EPONGE

EPONGE

Exercices et Problèmes Obscurs Nécessitant une Gamberge Excessive

Niveaux de difficulté :

- 😔 : Facile...
- 🍫 : Réalisable avec peu de réflexion.
- 🍄 : Commencer à réfléchir au-delà du complexe.
- \(\sigma\): Une grande intuition sera utile.
- 🐘 : Plusieurs après-midis amusantes garanties !
- 🖥 : Connaissance infinie et sang-froid à toute épreuve requis.
- 🚝 : Impossible à moins d'avoir fait 3 doctorats (à la connaissance des auteurs).
- ?: Pas encore évalué.

Types d'exercices:

• \S : monkey-calcul (\simeq calcul bourrin).

Notations:

x := A $A =: x$	Définition de x comme A
$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_q$	Respectivement les ensembles des nombres entiers naturels, relatifs, rationels, réels et complexes, le corps fini à q éléments
$\llbracket k,l rbracket$	Les entiers de k a $l: \llbracket k, l rbracket = [k, l] \cap \mathbb{Z}$
${\cal P}$	L'ensemble des nombres premiers
\mathbb{U}_n	Les racines n-éme de l'unité, $\mathbb{U}_n = \{x \in \mathbb{C} \mid x^n - 1 = 0\}$
$\mathfrak{S}_n,\mathfrak{A}_n$	Les permuations de $[\![1,n]\!]$, les permutations de signature 1
log	La fonction logarithme de base $e: \log(x) \coloneqq \int_1^x \frac{\mathrm{d}t}{t}$
$a \wedge b$	PGCD de a et b
$a \lor b$	PPCM de a et b
$\mathcal{C}^n(A,B)$	Pour $n \in \mathbb{N}$ les fonction n fois dérivable de A dans B et de dérivé n-ème continue
$a \mid b, a \nmid b$	a divise (resp ne divise pas) b
δ_E	1 si E est satisfaite, 0 sinon. Dans le cas $\delta_{i,j}$ comprendre $E:i=j$

Convention:

- Les anneaux sont supposées unitaire
- Les corps sont commutatifs
- Le "dé canonique à n faces" est l'unique (à isomorphisme près) dé équilibré à n faces numérotées de 1 à n.

Sommaire

Chapitre I.	Algèbre	5
	Algèbre générale	
	Algèbre linéaire	
	Polynomes	
Chapitre II.	Arithmétique	9
_	Théorie des nombres	
Chapitre III	. Géométrie	. 11
-	Géométrie du plan	
	Géométrie algébrique	
Chapitre IV	Probabilités	. 1 4
	Probabilités discrètes	
Chapitre V.	Analyse	. 18
	Suites	
Section 2 :	Equations fonctionnelles	. 20
Section 3:	Equations différentielles	. 21
	Intégration	
Section 5:	Série	. 23

 $Bonne\ Chance\ !$

Chapitre I. Algèbre

Section 1 : Algèbre générale

Exercice 1 - Un isomorphisme - 👴

On prend

$$\mathbb{U}_{\infty}\coloneqq\bigcup_{n\in\mathbb{N}}\mathbb{U}_n$$

Montrer que \mathbb{U}_{∞} est isomorphe en tant que groupe à \mathbb{Q}/\mathbb{Z}

Exercice 2 - 42! -

Soit G un groupe d'ordre 42. Montrer que G admet un sous groupe d'ordre 6.

Exercice 3 -
$$\bigcirc$$
 + \bigcirc = ∞ - \bigcirc

Montrer qu'un corps algébriquement clos est nécessairement infini.

Exercice 4 - Deux espaces matriciels - 😔 🐿

Montrer que $\mathcal{M}_{nm}(\mathbb{R})$ et $\mathcal{M}_n(\mathcal{M}_m(\mathbb{R}))$ sont isomorphes en tant que \mathbb{R} -algèbre.

Exercice 5 - Crucialement radical -

Montrer que pour $n \in \mathbb{N} \setminus \{0, 1\}$

$$\sum_{k=0}^{n} \sqrt{k} \notin \mathbb{Q}$$

Section 2 : Algèbre linéaire

Exercice 1 - Une leçon de vie importante - 🍫

Montrer que $\mathcal{F}_n=(x\longmapsto \log(x+k))_{k\in \llbracket 0,n\rrbracket}$ est libre pour tout $n\in \mathbb{N}^*$

Exercice 2 - Déterminant et produit scalaire - 🍄

Soit E un espace-préhilbertien réel muni de son produit scalaire et $(e_1,...,e_n)$ une famille libre de E. On pose $F=\mathrm{Vect}(e_1,...,e_n)$.

On définit la matrice de Gram d'une famille $(x_1,...,x_n)$ de E par :

$$G(x_1,...,x_n)\coloneqq \left(\langle x_i,x_j\rangle\right)_{i,j\in [\![1,n]\!]}$$

Montrer que, pour tout $x \in E$, la distance d de x à F vérifie :

$$d(x,F) = \frac{\det(G(e_1,...,e_n,x))}{\det(G(e_1,...,e_n))}$$

Exercice 3 - Des pinaillages - <

- 1) Montrer que $\dim_{\mathbb{Q}}(\mathbb{R}) = \infty$.
- 2) On admet (avec l'axiome du choix) pouvoir compléter la famille $\left(1,\sqrt{2}\right)$ en une \mathbb{Q} -base de \mathbb{R} . Montrer qu'il existe f,g deux fonctions périodiques définies sur \mathbb{R} telles que pour tout $x\in\mathbb{R}$, f(x)+g(x)=x

Section 3: Polynomes

Exercice 1 - NP - 👴

Montrer que la fonction log n'est pas une fraction rationelle.

Exercice 2 - Un joli automorphisme - 🍄

On définit

$$\begin{split} \varphi: \mathbb{C}[X] & \longrightarrow \mathcal{F}(\mathbb{C}, \mathbb{C}) \\ P & \longmapsto \left(z \longmapsto e^{-z} \sum_{n \geqslant 0} \frac{P(n)}{n!} z^n \right) \end{split}$$

On identifie les polynômes de $\mathbb{C}[X]$ et les fonctions polynomiales de \mathbb{C} dans \mathbb{C} .

- 1) Montrer que φ est un automorphisme d'espace vectoriel.
- 2) Est-ce un morphisme d'anneau?

EPONGE – Arithmétique	Stéphanovic, Piotrovicovic, Patrickovic, Danielovic, Xavierovic
Cha	apitre II. Arithmétique

Section 1 : Théorie des nombres

Définitions

1. Indicatrice d'Euler

Pour $n \in \mathbb{N}$, on définis $\varphi(n) \coloneqq |\{d \in \llbracket 1, n \rrbracket \mid n \wedge d = 1\}|$. La fonction φ est appellé indicatrice d'euler.

Exercice 1 - Une suite de PGCD - 🍫

Soient P et Q deux polynômes de $\mathbb{Z}[X]$ premiers entre eux. Montrer que la suite $(P(n) \wedge Q(n))_{n \in \mathbb{Z}}$ est périodique.

Exercice 2 - Not Five - 🍄

Soit $P\in\mathbb{Z}[X],$ $x_1,x_2,x_3,x_4,x_5\in\mathbb{Z}$ distincts tel que pour tout $i\in \llbracket 1,5 \rrbracket,$ $P(x_i)=7.$ Montrer que pour $n\in\mathbb{Z},$ $P(n)\neq 5.$

Exercice 3 - Determinant arithmétique - 🐘

1) Montrer que pour $n \in \mathbb{N}$

$$n = \sum_{d|n} \varphi(d)$$

2) Calculer pour $n \in \mathbb{N}$

$$\det((i \wedge j)_{1 \leqslant i, j \leqslant n})$$

On pourra essayer d'exprimer ce determinant sous la forme d'un produit de 2 déterminants plus simples.

EPONGE – Géométrie	Stéphanovic, Piotrovicovic, Patrickovic, Danielovic, Xavierovic
	Chapitre III. Géométrie
	1 1

Section 1 : Géométrie du plan

Exercice 1 - Des tiroirs de compétition -

On colorie tous les points du plan euclidien, en utilisant n couleurs. On note K(X) la couleur du point X. On fixe deux points distincts O et A.

Pour tout point X différent de O, on définit C(X) comme étant le cercle de centre O et de rayon

$$OX + \frac{\left(\overrightarrow{OA}, \overrightarrow{OX}\right)}{OX} \ \, \text{où l'angle} \ \, \left(\overrightarrow{OA}, \overrightarrow{OX}\right) \ \, \text{est pris dans} \ \, [0, 2\pi[$$

Montrer qu'il existe un point Y différent de O tel que $\left(\overrightarrow{OA},\overrightarrow{OY}\right)\neq 0$ et tel que $K(Y)\in K(C(Y))$

Exercice 2 - Beaucoup trop de cercles - 🍄

Montrer qu'il est impossible de partitionner \mathbb{R}^2 en cercles de rayons strictement positifs.

Section 2 : Géométrie algébrique

Définitions

1. Espace projectif:

Pour un corps K, on considère la relation d'équivalence \sim sur $K^{n+1}\setminus\{0\}$ par

$$a \sim b \Leftrightarrow \exists \lambda \in K \text{ tq } a = \lambda b$$

On définis ainsi l'espace projectif de dimension n de K, $\mathbb{P}^n(K)$ par:

$$\mathbb{P}^n(K) \coloneqq K^{n+1}/\sim$$

Exercice 1 - Où sont les cônes ? - 🍫

On se place dans le plan euclidien \mathbb{R}^2 muni d'un repère orthonormé (O,i,j)

Soient \mathcal{C}_1 la courbe d'équation $(x+21y+1)^2+41x+42=0$ et \mathcal{C}_2 la courbe d'équation $x^2+y^2=3$

- 1) Trouver un point M appartenant à la courbe \mathcal{C}_1 dont les coordonnées sont rationnelles, c'est-à-dire un point de $\mathcal{C}_1 \cap \mathbb{Q}^2$.
- 2) En considérant des droites dont la pente est rationnelle, trouver tous les points de $\mathcal{C}_1\cap\mathbb{Q}^2$
- 3) Montrer que $\mathcal{C}_2 \cap \mathbb{Q}^2 = \emptyset$

Exercice 2 - Une feuille dans \mathbb{F}_p - 🐴 🦍

On prend $p\in\mathcal{P},$ p>3 et on considère la courbe \mathcal{F} définie sur $\mathbb{P}^2\big(\mathbb{F}_p\big)$ par l'équation

$$x^3 + y^3 - 3xy = 0$$

Trouver une condition nésce caire et suffisante sur p pour que $\mathcal F$ admette trois point a l'infini distincts.

EPONGE – Probabilités	Stéphanovic, Piotrovicovic, Patrickovic, Danielovic, Xavierovic
Ch	anitra IV Drobabilitás
CII	apitre IV. Probabilités

Section 1 : Probabilités discrètes

Exercice 1 - Polynômes aléatoires - 🚑

On se place dans l'espace préhilbertien $\mathbb{R}[X]$ muni du produit scalaire

$$\langle P, Q \rangle := \int_0^1 P(t)Q(t) dt$$

On considère une urne remplie initialement d'une boule noire et d'une boule "0" et un polynôme P=0.

A chaque étape, si la boule noire est tirée, on s'arrête, sinon on ajoute X^k à P, où k est la valeur de la boule tirée, on remet la boule tirée dans l'urne et on rajoute la boule correspondant au nombre de tirages effectués.

Le polynôme P est alors obtenu après le premier tirage de la boule noire.

Ce processus est ensuite réitéré pour obtenir un second polynôme Q.

- 1) Montrer que le tirage du polynome fini bien avec une probabilité 1.
- 2) On considère le tirage du polynome P. On note C_k la variable aléatoire donnant le coefficient devant X^k dans P. Trouver la loi de C_k pour $k \in \mathbb{N}$.
- 3) Déterminer $\mathbb{E}(\langle P, Q \rangle)$
- 4) Déterminer $\mathbb{V}(\langle P, Q \rangle)$

Exercice 2 - Duel - 🍄

On prend trois joueurs A,B,C qui se battent en duel. Lors d'un duel, entre B et C par exemple, chaque joueur a 1 chance 2 sur deux de gagner et 1 chance sur 2 de perdre, le perdant d'un duel sort du terrain et celui qui ne jouait pas entre pour faire un duel avec le gagnant précédent. Un joueur gagne le tournoi si il réalise $l \in \mathbb{N}$ victoire d'affiler. A et B commencent.

- 1) On pose l=2, determiner la probabilité que A gagne, que B gagne et que C gagne.
- 2) (\clubsuit) l n'est plus fixé. Déterminer un développement asymptotique, en fonction de l, de la probabilité p_l que C gagne quand l tend vers $+\infty$

Exercice 3 - Truel - 🍄

On prend 3 joueurs A, B, C tirant au pistolet les uns sur les autres. A touche avec une probabilité $\frac{2}{3}$, B avec une probabilité $\frac{1}{2}$ et C $\frac{1}{3}$. A chaque tour chacun vise le joueur le plus dangereux encore en vie (Au premier tour, B et C vise A et A vise B).

Determiner la probabilité que chaque joueur gagne ainsi que celle que le jeu finisse sans vainqueur.

Exercice 4 - Dédé - 🚑

On prend un dé canonique à 3 faces. On le lance et on ajoute un dé canonique à x_1 faces où x_1 est le résultat du lancé. On relance les deux dés et on ajoute un nouveau dé canonique à x_2 faces où x_2 est la somme des résultats des deux dés. On définit ainsi la suite x_n comme la somme des n dés du $n^{\text{ème}}$ lancer et on définit de plus la variable aléatoire $X_n = x_n$.

- 1) Déterminer la loi de X_n pour $n \in \mathbb{N}^*$ ainsi que son espérance et sa variance.
- 2) Généraliser pour un dé initial canonique à $p \in \mathbb{N}^*$ faces.

Exercice 5 - \mathfrak{S}_n Probabilisé - \bullet

On considère l'ensemble \mathfrak{S}_n dans lequel on tire des éléments de manière uniforme. On prend F la variable aléatoire qui compte le nombre de points fixes et C la variable aléatoire qui compte le nombre de cycles dans la décomposition en cycles disjoints.

- 1) Determiner $\mathbb{E}(F)$
- 2) (\mathfrak{P}) Determiner $\mathbb{E}(C)$

Exercice 6 - Le quart de ce qu'on ne vous souhaite pas - 🍄

Soit G un groupe fini non commutatif. Montrer que la probabilité que 2 éléments pris au hasard dans G commutent est majorée par $\frac{5}{8}$.

Exercice 7 - Zeta ?!? - 🌯

Montrer que la probabilité que 2 entiers de $\mathbb N$ soient premiers entre eux est $\frac{6}{\pi^2}$

Exercice 8 - Une séquence préférée - 🦠

On considère une suite de lancers indépendants d'une pièce pour laquelle la probabilité d'obtenir "pile" est $p \in]0,1[$.

- 1) Soit n > 2. Calculer la probabilité de l'événement A_n : "la séquence PF apparaît pour la première fois (dans cet ordre) aux lancers n-1 et n".
- 2) Quelle est la probabilité de l'événement "la séquence PF apparait au moins une fois" pour une infinité de lancer ?
- 3) Quelle est la probabilité de l'événement "la séquence PP apparaît sans que la séquence PF ne soit apparue auparavant" dans cette même configuration ?
- 4) (\P) On considère à présent un dé à trois faces numéroté par $\{1;6;8\}$, de probabilité respective p_1,p_6 et p_8 . Quelle est la probabilité de l'événement "la séquence '861' apparaît pour la première fois (dans cet ordre) aux lancer n-2,n-1 et n"

Exercice 9 - - <

Soit $n \in \mathbb{N}^*$ et $\left(X_{i,j}\right)_{(i,j) \in [\![1,n]\!]^2} n^2$ variables aléatoires identiquement distribué muttuellement indépendantes. On note $\Delta_n = \det\left(\left(X_{i,j}\right)_{(i,j) \in [\![1,n]\!]^2}\right)$.

- 1) On suppose $X_{1,1}$ centrée. Exprimer $\mathbb{V}(\Delta_n)$ en fonction de $\mathbb{V}\big(X_{1,1}\big).$

Section 1: Suites

Exercice 1 - Private Joke - **

Soit $\left(x_{n}\right)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ vérifiant pour $n\in\mathbb{N}$:

$$x_{n+1} = x_n - x_n^{862}$$

Trouver les deux premiers termes du DA de $\left(x_{n}\right)$

Section 2 : Equations fonctionnelles

Exercice 1 - Pour bien commencer - 🦠

Déterminer toutes les fonctions f définies sur $\mathbb R$ telles que

$$\forall x \in \mathbb{R}, f(f(x)) + xf(x) = 1$$

Exercice 2 - Fonctionellement dense (?) - 🍄

Déterminer toutes les fonctions f continues sur $\mathbb R$ telles que

$$\forall (x,y) \in \mathbb{R}^2, f\big(xy-x^2\big) + f\big(y-x^2\big) = f(xy) + f(x) + f(y)$$

Section 3 : Equations différentielles

Exercice 1 - CMP - 🍫

Soit $\varphi \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$, tel que:

$$\begin{split} \varphi(x) &\underset{x \to +\infty}{\longrightarrow} l \in \mathbb{R} \\ \exists \alpha > 0, \forall x \in \mathbb{R}, \varphi(x) \geqslant \alpha \end{split}$$

Montrer que l'équation (E) définie par:

$$(E): \varphi y'' = \varphi'' y$$

Admet une solution qui tend vers $+\infty$ en $+\infty$

Exercice 2 - Dérivée absolue - 🦠

Trouver toutes les fonctions y dans $\mathcal{C}^1(\mathbb{R},\mathbb{R})$ tel que

$$y' = |y|$$

Section 4 : Intégration

Exercice 1 - Une intégrale de Fresnel ? - 🍄

Étudier la convergence de

$$\int_0^{+\infty} \sin(t) \sin(t^2) \, \mathrm{d}t$$

Exercice 2 - Des parties entières - 🍫

Pour $x \in \mathbb{R}$, on note |x| la partie entière de x. Trouver

$$\int_0^1 x \left\lfloor \frac{1}{x} \right\rfloor \mathrm{d}x$$

Exercice 3 - Un calcul de E-M - <

Calculer

$$\int_0^{+\infty} e^{-x} \log(x) \, \mathrm{d}x$$

Exercice 4 - Des parties fractionnaires - 🚑

Pour $x \in \mathbb{R}$, on note $\{x\}$ la partie fractionnaire de x.

Montrer la convergence et calculer :

$$\int_0^{\frac{\pi}{2}} \{\tan(x)\} \, \mathrm{d}x$$

Exercice 5 - Sympathique résultat - 🍄

Determiner

$$\int_0^1 \arctan(x) \log(x) \, \mathrm{d}x$$

Section 5 : Série

Exercice 1 - Merci Euler! - 🦠

Pour $n, m \in \mathbb{N}$, on définit

$$I(n,m) \coloneqq \int_0^1 x^n (1-x)^m dx$$

- 1) Donner une expression utilisant des factorielles de I(n,m) pour tous $n,m\in\mathbb{N}$
- 2) En déduire que

$$\sum_{n=0}^{+\infty} \frac{(n!)^2}{(2n+1)!} = \frac{2\pi\sqrt{3}}{9}$$

Exercice 2 - De la réciprocité - 🔨

Pour $n \in \mathbb{N}$, on pose

$$W_n \coloneqq \int_0^{\frac{\pi}{2}} \cos^n(t) \, \mathrm{d}t$$

1) Calculer

$$S(x)\coloneqq\sum_{n=0}^{+\infty}W_{2n}x^{2n}$$

pour les réels x tels que S(x) converge.

2) En déduire

$$\int_0^1 \frac{\log(t^2 - t - 1)}{t^2 - t} \,\mathrm{d}t$$

On pourra s'interesser a

$$\sum_{n\geqslant 1}\frac{1}{n^2\binom{2n}{n}}$$

Exercice 3 - Un peu de trigo - 🦠

On note T_n et U_n les n-ème polynôme de Tchebychev respectivement de première et de seconde espèce. Soient $x,t\in\mathbb{R}$.

Discuter de la convergence, et calculer :

$$T(x,t)\coloneqq \sum_{n=0}^{+\infty} T_n(x)t^n \quad \text{et} \quad U(x,t)\coloneqq \sum_{n=0}^{+\infty} U_n(x)t^n$$

Exercice 4 - Fibo? - <

On définit la suite de fibbonacci par : $\begin{cases} F_0{=}0 \\ F_1{=}1 \\ \forall n{\in}\mathbb{N} \ , \ F_{n+2}{=}F_{n+1}{+}F_n \end{cases}$

Calculer

$$\sum_{n=0}^{+\infty}\arctan\left(\frac{1}{F_{2n+1}}\right)$$

Exercice 5 - Une petite odeur de Cesàro - 🍄

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans $\mathbb{C}.$ On pose

$$S_n \coloneqq \sum_{k=0}^n u_k \quad \text{et} \quad \sigma_n \coloneqq \frac{1}{n+1} \sum_{k=0}^n S_k$$

1) On suppose que (u_n) est à valeurs dans $\mathbb{R}^+.$ Montrer que

$$S_n$$
 converge $\iff \sigma_n$ converge

$$S_n$$
 converge $\iff \sigma_n$ converge

Exercice 6 - Casse-tête normalien - 🚑

Déterminer la nature de la série

$$\sum_{n\in\mathbb{N}^*}\frac{1}{n^{2+\cos(n)}}$$

Exercice 7 - Que pensez-vous des DÉS? - <

Calculer

$$\sum_{n=1}^{+\infty} \frac{2^{-n}}{1+2^{2^{-n}}}$$

Exercice 8 - Bertrand pour sûr - ?

Soit

$$f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} x \text{ si } x \leqslant e \\ x f(\log(x)) \text{ si } x > e \end{cases}$$

Determiner la nature de

$$S_n = \sum_{n\geqslant 1} \frac{1}{f(n)}$$

Exercice 9 - Double somme? - 🍄

Discuter, en fonction de $\alpha \in \mathbb{R}$ de la convergence de

$$\sum_{n\in\mathbb{N}}\frac{\cos(n)}{1+n^\alpha}$$

Exercice 10 - Utile contre-exemple - $ilde{\diagdown}$

Determiner la nature de

$$\sum_{p \in \mathcal{P}} \frac{1}{p}$$