

CHƯƠNG 3

Khai phá tập phổ biến

- Giới thiệu tập phổ biến
- Các thuật toán tìm tập phổ biến

Cơ sở dữ liệu bán hàng (transaction)

Tid	Items bought						
10	Beer, Nuts, Diaper						
20	Beer, Coffee, Diaper						
30	Beer, Diaper, Eggs Nuts, Eggs, Milk						
40							
50	Nuts, Coffee, Diaper, Eggs, Milk						

Mã hóa ? Dễ lưu trữ và xử lý (biến đổi CSDL về dạng nhị phân)

Cho tập hạng mục (**itemset**) $I = \{i_1, i_2, ..., i_n\}; i_i \in I$ được gọi là một hạng mục (**item**).

Cho CSDL giao dịch (**transaction**) $T = \{t_1, t_2, ..., t_m\}$; trong đó mỗi t_i là một giao dịch và là một tập con của I.

Số lượng các giao dịch T ký hiệu là |T| hay card(T).

Tập k hạng mục (k - **itemset**) = $\{i_1, i_2, ..., i_k\}$; gồm k item trong l.

Ví dụ: CSDL giao dịch là bảng có dạng như

sau:

Mã giao dịch	Nội dung giao dịch
1	A, C, T, W
2	C, D, W
3	A, C, T, W
4	A, C, D, W
5	A, C, D, T, W
6	C, D, T

Gọi $I=\{i_1, i_2, \ldots, i_n\}$ là tập tất cả các phần tử riêng biệt.

Luật kết hợp: (association rule) được ký hiệu là X→Y.Với X, Y là hai tập con của I.

- Trong đó X và Y là hai tập không giao nhau, thể hiện sự ràng buộc của tập hạng mục Y theo tập hạng mục X.
- Nếu A xuất hiện trong một giao dịch thì nhiều khả năng B
 cũng xuất hiện trong cùng một giao dịch.

- ■Độ đo cho luật kết hợp:
 - Độ hỗ trợ (support) là xác suất mà một giao dịch chứa XUY.

```
support("X \rightarrow Y") = P(X \cup Y) = N(X \cup Y) / |T|
```

Độ tin cậy (confidence) là xác suất có điều kiện của
 B nếu biết A.

```
confidence("X \rightarrow Y") = P(Y|X) = N(X \cup Y) / N(X)
= supp(X \rightarrow Y) / supp(X)
```


Ví dụ: luật kết hợp

Computer \rightarrow antivirus [support=2%, confidence=60%].

Nghĩa là:

- 2% trong toàn bộ CSDL giao dịch mua computer và antivirus cùng nhau.
- 60% trong số những người mua computer có mua antivirus.

Luật kết hợp $X \rightarrow Y$ được coi là một mẫu có giá trị nếu xảy ra đồng thời $supp(X \rightarrow Y) \ge minsup$ và $conf(X \rightarrow Y) \ge minconf$.

Trong đó **minsup** và **minconf** là hai giá trị ngưỡng cho trước.

Transaction-id	Items bought
1	A, B, C
2	A, C
3	A, D
4	B, E, F

min_support = 50%, *min_conf* = 50%:

- B → E (25%, 50%),... → loại
- $A \rightarrow C$ (50%, 66.7%)
- $C \rightarrow A$ (50%, 100%)

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Một số ví dụ luật kết hợp:

${Milk, Diaper} \rightarrow {Beer}$	{Milk,Beer} → {Diaper}
{Diaper,Beer} → {Milk}	{Beer} → {Milk,Diaper}
{Diaper} → {Milk,Beer}	{Milk} → {Diaper,Beer}

Tập phổ biến (frequent itemsets - Fls)

 Một tập phần tử có độ hỗ trợ (support) lớn hơn hoặc bằng một ngưỡng (minimun support) được gọi là tập phổ biến.

Ví dụ: CSDL giao dịch

Hãy liệt kê các tập phổ biến 1 phần tử
 thỏa minsupp = 2 (66,67%)

Tid	Items
1	A, B, C, D, E
2	B, C, D, E
3	A, C, D, F

Một tập là phổ biến cực đại nếu tập đó là phổ biến và không có tập cha trực tiếp phổ biến

Tập phổ biến tối đại (Max Pattern/Max

Frequent Itemsets) X nếu thỏa:

- 1. Supp(X) \geq minsupp và
- 2. $\nexists |X'| \supset |X| \text{ mà X' cũng phổ biến.}$

Ví dụ: Liệt kê các MFIs thỏa minsupp = 2:

Các MFIs là{B,C,D,E} và {A,C,D}.

Tid	Items
1	A, B, C, D, E
2	B, C, D, E
3	A, C, D, F

Items

Support threshold (by count): 5 Frequent itemsets: ?

Items

		Α	В	С	D	Е	F	G	Н	1	J
	1										
	2										
	3										
ons	4										
Transactions	5										
Frans	6										
	7										
	8										
	9										
	10										

Support threshold (by count): 5
Frequent itemsets: {F}

Items

Support threshold (by count): 5
Frequent itemsets: {F}

Support threshold (by count): 4 Frequent itemsets: ?

Items

Support threshold (by count): 5
Frequent itemsets: {F}

Support threshold (by count): 4 Frequent itemsets: {E}, {F}, {E,F}, {J}

Items

Support threshold (by count): 5
Frequent itemsets: {F}

Support threshold (by count): 4
Frequent itemsets: {E}, {F}, {E,F}, {J}

Support threshold (by count): 3 Frequent itemsets: ?

Items

Support threshold (by count): 5
Frequent itemsets: {F}

Support threshold (by count): 4
Frequent itemsets: {E}, {F}, {E,F}, {J}

Support threshold (by count): 3 Frequent itemsets:

All subsets of {C,D,E,F} + {J}

Items

Support threshold (by count): 5

Frequent itemsets: {F} Maximal itemsets: ?

Support threshold (by count): 4

Frequent itemsets: {E}, {F}, {E,F}, {J}

Maximal itemsets: ?

Support threshold (by count): 3

Frequent itemsets:

All subsets of {C,D,E,F} + {J}

Maximal itemsets: ?

Items

Support threshold (by count): 5

Frequent itemsets: {F}
Maximal itemsets: {F}

Support threshold (by count): 4

Frequent itemsets: {E}, {F}, {E,F}, {J}

Maximal itemsets: ?

Support threshold (by count): 3

Frequent itemsets:

All subsets of $\{C,D,E,F\} + \{J\}$

Maximal itemsets: ?

Items

Support threshold (by count): 5

Frequent itemsets: {F}
Maximal itemsets: {F}

Support threshold (by count): 4

Frequent itemsets: {E}, {F}, {E,F}, {J}

Maximal itemsets: {E,F}, {J}

Support threshold (by count): 3

Frequent itemsets:

All subsets of $\{C,D,E,F\} + \{J\}$

Maximal itemsets: ?

Items

Support threshold (by count): 5

Frequent itemsets: {F}
Maximal itemsets: {F}

Support threshold (by count): 4

Frequent itemsets: {E}, {F}, {E,F}, {J}

Maximal itemsets: {E,F}, {J}

Support threshold (by count): 3

Frequent itemsets:

All subsets of $\{C,D,E,F\} + \{J\}$

Maximal itemsets:

{C,D,E,F}, {J}

Items

Support threshold (by count): 5

Frequent itemsets: {F}
Maximal itemsets: {F}

Support threshold (by count): 4

Frequent itemsets: {E}, {F}, {E,F}, {J}

Maximal itemsets: {E,F}, {J}

Support threshold (by count): 3

Frequent itemsets:

All subsets of {C,D,E,F} + {J}

Maximal itemsets:

{C,D,E,F}, {J}

Tập phổ biến đóng (Closed Pattern/Frequent Closed

Itemsets) X nếu thỏa:

- 1. Supp(X) \geq minsupp và
- 2. $\nexists |X'| \supset |X| \text{ mà supp}(X') = \text{supp}(X)$.

Ví dụ: Liệt kê các FCIs thỏa minsupp = 2.

Các FCIs {A,B,C}, {A,B,D} và {A,B}.

Hỏi: {A,B} là MFI?

Tid	Items
1	A, B, C
2	A, B, C
3	A, B, D
4	A, B, D
5	C, E, F

Items

	Α	В	С	D	Е	F	G	Н	1	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Itemsets		Closed itemsets
{C}	3	
{D}	2	
{C,D}	2	

Items

	Α	В	С	D	Е	F	G	Н	L	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Itemsets	Support (counts)	Closed itemsets
{C}	3	✓
{D}	2	
{C,D}	2	✓

Items

		Α	В	С	D	Е	F	G	Н	1	J
	1										
	2										
	3										
SUO	4										
Iransactions	5										
מש	6										
	7										
	8										
	9										
	10										

Itemsets	Support (counts)	Closed itemsets
{C}	3	
{D}	2	
{E}	2	
$\{C,D\}$	2	
$\{C,E\}$	2	
$\{D,E\}$	2	
$\{C,D,E\}$	2	

Items

		Α	В	С	D	Е	F	G	Н	1	J
	1										
	2										
	3										
SUO	4										
Iransactions	5										
מש	6										
	7										
	8										
	9										
	10										

Itemsets	Support (counts)	Closed itemsets
{C}	3	✓
{D}	2	
{E}	2	
$\{C,D\}$	2	
$\{C,E\}$	2	
$\{D,E\}$	2	
{C,D,E}	2	✓

I. Giới thiệu (Quan hệ giữa các phần tử)

Bài toán khai thác luật kết hợp được chia làm hai giai đoạn:

- 1. Khai thác tập phổ biến (Fls Frequent Itemsets)
- Khai thác luật từ các tập phổ biến (ARs Association Rules)

II. Các TT khai thác tập phổ biến

Bài toán khai thác tập phổ biến (frequent itemset) là bài toán rất quan trọng trong lĩnh vực data mining.

Bài toán khai thác tập phổ biến là bài toán tìm tất cả tập các hạng mục (itemset) S có độ phổ biến (support) thỏa mãn độ phổ biến tối thiểu minsupp: $supp(S) \ge minsupp$.

II. Các TT khai thác tập phổ biến

Một số thuật toán khai thác tập phổ biến:

- Thuật toán Apriori
- Thuật toán Eclat
- Thuật toán FP-Tree
- Thuật toán IT-tree
- Các thuật toán khác như LCM, DCI, PrePost, ...

Được đề xuất bởi Agrawal et al năm 1993. Mục đích là tìm mỗi liên hệ giữa các mặt hàng được bán trong siêu thị.

Thuật toán Apriori là một thuật toán điển hình áp dụng trong khai phá luật kết hợp. Thuật toán dựa trên nguyên lý Apriori "tập con bất kỳ của một tập phổ biến cũng là một tập phổ biến và mọi tập cha của tập không phổ biến là không phổ biến".

Mục đích của thuật toán Apriori là tìm ra được tất cả các tập phổ biến có thể có trong cơ sở dữ liệu giao dịch D.

Ý nghĩa nguyên lý Apriori:

- 1. Mọi tập con của tập phổ biến đều phổ biến, nghĩa là $\forall X \subseteq Y$, nếu supp(Y) \geq minsupp thì supp(X) \geq minsupp.
- 2. Mọi tập cha của tập không phổ biến đều không phổ biến.
 nghĩa là ∀ X ⊆ Y, nếu supp(X) ≤ minsupp thì supp(Y) ≤ minsupp.

Thuật toán Apriori

- Input: CSDL giao dịch T và ngưỡng phổ biến minsupp.
- Output: Fls chưa tất cả các tập phổ biến của T.

Ý tưởng thuật toán Apriori

- 1. Tìm tất cả các tập phổ biến 1 hạng mục (L_1)
- 2. Tạo các tập ứng viên kích thước k hạng mục C_k từ các tập phổ biến L_{k-1} hạng mục (*nguyên lý Apriori*). Ví dụ, tạo ứng viên C_2 từ tập phổ biến L_1 .
- 3. Kiểm tra độ phổ biến của các ứng viên C_k trên CSDL và loại các ứng viên không phổ biến ta được L_k (i=1,2,..., k).
- 4. Dừng khi không tạo được tập phổ biến hay tập ứng viên.

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (2-itemsets)

Itemset
{Bread,Milk}
{Bread, Beer }
{Bread,Diaper}
{Beer, Milk}
{Diaper, Milk}
{Beer,Diaper}

Pairs (2-itemsets)

Không cần tạo ứng viên chứa Coke hoặc Eggs

Items (2-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Itemset	Count
{Bread,Milk}	3
{Beer, Bread}	2
{Bread,Diaper}	3
{Beer,Milk}	2
{Diaper,Milk}	3
{Beer,Diaper}	3

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (3-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Triplets (3-itemsets)

THUẬT TOÁN Apriori – Ví dụ

Cho minimum support là 20%, count = 1

TID	List of item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	12, 13
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	11, 12, 13, 15
T900	11, 12, 13

2/27/2025 49

THUẬT TOÁN Apriori – Ví dụ

2/27/2025

• Mã giả:

```
Gọi C<sub>k</sub> là tập các ứng viên có kích thước k
       L<sub>k</sub> các tập phổ biến có kích thước k
L₁= { i ∈ I: supp(i) ≥ minsupp} //các phần tử phổ biến
for (k = 1; L_k != \emptyset; k++) do
  C_{k+1} =apriori_gen(L_k) //tập ứng viên được tạo từ L_k
  for each t \in T \text{ do}//\text{moi giao dich } t \text{ trong CSDL}
       for each c \in C_{k+1} do
           if c \subseteq t then c.count++//đếm ứng viên trong tập C_{k+1} mà chứa trong t
  L_{k+1} = \{c \in C_{k+1} \mid c.\text{count} \ge minSup\} / \text{các ứng viên trong } C_{k+1} \text{ có } min\_support \}
   FIS = \bigcup_k L_{\nu+1};
```


Hàm apriori_gen:

- Input: L_k tập phổ biến kích thước k
- Output: C_{k+1} tập ứng viên kích thước k+1

THUẬT TOÁN Apriori

- Cách tạo các ứng viên: Tạo tập ứng viên C_{k+1} hạng mục từ tập L_k hạng mục:
 - Bước 1: tự kết hợp tập L_k
 - Bước 2: cắt bỏ
- Tính độ hỗ trợ của các ứng viên
- Ví dụ về tạo ứng viên
 - \Box L_3 ={abc, abd, acd, ace, bcd}
 - □ Tự kết hợp: L_3*L_3
 - abcd từ abc và abd
 - acde từ acd và ace
 - Cắt bỏ:
 - acde được loại bỏ vì ade không có trong tập L₃

• Ví dụ: Cho CSDL sau và minsupp = 50% (count = 2)

 Itemset
 Supp

 {A, C}
 2

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

 L_2

Chú ý: {A, C, B} không có trong C₃ vì {A, B} không có trong L₂.

Các tập phổ biến tìm được là:

FIs = {{A}, {B}, {C}, {E}, {A, C}, {B, C}, {B, E}, {C, E}, {B, C, E}}.

- Thuật toán Apriori là thuật toán dễ hiểu, dễ cài đặt. Tuy
 nhiên có các nhược điểm sau:
 - Phải duyệt CSDL nhiều lần.
 - Số lượng tập ứng viên rất lớn (=2^{|T|} 1).
 - Thực hiện việc tính độ phổ biến nhiều, đơn điệu.

- · Cải tiến Apriori: Ý tưởng chung:
 - Giảm số lần duyệt CSDL.
 - Giảm số lượng (không sinh) tập ứng viên.
 - Tìm qui trình tính độ phổ biến hiệu quả hơn.

Bài tập

Bài 1: Từ CSDL giao dịch, Cho minsupp = 50% (minsup = 3) hãy tìm:

- a) Tập phổ biến 1 phần tử
- b) Tất cả tập phổ biến bằngApriori
- c) Tìm tập phổ biến tối đại.
- d) Tìm tập phổ biến đóng.

Mã	Nội dung
giao dịch	giao dịch
1	A, C, T, W
2	C, D, W
3	A, C, T, W
4	A, C, D, W
5	A, C, D, T, W
6	C, D, T

Bài tập

Bài 2. Cho cơ sở dữ liệu giao dịch như sau:

Sử dụng các giá trị ngưỡng minsupport = 30% (minsup = 2,4)

- a) Hãy liệt kê tất cả các tập phổ biến 1 phần tử
- b) Chạy từng bước thuật toán Apriori tìm tất cả tập phổ biến.
- c) Tìm tất cả các tập MFIs, FCIs trong cơ sở dữ liệu
- d) Xây dựng cây FP-Tree cho CSDL giao dịch trên

TID	Items
T01	A, B, C, D
T02	A, C, D, F
T03	C, D, E, G, A
T04	A, D, F, B
T05	B, C, G
T06	D, F, G
T07	A, B, G
T08	C, D, F, G

Bài tập

Bài 3. Cho cơ sở dữ liệu giao dịch như sau:

Sử dụng các ngưỡng support = 30%

- a) Hãy liệt kê tất cả các tập phổ biến 1 phần tử
- b) Chạy từng bước thuật toán Apriori tìm tất cả tập phổ biến.
- c) Tìm các tập phổ biến đóng (FCIs)
- d) Xây dựng cây FP-Tree cho CSDL giao dịch trên

TID	Items
T01	A1, B1, C2
T02	A2, C1, D1
T03	B2, C2, E2
T04	B1, C1, E1
T05	A3, C3, E2
T06	C1, D2, E2