Beginn der Klausur: 9:30 Uhr

Prof. Dr. E. Kuwert

27. Februar 2013

Ende der Klausur: 12:00 Uhr

Name, Vorname: Nummer der Übungsgruppe: Studiengang:	Matrikelnummer:

Aufgabe	1	2	3	4	5	6	7	8	9	10	11	Summe
5												
Punkte												

Bitte beachten Sie folgende Hinweise:

- Kennzeichen Sie alle Zettel mit Namen und Nummer der Aufgabe.
- Geben Sie alle Zettel, auch die mit Nebenrechnungen, gemeinsam mit dem vollständig ausgefüllten Deckblatt ab.
- zugelassene Hilfsmittel: ein Notizblatt (DIN A4), Stifte
- Ein Täuschungsversuch kann zum sofortigen Ausschluss und Nichtbestehen der Klausur führen.
- Resultate aus der Vorlesung dürfen Sie als bekannt voraussetzen.
- Es sind insgesamt 11 Aufgaben.
- Insgesamt sind 34 Punkte zu vergeben. Zum Bestehen sind 11 Punkte notwendig.

Aufgabe 1 (5 = 1 + 1 + 1 + 2 Punkte)

Berechnen Sie die Ableitung der folgenden Funktionen.

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \frac{\cos x}{x^2 + 1}$.

(b)
$$g:(0,\infty)\to\mathbb{R}, g(x)=x\ln(x)-x.$$

(c)
$$h : \mathbb{R} \to \mathbb{R}, \ h(x) = \exp(x^3 + 1).$$

(d)
$$\varphi: (-1,1) \to \mathbb{R}, \ \varphi(x)$$
 Umkehrfunktion von $\tanh y = \frac{\sinh y}{\cosh y}$.

Aufgabe 2 (3 Punkte)

Bestimmen Sie alle Lösungen $z \in \mathbb{C}$ der Gleichung $z^4 = -1$.

Aufgabe 3 (4 = 2 + 2 Punkte)

Skizzieren Sie folgenden Funktionen mit Angabe von mindestens 3 Funktionswerten:

a)
$$f(x) = e^{-x^2/2} \qquad (x \in \mathbb{R})$$

b)
$$f(x) = \sin(3x + \frac{\pi}{2}), \quad x \in [0, \frac{4\pi}{3}].$$

Aufgabe 4 (3 = 1 + 1 + 1 Punkte)

Ist die Folge a_n beschränkt? Ist die Folge a_n konvergent? Geben Sie jeweils eine kurze Begründung .

(i)
$$a_n = \frac{n^2 + 3n - 7}{3n + 5}$$
.

(ii)
$$a_n = \sin\left(\frac{n\pi}{2}\right)$$

(iii)
$$a_n = \exp(n - n^2)$$

Aufgabe 5 (3 = 1 + 1 + 1 Punkte)

Betrachten Sie für $k \in \mathbb{Z}$ die Integrale

$$a_k = \int_{-\pi}^{\pi} \cos^2(kx) \, dx$$
 und $b_k = \int_{-\pi}^{\pi} \sin^2(kx) \, dx$.

- (a) Berechnen Sie a_0 und b_0 .
- (b) Zeigen Sie $a_k = b_k$ für $k \in \mathbb{Z} \setminus \{0\}$ (z.B. mit partieller Integration).
- (c) Berechnen Sie a_k und b_k für $k \in \mathbb{Z} \setminus \{0\}$.

Aufgabe 6 (2 Punkte)

Beweisen Sie für alle $n \in \mathbb{N}$ durch vollständige Induktion:

$$\sum_{k=1}^{n} (4k - 3) = 2n^2 - n.$$

Aufgabe 7 (2 Punkte)

Entscheiden Sie, ob die folgenden Vektoren im \mathbb{R}^3 linear unabhängig sind (mit Begründung):

$$\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 7 \\ 2 \\ -6 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}.$$

Aufgabe 8 (3 Punkte)

Bestimmen Sie unter allen Rechtecken mit Flächeninhalt A=1 das mit kleinstem Umfang.

Aufgabe 9 (3 = 1 + 1 + 1 Punkte)

Entscheiden Sie (mit Begründung), ob die folgenden Reihen konvergieren.

(a)
$$\sum_{n=1}^{\infty} \left(\frac{3}{4} + \frac{1}{n}\right)^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+1}$$

(c)
$$\sum_{n=1}^{\infty} n^2 3^{-n}$$
.

Aufgabe 10 (2 Punkte)

Bestimmen Sie die Taylorreihe im Entwicklungspunkt $x_0=0$ sowie den Konvergenzradius für die Funktion

$$f(x) = \frac{x^2}{1 - x^4}.$$

Aufgabe 11 (4 = 2 + 2 Punkte)

Berechnen Sie die folgenden Integrale.

(a)
$$\int_4^6 \frac{dx}{(x-1)(x-3)}$$
 (Hinweis: Partialbruchzerlegung)

(b)
$$\int_{-1}^{1} x\sqrt{x+1} dx$$
 (Hinweis: Substitution $x=t^2-1$).

ENDE DER KLAUSUR: Viel Glück und Erfolg!