ARYTMETYKA PIERŚCIENIA LICZB CAŁKOWITYCH

Arytmetyka pierścienia liczb całkowitych i wielomianów jest analogiczna, dlatego najpierw prześledzimy poniżej zagadnienie podzielności i rozkładu na czynniki w (**Z**, +, *).

Def. Liczba całkowita b nazywa się **dzielnikiem** liczby a (lub a wielokrotnością b), jeśli istnieje taka liczba całkowita q, że qb = a. Oznaczamy $b \mid a$.

Wn.1 Dla każdego $a \times \mathbf{Z}$ mamy $\pm 1 \mid a$ (dzielnikiem każdej liczby jest ± 1) oraz $a \mid 0$.

Tw. (o dzieleniu z resztą)

Dla każdej pary liczb całkowitych, a i b, gdzie $b \neq 0$, istnieje jedna i tylko jedna para liczb całkowitych, q i r (zwanych ilorazem i resztą), dla których

$$a = qb + r$$
 i $0 \le r < |b|$.

Dowód pomijamy.

Wn.2 Warunki $b \mid a$ i r = 0 są równoważne.

Def. Liczba d nazywa się **wspólnym dzielnikiem** liczb x, y, z..., jeśli $d \mid x$, $d \mid y$, $d \mid z$,.... **Największym wspólnym dzielnikiem** liczb x, y, z..., z których choć jedna jest różna od zera, nazywamy największy ze wszystkich wspólnych dzielników liczb x, y, z..., co ozn. (x, y, z,...).

Algorytm Euklidesa

Procedura wyznaczania największego wspólnego dzielnika (NWD) dwóch liczb całkowitych. Dla a_0 i $a_1 > 0$ mamy wobec tw. o dzieleniu z resztą:

$$a_0 = q_1 a_1 + a_2$$
 i $0 \le a_2 < a_1$;

jeśli $a_2 > 0$, to dzieląc a_1 przez a_2 , tzn. stosując ponownie tw. o dzieleniu z resztą, daje

$$a_1 = q_2 a_2 + a_3$$
 i $0 \le a_3 < a_2$,

i dalej postępując analogicznie otrzymujemy ciąg równości:

$$a_{n-1} = q_n a_n + a_{n+1}$$
 i $0 \le a_{n+1} < a_n$, (*)

aż w końcu: $a_n = q_{n+1}a_{n+1} + a_{n+2}$ i $a_{n+2} = 0$, gdyż $0 \le a_{n+1} < a_n < ... < a_3 < a_2 < a_1$.

Niezerowa reszta a_{n+1} nazwana jest ostatnią resztą.

Tw. Ostatnia reszta jest największym wspólnym dzielnikiem liczb a_0 i a_1 , tzn.

$$a_{n+1} = (a_0, a_1).$$

Dowód: Ponieważ $a_{n+2} = 0$, więc $a_{n+1} \mid a_n$, ale wówczas wobec (*) również $a_{n+1} \mid a_{n-1}$, itd, co znaczy że a_{n+1} jest dzielnikiem wszystkich liczb a_n , a_{n-1} , ..., a_2 , oraz a_1 i a_0 .

Pozostaje do wykazania, że a_{n+1} jest największym dzielnikiem liczb a_1 i a_0 , tzn. jeśli d jest dzielnikiem tych liczb, to również $d \mid a_{n+1}$ i $d \le a_{n+1}$. Istotnie, wobec równości w algorytmie Euklidesa, jeśli d jest dzielnikiem liczb a_1 i a_0 , to i $d \mid a_2$, a następnie $d \mid a_3$, itd. aż $d \mid a_{n+1}$ co wynika z (*). Stąd, oraz wobec warunku $0 < a_{n+1}$ otrzymujemy $d \le a_{n+1}$, c.b.d.o.

Wn.3 Dla dwóch liczb a_0 i $a_1 > 0$, istnieją takie liczby całkowite x i y, że

$$a_0 x + a_1 y = (a_0, a_1).$$

Dowód polega na wykorzystaniu równań algorytmu Euklidesa, co pokażemy na przykładzie: Przykład (algorytm Euklidesa)

Niech $a_0 = 273$ i $a_1 = 132$. Algorytm Euklidesa daje:

$$273 = 132 * 2 + 9$$

$$132 = 9 * 14 + 6$$

$$9 = 6 * 1 + 3$$

$$6 = 3 * 2 + 0$$
.

Ostatnia resztą jest więc 3, tzn. (273, 132) = 3.

Z powyższych równości rugując kolejne reszty mamy odpowiednio:

$$3 = 9 - 6 * 1 = 9 - (132 - 9 * 14) = (273 - 132 * 2) - (132 - (273 - 132 * 2) * 14) = 273 - 132 * 2 - 132 + 273 * 14 - 132 * 28 = 273 * 15 + 132 * (-31),$$

co daje x = 15 i y = -31 w rozkładzie NWD liczb 273 i 132 we Wn.3.

Wn.4 Prawo łączności dla NWD: $(a_0, a_1, a_2, a_3, ..., a_n) = (a_0, (a_1, a_2, a_3, ..., a_n))$.

Wn.5 O wielokrotności NWD: $(b \ a_0, b \ a_1, b \ a_2, b \ a_3, \dots, b \ a_n) = |b| * (a_0, a_1, a_2, a_3, \dots, a_n)$

Def. Liczby a i b nazywamy względnie pierwszymi, jeśli (a, b) = 1,

(wtedy istnieją takie liczby całkowite x i y, że a*x + b*y = 1).

Tw. (zasadnicze tw. arytmetyki liczb naturalnych)

Jeśli
$$(a, b) = 1$$
 i $a \mid (b*c)$, to $a \mid c$.

Dowód: Mamy a*x + b*y = 1, co mnożymy przez c: a*c*x + b*c*y = c.

Ponieważ $a \mid (a*c)$ i z założenia $a \mid (b*c)$, to $a \mid (a*c*x + b*c*y)$ i dlatego $a \mid c$, c.b.d.o.

Wn.6 Ponieważ liczbą pierwszą p > 1 jest liczba której dzielnikiem jest jedynie 1 i p, to łatwo stwierdzić, że jeśli $p \mid (b*c)$, to $p \mid b$ lub $p \mid c$ – sprawdzić!

Tw. (o rozkładzie na czynniki pierwsze)

Każda liczba naturalna a > 1 daje się jednoznacznie przedstawić w postaci iloczynu liczb pierwszych.

Dowód pomijamy.

Przykład.

Każdą liczbę naturalną można przedstawić w postaci iloczynu potęg kolejnych liczb pierwszych, np.

$$30 = 2^{1} * 3^{1} * 5^{1} * 7^{0} * 11^{0} * 13^{0} * 17^{0} * 19^{0} * 23^{0} * \dots$$
, albo
$$700 = 2^{2} * 3^{0} * 5^{2} * 7^{1} * 11^{0} * 13^{0} * 17^{0} * 19^{0} * 23^{0} * \dots$$
.

Def. Dla dwóch liczb całkowitych a i b oraz ich rozkładów na czynniki pierwsze w postaci

$$a = \pm \prod_{j} p_{j}^{k_{j}}, b = \pm \prod_{j} p_{j}^{l_{j}},$$

gdzie wykładniki są liczbami nieujemnymi: $0 \le k_j$, l_j dla dowolnego j = 1, 2, ... najmniejszą wspólną wielokrotnością (NWW) liczb a i b nazywamy liczbę

$$[a, b] = \prod_{j} p_{j}^{n_{j}}$$
, gdzie $n_{j} = \max(k_{j}, l_{j})$ dla każdego $j = 1, 2, ...$

Przykład.

Dla liczb 30 i 700 z powyższego przykładu mamy maksymalne wykładniki rozkładów: $n_1 = 2$, $n_2 = 1$, $n_3 = 2$, $n_4 = 1$, $n_5 = 0$, $n_6 = 0$, itd., a stąd [30, 700] = 4*3*25*7 = 2100.

Wn.7
$$(a, b) = \prod_{j} p_{j}^{m_{j}}$$
, gdzie $m_{j} = \min(k_{j}, l_{j})$ dla każdego $j = 1, 2, ...$

Wn. 8 (związek NWD i NWW)

$$(a, b) [a, b] = a * b$$

PIERŚCIEŃ WIELOMIANÓW K[x] NAD CIAŁEM K

Def. Niech K będzie ciałem liczbowym. Wielomianem nad ciałem K nazywamy wyrażenie

$$\varphi = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 (1)

Gdzie każde $a_k \in \mathbf{K}$ i $a_n \neq 0$. Oznaczamy $\varphi = \sum_{i=1}^n a_i x^i$.

Def. W (1) każdy wyraz a_k nazywamy k-tym współczynnikiem wielomianu φ , a_0 – wyrazem wolnym, a stopniem wielomianu nazywamy najwyższy wykładnik potęg zmiennej x: n = st φ .

Wn.1 Suma, różnica i iloczyn dwóch wielomianów nad wspólnym ciałem K jest wielomianem nad tym ciałem, przy czym spełnione są aksjomaty definicji pierścienia przemiennego z jedynką (ale nie ciała!). Pierścień ten oznaczamy K[x].

Def. Dwa wielomiany φ i ψ nazywamy **równymi**, jeśli są tego samego stopnia (stφ = stψ) i wszystkie ich współczynnik są parami równe, tzn. $a_k = b_k$ dla każdego k = 1, 2, ..., stφ.

Tw. (o tożsamości wielomianów o wspólnych wartościach w n + 1 węzłach)

Jeśli dla dwóch wielomianów

$$\varphi = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 (2)

$$\Psi = b_m x^m + b_{m-1} x^{m-1} + \dots + b_2 x^2 + b_1 x + b_0$$
(3)

o stopniach $m = \text{st}\psi \le \text{st}\phi = \text{n}$ zachodzi równość $\psi(x_j) = \phi(x_j)$ dla wszystkich danych n+1 punktów $(x_1, x_2, ..., x_n, x_{n+1})$ parami różnych, to $\psi = \phi$ (tzn. m = n i $a_j = b_j$ dla j = 0, 1, ..., n). Dowód: pomijamy.

Wn.2 $st(\varphi + \psi) \le max(st\varphi, st\psi)$

Wn.3 Jeśli $\varphi \neq 0$ i $\psi \neq 0$, to $\varphi * \psi \neq 0$ i $st(\varphi * \psi) = st\varphi + st\psi$.

Istotnie, niech iloczyn ma współczynniki c_j dla j=1,2,...,n+m wtedy $c_{m+n}=a_n$ $b_m\neq 0$, choć dalsze współczynniki: $c_{m+n-1}=a_{n-1}$ b_m+a_n b_{m-1} , etc. mogą równać się zero. Stąd, $\phi*\psi\neq 0$.

Wn.4 Jeśli $\varphi \neq 0$ i $\varphi * \psi = \varphi * \chi$, to $\psi = \chi$ (prawo skracania dla wielomianów). Istotnie, z założenia $0 = \varphi * \psi - \varphi * \chi = \varphi(\psi - \chi)$, stąd $\psi - \chi = 0$, jeśli $\varphi \neq 0$.

Def. Dla ψ , $\varphi \in K[x]$, wielomian $\varphi \neq 0$ nazywamy **dzielnikiem** wielomianu ψ , jeśli istnieje taki wielomian $\chi \in K[x]$, że $\psi = \varphi * \chi$, co ozn. $\varphi|\psi$ - przeciwnie $\varphi^{\dagger}\psi$.

Wn.5 Superpozycja (złożenie) dwóch wielomianów jest wielomianem oraz $st(\phi(\psi)) = st\phi * st\psi$.

Tw. (o dzieleniu wielomianów z resztą)

Dla każdej pary wielomianów φ i ψ , gdzie st $\varphi > 0$, istnieje dokładnie jeden układ wielomianów β i ρ , dla których zachodzi tożsamość $\psi = \beta \varphi + \rho$, przy czym st $\rho <$ st φ . Jeśli $\varphi \in K[x]$ i $\psi \in K[x]$, to $\varphi \in K[x]$ i $\varphi \in K[x]$. Wielomian φ nazywamy ilorazem, φ -reszt φ .

Dowód: Indukcja względem stopnia wielomianu ψ (*do pominięcia w pierwszym czytaniu*). Jeśli st ψ < st ϕ , to β = 0 i ρ = ψ .

Dlatego załóżmy, że tw. jest prawdziwe dla wielomianów ψ stopnia < n.

Niech teraz st $\psi = n \ge \text{st}\phi = q$, oraz

a i b oznaczaja najwyższe współczynniki wielomianu ψ i ϕ , odpowiednio.

Ponieważ st $(ax^{n-q}\varphi/b) = n$ i jego najwyższy współczynnik jest równy a, więc wielomian

$$\psi_1 = (\psi - ax^{n-q} \phi/b) \in K[x] \text{ i st} \psi_1 < n.$$
 (*)

Z założenia indukcyjnego wynika istnienie układu wielomianów β_1 i ρ w K[x] dla których

$$\psi_1 = \beta_1 \varphi + \rho$$
, przy czym st $\rho < st\varphi$.

Stad, wobec (*) mamy

$$\Psi = (ax^{n-q}\varphi/b + \beta_1)\varphi + \rho,$$

co przedstawia teze tw. dla $\beta = ax^{n-q} \phi/b + \beta_1 i \beta \in K[x]$.

Dla wykazania jednoznaczności przypuśćmy, że mamy również

$$\psi = \beta_1 \phi + \rho_1$$
, przy czym st $\rho_1 < \text{st}\phi$. (**)

Wówczas jednak odejmując stronami tezę i (**) otrzymujemy tożsamość $(\beta - \beta_1)\phi = \rho - \rho_1$. Ponieważ nadal st $(\rho - \rho_1)$ < st ϕ , więc powyższa tożsamość pociąga za sobą $\beta - \beta_1 = 0$, a zatem $\beta = \beta_1$ i $\rho = \rho_1$, c.b.d.o. Wn.6 Algorytm obliczania ilorazu i reszty z dzielenia wielomianów (jak w dowodzie).

Dla $\psi = ax^n + ...$ i $\varphi = bx^q + ...$ należy od ψ odjąć wielomian $ax^{n-q}\varphi/b = \beta_1\varphi$, tzn. $\beta_1 = (a/b) x^{n-q}$. Oznaczmy różnicę przez $\psi_1 = a_1 x^m + ...$ Należy od ψ_1 znów odjąć wielomian $a_1 x^{m-q}\varphi/b = \beta_2\varphi$, gdzie $\beta_2 = (a_1/b) x^{m-q}$ i procedurę prowadzić, aż przez odjęcie $\beta_s\varphi$ od ψ_s uzyskamy wielomian ψ_{s+1} stopnia niższego q. Wówczas przyjmujemy:

$$\rho = \psi_{s+1} \ i \ \beta = \beta_1 + \beta_2 + ... + \beta_s.$$

Przykład. Rozważmy wielomiany

$$\psi(x) = x^4 - x^2 - 2x + 1$$
 $(n = \text{st}\psi = 4, a = 1)$
 $\phi(x) = x^2 - x - 1$ $(q = \text{st}\phi = 2, b = 1)$

Wobec Wn.6 mamy

$$\beta_1 = (a/b) \ x^{n-q} = x^2 \qquad \text{oraz} \qquad \psi_1 = \psi - \beta_1 \phi = x^3 - 2x + 1 (\text{st} \psi_1 = 3 > \text{st} \phi = 2), \text{ wiec dalej}$$

$$\beta_2 = x \qquad \text{oraz} \qquad \psi_2 = \psi_1 - \beta_2 \phi = x^2 - x + 1 (\text{st} \psi_2 = 2 = \text{st} \phi = 2), \text{ wiec dalej}$$

$$\beta_3 = 1 \qquad \text{oraz} \qquad \psi_3 = \psi_2 - \beta_3 \phi = 2 (\text{st} \psi_3 = 0 < \text{st} \phi = 2), \text{ co kończy schemat i}$$
 otrzymujemy wzór

$$w = x^4 - x^2 - 2x + 1 = \omega (\beta_1 + \beta_2 + \beta_3) + w_3 = (x^2 - x - 1)(x^2 + x + 1) + 2$$

Tw. (Bézout)

Resztą z dzielenia wielomianu $\psi(x)$ przez dwumian x - a jest $\psi(a)$, czyli

$$\psi(x) = (x - a) \beta(x) + \psi(a). \tag{4}$$

Dowód: Z tw. o dzieleniu wielomianów z resztą wynika, że reszta z dzielenia ψ przez (x - a) jest stałą, tzn. $\psi(x) = (x - a) \beta(x) + c$, gdzie podstawiając x = a mamy $c = \psi(a)$, c.b.d.o.

Wn. 7 **Schemat Hornera**

Praktyczny algorytm obliczania ilorazu $\beta(x)$, a zwłaszcza reszty $\psi(a)$, przy dzieleniu wielomianów przez dwumiany postaci (x -a). Niech

$$\Psi = a_0 x^n + a_1 x^{n-1} + ... + a_{n-2} x^2 + a_{n-1} x + a_n$$

wtedy $\beta(x)$ w (4) jest postaci

$$\beta = b_0 x^{n-1} + b_1 x^{n-2} + \dots + b_{n-3} x^2 + b_{n-2} x + b_{n-1}.$$

Podstawiając powyższe do (4) otrzymujemy tożsamość wielomianów skąd przez porównanie współczynników po obu stronach przy jednakowych potęgach wynikają równości dające rekurencyjny ciąg dla współczynników ilorazu i wartości reszty $\psi(a)$:

oraz

$$\psi(a) = a_{n} + a b_{n-1}$$
.

Można schemat ten zapisać następująco:

Przykład. Wyznaczmy iloraz $\beta(x)$ i wartość $\psi(a)$ wielomianu $\psi(x) = 4x^4 - 3x^2 - 2x + 1$ wg. schematu Hornera dla a = 10:

Zatem

$$\psi(x) = 4x^4 - 3x^2 - 2x + 1 = (x - 10)(4x^3 + 40x^2 + 397x + 3968) + 39681$$
oraz
$$\psi(a = 10) = 39681.$$

