A. Euler

题意

给出一幅n个点,m条边的图,分别判断该图是无向图和有向图条件下,是否存在欧拉通路。

分析

无向图是否具有欧拉通路或回路的判定:

欧拉通路:图连通:图中只有0个或2个度为奇数的节点

欧拉回路:图连通:图中所有节点度均为偶数

有向图是否具有欧拉通路或回路的判定:

欧拉通路:图连通;除2个端点外其余节点入度=出度;1个端点入度比出度大1;一个端点入度

比出度小1 或 所有节点入度等于出度

欧拉回路:图连通: 所有节点入度等于出度

思考

百度题(

B. -0你电脑炸啦

题意

题意

分析

可以想着按顺序来显示各个数字 因为他们显示的位置是固定的 然后**9!**枚举顺序就可以了 暴力过的 不知道正解是啥

思考

C. 寻找fly真迹

题意

一天fly正坐在课堂上发呆,突然,他注意到了桌面上的一个字符串S1S2S3S4...Sn,这个字符串只由字符"a","b"和"c"构成。刚好这堂课很无聊,所以他决定为这个字符串画一张图,(这张图上的每个点代表字符串中的一个字符,例如节点1代表S1。)这张图有以下特点:

- 1. 它有n个点,从1到n进行标号。
- 2. 对于图上任意的两个点i和j($i \neq j$),当两者代表的字符在字典序顺序上相邻或者相等的时候,会被连上一条边。也就是说,"a"-"b","a"-"a"这类的,它们间会有一条边相连,而"a"-"c"这类的就没有边相连。

fly根据这个字符串画出了图,随后把原先的字符串擦除了,于是桌面只留下了图。xf听说了fly的光荣事迹,第二天决定去一睹真迹,于是他来到了fly那天所在的教室的那张桌子前,然而眼前的一幕让他惊呆了:桌子上出现了好多幅图,显然这是某个别有用心的同学(GooZv?)

私自画上去的。这可急坏了xf,于是他想请你帮他找出哪幅才是fly真迹。

分析

只有a和c之间没有边相连 所以考虑取补图进行二分图染色 染色完之后确认下所有的a和c有没有边相连

思考

D. 一食堂 or 二食堂, it's a question

题意

相互喜欢的人在一个食堂 相互不喜欢的人在不同的食堂 给定人和食堂的坐标安排一种方案 使得任意两人走过的距离加上两人所处食堂的距离最小

分析

2-sat建图 对每个点拆点 i表示在一食堂 i+n表示在二食堂

首先相互喜欢的人如果A在一食堂 那么B也必须在一食堂

首先相互不喜欢的人如果A在一食堂 那么B必须在二食堂

剩下的同理

处理完有相互关系的 然后二分这个最小值

对任意两个人 连边的时候必须是如果A 必须B 所以去找到不可行的方案 去连另外的边

比如说 A如果在一食堂 B不能在一食堂 那么A如果在一食堂 B就必须去二食堂

连完边就是2-sat判断一下有没有矛盾

思考

E. Division

题意

给你一个有向图。n点m边。任务是将这些点分成若干组。分组规则如下:

若点u可以到达点v,且点v可以也到达点u,那么u和v必须分在一组。 对于组内任意不相同两点u,v,必须保证u可以到达v或者v可以到达u。 你们的任务是求出最少可以分几个组。

分析

首先相互连通分一组 这个就是强连通 那么先进行强连通缩点

缩完点再考虑 分最少的组 组内保证对于组内任意不相同两点 u, v, ω 须保证u可以到达v或者v可以到达u

这个条件的意思就表示每一组都在一条链上 那么这就是找到最少不相交的链 使得覆盖整个图剩下的部分就是最小路径覆盖

最小路径覆盖(path covering):是"路径"覆盖"点",即用尽量少的不相交简单路径覆盖有向无环图G的所有顶点,即每个顶点严格属于一条路径。路径的长度可能为0(单个点)。最小路径覆盖数=G的点数一最小路径覆盖中的边数。应该使得最小路径覆盖中的边数尽量多,但是又不能让两条边在同一个顶点相交。拆点:将每一个顶点i拆成两个顶点Xi和Yi。然后根据原图中边的信息,从X部往Y部引边。所有边的方向都是由X部到Y部。因此,所转化出的二分图的最大匹配数则是原图G中最小路径覆盖上的边数。因此由最小路径覆盖数=原图G的顶点数—二分图的最大匹配数便可以得解。

思考

F. meixiuxiu学图论

题意

给出一幅n个点,m条边的无向有权连通图 对于每个环的权值就是 环上最大边的权值问所有环中权值最小的是多少

分析

用Kruskal算法 先对所有边权排序 然后一条一条插入 通过并查集合并边连接的两个点的集合 如果插入的边的两个端点已经属于同一个集合 那么当前边就构成了环 因为之前插入的边都比当前边小

所以当前边就是环上最大边 然后因为找的是环上最大边的最小值 所以第一个构成环的边就是 答案

思考

G. 最短路

颞意

问从起点到终点有几条不相交的最短路

分析

先跑一次起点的单源最短路 对于一条边 (u,v)

当前边的权值是val如果dis[u] + val == dis[v]那么这条边就属于最短路径上的一条

我重新构图把这些所有可行边插入 流量记为1 跑一遍网络流就是答案了

思考

H. NightMare2

题意

n个点 m条边的图 每条边上有财宝数量限制 经过这条边需要花费一定的时间

问在一定时间内 从起点到终点 最多能带多少财宝

分析

二分带多少财宝 然后不用那些容量小于财宝的边 看起点到终点的最短路时间是否小于等于题目给定的时间

思考

H. 玛雅, 好简单

题意

给定一个图 问桥边的数量

分析

tarjan搞一下就好了 由于有重边 zz如我用了map判断重边

思考

J. An Easy Problem

题意

n个点**m**个有向边 每条边可以经过无数次 每次我可以选一个点去走 问最少几次就可以走遍 所有点

分析

这是可以相交的最小路径覆盖 和E题一个做法 只不过这题要先传递闭包 所谓传递闭包就是把 所有间接联通的点也直接连上边

思考

K. 投票

颞意

现在yoyo所在班级要选一个班长出来,每个同学可以投不止一张的票。有个约定,A同学投了B,B同学投了C,那么C就相当于获得了两张票,也就是说这中投票具有传递性。求最高票数,并输出那些同学获得了最高票数,从小到大。

分析

实质就是求有多少点可以到达这个点 那就是这个点的票数

先强连通缩点得到 每个缩成的点内票数都是一样多的 然后把边取反向边 对每个点找到他可以到达几个点

那就是他可以获得的票数

思考