Dependent Types and Theorem Proving: Introduction to Dependent Types

Wojciech Kołowski

May 2021

Plan of lectures

- Lecture 1: Programming with dependent types.
- Lecture 2: Proving theorems with dependent types.
- Lecture 3: Differences between programming and proving.
- Lecture 4: Examples of bigger programs and longer proofs.
- Lecture 5: A deeper dive into F*.

Prerequisites

- To understand what we will be talking about, you should have a working knowledge of F# and the basic concepts of functional programming, namely:
- All about types: algebraic data types, sum types, product types, record types, pattern matching etc.
- All about functions: functions as first-class citizens, higher-order functions, recursive functions, currying etc.
- Even if you know these, you may be unfamiliar with the particular names – for example, "sum types" is a name used in academia and Haskell, but in F# they are better known as "discriminated unions".

Learning outcomes

- You will get basic familiarity with the ideas behind all dependently typed languages.
- You will learn about all the different kinds of dependent types and what they are good for.
- If you do the exercises, you will gain a basic proficiency in F*.
- You will be able to continue learning about dependent types on your own and won't be put off by all those obscure, scary and mysterious names and notations.
- Bonus: you will begin to see logic and mathematics in a very different light, much closer to your day job (at least if you are a programmer working in F#).

- ① Greetings
- Why
- 3 Examples
- 4 The Universe
- 5 Functions
- **6** Records
- Inductives
- Refinement types
- Quantities
 Use of Pi
- 10 Exercises

Introducing F*

- F* (pronounced "eff star") is a general-purpose purely functional programming language.
- Member of the ML family, syntactically most similar to F#.
- Aimed at program verification.
- Dependent types.
- Refinement types.
- Effect system.

Useful links

- Repo with all lecture materials: https://github.com/ wkolowski/Dependent-Types-and-Theorem-Proving
- You can run F* inside your browser (and have a nice tutorial guide you):
 http://www.fstar-lang.org/tutorial/
- GitHub: https://github.com/FStarLang/FStar
- Homepage: http://www.fstar-lang.org/
- Download: http://www.fstar-lang.org/#download
- Papers (not approachable for ordinary mortals): http://www.fstar-lang.org/#papers
- Talks/presentations (more approachable):
 http://www.fstar-lang.org/#talks (some of these are quite approachable if you're interested)

Code snippet no 1 - basics of F*

- We will now see some code that shows how these prerequisites look in F* (hint: basically the same as in F#).
- See the file Lecture1/Code/Prerequisites.fst.

Why should we care about dependent types? 1/3

- Programs written in dynamically typed languages perform a lot of runtime checks.
- Beyond a certain size dynamically typed software is hard to extend, refactor and maintain because errors manifest very late in the development process, i.e. at runtime.
- Statically typed languages make the situation better, because they move typechecking to compile time, which means a lot of errors get caught much sooner.
- Static typing is good.

Why should we care about dependent types? 2/3

- But in simple functional languages like F# there's still plenty of runtime checks – division by zero, taking the head of empty list and a lot of user-defined checks which throw exceptions in case of failure.
- With dependent types, all runtime checks can be turned into static checks – all errors are type errors.
- This results in more extensible, refactorable and maintainable software (and also better performance – less stuff to do at runtime).
- We can not only get rid of runtime checks, dependent types can also replace most unit tests and property tests.
- Dependent types bring static typing to its limits.

Why should we care about dependent types? 3/3

- And when I say all errors are typing errors, I really mean it –
 with dependent types, we can express all properties, formulate
 all specifications and describe all mathematical objects.
- Dependent types reveal a deep connection between functional programming and logic.
- Despite their great power, dependent types are easy to understand and significantly simplify the language design.
- Have you ever heard about fancy Haskell stuff like multi-param typeclasses, GADTs, higher-rank types, higher-kinded types, existential types and so on?
- No? No problem with dependent types, we get all of that (and much more) for free.

Matrix multiplication

- We can only multiply matrices whose dimensions match, i.e. we can multiply an $n \times m$ matrix by a $m \times k$ and get an $n \times k$ matrix as a result.
- How to model this in our favourite programming language without dependent types?
- The best we can do is to have a type of matrices Matrix and then matrix multiplication has type matmult: Matrix
 Matrix -> Matrix.
- What happens when we call it with matrices of the wrong dimensions?
- matmult $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ is well-typed, but will throw an

IllegalArgumentException or some other kind of runtime error, or maybe it will crash even less gracefully.

Matrix multiplication with dependent types

- In a language with dependent types we can define Matrix n m, the type of n × m matrices, and give multiplication the type matmult : (n : N) → (m : N) → (k : N) → Matrix n m → Matrix m k → Matrix n k
- Now matmult is a function which takes five arguments: the three matrix dimensions and the two matrices themselves.
- After giving it the dimensions of the first matrix from the previous slide, matmult 2 2 has type (k : N) → Matrix 2 2 → Matrix 2 3 → Matrix 2 3.
- It is clear that matmult 2 2 k $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ is not well-typed for any k, because the last argument is of type Matrix 3 3, but an argument of type Matrix 2 k was expected.

Array access

- When accessing the i-th element of an array, i must be smaller than the length of the array.
- How to model this in our favourite programming language without dependent types?
- We can define Array a, the type of arrays that hold elements of type a, and we can access its elements with a function get: Array a -> int -> a.
- What happens, when i is greater than the length of the array?
 Or, what happens when i is negative?
- get [| 'a'; 'b'; 'c'] 5 is well-typed, but will throw an IndexOutOfBoundsException or result in a segmentation fault.

Array access with dependent types

- In a language with dependent types we can define Array a n, the type of arrays of length n that hold elements of type a, and we give array access the type get : (n : N) → Array a n → (i : int{0 <= i < n }) → a.
- We use refinement types (which we will cover later today) to statically guarantee that i isn't out of bounds.
- get 3 [| 'a'; 'b'; 'c' |] 5 is not well-typed, because the typechecker can't prove 0 <= 5 < 3, and thus 5 is not of type int{0 <= 5 < 3}.

Values and types

- To understand dependent types, first we have to be aware of the distinction between values and types that is present in all the usual mainstream programming languages.
- By values, we mean the bread-and-butter of programming: numbers, strings, arrays, lists, functions, etc.
- It should be pretty obvious to you that in most languages,
 types are not of the same status as numbers or functions.

Dependencies

- Dependency is easy to understand. In fact, if you know basic F#, then you already know most of it, because in F#:
- Values can depend on values: we can think that the sum n
 + m is a number that depends on the numbers n and m. This dependency can be expressed as a function: fun (n m: int) -> n + m.
- Values can depend on types: for example, the identity function fun (x : 'a) -> x depends on the type 'a. This kind of dependency is called generics (or, in academia, polymorphism).
- Types can depend on types: for example, the F# type Set<'a> depends on the type 'a. This kind of dependency is called type operators.

Dependent types

- There's yet another kind of dependency, which is not present in F#, but is present in F* and is the topic of this lecture.
- Types can depend on values: dependent types.
- Given a functional language like F#, how to enable types to depend on values?
- Of course we want to retain the other kinds of dependencies (values on values, values on types, types on types).

Juggling dependencies

- It turns out it's best throw away all kinds of dependencies besides the basic one (values on values)...
- ...and then turn types into values!
- In other words: we want to make types first-class citizens of our language.
- Then we will be able to express all 4 kinds of dependencies using plain old functions.

What does "first-class" mean?

- The concept of "first-class" is neither precisely defined nor exact. Rather, it's more of a functional programming folklore that obeys the "I know it when I see it" principle.
- However there are some heuristics that can help you.
- Something is first-class when it can be:
- bound/assigned to variables.
- stored in data structures.
- passed to functions as an argument.
- returned from functions.
- constructed at runtime.
- nameless, i.e. it can exist without giving it any name.

A type-based definition of "first-class"

- Heuristics from previous slides are nice. . .
- but I prefer to think about first-class-ness in a different way, which is better from the functional programming point of view.
- For a given programming, a concept X is first-class if there
 is a type of all Xs, loosely speaking.
- This means that a language has first-class functions if for any two types A and B there is a type $A \rightarrow B$ of all functions from A to B.

The Universe of Types

- For types, this means that we need to have a type of types.
- And that's it we don't need anything else.
- Note: the phrase "types of types" sounds (and looks) bad, so
 we will call it the universe of types, or in short, just the
 universe.
- Because types are first-class in F*, we can assign them to variables, pass them to functions as arguments and return them from functions, and even compute types by recursion.

Type families

- In the coming slides, we will often refer to **type families**.
- A family of types indexed by type a is just a function a -> Type.
- There can be many indices, like in a -> b -> Type.
- We have already seen examples in the last code snippet:
- vec : Type -> nat -> Type is a family of types whose members vec a n are lists of length n and elements of type a
- matrix: Type -> nat -> nat -> Type is a family of types whose members matrix a n m are n x m matrices with entries of type a.

Code snippet no 2 - first-class types in F*

- It might a bit difficult to wrap your head around the idea of first-class types, so let's see how it plays out in F*.
- The code snippet can be found in Lecture1/Code/Universe.fst

Dependent types by analogy

- We will introduce dependent types by analogy.
- Each of the various kinds of dependent types out there is just a generalization of an ordinary non-dependent type that is well-known to functional programmers:
- Dependent function types are a generalization of function types.
- Dependent pair types are a generalization of products.
- Dependent record types are a generalization of records.
- Inductive types are a generalization of algebraic data types.

Non-dependent functions

- Recall how ordinary function types work in F#.
- If a: Type is a type and b: Type is a type, then there is a type a -> b: Type of functions that take an element of a and return an element of b.
- We create functions of type a -> b by writing fun (x : a)
 -> e where e is an expression of type b in which x may occur.
- If we have a function f : a -> b and x : a, then we we can apply f to x, written f x, to get an element of type b.

Dependent functions

- Now, watch the analogy unfold...
- If a: Type is a type and b: a -> Type is a family of types, then there is a type (x: a) -> b x of dependent functions which take an element of a named x and return an element of b x.
- We create functions of type (x : a) -> b x by writing fun (x : a) -> e where e is an expression of type b x in which x may occur.
- If we have a function f : (x : a) -> b x and x : a, then we can apply f to x, written f x, to get an element of type b x.
- Hint: it's probably easiest to pronounce (x : a) -> b x as
 "for all x of type a, b of x". Thus is revealed the connection
 to logic, which we will see in the next lecture.

More dependent functions

- Of course, we can iterate the dependent function type to get a type of functions whose output type dependent on the value of many inputs.
- (x : a) -> b x
- (x : a) -> ((y : b x) -> c x y)
- Dependent function type associates to the right, just like ordinary function type, so we can drop the parentheses. We can also drop all but the last arrow.
- (x : a) (y : b x) (z : c x y) -> d x y z
- (x : a) (y : b x) (z : c x y) (w : d x y z) -> e x y z w
- etc.

Code snippet no 3 - dependent functions in F*

- Let's see how to use dependent functions in F*.
- See the code snippet
 Lecture1/Code/DependentFunctions.fst

Non-dependent pairs

- Recall how ordinary pairs work in F#.
- If a: Type is a type and b: Type is a type, then there is a type a * b: Type of pairs.
- To create a pair, we write (x, y) where x is of type a and y is of type b.
- To use a pair p: a * b, we use projections we have fst p: a and snd p: b.
- We can also pattern match on pairs.

Dependent pairs

- Now, watch the analogy unfold...
- If a: Type is a type and b: a -> Type is a family of types, then there is a type (x: a) & b x: Type of dependent pairs.
- To create a dependent pair, we write (| x, y |) where x is
 of type a and y is of type b x.
- To use a pair p: (x: a) & b x, we use projections we have fst p: a and snd p: b (fst p) (note that the type of the second projection depends on the value of the first projection).
- We can also pattern match on dependent pairs.

More dependent pairs

- We can iterate the dependent pair type, while dropping unneeded parentheses – analogously to what we did for dependent functions.
- (x : a) & b x
- (x : a) & (y : b x) & c x y
- (x : a) & (y : b x) & (z : c x y) & d x y z
- But using iterated dependent pairs is very inconvenient!
- To access component of a dependent quadruple p we would have to write fst p, fst (snd p), fst (snd (snd p)) and snd (snd (snd p)).

Dependent record types

- There's a better way than iterating dependent pair types: dependent record types.
- A record is basically a labeled tuple.
- A dependent record is basically a labeled dependent tuple.
- This means that the TYPES of later fields in a dependent record can depend on the VALUES of earlier fields.

Code snippet no 4 - dependent records in F*

- Let's see how dependent records work in F*.
- See the code snippet
 Lecture1/Code/DependentRecords.fst

Inductive types refresher

- Recall how ordinary inductive types work in F# (where they are called discriminated unions; in Haskell, they are knwon as algebraic data types).
- To define an inductive type I : Type, we list its constructors.
- The constructors are ordinary functions which take some arguments (which may be of type I, i.e. the one that is being defined) and return an element of I.
- To create an element of I, we use one of the constructors and provide it with the arguments it requires.
- To use an element of I, we pattern match on it and for each case we provide an expression which will be computed if that case matches.

Inductive families 1/2

- Now watch the analogy unfold...
- To define an inductive family I: a -> Type, we list its constructors. Here a is some type that is already defined.
- The constructors are dependent functions which take some arguments (which may be of type I y for some y : a) and return an element of the type I x, for some x : a.
- To create an element of I x, we use one of the constructors and provide it with the arguments it requires.
- To use an element of I x, we pattern match on it and for each case we provide an expression which will be computed if that case matches.

Inductive families 2/2

- This time it's a bit harder to spot the analogy, so let's elaborate on it.
- Instead of a single type I: Type, we define a family of types I: a -> Type all at once.
- In this context, values of type a are called indices of the family I.
- We define a separate type for each possible index.
- To create a value that belongs to some type I x in the family, a constructor may require an argument that belongs to I y, a different type in the family.

Code snippet no 5 - inductive families in F*

- Let's see how inductive families work in F*.
- See the code snippet
 Lecture1/Code/InductiveFamilies.fst

Summary

- Dependent types are types that can depend on values.
- In dependently typed languages:
- There is a universe a type whose elements are themselves types.
- Dependent functions which are just like ordinary functions, but their output TYPE can depend on the VALUE of their input.
- Dependent record types are just like ordinary records, but the TYPES of later fields can depend on the VALUE of earlier fields.
- Inductive families are just like ordinary inductive types, but the TYPES in the family can depend on the VALUE of the index.

The problem of richness

- In dependently typed languages there is a lot of types.
- This is a blessing, because we can express all the complicated types and properties we need in order to guarantee correctness of our programs.
- But the richness of types also causes problems: it is often the case that there are many ways to define essentially the same type.

The various faces of a vector 1/2

- We have already seen two incarnations of the type vec a n of vectors:
- Functional, recursive: by recursion on the index.
- Inductive, intrinsic: as an inductive family.
- But there are at least two more definitions:
- Functional, nonrecursive: as a function with domain fin n.
- Inductive, extrinsic: as a pair of a list and a proof that it's length is equal to n.
- Which one should we use?

The various faces of a vector 2/2

- A summary of cons of each:
- Functional, recursive: ugly.
- Inductive, intrinsic: code duplication it is necessary to reimplement common list functions (append, map, etc.).
- Functional, nonrecursive: ugly, higher-order representation, very difficult to implement functions (try to implement append if you don't believe me).
- Inductive, extrinsic: a lot of boilerplate concerned with passing proofs around; need to reimplement list functions by wrapping them.

Refinement types

- Refinement types are NOT dependent types!
- A refinement is just a different name for a function that returns bool.
- A refinement type is a type paired with a refinement.
- In F^* syntax: x : ap x where p : a -> bool.

Code snippet no 6 - refinement types in F*

- Let's see how refinement types work in F*.
- See the code snippet Lecture1/Code/Refinements.fst

Pi type and multiplication

- The dependent function type is also known as the Pi type.
- This name comes from a notation: $(x : a) \rightarrow b x$ is sometimes written as $\prod_{x \in A} b(x)$.
- This notation comes from an analogy with multiplication. In math $\prod_{k=0}^{n} a_k$ means $a_0 \cdot a_1 \cdot ... \cdot a_n$.
- We can think about dependent function types in this way too. For example, the type (x : bool) -> p x is equivalent to p true * p false.
- The result of multiplication is called a product, hence the dependent function type is also known as the dependent product type.
- As it turns out, the dependent function type **generalizes both the ordinary function type and the product type**,
 but in different ways.

Sigma type and addition

- The dependent pair type is also known as the Sigma type.
- This name comes from a notation: (x : a) & b x is sometimes written as $\sum_{x:a} b(x)$.
- This notation comes from an analogy with addition. In math $\sum_{k=0}^{n} a_k$ means $a_0 + a_1 + ... + a_n$.
- We can think about dependent pair types in this way too. For example, the type (x : bool) & p x is equivalent to p true + p false (where + just means a simple tagged union).
- The result of addition is called a sum, hence the dependent pair type is also known as the dependent sum type.
- As it turns out, the dependent pair type generalizes both the product type and the sum type, but in different ways.

Inductive types and polynomials 1/2

- An inductive type is EITHER constructor 1 applied to arguments x1 and x2 ... and xN OR constructor 2 applied to arguments ... OR constructor M applied to arguments ...
- In math, OR means addition, whereas AND means multiplication.
- So, an inductive type boils down to a **Sum of Products**.
- These products are made of two kinds of arguments: recursive arguments (whose type is the inductive type that is being defined) and non-recursive ones.
- If you think about it long enough, inductive types correspond to polynomials.

Inductive types and polynomials 2/2

- This could be hard to swallow, so let's see examples.
- Lists satisfy the equation $List(A) = 1 + A \times List(A)$.
- Here 1 corresponds to the nil constructor, whereas the A and List(A) on the right correspond to the arguments of the cons constructor.
- This corresponds to the polynomial $F(X) = 1 + A \times X$.
- List(A) is the least fixed point of this polynomial, i.e. the smallest type X that satisfies F(X) = X.
- Here "fixed point" corresponds to the fact that we create lists using constructors (nil and cons), whereas "least" corresponds to the fact that all lists are made of finitely many constructors.

Exercises

TODO