

MOSFET

800V CoolMOS™ P7 Power Transistor

The latest 800V CoolMOS™ P7 series sets a new benchmark in 800V super junction technologies and combines best-in-class performance with state of the art ease-of-use, resulting from Infineon's over 18 years pioneering super junction technology innovation.

Features

- Best-in-class FOM R_{DS(on)} * E_{oss}; reduced Q_g, C_{iss}, and C_{oss}
- Best-in-class DPAK R_{DS(on)}
- Best-in-class $V_{(GS)th}$ of 3V and smallest $V_{(GS)th}$ variation of $\pm 0.5V$
- Integrated Zener Diode ESD protection
- Fully qualified acc. JEDEC for Industrial Applications
- Fully optimized portfolio

Benefits

- · Best-in-class performance
- Enabling higher power density designs, BOM savings and lower assembly costs
- Easy to drive and to parallel
- Better production yield by reducing ESD related failures
- Less production issues and reduced field returns
- Easy to select right parts for fine tuning of designs

Potential applications

Recommended for hard and soft switching flyback topologies for LED Lighting, low power Chargers and Adapters, Audio, AUX power and Industrial power. Also suitable for PFC stage in Consumer applications and Solar.

Please note: For MOSFET paralleling the use of ferrite beads on the gate or seperate totem poles is generally recommended.

Table 1 Rey Ferformance Farameters								
Parameter	Value	Unit						
V _{DS} @ T _{j=25°C}	800	V						
R _{DS(on),max}	0.36	Ω						
$Q_{g,typ}$	30	nC						
I_D	13	A						
E _{oss} @ 500V	3.2	μJ						
$V_{GS(th),typ}$	3	V						
ESD class (HBM)	2	-						

Type / Ordering Code	Package	Marking	Related Links
IPD80R360P7	PG-TO 252-3	80R360P7	see Appendix A

800V CoolMOS™ P7 Power Transistor IPD80R360P7

Table of Contents

Description
Maximum ratings 3
Thermal characteristics
Electrical characteristics
Electrical characteristics diagrams 6
Test Circuits
Package Outlines
Appendix A
Revision History
Trademarks
Disclaimer

800V CoolMOS™ P7 Power Transistor

1 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 Maximum ratings

Dougnoston	0	Values					
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Continuous drain current ¹⁾	I _D	-	-	13 8.6	А	T _C =25°C T _C =100°C	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	34	Α	T _C =25°C	
Avalanche energy, single pulse	E AS	-	-	34	mJ	I _D =2.0A; V _{DD} =50V	
Avalanche energy, repetitive	E AR	-	-	0.28	mJ	I _D =2.0A; V _{DD} =50V	
Avalanche current, repetitive	I _{AR}	-	-	2.0	Α	-	
MOSFET dv/dt ruggedness	dv/dt	-	-	100	V/ns	V _{DS} =0 to 400V	
Gate source voltage	V _{GS}	-20 -30	-	20 30	V	static; AC (f>1 Hz)	
Power dissipation	P _{tot}	-	-	84	W	<i>T</i> _C =25°C	
Operating and storage temperature	T _j , T _{stg}	-55	-	150	°C	-	
Continuous diode forward current	Is	-	-	10	Α	<i>T</i> _C =25°C	
Diode pulse current ²⁾	I _{S,pulse}	-	-	34	Α	T _C =25°C	
Reverse diode dv/dt ³⁾	dv/dt	-	-	1	V/ns	$V_{\rm DS}$ =0 to 400V, $I_{\rm SD}$ <=2.8A, $T_{\rm j}$ =25°C	
Maximum diode commutation speed ³⁾	di _f /dt	-	-	50	A/μs	$V_{\rm DS}$ =0 to 400V, $I_{\rm SD}$ <=2.8A, $T_{\rm j}$ =25°C	

Thermal characteristics 2

Table 3 **Thermal characteristics**

Parameter	Symbol	Values			Linit	Note / Test Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Thermal resistance, junction - case	R _{thJC}	-	-	1.5	°C/W	-
Thermal resistance, junction - ambient	R _{thJA}	-	-	62	°C/W	Device on PCB, minimal footprint
Thermal resistance, junction - ambient for SMD version	R_{thJA}	-	35	45	°C/W	Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer 70µm thickness) copper area for drain connection and cooling. PCB is vertical without air stream cooling.
Soldering temperature, wave- & reflow soldering allowed	T _{sold}	-	-	260	°C	reflow MSL1

 $^{^{1)}}$ Limited by T_{j max}. Maximum duty cycle D=0.5 $^{2)}$ Pulse width t_p limited by T_{j,max} $^{3)}$ V_{DClink}=400V; V_{DS,peak}<V_{(BR)DSS}; identical low side and high side switch with identical R_G; t_{cond} <2µs

800V CoolMOS™ P7 Power Transistor IPD80R360P7

3 Electrical characteristics

at $T_i = 25$ °C, unless otherwise specified

Table 4 Static characteristics

Danis and an	Oh a l		Values			
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	V _{(BR)DSS}	800	-	-	V	V_{GS} =0V, I_D =1mA
Gate threshold voltage	V _{GS(th)}	2.5	3	3.5	V	$V_{DS}=V_{GS}, I_{D}=0.28\text{mA}$
Zero gate voltage drain current	I _{DSS}	-	- 10	1 -	μΑ	V _{DS} =800V, V _{GS} =0V, T _j =25°C V _{DS} =800V, V _{GS} =0V, T _j =150°C
Gate-source leakage curent incl. zener diode	I _{GSS}	-	-	1	μΑ	V _{GS} =20V, V _{DS} =0V
Drain-source on-state resistance	R _{DS(on)}	-	0.31 0.80	0.36	Ω	V _{GS} =10V, I _D =5.6A, T _j =25°C V _{GS} =10V, I _D =5.6A, T _j =150°C
Gate resistance	R _G	-	1	-	Ω	f=250kHz, open drain

Table 5 Dynamic characteristics

Danamatan	Oh a l		Value	s	11		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Input capacitance	Ciss	-	930	-	pF	V _{GS} =0V, V _{DS} =500V, f=250kHz	
Output capacitance	Coss	-	16	-	pF	V _{GS} =0V, V _{DS} =500V, f=250kHz	
Effective output capacitance, energy related ¹⁾	$C_{ m o(er)}$	-	27	-	pF	$V_{\rm GS}$ =0V, $V_{\rm DS}$ =0 to 500V	
Effective output capacitance, time related ²⁾	C _{o(tr)}	-	336	-	pF	I_D =constant, V_{GS} =0V, V_{DS} =0 to 500V	
Turn-on delay time	t _{d(on)}	-	10	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =5.6A, $R_{\rm G}$ =5.3 Ω	
Rise time	t _r	-	6	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =5.6A, $R_{\rm G}$ =5.3 Ω	
Turn-off delay time	$t_{ m d(off)}$	-	40	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =5.6A, $R_{\rm G}$ =5.3 Ω	
Fall time	t f	-	6	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =5.6A, $R_{\rm G}$ =5.3 Ω	

Table 6 Gate charge characteristics

Parameter	Symbol	Values			Unit	Note / Test Condition
raiailletei	Syllibol	Min.	Тур.	Max.	Oilit	Note / Test Condition
Gate to source charge	Q _{gs}	-	4	-	nC	V_{DD} =640V, I_{D} =5.6A, V_{GS} =0 to 10V
Gate to drain charge	Q_{gd}	-	13	-	nC	V_{DD} =640V, I_{D} =5.6A, V_{GS} =0 to 10V
Gate charge total	Q g	-	30	-	nC	V_{DD} =640V, I_{D} =5.6A, V_{GS} =0 to 10V
Gate plateau voltage	V _{plateau}	-	4.5	-	V	V_{DD} =640V, I_{D} =5.6A, V_{GS} =0 to 10V

 $^{^{1)}}$ $C_{\text{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 500V $^{2)}$ $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 500V

800V CoolMOS™ P7 Power Transistor

IPD80R360P7

Table 7 Reverse diode characteristics

Davamatav	Cymbal	Values			11	Nata / Tast Canditian
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Diode forward voltage	V _{SD}	-	0.9	-	V	V _{GS} =0V, I _F =5.6A, T _f =25°C
Reverse recovery time	t _{rr}	-	1100	-	ns	V _R =400V, I _F =2.8A, di _F /d <i>t</i> =50A/μs
Reverse recovery charge	Qrr	-	12	-	μC	V _R =400V, I _F =2.8A, di _F /d <i>t</i> =50A/μs
Peak reverse recovery current Irrm		-	19	-	Α	V _R =400V, I _F =2.8A, di _F /d <i>t</i> =50A/μs

4 Electrical characteristics diagrams

5 Test Circuits

Table 8 Diode characteristics

Table 9 Switching times

Table 10 Unclamped inductive load

6 Package Outlines

DIM	MILLI	METERS	INC	HES	
DIN	MIN	MAX	MIN	MAX	
Α	2.16	2.41	0.085	0.095	
A1	0.00	0.15	0.000	0.006	
b	0.64	0.89	0.025	0.035	
b2	0.65	1.15	0.026	0.045	
b3	4,95	5.50	0.195	0.217	
С	0.46	0.61	0.018	0.024	
c2	0.40	0.98	0.98 0.016		
D	5.97	6.22	0.235	0.245	
D1	5.02	5.84	0.198	0.230	
E	6.35	6.73	0.250	0.265	
E1	4.32	5.21	0.185	0.205	
е	2	2.29 (BSC)	0.0	90 (BSC)	
e1	4	1.57 (BSC)	0.1	180 (BSC)	
N		3	3	3	
Н	9.40	10.48	10.48 0.370		
L	1.18	1.78	0.046	0.070	
L3	0.89	1.27	0.035	0.050	
L4	0.51	1.02	0.020	0.040	

DOCUMENT NO.				
Z8B00003328				
SCALE 0				
2.5 0 2.5 L				
EUROPEAN PROJECTION				
ISSUE DATE				

05-02-2016 **REVISION** 06

Figure 1 Outline PG-TO 252-3, dimensions in mm/inches

800V CoolMOS™ P7 Power Transistor IPD80R360P7

7 Appendix A

Table 11 Related Links

• IFX CoolMOS Webpage: www.infineon.com

• IFX Design tools: www.infineon.com

800V CoolMOS™ P7 Power Transistor

IPD80R360P7

Revision History

IPD80R360P7

Revision: 2018-02-09, Rev. 2.1

Previous Revision

Revision	Date	Date Subjects (major changes since last revision)					
2.0	2017-03-21	Release of final version					
2.1	2018-02-09	Corrected front page text					

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSeT™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™, i-Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.

Trademarks updated August 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2018 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

IPD80R360P7ATMA1