
NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, MAY 21, 2004 BY BONNIE MCBRIDE AND SANFORD GORDON REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

problem o/f=1,2,3, rocket equilibrium frozen nfz=3 tcest,k=3800 p,bar=70,80,90,100, sup, ae/at=15, 25, 35, 45, fuel=C2H5OH(L) wt=1 t,k=300 oxid=H2O2(L) wt=.85 t,k=300 name=H2O(L) wt=.15 t,k=300

siunits

end

OPTIONS: TP=F HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F INCD=F RKT=T FROZ=T EQL=T IONS=F SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F TRNSPT=F

TRACE= 0.00E+00 S/R= 0.000000E+00 H/R= 0.000000E+00 U/R= 0.000000E+00

Pc, BAR = 70.000000 80.000000 90.000000 100.000000

Pc/P =

SUBSONIC AREA RATIOS =

SUPERSONIC AREA RATIOS = 15.0000 25.0000 35.0000 45.0000

NFZ= 3 Mdot/Ac= 0.000000E+00 Ac/At= 0.000000E+00

WT.FRAC (ENERGY/R),K TEMP,K DENSITY REACTANT EXPLODED FORMULA F: C2H5OH(L) 0.869565 -0.333515E+05 300.00 0.0000 C 2.00000 H 6.00000 O 1.00000 O: H2O2(L) 1.000000 -0.225647E+05 300.00 0.0000 H 2.00000 O 2.00000 0.130435 -0.343605E+05 300.00 0.0000 N: H2O(L) H 2.00000 O 1.00000

SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES)

LAST thermo.inp UPDATE: 9/09/04

g 7/97 *C tpis79 *CH g 4/02 CH2 g 4/02 CH3 g11/00 CH2OH g 7/00 CH3O g 8/99 CH4 g 7/00 CH3OH srd 01 CH3OOH tpis79 *CO g 9/99 *CO2 tpis91 COOH tpis91 *C2 g 6/01 C2H g 1/91 C2H2,acetylene g 5/01 C2H2,vinylidene g 4/02 CH2CO,ketene g 3/02 O(CH)2O

srd 01 g 1/00 g 6/00 g 7/00 srd 01 n 4/98 g 1/00 g 2/00 g 6/97 g 9/85 g 2/00 g 7/01 n10/93 n 4/88 n10/84 g 1/93 g 8/00 n 4/87 g 1/93 n10/85 g 8/00 g 1/93 n10/83 n10/83 n10/83 g 1/93 g	HO(CO)2OH C2H4 CH3COOH C2H6 CH3COCH3 C3H3,1-propynl C3H4,propyne C3H6,propylene C3H6O,acetone C3H7,i-propyl C3H8O,2propanol C4H2,butadiyne C4H6,1butyne C4H8,1-butene C4H8,isobutene C4H9,n-butyl *C5 C5H1O,1-pentene C5H11,t-pentyl CH3C(CH3)2CH3 C6H5O,phenoxy C6H1O,cyclo- C6H13,n-hexyl C7H8 C7H15,n-heptyl C8H8,styrene C8H17,n-octyl C9H19,n-nonyl C12H9,o-bipheny HCO *H2 H2O *O O3	g 7/01 g 8/88 srd 01 g 8/88 g 8/00 n 4/98 g 5/90 g 1/00 g 1/02 g 2/00 g 7/88 g 8/00 n10/93 n 4/88 g 8/00 n10/84 g12/00 g 5/90 g 2/01 n10/85 g 2/93 g 8/00 n 4/87 g 6/01 g12/00 n10/85 n1	C2H3, vinyl C2H4O, ethylen-o OHCH2COOH C2H5OH C2O C3H3, 2-propynl C3H4, cyclo- C3H6, cyclo- C3H6O, propanal C3H8 C3O2 C4H4, 1, 3-cyclo- C4H6, 2butyne C4H8, cis2-buten C4H8, cyclo- C4H9, i-butyl C4H1O, n-butane C5H6, 1, 3cyclo- C5H12, n-pentane C6H2 C6H6 C6H12, 1-hexene C6H14, n-hexane C7H8O, cresol-mx C7H16, n-heptane C8H10, ethylbenz C8H18, n-octane C10H8, naphthale C12H10, biphenyl HCCO HCHO, formaldehy H2O2 *OH C(gr)	g 6/96 g 8/88 g 7/00 tpis79 g 2/00 g 3/01 g 6/01 g 7/01 g 2/00 g tpis n10/92 g 8/00 n 4/88 g10/00 g 1/93 n10/84 n10/85 g11/00 g 8/00 g 6/90 g 7/01 n 4/87 n 10/85 n10/85 n 10/85 n 10/	CH3CO, acetyl CH3CHO, ethanal C2H5 CH3OCH3 *C3 C3H4, allene C3H5, allyl C3H6O, propylox C3H7, n-propyl C3H8O, 1propanol *C4 C4H6, butadiene C4H6, cyclo- C4H8, tr2-butene (CH3COOH) 2 C4H9, s-butyl C4H10, isobutane C5H8, cyclo- C5H11, pentyl C5H12, i-pentane C6H5, phenyl C6H5OH, phenol C6H12, cyclo- C7H7, benzyl C7H14, 1-heptene C7H16, 2-methylh C8H16, 1-octene C8H18, isooctane C10H21, n-decyl *H HO2 HCOOH (HCOOH) 2 *O2 C(gr)
-		-		_	
-		- '		_	
J .		-		-	
_			=		=
n 4/83	C(gr)	g11/99	H20(cr)	g 8/01	H2O(L)
g 8/01	H2O(L)				

O/F = 1.000000

ENTHALPY (KG-MOL)(K)/KG	EFFECTIVE FUEL h(2)/R -0.87830508E+03	EFFECTIVE OXIDANT h(1)/R -0.66338234E+03	MIXTURE h0/R -0.77084371E+03
KG-FORM.WT./KG	bi(2)	bi(1)	b0i
*C	0.37751016E-01	0.0000000E+00	0.18875508E-01
*H	0.12773351E+00	0.58798142E-01	0.93265827E-01
*0	0.26115739E-01	0.58798142E-01	0.42456941E-01
POINT ITN T	С	НО	
1 17 1230.508	-3.162	-7.388 -31.309	
Pinf/Pt = 1.760974			
2 4 1149.938	-2.822	-7.590 -32.891	
Pinf/Pt = 1.753031			
2 2 1150.536	-2.825	-7.588 -32.878	
Pinf/Pt = 1.753086			
2 1 1150.532	-2.825	-7.588 -32.878	

3	5	750.131	-1.208	-9.406	-45.743
3	3	765.411	-1.259	-9.305	-45.015
3	2	765.452	-1.260	-9.304	-45.013
4	4	722.460	-1.119	-9.599	-47.134
ADD	C(gr)				
4	1	722.487	-1.125	-9.599	-47.131
4	2	722.763	-1.126	-9.597	-47.116
5	4	696.380	-1.088	-9.789	-48.525
5	2	696.190	-1.088	-9.790	-48.536
6	3	676.676	-1.061	-9.940	-49.646
6	2	676.901	-1.061	-9.938	-49.633

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1015.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.000000	-187614.740	300.000
NAME.	H2O (T.)	0 1304348	-285690 685	300 000

O/F= 1.00000 %FUEL= 50.000000 R,EQ.RATIO= 1.987518 PHI,EQ.RATIO= 3.852266

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7531	114.35	215.10	324.47	440.40
P, BAR	70.000	39.930	0.61214	0.32543	0.21574	0.15895
T, K	1230.51	1150.53	765.45	722.76	696.19	676.90
RHO, KG/CU M	1.1141 1	6.9140 0	1.8113-1	1.0391-1	7.2348-2	5.5298-2
H, KJ/KG	-6409.19	-6747.31	-8598.76	-8804.35	-8929.99	-9019.44
U, KJ/KG	-7037.48	-7324.83	-8936.71	-9117.53	-9228.19	-9306.87
G, KJ/KG	-21260.7	-20633.6	-17837.3	-17527.7	-17332.6	-17189.2
S, KJ/(KG)(K)	12.0694	12.0694	12.0694	12.0694	12.0694	12.0694
M, (1/n)	16.284	16.564	18.832	19.188	19.412	19.580
MW, MOL WT	16.284	16.564	18.832	19.167	19.230	19.287
(dLV/dLP)t	-1.06957	-1.07641	-1.06450	-1.05909	-1.05539	-1.05268
(dLV/dLT)p	1.7960	1.9327	2.0410	1.9619	1.9129	1.8781
Cp, KJ/(KG)(K)	7.3519	8.4302	9.9433	9.3840	8.9412	8.6409
GAMMAs	1.1827	1.1710	1.1370	1.1346	1.1362	1.1372
SON VEL, M/SEC	862.0	822.3	619.9	596.1	582.1	571.7
MACH NUMBER	0.000	1.000	3.376	3.672	3.857	3.996

PERFORMANCE PARAMETERS

Ae/At	1.0000	15.000	25.000	35.000	45.000
CSTAR, M/SEC	1231.2	1231.2	1231.2	1231.2	1231.2
CF	0.6679	1.6997	1.7777	1.8238	1.8558
Ivac, M/SEC	1524.6	2254.1	2331.8	2378.2	2410.6
Isp, M/SEC	822.3	2092.6	2188.7	2245.4	2284.8

MOLE FRACTIONS

CH4	0.03336	0.04254	0.11683	0.12781	0.12988	0.13171
*C0	0.17459	0.15630	0.03144	0.02032	0.01424	0.01073
*C02	0.09940	0.11381	0.20719	0.21257	0.20952	0.20659
*H2	0.37469	0.36801	0.29081	0.26988	0.25384	0.24102
H20	0.31795	0.31934	0.35372	0.36833	0.38318	0.39494
C(gr)	0.00000	0.00000	0.00000	0.00109	0.00934	0.01501

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	СНЗООН	COOH	*C2
C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene	O(CH)20
HO (CO) 20H	C2H3, vinyl	CH3CO,acetyl	C2H4	C2H4O,ethylen-o
CH3CHO, ethanal	СНЗСООН	OHCH2COOH	C2H5	C2H6
С2Н5ОН	СН3ОСН3	CH302CH3	C20	*C3
C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-
C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone
C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8	C3H8O,1propanol
C3H8O,2propanol	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18,isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	*H
HCO	HCCO	HO2	HCHO, formaldehy	HCOOH
H2O2	(HCOOH) 2	*0	*OH	*02
03	H20(cr)	H2O(L)		

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION AFTER POINT 3

Pin = 1015.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.0000000	-187614.740	300.000

NAME H2O(L) 0.1304348 -285690.685 300.000

O/F= 1.00000 %FUEL= 50.000000 R,EQ.RATIO= 1.987518 PHI,EQ.RATIO= 3.852266

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7531	114.35	231.51	367.20	517.77
P, BAR	70.000	39.930	0.61214	0.30236	0.19063	0.13520
T, K	1230.51	1150.53	765.45	661.31	599.04	555.55
RHO, KG/CU M	1.1141 1	6.9140 0	1.8113-1	1.0356-1	7.2078-2	5.5119-2
H, KJ/KG	-6409.19	-6747.31	-8598.76	-8820.63	-8948.89	-9036.44
U, KJ/KG	-7037.48	-7324.83	-8936.71	-9112.60	-9213.37	-9281.72
G, KJ/KG	-21260.7	-20633.6	-17837.3	-16802.3	-16179.0	-15741.6
S, $KJ/(KG)(K)$	12.0694	12.0694	12.0694	12.0694	12.0694	12.0694
M, (1/n)	16.284	16.564	18.832	18.832	18.832	18.832
MW, MOL WT	16.284	16.564	18.832	18.832	18.832	18.832
Cp, $KJ/(KG)(K)$	7.3519	8.4302	9.9433	2.0867	2.0325	1.9937
GAMMAs	1.1827	1.1710	1.1370	1.2684	1.2775	1.2844
SON VEL, M/SEC	862.0	822.3	619.9	608.5	581.3	561.3
MACH NUMBER	0.000	1.000	3.376	3.609	3.877	4.084

PERFORMANCE PARAMETERS

Ae/At	1.0000	15.000	25.000	35.000	45.000
CSTAR, M/SEC	1231.2	1231.2	1231.2	1231.2	1231.2
CF	0.6679	1.6997	1.7838	1.8306	1.8619
Ivac, M/SEC	1524.6	2254.1	2329.1	2371.1	2399.3
Isp, M/SEC	822.3	2092.6	2196.1	2253.8	2292.3

MOLE FRACTIONS

CH4	0.11683	*CO	0.03144	*C02	0.20719
*H2	0.29081	H2O	0.35372		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	CH3OH	CH300H	COOH	*C2
C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene	O(CH)20
HO(CO)2OH	C2H3, vinyl	CH3CO,acetyl	C2H4	${\tt C2H4O,ethylen-o}$
CH3CHO, ethanal	CH3COOH	OHCH2COOH	C2H5	С2Н6
С2Н5ОН	CH3OCH3	CH302CH3	C20	*C3
C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-
C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone
C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8	C3H8O,1propanol
C3H8O,2propanol	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10, isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12, n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	С7Н8	${\tt C7H8O,cresol-mx}$	C7H14,1-heptene

 C7H15,n-heptyl
 C7H16,n-heptane
 C7H16,2-methylh
 C8H8,styrene
 C8H10,ethylbenz

 C8H16,1-octene
 C8H17,n-octyl
 C8H18,n-octane
 C8H18,isooctane
 C9H19,n-nonyl

 C10H8,naphthale
 C10H21,n-decyl
 C12H9,o-bipheny
 C12H10,biphenyl
 *H

 HCO
 HCCO
 HCHO,formaldehy
 HCOOH

 H2O2
 (HCOOH) 2
 *O
 *OH
 *O2

 O3
 H2O(cr)
 H2O(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POIN	T ITN	T	С	Н	0
1	3	1239.669	-3.164	-7.338	-31.117
Pinf	/Pt =	1.761054			
2	4	1158.358	-2.830	-7.539	-32.688
Pinf	/Pt =	1.753276			
2	2	1158.950	-2.833	-7.538	-32.676
Pinf	/Pt =	1.753328			
2	1	1158.946	-2.833	-7.538	-32.676
3	5	753.951	-1.223	-9.354	-45.519
3	3	769.306	-1.275	-9.253	-44.795
3	2	769.347	-1.275	-9.253	-44.794
4	4	725.855	-1.134	-9.548	-46.917
4	2	726.127	-1.134	-9.546	-46.903
5	3	699.243	-1.053	-9.742	-48.337
ADD	C(gr)				
5	2	699.350	-1.093	-9.740	-48.320
5	2	699.240	-1.092	-9.740	-48.326
6	3	679.589	-1.065	-9.890	-49.434
6	2	679.736	-1.065	-9.889	-49.425

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1160.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.000000	-187614.740	300.000
NAME	H2O(L)	0.1304348	-285690.685	300.000

O/F= 1.00000 %FUEL= 50.000000 R,EQ.RATIO= 1.987518 PHI,EQ.RATIO= 3.852266

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7533	114.56	215.58	325.26	441.53
P, BAR	80.000	45.628	0.69835	0.37110	0.24596	0.18119
T, K	1239.67	1158.95	769.35	726.13	699.24	679.74

RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/(KG)(K)	-6409.19 -7039.98 -21286.9	-6748.72 -7328.46 -20657.6	-8606.42 -8945.00 -17839.6	-8812.50 -9126.12 -17527.0	-8938.37 -9236.90 -17330.2	-9315.65 -17185.7
M, (1/n) MW, MOL WT (dLV/dLP)t (dLV/dLT)p Cp, KJ/(KG)(K) GAMMAS SON VEL, M/SEC MACH NUMBER	16.340 -1.07120 1.8087 7.3742 1.1828	16.621 -1.07747 1.9391 8.4064 1.1713 824.1	2.0271 9.7842 1.1376	19.251 -1.05791 1.9539 9.1924 1.1383 597.5	-1.05468 1.8979 8.7877 1.1368 582.5	19.383 -1.05194 1.8626 8.4855 1.1378 572.2
PERFORMANCE PAR	AMETERS					
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		1.0000 1233.5 0.6681 1527.6 824.1	1233.5 1.6995 2257.8	1233.5 1.7774 2335.5	1233.5 1.8233 2381.8	1233.5 1.8553 2414.3
MOLE FRACTIONS						
CH4 *CO *CO2 *H2	0.03520 0.17412 0.09910 0.37015	0.15591	0.20647	0.02030 0.21252	0.13308 0.01427 0.20994 0.24870	0.01074

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

 H2O
 0.32143
 0.32296
 0.35785
 0.37198
 0.38647
 0.39822

 C(gr)
 0.00000
 0.00000
 0.00000
 0.00000
 0.00755
 0.01326

*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	СНЗООН	COOH	*C2
C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene	O(CH)20
HO(CO)2OH	C2H3, vinyl	CH3CO,acetyl	C2H4	${\tt C2H4O,ethylen-o}$
CH3CHO, ethanal	CH3COOH	OHCH2COOH	C2H5	C2H6
С2Н5ОН	CH3OCH3	CH302CH3	C20	*C3
C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-
C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone
C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8	C3H8O,1propanol
C3H8O,2propanol	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12, n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	С7Н8	${\tt C7H80,cresol-mx}$	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	${\tt C7H16,2-methylh}$	C8H8,styrene	${\tt C8H10,ethylbenz}$

 C8H16,1-octene
 C8H17,n-octyl
 C8H18,n-octane
 C8H18,isooctane
 C9H19,n-nonyl

 C10H8,naphthale
 C10H21,n-decyl
 C12H9,o-bipheny
 C12H10,biphenyl
 *H

 HCO
 HCCO
 HCHO,formaldehy
 HCOOH

 H2O2
 (HCOOH) 2
 *O
 *OH
 *O2

 O3
 H2O(cr)
 H2O(L)
 *O
 *OH
 *O2

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION AFTER POINT 3

Pin = 1160.3 PSIA CASE =

FUEL C2E	CTANT 150H(L) 02(L)		(; 0 1	.8695652 .0000000	KJ/K0 -277301	G-MOL .667 30	FEMP K 00.000 00.000 00.000
O/F= 1.00000	%FUEL= 5	0.000000	R,EQ.RA	rio= 1.98	7518 PHI,	EQ.RATIO	= 3.852266
RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/(KG)(K) M, (1/n) MW, MOL WT Cp, KJ/(KG)(K) GAMMAS SON VEL, M/SEC	1.0000 80.000 1239.67 1.2682 1 -6409.19 -7039.98 -21286.9 12.0013 16.340 7.3742 1.1828	1.7533 45.628 1158.95 7.8703 0 -6748.72 -7328.46 -20657.6 12.0013 16.621 8.4064 1.1713 824.1	114.56 0.69835 769.35 2.0626-1 -8606.42 -8945.00 -17839.6 12.0013 18.893 9.7842 1.1376 620.6	231.74 0.34521 665.12 1.1793-1 -8828.54 -9121.25 -16810.9 12.0013 18.893 18.893 2.0871 1.2672 609.0	8.2087-2 -8957.02 -9222.28 -16190.8 12.0013 18.893 18.893 2.0326 1.2764 581.9	517.88 0.15448 559.16 6.2774-2 -9044.76 -9290.85 -15755.5 12.0013 18.893 18.893 1.9935 1.2833 562.0	
PERFORMANCE PAR	RAMETERS						
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		1.0000 1233.5 0.6681 1527.6 824.1	1233.5 1.6995 2257.8	1233.5 1.7833 2332.8	1233.5	1233.5 1.8613 2403.1	
MOLE FRACTIONS							
CH4 *H2	0.11881 0.28554	*CO H2O		0.03132	*C02	0	.20647

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	СН300Н	COOH	*C2
C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene	O(CH)20
HO (CO) 20H	C2H3, vinyl	CH3CO,acetyl	C2H4	C2H4O,ethylen-o
CH3CHO, ethanal	СН3СООН	OHCH2COOH	C2H5	C2H6
С2Н5ОН	CH3OCH3	CH302CH3	C20	*C3
C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-
C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone
C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	СЗН8	C3H8O,1propanol
C3H8O,2propanol	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18,isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	* H
HCO	HCCO	HO2	HCHO, formaldehy	НСООН
H2O2	(HCOOH) 2	*0	*OH	*02
03	H20(cr)	H2O(L)		

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POIN	T ITN	Т	С	Н	0
1	3	1247.876	-3.167	-7.293	-30.948
Pinf	/Pt = 1	.761138			
2	4	1165.879	-2.838	-7.495	-32.509
Pinf	/Pt = 1	.753497			
2	2	1166.465	-2.840	-7.493	-32.497
Pinf	/Pt = 1	.753548			
2	1	1166.461	-2.840	-7.493	-32.498
3	5	757.326	-1.237	-9.309	-45.322
3	3	772.748	-1.288	-9.208	-44.603
3	2	772.789	-1.288	-9.208	-44.601
4	4	728.848	-1.147	-9.503	-46.726
4	2	729.122	-1.147	-9.501	-46.712
5	4	701.959	-1.065	-9.698	-48.150
ADD	C(gr)				
5	2	702.045	-1.096	-9.696	-48.136
5	2	701.921	-1.096	-9.697	-48.143
6	3	682.063	-1.068	-9.846	-49.253
6	2	682.224	-1.069	-9.845	-49.244

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1305.3 PSIA CASE =

	REA	CTANT			FRACTION			TEMP
				(:	SEE NOTE)	KJ/K0	G-MOL	K
FUEL	C2H	50H(L)		0	.8695652	-277301.	.667 3	00.000
OXIDANT	H20	2(L)		1	.0000000	-187614.	.740 3	00.000
NAME	H20	(L)		0	.1304348	-285690.	.685 3	00.000
O/F= 1.0	0000	%FUEL=	50.000000	R,EQ.RA	rio= 1.987	7518 PHI,	EQ.RATIO	= 3.852266
			THROAT					
Pinf/P			1.7535				442.54	
P, BAR		90.000	51.325	0.78440	0.41673	0.27610	0.20337	
T, K		1247.88	1166.46	772.79	729.12	701.92	682.22	
RHO, KG/CU	M	1.4218 1	8.8231 0	2.3129-1	1.3270-1	9.2399-2	7.0628-2	
H, KJ/KG		-6409.19	-6749.97	-8613.18	-8819.65	-8945.76	-9035.45	
U, KJ/KG		-7042.20	-7331.68	-8952.32	-9133.69	-9244.58	-9323.40	
G, KJ/KG		-21310.7	-20679.3	-17841.4	-17526.5	-9244.58 -17327.8	-17182.2	
S, KJ/(KG)(K)	11.9415	11.9415	11.9415	11.9415	11.9415	11.9415	
M, (1/n)		16.391	16.673	18.946	19.304	19.531	19.699	
MW, MOL WT		16.391	16.673	18.946	19.304	19.415	19.469	
(dLV/dLP)t								
(dLV/dLT)p						1.8845		
Cp, KJ/(KG)								
GAMMAs	(20)					1.1373		
SON VEL, M/S	EC	865.3						
MACH NUMBER						3.864		
MACH NUMBER		0.000	1.000	3.379	3.072	3.004	4.003	
PERFORMANCE	PAR.	AMETERS						
Ae/At			1.0000	15.000	25.000	35.000	45.000	
CSTAR, M/SE	C		1235.6	1235.6	1235.6	1235.6	1235.6	
CF			0.6682	1.6992	1.7770	1.8229	1.8549	
Ivac, M/SEC	;		1530.2	2261.1	2338.7	2385.0	2417.5	
Isp, M/SEC			825.6	2099.5	2195.7	2252.4	2291.8	
-								
MOLE FRACTI	ONS							
CH4		0.03685	0.04609	0.12057	0.13230	0.13593	0.13768	
*CO		0.17367	0.15554	0.03120	0.02020	0.01428	0.01073	
*C02		0.09884	0.11306	0.20585	0.21188	0.21033	0.20737	
*H2		0.36608	0.35911	0.28088	0.25998	0.24415	0.23140	
H2O			0.32619					
C(gr)		0.00000	0.00000					
-								

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	CH300H	COOH	*C2
C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene	O(CH)20
HO (CO) 20H	C2H3, vinyl	CH3CO,acetyl	C2H4	C2H4O,ethylen-o
CH3CHO, ethanal	СН3СООН	OHCH2COOH	C2H5	C2H6
С2Н5ОН	CH3OCH3	CH302CH3	C20	*C3
C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-
C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone
C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8	C3H8O,1propanol
C3H8O,2propanol	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	${\tt C7H8O,cresol-mx}$	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18,isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	*H
HCO	HCCO	HO2	HCHO, formaldehy	НСООН
H2O2	(HCOOH) 2	*0	*OH	*02
03	H2O(cr)	H2O(L)		

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

Pin = 1305.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.0000000	-187614.740	300.000
NAME	H2O(L)	0.1304348	-285690.685	300.000

O/F= 1.00000 %FUEL= 50.000000 R,EQ.RATIO= 1.987518 PHI,EQ.RATIO= 3.852266

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7535	114.74	231.95	367.57	517.98
P, BAR	90.000	51.325	0.78440	0.38801	0.24485	0.17375
T, K	1247.88	1166.46	772.79	668.49	606.03	562.36
RHO, KG/CU M	1.4218 1	8.8231 0	2.3129-1	1.3226-1	9.2065-2	7.0405-2
H, KJ/KG	-6409.19	-6749.97	-8613.18	-8835.51	-8964.19	-9052.09
U, KJ/KG	-7042.20	-7331.68	-8952.32	-9128.87	-9230.14	-9298.88
G, KJ/KG	-21310.7	-20679.3	-17841.4	-16818.3	-16201.1	-15767.5
S, KJ/(KG)(K)	11.9415	11.9415	11.9415	11.9415	11.9415	11.9415

M, (1/n)	16.391	16.673	18.946	18.946	18.946	18.946	
MW, MOL WT	16.391	16.673	18.946	18.946	18.946	18.946	
Cp, $KJ/(KG)(K)$	7.3857	8.3787	9.6432	2.0874	2.0327	1.9934	
GAMMAs	1.1829	1.1717	1.1381	1.2662	1.2753	1.2823	
SON VEL, M/SEC	865.3	825.6	621.3	609.5	582.4	562.5	
MACH NUMBER	0.000	1.000	3.379	3.614	3.881	4.087	
PERFORMANCE PAR	AMETERS						
Ae/At		1.0000	15.000	25.000	35.000	45.000	
CSTAR, M/SEC		1235.6	1235.6	1235.6	1235.6	1235.6	
CF		0.6682	1.6992	1.7829	1.8295	1.8608	
Ivac, M/SEC		1530.2	2261.1	2336.0	2378.2	2406.4	
Isp, M/SEC		825.6	2099.5	2202.9	2260.5	2299.1	
MOLE FRACTIONS							
CH4	0.12057	*CO	0	.03120	*C02	0.20)585
*H2	0.28088	H20	0	.36150			

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	CH3OH	СН300Н	COOH	*C2
C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene	O(CH)20
HO(CO)20H	C2H3, vinyl	CH3CO,acetyl	C2H4	C2H4O,ethylen-o
CH3CHO, ethanal	CH3COOH	OHCH2COOH	C2H5	C2H6
С2Н5ОН	CH3OCH3	CH302CH3	C20	*C3
C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-
C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone
C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8	C3H8O,1propanol
C3H8O,2propanol	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	С7Н8	C7H8O,cresol-mx	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18, isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9, o-bipheny	C12H10,biphenyl	*H
HCO	HCCO	HO2	HCHO, formaldehy	НСООН
H2O2	(HCOOH) 2	*0	*OH	*02
03	H2O(cr)	H2O(L)		

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POIN	T ITN	T	С	Н	0
1	3	1255.316	-3.170	-7.254	-30.796
Pinf	/Pt = 1	1.761222			
2	4	1172.679	-2.845	-7.455	-32.350
Pinf	/Pt = 1	1.753698			
2	2	1173.261	-2.847	-7.453	-32.338
Pinf	/Pt = 3	1.753747			
2	1	1173.257	-2.847	-7.453	-32.338
3	5	760.348	-1.249	-9.268	-45.147
3	3	775.830	-1.300	-9.168	-44.431
3	2	775.871	-1.300	-9.168	-44.429
4	4	731.522	-1.158	-9.463	-46.557
4	2	731.799	-1.159	-9.461	-46.543
5	4	704.381	-1.077	-9.658	-47.983
ADD	C(gr)				
5	2	704.447	-1.100	-9.656	-47.973
5	2	704.311	-1.100	-9.657	-47.980
6	3	684.264	-1.071	-9.807	-49.093
6	2	684.438	-1.072	-9.806	-49.084

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1450.4 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.0000000	-187614.740	300.000
NAME	H2O(L)	0.1304348	-285690.685	300.000

O/F= 1.00000 %FUEL= 50.000000 R,EQ.RATIO= 1.987518 PHI,EQ.RATIO= 3.852266

CHAMBER THROAT EXIT EXIT EXIT EXIT

Pinf/P	1.0000	1.7537	114.90	216.32	326.61	443.45
P, BAR	100.00	57.021	0.87032	0.46227	0.30618	0.22551
T, K	1255.32	1173.26	775.87	731.80	704.31	684.44
RHO, KG/CU M	1.5748 1	9.7728 0	2.5626-1	1.4703-1	1.0238-1	7.8259-2
H, KJ/KG	-6409.19	-6751.09	-8619.24	-8826.04	-8952.38	-9042.16
U, KJ/KG	-7044.18	-7334.56	-8958.86	-9140.45	-9251.44	-9330.31
G, KJ/KG	-21332.6	-20698.9	-17842.9	-17525.8	-17325.3	-17178.8
S, KJ/(KG)(K)	11.8881	11.8881	11.8881	11.8881	11.8881	11.8881
M, (1/n)	16.437	16.719	18.994	19.352	19.581	19.749
MW, MOL WT	16.437	16.719	18.994	19.352	19.494	19.546
(dLV/dLP)t	-1.07369	-1.07905	-1.06283	-1.05671	-1.05343	-1.05062
(dLV/dLT)p	1.8268	1.9470	2.0030	1.9282	1.8722	1.8358
Cp, KJ/(KG)(K)	7.3898	8.3490	9.5168	8.9247	8.5295	8.2247
GAMMAs	1.1831	1.1720	1.1386	1.1393	1.1377	1.1388
SON VEL, M/SEC	866.7	826.9	621.8	598.5	583.3	572.8

MACH NUMBER	0.000	1.000	3.381	3.673	3.866	4.006
PERFORMANCE PARA	METERS					
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		1.0000 1237.4 0.6683 1532.5 826.9	15.000 1237.4 1.6990 2263.9 2102.4	25.000 1237.4 1.7767 2341.6 2198.6	35.000 1237.4 1.8226 2387.9 2255.3	45.000 1237.4 1.8545 2420.3 2294.8
MOLE FRACTIONS						
CH4 *CO *CO2 *H2 H2O C(gr)	0.03836 0.17325 0.09862 0.36240 0.32735 0.00000	0.04761 0.15518 0.11277 0.35531 0.32911 0.00000	0.12215 0.03109 0.20530 0.27670 0.36477 0.00000	0.13387 0.02010 0.21131 0.25579 0.37892 0.00000	0.13849 0.01428 0.21069 0.24007 0.39198 0.00449	0.14022 0.01073 0.20772 0.22735 0.40371 0.01028

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	СН300Н	COOH	*C2
C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene	O(CH)20
HO(CO)2OH	C2H3, vinyl	CH3CO,acetyl	C2H4	C2H4O,ethylen-o
CH3CHO, ethanal	СН3СООН	OHCH2COOH	C2H5	C2H6
C2H5OH	CH3OCH3	CH302CH3	C20	*C3
C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-
C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone
C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8	C3H8O,1propanol
C3H8O,2propanol	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18,isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	*H
HCO	HCCO	HO2	HCHO, formaldehy	НСООН
H2O2	(HCOOH) 2	*0	*OH	*02
03	H2O(cr)	H2O(L)		

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

AFTER POINT 3

Pin = 1450.4 PSIA CASE =

FUEL C2H OXIDANT H2O	CTANT 50H(L) 2(L) (L)	(SEE NOTE 0.8695652 1.0000000		K 300.000 300.000
O/F= 1.00000	%FUEL= 50.00000	R,EQ.RATIO= 1.9	87518 PHI,EQ.R	ATIO= 3.852266
P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG	1.0000 1.753 100.00 57.02 1255.32 1173.2 1.5748 1 9.7728 -6409.19 -6751.0 -7044.18 -7334.5 -21332.6 -20698.	EXIT EXIT 7 114.90 232.1 1 0.87032 0.4307 6 775.87 671.5 0 2.5626-1 1.4655- 9 -8619.24 -8841.7 6 -8958.86 -9135.6 9 -17842.9 -16824. 1 11.8881 11.888	4 367.73 51 8 0.27194 0.1 1 608.97 56 1 1.0201-1 7.80 4 -8970.59 -905 9 -9237.16 -930 7 -16210.2 -157	8.07 9303 5.23 15-2 8.65 6.07 78.2
MW, MOL WT Cp, KJ/(KG)(K) GAMMAs SON VEL,M/SEC	16.437 16.71 7.3898 8.349 1.1831 1.172 866.7 826.	9 18.994 18.99 9 18.994 18.99 0 9.5168 2.087 0 1.1386 1.265 9 621.8 609. 0 3.381 3.61	14 18.994 18 8 2.0328 1. 3 1.2744 1. 9 582.9 5	.994 9934 2814 63.1
PERFORMANCE PAR	AMETERS			
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC MOLE FRACTIONS	0.6683	1237.4 1237.		37.4 8603

0.12215 *CO 0.03109 *CO2 0.20530 0.27670 H2O 0.36477

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

CH4 *H2

> PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	CH300H	COOH	*C2
C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene	O(CH)20
HO(CO)2OH	C2H3, vinyl	CH3CO,acetyl	C2H4	C2H4O,ethylen-o
CH3CHO, ethanal	СНЗСООН	OHCH2COOH	C2H5	C2H6
C2H5OH	СН3ОСН3	CH302CH3	C20	*C3
C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-
C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O,acetone
C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	C3H8	C3H8O,1propanol

C3H8O,2propanol	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18,isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	*H
HCO	HCCO	HO2	HCHO, formaldehy	НСООН
H2O2	(HCOOH) 2	*0	*OH	*02
03	H20(cr)	H2O(L)		

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 2.000000

ENTHA (KG-M	LPY OL) (K)	/KG	EFFECTIVE FUEL h(2)/R -0.87830508E+03		TIVE OXIDANT h(1)/R 338234E+03	MIXTURE h0/R -0.73502325E+03
KG-FO *C *H *O	RM.WT.	./KG	bi(2) 0.37751016E-01 0.12773351E+00 0.26115739E-01	0.58	bi(1) 000000E+00 798142E-01 798142E-01	0.81776598E-01
POINT	ITN	T	С	Н	0	
1	9	2139.533	-11.239	-8.550	-20.573	
Pinf/	Pt = 1	1.775633				
2	3	1937.462	-10.824	-8.662	-21.912	
Pinf/	Pt = 1	1.778888				
2	2	1936.843	-10.823	-8.662	-21.917	
3	8	872.084	-4.228	-9.580	-40.149	
3	3	875.871	-4.276	-9.573	-40.005	
4	4	792.659	-3.250	-9.775	-43.464	
4	2	791.152	-3.232	-9.780	-43.533	
5	4	747.456	-2.772	-9.949	-45.623	
5	3	749.136	-2.788	-9.941	-45.539	
6	4	723.602	-2.554	-10.064	-46.855	
6	2	722.193	-2.542	-10.072	-46.930	

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1015.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.0000000	-187614.740	300.000
NAME	H2O(L)	0.1304348	-285690.685	300.000

O/F= 2.00000 %FUEL= 33.333333 R,EQ.RATIO= 1.378917 PHI,EQ.RATIO= 1.926133

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7789	145.07	279.79	425.81	580.10
P, BAR	70.000	39.350	0.48253	0.25019	0.16439	0.12067
T, K	2139.53	1936.84	875.87	791.15	749.14	722.19
RHO, KG/CU M	7.3579 0	4.5695 0	1.2415-1	7.1780-2	5.0229-2	3.8530-2
H, KJ/KG	-6111.36	-6633.00	-9252.15	-9493.75	-9635.57	-9734.56
U, KJ/KG	-7062.72	-7494.15	-9640.82	-9842.31	-9962.85	-10047.7
G, KJ/KG	-32485.2	-30508.3	-20048.9	-19246.2	-18870.1	-18637.0
S, $KJ/(KG)(K)$	12.3269	12.3269	12.3269	12.3269	12.3269	12.3269
M, (1/n)	18.699	18.701	18.737	18.873	19.032	19.173
MW, MOL WT	18.699	18.701	18.737	18.873	19.032	19.173
(dLV/dLP)t	-1.00008	-1.00003	-1.00363	-1.01477	-1.02369	-1.02903
(dLV/dLT)p	1.0020	1.0007	1.0529	1.2288	1.3777	1.4718
Cp, $KJ/(KG)(K)$	2.6056	2.5499	2.7505	3.9066	4.9126	5.5546
GAMMAs	1.2067	1.2115	1.2125	1.1842	1.1697	1.1629
SON VEL, M/SEC	1071.4	1021.4	686.5	642.4	618.7	603.5
MACH NUMBER	0.000	1.000	3.651	4.048	4.291	4.461

PERFORMANCE PARAMETERS

Ae/At	1.0000	15.000	25.000	35.000	45.000
CSTAR, M/SEC	1499.8	1499.8	1499.8	1499.8	1499.8
CF	0.6810	1.6711	1.7342	1.7702	1.7949
Ivac, M/SEC	1864.5	2661.4	2734.9	2778.2	2808.3
Isp, M/SEC	1021.4	2506.3	2600.9	2654.9	2691.9

MOLE FRACTIONS

CH4	0.00000	0.00000	0.00095	0.00458	0.00883	0.01261
*CO	0.14798	0.14177	0.04472	0.02880	0.02091	0.01625
*CO2	0.08732	0.09355	0.19011	0.20411	0.20974	0.21241
* H	0.00021	0.00007	0.00000	0.00000	0.00000	0.00000
*H2	0.19137	0.19765	0.29159	0.29547	0.28922	0.28132
H20	0.57303	0.56693	0.47263	0.46704	0.47129	0.47741
*OH	0.00009	0.00002	0.00000	0.00000	0.00000	0.00000

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	СН300Н	COOH	*C2
C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene	O(CH)20

HO (CO) 20H	C2H3, vinyl	CH3CO, acetyl	C2H4	C2H4O, ethylen-o
CH3CHO, ethanal	СН3СООН	ОНСН2СООН	C2H5	C2H6
С2Н5ОН	CH3OCH3	CH302CH3	C20	*C3
C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-
C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O,acetone
C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8	C3H8O,1propanol
C3H8O,2propanol	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18,isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9, o-bipheny	C12H10,biphenyl	HCO
HCCO	HO2	HCHO, formaldehy	HCOOH	H2O2
(HCOOH) 2	*0	*02	03	C(gr)
H2O(cr)	H2O(L)			

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION AFTER POINT 3

Pin = 1015.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.0000000	-187614.740	300.000
NAME	H2O(L)	0.1304348	-285690.685	300.000

O/F= 2.00000 %FUEL= 33.333333 R,EQ.RATIO= 1.378917 PHI,EQ.RATIO= 1.926133

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7789	145.07	292.66	463.57	653.15
P, BAR	70.000	39.350	0.48253	0.23919	0.15100	0.10717
T, K	2139.53	1936.84	875.87	752.20	678.97	628.21
RHO, KG/CU M	7.3579 0	4.5695 0	1.2415-1	7.1659-2	5.0118-2	3.8445-2
H, KJ/KG	-6111.36	-6633.00	-9252.15	-9505.28	-9651.23	-9750.63
U, KJ/KG	-7062.72	-7494.15	-9640.82	-9839.07	-9952.52	-10029.4
G, KJ/KG	-32485.2	-30508.3	-20048.9	-18777.6	-18020.8	-17494.5
S, $KJ/(KG)(K)$	12.3269	12.3269	12.3269	12.3269	12.3269	12.3269
$M_{,}$ (1/n)	18.699	18.701	18.737	18.737	18.737	18.737
MW, MOL WT	18.699	18.701	18.737	18.737	18.737	18.737
Cp, KJ/(KG)(K)	2.6056	2.5499	2.7505	2.0132	1.9726	1.9440
GAMMAs	1.2067	1.2115	1.2125	1.2827	1.2902	1.2958
SON VEL, M/SEC	1071.4	1021.4	686.5	654.3	623.5	601.0

MACH NUMBER	0.000	1.000	3.651	3.982	4.268	4.489
PERFORMANCE PARAM	METERS					
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		1.0000 1499.8 0.6810 1864.5 1021.4	15.000 1499.8 1.6711 2661.4 2506.3	25.000 1499.8 1.7372 2733.5 2605.3	35.000 1499.8 1.7741 2774.0 2660.8	45.000 1499.8 1.7989 2801.2 2697.9
MOLE FRACTIONS						
	0.00095 0.29159	*CO H2O		.04472 ⁻	*C02	0.19011

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	СНЗООН	COOH	*C2
C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene	O(CH)20
HO (CO) 20H	C2H3, vinyl	CH3CO,acetyl	C2H4	C2H4O,ethylen-o
CH3CHO, ethanal	СН3СООН	OHCH2COOH	C2H5	C2H6
С2Н5ОН	CH3OCH3	CH302CH3	C20	*C3
C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-
C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone
C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8	C3H8O,1propanol
C3H8O,2propanol	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18, isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	HCO
HCCO	HO2	HCHO, formaldehy	HCOOH	H2O2
(HCOOH) 2	*0	*02	03	C(gr)
H20(cr)	H2O(L)			

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	T	С	H	0
1	2	2139.629	-11.106	-8.483	-20.573
Pinf/	Pt =	1.775690			
2	3	1937.478	-10.691	-8.595	-21.912
Pinf/	P+ =	1 778908			

2	2	1936.866	-10.690	-8.595	-21.917
3	8	873.194	-4.124	-9.516	-40.103
3	3	877.063	-4.172	-9.509	-39.956
4	4	795.712	-3.200	-9.714	-43.314
4	2	794.134	-3.183	-9.720	-43.385
5	4	750.954	-2.747	-9.891	-45.429
5	3	752.680	-2.763	-9.883	-45.343
6	4	727.335	-2.539	-10.006	-46.635
6	2	725.869	-2.527	-10.014	-46.712

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1160.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.000000	-187614.740	300.000
NAME	H2O(L)	0.1304348	-285690.685	300.000

O/F= 2.00000 %FUEL= 33.333333 R,EQ.RATIO= 1.378917 PHI,EQ.RATIO= 1.926133

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7789	144.93	279.05	424.43	578.10
P, BAR	80.000	44.971	0.55198	0.28668	0.18849	0.13839
T, K	2139.63	1936.87	877.06	794.13	752.68	725.87
RHO, KG/CU M	8.4087 0	5.2222 0	1.4189-1	8.2040-2	5.7407-2	4.4034-2
H, KJ/KG	-6111.36	-6633.02	-9251.91	-9493.30	-9635.32	-9734.57
U, KJ/KG	-7062.75	-7494.18	-9640.93	-9842.74	-9963.65	-10048.8
G, KJ/KG	-32359.3	-30393.6	-20011.3	-19235.4	-18868.8	-18639.2
S, $KJ/(KG)(K)$	12.2675	12.2675	12.2675	12.2675	12.2675	12.2675
$M_{,}$ (1/n)	18.699	18.701	18.746	18.895	19.060	19.204
MW, MOL WT	18.699	18.701	18.746	18.895	19.060	19.204
(dLV/dLP)t	-1.00007	-1.00003	-1.00446	-1.01631	-1.02497	-1.03000
(dLV/dLT)p	1.0019	1.0007	1.0651	1.2520	1.3969	1.4859
Cp, $KJ/(KG)(K)$	2.6040	2.5493	2.8280	4.0570	5.0327	5.6366
GAMMAs	1.2068	1.2116	1.2099	1.1816	1.1684	1.1622
SON VEL, M/SEC	1071.5	1021.4	686.0	642.6	619.4	604.4
MACH NUMBER	0.000	1.000	3.653	4.047	4.286	4.454

PERFORMANCE PARAMETERS

Ae/At	1.0000	15.000	25.000	35.000	45.000
CSTAR, M/SEC	1499.8	1499.8	1499.8	1499.8	1499.8
CF	0.6811	1.6711	1.7341	1.7701	1.7949
Ivac, M/SEC	1864.5	2661.4	2735.1	2778.5	2808.7
Isp, M/SEC	1021.4	2506.2	2600.7	2654.8	2691.9

MOLE FRACTIONS

CH4	0.00000	0.00000	0.00118	0.00519	0.00959	0.01344
*CO	0.14798	0.14177	0.04478	0.02899	0.02114	0.01646
*C02	0.08732	0.09355	0.18992	0.20359	0.20912	0.21176
* H	0.00019	0.00007	0.00000	0.00000	0.00000	0.00000
*H2	0.19137	0.19765	0.29076	0.29324	0.28646	0.27837
H20	0.57305	0.56694	0.47335	0.46898	0.47369	0.47998
*OH	0.00008	0.00002	0.00000	0.00000	0.00000	0.00000

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	СН300Н	COOH	*C2
C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene	O(CH)20
HO (CO) 20H	C2H3, vinyl	CH3CO,acetyl	C2H4	C2H4O,ethylen-o
CH3CHO, ethanal	СНЗСООН	OHCH2COOH	C2H5	C2H6
С2Н5ОН	CH3OCH3	CH302CH3	C20	*C3
C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-
C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone
C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8	C3H8O,1propanol
C3H8O,2propanol	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18,isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	HCO
HCCO	HO2	HCHO, formaldehy	HCOOH	H2O2
(HCOOH) 2	*0	*02	03	C(gr)
H2O(cr)	H2O(L)			

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION AFTER POINT 3

Pin = 1160.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.0000000	-187614.740	300.000
NAME	H2O(L)	0.1304348	-285690.685	300.000

O/F= 2.00000 %FUEL= 33.333333 R,EQ.RATIO= 1.378917 PHI,EQ.RATIO= 1.926133

Pinf/P			EXIT				
P, BAR							
T, K							
RHO, KG/CU M							
H, KJ/KG							
U, KJ/KG							
G, KJ/KG							
S, KJ/(KG)(K)							
S, NJ/(NG)(N)	12.2075	12.20/5	12.20/5	12.20/3	12.20/5	12.20/3	
M, (1/n)	18.699	18.701	18.746	18.746	18.746	18.746	
MW, MOL WT	18.699	18.701	18.746	18.746	18.746	18.746	
Cp, $KJ/(KG)(K)$	2.6040	2.5493	2.8280	2.0134	1.9727	1.9441	
	1.2068		1.2099	1.2825	1.2901	1.2956	
SON VEL, M/SEC	1071.5	1021.4	686.0	654.6	623.8	601.3	
MACH NUMBER							
PERFORMANCE PAR	AMETERS						
Ae/At		1.0000	15.000	25.000	35.000	45.000	
CSTAR, M/SEC		1499.8	1499.8	1499.8	1499.8	1499.8	
CF		0.6811	1.6711	1.7372	1.7742	1.7989	
Ivac, M/SEC			2661.4				
Isp, M/SEC		1021.4	2506.2	2605.3	2660.8	2698.0	
1,							
MOLE FRACTIONS							
CH4 *H2	0.00118 0.29076	*CO H2O		0.04478 0.47335	*CO2	0.18	992

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	СНЗООН	COOH	*C2
C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene	O(CH)20
HO(CO)2OH	C2H3, vinyl	CH3CO,acetyl	C2H4	C2H4O,ethylen-o
CH3CHO, ethanal	CH3COOH	OHCH2COOH	C2H5	C2H6
C2H5OH	CH3OCH3	CH302CH3	C20	*C3
C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-
C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone
C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8	C3H8O,1propanol
C3H8O,2propanol	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	${\tt C7H8O,cresol-mx}$	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	${\tt C7H16,2-methylh}$	C8H8,styrene	C8H10,ethylbenz

 C8H16,1-octene
 C8H17,n-octyl
 C8H18,n-octane
 C8H18,isooctane
 C9H19,n-nonyl

 C10H8,naphthale
 C10H21,n-decyl
 C12H9,o-bipheny
 C12H10,biphenyl
 HCO

 HCCO
 HO2
 HCHO,formaldehy
 HCOOH
 H2O2

 (HCOOH) 2
 *O
 *O2
 O3
 C(gr)

 H2O(cr)
 H2O(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	T	С	Н	0
1	2	2139.709	-10.988	-8.424	-20.572
Pinf/I	Pt =	1.775736			
2	3	1937.491	-10.573	-8.536	-21.912
Pinf/E	Pt =	1.778925			
2	2	1936.885	-10.572	-8.537	-21.917
3	8	874.344	-4.036	-9.460	-40.055
3	3	878.297	-4.084	-9.452	-39.906
4	4	798.571	-3.160	-9.661	-43.174
4	3	796.901	-3.143	-9.667	-43.249
5	4	754.083	-2.726	-9.840	-45.256
5	3	755.877	-2.742	-9.831	-45.168
6	4	730.697	-2.528	-9.955	-46.439
6	2	729.156	-2.515	-9.963	-46.519

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1305.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.000000	-187614.740	300.000
NAME	H2O(L)	0.1304348	-285690.685	300.000

O/F= 2.00000 %FUEL= 33.333333 R,EQ.RATIO= 1.378917 PHI,EQ.RATIO= 1.926133

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7789	144.79	278.38	423.20	576.33
P, BAR	90.000	50.592	0.62157	0.32329	0.21267	0.15616
T, K	2139.71	1936.88	878.30	796.90	755.88	729.16
RHO, KG/CU M	9.4595 0	5.8749 0	1.5963-1	9.2300-2	6.4585-2	4.9538-2
H, KJ/KG	-6111.36	-6633.04	-9251.66	-9492.92	-9635.14	-9734.64
U, KJ/KG	-7062.78	-7494.20	-9641.04	-9843.18	-9964.42	-10049.9
G, KJ/KG	-32248.2	-30292.4	-19980.2	-19227.2	-18868.3	-18641.4
S, KJ/(KG)(K)	12.2152	12.2152	12.2152	12.2152	12.2152	12.2152

M, (1/n)	18.699	18.701	18.754	18.917	19.086	19.232
MW, MOL WT	18.699	18.701	18.754	18.917	19.086	19.232
(dLV/dLP)t	-1.00007	-1.00002	-1.00531	-1.01767	-1.02607	-1.03082
(dLV/dLT)p	1.0018	1.0006	1.0774	1.2724	1.4131	1.4976
Cp, $KJ/(KG)(K)$	2.6026	2.5488	2.9061	4.1879	5.1323	5.7026
GAMMAs	1.2068	1.2116	1.2074	1.1796	1.1674	1.1617
SON VEL, M/SEC	1071.5	1021.5	685.7	642.8	620.0	605.2
MACH NUMBER	0.000	1.000	3.655	4.046	4.282	4.448

PERFORMANCE PARAMETERS

Ae/At	1.0000	15.000	25.000	35.000	45.000
CSTAR, M/SEC	1499.8	1499.8	1499.8	1499.8	1499.8
CF	0.6811	1.6710	1.7340	1.7701	1.7949
Ivac, M/SEC	1864.5	2661.5	2735.3	2778.8	2809.0
Isp, M/SEC	1021.5	2506.1	2600.6	2654.7	2691.9

MOLE FRACTIONS

CH4	0.00000	0.00000	0.00142	0.00576	0.01029	0.01419
*CO	0.14798	0.14177	0.04485	0.02917	0.02133	0.01664
*CO2	0.08731	0.09355	0.18973	0.20311	0.20856	0.21119
* H	0.00018	0.00007	0.00000	0.00000	0.00000	0.00000
*H2	0.19137	0.19765	0.28990	0.29117	0.28396	0.27571
H2O	0.57306	0.56694	0.47410	0.47079	0.47586	0.48228
*OH	0.00008	0.00002	0.00000	0.00000	0.00000	0.00000

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	CH300H	COOH	*C2
C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene	O(CH)20
HO(CO)2OH	C2H3, vinyl	CH3CO,acetyl	C2H4	C2H4O,ethylen-o
CH3CHO, ethanal	CH3COOH	OHCH2COOH	C2H5	C2H6
C2H5OH	CH3OCH3	CH302CH3	C20	*C3
C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-
C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone
C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8	C3H8O,1propanol
C3H8O,2propanol	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	С7Н8	C7H8O,cresol-mx	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18,isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	HCO
HCCO	HO2	HCHO, formaldehy	HCOOH	H2O2
(HCOOH) 2	*0	*02	03	C(gr)
H20(cr)	H2O(L)			

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION AFTER POINT 3

Pin = 1305.3 PSIA CASE =

FUEL C2H	CTANT 150H(L) 12(L) 12(L)	(SEE 1 0.8695 1.0000	ETION ENE NOTE) KJ/K 6652 -277301 0000 -187614 1348 -285690	G-MOL K	
O/F= 2.00000	%FUEL= 33.333333	R,EQ.RATIO=	1.378917 PHI	,EQ.RATIO= 1.926	133
P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG	CHAMBER THROAT 1.0000 1.7789 90.000 50.592 2139.71 1936.88 9.4595 0 5.8749 0 -6111.36 -6633.04 -7062.78 -7494.20 -32248.2 -30292.4 12.2152 12.2152	144.79 29 0.62157 0.3 878.30 75 1.5963-1 9.21 -9251.66 -950 -9641.04 -983 -19980.2 -187	32.06 462.57 30816 0.19456 34.44 681.08 33-2 6.4436-2 35.21 -9651.44 39.69 -9953.39 720.9 -17971.0	651.71 0.13810 630.23 4.9426-2 -9751.04 -10030.4 -17449.4	
MW, MOL WT Cp, KJ/(KG)(K) GAMMAS SON VEL,M/SEC MACH NUMBER	2.6026 2.5488 1.2068 1.2116 1071.5 1021.5 0.000 1.000	18.754 18 2.9061 2. 1.2074 1. 685.7	3.754 18.754 .0136 1.9729 .2823 1.2898 .554.9 624.1	18.754 1.9442 1.2954 601.6	
PERFORMANCE PAR		15.000 25	5.000 35.000	45.000	
CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC	0.6811 1864.5	1499.8 14 1.6710 1. 2661.5 2 2506.1 26	.7372 1.7742 733.7 2774.3	1.7990 2801.6	
MOLE FRACTIONS					

0.47410

0.28990 H2O

CH4

*H2

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

* C *CH CH2 CH3 CH2OH

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

CH30	СНЗОН	CH300H	COOH	*C2
C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene	O(CH)20
HO(CO)2OH	C2H3, vinyl	CH3CO,acetyl	C2H4	C2H4O,ethylen-o
CH3CHO, ethanal	СН3СООН	ОНСН2СООН	C2H5	C2H6
С2Н5ОН	СН3ОСН3	CH302CH3	C20	*C3
C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-
C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone
C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8	C3H8O,1propanol
C3H8O,2propanol	C302	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	${\tt C7H8O,cresol-mx}$	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18, isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	HCO
HCCO	HO2	HCHO, formaldehy	HCOOH	H2O2
(HCOOH) 2	*0	*02	03	C(gr)
H20(cr)	H2O(L)			

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT I	ITN	Т	С	Н	0
1	2	2139.777	-10.883	-8.371	-20.572
Pinf/Pt	t = 1	.775776			
2	3	1937.503	-10.468	-8.484	-21.912
Pinf/Pt	t = 1	.778940			
2	2	1936.901	-10.467	-8.484	-21.917
3	8	875.517	-3.962	-9.411	-40.007
3	3	879.556	-4.010	-9.402	-39.855
4	4	801.254	-3.128	-9.614	-43.044
4	3	799.479	-3.110	-9.620	-43.122
5	4	756.914	-2.709	-9.794	-45.101
5	3	758.790	-2.725	-9.786	-45.010
6	4	733.758	-2.518	-9.909	-46.262
6	3	732.129	-2.506	-9.917	-46.346

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1450.4 PSIA

CASE =

FileEditor:xEx9.out							
	REACTANT		WT	FRACTION	ENE	RGY T G-MOL	EMP
			(3)	SEE NOTE)	KJ/K0	G-MOL	K
FUEL	C2H5OH(L)		0	.8695652	-277301	.667 30	0.000
OXIDANT	H2O2(L)					.740 30	
	H2O(L)					.685 30	
O/F= 2.00	000 %FUEL=	33.333333	R,EQ.RA	rio= 1.378	8917 PHI,	,EQ.RATIO=	1.926133
	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT	
Pinf/P	1.0000	1.7789	144.65	277.77	422.10	574.76	
P, BAR	100.00	56.213	0.69132	0.36001	0.23691	0.17399	
T, K	2139.78	1936.90	879.56	799.48	758.79	732.13	
RHO, KG/CU M H, KJ/KG	1.0510 1	6.5276 0	1.7738-1	1.0256-1	7.1762-2	5.5041-2	
H, KJ/KG	-6111.36	-6633.05	-9251.41	-9492.59	-9635.02	-9734.75	
U, KJ/KG	-7062.80	-7494.22	-9641.15	-9843.61	-9965.16	-10050.8	
G, KJ/KG	-32148.8	-30201.9	-19954.1	-19220.9	-18868.2	-18643.5	
S, KJ/(KG)(K) 12.1683	12.1683	12.1683	12.1683	12.1683	12.1683	
M, (1/n)	18.699	18.701	18.764	18.937	19.110	19.258	
MW, MOL WT	18.699	18.701	18.764	18.937	19.110	19.258	
MW, MOL WT (dLV/dLP)t	-1.00007	-1.00002	-1.00616	-1.01889	-1.02702	-1.03152	
a(TJb/VJb)	1.0017	1.0006	1.0897	1.2905	1.4270	1.5075	
Cp, KJ/(KG)(K) 2.6015	2.5484	2.9837	4.3028	5.2161	5.7566	
	1.2069						
	C 1071.6						
MACH NUMBER	0.000	1.000	3.657	4.044	4.278	4.443	
PERFORMANCE	PARAMETERS						
Ae/At			15.000			45.000	
CSTAR, M/SEC		1499.8			1499.8		
CF .		0.6811	1.6709			1.7949	
CF Ivac, M/SEC Isp, M/SEC		1864.5					
Isp, M/SEC		1021.5	2506.0	2600.5	2654.7	2692.0	
MOLE FRACTIC	NS						

CH4	0.00000	0.00000	0.00167	0.00629	0.01093	0.01487
*CO	0.14799	0.14177	0.04491	0.02933	0.02150	0.01680
*C02	0.08731	0.09355	0.18954	0.20267	0.20805	0.21067
*H	0.00017	0.00006	0.00000	0.00000	0.00000	0.00000
*H2	0.19138	0.19765	0.28902	0.28923	0.28167	0.27328
H2O	0.57307	0.56695	0.47486	0.47247	0.47786	0.48439
*OH	0.00007	0.00002	0.00000	0.00000	0.00000	0.00000

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	СНЗОН	CH300H	COOH	*C2
C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene	O(CH)20
HO(CO)2OH	C2H3, vinyl	CH3CO,acetyl	C2H4	C2H4O,ethylen-o
CH3CHO, ethanal	CH3COOH	OHCH2COOH	C2H5	C2H6
C2H5OH	СН3ОСН3	CH302CH3	C20	*C3

C3H3,1-propynl C3H5,allyl C3H60,propanal C3H80,2propanol C4H6,butadiene C4H8,cis2-buten C4H9,n-butyl C4H10,isobutane C5H10,cyclo- CH3C(CH3)2CH3 C6H5OH,phenol C6H14,n-hexane C7H15,n-heptyl C8H16,1-octene C1OH8,naphthale HCCO (HCOOH)2	C4H6,1butyne C4H8,tr2-butene C4H9,i-butyl *C5 C5H11,pentyl C6H2 C6H10,cyclo- C7H7,benzyl	C4H9,s-butyl C5H6,1,3cyclo- C5H11,t-pentyl C6H5,phenyl C6H12,1-hexene C7H8 C7H16,2-methylh C8H18,n-octane	C8H18, isooctane C12H10, biphenyl	C3H4,cyclo- C3H6O,acetone C3H8O,lpropanol C4H4,1,3-cyclo- C4H8,1-butene (CH3COOH)2 C4H1O,n-butane C5H1O,1-pentene C5H12,i-pentane C6H6 C6H13,n-hexyl C7H14,1-heptene C8H1O,ethylbenz C9H19,n-nonyl HCO H2O2 C(gr)
(HCOOH) 2 H2O(cr)	*O H2O(L)	*02	03	C(gr)
/				

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION AFTER POINT 3

Pin = 1450.4 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.000000	-187614.740	300.000
NAME	H2O(L)	0.1304348	-285690.685	300.000

O/F= 2.00000 %FUEL= 33.333333 R,EQ.RATIO= 1.378917 PHI,EQ.RATIO= 1.926133

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7789	144.65	291.75	462.06	650.96
P, BAR	100.00	56.213	0.69132	0.34276	0.21642	0.15362
T, K	2139.78	1936.90	879.56	755.61	682.18	631.28
RHO, KG/CU M	1.0510 1	6.5276 0	1.7738-1	1.0237-1	7.1594-2	5.4917-2
H, KJ/KG	-6111.36	-6633.05	-9251.41	-9505.19	-9651.56	-9751.27
U, KJ/KG	-7062.80	-7494.22	-9641.15	-9840.01	-9953.85	-10031.0
G, KJ/KG	-32148.8	-30201.9	-19954.1	-18699.7	-17952.6	-17432.9
S, $KJ/(KG)(K)$	12.1683	12.1683	12.1683	12.1683	12.1683	12.1683
M, (1/n)	18.699	18.701	18.764	18.764	18.764	18.764
MW, MOL WT	18.699	18.701	18.764	18.764	18.764	18.764
Cp, $KJ/(KG)(K)$	2.6015	2.5484	2.9837	2.0138	1.9730	1.9443
GAMMAs	1.2069	1.2116	1.2051	1.2821	1.2896	1.2952
SON VEL, M/SEC	1071.6	1021.5	685.3	655.2	624.4	601.9
MACH NUMBER	0.000	1.000	3.657	3.976	4.262	4.483

PERFORMANCE PARAMETERS

Ae/At	1.0000	15.000	25.000	35.000	45.000
CSTAR, M/SEC	1499.8	1499.8	1499.8	1499.8	1499.8
CF	0.6811	1.6709	1.7371	1.7742	1.7990
Ivac, M/SEC	1864.5	2661.5	2733.8	2774.5	2801.8
Isp, M/SEC	1021.5	2506.0	2605.3	2660.9	2698.1

MOLE FRACTIONS

CH4	0.00167	*CO	0.04491	*C02	0.18954
*H2	0.28902	H2O	0.47486		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C *CH CH2 CH3 CH20	н20н
CH30 CH30H CH300H COOH *C2	C2
C2H C2H2, acetylene C2H2, vinylidene CH2CO, ketene O(CH	(CH) 20
HO(CO)2OH C2H3, vinyl CH3CO, acetyl C2H4 C2H4	2H4O,ethylen-o
CH3CHO, ethanal CH3COOH OHCH2COOH C2H5 C2H6	2H6
C2H5OH CH3OCH3 CH3O2CH3 C2O *C3	C3
C3H3,1-propynl C3H3,2-propynl C3H4,allene C3H4,propyne C3H4	3H4,cyclo-
C3H5, allyl C3H6, propylene C3H6, cyclo- C3H6O, propylox C3H6	3H6O,acetone
C3H6O, propanal C3H7, n-propyl C3H7, i-propyl C3H8 C3H8	3H8O,1propanol
C3H8O,2propanol C3O2 *C4 C4H2,butadiyne C4H4	4H4,1,3-cyclo-
C4H6, butadiene C4H6, 1butyne C4H6, 2butyne C4H6, cyclo- C4H8	4H8,1-butene
C4H8, cis2-buten C4H8, tr2-butene C4H8, isobutene C4H8, cyclo- (CH3	СН3СООН) 2
C4H9, n-butyl C4H9, i-butyl C4H9, s-butyl C4H9, t-butyl C4H1	4H10,n-butane
C4H10, isobutane *C5 C5H6, 1, 3cyclo- C5H8, cyclo- C5H1	5H10,1-pentene
C5H10, cyclo- C5H11, pentyl C5H11, t-pentyl C5H12, n-pentane C5H1	5H12,i-pentane
CH3C (CH3) 2CH3 C6H2 C6H5, phenyl C6H5O, phenoxy C6H6	6H6
C6H5OH, phenol C6H10, cyclo- C6H12, 1-hexene C6H12, cyclo- C6H1	6H13,n-hexyl
C6H14, n-hexane C7H7, benzyl C7H8 C7H8O, cresol-mx C7H1	7H14,1-heptene
C7H15, n-heptyl C7H16, n-heptane C7H16, 2-methylh C8H8, styrene C8H1	8H10,ethylbenz
C8H16,1-octene C8H17,n-octyl C8H18,n-octane C8H18,isooctane C9H1	9H19,n-nonyl
C10H8, naphthale C10H21, n-decyl C12H9, o-bipheny C12H10, biphenyl HCO	CO
HCCO HO2 HCHO, formaldehy HCOOH H2O2	202
(HCOOH) 2 *0 *02 03 C (gr	(gr)
H2O(cr) H2O(L)	

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 3.000000

ENTHALPY (KG-MOL)(K)/KG	EFFECTIVE FUEL h(2)/R -0.87830508E+03	EFFECTIVE OXIDANT h(1)/R -0.66338234E+03	MIXTURE h0/R -0.71711302E+03
KG-FORM.WT./KG *C	bi(2)	bi(1)	b0i
	0.37751016E-01	0.00000000E+00	0.94377541E-02

*H *O			0.12773351E+00 0.26115739E-01			0.76031984E-01 0.50627542E-01
POINT	ITN	Т	С	Н	0	
1	8	2691.999	-15.349	-9.496	-16.731	
Pinf/	Pt = :	1.748906				
2	4	2489.556	-15.280	-9.631	-17.515	
Pinf/	Pt = :	1.755469				
2	2	2488.209	-15.279	-9.632	-17.521	
Pinf/Pt = 1.755510						
2	1	2488.201	-15.279	-9.632	-17.521	
3	5	1204.050	-11.593	-10.505	-29.692	
3	3	1214.926	-11.668	-10.495	-29.476	
4	4	1084.355	-10.674	-10.620	-32.361	
4	3	1075.002	-10.594	-10.630	-32.594	
5	4	981.600	-9.713	-10.733	-35.171	
5	3	990.531	-9.804	-10.723	-34.904	
6	3	939.539	-9.263	-10.784	-36.498	
6	3	930.994	-9.167	-10.794	-36.782	

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1015.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.000000	-187614.740	300.000
NAME	H2O(L)	0.1304348	-285690.685	300.000

O/F= 3.00000 %FUEL= 25.000000 R,EQ.RATIO= 1.123726 PHI,EQ.RATIO= 1.284089

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7555	136.17		414.61	
P, BAR	70.000	39.874	0.51406	0.26226	0.16883	
•						
T, K	2692.00	2488.20	1214.93	1075.00	990.53	930.99
RHO, KG/CU M	6.5642 0	4.0542 0	1.0724-1	6.1832-2	4.3200-2	3.3107-2
H, KJ/KG	-5962.44	-6539.13	-9625.40	-9929.13	-10108.5	-10232.9
U, KJ/KG	-7028.83	-7522.68	-10104.8	-10353.3	-10499.3	-10600.2
G, KJ/KG	-38361.2	-36485.2	-24247.3	-22867.0	-22029.8	-21437.6
S, KJ/(KG)(K)	12.0352	12.0352	12.0352	12.0352	12.0352	12.0352
$M_{,}$ (1/n)	20.989	21.034	21.073	21.073	21.073	21.073
MW, MOL WT	20.989	21.034	21.073	21.073	21.073	21.073
(dLV/dLP)t	-1.00220	-1.00098	-1.00000	-1.00000	-1.00000	-1.00000
(dLV/dLT)p	1.0535	1.0257	1.0000	1.0000	1.0000	1.0000
Cp, KJ/(KG)(K)	3.0894	2.8057	2.1976	2.1425	2.1039	2.0722
GAMMAs	1.1629	1.1727	1.2188	1.2257	1.2308	1.2352
SON VEL, M/SEC	1113.6	1074.0	764.4	721.0	693.6	673.6
MACH NUMBER	0.000	1.000	3.541	3.906	4.152	4.339

PERFORMANCE PARAMETERS

Ae/At	1.0000	15.000	25.000	35.000	45.000
CSTAR, M/SEC	1607.7	1607.7	1607.7	1607.7	1607.7
CF	0.6680	1.6835	1.7519	1.7911	1.8178
Ivac, M/SEC	1989.8	2883.7	2967.2	3015.3	3048.2
Isp, M/SEC	1074.0	2706.6	2816.6	2879.6	2922.5

MOLE FRACTIONS

*CO	0.07193	0.06911	0.03329	0.02496	0.01960	0.01583
*C02	0.12616	0.12941	0.16559	0.17392	0.17928	0.18305
* H	0.00165	0.00096	0.00000	0.00000	0.00000	0.00000
*H2	0.06228	0.06364	0.09871	0.10704	0.11240	0.11617
H20	0.73213	0.73427	0.70241	0.69408	0.68872	0.68495
*0	0.00008	0.00002	0.00000	0.00000	0.00000	0.00000
*OH	0.00538	0.00248	0.00000	0.00000	0.00000	0.00000
*02	0.00039	0.00010	0.00000	0.00000	0.00000	0.00000

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH3O	CH4	СНЗОН	СН300Н	COOH
*C2	C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene
O(CH)20	HO(CO)2OH	C2H3, vinyl	CH3CO,acetyl	C2H4
C2H4O,ethylen-o	CH3CHO, ethanal	CH3COOH	OHCH2COOH	C2H5
C2H6	С2Н5ОН	CH3OCH3	CH302CH3	C20
*C3	C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne
C3H4,cyclo-	C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox
C3H6O,acetone	C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8
C3H8O,1propanol	C3H8O,2propanol	C302	*C4	C4H2,butadiyne
C4H4,1,3-cyclo-	C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-
C4H8,1-butene	C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-
(CH3COOH) 2	C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl
C4H10,n-butane	C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-
C5H10,1-pentene	C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane
C5H12,i-pentane	CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy
C6H6	C6H5OH,phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-
C6H13,n-hexyl	C6H14,n-hexane	C7H7,benzyl	С7Н8	C7H8O,cresol-mx
C7H14,1-heptene	C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene
${\tt C8H10,ethylbenz}$	C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18, isooctane
C9H19,n-nonyl	${\tt C10H8,naphthale}$	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl
HCO	HCCO	HO2	HCHO, formaldehy	НСООН
H2O2	(HCOOH) 2	03	C(gr)	H20(cr)
H2O(L)				

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION AFTER POINT 3

Pin = 1015.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.000000	-187614.740	300.000
NAME	H2O(L)	0.1304348	-285690.685	300.000

O/F= 3.00000 %FUEL= 25.000000 R,EQ.RATIO= 1.123726 PHI,EQ.RATIO= 1.284089

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7555	136.17	268.93	420.21	586.16
P, BAR	70.000	39.874	0.51406	0.26029	0.16658	0.11942
T, K	2692.00	2488.20	1214.93	1067.24	977.66	914.52
RHO, KG/CU M	6.5642 0	4.0542 0	1.0724-1	6.1814-2	4.3185-2	3.3096-2
H, KJ/KG	-5962.44	-6539.13	-9625.40	-9931.49	-10111.5	-10235.7
U, KJ/KG	-7028.83	-7522.68	-10104.8	-10352.6	-10497.2	-10596.5
G, KJ/KG	-38361.2	-36485.2	-24247.3	-22775.9	-21877.9	-21242.1
S, $KJ/(KG)(K)$	12.0352	12.0352	12.0352	12.0352	12.0352	12.0352
M, (1/n)	20.989	21.034	21.073	21.073	21.073	21.073
MW, MOL WT	20.989	21.034	21.073	21.073	21.073	21.073
Cp, $KJ/(KG)(K)$	3.0894	2.8057	2.1976	2.0334	1.9846	1.9492
GAMMAs	1.1629	1.1727	1.2188	1.2407	1.2481	1.2538
SON VEL, M/SEC	1113.6	1074.0	764.4	722.8	693.9	672.6
MACH NUMBER	0.000	1.000	3.541	3.898	4.152	4.346

PERFORMANCE PARAMETERS

Ae/At	1.0000	15.000	25.000	35.000	45.000
CSTAR, M/SEC	1607.7	1607.7	1607.7	1607.7	1607.7
CF	0.6680	1.6835	1.7525	1.7917	1.8184
Ivac, M/SEC	1989.8	2883.7	2966.9	3014.5	3046.9
Isp, M/SEC	1074.0	2706.6	2817.5	2880.6	2923.4

MOLE FRACTIONS

*CO	0.03329	*CO2	0.16559	*H2	0.09871
H2O	0.70241				

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	CH4	СНЗОН	CH300H	COOH
*C2	C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene
O(CH)20	HO(CO)2OH	C2H3, vinyl	CH3CO,acetyl	C2H4
C2H4O,ethylen-o	CH3CHO, ethanal	CH3COOH	OHCH2COOH	C2H5
C2H6	С2Н5ОН	CH3OCH3	CH302CH3	C20
*C3	C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne
C3H4,cyclo-	C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox

C3H6O, acetone	C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8
C3H8O,1propanol	C3H8O,2propanol	C302	*C4	C4H2,butadiyne
C4H4,1,3-cyclo-	C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-
C4H8,1-butene	C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-
(CH3COOH) 2	C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl
C4H10,n-butane	C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-
C5H10,1-pentene	C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane
C5H12,i-pentane	CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy
C6H6	C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-
C6H13,n-hexyl	C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx
C7H14,1-heptene	C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene
C8H10,ethylbenz	C8H16,1-octene	C8H17,n-octyl	C8H18, n-octane	C8H18, isooctane
C9H19,n-nonyl	C10H8, naphthale	C10H21,n-decyl	C12H9, o-bipheny	C12H10,biphenyl
HCO	HCCO	HO2	HCHO, formaldehy	НСООН
H2O2	(HCOOH) 2	03	C(gr)	H20(cr)
H2O(L)				

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	Т	С	Н	0
1	3	2694.397	-15.225	-9.432	-16.720
Pinf/	Pt =	1.749488			
2	4	2490.513	-15.151	-9.565	-17.510
Pinf/	Pt =	1.755866			
2	2	2489.198	-15.150	-9.566	-17.516
3	5	1203.792	-11.458	-10.438	-29.697
3	3	1214.754	-11.533	-10.428	-29.479
4	4	1084.282	-10.539	-10.553	-32.363
4	3	1074.848	-10.458	-10.563	-32.598
5	4	981.380	-9.576	-10.666	-35.178
5	3	990.386	-9.668	-10.656	-34.908
6	3	939.475	-9.128	-10.717	-36.500
6	3	930.857	-9.032	-10.728	-36.787

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1160.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.0000000	-187614.740	300.000
NAME	H2O(L)	0.1304348	-285690.685	300.000

O/F= 3.00000 %FUEL= 25.000000 R,EQ.RATIO= 1.123726 PHI,EQ.RATIO= 1.284089

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000		136.21		414.72	
P, BAR	80.000				0.19290	
Т, К	2694.40			1074.85		
RHO, KG/CU M	7.4971 0	4.6311 0	1.2254-1	7.0657-2	4.9366-2	3.7833-2
H, KJ/KG				-9929.46		
U, KJ/KG	-7029.53	-7523.43	-10105.1	-10353.5	-10499.6	-10600.4
G, KJ/KG	-38247.6	-36366.0	-24181.4	-22808.6	-21976.0	-21387.0
S, KJ/(KG)(K)	11.9823	11.9823	11.9823	11.9823	11.9823	11.9823
M, (1/n)	20.994	21.037	21.073	21.073	21.073	21.073
MW, MOL WT		21.037	21.073	21.073	21.073	21.073
(dLV/dLP)t	-1.00206	-1.00092	-1.00000	-1.00000	-1.00000	-1.00000
(dLV/dLT)p	1.0501	1.0240	1.0000	1.0000	1.0000	1.0000
Cp, $KJ/(KG)(K)$	3.0568	2.7881	2.1975	2.1424	2.1038	2.0722
GAMMAs	1.1639	1.1734	1.2188	1.2257	1.2308	1.2352
SON VEL,M/SEC	1114.4	1074.4	764.3	721.0	693.5	673.5
MACH NUMBER	0.000	1.000	3.541	3.907	4.152	4.339
PERFORMANCE PAR	AMETERS					
Ae/At		1.0000	15.000	25.000	35.000	45.000
CSTAR, M/SEC		1607.8	1607.8	1607.8	1607.8	1607.8
CF		0.6682	1.6835	1.7519	1.7910	1.8177
Ivac, M/SEC		1990.1	2883.9	2967.3	3015.4	3048.2
Isp, M/SEC		1074.4	2706.8	2816.7	2879.7	2922.6
MOLE FRACTIONS						
11022 11010110110						
*CO	0.07188	0.06909	0.03328	0.02495	0.01959	0.01582
*C02	0.12625	0.12944	0.16560	0.17393	0.17929	0.18306
*H	0.00155	0.00090	0.00000	0.00000	0.00000	0.00000
*H2	0.06218	0.06360	0.09872	0.10705	0.11241	0.11618
H20	0.73261	0.73451	0.70240	0.69407	0.68871	0.68494
*0	0.00007	0.00002	0.00000	0.00000	0.00000	0.00000
*OH	0.00510	0.00234	0.00000	0.00000	0.00000	0.00000
*02	0.00035	0.00009	0.00000	0.00000	0.00000	0.00000

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH3O	CH4	СНЗОН	СН300Н	COOH
*C2	C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene
O(CH)20	HO(CO)2OH	C2H3, vinyl	CH3CO,acetyl	C2H4
C2H4O,ethylen-o	CH3CHO, ethanal	CH3COOH	OHCH2COOH	C2H5
C2H6	С2Н5ОН	CH3OCH3	CH302CH3	C20
*C3	C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne
C3H4,cyclo-	C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O, propylox
C3H6O, acetone	C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	C3H8
C3H8O,1propanol	C3H8O,2propanol	C302	*C4	C4H2, butadiyne
C4H4,1,3-cyclo-	C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-
C4H8,1-butene	C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-

(CH3COOH) 2	C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl
C4H10,n-butane	C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-
C5H10,1-pentene	C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane
C5H12,i-pentane	CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy
C6H6	C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-
C6H13,n-hexyl	C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx
C7H14,1-heptene	C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene
C8H10,ethylbenz	C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18, isooctane
C9H19,n-nonyl	C10H8, naphthale	C10H21,n-decyl	C12H9, o-bipheny	C12H10,biphenyl
HCO	HCCO	HO2	HCHO, formaldehy	HCOOH
H2O2	(HCOOH) 2	03	C(gr)	H20(cr)
H2O(L)				

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

Pin = 1160.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.000000	-187614.740	300.000
NAME	H2O(L)	0.1304348	-285690.685	300.000

O/F= 3.00000 %FUEL= 25.000000 R,EQ.RATIO= 1.123726 PHI,EQ.RATIO= 1.284089

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7559	136.21	269.00	420.32	586.32
P, BAR	80.000	45.562	0.58734	0.29739	0.19033	0.13645
T, K	2694.40	2489.20	1214.75	1067.08	977.52	914.38
RHO, KG/CU M	7.4971 0	4.6311 0	1.2254-1	7.0636-2	4.9348-2	3.7820-2
H, KJ/KG	-5962.44	-6539.61	-9625.78	-9931.82	-10111.8	-10235.9
U, KJ/KG	-7029.53	-7523.43	-10105.1	-10352.8	-10497.4	-10596.7
G, KJ/KG	-38247.6	-36366.0	-24181.4	-22717.9	-21824.7	-21192.3
S, $KJ/(KG)(K)$	11.9823	11.9823	11.9823	11.9823	11.9823	11.9823
M, (1/n)	20.994	21.037	21.073	21.073	21.073	21.073
MW, MOL WT	20.994	21.037	21.073	21.073	21.073	21.073
Cp, $KJ/(KG)(K)$	3.0568	2.7881	2.1975	2.0333	1.9845	1.9492
GAMMAs	1.1639	1.1734	1.2188	1.2408	1.2482	1.2538
SON VEL, M/SEC	1114.4	1074.4	764.3	722.8	693.8	672.6
MACH NUMBER	0.000	1.000	3.541	3.898	4.152	4.347

PERFORMANCE PARAMETERS

Ae/At	1.0000	15.000	25.000	35.000	45.000
CSTAR, M/SEC	1607.8	1607.8	1607.8	1607.8	1607.8
CF	0.6682	1.6835	1.7524	1.7917	1.8183
Ivac, M/SEC	1990.1	2883.9	2967.0	3014.6	3046.9
Isp, M/SEC	1074.4	2706.8	2817.6	2880.7	2923.5

MOLE FRACTIONS

*CO	0.03328	*C02	0.16560	*H2	0.09872
H20	0.70240				

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	CH4	СНЗОН	CH300H	COOH
*C2	C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene
O(CH)20	HO(CO)2OH	C2H3, vinyl	CH3CO,acetyl	C2H4
C2H4O,ethylen-o	CH3CHO, ethanal	СНЗСООН	OHCH2COOH	C2H5
C2H6	С2Н5ОН	CH3OCH3	CH302CH3	C20
*C3	C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne
C3H4,cyclo-	C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox
C3H6O,acetone	C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8
C3H8O,1propanol	C3H8O,2propanol	C302	*C4	C4H2,butadiyne
C4H4,1,3-cyclo-	C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-
C4H8,1-butene	C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-
(CH3COOH) 2	C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl
C4H10,n-butane	C4H10, isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-
C5H10,1-pentene	C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane
C5H12,i-pentane	CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy
C6H6	C6H5OH,phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-
C6H13,n-hexyl	C6H14,n-hexane	C7H7,benzyl	C7H8	${\tt C7H8O,cresol-mx}$
C7H14,1-heptene	C7H15,n-heptyl	C7H16,n-heptane	${\tt C7H16,2-methylh}$	C8H8,styrene
C8H10,ethylbenz	C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18,isooctane
C9H19,n-nonyl	${\tt C10H8,naphthale}$	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl
HCO	HCCO	HO2	$\mbox{HCHO,} \mbox{formaldehy}$	НСООН
H2O2	(HCOOH) 2	03	C(gr)	H20(cr)
H2O(L)				

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	Т	С	Н	0
1	3	2696.408	-15.116	-9.375	-16.711
Pinf/	?t =	1.749983			
2	4	2491.306	-15.037	-9.507	-17.506
Pinf/	?t =	1.756197			
2	2	2490.020	-15.036	-9.508	-17.512
3	5	1203.576	-11.338	-10.379	-29.701
3	3	1214.611	-11.414	-10.369	-29.482
4	4	1084.223	-10.420	-10.494	-32.364
4	3	1074.719	-10.339	-10.504	-32.602
5	4	981.197	-9.456	-10.607	-35.184
5	3	990.267	-9.549	-10.597	-34.912
6	3	939.423	-9.010	-10.658	-36.502
6	3	930.743	-8.912	-10.669	-36.791

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1305.3 PSIA CASE =

*0

*OH

REA	CTANT		WT	FRACTION	ENE	RGY I	'EMP
				SEE NOTE)		G-MOL	K
	50H(L)			.8695652			0.000
	2(L)		_			.740 30	
NAME H20	(L)		0	.1304348	-285690	.685 30	0.000
O/F= 3.00000	%FUEL= 2	25.000000	R,EQ.RA	TIO= 1.123	3726 PHI,	,EQ.RATIO=	1.284
	CHAMBER		EXIT		EXIT		
Pinf/P	1.0000			267.04			
P, BAR		51.247		0.33703			
T, K				1074.72			
RHO, KG/CU M H, KJ/KG	8.4296 0	5.2078 0	1.3785-1	7.9481-2	5.5531-2	4.2558-2	
	-7030.11						
G, KJ/KG							
S, KJ/(KG)(K)	11.9357	11.9357	11.9357	11.9357	11.9357	11.9357	
M, (1/n)	20.998	21.039	21.073	21.073	21.073	21.073	
MW, MOL WT	20.998						
(dLV/dLP)t	-1.00195			-1.00000	-1.00000	-1.00000	
(dLV/dLT)p	1.0473	1.0226	1.0000	1.0000	1.0000	1.0000	
Cp, KJ/(KG)(K)				2.1423			
GAMMAs	1.1647	1.1739	1.2188	1.2257	1.2308	1.2352	
SON VEL, M/SEC	1115.1	1074.8	764.3	720.9	693.5	673.5	
MACH NUMBER	0.000	1.000	3.542	3.907	4.153	4.339	
PERFORMANCE PAR	AMETERS						
Ae/At		1.0000	15 000	25.000	35.000	45.000	
CSTAR, M/SEC		1607.9					
CF M/ SEC		0.6684		1.7518			
Ivac, M/SEC		1990.4					
Isp, M/SEC		1074.8		2816.8			
13P, M/ 3EC		10/4.0	2700.9	2010.0	2015.0	2,22.0	
MOLE FRACTIONS							
*CO	0.07184	0.06908	0.03328	0.02495	0.01959	0.01582	
*C02		0.12948					
*H		0.00085					
*H2		0.06357					
H2O	0.73301						
1120	0.75501	0.10-11	0.10233	0.00=00	0.00070	0.00493	

0.00007 0.00002 0.00000 0.00000 0.00000 0.00000

0.00486 0.00221 0.00000 0.00000 0.00000 0.00000

*02 0.00032 0.00008 0.00000 0.00000 0.00000

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	CH4	СНЗОН	СН300Н	COOH
*C2	C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene
O(CH)20	HO(CO)2OH	C2H3, vinyl	CH3CO,acetyl	C2H4
C2H4O,ethylen-o	CH3CHO, ethanal	СН3СООН	OHCH2COOH	C2H5
C2H6	С2Н5ОН	СН3ОСН3	CH302CH3	C20
*C3	C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne
C3H4,cyclo-	C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox
C3H6O,acetone	C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	СЗН8
C3H8O,1propanol	C3H8O,2propanol	C302	*C4	C4H2,butadiyne
C4H4,1,3-cyclo-	C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-
C4H8,1-butene	C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-
(CH3COOH) 2	C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl
C4H10,n-butane	C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-
C5H10,1-pentene	C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane
C5H12,i-pentane	CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy
C6H6	C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-
C6H13,n-hexyl	C6H14,n-hexane	C7H7,benzyl	С7Н8	C7H8O,cresol-mx
C7H14,1-heptene	C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene
C8H10,ethylbenz	C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18,isooctane
C9H19,n-nonyl	C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl
HCO	HCCO	HO2	HCHO, formaldehy	HCOOH
H2O2	(HCOOH) 2	03	C(gr)	H20(cr)
H2O(L)				

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION AFTER POINT 3

Pin = 1305.3 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.0000000	-187614.740	300.000
NAME	H2O(L)	0.1304348	-285690.685	300.000

O/F= 3.00000 %FUEL= 25.000000 R,EQ.RATIO= 1.123726 PHI,EQ.RATIO= 1.284089

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7562	136.24	269.06	420.42	586.44
P, BAR	90.000	51.247	0.66061	0.33449	0.21407	0.15347
T, K	2696.41	2490.02	1214.61	1066.95	977.40	914.26
RHO, KG/CU M	8.4296 0	5.2078 0	1.3785-1	7.9458-2	5.5512-2	4.2544-2

H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/(KG)(K)	-7030.11	-7524.08 -36260.1	-9626.09 -10105.3 -24123.3 11.9357	-10353.1 -22666.9	-10497.6 -21777.9	-10596.9 -21148.6
M, (1/n) MW, MOL WT Cp, KJ/(KG)(K) GAMMAS SON VEL,M/SEC MACH NUMBER	20.998 20.998 3.0296 1.1647 1115.1 0.000	21.039 21.039 2.7734 1.1739 1074.8 1.000	21.073 2.1974 1.2188 764.3	21.073 21.073 2.0333 1.2408 722.7 3.899	21.073 21.073 1.9844 1.2482 693.8 4.152	21.073 1.9491 1.2538 672.5
PERFORMANCE PAR	AMETERS					
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		1.0000 1607.9 0.6684 1990.4 1074.8	1607.9 1.6834 2883.9	1607.9 1.7523 2967.1	35.000 1607.9 1.7916 3014.7 2880.8	
MOLE FRACTIONS						

*CO	0.03328	*CO2	0.16561	*H2	0.09873
H2O	0.70239				

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	CH4	СНЗОН	CH300H	COOH
*C2	C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene
O(CH)20	HO (CO) 20H	C2H3, vinyl	CH3CO,acetyl	C2H4
C2H4O,ethylen-o	CH3CHO, ethanal	СН3СООН	OHCH2COOH	C2H5
C2H6	С2Н5ОН	СН3ОСН3	CH302CH3	C20
*C3	C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne
C3H4,cyclo-	C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox
C3H6O,acetone	C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8
C3H8O,1propanol	C3H8O,2propanol	C302	*C4	C4H2,butadiyne
C4H4,1,3-cyclo-	C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-
C4H8,1-butene	C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-
(CH3COOH) 2	C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl
C4H10,n-butane	C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-
C5H10,1-pentene	C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane
C5H12,i-pentane	CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy
C6H6	C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-
C6H13,n-hexyl	C6H14,n-hexane	C7H7,benzyl	С7Н8	${\tt C7H8O,cresol-mx}$
C7H14,1-heptene	C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene
C8H10,ethylbenz	C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18,isooctane
C9H19,n-nonyl	C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl
HCO	HCCO	HO2	HCHO, formaldehy	HCOOH
H2O2	(HCOOH) 2	03	C(gr)	H20(cr)
H2O(L)				

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	Т	С	Н	0
1	2	2698.125	-15.018	-9.324	-16.703
Pinf/	Pt =	1.750411			
2	4	2491.977	-14.935	-9.455	-17.503
Pinf/	Pt =	1.756480			
2	2	2490.717	-14.934	-9.456	-17.508
3	5	1203.391	-11.231	-10.327	-29.705
3	3	1214.490	-11.307	-10.316	-29.484
4	4	1084.173	-10.314	-10.441	-32.365
4	3	1074.611	-10.232	-10.451	-32.604
5	4	981.041	-9.349	-10.555	-35.188
5	3	990.165	-9.442	-10.544	-34.915
6	3	939.380	-8.903	-10.605	-36.504
6	3	930.646	-8.805	-10.616	-36.794

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1450.4 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.0000000	-187614.740	300.000
NAME	H2O(L)	0.1304348	-285690.685	300.000

O/F= 3.00000 %FUEL= 25.000000 R,EQ.RATIO= 1.123726 PHI,EQ.RATIO= 1.284089

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT
Pinf/P	1.0000	1.7565	136.26	267.09	414.88	575.97
P, BAR	100.00	56.932	0.73387	0.37441	0.24103	0.17362
T, K	2698.12	2490.72	1214.49	1074.61	990.17	930.65
RHO, KG/CU M	9.3618 0	5.7843 0	1.5315-1	8.8305-2	6.1697-2	4.7283-2
H, KJ/KG	-5962.44	-6540.38	-9626.36	-9929.97	-10109.3	-10233.6
U, KJ/KG	-7030.61	-7524.62	-10105.5	-10354.0	-10500.0	-10600.8
G, KJ/KG	-38053.9	-36164.9	-24071.5	-22711.4	-21886.3	-21302.7
S, KJ/(KG)(K)	11.8940	11.8940	11.8940	11.8940	11.8940	11.8940
$M_{,}$ (1/n)	21.002	21.041	21.073	21.073	21.073	21.073
MW, MOL WT	21.002	21.041	21.073	21.073	21.073	21.073
(dLV/dLP)t	-1.00185	-1.00082	-1.00000	-1.00000	-1.00000	-1.00000
(dLV/dLT)p	1.0449	1.0214	1.0000	1.0000	1.0000	1.0000
Cp, $KJ/(KG)(K)$	3.0065	2.7611	2.1974	2.1423	2.1037	2.0721
GAMMAs	1.1654	1.1744	1.2189	1.2258	1.2309	1.2352
SON VEL, M/SEC	1115.7	1075.1	764.2	720.9	693.4	673.5
MACH NUMBER	0.000	1.000	3.542	3.907	4.153	4.340

PERFORMANCE PARAMETERS

Ae/At	1.0000	15.000	25.000	35.000	45.000
CSTAR, M/SEC	1608.0	1608.0	1608.0	1608.0	1608.0
CF	0.6686	1.6834	1.7518	1.7909	1.8176
Ivac, M/SEC	1990.6	2884.0	2967.4	3015.5	3048.3
Isp, M/SEC	1075.1	2707.0	2816.9	2879.9	2922.7

MOLE FRACTIONS

*CO	0.07180	0.06907	0.03327	0.02494	0.01958	0.01581
*C02	0.12640	0.12950	0.16561	0.17394	0.17930	0.18307
*H	0.00141	0.00081	0.00000	0.00000	0.00000	0.00000
*H2	0.06202	0.06354	0.09873	0.10706	0.11242	0.11619
H2O	0.73336	0.73487	0.70238	0.69405	0.68870	0.68493
*0	0.00006	0.00002	0.00000	0.00000	0.00000	0.00000
*OH	0.00465	0.00211	0.00000	0.00000	0.00000	0.00000
*02	0.00029	0.00008	0.00000	0.00000	0.00000	0.00000

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C CH30 *C2 O(CH)20 C2H4O,ethylen-o C2H6 *C3 C3H4,cyclo- C3H6O,acetone C3H8O,lpropanol C4H4,1,3-cyclo- C4H8,1-butene (CH3COOH)2 C4H10,n-butane C5H10,1-pentene C5H10,i-pentane C6H6 C6H13,n-hexyl C7H14,1-heptene C8H10,ethylbenz C9H19,n-nonyl HCO	C2H5OH C3H3,1-propynl C3H5,allyl C3H6O,propanal C3H8O,2propanol C4H6,butadiene C4H8,cis2-buten C4H9,n-butyl C4H10,isobutane C5H10,cyclo- CH3C(CH3)2CH3 C6H5OH,phenol C6H14,n-hexane C7H15,n-heptyl	C4H6,1butyne C4H8,tr2-butene C4H9,i-butyl *C5 C5H11,pentyl C6H2 C6H10,cyclo- C7H7,benzyl C7H16,n-heptane C8H17,n-octyl	C4H9, s-butyl C5H6,1,3cyclo- C5H11,t-pentyl C6H5,phenyl C6H12,1-hexene C7H8 C7H16,2-methylh C8H18,n-octane	C2H4 C2H5 C2O C3H4,propyne C3H6O,propylox C3H8 C4H2,butadiyne C4H6,cyclo- C4H8,cyclo- C4H9,t-butyl C5H8,cyclo- C5H12,n-pentane C6H5O,phenoxy C6H12,cyclo- C7H8O,cresol-mx C8H8,styrene C8H18,isooctane C12H10,biphenyl
C9H19,n-nonyl	C10H8, naphthale	C10H21, n-decyl	C12H9, o-bipheny	C12H10,biphenyl
H2O(L)			.5 /	, ,

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION AFTER POINT 3

Pin = 1450.4 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.8695652	-277301.667	300.000
OXIDANT	H2O2(L)	1.0000000	-187614.740	300.000
NAME	H2O(L)	0.1304348	-285690.685	300.000

O/F= 3.00000 %FUEL= 25.000000 R,EQ.RATIO= 1.123726 PHI,EQ.RATIO= 1.284089

	CHAMBER	THROAT	EXIT	EXIT	EXIT	EXIT		
Pinf/P	1.0000	1.7565	136.26	269.11	420.49	586.55		
P, BAR	100.00	56.932	0.73387	0.37159	0.23782	0.17049		
T, K	2698.12	2490.72	1214.49	1066.84	977.30	914.17		
RHO, KG/CU M	9.3618 0	5.7843 0	1.5315-1	8.8279-2	6.1675-2	4.7268-2		
H, KJ/KG	-5962.44	-6540.38	-9626.36	-9932.33	-10112.2	-10236.4		
U, KJ/KG	-7030.61	-7524.62	-10105.5	-10353.3	-10497.8	-10597.1		
G, KJ/KG	-38053.9	-36164.9	-24071.5	-22621.3	-21736.2	-21109.5		
S, KJ/(KG)(K)	11.8940	11.8940	11.8940	11.8940	11.8940	11.8940		
$M_{,}$ (1/n)	21.002	21.041	21.073	21.073	21.073	21.073		
MW, MOL WT	21.002	21.041	21.073	21.073	21.073	21.073		
Cp, $KJ/(KG)(K)$	3.0065	2.7611	2.1974	2.0332	1.9844	1.9490		
GAMMAs	1.1654	1.1744	1.2189	1.2408	1.2482	1.2538		
SON VEL, M/SEC	1115.7	1075.1	764.2	722.7	693.8	672.5		
MACH NUMBER	0.000	1.000	3.542	3.899	4.153	4.348		
PERFORMANCE PARAMETERS								

Ae/At	1.0000	15.000	25.000	35.000	45.000
CSTAR, M/SEC	1608.0	1608.0	1608.0	1608.0	1608.0
CF	0.6686	1.6834	1.7523	1.7916	1.8182
Ivac, M/SEC	1990.6	2884.0	2967.1	3014.7	3047.0
Isp, M/SEC	1075.1	2707.0	2817.8	2880.9	2923.7

MOLE FRACTIONS

*C0	0.03327	*C02	0.16561	*H2	0.09873
H2O	0.70238				

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	CH4	СНЗОН	CH300H	COOH
*C2	C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene
O(CH)20	HO(CO)2OH	C2H3, vinyl	CH3CO,acetyl	C2H4
${\tt C2H4O,ethylen-o}$	CH3CHO, ethanal	CH3COOH	OHCH2COOH	C2H5
С2Н6	С2Н5ОН	CH3OCH3	CH302CH3	C20
*C3	C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne
C3H4,cyclo-	C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox

C3H6O, acetone C3H8O, 1propanol	C3H6O, propanal C3H8O, 2propanol	C3H7,n-propyl C3O2	C3H7,i-propyl *C4	C3H8 C4H2,butadiyne
	C4H6, butadiene	C4H6,1butyne	C4H6,2butyne	C4H6, cyclo-
C4H8,1-butene	C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-
(CH3COOH) 2	C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl
C4H10,n-butane	C4H10, isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-
C5H10,1-pentene	C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane
C5H12,i-pentane	CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy
C6H6	C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-
C6H13,n-hexyl	C6H14,n-hexane	C7H7,benzyl	C7H8	C7H8O,cresol-mx
C7H14,1-heptene	C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene
C8H10,ethylbenz	C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18, isooctane
C9H19,n-nonyl	C10H8, naphthale	C10H21,n-decyl	C12H9, o-bipheny	C12H10,biphenyl
HCO	HCCO	HO2	HCHO, formaldehy	HCOOH
H2O2	(HCOOH) 2	03	C(gr)	H20(cr)
H2O(L)				

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS