

Module IN3031 / INM378 Digital Signal Processing and Audio Programming

Johan Pauwels johan.pauwels@city.ac.uk based on slides by Tillman Weyde

Time Series Analysis and Prediction

Time Series Analysis

- Time Series: collection of **observations** y_{t} , each one being recorded at **time** t. (discrete, t = 1,2,3,... or continuous t > 0.)
- So it's (more or less) a signal, but
 - Might have missing values
 - Might be sampled at unequal time intervals
 - Typically at longer time scale than signals

Time Series Examples

- Measurements:
 - Meteorology: sun activity, tides, rainfall ...
- Surveys:
 - Moods, preferences, ...
- Prices
 - Stock markets, crop, livestock ...
- Etc ...

Objectives of Time Series Analysis

Data compression

provide compact description of the data.

Explanation

seasonal factors

relationships with other variables (temperature, humidity, pollution, etc)

Signal processing

extracting a signal in the presence of noise

Prediction

use the model to predict future values of the time series.

Simple Signal / Time Series Descriptions

Descriptive statistics

- Mean
$$\overline{y} = 1/n \sum_{t=1}^{n} y_t$$

- Variance
$$\sigma^2 = 1/n \sum_{t=1}^n (y_t - \overline{y})^2$$

- Skewness
$$\sum_{t=1}^{n} (y_t - \overline{y})^3 / \sum_{t=1}^{n} [(y_t - \overline{y})^2]^{3/2}$$

- Mode: most frequent value
- Median: half below, half above
 S=sort(y), median := S[(n+1)/2] if n odd

(S[n/2]+S[(n/2)+1]) if n even using 1-based indices

General Modelling Approach

- Deterministic + noise: $y_t = f(t) + \varepsilon_t$, $E[\varepsilon_t] = 0$
- Modelling with different types of f
 - Autoregressive, harmonic, ...
- Assumptions about noise
- Estimation of parameters from data

Time series model components

Trend + Seasonal + Cyclical + Irregular (noise)

Trend component

Smoothing with Moving Average

Moving average of span k smoothes the data

$$\tilde{y}_t = (y_t + y_{t-1} + ... + y_{t-k-1})/k$$

- A low pass FIR filter with coefficients 1/k,1/k, ..., 1/k
- In Python: signal.lfilter([.25,.25,.25,.25], 1, x)

Smoothing with Moving Average

Assumption:

 high frequencies are just noise, the long-term trend (low frequencies) matters

When seasonal effects with cycle = n are expected,

use k = n

Exponentially Weighted Moving Average

Recursive average of the data

$$\tilde{y}_{t} = w y_{t} + (1 - w) \tilde{y}_{t-1}$$

- A low-pass IIR filter with coefficients w and (1-w) In Python: signal.lfilter([.25], [1, -(1-.25)], x)
- Assumption:
 - Recent values are more important than older ones

Exponentially Weighted Moving Average

• Greater w means less filtering:

Linear Trend Estimation

• Linear regression: find a straight line to fit the data

$$\hat{y}_{t} = a_{0} + a_{1}t$$

Determine a₀ and a₁ to minimise the sum or squares error

$$sse = \sum_{t} (\hat{y}_{t} - y_{t})^{2}$$

Solve the system of equations

In Python:

```
from numpy.polynomial.polynomial import polyfit coeff = polyfit(t, y, 1)
```


Quadratic Trend Estimation

• If the underlying trend is not linear, a quadratic polynomial may give a better fit.

In Python: coeff = polyfit(t, x, 2)

Seasonal Structure

- Natural pattern of known period in many types of data (e.g. rainfall, heating, travel, employment, ...)
- Modelling seasonal regularity can reveal trends and unusual developments
- Modelling per month or quarter per year, hour per day, day per week

Seasonal Average Method

- Seasonal averages = seasonal values total / # of years
- General average = seasonal averages total / # of seasons
- Multiplicative modelling:
 Seasonal index = seasonal average / general average
- Additive modelling:
 Seasonal offset = seasonal average general average

Seasonal Average Example

Period, t	y_t	$\boldsymbol{\hat{y}}_t$	$y_t - \hat{y}_t$	$rac{y_t}{\hat{y}_t}$
1	4452	6022	-1570	.7393
5	6481	6497	-16	.9975
9	6755	6972	-217	.9685
13	7339	7447	-108	.9855
17	7528	7922	-394	.9503
21	7522	8397	-875	.8958
			-3180	5.5369

Then note that the average $y_t - \hat{y}_t$ is

$$\frac{-3180}{6} = -530$$

and the average y_t/\hat{y}_t is

$$\frac{5.5369}{6}$$
 = .9228

Seasonal Average Example (2)

• Linear model (prediction for quarter 25)

$$\hat{y}_{25} = 5903.2174 + 118.75261(25)$$

= 8872

Additive seasonal adjustment

$$\hat{y}_{25} = 8872 + (-530) = 8342$$

Multiplicative adjustment

$$\hat{y}_{25} = 8872(.9228) = 8187$$

Season Variables

Seasonality adjustment can be re-formulated with dummy variables

$$y_t \approx b_0 + b_1 t + a_1 x_{1,t} + a_2 x_{2,t} + \dots + a_{k-1} x_{k-1,t}$$

 $x_{j,t} = \begin{cases} 1 & \text{if period } t \text{ is from season } j \\ 0 & \text{otherwise} \end{cases}$

Effectively changes the intercept per season

Rescaling

 Data can have an exponential structure (unrestricted growth, natural decay)

Rescaling (2)

Log scaling can help reveal structure

 $y_t = \log_{10}$ (passenger count at period t)

Residual Autocorrelation

•After linear modelling and seasonal adjustment we can study the **autocorrelation** of the residuals $e_t = y_t - \hat{y}_t$

Correlations			
	Residual Log Passengers Lag 1	Residuals Lag :	2 Residuals
Residual Log Passengers	1.0000	0.7896	0.6722
Lag 1 Residuals	0.7896	1.0000	0.7832
Lag 2 Residuals	0.6722	0.7832	1.0000

 With linear regression we can improve the prediction based on residuals

$$\hat{e}_t = -0.000153 + 0.7918985e_{t-1}$$

This is a form of a generalised (weighted) moving average

$$y_{t} = \hat{y} + e_{t} + \sum_{i=1}^{q} \theta_{i} e_{t-i}$$

Adjusted Model

•We can adjust the prediction based on residuals

$$(adjusted\ fit)_t = \hat{y}_t + \hat{e}_t$$

Transformed Back to Linear

ARMA Model

- Auto-Regressive Moving Average
 - recursive model (generalisation of exponential weighted moving average)
 - combined with generalised moving average

$$\hat{y}_t = c + e_t + \sum_{i=1}^p \phi_i \hat{y}_{t-i} + \sum_{i=1}^q \theta_i e_{t-i}$$

- ... which has the structure of an IIR filter
- optimise the parameters using linear regression
- available in Python library statsmodels (not used in class)

Cyclic Component

 There can be components of unknown **period** (e.g. economic cycles of 5-10 years)

Time

Fourier Analysis

• Fourier (aka harmonic) analysis identifies **periodic components** (sinusoids)

Fourier Model

 Fourier coefficients are a linear model (remember lecture 3)

$$\begin{aligned} x(t) &= b_0 \\ &+ a_1 \sin(2\pi 1 f t) + b_1 \cos(2\pi 1 f t) \\ &+ a_2 \sin(2\pi 2 f t) + b_1 \cos(2\pi 2 f t) \\ &+ a_3 \sin(2\pi 3 f t) + b_3 \cos(2\pi 3 f t) \\ &+ \dots \end{aligned} \\ &= \sum_{k=0}^{\infty} a_k \sin(2\pi k t) + b_k \cos(2\pi k t)$$

Predictive Modelling

- ARMA, Fourier and other approaches can provide predictions
- Approaches can be combined in generalised linear models
- Coefficients minimising sum of squared errors (SSE) can be calculated directly

Linear Model in Python

Model with arbitrary component functions

$$y = a_0 + a_1 e^{-t} + a_2 t e^{-t}$$

Vector with input values

```
t = np.array([0, 0.3, 0.8, 1.1, 1.6, 2.3])
```

Vector with output values

```
y = np.array([0.6, 0.67, 1.01, 1.35, 1.47, 1.25])
```

- Create the design matrix (one column per component)
- Calculate the model coefficients by solving the Xa = y for a, finding the least-squares solution

Linear Model in Python

- Calculate the model coefficients as least-squares solution
 - a = np.linalg.lstsq(X, y, rcond=None)[0]
- Calculate the model outputs (for the given values)

```
y hat = np.matmul(X, a)
```

•And the (maximal) error

```
MaxErr = np.amax(np.abs(y hat - y))
```

•And the squared error

```
SSE = np.sum(pow(y hat - y, 2))
```

•And on new data

Modelling Caveats

- Overfitting:
 - too many parameters → model learns noise in the data but not the trend
 - need to test on data not used in building the model
 - cross-validation can when data is scarce
- Predictions get less reliable further away from sample data

Maximum Likelihood and Regularisation

- Common approach: Linear models with least squares optimisation
 - Maximise the likelihood of the data given the prediction (assuming normal distribution)
- Regularisation helps avoid overfitting (especially with small datasets)
 - Most popular: keep size of parameters low using a 'penalty term': sum of squares or absolutes of the parameters (ridge or lasso)
 - Add penalty term to errors and calculate gradient to optimise (or use packaged solutions)

Cross-Validation for Regularisation

- Optimise regularisation and other parameters:
 - Divide the data into *k* equally sized subsets ('folds')
 - Adapt the model to k-1 joint subsets, test on the remaining subset, and iterate through all folds
 - Test a grid of regularisation values (or other parameters) and choose the one with best results on test sets

Residual Analysis

Seasonal effects not accoun for

Datasets

Several repositories:

UCI - well know, often used

https://archive.ics.uci.edu/ml/datasets.html?type=ts

UCR - another good source

http://www.cs.ucr.edu/~eamonn/time_series_data/

KDNuggest – lost of advertising, but many links

http://www.kdnuggets.com/datasets/index.html

Reading:

Brockwell & Davis: Introduction to Time Series and Forecasting, Springer 2002

Montgomery et al: Introduction to Time Series and Forecasting, Wiley 2008