24. Sundurleitnisetningin I

Stærðfræðigreining IIB, STÆ205G, 25. mars 2015

Sigurður Örn Stefánsson, sigurdur@hi.is

24.1

Setning 24.1 (Sundurleitnisetning I)

Látum \mathbf{F} vera samfellt diffranlegt vigursvið skilgreint á opnu mengi D í \mathbb{R}^3 . Látum P vera punkt á skilgreiningarsvæði \mathbf{F} og $\mathcal{S}_{\varepsilon}$ kúluskel með miðju í P og geisla ε . Látum svo \mathbf{N} vera einingarþvervigrasvið á $\mathcal{S}_{\varepsilon}$ þannig að \mathbf{N} vísar út á við. Þá er

$$\operatorname{\mathbf{div}} \mathbf{F}(P) = \lim_{\varepsilon \to 0^+} \frac{1}{V_{\varepsilon}} \iint_{S_{\varepsilon}} \mathbf{F} \cdot \mathbf{N} \, dS.$$

þar sem $V_{\varepsilon}=4\pi\varepsilon^3/3$ er rúmmálið innan í $\mathcal{S}_{\varepsilon}$.

24.2

Setning 24.2 (Setning Stokes I)

Látum \mathbf{F} vera samfellt diffranlegt vigursvið skilgreint á opnu mengi D í \mathbb{R}^3 . Látum P vera punkt á skilgreiningarsvæði \mathbf{F} og C_{ε} vera hring með miðju í P og geisla ε . Látum \mathbf{N} vera einingarþvervigur á planið sem hringurinn liggur í. Áttum hringinn jákvætt. Þá er

$$\mathbf{N} \cdot \mathbf{curl} \, \mathbf{F}(P) = \lim_{\varepsilon \to 0^+} \frac{1}{A_\varepsilon} \oint_{C_\varepsilon} \mathbf{F} \cdot d\mathbf{r}.$$

þar sem $A_{\varepsilon}=\pi \varepsilon^2$ er flatarmálið sem afmarkast af $\mathcal{C}_{\varepsilon}.$

24.3

Túlkun 24.3

Hugsum \mathbf{F} sem lýsingu á vökvastreymi í \mathbb{R}^3 .

 $\operatorname{\mathbf{div}} \mathbf{F}(P)$ lýsir því hvort vökvinn er að þenjast út eða dragast saman í punktinum P. Sundurleitnisetningin (næsti fyrirlestur) segir að samanlögð útþensla á rúmskika R er jöfn streymi út um jaðar svæðisins \mathcal{S} , eða

$$\iiint_R \operatorname{\mathbf{div}} \mathbf{F} \, dV = \iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \, dS.$$

 $\operatorname{\mathbf{curl}} \mathbf{F}(P)$ lýsir hringstreymi í kringum punktinn P. Setning Stokes (þar næsti fyrirlestur) segir að samanlagt hringstreymi á fleti $\mathcal S$ er jafnt hringstreymi á jaðri flatarins, sem við táknum með $\mathcal C$, eða

$$\iint_{\mathcal{S}} \mathbf{curl} \, \mathbf{F} \cdot \mathbf{N} \, dS = \oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}.$$

24.4

Skilgreining 24.4

Látum R vera svæði í \mathbb{R}^2 og \mathcal{C} jaðar R. Gerum ráð fyrir að \mathcal{C} samanstandi af endanlega mörgum ferlum $\mathcal{C}_1, \ldots, \mathcal{C}_n$. Jákvæð áttun á ferlunum felst í því að velja fyrir hvert i stikun \mathbf{r}_i á \mathcal{C}_i þannig að ef labbað eftir \mathcal{C}_i í stefnu stikunar þá er R á vinstri hönd.

24.5

Setning Green 24.5

Látum R vera svæði í planinu þannig að jaðar R, táknaður með C, samanstendur af endanlega mörgum samfellt diffranlegum ferlum. Áttum C jákvætt. Látum $\mathbf{F}(x,y) = F_1(x,y)\mathbf{i} + F_2(x,y)\mathbf{j}$ vera samfellt diffranlegt vigursvið skilgreint á R. Þá er

$$\oint_{\mathcal{C}} F_1(x,y) \, dx + F_2(x,y) \, dy = \iint_{R} \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \, dA.$$

24.6

Fylgisetning 24.6

Látum R vera svæði í planinu þannig að jaðar R táknaður með C, samanstendur af endanlega mörgum samfellt diffranlegum ferlum. Áttum C jákvætt. Þá er

Flatarmál
$$R = \oint_{\mathcal{C}} x \, dy = -\oint_{\mathcal{C}} y \, dx = \frac{1}{2} \oint_{\mathcal{C}} x \, dy - y \, dx.$$

24.7

Sundurleitnisetningin í tveimur víddum 24.7

Látum R vera svæði í planinu þannig að jaðar R, táknaður með \mathcal{C} , samanstendur af endanlega mörgum samfellt diffranlegum ferlum. Látum \mathbf{N} tákna einingarþvervigrasvið á \mathcal{C} þannig að \mathbf{N} vísar út úr R. Látum $\mathbf{F}(x,y) = F_1(x,y)\mathbf{i} + F_2(x,y)\mathbf{j}$ vera samfellt diffranlegt vigursvið skilgreint á R. Þá er

$$\iint_{R} \operatorname{\mathbf{div}} \mathbf{F} \, dA = \oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{N} \, ds.$$

24.8