IT 2203 Combinational Logic

Dr. Md. Sazzadur Rahman Professor

Institute of Information Technology Jahangirnagar University, Savar, Dhaka.

Outlines

- Introduction
 - Motivation
 - Review of Boolean Algebra
 - Transformation of Logic Gates
- Specification
- Synthesis

Motivation: Combinational Logic

- Description
 - Language
 - Boolean algebra
 - Truth table
- Schematic Diagram
 - Inputs, Gates, Nets, Outputs
- Goal
 - Validity: correctness, turnaround time
 - Performance: power, timing, cost
 - Testability: yield, diagnosis, robustness

Motivation: Combinational Logic vs. Boolean Algebra Expression

Schematic Diagram:

5 primary inputs, 1 primary output

4 components (gates)

9 signal nets

12 pins

Boolean Algebra:

5 literals

4 operators

Obj: min #terms min #literals

Motivation: iClicker

Schematic Diagram:

5 primary inputs

4 components (gates)

9 signal nets

12 pins

- A. #inputs
- B. #gates
- C. #nets
- D. #pins
- E. None

- I. #operators
- II. #literals + #operators
- III. #literals + 2 #operators

Schematic Diagram vs. Boolean Expression

- Boolean Expression: #literals, #operators
- Schematic Diagram: #gates, #nets, #pins

• One more example?

Some Definitions

- Complement: variable with a bar over it \bar{A} , \bar{B} , \bar{C}
- Literal: variable or its complement $A, \overline{A}, B, \overline{B}, C, \overline{C}$
- Implicant: product of literals *ABC*, *AC*, *BC*
- Minterm: product that includes all input variables ABC, ABC, ABC
- Maxterm: sum that includes all input variables (A+B+C), (A+B+C), (A+B+C)

Digital Discipline: Binary Values

- Typically consider only two discrete values:
 - -1's and 0's
 - 1, TRUE, HIGH
 - -0, FALSE, LOW
- 1 and 0 can be represented by specific voltage levels, rotating gears, fluid levels, etc.
- Digital circuits usually depend on specific voltage levels to represent 1 and 0
- Bit: Binary digit

George Boole, 1815 - 1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland.
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT.

Review of Boolean Algebra

Let B be a nonempty set with two binary operations, a unary operation `, and two distinct elements 0 and 1. Then B is called a Boolean algebra if the following axioms hold.

- •Commutative laws: a+b=b+a, a·b=b·a
- •Distributive laws: $a+(b\cdot c)=(a+b)\cdot (a+c)$, $a\cdot (b+c)=a\cdot b+a\cdot c$
- •Identity laws: a+0=a, a·1=a
- •Complement laws: a+a'=1, a·a'=0

Switching Algebra (A subset of Boolean Algebra)

- Boolean Algebra: Each variable may have multiple values.
- Switching Algebra: Each variable can be either 1 or 0. The constraint simplifies the derivations.

Switching Algebra

- Two Level Logic: Sum of products, or product of sums, e.g. ab + a'c + a'b', (a'+c)(a+b')(a+b+c')
- Multiple Level Logic: Many layers of two level logic with some inverters, e.g. (((a+bc)'+ab')+b'c+c'd)'bc+c'e

Features of Digital Logic Design

- Multiple Outputs
- Don't care sets

Handy Tools:

- DeMorgan's Law: Complements
- Consensus Theorem
- Shannon's Expansion
- Truth Table
- Karnaugh Map (single output, two level logic)

Review of Boolean algebra and switching functions

AND, OR, NOT

AND	A	В	
Y			
	$0 \\ 0$	0	0
	0	1	0
	1	0	0
	1	1	1

OR	A B	
Y		
	0 0	0
	0 1	1
	1 0	1
	1 1	1

NOT	A	Y
	0	1
	1	0

$$A \longrightarrow A$$

$$\begin{array}{c|c} A \\ 1 \end{array}$$

$$A \longrightarrow A$$

0 dominates in AND0 blocks the output1 passes signal A

1 dominates in OR1 blocks the output0 passes signal A

1. Identity
$$A * 1 = A A + 1 = 1$$

 $A * 0 = 0 A + 0 = A$

2. Complement
$$A + A' = 1$$
 $A * A' = 0$

T8. Distributive Law

$$A(B+C) = AB + AC$$

$$B$$

$$C$$

$$A$$

$$C$$

$$A$$

$$C$$

$$A+BC = (A+B)(A+C)$$

$$B$$

$$C$$

$$A$$

$$A$$

$$C$$

$$A$$

$$C$$

T7. Associativity

$$(A+B)+C=A+(B+C)$$

$$C$$

$$A$$

$$B$$

$$C$$

$$(AB)C=A(BC)$$

$$C$$

$$A$$

$$B$$

$$C$$

T12. DeMorgan's Law
$$(A+B)' = A'B'$$
 $(AB)' = A' + B'$

T11. Consensus Theorem AC + AB + BC' = AC + BC'

DeMorgan's Theorem

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$

•
$$Y = \overline{A + B} = \overline{A} \cdot B$$

Bubble Pushing

- Pushing bubbles backward (from the output) or forward (from the inputs) changes the body of the gate from AND to OR or vice versa.
- Pushing a bubble from the output back to the inputs puts bubbles on all gate inputs.

• Pushing bubbles on *all* gate inputs forward toward the output puts a bubble on the output and changes the gate body.

Consensus Theorem

•
$$(A+B)(A+C)(B'+C)$$

= $(A+B)(B'+C)$

Exercise: to prove the reduction using

- (1)Boolean algebra,
- (2)Logic simulation and
- (3) Shannon's expansion

Consensus Theorem: iClicker

Which term in AB'+AC+BC can be deleted?

A.AB'

B.AC

C.BC

D. None of the above

Shannon's Expansion

- Shannon's expansion assumes a switching algebra system
- Divide a switching function into smaller functions
- Pick a variable x, partition the switching function into two cases: x=0 and x=1
 - f(x) = xf(1) + x'f(0)
 - f(x,y) = xf(1,y) + x'f(0,y)
 - f(x,y,z,...)=xf(1,y,z,...)+x'f(0,y,z,...)

Shannon's Expansion: iClicker

$$f(x,y,z)=xf(?,y,z)+x'f(?,y,z)$$

A. ?=0

B. ?=1.

$$f(x,y)=(x+f(?,y))(x'+f(?,y))$$

- A. ?=0
- B. ?=1.

Shannon's Expansion

Decompose the Switching function into minterms

$$f(x,y) = xf(1,y) + x'f(0,y)$$

= $x(yf(1,1) + y'(1,0)) + x'(yf(0,1) + y'f(0,0))$
= $xyf(1,1) + xy'f(0,1) + x'yf(1,0) + x'y'f(0,0)$

Likewise, we can decompose the function into maxterms

$$f(x,y) = (x + f(0,y))(x' + f(1,y))$$

$$= (x + (y + f(0,0))(y' + f(0,1)))(x' + (y + f(1,0))(y' + f(1,1)))$$

$$= (x + y + f(0,0))(x + y' + f(0,1))(x' + y + f(1,0)(x' + y' + f(1,1)))$$

Switching Algebra

- Shannon's expansion and consensus theorem are used for logic optimization
- Shannon's expansion divides the problem into smaller functions
- Consensus theorem finds common terms when we merge small functions
- Karnaugh map mimics the above two operations in two dimensional space as visual aids.

Part I. Combinational Logic

- I) Specification
 - a. Language
 - b. Truth Table
 - c. Boolean Algebra

Canonical Expression: Sum of minterms and Product of maxterms

d. Incompletely Specified Function

Binary Addition

Binary Addition: Hardware

• Half Adder: Two inputs (a,b) and two outputs (carry, sum).

• Full Adder: Three inputs (a,b,c) and two outputs (carry, sum).

Half Adder

Truth Table

a b	carry	sum
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

Switching Function

Switching Expressions:

Sum
$$(a,b) = a \cdot b + a \cdot b \cdot$$

Carry $(a, b) = a \cdot b$

Ex:

Sum
$$(0,0) = 0 \cdot 0 + 0 \cdot 0' = 0 + 0 = 0$$

Sum $(0,1) = 0 \cdot 1 + 0 \cdot 1' = 1 + 0 = 1$
Sum $(1,1) = 1 \cdot 1 + 1 \cdot 1' = 0 + 0 = 0$

Full Adder

Truth Table

Id	a	b	c _{in}	carry	sum
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	0	1
3	0	1	1	1	0
4	1	0	0	0	1
5	1	0	1	1	0
6	1	1	0	1	0
7	1	1	1	1	1

Minterm and Maxterm

Id	ล	b	C	carryo	nt	
<u> </u>	u		C _{in}	carryo		
0	0	0	0	0	a+b+c	c
1	0	0	1	0	a+b+c	c'
2	0	1	0	0	a+b'+	-c
3	0	1	1	1	a'bc	
4	1	0	0	0	a'+b+	-c
5	1	0	1	1	a b'c	*
6	1	1	0	1	abc'	
7	1	1	1	1	a b c	maxterm
					†	
			mii	nterm		

Minterms

$$f_1(a,b,c) = a'bc + ab'c + abc' + abc$$

$$a'bc = 1 \text{ iff } (a,b,c,) = (0,1,1)$$

$$ab'c = 1 \text{ iff } (a,b,c,) = (1,0,1)$$

$$abc' = 1 \text{ iff } (a,b,c,) = (1,1,0)$$

$$abc = 1 \text{ iff } (a,b,c,) = (1,1,1)$$

$$f_1(a,b,c) = 1 \text{ iff } (a,b,c) = (0,1,1), (1,0,1), (1,1,0), \text{ or } (1,1,1)$$

$$\text{Ex:} \quad f_1(1,0,1) = 1'01 + 10'1 + 101' + 101 = 1$$

$$f_1(1,0,0) = 1'00 + 10'0 + 100' + 100 = 0$$

Maxterms

$$f_2(a,b,c) = (a+b+c)(a+b+c')(a+b'+c)(a'+b+c)$$

$$a+b+c = 0 \text{ iff } (a,b,c,) = (0,0,0)$$

$$a+b+c' = 0 \text{ iff } (a,b,c,) = (0,0,1)$$

$$a+b'+c = 0 \text{ iff } (a,b,c,) = (0,1,0)$$

$$a'+b+c = 0 \text{ iff } (a,b,c,) = (1,0,0)$$

$$f_2(a,b,c) = 0 \text{ iff } (a,b,c) = (0,0,0), (0,0,1), (0,1,0), (1,0,0)$$

$$Ex: \quad f_2(1,0,1) = (1+0+1)(1+0+1')(1+0'+1)(1'+0+1) = 1$$

$$f_2(0,1,0) = (0+1+0)(0+1+0')(0+1'+0)(0'+1+0) = 0$$

$$f_1(a,b,c) = a'bc + ab'c + abc' + abc$$

$$f_2(a,b,c) = (a+b+c)(a+b+c')(a+b'+c)(a'+b+c)$$

$$f_1(a,b,c) = m_3 + m_5 + m_6 + m_7 = \sum m(3,5,6,7)$$

$$f_2(a,b,c) = M_0 M_1 M_2 M_4 = \prod M(0,1,2,4)$$

iClicker: Does $f_1 = f_2$?

A.Yes

B.No.

The coverage of a single minterm. E.g. $m_4 = ab'c'$

	İ			1	
Id	a	b	C _{in}	carry	$\frac{\text{minterm }_{4}}{\text{ab'c'}}$
0	0	0	0	0	0
1	0	0	1	0	0
2	0	1	0	0	0
3	0	1	1	1	0
4	1	0	0	0	1
5	1	0	1	1	0
6	1	1	0	1	0
7	1	1	1	1	0

Only one row has a 1.

The coverage of a single maxterm. E.g. $M_4 = a' + b + c$

i	l			1	
Id	a	b	c_{in}	carry	$maxterm_{4} = a+b+c$
0	0	0	0	0	1
1	0	0	1	0	1
2	0	1	0	0	1
3	0	1	1	1	1
4	1	0	0	0	0
5	1	0	1	1	1
6	1	1	0	1	1
7	1	1	1	1	1

Only one row has a 0.

Incompletely Specified Function

Don't care set is important because it allows us to minimize the function

Id	a	b	f (a, b)
0	0	0	1
1	0	1	0
2	1	0	1
3	1	1	_

- 1) The input does not happen.
- 2) The input happens, but the output is ignored.

Examples:

- -Decimal number 0... 9 uses 4 bits. (1,1,1,1) does not happen.
- -Final carry out bit (output is ignored).

Incompletely Specified Function

Id	a b c	g(a,b,c)	$g_1(a,b,c)=a'b'c+a'bc+ab'b'+abc$
0	0 0 0	0	$= m_1 + m_3 + m_4 + m_7$ = $\sum m(1,3,4,7)$
1	0 0 1	1	<u></u>
2	0 1 0	-	a (a b a) - (a + b + a)(a' + b' + a)
3	0 1 1	1	$g_2(a,b,c)=(a+b+c)(a'+b'+c)$
4	1 0 0	1	$= \mathbf{M}_0 \mathbf{M}_6$
5	1 0 1	_	$=\prod M(0,6)$
6	1 1 0	0	
7	1 1 1	1	iClicker: Does $g_1(a,b,c) = g_2(a,b,c)$?
			A.Yes
			B. No