Python - Analiza danych z modułem PANDAS

www.udemy.com (http://www.udemy.com) (R)

LAB - Wykres scatter hexbin area

1. Uruchom poniższy fragment kodu, aby przygotować dane do rysowania wykresu (wszystkie zastosowane polecenia powinny Ci już być na tym etapie znane):

```
import pandas as pd
import numpy as np
import matplotlib as plt
%matplotlib inline

marathon = pd.read_csv("./marathon_results_2017.csv", usecols=["Age","M/F","Country","40K"])
marathon["TimeSeconds"] = marathon["40K"].apply(lambda x: pd.Timedelta(x).total_seconds())
marathon.head(5)
```

- 2. Wyświetl wykres punktowy prezentujący zależność wieku (kolumna **Age**) od czasu potrzebnego do przebiegnięcia maratonu (kolumna **TotalSeconds**)
- 3. Korzystając z data frame **marathon** utwórz dwa nowe obiekty data frame: **marathon_m** z wynikami mężczyzn (w kolumnie **M/F** znajduje się wartość **M**) oraz **marathin_w** z wynikami kobiet (w kolumnie **M/F** znajduje się **F**)
- 4. Korzystając z data frame **marathon_m** i **marathon_w** utwórz wykres punktowy nakładając na wyniki mężczyzn wyniki kobiet. Odpowiedz na pytanie "czy wśród osób po 70-ce chętniej biegają panowie czy panie".
- 5. Korzystając z data frame **marathon_m** i **marathon_w** utwórz dwa oddzielne wykresy typu hexbin. Poeksperymentuj z parametrem gridsize
- 6. Wykonaj poniższe polecenia importujące dane do kolejnego wykresu:

Rozwiązania:

Poniżej znajdują się propozycje rozwiązań zadań. Prawdopodobnie istnieje wiele dobrych rozwiązań, dlatego jeżeli rozwiązujesz zadania samodzielnie, to najprawdopodobniej zrobisz to inaczej, może nawet lepiej :) Możesz pochwalić się swoimi rozwiązaniami w sekcji Q&A

```
In [1]: import pandas as pd
import numpy as np
import matplotlib as plt
%matplotlib inline

marathon = pd.read_csv("./marathon_results_2017.csv", usecols=["Age","M/F","Country","40K"])
marathon["TimeSeconds"] = marathon["40K"].apply(lambda x: pd.Timedelta(x).total_seconds())
marathon.head(5)
```

Out[1]:

	Age	M/F	Country	40K	TimeSeconds
0	24	М	KEN	2:02:53	7373.0
1	30	М	USA	2:03:14	7394.0
2	25	М	JPN	2:03:38	7418.0
3	32	М	USA	2:04:35	7475.0
4	31	М	KEN	2:05:00	7500.0

```
In [2]: marathon.plot(kind="scatter", x="Age", y="TimeSeconds")
```

Out[2]: <matplotlib.axes._subplots.AxesSubplot at 0x1cbb843f438>

Out[3]:

	Age	M/F	Country	40K	TimeSeconds
0	24	М	KEN	2:02:53	7373.0
1	30	М	USA	2:03:14	7394.0
2	25	М	JPN	2:03:38	7418.0
3	32	М	USA	2:04:35	7475.0
4	31	М	KEN	2:05:00	7500.0

In [4]: marathon_w = marathon[~ is_man]
 marathon_w.head(5)

Out [4]: Age M/F Country 40K TimeSeconds

	Age	M/F	Country	40K	TimeSeconds
20	37	F	KEN	2:14:43	8083.0
23	27	F	BRN	2:15:42	8142.0
24	25	F	USA	2:15:54	8154.0
		_			

In [5]: ax = marathon_m.plot.scatter(x="Age", y="TimeSeconds", color="Blue", label="M")
marathon_w.plot.scatter(x="Age", y="TimeSeconds", color="Pink", ax=ax)

Out[5]: <matplotlib.axes. subplots.AxesSubplot at 0x1cbb87e1240>


```
In [6]: marathon_m.plot.hexbin(x="Age", y="TimeSeconds", gridsize=30)
```

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x1cbb880bf60>

In [7]: marathon_w.plot.hexbin(x="Age", y="TimeSeconds", gridsize=30)

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x1cbb883c588>


```
In [8]: import datetime
```

```
#Import data
nasa = pd.read csv("nasa facebook statuses.csv",
            usecols=["status published", "num likes"])
#Convert column type to date time
nasa["status published"] = pd.to datetime(nasa["status published"])
#Select observations between two datetimes - May 2015
filter =(nasa['status published'] >= '2016-5-1') & (nasa['status published'] < '2016-6-1')</pre>
nasa = nasa[filter]
#Add column with day only
nasa['day'] = nasa.apply(lambda row: row["status published"].day,axis=1)
#Group all columns by sum
nasa by day = nasa.groupby(by='day').sum()
#Import data
bean = pd.read csv("mrbean facebook statuses.csv",
            usecols=["status published", "num likes"])
#Convert column type to date time
bean["status published"] = pd.to datetime(bean["status published"])
#Select observations between two datetimes - May 2015
filter = (bean['status published'] >= '2016-5-1') & (bean['status published'] < '2016-6-1')
bean = bean[filter]
#Add column with day only
bean['day'] = bean.apply(lambda row: row["status published"].day,axis=1)
#Group all columns by sum
bean_by_day = bean.groupby(by='day').sum()
days = nasa["day"].append(bean["day"])
days = days.unique()
fb = pd.DataFrame(index=days).sort index()
fb['nasa'] = nasa by day["num likes"]
```

```
fb['bean'] = bean_by_day["num_likes"]
fb.fillna(value=0, inplace=True)
fb.head()
```

Out[8]:

```
In [9]: fb.plot(kind="area")
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x1cbb89c1240>

In []:

