Санкт-Петербургский политехнический университет Петра Великого
Институт прикладной математики и механики
Высшая школа прикладной математики и вычислительной физики

Многомерный статистический анализ

Отчет по лабораторной работе

Тема: Регрессионный анализ

Выполнил:

студент гр. 3630102/60401 Камалетдинова Ю. А.

Проверил:

к. ф-м. н., доцент Павлова Л. В.

> Санкт-Петербург 2020

Содержание

1	Ход	ц работы	2
	1.1	Построение модели и расчет характеристик	2
	1.2	Проверка гипотез	5
	1.3	Доверительные интервалы	7
	1.4	Прогноз модели	8
3a	аклю	чение	

Постановка задачи

Цель лабораторной работы — восстановить зависимость между переменными с помощью модели линейной регрессии, рассчитать некоторые статистики, оценить полученную модель.

1. Ход работы

1.1. Построение модели и расчет характеристик

Пусть $X=\{x_0^m,\dots,x_n^m\}$ — матрица независимых переменных размера $(n,m),\,Y=\{y_0,\dots,y_n\}$ — вектор наблюдений. В данной задаче n=15,m=3 Рассматривается модель $Y=f(A,X)+\epsilon$, где ϵ — случайная величина, $A=\{a_0,\dots,a_m\}^T$ — вектор параметров. Требуется найти оценки зависимой переменной \hat{Y} и параметров \hat{A} такие, что $\hat{Y}=\hat{A}X$

Найдем МНК-оценки параметров a_0, \dots, a_m . Они получены по формуле 1. В таблице 1 представлены результаты минимизации.

$$\hat{A} = (X'X)^{-1}X'Y \tag{1}$$

\hat{a}_0	\hat{a}_1	\hat{a}_2	\hat{a}_3
1.451	0.370	-0.003	5.711

Таблица 1: Коэффициенты линейной регрессии

Получим оценку дисперсии остатков $\hat{Y}-Y$ по формуле 2. Получено значение $\hat{s^2}\sim 3.743$.

$$\hat{s}^2 = \frac{\sum_{i=1}^n (\hat{y}_i - y_i)^2}{n - m - 1} \tag{2}$$

Рассчитаем оценку матрицы ковариаций, которая определяется формулой 3. Результат представлен в таблице

$$\widehat{cov(A)} = \hat{s}^2 (X^T X)^{-1} \tag{3}$$

	\hat{a}_0	\hat{a}_1	\hat{a}_2	\hat{a}_3
\hat{a}_0	0.001	-0.005	0.008	0.332
\hat{a}_1	-0.005	0.082	-0.144	-5.358
\hat{a}_2	-0.008	-0.144	0.859	8.638
\hat{a}_3	0.332	-5.358	8.638	363.339

Таблица 2: Оценка матрицы ковариаций

Представим матрицу корреляций, элементы которой задаются формулой 4. Значения представлены в таблицу 3 .

$$cor(\hat{A})_{ij} = \frac{(X^T X)_{ij}^{-1}}{\sqrt{(X^T X)_{ii}^{-1} (X^T X)_{jj}^{-1}}}$$
(4)

	\hat{a}_0	\hat{a}_1	\hat{a}_2	\hat{a}_3
\hat{a}_0	1	-0.608	-0.273	0.575
\hat{a}_1	-0.608	1	-0.544	-0.982
\hat{a}_2	-0.273	-0.544	1	0.489
\hat{a}_3	0.575	-0.982	0.489	1

Таблица 3: Корреляционная матрица

Построим графики \hat{Y} и Y:

Рис. 1: Оцененные и реальные значения

Построим гистограмму остатков $\hat{Y} - Y$ для оценки адекватности регрессионной модели.

Рис. 2: Гистограмма регрессионных остатков

Вычислим оценки коэффициента детерминации и скорректированного коэффициента детерминации по формулам:

$$R^{2} = \frac{\sum_{i} (\hat{y} - \overline{y})^{2}}{\sum_{i} (y - \overline{y})^{2}}$$

$$\tag{5}$$

$$R_{adj}^2 = \frac{R^2(n-1) - m + 1}{(n-m)},\tag{6}$$

где *п* — число наблюдений, *т* — число параметров модели

Были получены следующие значения: $R^2 \sim 0.996, \ R_{adj}^2 \sim 0.995.$

1.2. Проверка гипотез

Проверим гипотезу о равенстве нулю для близких к нулю коэффициентов регрессии, то есть H_0 : $a_i=0, i=1,2$. Для этого рассчитаем статистику, имеющую распределение Стьюдента с n-m=11 степенями свободы:

$$t = \frac{\hat{a}_i}{\hat{s}_{\hat{a}_i}} \tag{7}$$

В результате получены значения статистик, указанные в таблице 4. Квантили распределения Стьюдента уровней $1-\alpha/2$ при $\alpha=0.05, 0.25-t_{11,0.975}\sim 2.2, t_{11,0.875}\sim 1.214$.

	a_1	a_2
t	12.241	-0.011

Таблица 4: Значение распределения Стьюдента с 11 степенями свободы

Исходя из полученных результатов, гипотеза H_0 на уровнях значимости $0.05,\,0.25$ отвергается для коэффициента a_1 , так как значение статистики находится за пределами $+-t_{11,0.975},+-t_{11,0.875}$. Для коэффициента a_2 на уровнях значимости $0.05,\,0.25$ гипотеза не отвергается. Заключаем, что коэффициент a_2 не значим.

Перейдем к редуцированной модели без коэффициента a_2 . Найдем оценки ее коэффициентов по формуле 1.

\hat{a}_0^r	\hat{a}_1^r	\hat{a}_2^r
1.255	0.370	5.706

Таблица 5: Коэффициенты редуцированной (r) линейной регрессии

Построим графики \hat{Y}^r и Y^r :

Рис. 3: Оцененные и реальные значения редуцированной (r) модели

Рассчитаем оценку дисперсии по формуле 2. Было получено значение $(\hat{s}^2)^r \sim 3.743 \sim \hat{s}^2$. Видим, что дисперсия практически не изменилась, значит, далее будем работать с редуцированной моделью. Теперь m=3.

Проверим гипотезу об одновременном равенстве нулю всех коэффициентов, то есть, $H_0: a_i^r = 0, \forall i = 0, \dots, n. \ \text{Для этого посчитаем статистику теста:}$

$$F = \frac{R^2/(m-1)}{(1-R^2)(n-m)} \sim F(m-1, n-m)$$
(8)

Вычислим статистику для редуцированной модели. Потребуется рассчитать коэффициенты детерминации: $(R^2)^r \sim 0.996, (R_{adj}^2)^r \sim 0.995.$

Критическое значения статистики $F_{0.95}(2,12) \sim 3.885$. При расчетах получили значение $F \sim 1668.079$. Это значение гораздо больше критического, поэтому гипотеза о равенстве всех коэффициентов регресии нулю отвергается на уровне значимости 0.5.

Проверим гипотезу о равенстве коэффициентов двух регрессий, разбив имеющуюся выборку на 2 части. Для этого рассчитаем статистику:

$$F = \frac{((S - (S_1 + S_2))/m)}{(S_1 + S_2)/(n - 2m)} \sim F(m, n - 2m), \tag{9}$$

где $S,\ S_1,\ S_2$ — суммы квадратов остатков общей модели и моделей на двух подвыборках соответственно.

Значение распределения Фишера на уровне значимости $0.05~F_{0.95}(3,9) \sim 3.863$. При расчетах по формуле 9 было получено значение $F \sim 2.656 < F_{0.95}(3,9)$, следовательно, гипотеза о равенстве коэффициентов двух регрессий не отвергается.

1.3. Доверительные интервалы

Построим индивидуальные доверительные интервалы для параметров линейной регрессии на уровне значимости $\alpha=0.05$. Неравенство для доверительного интервала значений неизвестного коэффициента:

$$\hat{a}_i - t_{cr} \cdot S_{\hat{a}_i} < a_i < \hat{a}_i + t_{cr} \cdot S_{\hat{a}_i} \tag{10}$$

	a_0^r	a_1^r	a_2^r
left	0.320	4.099	-6.217
right	0.420	7.313	8.727

Таблица 6: Доверительные интервалы для коэффициентов редуцированной (r) регресии

Теперь построим совместные доверительные интервалы по принципу Тьюки

	a_0^r	a_1^r	a_2^r
left	0.308	3.700	-8.069
right	0.432	7.712	10.579

Таблица 7: Доверительные интервалы по методу Тьюки для коэффициентов редуцированной (r) регресии

Приведем доверительные интервалы, используя неравенство Чебышева:

$$P(|\hat{a}_i - a_i| \le \tau s_i) \ge 1 - \frac{1}{\tau^2},\tag{11}$$

где $\tau = \sqrt{20}$ для $\alpha = 0.05$

	a_0^r	a_1^r	a_2^r
left	0.263	2.229	-14.907
right	0.477	9.183	17.416

Таблица 8: Доверительные интервалы по Чебышеву для коэффициентов редуцированной (r) регресии

Заметим, что доверительные интервалы Чебышева гораздо шыре предыдущих.

1.4. Прогноз модели

Протестируем модель регрессии на случайном наблюдении, не участвовавшем в построении ее коэффициентов. Были получены следующие значения для наблюдения с индексом 14:

- $\hat{y}_{test}^r \sim 188.530, y_{test}^r \sim 186.405$
- $(\hat{s}_{test}^2)^r \sim 4.249$
- Индивидуальный доверительный интервал при $\alpha=0.1$: [184.828, 192.232]

Заключение

Полученная модель линейной регрессии достаточно качественная. Это объясняется близостью коэффициента детерминации к единице, то есть, статистическая связь между зависимой Y и независимой X переменными функциональна, значения Y практически полностью определяются значениями факторов X.

В ходе работы были проверены гипотезы, удалось выяснить, что в полной модели присутствуют коэффициенты, гипотеза о равенстве нулю которых не отвергается. была получена редуцированная модель без фактора a_2 . Исключение этого коэффициента не повлекло повышения дисперсии остатков, уменьшения коэффициентов детерминации, поэтому остальные расчеты приведены именно для редуцированной модели.

Наиболее узкими доверительными интервалами получились индивидуальные доверительные интервалы. Интервалы, полученные с помощью неравенства Чебышева, вышли наиболее широкими, что говорит о худшем результате. Этот метод оценки непараметрический, никаких предположений о распределении данных не требуется.

Список литературы