Groupes, anneaux, corps

Exercice 1 Soit G un groupe noté multiplicativement, de neutre e, et soit a et b deux éléments de G. On suppose qu'il existe $n \in \mathbb{N}$ tel que $(ab)^n = e$. Montrer alors que $(ba)^n = e$.

Exercice 2 Soit (G, \times) un groupe, H un sous groupe de (G, \times) et $a \in G$.

- 1) Montrer que $aHa^{-1} = \{ axa^{-1} \mid x \in H \}$ est un sous groupe de (G, \times) .
- 2) A quelle condition $aH = \{ ax \mid x \in H \}$ est-il un sous groupe de (G, \times) ?

Exercice 3 Peut-on munir \mathbb{N} d'une loi de groupe ?

Exercice 4 Soit (G, \times) un groupe noté multiplicativement, de neutre e. Soit E un ensemble, soit $f: G \to E$ une application bijective. On définit, pour tout $x, y \in E: x \star y = f(f^{-1}(x) \times f^{-1}(y))$.

- 1) Montrer que (E, \star) est un groupe.
- 2) Montrer que (E, \star) est isomorphe à (G, \times) .
- 3) En déduire que]-1,1[muni de la loi $x \star y = \frac{x+y}{1+xy}$ est un groupe.

Exercice 5 Trouver tous les corps K tels que : $\forall a \in K - \{0\}, a^{-1} = -a$. (on pourra calculer $a^2 + 1$).