You are given n non-negative integers, $a_0, a_1, \ldots, a_{n-1}$. We define the *score* for some permutation (p)of length n to be the maximum of $a_{p_i} \oplus a_{p_{i+1}}$ for $0 \leq i < n-1$.

Find the permutation with the minimum possible score and print its score.

Note: ⊕ is the exclusive-OR (XOR) operator.

Input Format

The first line contains single integer, n, denoting the number of integers. The second line contains n space-separated integers, $a_0, a_1, \ldots, a_{n-1}$, describing the respective integers.

Constraints

- $2 \le n \le 3000$ $0 \le a_i \le 10^9$

Output Format

Print a single integer denoting the minimum possible score.

Sample Input 0

1 2 3 4

Sample Output 0

Sample Input 1

1 2 3

Sample Output 1

2

Explanation

Sample Case 0:

The permutation with the *minimum score* is (3, 2, 1, 4):

$$a_0\oplus a_1=3\oplus 2=1$$

$$a_1\oplus a_2=2\oplus 1=3$$

$$a_2\oplus a_3=1\oplus 4=5$$

Because the permutation's score is the maximum of these values, we print ${\bf 5}$ on a new line.

Sample Case 1:

The permutation with the *minimum score* is (1, 3, 2):

$$a_0\oplus a_1=1\oplus 3=2$$

$$a_1\oplus a_2=3\oplus 2=1$$

Because the permutation's score is the *maximum* of these values, we print **2** on a new line.