MATH 601 (DUE 10/30)

HIDENORI SHINOHARA

Contents

1.	Factoring Polynomials with coefficients in Finite Fields	1
2.	Modules	2
3.	Galois Theory	3

1. Factoring Polynomials with coefficients in Finite Fields

Exercise. (Problem 1) Consider the Frobenius homomorphism, $F_p : \mathbb{F}_q \to \mathbb{F}_q$. Show that this homomorphism is bijective. If q = p, identify it with a familiar homomorphism.

Proof. Since \mathbb{F}_q is finite, it suffices to show that F_p is injective. $F_p(a) = 0 \implies a^p = 0$. $a^p = 0 \implies a = 0$ because \mathbb{F}_q contains no zero divisor. If q = p, $\mathbb{F}_q \cong \mathbb{Z}/p\mathbb{Z}$, which is a cyclic additive group generated by 1. Since $F_p(1) = 1$, F_p must be the identity homomorphism. \square

Exercise. (Problem 2) Let K be a field of characteristic p. Which polynomials $f(x) \in K[x]$ satisfies f'(x) = 0?

Proof.
$$f'(x) = \sum_{i=1}^{n} i a_i x^i = 0 \iff (\forall i, i \notin (p) \implies a_i = 0)$$
 since if $i \in (p)$, $i a_i = 0$ regardless of what a_i is.

Exercise. (Problem 3) Suppose that $f(x) \in \mathbb{F}_q[x]$ satisfies f'(x) = 0. Show that there exists $g(x) \in \mathbb{F}_q[x]$ with $g^p = f$.

Proof. By Problem 2, f(x) with f'(x) = 0 can be always written as $\sum_{i=0}^{n} a_i x^{pi}$.

$$(\sum_{i=0}^{n} F_p^{-1}(a_i)x^i)^p = (F_p^{-1}(a_n)x^n + \sum_{i=0}^{n} F_p^{-1}(a_i)x^i)^p$$

$$= a_n x^{pn} + (\sum_{i=0}^{n-1} F_p^{-1}(a_i)x^i)^p$$

$$\vdots$$

$$= \sum_{i=0}^{n} a_i x^{pi} = f.$$

Exercise. (Problem 4) Show that there are no inseparable irreducible polynomials, $f(x) \in \mathbb{F}_q[x]$.

Proof. If f is inseparable, $gcd(f, f') \neq F^{\times}$. If f' = 0, then f has a proper factor by Problem 3. Otherwise, f has a factor of degree between 1 and deg(f') = deg(f) - 1, so f is not irreducible.

Exercise. (Problem 5) Suppose that $f(x) \in \mathbb{F}_q[x]$ and gcd(f, f') = f. How can you reduce the problem of factoring f to a simpler problem?

Proof. If $f' \neq 0$, $f \nmid f'$ because $\deg(f') < \deg(f)$. Thus $\gcd(f, f') = f$ implies f' = 0. By Problem 3, $f = g^p$ for some $g \in \mathbb{F}_q[x]$, and thus it suffices to factor g, whose degree is exactly $\deg(f)/p$.

Exercise. (Problem 6) Let L be a field and $f(x) = \prod_{i=1}^{n} (x - a_i)^{m_i} \in L[x]$, where the a_i 's are pairwise distinct. Compute $d(x) = \gcd(f(x), f'(x))$.

Proof. Let p be the characteristic of the finite field L. Since L[x] is a UFD, every divisor of f(x) is associate to a product of $(x-a_i)$'s, and so is d(x). Let j be given. Then $f' = m_j(x-a_j)^{m_j-1}g(x) + (x-a_j)^{m_j}g(x)'$ where $g(x) = \prod_{i\neq j}(x-a_i)^{m_i}$. If $p \mid m_j$, then $(x-a_j)^{m_j}$ divides both f and f'. If $p \nmid m_j$, then $b_j = m_j - 1$ is the largest integer such that $(x-a_j)^{b_j}$ divides both f and f'. Therefore, $d(x) = \prod_{i=1}^n (x-a_i)^{m_i-c_i}$ where $c_i = 0$ if $p \mid m_i$ and $c_i = 1$ otherwise.

Exercise. (Problem 7) A polynomial, f(x), is said to be square free if it can be written as a product of irreducible factors, no two of which are associate. For $f(x) \in \mathbb{F}_q[x]$, find a criterion in terms of gcd(f(x), f'(x)) for f(x) to be square free.

Proof. Let $f = \prod f_i$ be square free. Let j be given. $f' = f'_j g + f_j g'$ where $g = \prod_i f_i$. Since f_j is irreducible, f_j is separable by Problem 4. Thus $\gcd(f_j, f'_j) = F^{\times}$, so $f_j \nmid f'_j$. Thus $f_j \nmid f'$. Since all divisors of f are associate to some product of f_i 's, $\gcd(f, f') = 1$.

On the other hand, suppose f is not square free. Then $f = g^2 h$ for some irreducible g and some h. f' = g(2g'h + gh'), so $g \mid \gcd(f, f')$.

Therefore, f is square free if and only if gcd(f, f') = 1.

Exercise. (Problem 8) Describe how to use repeated computation of gcd's to find a factorization of a given polynomial, $f(x) \in \mathbb{F}_q[x]$, $f = f_1 \cdots f_r$, where each $f_i \in \mathbb{F}_q[x]$ is square free.

Proof.

- (1) Calculate $d = \gcd(f, f')$.
- (2) If d = 1, f is square free by Problem 7, and we are done.
- (3) If d = f, then f' = 0, so $f = g^p$ for some g by Problem 2. Let f = g, and go back to Step 1.
- (4) Otherwise, we can factor both d and f/d further by going back to Step 1.

This process must terminate finitely because the degree of a polynomial continues to decrease.

2. Modules

Exercise. (Problem 6) Take four 4×4 matrices with integer entries and check if the abelian group presented by the matrix is cyclic.

Proof.

$$\begin{bmatrix} -166 & -74 & 254 & 347 \\ 140 & -93 & 246 & 425 \\ -196 & 57 & -363 & 202 \\ 325 & 257 & 314 & -389 \end{bmatrix} \rightarrow \begin{bmatrix} 18444530375 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 237 & -81 & 332 & -132 \\ 95 & 268 & 229 & 498 \\ 387 & 213 & 46 & 55 \\ 88 & -126 & -380 & -447 \end{bmatrix} \rightarrow \begin{bmatrix} 2610768268 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -275 & -22 & -207 & -276 \\ -469 & -342 & 240 & -101 \\ -41 & 455 & 51 & -151 \\ 267 & -450 & 98 & -40 \end{bmatrix} \rightarrow \begin{bmatrix} 33644517767 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 48 & 29 & 22 & -481 \\ 388 & -468 & -137 & -491 \\ 84 & -352 & 85 & -384 \\ -226 & -486 & 102 & -156 \end{bmatrix} = \begin{bmatrix} 13267264454 & 1 & 1 & 1 \end{bmatrix}$$

Each of the groups contains 4 generators, so none of them are cyclic.

3. Galois Theory

Exercise. (Problem 1) Let $F = \mathbb{Q}$. Let $L = \mathbb{Q}(\sqrt{7}, \sqrt{-11})$. To what familiar group is $\operatorname{Aut}(L/F)$ is isomorphic?

Proof. $[K:\mathbb{Q}(\sqrt{7})] = [K:\mathbb{Q}(\sqrt{-11})] = 2$. Since the characteristic of K is not 2, by the argument presented on P.3 of the Galous Theory handout, $\operatorname{Aut}(K/\mathbb{Q}(\sqrt{7}))$ and $\operatorname{Aut}(K/\mathbb{Q}(\sqrt{-11}))$ have 2 elements. For instance, $\alpha = \sqrt{7}$ and the minimal monic polynomial is $x^2 - 7$. This gives D = 28 and two automorphisms in $\operatorname{Aut}(K/\mathbb{Q}(\sqrt{7}))$, the identity map, and $\sigma : \sqrt{D} \mapsto -\sqrt{D}$ as discussed in the handout. Similarly, $\operatorname{Aut}(K/\mathbb{Q}(\sqrt{-11}))$ contains the identity map and $\sigma : \sqrt{D} \mapsto -\sqrt{D}$ where D = -44.

Finish this proof.

Exercise. (Problem 2) Let $F \subset K$ be a field extension.

- (1) Prove in at most two sentences that each $\sigma \in \operatorname{Aut}(K/F)$ is an F-linear transformation of the F-vector space, K.
- (2) Does the same condition hold in general for $\sigma \in \text{Aut}(K)$? Prove or give a counterexample.

Proof.

(1) For any $a \in F$ and $v, w \in K$, $\sigma(av + w) = \sigma(a)\sigma(v) + \sigma(w) = a\sigma(v) + \sigma(w)$, so σ is indeed an F-linear transformation.

(2) Let $F = \mathbb{Q}(\sqrt{7})$ and $K = \mathbb{Q}(\sqrt{7}, \sqrt{-11})$. Let $\sigma \in \operatorname{Aut}(K/\mathbb{Q})$ such that $\sigma(\sqrt{7}) = -\sqrt{7}, \sigma(\sqrt{-11}) = -\sqrt{-11}$. The existence of such an automorphism is shown in the solution to Problem 1. K is an F-vector space. However, $\sigma(\sqrt{7} \cdot 1) = -\sqrt{7} \neq \sqrt{7} = \sqrt{7}(\sigma(1))$, so σ is not an F-linear transformation.

Exercise. (Problem 3) Let $\zeta = \exp(2\pi i/3) \in \mathbb{C}$. Consider the following subfields of \mathbb{C} . Let $F = \mathbb{Q}(\zeta)$. For $i \in \{0, 1, 2\}$, let $K_i = \mathbb{Q}(\zeta^{i}7^{1/3})$. Let $L = \mathbb{Q}(7^{1/3}, \zeta^{7^{1/3}}, \zeta^{27^{1/3}})$.

Proof.

- (1) $[F:\mathbb{Q}] = 2$ since $\zeta^2 + \zeta + 1 = 0$.
- (2) Aut (F/\mathbb{Q}) permutes the roots of $x^2 + x + 1 = 0$. Thus it contains two maps, namely, the identity map and another map that sends ζ to ζ^2 .
- (3) $[K_i : \mathbb{Q}] = 3$ for each *i* because $\{1, \zeta^i 7^{1/3}, (\zeta^i 7^{i/3})^2\}$ is a \mathbb{Q} -basis.
- (4) $L = \mathbb{Q}(7^{1/3}, \zeta)$. Since $\{1, 7^{1/3}, 7^{2/3}, \zeta, \zeta^{7^{1/3}}, \zeta^{7^{2/3}}\}$ is a \mathbb{Q} -basis of L, $[L : \mathbb{Q}] = 6$. By Part (iii), $[L : K_0] = [L : K_1] = [L : K_2] = 6/3 = 2$.
- (5) $\operatorname{Aut}(L/K_i) \subset \operatorname{Aut}(L/\mathbb{Q})$, and $\operatorname{Aut}(L/K_i)$ is a group on its own.
- (6) $L = K_0[\zeta] = K_1[\zeta] = K_2[\zeta]$. Thus each $\operatorname{Aut}(L/K_i)$ contains two maps, namely, the identity map and a map that sends ζ to ζ^2 .
- (7) Aut (L/\mathbb{Q}) is a group with at most 6 elements and it contains 3 distinct subgroups with 2 elements each. S_3 is the only group that satisfies that with $\langle r \rangle$, $\langle r \rho^2 \rangle$.
- (8) Each element in $\operatorname{Aut}(L/\mathbb{Q})$ sends $7^{1/3}$ to one of $7^{1/3}$, $\omega 7^{1/3}$, $\omega^2 7^{1/3}$ and ω to one of ω or ω^2 . Thus $\operatorname{Aut}(L/\mathbb{Q})$ contains 6 elements.