Chapitre

Analyse Dimensionnelle

Grandeurs physiques et unités associées

1.1. Grandeurs physiques et Dimensions

Définitions

Grandeur physique : Propriété d'un système que l'on peut mesu-

Dimension : la nature d'une grandeur. Elle se note [G].

Deux grandeurs G et G' qui ont la même dimension sont dites homogènes. On note [G]=[G'] ou $G\sim G'$

1.1. Système international

Dimension	Unité	
Longueur (L)	mètre (m)	
Masse (M)	kilogramme (kg)	
Temps (T)	seconde (s)	
Intensité du courant (I)	ampère (A)	
Température ($ heta$)	kelvin (K)	
Qt de matière (N)	mole (mol)	
intensité lumineuse (J)	candela (cd)	

1. Dimension d'une grandeur physique

1.2. Dans le SI

Pour toute grandeur physique G, il existe une unique décomposition dans le SI du type : $[G] = [L]^a [T]^b [M]^c [I]^d [\theta]^e [N]^f [J]^g$ Trouver la dimension de G dan le système revient à déterminer les valeurs des exposants.

1.2. Grandeur sans dimension

On dit qu'une grandeur G est sans dimension x si [G] = 1

×

Liste des grandeurs sans dimension

- · angles
- fonctions usuelles, $\cos, \tan, \ln, \exp, \log$
- · arguments des fonction usuelles

× Difficulté
Elle peut cependant avoir une unité

1.2. Dimension d'un vecteur

La dimension d'un vecteur correspond à la dimension de sa norme.

1.2. Dimension et unité de grandeurs dérivées

Méthode pour déterminer la dimension d'une grandeur dans le SI

Il faut trouver une formule qui fait intervenir cette grandeur + des grandeurs du SI (ou de dimensions connues).

Dimensions à connaître

Туре	Exemple d'unités	Dimension
Énergie	J	$[M][L]^2[T]^{-2}$
Force	N	$[M][L][T]^{-2}$
Accélération	$m \cdot s^{-2}$	$[L][T]^{-2}$
Vitesse	Km/h	$[L][T]^{-1}$
Charge	С	[I][T]

1.2. Problème aux dimensions

On suppose qu'une grandeur physique G dépend d'un ensemble d'autres grandeurs g_i (intuition physique). On voudrait écrire que la grandeur $G=g_i^{\alpha_1}\times g_i^{\alpha_2}\times g_i^{\alpha_i}$.

On détermine les valeurs des exposants α_i à partir des dimensions des grandeurs.

Exemple: Période d'oscillation d'un pendule

On veut déterminer la période P des oscillations de la masse m.

Elle peut dépendre de g,l,θ,m . Le tout peut être multiplié par une constante sans dimension.

Dimension des grandeurs : [P] = [T]

$$[g] = [L][T]^{-2}$$

$$[l] = [L].$$

$$[m] = [M].$$

$$[M]^{0}[L]^{0}[T]^{1} = [g]^{\alpha}[l]^{\beta}[m]^{\lambda}$$
$$= ([L][T]^{-2})^{\alpha}[L]^{\beta}[M]^{\lambda}$$
$$= [M]^{\lambda}[L]^{\alpha+\beta}[T]^{-2\alpha}$$

On procède par identification pour créer un système d'équations et trouver les coefficients.

$$\begin{cases} 0 = \lambda \\ 0 = \alpha + \beta \\ 1 = -2\alpha \end{cases} \Rightarrow \begin{cases} \lambda = 0 \\ 0 = \alpha + \beta \\ \alpha = -0.5 \end{cases} \Rightarrow \begin{cases} \lambda = 0 \\ \beta = 0.5 \\ \alpha = -0.5 \end{cases}$$

On remplace les valeurs dans l'expression de départ.

$$[M]^{0}[L]^{0}[T]^{1} = [g]^{\alpha}[l]^{\beta}[m]^{\lambda}$$
$$= [g]^{-0.5}[l]^{0.5}[m]^{0}$$
$$= [g]^{-0.5}[l]^{0.5}$$

$$\rho_{air} = 1.2 \: kg \cdot m^{-3}.$$

Lois d'échelle

Quand on compare 2 systèmes, il n'est pas nécessaire de connaître la valeur de la constante multiplicative. En effet, ces dernières s'annulent si on fait le rapport de 2 systèmes.