SCC-223 Estruturas de Dados I

Árvores Binárias

Profa. Elaine Parros Machado de Sousa

Árvore Binária- Definição

- Uma Árvore Binária (AB) T é um conjunto finito de elementos, denominados nós ou vértices, tal que
 - 1. Se T = Ø, a árvore é dita vazia, ou
 - **2.** T contém um nó especial \mathbf{r} , chamado \mathbf{raiz} de \mathbf{T} , e os demais nós podem ser subdivididos em dois sub-conjuntos distintos \mathbf{T}_{E} e \mathbf{T}_{D} , os quais também são árvores binárias (possivelmente vazias)
 - T_E e T_D são denominadas subárvore esquerda e subárvore direita de T, respectivamente

Árvore Binária

- A raiz da subárvore esquerda de um nó v, se existir, é denominada filho esquerdo de v
- Definição análoga para filho direito de v
- Pela definição da árvore binária, o filho esquerdo pode existir sem o direito, e viceversa

Árvore Estritamente Binária

- Uma Árvore Estritamente Binária (ou Árvore Própria) tem nós com 0 (nenhum) ou 2 (dois) filhos
 - nós interiores (não folhas) sempre têm 2
 filhos

Árvore Binária Completa

• Árvore Binária Completa (ABC)

Se a **profundidade** da árvore é **d**, então:

- cada nó folha está no nível d 1 ou no nível d
- 2. o nível **d** 1 está totalmente preenchido

3. os nós folha no nível **d** estão todos mais à esquerda possível

- Árvore Binária Completa Cheia (ABCC)
 - É uma Árvore Estritamente Binária
 - Todos os seus nós folha estão no mesmo nível

C, D, E, F estão no mesmo nível (profundidade 2)

 Qual é o número total de nós de uma ABCC de profundidade d?

 Dada uma ABCC e sua profundidade d, calculamos o número total de nós na árvore:

 Portanto, se o número de nós, n, para uma árvore binária completa cheia de profundidade d é

$$\circ$$
 n = 2^{d+1} - 1

 Então, n nós podem ser distribuídos em uma árvore binária completa cheia de profundidade ... ???

 Uma Árvore Binária Completa Cheia com n nós terá profundidade:

```
• n = 2^{d+1} - 1
• log_2(n + 1) = log_2(2^{d+1})
```

$$d = log_2(n + 1) - 1$$

Árvore Binária Balanceada

- Árvore Binária Balanceada
 - Para cada nó, os valores de altura de suas duas subárvores diferem de, no máximo, 1

Árvore Binária Perfeitamente Balanceada

- Árvore Binária Perfeitamente Balanceada
 - Para cada nó, o número de nós de suas subárvores esquerda e direita difere em, no máximo, 1
 - Toda Árvore Binária Perfeitamente Balanceada é Balanceada, mas o inverso não é necessariamente verdade

Árvore Binária

- Qual a altura máxima de uma AB com n nós?
 - Resposta: n-1
 - Árvore Degenerada => Lista

Árvore Binária

- Qual a altura mínima de uma AB com n nós?
 - Resposta: a mesma de uma AB Perfeitamente
 Balanceada com n nós

$$n = 1$$
 ----- $h = 0$
 $n = 2$, 3 --- $h = 1$
 $n = 4...7$ -- $h = 2$
 $n = 8...15$ - $h = 3$

$$h_{\min} = \lfloor \log_2 n \rfloor$$

Exercício

 Escreva um algoritmo para uma função recursiva que calcula a altura de uma AB

AB - Percursos

- Percorrer uma AB "visitando" cada nó uma única vez
 - "Visitar" um nó pode ser
 - Mostrar o seu valor
 - Modificar o valor do nó

•

AB - Percursos

- PERCURSO => sequência linear de nós
 - podemos então falar em nó predecessor ou sucessor de outro nó, segundo um dado percurso
- Não existe um percurso único para árvores (binárias ou não)
 - diferentes percursos podem ser realizados, dependendo da aplicação

AB - Percursos em Árvores

- 3 percursos básicos para AB:
 - pré-ordem (Pre-order)
 - em-ordem (In-order)
 - pós-ordem (Post-order)
- A diferença entre eles está, basicamente, na ordem em que os nós são "visitados"

AB - Percurso Pré-Ordem

- ✓ visita a raiz
- ✓ percorre a subárvore à esquerda em pré-ordem
- ✓ percorre a subárvore à direita em pré-ordem

AB - Percurso Em-Ordem

- ✓ percorre a subárvore à esquerda em-ordem
- ✓ visita a raiz
- ✓ percorre a subárvore à direita em-ordem

AB - Percurso Pós-Ordem

- ✓ percorre e subárvore a esquerda em pós-ordem
- ✓ percorre a subárvore a direita em pós-ordem
- √ visita a raiz

> Resultado:

GDBHIEFCA

AB - Percursos

Percurso para expressões aritméticas

Pré-ordem: +a*bc

o Em-ordem: a+(b*c)

• Pós-ordem: abc*+

Próxima Aula...

- Árvore Binária de Busca
- Implementação