Digital System Design Capsule 2024 Spring

PROJECT 1: Uneven Seven-Sided Dice Roller

Objective:

• To design and implement an uneven seven-sided dice roller.

In this project, you are asked to design and implement an uneven seven-sided dice roller (Fig. 1) of the following description. The system is composed of a 1-bit data generator, a 2-bit full-adder, and two registers (R_I: intermediate; R_O: output). Among two bits of the full-adder, one bit must be implemented at the *transistor* level in CMOS configuration. You will select your own full-adder circuit. The rest of the system can be implemented at the *gate* level.

Fig. 1. Schematic diagram of an uneven seven-sided dice roller.

Fig. 2. Exemplary timing diagram.

• Function of the system

- o The circuit produces a random 3-bit number (decimal equivalent: from 1 to 7) at the frequency of f_{ck4} (= 100 Hz). This number (\mathbf{O} : $O_2O_1O_0$) is stored in the output register (R_0), and refreshed at f_{ck4} . This number is to be read by a microcontroller (e.g. Arduino).
 - CLK4 is to be generated by processing CLK1 ($f_{ck1} = 400 \text{ Hz}$) via a circuit you design. You have to come up with an idea about this design.
 - CLK1 is to be produced by a microcontroller (e.g. Arduino).
- o Input to R_0 , \mathbf{X} (= $X_2X_1X_0$), is produced by adding two 2-bit numbers, \mathbf{A} (= A_1A_0) and \mathbf{B} (= B_1B_0), and a carry (C_0). C_0 is always '1' in this system.
 - Example. A = 01, B = 10, then X = 100. See Fig. 2.
- O The data (D_0) is to be generated by a circuit of your design (e.g. an oscillator, a multivibrator, a timer, etc) as a pulse signal with the frequency of f_{data} . It is important that f_{data} is **not** synchronized to f_{ck4} so that a random data is generated by the system.

D₀ is distributed to and stored in the intermediate register (R_I) as shown in Fig. 2.

Distribution needs to be managed by the CLK1.

CLK1	1 st ↑	2 nd ↑	3 rd ↑	4 th ↑	5 th ↑	•••
\mathbf{A}_1	D_0	NC	NC	NC	D_0	
A_0	NC	D_0	NC	NC	NC	•••
\mathbf{B}_1	NC	NC	D_0	NC	NC	
\mathbf{B}_0	NC	NC	NC	D_0	NC	•••

Note. NC: no change

- You have to come up with a design to realize the distribution of D_0 as described above.
- o System input: CLK1
- o System output: 3-bit data O

• Task details

- o Task 1: Data (D₀) generator
 - Design (simulation) and build a pulse generator for D_0 .
 - You may use a ring oscillator, a multivibrator, a timer, etc. However, you have to design and build a circuit. You must not realize this function just by using a single IC chip. Also, you should not produce this pulse from a microcontroller.
 - $\qquad 10 f_{ck1} < f_{data} < 100 f_{ck1}.$
 - The output should be a proper square wave.
 - Low voltage level: ground
 - High voltage level: 5 V
 - **Report**: 3 March (S), 11:59 PM
 - Max. 3 pages, no template
 - Circuit diagram, explanation, simulation results, etc.
 - Build the circuit physically.
 - **Demonstration**: 8 March (F), Lab hour
- o Task 2: Full adder
 - Select your own full-adder circuit in a CMOS configuration.
 - Use wisely the fact that C₀ is always '1'.
 - Run SPICE simulation.
 - Use the proper device models, which will be used for the circuit implementation.
 - Report (max. 5 pages, no template): 24 March (S), 11:59 PM
 - Circuit diagram, explanation, simulation results, etc.
 - Build the circuit physically.

- **Demonstration**: 29 March (F), Lab hour
 - One bit full-adder is enough for this demonstration.
 - For the other bit, you may build it at the transistor level or at the gate level. However, beware that the carry-in for this adder is not fixed as '1'.
- o Task 3: Generation of signals A and B
 - CLK1: produced by microcontroller
 - Intermediate register (R_I): can be implemented with flip-flops.
 - Design a circuit to distribute D₀ to R_I.
 - D₀ from Task 1 should be used as the data input.
 - Timing diagram (Fig. 2) needs to be plotted on a screen.
 - CLK1, D_0 , **A** and **B**.
 - **Demonstration**: 19 April (F), Lab hour
- o Final task: Entire system
 - Combine all of the components to demonstrate the function of the system.
 - O signal will be collected by a microcontroller, and the distribution of the numbers will be examined.
 - You need to check the distribution of the numbers, and compare it to the theoretical one according to the (uneven) probability. Report this in the final report.
 - **Demonstration**: 26 April (F), Lab hour
 - Final report (max. 10 pages, template given below): 28 April (S), 11:59 PM
- Normally, this project will be carried out as a group of two.
- IMPORTANT. You will have to provide all of the electronic components and breadboards for your own project.
- **IMPORTANT**. No late submission/demonstration will be accepted except for a medical excuse or for a family emergency.

Table I. Tasks, weights, formats and deadlines

Task	Weight	Format	Deadline
Task 1. Data concretor	5%	Report	11:59 PM, 3. 3.
Task 1: Data generator	10%	Demonstration	Lab hour, 8. 3.
Task 2: Full adder	15%	Report	11:59 PM, 24. 3.
Task 2. Full addel	15%	Demonstration	Lab hour, 29. 3.
Task 3: Generation of A and B	20%	Demonstration	Lab hour, 19. 4.
Final task	30%	Demonstration	Lab hour, 26. 4.
Tiliai task	5%	*Report	11:59 PM, 28. 4.

^{*}You must use the following template for the final report:

https://www.ieee.org/content/dam/ieee-org/ieee/web/org/conferences/conference-template-a4.docx