Claims

	1	1. All immobilized metal for attituty chromatography purification method for
	2	purification of a recombinant proteins, said method comprising:
	3	(a) providing carboxymethylated aspartate ligand complexed with a transition metal
	4	ion in a 2 ⁺ oxidation state, having a coordination number of 6;
	5	(b) loading a mixture of cell lysate comprising a recombinant protein having a
	6	polyhistidine tail to bind with said ligand; and
	7	(c) eluting said recombinant protein with a suitable elutant to obtain a purified
	8	recombinant protein.
, comp		
American Control	1	2. The method, according to claim 1, wherein said transition metal-complexed
and Anna	2	carboxymethylated aspartate ligand forms a carboxymethylated aspartate chelating matrix
	3	which comprises said transition metal and a polymer matrix.
See See		
for the Daniel And the State of Annie	1	3. The method, according to claim 2, wherein said transition metal is connected to
	2	said polymer matrix by a linking arm and a functional linking group.
d.	1	4. The method, according to claim 3, wherein said linking arm is selected from the
	2 .	group consisting of -CH ₂ CH(OH)CH ₂ -, -CH ₂ (OH)CH ₂ -O-CH ₂ CH(OH)CH ₂ -,
	3	$-(CH_2)_4$ NHCH ₂ CH(OH)CH ₂ -, and $-(CH_2)_2$ NHCH ₂ CH(OH)CH ₂
	•	
	1	5. The method, according to claim 3, wherein said functional linking group is
	2	selected from the group consisting of O, S, and NH.
	1	6. The method, according to claim 2, wherein said polymer matrix is agarose.
	1	7. The method, according to claim 2, wherein said carboxymethylated aspartate
	2	chelating matrix has the structure

wherein:

R₄-R₅-R₆ = H

M = transition metal ion in a 2⁺ oxidation state with a coordination number of

6;

R₁ = a linking arm connecting the nitrogen atom of CM-Asp with R₂;

R₂ = a functional linking group through which CM-Asp linking arm R₁ is

connected to R₃; and

R₃ = a polymer matrix

8. The method, according to claim 2, wherein said carboxymethylated aspartate

8. The method, according to claim 2, wherein said carboxymethylated aspartate chelating matrix has the structure

3	wherein:
4	$R_1 - R_2 - R_3 = H;$
5	M = transition metal ion in a 2+ oxidation state with a coordination number
6 .	of 6;
7	R_4 = a linking arm connecting the methylene carbon atom of the carboxymethy
8	group of CM-Asp with R ₅ ;
9	R_5 = a functional linking group through which CM-Asp linking arm R_4 is

5

6

7

8

9

1

2

1

1

2

3

1

10 connected to R₆; and

11 $R_6 = a$ polymer matrix.

- 9. An immobilized metal ion affinity chromatography complex comprising a carboxymethylated aspartate ligand and a transition metal complexed thereto, wherein said transition metal ion has a 2⁺ oxidation state and a coordination number of 6.
 - 10. The complex, according to claim 9, wherein said complex has the structure:

wherein:

$$R_4 - R_5 - R_6 = H$$

M = transition metal ion in a 2th oxidation state with a coordination number of 6;

 $R_1 = a$ linking arm connecting the nitrogen atom of CM-Asp with R_2 ;

 R_2 = a functional linking group through which CM-Asp linking arm R_1 is connected to R_3 ; and

 $R_3 = a$ polymer matrix

- 11. The method, according to claim 10, wherein said polymer matrix comprises a polymer matrix suitable for use in affinity or gel chromatography.
 - 12. The complex, according to claim 10, wherein

2
$$M = Fe^{2+}, Co^{2+}, Ni^{2+}, Cu^{2+}, or Zn^{2+};$$

$$R_1 = -CH_2CH(OH)CH_2-, -CH_2(OH)CH_2-O-CH_2CH(OH)CH_2-, or$$

-(CH₂)₂NHCH₂CH(OH)CH₂-. 4 $R_2 = 0$, S, or NH; and 5 R_2 = agarose or polystyrene. 6 13. The complex, according to claim 12, wherein 1 $M = Co^{2+}$; 2 $R_1 = CH_2CH(OH)CH_2;$ 3 $R_2 = 0$; and 4 5 R_3 = agarose, cross-linked\or polystyrene 14. A method for synthesizing carboxymethylated aspartate agarose chelating resin, said method comprising 11 3 11 4 (a) forming oxirane-agarose; (b) conjugating aspartic acid to oxirane-agarose; and (c) washing said aspartic acid-oxirane-agarose conjugate to remove extraneously * 6 bound metals using a high ionic strength solution. 15. The method, according to claim 14, wherein said conditions for oxirane-agarose formation comprise carrying out the formation at about room temperature, overnight, 3 adjusting to about pH 7.0. 16. The method, according to claim 14, wherein said temperature control conditions 1 for conjugating aspartic acid to said oxirane-agarose comprise mixing at less than about 2 25°C, reacting at about 80°C for 4 hours, then cooling to room temperature overnight. 3 17. The method, according to claim 14, wherein said washing step (c) comprises use 1. of a solution of at least 7.5% sodium hydroxide. 2 18. The complex according to claim 9, wherein said complex has the structure:

1

```
2
                     wherein:
   3
                         R_1-R_2-R_3=H;
                         M = transition metal ion in a 2+ oxidation state with a coordination number
   4
                               of 6;
   5
                         R_4 = a linking arm connecting the methylene carbon atom of the carboxymethyl
   6
                              group of CM-Asp with R<sub>5</sub>;
   7
                         R_s = a functional linking group through which CM-Asp linking arm R_4 is
9
10
10
                              connected to R<sub>6</sub>; and
                         R_6 = a polymer matrix.
ţ
n
                     19. The method, according to claim 18, wherein said polymer matrix comprises a
☐ 1
☐ 2
            polymer matrix suitable for use in affinity or gel chromatography.
Ü
                    20. The complex according to claim 18, wherein
                         M = Fe^{2+}, Co^{2+}, Ni^{2+}, Cu^{2+}, or Zn^{2+};
   2
                         R_4 = -(CH_2)_4NHCH_2CH(OH)CH_2 - or -(CH_2)_4NH-;
   3
                         R_s = O, S, NH, or CO; and
                         R_6 = agarose or polystyrene.
   5
                    21. The complex, according to claim 20, wherein
   1
                         M = Co^{2+};
   2
                         R_4 = -(CH_2)_4NHCH_2CH(OH)CH_2- \text{ or } -(CH_2)_4NH-;
   3
                         R_5 = O or CO; and
```

 R_6 = agarose, cross linked, or polystyrene.

5

	1		22.	A method for synthesizing carboxymethylated aspartate chelating matrices, said
	2	metho	d co	mprising the steps:
	3		(a)	Michael addition of the α-amino function of monoprotected α,ω-diamino acids
	4		to r	naleic acid;
	5		(b)	deprotecting the ω-amino functionality; and
	6		(c)	attaching the chelator primary amine molecule to a solid matrix.
	1		23.	A method for screening for protein function on a microtiter plate or filter, said
	2	metho	d cor	mprising the steps:
	. 3		(a)	immobilizing a complex of claim 1 to the plate or filter;
THE COLUMN THE CAN DESCRIBE AND ROLL OF	4		(b)	binding said immobilized complex to the protein for which the function is being
	5			screened; and
	6		(c)	performing an assay for protein function on the bound protein.
A Rose				
	1	ADD BI		