Diskrétní struktury 1

Kombinatorika

Radim Bělohlávek

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI

Co je kombinatorika

- zabývá se určováním počtu možností (konfigurací) existujících za předepsaných podmínek
- jedna z nejužitečnějších oblastí diskrétní matematiky
- vznikla s pravděpodobností při analýze hazardních her
 - 16. stol. př. n. l. (problém 79, Rhyndův papyrus, Egypt), kombinatorický problém
 - v Evropě: Leonardo Fibonacci (c. 1170–c. 1250)

Kombinatorický problém

Kolika způsoby je možné vyjádřit přirozené číslo n ve tvaru součtu $n_1 + \cdots + n_k$ přirozených čísel n_1, \ldots, n_k přičemž nezáleží na pořadí čísel v součtu?

- možnost = čísla n_1, \ldots, n_k , pro která $n_1 + \cdots + n_k = n$
- možnosti n_1, \ldots, n_k a n'_1, \ldots, n'_k se považují za shodné (počítají se jako jedna možnost), pokud se liší jen pořadím čísel (1,1,2 a 1,2,1 se považují za shodné)
- pro číslo 3 existují 3 možnosti:

$$1+1+1$$
, $1+2$, 3 ,

pro číslo 4 existuje 5 možností

$$1+1+1+1$$
, $1+1+2$, $1+3$, $2+2$, 4

atd.

Případ zázračného kompresního algoritmu

V časopise BYTE Magazine kdysi vyšla následující zpráva. "According to ... WEB Technologies' vice president of sales and marketing, the compression algorithm used by DataFiles/16 is not subject to the laws of information theory" (BYTE Magazine 17(6):45, June 1992). Představitelé WEB Technologies tvrdili, že jejich kompresní program DataFiles/16 komprimuje všechny typy souborů na přibližně jednu šestnáctinu jejich původní velikosti a že pro soubory velikosti aspoň 64KB je tato komprese bezeztrátová.

Jednoduchá kombinatorická úvaha však ukazuje, že to není možné.

Uvažujme např. délku souboru 16n bitů. Existuje celkem 2^{16n} různých souborů délky 16n bitů. Každý takový soubor by podle WEB Technologies mělo být možné zkomprimovat na výsledný soubor délky nejvýše n bitů. Přitom existuje právě 2^k různých souborů délky k bitů. Tedy navzájem různých souborů délky nejvýše n bitů existuje

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{n} = 2^{n+1} - 1.$$

Protože ale

$$2^{n+1} - 1 < 2^{16n},$$

musí existovat různé soubory délky 16n, které se kompresí převedou na stejný soubor délky nejvýše rovné n. Taková komprese tedy není bezeztrátová.

Úvodní příklady

Heslo pro přístup do databáze je posloupnost sestávající z právě 5 povolených znaků: písmena a,..., z, A, ..., Z, číslice 0, 1, ..., 9. Heslo musí začínat písmenem.

Kolik existuje různých hesel?

$$52 \cdot 62^4 = 768369472.$$

Úvahy tohoto typu musí umět provádět každý, kdo se zabývá bezpečností počítačových systémů.

Úvodní příklady

Hazardní hra: Z osudí obsahujícího míčky s čísly $1, \ldots, 20$ jsou vylosovány 3 míčky. Můžeme si vsadit na námi vybraná 3 čísla. Za to zaplatíme 10 Kč. Uhodneme-li všechna 3 později vylosovaná čísla, vyhrajeme 20 000 Kč, jinak nedostaneme nic.

Vyplatí se vsadit si?

Vybrat 3 míčky z 20 je možné 2 280 způsoby (je to počet kombinací 3 z 20, viz dále). My si vsadíme na 1 takový výběr. Pravděpodobnost, že trefíme ten správný, je tedy $\frac{1}{2280}$. Z dlouhodobého hlediska tedy vyhrajeme v 1 z 2280 případů. V takových 2280 případech tedy vyhrajeme $1 \times 20\,000 = 20\,000$ Kč, přitom za vsázení utratíme $2\,280 \times 10 = 22\,800$ Kč. Vsadit si se tedy nevyplatí.

Nejde o vzorce, ale o kombinatorické úvahy

- kombinatorika se zabývá obecnými principy, mají často tvar vzorců
- př.: počet D(n) způsobů, kterými lze vybrat z n prvků dvouprvkovou podmnožinu je

$$D(n) = \frac{n(n-1)}{2}.$$

- pak lze použít:
 - z 30 studentů je možné vybrat dvojici studentů 435 způsoby ($435 = \frac{30.29}{2}$), existuje právě 499 500 způsobů jak vybrat dva míčky z tisíce $(499\ 500 = \frac{1000\cdot 999}{2})$ atd.
- varování: neučit se vzorce, ale kombinatorické úvahy, které k nim vedou
- důležitější než jinde, protože kromě triviálních příkladů jinak neumíme vzorec na zadání příkladu "napasovat" a vzorec použít

Pravidlo součtu a pravidlo součinu

- základní kombinatorická pravidla, ze kterých vycházejí další
- obě jsou zřejmá

Pravidlo součtu: Lze-li úkol A provést m způsoby a lze-li úkol B provést n způsoby, přičemž žádný z m způsobů provedení úkolu A není totožný s žádným z n způsobů provedení úkolu B, pak provést úkol A nebo úkol B lze provést m+n způsoby.

Pravidlo součinu: Lze-li úkol C rozložit na po sobě následující úkoly A a B (tj. provést C znamená provést nejdřív A a potom B) a lze-li úkol A provést m způsoby a úkol B lze provést n způsoby, pak lze úkol C provést $m \cdot n$ způsoby.

Příklad V knihovně je 5 knih, jejichž autorem je A. C. Doyle, a 10 knih, jejichž autorkou je A. Christie.

Pravidlo součtu: Čtenář si může vybrat 15 způsoby knihu, kterou napsali A. C. Doyle nebo A. Christie.

Příklad Množiny M a N jsou disjunktní (tj. nemají společné prvky) a platí |M|=m a |N|=n. Kolika způsoby lze vybrat prvek, který patří do M nebo do N?

Pravidlo součtu: Jsou-li A a B úkoly "vybrat prvek z množiny M" a "vybrat prvek z množiny N", jsou předpoklady pravidla součtu splněny (M a N nemají společné prvky). Proto existuje m+n způsobů, jak vybrat prvek z M nebo N. Jinými slovy, jsou-li M a N disjunktní množiny, je $|M\cup N|=|M|+|N|$.

Předpoklad dlsjunktnosti je podstatný:

Např. $M=\{a,b,c\}$, $N=\{b,c,d,e\}$. Existuje 5 způsobů, jak vybrat prvek z M nebo N, přitom $5\neq 3+4=m+n$.

Pravidlo součtu lze zobecnit na konečný počet úkolů:

Pokud úkol A_1 lze provést m_1 způsoby, úkol A_2 lze provést m_2 způsoby, \dots , úkol A_k lze provést m_k způsoby, přičemž po každou dvojici A_i a A_j $(i \neq j)$ žádný z m_i způsobů provedení úkolu A_i není totožný s žádným z m_j způsobů provedení úkolu A_j , pak provést úkol A_1 nebo úkol A_2 nebo úkol A_k lze provést $m_1 + m_2 + \dots + m_k$ způsoby.

Příklad Nechť M_1,\ldots,M_k jsou konečné po dvou disjunktní množiny. Kolik prvků má sjednocení $M_1\cup\cdots\cup M_k$?

Pomocí zobecněného pravidla součtu: $|M_1 \cup \cdots \cup M_k| = |M_1| + \cdots + |M_k|$.

Příklad Kolik prvků má kartézský součin $M \times N$ dvou konečných množin M a N?

Určit libovolný prvek $\langle x,y \rangle \in M \times N$ znamená splnit úkol "zvol x" a úkol "zvol y".

Prvek x lze přitom zvolit |M| způsoby, prvek y lze zvolit |N| způsoby.

Podle pravidla součinu lze tedy úkol "zvol x a zvol y" provést $|M|\cdot |N|$ způsoby. Proto $|M\times N|=|M|\cdot |N|$.

Příklad Registrační značka vozidla má tvar PKC CCCC, kde P, K, a C jsou symboly a přitom P je některá z číslic 1–9, K je písmeno, určující příslušnost ke kraji (např. "T" označuje Moravskoslezský kraj, "H" označuje Královéhradecký apod.) a C je některá z číslic 0–9.

Kolik lze v rámci jednoho kraje přidělit registračních značek?

První symbol lze zvolit 9 způsoby, druhý symbol nelze volit, protože je v rámci kraje pevně daný, třetí symbol lze zvolit 10 způsoby, stejně tak lze 10 způsoby zvolit čtvrtý, pátý, šestý i sedmý symbol. Podle zobecněného pravidla součinu tedy existuje v rámci jednoho kraje $9 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 9 \cdot 10^5$ (devět set tisíc) možných různých registračních značek.

Kombinace pravidel součtu a součinu :

Příklad A, B, C jsou konečné množiny, A a B jsou disjunktní. Kolik prvků má množina $(A \cup B) \times C$?

Úkol vybrat libovolně prvek z $(A \cup B) \times C$ lze rozložit na dva následující úkoly:

"vyber prvek z $A \cup B$ " a "vyber prvek z C"

Úkol "vyber prvek z $A \cup B$ " znamená "vyber prvek z A nebo vyber prvek z B" a lze ho podle pravidla součtu provést |A| + |B| způsoby.

Proto lze podle pravidla součinu prvek z $(A \cup B) \times C$ vybrat $(|A| + |B|) \cdot |C|$ způsoby, tedy $|(A \cup B) \times C| = (|A| + |B|) \cdot |C|$.

Permutace, variace, kombinace

- Typy tzv. výběrů:
 - Kolika způsoby lze seřadit určitý počet objektů?
 - Kolika způsoby lze vybrat určitý počet objektů z daných objektů, když na pořadí výběru záleží?
 - Co když na pořadí výběru nezáleží?
 - Co když se prvky ve výběru nemohou opakovat? Co když se opakovat mohou?
- Odpovědi na ně lze nalézt použitím pravidel součtu a součinu.
- Odvodíme vzorce. Patří k základům kombinatorického počítání.

Permutace

Definice Permutace n (navzájem různých) objektů je libovolné seřazení těchto objektů, tj. seřazení od prvního k n-tému. Počet permutací n objektů budeme značit P(n).

Student si u zkoušky vybere tři otázky. Může si vybrat, v jakém pořadí na ně bude odpovídat. Kolik má možností?

Označme otázky A, B a C. Možná pořadí odpovídání jsou

ABC, ACB, BAC, BCA, CAB, CBA.

Tato pořadí jsou všechny permutace objektů A, B a C.

Je jich 6, tedy P(3) = 6.

Věta
$$P(n) = n!$$
.

Důkaz Libovolné seřazení dostaneme takto:

vybereme 1. prvek (to lze provést n způsoby), poté vybereme 2. prvek (lze n-1 způsobem, protože jeden jsme již vybrali), poté vybereme 3. prvek (lze n-2 způsoby),

÷

nakonec vybereme n-tý prvek (lze jedním způsobem, n-1 prvků totiž již bylo vybráno a zbývá poslední prvek).

Podle pravidla součinu lze takový výběr provést $n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 1 = n!$ způsoby.

Tedy
$$P(n) = n!$$

Variace

Definice Je dáno n (navzájem různých) objektů a číslo $r \leq n$. Variace r (objektů) z n (objektů) je libovolný výběr r objektů z daných n objektů, ve kterém záleží na pořadí vybíraných objektů. Počet takových variací značíme V(n,r).

Na lodi jsou čtyři důstojníci. Z nich je třeba jmenovat kapitána a jeho zástupce.

Kolika způsoby to lze provést?

Označme důstojníky písmeny A, B, C, D. Pak existuje těchto 12 způsobů: AB (A je kapitán, B jeho zástupce), AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC.

Věta
$$V(n,r) = n \cdot (n-1) \cdot \cdots \cdot (n-r+1)$$
.

Důkaz Přednáška; podrobnosti [DS1].

Ve výše uvedeném příkladu je n=4 (máme 4 objekty) a r=2 (vybíráme dva objekty). Variace BA je výběr, ve kterém je jako první vybrán objekt B a jako druhý objekt A. Variace BA a AB jsou různé (záleží na pořadí). Celkem existuje 12 takových variací, tj. V(4,2)=12.

Pozorování:

(a)
$$V(n,r) = \frac{n!}{(n-r)!}$$
. Skutečně,

$$\frac{n!}{(n-r)!} = \frac{n \cdot (n-1) \cdots (n-r+1) \cdot (n-r) \cdots 1}{(n-r) \cdots 1} = n \cdot (n-1) \cdots (n-r+1) = V(n,r)$$

(b)
$$V(n,n) = n! = P(n)$$
.

Tj. počet variací n a n je stejný jako počet permutací n objektů.

Kombinace

Definice Kombinace r (objektů) z n (objektů) je libovolný výběr r objektů z daných n objektů, ve kterém nezáleží na pořadí vybíraných objektů. Počet takových kombinací značíme $\binom{n}{r}$.

Čísla $\binom{n}{r}$ se nazývají kombinační čísla a označují se také C(n,r) (čte se "en nad er").

V táboře jsou 4 muži (označme je A, B, C, D). Kolika způsoby z nich lze vybrat dvoučlennou hlídku?

Výběr hlídky je dán výběrem dvou z nich, tedy dvouprvkovou podmnožinou množiny $\{A,B,C,D\}$. Hlídky tedy mohou být

$${A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {C,D},$$

je jich tedy $\binom{4}{2} = 6$.

Věta
$$\binom{n}{r} = \frac{n!}{(n-r)!r!}$$
.

Důkaz Přednáška; podrobnosti [DS1].

Přímo z odvozeného vzorce plyne

$$\binom{n}{r} = \binom{n}{n-r}.$$

Skutečně, $\binom{n}{n-r}=\frac{n!}{(n-(n-r))!(n-r)!}=\frac{n!}{(n-r)!r!}=\binom{n}{r}.$ Dále platí $\binom{n}{n}=1$ a $\binom{n}{0}=1.$

Ve výše uvedeném příkladu je $\binom{4}{2}=\frac{4!}{2!\cdot 2!}=\frac{4\cdot 3\cdot 2\cdot 1}{2\cdot 1\cdot 2\cdot 1}=6.$

Příklad Kolika způsoby lze vybrat 4 předměty z nabídky 10 volitelných předmětů?

Výběr předmětů je kombinace 4 z 10.

Výběr lze tedy provést

$$\binom{10}{4} = \frac{10!}{6! \cdot 4!} = \frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2} = 210$$

způsoby.

Jiné odvození vzorce $\binom{n}{r} = \frac{n!}{(n-r)!r!}$:

Očíslujme n objektů, ze kterých vybíráme, čísly 1 až n.

Kombinaci r z n můžeme vyjádřit jako řetězec n nul a jedniček, který obsahuje právě r jedniček.

Takový řetězců existuje právě tolik, kolik existuje permutací n prvků s opakováním, které jsou rozděleny do dvou skupin obsahujících r prvků (jedničky) a n-r prvků (nuly).

Takových permutací je $\frac{n!}{(n-r)!r!}$.

Věta

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Důkaz

Věta (binomická) Pro libovolná $a,b\in\mathbb{R}$ a nezáporné celé číslo n platí

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k. \tag{1}$$

Důkaz Matematickou indukcí (později) a [DS1].

Důsledek Pro reálné číslo x a nezáporné celé n je

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k. \tag{2}$$

Příklad Určete $(x^2 + 2y)^5$.

Dle binomické věty:

$$(x^{3} + 2y)^{5} = \binom{5}{0}(x^{3})^{5}(2y)^{0} + \binom{5}{1}(x^{3})^{4}(2y)^{1} + \binom{5}{2}(x^{3})^{3}(2y)^{2} + \binom{5}{3}(x^{3})^{2}(2y)^{3} + \binom{5}{4}(x^{3})^{1}(2y)^{4} + \binom{5}{5}(x^{3})^{0}(2y)^{5} =$$

$$= \binom{5}{0}x^{15} + \binom{5}{1}x^{12}2y + \binom{5}{2}x^{9}4y^{2} + \binom{5}{3}x^{6}8y^{3} + \binom{5}{4}x^{3}16y^{4} + \binom{5}{5}32y^{5} =$$

$$= x^{15} + 10x^{12}y + 40x^{9}y^{2} + 80x^{6}y^{3} + 80x^{3}y^{4} + 32y^{5}.$$

Příklad Dosazením x = 1 dostáváme

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} \binom{n}{k} = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n}.$$

 $\binom{n}{k}$ je počet všech k-prvkových podmnožin n-prvkové množiny.

Proto součet vpravo je počet 0-prvkových plus počet 1-prvkových plus ... plus počet n-prvkových podmnožin.

Tj. počet všech podmnožin n-prvkové množiny je 2^n .

Jiné odvození 2^n : Tento počet = počet n-prvkových posloupností 0 a 1 = počet variací n ze 2 (vybíráme z $\{0,1\}$) = $\overline{V}(n,2)=2^n$.

Permutace, variace a kombinace s opakováním *

pokročilejší typy výběrů slovo "opakování" má různý význam

Odsud až na konec části o kombinatorice je látka nepovinná, nebude u zkoušky.

Permutace s opakováním *

Definice Je dáno n objektů rozdělených do r skupin, které mají po řadě n_1,\ldots,n_r objektů, tj. $n_1+\cdots+n_r=n$. Objekty v každé ze skupin jsou navzájem nerozlišitelné. Každé seřazení těchto n objektů se nazývá permutace s opakováním (daným parametry (n_1,\ldots,n_r)). Počet takových permutací značíme $P(n_1,\ldots,n_r)$.

Kolik slov (i nesmyslných) lze sestavit přerovnáním písmen ve slově POSTOLOPRTY?

Je n=11 (písmen), r=7 (různých písmen: P, O, S, T, L, R, Y) a dále

$$n_1 = 2$$
 (P), $n_2 = 3$ (O), $n_3 = 1$ (S), $n_4 = 2$ (T), $n_5 = 1$ (L), $n_6 = 1$ (R), $n_7 = 1$ (Y).

Počet slov je tedy P(2, 3, 1, 2, 1, 1, 1).

Věta Pro
$$n_1 + \cdots + n_r = n$$
 je $P(n_1, \ldots, n_r) = \frac{n!}{n_1! \cdots n_r!}$.

Důkaz Přednáška; podrobnosti [DS1].

Idea:

Očíslujme objekty v rámci každé z r skupin tak, aby se staly rozlišitelnými.

Pak dané permutaci s opakováním odpovídá několik permutací očíslovaných objektů.

Pak odvodíme jednoduchou úvahou.

Příklad

Kolik slov (i nesmyslných) lze sestavit přerovnáním písmen ve slově POSTOLOPRTY?

Počet slov je roven počtu seřazení písmen slova POSTOLOPRTY.

Jak jsme uvedli: n=11 objektů (písmen), r=7 skupin,

$$n_{\rm P}=2$$
, $n_{\rm O}=3$, $n_{\rm S}=1$, $n_{\rm T}=2$, $n_{\rm L}=1$, $n_{\rm R}=1$, $n_{\rm Y}=1$.

Počet slov je tedy $P(2,3,1,2,1,1,1) = \frac{11!}{2!3!2!}$.

Variace s opakováním *

Definice Jsou dány objekty n různých typů. Objektů každého typu je neomezeně mnoho a jsou navzájem nerozlišitelné. Variace r (objektů) z n (objektů) s opakováním je libovolný výběr r objektů z daných objektů n typů, ve kterém záleží na pořadí vybíraných objektů. Počet takových variací značíme $\overline{V}(n,r)$.

Protože jsou prvky jednotlivých typů nerozlišitelné, jsou dvě variace s opakováním stejné, právě když mají na odpovídajících si místech (prvním až r-tém) objekty stejných typů.

Věta
$$\overline{V}(n,r)=n^r$$
.

Důkaz Přednáška; podrobnosti [DS1].

Příklad Zámek na kolo s kódem má pro nastavení kódu tři otáčecí kolečka. Na každém z nich lze nastavit číslice 0, 1, ..., 9. Předpokládejme, že nastavení a zkouška jedné číselné kombinace trvá 2 sekundy. Jak dlouho trvá v průměrném případě otevření zámku, neznáme-li správnou číselnou kombinaci (průměrný případ definujeme jako aritmetický průměr nejlepšího a nejhoršího případu)?

Číselné kombinace jsou 000 až 999.

Jsou to tedy variace 3 z 10 s opakováním (3 pozice, 10 číslic).

Těch je $10^3=1000$. V nejlepším případě nastavíme správnou kombinaci už v 1. pokusu (to trvá 2 sekundy), vnejhorším až v 1000. pokusu (to trvá 2000 sekund). V průměrném případě je to tedy $\frac{1000}{2}=500$ sekund (což je 8 minut a 20 sekund).

Kombinace s opakováním *

Definice Jsou dány objekty n různých typů. Objektů každého typu je neomezeně mnoho a jsou navzájem nerozlišitelné. Kombinace r (objektů) z n (objektů) s opakováním je libovolný výběr r objektů z daných objektů n typů, ve kterém nezáleží na pořadí vybíraných objektů. Počet takových kombinací značíme $\overline{C}(n,r)$.

V obchodě mají 4 typy zákusků (věnečky, řezy, špičky a trubičky). Máme koupit 6 zákusků. Kolika způsoby to lze provést?

Jeden možný způsob je koupit 6 věnečků, další je koupit 6 větrníků, další je koupit 2 větrníky a 4 řezy, další je koupit věneček, řez, špičku a 3 větrníky atd.

Nerozlišitelnost: dvě kombinace s opakováním považujeme za stejné, právě když pro každý z n typů obsahují stejné počty objektů toho typu.

U zákusků to znamená, že každé dva nákupy obsahující dva větrníky a čtyři špičky, považujeme za stejné (byť v jednom nákupu mohou být jiné dva věnečky než ve druhém).

Věta
$$\overline{C}(n,r) = \binom{n+r-1}{n-1}$$
.

Důkaz Přednáška; [DS1].

Pohled Máme n přihrádek, které odpovídají typům objektů. Vybrat kombinaci r z n s opakováním znamená umístit do těchto přihrádek celkem r kuliček.

Hledaný počet kombinací $\overline{C}(n,r)$ je tedy stejný jako počet umístění r kuliček do n přihrádek.

takové umístění = posloupnost 0 (reprezentují přepážky mezi přihrádkami, n-1) a 1 (reprezentují kuličky, r)

počet umístění = $\binom{n+r-1}{n-1}$, protože:

posloupnost má n+r-1 pozic; je určena výběrem pozic, kde jsou 0

takových výběrů je
$$\binom{n+r-1}{n-1}$$
.

Příklad Zákusky (viz výše).

Výběr 6 zákusků ze 4 druhů zákusků je kombinace 6 z 4 s opakováním.

Je jich tedy

$$\overline{C}(n,r) = \binom{n+r-1}{n-1} = \binom{4+6-1}{4-1} = \binom{9}{3} = \frac{9!}{6!3!} = 84.$$

Složitější výběry (příklady) *

Existují další typy výběrů, kterými se nebudeme zabývat.

Příklad Ligu hraje 14 týmů. Výsledek ligy je dán tím, které týmy obsadí 1., 2. a 3. místo a které 2 týmy sestoupí do nižší soutěže. Kolik je možných výsledků ligy?

Příklad Kolika různými způsoby lze kolem kulatého stolu se 6 židlemi posadit 6 osob? Přitom dvě posazení, která se liší jen pootočením, považujeme za shodná.

Princip inkluze a exkluze *

Příklad V nabídce volitelných předmětů je němčina a angličtina.

Němčinu si zvolilo 15 studentů, angličtinu 30, 5 si zvolilo němčinu i angličtinu.

Kolik studentů si jako volitelný předmět vybralo cizí jazyk (tj. němčinu nebo angličtinu)?

Označme: N= množina studentů, kteří si zapsali němčinu, $A=\dots$ angličtinu.

Neplatí $|N \cup A| = |N| + |A|$, protože |N| + |A| obsahuje dvakrát ty, kteří si zapsali němčinu i angličtinu.

Těch je $|N\cap A|$ a musíme je od |N|+|A| odečíst. Tedy

$$|N \cup A| = |N| + |A| - |N \cap A| = 15 + 30 - 5 = 40.$$

Příklad Na univerzitě je 56 učitelů členy ACM (Association for Computing Machinery). Členové ACM si mohou přikoupit členství v některé z tzv. special interest group (SIG, SIG jsou součásti ACM).

Víme, že ze zmíněných 56 učitelů jich je

- 20 členy SIGMOD (SIG on Management of Data), označme jejich množinu A_1 ;
- 15 členy SIGIR (SIG on Information Retrieval), označme jejich množinu A_2 ;
- 20 členy SIGKDD (SIG on Knowledge Discovery in Data), označme jejich množinu A_3 ;
- 10 jich je členy SIMOD i SIGIR $(A_1 \cap A_2)$;
- 8 jich je členy SIGMOD i SIGKDD $(A_1 \cap A_3)$;
- 7 jich je členy SIGIR i SIGKDD ($A_2 \cap A_3$);
- 4 jsou členy SIGMOD, SIGIR i SIGKDD $(A_1 \cap A_2 \cap A_3)$.

Kolik z 56 členů ACM je členem některé z SIGMOD, SIGIR, SIGKDD?

Tedy kolik prvků má $A_1 \cup A_2 \cup A_3$?

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3|$$
$$-|A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3|$$
$$+|A_1 \cap A_2 \cap A_3|$$
$$= 20 + 15 + 20 - 10 - 8 - 7 + 4 = 24.$$

Věta (princip inkluze a exkluze) Pro množiny A_1, \ldots, A_n platí

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{\emptyset \neq I \subseteq \{1,2,\dots,n\}} (-1)^{|I|+1} |\bigcap_{i \in I} A_i|.$$

Důkaz Libovolný $u \in A_1 \cup \cdots \cup A_n$ přispívá nějakým číslem p do levé i pravé strany.

LEVÁ: Zřejmě p=1.

PRAVÁ: Nechť u patří právě do A_1, \ldots, A_k (jinak přeznačíme).

Pak u patří do nějakého průniku $\bigcap_{i\in I}A_i$, právě když je to průnik nějakých q množin vybraných z A_1,\ldots,A_k pro nějaké $q\leq k$.

Je-li q liché, u do $(-1)^{|I|+1}|\bigcap_{i\in I}A_i|$ přispívá číslem 1, je-li q sudé, u do výrazu $(-1)^{|I|+1}|\bigcap_{i\in I}A_i|$ přispívá číslem -1.

Počet q-prvkových průniků je přitom $\binom{k}{q}$. Tedy u přispívá na pravou stranu číslem

$$\binom{k}{1} - \binom{k}{2} + \binom{k}{3} - \dots + (-1)^{k+1} \binom{k}{k}.$$

$$\binom{k}{1} - \binom{k}{2} + \binom{k}{3} - \dots + (-1)^{k+1} \binom{k}{k}.$$

Jaká je tato hodnota?

Vezměme binomickou větu pro $(1+x)^k$ pro x=-1. Dostaneme

$$0 = 0^k = (1 - 1)^k = (1 + x)^k = \sum_{i=0}^k \binom{k}{i} x^i = 1 + \sum_{i=1}^k (-1)^i \binom{k}{i} = 1 - \left(\binom{k}{1} - \binom{k}{2} + \binom{k}{3} - \dots + (-1)^{k+1} \binom{k}{k}\right).$$

Tedy součet má hodnotu 1, proto p = 1.

Příklad Kolik je přirozených čísel mezi 1 a 100 (včetně 1 i 100), která nejsou dělitelná ani dvěma, ani třemi nebo pěti?

Označme

$$\begin{array}{lll} A_1 &=& \{n\in\mathbb{N}\mid 1\leq n\leq 100,\ n\ \mbox{je dělitelné}\ 2\},\\ A_2 &=& \{n\in\mathbb{N}\mid 1\leq n\leq 100,\ n\ \mbox{je dělitelné}\ 3\},\\ A_3 &=& \{n\in\mathbb{N}\mid 1\leq n\leq 100,\ n\ \mbox{je dělitelné}\ 5\}. \end{array}$$

Čísla, která nejsou dělitelná ani dvěma, ani třemi nebo pěti, jsou právě prvky množiny $A=\overline{A_1}\cap\overline{A_2}\cap\overline{A_3}$. Protože

$$\overline{A_1} \cap \overline{A_2} \cap \overline{A_3} = \overline{A_1 \cup A_2 \cup A_3},$$

je $|A| = |\overline{A_1 \cup A_2 \cup A_3}| = 100 - |A_1 \cup A_2 \cup A_3|$. Podle principu inkluze a exkluze je $|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$.

Zbývá tedy určit $|A_1|$, $|A_2|$, $|A_3|$, $|A_1 \cap A_2|$, $|A_1 \cap A_3|$, $|A_2 \cap A_3|$, $|A_1 \cap A_2 \cap A_3|$.

Uvažujme např. $A_1\cap A_2$. Je to množina přirozených čísel mezi 1 a 100 dělitelných 2 i 3, tedy čísel dělitelných 6. Těch je $\lfloor \frac{100}{6} \rfloor = 16$ (dolní celá část čísla $\frac{100}{6}$), tj. $|A_1 \cap A_2| = 16$.

Podobně dostaneme $|A_1|=50,\ |A_2|=33,\ |A_3|=20,\ |A_1\cap A_3|=10,\ |A_2\cap A_3|=6,\ |A_1\cap A_2\cap A_3|=3.$

Dosazením pak dostaneme $|A| = 100 - |A_1 \cup A_2 \cup A_3| = 26$.