PRÉPAS INTERNATIONALES

Filière Ingénierie Générale

B.P.: 2375 Yaoundé

Sis Carrefour des Carreaux, Immeuble 3ème étage

Tél.: 696 16 46 86

E-mail.: <u>prepas.internationales@yahoo.com</u>
Site: <u>www.prepas-internationales.org</u>

MECANIQUE DU POINT MATERIEL DEVOIR SURVEILLE DU 20-03-2021, Durée 1H30 Année académique 2020-2021

EXERCICE I (12 POINTS)

Dans un repère cartésien $R(O, \vec{i}, \vec{j}, \vec{k})$, un point M de vecteur position $\vec{r} = OM$, peut être repéré par les différents triplets suivants : cartésien (x, y, z), cylindrique (r, θ, z) ou sphérique (r, θ, φ) .

- **1.** Reproduire sur votre copie les schémas ci-dessous, et positionner pour chaque cas (cylindrique ou sphérique), les vecteurs suivants $(\bar{\mathbf{i}}, \bar{\mathbf{j}}, \bar{\mathbf{k}})$ et $(\bar{\mathbf{e}}_r, \bar{\mathbf{e}}_\theta, \bar{\mathbf{k}})$ ou $(\bar{\mathbf{e}}_r, \bar{\mathbf{e}}_\theta, \bar{\mathbf{e}}_\theta)$ sur chaque figure.
- **2.** Exprimer les coordonnées cylindriques r, θ, z et les coordonnées sphériques r, θ, φ en fonction coordonnées cartésiennes x, y, z.
- **3.** Exprimer les vecteurs $\vec{\mathbf{e}}_r$, $\vec{\mathbf{e}}_\theta$, $\vec{\mathbf{k}}$ du repère cylindrique et les vecteurs $\vec{\mathbf{e}}_r$, $\vec{\mathbf{e}}_\varphi$, $\vec{\mathbf{e}}_\theta$ et $\vec{\mathbf{u}}$ du repère sphérique en fonction des vecteurs $\vec{\mathbf{i}}$, $\vec{\mathbf{j}}$ et $\vec{\mathbf{k}}$ du repère cartésien.
- **4.** Etablir les expressions du vecteur vitesse et du vecteur accélération dans le repère cylindrique
- **5.** Etablir les expressions du vecteur vitesse et du vecteur accélération dans le repère sphérique.

EXERCICE II (08 POINTS)

Une particule M se déplace dans le plan xOy. Sa vitesse est définie par $\vec{\mathbf{v}} = a\vec{\mathbf{e}}_{\theta} + b\vec{\mathbf{j}}$, où a et b sont deux constantes.

Déterminer l'équation $r(\theta)$ de la trajectoire en coordonnées polaires

On choisit a=3b. Sachant que pour $\theta=0$ l'abscisse du point M est r=1m, donner l'expression de $r(\theta)$. Quelle est l'allure de la trajectoire dans le plan xOy?