Theory of Computation: Time Hierarchy

Efficiency of UTM

- So far, if we had to simulate a deterministic TM on an input as part of a subroutine of an algorithm, we used a Universal Turing Machine (UTM) for it.
- If we are looking at efficiency of algorithms, the running time of the UTM is also important – it adds to the total running time of the algorithm.
- Theorem: There is a UTM that for every M#x, where the running time of M is denoted by function $T: \mathbb{N} \to \mathbb{N}$, writes down M(x) on its tape in the end in $CT(|x|)\log(T(|x|))$ time. C is a constant that only depends on the alphabet size, number of tapes and number of states of M.

Relaxed version

To give an idea of the Proof, we give a proof for a relaxed version where the UTM \mathcal{U} runs in $T(n)^2$ time if M(x) is computed in T(n) time:

- The input to \mathcal{U} is an encoding of TM M and the input x.
- Transformation of M: Single work tape
 M only has alphabets {⊢, B, 0, 1} encoding of larger
 alphabets using {0, 1}
 These transformations may make M run in T² time instead of
 T on a given input.
- The UTM U has alphabets {⊢, B, 0, 1} and 3 work tapes.
 One work tape is used in the same way as M (also the input and output tapes)
 One tape is used to store M's transition function
 One tape stores M's current state.

Relaxed version contd.

- One computational step: *U* scans the *M*'s transition function and current state to find out the new state, symbols to be written and tape head movements. Then it executes this. This is done in time *C* - only dependent on size of the transition function.
- Total time for outputting M(x) on the output tape of \mathcal{U} : $CT(|x|)^2$.
- For $CT(n)\log(T(n))$ running time, we need to design the UTM more carefully.

Efficiency of NUTM

- Nondeterministic UTMs can also be designed: An NDTM taking in encodings of NDTMs to be simulated as subroutines.
- Theorem: There is a NUTM that for every M#x, where the running time of M is denoted by function T: N→N, writes down M(x) on its tape in the end in CT(|x|) time.
 C is a constant that only depends on the alphabet size, number of tapes and number of states of M.

Time constructible functions

- Time constructible function: A function $T: \mathbb{N} \to \mathbb{N}$ such that $T(n) \geq n$ and there is a deterministic TM M that on an input x of size n runs in time T(n) and computes the function $f: \mathbb{N} \to \{0,1\}^*$ with f(x) = bin(T(|x|)).
- Examples: $n, n \log n, n^2, 2^n$.
- All functions we see in this course are time constructible.
 Especially when we are looking at functions that act as time bounds for Turing machines.
- $T(n) \ge n$ implies that an algorithm running in time T(n) has time to read the input.

Time Hierarchy Theorem

Theorem: If f, g are time constructible functions satisfying $f(n) \log f(n) = o(g(n))$, then $DTIME(f(n)) \subsetneq DTIME(g(n))$

- Proof uses a form of diagonalization.
- We will show that $DTIME(n) \subseteq DTIME(n^{1.5})$ and all other pairs of functions will have similar proofs.
- Diagonalization TM M: On input x, run UTM \mathcal{U} for $|x|^{1.4}$ steps to simulate the execution of M_x on x. If \mathcal{U} outputs bit $b \in \{0,1\}$ then output 1-b. Else, output 0.
- M halts in $n^{1.4}$ steps and language L = L(M) is in $DTIME(n^{1.5})$.

Time Hierarchy Theorem

• $L \notin DTIME(n)$: Suppose there is some TM N and constant c such that N on any input x halts within c|x| steps and outputs M(x).

N#x can be simulated in \mathcal{U} in time $c'c|x|\log|x|$, where c' only depends on description of N.

There is an n_0 such that $\forall n \geq n_0$, $n^{1.4} > c'c|x|\log|x|$.

Let x be a string representing N such that $|x| \ge n_0$ (infinitely many strings represent N)

M will obtain output b = N(x) in $|x|^{1.4}$ steps, but by definition $M(x) = 1 - b \neq N(x)$ ($\rightarrow \leftarrow$).

Theorem: if f, g are time constructible functions satisfying f(n+1) = o(g(n)), then $NTIME(f(n)) \subsetneq NTIME(g(n))$

- Use of NUTM here.
- In Time Hierarchy Theorem, we crucially use the fact that a DTM can compute the opposite answer: If it is running a subroutine M, then on computing M(x) it can flip the answer.
- In case of an NTM, that is not clear. Because these machines verify, they do not compute.
 If some branches compute "accept" and others compute "reject", then what would be a flipped answer?
 If allowed exponential time, then they can compute all possible certificates and solve the problem, but within an increase of time bound by a polynomial factor, it may not be possible.

Lazy Diagonalisation

Lazy diagonalization: Here, the machine executing the diagonalization will not try to flip the answer of a subroutine TM on every input, but on a crucial input. This will be enough to get the contradiction we are aiming for using diagonalization.

- Just show $NTIME(n) \subseteq NTIME(n^{1.5})$. All other pairs will have similar arguments.
- Define $h: \mathbb{N} \to \mathbb{N}$ such that h(1) = 2, $h(i+1) = 2^{h(i)^{1.2}}$.
- Given n, find in $n^{1.5}$ time i such that $h(i) < n \le h(i+1)$.
- Diagonalisation machine M: try to flip answer of M_i on some input in set $\{1^n | h(i) < n \le h(i+1)\}$.
- Machine M: On input x, if x ∉ 1* then reject.

 If x = 1ⁿ, then compute i such that h(i) < n ≤ h(i + 1).

 1. If h(i) < n < h(i + 1), then simulate M_i on 1ⁿ⁺¹ using nondeterminism in n^{1.1} time and output the answer. (If M_i does not halt in this time, then halt and accept.)

 2. If n = h(i + 1), accept 1ⁿ iff M_i rejects 1^{h(i)+1} in (h(i) + 1)^{1.1} time.

- Point 2: All possible $2^{(h(i)+1)^{1.1}}$ branches of M_i on input $1^{h(i)+1}$ have to be computed. input size is $h(i+1) = 2^{h(i)^{1.2}}$.
- M runs in $O(n^{1.5})$ time.
- L = L(M).

- Claim: $L \notin NTIME(n)$.
- Suppose there is an NDTM N running in cn steps for L.
- Pick an *i* large enough such that $N = M_i$ and on inputs of length $n \ge h(i)$, M_i can be simulated in less than $n^{1.1}$ steps.
- Target: Try to flip the answer of N with M on an input in $\{1^n|h(i) < n \le h(i+1)\}.$

- Description of M ensures: If h(i) < n < h(i+1), then $M(1^n) = M_i(1^{n+1})$ (which is same as $M(1^{n+1})$) Otherwise, $M(1^{h(i+1)}) \neq M_i(1^{h(i)+1})$.
- M_i and M agree on all inputs 1^n for $n \ge h(i)$, and in particular in the interval (h(i), h(i+1)]By definition: $M(1^{h(i)+1}) = M_i(1^{h(i)+2}) = M(1^{h(i)+2})$ $= M_i(1^{h(i)+3}) = M(1^{h(i)+3}) \dots$ $= M_i(1^{h(i+1)}) = M(1^{h(i+1)}) (\rightarrow \leftarrow).$
- Thus, there is a string in $\{1^n | h(i) < n \le h(i+1)\}$ on which M and M_i do not agree.