MM704 – Forecasting and Credit Risk Analysis

Assessment – 1

Overview

- Introduction
- Identification Stage
- Estimation Stage
- Forecasting Stage
- Exponential Smoothing Method
- Conclusion
- References
- Appendix

Introduction

To predict future results, we will examine previous sales data in this report. Also, we will compare various models to see which one fits the data the best. Finally, forecasting will be done using the ARIMA and Exponential Smoothing Methodologies.

Identification stage

- In this dataset we are going to forecast the sales data.
- a) Here, we are dealing with annual sales data (12 months).
- b) The sales data is continuous and there are no missing values.

Now, we are going to check for stationarity in the data.

The ARIMA Procedure

Name of Variable = Sales7							
Mean of Working Series 4361.152							
Standard Deviation	2541.314						
Number of Observations	105						

	Autocorrelation Check for White Noise										
To Lag	Chi-Square	DF	Pr > ChiSq			Autocorr	elations				
6	34.10	6	<.0001	0.463	0.028	-0.167	-0.255	-0.026	0.067		
12	150.93	12	<.0001	-0.025	-0.289	-0.185	-0.000	0.383	0.841		
18	182.83	18	<.0001	0.390	-0.009	-0.190	-0.256	-0.054	0.035		
24	276.52	24	<.0001	-0.048	-0.285	-0.178	-0.017	0.301	0.690		

From the graph it is clear that the data is nonstationary, so we need to transform the data.

Step - 2

Next, we are going to apply log function on the graph to smoothen the curve.

The ARIMA Procedure

Name of Variable = log_sales7						
Mean of Working Series	8.235817					
Standard Deviation	0.534608					
Number of Observations	105					

	Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr > ChiSq			Autocorr	elations			
6	33.95	6	<.0001	0.373	0.001	-0.189	-0.257	0.089	0.244	
12	142.84	12	<.0001	0.088	-0.315	-0.236	-0.050	0.293	0.811	
18	173.14	18	<.0001	0.300	-0.041	-0.217	-0.265	0.036	0.180	
24	262.71	24	<.0001	0.050	-0.324	-0.236	-0.076	0.217	0.662	

Also, we are going to difference our series with the period of S=12. And then check if there is any seasonal pattern left.

The series were differenced just one hence D=1.

Name of Variable = log_sales7	
Period(s) of Differencing	12
Mean of Working Series	0.061777
Standard Deviation	0.195593
Number of Observations	93
Observation(s) eliminated by differencing	12

	Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations						
6	16.50	6	0.0113	0.229	0.196	0.219	0.171	0.016	0.030	
12	27.78	12	0.0060	0.056	0.073	-0.004	0.069	-0.037	-0.299	
18	36.61	18	0.0059	0.005	-0.131	-0.162	-0.158	-0.076	0.059	

From the graph we can observe that graph is non-stationary

• The graph does not fluctuate with constant mean and constant variance,

Step - 3

To get the stationary graph we need to difference at lag 1.

Differencing at lag 1 would be d=1 (Inácio, S. (2023). 'Introduction ARIMA').

Name of Variable = log_sales7	
Period(s) of Differencing	1,12
Mean of Working Series	0.001163
Standard Deviation	0.243377
Number of Observations	92
Observation(s) eliminated by differencing	13

	Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr > ChiSq			Autocon	relations			
6	24.43	6	0.0004	-0.484	-0.028	0.052	0.070	-0.116	0.002	
12	43.32	12	<.0001	-0.014	0.078	-0.106	0.122	0.101	-0.365	
18	55.57	18	<.0001	0.284	-0.062	-0.030	-0.047	-0.033	0.148	

After first differencing, now graph fluctuate with constant mean and constant variation also there is no seasonal component present.

From the ACP & PACF plots above: The autocorrelations and partial autocorrelations are borderline significant at lags 1 and 2. So could fit 1 MA or 1, 2 AR parameters for non-seasonal part of the model.

Estimation Stage:

Step - 4

Now, from the above graph, I have decided to asses' model.

- ARIMA (1,1,0) (1,1,0) _s12 we have S=12, p=1, q = 0, d= 1, P=1, D=1 and Q=0
- ARIMA (0,1,1) (0,1,1)_s12 we have S=12, p=0, q = 1, d= 1, P=0, D=1 and Q=1
- ARIMA (0,1,1) (1,1,0) _s12 we have S=12, p=0, q = 1, d= 1, P=1, D=1 and Q=0

Assessing the model ARIMA (1,1,0) (1,1,0) s12

• we have S=12, p=1, q = 0, d= 1, P=1, D=1 and Q=0

Conditional Least Squares Estimation									
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag				
MU	0.0001510	0.01083	0.01	0.9889	0				
AR1,1	-0.47868	0.09455	-5.06	<.0001	1				
AR2,1	-0.36163	0.10167	-3.56	0.0006	12				

So, now we need to remove the mean (Mu) and retest it.

	Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations						
6	24.43	6	0.0004	-0.484	-0.028	0.052	0.070	-0.116	0.002	
12	43.32	12	<.0001	-0.014	0.078	-0.106	0.122	0.101	-0.365	
18	55.57	18	<.0001	0.284	-0.062	-0.030	-0.047	-0.033	0.148	

In autocorrelation check for white noise, p-value less than 0.05 suggest that Autocorrelation at the lag 6,12,18 is not white noise (Inácio, S. (2023) 'Estimation Residuals Forecasting').

Conditional Least Squares Estimation								
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag			
AR1,1	-0.47869	0.09403	-5.09	<.0001	1			
AR2,1	-0.36163	0.10109	-3.58	0.0006	12			

Variance Estimate	0.040449
Std Error Estimate	0.201121
AIC	-32.0459
SBC	-27.0023
Number of Residuals	92

* AIC and SBC do not include log determinant.

Correlations of Parameter Estimates					
Parameter	AR1,1	AR2,1			
AR1,1	1.000	0.102			
AR2,1	0.102	1.000			

	Autocorrelation Check of Residuals									
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations						
6	13.91	4	0.0076	-0.141	-0.288	0.078	0.057	-0.166	-0.061	
12	17.56	10	0.0629	-0.059	0.083	0.057	0.099	-0.106	-0.014	
18	23.90	16	0.0917	0.141	-0.021	-0.120	-0.088	-0.012	0.117	
24	29.60	22	0.1286	-0.046	-0.034	0.150	0.044	-0.094	-0.098	

p-value is less than 0.05 in lag2 suggest that there is sufficient evidence to reject H0. Hence, we should retain both the parameters in the model (Inácio, S. (2023) 'Estimation Residuals Forecasting').

Factor 2: 1 + 0.36163 B** (12)

Overall, model does not appear to be adequate.

Although, From Q-Q plot and histogram indicate that the residuals follow a normal distribution and forecasts from this method could be good.

The plots ACF and PACF shows significant autocorrelations which suggest that the forecasts are not good (Inácio, S. (2023) 'Estimation Residuals Forecasting').

Assessing the model ARIMA (0,1,1) (0,1,1) s12

• we have S=12, p=0, q = 1, d= 1, P=0, D=1 and Q=1

Conditional Least Squares Estimation								
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag			
MU	0.0001857	0.0033439	0.06	0.9558	0			
MA1,1	0.74401	0.07172	10.37	<.0001	1			
MA2,1	0.39662	0.10167	3.90	0.0002	12			

So, now we need to remove the mean (MU) and retest it.

Conditional Least Squares Estimation								
Parameter	Estimate	Standard Error		Approx Pr > t	Lag			
MA1,1	0.74375	0.07113	10.46	<.0001	1			
MA2,1	0.39640	0.10079	3.93	0.0002	12			

Variance Estimate	0.034224
Std Error Estimate	0.184998
AIC	-47.421
SBC	-42.3774
Number of Residuals	92

* AIC and SBC do not include log determinant.

Correlations of Parameter Estimates					
Parameter	MA1,1	MA2,1			
MA1,1	1.000	-0.046			
MA2,1	-0.046	1.000			

	Autocorrelation Check of Residuals									
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations						
6	3.41	4	0.4918	0.004	0.033	0.044	0.024	-0.167	-0.055	
12	6.71	10	0.7529	-0.088	0.071	0.036	0.126	-0.040	0.012	
18	12.45	16	0.7126	0.052	-0.057	-0.136	-0.128	-0.050	0.085	
24	16.26	22	0.8026	-0.021	0.011	0.138	0.016	-0.105	0.011	

p-value is less than 0.05 in lag2 suggest that there is sufficient evidence to reject H0. Hence, we should retain both the parameters in the model (Inácio, S. (2023) 'Estimation Residuals Forecasting').

In autocorrelation check for white noise, p-value less than 0.05 suggest that Autocorrelation at the lag 6,12,18 is not white noise (Inácio, S. (2023) 'Estimation Residuals Forecasting').

	Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations						
6	24.43	6	0.0004	-0.484	-0.028	0.052	0.070	-0.116	0.002	
12	43.32	12	<.0001	-0.014	0.078	-0.106	0.122	0.101	-0.365	
18	55.57	18	<.0001	0.284	-0.082	-0.030	-0.047	-0.033	0.148	

Overall, model appears to be adequate.

The plots ACF and PACF shows no significant autocorrelations which suggest that the forecasts are good.

From Q-Q plot and histogram indicate that the residuals follow a normal distribution and forecasts from this method will be good (Inácio, S. (2023) 'Estimation Residuals Forecasting').

In the scatterplot, the residuals appear to be small which suggest that the model is accurate.

In Autocorrelation Check for Residuals section, p value of chi square test is greater than 0.05 suggest that there is no significant autocorrelation of records up to lag 24 (Inácio, S. (2023) 'Estimation Residuals Forecasting').

So now, model will be decided based on AIC value (Inácio, S. (2023) 'Estimation Residuals Forecasting').

The ARIMA Procedure

No mean term in this model.

Moving Average Factors					
Factor 1:	1	-	0.74375 B**(1)		
Factor 2:	1	-	0.3964 B**(12)		

Assessing the model ARIMA (0,1,1) (1,1,0) s12

• we have S=12, p=0, q = 1, d= 1, P=1, D=1 and Q=0

Conditional Least Squares Estimation								
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag			
MU	0.0002337	0.0040517	0.06	0.9541	0			
MA1,1	0.73793	0.07267	10.15	<.0001	1			
AR1,1	-0.33782	0.10246	-3.30	0.0014	12			

So, now we need to remove the mean (MU) and retest it.

Conditional Least Squares Estimation								
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag			
MA1,1	0.73767	0.07206	10.24	<.0001	1			
AR1,1	-0.33766	0.10176	-3.32	0.0013	12			

Variance Estimate	0.034693
Std Error Estimate	0.186261
AIC	-46.1685
SBC	-41.125
Number of Residuals	92

* AIC and SBC do not include log determinant.

Correlations of Parameter Estimates					
Parameter	MA1,1	AR1,1			
MA1,1	1.000	0.054			
AR1,1	0.054	1.000			

	Autocorrelation Check of Residuals								
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	4.08	4	0.3957	0.025	0.019	0.033	0.023	-0.184	-0.067
12	7.85	10	0.6432	-0.090	0.091	0.047	0.123	-0.047	-0.015
18	13.82	16	0.6123	0.077	-0.070	-0.139	-0.117	-0.055	0.077
24	18.16	22	0.6965	-0.013	0.008	0.131	0.016	-0.094	-0.092

p-value is less than 0.05 in lag2 suggest that there is sufficient evidence to reject H0. Hence, we should retain both the parameters in the model.

In autocorrelation check for white noise, p-value less than 0.05 suggest that Autocorrelation at the lag 6,12,18 is not white noise (Inácio, S. (2023) 'Estimation Residuals Forecasting').

Overall, model appears to be adequate.

The plots ACF and PACF shows no significant autocorrelations which suggest that the forecasts are good.

In the scatterplot, the residuals appear to be small which suggest that the model is accurate (Inácio, S. (2023) 'Estimation Residuals Forecasting').

From Q-Q plot and histogram indicate that the residuals follow a normal distribution and forecasts from this method will be good.

In Autocorrelation Check for Residuals section, p value of chi square test is greater than 0.05 suggest that there is no significant autocorrelation of records up to lag 24.

So now, model will be decided based on AIC value.

Model Selection

Among those three models only two of them seems to be adequate but comparing the AIC value between them ARIMA (0, 1, 1) (0, 1, 1)₁₂ seems to have the lowest AIC & SBC value compared to another model.

Testing outliers in this model

Outlier Details						
Obs	Туре	Estimate	Chi-Square	Approx Prob>ChiSq		
37	Additive	0.55273	32.28	<.0001		
73	Shift	-0.38813	34.78	<.0001		
8	Additive	0.57233	32.29	<.0001		

Since the model diagnostic tests show that all the parameter estimates are significant, and the residual series is white noise.

Best Fitted Model: ARIMA (0, 1, 1) (0, 1, 1)₁₂

Forecasting Stage:

Forecasts for variable log_sales7						
Obs	Forecast	Std Error	95% Confid	ence Limits		
106	8.7716	0.1863	8.4065	9.1388		
107	9.1630	0.1926	8.7856	9.5405		
108	9.4354	0.1987	9.0480	9.8248		
109	8.2531	0.2046	7.8521	8.6540		
110	8.0232	0.2103	7.6109	8.4355		
111	8.3225	0.2159	7.8992	8.7457		
112	8.3874	0.2214	7.9535	8.8213		
113	8.3866	0.2267	7.9422	8.8310		
114	8.4774	0.2319	8.0228	8.9320		
115	8.3056	0.2370	7.8410	8.7701		
116	7.0036	0.2420	6.5292	7.4779		
117	8.6223	0.2469	8.1384	9.1062		

Forecasts for variable log_sales7							
Obs	Forecast	Std Error	95% Confid	dence Limits	Actual	Residual	
86	7.9810	0.1863	7.6159	8.3461	7.9237	-0.0573	
87	8.1442	0.1926	7.7668	8.5216	8.2651	0.1210	
88	8.2021	0.1987	7.8128	8.5915	8.3808	0.1586	
89	8.0729	0.2048	7.6719	8.4738	8.4360	0.3631	
90	8.2825	0.2103	7.8702	8.6947	8.4060	0.1236	
91	8.2176	0.2159	7.7944	8.6409	8.3507	0.1330	
92	7.2574	0.2214	6.8235	7.6913	7.1381	-0.1193	
93	8.5190	0.2267	8.0746	8.9633	8.6217	0.1028	
94	8.7659	0.2319	8.3113	9.2205	8.7919	0.0261	
95	9.2238	0.2370	8.7593	9.6884	9.1539	-0.0699	
96	9.5073	0.2420	9.0330	9.9816	9.4149	-0.0924	
97	8.0542	0.2469	7.5703	8.5381	8.2810	0.2267	
98	7.9860	0.3010	7.3760	8.5560	8.0596	0.0936	
99	8.1324	0.3118	7.5213	8.7435	8.3373	0.2049	
100	8.2104	0.3222	7.5789	8.8419	8.3866	0.1762	
101	8.0306	0.3323	7.3794	8.6819	8.3471	0.3165	
102	8.2876	0.3421	7.6172	8.9581	8.4994	0.2118	
103	8.2658	0.3516	7.5767	8.9549	8.2682	0.0024	
104	7.2758	0.3608	6.5686	7.9831	6.9207	-0.3552	
105	8.5442	0.3699	7.8193	9.2691	8.6083	0.0641	
106	8.7830	0.3787	8.0408	9.5252			
107	9.2380	0.3873	8.4790	9.9971			
108	9.5253	0.3957	8.7497	10.3008			
109	8.1316	0.4040	7.3398	8.9233			

Holdout Method

As the prediction generated by the model ARIMA (0, 1, 1) (0, 1, 1)12 during the training session was found to be within the 95% confidence interval, it may be expected that forecasts generated from this model will be quite accurate.

Exponential Smoothing Method

From the sales graph it is clear that, the size of the seasonal fluctuations increases as the level of the series increases it follows multiplicative seasonality.

Hence, we are going to apply holt's winters method (Inácio, S. (2023) Time Series – Exponential Smoothing Models).

The Forecast of exponential Smoothing method is very identical to the ARIMA (0, 1, 1) (0, 1, 1)₁₂.

Statistical Test Result:

MSE	RMSE	UMSE	URMSE	MAPE	MAE	RSQUARE
325404.4414	570.4423208	334975.1603	578.7703865	11.87870761	407.4135271	0.949614354

The mean of the absolute percent errors is 11.87.

Conclusion

We performed analysis in this report utilising ARIMA and the Exponential Smoothing Technique. To implement ARIMA method first we had to transform the data into stationary. Then we evaluated different models to identify the best fit, and ultimately, we forecasted using the best fitted model, ARIMA (0, 1, 1) (0, 1, 1)12. Finally, to verify the accuracy of the forecast, we used the holdout approach. Finally, due to the multiplicative seasonality of the graph, we employed Holt Winters' approach for Exponential Smoothing Methods.

References

Inácio, S. (2023). 'Time Series –Exponential Smoothing Models' MM704 Forecasting and Credit Risk Analysis. School of ATE, University of Brighton.

Inácio, S. (2023). 'Smoothing methods in SAS', MM704 Forecasting and Credit Risk Analysis. School of ATE, University of Brighton.

Inácio, S. (2023). 'Introduction ARIMA', MM704 Forecasting and Credit Risk Analysis. School of ATE, University of Brighton.

SAS Customer Support Site | SAS support (2023). Available at: https://support.sas.com/documentation/onlinedoc/ets/132/esm.pdf (Accessed: March 31, 2023).

Inácio, S. (2023). 'Estimation Residuals Forecasting', MM704 Forecasting and Credit Risk Analysis. School of ATE, University of Brighton.

Inácio, S. (2023). 'Times Series Characteristics', MM704 Forecasting and Credit Risk Analysis. School of ATE, University of Brighton.

```
Appendix
data asses1;
set '/home/u63249191/Forecasting risk/assesment1.sas7bdat';
run;
ODS PDF
       FILE = '/home/u63249191/Forecasting_risk/Forecast_data/stationarity.pdf'
  STYLE = EGDefault;
proc arima data=asses1;
identify var= sales7;
quit;
ODS PDF CLOSE;
data asses1;
set '/home/u63249191/Forecasting_risk/assesment1.sas7bdat';
log_sales7=log(sales7);
run;
ODS PDF
       FILE = '/home/u63249191/Forecasting risk/Forecast data/stationarity.pdf'
  STYLE = EGDefault;
proc arima data=asses1;
identify var=log_sales7;
quit;
ODS PDF CLOSE;
ODS PDF
       FILE = '/home/u63249191/Forecasting_risk/Forecast_data/stationarity.pdf'
```

```
STYLE = EGDefault;
proc arima data=asses1;
identify var=log sales7(12);
quit;
ODS PDF CLOSE;
ODS PDF
       FILE = '/home/u63249191/Forecasting_risk/Forecast_data/stationarity.pdf'
  STYLE = EGDefault;
proc arima data=asses1;
identify var=log_sales7(1,12);
quit;
ODS PDF CLOSE;
/* Alternative model - not effective*/
ODS PDF
       FILE = '/home/u63249191/Forecasting_risk/Forecast_data/stationarity.pdf'
  STYLE = EGDefault;
/* Alternative model - effective*/
proc arima data=asses1;
identify var=log_sales7(1,12);
estimate p = (1)(12) noconstant; /* ARIMA(1,1,0) (1,1,0)_s12 - reject/unstable*/
quit;/* Mu insignificant */
ODS PDF CLOSE;
ODS PDF
       FILE = '/home/u63249191/Forecasting_risk/Forecast_data/stationarity.pdf'
  STYLE = EGDefault;
```

```
/* Alternative model - effective - best*/
proc arima data=asses1
plots = (residual(smooth) forecast(forecasts));
identify var=log_sales7(1,12);
estimate q = (1)(12) noconstant; /* ARIMA(0,1,1) (0,1,1)_s12 - Best fit*/
outlier;
quit;/* Mu insignificant */
ODS PDF CLOSE;
ODS PDF
       FILE = '/home/u63249191/Forecasting_risk/Forecast_data/stationarity.pdf'
  STYLE = EGDefault;
proc arima data=asses1;
identify var=log sales7(1,12);
estimate q = (1) p = (12) noconstant; /* ARIMA(0,1,1) (1,1,0)_s12 -2nd best fit*/
run;
ODS PDF CLOSE;
/* Forecasting model - multiplicative*/
proc arima data=asses1;
identify var=log_sales7(1,12);
estimate q = (1)(12) noconstant;
forecast lead=12 interval=month out=table_forecast id= date alpha=0.05;
forecast back = 18 interval=month out=table_forecast1 id= date alpha=0.05;
run;
ODS PDF
       FILE = '/home/u63249191/Forecasting risk/Forecast data/stationarity.pdf'
  STYLE = EGDefault;
```

```
proc arima data=asses1;
identify var=log sales7(1,12);
estimate q = (1) p = (12) noconstant;
forecast lead=12 interval=month out=table_forecast id= date alpha=0.05;
forecast back = 20 interval=month out=table_forecast1 id= date alpha=0.05;
proc print data=table_forecast;
run;
quit;
ODS PDF CLOSE;
/* Exponential smoothening method */
ODS PDF
       FILE =
'/home/u63249191/Forecasting_risk/Forecast_data/exponential_smoothing.pdf'
  STYLE = EGDefault;
proc esm data=asses1 out=table forecast lead=12 print=summary plot=forecasts
outstat=asses2;
id date interval=month;
forecast sales7 /model=winters alpha=0.05 accumulate=total;
run;
proc print data=table_forecast;
run;
ODS PDF CLOSE;
/* Mape, why holt winters - multiplicative, arima and ESM have same output */
proc export
 data=asses2
 dbms=xlsx
 outfile="/home/u63249191/Forecasting risk/Forecast data/sheet.xlsx"
 replace;
```