The XSB System Version 3.3

Volume 2: Libraries, Interfaces and Packages

February 25, 2012

Credits

Interfaces have become an increasingly important part of XSB. The interface from C to Prolog was implemented by David Warren as was the DLL interface; the interface from Prolog to C (foreign language interface) was developed by Jiyang Xu, Kostis Sagonas and Steve Dawson. The Oracle interface was written by Hassan Davulcu and Ernie Johnson. The ODBC took as its starting point the Oracle interface, and was written by Lily Dong and Baoqiu Cui, and maintained by David Warren. The interface to POSIX regular expression and wildcard matching as well as the Libwww-based Web access package was written by Michael Kifer. The interface to Perl pattern matching routines was written by Michael Kifer and Jin Yu. The SModels interface was written by Luis F. Castro.

The SLX preprocessor was written by José Júlio Alferes and Luís Moniz Pereira. Unixstyle scripting libraries were written by Terrance Swift, and the ordset library was written by Richard O'Keefe.

Contents

1	Libr	ibrary Utilities			
	1.1	List Processing	1		
		1.1.1 Processing Comma Lists	3		
	1.2	Attributed Variables	3		
		1.2.1 Lowlevel Interface	4		
	1.3	constraintLib: a library for CLP	7		
	1.4	Formatted Output	9		
	1.5	String Manipulation	11		
	1.6	Script Writing Utilities	12		
		1.6.1 Communication with Subprocesses	14		
	1.7	Socket I/O	21		
	1.8	Arrays	26		
	1.9	The Profiling Library	27		
	1.10	Gensym	29		
	1.11	Random Number Generator	29		
	1.12	Loading Separated Files	30		
	1.13	Scanning in Prolog	31		
	1.14	XSB Lint	32		
	1.15	Miscellaneous Predicates	34		
	1.16	Other Libraries	35		
		1.16.1 Justification	35		
		1.16.2 AVL Trees	35		
		1.16.3 Ordered Sets: ordsets.P	35		
		1.16.4 Unweighted Graphs: ugraphs P	35		

CONTENTS ii

		1.16.5 Heaps: heaps.P	36
2	For	eign Language Interface	37
	2.1	Foreign Language Modules	37
	2.2	Lower-Level Foreign Language Interface	39
		2.2.1 Context Parameters	42
		2.2.2 Exchanging Basic Data Types	43
		2.2.3 Exchanging Complex Data Types	44
	2.3	Foreign Modules That Call XSB Predicates	53
	2.4	Foreign Modules That Link Dynamically with Other Libraries	53
	2.5	Higher-Level Foreign Language Interface	54
		2.5.1 Declaration of high level foreign predicates	55
	2.6	Compiling Foreign Modules on Windows and under Cygwin	56
	2.7	Functions for Use in Foreign Code	58
3	Em	bedding XSB in a Process	61
	3.1	Calling XSB from C	62
	3.2	Examples of Calling XSB	63
		3.2.1 The XSB API for the Sequential Engine Only	63
		3.2.2 The General XSB API	67
		3.2.3 Managing Multiple XSB Threads through the API	69
		3.2.4 Calling Multiple XSB Threads using Multiple C Threads	69
	3.3	A C API for XSB	71
		3.3.1 Initializing and Closing XSB	71
		3.3.2 Passing Commands to XSB	74
		3.3.3 Querying XSB	74
		3.3.4 Obtaining Information about Errors	79
		3.3.5 Thread Management from Calling Programs	79
	3.4	The Variable-length String Data Type	80
	3.5	Passing Data into an XSB Module	81
	3.6	Creating an XSB Module that Can be Called from C	82
4	XSI	B-ODBC Interface	84

CONTENTS iii

	4.1	Introduction	. 84
	4.2	Using the Interface	. 85
		4.2.1 Connecting to and Disconnecting from Data Sources	. 85
		4.2.2 Accessing Tables in Data Sources Using SQL	. 86
		4.2.3 Cursor Management	. 88
		4.2.4 Accessing Tables in Data Sources through the Relation Level	. 88
		4.2.5 Using the Relation Level Interface	. 89
		4.2.6 Handling NULL values	90
		4.2.7 The View Level Interface	. 92
		4.2.8 Insertions and Deletions of Rows through the Relational Level	. 94
		4.2.9 Access to Data Dictionaries	. 96
		4.2.10 Other Database Operations	. 96
		4.2.11 Transaction Management	. 97
		4.2.12 Interface Flags	. 97
		4.2.13 Datalog	. 98
	4.3	Error messages	99
	4.4	Notes on specific ODBC drivers	. 99
5	The	e New XSB-Database Interface	100
	5.1	Introduction	100
	5.2	Configuring the Interface	100
	5.3	Using the Interface	103
		5.3.1 Connecting to and Disconnecting from Databases	103
		5.3.2 Querying Databases	. 104
	5.4	Error Handling	105
	5.5	Notes on specific drivers	. 107
6	Intr	roduction to XSB Packages	109
7	Wil	ldcard Matching	110
8	pcr	e: Pattern Matching and Substitution Using PCRE	112
	8.1	Introduction	112
	8.2	Pattern matching	112

CONTENTS iv

8.3	String	Substitution	13
8.4	Installa	tion and configuration	14
	8.4.1	Configuring for Linux, Mac, and other Unices	14
	8.4.2	Configuring for Windows	14
curl	: The 1	XSB Internet Access Package 1	16
9.1	Introdu	uction	16
9.2	Integra	tion with File I/O	16
	9.2.1	Opening a Web Document	17
	9.2.2	Closing a Web Document	17
9.3	Low Le	evel Predicates	18
	9.3.1	Loading web documents	18
	9.3.2	Retrieve the properties of a web document	18
	9.3.3	Encode Url	18
	9.3.4	Obtaining the Redirection URL	19
9.4	Installa	tion and configuration	19
søm	l and v	nath: SGML/XML/HTML Parsers and XPath	20
8			
10.1		-	
	Introdu	ction	20
10.2	Introdu	ew of the SGML Parser	20 21
10.2	Introdu Overvie Predica	ew of the SGML Parser	20 21 22
10.2	Introdu Overvie Predica 10.3.1	ew of the SGML Parser	20 21 22 22
10.2	Overvie Predica 10.3.1 10.3.2	tetion	20 21 22 22 25
10.2	Overvioral Predicts 10.3.1 10.3.2 10.3.3	tetion	20 21 22 22 22 25 25
10.2	Overvio Predica 10.3.1 10.3.2 10.3.3 10.3.4	tetion	20 21 22 22 25 25 26
10.2	Overvio Predica 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5	tetion	20 21 22 22 25 25 26 27
10.2	Overvio Predica 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6	tetion	20 21 22 22 25 25 26 27 30
10.2	Overvio Predica 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7	extriction	20 21 22 22 25 25 26 27 30
10.2	Introdu Overvid Predica 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7 10.3.8	exterior	20 21 22 22 25 25 26 27 30 31
10.2	Introdu Overvice Predica 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7 10.3.8 10.3.9	extriction	20 21 22 22 25 25 26 27 30 31 32
	curl 9.1 9.2 9.3	8.4.1 8.4.2 curl: The 19.1 Introduced in 19.2 Integrated 9.2.1 9.2.2 9.3 Low Lee 9.3.1 9.3.2 9.3.3 9.3.4 9.4 Installation	8.4.1 Configuring for Linux, Mac, and other Unices 1 8.4.2 Configuring for Windows 1 curl: The XSB Internet Access Package 1 9.1 Introduction 1 9.2 Integration with File I/O 1 9.2.1 Opening a Web Document 1 9.2.2 Closing a Web Document 1 9.3 Low Level Predicates 1 9.3.1 Loading web documents 1 9.3.2 Retrieve the properties of a web document 1 9.3.3 Encode Url 1 9.3.4 Obtaining the Redirection URL 1 9.4 Installation and configuration 1

CONTENTS v

11.1	Introduction	135
11.2	High-level API	135
	11.2.1 RDF Object representation	136
	11.2.2 Name spaces	137
	11.2.3 Low-level access	137
11.3	Testing the RDF translator	138
12 Con	straint Packages 1	L 39
12.1	clpr: The CPL(R) package	139
	12.1.1 The CLP(R) API	140
12.2	The bounds Package	145
	12.2.1 The bounds API	147
13 Con	straint Handling Rules 1	L 50
13.1	Introduction	150
13.2	Syntax and Semantics	150
	13.2.1 Syntax	150
	13.2.2 Semantics	151
13.3	CHR in XSB Programs	153
	13.3.1 Embedding in XSB Programs	153
	13.3.2 Compilation	153
13.4	Useful Predicates	154
13.5	Examples	154
13.6	CHR and Tabling	155
	13.6.1 General Issues and Principles	155
	13.6.2 Call Abstraction	156
	13.6.3 Answer Projection	156
	13.6.4 Answer Combination	158
	13.6.5 Overview of Tabling-related Predicates	160
13.7	Guidelines	160
13.8	CHRd	160
14 XAS	SP: Answer Set Programming with XSB and Smodels 1	L 62

CONTENTS vi

14.1	Installing the Interface	63
	14.1.1 Installing the Interface under Unix	63
	14.1.2 Installing XASP under Windows using Cygwin	64
14.2	The Smodels Interface	66
	14.2.1 Using the Smodels Interface with Multiple Threads	69
14.3	The xnmr_int Interface	69
15 PI	TA: Probabilistic Inference with Tabling and Answer subsumption 17	72
	15.0.1 Installation	72
	15.0.2 Use	74
16 Oth	ner XSB Packages	76
16.1	Programming with FLORA-21	76
16.2	Summary of xmc: Model-checking with XSB	78
16.3	slx: Extended Logic Programs under the Well-Founded Semantics	79
16.4	gapza: Generalized Annotated Programs	31

Chapter 1

Library Utilities

In this chapter we introduce libraries of some useful predicates that are supplied with XSB. Interfaces and more elaborate packages are documented in later chapters. These predicates are available only when imported them from (or explicitly consult) the corresponding modules.

1.1 List Processing

The XSB library contains various list utilities, some of which are listed below. These predicates should be explicitly imported from the module specified after the skeletal specification of each predicate. There are a lot more useful list processing predicates in various modules of the XSB system, and the interested user can find them by looking at the sources.

append(?List1, ?List2, ?List3)

module: basics

Succeeds if list List3 is the concatenation of lists List1 and List2.

member(?Element, ?List)

module: basics

Checks whether Element unifies with any element of list List, succeeding more than once if there are multiple such elements.

memberchk(?Element, ?List)

module: basics

Similar to member/2, except that memberchk/2 is deterministic, i.e. does not succeed more than once for any call.

ith(?Index, ?List, ?Element)

module: basics

Succeeds if the Indexth element of the list List unifies with Element. Fails if Index is not a positive integer or greater than the length of List. Either Index and List, or List and Element, should be instantiated (but not necessarily ground) at the time of the call.

delete_ith(+Index, +List, ?Element, ?RestList)

module: listutil

Succeeds if the Indexth element of the list List unifies with Element, and RestList is List with Element removed. Fails if Index is not a positive integer or greater than the length of List.

log_ith(?Index, ?Tree, ?Element)

Succeeds if the Indexth element of the Tree Tree unifies with Element. Fails if Index is not a positive integer or greater than the number of elements that can be in Tree. Either Index and Tree, or Tree and Element, should be instantiated (but not necessarily ground) at the time of the call. Tree is a list of full binary trees, the first being of depth 0, and each one being of depth one greater than its predecessor. So log_ith/3 is very similar to ith/3 except it uses a tree instead of a list to obtain log-time access to its elements.

log ith bound(?Index, ?Tree, ?Element)

module: basics

module: basics

is like $log_ith/3$, but only if the $Index^{th}$ element of Tree is non-variable and equal to Element. This predicate can be used in both directions, and is most useful with Index unbound, since it will then bind Index and Element for each non-variable element in Tree (in time proportional to N * log N, for N the number of non-variable entries in Tree.)

length(?List, ?Length)

module: basics

Succeeds if the length of the list List is Length. This predicate is deterministic if List is instantiated to a list of definite length, but is nondeterministic if List is a variable or has a variable tail. If List is uninstantiated, it is unified with a list of length Length that contains variables.

same_length(?List1, ?List2)

module: basics

Succeeds if list List1 and List2 are both lists of the same number of elements. No relation between the types or values of their elements is implied. This predicate may be used to generate either list (containing variables as elements) given the other, or to generate two lists of the same length, in which case the arguments will be bound to lists of length $0, 1, 2, \ldots$

select(?Element, ?L1, ?L2)

module: basics

List2 derives from List1 by selecting (removing) an Element non-deterministically.

reverse(+List, ?ReversedList)

module: basics

Succeeds if ReversedList is the reverse of list List. If List is not a proper list, reverse/2 can succeed arbitrarily many times. It works only one way.

perm(+List, ?Perm)

module: basics

Succeeds when List and Perm are permutations of each other. The main use of perm/2 is to generate permutations of a given list. List must be a proper list. Perm may be partly instantiated.

subseq(?Sequence, ?SubSequence, ?Complement)

module: basics

Succeeds when SubSequence and Complement are both subsequences of the list Sequence (the order of corresponding elements being preserved) and every element of Sequence which is not in SubSequence is in the Complement and vice versa. That is,

length(Sequence) = length(SubSequence) + length(Complement)

for example, subseq([1,2,3,4], [1,3], [2,4]). The main use of subseq/3 is to generate subsets and their complements together, but can also be used to interleave two lists in all possible ways.

module: listutil

listutil

merge(+List1, +List2, ?List3)

Succeeds if List3 is the list resulting from "merging" lists List1 and List2, i.e. the elements of List1 together with any element of List2 not occurring in List1. If List1 or List2 contain duplicates, List3 may also contain duplicates.

absmerge(+List1, +List2, ?List3)

module: listutil Predicate absmerge/3 is similar to merge/3, except that it uses predicate absmember/2 described below rather than member/2.

absmember(+Element, +List)

Similar to member /2, except that it checks for identity (through the use of predicate '=='/2) rather than unifiability (through '='/2) of Element with elements of List.

member2(?Element, ?List)

Checks whether Element unifies with any of the actual elements of List. The only difference between this predicate and predicate member/2 is on lists having a variable tail, e.g. [a, b, c | _]: while member/2 would insert Element at the end of such a list if it did not find it, Predicate member 2/2 only checks for membership but does not insert the Element into the list if it is not there.

closetail(?List)

module: listutil

module: listutil

module:

Predicate closetail/1 closes the tail of an open-ended list. It succeeds only once.

Processing Comma Lists 1.1.1

It is often useful to process comma lists when meta-interpreting or preprocessing. XSB libraries include the following simple utilities.

comma_to_list(+CommaList,-List)

module: basics

Transforms CommaList to List.

comma_append(?CL1,?CL2,?CL3)

basics

comma length(?CommaList,?Length)

basics

comma_member(?Element,?CommaList)

basics

comma member(?Element,?CommaList)

module: basics

Analogues for comma lists of append/3, length/3, member/2 and memberchk/2, respectively.

Attributed Variables 1.2

Attributed variables are a special data type that associates variables with arbitrary attributes as well as supports extensible unification. Attributed variables have proven to be a flexible and powerful mechanism to extend a classic logic programming system with the ability of constraint solving. Our low-level API for constraints closely resembles that of hProlog [8] and SWI [31].

1.2.1 Lowlevel Interface

Attributes of variables are pairs of attribute module names and values. An attribute module name can be any atom. A value can be any XSB value (term, variable, atom, ...). Any variable has at most one attribute for a particular attribute module. Attribute modules are distinct from XSB modules: although it is most efficient to keep each handlers for each attribute module in their own XSB module. c Attributes can be manipulated with the following three predicates (get_attr/3, put_attr/3 and del_attr/2) defined in the module machine.

get_attr(-Var,+Mod, ?Val)

module: machine

Gets the value of the attribute of Var in attribute module Mod. Non-variable terms in Var cause a type error. Val will be unified with the value of the attribute, if it exists. Otherwise the predicate fails.

put attr(-Var,+Mod, ?Val)

module: machine

Sets the value of the attribute of Var in attribute module Mod. Non-variable terms in Var cause a type error. The previous value of the attribute is overwritten, if it exists.

del_attr(-Var, +Mod)

module: machine

Removes the attribute of Var in attribute module Mod. Non-variable terms in Var cause a type error. The previous value of the attribute is removed, if it exists.

One has to extend the default unification algorithm for used attributes by installing a handler in the following way:

```
:- install_verify_attribute_handler(+Mod, -AttrValue, -Target, +Handler, +WarningFlag):- install_verify_attribute_handler(+Mod, -AttrValue, -Target, +Handler)
```

The predicates install_verify_attribute_handler/5 and install_verify_attribute_handler/4 are defined in module machine. Mod is the attribute Module and Handler is a term with arguments AttrValue and Target. The Handler term has to correspond to a handler predicate that takes the value of the attribute (AttrValue) and the term that the attributed value is bound to (Target) as arguments. The argument WarningFlag in the 5-argument version of the predicate can be used to suppress the warning issued when replacing the <code>verify_attribute_handler</code> for a module. If the argument is <code>warning_on</code> then the warning is issued if a handler for the module already exists. Otherwise, the warning is suppressed. The 4-argument version of the predicate does not suppress the warning.

To get good efficiency, it is usually best to keep the handlers for each attribute module in separate XSB modules. The handler is called after the unification of an attributed variable with a term or other attributed variable, if the attributed variable has an attribute in the corresponding module. The two arguments of the unification are already bound at the time the handler is called, i.e. the handler is a post-unify handler.

Here, by giving the implementation of a simple finite domain constraint solver (see the file fd.P below), we show how these lowlevel predicates for attributed variables can be used. In this example, an attribute in the module fd is used and the value of this attribute is a list of terms.

```
%% File: fd.P
%% A simple finite domain constrait solver implemented using the lowlevel
%% attributes variables interface.
:- import put_attr/3, get_attr/3, del_attr/2,
   install_verify_attribute_handler/4 from machine.
:- import member/2 from basics.
:- install_verify_attribute_handler(fd,AttrValue,Target,fd_handler(AttrValue,Target)).
fd_handler(Da, Target) :-
        (var(Target),
                                             % Target is an attributed variable
         get_attr(Target, fd, Db) ->
                                            % has a domain
           intersection(Da, Db, [E|Es]),
                                            % intersection not empty
           (Es = [] \rightarrow
                                            % exactly one element
              Target = E
                                            % bind Var (and Value) to E
             put_attr(Target, fd, [E|Es]) % update Var's (and Value's)
                                            % is Target a member of Da?
           member(Target, Da)
        ).
intersection([], _, []).
intersection([H|T], L2, [H|L3]) :-
       member(H, L2), !,
        intersection(T, L2, L3).
intersection([_|T], L2, L3) :-
        intersection(T, L2, L3).
domain(X, Dom) :-
       var(Dom), !,
       get_attr(X, fd, Dom).
domain(X, List) :-
       List = [El|Els],
                                              % at least one element
        (Els = []
                                              % exactly one element
        -> X = E1
                                              % implied binding
        ; put_attr(Fresh, fd, List),
                                             % create a new attributed variable
           X = Fresh
                                              % may call verify_attributes/2
        ).
show_domain(X) :-
                                              % print out the domain of X
        var(X),
                                              % X must be a variable
        get_attr(X, fd, D),
        write('Domain of '), write(X),
        write(' is '), writeln(D).
```

When writing or porting a constraint package, it is usually useful to adjust the way that correct answer substitutions are shown in the command line. This can be controlled using the following two predicates:

This hook is called by the command-line interpreter when printing out the value of each variable in a top-level query. When a printing out an attributed variable, any appropriate handlers are called to portray the constraints represented by the attribute. As an example, the bounds package (Section 12.2) uses a hook to print out the bounds of variables:

```
| ?- X \text{ in } 1..10, Y \text{ in } 1..10, X + 4 #< Y -3.
X = _h629 \{ \text{ bounds } : 1 ... 2 \}
Y = _h673 \{ \text{ bounds } : 9 ... 10 \}
```

Writing a handler can be as simple as possible or as elaborate as desired. In the case of bounds the handler is simple:

```
bounds_attr_portray_hook(bounds(L,U,_)) :- write(L..U).
```

The hook is installed when the constraint package is loaded by placing in the package loader directive such as:

```
:- install_attribute_portray_hook(bounds,Attr,bounds_attr_portray_hook(Attr)).
```

Note that the hook will be indexed on the module associated with the attribute (in this case bounds). XSB's command-line interpreter will unify the second argument of the portray hook with the attribute, and then call Handler.

install_attribute_constraint_hook(Module, Vars, Names, Handler) module: machine For some constraint packages, it may not be particularly useful to associate constraints with variables: instead, the projection of global constraints onto the variables of the top-level query may be more useful. This is the case in the CLP(R) package (Section 12.1), where the command-line interaction may look as follows:

```
| ?- {X = 2*Y,Y >= 7}, inf(X,F).

{ X >= 14.0000 }

{ Y = 0.5000 * X }

X = _h8841

Y = _h9506

F = 14.0000
```

In XSB, the (projection of the) global constraints in CLP(R) are displayed by the following routines:

```
clpr_portray_varlist(Vars,Names):-
filter_varlist(Vars,Names,V1,N1),
dump(V1,N1,Constraints),
member(C,Constraints),
console_write(' { '), console_write(C),console_writeln(' } '),
fail.
clpr_portray_varlist(_V,_N).
filter_varlist([],[],[],[]).
filter_varlist([V1|R1],[N1|R2],[V1|R3],[N1|R4]):-
```

```
var(V1),!,
filter_varlist(R1,R2,R3,R4).
filter_varlist([_V1|R1],[_N1|R2],R3,R4):-
filter_varlist(R1,R2,R3,R4).
```

This predicate sets up a call to the CLP(R) library predicate dump/3, whose constraints it then writes out to the console. Analogous to the portray hook, the console hook is installed using the directive:

```
:- install_constraint_portray_hook(clpr, Vars, Names, clpr_portray_varlist(Vars, Names)).
```

If the clpr module is loaded, the command line interpreter checks any constraint portray hooks upon the first success of a top-level goal. It then unifies the second argument Vars with the variables of the goal, and Names with the names of the variables of the goal which are then passed on to Handler

1.3 constraintLib: a library for CLP

XSB supports constraint logic programming through its engine-level support of attributed variables (Section 1.2), and its support for constraint handling rules (CHR) (Chapter 13). The constraintLib library includes routines for delaying and examining bindings that are commonly used to implement CHR and other constraint libraries.

When processing constraints, it is often useful to delay a goal based on the instantiation level of a term or set of terms. For instance a 3 > X + Y should be delayed until both X and Y are instantiated. However the goal should be reinvoked as soon as possible after both are instantiated in order to prune search paths that may not be useful to pursue. The predicate when/2 provides a useful mechanism to delay goals based on instantiation patterns 1 .

```
when (+Condition, Goal)
```

Delays the execution of Goal until Condition is satisfied, whereupon Goal will be executed. Condition can have the form

module:

constraintLib

- ?=(Term1, Term2)
- nonvar(Term)
- ground(Term) ²
- (Condition, Condition)
- (Condition ; Condition)

Example: The following session illustrates the use of when/2 to delay a goal.

¹Despite the similar name, this method of delaying is conceptually different from SLG DELAYING discussed in Volume 1 of this manual, which is used for resolving cycles of dependencies in computing the well-founded semantics, and is not based on the state of instantiation of a term.

²To use ground/1 in the condition, it must be imported into the file where it is used.

```
|?- when(nonvar(X), writeln(test(1-2, nonvar))), writeln(test(1, nonvar)), X = f(_Y).
test(1,nonvar)
test(1 - 2, nonvar)
X = f(h245)
```

unifiable(X, Y, -Unifier)

If X and Y can unify, succeeds unifying Unifier with a list of terms of the form Var =

module:

constraintLib

module: constraintLib

module: constraintLib

Value representing a most general unifier of X and Y. unifiable/3 can handle cyclic terms. Attributed variables are handled as normal variables. Associated hooks are not executed ³.

setarg(+Index,+Term,+Value)

The predicate setarg/3 provides an efficient but non-logical way to update argument Index of a Prolog term Term to Value via destructive assignment and without the necessity of copying Term. setarg/3 should be used sparingly, to ensure both clarity and portability of code.

Example

```
|?-X = p(f(1),g(2),r([a])),
    writeln(zero(X)),
    ( set_arg(X,2,g([b])),
       writeln(one(X)),
       fail
     ; writeln(two(X))).
zero(p(f(1),g(2),r([a])))
one(p(f(1),g([b]),r([a])))
two(p(f(1),g(2),r([a])))
X = p(f(1),g(2),r([a]))
```

Error Cases

- Index is a variable
 - instantiation error
- Index neither a variable nor an integer
 - type_error(integer,Index)
- Index is less than 0
 - domain_error(not_less_than_zero,Index)
- Term is a variable
 - instantiation_error
- Term neither a variable nor a compound term
 - type_error(compound, Term)

term_variables(+Term,-Variables

Given any Prolog term Term as input, returns a sorted list of variables in the term.

³In Version 3.3, unifiable/3 is implemented as a Prolog predicate and so is slower than many of the predicates in this section.

1.4 Formatted Output

```
format(+String,+Control) module: format
```

```
format(+Stream,+String,+Control) module: format
```

format/2 and format/3 act as a Prolog analog to the C stdio function printf(), allowing formatted output ⁴.

Output is formatted according to **String** which can contain either a format control sequence, or any other character which will appear verbatim in the output. Control sequences act as place-holders for the actual terms that will be output. Thus

```
?- format("Hello ~q!",world).
```

will print Hello world!.

If there is only one control sequence, the corresponding element may be supplied alone in Control. If there are more, Control must be a list of these elements. If there are none then Control must be an empty list. There have to be as many elements in Control as control sequences in String.

The character ~ introduces a control sequence. To print a ~ just repeat it:

```
?- format("Hello ~~world!", []).
```

will output Hello ~world!.

The general format of a control sequence is ~NC. The character C determines the type of the control sequence. N is an optional numeric argument. An alternative form of N is *. * implies that the next argument in Arguments should be used as a numeric argument in the control sequence. For example:

```
?- format("Hello~4cworld!", [0'x]).
and
```

?- format("Hello~*cworld!", [4,0'x]).

both produce

Helloxxxxworld!

The following control sequences are available in XSB.

⁴The format family of predicates is due to Quintus Prolog, by way of Ciao.

Hello new world!

- ~a The argument is an atom. The atom is printed without quoting.
- ~Nc (Print character.) The argument is a number that will be interpreted as an ASCII code. N defaults to one and is interpreted as the number of times to print the character.
- ~f (Print float). The argument is a float. The float will be printed out by XSB.
- ~d (Print integer). The argument is an integer, and will be printed out by XSB.
- ~Ns (Print string.) The argument is a list of ASCII codes. Exactly N characters will be printed. N defaults to the length of the string. Example:

```
?- format("Hello ~4s ~4s!", ["new","world"]).
?- format("Hello ~s world!", ["new"]).
will print as
Hello new worl!
Hello new world!
respectively.
```

• ~i (Ignore argument.) The argument may be of any type. The argument will be ignored. Example:

```
?- format("Hello ~i~s world!", ["old","new"]).
will print as
```

• ~k (Print canonical.) The argument may be of any type. The argument will be passed to write_canonical/2). Example:

```
?- format("Hello ~k world!", a+b+c).
will print as
Hello +(+(a,b),c) world!
```

• ~q (Print quoted.) The argument may be of any type. The argument will be passed to writeq/2. Example:

```
?- format("Hello ~q world!", [['A','B']]).
will print as
Hello ['A','B'] world!
```

• ~w (write.) The argument may be of any type. The argument will be passed to write/2. Example:

```
?- format("Hello ~w world!", [['A','B']]).
will print as
```

1.5 String Manipulation

Hello world!

XSB has a number of powerful predicates that simplify the job of string manipulation. These predicates are especially powerful when they are combined with pattern-matching facilities provided by the pcre package described in Chapter 8 ⁵.

```
str_sub(+Sub, +Str, ?Pos) module: string
```

Succeeds if Sub is a substring of Str. In that case, Pos unifies with the position where the match occurred. Positions start from 0. str_sub/2 is also available, which is equivalent to having _ in the third argument of str_sub/3.

```
str_match(+Sub, +Str, +Direction, ?Beg, ?End) module: string
```

This is an enhanced version of the previous predicate. Direction can be forward or reverse (or any abbreviation of these). If forward, the predicate finds the first match of Sub from the beginning of Str. If reverse, it finds the first match from the end of the string (i.e., the last match of Sub from the beginning of Str). Beg and End must be integers or unbound variables. (It is possible that one is bound and another is not.) Beg unifies with the offset of the first character where Sub matched, and End unifies with the offset of the next character to the right of Sub (such a character might not exist, but the offset is still defined). Offsets start from 0.

Both Beg and End can be bound to negative integers. In this case, the value represents the offset from the *second* character past the end of Str. Thus -1 represents the character next to the end of Str and can be used to check where the end of Sub matches in Str. In the following examples

```
?- string_match(Sub,Str,forw,X,-1).
?- string_match(Sub,Str,rev,X,-1).
?- string_match(Sub,Str,forw,0,X).
```

⁵Not all string manipulation predicates have been made thread-safe in Version 3.3.

the first checks if the *first* match of Sub from the beginning of Str is a suffix of Str (because End represents the character next to the last character in Sub, so End=-1 means that the last characters of Sub and of Str occupy the same position). If so, X is bound to the offset (from the end of Str) of the first character of Sub. The second example checks if the *last* match of Sub in Str is a suffix of Str and binds X to the offset of the beginning of that match (counted from the beginning of Str). The last example checks if the first match of Sub is a prefix of Str. If so, X is bound to the offset (from the beginning of Str) of the last character of Sub.

```
substring(+String, +BeginOffset, +EndOffset, -Result) module: string
```

String can be an atom or a list of characters, and the offsets must be integers. If EndOffset is negative, endof(String)+EndOffset+1 is assumed. Thus, -1 means end of string. If BeginOffset is less than 0, then 0 is assumed; if it is greater than the length of the string, then string end is assumed. If EndOffset is non-negative, but is less than BeginOffset, then empty string is returned.

Offsets start from 0.

The result returned in the fourth argument is a string, if String is an atom, or a list of characters, if so is String.

The substring/4 predicate always succeeds (unless there is an error, such as wrong argument type).

Here are some examples:

```
| ?- substring('abcdefg', 3, 5, L).
L = de
| ?- substring("abcdefg", 4, -1, L).
L = [101,102]
(i.e., L = ef represented using ASCII codes).
```

1.6 Script Writing Utilities

Prolog, (in particular XSB!) can be useful for writing scripts. Prolog's simple syntax and declarative semantics make it especially suitable for scripts that involve text processing. There are several ways to access script-writing commands from XSB. The first is to execute the command via the predicates shell/1 or shell/2. These predicates can execute any command but they do not provide streamability across UNIX and Windows commands, and they do not return any output of commands to Prolog. Special predicates are provided to handle cross-platform compatibility and to bring output into XSB.

Effort has been made to make the these thread-safe; however in Version 3.3, calls to the XSB script writing utilities go through a single mutex, and may cause contention if many threads seek to concurrently use sockets.

expand_filename(+FileName,-ExpandedName)

module: machine

Expands the file name passed as the first argument and binds the variable in the second argument to the expanded name. This includes (1) expanding Unix tildes, (2) prepending FileName to the current directory, and (3) "rectifying" the expanded file name. In rectification, the expanded file name is "rectified" so that multiple repeated slashes are replaced with a single slash, the intervening "./" are removed, and "../" are applied so that the preceding item in the path name is deleted. For instance, if the current directory is /home, then abc//cde/..//fff/./b will be converted into /home/abc/ff/b.

Under Windows, this predicates does rectification as described above, (using backslashes when appropriate), but it does not expand the tildes.

expand_filename_no_prepend(+FileName, -ExpandedName)

module: shell

This predicate behaves as expand_filename/2, but only expands tildes and does rectification. It does not prepend the current working directory to relative file names.

parse_filename(+FileName,-Dir,-Base,-Extension)

module: machine

This predicate parses file names by separating the directory part, the base name part, and file extension. If file extension is found, it is removed from the base name. Also, directory names are rectified and if a directory name starts with a tilde (in Unix), then it is expanded. Directory names always end with a slash or a backslash, as appropriate for the OS at hand.

For instance, ~john///doe/dir1//../foo.bar will be parsed into: /home/john/doe/, foo, and bar (where we assume that /home/john is what ~john expands into).

sleep(+Seconds)

module: shell

Put XSB to sleep for a given number of seconds.

Error Cases

- Seconds is a variable
 - instantiation error.
- Seconds is not an integer
 - type_error(integer, Seconds).

sys_pid(-Pid)

module: shell

Get Id of the current process.

getenv(+VarName,-VarVal

module: machine

Unifies VarVal with the value of VarName in the current shell. If VarName is not an environment varible, the predicate fails.

Example:

```
:- import getenv/2 from machine.
yes
| ?- getenv('HOSTTYPE',F).
F = intel-pc
```

If String is of the form VarName=Value, inserts or resets the environment variable VarName. If VarName does not exist, it is inserted with VarVal. If the VarName does exist, it is reset to VarVal. putenv/2 always succeeds.

Exceptions:

instantiation_error String is not instantiated at the time of call.
type_error VarName or VarVal is not an atom or a list of atoms.

1.6.1 Communication with Subprocesses

In the previous section, we have seen several predicates that allow XSB to create other processes. However, these predicates offer only a very limited way to communicate with these processes. The predicate <code>spawn_process/5</code> and friends come to the rescue. It allows a user to spawn any process (including multiple copies of XSB) and redirect its standard input and output to XSB streams. XSB can then write to the process and read from it. The section of socket I/O describes yet another mode of interprocess communication.

In addition, the predicate pipe_open/2 described in this section lets one create any number of pipes (that do not need to be connected to the standard I/O stream) and talk to child processes through these pipes. All predicates in this section, except pipe_open/2 and fd2stream/2, must be imported from module shell. The predicates pipe_open/2 and fd2stream/2 must be imported from file_io.

```
spawn_process(+CmdSpec,-StreamToProc,-StreamFromProc,-ProcStderrStream,-ProcId)
```

Spawn a new process specified by CmdSpec. CmdSpec must be either a single atom or a *list* of atoms. If it is an atom, then it must represent a shell command. If it is a list, the first member of the list must be the name of the program to run and the other elements must be arguments to the program. Program name must be specified in such a way as to make sure the OS can find it using the contents of the environment variable PATH. Also note that pipes, I/O redirection and such are not allowed in command specification. That is, CmdSpec must represent a single command. (But read about process plumbing below and about the related predicate shell/5.)

The next three parameters of spawn_process are XSB I/O stream identifiers for the process (leading to the subprocess standard input), from the process (from its standard output), and a stream capturing the subprocess standard error output. The last parameter is the system process id.

Here is a simple example of how it works.

```
| ?- import file_flush/2, file_read_line_atom/2 from file_io.
| ?- import file_nl/1 , file_write/2 from xsb_writ.
| ?- spawn_process([cat, '-'], To, From, Stderr, Pid),
```

```
writeln(To,'Hello cat!'), flush_output(To,_), file_read_line_atom(From,Y).
To = 3
From = 4
Stderr = 5
Pid = 14328
Y = Hello cat!
```

Here we created a new process, which runs the "cat" program with argument "—". This forces cat to read from standard input and write to standard output. The next line writes an atom and newline to the XSB stream To, which is bound to the standard input of the cat process (proc id 14328). The cat process then copies the input to its standard output. Since standard output of the cat process is redirected to the XSB stream From in the parent process, the last line in our program is able to read it and return in the variable Y. Note that in the second line we used flush_output/2. Flushing the output is extremely important here, because XSB I/O pipe (file) streams are buffered. Thus, cat might not see its input until the buffer is filled up, so the above clause might hang. flush_output/2 makes sure that the input is immediately available to the subprocess.

In addition to the above general schema, the user can tell <code>spawn_process/5</code> not to open one of the communication streams or to use one of the existing communication streams. This is useful when you do not expect to write or read to/from the subprocess or when one process wants to write to another (see the process plumbing example below). To tell that a certain stream is not needed, it suffices to bind that stream to an atom. For instance,

In each case, only one of the streams is open. (Note that the shell command is specified as an atom rather than a list.) Finally, if both streams are suppressed, then <code>spawn_process</code> reduces to the usual <code>shell/1</code> call (in fact, this is how <code>shell/1</code> is implemented):

```
| ?- spawn_process([pwd], none, none).
```

/usr/local/foo/bar

On the other hand, if any one of the three stream variables in spawn_process is bound to an already existing file stream, then the subprocess will use that stream (see the process plumbing example below).

One of the uses of XSB subprocesses is to create XSB servers that spawn subprocesses and control them. A spawned subprocess can be another XSB process. The following example shows one XSB process spawning another, sending it a goal to evaluate and obtaining the result:

Here the parent XSB process sends "assert(p(1))." and then "p(X), writeln(X)." to the spawned XSB subprocess. The latter evaluates the goal and prints (via "writeln(X)") to its standard output. The main process reads it through the From stream and binds the variable XX to that output.

Finally, we should note that the stream variables in the $spawn_process$ predicate can be used to do process plumbing, *i.e.*, redirect output of one subprocess into the input of another. Here is an example:

```
| ?- open(test,write,Stream),
    spawn_process([cat, 'data'], none, FromCat1, none, _),
    spawn_process([sort], FromCat1,Stream, none, _).
```

Here, we first open file test. Then cat data is spawned. This process has the input and standard error stream blocked (as indicated by the atom none), and its output goes into stream FromCat1. Then we spawn another process, sort, which picks the output from the first process (since it uses the stream FromCat1 as its input) and sends its own output (the sorted version of data) to its output stream Stream. However, Stream has already been open for output into the file test. Thus, the overall result of the above clause is tantamount to the following shell command:

```
cat data | sort > test
```

Important notes about spawned processes:

- 1. Asynchronous processes spawned by XSB do not disappear (at least on Unix) when they terminate, unless the XSB program executes a wait on them (see process_control below). Instead, such processes become defunct zombies (in Unix terminology); they do not do anything, but consume resources (such as file descriptors). So, when a subprocess is known to terminate, it must be waited on.
- 2. The XSB parent process must know how to terminate the asynchronous subprocesses it spawns. The drastic way is to kill it (see process_control below). Sometimes a subprocess might terminate by itself (e.g., having finished reading a file). In other cases, the parent and the child programs must agree on a protocol by which the parent can tell the child to exit. The programs in the XSB subdirectory examples/subprocess illustrate this idea. If the child subprocess is another XSB process, then it can be terminated by sending the atom end_of_file or halt to the standard input of the child. (For this to work, the child XSB must waiting at the prompt).
- 3. It is very important to not forget to close the streams that the parent uses to communicate with the child. These are the streams that are provided in arguments 2,3,4 of spawn_process. The reason is that the child might terminate, but these streams to the standard input of the child will remain open, since they belong to the parent process. As a result, the parent will own defunct I/O streams and might eventually run out of file descriptors or streams.

process_status(+Pid,-Status)

This predicate always succeeds. Given a process id, it binds the second argument (which must be an unbound variable) to one of the following atoms: running, stopped, exited_normally, exited_abnormally, aborted, invalid, and unknown. The invalid status is given to processes that never existed or that are not children of the parent XSB process. The unknown status is assigned when none of the other statuses can be assigned.

Note: process status (other than running) is system dependent. Windows does not seem to support stopped and aborted. Also, processes killed using the process_control predicate (described next) are often marked as invalid rather than exited, because Windows seems to lose all information about such processes. Process status might be inaccurate in some Unix systems as well, if the process has terminated and wait() has been executed on that process.

process control(+Pid,+Operation)

Perform a process control operation on the process with the given Pid. Currently, the only supported operations are kill (an atom) and wait(Code) (a term). The former causes the process to exit unconditionally, and the latter waits for process completion. When the process exits, Code is bound to the process exit code. The code for normal termination is 0.

This predicate succeeds, if the operation was performed successfully. Otherwise, it fails. The wait operation fails if the process specified in Pid does not exist or is not a child of the parent XSB process.

The kill operation might fail, if the process to be killed does not exist or if the parent XSB process does not have the permission to terminate that process. Unix and Windows have different ideas as to what these permissions are. See kill(2) for Unix and TerminateProcess for Windows.

Note: under Windows, the programmer's manual warns of dire consequences if one kills a process that has DLLs attached to it.

get_process_table(-ProcessList)

module: shell

This predicate is imported from module shell. It binds ProcessList to the list of terms, each describing one of the active XSB subprocesses (created via spawn_process/5). Each term has the form:

```
process(Pid,ToStream,FromStream,StderrStream,CommandLine).
```

The first argument in the term is the process id of the corresponding process, the next three arguments describe the three standard streams of the process, and the last is an atom that shows the command line used to invoke the process. This predicate always succeeds.

shell(+CmdSpec,-StreamToProc, -StreamFromProc, -ProcStderr, -ErrorCode)

The arguments of this predicate are similar to those of spawn_process, except for the following: (1) The first argument is an atom or a list of atoms, like in spawn_process. However, if it is a list of atoms, then the resulting shell command is obtained by string concatenation. This is different from spawn_process where each member of the list must represent an argument to the program being invoked (and which must be the first member of that list). (2) The last argument is the error code returned by the shell command and not a process id. The code -1 and 127 mean that the shell command failed.

The shell/5 predicate is similar to spawn_process in that it spawns another process and can capture that process' input and output streams. The important difference, however, is that XSB will ways until the process spawned by shell/5 terminates. In contrast, the process spawned by spawn_process will run concurrently with XSB. In this latter case, XSB must explicitly synchronize with the spawned subprocess using the predicate process_control/2 (using the wait operation), as described earlier.

The fact that XSB must wait until shell/5 finishes has a very important implication: the amount of data the can be sent to and from the shell command is limited (1K is probably safe). This is because the shell command communicates with XSB via pipes, which have limited capacity. So, if the pipe is filled, XSB will hang waiting for shell/5 to finish and shell/5 will wait for XSB to consume data from the pipe. Thus, use spawn_process/5 for any kind of significant data exchange between external processes and XSB.

Another difference between these two forms of spawning subprocesses is that CmdSpec in shell/5 can represent *any* shell statement, including those that have pipes and I/O redirection. In contrast, spawn_process only allows command of the form "program args". For instance,

```
| ?- open(test,write,Stream),
    shell('cat | sort > data', Stream, none, none, ErrCode)
```

As seen from this example, the same rules for blocking I/O streams apply to shell/5. Finally, we should note that the already familiar standard predicates shell/1 and shell/2 (documented in Volume 1) are implemented using shell/5, and shell/5 shares their error cases.

Notes:

- 1. With shell/5, you do not have to worry about terminating child processes: XSB waits until the child exits automatically. However, since communication pipes have limited capacity, this method can be used only for exchanging small amounts of information between parent and child.
- 2. The earlier remark about the need to close I/O streams to the child does apply.

pipe_open(-ReadPipe, -WritePipe)

Open a new pipe and return the read end and the write end of that pipe. If the operation fails, both ReadPipe and WritePipe are bound to negative numbers. The pipes returned by the pipe_open/2 predicate are small integers that represent file descriptors used by the underlying OS. They are **not XSB I/O streams**, and they cannot be used for I/O directly. To use them, one must convert them to streams using open/3 or open/4. ⁶

The best way to illustrate how one can create a new pipe to a child (even if the child has been created earlier) is to show an example. Consider two programs, parent.P and child.P. The parent copy of XSB consults parent.P, which does the following: First, it creates a pipe and spawns a copy of XSB. Then it tells the child copy of XSB to assert the fact pipe(RP), where RP is a number representing the read part of the pipe. Next, the parent XSB tells the child XSB to consult the program child.P. Finally, it sends the message Hello!

The child.P program gets the pipe from predicate pipe/1 (note that the parent tells the child XSB to first assert pipe(RP) and only then to consult the child.P file). After that, the child reads a message from the pipe and prints it to its standard output. Both programs are shown below:

```
%% parent.P
:- import pipe_open/2 from file_io.
%% Create the pipe and pass it to the child process
?- pipe_open(RP,WP),
   %% WF is now the XSB I/O stream bound to the write part of the pipe
   open(pipe(WP), write, WF),
   %% ProcInput becomes the XSB stream leading directly to the child's stdin
   spawn_process(nxsb1, ProcInput, block, block, Process),
   %% Tell the child where the reading part of the pipe is
   fmt_write(ProcInput, "assert(pipe(%d)).\n", arg(RP)),
   fmt_write(ProcInput, "[child].\n", _),
   flush_output(ProcInput, _),
   %% Pass a message through the pipe
   fmt_write(WF, "Hello!\n", _),
   flush_output(WF, _),
   fmt_write(ProcInput, "end_of_file.\n",_), % send end_of_file atom to child
```

⁶ XSB does not convert pipe file descriptors into I/O streams automatically. Because of the way XSB I/O streams are represented, they are not inherited by the child process and they do not make sense to the child process (especially if the child is not another XSB process). Therefore, we must pass the child processes an OS file descriptor instead. The child then converts these descriptor into XSB I/O streams.

```
flush_output(ProcInput, _),
   %% wait for child (so as to not leave zombies around;
   %% zombies quit when the parent finishes, but they consume resources)
   process_control(Process, wait),
   %% Close the ports used to commuicate with the process
   %% Otherwise, the parent might run out of file descriptors
   %% (if many processes were spawned)
   close(ProcInput), close(WF).
%% child.P
:- import file_read_line_atom/2 from file_io.
:- dynamic pipe/1.
?- pipe(P), open(pipe(P),read,F),
  %% Acknowledge receipt of the pipe
   fmt_write("\nPipe %d received\n", arg(P)),
   %% Get a message from the parent and print it to stdout
   file_read_line_atom(F, Line), write('Message was: '), writeln(Line).
This produces the following output:
| ?- [parent].
                                <- parent XSB consults parent.P</pre>
[parent loaded]
yes
[sysinitrc loaded]
                                   Here we see the startup messages of
[packaging loaded]
                                   the child copy
XSB Version 2.0 (Gouden Carolus) of June 27, 1999
[i686-pc-linux-gnu; mode: optimal; engine: slg-wam; scheduling: batched]
| ?-
yes
| ?- [Compiling ./child]
                                <- The child copy of received the pipe from
[child compiled, cpu time used: 0.1300 seconds]
                                                  the parent and then the
[child loaded]
                                                  request to consult child.P
Pipe 15 received
                               <- child.P acknowledges receipt of the pipe</p>
Message was: Hello!
                               <- child.P gets the message and prints it
yes
```

Observe that the parent process is very careful about making sure that the child terminates and also about closing the I/O streams after they are no longer needed.

Finally, we should note that this mechanism can be used to communicate through pipes with non-XSB processes as well. Indeed, an XSB process can create a pipe using pipe_open (before spawning a child process), pass one end of the pipe to a child process (which can be

a C program), and use open/3 to convert the other end of the pipe to an XSB stream. The C program, of course, does not need open/3, since it can use the pipe file handle directly. Likewise, a C program can spawn off an XSB process and pass it one end of a pipe. The XSB child-process can then convert this pipe fd to a file using fd2iostream and then talk to the parent C program.

fd2iostream(+Pipe, -IOstream)

Take a file descriptor and convert it to an XSB I/O stream. This predicate should be used only for user-defined I/O. Otherwise, use open/{3,4} when possible.

1.7 Socket I/O

The XSB socket library defines a number of predicates for communication over BSD-style sockets. Most are modeled after and are interfaces to the socket functions with the same name. For detailed information on sockets, the reader is referred to the Unix man pages (another good source is *Unix Network Programming*, by W. Richard Stevens). Several examples of the use of the XSB sockets interface can be found in the XSB/examples/ directory in the XSB distribution.

XSB supports two modes of communication via sockets: stream-oriented and message-oriented. In turn, stream-oriented communication can be buffered or character-at-a-time.

To use buffered stream-oriented communication, system socket handles must be converted to XSB I/O streams using fd2iostream/2. In these stream-oriented communication, messages have no boundaries, and communication appears to the processes as reading and writing to a file. At present, buffered stream-oriented communication works under Unix only.

Character-at-a-time stream communication is accomplished using the primitives socket_put/3 and socket_get0/3. These correspond to the usual Prolog put/1 and get0/1 I/O primitives.

In message-oriented communication, processes exchange messages that have well-defined boundaries. The communicating processes use socket_send/3 and socket_recv/3 to talk to each other. XSB messages are represented as strings where the first four bytes (sizeof(int)) is an integer (represented in the binary network format — see the functions htonl and ntohl in socket documentation) and the rest is the body of the message. The integer in the header represents the length of the message body.

Effort has been made to make the socket interface thread-safe; however in Version 3.3, calls to the XSB socket interface go through a single mutex, and may cause contention if many threads seek to concurrently use sockets.

We now describe the XSB socket interface. All predicates below must be imported from the module socket. Note that almost all predicates have the last argument that unifies with the error code returned from the corresponding socket operation. This argument is explained separately.

General socket calls. These are used to open/close sockets, to establish connections, and set special socket options.

socket(-Sockfd, ?ErrorCode)

A socket Sockfd in the AF_INET domain is created. (The AF_UNIX domain is not yet implemented). Sockfd is bound to a small integer, called socket descriptor or socket handle.

socket_set_option(+Sockfd,+OptionName,+Value)

Set socket option. At present, only the linger option is supported. "Lingering" is a situation when a socket continues to live after it was shut down by the owner. This is used in order to let the client program that uses the socket to finish reading or writing from/to the socket. Value represents the number of seconds to linger. The value -1 means do not linger at all.

socket_close(+Sockfd, ?ErrorCode)

Sockfd is closed. Sockets used in socket_connect/2 should not be closed by socket_close/1 as they will be closed when the corresponding stream is closed.

socket_bind(+Sockfd,+Port, ?ErrorCode)

The socket Sockfd is bound to the specified local port number.

socket_connect(+Sockfd,+Port,+Hostname,?ErrorCode)

The socket Sockfd is connected to the address (Hostname and Port). If socket_connect/4 terminates abnormally for any reason (connection refused, timeout, etc.), then XSb closes the socket Sockfd automatically, because such a socket cannot be used according to the BSD semantics. Therefore, it is always a good idea to check to the return code and reopen the socket, if the error code is not SOCK_OK.

socket_listen(+Socket, +Length, ?ErrorCode)

The socket Sockfd is defined to have a maximum backlog queue of Length pending connections.

socket accept(+Sockfd,-SockOut, ?ErrorCode)

Block the caller until a connection attempt arrives. If the incoming queue is not empty, the first connection request is accepted, the call succeeds and returns a new socket, SockOut, which can be used for this new connection.

Buffered, message-based communication. These calls are similar to the recv and send calls in C, except that XSB wraps a higher-level message protocol around these low-level functions. More precisely, socket_send/3 prepends a 4-byte field to each message, which indicates the length of the message body. When socket_recv/3 reads a message, it first reads the 4-byte field to determine the length of the message and then reads the remainder of the message.

All this is transparent to the XSB user, but you should know these details if you want to use these details to communicate with external processes written in C and such. All this means that these external programs must implement the same protocol. The subtle point here is that different machines represent integers differently, so an integer must first be converted into the machine-independent network format using the functions htonl and ntohl provided by the socket library. For instance, to send a message to XSB, one must do something like this:

char *message, *msg_body;

```
unsigned int msg_body_len, network_encoded_len;

msg_body_len = strlen(msg_body);
network_encoded_len = (unsigned int) htonl((unsigned long int) msg_body_len);
memcpy((void *) message, (void *) &network_encoded_len, 4);
strcpy(message+4, msg_body);

To read a message sent by XSB, one can do as follows:

int actual_len;
char lenbuf[4], msg_buff;
unsigned int msglen, net_encoded_len;

actual_len = (long)recvfrom(sock_handle, lenbuf, 4, 0, NULL, 0);
memcpy((void *) &net_encoded_len, (void *) lenbuf, 4);
msglen = ntohl(net_encoded_len);

msg_buff = calloc(msglen+1, sizeof(char))); // check if this suceeded!!!
recvfrom(sock_handle, msg_buff, msglen, 0, NULL, 0);
```

If making the external processes follow the XSB protocol is not practical (because you did not write these programs), then you should use the character-at-a-time interface or, better, the buffered stream-based interface both of which are described in this section. At present, however, the buffered stream-based interface does not work on Windows.

```
socket_recv(+Sockfd,-Message, ?ErrorCode)
```

Receives a message from the connection identified by the socket descriptor Sockfd. Binds Message to the message. socket_recv/3 provides a message-oriented interface. It understands message boundaries set by socket_send/3.

```
socket_send(+Sockfd,+Message, ?ErrorCode)
```

Takes a message (which must be an atom) and sends it through the connection specified by Sockfd. socket_send/3 provides message-oriented communication. It prepends a 4-byte header to the message, which tells socket_recv/3 the length of the message body.

Stream-oriented, character-at-a-time interface. Internally, this interface uses the same sendto and recvfrom socket calls, but they are executed for each character separately. This interface is appropriate when the message format is not known or when message boundaries are determined using special delimiters.

socket_get0/3 creates the end-of-file condition when it receives the end-of-file character CH_EOF_P (a.k.a. 255) defined in char_defs.h (which must be included in the XSB program). C programs that need to send an end-of-file character should send (char)-1.

```
socket_get0(+Sockfd, -Char, ?ErrorCode)
The equivalent of get0 for sockets.
```

```
socket_put(+Sockfd, +Char, ?ErrorCode)
Similar to put/1, but works on sockets.
```

Socket-probing. With the help of the predicate **socket_select/6** one can establish a group of asynchronous or synchronous socket connections. In the synchronous mode, this call is blocked until one of the sockets in the group becomes available for reading or writing, as described below. In the asynchronous mode, this call is used to probe the sockets periodically, to find out which sockets have data available for reading or which sockets have room in the buffer to write to.

The directory XSB/examples/socket/select/ has a number of examples of the use of the socket-probing calls.

```
socket_select(+SymConName,+Timeout,-ReadSockL,-WriteSockL,-ErrSockL,?ErrorCode)
```

SymConName must be an atom that denotes an existing connection group, which must be previously created with socket_set_select/4 (described below). ReadSockL, WriteSockL, ErrSockL are lists of socket handles (as returned by socket/2) that specify the available sockets that are available for reading, writing, or on which exception conditions occurred. Timeout must be an integer that specifies the timeout in seconds (0 means probe and exit immediately). If Timeout is a variable, then wait indefinitely until one of the sockets becomes available.

```
socket_set_select(+SymConName, +ReadSockFdLst, +WriteSockFdLst, +ErrorSockFdLst)
```

Creates a connection group with the symbolic name SymConName (an atom) for subsequent use by socket_select/6. ReadSockFdLst, WriteSockFdLst, and ErrorSockFdLst are lists of sockets for which socket_select/6 will be used to monitor read, write, or exception conditions.

```
socket select destroy(+SymConName)
```

Destroys the specified connection group.

Error codes. The error code argument unifies with the error code returned by the corresponding socket commands. The error code -2 signifies timeout for timeout-enabled primitives (see below). The error code of zero signifies normal termination. Positive error codes denote specific failures, as defined in BSD sockets. When such a failure occurs, an error message is printed, but the predicate succeeds anyway. The specific error codes are part of the socket documentation. Unfortunately, the symbolic names and error numbers of these failures are different between Unix compilers and Visual C++. Thus, there is no portable, reliable way to refer to these error codes. The only reliably portable error codes that can be used in XSB programs defined through these symbolic constants:

```
#define TIMEOUT_ERR -2 /* Timeout error code */
```

Timeouts. XSB socket interface allows the programer to specify timeouts for certain operations. If the operations does not finish within the specified period of time, the operation is aborted and the corresponding predicate succeeds with the TIMEOUT_ERR error code. The following primitives are timeout-enabled: socket_connect/4, socket_accept/3, socket_recv/3, socket_send/3, socket_get0/3, and socket_put/3. To set a timeout value for any of the above primitives, the user should execute set_timer/1 right before the subgoal to be timed. Note that timeouts are disabled after the corresponding timeout-enabled call completes or times out. Therefore, one must use set_timer/1 before each call that needs to be controlled by a timeout mechanism.

The most common use of timeouts is to either abort or retry the operation that times out. For the latter, XSB provides the sleep/1 primitive, which allows the program to wait for a few seconds before retrying.

The set_timer/1 and sleep/1 primitives are described below. They are standard predicates and do not need to be explicitly imported.

set_timer(+Seconds)

Set timeout value. If a timer-enabled goal executes after this value is set, the clock begins ticking. If the goal does not finish in time, it succeeds with the error code set to TIMEOUT_ERR. The timer is turned off after the goal executes (whether timed out or not and whether it succeeds or fails). This goal always succeeds.

Note that if the timer is not set, the timer-enabled goals execute "normally," without timeouts. In particular, they might block (say, on socket_recv, if data is not available).

sleep(+Seconds)

Put XSB to sleep for the specified number of seconds. Execution resumes after the Seconds number of seconds. This goal always succeeds.

Here is an example of the use of the timer:

Apart from the above timer-enabled primitives, a timeout value can be given to socket_select/6 directly, as an argument.

Buffered, stream-oriented communication. In Unix, socket descriptors can be "promoted" to file streams and the regular read/write commands can be used with such streams. In XSB, such promotion can be done using the following predicate:

```
fd2ioport(+Pipe, -IOport)
```

module: shell

Take a socket descriptor and convert it to an XSB I/O port that can be used for regular file I/O.

Once IOport is obtained, all normal I/O primitives can be used by specifying the IOport as their first argument. This is, perhaps, the easiest and the most convenient way to use sockets in XSB. (This feature has not been implemented for Windows.)

Here is an example of the use of this feature:

```
:- compiler_options([xpp_on]).
#include "socket_defs_xsb.h"

?- (socket(Sockfd, SOCK_OK)
   -> socket_connect(Sockfd1, 6020, localhost, Ecode),
        (Ecode == SOCK_OK
        -> fd2ioport(Sockfd, SockIOport),
              file_write(SockIOport, 'Hello Server!')
        ; writeln('Can''t connect to server')
        ),
    ; writeln('Can''t open socket'), fail
    ).
```

1.8 Arrays

The module array1 provides a simple backtrackable array implementation that requires no copying. In Version 3.2, this package was changed to make use of the backtrackable destructive assignment made possible by setarg/3. We note that as of Version 3.2 this library provides simple syntactic sugar for functor/3, arg/3 and setarg/3 and relies on error messages for these predicates.

```
array_new(-Array,+Size)
```

module: array

Creates a one dimensional empty array of size Size. All the elements of this array are variables.

```
array_elt(+Array, +Index, ?Element)
```

module: array

Succeeds iff Element unifies with the Index-th element of array Array.

```
array update(+Array, +Index, +Elem)
```

module: array

Updates the array Array such that the Index-th element of the new array is Elem using destructive assignement. The implementation is quite efficient in that it avoids the copying of the entire array.

The following example shows the use of these predicates:

1.9 The Profiling Library

XSB can provide Prolog-level profiling for Prolog programs, which allows the Prolog programmer to estimate what proportion of time is spent executing code for each predicate, and also what modes have been used to call a given predicate. To enable profiling, XSB must be started with the command line parameter of -p. The module xsb_profiling contains the predicate profile_call/1 that invokes profiling. The profiling library should only be used with the single-threaded engine in Version 3.3.

Calls Goal, and when it first succeeds, prints to userout a table of predicate names indicating for each, the percentage of time spent executing that predicate's code. Within the table, the sum of the predicate times for each module is also given. Goal may backtrack, but profiling is done only for the time to the first success, so it is most appropriate to profile succeeding deterministic goals ⁷.

Profiling works by starting another thread that interrupts every 100th of a second and sets a flag so that the XSB emulator will determine the predicate of the currently executing code. The printout also includes the total number of interrupts and for each predicate, the raw number of times its code was determined to be executing. A predicate is printed only if its code was interrupted at least once. The numbers will be meaningful only for relatively long-running predicates, taking more than a couple of seconds.

When an interrupt occurs, the **next** interrupt instruction to be executed – a WAM call, execute, proceed or trust instruction – will charge its associated predicate by logging that predicate to a table. The system does not keep track of code addresses for tries (used to represent the results of completed tables, and trie-indexed asserted code), so for some interrupts the associated executing

 $^{^{7}}$ This includes tabled subgoals under Local Evaluation, as such as goal will only succeed after deriving all of its answers.

predicate cannot be determined. In these cases the interrupt is charged against an "unknown/?" pseudo-predicate, and this count is included in the output.

Profiling does not give the context from which the predicate is called, so you may want to make renamed copies of basic predicates to use in particular circumstances to determine their times.

Predicates compiled with the "optimize" option may provide misleading results under profiling. Note that all system predicates (including those in basics) are compiled with the "optimize" option, by default. That option causes tail-recursive predicates to use a "jump" instruction rather than an "execute" instruction to make the recursive call, and so an interrupt in such a loop will not be charged until the next interrupt instruction is executed. If much time is spent in the recursion, this might not be for a long time, and the interrupt might ultimately be charged to another predicate. (If an interrupt has not been charged by the time of the next interrupt, it is lost.)

Profiling is currently available under Windows, Mac OS X, and Linux. However, for the profiling algorithm to provide a good estimation, the thread that wakes and sets the interrupt flag must be of high priority and given the CPU when it wants it. Accordingly, the estimates may be better or worse depending on the scheduling strategy of a given platform ⁸.

The profiling module also provides some support for determining the modes in which a predicate is called. This can be used to determine whether indexing is appropriately declared for important dynamic predicates. This is a primitive facility, but has been found useful.

profile_mode_call(+Goal)

Calls the goal Goal and constructs a table of the modes in which the predicate is called and the number of times it is called in that mode. Modes are simply "b" for ground and "f" for variable. Counts are kept in a table with entries of the form Pred(Md1,Md2,..,Mdn) where Pred is the name of the called predicate and the Mdi are either 'f' or 'b', indicating free or bound for the corresponding argument. The table can be printed using profile_mode_dump/0 and can be cleared using profile_mode_init/0.

module:

xsb_profiling

module: xsb_profiling

module: xsb_profiling

profile_mode_dump

Prints out the counts of calls in particular modes as accumulated using profile_mode_call(+Goal).

profile_mode_init

Clears the table that accumulates counts of calls in particular modes (done by profile_mode_call(+Goal).

⁸Windows and Mac OS X 10.6 provide good estimates. Some Linuxes however, do not charge about 20% of their interrupts due to thread scheduling issues. This loss of interrupts makes the profile estimate inefficient, but does not bias the estimate. We haven't figured out how to get priority scheduling for interrupts on all machines, so if you want profiling to work more efficiently, maybe you can help figure out how to get appropriate scheduling.

1.10 Gensym

The Gensym library provides a convenient way to generate unique integers or constants.

prepare(+Index)

module: gensym

Sets the initial integer to be used for generation to Index. Thus, the command ?- prepare(0) would cause the first call to gennum/1 to return 1. Index must be a non-negative integer.

gennum(-Var)

module: gensym

Unifies Var with a new integer.

gensym(+Atom,-Var)

module: gensym

Generates a new integer, and concatenates this integer with Atom, unifying the result with Var. For instance a call ?- gensym(foo, Var) might unify Var with foo32.

Random Number Generator 1.11

The following predicates are provided in module random to generate random numbers (both integers and floating numbers), based on the Wichmann-Hill Algorithm [30, 19]. The random number generator is entirely portable, and does not require any calls to the operating system. As noted below, it does require 3 seeds, each of which must be an integer in a given range. These seeds are thread-specific: thus different threads may generate independent sequences of random numbers.

random(-Number)

module: random

Binds Number to a random float in the interval [0.0, 1.0). Note that 1.0 will never be generated.

random(+Lower,+Upper,-Number)

module: random

Binds Number to a random integer in the interval [Lower, Upper) if Lower and Upper are integers. Otherwise Number is bound to a random float between Lower and Upper. Upper will never be generated.

getrand(?State)

module: random

Tries to unify State with the term rand(X,Y,Z) where X,Y, and Z are integers describing the state of the random generator.

setrand(rand(+X,+Y,+Z))

module: random

Sets the state of the random generator. X,Y, and Z must be integers in the ranges [1,30269), [1,30307), [1,30323), respectively.

datime_setrand

module: random

This simple initialization utility sets the random seed triple based on a function of the current day, hour, minute and second.

randseq(+K, +N, -RandomSeq)

module: random

Generates a sequence of K unique integers chosen randomly in the range from 1 to N. RandomSeq is not returned in any particular order.

randset(+K, +N, -RandomSet)

module: random

Generates an ordered set of K unique integers chosen randomly in the range from 1 to N. The set is returned in reversed order, with the largest element first and the smallest last.

gauss(-G1,-G2) module: ramdom

Generates two random numbers that are normally distributed with mean 0 and standard deviation 1. It uses the polar form of the Box-Muller transformation [5] of uniform random variables as generated by random/1.

weibull(K,Lambda,X)

module: ramdom

Generates a random number for the Weibull distribution:

$$f(x; k, \lambda) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^h}$$

based on the transformation

$$x = \lambda(-ln(U))^{1/k}$$

of a uniformly distributed ranom variable produce by random/1

exponential(K,X) module: ramdom

Generates a random number for the exponential distribution:

$$f(x; k, \lambda) = \frac{e^{-(x/\lambda)^h}}{\lambda}$$

based on the transformation

$$x = \lambda(-ln(U))$$

of a uniformly distributed ranom variable produce by random/1. This is the same as the Weibull distribution with k = 1.

1.12 Loading Separated Files

A common file format uses comma separated values, the so-called csv files. The XSB module, proc_files, supports the loading of files in this, and similar, formats to define Prolog predicates.

load_csv(+FileName,+PredSpec)

module: proc_files

load_csv/2 takes a file name and a predicate specification, and reads a csv-formatted file into memory, defining the indicated dynamic predicate. The simplest form of PredSpec is PredName/Arity. In this case the arity must equal the number of fields in the csv file, and the predicate must be dynamic. Each line in the file will define one fact of the predicate PredName/Arity. Fields in the file enclosed in double quotes will be treated as single fields (and thus can contain commas and new-lines.) The dynamic predicate will be emptied before the facts from the file are added. Each field will be loaded as an atom (including fields that contain just integers.)

module: proc_files

Alternatively, PredSpec may be of the form predName(TypeSpec1,...,TypeSpecN), where predName is the name of the dynamic predicate to be defined by the file contents, and each TypeSpecI indicates the type of the corresponding field in the file. The permitted values of TypeSpec are:

atom The corresponding field value will become an atom in the loaded fact.

integer The corresponding field value will be converted to an integer in the loaded fact.

float The corresponding field value will be converted to a float in the loaded fact.

term The corresponding field must contain a Prolog term in canonical form, and it will be converted to that term in the loaded fact.

___ (A variable) Treated as atom.

load_dsv(+FileName,+PredSpec,+Options)

This predicate supports the loading of more general forms of files with value-separated fields. The FileName and PredSpec parameters are exactly as in load_csv/2, as described just above. Options is a list of options. (With an empty list, load_dsv acts as load_csv/2.) The options are:

separator="Sep" which indicates that the character(s) Sep will be used as the field separator. There may be one or more characters.

delimiter="C" which indicates that the single character C will be used as the field delimiter (the default being """, and I've yet to find a situation in which I want to change it.)

titles which indicates that the first line of the file should be ignored and not contribute a fact to the dynamic predicate.

1.13 Scanning in Prolog

Scanners, (sometimes called tokenizers) take an input string, usually in ASCII or similar format, and produce a scanned sequence of tokens. The requirements that various applications have for scanning differ in small but important ways – a character that is special to one application may be part of the token of another; or some applications may want lower case text converted to uppercase test. The stdscan.P library provides a simple scanner written in XSB that can be configured in several ways. While useful, this scanner is not intended to be as powerful as general-purpose scanners such as lex or flex.

scan(+List,-Tokens) module: stdscan

Given as input a List of character codes, scan/2 scans this list producing a list of atoms constituting the lexical tokens. Its parameters are set via set_scan_pars/1.

Tokens produced are either a sequence of *letters* and/or *numbers* or consist of a single *special* character (e.g. (or)). Whitespaces may occur between tokens.

stdscan

scan(+List,+FieldSeparator,-Tokens)

module:

Given as input a List of character codes, along with a character code for a field separator, scan/3 scans this list producing a list of list of atoms constituting the lexical tokens in each field. scan/3 thus can be used to scan tabular information. Its parameters are set via set_scan_pars/1.

set_scan_pars(+List)

module: stdscan

set_scan_pars(+List) is used to configure the tokenizer to a particular need. List is a list of parameters including the following:

- whitespace. The default action of the scanner is to return a list of tokens, with any whitespace removed. If whitespace is a parameter, then the scanner returns the token "when it finds whitespace separating two tokens (unless the two tokens are letter sequences; since two letter sequences can be two tokens ONLY if they are separated by whitespace, such an indication of whitespace would be redundant.) Including the parameter no_whitespace undoes the effect of previously including whitespace.
- upper_case The default action of the parser is to treat lowercase letter differently from uppercase letters. This parameter should be set if conversion to uppercase should be done when producing a token that does *not* consist entirely of letters (e.g. one with mixed letters and digits). Including the parameter no_case undoes the effect of previously including upper_case.
- upper_case_in_lit The default action of the parser is to treat lowercase letter differently from uppercase letters. This parameter should be set if conversion to uppercase should be done when producing a token that consists entirely of letters. Including the parameter no case in lit undoes the effect of previously including upper case.
- whitespace(Code) adds Code as a whitespace code. By default, all ASCII codes less than or equal to 32 are regarded as whitespace.
- letter(Code) adds Code as a letter constituting a token. By default, ASCII codes for characters a-z and A-Z are regarded as letters.
- special_char(Code) adds Code as a special character. By default, ASCII codes for the following characters are regarded as special characters:

```
| { } [ ] " $ % & ' ( ) * + , - . / : ; < = > ? @ \ ^ _ ~ '
```

get_scan_pars(-List)

module: stdscan

get_scan_pars/1 returns a list of the currently active parameters.

1.14 XSB Lint

The xsb_lint_impexp.P file contains a simple tool to analyze import/exports and definitions and uses of predicates. It tries to find possible inconsistencies, producing warnings when it finds

them and generating document_import/document_export declarations that might be useful. It can be used after a large multi-file, multi-module XSB program has been written to find possible inconsistencies in (or interesting aspects of) how predicates are defined and used.

XSB source files that contain an export compiler directive are considered as modules. Predicates defined in modules, but not exported, are local to that module. When compiling a module, the XSB compiler generates useful warnings when predicates are used but not defined or defined but not used. All predicates that are defined in source files that do not contain an export directive are compiled to be defined in a global module, called usermod, and no warning messages are generated. The user may add document_export and document_import compiler directives (exactly analogous to the export and import directives) to non-module source files. These directives are ignored by the compiler for its compilation, but cause the define-use analysis to be done and any warning messages to be issued, if appropriate. This allows a user to get the benefit of the define-use analysis without using modules. (See Volume 1, Chapter 3 for more details.)

The xsb_lint_impexp utility processes both modules and regular XSB source files that contain document_export statements. xsb_lint_impexp is not itself a module. To use it, [xsb_lint_impexp] must be consulted, which will define the checkImpExps/{1,2} and add_libraries/1 predicates in usermod.

add_libraries(+DirectoryNameList)

add_libraries/1 takes a list of directory names and adds them to the library_directory/1 predicate. This causes the XSB system to look for XSB source code files in these directories. To use checkImpExps/{1,2}, all the directories that contain files (or modules) referenced (recursively) in the files to be processed must be in the library_directory/1 predicate. This predicate can be used to add a number of directories at once.

checkImpExps(+Options,+FileNameList)

checkImpExps/1 reads all the XSB source files named in the list FileNameList, and all files they reference (recursively), and produces a listing that describes properties of how they reference predicates.

Options is a list of atoms (from the following list) indicating details of how checkImpExps should work.

- 1. used_elsewhere: Print a warning message in the case of a predicate defined in a file, not used there, but used elsewhere (in a file in FileNameList). This can be useful to see whether it might be better to move the predicate definition to another file, but it produces many warnings for predicates in multi-use libraries.
- 2. unused: Print a warning message in the case of a predicate that is exported but never used. This can be useful to see if predicate is not used anywhere, and thus could be deleted. Again this produces many warnings for predicates in multi-use libraries.
- 3. all_files: By default, only predicates in files that contain a :- document_export or :- export declaration are processed. This option causes predicates of *all* files (and modules) to be processed.
- 4. all_symbol_uses: Treat all non-predicate uses of symbols (even constants) as predicate uses for the purpose of generating imports.

module: machine

pretty_print

module: pretty_print

module:

5. no_symbol_uses: Don't treat any non-predicate uses of symbols as predicate uses for the purpose of generating imports.

We further explain the final two options, which allow the user to determine more precisely what uses of a symbol are considered as uses of it as the predicate symbol. All uses of symbols that appear in a "predicate context", i.e., in the body of a rule or in a meta-predicate argument position of a use of a meta-predicate, are considered uses of that predicate symbol. The default is also to allow nonconstant symbols appearing in any other context to also count as uses of that symbol as that predicate symbol. This is useful for programs that define their own meta-predicates.

checkImpExps(+FileNameList)

checkImpExps/1 is currently equivalent to checkImpExps([],FileNameList).

1.15 Miscellaneous Predicates

term_hash(+Term,+HashSize,-HashVal)

Given an arbitrary Prolog term, Term, that is to be hashed into a table of HashSize buckets, this predicate returns a hash value for Term that is between 0 and HashSize -1.

```
pretty_print(+ClausePairs)
```

```
pretty_print(+Stream,+ClausePairs)
```

The input to pretty_print/1, ClausePairs, can be either a list of clause pairs or a single clause pair. A clause pair is either a Prolog clause (or declaration) or a pair:

```
(Clause, Dict)
```

Where Dict is a list of the form A = V where V is a variable in Clause and A is the string to be used to denote the variable 9.

By default, pretty_print/1 outputs atomic terms using writeq/1, but specialized output can be configured via asserting in usermod a term of the form

```
user_replacement_hook(Term,Call)
```

which will use Call to output an atomic literal A whenever A unifies with Term. For example, pretty printing weight constraints in XSB's XASP package is done via the hook

```
user_replacement_hook(weight_constr(Term),output_weight_constr(Term))
```

which outputs a weight constraint in a (non-Prolog) syntax that is used by several ASP systems.

⁹Thus the list of variable names returned by read_term/{2,3} can be used directly in Dict.

1.16 Other Libraries

Not all XSB libraries are fully documented. We provide brief summaries of some of these other libraries.

1.16.1 Justification

By Hai-Feng Guo

Most Prolog debuggers, including XSB's, are based on a mechanism that allows a user to trace the evaluation of a goal by interrupting the evaluation at call, success, retry, or failure of various subgoals. While this has proved an excellent mechanism for evaluating SLD(NF) executions, it is difficult at best to use such a mechanism during a tabled evaluation. This is because, unlike with SLD(NF), SLG requires answers to be returned to tabled subgoals at various times (depending on whether batched or local evaluation is used), negative subgoals to be sometimes be delayed and/or simplified, etc.

One approach to understanding tabled evaluation better is to abstract away the procedural aspects of debugging and to use the tables produced by an evaluation to construct a *justification* after the evaluation has finished. The justification library does just this using algorithms described in [14].

1.16.2 AVL Trees

By Mats Carlsson

AVL trees provide a mechanism to maintain key value pairs so that loop up, insertion, and deletion all have complexity $\mathcal{O}(\log n)$. This library contains predicates to transform a sorted list to an AVL tree and back, along with predicates to manipulate the AVL trees.

1.16.3 Ordered Sets: ordsets.P

By Richard O'Keefe

(Summary from code documentation) ordset.P provides an XSB port of the widely used ordset library, whose summary we paraphrase here. In the ordset library, sets are represented by ordered lists with no duplicates. Thus $\{c,r,a,f,t\}$ is represented as [a,c,f,r,t]. The ordering is defined by the @< family of term comparison predicates, which is the ordering used by sort/2 and setof/3. The benefit of the ordered representation is that the elementary set operations can be done in time proportional to the sum of the argument sizes rather than their product. Some of the unordered set routines, such as member/2, length/2, or select/3 can be used unchanged.

1.16.4 Unweighted Graphs: ugraphs.P

By Mats Carlsson

XSB also includes a library for unweighted graphs. This library allows for the representation and manipulation of directed and non-directed unlabelled graphs, including predicates to find the transitive closure of a graph, maximal paths, minimal paths, and other features. This library represents graphs as an ordered set of their edges and does not use tabling. As a result, it may be slower for large graphs than similar predicates based on a datalog representation of edges.

1.16.5 Heaps: heaps.P

By Richard O'Keefe

(Summary from code documentation). A heap is a labelled binary tree where the key of each node is less than or equal to the keys of its sons. The point of a heap is that we can keep on adding new elements to the heap and we can keep on taking out the minimum element. If there are N elements total, the total time is $\mathcal{O}(Nlg(N))$. If you know all the elements in advance, you are better off doing a merge-sort, but this file is for when you want to do say a best-first search, and have no idea when you start how many elements there will be, let alone what they are.

A heap is represented as a triple t(N, Free, Tree) where N is the number of elements in the tree, Free is a list of integers which specifies unused positions in the tree, and Tree is a tree made of t terms for empty subtrees and t(Key,Datum,Lson,Rson) terms for the rest The nodes of the tree are notionally numbered like this:

The idea is that if the maximum number of elements that have been in the heap so far is M, and the tree currently has K elements, the tree is some subtreee of the tree of this form having exactly M elements, and the Free list is a list of K-M integers saying which of the positions in the M-element tree are currently unoccupied. This free list is needed to ensure that the cost of passing N elements through the heap is $\mathcal{O}(Nlg(M))$ instead of $\mathcal{O}(NlgN)$. For M say 100 and N say 10^4 this means a factor of two.

Chapter 2

Foreign Language Interface

When XSB is used to build real-world systems, a foreign-language interface may be necessary to:

- combine XSB with existing programs and libraries, thereby forming composite systems;
- interface XSB with the operating system, graphical user interfaces or other system level programs;
- speed up certain critical operations.

XSB has both a high-level and the low-level interface to C. The low-level interface is much more flexible, but it requires greater attention to details of how the data is passed between XSB and C. To connect XSB to a C program using the high-level interface requires very little work, but the program must be used "as is" and it must take the input and produce the output supported by this high-level interface. Before describing the interfaces themselves, we first describe aspects common to both the lower- and higher-level foreign language interfaces.

The foreign language interface can also support C++ programs. Since XSB is written in C, the interface functions in the foreign C++ module must have the declaration extern "C", and a separate compiler option (e.g. specifying g++ rather than gcc) may need to be given to ensure proper linkage, inclusion of C++ libraries, etc. In addition, on certain platforms compilation may need to be done externally to XSB – see the xasp 1package for a example of using the foreign language interface with C++ files. For the rest of this chapter, we restrict our attention to foreign predicates written in C.

2.1 Foreign Language Modules

Foreign predicates must always appear in modules, and these modules can contain only foreign predicates. A foreign module differs from a Prolog module in that the foreign module's source file must appear in a *.c file rather than a *.P file (or .pl file). This *.c file cannot contain a main() function. Furthermore, a *.P file with the same name must not be present or else the *.c file is ignored and the module is compiled as a regular Prolog module. The interface part of a foreign

module, which has the same syntax as that of a normal module, is written in Prolog and must appear in a *.H file. If the lower-level interface is used, this *.H file contains explicit export/1 declarations for the the foreign predicates that are to be used by other modules; if the higher-level interface is used, the declarations have the form foreign_pred/1.

The Prolog predicates attached to foreign functions are deterministic, in the sense that they succeed at most once for a given call and are not re-entered on backtracking. Note that this requirement imposes no serious limitation, since it is always possible to divide a foreign predicate into the part to be done on the first call and the part to be redone on backtracking. Backtracking can then take place at the Prolog level where it is more naturally expressed.

A foreign module can be compiled or consulted just like a normal Prolog module. Currently, predicates consult/[1,2] recompile both the *.c and the *.H files of a foreign module when at least one of them has been changed from the time the corresponding object files have been created (see the section Compiling and Consulting in Volume 1). The C compiler used to compile the *.c files can be set as a defaults to that used for the configuration of XSB (refer to the section Getting Started with XSB in Volume 1). This default behavior includes the C compilation options used to compile XSB when it was configured, along with a default set of include files so that header files in XSB directories can be obtained. Alternately, the user can add options to be passed to the C compiler. To give an example, the following command will compile file file.c using the default C Compiler with optimization and by including /usr/local/X11/R6/include to the directories that will be searched for header files.

```
:- consult(file, [cc_opts('-02 -I/usr/local/X11/R6/include')]).
```

Note in particular, that if XSB were compiled with the -g debugging option, then the C file will be also ². Any Prolog compiler options are ignored when compiling a foreign module.

Prolog-specific directives such as index, hilog, table, auto_table or even import make no sense in the case of a foreign module and thus are ignored by the compiler. However, another directive, namely ldoption, is recognized in a foreign module and is used to instruct the dynamic loading and linking of the module. The syntax of the ldoption directive is simply:

where Option should either be an atom or a list of atoms. Multiple ldoption directives may appear in the same .H file of a foreign module ³. In Unix-derived systems, the foreign language interface of XSB uses ld command that combines object programs to create an executable file or

¹In addition, if a C module compiled by the single-threaded XSB engine is loaded by the multi-threaded engine, it will be recompiled, and vice-versa.

² In a 64-bit platform, users may override the default compilation of XSB by the configuration options -with-bits32 or -with-bits64. If either of these options is used, the default compilation options will pass along the appropriate memory options. If XSB is compiled with a memory option that is not the default of the platform, and if an externally compiled C file is to be loaded into XSB, it must be ensured that the C file has been compiled with the appropriate memory options: -m32 or -m64 if gcc is used.

³Mac OSX users using 10.3 or above should have the environment variable MACOSX_DEPLOYMENT_TARGET set to 10.3 so that the compiler generates code that can be dynamically linked by XSB. This should be done automatically by XSB on initialization, but it is useful to check if encountering problems.

another object program suitable for further 1d processing. Version 3.3 of XSB assumes that the 1d command resides in the file /usr/bin/ld.

2.2 Lower-Level Foreign Language Interface

Creating a foreign predicate using the lower-level foreign language interface is almost entirely a matter of writing C code. Consider the foreign module \$XSBDIR/examples/XSB_calling_c/simple_foreign.[cH]. The .H file has the form:

When the lower level foreign language interface is used, C functions that implement foreign predicates must return values of type int. The return value is not used by a Prolog argument; rather if a non-zero is returned, the foreign predicate succeeds; a zero return value means failure.

At the C level, the function that implements the Prolog predicate must have the same name as the Prolog predicate (that is declared in the *.H file), and must have a special *context parameter* macro. The context parameter macro allows C functions to be used with both the single-threaded and multi-threaded engines, and are described in detail in Section 2.2.1. The Prolog level arguments are converted to C data structures through several predefined functions rather than through direct parameter passing ⁴. The C file simple_foreign.c corresponding to the above .H file is as follows.

```
/*-----*/
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <alloca.h>

/*---- Make sure your C compiler finds the following header file. ----
---- One way to do this is to include the directory XSB/emu on the ----
----- compiler's command line with the -I (/I in Windows) option ----*/
#include "cinterf.h"

/*-----*/
int minus_one(CTXTdecl)
{
   int i = ptoc_int(CTXTc 1);
```

⁴The inclusion of context parameters changes the lower-level interface for Version 3.0. C files written for previous versions of XSB continue to work properly for the single-threaded engine in, but will not work properly for the multi-threaded engine.

```
ctop_int(CTXTc 2, i-1);
  return TRUE;
}
/*----*/
int my_sqrt(CTXTdecl)
  int i = ptoc_int(CTXTc 1);
  ctop float(CTXTc 2, (float) pow((double)i, 0.5));
  return TRUE;
}
/*----*/
int change_char(CTXTdecl)
  char *str_in;
  int pos;
  int c;
  char *str_out;
  str_in = (char *) ptoc_string(CTXTc 1);
  str_out = (char *) alloca(strlen(str_in)+1);
  strcpy(str_out, str_in);
  pos = ptoc_int(CTXTc (2);
  c = ptoc_int(CTXTc (3);
  if (c < 0 \mid \mid c > 255) /* not a character */
    return FALSE; /* this predicate will fail on the Prolog side */
  str_out[pos-1] = c;
  extern_ctop_string(CTXTc 4, str_out);
  return TRUE;
}
/*----*/
```

Before describing the C program used, here is a sample session illustrating the behavior of the predicates in simple_foreign.

```
XSB Version 2.0 (Gouden Carolus) of June 26, 1999
[i686-pc-linux-gnu; mode: optimal; engine: slg-wam; scheduling: batched]
| ?- [simple_foreign].
[Compiling C file ./simple_foreign.c using gcc]
[Compiling Foreign Module ./simple_foreign]
[simple_foreign compiled, cpu time used: 0.0099993 seconds]
[simple_foreign loaded]
```

```
yes
| ?- change_char('Kostis', 2, w, TempStr),
     change_char(TempStr, 5, h, GrkName).
TempStr = Kwstis
GrkName = Kwsths;
no
| ?- minus_one(43, X).
X = 42;
| ?- minus_one(43, 42).
                                           % No output unification is allowed
Wrong arg in ctop_int 2a2 (Reg = 2)
| ?- my_sqrt(4,X).
X = 2
| ?- my_sqrt(23,X).
X = 4.7958;
nο
```

Consider the function minus_one() above. As discussed, it takes a context parameter (explained below), and returns an integer, and as can be seen the return values can be specified by the macros TRUE and FALSE. From the Prolog perspective the first argument to minus_one/2 is an (integer) input argument, while the second is an (integer) output argument. Input arguments for basic C types are translated from their Prolog representation to a C representation by functions of the form ptoc_<type>() - here ctop_int(). The single parameter of such a function is the number of the Prolog argument that is to be transformed and the function returns the C representation. Output arguments are converted from C to Prolog by corresponding functions of the form ctop_<type>() - here ctop_int(). For converting C back to Prolog, the first parameter of ctop_int() is the number of the Prolog argument to be transformed and the second is the C value to be transformed. In the session output above, if an improper argument is given to minus_one/2 it will emit a warning, and succeed. Also note that the call my_sqrt(23,X) succeeds once, but fails on backtracking since it is deterministic, as are all other foreign language functions.

The above example illustrates the exchange of *basic* types through the lower-level interface – e.g. atoms, integers, and floating-point numbers. The lower-level interface also allows a user to pass lists and terms between XSB and C as will be discussed in Section 2.2.3.

2.2.1 Context Parameters

When using the lower-level interface, context parameters must be added to many C functions in order for the functions to be used with XSB's multi-threaded engine. In the multi-threaded engine, variables for Prolog's virtual machine, as well as for thread-private data structures are stored in a context structure. This context structure must be passed to any functions that need to access elements of a thread's virtual machine – including many of the functions that are used to exchange data between Prolog and C. We note in passing that when using the multi-threaded engine, a user must ensure that foreign-language functions are thread-safe, by using standard multi-threaded programming techniques, including XSB's mutex predicates (see the Section Predicates for Thread Synchronization in Volume 1 of this manual). On the other hand, in the single-threaded engine virtual machine elements are kept in static variables, so that context parameters are not required.

The lower-level C interface makes use of a set of macros to address the requirements of the different engines. The data exchange functions discussed in this chapter, ptoc_xxx, ctop_xxx, c2p_xxx, p2c_xxx, and p2p_xxx usually, but not always, require information about a threads virtual machine state. If a C function directly or indirectly calls a data interchange function that requires a context parameter, the function must have a context parameter in its declaration, calls, and prototypes in order to be used by the multi-threaded engine. These context parameters have the following forms:

- In function *declarations*, use the macro CTXTdecl in the code for a function that would otherwise be void, and CTXTdeclc as the first argument in the code for a function with parameters (CTXTdeclc and CTXTdecl are similar, except that macro expansion of CTXTdeclc for the multi-threaded engine includes a comma). The example for minus_one(CTXTdecl) shows use of this macro.
- In function *calls* use the macro CTXT in the code for a function that would otherwise be void, and CTXTc as the first argument in the code for a function with parameters. As an example, a call to minus_one would have the form minus_one(CTXT).
- In function *prototypes* use the macro CTXTdecltype in the code for a function that would otherwise be void, and CTXTdecltypec as the first argument in the code for a function with parameters. As an example, a prototype for minus_one would have the form minus_one(CTXTdecltype).

Fortunately, when compiling with the multi-threaded engine, it is easy to determine at compile time whether context parameters are correct. If compilation of a function foo gives an error along the lines of:

```
foofile.c: In function 'foo':
foofile.c:109: error: 'th' undeclared (first use in this function)
```

Then the declaration of **foo** omitted a context parameter. If compilation gives an error along the lines of

```
foofile.c: In function 'foo_caller':
```

:
foofile.c:149: error: too few arguments to function 'foo'

Then the call to foo may have omitted a context parameter.

Note that context parameters are *only* necessary if the lower-level interface is used. The higher-level interface automatically generates any context parameters it needs.

2.2.2 Exchanging Basic Data Types

The basic interface assumes that correct modes (i.e., input or output parameters) and types are being passed between the C and Prolog levels. As a result, output unification should be explicitly performed in the Prolog level. The prototypes for the conversion functions between Prolog and C should be declared before the corresponding functions are used. This is done by including the "cinterf.h" header file. Under Unix, the XSB foreign C interface automatically finds this file in the XSB/emu directory. Under Windows (including Cygwin), the user must compile and create the DLL out of the C file manually, so the compiler option '/I...\XSB\emu' is necessary.

The following C functions are used to convert basic types between Prolog and C.

int ptoc_int(CTXTdeclc int N)

CTXTdeclc is a context parameter; N is assumed to hold a Prolog integer corresponding to the Nth argument of a Prolog predicate. This function returns the value of that argument in as a C int.

double ptoc_float(CTXTdeclc int N)

CTXTdeclc is a context parameter; N is assumed to hold a Prolog integer corresponding to the Nth argument of a Prolog predicate. This function returns the value of that argument as a C double. By default, XSB provides double precision, but if XSB was configured with -enable-fast-floats less than single precision can be provided ⁵.

char *ptoc_string(CTXTdeclc int N)

CTXTdeclc is a context parameter; N is assumed to hold a Prolog integer corresponding to the Nth argument of a Prolog predicate. This function returns the value the C string (of type char *) that corresponds to this interned Prolog atom. WARNING: the string should be copied before being manipulated in any way: otherwise unexpected results may arise whenever the interned Prolog atom is unified.

void ctop_int(CTXTdeclc int N, int V)

CTXTdeclc is a context parameter; argument N is assumed to hold a Prolog free variable, and this function binds that variable to an integer of value V.

void ctop_float(CTXTdeclc int N, float V)

CTXTdeclc is a context parameter; argument N is assumed to hold a Prolog free variable, and this function binds that variable to a floating point number of value V.

⁵The fast float configuration option does represents floating point values as directly tagged single precision values rather than as indirectly tagged double precision values. Speed increases in arithmetic can be gained from this optimization, in exchange for significant precision loss on floating point numbers.

```
void extern_ctop_string(CTXTdeclc int N, char * V)
```

CTXTdeclc is a context parameter; argument N is assumed to hold a Prolog free variable. If needed, this function interns the string to which V points as a Prolog atom and then binds the variable in argument N to that atom.

2.2.3 Exchanging Complex Data Types

If the lower-level interface is used, exchanging basic data types is sufficient for most applications. Exchanging complex data types is also possible, although doing so is slightly more involved than exchanging basic types. To exchange complex data types, the lower-level interface uses only one C data type: prolog_term, which can point to any XSB term. On the C side, the type of the term can be checked and then processed accordingly. For instance, if the term turns out to be a structure, then it can be decomposed and the functor can be extracted along with the arguments. If the term happens to be a list, then it can be processed in a loop and each list member can be further decomposed into its atomic components. The advanced interface also provides functions to check the types of these atomic components and for converting them into C types.

We begin by presenting the functions used to exchange complex data types, before presenting a detailed example below. As when exchanging basic C types, the file emu/cinterf.h must be included in the C program in order to make the prototypes of the relevant functions known to the C compiler.

The first set of functions is typically used to check the type of Prolog terms passed into the C program.

```
xsbBool is_attv((prolog_term) T)
      is attv(T) returns TRUE if T represents an XSB attributed variable, and FALSE otherwise.
xsbBool is float((prolog term) T)
      is_float(T) returns TRUE if T represents an XSB float value, and FALSE otherwise.
xsbBool is_functor((prolog_term) T)
      is functor(T) returns TRUE if T represents an XSB structure value (not a list), and FALSE
     otherwise.
xsbBool is int((prolog term) T)
      is int(T) returns TRUE if T represents an XSB integer value, and FALSE otherwise.
xsbBool is_list((prolog_term) T)
      is list(T) returns TRUE if T represents an XSB list value (not nil), and FALSE otherwise.
xsbBool is_nil((prolog_term) T)
      is_nil(T) returns TRUE if T represents an XSB [] (nil) value, and FALSE otherwise.
xsbBool is_string((prolog_term) T)
      is string(T) returns TRUE if T represents an XSB atom value, and FALSE otherwise.
xsbBool is var((prolog term) T)
```

is var(T) returns TRUE if T represents an XSB variable, and FALSE otherwise.

After checking the types of the arguments passed in from the Prolog side, the next task usually is to convert Prolog data into the types understood by C. This is done with the following functions. The first three convert between the basic types. The last two extract the functor name and the arity. Extraction of the components of a list and the arguments of a structured term is explained later.

int p2c_int((prolog_term) V)

The prolog_term parameter must represent a Prolog integer, and p2c_int returns the C representation of that integer.

double p2c_float((prolog_term) V)

The prolog_term parameter must represent a Prolog floating point number, and p2c_float returns the C representation of that floating point number.

char *p2c_string((prolog_term) V)

The prolog_term parameter must represent a (Prolog) atom, and p2c_string returns that atom as a C string. The pointer returned points to the actual atom name in XSB 's atom table, and thus it must NOT be modified by the calling program.

char *p2c_functor((prolog_term) V)

The prolog_term parameter must represent a structured term (not a list). p2c_functor returns the name of the main functor symbol of that term as a string. The pointer returned points to the actual functor name in XSB 's space, and thus it must NOT be modified by the calling program.

int p2c_arity((prolog_term) V)

The prolog_term parameter must represent a structured term (not a list). p2c_arity returns the arity of the main functor symbol of that term as a C int.

The next batch of functions support conversion of data in the opposite direction: from basic C types to the type prolog_term. These c2p_* functions all return a boolean value TRUE if successful and FALSE if unsuccessful. The XSB term argument must always contain an XSB variable, which will be bound to the indicated value as a side effect of the function call.

xsbBool c2p_int(CTXTdeclc (int) N, (prolog_term) V)

CTXTdeclc is a context parameter; c2p_int binds the prolog_term V (which must be a variable) to the integer value N, creating a Prolog integer.

xsbBool c2p_float(CTXTdeclc (double) F, (prolog_term) V)

CTXTdeclc is a context parameter; c2p_float binds the prolog_term V (which must be a variable) to the (double) float value F, creating a double Prolog float.

xsbBool c2p_string(CTXTdeclc (char *) S, (prolog_term) V)

CTXTdeclc is a context parameter; c2p_string binds the prolog_term V (which must be a variable) to the Prolog atom corresponding to the char *S. During this process the Prolog atom is interned into XSB's atom table.

The following functions create Prolog data structures within a C program. This is usually done in order to pass these structures back to the Prolog side.

xsbBool c2p_functor(CTXTdeclc (char *) S, (int) N, (prolog_term) V)

CTXTdeclc is a context parameter; c2p_functor binds the prolog_term V (which must be a variable) to an open term whose main functor symbol is given by S (of type char *) and whose arity is N. An open term is one with all arguments as new distinct variables.

xsbBool c2p_list(CTXTdeclc (prolog_term) V)

CTXTdeclc is a context parameter; c2p_list binds the prolog_term V (which must be a variable) to an open list term, i.e., a list term with both car and cdr as new distinct variables. Note: to create an empty list use the function c2p_nil described below.

xsbBool c2p_nil(CTXTdeclc (prolog_term) V)

CTXTdeclc is a context parameter; c2p_nil binds the prolog_term V (which must be a variable) to the atom [] (nil).

prolog_term p2p_new()

Create a new Prolog variable. This is sometimes needed when you want to create a Prolog term on the C side and pass it to the Prolog side.

To use the above functions, one must be able to get access to the components of the structured Prolog terms. This is done with the help of the following functions:

prolog_term p2p_arg((prolog_term) T, (int) A)

Parameter T must be a prolog_term that is a structured term (but not a list). A is a positive integer (no larger than the arity of the term) that specifies an argument position of the term T. $p2p_arg$ returns the A^{th} subfield of the term T.

prolog_term p2p_car((prolog_term) T)

Parameter T must be a prolog_term that is a list (not nil). p2p_car returns the car (i.e., head of the list) of the term T.

prolog_term p2p_cdr((prolog_term) T)

Parameter T must be a prolog_term that is a list (not nil). p2p_cdr returns the cdr (i.e., tail of the list) of the term T.

It is important to realize that these functions return the actual Prolog term that is, say, the head of a list or the actual argument of a structured term. Thus, assigning a value to such a Prolog term also modifies the head of the corresponding list or the relevant argument of the structured term. It is precisely this feature that allows passing structured terms and lists from the C side to the Prolog side. For instance,

In the above program fragment, we assume that both the tail of the list and the second argument of the term were supposed to be bound to Prolog variables. In case of the tail, we check if this is, indeed, the case. In case of the argument, no checks are done; XSB will issue an error (which might be hard to track down) if the second argument is not currently bound to a variable.

The last batch of functions is useful for passing data in and out of the Prolog side of XSB. The first function is the only way to get a prolog_term out of the Prolog side; the second function is sometimes needed in order to pass complex structures from C into Prolog.

```
prolog_term reg_term(CTXTdeclc (int) R)
```

CTXTdeclc is a context parameter. Parameter R is an argument number of the Prolog predicate implemented by this C function (range 1 to 255). The function reg_term returns the prolog_term in that predicate argument.

```
xsbBool p2p_unify(CTXTdeclc prolog_term T1, prolog_term T2)
```

Unify the two Prolog terms. This is useful when an argument of the Prolog predicate (implemented in C) is a structured term or a list, which acts both as input and output parameter. CTXTdeclc is a context parameter.

For instance, consider the Prolog call test(X, f(Z)), which is implemented by a C function with the following fragment:

```
prolog_term newterm, newvar, z_var, arg2;
.....
/* process argument 1 */
c2p_functor(CTXTc "func",1,reg_term(CTXTc 1));
c2p_string(CTXTc "str",p2p_arg(reg_term(CTXTc 1),1));
/* process argument 2 */
arg2 = reg_term(CTXTc 2);
z_var = p2p_arg(arg2, 1); /* get the var Z */
/* bind newterm to abc(V), where V is a new var */
c2p_functor(CTXTc "abc", 1, newterm);
```

```
newvar = p2p_arg(newterm, 1);
newvar = p2p_new();
....
/* return TRUE (success), if unify; FALSE (failure) otherwise */
return p2p_unify(CTXTc z_var, newterm);
```

On exit, the variable X will be bound to the term func(str). Processing argument 2 is more interesting. Here, argument 2 is used both for input and output. If test is called as above, then on exit Z will be bound to abc(_h123), where _h123 is some new Prolog variable. But if the call is test(X,f(1)) or test(X,f(Z,V)) then this call will fail (fail as in Prolog, i.e., it is not an error), because the term passed back, abc(_h123), does not unify with f(1) or f(Z,V). This effect is achieved by the use of p2p_unify above.

We conclude this section with two real examples of functions that pass complex data in and out of the Prolog side of XSB. These functions are part of the POSIX regular expression matching package of XSB. The first function uses argument 2 to accept a list of complex Prolog terms from the Prolog side and does the processing on the C side. The second function does the opposite: it constructs a list of complex Prolog terms on the C side and passes it over to the Prolog side in argument 5.

(We should note that this second function could cause a heap overflow in XSB were it to build a large list of values. Instead of building a large list of values on the XSB heap, one would better design the functions to return smaller values, in which case XSB will be able to automatically expand the heap as necessary.)

```
/* XSB string substitution entry point: replace substrings specified in Arg2
   with strings in Arg3.
   In:
       Arg1: string
       Arg2: substring specification, a list [s(B1,E1),s(B2,E2),...]
       Arg3: list of replacement string
       Arg4: new (output) string
   Always succeeds, unless error.
int do_regsubstitute__(CTXTdecl)
  /* Prolog args are first assigned to these, so we could examine the types
     of these objects to determine if we got strings or atoms. */
  prolog_term input_term, output_term;
  prolog_term subst_reg_term, subst_spec_list_term, subst_spec_list_term1;
  prolog_term subst_str_term=(prolog_term)0,
   subst_str_list_term, subst_str_list_term1;
                              /* string where matches are to be found */
  char *input_string=NULL;
  char *subst_string=NULL;
  prolog_term beg_term, end_term;
  int beg_offset=0, end_offset=0, input_len;
  int last pos = 0; /* last scanned pos in input string */
  /* the output buffer is made large enough to include the input string and the
```

```
substitution string. */
char subst_buf[MAXBUFSIZE];
char *output_ptr;
int conversion_required=FALSE; /* from C string to Prolog char list */
input_term = reg_term(CTXTc 1); /* Arg1: string to find matches in */
if (is_string(input_term)) /* check it */
  input_string = string_val(input_term);
else if (is_list(input_term)) {
  input_string =
   p charlist to c string(input term, input buffer, sizeof(input buffer),
                           "RE_SUBSTITUTE", "input string");
 conversion required = TRUE;
} else
 xsb_abort("RE_SUBSTITUTE: Arg 1 (the input string) must be an atom or a character list");
input_len = strlen(input_string);
/* arg 2: substring specification */
subst_spec_list_term = reg_term(CTXTc 2);
if (!is_list(subst_spec_list_term) && !is_nil(subst_spec_list_term))
 xsb_abort("RE_SUBSTITUTE: Arg 2 must be a list [s(B1,E1),s(B2,E2),...]");
/* handle substitution string */
subst_str_list_term = reg_term(CTXTc 3);
if (! is_list(subst_str_list_term))
 xsb_abort("RE_SUBSTITUTE: Arg 3 must be a list of strings");
output_term = reg_term(CTXTc 4);
if (! is var(output term))
 xsb_abort("RE_SUBSTITUTE: Arg 4 (the output) must be an unbound variable");
subst_spec_list_term1 = subst_spec_list_term;
subst str list term1 = subst str list term;
if (is_nil(subst_spec_list_term1)) {
  strncpy(output_buffer, input_string, sizeof(output_buffer));
 goto EXIT;
if (is_nil(subst_str_list_term1))
 xsb_abort("RE_SUBSTITUTE: Arg 3 must not be an empty list");
/* initialize output buf */
output_ptr = output_buffer;
do {
  subst_reg_term = p2p_car(subst_spec_list_term1);
  subst_spec_list_term1 = p2p_cdr(subst_spec_list_term1);
  if (!is_nil(subst_str_list_term1)) {
    subst str term = p2p car(subst str list term1);
```

```
subst_str_list_term1 = p2p_cdr(subst_str_list_term1);
     if (is_string(subst_str_term)) {
       subst_string = string_val(subst_str_term);
     } else if (is_list(subst_str_term)) {
       subst_string =
         p_charlist_to_c_string(subst_str_term, subst_buf, sizeof(subst_buf),
                                 "RE_SUBSTITUTE", "substitution string");
     } else
       xsb_abort("RE_SUBSTITUTE: Arg 3 must be a list of strings");
   beg_term = p2p_arg(subst_reg_term,1);
   end_term = p2p_arg(subst_reg_term,2);
   if (!is_int(beg_term) || !is_int(end_term))
     xsb abort("RE SUBSTITUTE: Non-integer in Arg 2");
   else{
     beg_offset = int_val(beg_term);
     end_offset = int_val(end_term);
   /* -1 means end of string */
   if (end_offset < 0)</pre>
     end_offset = input_len;
   if ((end_offset < beg_offset) || (beg_offset < last_pos))</pre>
     xsb_abort("RE_SUBSTITUTE: Substitution regions in Arg 2 not sorted");
   /* do the actual replacement */
   strncpy(output_ptr, input_string + last_pos, beg_offset - last_pos);
   output_ptr = output_ptr + beg_offset - last_pos;
   if (sizeof(output_buffer)
       > (output_ptr - output_buffer + strlen(subst_string)))
     strcpy(output_ptr, subst_string);
     xsb_abort("RE_SUBSTITUTE: Substitution result size %d > maximum %d",
               beg_offset + strlen(subst_string),
               sizeof(output_buffer));
   last_pos = end_offset;
   output_ptr = output_ptr + strlen(subst_string);
 } while (!is_nil(subst_spec_list_term1));
 if (sizeof(output_buffer) > (output_ptr-output_buffer+input_len-end_offset))
   strcat(output_ptr, input_string+end_offset);
EXIT:
 /* get result out */
 if (conversion required)
   c_string_to_p_charlist(output_buffer,output_term, "RE_SUBSTITUTE", "Arg 4");
 else
```

```
/* DO NOT intern. When atom table garbage collection is in place, then
       replace the instruction with this:
                  c2p_string(CTXTc output_buffer, output_term);
       The reason for not interning is that in Web page
       manipulation it is often necessary to process the same string many
       times. This can cause atom table overflow. Not interning allows us to
       circumvent the problem. */
    extern_ctop_string(CTXTc 4, output_buffer);
 return(TRUE);
}
/* XSB regular expression matcher entry point
      Arg1: regexp
      Arg2: string
      Arg3: offset
      Arg4: ignorecase
  Out:
       Arg5: list of the form [match(bo0,eo0), match(bo1,eo1),...]
             where bo*,eo* specify the beginning and ending offsets of the
             matched substrings.
             All matched substrings are returned. Parenthesized expressions are
             ignored.
int do_bulkmatch__(CTXTdecl)
 prolog_term listHead, listTail;
  /* Prolog args are first assigned to these, so we could examine the types
     of these objects to determine if we got strings or atoms. */
  prolog_term regexp_term, input_term, offset_term;
  prolog_term output_term = p2p_new();
  char *regexp ptr=NULL;
                            /* regular expression ptr
                             /* string where matches are to be found */
  char *input_string=NULL;
  int ignorecase=FALSE;
  int return_code, paren_number, offset;
  regmatch_t *match_array;
  int last_pos=0, input_len;
  char regexp_buffer[MAXBUFSIZE];
  if (first_call)
   initialize_regexp_tbl();
  regexp_term = reg_term(CTXTc 1); /* Arg1: regexp */
  if (is_string(regexp_term)) /* check it */
   regexp ptr = string val(regexp term);
  else if (is_list(regexp_term))
   regexp_ptr =
     p_charlist_to_c_string(regexp_term, regexp_buffer, sizeof(regexp_buffer),
                             "RE MATCH", "regular expression");
```

}

```
else
  xsb_abort("RE_MATCH: Arg 1 (the regular expression) must be an atom or a character list");
input_term = reg_term(CTXTc 2); /* Arg2: string to find matches in */
if (is_string(input_term)) /* check it */
  input_string = string_val(input_term);
else if (is_list(input_term)) {
  input_string =
    p_charlist_to_c_string(input_term, input_buffer, sizeof(input_buffer),
                           "RE_MATCH", "input string");
} else
  xsb_abort("RE_MATCH: Arg 2 (the input string) must be an atom or a character list");
input_len = strlen(input_string);
offset_term = reg_term(CTXTc 3); /* arg3: offset within the string */
if (! is int(offset term))
  xsb_abort("RE_MATCH: Arg 3 (the offset) must be an integer");
offset = int_val(offset_term);
if (offset < 0 || offset > input_len)
  xsb_abort("RE_MATCH: Arg 3 (=%d) must be between 0 and %d", input_len);
/* If arg 4 is bound to anything, then consider this as ignore case flag */
if (! is_var(reg_term(CTXTc 4)))
  ignorecase = TRUE;
last_pos = offset;
/* returned result */
listTail = output_term;
while (last pos < input len) {
  c2p_list(CTXTc listTail); /* make it into a list */
  listHead = p2p_car(listTail); /* get head of the list */
  return_code = xsb_re_match(regexp_ptr, input_string+last_pos, ignorecase,
                             &match_array, &paren_number);
  /* exit on no match */
  if (! return_code) break;
  /* bind i-th match to listHead as match(beg,end) */
  c2p_functor(CTXTc "match", 2, listHead);
  c2p_int(CTXTc match_array[0].rm_so+last_pos, p2p_arg(listHead,1));
  c2p_int(CTXTc match_array[0].rm_eo+last_pos, p2p_arg(listHead,2));
  listTail = p2p_cdr(listTail);
  last_pos = match_array[0].rm_eo+last_pos;
c2p nil(CTXTc listTail); /* bind tail to nil */
return p2p_unify(CTXTc output_term, reg_term(CTXTc 5));
```

2.3 Foreign Modules That Call XSB Predicates

A C function that has been called from XSB through the lower-level foreign language interface may want to call back into XSB to have XSB evaluate a predicate. This can be done by using the interface described in Chapter 3 (Volume 2) on calling XSB from another language. The interface described there allows a caller to initialize XSB and pass queries to it. However, since XSB has already called a foreign module, XSB does not need to be initialized. However it does need to manage the registers that are in use to support interaction with the foreign module currently executing. So there are some minor differences with the interface described in Chapter 3.

First, XSB should not be initialized. I.e., a foreign module should **not** call **xsb_init** or **xsb_init_string**. Second, the foreign module must protect the XSB registers it is currently using when it calls XSB. To do this, after it has retrieved its arguments into local variables and before it calls any XSB predicate, it must call **xsb_query_save(NumRegs)**, which saves the current XSB registers and initializes them to be able to accept a new query. **NumRegs** is the number of registers used to interact with the currently executing foreign routine (i.e., the arity of the predicate that called this foreign code.) When the foreign routine has completed its work, it will set the appropriate registers with the appropriate return values and return to the caller. Before it does this, it must call **xsb_query_restore()** to restore the saved registers and prepare XSB for the return. Note that it must be called before any of the output registers are accessed to set return values. (It must also be called even if no values are returned.)

In summary the extra functions needed to call XSB from a foreign module are:

int xsb_query_save(CTXTc (byte) NumRegs)

This function is used in a foreign routine that is called from XSB. It is used to save the current contents of the XSB registers and to initialize them to be prepared to accept a query. It must be called after a foreign routine collects its input arguments from the XSB registers and before it invokes any XSB predicate.

int xsb_query_restore(CTXT)

This function is used in a foreign routine that is called from XSB and in turn calls an XSB predicate. It is used to restore the previously saved contents of the XSB registers. It must be called after all XSB predicates have been called and returned, and before the current foreign routine sets its output parameters and returns to XSB.

An example where a foreign module and XSB call each other recursively can be found in the directory \$XSB_DIR/examples/XSB_calling_c and files fibr.[cH] and fibp.P.

2.4 Foreign Modules That Link Dynamically with Other Libraries

Sometimes a foreign module might have to link dynamically with other (non-XSB) libraries. Typically, this happens when the foreign module implements an interface to a large external library of utilities. One example of this is the package libwww in the XSB distribution, which provides a

high-level interface to the W3C's Libwww library for accessing the Web. The library is compiled into a set of shared objects and the libwww module has to link with them as well as with XSB.

The problem here is that the loader must know at run time where to look for the shared objects to link with. On Unix systems, this is specified using the environment variable LD_LIBRARY_PATH; on Windows, the variable name is LIBPATH. For instance, under Bourne shell or its derivatives, the following will do:

```
LD_LIBRARY_PATH=dir1:dir2:dir3 export LD_LIBRARY_PATH
```

One problem with this approach is that this variable must be set before starting XSB. The other problem is that such a global setting might interact with other foreign modules.

To alleviate the problem, XSB dynamically sets LD_LIBRARY_PATH (LIBPATH on Windows) before loading foreign modules by adding the directories specified in the -L option in ldoption. Unfortunately, this works on some systems (Linux), but not on others (Solaris). One route around this difficulty is to build a runtime library search path directly into the object code of the foreign module. This can be specified using a loader flag in ldoption. The problem here is that different systems use a different flag! To circumvent this, XSB provides a predicate that tries to guess the right flag for your system:

```
runtime_loader_flag(+Hint,-Flag)
```

Currently it knows about a handful of the most popular systems, but this will be expanded. The argument Hint is not currently used. It might be used in the future to provide runtime_loader_flag with additional information that can improve the accuracy of finding the right runtime flags for various systems.

The above predicate can be used as follows:

```
...,
runtime_loader_flag(_,Flag),
fmt_write_string(LDoptions, '%sdir1:dir2:dir2 %s', args(Flag,OldLDoption)),
fmt_write(File, ':- ldoption(%s).', LDoptions),
file_nl(File).
```

2.5 Higher-Level Foreign Language Interface

The high-level foreign predicate interface was designed to release the programmer from the burden of having to write low-level code to transfer data from XSB to C and vice-versa. Instead, all the user needs to do is to describe each C function and its corresponding Prolog predicates in the .H files. The interface then automatically generates wrappers that translate Prolog terms and structures to proper C types, and vice-versa. These wrappers also check for type-correctness of arguments to the C function; in addition, in Unix-derived systems the wrappers are automatically compiled and loaded along with the foreign predicates in the .c file ⁶.

⁶ for Windows, please see special instructions in Section 2.6.

As with the lower-level foreign interfaces, when predicates are defined in a foreign module myfile.[cH], the predicates must be explicitly imported from the module to be used ⁷. For an example of using the higher level interface, see \$XSBDIR/examples/XSB_calling_c/second_foreign.[cH].

2.5.1 Declaration of high level foreign predicates

The basic formats of a foreign predicate declaration are:

```
:- foreign_pred predname([+-]parg1, [+-]parg2,...)
from funcname(carg1:type1, carg2:type2, ...):functype.
```

and

```
:- private_foreign_pred predname([+-]parg1, [+-]parg2,...)
from funcname(carg1:type1, carg2:type2, ...):functype.
```

where:

foreign_pred, private_foreign_pred

declares a new foreign predicate. For most cases, the declaration foreign_pred can be used in both the multi-threaded and the sequential engine. The declaration private_foreign_pred needs to be used only in the multi-threaded engine when the external foreign function, function a contains a context parameter as its first argument because function needs to access thread-private data or other information from the context of the XSB thread (see Section 2.2.1). This case is uncommen, and mostly occurs for users who are creating XSB packages (e.g. the XASP interface to Smodels).

predname

is the name of the foreign Prolog predicate.

```
parg1, parg2, ...
```

are the predicate arguments. Each argument is preceded by either '+' or '-', indicating its mode as input or output respectively. The names of the arguments must be the same as those used in the declaration of the corresponding C function. If a C argument is used both for input and output, then the corresponding Prolog argument can appear twice: once with "+" and once with "-". In addition, a special argument retval is used to denote the argument that corresponds to the return value of the C function; it must always have the mode '-'.

functame

is the name of the function in the .c file. At compile-time a C function with name predname will be generated which will translate arguments from Prolog to C, call funcname, and then translate arguments back from C to Prolog.

 $^{^{7}}$ In Version 3.3, a foreign module that uses the higher-level C interface must be explicitly consulted before it can be used.

```
carg1, carg2, ...
```

is the list of arguments of the C function. The names used for the arguments must match the names used in the Prolog declaration.

```
type1, type2, ...
```

are the types associated to the arguments of the C function. This is not the set of C types, but rather a set of descriptive types, as defined in Table 2.5.1.

functype

is the return type of the C function.

Using the higher-level interface, the same C code can be used for both the sequential and the multi-threaded engines, and no context parameters are required in a user's C code unless thread context information is explicitly needed. However, a foreign module compiled for the single-threaded engine will need to be recompiled for the multi-threaded engine and vice-versa.

Table 2.5.1 provides the correspondence between the types allowed on the C side of a foreign module declaration and the types allowed on the Prolog side of the declaration.

In all modes and types, checks are performed to ensure the types of the arguments. Also, all arguments of type '-' are checked to be free variables at call time.

2.6 Compiling Foreign Modules on Windows and under Cygwin

Due to the complexity of creating makefiles for the different compilers under Windows, XSB doesn't attempt to compile and build DLL's for the Windows foreign modules automatically. However, for almost all typical cases the user should be able to easily adapt the sample makefile for Microsoft VC++:

```
XSB/examples/XSB_calling_c/MakefileForCreatingDLLs
```

It is important that the C program will have the following lines near the top of the file:

```
#include "xsb_config.h"
#ifdef WIN_NT
#define XSB_DLL
#endif
#include "cinterf.h"
```

Note that these same DLLs will work under Cygwin — XSB's C interface under Cygwin is like that under Windows rather than Unix.

If the above makefile cannot be adapted, then the user has to create the DLL herself. The process is, roughly, as follows: first, compile the module from within XSB. This will create the XSB-specific object file, and (if using the higher-level C interface) the *wrappers*. The *wrappers* are created in a file named xsb_wrap_modulename.c.

Descriptive Type	Mode Usage	Associated C Type	Comments
int	+	int	integer numbers
float	+	double	floating point numbers
atom	+	unsigned long	atom represented as an unsigned long
chars	+	char *	the textual representation of an atom is passed to C as a string
chars(size)	+	char *	the textual representation of an atom is passed to C
, ,			as a string in a buffer of size size
string	+	char *	a prolog list of characters is passed to C as a string
string(size)	+	char *	a prolog list of characters is passed to C as a string
term	+	prolog_term	the unique representation of a term
intptr	+	int *	the location of a given integer
floatptr	+	double *	the location of a given floating point number
atomptr	+	unsigned long *	the location of the unique representation of a given atom
charsptr	+	char **	the location of the textual representation of an atom
stringptr	+	char **	the location of the textual representation of a list of characters
termptr	+	prolog_term *	the location of the unique representation of a term
intptr	-	int *	the integer value returned is passed to Prolog
floatptr	_	double *	the floating point number is passed back to Prolog
charsptr	_	char **	the string returned is passed to Prolog as an atom
stringptr	-	char **	the string returned is passed back as a list of characters
atomptr	_	unsigned long *	the number returned is passed back to Prolog as the
			unique representation of an atom
termptr	-	prolog_term *	the number returned is passed to Prolog as the unique
			representation of a term
chars(size)	+-	char *	the atom is copied from Prolog to a buffer, passed to C
, ,			and converted back to Prolog afterwards
string(size)	+-	char *	the list of characters is copied from Prolog to a buffer,
			passed to C and back to Prolog afterwards
intptr	+-	int *	an integer is passed from Prolog to C and from C back to Prolog
floatptr	+-	double *	a float number is passed from Prolog to C, and back to Prolog
atomptr	+-	unsigned long *	the unique representation of an atom is passed to C, and back to Prolog
charsptr	+-	char **	the atom is passed to C as a string, and a string is passed to
			Prolog as an atom
stringptr	+-	char **	the list of characters is passed to C, and a string passed to Prolog
			as a list of characters
termptr	+-	prolog_term *	the unique representation of a term is passed to C,
			and back to Prolog

Table 2.1: Allowed combinations of types and modes, and their meanings

Then, create a project, using the compiler of choice, for a dynamically-linked library that exports symbols. In this project, the user must include the source code of the module along with the *wrapper* created by XSB. This DLL should be linked against the library

```
XSB\config\x86-pc-windows\bin\xsb.lib
```

which is distributed with XSB. In VC++, this library should be added as part of the linkage specification. In addition, the following directories for included header files must be specified as part of the preprocessor setup:

```
XSB\config\x86-pc-windows
XSB\prolog_includes
XSB\emu
```

In VC++, make sure you check off the "No precompiled headers" box as part of the "Precompiled headers" specification. All these options are available through the Project>Settings menu item.

2.7 Functions for Use in Foreign Code

In addition to functions for passing data between Prolog an C, XSB contains other functions that may be useful in Foreign C code. We mention a few here that pertain to throwing exceptions from C code (cf. Volume 1 Chapter 8: *Exception Handling*). These functions can be used by code that uses either the lower- or higher-level interface.

```
void xsb_domain_error(CTXTdeclc char *valid domain, Cell culprit, char *pred, int arity, int arg)
```

Used to throw an ISO-style domain error from foreign code, indicating that culprit is not in domain valid_domain in argument arg of pred/arity.

Example: The code fragment

```
Cell num;
:
    xsb_domain_error(CTXTc "not_less_than_zero",num,"atom_length",2,2);
in atom_length/2 gives rise to the behavior
| ?- atom_length(abcde,-1).
++Error[XSB/Runtime/P]: [Domain (-1 not in domain not_less_than_zero)]
    in arg 2 of predicate atom_length/2)
```

void xsb_existence_error(CTXTdeclc char *objType,Cell culprit,char *pred,int arity,int arg)

Used to throw an ISO-style existence error from foreign code, indicating that an object culprit of type objType does not exist, in argument arg of pred/arity.

Example: The code fragment

```
Cell tid;
         xsb existence error(CTXTc "thread", reg[2], "xsb thread join", 1, 1);
     in thread join/1 gives rise to a the behavior
     | ?- thread_join(7).
     ++Error[XSB/Runtime/P]: [Existence (No thread 1 exists)]
                   in arg 1 of predicate thread_join/1)
     if a thread with thread id 7 does not exist.
void xsb_instantiation_error(CTXTdeclc char *pred,int arity,int arg,char *state)
     Used to throw an ISO-style instantiation error from foreign code. If state is a NULL pointer,
     the message indicates that there is an instantiation error for argument arg of of pred/arity.
     If state is non-NULL, the message additionally indicates that argument arg must be state.
     Example: The code fragment
         xsb_instantiation_error(CTXTc "atom_length",2,1,NULL);
     in atom length/2 gives rise to a the behavior
     | ?- atom length(X,Y).
     ++Error[XSB/Runtime/P]: [Instantiation] in arg 1 of predicate atom_length/2
void xsb_misc_error(CTXTdeclc char *message,char *pred,int arity)
     Used to throw a non ISO-error from foreign code, printing message and indicating that the
     error arose in pred/arity.
void xsb_permission_error(CTXTdeclc char *op,char *obj,Cell culprit,char *pred,int arity)
      Used to throw an ISO-style permission error from foreign code, indicating that an oper-
     ation of type op on type obj is not permitted on culprit, in argument arg of pred/arity.
     Example: The code fragment
     xsb_permission_error(CTXTc "unlock mutex", "mutex not held by thread",
                            xsb_thread_id, "mutex_unlock", 2);
     in mutex_unlock/1 gives rise to a the behavior
     | ?- mutex_unlock(mymut).
     ++Error[XSB/Runtime/P]: [Permission (Operation) unlock mutex on mutex not held
      by thread: 0] in predicate mutex_unlock/1)
     if thread 0 does not own mutex mymut.
```

exception.

```
void xsb_resource_error(CTXTdeclc char *resource,char *pred,int arity)
     Used to indicate that there are not sufficient resources of type resource for pred/arity to
     succeed.
    Example: The code fragment
     xsb_resource_error(th, "system threads", "thread_create", 2);
    in thread create/1 gives rise to a the behavior
     | ?- thread create(X).
     ++Error[XSB/Runtime/P]: [Resource (system threads))] in predicate thread_create/2)
    If the number of system threads has been exceeded.
void xsb_type_error(CTXTdeclc char *valid_type,Cell culprit,char *pred,int arity,int arg)
     Used to throw an ISO-style type error from foreign code, indicating that culprit is not
     in ISO type valid_type in argument arg of pred/arity.
     Example: The code fragment
         Cell num;
         if (!isinteger(num)) xsb_type_error(CTXTc "integer",num, "atom_length",2,2);
    in atom_length/2 gives rise to the behavior
     | ?- atom_length(foo,a).
     ++Error[XSB/Runtime/P]: [Type (a in place of integer)] in arg 2
     of predicate atom_length/2)
void xsb_throw(CTXTdeclc prolog_term Ball)
     Used to throw a Prolog term from C code, when an ISO-style error is not required. The
     term can be caught and handled by the Prolog predicate catch/3 just as any other thrown
     term; however if it is not caught, XSB's default error handler will treat it as an unhandled
```

Chapter 3

Embedding XSB in a Process

There are many situations in which it is desirable to use XSB as a rule- or constraint- processing subcomponent of a larger system that is written in another language. Depending on the intended architecture, it may be appropriate for XSB to reside in its own process, separate from other components of an application, and communicating through sockets, a database, or some other mechanism. However it is often useful for XSB to reside in the same process as other components. To do this, one wants to be able to call XSB from the host language, providing queries for XSB to evaluate, and retrieving back the answers. An interface for calling XSB from C is provided for this purpose and is described in this chapter. Based on this C interface, XSB can also be called from Java either through a JNI or a socket-based interface, as described in the documentation for Interprolog, available through xsb.sourceforge.net. To call XSB from Visual Basic, a DLL is created as described in this chapter, and additional declarations must be made in visual basic as described in the web page "How to use XSB DLL from Visual Basic" http://xsb.sourceforge. net/vbdll.html. In addition, the interface described in this chapter has also been extended to allow XSB to be called from Delphi and Ruby. However, since all of these interfaces – Java, Ruby, Delphi and Visual Basic – depend on XSB's C API, we refer in this chapter to C programs or threads calling XSB, although each of the examples suitably modified can be extended to other calling languages.

New to Version 3.1 are extensions to the C API to allow multiple XSB threads to be called from multiple C threads ¹. In this Chapter, we provide an overview of XSB's C API, and then elaborate its use through a series of examples, beginning with a single XSB thread called by a single C thread, then showing how a C thread can interact with multiple XSB threads, and finally discuss how multiple XSB threads can interact with multiple POSIX threads. Finally, Section 3.3 describes each C function in the API.

 $^{^{1}}$ XSB's threading model is based on POSIX threads, which can be called in Windows through a variety of POSIX APIs – see Volume 1 chapter 8 *Multi-threaded Programming in XSB*.

3.1 Calling XSB from C

XSB provides several C functions (declared in \$XSBDIR/emu/cinterf.h and defined in \$XSBDIR/emu/cinterf.c), which can be called from C to interact with XSB as a subroutine. These functions allow a C program to interact with XSB in a number of ways.

- XSB may be initialized, using most of the parameters available from the command-line.
- XSB may then execute a series of commands or queries. A command is a deterministic query which simply succeeds or fails without performing any unification on the query term. On the other hand, a non-deterministic query can be evaluated so that its answer substitutions are retrieved one at a time, as they are produced, just as if XSB were called on a command line. Alternately a non-deterministic query can be closed in the case where not every answer to the query is needed. Only one query per thread can be active at a time. I.e., an application must completely finish processing one query to a given thread T (either by retrieving all the answers for it, or by issuing a call to xsb_close_query(), before trying to evaluate another using T.
- Finally, XSB can be closed, so that no more queries can be made to any XSB threads.

In general, while any functions in the C API to XSB can be intermixed, the functions can be classified as belonging to three different levels.

- A VarString level which uses an XSB-specific C-type definition for variable-length strings (Section 3.4), to return answers.
- A fixed-string level provides routines that return answers in fixed-length strings.
- A register-oriented level that requires users to set up queries by setting registers for XSB which are made globally available to calling functions. The mechanisms for this resemble the lower-level C interface discussed in Chapter 2. This level of interface should only be used for the single-threaded applications, as it is difficult to prevent race-conditions at this level of interface when multiple C threads are used to call XSB.

The appropriate level to use depends on the nature of the calling program, the speed desired, and the expertise of the programmer. By and large, functions in the VarString level are the the easiest and safest to use, but they depend on a C type definition that may not be available to all calling programs (e.g. it may be difficult to use if the calling program is not directly based on C, such as Visual Basic or Delphi). For such applications functions from the fixed-string level would need to be used instead. In general, most applications should use either functions from the VarString or the fixed-string level, rather than the register-oriented level. This latter level should only be used by programmers who are willing to work at a low interface level, when the utmost speed is needed by an application, and when multiple threads do not need to interact with XSB.

3.2 Examples of Calling XSB

We introduce a series of examples of how XSB would be called using the string-level interfaces. Simple examples of the register-level interface are given in the XSB/examples/c_calling_XSB subdirectory, in files cmain.c, cmain2.c, ctest.P, and Makefile, but are not discussed in this section.

We structure out discussion by first showing how to construct a C program to call the single-threaded engine alone in Section 3.2.1. This example is mostly pedagogic: with a small amount of extra coding a C program can be constructed to call both the single- and the multi-threaded engine, and these extensions are discussed in Section 3.2.2. Next, we show how to a C program can call and manage multiple XSB threads in Section 3.2.3. Finally, we show how multiple XSB threads can interact with multiple C threads in Section 3.2.3.

3.2.1 The XSB API for the Sequential Engine Only

We start with a simple program shown, in Figure 3.1, that will call the following XSB predicate

```
p(a,b,c).

p(1,2,3).

p([1,2],[3,4],[5,6]).

p(A,B,A).

r(c,b,a).

r(3,2,1).

r([5,6],[3,4],[1,2]).

r(_A,B,B).
```

and backtrack through unifying answers (cf. \$XSBDIR/examples/c_calling_xsb/edb.P). This example will only compile properly if the sequential engine is used, and its style is not recommended: it will be shown in Section 3.2.2 how to extend the style.

We discuss the program in Figure 3.1 in detail. This program, slightly modified so that it compiles with the multi-threaded engine is in \$XSBDIR/examples/c_calling_xsb/cvartest.c. An executable for this program can be make most easily by calling \$XSBDIR/examples/c_calling_xsb/make.P, which makes the executable cvstest.

The program begins by including some standard C headers: note that string.h is needed for string manipulation routines such as strcpy. In addition, the XSB library header cinterf.h is necessary for the XSB C API. Since the program in Figure 3.1 uses functions in the VarString interface, within main() the routine XSB_StrDefine(return_string) declares and initializes a structure of type VarString, named return_string.

The next order of business is to initialize XSB. In order to do this, xsb_init_string() needs to know the installation directory for XSB, which must be passed as part of the initialization string. In Figure 3.1 this is done by manipulating the path of the executable (cvstest) that calls XSB. In fact any other approach would also work as long as the XSB installation directory were passed. Within the initialization string, other command line arguments can be passed to XSB if desired

```
#include <stdio.h>
#include <string.h>
/* cinterf.h is necessary for the XSB API, as well as the path manipulation routines*/
#include "cinterf.h"
extern char *xsb_executable_full_path(char *);
extern char *strip_names_from_path(char*, int);
int main(int argc, char *argv[]) {
  char init_string[1024];
  int rc;
  XSB_StrDefine(return_string);
  /* xsb_init_string() relies on the calling program to pass the absolute or relative
     path name of the XSB installation directory. We assume that the current
     program is sitting in the directory ../examples/c_calling_xsb/
     To get the installation directory, we strip 3 file names from the path. */
  strcpy(init_string,strip_names_from_path(xsb_executable_full_path(argv[0]),3));
  if (xsb init string(init string) == XSB ERROR) {
   fprintf(stderr,"++initializing XSB: %s/%s\n",xsb_get_init_error_type(),
            xsb_get_init_error_message());
   exit(XSB_ERROR);
  }
  /* Create command to consult a file: edb.P, and send it. */
  if (xsb_command_string("consult('edb.P').") == XSB_ERROR)
   fprintf(stderr,"++Error consulting edb.P: %s/%s\n",xsb_get_error_type(),xsb_get_error_message());
  rc = xsb_query_string_string("p(X,Y,Z).",&return_string,"|");
  while (rc == XSB SUCCESS) {
   printf("Return %s\n",(return_string.string));
   rc = xsb_next_string(&return_string,"|");
 if (rc == XSB ERROR)
   fprintf(stderr,"++Query Error: %s/%s\n"xsb_get_error_type(),xsb_get_error_message());
 xsb_close();
```

Figure 3.1: Calling the Sequential Engine Using the VarString Interface

with the following exceptions: the arguments -B (boot module), -D (command loop driver), -i (interpreter) and -d (disassembler) cannot be used when calling XSB from a foreign language ². As a final point on initialization, note that the function xsb_init() can also be used to initialize XSB based on an argument vector and count (see Section 3.3).

Note that the calling program checks for any errors returned by xsb_init_string() and other API commands. In general, xsb_init_string() may throw an error if the XSB's installation directory has become corrupted, or for similar reasons. This mechanism for error handling is different than that used if XSB is called in its usual stand-alone mode, in which case such an error would cause XSB to exit). An error returned by XSB's API are similar to an error ball described in Volume 1 Exception Handling in that it has both a type and a message. For normal Prolog exceptions, XSB's API will throw the same kinds of errors as XSB called in a stand-alone (or server) mode, i.e. instantiation errors, type errors, etc. However XSB's API adds two new error types:

- init_error is used as the type of an error discovered upon initialization of XSB, before query and command processing has begun. If an init_error is raised, XSB has not been properly initialized and will not run.
- unrecoverable_error is used to indicate that XSB has encountered an error, (such as a memory allocation error), during command or query processing from which it cannot recover. Such an error would cause XSB to immediately exit if it were called in a stand-alone mode. In general the calling program should handle unrecoverable errors as fatal since there is a good chance that the error conditions will affect the calling program as well as XSB.

Errors raised by xsb_init_string() usually have type init_type.

and a string pointer to the associated message can be found by the function xsb_get_init_error_message().

As can be seen from the example, handling errors from commands is done in manner similar to that of initialization. For non-initialization errors, a string pointer to the type can be obtained by xsb_get_error_type(), while a string pointer to the message can be obtained by xsb_get_error_message().

Next in Figure 3.1 the file edb.P is consulted (containing the p/3 and r/3 predicates shown above). Note, that the argument to xsb_command_string must be a syntactically valid Prolog term ending with a period, otherwise a syntax error will be thrown, which may be displayed through xsb_get_error_type() and xsb_get_error_message() ³.

Queries to XSB are a little more complicated than commands. Since a query may return multiple solutions, a query should usually be called from inside a loop. In Figure 3.1, the query is opened with xsb_query_string(). If the query has at least one answer, xsb_query_string() will return XSB_SUCCESS; if the query fails, it will return XSB_FAILURE, and if there is an exception it will return XSB_ERROR as usual. Any answer will be returned as a string in the VarString return_string, and each argument of the query will be separated by the character |. Thus, in our example, the first answer will write the string

²In previous versions of XSB, initialization from the C level required a -n option to be passed. This is no longer required.

³Most XSB errors are handled in this manner when XSB is called through its API. A few errors will print directly to stderr and some XSB warnings will print to stdwarn which upon startup is dup-ed to stderr.

alblc

Once a query has been opened, subsequent answers can be obtained via xsb_next_string(). These answers are written to return_string in the same manner as xsb_query_string_string().

```
1|2|3
[1,2]|[3,4]|[5,6]
_h102|_h116|_h102
```

A query is automatically closed when no more answers can be derived from it. Alternately, a query that may have answers remaining can be closed using the command xsb_close_query(). If the calling application will need to pass more queries or commands to XSB nothing need be done at this point: a new queries or commands can be invoked using one of the functions just discussed. However if the calling process is finished with XSB and will never need it again during the life of the process, it can call xsb_close().

An Example using Fixed Strings

```
int retsize = 15;
char *return_string;
int anslen;

return_string = malloc(retsize);

rc = xsb_query_string_string_b(CTXTc "p(X,Y,Z).",return_string,retsize,&anslen,"|");

while (rc == XSB_SUCCESS || rc == XSB_OVERFLOW) {

   if (rc == XSB_OVERFLOW) {
      return_string = (char *) realloc(return_string,anslen);
      return_size = anslen;
      rc = xsb_get_last_answer_string(CTXTc return_string,retsize,&anslen);
   }

   printf("Return %s %d\n",return_string,anslen);
   rc = xsb_next_string_b(CTXTc return_string,15,&anslen,"|");
}
```

Figure 3.2: Calling XSB using the Fixed String Interface

Figure 3.2 shows a fragment of code indicating how the previous example would be modified if the fixed-string interface were used. Note that return_string now becomes a pointer to explicitly malloc-ed memory. To open the query p(X,Y,Z) the function xsb_query_string_string_b() is called, with the _b indicating that a fixed buffer is being used rather than a VarString. The call is similar to xsb_query_string_string(), except that the length anslen of the buffer pointed to by return_string is now also required. If the answer to be returned (including separators) is longer than anslen, xsb_query_string_string_b() will return XSB_OVERFLOW.

If this happens, a new answer buffer can be used (here the old one is realloc-ed) and the answer retrieved via xsb_get_last_answer_string. Similarly, further answers are obtained via xsb_next_string_b() whose length must be checked. Thus the only difference between the fixed-string level and the VarString level is that the length of each answer should be checked and xsb get last answer string() called if necessary.

3.2.2 The General XSB API

The previous section showed how to use the XSB API with both the VarString type and without, but did not consider the multi-threaded engine. In fact, there are different ways to use XSB's multi-threading that can have advantages for various situations. In the first mode, threads are managed from Prolog, with a single XSB thread called from the API; that XSB thread can then create another XSB thread that does work, and the first thread can return almost immediately to handle more requests from the API's caller. A second model allows the caller to manipulate a pool of several XSB threads, so that different XSB threads may be called from different threads over the API. In this model each C, Java, Ruby, or other thread could a number of different Prolog threads. In this section we sketch how to use the API to illustrate the first model, and sketch the second model in the next section.

Figure 3.3 shows how relevant portions of the previous VarString example can be adapted to use the multi-threaded engine. The main change is that a new variable is introduced on the C side that points to the context of the main thread. As pointed out in Chapter 2, each thread in the multi-threaded engine has a *context* in which is kept much of its thread-specific data (excluding tables and dynamic code). Of the threads running in the multi-threaded engine the thread created upon the call to xsb_init() is designated as the main thread, and is closed only upon calling xsb_close().

Within the multi-threaded engine, a call to an API function such as xsb_query_string_string() is actually a call to a specific thread to do some work (using a thread context pointer). Accordingly, since any errors produced will be specific to a given thread, all calls to error reporting functions are also thread-specific. If no specific thread is needed, it may be best just to use the main thread, which is what is done in Figure 3.3. The thread context pointer th is initialized to the main thread using the API macro xsb_get_main_thread(). Afterwards, this pointer is passed into the various interface functions by making use of XSB macros defined in context.h In the multi-threaded engine, these macros are defined as

```
#define CTXT th
#define CTXTc th,
```

while in the single-threaded engine they are defined as empty strings, as is xsb_get_main_thread(). As a result the code in Figure 3.3 will compile and run properly both for the single-threaded and the multi-threaded engines.

At this stage, suppose one wanted a new thread to execute a specific command, say do_foo. In this case, a C call such as

```
xsb_query_string_string(CTXTc "thread_create(do_foo,Id).",&return_string,"|")
```

```
/* context.h is necessary for the type of a thread context. */
#include "context.h"
int main(int argc, char *argv[])
  char init_string[MAXPATHLEN];
  int rc;
  XSB_StrDefine(return_string);
  strcpy(init_string,strip_names_from_path(xsb_executable_full_path(argv[0]),3));
  if (xsb_init_string(init_string) == XSB_ERROR) {
   fprintf(stderr,"++initializing XSB: %s/%s\n",xsb_get_init_error_type(),
            xsb_get_init_error_message());
   exit(XSB_ERROR);
#ifdef MULTI_THREAD
  th_context *th = xsb_get_main_thread();
#endif
  /* Create command to consult a file: edb.P, and send it. */
  if (xsb_command_string(CTXTc "consult('edb.P').") == XSB_ERROR)
   fprintf(stderr,"++Error consulting edb.P: %s/%s\n",xsb_get_error_type(CTXT),
            xsb_get_error_message(CTXT));
 rc = xsb_query_string_string(CTXTc "p(X,Y,Z).",&return_string,"|");
  while (rc == XSB_SUCCESS) {
   printf("Return %s\n",(return_string.string));
   rc = xsb_next_string(CTXTc &return_string,"|");
 if (rc == XSB ERROR)
   fprintf(stderr,"++Query Error: %s/%s\n",xsb_get_error_type(CTXT),xsb_get_error_message(CTXT));
 xsb_close();
```

Figure 3.3: Calling the Single- or Multi-Threaded Engine Using the VarString Interface

creates a thread to execute the command, and returns the thread id of the newly created thread in return_string. The behavior of this newly created thread is exactly the same as if it were created from the XSB command line: in particular the newly created thread will automatically exit upon completion of its command. As a somewhat technical point, there are two different ways of referring to XSB threads. The foreign language interfaces described in Chapter 2 and here use pointers to thread contexts so that the interfaces use much of the same code as the XSB engine. However Prolog refers to threads using thread identifiers. The two different forms can be converted into each other by the functions xsb_thread_id_to_context() and xsb_thread_context_to_id().

3.2.3 Managing Multiple XSB Threads through the API

The ability to pass thread contexts into query and command functions allows a great deal of flexibility ⁴. Once XSB is initialized, XSB threads can be created from C and can execute independently of each other, effectively giving the ability for different calling threads to query XSB in a mechanism reminiscent of database cursors.

Figure 3.4 illustrates a very simple example of this. XSB is initialized and the file edb.P consulted exactly as in Figure 3.4. However, the function xsb_ccall_thread_create() causes the XSB thread p_th to create a new thread, causes the new thread to call the same command loop as the main thread, and sets r_th to point to the context of the new thread. The new thread r_th can be used for commands or queries just as p_th. Figure 3.4 shows that queries to the two threads can be interleaved, and errors for both threads can be checked and reported independently.

It is important to note that since each thread created by xsb_ccall_thread_create() goes into a command-loop similar to the command loop, it will stay around until it is explicitly killed or until XSB is closed. The call

```
xsb_kill_thread(r_th);
```

is needed to make r_th to exit. Once a thread is exited, all of its data structures will be freed, including those that support xsb_get_error_type() and xsb_get_error_message() ⁵.

3.2.4 Calling Multiple XSB Threads using Multiple C Threads

Figure 3.4 shows how two XSB threads can be created, can receive different queries and can interleave their backtracking and answer return. Although Figure 3.4 demonstrated only backtracking through simple predicates, the mechanism employed works for complicated examples using tabling, dynamic code, and other features. All this provides a sophisticated interface, but it is not "fully" multi-threaded in the following sense. When a C thread T causes XSB to execute a command or query the thread must wait until the calling function returns before proceeding. In certain applications it may be useful, for example, for T to create a C thread T_{new} which runs asynchronously

⁴For the sake of brevity, we sometimes abuse notation and do not always distinguish between thread-contexts and their pointers.

⁵Note that causing XSB's main thread to exit will cause the entire process to exit – not just XSB.

```
/* context.h is necessary for the type of a thread context. */
#include "context.h"
int main(int argc, char *argv[])
{
  static th_context *p_th, *r_th;
  char init_string[MAXPATHLEN];
  int rcp, rcr;
  XSB_StrDefine(p_return_string);
  XSB_StrDefine(r_return_string);
  strcpy(init_string,strip_names_from_path(xsb_executable_full_path(argv[0]),3));
  if (xsb_init_string(init_string)) {
   fprintf(stderr,"%s initializing XSB: %s/%s\n",xsb_get_init_error_type(),
            xsb_get_init_error_message());cin
    exit(XSB_ERROR);
  }
  p_th = xsb_get_main_thread();
  /* Create command to consult a file: edb.P, and send it. */
  if (xsb_command_string(p_th, "consult('edb.P').") == XSB_ERROR)
   fprintf(stderr,"++Error consulting edb.P: %s/%s\n",xsb_get_error_type(p_th),
   xsb_get_error_message(p_th));
  xsb_ccall_thread_create(p_th,&r_th);
  rcp = xsb_query_string_string(p_th, "p(X,Y,Z).",&p_return_string,"|");
  rcr = xsb_query_string_string(r_th, "r(X,Y,Z).",&r_return_string,"|");
  while (rcp == XSB_SUCCESS && rcr == XSB_SUCCESS) {
   printf("Return p %s\n",(p_return_string.string));
   rcp = xsb_next_string(p_th, &p_return_string,"|");
   printf("Return r %s\n",(r_return_string.string));
   rcr = xsb_next_string(r_th, &r_return_string,"|");
  }
 if (rcp == XSB ERROR)
   fprintf(stderr,"++Query Error p: %s/%s\n",xsb_get_error_type(p_th),xsb_get_error_message(p_th));
if (rcr == XSB ERROR)
   fprintf(stderr,"++Query Error r: %s/%s\n",xsb_get_error_type(r_th),xsb_get_error_message(r_th));
xsb_close();
```

Figure 3.4: Manipulating Multiple Threads Using the VarString Interface

from T, executing the XSB command or query and then exiting. Alternately, an application may want to have a pool of C threads that can interact with a pool of XSB threads.

XSB's C API has been designed to support these features. Figure 3.5 shows fragments of Figure 3.4 rewritten so that the routines to print out the answers to the queries p(X,Y,Z) and r(X,Y,Z) can be called from C threads specially designed for this purpose. More specifically, the routine query_ps() calls p_th to query p(X,Y,Z) and backtrack through its answers – its use of a single void * argument and a void * return reflect the requirements of functions that are to be called using pthread_create().

We note several points about this example. First the XSB API is a low-level API that can be used to build application specific interfaces, and some experience with pthread programming is useful if multiple XSB threads are called from multiple C threads. For instance, one issue is fairness. When called from the C API each XSB thread X_T makes use of mutexes to ensure that it answers only one query or command at a time. If multiple C threads are are waiting for X_T to respond to requests or queries, there is no guarantee that the requests will be processed in any sort of order, or even that a request will eventually be handled (In order to ensure this, the calling program would have to use a queue or some other scheduling mechanism to send requests to the XSB thread). In addition, it is important to note that, the main XSB thread should only be called from the C thread that initialized XSB.. This restriction is due to the current design of synchronizing an XSB thread with calling threads, and may be lifted in the future.

Protected and Non-Protected API Functions

Example 3.5 shows that, when the Varstring functions are used, if a single calling thread opens a query to an XSB thread X_T , X_T will be protected from queries and commands posed by other C threads until the query is closed, failed out of, or exits via an error. In fact, queries (and commands) are protected when the Varstring or fixed string interfaces are used. However, consider what may happen when the register level interface is used. In this case, a calling thread may call one or more API functions to set up the registers, execute a command or query, call several more API functions to obtain the output, and so on. For this reason, if an application uses API commands that depend on user manipulation of registers (xsb_command(),xsb_query(),xsb_query_string(), and xsb_next()) the user must ensure that only one calling thread interacts with an XSB thread when that thread in the course of executing a command or query. See \$XSB_DIR/examples/c_calling_xsb/cregs_threaf for an example of how mutexes can be used to protect XSB threads.

3.3 A C API for XSB

3.3.1 Initializing and Closing XSB

int xsb_init_string(char *options)

This function is used to initialize XSB via an initialization string *options, and must be called before any other calls can be made. The initialization string must include the path to the XSB directory installation directory \$XSB_DIR, which is expanded to an absolute path by XSB. Any other command line options may be included just as in a command line except -D,

```
. . . . .
void *query_ps(void * arg) {
  int rc;
  th_context *p_th;
  XSB_StrDefine(p_return_string);
  p_th = (th_context *)arg;
 rc = xsb_query_string_string(p_th, "p(X,Y,Z).",&p_return_string,"|");
  while (rc == XSB SUCCESS) {
   printf("Return p %s\n",(p_return_string.string));
   rc = xsb_next_string(p_th, &p_return_string,"|");
 if (rc == XSB_ERROR)
   fprintf(stderr,"++Query Error p: %s/%s\n",xsb_get_error_type(p_th),xsb_get_error_message(p_th));
return NULL;
}
int main(int argc, char *argv[]) {
  char init_string[MAXPATHLEN];
  static th_context *p_th, *r_th;
  int pstatus, rstatus;
  pthread_t pthread_id,rthread_id;
  XSB_StrDefine(p_return_string);
  XSB_StrDefine(r_return_string);
. . . . .
 main_th = xsb_get_main_thread();
  /* Create command to consult a file: edb.P, and send it. */
  if (xsb_command_string(xsb_get_main_thread(), "consult('edb.P').") == XSB_ERROR)
   fprintf(stderr,"++Error consulting edb.P: %s/%s\n",xsb_get_error_type(main_th),
   xsb_get_error_message(main_th));
  xsb_ccall_thread_create(main_th,&r_th);
  xsb_ccall_thread_create(main_th,&p_th);
  pthread_create(&rthread_id, NULL, command_rs, r_th);
  pthread_create(&pthread_id,NULL,command_ps,p_th);
  pthread_create(&rthread_id,NULL,command_rs,r_th);
  pthread_create(&pthread_id,NULL,command_ps,p_th);
  rstatus = pthread_join(rthread_id,&rreturn);
  if (rstatus != 0) fprintf(stderr,"R join returns status %d\n",rstatus);
  pstatus = pthread_join(pthread_id,&preturn);
  if (pstatus != 0) fprintf(stderr,"P join returns status %d\n",pstatus);
xsb_kill_thread(r_th);
xsb_close();
```

Figure 3.5: Manipulating Multiple XSB Threads Using Multiple C Threads

-d, -B and -i. For example, a call from an executable in a sibling directory of XSB might have the form

```
xsb_init_string("../XSB -e startup.");
```

which initializes XSB with the goal ?- startup.

Return Codes

- XSB SUCCESS indicates that initialization returned successfully.
- XSB ERROR
 - init_error if any error occurred during initialization.
 - permission_error if xsb_init_string() is called after XSB has already been correctly initialized.

```
int xsb_init(int argc, char *argv[])
```

This function is a variant of xsb_init_string() which passes initialization arguments as an argument vector: argc is the count of the number of arguments in the argv vector. The argv vector is exactly as would be passed from the command line to XSB.

• argv[0] must be an absolute or relative path name of the XSB installation directory (i.e., \$XSB_DIR). Here is an example, which assumes that we invoke the C program from the XSB installation directory.

```
int main(int argc, char *argv[])
{
  int myargc = 1;
  char *myargv[1];

/* XSB_init relies on the calling program to pass the addr of the XSB
     installation directory. From here, it will find all the libraries */
  myargv[0] = ".";

/* Initialize xsb */
  xsb_init(myargc,myargv);
}
```

The return codes for xsb_init() are the same as those for xsb_init_string().

```
int xsb_close()
```

This routine closes the entire connection to XSB. After this, no more calls can be made (not even calls to xsb_init_string() or xsb_init()). In Version 3.3, no guarantee is made that all space used by XSB will be restored to the process (even when the process has dynamically linked to XSB), but space for any XSB tables is freed.

Return Codes

• XSB SUCCESS indicates that XSB was closed successfully.

- XSB_ERROR
 - permission_error if xsb_closed() when XSB has not been (correctly) initialized.

3.3.2 Passing Commands to XSB

int xsb_command_string(th_context *th, char *cmd)

This function passes a command to the XSB thread designated by th (the first argument is not used in the single-threaded engine). No query can be active in th when the command is called. The command is a string consisting of a Prolog (or HiLog) term terminated by a period (.).

When used in the multi-threaded engine, xsb_command_string protects the called thread from API calls from other pthreads until the command is finished.

Return Codes

- XSB_SUCCESS indicates that the command succeeded.
- XSB_FAILURE indicates that the command failed.
- XSB ERROR
 - permission_error if xsb_command_string() is called while a query is open in th.
 - Otherwise, any queries thrown during execution of the command are accessable through xsb_get_error_type(th) and xsb_get_error_message(th).

int xsb command(th context *th)

This function passes a command to the XSB thread designated by th (the first argument is not used in the single-threaded engine). Any previous query must have already been closed. Before calling xsb_command(), the calling program must construct the term representing the command in register 1 in the XSB thread's space. This can be done by using the c2p_* (and p2p_*) routines, which are described in Section 2.2.3 below. Register 2 may also be set before the call to xsb_query() (using xsb_make_vars(int) and xsb_set_var_*()) in which case any variables set to values in the ret/n term will be so bound in the call to the command goal. xsb_command invokes the command represented in register 1 and returns XSB_SUCCESS if the command succeeds, XSB_FAILURE if it fails, and XSB_ERROR if an error is thrown while executing the command.

When used in the multi-threaded engine, xsb_command_string does not protect the called thread from API calls from other pthreads until the command is finished. It is the user's responsibility to protect the XSB thread, using a mutex or other concurrency control, from the time the goal begins to be constructed in the register 1 until the command has completed.

Apart from the steps necessary to formulate the query and the lack of protection of the XSB thread, the behavior of xsb_command() is similar to that of xsb_command_string(), including its return codes.

3.3.3 Querying XSB

int xsb_query_string_string(th_context *th, char *query, VarString *buff, char *sep)

This function opens a query to the XSB thread designated by th (the first argument is not used in the single-threaded engine); it returns the first answer (if there is one) as a VarString. Any previous query to th must have already been closed. Any query may return multiple data answers. The first is found and made available to the caller as a result of this call. To get any subsequent answers, xsb_next_string() must be called. An example call is:

```
rc = xsb_query_string_string(th, "append(X,Y,[a,b,c]).",buff,";");
```

The second argument is the period-terminated query string. The third argument is a pointer to a variable string buffer in which the subroutine returns the answer (if any.) The variable string data type VarString is explained in Section 3.4. (Use xsb_query_string_string_b() if you cannot declare a parameter of this type in your programming language.) The last argument is a string provided by the caller, which is used to separate arguments in the returned answer. For the example query, buff would be set to the string:

which is the first answer to the append query. There are two fields of this answer, corresponding to the two variables in the query, X and Y. The bindings of those variables make up the answer and the individual fields are separated by the sep string, here the semicolon (;). In the answer string, XSB atoms are printed without quotes. Complex terms are printed in a canonical form, with atoms quoted if necessary, and lists produced in the normal list notation.

When used in the multi-threaded engine, xsb_query_string_string protects the called thread from API calls from other pthreads until the entire query is finished.

Return Codes

- XSB_SUCCESS indicates that the query succeeded.
- XSB_FAILURE indicates that the query failed.
- XSB ERROR
 - permission_error if xsb_query_string_string() is called while a query to th is open.
 - Otherwise, any errors thrown during execution of the query are accessable through xsb get error type() and xsb get error message().

int xsb_query_string_string_b(th_context *th,char *query,char *buff,int bufflen,int *anslen,char *sep)
This function provides a lower-level alternative to xsb_query_string_string (not using the
VarString type), which makes it easier for non-C callers (such as Visual Basic or Delphi)
to access XSB functionality. Any previous query to th must have already been closed. Any
query may return possibly multiple data answers. The first is found and made available to
the caller as a result of this call. To get any subsequent answers, xsb_next_string_b()
or a similar function must be called. The first and last arguments are the same as in
xsb_query_string_string(). The buff, bufflen, and anslen parameters are used to pass

the answer (if any) back to the caller. buff is a character array provided by the caller in which the answer is returned. bufflen is the length of the buffer (buff) and is provided by the caller. anslen is returned by this routine and is the length of the computed answer. If that length is less than bufflen, then the answer is put in buff (and null-terminated). If the answer is longer than will fit in the buffer (including the null terminator), then the answer is not copied to the buffer and XSB_OVERFLOW is returned. In this case the caller can retrieve the answer by providing a bigger buffer (of size greater than the returned anslen) in a call to xsb_get_last_answer_string().

When used in the multi-threaded engine, xsb_query_string_string_b protects the called thread from API calls from other pthreads until the entire query is finished.

Return Codes

- XSB_SUCCESS indicates that the query succeeded.
- XSB_FAILURE indicates that the query failed.
- XSB_ERROR
 - permission_error if xsb_query_string_string_b() is called while a query to th is open.
 - Otherwise, any queries thrown during execution of the command are accessable through xsb_get_error_type() and xsb_get_error_message().
- XSB_OVERFLOW indicates that the query succeeded, but the answer was too long for the buffer.

int xsb_query(th_context *th)

This function passes a query to the XSB thread th. Any previous query to the must have already been closed. Any query may return possibly multiple data answers. The first is found and made available to the caller as a result of this call. To get any subsequent answers, xsb_next() or a similar function must be called. Before calling xsb_query() the caller must construct the term representing the query in the XSB thread's register 1 (using routines described in Section 2.2.3 below.) If the query has no answers (i.e., just fails), register 1 is set back to a free variable and xsb_query() returns XSB_FAILURE. If the query has at least one answer, the variables in the query term in register 1 are bound to those answers and xsb_query() returns XSB_SUCCESS. In addition, register 2 is bound to a term whose main functor symbol is ret/n, where n is the number of variables in the query. The main subfields of this term are set to the variable values for the first answer. (These fields can be accessed by the functions p2c_*, or the functions xsb_var_*, described in Section 2.2.3 below.) Thus there are two places the answers are returned. Register 2 is used to make it easier to access them. Register 2 may also be set before the call to xsb_query() (using xsb_make_vars(int) and xsb set var *()) in which case any variables set to values in the ret/n term will be so bound in the call to the goal.

When used in the multi-threaded engine, xsb_query does not protect the called thread from API calls from other pthreads until the query is finished, or even when the registers are being accessed. It is the user's responsibility to protect the XSB thread, using a mutex or other concurrency control, from the time the goal begins to be constructed in the register 1 until the query is closed, failed, or exited upon error.

int xsb_get_last_answer_string(th_context *th, char *buff, int bufflen, int *anslen)

This function is used only when a call xsb_query_string_string_b() or xsb_next_string_b() to th returns XSB_OVERFLOW, indicating that the buffer provided was not big enough to contain the computed answer. In that case the user may allocate a larger buffer and then call this routine to retrieve the answer (that had been saved.) Only one answer is saved per thread, so this routine must called immediately after the failing call in order to get the right answer. The parameters are the same as the 2nd through 4th parameters of xsb query string string b().

Return Codes

• XSB_OVERFLOW indicates that the answer was still too long for the buffer.

int xsb_query_string(th_context *th,char *query)

This function passes a query to the XSB thread th. The query is a string consisting of a term that can be read by the XSB reader. The string must be terminated with a period (.). Any previous query must have already been closed. In all other respects, xsb_query_string() is similar to xsb_query(), except the only way to retrieve answers is through Register 2. The ability to create the return structure and bind variables in it is particularly useful in this function.

When used in the multi-threaded engine, xsb_query_string does not protect the called thread from API calls from other pthreads until the query is finished, or even when the registers are being accessed. It is the user's responsibility to protect the XSB thread, using a mutex or other concurrency control, from the time the goal begins to be constructed in the register 1 until the query is closed, failed, or exited upon error.

Return Codes

- XSB_SUCCESS indicates that the query succeeded.
- XSB FAILURE indicates that the guery failed.
- XSB ERROR indicates that an error occurred while executing the query.

```
int xsb_next_string(th_context *th, VarString *buff, char *sep)
```

This routine is called after xsb_query_string() to retrieve a subsequent answer in buff. If a query is not open in th, an error is returned. This function treats answers just as xsb_query_string_string(). For example after the example call

```
rc = xsb_query_string_string(th, "append(X,Y,[a,b,c]).",buff,";");
which returns with buff set to
        [];[a,b,c]
Then a call:
rc = xsb_next_string(th,buff,";");
```

returns with buff set to

[a];[b,c]

the second answer to the indicated query.

In the multi-threaded engine, xsb_next_string() protects the XSB thread from concurrent access by other threads as long as the query was invoked by xsb_query_string_string(_b).

Return Codes

- XSB_SUCCESS indicates that the query succeeded.
- XSB_FAILURE indicates that the query failed.
- XSB_ERROR indicates that an error occurred while executing the query.

int xsb_next_string_b(th_context *th, char *buff, int bufflen, int *anslen, char *sep)

This function is a variant of xsb_next_string() that does not use the VarString type. Its parameters are the same as the 3rd through 6th parameters of xsb_query_string_string_b(). The next answer to the current query is returned in buff, if there is enough space. If the buffer would overflow, this routine returns XSB_OVERFLOW, and the answer can be retrieved by providing a larger buffer in a call to xsb_get_last_answer_string_b(). In any case, the length of the answer is returned in anslen.

In the multi-threaded engine, xsb_next_string() protects the XSB thread from concurrent access by other threads as long as the query was invoked by xsb_query_string_string(_b).

Return Codes

- XSB_SUCCESS indicates that backtracking into the query succeeded.
- XSB_FAILURE indicates that backtracking into the query failed.
- XSB ERROR indicates that an error occurred while further executing the query.
- XSB_OVERFLOW indicates that backtracking into the query succeeded, but the new answer was too long for the buffer.

int xsb_next(th_context *)

This function is called after xsb_query() (which must have returned XSB_SUCCESS) to retrieve more answers. It rebinds the query variables in the term in register 1 and rebinds the argument fields of the ret/n answer term in register 2 to reflect the next answer to the query. Its return codes are as with xsb_next_string().

When used in the multi-threaded engine, xsb_next does not protect the called thread from API calls from other pthreads until the query is finished, or even when the registers are being accessed. It is the user's responsibility to protect the XSB thread, using a mutex or other concurrency control, through the time that registers are accessed by the calling program.

int xsb_close_query(th_context *th)

This function allows a user to close a query to th before all its answers have been retrieved. Since XSB is (usually) a tuple-at-a-time system, answers that are not retrieved are not computed so that closing a query may save time. If a given query Q is open, it is an error to open a new query without closing Q either by retrieving all its answers or explicitly calling

 $xsb_close_query()$ to close Q. Calling $xsb_close_query()$ when no query is open gives an error message, but otherwise has no effect.

Return Codes

- XSB_SUCCESS indicates that the current query was closed.
- XSB_ERROR
 - permission_error if xsb_close_query() is called while no query is open.

3.3.4 Obtaining Information about Errors

char * xsb_get_init_error_message()

Used to find error messages if xsb_init_string() or xsb_init() returns XSB_ERROR. Any errors returned by these functions have type init_error. Because initialization errors occur before XSB or any of its threads have been initialized, initialization errors do not require a thread context for input.

char * xsb_get_error_type(th_context *th)

If a function called for th returned XSB_ERROR this function provides a pointer to a string representing the type of the error. Types are as in Volume 1 *Exception Handling* with the addition of init_error for errors that occur during initialization of XSB, and unrecoverable_error for errors from which no recovery is possible for XSB (e.g. inability to allocate new memory).

char *xsb_get_error_message(th_context *th)

If a function called for th returned XSB_ERROR this function provides a pointer to a string representing a message associated with the error. For errors raised within the Prolog portion of execution, messages are as in Volume 1 Exception Handling.

3.3.5 Thread Management from Calling Programs

int xsb_ccall_thread_create(th_context *callingThread, th_context **newThread)

Causes callingThread to create a thread pointed to by newThread. newThread runs exactly the same interpreter loop as callingThread and all API functions will work on newThread just as on the main thread, or any other thread. newThread will be non-detached, and will inherit any private parameters from callingThread. To create a thread to do a specific task or a detached thread, rather than one that executes a command loop, simply call the query thread_create/[2,3] from one of the query functions.

th_context *xsb_get_main_thread()

Returns a pointer to the thread context of XSB's main thread. If XSB has not been initialized or has been closed this function returns 0.

```
xsb_tid xsb_thread_id_to_context(th_context *th)
```

```
th context *xsb thread context to id(xsb tid id)
```

3.4 The Variable-length String Data Type

XSB uses variable-length strings to communicate with certain C subroutines when the size of the output that needs to be passed from the Prolog side to the C side is not known. Variable-length strings adjust themselves depending on the size of the data they must hold and are ideal for this situation. For instance, as we have seem the two subroutines xsb_query_string_string(query,buff,sep) and xsb_next_string(buff,sep) use the variable string data type, VarString, for their second argument. To use this data type, make sure that

#include "cinterf.h"

appears at the top of the program file. Variables of the VarString type are declared using a macro that must appear in the declaration section of the program:

XSB_StrDefine(buf);

There is one important consideration concerning VarString with the *automatic* storage class: they must be *destroyed* on exit (see XSB_StrDestroy, below) from the procedure that defines them, or else there will be a memory leak. It is not necessary to destroy static VarString's.

The public attributes of the type are int length and char *string. Thus, buf.string represents the actual contents of the buffer and buf.length is the length of that data. Although the length and the contents of a VarString string is readily accessible, the user must not modify these items directly. Instead, he should use the macros provided for that purpose:

- XSB_StrSet(VarString *vstr, char *str): Assign the value of the regular null-terminated C string to the VarString vstr. The size of vstr is adjusted automatically.
- XSB_StrSetV(VarString *vstr1, VarString *vstr2): Like XSB_StrSet, but the second argument is a variable-length string, not a regular C string.
- XSB_StrAppend(VarString *vstr, char *str): Append the null-terminated string str to the VarString vstr. The size of vstr is adjusted.
- XSB_StrPrepend(VarString *vstr, char *str): Like XSB_StrAppend, except that str is prepended.
- XSB_StrAppendV(VarString *vstr1, VarString *vstr2): Like XSB_StrAppend, except that the second string is also a VarString.
- XSB_StrPrependV(VarString *vstr1, VarString *vstr2): Like XSB_StrAppendV, except that the second string is prepended.
- XSB_StrCompare(VarString *vstr1, VarString *vstr2): Compares two VarString. If the first one is lexicographically larger, then the result is positive; if the first string is smaller, than the result is negative; if the two strings have the same content (i.e., vstr1->string equals vstr2->string then the result is zero.

- XSB_StrCmp(VarString *vstr, char *str): Like XSB_StrCompare but the second argument is a regular, null-terminated string.
- XSB_StrAppendBlk(VarString *vstr, char *blk, int size): This is like XSB_StrAppend, but the second argument is not assumed to be null-terminated. Instead, size characters pointed to by blk are appended to vstr. The size of vstr is adjusted, but the content is not null terminated.
- XSB_StrPrependBlk(VarString *vstr, char *blk, int size): Like XSB_StrPrepend, but blk is not assumed to point to a null-terminated string. Instead, size characters from the region pointed to by blk are prepended to vstr.
- XSB_StrNullTerminate(VarString *vstr): Null-terminates the VarString string vstr. This is used in conjunction with XSB_StrAppendBlk, because the latter does not null-terminate variable-length strings.
- XSB_StrEnsureSize(VarString *vstr, int minsize): Ensure that the string has room for at least minsize bytes. This is a low-level routine, which is used to interface to procedures that do not use VarString internally. If the string is larger than minsize, the size might actually shrink to the nearest increment that is larger minsize.
- XSB_StrShrink(VarString *vstr, int increment): Shrink the size of vstr to the minimum necessary to hold the data. increment becomes the new increment by which vstr is adjusted. Since VarString is automatically shrunk by XSB_StrSet, it is rarely necessary to shrink a VarString explicitly. However, one might want to change the adjustment increment using this macro (the default increment is 128).
- XSB_StrDestroy(VarString *vstr): Destroys a VarString. Explicit destruction is necessary for VarString's with the automatic storage class. Otherwise, memory leak is possible.

3.5 Passing Data into an XSB Module

The previous chapter described the low-level XSB/C interface that supports passing the data of arbitrary complexity between XSB and C. However, in cases when data needs to be passed into an executable XSB module by the main C program, the following higher-level interface should suffice. (This interface is actually implemented using macros that call the lower level functions.) These routines can be used to construct commands and queries into XSB 's register 1, which is necessary before calling xsb_query() or xsb_command().

void xsb_make_vars((int) N)

xsb_make_vars creates a return structure of arity N in Register 2. So this routine may called before calling any of xsb_query, xsb_query_string, xsb_command, or xsb_command_string if parameters are to be set to be sent to the goal. It must be called before calling one of the xsb_set_var_* routines can be called. N must be the number of variables in the query that is to be evaluated.

void xsb_set_var_int((int) Val, (int) N)

set_and_int sets the N^{th} field in the return structure to the integer value Val. It is used to set the value of the N^{th} variable in a query before calling xsb_query or xsb_query_string. When called in XSB, the query will have the N^{th} variable set to this value.

void xsb_set_var_string((char *) Val, (int) N)

set_and_string sets the Nth field in the return structure to the atom with name Val. It is used to set the value of the Nth variable in a query before calling xsb_query or xsb_query_string . When called in XSB, the query will have the Nth variable set to this value.

void xsb_set_var_float((float) Val, (int) N)

set_and_float sets the N^{th} field in the return structure to the floating point number with value Val. It is used to set the value of the N^{th} variable in a query before calling xsb_query or xsb_query_string. When called in XSB, the query will have the N^{th} variable set to this value.

prolog_int xsb_var_int((int) N)

 xsb_var_int is called after xsb_query or xsb_query_string returns an answer. It returns the value of the N^{th} variable in the query as set in the returned answer. This variable must have an integer value (which is cast to long in a 64-bit architecture).

char* xsb_var_string((int) N)

 xsb_var_string is called after xsb_query or xsb_query_string returns an answer. It returns the value of the \mathbb{N}^{th} variable in the query as set in the returned answer. This variable must have an atom value.

prolog_float xsb_var_float((int) N)

 xsb_var_float is called after xsb_query or xsb_query_string returns an answer. It returns the value of the N^{th} variable in the query as set in the returned answer. This variable must have a floating point value (which is cast to double in a 64-bit architecture).

3.6 Creating an XSB Module that Can be Called from C

To create an executable that includes calls to the above C functions, these routines, and the XSB routines that they call, must be included in the link (1d) step.

Unix instructions: You must link your C program, which should include the main procedure, with the XSB object file located in

\$XSBDIR/config/<your-system-architecture>/saved.o/xsb.o

Your program should include the file cinterf.h located in the XSB/emu subdirectory, which defines the routines described earlier, which you will need to use in order to talk to XSB. It is therefore recommended to compile your program with the option -I\$XSB_DIR/XSB/emu.

The file \$XSB_DIR/config/your-system-architecture/modMakefile is a makefile you can use to build your programs and link them with XSB. It is generated automatically and contains all the right settings for your architecture, but you will have to fill in the name of your program, etc.

It is also possible to compile and link your program with XSB using XSB itself as follows:

This works for every architecture and is often more convenient than using the make files ⁶. There are simple examples of C programs calling XSB in the \$XSB_DIR/examples/c_calling_XSB directory, in files cmain.c, ctest.P, cmain2.c.

Windows instructions: To call XSB from C, you must build it as a DLL, which is done as follows:

```
cd $XSB_DIR\XSB\build
makexsb wind DLL="yes"
```

The DLL, which you can call dynamically from your program is then found in

```
$XSB_DIR\config\x86-pc-windows\bin\xsb.dll
```

Since your program must include the file cinterf.h, it is recommended to compile it with the option /I\$XSB_DIR\XSB\emu.

⁶The variable CFLAGS is needed in the linking stage in order to ensure that the appropriate memory option is passed if XSB is configured -with-bits32 or -with-bits64 to override the default on a 64-bit platform.

Chapter 4

XSB-ODBC Interface

By Baoqiu Cui, Lily Dong, and David S. Warren ¹.

4.1 Introduction

The XSB-ODBC interface is subsystem that allows XSB users to access databases through ODBC connections. This is mostly of interest to Microsoft Windows users. The interface allows XSB users to access data in any ODBC compliant database management system (DBMS). Using this uniform interface, information in different DBMS's can be accessed as though it existed as Prolog facts. The XSB-ODBC interface provides users with three levels of interaction: an SQL level, a relation level and a view level. The SQL level allows users to write explicit SQL statements to be passed to the interface to retrieve data from a connected database. The relation level allows users to declare XSB predicates that connect to individual tables in a connected database, and which when executed support tuple-at-a-time retrieval from the base table. The view level allows users to use a complex XSB query, including conjunction, negation and aggregates, to specify a database query. A listing of the features that the XSB-ODBC interface provides is as follows:

- Concurrent access from multiple XSB processes to a single DBMS
- Access from a single XSB process to multiple ODBC DBMS's
- Full data access and cursor transparency including support for
 - Full data recursion through XSB's tabling mechanism (depending on the capabilities of the underlying ODBC driver.
 - Runtime type checking
 - Automatic handling of NULL values for insertion, deletion and querying
- Full access to data source including

¹This interface was partly based on the XSB-Oracle Interface by Hassan Davulcu, Ernie Johnson and Terrance Swift.

- Transaction support
- Cursor reuse for cached SQL statements with bind variables (thereby avoiding re-parsing and re-optimizing).
- Caching compiler generated SQL statements with bind variables and efficient cursor management for cached statements
- A powerful Prolog / SQL compiler based on [9].
- Full source code availability
- Independence from database schema by the relation level interface
- Performance as SQL by employing a view level
- No mode specification is required for optimized view compilation

We use the Hospital database as our example to illustrate the usage of XSB-ODBC interface in this manual. We assume the basic knowledge of Microsoft ODBC interface and its ODBC administrator throughout the text. Please refer to "Inside Windows TM 95" (or more recent documentation) for information on this topic.

4.2 Using the Interface

The XSB-ODBC module is a module and as such exports the predicates it supports. In order to use any predicate defined below, **it must be imported** from odbc_call. For example, before you can use the predicate to open a data source, you must include:

```
:- import odbc_open/3 from odbc_call.
```

4.2.1 Connecting to and Disconnecting from Data Sources

Assuming that the data source to be connected to is available, i.e. it has an entry in ODBC.INI file which can be checked by running Microsoft ODBC Administrator, it can be connected to in the following way:

```
| ?- odbc_open(data_source_name, username, passwd).
```

If the connection is successfully made, the predicate invocation will succeed. This step is necessary before anything can be done with the data sources since it gives XSB the opportunity to initialize system resources for the session.

This is an executable predicate, but you may want to put it as a query in a file that declares a database interface and will be loaded.

To close the current session use:

```
| ?- odbc_close.
```

and XSB will give all the resources it allocated for this session back to the system.

If you are connecting to only one data source at a time, the predicates above are sufficient. However, if you want to connect to multiple data sources at the same time, you must use extended versions of the predicates above. When connecting to multiple sources, you must give an atomic name to each source you want to connect to, and use that name whenever referring to that source. The names may be chosen arbitrarily but must be used consistently. The extended versions are:

```
| ?- odbc_open(data_source_name, username, passwd, connectionName).
and
| ?- odbc close(connectionName).
```

A list of existing Data Source Names and descriptions can be obtained by backtracking through odbc_data_sources/2. For example:

```
| ?- odbc_data_sources(DSN,DSNDescr).

DSN = mycdf

DSNDescr = MySQL driver;

DSN = mywincdf

DSNDescr = TDS driver (Sybase/MS SQL);
```

4.2.2 Accessing Tables in Data Sources Using SQL

There are several ways that can be used to extract information from or modify a table in a data source. The most basic way is to use predicates that pass an SQL statement directly to the ODBC driver. The basic call is:

```
| ?- odbc_sql(BindVals,SQLStmt,ResultRow).
```

where BindVals is a list of (ground) values that correspond to the parameter indicators in the SQL statement (the '?'s); SQLStmt is an atom containing an SQL statement; and ResultRow is a returned list of values constituting a row from the result set returned by the SQL query. Thus for a select SQL statement, this call is nondeterministic, returning each retrieved row in turn.

The BindVals list should have a length corresponding to the number of parameters in the query, in particular being the empty list ([]) if SQLStmt contains no '?'s. If SQLStmt is not a select statement returning a result set, then ResultRow will be the empty list, and the call is deterministic. Thus this predicate can be used to do updates, DDL statements, indeed any SQL statement.

SQLStmt need not be an atom, but can be a (nested) list of atoms which flattens (and concatenates) to form an SQL statement.

BindVals is normally a list of values of primitive Prolog types: atoms, integers, or floats. The values are converted to the types of the corresponding database fields. However, complex Prolog values can also be stored in a database field. If a term of the form term(VAL) appears in the BindVal list, then VAL (a Prolog term) will be written in canonical form (as produced by write_canonical) to the corresponding database field (which must be CHAR or BYTE). If a term of the form string(CODELIST) appears in BindVal, then CODELIST must be a list of ascii-codes (as produced by atom_codes) and these codes will be converted to a CHAR or BYTE database type.

ResultRow for a select statement is normally a list of variables that will nondeterministically be bound to the values of the fields of the tuples returned by the execution of the select statement. The Prolog types of the values returned will be determined by the database types of the corresponding fields. A CHAR or BYTE database type will be returned as a Prolog atom; an INTEGER database field will be returned as a Prolog integer, and similarly for floats. However, the user can request that CHAR and BYTE database fields be returned as something other than an atom. If the term string(VAR) appears in ResultRow, then the corresponding database field must be CHAR or BYTE, and in this case, the variable VAR will be bound to the list of ascii-codes that make up the database field. This allows an XSB programmer to avoid adding an atom to the atom table unnecessarily. If the term term(VAR) appears in ResultRow, then the corresponding database field value is assumed to be a Prolog term in canonical form, i.e., can be read by read_canonical/1. The corresponding value will be converted into a Prolog term and bound to VAR. This allows a programmer to store complex Prolog terms in a database. Variables in such a term are local only to that term.

When connecting to multiple data sources, you should use the form:

```
?- odbc sql(ConnectionName, BindVals, SQLStmt, ResultRow).
```

For example, we can define a predicate, get_test_name_price, which given a test ID, retrieves the name and price of that test from the test table in the hospital database:

The interface uses a cursor to retrieve this result and caches the cursor, so that if the same query is needed in the future, it does not need to be re-parsed, and re-optimized. Thus, if this predicate were to be called several times, the above form is more efficient than the following form, which must be parsed and optimized for each and every call:

Note that to include a quote (') in an atom, it must be represented by using two quotes.

There is also a predicate:

```
| ?- odbc_sql_cnt(ConnectionName, BindVals, SQLStmt, Count).
```

This predicate is very similar to odbc_slq/4 except that it can only be used for UPDATE, INSERT, and DELETE SQL statements. The first three arguments are just as in odbc_slq/4; the fourth must be a variable in which is returned the integer count of the number of rows affected by the SQL operation.

4.2.3 Cursor Management

The XSB-ODBC interface is limited to using 100 open cursors. When XSB systems use database accesses in a complicated manner, management of open cursors can be a problem due to the tuple-at-a-time access of databases from Prolog, and due to leakage of cursors through cuts and throws. Often, it is more efficient to call the database through set-at-a-time predicates such as findall/3, and then to backtrack through the returned information. For instance, the predicate findall_odbc_sql/4 can be defined as:

As a convenience, therefore, the predicates findall_odbc_sql/3 and findall_odbc_sql/4 are defined in the ODBC interface.

4.2.4 Accessing Tables in Data Sources through the Relation Level

While all access to a database is possible using SQL as described above, the XSB-ODBC interface supports higher-level interaction for which the user need not know or write SQL statements; that is done as necessary by the interface. With the relation level interface, users can simply declare a predicate to access a table and the system generates the necessary underlying code, generating specialized code for each mode in which the predicate is called.

To declare a predicate to access a database table, a user must use the odbc_import/2 interface predicate.

The syntax of odbc_import/2 is as follows:

```
| ?- odbc_import('TableName'('FIELD1', 'FIELD2', ..., 'FIELDn'), 'PredicateName').
```

where 'TableName' is the name of the database table to be accessed and 'PredicateName' is the name of the XSB predicate through which access will be made. 'FIELD1', 'FIELD2', ..., 'FIELDn' are the exact attribute names(case sensitive) as defined in the database table schema. The chosen columns define the view and the order of arguments for the database predicate 'PredicateName'.

For example, to create a link to the Test table through the 'test' predicate:

```
| ?- odbc_import('Test'('TId', 'TName', 'Length', 'Price'), test).
yes

When connecting to multiple data sources, you should use the form:
```

4.2.5 Using the Relation Level Interface

Once the links between tables and predicates have been successfully established, information can then be extracted from these tables using the corresponding predicates. Continuing from the above example, now rows from the table Test can be obtained:

```
| ?- test(TId, TName, L, P).

TId = t001

TName = X-Ray

L = 5

P = 100
```

Backtracking can then be used to retrieve the next row of the table Test.

Records with particular field values may be selected in the same way as in Prolog; no mode specification for database predicates is required. For example:

```
| ?- test(TId, 'X-Ray', L, P).

will automatically generate the query:

SELECT rel1.TId, rel1.TName, rel1.Length, rel1.Price
FROM Test rel1

WHERE rel1.TName = ?

and

| ?- test('NULL'(_), 'X-Ray', L, P).

generates: (See Section 4.2.6)

SELECT NULL , rel1.TName, rel1.Length, rel1.Price
FROM Test rel1

WHERE rel1.TId IS NULL AND rel1.TName = ?
```

During the execution of this query the bind variable? will be bound to the value 'X-Ray'.

Of course, the same considerations about cursors noted in Section 4.2.3 apply to the relation-level interface. Accordingly, the ODBC interface also defines the predicate odbc_import/4 which allows the user to specify that rows are to be fetched through findall/3. For example, the call

```
odbc_import('Test'('TId','TName','Length','Price'),test,[findall(true)]).
```

will behave as described above *but* will make all database calls through findal1/3 and return rows by backtracking through a list rather than maintaining open cursors.

Also as a courtesy to Quintus Prolog users we have provided compatibility support for some PRODBI predicates which access tables at a relational level ².

```
| ?- odbc_attach(PredicateName, table(TableName)).
    eg. invoke
| ?- odbc_attach(test2, table('Test')).
and then execute
| ?- test2(TId, TName, L, P).
to retrieve the rows.
```

4.2.6 Handling NULL values

The interface treats NULL's by introducing a single valued function 'NULL'/1 whose single value is a unique (Skolem) constant. For example a NULL value may be represented by

```
'NULL' (null123245)
```

Under this representation, two distinct NULL values will not unify. On the other hand, the search condition IS NULL Field can be represented in XSB as Field = 'NULL'(_)

Using this representation of NULL's the following protocol for queries and updates is established.

Queries

Generates the query:

²This predicate is obsolescent and odbc_import/{2,3,4} should be used instead.

```
SELECT NULL , rel1.DNAME , rel1.LOC FROM DEPT rel1 WHERE rel1.DEPTNO IS NULL;
```

Hence, 'NULL' () can be used to retrieve rows with NULL values at any field.

'NULL'/1 fails the predicate whenever it is used with a bound argument.

```
| ?- dept('NULL'(null2745),_,_). \rightarrow fails always.
```

Query Results

When returning NULL's as field values, the interface returns NULL/1 function with a unique integer argument serving as a skolem constant.

Notice that the above guarantees the expected semantics for the join statements. In the following example, even if Deptno is NULL for some rows in emp or dept tables, the query still evaluates the join successfully.

```
| ?- emp(Ename,_,_,_,Deptno),dept(Deptno,Dname,Loc)..
```

Inserts

To insert rows with NULL values you can use Field = 'NULL'(_) or Field = 'NULL'(null2346). For example:

```
| ?- emp_ins('NULL'(_), ...). \rightarrow inserts a NULL value for ENAME | ?- emp_ins('NULL'('bound'), ...) \rightarrow inserts a NULL value for ENAME.
```

Deletes

To delete rows with NULL values at any particular FIELD use Field = 'NULL'(_), 'NULL'/1 with a free argument. When 'NULL'/1 's argument is bound it fails the delete predicate always. For example:

```
| ?- emp_del('NULL'(_), ..). \rightarrow adds ENAME IS NULL to the generated SQL statement
```

```
| ?- emp_del('NULL'('bound'), ...). \rightarrow fails always
```

The reason for the above protocol is to preserve the semantics of deletes, when some free arguments of a delete predicate get bound by some preceding predicates. For example in the following clause, the semantics is preserved even if the **Deptno** field is NULL for some rows.

```
| ?- emp(_,_,_,Deptno), dept_del(Deptno).
```

4.2.7 The View Level Interface

The view level interface can be used to define XSB queries which include only imported database predicates (by using the relation level interface) described above and aggregate predicates (defined below). When these queries are invoked, they are translated into complex database queries, which are then executed taking advantage of the query processing ability of the DBMS.

One can use the view level interface through the predicate odbc_query/2:

```
| ?- odbc query('QueryName'(ARG1, ..., ARGn), DatabaseGoal).
```

All arguments are standard XSB terms. ARG1, ARG2, ..., ARGn define the attributes to be retrieved from the database, while DatabaseGoal is an XSB goal (i.e. a possible body of a rule) that defines the selection restrictions and join conditions.

The compiler is a simple extension of [9] which generates SQL queries with bind variables and handles NULL values as described in Section 4.2.6. It allows negation, the expression of arithmetic functions, and higher-order constructs such as grouping, sorting, and aggregate functions.

Database goals are translated according to the following rules from [9]:

- Disjunctive goals translate to distinct SQL queries connected through the UNION operator.
- Goal conjunctions translate to joins.
- Negated goals translate to negated EXISTS subqueries.
- Variables with single occurrences in the body are not translated.
- Free variables translate to grouping attributes.
- Shared variables in goals translate to equi-join conditions.
- Constants translate to equality comparisons of an attribute and the constant value.
- Nulls are translated to IS NULL conditions.

For more examples and implementation details see [9].

In the following, we show the definition of a simple join view between the two database predicates *Room* and *Floor*.

Assuming the declarations:

```
| ?- odbc_import('Room'('RoomNo','CostPerDay','Capacity','FId'),room).
| ?- odbc_import('Floor'('FId','','FName'),floor).
use
```

```
| ?- odbc_query(query1(RoomNo,FName),
                   (room(RoomNo,_,_,FId),floor(FId,_,FName))).
yes
| ?- query1(RoomNo,FloorName).
   Prolog/SQL compiler generates the SQL statement:
SELECT rel1.RoomNo , rel2.FName FROM Room rel1 , Floor rel2
WHERE rel2.FId = rel1.FId;
   Backtracking can then be used to retrieve the next row of the view.
| ?- query1('101','NULL'(_)).
   generates the SQL statement:
SELECT rel1.RoomNo, NULL
FROM Room rel1 , Floor rel2
WHERE rel1.RoomId = ? AND rel2.FId = rel1.FId AND rel2.FName IS NULL;
   The view interface also supports aggregate functions such as sum, avg, count, min and max.
For example
| ?- odbc_import('Doctor'('DId', 'FId', 'DName', 'PhoneNo', 'ChargePerMin'), doctor).
yes
| ?- odbc_query(avgchargepermin(X),
                 (X is avg(ChargePerMin, A1 ^ A2 ^ A3 ^ A4 ^
                           doctor(A1,A2, A3,A4,ChargePerMin)))).
| ?- avgchargepermin(X).
SELECT AVG(rel1.ChargePerMin)
FROM doctor rel1;
X = 1.64
yes
```

A more complicated example is the following:

```
| ?- odbc_query(nonsense(A,B,C,D,E),
                (doctor(A, B, C, D, E),
                 not floor('First Floor', B),
                 not (A = 'd001'),
                 E > avg(ChargePerMin, A1 ^ A2 ^ A3 ^ A4 ^
                         (doctor(A1, A2, A3, A4, ChargePerMin))))).
| ?- nonsense(A,'4',C,D,E).
SELECT rel1.DId , rel1.FId , rel1.DName , rel1.PhoneNo , rel1.ChargePerMin
FROM doctor rel1
WHERE rel1.FId = ? AND NOT EXISTS
(SELECT *
FROM Floor rel2
WHERE rel2.FName = 'First Floor' and rel2.FId = rel1.FId
) AND rel1.Did <> 'd001' AND rel1.ChargePerMin >
(SELECT AVG(rel3.ChargePerMin)
FROM Doctor rel3
);
A = d004
C = Tom Wilson
D = 516-252-100
E = 2.5
```

All database queries defined by odbc query/{2,3} can be queried with any mode.

Note that at each call to a database relation or rule, the communication takes place through bind variables. The corresponding restrictive SQL query is generated, and if this is the first call with that adornment, it is cached. A second call with same adornment would try to use the same database cursor if still available, without reparsing the respective SQL statement. Otherwise, it would find an unused cursor and retrieve the results. In this way efficient access methods for relations and database rules can be maintained throughout the session.

If connecting to multiple data sources, use the form:

```
:- odbc_query(connectionName,'QueryName'(ARG1, ..., ARGn), DatabaseGoal).
```

4.2.8 Insertions and Deletions of Rows through the Relational Level

Insertion and deletion operations can also be performed on an imported table. The two predicates to accomplish these operations are odbc_insert/2 and odbc_delete/2. The syntax of odbc_insert/2 is as follows: the first argument is the declared database predicate for insertions

and the second argument is some imported data source relation. The second argument can be declared with some of its arguments bound to constants. For example after Room is imported through odbc_import:

```
|?- odbc_import('Room'('RoomNo','CostPerDay','Capacity','FId'), room).
yes

Now we can do
| ?- odbc_insert(room_ins(A1,A2,A3),(room(A1,A2,A3,'3'))).
yes
| ?- room_ins('306','NULL'(_),2).
yes
```

This will insert the row: ('306', NULL, 2,'3') into the table Room. Note that any call to room_ins/7 should have all its arguments bound.

See Section 4.2.6) for information about NULL value handling.

The first argument of odbc_delete/2 predicate is the declared delete predicate and the second argument is the imported data source relation with the condition for requested deletes, if any. The condition is limited to simple comparisons. For example assuming Room/3 has been imported as above:

Note that you have to commit your inserts or deletes to tables to make them permanent. (See section 4.2.11).

These predicates also have the form in which an additional first argument indicates a connection, for use with multiple data sources.

Also, some ODBC drivers have been found that do not accept the form of SQL generated for deletes. In these cases, you must use the lower-level interface: odbc_sql.

4.2.9 Access to Data Dictionaries

The following utility predicates provide users with tools to access data dictionaries ³. A brief description of these predicates is as follows:

odbc_show_schema(accessible(Owner)) Shows the names of all accessible tables that are owned by Owner. (This list can be long!) If Owner is a variable, all tables will be shown, grouped by owner.

odbc show schema(user) Shows just those tables that belongs to user.

odbc_show_schema(tuples('Table')) Shows all rows of the database table named 'Table'.

odbc show schema(arity('Table')) The number of fields in the table 'Table'.

odbc_show_schema(columns('Table')) The field names of a table.

For retrieving above information use:

- odbc get schema(accessible(Owner),List)
- odbc_get_schema(user,List)
- odbc_get_schema(arity('Table'),List)
- odbc_get_schema(columns('Table'),List)

The results of above are returned in List as a list.

4.2.10 Other Database Operations

odbc create table ('TableName', 'FIELDs') FIELDS is the field specification as in SQL.

odbc_create_index('TableName','IndexName', index(_,Fields)) Fields is the list of columns for which an index is requested. For example:

³Users of Quintus Prolog may note that these predicates are all PRODBI compatible.

```
odbc_create_index('Doctor', 'DocKey', index(_,'DId')).

odbc_delete_table('TableName') To delete a table named 'TableName'
odbc_delete_view('ViewName') To delete a view named 'ViewName'
odbc_delete_index('IndexName') To delete an index named 'IndexName'
```

4.2.11 Transaction Management

Depending on how the transaction options are set in ODBC.INI for data sources, changes to the data source tables may not be committed (i.e., the changes become permanent) until the user explicitly issues a commit statement. Some ODBC drivers support autocommit, which, if on, means that every update operation is immediately committed upon execution. If autocommit is off, then an explicit commit (or rollback) must be done by the program to ensure the updates become permanent (or are ignored.).

The predicate odbc_transaction/1 supports these operations.

- odbc_transaction(autocommit(on)) Turns on autocommit, so that all update operations will be immediately committed on completion.
- odbc_transaction(autocommit(off)) Turns off autocommit, so that all update operations will not be committed until explicitly done so by the program (using one of the following operations.)
- **odbc_transaction(commit)** Commits all transactions up to this point. (Only has an effect if autocommit is off).
- odbc_transaction(rollback) Rolls back all update operations done since the last commit point.
 (Only has an effect if autocommit is off).

4.2.12 Interface Flags

Users are given the option to monitor control aspects of the ODBC interface by setting ODBC flags via the predicatesset_odbc_flag/2 and odbc_flag/2.

The first aspect that can be controlled is whether to display SQL statements for SQL queries. This is done by the show_query flag. For example:

```
| ?- odbc_flag(show_query, Val) .
Val = on
```

Indicates that SQL statements will now be displayed for all SQL queries, and is the default value for the ODBC interface. To turn it off execute the command set_odbc_flag(show_query,on).

The second aspect that can be controlled is the action taken upon ODBC errors. Three possible actions may be useful in different contexts and with different drivers. First, the error may be ignored, so that a database call succeeds; second the error cause the predicate to fail, and third the error may cause an exception to be thrown to be handled by a catcher (or the default system error handler, see Volume 1).

- | ?- odbc_flag(fail_on_error, ignore) Ignores all ODBC errors, apart from writing a warning. In this case, it's the users' users' responsibility to check each of their actions and do error handling.
- | ?- odbc_flag(fail_on_error, fail) Interface fails whenever error occurs.
- | ?- odbc_flag(fail_on_error, throw) Throws an error-term of the form error(odbc_error, Message, Backt in which Message is a textual description of the ODBC error, and Backtrace is a list of the continuations of the call. These continuations may be printed out by the error handler.

The default value of fail on error is on.

4.2.13 Datalog

Users can write recursive Datalog queries with exactly the same semantics as in XSB using imported database predicates or database rules. For example assuming odbc_parent/2 is an imported database predicate, the following recursive query computes its transitive closure.

```
:- table(ancestor/2).
ancestor(X,Y) :- odbc_parent(X,Y).
ancestor(X,Z) :- ancestor(X,Y), odbc_parent(Y,Z).
```

This works with drivers that support multiple open cursors to the same connection at the same time. (Sadly, some don't.) In the case of drivers that don't support multiple open cursors, one can often replace each odbc_import-ed predicate call

and get the desired effect.

4.3 Error messages

- ERR DB: Connection failed For some reason the attempt to connect to data source failed.
 - Diagnosis: Try to see if the data source has been registered with Microsoft ODBC Administrator, the username and password are correct and MAXCURSORNUM is not set to a very large number.
- ERR DB: Parse error The SQL statement generated by the Interface or the first argument to odbc_sql/1 or odbc_sql_select/2 can not be parsed by the data source driver.
 - Diagnosis: Check the SQL statement. If our interface generated the erroneous statement please contact us at xsb-contact@cs.sunysb.edu.
- **ERR DB: No more cursors left** Interface run out of non-active cursors either because of a leak or no more free cursors left.
 - Diagnosis: System fails always with this error. odbc_transaction(rollback) or odbc_transaction(commit should resolve this by freeing all cursors.
- **ERR DB: FETCH failed** Normally this error should not occur if the interface running properly.
 - Diagnosis: Please contact us at xsb-contact@cs.sunysb.edu

4.4 Notes on specific ODBC drivers

MyODBC The ODBC driver for MySQL is called MyODBC, and it presents some particularities that should be noted.

First, MySQL, as of version 3.23.55, does not support strings of length greater than 255 characters. XSB's ODBC interface has been updated to allow the use of the BLOB datatype to encode larger strings.

More importantly, MyODBC implements SQLDescribeCol such that, by default, it returns actual lengths of columns in the result table, instead of the formal lengths in the tables. For example, suppose you have, in table A, a field f declared as "VARCHAR (200)". Now, you create a query of the form "SELECT f FROM A WHERE ..." If, in the result set, the largest size of f is 52, that's the length that SQLDescribeCol will return. This breaks XSB's caching of query-related data-structures. In order to prevent this behavior, you should configure your DSN setup so that you pass "Option=1" to MyODBC.

Chapter 5

The New XSB-Database Interface

By Saikat Mukherjee, Michael Kifer and Hui Wan

5.1 Introduction

The XSB-DB interface is a package that allows XSB users to access databases through various drivers. Using this interface, information in different DBMSs can be accessed by SQL queries. The interface defines Prolog predicates which makes it easy to connect to databases, query them, and disconnect from the databases. Central to the concept of a connection to a database is the notion of a connection handle. A connection handle describes a particular connection to a database. Similar to a connection handle is the notion of a query handle which describes a particular query statement. As a consequence of the handles, it is possible to open multiple database connections (to the same or different databases) and keep alive multiple queries (again from the same or different connections). The interface also supports dynamic loading of drivers. As a result, it is possible to query databases using different drivers concurrently ¹.

Currently, this package provides drivers for ODBC, a native MySQL driver, and a driver for the embedded MySQL server.

5.2 Configuring the Interface

Generally, each driver has to be configured separately, but if the database packages such as ODBC, MySql, etc., are installed in standard places then the XSB configuration mechanism will do the job automatically.

Under Windows, first make sure that XSB is configured and built correctly for Windows, and that it runs. As part of that building process, the command

makexsb_wind

¹In Version 3.3, this package has not been ported to the multi-threaded engine.

must have been executed in the directory XSB\build. It will normally configure the ODBC driver without problems. For the MySQL driver one has to edit the file

```
packages\dbdrivers\mysql\cc\NMakefile.mak
```

to indicate where MySQL is installed. To build the embedded MySQL driver under Windows, the file

```
packages\dbdrivers\mysqlenbedded\cc\NMakefile.mak
```

might need to be edited. Then you should either rebuild XSB using the makexsb_wind command or by running

```
nmake /f NMakefile.mak
```

in the appropriate directories (dbdrivers\mysql\cc or dbdrivers\mysqlenbedded\cc). Note that you need a C++ compiler and nmake installed on your system for this to work.²

Under Unix, the configure script will build the drivers automatically if the -with-dbdrivers option is specified. If, however, ODBC and MySQL are not installed in their standard places, you will have to provide the following parameters to the configure script:

- -with-odbc-libdir=LibDIR LibDIR is the directory where the library libodbc.so lives on your system.
- -with-odbc-incdir=IncludeDIR IncludeDIR is the directory where the ODBC header files, such as sql.h live.
- -with-mysql-libdir=MySQLlibdir MySQLlibdir is the directory where MySQL's shared libraries live on your system.
- -with-mysql-incdir=MySQLincludeDir MySQLincludeDir is the directory where MySQL's header files live.

If you are also using the embedded MySQL server and want to take advantage of the corresponding XSB driver, you need to provide the following directories to tell XSB where the copy of MySQL that supports the embedded server is installed. This has to be done *only* if that copy is not in a standard place, like /usr/lib/mysql.

- -with-mysqlembedded-libdir=MySQLlibdir MySQLlibdir is the directory where MySQL's shared libraries live on your system. This copy of MySQL must be configured with support for the embedded server.
- -with-mysqlembedded-incdir=MySQLincludeDir MySQLincludeDir is the directory where MySQL's header files live.

http://www.microsoft.com/express/vc/ http://download.microsoft.com/download/vc15/Patch/1.52/W95/EN-US/Nmake15.exe

Under Cygwin, the ODBC libraries come with the distribution; they are located in the directory /cygdrive/c/cygwin/lib/w32api/ and are called odbc32.a and odbccp32.a. (Check if your installation is complete and has these libraries!) Otherwise, the configuration of the interface under Cygwin is same as in unix (you do not need to provide any ODBC-specific parameters to the configure script under Cygwin).

If at the time of configuring XSB some database packages (e.g., MySQL) are not installed on your system, you can install them later and configure the XSB interface to them then. For instance, to configure the ODBC interface separately, you can type

```
cd packages/dbdrivers/odbc
configure
```

Again, if ODBC is installed in a non-standard location, you might need to supply the options -with-odbc-libdir and -with-odbc-incdir to the configure script. Under Cygwin ODBC is always installed in a standard place, and configure needs no additional parameters.

Under Windows, separate configuration of the XSB-DB interfaces is also possible, but you need Visual Studio installed. For instance, to configure the MySQL interface, type

```
cd packages\dbdrivers\mysql\cc
nmake /f NMakefile.mak
```

As before, you might need to edit the NMakefile.mak script to tell the compiler where the required MySQL's libraries are. You also need the file packages\dbdrivers\mysql\mysql_init.P with the following content:

```
:- export mysql_info/2.
mysql_info(support, 'yes').
mysql_info(libdir, '').
mysql_info(ccflags, '').
mysql_info(ldflags, '').

Similarly, to configure the ODBC interface, do

    cd packages\dbdrivers\odbc\cc
    nmake /f NMakefile.mak
```

You will also need to create the file packages\dbdrivers\odbc\odbc_init.P with the following contents:

```
:- export odbc_info/2.
odbc_info(support, 'yes').
odbc_info(libdir, '').
odbc_info(ccflags, '').
odbc_info(ldflags, '').
```

5.3 Using the Interface

We use the student database as our example to illustrate the usage of the XSB-DB interface in this manual. The schema of the student database contains three columns viz. the student name, the student id, and the name of the advisor of the student.

The XSB-DB package has to be first loaded before using any of the predicates. This is done by the call:

```
| ?- [dbdrivers].
```

Next, the driver to be used for connecting to the database has to be loaded. Currently, the interface has support for a native MySQL driver (using the MySQL C API), and an ODBC driver. For example, to load the ODBC driver call:

```
| ?- load_driver(odbc).
Similarly, to load the mysql driver call:
| ?- load_driver(mysql).
or
| ?- load_driver(mysqlembedded).
```

5.3.1 Connecting to and Disconnecting from Databases

There are two predicates for connecting to databases, db_connect/5 and db_connect/6. The db_connect/5 predicate is for ODBC connections, while db_connect/6 is for other (non-ODBC) database drivers.

```
| ?- db_connect(+Handle, +Driver, +DSN, +User, +Password).
| ?- db_connect(+Handle, +Driver, +Server, +Database, +User, +Password).
```

The db_connect/5 predicate assumes that an entry for a data source name (DSN) exists in the odbc.ini file. The Handle is the connection handle name used for the connection. The Driver is the driver being used for the connection. The User and Password are the user name and password being used for the connection. The user is responsible for giving the name to the handle. To connect to the data source mydb using the user name xsb and password xsb with the odbc driver, the call is as follows:

```
| ?- db_connect(ha, odbc, mydb, xsb, xsb).
```

where ha is the user-chosen handle name (a Prolog atom) for the connection.

The db_connect/6 predicate is used for drivers other than ODBC. The arguments Handle, Driver, User, and Password are the same as for db_connect/5. The Server and Database arguments specify the server and database to connect to. For example, for a connection to a database called test located on the server wolfe with the user name xsb, the password foo, and using the mysql driver, the call is:

```
| ?- db_connect(ha, mysql, wolfe, test, xsb, foo).
```

where ha is the handle name the user chose for the connection.

If the connection is successfully made, the predicate invocation will succeed. This step is necessary before anything can be done with the data sources since it gives XSB the opportunity to initialize system resources for the session.

To close a database connection use:

```
| ?- db_disconnect(Handle).
```

where handle is the connection handle name. For example, to close the connection to above mysql database call:

```
| ?- db_disconnect(ha).
```

and XSB will give all the resources it allocated for this session back to the system.

5.3.2 Querying Databases

The interface supports two types of querying. In direct querying, the query statement is not prepared while in prepared querying the query statement is prepared before being executed. The results from both types of querying are retrieved tuple at a time. Direct querying is done by the predicate:

```
| ?- db_query(ConnectionHandle, QueryHandle, SQLQueryList, ReturnList).
```

ConnectionHandle is the name of the handle used for the database connection. QueryHandle is the name of the query handle for this particular query. For prepared queries, the query handle is used both in order to execute the query and to close it and free up space. For direct querying, the query handle is used only for closing query statements (see below). The SQLQueryList is a list of terms which is used to build the SQL query. The terms in this list are ground atoms. ReturnList is a list of variables each of which correspond to a return value in the query. It is upto the user to specify the correct number of return variables corresponding to the query. Also, as in the case of a connection handle, the user is responsible for giving the name to the query handle. For example, a query on the student database to select all the students for a given advisor is accomplished by the call:

```
| ?- X = adv,
    db_query(ha, qa, ['select T.name from student T where T.advisor = ', X], [P]),
    fail.
```

where ha and qa are respectively the connection handle and query handle name the user chose.

Observe that the query list is composed of the SQL string and a ground value for the advisor. The return list is made of one variable corresponding to the student name. The failure drive loop retrieves all the tuples.

Preparing a query is done by the call to the predicate:

```
| ?- db_prepare(ConnectionHandle, QueryHandle, SQLQueryList).
```

As before, ConnectionHandle and QueryHandle specify the handles for the connection and the query. The SQLQueryList is a list of terms which build up the query string. The placeholder '?' is used for values which have to be bound during the execution of the statement. For example, to prepare a query for selecting the advisor name for a student name using our student database:

```
| ?- db_prepare(ha, qa, ['select T.advisor from student T where T.name = ?']).
```

A prepared statement is executed using the predicate:

```
| ?- db_prepare_execute(QueryHandle, BindList, ReturnList).
```

The BindList contains the ground values corresponding to the '?' in the prepared statement. The ReturnList is a list of variables for each argument in a tuple of the result set.

For direct querying, the query handle is closed automatically when all the tuples in the result set have been retrieved. In order to explicitly close a query handle, and free all the resources associated with the handle, a call is made to the predicate:

```
| ?- db_statement_close(QueryHandle).
```

where QueryHandle is the query handle for the statement to be closed.

The interface is also able to transparently handle Prolog terms. Users can both save and retrieve terms without any special processing.

5.4 Error Handling

Each predicate in the XSB-DB interface throws an exception with the functor

```
xsb error(database(Number), Message)
```

where Number is a string with the error number and Message is a string with a slightly detailed error message. It is upto the user to catch this exception and proceed with error handling. This is done by the throw-catch error handling mechanism in XSB. For example, in order to catch the error which will be thrown when the user attempts to close a database connection for a handle (ha) which does not exist:

It is the user's responsibility to define the handler predicate which can be as simple as printing out the error number and message or may involve more complicated processing.

A list of error numbers and messages that are thrown by the XSB-DB interface is given below:

- XSB_DBI_001: XSB_DBI ERROR: Driver already registered

 This error is thrown when the user tries to load a driver, using the load_driver predicate, which has already been loaded previously.
- XSB_DBI_002: XSB_DBI ERROR: Driver does not exist

 This error is thrown when the user tries to connect to a database, using db_connect, with a driver which has not been loaded.
- XSB_DBI_003: XSB_DBI ERROR: Function does not exist in this driver
 This error is thrown when the user tries to use a function support for which does not exist
 in the corresponding driver. For example, this error is generated if the user tries to use
 db_prepare for a connection established with the mysql driver.
- XSB_DBI_004: XSB_DBI ERROR: No such connection handle

 This error is thrown when the user tries to use a connection handle which has not been created.
- XSB_DBI_005: XSB_DBI ERROR: No such query handle

 This error is thrown when the user tries to use a query handle which has not been created.
- XSB_DBI_006: XSB_DBI ERROR: Connection handle already exists

 This error is thrown when the user tries to create a connection handle in db_connect using a name which already exists as a connection handle.
- XSB_DBI_007: XSB_DBI ERROR: Query handle already exists

 This error is thrown when the user tries to create a query handle, in db_query or db_prepare,
 using a name which already exists as a query handle for a different query.
- XSB_DBI_008: XSB_DBI ERROR: Not all parameters supplied

 This error is thrown when the user tries to execute a prepared statement, using db_prepare_execute, without supplying values for all the parameters in the statement.
- XSB_DBI_009: XSB_DBI ERROR: Unbound variable in parameter list

 This error is thrown when the user tries to execute a prepared statement, using db_prepare_execute,
 without binding all the parameters of the statement.

- XSB_DBI_010: XSB_DBI ERROR: Same query handle used for different queries This error is thrown when the user issues a prepare statement (db_prepare) using a query handle that has been in use by another prepared statement and which has not been closed. Query handles must be closed before reuse.
- \bullet XSB_DBI_011: XSB_DBI ERROR: Number of requested columns exceeds the number of columns in the query

This error is thrown when the user db_query specifies more items to be returned in the last argument than the number of items in the SELECT statement in the corresponding query.

• XSB_DBI_012: XSB_DBI ERROR: Number of requested columns is less than the number of columns in the query

This error is thrown when the user db_query specifies fewer items to be returned in the last argument than the number of items in the SELECT statement in the corresponding query.

- XSB_DBI_013: XSB_DBI ERROR: Invalid return list in query Something else is wrong with the return list of the query.
- XSB_DBI_014: XSB_DBI ERROR: Too many open connections There is a limit (200) on the number of open connections.
- XSB_DBI_015: XSB_DBI ERROR: Too many registered drivers

 There is a limit (100) on the number of database drivers that can be registered at the same time.
- XSB_DBI_016: XSB_DBI ERROR: Too many active queries

 There is a limit (2000) on the number of queries that can remain open at any given time.

5.5 Notes on specific drivers

ODBC Driver

The ODBC driver has been tested in Linux using the unixodbc driver manager. It currently supports the following functionality: (a) connecting to a database using a DSN, (b) direct querying of the database, (c) using prepared statements to query the database, (d) closing a statement handle, and (d) disconnecting from the database. The ODBC driver has also been tested under Windows and Cygwin.

MySQL Driver

The MySQL driver provides access to the native MySQL C API. Currently, it has support for the following functionality: (a) connecting to a database using db_connect, (b) direct querying of the database, (c) using prepared statements to query the database, (d) closing a statement handle, and (e) disconnecting from the database.

The MySQL driver has been tested under Linux and Windows.

Driver for the Embedded MySQL Server

This driver provides access to the Embedded MySQL Server Library libmysqld. Currently, it has support for the following functionality: (a) connecting to a database db_connect, (b) direct querying of the database, (c) using prepared statements to query the database, (d) closing a statement handle, and (e) disconnecting from the database.

The MySQL driver for Embedded MySQL Server has been tested under Linux.

In order to use this driver, you will need:

- MySQL with Embedded Server installed on your machine. If your don't have a precompiled binary distribution of MySQL, which was configured with libmysqld support (the embedded server library), you will need to build MySQL from sources and configure it with the -with-embedded-server option.
- append to /etc/my.cnf (or /etc/mysql/my.cnf whichever is used on your machine) or ~/.my.cnf:

```
[mysqlembedded_driver_SERVER]
language = /usr/share/mysql/english
datadir = .....
```

You will probably need to replace /usr/share/mysql/english with a directory appropriate for your MySQL installation.

You might also need to set the datadir option to specify the directory where the databases managed by the embedded server are to be kept. This has to be done if there is a possibility of running the embedded MySQL server alongside the regular MySQL server. In that case, the datadir directory of the embedded server must be different from the datadir directory of the regular server (which is likely to be specified using the datadir option in /etc/my.cnf or /etc/mysql/my.cnf. This is because specifying the same directory might lead to a corruption of your databases. See http://dev.mysql.com/doc/refman/5.1/en/multiple-servers.html for further details on running multiple servers.

Please note that loading the embedded MySQL driver increases the memory footprint of XSB. This additional memory is released automatically when XSB exits. If you need to release the memory before exiting XSB, you can call driverMySQLEmbedded_lib_end after disconnecting from MySQL. Note that once driverMySQLEmbedded_lib_end is called, no further connections to MySQL are allowed from the currently running session of XSB (or else XSB will exit abnormally).

Chapter 6

Introduction to XSB Packages

An XSB package is a piece of software that extends XSB functionality but is not critical to programming in XSB. Around a dozen packages are distributed with XSB, ranging from simple meta-interpreters to complex software systems. Some packages provide interfaces from XSB to other software systems, such as Perl, SModels or Web interfaces (as in the libwww package). Others, such as the CHR and Flora packages, extend XSB to different programming paradigms.

Each package is distributed in the \$XSB_DIR/packages subdirectory, and has two parts: an initialization file, and a subdirectory in which package source code files and executables are kept. For example, the xsbdoc package has files xsbdoc.P, xsbdoc.xwam, and a subdirectory, xsbdoc. If a user doesn't want to retain xsbdoc (or any other package) he or she may simply remove the initialization files and the associated subdirectory without affecting the core parts of the XSB system.

Several of the packages are documented in this manual in the various chapters that follow. However, many of the packages contain their own manuals. For these packages, we provide only a summary of their functionality in Chapter 16.

Chapter 7

Wildcard Matching

By Michael Kifer

XSB has an efficient interface to POSIX wildcard matching functions. To take advantage of this feature, you must build XSB using a C compiler that supports POSIX 2.0 (for wildcard matching). This includes GCC and probably most other compilers. This also works under Windows, provided you install Cygnus' CygWin and use GCC to compile ¹.

The wildmatch package provides the following functionality:

- 1. Telling whether a wildcard, like the ones used in Unix shells, match against a given string. Wildcards supported are of the kind available in tesh or bash. Alternating characters (e.g., "[abc]" or "[^abc]") are supported.
- 2. Finding the list of all file names in a given directory that match a given wildcard. This facility generalizes directory/2 (in module directory), and it is much more efficient.
- 3. String conversion to lower and upper case.

To use this package, you need to type:

| ?- [wildmatch].

If you are planning to use it in an XSB program, you need this directive:

:- import glob_directory/4, wildmatch/3, convert_string/3 from wildmatch.

The calling sequence for glob_directory/4 is:

glob_directory(+Wildcard, +Directory, ?MarkDirs, -FileList)

¹This package has not yet been ported to the multi-threaded engine.

The parameter Wildcard can be either a Prolog atom or a Prolog string. Directory is also an atom or a string; it specifies the directory to be globbed. MarkDirs indicates whether directory names should be decorated with a trailing slash: if MarkDirs is bound, then directories will be so decorated. If MarkDirs is an unbound variable, then trailing slashes will not be added.

FileList gets the list of files in Directory that match Wildcard. If Directory is bound to an atom, then FileList gets bound to a list of atoms; if Directory is a Prolog string, then FileList will be bound to a list of strings as well.

This predicate succeeds is at least one match is found. If no matches are found or if Directory does not exist or cannot be read, then the predicate fails.

The calling sequence for wildmatch/3 is as follows:

```
wildmatch(+Wildcard, +String, ?IgnoreCase)
```

Wildcard is the same as before. String represents the string to be matched against Wildcard. Like Wildcard, String can be an atom or a string. IgnoreCase indicates whether case of letters should be ignored during matching. Namely, if this argument is bound to a non-variable, then the case of letters is ignored. Otherwise, if IgnoreCase is a variable, then the case of letters is preserved.

This predicate succeeds when Wildcard matches String and fails otherwise.

The calling sequence for convert_string/3 is as follows:

```
convert_string(+InputString, +OutputString, +ConversionFlag)
```

The input string must be an atom or a character list. The output string must be unbound. Its type will "atom" if so was the input and it will be a character list if so was the input string. The conversion flag must be the atom tolower or toupper.

This predicate always succeeds, unless there was an error, such as wrong type argument passed as a parameter.

Chapter 8

pcre: Pattern Matching and Substitution Using PCRE

By Mandar Pathak

8.1 Introduction

This package employs the PCRE library to enable XSB perform pattern matching and string substitution based on Perl regular expressions.

8.2 Pattern matching

The pcre package provides two ways of doing pattern matching: first-match mode and bulk-match mode. The syntax of the pcre:match/4 predicate is:

```
?- pcre:match(+Pattern, +Subject, -MatchList, +Mode).
```

To find only the first match, the Mode parameter must be set to the atom one. To find all matches, the Mode parameter is set to the atom bulk. The result of the matching is returned as a list of the form:

```
match(Match, Prematch, Postmatch, [Subpattern1, Subpattern2, ...])
```

The Pattern and the Subject arguments of pcre:match must be XSB atoms. If there is a match in the subject, then the result is returned as a list of the form shown above. *Match* refers to the substring which matched the entire pattern. *Prematch* contains part of the subject-string that precedes the matched substring. *Postmatch* contains part of the subject following the matched substring. The list of subpatterns (the 4-th argument of the match data structure) corresponds to the substrings which matched the parenthesized expressions in the given pattern. For example:

```
?- pcre:match('(\d{5}-\d{4})\ [A-Z]{2}',
'Hello12345-6789 NYwalk', X, 'one').
X = [match(12345-6789 NY,Hello,walk,[12345-6789])]
```

In this example, the match was found for substring '12345-6789 NY'. The prematch is 'Hello' and the postmatch is 'walk'. The substring '12345-6789' matched the parenthesized expression $(d\{5\} - d\{4\})$ and hence it is returned as part of the subpatterns list. Consider another example:

This example uses the bulk match mode of the pcre_match/4 to find all possible matches which resemble a very basic email address. In case there is no prematch or postmatch to a matched substring, an empty string is returned.

In general, there can be any number of parenthesized subtatterns in a given pattern and the subpattern match-list in the 4-th argument of the match data structure can have 0, 1, 2, or more elements.

8.3 String Substitution

The pcre package also provides a way to perform string substitution via the pcre:substitute/4 predicate. It has the following syntax:

```
?- pcre:substitute(+Pattern, +Subject, +Substitution, -Result).
```

Pattern is the regular expression against which Subject is matched. Each match found is then replaced by the Substitution, and the result is returned in the variable Result. Here, Pattern, Subject and Substitution have to be XSB atoms whereas Result must be an unbound variable. The following example illustrates the use of this predicate:

```
?- pcre:substitute('is','This is a Mississippi issue', 'was', X).
X = Thwas was a Mwasswassippi wassue
```

Note that the predicate pcre:substitute/4 always works in a bulk mode. If one needs to substitute only *one* occurrence of a pattern, this is easy to do using the pcre:match/4 predicate. For instance, if one wants to replace the third occurrence of "is" in the above string, we could issue the query

```
?- pcre:match('is','This is a Mississippi issue',X,bulk).
```

take the third element in the returned list, which is

```
match(is,'This is a M','sissippi issue',[])
```

and then concatenate the 2-nd argument with "was" and with the 3-d argument of that match data structure.

More examples of the use of the pcre package can be found in

\$XSBDIR/examples/pcretest.P

8.4 Installation and configuration

XSB's pcre package requires that the PCRE library is installed. For Windows, the PCRE library files are included with the installation. For Linux and Mac, the libpcre and libpcre-dev packages must be installed using the distribution's package manager.

8.4.1 Configuring for Linux, Mac, and other Unices

If a particular Linux distribution does not include these libraries they must be downloaded and built manually. Please visit

```
http://www.pcre.org/
```

to download the latest distribution and follow the instructions given with the package.

To configure pcre on Linux, Mac, or on some other Unix variant, switch to the XSB/build directory and type:

```
cd ../packages/pcre
./configure
./makexsb
```

8.4.2 Configuring for Windows

Configuring pcre on Windows requires creating the DLL for Windows. To create the DLL, open the Visual C++ command prompt, switch to the root XSB directory, and type:

```
cd packages\pcre\cc
nmake /f NMakefile.mak
```

This builds the DLL required by XSB's pcre package on Windows. To ensure that the build went ahead smoothly, open the directory

 ${XSB_DIR}\subset x86-pc-windows\bin$

and verify that the file pcre4pl.dll exists there.

Once the package has been configured, it must be loaded before it can be used:

?- [pcre].

Chapter 9

curl: The XSB Internet Access Package

By Aneesh Ali

9.1 Introduction

The curl package is an interface to the libcurl library, which provides access to most of the standard Web protocols. The supported protocols include FTP, FTPS, HTTP, HTTPS, SCP, SFTP, TFTP, TELNET, DICT, LDAP, LDAPS, FILE, IMAP, SMTP, POP3 and RTSP. Libcurl supports SSL certificates, HTTP POST, HTTP PUT, FTP uploading, HTTP form based upload, proxies, cookies, user+password authentication (Basic, Digest, NTLM, Negotiate, Kerberos4), file transfer resume, http proxy tunneling etc.

The curl package accepts input in the form of URLs and Prolog atoms. To load the curl package, the user should type

?- [curl].

The curl package is integrated with file I/O of XSB in a transparent fashion and for many purposes Web pages can be treated just as yet another kind of a file. We first explain how Web pages can be accessed using the standard file I/O feature and then describe other predicates, which provide a lower-level interface.

9.2 Integration with File I/O

The curl package is integrated with XSB File I/O so that a web page can be opened as any other file. Once a Web page is opened, it can be read or written just like the a normal file.

9.2.1 Opening a Web Document

Web documents are opened by the usual predicates see/1, open/3, open/4.

```
see(url(+Url))
see(url(+Url,Options))
open(url(+Url), +Mode, -Stream)
open(url(+Url), +Mode, -Stream, +Options)
```

Url is an atom that specifies a URL. Stream is the file stream of the open file. Mode can be

read to create an input stream or **write**, to create an output stream. For reading, the contents of the Web page are cached in a temporary file. For writing, a temporary empty file is created. This file is posted to the corresponding URL at closing.

The *Options* parameter is a list that controls loading. Members of that list can be of the following form:

redirect(Bool)

Specifies the redirection option. The supported values are true and false. If true, any number of redirects is allowed. If false, redirections are ignored. The default is true.

secure(*CrtName*)

Specifies the secure connections (https) option. *CrtName* is the name of the file holding one or more certificates to verify the peer with.

```
auth(UserName, Password)
```

Sets the username and password basic authentication.

timeout(Seconds)

Sets the maximum time in seconds that is allowed for the transfer operation.

```
user agent(Aqent)
```

Sets the User-Agent: header in the http request sent to the remote server.

9.2.2 Closing a Web Document

Web documents opened by the predicates **see/1**, **open/3**, and **open/4** above must be closed by the predicates **close/2** or **close/3**. The data written to the stream is first posted to the URL. If that succeeds, the stream is closed. ???? And if it does not succeed????

```
close(+Stream, +Source)
```

```
close(+Stream, +Source, +Options)
```

Source can be of the form url(url). Stream is a file stream. Options is a list of options supported normally for close.

9.3 Low Level Predicates

This section describes additional predicates provided by the curl packages, which extend the functionality provided by the file I/O integration.

9.3.1 Loading web documents

Web documents are loaded by the predicate load_page/5, which has many options. The parameters of this predicate are described below.

load_page(+Source, +Options, -Properties, -Content, -Warn)

Source can be of the form url(url) or an atom url (check!!!). The document is returned in Content. Warn is bound to a (possibly empty) list of warnings generated during the process.

Properties is bound to a list of properties of the document. They include Directory name, File name, File suffix, Page size, and Page time. The load_page/5 predicate caches a copy of the Web page that it fetched from the Web in a local file, which is specified by the above properties Directory name, File name, and File suffix. The remaining two parameters indicate the size and the last modification time of the fetched Web page. The directory and the file name The Options parameter is the same as in the URL opening predicates.

9.3.2 Retrieve the properties of a web document

The properties of a web document are loaded by the predicates url **properties/3** and url **properties/2**.

```
url_properties(+Url, +Options, -Properties)
```

The Options and Properties are same as in load page/5.

$url_properties(+Url, -Properties)$

What are the default options???

9.3.3 Encode Url

Sometimes it is necessary to convert a URL string into something that can be used, for example, as a file name. This is done by the following predicate.

url_properties(+Source, -Properties)

(???? url properties for encoding??? Explain the difference with url properties)

Source has the form url(url) or an atom url, where url is an atom. (check!!!) Properties is bound to a list of properties of the URL. They include Directory Name, File Name and, File Suffix of the URL.

9.3.4 Obtaining the Redirection URL

If the originally specified URL was redirected, the URL of the page that was actually fetched by load_page/5 can be found with the help of the following predicate:

```
get_redir_url(+Source, -UrlNew)
Source can be of the form url(url), file(filename) or a string.
```

9.4 Installation and configuration

The curl package of XSB requires that the libcurl package is installed. For Windows, the libcurl library files are included with the installation. For Linux and Mac, the libcurl and libcurl-dev packages need to be installed using the distribution's package manager. In some Linux distributions, libcurl-dev might be called libcurl-gnutls-dev or libcurl-openssl-dev. In addition, the release number might be attached. For instance, libcurl4 and libcurl4-openssl-dev.

If a particular Linux distribution does not include the above packages and for other Unix variants, the libcurl package must be downloaded and built manually. See

```
http://curl.haxx.se/download.html
```

To configure curl on Linux, Mac, or on some other Unix variant, switch to the XSB/build directory and type

```
cd XSB/packages/curl
./configure
./makexsb
```

Chapter 10

sgml and xpath: SGML/XML/HTML Parsers and XPath

By Rohan Shirwaikar

10.1 Introduction

This suite of packages consists of the sgml package, which can parse XML, HTML, XHTML, and even SGML documents and the xpath package, which supports XPath queries on XML documents. The sgml package is an adaptation of a similar package in SWI Prolog and a port of SWI's codebase with some minor changes. The xpath package provides an interface to the popular libxml2 library, which supports XPath and XML parsing, and is used in Mozilla based browsers. At present, the XML parsing capabilities of libxml2 are not utilized explicitly in XSB, but such support might be provided in the future. The sgml package does not rely on libxml2 ¹.

Installation and configuration. The sgml package does not require any installation steps under Unix-based systems or under Cygwin. Under native Windows, if you downloaded XSB from CVS, you need to compile the package as follows:

```
cd XSB\packages\sgml\cc
nmake /f NMakefile.mak
```

You need MS Visual Studio for that. If you downloaded a prebuilt version of XSB, then the sgml package should have already been compiled for you and no installation is required.

The details of the xpath package and the corresponding configuration instructions appear in Section 10.4.

¹This package has not yet been tested for thread-safety

10.2 Overview of the SGML Parser

The sgml package accepts input in the form of files, URLs and Prolog atoms. To load the sgml parser, the user should type

```
?- [sgml].
at the prompt. If test.html is a file with the following contents
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<title>Demo</title>
</head>
<body>
<h1 align=center>This is a demo</title>
Paragraphs in HTML need not be closed.
This is called 'omitted-tag' handling.
</body>
</html>
then the following call
?- load_html_structure(file('test.html'), Term, Warn).
will parse the document and bind Term to the following Prolog term:
[ element(html,
          [],
          [ element(head,
                     []
                     [ element(title,
                                [],
                                [ 'Demo'
                                ])
                     ]),
            element(body,
                     [],
                     [ '\n',
                       element(h1,
                                [ align = center
```

The XML document is converted into a list of Prolog terms of the form element (Name, Attributes, Content). Each term corresponds to an XML element. Name represents the name of the element. Attributes is a list of attribute-value pairs of the element. Content is a list of child-elements and CDATA. For instance,

```
<aaa>fooo<bbb>foo1</bbb></aaa>
will be parsed as
element(aaa,[],[fooo, element(bbb,[],[foo1])])
```

Entities (e.g. <) are returned as part of CDATA, unless they cannot be represented. See load_sgml_structure/3 for details.

10.3 Predicate Reference

10.3.1 Loading Structured Documents

SGML, HTML, and XML documents are parsed by the predicate **load_structure/4**, which has many options. For convenience, a number of commonly used shorthands are provided to parse SGML, XML, HTML, and XHTML documents respectively.

```
load_sgml_structure(+Source, -Content, -Warn)
load_xml_structure(+Source, -Content, -Warn)
load_html_structure(+Source, -Content, -Warn)
load_xhtml_structure(+Source, -Content, -Warn)
```

The parameters of these predicates have the same meaning as those in **load_structure/4**, and are described below.

The above predicates (in fact, just load_xml_structure/3 and load_html_structure/3) are the most commonly used predicates of the sgml package. The other predicates described in this section are needed only for advanced uses of the package.

load_structure(+Source, -Content, +Options, -Warn)

Source can have one of the following forms: url(url), file(file name), string('document as a Prolog atom'). The parsed document is returned in Content. Warn is bound to a (possibly empty) list of warnings generated during the parsing process. Options is a list of parameters that control parsing, which are described later.

The list *Content* can have the following members:

A Prolog atom

Atoms are used to represent character strings, i.e., CDATA.

element(Name, Attributes, Content)

Name is the name of the element tag. Since SGML is case-insensitive, all element names are returned as lowercase atoms.

Attributes is a list of pairs the form Name=Value, where Name is the name of an attribute and Value is its value. Values of type CDATA are represented as atoms. The values of multi-valued attributes (NAMES, etc.) are represented as a lists of atoms. Handling of the attributes of types NUMBER and NUMBERS depends on the setting of the number(+NumberMode) option of set_sgml_parser/2 or load_structure/3 (see later). By default the values of such attributes are represented as atoms, but the number(...) option can also specify that these values must be converted to Prolog integers.

Content is a list that represents the content for the element.

entity(Code)

If a character entity (e.g., Α) is encountered that cannot be represented in the Prolog character set, this term is returned. It represents the code of the encountered character (e.g., entity(913)).

entity(Name)

This is a special case of entity(Code), intended to handle special symbols by their name rather than character code. If an entity refers to a character entity holding a single character, but this character cannot be represented in the Prolog character set, this term is returned. For example, if the contents of an element is Α < Β then it will be represented as follows:

```
[ entity('Alpha'), ' < ', entity('Beta') ]</pre>
```

Note that entity names are case sensitive in both SGML and XML.

sdata(Text)

If an entity with declared content-type SDATA is encountered, this term is used. The data of the entity instantiates *Text*.

ndata(Text)

If an entity with declared content-type NDATA is encountered, this term is used. The data instantiates *Text*.

pi(Text)

If a processing instruction is encountered (<?...?>), Text holds the text of the processing instruction. Please note that the <?xml ...?> instruction is ignored and is not treated as a processing instruction.

The *Options* parameter is a list that controls parsing. Members of that list can be of the following form:

dtd(?DTD)

Reference to a DTD object. If specified, the <!DOCTYPE ...> declaration supplied with the document is ignored and the document is parsed and validated against the provided DTD. If the DTD argument is a variable, then a the variable DTD gets bound to the DTD object created out of the DTD supplied with the document.

dialect(+Dialect)

Specify the parsing dialect. The supported dialects are sgml (default), xml and xmlns.

space(+SpaceMode)

Sets the space handling mode for the initial environment. This mode is inherited by the other environments, which can override the inherited value using the XML reserved attribute **xml:space**. See Section 10.3.2 for details.

number(+NumberMode)

Determines how attributes of type NUMBER and NUMBERS are handled. If token is specified (the default) they are passed as an atom. If integer is specified the parser attempts to convert the value to an integer. If conversion is successful, the attribute is represented as a Prolog integer. Otherwise the value is represented as an atom. Note that SGML defines a numeric attribute to be a sequence of digits. The - (minus) sign is not allowed and 1 is different from 01. For this reason the default is to handle numeric attributes as tokens. If conversion to integer is enabled, negative values are silently accepted and the minus sign is ignored.

defaults(+Bool)

Determines how default and fixed attributes from the DTD are used. By default, defaults are included in the output if they do not appear in the source. If false, only the attributes occurring in the source are emitted.

file(+Name)

Sets the name of the input file for error reporting. This is useful if the input is a stream that is not coming from a file. In this case, errors and warnings will not have the file name in them, and this option allows one to force inclusion of a file name in such messages.

line(+Line)

Sets the starting line-number for reporting errors. For instance, if line(10) is specified and an error is found at line X then the error message will say that the error occurred at line X+10. This option is used when the input stream does not start with the first line of a file.

$\max_{errors}(+Max)$

Sets the maximum number of errors. The default is 50. If this number is reached, the following exception is raised:

```
error(limit_exceeded(max_errors, Max), _)
```

10.3.2 Handling of White Spaces

Four modes for handling white-spaces are provided. The initial mode can be switched using the space(SpaceMode) option to load_structure/3 or set_sgml_parser/2. In XML mode, the mode is further controlled by the xml:space attribute, which may be specified both in the DTD and in the document. The defined modes are:

space(sgml)

Newlines at the start and end of an element are removed. This is the default mode for the SGML dialect.

space(preserve)

White space is passed literally to the application. This mode leaves all white space handling to the application. This is the default mode for the XML dialect.

space(default)

In addition to sgml space-mode, all consecutive whitespace is reduced to a single space-character.

space(remove)

In addition to default, all leading and trailing white-space is removed from CDATA objects. If, as a result, the CDATA becomes empty, nothing is passed to the application. This mode is especially handy for processing data-oriented documents, such as RDF. It is not suitable for normal text documents. Consider the HTML fragment below. When processed in this mode, the spaces surrounding the three elements in the example below are lost. This mode is not part of any standard: XML 1.0 allows only default and preserve.

```
Consider adjacent <b>bold</b> and <it>italic</it> words.
```

The parsed term will be ['Consider adjacent', element(b, [], [bold]), element(ul, [], [and]), element(it, [], [italics]), words].

10.3.3 XML documents

The parser can operate in two modes: the sgml mode and the xml mode, as defined by the dialect(Dialect) option. HTML is a special case of the SGML mode with a particular DTD. Regardless of this option, if the first line of the document reads as below, the parser is switched automatically to the XML mode.

```
<?xml ... ?>
```

Switching to XML mode implies:

- XML empty elements

 The construct <element attribute ... attribute/> is recognized as an empty element.
- Predefined entities
 The following entities are predefined: < (<), > (>), & (&), ' (') and " (").
- Case sensitivity
 In XML mode, names of tags and attributes are case-sensitive, except for the DTD reserved names (i.e. ELEMENT, etc.).
- Character classes
 In XML mode, underscore (_) and colon (:) are allowed in names.
- White-space handling
 White space mode is set to preserve. In addition, the XML reserved attribute xml:space
 is honored; it may appear both in the document and the DTD. The remove extension (see
 space(remove) earlier) is allowed as a value of the xml:space attribute. For example, the
 DTD statement below ensures that the pre element preserves space, regardless of the default
 processing mode.

<!ATTLIST pre xml:space nmtoken #fixed preserve>

XML Namespaces

Using the dialect xmlns, the parser will recognize XML namespace prefixes. In this case, the names of elements are returned as a term of the format

URL:LocalName

If an identifier has no namespace prefix and there is no default namespace, it is returned as a simple atom. If an identifier has a namespace prefix but this prefix is undeclared, the namespace prefix rather than the related URL is returned.

Attributes declaring namespaces (xmlns: ns=url) are represented in the translation as regular attributes.

10.3.4 DTD-Handling

The DTD (**D**ocument **T**ype **D**efinition) are internally represented as objects that can be created, freed, defined, and inspected. Like the parser itself, it is filled by opening it as a Prolog output stream and sending data to it. This section summarizes the predicates for handling the DTD.

$new_dtd(+DocType, -DTD, -Warn)$

Creates an empty DTD for the named DocType. The returned DTD-reference is an opaque term that can be used in the other predicates of this package. Warn is the list of warnings generated.

$free_dtd(+DTD, -Warn)$

Deallocate all resources associated to the DTD. Further use of DTD is invalid. Warn is the list of warnings generated.

$open_dtd(+DTD, +Options, -Warn)$

This opens and loads a DTD from a specified location (given in the *Options* parameter (see next). *DTD* represents the created DTD object after the source is loaded. *Options* is a list options. Currently the only option supported is *source(location)*, where *location* can be of one of these forms:

```
url(url)
file(fileName)
string('document as a Prolog atom').
```

dtd(+DocType, -DTD, -Warn)

Certain DTDs are part of the system and have known doctypes. Currently, 'HTML' and 'XHTML' are the only recognized built-in doctypes. Such a DTD can be used for parsing simply by specifying the doctype. Thus, the dtd/3 predicate takes the doctype name, finds the DTD associated with the given doctype, and creates a dtd object for it. Warn is the list of warnings generated.

```
dtd(+DocTupe, -DTD, +DtdFile -Warn)
```

The predicate parses the DTD present at the location DtdFile and creates the corresponding DTD object. DtdFile can have one of the following forms: url(url), file(fileName), string('document as a Prolog atom').

10.3.5 Low-level Parsing Primitives

The following primitives are used only for more complex types of parsing, which might not be covered by the load_structure/4 predicate.

```
new_sgml_parser(-Parser, +Options, -Warn)
```

Creates a new parser. Warn is the list of warnings generated. A parser can be used one or multiple times for parsing documents or parts thereof. It may be bound to a DTD or the DTD may be left implicit. In this case the DTD is created from the document prologue or (if it is not in the prologue) parsing is performed without a DTD. The Options list can contain the following parameters:

```
dtd(?DTD)
```

If DTD is bound to a DTD object, this DTD is used for parsing the document and

the document's prologue is ignored. If DTD is a variable, the variable gets bound to a created DTD. This DTD may be created from the document prologue or build implicitly from the document's content.

free_sgml_parser(+Parser, -Warn)

Destroy all resources related to the parser. This does not destroy the DTD if the parser was created using the dtd(DTD) option. Warn is the list of warnings generated during parsing (can be empty).

$set_sgml_parser(+Parser, +Option, -Warn)$

Sets attributes to the parser. Warn is the list of warnings generated. Options is a list that can contain the following members:

file(File)

Sets the file for reporting errors and warnings. Sets the linenumber to 1.

line(Line)

Sets the starting line for error reporting. Useful if the stream is not at the start of the (file) object for generating proper line-numbers. This option has the same meaning as in the load_structure/4 predicate.

charpos(Offset)

Sets the starting character location. See also the file(File) option. Used when the stream does not start from the beginning of a document.

dialect(Dialect)

Set the markup dialect. Known dialects:

sgml

The default dialect. This implies markup is case-insensitive and standard SGML abbreviation is allowed (abbreviated attributes and omitted tags).

xml

This dialect is selected automatically if the processing instruction <?xml ...> is encountered.

xmlns

Process file as XML file with namespace support.

qualify attributes(Boolean)

Specifies how to handle unqualified attributes (i.e., without an explicit namespace) in XML namespace (xmlns) dialect. By default, such attributes are not qualified with namespace prefixes. If true, such attributes are qualified with the namespace of the element they appear in.

space(SpaceMode)

Define the initial handling of white-space in PCDATA. This attribute is described in Section 10.3.2.

number(NumberMode)

If token is specified (the default), attributes of type number are represented as a Prolog atom. If integer is specified, such attributes are translated into Prolog integers. If the

conversion fails (e.g., due to an overflow) a warning is issued and the value is represented as an atom.

doctype(Element)

Defines the top-level element of the document. If a <!DOCTYPE ...> declaration has been parsed, this declaration is used. If there is no DOCTYPE declaration then the parser can be instructed to use the element given in doctype(_) as the top level element. This feature is useful when parsing part of a document (see the parse option to sgml parse/3).

$sgml_parse(+Parser, +Options, -Warn)$

Parse an XML file. The parser can operate in two input and two output modes. Output is a structured term as described with load_structure/4.

Warn is the list of warnings generated. A full description of Options is given below.

document(+Term)

A variable that will be unified with a list describing the content of the document (see load_structure/4).

source(+Source)

Source can have one of the following forms: url(url), file(fileName), string('document as a Prolog atom'). This option must be given.

content_length(+Characters)

Stop parsing after the given number of *Characters*. This option is useful for parsing input embedded in *envelopes*, such as HTTP envelopes.

parse(Unit)

Defines how much of the input is parsed. This option is used to parse only parts of a file.

file

Default. Parse everything up to the end of the input.

element

The parser stops after reading the first element. Using source(Stream), this implies reading is stopped as soon as the element is complete, and another call may be issued on the same stream to read the next element.

declaration

This may be used to stop the parser after reading the first declaration. This is useful if we want to parse only the doctype declaration.

max_errors(+MaxErrors)

Sets the maximum number of errors. If this number is exceeded, further writes to the stream will yield an I/O error exception. Printing of errors is suppressed after reaching this value. The default is 100.

syntax errors(+ErrorMode)

Defines how syntax errors are handled.

quiet

Suppress all messages.

print

Default. Print messages.

10.3.6 External Entities

While processing an SGML document the document may refer to external data. This occurs in three places: external parameter entities, normal external entities and the DOCTYPE declaration. The current version of this tool deals rather primitively with external data. External entities can only be loaded from a file.

Two types of lines are recognized by this package:

```
DOCTYPE doctype file

PUBLIC "Id " file
```

The parser loads the entity from the file specified as file. The file can be local or a URL.

10.3.7 Exceptions

Exceptions are generated by the parser in two cases. The first case is when the user specifies wrong input. For example when specifying

```
load_structure( string('<m></m>'), Document, [line(xyz)], Warn)
```

The string xyz is not in the domain of line. Hence in this case a domain error exception will be thrown.

Exceptions are generated when XML being parsed is not well formed. For example if the input XML contains

```
'<m></m1>'
```

exceptions will be thrown.

In both cases the format of the exception is

```
error( sgml( error term), error message)
warning( sgml( warning term), warning message)
```

where error term or warning term can be of the form

- pointer to the parser instance,
- line at which error occurred,

- error code.
- functor(argument), where functor and argument depend on the type of exception raised. For example,

```
resource-error(no-memory) — if memory is unavailable
permission-error(file-name) — no permission to read a file
A system-error(description) — internal system error
type-error(expected,actual) — data type error
domain-error(functor,offending-value) — the offending value is not in the domain
of the functor. For instance, in load_structure(string('<m></m>'), Document,
[line(xyz)], Warn), xyz is not in the domain of line.
existence-error(resource) — resource does not exist
limit-exceeded(limit,maxval) — value exceeds the limit.
```

10.3.8 Unsupported features

The current parser is rather limited. While it is able to deal with many serious documents, it omits several less-used features of SGML and XML. Known missing SGML features include

• NOTATION on entities

Though notation is parsed, notation attributes on external entity declarations are not represented in the output.

• NOTATION attributes

SGML notations may have attributes, declared using <!ATTLIST #NOT name attrib>. Those data attributes are provided when you declare an external CDATA, NDATA, or SDATA entity. XML does not support external CDATA, NDATA, or SDATA entities, nor any of the other uses to which data attributes are put in SGML.

• SGML declaration

The 'SGML declaration' is fixed, though most of the parameters are handled through indirections in the implementation.

• The RANK feature

It is regarded as obsolete.

• The LINK feature

It is regarded as too complicated.

• The CONCUR feature

Concurrent markup allows a document to be tagged according to more than one DTD at the same time. It is not supported.

• The Catalog files

Catalog files are not supported.

In the XML mode, the parser recognizes SGML constructs that are not allowed in XML. Also various extensions of XML over SGML are not yet realized. In particular, XInclude is not implemented.

10.3.9 Summary of Predicates

dtd/2 Find or build a DTD for a document type free dtd/1 Free a DTD object

free_sgml_parser/1 Destroy a parser

load_dtd/2 Read DTD information from a file

load_structure/4 Parse XML/SGML/HTML data into Prolog term

load_sgml_structure/3Parse SGML file into Prolog termload_html_structure/3Parse HTML file into Prolog termload_xml_structure/3Parse XML file into Prolog termload_xhtml_structure/3Parse XHTML file into Prolog term

open_dtd/3 Open a DTD object as an output stream set_sgml_parser/2 Set parser options (dialect, source, etc.)

sgml parse/2 Parse the input

xml_name/1 Test atom for valid XML name
xml_quote_attribute/2 Quote text for use as an attribute
xml_quote_cdata/2 Quote text for use as PCDATA

10.4 XPath support

XPath is a query language for addressing parts of an XML document. In XSB, this support is provided by the xpath package. To use this package the libxml2 XML parsing library must be installed on the machine. It comes with most Linux distributions, since it is part of the Gnome desktop, or one can download it from http://xmlsoft.org/. It is available for Linux, Solaris, Windows, and MacOS. Note that both the library itself and the .h files of that library must be installed. In some Linux distributions, the .h files might reside in a separate package from the package that contains the actual library. For instance, the library (libxml2.so) might be in the package called libxml2 (which is usually installed by default), while the .h files might be in the package libxml2-dev (which is usually not in default installations).

On Unix-based systems (and MacOS), the package might need to be configured at the time XSB is configured using XSB's configure script found in the XSB's build directory. Normally, if libxml2 is installed by a Linux package manager, nothing special is required: the package will be configured by default. If the library is in a non-standard place, then the configure options -with-xpath-libdir=directory-of-libxml2 and -with-xpath-incdir=libxml2-include-dir must be given. The former option must specify the directory of libxml2.so library, while the later should specify the directory for the libxml2 include files. It is the directory that contains include/libxml2.

Examples: If libxml2 is in a default location, then XSB can be configured simply like this:

./configure

Otherwise, use

./configure --with-xpath-incdir=/usr/share --with-xpath-libdir=/usr/local

if, for example, libxml2.so is in /usr/local/lib/libxml2.so and the included .h files are in /usr/share/include/libxml2.

On Windows and under Cygwin, the libxml2 library is already included in the XSB distribution and does not need to be downloaded. If you are using a prebuilt XSB distribution for Windows, then you do not need to do anything—the package has already been built for you.

For Cygwin, you only need to run the ./configure script without any options. This needs to be done regardless of whether you downloaded XSB from CVS or a released prebuilt version.

If you downloaded XSB from CVS and want to use it under native Windows (not Cygwin), then you would need to compile the XPath package, and you need Microsoft's Visual Studio. To compile the package one should do the following:

```
cd packages\xpath\cc
nmake /f NMakefile.mak
```

The following section assumes that the reader is familiar with the syntax of XPath and its capabilities. To load the xpath package, type

```
:-[xpath].
```

The program needs to include the following directive:

```
:- import parse_xpath/4 from xpath.
```

XPath query evaluation is done by using the parse_xpath predicate.

```
parse xpath(+Source, +XPathQuery, -Output, +NamespacePrefixList)
```

Source is a term of the format url(url), file(filename) or string('XML-document-as-a-string'). It specifies that the input XML document is contained in a file, can be fetched from a URL, or is given directly as a Prolog atom.

XPathQuery is a standard XPath query which is to be evaluated on the XML document in Source.

Output gets bound to the output term. It represents the XML element returned after the XPath query is evaluated on the XML document in Source. The output term is of the form string('XML-document'). It can then be parsed using the sgml package described earlier.

NamespacePrefixList is a space separated list of pairs of the form prefix = namespace. This specifies the namespace prefixes that are used in the XPath query.

For example if the xpath expression is '/x:html/x:head/x:meta' where x is a prefix that stands for 'http://www.w3.org/1999/xhtml', then x would have to be defined as follows:

In the above, the xpath query is '/x:html/x:head/x:meta' and the prefix has been defined as 'x=http://www.w3.org/1999/xhtml'.

Chapter 11

rdf: The XSB RDF Parser

By Aneesh Ali

11.1 Introduction

RDF is a W3C standard for representing meta-data about documents on the Web as well as exchanging frame-based data (e.g. ontologies). RDF has a formal data model defined in terms of triples. In addition, a graph model is defined for visualization and an XML serialization for exchange. This chapter describes the API provided by the XSB RDF parsing package. The package and its documentation are adaptations from SWI Prolog.

11.2 High-level API

The RDF translator is built in Prolog on top of the **sgml2pl** package, which provides XML parsing. The transformation is realized in two passes. It is designed to operate in various environments and therefore provides interfaces at various levels. First we describe the top level, which parses RDF-XML file into a list of triples. These triples are *not* asserted into the Prolog database because it is not necessarily the final format the user wishes to use and it is not clear how the user might want to deal with multiple RDF documents. Some options are using global URI's in one pool, in Prolog modules, or using an additional argument.

```
load\_rdf(+File, -Triples)
Same as load\_rdf(+File, -Triples, []).
```

 $load_rdf(+File, -Triples, +Options)$

Read the RDF-XML file *File* and return a list of *Triples*. *Options* is a list of additional processing options. Currently defined options are:

base uri(BaseURI)

If provided, local identifiers and identifier-references are globalized using this URI. If

omitted, local identifiers are not tagged.

blank_nodes(Mode)

If *Mode* is **share** (default), blank-node properties (i.e. complex properties without identifier) are reused if they result in exactly the same triple-set. Two descriptions are shared if their intermediate description is the same. This means they should produce the same set of triples in the same order. The value **noshare** creates a new resource for each blank node.

expand foreach(Boolean)

If Boolean is true, expand rdf:aboutEach into a set of triples. By default the parser generates rdf(each(Container), Predicate, Subject).

lang(Lang)

Define the initial language (i.e. pretend there is an xml:lang declaration in an enclosing element).

ignore_lang(Bool)

If true, xml:lang declarations in the document are ignored. This is mostly for compatibility with older versions of this library that did not support language identifiers.

convert_typed_literal(:ConvertPred)

If the parser finds a literal with the rdf:datatype=Type attribute, call ConvertPred(+Type, +Content, -Literal). Content is the XML element contents returned by the XML parser (a list). The predicate must unify Literal with a Prolog representation of Content according to Type or throw an exception if the conversion cannot be made.

This option serves two purposes. First of all it can be used to ignore type declarations for backward compatibility of this library. Second it can be used to convert typed literals to a meaningful Prolog representation (e.g., convert '42' to the Prolog integer 42 if the type is xsd:int or a related type).

namespaces(-List)

Unify List with a list of NS=URL for each encountered xmlns:NS=URL declaration found in the source.

entity(+Name, +Value)

Overrule entity declaration in file. As it is common practice to declare namespaces using entities in RDF/XML, this option allows changing the namespace without changing the file. Multiple such options are allowed.

The *Triples* list is a list of the form rdf(Subject, Predicate, Object) triples. Subject is either a plain resource (an atom), or one of the terms each(URI) or prefix(URI) with the usual meaning. Predicate is either a plain atom for explicitly non-qualified names or a term NameSpace:Name. If NameSpace is the defined RDF name space it is returned as the atom rdf. Object is a URI, a Predicate or a term of the form literal(Value) for literal values. Value is either a plain atom or a parsed XML term (list of atoms and elements).

11.2.1 RDF Object representation

The *Object* (3rd) part of a triple can have several different types. If the object is a resource it is returned as either a plain atom or a term *NameSpace:Name*. If it is a literal it is returned as

literal(Value), where Value can have one of the form below.

- An atom
 - If the literal *Value* is a plain atom is a literal value not subject to a datatype or xml:lang qualifier.
- lang(LanguageID, Atom)

 If the literal is subject to an xml:lang qualifier LanguageID specifies the language and Atom the actual text.
- A list

 If the literal is an XML literal as created by parseType="Literal", the raw output of the XML parser for the content of the element is returned. This content is a list of element(Name, Attributes, Content) and atoms for CDATA parts as described with the sgml package.
- type(Type, StringValue)
 If the literal has an rdf:datatype=Type a term of this format is returned.

11.2.2 Name spaces

RDF name spaces are identified using URIs. Unfortunately various URI's are in common use to refer to RDF. The RDF parser therefore defines the rdf_name_space/1 predicate as multifile, which can be extended by the user. For example, to parse Netscape OpenDirectory (http://www.mozilla.org/rdf/doc/inference.html) given in the structure.rdf file (http://rdf.dmoz.org/rdf/structure.rdf.u8.gz), the following declarations are used:

The above statements will then extend the initial definition of this predicate provided by the parser:

```
rdf_name_space('http://www.w3.org/1999/02/22-rdf-syntax-ns#').
rdf_name_space('http://www.w3.org/TR/REC-rdf-syntax').
```

11.2.3 Low-level access

The predicates load_rdf/2 and load_rdf/3 described earlier are not always sufficient. For example, they cannot deal with documents where the RDF statement is embedded in an XML document. It also cannot deal with really large documents (e.g. the Netscape OpenDirectory project, currently about 90 MBytes), without requiring huge amounts of memory.

For really large documents, the **sgml2pl** parser can be instructed to handle the content of a specific element (i.e. <rdf:RDF>) element-by-element. The parsing primitives defined in this section can be used to process these one-by-one.

$xml_to_rdf(+XML, +BaseURI, -Triples)$

Process an XML term produced by sgml's load_structure/4 using the dialect(xmlns) output option. XML is either a complete <rdf:RDF> element, a list of RDF-objects (container or description), or a single description of container.

11.3 Testing the RDF translator

A test-suite and a driver program are provided by rdf_test.P in the XSB/examples/rdf directory. To run these tests, load this file into Prolog and execute test_all. The test files found in the directory examples/rdf/suite are then converted into triples. The expected output is in examples/rdf/expectedoutput. One can also run the tests selectively, using the following predicates:

suite(+N)

Run test N using the file suite/tN.rdf and display its RDF representation and the triples.

test_file(+File)

Process File and display its RDF representation and the triples.

Chapter 12

Constraint Packages

Constraint packages are an important part of modern logic programming, but approaches to constraints differ both in their semantics and in their implementation. At a semantic level, Constraint Logic Programming associates constraints with logical variables, and attempts to determine solutions that are inconsistent with or entailed by those constaints. At an implementational level, the constraints can either be manipulated by accessing attributed variables or by adding constraint handling rules to a program. The former approach of attributed variables can be much more efficient than constraint handling rules (which are themselves implemented through attributed variables) but are much more difficult to use than constraint handling rules. These variable-based approaches differ from that of Answer Set Programming in which a constraint problem is formulated as a set of rules, which are consistent if a stable model can be constructed for them.

XSB supports all of these approaches. Two packages based on attributed variables are presented in this chapter: CLP(R) and the bounds package, which provides a simple library for handling finite domains. XSB's CHR package is described in Chapter 13, and XSB's Answer Set Programming Package, XASP is described in Chapter 14.

Before describing the individual packages, we note that these packages can be freely used with variant tabling, the mechanisms for which handle attributed variables. However in Version 3.3, calling a predicate P that is tabled using call subsumption will raise an error if the call to P contains any constrained variables (attributed variables).

12.1 clpr: The CPL(R) package

The CLP(R) library supports solutions of linear equations and inequalities over the real numbers and the lazy treatment of nonlinear equations ¹. In displaying sets of equations and disequations, the library removes redundancies, performs projections, and provides for linear optimization. The goal of the XSB port is to provide the same CLP(R) functionality as in other platforms, but also to allow constraints to be used by tabled predicates. This section provides a general introduction

¹The CLP(R) package is based on the clpqr package included in SWI Prolog version 5.6.49. This package was originally written by Christian Holzbaur and ported to SWI by Leslie De Konick. Terrance Swift ported the package to XSB and and wrote this XSB manual section.

to the CLP(R) functionality available in XSB, for further information on the API described in Section 12.1.1 see http://www.ai.univie.ac.at/clpqr, or the Sicstus Prolog manual (the CLP(R) library should behave similarly on XSB and Sicstus at the level of this API).

The clpr package may be loaded by the command [clpr]. Loading the package imports exported predicates from the various files in the clpr package into usermod (see Volume 1, Section 3.3) so that they may be used in the interpreter. Modules that use the exported predicates need to explicitly import them from the files in which they are defined (e.g. bv, as shown below).

XSB's tabling engine supports the use of attributed variables (Section 1.2), which in turn have been used to port real constraints to XSB under the CLP(R) library of Christian Holzbauer [15]. Constraint equations are represented using the Prolog syntax for evaluable functions (Volume 1, Section 6.2.1). Formally:

```
C \mid C , C
ConstraintSet \rightarrow
C \rightarrow
                        Expr = := Expr
                                                equation
                        | Expr = Expr
                                                equation
                         Expr < Expr
                                                strict inequation
                         Expr > Expr
                                                strict inequation
                         Expr = < Expr
                                                nonstrict inequation
                         Expr >= Expr
                                                nonstrict inequation
                         Expr =/= Expr
                                                disequation
Expr \rightarrow
                        variable
                                                Prolog variable
                         number
                                                floating point number
                         + Expr
                         - Expr
                         Expr + Expr
                         Expr - Expr
                         Expr * Expr
                         Expr / Expr
                         abs(Expr)
                         sin(Expr)
                         cos(Expr)
                         tan(Expr)
                         pow(Expr, Expr)
                                                raise to the power
                         \exp(Expr, Expr)
                                                raise to the power
                         min(Expr, Expr)
                                                minimum of two expressions
                         \max(Expr, Expr)
                                                maximum of two expressions
                         \#(Expr)
                                                symbolic numerical constants
```

12.1.1 The CLP(R) API

From the command line, it is usually easiest to load the clpr package and call the predicates below directly from usermod (the module implicitly used by the command line). However, when calling

```
:- import {}/1 from clpr.

root(N, R) :-
root(N, 1, R).
root(0, S, R) :- !, S=R.
root(N, S, R) :-
N1 is N-1,
{ S1 = S/2 + 1/S },
root(N1, S1, R).
```

Figure 12.1: Example of a file with a CLP(R) predicate

any of these predicates from compiled code, they must be explicitly imported from their modules (e.g. {} must be explicitly imported from clpr). Figure 12.1.1 shows an example of how this is done. '

{+Constraints} module: clpr

When the CLP(R) package is loaded, inclusion of equations in braces ({}) adds Constraints to the constraint store where they are checked for satisfiability.

Example:

```
| ?- [clpr].
[clpr loaded]
[itf loaded]
[dump loaded]
[bv_r loaded]
[nf_r loaded]
yes
| ?- {X = Y+1, Y = 3*X}.
X = -0.5000
Y = -1.5000;
yes
```

Error Cases

- Constraints is not instantiated
 - instantiation_error
- \bullet Constraints is not an equation, an inequation or a disequation
 - domain_error('constraint relation', Rel)
- Constraints contains an expression Expr that is not a numeric expression
 - domain_error('numeric expression',Expr)

entailed(+Constraint)

module: clpr

Succeeds if Constraint is logically implied by the current constraint store. entailed/1 does not change the constraint store.

Example:

```
| ?- {A =< 4},entailed(A =\= 5). 
{ A =< 4.0000 }
```

Error Cases

- Constraints is not instantiated
 - instantiation_error
- Constraints is not an equation, an inequation or a disequation
 - domain_error('constraint relation',Rel)

```
inf(+Expr,-Val)
sup(+Expr,-Val)
minimize(Expr)

maximize(Expr)

clpr
module: clpr
```

These four related predicates provide various mechanisms to compute the maximum and minimum of expressions over variables in a constraint store. In the case where the expression is not bounded from above over the reals sup/2 and maximize/1 will fail; similarly if the expression is not bounded from below inf/2 and minimize/1 will fail.

Examples:

```
| ?- {X = 2*Y,Y >= 7},inf(X,F).

{ X >= 14.0000 }

{ Y = 0.5000 * X }

X = _h8841

Y = _h9506

F = 14.0000

| ?- {X = 2*Y,Y >= 7},minimize(X).

X = 14.0000

Y = 7.0000

| ?- {X = 2*Y,Y =< 7},maximize(X-2).

X = 14.0000

Y = 7.0000

| ?- {X = 2*Y,Y =< 7},sup(X-2,Z).

{ X =< 14.0000 }

{ Y = 0.5000 * X }
```

clpr

module: clpr

```
X = _h8975
Y = _h9640
Z = 12.0000

yes
| ?- {X = 2*Y,Y =< 7},maximize(X-2).

X = 14.0000
Y = 7.0000
yes

inf(+Expr,-Val, +Vector, -Vertex)
sup(+Expr,-Val, +Vector, -Vertex)</pre>
```

These predicates work like inf/2 and sup/2 with the following addition. Vector is a list of Variables, and for each variable V in Vector, the value of V at the extremal point Val is returned in corresponding position in the list Vertex.

Example:

```
bb_inf(+IntegerList,+Expr,-Inf,-Vertex, +Eps)
```

module: clpr

Works like inf/2 in Expr but assumes that all the variables in IntegerList have integral values. Eps is a positive number between 0 and 0.5 that specifies how close an element of IntegerList must be to an integer to be considered integral – i.e. for such an X, abs(round(X) - X) < Eps. Upon success, Vertex is instantiated to the integral values of all variables in IntegerList. bb_inf/5 works properly for non-strict inequalities only.

Example:

```
| ?- {X > Y + Z,Y > 1, Z > 1},bb_inf([Y,Z],X,Inf,Vertex,0).

{ Z > 1.0000 }

{ Y > 1.0000 }

{ X - Y - Z > 0.0000 }

X = _h14286

Y = _h10914

Z = _h13553
```

```
Inf = 4.0000
Vertex = [2.0000,2.0000]
yes
```

Error Cases

- IntegerList is not instantiated
 - instantiation error

```
bb_inf(+IntegerList,+Expr,-Inf)
```

module: clpr

Works like bb_inf/5, but with the neighborhood, Eps, set to 0.001.

Example

```
|?- {X >= Y+Z, Y > 1, Z > 1}, bb_inf([Y,Z],X,Inf)
{ Z > 1.0000 }
{ Y > 1.0000 }
{ X - Y - Z >= 0.0000 }

X = _h14289
Y = _h10913
Z = _h13556
Inf = 4.
```

dump(+Variables,+NewVars,-CodedVars

module: dump

For a list of variables Variables and a list of variable names NewVars, returns in CodedVars the constraints on the variables, without affecting the constraint store.

Example:

```
| ?- {X > Y+1, Y > 2},
	dump([X,Y], [x,y], CS).

{ Y > 2.0000 }

{ X - Y > 1.0000 }

X = _h17748

Y = _h17139

CS = [y > 2.0000,x - y > 1.0000];
```

Error Cases

- Variables is not instantiated to a list of variables
 - instantiation_error

projecting_assert(+Clause)

module: dump

In XSB, when a subgoal is tabled, the tabling system automatically determines the relevant projected constraints for an answer and copies them into and out of a table. However,

when a clause with constrained variables is asserted, this predicate must be used rather than assert/1 in order to project the relevant constraints. This predicate works with either standard or trie-indexed dynamic code.

Example:

```
| ?- {X > 3},projecting_assert(q(X)).
{ X > 3.0000 }

X = _h396

yes
| ?- listing(q/1).
q(A) :- clpr : {A > 3.0000}.

yes
| ?- q(X),entailed(X > 2).
{ X > 3.0000 }

X = _h358

yes
| ?- q(X),entailed(X > 4).
no
```

12.2 The bounds Package

Version 3.3 of XSB does not support a full-fledged CLP(FD) package. However it does support a simplified package that maintains an upper and lower bound for logical variables. bounds can thus be used for simple constraint problems in the style of finite domains, as long as these problems that do not rely on too heavily on propagation of information about constraint domains ²

Perhaps the simplest way to explain the functionality of bounds is by example. The query

```
|?-X \text{ in } 1..2,X \#> 1.
```

first indicates via X in 1..2 that the lower bound of X is 1 and the higher bound 2, and then constraints X, which is not yet bound, to be greater than 1. Applying this latter constraint to X forces the lower bound to equal the upper bound, instantiating X, so that the answer to this query is X = 2.

Next, consider the slightly more complex query

```
|?-X \text{ in } 1..3,Y \text{ in } 1..3,Z \text{ in } 1..3,all\_different([X,Y,Z]),X = 1, Y = 2.
```

²The bounds package was written by Tom Schrijvers, and ported to XSB from SWI Prolog version 5.6.49 by Terrance Swift, who also wrote this manual section.

all_different/3 constraints X, Y and Z each to be different, whatever their values may be. Accordingly, this constraint together with the bound restrictions, implies that instantiating X and Y also causes the instantiation of Z. In a similar manner, the query

```
|?-X \text{ in } 1..3,Y \text{ in } 1..3,Z \text{ in } 1..3,sum([X,Y,Z],\#=,9),
```

onstrains the sum of the three variables to equal 9 – and in this case assigns them a concrete value due to their domain restrictions.

In many constraint problems, it does not suffice to know whether a set of constraints is satisfiable; rather, concrete values may be needed that satisfy all constraints. One way to produce such values is through the predicate labelling/2

```
|?- X in 1..5,Y in 1..5,X #< Y,labeling([max(X)],[X,Y]))
```

In this query, it is specified that X and Y are both to be instantiated not just by any element of their domains, but by a value that assigns X to be the maximal element consistent with the constraints. Accordingly X is instantiated to 4 and Y to 5.

Because constraints in **bounds** are based on attributed variables which are handled by XSB's variant tabling mechanisms, constrained variables can be freely used with variant tabling as the following fragment shows:

```
table_test(X):- X in 2..3,p(X).
:- table p/1.
p(X):- X in 1..2.
?- table_test(Y).
Y = 2
```

For a more elaborate example, we turn to the $SEND\ MORE\ MONEY$ example, , in which the problem is to assign numbers to each of the letters S,E,N,D,M,O,R,Y so that the number SEND plus the number MORE equals the number MONEY. Borrowing a solution from the SWI manual [31], the bounds package solves this problem as:

```
send([[S,E,N,D], [M,O,R,E], [M,O,N,E,Y]]) :-
   Digits = [S,E,N,D,M,O,R,Y],
   Carries = [C1,C2,C3,C4],
   Digits in 0..9,
   Carries in 0..1,
   M #= C4,
   O + 10 * C4 #= M + S + C3,
   N + 10 * C3 #= 0 + E + C2,
   E + 10 * C2 #= R + N + C1,
   Y + 10 * C1 #= E + D,
   M #>= 1,
   S #>= 1,
   all_different(Digits),
   label(Digits).
```

In many cases, it may be useful to test whether a given constraint is true or false. This can be done by unifying a variable with the truth value of a given constraint - i.e. by reifying the constraint. As an example, the query

```
|?- X in 1..10, Y in 1..10, Z in 0..1, X #< Y, X #= Y #<=> Z,label([Z]).
```

sets the bounded variable Z to the truth value of X #= Y, or 0³.

A reader familiar with the finite domain library of Sicstus [18] will have noticed that the syntax of bounds is consistent with that library. It is important to note however, bounds maintains only the upper and lower bounds of a variables as its attributes, (along, of course with constraints on those variables) rather than an explicit vector of permissable values. As a result, bounds may not be suitable for large or complex constraint problems.

12.2.1 The bounds API

Note that **bounds** does not perform error checking, but instead relies on the error checking of lower-level comparison and arithmetic operators.

in(-Variable, +Bound)

bounds

Adds the constraint Bound to Variable, where Bound should be of the form Low..High, with Low and High instantiated to integers. This constraint ensures that any value of Variable must be greater than or equal to Low and less than or equal to High. Unlike some finite-domain constraint systems, it does *not* materialize a vector of currently allowable values for Variable.

Variables that have not had their domains explicitly constrained are considered to be in the range min_integer.max_integer.

```
      #>(Expr1,Expr2)
      bounds

      #<(Expr1,Expr2)</td>
      bounds

      #>=(Expr1,Expr2)
      bounds

      #=(Expr1,Expr2)
      bounds

      #=(Expr1,Expr2)
      bounds

      #=(Expr1,Expr2)
      bounds
```

Ensures that a given relation holds between Expr1 and Expr2. Within these constraints, expressions may contain the functions +/2, -/2, */2, +/2, +/2, +/2, mod/2, and abs/1 in addition to integers and variables.

```
#<=>(Const1,Const2)
#=>(Const1,Const2)
bounds
#<=(Const1,Const2)
bounds</pre>
```

Constrains the truth-value of Const1 to have the speficied logical relation ("iff", "only-if" or "if") to Const2, where Const1 and Const2 have one of the six relational operators above.

³The current version of the bounds package does not always seem to propagate entailment into the values of reified variables.

all_different(+VarList)

bounds

VarList must be a list of variables: constrains all variables in VarList to have different values.

sum(VarList,Op,?Value)

bounds

VarList must be a list of variables and Value an integer or variable: constrains the sum of all variables in VarList to have the relation Op to Value (see preceding example).

labeling(+Opts,+VarList

bounds

This predicate succeeds if it can assign a value to each variable in VarList such that no constraint is violated. Note that assigning a value to each constrained variable is equivalent to deriving a solution that satisfies all constraints on the variables, which may be intractible depending on the constraints. Opts allows some control over how value assignment is performed in deriving the solution.

• leftmost Assigns values to variables in the order in which they occur. For example the query:

```
|?- X in 1..4,Y in 1..3,X #< Y,labeling([leftmost],[X,Y]),writeln([X,Y]),fail.
[1,2]
[1,3]
[2,3]</pre>
```

no

instantiates X and Y to all values that satisfy their constraints, and does so by considering each value in the domain of X, checking whether it violates any constraints, then considering each value of Y and checking whether it violates any constraints.

- ff This "first-fail" strategy assignes values to variables based on the size of their domains, from smallest to largest. By adopting this strategy, it is possible to perform a smaller search for a satisfiable solution because the most constrained variables may be considered first (though the bounds of the variable are checked rather than a vector of allowable values).
- min and max This strategy labels variables in the order of their minimal lower bound or maximal upper bound.
- min(Expr) and max(Expr) This strategy labels the variables so that their assignment causes Expr to have a minimal or maximal value. Consider for example how these strategies would affect the labelling of the preceding query:

```
|?- X in 1..4,Y in 1..3,X #< Y,labeling([min(Y)],[X,Y]),writeln([X,Y]),fail.
[1,2]

no
|?- X in 1..4,Y in 1..3,X #< Y,labeling([max(X)],[X,Y]),writeln([X,Y]),fail.
[2,3]
no</pre>
```

label(+VarList)

bounds

Shorthand for labeling([leftmost], +VarList).

indomain(?Var) bounds

Unifies Var with an element of its domain, and upon successive backttrakeing, with all other elements of its domain.

serialized(+BeginList,+Durations

bounds

serialized/2 can be useful for scheduling problems. As input it takes a list of variables or integers representing the beginnings of temporal events, along with a list of non-negative intergers indicating the duration of each event in BeginList. The effect of this predicate is to constrain each of the events in BeginList to have a start time such that their durations do not overlap. As an example, consier the query

```
|?-X \text{ in } 1..10, Y \text{ in } 1..10, \text{ serialized}([X,Y],[8,1]),label([X,Y]),writeln((X,Y)),fail.
```

In this query event X is taken to have duration of 8 units, while event Y is taken to have duration of 1 unit. Executing this query will instantiate X and Y to many different values, such as (1,9), (1,10), and (2,10) where X is less than Y, but also (10,1), (10,2) and many others where Y is less than X. Refining the query as

```
X in 1..10, Y in 1..10, serialized([X,Y],[8,1]), X #< Y, label([X,Y]), writeln((X,Y)), fail.
```

removes all solutions where Y is less than X.

lex_chain(+List)

lex_chain/1 takes as input a list of lists of variables and integers, and enforces the constraint that each element in a given list is less than or equal to the elements in all succeeding lists. As an example, consider the query

[1,2]

[1,3]

[2,2]

[2,3]

lex_chain/1 ensures that X is less than or equal to 2 which is less than or equal to Y.

Chapter 13

Constraint Handling Rules

13.1 Introduction

Constraint Handling Rules (CHR) is a committed-choice bottom-up language embedded in XSB. It is designed for writing constraint solvers and is particularly useful for providing application-specific constraints. It has been used in many kinds of applications, like scheduling, model checking, abduction, type checking among many others.

CHR has previously been implemented in other Prolog systems (SICStus, Eclipse, Yap, hProlog), Haskell and Java. The XSB CHR system is based on the hProlog CHR system.

In this documentation we restrict ourselves to giving a short overview of CHR in general and mainly focus on XSB-specific elements. For a more thorough review of CHR we refer the reader to [13]. More background on CHR can be found at [12].

In Section 13.2 we present the syntax of CHR in XSB and explain informally its operational semantics. Next, Section 13.3 deals with practical issues of writing and compiling XSB programs containing CHR. Section 13.4 provides a few useful predicates to inspect the constraint store and Section 13.5 illustrates CHR with two example programs. How to combine CHR with tabled predicates is covered in Section 13.6. Finally, Section 13.7 concludes with a few practical guidelines for using CHR.

13.2 Syntax and Semantics

13.2.1 Syntax

The syntax of CHR rules in XSB is the following:

```
rules --> rule, rules.
rules --> [].
rule --> name, actual_rule, pragma, [atom('.')].
```

```
name --> xsb_atom, [atom('0')].
name --> [].
actual_rule --> simplification_rule.
actual_rule --> propagation_rule.
actual_rule --> simpagation_rule.
simplification_rule --> constraints, [atom('<=>')], guard, body.
propagation_rule --> constraints, [atom('==>')], guard, body.
simpagation_rule --> constraints, [atom('\')], constraints, [atom('<=>')],
                     guard, body.
constraints --> constraint, constraint_id.
constraints --> constraint, [atom(',')], constraints.
constraint --> xsb_compound_term.
constraint_id --> [].
constraint_id --> [atom('#')], xsb_variable.
guard --> [].
guard --> xsb_goal, [atom(',')].
body --> xsb_goal.
pragma --> [].
pragma --> [atom('pragma')], actual_pragmas.
actual_pragmas --> actual_pragma.
actual_pragmas --> actual_pragma, [atom(',')], actual_pragmas.
actual_pragma --> [atom('passive('))], xsb_variable, [atom(')')].
```

Additional syntax-related terminology:

• head: the constraints in an actual_rule before the arrow (either <=> or ==>)

13.2.2 Semantics

In this subsection the operational semantics of CHR in XSB are presented informally. They do not differ essentially from other CHR systems.

When a constraint is called, it is considered an active constraint and the system will try to apply the rules to it. Rules are tried and executed sequentially in the order they are written.

A rule is conceptually tried for an active constraint in the following way. The active constraint is matched with a constraint in the head of the rule. If more constraints appear in the head they are looked for among the suspended constraints, which are called passive constraints in this context. If the necessary passive constraints can be found and all match with the head of the rule and the guard of the rule succeeds, then the rule is committed and the body of the rule executed. If not all the necessary passive constraint can be found, the matching fails or the guard fails, then the body is not executed and the process of trying and executing simply continues with the following rules. If for a rule, there are multiple constraints in the head, the active constraint will try the rule sequentially multiple times, each time trying to match with another constraint.

This process ends either when the active constraint disappears, i.e. it is removed by some rule, or after the last rule has been processed. In the latter case the active constraint becomes suspended.

A suspended constraint is eligible as a passive constraint for an active constraint. The other way it may interact again with the rules, is when a variable appearing in the constraint becomes bound to either a non-variable or another variable involved in one or more constraints. In that case the constraint is triggered, i.e. it becomes an active constraint and all the rules are tried.

Rule Types There are three different kinds of rules, each with their specific semantics:

• simplification:

The simplification rule removes the constraints in its head and calls its body.

• propagation:

The propagation rule calls its body exactly once for the constraints in its head.

• simpagation:

The simpagation rule removes the constraints in its head after the \setminus and then calls its body. It is an optimization of simplification rules of the form:

$$constraints_1, constraints_2 <=> constraints_1, body$$

Namely, in the simpagation form:

$$constraints_1 \setminus constraints_2 \le body$$

The $constraints_1$ constraints are not called in the body.

Rule Names Naming a rule is optional and has no semantical meaning. It only functions as documentation for the programmer.

Pragmas The semantics of the pragmas are:

• passive/1: the constraint in the head of a rule with the identifier specified by the passive/1 pragma can only act as a passive constraint in that rule.

Additional pragmas may be released in the future.

13.3 CHR in XSB Programs

13.3.1 Embedding in XSB Programs

Since chr is an XSB package, it must be explicitly loaded before being used.

?- [chr].

CHR rules are written in a tt .chr file. They should be preceded by a declaration of the constraints used:

:- constraints ConstraintSpec1, ConstraintSpec2, ...

where each ConstraintSpec is a functor description of the form name/arity pair. Ordinary code may be freely written between the CHR rules.

The CHR constraints defined in a particular .chr file are associated with a CHR module. The CHR module name can be any atom. The default module is **user**. A different module name can be declared as follows:

:- chr_module(modulename).

One should never load different files with the same CHR module name.

13.3.2 Compilation

Files containing CHR rules are required to have a .chr extension, and their compilation has two steps. First the .chr file is preprocessed into a .P file containing XSB code. This .P file can then be loaded in the XSB emulator and used normally.

load_chr(File) chr_pp

load_chr/1 takes as input a file name whose extension is either .chr or that has no extension.
It preprocesses File if the times of the CHR rule file is newer than that of the corresponding
Prolog file, and then consults the Prolog file.

preprocess(File,PFile)

chr_pp

preprocess/2 takes as input a file name whose extension is either .chr or that has no extension. It preprocesses File if the times of the CHR rule file is newer than that of the corresponding Prolog file, but does not consult the Prolog file.

chr

13.4 Useful Predicates

The chr module contains several useful predicates that allow inspecting and printing the content of the constraint store.

```
show_store(+Mod) chr
```

Prints all suspended constraints of module Mod to the standard output.

```
suspended_chr_constraints(+Mod,-List)
```

Returns the list of all suspended CHR constraints of the given module.

13.5 Examples

Here are two example constraint solvers written in CHR.

• The program below defines a solver with one constraint, leq/2, which is a less-than-or-equal constraint.

```
:- chr_module(leq).
:- export cycle/3.
:- import length/2 from basics.
:- constraints leq/2.
reflexivity @ leq(X,X) <=> true.
antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.
idempotence @ leq(X,Y) \ leq(X,Y) <=> true.
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

cycle(X,Y,Z):-
    leq(X,Y),
    leq(Y,Z),
    leq(Z,X).
```

• The program below implements a simple finite domain constraint solver.

```
:- chr_module(dom).
:- import member/2 from basics.
:- constraints dom/2.
```

These and more examples can be found in the examples/chr/ folder accompanying this XSB release.

13.6 CHR and Tabling

The advantage of CHR in XSB over other Prolog systems, is that CHR can be combined with tabling. Hence part of the constraint solving can be performed once and reused many times. This has already shown to be useful for applications of model checking with constraints.

However the use of CHR constraints is slightly more complicated for tabled predicates. This section covers how exactly to write a tabled predicate that has one or more arguments that also appear as arguments in suspended constraints. In the current release the CHR-related parts of the tabled predicates have to be written by hand. In a future release this may be substituted by an automatic transformation.

13.6.1 General Issues and Principles

The general issue is how call constraints should be passed in to the tabled predicate and how answer constraints are passed out of the predicate. Additionally, in some cases care has to be taken not to generate infinite programs.

The recommended approach is to write the desired tabled predicate as if no additional code is required to integrate it with CHR. Next transform the tabled predicate to take into account the combination of tabling and CHR. Currently this transformation step has to be done by hand. In the future we hope to replace this hand coding with programmer declarations that guide automated transformations.

Hence we depart from an ordinary tabled predicate, say p/1:

In the following we will present several transformations or extensions of this code to achieve a particular behavior. At least the transformation discussed in subsection 13.6.2 should be applied to obtain a working integration of CHR and tabling. Further extensions are optional.

13.6.2 Call Abstraction

Currently only one type of call abstraction is supported: full constraint abstraction, i.e. all constraints on variables in the call should be removed. The technique to accomplish this is to replace all variables in the call that have constraints on them with fresh variables. After the call, the original variables should be unified with the new ones.

In addition, the call environment constraint store should be replaced with an empty constraint store before the call and on return the answer store should be merged back into the call environment constraint store.

The previously mentioned tabled predicate p/1 should be transformed to:

```
:- import merge_answer_store/1,
          get_chr_store/1,
          set_chr_store/1,
          get chr answer store/2
   from chr.
:- table tabled p/2.
p(X) :=
        tabled_p(X1,AnswerStore),
        merge_answer_store(AnswerStore),
        X1 = X.
tabled_p(X,AnswerStore) :-
        get_chr_store(CallStore),
        set_chr_store(_EmptyStore)
        orig_p(X),
        get_chr_answer_store(chrmod, AnswerStore),
        set chr store(CallStore).
orig_p(X) :-
   ... /* original body of p/1 */.
```

This example shows how to table the CHR constraints of a single CHR module chrmod. If multiple CHR modules are involved, one should add similar arguments for the other modules.

13.6.3 Answer Projection

To get rid of irrelevant constraints, most notably on local variables, the answer constraint store should in some cases be projected on the variables in the call. This is particularly important for

programs where otherwise an infinite number of answers with ever growing answer constraint stores could be generated.

The current technique of projection is to provide an additional project/1 constraint to the CHR solver definition. The argument of this constraint is the list of variables to project on. Appropriate CHR rules should be written to describe the interaction of this project/1 constraint with other constraints in the store. An additional rule should take care of removing the project/1 constraint after all such interaction.

The project/1 constraint should be posed before returning from the tabled predicate.

If this approach is not satisfactory or powerful enough to implement the desired projection operation, you should resort to manipulating the underlying constraint store representation. Contact the maintainer of XSB's CHR system for assistance.

Example Take for example a predicate p/1 with a less than or equal constraint leq/2 on variables and integers. The predicate p/1 has local variables, but when p returns we are not interested in any constraints involving local variables. Hence we project on the argument of p/1 with a project constraint as follows:

```
:- import memberchk/2 from lists.
:- import merge_answer_store/1,
          get_chr_store/1,
          set_chr_store/1,
          get_chr_answer_store/2
   from chr.
:- table tabled_p/2.
:- constraints leq/2, project/1.
... /* other CHR rules */
project(L) \ leq(X,Y) <=>
        ( var(X), \+ memberchk(X,L)
        ; var(Y), \+ memberchk(Y,L)
        ) | true.
project(_) <=> true.
p(X) :-
        tabled_p(X1,AnswerStore),
        merge_answer_store(AnswerStore),
        X1 = X.
tabled_p(X,AnswerStore) :-
        get_chr_store(CallStore),
        set_chr_store(_EmptyStore)
        orig_p(X),
        project([X]),
```

```
get_chr_answer_store(chrmod,AnswerStore),
    set_chr_store(CallStore).

orig_p(X) :-
    ... /* original body of p/1 */.
```

The example in the following subsection shows projection in a full application.

13.6.4 Answer Combination

Sometimes it is desirable to combine different answers to a tabled predicate into one single answer or a subset of answers. Especially when otherwise there would be an infinite number of answers. If the answers are expressed as constraints on some arguments and the logic of combining is encoded as CHR rules, answers can be combined by merging the respective answer constraint stores.

Another case where this is useful is when optimization is desired. If the answer to a predicate represents a valid solution, but an optimal solution is desired, the answer should be represented as constraints on arguments. By combining the answer constraints, only the most constrained, or optimal, answer is kept.

Example An example of a program that combines answers for both termination and optimisation is the shortest path program below:

```
:- chr_module(path).
:- import length/2 from lists.
:- import merge_chr_answer_store/1,
          get_chr_store/1,
          set_chr_store/1,
          get_chr_answer_store/2
   from chr.
breg retskel(A,B,C,D) :- '$builtin'(154).
:- constraints geq/2, plus/3, project/1.
geq(X,N) \setminus geq(X,M) \iff number(N), number(M), N \implies M \mid true.
reflexivity @ geq(X,X) <=> true.
antisymmetry @ geq(X,Y), geq(Y,X) \iff X = Y.
idempotence @ geq(X,Y) \setminus geq(X,Y) \iff true.
transitivity @ geq(X,Y), geq(Y,Z) ==> var(Y) | geq(X,Z).
plus(A,B,C) <=> number(A), number(B) | C is A + B.
plus(A,B,C), geq(A,A1) ==> plus(A1,B,C1), geq(C,C1).
plus(A,B,C), geq(B,B1) ==> plus(A,B1,C1), geq(C,C1).
```

```
project(X) \ plus(_,_,_) # ID <=> true pragma passive(ID).
project(X) \setminus geq(Y,Z) \# ID \iff (Y = X ; var(Z)) | true pragma passive(ID).
project(_) <=> true.
path(X,Y,C) :-
tabled_path(X,Y,C1,AS),
merge_chr_answer_store(AS),
C = C1.
:- table tabled_path/4.
tabled_path(X,Y,C,AS) :-
'$savecp'(Breg),
breg_retskel(Breg,4,Skel,Cs),
copy_term(p(X,Y,C,AS,Skel),p(OldX,OldY,OldC,OldAS,OldSkel)),
        get_chr_store(GS),
set chr store( GS1),
orig_path(X,Y,C),
        project(C),
( get_returns(Cs,OldSkel,Leaf),
  OldX == X, OldY == Y \rightarrow
             merge_chr_answer_store(OldAS),
             C = OldC,
             get_chr_answer_store(path, MergedAS),
             sort(MergedAS,AS),
             ( AS = OldAs \rightarrow
                  fail
                  delete_return(Cs,Leaf)
             )
;
             get_chr_answer_store(path,UnsortedAS),
             sort(UnsortedAS,AS)
),
        set_chr_store(GS).
orig_path(X,Y,C) :- edge(X,Y,C1), geq(C,C1).
\label{eq:condition} \verb|orig_path(X,Y,C)| := path(X,Z,C2), \  \, \verb|edge(Z,Y,C1)|, \  \, plus(C1,C2,C0), \  \, \verb|geq(C,C0)|. \\
edge(a,b,1).
edge(b,a,1).
edge(b,c,1).
edge(a,c,3).
edge(c,a,1).
```

The predicate orig_path/3 specifies a possible path between two nodes in a graph. In tabled_path/4 multiple possible paths are combined together into a single path with the shortest distance. Hence the tabling of the predicate will reject new answers that have a worse distance and will replace the old answer when a better answer is found. The final answer gives the optimal solution, the shortest path. It is also necessary for termination to keep only the best answer. When cycles appear in the

graph, paths with longer and longer distance could otherwise be put in the table, contributing to the generation of even longer paths. Failing for worse answers avoids this infinite build-up.

The predicate also includes a projection to remove constraints on local variables and only retain the bounds on the distance.

The sorting canonicalizes the answer stores, so that they can be compared.

13.6.5 Overview of Tabling-related Predicates

merge_answer_store(+AnswerStore)

chr

Merges the given CHR answer store into the current global CHR constraint store.

get_chr_store(-ConstraintStore)

chr

Returns the current global CHR constraint store.

set_chr_store(?ConstraintStore)

chr

Set the current global CHR constraint store. If the argument is a fresh variable, the current global CHR constaint store is set to be an empty store.

get_chr_answer_store(+Mod,-AnswerStore)

chr

Returns the part of the current global CHR constraint store of constraints in the specified CHR module, in the format of an answer store usable as a return argument of a tabled predicate.

13.7 Guidelines

In this section we cover several guidelines on how to use CHR to write constraint solvers and how to do so efficiently.

• Set semantics: The CHR system allows the presence of identical constraints, i.e. multiple constraints with the same functor, arity and arguments. For most constraint solvers, this is not desirable: it affects efficiency and possibly termination. Hence appropriate simpagation rules should be added of the form:

$$constraint \ constraint <=> true$$

• Multi-headed rules: Multi-headed rules are executed more efficiently when the constraints share one or more variables.

13.8 CHRd

An alternate implementation of CHR can be found in the CHRd package. The main objective of the CHRd package is to optimize processing of constraints in the environment where termination is guaranteed by the tabling engine, (and where termination benefits provided by the existing solver are not critical). CHRd takes advantage of XSB's tabling to simplify CHR's underlying storage structures and solvers. Specifically, we entirely eliminate the thread-global constraint store in favor of a distributed one, realized as a collection of sets of constraints entirely associated with program variables. This decision limits the applicability of CHRd to a restricted class of CHR programs, referred to as direct-indexed CHR, in which all constraints in the head of a rule are connected by shared variables. Most CHR programs are direct-indexed, and other programs may be easily converted to fall into this class. Another advance of CHRd is its set-based semantics which removes the need to maintain the propagation history, thus allowing further simplicity in the representation of the constraints. The CHRd package itself is described in [22], and both the semantics of CHRd and the class of direct-indexed CHR are formally defined in [23].

Chapter 14

XASP: Answer Set Programming with XSB and Smodels

By Luis Castro, Terrance Swift, David S. Warren ¹

The term Answer Set Programming (ASP) describes a paradigm in which logic programs are interpreted using the (extended) stable model semantics. While the stable model semantics is quite elegant, it has radical differences from traditional program semantics based on Prolog. First, stable model semantics applies only to ground programs; second stable model semantics is not goal-oriented – determining whether a stable model is true in a program involves examining each clause in a program, regardless of whether the goal would depends on the clause in a traditional evaluation ².

Despite (or perhaps because of) these differences, ASP has proven to be a useful paradigm for solving a variety of combinatorial programs. Indeed, determining a stable model for a logic program can be seen as an extension of the NP-complete problem of propositional satisfiability, so that satisfiability problems that can be naturally represented as logic programs can be solved using ASP.

The current generation of ASP systems are very efficient for determining whether a program has a stable model (analogous to whether the program, taken as a set of propositional axioms, is satisfiable). However, ASP systems have somewhat primitive file-based interfaces. XSB is a natural complement to ASP systems. Its basis in Prolog provides a procedural counterpart for ASP, as described in Chapter 5 of Volume 1 of this manual; and XSB's computation of the Well-founded semantics has a well-defined relationship to stable model semantics. Furthermore, deductive-database-like capabilities of XSB allow it to be an efficient and flexible grounder for many ASP problems.

The XASP package provides various mechanisms that allow tight linkage of XSB programs to the Smodels [20] stable model generator. The main interface is based on a store of clauses that can

¹ Thanks to Barry Evans for helping resuscitate the XASP installation procedure, and to Gonçalo Lopes for the installation procedure on Windows.

²In Version 3.3, the Smodels API has not been tested with the multi-threaded engine, and Smodels itself is not thread-safe.

be incrementally asserted or deleted by an XSB program. Clauses in this store can make use of all of the cardinality and weight constraint syntax supported by Smodels, in addition to default negation. When the user decides that the clauses in a store are a complete representation of a program whose stable model should be generated, the clauses are copied into Smodels buffers. Using the Smodels API, the generator is invoked, and information about any stable models generated are returned. This use of XASP is roughly analogous to building up a constraint store in CLP, and periodically evaluating that store, but integration with the store is less transparent in XASP than in CLP. In XASP, clauses must be explicitly added to a store and evaluated; furthermore clauses are not removed from the store upon backtracking, unlike constraints in CLP.

The XNMR interpreter provides a second, somewhat more implicit use of XASP. In the XNMR interface a query Q is evaluated as is any other query in XSB. However, conditional answers produced for Q and for its subgoals, upon user request, can be considered as clauses and sent to Smodels for evaluation. In backtracking through answers for Q, the user backtracks not only through answer substitutions for variables of Q, but also through the stable models produced for the various bindings.

14.1 Installing the Interface

Installing the Smodels interface of XASP sometimes can be tricky for two reasons. First, XSB must dynamically load the Smodels library, and dynamic loading introduces platform dependencies. Second since Smodels is written in C++ and XSB is written in C, the load must ensure that names are properly resolved and that C++ libraries are loaded, steps that may addressed differently by different compilers ³. However, by following the steps outlined below in the section for Unix or Windows, XASP should be running in a matter of minutes.

14.1.1 Installing the Interface under Unix

In order to use the Smodels interface, several steps must be performed.

- 1. Creating a library for Smodels. Smodels itself must be compiled as a library. Unlike previous versions of XSB, which required a special configuration step for Smodels, Version 3.3 requires no special configuration, since XSB includes source code for Smodels 2.33 as a subdirectory of the \$XSBDIR/packages/xasp directory (denoted \$XASPDIR). We suggest making Smodels out of this directory ⁴. Thus, to make the Smodels library
 - (a) Change directory to \$XASPDIR/smodels
 - (b) On systems other than OS X, type

make lib

³XSB's compiler can automatically call foreign compilers to compile modules written in C, but in Version 3.3 of XSB C++ modules must be compiled with external commands, such as the make command shown below.

⁴Although distributed with XSB, Smodels is distributed under the GNU General Public License, a license that is slightly stricter than the license XSB uses. Users distributing applications based on XASP should be aware of any restrictions imposed by GNU General Public License.

on OS X, type ⁵

make -f Makefile.osx lib

If the compilation step ran successfully, there should be a file libsmodels.so (or libsomodels.dylib on MacOS X or libsmodels.dll on Windows...) in \$XASPDIR/smodels/.libs

- (c) Change directory back to \$XASPDIR
- 2. Compiling the XASP files Next, platform-specific compilation of XASP files needs to be performed. This can be done by consulting prologMake.P and executing the goal

?- make.

It is important to note that under Version 3.3, code compiled by the single threaded engine will only be executable by the single threaded engine, and code compiled by the multi-threaded engine will only be executable by the multi-threaded engine.

3. Checking the Installation To see if the installation is working properly, cd to the subdirectory tests and type:

sh testsuite.sh <\$XSBDIR>

If the test suite succeeded it will print out a message along the lines of

PASSED testsuite for /Users/terranceswift/XSBNEW/XSB/config/powerpc-apple-darwin7.5.1/bin/xsb

14.1.2 Installing XASP under Windows using Cygwin

To install XASP under Windows, you must use Version 3.3 of XSB or later and Version 2.31 or later of Smodels ⁶. You should also have a recent version of Cygwin (e.g. 1.5.20 or later) with all the relevant development packages installed, such as devel, make, automake, patchtools, and possibly x11 (for makedepend) Without an appropriate Cygwin build environment many of these steps will simply fail, sometimes with quite cryptic error messages.

1. Patch and Compile Smodels First, uncompress smodels-2.31.tar.gz in some directory, (for presentation purposes we use /cygdrive/c/smodels-2.31 — that is, c:\smodels-2.31). After that, you must apply the patch provided with this package. This patch enables the creation of a DLL from Smodels. Below is a sample session (system output omitted) with the required commands:

```
$ cd /cygdrive/c/smodels-2.31
```

\$ cat \$XSB/packages/xasp/patch-smodels-2.31 | patch -p1

\$ make lib

 $^{^5\}mathrm{A}$ special makefile is needed for OS X since the GNU libtool is called glibtool on this platform.

⁶This section was written by Goncalo Lopes.

After that, you should have a file called smodels.dll in the current directory, as well as a file called smodels.a. You should make the former "visible" to Windows. Two alternatives are either (a) change the PATH environment variable to contain c:\smodels-2.31, or (b) copy smodels.dll to some other directory in your PATH (such as c:\windows, for instance). One simple way to do this is to copy smodels.dll to \$XSB/config/i686-pc-cygwin/bin, after the configure XSB step (step 2), since that directory has to be in your path in order to make XSB fully functional.

2. Configure XSB. In order to properly configure XSB, you must tell it where the Smodels sources and library (the smodels.a file) are. In addition, you must compile XSB such that it doesn't use the Cygwin DLL (using the -mno-cygwin option for gcc). The following is a sample command:

```
$ cd $XSB/build
$ ./configure --enable-no-cygwin -with-smodels="/cygdrive/c/smodels-2.31'',
```

You can optionally include the extended Cygwin w32 API using the configuration option --with-includes=<PATH_TO_API>, (this allows XSB's build procedure to find makedepend for instance), but you'll probably do fine with just the standard Cygwin apps.

There are some compiler variables which may not be automatically set by the configure script in xsb_config.h, namely the configuration names and some activation flags. To correct this, do the following:

- (a) cd to \$XSB/config/i686-pc-cygwin
- (b) open the file xsb_config.h and add the following lines:

```
#define CONFIGURATION "i686-pc-cygwin"
#define FULL_CONFIG_NAME "i686-pc-cygwin"
#define SLG GC
```

(Still more flags may be needed depending on Cygwin configuration)

After applying these changes, cd back to the \$XSB/build directory and compile XSB:

\$./makexsb

Now you should have in \$XSB/config/i686-pc-cygwin/bin directory both a xsb.exe and a xsb.dll.

3. Compiling XASP. First, go to the XASP directory and execute the makelinks.sh script in order to make the headers and libraries in Smodels be accessible to XSB, i.e.:

```
$ cd $XSB/packages/xasp
$ sh makelinks.sh /cygdrive/c/smodels-2.31
```

Now you must copy the smoMakefile from the config directory to the xasp directory and run both its directives:

```
$ cp $XSB/config/i686-pc-cygwin/smoMakefile .
$ make -f smoMakefile module
$ make -f smoMakefile all
```

At this point, you can consult xnmr as you can with any other package, or xsb with the xnmr command line parameter, like this: (don't forget to add XSB bin directory to the \$PATH environment variable)

\$ xsb xnmr

Lots of error messages will probably appear because of some runtime load compiler, but if everything goes well you can ignore all of them since your xasppkg will be correctly loaded and everything will be functioning smoothly from there on out.

14.2 The Smodels Interface

The Smodels interface contains two levels: the cooked level and the raw level. The cooked level interns rules in an XSB clause store, and translates general weight constraint rules [24] into a normal form that the Smodels engine can evaluate. When the programmer has determined that enough clauses have been added to the store to form a semantically complete sub-program, the program is committed. This means that information in the clauses is copied to Smodels and interned using Smodels data structures so that stable models of the clauses can be computed and examined. By convention, the cooked interface ensures that the atom true is present in all stable models, and the atom false is false in all stable models. The raw level models closely the Smodels API, and demands, among other things, that each atom in a stable sub-program has been translated into a unique integer. The raw level also does not provide translation of arbitrary weight constraint rules into the normal form required by the Smodels engine. As a result, the raw level is significantly more difficult to directly use than the cooked level. While we make public the APIs for both the raw and cooked level, we provide support only for users of the cooked interface.

As mentioned above Smodels extends normal programs to allow weight constraints, which can be useful for combinatorial problems. However, the syntax used by Smodels for weight constraints does not follow ISO Prolog syntax so that the XSB syntax for weight constraints differs in some respects from that of Smodels. Our syntax is defined as follows, where A is a Prolog atom, N a non-negative integer, and I an arbitrary integer.

- \bullet GeneralLiteral ::= WeightConstraint | Literal
- \bullet WeightConstraint ::= weightConst(Bound, WeightList, Bound)
- WeightList ::= List of WeightLiterals
- $WeightLiteral ::= Literal \mid weight(Literal, N)$
- $Literal ::= A \mid not(A)$

• $Bound ::== I \mid undef$

Thus an example of a weight constraint might be:

• weightConst(1, [weight(a,1), weight(not(b),1)],2)

We note that if a user does not wish to put an upper or lower bound on a weight constraint, she may simply set the bound to undef or to an integer less than 0.

The intuitive semantics of a weight constraint weightConst(Lower, WeightList, Upper), in which List is is list of WeightLiterals that it is true in a model M whenever the sum of the weights of the literals in the constraint that are true in M is between the lower Lower and Upper. Any literal in a WeightList that does not have a weight explicitly attached to it is taken to have a weight of 1.

In a typical session, a user will initialize the Smodels interface, add rules to the clause store until it contains a semantically meaningful sub-problem. He can then specify a compute statement if needed, commit the rules, and compute and examine stable models via backtracking. If desired, the user can then re-initialize the interface, and add rules to or retract rules from the clause store until another semantically meaningful sub-program is defined; and then commit, compute and examine another stable model ⁷.

The process of adding information to a store and periodically evaluating it is vaguely reminiscent of the Constraint Logic Programming (CLP) paradigm, but there are important differences. In CLP, constraints are part of the object language of a Prolog program: constraints are added to or projected out of a constraint store upon forward execution, removed upon backwards execution, and iteratively checked. When using this interface, on the other hand, an XSB program essentially acts as a compiler for the clause store, which is treated as a target language. Clauses must be explicitly added or removed from the store, and stable model computation cannot occur incrementally—it must wait until all clauses have been added to the store. We note in passing that the xnmr module provides an elegant but specialized alternative. xnmr integrates stable models into the object language of XSB, by computing ""relevant" stable models from the the residual answers produced by query evaluation. It does not however, support the weighted constraint rules, compute statements and so on that this module supports.

Neither the raw nor the cooked interface currently supports explicit negation.

Examples of use of the various interfaces can be found in the subdirectory intf examples

smcInit

Initializes the XSB clause store and the Smodels API. This predicate must be executed before building up a clause store for the first time. The corresponding raw predicate, smrInit(Num), initializes the Smodels API assuming that it will require at most Num atoms.

smcReInit

Reinitializes the Smodels API, but does not affect the XSB clause store. This predicate is

⁷Currently, only normal rules can be retracted.

provided so that a user can reuse rules in a clause store in the context of more than one sub-program.

smcAddRule(+Head,+Body)

Interns a ground rule into the XSB clause store. Head must be a *GeneralLiteral* as defined at the beginning of this section, and Body must be a list of *GeneralLiterals*. Upon interning, the rule is translated into a normal form, if necessary, and atoms are translated to unique integers. The corresponding raw predicates, smrAddBasicRule/3, smrAddChoiceRule/3, smrAddConstraintRule/4, and smrAddWeightRule/3 can be used to add raw predicates immediately into the SModels API.

smcRetractRule(+Head, +Body)

Retracts a ground (basic) rule from the XSB clause store. Currently, this predicate cannot retract rules with weight constraints: Head must be a *Literal* as defined at the beginning of this section, and Body must be a list of *GeneralLiterals*.

smcSetCompute(+List)

Requires that List be a list of literals – i.e. atoms or the default negation of atoms). This predicate ensures that each literal in List is present in the stable models returned by Smodels. By convention the cooked interface ensures that true is present and false absent in all stable models. After translating a literal it calls the raw interface predicates smrSetPosCompute/1 and smrSetNegCompute/1

smcCommitProgram

This predicate translates all of the clauses from the XSB clause store into the data structures of the Smodels API. It then signals to the API that all clauses have been added, and initializes the Smodels computation. The corresponding raw predicate, smrCommitProgram, performs only the last two of these features.

smComputeModel

This predicate calls Smodels to compute a stable model, and succeeds if a stable model can be computed. Upon backtracking, the predicate will continue to succeed until all stable models for a given program cache have been computed. smComputeModel/0 is used by both the raw and the cooked levels.

smcExamineModel(+List,-Atoms)

smcExamineModel/(+List,-Atoms) filters the literals in List to determine which are true in
the most recently computed stable model. These true literals are returned in the list Atoms.
smrExamineModel(+N,-Atoms) provides the corresponding raw interface in which integers
from 0 to N, true in the most recently computed stable model, are input and output.

smEnd

Reclaims all resources consumed by Smodels and the various APIs. This predicate is used by both the cooked and the raw interfaces.

print_cache

This predicate can be used to examine the XSB clause store, and may be useful for debugging.

14.2.1 Using the Smodels Interface with Multiple Threads

If XASP has been compiled under the multi-threaded engine, the Smodels interface will be fully thread-safe: this means that Smodels and all interface predicates described in this section can be used concurrently by different threads. In multi-threaded XASP, each XSB thread can initialize and query its own instance of Smodels, and build up its own private clause store at both the cooked and raw levels (shared clause stores are not yet available). Figure 14.1 provides a simple example of how this can be done. For each thread that will generate stable models, a message queue is created that will be used to communicate back results. Two threads are then created and these threads concurrently add rules to their private clause stores, call Smodels, and send the results back to the calling thread using the appropriate message queue. Of course the example here is just one of many possible: answers could be returned using different configurations of message queues, through shared asserted code, and so on.

14.3 The xnmr_int Interface

. This module provides the interface from the xnmr module to Smodels. It does not use the sm_int interface, but rather directly calls the Smodels C interface, and can be thought of as a special-purpose alternative to sm_int.

init_smodels(+Query)

Initializes smodels with the residual program produced by evaluating Query. Query must be a call to a tabled predicate that is currently completely evaluated (and should have a delay list)

atom_handle(?Atom,?AtomHandle)

The *handle* of an atom is set by <code>init_smodels/1</code> to be an integer uniquely identifying each atoms in the residual program (and thus each atom in the Herbrand base of the program for which the stable models are to be derived). The initial query given to <code>init_smodels</code> has the atom-handle of 1.

in all stable models(+AtomHandle,+Neg)

in_all_stable_models/2 returns true if Neg is 0 and the atom numbered AtomHandle returns true in all stable models (of the residual program set by the previous call to init_smodels/1). If Neg is nonzero, then it is true if the atom is in NO stable model.

pstable_model(+Query,-Model,+Flag)

returns nondeterministically a list of atoms true in the partial stable model total on the atoms relevant to instances of Query, if Flag is 0. If Flag is 1, it only returns models in which the instance of Query is true.

a_stable_model

This predicate invokes Smodels to find a (new) stable model (of the program set by the previous invocation of init_smodels/1.) It will compute all stable models through backtracking. If there are no (more) stable models, it fails. Atoms true in a stable model can be examined by in_current_stable_model/1.

```
:- ensure_loaded(xasp).
:- import smcInit/0, smcAddRule/2, smcCommitProgram/0 smcSetCompute/1,
          smComputeModel/0, smcExamineModel/1, smEnd/0 from sm_int.
:- import thread_create/1 from thread.
:- import thread_get_message/2, thread_send_message/2, message_queue_create/1 from mutex_xsb.
test:-
     message_queue_create(Queue1),
     message_queue_create(Queue2),
     thread create(test1(Queue1)),
     thread_create(test2(Queue2)),
     read_models(Queue1),
     read_models(Queue2).
test1(Queue) :-
     smcInit,
     smcAddRule(a1,[]),
     smcAddRule(b1,[]),
     smcAddRule(d1,[a1,not(c1)]),
     smcAddRule(c1,[b1,not(d1)]),
     smcCommitProgram,
     write('All Solutions: '),nl,
       smComputeModel,
         smcExamineModel(Model),
         thread_send_message(Queue,solution(program1,Model)),
         fail
     ;
         thread_send_message(Queue,no_more_solutions),
         smEnd ).
test2(Queue) :-
     smcInit,
     smcAddRule(a2,[]),
     smcAddRule(b2,[]),
     smcAddRule(d2,[a2,not(c2)]),
     smcAddRule(c2,[b2,not(d2)]),
     smcCommitProgram,
     write('All Solutions: '),nl,
         smComputeModel,
         smcExamineModel(Model),
         thread_send_message(Queue,solution(program2,Model)),
         fail
         thread send message(Queue, no more solutions),
         smEnd ).
read_models(Queue):-
     repeat,
     thread_get_message(Queue, Message),
     (Message = no_more_solutions ->
         true
       ; writeln(Message),
         fail ).
```

Figure 14.1: Using the Smodels Interface with Multi-Threading

in_current_stable_model(?AtomHandle)

This predicate is true of handles of atoms true in the current stable model (set by an invocation of a_stable_model/0.)

current_stable_model(-AtomList)

returns the list of atoms true in the current stable model.

print_current_stable_model

prints the current stable model to the stream to which answers are sent (i.e stdfbk)

Chapter 15

PITA: Probabilistic Inference with Tabling and Answer subsumption

By Fabrizio Riguzzi

"Probabilistic Inference with Tabling and Answer subsumption" (PITA) [21] is a package for uncertain reasoning. In particular, it allowsvarious forms of Probabilistic Logic Programming and Possibilistic Logic Programming. It accepts the language of Logic Programs with Annotated Disjunctions (LPADs)[28, 29] and CP-logic programs [26, 27].

An example of LPAD/CP-logic program is

```
(heads(Coin): 0.5) \lor (tails(Coin): 0.5) \leftarrow toss(Coin), \neg biased(Coin).
(heads(Coin): 0.6) \lor (tails(Coin): 0.4) \leftarrow toss(Coin), biased(Coin).
(fair(Coin): 0.9) \lor (biased(Coin): 0.1).
toss(Coin).
```

The first clause states that if we toss a coin that is not biased it has equal probability of landing heads and tails. The second states that if the coin is biased it has a slightly higher probability of landing heads. The third states that the coin is fair with probability 0.9 and biased with probability 0.1 and the last clause states that we toss a coin with certainty.

PITA computes the probability of queries by tranforming the input program into a normal logic program and then calling a modified version of the query on the transformed programs.

15.0.1 Installation

PITA uses GLib 2.0 and CUDD. GLib is a standard GNU package so it is easy to install it using the package management software of your Linux distribution.

To install CUDD, follow the instructions at http://vlsi.colorado.edu/~fabio/CUDD/ to get the package (or get directly from ftp://vlsi.colorado.edu/pub/cudd-2.4.2.tar.gz), for

example cudd-2.4.2.tar.gz. After decompressing, you will have a directory cudd-2.4.2 with various subdirectories. Compile CUDD following the included instructions.

To install PITA with XSB, run XSB configure in the build directory with option -with-pita=DIR where DIR is the folder where CUDD is.

Syntax

Disjunction in the head is represented with a semicolon and atoms in the head are separated from probabilities by a colon. For the rest, the usual syntax of Prolog is used. For example, the CP-logic clause

$$h_1: p_1 \vee \ldots \vee h_n: p_n \leftarrow b_1, \ldots, b_m, \neg c_1, \ldots, \neg c_l$$

is represented by

No parentheses are necessary. The pi are numeric expressions. It is up to the user to ensure that the numeric expressions are legal, i.e. that they sum up to less than one.

If the clause has an empty body, it can be represented like this

If the clause has a single head with probability 1, the annotation can be omitted and the clause takes the form of a normal prolog clause, i.e.

```
h1:- b1,...,bm,\+ c1,...,\+ cl.
```

stands for

$$h1:1 := b1,...,bm, + c1,...,+ cl.$$

The body of clauses can contain a number of built-in predicates including:

$$is/2 >/2 =/2 =$$

The coin example above thus is represented as (see file coin.cpl in subdirecoty examples)

```
heads(Coin):1/2; tails(Coin):1/2:-
    toss(Coin),\+biased(Coin).
heads(Coin):0.6; tails(Coin):0.4:-
    toss(Coin),biased(Coin).
fair(Coin):0.9; biased(Coin):0.1.
toss(coin).
```

Subdirectory examples contains other example programs.

15.0.2 Use

Probabilistic Logic Programming

First write your program in a file with extension .cpl. If you want to use inference on LPADs load PITA in XSB with

```
:- [pita].load you program, say coin.cpl, with:- load(coin).
```

and compute the probability of query atom heads(coin) by

```
:- prob(heads(coin),P).
```

load(file) reads file.cpl, translates it into a normal program, writes the result in file.P and loads file.P.

PITA offers also the predicate parse(infile,outfile) which translates the LPAD in infile into a normal program and writes it to outfile.

Moreove, you can use prob(goal,P,CPUTime,WallTime) that returns the probability of goal P together with the CPU and wall time used.

In case the modeling assumptions of PRISM hold, i.e.:

- the probability of a conjunction (A, B) is computed as the product of the probabilities of A and B (independence assumption),
- the probability of a disjunction (A; B) is computed as the sum of the probabilities of A and B (exclusiveness assumption),

you can perform faster inference with an optimized version of PITA in package pitaindexc.P. It accepts the same commands of pita.P. pitaindexc.P simulates PRISM and does not need CUDD and GLib.

If you want to compute the Viterbi path and probability of a query (the Viterbi path is the explanation with the highest probability) as with the predicate viterbif/3 of PRISM, you can use package pitavitind.P.

The package pitacount.P can be used to count the explanations for a query, provided that the independence assumption holds. To count the number of explanations for a query use

```
:- oount(heads(coin),C).
pitacount.P does not need CUDD and GLib.
```

Possibilistic Logic Programming

PITA can be used also for answering queries to possibilistic logic program [10], a form of logic programming based on possibilistic logic [11]. The package pitaposs.P provides possibilistic inference. You have to write the possibilistic program as an LPAD in which the rules have a single head whose annotation is the lower bound on the necessity of the clauses. To compute the highest lower bound on the necessity of a query use

```
:- poss(heads(coin),P).
```

pitaposs.P does not need CUDD and GLib.

Chapter 16

Other XSB Packages

Many of the XSB packages are maintained somewhat independently of XSB and have their own manuals. For these packages: *Flora2*, *XMC*, *xsbdoc* and *Cold Dead Fish* we provide summaries; full information can be obtained in the packages themselves. In addition, we provide full documentation here for two of the smaller packages, slx and GAP.

16.1 Programming with FLORA-2

FLORA-2 is a sophisticated object-oriented knowledge base language and application development platform. It is implemented as a set of run-time libraries and a compiler that translates a unified language of F-logic [16], HiLog [7], and Transaction Logic [4, 3] into tabled Prolog code.

Applications of \mathcal{F}_{LORA-2} include intelligent agents, Semantic Web, ontology management, integration of information, and others.

The programming language supported by $\mathcal{F}LORA-2$ is a dialect of F-logic with numerous extensions, which include a natural way to do meta-programming in the style of HiLog and logical updates in the style of Transaction Logic. $\mathcal{F}LORA-2$ was designed with extensibility and flexibility in mind, and it provides strong support for modular software design through its unique feature of dynamic modules. Other extensions, such as the versatile syntax of FLORID path expressions, are borrowed from FLORID, a C++-based F-logic system developed at Freiburg University. Extensions aside, the syntax of $\mathcal{F}LORA-2$ differs in many important ways from FLORID, from the original version of F-logic, as described in [16], and from an earlier implementation of $\mathcal{F}LORA$. These syntactic changes were needed in order to bring the syntax of $\mathcal{F}LORA-2$ closer to that of Prolog and make it possible to include simple Prolog programs into $\mathcal{F}LORA-2$ programs without choking the compiler. Other syntactic deviations from the original F-logic syntax are a direct consequence of the added support for HiLog, which obviates the need for the "@" sign in method invocations (this sign is now used to denote calls to $\mathcal{F}LORA-2$ modules).

FLORA-2 is distributed in two ways. First, it is part of the official distribution of XSB and thus is installed together with XSB. Second, a more up-to-date version of the system is available

¹ See http://www.informatik.uni-freiburg.de/~dbis/florid/ for more details.

on \mathcal{F} LORA-2's Web site at

```
http://flora.sourceforge.net
```

These two versions can be installed at the same time and used independently (e.g., if you want to keep abreast with the development of $\mathcal{F}LORA-2$ or if a newer version was released in-between the releases of XSB). The installation instructions are somewhat different in these two cases. Here we only describe the process of configuring the version $\mathcal{F}LORA-2$ included with XSB.

Installing \mathcal{F}_{LORA-2} under UNIX. To configure a version of \mathcal{F}_{LORA-2} that was downloaded as part of the distribution of XSB, simply configure XSB as usual:

```
cd XSB/build configure makexsb
```

and then run

makexsb packages

If you downloaded XSB from its CVS repository earlier and are updating your copy using the cvs update command, then it might be a good idea to also do the following:

```
cd packages/flora2
makeflora clean
makeflora
```

Installing $\mathcal{F}LORA-2$ in Windows. First, you need Microsoft's nmake. Then use the following commands to configure $\mathcal{F}LORA-2$ (assuming that XSB is already installed and configured):

```
cd flora2
makeflora clean
makeflora path-to-prolog-executable
```

Also make sure that the packages directory contains a shortcut called flora2.P to the file packages\flora2\flora2.P.

Running \mathcal{F}_{LORA-2} . \mathcal{F}_{LORA-2} is fully integrated into the underlying XSB engine, including its module system. In particular, \mathcal{F}_{LORA-2} modules can invoke predicates defined in other Prolog modules, and Prolog modules can query the objects defined in \mathcal{F}_{LORA-2} modules.

Due to certain problems with XSB, \mathcal{F}_{LORA-2} runs best when XSB is configured with *local* scheduling, which is the default XSB configuration. However, with this type of scheduling, many Prolog intuitions that relate to the operational semantics do not work. Thus, the programmer

must think "more declaratively" and, in particular, to not rely on the order in which answers are returned.

The easiest way to get a feel of the system is to start $\mathcal{F}LORA-2$ shell and begin to enter queries interactively. The simplest way to do this is to use the shell script

.../flora2/runflora

where "..." is the directory where \mathcal{F}_{LORA-2} is downloaded. For instance, to invoke the version supplied with XSB, you would type something like

```
~/XSB/packages/flora2/runflora
```

At this point, Flora-2 takes over and F-logic syntax becomes the norm. To get back to the Prolog command loop, type Control-D (Unix) or Control-Z (Windows), or

```
| ?- _end.
```

If you are using \mathcal{F}_{LORA-2} shell frequently, it pays to define an alias, say (in Bash):

```
alias runflora='~/XSB/packages/flora2/runflora'
```

 \mathcal{F}_{LORA-2} can then be invoked directly from the shell prompt by typing runflora. It is even possible to tell \mathcal{F}_{LORA-2} to execute commands on start-up. For instance,

```
foo> runflora -e "_help."
```

will cause the system to execute the help command right after after the initialization. Then the usual \mathcal{F}_{LORA-2} shell prompt is displayed.

 \mathcal{F}_{LORA-2} comes with a number of demo programs that live in

```
.../flora2/demos/
```

The demos can be run issuing the command "_demo(demo-filename)." at the \mathcal{F} LORA-2 prompt, e.g.,

```
flora2 ?- demo(flogic basics).
```

There is no need to change to the demo directory, as flDemo knows where to find these programs.

16.2 Summary of xmc: Model-checking with XSB

No documentation yet available.

the Ciao [6] system's *lpdoc* which has been adapted to generate a reference manual automatically from one or more XSB source files. The target format of the documentation can be Postscript, HTML, PDF, or nicely formatted ASCII text. xsbdoc can be used to automatically generate a description of full applications, library modules, README files, etc. A fundamental advantage of using xsbdoc to document programs is that it is much easier to maintain a true correspondence between the program and its documentation, and to identify precisely to what version of the program a given printed manual corresponds. Naturally, the xsbdoc manual is generated by xsbdoc itself.

The quality of the documentation generated can be greatly enhanced by including within the program text:

- assertions (indicating types, modes, etc. ...) for the predicates in the program, via the directive pred/1; and
- machine-readable comments (in the "literate programming" style).

The assertions and comments included in the source file need to be written using the forthcoming XSB assertion language, which supports most of the features of Ciao's assertion language within a simple and (hopefully) intuitive syntax.

xsbdoc is distributed under the GNU general public license.

Unlike lpdoc, xsbdoc does not use Makefiles, and instead maintains information about how to generate a document within Prolog format files. As a result, xsbdoc can in principle be run in any environment that supports the underlying software, such as XSB, IATEX, dvips and so on. It has been tested on Linux and Windows running with Cygwin.

16.3 slx: Extended Logic Programs under the Well-Founded Semantics

As explained in the section *Using Tabling in XSB*, XSB can compute normal logic programs according to the well-founded semantics. In fact, XSB can also compute *Extended Logic Programs*, which contain an operator for explicit negation (written using the symbol –) in addition to the negation-by-failure of the well-founded semantics (\+ or not). Extended logic programs can be extremely useful when reasoning about actions, for model-based diagnosis, and for many other uses [2]. The library, slx provides a means to compile programs so that they can be executed by XSB according to the *well-founded semantics with explicit negation* [1]. Briefly, WFSX is an extension of the well-founded semantics to include explicit negation and which is based on the *coherence principle* in which an atom is taken to be default false if it is proven to be explicitly false, intuitively:

$$-p \Rightarrow not p$$
.

This section is not intended to be a primer on extended logic programming or on WFSX semantics, but we do provide a few sample programs to indicate the action of WFSX. Consider the program

```
s:- not t.
t:- r.
t.
r:- not r.
```

If the clause -t were not present, the atoms r, t, s would all be undefined in WFSX just as they would be in the well-founded semantics. However, when the clause t is included, t becomes true in the well-founded model, while s becomes false. Next, consider the program

```
s:- not t.
t:- r.
-t.
r:- not r.
```

In this program, the explicitly false truth value for t obtained by the rule -t overrides the undefined truth value for t obtained by the rule t:- r. The WFSX model for this program will assign the truth value of t as false, and that of s as true. If the above program were contained in the file test.P, an XSB session using test.P might look like the following:

```
> xsb
| ?- [slx].
[slx loaded]
yes
| ?- slx_compile('test.P').
[Compiling ./tmptest]
[tmptest compiled, cpu time used: 0.1280 seconds]
[tmptest loaded]
| ?- s.
| ?- t.
no
| ?- naf t.
| ?- r.
| ?- naf r.
no
| ?- und r.
```

yes

In the above program, the query ?- t. did not succeed, because t is false in WFSX: accordingly the query naf t did succeed, because it is true that t is false via negation-as-failure, in addition to t being false via explicit negation. Note that after being processed by the SLX preprocessor, r is undefined but does not succeed, although und r will succeed.

We note in passing that programs under WFSX can be paraconsistent. For instance in the program.

p:- q.
q:- not q.
-q.

both p and q will be true and false in the WFSX model. Accordingly, under SLX preprocessing, both p and naf p will succeed.

slx_compile(+File)

module: slx

Preprocesses and loads the extended logic program named File. Default negation in File must be represented using the operator not rather than using tnot or $\$ If L is an objective literal (e.g. of the form A or -A where A is an atom), a query ?- L will succeed if L is true in the WFSX model, naf L will succeed if L is false in the WFSX model, and und L will succeed if L is undefined in the WFSX model.

16.4 gapza: Generalized Annotated Programs

Generalized Annotated Programs (GAPs) [17] offer a powerful computational framework for handling paraconsistency and quantitative information within logic programs. The tabling of XSB is well-suited to implementing GAPs, and the gap library provides a meta-interpreter that has proven robust and efficient enough for a commercial application in data mining. The current meta-interpreter is limited to range-restricted programs.

A description of GAPs along with full documentation for this meta-interpreter is provided in [25] (currently also available at http://www.cs.sunysb.edu/~tswift). Currently, the interface to the GAP library is through the following call.

meta(?Annotated_atom)

module: gaj

If Annotated_atom is of the form Atom: [Lattice_type, Annotation] the meta-interpreter computes bindings for Atom and Annotation by evaluating the program according to the definitions provided for Lattice_type.

Bibliography

- [1] J. Alferes, C. Damasio, and L. Pereira. A logic programming system for non-monotonic reasoning. *Journal of Automated Reasoning*, 1995.
- [2] J. Alferes and L. M. Pereira. *Reasoning with Logic Programming*, volume 1111. Springer-Verlag LNAI, 1996.
- [3] A. Bonner and M. Kifer. An overview of transaction logic. *Theoretical Computer Science*, 133:205–265, October 1994.
- [4] A. Bonner and M. Kifer. A logic for programming database transactions. In J. Chomicki and G. Saake, editors, *Logics for Databases and Information Systems*, chapter 5, pages 117–166. Kluwer Academic Publishers, March 1998.
- [5] G. Box and M. Muller. A note on the generation of random normal deviates. *The Annals of Mathematical Statistics*, 29(2):610–611, 1958.
- [6] F. Bueno, D. Cabenza, M. Carro, M. Hermenegildo, P. López-García, and G. Puebla. The ciao prolog system, reference manual. Technical report, School of Computer Science, Technical University of Madrid, 2003. Available from http://www.clip.dia.fi.upm.es/.
- [7] W. Chen, M. Kifer, and D. Warren. HiLog: A foundation for higher-order logic programming. Journal of Logic Programming, 15(3):187–230, February 1993.
- [8] B. Demoen. Dynamic attributes, their hProlog implementation, and a first evaluation. Report CW 350, Department of Computer Science, K.U.Leuven, Leuven, Belgium, oct 2002. URL = http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW350.abs.html.
- [9] C. Draxler. Prolog to SQL compiler, Version 1.0. Technical report, CIS Centre for Information and Speech Processing Ludwig-Maximilians-University, Munich, 1992.
- [10] D. Dubois, J. Lang, and H. Prade. Towards possibilistic logic programming. In *ICLP*, pages 581–595, 1991.
- [11] D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, *Handbook of logic in artificial intelligence and logic programming*, vol. 3, pages 439–514. Oxford University Press, 1994.
- [12] T. Fruehwirth. Thom Fruehwirth's Constraint Handling Rules website. http://www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/chr-intro.html.

BIBLIOGRAPHY 183

[13] T. Frühwirth. Theory and Practice of Constraint Handling Rules. In P. Stuckey and K. Marriot, editors, *Special Issue on Constraint Logic Programming*, volume 37, October 1998.

- [14] H. Guo, C. R. Ramakrishnan, and I. V. Ramakrishnan. Speculative beats conservative justification. In *International Conference on Logic Programming*, volume 2237 of *Lecture Notes in Computer Science*, pages 150–165. Springer, 2001.
- [15] C. Holzbaur. Ofai clp(q,r) manual, edition 1.3.3. Technical report, Austrian Research Institute for Artificial Intelligence, 1995.
- [16] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based languages. *Journal of the ACM*, 42:741–843, July 1995.
- [17] M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic programming and its applications. *J. Logic Programming*, 12(4):335–368, 1992.
- [18] T. I. S. Laboratory. SICStus Prolog User's Manual Version 3.12.5. Swedish Institute of Computer Science, 2006.
- [19] A. McLeod. A remark on algorithm AS 183. Applied Statistics, 34:198–200, 1985.
- [20] I. Niemelä and P. Simons. Smodels: An implementation of the stable model and well-founded semantics for normal LP. In J. Dix, U. Furbach, and A. Nerode, editors, *Proceedings of the 4th International Conference on Logic Programing and Nonmonotonic Reasoning*, volume 1265 of LNAI, pages 420–429, Berlin, July 28–31 1997. Springer.
- [21] F. Riguzzi and T. Swift. Tabling and answer subsumption for reasoning on logic programs with annotated disjunctions. In *Logic Programming*, 26th International Conference, 2010.
- [22] B. Sanna-Starosta. Chrd: A set-based solver for constraint handling rules. available at www.cs.msu.edu/~bss/chr-d, 2006.
- [23] B. Sanna-Starosta and C. Ramakrishnan. Compiling constraint handling rules for efficient tabled evaluation. available at www.cs.msu.edu/~bss/chr-d, 2006.
- [24] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model semantics. *Artificial Intelligence*, 138:181–234, 2002.
- [25] T. Swift. Tabling for non-monotonic programming. Ann. Math. Artif. Intell., 25(3-4):201–240, 1999.
- [26] J. Vennekens, M. Denecker, and M. Bruynooghe. Representing causal information about a probabilistic process. In *Proceedings of the 10th European Conference on Logics in Artificial Intelligence*, LNAI. Springer, September 2006.
- [27] J. Vennekens, M. Denecker, and M. Bruynooghe. CP-logic: A language of causal probabilistic events and its relation to logic programming. *Theory Pract. Log. Program.*, 9(3):245–308, 2009.
- [28] J. Vennekens and S. Verbaeten. Logic programs with annotated disjunctions. Technical Report CW386, K. U. Leuven, 2003.

BIBLIOGRAPHY 184

[29] J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with annotated disjunctions. In *International Conference on Logic Programming*, volume 3131 of *LNCS*, pages 195–209. Springer, 2004.

- [30] B. A. Wichmann and I. D. Hill. Algorithm AS 183: An efficient and portable pseudo-random number generator. *Applied Statistics*, 31:188–190, 1982.
- [31] J. Wielemaker. SWI Prolog version 5.6: Reference Manual. University of Amsterdam, 2007.

Index

CDATA, 124, 125	$concat_atom/2$, $\frac{13}{}$
DOCTYPE declaration, 132	$concat_atom/3$, $\frac{13}{}$
NAMES, 125	current_stable_model/1, 173
NDATA, 125	$\mathtt{datime_setrand/0}, \color{red} \color{blue}{31}$
NUMBER, 125	$declaration, \frac{131}{}$
SDATA, 125	default space mode, 127
# 2, <del 149	$del_attr/2, \frac{4}{}$
#=/2, 149	$\mathtt{delete_ith/4}, \frac{1}{1}$
#= 2, <u 149	doctype, 129
#>/2, 149	$dtd/3, \frac{129}{}$
#>=/2, <u>149</u>	$\mathtt{dump/3}, \underline{146}$
{}/1, 143	element, 131
a_stable_model/0, 171	encode_ur1/2, <mark>120</mark>
absmember/2, 3	$entailed/1, \frac{144}{}$
absmerge/3, 3	$expand_filename/2, \frac{14}{}$
all_different/1, 150	expand_filename_no_prepend/2, 14
append/3, $\frac{1}{1}$	exponential/2, $\frac{31}{}$
$array_elt/3, \frac{28}{}$	false, 126
$array_new/2, \frac{28}{}$	fd2ioport/2, 27
array_update/3, 28	fd2iostream/2, 22
atom_handle/2, 171	file, 131
bb_inf/3, 146	findall_odbc_sql/3, 90
bb_inf/4, 145	findall_odbc_sql/4, 90
c2p_float, 47	format/2, 9
c2p_functor, 48	format/3, 9
c2p_int, 47	free_dtd/1, <mark>129</mark>
c2p_list, 48	free_sgml_parser/1, 130
c2p_nil, 48	gauss/2, $\frac{31}{}$
c2p_string, 47	gennum/1, $\frac{30}{}$
close/3, 119	$gensym/2, \frac{30}{}$
close/4, 119	get_attr/3, 4
closetail/1, 3	get_chr_answer_store/1, 162
$comma_append/3, \frac{3}{3}$	get_chr_store/1, 162
comma_length/2, 3	get_process_table/1, 19
comma_member/2, 3	get_redir_url/2, 121
comma_memberchk/2, 3	get_scan_pars/1, 34
comma_to_list/2, 3	getenv/2, 15

INDEX 186

$getrand/1, \frac{31}{}$	odbc_create_index/3, 98
in/2, 149	odbc_create_table/2, 98
in_all_stable_models/2, 171	odbc_data_sources/2, 88
<pre>in_current_stable_model/1, 173</pre>	odbc_delete/ $\{2,3\}$, $\frac{97}{}$
inf/2, 144	odbc_delete_index/1, 99
inf/4, 145	odbc_delete_table/1, 99
informational, 132	odbc_delete_view/1, 99
init_smodels/1, 171	odbc_flag/2, 99
install_verify_attribute_handler/4, 4	odbc_get_schema/2, 98
install_verify_attribute_handler/5, 4	odbc_import/2, 90
integer, 126	odbc_import/4, 92
is_attv, 46	odbc_insert/{2,3}, 97
is_float, 46	odbc_open/3, 87
is_functor, 46	odbc_open/4, 88
is_int, 46	odbc_query/2, 94
is_list, 46	odbc_query/3, 96
is_nil, 46	odbc_show_schema/1, 98
is_string, 46	odbc_sq1/3, 88
is_var, 46	odbc_sq1/4, 89
ith/3, 1	odbc_sql_cnt/4, 90
label/1, 150	odbc_transaction/1, 99
labelling/2, 150	open/3, 119
length/2, 2	open/4, 119
load_chr/1, 155	open_dtd/3, 129
load_csv/2, 32	p2c_arity, 47
load_dsv/3, 32	p2c_float, 47
load_html_structure/3, 124	p2c_functor, 47
load_page/5, 120	p2c_int, 47
load_sgml_structure/3, 124	p2c_string, 47
load_structure/4, 125	p2p_arg, 48
<pre>load_xhtml_structure/3, 124</pre>	p2p_car, 48
load_xml_structure/3, 124	p2p_cdr, 48
log_ith/3, 2	p2p_new, 48
log_ith_bound/3, 2	p2p_unify, 49
maximize/1, 144	parse_filename/4, 14
member/2, 1	parse_xpath/4, 135
member2/2, 3	perm/2, 2
memberchk/2, 1	pid/1, 15
merge/3, 3	pipe_open/2, 20
merge_answer_store/1, 162	prepare/1, 30
minimize/1, 144	preprocess/2, 155
new_dtd/2, 128	preserve space mode, 127, 128
new_sgml_parser/2, 129	pretty_print/1, 35
odbc_close/0, 88	print_cache/0, 170
odbc_close/1, 88	print_current_stable_model/0, 173

INDEX 187

process_control/2, 18	socket_connect/4, 23
process_status/2, 18	socket_get0/3, 25
pstable_model/3, 171	socket_listen/3, 23
put_attr/3, 4	socket_put/3, 25
putenv/3, 15	socket_recv/3, 24
random/1, 30	socket_select/6, 25
random/3, 30	socket_select_destroy/1, 25
$randseq/3, \frac{31}{31}$	socket_send/3, 24
randset/3, 31	socket_set_option/3, 23
reg_term, 49	socket_set_select/4, 25
remove space mode, 128	spawn_process/5, 15
reverse/2, 2	str_match/5, 11
runtime_loader_flag/2, 56	str_sub/2, 11
same_length/2, 2	str_sub/3, 11
$scan/2, \frac{33}{3}$	string_substitute/4, 12
$scan/3, \frac{33}{3}$	subseq/3, 2
see/1, 119	substring/4, 12
select/3, 2	$sum/3, \frac{150}{}$
serialized/2, 151	sup/2, 144
set_chr_store/1, 162	$sup/4, \frac{145}{}$
set_odbc_flag/2, 99	suspended_constraints/2, 156
set_scan_pars/1, 33	term_hash/3, $\frac{35}{}$
set_sgml_parser/2, 130	term_variables/2, 8
set_timer/1, 26	token, 126
setarg/3, 8	unifiable/3, 8
$setrand/1, \frac{31}{}$	url_properties/2, 120
sgml_parse/3, 131	url_properties/3, 120
sgm1, 126, 127, 130	weibull/3, $\frac{31}{}$
sgml space mode, 127	when/2, 7
$shell/5, \frac{19}{}$	xmlns, 126, 130
$show_store/1, 156$	xmlns dialect, 128
sleep/1, 14, 26	xm1, 126, 127, 130
smcAddRule/2, 170	xsb_ccall_thread_create, 81
smcCommitProgram/0, 170	xsb_close_query, 80
smcCompute/1, 170	xsb_close, 75
smcComputeModel/0, 170	xsb_command_string, 76
smcEnd/0, 170	xsb_command, 76
smcExamineModel/2, 170	<pre>xsb_domain_error(), 60</pre>
smcInit/0, 169	$xsb_existence_error(), 60$
smcReInit, 169	xsb_get_error_message, 81
smcRetractRule/2, 170	xsb_get_error_type, 81
socket/2, 23	${\tt xsb_get_last_answer_string_b, 79}$
socket_accept/3, 23	xsb_get_main_thread, 81
socket_bind/3, 23	xsb_init_string, 73
socket_close/2, 23	xsb_init, 75

INDEX 188

xsb_instantiation_error(), 61	negation
xsb_make_vars, 83	explicit negation, 181
xsb_misc_error(), 61	DITA 174
xsb_next_string, 79, 80	PITA, 174 Possibilistic Losic Programming, 174
xsb_next, 80	Possibilistic Logic Programming, 174
xsb_permission_error(), 61	PRISM, 174
xsb_query_restore, 55	Probabilistic Logic Programming, 174
xsb_query_save, 55	profile_call/1, 28
xsb_query_string_string_b, 77	profile_mode_call/1, 29
xsb_query_string_string, 77	profile_mode_dump/0, 30
xsb_query_string, 79	profile_mode_init/0, 30
xsb_query, 78	projecting_assert/1, 146
xsb_resource_error(), 62	Prologs
xsb_set_var_float, 84	hProlog, 3
xsb_set_var_int, 84	Sicstus, 147
xsb_set_var_string, 84	SWI, 3, 141, 147
xsb_thread_context_to_id, 81	Random Variables, 30
xsb_thread_id_to_context, 81	Exponential, 31
xsb_throw(), 62	Normal, 31
xsb_type_error(), 62	,
xsb_var_float, 84	Weibull, 31
xsb_var_int, 84	runflora script, 180
xsb_var_string, 84	VarString, 82
, 151	, 612 6111-6, 62
64-bit architectures, 40, 85	WFSX, 181
Code authors Carlsson, Mats, 36, 37 Guo, Hai-Feng, 36 O'Keefe, Richard, 37 constraints asserting dynamic code with, 146	
CP-logic, 174	
FLIP, 178 FLORID, 178	
Generalized Annotated Programs, 183	
$install_attribute_constraint_hook/4, \color{red} 6 \\ install_attribute_portray_hook/3, \color{red} 6 \\ \\$	
LD_LIBRARY_PATH, 56 LIBPATH, 56 local scheduling in XSB, 179 Logic Programs with Annotated Disjunction, 174 LPADs, 174	