Teoria dos Grafos (Lista 3)

Prof. Tanilson Dias dos Santos

24 de novembro de 2023

- 1. [Algoritmos em Grafos] Suponha que π corresponde ao problema de ordenação de elementos alocados em um vetor, e que \mathcal{A} é um **algoritmo ótimo** de ordenação por comparação que resolve π . Nessa condições, é possível que exista um algoritmo π' , assintoticamente falando, mais rápido que π ? Explique.
- 2. Como podemos encontrar as pontes de um grafo utilizando uma busca em profundidade e o conceito de demarcador?
- $3.[Emparelhamentos\ e\ Coberturas]$ Demonstrar que M é um emparelhamento máximo se, e somente se, G não possui caminho M-aumentante.
- 4. Seja $\alpha(G)$ a cobertura mínima e $\beta(G)$ o emparelhamento máximo, provar que se G é um grafo bipartido então $\alpha(G) = \beta(G)$.

João Victor Walcacer Giani e Daniel Nolêto Maciel Luz

1. [Algoritmos em Grafos] Suponha que π corresponde ao problema de ordenação de elementos alocados em um vetor, e que \mathcal{A} é um **algoritmo ótimo** de ordenação por comparação que resolve π . Nessa condições, é possível que exista um algoritmo \mathcal{A}' , assintoticamente falando, mais rápido que \mathcal{A} ? Explique.

Não é possível. Supondo que A é um algoritimo ótimo de ordenação, isto é, pela definição de algoritimos ótimos, A ocorre quando a complexidade do pior caso é igual ao limite inferior do problema, ou seja, A possui a menor complexidade assintótica possível para o problema π . Já que A atinge o limite inferior do algoritimo de ordenação, não pode haver outro A' assintóticamente mais rápido, pois isso violaria o limite inferir estabelecido

2. Como podemos encontrar as pontes de um grafo utilizando uma busca em profundidade e o conceito de demarcador?

Levando em consideração um cenário onde (v,w) é uma aresta de uma árvore A, originada a partir de uma busca em profundidade sobre um grafo G, onde w é demarcador de v, podemos afirmar que a aresta (v,w) será uma ponte se o valor do lowpt(w) for igual a w. Isso mostra que a única forma de relacionar os vértices v e w é pela aresta (v,w), portanto, sua remoção tornaria o grafo desconexo.

 $3.[Emparelhamentos\ e\ Coberturas]$ Demonstrar que M é um emparelhamento máximo se, e somente se, G não possui caminho M-aumentante.

(->) Se M é um emparelhamento máximo, então G não contém caminho M-aumentante

Por contradição: Se M é um emparelhamento máximo, então G possui caminho M-aumentante Tome p = v1,v2,v3,v4,v5,v6,...,v2n-1, v2n é um caminho M-aumentante M' = $\{M \setminus (M \cap \in (P)) \cup \in (P) \setminus (M \cap \in (P))\}$

(<-) Se G não contém caminho M-aumentante, então M é emparelhamento máximo

Por contrapositiva: Se M não é emparelhamento máximo, então G contém caminho M aumentante

Se M não é emparelhamento máximo, então existe |M'|>|M|

3.[Emparelhamentos e Coberturas] Demonstrar que M é um emparelhamento máximo se, e somente se, G não possui caminho M-aumentante. (CONTINUAÇÃO)

Observe que podemos compor H em diversos componentes conexos, que necessariamente são caminhos pares. Dessa forma, existe uma componente conexa, em particular, digamos que C1 que a seguinte propriedade: C1 é um caminho alternante e as extremidades de C1 são M-insaturadas e M'-saturadas. Dessa forma concluímos que c1 é um caminho M-aumentante

4. Seja $\alpha(G)$ a cobertura mínima e $\beta(G)$ o emparelhamento máximo, provar que se G é um grafo bipartido então(G) $\alpha(G) = \beta(G)$.

Demonstração Direta Considere que $|N| = \beta(G)$ **Fato (1)**

Fato (1) $\rightarrow \alpha'(G) \ge \beta(G)$

$$S = Z \cap X$$
; $T = Z \cap Y$

Assim, temos que, $T \cup (X \setminus Y)$ corresponde a uma cobertura para um grafo G. Cobertura essa que possui tamanho igual a $\beta(G)$. A minimalidade da cobertura é garantida pelo **Fato(1)**. Portanto, se G é um grafo bipartido, então $\alpha(G) = \beta(G)$.

Referências

[1]	Thomas H. Cormen and Charles E. Leiserson and Ronald L. Rivest and Cliford Stein. It	ntro-
	duction to Algorithms. MIT Press. 2th edition, 2001.	

[2]	SZWARCFITER, J. L.	Grafos e Algoritmos	Computacionais.	Rio de Jar	neiro: Edito	ra Campus,
	1984. v. 1. 216p.					

Observação. Por favor, a resolução de cada questão deve ser iniciada em uma folha de papel separada das folhas utilizadas para descrever a resolução das demais questões. Além disso, antes do início de cada questão deve-se incluir o número da questão (com o enunciado, de preferência) e o nome completo do aluno.

Dica: Para fazer tabelas mais rápido usando LATEX, use o: Gerador de Tabelas Online - Tables Generator.