Formularius

Contents

1	Binary SBM													1														
1.1 Undirected/Directed																				1								
		1.1.1	MAR																									1
		1.1.2	NMAR .																									2
2 Poisson SBM 2.1 Undirected/Directed														5														
			MAR				• •			•	•		•	 •		•		•		•		•					•	

1 Binary SBM

1.1 Undirected/Directed

1.1.1 MAR

In the directed case, only \mathcal{D}^{o} is changing in the following (i.e don't forget that the matrix is not symmetric: Y_{ij} and Y_{ji} are two different random variables).

Proposition 1. The complete log-likelihood restricted to the observed variables is

$$\log p_{\theta}(Y^{\circ}, Z) = \sum_{(i,j) \in \mathcal{D}^{\circ}} \sum_{(q,\ell) \in \mathcal{Q}^{2}} Z_{iq} Z_{j\ell} \log b(Y_{ij}, \pi_{q\ell}) + \sum_{i \in \mathcal{N}^{\circ}} \sum_{q \in \mathcal{Q}} Z_{iq} \log(\alpha_{q}),$$

with $b(x,\pi) = \pi^x (1-\pi)^{1-x}$ the Bernoulli probability density function.

Proposition 2. The variationnal approximation is

$$J_{\tau,\theta}(Y^{\mathrm{o}}) = \sum_{(i,j) \in \mathcal{D}^{\mathrm{o}}} \sum_{(q,\ell) \in \mathcal{Q}^2} \tau_{iq} \tau_{j\ell} \log b(Y_{ij}, \pi_{q\ell}) + \sum_{i \in \mathcal{N}^{\mathrm{o}}} \sum_{q \in \mathcal{Q}} \tau_{iq} \log(\alpha_q / \tau_{iq}).$$

Proposition 3. Consider the lower bound $J_{\tau,\theta}(Y^{o})$.

1. The parameters $\theta = (\alpha, \pi)$ maximizing $J_{\theta}(Y^{\circ})$ when τ is held fixed are

$$\hat{\alpha}_q = \frac{\sum_{i \in \mathcal{N}^{\circ}} \hat{\tau}_{iq}}{\operatorname{card}(\mathcal{N}^{\circ})}, \qquad \hat{\pi}_{q\ell} = \frac{\sum_{(i,j) \in \mathcal{D}^{\circ}} \hat{\tau}_{iq} \hat{\tau}_{j\ell} Y_{ij}}{\sum_{(i,j) \in \mathcal{D}^{\circ}} \hat{\tau}_{iq} \hat{\tau}_{j\ell}}.$$

2. The variational parameters τ maximizing $J_{\tau}(Y^{o})$ when θ is held fixed are obtained thanks to the following fixed point relation:

$$\hat{\tau}_{iq} \propto \alpha_q \left(\prod_{(i,j) \in \mathcal{D}^{\circ}} \prod_{\ell \in \mathcal{Q}} b(Y_{ij}; \pi_{q\ell})^{\hat{\tau}_{j\ell}} \right).$$

$$\hat{\tau}_{iq} \propto \alpha_q \left(\prod_{(i,j) \in \mathcal{D}^{\circ}} \prod_{\ell \in \mathcal{Q}} (b(Y_{ij}; \pi_{q\ell}) b(Y_{ji}; \pi_{\ell q}))^{\hat{\tau}_{j\ell}} \right).$$

Proposition 4. For an SBM with Q blocks and for $\hat{\theta} = \arg \max \log p_{\theta}(Y^{\circ}, Z)$, the ICL criterion is given by

$$ICL(Q) = -2\mathbb{E}_{\tilde{p}_{\tau}} \left[\log p_{\hat{\theta}}(Y^{o}, Z; Q) \right] + \frac{Q(Q+1)}{2} \log \operatorname{card} \left(\mathcal{D}^{o} \right) + (Q-1) \log \operatorname{card} \left(\mathcal{N}^{o} \right).$$

$$\mathrm{ICL}(Q) = -2\mathbb{E}_{\tilde{p}_{\tau}}\left[\log p_{\hat{\theta}}(Y^{\mathrm{o}}, Z; Q)\right] + Q^{2}\log\mathrm{card}\left(\mathcal{D}^{\mathrm{o}}\right) + (Q - 1)\log\mathrm{card}\left(\mathcal{N}^{\mathrm{o}}\right).$$

1.1.2 NMAR

Notice that \mathcal{D}^{o} and \mathcal{D}^{m} are changing in the following (i.e don't forget that the matrix is not symmetric: Y_{ij} and Y_{ji} are two different random variables).

Proposition 5. The complete log-likelihood is

$$\log p_{\theta,\psi}(Y^{\mathrm{o}}, R, Y^{\mathrm{m}}, Z) = \log p_{\psi}(R|Y^{\mathrm{o}}, Y^{\mathrm{m}}, Z) + \log p_{\theta}(Y^{\mathrm{o}}, Y^{\mathrm{m}}, Z),$$

where

$$\log p_{\theta}(Y, Z) = \sum_{1 \le i < j \le n} \sum_{(q, \ell) \in \mathcal{Q}^2} Z_{iq} Z_{j\ell} \log b(Y_{ij}, \pi_{q\ell}) + \sum_{i \in \{1, \dots n\}} \sum_{q \in \mathcal{Q}} Z_{iq} \log(\alpha_q),$$

$$\log p_{\theta}(Y, Z) = \sum_{1 \le i \ne j \le n} \sum_{(q, \ell) \in \mathcal{Q}^2} Z_{iq} Z_{j\ell} \log b(Y_{ij}, \pi_{q\ell}) + \sum_{i \in \{1, \dots, n\}} \sum_{q \in \mathcal{Q}} Z_{iq} \log(\alpha_q),$$

with $b(x,\pi) = \pi^x (1-\pi)^{1-x}$ the Bernoulli probability density function.

Proposition 6. The variationnal approximation is

$$J_{\tau,\nu,\theta,\psi}(Y^{o},R) = \mathbb{E}_{\tilde{p}_{\tau,\nu}} \left[\log p_{\theta,\psi}(Y^{o}, R, Y^{m}, Z) \right] - \mathbb{E}_{\tilde{p}_{\tau,\nu}} \left[\log \tilde{p}_{\tau,\nu}(Z, Y^{m}) \right]$$

$$= \mathbb{E}_{\tilde{p}_{\tau,\nu}} \left[\log p_{\psi}(R|Y^{o}, Y^{m}, Z) \right]$$

$$+ \sum_{(i,j)\in\mathcal{D}^{o}} \sum_{(q,\ell)\in\mathcal{Q}^{2}} \tau_{iq}\tau_{j\ell} \log b(Y_{ij}, \pi_{q\ell}) + \sum_{(i,j)\in\mathcal{D}^{m}} \sum_{(q,\ell)\in\mathcal{Q}^{2}} \tau_{iq}\tau_{j\ell} \log b(\nu_{ij}, \pi_{q\ell})$$

$$+ \sum_{i\in\mathcal{N}} \sum_{q\in\mathcal{Q}} \tau_{iq} \log(\alpha_{q}/\tau_{iq}) - \sum_{(i,j)\in\mathcal{D}^{m}} \nu_{ij} \log(\nu_{ij}) + (1 - \nu_{ij}) \log(1 - \nu_{ij}).$$

$$(1)$$

Proposition 7. Consider the lower bound $J_{\tau,\nu,\theta,\psi}(Y^{o},R)$ given by (1).

1. The parameters $\theta = (\alpha, \pi)$ maximizing (1) when all other parameters are held fixed are

$$\hat{\alpha}_q = \frac{1}{n} \sum_{i \in \mathcal{N}} \hat{\tau}_{iq}, \qquad \hat{\pi}_{q\ell} = \frac{\sum_{(i,j) \in \mathcal{D}^{\circ}} \hat{\tau}_{iq} \hat{\tau}_{j\ell} Y_{ij} + \sum_{(i,j) \in \mathcal{D}^{\mathrm{m}}} \hat{\tau}_{iq} \hat{\tau}_{j\ell} \hat{\nu}_{ij}}{\sum_{(i,j) \in \mathcal{D}} \hat{\tau}_{iq} \hat{\tau}_{j\ell}}.$$

2. The optimal τ in (1) when all other parameters are held fixed verifies

$$\hat{\tau}_{iq} \propto \lambda_{iq} \alpha_q \left(\prod_{(i,j) \in \mathcal{D}^{\circ}} \prod_{\ell \in \mathcal{Q}} b(Y_{ij}; \pi_{q\ell})^{\hat{\tau}_{j\ell}} \right) \left(\prod_{(i,j) \in \mathcal{D}^{\mathrm{m}}} \prod_{\ell \in \mathcal{Q}} b(\nu_{ij}; \pi_{q\ell})^{\hat{\tau}_{j\ell}} \right).$$

$$\hat{\tau}_{iq} \propto \lambda_{iq} \alpha_q \left(\prod_{(i,j) \in \mathcal{D}^{\circ}} \prod_{\ell \in \mathcal{Q}} (b(Y_{ij}; \pi_{q\ell})b(Y_{ji}; \pi_{\ell q}))^{\hat{\tau}_{j\ell}} \right) \left(\prod_{(i,j) \in \mathcal{D}^{\mathrm{m}}} \prod_{\ell \in \mathcal{Q}} (b(\nu_{ij}; \pi_{q\ell})b(\nu_{ji}; \pi_{\ell q}))^{\hat{\tau}_{j\ell}} \right).$$

with λ_{iq} a simple constant depending on the sampling design

Double-standard sampling. Recall that $S^{\rm o} = \sum_{(i,j)\in\mathcal{D}^{\rm o}} Y_{ij}$, $\bar{S}^{\rm o} = \sum_{(i,j)\in\mathcal{D}^{\rm o}} (1-Y_{ij})$, and denote $S^{\rm m} = \sum_{(i,j)\in\mathcal{D}^{\rm m}} \nu_{ij}$, $\bar{S}^{\rm m} = \sum_{(i,j)\in\mathcal{D}^{\rm m}} (1-\nu_{ij})$. Regarding the likelihood of the double standard sampling, we have

$$\mathbb{E}_{\tilde{\rho}} \log p_{\psi}(R|Y) = S^{o} \log \rho_{1} + \bar{S}^{o} \log \rho_{0} + S^{m} \log(1 - \rho_{1}) + \bar{S}^{m} \log(1 - \rho_{0}).$$

Based on this expression, we easily derive the following proposition:

Proposition 8. Consider the maximization of the lower bound (1) in the double standard sampling.

1. The parameters $\psi = (\rho_0, \rho_1)$ maximizing (1) when all other parameters are held fixed are

$$\hat{\rho}_0 = \frac{\bar{S}^{\text{o}}}{\bar{S}^{\text{o}} + \bar{S}^{\text{m}}}, \qquad \hat{\rho}_1 = \frac{S^{\text{o}}}{S^{\text{o}} + S^{\text{m}}}.$$
 (1)

2. The optimal ν in (1) when all other parameters are held fixed are

$$\hat{\nu}_{ij} = \text{logistic}\left(\log\left(\frac{1-\rho_1}{1-\rho_0}\right) + \sum_{(q,\ell)\in\mathcal{Q}^2} \tau_{iq}\tau_{j\ell}\log\left(\frac{\pi_{q\ell}}{1-\pi_{q\ell}}\right)\right).$$

Moreover, $\lambda_{iq} = 1 \ \forall (i,q) \in \mathcal{N} \times \mathcal{Q} \ for \ optimization \ of \tau \ in \ Proposition 7.2).$

Class sampling. According to the likelihood of the class sampling, we derive the following expression of the conditional expectation under the variational approximation:

$$\mathbb{E}_{\tilde{p}} \log p_{\psi}(R|Y) = \sum_{i \in \mathcal{N}^{\circ}} \sum_{q \in \mathcal{Q}} \tau_{iq} \log(\rho_q) + \sum_{i \in \mathcal{N}^{\mathrm{m}}} \sum_{q \in \mathcal{Q}} \tau_{iq} \log(1 - \rho_q),$$

from which we derive the maximization of the remaining parameters for class sampling.

Proposition 9. Consider the maximization of the lower bound (1) in the class sampling.

1. The parameters $\psi = (\rho_1, \dots, \rho_Q)$ maximizing (1) when all other parameters are held fixed are

$$\hat{\rho}_q = \frac{\sum_{i \in \mathcal{N}} \tau_{iq}}{\sum_{i \in \mathcal{N}} \tau_{iq}}.$$
 (2)

2. The optimal ν in (1) when all other parameters are held fixed verify

$$\hat{\nu}_{ij} = \text{logistic}\left(\sum_{(q,\ell) \in \mathcal{Q}^2} \tau_{iq} \tau_{j\ell} \log\left(\frac{\pi_{q\ell}}{1 - \pi_{q\ell}}\right)\right).$$

Moreover $\lambda_{iq} = \rho_q^{\mathbb{1}_{\{i \in \mathcal{N}^{o}\}}} (1 - \rho_q)^{\mathbb{1}_{\{i \in \mathcal{N}^{m}\}}}$ for optimization of τ in Proposition 7.2).

Star degree sampling. From Expression of the likelihood for star degree sampling, one has

$$\mathbb{E}_{\tilde{p}} \log p_{\psi}(R|Y) = -\sum_{i \in \mathcal{N}^{m}} \left(a + b\tilde{D}_{i} \right) + \sum_{i \in \mathcal{N}} \mathbb{E}_{\tilde{p}} \left[-\log(1 + e^{-(a + bD_{i})}) \right],$$

where $\tilde{D}_i = \mathbb{E}_{\tilde{p}}[D_i] = \sum_{i \in \mathcal{N}^{\text{m}}} \nu_{ij} + \sum_{i \in \mathcal{N}^{\text{o}}} Y_{ij}$ is the approximation of the degrees. Because $\mathbb{E}_{\tilde{p}}[-\log(1 + e^{-(a+bD_i)})]$ has no explicit form, we rely on an additional variational approximation. The principle is as follows: since $g(x) = -\log(1 + e^{-x})$ is a convex function, we have from Taylor expansion

$$g(x) \ge g(\zeta) + \frac{x-\zeta}{2} + h(\zeta)(x^2 - \zeta^2), \ \forall (x,\zeta) \in \mathbb{R} \times \mathbb{R}^+,$$

where $h(x) = \frac{-1}{2\zeta} \left[\text{logistic}(\zeta) - \frac{1}{2} \right]$. This leads to a lower bound of the initial lower bound:

$$\log p_{\theta,\psi}(Y^{\circ}, R) \ge J_{\tau,\nu,\theta,\psi}(Y^{\circ}, R) \ge J_{\tau,\nu,\zeta,\theta,\psi}(Y^{\circ}, R), \tag{3}$$

with $\zeta = (\zeta_i, i \in \mathcal{N})$ such that $\zeta_i > 0$ is an additional set of variational parameters used to approximate $-\log(1+e^{-x})$.

Proposition 10. Consider the maximization of the lower bound (3) in the star degree sampling. Let us denote $\hat{D}_i = \mathbb{E}_{\tilde{p}}\left[{D_i}^2\right]$ and $\tilde{D}_k^{-\ell} = \tilde{D}_k - \nu_{k\ell}$.

1. The parameters $\psi = (a,b)$ maximizing $J_{\tau,\nu,\zeta,\theta,\psi}(Y^{\circ},R)$ when all other parameters are held fixed are

$$\hat{b} = \frac{2\left(\frac{n}{2} - \operatorname{card}\left(\mathcal{N}^{\mathrm{m}}\right)\right) \sum_{i=1}^{n} (h(\zeta_{i})\tilde{D}_{i}) - \left(\frac{1}{2} \sum_{i=1}^{n} \tilde{D}_{i} - \sum_{i \in \mathcal{N}^{\mathrm{m}}} \tilde{D}_{i}\right) \times \sum_{i=1}^{n} h(\zeta_{i})}{2 \sum_{i=1}^{n} (h(\zeta_{i})\hat{D}_{i}) \times \sum_{i=1}^{n} h(\zeta_{i}) - \left(2 \sum_{i=1}^{n} h(\zeta_{i})\tilde{D}_{i}\right)^{2}},$$

$$\hat{a} = -\frac{\hat{b} \sum_{i=1}^{n} \left(h(\zeta_{i})\tilde{D}_{i}\right) + \frac{n}{2} - \operatorname{card}\left(\mathcal{N}^{\mathrm{m}}\right)}{\sum_{i=1}^{n} h(\zeta_{i})}.$$
(4)

2. The parameters ζ maximizing $J_{\tau,\nu,\zeta,\theta,\psi}(Y^{o},R)$ when all other parameters are held fixed are

$$\hat{\zeta}_i = \sqrt{a^2 + b^2 \hat{D}_i + 2ab\tilde{D}_i}, \ \forall i \in \mathcal{N}.$$

3. The optimal ν in $J_{\tau,\nu,\zeta,\theta,\psi}(Y^{o},R)$ when all other parameters are held fixed verify

$$\hat{\nu}_{ij} = \operatorname{logistic}\left(\sum_{(q,\ell)\in\mathcal{Q}^2} \tau_{iq}\tau_{j\ell} \log\left(\frac{\pi_{q\ell}}{1-\pi_{q\ell}}\right) - b + 2h(\zeta_i) \left(ab + b^2(1+\tilde{D}_i^{-j})\right) + 2h(\zeta_j) \left(ab + b^2(1+\tilde{D}_j^{-i})\right)\right).$$
(5)

Moreover, $\lambda_{iq} = 1 \ \forall (i,q) \in \mathcal{N} \times \mathcal{Q} \text{ for optimization of } \tau \text{ in Proposition 7.2}).$

Proposition 11. For a model with Q blocks, a sampling design with a vector of parameters ψ with dimension K and $(\hat{\theta}, \hat{\psi}) = \arg \max_{(\theta, \psi)} \log p_{\theta, \psi}(Y^{\circ}, Y^{\mathrm{m}}, R, Z)$, the ICL criterion is

$$\mathrm{ICL} = -2\mathbb{E}_{\tilde{p}_{\tau,\nu};\hat{\theta},\hat{\psi}}\left[\log p_{\hat{\theta},\hat{\psi}}(Y^{\mathrm{o}},Y^{\mathrm{m}},R,Z|Q,K)\right] + \mathrm{pen}_{ICL},$$

where

$$\begin{aligned} \text{pen}_{ICL} &= \left\{ \begin{array}{ll} \left(K + \frac{Q(Q+1)}{2}\right) \log\left(\frac{n(n-1)}{2}\right) + (Q-1) \log(n) & \textit{if the sampling design} \\ & \textit{is dyad-centered,} \\ \frac{Q(Q+1)}{2} \log\left(\frac{n(n-1)}{2}\right) + (K+Q-1) \log(n) & \textit{otherwise.} \\ \end{array} \right. \\ \text{pen}_{ICL} &= \left\{ \begin{array}{ll} \left(K + Q^2\right) \log\left(n(n-1)\right) + (Q-1) \log(n) & \textit{if the sampling design} \\ & \textit{is dyad-centered,} \\ Q^2 \log\left(n(n-1)\right) + (K+Q-1) \log(n) & \textit{otherwise.} \end{array} \right. \end{aligned}$$

2 Poisson SBM

2.1 Undirected/Directed

2.1.1 MAR

In the directed case, only \mathcal{D}^{o} is changing in the following (i.e don't forget that the matrix is not symmetric: Y_{ij} and Y_{ji} are two different random variables).

Proposition 12. The complete log-likelihood restricted to the observed variables is

$$\log p_{\theta}(Y^{\circ}, Z) = \sum_{(i,j) \in \mathcal{D}^{\circ}} \sum_{(q,\ell) \in \mathcal{Q}^{2}} Z_{iq} Z_{j\ell} \log p(Y_{ij}, \lambda_{q\ell}) + \sum_{i \in \mathcal{N}^{\circ}} \sum_{q \in \mathcal{Q}} Z_{iq} \log(\alpha_{q}),$$

with $p(x,\lambda) = \frac{\lambda^x}{x!}e^{-\lambda}$ the Poisson probability density function.

Proposition 13. The variationnal approximation is

$$J_{\tau,\theta}(Y^{\circ}) = \sum_{(i,j) \in \mathcal{D}^{\circ}} \sum_{(q,\ell) \in \mathcal{Q}^2} \tau_{iq} \tau_{j\ell} \log p(Y_{ij}, \lambda_{q\ell}) + \sum_{i \in \mathcal{N}^{\circ}} \sum_{q \in \mathcal{Q}} \tau_{iq} \log(\alpha_q / \tau_{iq}).$$

Proposition 14. Consider the lower bound $J_{\tau,\theta}(Y^{\circ})$.

1. The parameters $\theta = (\alpha, \lambda)$ maximizing $J_{\theta}(Y^{o})$ when τ is held fixed are

$$\hat{\alpha}_q = \frac{\sum_{i \in \mathcal{N}^{\circ}} \hat{\tau}_{iq}}{\operatorname{card}(\mathcal{N}^{\circ})}, \qquad \hat{\lambda}_{q\ell} = \frac{\sum_{(i,j) \in \mathcal{D}^{\circ}} \hat{\tau}_{iq} \hat{\tau}_{j\ell} Y_{ij}}{\sum_{(i,j) \in \mathcal{D}^{\circ}} \hat{\tau}_{iq} \hat{\tau}_{j\ell}}.$$

2. The variational parameters τ maximizing $J_{\tau}(Y^{o})$ when θ is held fixed are obtained thanks to the following fixed point relation:

$$\hat{\tau}_{iq} \propto \alpha_q \left(\prod_{(i,j) \in \mathcal{D}^{\circ}} \prod_{\ell \in \mathcal{Q}} p(Y_{ij}; \lambda_{q\ell})^{\hat{\tau}_{j\ell}} \right).$$

$$\hat{\tau}_{iq} \propto \alpha_q \left(\prod_{(i,j) \in \mathcal{D}^{\circ}} \prod_{\ell \in \mathcal{Q}} (p(Y_{ij}; \lambda_{q\ell}) p(Y_{ji}; \lambda_{\ell q}))^{\hat{\tau}_{j\ell}} \right).$$

Proposition 15. For an SBM with Q blocks and for $\hat{\theta} = \arg \max \log p_{\theta}(Y^{\circ}, Z)$, the ICL criterion is given by

$$\mathrm{ICL}(Q) = -2\mathbb{E}_{\tilde{p}_{\tau}}\left[\log p_{\hat{\theta}}(Y^{\mathrm{o}}, Z; Q)\right] + \frac{Q(Q+1)}{2}\log\mathrm{card}\left(\mathcal{D}^{\mathrm{o}}\right) + (Q-1)\log\mathrm{card}\left(\mathcal{N}^{\mathrm{o}}\right).$$

$$ICL(Q) = -2\mathbb{E}_{\tilde{p}_{\tau}} \left[\log p_{\hat{\theta}}(Y^{o}, Z; Q) \right] + Q^{2} \log \operatorname{card} (\mathcal{D}^{o}) + (Q - 1) \log \operatorname{card} (\mathcal{N}^{o}).$$