Tutorial de Deep Learning

Luiz Gustavo Hafemann

LIVIA

École de Technologie Supérieure - Montréal

Organização do tutorial

Conceitos básicos para treinamento de redes neurais convolucionais

Orientado para aplicar métodos na prática:

Apresentação: ~30 minutos

Exercício prático: 3-4h

Organização do tutorial

• Dia 1:

- Motivação aplicações
- Introdução à aprendizagem de máquina
- Computação simbólica com Theano

Dia 2

Redes neurais convolucionais

Dia 3

Transfer Learning

Motivação

Motivação

Deep learning

• Modelos de aprendizagem de máquina (em geral redes neurais) com arquitetura profunda - múltiplas camadas

Motivação

Deep learning

- Modelos de aprendizagem de máquina (em geral redes neurais) com arquitetura profunda múltiplas camadas
- Atualmente são o estado-da-arte em vários problemas, principalmente em visão computacional e processamento de linguagem natural:
 - Classificação de imagens, localização de objetos, entre outros

Aplicações

Classificação de imagens, busca de imagens semelhantes

(Krizhevsky 2012)

Outras aplicações

Localização de objetos

Ren et al. 2015

Classificação de placas de trânsito

Ciresan et al. 2011

Melhora de performance usando CNNs

Base de dados Imagenet

Mais de 1 milhão de imagens

1000 classes

Melhora de performance usando CNNs

Base de dados Imagenet

Mais de 1 milhão de imagens

1000 classes

- Aprendizagem supervisionada:
 - Classificação: classificar SPAM, reconhecimento de objetos
 - Saída categórica: $y=f(\mathbf{x})$ $y\in\{y_1,...,y_n\}$

- Aprendizagem supervisionada:
 - Classificação: classificar SPAM, reconhecimento de objetos

$$y = f(\mathbf{x})$$

• Saída categórica:
$$y=f(\mathbf{x})$$
 $y\in\{y_1,...,y_n\}$

- Regressão: Preço de imóveis, análise de series de dados

• Saída contínua:
$$y=f(\mathbf{x})$$
 $y\in\mathbb{R}$

$$y \in \mathbb{R}$$

- Aprendizagem supervisionada:
 - Classificação: classificar SPAM, reconhecimento de objetos
 - Saída categórica: $y=f(\mathbf{x})$ $y\in\{y_1,...,y_n\}$
 - Regressão: Preço de imóveis, análise de series de dados
 - Saída contínua: $y=f(\mathbf{x})$ $y\in\mathbb{R}$
- Aprendizagem não-supervisionada
 - Clustering (agrupamento), detecção de anomalias

Formulação do problema

Formulação do problema

Dado um conjunto de exemplos $(\mathbf{x}^{(i)}, y^{(i)})$, onde

Formulação do problema

Dado um conjunto de exemplos $(\mathbf{x}^{(i)}, y^{(i)})$, onde

$$\mathbf{x}^{(i)} = [x_1, x_2, ..x_n]$$
 são medidas de entrada

Formulação do problema

Dado um conjunto de exemplos $(\mathbf{x}^{(i)}, y^{(i)})$, onde

$$\mathbf{x}^{(i)} = [x_1, x_2, ..x_n] \quad \text{são medidas de entrada} \\ y^{(i)} \qquad \qquad \text{\'e a classe correta}$$

Formulação do problema

Dado um conjunto de exemplos $(\mathbf{x}^{(i)}, y^{(i)})$, onde

$$\mathbf{x}^{(i)} = [x_1, x_2, ... x_n] \quad \text{são medidas de entrada} \\ y^{(i)} \qquad \qquad \text{\'e a classe correta}$$

O objetivo é aprender uma função para estimar y dado x:

$$\hat{y} = f(\mathbf{x})$$

Que generalize para novas entradas x

Exemplo:

Problema de 2 classes: classificar um peixe entre truta e salmão:

$$y \in \{\text{truta}, \text{salmão}\}$$

Duas medidas de entrada: comprimento e luminosidade:

$$\mathbf{x} = \{x_1, x_2\}$$

Objetivo: aprender um classificador que, dado medidas de um novo exemplo, diga à qual classe ele pertence.

50 exemplos são coletados para cada classe:

50 exemplos são coletados para cada classe:

Treinamento de um modelo

(nesse exemplo, um modelo paramétrico:)

Generalização para novos exemplos

Aprendizagem supervisionada

Escolher a família de funções

Geralmente paramétricas, (e.g. "Regressão logística")

Escolher a família de funcões

Geralmente paramétricas, (e.g. "Regressão logística")

Uma medida para avaliar f

Função de custo → quanto menor, melhor o modelo

Escolher a família de funcões

Geralmente paramétricas, (e.g. "Regressão logística")

Uma medida para avaliar f

Função de custo → quanto menor, melhor o modelo

Uma forma de buscar a melhor f

Processo de otimização → como encontrar os parâmetros que minimizem a função de custo

Família de funções:

Combinação linear da entrada: $w_1x_1+w_2x_2...w_mx_m$

Usa-se uma função não linear ao fim para obter resultados entre [0,1]

$$\hat{y} = P(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Família de funções:

Combinação linear da entrada: $w_1x_1+w_2x_2...w_mx_m$

Usa-se uma função não linear ao fim para obter resultados entre [0,1]

$$\hat{y} = P(y = 1 | \mathbf{x}) = \sigma(\mathbf{w}^\mathsf{T} \mathbf{x})$$

Família de funções:

Combinação linear da entrada: $w_1x_1+w_2x_2...w_mx_m$

Usa-se uma função não linear ao fim para obter resultados entre [0,1]

$$\hat{y} = P(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^\mathsf{T}\mathbf{x})$$

Objetivo:

Maximizar $P(y=y^{(i)}|\mathbf{x}^{(i)})$ para os exemplos na base de treinamento

Equivalente à minimizar:

$$-\sum_{i} \log P(y = y^{(i)}|\mathbf{x}^{(i)})$$

Família de funções:

Combinação linear da entrada: $w_1x_1+w_2x_2...w_mx_m$

Usa-se uma função não linear ao fim para obter resultados entre [0,1]

$$\hat{y} = P(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Objetivo:

Maximizar $P(y=y^{(i)}|\mathbf{x}^{(i)})$ para os exemplos na base de treinamento

Equivalente à minimizar:

$$-\sum_{i} \log P(y = y^{(i)}|\mathbf{x}^{(i)})$$

Optimização:

Descida de gradiente: Começando com w aleatório, dando pequenos passos para diminuir a função de custo

Função de custo, dado saída:

$$\hat{y} = P(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log P(y = y^{(i)} | \mathbf{x}^{(i)})$$

$$L = -\frac{1}{N} \sum_{i=1}^{N} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Função de custo, dado saída:

$$\hat{y} = P(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log P(y = y^{(i)} | \mathbf{x}^{(i)})$$

$$L = -\frac{1}{N} \sum_{i=1}^{N} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Otimização:

Início: $\mathbf{w}^{(0)} = \text{random}$

Por Titerações:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha \nabla_{\mathbf{w}} L$$

Função de custo, dado saída:

$$\hat{y} = P(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log P(y = y^{(i)} | \mathbf{x}^{(i)})$$

$$L = -\frac{1}{N} \sum_{i=1}^{N} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Otimização:

Início: $\mathbf{w}^{(0)} = \text{random}$

Por Titerações:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha \nabla_{\mathbf{w}} L$$

Calculando $\nabla_{\mathbf{w}} L$:

Usamos a regra de cadeia -ou software que a calcule automaticamente (e.g. Theano)

Visualizando a função de custo

Custo como função dos parametros w_1, w_2:

O importante é o <u>erro para novos exemplos</u> (generalização),

Mas durante o treinamento, minimizamos o erro na base de treinamento

Se os modelos forem multo complexos, podem entrar em

"overfitting"

- Estimar o erro em generalização:
 - Manter uma base de teste separada (precisa conter exemplos diferentes, para evitar viés / bias)

Estimar o erro em generalização:

- Manter uma base de teste separada (precisa conter exemplos diferentes, para evitar viés / bias)
- Para escolher hyper-parâmetros, (e.g. tipo de modelo, caractéristicas a serem usadas), usar uma outra base de dados:

Estimar o erro em generalização:

- Manter uma base de teste separada (precisa conter exemplos diferentes, para evitar viés / bias)
- Para escolher hyper-parâmetros, (e.g. tipo de modelo, caractéristicas a serem usadas), usar uma outra base de dados:

Treinamento: Otimização dos parâmetros do modelo

Validação: Escolher modelo e hyper-parâmetros

Teste: Estimar a performance em generalização

Exemplo: seleção de modelos

Treine diferentes modelos na base de treinamento

Avalie a performance em validação. Escolha o melhor modelo

Teste a performance do modelo na base de teste

- Erro na base de treinamento
- Erro na base de validação

Melhor hyper-parâmetro segundo base de validação: **5** (Segundo a base de treinamento: **1**)

Computação simbólica

Expressões são definidas em grafos. Exemplo: e = ab + c

azul: entradas

amarelo: vértices intermediários

Verde: saídas

Expressões precisam ser compiladas

a = T.scalar()


```
a = T.scalar()
b = T.scalar()
c = T.scalar()
```



```
a = T.scalar()
b = T.scalar()
c = T.scalar()
e = a*b + c
```



```
a = T.scalar()
b = T.scalar()
c = T.scalar()
e = a*b + c
f = theano.function([a,b,c],e)
```



```
a = T.scalar()
b = T.scalar()
c = T.scalar()
e = a*b + c
f = theano.function([a,b,c],e)
f(2,4,10) #retorna 2*4+10 = 18
```


Expressões precisam ser compiladas

```
a = T.scalar()
b = T.scalar()
c = T.scalar()
e = a*b + c
f = theano.function([a,b,c],e)
f(2,4,10) #retorna 2*4+10 = 18
```


Permite derivação automática:

```
de_da = T.grad(e, a)
g = theano.function([a,b,c], de_da)
g(2,4,10) # retorna 4
```

Variável simbólica

- Não possui estado.
- É informada na chamada de uma função, ou computada à partir de outras variáveis

Variável compartilhada

Variável simbólica

- Não possui estado.
- É informada na chamada de uma função, ou computada à partir de outras variáveis

Variável compartilhada

• Possui estado

a = T.scalar() # Variável simbólica

Variável simbólica

- Não possui estado.
- É informada na chamada de uma função, ou computada à partir de outras variáveis

Variável compartilhada

```
a = T.scalar() # Variável simbólicab = theano.shared(2) # Variável compartilhada, com valor 2
```

Variável simbólica

- Não possui estado.
- É informada na chamada de uma função, ou computada à partir de outras variáveis

Variável compartilhada

```
    a = T.scalar() # Variável simbólica
    b = theano.shared(2) # Variável compartilhada, com valor 2
    c = theano.shared(1) # Variável compartilhada, com valor 1
```

Variável simbólica

- Não possui estado.
- É informada na chamada de uma função, ou computada à partir de outras variáveis

Variável compartilhada

```
a = T.scalar()  # Variável simbólica
b = theano.shared(2) # Variável compartilhada, com valor 2
c = theano.shared(1) # Variável compartilhada, com valor 1
e = a*b + c
```

Variável simbólica

- Não possui estado.
- É informada na chamada de uma função, ou computada à partir de outras variáveis

Variável compartilhada

```
a = T.scalar()  # Variável simbólica
b = theano.shared(2) # Variável compartilhada, com valor 2
c = theano.shared(1) # Variável compartilhada, com valor 1
e = a*b + c

f = theano.function([a],e)
```

Variável simbólica

- Não possui estado.
- É informada na chamada de uma função, ou computada à partir de outras variáveis

Variável compartilhada

```
a = T.scalar()  # Variável simbólica
b = theano.shared(2) # Variável compartilhada, com valor 2
c = theano.shared(1) # Variável compartilhada, com valor 1
e = a*b + c

f = theano.function([a],e)
f(3) # na chamada, informamos o valor de a.
```

Variável simbólica

- Não possui estado.
- É informada na chamada de uma função, ou computada à partir de outras variáveis

Variável compartilhada

```
a = T.scalar()  # Variável simbólica
b = theano.shared(2) # Variável compartilhada, com valor 2
c = theano.shared(1) # Variável compartilhada, com valor 1
e = a*b + c

f = theano.function([a],e)
f(3) # na chamada, informamos o valor de a.
#retorna 3*2+1 = 7
```

Ipython Notebook

DEMO