

AML5202 | Deep Learning | Problem Set-1

Suppose we have a 3×5 -weights matrix **W** and a 5-vector **x**. We want to calculate the gradient $\nabla_{\mathbf{W}}(\mathbf{W}\mathbf{x})$. To that end, answer the following questions:

- 1. What is the shape of $\mathbf{W}\mathbf{x}$.
- 2. What is the shape of the gradient $\nabla_{\mathbf{W}}(\mathbf{W}\mathbf{x})$?
- 3. Suppose the weights matrix is represented as $\mathbf{W} = \begin{bmatrix} \mathbf{w}_1^T \\ \mathbf{w}_2^T \\ \mathbf{w}_3^T \end{bmatrix}$. What is the shape of \mathbf{w}_1 ?
- 4. What is the shape of gradient $\nabla_{\mathbf{w}_1}(\mathbf{W}\mathbf{x})$?
- 5. Calculate $\nabla_{\mathbf{w}_1}(\mathbf{W}\mathbf{x})$ using the fact that $\mathbf{W}\mathbf{x} = \begin{bmatrix} \mathbf{w}_1^{\mathrm{T}} \\ \mathbf{w}_2^{\mathrm{T}} \\ \mathbf{w}_3^{\mathrm{T}} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{w}_1^{\mathrm{T}} \mathbf{x} \\ \mathbf{w}_2^{\mathrm{T}} \mathbf{x} \\ \mathbf{w}_3^{\mathrm{T}} \mathbf{x} \end{bmatrix}$.
- 6. Similarly, calculate $\nabla_{\mathbf{w}_2}(\mathbf{W}\mathbf{x})$ and $\nabla_{\mathbf{w}_3}(\mathbf{W}\mathbf{x})$.
- 7. Using the results from above, clearly show the entries of the gradient $\nabla_{\mathbf{W}}(\mathbf{W}\mathbf{x})$ as a 3D-tensor.