

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE

Wydział Informatyki

Bazy danych

Temat: System ewidencji w prywatnej przychodni medycznej

Nr grupy: 21A

Nazwisko i imię:

Piłatowski Łukasz Iwaniec Mateusz

1. Cel projektu:

Celem projektu jest opracowanie modelu danych sytemu dla Systemu ewidencji w prywatnej przychodni medycznej

2. Zakres funkcjonalny projektowanego systemu

- 2.1. System swoim zakresem obejmuje:
 - 2.1.1. Przechowywanie danych o pacjentach
 - 2.1.2. Przechowywanie danych o lekarzach
 - 2.1.3. Przechowywanie danych o wizytach
 - 2.1.4. Przechowywanie danych o godzinach przyjęć
 - 2.1.5. Przechowywanie danych o stawkach lekarzy
 - 2.1.6. Przypisywanie wizyt do konkretnego pacjenta i lekarzach
 - 2.1.7. Przypisywanie pacjentów do konkretnego lekarza medycyny rodzinnej
- 2.2.Kategorie potencjalnych użytkowników systemu i ich wymagania funkcjonalne
 - Lekarz:
 - o przegladanie informacji o pacjentach
 - o edycja/dodawanie/usuwanie informacji o pacjentach
 - o przeglądanie informacji o wizytach
 - o edytowanie/dodawanie informacji o wizytach
 - Pacient:
 - o możliwość przeglądania informacji o swoich wizytach
 - możliwość przeglądania podstawowych informacji o dostępnych lekarzach
 - o możliwość umówienia i anulowania wizyty

3. Projekt koncepcyjny bazy danych

- 3.1. Wykaz informacji, które należy przechowywać w bazie danych (lista potencjalnych atrybutów)
 - 3.1.1. Lekarz
 - PESEL
 - Imię i nazwisko
 - Specjalizacja
 - Stopień/tytuł naukowy
 - Czy pracuje na pełen etat
 - Data rozpoczęcia pracy
 - Telefon

- Stawka
 - Lekarz
 - Data aktywacji
 - Czy aktywna
 - Netto
 - Czy podatnik VAT
- Specjalizacja
 - Nazwa

3.1.2. Pacient

- PESEL
- Imię i nazwisko
- Adres
- Telefon
- Lekarz POZ
- Choroby przewlekłe, ciężkie choroby przebyte, zabiegi chirurgiczne etc.
- Leki przyjmowane na stałe

3.1.3. Wizyta

- Lekarz
- Pacjent
- Data
- Godzina
- Numerek (opcjonalnie)
- Symptomy (opcjonalnie)
- Diagnoza (opcjonalnie)
- Opis (opcjonalnie)
- Czy odwołana

3.1.4. Godziny przyjęć

- Lekarz
- Dzień tygodnia
- Godzina rozpoczęcia
- Godzina zakończenia

3.2. Model semantyczny danych - ERD

- 3.2.1. Lista obiektów rzeczywistych i abstrakcyjnych (encje) odwzorowanych w bazie (w wyniku analizy p. 3.1)
 - Lekarz (wynika z p. 3.1.1)
 - Stawka (wynika z p. 3.1.1)
 - Specjalizacja (wynika z p. 3.1.1)

- Pacjent (wynika z p. 3.1.2)
- Wizyta (wynika z p. 3.1.3)
- Godziny przyjęć (wynika z p. 3.1.4)
- 3.2.2. Relacje związki zachodzące pomiędzy obiektami (opisane w języku naturalnym) złożoność relacji w notacji (1;M;N)
 - Jeden lekarz może mieć jedną specjalizację
 - <u>Lekarz Specjalizacja (1:1)</u>
 - Jeden lekarz może mieć wielu pacjentów
 - <u>Lekarz Pacjent (1:N)</u>
 - Jeden lekarz może mieć wiele godzin przyjęć.
 - <u>Lekarz Godziny przyjęć (1:N)</u>
 - Jeden lekarz może mieć wiele wizyt
 - Lekarz Wizyta (1:N)
 - Jeden pacjent może mieć wiele wizyt
 - Pacjent Wizyta (1:N)
 - Jeden lekarz może mieć wiele stawek
 - <u>Lekarz Stawka (1:N)</u>
- 3.2.3. Lista atrybutów do poszczególnych encji (na podstawie p.3.1, p.3.2.1 i p.3.2.2) z określeniem typu danych (tekst/liczba/data/czas) i typu atrybutu (klucz główny PK czy atrybut lokalny LA oraz atrybut własny OA czy klucz obcy FK)

Doctor:		
Nazwa atrybutu	Typ danych	Typ atrybutu
PESEL	bigint	PK/OA
name	text	LA/OA
spec	int	LA/FK
degree	text	LA/OA
fulltime	bit	LA/OA
started_working_date	date	LA/OA
phone	text	LA/OA

Patient		
Nazwa atrybutu	Typ danych	Typ atrybutu
PESEL	bigint	PK/OA
name	text	LA/OA
address	text	LA/OA
phone	text	LA/OA
family_doc	bigint	LA/FK
major_diseases	text	LA/OA
const_medications	text	LA/OA

Visit		
Nazwa atrybutu	Typ danych	Typ atrybutu
id	int	PK/OA
doctor	bigint	LA/FK
patient	bigint	LA/FK
date	date	LA/OA
time	time	LA/OA
nr	int	LA/OA
symptoms	text	LA/OA
diagnosis	text	LA/OA
description	text	LA/OA
canceled	bit	LA/OA

Salary			
Nazwa atrybutu	Typ danych	Typ atrybutu	
Id	int	PK/OA	
doctor	bigint	LA/FK	
start_date	date	LA/OA	
active	bit	LA/OA	
netto	float	LA/OA	
vat_payer	bit	LA/OA	

Office hours			
Nazwa atrybutu	Typ danych	Typ atrybutu	
doctor	bigint	PK/FK	
day_num	int	LA/OA	
start_hour	time	LA/OA	
end_hour	time	LA/OA	

Specialization		
Nazwa atrybutu	Typ danych	Typ atrybutu
id	int	PK/OA
name	text	LA/OA

3.2.4. Diagram ERD

3.3. Model semantyczny danych - SERM

Uwaga!

Dla każdej relacji zdefiniowanej w p.3.2.2 należy określić:

- 1. kierunek dziedziczenia (określenie obiektu rodzica i dziecka)
- 2. czy ma być wymuszenie wystąpienia relacji (rozpatrujemy z poziomu obiektu-rodzica)

3.3.1. Analiza złożoności relacji w notacji (min;max)

- Lekarz Specjalizacja (1:1)
 - Specjalizacja może istnieć bez lekarza i lekarz może istnieć bez specjalizacji.
 - Specjalizacja (obiekt-rodzic) -> Lekarz (obiekt-dziecko)
 - Czy specjalizacja może czy musi mieć lekarza, żeby być zarejestrowana w naszym systemie?
 Specjalizacja nie musi mieć powiązanego lekarza.
- Lekarz Pacjent (1:N)
 - Czy lekarz zależy od pacjenta czy na odwrót?
 Do wprowadzenia do bazy lekarza nie potrzebujemy pacjenta, ale dla zarejestrowania pacjenta potrzebujemy informacji o lekarzu. Zatem pacjent zależy od lekarza.
 Lekarz (obiekt-rodzic) -> pacjent (obiekt-dziecko)
 - Czy lekarz może czy musi mieć pacjenta, żeby być
 zarejestrowanym w naszym systemie?
 Jeżeli przyjmujemy, że w naszym systemie nie ma możliwości
 zarejestrowania nowego pacjenta bez wpisania jego lekarza to
 wymuszamy wystąpienie relacji poprzez oznaczenie 1 na
 pozycji min.

<u>Lekarz – Pacjent (1;N)</u>

- Lekarz Godziny przyjęć (1:N)
 - Czy lekarz zależy od godzin przyjęć czy na odwrót?
 Do wprowadzenia do bazy lekarza nie potrzebujemy godzin przyjęć, ale dla zarejestrowania godzin potrzebujemy informacji o lekarzu. Zatem godziny przyjęć zależą od lekarza.
 Lekarz (obiekt-rodzic) -> godziny przyjęć (obiekt-dziecko)
 - Czy lekarz może czy musi mieć ustawione godziny przyjęć, żeby być zarejestrowanym w naszym systemie?
 Jeżeli przyjmujemy, że w naszym systemie nie ma możliwości zarejestrowania nowego lekarza bez rejestracji jego godzin przyjęć (np. w przychodni) to wymuszamy wystąpienie relacji poprzez oznaczenie 1 na pozycji min.
 Lekarz – Godziny przyjęć (1;N)

- Lekarz Wizyta (1:N)
 - Czy lekarz zależy od wizyty czy na odwrót?
 Do wprowadzenia do bazy lekarza nie potrzebujemy wizyty, ale dla zarejestrowania wizyty potrzebujemy informacji o lekarzu. Zatem wizyta zależy od lekarza.
 - Lekarz (obiekt-rodzic) -> wizyta (obiekt-dziecko)
 - Czy lekarz może czy musi mieć wizytę, żeby być zarejestrowanym w naszym systemie?
 Lekarz nie musi mieć wizyty do rejestracji w systemie.
- Pacjent Wizyta (1:N)
 - Czy pacjent zależy od wizyty czy na odwrót?
 Do wprowadzenia do pacjenta nie potrzebujemy wizyty, ale dla zarejestrowania wizyty potrzebujemy informacji o pacjencie.
 Zatem wizyta zależy od pacjenta.
 Pacjent (obiekt-rodzic) -> Wizyta (obiekt-dziecko)
 - Czy lekarz może czy musi mieć grafik przyjęć, żeby być zarejestrowanym w naszym systemie?
 Pacjent nie musi mieć wizyty do rejestracji w systemie
- Lekarz Stawka (1:N)
 - Czy lekarz zależy od stawki czy na odwrót?
 Do wprowadzenia do bazy lekarza nie potrzebujemy stawki, ale dla zarejestrowania stawki potrzebujemy informacji o lekarzu.
 Zatem stawka zależy od lekarza.
 Lekarz (obiekt-rodzic) -> Stawka (obiekt-dziecko)
 - Czy lekarz może czy musi mieć wpisaną stawkę, żeby być zarejestrowanym w naszym systemie?
 Jeżeli przyjmujemy, że w naszym systemie nie ma możliwości zarejestrowania nowego lekarza bez rejestracji jego stawki to wymuszamy wystąpienie relacji poprzez oznaczenie 1 na pozycji min.

<u>Lekarz – Stawka (1;N)</u>

- 3.3.2. Analiza rodzaju relacji relacja identyfikująca PK czy określająca FK (rozpatrujemy z poziomu obiektu-dziecka)
 - Specjalizacja (Rodzic) -> Lekarz (dziecko)
 - ∘ relacja określająca FK.
 - Lekarz (Rodzic) -> Pacjent (dziecko)
 - ∘ relacja określająca FK.

- Lekarz (Rodzic) -> Godziny Otwarcia (dziecko)
 - o relacja identyfikująca PK
- Lekarz (Rodzic) -> Wizyta (dziecko)
 - o relacja określająca FK.
- Pacjent (Rodzic) -> Wizyta (dziecko)
 - ∘ relacja określająca FK.
- Lekarz (Rodzic) -> Pensja (dziecko)
 - o relacja określająca FK.
- 3.3.3. Lista obiektów na pierwszym stopniu hierarchii dziedziczenia obiekty typu E
 - specialization Tabela zawierająca informację o specjalizacji, będąca rodzicem dla klasy doctor

3.3.4. Diagram SERM

Taki sam jak w punkcie 3.2.4