Министерство образования Республики Беларусь Учреждение Образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра электроники

Лабораторная работа № 2, 3 «Исследование биполярных транзисторов»

Проверил: Стома С. С

Выполнили: ст. гр. 950501 Романчук А. В. Деркач А. В.

Порядок выполнения первой части работы:

- 1 Ознакомиться с методическим описанием лабораторной работы. (Теоретическое описание лабораторной работы изложено в методическом пособии [1], стр. 28-40).
- 2 Получить у преподавателя необходимый комплект для проведения лабораторной работы.
 - 3 Уточнить тип исследуемого транзистора у преподавателя.
- 4 Собрать схему, представленную на рисунке 1 данного отчета, для исследования параметров биполярного транзистора p-n-p типа.
- 5 Исследовать входные характеристики биполярного транзистора с общей базой для двух вариантов выходного напряжения (Uкб). Полученные результаты записать в таблицы 1-2 данного отчета. (Качественный вид и описание входных характеристик представлены в методическом пособии [1], стр. 34).
- 6 Исследовать выходные характеристики биполярного транзистора с общей базой для двух вариантов входного тока (Іэ). Полученные результаты записать в таблицы 3 4 данного отчета. (Качественный вид и описание выходных характеристик представлены в методическом пособии [1], стр. 34).
- 7 Исследовать параметры генератора на основе биполярного транзистора в схеме с общей базой.
 - 8 Предоставить измеренные данные на проверку преподавателю.

Порядок оформления отчета:

- 1 По измеренным данным построить соответствующие графики.
- 2 По построенным графикам рассчитать h-параметры биполярного транзистора в схеме с общей базой в окрестностях рабочей точки.
 - 3 Записать общие выводы по проделанной лабораторной работе.

[1] — Электронные приборы. Лабораторный практикум: учеб.-метод. пособие. В 2 частях. Часть 1: Активные компоненты полупроводниковой электроники / А. Я. Бельский — Минск: БГУИР, 2012

1 Цель работы

Изучить, режим работы, принцип действия, схемы включения и классификацию биполярных транзисторов (БТ). Экспериментально исследовать статические вольт-амперные характеристики (ВАХ) транзисторов и рассчитать дифференциальные параметры в заданной рабочей точке.

2 Ход работы

2.1 Исследование входных характеристик БТ в схеме с общей базой (ОБ)

Для исследования характеристик БТ собрана цепь по схеме, представленной на рисунке 1.

Рисунок 1 – Схема исследования входных характеристик БТ в схеме с ОБ

Семейство входных характеристик БТ в схеме с ОБ Іэ=f(Uэб) измерено для двух фиксированных значений напряжения коллектора-база Uкб = 1; 10В. Результаты исследований занесены в таблицу 1 и таблицу 2 соответственно.

Таблица 1 — Результаты измерения входной характеристики БТ (изменять значение $U_{\text{пит}1}$) Іэ = f(Uэб), при фиксированном значении Uпит2 = Uк6 = 1В

Ік, мА	0	0,1+0,05	$0,5\pm0,1$	1±0,1	2±0,1	3±0,1
Uэб, В	0	0,526	0,5656	0,5834	0,602	0,6123
Іэ, мА	0	0,11	0,506	1	2,045	3,048
Ік, мА	4 <u>±</u> 0,1	5±0,1	6 <u>±</u> 0,1	7±0,1	8±0,1	9 <u>±</u> 0,1
Uэб, В	0,6193	0,625	0,6298	0,6338	0,637	0,639
Іэ, мА	4,007	5,01	6,061	7,065	8,024	9,072

Таблица 2 — Результаты измерения входной характеристики БТ (изменять значение $U_{\text{пит}1}$) Іэ = f(Uэб), при фиксированном значении Uпит2 = Uк6 = 10В

Ік, мА	0	0,1+0,05	$0,5\pm0,1$	1 <u>±</u> 0,1	2±0,1	3±0,1
Ú эб, В	0	0,522	0,5618	0,5794	0,5974	0,6068
Іэ, мА	0	0,112	0,507	1,002	2,047	3,049
Ік, мА	4 <u>±</u> 0,1	5±0,1	6 <u>±</u> 0,1	$7\pm0,1$	8±0,1	9±0,1
Ú эб, В	0,6124	0,617	,06197	0,6219	0,6223	0,6235
Іэ, мА	4,008	5,058	6,065	7,07	8,074	9,08

2.2 Исследование выходных характеристик БТ в схеме с общей базой (OБ)

Семейство выходных характеристик $I_K=f(U_K \delta)$ измерено для двух фиксированных значений входного тока эмиттера $I_9=3$; 9 мА. Результаты исследований занесены в таблицу 3 и таблицу 4 соответственно.

Таблица 3 — Результаты измерения (изменять значение $U_{\text{пит}2}$) выходной характеристики БТ $I\kappa = f(U\kappa \delta)$, при фиксированном значении $I_3 = 3\text{MA}$

	15	IVAL A					
Uкб, B	10	9	8	7	6	5	4
Ік, мА	2,983	2,982	2,981	2,981	2,98	2,979	2,978
Uэб, В	0,5987	0,5996	0,6004	0,6017	0,6025	0,6042	0,605
Uкб, В	3	2	1	0,6	0,3	0,1	0,01
Ік, мА	2,98	2,977	2,976	2,976	2,975	2,975	2,975
Uэб, В	0,606	0,6068	0,6078	0,6087	0,6091	0,6097	0,6107

Таблица 4 — Результаты измерения (изменять значение $U_{\text{пит}2}$) выходной характеристики БТ $I\kappa = f(U\kappa\delta)$, при фиксированном значении $I\mathfrak{g} = 9mA$

Uкб , В	10	9	8	7	6	5	4
Ік, мА	8,951	8,949	8,947	8,945	8,944	8,942	8,942
Uэб, В	0,6217	0,6241	0,6265	0,6279	0,6305	0,6324	0,6343
Uкб, В	3	2	1	0,6	0,3	0,1	0,01
Ік, мА	8,939	8,938	8,937	8,937	8,936	8,935	8,937
Uэб, В	0,6364	0,6375	0,6388	0,6395	0,6397	0,6399	0,6398

2.3 Исследование генератора синусоидальных сигналов на основе биполярного транзистора в схеме с общей базой

Генераторы представляют собой устройства, преобразовывающие энергию питающего их источника постоянного напряжения в периодические колебания различной формы, определенные собственной схемой генератора. На рисунке 2 представлен генератор на биполярном транзисторе типа «емкостная трехточка», генерирующего синусоидальные сигналы. Рабочая частота данного генератора определяется колебательным контуром, образованным С1, С2 и L1.

Рисунок 2 – Генератор на основе биполярного транзистора

Для исследования параметров генератора собрана схема (рисунок 2). Напряжение питания генератора — 10В. Для оценки параметров выходного сигнала подключен канал A (1) осциллографа (Осц, рисунок 2).

Амплитуда выходного сигнала без нагрузки составила $U_{xx}=9\ B.$

Амплитуда выходного сигнала с подключенной на выходе нагрузкой 10кОм (параллельно осциллографу) составила $U_{\rm H}=4~{\rm B}.$

Частота выходного сигнала составила f = 1,637 к Γ ц.

Выходное сопротивление генератора рассчитали по формуле:

Rвых=10кОм*
$$\left(\frac{U_{xx}}{U_{yy}}-1\right) = 10$$
кОм* $\left(\frac{9}{4}-1\right) = 12,5$ кОм

2.4 Результаты экспериментальных исследований

По результатам измерений БТ в схеме с ОБ построены графики входных, выходных, передаточных характеристик БТ (рисунки 3, 4, 5, 6).

Рисунок 3 — Входные характеристики БТ в Рисунок 4 — Выходные характеристики БТ в схеме с ОБ схеме с ОБ

Рисунок 5 — Характеристики прямой передачи БТ в схеме с ОБ

Рисунок 6 – Характеристики обратной передачи БТ в схеме с ОБ

2.5 Расчет дифференциальных параметров БТ в схеме с ОБ

По построенным графикам характеристик БТ в схеме с ОБ рассчитаны его дифференциальные параметры в окрестностях рабочей точки $I_9 = 9$ мA, $U_K G = 10B$.

$$h_{11\text{B}} = \frac{\Delta U_{\text{BX}}}{\Delta I_{\text{BX}}} = \frac{\Delta U_{\text{96}}}{\Delta I_{\text{9}}} = \frac{0,6235 - 0,6223}{(9,08 - 8,074) * 10^{-3}} = \frac{0,0012}{1,006 * 10^{-3}} = 1,193 \text{ Om.}$$

$$h_{12b} = \frac{\Delta U_{BX}}{\Delta U_{BMX}} = \frac{\Delta U_{96}}{\Delta U_{K6}} = \frac{0,639 - 0,6235}{10 - 1} = \frac{0,008}{9} = 0,0009.$$

$$h_{21B} = \frac{\Delta I_{\text{BMX}}}{\Delta I_{\text{BX}}} = \frac{\Delta I_{\text{K}}}{\Delta I_{\text{9}}} = \frac{8,951 - 2,983}{9 - 3} = \frac{5,968}{6} = 0,995.$$

$$h_{22b} = \frac{\Delta I_{\text{Bbix}}}{\Delta U_{\text{Rbix}}} = \frac{\Delta I_{\text{K}}}{\Delta U_{\text{K}6}} = \frac{8,951 - 8,947}{10 - 8} = \frac{0,004}{2} = 0,002 \text{ Om}^{-1}$$

Порядок выполнения второй части работы:

- 1 Ознакомиться с методическим описанием лабораторной работы. (Теоретическое описание лабораторной работы изложено в методическом пособии [1], стр. 28-40).
- 2 Получить у преподавателя необходимый комплект для проведения лабораторной работы.
 - 3 Уточнить тип исследуемого транзистора у преподавателя.
- 4 Собрать схему, представленную на рисунке 2 данного отчета, для исследования параметров биполярного транзистора n-p-n типа.
- 5 Исследовать входные характеристики биполярного транзистора с общим эмиттером для двух вариантов выходного напряжения (Икэ). Полученные результаты записать в таблицы 5-6 данного отчета. (Качественный вид и описание входных характеристик представлены в методическом пособии [1], стр. 34).
- 6 Исследовать выходные характеристики биполярного транзистора с общим эмиттером для двух вариантов входного тока (Іб). Полученные результаты записать в таблицы 7 8 данного отчета. (Качественный вид и описание выходных характеристик представлены в методическом пособии [1], стр. 34).
- 7 Исследовать параметры усилителя на основе биполярного транзистора в схеме с общим эмиттером.
 - 8 Предоставить измеренные данные на проверку преподавателю.

Порядок оформления отчета:

- 1 По измеренным данным построить соответствующие графики.
- 2 По построенным графикам рассчитать h-параметры биполярного транзистора в схеме с общим эмиттером в окрестностях рабочей точки.
 - 3 Записать общие выводы по проделанной лабораторной работе.

[1] — Электронные приборы. Лабораторный практикум: учеб.-метод. пособие. В 2 частях. Часть 1: Активные компоненты полупроводниковой электроники / А. Я. Бельский — Минск: БГУИР, 2012

2.6 Исследование входных характеристик БТ в схеме с общим эмиттером (OЭ)

Для исследования характеристик БТ собрана цепь по схеме, представленной на рисунке 7.

Рисунок 7 – Схема исследования входных характеристик БТ в схеме с ОЭ

Семейство входных характеристик БТ в схеме с ОЭ Iб=f(Uбэ) измерено для двух фиксированных значений напряжения коллектора-эмиттер: Uкэ = 1; 10В. Результаты исследований занесены в таблицу 5 и таблицу 6 соответственно.

Таблица 5 — Результаты измерения входной характеристики БТ (изменять значение Uпит1) Iб=f(Uбэ), при фиксированном значении $Uκ = U \pi T = IB$

		_				
Ік, мА	0	0,1+0,05	$0,5\pm0,1$	1±0,1	2±0,1	3±0,1
Uбэ, В	0	0,5961	0,6251	0,6486	0,6681	0,6788
Іб, мА	0	0,004	0,005	0,006	0,010	0,015
Ік, мА	4±0,1	5±0,1	6 <u>±</u> 0,1	7±0,1	8±0,1	9 <u>±</u> 0,1
Uб э, В	0,6862	0,6937	0,6989	0,7043	0,7084	0,7113
Іб, мА	0,017	0,023	0,025	0,030	0,035	0,037

Таблица 6 — Результаты измерения входной характеристики БТ (изменять значение Uпит1) Iб=f(Uбэ), при фиксированном значении Uкэ = Unur2 = 10B

Ік, мА	0	0,1+0,05	$0,5\pm0,1$	1±0,1	2±0,1	3±0,1
Uбэ, В	0	0,5853	0,6212	0,6405	0,6575	0,6650
Іб, мА	0	0,002	0,004	0,006	0,009	$x_1 = 0.014$
Ік, мА	4±0,1	5±0,1	6±0,1	7±0,1	8±0,1	9±0,1
Uб э, В	0,6702	0,6749	0,6780	0,6812	0,6842	0,6872
Іб, мА	0,016	0,020	0,024	0,026	0,031	$x_2 = 0.034$

Значения в ячейках, обозначенных х1, х2, будут использованы в дальнейшем.

2.7 Исследование выходных характеристик БТ в схеме с общим эмиттером (ОЭ)

Семейство выходных характеристик $I_K=f(U_K)$ измерено для двух фиксированных значений входного тока базы $I_6=x_1$; x_2 мА. Результаты исследований занесены в таблицу 7 и таблицу 8 соответственно.

Таблица 7 — Результаты измерения выходной характеристики БТ (изменять значение $U_{\text{пит2}}$) $I\kappa = f(U\kappa)$, при фиксированном значении $I\mathbf{6} = \mathbf{x_1}$ (из таблины 9) = 0.014 мА

		(, ,,								
Uкэ , В	0,01	0,1	0,5	1	2	3	4	5	6	7	8	9	10
Ік, мА	1												
Ибэ , В	0,5628	0,6426	0,6825	0,6824	0,6818	0,6813	0,6803	0,6794	0,6785	0,6776	0,6766	0,6756	0,6741

Таблица 8 — Результаты измерения выходной характеристики БТ (изменять значение $U_{\text{пит2}}$) $I\kappa = f(U\kappa 3)$, при фиксированном значении $I\mathbf{6} = \mathbf{x_2}$ (из таблицы 9) = 0.034 мА

		(, ,,								
Uкэ , В	0,01	0,1	0,5	1	2	3	4	5	6	7	8	9	10
Ік, мА													
Ибэ , В	0,5887	0,6635	0,7033	0,7080	0,7003	0,6985	0,6965	0,6944	0,6922	0,6904	0,6890	0,6879	0,6876

2.8 Исследование усилителя на основе биполярного транзистора в схеме с общим эмиттером

Усилители — это устройства, как правило, четырехполюсники, имеющие входные и выходные клеммы, и предназначенные для увеличения амплитуды напряжения (либо тока) входного сигнала. Выходной сигнал усилителя формируется активным элементом (транзистором) за счет энергии питающего источника постоянного напряжения и оказывается пропорционален входному. На рисунке 8 представлен усилитель сигналов на биполярном транзисторе с коллекторной стабилизацией. Транзистор включен по схеме с общим эмиттером, что позволяет усилить входной сигнал как по напряжению, так и по току.

Рисунок 8 – Усилитель с коллекторной стабилизацией

Для исследования усилителя собрана схема (рисунок 8). Параметры входного сигнала: размах сигнала Ubx = 30 mVpp, частота $f = 1 \text{к} \Gamma \text{ц}$, форма сигнала – синусоидальная. Напряжение питания усилителя – 10B. Для оценки параметров выходного сигнала усилителя подключен канал A (1) осциллографа (Осц, рисунок 8).

Размах выходного сигнала составил Uвых = 0,292 В.

Коэффициент усиления по напряжению Ku = Uвых/Uвх = 9,73

Увеличивая размах входного сигнала, определили максимальный размах выходонго сигнала без искажения его формы, он составил Uвых $_{\rm max}$ = 0,292 В. Размах входного сигнала при этом составил Uвх $_{\rm max}$ = 730 мВ.

2.9 Результаты экспериментальных исследований

По результатам измерений БТ в схеме с ОЭ построены графики входных, выходных, передаточных характеристик БТ (рисунки 9, 10, 11, 12).

Рисунок 9 – Входные характеристики БТ в Рисунок 10 – Выходные характеристики БТ в схеме с ОЭ схеме с ОЭ

Рисунок 11 – Характеристики прямой передачи БТ в схеме с ОЭ

Рисунок 12 – Характеристики обратной передачи БТ в схеме с ОЭ

2.10 Расчет дифференциальных параметров БТ в схеме с ОЭ

По построенным графикам характеристик БТ в схеме с ОЭ рассчитаны его дифференциальные параметры в окрестности рабочей точки Іб = x_2 (из таблицы 6) = 0,034 мA, Uкэ = 10B.

$$h_{119} = \frac{\Delta U_{ex}}{\Delta I_{ex}} = \frac{\Delta U_{69}}{\Delta I_{6}} = \frac{0,7084 - 0,6788}{10^{-3}(0,031 - 0,014)} = \frac{0,0296}{0,017 \cdot 10^{-3}} = 1,74 \cdot 10^{3} \text{ Om}$$

$$h_{129} = \frac{\Delta U_{ex}}{\Delta U_{expx}} = \frac{\Delta U_{69}}{\Delta U_{K3}} = \frac{0,708 - 0,6876}{10 - 1} = \frac{0,0204}{9} = 2,267 \cdot 10^{-3}$$

$$h_{219} = \frac{\Delta I_{BblX}}{\Delta I_{BX}} = \frac{\Delta I_{\kappa}}{\Delta I_{\tilde{Q}}} = \frac{8,076 - 3,78}{0,034 - 0,014} = \frac{4,296}{0,020} = 214,8$$

$$h_{229} = \frac{\Delta I_{\text{BblX}}}{\Delta U_{\text{BblX}}} = \frac{\Delta I_{\text{K}}}{\Delta U_{\text{K9}}} = \frac{(8,076 - 7,433) \cdot 10^{-3}}{10 - 1} = \frac{0,643 \cdot 10^{-3}}{9} = 0,07 \cdot 10^{-3} \text{ Om}^{-1}$$

3 Выводы

В данной лабораторной работе мы изучили режим работы, принцип действия, схемы включения и классификацию биполярных транзисторов (БТ). Экспериментально исследовали статические вольт-амперные характеристики (ВАХ) транзисторов и рассчитали дифференциальные параметры в заданной рабочей точке.