LLM Project Report

1. Student Information

• Student Name: Joel Biju Thomas

• **Student ID:** 222434997

• **Date Submitted:** 18/05/2025

2. Project Introduction

Title: Sentiment Analysis in Healthcare

Overview:

We fine-tune an instruction-tuned 7 B-parameter LLM (Mistral-7B-Instruct) on patient reviews from Drug Reviews Dataset, using parameter-efficient LoRA adapters to achieve high accuracy while minimizing GPU memory.

Motivation:

Accurate automated sentiment analysis of patient feedback uncovers insights into drug efficacy and side effects, guiding healthcare improvements and empowering data-driven decision-making.

3. API/Token Setup

• Provider: Hugging Face

- Steps:
 - 1. Generated a read-scope token under **Settings** → **Access Tokens** on huggingface.co.
 - 2. Stored the token as a Colab secret.
 - 3. In notebook:

[] from huggingface_hub import login
 login()

4. Environment Setup

• Platform: Google Colab

• **GPU:** T4 GPU

• **Python:** 3.10

• Key Libraries and Environment Setup:

```
import time
import torch
import matplotlib.pyplot as plt
import seaborn as sns

from transformers import (
    AutoTokenizer,
    AutoModelForSequenceClassification,
    BitsAndBytesConfig,
    TrainingArguments,
    Trainer,
    DataCollatorWithPadding
)

from datasets import load_dataset
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, f1_score
from huggingface_hub import login
from peft import prepare_model_for_kbit_training, LoraConfig, get_peft_model
```

5. LLM Setup

Model: Mistral-7B-Instruct-v0.3

• Provider: Hugging Face

• Key Libraries & Dependencies:

```
!pip install transformers==4.39.3 datasets==2.18.0 accelerate bitsandbytes scikit-learn sentencepiece evaluate matplotlib seaborn --upgrade -q
!pip install transformers datasets torch accelerate bitsandbytes scikit-learn sentencepiece evaluate matplotlib seaborn --upgrade -q
!pip install datasets --upgrade -q
!pip install datasets --upgrade -q
!pip install huggingface_hub --upgrade -q
```

6. Dataset Description

- Source: Zakia/drugscom reviews (from Hugging Face Datasets)
- Access Link: https://huggingface.co/datasets/Zakia/drugscom-reviews
- Variable Description:

> review: Text review by patient

rating: Integer 1–10

➤ labels: Sentiment mapped (Negative, Neutral, Positive)

• Load & Preprocess Dataset:

```
MODEL_NAME
    MODEL_NAME = 'mistralai/Mistral-7B-In
DATASET_NAME = 'Zakia/drugscom_reviews'
                         = 'mistralai/Mistral-7B-Instruct-v0.3'
    NUM SAMPLES FOR TRAIN = 1000
    NUM_SAMPLES_FOR_EVAL = 1000
                        = 256
    MAX LENGTH
                        = 4
    BATCH_SIZE
    NUM_EPOCHS
                        = 1
    label2id = {'Negative':0, 'Neutral':1, 'Positive':2}
    id2label = {v:k for k,v in label2id.items()}
    INSTRUCTION = (
        'You are a medical expert. Classify the sentiment of the following patient review '
        'as Positive, Neutral, or Negative.'
    OUTPUT_DIR_BASE = './base_results'
    OUTPUT_DIR_LORA = './lora_results'
print('Loading dataset...')
     train_ds = load_dataset(DATASET_NAME, split='train').select(range(NUM_SAMPLES_FOR_TRAIN))
     eval_ds = load_dataset(DATASET_NAME, split='test').select(range(NUM_SAMPLES_FOR_EVAL))
     def map_and_label(ex):
         r = float(ex['rating'])
         s = 'Positive' if r \le 4 else ('Neutral' if r \le 6 else 'Negative')
         return {'labels': label2id[s]}
    train_ds = train_ds.map(map_and_label)
     eval_ds = eval_ds.map(map_and_label)
```

7. Improving LLM Performance

Step	Method	Description	Result
1	Zero-shot Prompt	Base model, no	65% accuracy
		examples	
2	Fine-tuning	LoRA adapters, 1	83% accuracy
	(LoRA)	epoch	•

```
# ==== Base Model Evaluation (8-bit, manual) ===
    print("\n=== Base Model Evaluation (8-bit, manual) ===")
    bnb_conf = BitsAndBytesConfig(
        load in 8bit=True.
        1lm_int8_enable_fp32_cpu_offload=True,
    model_base = AutoModelForSequenceClassification.from_pretrained(
        MODEL_NAME,
        quantization config=bnb conf,
        num labels=len(label2id).
        device map="auto",
    model_base.config.pad_token_id = tokenizer.pad_token_id
    model_base.eval()
    device = model_base.device
    from torch.utils.data import DataLoader
    from tqdm.auto import tqdm
    # keep batch_size=1 to minimize peak memory
    eval_loader = DataLoader(eval_ds, batch_size=1, collate_fn=data_collator)
    all preds, all_labels = [], []
    for batch in tqdm(eval_loader, desc="Evaluating Base"):
        labels = batch["labels"].numpy()
        inputs = {k: v.to(device) for k,v in batch.items() if k in ("input_ids", "attention_mask")}
        with torch.no_grad():
           logits = model_base(**inputs).logits
        preds = logits.argmax(-1).cpu().numpy()
        all_preds.extend(preds)
        all_labels.extend(labels)
```

```
# Load a pure 4-bit model on GPU (no offload)
bnb_conf_train = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb 4bit compute dtype=torch.bfloat16,
    11m int8 enable fp32 cpu offload=False, # ← turn OFF offloading during training
    offload_buffers=False
model_train = AutoModelForSequenceClassification.from_pretrained(
    MODEL NAME,
    quantization_config=bnb_conf_train,
    num_labels=len(label2id),
    device_map="auto",
model_train.config.pad_token_id = tokenizer.pad_token_id
# Prepare for k-bit (LoRA) training
model_train.gradient_checkpointing_enable()
model_kbit = prepare_model_for_kbit_training(model_train)
# Attach LoRA adapters
lora conf = LoraConfig(
    r=4,
    lora_alpha=8,
    target_modules=["q_proj","v_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="SEQ_CLS",
model_lora = get_peft_model(model_kbit, lora_conf)
# Trainer (keep batch=1, grad_accum=8)
training_args = TrainingArguments(
    output_dir="./lora_results",
    num_train_epochs=1,
    per device train batch size=1.
```

8. Benchmarking & Evaluation

• **Test Set:** 1000 reviews

• Metrics: Accuracy, Precision, Recall, F1-score, Confusion Matrix, Latency

Key Results:

o Base Model:

Acc: 0.6550 | Prec: 0.5984 | Rec: 0.6550 | F1: 0.6157 precision recall f1-score support 0 0.8645 0.9384 0.8999 666 1 0.1124 0.3372 0.1686 86 2 0.0526 0.0040 0.0075 248 0.6550 1000 accuracy macro avg 0.3432 0.4266 0.3587 1000 weighted avg 0.5984 0.6550 0.6157 1000

Raw CM:

[[625 27 14] [53 29 4] [45 202 1]]

Base Model Confusion Matrix

• Fine-tuned Model:

	Classification Report				
7		precision	recall	f1-score	support
	Negative	0.8860	0.9339	0.9094	666
	Neutral	0.2692	0.0814	0.1250	86
	Positive	0.7721	0.8468	0.8077	248
	accuracy			0.8390	1000
	macro avg	0.6424	0.6207	0.6140	1000
	weighted avg	0.8047	0.8390	0.8167	1000

Confusion Matrix:

[[622 11 33] [50 7 29] [30 8 210]]

• **Interpretation:** Fine-tuning with LoRA significantly improved Positive and Negative sentiment classification, though Neutral class remains challenging due to class imbalance.

9. UI Integration

• Tool Used: Gradio

• Key Features:

- > Textbox for review input
- > Confidence scores for each sentiment
- > "Flag" button to save edge cases
- Implementation Code:

```
!pip install gradio -q
     # Imports
import gradio as gr
import torch
     from collections import OrderedDict
     DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
     model lora.to(DEVICE)
     # Inference function
     def predict_sentiment(review: str, which_model: str):
         model = model_lora if which_model=="Fine-tuned (LoRA)" else model_base
        # build your prompt + tokenize
prompt = input_prompt(review)
toks = tokenizer(
            prompt,
             truncation=True,
            padding="max_length",
max_length=MAX_LENGTH,
        return_tensors="pt"
).to(DEVICE)
         # forward pass
         model.eval()
         with torch.no_grad():
            logits = model(**toks).logits
         probs = torch.softmax(logits, dim=-1)[0].cpu().numpy()
      # Gradio interface
     iface = gr.Interface(
          fn=predict_sentiment,
          inputs=[
               gr.Textbox(
                    lines=5.
                    placeholder="Type a drug review here...",
                    label="Patient Review"
          ],
          outputs=gr.Label(
               num_top_classes=3,
               label="Predicted Sentiment & Confidence"
          title="Healthcare Review Sentiment Classifier",
          description=(
               "Enter a drug review and click Submit to see whether it's "
               "**Negative**, **Neutral**, or **Positive**, with confidence scores."
          ),
     iface.launch(share=True, debug=True)
```

Healthcare Review Sentiment Classifier

 $\textbf{Enter a drug review and click Submit to see whether it's \textbf{Negative}, \textbf{Neutral}, or \textbf{Positive}, with confidence scores.}$

Patient Review		▶ Predicted Sentiment & Confidence	
The medication was not helpful at all.		Negative	
		Negative	
		Neutral 9%	
Clear	Submit	Positive 6%	
		Flag	