The Perceptron

How do you learn the parameters of a perceptron?

Let's skip the theory for now and just see the algorithm...

1: **function** Perceptron Algorithm

2:
$$\boldsymbol{w}^{(0)} \leftarrow \mathbf{0}$$

3: **for**
$$t = 1, ..., T$$
 do

4:
$$extbf{RECEIVE}(oldsymbol{x}^{(t)})$$
 $x \in \{0,1\}^N$ N-d binary vector

5:
$$\hat{y}_A^{(t)} = \operatorname{sign}\left(\langle m{w}^{(t-1)}, m{x}^{(t)}
angle
ight)$$
 Classification resu

6: RECEIVE
$$(y^t)$$
 $y \in \{1, -1\}$

7:
$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$
 Update the parameters

What does this look like visually...

$$\hat{y}_A^{(t)} = \mathrm{sign}\bigg(\langle \boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\rangle\bigg)$$

 $Receive(y^t)$

$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$

initialized to 0

$$\text{Receive}(\boldsymbol{x}^{(t)})$$

$$\hat{y}_A^{(t)} = \mathrm{sign}igg(\langle oldsymbol{w}^{(t-1)}, oldsymbol{x}^{(t)}
angleigg)$$

 $Receive(y^t)$

$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$

observation (1,-1)

$$\hat{y}_A^{(t)} = ext{sign}igg(\langle oldsymbol{w}^{(t-1)}, oldsymbol{x}^{(t)}
angleigg)$$

 $Receive(y^t)$

$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$

observation (1,-1)

$$\hat{y}_A^{(t)} = \mathrm{sign}\bigg(\langle \boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\rangle\bigg)$$
 = 1

$$\hat{y}_A^{(t)} = \mathrm{sign}igg(\langle oldsymbol{w}^{(t-1)}, oldsymbol{x}^{(t)}
angleigg)$$

 $\mathsf{RECEIVE}(y^t)$

$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$

observation (1,-1)label -1

$$\hat{y}_A^{(t)} = \mathrm{sign}igg(\langle oldsymbol{w}^{(t-1)}, oldsymbol{x}^{(t)}
angleigg)$$

 $RECEIVE(y^t)$

$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$

update w

$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$

observation (1,-1) label -1

$$\hat{y}_A^{(t)} = \mathrm{sign}igg(\langle oldsymbol{w}^{(t-1)}, oldsymbol{x}^{(t)}
angleigg)$$

 $Receive(y^t)$

$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$

update w

no match!

$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$

observation (1,-1)label -1

$$\hat{y}_A^{(t)} = \mathrm{sign}igg(\langle oldsymbol{w}^{(t-1)}, oldsymbol{x}^{(t)}
angleigg)$$

$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$
 (-1,1)

RECEIVE
$$(\boldsymbol{x}^{(t)})$$
 observation (-1,1)

$$\hat{y}_A^{(t)} = ext{sign}igg(\langle oldsymbol{w}^{(t-1)}, oldsymbol{x}^{(t)}
angleigg)$$

 $Receive(y^t)$

$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$
 (-1,1)

$$\hat{y}_A^{(t)} = \operatorname{sign}\left(\langle \boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)} \rangle\right)$$
 = 1

observation (-1,1)

$$\hat{y}_A^{(t)} = \operatorname{sign}igg(\langle oldsymbol{w}^{(t-1)}, oldsymbol{x}^{(t)}
angleigg)$$

$\mathsf{RECEIVE}(y^t)$

$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$
 (-1,1)

$$\hat{y}_A^{(t)} = \text{sign}\bigg(\langle \boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)} \rangle \bigg) \\ = 1$$

observation (-1,1)

$$\hat{y}_A^{(t)} = \mathrm{sign}igg(\langle oldsymbol{w}^{(t-1)}, oldsymbol{x}^{(t)}
angleigg)$$

 $RECEIVE(y^t)$

$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$

update w

match!

update w

 $\text{Receive}(\boldsymbol{x}^{(t)})$ $\hat{y}_A^{(t)} = \mathrm{sign}igg(\langle oldsymbol{w}^{(t-1)}, oldsymbol{x}^{(t)}
angleigg)$ $Receive(y^t)$ $w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$ update w

$$\hat{y}_A^{(t)} = \mathrm{sign}igg(\langle oldsymbol{w}^{(t-1)}, oldsymbol{x}^{(t)}
angleigg)$$

$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$

$$\hat{y}_A^{(t)} = \operatorname{sign}igg(\langle oldsymbol{w}^{(t-1)}, oldsymbol{x}^{(t)}
angleigg)$$

 $\mathsf{RECEIVE}(y^t)$

$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$

$$\hat{y}_A^{(t)} = \mathrm{sign}igg(\langle oldsymbol{w}^{(t-1)}, oldsymbol{x}^{(t)}
angleigg)$$

$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$

$$\hat{y}_A^{(t)} = \mathrm{sign}igg(\langle oldsymbol{w}^{(t-1)}, oldsymbol{x}^{(t)}
angleigg)$$

$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$

1: **function** Perceptron Algorithm

2:
$$\boldsymbol{w}^{(0)} \leftarrow \mathbf{0}$$

3: **for**
$$t = 1, ..., T$$
 do

4:
$$extbf{RECEIVE}(oldsymbol{x}^{(t)})$$
 $oldsymbol{x} \in \{0,1\}^N$ N-d binary vector

5:
$$\hat{y}_A^{(t)} = \operatorname*{sign}\left(\langle m{w}^{(t-1)}, m{x}^{(t)}
angle
ight)$$
 perceptron is just one line of code!

6: RECEIVE
$$(y^t)$$
 $y \in \{1, -1\}$

7:
$$w_n^{(t)} = w_n^{(t-1)} + y_t \cdot x_n^{(t)} \cdot \mathbf{1}[y^{(t)} \neq \hat{y}^{(t)}]$$

Code to train your perceptron:

for
$$n=1\dots N$$

$$w=w+(y_n-\hat{y})x_i; \qquad \text{just one line of code!}$$