



# R you ready for Shiny Health Economics?

Robert Smith<sup>1,2</sup>

- 1) School of Health and Related Research, University of Sheffield, UK.
- Dark Peak Analytics Ltd, Sheffield, UK







Fig. 1.1: The economic problem: finite resources and infinite wants



























#### Modelling framework





Source: Chilcott et al., 2010



#### **Software Choice**



#### **Decision Tree**



## Cohort Model (STM/PSM)



#### **Individual Level**

















Complexity, computational burden, data...



#### **Current Process**













#### **Future Process**

















#### CONTRACTOR !

A NEWSCHOOL AND ADMINISTRATION OF A STATE OF







#### **Future Process: Benefits**



- 1. One click update + transcription error reduction.
- 2. Speed of model creation (hence R not C++, time is money)!
- 3. Computational power (Rcpp) VOI, analysis.
- 4. Code/data separation, testing independent of data.
- 5. Transparency especially where publicly funded.
- 6. Reach & replication, one worldwide model on remote server.
- 7. Stakeholder engagement Shiny + expert elicitation.



#### **Future Process: Limitations**



- 1. Learning curve (time is money).
- 2. Perception of R models as being blackbox hard to review.
- 3. Danger of low package quality.

4. Until 2016+ - lack of easy to build graphical user interface.



#### Graphical User Interface











"... that code looks scary" (Anon, 2020)



#### Open-source tutorial



#### ShinyApp function





Paper: https://wellcomeopenresearch.org/articles/5-69

Code: https://github.com/RobertASmith/healthecon\_shiny



#### Open-source tutorial





| Parameters |                |       | p_HS1 p_S152                                                                                          | rvesuits lable |       |          |       |
|------------|----------------|-------|-------------------------------------------------------------------------------------------------------|----------------|-------|----------|-------|
|            | T di dillic cc |       |                                                                                                       | Option         | GALYS | Costs    | INI.Q |
| c_s1       | cost1          | 3     |                                                                                                       | Treatment      | 18.56 | 10110637 |       |
| C_21       | COSLI          | 3     | ( Healthy (Sick (St) (Sicher (S2) )                                                                   | No Treatment   | 17.90 | 99684.14 |       |
| c s2       | cost2          | 5     | DE DESTH                                                                                              |                |       |          |       |
| 0_32       | COSTE          | -     |                                                                                                       | 927            | -     |          | =     |
| c_H        | cost3          | 6     |                                                                                                       |                |       |          |       |
|            |                | 177   |                                                                                                       | -              | -     | -        | T     |
| dr         | Dis_rate       | 0.035 | ( Dead (O)                                                                                            |                |       |          | 10    |
|            |                |       | ( " )                                                                                                 |                | - 4   |          |       |
| n sim      | No. psa        | 1000  | From 1. Securiosities discount of the translational Set Selection and condition would will the        |                |       |          |       |
|            |                |       | more of the health states and possible transitions with their corresponding transition probabilities. |                |       |          |       |



PSA nuna

#### Open-source tutorial







#### Open-source tutorial





Code: https://github.com/RobertASmith/healthecon\_shiny/tree/master/Tutorial

Tutorial: https://r-hta.org/tutorial/markov\_models\_shiny/

App: https://robertasmith.shinyapps.io/sick\_sicker/



#### Example: WHO FGM







https://srhr.org/fgmcost/cost-calculator/



## Example: parkrun







Public Health
Volume 189, December 2020, Pages 48-53

Paper: https://www.sciencedirect.com/science/article/pii/S0033350620304066

Code: https://github.com/bitowaqr/iolmap analysis

App: http://iol-map.shef.ac.uk/

Paper: https://wellcomeopenresearch.org/articles/5-9
Code: https://github.com/ScHARR-PHEDS/DoPE Public

Helen Quirk 62, Rami Cosulich1, Elizabeth Goyder 51



#### Example: HTA











#### Thanks from Sheffield





# Modelling Transparency & Efficiency































## Model Types



|   |                                                                                                                                                               |                                                    | A                                                     | В                                               | С                                                                                                                                                                  | D                                              |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|
|   |                                                                                                                                                               |                                                    |                                                       | ate Level/Counts                                | Individual Level                                                                                                                                                   |                                                |  |
|   |                                                                                                                                                               |                                                    | Expected value,<br>Continuous state,<br>Deterministic | Markovian, Discrete<br>State, Stochastic        | Markovian, Discrete<br>State, Individuals                                                                                                                          | Non-Markovian, Discrete-<br>State, Individuals |  |
| 1 | on Allowed                                                                                                                                                    | Untimed                                            | Decision Tree<br>Rollback                             | Simulated Decision<br>Tree (SDT)                | Individual Sampling Model (ISM):<br>Simulated Patient-Level Decision Tree (SPLDT)                                                                                  |                                                |  |
| 2 | No Interaction Allowed                                                                                                                                        | Timed                                              | Markov Model<br>(Evaluated<br>Deterministically)      | Simulated Markov<br>Model (SMM)                 | Individual Sampling Model (ISM):<br>Simulated Patient-Level Markov Model (SPLMM)<br>(variations as in quadrant below for<br>patient level models with interaction) |                                                |  |
| 3 | Allowed                                                                                                                                                       | System Dynamics (Finite Difference Equations, FDE) |                                                       | Discrete Time Markov<br>Chain Model (DTMC)      | Discrete-Time<br>Individual Event<br>History Model<br>(DT, IEH)                                                                                                    | Discrete Individual<br>Simulation<br>(DT, DES) |  |
| 4 | Powolf William Difference Equations, FDE)  Sing I Grant Dynamics (Ordinary Differentic Equations, ODE)  System Dynamics (Ordinary Differentic Equations, ODE) |                                                    | (Ordinary Differential                                | Continuous Time<br>Markov Chain Model<br>(CTMC) | Continuous Time<br>Individual Event<br>History Model<br>(CT, IEH)                                                                                                  | Discrete Event Simulation<br>(CT, DES)         |  |

Brennan, A., Chick, S.E. and Davies, R., 2006. A taxonomy of model structures for economic evaluation of health technologies. *Health economics*, *15*(12), pp.1295-1310.



#### Open-source tutorial



#### ShinyApp function





Health Economics, R, RShiny, Decision Science









#### Modelling framework



