Übungsblatt 2 zur Algebraischen Zahlentheorie

Aufgabe 1. Zu erwartende und überraschende Ganzheit

- a) Zeige, dass $\sqrt{2}$ ganz über \mathbb{Z} ist.
- b) Zeige, dass $\frac{1}{\sqrt{2}}$ nicht ganz über $\mathbb Z$ ist.
- c) Zeige, dass $\frac{1+\sqrt{-7}}{2}$ ganz über $\mathbb Z$ ist.

Aufgabe 2. Produkt ganzer Zahlen

- a) Seien x und y komplexe Zahlen mit $x^3 x + 1 = 0$ und $y^2 2 = 0$. Finde eine normierte Polynomgleichung mit ganzzahligen Koeffizienten, die die Zahl $x \cdot y$ als Lösung besitzt.
- b) Der Grad einer ganzen Zahl z ist der kleinstmögliche Grad einer normierten Polynomgleichung mit ganzzahligen Koeffizienten, die z als Lösung besitzt. Finde eine Abschätzung für den Grad des Produkts zweier ganzer Zahlen in Abhängigkeit der Grade der Faktoren.

Aufgabe 3. Erste Schritte mit Norm und Spur

Sei $\alpha \in \mathbb{C}$ eine Nullstelle des Polynoms $f(X) := X^3 - 2X + 5$. Sei $K := \mathbb{Q}[\alpha]$. Berechne Norm und Spur des Elements $2\alpha - 1 \in K$:

- a) Begründe kurz, wieso $(1, \alpha, \alpha^2)$ eine \mathbb{Q} -Basis von K ist.
- b) Stelle eine Darstellungsmatrix der linearen Abbildung $K \to K, z \mapsto (2\alpha 1)z$ auf.
- c) Berechne Determinante und Spur dieser Matrix.

Aufgabe 4. Knobeln mit Einheitswurzeln

Sei $p \in \mathbb{N}$ eine Primzahl und $\zeta \in \mathbb{C}$ eine primitive p-te Einheitswurzel (also $\zeta^p = 1$ und $\zeta \neq 1$). Sei $K := \mathbb{Q}[\zeta]$.

- a) Was ist die Norm von $1-\zeta\in K$? Hinweis. Das Minimalpolynom von ζ ist $X^{p-1}+X^{p-2}+\cdots+X+1=\frac{X^p-1}{X-1}$
- b) Sei $k\in\mathbb{N}$. Zeige, dass die Zahl $\gamma_k:=\frac{1-\zeta^k}{1-\zeta}\in K$ in \mathcal{O}_K liegt.
- c) Seien nun k und p zueinander teilerfremd. Zeige, dass γ_k sogar in \mathcal{O}_K^{\times} liegt.