Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

	УТВЕРЖДАЮ)
	Зав. кафедрой	системного анализа
		ского управления,
	к.фм.н., доце	
		уч. ст., уч. зв.
		И.Е. Тананко
	подпись, дата	инициалы, фамилия
ОТЧЕТ	г О ПРАКТИКЕ	
Студента <u>2</u> курса факультета <u>КНиИ</u> и управление	<u>Т</u> направления 27.03	.03 – Системный анализ
<u>Черневского</u>	Алексея Дмитриевич	<u> 1a</u>
<u>.</u>	лия, имя, отчество	
·	комительная) практи	<u>кыа</u>
кафедра системного анал	вид практики изэ и автоматинеско	го управления
кафедра системного анал	иза и автоматического кафедра	то управления
курс <u>2</u>		
семестр 4		
продолжительность <u>2 недели, с 30.0</u> кол. неде	06.2017 г. по 13.07.20 ль, сроки практики	<u> 17 г.</u>
Руководитель практики, доцент кафедры системного анализа и автоматического управления, к.фм.н., доцент		Е.С. Рогачко
должность, уч. ст., уч. зв.	подпись, дата	инициалы, фамилия
		-

Тема практики:

«Программные средства математического моделирования.

Вариант №9»

Оглавление

ВВЕДЕНИЕ	4
1 Математические вычисления	5
1.1 Табулирование функций	5
1.2 Решение систем линейных алгебраических уравнений	6
1.3 Аппроксимация функций	7
1.4 Решение обыкновенных дифференциальных уравнений	9
1.5 Вычисление определённых интегралов	11
1.6 Решение нелинейных уравнений	13
1.7 Поиск минимума функции одной переменной	14
1.8 Поиск минимума функций нескольких переменных	15
2 Математические модели систем	17
2.1 Детерминированные системы. Спящий полицейский	17
2.2 Стохастические системы. Планирование в атомной энергетике	32
ЗАКЛЮЧЕНИЕ	44
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	45

ВВЕДЕНИЕ

GNU Octave — свободная система для математических вычислений, использующая совместимый с MATLAB язык высокого уровня. С помощью GNU Octave можно решить такие задачи, как: выполнение простейших вычислений, табулирование функций, решение СЛАУ, вычисление интегралов, решение дифференциальных уравнений и поиск оптимального решения [1-5].

Цель ознакомительной практики — закрепить теоретические знания по системному анализу и математическому моделированию и получить навыки их практического применения путем решения задач в среде разработки Octave.

На ознакомительной практике решались следующие задачи:

- 1. Табулирование функций;
- 2. Решение систем линейных алгебраических уравнений;
- 3. Аппроксимация функций;
- 4. Решение обыкновенных дифференциальных уравнений;
- 5. Вычисление определённых интегралов;
- 6. Решение нелинейных уравнений;
- 7. Поиск минимума функции одной переменной;
- 8. Поиск минимума функций нескольких переменных;
- 9. Моделирование и исследование примера детерминированной системы;
- 10. Моделирование и исследование примера стохастической системы.

1 Математические вычисления

1.1 Табулирование функций

 $3a\partial a va\ 1.1.$ Составить программу вычисления значений функции $\ y_i\$ для значений аргумента $\ x_i$. Данные взять из таблицы 1.

Таблица 1 – Исходные данные для задачи

№	Функция	Задача А				Задача В					
Π/Π	$y_i = f(x_i)$	а	b	x_H	x_k	Δx	x_1	x_2	x_3	x_4	x_5
9	$y = \frac{lg(x^2 - 1)}{\log_5(ax^2 - b)}$	1.1	0.09	1.2	2.2	0.2	1.21	1.76	2.53	3.48	4.52

Код программы А:

Результаты работы программы А:

$$y = -3.291304$$

 $y = -0.090545$
 $y = 0.713671$
 $y = 1.042292$
 $y = 1.210283$
 $y = 1.308293$

Код программы В:

```
a = 1.1; b = 0.09;
x(1) = 1.21; x(2) = 1.76;
x(3) = 2.53; x(4) = 3.48;
x(5) = 4.52;

for i = 1:5
y(i) = log(x(i)^2 - 1) / (log(a * x(i)^2 - b) / log(5));
end;
```

Результаты работы программы В:

```
y = -2.94835

y = 0.99424

y = 1.39999

y = 1.50056

y = 1.53618
```

1.2 Решение систем линейных алгебраических уравнений

Задача 1.2. Решить систему линейных алгебраических уравнений. Данные приведены в таблице 2.

Таблица 2 – Исходные данные для задач

$$a_{ij} = \begin{bmatrix} 1 & 2 & 15 & 11 \\ -2 & 4 & 3 & 61 \\ -3 & -8 & 11 & 12 \\ 15 & 7 & 8 & -4 \end{bmatrix}; b_i = \begin{bmatrix} 2 \\ 4 \\ 5 \\ 9 \end{bmatrix}.$$

```
15 7 8 - 4];

b = [2; 4; 5; 9];

X = a \ b

X2 = b' / a'

X3 = b' * a'^(-1)

X4 = b' * inv(a')
```

Результаты работы программы:

1.3 Аппроксимация функций

 $3a\partial a va \ 1.3.$ Используя линейную и полиномиальную аппроксимации, получить эмпирические формулы и оценить их погрешность для функции y=f(x), заданной в табличном виде:

Таблица 3 — Исходные данные для задач

x_i	10.0	12.0	13.0	15.0	18.0	20.0	21.0
y_i	0.66	0.89	1.24	1.36	1.56	1.76	1.92

```
1
     x = [10.0 \ 12.0 \ 13.0 \ 15.0 \ 18.0 \ 20.0 \ 21.0]
2
     y = [0.66 \ 0.89 \ 1.24 \ 1.36 \ 1.56 \ 1.76 \ 1.92]
3
4
     plot(x, y, 'o')
5
     hold on
6
7
     [p1, s1] = polyfit(x, y, 1)
8
     y1 = polyval(p1, x);
9
     plot(x, y1, 'g')
10
     hold on
11
12
    [p1, s1] = polyfit(x, y, 2)
13
    y1 = polyval(p1, x);
14
    plot(x, y1, 'k')
15
     hold on
16
    [p1, s1] = polyfit(x, y, 3)
17
    y1 = polyval(p1, x);
18
    plot(x, y1, 'm')
19
20
     hold on
21
22
    [p1, s1] = polyfit(x, y, 4)
23
    y1 = polyval(p1, x);
    plot(x, y1, 'b')
24
25
     hold on
26
27
     [p1, s1] = polyfit(x, y, 5)
28
    y1 = polyval(p1, x);
29
     plot(x, y1, 'r')
30
     hold on
31
32
     [p1, s1] = polyfit(x, y, 6)
    y1 = polyval(p1, x);
33
     plot(x, y1, 'c')
34
35
     hold on
36
     h = legend("graph", "polyfit (k = 1)", "polyfit (k = 2)", "polyfit (k = 3)",
37
     "polyfit (k = 4)", "polyfit (k = 5)", "polyfit (k = 6)");
38
```

Результаты работы программы:

Эмпирические формулы и погрешности представлены на рисунке 1.

1.4 Решение обыкновенных дифференциальных уравнений.

 $3a\partial a va$ 1.4. Построить график и вывести в виде таблицы решение задачи Коши на интервале [0,1] методом Рунге-Кутта. Данные взяты из таблицы 4.

Таблица 4 – Исходные данные для задачи

№ п/п	f(x,y)	y_0
9	$x^2\cos y + 0.1$	0.3

function
$$y = g(t, x)$$

 $y = t^2 * cos(x) + 0.1$;
end
par = odeset ("RelTol", 1e-5, "AbsTol", 1e-5, "InitialStep", 0.1, "MaxStep", 0.15);
[X23, Y23] = ode45(@g, [0 1], 0.3, par)

plot(X23, Y23);

Результаты работы программы:

График решения задачи Коши представлен на рисунке 2.

Решение задачи Коши:

X =	Y =
0.00000	0.30000
0.10000	0.31032
0.25000	0.32994
0.40000	0.36011
0.55000	0.40674

0.70000	0.47496
0.85000	0.56825
1.00000	0.68721

1.5 Вычисление определённых интегралов.

Задача 1.5. Вычислить и вывести на экран значения определенного интеграла методом Симпсона и методом трапеций. Данные взять из таблицы 5.

Таблица 5 – Исходные данные для задачи

№ п/п	Подынтегральная функция $f(x)$	Интервал интегрирования $[a,b]$	Точность вычислений интеграла
9	$\sin(1/x)x^4$	[1.0; 2.5]	0.0005

Код программы:

```
x = 1.0 : 0.0005 : 2.5;

y = \sin(1./x).*x.^4;

sim = trapz(x, y)

clear x y z;

tr = quad(inline("(sin(1./x).*x.^4)"), 1.0, 2.5, 0.0005)
```

Результат работы программы:

```
sim = 9.0857 

tr = 9.0857
```

Как видно, решение определенного интеграла методом Симпсона и трапеций дает одинаковые ответы, с точностью до сотых.

1.6 Решение нелинейных уравнений.

Задача 1.6. Построить график и найти корень нелинейного уравнения. Данные взяты из таблицы 6.

№ п/п	Уравнение $f(x)=0$	Отрезок $[a,b]$
9	$x^4 + 2x^3 - x - 1 = 0$	[0.8;1.0]

Таблица 6 – Исходные данные для задачи.

Код программы:

$$x = 0.8 : 0.001 : 1.0;$$

$$y = x.^4 + 2*x.^3 - x - 1;$$

$$plot(x, y);$$

$$x1 = fzero(inline("x.^4 + 2*x.^3 - x - 1"), [0.8 1.0])$$

$$x2 = fsolve(inline("x.^4 + 2*x.^3 - x - 1"), 0.8 : 1.0)$$

Результаты работы программы:

$$x1 = 0.86676$$

$$x2 = 0.86676$$

На рисунке 3 показан график нелинейного уравнения, точечное решение которого было получено с помощью функций *fsolve* и *fzero*.

1.7 Поиск минимума функции одной переменной.

 $3a\partial a va 1.7$. Найти и вывести на экран координату и минимальное значение функции f(x) на [a,b]. Данные взяты из таблицы 7.

Таблица 7 – Исходные данные для задачи.

№ п/п	Функция $f(x)$	Отрезок $[a,b]$		
9	$f(x)=(x-2)^5(2x+1)^4$	[-0.5, 1.5]		

$$x = -0.5 : 0.001 : 1.5;$$

 $y = (x - 2).^5 .* (2*x + 1).^4;$

```
plot(x, y);

[x1, y1] = fminbnd(inline("(x - 2).^5 .* (2*x + 1).^4"), -0.5, 20.0)
```

Результаты работы программы:

$$x1 = 0.61111$$

$$y1 = -126.03$$

На рисунке 4 показан график, из которого видно соответствие найденных программой точки минимума и минимального значения функции $f\left(x
ight)$.

1.8 Поиск минимума функций нескольких переменных.

 $3a\partial a va$ 1.8. Найти и вывести на экран координаты и минимальное значение двух переменных. Поиск начать с точки M(x,y). Данные взяты из таблицы 8.

Таблица 8 – Исходные данные для задачи.

-	√ 2 /π	Функция $f(x,y)$	Координаты начальной точки $M_{0}(x_{0,}^{},y_{0}^{})$
g	9	$\ln(1+x^2+y^2)^2+(x-y-1)^2$	(2,2)

Код программы:

```
[x, y] = meshgrid (-0.5 : 0.01 : 0.5, 0 : 0.01 : 0.5);
z = log(1 + x.^2 + y.^2).^2 + (x - y - 1).^2;
plot3 (x, y, z)
f = log(1 + x(1)^2 + x(2)^2)^2 + (x(1) - x(2) - 1)^2;
end;
[xmin, minf] = fminsearch (@ Fxy, [2; 2])
```

Результаты работы программы:

```
xmin =
0.41074
-0.41071
minf = 0.11640
```

На рисунке 5 построен трехмерный график функции f(x, y), с помощью которого можно убедиться в наличии минимума функции.

Рисунок 5 — График функции f(x, y).

2 Математические модели систем

2.1 Детерминированные системы. Спящий полицейский

Формулировка задачи

Автомобиль движется по ровной дороге и наезжает на искусственное препятствие – « спящий полицейский ». Исследовать кинематику и динамику движения автомобиля .

Ограничимся рассмотрением наезда на препятствие только одного колеса . Горизонтальная составляющая скорости автомобиля не меняется . Воздействие препятствия сводится только к возбуждению вертикального перемещения автомобиля . Колесо при движении полностью повторяет профиль препятствия . Подвеска состоит из упругой пружины и демпфера.

Математическая модель

При наезде колеса на препятствие колесо перемещается в вертикальном направлении. Это перемещение описывается переменной x. На кузов автомобиля воздействие со стороны дороги передается посредством подвески (пружины c жесткостью K и демпфера c коэффициентом демпфирования B). воздействие посредством Силовое пружины определяется относительным смещением кузова, описываемым переменными x и y, силовое воздействие со стороны демпфера – относительной скоростью этих dx/dtи dy/dt . В уравнении движения постоянное перемещений воздействие на пружину кузова, компенсируемое равной и противоположно направленной силой упругости пружины ($Mg = K \Delta x$), не будем учитывать.

С учетом сделанных предположений в соответствии со вторым законом Ньютона уравнение движения рассматриваемой системы имеет вид :

$$M\frac{d^2y}{dt^2} = B\left(\frac{dx}{dt} - \frac{dy}{dt}\right) + K(x - y),$$

$$\frac{d^2 y}{dt^2} + \frac{B}{M} \frac{dy}{dt} + \frac{K}{M} y = \frac{B}{M} \frac{dx}{dt} + \frac{K}{M} x.$$

Вертикальное ускорение кузова автомобиля d^2y/dt^2 является функцией скорости автомобиля в горизонтальном направлении, так как горизонтальное перемещение вследствие неровности сопровождается вертикальным перемещением. При этом профиль дороги (кривизна, ширина, высота) играет существенную роль.

Выберем в качестве математической модели неровности дороги функцию:

$$x(s) = \frac{H}{2} (1 - \cos(\frac{2\pi s}{L})), 0 \le s \le L$$

где H — высота , а L — ширина неровности .

При постоянной скорости V_0 автомобиля в горизонтальном направлении $s\!=\!V_0 t$, функция профиля дороги и ее производная принимают вид:

$$x(t) = \frac{H}{2} (1 - \cos(\frac{2\pi V_0 t}{L})), 0 \le t \le L/V_0,$$
$$\frac{dx}{dt} = \frac{H}{L} \pi V_0 \sin(\frac{2\pi V_0 t}{L}).$$

Подставив dx/dt в уравнение движения и выполнив соответствующую замену переменных, получим систему двух дифференциальных уравнений первого порядка.

Задания

1. Решите систему дифференциальных уравнений и постройте графики зависимости перемещения, скорости и ускорения вдоль вертикальной оси от времени.

```
1
    clc
2
    clear all
3
    global H = 0.05;
4
    global L = 0.8;
5
    global V0 = 20;
6
    global M = 450;
    global K = 3500;
8
    global B = 7300;
9
    function q = sist(t, an)
10
    global H;
11
    global L;
12
    global V0;
13
    global M;
14
    global K;
15
    global B;
    #Описание математической модели неровности дороги
16
17
    x = (H/2) * (1 - cos((2 * pi * V0 * t) / L));
18
    #Производная функции неровности дороги
    dxdt = (H/L) * pi * V0 * sin((2 * pi * V0 * t)/L);
19
20
    q = [an(2); ((B/M) * dxdt + (K/M) * x - (B/M) * an(2) - (K/M) * an(1))];
21
    endfunction;
22
23
    t0 = 0;
24
    tf = L/V0;
25
    x0 = [0, 0];
26
    par = odeset ("RelTol", 1e-5, "AbsTol", 1e-5, "InitialStep", 0.05,
27
```

```
28
    "MaxStep", 0.001);
    [t, an] = ode45(@sist, [t0 tf], x0, par);
29
30
    plot(t, an(:,1));
31
    title('nazvanie');
32
    xlabel('t');
33
    ylabel('y');
34
    figure();
35
    plot (t, an(:,2));
36
    xlabel('t');
37
    ylabel('dy/dt');
38
39
    x = (H/2) * (1 - cos((2 * pi * V0 * t) / L));
40
    dxdt = (H/L) * pi * V0 * sin((2 * pi * V0 * t)/L);
    an3=((B/M)*dxdt+(K/M)*x-(B/M)*an(:,2)-(K/M)*an(:,1));
41
42
43
    figure();
    plot (t, an3);
44
45
    xlabel('t');
    ylabel('d^2y/dt^2');
46
```

Результатом работы программы являются три графика зависимости перемещения, скорости и ускорения вдоль вертикальной оси от времени.

Рисунок 6 – График зависимости перемещения от времени.

Рисунок 7 – График зависимости скорости от времени.

Рисунок 8 – График зависимости ускорения от времени.

2. Измените массу автомобиля — увеличьте до 980 кг. Как изменилась амплитуда вертикального перемещения? Скорость? Ускорение? Строку 6, кода программы, приведем к виду следующему виду

6 global M = 980;

В итоге получим:

Рисунок 9 — График зависимости перемещения от времени при $M\!=\!980$, в сравнении с аналогичным графиком при $M\!=\!450$.

Рисунок 10 — График зависимости скорости от времени при $M\!=\!980$, в сравнении с аналогичным графиком при $M\!=\!450$.

Рисунок 11 — График зависимости ускорения от времени при $M\!=\!980$, в сравнении с аналогичным графиком при $M\!=\!450$.

Из графиков видно, что автомобиль с большей массой обладает большей инертностью, и поэтому гораздо медленнее набирает вертикальное перемещение, скорость и ускорение [6].

3. Уменьшите жесткость (упругость) подвески до $2000\,H/_{\it M}$. Сопоставьте графики перемещения, скорости, ускорения.

Приведем строку 6 кода программы к первоначальному виду

и изменим строку 7. Она должна иметь вид:

```
7 global K = 2000;
```

После запуска измененной программы, получим следующие графики:

Рисунок 12 — График зависимости перемещения от времени при K = 2000, в сравнении с аналогичным графиком при K = 3500.

Рисунок 13 – График зависимости скорости от времени при $K\!=\!2000$, в сравнении с аналогичным графиком при $K\!=\!3500$.

Рисунок 14 — График зависимости ускорения от времени при $K\!=\!2000$, в сравнении с аналогичным графиком при $K\!=\!3500$.

Анализируя графики, приходим к выводу, что уменьшение жесткости пружины приводит к уменьшению высоты, скорости и ускорения за счет того, что пружина с меньшей жесткостью оказывает меньшее давление на демпфер.

4. Уменьшите постоянную демпфирования в 3 раза, до нуля. Как изменился процесс при движении по препятствию? После?

Приведем программу к первоначальному виду. После, изменим строчку под номером 8, так, что выйдет:

8 global
$$B = 0$$
;

После применения любого из приведенных выше изменений получим три графика. Сравнение графиков при разных значениях B приведено на следующих трех рисунках:

Рисунок 15 – Графики зависимости перемещения от времени при B = 7300, B = 7300/3, B = 0.

Рисунок 16 – Графики зависимости скорости от времени при $B\!=\!7300$, $B\!=\!7300/3$, $B\!=\!0$.

Рисунок 17 – Графики зависимости скорости от времени при $B\!=\!7300$, $B\!=\!7300/3$, $B\!=\!0$.

Из рисунков 14, 15, 16 можно сделать вывод, что перемещение, скорость и ускорение прямо пропорциональны постоянной демпфирования.

5. Особое внимание уделите графику и абсолютному значению ускорения при проезде препятствия. Превышение 5g (g=9,8 m/c^2) становится чрезвычайно опасным для жизни.

Действительно, некоторые из выше описанных изменений параметров математической модели приводят к превышению 5g.

6. Измените параметры препятствия. Рассмотрите варианты узкого и высокого препятствия, широкого и низкого (высота и ширина: 0,1 м и 0,4 м , 0,04 м и 1 м). Сделайте выводы об условиях безопасного проезда «спящего полицейского».

Изменим строчки 3 и 4

```
3 global H = 0.05;
4 global L = 0.8;
```

Вместо старых значений H и L подставим по очереди, соответственно $0,1\, M$ и $0,4\, M$, $0,04\, M$ и $1\, M$.

Полученные графики приведены ниже:

Рисунок 18 – Графики зависимости перемещения от времени при разных видах препятствия.

Рисунок 19 – Графики зависимости скорости от времени при разных видах препятствия.

Рисунок 20 – Графики зависимости ускорения от времени при разных видах препятствия.

2.2 Стохастические системы. Планирование в атомной энергетике

Формулировка задачи

Решается вопрос, как много атомных станций строить в стране каждые пять лет. Стоимость строительства атомной станции составляет $20 \cdot 10^6$ денежных ед., а обеспечение условий работы и содержание станции в течение пяти лет обходятся в $5\cdot 10^6$ ед . Чтобы построить атомную станцию, требуется пять лет. Если станция работает в течение пятилетнего периода, то к началу следующего периода она будет работать только с вероятностью 0,6. Лоббисты по охране окружающей среды провели законопроект о том, что в пятилетний период в стране может быть построено и/или работать не более трех атомных станций. Производительности одной атомной станции достаточно, чтобы удовлетворить потребности страны в энергии, иначе обеспечение в течение пяти лет альтернативных ресурсов энергии будет стоить $60 \cdot 10^6$ ед. Пусть состояния: 1 — нет работающих атомных станций; 2 – одна работающая атомная станция; 3 – две работающие атомные станции; 4 – три работающие атомные станции; управления 0, 1, 2, 3 – число строящихся атомных станций. Определите оптимальную стратегию строительства атомных станций в стране для последующего периода времени.

Математическая модель

Данная система описывается марковским процессом принятия решений (управляемым марковским процессом) с множеством состояний $I = \{1,2,3,4\}$ и множествами решений (управлений) $K(1) = \{0,1,2,3\}$, $K(2) = \{0,1,2\}$, $K(3) = \{0,1\}$, $K(4) = \{0\}$. Обозначим : p_{ij}^k , $i,j \in I$, $k \in K(i)$, — вероятность перехода процесса из состояния i в состояние j при управлении k ; q_i^k — ожидаемые затраты в состоянии i при управлении k .

Полные ожидаемые затраты $v_i(n)$ за n последующих шагов, если в начальный момент марковский процесс с доходами находится в состоянии i , определяется рекуррентным соотношением:

$$v(n) = q + P v(n-1), n = 1, 2, 3, ...,$$

где $v_{j}(0)=0, j \in I$.

Для управляемого марковского процесса обозначим $v_i^*(n)$, $j \in I$, n = 1, 2, 3, ..., — оптимальный полный ожидаемый доход за n шагов при начальном состоянии i. Согласно рекуррентному методу

$$v_i^*(n) = \max_{k \in K(i)} [q_i^k + \sum_{j \in I} p_{ij}^k v_j^*(n-1)],$$

где $v_{j}^{*}(0)=0$, $j \in I$.

Обозначим $\delta_i^*(n)$, $j \in I$, n=1,2,3,..., – оптимальное управление в состоянии i при n оставшихся шагах,

$$\delta_{i}^{*}(n) = arg \max_{k \in K(i)} [q_{i}^{k} + \sum_{j \in I} p_{ij}^{k} v_{j}^{*}(n-1)]$$

Метод полного перебора

Шаг 1. Построить множество Δ — множество всех возможных векторов управления $\delta = (\delta_i)$, $i \in I$, $\delta_i \in K(i)$.

Шаг 2. Для всех $\delta \in \Delta$ вычислить

$$g^{\delta} = \pi^{\delta} q^{\delta}$$

где π^{δ} и q^{δ} – вектор-строка предельных вероятностей и вектор-столбец ожидаемых доходов, соответствующие вектору управления δ .

Шаг 3. Определить

$$g^* = \max_{\delta \in \Delta} g^{\delta}$$
,

$$\delta^* = arg \max_{\delta \in \Lambda} g^{\delta}$$
.

Задания.

1) Оформите исходные данные для задачи в виде таблицы вероятностей и доходов

i	k	p_{i1}^k	p_{i2}^k	p_{i3}^k	p_{i4}^k	q_i^k
	0	1	0	0	0	-60
1	1	0	1	0	0	-80
1	2	0	0	1	0	-100
	3	0	0	0	1	-120
	0	0.4	0.6	0	0	-5
2	1	0	0.4	0.6	0	-25
	2	0	0	0.4	0.6	-45
3	0	0.16	0.48	0.36	0	-10
3	1	0	0.16	0.48	0.36	-30
4	0	0.064	0.288	0.432	0.216	-15

Таблица 9 – исходные данные для задачи.

2) Предположим, что в пятилетний период в стране может быть построена только одна атомная станция. Чему равны в этом случае полные ожидаемые затраты за 10 лет, 20 лет, 30 лет, если в начальный момент времени в стране не было работающих атомных станций? была одна работающая атомная станция?

```
P = [0 \ 1 \ 0 \ 0;
1
2
       0 0.4 0.6 0;
3
       0 0.16 0.48 0.36;
4
       0.064 0.288 0.432 0.216];
5
     q = [-80; -25; -30; -15];
6
7
     N = 1:
8
     while(rem(N, 5)!= 0)
9
       N = input ("Input the number of years, multiple of 5: ")
10
     endwhile
11
     N = N / 5;
12
13
     vAns = zeros(N, 4);
14
     v = [q(1); q(2); q(3); q(4)];
15
     T = zeros(N, 1);
16
17
     for i = 1 : N
18
19
       T(i) = 5 * i;
```

```
20
       vAns(i, 1) = v(1);
21
       vAns(i, 2) = v(2);
22
       vAns(i, 3) = v(3);
23
       vAns(i, 4) = v(4);
24
       disp(sprintf('( %g: %g; %g; %g; %g;)', 5 * i, v(1), v(2), v(3), v(4)))
25
       v = q + P * v;
26
     end
27
28
     plot(T, vAns(:, 1), '.');
29
     hold on;
     plot(T, vAns(:, 1), 'g');
30
31
32
     plot(T, vAns(:, 2), '.');
33
     hold on;
34
     plot(T, vAns(:, 2), 'm');
35
36
     plot(T, vAns(:, 3), '.');
37
     hold on;
38
     plot(T, vAns(:, 3), 'b');
39
40
     plot(T, vAns(:, 4), '.');
41
     hold on;
42
     plot(T, vAns(:, 4), 'c');
     xlabel('t, years');
     ylabel('v(n)');
```

Результат работы программы:

```
N = 30

(5: -80; -25; -30; -15;)

(10: -105; -53; -53.8; -43.52;)

(15: -133; -78.48; -79.9712; -69.6259;)

(20: -158.48; -104.375; -106.008; -95.701;)

(25: -184.375; -130.355; -132.036; -121.67;)

(30: -210.355; - 156.364; -158.035; -147.663;)
```


Рисунок 21 – Графики зависимости полных ожидаемых затрат от времени.

На этом графике зеленым, фиолетовым, синим и голубым нарисованы, графики зависимости полных ожидаемых затрат от времени, при начальных состояниях, 1, 2, 3, 4, соответственно.

Как видно из рисунка 21 и результатов, затраты на содержание и постройку атомных станций постоянно растут. Если в начальный момент в стране не было работающих атомных станций, то к 30 году общие ожидаемые затраты составят 210.355. В случае, если в начальный момент в стране была одна работающая атомная станция, к 30 году общие ожидаемые затраты составят 156.364 [8, 10].

3) В случае выполнения предположения задания 2 каковы предельные вероятности того , что в стране работают 2 атомные станции , 3 атомные станции ?

Код программы:

```
1
     P = [0 \ 1 \ 0 \ 0]
2
       0 0.4 0.6 0;
       0 0.16 0.48 0.36;
3
4
       0.064 0.288 0.432 0.216];
5
     P = P - eve(4, 4);
6
     P.';
7
     P(4, :) = ones(1, 4);
8
9
     B = zeros (4, 1);
10
     B(4) = 1;
11
12
     pi = P \setminus B
```

Результат работы программы:

```
pi =

0.014515

0.264767

0.493918

0.226799
```

4) Предположим, что в стране в пятилетний период могут быть построены не более чем 3 атомные станции. Определите оптимальные полные ожидаемые затраты за 10 лет, 20 лет, 30 лет при условии, что в начальный момент времени в стране не было работающих атомных станций. Какова при этом оптимальная стратегия строительства атомных станций в стране в указанные периоды времени? Постройте графики зависимости затрат от числа пятилеток для всех начальных состояний атомной энергетики страны.

```
1
     P1 = [1 \ 0 \ 0 \ 0];
2
         0 1 0 0;
3
         0 0 1 0;
4
         0001];
5
     P2 = [0.4 \ 0.6 \ 0 \ 0]
6
         0 0.4 0.6 0;
7
         0 0 0.4 0.6];
8
     P3 = [0.16 \ 0.48 \ 0.36 \ 0]
9
         0 0.16 0.48 0.36];
10
     P4 = [0.064 \ 0.288 \ 0.432 \ 0.216];
11
12
     q1 = [-60; -80; -100; -120];
13
     q2 = [-5; -25; -45];
14
     q3 = [-10 - 30];
15
     q4 = [-15];
16
17
     N = 1;
18
     while(rem(N, 5)!= 0)
19
       N = input ("Input the number of years, multiple of 5: ")
20
     endwhile
21
     N = N / 5;
22
23
     vGraph = zeros(N, 4);
24
     T = zeros(N, 1);
25
     [vopt(1), I(1)] = max(q1);
26
     [vopt(2), I(2)] = max(q2);
27
     [vopt(3), I(3)] = max(q3);
28
     [vopt(4), I(4)] = max(q4);
29
30
     startup = -1;
31
     while(startup != 1 \&\& startup != 2 \&\& startup != 3 \&\& startup != 4)
```

```
32
                  startup = input ("Input the startup state [1, 2, 3, 4]:")
33
            endwhile
34
35
            for years = 1 : N
36
                  vGraph(vears, 1) = vopt(1);
37
38
                  vGraph(years, 2) = vopt(2);
39
                  vGraph(years, 3) = vopt(3);
40
                  vGraph(years, 4) = vopt(4);
                  T(years) = 5 * years;
41
42
43
                  switch(startup)
44
                  case 1
                            disp(sprintf('Год %g Управление %g Затраты %g', 5 * years, I(1),
45
46
            vopt(1)))
47
                  case 2
48
                            disp(sprintf('Год %g Управление %g Затраты %g', 5 * years, I(2),
49
            vopt(2)))
50
                  case 3
51
                            disp(sprintf('Год %g Управление %g Затраты %g', 5 * years, I(3),
52
            vopt(3)))
53
                  case 4
54
                            disp(sprintf('Год %g Управление %g Затраты %g', 5 * years, I(4),
55
            vopt(4)))
56
                  endswitch
57
                  for i = 1 : 4
58
                        switch(I(i))
59
                              case 1
60
                                    [vopt(i), I(i)] = max([(q1(1) + P1(1, 1) * vopt(1)),
                                                                      (q1(2) + P1(2, 2) * vopt(2)),
61
62
                                                                      (q1(3) + P1(3, 3) * vopt(3)),
63
                                                                      (q1(4) + P1(4, 4) * vopt(4)));
64
                              case 2
65
                                        [vopt(i), I(i)] = max([(q2(1) + (P2(1, 1) * vopt(1) + P2(1, 2) *
66
            vopt(2)),
67
                                                                      (q2(2) + (P2(2, 2) * vopt(2) + P2(2, 3) * vopt(3))),
68
                                                                      (q2(3) + (P2(3,3) * vopt(3) + P2(3,4) * vopt(4)))
69
            );
70
                              case 3
71
                                         [vopt(i), I(i)] = max([(q3(1) + (P3(1, 1) * vopt(1) + P3(1,2) *
72
            vopt(2) + P3(1, 3) * vopt(3)),
73
                                                                         (q3(2) + (P3(2, 2) * vopt(2) + P3(2, 3) * vopt(3) +
74
            P3(2, 4) * vopt(4)))));
75
                              case 4
76
                                        [vopt(i), I(i)] = max(q4(1) + (P4(1) * vopt(1) + P4(2) * vopt(2) + P4(2) * vopt(2)
```

```
78
     P4(3) * vopt(3) + P4(4) * vopt(4));
79
          endswitch
80
81
       end
82
83
     end
84
85
     plot(T, vGraph(:, 1), '.');
86
     hold on;
87
     plot(T, vGraph(:, 1), 'g');
88
89
     plot(T, vGraph(:, 2), '.');
90
     hold on:
91
     plot(T, vGraph(:, 2), 'm');
92
93
     plot(T, vGraph(:, 3), '.');
94
     hold on:
95
     plot(T, vGraph(:, 3), 'b');
96
97
     plot(T, vGraph(:, 4), '.');
98
     hold on;
99
     plot(T, vGraph(:, 4), 'c');
100
101 | xlabel('t, years');
102 | ylabel('v(n)');
```

Результат работы программы:

В зависимости от введенных данных, можно получить оптимальные стратегии для начальных состояний I=1,2,3,4. Ответ приведен для начального состояния I=1 – нет работающих атомных станций [7, 9].

```
N = 30

startup = 1

Год 5 Управление 1 Затраты -60

Год 10 Управление 2 Затраты -85

Год 15 Управление 1 Затраты -90

Год 20 Управление 1 Затраты -150

Год 25 Управление 1 Затраты -210

Год 30 Управление 1 Затраты -270
```


Рисунок 22 – Графики зависимости полных ожидаемых затрат от времени.

На этом графике зеленым, фиолетовым, синим и голубым нарисованы, графики зависимости оптимальных полных ожидаемых затрат от времени, при начальных состояниях, 1, 2, 3, 4, соответственно.

5) Определите оптимальную стационарную стратегию строительства атомных станций в стране при длительном плановом периоде времени и оптимальные средние затраты за пятилетний период в этом случае.

```
1 Pi1k = [1 0 0 0;
2 0 1 0 0;
3 0 0 1 0;
4 0 0 0 1];
5 Pi2k = [0.4 0.6 0 0;
6 0 0.4 0.6 0;
```

```
7
         0 0 0.4 0.6];
8
     Pi3k = [0.16 \ 0.48 \ 0.36 \ 0;
9
         0 0.16 0.48 0.36];
10
     Pi4k = [0.064 \ 0.288 \ 0.432 \ 0.216];
11
12
     qi1k = [-60; -80; -100; -120];
13
     qi2k = [-5; -25; -45];
14
     qi3k = [-10; -30];
15
     qi4k = [-15];
16
     S = zeros(4, 4);
17
     p=1;
18
     ES=zeros(24,9);
19
     for z = 1 : 1
        for j = 1 : 2
20
21
          for k = 1 : 3
22
             for m = 1 : 4
23
               S(1,:) = Pi1k(m,:);
               S(2,:) = Pi2k(k,:);
24
25
               S(3,:) = Pi3k(i,:);
26
               S(4,:) = Pi4k(z,:);
27
28
               Q(1,1) = qi1k(m,1);
29
               Q(2,1) = qi2k(k,1);
30
               Q(3,1) = qi3k(j,1);
31
               Q(4,1) = qi4k(z, 1);
32
               I = eye(4);
33
               S=S'-I;
34
               S(4,:)=ones(1,4);
35
               b=[0; 0; 0; 1];
36
               p0=S\b
37
               Es(p,5)=0;
38
               for s=1:4
39
                  ES(p,s)=p0(s);
                  ES(p,5)=ES(p,5)+p0(s)*Q(s,1);
40
41
               end
42
               ES(p,6) = m;
43
               ES(p,7) = k;
44
               ES(p,8) = j;
45
               ES(p,9) = z;
46
               p=p+1;
47
             end
48
          end
49
       end
50
     end
51
     ES
```

```
52 [g,d]=max(ES(:,5));

53 g

54 dopt=zeros(1,4);

55 dopt=[ES(d,6);ES(d,7);ES(d,8); ES(d,9)]
```

Результат работы программы:

```
g = -22.216

dopt =
2
2
1
1
```

Из результатов видно, что оптимальной стационарной стратегией является постройка одной атомной станции в 1 и 2 состояниях, и отказ от постройки станций в 3 и 4 состояниях. При этом убыток составит $22.216 \cdot 10^6$

•

ЗАКЛЮЧЕНИЕ

В ходе учебной практики было исследовано несколько математических моделей и написаны к ним соответствующие программные приложения.

В результате анализа результатов были выявлены закономерности изменения состояний систем.

При прохождении практики, также были развиты навыки:

- программирования в среде разработки Octave;
- аппроксимация функций;
- решение СЛАУ различными методами;
- нахождение минимумов различных функций;
- решение сложных математических задач;
- исследование математических моделей детерменированных и стохастических систем;
 - анализ полученных результатов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Алексеев Е.Р., Чеснокова О.В. Решение задач вычислительной математики в пакетах Mathcad 12, MATHLAB 7, Maple 9. Серия: Самоучитель. М.: НТ Пресс, 2006 496 с.
- 2 Дащенко О.Ф., Кириллов В.Х., Л.В. Коломиец, В.Ф. Оробей. МАТLAВ в инженерных и научных расчетах: Монография. Одесса: Астропринт, 2003. 214 с.
- 3 Половко А.М., Бутусов П.Н. МАТLAB для студента. Спб.: БХВ Петербург, 2005. 320 с.
- 4 Ануфриев И.Е., Смирнов А. Б., Смирнова Е.Н. Matlab 7. Спб.: БХВ Петербург, 2005. 1104 с.
- 5 Худяков В.Ф., Хабузов В.А. Моделирование источников вторичного электропитания в среде MATLAB 7.х: учебное пособие. СПб.: ГУАП, 2008. 332 с.
- 6 Эндрюс Дж, Мак-Лоун Р. Математическое моделирование / Пер. с англ. М.: Мир, 1979. 280 с.
- 7 Ховард Р.А. Динамическое программирование и марковские процессы/ Пер. с англ. М.: Сов. радио, 1964. 189 с.
- 8 Митрофанов Ю.И. Системный анализ: учебное пособие. Саратов: Научная книга, 2000. 232c.
- 9 Вагнер Г. Основы исследования операций / Пер. с англ. М.: Мир, 1973, Т. 2, 3. 488 с., 504 с.
- 10 Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ. М.: Высш. Школа, 1989. 608 с.