Universidade Federal Rural do Semi-Árido

ALGORITMOS E ESTRUTURAS DE DADOS I

Prof. Caio César de Freitas Dantas

BubbleSort

Ele é um algoritmo simples, apesar de não muito eficiente.

fase	i	j	v[1]	v[2]	v[3]	v[4]	v[5]
		1	46	39	55	14	27
		2	39	46	55	14	27
1º	1	3	39	46	55	14	27
		4	39	46	14	55	27
			39	46	14	27	55
	2	1	39	46	14	27	55
		2	39	46	14	27	55
2º		3	39	14	46	27	55
			39	14	27	46	55
		1	39	14	27	46	55
3∘	3	2	14	39	27	46	55
			14	27	39	46	55
		1	14	27	39	46	55
4º	4		14	27	39	46	55

Vamos analisar o funcionamento do algoritmo.

Suponha um vetor de inteiros com n elementos que queremos ordenar em ordem crescente.

- 1. Tomamos o primeiro elemento e analisamos o seu sucessor no array. Caso o sucessor seja menor que o antecessor, trocamos os dois de lugar.
- 2.Repetimos o passo 1 para todos os pares até o final do array. Ao final desse processo o elemento de maior valor ficará na última posição do array.
- 3. Repetimos a operação n vezes, uma para cada elemento. Ao final do processo o vetor estará ordenado.

Este algoritmo vai funcionar para qualquer vetor de inteiros.

- O algoritmo precisa percorrer o vetor inteiro várias vezes em sua execução (exatamente n² vezes).
- O número de operações a serem executadas é sempre o mesmo, indepentente de como os valores estão no vetor original, isto é, o tempo de "ordenar" um vetor já ordenado e de ordenar um vetor completamente não-ordenado, neste algoritmo, é o mesmo.

```
void bubbleSort(int v[], int n){
    int i, j;
    // passo 3
    for(j = 0; j < n; j++){
        // passo 2
        for(i = 0; i < n-1; i++){
            // passo 1
            if(v[i] > v[i+1]){
                int aux = v[i];
                v[i] = v[i+1];
                v[i+1] = aux;
```

Vamos analisar o funcionamento do algoritmo.

Podemos melhorar o algoritmo. A ideia básica continua sendo a mesma, mas a eficiência aumenta, pois melhoramos a performance dele para alguns casos mais comuns, adicionando as seguintes mudanças.

- 1. Adicionamos uma flag "ok" para indicar se uma passada pelo vetor não produziu nenhuma mudança. Isto é, se percorremos o vetor inteiro e nenhuma mudança foi necessária, podemos parar.
- 2. Sabemos que a cada execução do passo 2 um elemento vai para a sua posição final. Podemos tirar vantagem desse fato fazendo com que menos pares sejam comparados por iteração do loop mais interno.

A mudança pode parecer pequena, mas aumenta bastante a eficiência do algoritmo.

Para int $v[] = \{-10, 2, 0, 4, 6, 2, -5, 20, 7, 9\};$

P primeiro BubbleSort, possui 283 passos, enquanto o segundo só possui 190, uma melhora de quase 33%.

```
void betterBubbleSort(int v[], int n){
   int i, j, ok = 0;
   // passo 3
   for(j = 0; j < n && ok == 0; j++){
        // passo 2
       ok = 1;
       for(i = 0; i < n-j-1; i++){
           // passo 1
           if(v[i] > v[i+1]){
                    ok = 0;
                    int aux = v[i];
                    V[i] = V[i+1];
                    v[i+1] = aux;
```

- A primeira linha é executada somente 1 vez.
- O laço do passo 3 é executado n vezes.
- O laço do passo 2 é executado n vezes para cada execução do passo 3, portanto n² vezes.
- A condição if do passo 1 é executada sempre, portanto n² vezes.
- Portanto a estimativa seria da ordem de 1+ 2n² + α, onde α é a quantidade de vezes que as operações internas ao if do passo 1 são executadas.

Removendo as constantes e variáveis de menor ordem temos que a complexidade do BubbleSort, assintóticamente, é $O(n^2)$.

InsertionSort

É o método que percorre um vetor de elementos da esquerda para a direita e à medida que avança vai ordenando os elementos à esquerda.

O funcionamento do algoritmo é bem simples: consiste em cada passo a partir do segundo elemento selecionar o próximo item da sequência e colocá-lo no local apropriado de acordo com o critério de ordenação.

InsertionSort

i	v_1	U_2	v_3	v_4	v_5	v_6
1	34	17	68	29	50	47
2	17	34	68	29	50	47
3	17	34	68	29	50	47
4	17	29	34	68	50	47
5	17	29	34	50	68	47
	17	29	34	47	50	68

InsertionSort

INS	SERTION-SORT(A, n)	Tempo
1 p	oara j ← 2 até n faça	Θ(n)
2	$chave \leftarrow A[j]$	$\Theta(n)$
3	⊳ Insere A[j] em A[1j – 1]	
4	$i \leftarrow j-1$	$\Theta(n)$
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	$nO(n) = O(n^2)$
6	$A[i+1] \leftarrow A[i]$	$nO(n) = O(n^2)$
7	$i \leftarrow i - 1$	$nO(n) = O(n^2)$
8	A[i + 1] ← chave	O(n)

Consumo de tempo: $O(n^2)$

InsertionSort

```
void insercao (int vet, int tam){
int i, j, x;
                              0(n)
for (i=2; i<=tam; i++){
   x = vet[i];
                               0(n)
                              0(n)
   j=i-1;
   vet[0] = x;
                              0(n)
   while (x < vet[j]){ nO(n) = n^2
      vet[j+1] = vet[j]; nO(n) = n^2
                               n0(n) = n^2
       j--;
   vet[j+1] = x;
                               0(n)
```

Complexidade de tempo no pior caso: $\Theta(n2)$

Vetor em ordem decrescente

Comparações: $\Theta(n2)$

Trocas: $\Theta(n2)$

Complexidade de tempo no melhor caso: $\Theta(n)$

Vetor em ordem crescente

Comparações: $\Theta(n)$

Trocas: zero

Bom método a ser usado quando a sequência esta quase ordenada, ou quando se deseja adicionar poucos itens a uma sequência já ordenada.

Selection Sort

A ordenação por seleção ou selection sort consiste em selecionar o menor item e colocar na primeira posição, selecionar o segundo menor item e colocar na segunda posição, segue estes passos até que reste um único elemento.

Selection Sort

Fase	i	k	a_1	a_2	a_3	a_4	$a_{\scriptscriptstyle 5}$	a_6
1º	1	4	46	55	59	14	38	27
2º	2	6	14	55	59	46	38	27
3º	3	5	14	27	59	46	38	55
4º	4	4	14	27	38	46	59	55
5≗	5	6	14	27	38	46	59	55
			14	27	38	46	55	59

Selection Sort

Como funciona:

- 1. Encontre o menor elemento no array e troque-o de lugar com o primeiro elemento.
- 2. Encontre o segundo menor elemento e troque com o segundo elemento no array.
- 3. Encontre o terceiro menor elemento e troque com o terceiro elemento no array.
- 4. Repita o processo de encontrar o próximo menor elemento e trocá-lo na posição correta até que todo o array esteja ordenado.

Selection Sort

SE	SELECTION-SORT(A, n)			
1	para i ← 1 até n – 1 faça	Θ(n)		
2	min ← i	$\Theta(n)$		
3	para $j \leftarrow i + 1$ até n faça	$\Theta(n^2)$		
4	se A[j] < A[min] então min ← j	$\Theta(n^2)$		
5	$A[i] \leftrightarrow A[min]$	$\Theta(n)$		

Consumo de tempo no pior caso: $\Theta(n^2)$

Selection Sort

```
void selecao (int vet, int tam){
    int i, j, min, x;
    for (i=1; i<=n-1; i++){
       min = i;
    for (j=i+1; j<=n; j++){ n*n = n^2
         if (vet[j] < vet[min]) n^2</pre>
                                   n^2
           min = j;
    x = vet[min];
    vet[min] = vet[i];
   vet[i] = x;
```

Selection Sort

Complexidade de tempo no pior caso: $\Theta(n2)$

Comparações: $\Theta(n2)$

Trocas: $\Theta(n)$

Complexidade de tempo no melhor caso: $\Theta(n2)$

Selection Sort

• Uma vantagem do Selection Sort é que entre os algoritmos de ordenação ele apresenta uma das menores quantidades de movimentos entre os elementos, assim pode haver algum ganho quando se necessita ordenar estruturas complexas.

• Uma desvantagem é que o número de comparações é igual para o melhor caso, caso médio e o pior caso. Assim, mesmo que o vetor esteja ordenado o custo continua quadrático (n 2).

QuickSort

É um algoritmo de comparação que emprega a estratégia de "divisão e conquista". A ideia básica é dividir o problema de ordenar um conjunto com n itens em dois problemas menores. Os problemas menores são ordenados independentemente e os resultados são combinados para produzir a solução final.

Basicamente a operação do algoritmo pode ser resumida na seguinte estratégia: divide sua lista de entrada em duas sub-listas a partir de um pivô, para em seguida realizar o mesmo procedimento nas duas listas menores até uma lista unitária.

QuickSort

Funcionamento do algoritmo:

- Escolhe um elemento da lista chamado pivô.
- Reorganiza a lista de forma que os elementos menores que o pivô fiquem de um lado, e os maiores fiquem de outro. Esta operação é chamada de "particionamento".
- Recursivamente ordena a sub-lista abaixo e acima do pivô.

QuickSort

P#	ARTICIONE(A, p, r)	Tempo
1	$x \leftarrow A[r] > x \in o$ "pivô"	Θ(1)
2	$i \leftarrow p-1$	Θ(1)
3	para $j \leftarrow p$ até $r-1$ faça	$\Theta(n)$
4	se $A[j] \leq x$	$\Theta(n)$
5	então <i>i</i> ← <i>i</i> + 1	O(n)
6	$A[i] \leftrightarrow A[j]$	O(n)
7	$A[i+1] \leftrightarrow A[r]$	Θ(1)
8	devolva i + 1	Θ(1)

```
QUICKSORT(A, p, r)

1 se p < r

2 então q \leftarrow PARTICIONE(A, p, r)

3 QUICKSORT(A, p, q - 1)

4 QUICKSORT(A, q + 1, r)

p q r

A 11 22 33 33 44 55 66 77 88 99
```

$$T(n) = \Theta(2n+4) + O(2n) = \Theta(n)$$

Conclusão:

A complexidade de PARTICIONE é $\Theta(n)$.

QuickSort

```
void swap(int* a, int* b) {
   int t = *a;
   *a = *b:
   *b = t:
int partition (int arr[], int low, int high){
    int pivot = arr[high];
    int i = (low - 1);
    for (int j = low; j <= high- 1; j++){
                                            void quickSort(int arr[], int low, int high){
       if (arr[j] <= pivot){</pre>
                                                 if (low < high) {</pre>
           i++;
                                                      int pi = partition(arr, low, high);
           swap(&arr[i], &arr[j]);
                                                      quickSort(arr, low, pi - 1);
    swap(&arr[i + 1], &arr[high]);
                                                      quickSort(arr, pi + 1, high);
    return (i + 1);
```

QuickSort

A complexidade de tempo do Quick Sort é aproximadamente O(nlog(n)) quando a seleção do pivô divide o array original em dois sub arrays de tamanhos quase iguais.

Por outro lado, se o algoritmo, que seleciona o elemento pivô dos arrays de entrada, produz consistentemente 2 sub-arrays com uma grande diferença em termos de tamanho, o algoritmo de ordenação rápida pode atingir a complexidade temporal de pior caso de $O(n^2)$.

QuickSort

A complexidade de tempo do QUICKSORT no pior caso é $\Theta(n2)$.

A complexidade de tempo do QUICKSORT é O(n2).

- Esse algoritmo divide o problema em pedaços menores, resolve cada pedaço e depois junta (merge) os resultados.
- O vetor será dividido em duas partes iguais, que serão cada uma divididas em duas partes, e assim até ficar um ou dois elementos cuja ordenação é trivial.
- Para juntar as partes ordenadas os dois elementos de cada parte são separados e o menor deles é selecionado e retirado de sua parte. Em seguida os menores entre os restantes são comparados e assim se prossegue até juntar as partes.

- Dividir e Conquistar;
- Divide, recursivamente, o conjunto de dados até que o subconjunto possua 1 elemento
- Combina 2 subconjuntos de forma a obter 1 conjunto maior e ordenado
- Esse processo se repete até que exista apenas 1 conjunto.
- Divida o vetor em 2 subvetores (ao meio) recursivamente até ele ter o tamanho 1. Intercale pares de elementos adjacentes.
- Repita esse processo até restar apenas um arquivo de tamanho n.


```
função mergesort (vetor a)
     se (n == 1) retornar a
     vetor 11 = a[0] \dots a[n/2]
     vetor 12 = a[n/2 + 1] \dots a[n]
     11 = mergesort(l1)
     12 = mergesort(12)
     retornar mesclar(l1, l2)
fim da função mergesort
```

```
função mesclar (vetor a, vetor b)
    vetor c
     enquanto (a e b têm elementos)
          if (a[0] > b[0])
               adicionar b[0] ao final de c
               remover b[0] de b
          senão
               adicionar a[0] ao final de c
               remover a[0] de a
     enquanto (a tem elementos)
          adicionar a[0] ao final de c
          remover a[0] de a
     enquanto (b tem elementos)
          adicionar b[0] ao final de c
          remover b[0] de b
     retornar c
fim da função mesclar
```

```
void mergeSort(int vetor[], int comeco, int fim){
   if (comeco < fim) {
      int meio = (fim+comeco)/2;

      mergeSort(vetor, comeco, meio);
      mergeSort(vetor, meio+1, fim);
      merge(vetor, comeco, meio, fim);
   }
}</pre>
```

```
void merge(int vetor[], int inicio, int meio, int fim) {
int com1 = inicio, com2 = meio+1, comAux = 0, vetAux[fim-inicio+1];
while(com1<=meio && com2<=fim){</pre>
if(vetor[com1] <= vetor[com2]){</pre>
vetAux[comAux] = vetor[com1];
com1++;
}else{
vetAux[comAux] = vetor[com2];
com2++; }
comAux++; }
while(com1<=meio){ //Caso ainda haja elementos na primeira metade
vetAux[comAux] = vetor[com1];
comAux++; com1++; }
while(com2<=fim){ //Caso ainda haja elementos na segunda metade
vetAux[comAux] = vetor[com2];
comAux++;com2++; }
for(comAux=inicio;comAux<=fim;comAux++){ //Move os elementos de volt</pre>
//para o vetor original
vetor[comAux] = vetAux[comAux-inicio];
```

MergeSort

Complexidade de tempo: $\Theta(n \lg n)$

Comparações: $\Theta(n \lg n)$

Trocas: $\Theta(n \lg n)$

O pior caso e o melhor caso tem a mesma complexidade.

Utiliza mais memória para poder ordenar (vetor auxiliar).

Comparação

- Em comparação a outros algoritmos de divisão e conquista, como o Quicksort, o Merge apresenta uma complexidade semelhante.
- Já em comparação a algoritmos mais básicos de ordenação por comparação e troca (bubble, insertion e selection sort), o Merge é mais rápido e eficiente quando é utilizado sobre uma grande quantidade de dados.
- Para entradas pequenas os algoritmos de ordenação por comparação mais básicos são pró-eficientes.

Comparação

Algoritmo	Tempo				
	Melhor	Médio	Pior		
Merge sort	$O(n \log_2 n)$	$O(n \log_2 n)$	$O(n \log_2 n)$		
Quick sort	$O(n \log n)$	$O(n \log n)$	$O(n^2)$		
Bubble sort	O(n)	$O(n^2)$	$O(n^2)$		
Insertion sort	O(n)	$O(n^2)$	$O(n^2)$		
Selection sort	$O(n^2)$	$O(n^2)$	$O(n^2)$		

FIM!