Nondeterministic Finite Automata

Nondeterminism
Subset Construction

Nondeterminism

- ◆A nondeterministic finite automaton has the ability to be in several states at once.
- Transitions from a state on an input symbol can be to any set of states.

Nondeterminism – (2)

- Start in one start state.
- Accept if any sequence of choices leads to a final state.
- ◆Intuitively: the NFA always "guesses right."

Example: Moves on a Chessboard

- ◆States = squares.
- ◆Inputs = r (move to an adjacent red square) and b (move to an adjacent black square).
- Start state, final state are in opposite corners.

Example: Chessboard – (2)

1	2	3
4	5	6
7	8	9

		r	b
→	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

← Accept, since final state reached

Formal NFA

- A finite set of states, typically Q.
- An input alphabet, typically Σ.
- \bullet A transition function, typically δ .
- \bullet A start state in Q, typically q_0 .
- lack A set of final states $F \subseteq Q$.

Transition Function of an NFA

- $\bullet \delta(q, a)$ is a set of states.
- Extend to strings as follows:
- ♦ Basis: $\delta(q, \epsilon) = \{q\}$
- ♦ Induction: $\delta(q, wa)$ = the union over all states p in $\delta(q, w)$ of $\delta(p, a)$

Language of an NFA

- \bullet A string w is accepted by an NFA if $\delta(q_0, w)$ contains at least one final state.
- The language of the NFA is the set of strings it accepts.

Example: Language of an NFA

1	2	3
4	5	6
7	8	9

- For our chessboard NFA we saw that rbb is accepted.
- ◆ If the input consists of only b's, the set of accessible states alternates between {5} and {1,3,7,9}, so only even-length, nonempty strings of b's are accepted.
- What about strings with at least one r?

Non-deterministic Finite Automata (NFA)

- A Non-deterministic Finite Automaton (NFA)
 - is of course "non-deterministic"
 - Implying that the machine can exist in more than one state at the same time
 - Transitions could be non-deterministic

 Each transition function therefore maps to a <u>set</u> of states

Non-deterministic Finite Automata (NFA)

- A Non-deterministic Finite Automaton (NFA) consists of:
 - Q ==> a finite set of states
 - $\Sigma ==>$ a finite set of input symbols (alphabet)
 - $q_0 ==> a start state$
 - F ==> set of accepting states
 - $\delta ==>$ a transition function, which is a mapping between Q x $\Sigma ==>$ Q
- An NFA is also defined by the 5-tuple:
 - {Q, Σ , q_0 , F, δ }

How to use an NFA?

- ◆ Input: a word w in ∑*
- Question: Is w acceptable by the NFA?
- Steps:
 - Start at the "start state" q₀
 - For every input symbol in the sequence w do
 - Determine all possible next states from all current states, given the current input symbol in w and the transition function
 - If after all symbols in w are consumed <u>and</u> if at least one of the current states is a final state then <u>accept</u> w;
 - Otherwise, reject w.

Regular expression: (0+1)*01(0+1)*

NFA for strings containing 01

Why is this non-deterministic

What will happen if at state q₁ an input of 0 is received?

•
$$Q = \{q_0, q_1, q_2\}$$

$$\bullet \ \Sigma = \{0,1\}$$

• start state =
$$q_0$$

•
$$F = \{q_2\}$$

Transition table symbols

	δ	0	1
	• 00	$\{q_0,q_1\}$	$\{q_0\}$
states	q_1	Ф	{q ₂ }
st	$*q_2$	{q ₂ }	{q ₂ }

Note: Omitting to explicitly show error states is just a matter of design convenience (one that is generally followed for NFAs), and i.e., this feature should not be confused with the notion of non-determinism.

What is an "error state"?

A DFA for recognizing the key word

"while"

An NFA for the same purpose:

$$q_0 \xrightarrow{W} q_1 \xrightarrow{h} q_2 \xrightarrow{i} q_3 \xrightarrow{I} q_4 \xrightarrow{e} q_5$$

Transitions into a dead state are implicit 14

Extension of δ to NFA Paths

♦ Basis: $\delta(\hat{q}, \varepsilon) = \{q\}$

◆ Induction:

- Let $\delta(q_0, w) = \{p_1, p_2, ..., p_k\}$
- $\delta(p_{i},a) = S_{i}$ for i=1,2...,k
- Then, $\delta(\hat{q}_0, wa) = S_1 U S_2 U ... U S_k$

Language of an NFA

- ◆An NFA accepts w if there exists at least one path from the start state to an accepting (or final) state that is labeled by w

Build an NFA for the following language:

```
L = \{ w \mid w \text{ ends in } 01 \}
```

- **?**
- Other examples
 - Keyword recognizer (e.g., if, then, else, while, for, include, etc.)
 - Strings where the first symbol is present somewhere later on at least once

 Build an NFA which accepts exactly those strings that have the symbol 1 in the second position

Build an NFA which accepts a^n b^m where n,m>=1

Build an NFA for the following L={ w|w $\varepsilon 0101^n \ or \ 010^n \ where \ n \ge 0$ }

Exercises

- Build an NFA for the following
- L= $\{x | x \text{ is in } \Sigma^* \text{ and the third last symbol in } x \text{ is } b\}$
- 2. Build an NFA for 2 (or) more c's where $\Sigma = \{a, b, c\}$
- 3. The set of all strings such that containing either 101 or 110 as substring
- 4. The set of all strings such that every 1 is

Advantages & Caveats for NFA

- Great for modeling regular expressions
 - String processing e.g., grep, lexical analyzer
- Could a non-deterministic state machine be implemented in practice?
 - Probabilistic models could be viewed as extensions of nondeterministic state machines (e.g., toss of a coin, a roll of dice)
 - They are not the same though
 - A parallel computer could exist in multiple "states" at the same time

Differences: DFA vs. NFA

DFA

- 1. All transitions are deterministic
 - Each transition leads to exactly one state
- 2. For each state, transition on all possible symbols (alphabet) should be defined
- 3. Accepts input if the last state visited is in F
- 4. Sometimes harder to construct because of the number of states
- 5. Practical implementation is feasible

♦ <u>NFA</u>

- Some transitions could be non-deterministic
 - A transition could lead to a subset of states
- Not all symbol transitions need to be defined explicitly (if undefined will go to an error state this is just a design convenience, not to be confused with "nondeterminism")
- 3. Accepts input if *one of* the last states is in F
- 4. Generally easier than a DFA to construct
- Practical implementations limited but emerging (e.g., Micron automata processor) 24

Equivalence of DFA's, NFA's

- A DFA can be turned into an NFA that accepts the same language.
- If $\delta_D(q, a) = p$, let the NFA have $\delta_N(q, a) = \{p\}$.
- ◆Then the NFA is always in a set containing exactly one state – the state the DFA is in after reading the same input.

Equivalence -(2)

- Surprisingly, for any NFA there is a DFA that accepts the same language.
- Proof is the subset construction.
- The number of states of the DFA can be exponential in the number of states of the NFA.
- Thus, NFA's accept exactly the regular languages.

Subset Construction

- Given an NFA with states Q, inputs Σ, transition function δ_N , state state q_0 , and final states F, construct equivalent DFA with:
 - States 2^Q (Set of subsets of Q).
 - Inputs Σ.
 - Start state {q₀}.
 - Final states = all those with a member of F.

Critical Point

- The DFA states have names that are sets of NFA states.
- But as a DFA state, an expression like {p,q} must be read as a single symbol, not as a set.
- Analogy: a class of objects whose values are sets of objects of another class.

Subset Construction – (2)

- \bullet The transition function δ_D is defined by:
- $\delta_D(\{q_1,...,q_k\}, a)$ is the union over all i = 1,...,k of $\delta_N(q_i, a)$.
- ◆ Example: We'll construct the DFA equivalent of our "chessboard" NFA.

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1} {2,4} {5}	{2,4}	{5}

Alert: What we're doing here is the *lazy* form of DFA construction, where we only construct a state if we are forced to.

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
\rightarrow {1}	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}		
{2,4,6,8}		
{1,3,5,7}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

		r	b
	→ {1}	{2,4}	{5}
	{2,4}	{2,4,6,8}	{1,3,5,7}
	{5 }	{2,4,6,8}	{1,3,7,9}
	{2,4,6,8}		
	{1,3,5,7}		
*	{1,3,7,9}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}		
* {1,3,7,9}		
* {1,3,5,7,9}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

		r	b	
	→ {1}	{2,4}	{5 }	
	{2,4}	{2,4,6,8}	{1,3,5,7}	
	{5 }	{2,4,6,8}	{1,3,7,9}	
	{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}	}
	{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}	}
*	{1,3,7,9}			
*	{1,3,5,7,9}			

		r	b
→	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}	{2,4,6,8}	{5}
* {1,3,5,7,9}		

Example: Subset Construction

		r	b
→ [1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5 }	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}	{2,4,6,8}	{5 }
* {1,3,5,7,9}	{2,4,6,8}	{1,3,5,7,9}

Proof of Equivalence: Subset Construction

- The proof is almost a pun.
- Show by induction on |w| that $\delta_N(q_0, w) = \delta_D(\{q_0\}, w)$
- ◆Basis: $W = \epsilon$: $\delta_N(q_0, \epsilon) = \delta_D(\{q_0\}, \epsilon) = \{q_0\}$.

Induction

- Assume IH for strings shorter than w.
- \bullet Let w = xa; IH holds for x.
- Let $\delta_N(q_0, x) = \delta_D(\{q_0\}, x) = S$.
- Let T = the union over all states p in S of $\delta_N(p, a)$.
- Then $\delta_N(q_0, w) = \delta_D(\{q_0\}, w) = T$.
 - For NFA: the extension of δ_N .
 - For DFA: definition of δ_D plus extension of δ_D .
 - That is, $\delta_D(S, a) = T$; then extend δ_D to w = xa.

NFA's With ϵ -Transitions

- ◆We can allow state-to-state transitions on ∈ input.
- These transitions are done spontaneously, without looking at the input string.
- A convenience at times, but still only regular languages are accepted.

Example: ∈-NFA

Closure of States

◆CL(q) = set of states you can reach from state q following only arcs labeled €.

◆Example: CL(A) = {A};
CL(E) = {B, C, D, E}.

Extended Delta

- \bullet Basis: $\delta(q, \epsilon) = CL(q)$.
- Induction: δ(q, xa) is computed as follows:
 - 1. Start with $\delta(q, x) = S$.
 - 2. Take the union of $CL(\delta(p, a))$ for all p in S.
- Intuition: δ(q, w) is the set of states you can reach from q following a path labeled w.

And notice that $\delta(q, a)$ is *not* that set of states, for symbol a.

Example:

Extended Delta

- $\bullet \ \delta(A, \, \epsilon) = CL(A) = \{A\}.$
- \bullet $\delta(A, 0) = CL(\{E\}) = \{B, C, D, E\}.$
- \bullet $\delta(A, 01) = CL(\{C, D\}) = \{C, D\}.$
- Language of an ϵ -NFA is the set of strings w such that $\delta(q_0, w)$ contains a final state.

Equivalence of NFA, ϵ -NFA

- \bullet Every NFA is an ϵ -NFA.
 - It just has no transitions on ϵ .
- Converse requires us to take an ϵ -NFA and construct an NFA that accepts the same language.
- We do so by combining ϵ —transitions with the next transition on a real input.

Warning: This treatment is a bit different from that in the text.

Picture of ε-Transition Removal

Picture of ε-Transition Removal

Picture of ε-Transition Removal

Equivalence -(2)

- •Start with an ϵ -NFA with states Q, inputs Σ , start state q_0 , final states F, and transition function δ_E .
- Construct an "ordinary" NFA with states Q, inputs Σ , start state q_0 , final states F', and transition function δ_N .

Equivalence -(3)

- \bullet Compute $\delta_N(q, a)$ as follows:
 - 1. Let S = CL(q).
 - 2. $\delta_N(q, a)$ is the union over all p in S of $\delta_E(p, a)$.
- ightharpoonup F' = the set of states q such that CL(q) contains a state of F.
- Intuition: δ_N incorporates ϵ —transitions before using a but not after.

Equivalence – (4)

Prove by induction on |w| that

$$CL(\delta_N(q_0, w)) = \hat{\delta}_E(q_0, w).$$

 \bullet Thus, the ϵ -NFA accepts w if and only if the "ordinary" NFA does.

Interesting

closures: CL(B)

 $= \{B,D\}; CL(E)$

E-NFA

 $= \{B,C,D,E\}$

Example: ε-NFAto-NFA

Since closures of B and E include final state D.

Since closure of E includes B and C; which have transitions on 1 to C and D.

Summary

- ◆DFA's, NFA's, and ϵ -NFA's all accept exactly the same set of languages: the regular languages.
- The NFA types are easier to design and may have exponentially fewer states than a DFA.
- But only a DFA can be implemented!