Física 2 - 2024

Instituto de Física Facultad de Ingeniería Universidad de la República

Mayo 2024

Bienvenidos!

- Docente: Elisa Castro ecastro@fing.edu.uy
 Lunes de 1800 a 2000 Virtual
 Jueves de 1200 a 1400 S. B21
- Docente: Facundo Gutiérrez fgutierrez@fing.edu.uy
 Martes de 1200 a 1400 S. 305

Docente: Matías Osorio Mirambell - mosorio@fing.edu.uy
 Martes de 1200 a 1400 - S. 305
 Jueves de 1200 a 1400 - S. B21

Cronograma del curso

9	29/04/24 -	08/05/24	Período de 1º parciales	
10	09/05/24 -	10/05/24	GAS IDEAL Y TEORIA CINÉTICA	Análisis/Resolución del Parcial
11	13/05/24 -	17/05/24	GAS IDEAL Y TEORIA CINÉTICA	5 DILATACIÓN TÉRMICA Y TERMOMETRÍA
12	20/05/24 -	24/05/24	CALOR Y PRIMERA LEY	6 PROCESOS EN GASES IDEALES
13	27/05/24 -		CALORIMETRÍA Y TRANFERENCIA DE CALOR	7 CALOR Y PRIMERA LEY. TRANSF. DE CALOR
14	03/06/24 -	07/06/24	SEGUNDA LEY. MÁQUINAS TÉRMICAS	7 CALOR Y PRIMERA LEY. TRANSF. DE CALOR
15	10/06/24 -		SEGUNDA LEY. MÁQUINAS TÉRMICAS	8 MÁQUINAS TÉRMICAS
16	17/06/24 -	21/06/24	ENTROPIA	8 MÁQUINAS TÉRMICAS
17	24/06/24 -	28/06/24	ENTROPIA	9 ENTROPIA
18	01/07/24 -	03/07/42	CONSULTA/REPASO	9 ENTROPIA
17	04/07/24 -	15/07/24	Período de 2º parciales	

USTED ESTÁ AQUÍ

Resumen

- A resolver: ¿Cómo describimos el estado de un fluido en reposo? $\checkmark \to$ mediante principios de Pascal, Arquímedes e hidroestática
- A resolver: ¿Cómo describimos el estado de un fluido en movimiento? $\checkmark \to$ mediante la Ec. de continuidad y Bernoulli, bajo ciertas hipótesis
- A resolver: ¿Cómo describimos el fenómeno ondulatorio? ✓ → mediante la ec. de onda, su solución y la interacción entre las perturbaciones en diferentes medios.
- A resolver: ¿Qué es la temperatura? $\checkmark \rightarrow$ Ley cero de la termodinámica.
- A resolver: ¿Qué es un gas ideal? ✓ modelo que nos permite estudiar los gases en condiciones cotidianas.
- A resolver: ¿Se puede aprovechar la energía de un GI?

Termodinámica: motivación

• Energía \to concepto fundamental en ingeniería \to generación, almacenamiento, transporte...

Modelo de Gas Ideal (GI)

- El Gl es un modelo que permite bajo ciertas hipótesis (baja densidad) describir el comportamiento de un gas en función de variables macroscópicas.
- Ecuación de estado \rightarrow se llega experimentalmente:

Modelo de Gas Ideal (GI)

- El Gl es un modelo que permite bajo ciertas hipótesis (baja densidad) describir el comportamiento de un gas en función de variables macroscópicas.
- Ecuación de estado \rightarrow se llega experimentalmente:

$$PV = NkT, \ k = 1.38 \times 10^{-23} \,\mathrm{J}\,\mathrm{K}^{-1}$$

• Número de moles: $n=N/N_A,\ N_A=6.02\times 10^{23}\ \mathrm{molec\ mol}^{-1}$

$$PV = kN_AT, \ kN_A = R = 8.3145 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1} \to PV = nRT$$

• Número de moles: $n=m/\overline{M}$

$$PV = \frac{m}{\overline{M}}RT \to P\overline{M} = \rho RT$$

Procesos cuasiestáticos

- Procesos cuasiestáticos: procesos termodinámicos muy lentos de modo de que en todo momento el sistema tiene bien definidas sus propiedades termodinámicas.
- ¡No quiere decir que el sistema no varíe sus propiedades!
- Si en todo momento conocemos
 P, T, V, ... entonces conocemos la
 trayectoria termodinámica del
 sistema.

Procesos cuasiestáticos - trabajo

- (F1) Trabajo: $W = \int \vec{F} \cdot d\vec{x}$
- El Gl ejerce una fuerza en el émbolo:

$$\vec{F}_{\rm gas,\acute{e}mbolo} = P_{\rm gas} A$$

Por tercera ley de Newton:

$$\vec{F}_{\rm\acute{e}mbolo,gas} = -P_{\rm gas}A$$

Trabajo sobre el gas:

$$W = \vec{F}_{\text{\'embolo,gas}} \cdot d\vec{x} = -\int P_{\text{gas}} A \cdot d\vec{x} \rightarrow$$

$$W_{\mathsf{sobre\ gas}} = -\int_{V_1}^{V_2} P_{\mathsf{gas}}(V) dV, \ \ [W] = J$$

Procesos cuasiestáticos - trabajo

• Cambio termodinámico de las propiedades de un $GI \to capacidad$ de mover objetos $\to variamos$ la energía interna del GI.

Fig. 3.1. The Newcomen engine

Procesos cuasiestáticos - diagrama P-V y W

• Se sabe que:

$$W_{\text{sobre gas}} = -\int_{V_1}^{V_2} P_{\text{gas}}(V) dV, \ [W] = J$$

- ullet El valor absoluto trabajo es el área bajo la curva del diagrama P-V
- ¡El signo del trabajo depende de la trayectoria!

Trabajo en procesos básicos

• Proceso **isócoro** ($V = \text{cte} \rightarrow dV = 0$):

$$W_{\rm sobre~gas} = -\int_{V_1}^{V_2} P_{\rm gas}(V) dV = 0$$

• Proceso **isóbaro** $(P_{gas} = cte = P)$:

$$W_{\text{sobre gas}} = -\int_{V_1}^{V_2} P_{\text{gas}}(V) dV = P_{\text{gas}}(V_2 - V_1)$$

• Proceso **isotermo** $(T_{gas} = cte = T)$:

$$W_{\rm sobre\;gas} = -\int_{V_1}^{V_2} P_{\rm gas}(V) dV = -\int_{V_1}^{V_2} \frac{nRT}{V} dV = nRT \ln \frac{V_2}{V_1}$$

ullet ¡Existen infinitos procesos más sin nombre y apellido! o todos se resuelven de la misma manera.

Ejercicio 1

Física 2 - Exámen 13 de diciembre de 2013

Ejercicio 1

El diagrama de la figura representa el diagrama (P,T) de un ciclo termodinámico ejecutado por un gas ideal diatómico. En dicho diagrama los procesos A-B y C-D son hechos a presión constante, mientras que el proceso B-C es a temperatura constante. En el diagrama, el proceso D-A es un segmento de una recta que pasa por el origen.

DATOS:
$$P_A=150~\mathrm{kPa},~V_A=2~\mathrm{lt},~T_A=200~\mathrm{K},~T_B=600~\mathrm{K}$$
 y $P_C=120~\mathrm{kPa}.$

- a) Haga un diagrama (P,V) del ciclo indicando los valores correspondientes.
- b) Calcular el trabajo de cada proceso individual

Ejercicio 2

Problema 1 (25 puntos)

Cuatro moles de un gas ideal pasan por los estados de equilibrio del ciclo mostrado en la figura. El ciclo está compuesto por un proceso (1-2) isotérmico, un proceso (2-3) que verifica $P(V) = \alpha V$, con α constante, y un proceso (3-1) adiabático. Se sabe que en el estado 2 la presión es $P_2 = 12kPa$ y el volumen es $V_2 = 3,00m^3$. Además, la temperatura en el estado 3 es $T_3 = 600K$. La razón entre los volúmenes de los estados 3 y 1, es aproximadamente de $\frac{V_3}{V_1} = 4.37$.

Parte 1: Demuestre que las moléculas del gas ideal con el que se está trabajando tienen 5 grados de libertad.

Parte 2:

a) Hallar el trabajo de cada proceso individual

Física 2 – Segundo parcial 29 de noviembre de 2019

Figura 1: Problema 1

Próxima clase...

- Ideal: terminar práctico 6
- Dudas: recuerden el uso del foro
- Próxima clase: vamos a comenzar a trabajar con los conceptos de calor y energía interna.

Escalas Celsius, Farenheit y Kelvin (SI)

- **Celsius**: toma los puntos de fusión (0°C) y ebullición del agua (100°C) como referencias, y divide entre 100 (grado) dicho rango.
- Farenheit: toma los puntos de fusión (32°F) y ebullición 212°F del agua como referencias, y divide entre 180 (grado F) dicho rango.
- Kelvin: escala que no depende de las propied. de un material específico.

Escalas Celsius, Farenheit y Kelvin (SI)

- **Celsius**: toma los puntos de fusión (0 °C) y ebullición del agua (100 °C) como referencias, y divide entre 100 (grado) dicho rango.
- Farenheit: toma los puntos de fusión (32°F) y ebullición 212°F del agua como referencias, y divide entre 180 (grado F) dicho rango.

$$T({}^{\circ}F) = (9/5)T({}^{\circ}C) + 32$$

• Kelvin: escala que no depende de las propied. de un material específico.

$$T(K) = T(^{\circ}C) + 273, 15$$

Ley cero de la termodinámica

- Si A y B están cada uno en equilibrio térmico con un tercer sistema C, entonces A y B están en equilibrio térmico ($T_A = T_B$)
- **Temperatura (T):** Existe una cantidad escalar (T), que es una propiedad de los sist. termod. en equilibrio. Dos sistemas están en equilibrio térmico sí y solo sí tienen la misma temperatura.
- ¿Quién puede ser el cuerpo C? Un termómetro.
- Un termómetro es un sistema termodinámico que varía cierta propiedad termométrica con la temperatura (por ej.: dilatación).
- ¿En qué medimos T? \to escalas de T \to "Buscamos una sustancia que varía alguna propiedad con T y medimos esa propiedad al variar T" \to observamos puntos notables

Anexo: Recordando matemática...

- $\bullet \sin(-x) = -\sin(x)$
- $\bullet \sin(x + \pi/2) = \cos(x)$
- $\sin(\alpha) + \sin(\beta) = 2\sin((\alpha + \beta)/2)\cos((\alpha \beta)/2)$
- $\cos(\alpha) + \cos(\beta) = 2\cos((\alpha + \beta)/2)\cos((\alpha \beta)/2)$

$$\sin^{2}(x) = \frac{1}{2}(1 - \cos(2\alpha))$$

$$\cos^{2}(x) = \frac{1}{2}(1 + \cos(2\alpha))$$

 $\sin^2(x) + \cos^2(x) = 1$

Anexo: SI - Unidades derivadas

Anexo: SI - Prefijos

Prefiks	Symbol	Multiplying factor
yotta	Y	1 000 000 000 000 000 000 000 000 = 1024
zetta	Z	1 000 000 000 000 000 000 000 = 1021
exa	E	1 000 000 000 000 000 000 = 1018
peta	Р	1 000 000 000 000 000 = 1015
tera	Т	1 000 000 000 000 = 1012
giga	G	1 000 000 000 = 10 ⁹
mega	М	1 000 000 = 106
kilo	k	1 000 = 10 ³
hecto	h	100 = 10 ²
deka	da	10 = 10 ¹
deci	d	0,1 = 10-1
centi	С	0,01 = 10-2
milli	m	0,001 = 10 ⁻³
mikro	μ	0,000 001 = 10 ⁻⁶
nano	n	0,000 000 001 = 10 ⁻⁹
piko	р	0,000 000 000 001 = 10-12
femto	f	0,000 000 000 000 001 = 10-15
atto	а	0,000 000 000 000 001 = 10-18
zepto	z	0,000 000 000 000 000 001 = 10-21
yocto	У	0,000 000 000 000 000 000 000 001 = 10-24