Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

4 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 164.14

Figure 1: Outline of path 1

2.1.1 Suzuki coupling of vinyl bromides with alkenyl boronic acids

Substrates:

- 1. Vinylboronic acid available at Sigma-Aldrich
- 2. 3-bromo-2,5-dihydrofuran-2-one available at Sigma-Aldrich

Products:

1. 3-vinyl-2(5h)-furanone

 ${\bf Typical\ conditions:}\ {\bf Pd\ catalyst.base.solvent}$

Protections: none

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

Retrosynthesis ID: 24926

2.1.2 Michael addition

Substrates:

- 1. 3-vinyl-2(5h)-furanone
- 2. 3-phenyl-4-pentenal

Products:

 $1. \ C{=}CC1C({=}O)OCC1C(C{=}O)C(C{=}C)c1ccccc1$

 $\textbf{Typical conditions:} \ \, \textbf{EtONa or other base}$

Protections: none

Reference: 10.1016/j.tetlet.2011.02.073 AND 10.1016/j.molstruc.2010.12.005 AND 10.1016/S0040-4039(97)00695-3 AND 10.1021/ol016401g AND 10.1002/ejoc.200500330

2.1.3 Wittig-Schlosser olefination

Substrates:

- $1. \ C{=}CC1C({=}O)OCC1C(C{=}O)C(C{=}C)c1ccccc1$
- 2. Bromoethane available at Sigma-Aldrich

Products:

 $1. \ C{=}CC1C({=}O)OCC1C(/C{=}C/C)C(C{=}C)c1ccccc1\\$

Typical conditions: 1.PPh3 or trialkylphosphite.2.base.aldehyde.3.base

Protections: none

Reference: 10.1021/ol049701h and 10.1021/ja00535a063 and Kurti and Czako; Strategic Applications of Named Reactions in Organic Synthesis. 1st edn., 488-489.

Retrosynthesis ID: 9546

2.1.4 Claisen Condensation

Substrates:

- 1. Methyl acetate available at Sigma-Aldrich
- $2. \ C=CC1C(=O)OCC1C(/C=C/C)C(C=C)c1ccccc1$

Products:

 $1. \ C = CC(c1ccccc1)C(/C = C/C)C1COC(=O)C1(C = C)C(C) = O$

Typical conditions: Base.Solvent

Protections: none

Reference: 10.1021/cr020703u and 10.1021/cr60088a002

Retrosynthesis ID: 5015

2.1.5 Ring-Closing Metathesis

Substrates:

 $1. \ C=CC(c1ccccc1)C(/C=C/C)C1COC(=O)C1(C=C)C(C)=O$

Products:

 $1. \ C/C = C/C1C(c2cccc2)C = CC2(C(C) = O)C(=O)OCC12$

 $\textbf{Typical conditions:} \ \ \text{catalyst e.g.} \ \ \text{Hoveyda-Grubbs} \ \ . \ \ \text{solvent e.g.} \ \ \text{CH2Cl2}$

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and

 $10.1021/jo0264729 \ \ {\rm and} \ \ 10.1021/ja072334v \ \ {\rm and} \ \ 10.1002/ejoc.201001102$

Retrosynthesis ID: 31014187

2.2 Path 2

Score: 189.20

Figure 2: Outline of path 2

2.2.1 Brown Hydroboration of Alkenes

Substrates:

1. 4-ethenyloxolan-2-one - available at Sigma-Aldrich

Products:

1. 4-(2-hydroxy-ethyl)-dihydro-furan-2-one

Typical conditions: B2H6.H2O2.THF.NaOH

Protections: none

Reference: 10.1002/9780470638859.conrr118

2.2.2 Oxidation of primary alcohols with DMP

Substrates:

 $1. \ \, 4\hbox{-}(2\hbox{-hydroxy-ethyl})\hbox{-dihydro-furan-}2\hbox{-one}$

Products:

1. O=CCC1COC(=O)C1

Typical conditions: DMP.DCM.0-25 $\rm C$

Protections: none

Reference: 10.1016/j.bmc.2020.115469 p. 3, 9 and 10.1021/acs.jmedchem.8b01878 SI p. S43

2.2.3 Keto-Enol Tautomerism

${\bf Substrates:}$

1. O = CCC1COC(=O)C1

Products:

 $1. \ \mathrm{O}{=}\mathrm{C}1\mathrm{C}\mathrm{C}(\mathrm{C}{=}\mathrm{C}\mathrm{O})\mathrm{C}\mathrm{O}1$

Typical conditions: solvent

Protections: none

Reference: 10.1021/jo8012385 10.1021/ja01065a003

Retrosynthesis ID: 8718

2.2.4 Enolate O-Alkylation

Substrates:

1. O=C1CC(C=CO)CO1

2. cinnamyl bromide

Products:

 $1. \ O{=}C1CC(C{=}COCC{=}Cc2cccc2)CO1$

Typical conditions: Cs2CO3.DMF

Protections: none

Reference: 10.1016/j.bmcl.2012.05.070 and 10.1039/b612336h

Retrosynthesis ID: 14841

2.2.5 Condensation of esters with carbonyl compounds

Substrates:

1. Methyl formate - available at Sigma-Aldrich

 $2. \ \, O{=}C1CC(C{=}COCC{=}Cc2cccc2)CO1$

Products:

 $1. \ O{=}CC1C({=}O)OCC1C{=}COCC{=}Cc1ccccc1$

Typical conditions: LDA.THF

Protections: none

Reference: 10.1021/op040006z AND 10.1016/j.bmcl.2005.10.104

2.2.6 Tebbe Olefination

Substrates:

1. O=CC1C(=O)OCC1C=COCC=Cc1ccccc1

Products:

1. C=CC1C(=O)OCC1C=COCC=Cc1ccccc1

Typical conditions: Cp2TiCl2.AlMe3.toluene

Protections: none

Reference: 10.1016/j.tet.2007.03.015 and 10.1002/9780470638859.conrr617

Retrosynthesis ID: 11714

2.2.7 Claisen Condensation

Substrates:

1. Methyl acetate - available at Sigma-Aldrich

2. C=CC1C(=O)OCC1C=COCC=Cc1ccccc1

Products:

 $1. \ C=CC1(C(C)=O)C(=O)OCC1C=COCC=Cc1ccccc1$

 ${\bf Typical\ conditions:}\ {\bf Base. Solvent}$

Protections: none

Reference: 10.1021/cr020703u and 10.1021/cr60088a002

2.2.8 Claisen Rearrangement

Substrates:

 $1. \ C = CC1(C(C) = O)C(=O)OCC1C = COCC = Cc1ccccc1$

Products:

 $1. \ C=CC(c1ccccc1)C(C=O)C1COC(=O)C1(C=C)C(C)=O$

 ${\bf Typical\ conditions:\ heat}$

Protections: none

Reference: DOI: 10.1021/ja00206a017 and 10.1016/S0022-1139(98)00313-3

Retrosynthesis ID: 1226

2.2.9 Takai olefination

Substrates:

- $1. \ C{=}CC(c1ccccc1)C(C{=}O)C1COC({=}O)C1(C{=}C)C(C){=}O$
- 2. Iodoform available at Sigma-Aldrich

Products:

1. C=CC(c1cccc1)C(/C=C/I)C1COC(=O)C1(C=C)C(C)=O

Typical conditions: CrCl2.THF

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

Retrosynthesis ID: 10497

2.2.10 Ring-Closing Metathesis

Substrates:

 $1. \ C{=}CC(c1ccccc1)C(/C{=}C/I)C1COC({=}O)C1(C{=}C)C(C){=}O$

Products:

 $1. \ CC(=O)C12C=CC(c3ccccc3)C(/C=C/I)C1COC2=O$

 $\textbf{Typical conditions:} \ \ \text{catalyst e.g.} \ \ \text{Hoveyda-Grubbs} \ \ . \ \ \text{solvent e.g.} \ \ \text{CH2Cl2}$

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and

10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

2.2.11 Palladium catalysed methylation of vinyl iodides

Substrates:

1. Iodomethane - available at Sigma-Aldrich

2. CC(=O)C12C=CC(c3ccccc3)C(/C=C/I)C1COC2=O

Products:

 $1. \ C/C=C/C1C(c2cccc2)C=CC2(C(C)=O)C(=O)OCC12$

 $\textbf{Typical conditions:} \ \ MeMgBr/Me2Zn/Me4Sn.[Pd].or.CuI$

Protections: none

Reference: 10.1021/ja049323b and 10.1055/s-2002-20971 and 10.1021/ja049323b and 10.1016/S0040-4039(01)80470-6 and 10.1016/j.tetlet.2006.08.128 and 10.1002/ejoc.201000642

Retrosynthesis ID: 25156

2.3 Path 3

Score: 191.61

Figure 3: Outline of path 3

2.3.1 Synthesis of alkenes from alcohols

Substrates:

1. 3-(2-hydroxyethyl)oxolan-2-one - available at Sigma-Aldrich

Products:

1. 3-vinyl-dihydro-furan-2-one

 $\textbf{Typical conditions:} \ PhSeCN.PBu3.THF \ then \ H2O2.THF.H2O$

Protections: none

Reference: 10.1016/j.tet.2011.05.034 and 10.1055/s-0036-1588104 and 10.1002/anie.200501760 and 10.1002/anie.200700854 and 10.1002/asia.201301248 and 10.1021/ol501095w

Retrosynthesis ID: 31010457

2.3.2 Enol esters and ethers synthesis

Substrates:

- $1. \ \, 3\hbox{-vinyl-dihydro-furan-2-one}$
- 2. TMSCl available at Sigma-Aldrich

Products:

1. C=CC1=C(O[Si](C)(C)C)OCC1

Typical conditions: 1. Et3N.Electrophile

Protections: none

Reference: 10.1016/S0040-4020(03)00977-3 AND 10.1021/ja00056a002

Retrosynthesis ID: 7799

2.3.3 Dehydrogenation of silyl enol ethers

Substrates:

1. C=CC1=C(O[Si](C)(C)C)OCC1

Products:

1. 3-vinyl-2(5h)-furanone

Typical conditions: Pd(OAc)2.Cu(OAc)2.O2.MeCN

Protections: none

Reference: 10.1271/bbb.60.405 and 10.1039/C3CC46778C and US2015284405 p.40 and 10.1016/S0040-4039(01)81518-5 and US2010204477 p. 15-16 and 10.1016/0040-4039(95)00694-8 and 10.1021/jo00089a034 and 10.1016/S0040-4020(01)90587-3 and 10.1080/00397919008052802 and 10.1021/ja00218a060

2.3.4 Michael addition

Substrates:

- 1. 3-vinyl-2(5h)-furanone
- 2. 3-phenyl-4-pentenal

Products:

 $1. \ C=CC1C(=O)OCC1C(C=O)C(C=C)c1ccccc1$

Typical conditions: EtONa or other base

Protections: none

Reference: 10.1016/j.tetlet.2011.02.073 AND 10.1016/j.molstruc.2010.12.005 AND 10.1016/S0040-4039(97)00695-3 AND 10.1021/ol016401g AND 10.1002/ejoc.200500330

Retrosynthesis ID: 15774

2.3.5 Wittig-Schlosser olefination

Substrates:

- $1. \ C{=}CC1C({=}O)OCC1C(C{=}O)C(C{=}C)c1ccccc1\\$
- 2. Bromoethane available at Sigma-Aldrich

Products:

1. C=CC1C(=O)OCC1C(/C=C/C)C(C=C)c1ccccc1

Typical conditions: 1.PPh3 or trialkylphosphite.2.base.aldehyde.3.base

Protections: none

Reference: 10.1021/ol049701h and 10.1021/ja00535a063 and Kurti and Czako; Strategic Applications of Named Reactions in Organic Synthesis. 1st edn., 488-489.

Retrosynthesis ID: 9546

2.3.6 Ring-Closing Metathesis

Substrates:

 $1. \ C=CC1C(=O)OCC1C(/C=C/C)C(C=C)c1ccccc1$

Products:

1. C/C=C/C1C(c2cccc2)C=CC2C(=O)OCC21

 $\textbf{Typical conditions:} \ \ \text{catalyst e.g.} \ \ \text{Hoveyda-Grubbs} \ \ . \ \ \text{solvent e.g.} \ \ \text{CH2Cl2}$

Protections: none

 $\textbf{Reference:} \ \ DOI: \ \textit{10.1002/anie.200800693} \ \ \text{and} \ \ \textit{10.1021/acs.orglett.8b04003} \ \ \text{and}$

10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

2.3.7 Claisen Condensation

Substrates:

- $1. \ \mathrm{C/C}{=}\mathrm{C/C1C}(\mathrm{c2cccc2})\mathrm{C}{=}\mathrm{CC2C}(=\mathrm{O})\mathrm{OCC21}$
- 2. Methyl acetate available at Sigma-Aldrich

Products:

1. C/C=C/C1C(c2cccc2)C=CC2(C(C)=O)C(=O)OCC12

 ${\bf Typical\ conditions:}\ {\bf Base. Solvent}$

 ${\bf Protections:}\ {\rm none}$

Reference: 10.1021/cr020703u and 10.1021/cr60088a002

Retrosynthesis ID: 5015

2.4 Path 4

Score: 195.39

Figure 4: Outline of path 4

2.4.1 Olefination of ketones followed by hydrolysis

Substrates:

1. 1-Phenylprop-2-en-1-one - available at Sigma-Aldrich

2. triphenylphosphonium methoxymethylide

Products:

1. 2-phenyl-but-3-enal

 $\textbf{Typical conditions:} \ \text{KHMDS.THF hydrolysis: pTsOH.water.acetone}$

Protections: none

Reference: 10.1002/anie.201811403 and 10.1002/anie.201809130 and 10.1002/anie.201705809 and 10.1002/anie.201409038 and 10.1021/ol3028994 (SI)

Retrosynthesis ID: 31014861

2.4.2 Grignard addition to ketone

Substrates:

1. 2-phenyl-but-3-enal

2. 1-Propenyl bromide - available at Sigma-Aldrich

Products:

1. C13H16O

 $\textbf{Typical conditions:} \ \mathrm{Mg.THF.or.iPrMgClxLiCl}$

Protections: none

Reference: 10.3762/bjoc.9.175 and 10.1016/j.tetlet.2012.08.088 and

10.1002/anie.200504247 (supporting info)

Retrosynthesis ID: 18169

2.4.3 Appel Reaction

Substrates:

1. C13H16O

Products:

1. C=CC(c1cccc1)C(Br)/C=C/C

 $\textbf{Typical conditions:} \ PPh3.CBr4$

Protections: none

Reference: 10.1016/j.jfluchem.2015.03.009 and 10.1016/j.tet.2005.12.006 and

10.1021/jm00161a029 and 10.1055/s-1995-5215

2.4.4 Suzuki coupling of vinyl bromides with alkenyl boronic acids

Substrates:

1. Vinylboronic acid - available at Sigma-Aldrich

2. 3-bromo-2,5-dihydrofuran-2-one - available at Sigma-Aldrich

Products:

1. 3-vinyl-2(5h)-furanone

Typical conditions: Pd catalyst.base.solvent

Protections: none

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

Retrosynthesis ID: 24926

2.4.5 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

1. C=CC(c1cccc1)C(Br)/C=C/C

2. 3-vinyl-2(5h)-furanone

3. Acetyl chloride - available at Sigma-Aldrich

Products:

 $1. \ C = CC(c1ccccc1)C(/C = C/C)C1COC(=O)C1(C = C)C(C) = O$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 20523

2.4.6 Ring-Closing Metathesis

Substrates:

 $1. \ C=CC(c1ccccc1)C(/C=C/C)C1COC(=O)C1(C=C)C(C)=O$

Products:

 $1. \ C/C = C/C1C(c2cccc2)C = CC2(C(C) = O)C(=O)OCC12$

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and

10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102