Aleksandra Górska, 268734 Marcin Pałyga,

Komputerowa analiza szeregów czasowych - raport 1

18.12.2023.r.

1. Wstęp

2. Podstawowe statystyki

2.1. Wzory miar położenia, rozproszenia, skośności i spłaszczenia

— średnia arytmetyczna:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

— rozstęp międzykwartylowy:

$$IQR = Q_3 - Q_1$$

— wariancja:

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

— odchylenie standardowe

$$S = \sqrt{S^2}$$

— współczynnik skośności:

$$\alpha = \frac{n}{(n-1)(n-2)} \sum_{i=1}^{n} (\frac{X_i - \bar{X}}{S})^3$$

— kurtoza:

$$K = \frac{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^4}{(\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2)^2}$$

2.2. Tabela z wynikami

Podstawowe statystyki	Microsoft	Apple
średnia arytmetyczna		
mediana		
kwartyl Q1		
kwartyl Q3		
rozstęp międzykwartylowy		
odchylenie standardowe		
współczynnik skośności		
kurtoza		

3. Estymatory

$$\hat{\beta}_{1} = \frac{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$
$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1} \bar{X}$$
$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} X_{i}$$

4. Przedziały ufności

$$S = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \hat{Y})^2}{n-2}}$$

$$\left[\hat{\beta}_1 - t_{n-2,1-\frac{\alpha}{2}} \frac{S}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}}, \hat{\beta}_1 + t_{n-2,1-\frac{\alpha}{2}} \frac{S}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}}\right] = 1 - \alpha$$

$$\left[\hat{\beta}_0 - t_{n-2,1-\frac{\alpha}{2}} S \sqrt{\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}}, \hat{\beta}_0 + t_{n-2,1-\frac{\alpha}{2}} S \frac{1}{n} + \frac{\bar{X}^2}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}}\right] = 1 - \alpha$$

5. Definicje

— SST - całkowita suma kwadratów

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

— SSR - regresyjna suma kwadratów

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

— SSE - suma kwadratów z błędów

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

— błąd średniokwadratowy S^2 - estymator wariancji σ^2 :

$$MSE = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y})^2}{n-2}$$

— średni błąd bezwzględny:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

— współczynnik determinacji

$$R^{2} = \frac{SSR}{SST} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

6. Predykcje

$$\left[\hat{\beta}_0 + \hat{\beta}_1 X_0 - t_{n-2,1-\frac{\alpha}{2}} S \sqrt{\frac{1}{n} + \frac{(X_0 - \bar{X})^2}{\sum\limits_{i=1}^n (X_i - \bar{X})^2}}, \hat{\beta}_0 + \hat{\beta}_1 X_0 + t_{n-2,1-\frac{\alpha}{2}} S \sqrt{\frac{1}{n} + \frac{(X_0 - \bar{X})^2}{\sum\limits_{i=1}^n (X_i - \bar{X})^2}}\right]$$

3.61	TT7
Miary jakości modelu	Wartość
SST	
SSR	
SSE	
współczynnik korelacji pirsona	
współczynnik determinacji	
MSE	
MAE	