### Overview of Correlation

### Probability and Statistics for Data Science

Carlos Fernandez-Granda





These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

### Goal

Quantify dependence between two quantities with a single number



Idea: Focus on linear dependence

### **Topics**

Correlation coefficient and covariance

Geometric intuition about correlation

Simple linear regression

Causal inference

### Linear dependence

How can we quantify linear dependence between random variables  $\tilde{a}$  and  $\tilde{b}?$ 

Approximate  $\tilde{b}$  using linear function of  $\tilde{a}$ 

We first focus on random variables with zero mean and unit variance

Linear minimum mean-squared-error estimator of  $\tilde{b}$  given  $\tilde{a}$  is  $\mathbb{E}[\tilde{a}\tilde{b}]$ 

$$\rho_{\tilde{a},\tilde{b}} := \mathrm{E}[\tilde{a}\tilde{b}]$$

### Gaussian random variables



| Correlation coefficient                                              |  |
|----------------------------------------------------------------------|--|
| What about random variables with non-zero mean or non-unit variance? |  |
|                                                                      |  |
|                                                                      |  |

### Standardized variable

To standardize a random variable  $\tilde{a}$  we subtract its mean  $\mu_{\tilde{a}}$  and divide by its standard deviation  $\sigma_{\tilde{a}}$ 

$$\mathsf{s}(\tilde{\mathsf{a}}) := \frac{\tilde{\mathsf{a}} - \mu_{\tilde{\mathsf{a}}}}{\sigma_{\tilde{\mathsf{a}}}}$$

$$\mathrm{E}\left[\mathsf{s}(\tilde{a})\right]=0$$

$$\operatorname{Var}\left[\mathsf{s}(\tilde{\mathsf{a}})\right]=1$$

### Linear dependence between random variables

Random variables  $\tilde{a}$  and  $\tilde{b}$  with means  $\mu_{\tilde{a}}$  and  $\mu_{\tilde{b}}$  and variances  $\sigma_{\tilde{a}}^2$  and  $\sigma_b^2$ 

Affine approximation of  $\tilde{b}$  given  $\tilde{a}$ ?

$$egin{aligned} ilde{b} &= \sigma_{ ilde{b}} s( ilde{b}) + \mu_{ ilde{b}} pprox \sigma_{ ilde{b}} 
ho_{\mathsf{s}( ilde{a}), \mathsf{s}( ilde{b})} s( ilde{a}) + \mu_{ ilde{b}} \ &= rac{\sigma_{ ilde{b}} 
ho_{\mathsf{s}( ilde{a}), \mathsf{s}( ilde{b})}{\sigma_{ ilde{a}}} ( ilde{a} - \mu_{ ilde{a}})}{\sigma_{ ilde{a}}} + \mu_{ ilde{b}} \end{aligned}$$

This is the minimum MSE linear estimator

### Correlation coefficient

$$\rho_{\tilde{\mathbf{a}},\tilde{\mathbf{b}}} := \rho_{s(\tilde{\mathbf{a}}),s(\tilde{\mathbf{b}})}$$

$$= \frac{\mathrm{E}\left[(\tilde{\mathbf{a}} - \mu_{\tilde{\mathbf{a}}})(\tilde{\mathbf{b}} - \mu_{\tilde{\mathbf{b}}})\right]}{\sigma_{\tilde{\mathbf{a}}}\sigma_{\tilde{\mathbf{b}}}}$$

Invariant to positive scaling and shifts

### Covariance

The covariance between  $\tilde{a}$  and  $\tilde{b}$  is

$$Cov[\tilde{\mathbf{a}}, \tilde{\mathbf{b}}] := E[(\tilde{\mathbf{a}} - \mu_{\tilde{\mathbf{a}}})(\tilde{\mathbf{b}} - \mu_{\tilde{\mathbf{b}}})]$$
$$= E[\tilde{\mathbf{a}}\tilde{\mathbf{b}}] - \mu_{\tilde{\mathbf{a}}} \mu_{\tilde{\mathbf{b}}}$$
$$\rho_{\tilde{\mathbf{a}}, \tilde{\mathbf{b}}} := \frac{Cov[\tilde{\mathbf{a}}, \tilde{\mathbf{b}}]}{\sigma_{\tilde{\mathbf{a}}} \sigma_{\tilde{\mathbf{b}}}}$$

### Correlation

If  $ho_{ ilde{a}, ilde{b}}>0$  and  $\mathrm{Cov}[ ilde{a}, ilde{b}]>0$ ,  $ilde{a}$  and  $ilde{b}$  are positively correlated

If  $ho_{ ilde{a}, ilde{b}}=0$  and  $\mathrm{Cov}[ ilde{a}, ilde{b}]=0$ ,  $ilde{a}$  and  $ilde{b}$  are uncorrelated

If  $ho_{ ilde{a}, ilde{b}}<0$  and  $\mathrm{Cov}[ ilde{a}, ilde{b}]<0$ ,  $ilde{a}$  and  $ilde{b}$  are negatively correlated

# Estimating covariance from data

Data: 
$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

$$X := \{x_1, x_2, \dots, x_n\}, \qquad Y := \{y_1, y_2, \dots, y_n\}$$

The sample covariance equals

$$c(X,Y) := \frac{\sum_{i=1}^{n} (x_i - m(X))(y_i - m(Y))}{n-1}$$

where m(X) and m(Y) are the sample means of X and Y

### Sample correlation coefficient

The sample correlation coefficient equals

$$\rho_{X,Y} := \frac{c(X,Y)}{\sqrt{v(X)v(Y)}}$$

where v(X) and v(Y) are the sample variances of X and Y

### Height of NBA players

### Data:

Height and offensive statistics of NBA players between 1996 and 2019

### Goal:

Quantify linear dependence between rebounds/assists/points and height





 $\rho_{\,\rm height, rebounds} = 0.42$ 

### Standardized



### Linear estimate



### Residual







$$\rho_{\,\rm height,assists} = -0.46$$

### Standardized



# 







$$\rho_{\,\rm height,points} = -0.06$$





# Linear estimate $b=\rho_{X,Y} \ a$ $b=\rho_{X,Y} \$



# Geometric analysis of correlation



### Covariance as an inner product



 $-1 \le \cos \theta \le 1$ 

$$-1 \le \rho_{\tilde{\mathbf{a}}, \tilde{\mathbf{b}}} \le 1$$

If  $\cos \theta > 0$  vectors point in the same direction

If  $ho_{\tilde{a},\tilde{b}}>0$   $\tilde{a}$  and  $\tilde{b}$  are positively correlated

If  $\cos\theta<0$  vectors point in opposite directions

If  $ho_{ ilde{a}, ilde{b}} <$  0  $ilde{a}$  and  $ilde{b}$  are negatively correlated

If  $\cos \theta = 0$  vectors are orthogonal

If  $ho_{ ilde{a}, ilde{b}}=$  0  $ilde{a}$  and  $ilde{b}$  are uncorrelated



# Simple linear regression

Single feature

Linear MMSE estimator:

$$\begin{split} \tilde{b} &= \sigma_{\tilde{b}} s(\tilde{b}) + \mu_{\tilde{b}} \approx \sigma_{\tilde{b}} \, \rho_{s(\tilde{a}),s(\tilde{b})} \, s(\tilde{a}) + \mu_{\tilde{b}} \\ &= \frac{\sigma_{\tilde{b}} \, \rho_{s(\tilde{a}),s(\tilde{b})} \left(\tilde{a} - \mu_{\tilde{a}}\right)}{\sigma_{\tilde{a}}} + \mu_{\tilde{b}} \end{split}$$

# Vector collinear with $\tilde{a}$ closest to $\tilde{b}$ ?



# Orthogonal projection



### Linear minimum MSE estimator



# Simple linear regression from data

Data:  $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ 

$$X := \{x_1, x_2, \dots, x_n\}, \qquad Y := \{y_1, y_2, \dots, y_n\}$$

Interpret  $x_i$  as sample from  $\tilde{a}$ , and  $y_i$  as sample from  $\tilde{b}$ 

$$\ell_{\mathsf{MMSE}}(a) = \sigma_{\tilde{b}} \, \rho_{\tilde{a}, \tilde{b}} \left( \frac{a - \mu_{\tilde{a}}}{\sigma_{\tilde{a}}} \right) + \mu_{\tilde{b}}$$

$$\approx \sqrt{v(Y)} \rho_{X,Y} \left( \frac{x - m(X)}{\sqrt{v(X)}} \right) + m(Y)$$

This is the ordinary least squares (OLS) estimator because it minimizes the residual sum of squares









The correlation coefficient is bounded between -1 and 1

### Properties of the correlation coefficient

If it equals  $\pm 1$ , then there is complete linear dependence

# $ho_{ ilde{a}, ilde{b}}=0.95$



# $ho_{ ilde{a}, ilde{b}}=0.99$



# $ho_{\tilde{\mathbf{a}},\tilde{\mathbf{b}}}=0.999$



# $ho_{\tilde{\mathbf{a}}, \tilde{\mathbf{b}}} = 0.9999$



## Variance decomposition

$$\operatorname{Var}\left[ ilde{b}
ight] = \operatorname{Var}\left[\ell_{\mathsf{MMSE}}( ilde{a})
ight] + \operatorname{Var}\left[ ilde{b} - \ell_{\mathsf{MMSE}}( ilde{a})
ight]$$

$$\operatorname{Var}[\tilde{b} - \ell_{\mathsf{MMSE}}(\tilde{a})] = (1 - \rho_{\tilde{a}, \tilde{b}}^2) \operatorname{Var}[\tilde{b}]$$

$$\operatorname{Var}\left[\ell_{\mathsf{MMSE}}(\tilde{a})\right] = \rho_{\tilde{a},\tilde{b}}^2 \operatorname{Var}\left[\tilde{b}\right]$$

#### Coefficient of determination

$$R^{2} := \frac{\operatorname{Var}\left[\ell_{\mathsf{MMSE}}(\tilde{a})\right]}{\operatorname{Var}[\tilde{b}]}$$
$$= \rho_{\tilde{a},\tilde{b}}^{2}$$
$$0 \le R^{2} \le 1$$

 $\rho_{\tilde{a},\tilde{b}} = 0.75, R^2 = 0.56$ 



 $\rho_{\tilde{a},\tilde{b}} = 0.95, R^2 = 0.90$ 



 $ho_{\tilde{a},\tilde{b}}=0$ ,  $R^2=0$ 



 $\rho_{\tilde{a},\tilde{b}} = -0.75, R^2 = 0.56$ 



 $\rho_{\tilde{a},\tilde{b}} = -0.95, R^2 = 0.90$ 



## Decomposition of variance



## Independence implies uncorrelation

If  $\tilde{a}$  and  $\tilde{b}$  are independent, then

$$\operatorname{Cov}[\tilde{a},\tilde{b}]=0$$

## Example



$$\mathrm{Cov}[\tilde{a},\tilde{b}]=0$$

### Example



Conditional pmf of  $\tilde{b}$  given  $\tilde{a} = 0$ ?

$$p_{\tilde{b} \mid \tilde{a}}(0 \mid 0) = 1$$

Conditional pmf of  $\tilde{b}$  given  $\tilde{a}=1$ ?

$$p_{\tilde{b}\,|\,\tilde{s}}(1\,|\,1)=rac{1}{2}$$
  $p_{\tilde{b}\,|\,\tilde{s}}(-1\,|\,1)=rac{1}{2}$  Not independent

#### Gaussian random variables



## Uncorrelation implies independence

a = -1

a

b

-2



## Unemployment and temperature in Spain (2015-2022)



Correlation coefficient: -0.21

Would an increase in temperature decrease unemployment?

#### Causal inference

Key question: Does a treatment  $\tilde{t}$  cause a certain outcome?

Potential outcome:  $\widetilde{po}_t$ 

Observed data:

$$\widetilde{y} := \widetilde{\mathsf{po}}_t \qquad \text{if} \qquad \widetilde{t} = t$$

#### Potential outcomes



Observed outcomePotential outcome

Treatment

#### Potential outcomes



Treatment

#### Potential outcomes



Treatment

#### Observed data



Treatment

### Linear causal effect

For some constant  $\beta \in \mathbb{R}$ 

$$\mathrm{E}\left[\widetilde{\mathsf{po}}_{t}\right] = \beta t$$

Key question: Can we estimate linear causal effects from data?

Idea

Use covariance between observed outcome  $ilde{v}$  and the treatment  $ilde{t}$ 

If  $\widetilde{po}_t$  and  $\widetilde{t}$  are independent for all t

$$\operatorname{Cov}\left[\tilde{y},\tilde{t}\right]=\beta$$

Assuming  $\mathrm{E}[\tilde{t}]=0$  and  $\mathrm{E}[\tilde{t}^2]=1$ 

## Why do we need independence?



## Unemployment and temperature in Spain (2015-2022)



### Unemployment and temperature in Spain (2015-2022)



#### Unobserved confounder

Potential outcome  $\widetilde{\mathrm{po}}_{t,c}$  depends on treatment  $\widetilde{t}$  and on confounder  $\widetilde{c}$ 

Observed data:

$$\widetilde{y} := \widetilde{\mathsf{po}}_{\mathsf{t},c} \qquad \mathsf{if} \qquad \widetilde{t} = t, \widetilde{c} = c$$

For some constants  $\beta, \gamma \in \mathbb{R}$ 

$$\mathbf{E}\left[\widetilde{\mathsf{po}}_{t,c}\right] = \beta t + \gamma c$$

If  $\widetilde{\mathrm{po}}_{t,c}$  is independent from  $(\widetilde{t},\widetilde{c})$ 

$$\operatorname{Cov}\left[\tilde{y},\tilde{t}\right] = \beta + \gamma \rho_{\tilde{t},\tilde{c}}$$

where  $\tilde{t}$  and  $\tilde{c}$  are standardized