Installing Software and Writing Modules

Introduction

In the intro portion of the workshop you will learn:

- About downloading code
- About compiling code
- How to build a package from source code
 - configure
 - build
 - install
- How to write modules
- What are yum, rpm, get-apt, & sudo

Downloading Code

Source vs Executable

- In most cases you are better off downloading the source and building the code (aka the executable) yourself.
- Downloading executable is easier but is likely not to work.

Downloading Executables

There are instances when available executables will run flawlessly on Hydra, but make sure that:

- 1 you can trust the origin,
- 2 you get a version compatible with Hydra,
 - i.e., CentOS 7.x for Intel/AMD CPUs (x86_64)

Remember

- Hydra configuration is specific:
 - pre-built may code need stuff (dependencies) not on Hydra.

Notes on Downloading Executables

Risks

- Since users on Hydra do not have elevated privileges (root access) you are very unlikely to damage the cluster, but malicious software can still damage your files.
- In rare cases it may install a Trojan horse that could exploit a known vulnerability.
 - Be vigilant and responsible.
 - In case of doubt, never hesitate to contact us.

Compiling code

Steps

Creating executable from source code is typically done as follows:

- 1 compile the source file(s) to produce object file(s),
- 2 link the object file(s) and libraries into an executable.

In Practice

- Often aided by a makefile,
- Configuring is creating such makefile or equivalent.

This will be illustrated in the hands on section.

Building from Source

Configure

- Most packages come with a configuration script, a list of pre-requisites (dependencies) and instructions,
- Some packages allow to build the code without some features in case you cannot satisfy some of the pre-requisites,
- You most likely need to load the right module(s) to use the appropriate compiler.

Build

- make sure you have loaded the right modules,
- run make to compile and link (aka build) the code.

Install

- copy the executable(s) to the right place(s),
 - usually defined by the configuration,
- best practice is to separate build from install locations.

Setting up Your Environment to Run Your Code

Likely Needed

You likely will need to adjust your environment to run some code:

- 1 the location of the code: path or PATH,
- 2 the location of the libraries: LD_LIBRARY_PATH,
- 3 you may also need to set some environment variables, etc.

Easier Way: modules

This is where using a module makes things easy:

- compact, and
- works with any shell.

Module and Module Files

The Command module

- convenient mechanism to configure your environment,
- reads a file, the module file, that holds instructions,
- a shell independent way to configure your environment:
 - same module file whether sh/bash or csh/tcsh.

Examples

- We provide module files, users can write their own.
 - look at all the module files we wrote,
 - they can be found in /share/apps/modulefiles/

Module File Syntax and Concepts

Special Instructions

Instructions to configure your environment:

prepend-path PATH /location/of/the/code

setenv BASE /scratch/demo

set-alias crunch "crunch --with-that-option *"

Syntax

- Module files can be complex, using tcl language
 - you **do not** need to know tcl to write module files.

Simple or Complex

- A simple module file can just list the modules that must be loaded to to run some analysis.
- Can write complex module files and leverage tcl.

Example of module Commands

Basic

	Info		Config	Details
module module			load unload	list help <name></name>
module	whatis	<name></name>	swap	show <name></name>

More help

man module

Example of a Simple Module File

```
#%Module1.0
#
# load two modules and set the HEASOFT env variable
module load gcc/10.1.10
module load python/3.8
setenv HEASOFT /home/username/heasoft/6.3.1
```


Example of a More Elaborate Module File

rclone

```
#%Module1.0
#
# set some internal variables
set ver 1.53.1
set base /scratch/hpc/haw/examples
#
# what to show for 'module whatis'
module-whatis "System paths to run rclone $ver"
#
# configure the PATH and the MANPATH
prepend-path MANPATH $base/rclone/$ver/man
```

Examples of Complex Module Files

Plenty of Examples

```
cd /share/apps/modulefiles
```

more intel/2022.2 more idl/8.8 more bio/blast2go/1.5.1 more bio/trinity/2.9.1

Module Files Organization

Where to Keep your Module Files

- in a central location using a tree structure, or
- where you need them.

For Example

You can load a module using the file full path: module load /path/to/my/module/crunch

Recommended Approach

- use a central location under you home directory
 ~/modulefiles,
- use a tree structure
- use version numbers if/when applicable,
- let module know where to find the module files.

Organization (cont'd) and Customization

For Example

- ~/modulefiles/crunch/
- ~/modulefiles/crunch/1.0
- ~/modulefiles/crunch/1.2
- ~/modulefiles/crunch/2.1
- ~/modulefiles/crunch/.version
- ~/modulefiles/viewit

Default Version

The file .version defines the default version:

```
#%Module1.0
```

set Modules Version "1.2"

Hence

module load crunch module swap crunch/2.1

Customization (cont'd)

Let module Know Where to Find the Module Files

```
module use --append ~/modulefiles
```

Either

- in your initialization file ~/.bashrc or ~/.cshrc
- better yet in a ~/.modulerc file

```
#%Module1.0
# adding my own module files
module use --append /home/username/modulefiles
```


The yum, rpm, get-apt and sudo Soup

Definitions

- yum: is a package-management utility for CentOS
- rpm: pre-built software package
 - both are for sys-admin,
 - help handle dependencies,
 - yet ...
- get-apt: Debian's version of yum, does not work on CentOS.

Also

■ sudo: allows to run a command as 'root': you can't!

BTW

- Instructions that mention yum, rpm, apt-get or sudo
 - will not work on Hydra,
 - **yet** in most cases there is another way.

Hands-on Section

Hands-On

In the hands-on portion of the workshop you will

- Build and install software using best-practices,
 - trivial case,
 - simple/didactic example,
 - somewhat complex examples.
- Write simple and more elaborate module files.
- Run the software you installed in jobs.

But first, log in to Hydra

- If you need a reminder about how to log into Hydra and how to change your password, check the *Intro to Hydra* tutorial.
 - If the link does not work:

https://github.com/SmithsonianWorkshops

- > Hydra-introduction
 - > hydra_intro.md

More to come ...