« Home

Proposal.

RL-Free training for RAD-embeddings [IEW7]

July 29, 2025 · Marcell Vazquez-Chanlatte

We propose an RL-free approach to training a DFA-encoder. We start with the training objective.

Definition 1. RL-Free contrastive loss for RAD-embeddings [YEU7] Let

$$f_{ heta}: ext{DFAs}
ightarrow \mathbb{R}^d$$

be a $d\in\mathbb{N}$ dimensional DFA embedding with parameters $\theta\in\mathbb{R}^n, n\in\mathbb{N}$, and let

$$\delta: \mathrm{DFAs} imes \mathrm{DFAs} o \Sigma^* \cup \bot$$

be a function that maps pairs of DFAs to a minimal distinguishing string.

For a given word, $w\in \Sigma^*$, let $\mathrm{Prefixes}(w)$, denote all of w's prefixes (including w and the empty string). Further, given a DFA $D\in \mathrm{DFAs}$ and a word $w\in \Sigma^*$, let D_w denote the sub-DFA accessed by word w.

Next, given two distiguishable DFAs, we denote by $\delta Prefixes$ set of prefixes of minimal distinguishing given by δ .

$$\delta \text{Prefixes}(D, D') \triangleq \text{Prefixes}(\delta(D, D'))$$

The RAD RL-free constrastive loss, $\mathcal{L}: \mathbb{R}^n imes \mathrm{DFAs} imes \mathrm{DFAs} o \mathbb{R}$, is defined as:

$$\mathcal{L}(heta, D, D') riangleq \max_{w \in \delta \operatorname{Prefixes}(D, D')} ig\| f_{ heta}(D) - f_{ heta}(D') ig\|.$$

That is the maximum embedding distance along the minimial distinguishing string.

Algorithm Sketch 2. RL-Free Training Procedure Sketch [RQF5]

Next, let \mathcal{D}_{RAD} denote a fixed <u>Reach Avoid Derived (RAD) training distribution</u> over <u>DFAs</u>. The training procedure for our proposed encoder is as follows.

- 1. Sample two distinct DFAs from $\mathcal{D}_{\mathrm{RAD}}$, call D and D'.
- 2. Compute a $\underline{\text{minimum distinguishing string}}, w_*$, betweeen D and D', e.g., using a shortest path algorithm.
- 3. Compute the embeddings for D and D', i.e., $f_{\theta}(D)$ and $f_{\theta}(D')$, using the current parameters θ .

- 4. Compute the pairs of states visited by w_{st} and their corresonding embeddings.
- 5. To compute $\mathcal{L}(\theta, D, D')$, calculate their relative pair-wise distance and return the maximum.
- 6. Finally, compute the gradient with respect to θ , $\nabla_{\theta}\mathcal{L}(\theta, D, D')$ to update θ , e.g., using Adam.

Backlinks

Idea Nursery and Random Thoughts [ideas]

July 23, 2025 · Marcell Vazquez-Chanlatte

Table of Contents

- **Definition 1.** RL-Free contrastive loss for RAD-embeddings
- Algorithm Sketch 2. RL-Free Training Procedure Sketch