Ejercicio puntuable Tema 1-Geometría II 13 de abril 2021

1. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ el endomorfismo que en la base usual de \mathbb{R}^3 tiene como matriz

$$A = \left(\begin{array}{ccc} 1+a & 1+a & 1\\ -a & -a & -1\\ a & a-1 & 0 \end{array}\right)$$

Se pide lo siguiente:

- (a) (2 PUNTOS) Estudia para qué valores de a el endomorfismo f es diagonalizable.
- (b) (1,5 PUNTOS) Para los valores de a para los que f es diagonalizable encuentra una base de \mathbb{R}^3 formada por vectores propios de f.
- (c) (1 PUNTO) Estudia si alguna de las matrices

$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} , D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} , E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

puede ser la matriz del endomorfismo f respecto de alguna base (para los valores de a para los que f es diagonalizable). Justifica tu respuesta.

- (d) (1 PUNTO) Para los valores de a para los que f es diagonalizable calcula f^2 . ¿Qué puedes decir de f en este caso?
- (e) (1,5 puntos) Calcula $f^{100}(\pi,\pi,0)$ para cualquier valor de a.
- 2. Responde de forma razonada a las siguientes cuestiones.
 - (a) (1 PUNTO) Sea $A \in \mathcal{M}_n(\mathbb{R})$ una matriz cuyos únicos valores propios son 1, 2, 3, 4, 5, posiblemente con multiplicidad. ¿Cúal es el rango de $A + I_n$?
 - (b) (2 PUNTOS) Sean $A, C \in \mathcal{M}_2(\mathbb{R})$. Prueba que si $A = A \cdot C C \cdot A$ entonces $A^2 = \mathbf{0}_2$.

PRUEBA TEMA 1 CURSO 2020/21 1 - a) Calculemos el polinomio característico de f. $P_{f}(\lambda) = P_{A}(\lambda) = \det (A - \lambda I_{3}) = \det \begin{pmatrix} 1+a-\lambda & 1+a & 1 \\ -a & -a-\lambda & -1 \end{pmatrix}$ $\frac{1}{1-a-\lambda} = -(\lambda+1) \det \begin{pmatrix} 1+a-\lambda & a \\ -a & 1-a-\lambda & -1 \\ 0 & 1 \end{pmatrix} \det \begin{pmatrix} 1+a-\lambda & a \\ -a & 1-a-\lambda \end{pmatrix}$ Tushituimos C_2 Por $C_2 - C_3$ $= -(\lambda+1) \left[(1+a-\lambda)(1-a-\lambda) + a^{2} = -(\lambda+1)(1-\lambda)^{2} - a^{2} + a^{2} \right] =$ $= -(\lambda + 1)(\lambda - 1)^2$

Augo daramente los valores propios son: $\lambda_1 = -1 \qquad \alpha_{\lambda_1} = 1 \qquad y \qquad \lambda_2 = 1 \qquad \alpha_{\lambda_2} = 2$ Tenemos entonces que 1 = g₁₁ = a₁₁ = 1 de donde g x1 = 1. Cal cule mas ahora gx2. $g_{12} = 3 - rango \left(\begin{array}{ccc} \alpha & 1+a & \Delta \\ -a & -1-a & -1 \\ \alpha & a-1 & -1 \end{array} \right) =$ $= 3 - rango \left(a \quad 1 + a \quad 1 \right)$ Observemos que para que f sea diagonalizable $g_{\lambda 2} = Z$, es decir rango $\left(\begin{array}{cc} a & 1+a & 1 \\ a & a-1 & -1 \end{array}\right) = 1$. Observemos que para que esto ocuma det (a + 1) = -2a = 0Es decir [a=0]. En este aso $g_{12} = 3 - rango (0 1 1) = 2$ Como para a = 0 tenemos ax, + ax2 = B, gh = ah y ghz = ahz, el ta fundamental de la diagonalización nos dias que of es diasonalizable 1. b) Para a=0 calculamos los subespacios propies de f.

$$V_{A_1} = \int (x_1 y_1 z) \in \mathbb{R}^3 | (A + T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (2 + y_1 + z) = 0 =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (2 + y_1 + z) = 0 =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (2 + y_1 + z) = 0 =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (2 + y_1 + z) = 0 =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$
 $= \int (x_1 y_1 z) \in \mathbb{R}^3 | (4 - T_3) \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$

Veamos si C es diagonalizable. Clavamente los valores propies son $\lambda_1 = -1$ $\alpha_{\lambda_1} = 1$ y $\lambda_2 = 1$ $\alpha_{\lambda_2} = 2$ Calculemes g_{12} $g_{12} = 3 - rango \left(\begin{array}{c} 0 & 0 & 0 \\ 0 & -2 & 0 \end{array} \right) = 3 - 2 = 1$ Por tanto C no es diagonalizable y por tanto no puede ser semejante a A con lo cual tempoco prede ser la matriz de f en vingure base. En matriz E sus valores proprios son tambien $l_1=-1$ $al_1=1$ y $l_2=1$ $al_2=2$. En este caso $g_{12} = 3 - rango \left(\begin{array}{c} 0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{array} \right) = 3 - 1 = 2$ Como ghi = a ju tenemos que en este caso E es diasonalizable y tiene les mismos valores propios que A con las mismas multiplicidades Por tanto E es semejante a A lo que implice que hay una base tal que E es la matriz de f en esa base. 1.0) Si a = 0 tenemos que $M(f,B) = \begin{pmatrix} -1 & 3 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. De agui $M(f^2/B) = I3$, es decir $f^2 = Id_{IR}3$. De lo auterior deducimos que f es una simetua.

1. e) Sabenos que
$$P(\lambda)$$
 $\lambda^{100} = q(\lambda) \cdot (-(\lambda+1)(\lambda-1)^2) + \alpha \lambda^2 + \beta \lambda + \delta$
 $\lambda = -1$
 $\lambda =$

2. a) Como -1 no es un valor propio de A te remos que el suberpario propio assciado a -1 se reduce a hory por tauto rango(A+In)=n.2.6) de primero que observanos es que traza (A) = traza (A·C-CA) = traza (A·C) - trata (C.A) = 0 traza (A·C)= traza (C·A). $P_A(\lambda) = \lambda^2 - traza(A)\lambda + det(A) =$ $=\lambda^2+\det(A)$ Por el ta le Cayley-Hamilton teremos: $A^2 + det(A) I_z = O_z \Rightarrow A^2 = -det(A) I_2 \times$ Por otra parte tenemos: $(I) A^2 = A \cdot (A \cdot C - C \cdot A) = A^2 C - A C A$ $(II) A^2 = (A \cdot C - C \cdot A) \cdot A = A \cdot C \cdot A - C \cdot A^2$ Si sumamos (I) y (II) obtevemos: $2A^2 = A^2 \cdot C - C \cdot A^2 =$ = - $det(A) I_2 \cdot C + det(A) C I_2 = O_2$ Concluimos entonces [A2 = Oz]