Probability and Computing, 2nd Edition

Solutions to Chapter 5: Balls, Bins, and Random Graphs

Hahndeul Kim

 $\mathrm{July}\ 2025$

5.1

As $(1+1/n)^n$ increases, we find the smallest n to reach the threshold. $(1+1/n)^n$ first reaches 0.99e at n=50, and 0.999999e at n=499982. Since $(1-1/n)^n$ also increases, we solve in a similar way. $(1-1/n)^n$ first reaches 0.99/e at n=51 and 0.999999/e at n=499991.

5.2

Recall the formula used in the birthday paradox: If there are N possibilities, then we solve for the smallest n that satisfies $\prod_{i=1}^{n-1} (1 - \frac{i}{N}) \approx \prod_{i=1}^{n-1} e^{-i/n} = e^{-(n-1)n/2N} < 1/2$. Note that we omitted the final approximation to derive exact numerical answers. Regardless of whether the number of Social Security number digits is 9 or 13, using the last four digits gives N = 10000 and this gives n = 119. In the case where the number of digits is n = 109, we get n = 37234. In the case where the number of digits is n = 13, we get n = 3723298.

5.3

Let the number of balls thrown be m. Then the desired probability is $\prod_{i=0}^{m-1} (1-\frac{i}{n})$. We first determine c_1 . $m=c_1\sqrt{n}$ should satisfy $\prod_{i=0}^{m-1} (1-\frac{i}{n}) \leq \prod_{i=0}^{m-1} e^{-i/n} = e^{-(m-1)m/2n} \leq e^{-1}$. Since $(m-1)m=c_1^2n-c_1\sqrt{n} \geq 2n$, $(c_1^2-2)\sqrt{n} \geq c_1$. Therefore, we choose c_1 that is greater than or equal to $\frac{1}{2}\left(\frac{1}{\sqrt{n}}+\sqrt{\frac{1}{n}}+8\right)$. Now we determine c_2 . To use the given hint, assume that 2m < n. $\prod_{i=0}^{m-1} (1-\frac{i}{n}) \geq \prod_{i=0}^{m-1} \exp(-\frac{i}{n}-\frac{i^2}{n^2}) = \exp(-\frac{m(m-1)}{2n}-\frac{(m-1)m(2m-1)}{6n^2}) = \exp(-\frac{m(m-1)}{2n}(1+\frac{2m-1}{3n})) \geq \exp(-\frac{m^2}{2n}(1+\frac{2m}{3\sqrt{n}})) \geq \frac{1}{2}$ should be satisfied for $m=c_2\sqrt{n}$. This is equivalent to satisfying $\frac{c_2^2}{2}(1+\frac{2c_2}{3\sqrt{n}}) \leq \ln 2$. Since n is sufficiently large, choosing $c_2=\sqrt{2\ln 2-\frac{1}{\ln n}}$ yields the desired result.

5.4

Let event A indicate that there exist two or more people who share a birthday, and event B indicate that exactly two people share a birthday. Then our desired probability would be $\Pr(A - B) = \Pr(A) - \Pr(B)$ since $B \subset A$.

We first determine Pr(A), which is easy: $Pr(A) = 1 - \prod_{i=1}^{100} \frac{366-i}{365}$.

We now determine Pr(B). If there are i shared birthdays in which each day is

shared by exactly two people, then the number of possible permutations would be the product of the following terms:

 $\binom{365}{i}$ ways to choose *i* shared days, $\binom{100}{2i}$ ways to choose 2i people to share birthdays, $\prod_{i=1}^{i} {2j \choose 2}$ ways to distribute *i* birthdays to 2i people and $\prod_{i=1}^{100-2i} (366 - 1)^{-2i}$ (i-j) ways to distribute unique birthdays to the rest.

Thus,
$$\Pr(B) = \sum_{i=0}^{50} \frac{365!100!}{i!(100-2i)!(265+i)!2^i} \times \frac{1}{365^{100}}$$
.

Therefore, we can determine our desired probability Pr(A-B) = Pr(A) - Pr(B).

5.5

Let $X \sim Poisson(\lambda)$. Then $M_X(t) = \mathbf{E}[e^{tX}] = e^{\lambda(e^t-1)}$ holds. By computing the second derivative of $M_X(t)$ with respect to t and plugging t=0 in, we get $\mathbf{E}[X^2] = \lambda + \lambda^2$. Thus, $\mathbf{Var}[X] = \lambda$ follows.

5.6

We first show that $Y \sim Poisson(\mu p)$.

$$\Pr(Y = k) = \sum_{i=k}^{\infty} \Pr(X = i) {i \choose k} p^k (1-p)^{i-k} = \sum_{i=k}^{\infty} \frac{e^{-\mu} \mu^i}{i!} \frac{i!}{k!(i-k)!} p^k (1-p)^{i-k}$$
$$= \frac{e^{-\mu} (p\mu)^k}{k!} \sum_{i=k}^{\infty} \frac{(\mu(1-p))^{i-k}}{(i-k)!} = \frac{e^{-\mu} (p\mu)^k}{k!} e^{\mu(1-p)} = \frac{e^{-\mu p} (\mu p)^k}{k!}.$$

We can also similarly show that $Z \sim Poisson(\mu(1-p))$.

Now we show that Pr(Y = i, Z = j) = Pr(Y = i) Pr(Z = j). Note that X = Y + Z by definition. This allows us to write Pr(Y = i, Z = j) as Pr(Y = i, Z = j)

$$X = I + Z \text{ by definition. This allows us to write } \Pr(I = i, Z = j) \text{ as } \Pr(I = i, X = i + j) = \Pr(X = i + j) {i+j \choose i} p^i (1-p)^j = \frac{e^{-\mu} \mu^{i+j}}{i!j!} p^i (1-p)^j.$$
 Since $\Pr(Y = i) \Pr(Z = j) = \frac{e^{-p\mu} (p\mu)^i}{i!} \frac{e^{-(1-p)\mu} ((1-p)\mu)^j}{j!} = \frac{e^{-\mu} \mu^{i+j} p^i (1-p)^j}{i!j!} = \Pr(Y = i, X = i + j), Y \perp \!\!\!\perp Z.$

5.7

We first prove that $\ln(1+x) \le x$, which is equivalent to $1+x \le e^x$. Since $\ln(1+x) - x = -\frac{x^2}{2} + \frac{x^3}{3} - \cdots$, this can be seen as an alternating series as $\frac{x^n}{n}$ is monotonically decreasing in $|x| \le 1$. We can apply rearrangements to the alternating series as $\ln(1+x) - x = -\sum_{n=1}^{\infty} \left(\frac{x^{2n}}{2n} - \frac{x^{2n+1}}{2n+1}\right)$, since the Taylor expansion of $\ln(1+x)$ is absolutely convergent (to e^x-1). The rearrangement gives $\ln(1+x) - x \le 0$, which is the desired result.

We now prove $x + \ln(1-x^2) \le \ln(1+x)$, which is equivalent to $e^x(1-x^2) \le 1+x$. Since $\ln(1-x^2) = \ln(1+x) + \ln(1-x)$, $x + \ln(1-x^2) \le \ln(1+x)$ is reduced to $\ln(1-x) \le -x$. At $|x| \le 1$, this is equivalent to $\ln(1+x) \le x$, which we have previously proved.

5.8

- (a) Since the ball is equally likely to fall in one of the three bins, the desired probability is 1/3.
- (b) Since the bin 2 did not receive balls, we can simply think of this as throwing balls n into n-1 bins. The conditional expectation would be n/(n-1).
- (c) Note that the probability that bin 1 receives more balls than bin 2 is the same as that of bin 2 receiving more balls than bin 1. Thus, we first compute the probability that two bins receive the same number of balls, which is

$$P = \sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose 2k} {2k \choose k} {(\frac{1}{n})^{2k}} (1 - \frac{2}{n})^{n-2k}.$$
 The desired probability would be $(1-P)/2$.

5.9

In the given condition, the expected number of elements in a single bucket is at most a. Since a = O(1), sorting all buckets can still be done in linear time.

5.10

- (a) By the Poisson approximation, the probability p is bounded as $p \le e\sqrt{n}(\frac{1}{e})^n$. (b) $\frac{n!}{n^n}$.
- (c) Since $\Pr(Z=n) = \frac{e^{-n}n^n}{n!}$ when $Z \sim Poisson(n)$, $\frac{n!}{n^n} \times \frac{e^{-n}n^n}{n!} = e^{-n}$ shows the claim. Theorem 5.6 states that the distribution $(Y_1, ..., Y_n)$ constrained on $\sum_{i=1}^n Y_i = n$ is equivalent to the balls and bins model. Note that each Y_i follows Poisson(1) and each X_i denotes the load of the ith bin in the balls and bins model. Then using theorem 5.6, $(1/e)^n/(\frac{e^{-n}n^n}{n!}) = \frac{\Pr(\forall i, Y_i = 1)}{\Pr(\sum_i Y_i = n)} = \Pr(\forall i, Y_i = 1)$ $|\sum_i Y_i = n| = \Pr(\forall i, X_i = 1) = \frac{n!}{n^n}$.

5.11

Let X_i be the indicator variables that are 1 if there is a k-gap starting at i. Let $X = \sum_{i=0}^{n-k} X_i$.

- (a) The expected number of k-gaps would be $\sum_{i=0}^{n-k} \mathbf{E}[X_i] = (n-k+1)(1-\frac{k}{n})^m$.
- (b) First, we assume that the bin loads follow the Poisson distribution to derive the Poisson-approximated Chernoff bound. We divide $\{X_i\}$ into k subsets, so that all indicator variables in the same subset are independent. First, we derive the Chernoff bound for $Y_0 = \sum_{i>0} X_{ik}$ where $0 < \delta < 1$.

$$\Pr(Y_0 \ge (1+\delta)\mathbf{E}[Y_0]) \le \exp(-\frac{1}{3}\frac{\mathbf{E}[X]}{k}\delta^2), \text{ and } \Pr(Y_0 \le (1-\delta)\mathbf{E}[Y_0]) \le \exp(-\frac{1}{2}\frac{\mathbf{E}[X]}{k}\delta^2)$$
 holds. Therefore, $\Pr(|Y_0 - \mathbf{E}[Y_0]| \ge \delta\mathbf{E}[Y_0]) \le 2\exp(-\frac{1}{3}\frac{\mathbf{E}[X]}{k}\delta^2).$

With the union bound for all Y_i , we get $\Pr(|X - \mathbf{E}[X]| \ge \delta \mathbf{E}[X]) \le 2k \exp(-\frac{1}{3} \frac{\mathbf{E}[X]}{k} \delta^2)$. Since we have used the Poisson approximation to compute the Chernoff bound, the computed upper bound should be multiplied by $e\sqrt{m}$.

5.12

Let X_i be the indicator variables that are 1 if a ball landed in bin i by itself.

(a) The expected number of balls to be served in this round would be $\sum_{i=1}^{n} \mathbf{E}[X_i] =$

 $\sum_{i=1}^{n} b \times \frac{1}{n} (1 - \frac{1}{n})^{b-1} = b(1 - \frac{1}{n})^{b-1}.$ Therefore, the expected number of balls at the start of the next round would be $b(1-(1-\frac{1}{n})^{b-1})$.

(b) Note that if n=1, then the number of rounds required would be trivially 1. Therefore, we only consider the cases where $n \geq 2$.

Since $x_{j+1} = x_j(1 - (1 - \frac{1}{n})^{x_j - 1}) \le x_j(1 - (1 - \frac{x_j - 1}{n})) = x_j \frac{x_j - 1}{n} \le \frac{x_j^2}{n}$, the inequality given in the hint is true.

With $x_1 = n(1 - (1 - \frac{1}{n})^{n-1})$, cascading the inequality yields $x_k \le n(\frac{x_1}{n})^{2^{k-1}} = n(1 - (1 - \frac{1}{n})^{n-1})^{2^{k-1}} \le n(1 - (1 - \frac{1}{n})^n)^{2^{k-1}}$.

Now, let k^* be the minimum k that satisfies $n(1-(1-\frac{1}{n})^n)^{2^{k-1}} \le 1$, so that the operation ends after no more than k^*+1 rounds. Since $1-(1-\frac{1}{n})^n \le \frac{3}{4}$ at $n \geq 2$, we calculate the minimum k that satisfies $n(\frac{3}{4})^{2^{k-1}} \leq 1$.

Taking log on both sides gives $\ln n + 2^{k^*-1} \ln \frac{3}{4} \le 0$, which is equivalent to $2^{k^*-1} \ge \frac{\ln n}{\ln \frac{4}{3}}$. Therefore, we get $k^*-1 \ge \ln \frac{\ln n}{\ln \frac{4}{3}}$, which shows that $k^* =$ $O(\log \log n)$.

5.13

Let the load of bin i be X_i , and let $Y_k = X_{kn/\log_2 n}$ where $k \in \mathbb{N}_0$. Then for all i, there exists $k \in \mathbb{N}$ such that $kn/\log_2 n \le i \le (k+1)n/\log_2 n$.

When a ball is thrown into the bin i, only one of the two bins (bin $kn/\log_2 n$ and bin $(k+1)n/\log_2 n$ must be chosen together. This means that $X_i \leq Y_k + Y_{k+1}$. Since only one of the bins in $S = \{i | i = kn/\log_2 n\}$ gets a ball within a player's round, we can see Y_k as each bin in the model of balls and bins with $\log_2 n$ bins and $\log_2 n$ balls.

Recall that the probability that the maximum load is more than $3 \ln n / \ln \ln n$ is at most 1/n in the model of n balls and n bins (Lemma 5.1). Therefore, we bound the probability that the maximum load is greater than 6M =

 $6 \ln \log_2 n / \ln \ln \log_2 n$, considering $X_i \leq Y_k + Y_{k+1}$. Thus, we can derive the upper bound as $\Pr(\sum_{i=0}^{n-1} \mathbf{1}_{X_i \geq 6M} > 0) \leq \Pr(\sum_{i=0}^{\log_2 n - 1} \mathbf{1}_{Y_i \geq 3M} > 0) \leq \frac{1}{\log_2 n}$. Thus, the maximum load is less than $6 \ln \log_2 n / \ln \ln \log_2 n = O(\log \log n / \log \log \log n)$ with probability $1 - \frac{1}{\log_2 n}$ which approaches 1 as $n \to \infty$.

5.14

(a)
$$\Pr(Z = \mu + h) - \Pr(Z = \mu - h - 1) = \frac{e^{-\mu}\mu^{\mu+h}}{(\mu+h)!} - \frac{e^{-\mu}\mu^{\mu-h-1}}{(\mu-h-1)!} = \frac{\mu^{\mu-h}}{(\mu+h)!}(\mu^{2h} - \sum_{i=1}^{h}(\mu^2 - i^2))$$
. Since $\mu^2 > \mu^2 - i^2$, $\Pr(Z = \mu + h) - \Pr(Z = \mu - h - 1) \ge 0$ holds and the claim is proved.

- (b) $\Pr(Z \ge \mu) \ge \sum_{h=0}^{\mu-1} \Pr(Z = \mu + h) \ge \sum_{h=0}^{\mu-1} \Pr(Z = \mu h 1) = \Pr(Z < \mu) = 1 \Pr(Z \ge \mu)$ shows that $2\Pr(Z \ge \mu) \ge 1$, proving the claim.
- (c) Numerical validation can show that $\Pr(Z \ge \mu) \le 1/2$ for all integers μ from 1 to 10.

5.15

(a)
$$\mathbf{E}[f(Y_1^{(m)},...,Y_n^{(m)})] = \sum_{k=0}^{\infty} \mathbf{E}[f(X_1^{(k)},...,X_n^{(k)})] \Pr(\sum_{i=1}^n Y_i^{(m)} = k)$$
 holds (recall the proof of Theorem 5.7).

If $\mu(m) = \mathbf{E}[f(X_1^{(m)},...,X_n^{(m)})]$ is monotonically increasing in m, then we have $\mu(k) \geq \mu(m)$ for $k \geq m$ for some m. Thus, $\mathbf{E}[f(Y_1^{(m)},...,Y_n^{(m)})] = \sum_{k < m} \mu(k) \Pr(\sum_{i=1}^n Y_i^{(m)} = k) + \sum_{k \geq m} \mu(k) \Pr(\sum_{i=1}^n Y_i^{(m)} = k) \ (f \geq 0)$

$$\sum_{k < m} \mu(k) \Pr(\sum_{i=1}^{n} Y_i^{(m)} = k) + \sum_{k \ge m} \mu(k) \Pr(\sum_{i=1}^{n} Y_i^{(m)} = k) \ (f \ge 0)$$

$$\geq \sum_{k \geq m} \mu(m) \Pr(\sum_{i=1}^{n} Y_i^{(m)} = k) = \mathbf{E}[f(X_1^{(m)}, ..., X_n^{(m)})] \Pr(\sum Y_i^{(m)} \geq m).$$

Similarly, if $\mu(m)$ is monotonically decreasing in m, then we have $\mu(k) \geq \mu(m)$ for $k \leq m$ for some m. Thus,

$$\mathbf{E}[f(Y_1^{(m)}, ..., Y_n^{(m)})] = \sum_{k \le m} \mu(k) \Pr(\sum_{i=1}^n Y_i^{(m)} = k) + \sum_{k > m} \mu(k) \Pr(\sum_{i=1}^n Y_i^{(m)} = k)$$

$$\geq \sum_{k \leq m} \mu(m) \Pr(\sum_{i=1}^{n} Y_i^{(m)} = k) = \mathbf{E}[f(X_1^{(m)}, ..., X_n^{(m)})] \Pr(\sum Y_i^{(m)} \leq m).$$

(b) Since the sum of independent Poisson random variables is also a Poisson random variable, $\sum Y_i^{(m)} \sim Poisson(m)$. Using the result of exercise 5.14.(b) and 5.15.(a), $\mathbf{E}[f(Y_1^{(m)},...,Y_n^{(m)})] \geq \mathbf{E}[f(X_1^{(m)},...,X_n^{(m)})] \Pr(\sum Y_i^{(m)} \geq m)$ $\geq \mathbf{E}[f(X_1^{(m)},...,X_n^{(m)})] \times \frac{1}{2}$. Thus, Theorem 5.10 is proved for the monotoni-

If one can derive a formal proof on the statement of exercise 5.14.(c), Theorem 5.10 can also be proved for the monotonically decreasing case.

5.16

cally increasing case.