Math 650 Fall 2016 Homework #4

Due Oct. 27, Thu in class

- 1. Construct an example of a closed set in \mathbb{R}^2 whose convex hull is not closed.
- 2. Let $C \subseteq \mathbb{R}^n$ be a convex set. Show that the closure of C is convex. (*Hint*: use the sequential criterion for a point in the closure of a set.)
- 3. For a vector $x \in \mathbb{R}^n$, the index set $\operatorname{supp}(x) := \{i \mid x_i \neq 0\}$ is called the *support* of x. Let a *nonzero* matrix $A \in \mathbb{R}^{m \times n}$ and a *nonzero* vector $b \in \mathbb{R}^m$ be such that the equation Ax = b, $x \geq 0$ has a solution, where $x \geq 0$ means that each component of x is nonnegative.
 - (1) Show that the solution set of the equation is closed and convex.
 - (2) Show that the equation attains a nonzero solution $x^* \geq 0$ with $\alpha = \operatorname{supp}(x^*)$ such that the columns of $A_{\bullet \alpha}$ are linearly independent. (*Hint*: refer to the proof of Caratheodory Theorem.)
- 4. Let K_1 and K_2 be two convex cones in a vector space. Show that $K_1 + K_2$ is a convex cone and $K_1 + K_2 = \text{conv}(K_1 \cup K_2)$.
- 5. An ordered real k-tuple $a \equiv (a_1, \ldots, a_k)$ is called *lexicographically nonnegative* if either a = 0 or its first nonzero element (from the left) is positive. Let \mathcal{S} be the set of all lexicographically nonnegative k-tuples.
 - (1) Show that S is a convex cone in \mathbb{R}^k .
 - (2) Is \mathcal{S} closed? If so, give a proof; otherwise, construct a counterexample.

More practice problems: Do not submit

1. Consider the Lorentz cone $\mathcal{L} := \{x \in \mathbb{R}^n \mid x_n \geq \sqrt{\sum_{i=1}^{n-1} x_i^2}\}$. Show that the Lorentz cone is closed, convex, and self-dual (i.e. $\mathcal{L} = \mathcal{L}^*$). (*Hint*: For the convexity, treat \mathcal{L} as an epigraph of a *nice* function. For the self-duality, use contradiction for $\mathcal{L}^* \subseteq \mathcal{L}$ and use Cauchy-Schwarz inequality for $\mathcal{L} \subseteq \mathcal{L}^*$.)