

planetmath.org

Math for the people, by the people.

Cayley-Dickson construction

Canonical name CayleyDicksonConstruction

Date of creation 2013-03-22 14:54:11 Last modified on 2013-03-22 14:54:11

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 25

Author CWoo (3771) Entry type Definition Classification msc 17A99

Synonym Cayley-Dickson process

Synonym doubling process Synonym octonion algebra

Related topic TheoremsOnSumsOfSquares
Defines Cayley-Dickson algebra

Defines sedenion

Defines quaternion algebra
Defines Cayley algebra

In the foregoing discussion, an algebra shall mean a non-associative algebra.

Let A be a normed *-algebra, an algebra admitting an http://planetmath.org/Involution2in *, over a commutative ring R with $1 \neq 0$. The Cayley-Dickson construction is a way of enlarging A to a new algebra, KD(A), extending the * as well as the norm operations in A, such that A is a subalgebra of KD(A).

Define KD(A) to be the module (external) direct sum of A with itself:

$$KD(A) := A \oplus A.$$

Therefore, addition in KD(A) is defined by addition componentwise in each copy of A. Next, let λ be a unit in R and define three additional operations:

- 1. (Multiplication) $(a \oplus b)(c \oplus d) := (ac + \lambda d^*b) \oplus (da + bc^*)$, where * is the involution on A,
- 2. (Extended involution) $(a \oplus b)^* := a^* \oplus (-b)$, and
- 3. (Extended Norm) $N(a \oplus b) := (a \oplus b)(a \oplus b)^*$.

One readily checks that the multiplication is bilinear, since the involution * (on A) is linear. Therefore, KD(A) is an algebra.

Furthermore, since the extended involution * is clearly bijective and linear, and that

$$(a \oplus b)^{**} = (a^* \oplus (-b))^* = a^{**} \oplus b = a \oplus b,$$

this extended involution is well-defined and so KD(A) is in addition a *-algebra.

Finally, to see that KD(A) is a normed *-algebra, we identify A as the first component of KD(A), then A becomes a subalgebra of KD(A) and elements of the form $a \oplus 0$ can now be written simply as a. Now, the extended norm

$$N(a\oplus b)=(a\oplus b)(a^*\oplus (-b))=(aa^*-\lambda b^*b)\oplus 0=N(a)-\lambda N(b)\in A,$$

where N in the subsequent terms of the above equation array is the norm on A given by $N(a) = aa^*$. The fact that the $N: KD(A) \to A$, together with the equality $N(0 \oplus 0) = 0$ show that the extended norm N on KD(A) is well-defined. Thus, KD(A) is a normed *-algebra.

The normed *-algebra KD(A), together with the invertible element $\lambda \in R$, is called the Cayley-Dickson algebra, $KD(A, \lambda)$, obtained from A.

If A has a unity 1, then so does $KD(A, \lambda)$ and its unity is $1 \oplus 0$. Furthermore, write $i = 0 \oplus 1$, we check that, $ia = (0 \oplus 1)(a \oplus 0) = 0 \oplus a^* = (a^* \oplus 0)(0 \oplus 1) = a^*i$. Therefore, iA = Ai and we can identify the second component of $KD(A, \lambda)$ with Ai and write elements of Ai as ai for $a \in A$.

It is not hard to see that $A(Ai) = (Ai)A \subseteq Ai$ and $(Ai)(Ai) \subseteq A$. We are now able to write

$$KD(A, \lambda) = A \oplus Ai,$$

where each element $x \in KD(A, \lambda)$ has a unique expression x = a + bi.

Properties. Let x, y, z will be general elements of $KD(A, \lambda)$.

- 1. $(xy)^* = y^*x^*$,
- $2. \ x + x^* \in A,$
- 3. N(xy) = N(x)N(y).

Examples. All examples considered below have ground ring the reals \mathbb{R} .

- $KD(\mathbb{R}, -1) = \mathbb{C}$, the complex numbers.
- $KD(\mathbb{C}, -1) = \mathbb{H}$, the quaternions.
- $KD(\mathbb{H}, -1) = \mathbb{O}$, the octonions.
- $KD(\mathbb{O}, -1) = \mathbb{S}$, which are called the *sedenions*, an algebra of dimension 16 over \mathbb{R} .

Remarks.

- 1. Starting from \mathbb{R} , notice each stage of Cayley-Dickson construction produces a new algebra that loses some intrinsic properties of the previous one: \mathbb{C} is no longer orderable (or formally real); commutativity is lost in \mathbb{H} ; associativity is gone from \mathbb{O} ; and finally, \mathbb{S} is not even a division algebra anymore!
- 2. More generally, given any field k, any algebra obtained by applying the Cayley-Dickson construction twice to k is called a *quaternion algebra* over k, of which $\mathbb H$ is an example. In other words, a quaternion algebra has the form

$$KD(KD(k,\lambda_1),\lambda_2),$$

where each $\lambda_i \in k^* := k - \{0\}$. Any algebra obtained by applying the Cayley-Dickson construction three times to k is called a *Cayley algebra*, of which $\mathbb O$ is an example. In other words, a Cayley algebra has the form

$$KD(KD(KD(k, \lambda_1), \lambda_2), \lambda_3),$$

where each $\lambda_i \in k^*$. A Cayley algebra is an *octonion algebra* when $\lambda_1 = \lambda_2 = \lambda_3 = -1$.

References

[1] Richard D. Schafer, An Introduction to Nonassociative Algebras, Dover Publications, (1995).