Transfer Learning

Traditional ML

- In the classic supervised learning scenario of machine learning, if we intend to train a model for some task and domain AA, we assume that we are provided with labelled data for the same task and domain
- We can see this clearly in Figure, where the task and domain of the training and test data of our model AA is the same
- Let us assume that
 - a task is the objective our model aims to perform,
 e.g. recognize objects in images
 - a domain is where our data is coming from, e.g. images taken in San Francisco coffee shops.

Traditional ML

- We can now train a model AA on this dataset and expect it to perform well on unseen data of the same task and domain
- On another occasion, when given data for some other task or domain BB, we require again labelled data of the same task or domain that we can use to train a new model BB so that we can expect it to perform well on this data
- The traditional supervised learning paradigm breaks down when we do not have sufficient labelled data for the task or domain we care about to train a reliable model

Transfer Learning

- Transfer learning allows us to deal with these scenarios by leveraging the already existing labelled data of some related task or domain
- We try to store this knowledge gained in solving the source task in the source domain and apply it to our problem of interest
- In practice, we seek to transfer as much knowledge as we can from the source setting to our target task or domain
- This knowledge can take on various forms depending on the data
 - it can pertain to how objects are composed to allow us to more easily identify novel objects
 - it can be with regard to the general words people use to express their opinions, etc

Traditional ML vs Transfer Learning

Traditional ML

- vs Transfer Learning
- Isolated, single task learning:
 - Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

- Learning of a new tasks relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data

Important takeaways

- Transfer learning, as we have seen so far, is having the ability to utilize existing knowledge from the source learner in the target task
- During the process of transfer learning, the following three important questions must be answered
 - What to transfer
 - This is the first and the most important step in the whole process.
 - We try to seek answers about which part of the knowledge can be transferred from the source to the target in order to improve the performance of the target task
 - When trying to answer this question, we try to identify which portion of knowledge is source-specific and what is common between the source and the target
 model → weights

When to transfer

- There can be scenarios where transferring knowledge for the sake of it may make matters worse than improving anything (also known as negative transfer)
- We should aim at utilizing transfer learning to improve target task performance/results and not degrade them
- We need to be careful about when to transfer and when not to

[transfer only if tasks are Related]

Important takeaways

How to transfer

- Once the <u>what</u> and <u>when</u> have been answered, we can proceed towards identifying ways of actually transferring the knowledge across domains/tasks
- This involves changes to existing algorithms and different techniques
 - framework/library dependent

Object detection

Inception Network

Introduction

- Inception Modules are used in CNN to allow for more efficient computation and deeper Networks through a dimensionality reduction with stacked 1×1 convolutions
- The modules were designed to solve the problem of computational expense, as well as overfitting, among other issues
- The solution, in short, is to take multiple kernel filter sizes within the CNN, and rather than stacking them sequentially, ordering them to operate on the same level

How does it work?

- Inception Modules are incorporated into convolutional neural networks (CNNs) as a way of reducing computational expense
- As a neural net deals with a vast array of images, with wide variation in the featured image content, also known as the salient parts, they need to be designed appropriately
- The most simplified version of an inception module works by performing a convolution on an input with not one, but three different sizes of filters (1x1, 3x3, 5x5)
- Also, max pooling is performed. Then, the resulting outputs are concatenated and sent to the next layer
- By structuring the CNN to perform its convolutions on the same level, the network gets progressively wider, not deeper

(a) Inception module, naïve version

How does it work?

- To make the process even less computationally expensive, the neural network can be designed to add an extra 1x1 convolution before the 3x3 ad 5x5 layers
- By doing so, the number of input channels is limited and 1x1 convolutions are far cheaper than 5x5 convolutions
- It is important to note, however, that the 1x1 convolution is added after the max-pooling layer, rather than before

(b) Inception module with dimension reductions

How does it work?

- The design of this initial Inception Module is known commonly as GoogLeNet, or Inception v1
- Additional variations to the inception module have been designed, reducing issues such as the vanishing gradient descent

