המשך רשתות זרימה

<u>נזכיר</u>:

- רשת זרימה מורכבת מגרף G=(V,E), קדקודי מקור ויעד $s,t\in V$ ופונקציית קיבולת ,G=(V,E) שורכבת מגרף $c(u,v)\not\in E$ שורכבת מגרף c(u,v)=0 עבור כך c(u,v)=0 ומרחיבים אותה ע"י
 - המקיימת: $f: V \times V \to \mathbb{R}$ המקיימת: •

$$\forall u, v \in V$$
 $f(u,v) \leq c(u,v)$: אילוץ קיבולת:

$$\forall u,v \in V$$
 $f(u,v) = -f(v,u)$:אנטי-סימטריה

$$\forall u \neq s,t$$
: $\sum_{v \in V} f(u,v) = 0$: שימור זרימה

$$\sum_{v:f(u,v)>0} f\left(u,v\right) = \sum_{v:f(v,u)>0} f\left(v,u\right)$$
 מנאי שקול:

• גודל זרימה:

הוכחנו
$$|f| = \sum_{v \in V} f(s, v) \stackrel{\checkmark}{=} \sum_{u \in V} f(u, t)$$

<u>המטרה</u>:

[[השתלטות על העולם. לשם כך הצבנו מטרת ביניים:]] בהינתן רשת זרימה, למצוא זרימה f עם f מקסימלי.

<u>רעיון שלא עבד</u>:

- . $f \equiv 0$ -נתחיל מ
- כל עוד קיים מסלול, נוסיף את ב- $g:s \leadsto t$ כל עוד קיים מסלול, נוסיף ה- $g:s \leadsto t$ כל עוד קיים מסלול, נוסיף הבקבוק" כל חורך כל $g:s \leadsto t$ כל קשת במסלול, נוסיף את הבקבוק" לאורך כל $g:s \leadsto t$ לאורך כל $g:s \leadsto t$ כל קשת במסלול, נוסיף את הבקבוק" לאורך כל ישרא הבקבוק" לאורף כל ישרא הבקבוק ישרא הבקבוק
 - . נעצור אם אין מסלול כזה

דוגמה נגדית:

נזרים לאורך מסלולים:

$$:(+1)$$
 $s \rightarrow a \rightarrow b \rightarrow t$.1

[[הערה: אם אנחנו כותבים רק בכיוון אחד זרימה, הכוונה היא שבכיוון השני יש מינוס של אותו הדבר. ואם אנו לא כותבים כלל, הכוונה היא שיש 0.]]

$: (+1) \quad s \to b \to t$.2

$:(+1) \quad s \to a \to t$.3

קבוצה 5, עדן כלמטץ'

כעת הקשתות הלא רוויות שנותרו הן:

לכן מבחינת האלגוריתם סיימנו, והגענו לזרימה של 3 בסה"כ. אבל אפשר להשיג זרימה גדולה יותר, של 4:

:הבעיה באלגוריתמים החמדנים

מה שהיה חסר לנו באלגוריתמים שראינו עבור הבעיה עד כה היא האפשרות להתחרט – לומר שלמרות שהחלטנו להזרים כמות מסוימת בקשת מסוימת מקודם, עכשיו אנו מחליטים להוריד את כמות זו.

מציאת פתרון נכון

(וכמה?) ((u,v) מתי אפשר להוסיף זרימה חיובית לאורך

- :קשת (u,v)
- יש קשת רק בכיוון אחד: 🏻 🔾

יש קשת בשני הכיוונים: •

:לא קשת $\left(u,v\right) lacktriangle$

[(residual capacity) הגדרה [קיבולת שיורית

,(E -ב $\left(u,v\right)$ ב- קיימת הקשת (כשלא בהכרח לכל ע. $u,v\in V$

הקיבולת השיורית היא המקסימום שניתן להוסיף ל- $f\left(u,v
ight)$ בלי להפר את אילוץ הקיבולת. כלומר:

$$c_f(u,v) := c(u,v) - f(u,v)$$

הגדרה [צוואר בקבוק של + מסלול שיפור]

סדרה $u_1 \to \cdots \to u_k \to t$ היים להיות מסלול שיפור אם לכל [זה לא חייב להיות מסלול שיפור $p=s \to u_1 \to \cdots \to u_k \to t$ סדרה זוג קדקודים עוקבים $u,v \in p$ מתקיים:

:או באופן שקול

קבוצה 5, עדן כלמטץ'

$$c_f(u,v) > 0$$

צוואר הבקבוק של מסלול שיפור p הוא:

$$c_f(p) := \min_{(u,v) \in p} c_f(u,v)$$

הגדרה [הרשת השיורית]

 $,c_f:V imes V o \mathbb{R}$ הרשת השיוריות $G_f=ig(V,E_fig),s$, איז הרשת הרשת N_f היא הרשת $G_f=ig(V,E_fig),s$ הרשת השיוריות מאשר:

$$E_f := \{(u,v) \in V^2 | c_f(u,v) > 0\}$$

[שימו לב שהקשתות בגרף זה יכולות להיות שונות מהקשתות בגרף המקורי (בכל גרף יכולות להיות קשתות שאין בשני).]

Ford-Fulkerson האלגוריתם של

- . $f \equiv 0$ -נתחיל •
- (אם קיים). p (אם קיים).
- $\Delta \leftarrow c_f(p)$ נמצא את צוואר הבקבוק (ב)
 - (ג) נעדכן את הזרימה:

$$\forall (u,v) \in p: \begin{cases} f(u,v) \leftarrow f(u,v) + \Delta \\ f(v,u) \leftarrow f(v,u) - \Delta \end{cases}$$

.[[כלומר ממשיכים לעשות את (א) - (ג) עד אשר אין מסלול כזה []. •

דוגמה

(נמשיך את אותה אחת ממקודם)

נבנה ממנו גרף של קיבולות שיוריות (זוהי הרשת השיורית):

כעת נחפש מסלולי שיפור (כמו באלגוריתם הקודם) בגרף זה (אשר יכולים לכלול קשתות שלא מופיעות בגרף המקורי).

 $a \rightarrow b \rightarrow a \rightarrow t$:מסלול שיפור צוואר בקבוק: 1

לאחר העדכון ב-(ג):

כעת הקיבולות השיוריות בגרף הן:

ולא קיים מסלול שיפור יותר (כאן האלגוריתם נגמר).

קבוצה 5, עדן כלמטץ'

אבחנה [מציאת מסלולי שיפור]

 G_f בגרף בריוק מסלול שיפור הוא בדיוק מסלול שיפור הוא ב

הקשתות ברשת השיורית

 $?E_f$ -אילו קשתות יש ב

(f(u,v) < c(u,v)) שאינה רוויה $(u,v) \in E$ קשת

-וְ $(u,v) \not\in E$: אנטי קשת (u,v) (כלומר קשת שיש רק את הקשת ההפוכה לה בגרף: f(u,v) < 0 = c(u,v) ולכן ולכן f(v,u) > 0 שעבורה $(v,u) \in E$

וזאת ניתן לעשות – G_f ב- t ב- s ל-כן ע"מ למצוא מסלול שיפור כמתואר, עלינו רק למצוא מסלולים בגרף).] בעזרת BFS בעזרת

טענה [חוקיות הזרימה]

בכל שלב ב-F-F, היא זרימה חוקית.

ההוכחה באינדוקציה. לשם כך נגדיר טענת עזר:

טענת עזר: אם f הייתה זרימה חוקית לפני צעד (ג), אזי היא זרימה חוקית גם אחרי העדכון, וגם f גודל הזרימה נהיה f גודל הזרימה נהיה f

:היא נובעת מ

טענה כללית [סכום זרימה עם זרימה שיורית]

אם א השיורית אזי אזי א המקורית וּ- א זרימה ברשת השיורית וּ- א זרימה ברשת המקורית וּ- א זרימה ברשת השיורית וּ

$$|f+g|=|f|+|g|$$
 זרימה חוקית ב- N , וכן מתקיים $(f+g)(u,v):=f(u,v)+g(u,v)$

למה טענת העזר נובעת מכך?

$$g(u,v) = \begin{cases} \Delta & (u,v) \in p \\ -\Delta & (v,u) \in p \\ 0 & \text{otherwise} \end{cases}$$

g אילוץ האנטי-סימטריה מתקיים מהגדרת

 $:(u,v)\in p$ אילוץ הקיבולת עבור

$$g(u,v) = \Delta = \min_{(u',v') \in p} c_f(u',v') \le c_f(u,v)$$

. Δ ומוציא (פרט ל- s אימור הזרימה מתקיים כי כל קדקוד במסלול (פרט ל- s

(וכל קדקוד אחר מקבל ומוציא 0.)

הוכחת הטענה הכללית:

[[ציינו ש-g זרימה חוקית; עכשיו צריך להראות ש-(f+g) זרימה חוקית.]]

אילוץ קיבולת: $u,v \in V$ לכל

$$g(u,v) \le c_f(u,v) = c(u,v) - f(u,v)$$

$$\downarrow \downarrow$$

$$(f+g)(u,v) \le c(u,v)$$

• <u>אנטי-סימטריה ושימור זרימה:</u> מלינאריות ההגדרה:

$$f(u,v) = -f(v,u)$$

$$+$$

$$\frac{g(u,v) = -g(v,u)}{(f+g)(u,v) = -(f+g)(v,u)}$$

$$u \neq s,t: \sum_{v \in V} (f+g)(u,v) = \sum_{v \in V} f(u,v) + \sum_{v \in V} g(u,v)$$

:גודל הזרימה

$$|f+g| = \sum_{v \in V} (f+g)(s,v) = \sum_{v \in V} f(s,v) + \sum_{v \in V} g(s,v) = |f| + |g|$$

מאפייני עצירה של האלגוריתם

קיבולות כלליות	קיבולות רציונליות	קיבולות שלמות	
לא	כן, והזרימה רציונלית	כן, והזרימה שלמה	?עוצר F-F אוצר
∞	אסון	אסון ^(*)	אחרי כמה איטרציות?

. אסון = ניתן למצוא חסם עליון אבל הוא זוועתי (*)

אם בוחרים את $\,p\,$ בחוכמה, האלגוריתם תמיד עוצר תוך מס' פולינומי של איטרציות.

דוגמה למספר גדול של איטרציות

נגריל את הגרף הבא:

[[עבור M שלם כלשהו, גדול כרצוננו.]]

אם תמיד נבחר במסלול:

להשלים ציור]

. נקבל שהאלגוריתם מבצע 2M איטרציות

. עוצר, אז הזרימה f שהוא מחזיר היא בגודל F-F עוצר, אז הזרימה באה: אם האלגוריתם

[להשלים מסלולים בחלק מהציורים]