Sensors of force and pressure

AE3B38SME - Sensors and Measurement

Strain gauges

$$\frac{\Delta R}{R} = \frac{\Delta \rho}{\rho} + \frac{\Delta L}{L} - \frac{\Delta S}{S}$$

$$R \cong R_0 + \frac{dR}{d\rho}(\rho - \rho_0) + \frac{dR}{dL}(L - L_0) + \frac{dR}{dS}(S - S_0)$$

$$\Delta R = R - R_0 \cong \frac{dR}{d\rho} (\rho - \rho_0) + \frac{dR}{dL} (L - L_0) + \frac{dR}{dS} (S - S_0)$$

$$\cong \frac{L}{S} (\rho - \rho_0) + \frac{\rho}{S} (L - L_0) - \frac{\rho L}{S^2} (S - S_0)$$

we want to express the relative change ΔR / R of resistance to the relative deformation $\epsilon = \Delta L$ / L

$$\frac{\Delta S}{S} = -2\mu \frac{\Delta L}{L}$$
 \tau Poisson ratio

$$\frac{\Delta R}{R} = \frac{\Delta \rho}{\rho} + \frac{\Delta L}{L} - \frac{\Delta S}{S}$$

$$\frac{\Delta S}{S} = -2\mu \frac{\Delta L}{L}$$

$$\frac{\Delta R/R}{\Delta L/L} = 1 + 2\mu + \frac{\Delta \rho/\rho}{\Delta L/L}$$

$$\frac{\Delta R/R}{\Delta L/L} = \frac{\Delta R/R}{\epsilon} = 1 + 2\mu + \pi_e E$$
 Young module

$$\frac{\Delta R/R}{\Delta L/L} = \frac{\Delta R/R}{\epsilon} = 1 + 2\mu + \pi_e E$$

$$\Delta R/R = C_1 \varepsilon + C_2 \varepsilon^2 + C_3 \varepsilon^3 + \dots$$

$$K = \frac{d\Delta R/R}{d\epsilon}$$

strain gauge factor (how large the response of the strain gauge is)

$$\alpha_{K} = \frac{\Delta K/K_{20^{\circ}C}}{\Delta \vartheta}$$

temperature coefficient of sensitivity

$$\alpha_{R} = \frac{\Delta R/R_{20^{\circ}C}}{\Delta \vartheta}$$

temperature coefficient of resistance

Metal and semiconductor strain gages

<u>Parameter</u>	Semiconductor	Metal
K	125	2÷4
C_2	4000	~0
α_{R}	I2 ppm/K	0.2 ppm/K
ακ	I6 ppm/K	5 ppm/K

Bonded foil strain gauges

The epoxy resin both transmits the mechanical stress to the metal and provided the necessary electrical insulation

Other shapes of strain gauges to measure in multiple directions

Vishay, Omega Engineering, Hottinger-Baldwin

Problem: what if the temperature changes?

We must compensate ΔR due to temperature. Basic principle: use two "identical" sensors, only one of which measures the force.

R₂ depends only on temperature

R₁ depends on F and temperature

Other solution: use a full bridge and identical sensors

Other solution: use a full bridge and identical sensors

How to amplify the voltage output?

How to amplify the voltage output?

Solution: instrumentation amplifier

$$V_{\text{out}} = \left(\frac{2R_1}{R_g} + I\right) \frac{R_3}{R_2} \left(-V_{\text{in}}\right)$$

Fiber Bragg Grating sensors

How to measure force

for small forces (up to some kN)

How to measure a large force

S-type load cell

Shear-web force transducer

How to measure shear

Folded cantilever

extension and compression are the same

Sensors of force based on displacement

Sensors with electromechanical feedback

Why should we use feedback? Can't we simply read the difference of capacity?

Why should we use feedback? Can't we simply read the difference of capacity?

How feedback works

The current I in the solenoid creates a force F

F=kl

so that the differential capacitor is always in the central position

How feedback works

The output signal is not capacity anymore.

The output signal is the current used to produce the balancing force.

If I measure the capacity I get a non-linear dependence of the output quantity Cdiff on displacement (and then force F_m)

If I measure the current I, I obtain a linear dependence of the output current on the measured foce F_m)

No feedback:

$$F_m \longrightarrow displacement \xrightarrow{non-linearity} C_{diff}$$

With feedback:

$$F_{m} \xrightarrow{=} F \xrightarrow{\text{linearity}} I$$

balancing

Magnetoanisotropic sensor of force

Measurement of torque

sensor of torque based on angular displacement:

Measurement of torque

optolectronic sensor based on overlapping of shades 2-2'

Measurement of pressure

Membrane with rossete strain gauges

Distribution of radial and tangential strain under pressure-deformation

Deformation elements with cantilever and bellows

Bourdon tube

Differential capacitor with separating liquid

