Arquitectura de Computadoras

(Cód. 5561) 1° Cuatrimestre 2018

Dra. Dana K. Urribarri DCIC - UNS

CLAA en varios niveles

- Tecnología MSI
 - CLAA en ripple
 - Carry-lookahead generator (CLAG)
- Tecnología VLSI
 - Lookahead tree adder

CLAA en ripple

- Dividir las n etapas en grupos, cada uno con su propio CLAA y conectados en ripple.
- Grupos de igual tamaño beneficia la modularidad y el diseño de un único CI.
- Consideramos grupos de 4 bits:
 - 4 es divisor de la mayoría de los tamaños de palabras.
 - Existe el CI (74F382)

```
c_1 = G_0 + c_0 P_0,
c_2 = G_1 + G_0 P_1 + c_0 P_0 P_1,
c_3 = G_2 + G_1 P_2 + G_0 P_1 P_2 + c_0 P_0 P_1 P_2,
c_4 = G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + c_0 P_0 P_1 P_2 P_3
```

CLAA en ripple

- Para n bits y grupos de 4, se necesitan n/4 grupos.
- Se necesita:
 - 1ΔG para todos los P_i y G_i.
 2ΔG para propagar el carry en un grupo una vez conocidos P_i, G_i y C₀.
 - + $(n/4)2\Delta G = (n/2)\Delta G$ para propagar el carry a través de todos los grupos.
 - 2∆G para propagar la suma final
- Total: $1\Delta G + (n/2)\Delta G + 2\Delta G = (n/2+3)\Delta G$
- Sigue siendo O(n), pero es una reducción de casi un 75% frente al ripple adder de 2nΔG

Carry-lookahead sobre grupos

- Además del lookahead interno a cada grupo, se puede proveer el carry generado y el carry propagado grupales.
- G* es el carry generado
- P* es el carry propagado
- Si G* = 1 el grupo genera (internamente) carry de salida.
- Si P* = 1 el carry de entrada al grupo se puede propagar para producir un carry de salida del grupo.

Carry-lookahead sobre grupos

Para un grupo de 4 bits, teníamos que C₄:

$$C_4 = G_3 + G_2P_3 + G_1P_2P_3 + G_0P_1P_2P_3 + C_0P_0P_1P_2P_3$$

Generación grupal

Propagación grupal

 Luego los carries generados y propagados grupales son:

$$G^* = G_3 + G_2P_3 + G_1P_2P_3 + G_0P_1P_2P_3$$

 $P^* = P_0P_1P_2P_3$

Carry-lookahead generator (CLAG)

Los P* y G* de varios grupos pueden usarse para generar los carries de entrada a cada grupo (similar a los carries de entrada a un único bit).

Carry-lookahead generator: CI que implementa estas ecuaciones.

- CI 74F381 CLAA de 4 bits con salidas P* y G*.
- CI 74F182 CLAG con 4 P* y G* de entrada.

CLAA de 16 bits en 2 niveles

- Para n = 16 hay 4 grupos con salidas P₀*, G₀*, P₁*, G₁*, P₂*, G₂* y P₃*, G₃*.
- Estos P* y G* y C₀ son las entradas al CLAG.
- Las salidas del CLAG serán C₄, C₈ y C₁₂

$$c_{4} = G_{0}^{*} + c_{0}P_{0}^{*},$$

$$c_{8} = G_{1}^{*} + G_{0}^{*}P_{1}^{*} + c_{0}P_{0}^{*}P_{1}^{*},$$

$$c_{12} = G_{2}^{*} + G_{1}^{*}P_{2}^{*} + G_{0}^{*}P_{1}^{*}P_{2}^{*} + c_{0}P_{0}^{*}P_{1}^{*}P_{2}^{*}$$

CLAA de 16 bits en 2 niveles

CLAA de 16 bits en 2 niveles

Pasos y retardos de la suma:

- ullet Retardo Δ_G : Todos los grupos generan en paralelo los 4 P_i y G_i .
- ullet Retardo $2\Delta_G$: Todos los grupos generan en paralelo P* y G^*
- ullet Retardo $2\Delta_G$: El CLAG produce los C_4 , C_8 y C_{12} de salida, que son entrada a cada uno de los grupos.
- + Retardo $4\Delta_G$: cada grupo calcula internamente y en paralelo la suma de los 4 bits ($2\Delta_G$ para generar los bits de carry y $2\Delta_G$ para generar los bits de suma).

Tiempo total: $9\Delta_G$

Suma de 16 bits con 4 CLAA en ripple: $(16/2+3)\Delta_G = 11\Delta_G$

CLAG en ripple

 Para lograr sumas de más bits (32bits) los CLAG se pueden conectar en ripple.

Salidas P** y G** en el CLAG

- El CLAG también produce salidas G y P que representan el carry generado de la sección (G**) y el carry propagado de la sección (P**).
- Las expresiones son equivalentes a generar el P* y G* en un CLAA

$$G^{**} = G^*_3 + G^*_2 P^*_3 + G^*_1 P^*_2 P^*_3 + G^*_0 P^*_1 P^*_2 P^*_3$$

$$P^{**} = P^*_0 P^*_1 P^*_2 P^*_3$$

CLAG en varios niveles

- Estas salidas P** y G** permiten agregar un segundo nivel de CLAG.
- El CLAG en la raíz recibe los 4 pares de G** y P** y produce los carries C_{16} , C_{32} y C_{48} . (suma hasta 64 bits)
- A medida que n crece, se pueden agregar más niveles de CLAG.
- Para n bits y bloques de b bits, se necesitan Log_b
 n niveles.

CLAG en varios niveles

Carry Lookahead Generator

- Generalización de las ecuaciones
- Dado el grupo de bits en las posiciones j, j+1, ..., i (j ≤ i) notamos:
 - P_{j:i} carry propagado
 - G_{i:i} carry generado
- Si P_{j:i} = 1, el carry de entrada en la posición j se propaga hasta la posición i+1
- Si G_{j:i} = 1, el carry se genera en alguna posición entre i y j y se propaga hasta i+1

Las funciones P y G pueden calcularse usando las ecuaciones:

$$P_{j:i} = \begin{cases} P_i & \text{Si } i = j \\ P_i \cdot P_{j:i-1} & \text{Si } j < i \end{cases}$$

$$G_{j:i} = \begin{cases} G_{i} & \text{Si } i = j \\ G_{i} + P_{i} \cdot G_{j:i-1} & \text{Si } j < i \end{cases}$$
De manera recursiva pueden generalizarse a (j+1 \leq

 $m \leq i$):

$$- P_{j:i} = P_{m:i} \cdot P_{j:m-1}$$

$$- G_{j:i} = G_{m:i} + P_{m:i} \cdot G_{j:m-1}$$

- Tenemos dos tipos de bloques:
 - A: a partir de los bits a_i, b_i y c_i calcula: p_i, g_i y s_i
 - B: a partir de los P y G de dos grupos distintos consecutivos, calcula los P y G del grupo completo y el carry final.

17

Gran mejora en performance:

Los bits deben atravesar en el orden de $\log_2 n$ niveles lógicos, comparados con los 2n del ripple.

Incremento en el tamaño:

2n celdas en un espacio n Log₂ n (nodos de dos entradas) frente a n celdas en el ripple.

Sumadores de n bits

- Sumador serie
- Sumadores paralelos
 - Ripple adder
 - Carry-lookahead adder
 - Carry-skip adder
 - Carry-select adder
 - Semisumador: Carry-save adder

- La tecnología ripple es simple y rápida.
- Pero no tiene buen rendimiento para grandes valores de n.
- Soluciones intermedias son
 - Carry-skip adder
 - Carry select adder

- Divide los operandos en grupos no necesariamente iguales.
- Reduce el tiempo de propagación del carry saltando sobre grupos consecutivos.

Nota:

- Se hizo popular con la tecnología VLSI.
- Para los tamaños de palabras usuales, la velocidad es comparable a las técnicas de CLA. Además, requiere menos área y consume menos.

- El funcionamiento se basa en que:
 - La propagación del carry al sumar los bits i puede saltearse si x_i ≠ y_i (P_i = x_i ⊕ y_i = 1)
 - La propagación del carry puede saltearse la suma de varios bits consecutivos si todos satisfacen $x_i \neq y_i$.
- Un sumador de n bits puede dividirse en grupos de bits consecutivos.
- Cada grupo suma los m bits con un esquema ripple.

- El cálculo de P es más simple que el cálculo de G.
- Cada grupo calcula sólo P_m
 - $-P_m$ = 1 si el grupo propaga el carry de entrada. De esta forma, permite que al carry de entrada saltear el grupo.
- Si un bloque genera carry, habrá carry de salida aunque el carry de entrada no sea el correcto.
- Si todos los carry de entrada a los grupos se inicializan en cero, el carry de salida puede interpretarse como G.

El carry-skip adder es práctico sólo si esto puede hacerse de manera fácil al comienzo de cada operación.

$$C_{i+1} = G_{i:j} + P_{i:j} \cdot C_j$$

Dana K. Urribarri AC 2018

- El carry-out del bloque i es el carry-in del bloque i+1.
- Luego, si el bloque i+1 propaga carry ($P_{i+1} = 1$) y hay carry-in ($C_{i+1} = 1$), ya se sabe que habrá carry-in en el bloque i+2 ($C_{i+2} = 1$).

Todos los grupos de igual tamaño *k* y *n* múltiplo de *k*

- k debe minimizar la cadena de propagación de carry más larga.
- La propagación más larga se da cuando el carry se genera en el bloque 1 (ripple), luego se propaga por los bloques 2,3,...,n/k-1 y finalmente hace ripple en el bloque n/k.

$$T = t_{Ripple en k bits} + (n/k - 2) (t_{AND} + t_{OR}) + t_{Ripple en k bits}$$

$$T = t_{Ripple \ en \ k \ bits} + (n/k - 2) (t_{AND} + t_{OR}) + t_{Ripple \ en \ k \ bits}$$

Primer Sumador Tiempo de saltear los sumador Sumador Sumador

Si cada compuerta tiene retardo Δ_G

El tiempo del ripple es $2\Delta_G$ ×cantidad de bits en ripple (k)

$$T = 2k\Delta_{G} + (n/k - 2) (\Delta_{G} + \Delta_{G}) + 2k\Delta_{G}$$
$$= \Delta_{G} (4k + 2n/k - 4)$$

$$T = \Delta_G (4k + 2n/k - 4)$$

Para hallar el óptimo k, se deriva T con respecto a k y se iguala a 0.

- $dT/dk = 4\Delta_G 2n\Delta_G/k^2 = 0$
- $k = \sqrt{(n/2)}$

El tamaño del grupo óptimo y el tiempo de propagación del carry son proporcionales a \sqrt{n} .

Para 32 bits, el óptimo es k = 4

$$T = 28\Delta_G$$
 contra $T_{ripple} = 64\Delta_G$

Asumiendo bloques de diferentes tamaños

- El tiempo de saltear un sumador no depende de la cantidad de bits a sumar.
- Se puede optimizar:
 - Incrementando el tamaño de los grupos centrales
 - Reduciendo el tamaño del primer y del último grupo.

Sumadores de n bits

- Sumador serie
- Sumadores paralelos
 - Ripple adder
 - Carry-lookahead adder
 - Carry-skip adder
 - Carry-select adder
 - Semisumador: Carry-save adder

Carry-select adder

- Los n bits a sumar se dividen en grupos (pueden ser de diferentes tamaños)
- Cada grupo genera dos sumas y dos carries.
 - Una suma y un carry se corresponden a la suma con carry inicial 0.
 - La otra suma y el otro carry se corresponden a la suma con carry inicial 1.
- Cuando se tiene el carry de entrada real, se selecciona la suma con su carry correspondientes.

Carry-select adder

- Cada bloque calcula las sumas en ripple.
- Una vez que termina el primer bloque, y se tiene el carry real, se seleccionan los carries de los bloques siguientes.
- Para bloques de tamaño k
 - $2k\Delta_G$ para calcular todas las sumas
 - 2Δ_G(n/k 1) para seleccionar el carry correcto y multiplexar (2 niveles de compuertas) la suma.

• Total: $2k\Delta_G + 2\Delta_G(n/k - 1) = (2k + 2n/k - 2)\Delta_G$

- Sin embargo, para el Carry-select adder el mejor diseño es con bloques de tamaño variable:
 - Si a cada bloque le lleva $2k\Delta_G$ realizar la suma de números de k bits
 - Y seleccionar el carry correcto lleva $2\Delta_{G}$
 - Entonces, lo ideal es que cada bloque sea un bit más ancho que el anterior.
- Los grupos deberían seguir la serie 1,1,2,3,...

Tamaño de grupos óptimo

- Los grupos deberían seguir la serie 1,1,2,3,...
- Si L_{max} es el tamaño del mayor bloque, para n bits se debe satisfacer que:

$$1 + L_{\text{max}} (L_{\text{max}} - 1) / 2 > n$$

Por lo tanto

$$L_{\text{max}} (L_{\text{max}} - 1) > 2(n - 1)$$

 El tamaño del mayor grupo y el tiempo de ejecución son del orden de √n

Carry-select adder

T = 0 \rightarrow Comienza

 $T = 8\Delta_G$ \rightarrow Terminan el primero y el segundo bloque

 $T = 10\Delta_G \rightarrow Terminan el tercer bloque y ya se calculó el carry out del segundo$

 $T=12\Delta_{_{\rm G}}$ \to Termina el cuarto bloque y ya se calculó el carry out del tercero. Luego del multiplexado (despreciable), ya está la suma final.

 $T = 14\Delta_G \rightarrow Calculó el carry out final$

Sumadores de n bits

- Sumador serie
- Sumadores paralelos
 - Ripple adder
 - Carry-lookahead adder
 - Carry-skip adder
 - Carry-select adder
 - Semisumador: Carry-save adder

- Es un semisumador.
- Sumar más de 2 operandos simultáneamente (como en la multiplicación) usando sumadores de dos operandos es costoso:
 - Para k operandos la propagación del carry debe repetirse k – 1 veces
- La estrategia usando Carry-save adder reduce ese costo.
 - Generar sumas parciales y secuencias de carry
 - Propagar el carry sólo en el último paso.

- El CSA recibe 3 operandos de n bits y genera dos resultados n bits:
 - La suma parcial de n bits
 - El carry de n bits.
- Reduce la suma de 3 operandos a la suma de 2 operandos.
- La implementación más simple es con n FA en paralelo.

 La implementación más simple es con n FA en paralelo.

+
$$\frac{S_3S_2S_1S_0}{C_4C_3C_2C_1C_0}$$

+
$$c_4 c_3 c_2 c_1 0$$

Dana K. Urribarri AC 2018

- Sumador de 4 operandos (x,y,z,w) de 4 bits cada uno usando dos niveles de CSA.
- El último nivel debe ser un sumador paralelo que propague carry (CPA: ripple, lookahead, skip, etc)

Sumar k operandos de n bits

- Requiere k 2 CSA y un CPA
- El tiempo de suma será:

$$(k-2)$$
 T_{CSA} + T_{CPA}

- T_{CPA} = retardo del sumador paralelo.
- T_{CSA} = Δ _{FA} = 2Δ _G

La suma de k operandos de n bits, puede valer hasta $(2^n - 1) k$.

El resultado final puede tener hasta $n + \log_2 k$ bits El tiempo total de suma:

$$(k-2) 2\Delta_G + T_{CPA}(n + \lceil \log_2 k \rceil)$$

Dependerá del sumador paralelo de la última etapa.

Árbol de CSA

La mejor organización de CSA es el Wallace tree

Árbol de CSA

- En cada nivel, el número de operandos se reduce en ²/₃.
- Por lo tanto, si L es la cantidad de niveles requeridos

$$k (\frac{2}{3})^{L} \leq 2$$

 Es decir que se necesitarán una cantidad estimada de niveles:

$$\frac{\log \frac{2}{n}}{\log \frac{2}{3}} = \frac{\log \frac{n}{2}}{\log \frac{3}{2}}$$

El resultado final requiere atravesar O(log(n)) CSA.

Árbol de CSA

Number of operands	Number of levels
3	1
4	2
$5 \leq k \leq 6$	3
$7 \leq k \leq 9$	4
$10 \leq k \leq 13$	5
$14 \leq k \leq 19$	6
$20 \leq k \leq 28$	7
$29 \leq k \leq 42$	8
$43 \leq k \leq 63$	9

Restadores

- Los sumadores pueden sumar números signados o no signados.
- Con un sumador puede realizarse la resta usando complemento a la base.
 - Puede implementarse circuito restador que realice la operación directamente.
- Para calcular A B
 - 1) Se complementa $B: X \leftarrow B'$
 - 2) Se calcula A + X forzando el carry inicial c_0 a 1.

Bibliografía

- <u>Capítulo 5</u>. Computer Arithmetic Algorithms. Israel Koren, 2da Edición, A K Peters, Natick, MA, 2002.
 - Adapted from Koren, UMass. Copyright 2008 Koren, UMass and A.K. Peters.
- <u>Capítulo 6</u>. M. Morris Mano & Michael D. Celetti. Digital Design: With an Introduction to the Verilog HDL. Pearson. (2015, 5ta Ed.)

Suplementaria

- <u>Apéndice J</u>. J. Hennessy & D. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publishers INC. 2011, 5ta Ed.
- <u>Apéndice B.</u> David A. Patterson & John L. Hennessy. Computer Organization and Design. The Hardware/Software Interface. Elsevier. (5ta Ed. 2014)