G11 Chemistry: Class 2 Homework

MULTIPLE CHOICE: Circle the correct answer.

- 1. Alpha particles are identical to
 - A) protons.
 - B) helium atoms.
 - C) hydrogen atoms.
 - D) helium nuclei.
 - E) electrons.
- 2. Beta particles are identical to
 - A) protons.
 - B) helium atoms.
 - C) hydrogen atoms.
 - D) helium nuclei.
 - E) electrons.
- 3. A radioisotope decays to give an alpha particle and Pb-208. What was the original element?
 - A) Se
 - B) Bi
 - C) Po
 - D) Hg
 - E) Rn
- 4. When atoms of beryllium-9 are bombarded with alpha particles, neutrons are produced.

What new isotope is also formed?

$${}_{2}^{4}He + {}_{4}^{9}Be \rightarrow {}_{0}^{1}n + ?$$

- A) ${}^{12}_{6}C$ B) ${}^{5}_{3}Li$ C) ${}^{8}_{3}Li$ D) ${}^{10}_{5}B$ E) ${}^{12}_{5}B$
- 5. What is the missing symbol in this plutonium fission reaction?

$$^{239}_{94}Pu + ^{1}_{0}n \rightarrow ^{97}_{38}Sr + ^{a}_{h}X + 3^{1}_{0}n$$

- A) $^{148}_{56}Ba$ B) $^{0}_{-1}\beta$ C) $^{140}_{54}Xe$ D) $^{91}_{38}Sr$ E) $^{140}_{56}Ba$
- 6. Predict the other product of the following nuclear transformation.

$${}_{3}^{6}Li + {}_{0}^{1}n \rightarrow ? + {}_{2}^{4}He$$

- A) $_{2}^{6}He$ B) $_{1}^{2}H$ C) $_{1}^{3}H$ D) $_{+1}^{0}\beta$ E) $_{1}^{5}H$

7. Sulfur-35 decays by beta emission. The decay product is

- A) $^{35}_{15}P$

- B) ${}^{34}_{16}S$ C) ${}^{31}_{30}Si$ D) ${}^{34}_{17}Cl$ E) ${}^{35}_{17}Cl$

8. The only stable isotope of aluminum is aluminum-27. What type of radioactive decay should be expected from $^{28}_{13}Al$?

- A) ${}_{1}^{1}H$
- B) ${}_{0}^{1}n$ C) ${}_{-1}^{0}\beta$ D) ${}_{+1}^{0}\beta$ E) ${}_{2}^{4}He$

9. A polar covalent bond would form in which one of the following pairs of atoms?

- CI CIA)
- Si SiB)
- Ca Cl C)
- $\mathsf{C}-\mathsf{Br}$ D)
- P CIE)

10. A nonpolar covalent bond (i.e., pure covalent) would form in which one of the following pairs of atoms?

- A) Na – Cl
- B) H - CI
- C) Li – Br
- Se Br D)
- E) Br - Br

The covalent bond with the *greatest* polarity would form in which of the atom pairs 11. below?

- A) Br - Br
- S OB)
- $\mathsf{C}-\mathsf{P}$ C)
- D) $\mathsf{C}-\mathsf{O}$
- E) B - O

12. Classify the O-H bond in CH_3OH as ionic, polar covalent, or nonpolar covalent.

- A) ionic
- polar covalent B)
- nonpolar covalent C)

Classify the Ca - Cl bond in $CaCl_2$ as ionic, polar covalent, or nonpolar covalent. 13.

- ionic A)
- polar covalent B)
- nonpolar covalent C)

SHORT ANSWER: Answer the following questions.

- 14. Radon-222, $^{222}_{86}Rn$ is used to decay by alpha particle emission. Write a balanced nuclear equation and name the element produced in this decay process. [2 marks]
- 15. Write the balanced nuclear equation for the radioactive decay of potassium-40 by emission of a beta-particle. [2 marks]
- 16. What radioisotope decays by beta particle emission to form $^{47}_{21}Sc$? [2 marks]
- 17. Complete each nuclear equation. Then state the type of nuclear reaction that each equation represents. [14 marks]

 Type of Nuclear Reaction

a)
$$^{232}_{90}Th + ? \rightarrow ^{233}_{90}Th$$

b)
$$^{233}_{91}Pa \rightarrow ^{233}_{92}U + ?$$

c)
$$^{226}_{88}Ra \rightarrow ? + ^{4}_{2}He$$

d)
$$^{210}_{83}Bi \rightarrow ^{206}_{81}Tl + ?$$

e)
$$^{210}_{83}Bi \rightarrow ? + ^{206}_{81}Tl + ?$$

f)
$$? + {}^{1}_{0}n \rightarrow {}^{90}_{38}Sr + {}^{143}_{54}Xe + 3{}^{1}_{0}n$$

g)
$${}_{3}^{6}Li + {}_{1}^{2}H \rightarrow 2$$
?

- 18. Write a balanced nuclear equation to describe each of the following statements.
 - a. Radon-222 undergoes alpha decay forming Polonium-218 [1 mark]
 - b. Polonium-218 decays to Lead-214, emitting one other particle [1 mark]

Name:	Mark:	/43
		,

19. Complete the table below: [8 marks]

Bond	Location of Partial Charges and EN value	ΔΕΝ	Bond Type
C-F			
O-N			
CI-CI			
Cu-O			
Si-H			
Na-F			
Fe-O			
Mn-O			