DIGITAL LOGIC

Lecture 2 Boolean Algebra

2023 Fall

Today's Agenda

- Recap
- Context
 - Boolean Algebra (布尔代数)
 - Axioms (公理) and Theorems(定理)
 - Boolean Functions (布尔方程)
 - Canonical (范式) and Standard form(标准式)
- Reading: Textbook, Chapter 2

Decimal

Outline

- Axioms and Theorems of Boolean Algebra
- Simplify Boolean Functions
- Canonical and Standard form
- Other Logic Operations

Binary Logic

- Deal with Variables like A, B... taking two values:
 - '0', '1'; 'L', 'H'; 'T', 'F'

AND

$$Y = AB$$

Α	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR

$$Y = A + B$$

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

NOT

$$Y = \overline{A}$$

Boolean Equation and Truth Table

- Boolean Equation: F = x + y'z
- Logic diagram:

- if x = y = 0, z = 1• $F = 0 + 1 \cdot 1 = 1$
- Truth table (真值表)
 - The truth table of F has 2ⁿ entries (n = num of inputs)

X	у	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

F = x + y'z

Boolean Algebra

- Boolean algebra(逻辑代数), a deductive mathematical system developed by George Boole in 1854, deals with the rules by which logical operations are carried out.
- Boolean algebra is an algebraic structure defined by
 - a set of elements S: binary variables;
 - a set of binary operators: AND(*), OR(+) and NOT(');
 - and a number of Axioms/theorems.

Boolean Axioms and Theorems of One Variable Variable

- Axioms and theorems to simplify Boolean equations
- Duality (对偶性) in Axioms and theorems:
 - Replace with +, 0 with 1

	Theorem	Dual	Name
1	x + 0 = x	x • 1 = x	Identity
2	x + 1 = 1	$x \cdot 0 = 0$	Null Element
3	X + X = X	$x \cdot x = x$	Idempotency
4	(>	<')' = x	Involution
5	x + x' = 1	$x \cdot x' = 0$	Complements

- Operator precedence
 - Parentheses > NOT > AND > OR

Boolean Axioms and Theorems of Several Variables

有方种技义等 SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Dual: Replace • with +, 0 with 1

	Theorem	Dual	Name
6	xy = yx	x + y = y + x	Commutativity
7	(xy)z = x(yz)	(x + y) + z = x + (y + z)	Associativity
8	x(y+z) = xy + xz	x + yz = (x + y)(x + z)	Distributivity
9	x + xy = x	x(x + y) = x	Absorption
10	xy + xy' = x	(x + y)(x + y') = x	Combining
11	(x+y')y = xy	xy' + y = x + y	Simplification
12	xy + x'z + yz $= xy + x'z$	(x + y)(x' + z)(y + z) = $(x + y)(x' + z)$	Consensus
13	(x + y)' = x'y'	(xy)' = x' + y'	DeMorgan's law

Note: 8's Dual differs from traditional algebra: OR (+) distributes over

AND (•)

Algebraic method

Proofs (1)

Absorption

- X + XY = X
- pf: x + xy = x(1+y) = x

Combining

- $\bullet(\chi + y)(\chi + y') = \chi$
- pf: (x + y)(x + y') = x + yy' = x + 0 = x

Simplification

$$\bullet xy' + y = x + y$$

•pf:
$$xy' + y = xy' + (x+x')y = xy' + xy + x'y$$

= $xy' + xy + xy + x'y = x(y'+y) + y(x+x') = x+y$

Consensu

•
$$xy + x'z + yz = xy + x'z$$

•
$$pf: xy + x'z + yz = xy + x'z + (x+x')yz$$

= $xy + x'z + xyz + x'yz$
= $(xy + xyz) + (x'z + x'zy) = xy + x'z$

Proofs (2)

DeMorgan's Law

Truth table method

$$\bullet (x + y)' = x'y'$$

$$(xy)' = x' + y'$$

pf:

Х	у	X'	y'	(x+y)'	x'y'	x'+y'	(xy)'
0	0	1	1	1	1	1	1
0	1	1	0	0	0	1	1
1	0	0	1	0	0	1	1
1	1	0	0	0	0	0	0

Associativity

•
$$(xy)z = x(yz)$$

•
$$(x + y) + z = x + (y + z)$$

Ī	Х	V	Z	(xy)z	x(yz)	(x+v)+z	x+(y+z)
ŀ		У		(/ y <i>)</i> 2	^(y <i>L)</i>	(// 1/////	\ \ (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	0	0	0	0	0	0	0
	0	0	1	0	0	1	1
	0	1	0	0	0	1	1
	0	1	1	0	0	1	1
	1	0	0	0	0	1	1
	1	0	1	0	0	1	1
	1	1	0	0	0	1	1
	1	1	1	1	1	1	¹¹ 1

Outline

- Axioms and Theorems of Boolean Algebra
- Simplify Boolean Functions
- Canonical and Standard form
- Other Logic Operations

Boolean Functions

- A Boolean function from an algebraic expression can be realized to a logic diagram composed of logic gates.
 - Binary variables
 - operators OR, AND, NOT
 - Parentheses
- Terminology:
 - Literal: A variable or its complement
 - Product term: literals connected by
 - Sum term: literals connected by +
- Example:
 - A'B'C + A'BC +AB'
 - 8 literals
 - 3 product terms
 - 1 sum term

Boolean Functions

- Each Boolean function has
 - only one representation in truth table
 - but a variety of ways in algebraic form/gate implementation.
- Examples

•
$$F_1 = x' y' z + x' y z + x y'$$

•
$$F_2 = x y' + x' z$$

•
$$F_1 = F_2$$

- Same truth table
- Different algebraic expression

Х	у	Z	F_1	F_2
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

Gate Implementation

- $F_1 = x'y'z + x'yz + xy'$
 - 8 literals
 - 1 OR term (sum term) and 3 AND terms (product terms)
 - literal: a variable or its complement in a Boolean expression (a input to a gate)
 - term: implementation with a gate

•
$$F_2 = x'z + xy'$$

- 4 literals
- 1 OR term and 2 AND terms
- Simpler circuit, more economical

$$F_1 = x'y'z + x'yz + xy'$$

= $x'z(y' + y) + xy'$ Distributivity
= $x'z + xy' = F_2$ Complements

Algebraic Simplification

- Minimize the number of literals and terms for a simpler circuits (less expensive)
- Algebraic simplification can minimize literals and terms.
 However, no specific rules to guarantee the optimal results
- Usually not possible by hand for complex functions, use computer minimization program
- More advanced techniques in the next lectures (K-Map)
- Useful rules
 - Distributivity
 - Idempotency
 - Complements
 - DeMorgan's
 - etc

Example

Examples:

$$F = A'BC + A'$$

$$= A'(BC + 1)$$
Distributivity
$$= A'$$
Null Element

Exercise:

$$F = XYZ + XY'Z + XYZ'$$

$$= XYZ + XY'Z + XYZ + XYZ' \qquad \text{Idempotency}$$

$$= XZ(Y + Y') + XY(Z + Z') \qquad \text{Distributivity}$$

$$= XZ + XY \qquad \text{Complements}$$

$$= X(Y + Z) \qquad \text{Distributivity}$$

Boolean Function complement

- The complement of any function F is F', which can be obtained by DeMorgan's Theorem
 - Take the dual of expression, and then complement each literal in F
- Example: $F_3 = x'y'z+x'yz+xy'$
 - Step1, Dual: Replace with +, 0 with 1

$$x'y'z + x'yz + xy'$$
 Dual $(x'+y'+z)(x'+y+z)(x+y')$

Step2, complement each literal in F

$$F_{3}' = (x'y'z + x'yz + xy')'$$

= $(x+y+z')(x+y'+z')(x'+y)$ DeMorgan

Outline

- Axioms and Theorems of Boolean Algebra
- Simplify Boolean Functions
- Canonical and Standard form
- Other Logic Operations

Minterms and Maxterms

- Minterms and Maxterms
- A **minterm**(最小项): an AND term consists of all literals in their normal form or in their complement form.
 - For example, two binary variables x and y,
 - xy, xy', x'y, x'y'
 - n variables can be combined to form 2ⁿ minterms
- A maxterm(最大项): an OR term
 - For example, two binary variables x and y,
 - x+y, x+y', x'+y, x'+y'
 - 2ⁿ maxterms
- Each maxterm is the complement of its corresponding minterm and vice versa. $(M_i = m_i)$

Minterms and Maxterms

- Canonical forms
 - sum-of-minterms (som)
 - product-of-maxterms (pom)
 - Minterms and maxterms for three binary variables

			M	interms	Maxte	erms
X	y	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	${M}_1$
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

 $\mathbf{0}$

Canonical forms

				- I		- I		
	0	0	0	0	0	1	1	
ean function can be	0	\cap	1	1	\cap	\cap	1	

- A Boolean function can be expressed using canonical forms:
 - sum-of-minterms

•
$$f_1 = x'y'z + xy'z' + xyz$$

= $m_1 + m_4 + m_7 = \sum (1,4,7)$

•
$$f_2 = x'yz + xy'z + xyz' + xyz$$

= $m_3 + m_5 + m_6 + m_7 = \sum (3,5,6,7)$

product-of-maxterms

•
$$f_1 = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)$$

= $M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6 = \prod (0,2,3,5,6)$

•
$$f_2 = (x + y + z)(x + y + z')(x + y' + z)(x' + y + z)$$

= $M_0 \cdot M_1 \cdot M_2 \cdot M_4 = \prod (0, 1, 2, 4)$

•
$$F_1 = \sum (1,4,7) = \prod (0,2,3,5,6)$$
, $F_2 = \sum (3,5,6,7) = \prod (0,1,2,4)$

Conversion between Canonical Forms

- To convert from one canonical from to another, interchange ∑ and ∏, and list the numbers that were excluded from the original form
- For example: F = xy + x'z
 - Sum of minterms:

•
$$F = \sum (1, 3, 6, 7) = m_1 + m_3 + m_6 + m_7 = x'y'z + x'yz + xyz' + xyz$$

•
$$M_i = m_i$$
':
 $F' = \sum (0, 2, 4, 5) = m_0 + m_2 + m_4 + m_5$
 $F = (F')' = (m_0 + m_2 + m_4 + m_5)'$

 $= m'_0 m'_2 m'_4 m'_5 = M_0 M_2 M_4 M_5$

Product of Maxterms:

$$F = \prod(0, 2, 4, 5)$$

= (x+y+z)(x+y'+z)(x'+y+z')

Truth Table for F = xy + x'z

		-	
X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	24 1

Example

- Example: Express F = A + B'C as a sum of minterms.
 - Hint: by expanding the missing variables in each term, using 1=x+x', 0=xx'
- To expand to Sum of minterms: using complements and Distributivity to expand.

•
$$xy = xy(z+z') = xyz + xyz'$$

F = A+B'C
=
$$A (B+B') + B'C$$

= $AB + AB' + B'C$
= $AB(C+C') + AB'(C+C') + (A+A')B'C$
= $ABC + ABC' + AB'C' + AB'C' + A'B'C$
= $m_1 + m_4 + m_5 + m_6 + m_7$
= $\sum (1, 4, 5, 6, 7)$

Truth Table for F = A + BC

A	В	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Example

- Example: Express F = xy + x'z as a product of maxterms.
 - Hints: First convert to product of sum form, then expand
- To expand to Product of maxterms: using Complements and distributivity to expand.
 - x + y = (x + y + zz') = (x+y+z)(x+y+z')

```
F = xy + x'z
                                  x + yz = (x + y)(x + z)
                                                             Distributivity
   = (xy + x')(xy + z)
                                                  Tips: You can also use
   = (x+x')(y+x')(x+z)(y+z)
                                                  DeMorgan's Law
                                                  (Involution first)
   = (x'+y)(x+z)(y+z)
   = (x'+y+zz')(x+z+yy')(y+z+xx')
   = (x'+y+z)(x'+y+z')(x+z+y)(x+z+y')(y+z+x)(y+z+x')
   = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z')
   = M_0 M_2 M_4 M_5
   = \prod (0, 2, 4, 5)
                                                                       26
```


Canonical Forms

- Any function can be represented by either of the 2 canonical forms
- How to convert f=x+y'z into canonical form?
 - by truth table
 - or by expanding the missing variables in each term, using 1=x+x', 0=xx'

```
f = x+y'z
= ?
```


Example

- Any function can be represented by either of the 2 canonical forms (Sum of Minterms/Product of Maxterms)
- How to convert f=x+y'z into canonical form?
 - by truth table
 - or by expanding the missing variables in each term, using 1=x+x', 0=xx'

```
f = x+y'z
= x(y+y') + y'z
= xy + xy' + y'z
= xy(z+z') + xy'(z+z') + (x+x')y'z
= xyz + xyz' + xy'z + xy'z' + xy'z + x'y'z
= xyz + xyz' + xy'z + xy'z' + x'y'z
= xyz + xyz' + xy'z + xy'z' + x'y'z
= m_7 + m_6 + m_5 + m_4 + m_1 = \sum(1,4,5,6,7)
= M_0 \cdot M_2 \cdot M_3 = \prod(0,2,3)
```

We can first find Sum of Minterms form, then easily convert into Product of Maxterm form

Standard Forms

- Canonical forms are very seldom the ones with the least number of literals.
- Standard forms: the terms that form the function may have fewer literals than the minterms.
 - Sum of products(sop): $F_1 = y' + xy + x'yz'$
 - Product of sums(pos): $F_2 = x(y'+z)(x'+y+z')$
 - *F*₃ = *A'B'CD+ABC'D'*
- Standard forms are not unique!

Outline

- Axioms and Theorems of Boolean Algebra
- Simplify Boolean Functions
- Canonical and Standard form
- Other Logic Operations

Other Logic Operations

- 2ⁿ rows in the truth table of n binary variables.
- 2²ⁿ functions for n binary variables.
- 16 functions of two binary variables.

Truth Tables for the 16 Functions of Two Binary Variables

	y																
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

 All the new symbols except for the exclusive-OR symbol are not in common use by digital designers.

Boolean Expressions

 When the three operators AND, OR, and NOT are applied on two variables A and B, they form 16 Boolean functions:

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	X
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not <i>y</i>
$F_{11} = x + y'$	$x \subset y$	Implication	If y , then x
$F_{12} = x'$	x'	Complement	Not <i>x</i>
$F_{13} = x' + y$	$x\supset y$	Implication	If x , then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

Digital Logic Gates

- Consider the 16 functions in previous Table
 - Two are equal to a constant (F_0 and F_{15}).
 - Four are repeated twice (F_4, F_5, F_{10}) and F_{11} .
 - Inhibition (F_2) and implication (F_{13}) are not commutative or associative.
 - The other eight are used as standard gates:
 - complement (F₁₂)
 - transfer (F₃)
 - AND (*F*₁)
 - OR (*F*₇)
 - NAND (*F*₁₄)
 - NOR (*F*₈)
 - XOR (*F*₆)
 - equivalence (XNOR) (F₉)
 - Complement: inverter.
 - Transfer: buffer (increasing drive strength).
 - Equivalence: XNOR.

Summary of Logic Gates

AND	$x \longrightarrow F$	$F = x \cdot y$	$ \begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array} $
OR	$x \longrightarrow F$	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	x— F	F = x'	$\begin{array}{c cc} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
Buffer	x— F	F = x	$\begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array}$

Summary of Logic Gates

	$x \longrightarrow F$		х	у	F
NAND		F = (xy)'	0 0 1 1	0 1 0 1	1 1 1 0
	$x \longrightarrow F$	F = (x + y)'	<i>x</i>	y	F
NOR			0 0 1	0 1 0	1 0 0
			1 x	1 y	$\frac{0}{F}$
Exclusive-OR (XOR)	$x \longrightarrow F$	$F = xy' + x'y$ $= x \oplus y$	0 0 1	0 1 0	0 1 1
			1 x	1 y	$\frac{0}{F}$
Exclusive-NOR or equivalence	x y F	$F = xy + x'y'$ $= (x \oplus y)'$	0 0 1 1	0 1 0 1	1 0 0 1

Multiple Inputs

- Extension to multiple inputs
 - A gate can be extended to multiple inputs.
 - AND and OR are commutative and associative.

•
$$F = ABC = (AB)C$$

•
$$F = A + B + C = (A + B) + C$$

$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

Multiple Inputs

- NAND and NOR are commutative but not associative
 - ((AB)'C)' ≠ (A(BC)')': does not follow associativity.
 - ((A + B)' + C)' ≠ (A + (B + C)')': does not follow associativity.

$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

$$\stackrel{A}{B} = -F$$

Multiple Inputs

- The XOR gates and equivalence gates both possess commutative and associative properties.
 - Gate output is low when even numbers of 1's are applied to the inputs, and when the number of 1's is odd the output is logic 0.
 - Multiple-input exclusive-OR and equivalence gates are uncommon in practice.

$$F = A \oplus B \oplus C$$