Liquid Welfare Guarantees for Learning in Sequential Budgeted Auctions

Giannis Fikioris and Éva Tardos

Cornell University

Introduction

Autobidders

Algorithms for online auctions
90% of ad dollars transacted using
autobidders, over \$123 billion in US,
2022

Fast-changing environment, hard budget limits

Player Assumptions

T rounds/items

n players

Player *i*'s **value** in round $t: v_{it} \in [0,1]$

Additive Valuations: If player i wins rounds S_i , total value is $V_i = \sum_{t \in S_i} v_{it}$

Budgeted quasi-linear utilities:

Budget B_i and payment P_i then utility

$$U_i = \begin{cases} V_i - P_i, & \text{if } P_i \leq B_i \\ -\infty, & \text{otherwise} \end{cases}$$

Liquid Welfare

Generalization of social welfare for budget-limited players

Player i has liquid welfare

$$LW_i = \min\{V_i, B_i\}$$

Total liquid welfare is $LW = \sum_i LW_i$ and optimal is LW^* .

Shading Multipliers to bid

Control spending when budget constrained Shade value to bid λv_{it} for some $\lambda \in [0,1]$

Balseiro and Gur 2017: iteratively adapt shading multiplier for individual utility guarantees in second-price, e.g. no-regret

Gaitonde et al. 2023: above algorithm by all players implies $LW \ge \frac{1}{2}LW^*$ (for iid player values)

Behavioral Assumption

Player i has **competitive ratio** $\gamma \geq 1$ and **regret** Reg if competitive with best multiplier in hindsight:

$$U_i \ge \frac{\sup_{\lambda \in [0,1]} \widehat{U_i}(\lambda) - \text{Reg}}{\gamma}$$

 $\widehat{U}_i(\lambda)$: player i's utility if she used multiplier λ every round, i.e. bid λv_{it} until out of budget

(Lack of) Guarantees in Second-price Auctions

Even if

- n = 2
- $\gamma = 1$
- Reg = 0
- Constant player values

it can hold $\frac{LW}{LW^*} = 0$

Welfare Gurantees for First-price

First-price Auctions

If every player has competitive ratio at most γ and regret Reg, then

$$LW \ge \frac{LW^* - O(n) \text{ Reg}}{\gamma + \frac{1}{2} + O\left(\frac{1}{\gamma}\right)}$$

Denominator becomes 2.41 when $\gamma=1$

- Player values can be adversarial
- Holds for any algorithms with the behavioral assumption

More general result than previous work

First-price Upper Bounds

For any $\gamma \geq 1$ if

- n = 2
- Reg = 0
- Constant player values

it can hold that $LW \le \frac{1}{\max(\gamma,2)}LW^*$

Submodular valuations

If players have submodular valuations across rounds then

$$LW \ge \frac{LW^* - O(n) \operatorname{Re}_{\gamma}}{\gamma + 1 + O\left(\frac{1}{\gamma}\right)}$$

Denominator becomes 2.62 when $\gamma = 1$

Algorithmic Results

Player i with additive valuation can guarantee with high probability

$$U_i \ge \frac{\sup_{\lambda \in [0,1]} \widehat{U_i}(\lambda) - \widetilde{O}(T^{5/3}/B_i)}{T/B_i}$$

for adversarial player values and bids

Meaningful guarantee if $B_i = T^{\frac{2}{3} + \Omega(1)}$

Conclusion

Weak individual player guarantees imply aggregate welfare in first-price, even for adversarial player values

In high contrast to second-price where no such guarantees hold

Contact Info

gfikioris@cs.cornell.edu

