FYS2140 Kvantefysikk, Oblig 6

 ${\rm Mitt} \ {\bf navn}, \ {\bf kandidatnummer}, \ {\rm og} \ {\bf gruppe}$

7. februar 2012

Obliger i FYS2140 merkes med navn (kandidatnummer) og gruppenummer!

Denne obligen dreier seg om kvantiseringen av den harmoniske oscillator, avsnitt 2.3 i Griffiths. Oppgavene finnes som Oppgave 2.10, 2.11 og 2.15 i Griffiths. Når dere er ferdig er dere halvveis i kurset. Snart tid for eksamen!

Oppgave 1

- a) Konstruer ψ_2 for den harmoniske oscillator.
- **b)** Tegn ψ_0 , ψ_1 og ψ_2 .
- c) Sjekk ortogonaliteten til ψ_0 , ψ_1 og ψ_2 , ved eksplisitt integrasjon. *Hint:* hvis du utnytter symmetrien til integrandene rundt x-aksen så slipper du unna med å gjøre ett integral.

Oppgave 2

- a) Beregn $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$ og $\langle p^2 \rangle$ for tilstandene ψ_0 og ψ_1 . Det er lov å tenke. Kommentar: i denne og andre oppgaver om den harmoniske oscillator så vil det forenkle regningen dersom du introduserer variablen $\xi = \sqrt{m\omega/\hbar}x$ og konstanten $\alpha = (m\omega/\pi\hbar)^{1/4}$.
- b) Sjekk uskarphetsprinsippet for disse tilstandene.
- c) Beregn $\langle K \rangle$ (forventningsverdien for kinetisk energi) og $\langle V \rangle$ (forventningsverdien for potensiell energi) for disse tilstandene. (Du har ikke lov til å gjøre noen nye integral!) Er summen hva du ville forvente?

Oppgave 3 For grunntilstanden til en harmonisk oscillator, hva er sannsynligheten (med tre desimalers presisjon) for å finne partikkelen utenfor det klassisk tillatte området? *Hint:* klassisk sett så er energien til en oscillator $E = \frac{1}{2}ka^2 = \frac{1}{2}m\omega^2a^2$, hvor a er amplituden (maksutslaget). Derfor går det klassisk tillatte området for en oscillator med energi E fra $-\sqrt{2E/m\omega^2}$ til $\sqrt{2E/m\omega^2}$. Slå opp den numeriske verdien for det intregralet du behøver.