15CSE303-Theory of Computation

Course Overview

MS.PRATHILOTHAMAI

ASSISTANT PROFESSOR (SR.GR)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING,
AMRITA SCHOOL OF ENGINEERING, AMRITA VISHWA VIDYAPEETHAM, COIMBATORE.

Course Objectives & Outcomes

Objectives

- Introduce concepts in automata theory and theory of computation
- Identify different formal language classes and their relationships
- Design grammars and recognizers for different formal languages
- Design automata and recognizers for different formal languages

Outcomes

COs	Course Outcome	Bloom's Taxonomy Level	Course Plan		
15CSE303.CO 1	Understand and apply the properties of formal languages	L3			
15CSE303.CO 2	Illustrate grammar and grammar transformations for formal languages	L3			
15CSE303.CO 3	Construct finite state machines	L3 <u>Course Plan</u>			
15CSE303.CO 4	Apply stack data structures for automata L3				
15CSE303.CO 5	Design and develop computing devices such as Turing machines	L4			

Text / Reference Books

- Peter Linz, "An Introduction to Formal Languages and Automata", Fourth Edition, Narosa Publishing House, 2009 (Text Book)
- Michael Sipser, "Introduction to the Theory of Computation", Third Edition, Cengage Learning, 2012.
- John C Martin, "Introduction to Languages and the Theory of Computation", McGraw Hill, Third Edition, 2002.
- Michael R Garey and Johnson D S, "Computers and Intractability: A Guide to the Theory of NP-Completeness", First Edition, W.H. Freeman and Company, 1979.
- J E Hopcroft, R Motwani and J D. Ullman, "Introduction to Automata Theory, Languages, and Computation", Third Edition, Pearson Education India, 2007.

Course Pre-Requisites & Organization

Pre-Requisites

- Data Structure and Algorithms
- Discrete Mathematics

Course Organization

Generally, the course will contain three parts:

Part I) Regular languages (21 Hours)

Part II) Context-free languages (15 Hours)

Part III) Context-sensitive languages & Turing machines & decidability. (9 Hours)

Course Assessment Details

S.No	Name of the Assessment	Nos.	Max. Marks	Weightage %	Mode
1	Quizzes	15	20	30	AUMS/AMP LE
2	Tutorial/Assignment	5	20	20	AUMS/AMP LE
3	Case Study(in Groups)	1	20	20	MS Teams
4	EndSem-Online Quiz	1	50	15	AUMS
5	EndSem-Viva	1	15	15	MS Teams
		100			

Faculty Team

S.No	Name of the Faculty	Section	Mail Id
1	Ms.P.Malathi	Α	p_malathy@cb.amrita.edu
2	Ms.R.Sujee	В	r_sujee@cb.amrita.edu
3	Ms.T.Bagyammal	С	t_bagyammal@cb.amrita.edu
4	Dr. M. Senthil Kumar	D	m_Senthil@cb.amrita.edu
5	Ms. M.Prathilothamai	E	m_prathilothamai@cb.amrita.edu

Mentor: Ms. M. Prathilothamai

Why Theory of Computation (TOC) is Important?

- To understand the nature of efficient computation.
- In theoretical **Computer Science** and **Mathematics**, the **TOC** is the branch that deals with how efficiently problems can be solved on a model of **computation**, using an algorithm.
- To understand and design a Compiler in better manner.
- Student will be able to answer all questions of important exams like GATE, ISRO, DRDO etc.

TOC: Practical Applications

Circuit Design and Verification

Finite Automata

Natural Language Processing

Linguistics (Modelling by grammar)

Game Development

Finite Automata as strategy models in decision making

TOC: Practical Applications

Finite Automata (FA)

- For the designing of lexical analysis of a compiler.
- For recognizing the pattern using regular expressions.
- For the designing of the combination and sequential circuits using Mealy and Moore Machines.
- Used in text editors.
- For the implementation of spell checkers.

Push Down Automata (PDA)

- For designing the parsing phase of a compiler (Syntax Analysis).
- For implementation of stack applications.
 - Evaluating the arithmetic expressions.
 - Solving the Tower of Hanoi Problem.

TOC: Practical Applications

Linear Bounded Automata (LBA)

- For implementation of genetic programming.
- For constructing syntactic parse trees for semantic analysis of the compiler.

Turing Machine (TM)

- For solving any recursively enumerable problem.
- For understanding complexity theory.

Interesting Applications & Tools

Interesting Applications

 Finite State Machines – Traffic Light Simulation

https://youtu.be/jLLAtxPNaC0

 Finite State Machines in Embedded Programming

https://youtu.be/0Fqa5RFZ29E

- Finite State Machines in games: Al https://youtu.be/ayssrKvqJ4g
- The AI of Half-Life: Finite State Machines https://youtu.be/JyF0oyarz4U