NATUREZA

Questão 125 Poppenem 2020enem 2020enem Uma atividade que vem crescendo e tem se tornado uma fonte de renda para muitas pessoas é o recolhimento das embalagens feitas com alumínio. No Brasil, atualmente, mais de 95% dessas embalagens são recicladas para fabricação de outras novas. Disponível em: http://abal.org.br. Acesso em: 11 mar. 2013. O interesse das fábricas de embalagens no uso desse material reciclável ocorre porque o(a) A reciclagem resolve o problema de desemprego da população local. produção de embalagens a partir de outras já usadas é mais fácil e rápida. alumínio das embalagens feitas de material reciclado é de melhor qualidade. O compra de matéria-prima para confecção de embalagens de alumínio não será mais necessária. custo com a compra de matéria-prima para a produção de embalagens de alumínio é reduzido.

Questão 93

Antigamente, em lugares com invernos rigorosos, as pessoas acendiam fogueiras dentro de uma sala fechada para se aquecerem do frio. O risco no uso desse recurso ocorria quando as pessoas adormeciam antes de apagarem totalmente a fogueira, o que poderia levá-las a óbito, mesmo sem a ocorrência de incêndio.

A causa principal desse risco era o(a)

- produção de fuligem pela fogueira.
- B liberação de calor intenso pela fogueira.
- Consumo de todo o oxigênio pelas pessoas.
- geração de queimaduras pela emissão de faíscas da lenha.
- geração de monóxido de carbono pela combustão incompleta da lenha.

Questão 128

O concreto utilizado na construção civil é um material formado por cimento misturado a areia, a brita e a água. A areia é normalmente extraída de leitos de rios e a brita, oriunda da fragmentação de rochas. Impactos ambientais gerados no uso do concreto estão associados à extração de recursos minerais e ao descarte indiscriminado desse material. Na tentativa de reverter esse quadro, foi proposta a utilização de concreto reciclado moído em substituição ao particulado rochoso graúdo na fabricação de novo concreto, obtendo um material com as mesmas propriedades que o anterior.

O benefício ambiental gerado nessa proposta é a redução do(a)

- extração da brita.
- extração de areia.
- Consumo de água.
- consumo de concreto.
- fabricação de cimento.

		~	
RESC	7 T	TCA	\mathbf{a}
\mathbf{L}	ノレし	$\cup A$	J

N4 - Q117:2020 - H26 - Proficiência: 595.82

pro	te do duto d indúst perfil d	reage Ieseja rias co	nte er do, e ontorr	m pro vitand narian	duto, lo a fo n prob	de fo ormaç olema	ção de is rela	nais ra copr ciona	ápida oduto dos á	e sel os, e d polu	etiva, que ut ição a	que u ilizem mbie	utilize solve ntal e	m pou entes ao de	não a esper	reage agres: dício (ntes, sivos de ág	que p ao m ua e e	orodu: eio ar energ	zam s nbien ia.	omen	te o
(a) (B) (C)	A + E A + E A + 3	8 + C 8 → C 8B →	→ D C (a	(a r (a r a rea	eação eação ção o	o occ o é fo corre	orre a orteme	altas ente e uso d	pres endot de so	sões) érmic	a). e orgâ	inico)								,		
(3	$A + \frac{1}{2}$	B →	C (a rea	ção o	corre	com	o us	o de	um ca	atalisa	ador o	conte	ndo u	m me	etal n	ão tó	cico).				
									•				•	•	•					•	•	
								•				•	•	•	•							
			•					•					•	•						•		
														•							•	
													•	•				•	•		•	
			•					•	•			•	•	•	•					•		
							•							•							•	
			•			•	•	•	•			•	•	•	•			•	•	•	•	
	•	•	•		•	•	•	•		•		•	•	•		•	•	•	•	•	•	
								,						•								
	•	•	•	•	•	•	•	•	•			•	•	•				•	•	•	•	
								•														
														•								

QUESTÃO 104 [

O terremoto e o tsunami ocorridos no Japão em 11 de março de 2011 romperam as paredes de isolamento de alguns reatores da usina nuclear de Fukushima, o que ocasionou a liberação de substâncias radioativas. Entre elas está o iodo-131, cuja presença na natureza está limitada por sua meia-vida de oito dias.

O tempo estimado para que esse material se desintegre até atingir $\frac{1}{16}$ da sua massa inicial é de

- 8 dias.
- 16 dias
- ② 24 dias.
- 32 dias.
- 3 128 dias.

Sobre a diluição do ácido sulfúrico em água, o químico e escritor Primo Levi afirma que, "está escrito em todos os tratados, é preciso operar às avessas, quer dizer, verter o ácido na água e não o contrário, senão aquele líquido oleoso de aspecto tão inócuo está sujeito a iras furibundas: sabem-no até os meninos do ginásio".

(furibundo: adj. furioso)

LEVI, P. A tabela periódica. Rio de Janeiro: Relume-Dumará, 1994 (adaptado).

- O alerta dado por Levi justifica-se porque a
- diluição do ácido libera muito calor.
- mistura de água e ácido é explosiva.
- água provoca a neutralização do ácido.
- mistura final de água e ácido separa-se em fases.
- água inibe a liberação dos vapores provenientes do ácido.

Questão 128 2020enem 2020enem 2020enem ...

O carvão é um combustível que tem várias substâncias em sua composição. Em razão disso, quando é representada sua queima com o oxigênio (massa molar 16 g mol⁻¹), simplifica-se elaborando apenas a combustão completa do carbono (massa molar 12 g mol⁻¹). De acordo com o conteúdo médio de carbono fixo, o carvão é classificado em vários tipos, com destaque para o antracito, que apresenta, em média, 90% de carbono. Esse elevado conteúdo favorece energeticamente a combustão, no entanto, libera maior quantidade de gás que provoca efeito estufa.

Supondo a queima completa de 100 g de carvão antracito, a massa de gás liberada na atmosfera é, em grama, mais próxima de

- **4** 90,0.
- ② 210,0.
- ② 233,3.
- 330,0.
- 366,7.

Questão 128 enem2021

Um marceneiro esqueceu um pacote de pregos ao relento, expostos à umidade do ar e à chuva. Com isso, os pregos de ferro, que tinham a massa de 5,6 g cada, acabaram cobertos por uma camada espessa de ferrugem (Fe₂O₃·H₂O), uma substância marrom insolúvel, produto da oxidação do ferro metálico, que ocorre segundo a equação química:

2 Fe (s) +
$$\frac{3}{2}$$
 O₂ (g) + H₂O (l) \longrightarrow Fe₂O₃·H₂O (s)

Considere as massas molares (g/mol): H = 1; O = 16; Fe = 56.

Qual foi a massa de ferrugem produzida ao se oxidar a metade (50%) de um prego?

- 4,45 g
- 8,90 g
- **©** 17,80 g
- 72,00 g
- **(3** 144,00 g

Os combustíveis são materiais utilizados na produção de energia que, dependendo da sua composição, podem produzir diferentes substâncias. Por exemplo, numa queima completa, o hidrogênio se transforma em H₂O; e o carbono, em CO₂.

O quadro apresenta as entalpias de combustão de alguns combustíveis nas condições padrão.

Combustível	Fórmula	Entalpia padrão de $\left(\frac{kJ}{mol}\right)$
Carbono	С	-394
Etino	C ₂ H ₂	-1 300
Propano	C ₃ H ₈	-2 220
Butano	C ₄ H ₁₀	-2 878
Octano	C ₈ H ₁₈	-5 47 1

ATKINS, P.; JONES, L.; LAVERMAN, L. Princípios de química: questionando a vida moderna e o meio ambiente. São Paulo: Bookman, 2018 (adaptado).

Visando a redução do impacto ambiental, qual dos combustíveis listados libera maior quantidade de energia com menor produção de CO₂?

- A Carbono.
- Etino.
- Propano.
- Butano.
- Octano.

O etanol é um combustível produzido a partir da fermentação da sacarose presente no caldo de cana-de-açúcar. Um dos fatores que afeta a produção desse álcool é o grau de deterioração da sacarose, que se inicia após o corte, por causa da ação de microrganismos. Foram analisadas cinco amostras de diferentes tipos de cana-de-açúcar e cada uma recebeu um código de identificação. No quadro são apresentados os dados de concentração de sacarose e de microrganismos presentes nessas amostras.

	Am	ostra d	e cana	-de-açi	icar
	RB72	RB84	RB92	SP79	SP80
Concentração inicial de sacarose (g L ⁻¹)	13,0	18,0	16,0	14,0	17,0
Concentração de microrganismos (mg L ⁻¹)	0,7	0,8	0,6	0,5	0,9

Pretende-se escolher o tipo de cana-de-açúcar que conterá o maior teor de sacarose 10 horas após o corte e que, consequentemente, produzirá a maior quantidade de etanol por fermentação. Considere que existe uma redução de aproximadamente 50% da concentração de sacarose nesse tempo, para cada 1,0 mg L-1 de microrganismos presentes na cana-de-açúcar.

Disponível em: www.inovacao.unicamp.br. Acesso em: 11 ago. 2012 (adaptado).

Qual tipo de cana-de-açúcar deve ser escolhido?

- RB72
- RB84
- RB92
- SP79
- G SP80

O urânio é empregado como fonte de energia em reatores nucleares. Para tanto, o seu mineral deve ser refinado, convertido a hexafluoreto de urânio e posteriormente enriquecido, para aumentar de 0,7% a 3% a abundância de um isótopo específico — o urânio-235. Uma das formas de enriquecimento utiliza a pequena diferença de massa entre os hexafluoretos de urânio-235 e de urânio-238 para separá-los por efusão, precedida pela vaporização. Esses vapores devem efundir repetidamente milhares de vezes através de barreiras porosas formadas por telas com grande número de pequenos orifícios. No entanto, devido à complexidade e à grande quantidade de energia envolvida, cientistas e engenheiros continuam a pesquisar procedimentos alternativos de enriquecimento.

ATKINS, P.; JONES, L. Princípios de química: questionando a vida moderna e o meio ambiente. Porto Alegre: Bookman, 2006 (adaptado).

Considerando a diferença de massa mencionada entre os dois isótopos, que tipo de procedimento alternativo ao da efusão pode ser empregado para tal finalidade?

- A Peneiração.
- G Centrifugação.
- Extração por solvente.
- Destilação fracionada.
- Separação magnética.

Questão 102

Laboratórios de química geram como subprodutos substâncias ou misturas que, quando não têm mais utilidade nesses locais, são consideradas resíduos químicos. Para o descarte na rede de esgoto, o resíduo deve ser neutro, livre de solventes inflamáveis e elementos tóxicos como Pb, Cr e Hg. Uma possibilidade é fazer uma mistura de dois resíduos para obter um material que apresente as características necessárias para o descarte. Considere que um laboratório disponha de frascos de volumes iguais cheios dos resíduos, listados no quadro.

Tipos de resíduos
I - Solução de H ₂ CrO ₄ 0,1 mol
II - Solução de NaOH 0,2 mol
III - Solução de HCl 0,1 mol
IV - Solução de H ₂ SO ₄ 0,1 mol L
V - Solução de CH ₃ COOH 0,2 mol
VI - Solução de NaHCO ₃ 0,1 mol

Qual combinação de resíduos poderá ser descartada na rede de esgotos?

- A lell
- B II e III
- Il e IV
- V e VI
- O IV e VI

Questão 114 gozaenem gozaenem a

Nos dias atuais, o amplo uso de objetos de plástico gera bastante lixo, que muitas vezes é eliminado pela população por meio da queima. Esse procedimento é prejudicial ao meio ambiente por lançar substâncias poluentes. Para constatar esse problema, um estudante analisou a decomposição térmica do policloreto de vinila (PVC), um tipo de plástico, cuja estrutura é representada na figura.

Policloreto de vinila (PVC)

Para realizar esse experimento, o estudante colocou uma amostra de filme de PVC em um tubo de ensaio e o aqueceu, promovendo a decomposição térmica. Houve a liberação majoritária de um gás diatômico heteronuclear que foi recolhido em um recipiente acoplado ao tubo de ensaio. Esse gás, quando borbulhado em solução alcalina diluída contendo indicador ácido-base, alterou a cor da solução. Além disso, em contato com uma solução aquosa de carbonato de sódio (Na₂CO₃), liberou gás carbônico.

Qual foi o gás liberado majoritariamente na decomposição térmica desse tipo de plástico?

- A H₂
- Cl₂
- CO
- O CO₂
- HCI

Os combustíveis de origem fóssil, como o petróleo e o gás natural, geram um sério problema ambiental, devido à liberação de dióxido de carbono durante o processo de combustão. O quadro apresenta as massas molares e as reações de combustão não balanceadas de diferentes combustíveis.

Combustível	Massa molar (g/mol)	Reação de combustão (não balanceada)
Metano	16	$CH_4(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(g)$
Acetileno	26	$C_2H_2(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(g)$
Etano	30	$C_2H_6(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(g)$
Propano	44	$C_3H_8(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(g)$
Butano	58	$C_4H_{10}(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(g)$

Considerando a combustão completa de 58 g de cada um dos combustíveis listados no quadro, a substância que emite mais CO_2 é o

- A etano.
- B butano.
- metano.
- propano.
- acetileno.

Na mitologia grega, Nióbia era a filha de Tântalo, dois personagens conhecidos pelo sofrimento. O elemento químico de número atômico (Z) igual a 41 tem propriedades químicas e físicas tão parecidas com as do elemento de número atômico 73 que chegaram a ser confundidos. Por isso, em homenagem a esses dois personagens da mitologia grega, foi conferido a esses elementos os nomes de nióbio (Z = 41) e tântalo (Z = 73). Esses dois elementos químicos adquiriram grande importância econômica na metalurgia, na produção de supercondutores e em outras aplicações na indústria de ponta, exatamente pelas propriedades químicas e físicas comuns aos dois.

KEAN, S. A colher que desaparece: e outras histórias reais de loucura, amor e morte a partir dos elementos químicos. Río de Janeiro: Zahar, 2011 (adaptado).

A importância econômica e tecnológica desses elementos, pela similaridade de suas propriedades químicas e físicas, deve-se a

- terem elétrons no subnível f.
- serem elementos de transição interna.
- pertencerem ao mesmo grupo na tabela periódica.
- terem seus elétrons mais externos nos níveis 4 e 5, respectivamente.
- estarem localizados na família dos alcalinos terrosos e alcalinos, respectivamente.

QUESTÃO 1	12	·····	~~~	~~~	~~~	~~~	~~~	~~~	\sim
e a wustita (F adequadas. l reduzir o FeC	eO). Na siderur Jma das etapas (sólido), confor	atureza na forma o gia, o ferro-gusa é nesse processo é me a equação quír FeO (s) quações termoquír	obtido pela f a formação d nica: + CO (g) →	usão de mine le monóxido	érios de fe de carbon	rro em alto	s fornos	em condiç	ões
-	3 FeO (s) 2 Fe ₃ O ₄ (s	$+ 3 CO (g) \rightarrow 2 Fe_3C$ $+ CO_2 (g) \rightarrow Fe_3C$ $+ CO_2 (g) \rightarrow 3 Fe_3C$	$O_4(s) + CO(g$ $E_2O_3(s) + CO(g$	g) O (g)	$\Delta_r H^{\Theta} = -$ $\Delta_r H^{\Theta} = +$	-25 kJ/mol c -36 kJ/mol c -47 kJ/mol c	le CO ₂ de CO ₂		
O valor mais	próximo de Δ _/ <i>H</i> *	[•] , em kJ/mol de Fe	ção indicada	ido FeO (sólido) com	1 o CO (g	jasoso) é		
							•	•	
• • •				•				•	
									•
							•		
							0	•	
•									•
							٠		-

GABARITO H26

4 6	2 -	3 - A	4 - E	E D	6 A	7 - D	O A	9 - C	10 0
1 - E	2-E	3 - A	4 - E	5 - D	6 - A	7-6	8 - A	9-6	10 - C
11 - B	12 - C	13 - E	14 - E	15 - C	16 - B				• •
						• • •			
	• • • •	•	• • • • • • • • • • • • • • • • • • • •	• • • • • •		• • •	• • • •		
-	•		•	•		•			
						• • •			