Assignment 6 MAT 315

Q1a: Note since

$$(1-x)(1+x+\cdots+x^{q-1})=(1-x^q)$$

Any root of the cyclotomic polynomial is also root of $1 - x^q$. We see that $\Phi_q(0) \equiv 1 \mod (p)$. Therefore by FIT the roots of $\Phi_q(x)$ must satisfy $x^{p-1} = 1$. We now check cases when $p \equiv 1 \mod (q)$, p = q or if neither are true. First consider the case where $p \equiv 1 \mod (1)$, then there is some k such that kq = p - 1

$$x^{p-1} - 1 = x^{kq-1} - 1$$

$$= (x^q)^k - 1$$

$$= (x^q - 1)(x^{kq-q} + x^{kq-2q} + \dots + 1)$$

$$= (x^q - 1)(x^{p-1-q} + \dots + 1)$$

Hence by Lagranges theorem the first term must have at most q roots and the second term must have at most p-1-q roots. By Fermats little theorem, $x^{p-1}-1$ has p-1 roots mod p, so therefore x^q-1 has q roots and $x^{p-1-q}+\cdots+1$ has p-1-q roots. Now since $(x-1)\Phi_q(x)$ has p roots, and $\Phi_q(1)\equiv q \bmod(p)$ which is not 0, so we must have that $\Phi_q(x)$ has p-1 roots. If $p\not\equiv 1 \bmod(q)$, so $\gcd(q,p-1)=1$. Thus by bezouts identity, there exists integers u,v with u(p-1)+v(q)=1. Therefore, if x is a root of $\Phi_q(x)$, then $x^1=x^{u(p-1)+v(q)}=(x^{p-1})^u\cdot(x^q)^v$. Now if p=q then $\Phi_q(1)=0 \bmod(p)$ so it has 1 root. Otherwise, $\Phi_q(1)\neq 0$ so $\Phi_q(x)$ has no roots.

Q1b: By the chinese remainder theorem, any solution to $x^{18} + 4x^{14} + 3x + 10 \equiv 0 \mod (21)$ must also be a solution to $x^{18} + 4x^{14} + 3x + 10 \equiv 0 \mod (3)$ and $x^{18} + 4x^{14} + 3x + 10 \equiv 0 \mod (7)$. By corollary 4.4, $x^{3k} \equiv x \mod (3)$ for all $k \in \mathbb{Z}$. Therefore we can reduce our polynomials to

$$x^{18} + 4x^{14} + 3x + 10 \equiv (x^{3\cdot 3})^2 + x^2 + 1 \equiv (2x^2 - 1) \equiv 1 - x^2 \equiv (1 - x)(1 + x) \mod (3)$$

which has a solution of $x \equiv 1 \mod (3)$ and $x \equiv 2 \mod (3)$. Now for the $\mod (7)$ polynomial,

$$x^{18} + 4x^{14} + 3x + 10 \equiv (x^7)^2 \cdot x^4 + 4(x^7)^2 + 3x + 10 \equiv x^6 + 4x^2 + 3x + 3 \equiv 0 \mod (7)$$

By checking $x \in \{0, 1, 2, 3, 4, 5, 6\}$, we see that $x \equiv 3 \mod (7)$ and $x \equiv 5 \mod (7)$ are both solutions. By chinese remainder theorem, the solutions are $x \equiv 5, 10, 17, 19 \mod (21)$.

Q1c: We wish to solve $x^{59} + 2x^{40} + 5x^{25} + x^{15} + 17 \equiv 0 \mod (221)$. By the chinese remainder theorem, any solution to this will also be a solution to $x^{59} + 2x^{40} + 5x^{25} + x^{15} + 17 \equiv 0 \mod (13)$ and $x^{59} + 2x^{40} + 5x^{25} + x^{15} + 17 \equiv 0 \mod (17)$. We will first proceed with the first equivalency. Using corollary 4.4, we have that

$$x^{59} + 2x^{40} + 5x^{25} + x^{15} + 17 \equiv (x^{13})^4 \cdot x^7 + 2(x^{13})^3 \cdot x + 5(x^{13})x^{12} + x^{13} \cdot x^2 + 17 \equiv x^{11} + 2x^4 + x^3 + 5x + 4 \equiv 0 \bmod (13)$$

Taking $x \equiv 1 \mod (13)$ will satisfy this. For mod (17), we have that

$$x^{59} + 2x^{40} + 5x^{25} + x^{15} + 17 \equiv x^{59} + 2x^{40} + 5x^{25} + x^{15} \equiv 0 \mod (17)$$

We see taking $x \equiv 0 \mod (17)$ will satisfy. Therefore by the chinese remainder theorem, a solution to the polynomial mod (221) is $x \equiv 170 \mod (221)$.

Q1d: To find a solution to $55x^{19} + 3x^{14} + x^2 + 55 \equiv 0 \mod (66)$. By the Chinese remainder theorem, any solution to this must be a simultaneous solution to $55x^{19} + 3x^{14} + x^2 + 55 \equiv 0 \mod (2)$, $55x^{19} + 3x^{14} + x^2 + 55 \equiv 0 \mod (3)$, $55x^{19} + 3x^{14} + x^2 + 55 \equiv 0 \mod (11)$. We will first look for solutions in the mod(2) case. We see that

$$55x^{19} + 3x^{14} + x^2 + 55 \equiv x^{19} + x^{14} + x^2 + 1 \equiv 0 \mod (2)$$

The only solution is $x \equiv 1 \mod (2)$ is a solution. Now we look at the mod (3) case.

$$55x^{19} + 3x^{14} + x^2 + 55 \equiv x^{19} + x^2 + 1 \equiv x^2 + x + 1 \equiv 0 \mod (3)$$

Assignment 6 MAT 315

We see that the only solution is $x \equiv 1 \mod (3)$. Finally, we check $\mod (11)$.

$$55x^{19} + 3x^{14} + x^2 + 55 \equiv 3x^{11}x^3 + x^2 \equiv 3x^4 + x^2 \equiv x^2(3x^2 + 1) \equiv 0 \mod (11)$$

By checking each $x \in \mathbb{Z}/11\mathbb{Z}$ we see that $3x^2 + 1 \not\equiv 0$ for all x. Thus we conclude that the only solution mod 11 is $x \equiv 0 \mod (11)$. Therefore, by the chinese remainder theorem, the solution will be $x \equiv 55 \mod (66)$.