

Connecting Minds, Driving Smart Solutions

18-19 September, 2024 Naples, Italy #FIWARESummit24 **HOSTED BY**

PARTNERED WITH

Getting value out of context data

ML for health

18-19 September,
2024
Naples, Italy
#FIWARESummit24

HOSTED BY

PARTNERED WITH

- 1. Introduction to AI concepts: ML, DL, MLOps
- 2. Presentation of Smart Health use case: Skin diseases detection
- 3. Data processing, model selection and metrics
- 4. Integration w/ FIWARE: Architecture, interactions, entities and subscriptions
- 5. Demonstration
- 6. Automatizing tasks: levelling up the use case
- 7. Summary

- 1. Introduction to Al concepts: ML, DL, MLOps
- 2. Presentation of Smart Health use case: Skin diseases detection
- 3. Data processing, model selection and metrics
- 4. Integration w/ FIWARE: Architecture, interactions, entities and subscriptions
- 5. Demonstration
- 6. Automatizing tasks: levelling up the use case
- 7. Summary

Al Concepts

Al Concepts: Train a ML model

 Data processing (cleaning, selection, creation), model: selection, assessment and deployment

Train, validation and test:

Data augmentation:

- 1. Introduction to AI concepts: ML, DL, MLOps
- 2. Presentation of Smart Health use case: Skin diseases detection
- 3. Data processing, model selection and metrics
- 4. Integration w/ FIWARE: Architecture, interactions, entities and subscriptions
- 5. Demonstration
- 6. Automatizing tasks: levelling up the use case
- 7. Summary

Smart Health use case

- Disclaimer: Not to replace the dermatologist but to assist a physician and expert dermatologist
- Scenario: Imagine living in a city where the appointment with a dermatologist might take between 2-3 months in general and up to 4 months or more in peak seasons

Early detection phase and fast appointment scheduling

- App to help physician to have an educated diagnosis about what the skin disease might be:
 - If the result is not good → the app can schedule an appointment with the dermatologist ASAP
 - If the result seems ok, they still can make an appointment but lowering the priority
- Allow to detect a severe disease in a early stage, maximizing the chances of recovering

- 1. Introduction to AI concepts: ML, DL, MLOps
- 2. Presentation of Smart Health use case: Skin diseases detection
- 3. Dataset, data processing, model selection and metrics
- 4. Integration w/ FIWARE: Architecture, interactions, entities and subscriptions
- 5. Demonstration
- 6. Automatizing tasks: levelling up the use case
- 7. Summary

HAM10000 dataset

1	lesion_id	image_id	dx	dx_type	age	sex	localization
2	HAM_0000118	ISIC_0027419	bkl	histo	80	male	scalp
3	HAM_0000118	ISIC_0025030	bkl	histo	80	male	scalp
4	HAM_0002730	ISIC_0026769	bkl	histo	80	male	scalp
5	HAM_0002730	ISIC_0025661	bkl	histo	80	male	scalp
6	HAM_0001466	ISIC_0031633	bkl	histo	75	male	ear
7	HAM_0001466	ISIC_0027850	bkl	histo	75	male	ear
8	HAM_0002761	ISIC_0029176	bkl	histo	60	male	face
9	HAM_0002761	ISIC_0029068	bkl	histo	60	male	face
10	HAM_0005132	ISIC_0025837	bkl	histo	70	female	back
11	HAM_0005132	ISIC_0025209	bkl	histo	70	female	back
12	HAM_0001396	ISIC_0025276	bkl	histo	55	female	trunk
13	HAM_0004234	ISIC_0029396	bkl	histo	85	female	chest
14	HAM_0004234	ISIC_0025984	bkl	histo	85	female	chest
15	HAM_0001949	ISIC_0025767	bkl	histo	70	male	trunk
16	HAM 0001949	ISIC 0032417	bkl	histo	70	male	trunk

Paper: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T

The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions

Data processing

Data augmentation

Data Augmentation

Model selection

Deep Learning

convolution layer 1

convolution layer 2

- 1. Introduction to AI concepts: ML, DL, MLOps
- 2. Presentation of Smart Health use case: Skin diseases detection
- 3. Dataset, data processing, model selection and metrics
- 4. Integration w/ FIWARE: Architecture, interactions, entities and subscriptions
- 5. Demonstration
- 6. Automatizing tasks: levelling up the use case
- 7. Summary

Architecture in FIWARE

Interactions with components in FIWARE

Entities and subscriptions

Entities:

MLModel: describes the model, how was trained, dataset used, algorithm, accuracy, etc.

1 for Binary case - 1 for multiclass case

Ex:

urn:ngsi-ld:MLModel:CNNSkinAnalyzer:multiclass:001,
urn:ngsi-ld:MLModel:CNNSkinAnalyzer:binary:001

MLProcessing: describes an observations that is being precessed by a MLModel or has the prediction of a MLModel It has a "ref" to MLModel. For example, a user photo that is/was analyzed by an algorithm, in created using this entity

Ex:

urn:ngsi-ld:MLProcessing:001

Dataset: describes a dataset

EX: urn:ngsi-ld:Dataset:HAM10000

Subscriptions: SubscriptionQuery:

- urn:ngsi-ld:SubscriptionQuery:MLModel:
 - Subscribes to every model creation
- urn:ngsi-ld:SubscriptionQuery:MLProcessing:
 - Subscribes to every observations being inferred by a model or a result of an inferred

- 1. Introduction to AI concepts: ML, DL, MLOps
- 2. Presentation of Smart Health use case: Skin diseases detection
- 3. Dataset, data processing, model selection and metrics
- 4. Integration w/ FIWARE: Architecture, interactions, entities and subscriptions

5. Demonstration

- 6. Automatizing tasks: levelling up the use case
- 7. Summary

Demo

- 1. Introduction to AI concepts: ML, DL, MLOps
- 2. Presentation of Smart Health use case: Skin diseases detection
- 3. Dataset, data processing, model selection and metrics
- 4. Integration w/ FIWARE: Architecture, interactions, entities and subscriptions
- 5. Demonstration
- 6. Automatizing tasks: levelling up the use case
- 7. Summary

Automatizing the solution: MLOps

A typical ML lifecycle

A Data Scientist

- Get and clean up data
- Prepare and train a ML model

An IT person

Package and deploy the ML model

An end user

- Discover the available ML models (with respect to privacy)
- Ask to use one or more of them (and optionally pay for it)
- Get real time data (predictions, outliers,...) from a ML model

Automatizing the solution: MLOps

Automatizing the solution: MLOps

- 1. Introduction to AI concepts: ML, DL, MLOps
- 2. Presentation of Smart Health use case: Skin diseases detection
- 3. Dataset, data processing, model selection and metrics
- 4. Integration w/ FIWARE: Architecture, interactions, entities and subscriptions
- 5. Demonstration
- 6. Automatizing tasks: levelling up the use case
- 7. Summary

Summary - Key Concepts and Use Case

- Introduction to Al Concepts:
 - Machine Learning (ML), Deep Learning (DL), MLOps:
 - Overview of data processing, model training, and deployment.
 - Emphasis on the importance of train, validation, and test sets.
- Smart Health Use Case:
 - Skin Disease Detection App:
 - Designed to assist physicians by providing early skin disease detection.
 - Reduces wait time for dermatology appointments, especially in high-demand seasons.

Summary - Technical Integration and Automation

- Data and Model Insights:
 - Machine Learning (ML), Deep Learning (DL), MLOps:
 - Dataset: HAM10000 dataset for skin lesion analysis.
 - Model Selection: ResNet50 architecture for image classification.
 - Data Augmentation: Enhanced data variability for better training outcomes.
- Integration with FIWARE:
 - Architecture & Entities: Use of MLModel and MLProcessing entities to describe the model and results.
 - Subscriptions: Real-time updates on model creation and inferences using NGSI-LD.
- MLOps Automation:
 - Lifecycle: Automated deployment, monitoring, and scaling of ML models integrated into FIWARE.

Resources

- Repository with code and slides:
 - https://github.com/dncampo/FGS2024 ML-training/tree/main
- Repository with ML Models, data augmentation, notebooks:
 - https://github.com/dncampo/cheetah
- HAM10000 dataset:
 - https://api.isic-archive.com/collections/212/
 - https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T
 - https://arxiv.org/pdf/1803.10417
- MLOps in FIWARE example:
 - Document architecture (WIP): <u>https://docs.google.com/document/d/1Emy3QyD1So4ODoi5bZLMI888bibBpJ3dGuuF-7dNpXw/edit</u>
 - https://docs.google.com/document/d/1Emy3QyD1So4ODoi5bZLMI888bibBpJ3dGuuF-7dNpXw/edit?usp=sharing
 - Parking example: https://github.com/ging/fiware-mlops-parking

JOIN OUR NEWSLETTER

Hosting Partner

Official Partners

Media

Strategic Alliance

Patronage

FIWARE Global Summit

Visit the Summit website to stay up-to-date with the latest.

Register now and secure your spot for a transformative experience.

18-19 September, 2024 Naples, Italy #FIWARESummit24 **HOSTED BY**

PARTNERED WITH

FIWARE Global Summit

and as

18-19 September, 2024 Naples, Italy #FIWARESummit24

Contact: David CAMPO

