Plan of attack

1) Given a model, we generate the network:

2) Given a network, find the "best" model

Model of networks

- Goal: Define a model that can generate networks
 - The model will have a set of "parameters" that we will later want to estimate (and detect communities)

• Q: Given a set of nodes, how do communities "generate" edges of the network?

Community-Affiliation Graph

- AMG: Affiliation Graph Model: a generative model $B(V, C, M, \{p_c\})$ for graphs:
 - Nodes V, Communities C, Memberships M
 - Each community c has a single probability p_c
 - Later we fit the model to networks to detect communities

AGM: Generative Process

- AGM generates the links: For each
 - For each pair of nodes in community A, we connect them with prob. p_A
 - The overall edge probability is:

$$P(u,v) = 1 - \prod_{c \in M_u \cap M_v} (1 - p_c)$$
 If u,v share no communities: $P(u,v) = \varepsilon$

 M_u set of communities node u belongs to

Think of this as an "OR" function: If at least 1 community says "YES" we create an edge

Recap: AGM networks

AGM: Flexibility

 AGM can express a variety of community structures:

Non-overlapping, Overlapping, Nested

