

proof of product of left and right ideal

 ${\bf Canonical\ name} \quad {\bf ProofOfProductOfLeftAndRightIdeal}$

Date of creation 2013-03-22 17:41:25 Last modified on 2013-03-22 17:41:25

Owner rm50 (10146)Last modified by rm50 (10146)

Numerical id 6

Author rm50 (10146)

Entry type Proof

Classification msc 16D25

Theorem 1 Let \mathfrak{a} and \mathfrak{b} be ideals of a ring R. Denote by $\mathfrak{a}\mathfrak{b}$ the subset of R formed by all finite sums of products ab with $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$. Then if \mathfrak{a} is a left and \mathfrak{b} a right ideal, $\mathfrak{a}\mathfrak{b}$ is a two-sided ideal of R. If in addition both \mathfrak{a} and \mathfrak{b} are two-sided ideals, then $\mathfrak{a}\mathfrak{b} \subseteq \mathfrak{a} \cap \mathfrak{b}$.

Proof. We must show that the difference of any two elements of \mathfrak{ab} is in \mathfrak{ab} , and that \mathfrak{ab} is closed under multiplication by R. But both of these operations are linear in \mathfrak{ab} ; that is, if they hold for elements of the form $ab, a \in \mathfrak{a}, b \in \mathfrak{b}$, then they hold for the general element of \mathfrak{ab} . So we restrict our analysis to elements ab.

Clearly if $a_1, a_2 \in \mathfrak{a}, b_1, b_2 \in \mathfrak{b}$, then $a_1b_1 - a_2b_2 \in \mathfrak{ab}$ by definition. If $a \in \mathfrak{a}, b \in \mathfrak{b}, r \in R$, then

$$r \cdot ab = (r \cdot a)b \in \mathfrak{ab}$$
 since \mathfrak{a} is a left ideal $ab \cdot r = a(b \cdot r) \in \mathfrak{ab}$ since \mathfrak{b} is a right ideal

and thus \mathfrak{ab} is a two-sided ideal. This proves the first statement.

If $\mathfrak{a}, \mathfrak{b}$ are two-sided ideals, then $ab \in \mathfrak{a}$ since $b \in R$; similarly, $ab \in \mathfrak{b}$. This proves the second statement.