INFORME PROYECTO INVERNADERO INTELIGENTE

Elaborado por:

Manuel Alejandro Macias Silva
Nicole Andrea Prado Rico
Jose Daniel Argote Chilito
Elizabeth Ordoñez Carvajal

Universidad del Cauca

Facultad de Ingeniería Electrónica y Telecomunicaciones

Tecnología en Telemática

Laboratorio de Sistemas Digitales

Popayán, Cauca, Colombia

02-04-2024

Invernadero Inteligente

Planteamiento del problema

Introducción:

El cilantro es una hierba aromática popular en la cocina global, apreciada por su sabor fresco y cítrico. Su cultivo, sin embargo, puede ser desafiante, ya que es susceptible a condiciones ambientales variables. Un invernadero inteligente puede proporcionar un entorno controlado y optimizado para el crecimiento del cilantro, aumentando la producción y la calidad.

Objetivo:

Desarrollar un sistema de control para un invernadero inteligente que automatice la gestión del clima y el riego para el cultivo de cilantro, maximizando la eficiencia y el rendimiento.

Alcance:

El sistema abarca:

- Sensores para la medición de temperatura, humedad, luz y pH del suelo.
- Actuadores para el control de la ventilación, calefacción, riego y nebulización.
- Un controlador central programable con algoritmos para el análisis de datos y la toma de decisiones.
- Una interfaz de usuario para la visualización de datos en tiempo real y la configuración del sistema.

Requisitos:

Clima:

Temperatura: Rango óptimo entre 18 y 24 °C.

Humedad: Entre 60% y 70%.

Luz: Iluminación solar directa o artificial suplementaria de 10-12 horas al día.

Riego:

Frecuencia y cantidad ajustadas según la etapa de crecimiento, la humedad del suelo y las condiciones climáticas.

Suministro de agua con pH entre 6.0 y 6.5.

Metodología:

Análisis de las necesidades del cilantro:

- Revisión de la literatura científica sobre las condiciones óptimas para el crecimiento del cilantro.
- Consulta con expertos en horticultura y agricultura.

Diseño del sistema de control:

- Selección de sensores y actuadores adecuados.
- Desarrollo de algoritmos de control para la gestión del clima y el riego.
- Diseño de la interfaz de usuario.

Implementación del sistema:

- Instalación de los sensores y actuadores en el invernadero.
- Programación del controlador central con los algoritmos de control.
- Configuración de la interfaz de usuario.

Pruebas y evaluación:

- Monitoreo del rendimiento del sistema en diferentes condiciones climáticas.
- Ajuste de los algoritmos de control y la configuración del sistema para optimizar el crecimiento del cilantro.

Análisis de resultados:

- Evaluación del impacto del sistema en la producción, calidad y eficiencia del cultivo del cilantro.
- Identificación de oportunidades para mejorar el sistema.

Diagrama General del proyecto

Descripción general software

El diagrama del circuito adjunto muestra la conexión de un microcontrolador ESP32 con una pantalla LCD y cuatro relés. La pantalla LCD se utiliza para mostrar información sobre el estado del sistema, como temperatura o humedad, mientras que los relés se utilizan para controlar dispositivos externos, como luces o motores.

El software desarrollado para este sistema está escrito en el lenguaje de programación Arduino y se encarga de controlar tanto la pantalla LCD como los relés. Además, realiza la lectura de datos de los sensores y envía comandos a los dispositivos conectados.

Diseñado específicamente para automatizar y supervisar un invernadero, el programa integra un microcontrolador compatible con Arduino junto con varios componentes electrónicos, como sensores y actuadores, así como una pantalla LCD. Su función principal es establecer una conexión Wi-Fi con una red específica y configurar un bot de Telegram para recibir comandos y enviar actualizaciones de estado.

Durante su funcionamiento, el software recopila datos ambientales como temperatura, humedad, niveles de agua e iluminación utilizando los sensores correspondientes. A partir de estos datos, aplica algoritmos de control para activar o desactivar actuadores según las condiciones detectadas en el entorno del invernadero. Toda esta información se muestra en tiempo real en la pantalla LCD y puede ser gestionada mediante comandos enviados a través de Telegram, lo que permite un control remoto y una supervisión eficaz del invernadero.

En resumen, este software ofrece una solución integral para monitorear y controlar un invernadero de manera automatizada y remota, proporcionando una herramienta eficiente para los agricultores y aficionados al cultivo de plantas.

Diagrama:

El diagrama muestra un sistema de control para un invernadero inteligente que incluye los siguientes componentes:

Sensores:

- **Temperatura:** Mide la temperatura del aire dentro del invernadero.
- **Humedad:** Mide la humedad del aire dentro del invernadero.
- Luz: Mide la intensidad de la luz que llega al invernadero.
- Humedad del suelo: Mide la humedad del suelo en el que se cultiva el cilantro.
- pH del suelo: Mide el pH del suelo en el que se cultiva el cilantro.

Actuadores:

- **Ventilación:** Controla la apertura y cierre de las ventanas del invernadero para regular la temperatura y la humedad.
- Calefacción: Proporciona calor adicional al invernadero cuando la temperatura es baja.
- Riego: Controla el riego del cilantro, ajustando la frecuencia y la cantidad de agua.
- Nebulización: Aumenta la humedad del aire dentro del invernadero.

Controlador central:

- Recibe los datos de los sensores.
- Analiza los datos y toma decisiones sobre el control de los actuadores.
- Almacena los datos para su análisis posterior.

Interfaz de usuario:

- Permite al usuario visualizar los datos en tiempo real.
- Permite al usuario configurar el sistema.
- Muestra alertas en caso de desviaciones de los parámetros críticos.

Funciones del software:

- Monitoreo: Recopilación y análisis de datos de los sensores en tiempo real.
- Control: Toma de decisiones automáticas para el control de los actuadores.
- **Visualización:** Presentación de datos en tiempo real y gráficos históricos en la interfaz de usuario.
- Configuración: Permite al usuario ajustar los parámetros del sistema.
- Alertas: Notificación al usuario en caso de problemas o desviaciones de los parámetros críticos.

Tecnologías:

- El software puede ser desarrollado utilizando una variedad de lenguajes de programación, como Python, Java o C++.
- Se pueden usar diferentes plataformas de hardware para el controlador central, como Arduino o Raspberry Pi.
- La interfaz de usuario puede ser desarrollada como una aplicación web o una aplicación móvil.

Beneficios:

- **Mayor producción:** El control preciso del clima y el riego puede aumentar la producción de cilantro.
- Mejor calidad: El cilantro tendrá un mejor sabor, aroma y frescura.
- Eficiencia optimizada: El sistema puede reducir el consumo de agua, energía y recursos.
- Cultivo sostenible: El sistema puede ayudar a minimizar el impacto ambiental del cultivo del cilantro.

Principales módulos que conforman el proyecto

Control de Actuadores: Este módulo se encarga de controlar los distintos actuadores del invernadero, como el calefactor, la bomba de recirculación, el ventilador, el bombillo y el rociador. Utiliza las lecturas de los sensores para tomar decisiones sobre el encendido o apagado de los actuadores.

Lectura de Sensores: Este módulo está encargado de leer los datos de los sensores del invernadero. En el código proporcionado, se utilizan un sensor DHT22 para medir la temperatura y la humedad, y un fotoresistor para detectar la intensidad de la luz.

Interfaz con Pantalla LCD: El proyecto incluye una interfaz con una pantalla LCD para mostrar información relevante, como la temperatura, la humedad, el estado de los actuadores y la hora de encendido del sistema.

Comunicación WiFi y Telegram: Se incluye un módulo de comunicación WiFi que permite la conexión a Internet para recibir comandos a través de Telegram. Esto permite controlar el invernadero de forma remota y recibir notificaciones.

Manejo de Mensajes de Telegram: Este módulo se encarga de gestionar los mensajes recibidos a través de Telegram y responder a ellos según el contenido. En el código proporcionado, se responde al comando "/start" con un mensaje de bienvenida.

Estos son los principales módulos que componen el proyecto basándome en el código y en la funcionalidad descrita. Cada módulo cumple una función específica dentro del sistema del invernadero.

Diagrama de flujo del software de manera general

Herramientas de desarrollo

Para el desarrollo del proyecto las herramientas que se están usando son:

ARDUINO IDE: entorno de desarrollo integrado (IDE) que se utiliza para programar placas de microcontrolador Arduino. Proporciona herramientas para escribir, compilar y cargar código en dispositivos Arduino, lo que permite a los usuarios crear una variedad de proyectos electrónicos y de robótica de forma sencilla.

REPOSITORIO EN GITHUB: plataforma en línea que facilita la colaboración y el control de versiones de proyectos de software mediante el uso de repositorios Git.

MANEJO DE SIMULACIÓN EN WOKWI: plataforma en línea que ofrece simulación y desarrollo de hardware y software para proyectos electrónicos y de IoT (Internet de las cosas).

Componentes software

Interfaz gráfica de usuario (GUI)

LIBRERÍA	FUNCIONES	DESCRIPCIÓN	ESTADO
DHT.h	DHT	Permite la lectura de datos de sensores DHT11, DHT22 y DHT21	Activada
Wire.h	I2C	Permite la comunicación con dispositivos I2C como la pantalla LCD	Activada
LiquidCrystal_I2C.h	LCD	Controla la pantalla LCD	Activada
WiFi.h	WiFi	Permite la conexión a una red WiFi	Activada
UniversalTelegram Bot.h	Telegram	Permite el control del sistema mediante comandos de Telegram	Activada

Sensores

Librería	Funciones	Descripción	Estado
DHT	getTemperature, getHumidity	Lectura de temperatura y humedad	Implementa do, Probado, Habilitado
LiquidCrystal_I2C	init, backlight, setCursor, print	Control de la pantalla LCD	Implementa do, Probado, Habilitado
WiFi	begin, status	Conexión y estado de la red WiFi	Implementa do, Probado, Habilitado
UniversalTelegram Bot	getUpdates, sendMessage	Recepción y envío de mensajes de Telegram	Implementa do, Probado, Habilitado

Actuadores

Librería	Funciones	Descripción	Estado
Calefactor	digitalWrite(calefactor, LOW/HIGH)	Enciende o apaga el calefactor	Funcional
Ventilador	digitalWrite(ventilador, LOW/HIGH)	Enciende o apaga el ventilador	Funcional
Bombillo	digitalWrite(bombillo, HIGH/LOW)	Enciende o apaga el bombillo	Funcional
Rociador	digitalWrite(rociador, LOW/HIGH)	Enciende o apaga el rociador	Funcional

Alarmas

1. Conexión WiFi no establecida:

Cuando la conexión WiFi no está establecida, el sistema intenta reconectarse cada cierto tiempo. Esta situación podría indicar un problema con la red WiFi o la configuración de conexión.

2. Sensor DHT no responde correctamente:

Se pueden incluir verificaciones para garantizar que los valores leídos del sensor DHT sean razonables y dentro de los rangos esperados de temperatura y humedad. Si los valores son inconsistentes o fuera de los rangos esperados, podría indicar un mal funcionamiento del sensor.

3. Niveles de agua en bombas:

Se monitorean los flotadores de nivel de agua en las bombas centrífuga y sumergible. Si el nivel de agua es demasiado bajo o demasiado alto, puede indicar un problema de suministro de agua o un mal funcionamiento de las bombas.

4. Iluminación ambiente:

Se monitorea la intensidad de la luz ambiental utilizando un fotorresistor. Si la iluminación es anormalmente baja o alta, podría indicar un problema con la fuente de luz o la detección de la misma.

5. Estado de los dispositivos de control:

Se supervisa el estado de los dispositivos de control, como el calefactor, ventilador, rociador y bombillo. Si alguno de estos dispositivos no responde correctamente a los comandos o permanece activado o desactivado cuando no debería, podría indicar un problema con el hardware o la lógica de control.

6. Errores de comunicación con Telegram:

Se monitorean los mensajes recibidos desde Telegram para detectar errores en la comunicación o problemas con el procesamiento de comandos. Si los mensajes no se reciben correctamente o no se procesan adecuadamente, podría indicar un problema con la conexión a internet o el manejo de los mensajes por parte del sistema.

Proceso de pruebas

Test Backlog

Test Backlog

#	PRUEBA	DESCRIPCIÓN	PASÓ PRUEB A (SI/NO)	OBSERVACIONES
1	Lectura de temperatura	El sensor DHT22 debe leer la temperatura correctamente.	Si	Se espera una lectura entre 10°C y 40°C.
2	Lectura de humedad	El sensor DHT22 debe leer la humedad correctamente	Si	Se espera una lectura entre 20% y 80%.
3	Control de calefactor	El calefactor debe encenderse y apagarse según la temperatura.	Si	Se puede verificar manualmente o con un sensor de temperatura adicional.
4	Control de ventilador	El ventilador debe encenderse y apagarse según la temperatura	Si	Se puede verificar manualmente o con un sensor de temperatura adicional.
5	Control de rociador	El rociador debe encenderse cuando la humedad sea baja y el nivel de la bomba sumergible sea alto	Si	Se puede verificar manualmente o con un sensor de humedad adicional.
6	Control de luz	La luz debe encenderse cuando la fotoresistor detecte oscuridad	Si	Se puede verificar manualmente o con un sensor de luz adicional.
7	Control de encendido general	El sistema debe encenderse y apagarse con el interruptor general.	Si	Se puede verificar manualmente.
8	Comunicación con Telegram	El bot de Telegram debe responder a los comandos correctamente	Si	Se puede probar enviando comandos al bot de Telegram.
9	Pantalla LCD	La pantalla LCD debe mostrar la información correctamente.	Si	Se puede verificar visualmente.
10	Control de Dispositivos	Verificar que los dispositivos controlados (calefactor, ventilador, rociador, bombillo)	Si	

		responden a los comandos adecuadamente.		
11	Comandos de Telegram	Verificar que el sistema responde adecuadamente a los comandos de Telegram (/start, /calefactoron, etc.).	Si	

Evidencia de pruebas (máximo cuatro)

Link github

• https://github.com/MatitasGamexD/Laboratorio-de-Circuito Digitales Proyecto Invernadero.git