

Universidade de Brasília Faculdade do Gama

Matemática Discreta 2

Prof. Dr. Glauco Vitor Pedrosa

Álgebra Abstrata

- Por que se estuda Matemática?
- Além do fato dela permitir o exercício de algumas ações práticas do cidadão (como o gerenciamento de suas finanças, por exemplo) e a compreensão de alguns fenômenos relativos à sociedade (como a evolução de uma população, por exemplo), a Matemática fornece uma poderosa ferramenta simbólica que serve de suporte ao pensamento humano, explicitando intensidades, relações entre grandezas e relações lógicas, sendo, por este motivo e por excelência, a linguagem da Ciência.

Álgebra Abstrata

- A álgebra abstrata é uma sub-área da matemática
- É onde a linguagem matemática é definida e onde a compreensão dos conceitos, pelos seus níveis de abstração, requer o desenvolvimento de raciocínios que ajudarão na aprendizagem de outras ciências

Operação Binária

- Sejam A, B e C três conjuntos não vazios
- Uma operação binária * é uma função do produto cartesiano AxB em C
- Em outras palavras, uma operação binária é uma função que leva 2 elementos (1 do conjunto A e 1 do conjunto B) para o conjunto C
- Matematicamente, uma operação binária é denotada por:

*:
$$AxB \rightarrow C$$

 $(a, b) \rightarrow a * b = c$

Operação Binária Interna em A

- Seja A um conjunto não vazio
- Uma operação binária interna * é uma função do produto cartesiano AxA em A
- Em outras palavras, uma operação binária interna é uma função que leva 2 elementos do conjunto A para 1 elemento do conjunto A
- Matematicamente, uma operação binária interna é denotada por:

*:
$$AxA \to A$$

 $(a_1, a_2) \to a_1 * a_2 = a_3$

 A operação soma no conjunto dos inteiros é uma operação binária interna

+:
$$ZxZ \rightarrow Z$$

 $(x, y) \rightarrow x + y = r$

 A subtração no conjunto dos números naturais é uma operação binária, mas não é interna:

-:
$$NxN \rightarrow Z$$

 $(x, y) \rightarrow x - y = r$

Algumas Propriedades das Operações Binárias Internas

Sejam a, b, c ∈ A e uma operação binária interna *. As operações binárias internas podem ter as seguintes propriedades:

- Associativa
 a*(b*c) = (a*b)*c
- Comutativa a*b = b*a
- Elemento Neutro
 ∃ e ∈ A, tal que e*a = a*e= a
- Elemento Simétrico
 ∃ a' ∈ A, tal que a'*a = a*a' = e

• Seja K = {1, 2, 7, 9} e a operação

* :
$$K \times K \rightarrow K$$

 $(x,y) \rightarrow (x*y) = y$

- Esta é uma operação binária interna em K, pois vou operar com 2 elementos do conjunto K e esta operação vai retornar um outro elemento dentro do conjunto K
- Verifique se a operação * possui as propriedades:
 - Associativa
 - Comutativa
 - Elemento neutro
 - Elemento simétrico

É associativa? Sim

É comutativa? Não

$$x * y = y * x$$

 $y = x$

Possui elemento neutro? Não

$$x * e = e * x = x$$

 $e = x = x$

O elemento neutro tem que ser único!

Possui elemento simétrico? Não, pois não possui elemento neutro

• Seja Z e a seguinte operação:

* :
$$Z \times Z \rightarrow Z$$

(a,b) \rightarrow (a+b-3)

Verifique se esta operação possui as propriedades:

Associativa

Comutativa

Elemento Neutro

Elemento Simétrico

```
É associativa? Sim
```

$$(x * y) * z = x * (y * z) ??$$

$$(x+y-3)*z = x * (y+z-3)$$

$$(x+y-3)+z-3 = x+(y+z-3)-3$$

$$x+y-6 = x+y-6$$

É comutativa? Sim

$$x * y = y * x$$

$$(x+y-3) = (y+x-3)$$

$$x+y-3 = x+y-3$$

Possui elemento neutro? Sim

$$x * e = e * x = x$$

$$(x+e-3) = x$$
, temos que $\varepsilon = 3$

(e+x-3) = x, temos que
$$\varepsilon$$
 = 3

Como 3 ∈ Z, então 3 é o elemento neutro dessa operação

Possui elemento simétrico? Sim

$$x * x' = e$$

$$(x+x'-3) = 3$$

$$x' = 6-x$$

Seja Z e a operação

* :
$$Z \times Z \rightarrow Z$$

 $(x,y) \rightarrow (x*y) = x+y+4x$

- Verifique se a operação * possui as propriedades:
 - Associativa
 - Comutativa
 - Elemento neutro
 - Elemento simétrico

 Considere a seguinte operação * definida sobre o conjunto dos números reais R:

*: RxR
$$\rightarrow$$
 R
(x,y) \rightarrow x*y = 2^{xy}

Verifique se * é comutativa, se é associativa e se tem elemento neutro

- A tábua é uma matriz que representa uma operação realizada a partir da combinação de todos os elementos do conjunto
- Por exemplo, considere A = {1, 3, 4, 5} e a seguinte operação
 *: (x,y) → y
- A tábua que representa a operação acima é dada por:

*	1	3	4	5 -	 >	Linha fundamental
1	1	3	4	5		
3	1	3	4	5		
4	1	3	4	5		
5	1	3	4	5		

 Dado conjunto E = {1, 3, 9, 27}, construa a tábua da operação

*:
$$(x,y) \rightarrow mdc(x,y)$$

*	1	3	9	27
1	1	1	1	1
3	1	3	3	3
9	1	3	9	9
27	1	3	9	27

 Seja E = {0, 1, 2, 3, 4}, construa a tábua da operação

*:
$$(x,y) \rightarrow (x+y) \mod 5$$

*	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

Como determinar as propriedades de uma operação usando a tábua?

Comutativa

 os elementos tem que ocupar posições simétricas com relação à diagonal

	a_1	a_2	• • • •	a_i	• • • •	a_{j}	• • • •	a_n
a_1	a_{11}							
a_2		a_{22}						
:								
a_i				a_{ii}		a_{ij}		
:								
a_j				a_{ji}		a_{jj}		
:								
a_n								a_{nn}

Como determinar as propriedades de uma operação usando a tábua?

Elemento Neutro

- A linha do elemento neutro é igual à linha fundamental
- A coluna do elemento neutro é igual à linha fundamental

	a_1	a_2	 e	 a_n
a_1			a_1	
a_2			a_2	
e	a_1	a_2	e	a_n
::				
a_n		·	a_n	

Como determinar as propriedades de uma operação usando a tábua?

Elemento Simétrico

- Se a operação tem elemento neutro, então para descobrir quem é o elemento simétrico de um elemento a_i , basta procurar na linha do elemento a_i pelo elemento a_i em que $a_i * a_j = e$.
- Se $a_j * a_i$ = e, então o elemento simétrico de a_i é a_j

	a_1	a_2	• • •	a_i	 a_{j}	• • •	a_n
a_1							
a_2							
a_i					e		
:							
a_{j}				e			
:							
a_n							·

 Dada a tábua da operação * abaixo, verifique se ela possui as propriedades: comutativa, possui elemento neutro, elemento simétrico e associativa

*	1	2	5	7
1	1	5	1	5
2	5	1	2	2
5	1	2	5	7
7	5	2	7	1

 Dada a tábua da operação Δ abaixo, verifique se ela possui as propriedades: comutativa, elemento neutro, elemento simétrico e associativa

Δ	1	2	5
1	2	1	1
2	1	2	5
5	1	5	2

 Dada a tábua da operação Δ abaixo, verifique se ela possui as propriedades: comutativa, elemento neutro, elemento simétrico e associativa

*	1	2	5
1	1	1	1
2	1	1	2
5	1	2	2

- Verifique se a operação abaixo possui:
- a) elemento neutro
- b) é comutativa
- c) quais são os elementos que possuem simétricos

- Construa a tábua de uma operação * sobre o conjunto C = {a, b, c, d}, sabendo que:
- a) <u>b</u> é o elemento neutro;
- b) o simétrico de <u>a</u> é <u>a</u>
- c) o simétrico de <u>c</u> é <u>c</u>
- d) $\underline{a} * \underline{c} = \underline{d} * \underline{d} = \underline{d}$
- e) $\underline{a} * \underline{d} = \underline{c} * \underline{d} = \underline{c}$
- f) é comutativa

- Construa a tábua de uma operação * sobre o conjunto C = {1, 2, 3, 4}, sabendo que:
- a) <u>2</u> é o elemento neutro;
- b) o simétrico de <u>1</u> é <u>3</u>
- c) 4*3 = 1
- d) é comutativa
- e) é associativa

Dicas:

(1*1)*3

(3*3)*1

(4*4)*1

Propriedades das Operações Binárias

Elemento Regular

Dado um conjunto A e uma operação *, dizemos que $\alpha \in A$ é um elemento regular quando:

$$\mathbf{a} * a_i \neq \mathbf{a} * a_j$$
 para todo $a_i \neq a_j$

- Em outras palavras, um elemento α é regular quando na linha e na coluna de α não há elementos iguais.
- Exemplo:

Na tábua abaixo, apenas os elementos {1 e 2} são regulares

*	1	2	5
1	1	5	2
2	5	2	1
5	2	1	1

Construa a tábua de uma operação * sobre $E=\{e,a,b,c\}$ de modo que * seja: comutativa, "e" seja o elemento neutro, x*a = a para todo \underline{x} e todos os elementos sejam regulares (exceto o \underline{a})

 Seja * uma operação sobre o conjunto E = {0, 1, a, b, c} cuja tábua é apresentada abaixo. Verifique se * é: comutativa, calcule (c * 1) * a, e determine os conjuntos dos elementos simetrizáveis e regulares.

*	0	1	а	b	c
0	1	а	С	0	b
1	а	b	1	1	С
а	С	0	b	а	1
b	0	1	а	b	С
С	b	а	0	С	0

Propriedades das Operações Binárias

Sejam a, b, $c \in A$ e duas operações binárias internas * e Δ .

- Dizemos que Δ é distributiva à esquerda de * se:
- $x \Delta(y^*z) = (x \Delta y)^*(x \Delta z)$
- Dizemos que Δ é <u>distributiva à direita</u> de * se: $(y*z) \Delta x = (y \Delta x)*(z \Delta x)$
- Quando Δ é distributiva à esquerda e à direita de *, então dizemos que Δ é distributiva em relação a *

• Sejam $x^*y = x + xy = x\Delta y = xy + 1$ duas operações sobre Z. Verifique se Δ é distributiva em relação a operação *.

```
Verificando se \Delta é distributiva à esquerda em relação a *: a \Delta (b * c) = (a \Delta b) * (a \Delta c)

a \Delta (b + bc) = (ab + 1) * (ac + 1)

a (b + bc) + 1 = (ab + 1) + (ab + 1)(ac + 1)

a b + abc + 1 = ab + 1 + abac + ab + ac + 1

a b + abc + 1 = ab + a^2bc + ab + ac + 1 (falso)
```

- Não é necessário verificar se é distributiva à direita, pois, mesmo que dê verdadeiro, a distributiva à esquerda já não é verdade.
 - Portanto, Δ não é distributiva em relação a operação *

Dada as seguintes operações sobre o conjunto Z

$$(a, b) \Delta (c, d) = (ac, ad + bc)$$

 $(a, b) * (c, d) = (a + c, b + d)$

Verifique se Δ é distributiva em relação a *

```
Verificando se \Delta é distributiva à esquerda de *:

(a, b) \Delta [(c, d) * (e, f)] = [(a, b) \Delta (c, d)] * [(a, b) \Delta (e, f)]

(a, b) \Delta (c + e, d + f) = (ac, ad + bc) * (ae, af + be)

(a(c + e), a(d + f) + b(c + e)) = (ac + ae, ad + bc + af + be)

(ac + ae, ad + af + bc + be) = (ac + ae, ad + bc + af + be)

Logo, \Delta é distributiva à esquerda de *
```

Verificando se Δ é distributiva à direita de *: [(c, d) * (e, f)] Δ (a, b) = [(c, d) Δ (a, b)] * [(e, f) Δ (a, b)] (c + e, d + f) Δ (a, b) = (c a, c b + d a) * (e a, e b + f a) ((c + e) a, (c + e) b + (d + f) a) = (c a + e a, c b + d a + e b + f a) (c a + e a, c b + e b + d a + f a) = (c a + e a, c b + d a + e b + f a) Logo, Δ é distributiva à direita de *. Portanto, a operação Δ é distributiva em relação à operação *.

• Dada as tábuas da operações * e Δ abaixo, verifique se Δ é distributiva em relação a *

Δ	1	2	5
1	2	1	1
2	1	2	5
5	1	5	2

*	1	2	5
1	1	1	1
2	1	1	2
5	1	2	2