Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики :: Университет итмо

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа Р3207	К работе допущен
Студент Садовой Г.В.	Работа выполнена
Преподаватель Агабабаев В. А.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.04

Исследование равноускоренного

вращательного движения (маятник Обербека)

1. Цель работы.

- Проверка основного закона динамики вращения, связывающего угловое ускорение вращающегося тела с моментами действующих сил.
- Проверка зависимости момента инерции от положения масс относительно оси вращения.

2. Рабочие формулы и исходные данные.

- 1) Основной закон динамики вращения: $I_{\rm E} = M M_{\rm TP}$
 - I момент инерции крестовины с утяжелителем;
 - Угловое ускорение крестовины;
 - М момент силы натяжения нити;
 - $M_{\text{тр}}$ момент силы трения в оси крестовины.
- 2) Второй закон Ньютона: ma = mg T
 - m масса груза, создающего натяжение нити;
 - а ускорение груза, создающего натяжение нити;
 - g ускорение свободного падения;
 - Т сила натяжения нити.
- 3) Зависимость пройденного пути h от времени t при постоянном ускорении: $h = \frac{at^2}{2}$
 - h путь, пройденный телом, которое создает натяжение нити;
 - t время, за которое был пройден h.
- 4) Связь между угловым ускорением крестовины и линейным ускорением груза: $\mathcal{E} = \frac{2a}{d}$
 - d диаметр ступицы;
- 5) Осевой момент силы для силы натяжения нити: $M = \frac{Td}{2}$
- 6) Из определения момента инерции и т. Штейнера: $I = I_0^2 + 4m_{yr}R^2$
 - I_0 сумма моментов инерции стержней крестовины с утяжелителями, момента инерции ступицы и собственных центральных моментов инерции утяжелителей;
 - R расстояние между осью вращения и центром утяжелителя;
 - m_{yT} масса утяжелителя;
 - I коэффициент наклонной зависимости M(ε).

3. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой	[0,01; 60] c	0,005 с
2	Линейка	Измерительны й Электронный	[0,700] мм	0,5 мм

	Параметры установки						
1.	Масса каретки	$(47,0 \pm 0,5) \ \Gamma$					
2.	Масса шайбы	$(220,0\pm 0,5)\ \Gamma$					
3.	Масса грузов на крестовине	$(408,0\pm0,5)\ \Gamma$					
4.	Расстояние от оси до первой риски	$(57,0\pm0,5)$ mm					
5.	Расстояние между рисками	$(25,0\pm0,2)$ mm					
6.	Диаметр ступицы	$(46,0\pm 0,5)\ { m mm}$					
7.	Диаметр груза на крестовине	(40.0 ± 0.5) mm					
8.	Высота груза на крестовине	$(40,0\pm 0,5)\ { m mm}$					
9.	Расстояние, проходимое грузом (h)	$(700,0\pm0,1)\ { m mm}$					

4. Схема установки

Рис. 1. Стенд лаборатории механики (общий вид)

Общий вид экспериментальной установки изображен на Рис. 1. В состав установки входят:

- 1. Основание
- 2. Рукоятка сцепления крестовин
- 3. Устройства принудительного трения
- 4. Поперечина
- 5. Груз крестовины
- 6. Трубчатая направляющая
- 7. Передняя крестовина
- 8. Задняя крестовина
- 9. Шайбы каретки
- 10. Каретка
- 11. Система передних стоек

5. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Magaz Pavina P	Положение утяжелителей								
Масса груза, г		1.риска	2.риска	3.риска	4.риска	5.риска	6.риска		
	t_1, c	4,70	5,35	6,76	7,66	8,82	9,79		
267 ± 1	t ₂ , c	4,64	5,48	6,72	7,73	8,78	9,71		
207 <u>1</u> 1	t ₃ , c	4,71	5,44	6,76	7,63	8,73	9,78		
	t _{cp} , c	4,68	5,42	6,75	7,67	8,78	9,76		
	t ₁ , c	3,48	4,07	4,70	5,56	6,21	7,04		
407 15	t ₂ , c	3,50	3,96	4,55	5,60	6,25	7,00		
$487 \pm 1,5$	t ₃ , c	3,50	4,08	4,64	5,63	6,25	7,05		
	t _{cp} , c	3,49	4,04	4,63	5,60	6,24	7,03		
	t_1, c	2,74	3,23	3,93	4,47	5,16	5,86		
707 ± 2	t ₂ , c	2,88	3,10	3,93	4,52	5,19	5,80		
707 ± 2	t ₃ , c	2,79	3,17	3,87	4,56	5,13	5,82		
	t _{cp} , c	2,80	3,17	3,91	4,52	5,16	5,83		
	t ₁ , c	2,38	2,86	3,32	3,98	4,43	4,90		
927 ± 2,5	t ₂ , c	2,43	2,85	3,37	4,01	4,51	4,92		
921 ± 2,5	t ₃ , c	2,35	2,75	3,32	3,90	4,48	4,88		
	t _{cp} , c	2,39	2,82	3,34	3,96	4,47	4,90		

Таблица 1. Результаты прямых измерений

6. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

$$a = \frac{2h}{t^2} = \frac{2 * 0.7}{4.69^2} = 0.064 \left[\frac{M}{c^2} \right]$$

$$\varepsilon = \frac{2a}{d} = \frac{2 * 0.064}{0.046} = 2.78 \left[\frac{pag}{c^2} \right]$$

$$M = \frac{md}{2}(g - a) = \frac{0.267 * 0.046}{2}(9.81 - 0.064) = 0.06[H \cdot M]$$

Macca		t c			M,
груза, г		t _{cp} , c	$a, m/c^2$	ε, c ⁻²	Н*м
	1				
	риска	4,68	0,06	2,78	0,06
	2				
	риска	5,42	0,05	2,07	0,06
	3	6.77	0.02	1.04	0.06
267 ± 1	риска	6,75	0,03	1,34	0,06
	4	7.77	0.02	1.02	0.06
	риска	7,67	0,02	1,03	0,06
	5	0.70	0.02	0.70	0.06
	риска	8,78	0,02	0,79	0,06
	6	0.76	0.01	0.64	0.06
	риска 1	9,76	0,01	0,64	0,06
	риска	3,49	0,11	4,99	0,11
	<u>риска</u> 2	3,47	0,11	4,77	0,11
	риска	4,04	0,09	3,74	0,11
	3	7,07	0,07	3,74	0,11
	риска	4,63	0,07	2,84	0,11
$487 \pm 1,5$	4	1,02	0,07	2,01	0,11
	риска	5,60	0,04	1,94	0,11
	5				
	риска	6,24	0,04	1,56	0,11
	6	,	,	,	,
	риска	7,03	0,03	1,23	0,11
	1				
	риска	2,80	0,18	7,75	0,16
	2				
	риска	3,17	0,14	6,07	0,16
	3				
707 ± 2	риска	3,91	0,09	3,98	0,16
/ 57 = =	4	4.50	0.05	2.00	0.16
	риска	4,52	0,07	2,98	0,16
	5	5.16	0.05	2.20	0.16
	риска	5,16	0,05	2,29	0,16
	6	5.02	0.04	1.70	0.16
	риска	5,83	0,04	1,79	0,16
	1	2 20	0.25	10.60	0.20
	риска 2	2,39	0,25	10,69	0,20
		2,82	0,18	7,65	0,21
	риска 3	2,02	0,10	7,03	0,21
	риска	3,34	0,13	5,47	0,21
$927 \pm 2,5$	4		0,13	5,17	0,21
	риска	3,96	0,09	3,88	0,21
	5		-,	-,	-,1
	риска	4,47	0,07	3,04	0,21
	6	,	,	,	,
	риска	4,90	0,06	2,54	0,21

Таблица 2. Результаты вычисления a, M, \mathcal{E}

$$\begin{split} \overline{M} &= \frac{M_1 + M_2 + M_3 + M_4}{4} = \frac{0,06 + 0,11 + 0,16 + 0,20}{4} = 0,13 \text{ H} \cdot \text{м} \\ \overline{\epsilon} &= \frac{\epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4}{4} = \frac{2,77 + 4,75 + 7,58 + 10,69}{4} = 6,54 \text{ рад} \backslash \text{c}^2 \\ I_1 &= \frac{\sum (\epsilon_i - \overline{\epsilon})(M_i - \overline{M})}{\sum (\epsilon_i - \overline{\epsilon})^2} = \frac{\sum (\epsilon_i - 6,45)(M_i - 0,13)}{\sum (\epsilon_i - 6,45)^2} = 0,02 \text{ кг} \cdot \text{m}^2 \\ M_{\text{TP}} &= \overline{M} - I_1 * \overline{\epsilon} = 0,13 - 0,02 * 6,45 = 0,01 \text{ H} \cdot \text{m} \end{split}$$

	Положения утяжелителей							
	1 риска 2 риска 3 риска 4 риска 5 риска 6 риска							
ε_{cp} , рад $\backslash c^2$	6,55	4,88	3,41	2,46	1,92	1,55		
\mathbf{M}_{cp} , Н \cdot м	0,13	0,13	0,13	0,13	0,13	0,13		
I, кг · м ²	0,02	0,03	0,04	0,05	0,07	0,08		
$\mathbf{M}_{TP},H\cdotM$	0,01	0,01	0,01	0,01	0,01	0,01		

Таблица 3. Результаты вычисления I и M_{тр}

$$\bar{I} = I_0 + 4m_{\rm yt}R^2$$

$$\bar{I} = \frac{I_1 + I_2 + I_3 + I_4 + I_5 + I_6}{6} = \frac{0,02 + 0,02 + 0,03 + 0,05 + 0,07 + 0,07}{6} = 0,046 \; \rm kg \cdot m^2$$

Номера рисок	1	2	3	4	5	6	Среднее:
R, м	0,077	0,102	0,127	0,152	0,177	0,202	0,1395
R^2 , M^2	0,005929	0,010404	0,016129	0,023104	0,031329	0,040804	0,02128317
Ι, кг ·							
M^2	0,02	0,03	0,04	0,05	0,07	0,08	0,046

Tаблица 4. Pезультаты вычисления R^2 и I

$R_{\rm cp}^2$	I _{cp}	m_{yT}	I_0
0,021	0,046	0,4468	0,0077

Таблица 5. Результаты.

7. Расчет погрешностей измерений (для прямых и косвенных измерений).

1) Времени t:

$$\bar{t} = 4,68 \text{ c.}$$

$$S_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)}} \sum_{i=1}^{N} (t_i - \langle t \rangle)^2 = 0,0578 \text{ (c)}$$
 $\alpha = 0,95, N = 3$

$$t_{\alpha,N} = 4,30$$

$$\Delta t' = t_{\alpha,N} \cdot S_{\bar{t}} = 0,25 \text{ (c)}$$

$$\delta_{\bar{t}} = \frac{\Delta_{\bar{t}}}{\bar{t}} * 100\% = \frac{0.25}{4.68} * 100\% = 5.34\%$$

2) Ускорения а (для положения утяжелителей на 1 риске и массы m₁):

$$a = \frac{2h}{t^2}$$
; $\bar{a} = 0.06$ m/ c^2 ; $h = 700.0 \pm 0.5$ mm; $t = 4.68 \pm 0.25$ c.

$$\Delta_a = \sqrt{\left(\frac{2}{t^2} * \Delta_h\right)^2 + \left(\frac{6*h}{t^3} * \Delta_t\right)^2} = \sqrt{\left(\frac{2}{4,68^2} * 0,005\right)^2 + \left(\frac{6*0,7}{4,68^3} * 0,25\right)^2} = 0,010\text{m/c}^2$$

$$\delta_a = \frac{\Delta_a}{\bar{a}} * 100\% = \frac{0,010}{0.064} * 100\% = 16\%$$

3) Момента силы натяжения нити М (для положения утяжелителей на 1 риске и массы m_1): $M=0.0598~{\rm H\cdot m}; m=267.0\pm0.5$ г; $d=46.0\pm0.5$ мм; $a=0.064\pm0.010$ м/с²

$$\begin{split} &\Delta_{\mathrm{M}} = \sqrt{\left(\frac{md}{2}*\Delta_{a}\right)^{2} + \left(\frac{d}{2}(g-a)\Delta_{m}\right)^{2} + \left(\frac{m}{2}(g-a)\Delta_{d}\right)^{2}} = \\ &\sqrt{\left(\frac{0,267*0,046}{2}*0,010\right)^{2} + \left(\frac{0,046}{2}(9,819-0,064)0,0005\right)^{2} + \left(\frac{0,267}{2}(9,819-0,064)*0,0005\right)^{2}} = \\ &= 7\times10^{-4} \\ &\delta_{\mathrm{M}} = \frac{\Delta_{\mathrm{M}}}{\mathrm{M}}*100\% = \frac{0.0007}{0.0599}*100\% = 1.16\% \end{split}$$

4) Углового ускорения крестовины \mathcal{E} (для положения утяжелителей на 1 риске и массы m_1): $\varepsilon = 2.78 \text{ рад/c}^2$; $a = 0.064 \pm 0.010 \text{м/c}^2$; $d = 46.0 \pm 0.5 \text{мм}$

$$\Delta_{\varepsilon} = \sqrt{\left(\frac{2}{d} * \Delta_{a}\right)^{2} + \left(\frac{4a}{d^{2}} \Delta_{d}\right)^{2}} = \sqrt{(2/0.046 * 0.010)^{2} + (4 * 0.06/0.046^{2} * 0.0005)^{2}}$$

$$= 0.44 \text{ pag/c}^{2}$$

$$\delta_{\varepsilon} = \frac{\Delta_{\varepsilon}}{\varepsilon} * 100\% = \frac{0.44}{2.78} * 100\% = 15.83\%$$

$$m_{y_T} = 0.4668$$

$$I_0 = 0.0077$$

Воспользуемся формулой для погрешности косвенных измерений в МНК:

$$4\Delta_{m_{\rm yT}} = \sqrt{\frac{1}{n-2}\Big(\frac{D_I}{4D_{R^2}} - 16{\rm m_{yT}}^2\Big)} \ , \ {\rm где} \ D_I - {\rm дисперсия} \ I, D_{R^2} - {\rm дисперсия} \ R^2$$

$$\Delta_{I_0} = \ 4\Delta_{m_{\rm yT}} * \sqrt{R^4}$$

$$D_I = 0,000447222222$$

$$D_{R^2} = 0,000144310781$$

$$\Delta_{m_{\rm yT}} = 0,23$$

$$\Delta_{I_0} = 0,004$$

$$\delta_{m_{\rm yT}} = \frac{\Delta_{m_{\rm yT}}}{m_{\rm yT}} * 100\% = \frac{0.23}{0,4668} * 100\% = 49.27\%$$

$$\delta_{I_0} = \frac{\Delta_{I_0}}{I_0} * 100\% = \frac{0.004}{0,0077} * 100\% = 51.94\%$$

8. Графики

График 1: Зависимость $\mathbf{M} = \mathbf{M}_{\mathrm{rp}} + \mathbf{I} \boldsymbol{\varepsilon}$

9. Окончательные результаты

$$\begin{split} t_{\rm cp} &= 4,68 \, \pm 0,25 \, {\rm c}, \, \delta_{t_{\rm cp}} = 5,34\% \, \alpha = 0,95 \\ \alpha &= 0,064 \pm 0.010 {\rm m/c^2}, \delta_a = 16,67\% \, \alpha = 0,95 \\ M &= 0,0599 \, \pm 0.0007 {\rm H\cdot m}, \delta_{\rm M} = 1.16\% \, \alpha = 0,95 \\ \varepsilon &= 2.78 \pm 0.44 \frac{{\rm pag}}{{\rm c^2}}, \delta_{\varepsilon} = 15.83\% \alpha = 0,95 \\ \delta m_{\rm yt} &= 0,4668 \pm 0.23 \, {\rm kr}, \delta_{m_{\rm yt}} = 49.27\% \, \alpha = 0,95 \\ \delta I_0 &= 0,008 \pm 0,004 \, {\rm kr} * {\rm m^2}, \delta_{I_0} = 50\% \, \alpha = 0,95 \end{split}$$

10. Выводы и анализ результатов работы.

Таким образом, в результате проведенных измерений я исследовал исследовать вращательное движение и его законы на примере маятника Обербека. На практике подтвердили линейные зависимости $M(\varepsilon)$ и $I(R^2)$, что подтверждает применимость основного закона динамики вращения и теоремы Штейнера для описания вращательного движения в данной установке.