Linear SVM: objective

starting objective:
$$\gamma_{\mathbf{w},b} = \min_{\mathbf{x}_i \in \mathbf{X}} \frac{\|\mathbf{w}^T \mathbf{x}_i + b\|}{\|\mathbf{w}\|_2}$$

What's the problem with this?

 \mathbf{w}, b are unconstrained!

```
constraint: \forall i \ y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 0
```

objective: $\max_{\mathbf{w},b} \frac{1}{\|\mathbf{w}\|_2} \left[\min_{\mathbf{x} \in \mathbf{X}} |\mathbf{w}^T \mathbf{x} + b| \right]$ s.t. $y_i(\mathbf{w}^T \mathbf{x}_i + b) \leq$

new problem: scale of \mathbf{w}, b unconstrained; sol's not unique

new constraint: $\min |\mathbf{w}^T \mathbf{x}_i + b| = 1$

new objective:
$$\min_{\mathbf{w},b} \|\mathbf{w}\|_2^2$$
 s.t. $\forall i \ y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

Linear SVM: objective

starting objective:
$$\gamma_{\mathbf{w},b} = \min_{\mathbf{x}_i \in \mathbf{X}} \frac{|\mathbf{w}^T \mathbf{x}_i + b|}{\|\mathbf{w}\|_2}$$

What's the problem with this? w, b are unconstrained!

constraint:
$$\forall i \ y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 0$$

new objective:
$$\max_{\mathbf{w},b} \frac{1}{\|\mathbf{w}\|_2} \left[\min_{\mathbf{x} \in \mathbf{X}} |\mathbf{w}^T \mathbf{x} + b| \right]$$
 s.t. $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 0$

new problem: scale of w, b unconstrained; sol's not unique

new constraint:
$$\min_{\mathbf{x} \in \mathbf{X}} |\mathbf{w}^T \mathbf{x}_i + b| = 1$$

new objective:
$$\min_{\mathbf{w},b} \|\mathbf{w}\|_2^2$$
 s.t. $\forall i \ y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

The primal SVM objective is a quadratic program

primal form of objective: