presentation.md 2023-10-26

Цели и задачи

Цель лабораторной работы

Изучение алгоритма Евклида нахождения НОД и его вариаций.

Выполнение лабораторной работы

Наибольший общий делитель

Наибольший общий делитель (НОД) – это число, которое делит без остатка два числа и делится само без остатка на любой другой делитель данных двух чисел. Проще говоря, это самое большое число, на которое можно без остатка разделить два числа, для которых ищется НОД.

Алгоритм Евклида

- Вход. Целые числа \$a, b; 0 < b < a\$.
- Выход. \$d =\$ HOД\$(a,b)\$.
- 1. Положить $r_0 = a$, $r_1 = b$, i = 1.
- 2. Найти остаток \$r_i+1\$ от деления \$r_i-1\$ на \$r_i\$.
- 3. Если $r_i+1=0$, то положить $d=r_i$. В противном случае положить i=i+1 и вернуться на шаг 2.
- 4. Результат: \$d\$.

Бинарный алгоритм Евклида

- Вход. Целые числа \$a, b; 0 < b ≤ a\$.
- Выход. \$d =\$ HOД\$(a,b)\$.
- 1. Положить \$g = 1\$.
- 2. Пока оба числа a и b четные, выполнять a = a/2, b = b/2, b = b/2, b = b/2, a = b/2, b = b/
- 3. Положить u = a, v = b.
- 4. Пока \$u \neq 0\$, выполнять следующие действия.
 - Пока \$u\$ четное, полагать \$u = u/2\$.
 - Ока \$v\$ четное, полагать \$v = v/2\$.
 - \circ При $\u \neq v$ положить $\u = u v$. В противном случае положить $\v = v u$.
- 5. Положить \$d = gv\$.
- 6. Результат: \$d\$

Расширенный алгоритм Евклида

- Вход. Целые числа \$a, b; 0 < b ≤ a\$.
- Выход: \$d =\$ HOД\$(a, b)\$; такие целые числа \$x, y\$, что \$ax + by = d\$.
- 1. Положить $r_0 = a$, $r_1 = b$, $r_0 = 1$, $r_1 = 0$, $r_0 = 0$, $r_1 = 1$, $r_0 = 1$

presentation.md 2023-10-26

- 2. Разделить с остатком r_i-1 на r_i : r_i :
- 3. Если $r_{i+1} = 0$, то положить $d = r_{i}$, $x = x_{i}$, $y = y_{i}$. В противном случае положить $x_{i+1} = (x_{i-1}) q_{i}x_{i}$, $y_{i-1} = y_{i-1} q_{i}y_{i}$, $y_{i-1} = y_{i-1} q_{i-1}y_{i}$, $y_{i-1} = y_{i-1} q_{i-1}y_{i}$, $y_{i-1} = y_{i-1} q_{i-1}y_{i}$, $y_{i-1} = y_{i-1} q_{i-1}y_{i}$
- 4. Результат: \$d, x, y\$.

Пример работы алгоритма

```
a = 99
b = 8

[40] evklid_simply(a, b)

[41] evklid_extended(a, b)

(1, 3, -37)

[42] binary_evklid(a, b)

1.0

[43] evklid_binary_ext(a, b)

(1.0, 3.0, -37.0)

[#fi
```

{ #fig:001 }

Выводы

Результаты выполнения лабораторной работы

Изучили алгоритм Евклида нахождения НОД.