Curso de Tecnologia em Sistemas de Computação Disciplina : Álgebra Linear GABARITO da AP2 - Segundo Semestre de 2007 Professores: Márcia Fampa & Mauro Rincon

(2.0)1. Determine para que valores de x a matriz A abaixo é invertível:

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & x & 1 & 2 \\ 1 & 1 & x & 2 \\ 1 & 1 & 2 & x \end{bmatrix}$$

Solução:

Devemos ter $det(A) \neq 0$.

$$\det(A) = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & x & 1 & 2 \\ 1 & 1 & x & 2 \\ 1 & 1 & 2 & x \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & x - 1 & 0 & 1 \\ 0 & 0 & x - 1 & 1 \\ 0 & 0 & 1 & x - 1 \end{vmatrix}$$
$$= 1 \cdot (-1)^{1+1} \begin{vmatrix} x - 1 & 0 & 1 \\ 0 & x - 1 & 1 \\ 0 & 1 & x - 1 \end{vmatrix}$$
$$= (x - 1) \cdot (-1)^{1+1} \begin{vmatrix} x - 1 & 1 \\ 1 & x - 1 \end{vmatrix}$$
$$= (x - 1)[(x - 1)^2 - 1] = (x - 1)(x^2 - 2x)$$

Temos $(x-1)(x^2-2x)=0 \Leftrightarrow x=1$ ou x=0 ou x=2. Logo, a matriz A é invertível se $x\neq 1, \ x\neq 0$ e $x\neq 2$.

(3.0)2. Determinar para que valores de a e b, o sistema linear abaixo: (a) tem uma única solução, (b) não tem solução, (c) tem uma infinidade de soluções.

$$\begin{cases} x_1 + x_2 + ax_3 = 1 \\ x_1 + 2x_2 + x_3 = 2 \\ 2x_1 + 5x_2 - 3x_3 = b \end{cases}$$

Solução: Calculemos primeiro o determinante da matriz A de coeficientes do sistema linear:

$$\det(A) = \begin{vmatrix} 1 & 1 & a \\ 1 & 2 & 1 \\ 2 & 5 & -3 \end{vmatrix} = a - 6.$$

(a) O sistema tem uma única solução se $\det(A) \neq 0$, ou seja, se $a \neq 6$. Se a = 6, fazemos o escalonamento da matriz de coeficientes do sistema linear estendida.

$$\begin{pmatrix} 1 & 1 & 6 & 1 \\ 1 & 2 & 1 & 2 \\ 2 & 5 & -3 & b \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 6 & 1 \\ 0 & 1 & -5 & 1 \\ 0 & 3 & -15 & b - 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 6 & 1 \\ 0 & 1 & -5 & 1 \\ 0 & 0 & 0 & b - 5 \end{pmatrix}$$

Neste caso, se $b \neq 5$, o sistema não tem solução e se b = 5, o sistema tem infinitas soluções.

Logo, (b) O sistema não tem solução se a=6 e $b\neq 5$. (c) O sistema tem infinitas soluções se a=6 e b=5.

(2.0)3. Considere o operador linear $T: \mathbb{R}^3 \to \mathbb{R}^3$

$$(x,y,z) \rightarrow (x,2y,0)$$

- (1.0)
a. Determine o núcleo, uma base para esse subespaço e sua dimensão.
 ${\cal T}$ é injetora? Justifique.
- (1.0)b. Determine a imagem, uma base para esse subespaço e sua dimensão. T é sobrejetora? Justifique.

Solução:

a.

$$\begin{split} N(T) &= \{(x,y,z): T(x,y,z) = (0,0,0)\} \\ &= \{(x,y,z): (x,2y,0) = (0,0,0)\} \\ &= \{(0,0,z): z \in I\!\!R\} \\ &= \{z(0,0,1): z \in I\!\!R\} \end{split}$$

Logo, $\{(0,0,1)\}$ é uma base para o núcleo de T e dim(N(T))=1. Uma vez que $N(T) \neq (0,0,0)$, T não é injetora. b.

$$Im(T) = \{(x, 2y, 0) : x, y \in \mathbb{R}\}\$$

= $\{x(1, 0, 0) + y(0, 2, 0) : x, y \in \mathbb{R}\}\$

Logo,

$$\{(1,0,0),(0,2,0)\}$$

é uma base para a imagem de T e dim(Im(T))=2. Uma vez que dim $(Im(T)) \neq \dim(\mathbb{R}^3)$ (dim $(\mathbb{R}^3)=3$), T não é sobrejetora.

(3.0)4. Considere a seguinte matriz:

$$A = \left[\begin{array}{cc} -3 & 4 \\ -1 & 2 \end{array} \right].$$

- (2.0)a. Calcule os autovalores e os correspondentes autovetores de A.
- (1.0)b. Determine os autovalores e os correspondentes autovetores de A^{-1} . Justifique.

Solução:

a.

$$det(A - \lambda I) = det \begin{bmatrix} -3 - \lambda & 4 \\ -1 & 2 - \lambda \end{bmatrix} = (-3 - \lambda)(2 - \lambda) + 4$$
$$= \lambda^2 + \lambda - 2 = P(\lambda).$$

 $P(\lambda)=0\Rightarrow \lambda^2+\lambda-2=0\Rightarrow$ ou $\lambda=1$ ou $\lambda=-2$. Então os autovalores de A são 1 e -2. Procuramos agora os autovetores associados:

 $(i)\lambda = 1$. Temos

$$\left[\begin{array}{cc} -3 & 4 \\ -1 & 2 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = 1 \left[\begin{array}{c} x \\ y \end{array}\right].$$

Logo

$$\begin{bmatrix} -3x + 4y \\ -x + 2y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{cases} -4x + 4y = 0 \\ -x + y = 0 \end{cases}$$

Então temos que x = y. Portanto os autovetores associados a $\lambda = 1$ são os vetores $v = (x, x), x \neq 0$.

 $(ii)\lambda = -2$. Temos

$$\begin{bmatrix} -3 & 4 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -2 \begin{bmatrix} x \\ y \end{bmatrix}.$$

Logo

$$\begin{bmatrix} -3x + 4y \\ -x + 2y \end{bmatrix} = \begin{bmatrix} -2x \\ -2y \end{bmatrix} \Rightarrow \begin{cases} -x + 4y = 0 \\ -x + 4y = 0 \end{cases} \text{ ou } x = 4y.$$

Os autovetores associados a $\lambda=-2$ são os vetores da forma $v=(4y,y),y\neq 0.$ (ou $v=(x,\frac{1}{4}x),x\neq 0$).

- b. De acordo com a propriedade demonstrada em aula, se λ é um autovalor de A, então λ^{-1} é um autovalor de A^{-1} e todo autovetor de A é também um autovetor de A^{-1} . Logo os autovalores e respectivos autovetores de A^{-1} são:
 - (i) $\lambda = 1, v = (x, x), x \neq 0$.
 - (ii) $\lambda = -\frac{1}{2}$, $v = (x, \frac{1}{4}x)$, $x \neq 0$.