ASK THE RIGHT QUESTIONS: ACTIVE QUESTION REFORMULATION WITH REINFORCEMENT LEARNING

Created	@Jun 21, 2019 2:40 PM
Tags	
Updated	@Jul 01, 2019 5:32 PM

ACTIVE QUESTION ANSWERING M ODEL

QUESTION-ANSWERING ENVIRONMENT

• Use BiDirectional Attention Flow (BiDAF) as black-box environment

REFORMULATION MODEL

- a sequence-to-sequence model
- decoder reformulates utterances {q'} in the same language

ANSWER SELECTION MODEL

selects the best answer from the set {a'}

TRAINING

QUESTION ANSWERING ENVIRONMENT

- <u>BiDAF</u> becomes the black-box environment and its parameters are not updated further
- The agent to learn to communicate using natural language with an environment over which is has no control

POLICY GRADIENT TRAINING OF THE REFORMULATION MODEL

- maximizing a reward $a* = argmax \ a \ R(a|q0)$
- R is the token level F1 score on the answer
- The policy is a sequence-to-sequence model

$$\pi_{\theta}(q|q_0) = \prod_{t=1}^{T} p(w_t|w_1, \dots, w_{t-1}, q_0)$$
(1)

- The goal is to maximize the expected reward of the answer
 - compute gradients for training using REINFORCE

$$\mathbb{E}_{q \sim \pi_{\theta}(\cdot|q_0)}[R(f(q))] \approx \frac{1}{N} \sum_{i=1}^{N} R(f(q_i)), \quad q_i \sim \pi_{\theta}(\cdot|q_0)$$
 (2)

- compute an unbiased estimate with Monte Carlo sampling
- θ are the policy's parameters $q \sim \pi \theta$ ($\cdot | q0$) ?? notation의미 이애안됨

$$\nabla \mathbb{E}_{q \sim \pi_{\theta}(\cdot|q_0)}[R(f(q))] = \mathbb{E}_{q \sim \pi_{\theta}(\cdot|q_0)} \nabla_{\theta} \log(\pi_{\theta}(q|q_0)) R(f(q))$$
(3)

$$\approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log(\pi(q_i|q_0)) R(f(q_i)), \quad q_i \sim \pi_{\theta}(\cdot|q_0)$$
 (4)

collapse onto a sub-optimal deterministic policy, use entropy regularization

$$H[\pi_{\theta}(q|q_0)] = -\sum_{t=1}^{T} \sum_{w_t \in V} p_{\theta}(w_t|w_{< t}, q_0) \log p_{\theta}(w_t|w_{< t}, q_0)$$
(5)

- · This final objective
 - B(q0): baseline reward
 - λ is the regularization weight

$$\mathbb{E}_{q \sim \pi_{\theta}(\cdot|q_0)}[R(f(q)) - B(q_0)] + \lambda H[\pi(q|q_0)], \tag{6}$$

ANSWER SELECTION

- generate (query, rewrite, answer) tuples
- train another neural network to pick the best answer from the candidates
- CNN which offers good computational efficiency and accuracy

PRE TRAINING OF THE REFORMULATION MODEL

- English-English corpora are scarce
- produce a multilingual translation system that translates between several languages
- zero-shot translation

EXPERIM ENTS

QUESTION ANSWERING DATA AND BIDAF TRAINING

Dataset: <u>SearchQA</u>

QUESTION REFORMULATOR TRAINING

- <u>United Nations Parallel Corpus</u> (Arabic, English, Spanish, French, Russian, and Chinese)
 - train the zero-shot neural MT system
 - poor quality
- Paralex database of question paraphrases
 - refined model has visibly better quality than the zero-sho
- reinforcement-learning based tuning ???

TRAINING THE ANSWER SELECTOR

 generate N = 20 rewrites for each question in the SearchQA training and validation sets

BASELINES AND BENCHMARKS

- Attention Sum Reader (ASR)
- BiDAF to answer the original question

RESULTS

		Baseline		MI-SubQuery		Base-NMT		AQA				
		45R	BiD_{AF}	TopHyp	CAN	TopHyp	CNN	TopHyp	Voting	MaxConf	CNN	$H_{U\Pi B\Pi}$
	EM	-	31.7	24.1	37.5	26.0	37.5	32.0	33.6	35.5	40.5	-
Dev	F1	24.2	37.9	29.9	44.5	32.2	44.8	38.2	40.5	42.0	47.4	-
	EM	-	28.6	23.2	35.8	24.8	35.7	30.6	33.3	33.8	38.7	43.9
Test	F1	22.8	34.6	29.0	42.8	31.0	42.9	36.8	39.3	40.2	45.6	-

- MI-SubQuery: generates reformulation candidates by enumerating all subqueries of the original SearchQA query
- Base-NMT: the zero-shot monolingual NMT system trained without reinforcement learning
- TopHyp: use the top hypothesis generated by the sequence model
- Voting: use BiDAF scores for a heuristic weighted voting scheme

$$\operatorname{argmax}_a \sum_{a'=a} s(a')$$

- MaxConf: select the answer with the single highest BiDAF score
- CNN: complete system with the learned CNN model

SRC

- Environment
 - px/environment/bidaf.py
- Reformulation
 - px/nmt/mode.py
 - loss: _compute_loss_offset_and_advantages
- px/selector/selector_keras.py