datapath for R-type instructions add \$r1, \$r0, \$r3

5 bits for read register numbers

32 bits for two output data and a write data

2. Load / Store instructions

- both register files and ALU (address calculation)
- Memory and sign extension (32-bit elements in MIPS)

lw \$s1, 100(\$s2) // \$s1 = Memory[\$s2 + 100]

a. Data memory unit

b. Sign extension unit

Share Target Register: add \$s1, \$s2, \$s3 // \$s1 = \$s2 + \$s3 From arithmetic results From memory Read **ALU** operation register 1 Read MemWrite data 1 Read MemtoReg Zero register 2 Instruction **ALUSrc** ALU ALU Registers Read Write 0 result data 2 Μ M register u X X Write data RegWrite 32 16 MemRead

- * Two steps and operations
 - 1. Compute the branch target address
 - 2. Compare the register contents

° R[rd] <- R[rs] op R[rt]

Example: add

add rd, rs, rt add r3, r5, r6

$$// r3 = r5 + r6$$

R[rt] <- Mem[R[rs] + SignExt[imm16]]

Example: lw rt, rs, lw r7, 30(r8)

° beg rs, rt, imm16

beq r3,r4,1000 OR beq r3, 1000(r4)

- Selecting the operations to perform (ALU, read/write, etc.)
 - Controlling the flow of data (multiplexor inputs)
 - Information comes from the 32 bits of the instruction
 - · ALU's operation based on instruction type and function code

000000 10	0001	10010	01001	00000	100000	
op	rs	rt	rd	shamt	funct	
Instruction	о Орсо	de → ALU	op (2 bits)	ALU Control	ALU Conti	ALU operation
i <u>nstruction</u> format	7	[fund	ct:6 bits]	Unit	(4 bits)	

opcode	ALUOp	Operation	Operation funct		ALU control	
lw	00	load word	XXXXXX	add	0010	
sw	00	store word	XXXXXX	add	0010	
beq	01	branch equal	XXXXXX	subtract	→ 0110	
R-type	10	add	100000	add	0010	
		subtract	100010	subtract	0110	
		AND	100100	AND	0000	
		OR	100101	OR	0001	
		set-on-less-than	101010	set-on-less-than	0111	

C. Chana@IECS FCU

Computer Org. The Processor -28

					In	put				Output	
		ALU	Funct field						Operation		
		ALUOp1	ALUOp0	F5	F4	F3	F2	F1	F0		
load/stor	е		**								
word	LW/SW	0	0	Х	X	X	X	X	X	010	
branch	BE	X	1	_X_	X	X	_X_	X	X	110	
R-type	add	1	X	X	X	0	0	0	0	010	
R-type	substract	1	X	X	X	0	0	1	0	110	
R-type	and	1	X	X	X	0	1	0	0	000	
R-type	or	1	X	X	X	0	1	0	1	001	
R-type	set on less than	1	х	X	x	1	0	1	0	111	

° Observations :

- Op: 31:26 (6 bits) → Op[5:0]
- 2 source registers: 25:21(rs), 20:16(rt)
- Base register for load and store : 25:21 (rs)
- Offset for branch equal, load, store: 15:0
- Destination register: 20:16(rt, for lw, sw) / 15:11(rd, for R-type)

	0	1
RegDst	用到2個暫存器,讀取 20:16的位置	用到3個暫存器,讀取15:11 的位置
RegWrite	拒絕資料寫入	允許資料寫入
ALUSrc	使用data2出來的資料放入 ALU	使用有號擴充後的資料放入 ALU(通常是有關記憶體陣列)
PCSrc	PC=PC+4	使用跳躍指令(jump)時,如 果要跳躍需要開啟
MemRead	拒絕記憶體資料讀取	允許記憶體資料讀取
MemWrite	拒絕記憶體資料寫入	允許記憶體資料寫入
MemtoReg	寫入暫存器的資料來自ALU 算出(未使用記憶體)	寫入暫存器的資料來自記憶 體

Signal name	Effect when deasserted (0)	Effect when asserted (1)
RegDst	The register destination number for the Write register comes from the rt field (bits 20:16).	The register destination number for the Write register comes from the rd field (bits 15:11).
RegWrite	None.	The register on the Write register input is written with the value on the Write data input.
ALUSrc	The second ALU operand comes from the second register file output (Read data 2).	The second ALU operand is the sign-extended, lower 16 bits of the instruction.
PCSrc	The PC is replaced by the output of the adder that computes the value of PC + 4.	The PC is replaced by the output of the adder that computes the branch target.
MemRead	None.	Data memory contents designated by the address input are put on the Read data output.
MemWrite	None.	Data memory contents designated by the address input are replaced by the value on the Write data input.
MemtoReg	The value fed to the register Write data input comes from the ALU.	The value fed to the register Write data input comes from the data memory.

| MemRead | Me

control

Computer Org.

Main control

Instruction	RegDst	ALUSrc	Memto- Reg		The second second second		The second secon	ALUOp1	ALUp0
R-format	1	0	0	1	0	0	0	1	0
lw	0	1	1	1	1	0	0	0	0
SW	X	1	X	0	0	1	0	0	0
beq	X	0	X	0	0	0	1	0	1

beq X 0 X 0 0 1 0 1 er Org.

K.-C. Chang@IECS FCU

The Processor -37

5. (21 pts) 下圖是 MIPS single-cycle CPU 的路線圖,請寫出以下指令執行時訊號會經過的編號與順序(請將編號由小到大排序)。
(a) beq \$s1, \$s2, 100 [假設判斷條件成立]
ANS: 條件成立: 1, 3, 4, 5, 6, 8, 9, 12,
(b) lw \$s1, 100(\$s2)
ANS: 1, 2, 4, 5, 7, 8, 10, 13, 15, 16
(c) add \$s1, \$s2, \$s3
ANS: 1, 2, 4, 5, 6, 7, 8, 9, 14, 16

條件成立代表會進行跳躍

5、6、7, lw sw是5、7, 因為它是兩個暫存器但是有使用到記憶體像是beq bne使用兩個暫存器但是沒使用記憶體, 所以是5、6 而add 使用了三個暫存器, 所以是5、6、7

8, 9, 10,