Examen Semestriel (2018)

Durée: 1 heures 20 mn (Documents non autorisés)

NB: La réponse doit être écrite : Claire, Courte, Concise et Concrète (4C)

Nom:	Prénom:	Spécialité :				
Question 1 : Classer les différentes techniques d'optimisation (Vues matérialisées vs. Index vs. Fragmentation) selon leur efficacité (réduction de temps de calcul des requêtes, coût de stockage, et le coût de maintenance). (3 pt).						
Question 2 : Quelles données	sont validées après les opérat	ions suivantes ? (3 pt).				
SET AUTOCOMMIT =0; INSERT INTO R values SAVEPOINT my_savepoint INSERT INTO R values SAVEPOINT my_savepoint INSERT INTO R values ROLLBACK TO my_savepoi INSERT INTO R values INSERT INTO R values	(5, 6); z_1; (7, 8); z_2; (9, 10); Int_1; (11, 12);	A B				
<pre>SELECT * FROM villes; SET AUTOCOMMIT=0;</pre>						
START TRANSACTION; SAVEPOINT sp1; INSERT INTO villes(cp, nom_	_ville) VALUES('75031','Par	cp nom ville				
SAVEPOINT sp2; INSERT INTO villes(cp, nom	_ville) VALUES('75032','Par	is 32');				
ROLLBACK TO SAVEPOINT sp2;						
COMMIT; SELECT * FROM villes;	Au final vous n'aurez que	e 75031 .				

Question 3: (3 pt).

Soit le schéma relationnel suivant :

- Module (CodeMod, Semestre)
- Etud_Mod(Mat, CodeMod, Note)

CodeMod	Semestre	
M1	S1	
M2	S1	

Mat	CodeMod	Note	
1	M1	12	
1	M2	13	
2	M1	8	
2	M2	11	
3	M1	10	
3	M2	9	
1	M3	14	
2	M3	6	
3	M3	7	

Donnez le résultat de la requête suivante :

Select Mat, Semestre, AVG(Note)

From Module, Etude-Mod

Where Module.CodeMod = Etud-Mod.CodMod

Group by Mat, Semestre;

Question 4: Utiliser RULE-base optimisation pour trouver un arbres optimal? (3 pt).

```
(SELECT DISTINCT Pnumber
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum = Dnumber AND Mgr_ssn = Ssn
AND Lname = 'Smith')
UNION
(SELECT DISTINCT Pnumber
FROM PROJECT, WORKS_ON, EMPLOYEE
WHERE Pnumber = Pno AND Essn = Ssn
AND Lname = 'Smith')
```


Question 5 : Soit le MCD suivant représentant une partie du système d'information d'une société d'assurances. (8 pt).

Nous voulons concevoir deux magasins de données, le premier concerne les contrats d'assurance, et le second les sinistres.

- 1. Proposer un modèle conceptuel pour chacun des deux magasins, en identifiant les mesures utiles pour les analyses, ainsi que les dimensions associées.
- 2. Donnez le script de création d'un index binaire sur l'attribut pays.
- 3. Donnez un exemple d'utilisation de cette base de données pour une tâche de datamining.