Übungen zum Ferienkurs Analysis II

Differenzierbarkeit und Taylor-Entwicklung

1.1 Jacobi-Matrix

Man bestimme die Jacobi-Matrix der Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ $(x, y, z) \mapsto 3xy^2 + \exp(x^2z) + 4z^3$.

1.2 Differenzierbarkeit

Sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch $f(x,y) = \frac{x^2y}{x^2+y^2}$ für $(x,y) \neq 0$ und f(0,0) = 0.

- a) Zeigen Sie, dass f stetig ist und berechnen sie $\partial_1 f(0)$, $\partial_2 f(0)$.
- b) Berechnen Sie die Richungsableitung $\partial_v f(0)$ von f im Ursprung in Richtung des Vektors $v = (v_1, v_2) \in \mathbb{R}^{\not\vdash}$, wobei

$$\partial_v f(a) = \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t} \text{ für } a \in \mathbb{R}^{\not=}.$$

c) Zeigen Sie, dass f im Ursprung nicht total differenzierbar ist.

1.3 Differenzierbarkeit II

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) = \begin{cases} x \frac{x^2 - y^2}{x^2 + y^2} & \text{für } (x,y) \neq 0, \\ 0 & \text{für } (x,y) = 0 \end{cases}.$$

- a) Wie lauten die partiellen Ableitungen $\partial_x f(0,0)$ und $\partial_u f(0,0)$?
- b) Wie lautet die Richtungsableitung $\partial_v f(0,0)$ in Richtung $v \in \mathbb{R}^2 \setminus \{0\}$ im Ursprung?
- c) Ist f differenzierbar im Ursprung? Begründen Sie kurz.
- d) Zeigen Sie, dass f eine stetige Funktion ist.

1.4 Differenzieren

- a) Zeigen Sie dass die Abbildung $f: \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto y \cdot ||x||$ bei $0 \in \mathbb{R}^n$ differenzierbar ist und dass $\mathrm{Df}(0) = 0$ gilt.
- b) Zeigen Sie, dass für $a, b \in \mathbb{R}^n$ die Abbildung $f : \mathbb{R}^{n \times n} \to \mathbb{R}^n$, $X \mapsto X \cdot a + b$ an jeder Stelle X $in\mathbb{R}^{n \times n}$ differenzierbar ist und dass Df(X)=a gilt.

1.5 Differenzierbarkeit

Untersuchen Sie die Funktion $h: \mathbb{R}^2 \to \mathbb{R}$,

$$h(x) := \begin{cases} \frac{\sin(x_1)\sin(x_2)}{x_1^2 + x_2^2} & x \neq 0\\ 0 & \text{sonst} \end{cases}$$

Abgabe: 12.09.2016

im Punkt $0 \in \mathbb{R}^2$ auf Stetigkeit, partielle Differenzierbarkeit und Differenzierbarkeit.

1.6 Potenzreihen, Taylorreihen

Gegeben ist die Funktion

$$f(x) = \int_0^x \cos\left(2t^2\right) dt.$$

Geben Sie das Taylorpolynom 9. Grades von f im Entwicklungspunkt 0 an. Was ist der Konvergenzradius der Taylorreihe f im Entwicklungspunkt 0?

1.7 Taylor-Formel

Gegeben sei eine Funktion $g \in C^{\infty}(\mathbb{R}^2)$, die im Ursprung einen kritischen Punkt mit der Hessematrix $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ besitzt. Weiter gilt

$$g(0) = 2$$
, $\partial_1^3 g(0) = \partial_1^2 \partial_2(0) = 1$, $\partial_1 \partial_2^2 g(0) = \partial_1^3 g(0) = 0$.

- a) Wie lautet explizit die Taylorentwicklung bis zur dritten Ordnung von g im Entwicklungspunkt $0 \in \mathbb{R}^2$?
- b) Sei nun f(x,y) = (-y, x + y). Wie lautet die Taylorentwicklung bis zur zweiten Ordnung von $h = g \circ h$ im Entwicklungspunkt 0 explizit?

1.8 Taylor und Extrema

Sei $f \in C^3(\mathbb{R}^2, \mathbb{R})$ mit einem stationären Punkt bei $(0, \frac{\pi}{2})$ und $\partial_1^2 f(0, \frac{\pi}{2}) = 1$, $\partial_1 \partial_2 f(0, \frac{\pi}{2}) = \partial_2^2 f(0, \frac{\pi}{2}) = -1$

- a) Der Punkt $(0, \frac{\pi}{2})$ ist für f ein lokales Maximum, Sattelpunkt oder lokales Minimum?
- b) Sei nun $h(\varphi) = f(\varphi \cos \varphi, \varphi \sin \varphi)$. Wie lautet die Taylorentwicklung von h im Punkt $\varphi = \frac{\pi}{2}$ bis zur zweiten Ordnung?
- c) $\frac{\pi}{2}$ ist für h ein lokales Maximum, Sattelpunkt oder lokales Minimum.

1.9 Taylorpolynom

Berechnen Sie das zweite Taylorpolynom von $f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = \exp(x-y)$ an der Stelle (0,0).

1.10 Taylorreihe

Sei $D = \{(x,y) \in \mathbb{R}^2 \mid xy \leq 0\}$ und $f: D \to \mathbb{R}$ gegeben durch $f(x,y) = \cos x + y(y+2)$ und sei (x_0,y_0) einer der kritischen Punkte. Bestimmen Sie das Taylorpolynom zweiten Grades von fum den Entwicklungspunkt $(\pi,-1)$

1.11 Taylorpolynom

Bestimmen Sie das Taylorpolynom dritter Ordnung der Funktion

$$f:]-1, \infty[\to \mathbb{R}, \qquad f(x) := \frac{1}{1+x^3}$$

zum Entwicklungspunkt 0.

1.12 Existenz einer Funktion

Gibt es eine Funktion $f \in C^2(\mathbb{R}^2)$, sodass $\frac{\partial f}{\partial x}(x,y) = \sin(x,y) = \frac{\partial f}{\partial y}(x,y)$ für alle $(x,y) \in \mathbb{R}^2$ gilt?