K: noise model is AR(1): $x_i = a * x_{i-1} + e_i$, e_i is from N(0, 1) or a symmetric T(p) distribution

		N0 = 20, N = 100			N0 = 35, N = 100			N0 = 50, N = 100		
alpha		0.0	0.7	0.9	0.0	0.7	0.9	0.0	0.7	0.9
e distribution	N(0, 1)	2.441	2.436	2.424	2.439	2.436	2.426	2.436	2.433	2.425
	TSP(0.5)	2.409	2.399	2.401	2.422	2.415	2.411	2.424	2.419	2.413
	TSP(1.)	2.416	2.409	2.407	2.425	2.420	2.414	2.427	2.422	2.415
	TSP(2.)	2.427	2.422	2.415	2.432	2.428	2.420	2.431	2.428	2.420
	TSP(3.)	2.438	2.433	2.422	2.437	2.434	2.425	2.435	2.432	2.424
	TSP(10.)	2.465	2.465	2.441	2.454	2.452	2.438	2.447	2.445	2.435
	TSP(100.)	2.488	2.485	2.457	2.467	2.466	2.451	2.456	2.455	2.445