

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International Advanced Subsidiary Level In Chemistry (WCH11)

Paper 01: Structure, Bonding and Introduction

to Organic Chemistry

Section A (Multiple Choice)

Question	Answer	Mark
number		
1	The only correct answer is D (isolated atoms, atoms in molecules and atoms in giant structures)	1
	A is not correct because elements also exist as isolated atoms and as molecules	
	B is not correct because elements also exist as isolated atoms	
	C is not correct because elements also exist as molecules	

Question	Answer	Mark
number		
2	The only correct answer is C (0.56 g)	1
	A is not correct because the A_r has been halved instead of doubled to give the M_r B is not correct because the A_r has been used instead of the M_r D is not correct because the A_r has been doubled twice to give the M_r	
	b is not correct because the Arnas been adabled twice to give the Mr	

Question	Answer	Mark
number		
3	The only correct answer is B (MgO(s) + $2H^{+}(aq) \rightarrow Mg^{2+}(aq) + H_2O(l)$)	1
	 A is not correct because the sulfate spectator ions have not been eliminated C is not correct because the magnesium oxide is involved in the change of state and the sulfate ion is not D is not correct because the magnesium oxide is involved in the change of state 	

Question number	Answer	Mark
4	The only correct answer is B (0.684) A is not correct because this is the number of moles of sodium chloride in 250 cm ³ C is not correct because this is the mass of sodium chloride in 250 cm ³ D is not correct because this is the concentration of sodium chloride in g dm ⁻³	1

Question number	Answer	Mark
5	The only correct answer is D (CrCl ₃) A is not correct because this is the same as the ratio of silver ions to chloride ions B is not correct because this is based on the ratio of volume of silver nitrate added to precipitate height C is not correct because this is based on the ratio of precipitate height to volume of silver nitrate added	1

Question number	Answer	Mark
6(a)	The only correct answer is A (20)	1
	B is not correct because this is the number of electrons in a Sc atom	
	C is not correct because this is the number of electrons in a Sc ⁻ ion	
	D is not correct because this is calculated by taking $Z = 45 - 21$ and then removing an electron.	
	b is not correct because this is calculated by taking 2 - 45 21 and then removing an electron.	

Question	Answer	Mark
number		
6(b)	The only correct answer is A (22.5)	1
	B is not correct because this is 0.5 x (mass number + atomic number) C is not correct because this is the m/z value for an Sc ⁺ ion D is not correct because this is mass number x2	

Question	Answer	Mark
number		
7	The only correct answer is D ($I(g) \rightarrow I^{+}(g) + e^{-}$)	1
	 A is not correct because the iodine is molecular and in the solid state and forms 2 mol of ions B is not correct because the iodine is molecular and forms 2 mol of ions C is not correct because the iodine is molecular and in the solid state 	

Question number	Answer	Mark
8	The only correct answer is C	1

Question	Answer	Mark
number		
9	The only correct answer is B (8, 12, 5)	1
	 A is not correct because the 4s electrons have been placed in the 3d subshell C is not correct because the 4p subshell has been filled and 1 electron placed in 3d and 0 electron in 4s D is not correct because the 4p subshell has been occupied before the 3d 	

Question	Answer	Mark
number		
10	The only correct answer is D (attractive forces between oppositely charged ions, repulsive forces between like charged ions and some covalent bonding forces) A is not correct because the ions with the same charge will repel and there will be some covalency with Li ⁺ and I [−] B is not correct because there will be some covalency with Li ⁺ and I [−] ions C is not correct because the ions with the same charge will repel	1

Question	Answer	Mark
number		
11(a)	The only correct answer is C (M and N only)	1
	 A is not correct because M is also a metal B is not correct because L cannot be a metal because it is a poor conductor in the solid state D is not correct because L cannot be a metal because it is a poor conductor in the solid state 	

Question number	Answer	Mark
11(b)	The only correct answer is D (Q)	1
	A is not correct because L conducts in the liquid state B is not correct because M conducts in the solid and liquid states C is not correct because P does not dissolve in water	

Question number	Answer	Mark
12	The only correct answer is C Cl Cl Cl Cl Cl Cl Cl Cl A is not correct because Al ₂ Cl ₆ is not ionic B is not correct because the structure does not have a covalent bond between the aluminium atoms D is not correct because the aluminium atoms have no lone pairs to donate in a dative bond	1

Question	Answer	Mark
number		
13	The only correct answer is A (the hazard is fixed but the risk varies)	1
	B is not correct because the hazard is fixed and the risk varies C is not correct because the risk varies	
	D is not correct because the hazard is fixed	

Question	Answer	Mark
number		
14	The only correct answer is B (ions only)	1
	 A is not correct because heterolytic fission only produces ions C is not correct because heterolytic fission only produces ions D is not correct because heterolytic fission only produces ions 	

Question number	Answer	Mark
15	The only correct answer is D A is not correct because this compound has a molar mass of 100 g mol ⁻¹ B is not correct because this compound has a molar mass of 114 g mol ⁻¹ C is not correct because this compound would decolourise bromine water	1

Question number	Answer	Mark
16	The only correct answer is A (ammonia) B is not correct because oxides of nitrogen are emitted in the combustion of alkane fuels C is not correct because oxides of sulfur are emitted in the combustion of alkane fuels D is not correct because unburnt hydrocarbons are emitted in the combustion of alkane fuels	1

Question number	Answer	Mark
17	The only correct answer is B (H ₃ C) Cl Cl Cl Cl Cl Cl A is not correct because two radicals reacting occurs in termination C is not correct because a methyl radical reacting with methane would re-form the reactants D is not correct because two molecules reacting together directly does not occur	1

Question number	Answer	Mark
18	 The only correct answer is C (E-2-chlorobut-2-ene) A is not correct because cis-trans is not the IUPAC systematic name but is correct non-IUPAC name B is not correct because cis-trans is not the IUPAC systematic name and is an incorrect non-IUPAC name D is not correct because Cl is the priority group on the right-hand carbon and is on the opposite side of the double bond to the CH₃ on the left-hand carbon 	1

Total for Section A = 20 marks

Section B

Question number	Answer	Additional guidance	Mark
19(a)(i)	• calculation of mass of iron and use of A_r (Fe) (1)	Example of calculation: $mol = \frac{6.17 - 3.38}{55.8} = \frac{2.79}{55.8}$	2
	• evaluation of moles of iron (1)	mol iron = $5 \times 10^{-2} / 0.05$ (mol)	
		Allow A_r of Fe = 56 when mol Fe =0.0498 Ignore SF	
		Correct answer with some working scores 2	
		Use of incorrect mass for 1 mark TE e.g. 6.17g gives 0.11(057) 3.38g gives 0.06(0057)	
		Dividing 2.79g by an incorrect A _r gets 1 mark	

Question number	Answer	Additional guidance	Mark
19(a)(ii)	 expression for concentration and substitute values (1) 	Example of calculation: concentration = $\frac{\text{mol}}{\text{vol in dm}^3}$ $0.500 = \frac{\text{mol}}{200/1000}$	2
	• evaluation of moles of iron(III) chloride (1)	mol = 0.500 × 200/1000 = 0.1 (mol) Correct answer with some working scores 2 Ignore SF	

Question number	Answer	Additional guidance	Mark
19(a)(iii)	calculation of whole number ratio (1)	Example of calculation: 0.1 mol Fe^{3+} (or $FeCl_3$) reacts with 0.05 mol Fe so 2 mol Fe^{3+} (or $FeCl_3$) reacts with 1 mol Fe (0.1 ÷ 0.05 or 1 : 0.5 is enough for M1, not 2:1 alone) TE on incorrect i & ii e.g. 1:1	3
	• ionic equation (1)	Fe(s) + $2Fe^{3+}(aq) \rightarrow 3Fe^{2+}(aq)$ Allow multiples	
	• all three states correct (1)	Allow correct states on species in the reaction Allow correct states on compounds, Cl ⁻ must be (aq) M2 and M3 standalone marks Comment:	
		If no working shown max 2 marks	

Question number	Answer	Additional guidance	Mark
number 19(b)	 calculation of relative formula mass of FeCl₂.xH₂O (1) calculation of relative formula mass of FeCl₂ (1) calculation of moles of H₂O in crystals (1) calculation of moles of H₂O per mole of FeCl₂ (1) 	Example of calculation: RFM(1) = $\frac{55.8}{28.1} \times 100 = 198.58$ RFM(2) = $55.8 + 2 \times 35.5 = 126.8$ RFM(1) - RFM(2) = 71.777 71.777 / 18 = $3.988 = 4$ so x = 4 M4 is only awarded for final answer of 4 Allow A_r of Fe = 56 Correct answer with some appropriate working scores 4 Ignore SF Alternative: M1 mol Fe (in 100g hydrated salt) = $28.1/55.8 = 0.50358$ M2 mass of Cl (in 100g hydrated salt) = $0.50384 \times 2 \times 35.5 = 35.75(448)g$ M3 mass of H ₂ O (in 100g hydrated salt) = $100 - 28.1 - 35.75 = 36.15g$ moles H ₂ O = $36.15/18 = 2.008$ M4 Ratio FeCl ₂ : H ₂ O = $0.5(0384)$:2(.008) = $1:4$, so x = 4	4
		(55.8)/(55.8 + 71 + 18x) = 0.281 is another valid way of getting to $x = 4$	

(Total for Question 19 = 11 marks)

Question number	Answer	Additional guidance	Mark
20(a)	An answer that makes reference to		1
	(atoms with the) same atomic number and different mass numbers	Accept proton number for atomic number or same number of protons but different numbers of neutrons Allow bromine-79 has 35 protons & 44 neutrons and bromine-81 has 35 protons & 46 neutrons	
		Allow "an atom" or "element" Do not award molecule Ignore same number of electrons	

Question number	Answer	Additi	onal guida	ance		Mark
20(b)	An answer that makes reference to:					2
	 all subatomic particles correct for bromine-79 (1) 		Protons	Neutrons	Electrons	
			35	44	35	
	• all subatomic particles correct for bromine-81 (1)		35	46	35	
		Any fo	ur correct	scores 1	<u> </u>	

Question number	Answer		Additional guidance	Mark
20(c)(i)	A diagram showing:		Example of diagram:	2
20(C)(I)	 one shared pair of electrons six non-bonding electrons on both atoms in the molecule 	(1)	Accept shared electrons on circles between the atoms Accept omission of circles or chemical symbols	2
			Allow any symbols for the electrons or elements (even if incorrect) Allow non-bonding electrons to be unpaired	
			Allow horizontal sharing of bond pair Ignore horizontal line representing the bond	

Question number	Answer	Additional guidance	Mark
20(c)(ii)	An answer that makes reference to:	Both marks may be scored with a correct equation and any indication the bombarding electrons are high energy	2
	(a beam of) high energy electrons striking the (gaseous) bromine (molecule) (1)	Allow 'high speed electrons' Allow electron gun Allow "fast moving" Allow bromine atoms	
	• equation for the formation of the molecular ion (1)	$Br_2 + e^{(-)} \rightarrow Br_2^+ + 2e^{(-)}$ Allow $Br_2 \rightarrow Br_2^+ + e^{(-)}$ $Br_2 - e^{(-)} \rightarrow Br_2^+$ Allow ⁸¹ Br ⁸¹ Br (etc) instead of Br ₂ on	
		either side of the equation Ignore state symbols even if incorrect Do not award $Br_2 \rightarrow 2Br^+ + 2e^{(-)}$ or $\frac{1}{2}Br_2 \rightarrow Br^+ + e^{(-)}$	

Question number	Answer	Additional guidance	Mark
20(c)(iii)	An answer on the grid showing:	Example of grid: 100 90 80 70 60 40 30 20 10	2
	• three peaks: at $m/z = 158$, $m/z = 160$ and $m/z = 162$ (1)	Allow bars or "X" at the top of any lines Allow bars shown around the m/z values Do not award if a line is drawn from peak to peak	
	• peak heights in the ratio 1:2:1 (for 158: 160: 162) (1)	Do not award if more than three peaks Allow any abundance values No TE on incorrect <i>m/z</i> values	

Question number	Answer		Additional guidance	Mark
20(d)			Example of calculation:	3
	weighted mean mass expression	(1)	$A_{\rm r} = \frac{79 \times 56.38 + 81 \times 43.62}{100}$	
	evaluation of relative atomic mass for Br	(1)	= 79.87	
	• calculation of relative molecular mass for Br ₂ corrected to 2 d.p.	(1)	2 x 79.87 = 159.74 = 159.74	
			Allow TE to M2 for values between 79 and 81	
			Allow TE for M3 of double M2 value	
			Ignore units even if incorrect	
			Penalise rounding errors once only	
			Correct answer to 2 d.p. scores (3)	
			A final answer of 79.9 or 79.872 only	
			scores 1 mark	

(Total for Question 20 = 12 marks)

Question number	Answer	Additional guidance	Mark
21(a)(i)	An answer that makes reference to the following points:		2
	the (strong electrostatic) attraction between the shared pair of electrons of the covalent bond (1)	Allow attraction between 2 shared electrons Ignore plurals Ignore bonding pair of electrons	
	and the nuclei (of the silicon atom and the oxygen atom) (1)	Allow "silicone" in place of silicon Allow references to protons instead of nuclei Do not award M2 for carbon atoms	
		Ignore numbers of bonds	
		Ignore references to giant/simple, double bonds, polar bonds, sigma bonds or orbital overlap	
		Both marks may be scored by a clearly labelled diagram	

Question number	Answer	Additional guidance	Mark
21(a)(ii)	 An answer that makes reference to the following points: Similarities: both molecules contain a σ-bond (1) description of end-on overlap (1) Difference: carbon dioxide (also) contains sideways overlap of orbitals / π-bond (with the oxygen atom) (1) 	SiOO O bond	3

Question number	A	nswer	Additional guidance	Mark
21(b)(i)		An explanation that makes reference to the following points:		3
	•	there are two sets of bonding electrons (and no lone pairs) about the carbon atom (1)	Any indication of two regions of electrons (this includes a correct diagram) e.g. O=C=O Allow two double bonds Do not award MP1 for just "two bonding pairs" or just "4 bonding pairs"	
	•	which arrange to minimise repulsion (1)	Allow maximum separation / to be as far apart as possible Do not award repulsion between atoms	
	•	resulting in a linear shape / bond angle of 180° (1)	Accept bond angle labelled on a diagram Do not award linear with any angle other than 180°	
			Ignore references to symmetry Ignore references to lone pairs on oxygen	
			All marks are independent No TE for any mark	

Question number	Answer		Additional guidance	Mark
21(b)(ii)	An explanation that makes reference to the following points:			2
	• the carbon atom is slightly positive / $\delta+$ and the oxygen atom slightly negative / $\delta-$	(1)	Accept shown on a diagram e.g. $0 \longrightarrow C \longrightarrow 0$ $\delta + \delta -$ Allow single C—O bond with dipole Allow use of dipole symbol $0 \longrightarrow 0$ Do not award full charges	
	because oxygen is more electronegative than carbon	(1)	Accept reverse argument Ignore "they have different electronegativities"	

Question number	A	nswer	Additional guidance	Mark
21(b)(iii)		An answer that makes reference to the following point:	(No TE on (b)(i))	1
	•	the carbon dioxide molecule is not polar		
		and		
		because (it is a linear molecule) the dipoles cancel	Allow the polar bonds cancel Allow dipoles balance Allow symmetrical molecule Do not award "the charges cancel"	

Question number	Answer	Additional guidance	Mark
21(c)(i)	An answer that makes reference to the following:		1
	 each silicon atom has four silicon atoms in a tetrahedral arrangement as nearest silicon atom neighbours 	Allow "giant tetrahedral structure(s)"	
	or		
	each silicon is bonded to four oxygen atoms in a tetrahedral arrangement	Do not award each silicon is tetrahedrally bonded to four other silicon atoms	
	or		
	each carbon is bonded to 4 carbon atoms in a tetrahedral arrangement (in diamond)		
		Ignore just "the silicon atoms are in a	
		diamond structure"	
		Do not award (simple) molecule(s)	
		anywhere in the response	

Question number	Answer	Additional guidance	Mark
21(c)(ii)	An answer that makes reference to the following point:		1
	There are fewer bonds (per atom) in the structure of silicon dioxide	Allow reverse argument Allow oxygen only forms two bonds Allow bond strength is an average Allow oxygen has lone pairs of electrons Ignore silicon-oxygen bond is polar Ignore references to sizes of atoms Do not award reference to intermolecular forces	

(Total for Question 21 = 13 marks)

Question number	Answer	Additional guidance	Mark
22(a)	 An answer that shows the following: any indication of the methyl group on the right-hand side of the structure being selected 	Allow inclusion of the "2" carbon within the circle Do not award more than one group circled or selected	1

Question number	Answer	Additional guidance	Mark
22(b)	An answer that makes reference to the following:		2
	• C ₁₅ (1) • H ₂₄ (1)	Allow H ₂₄ C ₁₅ / C15H24	
		No TE on incorrect number of carbon atoms	

Question number	Answer	Additional guidance	Mark
22(c)(i)	An answer that makes reference to the following:		1
	electrophilic addition	Ignore 'heterolytic' Do not award 'free radical'	
		Do not award substitution	

Question number	Answer	Additional guidance	Mark
22(c)(ii)	An answer that makes reference to the following: • curly arrow from H—Br bond to Br atom or just beyond and	Example of mechanism shown below $\begin{array}{cccccccccccccccccccccccccccccccccccc$	4
	 dipole on H-Br (1) curly arrow from C=C to H or close by (1) 	Addition of Br–Br loses M1 only	
	 structure of tertiary carbocation intermediate (1) curly arrow from lone pair on Br⁻ to 	Allow secondary carbocation (should be based on structure from paper) Do not award Br^{δ^-}	
	positively charged carbon atom (1)	Do not penalise an incorrect product Allow structural formulae etc. Ignore omission of added hydrogen Ignore omission of A or substitution of A at any stage Ignore connectivity of CH ₃ groups Ignore other lone pairs	

Question number	Answer	Additional guidance	Mark
22(c)(iii)	An explanation that makes reference to the following points:	Assume "it" is I	2
	I is formed via a tertiary carbocation	Must have carbocation at least once for M1 "It is a tertiary carbocation" does not score M1	
	and		
	II is formed via a secondary carbocation (1)		
	tertiary (carbocations) are more stable (than		
	secondary) (1)	Allow secondary are more stable than primary for M2 Allow tertiary is the most stable Allow reverse argument	
		Marks are independent	
		Ignore "tertiary cations have more alkyl groups' Allow "I is formed via a more stable intermediate" for M2 only	

Question number	Answer	Additional guidance	Mark
22(d)(i)	An answer that makes reference to the following:		1
	nickel / Ni	Accept platinum / Pt / palladium / Pd	

Question number	Answer	Additional guidance	Mark
22(d)(ii)		Example of calculation	4
	 rearrangement of ideal gas equation to make volume the subject (1) 	$V = n \times R \times T \div p$	
	• changing kPa to Pa and °C to K (1)	$p = 120 \times 1000 = 1.2 \times 10^5$ (Pa) and	
		T = 150 + 273 = 423 (K)	
	• substitution of values into IGE (including 2 x 3 mol of H_2) (1)	$V = 6 \times 8.31 \times 423 \div 1.2 \times 10^5 =$	
	• calculation of volume of hydrogen with units (1)	= 0.17576 m ³ Accept 175.76 dm ³ / 175760 cm ³	
		TE at each stage Ignore SF except 1 SF	
		Correct answer and units with some working scores (4)	
		Penalise incorrect rounding once only	

(Total for Question 22 = 15 marks)

Question number	Answer	Additional guidance	Mark
23(a)(i)	An answer that makes reference to one of the following:		1
	biodegradation / putrefaction / decomposition	Ignore decay	
	• fermentation		
	anaerobic respiration	Allow any indication of a biological	
		process e.g. 'bacterial action'	
		Do not award " thermal decomposition"	

Question number	Answer		Additional guidance	Mark
23(a)(ii)	An answer that makes reference to the following points:			2
	climate change / global temperature	(1)	Allow global warming Ignore greenhouse effect / increase in temperature Do not award ozone depletion / acid rain	
	• methane / CH ₄ and carbon dioxide / CO ₂	(1)	Do not award ammonia/NO _x /SO _x /H ₂ S	

Question number	Answer		Additional guidance	Marl
23(a)(iii)	 calculation of annual volume of carbon dioxide calculation of moles of carbon dioxide 	(1) (1)	$= 1.8478 \times 10^8 \text{ (dm}^3\text{)}$	3
	calculation of mass of carbon dioxide	(1)	= $7.6992 \times 10^6 \times 44 = 3.3877 \times 10^8$ (g) / 3.3877×10^2 tonnes / 338.77 tonnes	
			Answers not in grams must have units for M3 TE at each stage Allow 365.25 / 366 days Ignore SF except 1 SF Correct answer with some working scores (3)	

Question number	Answer		Additional guidance	Mark
23(b)	An answer that makes reference to any two of the following poir	nts:		2
	decreases quantity of waste / less space is needed	(1)	Allow less land needed Allow no land needed for waste Ignore no waste products	
	can be used (more easily) to generate electricity / produce heat (energy)	(1)	Do not award generate energy Allow is a source of power	
	pollutants can be trapped more easily	(1)	Do not award incineration is less polluting / produces less CO ₂ without referring to capture	
	transport costs lower (because sites can be sited near urban centres)	(1)		
	prevents release of methane into the atmosphere	(1)		
	high temperatures eliminate harmful bacteria / fungi	(1)		
	residue can be used in construction products	(1)	Allow residue can be used as fertiliser	
	can deal with polymers/plastics/wastes that do not biodegrade	(1)	Ignore "reduces pollution"	
	reduced risk of water / soil pollution (by leaching)	(1)	Ignore cost, appearance, time and contaminants	

Question number	Answer		Additional guidance	Mark
23(c)	An answer that makes reference to one of the following points:		Allow reverse arguments	1
	resources conserved (by recycling)	(1)		
	less energy is used (in recycling)	(1)	Allow produces less toxic or greenhouse gases	
			Do not award answers relating to cost	
			Ignore renewable / sustainable	

(Total for Question 23 = 9 marks)
Total for Section B = 60 marks
Total for paper = 80 marks