EXPERIMENT NO -2

Rate Study in a CSTR

Objective:

- (1) To determine the order of reaction between sodium hydroxide and ethyl acetate using a CSTR reactor.
- (2) To find the rate constant at a particular temperature.

Theory:

Stoichiometric Equation: NaOH $- CH_3COOC_2H_2 \rightarrow CH_3COONa - C_2H_2OH$

Mole Balance: $\frac{V_R}{F_{AC}} = \frac{X_A}{-r_A} \tag{1}$

Rate Equation: $-r_A = k_2 C_{A_0}^2 (1 - X_A) (M - X_A)$ (2)

Assuming 2nd order reaction

Where $=\frac{c_{B_z}}{c_{A_z}}$; X_A = conversation of A; k_2 = rate constant in lit/(mol) (min)

From eqn (1) & (2), $\frac{V_R}{F_{A_0}} = \frac{V_R}{v_0 c_{A_0}} = \frac{\tau}{c_{A_0}} = \frac{x_A}{k_2^{\epsilon} c_{A_0} (1 - X_A) (M - X_A)} = \frac{1}{k_2} f(X_A)$

Where, total volumetric flow rate, $v_0 = v_A + v_B$ and $\tau = \frac{v_B}{v_C}$

Apparatus:

- (1) S. S. reactor (volume of reactor = 2.815 lit.),
- (2) Constant temperature water bath
- (3) Stop watch and (4) Conical flasks

Chemicals:

(i) Succinic acid (N/50) (ii) NaOH (iii) CH₃COOC₂H₅ (N/10) and (iv)Phenolphthalein indicator

Procedure:

- 1. Fill both the storage tanks of ethyl acetate and NaOH and calibrate the flow meters.
- 2. Adjust the control valves to set the flow rates. Try to keep both the flow rates equal.
- 3. After attaining steady- state, collect the sample in a flux from the outlet.

- 4. Take 5 ml of sample and titrate with the standard succinic acid solution with phenolphathalein as indicator.
- 5. Take 5 ml of supplied NaOH solution by the standard succinic acid solution to get C_{d_0}
- 6. Calculate X_A from C_A for various $T = \frac{V_R}{v_C}$
- 7. Plot $f(X_{\sigma})$ against τ and determine the rate constant from the slop.

N.B.
$$C_{A_0} = \frac{v_A}{v_A + v_B} C_{A_0}$$
 and $C_{B_0} = \frac{v_A}{v_A + v_B} C_{B_0}$

