Discussion Session 9: Red-Black Trees

CS 225: Data Structures

& Software Principles

Agenda

- Red-Black Trees
- Red-Black Tree Properties
- Operations on Red-Black Trees
 - Insert
 - Case-wise Analysis
 - Delete
 - Case-wise Analysis

By the end of this class, you

- Need to
 - Understand the properties of Red-Black Trees
 - Manually simulate Insertion and Deletion in these trees.
- Might want to be able to implement Red-Black Trees

Red-Black Trees

- Red-Black trees are BSTs in which every node has an additional color attribute (can be either red or black), and which satisfies 3 additional properties (more about them later).
- Imposing the additional properties ensures that the tree is approximately **balanced**.
- So, now every child pointer can point to a red child or a black child (**important:** we treat the case in which the pointer points to a NULL as a pointer to a black child).

Agenda

- Red-Black Trees
- Red-Black Tree Properties
- Operations on Red-Black Trees
 - Insert
 - Case-wise Analysis
 - Delete
 - Case-wise Analysis

Red-Black Trees

- Red-Black Tree Properties
 - Any red node has only black children (remember that NULL pointers are considered as pointers to black children).
 - Every path from a node to a descendant leaf has the same number of black nodes.
 - The root node is always a black node.

Example: Red-Black Tree?

Example: Red-Black Tree!

Agenda

- Red-Black Trees
- Red-Black Tree Properties
- Operations on Red-Black Trees
 - Insert
 - Case-wise Analysis
 - Delete
 - Case-wise Analysis

Delete / Insert

- Insert and Delete operations modify the tree and can violate the Red-Black tree properties.
 - We will start with the BST Insert/Delete.
 - We then may need to fix the tree to restore the properties.
 - Change colors.
 - Change structure (rotate, recall AVL trees).

Agenda

- Red-Black Trees
- Red-Black Tree Properties
- Operations on Red-Black Trees
 - **■** Insert
 - Case-wise Analysis
 - Delete
 - Case-wise Analysis

Inserts

- Insert the node (12) as if we had a simple BST.
- Color the new node red. What properties are broken?

Inserts

- Insert the node (12) as if we had a simple BST.
- Color the new node red. What properties are broken?
 - Red node 10 does not have two black children
- We then go up the tree and either:
 - Move the violation up while making sure property 2 holds, or perform some rotations and stop.
 - As we go up we can encounter six possibilities (but three are symmetric to the other three).

Inserts: Case 1.

- If both the node being inserted (n) and its uncle are red.
 - Grandparent of n must be black.
 - Color both the parent and the uncle black, and grandparent red.
 - Keep going up.

Inserts: Case 2.

- \blacksquare If \mathbf{n} 's uncle is black and \mathbf{n} is a *right* child.
 - Left rotation.
 - None of the properties are affected.
 - Reduces to case 3.

Inserts: Case 3.

- If **n**'s uncle is black and **n** is a *left* child.
 - Right rotate and re-color.
 - \blacksquare The parent of **n** is black and we are done.

Inserts: Example [Case 1]

Inserts: Example [Case 3]

Inserts: Example [Case 3]

Inserts: Example [Fixed]

Agenda

- Red-Black Trees
- Red-Black Tree Properties
- Operations on Red-Black Trees
 - Insert
 - Case-wise Analysis
 - **■** Delete
 - Case-wise Analysis

Delete

- Delete the node as if we had a simple BST.
 - Replace the deleted node **n** with its in-order successor or predecessor **k**.
- If the node \mathbf{k} that was spliced out was red than no properties are violated (e.g. $\mathbf{n} = 12$, $\mathbf{k} = 16$).
- If \mathbf{k} is black, any path that previously contained \mathbf{k} has one fewer black nodes (e.g. $\mathbf{n} = 24$).

Delete

- Delete the node as if we had a simple BST.
 - Replace the deleted node **n** with its in-order successor or predecessor **k**.
- If the node **k** that was spliced out was red than no properties are violated (e.g. **n** = 12, **k** = 16).
- If k is black, any path that previously contained k has one fewer black nodes (e.g. n = 24).
 - **k** has at most one child (**p**), we push its blackness to its child or null node.
- If the **k**'s child **p** was already black, we fix the tree by moving the "extra black" up the tree. Four cases are possible.

- If the sibling w of p is red
 - Left rotate and re-color.
 - New sibling of p is black, Case 1 reduces to case 2,3, or 4.

- If the sibling w is black and both children of
 w are black
 - Remove 'one black' from **p** and color **w** red.
 - Push the problem up the tree

- If the sibling w is black and w's left child is red, and its right child is black.
 - Switch color of w and its left child and right rotate.
 - Reduces to Case 4.

- If the sibling w is black and w's right child is red:
 - Left rotate and re-color.
 - Done.

Deletes: Example [Case 1]

Deletes: Example [Case 3]

Deletes: Example [Case 4]

Right rotate, re-color

Deletes: Example [Fixed]

Red-Black Tree Applets

http://www.ece.uc.edu/~franco/C321/html/R edBlack/redblack.html

http://reptar.uta.edu/NOTES5311/REDBLAC K/RedBlack.html

Summary

- Red-Black Trees
- Red-Black Tree Properties
- Operations on Red-Black Trees
 - Insert
 - Case-wise Analysis
 - Delete
 - Case-wise Analysis