Indian Institute of Technology Indore MA204 Numerical Methods

Instructor: Dr. Debopriya Mukherjee Tutorial Sheet 2

- 1. Let $f(x) = 3^x$ for every $x \in \mathbb{R}$.
 - (a) Use Lagrange interpolation to find a polynomial p(x) of degree at most two that agrees with this function at the points $x_0 = 0$, $x_1 = 1$, and $x_2 = 2$.
 - (b) Find a bound on |f(x) p(x)| for each $x \in [0, 2]$.
- 2. Let $f(x) = 3^x$ for every $x \in \mathbb{R}$. Let p(x) be the polynomial of degree at most two that agrees with this function at the points $x_0 = 0$, $x_1 = 1$, and $x_2 = 2$. Use divided differences to construct p(x).
- 3. For a function f the Newton divided-difference table is

$$x_i$$
 $f[x_i]$ $f[x_i, x_{i+1}]$ $f[x_0, x_1, x_2]$
0 0
3
1 ? 3
?
2 ?

- (a) Determine the missing entries in the table.
- (b) Give the interpolating polynomial p(x).
- 4. Let $P_3(x)$ be the interpolating polynomial for the data (0,0), (0.5,y), (1,3) and (2,2). Find y if the coefficient of x^3 in $P_3(x)$ is 6.
- 5. Let $f(x) = e^x$ for $x \in [0, 2]$. Approximate f(0.25) using linear interpolation with $x_0 = 0$ and $x_1 = 0.5$.
- 6. Let i_0, i_1, \dots, i_n be a rearangement of the integers $0, 1, 2, \dots, n$. Show that

$$f[x_{i_0}, x_{i_1}, \cdots, x_{i_n}] = f[x_0, x_1, \cdots, x_n].$$

7. For a function f the Newton divided-difference table is

$$x_0 = 0.0 f[x_0]$$

$$f[x_0, x_1]$$

$$x_1 = 0.4 f[x_1] f[x_0, x_1, x_2] = \frac{50}{7}$$

$$x_2 = 0.7 f[x_2] = 6$$

Determine the missing entries.

- 8. Define interpolating polynomial. State Weierstrass Approximation Theorem. Write the explicit form of
 - Newton form of interpolating polynomial;
 - Lagrange form of interpolating polynomial.
 - 9. For the function $f(x) = \cos x$, let $x_0 = 0$, $x_1 = 0.6$, $x_2 = 0.9$.
 - Construct the Lagrange interpolation polynomial of degree at most two to approximate f(0.45).
 - \bullet Find the actual error at 0.45. Can you say about the error bound for the error.
- 10. Construct the Lagrange interpolating polynomial of degree 2 for $f(x) = \sin(\ln x)$ on the interval [2, 2.6] with the points $x_0 = 2$, $x_1 = 2.4$, $x_2 = 2.6$. Find a bound for the absolute error.