FLIP(00) Mid-term Presentation

Rongxin Xu Hunan University

26 October 2019

FLIP(00) Presentation ©FLIP(00)

Outline

Problem Statement

Exploratory Data Analysis

Exploratory Data Analysis

Stationarity

Conclusion

Problem Statement
Exploratory Data Analysis
Exploratory Data Analysis
Stationarity
Conclusion

Problem Description

Data Set

Exploratory Data Analysis

Exploratory Data Analysis

Stationarity

Conclusion

Problem Statement

FLIP(00) Presentation \bigcirc FLIP(00) - 3 / 21

Problem Description

Problem Statement

Problem Description

Data Set

Exploratory Data Analysis

Exploratory Data Analysis

Stationarity

Conclusion

This is a problem with time-series prediction. After a month of making scientific observations and taking careful measurements, can predict total sales for every product and store in the next month. The raw dataset contains train set with 2935849 samples and 214200 unlabeled samples as test set. Through the train data, predict total sales for every product and store in the next month.

FLIP(00) Presentation \bigcirc FLIP(00) - 4 / 21

Data Set

Problem Statement

Problem Description

Data Set

Exploratory Data Analysis

Exploratory Data Analysis

Stationarity

Conclusion

There are 6 data sets with a total of 11 attributes, the fllowings are the name and meaning of attributes.

Data List

id an Id that represents a (Shop, Item) tuple within the test set.

shop_id unique identifier of a shop.

item_id unique identifier of a product.

item_category_id unique identifier of item category.

item_cnt_day percentage of soul in the creature.

item_price current price of an item.

date in format dd/mm/yyyy.

date_block_num unique identifier of item category.

item_name name of item.

shop_name name of shop.

item_category_name name of item category.

FLIP(00) Presentation \bigcirc FLIP(00) - 5 / 21

Exploratory Data Analysis

Data Information

Detailed description Summary

Exploratory Data Analysis

Stationarity

Conclusion

Exploratory Data Analysis

FLIP(00) Presentation \bigcirc FLIP(00) - 6 / 21

Data Information

Problem Statement

Exploratory Data Analysis

Data Information

Detailed description
Summary

Exploratory Data Analysis

Stationarity

Conclusion

The following is the statistical result of each attribute in sales_train.csv. There are 6 numerical variables, and no missing values. The data is very clean and complete, So let's start visual analysis.

	date_block_num	shop_id	item_id	item_price	item_cnt_day	item_category_id
count	2935849	2935849	2935849	2935849	2935849	2935849
mean	14.57	33	10197.23	890.62	1.24	40
std	9.42	16.23	6324.3	1726.44	2.62	17.1
min	0	0	0	-1	-22	0
25%	7	22	4476	249	1	28
50%	14	31	9343	399	1	40
75%	23	47	15684	999	1	55
max	33	59	22169	307980	2169	83

FLIP(00) Presentation \bigcirc FLIP(00) - 7 / 21

Detailed description

Problem Statement

Exploratory Data Analysis

Data Information

Detailed description

Summary

Exploratory Data Analysis

Stationarity

Conclusion

									item_category_name	item_category_i
	date	date_block_num	shop_id	item_id	item_price	item_cnt_day	. 0	PC	- Гарнитуры/Наушники	
0	02.01.2013	0	59	22154	999.00	1.0				
1	03.01.2013	0	25	2552	899.00	1.0	1		Аксессуары - PS2	
2	05.01.2013	0	25	2552	899.00	-1.0	2		Аксессуары - PS3	
3	06.01.2013	0	25	2554	1709.05	1.0	3		Аксессуары - PS4	
							4		Arcoccuppu DCD	
4	15.01.2013	0	25	2555	1099.00	1.0	4		Аксессуары - PSP	
5	10.01.2013	0	25	2564	349.00	1.0	5		Аксессуары - PSVita	

(b) item_categories.csv

(c) test.csv

ID shop_id item_id

5037

5320

5233

5232

5268

5039

0 0

1 1

2 2

3 3

5 5

	item_name	item_id	item_category_id
0	! ВО ВЛАСТИ НАВАЖДЕНИЯ (ПЛАСТ.) D	0	40
1	!ABBYY FineReader 12 Professional Edition Full	1	76
2	***В ЛУЧАХ СЛАВЫ (UNV) D	2	40
3	***ГОЛУБАЯ ВОЛНА (Univ) D	3	40
4	***КОРОБКА (СТЕКЛО) D	4	40
5	***НОВЫЕ АМЕРИКАНСКИЕ ГРАФФИТИ (UNI)	5	40

(a) sales_train.csv

(d) items.csv

 shop_name
 shop_id

 0
 !Якутск Орджоникидзе, 56 фран
 0

 1
 !Якутск ТЦ "Центральный" фран
 1

 2
 Адыгея ТЦ "Мега"
 2

 3
 Балашиха ТРК "Октябрь-Киномир"
 3

 4
 Волжский ТЦ "Волга Молл"
 4

 5
 Вологда ТРЦ "Мармелад"
 5

(e) shops.csv

Figure 1: Data Description

FLIP(00) Presentation \bigcirc FLIP(00) - 8 / 21

Summary

Problem Statement

Exploratory Data Analysis

Data Information
Detailed description

Summary

Exploratory Data Analysis

Stationarity

Conclusion

- The data is very clean and complete, so we only need to change the data type after importing.
- We also need to reorganize the table structure to make it more readable. An sample is given below.

			date		item_price	item_cnt_day				
			min	max	mean	sum				
date_block_num	shop_id	item_id								
0	0	32	2013-01- 03	2013-01- 31	221.0	6.0				
		33	2013-01- 03	2013-01- 28	347.0	3.0				
		35	2013-01- 31	2013-01- 31	247.0	1.0				
		43	2013-01- 31	2013-01- 31	221.0	1.0				
		51	2013-01- 13	2013-01- 31	128.5	2.0				
		61	2013-01- 10	2013-01- 10	195.0	1.0				
		75	2013-01- 17	2013-01- 17	76.0	1.0				
		88	2013-01- 16	2013-01- 16	76.0	1.0				
						95	2013-01- 06	2013-01- 06	193.0	1.0

Figure 2: sample

FLIP(00) Presentation ©FLIP(00) - 9 / 21

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

Summary

Stationarity

Conclusion

Exploratory Data Analysis

FLIP(00) Presentation \bigcirc FLIP(00) - 10 / 21

Exploratory Data Analysis

Problem Statement

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

Summary

Stationarity

Conclusion

Figure 3: EDA

FLIP(00) Presentation ©FLIP(00) - 11 / 21

Summary

Problem Statement

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

Summary

Stationarity

Conclusion

■ There is an obvious "seasonality" (Eg: peak sales around a time of year) and a decreasing "Trend".

FLIP(00) Presentation \bigcirc FLIP(00) - 12 / 21

Exploratory Data Analysis

Exploratory Data Analysis

Stationarity

Seasonality and Trend
Stationarity Test

Remove seasonality and trends

Summary

Conclusion

Stationarity

FLIP(00) Presentation ©FLIP(00) - 13 / 21

Seasonality and Trend

Problem Statement

Exploratory Data Analysis

Exploratory Data Analysis

Stationarity

Seasonality and Trend

Stationarity Test

Remove seasonality and trends

Summary

Conclusion

Figure 4: Seasonality and Trend

Stationarity Test

Problem Statement

Exploratory Data Analysis

Exploratory Data Analysis

Stationarity

Seasonality and Trend

Stationarity Test

Remove seasonality and trends

Summary

Conclusion

Results of Dickey—Fuller Test:	
Test Statistic	-2.395704
p-value	0.142953
#Lags Used	0.000000
Number of Observations Used	33.000000
Critical Value (1%)	-3.646135
Critical Value (5%)	-2.954127
Critical Value (10%)	-2.615968
dtype: float64	

Figure 5: Stationarity Test

Remove seasonality and trends

Problem Statement

Exploratory Data Analysis

Exploratory Data Analysis

Stationarity

Seasonality and Trend

Stationarity Test

Remove seasonality and trends

Summary

Conclusion

Figure 6: Remove seasonality and trends

FLIP(00) Presentation ©*FLIP*(00) – 16 / 21

Summary

Problem Statement

Exploratory Data Analysis

Exploratory Data Analysis

Stationarity

Seasonality and Trend

Stationarity Test

Remove seasonality and trends

Summary

Conclusion

Now let's check the new P-value.

Results of Dickey-Fuller Test:	
Test Statistic	-3.270101
p-value	0.016269
#Lags Used	0.000000
Number of Observations Used	21.000000
Critical Value (1%)	-3.788386
Critical Value (5%)	-3.013098
Critical Value (10%)	-2.646397
dtype: float64	

Figure 7: new stationarity test

After the transformations, our p-value for the DF test is well within 0.05. Hence we can assume Stationarity of the series.

Exploratory Data Analysis

Exploratory Data Analysis

Stationarity

Conclusion

Summary

Future research

Conclusion

FLIP(00) Presentation ©*FLIP*(00) – 18 / 21

Summary

Problem Statement

Exploratory Data Analysis

Exploratory Data Analysis

Stationarity

Conclusion

Summary

Future research

- From the above result presentation, we can find that There are seasonality and trend in data.
- From the Stationarity test, we can find that
 After removing seasonality and trends, the time series becomes smooth.

So we can use traditional time series prediction methods for prediction.

FLIP(00) Presentation @FLIP(00) - 19 / 21

Future research

Problem Statement

Exploratory Data Analysis

Exploratory Data Analysis

Stationarity

Conclusion

Summary

Future research

- Predict by traditional time series prediction models such as AR, MA and ARMA.
- Using more models to predict, such as random forests and neural networks.
- Find the most effective model and get my own kaggle ranking.

FLIP(00) Presentation \bigcirc FLIP(00) - 20 / 21

Thank you & Question

FLIP(00) Presentation ©FLIP(00) - 21 / 21