

Docket No.: 2213.1004-012
Title: METHODS FOR RAISING...
Inventors: H. William Harris, Jr., et al.

cttggcatta tgctctgtgc tgggggtatt cttgacagca ttctgtatgg gagtgtttat 60
caaatttcgc aacacccaa ttgttaaggc cacaaacaga gagctatctt acctcctcct 120
gttctcactc atctgtgtt tctccagttc cctcatctt attggtaac cccaggactg 180
gacatgccgt ctacgccagc ctgcattcgg gataagttt gttctctgca tctcctgtcat 240
cctggtaaaa actaacccag tacttctagt gttcgaagcc aagatccccca ccagtctcca 300
tcgttaagtgg tggggctaa acttgcagtt cctgttagtg ttctgttca catttgtgca 360
agtgtatgata tgtgtggctt ggcttacaa tgctctcccg gctggactaca ggaccatga 420
cattgtatgag ataattttca ttacatgcaaa tgagggtctt atgatggcgc ttggcttctt 480
aattgggtac acatgcctgc tggcagccat atrcttcttca tttgcattta aatcacgaaa 540
actgcccagag aacttactg aggctaagtt catcaccttc agcatgotca tctt 594

Leu Ala Leu Cys Ser Val Leu Gly Val Phe Leu Thr Ala Phe Val Met
1 5 10 15
Gly Val Phe Ile Lys Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn
20 25 30
Arg Glu Leu Ser Tyr Leu Leu Leu Phe Ser Leu Ile Cys Cys Phe Ser
35 40 45
Ser Ser Leu Ile Phe Ile Gly Glu Pro Gln Asp Trp Thr Cys Arg Leu
50 55 60
Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile
65 70 75 80
Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro
85 90 95
Thr Ser Leu His Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu
100 105 110
Val Phe Leu Phe Thr Phe Val Gln Val Met Ile Cys Val Val Trp Leu
115 120 125
Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp Ile Xaa Asp Glu
130 135 140
Ile Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe
145 150 155 160
Leu Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Xaa Phe Phe Ala
165 170 175
Phe Lys Ser Arg Lys Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile
180 185 190
Thr Phe Ser Met Leu Ile Phe
195

Xaa=any amino acid

FIG. 1

cttggcatta tgctctgtgc tggggattt cttgacagca ttctgtatgg gagtgtttat 60
 cagatttcgc aacaccccaa ttgttaaggc cacaacaga gagctatcct acctccctcct 120
 gttctcaactc atctgtgtt tctccagctc cctcatcttc attggtaaac cccaggactg 180
 gacatgccgt ctacgccagc ctgcattcgg gataagttt gttctctgca tctctgtcat 240
 cctggtcaaa actaaccgag tacttctagt gttcgaagcc aagatccccca ccagtctcca 300
 tcgttaagtgg tggggctaa acttgcagtt cctgttggtg ttccctgttca catttgtgca 360
 agtgtatgata tgtgtggctt ggcttacaa tgctccctccg gcgagctaca ggaaccatga 420
 cattgtatgag ataatttca ttacatgca tgagggctct atgatggcgc tcggcttcct 480
 aattgggtac acatgcctgc tggcagccat atgcttcttc tttgcattta aatcacgaaa 540
 actgccagag aactttacccg aggctaagtt catcaccttc agcatgctca tctt 594

Leu	Ala	Leu	Cys	Ser	Val	Leu	Gly	Val	Phe	Leu	Thr	Ala	Phe	Val	Met
1															15
Gly	Val	Phe	Ile	Arg	Phe	Arg	Asn	Thr	Pro	Ile	Val	Lys	Ala	Thr	Asn
			20							25					30
Arg	Glu	Leu	Ser	Tyr	Leu	Leu	Leu	Phe	Ser	Leu	Ile	Cys	Cys	Phe	Ser
									35		40				45
Ser	Ser	Leu	Ile	Phe	Ile	Gly	Glu	Pro	Gln	Asp	Trp	Thr	Cys	Arg	Leu
									50		55				60
Arg	Gln	Pro	Ala	Phe	Gly	Ile	Ser	Phe	Val	Leu	Cys	Ile	Ser	Cys	Ile
									65		70				80
Leu	Val	Lys	Thr	Asn	Arg	Val	Leu	Leu	Val	Phe	Glu	Ala	Lys	Ile	Pro
									85		90				95
Thr	Ser	Leu	His	Arg	Lys	Trp	Trp	Gly	Leu	Asn	Leu	Gln	Phe	Leu	Leu
									100		105				110
Val	Phe	Leu	Phe	Thr	Phe	Val	Gln	Val	Met	Ile	Cys	Val	Val	Trp	Leu
									115		120				125
Tyr	Asn	Ala	Pro	Pro	Ala	Ser	Tyr	Arg	Asn	His	Asp	Ile	Xaa	Asp	Glu
									130		135				140
Ile	Ile	Phe	Ile	Thr	Cys	Asn	Glu	Gly	Ser	Met	Met	Ala	Leu	Gly	Phe
									145		150				160
Leu	Ile	Gly	Tyr	Thr	Cys	Leu	Leu	Ala	Ala	Ile	Cys	Phe	Phe	Phe	Ala
									165		170				175
Phe	Lys	Ser	Arg	Lys	Leu	Pro	Glu	Asn	Phe	Thr	Glu	Ala	Lys	Phe	Ile
									180		185				190
Thr	Phe	Ser	Met	Leu	Ile	Phe									
									195						

Xaa = Any amino acid

FIG. 2

ttggcattat gctctgtgct gggggatttc ttgacagtat tcgtgatggg agtgttatac 60
 agatttcgca acacccaaat tgtaaggcc acaaacagag agctatccta cctcctcctg 120
 ttctcaactta tctgtgttt ctccagctcc ctcatcttca ttggtaacc ccaggactgg 180
 acatgccgtc taccccgcc tgcattcggg ataagtttg ttctctgcata ctccctgcata 240
 ctggtaaaaa ctaaccgagt acttcttagtg ttgaagcaa agatccccac cagtctccat 300
 cgtaagtgggt gggggctaaa cttgcagttc ctgttgggt tcctgttcac atttgtgca 360
 gtgatgatgt gtgtgtctg gctttacaat gctccctccgg cgagctacag gaaccatgac 420
 attgatgaga tcatttcat tacatgcaat gagggctcta tgatggcgct tgcttccta 480
 attgggtaca catgcctgct ggcagccata tgcttcttct ttgcattaa atcacgaaaa 540
 ctgccagaga atttaccga ggctaaggcc atcaccttca gcatgctcat ctt 593

Leu	Ala	Leu	Cys	Ser	Val	Leu	Gly	Val	Phe	Leu	Thr	Val	Phe	Val	Met
1								10							15
Gly	Val	Phe	Ile	Arg	Phe	Arg	Asn	*Thr	Pro	Ile	Val	Lys	Ala	Thr	Asn
								20			25				30
Arg	Glu	Leu	Ser	Tyr	Leu	Leu	Phe	Ser	Leu	Ile	Cys	Cys	Phe	Ser	
								35			40				45
Ser	Ser	Leu	Ile	Phe	Ile	Gly	Glu	Pro	Gln	Asp	Trp	Thr	Cys	Arg	Leu
								50			55				60
Arg	Gln	Pro	Ala	Phe	Gly	Ile	Ser	Phe	Val	Leu	Cys	Ile	Ser	Cys	Ile
								65			70				80
Leu	Val	Lys	Thr	Asn	Arg	Val	Leu	Leu	Val	Phe	Glu	Ala	Lys	Ile	Pro
								85			90				95
Thr	Ser	Leu	His	Arg	Lys	Trp	Trp	Gly	Leu	Asn	Leu	Gln	Phe	Leu	Leu
								100			105				110
Val	Phe	Leu	Phe	Thr	Phe	Val	Gln	Val	Met	Ile	Cys	Val	Val	Trp	Leu
								115			120				125
Tyr	Asn	Ala	Pro	Pro	Ala	Ser	Tyr	Arg	Asn	His	Asp	Ile	Xaa	Asp	Glu
								130			135				140
Ile	Ile	Phe	Ile	Thr	Cys	Asn	Glu	Gly	Ser	Met	Met	Ala	Leu	Gly	Phe
								145			150				160
Leu	Ile	Gly	Tyr	Thr	Cys	Leu	Leu	Ala	Ala	Ile	Cys	Phe	Phe	Phe	Ala
								165			170				175
Phe	Lys	Ser	Arg	Lys	Leu	Pro	Glu	Asn	Phe	Thr	Glu	Ala	Lys	Phe	Ile
								180			185				190
Thr	Phe	Ser	Met	Leu	Ile	Phe									
								195							

Xaa = Any amino acid

FIG. 3

Docket No.: 2213.1004-012
 Title: METHODS FOR RAISING...
 Inventors: H. William Harris, Jr., et al.

	10	20	
SKC _a R ORF	Leu Thr Ile Phe Ala Val Leu Gly Ile Leu Ile Thr Ser Phe Val Leu Gly Val Phe Ile	58	
Salmon ORF	Leu Ala Leu Cys Ser Val Leu Gly Val Phe Leu Thr Ala Phe Val Met Gly Val Phe Ile	58	
Arctic char ORF	Leu Ala Leu Cys Ser Val Leu Gly Val Phe Leu Thr Ala Phe Val Met Gly Val Phe Ile	58	
R. Trout ORF	Leu Ala Leu Cys Ser Val Leu Gly Val Phe Leu Thr Val Phe Val Met Gly Val Phe Ile	58	
	30	40	
SKC _a R ORF	Lys Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn Arg Glu Leu Ser Tyr Leu Leu Leu	118	
Salmon ORF	Lys Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn Arg Glu Leu Ser Tyr Leu Leu Leu	118	
Arctic char ORF	Arg Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn Arg Glu Leu Ser Tyr Leu Leu Leu	118	
R. Trout ORF	Arg Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn Arg Glu Leu Ser Tyr Leu Leu Leu	118	
	50	60	
SKC _a R ORF	Phe Ser Leu Ile Cys Cys Phe Ser Ser Ser Leu Ile Phe Gly Glu Pro Arg Asp Trp	178	
Salmon ORF	Phe Ser Leu Ile Cys Cys Phe Ser Ser Ser Leu Ile Phe Gly Glu Pro Gln Asp Trp	178	
Arctic char ORF	Phe Ser Leu Ile Cys Cys Phe Ser Ser Ser Leu Ile Phe Gly Glu Pro Gln Asp Trp	178	
R. Trout ORF	Phe Ser Leu Ile Cys Cys Phe Ser Ser Ser Leu Ile Phe Gly Glu Pro Gln Asp Trp	178	
	70	80	
SKC _a R ORF	Thr Cys Arg Leu Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile	238	
Salmon ORF	Thr Cys Arg Leu Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile	238	
Arctic char ORF	Thr Cys Arg Leu Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile	238	
R. Trout ORF	Thr Cys Arg Leu Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile	238	
	90	100	
SKC _a R ORF	Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro Thr Ser Leu His	298	
Salmon ORF	Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro Thr Ser Leu His	298	
Arctic char ORF	Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro Thr Ser Leu His	298	
R. Trout ORF	Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro Thr Ser Leu His	298	
	110	120	
SKC _a R ORF	Arg Lys Trp Val Gly Leu Asn Leu Gln Phe Leu Leu Phe Cys Ile Leu Val Gln	358	
Salmon ORF	Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu Val Phe Ile Phe Thr Phe Val Gln	358	
Arctic char ORF	Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu Val Phe Ile Phe Thr Phe Val Gln	358	
R. Trout ORF	Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu Val Phe Ile Phe Thr Phe Val Gln	358	
	130	140	
SKC _a R ORF	Ile Val Thr Cys Ile Ile Trp Leu Tyr Thr Ala Pro Pro Ser Ser Tyr Arg Asn His Glu	418	
Salmon ORF	Val Met Ile Cys Val Val Trp Leu Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp	418	
Arctic char ORF	Val Met Ile Cys Val Val Trp Leu Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp	418	
R. Trout ORF	Val Met Ile Cys Val Val Trp Leu Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp	418	
	150	160	
SKC _a R ORF	Leu Glu Asp Glu Val Ile Phe Ile Thr Cys Asp Glu Gly Ser Leu Met Ala Leu Gly Phe	478	
Salmon ORF	Ile - Asp Glu Ile Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe	475	
Arctic char ORF	Ile - Asp Glu Ile Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe	475	
R. Trout ORF	Ile - Asp Glu Ile Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe	475	

FIG. 4A

Docket No.: 2213.1004-012
 Title: METHODS FOR RAISING...
 Inventors: H. William Harris, Jr., et al.

	170	180	
SKCaR ORF	Leu Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Phe Ala Phe Lys Ser Arg		538
Salmon ORF	Leu Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile [Ser] Phe Phe Phe Ala Phe Lys Ser Arg		535
Arctic char ORF	Leu Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Phe Ala Phe Lys Ser Arg		535
R. Trout ORF	Leu Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Phe Ala Phe Lys Ser Arg		535
	190		
SKCaR ORF	Lys Leu Pro Glu Asn Phe Asn Glu Ala Lys Phe Ile Thr Phe Ser Met Leu Ile Phe		595
Salmon ORF	Lys Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile Thr Phe Ser Met Leu Ile Phe		592
Arctic char ORF	Lys Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile Thr Phe Ser Met Leu Ile Phe		592
R. Trout ORF	Lys Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile Thr Phe Ser Met Leu Ile Phe		592

Decoration 'Decoration #1': Box residues that match SKCaR ORF exactly.

FIG. 4B

Docket No.: 2213.1004-012
Title: METHODS FOR RAISING...
Inventors: H. William Harris, Jr., et al.

FIG. 5

Docket No.: 2213.1004-012
Title: METHODS FOR RAISING...
Inventors: H. William Harris, Jr., *et al.*

FIG. 6

FIG. 7

Docket No.: 2213.1004-012
Title: METHODS FOR RAISING...
Inventors: H. William Harris, Jr., *et al.*

FIG. 8

Docket No.: 2213.1004-012
Title: METHODS FOR RAISING...
Inventors: H. William Harris, Jr., *et al.*

FIG. 9

Docket No.: 2213.1004-012
Title: METHODS FOR RAISING...
Inventors: H. William Harris, Jr., et al.

FIG. 10

Docket No.: 2213.1004-012
Title: METHODS FOR RAISING...
Inventors: H. William Harris, Jr., et al.

FIG. 11A

FIG. 11B

Docket No.: 2213.1004-012
Title: METHODS FOR RAISING...
Inventors: H. William Harris, Jr., et al.

**Mortalities From Donaldson Trout SuperSmolt II
5 Days After Transfer to Ocean Netpen**

FIG. 12

FIG. 13A

FIG. 13B

FIG. 13C

FIG. 13D

FIG. 13E

FIG. 13F

FIG. 13G

FIG. 14

FIG. 15

FIG. 17

FIG. 16A

FIG. 16B

FIG. 16C

FIG. 16D

FIG. 16E

FIG. 16F

FIG. 16G

FIG. 16H

Docket No.: 2213.1004-012
Title: METHODS FOR RAISING...
Inventors: H. William Harris, Jr., et al.

FIG. 18A

FIG. 18B

FIG. 18C

Docket No.: 2213.1004-012
Title: METHODS FOR RAISING...
Inventors: H. William Harris, Jr., et al.

FIG. 19

FIG. 20

Docket No.: 2213.1004-012
Title: METHODS FOR RAISING...
Inventors: H. William Harris, Jr., *et al.*

FIG. 21

Docket No.: 2213.1004-012
Title: METHODS FOR RAISING...
Inventors: H. William Harris, Jr., *et al.*

FIG. 22A

FIG. 22B

FIG. 23A

FIG. 23B

Docket No.: 2213.1004-012
Title: METHODS FOR RAISING...
Inventors: H. William Harris, Jr., *et al.*

**Comparison of Characteristics of APS
SuperSmolt II Survivors and Mortalities After
5 days In APS Laboratory Seawater Tanks.**

FIG. 24

FIG. 25

FIG. 26A

10	20	30	40
CTTGGCATTATGCTCTGTGCTGGGGGTATTCTTGACAGCA			Atlantic Salmon
CTTGGCATTATGCTCTGTGCTGGGGGTATTCTTGACAGCA			Char
CTTGGCATTATGCTCTGTGCTGGGGGTATTCTTGACAGCA			Chum Salmon
CTTGGCATTATGCTCTGTGCTGGGGGTATTCTTGACAGCA			Coho Salmon
CTTGGCATTATGCTCTGTGCTGGGGGTATTCTTGACAGCA			King Salmon
CTTGGCATTATGCTCTGTGCTGGGGGTATTCTTGACAGCA			Pink Salmon
CTTGGCATTATGCTCTGTGCTGGGGGTATTCTTGACAGCA			Sockeye Salmon
CTTGGCATTATGCTCTGTGCTGGGGGTATTCTTGACAGCA			Trout
TTCTGTGATGGGAGGTGTTATCAGATTTCGCAACACCCCCAA			Atlantic Salmon
TTCTGTGATGGGAGGTGTTATCAGATTTCGCAACACCCCCAA			Char
TTCTGTGATGGGAGGTGTTATCAGATTTCGCAACACCCCCAA			Chum Salmon
TTCTGTGATGGGAGGTGTTATCAGATTTCGCAACACCCCCAA			Coho Salmon
TTCTGTGATGGGAGGTGTTATCAGATTTCGCAACACCCCCAA			King Salmon
TTCTGTGATGGGAGGTGTTATCAGATTTCGCAACACCCCCAA			Pink Salmon
TTCTGTGATGGGAGGTGTTATCAGATTTCGCAACACCCCCAA			Sockeye Salmon
TTCTGTGATGGGAGGTGTTATCAGATTTCGCAACACCCCCAA			Trout
TTGTTAACGCCACAAACAGAGAGCTATCCTAACCTCCCTCCT			Atlantic Salmon
TTGTTAACGCCACAAACAGAGAGCTATCCTAACCTCCCTCCT			Char
TTGTTAACGCCACAAACAGAGAGCTATCCTAACCTCCCTCCT			Chum Salmon
TTGTTAACGCCACAAACAGAGAGCTATCCTAACCTCCCTCCT			Coho Salmon
TTGTTAACGCCACAAACAGAGAGCTATCCTAACCTCCCTCCT			King Salmon
TTGTTAACGCCACAAACAGAGAGCTATCCTAACCTCCCTCCT			Pink Salmon
TTGTTAACGCCACAAACAGAGAGCTATCCTAACCTCCCTCCT			Sockeye Salmon
TTGTTAACGCCACAAACAGAGAGCTATCCTAACCTCCCTCCT			Trout
GTTCTCACTTATCTGCTGTTTCTCCAGCTCCCTCATCTTC			Atlantic Salmon
GTTCTCACTTATCTGCTGTTTCTCCAGCTCCCTCATCTTC			Char
GTTCTCACTTATCTGCTGTTTCTCCAGCTCCCTCATCTTC			Chum Salmon
GTTCTCACTTATCTGCTGTTTCTCCAGCTCCCTCATCTTC			Coho Salmon
GTTCTCACTTATCTGCTGTTTCTCCAGCTCCCTCATCTTC			King Salmon
GTTCTCACTTATCTGCTGTTTCTCCAGCTCCCTCATCTTC			Pink Salmon
GTTCTCACTTATCTGCTGTTTCTCCAGCTCCCTCATCTTC			Sockeye Salmon
GTTCTCACTTATCTGCTGTTTCTCCAGCTCCCTCATCTTC			Trout
ATGGGTGAACCCCAAGGACTGGACATGCCGTCTACGCCAGC			Atlantic Salmon
ATGGGTGAACCCCAAGGACTGGACATGCCGTCTACGCCAGC			Char
ATGGGTGAACCCCAAGGACTGGACATGCCGTCTACGCCAGC			Chum Salmon
ATGGGTGAACCCCAAGGACTGGACATGCCGTCTACGCCAGC			Coho Salmon
ATGGGTGAACCCCAAGGACTGGACATGCCGTCTACGCCAGC			King Salmon
ATGGGTGAACCCCAAGGACTGGACATGCCGTCTACGCCAGC			Pink Salmon
ATGGGTGAACCCCAAGGACTGGACATGCCGTCTACGCCAGC			Sockeye Salmon
ATGGGTGAACCCCAAGGACTGGACATGCCGTCTACGCCAGC			Trout

FIG. 26B

210	220	230	240
CTG CATT CGGGATAAGTTTGTCTCTGCATCTCCCTGCAT			Atlantic Salmon
CTG CATT CGGGATAAGTTTGTCTCTGCATCTCCCTGCAT			Char
CTG CATT CGGGATAAGTTTGTCTCTGCATCTCCCTGCAT			Chum Salmon
CTG CATT CGGGATAAGTTTGTCTCTGCATCTCCCTGCAT			Coho Salmon
CTG CATT CGGGATAAGTTTGTCTCTGCATCTCCCTGCAT			King Salmon
CTG CATT CGGGATAAGTTTGTCTCTGCATCTCCCTGCAT			Pink Salmon
CTG CATT CGGGATAAGTTTGTCTCTGCATCTCCCTGCAT			Sockeye Salmon
CTG CATT CGGGATAAGTTTGTCTCTGCATCTCCCTGCAT			Trout

250	260	270	280
CCTGGTAAAACCTAACCGAGTACTTCTAGTGTTCGAAGC			Atlantic Salmon
CCTGGTCAAAACCTAACCGAGTACTTCTAGTGTTCGAAGC			Char
CCTGGTCAAAACCTAACCGAGTACTTCTAGTGTTCGAAGC			Chum Salmon
CCTGGTCAAAACCTAACCGAGTACTTCTAGTGTTCGAAGC			Coho Salmon
CCTGGTCAAAACCTAACCGAGTACTTCTAGTGTTCGAAGC			King Salmon
CCTGGTCAAAACCTAACCGAGTACTTCTAGTGTTCGAAGC			Pink Salmon
CCTGGTCAAAACCTAACCGAGTACTTCTAGTGTTCGAAGC			Sockeye Salmon
CCTGGTCAAAACCTAACCGAGTACTTCTAGTGTTCGAAGC			Trout

290	300	310	320
AAGATCCCCACCAAGTCTCCATCGTAAGGTGGTGGGGGCTAA			Atlantic Salmon
AAGATCCCCACCAAGTCTCCATCGTAAGGTGGTGGGGGCTAA			Char
AAGATCCCCACCAAGTCTCCATCGTAAGGTGGTGGGGGCTAA			Chum Salmon
AAGATCCCCACCAAGTCTCCATCGTAAGGTGGTGGGGGCTAA			Coho Salmon
AAGATCCCCACCAAGTCTCCATCGTAAGGTGGTGGGGGCTAA			King Salmon
AAGATCCCCACCAAGTCTCCATCGTAAGGTGGTGGGGGCTAA			Pink Salmon
AAGATCCCCACCAAGTCTCCATCGTAAGGTGGTGGGGGCTAA			Sockeye Salmon
AAGATCCCCACCAAGTCTCCATCGTAAGGTGGTGGGGGCTAA			Trout

330	340	350	360
ACTTGAGTCCCTGTTAGTGTTCCTGTTCACATTGTGCA			Atlantic Salmon
ACTTGAGTCCCTGTTAGTGTTCCTGTTCACATTGTGCA			Char
ACTTGAGTCCCTGTTAGTGTTCCTGTTCACATTGTGCA			Chum Salmon
ACTTGAGTCCCTGTTAGTGTTCCTGTTCACATTGTGCA			Coho Salmon
ACTTGAGTCCCTGTTAGTGTTCCTGTTCACATTGTGCA			King Salmon
ACTTGAGTCCCTGTTAGTGTTCCTGTTCACATTGTGCA			Pink Salmon
ACTTGAGTCCCTGTTAGTGTTCCTGTTCACATTGTGCA			Sockeye Salmon
ACTTGAGTCCCTGTTAGTGTTCCTGTTCACATTGTGCA			Trout

370	380	390	400
AGTGATGATATGTGTTGGCTTTACAATGCTCCCTCCG			Atlantic Salmon
AGTGATGATATGTGTTGGCTTTACAATGCTCCCTCCG			Char
AGTGATGATATGTGTTGGCTTTACAATGCTCCCTCCG			Chum Salmon
AGTGATGATATGTGTTGGCTTTACAATGCTCCCTCCG			Coho Salmon
AGTGATGATATGTGTTGGCTTTACAATGCTCCCTCCG			King Salmon
AGTGATGATATGTGTTGGCTTTACAATGCTCCCTCCG			Pink Salmon
AGTGATGATATGTGTTGGCTTTACAATGCTCCCTCCG			Sockeye Salmon
AGTGATGATATGTGTTGGCTTTACAATGCTCCCTCCG			Trout

Docket No.: 2213,1004-012
 Title: METHODS FOR RAISING...
 Inventors: H. William Harris, Jr., et al.

410	420	430	440	
GCGAGCTAACAGGAACCATGACATTGATGAGAT		A T T T T C A		Atlantic Salmon
GCGAGCTAACAGGAACCATGACATTGATGAGAT		A T T T T C A		Char
GCGAGCTAACAGGAACCATGACATTGATGAGAT		C A T T T C A		Chum Salmon
GCGAGCTAACAGGAACCATGACATTGATGAGAT		C A T T T C A		Coho Salmon
GCGAGCTAACAGGAACCATGACATTGATGAGAT		C A T T T C A		King Salmon
GCGAGCTAACAGGAACCATGACATTGATGAGAT		C A T T T C A		Pink Salmon
GCGAGCTAACAGGAACCATGACATTGATGAGAT		C A T T T C A		Sockeye Salmon
GCGAGCTAACAGGAACCATGACATTGATGAGAT		T r o u t		
450	460	470	480	
TTACATGCAATGAGGGCTCTATGATGGCGCTTGGCTTCCT				Atlantic Salmon
TTACATGCAATGAGGGCTCTATGATGGCGCTTGGCTTCCT				Char
TTACATGCAATGAGGGCTCTATGATGGCGCTTGGCTTCCT				Chum Salmon
TTACATGCAATGAGGGCTCTATGATGGCGCTTGGCTTCCT				Coho Salmon
TTACATGCAATGAGGGCTCTATGATGGCGCTTGGCTTCCT				King Salmon
TTACATGCAATGAGGGCTCTATGATGGCGCTTGGCTTCCT				Pink Salmon
TTACATGCAATGAGGGCTCTATGATGGCGCTTGGCTTCCT				Sockeye Salmon
TTACATGCAATGAGGGCTCTATGATGGCGCTTGGCTTCCT				T r o u t
490	500	510	520	
AATTGGGTACACATGCCCTGCTGGCAGCCATAT		C T T C T T C		Atlantic Salmon
AATTGGGTACACATGCCCTGCTGGCAGCCATAT		C T T C T T C		Char
AATTGGGTACACATGCCCTGCTGGCAGCCATAT		C T T C T T C		Chum Salmon
AATTGGGTACACATGCCCTGCTGGCAGCCATAT		C T T C T T C		Coho Salmon
AATTGGGTACACATGCCCTGCTGGCAGCCATAT		C T T C T T C		King Salmon
AATTGGGTACACATGCCCTGCTGGCAGCCATAT		C T T C T T C		Pink Salmon
AATTGGGTACACATGCCCTGCTGGCAGCCATAT		C T T C T T C		Sockeye Salmon
AATTGGGTACACATGCCCTGCTGGCAGCCATAT		C T T C T T C		T r o u t
530	540	550	560	
TTTGCAATTAAATCACGAAAACTGCCAGAGAA		A T T A C G		Atlantic Salmon
TTTGCAATTAAATCACGAAAACTGCCAGAGAA		A T T A C C G		Char
TTTGCAATTAAATCACGAAAACTGCCAGAGAA		A T T T A C C G		Chum Salmon
TTTGCAATTAAATCACGAAAACTGCCAGAGAA		A T T T A C C G		Coho Salmon
TTTGCAATTAAATCACGAAAACTGCCAGAGAA		A T T T A C C G		King Salmon
TTTGCAATTAAATCACGAAAACTGCCAGAGAA		A T T T A C C G		Pink Salmon
TTTGCAATTAAATCACGAAAACTGCCAGAGAA		A T T T A C C G		Sockeye Salmon
TTTGCAATTAAATCACGAAAACTGCCAGAGAA		T r o u t		
570	580	590		
AGGCTAAGTTCATCACCTTCAGCAGCTCATCTT				Atlantic Salmon
AGGCTAAGTTCATCACCTTCAGCAGCTCATCTT				Char
AGGCTAAGTTCATCACCTTCAGCAGCTCATCTT				Chum Salmon
AGGCTAAGTTCATCACCTTCAGCAGCTCATCTT				Coho Salmon
AGGCTAAGTTCATCACCTTCAGCAGCTCATCTT				King Salmon
AGGCTAAGTTCATCACCTTCAGCAGCTCATCTT				Pink Salmon
AGGCTAAGTTCATCACCTTCAGCAGCTCATCTT				Sockeye Salmon
AGGCTAAGTTCATCACCTTCAGCAGCTCATCTT				T r o u t

Decoration 'Decoration #1': Shade (with black at 40% fill) residues that differ from the Consensus.

FIG. 26C

Docket No.: 2213.1004-012
 Title: METHODS FOR RAISING...
 Inventors: H. William Harris, Jr., et al.

	10	20
1	Leu Ala Leu Cys Ser Val Leu Gly Val Phe Ile Thr Ala Phe Val Met Gly Val Phe Ile Atlantic Salmon ORF	
1	Leu Ala Leu Cys Ser Val Leu Gly Val Phe Ile Thr Ala Phe Val Met Gly Val Phe Ile Char ORF	
1	Leu Ala Leu Cys Ser Val Leu Gly Val Phe Ile Thr Ala Phe Val Met Gly Val Phe Ile Chum Salmon ORF	
1	Leu Ala Leu Cys Ser Val Leu Gly Val Phe Ile Thr Ala Phe Val Met Gly Val Phe Ile Coho Salmon ORF	
1	Leu Ala Leu Cys Ser Val Leu Gly Val Phe Ile Thr Ala Phe Val Met Gly Val Phe Ile King Salmon ORF	
1	Leu Ala Leu Cys Ser Val Leu Gly Val Phe Ile Thr Ala Phe Val Met Gly Val Phe Ile Pink Salmon ORF	
1	Leu Ala Leu Cys Ser Val Leu Gly Val Phe Ile Thr Ala Phe Val Met Gly Val Phe Ile Sockeye Salmon ORF	
1	Leu Ala Leu Cys Ser Val Leu Gly Val Phe Ile Thr [REDACTED] Phe Val Met Gly Val Phe Ile Trout ORF	
	30	40
61	[REDACTED] Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn Arg Glu Leu Ser Tyr Leu Leu Leu Atlantic Salmon ORF	
61	Arg Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn Arg Glu Leu Ser Tyr Leu Leu Leu Char ORF	
61	Arg Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn Arg Glu Leu Ser Tyr Leu Leu Leu Chum Salmon ORF	
61	Arg Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn Arg Glu Leu Ser Tyr Leu Leu Leu Coho Salmon ORF	
61	Arg Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn Arg Glu Leu Ser Tyr Leu Leu Leu King Salmon ORF	
61	Arg Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn Arg Glu Leu Ser Tyr Leu Leu Leu Pink Salmon ORF	
61	Arg Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn Arg Glu Leu Ser Tyr Leu Leu Leu Sockeye Salmon ORF	
61	Arg Phe Arg Asn Thr Pro Ile Val Lys Ala Thr Asn Arg Glu Leu Ser Tyr Leu Leu Leu Trout ORF	
	50	60
121	Phe Ser Leu Ile Cys Cys Phe Ser Ser Ser Leu Ile Phe Ile Gly Glu Pro Gln Asp Trp Atlantic Salmon ORF	
121	Phe Ser Leu Ile Cys Cys Phe Ser Ser Ser Leu Ile Phe Ile Gly Glu Pro Gln Asp Trp Char ORF	
121	Phe Ser Leu Ile Cys Cys Phe Ser Ser Ser Leu Ile Phe Ile Gly Glu Pro Gln Asp Trp Chum Salmon ORF	
121	Phe Ser Leu Ile Cys Cys Phe Ser Ser Ser Leu Ile Phe Ile Gly Glu Pro Gln Asp Trp Coho Salmon ORF	
121	Phe Ser Leu Ile Cys Cys Phe Ser Ser Ser Leu Ile Phe Ile Gly Glu Pro Gln Asp Trp King Salmon ORF	
121	Phe Ser Leu Ile Cys Cys Phe Ser Ser Ser Leu Ile Phe Ile Gly Glu Pro Gln Asp Trp Pink Salmon ORF	
121	Phe Ser Leu Ile Cys Cys Phe Ser Ser Ser Leu Ile Phe Ile Gly Glu Pro Gln Asp Trp Sockeye Salmon ORF	
121	Phe Ser Leu Ile Cys Cys Phe Ser Ser Ser Leu Ile Phe Ile Gly Glu Pro Gln Asp Trp Trout ORF	
	70	80
181	Thr Cys Arg Leu Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile Atlantic Salmon ORF	
181	Thr Cys Arg Leu Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile Char ORF	
181	Thr Cys Arg Leu Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile Chum Salmon ORF	
181	Thr Cys Arg Leu Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile Coho Salmon ORF	
181	Thr Cys Arg Leu Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile King Salmon ORF	
181	Thr Cys Arg Leu Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile Pink Salmon ORF	
181	Thr Cys Arg Leu Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile Sockeye Salmon ORF	
181	Thr Cys Arg Leu Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu Cys Ile Ser Cys Ile Trout ORF	
	90	100
241	Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro Thr Ser Leu His Atlantic Salmon ORF	
241	Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro Thr Ser Leu His Char ORF	
241	Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro Thr Ser Leu His Chum Salmon ORF	
241	Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro Thr Ser Leu His Coho Salmon ORF	
241	Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro Thr Ser Leu His King Salmon ORF	
241	Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro Thr Ser Leu His Pink Salmon ORF	
241	Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro Thr Ser Leu His Sockeye Salmon ORF	
241	Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe Glu Ala Lys Ile Pro Thr Ser Leu His Trout ORF	

FIG. 27A

	110	120	
301	Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu Val Phe Thr Phe Val Gln	Atlantic Salmon ORF	
301	Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu Val Phe Leu Phe Thr Phe Val Gln	Char ORF	
301	Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu Val Phe Leu Phe Thr Phe Val Gln	Chum Salmon ORF	
301	Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu Val Phe Leu Phe Thr Phe Val Gln	Coho Salmon ORF	
301	Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu Val Phe Leu Phe Thr Phe Val Gln	King Salmon ORF	
301	Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu Val Phe Leu Phe Thr Phe Val Gln	Pink Salmon ORF	
301	Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu Val Phe Leu Phe Thr Phe Val Gln	Sockeye Salmon ORF	
301	Arg Lys Trp Trp Gly Leu Asn Leu Gln Phe Leu Leu Val Phe Leu Phe Thr Phe Val Gln	Trout ORF	
	130	140	
361	Val Met Ile Cys Val Val Trp Leu Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp	Atlantic Salmon ORF	
361	Val Met Ile Cys Val Val Trp Leu Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp	Char ORF	
361	Val Met Ile Cys Val Val Trp Leu Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp	Chum Salmon ORF	
361	Val Met Ile Cys Val Val Trp Leu Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp	Coho Salmon ORF	
361	Val Met Ile Cys Val Val Trp Leu Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp	King Salmon ORF	
361	Val Met Ile Cys Val Val Trp Leu Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp	Pink Salmon ORF	
361	Val Met Ile Cys Val Val Trp Leu Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp	Sockeye Salmon ORF	
361	Val Met Ile Cys Val Val Trp Leu Tyr Asn Ala Pro Pro Ala Ser Tyr Arg Asn His Asp	Trout ORF	
	150	160	
421	Ile Asp Glu Ile Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe Leu	Atlantic Salmon ORF	
421	Ile Asp Glu Ile Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe Leu	Char ORF	
421	Ile Asp Glu Ile Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe Leu	Chum Salmon ORF	
421	Ile Asp Glu Ile Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe Leu	Coho Salmon ORF	
421	Ile Asp Glu Ile Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe Leu	King Salmon ORF	
421	Ile Asp Glu Ile Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe Leu	Pink Salmon ORF	
421	Ile Asp Glu Ile Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe Leu	Sockeye Salmon ORF	
421	Ile Asp Glu Ile Ile Phe Ile Thr Cys Asn Glu Gly Ser Met Met Ala Leu Gly Phe Leu	Trout ORF	
	170	180	
481	Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Phe Ala Phe Lys Ser Arg Lys	Atlantic Salmon ORF	
481	Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Phe Ala Phe Lys Ser Arg Lys	Char ORF	
481	Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Phe Ala Phe Lys Ser Arg Lys	Chum Salmon ORF	
481	Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Phe Ala Phe Lys Ser Arg Lys	Coho Salmon ORF	
481	Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Phe Ala Phe Lys Ser Arg Lys	King Salmon ORF	
481	Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Phe Ala Phe Lys Ser Arg Lys	Pink Salmon ORF	
481	Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Phe Ala Phe Lys Ser Arg Lys	Sockeye Salmon ORF	
481	Ile Gly Tyr Thr Cys Leu Leu Ala Ala Ile Cys Phe Phe Phe Ala Phe Lys Ser Arg Lys	Trout ORF	
	190		
541	Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile Thr Phe Ser Met Leu Ile	Atlantic Salmon ORF	
541	Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile Thr Phe Ser Met Leu Ile	Char ORF	
541	Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile Thr Phe Ser Met Leu Ile	Chum Salmon ORF	
541	Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile Thr Phe Ser Met Leu Ile	Coho Salmon ORF	
541	Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile Thr Phe Ser Met Leu Ile	King Salmon ORF	
541	Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile Thr Phe Ser Met Leu Ile	Pink Salmon ORF	
541	Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile Thr Phe Ser Met Leu Ile	Sockeye Salmon ORF	
541	Leu Pro Glu Asn Phe Thr Glu Ala Lys Phe Ile Thr Phe Ser Met Leu Ile	Trout ORF	

Decoration 'Decoration #1': Shade (with black at 40% fill) residues that differ from the Consensus.

FIG. 27B

Docket No.: 2213.1004.012
 Title: METHODS FOR RAISING...
 Inventors: H. William Harris, Jr., et al.

aattccgttg ctgtcggttc agtccaagtc tcctccagtgc caaaaatgaga aatgggtggtc 60
 gccattacag gaacatgcac tacatctgtg ttaatgaaat attgtcagtt atctgaagg 120
 tattaaaatgt ttctcgcaag gatggctca cgagaaaatca attctgcacg ttttcccatt 180
 gtcattgtat gaataactga ccaaagggtat gtaacaaaat ggaacaaagc tgaggaccac 240
 gttcaccctt tcttggagca tacatcaac cctgaaggag atgaaagact tgaggaggaa 300
 atggggattt atcttccagg agtctgtctg taaagcgatc cctcaccatt acaaagataa 360
 gcagaaaatcc tccaggcgatc ctctgtaaac gggctggcgt agtgtggctt ggtcaaggaa 420
 cagagacagg gctgcacaat ggctcagtt cactgccaac tcttattctt gggatttaca 480

ORF

ctcctacagt cgtacaatgt ctcagggtat ggtccaaacc aaaggcccga gaagaaagga 540
 gacatcatac tgggaggctt ctccccata cactttggag tagccgcac ggatcaggac 600
 ttaaaatcgat gaccggggc gacaaaatgt attcggtaca attttcgagg cttccgatgg 660
 ctccaggcgat tgatattcg aattgaagag attaacaaca gtatgacttt cctgcccata 720
 atcacccctgg gatatacgat atttgacacg tgtaacacccg tgcccaaggc gctagaggca 780
 acaactcgat ttgtggccca gaacaaaatc gactcgctga acttagatga gttctgttaac 840
 tgctctgacc atatccatc cacaatcgca gtggtcgggg caaccgggtc aggaatctcc 900
 acggctgtgg ccaatctatt gggattattt tacattccac aggtcagcta tgcctctcg 960
 agcaggctgc tcagcaacaa gaatgagttc aaggccttc tgaggaccat ccccaatgtat 1020
 gagaaacacagg ccacggccat ggcggagatc atcgacact tccagtggaa ctgggtggaa 1080
 accctggcgcc cgcgacgtga ctatggccgc ccaggcattt acaagttccg ggaggaggcc 1140
 gttaaagaggg acatctgtat tgacttcgt gagatgtct ctcagtacta caccaggaaag 1200
 cagttggagt tcatcgccga cgtcatccat aactcctcg ccaaggtcat cgtggcttc 1260
 tccaatggcc ccgacctggc ggcgtcatac caggagatag ttccggagaaa catcaccat 1320
 cggatctggc tggccagcga ggcttggcc agtcttcgc tcattgcac gccagagatc 1380
 ttccacgtgg tcggcggcac catcggttc gctctcaggc cggggcgtat cccagggttc 1440
 aacaagttcc tgaaggaggt ccaccccagc aggtcctcg acaatgggt tgcggagag 1500
 ttctgggagg agaccttcaa ctgtacttc accgagaaga ccctgacgc gctgaagaat 1560
 tccaagggtgc cctcgcacgg accggcggct caaggggacg gctccaaaggc ggggaactcc 1620
 agacggacag ccctacgcca cccctgcact ggggaggaga acatcaccag cgtggagacc 1680
 ccctacctgg attatacaca cctgaggatc tcctacaatg tatacggtgc cgtctactcc 1740
 attgtctcagc ccctgcaaga catccactt tgcaaacccg gcacggccat tttgcaaac 1800
 gnatcttgcg cagatattaa aaaagttgg gcttggcagg tcctcaacca tctgtcgtat 1860
 ctgaagttt ccaacagcat gggtgagcag gttgacttt acgtcaagg tgacctcaag 1920
 gggactaça ccattatcaa ctggcagtc tccgcagagg atgaatcggt gttttccat 1980
 gaggtgggca actacaacgc ctacgctaa cccagtgcac gactcaacat caacgaaag 2040
 aaaatccctt ggagtggctt ctcacaaatgt gttcccttcc ccaatgcacg tggagactgt 2100
 gtgcggggca ccaggaaggg gatcatcgag ggggagccca cctctgtctt tgaatgcac 2160
 gcatgtgcag agggagagtt cagtgatgaa aacgatgcaatgtgcgtgtac aaagtgcac 2220
 aatgattttt ggtcgaatga gaaccacacg tgcgtcatcg ccaaggagat cgagtacctg 2280
 tcgtggacgg agcccttccg gatecgtctc accatctcg ccgtactggg catcctgatc 2340
 acctccctcg tgctgggggtt cttcatcaag tccaggaaca ctcccatgt gaaggccacc 2400
 aaccgggagt tgccttacat gctgtcttc tccctcatct gctgttctc cagctcgctc 2460
 atcttcatcg gcgagcccg ggactggacc tgcgtcatcg gccaaacccggc ctttggcattc 2520
 agcttcgtcc tgcacatctc ctgcacatctc gtgaagacca accgggtgt gctggcttc 2580
 gaggccaaga tccccaccag cttccaccgc aagtgggtgg gcctcaaccc gcatgtcctc 2640
 ctggcttc tctgcacatctc ggtgcaaaatc tgcacctgc tcatctggctt ctacaccgc 2700
 cctccctcca gctacagaa ccatgagctg gaggacgagg tcatcttcat caccgtcgac 2760
 gagggctcgc tcatggcgtt gggcttccat atcggtacatca cctgcctctc cgccgcac 2820
 tgcttcttctc tgccttc tgccttc gtcacctgc tcatctggctt ctacaccgc 2880
 atcacccatca gcatgttgc ttttcttcat gtcacccatcg tcatctggctt ctacaccgc 2940
 agcacctacg gcaagtttgc gtcggccgtt gagggtattt ccacccatcg cttccagcttc 3000
 gggctgtgg gctgcattt cttcaacaatc tgcacccatcg tcatctggctt ctacaccgc 3060
 aacaccatcg aggagggtgc gtcacccatcg gggccacg cttcaacat ggcggcccg 3120
 gccaccctcc ggcgcacgc cgcgtctcg aacccatcg tcatctggctt ctacaccgc 3180
 atctccctcgcc cgcctcgatc caccgtcgatc ccggccatcg tcatctggctt ctacaccgc 3240

FIG. 28A

Docket No.: 2213.1004-012
Title: METHODS FOR RAISING...
Inventors: H. William Harris, Jr., et al.

agcacgcaga aggtcagctt cggcagcggc accgtcaccc tgcgtcgatcag cttcgaggag 3300
acaggccgat acgccaccct cagccgcacg gcccgcagca ggaactcggc ggatggccgc 3360
agcggcgacg acctgcccattc tagacaccac gaccagggcc cgcttcagaa atgcgagccc 3420
cagcccccca acgatgcccgg atacaaggcg gcccgcacca agggcaccct agagtcgccc 3480
ggcggcagca aggagcgcgg cacaactatg gaggaaaaactt aatccaactc ctccatcaac 3540
cccaagaaca tcctccacgg cagcaccgtc gacaactgtc atcaactctt aaccgggtggc 3600
tgcccaaccc ttcccttcctc cggcaacttg cgaaaaactt aatccaactc atctgcagt 3660
tccttttatac cttgtttttc tgacttggat atttacttagt gtgcgtatggaa atatcacaac 3720
ataatgagtt gcacaaattag gtgagcagag ttgtgtcaaa gtatctgaac tatctgaagt 3780
atctgaacta ctttattctc tcgaattgtt ttacaaacat ttgaagtatt tttagtgcaca 3840
ttatgttcta acattgtcaa gataattgtt tacaacatata aaggtaaccac ctgaagcagt 3900
gactgagatt gccactgtga tgacagaact gttttataac atttataattt gaaaccttgg 3960
ttgcaacagg aatataatga ctgttaacaaa aaaattttt attatcttaa aaatgcaaatt 4020
tgtaatcaga tgtgtaaaaat tggtaattac ttctgtacat taaaatgcata tttcttgata 4080
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaagcgg cccgacagca acgg 4134

FIG. 28B