

Facultad de Matemática, Astronomía, Física y Computación Universidad Nacional de Córdoba

LMA Física II: Electricidad y Magnetismo - 1C 2022

Guía N°4: Corriente eléctrica

Problema 1: En las siguientes dos situaciones de conducción:

- i) Un hilo de cobre de 1 km de longitud tiene sus extremos conectados a una batería de 6V. La resistividad del cobre es $1,7 \times 10^{-8} \,\Omega \text{m}$, siendo la densidad número de electrones de conducción $8 \times 10^{28} \, \text{m}^{-3}$.
- ii) Se llena un tubo plástico de dos metros de longitud, con tapas en sus extremos, con agua de mar y se conecta los extremos a una batería de 12 V. La resistividad del agua salada resulta $0,25\,\Omega{\rm m}$. Los portadores de carga son mayoritariamente iones de Na⁺ y Cl⁻ y la cantidad de cada uno de ellos es $3\times10^{26}\,{\rm m}^{-3}$.
- a) Calcular la velocidad media de arrastre de los los portadores de carga.
- b) ¿Cuánto tardan los portadores en recorrer el conductor entre sus extremos?

Problema 2: Un alambre de cobre y otro de hierro tienen longitudes y diámetros iguales. Se unen ambos alambres (uno a continuación del otro) y se aplica una diferencia de potencial ΔV entre los extremos del alambre compuesto. Calcule para cada alambre:

- a) La diferencia de potencial entre los extremos.
- b) La intensidad del campo eléctrico.
- c) La densidad de corriente.
- d) La distribución superficial de carga en la unión de los conductores.

Problema 3: Considere el circuito que muestra la figura. Las dos lámparas son de filamento, poseen resistencias R_1 y R_2 , y están conectadas a una batería que provee una diferencia de potencial constante V_0 . Conociendo que la diferencia de potencial $V_{ab} = 8$ V y $V_{bc} = 4$ V, responda las siguientes preguntas:

- a) La corriente que pasa por R_1 , ¿es mayor, menor o igual a la que pasa por R_2 ?
- b) El valor de la resistencia R_1 , ¿es mayor, menor o igual que el de R_2 ?
- c) ¿Cuál es la diferencia de potencial V_0 entre los polos de la batería?
- d) Si la corriente que pasa por la fuente es de 0,5 A, ¿cuál es la potencia disipada en cada lamparita y cuánto vale cada resistencia?

Problema 4: Resistencia interna en generadores de fem.

- a) El voltaje entre los bornes de una batería de automóvil, cae de 12, 3 V a 9, 8 V cuando se conecta una resistencia de 0, 5 Ω en los terminales. Calcular la resistencia interna de la batería.
- b) Demostrar que si se conecta una batería de fem constante ε y resistencia interna R_i , la máxima potencia liberada en el circuito exterior ocurre cuando la resistencia de este resulta igual a R_i .