1. VECTORI, OPERAȚII LINIARE CU VECTORI ÎN COORDONATE

Fie că vectorii e_1 , e_2 , e_3 formează bază în spațiu. Atunci pentru orice vector \overline{a} există numerele reale x, y, z, astfel încât $\overline{a} = x\overline{e_1} + y\overline{e_2} + z\overline{e_3}$. Aceste numere se numesc coordonate ale vectorului \overline{a} în baza $\overline{e_1}$, $\overline{e_2}$, $\overline{e_3}$. Se mai scrie $\overline{a} = \{x, y, z\}$. În mod analog se definesc coordonatele vectorului în plan.

Fie vectorii $\overline{a}=\{x_1,\ y_1,\ z_1\}$ și $\overline{b}=\{x_2,\ y_2,\ z_2\}$ într-o bază fixată, iar $\lambda\in\mathbb{R}$. Atunci $\lambda\ \overline{a}=\{\lambda x_1,\ \lambda y_1,\ \lambda z_1\}$ și $\overline{a}+\overline{b}=\{x_1+x_2,\ y_1+y_2,\ z_1+z_2\}$.

Coordonatele vectorului. Fie date punctele $A(x_1, y_1, z_1)$ și $B(x_2, y_2, z_2)$. Atunci $\overline{AB} = \{x_2 - x_1, y_2 - y_1, z_2 - z_1\}$.

Împărțirea segmentului într-un raport dat. Fie date punctele $A(x_1,y_1,z_1)$, $B(x_2,y_2,z_2)$ și $\lambda\in\mathbb{R},\ \lambda\neq -1$. Punctul C astfel încât $\overline{AC}=\lambda\overline{CB}$, are coordonatele $\left(\frac{x_1+\lambda x_2}{1+\lambda},\frac{y_1+\lambda y_2}{1+\lambda},\frac{z_1+\lambda z_2}{1+\lambda}\right)$.

În cazul $\lambda = 1$ punctul C este mijlocul segmentului AB și $C\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$.

Condiția de coliniaritate a vectorilor $\overline{a} = \{x_1, y_1, z_1\}$ și $\overline{b} = \{x_2, y_2, z_2\}$ este $\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$.

O bază se numește **ortonormată** dacă vectorii ei sunt doi câte doi ortogonali și unitari. Se notează cu $\{\bar{i}, \bar{j}, \bar{k}\}$.

2. PRODUSE DE VECTORI: SCALAR, VECTORIAL, MIXT. APLICAȚII

Vom numi **unghi dintre doi vectori**, unghiul format de alți doi vectori, egali celor dați, dar cu origine comună.

Definiție. Prin **produs scalar** a doi vectori vom înțelege numărul egal cu produsul dintre lungimile acestor vectori și cosinusul unghiului dintre ei. Se notează cu $\overline{a} \cdot \overline{b}$. Astfel, $\overline{a} \cdot \overline{b} = |\overline{a}| \cdot |\overline{b}| \cos(\overline{a}, \overline{b})$.

Produsul scalar al vectorilor posedă următoarele proprietăți:

- 1) $\bar{a} \cdot \bar{b} = \bar{b} \cdot \bar{a}$
- 2) $\overline{a} \cdot \overline{b} = |\overline{a}| \cdot pr_{\overline{a}}\overline{b} = |\overline{b}| \cdot pr_{\overline{b}}\overline{a}$.
- 3) Vectorii \overline{a} și \overline{b} sunt **ortogonali** dacă și numai dacă $\overline{a} \cdot \overline{b} = 0$
- 4) $(\lambda \overline{a}) \cdot \overline{b} = \lambda (\overline{a} \cdot \overline{b}) = \overline{a} \cdot (\lambda \overline{b}), (\lambda \in R)$
- 5) $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
- $6) \quad \overline{a} \cdot \overline{a} = \overline{a}^2 = |\overline{a}|^2$
- 7) $\overline{i} \cdot \overline{i} = \overline{j} \cdot \overline{j} = \overline{k} \cdot \overline{k} = 1$, $\overline{i} \cdot \overline{j} = \overline{j} \cdot \overline{k} = \overline{k} \cdot \overline{i} = 0$.

Dacă $\overline{a} = \{x_1, y_1, z_1\}$ și $\overline{b} = \{x_2, y_2, z_2\}$ în baza $\{\overline{i}, \overline{j}, \overline{k}\}$, atunci

1.
$$\overline{a} \cdot \overline{b} = x_1 x_2 + y_1 y_2 + z_1 z_2$$

2.
$$|\overline{a}| = \sqrt{\overline{a}^2} = \sqrt{x^2 + y^2 + z^2}$$

3.
$$\cos \Box \left(\overline{a}, \overline{b} \right) = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}$$

4.
$$pr_{\bar{a}}\bar{b} = \frac{x_1x_2 + y_1y_2 + z_1z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2}}$$

5. Dacă α, β, γ sunt unghiurile formate de vectorul $\overline{a} = \{x, y, z\}$ cu axele de coordonate Ox, Oy, Oz, atunci

$$\cos \alpha = \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \quad \cos \beta = \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \quad \cos \gamma = \frac{\gamma}{\sqrt{x^2 + y^2 + z^2}}$$
 și $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.

6. $\overline{a} \perp \overline{b}$ dacă și numai dacă $x_1x_2 + y_1y_2 + z_1z_2 = 0$

7. Distanța dintre punctele $A(x_1, y_1, z_1)$ și $B(x_2, y_2, z_2)$ este egală cu modulul vectorului \overline{AB} , adică $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$.

8. În mecanică, lucrul L al forței \overline{F} la deplasarea punctului material de-a lungul unei axe S este $L = \overline{F} \cdot \overline{S} = \left| \overline{F} \right| \cdot \left| \overline{S} \right| \cdot \cos \left(\overline{F} \cdot \overline{S} \right)$, unde \overline{S} - este vectorul deplasării.

Definiție. Prin **produs vectorial** al vectorului \overline{a} la vectorul \overline{b} vom înțelege vectorul \overline{c} , care verifică condițiile: a) $|\overline{c}| = |\overline{a}| \cdot |\overline{b}| \sin(\overline{a}, \overline{b})$; b) $\overline{c} \perp \overline{a}, \overline{c} \perp \overline{b}$; c) vectorii $\overline{a}, \overline{b}, \overline{c}$

formează un triplet de dreapta. Se notează cu $\overline{a} \times \overline{b}$.

Proprietăți:

- 1) $\overline{a} \times \overline{b} = \overline{0}$ dacă și numai dacă vectorii \overline{a} și \overline{b} sunt coliniari.
- $2) \quad \overline{a} \times \overline{b} = -\overline{b} \times \overline{a}$
- 3) $\lambda(\bar{a} \times \bar{b}) = (\lambda \bar{a}) \times \bar{b} = \bar{a} \times (\lambda \bar{b})$
- 4) $(\overline{a} + \overline{b}) \times \overline{c} = \overline{a} \times \overline{c} + \overline{b} \times \overline{c}$
- 5) Dacă $\overline{a} = \{x_1, y_1, z_1\}$ și $\overline{b} = \{x_2, y_2, z_2\}$ în baza $\{\overline{i}, \overline{j}, \overline{k}\}$, atunci:

$$\overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

Aplicații ale produsului vectorial

- 1. Aria paralelogramului construit pe vectorii \overline{a} și \overline{b} este egală cu $A_{paral} = |\overline{a} \times \overline{b}|$
- **2.** Aria triunghiului construit pe vectorii \overline{a} și \overline{b} este egală cu $A_{\Delta} = \frac{1}{2} | \overline{a} \times \overline{b} |$.

Definiție. Se numește **produs mixt** a trei vectori produsul scalar dintre vectorul, ce reprezintă produsul vectorial al primilor doi vectori, și vectorul al treilea. Se notează cu $\overline{a} \cdot \overline{b} \cdot \overline{c}$. Deci, $\overline{a} \cdot \overline{b} \cdot \overline{c} = (\overline{a} \times \overline{b}) \cdot \overline{c}$.

Teoremă. Modulul produsului mixt a trei vectori necoplanari \overline{a} , \overline{b} și \overline{c} , este egal cu volumul paralelipipedului construit pe acești vectori: $V_{paral} = \overline{a} \cdot \overline{b} \cdot \overline{c}$.

Proprietăți:

1.
$$\vec{a} \cdot \vec{b} \cdot \vec{c} = \vec{b} \cdot \vec{c} \cdot \vec{a} = \vec{c} \cdot \vec{a} \cdot \vec{b}$$
; $\vec{a} \cdot \vec{b} \cdot \vec{c} = -\vec{b} \cdot \vec{a} \cdot \vec{c}$

2. . Vectorii \overline{a} , \overline{b} , \overline{c} sunt coplanari dacă și numai dacă $\overline{abc} = 0$

3. Fie
$$\overline{a} = \{x_1, y_1, z_1\}, \ \overline{b} = \{x_2, y_2, z_2\}, \ \overline{c} = \{x_3, y_3, z_3\} \ \text{în baza} \ \{\overline{i}, \overline{j}, \overline{k}\},$$

atunci
$$\overline{abc} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$
.

Aplicațiile produsului mixt:

- 1. Volumul piramidei, construite pe vectorii \overline{a} , \overline{b} și \overline{c} , este egal cu $\frac{1}{6}|\overline{a}\overline{b}\overline{c}|$.
- **2.** Vectorii \overline{a} , \overline{b} , \overline{c} sunt necolpanari (formează bază în spațiu), dacă $\overline{abc} \neq 0$.

3. PLANUL. DIVERSE ECUAȚII ALE PLANULUI

Fie că în spațiu este fixat un sistem cartezian rectangular de coordonate OXYZ, iar π un plan. Fie $M_0\left(x_0,y_0,z_0\right)$ un punct ce aparține planului π . Considerăm vectorul nenul $\overline{n}=\left\{A,B,C\right\}$ perpendicular planului π , numit vector normal al planului. Atunci **ecuația planului ce conține punctul** $M_0\left(x_0,y_0,z_0\right)$ **cu vector normal** \overline{n} este $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$. Din ultima ecuație obținem Ax+By+Cz+D=0, cu $D=-Ax_0-By_0-Cz_0$, numită **ecuație generală a planului.**

Ecuații incomplete ale planului

- 1. D = 0; ecuația Ax + By + Cz = 0, determină un plan ce trece prin originea coordonatelor.
- 2. A = 0; ecuația By + Cz + D = 0, determină un plan paralel axei OX.
- 3. B=0; ecuatia Ax+Cz+D=0 determină un plan paralel axei OY.
- 4. C = 0; ecuația Ax + By + D = 0 determină un plan paralel axei OZ.
- 5. A = D = 0; ecuația By + Cz = 0 determină un plan ce conține axa OX.
- 6. B = D = 0; ecuația Ax + Cz = 0 determină un plan ce conține axa OY.
- 7. C = D = 0; ecuația Ax + By = 0 determină un plan paralel axei OZ.
- 8. A = B = 0; ecuația Cz + D = 0 determină un plan paralel planului OXY
- 9. B = C = 0; ecuația Ax + D = 0, determină un plan paralel planului OXY.
- 10. A = C = 0; ecuația By + D = 0, determină un plan paralel planului OXZ.
- 11. A = B = D = 0; ecuația Cz = 0 sau z = 0 ecuația planului OXY.
- 12. A = C = D = 0; ecuația By = 0 sau y = 0 ecuația planului OXZ.
- 13. B = C = D = 0; ecuația Ax = 0 sau x = 0 ecuația planului OYZ.

Dacă în ecuația generală toți coeficienții sunt nenuli, atunci ecuația se numește **completă** și poate fi scrisă sub forma: $\frac{x}{-D/A} + \frac{y}{-D/B} + \frac{z}{-D/C} = 1$ sau $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, numită **ecuația** planului "în segmente".

Ecuația planului ce trece prin trei puncte necoliniare $M_1(x_1, y_1, z_1)$, $M_2(x_2, y_2, z_2)$,

$$M_3(x_3, y_3, z_3)$$
 este
$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$

Unghiul dintre plane. Condițiile de paralelism și perpendicularitate

Fie planele $\pi_1: A_1x + B_1y + C_1z + D_1 = 0$ și $\pi_2: A_2x + B_2y + C_2z + D_2 = 0$. Atunci

$$\cos \Box \left(\pi_{1}, \pi_{2}\right) = \frac{A_{1}A_{2} + B_{1}B_{2} + C_{1}C_{2}}{\sqrt{A_{1}^{2} + B_{1}^{2} + C_{1}^{2}} \sqrt{A_{2}^{2} + B_{2}^{2} + C_{2}^{2}}}$$

Condiția de paralelism ale planelor π_1 și π_2 : $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$.

Condiția de perpendicularitate a planelor π_1 și π_2 : $A_1A_2 + B_1B_2 + C_1C_2 = 0$.

Fie punctul $M_0(x_0, y_0, z_0)$ și planul $\pi: Ax + By + Cz + D = 0$. Atunci **distanța de la** M_0 **la** π se calculează după formula $d(M_0, \pi) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$.

4. DREAPTA ÎN SPAȚIU. DIVERSE ECUAȚII ALE DREPTEI ÎN SPAȚIU

În spațiu, o dreaptă este bine determinată de un punct $M_0\left(x_0,y_0,z_0\right)$ ce-i aparține și un **vector** director $q = \{m,n,p\}$. Ecuația acestei drepte este $\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$, numită ecuație canonică a dreptei. Ecuațiile parametrice ale dreptei sunt $\begin{cases} x = x_0 + mt \\ y = y_0 + nt \end{cases}$, $t \in R$.

Ecuația dreptei ce trece prin punctele distincte $M_1(x_1, y_1, z_1)$, $M_2(x_2, y_2, z_2)$ este $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$.

Intersecția a două plane neparalele $\pi_1: A_1x+B_1y+C_1z+D_2=0$ și $\pi_2: A_2x+B_2y+C_2z+D_2=0$ reprezintă o dreaptă în spațiu. Atunci sistemul $\begin{cases} A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0 \end{cases}$ se numește **ecuație generală a dreptei**.

În calitate de vector director al dreptei cu ecuație generală putem considera vectorul $\overrightarrow{q} = \overline{n_1} \times \overline{n_2}$, iar un punct $M_0(x_0, y_0, z_0)$, care aparține dreptei, poate fi determinat, aflând o soluție (x_0, y_0, z_0) a sistemului.

Unghiul dintre drepte. Condițiile de paralelism și perpendicularitate

Fie dreptele

$$l_1: \frac{x-x_1}{m_1} = \frac{y-y_1}{n_1} = \frac{z-z_1}{p_1} \text{ si } l_2: \frac{x-x_2}{m_2} = \frac{y-y_2}{n_2} = \frac{z-z_2}{p_2}. \text{ Atunci}$$

$$\cos \Box \left(l_1, l_2\right) = \frac{m_1 m_2 + n_1 n_2 + p_1 p_2}{\sqrt{m_1^2 + n_1^2 + p_1^2} \sqrt{m_2^2 + n_2^2 + p_2^2}}.$$

Dreptele l_1 și l_2 sunt **perpendiculare** dacă $m_1m_2 + n_1n_2 + p_1p_2 = 0$.

Dreptele l_1 și l_2 sunt **paralele**, dacă $\frac{m_1}{m_2} = \frac{n_1}{n_2} = \frac{p_1}{p_2}$.

Unghiul dintre dreaptă și plan. Distanța de la punct la dreaptă. Distanța minimă dintre două drepte neconcurente

Fie planul $\pi_1: Ax + By + Cz + D = 0$ și dreapta $l: \frac{x - x_0}{m_0} = \frac{y - y_0}{n} = \frac{z - z_0}{p}$. Unghiul dintre dreapta l și planul π este determinat din relația

$$\sin\Box (l,\pi) = \frac{|mA + nB + pC|}{\sqrt{m^2 + n^2 + p^2} \sqrt{A^2 + B^2 + C^2}}.$$

Fie dată dreapta $l: \frac{x-x_1}{m} = \frac{y-y_1}{n} = \frac{z-z_1}{p}$ și punctul $M_0(x_0, y_0, z_0)$. Distanța de la M_0 la

dreapta l este egală cu $d(M_0, l) = \frac{|\overline{q} \times \overline{M_0 M_1}|}{|\overline{q}|}$.

Fie dreptele neconcurente: $l_1: \frac{x-x_1}{m_1} = \frac{y-y_1}{n_1} = \frac{z-z_1}{p_1}$ și $l_2: \frac{x-x_2}{m_2} = \frac{y-y_2}{n_2} = \frac{z-z_2}{p_2}$.

Distanță minimă între două drepte se numește lungimea segmentului de perpendiculară comună, cu extremitățile situate pe aceste . Se calculează după formula: $d = \frac{\left|q_1 \cdot q_2 \cdot M_1 M_2\right|}{\left|\overline{q_1} \times \overline{q_2}\right|}$.

Problema 1. Să se verifice dacă sunt coliniari vectorii \vec{c}_1 și \vec{c}_2 , construiți pe vectorii \vec{a} si \vec{b} .

1.
$$\vec{a} = \{1, -2, 3\}, \vec{b} = \{3, 0, -1\}, \vec{c_1} = 2\vec{a} + 4\vec{b}, \vec{c_2} = -\vec{a} + 3\vec{b}.$$

2.
$$\vec{a} = \{1, 0, 1\}, \vec{b} = \{-2, 3, 5\}, \vec{c_1} = \vec{a} + 2\vec{b}, \vec{c_2} = 3\vec{a} - \vec{b}.$$

3.
$$\vec{a} = \{-2, 4, 1\}, \vec{b} = \{1, -2, 7\}, \vec{c_1} = 5\vec{a} + 3\vec{b}, \vec{c_2} = 2\vec{a} - \vec{b}.$$

4.
$$\vec{a} = \{1, 2, -3\}, \vec{b} = \{2, -1, -1\}, \vec{c_1} = 4\vec{a} + 3\vec{b}, \vec{c_2} = 8\vec{a} - \vec{b}.$$

5.
$$\vec{a} = \{3, 5, 4\}, \vec{b} = \{5, 9, 7\}, \vec{c_1} = -2\vec{a} + \vec{b}, \vec{c_2} = 3\vec{a} - 2\vec{b}.$$

6.
$$\vec{a} = \{1, 4, -2\}, \vec{b} = \{1, 1, -1\}, \vec{c_1} = \vec{a} + \vec{b}, \vec{c_2} = 4\vec{a} + 2\vec{b}.$$

7.
$$\vec{a} = \{1, -2, 5\}, \vec{b} = \{3, -1, 0\}, \vec{c_1} = 4\vec{a} - 2\vec{b}, \vec{c_2} = -2\vec{a} + \vec{b}$$

8.
$$\vec{a} = \{3, 4, -1\}, \vec{b} = \{2, -1, 1\}, \vec{c_1} = 6\vec{a} - 3\vec{b}, \vec{c_2} = 2\vec{a} + 5\vec{b}.$$

9.
$$\vec{a} = \{-2, -3, -2\}, \vec{b} = \{1, 0, 5\}, \vec{c_1} = 3\vec{a} + 9\vec{b}, \vec{c_2} = -\vec{a} - 3\vec{b}.$$

10.
$$\vec{a} = \{-1, 4, 2\}, \vec{b} = \{3, -2, 6\}, \vec{c_1} = 2\vec{a} - \vec{b}, \vec{c_2} = 3\vec{b} - 6\vec{a}.$$

11.
$$\vec{a} = \{5, 0, -1\}, \vec{b} = \{7, 2, 3\}, \vec{c_1} = 2\vec{a} - \vec{b}, \vec{c_2} = -6\vec{a} + 3\vec{b}.$$

12.
$$\vec{a} = \{0, 3, -2\}, \vec{b} = \{1, -2, 1\}, \vec{c_1} = 5\vec{a} - 2\vec{b}, \vec{c_2} = 3\vec{a} + 5\vec{b}.$$

13.
$$\vec{a} = \{-2, 7, -1\}, \vec{b} = \{-3, 5, 2\}, \vec{c_1} = 2\vec{a} + 3\vec{b}, \vec{c_2} = 3\vec{a} + 2\vec{b}.$$

14. $\vec{a} = \{3, 7, 0\}, \vec{b} = \{1, -3, 4\}, \vec{c_1} = 4\vec{a} - 2\vec{b}, \vec{c_2} = \vec{b} - 2\vec{a}.$

14.
$$\vec{a} = \{3, 7, 0\}, \vec{b} = \{1, -3, 4\}, \vec{c_1} = 4\vec{a} - 2\vec{b}, \vec{c_2} = \vec{b} - 2\vec{a}.$$

15.
$$\vec{a} = \{-1, 2, -1\}, \vec{b} = \{2, -7, 1\}, \vec{c_1} = 6\vec{a} - 2\vec{b}, \vec{c_2} = \vec{b} - 3\vec{a}.$$

16.
$$\vec{a} = \{7, 9, -2\}, \vec{b} = \{5, 4, 3\}, \vec{c_1} = 4\vec{a} - \vec{b}, \vec{c_2} = 4\vec{b} - \vec{a}.$$

17.
$$\vec{a} = \{5, 0, -2\}, \vec{b} = \{6, 4, 3\}, \vec{c_1} = 5\vec{a} - 3\vec{b}, \vec{c_2} = 6\vec{b} - 10\vec{a}.$$

18.
$$\vec{a} = \{8, 3, -1\}, \vec{b} = \{4, 1, 3\}, \vec{c_1} = 2\vec{a} - \vec{b}, \vec{c_2} = 2\vec{b} - 4\vec{a}.$$

19.
$$\vec{a} = \{3, -1, 6\}, \vec{b} = \{5, 7, 10\}, \vec{c_1} = 4\vec{a} - 2\vec{b}, \vec{c_2} = \vec{b} - 2\vec{a}.$$

20.
$$\vec{a} = \{1, -2, 4\}, \vec{b} = \{7, 3, 5\}, \vec{c_1} = 6\vec{a} - 3\vec{b}, \vec{c_2} = \vec{b} - 2\vec{a}.$$

21.
$$\vec{a} = \{3, 7, 0\}, \vec{b} = \{4, 6, -1\}, \vec{c_1} = 3\vec{a} + 2\vec{b}, \vec{c_2} = 5\vec{a} - 7\vec{b}.$$

22.
$$\vec{a} = \{2, -1, 4\}, \vec{b} = \{3, -7, -6\}, \vec{c_1} = 2\vec{a} - 3\vec{b}, \vec{c_2} = 3\vec{a} - 2\vec{b}.$$

23.
$$\vec{a} = \{5, -1, -2\}, \vec{b} = \{6, 0, 7\}, \vec{c_1} = 3\vec{a} - 2\vec{b}, \vec{c_2} = 4\vec{b} - 6\vec{a}.$$

24.
$$\vec{a} = \{-9, 5, 3\}, \vec{b} = \{7, 1, -2\}, \vec{c_1} = 2\vec{a} - \vec{b}, \vec{c_2} = 3\vec{a} + 5\vec{b}.$$

25.
$$\vec{a} = \{4, 2, 9\}, \vec{b} = \{0, -1, 3\}, \vec{c_1} = 4\vec{b} - 3\vec{a}, \vec{c_2} = 4\vec{a} - 3\vec{b}.$$

26.
$$\vec{a} = \{2, -1, 6\}, \vec{b} = \{-1, 3, 8\}, \vec{c_1} = 5\vec{a} - 2\vec{b}, \vec{c_2} = 2\vec{a} - 5\vec{b}.$$

27.
$$\vec{a} = \{5, 0, 8\}, \vec{b} = \{-3, 1, 7\}, \vec{c_1} = 3\vec{a} - 4\vec{b}, \vec{c_2} = 12\vec{b} - 9\vec{a}.$$

28.
$$\vec{a} = \{-1, 3, 4\}, \vec{b} = \{2, -1, 0\}, \vec{c_1} = 6\vec{a} - 2\vec{b}, \vec{c_2} = \vec{b} - 3\vec{a}.$$

29.
$$\vec{a} = \{4, 2, -7\}, \vec{b} = \{5, 0, -3\}, \vec{c_1} = \vec{a} - 3\vec{b}, \vec{c_2} = 6\vec{b} - 2\vec{a}.$$

30.
$$\vec{a} = \{2, 0, -5\}, \vec{b} = \{1, -3, 4\}, \vec{c_1} = 2\vec{a} - 5\vec{b}, \vec{c_2} = 5\vec{a} - 2\vec{b}.$$

31.
$$\vec{a} = \{-1, 2, -1\}, \vec{b} = \{2, -7, 1\}, \vec{c_1} = 6\vec{a} - 2\vec{b}, \vec{c_2} = \vec{b} - 3\vec{a}.$$

32.
$$\vec{a} = \{5, 4, 1\}, \vec{b} = \{-3, 5, 2\}, \vec{c_1} = 2\vec{a} - 4\vec{b}, \vec{c_2} = 2\vec{b} - 3\vec{a}.$$

33.
$$\vec{a} = \{-5, 0, -1\}, \vec{b} = \{2, -3, 4\}, \vec{c_1} = 3\vec{a} + \vec{b}, \vec{c_2} = \vec{b} - 5\vec{a}.$$

34.
$$\vec{a} = \{-7, -2, -5\}, \vec{b} = \{1, -3, 0\}, \vec{c_1} = 4\vec{a} - \vec{b}, \vec{c_2} = 2\vec{b} - 7\vec{a}.$$

35.
$$\vec{a} = \{-2, -3, -5\}, \vec{b} = \{-1, 0, 4\}, \vec{c_1} = \vec{a} + 5\vec{b}, \vec{c_2} = 12\vec{b} - 3\vec{a}.$$

36.
$$\vec{a} = \{-1, 4, 3\}, \vec{b} = \{3, -3, 4\}, \vec{c_1} = 5\vec{a} - 2\vec{b}, \vec{c_2} = 7\vec{b} - 9\vec{a}.$$

37.
$$\vec{a} = \{5, 7, -2\}, \vec{b} = \{1, -3, 3\}, \vec{c_1} = 3\vec{a} + 2\vec{b}, \vec{c_2} = 2\vec{b} - 9\vec{a}.$$

38.
$$\vec{a} = \{1, -4, 6\}, \vec{b} = \{3, -3, 1\}, \vec{c_1} = 2\vec{a} - 3\vec{b}, \vec{c_2} = 3\vec{b} - 8\vec{a}.$$

39.
$$\vec{a} = \{1, -3, 1\}, \vec{b} = \{-2, -4, 4\}, \vec{c_1} = 7\vec{a} - 4\vec{b}, \vec{c_2} = 8\vec{b} - 3\vec{a}.$$

40.
$$\vec{a} = \{4, 5, -1\}, \vec{b} = \{1, -3, 1\}, \vec{c_1} = \vec{a} - 2\vec{b}, \vec{c_2} = 12\vec{b} + 5\vec{a}.$$

41.
$$\vec{a} = \{7, 2, 1\}, \vec{b} = \{3, -3, 5\}, \vec{c_1} = 2\vec{a} + 3\vec{b}, \vec{c_2} = 5\vec{b} + 6\vec{a}.$$

42.
$$\vec{a} = \{-3, 0, -1\}, \vec{b} = \{4, -3, 7\}, \vec{c_1} = 3\vec{a} + \vec{b}, \vec{c_2} = 10\vec{b} - 3\vec{a}.$$

43.
$$\vec{a} = \{2, -5, 1\}, \vec{b} = \{-7, -3, 4\}, \vec{c_1} = -2\vec{a} + 6\vec{b}, \vec{c_2} = \vec{b} - 3\vec{a}.$$

44.
$$\vec{a} = \{4, -5, -3\}, \vec{b} = \{-3, 2, 4\}, \vec{c_1} = 8\vec{a} - 3\vec{b}, \vec{c_2} = 5\vec{b} - 6\vec{a}.$$

45.
$$\vec{a} = \{-4, 3, -5\}, \vec{b} = \{2, 7, -4\}, \vec{c_1} = 9\vec{a} - 4\vec{b}, \vec{c_2} = 4\vec{b} + \vec{a}.$$

46.
$$\vec{a} = \{-5, -2, 1\}, \vec{b} = \{4, -3, 2\}, \vec{c_1} = 2\vec{a} - 3\vec{b}, \vec{c_2} = -5\vec{b} + 4\vec{a}.$$

47.
$$\vec{a} = \{-2, -1, -3\}, \vec{b} = \{5, -6, 3\}, \vec{c_1} = -3\vec{a} - \vec{b}, \vec{c_2} = 9\vec{b} + 3\vec{a}.$$

48.
$$\vec{a} = \{5, -6, 3\}, \vec{b} = \{-6, -1, 3\}, \vec{c_1} = -\vec{a} + 7\vec{b}, \vec{c_2} = -\vec{b} + 5\vec{a}.$$

49.
$$\vec{a} = \{8, -3, -2\}, \vec{b} = \{-5, 1, 2\}, \vec{c_1} = 6\vec{a} - \vec{b}, \vec{c_2} = 4\vec{b} - 7\vec{a}.$$

50.
$$\vec{a} = \{-1, 6, -7\}, \vec{b} = \{3, 8, -5\}, \vec{c_1} = 8\vec{a} - 7\vec{b}, \vec{c_2} = 2\vec{b} - 7\vec{a}.$$

Să se verifice dacă sunt coliniari vectorii $\vec{c_1}$ și $\vec{c_2}$, unde $\vec{a} = \{3, -1, 2\}$, $\vec{b} = \{0, 1, 3\}$, $\vec{c_1} = -\vec{a} + \vec{b}$ $2\vec{b}$, $\overrightarrow{c_2} = -\vec{b} + 2\vec{a}$.

Rezolvare:

Determinăm coordonatele vectorilor $\overrightarrow{c_1}$ și $\overrightarrow{c_2}$:

$$\overrightarrow{c_1} = -\{3, -1, 2\} + 2 \cdot \{0, 1, 3\} = \{-3, 3, 4\}.$$

$$\overrightarrow{c_2} = 2 \cdot \{3, -1, 2\} - \{0, 1, 3\} = \{6, -3, 1\}.$$

 $\overrightarrow{c_1} = -\{3, -1, 2\} + 2 \cdot \{0, 1, 3\} = \{-3, 3, 4\}.$ $\overrightarrow{c_2} = 2 \cdot \{3, -1, 2\} - \{0, 1, 3\} = \{6, -3, 1\}.$ $Cum - \frac{3}{6} \neq -\frac{3}{3} \neq \frac{4}{1}, \text{ rezultă că vectorii } \overrightarrow{c_1} \text{ și } \overrightarrow{c_2} \text{ nu sunt coliniari.}$

Problema 2. Să se calculeze aria paralelogramului construit pe vectorii a și b.

1.
$$\vec{a} = \vec{p} + 2\vec{q}$$
, $\vec{b} = 3\vec{p} - \vec{q}$, $|\vec{p}| = 1$, $|\vec{q}| = 2$, $(\vec{p} \cdot \vec{q}) = \pi/6$.

2.
$$\vec{a} = 3\vec{p} + \vec{q}$$
, $\vec{b} = \vec{p} - 2\vec{q}$, $|\vec{p}| = 4$, $|\vec{q}| = 1$, $(\vec{p} \cdot \vec{q}) = \pi/4$.

3.
$$\vec{a} = \vec{p} - 3\vec{q}$$
, $\vec{b} = \vec{p} + 2\vec{q}$, $|\vec{p}| = 1/5$, $|\vec{q}| = 1$, $(\vec{p} \hat{q}) = \pi/2$.

4.
$$\vec{a} = 3\vec{p} - 2\vec{q}$$
, $\vec{b} = \vec{p} + 5\vec{q}$, $|\vec{p}| = 4$, $|\vec{q}| = 1/2$, $(\vec{p} \land \vec{q}) = 5\pi/6$.

5.
$$\vec{a} = \vec{p} - 2\vec{q}$$
, $\vec{b} = 2\vec{p} + \vec{q}$, $|\vec{p}| = 2$, $|\vec{q}| = 3$, $(\vec{p} \cdot \vec{q}) = 3\pi/4$.

6.
$$\vec{a} = \vec{p} + 3\vec{q}$$
, $\vec{b} = \vec{p} - 2\vec{q}$, $|\vec{p}| = 2$, $|\vec{q}| = 3$, $(\vec{p} \cdot \vec{q}) = \pi/3$.

7.
$$\vec{a} = 2\vec{p} - \vec{q}$$
, $\vec{b} = \vec{p} + 3\vec{q}$, $|\vec{p}| = 3$, $|\vec{q}| = 2$, $(\vec{p} \cdot \vec{q}) = \pi/2$.

8.
$$\vec{a} = 4\vec{p} + \vec{q}$$
, $\vec{b} = \vec{p} - \vec{q}$, $|\vec{p}| = 7$, $|\vec{q}| = 2$, $(\vec{p} \cdot \vec{q}) = \pi/4$.

9.
$$\vec{a} = \vec{p} - 4\vec{q}$$
, $\vec{b} = 3\vec{p} + \vec{q}$, $|\vec{p}| = 1$, $|\vec{q}| = 2$, $(\vec{p} \land \vec{q}) = \pi/6$.

10.
$$\vec{a} = \vec{p} + 4\vec{q}, \vec{b} = 2\vec{p} - \vec{q}, |\vec{p}| = 7, |\vec{q}| = 2, (\vec{p} \cdot \vec{q}) = \pi/3.$$

11.
$$\vec{a} = 3\vec{p} + 2\vec{q}$$
, $\vec{b} = \vec{p} - \vec{q}$, $|\vec{p}| = 10$, $|\vec{q}| = 1$, $(\vec{p} \cdot \vec{q}) = \pi/2$.

12.
$$\vec{a} = 4\vec{p} - \vec{q}$$
, $\vec{b} = \vec{p} + 2\vec{q}$, $|\vec{p}| = 5$, $|\vec{q}| = 4$, $(\vec{p} \cdot \vec{q}) = \pi/4$.

13.
$$\vec{a} = 2\vec{p} + 3\vec{q}$$
, $\vec{b} = \vec{p} - 2\vec{q}$, $|\vec{p}| = 6$, $|\vec{q}| = 7$, $(\vec{p} \cdot \vec{q}) = \pi/3$.

14.
$$\vec{a} = 3\vec{p} - \vec{q}$$
, $\vec{b} = \vec{p} + 2\vec{q}$, $|\vec{p}| = 3$, $|\vec{q}| = 4$, $(\vec{p} \cdot \vec{q}) = \pi/3$.

15.
$$\vec{a} = 2\vec{p} + 3\vec{q}$$
, $\vec{b} = \vec{p} - 2\vec{q}$, $|\vec{p}| = 2$, $|\vec{q}| = 3$, $(\vec{p} \cdot \vec{q}) = \pi/4$.

16.
$$\vec{a} = 2\vec{p} - 3\vec{q}$$
, $\vec{b} = 3\vec{p} + \vec{q}$, $|\vec{p}| = 4$, $|\vec{q}| = 1$, $(\vec{p} \cdot \vec{q}) = \pi/6$.

17.
$$\vec{a} = 5\vec{p} + \vec{q}, \vec{b} = \vec{p} - 3\vec{q}, |\vec{p}| = 1, |\vec{q}| = 2, (\vec{p} \cdot \vec{q}) = \pi/3.$$

18.
$$\vec{a} = 7\vec{p} - 2\vec{q}$$
, $\vec{b} = \vec{p} + 3\vec{q}$, $|\vec{p}| = 1/2$, $|\vec{q}| = 2$, $(\vec{p} \vec{q}) = \pi/2$.

19.
$$\vec{a} = 6\vec{p} - \vec{q}$$
, $\vec{b} = \vec{p} + \vec{q}$, $|\vec{p}| = 3$, $|\vec{q}| = 4$, $(\vec{p} \cdot \vec{q}) = \pi/4$.

20.
$$\vec{a} = 10\vec{p} + \vec{q}$$
, $\vec{b} = 3\vec{p} - 2\vec{q}$, $|\vec{p}| = 4$, $|\vec{q}| = 1$, $(\vec{p} \cdot \vec{q}) = \pi/6$.

21.
$$\vec{a} = 6\vec{p} - \vec{q}$$
, $\vec{b} = \vec{p} + 2\vec{q}$, $|\vec{p}| = 8$, $|\vec{q}| = 1/2$, $(\vec{p} \cdot \vec{q}) = \pi/3$.

22.
$$\vec{a} = 3\vec{p} + 4\vec{q}$$
, $\vec{b} = \vec{q} - \vec{p}$, $|\vec{p}| = 5/2$, $|\vec{q}| = 2$, $(\vec{p} \cdot \vec{q}) = \pi/2$.

23.
$$\vec{a} = 7\vec{p} + \vec{q}$$
, $\vec{b} = \vec{p} - 3\vec{q}$, $|\vec{p}| = 3$, $|\vec{q}| = 1$, $(\vec{p} \land \vec{q}) = 3\pi/4$.

24.
$$\vec{a} = \vec{p} + 3\vec{q}, \vec{b} = 3\vec{p} - \vec{q}, |\vec{p}| = 3, |\vec{q}| = 5, (\vec{p} \cdot \vec{q}) = 2\pi/3.$$

25.
$$\vec{a} = 3\vec{p} + \vec{q}, \vec{b} = \vec{p} - 3\vec{q}, |\vec{p}| = 7, |\vec{q}| = 2, (\vec{p} \cdot \vec{q}) = \pi/4.$$

26.
$$\vec{a} = 5\vec{p} - \vec{q}$$
, $\vec{b} = \vec{p} + \vec{q}$, $|\vec{p}| = 5$, $|\vec{q}| = 3$, $(\vec{p} \land \vec{q}) = 5\pi/6$.

27.
$$\vec{a} = 3\vec{p} - 4\vec{q}$$
, $\vec{b} = \vec{p} + 3\vec{q}$, $|\vec{p}| = 2$, $|\vec{q}| = 3$, $(\vec{p} \cdot \vec{q}) = \pi/4$.

28.
$$\vec{a} = 6\vec{p} - \vec{q}$$
, $\vec{b} = \vec{p} + 5\vec{q}$, $|\vec{p}| = 1/2$, $|\vec{q}| = 4$, $(\vec{p} \cdot \vec{q}) = 5\pi/6$.

29.
$$\vec{a} = 2\vec{p} + 3\vec{q}$$
, $\vec{b} = \vec{p} - 2\vec{q}$, $|\vec{p}| = 2$, $|\vec{q}| = 1$, $(\vec{p} \cdot \vec{q}) = \pi/3$.

30.
$$\vec{a} = 2\vec{p} - 3\vec{q}$$
, $\vec{b} = 5\vec{p} + \vec{q}$, $|\vec{p}| = 2$, $|\vec{q}| = 3$, $(\vec{p} \cdot \vec{q}) = \pi/2$.

31.
$$\vec{a} = -5\vec{p} - 4\vec{q}$$
, $\vec{b} = 3\vec{q} + \vec{6p}$, $|\vec{p}| = 3$, $|\vec{q}| = 5$, $(\vec{p} \land \vec{q}) = \frac{5\pi}{3}$.

32.
$$\vec{a} = -2\vec{p} + 3\vec{q}$$
, $\vec{b} = 4\vec{q} - \vec{p}$, $|\vec{p}| = 1$, $|\vec{q}| = 3$, $(\vec{p} \land \vec{q}) = \frac{\pi}{6}$.

33.
$$\vec{a} = 5\vec{p} - 2\vec{q}$$
, $\vec{b} = -3\vec{q} - \vec{p}$, $|\vec{p}| = 4$, $|\vec{q}| = 5$, $(\vec{p} \land \vec{q}) = \frac{4\pi}{3}$.

34.
$$\vec{a} = 5\vec{p} + 2\vec{q}$$
, $\vec{b} = -6\vec{q} - 4\vec{p}$, $|\vec{p}| = 3$, $|\vec{q}| = 2$, $(\vec{p} \land \vec{q}) = \frac{5\pi}{3}$.

35.
$$\vec{a} = 3\vec{p} - 2\vec{q}$$
, $\vec{b} = -4\vec{q} + 5\vec{p}$, $|\vec{p}| = 2$, $|\vec{q}| = 3$, $(\vec{p} \land \vec{q}) = \frac{\pi}{3}$.

36.
$$\vec{a} = 2\vec{p} - 5\vec{q}$$
, $\vec{b} = -3\vec{q} + 4\vec{p}$, $|\vec{p}| = 2$, $|\vec{q}| = 4$, $(\vec{p} \land \vec{q}) = \frac{2\pi}{3}$.

37.
$$\vec{a} = 3\vec{p} + 2\vec{q}$$
, $\vec{b} = -4\vec{q} - 6\vec{p}$, $|\vec{p}| = 2$, $|\vec{q}| = 5$, $(\vec{p} \land \vec{q}) = \frac{4\pi}{3}$.

38.
$$\vec{a} = 5\vec{p} + 2\vec{q}$$
, $\vec{b} = \vec{q} - 4\vec{p}$, $|\vec{p}| = -4$, $|\vec{q}| = 3$, $(\vec{p} \land \vec{q}) = \pi$.

39.
$$\vec{a} = -3\vec{p} - 2\vec{q}$$
, $\vec{b} = \vec{q} + 5\vec{p}$, $|\vec{p}| = 3$, $|\vec{q}| = 6$, $(\vec{p} \land \vec{q}) = \frac{4\pi}{3}$.

40.
$$\vec{a} = 5\vec{p} - 3\vec{q}$$
, $\vec{b} = 4\vec{q} + 2\vec{p}$, $|\vec{p}| = 4$, $|\vec{q}| = 1$, $(\vec{p} \land \vec{q}) = \frac{2\pi}{3}$.

41.
$$\vec{a} = -2\vec{p} + 3\vec{q}$$
, $\vec{b} = 3\vec{q} - 6\vec{p}$, $|\vec{p}| = 6$, $|\vec{q}| = 3$, $(\vec{p} \land \vec{q}) = \frac{5\pi}{3}$.

42.
$$\vec{a} = -2\vec{p} - 4\vec{q}$$
, $\vec{b} = 3\vec{q} + \vec{p}$, $|\vec{p}| = 3$, $|\vec{q}| = 2$, $(\vec{p} \land \vec{q}) = \frac{7\pi}{3}$.

43.
$$\vec{a} = 4\vec{p} + 3\vec{q}$$
, $\vec{b} = -\vec{q} + 2\vec{p}$, $|\vec{p}| = 4$, $|\vec{q}| = 5$, $(\vec{p} \land \vec{q}) = \frac{3\pi}{2}$.

44.
$$\vec{a} = -2\vec{p} + 3\vec{q}$$
, $\vec{b} = 5\vec{q} + \vec{p}$, $|\vec{p}| = 2$, $|\vec{q}| = 5$, $(\vec{p} \land \vec{q}) = \frac{2\pi}{3}$.

45.
$$\vec{a} = 4\vec{p} - 3\vec{q}$$
, $\vec{b} = 5\vec{q} + 2\vec{p}$, $|\vec{p}| = 3$, $|\vec{q}| = 5$, $(\vec{p} \land \vec{q}) = \frac{4\pi}{3}$.

46.
$$\vec{a} = -3\vec{p} + 2\vec{q}$$
, $b = 4\vec{q} - 7\vec{p}$, $|\vec{p}| = 2$, $|\vec{q}| = 5$, $(\vec{p} \land \vec{q}) = \frac{8\pi}{3}$.

47.
$$\vec{a} = -3\vec{p} + 5\vec{q}$$
, $\vec{b} = -3\vec{q} + \vec{6p}$, $|\vec{p}| = 4$, $|\vec{q}| = 1$, $(\vec{p} \land \vec{q}) = \frac{7\pi}{6}$.

48.
$$\vec{a} = 5\vec{p} - 2\vec{q}$$
, $b = -2\vec{q} + 3\vec{p}$, $|\vec{p}| = 7$, $|\vec{q}| = 3$, $(\vec{p} \land \vec{q}) = \frac{5\pi}{2}$.

49.
$$\vec{a} = 2\vec{p} - 3\vec{q}$$
, $\vec{b} = -5\vec{q} + 6\vec{p}$, $|\vec{p}| = 6$, $|\vec{q}| = 3$, $(\vec{p} \land \vec{q}) = \frac{4\pi}{3}$

50.
$$\vec{a} = 5\vec{p} - 8\vec{q}$$
, $\vec{b} = 4\vec{q} - 5\vec{p}$, $|\vec{p}| = 12$, $|\vec{q}| = 2$, $(\vec{p} \land \vec{q}) = \frac{3\pi}{4}$.

Să se calculeze aria paralelogramului construit pe vectorii \vec{a} și \vec{b} :

$$\vec{a} = 3\vec{p} - \vec{q}, b = \vec{p} - \vec{q}, |\vec{p}| = 2, |\vec{q}| = 1, (\vec{p} \land \vec{q}) = \frac{\pi}{3}.$$

Rezolvare:

$$\begin{split} A_{paralelogr.} &= \left| \vec{a} \times \vec{b} \right| = \left| (3\vec{p} - \vec{q}) \times (\vec{p} - \vec{q}) \right| = \left| 3(\vec{p} \times \vec{p}) - 3(\vec{p} \times \vec{q}) - (q \times \vec{p}) + (\vec{q} \times \vec{q}) \right| = \left| -3 \left((\vec{p} \times \vec{q}) + (\vec{p} \times \vec{q}) \right) \right| = \left| -2 \left((\vec{p} \times \vec{q}) \right) \right| = 2 \cdot |\vec{p}| \cdot |\vec{q}| \cdot \sin(\vec{p} \wedge \vec{q}) = 2 \cdot 2 \cdot 1 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3} \text{ u.p.} \end{split}$$

<u>Problema 3.</u> Să se demonstreze că vectorii \vec{p} , \vec{q} , \vec{r} formează bază și să se descompună vectorul \vec{x} după vectorii \vec{p} , \vec{q} , \vec{r} .

1.
$$\vec{x} = \{-2, 4, 7\}, \vec{p} = \{0, 1, 2\}, \vec{q} = \{1, 0, 1\}, \vec{r} = \{-1, 2, 4\}.$$

2.
$$\vec{x} = \{6, 12, -1\}, \vec{p} = \{1, 3, 0\}, \vec{q} = \{2, -1, 1\}, \vec{r} = \{0, -1, 2\}.$$

3.
$$\vec{x} = \{1, -4, 4\}, \vec{p} = \{2, 1, -1\}, \vec{q} = \{0, 3, 2\}, \vec{r} = \{1, -1, 1\}.$$

4.
$$\vec{x} = \{-9, 5, 5\}, \vec{p} = \{4,1,1\}, \vec{q} = \{2, 0, -3\}, \vec{r} = \{-1,2,1\}.$$

5.
$$\vec{x} = \{-5, -5, 5\}, \vec{p} = \{-2, 0, 1\}, \vec{q} = \{1, 3, -1\}, \vec{r} = \{0, 4, 1\}.$$

6.
$$\vec{x} = \{13, 2, 7\}, \vec{p} = \{5,1,0\}, \vec{q} = \{2,-1,3\}, \vec{r} = \{1, 0, -1\}.$$

7.
$$\vec{x} = \{-19, -1, 7\}, \ \vec{p} = \{0, 1, 1\}, \ \vec{q} = \{-2, 0, 1\}, \ \vec{r} = \{3, 1, 0\}.$$

8.
$$\vec{x} = \{3, -3, 4\}, \vec{p} = \{1, 0, 2\}, \vec{q} = \{0, 1, 1\}, \vec{r} = \{2, -1, 4\}.$$

9.
$$\vec{x} = \{3, 3, -1\}, \vec{p} = \{3, 1, 0\}, \vec{q} = \{-1, 2, 1\} \vec{r} = \{-1, 0, 2\}.$$

10.
$$\vec{x} = \{-1, 7, -4\}, \vec{p} = \{-1, 2, 1\}, \vec{q} = \{2, 0, 3\}, \vec{r} = \{1, 1, -1\}.$$

11.
$$\vec{x} = \{6, 5, -14\}, \vec{p} = \{1,1,4\}, \vec{q} = \{0,-3,2\}, \vec{r} = \{2,1,-1\}.$$

12.
$$\vec{x} = \{6, -1, 7\}, \vec{p} = \{1, -2, 0\}, \vec{q} = \{-1, 1, 3\}, \vec{r} = \{1, 0, 4\}.$$

13.
$$\vec{x} = \{5, 15, 0\}, \vec{p} = \{1, 0, 5\}, \vec{q} = \{-1, 3, 2\}, \vec{r} = \{0, -1, 1\}.$$

14.
$$\vec{x} = \{2, -1, 11\}, \vec{p} = \{1, 0, 1\}, \vec{q} = \{0, 1, -2\}, \vec{r} = \{1, 0, 3\}.$$

15.
$$\vec{x} = \{11, 5, -3\}, \vec{p} = \{1, 0, 2\}, \vec{q} = \{-1, 0, 1\}, \vec{r} = \{2, 5, -3\}.$$

16.
$$\vec{x} = \{8, 0, 5\}, \vec{p} = \{2, 0, 1\}, \vec{q} = \{1, 1, 0\}, \vec{r} = \{4,1,2\}.$$

17.
$$\vec{x} = \{3, 1, 8\}, \vec{p} = \{0, 1, 3\}, \vec{q} = \{1, 2, -1\}, \vec{r} = \{2, 0, -1\}.$$

18.
$$\vec{x} = \{8, 1, 12\}, \vec{p} = \{1, 2, -1\}, \vec{q} = \{3, 0, 2\}, \vec{r} = \{-1, 1, 1\}.$$

19.
$$\vec{x} = \{-9, -8, -3\}, \vec{p} = \{1, 4, 1\}, \vec{q} = \{-3, 2, 0\}, \vec{r} = \{1, -1, 2\}.$$

20.
$$\vec{x} = \{-5, 9, -13\}, \vec{p} = \{0,1,-2\}, \vec{q} = \{3,-1,1\}, \vec{r} = \{4,1,0\}.$$

21.
$$\vec{x} = \{-15, 5, 6\}, \vec{p} = \{0, 5, 1\}, \vec{q} = \{3, 2, -1\}, \vec{r} = \{-1, 1, 0\}.$$

22.
$$\vec{x} = \{8, 9, 4\}, \vec{p} = \{1, 0, 1\}, \vec{q} = \{0, -2, 1\}, \vec{r} = \{1, 3, 0\}.$$

23.
$$\vec{x} = \{23, -14, -30\}, \ \vec{p} = \{2,1,0\}, \ \vec{q} = \{1,-1,0\}, \ \vec{r} = \{-3,2,5\}.$$

24.
$$\vec{x} = \{3, 1, 3\}, \vec{p} = \{2, 1, 0\}, \vec{q} = \{1, 0, 1\}, \vec{r} = \{4, 2, 1\}.$$

25.
$$\vec{x} = \{-1, 7, 0\}, \vec{p} = \{0, 3, 1\}, \vec{q} = \{0, 3, 1\}, \vec{r} = \{2, -1, 0\}.$$

26.
$$\vec{x} = \{11, -1, 4\}, \vec{p} = \{1, -1, 2\}, \vec{q} = \{3, 2, 0\}, \vec{r} = \{-1, 1, 1\}.$$

27.
$$\vec{x} = \{-13, 2, 18\}, \vec{p} = \{1,1,4\}, \vec{q} = \{-3,0,2\}, \vec{r} = \{1,2,-1\}.$$

28.
$$\vec{x} = \{0, -8, 9\}, \vec{p} = \{0, -2, 1\}, \vec{q} = \{3, 1, -1\}, \vec{r} = \{4, 0, 1\}.$$

29.
$$\vec{x} = \{8, -7, -13\}, \vec{p} = \{0,1,5\}, \vec{q} = \{3,-1,2\}, \vec{r} = \{-1,0,1\}.$$

30.
$$\vec{x} = \{2,7,5\}, \vec{p} = \{1,0,1\}, \vec{q} = \{1, -2, 0\}, \vec{r} = \{0, 3, 1\}.$$

31.
$$\vec{x} = \{-13, 2, 18\}, \vec{p} = \{1, 1, 4\}, \vec{q} = \{-3, 0, 2\}, \vec{r} = \{1, 2, -1\}.$$

32.
$$\vec{x} = \{7, 23, 4\}, \vec{p} = \{5, 4, 1\}, \vec{q} = \{-3, 5, 2\}, \vec{r} = \{2, -1, 3\}.$$

33.
$$\vec{x} = \{0, 11, -14\}, \vec{p} = \{2, -1, 4\}, \vec{q} = \{-3, 0, -2\}, \vec{r} = \{4, 5, -3\}$$

34.
$$\vec{x} = \{28, -19, -7\}, \vec{p} = \{-1, 1, 2\}, \vec{q} = \{2, -3, -5\}, \vec{r} = \{-6, 3, -1\}.$$

35.
$$\vec{x} = \{16, 6, 15\}, \vec{p} = \{-7, -2, -4\}, \vec{q} = \{-4, 0, 3\}, \vec{r} = \{3, 1, 2\}.$$

36.
$$\vec{x} = \{15, -15, 24\}, \vec{p} = \{5, 1, 2\}, \vec{q} = \{-2, 1, -3\}, \vec{r} = \{4, -3, 5\}.$$

37.
$$\vec{x} = \{-19, -5, -4\}, \vec{p} = \{0, 2, -3\}, \vec{q} = \{4, -3, -2\}, \vec{r} = \{-5, -4, 0\}.$$

38.
$$\vec{x} = \{-3, 2, -3\}, \vec{p} = \{3, -1, 2\}, \vec{q} = \{-2, 3, 1\}, \vec{r} = \{4, -5, -3\}.$$

39.
$$\vec{x} = \{-9, 34, -20\}, \vec{p} = \{5, 3, 1\}, \vec{q} = \{-1, 2, -3\}, \vec{r} = \{3, -4, 2\}.$$

40.
$$\vec{x} = \{1, 12, -20\}, \vec{p} = \{3, 1, -3\}, \vec{q} = \{-2, 4, 1\}, \vec{r} = \{1, -2, 5\}.$$

41.
$$\vec{x} = \{15, 6, -17\}, \vec{p} = \{6, 1, -3\}, \vec{q} = \{-3, 2, 1\}, \vec{r} = \{-1, -3, 4\}.$$

42
$$\vec{x} = \{-12, 14, -31\}, \vec{p} = \{4, 2, 3\}, \vec{q} = \{-3, 1, -8\}, \vec{r} = \{2, -4, 5\}.$$

43.
$$\vec{x} = \{-2, 17, 5\}, \vec{p} = \{1, 3, 6\}, \vec{q} = \{-3, 4, -5\}, \vec{r} = \{1, -7, 2\}.$$

44.
$$\vec{x} = \{-5, 11, -15\}, \vec{p} = \{11, 1, 2\}, \vec{q} = \{-3, 3, 4\}, \vec{r} = \{-4, -2, 7\}.$$

45.
$$\vec{x} = \{-10, -13, 8\}, \vec{p} = \{9, 5, 3\}, \vec{q} = \{-3, 2, 1\}, \vec{r} = \{4, -7, 4\}.$$

46.
$$\vec{x} = \{1, 7, -12\}, \vec{p} = \{5, 4, -3\}, \vec{q} = \{-3, 2, -5\}, \vec{r} = \{-1, 3, -4\}.$$

47.
$$\vec{x} = \{6, 9, -1\}, \vec{p} = \{8, 3, -5\}, \vec{q} = \{-6, 7, -3\}, \vec{r} = \{4, -1, 7\}.$$

48.
$$\vec{x} = \{3, -4, 6\}, \vec{p} = \{11, -3, 4\}, \vec{q} = \{-13, 2, -6\}, \vec{r} = \{5, -3, 8\}.$$

49.
$$\vec{x} = \{-6, 10, 23\}, \vec{p} = \{1,11, 12\}, \vec{q} = \{-2, 2, 3\}, \vec{r} = \{-5, -3, 8\}.$$

50.
$$\vec{x} = \{-5, 6, 7\}, \vec{p} = \{6, 4, 8\}, \vec{q} = \{-13, 5, -6\}, \vec{r} = \{2, -3, 5\}.$$

Să se demonstreze că vectorii \vec{p} , \vec{q} , \vec{r} formează bază și să se descompună vectorul \vec{x} după vectorii \vec{p} , \vec{q} , \vec{r} , unde $\vec{x} = \{-9, 2, 25\}$, $\vec{p} = \{1,1,3\}$, $\vec{q} = \{2, -1, -6\}$, $\vec{r} = \{5,3, -1\}$.

$$\begin{array}{c|c}
\hline
\text{Cum} & 1 & 2 & 5 \\
1 & -1 & 3 \\
3 & -6 & -1
\end{array} = 24 \neq 0, \{\vec{p}, \vec{q}, \vec{r}\} \text{ este bază în spațiu. Coordonatele a,b,c ale vectorului } \vec{x} \text{ în}$$

această bază se determină din egalitatea: $a\vec{p} + b\vec{q} + c\vec{r} = \vec{x}$. Scriind această egalitate în coordonate, obținem sistemul:

$$\begin{cases} a + 2b + 5c = -9, \\ a - b + 3c = 2, \\ 3a - 6b - c = 25, \end{cases}$$

care are soluția a = 2, b = -3, c = -1. Deci, $\vec{x} = \{2, -3, -1\}_{\{\vec{p}, \vec{q}, \vec{r}\}}$.

Problema 4. Sunt date punctele A_1, A_2, A_3, A_4 .

- a) Să se scrie ecuația planului $(A_1A_2A_3)$;
- b) Să se scrie ecuația dreptei A_1A_2 ;
- c) Să se scrie ecuația dreptei A_4M , perpendiculară planului $(A_1A_2A_3)$;
- d) Să se scrie ecuația dreptei A_3N , paralelă dreaptei A_1A_2 ;
- e) Să se calculeze volumul tetraedrului $A_1A_2A_3A_4$;
- f) Să se determine lungimea înălțimii coborâte din vârful A_4 al tetraedrului pe fața $(A_1A_2A_3)$.
- **1.** $A_1(1, 3, 6)$, $A_2(2, 2, 1)$, $A_3(-1, 0, 1)$, $A_4(-4, 6, -3)$;
- **2.** $A_1(-4, 2, 6)$, $A_2(2, -3, 0)$, $A_3(-1, 5, 8)$, $A_4-5, 2, -4)$;
- **3.** $A_1(7, 2, 4), A_2(7, -1, -2), A_3(3, 3, 1), A_4(-4, 2, 1);$
- **4.** A₁(2, 1, 4), A₂(-1, 5, -2), A₃(-7, -3, 2), A₄(-6, -3, 6);
- **5.** $A_1(-1, -5, 2)$, $A_2(-6, 0, -3)$, $A_3(3, 6, -3)$, $A_4(-10, 6, 7)$;
- **6.** $A_1(0, -1, -1), A_2(-2, 3, 5), A_3(1, -5, -9), A_4(-1, -6, 3);$
- **7.** $A_1(5, 2, 0), A_2(2, 5, 0), A_3(1, 2, 4), A_4(-1, 1, 1);$
- **8.** $A_1(2, -1, -2), A_2(1, 2, 1), A_3(5, 0, -6), A_4(-10, 9, -7);$
- **9.** $A_1(-2, 0, -4), A_2(-1, 7, 1), A_3(4, -8, -4), A_4(1, -4, 6);$
- **10.** $A_1(14, 4, 5), A_2(-5, -3, 2), A_3(-2, -6, -3), A_4(-2, 2, -1);$
- **11.** $A_1(1, 2, 0), A_2(3, 0, -3), A_3(5, 2, 6), A_4(8, 4, -9);$
- **12.** A₁(2, -1, 2), A₂(1, 2, -1), A₃(3, 2, 1), A₄(-4, 2, 5);
- **13.** $A_1(1, 1, 2), A_2(-1, 1, 3), A_3(2, -2, 4), A_4(-1, 0, -2);$
- **14.** $A_1(2, 3, 1), A_2(4, 1, -2), A_3(6, 3, 7), A_4(7, 5, -3);$
- **15.** A₁(1, 1, -1), A₂(2, 3, 1), A₃(3, 2, 1), A₄(5, 9, -8);
- **16.** A₁(1, 5, -7), A₂(-3, 6, 3), A₃(-2, 7, 3), A₄(-4, 8, -12);
- **17.** A₁(-3, 4, -7), A₂(1, 5, -4), A₃(-5, -2, 0), A₄(2, 5, 4);
- **18.** A₁(-1, 2, -3), A₂(4, -1, 0), A₃(2, 1, -2), A₄(3, 4, 5);
- **19.** $A_1(4, -1, 3), A_2(-2, 1, 0), A_3(0, -5, 1), A_4(3, 2, -6);$
- **20.** $A_1(1, -1, 1), A_2(-2, 0, 3), A_3(2, 1, -1), A_4(2, -2, -4);$
- **21.** A₁(1, 2, 0), A₂(1, -1, 2), A₃(0, 1, -1), A₄(-3, 0, 1);

```
22. A_1(1, 0, 2), A_2(1, 2, -1), A_3(2, -2, 1), A_4(2, 1, 0);
```

33.
$$A_1(7, 2, 2), A_2(-5, 7, -7), A_3(5, -3, 1), A_4(2, 3, 7);$$

40.
$$A_1(2, 1, 6), A_2(1, 4, 9), A_3(2, -5, 8), A_4(5, 4, 2);$$

49.
$$A_1(1, 6, -5), A_2(2, 3, -1), A_3(1, -2, 7), A_4(3, 2, 5);$$

Exemplu rezolvat: Sunt date punctele $A_1(4, 7, 8)$, $A_2(-1, 13, 0)$, $A_3(2, 4, 9)$, $A_4(1, 8, 9)$.

- a) Să se scrie ecuația planului $(A_1A_2A_3)$;
- b) Să se scrie ecuația dreptei A_1A_2 ;
- c) Să se scrie ecuația dreptei A_4M , perpendiculară planului $(A_1A_2A_3)$;
- d) Să se scrie ecuația dreptei A_3N , paralelă dreaptei A_1A_2 ;
- e) Să se calculeze volumul tetraedrului $A_1A_2A_3A_4$;
- f) Să se determine lungimea înălțimii coborâte din vârful A_4 pe fața $(A_1A_2A_3)$.

Rezolvare:

a) Scriem ecuația planului $(A_1A_2A_3)$ folosind ecuația unui plan ce trece prin 3 puncte:

$$\begin{vmatrix} x - 4 & y - 7 & z - 8 \\ -5 & 6 & -8 \\ -2 & -3 & 1 \end{vmatrix} = 0 \Leftrightarrow 6x - 7y - 9z + 97 = 0.$$

b) Scriem ecuația dreptei A_1A_2 folosind ecuația dreaptei ce trece prin două puncte: $\frac{x-4}{5} = \frac{x-7}{5}$

$$\frac{y-7}{-6} = \frac{z-8}{8}$$
.

- c) Din condiția de perpendicularitate a dreptei A_4M și planului $(A_1A_2A_3)$ în calitate de vector director \vec{q} al dreptei se poate de luat vectorul normal $\vec{n} = (6, -7, -9)$ al planului $(A_1A_2A_3)$. Ecuația dreptei A₄M este $\frac{x-1}{6} = \frac{y-8}{-7} = \frac{z-9}{-9}$.
- Deoarece dreptele $A_3 N$ și $A_1 A_2$ sunt paralele, vectorul director al dreptei $A_3 N$ servește d) drept vector director al dreptei A_1A_2 . Ecuația dreptei A_3N este $\frac{x-2}{5} = \frac{y-4}{-6} = \frac{z-9}{8}$.
- e) Determinăm coordonatele vectorilor $\overrightarrow{A_1A_2}$, $\overrightarrow{A_1A_3}$, $\overrightarrow{A_1A_4}$:

$$\overrightarrow{A_1 A_2} = (-5, 6, -8), \overrightarrow{A_1 A_3} = (-2, -3, 1), \overrightarrow{A_1 A_4} = (-3, 1, 1).$$
Volumul tetraedrului, \overrightarrow{A} , \overrightarrow{A} , \overrightarrow{A} , \overrightarrow{A} , aster.

Volumul tetraedrului $A_1A_2A_3A_4$ este:

$$V_{tetr} = \frac{1}{6} \left| \left(\overrightarrow{A_1 A_2}, \overrightarrow{A_1 A_3}, \overrightarrow{A_1 A_4} \right) \right| = \frac{1}{6} mod \begin{vmatrix} -5 & 6 & -8 \\ -2 & 3 & 1 \\ -3 & 1 & 1 \end{vmatrix} =$$

$$=\frac{1}{6}|102|=17$$
 u.c.

f) Înălțimea
$$|A_4H| = \text{dist}(A_4, (A_1A_2A_3)) =$$

$$= \frac{|6x_4 - 7y_4 - 9z_4 + 97|}{\sqrt{36 + 49 + 81}} = \frac{|6 - 56 - 81 + 97|}{\sqrt{166}} = \frac{34}{\sqrt{166}} = \frac{17\sqrt{166}}{83} \text{u.l.}$$

Problema 5. Să se afle măsura unghiului determinat de planele date.

1.
$$x-3y+5=0$$
, $2x-y+5z-16=0$;

2.
$$x-3y+z-1=0$$
, $x+z-1=0$;

3.
$$4x-5y+3z-1=0$$
, $x-4y-z+9=0$;

4.
$$3x - y + 2z + 15 = 0$$
, $5x + 9y - 3z - 1 = 0$;

5.
$$6x + 2y - 4z + 17 = 0$$
, $9x + 3y - 6z - 4 = 0$;

6.
$$x - y\sqrt{2} + z - 1 = 0$$
, $x + y\sqrt{2} - z + 3 = 0$;

7.
$$3y-z=0$$
, $2y+z=0$;

8.
$$6x + 3y - 2z = 0$$
, $x + 2y + 6z - 12 = 0$;

9.
$$x + 2y + 2z - 3 = 0$$
, $16x + 12y - 15z - 1 = 0$;

10.
$$2x - y + 5z + 16 = 0$$
, $x + 2y + 3z + 8 = 0$;

11.
$$x+z-1=0, 2x+2y+z-1=0;$$

12.
$$3x + y + z - 4 = 0$$
, $y + z + 5 = 0$;

13.
$$3x-2y-2z-16=0$$
, $x+y-3z-7=0$;

14.
$$2x + 2y + z + 9 = 0$$
, $x - y + 3z - 1 = 0$;

15.
$$x + 2y + 2z - 3 = 0$$
, $2x - y + 2z + 5 = 0$;

16.
$$x + y + z - 7 = 0$$
, $3x + 2y - 3z - 1 = 0$;

17.
$$x-3y-2z-8=0$$
, $x+y-z+3=0$;

18.
$$3x-2y+3z+23=0$$
, $y+z+5=0$;

19.
$$x + y + 3z - 7 = 0$$
, $y + z - 1 = 0$;

20.
$$x-2y+2z+17=0$$
, $x-2y-1=0$;

21.
$$x + 2y - 1 = 0$$
, $x + y + 6 = 0$;

22.
$$2x-z+5=0$$
, $2x+3y-7=0$;

23.
$$5x + 3y + z - 18 = 0$$
, $2y + z - 9 = 0$;

24.
$$x + 2y + 2z + 5 = 0, 4x + 3z - 2 = 0;$$

25.
$$x+4y-z+1=0$$
, $2x+y+4z-3=0$;

26.
$$2y+z-9=0$$
, $x-y+2z-1=0$;

27.
$$2x-6y+14z-1=0$$
, $5x-15y+35z-3=0$;

28.
$$x-y+7z-1=0$$
, $2x-2y-5=0$;

29.
$$2x + y - 3 = 0$$
, $3x - y - 5 = 0$;

30.
$$x + y + z\sqrt{2} - 3 = 0$$
, $x - y + z\sqrt{2} - 1 = 0$;

31.
$$x-3y+2z+2=0$$
, $x+3y+z+14=0$;

32.
$$x+y+z-2=0$$
, $x-y-2z+2=0$;

33.
$$5x+y-3z+4=0$$
, $x-y+2z+2=0$;

34.
$$x+5y+2z+11=0$$
, $x-y-z-1=0$;

35.
$$4x + y - 3z + 2 = 0$$
, $2x - y + z - 8 = 0$;

36.
$$3x + 3y - 2z - 1 = 0$$
, $2x - 3y + z + 6 = 0$;

37.
$$8x-y-3z-1=0$$
, $x+y+z+10=0$;

38.
$$4x + y + z + 2 = 0$$
, $2x - y - 3z - 8 = 0$;

39.
$$x+5y-z+11=0$$
, $x-y+2z-1=0$;

40.
$$6x-7y-z-2=0$$
, $x+7y-4z-5=0$;

41.
$$2x+3y-2z+6=0$$
, $x-3y+z+3=0$;

42.
$$2x+3y-2z+6=0$$
, $x-3y+z+3=0$;

43.
$$6x - 5y + 3z + 8 = 0$$
, $6x + 5y - 4z + 4 = 0$;

44.
$$x+5y-z-5=0$$
, $2x-5y+2z+5=0$;

45.
$$x+y-2z-2=0$$
, $x-y+z+2=0$;

46.
$$x-3y-3z+5=0$$
, $x-2y+5z+13=0$;

47.
$$-2x+6y-5z+16=0$$
, $3x-7y+9z-23=0$;

48.
$$3x-8y+4z-8=0$$
, $4x+y-6z+14=0$;

49.
$$x+3y-7z-15=0$$
, $-2x+3y+4z+12=0$;

50.
$$x + 5y - 4z - 21 = 0$$
, $5x - 2y + 6z + 12 = 0$;

Să se afle măsura unghiului determinat de planele:

$$\pi_1$$
: $2x + y - 3z + 2 = 0$, π_2 : $3x + 2y - z + 3 = 0$.

Rezolvare:

Vectorii normali ai acestor plane sunt $\overrightarrow{n_1} = (2,1,-3)$ și respectiv $\overrightarrow{n_2} = (3,2,-1)$. Măsura unuia

dintre unghiurile formate de aceste două plane este
$$(\pi_1 \ \pi_2) = (\pi_1 \ \pi_2)$$
.
$$\cos(\pi_1 \ \pi_2) = \frac{2 \cdot 3 + 1 \cdot 2 + (-3) \cdot (-1)}{\sqrt{2^2 + 1^2 + (-3)^2} \cdot \sqrt{3^2 + 2^2 + (-1)^2}} = \frac{11}{14}.$$

$$(\pi_1 {}^{\wedge} \pi_2) = \arccos(\frac{11}{14}).$$

Problema 6. Să se scrie ecuațiile canonice ale dre

1.
$$\ell$$
:
$$\begin{cases} 2x + y + z - 2 = 0 \\ 2x - y - 3z + 6 = 0 \end{cases}$$
;
3. ℓ :
$$\begin{cases} x + 3y + z + 14 = 0 \\ x - 2y + z - 4 = 0 \end{cases}$$
;
5. ℓ :
$$\begin{cases} 2x + 3y + z + 6 = 0 \\ x - 3y - 2z + 3 = 0 \end{cases}$$
;

2.
$$\ell$$
:
$$\begin{cases} x - 3y + 2z + 2 = 0 \\ x + 3y + z + 14 = 0 \end{cases}$$
;
4. ℓ :
$$\begin{cases} x + y + z - 2 = 0 \\ x - y - 2z + 2 = 0 \end{cases}$$
;
6. ℓ :
$$\begin{cases} 3x + y - z - 6 = 0 \\ 3x - y + 2z = 0 \end{cases}$$
;

3.
$$\ell$$
:
$$\begin{cases} x + 3y + z + 14 = 0 \\ x - 2y + z - 4 = 0 \end{cases}$$

4.
$$\ell:\begin{cases} x+y+z-2=0\\ x-y-2z+2=0 \end{cases}$$

5.
$$\ell$$
:
$$\begin{cases} 2x + 3y + z + 6 = 0 \\ x - 3y - 2z + 3 = 0 \end{cases}$$

6.
$$\ell : \begin{cases} 3x + y - z - 6 = 0 \\ 3x - y + 2z = 0 \end{cases}$$

7.
$$\ell$$
:
$$\begin{cases} x + 5y + 2z + 11 = 0 \\ x - y - z - 1 = 0 \end{cases}$$
;

$$9. \ell: \begin{cases} 5x + y - 3z + 4 = 0 \\ x - y + 2z + 2 = 0 \end{cases};$$

11.
$$\ell$$
:
$$\begin{cases} 4x + y - 3z + 2 = 0 \\ 2x - y + z - 8 = 0 \end{cases}$$

13.
$$\ell$$
:
$$\begin{cases} x + 7y - z - 5 = 0 \\ 6x - 7y - 4z - 2 = 0 \end{cases}$$

15.
$$\ell : \begin{cases} 6x - 5y - 4z + 8 = 0 \\ 6x + 5y + 3z + 4 = 0 \end{cases}$$

17.
$$\ell : \begin{cases} x + 5y - z - 5 = 0 \\ 2x - 5y + 2z + 5 = 0 \end{cases}$$

19.
$$\ell$$
:
$$\begin{cases} 4x + y + z + 2 = 0 \\ 2x - y - 3z - 8 = 0 \end{cases}$$

21.
$$\ell : \begin{cases} x + y - 2z - 2 = 0 \\ x - y + z + 2 = 0 \end{cases}$$

23.
$$\ell$$
:
$$\begin{cases} x - y + z - 2 = 0 \\ x - 2y - z + 4 = 0 \end{cases}$$

25.
$$\ell$$
:
$$\begin{cases} x + 5y + 2z - 5 = 0 \\ 2x - 5y - z + 5 = 0 \end{cases}$$

27.
$$\ell: \begin{cases} 2x + 3y - 2z + 6 = 0 \\ x - 3y + z + 3 = 0 \end{cases}$$
;

29.
$$\ell$$
:
$$\begin{cases} 3x + 3y + z - 1 = 0 \\ 2x - 3y - 2z + 6 = 0 \end{cases}$$

31.
$$\ell$$
:
$$\begin{cases} 6x + 2y - 4z + 17 = 0 \\ 9x + 3y - 6z - 4 = 0 \end{cases}$$

33.
$$\ell:\begin{cases} 6x + 3y - 2z = 0 \\ x + 2y + 6z - 12 = 0 \end{cases}$$

35.
$$\ell : \begin{cases} 3x + y + z - 4 = 0 \\ y + z + 5 = 0 \end{cases}$$
;

37.
$$\ell:\begin{cases} x+2y+2z-3=0\\ 2x-y+2z+5=0 \end{cases}$$

39.
$$\ell : \begin{cases} x + 2y - 1 = 0 \\ x + y + 6 = 0 \end{cases}$$
;

41.
$$\ell : \begin{cases} x + 4y - z + 1 = 0 \\ 2x + y + 4z - 3 = 0 \end{cases}$$

43.
$$\ell : \begin{cases} x - y + 7z - 1 = 0 \\ 2x - y - 5 = 0 \end{cases}$$
;

45.
$$\ell: \begin{cases} 3x - 2y - 2z - 16 = 0 \\ x + y - 3z - 7 = 0 \end{cases}$$

8.
$$\ell: \begin{cases} 3x+4y-2z+1=0\\ 2x-4y+3z+4=0 \end{cases}$$

10.
$$\ell$$
:
$$\begin{cases} x - y - z - 2 = 0 \\ x - 2y + z + 4 = 0 \end{cases}$$
;

12.
$$\ell$$
:
$$\begin{cases} 3x + 3y - 2z - 1 = 0 \\ 2x - 3y + z + 6 = 0 \end{cases}$$
;

14.
$$\ell$$
:
$$\begin{cases} 8x - y - 3z - 1 = 0 \\ x + y + z + 10 = 0 \end{cases}$$
;

16.
$$\ell : \begin{cases} x + 5y - z - 5 = 0 \\ 2x - 5y + 2z + 5 = 0 \end{cases}$$

18.
$$\ell : \begin{cases} x - y - 3z + 2 = 0 \\ 5x + y + 2z + 4 = 0 \end{cases}$$

20.
$$\ell : \begin{cases} 2x + y - 3z - 2 = 0 \\ 2x - y + z + 6 = 0 \end{cases}$$

22.
$$\ell:\begin{cases} x+5y-z+11=0\\ x-y+2z-1=0 \end{cases}$$

24.
$$\ell$$
:
$$\begin{cases} 6x - 7y - z - 2 = 0 \\ x + 7y - 4z - 5 = 0 \end{cases}$$
;

26.
$$\ell : \begin{cases} x - 3y + z + 2 = 0 \\ x + 3y + 2z + 14 = 0 \end{cases}$$

28.
$$\ell: \begin{cases} 3x + 4y + 3z + 1 = 0 \\ 2x - 4y - 2z + 4 = 0 \end{cases}$$

$$30.\ell: \begin{cases} 6x - 5y + 3z + 8 = 0 \\ 6x + 5y - 4z + 4 = 0 \end{cases}$$

32.
$$\ell: \begin{cases} 3x - y + 2z + 15 = 0 \\ 5x + 9y - 3z - 1 = 0 \end{cases}$$

34.
$$\ell:\begin{cases} 2x-y+5z+16=0\\ x+2y+3z+8=0 \end{cases}$$

36.
$$\ell:\begin{cases} 2x+2y+z+9=0\\ x-y+3z-1=0 \end{cases}$$

38.
$$\ell:\begin{cases} x+y+3z-7=0\\ y+z-1=0 \end{cases}$$
;

40.
$$\ell: \begin{cases} 5x + 3y + z - 18 = 0 \\ 2y + z - 9 = 0 \end{cases}$$

42.
$$\ell:\begin{cases} x-y+7z-1=0\\ 2x-2y-5=0 \end{cases}$$
;

44.
$$\ell:\begin{cases} 6x + 2y - 4z + 17 = 0 \\ 9x + 3y - 6z - 4 = 0 \end{cases}$$

46.
$$\ell: \begin{cases} 2x - 3y + z + 11 = 0 \\ x + y - 5z - 8 = 0 \end{cases}$$
;

47.
$$\ell:\begin{cases} 3x-2y+6z-10=0\\ 3x+y+2z-15=0 \end{cases}$$
;

48.
$$\ell : \begin{cases} 4x - 2y + z - 21 = 0 \\ 3x + 7y - 5z + 3 = 0 \end{cases}$$

47.
$$\ell : \begin{cases} 3x - 2y + 6z - 10 = 0 \\ 3x + y + 2z - 15 = 0 \end{cases}$$
; 48. $\ell : \begin{cases} 4x - 2y + z - 21 = 0 \\ 3x + 7y - 5z + 3 = 0 \end{cases}$; 49. $\ell : \begin{cases} -x + 3y - 6z + 19 = 0 \\ 2x - 3y + 5z - 14 = 0 \end{cases}$; 50. $\ell : \begin{cases} 4x - 2y + z - 21 = 0 \\ 3x + 7y - 5z + 3 = 0 \end{cases}$

50.
$$\ell: \begin{cases} 4x - 5y + 2z - 6 = 0 \\ 3x + y - 5z - 10 = 0 \end{cases}$$

Să se scrie ecuațile canonice ale dreptei: ℓ : $\begin{cases} x - y + 2z + 4 = 0 \\ 3x + y - 5z - 8 = 0 \end{cases}$

<u>Rezolvare:</u> Determinăm coordonatele vectorului director al dreptei: $\vec{q} = \vec{n_1} \times \vec{n_2} = \begin{vmatrix} \vec{l} & \vec{j} & \vec{k} \\ 1 & -1 & 2 \\ 2 & 1 & 5 \end{vmatrix} =$

(3,11,4).

Pentru a găsi un punct de pe dreapta dată considerăm în sistemul inițial z=0 și, rezolvând sistemul obținem x=1, y=5. Obținem punctul $M_0(1,5,0)$. Ecuațiile canonice ale dreptei vor fi:

$$\frac{x-1}{3} = \frac{y-5}{11} = \frac{z}{4}.$$

Problema 7. Să se găsească coordonatele punctului de intersecție a dreptei ℓ cu planul α :

1.
$$\ell: \frac{x-2}{-1} = \frac{y-3}{-1} = \frac{z+1}{4}$$
, $\alpha: x+2y+3z-14=0$;

2.
$$\ell: \frac{x+1}{3} = \frac{y-3}{-4} = \frac{z+1}{5}, \alpha: x+2y-5z+20=0;$$

3.
$$\ell: \frac{x-1}{-1} = \frac{y+5}{4} = \frac{z-1}{2}, \alpha: x-3y+7z-24=0$$
;

4.
$$\ell: \frac{x-1}{1} = \frac{y}{0} = \frac{z+3}{2}, \alpha: 2x - y + 4z = 0$$
;

5.
$$\ell: \frac{x-5}{1} = \frac{y-3}{-1} = \frac{z-2}{0}, \alpha: 3x + y - 5z - 12 = 0$$
;

6.
$$\ell: \frac{x+1}{-3} = \frac{y+2}{2} = \frac{z-3}{-2}, \alpha: x+3y-5z+9=0$$
;

7.
$$\ell: \frac{x-1}{-2} = \frac{y-2}{1} = \frac{z+1}{-1}, \alpha: x-2y+5z+17 = 0$$
;

8.
$$\ell: \frac{x-1}{2} = \frac{y-2}{0} = \frac{z-4}{1}, \alpha: x-2y+4z-19=0$$
;

9.
$$\ell: \frac{x+2}{-1} = \frac{y-1}{1} = \frac{z+4}{-1}, \alpha: 2x-y+3z+23=0$$
;

10.
$$\ell: \frac{x+2}{1} = \frac{y-2}{0} = \frac{z+3}{0}, \alpha: 2x-3y-5z-7=0$$
;

11.
$$\ell: \frac{x-1}{2} = \frac{y-1}{-1} = \frac{z+2}{3}, \alpha: 4x + 2y - z - 11 = 0$$
;

12.
$$\ell: \frac{x-1}{1} = \frac{y+1}{0} = \frac{z-1}{-1}, \alpha: 3x-2y-4z-8=0;$$

13.
$$\ell: \frac{x+2}{-1} = \frac{y-1}{1} = \frac{z+3}{2}, \alpha: x+2y-z-2=0;$$

14.
$$\ell: \frac{x+3}{1} = \frac{y-2}{-5} = \frac{z+2}{3}, \alpha: 5x - y + 4z + 3 = 0;$$

15.
$$\ell: \frac{x-2}{2} = \frac{y-2}{-1} = \frac{z-4}{3}, \alpha: x+3y+5z-42=0;$$

16.
$$\ell: \frac{x-3}{-1} = \frac{y-4}{5} = \frac{z-4}{2}, \alpha: 7x + y + 4z - 47 = 0;$$

17.
$$\ell: \frac{x+3}{2} = \frac{y-1}{3} = \frac{z-1}{5}, \alpha: 2x+3y+7z-52=0;$$

18.
$$\ell: \frac{x-3}{2} = \frac{y+1}{3} = \frac{z+3}{2}, \alpha: 3x+4y+7z-16=0;$$

19.
$$\ell: \frac{x-5}{-2} = \frac{y-2}{0} = \frac{z+4}{-1}, \alpha: 2x-5y+4z+24=0;$$

20.
$$\ell: \frac{x-1}{8} = \frac{y-8}{-5} = \frac{z+5}{12}, \alpha: x-2y-3z+18 = 0;$$

21.
$$\ell: \frac{x-3}{1} = \frac{y-1}{-1} = \frac{z+5}{0}, \alpha: x+7y+3z+11=0;$$

22.
$$\ell: \frac{x-5}{-1} = \frac{y+3}{5} = \frac{z-1}{2}, \alpha: 3x+7y-5z-11=0;$$

23.
$$\ell: \frac{x-1}{7} = \frac{y-2}{1} = \frac{z-6}{-1}, \alpha: 4x + y - 6z - 5 = 0;$$

24.
$$\ell: \frac{x-3}{1} = \frac{y+2}{-1} = \frac{z-8}{0}, \alpha: 5x+9y+4z-25=0;$$

25.
$$\ell: \frac{x+1}{-2} = \frac{y}{0} = \frac{z+1}{3}, \alpha: x+4y+13z-23=0;$$

26.
$$\ell: \frac{x-1}{6} = \frac{y-3}{1} = \frac{z+5}{3}, \alpha: 3x-2y+5z-3=0;$$

27.
$$\ell: \frac{x-2}{4} = \frac{y-1}{-3} = \frac{z+3}{-2}, \alpha: 3x-y+4z=0;$$

28.
$$\ell: \frac{x-1}{2} = \frac{y+2}{-5} = \frac{z-3}{-2}, \alpha: x+2y-5z+16=0;$$

29.
$$\ell: \frac{x-1}{1} = \frac{y-3}{0} = \frac{z+2}{-2}, \alpha: 3x-7y-2z+7=0;$$

30.
$$\ell: \frac{x+3}{0} = \frac{y-2}{-3} = \frac{z+5}{11}, \alpha: 5x+7y+9z-32 = 0;$$

31.
$$\ell: \frac{x+2}{-1} = \frac{y-1}{1} = \frac{z+3}{2}, \alpha: x+2y-z-2=0;$$

32.
$$\ell: \frac{x-7}{3} = \frac{y-3}{1} = \frac{z+1}{-2}, \alpha: 2x + y + 7z - 3 = 0;$$

33.
$$\ell: \frac{x-2}{5} = \frac{y-3}{1} = \frac{z+1}{2}, \alpha: 11x - 17y - 19z + 10 = 0;$$

34.
$$\ell: \frac{x+2}{2} = \frac{y-3}{4} = \frac{z}{3}, \alpha: 3x-y+2z-4=0;$$

35.
$$\ell: \frac{x-10}{8} = \frac{y-3}{2} = \frac{z-4}{3}, \alpha: x+2y-4z+1=0;$$

36.
$$\ell: \frac{x-7}{5} = \frac{y-4}{1} = \frac{z-5}{4}, \alpha: 3x-y+2z-5=0;$$

37.
$$\ell: \frac{x}{1} = \frac{y-1}{-2} = \frac{z}{3}, \alpha: 3x + y - 5z + 1 = 0;$$

38.
$$\ell: \frac{x-7}{5} = \frac{y-1}{1} = \frac{z-5}{4}, \alpha: 3x-y+2z-8=0;$$

39.
$$\ell: \frac{x+3}{-1} = \frac{y-2}{0} = \frac{z+1}{2}, \alpha: 2x+2y-3z+4=0;$$

40.
$$\ell: \frac{x+4}{-2} = \frac{y-1}{1} = \frac{z-2}{3}, \alpha: x+2y-z+3=0;$$

41.
$$\ell: \frac{x+1}{-3} = \frac{y+3}{-2} = \frac{z+1}{1}, \alpha: x+2y-z+5=0;$$

42.
$$\ell: \frac{x+1}{-3} = \frac{y-3}{1} = \frac{z-1}{-2}, \alpha: -x+2y-z-3=0;$$

43.
$$\ell: \frac{x-2}{3} = \frac{y+1}{-2} = \frac{z}{2}, \alpha: 4x + y - 3z + 2 = 0;$$

44.
$$\ell: \frac{x+5}{-3} = \frac{y-3}{1} = \frac{z+3}{7}, \alpha: x+2y-5z+3=0;$$

45.
$$\ell: \frac{x+1}{-3} = \frac{y+1}{5} = \frac{z-2}{2}, \alpha: 3x + y - 3z + 4 = 0;$$

46.
$$\ell: \frac{x-1}{3} = \frac{y+2}{2} = \frac{z+1}{-1}, \alpha: 2x-y-3z+15=0;$$

47.
$$\ell: \frac{x-1}{3} = \frac{y+3}{-1} = \frac{z-2}{2}, \alpha: -2x+y-3z-13 = 0;$$

48.
$$\ell: \frac{x+2}{-3} = \frac{y-3}{2} = \frac{z-4}{-2}, \alpha: x-y+2z-7=0;$$

49.
$$\ell: \frac{x-5}{3} = \frac{y+3}{-1} = \frac{z-2}{5}, \alpha: 2x-3y+5z+12=0;$$

50.
$$\ell$$
: $\frac{x-1}{3} = \frac{y-1}{-4} = \frac{z+2}{-2}$, α : $x - 4y + z - 14 = 0$.

Să se găsească coordonatele punctului de intersecție a dreptei ℓ : $\frac{x-1}{3} = \frac{y-1}{-4} = \frac{z+2}{-2}$ cu planul α : x - 4y + z - 12 = 0.

Rezolvare: Scriem ecuațiile parametrice ale dreptei:

$$\frac{x-1}{3} = \frac{y-1}{-4} = \frac{z+2}{-2} = t, t \in (-\infty, +\infty) \Leftrightarrow \begin{cases} x = 1+3t, \\ y = 1-4t, \\ z = -2-2t. \end{cases}$$

Înlocuim ecuațiile parametrice în ecuația planului și obținem

 $(1+3t)-4(1-4t)+(-2-2t)-12=0 \Leftrightarrow t=1$. Pentru valoarea dată a parametrului punctului de intersecție este M(4,-3,-4).