

PADERBORN UNIVERSITY

LEARNING TO SORT

MACHINE LEARNING

Prakhar Rathi

Paderborn, Thursday 6th August, 2020

Introduction

• Sorting refers to arranging items in an ordered sequence.

Sorting: Intuition

Originally, Least Sum of Squares Regression: $\frac{\sum_{i=0}^{N} (x_i - \mu)^2}{N}$

- Example: Input data = $2, 3, 5, 6 \implies \text{mean} = 4$
- Input data with an outlier = $2, 3, 5, 6, 30 \implies \text{mean} = 9.2$

Sorting: Intuition

o Replace by Least Median of Squares Regression: median $(x_i - \mu)^2$

- o Input data = $2, 3, 5, 6, 30 \implies \text{median} = 5$.
- Sorting an array $\theta := (\theta_1, \theta_2, \dots, \theta_n)$ means finding a permutation σ such that $\theta_{\sigma} := (\theta_{\sigma 1}, \theta_{\sigma 2}, \dots, \theta_{\sigma n})$ is in an increasing order [1].

Gradients of Sorting

Permutation Matrix

- The output of any sorting algorithm can be viewed as a permutation matrix.
- A permutation matrix is a square matrix ($n \times n$) with entries in $\{0,1\}$.
- For example, input vector = {5, 3, 6, 2}
 ⇒ Sorting permutation = {4, 2, 3, 1}
 and the corresponding permutation matrix is:

0	0	0	1
0	1	0	0
0	0	1	0
1	0	0	0

Unimodal Row Stochastic Matrices

• Replace the permutation matrix with a Unimodal Row Stochastic Matrix [2].

<u>3</u> 8	<u>1</u> 8	1/2
<u>3</u>	<u>1</u>	0
1/2	<u>1</u>	<u>1</u>

- \circ Sum of each row = 1.
- Every row has a distinct arg max.

Optimal Transport

o Idea [1]:

Learning problem:

 Minimum number of ways to arrange n-points as the letter E from the input pattern M.

Optimal Transport

- \circ *y* is already sorted \implies its corresponding permutation matrix is the identity permutation.
- O Derived sorted vectors form continuous ranks for the elements in x [1].

 \circ The optimal regularized transport plan is a dense matrix \implies ensures differentiability everywhere w.r.t x.

Relaxing the arg sort operator

Properties of SoftSort [3]:

- It is row-stochastic.
- \circ Converges to $P_{argsort(.)}$.
- O Can be projected onto a permutation matrix.

Projections on the Permutahedron

- Permutahedron = convex hull of all permutations.
- Previous approaches do not achieve the desired time complexity.
- Can cast sorting as a linear program over the permutahedron.
- The optimal solution is always a vertex, i.e. a permutation.

Projections on the Permutahedron

- A combination of Quadratic and Euclidean regularization is applied, $\psi \in \{Q, E\}$ [4].
- Soft operators:

$$s_{\epsilon\psi}(\theta) := P_{\epsilon\psi}(\rho, \theta)$$
 and,
 $r_{\epsilon\psi}(\theta) := P_{\epsilon\psi}(-\theta, \rho)$ where
 $\rho = (n, n-1, n-2, \dots, 1)$.

• When $\epsilon \to \infty \implies r_{\epsilon Q}(\theta)$ converges towards the centroid of the permutahedron [4].

Conclusion

- Generally, sorting is not differentiable everywhere.
- Various differentiable proxies have been devised.
- OProjections onto the permutahedron achieve the desired $O(n \log n)$ time complexity.

References

- Cuturi, M., Teboul, O., and Vert, J., 2019. Differentiable Sorting using Optimal Transport: The Sinkhorn CDF and Quantile Operator. arXiv:1905.11885 [cs. LG].
- 2. Grover, A., Wang, E., Zweig, A., and Ermon, S., 2019. Stochastic optimization of sorting networks via continuous relaxations. arXiv preprint arXiv:1903.08850, 2019.
- 3. Prillo, S. and Eisenschlos, J., 2020. SoftSort: A Continuous Relaxation for the argsort Operator.
- 4. Blondel, M., Teboul, O., Berthet, Q., and Djolonga, J., 2020. Fast differentiable sorting and ranking. arXiv preprint arXiv:2002.08871, 2020.

Thank you for your attention!