Diffeological Spaces and Denotational Semantics for Differential Programming

Ohad Kammar, Sam Staton, and Matthijs Vákár

Domains 2018 Oxford 8 July 2018

What is differential programming?

- ▶ PL in which all (some) constructs are differentiable...
- ...and derivatives can be computed mechanically.
- Compute derivatives compositionally, using chain rule, rather than symbolically or using finite differences.
- AKA Automatic Differentiation.

Why study semantics of differential programming?

Important:

- Efficient optimisation (in high dim);
- Efficient integration/sampling (in high dim);
- ➤ Often combined with concurrency and probability ~> correctness non-trivial and good test-coverage hard to obtain;

Why study semantics of differential programming?

Non-Trivial:

- How to differentiate through traditional language constructs?
 - conditionals
 - iteration and term recursion
 - higher order functions
 - probability, state and other effects
- How to differentiate at structured types?
 - inductive/recursive types
 - refinement types
 - function types
 - quotient types
- So need to move beyond traditional calculus!

Concrete example of higher-order differential prog

Finding Shortest Arc Length

```
-- Integrate :: ([0,1] => real) => real
-- Differentiate :: ([0.1] \Rightarrow real) \Rightarrow [0.1] \Rightarrow real
ArcLength :: ([0,1] \Rightarrow real) \Rightarrow [0,infty)
ArcLength(f) = Integrate(Sqrt(1 + Differentiate(f)^2))
Power :: (0,infty) => [0,1] => real
Power(a)(t) = t^a
-- Minimise :: ((0, infty) \Rightarrow real) \Rightarrow (0, infty)
Minimal a :: real
Minimal a = Minimise(\a -> ArcLength(Power(a)))
-- Should be 1
```


Is this not an artificial problem?

Stan language:

For specifying a smooth objective function and sampling from it / optimising it:

- conditionals (for custom combinations of objective functions),
 while loops, recursive functions (for iterative approximations);
- higher-order functions (ODE and algebraic solvers, used in pharmacokinetics);
- certain refinement types (constraints: intervals, unit vectors, simplices, symmetric positive definite matrices);
- fwd and rev mode AutoDiff through everything.

Calculus 101 Refresher

Traditional derivative (Jacobian)

$$T_x f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

of $f:U\to V$ at x, where U open in \mathbb{R}^n and V open in \mathbb{R}^m

$$\lim_{v \to 0} \frac{||f(x+v) - f(x) - T_x f(v)||}{||v||} = 0$$

Categories for Smoothness?

Category Open:

- ightharpoonup objects opens U in some \mathbb{R}^n ;
- ightharpoonup morphisms $f:U\to V$ smooth (C^∞) functions from U to V;

Category Mfd of fin. dim. manifolds and smooth maps:

- Adds surfaces (certain refinements);
- Whitney Embedding: idempotent completion of Open;
- ► Great! If only there were more...

Several Categories of Smooth Maps

► Many full subcategories:

- Diffeo Grothendieck quasi-topos and well-pointed;
- Interprets tuples, function types, variant types, (co)inductive types, dependent types;
- Conservative extension: embeddings into Diffeo preserve all limits and coproducts, colimits of open covers;

Objects

A diffeological space $X = (|X|, S_X)$ consists of:

- ▶ a carrier set |X|;
- ▶ a set of **plots** $S_X^U \subseteq |X|^U$ for all $U \in \mathbf{Open}$

Objects

A diffeological space $X = (|X|, S_X)$ consists of:

- ightharpoonup a carrier set |X|;
- ▶ a set of **plots** $S_X^U \subseteq |X|^U$ for all $U \in \mathbf{Open}$

such that the plots are closed under:

▶ constant functions <u>c</u>;

Objects

A diffeological space $X = (|X|, S_X)$ consists of:

- ightharpoonup a carrier set |X|;
- ▶ a set of **plots** $S_X^U \subseteq |X|^U$ for all $U \in \mathbf{Open}$

- ► constant functions *c*;
- lacktriangle precomposition with a smooth $\varphi:U o V$

Objects

A diffeological space $X = (|X|, S_X)$ consists of:

- ▶ a carrier set |X|;
- ▶ a set of **plots** $S_X^U \subseteq |X|^U$ for all $U \in \mathbf{Open}$

- ► constant functions *c*;
- ightharpoonup precomposition with a smooth $\varphi:U\to V$
- \triangleright gluing of compatible families along open covers \mathcal{U} .

Objects

A diffeological space $X = (|X|, S_X)$ consists of:

- ▶ a carrier set |X|;
- \blacktriangleright a set of plots $S_X^U\subseteq \left|X\right|^U$ for all $U\in\mathbf{Open}$

such that...3 axioms...

Morphisms $f: X \to Y$

Functions $f: |X| \to |Y|$ such that:

$$\alpha \in S_X \implies f \circ \alpha \in S_Y$$

Example: Traditional Spaces

 \triangleright For manifold M, define (Yoneda) plots

$$S_M^U := \mathbf{Mfd}(U, M).$$

Categorical structure

Objects

A diffeological space $X = (|X|, S_X)$ consists of:

- ▶ a carrier set |X|;
- ▶ a set of **plots** $S_X^U \subseteq |X|^U$ for all $U \in \mathbf{Open}$

such that...3 axioms...

Products

$$S_{X\times Y}^U := \left\{r \mapsto \left(\alpha(r), \beta(r)\right) \middle| \alpha \in S_X^U, \beta \in S_Y^U\right\}$$

Categorical structure

Morphisms $f: X \to Y$

Functions $f:|X|\to |Y|$ such that:

$$\alpha \in S_X \implies f \circ \alpha \in S_Y$$

Function spaces

$$\begin{split} \left| Y^X \right| &:= \mathbf{Diffeo}(X,Y) \\ S^U_{Y^X} &:= \left\{ f: U \to \left| Y^X \right| \middle| \mathsf{uncurry} \ f \in \mathbf{Diffeo}(U \times X,Y) \right\} \end{split}$$

NB: The exponential X^U is the space of U-plots.

Categorical structure

Morphisms $f: X \to Y$

Functions $f:|X|\to |Y|$ such that:

$$\alpha \in S_X \implies f \circ \alpha \in S_Y$$

Function spaces

$$\begin{split} \left| Y^X \right| &:= \mathbf{Diffeo}(X,Y) \\ S^U_{Y^X} &:= \left\{ f: U \to \left| Y^X \right| \middle| \mathsf{uncurry} \ f \in \mathbf{Diffeo}(U \times X,Y) \right\} \end{split}$$

NB: The exponential X^U is the space of U-plots.

More structure

Coproducts, limits, colimits, ... (co)inductive types!

Our example revisited

Finding Shortest Arc Length

```
-- Integrate :: ([0,1] => real) => real
-- Differentiate :: ([0,1] => real) => [0,1] => real

ArcLength :: ([0,1] => real) => [0,infty)
ArcLength(f) = Integrate(Sqrt(1 + Differentiate(f)^2))

Power :: (0,infty) => [0,1] => real
Power(a)(t) = t^a

-- Minimise :: ((0,infty) => real) => (0,infty)
Minimal_a :: real
Minimal_a = Minimise(\a -> ArcLength(Power(a)))

-- Should be 1
```

- Uncurry to see Power is smooth;
- Integrate sends smooth functions of two arguments to smooth functions, so it is smooth.

Diffeo-morphisms are continuous!

D-Topology

▶ Adjunction with topological spaces ($M \in \mathbf{Top}, X \in \mathbf{Diffeo}$):

$$\begin{split} S_{\mathbf{Diffeo}M}^{U} &:= \mathbf{Top}(U, M) \\ \mathcal{O}_{\mathbf{Top}X} &:= \Big\{ B \subseteq X \Big| \forall U \in \mathbf{Open}. \alpha \in S_X^U, \alpha^{-1}[X] \in \mathcal{O}_U \Big\} \end{split}$$

Generalises Euclidean topology.

Derivatives?

Covariant Derivative - Fwd Mode

And write

$$TU \xrightarrow{Tf} TV$$

$$\langle x, v \rangle \longmapsto \langle f(x), T_x f(v) \rangle;$$

► This defines a functor

► Functoriality is chain rule!

Derivatives on Diffeo

- Observe that Diffeo[→] and Poly(Diffeo) are cocomplete (and complete);
- ▶ Define through left Kan extension

- ► Functor by construction \rightsquigarrow chain rule!
- y is full and faithful → extends usual definition;
- ▶ But many other ways to define in literature! Do they coincide..?

Contravariant Derivative - Rev Mode

- $\blacktriangleright \text{ Write } T_x^* f: \mathbb{R}^m \cong \mathbb{R}^m \longrightarrow \mathbb{R} \stackrel{T_x f \to \mathbb{R}}{\longrightarrow} \mathbb{R}^n \longrightarrow \mathbb{R} \cong \mathbb{R}^n;$
- ▶ Define polynomials/containers $T^*U := U \times \mathbb{R}^n \xrightarrow{\mathsf{fst}} U$ $T^*V := V \times \mathbb{R}^m \xrightarrow{\mathsf{fst}} V$ and

$$f^*T^*V \xrightarrow{T^*f} T^*U$$

$$\langle x, \xi \rangle \longmapsto \langle x, T_x^* f(\xi) \rangle;$$

► This defines a functor

- ► Functoriality is chain rule!
- ▶ Left Kan extension: $\mathbf{Diffeo} \rightarrow \mathbf{Poly}(\mathbf{Diffeo})$

Derivatives are dependently typed!

(Co)tangent bundles not all trivial (product projections): take S^2 . \leadsto dependent types!

Type Formers:

▶ Given $\Gamma \vdash X$ type, we get

$$\Gamma, x: X \vdash T_x X$$
 type and $\Gamma, x: X \vdash T_x^* X$ type.

▶ TX is syntactic sugar for $\Sigma_{x:X}T_xX$ and T^*X for $\Sigma_{x:X}T_x^*X$.

Term Formers:

▶ Given $\Gamma, x : X \vdash f(x) : Y$, we get

$$\Gamma,x:X,v:T_xX\vdash T_xf(v):T_{f(x)}Y \qquad \text{and}$$

$$\Gamma,x:X,\xi:T_{f(x)}^*Y\vdash T_x^*f(\xi):T_x^*X.$$

Diffeological Domains [Kammar, Staton, Vákár]

Category ω **Diffeo**

- ▶ Objects: diffeological spaces X with an ω -cpo structure \leq_X , s.t. S_X is closed under lubs of ω -chains;
- Morphisms: Scott continuous Diffeo-morphisms;
- Gives a (co)complete ccc ω Diffeo (locally presentable);
- Recursive types through Fiore's axiomatic domain theory!
- ▶ Define T, T^* as enriched Kan extensions, but working with $\omega \mathbf{Diffeo}_{fib}^{\rightarrow}$ and its dual fibration?

3 More Equivalent Characterisations

- $ightharpoonup \omega \mathbf{Cpo}$ -Enriched separated sheaves on \mathbf{Open} ;
- Models of an essentially algebraic theory;
- language ω -cpos in **Diffeo**.

Conclusion

Summary

- Diffeo: very simple, well-behaved and rich setting for semantics of differential languages
- ▶ 11AM Ohad Kammar A Domain Theory for Probability

Some Questions

- ▶ Derivative of a recursive function and T, T^* on ω **Diffeo**?
- An adequate semantics for differential programming?
- Prove corrects NUTS?
- Analyse the (co)tangent bundle of function types?
- C.f (co)tangent bundles in literature?
- Smooth probability monad?
- ► Relationship cotangent bundle and CPS?
- lacksquare Boman's theorem: why not restrict to $S_X^{\mathbb{R}}$?

Recall - definition

A diffeological space $X = (|X|, S_X)$ consists of:

- ightharpoonup a carrier set |X|;
- ▶ a set of **plots** $S_X^U \subseteq |X|^U$ for all $U \in \mathbf{Open}$

Recall - definition

A diffeological space $X = (|X|, S_X)$ consists of:

- ightharpoonup a carrier set |X|;
- ▶ a set of **plots** $S_X^U \subseteq |X|^U$ for all $U \in \mathbf{Open}$

such that the plots are closed under:

► constant functions *c*;

Recall - definition

A diffeological space $X = (|X|, S_X)$ consists of:

- ightharpoonup a carrier set |X|;
- ▶ a set of **plots** $S_X^U \subseteq {|X|}^U$ for all $U \in \mathbf{Open}$

- ► constant functions *c*;
- ightharpoonup precomposition with a smooth $\varphi:U\to V$

Recall - definition

A diffeological space $X = (|X|, S_X)$ consists of:

- ightharpoonup a carrier set |X|;
- ▶ a set of **plots** $S_X^U \subseteq {|X|}^U$ for all $U \in \mathbf{Open}$

- ► constant functions *c*;
- ightharpoonup precomposition with a smooth $\varphi:U\to V$
- \triangleright gluing of compatible families along open covers \mathcal{U} .

