FLUORESCENT LAMP APPARATUS

Patent number:

JP8273615

Publication date:

1996-10-18

Inventor:

MATSUMOTO MITSUO; MATSUNAGA HIROYUKI

Applicant:

TOSHIBA LIGHTING & TECHNOL CORP

Classification:

- international:

H01J61/36; H01J61/32; H01J61/34; H01J61/56;

H05B41/00

- european:

Application number: JP19950076942 19950331

Priority number(s):

Abstract of JP8273615

PURPOSE: To prevent contact resistance from increasing by maintaining winding force of an outer lead wire on a connection terminal. CONSTITUTION: A fluorescent lamp 21 and a lighting circuit 12 are housed in an outer casing 38 having a cap 3. As for the fluorescent lamp 21, an outer lead wire 22 connected with a filament electrode 28 is led out of the end part of the glass bulb 25. The outer lead wire 22 has a core wire made of iron. The lighting circuit 12 has a connection terminal 15 on which the outer lead wire 22 of the fluorescent lamp 21 is coiled and with which the wire 22 is connected. Consequently, due to the heat at the time of lighting of the fluorescent lamp 21, the core wire made of iron of the outer lead wire 22 coiled on the connection terminal 15 is heated and hardened and thus the coiling force of the outer lead wire 22 on the connection terminal 15 can be maintained.

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-273615

(43)公開日 平成8年(1996)10月18日

(51) Int.Cl.6	識別記号	庁内整理番号	FI			技術表示箇所	
H 0 1 J 61/36				61/36	1/36 A		
61/32				61/32		X	
61/34			•	1/34		L	
61/56			ϵ	61/56		L	
H05B 41/00			H05B 4	11/00		Y	
	·		審査請求	未請求	請求項の数(5 OL (全 7 頁)	
(21)出願番号	特願平7-76942		(71)出願人	000003757			
				東芝ライ	イテック株式会	社	
(22)出願日	平成7年(1995)3月31日			東京都品	品川区東品川四	3丁目3番1号	
-			(72)発明者	松本 う	光生		
				東京都區	3川区東岛川四	了丁目3番1号 東芝	
				ライテッ	ック株式会社内	3	
			(72)発明者	松永	艺		
				東京都品	別区東品川四	3丁目3番1号 東芝	
					ック株式会社内	3	
	•		(74)代理人	弁理士	樺澤 襄	(外2名)	

(54) 【発明の名称】 蛍光ランプ装置

(57)【要約】

【目的】 外部リード線22の接線端子15に対する巻き付き力の維持を図り、接触抵抗の増加を防止する。

【構成】 口金3を有する外囲器38内に、蛍光ランプ21、点灯回路12を収容する。蛍光ランプ21は、ガラスバルプ25の端部から、フィラメント電極28と接続された外部リード線22を導出する。外部リード線22は、鉄製の芯線を有する。点灯回路12は、蛍光ランプ21の外部リード線22が巻き付け接続される接続端子15を有する。

【効果】 蛍光ランプ21の点灯時の熱にて接続端子15に巻き付けられている外部リード線22の鉄製の芯線が加熱されて硬化し、外部リード線22の接続端子15に対する巻き付き力の維持を図れる。

1

【特許請求の範囲】

【簡求項1】 口金を有するカバーと;カバーに取り付けられ、気密な放電空間を形成するガラスパルプ、ガラスパルプの両端に封着された一対のフィラメント電極、ガラスパルプ内に封入された希ガス、ガラスパルプの内面に形成された蛍光体、各フィラメント電極と接続されてガラスパルプの端部から抑出された鉄製の芯線を有する外部リード線を備えた蛍光ランプと;蛍光ランプの外部リード線が巻き付け接続される接続端子を有し、外囲器の口金と蛍光ランプとの間に接続された点灯回路と; 10を具備していることを特徴とする蛍光ランプ装置。

【請求項2】 外部リード線の線径は0.1~0.5mmであることを特徴とする請求項1記載の蛍光ランプ装

【 請求項3】 外部リード線は芯線に飼が被覆されていることを特徴とする請求項1または2記載の蛍光ランプ 装置。

【請求項4】 点灯装置は蛍光ランプを高周波点灯させることを特徴とする請求項1ないし3いずれか一記哉の 蛍光ランプ装置。

【請求項5】 カバーにガラスパルブを収容する少なくとも一部が透光性を有するグローブが取り付けられ、このグローブとカバーによって実質的に密閉形の外囲器が形成されることを特徴とする請求項1ないし4いずれか一記載の蛍光ランプ装置。

【請求項6】 外囲器の単位容積あたりの入力電力が 0.025W/cm³以上に設定されていることを特徴 とする請求項1ないし5いずれか一記載の蛍光ランプ装 置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、蛍光ランプを使用する 蛍光ランプ装置に関する。

[0002]

【0003】このような電球型の蛍光ランプ装置は、例えば特開平6-139997号公報に記載にされているように、口金を有する合成樹脂のカバーとこれに固着さ 40れた透光性を有する合成樹脂にて形成されたグロープとをから外囲器が形成され、この外囲器内に蛍光ランプおよび点灯装置を保持したホルダが収容される。

【0004】 蛍光ランブは、気密な放電空間を形成する ガラスパルブ、ガラスパルブの両端に封着された一対の フィラメント電極、ガラスパルブ内に封入された希ガ ス、ガラスパルブの内面に形成された蛍光体、各フィラ メント電極と接続されてガラスパルブの端部から導出さ れる銅線からなる外部リード線を有する。

【0005】そして、蛍光ランプ装置の組立時に、蛍光 50 統端子に対する巻き付き力が維持される。

2 ランプの外部リード線が点灯回路の接続端子に巻き付け られて電気的および機械的に接続される。

[0006]

【発明が解決しようとする課題】しかし、従来の蛍光ランプ装置では、銅線からなる外部リード線を接続端子に巻き付けて電気的および機械的に接続しているが、蛍光ランプの点灯、消灯による高温化、常温化の温度サイクルによって、外部リード線の接続端子に対する巻き付き力が低下し、接触抵抗が増加する問題がある。

【0007】本発明は、上記問題点に鑑みなされたもので、外部リード線の接続端子に対する巻き付き力の維持を図り、接触抵抗の増加を防止できる蛍光ランプ装置を提供することを目的とする。

[0008]

【0009】請求項2記载の蛍光ランプ装置は、請求項1記載の蛍光ランプ装置において、外部リード線の線径は0.1~0.5mmである。

【0010】 請求項3記载の蛍光ランブ装置は、 請求項30 1または2記載の蛍光ランブ装置において、外部リード線は芯線に銅が被覆されているものである。

【0011】請求項4記歳の蛍光ランプ装置は、請求項 1ないし3いずれか一記歳の蛍光ランプ装置において、 点灯装置は蛍光ランプを高周波点灯させるものである。

【0012】 請求項5 記載の蛍光ランプ装置は、請求項1ないし4いずれか一記載の蛍光ランプ装置において、カパーにガラスパルプを収容する少なくとも一部が透光性を有するグローブが取り付けられ、このグローブとカパーによって実質的に密閉形の外囲器が形成されるものである。なお、実質的に密閉形とは通気孔を有している場合も含む。

【0013】 蔚求項6 記载の蛍光ランプ装置は、 育求項1ないし5 いずれか一記載の蛍光ランプ装置において、外囲器の単位容積あたりの入力電力が0.025W/cm³以上に設定されているものである。

[0014]

【0015】請求項2記歳の蛍光ランプ装置は、請求項 1 記载の蛍光ランプ装置の作用に加えて、外部リード線 の線径を0.1~0.5mmとしても、所望の巻き付き 力が得られる。

【0016】請求項3記載の蛍光ランプ装置では、請求 項1または2記载の蛍光ランプ装置の作用に加えて、芯 線に銅が被覆された外部リード線を用いることにより、 電気的導通性が向上する。

【0017】請求項4記載の蛍光ランプ装置では、請求 項1ないし3いずれか一記載の蛍光ランプ装置の作用に 10 加えて、蛍光ランプを高周波点灯させると高温となり、 外部リード線の巻き付き力が効果的に強くなる。

【0018】 請求項5記载の蛍光ランプ装置では、 請求 項1ないし4いずれか一記哉の蛍光ランプ装置の作用に 加えて、実質的に密閉形の外囲器によって内部が高温と なり、外部リード線の巻き付き力が効果的に強くなる。

【0019】 請求項6記載の蛍光ランプ装置では、請求 項1ないし5いずれか一記載の蛍光ランプ装置の作用に 加えて、外囲器の単位容積あたりの入力電力を0.02 5W/cm³以上に設定することにより、外囲器内が、 外部リード線の巻き付き力が効果的に強くなる温度に設 定される。

[0020]

【実施例】以下、本発明の蛍光ランプ装置の実施例の構 成を図面を参照して説明する。

【0021】図1ないし図3には、第1の実施例として 電球型の蛍光ランプ装置を示す。図1は電球型の蛍光ラ ンプ装置の断面図、図2は電球型の蛍光ランプ装置の分 解状態の斜視図、図3は一部の概略的な断面図である。

【0022】図1において、1はカバーで、このカバー 30 1はPBT樹脂などの耐熱性合成樹脂にて形成され、こ のカパー1の一端には円筒部2が一体に形成されてお り、この円筒部2にはエジソンタイプのE26型などの ようなねじ込み型の口金3が被着され、この口金3は接 着剤またはかしめなどにより円筒部2に固定されてい る。

【0023】また、カバー1の他端は仕切板4により閉 塞され、この仕切板4はたとえばPBT樹脂のような耐 熱性合成樹脂によって形成され、ほぼ円形の皿型をなし ている。さらに、この仕切板4は、図2に示されるよう に、立上がり形状の側壁5の上端開口線にフランジ部6 が形成されており、このフランジ部6には周方向に離間 して、たとえば4個の係止舌片7が形成されている。そ して、これら係止舌片7は、フランジ部6に形成したス リット8により、このフランジ部6を周方向に分断する ようにして形成されている。このため、これら係止舌片 7は径方向へ弾性変形可能となっている。

【0024】さらに、カバー1の内面にはこれら係止舌 片7に対応し、これら係止舌片7を係止する係止突起9

4とを突き合わせると、係止舌片7が弾性変形して係止 突起9を乗り越え、カバー1と仕切板4とを係止舌片7 と係止突起9との係合により結合する。

【0025】また、仕切板4のフランジ部6には固定爪 11、11が形成されており、仕切板4の他の位置の底壁か ら他の固定爪11が立上がり形成されている。そして、こ れら固定爪11には、点灯回路としてのインバータ回路12 のプリント回路基板13が係止されている。

【0026】さらに、インパー夕回路12は、カパー1に て覆われる空間内に位置して、仕切板4に取り付けられ ており、このインパータ回路12は、回路基板13にトラン ジスタインパータを用いた高周波点灯用の回路部品14を 実装して構成されている。

【0027】また、プリント回路基板13の一端部には、 4本のピン状の接続端子15が突設されており、これら接 統端子15は回路部品14に電気的に接続されているもので あり、鞍型の蛍光ランプ21の外部リード線22が巻き付け られて電気的および機械的に接続される。なお、蛍光ラ ンプ21はU字型、W字型などいずれでもよい。

【0028】そして、仕切板4の下面には、保持部とし てのランプ取付筒部23,23が一体に形成されている。こ れらランプ取付筒部23,23には蛍光ランプ21が取り付け られており、この蛍光ランプ21は、消費電力15W~1 7Wでランプ電流は250mA~350mAである。な お、明るさとしては60Wの白熱電球程度である。

【0029】蛍光ランプ21は、内面に図示しない蛍光体 膜が形成され内部に水銀およびアルゴンなどの希ガスが 封入されたガラスバルブ25の両端部26,26が互いに接近 して並設され、口金3方向に向けて位置されており、こ れら両端部26,26の間にU字型に屈曲された中央屈曲部 27を有しており、この中央屈曲部27は両端部26, 26と同 一方向を向くように屈曲形成されている。

【0030】ガラスパルプ25の両端部26,26にはフィラ メント電極としての電極コイル28,28が封装されてお り、これら電極コイル28,28にはそれぞれ補助アマルガ ム29, 29が取り付けられている。

【0031】そして、これら電極コイル28, 28に接続さ れた各一対の外部リード線22、22がそれぞれガラスバル プ25の端部26, 26から外部に導かれ、接続端子15, 15に 40 複数回巻回して接続されている。外部リード線22は、鉄 製の芯線に銅メッキを施したCP線(CXF、CCSな ど)などからなり、電極コイル28に接続されてガラスパ ルブ25に封着される図示しないリベットの外端部に電気 抵抗溶接などによって接続されている。

【0032】さらに、ガラスパルプ25の両端部26,26に は細管31, 31が突出されており、これら細管31, 31の少 なくとも一方には点灯中の水銀蒸気圧を制御するアマル ガム32が収容されている。

【0033】そして、蛍光ランプ21は、両端部26,26が が一体に形成されている。すなわち、カパー1と仕切板 50 仕切板4に形成されたランプ取付筒部23,23に、仕切板 4の下から差し込まれ、これら端部26、26とランプ取付 筒部23,23との間に充填されたシリコーン系などの熱硬 化性接着剤33によって仕切板4に固定されている。ま た、蛍光ランプ21の中央屈曲部27は、シリコーン系など の熱硬化性接着剤34によって仕切板4の下面に接合され ている。このため、蛍光ランプ21は、両端部26,26と中 央屈曲部27の合計3箇所により仕切板4に固定されてい

【0034】また、蛍光ランプ21は、透光性を有するグ ロープ35により覆われており、グロープ35は上端が開口 10 したカップ形状をなしている。グロープ35は、透明また は光拡散性の合成樹脂からなり、このグローブ35は上端 開口部を若干径小にしてしてストレート型の首部36を有 している。さらに、この首部36の開口端部には、全周に 亘り連続して肉溜まり部37が形成され、この肉溜まり部 37は、グローブ35の上端開口部を加熱して軟化させるこ とにより溶融した肉が集まって肉溜まりとなったもので ある。

【0035】なお、カパー1およびグロープ35にて、実 質的に密閉形の外囲器38を構成している。実質的に密閉 20 形としては通気孔を有していてもよい。

【0036】また、このグローブ35の首部36は、図1お よび図3に示すように、カバー1の内面と仕切板4の立 上がり側壁5との間に形成されたリング形状の隙間に差 し込まれる。そのグロープ35の首部36の外面にはカバー 1の内面の4箇所から突設された断面三角形状のリブ41 が当接し、内面には仕切板4の立上がり側壁5の外面の 4箇所から突設された断面三角形状のリブ42が当接し、 これらリブ41、42間にグローブ35の首部36が点接触状態 で所定位置に位置決め保持される。

【0037】そして、グロープ35は、シリコーン系など の熱硬化性接着剤43によってカバー1の内面および仕切 板4の立上がり側壁5の両者に接合されている。なお、 この熱硬化性接着剤43は熱硬化性で、たとえばシリコー ン系が使用されており、硬化時点の硬度は20以上、5 0以下であり、シリコーン系の場合には、シリコーンに 混合される硬化剤の混合割合を調整することにより、硬 度の変更が可能である。

【0038】また、図1に示すように、グロープ35を嵌 合するカバー1の端部とそのグローブ35の周面との間に 40 は間隙が形成される。

【0039】そして、カバー1およびグロープ35からな る外囲器38の大きさは、外囲器38の単位容積あたりの入 力電力が 0. 0 2 5 W/c m³ 以上となるように、5 2 0 c m³ 程度であり、入力電力が18W/c m³ のとき 600cm³以下に設定される。

【0040】また、インパータ回路12を用いて蛍光ラン プ21を点灯させると特に管壁負荷の上昇による紫外線量 が無視できないため、外囲器38内に臨む合成樹脂面、つ

面などには、無機質材料からなる保護膜45が形成され る。無機質材料しては、例えば無機高分子ポリマーのペ ルヒドロポリシラザンが使用される。そして、保護膜45 の形成は、合成樹脂面に低温焼成形のペルヒドロポリシ ラザンを塗布した後、低温焼成することにより、SiO 2 系セラミックス膜を形成する。この低温焼成形のペル ヒドロポリシラザンを用いることにより、PET、ポリ カーポネート、ポリアリレートなどの合成樹脂に適用で きる。

6

【0041】このように、外囲器38内に臨む合成樹脂面 に保護膜45を形成することにより、370 nm以下の紫 外線を反射させてカットでき、合成樹脂の表面の劣化を 防止できる。しかも、グローブ35に保護膜45を形成する ことにより、蛍光ランプ装置からの紫外線照射量を減少 させて可視光線を中心に照射することができる。

【0042】次に、第1の実施例の作用を説明する。

【0043】まず、蛍光ランプ装置の組立の順序を説明 する。

【0044】仕切板4の上面に、予め髙周波点灯の回路 部品14が実装されたプリント回路基板13を固定爪11を介 して係止する。

【0045】蛍光ランプ21の端部26,26を仕切板4に形 成したランプ取付筒部23,23に差し込み、これらガラス パルプ25の端部26,26とランプ取付筒部23,23を熱硬化 性接着剤33により固定する。また、ガラスパルプ25の中 央屈曲部27を、熱硬化性接着剤33によって仕切板4の下 面に接合する。このようにすれば、蛍光ランプ21はガラ スパルプ25の端部26,26がランプ取付筒部23,23に挿入 された状態で熱硬化性接着剤33にて固定されるととも に、中央屈曲部27が熱硬化性接着剤34により仕切板4の 30 下面に接合されるので、合計3箇所により仕切板4に固 定される。

【0046】蛍光ランプ21の端部26,26から導出されて いる各一対の外部リード線22,22を対応する接続端子1 5,15に複数回巻回してそれぞれ接続し、その接続部分 をはんだ付けする。このとき、外部リード線22に予めた るみを残して接続端子15に巻回することにより、接続端 子15に外部リード線22の張力が加わるのを防止できる。

【0047】この状態で、仕切板4をカパー1に取り付 ける。この作業は、仕切板4のフランジ部6に形成した 係止舌片7をカパー1に形成した係止突起9を乗り越え させ、係止舌片7が弾性変形して係止突起9に係止し、 カパー1と仕切板4とが結合される。

【0048】次に、インパータ回路12と口金3とを電気 的に接続し、この口金3をカパー1の円筒部2に固定す

【0049】このような組み付けが終わると、仕切板4 の立上がり側壁5の外周面と、カパー1の開口部内面と の間に、熱硬化性接着剤43を充填する。この熱硬化性接 まりグロープ35の内面、仕切板4の表面、カパー1の内 50 狩剤43は仕切板4とカパー1を接合するようになるか

ら、仕切板4はカバー1に接着され、抜け出しが防止さ れる。そして、この熱硬化性接着剤43が未だ硬化しない うちに、蛍光ランプ21にグローブ35を被せ、このグロー ブ35の首部36を仕切板4の立上がり側壁5の外周面とカ バー1の開口部内面との間に差し込み、ここに充填され ている熱硬化性接着剤43の中に埋め込む。すると、グロ ープ35の首部36がカバー1のリプ41と仕切板4のリプ42 との間に点接触状態で所定位置に位置決め保持され、グ ロープ35の首部36の内面および外面に亘って熱硬化性接 着剤43が接着され、この状態で熱硬化性接着剤43の固化 10 0.4 mm、従来の外部リード線の線径は0,5 mmと

【0050】熱硬化性接着剤43が固化すると、グローブ 35はこの熱硬化性接着剤43を介して仕切板4の立上がり 側壁5およびカバー1の開口部内面に接合される。

【0051】このように構成された蛍光ランプ装置を白 熱電球を取り付けるエジソンソケットを有する照明器具 に取り付けることによって照明装置とする。

【0052】そして、蛍光ランプ21を点灯させると、蛍 光ランプ21の熱が接続端子15に巻き付けられている外部 リード線22に伝わり、外部リード線22の鉄製の芯線が加 20 [0054] 熱されて硬化し、外部リード線22の接続端子15に対する*

*巻き付き力が維持される。

【0053】ここで、本実施例の鉄製の芯線からなる外 部リード線22と、従来の銅線からなる外部リード線との 巻き付き強度の試験を行なった結果を表1に示す。な お、試験方法は、ブッシュブルゲージに治具を取り付 け、この治具にて接続端子15に巻き付けられた外部リー ド線22を軸方向から押圧し、外部リード線22がずれたと きのブッシュブルゲージの値を巻き付き強度(せん断強 度) kgf とする。本実施例の外部リード線22の線径は する。また、鉄製の芯線の径は外部リード線22の径の1 /2以上を有していればよい。銅の被覆の厚さは1μm ~30 µmで形成されている。表中に示す接続端子Noは 4本の接続端子15にそれぞれ付与した番号であり、ま た、外部リード線Noは3つのサンプルにそれぞれ付与し た番号であり、(0) は温度サイクル0回の初期であり、 (200) は温度サイクルを200回繰り返したときであ る。温度サイクルは、-20℃を40分と135℃を4 0分ずつ繰り返す。

8

【表1】

接 裝 着 于No. 外部リード線No. (租度サイクル回数)	1.	2	3	4
從来−1(D)	15. 14	11. 87	13.06	14.35
從来-2(0)	13.58	13.77	12.04	13.96
從来−3(0)	11.73	12. 12	12, 69	11.05
従来-1(200)	11. 72	12. 30	14.03	12.70
従来-2(200)	13.21	11. 43	10.90	13.79
従来-3(200)	7. 62	11.90	8. 87	11. 29
本実施例-1(0)	12. 11	8. 00	6. 42	11.60
本実施例-2(0)	6. 64	10. 14	9. 77	15. 42
本実施例-3(0)	7. 56	7. 36	7. 79	6. 39
本実施例-1(200)	17. 03	16. 92	12.65	13.09
本実施例-2(200)	12. 18	11. 77	11.93	19. 24
本実施例-3(200)	12.62	11. 32	10.93	13.13

表1に示すように、従来の外部リード線では、初期は平 均12. 95kgf であったのに対して、温度サイクルを 繰り返すと、平均11.65kgfになり、初期の巻き付 き強度よりも低下する。

【0055】一方、本実施例の外部リード線22では、初 期は平均9. 10kgf であったのに対して、温度サイク ルを繰り返すと、平均13.57kgf になり、初期の巻 き付き強度よりも増加する。これは、線径が細い分だけ 初期の巻き付き強度は低いが、蛍光ランプ21の熱によっ

めに巻き付き強度が増加することによる。そのため、外 部リード線22の接続端子15に対する巻き付き力を維持で き、接触抵抗の増加を防止できる。しかも、鉄製の芯線 からなる外部リード線22は、銅線に比べて、材料費が安 く、製造も容易な効果がある。

【0056】また、図1に示すように、グロープ35を嵌 合するカパー1の端部とそのグローブ35の周面との間に は間隙を形成したため、カバー1とグローブ35との膨脹 係数の差による影響を防ぐことができる。すなわち、特 て外部リード線22の鉄製の芯線が加熱されて硬化するた 50 にグロープ35がガラス製の場合には合成樹脂製のカバー

9

1との膨脹係数の差が大きいので、カバー1とグローブ35とが当接していると、カバー1の膨脹および収縮がグローブ35に伝わり、グローブ35に歪みが生じる問題が発生するが、隙間を設けることによってその問題を解決できる。

【0057】さらに、蛍光ランプ装置の組立時において、仕切板4の立上がり側壁5の外周面とカバー1の開口部内面との隙間に、熱硬化性接着剤43を充填した後、グロープ35の首部36を差し込んだとき、グロープ35の首部36を差し込んだとき、グロープ35の首部36を差し込んだとき、グロープ35の首部36を所定位置に位置決め保持できる。これは、仕切板4とカバー1との隙間を少なくすると、グロープ35が仕切板4およびカバー1に密着して各部材の膨張係数の差の問題が生じるため、隙間を設ける必要があり、隙間を設けるとグロープ35の位置が定まらない問題が生じる。そのため、リブ41、42によってグロープ35を所定位置に位置決め保持できるとともに、リブ41、42とグロープ35は点接触で接触しているため、各部材の膨脹係数の差の問題も解決できる。

【0058】次に、図4および図5は、第2の実施例を示す。図4は外部リード線22の巻き付け時の一部の斜視図、図5は外部リード線22の巻き付け後の一部の斜視図である。

【0059】回路基板13の縁部の接続端子15が立設される近傍位置に突出部61を突出形成する。そして、蛍光ランプ21から導出されている外部リード線22を接続端子15に巻き付けるときに、図4に示すように、外部リード線22を突出部61を経由して巻き付け、その巻き付け後、図5に示すように、外部リード線22を突出部61から外すこ30とにより、外部リード線22にたるみを与えることができ、接続端子15に外部リード線22の張力が加わらず、はんだ付け接続を確実にできる。

[0060]

【発明の効果】請求項1記載の蛍光ランプ装置によれば、蛍光ランプの熱によって接続端子に巻き付けられている外部リード線の鉄製の芯線が加熱されて硬化するため、外部リード線の接続端子に対する巻き付き力の維持を図れ、接触抵抗の増加を防止できる。

【0061】 請求項2記載の蛍光ランブ装置によれば、 請求項1記載の蛍光ランブ装置の効果に加えて、外部リ ード線の線径を0.1~0.5mmとしても、所望の巻 き付き力が得られる。

【0062】 請求項3記哉の蛍光ランブ装置によれば、 請求項1または2記哉の蛍光ランブ装置の効果に加え て、芯線に銅が被覆された外部リード線を用いることに より、電気的導通性を向上できる。

10

【0063】 請求項4記載の蛍光ランブ装置によれば、 請求項1ないし3いずれか一記載の蛍光ランブ装置の効果に加えて、蛍光ランプを高周波点灯させると高温となり、外部リード線の巻き付き力を効果的に強くできる。

7 【0064】請求項5配裁の蛍光ランプ装置によれば、 請求項1ないし4いずれか一記或の蛍光ランプ装置の効果に加えて、実質的に密閉形の外囲器によって内部が高温となり、外部リード線の巻き付き力を効果的に強くできる。

【0065】 請求項6記载の蛍光ランプ装置によれば、 請求項1ないし5いずれか一記载の蛍光ランプ装置の効果に加えて、外囲器の単位容積あたりの入力電力を0. 025W/cm³以上に設定することにより、外囲器内を、外部リード線の巻き付き力を効果的に強くなる温度 に設定できる。

【図面の簡単な説明】

【図1】本発明の第1の実施例を示す蛍光ランプ装置の 断面図である。

【図2】同上実施例の蛍光ランブ装置のグローブを除いた分解状態の斜視図である。

【図3】同上実施例の蛍光ランプ装置の一部の概略的な 断面図である。

【図4】本発明の第2の実施例を示す外部リード線の巻き付け時の一部の斜視図である。

30 【図 5】同上実施例の外部リード線の巻き付け後の一部の斜視図である。

【符号の説明】

- 1 カパー
- 3 □�
- 12 点灯回路としてのインパータ回路
- 21 蛍光ランプ
- 22 外部リード線
- 25 ガラスバルブ
- 28 フィラメント電極としての電極コイル
- 40 35 グロープ
 - 38 外囲器

