

Projeto de Investimento em rede GPON

Economia para a Engenharia

Arthur Cadore Matuella Barcella

13 de Julho de 2025

Engenharia de Telecomunicações - IFSC-SJ

Sumário

1.	Introdução	3
2.	Dados do Projeto	3
	2.1. Equipamentos Ativos:	3
	2.2. Equipamentos Passivos:	3
	2.3. Materiais de Infraestrutura e Ancoragem:	4
	2.4. Alugueis:	4
	2.5. Mão de Obra:	4
	2.6. Planos de Internet e instalação:	4
3.	Fluxo de Caixa	5
	3.0.1. Fluxo de Caixa Mensal	5
	3.0.2. Dataset 1° Ano	5
4.	Viabilidade	6
	4.1. Fluxo de Caixa Acumulado	6
	4.2. Payback	7
	4.3. Valor Presente Líquido (VPL)	
	4.4. Taxa Interna de Retorno (TIR)	7
5.	Conclusão	8
	5.1. Projeção para 10 Anos	8

1. Introdução

Este documento tem como objetivo apresentar a análise de investimento para um projeto de implantação de rede GPON, incluindo o cálculo do VPL, TIR e Payback. A análise é baseada em dados financeiros e técnicos discutidos na disciplina de STC (Sistemas de Telecomunicações).

2. Dados do Projeto

Inicialmente, foram definidos os dados do projeto, como o investimento inicial, os custos de equipamentos e alugueis, a receita de planos e a taxa de instalação, os custos de mão de obra e os custos de equipamentos passivos e de lançamento.

2.1. Equipamentos Ativos:

Os equipamentos ativos são os equipamentos que são usados para a implantação da rede GPON, como o OLT, a ONU e o transceiver.

Equipamento	Custo Á Vista	Custo Parcelado	Quantidade
Chassi OLT AN6000-2 02U 10G	3782	4066	1
Placa GPOA	9890	9890	1
Transceiver GPON C++ GPON	319.32	319.32	10
Transceiver KTS 2110+	359.99	359.99	2
AN5506-01-A	88	88	1280
Nobreak 1500VA	1000	1000	1

2.2. Equipamentos Passivos:

Os equipamentos passivos são os equipamentos que são usados para a implantação da rede GPON, como o rack, o splitter e o patchcord de fibra.

Equipamento	Custo Á Vista	Custo Parcelado	Quantidade
Rack de telecomunicações 10U	1000	1000	1
DIO 12x2	100	100	10
Splitter 1x16	50	50	10
Splitter Desbalanceado 10/90	50	50	10
Splitter Desbalanceado 20/80	50	50	10
Splitter Desbalanceado 30/70	50	50	10
Splitter Desbalanceado 40/60	50	50	10
Conector SC/APC	1.5	1.5	1280
Patch-cord fibra óptica 1 metro	5	5	1280

2.3. Materiais de Infraestrutura e Ancoragem:

Os materiais de infraestrutura e ancoragem são os materiais que são usados para a implantação da rede GPON, como o cabo mini-RA, o cabo drop, caixa de emenda, entre outros.

Material	Custo Á Vista	Custo Parcelado	Quantidade
Mini-RA 12FO	100	100	10
Mini-RA 6FO	50	50	10
Drop 1FO	10	10	1280
Caixa de emenda - Fusão	200	200	10
Caixa de emenda - Conectorizada	200	200	10
Caixa de terminação	100	100	10
Abraçadeira-BAP-3	0.5	0.5	1280
Isolador BAP-3	0.1	0.1	1280
Alça Preformada	0.5	0.5	1280

2.4. Alugueis:

Os alugueis foram definidos com base em pesquisa no local de instalação, considerando o custo de aluguel de um poste, o custo do Uplink e da sala comercial utilizada:

Aluguel	Custo Mensal	Quantidade
POP - Ponto de Presença	1000	1
Poste	6	1280
Uplink	1000	1

2.5. Mão de Obra:

A mão de obra foi definida com base em discussão em sala, foi colocado um valor definido por demanda da mão de obra, apenas para simplificar o cálculo.

Serviço	Custo Mensal	Quantidade
Instalação POP	5000	1
Instalação Residencial	50	1280
Instalação Infraestrutura PON	1	10000
Fusões	1	1000

2.6. Planos de Internet e instalação:

Os planos de internet foram definidos com base em pesquisa de mercado, considerando os planos de internet mais comuns no local de instalação e seu valor correspondente.

Plano	Preço Mensal	Taxa de Instalação
Plano 100Mbps	100	300
Plano 200Mbps	150	300
Plano 500Mbps	200	300

3. Fluxo de Caixa

O primeiro passo na análise foi definir o fluxo de caixa mensal, considerando as receitas e despesas do projeto, para isso foi projetado ao longo de 6 anos (devido a quantidade de portas PON disponiveis na OLT e a média de novas instalações no mes de 20 clientes por mes), considerando os custos de equipamentos, alugueis, mão de obra e receita de planos e instalação.

3.0.1. Fluxo de Caixa Mensal

O fluxo de caixa mensal foi definido com base na receita líquida e na despesa líquida, considerando os custos de equipamentos, alugueis, mão de obra e receita de planos e instalação.

$$FC_i = Receita_i - Despesa_i$$
 (1)

Onde:

- FC_i é o fluxo de caixa no mês i,
- Receita $_i$ é a receita líquida no mês i e
- Despesa $_i$ é a despesa líquida no mês i.

3.0.2. Dataset 1° Ano

Com base nos dados do fluxo de caixa mensal, foi projetado um dataset para o 1° ano, considerando os custos de equipamentos, alugueis, mão de obra e receita de planos e instalação.

mes	c_inicial	c_pon	r_planos	r_inst	c_onus	c_fixos	l_liquido	m_obra
	Custo	Custos	Receita	Receita	Custo	Custos	Lucro	Mão de
	Inicial	PON	Planos	Instala-	ONUs	Fixos	Líquido	Obra
				ção				
M1	70000	78834.0	1400	2000	1760	30836.0	-366298.0	30600
M2	0	0.0	2800	2000	1760	30836.0	-38296.0	10500
M3	0	0.0	4200	2000	1760	30836.0	-36896.0	10500
M4	0	0.0	5600	2000	1760	30836.0	-35496.0	10500
M5	0	0.0	7000	2000	1760	30836.0	-34096.0	10500
M6	0	0.0	8400	2000	1760	30836.0	-32696.0	10500
M7	0	0.0	9800	2000	1760	30836.0	-31296.0	10500
M8	0	0.0	11200	2000	1760	30836.0	-29896.0	10500
M9	0	0.0	12550	2000	1760	30836.0	-28546.0	10500
M10	0	0.0	14000	2000	1760	30836.0	-27096.0	10500

mes	c_inicial	c_pon	r_planos	r_inst	c_onus	c_fixos	l_liquido	m_obra
M11	0	0.0	15400	2000	1760	26770.0	-21630.0	10500
M12	0	10000.0	16800	2000	1760	26770.0	-30230.0	10500

Com base no dataset, podemos separar as receitas e despesas do projeto, conforme apresentado abaixo.

Receitas ao longo do tempo

Receita Planos
Receita Instalação

Despesas ao longo do tempo

Custos Fixos
Custo Sixos
Custo Sixos
Custos Pon
Cust

Figura 1: Elaborada pelo Autor

Fluxo de caixa

4. Viabilidade

Tendo o fluxo de caixa, podemos calcular a viabilidade do projeto, considerando o investimento inicial, o fluxo de caixa mensal e o saldo acumulado.

4.1. Fluxo de Caixa Acumulado

O fluxo de caixa acumulado é definido como a soma dos fluxos de caixa do mês i até o mês n, então uma vez tendo o fluxo de caixa mensal, podemos calcular o fluxo de caixa acumulado ao longo do período de projeção do investimento.

$$S_n = \sum (FC_i) \tag{2}$$

Onde:

- S_n é o saldo acumulado no mês n,
- FC_i é o fluxo de caixa do mês i (lucro líquido).

4.2. Payback

Tendo o fluxo de caixa acumulado, podemos calcular o payback, que é o tempo necessário para recuperar o investimento inicial, que é dado por S_n .

$$Payback = \min(S_n > 0) \tag{3}$$

Onde:

- $\,S_n$ é o saldo acumulado no mês $n,\,$
- FC_i é o fluxo de caixa no mês i (lucro líquido).

4.3. Valor Presente Líquido (VPL)

O valor presente líquido é definido como a soma dos fluxos de caixa do mês i até o mês n, considerando a taxa mínima de atratividade (TMA) mensal, que é dada por r.

$$VPL = \sum \left(\frac{FC_i}{1+r^i}\right) \tag{4}$$

Onde:

- FC_i é o fluxo de caixa no mês i,
- r é a taxa mínima de atratividade (TMA) mensal, e
- N é o número total de meses.

4.4. Taxa Interna de Retorno (TIR)

A taxa interna de retorno (TIR), é utilizada para determinar o percentual de retorno do investimento, considerando a taxa que zera o valor presente líquido dos fluxos de caixa, ou seja, a taxa que zera o valor presente líquido dos fluxos de caixa.

$$TIR = \sum \left(\frac{FC_i}{(1 + TIR)^i} \right)$$
 (5)

Onde:

- FC_i é o fluxo de caixa no mês i,
- TIR é a taxa que zera o valor presente líquido dos fluxos de caixa.

Figura 2: Elaborada pelo Autor

Viabilidade do Investimento

5. Conclusão

Com base nos cálculos realizados, podemos concluir que o investimento é viavel **A LONGO PRAZO**, sendo necessario investir grandes somas, especialmente nos primeiros dois anos para poder manter a infraestrutrutura funcionando, entretanto, a longo prazo o investimento se torna lucrativo, mesmo sem operação da rede, considerando a carteira de clientes que se formou, e os custos estabilizados de operação e manutenção.

5.1. Projeção para 10 Anos

Como dito anteriormente, a longo prazo, os valores se estabilizam, conforme apresentado abaixo, considerando uma carteira de clientes estavel, após 60 meses (5 anos), a entrada de receita se torna constante (considerando que não há ampliação), porem os custos de manutenção se mantem os mesmos.

Receitas ao longo do tempo Receita Planos 80000 Receita Instalação R\$ (Receitas) Despesas ao longo do tempo 80,000 Custos Fixos Custo ONUs R\$ (Despessas) Custos PON Custo Inicial Mão de Obra 60 Meses 20 40 80 100 120

Figura 3: Elaborada pelo Autor

Fluxo de Caixa

Essa entrada de receita constante, reflete na viabilidade do investimento a longo prazo, pois o investimento se torna lucrativo, considerando os custos de manutenção estabilizados e a receita constante.

Figura 4: Elaborada pelo Autor

Viabilidade do Investimento