Name:

Question 1 {Integration} Evaluate the following intergrals

a) (by substitution)
$$\int_0^{\frac{\pi}{2}} \frac{\cos x}{\left(1+\sin x\right)^2} dx$$

b) (by completing the square) $\int \frac{1}{x^2-2x+5} dx$

c) (by partial fractions)
$$\int rac{4+7x}{(x+1)^2(2+3x)} dx$$

By re-writing in the form
$$\dfrac{A}{x+a}+\dfrac{B}{\left(x+a\right)^{2}}+\dfrac{C}{x+b}$$

Question 2 {proof} -

Show that
$$1 + r + r^2 + r^3 + ... + r^{n-1} = \frac{1 - r^n}{1 - r}$$
 for $r \neq 1$.

Question 3 {proof}

Use proof by contradiction to prove that if a, b are integers, then $a^2 - 4b - 3 \neq 0$. You may wish to consider the case when a is even and the case when a is odd.

3

Question 4 (complex numbers)

(i) Use De Moivre's theorem to show that
$$(1+i\tan\theta)^5 = \frac{\cos 5\theta + i\sin 5\theta}{\cos^5 \theta}$$
.

(ii) Hence find expressions for $\cos 5\theta$ and $\sin 5\theta$ in terms of $\tan \theta$ and $\cos \theta$.

(iii) Show that
$$\tan 5\theta = \frac{5t - 10t^3 + t^5}{1 - 10t^2 + 5t^4}$$
 where $t = \tan \theta$.

(iv) Use the result of (iii) and an appropriate substitution to show that $\tan \frac{\pi}{5} = \sqrt{5 - 2\sqrt{5}}$.

Question 5 (vectors)

Relative to a fixed origin O, the points A, B and C have position vectors

$$\underline{a} = \begin{pmatrix} -1 \\ \frac{4}{3} \\ 7 \end{pmatrix}, \ \underline{b} = \begin{pmatrix} 4 \\ \frac{4}{3} \\ 2 \end{pmatrix} \text{ and } \underline{c} = \begin{pmatrix} 6 \\ \frac{16}{3} \\ 2 \end{pmatrix} \text{ respectively.}$$

- (i) Find the cosine of $\angle ABC$.
- (ii) Hence find the area of the triangle ABC.
- (iii) Use a vector method to find the shortest distance between the point A and the line passing through the points B and C.