Dense convolutional neural network in embedded systems

Michal CHOVANEC, PhD

Motivation

- build smarter robots
- embedded particle filtering
- embedded localization
- embedded decision making

Target hardware

target	bits	features	frequency	
AVR	8	single cycle ADD, MUL	20MHz	
Atmega 328	0	single cycle ADD, MOL		
ARM	32	single cycle ADD, MUL	48MHz	
Cortex M0]]2	Siligle Cycle ADD, MOL		
ARM	32	SIMD DUAL 16bit MAC	72MHz	
Cortex M4, M7		, FPU	216MHz	

Convolutional neural network

- input tensor (image)
- convolutional layer
- dense convolutional layer
- relu layer (nonlinearity)
- pooling layer
- full connected layer

Basic math - discrete convolution


```
for (unsigned y = 0; y < input_height; y++)
for (unsigned x = 0; x < input_width; x++)
{
    float sum = 0.0;
    for (unsigned ky = 0; ky < kernel_height; ky++)
        for (unsigned kx = 0; kx < kernel_width; kx++)
        {
            sum+= kernel[ky][kx]*input[y + ky][x + kx];
        }
        output[y + kernel_height/2][x + kernel_width/2] = sum;
    }
}</pre>
```

Basic math - activation function

tanh, sigmoid, gaussian, RELU, leaky RELU ...

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{df(x)}{dx} = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Basic math - pooling

Convolutional neural network - CNN

Dense CNN

State of the art in image recognition.

architecture	depth params		CIFAR 10	CIFAR 100	
ResNet	110	1.7M	13.63%	44.74%	
ResNet	110	1.7M	11.66%	37.8%	
Stochastic Depth	110	1.7101	11.0076		
DenseNet $k = 12$	40	1.0M	7.0%	27.55%	
DenseNet $k = 24$	100	27.2M	5.83%	23.42%	

Network example - MNIST handwritten digits recognition

- training count 50000
- testing count 10000
- input size 28x28x1 pixels

0123456789 0123456789 0123456789 0123456789 0123456789 0123456789

Tested architecture
C8 - P2 - D8 - D8 - D8 - D8 - D8 - D8 - FC

Training result

Network success rate - confusion matrix

976	0	1	0	1	1	6	0	1	1
1	1129	0	0	0	0	3	3	0	0
1	3	1028	1	0	0	0	6	1	1
0	0	0	995	0	4	0	0	0	1
0	0	0	0	973	0	1	0	2	7
0	1	0	4	0	885	2	0	1	5
0	0	1	0	1	1	942	0	0	0
1	1	1	6	1	1	0	1018	0	6
1	1	1	3	0	0	4	1	967	1
0	0	0	1	6	0	0	0	2	987
99.592	99.471	99.612	98.515	99.084	99.215	98.33	99.027	99.281	97.82
9900	100	99%							

Embedded network implementation

convert float weights to int8_t

$$scale = max(|\vec{w}|_1)$$

 $\vec{w}' = \vec{w} \frac{127}{scale}$

use double buffer memory trick

- unsigned buffer size = max_i(layers[i].input size());
- buffer_a = new int8_t(buffer_size);
- buffer_b = new int8_t(buffer_size);

Optimize kernel - templates

```
templete < unsigned int kernel_size >
void convolution()
{
   for (unsigned y = 0; y < input_height; y++)
   for (unsigned x = 0; x < input_width; x++)
   {
      int sum = 0;
      for (unsigned ky = 0; ky < kernel_size; ky++)
      for (unsigned kx = 0; kx < kernel_size; kx++)
      {
        sum+= kernel[ky][kx]*input[y + ky][x + kx];
      }
      output[y + kernel_size/2][x + kernel_size/2] = (sum*scale)/127;
      }
   }
}</pre>
```

Optimize kernel - unrolling

```
templete < unsigned int kernel size >
void convolution()
  for (unsigned y = 0; y < input height; y++)
  for (unsigned x = 0; x < input width; x++)
      int sum = 0;
      if (kernel size == 3)
        sum += kernel[0][0]*input[v + 0][x + 0];
        sum += kernel[0][1] * input[y + 0][x + 1];
        sum += kernel[0][2]*input[v + 0][x + 2]:
        sum += kernel[1][0]*input[y + 1][x + 0];
        sum += kernel[1][1]*input[y + 1][x + 1];
        sum += kernel[1][2]*input[y + 1][x + 2];
        sum += kernel[2][0]*input[y + 2][x + 0];
        sum += kernel[2][1] * input[y + 2][x + 1];

sum += kernel[2][2] * input[y + 2][x + 2];
      output[y + kernel size/2][x + kernel size/2] = (sum*scale)/127;
 }
```

3.6x speed up

Optimize kernel - SIMD

```
sum += kernel[0][0]*input[y + 0][x + 0];
sum += kernel[0][1]*input[y + 0][x + 1];
sum += kernel[0][2]*input[y + 0][x + 2];
smlabb r2, fp, sl, r2
ldrsb.w sl, [r8, #1]
[drsb.w.fp.[r0.#-24]]
smlabb r2, fp, sl, r2
ldrsb.w sl, [r8, #2]
[drsb.w.fp.[r0.\#-23]]
smlabb r2, fp, sl, r2
ldrsb.w sl, [r8, #3]
[drsb.w fp, [r0, #-22]]
```

Results

- float network accuracy 99%
- int8 network accuracy 98.97%
- runtime on 216MHz Cortex M7 18ms (72Mop/s)

Usefull links

ImageNet Classification with Deep Convolutional Neural Networks https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Alex Krizhevsky web, https://www.cs.toronto.edu/~kriz/

Deep Belief Nets in C++ and CUDA C: Volume III
https://www.amazon.com/Deep-Belief-Nets-CUDA-Convolutional/dp/1530895189

Deep Learning (Adaptive Computation and Machine Learning https://www.amazon.com/Deep-Learning-Adaptive-Computation-Machine/dp/0262035618

Densely Connected Convolutional Networks https://arxiv.org/pdf/1608.06993.pdf

MNIST dataset http://vann.lecun.com/exdb/mnist/

Digital signal processing for STM32 microcontrollers using CMSIS https://www.st.com/resource/en/application_note/dm00273990.pdf

CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/pdf/1801.06601.pdf

michal chovanec (michal.nand@gmail.com)
www.youtube.com/channel/UCzVvP2ou8v3afNiVrPAHQGg