Computer Graphics (COMP0027) 2023/24

Introduction

Tobias Ritschel

UCL

Organization

Organizational

- Moodle
 - We will put slides as PDF
- Lecturecast
 - We are recording
- Assessment
 - Coursework (3 CWs)
 - Admins have not yet decided the dates, sorry

Timetable

- Lecture
 - Monday, two hours
 - Thursday, one hour
 - Proposal: Start sharp / Finish early
- Lab times
 - Details to be provided
 - I will take questions
 - TA will support you in doing the coursework

Team

- Tobias Ritschel *most lectures*
- Teaching assistants
 - Michael Fischer
 - Siddhant Prakash
 - Chen Liu

Coursework

- All done using our online system
 - No compiler and funny SDKs to setup
 - Ready-to-code sandbox from second one
 - Unique thing, developed for UCL by me & TAs
- uclcg.github.io/uclcg/
- GLSL, like a little C or Java snippet, but ran for every pixel

Me

- Graduated with a PhD from Max Planck in Germany in 2009
- Lecturer at UCL since 2015
- Full Professor of Computer Graphic since 2019
- See materials at http://www.homepages.ucl.ac.uk/~ucactri/ to learn more about work of my group and me

My style

- I show pictures and discuss
 - Occasional pseudocode
 - Some math, but really only 5-10 equations
 - Much more about concepts, "Computational Models"
- Slides might not have all information to get it
- I ask questions and I like to be asked

Course Overview

Content

- Introduction
- Linear Algebra
- Light & Sensors
- Projection
- Ray-tracing
- Bounding volume hierarchies
- Shading
- Physically-based rendering
- Monte Carlo techniques
- Spline surfaces and patches

- Graphics hardware
- OpenGL
- 3D worlds
- Animation
- Meshes

How about you?

- Undergrad/postgrad/PhD students?
- Random questions
 - I will not check, just raise hands if you think you can answer:
 - LA: What is a rotation matrix?
 - CG: What is Phong?
 - GPU: Coded in GLSL?

Today's Outline

- 1. Anatomy of an illusion
 - 3D Scene model
 - Light transport
 - Human Perception
- 2. Major concepts of Graphics
- 3. Linear algebra reminder

3D Scene Model

- Geometric properties
 - Size, shape
 - Coordinate frame
- Appearance properties
 - Color, material, look & feel
 - Appearance models
- View (where is the observer)
- Illumination (where does light come from)

Appearance

View

Light spectrum

What is RGB?

Life and death of a photon

Lighting is a global problem

Surfaces are rarely mirrors

Specular surface

Surfaces are rarely mirrors

Diffuse surface

Surfaces are rarely mirrors

Glossy surface

Simplifying assumptions

- Wavelength independence
 - No
- Time invariance
 - No
- Light transport in a vacuum
 - No participating media
- Objects are isotropic (for now only)
 - Reflectances are constant over the surface

Physiology of the eye

- 6 million cones in the fovea
 - cones sense red, green or blue light
 - colour perception region is very small
- 120 million rods over the whole eye
 - peripheral vision motion sensitive

Response functions

Real-time graphics, assume:

- Ignore spectral distribution
- Take three discrete wavelengths basis functions
 - Red, green and blue
- Approximation
- Metamerism
 - Different spectrum
 - Same percept
 - Same RGB

Major concepts of Graphics

- Rendering = Convert scene definition into image
- Separation of concerns
 - Scene definition (independent of view)
 - View (independent of light or geometry)
 - Independence of rendering method

View

- A view position and a virtual window open up a view volume
- Will come up with some linear algebra to do this very soon
- Clipping is the process of reducing the world definition to this part

Major concepts: Aliasing

Aliasing

Major concepts: Aliasing

Anti-aliasing

Major concepts: Projection

- Perspective projection
 - Size depends on distance (but how exactly?)

Major concepts: Projection

- Perspective projection
 - Size depends on distance (but how exactly?)

Major concepts: Occlusion

Occlusion: Visible surface determination

Major concepts: Lighting

- Lighting
 - What we discussed before somewhat easy, this really hard
 - Global illumination: All surfaces exchange light
 - Local illumination: Only a handful of light sources

Summary

- Brief look at general problem of simulating visual world
- Limits of human perception
- Parts of virtual world
 - Geometry
 - Material
 - Illumination
 - Viewer

In this course we will develop

- More formal 3D scene description
 - Needs some math
- Methods to process them
 - Needs some algorithms
- All this with computational efficiency in mind
 - Needs new tools (OpenGL) & machines (GPUs)