

ASTrA: Adversarial Self-supervised Training with Adaptive-Attack

ICLR 2025 Singapore

https://prakashchhipa.github.io/projects/ASTrA

Prakash Chandra Chhipa^{1*}, Gautam Vashishtha^{2*}, Settur Jithamanyu^{3*}, Rajkumar Saini¹, Mubarak Shah⁴, Marcus Liwicki¹

¹Machine Learning Group, Lulea° Tekniska Universitet, Sweden

²Indian Institute of Technology, Gandinagar

³Indian Institute of Technology, Madras

⁴Center For Research in Computer Vision, University of Central Florida, USA

Self-supervised adversarial attacks – limitation

• Networks vulnerability to adversarial examples.

cat

 $\delta = 8/255$.

airliner

- Limitation: Hand-crafted adversarial attack strategy fail to adapt dynamically in Self-supervised adversarial training (Self-AT).
 - o Does not align with model's learning dynamics
 - o No correspondence between training examples and attack strategy parameters

Towards goal

ACL Method - Robust Pre-Training by Adversarial Contrastive Learning, NeurIPS 2020 (on CIFAR10)

Develop adaptive, self-supervised adversarial attack strategy

Learnable attacks in ASTrA

✓ Learnable strategy network autonomously finds optimal attacks.

reward computed on target network's loss terms and gradients updated through REINFORCE

ASTrA framework

✓ Exploration-Exploitation using SSL contrastive reward and REINFORCE optimization

ASTrA framework

✓ Exploration-Exploitation using SSL contrastive reward and REINFORCE optimization

Mixed contrastive loss

✓ Align representations using of clean view to corresponding (adaptively attacked) perturbed view.

Results public benchmarks

Standard Linear Finetuning Performance – ASTrA vs. other Self-AT method

Results label efficiency, improved robustness and modularity

- ✓ Self-supervised adaptive attack strategy ASTrA framework
 - ✓ enables through exploration-exploitation on learning attack parameters
- ✓ Mixed contrastive loss
 - ✓ improving distribution alignment

Achievements

- ✓ Improved robustness across benchmarks and evaluation protocols
 - ✓ STL, CIFARS, SLF, ALF, AFF
- ✓ Scalable and avoid robust overfitting
 - ✓ ImageNet100, longer pretraining
- ✓ Plug-and-play and modular ✓ Sefl-AT methods-DYNACL, RoCL

