In [41]: import numpy as np import pandas as pd import seaborn as sns import matplotlib %matplotlib inline from matplotlib import pyplot as plt import statsmodels

```
In [2]: print('Numpy Version',np.__version__)
    print('Pandas Version',pd.__version__)
    print('Seaborn Version',sns.__version__)
    print('Matplotlib Version',matplotlib.__version__)
    print('Statsmodels Version',statsmodels.__version__)
```

Numpy Version 1.22.3 Pandas Version 1.4.2 Seaborn Version 0.11.2 Matplotlib Version 3.5.1 Statsmodels Version 0.13.2

In [42]: # Importing the data:

expected_ctc= pd.read_csv('expected_ctc.csv')
expected_ctc.head(10)

Out[42]:

	IDX	Applicant_ID	Total_Experience	Total_Experience_in_field_applied	Department	
0	1	22753	0	0	NaN	
1	2	51087	23	14	HR	Cons
2	3	38413	21	12	Top Management	Cons
3	4	11501	15	8	Banking	Fina Ar
4	5	58941	10	5	Sales	P Ma
5	6	30564	16	3	Top Management	Area Ma
6	7	27267	1	1	Engineering	
7	8	36521	19	11	Others	Aı
8	9	11616	8	7	Analytics/BI	С
9	10	43886	15	15	Analytics/BI	

In [43]: # Accomodating all columns on screen:

pd.options.display.max_columns = None

In [5]: expected_ctc.head(10)

Out[5]:

	IDX	Applicant_ID	Total_Experience	Total_Experience_in_field_applied	Department	
0	1	22753	0	0	NaN	
1	2	51087	23	14	HR	Cons
2	3	38413	21	12	Top Management	Cons
3	4	11501	15	8	Banking	Fina Aı
4	5	58941	10	5	Sales	P Ma
5	6	30564	16	3	Top Management	Area Ma
6	7	27267	1	1	Engineering	
7	8	36521	19	11	Others	Ar
8	9	11616	8	7	Analytics/BI	С
9	10	43886	15	15	Analytics/BI	

In [6]: expected_ctc.tail(10)

Out[6]:

Department	Total_Experience_in_field_applied	Total_Experience	Applicant_ID	IDX	
Top Management	1	22	34589	24991	24990
Sales	1	1	13280	24992	24991
Sales	12	25	35325	24993	24992
Healthcare	13	15	31883	24994	24993
Top Management	3	7	32035	24995	24994
Engineering	13	18	25550	24996	24995
HR	8	12	53442	24997	24996
Banking	8	22	15777	24998	24997
Marketing	8	25	57616	24999	24998
Banking	0	8	20788	25000	24999

In [44]: # Checking the total entries:

expected_ctc.size

Out [44]: 725000

In [45]: # Checking the data structure:

expected_ctc.shape

Out[45]: (25000, 29)

In [9]: # Checking the data types:

expected_ctc.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25000 entries, 0 to 24999
Data columns (total 29 columns):

#	Column	Non-Nu	ull Count	Dtype
0	IDX	25000	non-null	 int64
1	Applicant_ID		non-null	int64
2	Total_Experience	25000	non-null	int64
3	Total_Experience_in_field_applied	25000	non-null	int64
4	Department	22222	non-null	object
5	Role	24037	non-null	object
6	Industry		non-null	object
7	Organization		non-null	object
8	Designation		non-null	object
9	Education		non-null	object
10	Graduation_Specialization		non-null	object
11	University_Grad		non-null	object
12	Passing_Year_Of_Graduation		non-null	float64
13	PG_Specialization		non-null	object
14	University_PG		non-null	object
15	Passing_Year_Of_PG		non-null	float64
16	PHD_Specialization		non-null	object
17	University_PHD		non-null	object
18	Passing_Year_Of_PHD		non-null	float64
19	Curent_Location		non-null	object
20	Preferred_location		non-null	object
21	Current_CTC		non-null	int64
22	Inhand_Offer		non-null	object
23	Last_Appraisal_Rating		non-null	object
24	No_Of_Companies_worked		non-null	int64
25	Number_of_Publications	25000	non-null	int64
26	Certifications	25000	non-null	int64
27	<pre>International_degree_any</pre>	25000	non-null	int64
28	Expected_CTC	25000	non-null	int64
dtype	es: float64(3), int64(10), object(10	6)		
memoı	ry usage: 5.5+ MB			

In [59]: #Checking for duplicate values

expected_ctc.duplicated().sum()

Out[59]: 0

```
In [11]: #There seem to be many features with missing values. Getting a coun
expected_ctc.isna().sum().sort_values(ascending=False)
```

```
Out[11]: Passing_Year_Of_PHD
                                                 11881
         University_PHD
                                                 11881
          PHD Specialization
                                                 11881
          University_PG
                                                  7692
          Passing Year Of PG
                                                  7692
         PG Specialization
                                                  7692
          University Grad
                                                  6180
          Passing_Year_Of_Graduation
                                                  6180
          Graduation_Specialization
                                                  6180
          Designation
                                                  3129
          Department
                                                  2778
         Role
                                                   963
         Organization
                                                   908
          Industry
                                                   908
                                                   908
          Last_Appraisal_Rating
         Number_of_Publications
                                                     0
          Current CTC
                                                     0
         No_Of_Companies_worked
                                                     0
          Certifications
                                                     0
          International degree any
                                                     0
          Inhand Offer
                                                     0
          IDX
                                                     0
          Preferred_location
                                                     0
          Curent Location
                                                     0
          Applicant_ID
                                                     0
          Education
                                                     0
          Total_Experience_in_field_applied
                                                     0
          Total Experience
                                                     0
          Expected_CTC
                                                     0
          dtype: int64
In [46]: #Dropping unnecessary columns:
```

expected_ctc=expected_ctc.drop(columns=["IDX","Applicant ID"])

In [13]: expected_ctc.head()

Out[13]:

	Total_Experience	Total_Experience_in_field_applied	Department	Role	Industry	Oı
0	0	0	NaN	NaN	NaN	
1	23	14	HR	Consultant	Analytics	
2	21	12	Top Management	Consultant	Training	
3	15	8	Banking	Financial Analyst	Aviation	
4	10	5	Sales	Project Manager	Insurance	

In [47]: |expected_ctc.shape

Out[47]: (25000, 27)

In [15]: # Checking the distribution of target variable:

expected_ctc.describe()["Expected_CTC"]

Out[15]: count 2.500000e+04

mean 2.250155e+06 std 1.160480e+06

min 2.037440e+05

25% 1.306278e+06

50% 2.252136e+06 75% 3.051354e+06

max 5.599570e+06

Name: Expected_CTC, dtype: float64

In [16]: # Bin-wise distribution of target variable (30 bins): plt.figure(figsize=(10,8)) sns.histplot(expected_ctc['Expected_CTC'],bins=30) plt.labels=12 plt.title('Distribution of Expected_CTC',color='blue',fontsize=18); plt.xlabel("Current_CTC", color="blue",size=16) plt.ylabel("Expected_CTC",color="blue",size=16)

Out[16]: Text(0, 0.5, 'Expected_CTC')

In [17]: # Distribution of target variable post log transformation to normal. plt.figure(figsize=(10,8)) sns.histplot(np.log(expected_ctc['Expected_CTC']),bins=30) plt.title('Distribution of Expected_CTC post log transformation',co plt.xlabel("Expected_CTC", color="blue",size=16) plt.ylabel("Count of candidates",color="blue",size=16)

Out[17]: Text(0, 0.5, 'Count of candidates')

In [18]: # Checking percentile distribution of target variable:

```
print("5% candidates have an expected_ctc lower than {0: .2f}".for print("10% candidates have an expected_ctc lower than {0: .2f}".for print("12.5% candidates have an expected_ctc lower than {0: .2f}".for print("15% candidates have an expected_ctc lower than {0: .2f}".for print("20% candidates have an expected_ctc lower than {0: .2f}".for print("25% candidates have an expected_ctc lower than {0: .2f}".for print("35% candidates have an expected_ctc lower than {0: .2f}".for print("50% candidates have an expected_ctc lower than {0: .2f}".for print("65% candidates have an expected_ctc lower than {0: .2f}".for print("75% candidates have an expected_ctc lower than {0: .2f}".for print("85% candidates have an expected_ctc lower than {0: .2f}".for print("90% candidates have an expected_ctc lower than {0: .2f}".for print("95% candidates have an expected_ctc lower than {0: .2f}".for print("95% candidates have an expected_ctc lower than {0: .2f}".for print("95% candidates have an expected_ctc lower than {0: .2f}".for print("95% candidates have an expected_ctc lower than {0: .2f}".for print("95% candidates have an expected_ctc lower than {0: .2f}".for
```

5% candidates have an expected ctc lower than 577473.50 10% candidates have an expected_ctc lower than 681085.10 12.5% candidates have an expected ctc lower than 743618.38 15% candidates have an expected_ctc lower than 810771.30 20% candidates have an expected_ctc lower than 1043658.60 25% candidates have an expected_ctc lower than 1306277.50 35% candidates have an expected ctc lower than 1707332.90 50% candidates have an expected ctc lower than 2252136.50 65% candidates have an expected_ctc lower than 2752874.85 75% candidates have an expected_ctc lower than 3051353.75 85% candidates have an expected_ctc lower than 3371657.20 90% candidates have an expected ctc lower than 3796165.40 95% candidates have an expected_ctc lower than 4360145.10

In [48]: # Converting year_of_passing variables to categorical type:

expected_ctc['Passing_Year_Of_Graduation']=expected_ctc['Passing_Year_Of_PG']=expected_ctc['Passing_Year_Of_PG']=expected_ctc['Passing_Year_Of_PG']=expected_ctc['Passing_Year_Of_PHD']=expected_ctc['Passing

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25000 entries, 0 to 24999
Data columns (total 27 columns):

# #	Column	Non-Null Count	Dtype
0	Total_Experience	25000 non-null	 int64
1	Total_Experience_in_field_applied	25000 non-null	int64
2	Department	22222 non-null	object
3	Role	24037 non-null	object
4	Industry	24092 non-null	object
5	Organization	24092 non-null	object
6	Designation	21871 non-null	object
7	Education	25000 non-null	object
8	Graduation_Specialization	18820 non-null	object
9	University_Grad	18820 non-null	object
10	Passing_Year_Of_Graduation	18820 non-null	object
11	PG_Specialization	17308 non-null	object
12	University_PG	17308 non-null	object
13	Passing_Year_Of_PG	17308 non-null	object
14	PHD_Specialization	13119 non-null	object
15	University_PHD	13119 non-null	object
16	Passing_Year_Of_PHD	13119 non-null	object
17	Curent_Location	25000 non-null	object
18	Preferred_location	25000 non-null	object
19	Current_CTC	25000 non-null	int64
20	Inhand_Offer	25000 non-null	object
21	Last_Appraisal_Rating	24092 non-null	object
22	No_Of_Companies_worked	25000 non-null	int64
23	Number_of_Publications	25000 non-null	int64
24	Certifications	25000 non-null	int64
25	<pre>International_degree_any</pre>	25000 non-null	int64
26	Expected_CTC	25000 non-null	int64
	es: int64(8), object(19)		
memo	ry usage: 5.1+ MB		

In [49]:

ization','University_PG','Passing_Year_Of_PG','PHD_Specialization','
t_CTC', 'Expected_CTC']

```
In [113]: | ### Univariate analysis of continuous variables:
          # Checking unique values and presence of any unwanted characters:
          for column in expected_ctc[numerical]:
              print(column.upper(),': ',expected_ctc[column].nunique())
              print(expected_ctc[column].value_counts().sort_values(ascending)
              print('\n')
                  954
                  867
          10
          11
                  776
          12
                  711
          14
                  624
          13
                  610
                  539
          15
          16
                  498
          17
                  381
                  329
          18
          19
                  317
                  245
          20
          21
                  200
          22
                  146
          23
                  109
          24
                   82
          25
                   37
          Name: Total_Experience_in_field_applied, dtype: int64
```

```
In [50]: # Checking missing values in continuous variables:
         expected_ctc[numerical].isna().sum().sort_values(ascending=False)
Out[50]: Total_Experience
                                               0
         Total_Experience_in_field_applied
                                               0
         No Of Companies worked
                                               0
         Number of Publications
                                               0
         Certifications
                                               0
         International_degree_any
                                               0
         Current_CTC
                                               0
         Expected_CTC
         dtype: int64
```

In [24]: # Statistical summary of continuous variables:

expected_ctc[numerical].describe().T

Out[24]:

	count	mean	std	min	25%
Total_Experience	25000.0	1.249308e+01	7.471398e+00	0.0	6.0
Total_Experience_in_field_applied	25000.0	6.258200e+00	5.819513e+00	0.0	1.0
No_Of_Companies_worked	25000.0	3.482040e+00	1.690335e+00	0.0	2.0
Number_of_Publications	25000.0	4.089040e+00	2.606612e+00	0.0	2.0
Certifications	25000.0	7.736800e-01	1.199449e+00	0.0	0.0
International_degree_any	25000.0	8.172000e-02	2.739431e-01	0.0	0.0
Current_CTC	25000.0	1.760945e+06	9.202125e+05	0.0	1027311.5
Expected_CTC	25000.0	2.250155e+06	1.160480e+06	203744.0	1306277.5

In [23]: # Checking distribution of continuous variables:

```
for column in expected_ctc[numerical]:
    sns.histplot(expected_ctc[column])
    plt.xlabel(column,color="blue",fontsize=12)
    plt.xticks(rotation=45)
    plt.ylabel("Count of candidates",color="blue",fontsize=12)
    plt.show()
```


In [51]: # From above representation, we can say that variables 'No_Of_Compan.

expected_ctc['No_Of_Companies_worked']=expected_ctc['No_Of_Companie
expected_ctc['Number_of_Publications']=expected_ctc['Number_of_Publ
expected_ctc['Certifications']=expected_ctc['Certifications'].astype
expected_ctc['International_degree_any']=expected_ctc['International_expected_ctc.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25000 entries, 0 to 24999
Data columns (total 27 columns):

#	Column	Non-Null Count	Dtype
0	Total_Experience	25000 non-null	int64
1	Total_Experience_in_field_applied	25000 non-null	int64
2	Department	22222 non-null	object
3	Role	24037 non-null	object
4	Industry	24092 non-null	object
5	Organization	24092 non-null	object
6	Designation	21871 non-null	object
7	Education	25000 non-null	object
8	Graduation_Specialization	18820 non-null	object
9	University_Grad	18820 non-null	object
10	Passing_Year_Of_Graduation	18820 non-null	object
11	PG_Specialization	17308 non-null	object
12	University_PG	17308 non-null	object
13	Passing_Year_Of_PG	17308 non-null	object
14	PHD_Specialization	13119 non-null	object
15	University_PHD	13119 non-null	object
16	Passing_Year_Of_PHD	13119 non-null	object
17	Curent_Location	25000 non-null	object
18	Preferred_location	25000 non-null	object
19	Current_CTC	25000 non-null	int64
20	Inhand_Offer	25000 non-null	object
21	Last_Appraisal_Rating	24092 non-null	object
22	No_Of_Companies_worked	25000 non-null	object
23	Number_of_Publications	25000 non-null	object
24	Certifications	25000 non-null	object
25	International_degree_any	25000 non-null	object
26	Expected_CTC	25000 non-null	int64
	es: int64(4), object(23)		
memo	ry usage: 5.1+ MB		

In [52]: # Redefining variable set:

categorical=['Department','Role','Industry','Organization','Designa numerical=['Total_Experience','Total_Experience_in_field_applied',

In [28]: # Checking for outliers using boxplots:

plt.figure(figsize=(12,8))
expected_ctc[numerical].boxplot(vert=0)
plt.title("Outlier check for numerical variables",color='blue',font
plt.show()


```
In [29]: # Boxplots without 'Expected_CTC' & 'Current_CTC' to get a clearer
plt.figure(figsize=(12,8))
    expected_ctc[numerical].drop(['Expected_CTC','Current_CTC'],axis=1)
    plt.title('Outlier check post removal of CTC variables',color='blue plt.show()
```



```
In [53]: # Since 'Total_Experience_in_field_applied' has few outliers, we wi

def remove_outlier(col):
    sorted(col)
    Q1,Q3=np.percentile(col,[25,75])
    IQR=Q3-Q1
    lower_range= Q1-(1.5 * IQR)
    upper_range= Q3+(1.5 * IQR)
    return lower_range, upper_range
```

```
In [54]: ce_in_field_applied'])
=np.where(expected_ctc['Total_Experience_in_field_applied']>ur,ur,ex
=np.where(expected_ctc['Total_Experience_in_field_applied']<lr,lr,ex</pre>
```

In [32]: #Re-checking for outliers post imputation: plt.figure(figsize=(12,8)) expected_ctc[numerical].drop(['Expected_CTC','Current_CTC'],axis=1) plt.title('Outlier check post IQR imputation',color='blue',fontsize: plt.show()

In [34]: # Very high skewness in 'Total_Experience_in_field_applied' - 95%.

log_tot_exp_in_field=np.log(expected_ctc['Total_Experience_in_field]
sns.displot(expected_ctc['Total_Experience_in_field_applied'])
plt.title("Distribution of variable 'Total_experience_in_field_appl
plt.xlabel("Total_experience_in_field_applied", color="blue",size=10)
plt.ylabel("Count of candidates",color="blue",size=16)

/Users/sabita/opt/anaconda3/lib/python3.8/site-packages/pandas/core/arraylike.py:397: RuntimeWarning: divide by zero encountered in log

result = getattr(ufunc, method)(*inputs, **kwargs)

Out[34]: Text(-2.5750000000000003, 0.5, 'Count of candidates')

Distribution of variable 'Total experience in field applied' post log transformation


```
In [35]: #Log tranformation has not helped the skewness - let us try boxcox
from scipy.stats import boxcox
expected_ctc['Total_Experience_in_field_applied'],lmbda=boxcox(experience_in_field_applied')
```

```
Traceback (most recent c
ValueError
all last)
<ipython-input-35-cb753e7db60e> in <module>
      3 from scipy stats import boxcox
    -> 4 expected_ctc['Total_Experience_in_field_applied'], lmbda=bo
xcox(expected_ctc['Total_Experience_in_field_applied'], lmbda=None)
~/opt/anaconda3/lib/python3.8/site-packages/scipy/stats/morestats.
py in boxcox(x, lmbda, alpha)
   1041
   1042
            if any(x \leq= 0):
                raise ValueError("Data must be positive.")
-> 1043
   1044
   1045
            if lmbda is not None: # single transformation
ValueError: Data must be positive.
```

In [36]: # Since boxcox does not work in this case, let us try square root t

sqrt=expected_ctc['Total_Experience_in_field_applied']**(.5)
sns.distplot(sqrt)
plt.title("Distribution of variable 'Total_experience_in_field_appl
plt.xlabel("Total_experience_in_field_applied", color="blue",size=10
plt.ylabel("Count of candidates",color="blue",size=16)

/Users/sabita/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms)

warnings.warn(msg, FutureWarning)

Out[36]: Text(0, 0.5, 'Count of candidates')

Distribution of variable 'Total experience in field applied' post sq. root transformation

In []: # Since transformation has not improved the distribution of 'Total_

In []: | ### Bivariate analysis of continuous variables:

In [37]: # Checking relation between continuous variables:

sns.set_style('whitegrid')
sns.pairplot(data=expected_ctc[numerical],diag_kind="kde")
plt.show()


```
In [22]: # Using a heatmap to visualize correlation:
    plt.figure(figsize=(10,10))
    sns.set(font_scale=1.2)
    sns.heatmap(expected_ctc[numerical].corr(),annot=True)
    plt.title('Correlation matrix',color='blue',fontsize=18)
    plt.xticks(rotation=45)
```


In [62]: expected_ctc[numerical].corr()

Out [62]:

	Total_Experience	Total_Experience_in_field_applied	Current
Total_Experience	1.000000	0.645135	0.8
Total_Experience_in_field_applied	0.645135	1.000000	0.5
Current_CTC	0.846476	0.548017	1.00
Expected_CTC	0.816593	0.529115	0.9

```
In [ ]: # Highest correlation to target variable - 'Total_Experience' (~82%)
```

```
In [39]: # Scatterplots against 'Expected_CTC':
         sns.set_style('whitegrid')
         plt.figure(figsize=(35,40))
         plt.subplot(3,1,1)
         sns.scatterplot(x=expected_ctc['Total_Experience'],y=expected_ctc['
         plt.title("Correlation of variables with Expected CTC",color="blue"
         plt.xlabel("Total_experience", color="blue", size=18)
         plt.ylabel("Expected_CTC",color="blue",size=18)
         plt.subplot(3,1,2)
         sns.scatterplot(x=expected_ctc['Total_Experience_in_field_applied']
         plt.xlabel("Total_experience_in_field_applied", color="blue",size=1
         plt.ylabel("Expected_CTC", color="blue", size=18)
         plt.subplot(3,1,3)
         sns.scatterplot(x=expected_ctc['Current_CTC'],y=expected_ctc['Expec
         plt.xlabel("Current_CTC", color="blue", size=18)
         plt.ylabel("Expected_CTC", color="blue", size=18)
         plt.show()
```


In []: ### Univariate analysis of discrete variables:

```
In [55]: # Checking for unique categorical values: (to check data hygiene)
         for column in expected_ctc[categorical]:
             print(column.upper(),': ',expected_ctc[column].nunique())
             print(expected_ctc[column].value_counts().sort_values(ascending)
```

print('\n')

Name: Number_of_Publications, dtype: int64

CERTIFICATIONS: 6

15215 0

1 4644

2 2198

3 1818

4 777

5 348

Name: Certifications, dtype: int64

INTERNATIONAL_DEGREE_ANY : 2

22957

1 2043

Name: International_degree_any, dtype: int64

In [77]: # Statistical summary of continuous variables:

expected_ctc[categorical].describe(include="all").T

Out[77]:

	count	unique	top	freq
Department	22222	12	Marketing	2379
Role	24037	24	Others	2248
Industry	24092	11	Training	2237
Organization	24092	16	М	1574
Designation	21871	18	HR	1648
Education	25000	4	PG	6326
Graduation_Specialization	18820	11	Chemistry	1785
University_Grad	18820	13	Bhubaneswar	1510
Passing_Year_Of_Graduation	18820.0	35.0	1997.0	769.0
PG_Specialization	17308	11	Mathematics	1800
University_PG	17308	13	Bhubaneswar	1377
Passing_Year_Of_PG	17308.0	36.0	2011.0	816.0
PHD_Specialization	13119	11	Others	1545
University_PHD	13119	13	Kolkata	1069
Passing_Year_Of_PHD	13119.0	26.0	1998.0	536.0
Curent_Location	25000	15	Bangalore	1742
Preferred_location	25000	15	Kanpur	1720
Inhand_Offer	25000	2	N	17418
Last_Appraisal_Rating	24092	5	В	5501

In [15]: # Checking distibution of variables: cat=["Department","Role","Education","Organization","Designation"," sns.set() for a in expected_ctc[cat]: plt.figure(figsize=(18,6)) ax=sns.countplot(x=expected_ctc[a],palette="rainbow",saturation: plt.title("Count of candidates by "+a,color="blue",fontsize=18) plt.xlabel(a,color="blue",fontsize=16) plt.xticks(rotation=45) plt.ylabel("Count of candidates",color="blue",fontsize=16) ax.bar_label(ax.containers[0]) plt.show()

In [16]: # Checking distibution of variables:

```
cat=["Passing_Year_Of_Graduation","Passing_Year_Of_PG","Passing_Yea

for i in expected_ctc[cat]:
    plt.figure(figsize=(18,6))
    ax=sns.countplot(x=expected_ctc[i],palette="rainbow",saturation:
    plt.title("Count of candidates by "+i,color="blue",fontsize=16)
    plt.xlabel(i,color="blue",fontsize=12)
    plt.xticks(rotation=45)
    plt.ylabel("Count",color="blue",fontsize=12)
    ax.bar_label(ax.containers[0])
    plt.show()
```


05/06/22, 9:31 PM

In [17]: cat1=["Curent_Location","Preferred_location"] for i in expected_ctc[cat1]: plt.figure(figsize=(15,6)) ax=sns.countplot(x=expected_ctc[i],order=expected_ctc[i].value_ plt.title("Count of candidates by "+i,color="blue",fontsize=16) plt.xlabel(i,color="blue",fontsize=12) plt.xticks(rotation=45) plt.ylabel("Count",color="blue",fontsize=14) for container in ax.containers: ax.bar_label(container) plt.show()

In [37]: import pylab as pl plot=pd.crosstab(expected_ctc['Education'], expected_ctc['Number_of_ plot.set_title("Education v/s Number of publications",color="blue", plot.legend(loc=(1.1,0.1),title='No. of publications') plt.xlabel('Education',color="blue",fontsize=14) plt.xticks(rotation=45)

Out[37]: (array([0, 1, 2, 3]), [Text(0, 0, 'Doctorate'),
Text(1, 0, 'Grad'), Text(2, 0, 'PG'), Text(3, 0, 'Under Grad')])

Education v/s Number of publications

Education

```
In [38]: import pylab as pl
plot=pd.crosstab(expected_ctc['Education'],expected_ctc['Certificat
plot.set_title("Education v/s Number of certifications",color="blue"
plt.xlabel('Education',color="blue",fontsize=14)
plot.legend(loc=(1.1,0.4),title='No. of certifications')
plt.xticks(rotation=45)
```


Distribution of candidates with and without an employment offer


```
In [63]: int_degree = expected_ctc.International_degree_any.value_counts()[1
    no_int_degree = expected_ctc.International_degree_any.value_counts()
    names = ['With International Degree', 'Without International Degree'
    size = [int_degree, no_int_degree]

plt.pie(size, labels=names, colors=['green','blue'],
        autopct='%.2f%', pctdistance=1.5,
        wedgeprops={'linewidth':7, 'edgecolor':'white'})

# creating circle for the center of the plot to make the pie look l.
    my_circle = plt.Circle((0,0), 0.6, color='white')

# plot the donut chart
fig = plt.gcf()
fig.set_size_inches(5,5)
fig.gca().add_artist(my_circle)
plt.title("Distribution of candidates with and without an Internatiplt.show()
```

Distribution of candidates with and without an International degree


```
In [56]: # Checking for missing/null values in categorical columns:
         expected_ctc[categorical].isna().sum().sort_values(ascending=False)
Out[56]: Passing_Year_Of_PHD
                                         11881
         University_PHD
                                         11881
         PHD_Specialization
                                         11881
         Passing_Year_Of_PG
                                         7692
         University PG
                                         7692
         PG Specialization
                                         7692
         Graduation Specialization
                                         6180
         University_Grad
                                         6180
         Passing_Year_Of_Graduation
                                         6180
         Designation
                                         3129
         Department
                                         2778
         Role
                                           963
         Organization
                                           908
         Industry
                                           908
                                           908
         Last_Appraisal_Rating
         Education
                                             0
         Curent_Location
                                             0
         Preferred_location
                                             0
         Inhand Offer
                                             0
         No Of Companies worked
                                             0
         Number_of_Publications
                                             0
         Certifications
                                             0
         International_degree_any
                                             0
         dtype: int64
 In []: | # High number of missing values in several variables- further analy
 In []: | ### Bivariate analysis of categorical variables:
 In []: # Checking relation of variables with target variable:
```

```
In [80]: s.set_style('whitegrid')
    t.figure(figsize=(16,16))
    t.subplot(2,1,1)
    s.boxplot(x=expected_ctc['Expected_CTC'],y=expected_ctc['Department'
    t.title("Range of Expected salary according to Department",color="bl
    t.ylabel("Department",color="blue",fontsize=14)
    t.xlabel("Expected salary",color="blue",fontsize=14)
    t.subplot(2,1,2)
    s.boxplot(x=expected_ctc['Expected_CTC'],y=expected_ctc['Role'],data
    t.title("Range of Expected salary according to Job role",color="blue
    t.ylabel("Role",color="blue",fontsize=14)
    t.xlabel("Expected salary",color="blue",fontsize=14)
```

Out[80]: Text(0.5, 0, 'Expected salary')


```
In [60]: # Plotting to see impact of year of pass-out on target variable:
         sns.set style('whitegrid')
         plt.figure(figsize=(30,22))
         plt.suptitle("Range of Expected salary according to Year of Passing
         plt.subplot(3,1,1)
         sns.pointplot(x=expected_ctc['Passing_Year_Of_Graduation'],y=expect
         plt.ylabel("Expected Salary",color="blue",fontsize=14)
         plt.xlabel("Year of Graduation",color="blue",fontsize=14)
         plt.xticks(rotation=45)
         plt.subplot(3,1,2)
         sns.pointplot(x=expected_ctc['Passing_Year_Of_PG'],y=expected_ctc['
         plt.ylabel("Expected Salary",color="blue",fontsize=14)
         plt.xlabel("Year of Post-Graduation",color="blue",fontsize=14)
         plt.xticks(rotation=45)
         plt.subplot(3,1,3)
         sns.pointplot(x=expected_ctc['Passing_Year_Of_PHD'],y=expected_ctc[
         plt.ylabel("Expected Salary",color="blue",fontsize=14)
         plt.xlabel("Year of PHD",color="blue",fontsize=14)
         plt.xticks(rotation=45)
```

```
Text(2, 0, '1997.0'),
Text(3, 0,
           '1998.0'),
Text(4, 0, '1999.0'),
Text(5, 0, '2000.0'),
Text(6, 0, '2001.0'),
Text(7, 0,
           '2002.0'),
Text(8, 0,
           '2003.0'),
Text(9, 0, '2004.0'),
Text(10, 0, '2005.0'),
Text(11, 0, '2006.0'),
Text(12, 0, '2007.0'),
Text(13, 0, '2008.0'),
Text(14, 0, '2009.0'),
Text(15, 0, '2010.0'),
Text(16, 0, '2011.0'),
Text(17, 0,
            '2012.0'),
Text(18, 0, '2013.0'),
Text(19, 0, '2014.0'),
Text(20, 0, '2015.0'),
Text(21, 0, '2016.0'),
Text(22, 0, '2017.0'),
Text(23, 0, '2018.0'),
Text(24, 0, '2019.0'),
Text(25, 0, '2020.0')])
```

Range of Expected salary according to Year of Passing-out

In [84]: sns.lmplot(x="No_Of_Companies_worked", y="Expected_CTC", data=expect
 plt.title("Expected salary according to No of companies worked & Pa
 plt.ylabel("Expected Salary",color="blue",fontsize=14)
 plt.xlabel("No of companies worked",color="blue",fontsize=14)
 plt.show()

In [85]: sns.lmplot(x="Expected_CTC",y="Total_Experience",data=expected_ctc,
 plt.title("Expected salary according to Education & Total work expe
 plt.ylabel("Total work experience",color="blue",fontsize=14)
 plt.xlabel("Expected salary",color="blue",fontsize=14)
 plt.show()

In [86]: plt.figure(figsize=(8,6)) sns.scatterplot(x="Current_CTC", y="Expected_CTC", hue="Inhand_Offe plt.title("Correlation between Expected salary and Current salary", plt.xlabel("Current salary",color="blue",fontsize=14) plt.ylabel("Expected salary",color="blue",fontsize=14) plt.show()

Out [87]:

	Role	Designation	Education	Last_Appraisal_Rating	Total_Experience	Inhand_O
22379	Financial Analyst	Marketing Manager	Doctorate	Key_Performer	17	_

Out[88]:

	Role	Designation	Education	Last_Appraisal_Rating	Total_Experience	Inhand_Offer
6788	NaN	NaN	Under Grad	NaN	0	N

Out[89]: True

```
In [90]: check_nan_in_data=expected_ctc.isnull().sum()
    print(check_nan_in_data)
```

Total_Experience	0
Total_Experience_in_field_applied	0
Department	2778
Role	963
Industry	908
Organization	908
Designation	3129
Education	0
Graduation_Specialization	6180
University_Grad	6180
Passing_Year_Of_Graduation	6180
PG_Specialization	7692
University_PG	7692
Passing_Year_Of_PG	7692
PHD_Specialization	11881
University_PHD	11881
Passing_Year_Of_PHD	11881
Curent_Location	0
Preferred_location	0
Current_CTC	0
Inhand_Offer	0
Last_Appraisal_Rating	908
No_Of_Companies_worked	0
Number_of_Publications	0
Certifications	0
<pre>International_degree_any</pre>	0
Expected_CTC	0
dtype: int64	

In []: ### Handling NaN values in categorical variables:

Most NaN values are correspondent with rows where 'Total_experien

In [91]: # Creating a subset of data where 'Total_experience' is 0:
 zero_exp=expected_ctc[expected_ctc["Total_Experience"]==0]
 zero_exp.head(25)

Out [91]:

	Total_Experience	Total_Experience_in_field_applied	Department	Role	Industry	Organi
0	0	0	NaN	NaN	NaN	
13	0	0	NaN	NaN	NaN	
140	0	0	NaN	NaN	NaN	
150	0	0	NaN	NaN	NaN	
176	0	0	NaN	NaN	NaN	
181	0	0	NaN	NaN	NaN	
206	0	0	NaN	NaN	NaN	
281	0	0	NaN	NaN	NaN	
311	0	0	NaN	NaN	NaN	
356	0	0	NaN	NaN	NaN	
392	0	0	NaN	NaN	NaN	
442	0	0	NaN	NaN	NaN	
446	0	0	NaN	NaN	NaN	
455	0	0	NaN	NaN	NaN	
488	0	0	NaN	NaN	NaN	
556	0	0	NaN	NaN	NaN	
588	0	0	NaN	NaN	NaN	
589	0	0	NaN	NaN	NaN	
622	0	0	NaN	NaN	NaN	
637	0	0	NaN	NaN	NaN	
664	0	0	NaN	NaN	NaN	
672	0	0	NaN	NaN	NaN	
709	0	0	NaN	NaN	NaN	
717	0	0	NaN	NaN	NaN	
734	0	0	NaN	NaN	NaN	

In [93]: # Checking if NaN are replace correctly:

zero_exp=expected_ctc[expected_ctc["Total_Experience"]==0]
zero_exp.head(10)

Out [93]:

	Total_Experience	Total_Experience_in_field_applied	Department	Role	Industry	Organ
0	0	0	None	None	None	
13	0	0	None	None	None	
140	0	0	None	None	None	
150	0	0	None	None	None	
176	0	0	None	None	None	
181	0	0	None	None	None	
206	0	0	None	None	None	
281	0	0	None	None	None	
311	0	0	None	None	None	
356	0	0	None	None	None	

```
In [94]: # Rechecking null values in the dataset:
         expected ctc.isnull().sum().sort values()
Out[94]: Total_Experience
                                                    0
         Certifications
                                                    0
         Number of Publications
                                                    0
         No_Of_Companies_worked
                                                    0
         Last Appraisal Rating
                                                    0
         Inhand Offer
                                                    0
         Current CTC
                                                    0
         Preferred location
                                                    0
         Curent_Location
                                                    0
         International_degree_any
                                                    0
         Expected CTC
                                                    0
         Education
                                                    0
         Designation
                                                    0
                                                    0
         Organization
         Industry
                                                    0
         Role
                                                    0
         Department
                                                    0
         Total_Experience_in_field_applied
         University Grad
                                                 6180
         Graduation Specialization
                                                 6180
         Passing_Year_Of_Graduation
                                                 6180
         PG_Specialization
                                                 7692
         University_PG
                                                 7692
         Passing Year Of PG
                                                 7692
         PHD_Specialization
                                                11881
         University PHD
                                                11881
         Passing_Year_Of_PHD
                                                11881
         dtype: int64
In [95]: expected ctc['Department'].unique()
Out[95]: array(['None', 'HR', 'Top Management', 'Banking', 'Sales', 'Engine
                 'Others', 'Analytics/BI', 'Education', 'Marketing', 'Health
         care',
                 'IT-Software', 'Accounts'], dtype=object)
In [96]: ## Similarly in columns - 'Graduation_Specialization','University_G
         cat=['Graduation_Specialization','University_Grad','Passing_Year_Of
         for column in expected ctc[cat]:
              expected_ctc[column]=expected_ctc[column].fillna("Not_Applicable")
```

In [97]: # Checking if NaN are replaced correctly:

expected_ctc.head(10)

Out [97]:

	Total_Experience	Total_Experience_in_field_applied	Department	Role	Industry	C
0	0	0	None	None	None	
1	23	14	HR	Consultant	Analytics	
2	21	12	Top Management	Consultant	Training	
3	15	8	Banking	Financial Analyst	Aviation	
4	10	5	Sales	Project Manager	Insurance	
5	16	3	Top Management	Area Sales Manager	Retail	
6	1	1	Engineering	Team Lead	FMCG	
7	19	11	Others	Analyst	Others	
8	8	7	Analytics/BI	Others	Telecom	
9	15	15	Analytics/BI	CEO	Telecom	

```
In [98]: expected_ctc.isnull().sum()
 Out[98]: Total Experience
                                                 0
          Total Experience in field applied
                                                 0
          Department
                                                 0
          Role
                                                 0
          Industry
                                                 0
          Organization
                                                 0
          Designation
                                                 0
          Education
                                                 0
          Graduation Specialization
                                                 0
          University_Grad
          Passing_Year_Of_Graduation
                                                 0
          PG_Specialization
                                                 0
          University_PG
                                                 0
          Passing Year Of PG
                                                 0
          PHD Specialization
                                                 0
          University_PHD
                                                 0
          Passing_Year_Of_PHD
                                                 0
          Curent_Location
                                                 0
          Preferred_location
                                                 0
          Current_CTC
          Inhand Offer
                                                 0
          Last Appraisal Rating
                                                 0
          No_Of_Companies_worked
                                                 0
          Number_of_Publications
                                                 0
          Certifications
                                                 0
          International_degree_any
                                                 0
          Expected_CTC
                                                 0
          dtype: int64
  In [ ]: ### Converting discrete categorical to discrete numerical variables
In [101]: # Converting 'Inhand_Offer' to boolean values:
          expected_ctc['Inhand_Offer'].replace(['N','Y'],[0,1],inplace=True )
In [102]: expected_ctc['Inhand_Offer'].unique()
Out[102]: array([0, 1])
  In []: # There seem to be errors in the 'Education' column, since it is no
          # Assuming that 'Education' has errors in it, we can create a new c
```

```
In [103]: conditions=[
    (expected_ctc['Passing_Year_Of_PHD']=='Not_Applicable') & (expected_ctc['Passing_Year_Of_PHD']=='Not_Applicable') & (expected_ctc['Passing_Year_Of_PHD']=='Not_Applicable') & (expected_ctc['Passing_Year_Of_PHD']!='Not_Applicable') & (expected_ctc['Passing_Year_Of_PHD']!='Not_Applicable') & (expected_ctc['Passing_Year_Of_PHD']!='Not_Applicable')
```

In [104]: values=['Under-Grad', 'Graduate', 'Post-Grad', 'Doctorate']

In [105]: expected_ctc['Edu_qualification']=np.select(conditions, values)

In [106]: expected_ctc.head(25)

Out [106]:

	Total_Experience	Total_Experience_in_field_applied	Department	Role	Industry
0	0	0	None	None	None
1	23	14	HR	Consultant	Analytics
2	21	12	Top Management	Consultant	Training
3	15	8	Banking	Financial Analyst	Aviation
4	10	5	Sales	Project Manager	Insurance
5	16	3	Top Management	Area Sales Manager	Retail
6	1	1	Engineering	Team Lead	FMCG
7	19	11	Others	Analyst	Others
8	8	7	Analytics/BI	Others	Telecom
9	15	15	Analytics/BI	CEO	Telecom
10	13	10	Education	Business Analyst	Automobile
11	7	1	Marketing	Sales Manager	FMCG
12	10	10	Others	Bio statistician	Automobile
13	0	0	None	None	None
14	12	9	Banking	Bio statistician	Telecom
15	20	15	Healthcare	Analyst	IT
16	4	4	Analytics/BI	Scientist	Analytics

17	21	7	Healthcare	Research Scientist	BFSI
18	14	9	Sales	Business Analyst	Telecom
19	8	3	Engineering	Consultant	Telecom
20	17	12	HR	Others	Training
21	7	6	Banking	Analyst	Training
22	22	6	Top Management	Consultant	BFSI
23	15	10	Sales	Head	Insurance
24	3	2	Banking	Associate	Aviation

In [110]: # Checking to see the difference between the 2 columns by plotting

```
sns.set_style('whitegrid')
plt.figure(figsize=(20,10))
hue_order=expected_ctc['Education'].unique()
plt.subplot(1,2,1)
sns.boxplot(x=expected_ctc['Education'],y=expected_ctc['Expected_CT
plt.title("Expected salary v/s 'Education'",color="blue",fontsize=1
plt.ylabel("Expected Salary",color="blue",fontsize=14)
plt.xlabel("Education",color="blue",fontsize=14)
plt.subplot(1,2,2)
sns.boxplot(x=expected_ctc['Edu_qualification'],y=expected_ctc['Exp
plt.title("Expected salary v/s 'Edu_qualification'",color="blue",fontsize=16)
plt.xlabel("'Edu_qualification'",color="blue",fontsize=16)
```

Out[110]: Text(0.5, 0, "'Edu_qualification'")

In [111]: hecking to see the difference between the 2 columns by plotting then

```
.set_style('whitegrid')
.figure(figsize=(20,10))
.order=expected_ctc['Education'].unique()
.subplot(1,2,1)
.lineplot(x=expected_ctc['Education'],y=expected_ctc['Expected_CTC']
.title("Expected salary v/s 'Education'",color="blue",fontsize=16)
.ylabel("Expected Salary",color="blue",fontsize=14)
.xlabel("Education",color="blue",fontsize=14)
.subplot(1,2,2)
.lineplot(x=expected_ctc['Edu_qualification'],y=expected_ctc['Expectitle("Expected salary v/s 'Edu_qualification'",color="blue",fontsize=16)
.xlabel("'Edu_qualification'",color="blue",fontsize=16)
```

Out[111]: Text(0.5, 0, "'Edu_qualification'")

In []: