Here we derive the theoretical value distribution for a gene in uniformly-sampled probability vectors, and compare it with empirical results:

Since the entries of p add up to 1, we can compute $P(p_i = k)$ by evaluating its equivalent $P\left(\sum_{j \neq i} p_j = 1 - k\right)$. Let S_1 be the solution space spanned by the condition

$$\sum_{j \neq i} p_j = 1 - k$$

or equivalently,

$$||p_{-i}||_1 = 1 - k, \quad p_{-i} = \{p_0, \dots, p_{i-1}, p_{i+1}, \dots, p_n\}$$

In this formulation, we see that S_1 forms the surface of a taxicab (L_1) sphere. From [1], we know that the volume of S_1 is proportional to the radius raised by the degree of freedom. Since p_i is an independent variable, the degree of freedom is one less |p|-1, yielding

$$V_n(S_1) \propto (1-k)^{|p|-2}$$
 (1)

Since the probability density is uniform across all vector solutions, we know that the probability mass of S_1 as directly proportional to its volume defined in Equation (1),

$$P(p_i = k) = \lambda (1 - k)^{|p| - 2}$$

where λ is a normalizing constant,

$$\int_0^1 \lambda (1-k)^{|p|-2} dk = 1$$

$$\lambda \left[\frac{1}{|p|-1} (1-k) \right]_1^0 = 1$$

$$\lambda = |p|-1$$

$$P(p_i = k) = (|p| - 1)(1 - k)^{|p| - 2}$$
(2)

Equation (2) thus gives us the theoretical distribution of a gene in uniformly-sampled probability vectors.

REFERENCES

[1] K. P. Thompson, "The nature of length, area, and volume in taxicab geometry," *arXiv preprint arXiv:1101.2922*, 2011.