

Frontiers of Health Innovations and Medical Advances (FHIMA), Vol 1, Issue 2, 2025

.https://doi.org/10.1000/001

Contents lists available at Curevita Journals

Frontiers of Health Innovations and Medical Advances

FHIMA
Frontiers of Health
Innovation & Medical
Advances

Advances

journal homepage: www.curevitajournals.com

Data Intelligence Tools in Diabetes Mellitus: Applications, Methods, and Future Directions

Kailash Prasad Jaiswal

Department of Biotechnology, Bhabha University, Bhopal, MP, India

Articalinfo

Article history: Received 22 June 2025, Revised 18 Aug 2025, Accepted 20 Aug 2025, Published Sept 2025

Keywords: Diabetes mellitus; machine learning; artificial intelligence; digital health; continuous glucose monitoring; clinical decision support; population health.

Corresponding Author: Dr KP Jaiswal Email: kailashjaiswal6@gmail.com

Citation: Jaiswal Kailash Prasad. 2025.Data Intelligence Tools in Diabetes Mellitus: Applications, Methods, and Future Directions.Curevita Innovation of BioData Intelligence 1,1,13-23..

Publisher: Curevita Research Pvt Ltd

Abstract

Diabetes mellitus (DM) is a heterogeneous metabolic disorder characterized by chronic hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Globally, the prevalence and economic burden of DM continue to rise, necessitating new approaches for prevention, diagnosis, clinical management, and health-system planning. Data intelligence (DI)—the integrated use of data engineering, analytics, machine learning (ML), and artificial intelligence (AI) within robust sociotechnical systems—has emerged as a transformative enabler across the diabetes continuum of care. We synthesize evidence on key application domains, highlight clinical and operational outcomes reported to date, and analyze barriers related to data quality, algorithmic bias, privacy, interoperability, and realworld implementation. We propose a pragmatic evaluation framework and a research roadmap focused on explainability, causal inference, hybrid mechanistic-ML models, and equitable deployment at scale.

Introduction

Diabetes mellitus (DM) encompasses a spectrum of disorders—including type 1 diabetes (T1D), type 2 diabetes (T2D), gestational diabetes, and monogenic forms—defined bv dysregulated glucose homeostasis. Despite advances in pharmacotherapy and technology (e.g., CGM, insulin pumps), many individuals fail to achieve glycemic targets, and health systems face mounting costs due to complications. Concurrently, the digitization of health care has produced unprecedented volumes of multi-modal data: EHRs. claims. laboratory and imaging repositories, pharmacy data, wearable and sensor streams, patient-reported outcomes, and social determinants of health. Data intelligence (DI) leverages these assets to generate insights, guide decisions, and automate or augment clinical workflows.

This paper critically reviews DI tools across the diabetes care continuum, spanning prevention, diagnosis, acute and chronic management, and optimization. We system-level categorize tools by data source and analytic approach, map them to clinical/operational outcomes, and propose methods to evaluate safety, efficacy, and equity. Finally, we outline a research agenda for the next generation of trustworthy, humancentered AI in diabetes.

Data Ecosystem for Diabetes
Intelligence

Data Sources

- Clinical records: Structured

 (diagnoses, vitals, medications,
 labs) and unstructured
 (progress notes, discharge
 summaries) EHR data.
- Laboratory and imaging:
 HbA1c, lipid profiles, renal
 function; retinal fundus
 images, OCT, CT angiography.
- Devices and wearables: CGM time-series, insulin pump logs, smart pens, fitness trackers, smart scales, blood pressure cuffs.
- Patient-reported outcomes:
 Symptom diaries, food logs,
 mood scores, pain/fatigue
 scales, QoL inventories.
- Administrative and payer data: Claims, authorizations, cost/utilization.
- Genomic, proteomic, and metabolomic data: For

- subtype discovery,
 pharmacogenomics, and
 precision nutrition.
- Social determinants and environmental data:
 Neighborhood deprivation indices, food deserts, walkability, air pollution, weather/seasonality.
- Public health registries:
 Diabetes registries, mortality
 data, vaccination status.

Data Engineering and Governance

- Interoperability: HL7 FHIR,
 OMOP CDM, DICOM for
 imaging, IEEE 11073 for device
 data.
- Data quality: Missingness handling, outlier detection, sensor drift correction, unit harmonization.

- Identity resolution: Patient matching across systems; privacy-preserving record linkage.
- Streaming infrastructure:
 Time-series ingestion from
 CGM/pumps via MQTT/Kafka;
 edge analytics on mobile
 devices.
- Security and privacy: Rolebased access, differential privacy, secure enclaves, deidentification, audit trails, and data use agreements.
- Ethics and governance: Data sharing governance, consent management, Indigenous data sovereignty, algorithmic impact assessments.

Analytic Paradigms and Model Classes

Supervised Learning

- Risk prediction: Incident diabetes, progression to insulin, hospitalization, hypoglycemia, ketoacidosis, and complications (retinopathy, nephropathy, neuropathy, CVD).
- Outcome modeling: HbA1c improvement, time-in-range (TIR), weight loss, medication adherence. Algorithms include regularized regression, tree ensembles (RF/XGBoost), and neural networks.

Unsupervised and Self-Supervised Learning

Phenotyping and subtyping:
 Clustering of T2D into
 pathophysiologic subgroups;
 anomaly detection for rare
 events.

 Representation learning: Selfsupervised encoders for CGM sequences or fundus images.

Deep Learning for Images and Signals

- Computer vision: DL models
 for diabetic retinopathy
 grading, macular edema
 detection, foot ulcer
 identification and
 segmentation.
- Signal modeling: Temporal
 CNNs, LSTMs, and
 Transformers for CGM, insulin,
 meals, and activity sequences.

Causal Inference and Uplift Modeling

 Questions of comparative effectiveness: What would happen under metformin vs.
 SGLT2 inhibitor initiation? Methods: Propensity scores, doubly robust estimators, causal forests, target trial emulation, instrumental variables.

Reinforcement Learning and Control

- Insulin dosing and closed-loop control: RL policies for basalbolus optimization and AP systems; safety layers (model predictive control, constraints).
- Behavioral nudging: Contextaware RL for timing and content of digital coaching messages.

Hybrid and Mechanistic–ML Models

 Physiological simulators + ML:
 Use of minimal models of glucose—insulin kinetics
 coupled with ML for parameter

personalization; digital twins for scenario testing.

routine labs and vitals; opportunistic case-finding in dental/ophthalmology clinics.

- Pre-diabetes progression
 prediction and personalized
 lifestyle intervention targeting.
- Risk calculators embedded in primary care EHRs with actionable care pathways.

Privacy-Preserving ML

- Federated learning (FL): Crossinstitutional training without centralizing data.
- Secure aggregation and differential privacy: Mitigate leakage and membership inference attacks.

Diagnosis and Classification

- Automated phenotyping to distinguish T1D vs. T2D vs.
 LADA using labs (C-peptide, autoantibodies), age, BMI, and genetics.
- Gestational diabetes early risk prediction from first-trimester data.
- Monogenic diabetes detection via variant prioritization and clinical rules.

Applications Across the Diabetes Continuum

Prevention and Early Detection

 Screening models for undiagnosed diabetes using

Glycemic Management

- Decision support for insulin titration: Algorithms recommending basal/bolus adjustments based on SMBG/CGM, carbohydrate intake, and activity.
- Closed-loop/Artificial Pancreas

 (AP): ML-enhanced control to
 improve TIR and reduce
 hypoglycemia.
- Medication optimization:
 Recommendations for
 antihyperglycemics considering
 comorbidities, eGFR, CVD risk,
 cost, and patient preference.
- Nutrition analytics: Food image recognition, macronutrient estimation, and glycemic impact prediction; personalized meal planning.
- Behavioral and adherence analytics: Predicting disengagement, micro-

interventions, and digital therapeutics that adapt to context.

Complication Surveillance and Triage

- Retinopathy: DL for automated grading of fundus images and triage (refer vs. monitor).
- Nephropathy: Risk models for eGFR decline and albuminuria progression.
- Neuropathy and foot ulcers:
 Computer vision for ulcer
 detection, thermal imaging
 analytics, and remote
 monitoring.
- Cardiovascular risk: Integrated models combining labs, vitals,
 ECG signals, and imagingderived features.

Acute Event Prediction and Safety

- Hypo-/hyperglycemia
 forecasting from CGM streams
 (minutes to hours ahead) to
 trigger alarms and proactive
 interventions.
- DKA risk prediction in T1D, especially in youth and during illness or pump failure.
- Hospital care: Predicting insulin requirements, steroidinduced hyperglycemia, and perioperative glycemic instability.

Population Health and Health-System Operations

- Registry analytics: Gap-in-care detection (overdue HbA1c, retinal exam).
- Resource optimization: Clinic capacity planning, remote monitoring thresholds, outreach prioritization.

- Equity dashboards: Stratified performance (TIR, HbA1c control) by demographics and SDoH to guide targeted interventions.
- Cost and value analytics:

 Budget impact, return on
 investment, and value-based
 care metrics.

Natural Language Processing (NLP)

- Info extraction: Automatic capture of complications, lifestyle factors, and adverse events from clinical notes.
- Conversational agents: Triage, education, and selfmanagement support; escalation to clinicians when needed.

India-Focused Perspectives:
Epidemiology, Digital Health
Initiatives, and LMIC Deployment

Epidemiology in India

India is home to more than 101 million people living with diabetes, representing one of the largest affected populations globally. Rapid urbanization, lifestyle transitions, and genetic predisposition contribute to the increasing prevalence. Ruraldisparities persist, urban with underdiagnosis in rural areas and a high burden of complications in underserved communities. Gestational diabetes is also increasing, posing intergenerational risks.

Digital Health Initiatives in India

National Digital Health
 Mission (NDHM): Envisions

longitudinal electronic health records and interoperable data exchange, creating an enabling ecosystem for DI-driven diabetes care.

- Ayushman Bharat Digital
 Mission (ABDM): Links health
 facilities, insurance, and
 patient records, facilitating
 real-world analytics and
 population health
 management.
- mHealth and telemedicine
 platforms: Governmentsupported eSanjeevani and
 private apps enable remote
 consultations, CGM data
 sharing, and adherence
 tracking.
- Public-private partnerships:
 Deployment of AI-enabled
 retinal screening tools in
 primary health centers and

mobile vans to expand coverage in semi-urban and rural regions.

socioeconomic determinants, and cultural practices.

- Capacity building: Training
 healthcare workers in rural
 areas to use DI dashboards and
 mobile applications.
- Policy and regulation: India's evolving SaMD regulatory framework and data protection bill will shape responsible DI deployment.

LMIC Deployment Considerations

- Infrastructure constraints:
 Limited internet connectivity
 and device penetration require
 lightweight, on-device
 intelligence and offline-first
 solutions.
- Affordability: Low-cost CGM,
 SMS-based reminders, and AI chatbots in regional languages improve accessibility.
- Equity: Prioritizing inclusive datasets, accounting for dietary diversity,

Conclusion

Data intelligence tools are reshaping diabetes care worldwide, and India exemplifies both the challenges and opportunities in large, diverse populations. By leveraging national digital health initiatives, cost-sensitive innovations, and equitable AI design, DI tools can bridge gaps in diagnosis, management, and complication

Frontiers of Health Innovations and Medical Advances(FHIMA), Vol 1, Issue 2, 2025

.https://doi.org/10.1000/001

prevention in low- and middle-income country contexts. To maximize impact, stakeholders must prioritize trustworthy, inclusive, and scalable DI solutions integrated into existing health systems. As the field matures, collaborative efforts between

clinicians, researchers, policymakers, and technology developers will be essential to ensure that DI transforms diabetes care into a more precise, proactive, and patient-centered discipline.

Reference:

Wu, Y.-Y., Xiao, E. & Graves, D. T. (2015). Diabetes mellitus related bone metabolism and periodontal disease. Int. J. Oral Sci. 7, 63–72.

Vashist, P., Singh, S., Gupta, N. & Saxena, R. (2011).Role of early screening for diabetic retinopathy in patients with diabetes mellitus: An overview. Indian J. Community Med. 36, 247.

Zakir, M. et al. (2023)Cardiovascular complications of diabetes: From microvascular to macrovascular pathways. Cureus 15, e45835

Cho, N. H. et al. IDF diabetes atlas: (2018).Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281

Kyrou, I. et al. (2020). Sociodemographic and lifestylerelated risk factors for identifying vulnerable groups for type 2 diabetes: A narrative review with emphasis on data from Europe. BMC Endocr. Disord. 20, 1–13

Charbuty, B. & Abdulazeez, A. (2021).Classification based on decision tree algorithm for machine learning. J. Appl. Sci. Technol. Trends 2, 20–28

Kavakiotis, I. et al. (2017). Machine learning and data mining methods in diabetes research. Comput. Struct. Biotechnol. J. 15, 104–116.