On the Maximum F_5 -free Subhypergraphs of $G^3(n,p)$

Haoran Luo

March 25, 2022

Joint work with Igor Araujo and József Balogh

Recently there has been a trend in Combinatorics to prove that certain known theorems are still valid in the *random sparse* setting.

- Sparse counting lemma
- Szemerédi's theorem \rightarrow Green-Tao theorem

Theorem (Mantel)

Every maximum triangle-free subgraph of K_n is bipartite.

Theorem (DeMarco, Kahn (2014))

There is a C such that if $p > Cn^{-1/2} \ln^{1/2} n$, with high probability every maximum triangle-free subgraph of G(n, p) is bipartite.

The hypergraph F_5 .

Theorem (Frankl and Fűredi (1983), Keevash and Mubayi (2004))

For large enough n, every maximum F_5 -free subhypergraph of K_n^3 is tripartite.

Theorem (Frankl and Fűredi (1983), Keevash and Mubayi (2004))

For large enough n, every maximum F_5 -free subhypergraph of $K_n^{(3)}$ is tripartite.

Theorem (Balogh, Butterfield, Hu, and Lenz (2015))

There is a K such that if $p > K \ln n/n$, with high probability every maximum F_5 -free subhypergraph of $G^3(n,p)$ is tripartite.

Not a thres

Theorem (Araujo, Balogh, and L. (2022))

There is a K such that if $p > K\sqrt{\ln n}/n$, with high probability every maximum F_5 -free subhypergraph of $G^3(n,p)$ is tripartite.

First, let look at the deterministic case(p = 1).

Stability theorem + cleaning

Theorem (Keevash and Mubayi (2004))

For any $\varepsilon > 0$, there exists $\delta > 0$ such that if H is an n-vertex F_5 -free hypergraph with at least $(1 - \delta) \frac{n^3}{27}$ hyperedges, then there is a partition of the vertex set of H as $V(H) = V_1 \cup V_2 \cup V_3$ such that all but at most εn^3 hyperedges of H have exactly one vertex in each V_i .

Cleaning

What if p < 1?

- Concentration
- Stability theorem + cleaning

Concentration

Lemma (Chernoff bound)

Let Y be the sum of mutually independent indicator random variables, and let $\mu = \mathbb{E}[Y]$. For every $\varepsilon > 0$, we have

$$\mathbb{P}[|Y-\mu|>\varepsilon\mu]<2e^{-c_{\varepsilon}\mu},$$

where
$$c_{\varepsilon} = \min \left\{ -\ln \left(e^{\varepsilon} (1+\varepsilon)^{-(1+\varepsilon)} \right), \, \varepsilon^2/2 \right\}$$
.

For example, the degree of every vertex is about $n^2p/2$.

Stability

Theorem (Keevash and Mubayi (2004))

For any $\varepsilon > 0$, there exists $\delta > 0$ such that if H is an n-vertex F_5 -free hypergraph with at least $(1 - \delta) \frac{n^3}{27}$ hyperedges, then there is a partition of the vertex set of H as $V(H) = V_1 \cup V_2 \cup V_3$ such that all but at most εn^3 hyperedges of H have exactly one vertex in each V_i .

Theorem (Samotij (2014))

For any $\varepsilon > 0$, there exists $\delta > 0$ and C > 0 such that if p > C/n and H is an n-vertex F_5 -free subhypergraph of $G^3(n,p)$ with at least $(1-\delta)\frac{n^3}{27}p$ hyperedges, then there is a partition of the vertex set of H as $V(H) = V_1 \cup V_2 \cup V_3$ such that all but at most $\varepsilon n^3 p$ hyperedges of H have exactly one vertex in each V_i .

Cleaning

Everything seems to be good... until p is K/\sqrt{n} .

Let H be a maximum F_5 -free subhypergraph of $G^3(n,p)$. Let partition π be the 3-partition maximizing $|H_{\pi}|$.

$$p > \frac{K}{\sqrt{n}} \rightarrow p > \frac{K \ln n}{n}$$

- 3ⁿ is not necessary. We do NOT need to know exactly which part every vertex belongs to.
- We only need to know about the number of hyperedges between them.

$$p > \frac{K \ln n}{n} \rightarrow p > \frac{K \sqrt{\ln n}}{n}$$

• The codegree of pairs of vertices.

Lemma

There exists a constant K such that if $p > K \ln n/n$, then with high probability the codegree of any pair of vertices in $G^3(n, p)$ is at most 3pn.

Lemma

There exists a constant K such that if $p > K\sqrt{\ln n}/n$, then with high probability

- the codegree of any pair of vertices in $G^3(n, p)$ is at most $pn\sqrt{\ln n}/\ln \ln n$, and
- the number of pairs of vertices with codegree more than 3pn in $G^3(n,p)$ is at most $n^2e^{-\sqrt{\ln n}}$.

Lemma

There exists a constant K such that if $p > K\sqrt{\ln n/n}$, then with high probability

- the codegree of any pair of vertices in $G^3(n, p)$ is at most $pn\sqrt{\ln n}/\ln \ln n$, and
- the number of pairs of vertices with codegree more than 3pn in $G^3(n,p)$ is at most $n^2e^{-\sqrt{\ln n}}$.

$$\mathbb{P}[|Y-\mu|>\varepsilon\mu]<2e^{-c_{\varepsilon}\mu}$$

Conlon, D.; Gowers, W. T. Combinatorial theorems in sparse random sets. *Ann. of Math. (2)* **184** (2016), no. 2, 367--454. MR3548529

Schacht, Mathias. Extremal results for random discrete structures. Ann. of Math. (2) 184 (2016), no. 2, 333--365. MR3548528

Theorem (Samotij (2014))

For any $\varepsilon > 0$, there exists $\delta > 0$ and C > 0 such that if p > C/n and H is an n-vertex F_5 -free subhypergraph of $G^3(n,p)$ with at least $(1-\delta)\frac{n^3}{27}p$ hyperedges, then there is a partition of the vertex set of H as $V(H) = V_1 \cup V_2 \cup V_3$ such that all but at most $\varepsilon n^3 p$ hyperedges of H have exactly one vertex in each V_i .

Samotij, Wojciech. Stability results for random discrete structures. *Random Structures Algorithms* **44** (2014), no. 3, 269--289.

$$m_{\ell}(H) = \max \left\{ \frac{e(K) - 1}{v(K) - \ell} \colon K \subseteq H \text{ with } v(K) \ge \ell + 1 \right\}.$$

Thank you!