TP NOTÉ - ORIENTATION D'UN GRAPHE NON ORIENTÉ EN UN GRAPHE FORTEMENT CONNEXE 2021-2022

1. Motivations

Une municipalité souhaite réduire le trafic routier dans le centre ville de la cité. Une piste envisagée consiste à rendre toutes les rues en sens unique. Un élu réfléchit un instant et soulève la question suivante : est-il possible de trouver un orientation des rues qui permettent d'accéder à tout point du centre ville. Et surtout est-il possible d'en repartir ensuite.

Ce même problème exprimé en termes de graphes revient à déterminer si un graphe non orienté admet une orientation de ses arêtes en un graphe fortement connexe.

Robbins, en 1939, a résolu le problème ce qui a donné lieu au théorème suivant :

Théorème 1 (Robbins 1939 [1]). Un graphe G non orienté admet une orientation en un graphe fortement connexe si et seulement si G ne possède aucune arête déconnectante.

2. Objectifs

L'objectif de ce projet est d'implémenter un algorithme qui permet de trouver, si une telle orientation existe, *i.e.* une orientation du graphe en un graphe orienté fortement connexe.

Le but de ce projet consiste donc à soit trouver une arête déconnectante ou à trouver une orientation fortement connexe.

Pour ce faire, vous allez effectuer le calcul des composantes 2-connexes et des composantes 2-arêtes connexes. Un graphe est dit 2-connexe si il est connexe et n'admet pas de sommet déconnectant. (Un graphe connexe est un graphe 1-connexe).

La notion de 2-arête connexité est définie de manière analogue. À savoir un graphe est 2-arête connexe s'il il n'admet pas d'arête déconnectante.

Si toutefois le graphe n'est pas 2connexe on peut calculer ses composantes 2-connexes maximales. Le concept de composantes 2-connexes est illustré en Figure. 1. Et le concept de composantes 2-arêtes connexes est illustré en Figure. 2.

Figure 1. Un graphe et ses composantes 2-connexes.

Figure 2. Un graphe et sa décomposition en composantes 2-arêtes connexes.

3. Réalisation

Nous attendons pour les deux premiers exercices une implémentation en Sage Math. Pour les deux derniers exercices nous attendons une démonstration ou, le cas échéant, un contre exemple. Exercice 1 (10 points) Dans une premier temps il est demandé d'implémenter les algorithmes de calcul de 2-connexité dû à Schmidt [2]

- (1) Calculer les composantes 2-connexes d'un graphe.
- (2) Calculer les composantes 2-arêtes connexes d'un graphe.

Exercice 2 (5 points) Trouvez un orientation en un graphe fortement connexe ¹ ou trouver une arête déconnectante.

Exercice 3 (2.5 points) Montrez qu'un graphe est fortement connexe 2 si et seulement si chaque arc est présent dans au moins un circuit de G.

Exercice 4 (2.5 points) Prouvez on infirmez l'affirmation suivante : Un graphe est fortement connexe si et seulement si son graphe sous-jacent est 2-arête connexe.

4. Modalités

4.1. **Rendu**. Les consignes vous seront données par votre chargé de TP!

Références

- Herbert Robbins, A theorem on graphs, with an application to a problem on traffic control, American Mathematical Monthly 46, 281-283.
- [2] Jens M. Schmidt, A simple test on 2-vertexand 2-edge-connectivity, Inf. Process. Lett. 113 (2013), no. 7, 241–244.

^{1.} On pourra s'appuyer, pour cela, sur les propriétés du parcours Dfs.

^{2.} On fera l'hypothèse que le graphe sousjacent, *i.e.* le graphe où on ne tient pas compte des orientations, est connexe.