All: This is just to let you know that there is a typo in question 4 of the Suggested Exercises of subsection 9.1. The question concerns itself with finding out how many LCS's there are. The typo is in the boundary: the left-most column and the top row should have N(0, --) = N(--,0) = 0. (And not N(0, --) = N(--,0) = 1 as it currently shows).

End result: I will NOT ask a question related to finding how many LCS's there are using N(i,j). - appie

n] = [p, n], if $\nwarrow \in MyTrack[p, n]$ whereas $\nwarrow \notin MyTrack[i, n]$ for all $i = p + 1 \dots m - 1$ or $\ell d[m, n] = [0, 0]$ if is no more " \nwarrow " to the left. Also,

, n] = [m, q], if $\nwarrow \in MyTrack[m, q]$ whereas $\nwarrow \notin MyTrack[m, j]$ for all $j = q + 1 \dots n - 1$ or ud[m, n] = [0, 0] it is no more " \nwarrow " to the top. These are essentially pointing to the highest row-/column- values that have a diagonal arrow. With new functions, the correct equation becomes:

$$i] \leftarrow N(\ell d[i,j]) \cdot \mathcal{I}(" \leftarrow \in Track[i,j]") + N(ud[i,j]) \cdot \mathcal{I}(" \uparrow \in Track[i,j]") + N[i-1,j-1] \cdot \mathcal{I}(" \uparrow \in Track[i,j]"). \tag{36}$$

ooks pretty complicated, but it is not really that bad. Consider the table we have seen in the previous section, but now add the counter to it.

	$j = 0$ $y_0 = \emptyset$	$j = 1$ $y_1 = A$	$j = 2$ $y_2 = A$	$j = 3$ $y_3 = A$	$j = 4$ $y_4 = A$	$j = 5$ $y_5 = B$	$j = 6$ $y_6 = B$	$j = 7$ $y_7 = B$	$j = 8$ $y_8 = B$
0	nil 0Å	nil 0, 1	nil 0, 1	nil 0, 1					
A	nil 0,17	1,1				← 1,4	← 1,4	← 1,4	← 1,4
В	nil 0,	↑ 1,1	↑ ← 1,2	↑ ← 1,3	↑ ← 1,4	2,4			
\overline{A}	nil 0, 1	<u></u> ↑↑ 1,2	√ 2,1			↑ ← 2,10	↑ ← 2,14	↑ ← 2,18	↑ ← 2,22
В	nil 0,	↑ 1,2	↑ 2,1	↑ ← 2,3	↑ ← 2,6	3,6			
\overline{A}	nil 0; ♀		↑ ↑ 2,3	3,1		↑ 3, 10	3 20	↑ ← 3,34	↑ ← 3,52
В	nil 0,\P	↑ 1,3	↑ 2,3	↑ 3,1	↑ ← 3,4	4,4	←4,14	← 4 (34)	←

y the question: Circle the table entires that were used to calculate N[6,8]=68, N[5,6]=16, N[4,4]=6, and N[2,2]=2.