Introductory Statistics Lectures

Summation Notation

Compact notation for sums.

ANTHONY TANBAKUCHI DEPARTMENT OF MATHEMATICS PIMA COMMUNITY COLLEGE

REDISTRIBUTION OF THIS MATERIAL IS PROHIBITED WITHOUT WRITTEN PERMISSION OF THE AUTHOR

© 2009

(Compile date: Tue May 19 14:48:06 2009)

Contents

1	Summation Notation			1.4	Notation for sets of data		
	1.1	Introduction	1	1.5	Summation with R	4	
	1.2	Summation notation	2	1.6	Summary	Ę	
	1.3	Notation: Greek alpha-					
		bet & symbols	2				

1 Summation Notation

1.1 Introduction

In statistics, we often need to sum sets of numbers.

$$\begin{aligned} 1+2+3+4+5+6+7+8+9+10\\ +11+12+13+14+15+16+17+18+19+20\\ +21+22+23+2+25+26+27+28+29+30\\ +31+32+33+34+35+36+37+38+39+40\\ +41+42+43+44+45+46+47+48+49+50 \end{aligned}$$

Writing out a sum can be tedious!

A simpler way to write the above expression would be:

$$\sum_{i=1}^{50} i$$

1.2 Summation notation

SUMMATION NOTATION.

Definition 1.1

The summation sign appears as the greek symbol \sum (capitol sigma) and indicates a sequence of sums.

$$\sum_{i=1}^{n} f(i) = \sum_{i=1}^{n} (\text{expression involving } i)$$
 (1)

i=1 Indicates that the index variable is i and starts at 1.

n The index variable stops at n.

The index variable is always incremented by 1.

Example 1.

$$\sum_{i=1}^{5} i = 1 + 2 + 3 + 4 + 5$$

Question 1. Expand the following expression:

$$\sum_{i=5}^{8} i^2$$

1.3 Notation: Greek alphabet & symbols

Commonly used greek letters in statistics

$$\alpha, \beta, \epsilon, \mu, \Sigma, \sigma, \Pi, \rho, \sigma, \chi$$

Hat notation for estimates

If we estimate x, we denote it as \hat{x} ("x-hat"). A hat over a variable indicates it is an estimate.

1.4 Notation for sets of data

In statistics we often deal with sets of data. For example, if we have a class of 5 students we can write their ages as:

$$x = \{21, 25, 22, 21, 23\}$$

A	α	Alpha	N	ν	Nu
B	β	Beta	Ξ	ξ	Xi
Γ	γ	Gamma	O	o	Omicron
Δ	δ	Delta	П	π	Pi
E	ϵ	Epsilon	P	ρ	Rho
Z	ζ	Zeta	Σ	σ	Sigma
H	η	Eta	T	au	Tau
Θ	θ	Theta	Υ	v	Upsilon
I	ι	Iota	Φ	ϕ	Phi
K	κ	Kappa	X	χ	Chi
Λ	λ	Lambda	Ψ	ψ	Psi
M	μ	Mu	Ω	ω	Omega

Table 1: Upper and lower case greek letters.

Where:

$$x_1 = 21$$

 $x_2 = 25$
 $x_3 = 22$
 $x_4 = 21$
 $x_5 = 23$

Summing a set of data

We can write the sum of the data set $x = \{21, 25, 22, 21, 23\}$ as

$$\sum_{i=1}^{5} x_i = x_1 + x_2 + x_3 + x_4 + x_5$$

If the data set is known, then we can simplify the notation:

$$\sum x_i = 21 + 25 + 22 + 21 + 23$$

Expand the following expressions if $y = \{3, 4, 2, 1\}$ Question 2.

$$\sum (y_i - 1)^2$$

Question 3.

$$\left(\sum (y_i-1)\right)^2$$

Given $y = \{-a, 3a, a\}$, show the left and right sides are equal by expanding the summation notation and simplifying it. Assume that a is an unknown constant.

Question 4.

$$\sum y_i^2 - 11a = 11a(a-1)$$

Summation with R 1.5

SUMMATION:

sum(x)

Where x is a vector. CAUTION: $sum(x^2) = \sum x_i^2$ where $sum(x)^2 = (\sum x_i)^2$

Example 2 (Summation in R). Given $x = \{2, 3, 7\}$, find $\sum x_i$:

R: x = c(2, 3, 7)

|R: total = sum(x)

R: total [1] 12

Example 3 (Summation in R). Now find $\sum (x_i^2 - 2)$:

$$\begin{array}{|c|c|c|} R: & sum(x^2 - 2) \\ [1] & 56 \end{array}$$

R COMMAND

1.6 Summary

$$\sum_{i=1}^{n} (\text{expression involving } i)$$

 $i=1\,$ Indicates that the index variable is i and starts at 1.

n The index variable stops at n.

The sum of all the data in x is written as:

$$\sum x_i$$

Summations in R use the sum(x) function.