

BASIC CONTROL SYSTEMS

01 FUNDAMENTALS CONCEPTS

HANSHU YU

NOVEMBER 2025

WHERE STUDENTS MATTER

A SIMPLE CASE

I would like to grab a bottle of water.

A SIMPLE CASE

I would like to grab a bottle of water.

I list what I have to do.

A SIMPLE CASE

I would like to grab a bottle of water.

I list what I have to do.

I wrap my hand around the bottle.

I apply force.

I grab bottle.

OPEN LOOP CONTROL SYSTEM

I don't know the force I need to apply, I just grab, I do not have my water.

CLOSED LOOP CONTROL SYSTEM

I don't know the force I need to apply, but I try, I feel, and I look,

I stop pressure when my hand apply just enough force, I get my water.

THE STANDARD MODEL OF A FEEDBACK CONTROL SYSTEM

"Feedback"

IVERSITY PLIED SCIENCES

ref

REAL WORLD EXAMPLE: CRUISE CONTROL OF A BUS

Uncertainties

Road bump, heating, wear, passengers, etc.

On-board computer

Compare Compute

Gas Pedal Car

Speed sensor

v_true

SIMPLE CLOSED LOOP CONTROL WITH UNIT FEEDBACK

SIMPLE CLOSED LOOP CONTROL WITH UNIT FEEDBACK

Plus sign: positive feedback

We only work with negative feedback in this course.

WITH OR WITHOUT FEEDBACK

With feedback we can:

- deal with system dynamics
- be robust to uncertainty
- modular operation
- gain even more knowledge of environment

But the trouble feedback brings:

- increase complexity
- potential to bring unstable
- noise amplification

TRANSFER FUNCTION

$$OUTPUT = INPUT * G(s)$$

$$G(s) = \frac{OUTPUT}{INPUT}$$

TRANSIENT & STEADY

CONTROL

(roughly explained)

The process of design & implementing algorithms in engineered target system to achieve a desired output or system state.

Typically you control a system using controller & control loops.

CONTROL

When there is uncertainty, apply control!

SYSTEM

Generally, An object or a series of interacting objects of your interest.

In which you usually can discover:

- Input(s)
- Output(s)
- Object(s) as "building block(s)"
 - The <u>physical characteristics</u> are <u>crucial</u>

SYSTEM - BRAINSTORM

Is a large piece of metal on the ground a system?

SYSTEMS - SCOPE OF THIS COURSE

We only deal with:

Causal LTI SISO systems

- Causal: output only depends on the past and present (input), not the future
- L: Linear systems or systems that can be linearized
- TI: Time-invariant
- SISO: Single Input Single Output

CAUSAL LTI SISO SYSTEMS

Properties:

Given a system that yields $x_{(t)} \mapsto y_{(t)}$

Homogeneity

$$\alpha \cdot \mathbf{x}_{(t)} \mapsto \alpha \cdot \mathbf{y}_{(t)}$$
 , $\alpha \in \mathbf{R}$

2. Additive

Given:
$$x_{1(t)} \mapsto y_{1(t)}, \ x_{2(t)} \mapsto y_{2(t)}, \text{ we have:}$$

 $(x_1 + x_2)_{-}(t) \mapsto (y_1 + y_2)_{-}(t)$

3. Time invariance

$$X_{(t+a)} \mapsto y_{(t+a)}, a \in \mathbf{R}$$

4. Causality

the system remains stationary before t_0 (we almost always take $t_0=0$)

 $\forall t_1 \neq t_2 \text{ and } t_1, t_2 < t_0$, we have:

$$x_{(t_1)} = x_{(t_2)} \text{ and } y_{(t_1)} = y_{(t_2)}$$

SYSTEMS: THE KEY TAKEOUT

No matter how much we simplify, we are working with physical systems.

The mathematical tools you see later, are describing the characteristics of the physical system.

(最重要的是物理系统自身的特性!)

STABILITY

finite input

finite output

STABLE!

STABILITY (MATHEMATICAL DESCRIPTION)

Given a system h(t),

for h(t) to be stable, the impulse response of h(t) should be absolutely integrable.

$$\int_{-\infty}^{\infty} |h(t)| \, \mathrm{d}t < \infty$$

In our case, for causal systems:

$$\int_{0}^{\infty} |h(t)| \, \mathrm{d}t < \infty$$

STABILITY - BIBO

More formally we have:

- Bounded-Input Bounded-Output (BIBO) stable
- Marginally stable
- Conditionally stable
- Uniformly stable
- Asymptotically stable

Unstable

finite input

BEYOND STABILITY OTHER CHARACTERISTICS

Stability

- Robustness
- Sensitivity
- Observability
- Controllability
- Reachability
- Stabilizability
- Reconstructability
- Detectability
-

MODELLING

You have a physical system You have learned some physics

Determine the input and output

Write the relevant equations

Derive the ODE

(Next step)
Solve it using Laplace transform

Modelling: Electric circuits

Kirchhoff's circuit laws deal with the conservation of charge and energy in electrical circuits.

Kirchhoff's current law:

The current entering any junction is equal to the current leaving that junction. $i_2 + i_3 = i_1 + i_4$

$$\sum_{k=1}^n I_k = 0$$

The sum of all the voltages around a loop is equal to zero.

$$V_1 + V_2 + V_3 + V_4 = 0$$

$$\sum_{k=1}^{n} V_k = 0$$

Modelling example: RC low-pass filter

This is a RC low-pass filter(LPF).

You have a voltage source U_{in}.

You want to know U_{out}, the voltage after the RC-LPF.

You know R and C values. The initial condition is 0.

Modelling example: RC low-pass filter

Circuit analysis!

$$I_{total} = I_R = I_C$$

$$U_{in} = U_R + U_C = \frac{U_R}{U_R} + U_{out}$$

$$U_C = \frac{1}{C} \int_0^1 I(\tau) d\tau \Rightarrow I_C = C \frac{dU_C}{dt}$$

$$U_R = I_R R \Rightarrow I_R = \frac{U_R}{R}$$

$$\frac{U_R}{R} = C \frac{dU_C}{dt}$$

Modelling example: RC low-pass filter

Circuit analysis! -> Differential Equation!

$$\frac{U_R}{R} = C \frac{dU_C}{dt} \Rightarrow U_R = RC \frac{dU_C}{dt}$$

$$U_{in} = U_R + U_{out}$$
, $U_C = U_{out}$

$$\Rightarrow U_{in} = RC \frac{dU_{out}}{dt} + U_{out}$$

ELECTRICAL SYSTEMS – RLC CIRCUITS

	Voltage - Current
Resistor	U(t) = I(t)R
Capacitor	$U(t) = \frac{1}{C} \int_0^1 I(\tau) \ d\tau$
Inductor	$U(t) = L \frac{d I(t)}{d t}$

The force applied on m is F.

The velocity of m is v.

The displacement of m is x.

I pull the block m from sitting still, I want to know how it moves, in this case velocity.

Input F

Output *v*

Analysis! Free body diagram.

Analysis! Free body diagram.

Write differential equation

$$F(t) = k \int_{0}^{t} v(\tau) d\tau + bv(t) + m \frac{dv(t)}{dt}$$

MECHANICAL SYSTEMS – TRANSLATING SYSTEM

	Force - Velocity
Damper (Viscous friction)	F = bv
Spring	$F = k \int_{0}^{t} v(\tau) d\tau$
Mass (Inertia)	$F = m \frac{\mathrm{d}v(t)}{\mathrm{d}t}$

MECHANICAL SYSTEMS – TRANSLATING SYSTEM

	Force – Displacement
Damper (Viscous friction)	$F = b \frac{\mathrm{d}x(t)}{\mathrm{d}t}$
Spring	F = kx
Mass (Inertia)	$F = m \frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2}$

SUMMARY

- Getting what we want from a system: control
- We like: causal & linear systems
- Open loop & closed loop control system
 - "The standard model"
- Still changing? Transient
- Stop changing? Steady
- (BIBO) Stability
- Modelling physical systems with ordinary differential equations.

