Linear maps and matrices

Notes by Markus Renoldner Based on the lecture Lineare Algebra I and II from Dr. Menny Akka Ginosar at ETH Zürich

March 29, 2023

Contents

1	Kernel and image
	Matrices
	2.1 Rank
	2.2 Inverse
	2.3 Linear systems of equations
	Linear maps
	3.1 Change of basis

- 1 Kernel and image
- 2 Matrices
- 2.1 Rank
- 2.2 Inverse
- 2.3 Linear systems of equations

3 Linear maps

3.1 Change of basis

Let V be a vector space over K (usually $K = \mathbb{R}$ or $K = \mathbb{C}$) with a basis $B = \{\boldsymbol{b}_1, ... \boldsymbol{b}_n\}$ then every $\boldsymbol{v} \in V$ can be expressed as a linear combination of coefficients $\lambda_i \in K$ and basis vectors \boldsymbol{b}_i :

$$\boldsymbol{v} = \sum_{i=1}^{n} \lambda_i \cdot \boldsymbol{v}_i \tag{1}$$

Example 1 (Vector expressed in a basis). Let $\boldsymbol{x} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \in \mathbb{R}^2$

$$B_1 = \{ \boldsymbol{e}_1, \boldsymbol{e}_2 \}$$
 (the canonical basis) and $B_2 = \{ \boldsymbol{b}_1, \boldsymbol{b}_2 \}$ with $\boldsymbol{b}_1 := \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\boldsymbol{b}_2 := \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Then:

1. Of course
$$\mathbf{x} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$