

# EE511 Protection of Power Systems II

**EECS** 

Washington State University

# **COURSE SYLLABUS**

Instructor: Saeed Lotfifard Term: Fall 2023

Office: EME 45 Class Meeting Days: Tuesday, Thursday Phone: (509) 335-0903 Class Meeting Hours: 12:05-1.20 PM

E-Mail: <u>s.lotfifard@wsu.edu</u> Class Location: Sloan 7

Instroctor's webpage http://eecs.wsu.edu/~lotfi/

Office hour: 10:30-11:30 am

#### I. Course Overview

This course introduces students to timely topics on power systems protection. It provides a comprehensive understanding of different aspects of modern protective relays and protection schemes. The course starts with measurement chain, both hardware and firmware, of Intelligent Electronic Devices (IEDs). The course will then focus on theory and implementation of digital protective algorithms in electric power systems. Different algorithms and schemes for component protection and system wide protection of power systems will be detailed.

#### **II. Course Objectives**

Having taken this course students will (i) be familiar with the measurement procedure in IEDs, (ii) be introduced to digital algorithms for analysis of power systems, with special focus on protection applications, (iii), be familiar with component and system wide protection of power systems and (iv) understand time domain and phasor domain analysis of events in power systems

# **III. Course Credits**

3 credits

#### IV. Required Texts and Materials

- T. Johns, S. K. Salman "Digital Protection for Power Systems" IET, 1997
- Instructor's notes.

# V. Grading Policies

| Assessment                                      | Grade |  |
|-------------------------------------------------|-------|--|
| Test#1                                          | 20%   |  |
| Test#2                                          | 20%   |  |
| Homework                                        | 15%   |  |
| Project (Final presentation and a final report) | 45%   |  |

100%

| Grading Scale (%) |               |
|-------------------|---------------|
| 90-100            | A             |
| 85 - 89           | $\mathrm{B}+$ |
| 80-84             | В             |
| 75 - 79           | C+            |
| 70-74             | C             |
| 65 - 69           | D+            |
| 60-64             | D             |
| 0 - 59            | F             |

# **VI. Course Policies**

- Tests are closed book
- No late homework will be accepted
- Up to 10% extra credit is considered for the projects qualified for submission to professional conferences/journals.
- The project can be done individually or in group of two people (individual contribution must be stated clearly)
- This course follows EECS academic integrity policy posted at http://www.eecs.wsu.edu/~schneidj/Misc/academic-integrity.html
- The policy related to Students with Disabilities are posted at <a href="http://accesscenter.wsu.edu/">http://accesscenter.wsu.edu/</a>

Course Topics and Tentative Calendar

| Week# | Course Topics                                                                                                                   |
|-------|---------------------------------------------------------------------------------------------------------------------------------|
| 1     | Introduction, Course Outline, Definitions     IED's Handanana                                                                   |
|       | IED's Hardware                                                                                                                  |
| 2     | Phasor Estimation, Short-window Algorithm(Mann& Morrison Algorithm, Prodar Algorithm)                                           |
| 3     | <ul> <li>Phasor Estimation, Long-window Algorithm (Fourier Algorithm, Least Squares Algorithm,<br/>Kalman Filtering)</li> </ul> |
| 4     | <ul> <li>Phasor Estimation, Long-window Algorithm (Fourier Algorithm, Least Squares Algorithm,<br/>Kalman Filtering)</li> </ul> |
| 5     | Differential equation based protection                                                                                          |
| 6     | Traveling wave based protection (time domain transient analysis of power systems)                                               |

| 7  | Traveling wave based protection (time domain transient analysis of power systems) |
|----|-----------------------------------------------------------------------------------|
| 8  | Traveling wave based protection (protective schemes)                              |
| 9  | Summary and Test #1                                                               |
| 10 | Digital transformer protection                                                    |
| 11 | Directional overcurrent relay                                                     |
| 12 | Distance relay                                                                    |
| 13 | Generator protection                                                              |
| 14 | Wide area protection                                                              |
| 15 | Wide area protection                                                              |
| 16 | Project Presentations and summary                                                 |

# VII. Topics [with corresponding ABET outcomes (http://school.eecs.wsu.edu/undergraduate/ABET)

- IED's Hardware [a, b, e]
- Phasor Estimation, Short-window Algorithm [a, e]
- Phasor Estimation, Long-window Algorithm [a, e]
- Differential equation based protection [a, e]
- Traveling wave based protection (time domain transient analysis of power systems) [a, e]
- Digital transformer protection [a, e, j]
- Digital line protection [a, e, j]
- Wide area protection [a, e,j ]