Monash University
Faculty of Information Technology

Lecture 2 Propositional Logic

Slides by David Albrecht (2011), modified by Graham Farr (2013).

FIT2014 Theory of Computation

Overview

- Propositions
- Connectives
- Tautologies
- Arguments
- Representing Knowledge

Definition

A proposition is

A statement

which is

• Either true or false.

Examples

- 2 + 2 = 4
 - is a proposition which is **true**.
- The moon is made of cheese
 - is a proposition which is **false**.
- It will rain tomorrow
 - is a proposition.
- This statement is false
 - is **not** a proposition.
- Vote for Mickey Mouse
 - is **not** a proposition.

Negation

P: I have three children.

P: I do **not** have three children.

Other Notation: $\sim P$, \overline{P}

Truth table:

Connectives

- And ∧ (&)
- Or v
- Implies \Rightarrow (\rightarrow)
- Equivalence ⇔ (↔)

Conjunction

P: This subject is interesting.

Q: I am tired.

$P \wedge Q$:

- This subject is interesting and I am tired.
- This subject is interesting although I am tired.
- This subject is interesting but I am tired.

Q	$P \wedge Q$
F	F
Т	F
F	F
T	T
	F

Disjunction

P: Sue is a football player.

Q: Bob is lazy.

P v Q: Sue is a football player **or** Bob is lazy.

Note: Disjunction is inclusive.

Q	PvQ
F	F
Т	Т
F	T
Т	T
	F

De Morgan's Laws

$$\neg(P \lor Q) = \neg P \land \neg Q$$
$$\neg(P \land Q) = \neg P \lor \neg Q$$

Can prove using truth tables.

E.g.:

P	Q	PvQ	¬(P∨Q)	¬P	$\neg Q$	$\neg P_{\wedge} \neg Q$
F	F	F	Т	Т	Т	Т
F	Т	Т	F	Т	F	F
Т	F	Т	F	F	Т	F
Т	Т	Т	F	F	F	F

Conditional

P: It is Tuesday.

Q: We are in Belgium.

 $P \Rightarrow Q$:

- If it is Tuesday then we are in Belgium.
- It's being Tuesday implies we are in Belgium.
- It's Tuesday only if we are in Belgium.
- It's being Tuesday is sufficient for us to be in Belgium.

Conditional Table

P	Q	$P \Rightarrow Q$
F	F	T
F	Т	Т
Τ	F	F
Τ	Τ	Т

P: Grace is a COBOL expert.

Q: Grace can program.

Grace Hopper (1906-1992) http://www.cs.uoregon.edu/groups/wics/projects.php

 $P \Rightarrow Q$:

If Grace is a COBOL expert then she can program.

Biconditional

P: The world will blow up.

Q: KAOS rules the world.

 $P \Leftrightarrow Q$:

- The world will blow up if and only if KAOS rules the world.
- KAOS ruling the world is a necessary and sufficient condition that the world will blow up.

Biconditional Table

P	Q	$P \Leftrightarrow Q$
F	F	T
F	Т	F
Т	F	F
Т	Т	Т

P: It will rain tomorrow.

Q: I will wear a raincoat tomorrow.

P ⇔ **Q**:

I will wear a raincoat tomorrow if and only if it rains.

Interpretation

The truth table for a statement provides a record for all possible interpretations of that statement.

Example:

S: If the price is less than \$30 and I have at least \$50, then I will buy that CD.

P: The price of the CD is less than \$30.

L: I have at least \$50.

B: I will buy that CD.

 \bullet S: (P \land L) \Rightarrow B

<u>P</u>	L	В	S
F	F	F	T
T	F	F	\mathbf{T}
F	T	F	T
T	T	F	F
F	F	T	T
T	F	T	T
F	T	T	T
T	T	T	T

Definitions

A tautology is a statement whose interpretation is always true.

- We say two statements P and Q are logically equivalent if they always have the same interpretation.
 - Their truth tables are the same.
 - i.e., $P \Leftrightarrow Q$ is a

Examples of logical equivalence

$$P \Rightarrow Q$$
 is logically equivalent to $\neg P \lor Q$

$$P \Leftrightarrow Q$$
 is logically equivalent to $(\neg P \lor Q) \land (P \lor \neg Q)$

These can be proved using truth tables.

Fitness Example

S: If I exercise then I will get fit, and I do exercise, so I will get fit.

E: I do exercise.

F: I will get fit.

$$S: (E \Rightarrow F) \land E \Rightarrow F$$

Definition

An **argument** consists of:

- A set of propositions, P₁, ..., P_n, called the premises.
- Another proposition, C, called the conclusion.

An argument is called **valid** if the statement $P_1 \wedge ... \wedge P_n \Rightarrow C$

is a tautology.

Mary's Exam Example

Today Mary has a Law exam or a Computer Science exam or both. She doesn't have a Law exam. Therefore she must have a Computer Science exam.

L: Mary has a Law exam today.

C: Mary has a Computer Science exam today.

Premises: L v C, ¬L

Conclusion: C

Wumpus World

[based on a video game by Gregory Yob, c 1972]

- The idea of the game is to find the gold.
- The cave has rooms that lie in a grid.
- Dangers
 - The Wumpus (You can smell a Wumpus in the next room or the same room)
 - Pits (You can feel a breeze in the next room)
 - Bats (You can hear the bats in the next room)
- You can use to kill a Wumpus with an arrow.

Example

- W represents the Wumpus
- P represents a Pit
- B represents Bats
- S is the Starting Position
- G represents where the gold is.

A Game

- No stench or breeze in square 1,1
 - Therefore Wumpus is not in 1,2 or 2,1
- Suppose you move to square 2,1 and detect a breeze and no stench there.
 - Therefore there is a Pit in either 2,2 or 3,1
- So you go back and up to square 1,2 and detect a stench and no breeze.
 - Therefore the Wumpus is in square 1,3.

Notation

- W_{1,1}
 - The Wumpus is in square I,I.
- S_{1,2}
 - A stench was detected in square 1,2.
- B_{2,1}
 - A breeze was detected in square 2,1.

Etc.

Knowledge

- $P_{i} \neg S_{i,i} \land \neg B_{i,i}$
- $\bullet P_2$: $\neg S_{2,1} \land B_{2,1}$
- P_3 : $S_{1,2} \wedge \neg B_{1,2}$
- $P_4: \neg S_{1,1} \Rightarrow \neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1}$
- $\bullet \mathsf{P}_{5} : \neg \mathsf{S}_{2,1} \Rightarrow \neg \mathsf{W}_{1,1} \land \neg \mathsf{W}_{2,1} \land \neg \mathsf{W}_{2,2} \land \neg \mathsf{W}_{3,1}$
- $\bullet \mathsf{P}_{6} : \neg \mathsf{S}_{1,2} \Rightarrow \neg \mathsf{W}_{1,1} \wedge \neg \mathsf{W}_{1,2} \wedge \neg \mathsf{W}_{2,2} \wedge \neg \mathsf{W}_{1,3}$
- P_7 : $S_{1,2} \Rightarrow W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$

Wumpus Argument

- Want to obtain the conclusion: $W_{1,3}$
- Need to show:
 - $P_1 \wedge P_2 \wedge P_3 \wedge P_4 \wedge P_5 \wedge P_6 \wedge P_7 \Rightarrow W_{1,3}$ is a tautology.
- Truth Table has $2^{12} = 4096$ rows.

Problems

 Need to introduce a lot of propositions to represent any useful knowledge.

- Using truth tables to show validity requires:
 - Exponential Space
 - Exponential Time

History

George Boole 1815-1864

http://www-history.mcs.st- andrews.ac.uk/Biographies/Boole.html

Revision

- Propositions
- Connectives
- Tautologies & Logical Equivalence
- Arguments

Reading

Sipser, pp. 14-15, 21-25.