Algoritmusok és adatszerkezetek II. előadásjegyzet:

Mintaillesztés, Tömörítés

Ásványi Tibor – asvanyi@inf.elte.hu 2020. augusztus 4.

Tartalomjegyzék

1.	Min	taillesztés ([2] 32; [4])	4
	1.1.	Egyszerű mintaillesztő (brute-force) algoritmus	4
	1.2.	Quicksearch	4
	1.3.	Mintaillesztés lineáris időben (Knuth-Morris-Pratt algoritmus)	6
2.	Info	rmációtömörítés ([5] 5; [4])	9
2.		rmációtömörítés ([5] 5; [4]) Naiv módszer	_
2.	2.1.	(1) (1)	9
2.	2.1.	Naiv módszer	9

Hivatkozások

- [1] ÁSVÁNYI TIBOR, Algoritmusok és adatszerkezetek II. Útmutatások a tanuláshoz, jelölések, tematika, fák, gráfok, mintaillesztés, tömörítés http://aszt.inf.elte.hu/~asvanyi/ad/ad2jegyzet/
- [2] CORMEN, T.H., LEISERSON, C.E., RIVEST, R.L., STEIN, C., magyarul: Új Algoritmusok, Scolar Kiadó, Budapest, 2003. ISBN 963 9193 90 9 angolul: Introduction to Algorithms (Third Edition), The MIT Press, 2009.
- [3] FEKETE ISTVÁN, Algoritmusok jegyzet http://ifekete.web.elte.hu/
- [4] KORUHELY GÁBOR, SZALAY RICHÁRD, Algoritmusok és adatszerkezetek 2, 2015/16 tavaszi félév (hallgatói jegyzet, lektorált és javított) http://aszt.inf.elte.hu/~asvanyi/ad/
- [5] RÓNYAI LAJOS IVANYOS GÁBOR SZABÓ RÉKA, Algoritmusok, $TypoT_EX$ Kiadó, 1999. ISBN 963-9132-16-0 https://www.tankonyvtar.hu/hu/tartalom/tamop425/2011-0001-526_ronyai_algoritmusok/adatok.html
- [6] WEISS, MARK ALLEN, Data Structures and Algorithm Analysis, *Addison-Wesley*, 1995, 1997, 2007, 2012, 2013.
- [7] ÁSVÁNYI TIBOR, Algoritmusok és adatszerkezetek I. előadásjegyzet (2019) http://aszt.inf.elte.hu/~asvanyi/ad/ad1jegyzet.pdf

1. Mintaillesztés ([2] 32; [4])

Adott a $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_d\}$ ábécé. $(1 \leq d < \infty \text{ konstans})$. A $T/1 : \Sigma[n]$ szövegben keressük a $P/1 : \Sigma[m]$ minta előfordulásait $(1 \leq m \leq n)$. A fenti szimbólumokat az egész fejezetben így fogjuk használni.

1.1. Definíció. $s \in 0..(n-m)$ pontosan akkor a P érvényes eltolása T-n, ha T[s+1..s+m] = P[1..m].

Az érvényes eltolások halmazát szeretnénk meghatározni, azaz az $S = \{ s \in 0..(n-m) \mid T[s+1..s+m] = P[1..m] \}$ halmazt.

1.1. Egyszerű mintaillesztő (brute-force) algoritmus

$$(T[s+1..s+m] = P[1..m]) : \mathbb{B})$$

$$j := 1$$

$$j \le m \land T[s+j] = P[j]$$

$$j + +$$

$$\mathbf{return} \ j > m$$

1.2. Quicksearch

A gyorsabb keresés érdekében ennél és a következő (KMP) algoritmusnál általában egynél nagyobb lépésekben növeljük a P[1..m] minta eltolását a T[1..n] szöveghez képest úgy, hogy biztosan ne ugorjunk át egyetlen érvényes eltolást sem. Mindkét algoritmus a tényleges mintaillesztés előtt egy előkészítő fázist hajt végre, ami nem függ a szövegtől, csak a mintától.

A Quicksearch-nél ebben az előkészítő fázisban az ábécé σ elemeihez $shift(\sigma) \in 1..m+1$ címkéket társítunk, ahol P[1..m] a keresett minta.

Tegyük fel most, hogy $\sigma = T[s+m+1]$. Ekkor a $shift(\sigma)$ érték megmondja, hogy a T[s+1..s+m] = P[1..m] összehasonlítás után legalább mennyivel kell

(jobbra) eltolni a P mintát a szövegen ahhoz, hogy a T[s+m+1] alapján legyen esély a mintának a megfelelő szövegrészhez való illeszkedésére.

- $-\sigma \in P[1..m]$ esetén a $shift(\sigma) \in 1..m$ érték azt mondja meg, hogy legalább mennyivel kell tovább tolni a P mintát ahhoz, hogy a T[s+m+1] betűhöz kerülő karaktere maga is σ legyen. Világos, hogy a σ legjobboldali P-beli előfordulásához tartozik a legkisebb ilyen eltolás.
- $-\sigma \notin P[1..m]$ esetén $shift(\sigma) = m+1$ lesz, azaz a minta átugorja a T[s+m+1] karaktert.

Arra az esetre, amikor az ábécé $\Sigma = \{A,B,C,D\}$, a minta pedig P[1..4]=CADA, az alábbi félig absztrakt példákban xxxx mutatja a CADA mintával az eltolás előtt összehasonlított szövegrészt, maga a CADA pedig a minta eltolás utáni helyzetét. (Ezután természetesen újabb összehasonlítás kezdődik a szöveg megfelelő része és a minta között stb.)

A megfelelő shift értékeket a következő táblázat mutatja.

σ	Α	В	С	D
$shift(\sigma)$	1	5	4	2

1.3. Mintaillesztés lineáris időben (Knuth-Morris-Pratt algoritmus)

Tekintsük bevezetésként a következő példát! A P[1..8] = BABABBAB mintát keressük a T[1..18] = ABABABABABABABABABABABABABABBAB szövegben. (A minta elején a jelöletlen betűkről "illesztés nélkül is tudja" az algoritmus, hogy illeszkednek a szöveg megfelelő karakterére. \underline{B} : B-t sikeresen illesztette a szöveg megfelelő betűjére; $\underline{\mathcal{B}}$: sikertelenül illesztette.)

i =	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
T[i]=	A	В	A	В	A	В	A	В	В	A	В	A	В	A	В	В	\overline{A}	B
	\mathcal{B}																	
		<u>B</u>	<u>A</u>	<u>B</u>	<u>A</u>	<u>B</u>	\mathcal{B}											
s=3				B	A	B	<u>A</u>	<u>B</u>	<u>B</u>	<u>A</u>	<u>B</u>							
									B	A	B	<u>A</u>	<u>B</u>	B				
s=10											В	A	В	<u>A</u>	<u>B</u>	<u>B</u>	<u>A</u>	<u>B</u>
																В	A	B

$$S = \{ \, 3; 10 \, \}$$

1.2. Jelölések.

- $-P_j = P[1..j]$ (csak ebben az alfejezetben) P_j a P sztring j hosszúságú prefixe, azaz kezdőszelete. P_0 az üres prefixe. Hasonlóan $T_i = T[1..i]$.
- Ha x 'es y k'et sztring, akkor x + y a konkaten'altjuk.
- Ha y és z két sztring, akkor y $\supset z$ (y a z rövidebb szuffixe) azt jelenti, hogy $\exists x$ nemüres sztring, amire x + y = z.

(Eszerint minden nemüres sztringnek rövidebb szuffixe az üres sztring, azaz $P_0 \supset P_j$ ha $j \in 1..m.$)

 $-\max_{i} H \ a \ H \ halmaz \ i\text{-edik legnagyobb eleme} \quad (i \in 1..|H|).$

 $(Ez\acute{e}rt \max_1 H = \max H, \acute{e}s)$

 $ha\ H\ v\'eges\ halmaz,\ akkor\ \max_{|H|}H=\min H.)$

$$-H(j) = \{ h \in 0..j - 1 \mid P_h \supset P_j \} \quad (j \in 1..m)$$

$$(\hat{I}gy\ 0 \in H(j), \ \max_1 H(j) = \max H(j), \ \max_{|H(j)|} H(j) = \min H(j) = 0.)$$

 $-next(j) = \max H(j) \quad (j \in 1..m)$

1.3. Tulajdonság.
$$0 \le h < j \le m$$
 és $P_j \supset T_i$ esetén $P_h \supset T_i \iff P_h \supset P_j$.

- 1.4. Tulajdonság. $P_h \supset T_i \land P[h+1] = T[i+1] \iff P_{h+1} \supset T_{i+1}$.
- **1.5.** Tulajdonság. $next(j) \in 0...(j-1)$ $(j \in 1..m)$

1.6. Tulajdonság. $next(j+1) \le next(j) + 1$ $(j \in 1..m-1)$ $(A \ next(j) \ f\"{u}ggv\'{e}ny \ legfeljebb \ egyes\'{e}vel \ n\"{o}vekszik.)$

P[j] =	В	A	В	A	В	В	A	В
j =	1	2	3	4	5	6	7	8
next(j) =	0	0	1	2	3	1	2	3

1.7. Tulajdonság. $\max_{l+1} H(j) = next(\max_{l} H(j))$ $(j \in 1...m, l \in 1..|H(j)|-1)$

1.8. Definíció.

$$next^{1}(j) = next(j)$$
 $(j \in 1..m)$
 $next^{k+1}(j) = next(next^{k}(j))$ $(next^{k}(j) \in 1..m)$
 $Szemléletesen: next^{k}(j) = \underbrace{next(\dots next(j) \dots)}_{k}$

1.9. Tétel. $next^{i}(j) = \max_{i} H(j)$ $(i \in 1..|H(j)|)$

Az init(next,P) algoritmus szemléltetése az ABABBABA mintán: (A három programág mindegyikének az elején kezdünk új sort.)

i	j	next[j]	$\stackrel{1}{A}$	$\stackrel{2}{B}$	$\stackrel{3}{A}$	$\stackrel{4}{B}$	$\stackrel{5}{B}$	$\stackrel{6}{A}$	$\overset{7}{B}$	$\stackrel{8}{A}$
0	1	0		Å						
0	2	0			<u>A</u>					
1	3	1			A	<u>B</u>				
2	4	2			A	B	A			
0	4	2					A			
0	5	0						<u>A</u>		
1	6	1						A	<u>B</u>	
2	7	2						A	B	\underline{A}
3	8	3								

A végeredmény:

	O	·							
	P[j] =	A	B	A	B	B	A	B	A
	j =	1	2	3	4	5	6	7	8
\overline{ne}	xt[j] =	0	0	1	2	0	1	2	3

$$\left(\operatorname{KMP}(T/1:\Sigma[n] \; ; \, P/1:\Sigma[m] \; ; \, S:\mathbb{N}\{\}) \right)$$

AP[1..8] = ABABBABAmintát keressük aT[1..17] = ABABABBABABABABABABAszövegben.

i =	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
T[i]=	A	B	A	B	A	B	B	A	B	A	B	B	A	B	A	B	A
	<u>A</u>	<u>B</u>	<u>A</u>	<u>B</u>	\mathcal{B}												
s=2			A	В	<u>A</u>	<u>B</u>	<u>B</u>	<u>A</u>	<u>B</u>	<u>A</u>							
s=7								A	B	\overline{A}	<u>B</u>	<u>B</u>	<u>A</u>	<u>B</u>	<u>A</u>		
													A	В	A	<u>B</u>	\mathcal{B}
															A	B	\underline{A}

$$S = \{2; 7\}$$

2. Információtömörítés ([5] 5; [4])

2.1. Naiv módszer

A tömörítendő szöveget karakterenként, fix hosszúságú bitsorozatokkal kódoljuk.

$$\Sigma = \langle \sigma_1, \sigma_2, \dots, \sigma_d \rangle$$
 az ábécé.

Egy-egy karakter $\lceil \lg d \rceil$ bittel kódolható, ui. $\lceil \lg d \rceil$ biten $2^{\lceil \lg d \rceil}$ különböző bináris kód ábrázolható, és $2^{\lceil \lg d \rceil} \ge d > 2^{\lceil \lg d \rceil - 1}$, azaz $\lceil \lg d \rceil$ biten ábrázolható d-féle különböző kód, de eggyel kevesebb biten már nem.

 $In : \Sigma \langle \rangle$ a tömörítendő szöveg. n = |In| jelöléssel $n * \lceil \lg d \rceil$ bittel kódolható.

Pl. az ABRAKADABRA szövegre d=5 és n=11, ahonnét a tömörített kód hossza $11*\lceil\lg 5\rceil=11*3=33$ bit. (A 3-bites kódok közül tetszőleges 5 kiosztható az 5 betűnek.) A tömörített fájl a kódtáblázatot is tartalmazza.

A fenti ABRAKADABRA szöveg kódtáblázata lehet pl. a következő:

karakter	kód
A	000
В	001
D	010
K	011
R	100

A fenti kódtáblázattal a tömörített kód a következő lesz: 0000011000001100001100001100000.

Ez a tömörített fájlba foglalt kódtáblázat alapján könnyedén 3 bites szakaszokra bontható és kitömöríthető. A kódtáblázat mérete miatt a gyakorlatban csak hosszabb szövegeket érdemes így tömöríteni.

2.2. Huffman-kód

A tömörítendő szöveget karakterenként, változó hosszúságú bitsorozatokkal kódoljuk. A gyakrabban előforduló karakterek kódja rövidebb, a ritkábban előfordulóké hosszabb.

Prefix-mentes kód: Egyetlen karakter kódja sem prefixe semelyik másik karakter kódjának sem.

A karakterenként kódoló tömörítések között a Huffman-kód hossza minimális. Ugyanahhoz a szöveghez többféle kódfa és hozzátartozó kódtáblázat építhető, de mindegyik segítségével az input szövegnek ugyanolyan hosszú tömörített kódját kapjuk. Betömörítés a kódtáblával, kitömörítés a kódfával. Ezért a tömörített fájl a kódfát is tartalmazza.

A tömörítendő fájlt, illetve szöveget kétszer olvassa végig.

- Először meghatározza a szövegben előforduló karakterek halmazát és az egyes karakterek gyakoriságát, majd ennek alapján kódfát, abból pedig kódtáblázatot épít.
- Másodszorra a kódtábla alapján kiírja az output fájlba sorban a karakterek bináris kódját.

A kódfa szigorúan bináris fa. Mindegyik karakterhez tartozik egy-egy levele, amit a karakteren kívül annak gyakorisága, azaz előfordulásainak száma is címkéz. A belső csúcsokat a csúcshoz tartozó részfa leveleit címkéző karakterek gyakoriságainak összegével címkézzük. (Így a kódfa gyökerét a tömörítendő szöveg hossza címkézi.)

A kódfát úgyépítjük fel, hogy először egycsúcsú fák egy minimum-prioritásos sorát határozzuk meg, amelyben mindegyik karakter pontosan egy csúcsot címkéz. A csúcsot a karakteren kívül annak gyakorisága is címkézi. A minimum-prioritásos sort a benne tárolt fák gyökerét címkéző gyakoriság-értékek szerint építjük fel. Ezután a következőt csináljuk ciklusban, amíg a kupac még legalább kettő fából áll.

Kiveszünk a kupacból egy olyan fát, amelyeknek gyökerét a legkisebb gyakoriság címkézi. Ezután a maradék kupacra ezt még egyszer megismételjük. Összeadjuk a két gyakoriságot. Az összeggel címkézünk egy új csúcsot, amelynek bal és jobb részfája az előbb kiválasztott két fa lesz. A bal ágat a 0, a jobb ágat az 1 címkézi. Az így képzett új fát visszatesszük a minimum-prioritásos sorba.

A fenti ciklus után a minimum-prioritásos sorban maradó egyetlen bináris fa a Huffman-féle kódfa.

A kódfából ezután kódtáblázatot készítünk. Mindegyik karakterekhez tartozó kódot úgy kapjuk meg, hogy a kódfa gyökerétől elindulva és a karakterhez tartozó levélig lefelé haladva a kódfa éleit címkéző biteket összeolvassuk. (Ezt hatékonyan kivitelezhetjük pl. a kódfa preorder bejárásával, az aktuális csúcshoz vezető bitsorozat folyamatos nyilvántartásával, és levélhez érve, a kódtáblázatba írásával.)

Befejezésül újra végigolvassuk a tömörítendő szöveget, és a kódtáblázat segítségével sorban mindegyik karakter bináris kódját a (kezdetben üres) tömörített bitsorozat végéhez fűzzük. A tömörített fájl a kódfát is tartalmazza,

így a gyakorlatban Huffman-kódolással is csak hosszabb szövegeket érdemes tömöríteni.

A kitömörítést is karakterenként végezzük. Mindegyik karakter kinyeréséhez a kódfa gyökerétől indulunk, majd a tömörített kód sorban olvasott bitjeinek hatására 0 esetén balra, 1 esetén jobbra lépünk lefelé a fában, mígnem levélcsúcshoz érünk. Ekkor kiírjuk a levelet címkéző karaktert, majd a Huffman-kódban a következő bittől és újra a kódfa gyökerétől folytatjuk, amíg a tömörített kódon végig nem érünk.

2.2.1. Huffman-kódolás szemléltetése

Pl. az ABRAKADABRA szöveget egyszer végigolvasva meghatározhatjuk milyen karakterek fordulnak elő a szövegben, és milyen gyakorisággal. Úgy képzelhetjük, hogy az alábbi táblázat az új betűkkel folyamatosan bővül, ahogy haladunk előre a szövegben.

szöveg:	A	В	R	A	K	A	$\mid D \mid$	A	В	R	A
A	1			2		3		4			5
B	-	1							2		
D	-	-	-	-	-	-	1				
K	-	-	-	-	1						
R	-	-	1							2	

A fenti számolást (betű/gyakoriság) alakban összegezve:

$$\langle (D/1), (K/1), [B/2], \{R/2\}, (A/5) \rangle$$

A fenti öt kifejezést öt egycsúcsú bináris fának tekinthetjük. (A jobb olvashatóság kedvéért többféle zárójelpárt alkalmaztunk.) Mindegyik csúcs egyben levél és gyökér. A levelekhez tartozó két címkét karakter/gyakoriság alakban írtuk le. A tömörítés algoritmusa szerint ezeket egy minimum-prioritásos sorba tesszük. A könnyebb érthetőség kedvéért ezt a minimum-prioritásos sort a szokásos minimum-kupacos reprezentáció helyett most a fák gyökerében lévő gyakoriság-értékek (röviden fa-gyakoriság-értékek) szerint rendezett fa-sorozattal szemléltetjük. (Azonos gyakoriságok esetén a betűk alfabetikus sorrendje szerint rendezünk. Ez ugyan önkényes, de az algoritmus bemutatása szempontjából hasznos egyértelműsítés. A fák ágait is hasonlóképpen rendezzük sorba.)

Ezután kivesszük a két legkisebb gyakoriság-értékű fát, egy új gyökércsúcs alá tesszük őket bal- és jobboldali részfának, a új gyökércsúcsot pedig a két

fa-gyakoriság-érték összegével címkézzük. Végül visszatesszük az új fát a minimum-prioritásos sorba.

$$\langle [B/2], [(D/1)2(K/1)], \{R/2\}, (A/5) \rangle$$

A fenti eljárást addig ismételjük, amíg már csak egy fánk marad. Ezt végül kivesszük a minimum-prioritásos sorból: ez a Huffman-féle kódfa.

$$\langle \{R/2\}, \{[B/2]\mathbf{4}[(D/1)2(K/1)]\}, (A/\mathbf{5}) \rangle$$

 $\langle (A/\mathbf{5}), (\{R/2\}\mathbf{6}\{[B/2]\mathbf{4}[(D/1)2(K/1)]\}) \rangle$
 $[(A/5)\mathbf{11}(\{R/2\}\mathbf{6}\{[B/2]\mathbf{4}[(D/1)2(K/1)]\})]$

A fent kapott kódfát az 1. ábrán is láthatjuk.

1. ábra. Az ABRAKADABRA szövegnek az alfabetikus konvencióval adódó Huffman-féle kódfája

Tekintsünk az 1. ábrán látható kódfában egy tetszőleges egyszerű, azaz körmentes utat, amely a fa gyökerétől lefelé valamelyik leveléig halad! Az út éleit címkéző biteket összeolvasva adódik a levelet címkéző karakter Huffman-kódja. Így a karaktarekre a következő kódtáblázatot kapjuk.

karakter	kód
A	0
B	110
D	1110
K	1111
R	10

A fentiek alapján az ABRAKADABRA szöveg Huffman kódja 23 bit, ami lényegesen rövidebb, mint a fenti naiv tömörítés esetén. A kódtáblázat bináris kódjait az ABRAKADABRA szöveg karakterei szerint sorban egymás után fűzve kapjuk a szöveg Huffman-kódját.

01101001111011100110100

A kitömörítéshez az előbbi Huffman-kód és a kódfa alapján a kezdő nulla rögtön az "A" címkéjű levélhez visz. Ezután sorban olvasva a maradékból a biteket, a 110 a B-hez visz, majd a 10 az R-hez, a 0 az A-hoz, a 1111 a K-hoz, a 0 az A-hoz, az 1110 a D-hez, a 0 az A-hoz, a 110 a B-hez, a 10 az R-hez, és végül a 0 az A-hoz. Így visszakaptuk az eredeti, tömörítetelen szöveget.

2.1. Feladat. Próbáljuk ki, hogy ha a Huffman-kódolásban lévő indeterminizmusokat a fenti alfabetikus sorrendtől eltérően oldjuk fel, ugyanarra a tömörítendő szövegre mégis mindig ugyanolyan hosszú Huffman-kódot kapunk! (Ha például a minimum-prioritásos sorból azonos fa-gyakoriság-értekek esetén az alacsonyabb fát vesszük ki előbb – ezt az ad-hoc szabályt az alfabetikus konvenciónál erősebbnek véve –, akkor a fenti példában a kódfát felépítő ciklus második iterációjában a [B/2] és az $\{R/2\}$ fát fogjuk összevonni.)

2.3. Lempel-Ziv-Welch (LZW) módszer

Az input szöveget ismétlődő mintákra (sztringekre) bontja. Mindegyik mintát ugyanolyan hosszú bináris kóddal helyettesíti. Ezek a minták kódjai. A tömörített fájl a kódtáblázatot nem tartalmazza. Részletes magyarázat olvasható Ivanyos Gábor, Rónyai Lajos és Szabó Réka: Algoritmusok c. könyvében [5]. (Online elérhetősége az irodalomjegyzékünkben.)

Jelölések az absztrakt struktogramokhoz:

- Ha a kódok b bitesek, akkor $MAXCODE=2^b-1$ globális konstans a kódként használható legnagyobb számérték. Ha pl. b=12, akkor $MAXCODE=2^{12}-1=4095$.
- A $\Sigma = \langle \sigma_1, \sigma_2, \dots, \sigma_d \rangle$ sorozat tartalmazza az ábécé karaktereit.
- A tömörítésnél "In" a tömörítendő szöveg. "Out" a tömörítés eredménye: kódok sorozata. A kitömörítésnél fordítva.
- *D* a szótár, ami (*string*, *code*) rendezett párok, azaz *Item*-ek halmaza. A szótárat a tömörített kód nem tartalmazza. Ehelyett a kitömörítés rekonstruálja az ábécé és a tömörített kód alapján.

Item
$+string:\Sigma\langle angle$
$+code: \mathbb{N}$
$+Item(s:\Sigma\langle\rangle;k:\mathbb{N})\{string:=s;code:=k\}$

$\Big(\mathsf{LZWcompress}(In : \Sigma \langle \rangle \ ; \ Out : \mathbb{N} \langle \rangle) \Big)$

D: Ite	$m\{\}\ //\ { m D}$ is the dictionary, initially empty										
	$i:=1$ to $ \Sigma $										
	$x: Item(\langle \Sigma_i \rangle, i) ; D := D \cup \{x\}$										
CO	$ode := \Sigma + 1 ; Out := \langle \rangle ; s : \Sigma \langle In_1 \rangle$										
	i := 2 to $ In $										
	$c: \Sigma := In_i$										
	$\operatorname{dictionaryContainsString}(D,s+c)$										
	$Out := Out + \operatorname{code}(D, s)$										
s := s + c	$code \le MAXCODE$										
	$x: Item(s+c, code++) \; ; \; D:=D \cup \{x\}$	SKIP									
	$s := \langle c \rangle$										
	$Out := Out + \operatorname{code}(D, s)$										

$\underbrace{\left(\mathsf{LZW} \mathsf{decompress}(In:\mathbb{N}\langle\rangle\;;Out:\Sigma\langle\rangle)\right)}_{\mathsf{L}}$

<u></u>	
$D: Item\{\}\ //\ { m D}$ is the dictionary, initially empty	
$i:=1$ to $ \Sigma $	
$x: Item(\langle \Sigma_i \rangle, i) ; D := D \cup \{x\}$	
$code := \Sigma + 1 \; // \; code$ is the first unused code	
$Out := s := string(D, In_1)$	
i := 2 to In	
$k := In_i$	
k < code // D contains k	
t := string(D, k)	$t := s + s_1$
Out := Out + t	Out := Out + t
$x: Item(s+t_1, code)$	$x: Item(t,k) \ // \ \mathrm{k=code}$
$D := D \cup \{x\}$	$D := D \cup \{x\}$
$s := t \; ; \; code + +$	