THAT WHICH IS CLAIMED IS:

1. A method of making a compound of Formula I:

$$R^{5}$$
 R^{4}
 C^{9}
 R^{9}
 R^{9

wherein:

R⁴ is alkyl, alkenyl, alkynyl, aryl or SiR²⁰R²¹R²², wherein R²⁰, R²¹ and R²² are each independently selected from the group consisting of alkyl, alkenyl, alkynyl and aryl;

R¹ is alkyl, aryl, alkenyl, alkynyl, alkoxy, -NR"₂ or -SR", where R" is alkyl, aryl, alkenyl, alkynyl, or alkoxy;

R², R⁵, and R⁶ are each independently selected from the group consisting of H, alkyl, aryl, alkenyl, alkynyl, alkoxy, and halo;

R⁷ is selected from the group consisting of consisting of H and alkyl;

A is a 1, 2 or 3 atom bridging species which forms part of a saturated or monounsaturated 5-, 6- or 7-membered ring including N⁷, C⁸, C⁹ and B;

B is selected from -O-, -S-, -NR¹⁰-, wherein R¹⁰ is selected from hydrogen, alkyl, aryl, substituted aryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl; -C¹⁰HR^{10a}-, wherein R^{10a} is selected from hydrogen, alkyl, hydroxyalkyl, aryl, aryloxyalkyl, fluoro, trifluoromethyl, cyano, cyanomethyl, --OR', -NR'₂, or --SR', wherein each R' is independently hydrogen, alkyl, alkenyl, alkynyl or aryl; or B is =C¹⁰R^{10a} or =N-; and

R⁹ and R^{9a} are each independently selected from hydrogen, alkyl, hydroxyalkyl, aryl, aryloxyalkyl, fluoro, trifluoromethyl, cyano, cyanomethyl, -OR', -NR'₂, or -SR', wherein each R' is as defined above;

comprising reacting an organometallic nucleophile R^4Met , where R^4 is as given above and Met is a metal, with a compound of the formula:

$$\begin{array}{c|c}
R^{9} & R^{9a} \\
\hline
R^{5} & H \\
\hline
R^{6} & N \\
\hline
R^{2} & R^{7}
\end{array}$$

wherein A, B, R², R⁵, R⁶, R⁷, R⁹, and R^{9a} are as given above,

and a compound of the formula R^1COX^1 , wherein R^1 is as given above and X^1 is halo, to produce a compound of **Formula I.**

- 2. The method of claim 1, wherein R⁴ is alkyl, alkenyl, alkynyl, or aryl.
- 3. The method of claim 1, wherein R^4 is $SiR^{20}R^{21}R^{22}$, and wherein R^{20} , R^{21} and R^{22} are each independently selected from the group consisting of alkyl alkenyl, alkynyl and aryl.
 - 4. The method of claim 1, wherein R¹ is alkyl.
- 5. The method of claim 1, wherein Met is selected from the group consisting of magnesium, manganese, sodium, lithium, copper, cerium, zinc, cadmium, aluminum and titanium.

6. A compound of Formula I:

wherein:

 R^4 is alkyl, alkenyl, alkynyl, aryl or $SiR^{20}R^{21}R^{22}$, wherein R^{20} , R^{21} and R^{22} are each independently selected from the group consisting of alkyl, alkenyl, alkynyl and aryl;

R¹ is alkyl, aryl, alkenyl, alkynyl, alkoxy, -NR"₂ or -SR", where R" is alkyl, aryl, alkenyl, alkynyl, or alkoxy;

R², R⁵, and R⁶ are each independently selected from the group consisting of H, alkyl, aryl, alkenyl, alkynyl, alkoxy, and halo;

R⁷ is selected from the group consisting of consisting of H and alkyl;

A is a 1, 2 or 3 atom bridging species which forms part of a saturated or monounsaturated 5-, 6- or 7-membered ring including N⁷, C⁸, C⁹ and B;

B is selected from -O-, -S-, -NR¹⁰-, wherein R¹⁰ is selected from hydrogen, alkyl, aryl, substituted aryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl; -C¹⁰HR^{10a}-, wherein R^{10a} is selected from hydrogen, alkyl, hydroxyalkyl, aryl, aryloxyalkyl, fluoro, trifluoromethyl, cyano, cyanomethyl, --OR', -NR'₂, or --SR', wherein each R' is independently hydrogen, alkyl, alkenyl, alkynyl or aryl; or B is =C¹⁰R^{10a} or =N-; and

R⁹ and R^{9a} are each independently selected from hydrogen, alkyl, hydroxyalkyl, aryl, aryloxyalkyl, fluoro, trifluoromethyl, cyano, cyanomethyl, -OR', -NR'₂, or -SR', wherein each R' is as defined above.

- 7. The compound of claim 6, wherein R⁴ is alkyl, alkenyl, alkynyl, or aryl.
- 8. The compound of claim 6, wherein R^4 is $SiR^{20}R^{21}R^{22}$, and wherein R^{20} , R^{21} and R^{22} are each independently selected from the group consisting of alkyl, alkenyl, alkynyl and aryl.
 - 9. The compound of claim 6, wherein R^1 is alkyl.
 - 10. The compound of claim 6, wherein said compound is enantiomerically pure.
 - 11. A method of making a compound of Formula II:

$$R^{4}$$
 C^{9}
 R^{4}
 C^{9}
 R^{7}
 R^{6}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}

wherein:

R⁴ is alkyl, alkenyl, alkynyl, aryl or SiR²⁰R²¹R²², wherein R²⁰, R²¹ and R²² are each independently selected from the group consisting of alkyl, alkenyl, alkynyl and aryl;

R², R⁵, and R⁶ are each independently selected from the group consisting of H, alkyl, aryl, alkenyl, alkynyl, alkoxy, and halo;

R⁷ is selected from the group consisting of consisting of H and alkyl;

A is a 1, 2 or 3 atom bridging species which forms part of a saturated or monounsaturated 5-, 6- or 7-membered ring including N⁷, C⁸, C⁹ and B;

B is selected from -O-, -S-, -NR¹⁰-, wherein R¹⁰ is selected from hydrogen, alkyl, aryl, substituted aryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl; -C¹⁰HR^{10a}-, wherein R^{10a} is selected from hydrogen, alkyl, hydroxyalkyl, aryl, aryloxyalkyl, fluoro, trifluoromethyl, cyano, cyanomethyl, --OR', -NR'₂, or --SR', wherein each R' is independently hydrogen, alkyl, alkenyl, alkynyl or aryl; or B is =C¹⁰R^{10a} or =N-; and

R⁹ and R^{9a} are each independently selected from hydrogen, alkyl, hydroxyalkyl, aryl, aryloxyalkyl, fluoro, trifluoromethyl, cyano, cyanomethyl, -OR', -NR'₂, or -SR', wherein each R' is as defined above;

comprising oxidizing a compound of Formula 1:

$$R^{5}$$
 R^{4}
 C^{9}
 R^{9}
 R^{9

wherein A, B, R², R⁴, R⁵, R⁶, R⁷, R⁹, and R^{9a} are as given above, and R¹ is alkyl, aryl, alkenyl, alkynyl, alkoxy, -NR"₂ or -SR", where R" is alkyl, aryl, alkenyl, alkynyl, or alkoxy, to produce a compound of **Formula II.**

- 12. The method of claim 11, wherein said solvent is toluene.
- 13. The method of claim 11, wherein said oxidizing step is carried out with an oxidizing agent selected from the group consisting of air, sulfur, nitric acid, KMnO₄, ceric ammonium nitrate, chloranil and 2,3-dichloro-5, 6-dicyano-1, 4-benzoquinone.

- 14. The method of claim 11, wherein R⁴ is alkyl, alkenyl, alkynyl, or aryl.
- 15. The method of claim 11, wherein R^4 is $SiR^{20}R^{21}R^{22}$, and wherein R^{20} , R^{21} and R^{22} are each independently selected from the group consisting of alkyl alkenyl, alkynyl and aryl.
- 16. An enantiomerically pure C4-substituted nicotine analog produced by the process of claim 11.
 - 17. An enantiomerically pure compound of Formula II:

 R^4 is alkyl, alkenyl, alkynyl, aryl or $SiR^{20}R^{21}R^{22}$, wherein R^{20} , R^{21} and R^{22} are each independently selected from the group consisting of alkyl alkenyl, alkynyl and aryl;

R², R⁵, and R⁶ are each independently selected from the group consisting of H, alkyl, aryl, alkenyl, alkynyl, alkoxy, and halo;

subject to the proviso that R⁴ is different from at least one of R², R⁵ and R⁶;

R⁷ is selected from the group consisting of consisting of H and alkyl;

A is a 1, 2 or 3 atom bridging species which forms part of a saturated or monounsaturated 5-, 6- or 7-membered ring including N⁷, C⁸, C⁹ and B;

B is selected from -O-, -S-, -NR¹⁰-, wherein R¹⁰ is selected from hydrogen, alkyl, aryl, substituted aryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl; -C¹⁰HR^{10a}-, wherein R^{10a} is selected from hydrogen, alkyl, hydroxyalkyl, aryl, aryloxyalkyl, fluoro, trifluoromethyl, cyano, cyanomethyl, --OR', -NR'₂, or --SR', wherein each R' is independently hydrogen, alkyl, alkenyl, alkynyl or aryl; or B is = $C^{10}R^{10a}$ or =N-; and

R⁹ and R^{9a} are each independently selected from hydrogen, alkyl, hydroxyalkyl, aryl, aryloxyalkyl, fluoro, trifluoromethyl, cyano, cyanomethyl, -OR', -NR'₂, or -SR', wherein each R' is as defined above.

- 18. The enantiomerically pure compound of claim 17, subject to the proviso that R^4 is different from R^2 , R^5 and R^6 .
 - 19. An enantiomerically pure compound of Formula II:

R⁴ is SiR²⁰R²¹R²², wherein R²⁰, R²¹ and R²² are each independently selected from the group consisting of alkyl, alkenyl, alkynyl and aryl;

R², R⁵, and R⁶ are each independently selected from the group consisting of H, alkyl, aryl, alkenyl, alkynyl, alkoxy, and halo;

R⁷ is selected from the group consisting of consisting of H and alkyl;

A is a 1, 2 or 3 atom bridging species which forms part of a saturated or monounsaturated 5-, 6- or 7-membered ring including N^7 , C^8 , C^9 and B;

B is selected from -O-, -S-, -NR¹⁰-, wherein R¹⁰ is selected from hydrogen, alkyl, aryl, substituted aryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl; -C¹⁰HR^{10a}-, wherein R^{10a} is selected from hydrogen, alkyl, hydroxyalkyl, aryl, aryloxyalkyl, fluoro, trifluoromethyl, cyano, cyanomethyl, --OR', -NR'₂, or --SR', wherein each R' is independently hydrogen, alkyl, alkenyl, alkynyl or aryl; or B is =C¹⁰R^{10a} or =N-; and

R⁹ and R^{9a} are each independently selected from hydrogen, alkyl, hydroxyalkyl, aryl, aryloxyalkyl, fluoro, trifluoromethyl, cyano, cyanomethyl, -OR', -NR'₂, or -SR', wherein each R' is as defined above.

- 20. The compound of claim 19, wherein R², R⁵, and R⁶ are each independently selected from the group consisting of H, alkyl, aryl, alkenyl, and alkynyl.
 - 21. A method of making a compound of Formula III:

R², R⁵, and R⁶ are each independently selected from the group consisting of H, alkyl, aryl, alkenyl, alkynyl, alkoxy, and halo;

R⁷ is selected from the group consisting of consisting of H and alkyl;

A is a 1, 2 or 3 atom bridging species which forms part of a saturated or monounsaturated 5-, 6- or 7-membered ring including N^7 , C^8 , C^9 and B;

B is selected from -O-, -S-, -NR¹⁰-, wherein R¹⁰ is selected from hydrogen, alkyl, aryl, substituted aryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl; -C¹⁰HR^{10a}-, wherein R^{10a} is selected from hydrogen, alkyl, hydroxyalkyl, aryl, aryloxyalkyl, fluoro, trifluoromethyl, cyano, cyanomethyl, --OR', -NR'₂, or --SR', wherein each R' is independently hydrogen, alkyl, alkenyl, alkynyl or aryl; or B is =C¹⁰R^{10a} or =N-; and

 R^9 and R^{9a} are each independently selected from hydrogen, alkyl, hydroxyalkyl, aryl, aryloxyalkyl, fluoro, trifluoromethyl, cyano, cyanomethyl, -OR', -NR'₂, or -SR', wherein each R' is as defined above;

comprising oxidizing a compound of Formula II:

wherein A, B, R. R², R⁵, R⁶, R⁷, R⁹, and R^{9a} are as given above and R is SiR²⁰R²¹R²², wherein R²⁰, R²¹ and R²² are each independently selected from the group consisting of alkyl alkenyl, alkynyl and aryl, in a polar protic solvent to produce a compound of **Formula III**.

- 22. The method of claim 21, wherein said solvent is selected from the gorup consisting of methanol, ethanol, propanol, and butanol.
- 23. The method of claim 21, wherein said oxidizing step is carried out with a peroxide in the presence of fluoride.
 - 24. An enantiomerically pure compound of Formula III:

 R^2 , R^5 , and R^6 are each independently selected from the group consisting of H, alkyl, aryl, alkenyl, alkynyl, alkoxy, and halo;

R⁷ is selected from the group consisting of consisting of H and alkyl;

A is a 1, 2 or 3 atom bridging species which forms part of a saturated or monounsaturated 5-, 6- or 7-membered ring including N^7 , C^8 , C^9 and B;

B is selected from -O-, -S-, -NR¹⁰-, wherein R¹⁰ is selected from hydrogen, alkyl, aryl, substituted aryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl; -C¹⁰HR^{10a}-, wherein R^{10a} is selected from hydrogen, alkyl, hydroxyalkyl, aryl, aryloxyalkyl, fluoro, trifluoromethyl, cyano, cyanomethyl, --OR', -NR'₂, or --SR', wherein each R' is independently hydrogen, alkyl, alkenyl, alkynyl or aryl; or B is =C¹⁰R^{10a} or =N-; and

R⁹ and R^{9a} are each independently selected from hydrogen, alkyl, hydroxyalkyl, aryl, aryloxyalkyl, fluoro, trifluoromethyl, cyano, cyanomethyl, -OR', -NR'₂, or -SR', wherein each R' is as defined above.