结论 1: 过圆 $x^2 + y^2 = 2a^2$ 上任意点 P 作圆 $x^2 + y^2 = a^2$ 的两条切线,则两条切线垂直.

结论 2: 过圆 $x^2+y^2=a^2+b^2$ 上任意点 P 作椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ (a>b>0)的两条切线,则两条切线垂直.

结论 3: 过圆 $x^2 + y^2 = a^2 - b^2$ (a > b > 0) 上任意点 P 作双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 的两条切线,则两条切线垂直.

结论 4: 过圆 $x^2+y^2=a^2$ 上任意不同两点 A , B 作圆的切线,如果切线垂直且相交于 P ,则动点 P 的轨迹为圆: $x^2+y^2=2a^2$.

结论 5: 过椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 上任意不同两点 A , B 作椭圆的切线,如果切线垂直且相交于 P ,则动点 P 的轨迹为圆 $x^2 + y^2 = a^2 + b^2$.

绪论 6: 过双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > b > 0) 上任意不同两点 A , B 作双曲线的切线,如果切线垂直且相交于 P ,则动点 P 的轨迹为圆 $x^2 + y^2 = a^2 - b^2$.

结论 7: 点 M (x_0 , y_0) 在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 上,过点 M 作椭圆的切线方程为 $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$.

结论 8: 点 M (x_0 , y_0) 在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 外,过点 M 作椭圆的两条切

线,切点分别为 A , B ,则切点弦 AB 的直线方程为 $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$.

结论 8: (补充) 点 M (x_0 , y_0) 在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 内,过点 M 作椭圆的弦 AB (不过椭圆中心),分别过 A、B 作椭圆的切线,则两条切线的交点 P 的轨迹方程为直线: $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$.

结论 9: 点 M (x_0 , y_0) 在双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 上,过点 M 作双曲线的 切线方程为 $\frac{x_0x}{a^2} - \frac{y_0y}{b^2} = 1$.

结论 10: 点 M (x_0 , y_0) 在双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 外,过点 M 作双曲线

的两条切线,切点分别为 A , B ,则切点弦 AB 的直线方程为 $\frac{x_0x}{a^2} - \frac{y_0y}{b^2} = 1$.

结论 10: (补充) 点 M (x_0 , y_0) 在双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 内,过点 M 作双曲线的弦 AB (不过双曲线中心),分别过 A、B 作双曲线的切线,则两条切线的交点 P 的轨迹方程为直线: $\frac{x_0x}{a^2} - \frac{y_0y}{b^2} = 1$.

结论 11: 点 M (x_0 , y_0) 在抛物线 $y^2 = 2px$ (p > 0) 上,过点 M 作抛物线的切线方程为 $y_0y = p(x+x_0)$.

结论 12: 点 M (x_0 , y_0) 在抛物线 $y^2 = 2px$ (p > 0) 外,过点 M 作抛物线的两条切线,切点分别为 A , B ,则切点弦 AB 的直线方程为 $y_0y = p(x+x_0)$.

结论 12: (补充) 点 M (x_0 , y_0) 在抛物线 $y^2 = 2px$ (p > 0) 内,过点 M 作抛物线的 弦 AB ,分别过 A 、B 作抛物线的切线,则两条切线的交点 P 的轨迹方程为直线: $y_0y = p(x+x_0)$.

结论 13: 点 M (x_0 , y_0) 在椭圆 $\frac{(x-m)^2}{a^2} + \frac{(y-n)^2}{b^2} = 1$ 上, 过点 M 作椭圆的切线方程

结论 14: 点 M (x_0 , y_0) 在双曲线 $\frac{(x-m)^2}{a^2} - \frac{(y-n)^2}{b^2} = 1$ 上, 过点 M 作双曲线的切线

方程为
$$\frac{(x_0-m)(x-m)}{a^2}-\frac{(y_0-n)(y-n)}{b^2}=1$$
.

结论 15: 点 M (x_0 , y_0) 在抛物线 $(y-n)^2=2p(x-m)$ 上,过点 M 作抛物线的切线方程为 $(y_0-n)(y-n)=p(x+x_0-2m)$.

结论 16: 点 M (x_0 , y_0) 在椭圆 $\frac{(x-m)^2}{a^2} + \frac{(y-n)^2}{b^2} = 1$ 外,过点 M 作椭圆的两条切线,

切点分别为 A , B , 则切点弦 AB 的直线方程为 $\frac{(x_0-m)(x-m)}{a^2} + \frac{(y_0-n)(y-n)}{b^2} = 1$.

结论 17: 点 M (x_0 , y_0) 在双曲线 $\frac{(x-m)^2}{a^2} - \frac{(y-n)^2}{b^2} = 1$ 外,过点 M 作双曲线的两条

切线,切点分别为A,B,则切点弦AB的直线方程为

$$\frac{(x_0 - m)(x - m)}{a^2} - \frac{(y_0 - n)(y - n)}{b^2} = 1.$$

结论 18: 点 M (x_0 , y_0) 在抛物线 $(y-n)^2=2p(x-m)$ 外,过点 M 作抛物线的两条切线,切点分别为 A , B ,则切点弦 AB 的直线方程为

$$(y_0 - n)(y - n) = p(x + x_0 - 2m).$$

结论 16: (补充) 点 M (x_0 , y_0) 在椭圆 $\frac{(x-m)^2}{a^2} + \frac{(y-n)^2}{b^2} = 1$ 内,过点 M 作椭圆的弦 AB (不过椭圆中心),分别过 A、B 作椭圆的切线,则两条切线的交点 P 的轨迹方程为直线: $\frac{(x_0-m)(x-m)}{a^2} + \frac{(y_0-n)(y-n)}{b^2} = 1$.

结论 17: (补充) 点 M (x_0 , y_0) 在双曲线 $\frac{(x-m)^2}{a^2} - \frac{(y-n)^2}{b^2} = 1$ 内,过点 M 作双曲线的弦 AB (不过双曲线中心),分别过 A、B 作双曲线的切线,则两条切线的交点 P 的轨迹方程为直线: $\frac{(x_0-m)(x-m)}{a^2} - \frac{(y_0-n)(y-n)}{b^2} = 1$.

结论 18: (补充) 点 M (x_0 , y_0) 在抛物线 $(y-n)^2=2p(x-m)$ 内,过点 M 作抛物线的弦 AB,分别过 A、B 作抛物线的切线,则两条切线的交点 P 的轨迹方程为直线:

$$(y_0 - n)(y - n) = p(x + x_0 - 2m).$$

结论 19: 过椭圆准线上一点 M 作椭圆的两条切线,切点分别为 A , B ,则切点弦 AB 的直线必过相应的焦点 F ,且 MF 垂直切点弦 AB .

结论 20: 过双曲线准线上一点 M 作双曲线的两条切线,切点分别为 A, B,则切点弦 AB

的直线必过相应的焦点F,且MF垂直切点弦AB.

结论 21: 过抛物线准线上一点 M 作抛物线的两条切线,切点分别为 A , B ,则切点弦 AB 的直线必过焦点 F ,且 MF 垂直切点弦 AB .

结论 22: AB 为椭圆的焦点弦,则过A,B 的切线的交点M 必在相应的准线上.

结论 23: AB 为双曲线的焦点弦,则过A,B 的切线的交点M 必在相应的准线上.

结论 24: AB 为抛物线的焦点弦,则过 A , B 的切线的交点 M 必在准线上.

结论 25: 点 M 是椭圆准线与长轴的交点,过点 M 作椭圆的两条切线,切点分别为 A , B ,则切点弦 AB 就是通径.

结论 26: 点 M 是双曲线准线与实轴的交点,过点 M 作双曲线的两条切线,切点分别为 A , B ,则切点弦 AB 就是通径.

结论 27: M 为抛物线的准线与其对称轴的交点,过点 M 作抛物线的两条切线,切点分别为 A , B , 则切点弦 AB 就是其通径.

结论 28: 过抛物线 $y^2 = 2px$ (p > 0) 的对称轴上任意一点 M(-m,0) (m > 0) 作抛物 线的两条切线,切点分别为 A , B ,则切点弦 AB 所在的直线必过点 N(m,0) .

结论 29: 过椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的对称轴上任意一点 M(m,n) 作椭圆的两条切线,切点分别为 A, B.

(1) 当
$$n = 0$$
, $|m| > a$ 时,则切点弦 AB 所在的直线必过点 $P(\frac{a^2}{m}, 0)$;

(2) 当
$$m = 0$$
, $|n| > b$ 时,则切点弦 AB 所在的直线必过点 $Q(0, \frac{b^2}{n})$.

结论 30: 过双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的实轴上任意一点 M(m,0) (|m| < a) 作

双曲线 (单支)的两条切线,切点分别为 A , B ,则切点弦 AB 所在的直线必过点 $P(\frac{a^2}{m},0)$.

结论 31: 过抛物线 $y^2=2px$ (p>0)外任意一点 M 作抛物线的两条切线,切点分别为 A , B , 弦 AB 的中点为 N ,则直线 MN 必与其对称轴平行.

结论 32: 若椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 与双曲线 $\frac{x^2}{m^2} - \frac{y^2}{n^2} = 1$ (m > 0, n > 0) 共焦点,则在它们交点处的切线相互垂直.

结论 33: 过椭圆外一定点 P 作其一条割线,交点为 A , B ,则满足 $|AP|\cdot |BQ| = |AQ|\cdot |BP|$ 的动点 Q 的轨迹就是过 P 作椭圆两条切线形成的切点弦所在的直线方程上.

<mark>结论 34:</mark> 过双曲线外一定点 P 作其一条割线, 交点为 A , B , 则满足 $|AP|\cdot |BQ| = |AQ|\cdot |BP|$

的动点Q的轨迹就是过P作双曲线两条切线形成的切点弦所在的直线方程上.

结论 35: 过抛物线外一定点 P 作其一条割线,交点为 A ,B ,则满足 $|AP| \cdot |BQ| = |AQ| \cdot |BP|$ 的动点 Q 的轨迹就是过 P 作抛物线两条切线形成的切点弦所在的直线方程上.

结论 36: 过双曲线外一点P作其一条割线,交点为A,B,过A,B分别作双曲线的切线相交于点Q,则动点Q的轨迹就是过P作双曲线两条切线形成的切点弦所在的直线方程上. 结论 37: 过椭圆外一点P作其一条割线,交点为A,B,过A,B分别作椭圆的切线相交

于点Q,则动点Q的轨迹就是过P作椭圆两条切线形成的切点弦所在的直线方程上.

结论 38: 过抛物线外一点P作其一条割线,交点为A,B,过A,B分别作抛物线的切线相交于点Q,则动点Q的轨迹就是过P作抛物线两条切线形成的切点弦所在的直线方程上.

结论 39: 从椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的右焦点向椭圆的动切线引垂线,则垂足的轨迹为圆: $x^2 + y^2 = a^2$.

结论 40: 从 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的右焦点向双曲线的动切线引垂线,则垂足的轨迹为圆: $x^2 + y^2 = a^2$.

 $\frac{x^2}{41}$: F 是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的一个焦点,M 是椭圆上任意一点,则焦 + $\{A^{\mu}\} \in [a-c, a+c]$.

结论 42: F 是双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的右焦点,M 是双曲线上任意一点.

- (1) 当点 M 在双曲线右支上,则焦半径 $|MF| \ge c a$;
- (2) 当点 M 在双曲线左支上,则焦半径 $|MF| \ge c + a$.

结论 43: F 是抛物线 $y^2 = 2px$ (p > 0) 的焦点,M 是抛物线上任意一点,则焦半径 $|MF|_{=}^{x_0} + \frac{p}{2} \ge \frac{p}{2}$

结论 44: 椭圆上任一点 M 处的法线平分过该点的两条焦半径的夹角(或者说 M 处的切线

平分过该点的两条焦半径的夹角的外角),亦即椭圆的光学性质.

结论 45: 双曲线上任一点 M 处的切线平分过该点的两条焦半径的夹角(或者说 M 处的法线平分过该点的两条焦半径的夹角的外角),亦即双曲线的光学性质.

结论 46: 抛物线上任一点 M 处的切线平分该点的焦半径与该点向准线所作的垂线的夹角,亦即抛物线的光学性质.

结论 47: 椭圆的准线上任一点 M 处的切点弦 PQ 过其相应的焦点 F ,且 MF \perp PQ .

结论 48: 双曲线的准线上任一点 M 处的切点弦 PQ 过其相应的焦点 F ,且 MF \perp PQ .

结论 49: 抛物线的准线上任一点 M 处的切点弦 PQ 过其焦点 F ,且 $MF \perp PQ$.

结论 50: 椭圆上任一点 P 处的切线交准线于 M , P 与相应的焦点 F 的连线交椭圆于 Q ,则 MQ 必与该椭圆相切,且 MF 」 PQ .

结论 51: 双曲线上任一点 P 处的切线交准线于 M , P 与相应的焦点 F 的连线交双曲线于 Q ,则 MQ 必与该双曲线相切,且 MF 」 PQ .

结论 52: 抛物线上任一点 P 处的切线交准线于 M , P 与焦点 F 的连线交抛物线于 Q ,则 MQ 必与该抛物线相切,且 MF 」 PQ .

结论 53: 焦点在 X 轴上的椭圆(或焦点在 Y 轴)上三点 P , Q , M 的焦半径成等差数列的充要条件为 P , Q , M 的横坐标(纵坐标)成等差数列.

结论 54: 焦点在 X 轴上的双曲线(或焦点在 Y 轴)上三点 P , Q , M 的焦半径成等差数列的充要条件为 P , Q , M 的横坐标(纵坐标)成等差数列.

结论 55: 焦点在 X 轴上的抛物线(或焦点在 Y 轴)上三点 P , Q , M 的焦半径成等差数列的充要条件为 P , Q , M 的横坐标(纵坐标)成等差数列.

结论 56: 椭圆上一个焦点 F_2 关于椭圆上任一点 P 处的切线的对称点为 Q ,则直线 PQ 必过该椭圆的另一个焦点 F_1 .

结论 57: 双曲线上一个焦点 F_2 关于双曲线上任一点 P 处的切线的对称点为 Q ,则直线 PQ 必过该双曲线的另一个焦点 F_1 .

结论 58: 椭圆上任一点 P (非顶点),过 P 的切线和法线分别与短轴相交于 Q , S , 则有 P , Q , S 及两个焦点共于一圆上.

结论 59: 双曲线上任一点 P (非顶点),过 P 的切线和法线分别与短轴相交于 Q , S , 则 有 P , Q , S 及两个焦点共于一圆上.

结论 60: 椭圆上任一点 P (非顶点) 处的切线与过长轴两个顶点 A , A 的切线相交于 M , 则必得到以 M M 为直径的圆经过该椭圆的两个焦点.

结论 61: 双曲线上任一点 P (非顶点) 处的切线与过实轴两个顶点 A , $^{A'}$ 的切线相交于 M , $^{M'}$, 则必得到以 M $^{M'}$ 为直径的圆经过该双曲线的两个焦点.

结论 62: 以椭圆的任一焦半径为直径的圆内切于以长轴为直径的圆.

结论 63: 以双曲线的任一焦半径为直径的圆外切于以实轴为直径的圆.

结论 64: 以抛物线的任一焦半径为直径的圆与非对称轴的轴相切.

结论 65: 焦点在 x 轴上的椭圆(或焦点在 y 轴上)上任一点 M (非短轴顶点)与短轴的两个顶点 B , B 的连线分别交 x 轴(或 y 轴)于 P , Q , 则 $^{x_{p}x_{Q}}$ = $^{a^{2}}$ (或 $^{y_{p}y_{Q}}$ = $^{a^{2}}$).

顶点B, B 的连线分别交y 轴(或x 轴)干P, Q, 则 $y_p y_Q = -b^2$ (或 $x_p x_Q = -b^2$)

结论 66: 焦点在 x 轴上的双曲线(或焦点在 y 轴上)上任一点 M (非顶点)与实轴的两个

结论 67: P 为焦点在 x 轴上的椭圆上任一点(非长轴顶点),则 $^{\Delta PF_{1}F_{2}}$ 与边 $^{PF_{2}}$ (或 $^{PF_{1}}$) 相切的旁切圆与 x 轴相切于右顶点 A (或左顶点 $^{A'}$).

结论 68: P 为焦点在 X 轴上的双曲线右支(或左支)上任一点,则 $^{\Delta PF_{1}F_{2}}$ 的内切圆与 X 轴相切于右顶点 A (或左顶点 $^{A'}$).

结论 69: AB 是过椭圆 $a^2 + \frac{y^2}{b^2} = 1$ (a > b > 0) 的焦点 F 的一条弦 (非通径),弦 AB 的中垂线交 x 轴于 N ,则 $\frac{|AB|}{|NF|} = \frac{2}{e}$.

结论 70: AB 是过双曲线 $a^2 - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的焦点 F 的一条弦(非通径,且为

单支弦),弦 AB 的中垂线交 x 轴于 M ,则 $\frac{|AB|}{|MF|} = \frac{2}{e}$

结论 71: AB 是过抛物线 $y^2 = 2px$ (p > 0) 的焦点 F 的一条弦 (非通径), 弦 AB 的中

垂线交 X 轴于 M ,则 $\frac{\left|AB\right|}{\left|MF\right|}$ =2.

结论 72: AB 为抛物线的焦点弦,分别过 A , B 作抛物线的切线,则两条切线的交点 P 在 其准线上.

结论 73: AB 为椭圆的焦点弦,分别过 A , B 作椭圆的切线,则两条切线的交点 P 在其相应的准线上。

结论 74: AB 为双曲线的焦点弦,分别过 A , B 作双曲线的切线,则两条切线的交点 P 在其相应的准线上。

结论 75: AB 为过抛物线焦点 F 的焦点弦,以 AB 为直径的圆必与其准线相切.

结论 76: AB 为过椭圆焦点 F 的焦点弦,以 AB 为直径的圆必与其相应的准线相离(当然与另一条准线更相离).

结论 77: AB 为过双曲线焦点 F 的焦点弦,以 AB 为直径的圆必与其相应的准线相交,截

 $2 \operatorname{arccos} \frac{1}{e}$ 得的圆弧度数为定值,且为

结论 78: 以圆锥曲线的焦点弦 AB 为直径作圆,若该圆与其相应的准线相切,则该曲线必为抛物线.

结论 79: 以圆锥曲线的焦点弦 AB 为直径作圆,若该圆与其相应的准线相离,则该曲线必为椭圆.

结论 80: 以圆锥曲线的焦点弦 AB 为直径作圆,若该圆与其相应的准线相交,则该曲线必

结论 81: AB 为过抛物线 $y^2 = 2px$ (p > 0) 焦点 F 的焦点弦, $A(x_1, y_1)$, $B(x_2, y_2)$,则 $|AB| = x_1 + x_2 + p$.

结论 82: AB 为过椭圆 $a^2 + \frac{y^2}{b^2} = 1$ (a > b > 0)焦点 F 的焦点弦, $A(x_1, y_1)$, $B(x_2)$

 y_{2} , $|AB|_{=} 2a - e|x_1 + x_2|$

绪论 83: AB 为过双曲线 $a^2 - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 焦点 F 的焦点弦, $A(x_1, y_1)$, $B(x_2, y_2)$. 若 AB 为单支弦,则 $|AB| = e|x_1 + x_2| - 2a$; 若 AB 为双支弦,则 $|AB| = e|x_1 + x_2| + 2a$

结论 84: F 为抛物线的焦点, A , B 是抛物线上不同的两点,直线 AB 交其准线 l 于 M ,则 FM 平分 $^{\angle AFB}$ 的外角.

结论 85: F 为椭圆的一个焦点, A , B 是椭圆上不同的两点,直线 AB 交其相应的准线 l 于 M ,则 FM 平分 $^{\angle AFB}$ 的外角。

结论 86: F 为双曲线的一个焦点, A , B 是双曲线上不同的两点(同一支上),直线 AB 交 其相应的准线 l 于 M ,则 FM 平分 $^{\angle AFB}$ 的外角。

结论 87: F 为双曲线的一个焦点, A , B 是双曲线上不同的两点 (左右支各一点),直线 AB 交其相应的准线 l 于 M ,则 FM 平分 $^{\angle AFB}$.

结论 88: AB 是椭圆 a^2 + $\frac{y^2}{b^2}$ = 1 (a > b > 0) 过焦点 F 的弦,点 P 是椭圆上异于 A, B 的任一点,直线 PA 、 PB 分别交相应于焦点 F 的准线 l 于 M 、 N ,则点 M 与点 N 的纵 坐标之积为定值,且为 a^4

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 过焦点 F 的弦,点 P 是双曲线上异于 A, B 的任一点,直线 PA 、 PB 分别交相应于焦点 F 的准线 l 于 M 、 N ,则点 M 与点 N 的纵坐标之积为定值,且为 $\frac{b^4}{c^2}$.

结论 90: AB 是抛物线 $y^2 = 2px$ (P > 0) 过焦点 F 的弦,点 P 是抛物线上异于 A , B 的任一点,直线 PA 、 PB 分别交准线 l 于 M 、 N ,则点 M 与点 N 的纵坐标之积为定值,

且为 $-p^2$.

结论 91: A, B 为椭圆 $a^2 + \frac{y^2}{b^2} = 1$ (a > b > 0) 的长轴顶点, P 为椭圆任一点(非长

 $x = \frac{a^2}{m}$ 轴顶点),若直线 AP , BP 分别交直线 m (0 < m < a) 于 M , N , 则 y_M · y_N 为

定值,且有 $y_M\cdot y_N = \frac{b^2(m^2-a^2)}{m^2} \ .$

结论 92: A, B 为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的长轴顶点,E(-m,0),F(m,0),

 $x = \frac{a^2}{m}$ $T = \frac{AP}{m}$ $T = \frac{AP}{m}$

N,则 $\overline{EM} \cdot \overline{FN}$ 为定值,且有 $\overline{EM} \cdot \overline{FN} = \frac{(a^2 - m^2)(a^2 + m^2 - b^2)}{m^2}$.

结论 93: A, B 为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的长轴顶点, E(-m,0), F(m,0),

 $x = \frac{a^2}{m}$ (0 < m < a), P 为椭圆任一点(非长轴顶点), 若直线 AP, BP 分别交直线 $m \in M$,

N, $\mathbb{E} N \cdot \overline{FM}$ 为定值, 且有 $\overline{EN} \cdot \overline{FM} = \frac{(a^2 - m^2)(a^2 + m^2 - b^2)}{m^2}$.

结论 94: A, B 为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的长轴顶点,E(-m,0),F(m,0),

 $x = \frac{a^2}{m}$ $T = \frac{a^2}{$

N,则 \overline{FM} · \overline{FN} 为定值,且有 \overline{FM} · $\overline{FN}=\frac{(a^2-m^2)(a^2-m^2-b^2)}{m^2}$.

结论 95: A, B 为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的长轴顶点, E(-m,0), F(m,0),

 $x = \frac{\alpha^2}{m}$ $x = \frac{\alpha^2}{m}$ $y = \frac{\alpha^2}{$

N, 则 $\overrightarrow{EM} \cdot \overrightarrow{EN}$ 为定值,且有 $\overrightarrow{EM} \cdot \overrightarrow{EN} = \frac{(a^2 + m^2)^2 - b^2(a^2 - m^2)}{m^2}$

结论 96: A, B 为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的长轴顶点,E(-m,0),F(m,0),

 $x = \frac{a^2}{m}$ $T = \frac{AP}{m}$ $T = \frac{AP}{m}$

N,则 $\overline{BM} \cdot \overline{FN}$ 为定值,且有 $\overline{BM} \cdot \overline{FN} = \frac{(a^2 - m^2)(a^2 + am - b^2)}{m^2}$.

结论 97: A, B 为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的长轴顶点, E(-m,0), F(m,0),

 $x = \frac{a^2}{m}$ (0 < m < a), P 为椭圆任一点(非长轴顶点), 若直线 AP, BP 分别交直线 $m \in M$,

N,则 $\overline{AM} \cdot \overline{FN}$ 为定值,且有 $\overline{AM} \cdot \overline{FN} = \frac{(a^2 - m^2)(a^2 - am - b^2)}{m^2}$

结论 98: A, B 为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的长轴顶点, E(-m,0), F(m,0),

 $x = \frac{a^2}{m}$ $T = \frac{a^2}{m}$ $T = \frac{AP}{m}$ $T = \frac{AP}{m}$

N,则 \overline{AM} · \overline{BN} 为定值,且有 \overline{AM} · \overline{BN} = $\frac{(a^2-m^2)(a^2-b^2)}{m^2}$.

结论 99: A, B 为双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的顶点, E(-m,0), F(m,0),

 $x = \frac{a^2}{m}$ (m > a), p为双曲线上任一点(非实轴顶点),若直线 AP, BP 分别交直线 m 于

M , N , 则 $y_M y_N$ 为定值,且有 $y_M y_N = \frac{b^2(a^2 - m^2)}{m^2}$.

结论 100: A, B 为双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的顶点, E(-m,0), F(m,0),

 $x = \frac{a^2}{m}$ (m > a), p 为双曲线上任一点(非实轴顶点),若直线 AP, BP 分别交直线 m 于

M, N, $M \in \overline{FN}$ be $EM \in \overline{FN}$ be $EM \in \overline{FN} = \frac{(a^2 - m^2)(a^2 + b^2 + m^2)}{m^2}$.

结论 101: A, B 为双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的顶点, E(-m,0), F(m,0),

 $x = \frac{a^2}{m}$ (m > a), p 为双曲线上任一点(非实轴项点),若直线 AP, BP 分别交直线 m 于

M, N, $M \in \overline{FM}$ $\mathcal{F}M$ $\mathcal{F}M$

结论 102: A, B 为双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的顶点, E(-m,0), F(m,0),

 $x = \frac{a^2}{m}$ $x = \frac{a^2}{m}$ 于 $x = \frac{a^2}{m}$ 于

M, N, M $\to FN$ $\to FN$ $\to FN$ $\to E$ $\to E$ $\to FN$ $\to FN$

结论 103: A, B 为双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的顶点, E(-m,0), F(m,0),

 $x = \frac{a^2}{m > a}$, p为双曲线上任一点(非实轴顶点),若直线 AP, BP 分别交直线 m 于

 $M\,,\,\,N\,,\,\,\text{\tiny{M}}\,\overline{EM}\,\cdot\overline{EN}\,\text{\tiny{h}}\,\text{\tiny{EG}},\,\,\text{\tiny{L}}\,\text{\tiny{L}}\,\text{\tiny{EM}}\,\cdot\overline{EN}\,\text{\tiny{EN}}\,\text{\tiny$

结论 104: A, B 为双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的项点, E(-m,0), F(m,0),

 $x = \frac{a^2}{m}$ (m > a), P 为双曲线上任一点(非实轴顶点),若直线 AP, BP 分别交直线 m 于

M, N, $M = \frac{BM}{BM} \cdot \frac{BM}{FN}$ $M = \frac{(a^2 - m^2)(a^2 + b^2 + am)}{m^2}$

结论 105: A, B 为双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的顶点, E(-m,0), F(m,0),

 $x = \frac{a^2}{m}$ (m > a), P 为双曲线上任一点(非实轴顶点),若直线 AP, BP 分别交直线 m 于

 $M\,,\,\,N\,,\,\,_{\text{\tiny M}}\,\overline{AM}\cdot\overline{FN}\,_{\text{\tiny D}}\,\underline{\text{Eta}},\,\,\,\underline{\text{Laf}}\,\,\overline{AM}\cdot\overline{FN}_{=}\frac{(a^2-m^2)(a^2+b^2-am)}{m^2}\,.$

结论 106: A, B 为双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的顶点, E(-m,0), F(m,0),

 $x = \frac{a^2}{m}$ (m > a), p 为双曲线上任一点(非实轴顶点),若直线 AP, BP 分别交直线 m 于

M, N, M $\rightarrow BN$ $\rightarrow BR$ $\rightarrow BR$ $\rightarrow BR$ $\rightarrow BN = \frac{(a^2 - m^2)(a^2 + b^2)}{m^2}$.

 $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ 结论 107: A, B 为椭圆 $a^2 + \frac{y^2}{b^2} = 1$ (a > b > 0) 的长轴顶点, P 为椭圆任一点(非长

 $x=rac{a^2}{m}$ 轴顶点),若直线 AP , BP 分别交直线 m 于 M , N , 则 $k_{AP}k_{BP}$ 为定值,且有

$$k_{AP}k_{BP} = k_{AM}k_{BN} = e^2 - 1 = -\frac{b^2}{a^2}.$$

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 结论 108: A, B 为椭圆 $a^2 + \frac{y^2}{b^2} = 1$ (a > b > 0) 的长轴顶点, P 为椭圆任一点(非长

 $x=rac{a^2}{m}$ 轴顶点),若直线 AP , BP 分别交直线 m 于 M , N , 则 $k_{AN}k_{BM}$ 为定值,且有

$$k_{AN}k_{BM} = e^2 - 1 = -\frac{b^2}{a^2}$$

结论 109: A, B 为椭圆 $a^2 + \frac{y^2}{b^2} = 1$ (a > b > 0) 的长轴顶点, P 为椭圆任一点(非长

 $x=rac{a^2}{m}$ 轴顶点),若直线 AP , BP 分别交直线 m 于 M , N , 则 $^{k_{AM}}$ $^{k_{AN}}$ 为定值,且有

$$k_{AM}k_{AN} = \frac{a+m}{a-m}(e^2 - 1)$$

结论 110: A, B 为椭圆 $a^2 + \frac{y^2}{b^2} = 1$ (a > b > 0) 的长轴顶点, P 为椭圆任一点(非长

 $x=\frac{\alpha^2}{m}$ 轴顶点),若直线 AP , BP 分别交直线 m 于 M , N , 则 $^{k_{BM}}$ $^{k_{BN}}$ 为定值,且有

$$k_{BM}k_{BN} = \frac{a-m}{a+m}(e^2 - 1)$$

结论 111: A, B 为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的长轴顶点,E(-m,0),F(m,0),

 $x = \frac{a^2}{m}$ $T = \frac{AP}{m}$ $T = \frac{AP}{m}$

N,则 $^{k_{EM}k_{FN}}$ 为定值,且有 $^{k_{EM}k_{FN}}=$ $^{-\frac{b^2}{a^2+m^2}}$.

结论 112: A, B 为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的长轴顶点, E(-m,0), F(m,0),

 $x = \frac{a^2}{m}$ $T = \frac{AP}{m}$ $T = \frac{AP}{m}$

N,则 $^{k_{\it EN}}^{k_{\it FM}}$ 为定值,且有 $^{k_{\it EN}}^{k_{\it FM}}^{k_{\it FM}}=-rac{b^2}{a^2+m^2}$.

结论 113: A, B 为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的任一直径(中心弦),P 为椭圆上任一点(不与 A, B 点重合),则 $k_{PA}k_{PB}$ 为定值,且有 $k_{PA}k_{PB} = -\frac{b^2}{a^2} = e^2 - 1$.

结论 114: A , B 为椭圆 $a^2 + \frac{y^2}{b^2} = 1$ (a > b > 0) 的任一弦(不过原点且不与对称轴平行),M 为弦 AB 的中点,若 k OM 与 k AB 均存在,则 k OM k AB 为定值,且有

$$k_{OM} k_{AB} = -\frac{b^2}{a^2} = e^2 - 1$$
.

 $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的任一弦(不与对称轴平行),若平行于 AB 的弦的中点的轨迹为直线 PQ ,则有 $k_{AB}k_{PQ} = -\frac{b^2}{a^2} = e^2 - 1$.

 $\frac{x^2}{4} + \frac{y^2}{b^2} = 1$ (a > b > 0) 上任意一点 P (不是其顶点)作椭圆的切线 PA,

则有 $k_{PA}k_{OP} = -\frac{b^2}{a^2} = e^2 - 1$.

结论 117: 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 及定点 F(m,0), (-a < m < a), 过F 的弦的 $x = \frac{a^2}{m}$ 的垂线,垂足分别为D, C, 直线 $x = \frac{a^2}{m}$

与 X 轴相交于 E ,则直线 AC 与 BD 恒过 EF 的中点,且有 $^{k_{AB}}$ + $^{k_{BB}}$ =0.

结论 118: 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 及定点 F(m,0), $(m = \pm c)$, 过F 任作一条 弦 AB, E 为椭圆上任一点,连接 AE, BE, 且分别与准线 $x = \frac{a^2}{m}$ 相交于 P, Q, 则有

结论 119: 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 及定点 F(m,0), $(-a < m < a, m \neq 0)$, 过 F

任作一条弦 AB , E 为椭圆上任一点,连接 AE , BE , 且分别与直线 m 相交于 P ,

Q,则有 $k_{FP} \cdot k_{FQ} = \frac{b^2}{m^2 - a^2}$.

 $k_{FP} \cdot k_{FQ} = 1$

结论 120: A, B 为双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的顶点, P 为双曲线上任一点(非实轴顶点), 若直线 AP , BP 分别交直线 $x = \frac{a^2}{m}$ (m > a)于 M , N ,则 $k_{AP}k_{BP}$ 为定值,且有 $k_{AP}k_{BP} = k_{AM}k_{BN} = e^2 - 1 = \frac{b^2}{a^2}$.

结论 121: A , B 为双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的顶点, P 为双曲线上任一点(非实轴顶点),若直线 AP , BP 分别交直线 $x = \frac{a^2}{m}$ (m > a)于 M , N ,则 $k_{AN}k_{BM}$ 为定值,且有 $k_{AN}k_{BM} = e^2 - 1$.

结论 122: A , B 为双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的顶点, P 为双曲线上任一点(非实轴顶点),若直线 AP , BP 分别交直线 $x = \frac{a^2}{m}$ (m > a) 于 M , N , 则 $k_{AM}k_{AN}$ 为定值,且有 $k_{AM}k_{AN} = \frac{a+m}{a-m}(e^2-1)$.

结论 123: A , B 为双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的顶点, P 为双曲线上任一点(非实轴顶点),若直线 AP , BP 分别交直线 $x = \frac{a^2}{m}$ (m > a) 于M , N , 则 $k_{BM}k_{BN}$ 为定值,且有 $k_{BM}k_{BN} = \frac{a-m}{a+m}(e^2-1)$.

结论 124: A, B 为双曲线 $\overline{a^2} - \overline{b^2} = 1$ (a > 0, b > 0) 的顶点, E(-m,0), F(m,0), (m > a), P 为双曲线上任一点(非实轴顶点),若直线 AP, BP 分别交直线 $x = \frac{a^2}{m}$ 于 M, N, 则 $M \in \mathbb{R}^{k}$ 为定值,且有 $M \in \mathbb{R}^{k}$ 为定值,且有 $M \in \mathbb{R}^{k}$ 为定值,且有 $M \in \mathbb{R}^{k}$ 。

结论 125: A, B 为双曲线 $a^2 - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的顶点, E(-m,0), F(m,0), (m > a), P 为双曲线上任一点(非长轴顶点),若直线 AP, BP 分别交直线 $x = \frac{a^2}{m}$ 于 M, N, 则 $k_{EN}k_{FM}$ 为定值,且有 $k_{EN}k_{FM} = \frac{b^2}{a^2 + m^2}$.

结论 126: AB 为双曲线 $a^2 - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的任一直径,P 为双曲线上任一点 (不与 A , B 点重合),则 $k_{PA}k_{PB}$ 为定值,且有 $k_{PA}k_{PB} = a^2 = e^2 - 1$.

结论 127: AB 为双曲线 $a^2 - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的任一弦(不过原点且不与对称轴

平行), M 为弦 AB 的中点, 若 k_{OM} 与 k_{AB} 均存在, 则 k_{OM} k_{AB} 为定值, 且有 k_{OM} k_{AB} = a^2

结论 128: AB 为双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的任一弦(不与对称轴平行),若平行于 AB 的弦的中点的轨迹为直线 PQ ,则有 $k_{AB}k_{PQ} = \frac{b^2}{a^2} = e^2 - 1$.

绪论 129: 过双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 上任意一点 P (不是其顶点)作双曲线的切线 PA ,则有 $k_{PA}k_{OP} = \frac{b^2}{a^2} = e^2 - 1$.

结论 130: 双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 及定点 F(m,0) (m > a 或 m < -a) ,过 F 的弦的端点为 A ,B ,过 A ,B 分别作直线 $x = \frac{a^2}{m}$ 的垂线,垂足分别为 D ,C ,直线 $x = \frac{a^2}{m}$ 与 x 轴相交于 E ,则直线 AC 与 BD 恒过 EF 的中点,且有 AE $+ k_{BE} = 0$.

结论 131: 双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 及定点 F(m,0) $(m = \pm c)$,过F 任作一条弦 AB ,E 为双曲线上任一点,连接 AE ,BE ,且分别与准线 $x = \frac{a^2}{m}$ 相交于P ,Q ,则有 $k_{FP} \cdot k_{FQ} = -1$.

结论 132: 双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 及定点 F(m,0) (m > a 或m < -a) ,过F 任作一条弦 AB ,E 为双曲线上任一点,连接 AE ,BE ,且分别与直线 $x = \frac{a^2}{m}$ 相交于 P , 则有 $k_{FP} \cdot k_{FQ} = \frac{b^2}{a^2 - m^2}$.

结论 133: 抛物线 $y^2 = 2px$ (p > 0) 及定点 F(m,0) (m > 0),过 F 的弦的端点为 A, B ,过 A , B 分别作直线 x = -m 的垂线,垂足分别为 D , C ,直线 x = -m 与 x 轴相交

于 E,则直线 AC 与 BD 恒过 EF 的中点,且有 $k_{AB} + k_{BB} = 0$.

结论 134: 抛物线 $y^2 = 2px$ (p > 0) 及定点 F(m,0) , $(m = \frac{p}{2})$, 过 F 任作一条弦 AB , E 为抛物线上任一点,连接 AE , BE , 分别与准线 x = -m 相交 P , Q , 则 k_{FP} · $k_{FQ} = -1$. 结论 135: 抛物线 $y^2 = 2px$ (p > 0) 及定点 F(m,0) , (m > 0) , 过 F 任作一条弦 AB , E 为抛物线上任一点,连 AE , BE , 分别与直线 x = -m 相交 P , Q , 则 k_{FP} · $k_{FQ} = -\frac{p}{2m}$

结论 136: 过抛物线 $y^2 = 2px$ (p > 0) 的焦点F ($\frac{p}{2}$, 0) 的弦 (焦点弦) 与抛物线相 交于A, B, 过B作直线BC 与x 轴平行,且交准线于C,则直线AC 必过原点(即其准 线与x 轴交点E 与焦点F 的线段的中点).

结论 137: AB 为椭圆 $a^2 + \frac{y^2}{b^2} = 1$ (a > b > 0) 的焦点 F 的弦,其相应的准线与 x 轴交点为 E,过 A, B 作 x 轴的平行线与其相应的准线分别相交于 M , N ,则直线 AN , BM 均过线段 EF 的中点.

 $rac{x^2}{4\pi^2}-rac{y^2}{b^2}=1$ (a>0,b>0) 的焦点 F 的弦,其相应的准线与 X 轴交点为 E ,过 A , B 作 X 轴的平行线与其相应的准线分别相交于 M , N ,则直线 AN, BM 均过线段 EF 的中点

结论 139: 过圆锥曲线(可以是非标准状态下)焦点弦的一个端点向其相应的准线作垂线,垂足与另一个端点的连线必经过焦点到相应的准线的垂线段的中点.

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > 0, b > 0, a \neq b)$ 长轴上的动弦,其准线与 x 轴相交于 Q ,则直线 AF 与 BQ(或直线 BF 与 AQ)的交点 M 必在该椭圆上.

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = \lambda (\lambda \neq 0)$ 实轴的动弦,其准线与 x 轴相交于 Q ,则直线 AF 与 BQ(直线 BF 与 AQ)的交点 M 也恒在该双曲线上.

结论 142: AB 为垂直于抛物线 $y^2 = tx(\vec{y}x^2 = ty)(t \neq 0)$ 对称轴的动弦,其准线与 x 轴相 交于 Q ,则直线 AF 与 BQ(直线 BF 与 AQ)的交点 M 也恒在该抛物线上.

结论 143: AB 为垂直于圆锥曲线的长轴(椭圆)(或实轴(双曲线)或对称轴(抛物线))的动弦,其准线与 x 轴相交于 Q ,则直线 AF 与 BQ(直线 BF 与 AQ)的交点 M 也恒在该圆锥曲线上.

结论 144: 圆锥曲线的焦点弦 AM(不为通径,若双曲线则为单支弦),则在 x 轴上有且只有一点 Q 使 $\angle AQF = \angle MQF$.

结论 145: 过 F 任作圆锥曲线的一条弦 AB(若是双曲线则为单支弦),分别过 A $^{\circ}$ B 作准线 l 的垂线(Q 是其相应准线与 X 轴的交点),垂足为 A A B 1 ,则直线 $^{AB_{1}}$ 与直线 $^{AB_{1}}$ 都经过 QF 的中点 K,即 A K B 1 及 B K K A 1 三点共线.

结论 146: 若 AM、BM 是圆锥曲线过点 F 且关于长轴(椭圆)对称的两条动弦(或实轴(双曲线)或对称轴(抛物线)),如图 5,则四线 AM _r, BN _r, NB _r MA _r 共点于 K.

 $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ **结论 147:** A , B 分别为椭圆 $a^2 + \frac{y^2}{b^2} = 1$ (a > b > 0) 的右顶点和左顶点, A 为椭圆任

 $x=rac{a^2}{m}$ 一点 (非长轴顶点),若直线 AP , BP 分别交直线 m 于 M , N ,则以线段 MN 为直

径的圆必过二个定点,且椭圆外定点为Q(m ,0)及椭圆内定点为R

$$(\frac{a^2 - b\sqrt{a^2 - m^2}}{m}, 0).$$

结论 148: A, B 分别为双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a>0,b>0) 的右顶点和左顶点, P 为双

m $x = \frac{a^2}{m}$ 曲线上任一点 (非实轴顶点),若直线 AP , BP 分别交直线 m (m > a)于 M , N ,

则以线段 MN 为直径的圆必过二个定点,且双曲线内定点为 Q ($\frac{a^2+b\sqrt{m^2-a^2}}{m}$,0) 及

双曲线外定点为
$$\frac{a^2-b\sqrt{m^2-a^2}}{m}$$
, 0).

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 结论 149: 过直线 x = m $(m \neq 0)$ 上但在椭圆 $a^2 + \frac{y^2}{b^2} = 1$ (a > b > 0) 外一点 M 向椭

圆引两条切线,切点分别为 A , B , 则直线 AB 必过定点 N m , 且有

$$k_{AB}k_{MN} = \frac{b^2m^2}{a^2(a^2 - m^2)}$$

结论 150: 过直线 x=m $(m\neq 0)$ 上但在双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ (a>0,b>0) 外(即双曲线中心所在区域)一点 M 向双曲线引两条切线,切点分别为 A , B ,则直线 AB 必过定点

$$N \left(\frac{a^2}{m}, 0\right)$$
 , 且有 $k_{AB}k_{MN} = \frac{b^2m^2}{a^2(m^2 - a^2)}$

结论 151: 过直线 x=m ($m\neq 0$)上但在抛物线 $y^2=2px$ (p>0)外(即抛物线准线所在区域)一点 M 向抛物线引两条切线,切点分别为 A , B ,则直线 AB 必过定点

$$N^{(-m,0)}$$
, $\exists \hat{a}^{k_{AB}k_{MN}} = \frac{p}{2m}$.

结论 152: 设点 M 是圆锥曲线的准线上一点(不在双曲线的渐近线上),过点 M 向圆锥曲线引两条切线,切点分别为 A , B ,则直线 AB 必过准线对应的焦点 F ,且 FM L AB .

结论 153: 过直线 mx + ny = 1 上但在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 外一点 M 向椭圆引 两条切线,切点分别为 A , B ,则直线 AB 必过定点 N (ma^2, nb^2) .

结论 154: 过直线 $^{mx+ny=1}$ 上但在双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a>0,b>0) 外(即双曲线中心所在区域)一点 M 向双曲线引两条切线,切点分别为 A , B ,则直线 AB 必过定点 $N(ma^2, nb^2)$.

结论 155: 过直线 $^{mx+ny=1}$ ($^{m\neq 0}$)上但在抛物线 $^{y^2=2px}$ ($^{p>0}$)外(即抛物线准线所在区域)一点 M 向抛物线引两条切线,切点分别为 A , B ,则直线 AB 必过定点

$$N^{\left(-\frac{1}{m},-\frac{pn}{m}\right)}$$

结论 156: A, B 是椭圆 $a^2 + \frac{y^2}{b^2} = 1$ (a > b > 0)的左右顶点,点 P 是直线 x = t ($^{[t]} \neq a$, $t \neq 0$) 上的一个动点 (P 不在椭圆上),直线 P 分别与椭圆相交于 M ,N ,则直

线 MN 必与 x 轴相交于定点 $Q\left(\frac{a^2}{t},0\right)$.

结论 157: A, B 是在双曲线 $a^2 - \frac{y^2}{b^2} = 1$ (a > 0, b > 0)的顶点,点 P 是直线 x = t $(t \neq a)$ $t \neq 0$)上的一个动点(P 不在双曲线上),直线 PA 及 PB 分别与双曲线相交于 M , N ,

 $\mathcal{Q}\left(\frac{a^2}{t},0\right)$ 则直线 MN 必与 x 轴相交于定点

结论 158: A , B 是抛物线 $y^2 = 2px$ (p > 0) 上异于顶点 O 的两个动点,若直线 AB 过 定点 N (2p , $_0$),则 OA $_\perp$ OB ,且 A ,B 的横坐标之积及纵坐标之积均为定值.

结论 159: A , B 是抛物线 $^{y^2}$ = 2px (p > 0) 上昇于顶点 O 的两个动点,若 OA $_{\perp}$ OB , 则直线 AB 必过定点 N (2p , 0),且 A , B 的横坐标之积及纵坐标之积均为定值.

结论 160: A, B 是抛物线 $y^2 = 2px$ (p > 0) 上异于顶点 O 的两个动点,若 $OA \perp OB$,过 O 作 $OM \perp AB$,则动点 M 的轨迹方程为 $x^2 + y^2 - 2px = 0$ ($x \neq 0$).

结论 161: A, B 是抛物线 $y^2 = 2px$ (p > 0) 上异于顶点 O 的两个动点,若 $OA \perp OB$,则 $(S_{\triangle AOB})_{\min} = 4p^2$.

结论 162: 过抛物线 $y^2 = 2px$ (p > 0) 上任一点M (x_0 , y_0) 作两条弦MA, MB, 则

 $MA \perp MB$ 的充要条件是直线 AB 过定点 $N (x_0 + 2p, -y_0)$.

结论 163: 过抛物线 $y^2 = 2px \ (p > 0)$ 上任一点 $M \ (x_0, y_0)$ 作两条弦 MA, MB

则 $^{k_{MA}k_{MB}}=\lambda$ ($\lambda \neq 0$)的充要条件是直线 AB 过定点 N ($^{x_{0}}-\frac{2p}{\lambda}$, $^{-y_{0}}$).

结论 164: 过椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 上任一点 $M(x_0, y_0)$ 作两条弦 MA, MB,

则 $MA \perp MB$ 的充要条件是直线 AB 过定点 $N \left(\frac{a^2-b^2}{a^2+b^2}x_0\right)$, $\frac{b^2-a^2}{b^2+a^2}y_0$).

特别地, (1) 当 M 为左、右顶点时, 即 $x_0 = \pm a$, $y_0 = 0$ 时, $MA \perp MB$ 的充要条件是

直线
$$AB$$
 过定点 N ($\frac{\pm a(a^2-b^2)}{a^2+b^2}$, 0).

(2) 当M 为上、下顶点时,即 $x_0=0$, $y_0=\pm b$ 时,MA=MB 的充要条件是直线 AB

过定点
$$N$$
 (0, $\frac{\pm b(b^2 - a^2)}{b^2 + a^2}$).

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 结论 165: 过双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 上任一点 M (x_0 , y_0) 作两条弦 MA,

$$MB$$
 ,则 $MA \perp MB$ 的充要条件是直线 AB 过定点 $N = (\frac{a^2 + b^2}{a^2 - b^2}x_0$, $\frac{b^2 + a^2}{b^2 - a^2}y_0$).

特别地,当 M 为左、右顶点时,即 $^{x_0}=^{\pm}a$, $^{y_0}=0$ 时, $^{MA}\perp ^{MB}$ 的充要条件是直线

$$AB$$
 过定点 N ($\frac{\pm a(a^2+b^2)}{a^2-b^2}$, 0).

结论 166: 过二次曲线: $Ax^2 + By^2 + Cx + Dy = E_{(A,B,C,D,E,\pm\pm\pm0)}$

上任一点M (X_0 , Y_0)作两条弦 MA , MB , HA MB ,则直线 AB 恒过定点

$$N\left(x_0 - \frac{2Ax_0 + C}{A + B}, \ y_0 - \frac{2By_0 + D}{A + B}\right).$$

值得注意的是: 在结论 166 中

(1) 令
$$A = D = 0$$
, $B = 1$, $C = -2p$, $x_0 = y_0 = 0$ 就是结论 159;

(2)
$$\diamond A = D = 0$$
, $B = 1$, $C = -2p$ 就是结论 162;

(3) 令
$$A = a^2$$
, $B = b^2$, $C = D = 0$ 就得到结论 164;

(4)
$$\diamond A = b^2$$
, $B = -a^2$, $C = D = 0$ 就得到结论 165.

结论 167: A, B 是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 上不同的两个动点,若 $OA \perp OB$,则

$$\frac{1}{|OA|^2} + \frac{1}{|OB|^2} = \frac{a^2 + b^2}{a^2 b^2}$$

结论 168: A, B 是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 上不同的两个动点,若 $OA \perp OB$,

则有 $(\frac{1}{|OA|} + \frac{1}{|OB|})_{\min} = \frac{a+b}{ab}, \quad (\frac{1}{|OA|} + \frac{1}{|OB|})_{\max} = \frac{\sqrt{2(a^2+b^2)}}{ab}$

结论 169: A, B 是双曲线 $a^2 - \frac{y^2}{b^2} = 1$ (b > a > 0) 上不同的两个动点(在同一支上),

结论 170: 在抛物线 $y^2 = 2px$ (p > 0) 的对称轴上存在一个定点 M(p,0), 使得过该点

的任意弦 AB 恒有 $\frac{1}{\left|MA\right|^{2}} + \frac{1}{\left|MB\right|^{2}} = \frac{1}{p^{2}}.$

结论 171: 在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的长轴上存在定点 $M(\pm a\sqrt{\frac{a^2 - b^2}{a^2 + b^2}}, 0)$, 使得

过该点的任意弦 AB 恒有 $\frac{1}{\left|MA\right|^{2}} + \frac{1}{\left|MB\right|^{2}} = \frac{a^{2} + b^{2}}{b^{4}}.$

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > b > 0) 的实轴上存在定点 $M(\pm a\sqrt{\frac{a^2 - b^2}{a^2 + b^2}}, 0)$,使

得过该点的任意弦 AB 恒有 $\frac{1}{\left|MA\right|^2} + \frac{1}{\left|MB\right|^2} = \frac{a^2 + b^2}{b^4}.$

 $rac{x^2}{a^2} + rac{y^2}{b^2} = 1$ 结论 173: 过椭圆 $a^2 + \frac{y^2}{b^2} = 1$ a>b>0 的焦点 a

与 y 轴相交于 P , 若 $^{\overline{PM}} = \lambda \overline{MF}$, $\overline{PN} = \mu \overline{NF}$, 则 $^{\lambda + \mu}$ 为定值,且 $^{\lambda + \mu = -\frac{2a^{2}}{b^{2}}}$.

 $rac{x^2}{4ic^2} - rac{y^2}{a^2} = 1$ 结论 174: 过双曲线 $rac{a^2}{a^2} - rac{y^2}{b^2} = 1$ (a>0, b>0)的焦点 F 作一条直线与双曲线相交于 M , N, 与 y 轴相交于 P , 若 $^{\overline{PM}} = \lambda \overline{MF}$, $^{\overline{PN}} = \mu \overline{NF}$, 则 $^{\lambda + \mu}$ 为定值,且 $^{\lambda + \mu} = \frac{2a^{2}}{b^{2}}$. 结论 175: 过抛物线 $^{y^{2}} = 2px$ ($^{p} > 0$) 的焦点 F 作一条直线与抛物线相交于 M , N , 与 y 轴相交于 P , 若 $^{\overline{PM}} = \lambda \overline{MF}$, $^{\overline{PN}} = \mu \overline{NF}$, 则 $^{\lambda + \mu}$ 为定值,且 $^{\lambda + \mu = -1}$.

结论 176: 过椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的焦点 F 作一条直线与椭圆相交于 M , N ,与相应准线相交于 P , 若 $\overline{PM} = \lambda \overline{MF}$, $\overline{PN} = \mu \overline{NF}$, 则 $\lambda + \mu$ 为定值,且 $\lambda + \mu = 0$.

结论 177: 过双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0)的焦点 F 作一条直线与双曲线相交于 M , N ,与相应准线相交于 P ,若 $\overline{PM} = \lambda \overline{MF}$, $\overline{PN} = \mu \overline{NF}$, $\mu^{\lambda} + \mu^{\lambda}$ 为定值,且 $\mu^{\lambda} + \mu^{\lambda}$ 的焦点 $\mu^{\lambda} + \mu^{\lambda}$ 的无值,且 $\mu^{\lambda} + \mu^{\lambda$

结论 179: MN 是垂直椭圆 $a^2 + \frac{y^2}{b^2} = 1$ (a > b > 0) 长轴的动弦,P 是椭圆上异于顶点的动点,直线 MP ,NP 分别交 x 轴于 E ,F , $\overline{APE} = \lambda \overline{EM}$, $\overline{PF} = \mu \overline{FN}$,则 $\lambda + \mu$ 为定值,且 $\lambda + \mu = 0$.

结论 180: MN 是垂直双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 实轴的动弦,P 是双曲线上异于顶点的动点,直线 MP ,NP 分别交 x 轴于 E , F , 若 $\overrightarrow{PE} = \lambda \overrightarrow{EM}$, $\overrightarrow{PF} = \mu \overrightarrow{FN}$,则 $\lambda + \mu = 0$.

结论 181: MN 是垂直抛物线 $y^2=2px$ (p>0) 对称轴的动弦,P 是抛物线上异于顶点的动点,直线 MP ,NP 分别交 x 轴于 E ,F ,若 $\overrightarrow{PE}=\lambda \overrightarrow{EM}$, $\overrightarrow{PF}=\mu \overrightarrow{FN}$,则 $\lambda+\mu$ 为定值,且 $\lambda+\mu=0$.

的动点,直线MP, NP 分别交x 轴于E, F, A 为长轴顶点,若OE = $\lambda \overline{EA}$, \overline{OF} = $\mu \overline{FA}$, 则 $\lambda + \mu$ 为定值,且 $\lambda + \mu = -1$.

绪论 183: MN 是垂直双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 实轴的动弦,P 是双曲线上异于顶点的动点,直线 MP ,NP 分别交 x 轴于 E ,F ,A 为实轴顶点,若 $\overrightarrow{OE} = \lambda \overrightarrow{EA}$, $\overrightarrow{OF} = \mu \overrightarrow{FA}$,则 $\lambda + \mu$ 为定值,且 $\lambda + \mu = -1$.

结论 184: MN 是垂直抛物线 $y^2=2px$ (p>0) 对称轴的动弦,P 是抛物线上异于顶点的动点,直线 MP , NP 分别交 x 轴于 E , F , A 为抛物线焦点,若 $\overrightarrow{OE}=\lambda \overrightarrow{EA}$, $\overrightarrow{OF}=\mu \overrightarrow{FA}, \quad \text{则}^{\lambda+\mu}$ 为定值,且 $\frac{1}{\lambda}+\frac{1}{\mu}=2$.

结论 185 (补充): 点 P 是椭圆 a^{2} + $\frac{y^{2}}{b^{2}}$ = 1 (a > b > 0) 上任意一点,弦 PA 、 PB 分别 过定点 $^{M}(-m,0)$ 、 $^{N}(m,0)$, (0 < m < a) ,且 $^{\overline{PM}}$ = $\lambda \overline{MA}$, $^{\overline{PN}}$ = $\mu \overline{NB}$,则 $\lambda + \mu$ 为 定值,且 $\lambda + \mu$ = $\frac{2(a^{2} + m^{2})}{a^{2} - m^{2}}$.

结论 186 (补充): 点 P 是双曲线 $a^2 - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 上任意一点,弦 P 及 P 分別过定点 M(-m,0) 、N(m,0) ,(0 < m < a),且 $\overline{PM} = \lambda \overline{MA}$, $\overline{PN} = \mu \overline{NB}$,则 $\lambda + \mu$ 为定值,且 $\lambda + \mu = \frac{2(a^2 + m^2)}{a^2 - m^2}$.

结论 187: (补充): M 、P 是圆C: $x^2 + y^2 = r^2$ (r > 0) 上任意两点,点M 关于x 轴 对称点为N,若直线PM 、PN 与x 轴分别相交于点A(m,0) 、B(n,0) ,则mn 为定值,且 $mn = r^2$.

结论 188: (补充): M、P是椭圆C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 上任意两点,点M 关于x 轴对称点为M,若直线PM、PN与x 轴分别相交于点A(m,0)、B(n,0),则mn 为

定值,且 $mn = a^2$.

结论 189: (补充): $M \times P$ 是双曲线C: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 上任意两点,点 M 关于x 轴对称点为N,若直线 $PM \times PN$ 与x 轴分别相交于点 $A(m,0) \times B(n,0)$,则mn 为定值,且 $mn = a^2$.

结论 190 (补充): A、B 是椭圆C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 上关于x 轴对称的任意两个不同的点,点 P(m,0) 是x 轴上的定点,直线 PB 交椭圆C 于另一点E,则直线 AE 恒过x 轴上的定点,且定点为

结论 191 (补充): A、B 是双曲线C: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a>0, b>0) 上关于x 轴对称 的任意两个不同的点,点 P(m,0) 是x 轴上的定点,直线PB 交双曲线一点E,则直线AE 恒过x 轴上的定点,且定点为

结论 192 (补充): A 、 B 是抛物线 C : $^{y^{2}}$ = 2px (p > 0) 上关于 x 轴对称的任意两个不同的点,点 $^{P(m,0)}$ 是 x 轴上的定点,直线 PB 交抛物线 $^{-}$ 点 E ,则直线 AE 恒过 x 轴上的定点,且定点为 $^{Q(-m,0)}$.