Homework 7

Instructions: In problems the problems below, references such as III.2.7 refer to Problem 7 in Section 2 of Chapter III in Conway's book.

If you use results from books including Conway's, please be explicit about what results you are using.

Homework 7 is due at Midnight Wednesday, May 2.

Do the following problems:

1. Let F be the map that takes nonzero vectors in \mathbb{C}^2 to vectors in \mathbb{R}^3 by the following formula:

$$F(z_1,z_2) := \left(\frac{z_1\bar{z}_2 + \bar{z}_1z_2}{z_1\bar{z}_1 + \bar{z}_2z_2}, \frac{z_1\bar{z}_2 - \bar{z}_1z_2}{i(z_1\bar{z}_1 + \bar{z}_2z_2)}, \frac{z_1\bar{z}_1 - \bar{z}_2z_2}{z_1\bar{z}_1 + \bar{z}_2z_2}\right).$$

Show that:

- (a) F defines a bijection between $\mathbb{P}^1(\mathbb{C})$ and the unit sphere in \mathbb{R}^3 , and
- (b) if S denotes stereographic projection from $\mathbb{C}_{\infty} \{(0,0,1)\}$ to \mathbb{C} , then if $[z_1:z_2] \neq [1:0]$,

$$S(F([z_1:z_2])) = z_1/z_2.$$

Proof. (a) Let $z_1 = r_1 e^{it_1}, z_2 = r_2 e^{it_2}$, then F maps $(r_1 e^{it_1}, r_2 e^{it_2})$ to

$$\left(2\frac{r_1r_2}{r_1^2+r_2^2}\cos(t_1-t_2),\ 2\frac{r_1r_2}{r_1^2+r_2^2}\sin(t_1-t_2),\ \frac{r_1^2-r_2^2}{r_1^2+r_2^2}\right)$$

Hence if F maps two vectors $(r_1e^{it_1}, r_2e^{it_2})$ and $(r'_1e^{it'_1}, r'_2e^{it'_2})$ to a same point in \mathbb{R}^3 , then $\tan(t_1 - t_2) = \tan(t'_1 - t'_2)$, hence $t_1 - t_2 = t'_1 - t'_2$. Besides, if we denote $p_1 = \frac{r_1}{r_2}, p'_1 = \frac{r'_1}{r'_2}$, then

$$\frac{1 - p_1^2}{p_1} = \frac{1 - p_1'^2}{p_1'},$$

and

$$\frac{1+p_1^2}{p_1} = \frac{1+p_1^{\prime 2}}{p_1^{\prime}},$$

when we add this two equations we get $p_1 = p_2$. Hence by considering the first term we know $r_1 = r_2$. Hence F is an injection, and since ||F(z)|| = 1 we know F is an injection from $\mathbb{P}^1(\mathbb{C})$ to unit sphere.

On the other hand, for each $(\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \theta)$ in unit sphere, we can find $r_1, r_2, t_1, t_2, \text{ s.t.}$

$$\frac{r_1 r_2}{r_1^2 + r_2^2} = \frac{1}{2} \sin \varphi, \ t_1 - t_2 = \theta.$$

Hence F is a bijection.

- (b)
- 2. III.3.8

Proof. First, if we choose a, b, c, d to be real, then for each $x \in \mathbb{R}$, we can pick

$$z = \frac{dx - b}{-cx + a} \in \mathbb{R}_{\infty}$$

then Tz=x. For $x=\infty$, if c=0, then by $ad-bc\neq 0$ we know $d\neq 0$, hence we can pick $z=\infty$ and Tz=x. If $c\neq 0$, let $z=\frac{a}{c}$ then Tz=x.

On the other hand, if $T(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$, then there are $x_1, x_2, x_3 \in \mathbb{R}_{\infty}$, s.t. $T(x_1) = 1, T(x_2) = 0, T(x_3) = \infty$. Then by Proposition 3.8,

$$\frac{z-x_2}{z-x_3} / \frac{x_1-x_2}{x_1-x_3} = T(z) = \frac{(x_1-x_3)z - (x_1-x_3)x_2}{(x_1-x_2)z - (x_1-x_2)x_3}$$

which means a, b, c, d are all real.

3. III.3.11

Proof. Let T_1 be the Mobius transformation which maps (z_1, z_2, z_3) to $(1, 0, \infty)$, and T_2 maps (w_1, w_2, w_3) to $(1, 0, \infty)$. Let $T = T_2 T_1^{-1}$, then T maps \mathbb{R}_{∞} onto \mathbb{R}_{∞} , and hence by Exercise 8,

$$T(z) = \frac{az+b}{cz+d}$$

where $a, b, c, d \in \mathbb{R}$. Hence

$$T(z)^* = T(z).$$

Then for z, z^* satisfying $T_1(z^*) = T_1(z)^*$, $T_2(z^*) = T_2(T_1^{-1}(T_1(z^*))) = T(T_1(z^*)) = T(T_1(z)^*) = T_2(z)^*$.

4. III.3.13

Sol. We may consider the function

$$f(z) = \frac{z^2 + 1}{2z}$$

using the same process in Page 45.

First it is not a bijection, thus is not a conformal map.

5. III.3.14

Sol. First, consider $T = \frac{1}{z-a}$, it maps G onto a region between two parallel lines, denoted by H. Then we can use a rotation and translation f to map H onto the set $I = \{z : 0 < Im(z) < \frac{\pi}{2}\}$. Then $\exp(I) = \{z : Re(z) > 0\} = J$. At this stage we can use another Mobius transformation $g(z) = \frac{z-1}{z+1}$ to map J to open unit disk. Hence

$$\varphi(z) = g \circ \exp \circ f \circ T$$

is what we need, and it is a conformal map.

6. III.3.15

Sol. In fact, as we have learned in Chapter 6.2, for any |a| < 1,

$$\varphi_a(z) = \frac{z - a}{1 - \bar{a}z}$$

is what we want.

7. III.3.16

Sol. First, $f(z)=\frac{z+1}{z-1}$ maps G to $H=\mathbb{C}-(\{z:z\leq 0\}\cup\{z=1\})$. Then $g(z)=z^{1/2}$ maps H to $I=\{z:Re(z)>0\}-\{z=1\}$. Then $h(z)=\frac{1-z}{1+z}$ maps I to $J=D-\{z=0\}$ where D is the open unit disk. By Problem 3.3.15 we know $\varphi(z)=\exp(\frac{z+1}{z-1})$ maps D to J conformally, hence φ^{-1} maps J to D conformally. Hence,

$$\phi = \varphi^{-1} \circ h \circ g \circ f$$

is what we want, and since the four functions are all analytic and one to one in their domains, ϕ is an analytic function and is also 1-1.

8. III.3.17

Proof. In fact this is trivial by Open Mapping Theorem, since a subset of a circle cannot be open.