Hands-on Activity 6.1 Introduction to Data Analysis and Tools

CPE311 Computational Thinking with Python

Name: Docta, Joshua Stephen Section: CPE22S3 Performed on: 05 / 04 / 2025 Submitted on: 05 / 04 / 2025 Submitted to: Engr. Roman M. Richard

6.3 Supplementary Activities:

Exercise 1

```
In [3]: import random
        random.seed(0)
        salaries = [round(random.random()*1000000, -3) for _ in range(100)]
        sal_length = len(salaries)
        salaries.sort()
        #prints mean value of salaries
        MEAN = sum(salaries)/sal_length
        print('Mean: \n\t', MEAN)
        #prints median value of salaries
        if sal_length % 2 == 0:
            MEDIAN = (salaries[sal_length//2] + salaries[sal_length//2-1])/2
        else:
            MEDIAN = salaries[sal_length//2]
        print('Median: \n\t',MEDIAN)
        #print mode value in salaries
        num = list(set(salaries))
        Num = {x:salaries.count(x) for x in num}
        counts = [x for x in Num.values()]
        num = [x for x in Num.keys()]
        MODE = [x for x in num if Num[x] == max(counts)]
        print('Mode:\n\t', MODE[0])
        #Print the sample variance
        VARIANCE = sum((x-MEAN)**2/(sal_length-1) for x in salaries)
        print('Sample Variance:\n\t',VARIANCE)
        #Print the standard De
        STANDARD_DEV = VARIANCE**(1/2)
        print('Sample standard deviation:\n\t',STANDARD_DEV)
```

```
Mean:
                585690.0
       Median:
                589000.0
       Mode:
                477000.0
       Sample Variance:
                70664054444.44444
       Sample standard deviation:
                265827.11382484
In [4]: from statistics import mean
        from statistics import median
        from statistics import mode
        from statistics import variance
        from statistics import stdev
        print('Mean: \n\t',mean(salaries))
        print('Median: \n\t',median(salaries))
        print('Mode:\n\t',mode(salaries))
        print('Sample Variance:\n\t',variance(salaries))
        print('Sample standard deviation:\n\t',stdev(salaries))
       Mean:
                585690.0
       Median:
                589000.0
       Mode:
                477000.0
       Sample Variance:
                70664054444.44444
       Sample standard deviation:
                265827.11382484
```

Exercise 2

```
In [6]: # Prints the range of salaries
RANGE = max(salaries) - min(salaries)
print('Range: \n\t', RANGE)

# Prints Coefficient of variation and Interquartile range
lower = salaries[(sal_length/4-1)]
higher = salaries[((sal_length*3)//4-1)]
IQR = higher-lower # Interquartile range
CV = (STANDARD_DEV/MEAN)*100 # Coefficient of variation
print('Coefficient of variation:\n\t', CV)
print('Interquartile range:\n\t',IQR)

#Prints Quartile coefficient of dispersion
QCD = (higher-lower)/(higher+lower)
print('Quartile coefficient of dispersion:\n\t',QCD)
```

```
Quartile coefficient of dispersion:
                 0.34212695795548226
         Exercise 3
In [8]: import pandas as pd
         diabetes = pd.read_csv('diabetes.csv')
In [9]: # 1. Identify the column names
         diabetes.columns
Out[9]: Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
                 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
                dtype='object')
In [10]: #2. Identify the data types of the data
         diabetes.dtypes
Out[10]: Pregnancies
                                        int64
         Glucose
                                        int64
         BloodPressure
                                        int64
         SkinThickness
                                        int64
         Insulin
                                        int64
                                      float64
         DiabetesPedigreeFunction
                                     float64
         Age
                                        int64
         Outcome
                                        int64
         dtype: object
In [11]: #3. Display the total number of records
         diabetes.count()
Out[11]: Pregnancies
                                      768
         Glucose
                                      768
         BloodPressure
                                      768
         SkinThickness
                                      768
         Insulin
                                      768
         BMI
                                      768
         DiabetesPedigreeFunction
                                      768
         Age
                                      768
                                      768
         Outcome
         dtype: int64
In [12]: #4. Display the first 20 records
         diabetes.head(20)
```

Range:

995000.0 Coefficient of variation:

Interquartile range: 415000.0

45.38699889443903

Out[12]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFur
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	5	5	116	74	0	0	25.6	
	6	3	78	50	32	88	31.0	
	7	10	115	0	0	0	35.3	
	8	2	197	70	45	543	30.5	
	9	8	125	96	0	0	0.0	
	10	4	110	92	0	0	37.6	
	11	10	168	74	0	0	38.0	
	12	10	139	80	0	0	27.1	
	13	1	189	60	23	846	30.1	
	14	5	166	72	19	175	25.8	
	15	7	100	0	0	0	30.0	
	16	0	118	84	47	230	45.8	
	17	7	107	74	0	0	29.6	
	18	1	103	30	38	83	43.3	
	19	1	115	70	30	96	34.6	
	4							•

In [13]: #5. Display the last 20 records
diabetes.tail(20)

Out[13]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabetes Pedigree Fu
	748	3	187	70	22	200	36.4	
	749	6	162	62	0	0	24.3	
	750	4	136	70	0	0	31.2	
	751	1	121	78	39	74	39.0	
	752	3	108	62	24	0	26.0	
	753	0	181	88	44	510	43.3	
	754	8	154	78	32	0	32.4	
	755	1	128	88	39	110	36.5	
	756	7	137	90	41	0	32.0	
	757	0	123	72	0	0	36.3	
	758	1	106	76	0	0	37.5	
	759	6	190	92	0	0	35.5	
	760	2	88	58	26	16	28.4	
	761	9	170	74	31	0	44.0	
	762	9	89	62	0	0	22.5	
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	
	4 (•

In [14]: #6. Change the Outcome column to Diagnosis
diabetes.rename(columns = {'Outcome':'Diagnosis'}, inplace = True)

In [15]: #7. Create a new column Classification that display "Diabetes" if the value of outc
new_col = ['Diabetes' if x==1 else "No Diabetes" for x in diabetes.Diagnosis]
diabetes['Classification'] = new_col
diabetes

Out[15]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabetes Pedigree Fu
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	•••		•••			•••		
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

768 rows × 10 columns

In [16]: #8. Create a new dataframe "withDiabetes" that gathers data with diabetes
withDiabetes = diabetes[diabetes['Diagnosis'] == 1]
withDiabetes

Out[16]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabetes Pedigree Fu
	0	6	148	72	35	0	33.6	
	2	8	183	64	0	0	23.3	
	4	0	137	40	35	168	43.1	
	6	3	78	50	32	88	31.0	
	8	2	197	70	45	543	30.5	
	•••							
	755	1	128	88	39	110	36.5	
	757	0	123	72	0	0	36.3	
	759	6	190	92	0	0	35.5	
	761	9	170	74	31	0	44.0	
	766	1	126	60	0	0	30.1	

268 rows × 10 columns

In [17]: #9. Create a new dataframe "noDiabetes" thats gathers data with no diabetes
noDiabetes = diabetes[diabetes['Diagnosis'] == 0]
noDiabetes

Out[17]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeF ι
	1	1	85	66	29	0	26.6	
	3	1	89	66	23	94	28.1	
	5	5	116	74	0	0	25.6	
	7	10	115	0	0	0	35.3	
	10	4	110	92	0	0	37.6	
	•••							
	762	9	89	62	0	0	22.5	
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	767	1	93	70	31	0	30.4	

500 rows × 10 columns

Out[19]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFu
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	•••							
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	
	768 rd	ows × 10 colur	nns					
	4 (•
In [20]:		15. Use nump rt numpy as	_	the				
In [21]:	aver	age_age = np	.mean(dia	e average age a abetes.Age) a(diabetes.Gluc	_	ue.		

In average_glucose = np.mean(diabetes.Glucose) print('Average Age:\n\t', average_age) print('Average Glucose:\n\t', average_glucose)

Average Age:

33.240885416666664

Average Glucose:

120.89453125

```
In [22]: #13. Use numpy to get the median age and glucose value.
         median_age = np.median(diabetes.Age)
         median_glucose = np.median(diabetes.Glucose)
         print('Median Age:\n\t', median_age)
         print('Median Glucose:\n\t', median_glucose)
```

Median Age:

29.0

Median Glucose:

117.0

```
In [23]: #14. Use numpy to get the middle values of glucose and age.
         Age = np.sort(diabetes.Age)
         Glucose = np.sort(diabetes.Glucose)
         Size = len(Age)
         middle_age = Age[Size//2-1]
```

Out[24]: 15.941828626496978

6.4 Conclusion

In conclusion, from this hands on activity I was able to learn different approches on how to handle statistical data. On the first excrise I was able to recall and practice once again various python functions reach the objectives and instructions. And through this same exercise I have expanded my knowledge learned something new, such as the python statistics which greatly helps in lessening the time and effort when coding. On exercise 2 I might still be having doubt with my answer as i wasn't able to check it using python statistics, but I think what I've written/typed in my code is right following the various statistical formulas I've reread and restudy once again. And I think exercise 3 was much easier compared to the first two because we've just recently studied python pandas(although unfortunately I wasn't able to submit the activity at the last minute) and implementing numpy is quite easier.