FH Aachen

Faculty Electrical engineering and information technology

Bachelor Thesis

Design and Implementation of a Performance Measurement System for an Industrial Sewing Machine

Nicolas Harrje Matr.-Nr.: 3518047

Referent: Prof. Dr-Ing. ...

Korreferent: Prof. Dr.-Ing. ...

Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die im Literaturverzeichnis angegebenen Quellen benutzt habe.

Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht veröffentlichten Quellen entnommen sind, sind als solche kenntlich gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst erstellt worden oder mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen Prüfungsbehörde eingereicht worden.

Aachen, July 1, 2025

Geheimhaltung - Sperrvermerk

Die vorliegende Arbeit unterliegt bis [Datum] der Geheimhaltung. Sie darf vorher weder vollständig noch auszugsweise ohne schriftliche Zustimmung des Autors, des betreuenden Referenten bzw. der Firma [Firmenname und -sitz] vervielfältigt, veröffentlicht oder Dritten zugänglich gemacht werden.

Contents

١.	introduction	4		
	1.1. Motivation und Aufgabenstellung			
	1.2. Vorgehensweise	5		
2.	Foundations	6		
	2.1. State of the Art			
	2.1.1. Industrial IoT Architectures and Patterns	6		
3.	Kapitel 3	7		
4.	Zusammenfassung und Ausblick	8		
Qι	uellenverzeichnis	9		
Αk	Abkürzungsverzeichnis			
AŁ	Abbildungsverzeichnis			
Та	bellenverzeichnis	12		
Ar	nhang	12		
Α.	Quellcode	13		
B Rohdatenvisualisierungen				

1. Introduction

1.1. Motivation und Aufgabenstellung

1.2. Vorgehensweise

2. Foundations

2.1. State of the Art

2.1.1. Industrial IoT Architectures and Patterns

Due to the requirement that the solution be developed utilizing IoT technologies and is set within a production context, a review of Industrial IoT (IIoT) architectures and patterns was conducted. The Industrial Internet Reference Architecture (IIRA) [?] serves as a comprehensive framework, offering valuable insights into various architectural models and design patterns relevant to this domain. This reference architecture describes the following patterns: IoT Component Capability Pattern, Three-Tier Architecture Pattern, Gateway-Mediated Edge Connectivity and Management architecture pattern, Digital Twin Core as a Middleware Architecture Pattern, Layered Databus Architecture Pattern, System-of-Systems Orchestrator Architecture Pattern. Of these patterns only the first two are applicable within the scope of this work. Therefore the other ones will only be described on the surface.

3. Kapitel 3

Table 3.1.: Messergebnisse

Stellung	$rac{T_U}{^{\circ}C}$	$rac{T_c}{{}^{\circ}C}$	$rac{\Delta T}{\circ C}$
senkrecht (0°)	27, 3	69,8	42,5
waagerecht (90°)	26, 6	70,6	44,0

Table 3.2.: Smartphone Sensordaten

Sensorinformation	Format	frequency $[s^{-1}]$
App identifier for vendor	int64	once per transfer
WIFI and network carrier IP addresses	int128	once per transfer
battery level	int8	0.1
Position information: latitude, longitude, altitude, speed, course, vertical position accuracy, horizontal position accuracy, floor level information	float32[8]	1
Heading information: heading.x, heading.y, heading.z, true heading, magnetic heading, heading accuracy	float16[6]	1
Acceleration acceleration.x, acceleration.y, acceleration.z	float16[3]	2
Gyroscope information: rotationRate.x, rotationRate.y, rotationRate.z	float16[3]	2
altimeter information: relative altitude, pressure	float16[2]	1
timestamp	uint32	once per transfer
Temperature [°C]	float16	1

Wie in Tabelle 3.2 zu sehen ist, ist es besser, Trennlinien nur dort einzusetzen, wo logische Grenzen liegen.

4. Zusammenfassung und Ausblick

Bibliography

[Hartnett, 2018] Hartnett, K. (2018). Machine learning confronts the elephant in the room. Quanta Magazine, Online. https://www.quantamagazine.org/machine-learning-confronts-the-elephant-in-the-room-20180920/.

[Le, 2018] Le, J. (2018). How to do semantic segmentation using deep learning. Online. https://medium.com/nanonets/how-to-do-image-segmentation-using-deep-learning-c673cc5862ef.

Abkürzungsverzeichnis

g Gravitation in Nähe der Erdoberfläche

Nu Nußelt-Zahl

 u_{Luft} Kinematische Viskosität von Luft

 $\begin{array}{ccc} Pr & \operatorname{Prandtl-Zahl} \\ \dot{Q} & \operatorname{W\"{a}rmestrom} \\ Ra & \operatorname{Rayleigh-Zahl} \\
ho_{Luft} & \operatorname{Dichte\ von\ Luft} \\ T & \operatorname{Temperatur} \end{array}$

 T_{∞} Umgebungstemperatur

List of Figures

List of Tables

3.1.	Messergebnisse	7
	Smartphone Sensordaten	

A. Quellcode

- 1. Source 1
- 2. Source 2

B. Rohdatenvisualisierungen

- 1. Graustufen
- 2. Verteilungen