Reading Material

CS 5135/6035 Learning Probabilistic Models Lecture 22: Markov Chain Monte Carlo Methods II

Gowtham Atluri

November 23, 2018

• Chapter 6. Metropolis-Hastings Algorithms Christian Robert and George Casella. Introducing Monte Carlo Methods with R

- Siddhartha Chib and Edward Greenberg. 'Understanding the Metropolis-Hastings algorithm.' The American Statistician, 1995.
- George Casella and Edward I. George. 'Explaining the Gibbs sampler.' The American Statistician 46, 1992.

Topics

- Markov Chain Monte Carlo Methods
- Metropolis-Hastings Algorithm
 - Random-walk Metropolis-Hastings
 - Independent Metropolis-Hastings
 - Choosing q(x, y) or tuning
- Gibbs Sampling
 - Algorithm
 - Comparison with Metropolis-Hastings
 - As a special case of Metropolis-Hastings

Idea behind Markov Chain Monte Carlo Methods

• Instead of sampling i.i.d., sample from a Markov Chain

- Markov Chain- where we go next depends on our current state
- Monte Carlo Simulating data

Metropolis-Hastings Algorithm (General Version)

Algorithm:

- Initialize $x_0 \sim q$
- **2 for** iteration $i = 1, 2, \dots$ **do**
 - Propose: $x_{cand} \sim q(x_i|x_{i-1})$
- Acceptance Prob.: **(1)**

$$\alpha(\mathbf{x}_{cond}|\mathbf{x}_{i-1}) = \min\{1, \frac{q(\mathbf{x}_{i-1}|\mathbf{x}_{cand}) f(\mathbf{x}_{cand})}{q(\mathbf{x}_{cand}|\mathbf{x}_{i-1}) f(\mathbf{x}_{i-1})}\}$$

- $u \sim Uniform(0,1)$ 6
 - if $u < \alpha$ then
- 0 Accept the proposal $x_i \leftarrow x_{cand}$
- 8 else
- 9 Reject the proposal $x_i \leftarrow x_{i-1}$
- end if
- end for

Example: MH Setup

 $p(\theta|y) = f(x) = 2\theta^2 (1 - \theta)^8 \cos^2(4\pi\theta)$

Candidate/proposal distribution:

$$q(x_{cand}|x) = \mathcal{N}(x, 0.1)$$

Random Walk Metropolis-Hastings

• From our example, proposal distr. $q(x_{cand}|x) = \mathcal{N}(x, 0.1); x_{cand} \sim \mathcal{N}(x, 0.1)$

• Alternatively
$$x_{cand} = x + \epsilon$$
; $\epsilon \sim \mathcal{N}(0, 0.1)$

• More generally, $x_{cand} = x_{i-1} + \epsilon$

ullet is a random perturbation with a distribution independent of current

• E.g.,
$$x_{cand} = x_{i=1} + \epsilon_t$$
, where $\epsilon_t \sim \textit{Uniform}(-\delta, \delta)$

• E.g.,
$$x_{cand} = x_{i=1} + \epsilon_t$$
, where $\epsilon_t \sim Normal(0, \tau^2)$

• In the context of the general Metropolis-Hastings algorithm

$$q(x|y) = q(y-x)$$

• Markov chain associated with q is a radom walk, when it is symmetric around 0, i.e, q(-t) = q(t)

• due to acceptance step in M-H,M-H samples are not a random walk

Choosing q(x, y)

Random Walk Metropolis-Hastings

Acceptance probability

$$\alpha(x_{cond}|x_{i-1}) = \min\{1, \frac{q(x_{i-1}|x_{cand})f(x_{cand})}{q(x_{cand}|x_{i-1})f(x_{i-1})}\} = \min\{1, \frac{f(x_{cand})}{f(x_{i-1})}\}$$

- 'Uphill' proposals are always accepted
 - when $f(x_{cand}) > f(x_{i-1})$, $\alpha = 1$
- 'Downhill' proposals are accepted with probability equal to the relative 'heights' of the target at the proposed and current values.
 - When $f(x_{cand}) < f(x_{i-1})$, $\alpha = \frac{f(x_{cand})}{f(x_{i-1})}$
- \bullet The above simplification of α is not unique to random-walk M-H
 - If $q(x_{i-1}|x_{cand}) = q(x_{cand}|x_{i-1})$, $\alpha = min\{1, \frac{f(x_{cand})}{f(x_{i-1})}\}$

- The induced Markov chain should be irreducible, with short mixing time, to allow full coverage of the state-space
 - Support of q should include support of $f(support(f) \subset support(q))$
- Typically q(x|y) is selected from a family of distributions
 - that requires specification of location and scale parameters
 - E.g., Normal, Uniform, Cauchy, Laplace, Student's T-distribution
- A q(x|y) with a small 'scale' will limit the step size of the Markov Chain

Example $p(\theta|y) = f(x) = 2\theta^2(1-\theta)^8\cos^2(4\pi\theta)$

Candidate/proposal distribution:

$$q(x_{cand}|x) = \mathcal{N}(x, 0.1) \qquad vs. \qquad q(x_{cand}|x) = \mathcal{N}(x, 0.03)$$

$$q(x|y) = N(y, 0.1)$$

$$q(x|y) = N(y, 0.1)$$

$$q(x|y) = N(y, 0.1)$$

$$q(x, 0.1)$$

$$q(x,$$

$q(x_{cand}|x) = \overline{\mathcal{N}(x, 0.03)}$ $q(x_{cand}|x) = \mathcal{N}(x, 0.1)$ VS. Target f(x Samples 0.5 1.0 0.5 1.0 Samples Samples

Choosing q(x, y)

- The induced Markov chain should be irreducible, with short mixing time, to allow full coverage of the state-space
 - Support of q should include support of $f(support(f) \subset support(q))$
- Typically q(x|y) is selected from a family of distributions
 - that requires specification of location and scale parameters
 - E.g., Normal, Uniform, Cauchy, Laplace, Student's T-distribution
- A q(x|y) with a small 'scale' will limit the step size of the Markov
- When we choose a q(x|y) that is independent of the current state y
 - q(x|y) = q(x)
 - This is a special case of the Metropolis-Hastings Algorithm
 - Referred to as independent Metropolis-Hastings algorithm
 - appears to be a straightforward generalization of Accept-reject method

Independent Metropolis-Hastings q(x|y) = q(x)

• Choosing q(x|y) that is independent of the current state y

Algorithm:

```
• Initialize x_0 \sim q
2 for iteration i = 1, 2, \dots do
             Propose: x_{cand} \sim q(x_i)
             Acceptance Prob.:
                           \alpha(x_{cond}|x_{i-1}) = min\{1, \frac{q(x_{i-1})f(x_{cand})}{q(x_{cand})f(x_{i-1})}\}
             u \sim Uniform(0,1)
             \text{if } \textit{u} < \alpha \text{ then} \\
0
                    Accept the proposal x_i \leftarrow x_{cand}
6
             else
                    Reject the proposal x_i \leftarrow x_{i-1}
```

end if end for

Example: q(x|y) is independent of current state y

Target distribution: $f(x) = 2\theta^2(1-\theta)^8\cos^2(4\pi\theta)$ Candidate/proposal distribution: q(x) = Beta(3, 9)

Independent MH vs. Accept-Reject Method

- Independent Metropolis-Hastings
 - appears to be a straightforward generalization of Accept-reject method
- Repeated occurrences
 - no repeated occurrences in Accept-Reject Method
 - repeated occurrences possible in Independent Metropolis-Hastings
 - Step **9**: Reject the proposal $x_i \leftarrow x_{i-1}$
- Samples are
 - i.i.d in Accept-Reject Method
 - Not i.i.d in Independent Metropolis-Hastings
- Determining upper bound M using $f(x)/g(x) \leq M$
 - required in Accept-Reject Method
 - not required in Independent Metropolis-Hastings

Independent Metropolis-Hastings

```
function metropolis_hastings(n)
        x_cand = rand(Beta(3,9));
        alpha = minimum([1,rho]);
        if (u < alpha)
            x[count] = x[count-1];
        end
    end
    return x;
                          CS 5135/6035 Learning Probabilistic Model
```

Independent Metropolis-Hastings

Independent Metropolis-Hastings

• When q(x|y) = q(x), any state is possible from the current state

Choosing proposal density: observations

- The spread of the of the proposal density affects
 - acceptance rate
 - 2 region of the sample space covered by the chain
- When the chain converged and density is sampled around the mode
 - If spread is extremely large, next sample will be far from current value
 - low probability of being accepted
 - If spread is too small, it will take too long to traverse support of target density
 - low probability regions will be undersampled
- Proposal density needs to be tuned appropriately

Integration using MCMC

- While the examples we considered involve 'sampling'
 - MCMC methods are suited for integration as well
- Ergodic Theorem: For a finite irreducible chain with stationary distribution π

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^nh(x_t)=\mathbb{E}_\pi(h(x))$$

- This expectation is the same as the integral $\int h(x)\pi(x)dx$
- Approach:
 - Draw *n* samples from $\pi(x)$ using Metropolis-Hastings
 - Compute the values for h(x) using these samples
 - Compute the average of the h(x) values

Gibbs sampling: Introduction

- Metropolis-Hastings is an MCMC method that generates samples by traversing the support of a target-distribution
 - If target distribution is high-dimensional
 - proposal distribution is also high-dimensional
 - selecting a suitable proposal that is not too narrow or too broad can be challenging
- We need a method of sample generation that did not demand artful tuning of a proposal distribution
- Gibbs sampling is one such method
 - obviates the need for a separate proposal distribution
 - makes other demands (to sample from conditional densities)
- Gibbs sampling is also an MCMC method
 - Geman and Geman 1984 paper on Image processing models
 - Sampling on a Gibbs random field, the name stuck

CS 5135/6035 Learning Probabilistic Models

Gibbs sampling: Introduction

- Gibbs sampling allows us to generate samples from joint target density functions
 - Useful for sampling from a joint posterior $p(\theta_1, \theta_2, \dots, \theta_d | y)$
- Gibbs sampling simplifies a complex high-dimensional problem
 - by breaking it down into simple, low-dimensional problems
- To draw samples from f(x, y), Gibbs sampler draws from f(x|y) and
 - Draw $x_{t+1} \sim f(x|y_t)$
 - Draw $y_{t+1} \sim f(y|x_t)$
 - Samples $x_0, y_0, x_1, y_1, ..., x_n, y_n$
- Assumes we can generate samples from f(x|y) and f(y|x)

Gibbs sampling: Introduction

- To draw samples from f(x, y)
 - Draw $x_{t+1} \sim f(x|y_t)$
 - Draw $y_{t+1} \sim f(y|x_t)$
- Each step is parallel to one of the parameter axis
 - as only one component value is changed

Gibbs sampling: A general approach

Algorithm:

• Initialize $x^{(0)} \sim q(x)$

9 for iteration $i = 1, 2, \dots$ **do**

 $x_1^{(i)} \sim p(x_1|x_2 = x_2^{(i-1)}, x_3 = x_2^{(i-1)}, \dots, x_d = x_d^{(i-1)})$

 $x_2^{(i)} \sim p(x_2|x_1 = x_1^{(i-1)}, x_3 = x_3^{(i-1)}, \dots, x_d = x_d^{(i-1)})$

÷

 $x_d^{(i)} \sim p(x_d|x_2 = x_2^{(i-1)}, x_3 = x_3^{(i-1)}, \dots, x_{d-1} = x_{d-1}^{(i-1)})$

end for

• GS assumes that we can draw samples from the full conditionals

Gowtham Atluri

CS E12E /602E Learning Drobabilistic Models

25 / 31

Gibbs sampling vs. Metropolis-Hastings

- Both Gibbs and MH are MCMC methods
 - Both generates samples from a Markov Chain
- Sample generation
 - In MH, new candidate $\mathbf{x}^{cand} = \{x_1^{cand}, x_2^{cand}, \dots, x_d^{cand}\}$ sampled from proposal distr.
 - At each step in Gibbs Sampling, one of the components is sampled
 - E.g., x_1^{cand} in step 1. x_2^{cand} in step 2, etc.
- Sampling distribution
 - In MH, is a proposal distribution that is selected by the user
 - Gibbs uses full conditional distribution

• E.g.,
$$x_1^{(i)} \sim p(x_1|x_2 = x_2^{(i-1)}, x_3 = x_3^{(i-1)}, \dots, x_d = x_d^{(i-1)})$$

- Acceptance Probability
 - Computed as $\alpha = min\{1, \rho\}$ in MH
 - All samples are accepted in Gibbs ($\alpha = 1$)

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Mod

vember 23, 2018

Gibbs Sampling - a special case of MH

- Let x_i be the i^{th} variable and x_{-i} be all variables except x_i
- Let $p(x_1, ..., x_d)$ be the target distribution we want to simulate
- Let $Q(x'_i, x_{-i}|x_i, x_{-i}) = \frac{1}{k} p(x'_i|x_{-i})$
 - because at each step, we are drawing $x_i' \sim p(x_i'|x_{-i})$
- Let $\alpha(x_i', x_{-i}|x_i, x_{-i}) = min(1, \rho)$, where

$$\rho = \frac{q(x_{i-1}|x_{cand})f(x_{cand})}{q(x_{cand}|x_{i-1})f(x_{i-1})} = \frac{Q(x_i, x_{-i}|x_i, x_{-i})}{Q(x_i', x_{-i}|x_i, x_{-i})} \frac{p(x_i', x_{-i})}{p(x_i, x_{-i})}$$

$$= \frac{p(x_i', x_{-i})}{p(x_i, x_{-i})} \frac{p(x_i|x_{-i})}{p(x_i'|x_{-i})} = \frac{p(x_i'|x_{-i})p(x_{-i})}{p(x_i|x_{-i})p(x_{-i})} \frac{p(x_i|x_{-i})}{p(x_i'|x_{-i})}$$

$$= \frac{1}{p(x_i', x_{-i}|x_i', x_{-i})} \frac{p(x_i', x_{-i})}{p(x_i|x_{-i})}$$

ullet Hence, acceptance probability lpha=1

Example

- Let $x|\theta \sim Binomial(n,\theta), \ \theta \sim Beta(a,b), \ \text{where} \ n=10, \ a=5, \ b=5$
- Joint distribution

$$\mathit{f}(x,\theta) = \binom{n}{x} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{x+a-1} (1-\theta)^{n-x+b-1}$$

- We want to generate samples from this joint distr. $f(x, \theta)$
- To use Gibbs sampling we need conditionals $f(x|\theta)$ and $f(\theta|x)$
- Using, $f(\theta|x) = f(x,\theta)/f(x)$, we have $f(\theta|x) = Beta(x+a, n-x+b)$
- Approach
 - Initialize θ^0, x^0
 - Iterate from i = 1 to N
 - $\theta^i \sim f(\theta|x)$
 - $x^{i} \sim f(x|\theta)$

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Model:

vember 23, 2018

Gowtham Atlur

CS 5135/6035 Learning Probabilistic Models

lovember 23, 2018

28 / 31

Julia code

- ullet As we sampled (x, heta) from the joint, we can use corresponding components from these sequences to approximate the marginal distributions
 - x ~ BetaBinomial(n, a, b)
 - $\theta \sim Beta(a, b)$

0.20

Example

- Let $x|\theta \sim Binomial(n,\theta), \ \theta \sim Beta(a,b), \ \text{where} \ n=10, a=5, b=5$
- Joint distribution

$$f(x,\theta) = \binom{n}{x} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{x+a-1} (1-\theta)^{n-x+b-1}$$

- Here from $f(x|\theta)$ and $f(\theta)$, we were able to write the joint distribution
- Gibbs sampling is indispensable when f(x, y), f(x), and f(y) cannot be calculated

$$f(x|y) \propto ye^{-yx}, \quad 0 < x < k < \infty$$

$$f(y|x) \propto xe^{-xy}, \quad 0 < y < k < \infty$$

- ullet Where k is some known constant
- Restriction to the interval (0, B) ensures that marginal f(x) exist
- $\bullet\,$ The form of this marginal is not easily calculable
- Gibbs sampling can approximate f(x, y), f(x), and f(y)

Courthon Atlu

CS 5135/6035 Learning Probabilistic Models

Summary

- Metropolis-Hastings approaches
 - Random-walk MH
 - Independent MH
- \bullet Choosing the right proposal distribution is key to MH
 - acceptance rate will be low for a 'too narrow' proposal distr.
 - coverage of the target support will be slow for a 'too broad' proposal distr.
- Gibbs sampling
 - Overcomes the limitation of MH
 - No need to choose a proposal distribution
 - Assumes full conditionals can be simulated
 - Approximates joint and marginals
 - Even when they cannot be calculated

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

vember 23, 2018