GINY GS

Los jueves de cacharreo Radio club de la UPV Valencia, 27-2-2025

Objetivo

Configurar una estación terrestre TinyGS en un placa ESP32 para la recepción de TLE y telemetría, modulada en LoRa, en la banda de 433 MHz, de satélites LEO.

PROPAGACIÓN VHF/UHF

La propagación en VHF y UHF es prácticamente por rayo directo.

La ecuación de la atenuación en espacio libre

Lbf (dB) = $32,4 + 20 \log f (MHz) + 20 \log d (km)$

Pero la reflexión, difracción y dispersión en objetos son efectos muy importantes (Ver video de Rohde & Schwarz

https://www.youtube.com/watch?v=DTXJ3bS2UcE)

ESP32

ESP32 es una familia de SoC de la empresa **Espressif Systems** que integran Wi-Fi y Bluetooth.

Los ESP32 son compatibles con Arduino, y pueden programarse con **Arduino IDE** y con **PlatformIO**.

Hay placas de desarrollo que también incluyen: LoRa, GPS/GNSS, ...

ESP32 LoRa para TinyGS

TinyGS se basa en placas ESP32 bcon chips LoRa sx126x y sx127x, soporta entre otros:

- Heltec WiFi LoRa 32 V2 (433MHz & 863-928MHz)
- TTGO LoRa32 V2 (433MHz & 868-915MHz).

Se elige LILYGO ® TTGO LoRa32 V2.1_1.6 versión 433MHz ESP32 LoRa OLED 0,96" que cuesta menos de 20€ en AliExpress y trabaja en 433 MHz y 136 MHz

https://github.com/G4lile0/tinyGS

LiLygo ESP32 LoRa

Version Function	LoRa3 Ver. Pax		LoRa3 Ver. Disas	2 V2.1 ter-Radio	T3S3 V1.0				
Product Image	PARCE			S .	L11you Long				
MCU		ESI	P32	ESP32-S3-FH4R2					
Default Firmware	Paxcounter		Disaste	r-Radio	LoRa Test				
LoRa Module	SX1278	SX1276	SX1278	SX1276	SX1280	SX1276	SX1262		
Version Optional	① 433MHz	① 868MHz ② 915MHz ③ 923MHz	① 433MHz	① 868MHz ② 915MHz	① 2.4G	① 868MHz ② 915MHz			
LoRa Antenna Gain	2.0 dbi								
LoRa Antenna Base	SMA Holder								

Satélites LEO

Hay dos grandes grupos de satélites artificiales dependiendo de su órbita:

- Los GEO (Geostationary Earth Orbit) que se encuentran a 35.786 km de altura sobre la línea del ecuador, aparentemente están quietos para un observador terrestre. Por ejemplo los satélites de TV o Q0100 de radioaficionados
- Los NGEO (No Geostationary Earth Orbit)
 - MEO (Medium Earth Orbit) entre 2.000 y 35.786 km, como los de geolocalización (GPS)
 - LEO (Low Earth Orbit) entre 120 y 2.000 k, como los Starlink, y muchos mas.

LoRam

LoRa (Long Range) es un protocolo de comunicación de espectro amplio que presenta:

- Bajo consumo
- Inmunidad al efecto Doppler
- Tolerancia al ruido y a los caminos múltiples por reflexión de las ondas

Muchos satélites LEO usan telemetría LoRa en las bandas de: 137 MHz, **433 MHz (400-450 MHz)**, 869 MHz y 2,4 GHz.

Además de los satélites hay otros objetos aéreos que la usan como los globos aerostáticos.

En tierra se usa por ejemplo para la telemetría de redes de distribución de agua (Lectura contadores y niveles)

GS TINY

TinyGS (https://tinygs.com/)es un proyecto cuyo objetivo es crear una red de estaciones terrestres de satélites de ámbito global, desarrollada bajo "Open Source"

En la actualidad cuenta (enero 2025) con 5.919 usuarios que mantienen activas 1.724 estaciones terrestres activas por todo el mundo.

GS

Hay dos modos de trabajo:

- Manual
- Automático

En el automático el servidor envía mediante MQTT, en cada momento, la frecuencia a recibir de los satélites que son visibles a cada estación y estas envían al servidor los paquetes de datos recibidos para su análisis.

FossaSat-2E20

Received on: January 31, 2025 11:20 PM LoRa 401.7 Mhz SF: 11 CR: 8 BW: 125 kHz Sat in Umbra Eclipse Depth: 37.80° Theoretical coverage 4988 km

= 1000mW

♦ 6°C ♦ OBC 10°C ♦ ADCS 6°C ♦ MPPT 8°C

M GPS Age: -1 s

Lat: 43.00° Long: 0.90° Alt: 519080.81m

Moise floor: -85 dBm

Hexadecimal view

Download

0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456

0000 46 4F 30 32 30 01 B0 4C 9D 67 FF B1 4C 9D 67 E7 F0020..

0010 03 00 1A 75 FD 48 44 FF 89 02 F5 45 08 00 0A 06 ...u.HC

0020 06 08 AA 19 E0 13 43 A6 34 CP 31 78 77 69 8B 7A

0030 7A 45 F4 68 88 C2 BA 5F 4A AD 7E CD CF CC A9 CC ZE.h...

0040 49 0C DE 0D CB DA BA FC 33 9E 33 E5 F0 F1 8D 3D ..K...

0050 96 B0 4B 17 CC A5 FC 33 9E B3 E5 F0 F1 8D AC 8D

0060 CB 41 D1 A9 85 36 F9 80 0E B8 0D CC A7 A8 72 49

0080 82 81 05 73 B2 E4 BE DB D2 4C CC 48 BA A1 11 F7

0080 82 81 05 73 B2 E4 BE DB D2 4C CC 48 BA A1 11 F7

0080 09 B4 A6 99 80 D3 CA 3F 5C B9 4C CA B9 41 84 84

0080 09 B4 A6 99 80 D3 CA 3F 5C B9 4C CA B9 41 84 84

0080 09 B4 A6 99 80 D3 CA 3F 5C B9 4C CA B9 41 84 84

0080 00 CD 57 AA C7

Hay dos tipos de datos:

- La TLE que es un estándar de facto, que permite identificar al satélite
- La telemetría que permite obtener información sobre el funcionamiento de un sistema y transmitirla para controlarlo.

TLE

Line 1 Olline Number of Element Data 03-07 Satellite Number 08 Classification (U=Unclassified) 10-11 International Designator (Last two digits of launch year) 12-14 International Designator (Launch number of the year) 15-17 International Designator (Piece of the launch) 19-20 Epoch Year (Last two digits of year) 21-32 Epoch (Day of the year and fractional portion of the day) 34-43 First Time Derivative of the Mean Motion 45-52 Second Time Derivative of Mean Motion (Leading decimal point assumed) 54-61 BSTAR drag term (Leading decimal point assumed) 63 Ephemeris type 65-68 Element number 69 Checksum (Modulo 10) (Letters, blanks, periods, plus signs =Â 0; minus $signs\hat{A} = \hat{A} 1$ Line 2 01 Line Number of Element Data 03-07 Satellite Number 09-16 Inclination [Degrees]

18-25 Right Ascension of the Ascending Node [Degrees] 27-33 Eccentricity (Leading decimal point assumed)

35-42 Argument of Perigee [Degrees]

64-68 Revolution number at epoch [Revs]

53-63 Mean Motion [Revs per day]

44-51 Mean Anomaly [Degrees]

69 Checksum (Modulo 10)

La NASA (National Aeronautics and Space Administration) y la NORAD North American Aerospace Defense Command han definido un protocolo de mensajería de satélites TLE (Two Line Element) que se ha convertido en un protocolo de facto de identificación de satélites

Material

- Una placa ESP32 LoRa compatible
 - Lilygo ESP32 o Heltec, que se encuentran el Aliexpress por menos de 20€.
 - https://github.com/G4lile0/tinyGS
- Un cable coaxial de 52
- Una antena omnidireccional.
- Conocer las coordenadas de la estación terrestre.
- Para configurar: un ordenador personal, un cable USB de datos, una cuenta Telegram.
- Para funcionar: alimentación (bateria o fuente), conexión a Internet.

Pasos

- 1.Obtener un usuario de TinyGS en "TinyGS Personal Bot" de Telegram con el comando /mqtt
- 2.Instalar el firmware de TinyGS en la placa ESP32
 con Chrome o Edge desde
 https://installer.tinygs.com/
- 3.Conectarse al AP de la placa y configurar el software: nombre de la estación, SSID y contraseña del Wi-Fi, usuario de la estación, contraseña, longitud, latitud, ...
- 4.Conectarse a la IP (IPSCan)y configurar modelo placa ESP32
- 5. Hacer seguimiento desde la web https://tinygs.com/ por Internet o en local accediendo a la IP asignada por la red WiFi donde está conectada.

Instalación

Welcome to the TinyGS web installer!

- 1. Plug in your ESP to a USB port. We will install TinyGS 2403242 to it.
- 2. Hit "Install" and select the correct COM port. No device found?
- 3. MQTT credentials (First join the group here)
 Then open a private chat with @tinygs personal bot and ask /mqtt
- 4. First time board boot, connect to the wifi AP "My TinyGS" to configure it.
- 5. Get TinyGS installed and connected in less than 5 minutes!

Install

2403242

Powered by ESP Web Tools

GitHub tinygs.com

La antena

La antena es el elemento que va a captar la señal procedente del satélite.

Las dimensiones de la antena dependen de la frecuencia de trabajo

Las dos mas sencillas que podemos usar son:

- Dipolo /2 alimentado en su punto medio
- Vertical con plano de tierra /4 alimentado en su base.

$$= v /f$$

Las antenas onmidireccionales (vertical o dipolo en V) son las mas convenientes para evitar sistemas de seguimientos (complejos y caros).

Conectores

Cable USB: los hay de 2 hilos (alimentación) y de 4 hilos (alimentación y datos). Lasz placas de desarrollo LiLygo ESP32 LoRa admite alimentación USB (5V) o con baterias de ion-Litio (3,2V)

Cable coaxial: es un cable con dos conectores concéntricos de tipo SMA cuyo diseño permite el transporte de señales de RF impidiendo la emisión / recepción de RF. El usado en esta instalación debe ser de 52 y lo mas corto posible (A mayor longitud mayor atenuación).

Configuración inicial

Tras cargar el firmware y encenderlo se arranca un AP de Wifi al cual hay que conectarse y entrar en la configuración con la IP 192.168.4.1 en un navegador

Control de la TinyGS

Consulta web

https://tinygs.com/station/ESTACION@USUARIO

Configuración local

http://ip

Configuración servidor (Edit station & Operate).

```
Telegram => TinyGS Personal Bot =>
/weblogin => loginToken
```


Consola web

Log

№ FossaSat-2E19 ※ Feb 8, 2025 12:20:56 (an hour ago)	Mode LoRa@401.7	Power 1000mW	Distance 923Km	Elevation 30.90°	■ RSSI -137.5 dBm	SNR -17.5 dB	Predicted Doppler -8144.29Hz	Frequency Error 11638.67Hz	CRC Error	Received by 110 Stations
№ FossaSat-2E19 ※ Feb 8, 2025 12:18:45 (an hour ago)	Mode LoRa@401.7	Power 1000mW	Distance 562Km	Elevation 67.29°	■ RSSI -136.25 dBm	SNR -15.25 dB	Predicted Doppler 3628.29Hz	Frequency Error -2056.78Hz	CRC Error	Received by 203 Stations
➢ HYPE Feb 8, 2025 12:13:08 (an hour ago)	Mode LoRa@437.4	Power 125mW	NDistance 555Km	Elevation 68.25°	a Resi -138.25 dBm	SNR -17.25 dB	Predicted Doppler 3401.84Hz	Frequency Error 577.77Hz	CRC Error	Received by 43 Stations
Unknown Feb 8, 2025 12:09:10 (an hour ago)	Mode LoRa@401.7	Power	Distance 631Km	Elevation 53.52°	RSSI -140.5 dBm	SNR -20.5 dB	Predicted Doppler -4854.03Hz	Frequency Error 1180.17Hz	CRC Error	Received by 219 Stations
№ PICO-1B-2 ※ Feb 8, 2025 11:55:15 (2 hours ago)	Mode LoRa@450.0625	Power 631mW	Distance 830Km	Elevation 38.39°	■ RSSI -133.5 dBm	SNR -11.5 dB	Predicted Doppler 7057.55Hz	Frequency Error -9695.13Hz	CRC Error	Received by 155 Stations
Unknown Feb 8, 2025 11:16:27 (2 hours ago)	Mode LoRa@436.5	Power	Distance 1263Km	Elevation 20.39°	RSSI -133.75 dBm	SNR -15.75 dB	Predicted Doppler 4465.03Hz	Frequency Error -7451.18Hz	CRC Error	Received by 189 Stations
2023-091AD * Feb 8, 2025 10:14:29 (3 hours ago)	Mode LoRa@435.05	Power	Distance 686Km	Elevation 49.38°	RSSI -134.5 dBm	SNR -10.5 dB	Predicted Doppler 2112.17Hz	Frequency Error -4418.70Hz	CRC Error	Received by 8 Stations
Unknown Feb 8, 2025 10:07:44 (3 hours ago)	Mode LoRa@436.805	Power	Distance 1224Km	Elevation 19.00°	al RSSI -139 dBm	SNR -14 dB	Predicted Doppler -1240.25Hz	Frequency Error -3323.99Hz	CRC Error	Received by 5 Stations
CSTP-2.11 Feb 8, 2025 10:03:13 (3 hours ago)	Mode LoRa@437.985	Power 800mW	N Distance	Elevation 21.85°	a RSSI -135 dBm	SNR -10 dB	Predicted Doppler -695.89Hz	Frequency Error -7635.73Hz	CRC Error	Received by 11 Stations
CSTP-2.11 ※ Feb 8, 2025 10:03:13 (3 hours ago)	Mode LoRa@437.985	Power 800mW	No Distance	Elevation 21.85°	■ RSSI -133.25 dBm	SNR -9.25 dB	Predicted Doppler -695.89Hz	Frequency Error -7778.34Hz	CRC Error	Received by 11 Stations
№ Norby-2 ※ Feb 8, 2025 09:43:36 (4 hours ago)	Mode LoRa@436.5	Power 6000mW	Distance 1201Km	Elevation 22.10°	a RSSI -133.5 dBm	SNR -14.5 dB	Predicted Doppler -1070.98Hz	Frequency Error -627.05Hz	CRC Error	Received by 122 Stations
♦ Surv-251b Feb 8, 2025 09:43:07 (4 hours ago)	Mode LoRa@436.35	Power	Distance 1286Km	Elevation 17.19°	■ RSSI -131.5 dBm	SNR -7.5 dB	Predicted Doppler -8994.22Hz	Frequency Error 5635.05Hz	CRC Error	Received by 68 Stations
❖ Surv-251b Feb 8, 2025 09:42:05 (4 hours ago)	Mode LoRa@436.35	Power	Distance 936Km	Elevation 28.04°	■ RSSI -133.25 dBm	SNR -9.25 dB	Predicted Doppler -7161.59Hz	Frequency Error 3395.29Hz	CRC Error	Received by 40 Stations
Unknown Feb 8, 2025 09:41:02 (4 hours ago)	Mode LoRa@436.35	e Power	Distance 715Km	Elevation 40.80°	RSSI -135 dBm	SNR -10 dB	Predicted Doppler -2404.09Hz	Frequency Error -2204.11Hz	CRC Error	Received by 42 Stations
№ Surv-251b ※ Feb 8, 2025 09:40:00 (4 hours ago)	Mode LoRa@436.35	Power	Distance 758Km	Elevation 37.47°	■ RSSI -129.5 dBm	SNR -5.5 dB	Predicted Doppler 4221.95Hz	Frequency Error -9288.29Hz	CRC Error	Received by 31 Stations
★ Tianqi-31 	Mode LoRa@400.45	Power 9000mW	Distance	▲ Elevation	-127.5 dBm	SNR -13.5 dB	Predicted Doppler	Frequency Error -4538.24Hz	CRC Error	Received by 35 Stations

Detalle

Parámetros

Edit station parameters

Operación

Algunas preguntas más

- ¿A que velocidad orbitan los satélites que recibimos? ¿A que velocidad gira la tierra?
 (Pista: analizar el tiempo entre dos pases)
- ¿A que altura están los satélites recibidos?
- ¿Cual es la distancia máxima a la que podemos recibir las señales de un satélite?
- ¿En que sentido viajan los satélites?
- ¿Qué es el efecto doppler? ¿Qué es el CRC?¿QUé es la relación S/N?
- ¿Que diferencia de potencias existe entre un GEO y un LEO?

¿Qué se gana participando?

- Ayudar a los diseñadores a conocer el comportamiento de los satélites LEO y de las estaciones terrestres.
- Alimentar una B.D. con millones de datos que pueden explotarse en futuras investigaciones.
- Ayudar al seguimiento de los satélites y a la prevención de accidentes entre ellos.
- Aprender y divertirse.

¿Qué es el radio club de la UPV?

El radio club de la UPV es una asociación cuyo objetivo es promover la participación de los alumnos, trabajadores y ex-alumnos ("alumnis") de la UPV en el mundo de las telecomunicaciones en general y en el de la radioafición en particular. Cuenta con locales en el campus de Vera (Valencia) y una estación de radioaficionado con el indicativo EA5RKP

Próximamente en Los Jueves de Cacharreo

- Transmisores y receptores de RF en LoRa.
- Antenas.
- Receptores SDR: web, ordenador y móvil.
- Apps de radio.
- Radio digital: DAB+.
- Manejando un analizador Vectorial de redes:
 NanoVNA.
- Configurar una red Meshtastic.
- Operar una estación de radioaficionado.
- Receptor GPSD/NMEA.

• . . .

Nos seguimos viendo

