FORMULARIO IV PARCIAL

Rodadura

Traslación		Rotación	
Velocidad lineal	$\vec{v} = d\vec{r}/dt$	Velocidad angular	$\vec{\omega} = d\vec{\theta}/dt$
Aceleración lineal	$\vec{a} = d\vec{v}/dt$	Aceleración angular	$\vec{\alpha} = d\vec{\omega}/dt$
Fuerza resultante	∑F = Mā	Momento de fuerza resultante	$\sum \vec{\tau} = I\vec{\alpha}$
	$x = x_0 + v_0 t + (1/2) at^2$		$\theta = \theta_0 + \omega_0 t + (1/2) \alpha t^2$
Si $\vec{a} = constante$	$v = v_0 + at$	Si α = constante	$\omega = \omega_0 + \alpha t$
	$\mathbf{v}^2 = \mathbf{v}_0^2 + 2\mathbf{a}(\mathbf{x} - \mathbf{x}_0)$		$\omega^2 = \omega_0^2 + 2\alpha \left(\theta - \theta_0\right)$
Trabajo	$dW = \vec{F}.d\vec{r}$	Trabajo	$dW = \vec{\tau}.d\vec{\theta}$
Energía cinética	$K_{T} = \frac{1}{2}Mv_{CM}^{2}$	Energía cinética	$K_{R} = \frac{1}{2} I_{CM} \omega^2$
Potencia	$P = \vec{F}.\vec{V}$	Potencia	$P = \overrightarrow{\tau}.\overrightarrow{\omega}$
Momento lineal	$\vec{p} = m\vec{v}$	Momento angular	$\vec{L} = \vec{I\omega}$
Fuerza resultante	$\vec{F} = d\vec{p}/dt$	Momento de fuerza	$\vec{\tau} = d\vec{L}/dt$

Momentos de Inercia para Cuerpos Uniformes

Cilindro hueco con respecto a un eje que pasa por su eje

 $I = MR^2$

Cilindro hueco con respecto a un eje que pasa por su diámetro

$$I = \frac{1}{2}MR^2 + \frac{1}{12}ML^2$$

Esfera hueca respecto a un eje que pasa por su centro

$$I = \frac{2}{3}MR^2$$

Cilindro macizo con respecto a un eje que pasa por su eje

 $I = \frac{1}{2}MR^2$

Cilindro macizo con respecto a un eje que pasa por su diámetro

$$I = \frac{1}{4}MR^2 + \frac{1}{12}ML^2$$

Esfera maciza respecto a un eje que pasa por su centro

$$I = \frac{2}{5}MR^2$$

Varilla delgada respecto a una recta perpendicular que pasa por un extremo

$$I = \frac{1}{3}ML^2$$

Equilibrio

Condiciones de equilibrio	Equilibrio estático		
Traslación $\Sigma \vec{F}_{ext} = 0$ Rotación $\Sigma \vec{ au}_{ext} = 0$	Además de las condiciones de equilibrio, debe cumplir con:	$\vec{v} = 0$ $\vec{\omega} = 0$	

Movimiento armónico Simple

$$\vec{x}_{(t)} = Acos(\omega t + \delta)[m] \qquad \delta = \arccos\left(\frac{\mathsf{x}_0}{\mathsf{A}}\right)[\mathrm{rad}] \qquad A^2 = \left(\frac{v}{\omega}\right)^2 + x^2$$

$$\vec{d}_{(t)} = -A\omega^2 cos(\omega t + \delta)[m/s] \qquad \omega = \frac{2\pi}{\mathsf{T}} = 2\pi\mathsf{f} \ [\mathrm{rad/s}] \qquad A^2 = \left(\frac{v}{\omega}\right)^2 + x^2$$
 SISTEMA MASA – RESORTE
$$\omega = \sqrt{\frac{\mathsf{k}}{\mathsf{m}}} \left[\mathrm{rad/s}\right] \qquad \mathsf{T} = 2\pi\sqrt{\frac{\mathsf{m}}{\mathsf{k}}} \left[\mathsf{s}\right] \qquad \vec{v}_{\max} = \pm A\omega \ [m/s] \qquad \mathsf{E} = \frac{1}{2}\mathsf{m} \mathsf{v}^2 + \frac{1}{2}\mathsf{k} \mathsf{x}^2 = \frac{1}{2}\mathsf{k} \mathsf{A}^2 \left[\mathsf{J}\right]$$
 PÉNDULO SIMPLE
$$\omega = \sqrt{\frac{\mathsf{g}}{\mathsf{L}}} \left[\mathrm{rad/s}\right] \qquad \mathsf{T} = 2\pi\sqrt{\frac{\mathsf{L}}{\mathsf{g}}} \left[\mathsf{s}\right] \qquad \omega = \sqrt{\frac{\mathsf{MgD}}{\mathsf{I}}} \left[\mathrm{rad/s}\right] \qquad \mathsf{T} = 2\pi\sqrt{\frac{\mathsf{I}}{\mathsf{MgD}}} \left[\mathsf{s}\right]$$

Gravitación

$\frac{T_1^2}{r_1^3} = \frac{T_2^2}{r_2^3}$	ER	ENERGÍA POTENCIAL $U = -G \frac{Mm}{r} \left[J \right]$	ENERGÍA CINÉTICA $K = \frac{1}{2}mv^{2}[J]$
FUERZA GRAVITAC	IONAL	ENERGÍA MECÁNICA	
$\vec{F} = -G\frac{Mm}{r^2}\acute{r}$		$E = K + U \implies E = -\frac{GMm}{2r}[J]$	
$G = 6,67 \times 10^{-11}$	Nm^2/kg^2	TRABAJO REALIZADO POR LA FUERZA GRAVITACIONAL	
POTENCIAL GRAVITATORIO	CAMPO GRAVITATORIO	r _f	
$V = -G\frac{M}{r} \left[J/kg \right]$	$g = -G\frac{M}{r^2} \hat{r} \left[m/s^2 \right]$	$w = \int_{r_0}^{r} Fg. dr$	$r = -\Delta U[J]$

ÓRBITAS CIRCULARES Velocidad en órbitas circulares
$$4\pi^2$$

$$T^{2} = \frac{4\pi^{2}}{GM}R^{3} [s] T = \frac{2\pi}{\omega}[s]$$

$$v = \sqrt{\frac{GM}{r}} = \omega r [m/s]$$

Velocidad de escape

$$v_e = \sqrt{\frac{2GM}{r}} [m/s]$$

ÓRBITAS ELÍPTICAS

Velocidad en el Perihelio

$$v_{p} = \sqrt{\frac{2GM\left(\frac{1}{r_{a}} - \frac{1}{r_{p}}\right)}{\left(\frac{r_{p}}{r_{a}}\right)^{2} - 1}} [m/s]$$

Velocidad en el Aphelio

$$v_{a} = \sqrt{\frac{2GM\left(\frac{1}{r_{a}} - \frac{1}{r_{p}}\right)}{1 - \left(\frac{r_{a}}{r_{p}}\right)^{2}} \left[m/s\right]}$$