Universidade de Aveiro Departamento de Matemática

Cálculo I - Agrupamento II

2014/2015

Soluções do Exame Final (15/01/2015)

- 1. (a) f(0) = 0.
 - (b) O gráfico de f admite apenas assíntota não vertical à esquerda de equação $y = \frac{\pi}{2}$.
 - (c) $-\frac{3e}{1+e^2}$.
 - (d) $\frac{8e^3+4}{9}$.
- 2. (a) $D_g = [-4, -3]$.
 - (b) $D_{g^{-1}} = \left[-\frac{\pi}{2}, \pi \right], CD_{g^{-1}} = \left[-4, -3 \right], g^{-1}(x) = \cos^2\left(\frac{2x+\pi}{6}\right) 4.$
- 3. (a) h não é integrável no intervalo [-2,7] porque é ilimitada neste intervalo.
 - (b) Sugestão: Use o Teorema de Bolzano para provar a existência de zero; para provar a unicidade de zero basta observar que h é estritamente decrescente em]1,2[, logo injectiva.
- 4. (a) $\frac{1}{2} \arctan x + \frac{x}{2(1+x^2)} + C$, $C \in \mathbb{R}$.
 - (b) $2 \ln |x| \frac{1}{x} + \frac{3}{2} \ln(4 + x^2) \frac{1}{2} \operatorname{arctg} \frac{x}{2} + C$, $C \in \mathbb{R}$.
- 5. Sugestão: Usar o Teorema Fundamental do Cálculo Integral.
- 6. Convergente. (Sugestão: usar o Critério do Limite ou o Critério de Comparação)
- 7. —