1 C Progra		ig Language				2.4.1 2s Complement on Addition Algorithm: (1) Perform binary addition. (2) Ignore the carry out of the MSB. (3) Check for 6						MIPS		
Type	sizeof	range				overflow.	mary add	11110111 (2) 1811010 1111	curry our o	the most (o) eneer to		1. Use lui to set the upper 16-bit: lui \\$t0, 0xAAAA. Note that lui sets the lower 16		
int	4 bytes	20.0000010000	nt, thus (-2^{31}) to (2^3)	³¹ – 1)		Example, 2s Complemer		4440	0	4404		bits to 0 automatically		
	,	OK (-2,147,48	33,648 to 2,147,483,6			+3 0011 +4 0100	-2 -6	1110 1010	-3 -6	1101 1010		2. Use or i to set the lower-order bits: ori \$t0, \$t0, 0xF0F0		
float	4 bytes		oit exponent (excess-								6.2	Memory Organisation		
double char	8 bytes 1 byte		-bit exponent (excess + 1 parity bit), A is 1		02-bit mantissa	+7 0111 (No overflow 2.4.2 1s Complement c			ow) -9 (1)0111 (Overflow!)		ach address contains 1 byte = 8 bit of content.		
		there is an implicit l		100 0001		Algorithm: (1) Perform			e carry out (of the MSR add 1 to the		emory addresses are 32-bit long (2 ³⁰ memory words).		
1.2 Format S			cuaming out 1			result. (3) Check for over		dition. (2) if there i	s carry out t	of the Mob, add I to the	P 34	registers, each 4-byte long. Each word is also 4-byte long. (Note that words are usually		
Type	•	fn	Type	fn		If doing 1s complement		on decimals and the	re is an over	flow from MSB, add 1 to	0 2'	bytes)		
%c char		printf/scanf	%f float	scanf		LSB of decimal portion					6.3	MIPS Instruction Classification		
%d int %f float	/double	printf/scanf printf	%lf double	scanf		Example, 1s Complemer +3 0011	t 4-bit	1101	-3	1100		R-format		
1.3 Escape S			%p pointers	printi	L	+4 0100	-2 -5	1010	-6	1001) \$rd, \$rs, \$rt		
Mean	-	Meaning				 +7				1\0101		1 \$rd, \$rt, shamt (rs = 0)		
\n new li		\" double-quote	" -			+/ OIII (NO OVELITOW) -/ (1	1	-9 (1)0101 1		I-format		
\t tab		% percent %						1000 (N61		0110 (0	• In	o \$rt, \$rs, Immediate nmediate is a <mark>16 bit 2s complement</mark> constant		
2 Number	ring Sy	stems				2.5 Floating Point		1000 (No overfl	ow)	0110 (Overflow!)	• D	isplacement address: offset from address in rs		
2.1 Data Rep						 Single precision 32 bit 	s: 1-hit si	gn. 8-bit exponent (excess-127)	23-bit mantissa	P	C-relative address: no of instructions from next instruction $PC = PC + 4 + (Immediate \times 4)$		
 1 byte = 8 b 	its, 1 nil	oble = 4 bits				 Double precision 64 b 					6.3.3	J-format (can jump up to 256MB range)		
		of bytes (usually in po		51		*		• •		+ 127 = 129 = 1000 0001;		Immediate		
	-	up to 2^n values. Thu	is, to present m value	es, log ₂ n	n 1s required	Sign Exponent	Mantis	ssa	, -		• ps	eudo-direct address: remove last 2 bit (since word-aligned, by default the 2 least signif-		
2.2 Decimal			2/1 1 : : :	1 1ct 1.	: (I CD)	1 10000001 1010000 Hence, 1100 0000 1101 0	00000000	00000000	~0 <i>D</i> 00000			ant bits are 00) and 4 most significant bits (always the same as instruction address). xxxx0000111100001111000011110000, immediate is 000011110000111110000111100		
		repeated division-b				(as float= -6.5, as int=			200000016)	'			
		ted multiplication-by		ı,ı- aıg	it ivi5b)	3 Pointers and Fu		. ,			1	Instruction Set Architecture		
2.3 Kepreser		f Signed Binary Num Negation				3.1 Pointers						modern processors: General-Purpose Register (GPR) is most common. RISC typi-		
Sign-and-		invert the sign b	Range oit $-(2^{n-1}-1)$ to 2	n-1_1	Zeroes +0 ₁₀ and -0 ₁₀	 Convention: int *abo %p used as format mo 	; AND vo	oid f(int *);	nted out in	havadacima!		uses Register-Register (Load/Store) design, e.g. MIPS, ARM. CISC use a mixture of		
Magnitude		(leading bit)	(2 -1)102	-1	, 0 ₁₀ and -0 ₁₀	 %p used as format mo When we do ptr++, it 	increases	the address by the	ize of the de	nexaucciilidi atatyne	1 ~	ster-Register and Register-Memory, e.g. IA32		
1s Complem		invert all the bits	$-(2^{n-1}-1)$ to 2	$2^{n-1}-1$	+0 ₁₀ and -0 ₁₀	3.2 Functions		and address by tile s	or the ue) PC		Data Storage		
2s Complem		invert all the bits, the			+0 ₁₀ and 0 ₁₀	 Function prototype (ji 						ck architecture: Operands are implicitly on top of the stack. cumulator architecture: One operand is implicitly in the accumulator (a special		
		add 1			10	 Without function prot 	otypes, co	ompiler assumes def			register)			
		e MSB (Most Signific	ant Bit) represents s	sign.		4 Arrays, Strings, Structures						• General-purpose register architecture : only explicit operands		
2.3.1 Sign-ar						4.1 Arrays						gister-memory architecture : one operand in memory.		
		1111) to (0111 1111)							Register-register (or load store) architecture			
		= +0 ₁₀ and 1000 0000 = +011 0100 ₂ = +52 ₁₀		(001 0011)2 = -(19).2	refers to the address of the first element (i.e &a[0])					· Me	• Memory-memory architecture : an operands in memory.		
		t (Diminished Radi		(501 0011	12 - (17)10	• int source[5]; int dest[5]; source = dest is illegal!					7.2 Memory Addressing Modes			
	•	x - 1, if given binary	,			4.2 String					• Endianness : Relative ordering of bytes in a multiple-byte word stored in memory			
		0000) to (0111 1111)		Tim diray of characters, terminated by a nair character (v (115 cm varaer v)					• Big-endian : Most significant byte stored in lowest address			
 Zeroes: (00) 	00 0000)	$= +0_{10}$ and (1111 11	$11) = -0_{10}$,		initiations that str[1] togg for that str[1] (t) g f g f (t) j					• Little-endian : Least significant byte stored in lowest address ("reverse-order") • Addressing modes : in MIPS, only 3: Register add \$t1, \$t2, \$t3, Immediate			
		$(0000\ 1110)_2 = (14)_1$		(0000 111	$0)_2 = -(14)_{10}$	• Read from stdin: fgets(str, size, stdin); // reads until (size - 1) or '\n' and scanf("%s", str); // reads until whitespace				11 (S1Ze - I) or '\n		\$t1, \$t2, 98, Displacement lw \$t1, 20(\$t2)		
		t (Radix complemen								it with '\0' if necessary		Operations in the instruction set		
		x, if given binary: in				(Lect 5, Slide 21))					1.3	•		
Range (8-biZero: (0000		$(0000) = -128_{10}$ to (0	$(11111111) = +127_{10}$			Time to staduti parts (ser /) which is equivalent to prince (wo (ii) ser /				\n", str)		ahl's law: make common cases fast. Optimise frequently used instructions (Load : 22%, litional Branch : 20%, Compare 16%, Store : 12%)		
		$(0000\ 1110)_2 = (14)_1$	$0.(1111\ 0010)_{2c} = -0$	(0000 111	$(0)_2 = -(14)_{10}$	- strlen(s): returns the no of chars in s						•		
2.3.4 Excess-		/2 (2.4/1	0, (125	,	/2 (/10	- strem(s). returns	ompare A	SCII values of corre	sponding ch	aracters, returns Z+ if s1	7.4 Instruction Formats s1 • Instruction Length:			
 Also known 	as offse	t binary. Use 0000 to	represent -k (lowes	st number	possible)	is lexographically greater, 0 if equal, Z [−] otherwise				,,	• Variable-length instructions : Require multi-step fetch and decode. Allow for a mo			
		n -bit number, $k = 2^{n}$ -	$-1 - 1$ or $k = 2^{n-1}$			- strncmp(s1, s2, n): compare first n chars of s1 and s2					flexi	ole (but complex) and compact instruction set.		
2.3.5 Comparison											• Fix	ed-length instructions: used in most RISC, e.g. MIPS instructions are 4-bytes long.		
Value Sig		1s Comple-		Excess-	8 Value	E.g. char s[4]; s - strncpt(s1, s2,						w for easy fetch and decode, simplify pipelining and parallelism. Instruction bits are		
+7 011	gnitude	ment 0111	ment 0111	1111	+7	4.3 Structures	.,, сору с	11100 // 011010 01 00	6 Pointec	. 0, 02 10 01	scard • Hy	brid instructions: a mix of variable- and fixed-length instructions.		
+6 011		0110	0110	11110	+6	 Structures allow group 				nt types.	• Ins	truction Fields: opcode (unique code to specify the desired operation) and operands		
+5 010)1	0101	0101	1101	+5	Assignment result2						or more additional information needed for the operation)		
+4 010 +3 001		0100	0100	1100 1011	+4	 Passing structure to f modified by function 	unction:	the entire structure	ıs copied,	original structure is no	^t 7.5	Encoding the Instruction Set		
+3 001 +2 001		0011	0011	1011	+3 +2		nge origin	nal structure, one	can use no	ointer. Syntactic sugar	. e Ex	panding Opcode scheme:		
+1 000)1	0001	0001	1001	+1	(*player_ptr).name			изс ро		• E	g. Type-A: 6-bit opcode, Type-B: 11-bits opcode. Max no of instructions =		
+0 000 -0 100		0000	0000	1000	+0	• È.g.:	. ,	. ,				$(2^6 - 1) \times 2^5 = 2017$		
-0 100		11110	11111	0111	-0 -1	typedef struct {						rpe-A instruction, Type-B "steals" [2 ⁶ – 1] opcodes from Type-A to prefix, each prefix		
-2 101	10	1101	1110	0110	-2	int day, month,	ear;				1	$\log [2^{11-6} = 2^5]$ opcodes)		
-3 101		1100	1101	0101	-3	<pre>} date_t; typedef struct {</pre>					8	Datapath		
-4 110 -5 110		1011	1100	0100 0011	-4 -5	int stuNum;					8.1	Instruction Execution Cycle		
-6 111	10	1001	1010	0010	-6	<pre>date_t birthday; } student_t;</pre>						MIPS: (1)Fetch (2)Decode & Operand Fetch (3)ALU (4)Memory Access (5)Result Write		
-7 111	11	1000	1001	0001	-7	student_t s1 = {10	19858, {3	31, 12, 2020}}; /	/ s1.birth	nday.month == 12				
-8 -	n an b!:-		1000	0000	-8	5 C for Hardware					• Fet	ch : Get instruction from memory, address is in Program Counter (PC) Register code : Find out the operation required		
2.4 Operatio			do sian automais - 1	hafara ac	nnlomontin ~	5.1 Code Compilation P	_					erand Fetch : Get operation required		
		tion: $A - B = A + (-B)$ ow Check: if MSB α				C Program (.c) -> Prepr		> Preprocessed code	(.j) -> Com	niler -> Assembly code	I	ecute: Perform the required operation		
		st be the same too.	n mot and second a			(.asm) -> Assembler -> (sult Write (Store) : Store the result of the operation		

- **8.2 Elements** Adder Input: two 32-bit numbers, Output: sum of input numbers • Register File Input: three 5-bit: Read register 1, Read register 2, Write register; 32-bit
- Write data, Output: two 32-bit Read data 1, Read data 2; Control: 1-bit RegWrite (1 = write) • Multiplexer Input: n lines of same width, Control: m bits where $n = 2^m$, Output: Select
- i^{th} input line if control = i• Arithmetic Logic Unit: Input: two 32-bit numbers, Control: 4-bit to decide the particu-
- lar operation, **Output**: 32-bit ALU result, 1-bit isZero? ALUcontrol Function ALUcontrol Function

 Data Memory 	Input: 32-bit	t memory addres	s, 32-bit writ
0010	add	1100	NOR
0001	OR	0111	slt
0000	AND	0110	Subtract

ite data; Control: 1-bit MemWrite, 1-bit MemRead; Output: 32-bit ReadData

- Useful MIPS commands
 To get a NOT operation: nor \$t0, \$t0 \$zero OR xor \$t0, \$t0 \$t2 where \$t2 has parity 1
- for all its bits

 To get a Branch if less than or equal (i.e BLE \$\$1,\$\$2, target) can use slt \$\$1\$ \$\$2\$\$51 -> beq \$\$11, \$\$zero, target OR
- sub \$t1, \$t2, \$s1 -> slt \$t2, \$t1, \$zero -> beq \$t2, \$zero, target

Order of precedence

F					
Operator Type	Operator		Associativity		
Primary expression operators	() []> expr++ expr		Left to Right		
Unary operators	* & + - ! ~ ++exprexpr (typecas	t) sizeof	Right to Left		
Binary operators	* / %	Left to Right			
	+ -				
	< > <= >=				
	== !=		expr1 : expr2 =		
	&&	exprl if	cond else con		
Ternary operator	?:		Right to Left		
Assignment operators	= += -= *= /= %=		Right to Left		

Decreasing order of precedence

ALU Control

	ALUop			ALU					
	MSB	LSB	F5	F4	F3	F2	F1	F0	control
lw	0	0	X	Х	X	Х	Х	Х	0010
sw	0	0	Х	Х	Х	Х	Х	Х	0010
beq	øχ	1	X	X	X	Х	X	X	0110
add	1	8 X	ΧX	øχ	0	0	0	0	0010
sub	1	ØX	ΛX	øχ	0	0	1	0	0110
and	1	ØX	ΛX	ØΧ	0	1	0	0	0000
or	1	Ø X	/x	øχ	0	1	0	1	0001
slt	1	ØX	Λx	øχ	1	0	1	0	0(1)1 1

Control Signal Output

Control	Shirtor Signar Surput								
	RegDst	ALUSTC	MemTo	Reg	Mem	Mem	Branch	ALUop	
	Regust	ALOSIC	Reg	Write	Read	Write	Branch	op1	op0
R-type	1	0	0	1	0	0	0	1	0
lw	0	1	1	1	1	0	0	0	0
sw	Х	1	Х	0	0	1	0	0	0
beq	X	0	Х	0	0	0	1	0	1
Complet	omplete Data Path								

j and jr instruction datapath

ASCII Table

Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
0	0	0		32	20	40	[space]	64	40	100	@	96	60	140	,
1	1	1		33	21	41	!	65	41	101	A	97	61	141	a
2	2	2		34	22	42		66	42	102	В	98	62	142	b
3	3	3		35	23	43	#	67	43	103	C	99	63	143	C
4	4	4		36	24	44	\$	68	44	104	D	100	64	144	d
5	5	5		37	25	45	%	69	45	105	E	101	65	145	е
6	6	6		38	26	46	&	70	46	106	F	102	66	146	f
7	7	7		39	27	47		71	47	107	G	103	67	147	g
8	8	10		40	28	50	(72	48	110	Н	104	68	150	h
9	9	11		41	29	51)	73	49	111	1	105	69	151	i
10	Α	12		42	2A	52	*	74	4A	112	J	106	6A	152	j
11	В	13		43	2B	53	+	75	4B	113	K	107	6B	153	k
12	C	14		44	2C	54	,	76	4C	114	L	108	6C	154	1
13	D	15		45	2D	55	-	77	4D	115	M	109	6D	155	m
14	E	16		46	2E	56		78	4E	116	N	110	6E	156	n
15	F	17		47	2F	57	/	79	4F	117	0	111	6F	157	0
16	10	20		48	30	60	0	80	50	120	P	112	70	160	p
17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
19	13	23		51	33	63	3	83	53	123	S	115	73	163	S
20	14	24		52	34	64	4	84	54	124	T	116	74	164	t
21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
22	16	26		54	36	66	6	86	56	126	V	118	76	166	V
23	17	27		55	37	67	7	87	57	127	W	119	77	167	W
24	18	30		56	38	70	8	88	58	130	X	120	78	170	×
25	19	31		57	39	71	9	89	59	131	Y	121	79	171	У
26	1A	32		58	3A	72	:	90	5A	132	Z	122	7A	172	Z
27	1B	33		59	3B	73	;	91	5B	133	[123	7B	173	{
28	1C	34		60	3C	74	<	92	5C	134	1	124	7C	174	1
29	1D	35		61	3D	75	=	93	5D	135]	125	7D	175	}
30	1E	36		62	3E	76	>	94	5E	136	^	126	7E	176	~
31	1F	37		63	3F	77	?	95	5F	137	_	127	7F	177	

Positive Power of 2

Ехр	Val	Ехр	Val	Ехр	Val	Ехр	Val
2 ⁰	1	28	256	2 ¹⁶	65,536	224	16,777,216
2 ¹	2	29	512	2 ¹⁷	131,072	2 ²⁵	33,554,432
2^2	4	2 ¹⁰	1,024	2 ¹⁸	262,144	2 ²⁶	67,108,864
2^3	8	211	2,048	2 ¹⁹	524,288	2 ²⁷	134,217,728
2^4	16	212	4,096	220	1,048,576	2 ²⁸	268,435,456
2 ⁵	32	2 ¹³	8,192	221	2,097,152	229	536,870,912
2 ⁶	64	214	16,384	222	4,194,304	230	1,073,741,824
27	128	2 ¹⁵	32,768	2 ²³	8,388,608	231	2,147,483,648

Negative Power of 2

Exp	Val	Ехр	Val
2^{-1}	0.5	2^{-9}	0.001953125
2^{-2}	0.25	2^{-10}	0.0009765625
2^{-3}	0.125	2^{-11}	0.00048828125
2^{-4}	0.0625	2^{-12}	0.000244140625
2^{-5}	0.03125	2^{-13}	0.0001220703125
2^{-6}	0.015625	2^{-14}	0.00006103515625
2^{-7}	0.0078125	2^{-15}	0.000030517578125
2^{-8}	0.00390625	2^{-16}	0.0000152587890625