2002-2003 学年第二学期考试试卷

考试科目: 概率论与	<u>;数理统计</u>	得 分:	
学生所在系:	姓 名	学 号:	

(考期: 2003年6月30日,闭卷,可用计算器)

一、考虑如图所示的电路图:

其中开关 A、B、C、D、E 是独立工作的,每个开关以概率 p 开着,以概率 q=1-p 关着,求一个输入的信号在输出处被接收到的概率;如果一个信号被接收到,那么开关 E 是开着的条件概率是多少?

二、设(X,Y)的联合密度函数为:

$$f(x,y) = \begin{cases} c, |y| < x, 0 < x < 1; \\ 0, others \end{cases}$$

求(1)常数 C 的值; (2)条件密度函数 $f_{X|Y}(x|y)$ 及 $f_{Y|X}(y|x)$; (3)讨论 X 与 Y 的独立性和相关性。

- 三、在一家保险公司里有 10000 个人参加保险,每人每年付 12 元保险费,在一年内一个人死亡的概率为 0.006,死亡时其家属可向保险公司领取 1000 元的保险金,问:
 - (1) 保险公司亏本的概率多大?
 - (2) 保险公司一年的利润不少于 40000 元、60000 元的概率各多大?
- 四、设 (X_1, X_2, \dots, X_n) 是从总体 X 中抽取的一个简单随机样本,已知 X 的概率密度函数为:

$$f(x) = \begin{cases} e^{-(x-\theta)}, x > \theta; \\ 0, others \end{cases}$$

其中 θ 是未知参数, -∞ < θ < ∞。

- (1) 试求 θ 的极大似然估计 $\hat{\theta}$ 和矩估计 $\tilde{\theta}$;
- (2) 求常数 c_1 和 c_2 , 使得 $c_1\hat{\theta} c_2$ 为 θ 的无偏估计;
- (3) 求常数 c_3 和 c_4 ,使得 $c_3\tilde{\theta}-c_4$ 为 θ 的无偏估计;
- (4) 在均方误差意义下比较这两个无偏估计哪个更优。(注:上述常数可与 n 有关)
- 五、据信有一种疾病会导致病人的白细胞数目较常人少,假设正常人白细胞数服从均值 为 7250(单位:个/立方毫米,下同)的正态分布,现有 16 个病人,其白细胞的样 本均值为 4767,样本标准差为 3204,根据这批数据能否认为这种疾病使白细胞数

目减少? (显著性水平为 $\alpha = 0.05$) 自由度为 n 的 t 分布的 p 分位数表

n p	0.90	0.95	0.975	0.99
15	1.341	1.753	2.131	2.602
16	1.337	1.746	2.120	2.583

六、在[0,1]区间上随机独立地投掷两点,设 X 与 Y 分别表示这两点的坐标,试求这两点间距离的概率密度函数、数学期望和方差。

2003-2004 学年第一学期考试试卷

考试科目: 棋	<u>死率论与数理统计</u>	得 分:
学生所在系:	姓名	学 号:

(考期: 2004年1月8日,闭卷,可用计算器)

- 一、甲、乙、丙三人独立地向靶子各射击一次,其命中率分别为 0.6、0.5 和 0.4.现已知 恰有两人命中靶子,问:
 - (1) 此两人中包括丙的可能性大,还是不包括丙的可能性大?
 - (2) 此两人中包括乙的可能性大,还是包括丙的可能性大? (要求写出计算过程)
- 二、某种商品一周的需求量是个随机变量,其概率密度为:

$$f(t) = \begin{cases} te^{-t}, t > 0 \\ 0, t < 0 \end{cases}$$

各周的需求量相互独立, 试求:

- (1) 两周需求量的概率密度;
- (2) 三周需求量的概率密度。
- 三、利用中心极限定理求解:
 - (1)设计算机在进行加法运算时,每次取整的误差相互独立,且服从[-0.5,0.5]上的均匀分布,若要保证误差总和的绝对值不超过 20 的概率大于或者等于 0.95,问至多只能进行多少次加法运算?
 - (2) $\lim_{n\to\infty} \sum_{k=0}^{n} \frac{n^k}{k!} e^{-n} = ?$
- 四、设样本 (X_1, X_2, \dots, X_n) 抽自总体 $X \sim f(x; \theta)$, 其中:

$$f(x;\theta) = \frac{1}{2}e^{-\frac{x-\theta}{2}}, (x > \theta; \theta \in R)$$

- (1) 试求 θ 的矩估计 $\hat{\theta}$ 和极大似然估计 θ^* ;
- (2) 验证 $\hat{\theta}$ 和 θ^* 是否为 θ 的无偏估计,若不是无偏估计,试将其分别修正为无偏估计 $\hat{\theta}_1$ 和 $\hat{\theta}_2$;
- (3) 比较 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 何者为优?
- 五、为考察钢铁工人和电厂工人平均工资的差别,从两厂各抽取若干工人调查,结果如下:

钢厂: 74,65,72,69(元)

电厂: 75, 78, 74, 76, 72 (元)

若钢厂工人与电厂工人工资分别服从正态分布 $N(\mu_1, \sigma_1^2)$ 与 $N(\mu_2, \sigma_2^2)$,总体独立且均值方差未知,试据上述数据判断:

- (1) 是否可以认为 $\sigma_1^2 = \sigma_2^2$? ($\alpha = 0.05$)
- (2) 钢铁工人平均工资是否低于电厂工人平均工资? $(\alpha = 0.05)$

2003-2004 学年第二学期考试试卷

考试科目:	概率论与数理统计_	得 分:	
学生所在系	:姓名	学 号:	

(考期: 2004年6月25日, 闭卷, 可用计算器)

- 一、判断和填空:
 - (1) 设 P(A)=0,则 A 为不可能事件。
 - (2) 设(X,Y)服从二元正态, Cov(X,Y)=0,则 X、Y 相互独立。
 - (3) 设 $X \times Y$ 相互独立,则 $X \times Y$ 的联合分布可以由 X 和 Y 的边缘分布唯一确定。
 - (4) 设 X_1, \dots, X_n 为从同一个总体中抽取的一个样本,则 $max(X_1, \dots, X_n)$ $min(X_1, \dots, X_n)$ +3 是统计量。
 - (5) 设 $\theta > 0$, X的概率分布函数为:

$$F(x) = \begin{cases} 1 - exp\left\{-\frac{x - \mu}{\theta}\right\}, x \ge \mu \\ 0, x < \mu \end{cases}$$

则随机变量 X 的密度函数为()。

- (6) 设 $X \times Y$ 服从单位圆 $x^2 + y^2 \le 1$ 上的均匀分布,则在给定 Y=0.5 条件下的 X 的条件密度函数为 ()。
- (7) 设 X 和 Y 相互独立,它们的均值全为 0,方差全为 1,记 V=X-Y,则 X 与 V 的相关系数为 ()。
- 二、求: (1) P(Y=2|X=1); (2) $X^2 + Y^2$ 的分布,其中 X、Y 的联合分布如下:

X	-1	0	1	2
-1	0. 12	0.08	0.30	0. 15
1	0.08	0. 22	0	0.05

- 三、设X服从期望为2的指数分布,Y服从(0,1)上的均匀分布,且X与Y相互独立,求: (1) X-Y的概率密度函数; (2) P(X-Y)。
- 四、桌上有三个盒子,在甲盒中装有2支红芯圆珠笔,4支蓝芯圆珠笔,乙盒中装有4 支红芯圆珠笔,2支蓝芯圆珠笔,丙盒中装有3支红芯圆珠笔,3支蓝芯圆珠笔, 今从三个盒子中任取一支笔,设甲乙丙三盒取笔的概率相等。试求:
 - (1)取得红笔的概率; (2)在已知取得红笔的条件下,问笔从哪个盒子中取出的概率最大?
- 五、某工厂生产线甲根据专利生产灯泡,生产线乙根据本厂原有技术生产。现分别在生产线甲和乙两条生产线各抽取8个灯泡,测得其寿命分别为(千小时):

对生产线甲: 10, 9, 3, 11, 5, 7, 9, 11;

对生产线乙: 4, 9, 6, 5, 3, 5, 7, 7;

设灯泡寿命服从正态分布,且方差相等。试分别在显著性水平 $\alpha = 0.05$ 和 $\alpha = 0.01$ 下检验生产线甲的灯泡是否比生产线乙生产的寿命要长。

六、设总体 X 服从 $(1,\theta+1)$ 上的均匀分布, X_1,\cdots,X_n 为总体 X 中抽取的一个样本。试求:

- (1) 求 θ 的矩估计 $\hat{\theta}_1$ 和极大似然估计 $\hat{\theta}_2$;
- (2) $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 是否为 θ 的无偏估计,若不是,请加以修正;
- (3) $\hat{\theta}_3 = 2\hat{\theta}_4 2$ 是 θ 的无偏估计,其中 $\hat{\theta}_4 = \frac{2X_1 + X_{2+} \cdots + X_{n-1} + 2X_n}{n+2}$,问 $\hat{\theta}_1$ 的修正(如果需要修正的话)和 $\hat{\theta}_3$ 哪个更有效?

2004—2005 学年第一学期考试试卷

考试科目:	<u>概率论与数理统计</u>	得 分:	
学生所在系	:	学 号:	

(考期: 2005年1月20日, 闭卷, 可用计算器)

- 一、甲、乙、丙三门火炮同时独立地向目标射击,其命中率分别为 0.2, 0.3 和 0.5。目标被命中一发而被摧毁的概率为 0.2,被命中两发而被摧毁的概率为 0.6,被命中三发而被摧毁的概率 0.9,试求:
 - (1) 三门火炮在一次射击中摧毁目标的概率;
 - (2) 在目标被摧毁的条件下,其只由甲火炮击中的概率。
- 二、设X与Y独立同分布,都服从参数为 λ 的指数分布,试求Z的分布密度,其中:
 - (1) $Z=\min\{X,Y\};$ (2) Z=X+Y.
- 三、将一枚骰子独立地投掷 n 次,令 X 与 Y 分别表示其 1 点出现的次数和 6 点出现的次数,并记 Z=n-X。试求:
 - (1) X 与 Y 的协方差及相关系数;
 - (2) X 与 Z 的相关系数。
- 四、设样本 X_1, \dots, X_n 抽自总体 X,总体的密度为:

$$\mathbf{X} \sim \mathbf{f}(x;\theta_1) = \begin{cases} \frac{1}{\theta_2} e^{-\frac{x-\theta_1}{\theta_2}}, x \geq \theta_1 \\ 0, & x < \theta_1 \end{cases} , \ \ \mathbf{其} + \theta_1 \in R$$
为未知参数, $\theta_2 > 0$ 为已知数。

- (1) 求 θ_1 的矩估计 $\hat{\theta}_1$ 和极大似然估计 θ_1^* ;
- (2) $\hat{\theta}_1 \pi \theta_1^*$ 是否为 θ_1 的无偏估计?是加以证明,不是请加以修正为无偏估计量。
- 五、某校组织学生参加英文词汇训练,并在年初与年底(即训练前与训后)各举行一次 阅读考试,以考察训练的效果。现随机抽取 10 名同学,将其年初与年底的考试成 绩记录如下:

学生	1	2	3	4	5	6	7	8	9	10
年初成绩	64	43	84	72	52	93	77	58	69	91
年底成绩	72	50	86	80	50	90	78	57	72	95

假定两次考分之差服从正态分布, 试由此判断词汇训练是否有显著效果? (分别在 $\alpha = 0.05$ 与 $\alpha = 0.01$ 的水平下检验)

六、为了研究色盲是否与性别有关,随机抽取 1000 人进行调查,结果如下:

	男	女	和
正常	442	514	956

色盲	38	6	44
和	480	520	1000

- (1) 试据此判断,色盲是否与性别有关? ($\alpha = 0.01$)
- (2) 你认为是男性还是女性更容易患色盲?请说明理由。

2005—2006 学年第一学期考试试卷

考试科目: 概图	<u> </u>	得 分:	
学生所在系:_	姓名	学 号:	

(考期: 2006年1月22日, 闭卷, 可用计算器)

- 一、设昆虫产卵个数服从参数为λ的 Possion 分布,而每个卵孵化成幼虫的概率为 p,且 各卵是否成虫彼此之间没有关系。试求:
 - (1) 一个昆虫产生 k 个后代的概率;
 - (2) 若某个昆虫产生 k 个后代, 求它产生 m 个卵的概率。
- 二、设二维随机变量(X,Y)的联合密度为:

$$f(x,y) = \begin{cases} 0.25(1+xy), |x| < 1, |y| < 1 \\ 0, others \end{cases}$$

- (1) 求给定 X=1/2 时 Y 的条件概率密度;
- (2) 求 Cov(X,Y)和 Var(Y|X=1/2);
- (3) 证明X²与Y²独立。
- 三、设某学校有5000名学生,在某一时间区间内每个学生去某个阅览室的概率为0.05, 且设每个学生是否去该阅览室是相互独立的。试问该阅览室至少需要设多少座位才 能以95%的概率保证每个到该阅览室来的同学均有座位?

四、设从总体

X	0	1	2	3
P	θ/2	θ	3θ/2	1-3θ

抽取的一个简单随机样本 X_1, \cdots, X_{10} 的观测值为(0,3,1,1,0,2,0,0,3,0)。

- (1) 求 θ 的矩估计量 $\hat{\theta}_M$ 和极大似然估计量 $\hat{\theta}_L$;
- (2) 证明上述估计量都是无偏估计量;
- (3) 比较这两个估计量,指出哪个更有效。
- 五、假设某台精盐包装机生产的袋装盐的净重服从正态分布,按照要求每袋盐的标准重量为 500g,标准差不得超过 10g。某天开工后,从装好的盐中随机抽取 10 袋,测得其净重(单位: g)为: 510,495,478,487,501,493,528,504,503,504。试据此判断这时机器的工作是否正常。($\alpha=0.05$)
- 六、在著名的豌豆实验中, 孟德尔(1822-1884)同时考虑豌豆的颜色和形状, 共有四种组合: (黄、圆), (黄、皱), (绿、圆), (绿、皱)。按孟德尔的理论, 这四类应该有 9: 3: 3: 1 的比例。在一次实验中, 发现这四类的观察数分别为 315, 101, 108 和 32.试据此判断孟德尔的理论是否正确? (α = 0.05)

2005-2006 学年第二学期考试试卷

考试科目:概率	<u>率论与数理统计</u>	得 分:	
W. J. CC ナブ	<i>L</i> ul. →	.DV. 171	
学生所在系:_	姓名	学 号: _	
	/ 大	火 ゴロン袋叩 〉	

(考期: 2006年7月3日,闭卷,可用计算器)

- 一、在空战中甲机先向乙机开火, 击落乙机的概率为 0.2; 若乙机未被击落, 就进行还击, 击落甲机的概率为 0.3; 若甲机未被击落, 则再进攻乙机, 击落乙机的概率为 0.4.试求在这三回合中:
 - (1) 乙机被击落的概率是多少?
 - (2) 若乙机被击落,则它在第一回合中被击落的概率是多少?
- 二、设 $X_1 \sim \begin{pmatrix} -1 & 0 & 1 \\ 0.25 & 0.5 & 0.25 \end{pmatrix}$, $X_2 \sim \begin{pmatrix} 0 & 1 \\ 0.5 & 0.5 \end{pmatrix}$, 且 $P\{X_1X_2 = 0\} = 1$ 。 试求:
 - (1) 试求(X₁,X₂)的分布;
 - (2) X₁与X₂是否独立? 为什么?
 - (3) X₁与X₂是否不相关? 为什么?
- 三、设 X 与 Y 相互独立,都服从指数分布,参数分别为 λ 与 $\mu(\lambda \neq \mu)$,试求 Z 的概率密度 $f_Z(z)$,其中: (1) Z=X+Y; (2) Z=X-Y。
- 四、设样本 X_1, \dots, X_n 抽自总体 X, X 服从 $(\theta, \theta + 1)$ 上的均匀分布:
 - (1) 试求 θ 的矩估计 $\hat{\theta}$ 和极大似然估计 θ^* ;
 - (2) 证明 $\hat{\theta}_1 = \bar{X} \frac{1}{2}$ 与 $\hat{\theta}_2 = X_{(n)} \frac{n}{n+1}$ 均为 θ 的无偏估计;
 - (3) $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 哪个更有效?
- 五、设样本 X_1, \dots, X_n 抽自正态总体 $N(\mu, \sigma^2)$, 问在下列三个统计量中:

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
, $S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$, $S_3^2 = \frac{1}{n+1} \sum_{i=1}^n (X_i - \bar{X})^2$

谁是 σ^2 的无偏估计? 谁对 σ^2 的均方误差 $E(S_i^2 - \sigma^2)^2$ 最小? 请证明你的结论。

- 六、某校组织学生参加英文词汇训练,并在年初与年底(即训练前与训后)各举行一次阅读考试,以考察训练的效果。现随机抽取10名同学,将其年初与年底的考试成绩记录如下:
 - (1) 假定两次考分之差服从正态分布,试由此判断词汇训练是否有显著效果? (在 $\alpha = 0.05$ 的水平下检验)
- (2) 若上述两组数据并非抽自相同的 10 名同学,而是分别从两次考分中各随机抽取 10

人,并假定两次考分分别服从正态分布 (二总体独立),方差未知但相等,试据以 判断词汇训练是否有显著效果? (在 $\alpha = 0.05$ 的水平下检验)

学生	1	2	3	4	5	6	7	8	9	10
年初成绩	64	43	84	72	52	93	77	58	69	91
年底成绩	72	50	86	80	50	90	78	57	72	95

参考答案

- -, (1) 0.2+0.8*0.7*0.4=0.424
 - (2) 0.2/0.424=0.472
- 二、(1) 略; (2) 不独立; (3) 不相关

$$\equiv$$
 (1) $f_Z(z) = \frac{\lambda \mu}{\lambda - \mu} (e^{-\mu z} - e^{-\lambda z}), z \geq 0;$

(2)
$$f_Z(z) = \begin{cases} \frac{\lambda \mu}{\lambda + \mu} e^{-\lambda z}, z \ge 0\\ \frac{\lambda \mu}{\lambda + \mu} e^{\mu z}, z < 0 \end{cases}$$

$$\square$$
, (1) $\hat{\theta} = \bar{X} - \frac{1}{2}$ $\theta^* \in [X_{(n)} - 1, X_{(1)}]$

(2) 略

(3)
$$Var(\hat{\theta}_1) = \frac{1}{12n}$$
 $Var(\hat{\theta}_2) = \frac{n}{(n+1)^2(n+2)}$ $n \le 7$, $\hat{\theta}_1$ 有效; $n \ge 8$, $\hat{\theta}_2$ 有效

五、(1) $S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ 为无偏估计量; (2) 均方误差排序 $S_3^2 < S_2^2 < S_1^2$

六、(1)成对数据检验,拒绝原假设;(2)两样本t检验,无法拒绝原假设。

2006—2007 学年第一学期考试试卷

考试科目: 概率证	<u>仑与数理统计</u>	得 分:	
学生所在系:	姓 名	学 号:	

(考期: 2007年1月31日, 闭卷, 可用计算器)

- 一、有12个新的兵乓球,每次比赛时取出3个,用完之后再放回去。
 - (1) 设第二次比赛时取到 X 个新球, 试求 X 的分布律;
 - (2) 若第三次比赛时取到 3 个新球,问第二次比赛时取出的 3 个球都是新球的概率 是多少?
- 二、设 X 与 Y 独立,都服从指数分布,参数分别为 λ 与 $\mu(\lambda \neq \mu)$,试求 Z=X+Y 的分布 密度 $f_Z(z)$ 。
- 三、设 Y 服从参数为 μ 与 σ^2 的对数正态分布(即 Y 满足: $\ln Y \sim N(\mu, \sigma^2)$),试求 Y 的分布密度 $f_V(y)$ 及 E(Y)与 Var(Y)。
- 四、某蛋糕店出售三种生日蛋糕,单价分别为 12 元、20 元和 40 元,售出这三种蛋糕的概率分别为 0.3,0.2 和 0.5。某日该店售出 300 个蛋糕,问:
 - (1) 该日总收入超过 8000 元的概率约为多少?
 - (2) 该日售出单价为 20 元的蛋糕超过 60 的概率约为多少?
- 五、设样本 X_1, \dots, X_n 抽自总体 X, 其中:

$$X \sim f(x; \theta) = \begin{cases} \frac{1}{2} e^{-\frac{x-\theta}{2}}, x \ge \theta \\ 0, x < \theta \end{cases}$$

- (1) 试求 θ 的矩估计 $\hat{\theta}$ 和极大似然估计 θ^* ;
- (2) 验证 $\hat{\theta}$ 和 θ *是否为 θ 的无偏估计;若否,试将其修正为无偏估计。
- 六、假设某台精盐包装机生产的袋装盐的净重服从正态分布,按照要求每袋盐的标准重量为 500g,标准差不得超过 10g。某天开工后,从装好的盐中随机抽取 10 袋,测得其净重(单位: g)为: 510,495,478,487,501,493,528,504,503,504。试据此判断这时机器的工作是否正常。($\alpha=0.05$)
- 七、某一作业中可能发生两类事故: A (起火)和 B (爆炸),而该作业有三种不同的原料可供选择: L、M 和 N。下面给出的是事故记录:

	L	M	N	和
A	42	17	29	88
В	20	4	29	53
和	62	21	58	141

试据此判断事故类型是否与原料的种类有关? ($\alpha = 0.05$)

参考答案

-. (1)
$$P(X = k) = \frac{\binom{9}{k}\binom{3}{3-k}}{\binom{12}{3}}, k=0,1,2,3$$

(2) Bayes formula =0.23

$$\Box$$
, $f_Z(z) = \frac{\lambda \mu}{\lambda - \mu} (e^{-\mu z} - e^{-\lambda z}), z > 0$

$$\equiv f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma y}e^{-\frac{(\ln y - \mu)^2}{2\sigma^2}}, y > 0$$
 $E(Y) = e^{\mu + \frac{\sigma^2}{2}}$ $Var(Y) = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$

四、(1)
$$E(X) = 27.6$$
 $Var(X) = 161.44$ $P(\sum_{i=1}^{300} X_i > 8000) \approx \Phi(1.27)$

(2) $Y \sim B(300,0.2)$ $P(Y > 60) \approx 0.5$

$$\pm 1$$
, (1) $\hat{\theta} = \bar{X} - 2$ $\theta^* = X_{(1)}$

(2)
$$\mathbf{E}\hat{\theta} = \theta$$
 $E\theta^* = \theta + \frac{2}{n}$ 有偏,修正为 $\tilde{\theta} = X_{(1)} - \frac{2}{n}$

2006—2007 学年第二学期考试试卷

考试科目: 概率论与数理	里统计_	得 分:
学生所在系:	姓名	_学 号:
(考期: 200 一、(18分))7 年 7 月 13 日,闭卷,可用·	计算器)
	\overline{B} , $P(B \mid A) + P(B \mid \overline{A}) = 1$	印 $P(B \mid A) + P(\overline{B} \mid \overline{A}) = 1$ 不
成立;		
(2) 举例说明: 随机变量	dX 与 Y 不独立,但 X^2 和 Y^2	2独立;
(3) 设 A_1 , A_2 , A_3 , A_4	相互独立,且 $P(A_i) = \frac{1}{3}$,	(i=1,2,3,4) 则
$P\left(\bigcup_{i=1}^{4}A_{i}\right)=\ ($);	
(4) 设随机变量 X 与 Y	独立, 且 $E(X) = E(Y) = 0$,	Var(X) = Var(Y) = 1。 若命
the density of the state of); ? 的联合分布由 X 与 Y 的边缘
(6) 判断正误: 在假设检验	验中,我们要检验两个正态总	体均值差 $\mu_1 - \mu_2 = \delta$ 是否为
零,则 $\overline{X} - \overline{Y} - \delta$ 是	统计量()。	
二、(10分)有100个零件,	其中 90 个为一等品,10 个为	为二等品。从中随机取出2个,
安装在一台设备上。若2个零件	中恰有 k 个二等品 $(k = 0,1,2)$,则该设备的使用寿命服从参

二、 $(10 \, f)$ 有 $(100 \, f)$ 有

三、(20分) 设
$$r.v.X \sim f(x) = 6x(1-x)$$
, $(0 \le x \le 1)$

- (1)验证 f(x) 是概率密度函数并画出其图形;
- (2) 求出X的概率分布函数;
- (3) 确定满足P(X < b) = P(X > 3b/2)的数b,(0 < b < 1);
- (4) 计算 P{X ≤ ½ l ⅓ < X < ⅓}。

四、(7 分) 设 (X,Y) 服从 $D = \{(x,y) \mid -1 \le x \le 1, 0 \le y \le 1\}$ 上的均匀分布,试求 $Z = \frac{Y}{3X}$ 的概率密度函数 $f_Z(z)$ 。

五、(30分)设样本 (X_1, X_2, \dots, X_n) 抽自总体X, X 服从三点分布:

$$P(X = -1) = p$$
, $P(X = 0) = 1 - 3p$, $P(X = 1) = 2p$

- (1) 试分别用样本一阶和二阶原点矩来估计未知参数 p;
- (2) 证明这两个估计都是无偏估计;
- (3) 问这两个无偏估计,哪个更有效(即哪个方差更小)?

六、(15分)为了解甲、乙二企业职工工资水平,分别从二企业各随机抽取若干名职工调查,得如下数据(单位:元):

甲企业: 750, 1060, 750, 1820, 1140, 1050, 1000

乙企业: 1000, 1900, 900, 1800, 1200, 1700, 1950, 1200

设二企业职工工资分别服从正态分布 $N(\mu_1, \sigma^2)$ 和 $N(\mu_2, \sigma^2)$, 二总体独立且均值、方差皆未知。试根据以上数据判断: 甲企业职工平均工资是否低于乙企业职工平均工资? (分别在 $\alpha=0.05$ 和 $\alpha=0.01$ 两种水平下检验)

(完)

(参考数据: t分布上侧分位点 $t_{\alpha}(n)$

α	13	14	15
0.005	3.0123	2.9769	2.9467
0.01	2.6503	2.6245	2.6025
0.025	2.1604	2.1448	2.1315
0.05	1.7709	1.7613	1.7531

概率统计期末考题解答与评分标准

(2007年7月13日考试)

一、(18分)

(1) 例如取: $\Omega = \{1,2,3,4,5,6\}, A = \{1,3,5\}, B = \{3,5\};$

(2) 如:
$$P{X = -1} = 1 - p, P{X = 1} = p, 0 为任意随机变量;$$

(3)
$$P(\bigcup_{i=1}^{4} A_i) = 1 - P(\bigcap_{i=1}^{4} \overline{A_i}) = 1 - (2/3)^4 = 65/81;$$

(4) -1/2; (5) 误; (6) 误。

二、(10 分)
$$89e^2/(89e^2+20e+1)$$
。

三、(20分):

(1)
$$\int_{0}^{1} 6x(1-x)dx = 1; (2) F(x) = \begin{cases} 1, & x > 1 \\ 3x^{2} - 2x^{3}, & 0 \le x \le 1; (3) b = 2/5; (4) 1/2, \\ 0, & x < 0 \end{cases}$$

四、(7分):

$$f_z(z) = \begin{cases} 1/(12z^2), & |z| > 1/3 \\ 3/4, & |z| \le 1/3 \end{cases}.$$

五、(30分):

(1)
$$\hat{p}_1 = \overline{X}, \hat{p}_2 = (1/3)\overline{X^2};$$
 (2) $E(\hat{p}_1) = E(\hat{p}_2) = p;$

(3)
$$Var(\hat{p}_1) = \frac{p(3-p)}{n}, Var(\hat{p}_2) = \frac{p(\frac{1}{3}-p)}{n}, (0 , 故 \hat{p}_2 更有效。$$

六、(15分):

 $H_0: \mu_1 \geq \mu_2 \Leftrightarrow H_1: \mu_1 < \mu_2$, 算得: $x \approx 1081.43, y = 1456.25, S_T \approx 396.5111$,代入 计算统计量值得:

$$\frac{\overline{x-y}}{S_T\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\approx -1.8265<-1.7709=-t_{0.05}(13), 拒绝H_0;$$

$$\frac{\overline{x} - \overline{y}}{S_T \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \approx -1.8265 > -2.6503 = -t_{0.01}(13),$$
 无法拒绝 H_0 。

2007-2008 学年第一学期考试试卷

考试科目:概义	率论与数理统计_	得 分:	
学生所在系:_	姓名	学号:	
	(考期: 2008年1月22日,	闭卷,可用计算器)	

一、(15 分) 一串 0,1数字(独立同分布)组成的序列中1的概率 p 代表了某种有用的信息,由于某种原因需要对其保密。现对该串数字进行随机加密,对序列中的每一个数字抛一枚硬币(每次正面出现的概率为 π),若抛出的为正面,则原序列的数字不变,若抛出的为反面,则原序列中相应的数字由 x 变成1-x (即 0 变成1,1 变成0)。加密后的序列可以公布,其中1的概率 p^* 可以估计出来。若知道 π 的值,就可以从加密后的序列中的1的频率为 p^* 计算出原序列的 p,所以 π 称为 "密钥"。

- (1) 现已知 $p^* = 0.7$, 如果"密钥" $\pi = 0.4$, 试求 p;
- (2) 试说明为什么均匀硬币 ($\pi = 0.5$) 不适合用来加密。
- 二、(15 分) 设随机变量 X 满足: $|X| \le 1$, P(X = -1) = 1/8, P(X = 1) = 1/4, 而且, X 在 (-1, 1) 内任一子区间上取值的概率与该子区间的长度成正比。试求:
 - (1) X 的概率分布函数 $F(x) = P(X \le x)$;
 - (2) X 取负值的概率; (3) X 的数学期望 E(X)。
 - 三、(20 分) 二维随机变量(X,Y) 的密度函数为:

$$f(x,y) = \begin{cases} Ae^{-(3x+4y)}, & (x > 0, y > 0) \\ 0, & \text{ 其他} \end{cases}$$

- (1) 试求系数 A = ?; (2) X 与 Y 是否独立?
- (3) 试求 Z = X + Y 的密度函数 $f_z(z)$;
- (4) 试求 $Var(X \mid X + Y = 1)$ 。

四、(20 分) 设样本 (X_1, X_2, \dots, X_n) 抽自正态总体 $X \sim N(\mu, 1)$, μ 为未知参数

- (1) 试求 $\theta = P(X \ge 2)$ 的极大似然估计 θ^* (结果可用 Φ (.)的形式表示);
- (2) 写出 μ 的 $(1-\alpha)$ 置信区间,并求 θ 的 $(1-\alpha)$ 置信区间。

五、(15分)为考查 A,B 两种制鞋材料的耐磨性,用它们制作了 10 双鞋,其中每双鞋的两只鞋分别用 A 和 B 两种材料制作(左、右脚两只鞋随机地采用 A 或 B)。10 个男孩试穿这 10 双鞋之后的磨损情况如下表所示(数字代表磨损程度),假定 A,B 两组数据的差服从正态分布,问是否可以认为这两种材料的耐磨性无显著差异?($\alpha=0.05$)

男孩	1	2	3	4	5	6	7	8	9	10
A	13.2	8.2	10.9	14.3	10.7	6.6	9.5	10.8	8.8	13.3
В	14.0	8.8	11.2	14.2	11.8	6.4	9.8	11.3	9.3	13.6
差	-0.8	-0.6	-0.3	0.1	-1.1	0.2	-0.3	-0.5	-0.5	-0.3

六、(15 分)投资者感兴趣的一个问题,是上市公司股票价格的变化与其公司总部所在地是否有关。下表给出的是美国两个不同地区(公司总部所在地)的上市公司在 1998 年第三季度内股价变化情况。表格内的数字是相应的上市公司的个数。问股票价格的变化是否存在地区间的差异?($\alpha=0.05$)

股价变化 总部所在地	上升	不变	下降
新英格兰地区	100	7	561
西北地区	88	10	370

(完)

(参考数值:
$$\chi^2_{0.025}(2) = 7.3778; \chi^2_{0.05}(2) = 5.9915;$$

$$\chi^2_{0.025}(6) = 14.4494 \; ; \quad \chi^2_{0.05}(6) = 12.5916 \; ; \qquad t_{0.025}(9) = 2.2622 \; ;$$

$$t_{0.05}(9) = 1.8331$$
; $t_{0.025}(10) = 2.2281$; $t_{0.05}(10) = 1.8125$.

概率统计期末考试(2008年1月22日)

(参考答案与评分标准)

一、(15分)

(1)
$$p^* = p\pi + (1-p)(1-\pi)$$
, $p = (p^*-1+\pi)/(2\pi-1)$, $\stackrel{\text{def}}{=} p^* = 0.55$, $\pi = 0.4$ By, $p = 0.25$;

(2) 当 $\pi = 0.5$ 时, $p^* \equiv 0.5$,由此无法解出p。

二、(15分)

(1)
$$F(x) = \begin{cases} 1, & x \ge 1 \\ \frac{5x+7}{16}, & -1 < x < 1 \\ \frac{1}{8}, & x = -1 \\ 0, & x < -1 \end{cases}$$
; (2) $= F(0) = \frac{7}{16}$; (3) $E(X) = \frac{1}{8}$.

三、(20分)

(1)
$$A = 12$$
; (2) 独立; (3) $f_z(z) = 12(e^{-3z} - e^{-4z}), (z > 0)$;

(4)
$$f_{X|Z}(x \mid Z = 1) = \frac{e^x}{e - 1}$$
, $(0 < x < 1)$; $E(X \mid Z = 1) = \frac{1}{e - 1}$.

四、(20分)

$$(1) \ \ \theta^* = 1 - \Phi(2 - \overline{X}) \, ; \ \ (2) \ \ \mu \in \overline{X} \pm u_{\frac{\alpha}{2}} \frac{1}{\sqrt{n}} \, ; \ \ \theta \in \Phi(\overline{X} - 2 \pm u_{\frac{\alpha}{2}} \frac{1}{\sqrt{n}}) \, .$$

五、(15分)

$$H_0: \mu_z = 0 \leftrightarrow H_1: \mu_z \neq 0$$

$$\frac{|\overline{Z}|}{S_Z/\sqrt{n}} = \frac{|-0.41|}{0.3872/\sqrt{10}} \approx 3.3485 > 2.2622 = t_{0.025}(9)$$
,拒绝 H_0 ,有显著差异。

六、(15分)

 $Z \approx 5.4437 < 5.9915 = \chi_{0.05}^2(2)$,无法拒绝 H_0 ,未见有显著差异。

2008—2009 学年第一学期考试试卷

考试科目:概	<u>率论与数理统计</u>	得 分:	
学生所在系:	姓 名	学 号: _	
	(考期: 2009年1月7日, 闭卷	, 可用计算器)	

- 一、填空与单项选择
 - (1) 连续掷一枚不均匀硬币 (掷出正面的概率为 p),直至正反面都掷出为止,设 X为所掷的次数,则X的分布律为()
 - (2) 设 X 与 Y 独立, 都服从 N(0,1), 则 $(X + Y)^2/(X Y)^2$ 的分布为()
 - (3) 设样本 X_1, \dots, X_n 抽自正态总体 $N(\mu, \sigma^2)$, σ^2 未知,则 μ 的 $(1-\alpha)$ 置信区间为()
 - (4) 设 A、B、C 两两独立,则 A、B、C 相互独立的充要条件为: (a)A 与 BC 独立 (b)AB 与(A+B)独立 (c)AB 与 AC 独立 (d)(A+B)与(A+C)独立
 - (5) 若 E(XY)=E(X)E(Y), 则必有:

 - (a) Var(XY) = Var(X)Var(Y) (b) Var(X+Y) = Var(X) + Var(Y)
 - (c)X 与 Y 独立
- (d) X 与 Y 相关
- (6) 将一枚硬币连掷 n 次,以 X 与 Y 表示出现正面和反面的次数,则 $\rho_{XY}=($)。
- (7) $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ 为 θ 的无偏估计,且 $\lim_{n\to\infty} Var(\hat{\theta}) = 0$,则 $\frac{n+1}{n}\hat{\theta}$ 为 θ 的: (a)无偏估计 (b)最小方差无偏估计 (c)相合估计 (d)以上皆错
- 二、现有 4 白 6 黑共 10 个球,从中随机取 2 球,已知其中有一个白球,则另一个球也 是白球的概率为多少?
- 三、设随机向量(X,Y)具有概率密度函数: $f(x,y) = \begin{cases} \frac{6}{7} \left(x^2 + \frac{xy}{2}\right), 0 < x < 1, 0 < y < 2 \\ 0 \end{cases}$, others 试分别求 X、Y 的期望、方差及 X 与 Y 的协方差和相关系数。
- 四、(利用中心极限定理求解)某灯泡厂生产的灯泡的平均寿命原为 2000 小时,标准差 为 250 小时, 经过工艺改革, 使平均寿命提高到 2250 小时, 标准差不变。为了确 认这一改革成果,主管部门派人来检查,办法是:任意挑选若干只灯泡来检测,若 其平均寿命值超过 2200 小时,则认可这一成果。问:
 - (1) 若挑选 160 只灯泡来检查,则其平均寿命值超过 2200 小时的概率约为多少?
 - (2) 为了使检查通过的概率超过 0.997, 问至少应检查多少只灯泡?
- 五、设样本 X_1, \dots, X_n 抽自均匀分布 $R(\theta, 0), (\theta < 0)$:
 - (1) 试求 θ 的矩估计 $\hat{\theta}$ 和极大似然估计 θ^* ;
 - (2) $\hat{\theta}$ 和 θ *是否为 θ 的无偏估计?若是请加以证明,若不是请加以修正。
 - (3) 问(2)中所得的无偏估计,哪个更有效?
- 六、甲、乙、丙三个工厂生产同一种产品,产品质量分为1、2、3三个等级(分别代表 高、中、低)。今从三个厂共抽得300件产品,逐一检测,的结果如下图所示:
 - (1) 试问这三个厂产品质量是否一致? $(\alpha = 0.01)$

(2) 若不一致, 试问哪个厂产品质量较优? 哪个厂产品质量较劣? 并请说明理由。

参考答案

$$(1) P(X = k) = p^{k-1}q + q^{k-1}p, (q = 1 - p, k = 2, 3, 4 \cdots)$$
 (2) $F_{1,1}$

(3)
$$\bar{X} \pm t\alpha_{/2}(n-1)\frac{s}{\sqrt{n}}$$
 (4) — (7) abac

- 二、1/5
- Ξ , E(X)=5/7 E(Y)=8/7 Var(X)=23/490 Var(Y)=46/147

Cov(X,Y)=-1/147
$$\rho_{X,Y} = -\frac{\sqrt{15}}{69}$$

四、
$$P(\bar{X} > 2200) \approx \Phi(2.53) \approx 0.9943$$
 $n \ge 189$

五、(1)
$$\hat{\theta} = 2\bar{X}$$
 $\theta^* = X_{(1)}$ (2) $\hat{\theta} = 2\bar{X} = \tilde{\theta}_1$ 无偏; $\theta^* = f$ 偏 $E\theta^* = \frac{n}{n+1}\theta$,修正为

$$\tilde{\theta}_2 = \frac{n+1}{n}\theta^* = \frac{n+1}{n}X_{(1)}$$
 (3) $Var(\tilde{\theta}_1) = \frac{1}{n}\theta^2$ $Var(\tilde{\theta}_2) = \frac{1}{n(n+1)}\theta^2$

六、(1) 拒绝原假设,认为三个厂产品质量不一致;(2) 甲厂最优,丙厂最劣,乙厂居间,可分别计算三个厂产品质量的算术平均数,愈小者愈优。

2009—2010 学年第二学期考试试卷

考试科目:	概率论与数理统计	_	得	分:
学生所在系			学	号:
一、填空类 (1) 设 (2) 将 (3) P((4) (5) (6) 差 计	(考期: 2010 年 7 判断选择。 3 个骰子,已知三个点数 X ₁ ,…,X ₄ 为相互独立的方分布,则 a=, b=_ b随机变量 X 与 Y 相 X=k X+Y=n =,即在 Var(X)=Var(Z),Var(Y)=4 仅设检验中,第 I 类错说 X ₁ ,…,X _n 为正态总体N(<i>p</i> 分别为 <i>x</i> 和S ² ,则假设检验力。 2 为。	月 14 日,闭卷,可用证 及各不相同,则其中至为 $N(0,1)$ 变量, $T = a(X_1 - X_2)$ 一,此时 T 的自由度为 互独立分别服从参数为 给定 $X+Y=n$ 的条件下, $Yar(X)$,相关系数 $\rho_{X,Y}=0$ 是指; 第 II 类错证 I,σ^2)中抽取的样本, σ^2 Sh_0 : $\mu \leq \mu_0 \leftrightarrow H_1$: $\mu > 1$	- '	· 个为 6 点的概率为 ()。 · 个为 6 点的概率为 ()。) $^2 + b(3X_3 + 4X_4)^2$ 服从 λ的 Possion 分布,则 条件分布为。 $\rho_{X,Z} = 1/2$,则 $\rho_{X,Y+Z} = -\frac{1}{2}$,记样本均值和样本方 μ_0 为已知数)的检验统
(A)	() 统计量。 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \text{ (B) } \bar{X} - \mu \text{ (B) } \bar{X} = 0$	C) $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})$	² (D)	$\sqrt{n}(\bar{X}-\mu)/S$
	总体密度函数为 $f(x) = \frac{1}{2}$ 。 (数 μ ,这种说法。(1),则	J可以使用矩估计法估计
(9) 设	X~B(n,p),则当 n 趋于无	穷时,2 \sqrt{n} $\left(arcsin\sqrt{X}\right)$	$\sqrt{n} - a$	$(rcsin\sqrt{p})$ 的分布函数收
的 (10) 设	到标准正态分布,据此作大样本区间估计	_。 J(0,θ),θ > 0中抽取的标	羊本,	则 $ heta$ 的估计量 $X_{(n)}$ 为 $ heta$ 的:
	一的第一、第二、第三号 5,次品率分别为 1%、19			
(1) 求	取的产品为次品的概率;			
(2) 若	取出的产品为次品,求具	其是第二个车间生产的相	既率。	

- 四、设 X_1, \cdots, X_n 为从均匀总体 $\mathrm{U}(\theta, 2\theta)$ 中抽取的简单随机样本,试求:
 - (1) 求 θ 的矩估计 $\tilde{\theta}$ 和极大似然估计 $\hat{\theta}$;
 - (2) 矩估计 $\tilde{\theta}$ 和极大似然估计 $\hat{\theta}$ 是否为无偏估计?若不是,请加以修正,并说明修正

三、设二维随机变量(X,Y)的联合密度可以表示成 $g(x^2+y^2)$,g 为连续函数。令极坐标

变换 $X=R\cos\theta$, $Y=RSin\theta$,问 R 与 θ 是否相互独立,并求出各自的密度。

后的两个估计量何者最优?

五、现有两批电子器件,从中随机抽取若干件进行检验,测得样本的电阻为(单位:欧姆):

A 批	0.140	0.138	0.143	0.142	0.144	0.137
B批	0.135	0.140	0.142	0.136	0.138	0.140

假设这两批电子器件的电阻均服从正态分布, 试求:

- (1) 在显著性水平 0.05 下比较这两批电子器件的电阻测量值方差是否相同;
- (2) 在显著性水平 0.05 下比较这两批电子器件的平均电阻有无差异;
- (3)给出这两批电子器件的平均电阻之差的95%置信区间。

六、设总体的分布为:

X	0	1	2
P	1-p	2p/3	p/3

其中0 , 统计容量为 100 的样本观测值发现其中 32 个取值 0,43 个取值 1 和 25 个取值 2。则:

- (1) 求参数 p 的极大似然估计 \hat{p} ;
- (2) 在 0.05 水平下,可否认为此样本来自于总体 X? 为什么?

2010—2011学年第一学期考试试卷

		考试科目_	概率论与	数理统计	得	分	
		所在系		名	学-	号	
		考试时	间: 2010年12月	月26日下午2:30-	4:30; 使	用简单计算器	
	填图	空判断选择题(每:	题3分,答题请	青写在试卷上 <u>)</u>):		
	1	掷3个骰子,恰如	子有两枚点数	女相同的概率:	为		
	2					σ^2 未知.令 $ar{X}=rac{1}{r}$ S^2/σ^2 的分布为_	
	3		和 Y 相互独	立, 同分布于	期望为 🕹	的指数分布,则1	
	4	设 $Var(X) = 4$ $\rho_{X-Y,X+Y} = \underline{\hspace{1cm}}$			= 0.25,	则 $X - Y$ 与 $X +$	Y的相关系数
	5	设 A, B 为互斥事	事件, 则 A, B	相互独立的充	5分必要多	条件为	
	6	参数估计量优良	性的准则有			(写出至少两个).	
	7	假设X,Y分别服	从标准正态	分布,则 $X+Y$	的分布包	3为正态分布. 该	兑法
		(A) 正确					
	8	总体参数的置信	水平为95%的	的置信区间是	指		
		(A)总体参数落石	生一个特定的	的样本所构造!	的区间内	的概率为95%	
		(B)总体参数落在	生一个特定的	的样本所构造的	的区间内	的概率为5%	
		(C)在用同样方	法构造的总	体参数的多	个区间口	中,包含总体参	数的区间比例
		为95%					
		(D)在用同样方法	去构造的总包	▶参数的多个	区间中,	包含总体参数的[区间比例为5%
	9	\mathcal{C}_1,\cdots,X_n 为	的来自于正态	总体 $N(\mu,1)$	的简单随	机样本, 若要求参	シ数 μ 的置信系
		数为0.95的置信	区间长度不适	迢过1, 则至少	需要抽取	以的样本量 n 为	·
		(A) 14 (B) 1	, ,	, ,			
	10					么发生, 要么不	
			可以近似于	-95%的概率	认为事件	·A发生的频率与	概率相差不超
		过	D) 2 60M	(0) 1 0007	(D) 0	0.407	
		(A) 2.12% (1					
Ξ.		分) 假定某种病菌 生的概率分别为0		的带菌率为1%	. 在检测	时, 带菌者和不苟	青菌者被检测出
	(1)	现有某人被测出	呈阳性反应	,则他是带菌	者的概率	是多少?	

- (2) 为了进一步确认, 这个人决定再独立的做一次测试,检测结果依然是阳性, 问在两次检测结果都呈阳性反应的情况下, 他确实为带菌者的概率是多少?
- 三. (15分) 设随机变量 (X,Y) 服从 $A = \{(x,y): |x+y| \le 1, |x-y| \le 1\}$ 内的均匀分布,则
 - (1) 试求出X和Y的边际分布;
 - (2) X和Y是否相互独立? 不相关?
 - (3) 求在X = x (0 < x < 1) 时Y的条件密度.
- 四. (15分) 设总体X的分布律为

现从此总体中抽出一样本量为n的样本,发现其中1出现了 n_1 次,2出现了 n_2 次,3出现了 n_3 次. 试

- (1) 求p的极大似然估计量 \hat{p} 和矩估计量 \tilde{p} .
- (2) 证明所得的估计量均为无偏估计, 并说明两个估计量何者最优.
- 五. (15分) 某针灸减肥机构宣称疗程结束后可以使参加者平均减少体重5kg以上, 为检验 该广告是否可信, 调查人员随机调查跟踪了10名参加者, 测得他们参加前和参加后的 体重(kg)为

参加前	65.39	62.89	63.50	60.83	63.07	62.88	57.80	63.07	66.05	70.78
参加后	61.72	59.43	59.64	57.30	58.50	60.84	51.89	60.02	63.67	65.67

假设参加前和参加后的体重服从正态分布, 试

- (1) 在显著性水平0.05下检验该机构的宣传是否可信.
- (2) 给出平均减少体重的95%置信区间.
- 六. (10分) 为研究女性和男性在美国选举中的偏好差异,1991年美国普通社会调查随机调查了577名女性和403名男性,询问每人是倾向于"支持民主党","支持共和党"以及"中立",得到的调查数据如下:

	所支			
性别(Gender)	民主党(0)	中立(1)	共和党(2)	总计
女性(1)	279	73	225	577
男性(0)	165	47	191	403
总数	444	120	416	980

- (1) 为了检验选民政治倾向是否与性别有关, 试写出此问题的原假设.
- (2) 在显著性水平0.05下, 可否认为选民的政治倾向与性别无关?

附录 分位数: $u_{0.025} = 1.960$, $u_{0.05} = 1.645$, $t_{0.025}(10) = 2.228$, $t_{0.025}(9) = 2.262$, $t_{0.05}(10) = 1.812$, $t_{0.05}(9) = 1.833$, $\chi_{0.05}^2(1) = 3.841$, $\chi_{0.05}^2(2) = 5.991$.

2010-2011第一学期概率论与数理统计期末考试试卷答案

- 一. (30分, 每题3分) 1. 5/12 2. $N(0, \sigma^2/n)$, χ_n^2 3. $2\lambda e^{-2\lambda z}I(z>0)$ 4. $3/\sqrt{21}$ 5. P(A), P(B)至少一个为0. 6. 无偏性, 相合性, 均方误差准则, 渐近正态性 7. B 8. C 9. B 10. B
- 二. (15分) (1) $\frac{0.98\times1\%}{0.98\times1\%+0.02\times99\%} = \frac{49}{148} = 0.3311$
 - (2) $\frac{0.98^2 \times 1\%}{0.98^2 \times 1\% + 0.02^2 \times 99\%} = 0.9604$
- 三. (15分) (1)由对称性, X和Y有相同的边际密度, $f(x) = \begin{cases} x+1, & -1 \le x < 0 \\ 1-x, & 0 \le x \le 1 \end{cases}$
 - (2) 显然X 和Y不独立, 不相关.
 - (3) 易得 $f(y|x) = \frac{1}{2(1-x)}I(x-1 \le Y \le 1-x)$, 其中0 < x < 1
- 四. (15分) (1) $\hat{p} = \frac{n_1 + n_2}{3n}$; $\tilde{p} = \frac{3 \bar{X}}{4}$, 其中 $\bar{X} = \frac{n_1 + 2 * n_2 + 3 * n_3}{n}$;
 - (2) 由于 $En_1 = np$, $En_2 = 2np$, $En_3 = n(1 3p)$, 故知 \hat{p} 和 \tilde{p} 均为无偏估计, 容易得到 $var(\hat{p}) = \frac{p(1-3p)}{3n}$, 而 $var(\tilde{p}) = \frac{3p-8p^2}{8n}$, 于是由 $var(\hat{p}) < var(\tilde{p})$ 知似然估计 \hat{p} 更有效.
- 五. (15分) 此为成对检验问题. 记X表示参加前后的体重差, 由题设知 $X \sim N(\mu, \sigma^2)$. 从而从保护消费者角度来看, 考虑假设 $H_0: \mu \leq 5 \leftrightarrow H_1: \mu > 5$, 易知此假设的水平 α 检验法则为

当
$$\sqrt{n}\frac{\bar{X}-5}{S} > t_{\alpha}(n-1)$$
时拒绝原假设, 否则不足以拒绝原假设

- (1) 当 $\alpha = 0.05$ 时, 计算得 $\bar{X} = 3.758$, S = 1.184575, n = 10,故
- $\sqrt{n}\frac{\bar{X}-5}{S}=-3.315577 < t_{0.05}(9)=1.833$,从而在0.05水平下不足以拒绝原假设,即该减肥机构的宣传不足以可信.
- (2) 其95%置信区间为[$\bar{X} \frac{S}{\sqrt{n}}t_{0.025}(9)$, $\bar{X} + \frac{S}{\sqrt{n}}t_{0.025}(9)$], 带入数据得到[2.91,4.61].
- 六. (10分)(1) 原假设可以表述为" H_0 : 选民政治倾向与性别无关".
 - (2) 在显著性水平0.05下, 对假设 H_0 , 根据拟合优度检验方法知

$$\chi^{2} = (279 - 444 * 577/980)^{2}/(444 * 577/980) + (73 - 120 * 577/980)^{2}/(120 * 577/980) + (225 - 577 * 416/980)^{2}/(577 * 416/980) + (165 - 403 * 444/980)^{2}/(403 * 444/980) + (47 - 120 * 403/980)^{2}/(120 * 403/980) + (191 - 403 * 416/980)^{2}/(403 * 416/980) = 7.009544$$

自由度为2, 从而有 $\chi^2 = 7.009544 > 5.99$, 因而拒绝原假设, 即拒绝"选民的政治倾向与性别无关"这一假设.

2010—2011 学年第二学期考试试卷

考试科目: 概率论	<u>;与数理统计</u>	得 分:	
学生所在系:	姓名	学号:	
(考	 	卷,可用计算器)	
一、填空判断选择是	题。		
(1) 设 A,B,C 是	是三个相互独立的随机事件,	且 $0 < P(C) < 1$,则在下列给	定的四对
事件中,不	相互独立的是		
$(A)\overline{A+B}$ 和	C (B) \overline{AC} 和 C (C) $\overline{A-B}$	$\Box \bar{C}$ (D) \overline{AB} 和 \bar{C}	
(2) 设 A,B,C 为	三个事件,则下面的等式中	ュ正确的是	
(A) A ∪ B -	$-B = A - B \tag{B}$	$(A-B)\cup B=A$	
(C) $(A \cup B)$	$) - C = A \cup (B - C) \tag{D}$	$A \cup B = (A\bar{B}) \cup (\bar{A}B)$	
(3) 设 f(x)和 g	(x)为两个概率密度函数,则	l af(x)+bg(x)也是概率密度函数	的充要条
件为	_ •		
(4) 随机变量 X	、与 Y 不相关,则必有	_	
(A) Var(XY	=Var(X)Var(Y) (B) F($(x,y)=F_X(x)F_Y(y)$	
(C) X 与 Y	相互独立 (D) E	XY=EX*EY	
(5)设 $\widehat{ heta}_n$ 为未知	参数0的一个估计量,如果	设 $\lim_{n o\infty}Eig \widehat{ heta}_n- hetaig =0$, 则 $\widehat{ heta}_n$	为θ的
(A) 无偏估	计 (B) 有效估计 (C) *	目合估计 (D) 渐进正态估计	
(6) 在实验次数	(无穷大时,某个事件发生的	的频率就等于其发生的概率,该证	说法
(A)正确	(B) 错误		
(7) 连续型随机	L变量就是取值为连续区间的	随机变量,该说法	
(A)正确	(B) 错误		
(8) 设 X_1, \cdots, X_n	iid~N(μ,1), 考虑假设检验	总问题 H_0 : $\mu = 0 \leftrightarrow H_1$: $\mu = 1$,由	μ的极大
似然估计可	「以得到一个水平α检验法则	「为; 该检验法则犯第Ⅱ类征	错误的概
率为			
(9) 设基于某组	上样本得到的总体均值μ的 9	5%置信区间为[0.234,1.03],则	我们可以
在显著性水	平下(接受或拒绝	绝)零假设 H_0 : $\mu = 0$ 。	
(10)设某种产品	品的质量等级可以划分为"	优"、"合格"和"不合格",则	使用拟合
优度检验方	法在检验生产此产品的三家	《工厂的产品没有差异这一假设I	时,检验
统计量服从	渐进卡方分布的自由度为_		
一四次大人人	フ 甘山笠 1.	1 & 好母和 4 1 & 故母 1 1 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		1 个红球和 4-k 个蓝球,k=1,2,3	,4。 巩멘
	子,然后不放回地从中取两3 公球额色不同的概率	水, 水:	
	个球颜色不同的概率; 九一个球为红球 则早处一。	人球再生好班或生々人。	
(2) 右口知具「	P一个球为红球,则为外一 ²	个球也为红球的概率为多少?	
三、设二维随机变量	量 X,Y 的联合概率密度函数	为:	

 $f(x,y) = \begin{cases} 1,0 < x < 1,0 < y < 2x \\ 0, & others \end{cases}$ (1)试求出 X,Y 的边际概率密度函数 $f_X(x)$ 和 $f_Y(y)$;

- (2) 试求出 Z=2X-Y 的概率密度函数 $f_z(z)$;
- (3) 试求 $P\left(Y \leq \frac{1}{2} | X = \frac{1}{2}\right)$ 。
- 四、某种疾病的发病率为 0.005, 现随机调查 1000 人, 考虑事件 A="在调查的人中发病人数在 3 至 7 个人", 试:
 - (1) 使用 Possion 逼近方法求 P(A);
 - (2) 使用中心极限定理求 P(A)。
- 五、设样本 Y_1, \dots, Y_n 相互独立, $Y_i \sim N(a_i \mu, \sigma^2), i = 1, \dots, n$,其中 a_1, \dots, a_n 为已知不全为零的常数。
 - (1) 求 μ 和 σ^2 的极大似然估计 $\hat{\mu}$ 和 $\hat{\sigma^2}$;
 - (2) û是否为µ的无偏估计?
 - (3) $\widehat{\sigma}^2$ 是否为 σ^2 的无偏估计?若是请加以证明,若不是请加以修正。
- 六、为了了解甲乙两企业的职工工资水平,分别从两个企业各随机抽取若干名职工调查, 的如下数据(单位:元):

甲企业	750	1060	750	1820	1140	1050	1000	
乙企业	1000	1900	900	1800	1200	1700	1950	1200

假设两个企业的工资分别服从正态分布,且总体独立而均值方差未知。试根据以上数据判断:

- (1) 两企业职工工资的方差是否相等 ($\alpha = 0.05$)
- (2) 甲企业职工平均工资是否低于乙企业职工平均工资($\alpha = 0.05$)

2010-2011第二学期概率论与数理统计期末考试试卷答案

- 一. (30分, 每题3分)
 - **1**. B **2**. A **3**. a + b = 1, $af(x) + bg(x) \ge 0$, $\forall x$ **4**. D **5**. C **6**. B **7**. B
 - 8. 当 $\bar{X} > u_{\alpha}/\sqrt{n}$ 时拒绝 H_0 ,否则不足以拒绝. $\Phi(u_{\alpha} \sqrt{n})$
 - 9. 0.05, 拒绝 10. 4
- 二. (15分) (1) $\frac{1}{4}[0 + \frac{2}{3} + \frac{2}{3} + 0] = \frac{1}{3}$ (2) $\frac{1}{2}$
- 三. (15分) $(1)X和Y的边际密度分别为, <math>f_X(x) = 2xI(0 < x < 1), f_Y(y) = [1 \frac{y}{2}]I(0 < y < 2).$
 - (2) $f_Z(z) = \left[1 \frac{z}{2}\right]I(0 < z < 2).$
 - (3) 1/2
- 四. (10分) (1) $\sum_{k=3}^{7} \frac{5^k}{k!} e^{-5} = 0.742$
 - (2) $2\Phi(\frac{2}{\sqrt{5\times0.995}}) 1 = 2\Phi(0.897) 1 = 0.63.$
- 五. (15分) (1) $\hat{\mu} = \frac{\sum_i a_i y_i}{\sum_i a_i^2}$, $\widehat{\sigma^2} = \frac{1}{n} \sum_i (y_i a_i \hat{\mu})^2$
 - (2) 是无偏估计.
 - (3) 不是无偏估计,由于 $E\widehat{\sigma^2} = \frac{1}{n} \sum_i E(y_i a_i \hat{\mu})^2 = \frac{1}{n} \sum_i E(y_i a_i \mu + a_i (\mu \hat{\mu}))^2 = \frac{1}{n} [\sum_i E(y_i a_i \mu)^2 \sum_i a_i^2 E(\mu \hat{\mu})^2] = \frac{1}{n} [\sum_i Var(y_i) \sum_i a_i^2 Var(\hat{\mu})] = \frac{n-1}{n} \sigma^2$. 从而可以修正为 $\overline{\sigma^2} = \frac{n}{n-1} \widehat{\sigma^2}$
- 六. (15分)

记 X_i, Y_j 分别为甲企业和乙企业的样本,则由 $\bar{X} = 1081.429, S_X^2 = 129447.6, \bar{Y} = 1456.25, S_Y^2 = 181026.8$,有

(1) 假设可以表述为 $H_0: \sigma_1^2 = \sigma_2^2 \leftrightarrow H_1: \sigma_1^2 \neq \sigma_2^2$.

检验统计量 $0.175 = F_{0.975}(6,7) < T = \frac{S_X^2}{S_Y^2} = 0.7151 < F_{0.025}(6,7) = 5.119$,故没有足够的理由认为两家企业工人工资方差不同.

(2) 由(1)的结果,可以认为两组样本方差是相同的, 故对假设 $H_0: \mu_1 \geq \mu_2 \leftrightarrow H_1: \mu_1 < \mu_2$ 检验统计量 $T = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{15}{728}(6S_X^2 + 7S_Y^2)}} = -1.8265 < t_{0.05}(13) = 1.771$ 所以拒绝零假设, 故有充足的理由认为甲企业的平均工资低于乙企业的平均工资.

2011—2012 学年第一学期考试试卷

考试科目: <u>概</u>	率论与数理统计_	得 分:	
学生所在系:	姓名	学号:	

(考期: 2012年1月6日, 闭卷, 可用计算器)

- 一、简单题(写出简要步骤)。
 - (1) 设一批电子元件由甲工厂和乙工厂共同生产,其中甲、乙两厂的生产份额分别 为 60%和 40%。根据经验可知甲、乙两工厂生产的电子元件的次品率分别为 1% 和 2%, 现从这批产品中随机抽取一件, 发现是次品, 则该次品是甲厂生产的 概率是多少?
 - (2) 从 1, 2, 3, 4 四个数中任取一个数,记为 X,再从 1 到 X 中任取一个数,记 为 Y,则{Y=2}这个事件发生的概率是多少?
 - (3) 设 X 的概率密度函数为 $f(x) = (1 + \theta)x^{\theta}$, 0 < x < 1。现考虑假设检验问题 $H_0: \theta = 5 \leftrightarrow H_1: \theta = 3$ 。该检验的否定域为X > 1/2,则犯第一类错误和第二类 错误的概率分别为多少?
 - (4) 已知一批零件的长度 X (单位: cm) 服从正态分布 $N(\mu, 1)$, 从中随机抽取 16 个零件,得到长度的平均值为 40cm,试求μ的置信水平为 0.95 的置信区间?
 - (5) 设 X_1, \dots, X_n 是一组独立同分布样本,且 $X_1 \sim N(\mu, \sigma^2)$,试问 c 取多少才使得 $c\sum_{i=1}^{n-1}(X_{i+1}-X_i)^2$ 为 σ^2 的无偏估计?
 - (6) 进行 1000 次独立重复试验,每次实验中事件 A 发生的概率为 0.25,试问能以 95%的把握保证 1000 次实验中事件 A 发生的频率与概率相差不超过多少?
- 二、设随机向量(X,Y)服从区域 D 上的均匀分布,其中 D 是由直线 y=x,x=0,y=1 所围成 的区域,试求:

 - (1) (X,Y)的联合密度f(x,y) (2) (X,Y)的边缘密度函数 $f_1(x)$ 和 $f_2(y)$
 - (3) 条件密度f(x|Y=y) (4) E(X|Y=y)
- 三、设总体 X 的概率分布如下表,其中 $0 < \theta < 1$ 为未知参数。现从此总体中随机抽取 100个样本,发现有17个样本取值为0,33个样本取值为1,50个样本取值为2。

X	0	1	2
P	$\theta/4$	1- θ	3 θ/4

- (1) 求 θ 的矩估计 $\hat{\theta}_1$ 和极大似然估计 $\hat{\theta}_2$; 并分别计算相应的计算值;
- (2) $\hat{\theta}_1 \cap \hat{\theta}_2$ 是否是无偏的?若否,请加以修正;
- (3) 请问修正后的估计哪个更有效?
- 四、为了解男性和女性对三种类型的啤酒:淡啤酒、普通啤酒和黑啤酒的偏好有没有差 异,分别调查了180位男士和120位女士,得如下数据:

	淡啤酒	普通啤酒	黑啤酒
男性	49	31	100
女性	51	20	49

请问男性和女性对这三种类型的啤酒的偏好有显著性差异吗? ($\alpha = 0.05$)

- 五、为了比较新旧两种肥料对小麦产量的影响,研究者选择了面积相等、土壤等条件相同的12块土地,分别在6块地上施用新旧两种肥料。对于旧肥料,得到的产量数据是17,14,18,13,19和15;而新肥料的产量数据为:16,19,20,22,18和19。假设两种肥料的产量分别服从正态分布,且总体独立,均值和方差未知。试根据以上数据判断:
 - (1) 两种肥料产量的方差是否相等? ($\alpha = 0.05$)
 - (2) 新肥料获得的平均产量是否显著地高于旧肥料? (α = 0.05)

2011-2012 学年第二学期考试试卷

考试科目: 概	率论与数理统计	得 分:	
学生所在系:	姓 名	学 号:	
	(考期: 2012年6月9日, 闭	卷,可用计算器)	
一、判断题			

- 二、(15 分) 设随机变量 X 满足: $|X| \le 1$, P(X = -1) = 1/8, P(X = 1) = 1/4, 而且, X 在 (-1, 1) 内任一子区间上取值的概率与该子区间的长度成正比。试求:
 - (1) X 的概率分布函数 $F(x) = P(X \le x)$;

(1) 若

- (2) X 取负值的概率; (3) X 的数学期望 E(X)。
- 三、(20 分) 二维随机变量(X,Y) 的密度函数为:

$$f(x,y) = \begin{cases} Ae^{-(3x+4y)}, & (x > 0, y > 0) \\ 0, & \text{ 其他} \end{cases}$$

- (1) 试求系数 A = ?; (2) X 与 Y 是否独立?
- (3) 试求 Z = X + Y 的密度函数 $f_Z(z)$;
- (4) 试求 $Var(X \mid X + Y = 1)$ 。

2007-2008 学年, 第一学期, 第1页(共2页)

四、 $(20 \, \mathcal{G})$ 设样本 (X_1, X_2, \dots, X_n) 抽自正态总体 $X \sim N(\mu, 1)$, μ 为未知参数

- (1) 试求 $\theta = P(X \ge 2)$ 的极大似然估计 θ^* (结果可用 $\Phi(.)$ 的形式表示);
- (2) 写出 μ 的 $(1-\alpha)$ 置信区间,并求 θ 的 $(1-\alpha)$ 置信区间。

五、 $(15\, 分)$ 为考查 A,B 两种制鞋材料的耐磨性,用它们制作了 10 双鞋,其中每双鞋的两只鞋分别用 A 和 B 两种材料制作(左、右脚两只鞋随机地采用 A 或 B)。10 个男孩试穿这 10 双鞋之后的磨损情况如下表所示(数字代表磨损程度),假定 A,B 两组数据的差服从正态

分布,问是否可以认为这两种材料的耐磨性无显著差异? ($\alpha = 0.05$)

男孩	1	2	3	4	5	6	7	8	9	10
A	13.2	8.2	10.9	14.3	10.7	6.6	9.5	10.8	8.8	13.3
В	14.0	8.8	11.2	14.2	11.8	6.4	9.8	11.3	9.3	13.6
差	-0.8	-0.6	-0.3	0.1	-1.1	0.2	-0.3	-0.5	-0.5	-0.3

六、(15分)投资者感兴趣的一个问题,是上市公司股票价格的变化与其公司总部所在地是否有关。下表给出的是美国两个不同地区(公司总部所在地)的上市公司在 1998 年第三季度内股价变化情况。表格内的数字是相应的上市公司的个数。问股票价格的变化是否存在地区间的差异?($\alpha=0.05$)

股价变化 总部所在地	上升	不变	下降
新英格兰地区	100	7	561
西北地区	88	10	370

(完)

$$\chi^2_{0.025}(2) = 7.3778$$
; $\chi^2_{0.05}(2) = 5.9915$;

$$\chi^2_{0.025}(6) = 14.4494 \; ; \quad \chi^2_{0.05}(6) = 12.5916 \; ; \qquad t_{0.025}(9) = 2.2622 \; ;$$

$$t_{0.05}(9) = 1.8331$$
; $t_{0.025}(10) = 2.2281$; $t_{0.05}(10) = 1.8125$.

2007-2008 学年, 第一学期, 第2页(共2页)

概率统计期末考试(2008年1月22日)

(参考答案与评分标准)

一、(15分)

(1)
$$p^* = p\pi + (1-p)(1-\pi)$$
, $p = (p^*-1+\pi)/(2\pi-1)$, $\stackrel{\text{def}}{=} p^* = 0.55$, $\pi = 0.4$ By, $p = 0.25$;

(2) 当 $\pi = 0.5$ 时, $p^* \equiv 0.5$,由此无法解出 p。

二、(15分)

(1)
$$F(x) = \begin{cases} 1, & x \ge 1 \\ \frac{5x+7}{16}, & -1 < x < 1 \\ \frac{1}{8}, & x = -1 \\ 0, & x < -1 \end{cases}; (2) = F(0) = \frac{7}{16}; (3) E(X) = \frac{1}{8}.$$

三、(20分)

(1)
$$A = 12$$
; (2) 独立; (3) $f_z(z) = 12(e^{-3z} - e^{-4z}), (z > 0)$;

$$(4) \ \ f_{X|Z}(x \mid Z = 1) = \frac{e^x}{e-1} \ , \ (0 < x < 1) \ ; \quad E(X \mid Z = 1) = \frac{1}{e-1} \ .$$

四、(20分)

$$(1) \ \theta^* = 1 - \Phi(2 - \overline{X}) \, ; \ (2) \ \mu \in \overline{X} \pm u_{\underline{\alpha}} \, \frac{1}{\sqrt{n}} \, ; \ \theta \in \Phi(\overline{X} - 2 \pm u_{\underline{\alpha}} \, \frac{1}{\sqrt{n}}) \, .$$

五、(15分)

$$H_0: \mu_Z = 0 \leftrightarrow H_1: \mu_Z \neq 0$$

$$\frac{\overline{\mid Z\mid}}{S_Z/\sqrt{n}} = \frac{1-0.411}{0.3872/\sqrt{10}} \approx 3.3485 > 2.2622 = t_{0.025}(9)$$
,拒绝 H_0 ,有显著差异。

六、(15分)

 $Z \approx 5.4437 < 5.9915 = \chi^2_{0.05}(2)$,无法拒绝 H_0 ,未见有显著差异。