# DEPTH RECONSTRUCTION USING STEREO IMAGES

### GABRIELE ESPOSITO 964431

#### **OBJECTIVE**

The objective of the project is to retrieve relative depth information from a pair of stereo images using epipolar geometry and a minimal setup consisting of a single calibrated camera and no information on the portrayed scene. The two pictures of the same scene are shot using the same camera translated in space (and possibly rotated). The approach can be considered a simple case of Structure From Motion using just two views of the same stationary object. A natural extension of this can be the introduction of multiple views to better reconstruct the 3D shape of the scene.

### Approach

The approach can be broken down into a sequence of steps:

- 1. Camera Calibration (to be performed just once for any new camera that needs to be used).
- 2. Undistortion of stereo pair and intrinsic parameters update.
- 3. Sparse matching.
  - Keypoints and descriptors computation (e.g. using SIFT).
  - Keypoints matching.
- 4. Estimation of Fundamental matrix.
- 5. Computation of Essential matrix with known intrinsic parameters and Fundamental matrix.
- 6. Essential matrix decomposition through SVD.
- 7. Stereo pair rectification.
- 8. Disparity map computation using Stereo Block Matching on rectified images (dense correspondence).
- 9. 3D reprojection (up to scale) of points with their estimated depth acquired from disparity.

The output of this process is a color point cloud representing the 3D structure of the photographed scene (up to scale). The following sections will address each step in more detail.

- (I). Camera Calibration. Calibration is performed using multiple views of a checkerboard pattern acquired with the camera to be calibrated, maintaining the same focus throughout all the shots. The calibration process is comprised of the following steps for each of the calibration images:
  - 1. Image resize to a fixed percentage of the original image size (circa 1000 x 700)
  - 2. Colorspace conversion (to HSV) and application of a mask to extract checkerboard pattern. The mask values strongly depend on the brightness of the checkerboard with respect to the surrounding context.

- 3. Morphology dilation with a rectangular pattern on the previously obtained mask.
- 4. Checkerboard corners are found through the use of openCV findChessboardCorners function
- 5. Chessboard corners position refinement through openCV cornerSubPix.
- 6. Camera calibration (through OpenCV calibrateCamera [1]) using object coordinates expressed with respect to a frame of reference centered at the top right corner of the pattern, and relative image coordinates found with subpixel precision by cornerSubPix.

This process outputs intrinsic parameters matrix:

$$K = \left(\begin{array}{ccc} f_x & 0 & x_0 \\ 0 & f_y & y_0 \\ 0 & 0 & 1 \end{array}\right)$$

and distortion coefficients  $(k_1, k_2, k_3, k_4, k_5)$  both later used to remove radial distortion and to rectify the two images. Rotation and translation vectors (expressed in world coordinates w.r.t the pattern) albeit not used are also provided for each of the calibration images.

Camera calibration is performed just once as the first step for each new camera that needs to be used, images containing a calibration pattern need to be supplied for any new camera.

(II). **Preprocessing.** Once intrinsic parameters and distortion coefficients are obtained for the used camera, the two images of the stereo pair from which we want to extract scene depth are supplied and pre-processed.

Each of the two images of the stereo pair is resized to the same shape as in the initial calibration procedure, this step is important because any other size would not match with the calibration parameters found. Radial distortion is removed from each of the two images of the stereo pair, and a new updated calibration matrix is returned to take into account the transformation performed. Undistortion is performed using the camera's intrinsic parameters and distortion coefficients found during the calibration phase.

(III). **Sparse Matching.** The relative position of the camera in the second shot with respect to the previous is found through the use of point correspondences in the two views as explained in the next section. The matching points in the two views will correspond to the same 3D point in the scene.

To extract such matches, keypoints, and corresponding descriptors are computed on both images using the **Scale Invariant Feature Transform** algorithm. In order to match the found keypoints according to their similarity different approaches can be used. The simplest solution is to find matches using a bruteforce approach, this involves comparing every possible pair of matches to determine which ones are the most similar (smallest L2-norm), matches are then ranked in order of similarity and only the best ones are taken.

A second and more efficient solution is to use the **FLANN-based matcher**. FLANN uses a different distance measure (Hellinger) instead of the classic L2-norm to compare SIFT descriptors, this leads to a dramatic improvement in speed. To filter matches Lowe's ratio test is used, which measures the distance ratio between the two nearest matches of any considered keypoint, it is considered a good match when this value is below a threshold (often fixed between 0.7 and 0.8).

An alternative approach to find matches is to select them manually in both images, this approach can be time consuming and does not allow to find a high number of matching points.

The following steps in the pipeline work best with a high number of matches found on multiple planes in the two views so this solution can be used in cases in which the automatic approach finds a high number of wrong matches. (e.g. images with repeating patterns, vast solid color areas).

(IV). Fundamental matrix estimation. To determine position of one camera relative to the other expressed as a rotation matrix R and a translation vector t epipolar geometry is used. Specifically, the epipolar constraint allows us to compute E and F the Essential and Fundamental matrices from a finite number of correspondences in the two images as mentioned above. The Fundamental matrix is used to derive the Essential matrix containing pose information.

The epipolar constraint is a geometrical constraint that can be written as:

$$[p_2; 1]^T K^{-T} E K^{-1}[p_1; 1] = 0$$

where E is an essential matrix,  $p_1$  and  $p_2$  are corresponding points in the first and the second images respectively, and K are the intrinsic parameter matrices of the two cameras (in this setup they are identical since stereo pair is acquired with same camera).

We know that:

$$F = K^{-T}EK^{-1}$$

so we can write the epipolar constraint more simply as:

$$[p_2; 1]^T F[p_1; 1] = 0$$

In order to retrieve pose information we need to estimate the Fundamental matrix first from this epipolar constraint. To do so the implementation chosen (OpenCV) uses **Random Sample Consensus** (RANSAC), which iteratively estimates the most probable model parameters given the correspondences found in earlier stages.

After estimating F it is easy to derive E and since we know that  $E = R[T_x]$  (where  $[T_x]$  denotes the skew-symmetric matrix such that  $[T_x]x = t \times x$  is the cross-product of the vectors t and x). we can derive pose information through **Singular Value Decomposition** (SVD) on the Essential matrix. The accuracy of this entire procedure estimating the pose of one camera with respect to the other heavily depends on the accuracy of the initial calibration procedure and the quality and number of correspondences found in the two images.

(V). **Dense correspondence.** We know from epipolar geometry that the projection of a scene point onto the first image generates a *line* on the other image plane where the corresponding point must lie. In this context finding the correspondence of a projected point onto the first image plane in the second image plane results in a 1D search on such epipolar line. To solve the problem more practically a solution is to project both image planes onto a common plane parallel to the baseline joining the two optical centers. This process is known as *rectification* and effectively makes epipolar lines parallel.

This is performed computing two rotation matrices one for each camera that will make both image planes virtually the same plane.

The procedure needs to use intrinsic parameters for both cameras together with pose information (K, R, t). Now given two points p and p' located on the same scanline of the left and right images, with coordinates (x, y) and (x', y), the disparity is defined as the difference

$$d = x' - x = \frac{Bf}{Z}$$

If B denotes the distance between the optical centers, also called the baseline in this context, the depth of P in the (normalized) coordinate system attached to the first camera is

$$Z = -Bf/d$$

In particular, the coordinate vector of the point P in the frame attached to the first camera is P = -(Bf/d)p, where  $p = (x, y, 1)^T$  is the vector of normalized image coordinates of p (see figure (V)). In short, the above equation says that the depth of a point in a scene is inversely proportional to the difference in distance of corresponding image points and their camera centers. So to find depth information for any point p we need to find the corresponding disparity d.

To do so a Stereo Block matching algorithm is used. This works by using "Sum of



Absolute Difference" windows to find matching points between the left and right stereorectified images. This algorithm finds only strongly matching (high-texture) points between the two images. Thus, in a highly textured scene such as might occur outdoors in a forest, every pixel might have computed depth. In a very low-textured scene, such as an indoor hallway, very few points might register depth.

The algorithm operates in three stages:

- 1. Prefiltering to normalize image brightness and enhance texture.
- 2. Correspondence search along horizontal scanlines (epipolar lines) using SAD window.
- 3. Postfiltering to eliminate bad matches.

The output of this operation will be a disparity image. This disparity map can in turn be used to estimate the relative depth of points and will be used to reproject them in 3D.

(VI). **3D Reprojection.** Reprojection of the entire disparity image to 3D is accomplished using the OpenCV function cvreprojectImageTo3D which operates on whole images. This routine takes a disparity image and transforms each pixel's (x, y) coordinates along with that pixel's disparity (i.e a vector  $[x, y, d]^T$ ) to the corresponding 3D point (X/W, Y/W, Z/W) by

using a reprojection matrix Q obtained from the cvstereoRectify function.

$$\begin{bmatrix} X \\ Y \\ Z \\ W \end{bmatrix} = Q \begin{bmatrix} x \\ y \\ \text{disparity}(x, y) \\ z \end{bmatrix}.$$

the matrix Q returned during rectification phase is the following (4x4) matrix:

$$Q = \begin{bmatrix} 1 & 0 & 0 & -cx_1 \\ 0 & 1 & 0 & -cy \\ 0 & 0 & 0 & f \\ 0 & 0 & -\frac{1}{B} & \frac{cx_1 - cx_2}{B} \end{bmatrix}$$

where B is a horizontal shift between the cameras and  $cx_1 = cx_2$ . Furthermore  $-\frac{1}{B}$  is going to be -1 because t obtained by SVD was a unit vector since no information on the distance between the cameras was provided.

## RESULTS

#### References

[1] Z. Zhang. "A flexible new technique for camera calibration". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 22.11 (2000), pp. 1330–1334. DOI: 10.1109/34.888718.