Correlation Coefficient Matrix

Age	Experience	Education Received	Salary
32	8	6	\$ 8,000
40	15	8	\$ 12,000
35	6	8	\$ 10,000

	Age	Experience	Education Received	Salary
Age	1	0.9	0.2	0.7
Experience	0.9	1	0.15	0.72
Education Received	0.2	0.15	1	0.85
Salary	0.7	0.72	0.85	1

Statistically Correlated

- Strength of the correlation Coefficient of Correlation
- Direction of correlation Sign of the Coefficient

Correlation Coefficient Matrix

Age	Experience	Education Received	Salary
32	8	6	\$8,000
40	15	8	\$ 12,000
35	6	8	\$ 10,000

	Age	Experience	Education Received	Salary
Age	1	0.88	0.2	9.7
Experience	0.88	1	0.15	0.72
Education Received	0.2	0.15	1	0.85
Salary	0.7	0.72	0.85	1

QuickFix

· Start with All the variable

· Remove unwanted ones using Adjusted R-Squared or feature selection methods

Multiple Linear Regression

Hrs Studied (X1)	Hrs Slept (X2)	Marks (Y)
0	8	40
2	8	52
3	7.5	53
4	7	55
4	9	56
5	8.5	72
6	9	71
6	7	88
7	6	56
7	7	74
8	9	89
9	6	67
9	9	89

Marks Obtained

Hrs Studied Hrs Slept

Categorical Variable in Regression

Hrs Studied (X1)	Hrs Slept (X2)	Major Subject (X3)	Marks (Y)
0	8	Math	40
2	8	Science	52
3	7.5	Art	53
4	7	Math	55
4	9	Math	56
5	8.5	Math	72
6	9	Science	71
6	7	Art	88
7	6	Art	56
7	7	Science	74
8	9	Science	89
9	6	Math	67
9	9	Art	89

Label Encoding

Hrs Studied (X1)	Hrs Slept (X2)	Major Subject (X3)	Marks (Y)
0	8	1	40
2	8	2	52
3	7.5	3	53
4	7	1	55
4	9	1	56
5	8.5	1	72
6	9	2	71
6	7	3	88
7	6	3	56
7	7	2	74
8	9	2	89
9	6	1	67
9	9	3	89

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3$$

Dependent Variable

Marks Obtained

Independent Variable

Hrs Studied Hrs Slept Major Subject

Math -1

Science -2

Art - 3

Hot Encoding or Dummy Variable

Hrs Studied (X1)	Hrs Slept (X2)	Math (X3)	Science (X4)	Art (X5)	Marks (Y)
0	8	1	0	0	40
2	8	0	1	0	52
3	7.5	0	0	1	53
4	7	1	0	0	55
4	9	1	0	0	56
5	8.5	1	0	0	72
6	9	0	1	0	71
6	7	0	0	1	88
7	6	0	0	1	56
7	7	0	1	0	74
8	9	0	1	0	89
9	6	1	0	0	67
9	9	0	0	1	89

Dummy Variable Trap

Hrs Studied (X1)	Hrs Slept (X2)	Math (X3)	Science (X4)	Art (X5)	Marks (Y)
0	8	1	0	0	40
2	8	0	1	0	52
3	7.5	0	0	1	53
4	7	1	0	0	55
4	9	1	0	0	56
5	8.5	1	0	0	72
6	9	0	1	0	71
6	7	0	0	1	88
7	6	0	0	1	56
7	7	0	1	0	74
8	9	0	1	0	89
9	6	1	0	0	67
9	9	0	0	1	89

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4$$

Dummy Variable Trap

Hrs Studied (X1)	Hrs Slept (X2)	Math (X3)	Science (X4)	Art (X5)	Marks (Y)
0	8	1	0	0	40
2	8	0	1	0	52
3	7.5	0	0	1	53
4	7	1	0	0	55
4	9	1	0	0	56
5	8.5	1	0	0	72
6	9	0	1	0	71
6	7	0	0	1	88
7	6	0	0	1	56
7	7	0	1	0	74
8	9	0	1	0	89
9	6	1	0	0	67
9	9	0	0	1	89

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4$$

pd.get_dummies(data,drop_first=True)

Question 1:

We should use Simple Linear Regression to predict the winner of a football game

- True
- False

Question 2:

What is the class used in Python to create a simple linear regressor?

SimpleLinear
○ LinearRegression
○ LinReg
○ SimpleLinearRegression

Question 3:

Which of the following formulas is not a simple linear regression model?

O Salary = a * Experience

- Salary = a * Experience + b
- O Salary = a * Experience + b * Age

Task: Create ML model to predict the Power output for (Combined Cycle Power Plant - CCPP)

Polynomial Regression

Polynomial Regression

Demo: Create ML using Polynomial Regression and compare it with Multiple regression.

Decision Tree Regression

Demo: Create ML using Decision Tree Regression to predict the salary based on the

position.

Random Forest Regression

Random Forest Intuition (Ensemble Learning)

Random Forest Intuition (Ensemble Learning)

STEP 1: Pick at random K data points from the Training set.

STEP 2: Build the Decision Tree associated to these K data points.

STEP 3: Choose the number Ntree of trees you want to build and repeat STEPS 1 & 2

STEP 4: For a new data point, make each one of your Ntree trees predict the value of Y to for the data point in question, and assign the new data point the average across all of the predicted Y values.

Demo: Create ML using Random Forest Regression to predict the salary based on the

position.

Demo: Create ML Regression model Templates.

