリアゾール-4 ーイル基などが好ましい。イオウ原子を介して結合する Yとして2, 4, 6-トリクロロフェニルチオ、2, 4 ージクロロフェニルチオ、2,4,5-トリクロロフェ ニルチオ、ピペリジン-1-イルチオカルポニルチオ、 ピロリジン-1-イルチオカルポニルチオ、ジエチルア ミノチオカルボニルチオ、ベンズチアゾール-2-イル チオ等が好ましい。

> 【0019】次に一般式(III) で表される化合物につい 30 て説明する。式中のR⁰、R²、Xは一般式(I)と同 義である。

【0020】次に一般式(IV)で表される化合物について 説明する。式中、R² は一般式(I)と同義である。 X'は一般式(I)におけるXと同義である。R⁶、R ⁷ は各々 -COR⁸、-COOR⁸、-CONR⁸ R⁹、-SO₂ R⁸を表す。R 8、R9で表されるアルキル基は炭素数1から36のア ルキル基が好ましく、例えばメチル、エチル、イソプロ ピル、tertープチル、1-(2, 4-ジ-tert-アミル フェノキシ) プロピル、 sec-ペンタデシル、トルフル オロメチル、ヘプタフルオロプロピル、シクロヘキシ ル、ベンジルが挙げられる。R[®]、R[®]で表されるアリ ール基は炭素数6から36のアリール基が好ましく、例 えばフェニル、ナフチル、4-メトキシフェニル、2-クロロフェニル、2、6-ジクロロフェニル、ペンタフ ルオロフェニル、2-メタンスルホンアミドフェニル、 2, 4, 6-トリクロロフェニル、4-シアノフェニ ル、フリル、ピリジルが挙げられる。

【0021】以下に一般式(I)で表される化合物につ

(I-1) * * (化9] (I-2)

OCH₃

NO₂

NO₂

(I-3) (I-4)

OCH₂CH=CH₂

NO₂

OC₄H₉^t

NO₂

(1-5) (1-6)

OCH2OCH3

NO2

OC3H7

NO2

(1-7)

OCH₂

[0023] [化10]

$$(1 - 9)$$

$$(1-10)$$

$$(1-11)$$

$$\bigcup_{N \setminus NO_2} 0 \setminus 0$$

$$(1-12)$$

$$(I-13)$$

[0024]

30 【化11】

$$(I-14)$$

$$(I-15)$$

$$C1 \quad OCH_2CH=CH_2$$

$$NO_2$$

$$(I-17)$$

$$C1 \quad OCH_2CH=CH_2$$

$$NO_2$$

$$(I-17)$$

$$C1 \quad OCH_2OCH_3$$

$$NO_2$$

$$(I-18)$$

$$(I-19)$$

【化12】

【0025】以下に一般式(II)で表される化合物につい * て具体例を示すが、本発明はこれらに限定されるものではない。 *

(II-1) H_zN-N N H_zN-S C1 C1 C1

(11 - 3)

(II-4) (II-5) (II-6)

$$H_{z}N-S-C-N$$
 $H_{z}N-SC-N$
 $H_{z}N-SC-N$

(II-6)

 $H_{z}N-SC-N$

(II-7)

 $II-8$)

$$H_2N-SC-N(CH_3)_2$$
 $H_2N-SC-N$
[(LL 1 3]

[0027]

$$(II-9) \qquad (II-10) \qquad (II-11)$$

$$H_2N-0H \qquad H_2N-0S0_3H \qquad H_2NS \stackrel{N}{\searrow} C1$$

$$(II-12) \qquad (II-13) \qquad (II-14)$$

$$H_2N-S \stackrel{N}{\searrow} \qquad H_2N-S \stackrel{N}{\searrow} \qquad H_2N-S \stackrel{C1}{\searrow} C1$$

$$(II-15) \qquad (II-16)$$

$$H_2NS \stackrel{N}{\searrow} \qquad H_2NS \stackrel{N}{$$

【0028】以下に一般式(III) で表される化合物につ 【0029】 いて具体例を示すが、本発明はこれらに限定されるもの 【化14】 ではない。

$$(III-1)$$

$$(III - 2)$$

$$(III-3)$$

$$(III-4)$$

$$(III-5)$$

$$(111 - 6)$$

(III-7)

[0030]

【化15】

(III - 1 0)

$$(III - 11)$$

(III - 12)

$$(III - 13)$$

[0031]

30 【化16】

$$(III - 14)$$

(III-15)

(III - 16)

(III - 17)

(III - 18)

(111 - 19)

(III - 20)

【0032】以下に一般式(IV)で表される化合物について具体例を示すが、本発明はこれらに限定されるものではない。

[0033] 【化17】

(IV-2)

(1V - 4)

$$(IV-3)$$

$$(1V-5)$$

(IV - 7)

(化18]

[0034]

$$(IV - R)$$

$$(IV-9)$$

(IV - 10)

(IV - 1 2)

(1V - 13)

[0035]

$$C_{5}H_{11} \xrightarrow{C_{2}H_{5}} OCHCONH OH F F$$

$$C_{5}H_{11}^{L} V NHC \xrightarrow{R} F$$

$$C_{2}H_{5}$$

$$C_{5}H_{11}$$

$$C_{5}H_{11}$$

$$C_{5}H_{11}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}$$

$$C_{1}$$

$$C_{1}$$

(IV-18)

$$C_{2}H_{5}$$

$$C_{5}H_{11}^{t}$$

$$C_{5}H_{11}^{t}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}H_{5}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}H_{5}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}H_{5}$$

$$C_{1}$$

$$C_{2}H_{5}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}H_{5}$$

$$\begin{array}{c} C_2H_5CNH \\ 0 \\ 0 \\ C_5H_{11}^{t} \end{array}$$

【0036】本発明のアミノ化に用いる塩基としては、有機塩基、無機塩基のいずれでもよい。有機塩基としては例えば1,8-ジアザビシクロ〔5,4,0〕ウンデカー7-エン、ジイソプロピルエチルアミンが好ましい。無機塩基がさらに好ましく、特に水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、tert-プトキシカリウム、ナトリウムメトキシド、ナトリウムエトキシドなどが好ましい。溶媒としては非プロトン性極性溶

チルイミダゾリジン-2-オン、N-メチルピロリドン が好ましいが、メタノール、エタノール等のアルコール も用いることが可能である。

【0037】反応温度は-30度から120度までの範囲が好ましいが、-20度から50℃の範囲が特に好ましい。なお一般式(II)で表される化合物の合成法は以下の文献あるいはその引用文献に記載があり、好都合に利用できる。ジャーナル・オブ・オーガニック・ケミスト

・ジャパン(Bull. Chem. Soc. Jpn.) 第59巻、201 7頁(1986年)。

【0038】ここで得られた一般式(III) の化合物(R^0 = $0R^1$)においてアミノ基のアシル化、スルホニル化等は例えば特開平1-315736号に記載の方法が適用できる。ニトロ基の還元はH. O. House 著 Modern Synthetic Reactions を、 R^1 基の脱離は T. W. Greene 著 Protective Groups in Organic Synthesis を参照できる。

【0039】本発明により合成される化合物は、感熱転写方式、インクジェット方式、印刷等における画像形成 10 用色素として有用なアゾ色素、アゾメチン色素、インドフェノール色素等の合成中間体として重要であるばかりでなく、ハロゲン化銀カラー写真感光材料におけるシアン発色カプラーあるいはその合成中間体として重要である。本発明の合成法により合成される化合物を中間体とするハロゲン化銀カラー写真感光材料用シアンカプラーとしては例えば特開平1-315736号に記載がある。一方、本発明の合成法により合成される化合物を中間体とするアゾメチン色素、インドフェノール色素としては例えば特開平3-103477号に記載がある。 20

【0040】以下に実施例をあげ本発明をさらに詳細に 説明するが、本発明はこれらに限定されるものではな い。

[0041]

【実施例】

実施例1~2

5-アミノ-3-ベンジルオキシ-2-二トロピリジン (具体例 III-2) の合成例

カリウム t - プトキシド 5 0. 5 グラム、N, N - ジメチルホルムアミド 3 0 0 ミリリットルの溶液に 3 - ペン 30 ジルオキシー 2 - ニトロピリジン(具体例 I - 2) 3 4. 5 グラム、1 - スルフェナモイルチオカルボニルピロリジン(具体例 III - 4) 3 0. 5 g、N, N - ジメチルホルムアミド 1 5 0 ミリリットルの溶液を約 3 0 分かけて滴下した。このとき内温を約 2 0 ℃に保った。さらに室温で 3 0 分間攪拌を続けた後、水 1 3 5 0 ミリリットルを添加した。析出した結晶を濾取し乾燥することで目的物(具体例 III - 2)を 2 8. 9 グラム得た。

¹ H-NMR (DMSO-d₆) δ 5. 23 (2H, s), 6. 64 (2H, br, s), 6. 81 (1H, d, J=1. 9Hz), 7. 31-7. 52 (6H, m)

【0042】上記N, N-ジメチルホルムアミドの代わりにジメチルスルホキシドを用い、1-スルフェナモイルチオカルボニルピロリジンの代わりに4-アミノー1,2,4-トリアゾール(具体例II-1)15.2グラムを用いた以外は同様に操作を行った。目的物(具体例 III-2)を10.7グラム得た。

【0043】実施例3

5-アミノ-3-メトキシ-2-ニトロピリジン(具体

ロピリジン(具体例 I - 1)を用いた以外は同様の操作を行なった。目的物(具体例 III-1)を49%の収率で得た。

¹ H-NMR (DMSO-d₆) δ 3. 88 (3H, s) δ 6. 68 (2H, br, s) δ 6. 77 (1H, br, s) δ 7. 41 (1H, br, s)

【0044】 実施例4

5-アミノ-3-アリルオキシ-2-二トロピリジン (具体例 III-3) および5-アミノ-3-(1-プロペニル) オキシ-2-二トロピリジン(具体例 III-2 0) の合成例

実施例1の3-ベンジルオキシ-2-ニトロピリジンの代わりに3-アリルオキシ-2-ニトロピリジン(具体例I-3)を用いた以外は同様の操作を行なった。5-アミノ-3-アリルオキシ-2-ニトロピリジン(具体例 III-3)収率37%と5-アミノ-3-(1-プロペニル)オキシ-2-ニトロピリジン(具体例 III-20)収率45%の混合物が得られた。

具体例 III-3

¹ H-NMR (DMSO-d₆) δ 4. 68 (2H, d, J=6. 0Hz) 、 5. 32 (1H, dd, J = 10.0 and 2. 0Hz) 、 5. 49 (1H, dd, J=17.3 and 2. 0Hz) 、 6. 04 (1H, ddt, J=17.3, 10.0 and 6. 0Hz) 、 6. 63 (2H, br, s) 、 7. 40 (1H, d, J=2. 0Hz) 、 7. 49 (1H, d, J=2. 0Hz)

具体例 III-20

¹ H-NMR (DMSO-d₆) δ 1. 65 (3H, dd, J=6. 7 and 2. 0Hz) , 5. 19 (1H, dq, J=6. 0 and 6. 7Hz) , 6. 59 (1H, dd, J=6. 0 and 2. 0Hz) , 6. 68-6. 83 (4H, m)

【0045】実施例5

2, 5-ジ (プロピオニルアミノ) -3-ヒドロキシピリジン (具体例IV-1) の合成例

5-アミノー3-ベンジルオキシー2-二トロピリジン (具体例 III-2) 27.0グラム、ピリジン9.6グラム、N, N-ジメチルアセトアミド110ミリリットルの溶液に氷水冷下プロピオニルクロリド10.5ミリリットルを滴下した。氷水冷下30分攪拌した後、水550ミリリットルを加え、しばらく攪拌した後析出した結晶を遮集し乾燥することにより5-プロピオニルアミノー3-ベンジルオキシー2-ニトロピリジン32.5グラムを得た(98%)。

¹ H-NMR (DMSO-d₆) δ 1. 13 (3H, t, J=7. 3Hz)、2. 43 (2H, q, J= 40 7. 3Hz)、5. 32 (2H, s) 7. 29-7. 54 (5H, m)、8. 19 (1H, br, s) 、8. 35 (1H, br, s) 、10. 68 (1H, s)

上記で得た 5 - プロピオニルアミノ-3-ベンジルオキシ-2-ニトロピリジン32.5グラムを鉄粉30.0グラム、塩化アンモニウム1.4グラム、水55ミリリットル、イソプロピルアルコール270ミリリットルの混合物に添加し30分間加熱還流した。反応混合物から不溶物を濾過により分離し、濾液を濃縮し2-アミノ-5-プロピオニルアミノ-3-ベンジルオキシピリジン

7. 1Hz) $\sqrt{5.08}(2H, s)$ $\sqrt{5.47}(2H, s)$ 7. 29-7. 54(6H, m) $\sqrt{7.72(1H, s)}$ 9.58(1H, s)

【0046】上記で得た2-アミノ-5-プロピオニル アミノー3-ペンジルオキシピリジン27.0グラム、 無水プロピオン酸14.3グラム、N.N-ジメチルア セトアミド100ミリリットルの溶液を80度で30分 間攪拌した。反応混合物を酢酸エチル300ミリリット ルで希釈し、水200ミリリットルで洗浄(2回)し、 有機層を乾燥、濃縮後残渣をカラムクロマトで分離し 2, 5-ジ (プロピオニルアミノ-3-ペンジルオキシ 10 H, br, s)、10.89(1H, br, s) ピリジン25.6グラムを得た(78%)。

¹ H-NMR (DMSO-d₆) δ 1. 01-1. 15 (6H, m) \cdot 2. 23-2. 41 (4H, m) , 5. 12 (2H, s), 7. 30-7. 46 (3H, m) , 7. 48 (2H, d, J=8. 0 Hz), 7.86(1H, S), 8.16(1H, s), 9.56(1H, s), 10.08(1H, s)

上記で得た2,5-ジ(プロピオニルアミノ)-3-ベ ンジルオキシピリジン18. 4グラムをテトラヒドロフ ラン336ミリリットルに溶解し、これに蟻酸アンモニ ウム7.1グラム、水12ミリリットルの溶液を添加、 さらに10%パラジウム炭素1.5グラムを添加した。 50度で1時間攪拌後不溶物を瀘過により除き、濾液に 水、酢酸エチルを加え分液した。有機層を乾燥、濃縮し 2, 5-ジ(プロピオニルアミノ)-3-ヒドロキシピ リジン(具体例IV-1)を13.0グラム得た(98 %)。

¹ H-NMR (DMSO-d₆) δ 1.05-1.20(6H, m) , 2.28-2.42(4H, m) $\sqrt{7.69(1H, s)}$ $\sqrt{8.20(1H, s)}$ $\sqrt{10.18(1H, s)}$ $\sqrt{10.62(1H, s)}$

[0047]

【発明の効果】本発明によれば、従来合成上の困難によ り製造されていなかった、5-アミノ-3-アルコキシ -2-ニトロピリジン誘導体が容易にかつ収率よく合成 できる。かつ本発明によれば従来の合成法では工程数が 長く収率の低かった2,5-ジアミノ-3-ヒドロキシ ピリジン誘導体が容易にかつ、収率よく合成できる。

【手続補正書】

【提出日】平成5年12月2日

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】請求項3

【補正方法】変更

【補正内容】

【請求項3】 一般式(III) で表される化合物を出発原 料とする一般式(IV)で表わされる2,5-ジアミノ-3 ーヒドロキシピリジン誘導体の製造方法。

【化4】

(式中、R² は一般式(I)と同義であり、R⁶、R⁷ は各々 -C(=0)R⁸ 、-C(=0)OR⁸ 、-C(=0)NR⁸R⁹ 、-SO₂R⁸ を表わし、X'はXと同義であり、R®、R®は水素原 子、アルキル基またはアリール基を表わす。)