Linear momentum

1- Graphical study and Newton's second law

A trolley of mass m = 100 g is pulled, on an inclined plane, by a light and inextensible string wound on the periphery of a pulley and carrying at its other extremity a small mass as shown in figure (a). We neglect frictional force and we give g = 10 m/s², $\alpha = 30^{\circ}$.

2) Applying Newton's second law, calculate the tension T in the string as a function of m, g, α and $\frac{dP}{dt}$ where P is the linear momentum of the chariot at an instant t.

3) Given the variation of the linear momentum of the trolley as a function of time in the graph of figure (b).

a) What are graphically:

The velocity of the trolley at t = 0?

The instant of releasing the trolley?

b) Deduce, using the graph, the value of T.

Figure (b)

Correction ▼

2- Experimental study of a collision

Two pucks A_1 and A_2 of respective masses $m_1=250$ g and $m_2=200$ g are launched, towards each other, on a horizontal air table. The pulse generator indicates a time constant $\tau=20$ ms.

The recordings of the successive positions of the centers of mass of A_1 and A_2 before the collision are represented in the adjacent figure.

- 1) What is the nature of the motion of each puck before collision? Justify.
- **2)** Calculate the velocities of the pucks before the collision.
- **3)** Represent, to a scale 1 cm for 0.05 kgm/s, the linear momentum vector \overrightarrow{P} of the system (A₁; A₂) before the collision. Deduce the magnitude of \overrightarrow{P} .

- **4)** Why is the linear momentum vector of the system $(A_1; A_2)$ conserved during the collision?
- **5)** After the collision, the two pucks merge together and form one body. Calculate the velocity V of this system.
- **6)** Represent, to the same scale, the variation $\overrightarrow{\Delta P_1}$ of the puck A₁. Deduce the direction of the force by which A₂ acts on A₁ at the instant of collision (we can use the approximation $\frac{\overrightarrow{dP_1}}{dt} = \frac{\overrightarrow{\Delta P_1}}{\Delta t}$)

3- Measuring the magnitude of the frictional force

A puck (S) of mass M = 600 g is placed, at a point O, on an air table inclined by an angle $\alpha = 30^{\circ}$ with respect to the horizontal. When (S) is released from rest it remains at rest. This observation proves the existence of a frictional force between (S) and the table. Given g = 10 m/s².

At an instant $t_0=0$ taken as an origin of time, we launch (S) with a velocity $\overset{\rightarrow}{V_0}=V_0$. \vec{i} where \vec{i} is the unit vector of the axis x'Ox parallel to the line of greatest slope of the table.

An appropriate device records the successive positions G_i of the center of mass of (S) during each interval of the time constant $\tau = 0.1$ s, as shown in the figure below.

1) Complete the empty boxes in the table below:

t(s)	0	0,1	0,2	0,3	0,4	0,5
V(m/s)						
P(kgm/s)						

V and P are the velocity and the linear momentum of (S) respectively at a time t.

2) Draw the graph of P as a function of time.

Scale: ordinate: 1 cm \leftrightarrow 0.1 kgm/s and abscissa: 1 cm \leftrightarrow 0.05 s.

- 3) The slope β of the previous curve is constant. Why?
- 4) Calculate the value of β . Interpret this value.
- 5) Deduce the value of the acceleration of the motion of (S).
- 6) Calculate, using the graph, the value V_0 and the instant at which (S) will stop.
- 7) Calculate the value of the force of friction.

4- Separation of masses after an elastic collision

Consider three trolleys (C_1) , (C_2) and (C_3) , of respective masses $m_1 = m_2 = 150$ g and $m_3 = 100$ g. (C_2) and (C_3) are attached by a light and inextensible string which conserves the compression of a spring placed between them, The system is at rest on a horizontal track OX.

(C₁) is at rest at the top A of an inclined track AO (AO = 90 cm) making an angle $\alpha = 30^{\circ}$ with the horizontal.

We release, at $t_0 = 0$, (C_1) without speed, it reaches the rail OX and undergoes a perfectly elastic collision between the system $[(C_1); (C_2)]$. Given g = 10 m/s². We neglect the forces which resist the motion of the trolleys.

- **1)** Applying the principle of conservation of mechanical energy, calculate the velocity V_1 of (C_1) when it reaches the point O.
- **2)** Applying Newton's second law $\ll \sum_{F} \vec{F} = \frac{d\vec{P}}{dt} \gg$, determine, as a function of time, the linear momentum of (C₁) when it is between O and A.
- **3)** At what instant does (C₁) reach O?
- **4)** Calculate the velocities V_1' and V' of (C_1) and of the system $[(C_2); (C_3)]$ respectively after the collision.
- **5)** The system $[(C_2); (C_3)]$ moves with a velocity V' on the track OX. At a given instant, the string is cut and the trolleys (C_2) and (C_3) separate with respective velocities V_2 and V_3 .

- (C_3) moves towards a horizontal spring (R) of stiffness K = 90 N/m and compresses it to a distance x_0 = 10 cm.
- **a)** Applying the principle of conservation of mechanical energy, calculate the value of V_3 .
- **b)** Calculate the value of V_2 .
- **c)** Is the kinetic energy of the system $[(C_1); (C_2)]$ conserved ? Interpret.

5- Studying a game

Children are playing a game, made from an elastic spring, placed on a horizontal table and a ball (of mass m = 20 g) placed in front of the spring. Each child compresses the spring by the ball, once released, the spring elongates and takes its unstretched length and the ball leaves it at O with a velocity \overrightarrow{V}_0 .

The child registers a goal if the ball falls into the box at a distance $D_0 = 1.7$ m from the table (see the figure).

We designate by:

h = 44 cm: the height of the table with respect to the ground,

k: stiffness of the spring,

d: the compression of the spring.

D: the abscissa of the impact point of the ball with the ground.

The zero level of gravitational potential energy is the level of the table. We neglect friction. Given $g = 9.8 \text{ m/s}^2$.

I - Theoretical study

- **1)** Calculate, as a function of m, k, and d, the velocity V_0 of the ball.
- **2)** We suppose that at the instant $t_0 = 0$, the ball passes through O. At a later instant t > 0 the ball is in the air and undergoing free fall.
- **a)** Applying Newton's second law, calculate, at a time t, the components P_x and P_y of the linear momentum \vec{P} of the ball as a function of m, V_0 , g and t.
- **b)** Deduce the components V_x and V_y of the velocity vector \overrightarrow{V} as a function of V_0 , g and t.
- c) Deduce the coordinates x and y de of the ball as a function of V_0 , g and t.
- **d)** Find a relation between h, D, d, m, k and g.

II - Calculating the value of k and the convenient value of d=d₀

- 1) The first child compresses the spring using the ball by d = 1.1 cm and then he releases it, the ball doesn't enter the box and it falls next to the table at a distance of D = 27 cm. Calculate k.
- 2) If the second child wants to achieve a goal, calculate the corresponding value d₀ of d?

Corrections

1- Graphical exploitation and Newton's second law

1) The trolley is under the action of its weight \overrightarrow{mg} , the reaction \overrightarrow{R}

normal to the support and the tension \overrightarrow{T} of the string.

2) Applying Newton's second law on the chariot :

$$\sum \overrightarrow{F}_{ex} = \frac{\overrightarrow{dP}}{\overrightarrow{dt}} \Leftrightarrow \overrightarrow{mg} + \overrightarrow{R} + \overrightarrow{T} = \frac{\overrightarrow{dP}}{\overrightarrow{dt}}$$

Projection of the weight on x'x

– mg sin α

Projecting this relation on x'x:

$$-\operatorname{mg}\sin\alpha + 0 + T = \frac{dP}{dt} \Rightarrow \boxed{T = \operatorname{mg}\sin\alpha + \frac{dP}{dt}}.$$

3) At t = 0, the linear momentum of the trolley is, from the graph, $P_0 = 0.6$ kg m/s.

Where P_0 = mV_0
$$\Rightarrow V_0 = \frac{P_0}{m} = \frac{0.6}{0.1} = 6~\text{m/s}$$
 . Hence : $\boxed{V_0 = 6~\text{m/s}}$.

4) The graph of P as a function of time is a straight line, hence :

$$\frac{dP}{dt}\!=\!$$
 the slope of this line, hence :

$$\frac{dP}{dt} = \frac{\Delta P}{\Delta t} = \frac{P_B - P_A}{t_B - t_A} = \frac{3.6 - 0.6}{3 - 0} = 1 \text{ N}$$

then :
$$T = mg \sin \alpha + \frac{dP}{dt} = 0.1 \times 10 \times \sin 30^0 + 1 = 1.5 \text{ N}$$
. $T = 1.5 \text{ N}$

Back to top **A**

2- Experimental study of a collision

- **1)** The dot prints, of the successive positions of the centers of inertia, of each puck are rectilinear and equidistant. Hence the motion of each puck is uniformly rectilinear.
- 2) The motion is uniform, hence the velocity of (see figure 1):

$$A_1: V_1 = \frac{d_1}{4\tau} = \frac{6 \times 10^{-2} \text{ m}}{3 \times 20 \times 10^{-3} \text{ s}} = 1 \text{ m/s}.$$

$$A_2: V_2 = \frac{d_2}{4\tau} = \frac{6 \times 10^{-2} \text{ m}}{4 \times 20 \times 10^{-3} \text{ s}} = 0.75 \text{ m/s}.$$

3)

 \blacksquare The linear momentum vector of A1 , before the collision : $\overset{\rightarrow}{P_l}=m_l\overset{\rightarrow}{V_l}$

This vector is parallel and in the same direction as \overrightarrow{V}_1 and of magnitude : $P_1 = m_1 V_1 = 0.25 \times 1 = 0.25 \text{ kgm/s}$ The representative length of the vector \overrightarrow{P}_1 using the scale is : 5 cm (see figure 1).

 \blacksquare The linear momentum vector of A_2 , before the collision : $\overset{\rightarrow}{P_2}=m_2\overset{\rightarrow}{V_2}$

This vector is parallel and in the same direction as \vec{V}_2 and of magnitude : $P_2 = m_2 V_2 = 0.2 \times 0.75 = 0.15 \, \text{kgm/s}$ The representative length of the vector \vec{P}_2 using the scale is : 3 cm (see figure 1).

■ The linear momentum vector of the system (A₁; A₂) is : $\overrightarrow{P} = \overrightarrow{P}_1 + \overrightarrow{P}_2$

This vector is the resultant of the vectors \overrightarrow{P}_1 and \overrightarrow{P}_2 . We construct \overrightarrow{P} by the vectors (see figure 1).

Drawing the vector \overrightarrow{P} corresponds to a length : 5.8 cm, which is equivalent to a magnitude: P = 0.29 kg.m/s.

4) The external forces acting on the system $(A_1; A_2)$ are the weights of the pucks and the normal reactions of the support (see figure 2), hence the

sum is:
$$\sum \overrightarrow{F}_{ext} = \underbrace{m_1 \vec{g} + \overset{\rightarrow}{R_1}}_{=\overset{\rightarrow}{0}} + \underbrace{m_2 \vec{g} + \overset{\rightarrow}{R_2}}_{=\overset{\rightarrow}{0}} = \overset{\rightarrow}{0}$$

 $\overrightarrow{R_1}$ $\overrightarrow{A_1}$ $\overrightarrow{R_2}$ $\overrightarrow{A_2}$ $\overrightarrow{A_2}$ $\overrightarrow{M_1}$ \overrightarrow{g} $\overrightarrow{M_2}$ \overrightarrow{g}

Figure 2

Hence the system $(A_1; A_2)$ is isolated and hence its linear momentum is conserved.

5) After the collision the two pucks form one body moving with a velocity-vector \overrightarrow{V} , hence its linear momentum is : $\overrightarrow{P'} = (m_1 + m_2) \overrightarrow{V}$.

The linear momentum of the system (A₁; A₂), during the collision, in conserved : $\overrightarrow{P} = \overrightarrow{P'}$

Hence:
$$\vec{V} = \frac{\vec{P}}{m_1 + m_2}$$
 and in magnitude: $V = \frac{P}{m_1 + m_2} = \frac{0.195}{0.25 + 0.2} = 0.644 \text{ m/s}$. $V = \frac{\vec{P}}{m_1 + m_2} = \frac{0.195}{0.25 + 0.2} = 0.644 \text{ m/s}$.

6) After the collision, A_1 moves with a speed \overrightarrow{V} , hence its linear momentum vector is : $\overrightarrow{P'}_1 = \overrightarrow{m_1} \overrightarrow{V}$

This vector is parallel and in the same direction as \vec{V} and of magnitude : $P_1'=m_1V=0.25\times0.644=0.161\,kgm/s$.

The representative length of the vector $\overrightarrow{P'_1}$ using the scale : 3,2 cm (see figure 3).

(Note that the vectors \overrightarrow{V} and \overrightarrow{P} are parallel and in the same direction)

Where : $\overrightarrow{\Delta P_1} = \overrightarrow{P'_1} - \overrightarrow{P_1} = \overrightarrow{P'_1} + (-\overrightarrow{P_1})$. We construct $\overrightarrow{\Delta P_1}$ by the method of successive vectors (see figure 3).

The forces acting on A_1 at the instant of the collision are the weight, the normal reaction of the support and the force \vec{F} exerted by A_2 on A_1 .

Applying, at the instant of collision, Newton's second law on A_1 :

$$\sum \overrightarrow{F}_{ext/A_1} = \frac{d\overrightarrow{P}_1}{dt} \Rightarrow \underbrace{m_1 \overrightarrow{g} + \overrightarrow{R}_1}_{=\overrightarrow{0}} + \overrightarrow{F} = \frac{\Delta \overrightarrow{P}_1}{\Delta t} \Rightarrow \overrightarrow{F} = \frac{\Delta \overrightarrow{P}_1}{\Delta t} \text{ with } \Delta t > 0 \text{ , we can deduce that } \overrightarrow{F} \text{ and } \Delta \overrightarrow{P}_1 \text{ are parallel and } \overrightarrow{P}_1 \text{ are parallel and } \overrightarrow{P}_2 \text{ and } \overrightarrow{P}_3 \text{ are parallel a$$

in the same direction.

Back to top A

3- Measuring the magnitude of the force of friction

The velocity of the puck when it passes by the position G_i is : $V_i = \frac{G_{i-1}G_{i+1}}{2\tau}$

In the position G_1 or at t_1 = 0.1 s : $V_1 = \frac{G_0 G_2}{2\tau} = \frac{6.5 \times 10^{-2} \times \overset{\text{scale}}{2}}{2 \times 0.1} = 0.65 \, \text{m/s}$;

In the position G₂ or at t₂ = 0,2 s: $V_2 = \frac{G_1G_3}{2\tau} = \frac{5.5 \times 10^{-2} \times \frac{2}{2}}{2 \times 0.1} = 0.55 \, \text{m/s}$; and so on.

The magnitude of the linear momentum in the position G_i : $P_i = MV_i$

In the position G_1 or at t_1 = 0,1 s : $P_1 = MV_1 = 0.6 \times 0.65 = 0.39 \, \text{kgm/s}$; In the position G_2 or at t_2 = 0,2 s : $P_2 = MV_2 = 0.6 \times 0.55 = 0.33 \, \text{kgm/s}$; and so on

t(s)	0	0,1	0,2	0,3	0,4	0,5
V(m/s)		0,65	0,55	0,45	0,4	
P(kgm/s)		0,39	0,33	0,27	0,24	

1)P(kgm/s)

2) The graph of P as a function of time is a straight line hence its slope is always constant.

3) The slope of the line : $\beta = \frac{\Delta P}{\Delta t} = \frac{P_4 - P_1}{t_4 - t_1} = \frac{0.24 - 0.39}{0.4 - 0.1} = -0.5 \text{ N}$

Interpretation of β :

We have : $\sum \overrightarrow{F}_{ex} = \frac{d\overrightarrow{P}}{dt} \Rightarrow \left\| \sum \overrightarrow{F}_{ex} \right\| = \left\| \frac{d\overrightarrow{P}}{dt} \right\| = \left| \frac{dP}{dt} \right| = \left| \frac{\Delta P}{\Delta t} \right| = \left| \beta \right| = 0.5 \text{ N}$

4) Hence $|\beta|$ represents the magnitude of the resultant force acting on (S).

Note that for a rectilinear motion, \overrightarrow{P} is parallel to the motion hence : $\left\| \frac{d\overrightarrow{P}}{dt} \right\| = \left| \frac{dP}{dt} \right|$ and hence the graph of

P as a function of time is a straight line, hence: $\frac{dP}{dt} = \frac{\Delta P}{\Delta t}$.

5) We have : $\sum \vec{F}_{ex} = \frac{d\vec{P}}{dt} = M\vec{a}$ algebraically, since along the direction of motion:

$$\frac{dP}{dt} = Ma \Rightarrow \frac{\Delta P}{\Delta t} = Ma \Rightarrow \beta = Ma \Rightarrow a = \frac{\beta}{M} = \frac{-0.5}{0.6} = -0.833 \text{ m/s .} \boxed{a = -0.833 \text{ m/s}} \text{ .}$$

6) At $t_0 = 0$, we can find from the graph the linear momentum of (S), which is : $P_0 = 0.45$ kg.m/s (see the graph).

then
$$P_0 = MV_0 \Rightarrow V_0 = \frac{P_0}{M} = \frac{0.45}{0.6} = 0.75 \text{ m/s} \cdot \boxed{V_0 = 0.75 \text{ m/s}}$$
 .

At stopping, P = 0 and that corresponds to $t = 0.75 \,\mathrm{s}$ (see the graph).

7) The forces acting on (S), are : the weight Mg, the normal reaction N of the support and the force of friction N.

Applying Newton's second law
$$\sum \vec{F}_{ex} = \frac{d\vec{P}}{dt} \Rightarrow M\vec{g} + \vec{N} + \vec{f} = \frac{d\vec{P}}{dt}$$

Projecting this relation on x'x:

$$Mg\sin\alpha + 0 - f = \frac{dP}{dt} = \beta \Rightarrow f = Mg\sin\alpha - \beta$$

Numerically:
$$f=0.6\times 10\times \sin 30^{0}-(-0.5)=3.5\;N$$
 , $\boxed{f=3.5\;N}$,

Back to top A

4- Separation of masses after an elastic collision

1) The trolley (C₁) moves without friction on the part AO; hence the mechanical energy of the system [Earth; (C₁)] is conserved; hence $E_{mA} = E_{mO}$.

If we take the horizontal plane passing through OX as a zero reference of gravitational potential energy then :

$$E_{mA} = E_{KA} + E_{PGA} = 0 + m_1.g. \ \ \underline{h_A}_{OA \sin \alpha} = mg.OA \sin \alpha = 0.15 \times 10 \times 0.9 \times \sin 30^0 = 0.675 \ J.$$

$$\boldsymbol{E}_{mO} = \boldsymbol{E}_{KO} + \boldsymbol{E}_{PGO} = \frac{1}{2} \, m_l V_l^2 + 0 = 0.075 V_l^2$$
 .

Hence
$$0.675 = 0.075V_1^2$$
 where $V_1 = 3 \text{ m/s}$.

2) The forces acting on (C_1) , during its downward motion, are : the weight $m_1 \vec{g}$, the normal reaction to the support \vec{R} .

Applying Newton's second law : $\sum \overrightarrow{F} = \frac{d\overrightarrow{P_1}}{dt}$

$$\Leftrightarrow m_1 \stackrel{\rightarrow}{g} + \stackrel{\rightarrow}{R} = \frac{d \stackrel{\rightarrow}{P_1}}{dt} \text{ projecting this relation on an axis along } \stackrel{\rightarrow}{AO} \text{ :}$$

$$m_1 g \sin \alpha + 0 = \frac{dP_1}{dt} \Rightarrow \frac{dP_1}{dt} = m_1 g \sin \alpha$$

Integrating: $P_1 = m_1 g \sin \alpha . t + P_{01}$ with P_{01} is the linear momentum of (C₁) at $t_0 = 0$. But at t = 0, the speed of (C₁) is zero hence $P_{01} = 0$ and so : $P_1 = m_1 g \sin \alpha . t = 0.75t$

3) When (C_1) reaches O its speed is : $V_1 = 3$ m/s hence its linear momentum is:

$$P_1 = m_1 V_1 = 0.15 \times 3 = 0.45 \text{ kg.m/s.}$$

From the preceding expression of the linear momentum: 0.75t = 0.45, hence t = 0.6 s.

Hence (C_1) reaches O at the instant t = 0.6 s ...

4) The collision between (C_1) and $[(C_2); (C_3)]$ is elastic, we then have conservation of linear momentum and of the kinetic energy of the system $[(C_1); (C_2); (C_3)]$.

The trolley (C_1) moves along OX with a velocity $\overset{\rightarrow}{V_1}$ and undergoes a collision with this speed with the system $[(C_1); (C_2)]$.

Just before the collision: Let $m=m_2+m_3=250~g$ is the mass of the system $[(C_2);(C_3)]$

The linear momentum of the system is : $\overrightarrow{P}_{before} = m_1 \overrightarrow{V}_1$ (only (C₁) has a speed)

The kinetic energy of the system is : $E_{\text{Kbefore}} = \frac{1}{2} m_1 V_1^2$

Just after the collision:

The linear momentum of the system is : $\overrightarrow{P}_{after} = m_1 \overrightarrow{V'_1} + m \overrightarrow{V'}$

The kinetic energy of the system is : $E_{Kafter} = \frac{1}{2} m_1 V_1'^2 + \frac{1}{2} m V^{1/2}$

Conservation of the linear momentum:

$$\overrightarrow{P}_{before} = \overrightarrow{P}_{after} \implies m_1 \overrightarrow{V}_1 = m_1 \overrightarrow{V}_1' + m \overrightarrow{V}_1'$$

since the collision is collinear, we can replace the vectors by **their algebraic** values : $m_1V_1 = m_1V_1' + mV'$

(1) or $m_1(V_1 - V_1') = mV'$.

Taking these algebraic values along \overrightarrow{OX} , then : $V_1 = + 3$ m/s.

Conservation of kinetic energy:

$$E_{Kbefore} = E_{Kafter} \Rightarrow \frac{1}{2} m_1 V_1^2 = \frac{1}{2} m_1 V_1'^2 + \frac{1}{2} m V'^2 \text{ or } m_1 V_1^2 = m_1 V_1'^2 + m V'^2 \text{ and hence } m_1 (V_1 - V_1')(V_1 + V_1') = m V'^2$$

where the system :
$$\begin{cases} m_1(V_1-V_1')(V_1+V_1') = mV^{t^2} \\ m_1(V_1-V_1') = mV' \end{cases}$$
 ;

Dividing each side of the two equation by each other we get : $V_1 + V_1' = V'$ (2).

(1) and (2) with
$$V_1 = +3$$
 m/s can be written :
$$\begin{cases} 0.15V_1' + 0.25V' = 0.45 \\ V_1' - V' = -3 \end{cases}$$
;

We obtain that : $V_1' = -0.75 \text{ m/s}$ and V' = 2.25 m/s

Finally and just after the collision, the velocity of (C_1) is 0.75 m/s and directed along the opposite direction of $\stackrel{\rightarrow}{OX}$ (since $V_1' < 0$); and that of $[(C_1); (C_2)]$ is 2.25 m/s and directed along $\stackrel{\rightarrow}{OX}$ (since V' > 0).

5) a) (C₃) moves with the velocity V_3 and reaches the spring. The mechanical energy of the system $[(C_3); (R)]$ after the separation is conserved.

Applying the conservation of mechanical energy between two instants :

 t_1 : during the compression where the velocity of (C₃) is \vec{V}_3 and the elastic potential energy of the spring is zero : $E_{m1}=\frac{1}{2}m_3V_3^2$

 t_2 : the end of the compression where the velocity of (C₃) is zero: $E_{m2} = \frac{1}{2}Kx_0^2$

Where :
$$E_{m1} = E_{m2} \Rightarrow \frac{1}{2} m_3 V_3^2 = \frac{1}{2} K x_0^2 \Rightarrow V_3 = \sqrt{\frac{K}{m_3}} x_0 = \sqrt{\frac{90}{0.1}} \times 0.1 = 3 \text{ m/s}$$

b) During the separation, the linear momentum of the system $[(C_2); (C_3)]$ is conserved:

Just before the separation : $\vec{P}_{\text{before}} = m \overset{\rightarrow}{V'}$

Just after the separation :
$$\vec{P}_{after}=m_2\overset{\rightarrow}{V_2}+m_3\overset{\rightarrow}{V_3}$$

 $\overrightarrow{P}_{\text{before}} = \overrightarrow{P}_{\text{after}} \Rightarrow m \overrightarrow{V'} = m_2 \overrightarrow{V_2} + m_3 \overrightarrow{V_3} \text{ the separation is collinear, we can replace the velocity- vectors by their algebraic values along } \overrightarrow{OX} : V' = +2.25 \, \text{m/s} \text{ and } V_3 = +3 \, \text{m/s}$ $mV' = m_2 V_2 + m_3 V_3 \Rightarrow 0.25 \times 2.25 = 0.15 V_2 + 0.1 \times 3 \Rightarrow V_2 = 1.75 \, \text{m/s} \text{.} \boxed{V_2 = 1.75 \, \text{m/s}} \text{.}$

c) Just before the separation :

$$E_{Kbefore} = \frac{1}{2} mV'^2 = \frac{1}{2} 0.25 \times 2.25^2 = 0.633 J.$$

Just after the separation:

$$E_{Kafter} = \tfrac{1}{2} \, m_2 V_2^2 + \tfrac{1}{2} \, m_3 V_3^2 = \tfrac{1}{2} \, 0.15 \times 1.75^2 + \tfrac{1}{2} \, 0.1 \times 3^2 = 0.68 \, J.$$

 $E_{Kafter} \neq E_{Kbefore}$; hence the kinetic energy of the system [(C₂);(C₃)] is not conserved.

Before the separation, the energy stored in the system $[(C_2); (C_3)]$: $E_1 = E_{Kbefore} + E_{Pe}$ (compressed spring)

After the separation, the energy stored in the system $[(C_2); (C_3)]$: $E_2 = E_{Kafter}$ (spring takes its free length)

Using the principle of conservation of energy (without friction): $E_1 = E_2$

$$\Rightarrow$$
 $E_{pe} = E_{Kafter} - E_{Kbefore} = 0.047 J$.

Back to top A

5- Studying a game

I - Theoretical study

1) The mechanical energy of the system [Earth; ball; spring] is conserved. Applying the conservation of mechanical energy between two instants:

 t_1 : the instant the ball was released where its velocity is zero and the elastic potential energy of the spring is $\frac{1}{2}kd^2$: $E_{ml}=\frac{1}{2}kd^2$

 t_2 : instant at which the ball leaves O with a velocity V_0 and where the spring gains its free length back : $E_{m2}=\frac{1}{2}mV_0^2$

$$E_{ml} = E_{m2} \Rightarrow \frac{1}{2}kd^2 = \frac{1}{2}mV_0^2 \Rightarrow V_0 = \sqrt{\frac{k}{m}}d$$

2) a) The only force acting on the ball using its free fall is its

$$\label{eq:weight} \text{weight } m \vec{g} \begin{cases} m g_x = 0 \\ m g_y = m g \end{cases}$$

Applying Newton's second law :
$$\sum \overrightarrow{F} = \frac{d\overrightarrow{P}}{dt} \Leftrightarrow m\overrightarrow{g} = \frac{d\overrightarrow{P}}{dt}$$

Projecting this relation on Ox:

$$mg_x = \frac{dP_x}{dt} \Rightarrow \frac{dP_x}{dt} = 0 \Rightarrow P_x = \cos \tan t = P_{0x}$$

Projecting this relation on Oy:
$$mg_y = \frac{dP_y}{dt} \Rightarrow \frac{dP_y}{dt} = mg \Rightarrow P_y = mg.t + P_{0y}$$
.

On the other hand, at t = 0, the ball is at O with a velocity $\stackrel{\rightarrow}{V}_0$ directed along Ox, the same as its linear momentum vector : $\stackrel{\rightarrow}{P}_0 = m\stackrel{\rightarrow}{V}_0 \begin{cases} P_{0x} = mV_0 \\ P_{0y} = 0 \end{cases}$. Hence : $\stackrel{\rightarrow}{P} \begin{cases} P_x = mV_0 \\ P_y = mgt \end{cases}$.

b) We have :
$$\begin{cases} P_x = mV_x \Rightarrow V_x = V_0 \\ P_y = mV_y \Rightarrow V_y = gt \end{cases}$$

$$\textbf{d)} \text{ We have } : \begin{cases} V_x = \frac{dx}{dt} \Rightarrow \frac{dx}{dt} = V_0 \Rightarrow x = \int v_0 dt \Rightarrow x = V_0 t + \underbrace{x_0}_{=0} \Rightarrow x = V_0 t \\ V_y = \frac{dy}{dt} \Rightarrow \frac{dy}{dt} = gt \Rightarrow y = \int gt dt \Rightarrow y = \frac{1}{2}gt^2 + \underbrace{y_0}_{=0} \Rightarrow y = \frac{1}{2}gt^2 \end{cases} \Rightarrow \begin{bmatrix} x = V_0 t \\ y = \frac{1}{2}gt^2 \end{bmatrix} \text{ ($x_0 = 0$, $y_0 = 0$)}$$

represent the coordinates of the ball at t=0

When the ball reaches **the ground** its coordinates are (x = D and y = h) and we find $V_0 = \sqrt{\frac{k}{m}} d$, hence :

$$h = \frac{1}{2} \frac{gD^2}{\left(\sqrt{\frac{k}{m}}d\right)^2} = \frac{mg}{2k} \left(\frac{D}{d}\right)^2 \text{. Finally : } \boxed{h = \frac{mg}{2k} \left(\frac{D}{d}\right)^2} \text{.}$$

II – Calculating the value of k and the convenient value of $d=d_0$

1) For the first child, we have $D=27\ cm$ for a compression of $d=1.1\ cm$.

We have : h = 44 cm, m = 20 g, hence : $k = \frac{mg}{2h} \left(\frac{D}{d}\right)^2 = \frac{0.02 \times 10}{2 \times 0.44} \left(\frac{27}{1.1}\right)^2 \cong 137 \text{ N/m}$.

2) The second child should compress the spring by a distance $d = d_0$ such that : $D = D_0 = 1.7$ m.

$$d_0 = \sqrt{\frac{mg}{2k.h}} D = \sqrt{\frac{0.02 \times 10}{2 \times 137 \times 0.44}} \times 1.7 = 0.0692 \ m \cong 7 \ cm \ . \ \text{Hence} \ : \ \boxed{d_0 \cong 7 \ cm} \ .$$