§1. Analytické vyjádření kružnice a kruhu

Def: Kružnice: $k(S, r = \{X \in \rho; |SX| = r\}$ Kruh: $k(S, r = \{X \in \rho; |SX| \le r\}$

V.1.1.: Útvary uvedené v levém sloupc mají analitická vyjádření v pravém sloupci:

otvary dvedene v ievem sloupe maji anamieka vyjadrem v pravem sloup			cm slouper.
	kružnice se středem $S[m,n]$ a poloměrem $r>0$	$ SX ^2 = r^2$	$(x-m)^2 + (y-n)^2 = r^2$
	vnitřní oblast kružnice $k(S,r)$	$ SX ^2 < r^2$	$(x-m)^2 + (y-n)^2 < r^2$
	kruh $K(S,r)$	$ SX ^2 \le r^2$	$(x-m)^2 + (y-n)^2 \le r^2$
	vnější oblast kružnice $k(S, r)$	$ SX ^2 > r^2$	$(x-m)^2 + (y-n)^2 < r^2$

Př: 205/2: Napište analitické vyjádření kruhu k(S,r), je li dáno S[2;-5] a r=3:

$$(x-2)^2 + (y+5)^2 \ge 9$$

Zakreslete kružnici, která má rovnici $(x+3)^2 + (y+2)^2 = 8$.

$$k(S[-3;-2];r=2\sqrt{2})$$

Př: 205/2:

- $(x+2)^2 + (y+1)^2 = 4^2$
- $(x-5)^2 + (y+3)^2 \le 6^2$
- $(x-2)^2 + (y+4)^2 < 5$
- $(x-5)^2 + (y-1)^2 > (1+\sqrt{2})^2 = 1 + 2\sqrt{2} + 2 = 3 + 2\sqrt{2}$

Př: 206/3:

- \bullet Kružnice a její vnější oblast: Střed [4; -2], poloměr 1.
- Kružnice: Střed [-2; -5], poloměr 5.
- Vnější oblast: Střed $[-3; \sqrt{3}]$, poloměr $\sqrt{13}$.
- Vnitřní oblast: Střed [-3; -2], poloměr 4.
- Kruh: Střed $[-1; \sqrt{2}]$, poloměr $2\sqrt{2}$.
- Kružnice: Střed $[2; -\sqrt{12}]$, poloměr $2\sqrt{5}$.