TOPOLOGÍA. UAM, 25 de octubre de 2019

Apellidos, Nombre:	
Grupo:	

- 1. Calcula el interior, el cierre, el conjunto de puntos de acumulación y la frontera de $A\subset X$ en los siguientes casos:
 - a) $A = \{1/n : n \in \mathbb{N}\} \cup (2,3] \cup \{4\}, X = \mathbb{R}$ con la topología usual.
 - b) $A = \{(x,y) \in X : 1/2 < y < 3/4\}, X = [0,1] \times [0,1]$ con la topología del orden lexicográfico.
- 2. Contesta razonadamente a las siguientes cuestiones.
 - a) Definir con precisión qué es un espacio topológico de Hausdorff.
 - b) Sea $f:X\longrightarrow Y$ una aplicación inyectiva y continua del espacio topológico X en el espacio topológico de Hausdorff Y. Demostrar que, entonces, X es también de Hausdorff.

 \rightsquigarrow dorso

- 3. Sea (X, \mathcal{T}) un espacio topológico, $Y \subset X$ un subconjunto no vacío
 - a) Si \mathcal{T}_Y es la topología inducida en Y por la topología \mathcal{T} de X, describe cómo son los abiertos de \mathcal{T}_Y en relación con la topología \mathcal{T} de X.
 - b) Como un subconjunto A de Y es también subconjunto de X, tiene sentido estudiar quién es su clausura cl(A) como subconjunto del espacio topológico (X, \mathcal{T}) o su clausura $cl_Y(A)$ como subconjunto del espacio topológico (Y, \mathcal{T}_Y) . Demuestra que

$$\operatorname{cl}_Y(A) = \operatorname{cl}(A) \cap Y.$$

c) En las mismas condiciones del apartado anterior, tiene sentido calcular Int(A), el interior de A visto como subconjunto del espacio topológico (X, \mathcal{T}) , o calcular $Int_Y(A)$, el interior de A visto como subconjunto del espacio topológico (Y, \mathcal{T}_Y) . Demuestra que

$$\operatorname{Int}_Y(A) \supset \operatorname{Int}(A) \cap Y$$
.

4. Sean $f: X \to Y$, $g: Z \to W$ aplicaciones continuas entre espacios topológicos. Demuestra que la aplicación $h: X \times Z \to Y \times W$ dada por h(x,z) = (f(x),g(z)) es una aplicación continua (considerando en ambos productos cartesianos las correspondientes topologías producto).

TIEMPO: 2 horas.