Fiche de synthèse sur la dérivation

Fonction dérivable - nombre dérivé

f est une fonction définie sur un intervalle I et $a \in I$.

- ➤ f est <u>dérivable en a</u> si $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = \ell$ où ℓ est un nombre réel.
- ➤ $f'(a) = \ell$ est le <u>nombre dérivé</u> de la fonction f
- ightharpoonup f est dérivable en tout nombre réel a de I.
- ► Lorsque f est dérivable sur I, la fonction dérivée de f est la fonction $f': x \mapsto f'(x)$ définie sur I.

Interprétation graphique

Si la fonction f est dérivable en a, la droite passant par le point A(a; f(a)) et de pente f'(a) est la tangente à la courbe \mathscr{C}_f au point A.

Une équation de cette tangente est :

$$y = f(a) + f'(a) \times (x - a).$$

Dérivées usuelles

Fonction	définie sur	par	dérivable sur	Fonction dérivée
constante	R	$f(x) = k \ (k \in \mathbf{R})$	R	f'(x) = 0
affine	R	$f(x) = ax + b$ $(a \in \mathbf{R}, b \in \mathbf{R})$	R	f'(x) = a
carré	R	$f(x) = x^2$	R	f'(x) = 2x
puissance	R (si $n > 0$) R * (si $n < 0$)	$f(x) = x^n \ (n \in \mathbf{Z}^*)$	R (si $n > 0$) R * (si $n < 0$)	$f'(x) = nx^{n-1}$
inverse	R*	$f(x) = \frac{1}{x}$	R*	$f'(x) = -\frac{1}{x^2}$
racine carrée	[0;+∞[$f(x) = \sqrt{x}$]0;+∞[$f'(x) = \frac{1}{2\sqrt{x}}$

Opérations sur les dérivées

Les fonctions u et v sont dérivables sur un intervalle I.

Fonction du type	Fonction dérivée	Ensemble de dérivabilité
Somme : $u + v$	(u+v)'=u'+v'	I
Multiplication par un nombre réel : ku $(k \in \mathbf{R})$	(ku)' = ku'	I
Produit de deux fonctions : uv	(uv)' = u'v + uv'	I
Inverse: $\frac{1}{v}$	$\left(\frac{1}{\nu}\right)' = \frac{-\nu'}{\nu^2}$	tous les réels $x \in I$ tels que $v(x) \neq 0$
Quotient de deux fonctions : $\frac{u}{v}$	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$	tous les réels $x \in I$ tels que $v(x) \neq 0$

Composée

Soit g une fonction dérivable sur un intervalle I. Soient a et b deux nombres réels.

L'ensemble J des réels x tels que $ax + b \in I$ est un intervalle sur lequel on définit la fonction f par f(x) = g(ax + b).

La fonction f est dérivable sur J et, pour tout $x \in J$, $f'(x) = a \times g'(ax + b)$.

Exercices

E1

Dans chaque cas, déterminer l'ensemble de dérivabilité de la fonction, puis calculer sa dérivée.

a)
$$f: x \mapsto f(x) = 5x^4$$

c)
$$h: x \mapsto h(x) = 4x^3 - \frac{x^2}{3} - 7x + 2$$

b)
$$g: x \mapsto g(x) = -5x^2 + 7x + 2$$

d)
$$l: x \mapsto l(x) = \frac{x^3 + x^2 + x + 1}{4}$$

E2

Dans chaque cas, déterminer l'ensemble de dérivabilité de la fonction, puis calculer sa dérivée.

a)
$$f: x \mapsto f(x) = 6x^5$$

c)
$$h: x \mapsto h(x) = -3x^2 + 8x - \frac{16}{3}$$

b)
$$g: x \mapsto g(x) = -8x^2 + 4x - 21$$

d)
$$l: x \mapsto l(x) = \frac{-5x^2 - x + 7}{5}$$

Démonstration rédigée de la propriété : dérivée d'un produit

1) On commence par calculer le taux de variation de la fonction $u \times v$ en a:

Pour tout $a \in I$ et pour tout $h \in \mathbb{R}^*$ tel que $a + h \in I$, le taux de variation de la fonction $u \times v$ entre a et a + h vaut :

$$t(h) = \frac{u(a+h) \times v(a+h) - u(a) \times v(a)}{h}$$

On cherche à faire apparaître le taux de variation de u en a et celui de v en a. Pour cela, on retranche et on ajoute $u(a) \times v(a+h)$ au numérateur (ce qui revient à ajouter 0) :

$$t(h) = \frac{u(a+h) \times v(a+h) - u(a) \times v(a+h) + u(a) \times v(a+h) - u(a) \times v(a)}{h}$$

$$t(h) = \frac{(u(a+h) - u(a)) \times v(a+h) + u(a) \times (v(a+h) - v(a))}{h}$$

$$t(h) = \frac{u(a+h) - u(a)}{h} \times v(a+h) + u(a) \times \frac{v(a+h) - v(a)}{h}$$

2) On étudie la limite du taux de variation lorsque h tend vers 0. Pour cela, on étudie la limite de chaque facteur et on utilise l'hypothèse « u et v sont dérivables sur I ».

Les fonctions u et v sont donc dérivables en a :

$$\lim_{h \to 0} \frac{u(a+h) - u(a)}{h} = u'(a) \quad \text{et} \quad \lim_{h \to 0} \frac{v(a+h) - v(a)}{h} = v'(a)$$

Le nombre u(a) ne dépend pas de h donc $\lim_{h\to 0}u(a)=u(a)$ et on admet que $\lim_{h\to 0}v(a+h)=v(a)$. En reprenant l'expression de t(h), on obtient :

$$\lim_{h \to 0} t(h) = u'(a) \times v(a) + u(a) \times v'(a)$$

3) On conclut sur la dérivabilité et sur l'expression de la dérivée.

Si u et v sont deux fonctions dérivables sur un intervalle I, alors la fonction produit $x \mapsto u(x) \times v(x)$, notée $u \times v$, est dérivable sur I et, pour tout nombre réel x de I,

$$(u \times v)'(x) = u'(x) \times v(x) + u(x) \times v'(x).$$

Exercice : Dans chaque cas, déterminer l'ensemble de dérivabilité de la fonction, puis calculer sa dérivée.

a)
$$f: x \mapsto f(x) = (5x+3)(-2x+1)$$

c)
$$h: x \mapsto h(x) = (3x^2 - 5)(2x - 4)$$

b)
$$g: x \mapsto g(x) = -4x\sqrt{x}$$

d)
$$l: x \mapsto l(x) = (5x - 7) \times \frac{1}{x}$$