task2

data cleaning

```
df.raw = read.csv("covid19-1.csv")
df = df.raw %>%
  janitor::clean_names() %>%
  dplyr::select(country_region, province_state, date, confirmed_cases) %>%
  filter(confirmed_cases != 0)
# region with confirm case > 20
df country = df %>%
  group_by(country_region) %>%
  summarise(max=max(confirmed_cases)) %>%
  filter(max > 20)
region_index = as.character(unique(df_country$country_region))
df.region = function(df, region) {
  df.r = df \%
    filter(country_region == region) %>%
    group_by(country_region, date) %>%
    summarise(cases = sum(confirmed cases)) %>%
    mutate(formal_date = as.Date(date, '%m/%d/%Y')) %>%
    mutate(time = as.numeric(formal_date-min(formal_date)))%>%
    arrange(time) %>%
    dplyr::select(region = country_region, date, time, cases)
  df.r
}
df_list=vector("list", length = length(region_index))
while(i < length(region_index)+1){</pre>
  df_list[[i]] = df.region(df, region_index[i])
  i = i+1
}
for (i in 1:length(df_list)){
names(df_list)[i] <- region_index[i]</pre>
}
res = read_csv("./abc_values") %>%
  dplyr::select(-X1) %>%
  mutate(
    a_value = round(a_value,0),
    b_value = round(b_value,3),
    c_value = round(c_value,0)
```

```
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
    X1 = col_double(),
##
##
    country_region = col_character(),
##
   a value = col double(),
    b_value = col_double(),
##
     c_value = col_double()
## )
res[which(res$country_region == "China"), 2] = 7.873205*10^4
res[which(res$country_region == "China"), 3] = 0.22511
res[which(res$country_region == "China"), 4] = 17.91412
res[which(res$country_region == "Korea, South"), 2] = 8.801392e+03
res[which(res$country_region == "Korea, South"), 3] = 2.836325e-01
res[which(res$country_region == "Korea, South"), 4] = 4.038837e+01
all_t=NULL
for(c in 1:length(df_list))
all_t=rbind(all_t,df_list[[c]][nrow(df_list[[c]]),3])
sum((res[,4])<all_t[,1])# total country pass the mid point</pre>
## [1] 27
names=res[which((res[,4])<all_t[,1]),1] # names of those country
```

Task2

```
EM = function(data,ncluster){
 data = as.matrix(data) %>% scale()
 n = nrow(data)
 q = ncol(data)
  p_j = rep(1/ncluster,ncluster)
 mu = data[sample(n,ncluster),] %>% as.matrix()
  covmat = diag(ncol(data))
  covlist = list()
  for(i in 1:ncluster){
    covlist[[i]] = covmat
  }
count = 1
while(count <100){
 muO <- mu
  # E-step: Evaluate posterior probability, gamma
 gamma \leftarrow c()
 for(j in 1:ncluster){
    gamma2 <- apply(data,1, dmvnorm, mean = mu[j,], sigma = covlist[[j]])</pre>
    gamma <- cbind(gamma, gamma2)</pre>
 }
```

```
# M- step: Calculate mu
  tempmat <- matrix(rep(p_j,n),nrow=n,byrow = T)</pre>
  r <- (gamma * tempmat) / rowSums(gamma * tempmat)
  mu <- t(r) %*% data / colSums(r)</pre>
  \# M- step: Calculate Sigma and p
  for(j in 1:ncluster){
    sigma <- matrix(rep(0,q^2),ncol=q)</pre>
    for(i in 1:n){
      sigma = sigma + r[i,j] * (data[i,]-mu0[j,]) %*% t(data[i,]-mu0[j,])
    covlist[[j]] <- sigma/sum(r[,j])</pre>
  p_j <- colSums(r)/n</pre>
  count = count + 1 }
  cluster <- which(r == apply(r, 1, max), arr.ind = T)</pre>
  cluster <- cluster[order(cluster[,1]),]</pre>
  return(list(mu = mu,covlist = covlist, p_j = p_j,cluster = cluster)) }
em_dat = res %>% dplyr::select(-country_region)
em_dat_scaled <- scale(em_dat)</pre>
## use wss
fviz_nbclust(em_dat_scaled, kmeans, method = "wss",k.max = 15)
```

Optimal number of clusters


```
## use silhouette
fviz_nbclust(em_dat_scaled, kmeans, method = "silhouette",k.max=15)
```


Optimal number of clusters 1.7-1.6 1.5 Gap statistic (k) 1.4 1.3 1.2 ż ż 7 8 9 10 1 4 5 6 Number of clusters k set.seed(1) $res2 = EM(em_dat,3)$ res3=res2\$mu %>% as.data.frame() res3 ## a_value b_value c_value ## gamma2.1 1.8053018 -0.2416451 0.7382552 ## gamma2.2 -0.2476236 -0.1832539 0.2569219 set.seed(1) clusters = kmeans(em_dat,3) clusternumbers = as.factor(clusters\$cluster) ## res4 is the classification result of em and kmeans res4 = res2\$cluster %>% as.data.frame() %>% dplyr::select(-1) %>% mutate(country = region_index) %>% dplyr::select(2,1) %>% rename(GMM_class = col) %>% mutate(kmeans_class = clusters\$cluster) %>%

mutate(

a_value = res\$a_value, b_value = res\$b_value,

```
c_value = res$c_value
)

res4[1:50,] %>%
  knitr::kable(booktabs = T, align = 'c')
```

country	GMM_class	kmeans_class	a_value	b_value	c_value
Afghanistan	3	1	342.00	0.20200	37.00000
Albania	1	1	269.00	0.17300	17.00000
Algeria	3	1	723.00	0.25800	30.00000
Andorra	1	1	345.00	0.34400	22.00000
Argentina	3	1	970.00	0.31500	23.00000
Armenia	3	1	514.00	0.28800	23.00000
Australia	3	1	4072.00	0.29300	58.00000
Austria	2	1	10760.00	0.27500	28.00000
Azerbaijan	3	1	365.00	0.18400	30.00000
Bahrain	3	1	795.00	0.11800	29.00000
Bangladesh	3	1	99.00	0.24400	18.00000
Belarus	3	1	102.00	0.27600	19.00000
$\operatorname{Belgium}$	2	1	8530.00	0.25400	49.00000
Bolivia	1	1	81.00	0.19200	16.00000
Bosnia and Herzegovina	1	1	352.00	0.29200	19.00000
Brazil	3	1	4507.00	0.38000	27.00000
Brunei	1	1	98.00	0.38100	7.00000
Bulgaria	3	1	459.00	0.25300	16.00000
Burkina Faso	1	1	252.00	0.36300	14.00000
Cambodia	3	1	168.00	0.31700	56.00000
Canada	3	1	5462.00	0.33800	58.00000
Chile	3	1	1862.00	0.31800	21.00000
China	2	3	78732.05	0.22511	17.91412
Colombia	3	1	777.00	0.33500	18.00000
Congo (Kinshasa)	1	1	115.00	0.36000	14.00000
Costa Rica	1	1	375.00	0.26800	18.00000
Cote d'Ivoire	1	1	342.00	0.85700	15.00000
Croatia	3	1	958.00	0.31000	29.00000
Cuba	1	1	122.00	0.36300	13.00000
Cyprus	1	1	272.00	0.23400	15.00000
Denmark	3	1	3258.00	0.17000	24.00000
Dominican Republic	3	1	640.00	0.49800	23.00000
Ecuador	3	1	2180.00	0.44900	23.00000
Egypt	3	1	806.00	0.19300	39.00000
Estonia	3	1	569.00	0.23500	22.00000
Finland	3	1	1570.00	0.21600	55.00000
France	2	3	39932.00	0.14800	64.00000
Georgia	3	1	151.00	0.14000	29.00000
Germany	2	3	65957.00	0.25900	57.00000
Ghana	1	1	300.00	0.33200	15.00000
Greece	3	1	1499.00	0.18200	27.00000
$\operatorname{Guatemala}$	1	1	23.00	0.58900	6.00000
Honduras	1	1	32.00	0.54900	8.00000
Hungary	1	1	393.00	0.26600	20.00000
Iceland	3	1	1311.00	0.21300	25.00000
India	3	1	1060.00	0.25300	54.00000
Indonesia	3	1	1389.00	0.26600	22.00000
Iran	2	3	49441.00	0.13100	33.00000
Iraq	3	1	642.00	0.14300	30.00000
Ireland	3	1	2673.00	0.30900	24.00000

```
res4[51:100,] %>%
```

knitr::kable(booktabs = T, align = 'c')

	country	GMM_class	kmeans_class	a_value	b_value	c_value
51	Israel	3	1	4055.000	0.3040000	33.00000
52	Italy	2	2	138340.000	0.1830000	53.00000
53	Jamaica	1	1	20.000	0.3310000	5.00000
54	Japan	3	1	2195.000	0.0940000	60.00000
55	Jordan	1	1	326.000	0.3020000	21.00000
56	Kazakhstan	1	1	69.000	0.5290000	5.00000
57	Kenya	1	1	237.000	0.3200000	18.00000
58	Korea, South	2	1	8801.392	0.2836325	40.38837
59	Kuwait	3	1	564.000	0.0880000	36.00000
60	Kyrgyzstan	1	1	279.000	0.5460000	9.00000
61	Latvia	1	1	411.000	0.2700000	22.00000
62	Lebanon	3	1	829.000	0.1690000	35.00000
63	Liechtenstein	1	1	55.000	0.5000000	15.00000
64	Lithuania	1	1	432.000	0.4510000	25.00000
65	Luxembourg	3	1	2213.000	0.3540000	24.00000
66	Malaysia	3	1	3231.000	0.2220000	59.00000
67	Malta	1	1	242.000	0.2480000	17.00000
68	Martinique	1	1	135.000	0.2510000	18.00000
69	Mauritius	1	1	115.000	0.4920000	7.00000
70	Mexico	3	1	748.000	0.3170000	25.00000
71	Moldova	1	1	273.000	0.2850000	16.00000
72	Monaco	3	1	60.000	0.2720000	25.00000
73	Montenegro	1	1	124.000	0.5070000	8.00000
74	Morocco	1	1	357.000	0.2910000	22.00000
75	Netherlands	2	1	11170.000	0.2390000	26.00000
76	New Zealand	1	1	505.000	0.4200000	27.00000
77	Nigeria	3	1	102.000	0.4070000	25.00000
78	North Macedonia	3	1	309.000	0.3250000	27.00000
79	Norway	2	1	5557.000	0.1750000	26.00000
80	Oman	3	1	361.000	0.1250000	40.00000
81	Pakistan	3	1	1774.000	0.3260000	26.00000
82	Panama	3	1	715.000	0.3210000	14.00000
83	Paraguay	3	1	74.000	0.1950000	19.00000
84	Peru	3	1	678.000	0.3220000	16.00000
85	Philippines	3	1	1091.000	0.2400000	54.00000
86	Poland	3	1	1821.000	0.2830000	20.00000
87	Portugal	3	1	4741.000	0.3350000	22.00000
88	Qatar	3	1	889.000	0.1750000	19.00000
89	Romania	3	1	1783.000	0.2560000	29.00000
90	Russia	3	1	979.000	0.2910000	53.00000
91	Rwanda	1	1	107.000	0.3560000	11.00000
92	San Marino	1	1	230.000	0.1910000	19.00000
93	Saudi Arabia	3	1	1551.000	0.2880000	23.00000
94	Senegal	3	1	357.000	0.2170000	27.00000
95	Serbia	3	1	627.000	0.2860000	18.00000
96	Singapore	3	1	1262.000	0.0850000	67.00000
97	Slovakia	1	1	254.000	0.3320000	13.00000
98	Slovenia	3	1	805.000	0.2000000	16.00000
99	South Africa	3	1	1303.000	0.3430000	20.00000
100	Spain	2	3	79759.000	0.2570000	52.00000

```
res4[101:116,] %>%
knitr::kable(booktabs = T, align = 'c')
```

	country	GMM_class	kmeans_class	a_value	b_value	c_value
101	Sri Lanka	3	1	105	0.459	51
102	Sweden	3	1	4381	0.171	52
103	Switzerland	2	1	19766	0.261	28
104	Taiwan*	3	1	576	0.097	70
105	Thailand	3	1	1634	0.306	62
106	Trinidad and Tobago	1	1	53	3.857	6
107	Tunisia	1	1	419	0.242	24
108	Turkey	3	1	3770	0.537	13
109	Ukraine	1	1	212	0.395	21
110	United Arab Emirates	3	1	652	0.114	62
111	United Kingdom	2	1	16258	0.279	53
112	Uruguay	1	1	184	0.548	6
113	$\overline{\mathrm{US}}$	2	2	106991	0.389	29
114	Uzbekistan	1	1	50	0.729	4
115	Venezuela	1	1	95	0.426	5
116	Vietnam	3	1	418	0.102	69

```
kmean_mean = clusters$centers %>%
  as.data.frame()
a_mean = mean(res$a_value)
a_sd = sd(res$a_value)
b_mean = mean(res$b_value)
b_sd = sd(res$b_value)
c_mean = mean(res$c_value)
c_sd = sd(res$c_value)
em_mean = res3 %>%
 mutate(
    a_value = a_value*a_sd+a_mean,
   b_value = b_value*b_sd+b_mean,
    c_value = c_value*c_sd+c_mean,
mean_value = rbind(em_mean,kmean_mean) %>%
  mutate(method = c("GMM", "GMM", "GMM", "Kmeans", "Kmeans", "Kmeans")) %>%
 dplyr::select(c(4,1,2,3))
mean_value %>%
  knitr::kable(booktabs = T, align = 'c')
```

method	a_value	b_value	c_value
GMM	212.797	0.4922645	14.14861
GMM	43289.675	0.2424189	39.97001
GMM	1268.728	0.2631294	32.00442
Kmeans	1614.435	0.3345930	26.72833
Kmeans	122665.500	0.2860000	41.00000
Kmeans	62764.210	0.2040220	44.78282

```
df_map = df.raw %>%
  janitor::clean_names() %>%
  dplyr::select(country_region, province_state, date, confirmed_cases, lat,long) %>%
  filter(confirmed_cases != 0) %>%
  group_by(country_region,lat,long) %>%
  summarise(max=max(confirmed_cases)) %>%
  filter(max > 20) %>%
  as.data.frame() %>%
  mutate(
    country_region = as.character(country_region)
  )
GMM_class = NULL
kmeans_class = NULL
for(i in 1:212){
  GMM_class[i] = res4[which(res4$country == df_map[i,1]),2]
  kmeans_class[i] = res4[which(res4$country == df_map[i,1]),3]
df_map = df_map %>%
 mutate(
   GMM_class = GMM_class,
   kmeans_class = kmeans_class
  )
mp<-NULL
mapworld<-borders("world",colour = "gray50",fill="white") #</pre>
mp<-ggplot()+mapworld+ylim(-60,90)</pre>
df_map_1 = df_map %>% filter(GMM_class ==1)
df_map_2 = df_map %>% filter(GMM_class ==2)
df_map_3 = df_map %>% filter(GMM_class ==3)
mp2<-mp+geom_point(aes(x=long,y=lat,size=max),data = df_map_1,color="#0099CC")+scale_size(range=c(1,5))
geom_point(aes(x=long,y=lat,size=max),data = df_map_2,color="#FF6666")+scale_size(range=c(1,5)) +
geom_point(aes(x=long,y=lat,size=max),data = df_map_3,color="#E69F00")+scale_size(range=c(1,5)) +
theme(legend.position = "none")
## Scale for 'size' is already present. Adding another scale for 'size', which
## will replace the existing scale.
## Scale for 'size' is already present. Adding another scale for 'size', which
## will replace the existing scale.
## blue class1
                red class2 yellow class3
mp2
```


d <- dist(em_dat_scaled, method = "euclidean")
plotcluster(em_dat, res2\$cluster[,2])</pre>


```
km_stats <- cluster.stats(d, clusters$cluster)
km_stats$dunn</pre>
```

```
## [1] 0.122663
```

```
gmm_stats <- cluster.stats(d, res2$cluster[,2])
gmm_stats$dunn</pre>
```

[1] 0.00130779

```
method = c("Kmeans", "GMM")
Dunn_index = round(c(km_stats$dunn,gmm_stats$dunn),4)
cbind(method,Dunn_index) %>% as.data.frame() %>%
  knitr::kable(booktabs = T, align = 'c')
```

method	$Dunn_index$
Kmeans GMM	$0.1227 \\ 0.0013$