НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

8 факультет 1 курс 2 семестр

Московский авиационный институт (национальный исследовательский университет)

Москва, 2020

Основные определения

Определение 1. Пусть $-\infty < a < b \leqslant +\infty$ и $f: [a; b) \to \mathbf{R}$, $f \in \mathbf{R}[a; \eta], \ \forall \eta \in [a; b)$. Если $b < +\infty$, то $\lim_{x \to b = 0} f(x) = \infty$.

Несобственным интегралом по промежутку [a;b) от функции f(x) называется следующий предел

$$\int_{a}^{b} f(x)dx = \lim_{\eta \to b} \int_{a}^{\eta} f(x)dx.$$

Если предел конечный, то интеграл называется сходящимся. В противном случае – расходящимся.

Важный пример

$$\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{\eta \to +\infty} \int_{1}^{\eta} \frac{dx}{x^{\alpha}}$$

Случай 1. $\alpha \neq 1$. Тогда

$$\lim_{\eta \to +\infty} \int\limits_{1}^{\eta} \frac{dx}{x^{\alpha}} = \lim_{\eta \to +\infty} \frac{x^{-\alpha+1}}{-\alpha+1} \bigg|_{1}^{\eta} = \lim_{\eta \to +\infty} \left(\frac{\eta^{-\alpha+1}}{-\alpha+1} - \frac{1}{-\alpha+1} \right)$$

При $-\alpha+1<0$ интеграл сходится, т.к. $\lim_{\eta\to+\infty}rac{\eta^{-\alpha+1}}{-\alpha+1}=0$.

При $-\alpha+1>0$ интеграл расходится, т.к. $\lim_{\eta\to+\infty} \frac{\eta^{-\alpha+1}}{-\alpha+1}=\infty.$

Важный пример

Случай **2**. $\alpha = 1$. Тогда

$$\lim_{\eta \to +\infty} \int_{1}^{\eta} \frac{dx}{x} = \lim_{\eta \to +\infty} \ln x \Big|_{1}^{\eta} = \lim_{\eta \to +\infty} \ln \eta = +\infty$$

Очень важный результат: интеграл $\int\limits_1^{+\infty} \frac{dx}{x^{\alpha}}$ сходится при lpha>1 и расходится при $lpha\leqslant 1$.

Основные определения

Определение 2. Пусть $-\infty \leqslant a < b < +\infty$ и $f: (a;b] \to \mathbf{R}$, $f \in \mathbf{R}[\eta;b], \ \forall \eta \in (a;b]$. Если $-\infty < a$, то $\lim_{x \to a+0} f(x) = \infty$.

Несобственным интегралом по промежутку (a;b] от функции f(x) называется следующий предел

$$\int_{a}^{b} f(x)dx = \lim_{\eta \to a} \int_{\eta}^{b} f(x)dx.$$

Если предел конечный, то интеграл называется сходящимся. В противном случае — расходящимся.

Важный пример

$$\int_{0}^{1} \frac{dx}{x^{\alpha}} = \lim_{\eta \to +0} \int_{\eta}^{1} \frac{dx}{x^{\alpha}}$$

Случай 1. $\alpha \neq 1$. Тогда

$$\lim_{\eta \to +0} \int\limits_{\eta}^{1} \frac{dx}{x^{\alpha}} = \lim_{\eta \to +0} \frac{x^{-\alpha+1}}{-\alpha+1} \bigg|_{\eta}^{1} = \lim_{\eta \to +0} \left(\frac{1}{-\alpha+1} - \frac{\eta^{-\alpha+1}}{-\alpha+1} \right)$$

При $-\alpha+1>0$ интеграл сходится, т.к. $\lim_{\eta\to+0} \frac{\eta^{-\alpha+1}}{-\alpha+1}=0.$

При $-\alpha+1<0$ интеграл расходится, т.к. $\lim_{\eta \to +0} \frac{\eta^{-\alpha+1}}{-\alpha+1} = \infty.$

Важный пример

 C лучай $\mathsf{2}$. $\alpha=1$. Тогда

$$\lim_{\eta \to +0} \int_{\eta}^{1} \frac{dx}{x} = \lim_{\eta \to +0} \ln x \Big|_{1}^{\eta} = \lim_{\eta \to +0} \ln \eta = -\infty$$

Очень важный результат: интеграл $\int\limits_0^1 \frac{dx}{x^{\alpha}}$ сходится при $\alpha < 1$ и расходится при $\alpha \geqslant 1.$

Основные определения. Общий случай

Определение 3. Пусть $-\infty \leqslant a < b \leqslant +\infty$ и $f:(a;b) \to \mathbf{R}$, $f \in \mathbf{R}[\eta;\xi]$, $\forall \eta, \xi \in (a;b)$. Если $-\infty < a$, то $\lim_{x \to a+0} f(x) = \infty$, если $b < +\infty$, то $\lim_{x \to b-0} f(x) = \infty$. Несобственный интеграл по промежутку (a;b) от функции f(x) определяется равенством

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

при $c \in (a;b)$. Интеграл называется сходящимся, если сходятся оба интеграла.

Необходимое условие сходимости

В дальнейшем $-\infty < a < b \leqslant +\infty$ и $f: [a;b) \to \mathbf{R}$, $f \in \mathbf{R}[a;\eta]$, $\forall \eta \in [a;b)$. Если $b < +\infty$, то $\lim_{x \to b-0} f(x) = \infty$.

Пусть интеграл $\int\limits_a^b f(x)dx$ сходится и $c\in [a;b)$. Из равенства

$$\int_{a}^{\eta} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{\eta} f(x)dx$$

при $\eta o b$ получаем сходимость $\int\limits_{c}^{b}f(x)dx$ и равенство

$$\int\limits_a^b f(x) dx = \int\limits_a^c f(x) dx + \int\limits_c^b f(x) dx$$
. Отсюда при $c o b$ получаем

необходимое условие сходимости $\lim_{c \to b} \int_{c}^{b} f(x) dx = 0$.

Свойства несобственного интеграла

Теорема 1 (формула Ньютона-Лейбница). Если F(x) – первообразная функции f(x) на [a;b), то

$$\int_{a}^{b} f(x)dx = F(x) \Big|_{a}^{b} = \lim_{\eta \to b} F(\eta) - F(a).$$

Теорема 2 (линейность). Если интегралы $\int\limits_a^b f_1(x)dx$ и

$$\int\limits_a^b f_2(x)dx$$
 сходятся и $\lambda_1,\lambda_2\in \mathbf{R}$, то сходится интеграл $\int\limits_a^b (\lambda_1 f_1(x)+\lambda_2 f_2(x))dx$ и имеет место равенство

$$\int_{a}^{b} (\lambda_1 f_1(x) + \lambda_2 f_2(x)) dx = \lambda_1 \int_{a}^{b} f_1(x) dx + \lambda_2 \int_{a}^{b} f_2(x) dx.$$

Свойства несобственного интеграла

Теорема 3. Если интегралы $\int\limits_a^b f_1(x) dx$ и $\int\limits_a^b f_2(x) dx$ сходятся и $f_1(x) \leqslant f_2(x), \ \forall x \in [a;b)$, то

$$\int_{a}^{b} f_1(x) dx \leqslant \int_{a}^{b} f_2(x) dx.$$

Теорема 4 (замена переменной). Если f непрерывна на [a;b), φ – непрерывна вместе с производной на $[\alpha;\beta)$, возрастает на этом полуинтервале и

$$-\infty < \alpha < \beta \leqslant +\infty, \quad a = \varphi(\alpha) \leqslant \varphi(t) < b = \lim_{t \to \beta} \varphi(t),$$

то $\int\limits_{\alpha}^{\beta}f(\varphi(t))\varphi'(t)dt=\int\limits_{a}^{b}f(x)dx$. Причем оба интеграла одновременно либо сходятся, либо нет.

Свойства несобственного интеграла

Теорема 5 (интегрирование по частям). Если функции u(x), v(x) непрерывны вместе с производными на [a;b), то

$$\int_a^b u(x)v'(x)dx = u(x)v(x)\bigg|_a^b - \int_a^b u'(x)v(x)dx.$$

Пример

Пример. Вычислить $\int\limits_0^1 \frac{\ln x}{\sqrt{x}} dx$ или установить расходимость.

Решение. По формуле интегрирования по частям $(u(x) = \ln x, v'(x) = \frac{1}{\sqrt{x}})$

$$\int_{0}^{1} \frac{\ln x}{\sqrt{x}} dx = 2\sqrt{x} \ln x \bigg|_{0}^{1} - \int_{0}^{1} \frac{2\sqrt{x}}{x} dx.$$

По правилу Лопиталя

$$\lim_{x \to +0} \sqrt{x} \ln x = \lim_{x \to +0} \frac{\ln x}{\left(\frac{1}{\sqrt{x}}\right)} = \lim_{x \to +0} \frac{\frac{1}{x}}{\left(-\frac{1}{2\sqrt{x^3}}\right)} = 0.$$

Отсюда

$$\int_{0}^{1} \frac{\ln x}{\sqrt{x}} dx = 0 - 4\sqrt{x} \Big|_{0}^{1} = -4.$$

Теорема 6. Пусть $f(x) \ge 0$. Тогда

$$\int\limits_{a}^{b}f(x)dx$$
 сходится $\Leftrightarrow \exists M>0: \int\limits_{a}^{\eta}f(x)dx\leqslant M,\; orall \eta\in [a;b).$

Доказательство. Рассмотрим функцию $F(\eta)=\int\limits_a^\eta f(x)dx$. Она не убывает, т.к. при $\eta_1<\eta_2$ будет

$$F(\eta_2) = \int_{a}^{\eta_2} f(x) dx = \int_{a}^{\eta_1} f(x) dx + \int_{\eta_1}^{\eta_2} f(x) dx \geqslant \int_{a}^{\eta_1} f(x) dx = F(\eta_1).$$

Поэтому предел $\lim_{\eta \to b} F(\eta)$ существует тогда и только тогда, когда $F(\eta) \leqslant M, \ \forall \eta \in [a;b).$ Теорема доказана.

Теорема 7 (признак сравнения). Пусть $f(x),\ g(x)\geqslant 0$ и $f=O(g),\ x\to b.$ Тогда из сходимости интеграла $\int\limits_a^b g(x)dx$

следует сходимость интеграла $\int_{0}^{b} f(x)dx$.

Доказательство. Так как $f = O(g), \ x \to b$, то существует число C > 0 и интервал $(\eta_0; b)$ такие, что $f(x) \leqslant Cg(x)$, $\forall x \in (\eta_0; b)$. Отсюда для любого $\eta \in (\eta_0; b)$

$$\int_{\eta_0}^{\eta} f(x) dx \leqslant C \int_{\eta_0}^{\eta} g(x) dx.$$

Дальше цепочка логических рассуждений. Из теоремы 1

$$\int\limits_{a}^{b}g(x)dx \ \mathrm{cx.} \ \Rightarrow \int\limits_{\eta_{0}}^{b}g(x)dx \ \mathrm{cx.} \ \Rightarrow \int\limits_{\eta_{0}}^{\eta}g(x)dx \leqslant M, \ \forall \eta > \eta_{0}.$$

Следовательно,

$$\int\limits_{\eta_0}^{\eta}f(x)dx\leqslant CM\Rightarrow \int\limits_{\eta_0}^{b}f(x)dx$$
 сходится $\Rightarrow\int\limits_{a}^{b}f(x)dx$ сходится.

Теорема доказана.

Следствие 1 (предельная форма признака сравнения). Пусть f(x), $g(x) \geqslant 0$ и существует (возможно бесконечный) предел $\lim_{x \to h} \frac{f(x)}{g(x)} = k$. Тогда

- 1. При $0\leqslant k<+\infty$ из сходимости интеграла $\int\limits_a^b g(x)dx$ следует сходимость интеграла $\int\limits_a^b f(x)dx$.
- 2. При $0 < k \leqslant +\infty$ из расходимости интеграла $\int\limits_a^b g(x)dx$ следует расходимость интеграла $\int\limits_a^b f(x)dx$.

Доказательство. 1. Пусть $0 \leqslant k < +\infty$. По определению предела для $\varepsilon = 1$ существует $\eta_0 < b$ такое, что при всех $x \in (\eta_0; b)$ будет $\left| \frac{f(x)}{g(x)} - k \right| < 1$. Отсюда f(x) < (k+1)g(x), т.е. $f = O(g), \ x \to b$. Дальше теорема 7.

Пример

Исследовать интеграл на сходимость $\int\limits_{1}^{+\infty} \frac{\sin \ln \frac{1+x^2}{x^2}}{x^{\rho}} dx$.

Решение. Так как

$$\frac{\sin\ln\frac{1+x^2}{x^2}}{x^p} = \frac{\sin\ln\left(1+\frac{1}{x^2}\right)}{x^p} \sim \frac{\ln\left(1+\frac{1}{x^2}\right)}{x^p} \sim \frac{1}{x^{p+2}}, \ x \to +\infty.$$

Отсюда при p+2>1 интеграл сходится, а при $p+2\leqslant 1$ интеграл расходится.

Ответ: сходится при ho > -1.

Абсолютная и условная сходимость

Теорема 8 (Критерий Коши). Для сходимости несобственного интеграла $\int\limits_{-\infty}^{b}f(x)dx$ необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \,\,\exists \eta_{\varepsilon} \in [a;b): \,\, \forall \eta', \eta'' \in (\eta_{\varepsilon};b) \Rightarrow \left| \int\limits_{\eta'}^{\eta''} f(x) dx \right| < \varepsilon.$$

Доказательство. Пусть $F(\eta)=\int\limits_{a}^{\eta}f(x)dx$. По критерию Коши существования предела функции

$$\lim_{\eta o b} F(\eta)$$
 существует $\Leftrightarrow \forall \eta', \eta'' \in (\eta_{arepsilon}; b) \Rightarrow \left| F(\eta') - F(\eta'')
ight| < arepsilon.$

Замечаем, что
$$|F(\eta')-F(\eta'')|=\left|\int\limits_{\eta'}^{\eta''}f(x)dx\right|$$
 . Теорема доказана .

Абсолютная и условная сходимость

Определение 4. Интеграл $\int\limits_a^b f(x) dx$ называется абсолютно сходящимся, если сходится интеграл $\int\limits_a^b |f(x)| dx$. Если интеграл $\int\limits_a^b |f(x)| dx$ расходится, а интеграл $\int\limits_a^b f(x) dx$ сходится, то он называется условно сходящимся.

Теорема 9. Если сходится интеграл $\int\limits_a^b |f(x)| dx$, то сходится и интеграл $\int\limits_a^b f(x) dx$.

Доказательство. Следует из критерия Коши и неравенства

$$\left|\int_{\eta'}^{\eta''} f(x) dx\right| \leqslant \left|\int_{\eta'}^{\eta''} |f(x)| dx\right|$$

Сходимость интегралов от произвольных функций

Теорема 10 (Признак Дирихле). Пусть функция f(x) непрерывна и имеет ограниченную первообразную на [a;b), функция g(x) непрерывна вместе с производной, монотонна на [a;b) и $\lim_{x\to b}g(x)=0$. Тогда интеграл $\int\limits_a^bf(x)g(x)dx$ сходится. **Доказательство**. Пусть F'(x)=f(x). По условию

 $\exists M > 0: |F(x)| \leqslant M, \ \forall x \in [a;b)$. По формуле интегрирования

$$\int_{a}^{\eta} f(x)g(x)dx = F(\eta)g(\eta) - F(a)g(a) - \int_{a}^{\eta} F(x)g'(x)dx$$

Заметим, что $\lim_{\eta \to b} F(\eta) g(\eta) = 0$, как предел произведения бесконечно малой на ограниченную.

по частям

Сходимость интегралов от произвольных функций

Рассмотрим случай $g'(x) \geqslant 0$. Тогда g(x) не убывает и $\lim_{x \to b} g(x) = 0$. Значит, $g(x) \leqslant 0$ на [a;b). Поэтому

$$\int_{a}^{\eta} |F(x)g'(x)| dx \leqslant M \int_{a}^{\eta} |g'(x)| dx = M(g(\eta) - g(a)) \leqslant -Mg(a)$$

По теореме 6 интеграл $\int\limits_a^b |F(x)g'(x)|dx$ сходится. Значит,

 $\exists \lim_{\eta \to b} \int_{a}^{\eta} F(x)g'(x)dx$. Следовательно, $\exists \lim_{\eta \to b} \int_{a}^{\eta} f(x)g(x)dx$. Теорема доказана.

Сходимость интегралов от произвольных функций

Теорема 11 (Признак Абеля). Пусть функция f(x) непрерывна на [a;b) и интеграл $\int\limits_a^b f(x)dx$ сходится, функция g(x) непрерывна вместе с производной, монотонна на [a;b) и ограничена. Тогда интеграл $\int\limits_a^b f(x)g(x)dx$ сходится.

Пример

При $\alpha>0$ исследовать на абсолютную и условную сходимость интеграл $\int\limits_1^{+\infty} \frac{\sin x}{x^{\alpha}}.$

Решение. По признаку Дирихле интеграл сходится.

$$\frac{|\sin x|}{x^{\alpha}} \geqslant \frac{\sin^2 x}{x^{\alpha}} = \frac{1 - \cos 2x}{2x^{\alpha}} = \frac{1}{2x^{\alpha}} - \frac{\cos 2x}{2x^{\alpha}}.$$

- 1) $\int\limits_1^{+\infty} \frac{d\mathbf{x}}{\mathbf{x}^{\alpha}}$ сходится при $\alpha>1$ и расходится при $\alpha\leqslant1$.
- $\sum_{1}^{+\infty} \frac{\cos 2x}{x^{\alpha}}$ сходится по признаку Дирихле при $\alpha>0$.

Отсюда при $0<\alpha\leqslant 1$ интеграл $\int\limits_1^{+\infty} \frac{\sin x}{x^{\alpha}}$ сходится условно, т.к.

$$\int\limits_{1}^{+\infty} \frac{\sin^2 x}{x^{\alpha}} dx \ \operatorname{pacx.} \ \Rightarrow \int\limits_{1}^{+\infty} \frac{|\sin x|}{x^{\alpha}} \operatorname{pacx.}$$

Пример

Если lpha > 1, то из неравенства

$$\frac{|\sin x|}{x^{\alpha}} \leqslant \frac{1}{x^{\alpha}}$$

и признака сравнения следует, что интеграл $\int\limits_1^{+\infty} \frac{\sin x}{x^{\alpha}}$ сходится абсолютно.

Ответ: при $0<\alpha\leqslant 1$ сходится условно; при $\alpha>1$ сходится абсолютно.