

#### **Regression models**

- dataset  $\mathfrak D$  contains m observations and n+1 attributes
- independent attributes (explanatory, predictors) and 1 dependent attribute (target, response)
- observations  $x_i, i \in \mathcal{M}$  are points in a n dimensional space, the target attribute is denoted as  $y_i$
- X is the  $m \times n$  matrix of data, and y is the target vector
- $Y|X_j$  are random variables,  $f:\mathbb{R}^n o \mathbb{R}$

$$Y=f(X_1,X_2,\ldots X_n)$$

# **Regression models**

- spurious correlation
   the hypothesis space should be simple

In any potnesis space should be simple 
$$Y = w_1 X_1 + w_2 X_2 + \dots + w_n X_n + b = \sum_{j=1}^n w_j X_j + b.$$
 quadratic 
$$Y = b + w X + d X^2$$
 
$$Z = X^2$$
 
$$Y = b + w X + d Z.$$
 exponential 
$$Y = e^{b + w X}$$
 
$$Z = \log Y.$$
 
$$Z = b + w X.$$

$$Y = b + wX + dX^2 \qquad Z = X^2$$

$$Y = b + wX + dZ.$$

$$Z = e^{b+wX}$$
  $Z = \log Y$ 

$$Z = \hat{b} + wX$$
.









# Least squares (simple) linear regression

residuals 
$$e_i = y_i - f(x_i) = y_i - wx_i - b, \quad i \in \mathcal{M}.$$

least squares regression: minimize the sum of squared residuals

SSE = 
$$\sum_{i=1}^{m} e_i^2 = \sum_{i=1}^{m} [y_i - f(x_i)]^2 = \sum_{i=1}^{m} [y_i - wx_i - b]^2$$

#### 7

#### Least squares (simple) linear regression

east squares (simple) linear regression

$$\frac{\partial \operatorname{SSE}}{\partial b} = -2 \sum_{i=1}^{m} [y_i - wx_i - b] = 0,$$

$$\frac{\partial \operatorname{SSE}}{\partial w} = -2 \sum_{i=1}^{m} x_i [y_i - wx_i - b] = 0.$$
• normal equation (linear system depending from the coefficient  $\begin{pmatrix} m & \sum_{i=1}^{m} x_i \\ \sum_{i=1}^{m} x_i & \sum_{i=1}^{m} x_i \\ x_i & \sum_{i=1}^{m} x_i & \sum_{i=1}^{m} x_i \end{pmatrix} \begin{pmatrix} b \\ w \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{m} x_i \\ \sum_{i=1}^{m} x_i & \sum_{i=1}^{m} x_i \\ x_i & \sum_{i=1}^{m} x_i & \sum_{i=1}^{m} x_i \end{pmatrix}$ 

normal equation (linear system depending from the coefficients)

$$\begin{pmatrix} m & \sum_{i=1}^{m} x_i \\ \sum_{i=1}^{m} x_i & \sum_{i=1}^{m} x_i^2 \end{pmatrix} \begin{pmatrix} b \\ w \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{m} y_i \\ \sum_{i=1}^{m} x_i y_i \end{pmatrix}$$

# Least squares (simple) linear regression

t squares (simple,  $\hat{w} = \sigma_{xx}$   $\hat{b} = \bar{\mu}_y - \hat{w}\bar{\mu}_x,$   $\bar{\mu}_x = \frac{\sum_{i=1}^m x_i}{m}, \qquad \bar{\mu}_y = \frac{\sum_{i=1}^m y_i}{m}.$   $\sigma_{xy} = \sum_{i=1}^m (x_i - \bar{\mu}_x)(y_i - \bar{\mu}_y).$   $-\sum_{i=1}^m (x_i - \bar{\mu}_x)^2,$ 

$$\bar{\mu}_x = \frac{\sum_{i=1}^m x_i}{m}, \qquad \bar{\mu}_y = \frac{\sum_{i=1}^m y_i}{m}$$

$$\sigma_{xy} = \sum_{i=1}^{m} (x_i - \bar{\mu}_x)(y_i - \bar{\mu}_y),$$
  
$$\sigma_{xx} = \sum_{i=1}^{m} (x_i - \bar{\mu}_x)^2,$$

$$\sigma_{yy} = \sum_{i=1}^{m} (y_i - \bar{\mu}_y)^2,$$

9

#### Least squares (simple) linear regression

• prediction 
$$\hat{Y} = \hat{f}(X) = \hat{b} + \hat{w}X = \bar{\mu}_{y} + \frac{\sigma_{xy}}{\sigma_{xx}}(X - \bar{\mu}_{x}).$$
• alternatively imposing a cross at the origin 
$$\hat{w} = \frac{\sum_{i=1}^{m} x_{i}y_{i}}{\sum_{i=1}^{m} x_{i}^{2}}.$$

$$\hat{b} = b = 0,$$
POLITECNICO MILAN

$$\hat{w} = \frac{\sum_{i=1}^{m} x_i y_i}{\sum_{i=1}^{m} x_i^2},$$

$$\hat{b} = b = 0,$$

$$\hat{b} = b = 0,$$

# Least squares (multiple) linear regression

$$Y = w_1 X_1 + w_2 X_2 + \dots + w_n X_n + b + \varepsilon.$$

east squares (multiple) linear regression 
$$Y = w_1 X_1 + w_2 X_2 + \dots + w_n X_n + b + \varepsilon.$$
 
$$\mathbf{e} = (e_1, e_2, \dots, e_m)$$
 
$$\mathbf{w} = (b, \mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n)$$
 extend matrix X by a vector with all components = 1 
$$\mathbf{y} = \mathbf{X} \mathbf{w} + \mathbf{e}.$$

$$y = Xw + e$$

Machine Learning © Carlo Vercelli

11

#### **Least squares linear regression**

SSE = 
$$\sum_{i=1}^{m} e_i^2 = \|\mathbf{e}\|^2 = \sum_{i=1}^{m} (y_i - \mathbf{w}' \mathbf{x}_i)^2$$
$$= (\mathbf{y} - \mathbf{X}\mathbf{w})'(\mathbf{y} - \mathbf{X}\mathbf{w}).$$

null partial derivatives

actives 
$$\frac{\partial SSE}{\partial \mathbf{w}} = -2\mathbf{X}'\mathbf{y} + 2\mathbf{X}'\mathbf{X}\mathbf{w} = \mathbf{0}.$$

$$\mathbf{X}'\mathbf{X}\mathbf{w} = \mathbf{X}'\mathbf{y}.$$

$$\hat{\mathbf{w}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$

normal equation

$$\mathbf{X}'\mathbf{X}\mathbf{w} = \mathbf{X}'\mathbf{y},$$

minimum point

$$\hat{\mathbf{w}} = (\hat{\mathbf{X}'}\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

# **Least squares linear regression**

values predicted

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = (\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\mathbf{y} = \mathbf{H}\mathbf{y}.$$

$$\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$

residuals

$$\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}} = (\mathbf{I} - \mathbf{H})\mathbf{y}.$$

Machine Learning © Carlo Vercel

13

#### **Assumptions on the residuals**

random variable  $\epsilon$  should follow a normal distribution of mean 0 and constant variance  $E(\epsilon_i|\mathbf{x}_i)=0,$   $\mathrm{Var}(\epsilon_i|\mathbf{x}_i)=\sigma^2$  residuals  $\epsilon_i$  e  $\epsilon_k$  should be independent

$$E(\varepsilon_i|\mathbf{x}_i)=0.$$

$$\mathrm{E}(arepsilon_i|\mathbf{x}_i)=0,$$
  $\mathrm{Var}(arepsilon_i|\mathbf{x}_i)=\sigma^2$  be independent

estimate of σ

$$\bar{\sigma}^2 = \frac{\text{SSE}}{m-n-1} = \frac{\sum_{i=1}^m (y_i - \mathbf{w}' \mathbf{x}_i)^2}{m-n-1} = \frac{\mathbf{y}'(\mathbf{I} - \mathbf{H})\mathbf{y}}{m-n-1}.$$

ullet if standard deviation  $\sigma$  is constant we have homoscedasticity, otherwise heteroscedasticity

| Company             | TV spending (MS) | Milcont (Mil. weekly contacts) |
|---------------------|------------------|--------------------------------|
|                     |                  |                                |
| MILLERLITE          | 50.1             | 32.1                           |
| PEPSI               | 74.1             | 32.5                           |
| STROH'S             | 19.3             | 11.7                           |
| FEDERALEXPRESS      | 22.9             | 21.9                           |
| BURGER.KING         | 82.4             | 52.4                           |
| COCA-COLA           | 40.1             | 47.2                           |
| MC.DONALD'S         | 185.9            | 41.4                           |
| MCI                 | 26.9             | 43.2                           |
| DIET.COLA           | 20.4             | 21.4                           |
| FORD                | 166.2            | 37.3                           |
| LEVI'S              | 123              | 87.4                           |
| BUDLITE             | 45.6             | 20.8                           |
| ATT.BELL            | 154.9            | 97.9                           |
| CALVIN.KLEIN        | 5                | 12                             |
| WENDY'S             | 49.7             | 29.2                           |
| POLAROID            | 26.9             | 38                             |
| SHASTA              | 5.7              | 10                             |
| MEOW.MIX            | 7.6              | 12.3                           |
| OSCAR.MEYER         | 9.2              | 23.4                           |
| CREST               | 32.4             | 43.6                           |
| KIBBLES.N.BITS      | 6.1              | 26.4                           |
| 1500 CONTROL 100 CO |                  |                                |





#### **Ridge regression**

- ullet the estimation of matrix  $(\mathbf{X}'\mathbf{X})^{-1}$  can be critical (insufficient number of observations, multi-collinearity): ill-posed problem
- limit the width of the hypothesis space F (regularization theory)

imit the width of the hypothesis space F (regularization theory) 
$$\min_{\mathbf{w}} RR(\mathbf{w},\mathcal{D}) = \min_{\mathbf{w}} \lambda \|\mathbf{w}\|^2 + \sum_{i=1}^m (y_i - \mathbf{w}'\mathbf{x}_i)^2 \\ = \min_{\mathbf{w}} \lambda \|\mathbf{w}\|^2 + (\mathbf{y} - \mathbf{X}\mathbf{w})'(\mathbf{y} - \mathbf{X}\mathbf{w}).$$

#### **Lasso regression**

• instead of 
$$L_2$$
 norm, use  $L_1$  norm 
$$\min_{\mathbf{w}} LR(\mathbf{w},\mathcal{D}) = \min_{\mathbf{w}} \lambda \, |\mathbf{w}| \ + \sum_{i=1}^m (y_i - \mathbf{w}'\mathbf{x}_i)^2$$
 
$$= \min_{\mathbf{w}} \lambda \, |\mathbf{w}| \ + (\mathbf{y} - \mathbf{X}\mathbf{w})'(\mathbf{y} - \mathbf{X}\mathbf{w}).$$

19

#### **Generalized linear models**

• Functions  $g_h$  represent any set of bases, such as polynomials, kernels and other

groups of nonlinear functions 
$$Y = \sum_h w_h g_h(X_1, X_2, \dots, X_n) + b + \varepsilon$$

Coefficients w<sub>h</sub> and b can be determined through the minimization of the sum of squared errors. Function \$SE in this formulation is more complex than for linear regression, solution of the minimization problem more difficult IDA CELLUS





















# Significance of the coefficients

- regression coefficients  $\hat{\mathbf{w}}$  represent an estimate of  $\mathbf{w}$
- covariance matrix of the estimator

$$\mathbf{V} = \operatorname{cov}(\hat{\mathbf{w}}) = \bar{\sigma}^2 (\mathbf{X}'\mathbf{X})^{-1}$$

• confidence intervals

$$w_j \pm t_{\alpha/2} \sqrt{v_{jj}}$$

for simple regression

$$w \pm t_{\alpha/2} \frac{\bar{\sigma}}{\sqrt{\sum_{i=1}^{m} (x_i - \bar{\mu}_x)^2}},$$

$$b \pm t_{\alpha/2} \frac{\bar{\sigma}}{\sqrt{n}} \sqrt{1 + \frac{n\bar{\mu}_x}{\sum_{i=1}^{m} (x_i - \bar{\mu}_x)^2}}.$$

Machine Learning © Carlo Vercelli

**POLITECNICO MILANO 1863** 

31



# **Analysis of variance**

- off: n degrees of freedom  $RSS_{reg} = \sum_{i=1}^{m} (\hat{y}_i \bar{\mu}_y)^2 = 933.18.$
- df: m-n-1 degrees of freedom
- df: m-1 degrees of freedom
- sum of sq:

RSS<sub>tot</sub> = 
$$\sum_{i=1}^{m} (y_i - \bar{\mu}_y)^2 = 1011.20$$
.

| predictor | df | sum of sq. | mean sq. | F-value | $\Pr > F$ |
|-----------|----|------------|----------|---------|-----------|
| volume    | 1  | 933.18     | 933.18   | 143.53  | < 0.0001  |
| residuals | 12 | 78.02      | 6.50     |         |           |
| total     | 13 | 1011.20    | 77.79    |         |           |

(J)

33

#### **Analysis of variance**

- the aim of regression models is to explain through predictive variables most part of variance
  - If this goal is achieved, one expects sample variance of residuals significantly smaller than sample variance of response variable
  - if the residuals have normal distribution, the following ratio follows an Edistribution with n e m-n-1 degrees of freedom

$$F = \frac{\text{RSS}_{\text{reg}}/n}{\text{SSE}/(m-n-1)}$$



#### **Linear correlation coefficient**

$$r = \text{corr}(\mathbf{y}, \mathbf{x}_i) = \frac{\sigma_{xy}}{\sqrt{\sigma_{xx}\sigma_{yy}}}$$

$$= \frac{\sum_{i=1}^m (x_i - \bar{\mu}_x)(y_i - \bar{\mu}_y)}{\sqrt{\sum_{i=1}^m (x_i - \bar{\mu}_x)^2 \sum_{i=1}^m (y_i - \bar{\mu}_y)^2}}.$$
O, then X and Y are concordant.
O, then X and Y are discordant.
If it is close to 0, there is non linear relationship between X e Y.

- if r > 0, then X and Y are concordant.
- if r < 0, then X and Y are discordant.</p>
- finally if r is close to 0, there is non linear relationship between X e Y.

Machine Learning © Carlo Vercellis

37





٠,



# **Confidence and prediction limits**

- prediction associated to a new observation  $\hat{y} = \hat{w}x$
- its variance is

$$Var(\hat{y}) = \mathbf{x}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}\bar{\sigma}^2.$$

• for simple regression the confidence limit for E[Y] is

$$\hat{y} \pm t_{\alpha/2}\bar{\sigma}\sqrt{\frac{1}{m} + \frac{x - \bar{\mu}_x}{\sum_{i=1}^{m}(x_i - \bar{\mu}_x)^2}},$$

whereas the prediction interval for Y is

ssion the confidence limit for E[Y] is 
$$\hat{y} \pm t_{\alpha/2}\bar{\sigma}\sqrt{\frac{1}{m} + \frac{x - \bar{\mu}_X}{\sum_{i=1}^m (x_i - \bar{\mu}_X)^2}},$$
 diction interval for Y is 
$$\hat{y} \pm t_{\alpha/2}\bar{\sigma}\sqrt{1 + \frac{1}{m} + \frac{x - \bar{\mu}_X}{\sum_{i=1}^m (x_i - \bar{\mu}_X)^2}}.$$

Machine Learning © Carlo Vercellis

**POLITECNICO MILANO 1863** 

41

#### **Example: mtcars**

| independent variable                              | dependent variable | model |
|---------------------------------------------------|--------------------|-------|
| cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb | mpg                | A     |
| (backward) wt, gsec, am                           | mpg                | B     |
| hp, wt, (hp/wt)                                   | mpg                | C     |
| log(hp), log(wt)                                  | log(mpg)           | D     |

| model | res. std error | mult. R-sq. | adj. R-sq | F-statistic | p-value  |
|-------|----------------|-------------|-----------|-------------|----------|
| A     | 2.6500         | 0.8690      | 0.8066    | 13.93       | < 0.0001 |
| В     | 2.4590         | 0.8497      | 0.8336    | 52.75       | < 0.0001 |
| C     | 2.1530         | 0.8848      | 0.8724    | 71.66       | < 0.0001 |
| D     | 1.1112         | 0.8829      | 0.8748    | 109.30      | < 0.0001 |

- mpg : miles per (US) gallon; qsec : 1/4 mile time;
- cyl: number of cylinders;
   vs: engine shape (V/S);
- disp: displacement (cu. in.);
   am: type of transmission (0 = automatic, 1 = manual);
- hp: gross horsepower;
- gear: number of forward gears;
- drat : rear axle ratio;
- · carb: number of carburetors.
- wt : weight (lb/1000);



| predictor   |      | value      | std. error | t-value  | Pr >  t  |          |
|-------------|------|------------|------------|----------|----------|----------|
| (intercept) | 12.  | 30337      | 18.71788   | 0.657    | 0.5181   |          |
|             | -0.  | 11144      | 1.04502    | -0.107   | 0.9161   |          |
| Cyl<br>disp | 0.0  | 01334      | 0.01786    | 0.747    | 0.4635   |          |
| hp          | -0.0 | 02148      | 0.02177    | -0.987   | 0.3350   |          |
| drat        | 0.3  | 78711      | 1.63537    | 0.481    | 0.6353   |          |
| wt          | -3.3 | 71530      | 1.89441    | -1.961   | 0.0633   |          |
| qsec        | 0.   | 82104      | 0.73084    | 1.123    | 0.2739   |          |
| VS          | 0.   | 31776      | 2.10451    | 0.151    | 0.8814   |          |
| am          |      | 52023      | 2.05665    | 1.225    | 0.2340   |          |
| gear        | 0.0  | 65541      | 1.49326    | 0.439    | 0.6652   |          |
| carb        | -0.  | 19942      | 0.82875    | -0.241   | 0.8122   |          |
| predictor   | df   | sum of sq. | mean sq.   | F-value  | Pr >F    |          |
| cyl         | 1    | 817.71     | 817.71     | 116.4245 | < 0.0001 |          |
| disp        | ì    | 37.59      | 37.59      | 5.3526   | 0.030911 |          |
| hp          | i    | 9.37       | 9.37       | 1.3342   | 0.261031 |          |
| drat        | 1    | 16.47      | 16.47      | 2.3446   | 0.140644 |          |
| wt          | 1    | 77.48      | 77.48      | 11.0309  | 0:003244 |          |
| qsec        | 1    | 3.95       | 3.95       | 0.5623   | 0.461656 |          |
| VS-         | 1    | 0.13       | 0.13       | 0.0185   | 0.893173 |          |
| am          | 1    | 14,47      | 14.47      | 2.0608   | 0.165858 |          |
| gear        | 1    | 0.97       | 0.97       | 0.1384   | 0.713653 | _        |
| carb        | 1    | 0.41       | 0.41       | 0.0579   | 0.812179 | <b>/</b> |
| residuals   | 21   | 147.49     | 7.02       |          |          | V/       |
| total       | 31   | 1126.04    | 985.57     |          |          | ~//      |





