Scaling Geometric Monitoring Over Distributed Streams

Alexandros D. Keros

June 23, 2016

Supervised by: Prof. V.Samoladas

Table of contents

Introduction

Theoretical Background

The Geometric Monitoring Method Theoretical Tools Related Work

Problem Statement & Implementation

Problem Statement Implementation

Experimental Results

Data & Setup Experiments

Conclusions & Future Work

Conclusion Future Work

Theoretical Background

The Geometric Monitoring Method Theoretical Tools Related Work

Problem Statement & Implementation

Problem Statemen

Experimental Results

Data & Setup

Conclusions & Future Work

Conclusion Future Work

Data Stream Systems

- ▶ Data streams: Continuous, high volume, size unbound, violative, probably distributed
- Pull paradigm
- ▶ Centralizing and/or polling → prohibitive in terms of communication overhead
- Examples: telecommunication, sensor networks

- Threshold monitoring
- Nodes communicate when needed
 - Local constraints
 - Violation resolution (false alarms)
- Arbitrary function monitoring
- Tight accuracy bounds
- A promising framework for distributed data stream monitoring

Problems:

- increasing node population
- data volume
- data dimensionality
- arbitrary functions
- communication accuracy tradeof

Need for

- scalability warranties
- tight accuracy bounds
- incremental/real-time operation
- ▶ Minimize communication while retaining accuracy bounds

Problems:

- increasing node population
- data volume
- data dimensionality
- arbitrary functions
- communication accuracy tradeoff

Need for:

- scalability warranties
- tight accuracy bounds
- incremental/real-time operation
- ▶ Minimize communication while retaining accuracy bounds

Problems:

- increasing node population
- data volume
- data dimensionality
- arbitrary functions
- communication accuracy tradeoff

Need for:

- scalability warranties
- tight accuracy bounds
- ▶ incremental/real-time operation
- ► Minimize communication while retaining accuracy bounds

Problems:

- increasing node population
- data volume
- data dimensionality
- arbitrary functions
- communication accuracy tradeoff

Need for:

- scalability warranties
- tight accuracy bounds
- ► incremental/real-time operation
- ► Minimize communication while retaining accuracy bounds

Contributions

Expand the geometric monitoring method:

- heuristic method for violation resolution
- distance-based hierarchical node clustering

Contributions

Expand the geometric monitoring method:

- heuristic method for violation resolution
- distance-based hierarchical node clustering

Contributions

Expand the geometric monitoring method:

- heuristic method for violation resolution
- distance-based hierarchical node clustering
- throughout method evaluation on synthetic and real-world datasets

Theoretical Background

The Geometric Monitoring Method Theoretical Tools Related Work

Geometric Threshold Monitoring

Threshold monitoring: arbitrary function $f(\cdot)$, threshold T

$$f(\cdot) < T \text{ or } f(\cdot) > T$$

▶ Idea: decompose into local constraints at the nodes

System Architecture

0000000000

Decentralized Scenario

Figure: Mesh-like network topology example of the decentralized scenario. Dashed lines represent data streams and half arrows represent message exchanges.

System Architecture

Centralized Scenario

Figure: **Star-like network topology** example of the centralized scenario. The bold node represents the coordinator node. Dashed lines represent data streams and half arrows represent message exchanges.

Computational Model

Statistics vectors

- ▶ the monitoring function $f : \mathbb{R}^d \to \mathbb{R}$
- the threshold $T \in \mathbb{R}$
- ▶ the monitoring node set : $P = \{p_1, ..., p_n\}$ with weights w_1, \ldots, w_n
- ▶ the data streams : $S = \{s_1, \ldots, s_n\}$
- ▶ the d-dimensional local statistics vectors : $\vec{v_1}(t), \dots, \vec{v_n}(t)$ represent each node's data stream at time t

Global statistics vector

$$\vec{v}(t) = \frac{\sum_{i=1}^{n} w_i \vec{v}_i(t)}{\sum_{i=1}^{n} w_i}$$
 (1)

Introduction Theoretical Background 0000000000

Computational Model

Estimate vector

Infrequent communication between nodes/nodes-coordinator:

Estimate vector

$$\vec{e}(t) = \frac{\sum_{i=1}^{n} w_i \vec{v_i}'}{\sum_{i=1}^{n} w_i}$$
 (2)

- ▶ the last communicated *local statistics vector* of node p_i : $\vec{v_i}'$
- Local statistics divergence: $\Delta \vec{v_i}(t) = \vec{v_i}(t) \vec{v_i}', i = 1, \dots, n$

Decentralized drift vector

$$\vec{u_i}(t) = \vec{e}(t) + \Delta \vec{v_i}(t) \qquad (3)$$

Centralized drift vector

$$\vec{u_i}(t) = \vec{e}(t) + \Delta \vec{v_i}(t) + \frac{\vec{\delta_i}}{w_i}$$
 (4)

Computational Model

0000000000

Balancing Process

Centralized scenario

Purpose: resolve possible false alarms

Balancing vector

$$\vec{b} = \frac{\sum_{p_i \in P'} w_i \vec{u_i}(t)}{\sum_{p_i \in P'} w_i}$$
 (5)

- ▶ the balancing set P': a subset of nodes
- the slack vector at the nodes $\vec{\delta_i} = \vec{\delta_i}' + \Delta \vec{\delta_i}$, $\sum_{n \in P'} \Delta \vec{\delta_i} = \vec{0}$:

$$\Delta \vec{\delta_i} = w_i \vec{b} - w_i \vec{u_i}(t) \ \forall \ p_i \in P'$$
 (6)

, readjusts the *drift vectors* (4).

0000000000

Geometric Interpretation

Convexity Property

Convexity Property

$$\vec{v}(t) = \frac{\sum_{i=1}^{n} w_i \vec{u_i}(t)}{\sum_{i=1}^{n} w_i}$$
 (7)

Theorem (Sharfman et al. [3])

Let $\vec{x}, \vec{v_1}, \dots, \vec{v_n} \in \mathbb{R}^d$ be a set of vectors in \mathbb{R}^d . Let $Conv(\vec{x}, \vec{y_1}, \dots, \vec{y_n})$ be the convex hull of $\vec{x}, \vec{y_1}, \dots, \vec{y_n}$. Let $B(\vec{x}, \vec{y_i})$ be a ball centered at $\frac{\vec{x} + \vec{y_i}}{2}$ and with radius of $\|\frac{\vec{x} + \vec{y_i}}{2}\|_2$ i.e., $B(\vec{x}, \vec{y_i}) = \{\vec{z} \mid \|\vec{z} - \frac{\vec{x} + \vec{y_i}}{2}\|_2 \le \|\frac{\vec{x} + \vec{y_i}}{2}\|_2\}, \text{ then }$ $Conv(vecx, \vec{v_1}, \dots, \vec{v_n}) \subset B(\vec{x}, \vec{v_i}).$

Geometric Interpretation

Convexity Property

Figure: Example of a convex hull (light gray) defined by the drift vectors $\vec{u_i}$, i = 1, 2, 3, 4, 5. The hull is bounded by the spheres created from the estimate vector \vec{e} and the drift vectors $\vec{u_i}, i = 1, 2, 3, 4, 5$. The global statistics vector \vec{v} is guaranteed to be contained in the convex hull of the drift vectors.

Geometric Interpretation Local Constraints

00000000000

Protocol

Decentralized Algorithm

0000000000

Protocol Centralized Algorithm

Multi-objective Optimization

Theoretical Tools

Non-linear Constraint Optimization Primal Descent

Theoretical Tools

Feasible Directions

0000000000

Introduction Theoretical Background Problem Statement & Implementation Experimental Results Conclusions & Future Work

Theoretical Tools

SQF

Theoretical Tools

The Savitzky-Golay Filter

00000000000

Theoretical Tools

Maximum Weight Matching

The Primal-Dual Method

Related Work

Related Work

Problem Statement

Problem Formulation

The Geometric Monitoring Framework

,000

0-000000000

Implementation

The Distance-based Hierarchical Clustering The Idea

The Distance-based Hierarchical Clustering

The Weight Function

The Distance-based Hierarchical Clustering The Algorithm

The Heuristic Balancing The Idea

The Heuristic Balancing

The Optimizing Function

The Heuristic Balancing

The Function Formulation

The Algorithm

The Heuristic Balancing

An Nested Optimization Problem

Velocity and Acceleration Estimation via SG Filtering

Implementation Challenges

Data & Setup

Synthetic Data

Data & Setup

Real-world Data

Experiments

Notation

RAND, DIST, DISTR Comparison

000000

Experiments

GM, HM Comparison

Experiments

GM, HDM Comparison
Synthetic Data Monitoring

Experiments

GM, HDM Comparison

Air Pollution Monitoring

Conclusion

Summary & Concluding Remarks

Future Work

Future Work

The end Questions?