Σπυρος Φρονιμός - Μαθηματικός

⊠ : spyrosfronimos@gmail.com | ☐ : 6932327283 - 6974532090

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ 5 Αυγούστου 2016

ΓΕΩΜΕΤΡΙΑ Β΄ ΛΥΚΕΙΟΥ

Μέτρηση κύκλου

ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΚΑΝΟΝΙΚΟ ΠΟΛΥΓΩΝΟ (ν-ΓΩΝΟ)

Κανονικό ονομάζεται κάθε πολύγωνο το οποίο έχει όλες τις πλευρές του ίσες και όλες τις γωνίες του ίσες μεταξύ τους.

- Ένα κανονικό πολύγωνο συμβολίζεται ν-γωνο, όπου ν είναι ο φυσικός αριθμός που καθορίζει το πλήθος των πλευρών του πολυγώνου με $v \geq 3$.
- Κάθε κανονικό πολύγωνο εγγράφεται σε έναν κύκλο και ο κύκλος αυτός ονομάζεται κύκλος του πολυγώνου.
- Το κέντρο του περιγεγραμμένου κύκλου ονομάζεται κέντρο του πολυγώνου

ΟΡΙΣΜΟΣ 2: ΣΤΟΙΧΕΙΑ ΠΟΛΥΓΩΝΟΥ

Τα στοιχεία ενός κανονικού ν-γωνου είναι τα εξής:

1. Κεντρική γωνία

Η κεντρική γωνία είναι η γωνία που σχηματίζουν δύο ακτίνες του κύκλου του πολυγώνου που ενώνουν το κέντρο με δύο διαδοχικές κορυφές του. Συμβολίζεται με ω_{ν} .

2. Γωνία πολυγώνου

Η γωνία του πολυγώνου είναι η γωνία που σχηματίζουν δύο διαδοχικές πλευρές του. Συμβολίζεται φ_{ν} .

3. Πλευρά πολυγώνου

Η πλευρά ενός κανονικού πολυγώνου συμβολίζεται με λ_ν.

4. Απόστημα πολυγώνου

Το απόστημα ενός πολυγώνου είναι η ακτίνα του εγγεγραμμένου κύκλου του. Συμβολίζεται με a_{ν} .

5. Κέντρο πολυγώνου

Το κέντρο ενός κανονικού πολυγώνου είναι το κέντρο του περιγεγραμμένου κύκλου.

6. Ακτίνα πολυγώνου

Ακτίνα ενός κανονικού πολυγώνου ονομάζεται η ακτίνα του περιγεγραμμένου κύκλου. Συμβολίζεται R.

7. Περίμετρος - Εμβαδόν πολυγώνου

Η περίμετρος ενός καονικού πολυγώνου συμβολίζεται με P_{ν} ενώ το εμβαδόν του με E_{ν} .

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΣΧΕΣΕΙΣ ΣΤΟΙΧΕΙΩΝ ΠΟΛΥΓΩΝΟΥ

Για τα στοιχεία ενός κανονικού ν-γωνου ισχύουν οι παρακάτω σχέσεις:

i.
$$\omega_{\nu} = \frac{360^{\circ}}{\nu}$$

i.
$$\omega_{\nu}=\frac{360^{\circ}}{\nu}$$
 iii. $a_{\nu}^2+\frac{\lambda_{\nu}^2}{4}=R^2$ v. $\lambda_{\nu}=2R\cdot\eta\mu\left(\frac{\omega_{\nu}}{2}\right)$ vii. $P_{\nu}=\nu\cdot\lambda_{\nu}$ iii. $\varphi_{\nu}=180^{\circ}-\omega_{\nu}$ iv. $a_{\nu}=R\cdot\sigma\nu\left(\frac{\omega_{\nu}}{2}\right)$ vi. $\lambda_{\nu}=2a_{\nu}\cdot\epsilon\varphi\left(\frac{\omega_{\nu}}{2}\right)$ viii. $E_{\nu}=\frac{1}{2}P_{\nu}\cdot a_{\nu}$

v.
$$\lambda_{\nu} = 2R \cdot \eta \mu \left(\frac{\omega_{\nu}}{2}\right)$$

vii.
$$P_{\nu} = \nu \cdot \lambda_{\nu}$$

ii.
$$\varphi_{\nu} = 180^{\circ} - \omega$$

iv.
$$a_{\nu} = R \cdot \text{sun}\left(\frac{\omega_{\nu}}{2}\right)$$

vi.
$$\lambda_{\nu} = 2a_{\nu} \cdot \epsilon \varphi \left(\frac{\omega_{\nu}}{2}\right)$$

viii.
$$E_{\nu} = \frac{1}{2} P_{\nu} \cdot a_{\nu}$$

ΘΕΩΡΗΜΑ 2: ΛΟΓΟΣ ΣΤΟΙΧΕΙΩΝ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ

Ο λόγος των πλευρών, ο λόγος των ακτίνων και ο λόγος των αποστημάτων δύο κανονικών ν-γωνων ισούνται με το λόγο ομοιότητας τους.

$$\frac{\lambda_{\nu}}{\lambda_{\nu}'} = \frac{R}{R'} = \frac{a_{\nu}}{a_{\nu}'}$$