

In the circuit above, the MOSFET and BJT have the following parameters,

$$K = 4 \text{ mA/V}^2$$
, $V_T = 0.9 \text{ v}$, $\beta = 100$, $V_{BE(active)} = 0.7 \text{ v}$, $V_{BE(sat)} = 0.8 \text{ v}$

- (a) Find out the gate voltage of the MOSFET.
- (b) Calculate V₁.
- (c) Find out the expression for V_{GS} , V_{DS} and V_{OV} .
- (d) Find the operating mode of the MOSFET using the expressions from ©. [Hint: You don't need any assumption]
- (e) Calculate I_{DS} and V_{DS} using the given parameters.
- (f) Assume that the BJT is in the saturation mode. Now, calculate I_B , I_C , I_E . You must validate the given assumption.

In the above circuit, $V_{bb} = 5V$, $V_{cc} = 15V$, $R_1 = 20k\Omega(40k\Omega)$, $R_2 = 80k\Omega(60k\Omega)$, $R_3 = 2k\Omega$ and $R_4 = 1k\Omega$. Also, assume current gain, Ic/Ib = 100.

- a) Draw the equivalent circuit of BJT during saturation and active modes. [2]
- b) Solve the above circuit and calculate I_B , I_C , I_E , V_{CE} and V_C using the method of assumed states. [Hint: try to find the Thevenin equivalent of the left hand side circuit from the B terminal and ground] [3]
- c) If V_{bb} is changed from 5V to 5.1V, what happens to the outputs of the circuits? Calculate I_B , I_C , I_E , V_{CE} and V_C again. Now for a 0.1V increase in input V_{bb} , what is the change of I_c ? Use $\Delta I_C = I_{C,new}$ $I_{C,old}$. [3+1]
- d) Explain any use case of the differences in voltage increase between input and output. What could the use case be to such a phenomenon? [1]

Refer to the **Circuit** above. For the MOSFET, $V_T = 1$ V and $k = k'_n \frac{W}{L} = 4$ mA/V².

- (a) **Identify** the value of the gate voltage v_G and the drain-source current i_{DS} .
- (b) Calculate the value of the drain voltage v_D using the 1 k Ω resistor.
- (c) Analyze the circuit to find v_S . Here, use the Method of Assumed State. You must validate your assumptions. [Hint: assume $v_S = x$]

In the circuit above, the BJTs have the following specification: β =100, Forward Active Region: $V_{BE}=0.7~V,~I_{C}=\beta I_{B'}$ Saturation Region: $V_{BE}=0.8~V,~V_{CE}=0.2~V$,or the MOSFETs: $V_{\tau}=Threshold~Voltage~of~M1~and~M2$.

- (a) Determine ig1 and ig2
- (b) Justify why the SR model of MOSFET is more efficient than the S model ? [1]
- (c) Assume, B1 and B2 are in the Saturation region. Calculate ic2.
- (d) Assume, B1 is in the Forward Active region. Calculate Vin.
- (e) Draw the VTC of Part- B assuming, $V_{_T}=8~V.$ [Use S model of MOSFETs]