1. Consider a neural network with two inputs and three neurons in the competitive layer. The input vectors in the training set have the values

$$x_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, x_3 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix},$$

and the initial weight vectors are

$$w_1 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \mathbf{w}_2 = \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}, \mathbf{w}_3 = \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}.$$

a) Plot the input vectors and initial weights on a unit circle.

b) Calculate the resulting weights found after training the neurons with competitive learning rule using learning rate α =0.5, on the following sequence of inputs: \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 .

Pattern	Winning Weight Vector	New weight (re-normalized)
X 1	W 2	$\mathbf{w}_2 = [-0.973, 0.230]$
X 2	W 3	$\mathbf{w}_3 = [-0.230, 0.973]$
X 3	W ₃	$\mathbf{w}_3 = [0.273, 0.962]$
X 1	W 2	$\mathbf{w}_2 = [-0.993, 0.116]$
X 2	W ₃	$\mathbf{w}_3 = [0.138, 0.990]$
X 3	W 3	$\mathbf{w}_3 = [0.446, 0.895]$

Final weights are $\mathbf{w}_1 = [0,-1]$, $\mathbf{w}_2 = [-0.993,0.116]$, and $\mathbf{w}_3 = [0.446,0.895]$.

c) Analyze the resulting weights and elaborate on the final weight distribution with respect to the input vectors.

Note:

- Weight \mathbf{w}_1 does not change too far away from the other patterns (dead neuron)
- Weight **w**₂ approaches **x**₁
- Weight \mathbf{w}_3 oscillates between \mathbf{x}_2 and \mathbf{x}_3