Algoritmi e strutture dati

Algoritmi di ordinamento

Alberto Montresor

Università di Trento

2020/04/20

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Introduzione

Sommario - Algoritmi di ordinamento

- SelectionSort $\Theta(n^2)$
- InsertionSort $\Omega(n)$, $O(n^2)$
- ShellSort $\Omega(n)$, $O(n^{3/2})$

- MergeSort $\Theta(n \log n)$
- HeapSort $\Theta(n \log n)$
- QuickSort $\Omega(n \log n)$, $O(n^2)$

Sommario - Problema dell'ordinamento

- Tutti questi algoritmi sono basati su confronti
 - Le decisioni sull'ordinamento vengono prese in base al confronto (<,=,>) fra due valori
- Algoritmi migliori: $O(n \log n)$
 - InsertionSort e ShellSort sono più veloci solo in casi speciali

Introduzione

Problema dell'ordinamento - Limite inferiore

E' possibile dimostrare che qualunque algoritmo di ordinamento basato su confronti ha una complessità $\Omega(n \log n)$.

Assunzioni

- \bullet Consideriamo un qualunque algoritmo A basato su confronti
- Assumiamo che tutti i valori siano distinti (no perdita di generalità)
- L'algoritmo A può essere rappresentato tramite un albero di decisione, un albero binario che rappresenta i confronti fra gli elementi

Albero di decisione

Albero di decisione

Proprietà

- Cammino radice-foglia in un albero di decisione: sequenza di confronti eseguiti dall'algoritmo corrispondente
- Altezza dell'albero di decisione: numero confronti eseguiti dall'algoritmo corrispondente nel caso pessimo

Si considerino tutti gli alberi di decisioni ottenibili da algoritmi di ordinamento basati su confronti

Limite inferiore per l'ordinamenento

Lemma 1

Un albero di decisione per l'ordinamento di n elementi contiene almeno n! foglie

Lemma 2

Sia T un albero binario in cui ogni nodo interno ha esattamente 2 figli e sia k il numero delle sue foglie. L'altezza dell'albero è almeno $\log k$ - ovvero $\Omega(\log k)$.

Teorema

Il numero di confronti necessari per ordinare n elementi nel caso peggiore è $\Omega(n \log n)$

Spaghetti Sort

Algoritmo Spaghetti Sort – O(n)

- lacktriangle Prendi n spaghetti
- 2 Taglia lo spaghetto i-esimo in modo proporzionale all'i-esimo valore da ordinare
- \odot Con la mano, afferra gli n spaghetti e appoggiali verticalmente sul tavolo
- Prendi il più lungo, misuralo e metti il valore corrispondente in fondo al vettore da ordinare
- 3 Ripeti (4) fino a quando non hai terminato gli spaghetti

Counting Sort

Assunzione

• I numeri da ordinare sono compresi in un intervallo $[1 \dots k]$

Come funziona

- Costruisce un array B[1...k] che conta il numero di volte che un valore compreso in [1...k] compare in A
- ullet Ricolloca i valori così ottenuti nel vettore da ordinare A

Miglioramenti

• L'intervallo non deve necessariamente iniziare in 1 e finire in k; qualunque intervallo di cui conosciamo gli estremi può essere utilizzato nel Counting Sort.

Counting Sort

```
countingSort(int[] A, int n, int k)
int[] B = new int[1 \dots k]
for i = 1 to k do
B[i] = 0
for j = 1 to n do
B[A[j]] = B[A[j]] + 1
i = 1
for i = 1 to k do
   while B[i] > 0 do
      A[j] = i
    j = j + 1
B[i] = B[i] - 1
```

Counting Sort

Complessità di Counting Sort

- \bullet O(n+k)
- Se $k \in O(n)$, allora la complessità di Counting Sort è O(n)

Counting Sort e limiti inferiore per l'ordinamento

- Counting Sort non è basato su confronti
- Abbiamo cambiato le condizioni di base
- Se k è $O(n^3)$, questo algoritmo è peggiore di tutti quelli visti finora

Pigeonhole Sort

Casellario

- Cosa succede se i valori non sono numeri interi, ma record associati ad una chiave da ordinare?
- Non possiamo usare counting
- Ma possiamo usare liste concatenate!

Bucket Sort

Ipotesi sull'input

- \bullet Valori reali uniformemente distribuiti nell'intervallo [0,1)
- Qualunque insieme di valori distribuiti uniformemente può essere normalizzato nell'intervallo [0,1) in tempo lineare

Idea

- Dividere l'intervallo in n sottointervalli di dimensione 1/n, detti bucket, e poi distribuire gli n numeri nei bucket
- Per l'ipotesi di uniformità, il numero atteso di valori nei bucket è 1
- Possono essere ordinati con Insertion Sort

Proprietà degli algoritmi di ordinamento

Stabilità

Un algoritmo di ordinamento è stabile se preserva l'ordine iniziale tra due elementi con la stessa chiave

Domande

- Quali dei seguenti algoritmi sono stabili? Insertion Sort, Merge Sort, Heap Sort, Quick Sort, Pigeonhole Sort
- Come si può rendere un qualunque algoritmo stabile?

Proprietà degli algoritmi di ordinamento

Stabilità

Un algoritmo di ordinamento è stabile se preserva l'ordine iniziale tra due elementi con la stessa chiave

Domande

- Quali dei seguenti algoritmi sono stabili? Insertion Sort, Merge Sort, Heap Sort, Quick Sort, Pigeonhole Sort
- Come si può rendere un qualunque algoritmo stabile?

Risposte

- Stabili: Insertion Sort, Merge Sort, Pigeonhole Sort
- Basta usare come chiave di ordinamento la coppia (chiave, posizione iniziale)

Riassunto ordinamento

Insertion Sort

 $\Omega(n),\,O(n^2),\,$ stabile, sul posto, iterativo. Adatto per piccoli valori, sequenze quasi ordinate.

Merge Sort

 $\Theta(n \log n)$, stabile, richiede O(n) spazio aggiuntivo, ricorsivo (richiede $O(\log n)$ spazio nello stack). Buona performance in cache, buona parallelizzazione.

Heap Sort

 $\Theta(n \log n)$, non stabile, sul posto, iterativo. Cattiva performance in cache, cattiva parallelizzazione. Preferito in sistemi embedded.

Riassunto ordinamento

Quick Sort

 $O(n \log n)$ in media, $O(n^2)$ nel caso peggiore, non stabile, ricorsivo (richiede $O(\log n)$ spazio nello stack). Buona performance in cache, buona parallelizzazione, buoni fattori moltiplicativi.

Counting Sort

 $\Theta(n+k),$ richiede O(k)memoria aggiuntiva, iterativo. Molto veloce quando k=O(n)

Pigeonhole Sort

 $\Theta(n+k),$ stabile, richiede O(n+k)memoria aggiuntiva, iterativo. Molto veloce quando k=O(n)

Riassunto ordinamento

Bucket Sort

O(n)nel caso i valori siano distribuiti uniformemente, stabile, richiede O(n) spazio aggiuntivo

Shell Sort

 $O(n\sqrt{n})$, stabile, adatto per piccoli valori, sequenze quasi ordinate.

Algoritmi di ordinamento: un'esperienza psichedelica

https://www.youtube.com/watch?v=kPRAOW1kECg

Reality check

Tim Sort (https://en.wikipedia.org/wiki/Timsort)

- Algoritmo ibrido, basato su Merge Sort e Insertion Sort
- Cerca sequenze consecutive (run) già ordinate
- Complessità:
 - $\Omega(n)$ (sequenze già ordinate)
 - $O(n \log n)$ nel caso pessimo

Utilizzazione

- Python
- Java 7
- Gnu Octave