p8106_hw3_qz2266

Qing Zhou

2023-03-23

Data import

In this problem, we will develop a model to predict whether a given car gets high or low gas mileage based on the dataset "auto.csv". The dataset contains 392 observations. The response variable is mpg cat, which indicates whether the miles per gallon of a car is high or low.

```
auto = read.csv("data/auto.csv") %>%
mutate(
    mpg_cat = as.factor(mpg_cat),
    mpg_cat = fct_relevel(mpg_cat, c("low", "high")),
    year = factor(year),
    origin = as.factor(origin))
```

Note: Here I mutated year as a factor variable, since I don't assume there's a linear relationship between model year and gas millage.

Data spliting

Split the dataset into two parts: training data (70%) and test data (30%):

```
set.seed(1)
# partition
trainRows <- createDataPartition(y = auto$mpg_cat, p = 0.7,list = FALSE)
train_data = auto[trainRows, ]
test_data = auto[-trainRows, ]

x = model.matrix(mpg_cat ~ ., train_data)[,-1]
y = train_data$mpg_cat
x_test = model.matrix(mpg_cat ~ ., test_data)[,-1]
y_test = test_data$mpg_cat</pre>
```

(a) Logistic regression model

1. Perform a logistic regression using the training data:

```
set.seed(1)
contrasts(auto$mpg_cat)
```

```
high
##
## low
           0
## high
# model fitting
logit_fit <- glm(mpg_cat ~ .,</pre>
              data = auto,
              subset = trainRows,
               family = binomial(link = "logit"))
summary(logit_fit)
##
## Call:
  glm(formula = mpg_cat ~ ., family = binomial(link = "logit"),
       data = auto, subset = trainRows)
##
## Deviance Residuals:
##
                        Median
                                      3Q
       Min
                   1Q
                                               Max
## -2.11544 -0.08650 -0.00003
                                 0.06287
                                           3.11968
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                1.456e+01 5.404e+00
                                       2.694 0.00706 **
                                      -0.422 0.67320
## cylinders
               -2.843e-01 6.741e-01
## displacement 2.122e-02 1.781e-02
                                       1.191 0.23359
## horsepower
               -2.117e-02 3.353e-02
                                     -0.631 0.52782
## weight
               -7.902e-03 2.031e-03
                                      -3.890 0.00010 ***
## acceleration 3.038e-01 2.112e-01
                                       1.439 0.15027
               -5.227e-02 1.955e+00
                                      -0.027 0.97867
## year71
## year72
               -1.796e+00 1.387e+00
                                      -1.295 0.19539
## year73
               -1.812e+00 1.593e+00
                                      -1.138 0.25527
## year74
                1.473e+00 1.792e+00
                                       0.822 0.41127
## year75
                1.936e+00 1.410e+00
                                       1.373 0.16991
## year76
                2.179e+00 1.601e+00
                                       1.361 0.17355
                                       0.585 0.55847
## year77
                1.025e+00 1.751e+00
## year78
                1.435e+00 1.605e+00
                                       0.894 0.37117
                4.929e+00 1.716e+00
                                       2.872 0.00408 **
## year79
## year80
                5.072e+00 1.876e+00
                                       2.704 0.00686 **
## year81
                5.212e+00 1.709e+00
                                       3.049 0.00229 **
## year82
                2.113e+01 1.944e+03
                                       0.011 0.99133
                                       2.107 0.03508 *
## origin2
                2.215e+00 1.051e+00
## origin3
                2.720e+00 1.164e+00
                                       2.338 0.01939 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 382.617 on 275 degrees of freedom
## Residual deviance: 82.751 on 256 degrees of freedom
## AIC: 122.75
##
```

Predictors in the logistic model that are statistically significant at the 5% level of significance are listed as

Number of Fisher Scoring iterations: 18

below: - weight (vehicle weight (lbs.)) - year79 (model year 79) - year80 (model year 80) - year81 (model year 81) - origin2 (European origin) - origin3 (Japanese origin).

2. Set the probability threshold to 0.5 to determine class labels and compute the confusion matrix using the test data:

```
# forecast new observations in the testing set
test.pred.prob <- predict(logit_fit, newdata = test_data,</pre>
                           type = "response")
test.pred <- rep("low", length(test.pred.prob))</pre>
test.pred[test.pred.prob > 0.5] = "high"
#confusion matrix
logit_cm = confusionMatrix(data = factor(test.pred, levels = c("low", "high")),
                                          reference = y_test,
                                           positive = "high")
logit_cm
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction low high
##
         low
               50
                    54
##
         high
               8
```

```
##
##
                  Accuracy: 0.8966
##
                    95% CI: (0.8263, 0.9454)
##
       No Information Rate: 0.5
##
       P-Value [Acc > NIR] : <2e-16
##
##
                     Kappa: 0.7931
##
##
   Mcnemar's Test P-Value: 0.3865
##
##
               Sensitivity: 0.9310
               Specificity: 0.8621
##
##
            Pos Pred Value: 0.8710
##
            Neg Pred Value: 0.9259
##
                Prevalence: 0.5000
##
            Detection Rate: 0.4655
      Detection Prevalence : 0.5345
##
##
         Balanced Accuracy: 0.8966
##
##
          'Positive' Class : high
##
```

```
# extract overall accuracy of the model
logit_cm$byClass["Balanced Accuracy"]
```

```
## Balanced Accuracy
## 0.8965517
```

- The confusion matrix shows the number of correct and incorrect predictions per class. It helps in understanding the classes that are being confused by model as other class. The rows refer to predicted class, while the columns indicate the actual class. Therefore, the number of true lows, true highs, false lows, and false highs are 50, 54, 4, and 8, respectively. Here true lows means the model has 50 correct predictions as having low gas mileage, and true high means the model has 54 correct predictions as having high gas mileage. False high indicate there are 8 count of number of low gas mileage that were misclassified as high gas mileage, and false low indicate there are 4 count of number of high gas mileage that were misclassified as low gas mileage.
- The overall prediction accuracy could be calculated as $\frac{50+54}{50+8+4+54} = 0.897$, with 95% CI (0.8263, 0.9454). Balance accuracy is also 0.897. The No Information Rate (NIR) is 0.5. The no information rate is 0.5, which means if we made the same class prediction for all observations given no information, our model would be 50% accurate, which is not very ideal. P-value is < 2e-16. So the accuracy is significantly different from no information rate.
- The kappa coefficient is 0.7931, which measures the agreement between classification and truth values. A kappa value of 1 represents perfect agreement, while a value of 0 represents no agreement. So here the kappa value indicates substantial agreement.
- Sensitivity(the percentage of true positives among the positive observations) is 0.931 while specificity(the percentage of true negatives among the negative observations) is 0.8621. Both are high. Positive Predictive Value (PPV) measures the ratio of true positive predictions considering all positive predictions. Negative Predictive Value (NPV) measures the ratio of true negative predictions considering all negative predictions. Here PPV is 0.871 while NPV is 0.9259.
- 3. We can also fit a logistic regression using caret:

```
##
## Call:
## NULL
##
## Deviance Residuals:
##
        Min
                   1Q
                         Median
                                        3Q
                                                 Max
  -2.11544
            -0.08650
                       -0.00003
                                  0.06287
                                             3.11968
##
## Coefficients:
##
                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 1.456e+01 5.404e+00
                                         2.694 0.00706 **
## cylinders
                -2.843e-01
                            6.741e-01
                                        -0.422
                                                0.67320
## displacement
                2.122e-02 1.781e-02
                                         1.191
                                                0.23359
## horsepower
                -2.117e-02 3.353e-02 -0.631
                                               0.52782
```

```
## weight
              -7.902e-03 2.031e-03 -3.890 0.00010 ***
## acceleration 3.038e-01 2.112e-01
                                     1.439 0.15027
          -5.227e-02 1.955e+00 -0.027 0.97867
## year71
              -1.796e+00 1.387e+00 -1.295 0.19539
## year72
## year73
             -1.812e+00 1.593e+00 -1.138 0.25527
              1.473e+00 1.792e+00 0.822 0.41127
## year74
              1.936e+00 1.410e+00 1.373 0.16991
## year75
              2.179e+00 1.601e+00 1.361 0.17355
## year76
## year77
               1.025e+00 1.751e+00 0.585 0.55847
## year78
             1.435e+00 1.605e+00 0.894 0.37117
## year79
               4.929e+00 1.716e+00
                                    2.872 0.00408 **
               5.072e+00 1.876e+00
                                    2.704 0.00686 **
## year80
## year81
               5.212e+00 1.709e+00
                                    3.049 0.00229 **
                                    0.011 0.99133
## year82
               2.113e+01 1.944e+03
## origin2
               2.215e+00 1.051e+00
                                     2.107 0.03508 *
## origin3
               2.720e+00 1.164e+00 2.338 0.01939 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 382.617 on 275 degrees of freedom
## Residual deviance: 82.751 on 256 degrees of freedom
## AIC: 122.75
##
## Number of Fisher Scoring iterations: 18
```

(b). MARS model

Train a multivariate adaptive regression spline (MARS) model using the training data:

```
## Call: earth(x=matrix[276,19], y=factor.object, keepxy=fRUE,
## glm=list(family=function.object, maxit=100), degree=1, nprune=14)
##
## GLM coefficients
## high
## (Intercept) 24.7173171
```

```
## year79
                         4.1236606
## year80
                         6.6689496
## year81
                         5.9373049
## year82
                        18.8702838
## h(cylinders-4)
                       -12.2477760
## h(6-cylinders)
                        -9.5405565
## h(cylinders-6)
                        14.2195295
## h(displacement-119)
                        -3.3515335
## h(displacement-122)
                         3.7646000
## h(displacement-146)
                        -0.7640305
## h(displacement-151)
                         0.3398935
## h(weight-2914)
                        -0.0267003
## h(weight-3085)
                         0.0250052
##
## GLM (family binomial, link logit):
   nulldev df
                      dev df
                                 devratio
                                              AIC iters converged
##
   382.617 275
                  50.3427 262
                                    0.868
                                            78.34
                                                     18
##
## Earth selected 14 of 24 terms, and 7 of 19 predictors (nprune=14)
## Termination condition: Reached nk 39
## Importance: cylinders, displacement, weight, year80, year81, year79, ...
## Number of terms at each degree of interaction: 1 13 (additive model)
## Earth GCV 0.05285177
                           RSS 11.87269
                                            GRSq 0.7901221
                                                              RSq 0.827932
```

plot(mars_fit)

extract the optimal tuning parameters kable(mars_fit\$bestTune, "simple")

	nprune	degree
13	14	1

coef(mars_fit\$finalModel)

h(cylinders-6)	h(weight-3085)	h(displacement-151)	(Intercept)	##
14.21952947	0.02500520	0.33989353	24.71731713	##
h(displacement-122)	h(weight-2914)	h(cylinders-4)	h(6-cylinders)	##
3.76460003	-0.02670028	-12.24777603	-9.54055650	##
year80	year81	h(displacement-146)	h(displacement-119)	##
6.66894959	5.93730488	-0.76403053	-3.35153350	##
		year82	year79	##
		18.87028378	4.12366056	##

vip(mars_fit\$finalModel)

• From the first plot, we can see that when degree = 1 with 14 terms, the curve achieve its highest point. We got the same result from the extracted best tunes from the final MARS model.

- From the variable importance measurement plot (VIP), we found only displacement, cylinders, weight, year79-82 and horsepower contributes to the model.
- The final MARS model has RSS = 11.873, R-squared = 0.8279, which is pretty high.

(c). LDA

1. Perform LDA using the training data:

```
## LDA fit
set.seed(1)
lda.fit = lda(mpg_cat~., data = auto,
               subset = trainRows)
lda.fit$scaling
##
                         LD1
                -0.426908230
## cylinders
## displacement 0.000918401
## horsepower
                 0.010708775
## weight
                -0.001113534
## acceleration 0.051520119
## year71
                0.149857720
## year72
                -0.335837331
## year73
                -0.247508917
## year74
                 0.563065711
## year75
                 0.071317413
## year76
                 0.170905092
                 0.210067050
## year77
## year78
                -0.155093189
## year79
                 1.087107392
## year80
                 1.265894240
## year81
                 1.401233485
## year82
                 1.653369428
## origin2
                 0.615523222
## origin3
                 0.669705292
head(predict(lda.fit)$x)
##
             LD1
     -2.1457347
## 1
## 7 -2.1480040
## 10 -1.9925840
## 13 -2.2611263
## 14 -0.6300608
## 15 1.0937072
```

[1] 2.484551e-17

mean(predict(lda.fit)\$x) ## seen as 0, means data is centered

2. Plot the linear discriminants in LDA

plot(lda.fit)

