A REVIEW OF TEXTURES FOUND IN COMMERCIAL PANALYM SHEET

ANTHONE ZARKADES and FRANK R. LARSON DEVELOPMENT AND ENGINEERING LABORATORY

December 1971

鸿

Approved for public release; distribution unlimited.

ARMY MATERIALS AND MECHANICS RESEARCH CENTER Watertown, Massachusetts 02172

Reproductive NATIONAL TECHNICAL INFORMATION SERVICE

ACCESSI	₩ tor		
CFSTI	WB	ITE SECTIO	1 6
950		UFF SECTIO	1
JKAN.	680.	1	
COSTIFIC	NOITA		.
		******** ***	}
BY			Į
DISTAIL	ution/AVA	PLADILITY (200E8
!	: Ti Aynıl	1. 91	
- BRI.	AX 131.	, azs or ei	EGIAL
· 1	1	İ	
14	-	i	Ì
71	1		

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Mention of any trade names or manufacturers in this report shall not be construed as advertising nor as an official indorsement or approval of such products or companies by the United States Government.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer seeded. No not return it to the originator.

Orto Oten 10 and

Security Classification				
DOCUMENT CONT				
(Security classification of title, body of abstract and indexing a	nnotation must be			
1. ORIGINATING ACTIVITY (Corporate author)		20. REPORT SECURITY CLASSIFICATION		ATION
Army Materials and Mechanics Research Center		Unclassified		
Watertown, Massachusetts 02172		25. GROUP		
3. REPORT TITLE		<u></u>		
A REVIEW OF TEXTURES FOUND IN COMMERCIAL T	ITANIUM SHE	ET		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)		, 		······································
5- AUTHOR(5) (First name, middle initial, last name)				
Anthone Zarkades and Frank R. Larson			•	٠,
6. REPORT DATE	74. TOTAL NO. C	F PAGES	Th. NO. OF REFS	,(
December 1971	75		20	
Se. CONTRACT OR GRANT NO.	SE. ORIGINATOR	S REPORT NUM	ER(\$)	
6. PROJECT NO. D/A 1T061102B32A	AMMRC TR	71-60		•
c. AMCMS Code Number 501B.11.85500-X032164	Sb. OTHER REPO	RT NO(5) (Any ut	her numbers that may	be evalened
d. Agency Accession Number DA GB4807		····		
10. DISTRIBUTION STATEMENT				
Approved for public release; distribution	unlimited.			
11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY				
		y Materiel on, D. C. 2		
13. ABSTRACT	1:00 00000	ning the de	arelemment and	d charac-

A compilation of data generated during studies concerning the development and characterization of titanium textures is presented. Results include pole figures, elastic and plastic properties in tension, and microstructures. Materials were examined in the as-received condition and in some cases after various heat treatments.

A wide range of textures were found for nine titanium alloys including commercially pure, Ti-6Al-4V, Ti-4Al-3Mo-1V, Ti-8Al-1Mo-1V, Ti-6Al-6V-2Sn, Ti-8Mn, Ti-4Al-4Mn, Ti-16V-2.5Al, and Ti-7Al-3Mo. The textures found indicate that the technological barrier for application of texture strengthening is due to the lack of established mill procedures for developing the desired texture and not that the specific preferred orientations are unattainable in titanium alloys. (Authors)

Ii

DD FORM 1473 REPLACES DO PORM 1475. 1 JAN 64, WHICH IS

UNCLASSIFIED

Security Classification

Security Classification LINK LINK A LINK C KEY WORDS ROLE ROLE Metal sheets Titanium alloys Texture Microstructure Heat treatment Mechanical properties Orientation $\sqrt{\psi}$

UNCLASSIFIED

AMMRC TR 71-60

A REVIEW OF TEXTURES FOUND IN COMMERCIAL TITANIUM SHEET

Technical Report by

ANTHONE ZARKADES and FRANK R. LARSON

December 1971

Details of illustrations in this document may be better studied on microfiche

D/A Project 1T061102B32A AMCMS Code 501B.11.85500 Research in Materials Agency Accession Number DA OB4807

Approved for public release; distribution unlimited.

10.2

DEVELOPMENT AND ENGINEERING LABORATORY ARMY MATERIALS AND MECHANICS RESEARCH CENTER Watertown, Massachusetts 02172

1

ARMY MATERIALS AND MECHANICS RESEARCH CENTER

A REVIEW OF TEXTURES FOUND IN COMMERCIAL TITANIUM SHEET

ABSTRACT

A compilation of data generated during studies concerning the development and characterization of titanium textures is presented. Results include pole figures, elastic and plastic properties in tension, and microstructures. Materials were examined in the as-received condition and in some cases after various heat treatments.

A wide range of textures were found for nine titanium alloys including commercially pure, Ti-6Al-4V, Ti-4Al-3Mo-1V, Ti-8Al-1Mo-1V, Ti-6Al-6V-2Sn, Ti-8Mn, Ti-4Al-4Mn, Ti-16V-2.5Al, and Ti-7Al-3Mo. The textures found indicate that the technological barrier for application of texture strengthening is due to the lack of established mill procedures for developing the desired texture and not that the specific preferred orientations are unattainable in titanium alloys.

Th

CONTENTS

	Page
ABSTRACT	
INTRODUCTION	1
TEXTURE IN TITANIUM	1
TEXTURE DETERMINATION	5
MECHANICAL PROPERTIES	6
RESULTS AND DISCUSSION	6
CONCLUSIONS	12
LITERATURE CITED	13
APPENDIX I - COMMERCIALLY PURE (UNALLOYED), RC-55-5-5032BM2	15
APPENDIX II - Ti-6A1-4V-M7199	27
APPENDIX III - Ti-4A1-3Mo-1V-M8018	37
APPENDIX IV - Ti-8A1-1Mo-1V-V1848	44
APPENDIX V - Ti-6A1-6V-2Sn-S	45
APPENDIX VI - Ti-8Mn-3442	47
APPENDIX VII - Ti-4A1-4Mn-B3319-2	51
APPENDIX VIII - Ti-16V-2.5A1-B24814	58
ADDENDIY IY Ti -741-3M0-1205	72

The state of the second state of the second
INTRODUCTION

As a result of early interest in the anisotropic properties of titanium sheet, ¹ a continuing study of the preferred crystallographic texture found in commercial titanium alloy sheets has been carried out over the last several years. This study has resulted in the accumulation of a large number of actual pole figures along with the mechanical properties of these sheets. As time passed, various programs were carried out in order to ascertain how certain types of textures were developed, and a greater understanding is now available by which the known textures can be classified. Since the interest in textures is increasing, particularly from a research and development standpoint, it seems important to record the results of these findings. Another important factor is that it is becoming more and more apparent that texture is a basic parameter necessary to understand and control such properties as Young's modulus, yield strength, tensile strength, Poisson's ratio, and toughness.

The awareness of the commercial importance of texture has, for the most part, been confined to magnetic sheet materials; however, the utilization of texture for the improvement of other properties will undoubtedly follow. How soon effective commercial usage can come about depends upon how readily the textures can be controlled and also how much specific gain may be obtained. In other words, it becomes a matter of difficulties versus advantages. In order to speed the day when textures can be commercially employed, a large effort toward developing a greater understanding of the fundamentals will be necessary.

The first step in texture control originates with the various processing stages at the mill. In most cases, ingot texture is of little significance since the large shape change resulting from processing is usually sufficient to eliminate ingot texture; thus, the last stages of deformation and heating produce most of the changes in the texture. Therefore, effective texture control can be obtained via precision heating and deformation schedules.

In the case of titanium, which exhibits a high degree of preferred orientation, very little information has been published regarding texturing; therefore, the process control of textures is not very well understood. One of the first steps in developing understanding of textures in commercial titanium alloys would be to determine textures in different sheets within the alloys of interest. This therefore constituted the main part of this program. Another phase of this study was to report the effects of heat treatment and alloying on the texture and mechanical properties.

TEXTURES IN TITANIUM

The purpose of this section is to review the textures found in titanium sheets, so that those listed in the Appendixes can be classified according to type or past processing history (much in the manner of the characterization of microstructure). The excellent review of textures in wrought and annealed

metals by Dillamore and Roberts² is a good starting point. A rore detailed discussion of the actual mechanics of texture formation is available in previous reports.³⁻¹⁰ The most prominent of several basic types of titanium sheet textures found is the cold-rolled heet.¹¹ A similar type is also found if the sheet is warm rolled between room temperature and about 1400F. This texture is characterized by an ing a basal (0002) pole intensity on the sheet normal (SN) transverse direction (TD), and a great circle at about 27 to 30 degrees from the SN. This texture is further defined by stating that the (1010) poles lie near, or in, the rolling direction (RD). This is shown in Figure 1 and is called an alpha deformation texture.

Figure 1. Alpha Deformation Texture

Annealing of cold- or warm-rolled sheets has only a slight sharpening effect upon the (0002) poles. However, the ($10\overline{10}$) poles rotate through an arbitrary angle of approximately 30 degrees about the C axis, resulting in the texture shown in Figure 2. This is called an annealed alpha deformation texture.

Figure 2. Annealed Alpha Deformation Texture

In most cases, it is not necessary to distinguish between an annealed and a cold-worked texture since many properties are symmetrical about the C axis. Thus, a basal pole figure is sufficient to define the crystallographic influence, and the above texture can be modified by either hot rolling ¹² (above 1400F but not above beta transus) and/or alloying. Important observations in relation to texture hardening were the early discovery that additions of aluminum (approximately 4 percent) and the most recent disclosure that copper (approximately 0.5 percent) produce the "ideal" texture. It has also been established that the ideal texture can be produced by round rolling. In fact, it seems possible to change the angle at which the basal pole lies from the sheet normal by combinations of alloying and hot rolling. Figure 3 illustrates this for two cases.

Figure 3. Extremes of Basal Pole Rotation

Sufficient amount of beta stabilizers (more than 15 percent volume retained beta at room temperature) or hot rolling in the alpha-beta field will cause a texture transition, and the new texture will have a basal pole figure which looks like the magnesium or zinc type as shown in Figure 4.

Figure 4. Magnasium or Zinc Texture Formed When Alpha-Beta Alioy (Greater Than 15 Volume Percent Beta) Is Worked

The final important texture found in titanium is that which develops from a beta-worked material and is a result of the Burgers transformation relationship $\{0001\}_{\alpha} \parallel \{110\}_{\beta}$, $<11\overline{20}>_{\alpha} \parallel <111>_{\beta}.^{15}$ It can be seen that since the basal plane in the alpha is parallel to the (110) plane in the beta, a determination of the (110) pole figure will give the basal pole figure after transformation. As in most bcc metals, hot or warm sheet rolling produces a texture which has a strong (100) [011] texture component. 16

Other minor orientation peak components are not usually found in titanium. If the composition has sufficient alloying to retain the beta at room temperature, the texture in Figure 5 will usually be found. On the other hand, if the beta deformation texture is developed by hot working in the beta field and transformation occurs on cooling or on aging as part of the heat treatment, the alpha basal pole figure will bear a simple relationship to the beta texture, as shown in Figure 6. However, there are some other textures that can be formed, but, these are of less commerical importance because they are infrequent and are a result of special processing or heat treatments. For example, a cube or (100) [011] texture can be formed by heating very high in the beta field, but this rarely happens in production because of the excessively large grain growth. For the most part, the textures found in commercial sheet and shown in the appendixes are either single type, as described above, or a simple combination of two basic types.

Figure 5. Beta Deformation Texture

Figure 6. Transformed Beta Deformation Texture

TEXTURE DETERMINATION

One quadrant pole figure was determined utilizing a unique reflection technique described by Lopata and Kula. 17 Specimen preparation for this method conists of cutting strips from the rolled sheet 45 degrees to the rolling direction, bonding them together, and grinding a surface which will have its normal equidistant from the rolling direction, transverse direction, and rolling plane normal. The whole thickness of the material is used, and the resultant pole figures are an average of the interior and surface textures. The position of the plane and the pole of this surface in a single quadrant are shown in Figure 7. The specimen after polishing is set in the goniometer with the proper 20 Bragg angle and is rotated through an azimuth and declination angle. X-ray intensities are recorded with corresponding angular alpha and beta positions and are then plotted to construct iso-intensity contour lines. The pole figures obtained in this manner have iso-intensities labeled 10, 20, 30 etc. and were determined by Strathmore Research Corporation.* Other textures illustrated in this report have the contour lines identified as 1, 2, 3....8. These pole figures were obtained on an automatic plotted pole figure which was developed at AMMRC. 18 This setup concurrently plots intensity versus azimuthal and declination angle, thereby automatically producing a texture diagram. This has eliminated the tedious and time consuming hand plotting of data previously required. Depending on dominating phase, alpha or beta, the basal plane (0002) or (110) pole figure was determined.

Figure 7. Position of Oblique Plane for Determining One Quadrant of Pole Figure by Reflection¹⁷

^{*}Strathmore Research Corporation, Contract DAAG-46-67-0-0019, Cambridge, Massachusetts.

Sheet tension specimens were machined at various angles to the rolling direction. In some instances, data are shown for specimens from 0 to 180 degrees. The transverse specimen would coincide with 90 degrees and longitudinal tests would be marked as 0 or 180 degrees. The test setup and testing procedure are identical to those published in prior reports. 19,20 A schematic of test setup and specimen orientation is shown in Figures 8 and 9. Some materials were subjected to various heat treatments, and these are indicated in the Appendices along with photomicrographs.

RESULTS AND DISCUSSION

For the most part commercially pure sheets show classical alpha deformation textures. However, there were two notable exceptions, RC-55-53230-2 and Ti-75A-Y290, each of which has remnants of a transformed beta deformation texture. In an RC-55 heated between 1400 and 1700F, there is no change of the alpha deformation texture with increasing temperature (see Table Ia).

Table Ia. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR COMMERCIALLY PURE TITANIUM

(SFF	ADDL	MIDITY	TΝ

Alloy	Heat No.	Thickness, in.	Condition*	Texture Type [†]
RC55 RC55 RC55 RC55 RC55 RC55 RC55 Ti100A Ti100A Ti100A Ti75A	5-5032BM2 53230-2 53284-bM4 NHN NHN NHN L730 L657 L658 L550 M290	0.125 0.050 0.130 0.140 0.140 0.140 0.140 0.065 0.030 0.030 0.060 0.100	A.R. A.R. A.R. ST 1400F 1 hr ST 1500F 1 hr ST 1600F 1 hr ST 1700F 1 hr A.F. A.R. A.R. A.R. A.R.	a Deformation Dual a deformation (ideal and TD Orientations) a deformation bual a deformation a deformation bual a deformation and transformed β deformation

^{*}A.R. — As received. ST — Solution treated followed by air cooling. $\dagger (0002)$ Pole figure, except where noted.

Figure 8. Schematic of Testing Apparatus

Figure 9. Tension Specimen Orientation

The Ti-6Al-4V alloy sheets (Table Ib) had several different texture types. One common texture observed for this alloy was a dual- or two-component texture where one component was in the TD and the other was near the SN (Heat M7199). In some cases, the peak near the SN was very low and that near the TD very intense, Heat M2803 (0.070 in). However, there was a unique case where the texture was nearly random, Heat M27003. Heats M2803 (0.030 in) and B22075 had a transformed beta deformation texture. The effect of heat treatment (Heat M2803, 0.070 in) is also shown with the material undergoing a texture change from an alpha deformation to a transformed beta deformation type as it was heated higher and higher through the alpha plus beta field into the beta field.

Table Ib. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR Ti-6Al'-4V

(SEE APPENDIX II)

Heat No.	Thickness, in	Condition*	Texture Type [†]
M7199	0.060	A.R.	Dual (T.D.a -deformation and Mg type)
B22075	0.130	A ₁ . R .	Transformed β deformation
M2803	0.070	A.R.	Dual (T.D.a -deformation and weak Mg type)
M2803	0.030	A.R.	Dual (strong T.D. α -deformation and remnants of β de-
M2803	0.060	STA-1450F 1/4 hr 1000F 4 hr	a Peformation (TD peak)
M2803	0.060	STA-1550F 1/4 hr 1000F 4 hr	a Deformation (TD peak)
M2803	0.060	STA-1650F 1/4 hr 1000F 4 hr	a Deformation (TD peak)
M2803	0.060	STA-1750F 1/4 hr 1000F 4 hr	Transformed β deformation
M27003	0.040	A.R.	Random
M27037	0.040	A.R.	Dual (a deformation and TD poles)

^{*}A.R.- As received. STA - Solution treated, water quenched and aged. †(0002) Pole figure, except where noted.

The alloy Ti-4Al-3Mo-IV (Table Ic) showed several cases of transformed beta deformation textures (Heats M8018, M8577, and M8173) heat treated. A dual-texture type similar to that found in Ti-6Al-4V was found in the case of Heat M8018 and, with increasing temperature, it went to a beta transformation type texture. Heat X70006 displayed a nearly ideal texture and the associated R values were very high, as would be expected.

Table Ic. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR Ti-4A1-3Mo-1V (SEE APPENDIX III)

Heat No.	Thickness, in	Condition*	Texture Type [†]
M8018	0.060	STA-1400F 1/4 hr 1000F 4 hr	Dual a deformation and Mg type
M8018	0.060	\$TA-1500F 1/4 hr 1000F 4 hr	Dual a deformation and
M8018	0.060	STA-1600F 1/4 hr	Mg type - slight peak Complex a deformation and Mg
M8018	0.060	1000F 4 hr STA-1700F 1/4 hr	type-stronger peak in RD Transformed β deformation
M857 ['] 7	0.065	A.R.	type Transformed β deformation type
X70006	0.060	A.R.	Very near ideal
M8173	0.020	A.R. ' '	Alpha phase transformed - β deformation - Beta Phase
	•	,	

^{*}A.R. — As received. STA — Solution treated, water quenched and aged. †(0002) Pole figure, except where noted

The Ti-8Al-1Mo-1V alloy single sheet examined had a transformed beta deformation texture. (See Table Id.)

Table 'Id. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR Ti-8A1-1Mo-1V (SEE APPENDIX IV)

Heat No.	Thickness, in	Condition*	Texture Type [†]
V1848	0.130	A.R. ,	Transformed β deformation

^{*}A.R. - As received.

The sheets of Ti-6Al-6V-2SN (Table Ie) also have textures which appeared to be one of the transformed beta deformation type.

Table Ie. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR Ti-6A1-6V-2Sn (SEE APPENDIX V)

Heat No.	Thickness, in	' Condition*	Texture Type [†]
S	0.115	A.R.	Transformed β deformation Transformed β deformation
H	0.115	A.R.	

^{*}A.R.— As received.

⁺⁽⁰⁰⁰²⁾ Pole figure.

^{†(0002)} Pole figure.

Ti-8Mn (RC-130A) (Table If), except for one sheet which was nearly random, had textures of the dual alpha deformation type with the TD pole being of high intensity.

Table If. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR Ti-8Mn (SEE APPENDIX VI)

Heat No.	Thickness, in	Condition*	Texture Type†
3442		A.R.	Near ideal
A3613	0.065	A.R.	a deformation - TD Peak
A5227-7	0.030	A.R.	a deformation - very strong TD peak
A5221-16	0.120	A.R.	Dual (a deformation - strong TD peak + Mg peak)

^{*}A.R.— As received. †(0002) pole figure.

Ti-4A1-4Mn (RC 130B) (Table Ig). Heats B3263-B1 and B3319-2 both showed a deformation type texture with a single peak near or at the TD. Upon heating, Heat B3263-B1 developed a secondary peak near the SN; then, at 1700 F, a transformed beta deformation texture resulted.

Table Ig. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR Ti-4A1-4Mn

(SEE APPENDIX VII)

Heat No.	Thickness, in	Condition*	Texture Type [†]
B3319-2	0.065	A.R.	a deformation - strong TD peak
B3263-B1	0.055	A.R.	a deformation - strong TD peak
B3263-B1	0.055	STA-1300F 3/4 hr 1000F 8 hr	Dual (a deformation - TD peak + weak Mg peak)
B3263-B1	0.055	STA-1400F 3/4 hr 1000F 8 hr	Dual (a deformation - TD peak + weak Mg peak)
B3263-B1	0.055	STA-1500F 3/4 hr 1000F 8 hr	Dual (a deformation - TD peak + weak Mg peak)
B3263-B1	0.055	STA-1600F 3/4 hr 1000F 8 hr	Dual (a deformation - TD peak + weak Mg peak) slight RD peak
B3263-B1	0.055	STA-1700F 3/4 hr 1000F 8 hr	Beginning of β deformation type

^{*}A.R.— As received. STA - solution treated, water quenched and aged. †(0002) Pole rigure except where noted.

Ti-16V-2.5Al metastable beta alloy (Table Ih) developed textures characteristic of the (100)[011] beta deformation in either the beta structure component or in an alpha transformation counterpart.

Table Ih. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR Ti-16V-2.5A1

(SEE APPENDIX VIII)

Heat No.	Thickness, in	Condition*	Texture Type [†]
B24814	0.030	STA-1200F 1/2 hr 975F 4 hr	β deformation
B24814	0.030	STA-1300F 1/2 hr 975F 4 hr	β deformation
B24814	0.030	STA-1400F 1/2 hr 975F 4 hr	Complex
B24814	0.030	STA-1450F 1/2 hr 975F 4 hr	Complex
B24814	0.030	A.R. + Aged 975F 4 hr	β deformation
B24814	0.030	ST + WQ 1450F 1/2 hr	Complex (coarse grain)
M22093	0.025	A.R.	β deformation
B22117	0.045	A.R.	β deformation
B22117	0.045	A.R. + 975F 4 hr.	Transformed β deformation
M24990	0.025	A.R.	Transformed 3 deformation
B24990	0.040	A.R.	β deformation
M23346	0.070	A.R.	Near transformed β deformation
T22154	0.065	A.R.	Dual a deformation
T24762	0.130	A.R.	Dual adeformation

^{*}A.R. — As received. ST — Solution treated followed by air cooling. STA — Solution treated, water quenched and aged. †(0002) Pole figure, except where noted.

The single sheet of alloy Ti-7A1-3Mo (Table Ii) had a dual texture of the alpha deformation type with a high intensity near the SN, probably similar to that observed in the Ti-4A1 binary alloys.

Table Ii. - CHARACTERIZATION OF SHEET MATERIALS AND TEXTURES FOR Ti-7A1-3Mo

(SEE APPENDIX IX)

Heat No.	Thickness, in	Condition*	Texture Type [†]
1295	0.060	A.R.	Dual (strong Mg peak +weak TD Peak)

^{*}A.R. — As received. †(0002) Pole figure.

CONCLUSIONS

It can be seen from examination of the appendixes that a wide range of textures are formed in the titanium alloy sheet. This wide range of textures is of commercial significance from two major points. First, from the standpoint of anisotropy of properties, it appears that a beta deformation or a transformed beta deformation texture will give the least anisotropy because it is orthotropic. The second main point is that an alpha deformation texture composed of basal poles in the transverse direction gives rise to highest degree of planar anisotropy. The technological barrier for the application of texture hardening or use of texture for dramatic improvements in many properties is not that the desired textures have not been found, since they do develop, but that the desired mill technique and procedures have not been determined and employed. It appears from textures found that virtually any described texture can be achieved and that the most sought-after texture of the "ideal" type can be achieved in several alloys.

LITERATURE CITED

- 1. LARSON, F. R., and NUNES, J. Strain Hardening Properties of High Strength Sheet Materials. Seventh Sagamore Ordnance Materials Research Conference, August 1960, p. 101.
- 2. DILLAMORE, I. L., and ROBERTS, W. T. Preferred Orientation in Wrought and Annealed Metals. Metallurgical Review, Vol. 10, No. 39, 1965, pp. 271-380.
- 3. WILLIAMS, D. N., and EPPELSHEIMER. A Theoretical Investigation of the Deformation Texture of Titanium. Journal of the Institute of Metals, Vol. 81, 1952-1953, pp. 552-562.
- 4. LARSON, F.R., ZARKADES, A., and AVERY, D.H. Twinning and Texture Transitions in Titanium Solid Solution Alloys. Army Materials and Mechanics Research Center, AMMRC TR 71-11, June 1971.
- 5. Lockheed Missiles and Space Company, Palo Alto, California. Development of Improved Biaxial Strength in Titanium Alloy Rocket Motor Cases Through Texture Hardening. AF Contract No. FO 4611-67-C007Y, February 1969.
- HOBSON, D. O. Textures in Deformed Zirconium Single Crystals. Transactions AIME, J. of Metals, Vol. 242, June 1968, p. 1105.
- 7. CALNAN, E. A., and CLEWS, C. J. B. Deformation Textures in Face-Centered Cubic Metals. Phil Mag., Vol. 41, Sec. 9, November 1950, p. 1085.
- 8. CALNAN, E. A., and CLEWS, C. J. B. The Development of Deformation Textures in Metals. Part II, Phil Mag., Vol. 42, Sec. 7, June 1951, p. 616.
- 9. CALNAN, E. A., and CLEWS, C. J. B. The Development of Deformation Textures. Part III, Phil Mag., Vol. 42, Sec. 7, August 1951, p. 919.
- CALNAN, E. A., and CLEWS, C. J. B. The Prediction of Uranium Deformation Textures. Phil Mag., Vol. 43, Sec. 7, January 1952, p. 93.
- 11. KEELER, J. H., and GEISLER, A. H. Preferred Orientation in Rolled and Annealed Titanium. Transactions AIME, J. of Metals, Vol. 206, 1957, p. 80.
- 12. McHARGUE, C. J., HOLLAND, J. R., and HAMMOND, J. P. Hot Rolled Textures of Titanium Alloys. Transactions AIME, J. of Metals, Vol. 205, February 1965, p. 113.
- 13. McHARGUE, C. J., ADAIR, S. E., JR., and HAMMOND, J. P. Effects of Solid Solution Alloying on the Cold-Rolled Texture of Titanium. Transactions AIME, J. of Metals, September 1953, p. 1199.
- 14. SPARKS, C. J., McHARGUE, C. J., and HAMMOND, J. P. Effects of Aluminum on the Cold-Rolled Texture of Titanium, Transactions AIME, J. of Metals, Vol. 209, January 1959, p. 49.
- 15. NEWKIRK, J. B., and GEISLER, A. H. Crystallographic Aspects of the Beta to Alpha Transformation in Titanium. Act. Met., Vol. 1, 1953, p. 370.
- 16. BARRETT, C. S. Structure of Metals. McGraw-Hill Book Company, New York, First Ed., 1943.
- 17. LOPATA, S.L., and KULA, E.B. A Reflection Method for Pole Figure Determination. Army Materials and Mechanics Research Center, WAL TR 826.52/1, July 1961; Also Transactions AIME, J. of Metals, Vol. 224, August 1962, p. 865.
- 18. MARTIN, A. G., and LARSON, F. R. Automatic Off-Set Reflection Pole Figure Plotter. Army Materials and Mechanics Research Center, AMMRC TR 71-33, September 1971.

- 19. ZARKADES, A., and LARSON, F. R. Experimental Determination of Texture and Mechanical Anisotropy of Commercially Pure Titanium Sheet. Army Materials and Mechanics Research Center, AMMRC TR 67-05, December 1967.
- 20. ZARKADES, A., and LARSON, F. R. Sheet Tensile Properties of Titanium Alloys as Affected by Texture. Army Materials and Mechanics Research Center, AMMRC TR 68-03, January 1968.

APPENDIX I COMMERCIALLY PURE (UNALLOYED)

RC-55-5-5032BM2

ETCHED MICROSTRUCTURE (1000X)

		1	<u> </u>		T	T	T T
Specimen				Ex10 ⁶	Y.S.	Y.S.	l
Crientation	Thick-	1		Strain	at	at	Tensile
a	ness	}		Gage	0.1%	0.2%	Strength
(degrees)	(inch)	μ _E	μ _p	(psi)	(ksi)	(ksi)	(ksi)
		 				 	<u> </u>
10	0.125	0.314	0.473	14.0	54.0	56.0	72.2
20	0.125	0.353	0.626	15.6	52.7	55.4	70.8
30	0.125	0.375	0.696	15.5	57.1	59.0	69.6
40	0.125	0.383	U.734	14.8	57.7	59.4	68.5
50	0.125	0.375	0.777	16.0	57.5	59.1	67.5
60	0.125	0.364	0.784	16.4	60.9	62.5	69.9
70	0.125	0.370	0.764	17.1	61.4	62.8	69.6
80	0.125	0.387	0.830	16.9	63.5	64.9	72.0
90	0.125	0.386	0.804	16.8	62.8	64.9	72.8
100	0.125	0.379	0.855	16.8	62.0	63.5	71.4
110	0.125	0.373	0.822	16.2	62.3	63.7	70.5
120	0.125	0.364	0.801	15.9	60.7	62.0	68.8
130	0.125	0.377	0.785	15.9	59.4	60.9	68.6
140	0.125	0.357	0.641	16.2	58.2	59.8	68.8
150	0.125	0.367	0.696	14.9	57.4	59.2	70.0
160	0.125	C.366	0.658	15.5	55.7	57.9	71.0
170	0.125	0.364	0.596	15.2	54.4	57.4	73.1

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μE	μp	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)	Llon.'
0	0.050	0.333	0.483	16.1	59.3	61.2	82.4	31.0
10	0.051	0.343	0.510	16.3	61.0	62.7	83.3	28.0
20	0.052	0.389	0.698	16.0	68.7	70.8	85.6	3C.0
40	0.053	0.378	0.815	15.8	.74.2	75.8	83.7	29.5
45	0.052	0.387	0.750	16.1	73.4	74:3	81.5	25.0
50	0.052	0.390	0.773	16.4	76.3	77.0	83.4	28.0
70	0.052	0.400	0.765	16.9	78.0	79.5	85.7	26.0
80	0.052	0.387	0.757	16.6	76.8	79.0	85.9	28.0
90	0.051	0.385	0.719	16.9	75.7	76.9	83.7	23.0

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	^μ p .	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)	Elon.
0	0.127	0.400	0.764	15.0	62.9	64.7	80.6	31.0
; 10 '	0.128	0.394	0.723	15.4	61.9	63.8	78.9	30.5
20	0.127	0.377	0.723	15.5	63.2	63.2	80.9	30.0
30	0.129	0.379	0.751	15.4	62.0	63.7	77.0	31.0
40	0.128	0.388	0.793	15.5	63.2	64.8	74.3	37.0
50 í	0.129	0.382	0.811	15.6	63.7	65.2	73.9	31.5
60,	0.129	0.400	0.839	15.6	65.9	67.3	76.5	31.0
70'	0.129	0.393	0.838	15.8	65.8	67.5	75.4	32.0
80	0.131	0.387	0.821	16.0	67.5	69.4	77.1	32.5
90	0.129	0.398	0.824	16.1	67.0	68.9	80.4	27.0

LEAT TREATMENT

Solution treated at 1400F, 2 hr w....

Specimen Orientation a (degrees)	Thick- ness (inch)	μĒ	_բ ը	Ex10 ⁶ Strain Gage (ps1)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ks1)	Tensile Strength (ksi)	Elon.
i.	0.137	0.337	0.466	15.8	71.6		88.7	35.0

RC-55-1500F

HEAT TREATMENT

Solution treated at 1500F, 2 hr w.q.

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (ps1)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)	Elon. (%)
Ĺ	0.137	0,325	0.500	15.8	71.1	73.6	89.7	33.0

RC-55-1600F

HEAT TREATMENT

Solution treated at 1600F, 2 hr w.q.

Specimen Orientation a (degrees)	Thick- ness (inch)	μĒ	μ _p	Ex10 ⁶ Strain Gage (pṣi)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)	Elon. (%)
L	0.137	0.337	0.529	16.3	72.3	74.9	92.7	31.0

RC-55-1700F

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

Solution treated at 1700F, 2 hr w.q.

Specimen Orientation a (degrees)	Thick- ness (inch)	μĒ	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)	Elon.
L	0.137	0.309	0.378	15.5	62.5	68.0	93.0	19.0

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	^µ p	Ex10 ⁶ Strain Gage (psi)	Y.S. at ' 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)	Elon.
0	0.065	0.330	0.451	14.5	71.0	74.1	94.4	23.0
10	0.065	0.332	0.481	14.7	75.0	'77.2	97.8	21.0
20	0.065	0.349	0.545	15.0	76.9	80.2	99.4	24.5
30	0.065	0.340	0.545	15.3	72.1	75.2	94.5	25.0
40	0.065	0.360	*	15.7	78.2	81.3	95.1	26.5
50	0.065	0.351	0.663	16.5	76.7	80.4	95.1	31.0
60	0.065	0.370	0.700	16.5	76.5	79.6	94.3	28.0
70	0.065	0.374	0.703	17.3	84.6	87.4	100.0	28.0
80	0.065	0.374	*	17.6 ¹	83.3	86.1	140.0	28.0
90	0.065	0.365	0.625	17.7	84.6	87.4	105.6	25.0

^{*}Premature gage failure

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick-Iness (inch)	μ _E ,	ı Pp	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)	Elon. (%)
, 0	0.029	0.352	0.552	15.4	72.8 70.0	76.6 74.0	96.6 94.3	22.0 28.0
10 20	0.030 0.030	0.356 0.364	0.552 0.587	15.,7 15.2	70.3	74.3	, 93.3,	27.5
30 40	0.030	0.400	0.666 0.725	15.4 15.2	68.9 68.3	71.7	88.0 88.7	29.5 28.5
50	0.030	0.393	0.622	15.2 15.5	68.7 72.0	73.3 76.7	89.0 90.0	27.5 28.0
60 80	0.030 0.030	0.400	0.713	16.0	74.0	78.0	92.0	27.0
90	0.029	0.358	, 0.631	15.7	73.8	17.6	93.1	23.0

^{*}Premature gage failure

Ti-100A-L658

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation Q (degrees)		Thick- ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)	Elon.
0	4.	0.030	0.349	0.547	15.5	69.7	74.0	96.0	20.5
10		0.030	0.357	0.523	15.7	73.3	76.7	96.7	23.0
20		0.029	0.353	0.516	15.7	75.9	79.7	97.9	22.0
30		0.030	0.362	0.614	15.9	75.7	79.3	95.3	31.0
40		0.030	0.381	0.683	15.9	78.7	81.3	94.7	26.5
50		0.030	0.375	0.677	17.2	78.1	81.5	94.7	28.0
60		0.030	0.386	0.719	17.2	82.8	86.4	98.7	28.5
70		0.030	0.381	0.714	17.5	77.7	81.7	95.3	25.5
80		0.031	0.411	0.692	17.0	79.0	82.6	95.8	26.5
90		0.031	0.390	0.692	16.5	79.6	84.2	100.7	23.0

Ti-75A-L550

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μĒ	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)
10	0.063	0.377	0.686	16.1	69.4	72.6	89.4
20	0.063	0.386	0.707	15.5	69.5	73.0	87.6
30	0.063	0.382	0.744	15.4	71.1	74.0	87.9
40	0.063	0.396	0.794	15.6	68.4	70.9	82.8
50	0.063	0.404	0.831	16.3	70.5	73.3	84.1
60	0.063	0.392	0.838	16.4	71.1	72.5	84.4
70	0.063	0.407	0.859	16.5	70.8	73.0	83.8
80	0.063	0.414	0.873	17.2	71.1	73.2	85.1
90	0.063	0.404	0.855	17.0	71.4	73.3	84.4
100	0.063	0.407	0.857	16.7	70.1	72.3	82.9
110	0.063	0.404	0.859	16.4	71.8	73.7	83.9
120	0.063	0.404	0.848	16.4	70.4	72.5	82.3
130	0.063	0.393	0.812	16.0	68.5	70.4	81.9
140	0.063	0.396	0.787	15.4	68.8	71.0	83.0
150	0.063	0.386	0.759	16.1	69.5	71.7	84.7
160	0.063	0.386	0.706	15.4	69.6	72.0	87.3
170	0.063	0.386	0.683	15.5	68.0	70.9	88.3

Ti-75A-M290

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (ksi)	Y.S. at 0.2% (ksi)	Tensile Strength (ksi)
0	0.107	0.322	0.438	15.8	65.2	67.8	87.2
10	0.107	0.331	0.466	14.4	66.2	69.3	87.6
20	0.107	0.333	0.488	15.8	66.6	69.3	87.3
30	0.107	0.345	0.551	15.4	68.0	70.7	86.1
40	0.107	0.357	0.600	14.9	68.0	71.6	84.8
50	0.107	0.364	0.652	16.5	67.6	70.7	84.0
60	0.107	0.346	0.673	15.8	71.1	13.8	85.9
70	0.107	0.380	0.720	17.0	74.1	76.7	88.8
80	0.107	0.369	0.697	17.4	73.4	76.5	90.2
100	0.107	0.365	0.696	17.3	77.5	80.0	91.4
110	0.107	0.359	0.712	16.2	73.1	76.4	88.2
120	0.107	0.358	0.699	17.1	72.7	75.6	87.0
130	0.107	0.351	0.671	15.2	71.0	73.6	86.0
140	0.107	0.350	0.620	15.4	69.8	72.2	85.7
150	0.107	0.350	0.554	14.4	67.8	70.8	86.1
160	0.107	0.333	0.462	14.5	67.8	70.2	87.0
170	0.107	0.339	0.479	15.3	66.2	68.9	87.8

.APPENDIX II Ti-6A1-4V-M7199

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μĒ	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)
0 10 20 30 40 60 80 90 0 10 20 30 40 50	0.056 0.058 0.060 0.057 0.058 0.056 0.058 0.058 0.058 0.060 0.060 0.060	0.408 0.388 0.387 0.390 0.403 0.412 0.417 0.425 0.41 0.42 0.42 0.42 0.43 0.43	0.797 0.689 0.694 0.723 0.773 0.797 0.792 0.766 0.72 0.70 0.77 0.80 0.92 0.88	15.3 14.6 14.8 15.0 15.1 15.6 15.6 15.3 15.4 15.8 15.2 15.3	133,600 121,700 121,000 123,200 121,700 122,400 125,100 124,100 125,500 126,700 128,300 124,300 122,900 123,500	133,600 122,100 121,000 121,000 122,500 120,700 121,700 122,900 125,900 126,300 128,300 124,200 122,900 123,400 127,100 128,400	151,400 131,000 128,300 126,300 124,500 123,100 126,100 134,500 133,300 132,700 125,300 122,900 123,900 127,400 129,000
70 80 90	0.062 0.060 0.058	0.44 0.45 0.56	0.86 0.83 1.06	16.3 16.4 16.4	129,000 131,000 134,000	130,700 134,000	131,000 134,000

Ti-6A1-4V-B22075

ETCHED MICROSTRUCTURE (100X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μĘ	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (ps1)	Elon. (%)
0 10 20 30 40 50	0.127 0.129 0.128 0.128 0.128 0.128 0.129	0.314 0.300 0.347 0.300 0.305 0.312 0.300	0.326 0.336 0.360 0.413 0.489 0.507 0.479 0.463	15.5 15.6 16.1 16.0 16.4 15.7 15.5	148,700 150,000 149,600 147,600 149,300 150,900 149,300	155,100 157,000 155,900 153,600 155,900 158,600	172,500 174,200 173,200 168,000 171,100 174,200 171,100	5.5 6.0 5.5 5.5 7.0 6.5 8.0
70 80 90	0.130 0.130 0.129	0.306 0.306 0.309	0.468 0.414	15.8 15.8 16.6	149,200 155,300 159,400	155,800 162,300 165,600	170,500 177,700 178,100	8.5 8.0

Ti-6A1-4V-M2803 (0.07 in)

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon.
0	0.070	0.289	0.303	14.7	116,600	119,100	138,100	5.0
10	0.073	0.286	0.286	14.4	115,900	117,800	132,200	5.0
20	0.074	0.272	0.250	14.7	123,200	124,300	133,000	7.5
30	0.074	0.291	0.575	15.2	122,000	122,900	128,000	11.5
40	0.074	0.308	0.580	15.8	121,300	121,800	123,500	15.5
50	0.074	0.321	0.674	15.9	119,900	121,600	122,600	15.0
60	0.075	0.336	0.701	16.9	125,700	127,700	129,000	12.0
70	0.075	0.331	0.656	17.9	135,600	137,000	139,400	10.5
80	0.075	0.332	0.490	18.8	140,800	141,900	148,000	11.5
90	0.075	0.336	0.440	19.1	141,700	142,800	150,400	8.5

Ti-6A1-4V-M2803 (0.03 in)

ETCHED MICROSTRUCTURE (1000X)

a	Thick- ness (inch)	μE	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (%)
10 20 30 40 50 60 70	0.036 0.037 0.038 0.038 0.038 0.038 0.038	0.240 0.225 0.290 0.310 0.324 0.309 0.322 0.299	0.150 0.129 0.157 0.383 0.584 0.711 0.654 0.457	11.7 12.7 13.2 13.7 14.4 15.7 16.0 17.0	93,900 90,800 93,700 97,400 100,000 101,300 111,400 120,300 121,800	104,400 96,200 98,400 102,600 103,900 106,100 115,700 123,700 124,700	116,100 119,500 118,900 116,600 113,400 113,200 121,600 133,700 133,200	5.5 9.0 10.0 11.0 9.0 7.0 4.0

(0002) POLE,FIGURE

ETCHED M1CROSTRUCTURE (1000X)

HEAT TREATMENT

'Solution treated at 1450F, 1/4 hr w.q.

Aged at 1000F, 4 hr ac

Ti-6A1-4V-M2803 (0.06 in)

HEAT TREATMENT

Solution treated at 1550F, 1/4 hr w.q. Aged at 1000F, 4 hr ac

Ti-6A1-4V-M2803 (0.06 in)

HEAT TREATMENT

Solution treated at 1650F, 1/4 hr w.q. Aged at 1000F, 4 hr ac

HEAT TREATMENT

Solution treated at 1750F, $1/4\ hr\ w.q.$

Aged at 1000F, 4 hr ac

Ti-6A1-4V-M27003

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)
L1	0.040	0.34	C.44	15.8	127,000	135,000	153,000
T1	0.040	0.36	O.48	14.8	123,000	128,800	141,000

Ti-6A1-4V-M27037

. FTGHED MICROSTRUCTURE (1000%)

MECH J.ICAL PROPERTIES

Specimen Orientation Q (degrees)	Thick- ness (inch)	μ _β	μp	Ex10 ⁶ Strain Çage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength . ·(psi)	Elon. (%)
0	0.037	0.318	*	15.4	121,600	128,600	154,600	10.0
10	0.038	0.308	0.322	14.5	119,500	126,300	155,800	11.5
20 j	0.038	0.311	0.458	14:6	188,400	:126,300	152,600	11,0
30	ე. 138	0.341	0.441	15.0	122,400	129,500	153,200	10.0
40	0.638	0.316	0.593	15.5	122,600	130,500	.153,100	7.5
50	5, 038	0.320	0.403	1,0	117,400	124,700	151,600	10.5
60	1. U39	311	0.618	14.21	119,500	125,600	149,200	13.0
70	ι.038	U.329	0.331	15.5	125,800	134,200	157,400	10 7
80 İ	0.038	0.326	0.376	15.4	127,000	134,400	157,100	12:0
90	0.038	0.329	0.504	15.6	124,300	132,300	155,600	11.5
100	0.038	0.353	0.441	15.5	128,900	135,800	157,400	11.5

^{*}Premature gage failure

APPENDIX III Ti-4Al-3Mo-1V-M8018

HEAT TREATMENT

Solution treated at 1400F, 1/4 hr w.q.

Aged at 1000F, 4 hr ac

Specimen Orientation	Thick- ness (inch)	ħε.	$\mu_{\mathbf{p}}$	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon.
L	0.064	0.300	0.444	16.1	113,200	116,400	135,200	14.0

Ti-4A1-3Mo-1V-M8018

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

Solution treated at 1500F, 1/4 hr w.q.

Aged at 1000F, 4 hr ac

Specimen Orientation	Thick- ness (inch)	μE	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon.
L	0.062	0.337	0.524	16.6	120,300	124,800	147,700	11.0

Ti-4A1-3Mo-1V-M8018

HEAT TREATMENT

Solution treated at 1600F, 1/4 hr w.q.

Aged at 1000F, 1/4 hr ac

Specimen Orientation	Thick- ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon.
L	0.063	0.315	0.422	16.1	133,300	140: 500	173,800	8.5

Ti-4A1-3Mo-1V-M8018

HEAT TREATMENT

Solution treated at 1700F, 1/4 hr w.q. Aged at 1000F, 4 hr ac

Specimen Orientation	Thick- ness (inch)	μ _E	$\mu_{ m p}$	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon.
L	0.062	0.300	0.374	16.1	159,400	165,900	179,600	2.5

Ti-4A1-3Mo-1V-M8577

ETCHED MICROSTRUCTURE (1000X)

Specimen Lientation a (degrees)	Thick- ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon.
0	0.067	0,273	0.117	13.8	93.000	100,300	136,700	13.5
10	0.067	0.274	0.163	14.3	92,400	99,100	139,600	17.0
20	0.067	0.278	0.227	14.0	97,000	103,300	138,200	15.5
30	0.067	0.318	0.306	13.8	93,000	100,000	137,700	19.0
40	0.067	0.345	0.446	13.6	92,300	98,200	134,200	17.5
50	0.066	0.350	0.468	13.8	89,100	95,300	135,500	20.0
60	0.067	0.333	0.359	14.3	93,400	101,800	138,500	17.5
70	0.065	0.360	0.541	15.6	91,900	100,000	142,200	17.0
80	0.065	0.307	0.400	15.1	90,100	100,900	141,300	18.0
90	0.065	0.294	0.220	14.5	91,500	100,600	141,000	17.0

Ti-4A1-3Mo-1V-X70006

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	$\mu_{\mathbf{p}}$	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)
0	0.060	0.39	*	15.4	100,000	100,300	101,700
10	No specimen	made, lad	k of mate	rial		į.	[
20	0.060	0.48	0.96	14.9	99,760	99,000	99,700
30	No specimen	made, la	k of mate	rial]
40	0.062	0.43	0.91	15.0	97,400	97,100	97,400
50	0.060	0.46	1.23	15.1	98,700	98,700	98,700
60	0.060	0.45	0.96	15.4	100,000	100,000	100,000
70	0.060	0.43	0.95	15.2	100,000	100,000	100,000
80	0.058	0.44	*	16.2	103,800	104,800	103,800
90	0.060	0.43	0.42	16.1	105,300	104,700	105,000

^{*}Premature gage failure

Ti-4A1-3Mo-1V-M8173

ETCHED MICROSTRUCTURE (1009X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon.
0	0.021	0.243	0.060	13.0	68,600	76,200	130,950	13.0
10	0.021	0.267	0.066	10.3	69,700	79,300	133,650	12.0
20	0.021	0.276	0.178	12.6	64,900	75,000	139,900	13.5
30	0.022	0.328	0.271	12.2	68,200	76,800	139,500	14.5
40	0.021	0.339	0.416	13.6	75,700	84,300	146,700	15.0
50	0.022	0.389	0.362	14.1	71,800	81,400	140,450	16.5
60	0.022	0.346	0.365	14.1	80,450	90,450	146,400	16.0
70	0.022	0.339	0.299	13.8	88,200	97,300	149,500	15.0
80	0.022	0.314	0.189	14.4	90,900	102,700	147,300	13.5
90	0.022	0.340	0.271	13.9	95,000	105,900	147,700	12.0

APPENDIX IV Ti-8A1-1Mo-1V-V1848

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μE	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.24 (psi)	Tensile Strength (psi)	Elon.
0	0.129	0.308	0.332	18.4	143,200	142,700	150,600	19.5
10	0.130	0.313	0.435	18.3	142,700	142,500	149.800	19.0
20	0.131	0.315	0.463	18.2	137,300	137,100	143,200	20.0
30	0.131	0.321	0.535	18.0	134,400	134,400	138,300	19.5
40	0.132	0.303	0.588	17.3	130,100	130,300	133,900	16.5
50	0.129	0.300	0.506	17.5	134,100	134,300	137,800	16.0
60	0.130	0.300	0.362	17.2	135,200	135,300	140,100	19.5
70	0.131	0.299	0.621	17.4	136,600	135,600	141,900	19.0
80	0.130	0.293	0.450	17.3	139,200	138,200	147,300	17.5
90	0.131	0.283	0.356	17.2	138,000	137,000	144,800	16.5

APPENDIX V Ti-6A1-6V-2Sn-S

Specimen Orientation a (degrees)	Thick- ness (inch)	ι μ _E	μD	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)
0	0.115	0.286	*	16.1	147,600	147,100	154,800
10	0.115	0.274	0.284	16.0	144,200	144,200	152,100
20	0.115	0.294	0.324	16.0	145,200	143,500	148,500
30	0.115	0.303	0.552	15.9	143,500	142,400	143,500
40	0.115	0.302	0.485	15.8	136,000	136,000	136,900
50	0.115	0.310	0.571	16.2	138,400	138,400	138,400
60	0.115	0.314	0.577	16.4	141,900	141,900	142,300
70	0.115	0.303	0.655	16.8	145,100	146,000	151,700
80 (0.115	0.290	0.250	16.9	145,700	145,700	152,200
90 1	0.115	0.296	0.326	17.2	150,200	149,800	158,800

^{*}Premature gage failure

Ti-6A1-6V-2Sn-H

ETCHED MICROSTRUCTURE (1000X)

Specimen Grientation a (degrees)	Thick- ness (inch)	۴ē	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)
0	0.115	0.310	0.412	16.2	159,000	159,800	167,500
10	0.115	0.294	0.327	16.3	159,500	159,500	166,300
20	0.115	0.307	0.372	16.2	158,200	157,000	162,000
30	0.115	0.312	0.488	16.0	153,900	153,900	155,900
40	0.115	0.318	0.559	15.8	150,600	150,600	151,900
50	0.115	0.320	0.571	15.8	150,000	150,000	150,200
60	0.115	0.315	0.517	16.2	151,600	151,600	153,800
70	0.115	0.308	0.419	16.8	157,600	157,600	161,000
80	0.115	0.306	0.333	17.0	160,200	160,500	168,300
90	0.115	0.292	0.312	17.1	159,500	159,500	167,200

APPENDIX VI Ti-8Mn-3442

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)
10	0 053	0.313	0.33	16.0	103,400	115,600	135,000
20	0.963	0.317	0.40	16.9	110,900	120,700	134,900
30	0.063	0.324	0.46	16.0	112,800	122,400	134,200
40	0.063	0.329	0.55	16.4	114,800	122,000	130,300
50	0.063	0.354	0.80	16.6	123,300	131,100	135,000
60	0.063	0.340	0.67	17.0	133,300	140,800	149,500
70	0.063	0.333	0.52	16.9	141,400	145,600	151,800
80	0.063	0.345	0.56	17.4	138,000	143,200	151,000
90	0.063	0.347	0.56	17,2	141,600	145,500	153,400
100	0.063	0.333	0.50	16.9	141,900	146,100	153,400
110	0.063	0.351	0.56	17.2	140,400	145,700	152,900
120	Ú 063	0.338	0.55	16.6	140,800	146,500	153,300
130	0.063	0.343	0.76	16.6	126,400	134,400	139,200
140	0.063	U.338	0.53	16.2	115,700	122,300	128,500
150	0.063	0.343	0.51	16.2	113,600	124,200	134,700
160	0.063	0.325	0.42	16.2	104,700	115,800	131,300
170	0.063	0.393	0.31	16.6	116,000	124,800	138,400
180	0.063	0.312	0.42	15.2	105,700	<u> </u>	

Ti-8Mn-A3613

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μĒ	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (%)
0 10	0.064 0.064	0.316 0.319	0.492 0.466	15.9 16.2	130,800 130,800	135,800 135,500	149,400 147,700	24.0 24.3
20 30	0.064 0.064	0.317	0.474 0.522	15.7 15.2	129,000	133,500	139,400 139,400	3.5 28.0
60 70	0.063 J.063	0.349	0.588	16.1 16.8	134,200	137,700	140,000 146,000	24.5
80 90	0.063 0.063	0.320 0.318	0.434 0.410	16.6 16.6	140,000 140,600	142,900 143,300	149,200 149,500	12.0 15.0

Ti-8Mn-A5227-7

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μĒ	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (ps1)	Y.S. at 0.2% (psi)	Tensile Strength (psi)
10	0.032	0.288	-	16.6	114,300	117,500	133,100
20	0.032	0.305	0.255	16.0	113,600	117,500	128,600
30	0.032	0.308	0.372	16.6	111,400	115,300	119,500
40	0.032	0.349	0.527	:5.6	114,900	116,600	116,900
50	0.032	0.338	0.587	16.2	119,300	121,300	123,000
60	0.032	0.327	ი.569	16.5	129,000	132,000	132,000
70	0.032	0.304	0.407	18.0	141,300	141,300	145,300
80	0.032	0.30	0.415	19.0	136,700	138,700	152,000
90 !	0.032	0.327	0.500	20.6	132,000	135,000	
100	0.032	0.323	0.517	19.6	131,300	135,300	144,000
110	0.032	0.333	0.585	17.4	130,300	134,200	141,900
120	0.032	0.322	0.559	16.5	130,600	124,500	130,600
130	0.032	0.348	0.590	16.5	127,900	131,200	134,400
140	0.032	0.327	0.463	16.2	120,000	123,700	131,900
130	0.032	0.321	0.432	16.6	118,800	123,100	135,900
160	0.032	0.325	0.410	16.9	127,500	131,200	145,000
170	0.032	0.311	0.339	15.5	115,300	120,600	134,100

Ti-8Mn-A5221-16

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	μp	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at' 0.2% ·(psi)	Tensile Strength (psi)	Elon.
0	0.122	0.286	0.252	16.1	118,900	120,200	137,700	22.5
10	0.122	0.286	0.264	16.4	118,000	120,000	137,700	24.5
20	0.122	0.306	0.341	16.4	120,300	123,000	134,400	22.5
30	0.122	0.320	0.400	15.7	119,500	120,200	127,700	26.0
40	0.122	0.333	0.568	16.4	119,700	120,700	124,600	28.5
50	0.122	0.333	0.615	15.9	121,700	123,400	126,200	26.5
70	0.122	0.326	0.428	. 17.6	132,700	134,400	142,700	25.5
80	0.122	0.303	0.368	17.9	130,900	132,600	147,100	15.0
90	0,122	0.338	0.401	18.3	139,390	139,900	148,800	8.8

APPENDIX VII Ti-4A1+4Mn-B3319-2

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick-, ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0/1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	11on. (1)
0	0.061	0.291	0.313	16.1	140,500	142,500	163,400	15.0
10	0.063	0.236	C1.295	16.0	134,200	136,700	156.,300	20.0
20	0.063	0.296	0.411	16.4	137,700	139,600	152,500	20.0
30	0.064	0.303	0.447	15.9	142,200	143,300	144,900	18.5
46	0.064	0.326	0.521	16.4	144,500	145,600	145,600	18.0
50	0.063	0.325	0.583	17.2	142,900	143,500	143,500	12.5
: 60	0 2063	0.334	0.754	17.3	151,900	152,500	152,500	12.5
70	0.063	0.330	0.704	18.2	161,700	163,000	163,000	11.0
80	0.063	0.330	0.415	19.0	167,100	167,700	167,700	16.0
. 90	0.063	0.328	0.330	19.8	168,000	168,800	169,000	13.0

Ti-4Al-4Mn-B3263-Bl

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μĘ	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	l lon. (°.)
0 10 20 30 40 50 60 70 80 90 0 10 20 30	0.051 0.052 0.052 0.053 0.053 0.053 0.054 0.054 0.054 0.054 0.055 0.051 0.051	0.240 0.267 0.264 0.281 0.305 0.317 0.308 0.308 0.321 0.262 0.289 0.288 0.308 0.297	0.092 0.239 C.171 0.153 0.610 0.767 0.653 0.368 0.389 0.273 0.304 0.344 0.483 0.377	16.1 16.3 16.2 16.3 17.0 17.2 17.9 19.2 19.1 19.6 16.8 16.7 17.3 17.1	134,800 135,200 136,200 137,900 140,600 143,000 148,500 159,500 162,100 166,000 132,700 129,000 130,900 133,900 138,300	134,400 135,800 136,500 137,900 139,500 143,600 148,700 158,300 162,100 165,500 134,200 130,200 131,600 133,900 138,300	156,250 152,500 146,300 138,100 140,600 143,600 155,600 166,400 169,800 152,300 146,500 141,400 134,100 138,300	13.5 14.5 16.5 18.5 22.0 15.0 11.5 15.0 12.5 14.0 12.5 19.5 17.0
60 80 90	0.053 0.054 0.052	0.325 0.316 0.308	0.833 0.529	18.1 19.4 19.7	148,700 157,800 162,800	147,200 158,300 162,600	148,900 159,600 166,700	9.0 14.5 14.5

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

Solution treated at 1300F, 3/4 hr w.q.

Aged at 1000F, 8 hr ac

Ti-4A1-4Mn-B3263-B1

HEAT TREATMENT

Solution treated at 1400F, 3/4 hr w.q. Aged at 1000F, 8 hr ac

Ti-4A1-4Mn-B3263-B1

HEAT TREATMENT

Solution treated at 1500F, 3/4 hr w.q. Aged at 1000F, 8 hr ac

Ti-4A1-4Mn-B3263-B1

HEAT TREATMENT

Solution treated at 1600F, 3/4 hr w.q.

Aged at 1000F, 8 hr ac

Ti-4A1-4Mn-B3263-B1

HEAT TREATMENT

Solution treated at 1700F, 3/4 hr w.q.

Aged at 1000F, 8 hr ac

APPENDIX VIII Ti-16V-2.5A1-B24814

ETCHED MICROSTRUCTURE (1500X)

HEAT TREATMENT

Sclution treated at 1200F, 1/2 hr w.q. Aged at 975F, 4 hr ac

Specimen Orientation a (degrees)	Thick- ness (inch)	μĒ	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon.
AT-4	0.026	0.278	0.152	15.5	127,700	130,000	138,800:	2.5
AL-4	0.028	0.342	0.077	16.2	113,500	116,700	120,200	1.0

Ti-16V-2.5A1-B24814

(0002) POLE FIGURE

.ETCHED MICROSTRUCTURE (1500X)

HEAT TREATMENT

Solution treated at 1300F, 1/2 hr w.q. Aged at 975F, 4 hr ac

Specimen Orientation a (degrees)	Thick- ness (inch)	μE	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Eion.
AT-6	0.028	0.261	0.152	15.5	142,100	145,000	158,900	6.0
AL-6	0.027	0.258	0.140	15.7	141,900	145,200	152,200	2.5

Ti-16V-2.5A1-B24814

ETCHED MICROSTRUCTURE (1500X)

HEAT TREATMENT

Solution treated at 1400F, 1/2 hr w.q. Aged at 975F, 4 hr ac

Specimen Orientation a (degrees)	Thick- ness (inch)	I.e.	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon.
AT-8 AL-8	0.028 0.028		;14	15.0 15.0	166,100	171,400	180,700 -	1.5

^{*}Premature gage failure

HEAT TREATMENT

Solution treated at 1450F, 1/2 hr w.q. Aged at 975F, 4 hr ac

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (%)
AT-3	0.028	0.311	*	14.9	160,700	170,700	182,500	3.5
AL-3	0.028	0.344		14.2	162,200	168,000	174,800	1.5

^{*}Premature gage failure

Ti-16V-2.5A1-B24814

(0002) POLE FIGURE

ETCHED MICROSTRUCTURE (1000X)

HEAT TREATMENT

Aged at 975F, 4 hr ac

Sper en Orient n	Thick- ness (inch)	μE	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0 % (psi)	Tensile Strength (psi)	Elon. (%)
45-1 45-2 T1 T2	0.028 0.029 0.029 0.029 0.028 0.027	0.250 0.263 0.364 0.369 0.271 0.263	0.111 0.166 0.571 0.714 0.149 0.133	14.8 14.6 13.0 13.4 15.5	159,600 153,800 147,300 145,800 157,900 154,100	163,100 156,600 149,300 149,300 162,100 157,000	174,500 170,300 154,100 153,500 175,000 166,700	5.0 5.5 7 5 8.0 2.5 5.0

Ti-16V-2.5A1-B24814

HEAT TREATMENT

Solution treated at 1450F, 1/2 hr w.q.

Specimen Orientation a (degrees)	Thick- ness (inch)	μE	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (%)
-10 0 10 20 30 40 50 60 70 80 90	0.024 0.025 0.025 0.026 0.025 0.026 0.025 0.026 0.025 0.027	0.353 * 0.363 0.353 0.364 0.364 0.375 0.389 .346 0.400 0.368	0.319 * * 0.345 0.304 0.359 0.352 0.346 0.439 0.328 0.407 0.404	11.6 10.6 10.6 10.7 11.9 11.1 10.6 11.1 9.6 11.6 10.6	52,100 63,500 56,800 53,800 53,900 59,900 55,600 56,900 53,200 58,900 58,900 50,800	58,300 71,000 64,000 61,600 61,500 67,600 63,500 63,700 62,000 66,600 57,600	100,000 125,000 109,600 114,500 108,700 117,200 113,500 113,000 109,200 111,900 112,500 107,600	9.0 - 7.0 12.0 5.5 10.0 8.0 4.5 9.5

^{*}Premature gage failure

Ti-16V-2.5A1-M22093

ETCHED MICRGSTRUCTURE (500X)

Specimen Orientation Q (degrees)	Thick- ness (inch)	μE	μ _p	Ex10 ⁶ : Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. 'at 0.2% (psi)	Tensile Strength (psi)	Elon.
0	0.025	0.114	*	11.1	60,000	65,600	110,000	18.5
10	0.025	0.220	0.071	11.0	56,000	61,600	107,600	19.0
20	0.026	0.287	0.230	10'.6	53,500	59,600	113,100	13.5
30	0.026	0.350	0.333	9.6	48,500	55,000	125,400	14.5
40	0.026	0.390	0.435	9.4	50,000	55,500	128,800	13.0
50	0.026	0.404	0.459	9.7	:44,200	51,900	124,200	14.0
60	0.026	0.369	€.317	9.7	46,200	52,300	128,800	14.5
70	0.026	0.291	0.151	10.2	55,000	60,700	114,600	11.0
80	0.025	0.214	*	11.9	61,600	66,400	102,000	19.0
90	0.026	0.191	· •	11.8	61,500	66,900	100,800	19.0

^{*}Premature gage failure

ETCHED MICROST! CTULE (1000X)

Specimen Orientation a (degrees)	fhick- ness (inch)	μΕ	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1. (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon.
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 45	0.044 0.045 0.046 0.046 0.047 0.047 0.047 0.047 0.045 0.046 0.046 0.046 0.046 0.046 0.046	0.21 0.25 0.25 0.37 0.40 0.41 0.38 0.23 0.21 0.196 0.202 0.275 0.335 0.364 0.403 0.364 0.289 0.222 0.175	0.11 0.14 0.08 0.36 0.45 0.46 0.41 0.24 9.10 0.11 0.044 0.038 0.178 0.310 0.389 0.550 0.492 0.353 0.154 0.056	12.4 13.3 .1.0 10.3 10.6 10.9 11.6 12.4 13.6 11.7 11.3 10.1 9.1 8.8 9.9 8.8 9.9	71,400 78,300 82,300 90,900 87,600 87,300 89,400 90,400 90,400 59,783 55,652 51,087 47,826 82,969 50,400 50,000 58,200 64,348 68,696	75,900 81,400 86,100 97,000 96,400 96,200 97,400 94,900 93,600 92,800 66,700 65,200 62,000 57,800 93,900 56,500 64,500 64,000 70,000 64,300	105,200 110,600 112,600 116,900 118,600 117,400 118,100 115,700 112,300 110,600 111,100 110,900 119,600 127,200 130,400 111,400 129,300 123,900 117,800 108,300 111,700	19.5 15.5 14.0 16.0 15.5 16.0 14.0 10.0 13.0 20.5

Ti-16V-2.5A1-B22117

HEAT TREATMENT

Aged at 975F, 4 hr ac

Ti-16V-2.5A1-M24990

ETCHED MICROSTRUCTURE (500X)

Specimen Orientation Q (degrees)	Thick- ness (inch)	μĒ	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon.
0	0.022	0.250	0.136	15.2	152,700	156,400	170,000	4.5
10	0.023	0.262	0.179	14.7	153,900	156,500	169,100	4.5
20	0.023	0.287	0.243	14.7	153,500	156,500	169,100	7.5
30	0.024	0.318	0.300	13.4	142,500	146,300	155,400	5.5
40	0.024	0.340	0.581	13.1	143,300	146,300	152,100	6.5
50	0.024	0.339	0.361	12.9	141,700	144,600	149,600	7.0
60	0.023	0.333	0.353	14.0	147,800	151,700	159,100	5.0
70	0.023	0.286	0.232	14.5	152,200	156,500	168,700	7.5
80	0.023	0.267	0.192	14.5	148,300	151,300	162,600	3.5
90	0.023	0.250	0.154	14.8	150,900	153,900	164,300	3.5

Ti-16V-2.5A1-B24990

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μF	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon.
0 10 20 30 40 50 60 70 80 90	0.039 0.040 0.040 0.040 0.041 0.040 0.040 0.041 0.041	0.336 0.313 0.352 0.384 0.408 0.400 0.403 0.377 0.361 0.338 0.327	0.42 0.30 0.40 0.45 0.52 0.51 0.56 0.46 0.43 0.38 0.255	11.7 11.0 10.9 10.0 10.5 11.9 11.3 11.7 12.6 12.6	65,800 66,000 65,000 64,300 62,700 62,300 67,800 73,800 92,200 78,400 63,500	71,800 73,300 71,500 71,000 69,500 70,300 76,500 82,000 95,900 86,800 69,300	114,400 115,000 117,000 119,500 119,000 122,000 121,300 118,000 113,200 111,800 110,500	
10 20 30 40 50 60 70 80 90	0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.040	0.333 0.348 0.373 0.394 0.413 0.405 0.393 0.345 0.370	0.306 0.363 0.421 0.476 0.513 0.525 0.534 0.423 0.466	11.6 10.6 10.3 10.1 10.6 11.0 11.4 12.2 11.8	63,400 62,200 62,200 62,200 62,200 64,600 69,800 75,100 75,000	69,500 68,800 68,300 68,300 71,500 72,000 77,300 82,900 82,500	112,200 115,900 118,300 118,800 116,600 116,100 114,600 112,700 108,800	17.5 17.0 17.5 15.5 17.0 16.5 15.0 14.0

Ti-16V-2.5A1-M23346

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (%)
0 10 20 30 40 50 60 70 80	0.070 0.071 0.071 0.070 0.070 0.070 0.070 0.070 0.071	0.281 0.289 0.296 0.307 0.325 0.335 0.329 0.304 0.290 0.284	0.206 0.252 0.276 0.360 0.442 0.454 0.423 0.282 0.287	14.8 14.8 14.2 13.4 14.3 14.3 15.3 15.6 15.9	127,500 132,000 126,400 128,900 125,700 128,900 133,000 137,200 138,900 141,300	129,600 134,600 129,200 131,100 126,900 131,100 134,700 140,200 142,200 144,900	143,900 148,200 139,000 139,600 132,600 135,800 141,000 149,100 152,100 155,900	11.5 12.5 12.0 12.5 12.0 10.0 14.0 10.5 11.0 9.0

Ti-16V-2.5A1-T22154

Specimen Orientation a (degrees)	Thick- ness (inch)	μ _E	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon.
0 10 20 30	0.061 0.065 0.066 0.066	0.320 0.307 0.330 0.333	0.336 * * 0.453	14.9 14.3 14.4 14.4	158,800 159,500 155,900	163,100 162,000 159,800	179,100 176,700 175,500	6.0 9.0 8.0
40 50 6 0	0.066 0.067 0.066	0.338 0.342 0.337	0.424 0.473 0.515	14.3 14.3 14.6	156,000 158,900 159,500 163,100	159,800 162,800 164,000 167,800	174,200 175,200 175,000 178,200	6.5 8.5 6.5 6.5
70 80 90	0.066 0.066 0.066	0.325 0.321 0.333	* 0.384 0.427	14.8 14.7 14.9	165,900 167,100 166,600	169,500 171,900 171,600	180,700 182,800 181,600	5.5 6.5 5.5

^{*}Premature gage failure

Ti-16V-2.5A1-T24762

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μĘ	μ _p	Ex10 ⁶ Strain Gage (psi)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	T isile Strength (psi)	Elon. (%)
0	0.130	0.303	0,296	15.3	158,500	161,700	174,200	8.0
10	0.129	0.298	0.310	14.9	158,100	162,000	177,500	7.0
20	0.130	0.335	0.332	14.7	159,200	163,100	175,400	8.0
30	0.130	0.524	0.390	14.7	156,200	160,800	173,800	9.5
40	0.130	0.327	0.446	14.4	160,000	165,400	173,800	8.5
50	0.131	0.335	0.477	14.2	158,800	164,100	174,800	10.5
60	0.130	0.346	0.445	14.4	163,800	169,200	178,500	7.5
70	0.129	0.323	0.392	15.9	170,500	179,100	189,100	8.0
80	0.129	0.340	0.277	15.5	171,300	177,500	190,300	7.0
90	0.130	0.314	0.309	15.2	172,300	177,700	188,500	5.5

APPENDIX IX Ti-7A1-3Mo-1295

ETCHED MICROSTRUCTURE (1000X)

Specimen Orientation a (degrees)	Thick- ness (inch)	μĘ	μ _p	Ex10 ⁶ Strain Gage (ps1)	Y.S. at 0.1% (psi)	Y.S. at 0.2% (psi)	Tensile Strength (psi)	Elon. (%) :
0	0.062	0.354	0.656	16.2	154,200	155,200	167,100	13.0
20	0.062	0.365	0.663	16.4	162,400	156,600	162,400	11.5
40	C.062	0.376	0.778	16.6	149,500	150,300	151,900	15.0
50	0.062	0.385	0.795	17.0	149,200	149,500	150,200	14.0
60	0.062	0.392	0.795	16.7	153,500	154,800	154,800	12.5
70	0.062	0.384	0.719	17.1	157,400	158,700	159,700	11.0
80	0.060	0.375	*	18.2	163,200	161,200	163,900	7.0
90	0.060	0.375	*	18.4	159,200	159,200	161,500	6.0

^{*}Prematur gage failure