Table of Contents

Program to verify Sampling Theorem	. 1
Convolution	
Linear Convolution	
Linear Convolution 2	. (
Circular Convolution	. (
Third One	. 7
OCT 14	. 8
Oct 14 -2	. 8
DFT	9
Auto Co-relation Rxx	9
Cross Corelation	9
FT Rectangle Sir	1(
FT Rectangle GPT	1(
Fourier Transform Square	11
Fourier Tranform Square:	11
FT SINC	12
FIR LPF/HPF	12
FIR BPF/BSF	12
IIR Butterworth LPF/HPF	13
IIR Butterworth BPF/BRF	13
IIR Chebyshev LPF/HPF	13
IIR Chebyshev BPF/BRF	14

Program to verify Sampling Theorem

```
clc;
clear all;
t = -100:0.01:100;
fm = 0.02;
x = cos(2*pi*t*fm);
subplot(2,2,1);
plot(t,x);
xlabel('time in sec')
ylabel('x(t)')
title('Continuous time signal')
fs1 = 0.02 %fs1 < 2fm
n=-2:2;
x1 = cos(2*pi*fm*n/fs1)
subplot(2,2,2);
stem(n, x1)
hold on
subplot (2,2,2)
plot (n, x1, ':')
xlabel('n')
ylabel('x(n)')
title('discrete time signal x(n) for fs<2f')</pre>
fs1 = 0.02 %fs1<2fm
```

```
fs2 = 0.04 %fs=2fm
n1 = -4:4;
x2 = cos (2*pi*fm*n1/fs2)
subplot (2,2,3)
stem (n1, x2)
hold on
subplot (2,2,3)
plot (n1, x2, ':')
xlabel ('n1')
ylabel('x(n)')
title("discrete time signal")
fs3 = 0.6 %fs3>2*fm
n2 = -50:50;
x3 = cos(2*pi*fm*n2/fs3)
subplot(2,2,4)
stem(n2,x3)
hold on
subplot(2,2,4)
plot(n2,x3,':')
xlabel('n3')
ylabel('x(n2)')
title('discrete time signal x(n2) for fs>2fm')
fs1 =
   0.0200
x1 =
   1 1 1 1 1
fs1 =
  0.0200
fs2 =
   0.0400
x2 =
    1
        -1 1 -1 1 -1 1
fs3 =
```

2

0.6000

x3	=
ムン	_

Columns 1 th	rough 7	,				
-0.5000 -	0.6691	-0.8090	-0.9135	-0.9781	-1.0000	-0.9781
Columns 8 th	rough 1	.4				
-0.9135 -	0.8090	-0.6691	-0.5000	-0.3090	-0.1045	0.1045
Columns 15 t.	hrough	21				
0.3090	0.5000	0.6691	0.8090	0.9135	0.9781	1.0000
Columns 22 t.	hrough	28				
0.9781	0.9135	0.8090	0.6691	0.5000	0.3090	0.1045
Columns 29 t.	hrough	35				
-0.1045 -	0.3090	-0.5000	-0.6691	-0.8090	-0.9135	-0.9781
Columns 36 t.	hrough	42				
-1.0000 -	0.9781	-0.9135	-0.8090	-0.6691	-0.5000	-0.3090
Columns 43 t.	hrough	49				
-0.1045	0.1045	0.3090	0.5000	0.6691	0.8090	0.9135
Columns 50 t.	hrough	56				
0.9781	1.0000	0.9781	0.9135	0.8090	0.6691	0.5000
Columns 57 t.	hrough	63				
0.3090	0.1045	-0.1045	-0.3090	-0.5000	-0.6691	-0.8090
Columns 64 t.	hrough	70				
-0.9135 -	0.9781	-1.0000	-0.9781	-0.9135	-0.8090	-0.6691
Columns 71 t.	hrough	77				
-0.5000 -	0.3090	-0.1045	0.1045	0.3090	0.5000	0.6691
Columns 78 t.	hrough	84				
0.8090	0.9135	0.9781	1.0000	0.9781	0.9135	0.8090
Columns 85 t.	hrough	91				

```
0.6691
           0.5000
                     0.3090
                                0.1045
                                         -0.1045
                                                   -0.3090
                                                             -0.5000
Columns 92 through 98
 -0.6691
          -0.8090
                    -0.9135
                             -0.9781
                                        -1.0000
                                                   -0.9781
                                                             -0.9135
Columns 99 through 101
 -0.8090
          -0.6691
                    -0.5000
```


Convolution

$$x = [1,2,3,4]$$
 $h = [-3,2,1]$
 $y = conv(x,h)$
 $x = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

h =

```
-3 2 1 y = -3 -4 -4 -4 11 4
```

Linear Convolution

```
clc;
clear all;
close all;
x = [1, 2, 3];
h = [1,1,1];
y1 = conv(x,h)
stem(y1)
xlabel('n values');
ylabel('Amplitude');
title('Linear Convolution');
m = length(x);
m1 = length(h);
subplot(2,2,2);
X = [x, zeroes(1,m)];
H = [h, zeroes(1, m1)];
for i=1: (m1+m-1)
    y(i) = 0;
    for j=1:m
        if(i-j+1)>0
            y(i) = y(i) + X(j)*H(i-j+1)
        end
    end
end
subplot(2,2,3);
y1 =
     1
          3
                 6
                      5
                             3
Undefined function 'zeroes' for input arguments of type 'double'.
Error in lab1 (line 82)
```

```
X = [x ,zeroes(1,m)];
```

Linear Convolution 2

```
% WAP of linear convolution
clc;
clear all;
close all;
x=[1,2];
h=[1,2,4];
y1=conv(x,h)
%stem(y1)
%xlabel('n values');
%ylabel('Amplitude');
%title('Linear Convolution');
m=length(x);
m1=length(h);
subplot(2,2,1)
stem(x);
xlabel('n values');
ylabel('Amplitude');
title('x(n)');
subplot(2,2,2)
stem(h);
xlabel('n values');
ylabel('Amplitude');
title('h(n)');
X=[x,zeros(1,m)];
H=[h,zeros(1,m1)];
for i=1:(m1+m-1)
    y(i) = 0;
    for j=1:m
        if(i-j+1)>0
            y(i)=y(i)+X(j)*H(i-j+1);
        end
    end
end
subplot(2,2,3);
stem(y);
xlabel('n values');
ylabel('Amplitude');
title('y output');
y1=conv(x,h)
subplot(2,2,4);
stem(y1)
xlabel('t values');
ylabel('Amplitude');
title('Linear convolution');
```

Circular Convolution

WAP to implement a code of circular convolution

```
clc;
clear all;
x = [1,1,2,2];
h = [1, 2, 3, 4];
subplot(2,2,1);
stem(x);
xlabel('n values');
ylabel('Amplitude');
title('x(n)');
subplot(2,2,2);
stem(h);
xlabel('n values');
ylabel('Amplitudes');
title('h(n)');
N1 = length(x);
N2 = length(h);
N = max(N1,N2);
if(N1<N2)
    x = [x, zeros(1, N-N1)]
end
if(N1>=N2)
    h = [h, zeros(1, N-N2)]
end
y = zeros(1,N);
for m=1:N
    for n=1:N
        z = mod(m-n,N);
        y(m)=y(m) + x(n).*h(z+1);
    end
end
subplot(2,2,3)
stem(y)
xlabel('n values')
ylabel('Samples')
title('Circular Convolution')
```

Third One

```
x = [1,1,1,2,1,1];
h = [1,2,2,1];
subplot(2,2,1);
stem(x);
xlabel('n values');
ylabel('Amplitude');
title('x(n)');
subplot(2,2,2);
stem(h);
xlabel('n values');
ylabel('Amplitude');
title('h(n)');
N1 = length(x)
N2 = length(h)
```

```
N = N1 + N2 -1
x = [x, zeros(1, N-N1)]
h = [h, zeros(1, N-N2)]
y = zeros(1,N)
for n=0:N-1
    for m=0:N-1
        z=mod(n-m,N)
        y(n+1) = y(n+1) + x(m+1).*h(z+1)
    end
end
subplot(2,2,3);
stem(y);
xlabel('n values');
ylabel('amplitude');
title('Output y(n)');
disp('y = ')
disp(y)
```

OCT 14

To solve difference equation

```
clc;
x = [0 0 ones(1,10)];
y_past = [1 2];
y(1) = y_past(1);
y(2) = y_past(2);
for k=3: (length(x));
    y(k) = 1.5*y(k-1) - y(k-2) + 2*x(k-2);
end

disp('Solution for the given difference equation is');
disp(y);
stem(-2:(length(y)-3),y);
xlabel('input x(n)');
ylabel('output y(n)');
title('Differential Equation')
```

Oct 14 -2

Solving another difference equation

```
x = [0 0 ones(1,10)];
y_past = [1 2];
y(1) = y_past(1);
y(2) = y_past(2);
for k=4: (length(x));
    y(k) = 5*y(k-3) + 4*x(k-3);
end
```

```
disp('Solution for the given difference equation is');
disp(y);
stem(-3:(length(y)-4),y);
xlabel('input x(n)');
ylabel('output y(n)');
title('Difference Equation')
```

DFT

```
clc;
clear all;
x1 = input('Enter the sequence: ');
n = input('Enter the length: ');
m = fft(x1,n);
disp('N-point DFT of the given sequnce: ')
disp(m);
z = abs(fft(x1,n));
disp('magnitude of the DFT sequence is:');
disp(z);
N = 0:1:n-1;
subplot(2,2,1);
stem(N,z);
xlabel('length');
ylabel('output');
title('magnitude spectrum');
a = angle(m)
subplot(2,2,2);
stem(N,a);
xlabel('length');
ylabel('output');
title('phase spectrum');
```

Auto Co-relation Rxx

```
%Calculate Auto Corelation of sequence [1 2 3 4]
clc;
clear all;
x = input('Enter the input sequence');
Rxx = xcorr(x);
disp('Auto Correlated sequence,Rxx: ');
disp(Rxx);
t = -(length(x) -1) : 1 : (length(x) -1);
stem(t,Rxx);
xlabel('Time: ');
ylabel('Magnitude ');
title('Auto Correlation output of a sequence');
```

Cross Corelation

%Solve for the cross corelation to a sequence

```
clc;
clear all;
x=input('Enter the first sequence:');
Rxx=xcorr(x);
disp('auto correlated sequence, Rxx:');
disp(Rxx);
y=input('Enter the second sequence:');
Ryy=xcorr(y);
disp('cross correlated sequence, Ryy');
disp(Ryy);
Rxy=xcorr(x,y);
disp('cross correlated sequence, Rxy:');
disp(Rxy);
Ryx=xcorr(y,x);
disp('cross correlated sequence,Rxy:');
disp(Ryx);
t=-(length(x)-1):1:(length(x)-1);
stem(t, Rxy);
xlabel('Time');
ylabel('Magnitude')
title('Cross Relation of the given two sequences');
```

FT Rectangle Sir

```
clear all;
close all;
Fs = 40;
Ts = 1/Fs;
t = -1:Ts:1;
width = 1;
x = rectpuls(t, width);
figure,
plot(t,x),
xlabel('time'), ylabel('magnitude');
[M N] = size(t);
F = fft(x,N);
ff = (0:N-1)*Fs/N;
figure,
plot(ff,fftshift(abs(F)));
```

FT Rectangle GPT

```
clc;
clear all;
close all;
% Input parameters
a = input('Enter width of pulse: ');
t = linspace(-5, 5, 1000); % Define a range for t, to generate a smooth plot
% Generate the rectangular pulse
x = rectpuls(t, a);
```

```
% Plot the original pulse
figure;
subplot(2,1,1);
plot(t, x);
title('Rectangular Pulse');
xlabel('Time');
ylabel('Amplitude');
grid on;
% Compute Fourier Transform using FFT
X = fft(x);
f = linspace(-0.5, 0.5, length(X)) * length(t) / (t(end) - t(1)); % Frequency
% Plot the magnitude of the Fourier Transform
subplot(2,1,2);
plot(f, fftshift(abs(X)));
title('Magnitude Spectrum of the Pulse');
xlabel('Frequency');
ylabel('Magnitude');
grid on;
```

Fourier Transform Square

```
clear all;
clc;
n=0:0.01:29;
x=square(2*pi*n);
x1=abs(fft(x));
subplot(2,1,1);
plot(n,x);
title('input signal');
subplot(2,1,2);
plot(x1,'r-x');
title('fourier transform');
```

Fourier Tranform Square:

```
clear all;
clc;

% Time vector
n = 0:0.01:30;
x = square(2 * pi * 0.5 * n); % Square wave with frequency 0.5 Hz

% Compute Fourier Transform
X = fft(x);
f = (0:length(X)-1) * (1 / max(n)); % Frequency axis

% Magnitude Spectrum
X_mag = abs(X);

% Plot input signal
```

```
subplot(2,1,1);
plot(n, x);
title('Input Signal (Square Wave)');
xlabel('Time');
ylabel('Amplitude');
grid on;

% Plot Fourier Transform
subplot(2,1,2);
plot(f, X_mag, 'r-x');
xlim([0 10]); % Adjust the x-axis limit for better visibility
title('Magnitude Spectrum of the Square Wave');
xlabel('Frequency');
ylabel('Magnitude');
grid on;
```

FT SINC

```
%Fourier Transform of sinc function
clc;
clear all;
close all;
t=input('Enter duration of sinc function')
x=sinc(5*t);
figure(1);
subplot(2,1,1);
plot(t,x);
X=fft(x);
subplot(2,1,2);
plot(t,fftshift(abs(X)));
```

FIR LPF/HPF

```
clc;
clear all;
close all;
N=30;
fs=8000;
fc=2000;
wc=fc/(fs/2);
h=fir1(N,wc,'low',hamming(N+1));
freqz(h,1,1024,fs);
```

FIR BPF/BSF

```
clc;
clear all;
close all;
N=10;
fs=8000;
fc1=2000;
fc2=3000;
```

```
wc1=fc1/(fs/2);
wc2=fc2/(fs/2);
h=fir1(N,[wc1,wc2],'bandpass',hamming(N+1));
freqz(h,1,1000,fs);
```

IIR Butterworth LPF/HPF

```
clc;
clear all;
close all;
fs=1000;
kp=3;
ks=60;
fp=40;
fstop=150;
wp=fp/(fs/2);
wstop=fstop/(fs/2);
[N wc]=buttord(wp,wstop,kp,ks)
[b a]=butter(N,wc,'low') % low or high as required
freqz(b,a,1000,fs)
```

IIR Butterworth BPF/BRF

```
clc;
clear all;
close all;
fs=1000;
kp=3;
ks=60;
fp1=200;
fp2=300;
fs1=100;
fs2=400;
wp1=fp1/(fs/2);
wp2=fp2/(fs/2);
ws1=fs1/(fs/2);
ws2=fs2/(fs/2);
[N wc]=buttord([wp1,wp2],[ws1,ws2],kp,ks)
[b a]=butter(N,wc,'bandpass')
freqz(b,a,1000,fs)
```

IIR Chebyshev LPF/HPF

```
clc;
clear all;
close all;
fs=1000;
kp=3;
ks=60;
fp=40;
fstop=150;
wp=fp/(fs/2);
```

```
wstop=fstop/(fs/2);
[N wc]=cheblord(wp,wstop,kp,ks)
[b a]=cheby1(N,kp,wc,'high')
freqz(b,a,1000,fs)
```

IIR Chebyshev BPF/BRF

```
clc;
clear all;
close all;
fs=1000;
kp=3;
ks=60;
fp1=200;
fp2=300;
fs1=100;
fs2=400;
wp1=fp1/(fs/2);
wp2=fp2/(fs/2);
ws1=fs1/(fs/2);
ws2=fs2/(fs/2);
[N wc]=cheblord([wp1,wp2],[ws1,ws2],kp,ks)
[b a]=cheby1(N,kp,wc,'bandpass')
freqz(b,a,1000,fs)
```

Published with MATLAB® R2024b