THÉORIE DES GROUPES

(THGR)

Frédéric Touzet

1A maths 2019, ENS de Rennes

Chapitre 1 – Théorie des groupes			1.5	Actions de groupes	10
1.1	Notions de bases	1	1.6	Groupes symétriques	12
1.2	Groupes abeliens de type nni	3			
1.3	Le groupe diédral	6	1.7	Produit semi-direct	15
1.4	Sous-groupes normaux	7	1.8	Théorème de Sylow	18

Chapitre 1

Théorie des groupes

1.1 Notions de bases	1	1.6 Groupes symétriques	12
1.2 Groupes abéliens de type fini		1.6.1 Signature	12
1.2.1 Groupes monogènes, cycliques	3	1.6.2 Décomposition en produit de cycles	13
1.2.2 Groupes abéliens de type fini	4	1.6.3 Le groupe alterné	14
1.3 Le groupe diédral		1.7 Produit semi-direct	15
1.3.1 Définition	6	1.7.1 Produit direct	15
1.3.2 Caractérisation abstraite	6	1.7.2 Produit semi-direct	16
1.4 Sous-groupes normaux		1.7.3 Le groupe \mathfrak{S}_4 comme produit semi-direct	17
1.4.1 Définition	7	1.7.4 Critère d'isomorphisme du produit semi-direct	17
1.4.2 Groupes quotient	8	1.7.5 Remarques finales	18
1.4.3 Exemples fondamentaux	9	1.8 Théorème de Sylow	18
1.5 Actions de groupes		1.8.1 Préliminaires	18
1.5.1 Définitions et premières propriétés	10	1.8.2 Structure des p -groupes	19
1.5.2 Exemples fondamentaux	11	1.8.3 Énonce des deux théorèmes de Sylow	19
1.5.3 Équation aux classe	11	1.8.4 Exemples et applications	20
0-0 —-1		1.8.5 Classification des groupes d'ordre 12	20
		1.8.6 Preuve des deux théorèmes de SYLOW	21

1.1 NOTIONS DE BASES

DÉFINITION 1.1 (groupe). Un groupe est un couple (G,*) où G est un ensemble non vide et * une loi de composition interne sur G, i. e. une application de $G \times G$ dans G, vérifiant

- pour tous $x, y, z \in G$, on a x * (y * z) = (x * y) * z;
- il existe $e \in G$ tel que, pour tout $x \in E$, on ait x * e = e * x = e;
- pour tout $x \in G$, il existe $x' \in G$ tel que x * x' = e.

De plus, on dira que G est abélien (ou commutatif) si, pour tous $x, y \in G$, on a x * y = y * x.

- \diamond Remarques. L'élément neutre e est unique.
 - Si $x \in G$, alors l'élément x admet un unique symétrique. En effet, si x' et x'' sont deux symétriques de x, alors x'' * x = e, donc (x'' * x) * x' = x', donc x'' * (x * x') = x' par associativité, donc x'' = x. D'où l'unicité.
 - On peut supprimer le parenthésage du fait de l'associativité.

NOTATIONS. Soit (G,*) un groupe. Dans une notation multiplication, on notera simplement $xy := x * y, x^{-1}$ le symétrique de x et 1 := e. Si $n \ge 0$, on notera $x^n := x * \cdots * x$ où le terme x apparaît n fois avec la convention $x^0 = 1$. Si $n \le 0$, on notera $x^n := (x^{-1})^{-n}$.

Quand G est abélien, on pourra adopter la notation additive où l'on note $x+y\coloneqq x*y, -x$ le symétrique de x et $0\coloneqq e$. Si $n\geqslant 0$, on notera $nx\coloneqq x*\cdots*x$ où le terme x apparaît n fois.

PROPRIÉTÉ 1.2. – Pour tous $x \in G$ et $n, m \in \mathbb{Z}$, on a $(x^n)^m = x^{nm}$. En particulier, on a $(x^{-1})^{-1} = x$. – Pour tous $x, y \in G$, on a $(xy)^{-1} = y^{-1}x^{-1}$.

- \triangleright EXEMPLES. Les couples $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, $(\mathbb{C}, +)$, (\mathbb{Q}^*, \times) , (\mathbb{R}^*, \times) et (\mathbb{C}^*, \times) sont des groupes.
 - Si E est un ensemble, on note \mathfrak{S}_E le groupe symétrique de E, i. e. l'ensemble des bijections de E dans E. Alors (\mathfrak{S}_E, \circ) est un groupe de neutre Id_E , mais il n'est pas abélien si $|E| \geqslant 3$. Dans le cas où E = [1, n], on note $\mathfrak{S}_n := \mathfrak{S}_E$ et on a $|\mathfrak{S}_n| = n!$.
 - Si K est un corps, alors $GL_n(K)$ est un groupe pour le produit matriciel et il n'est pas abélien si $n \ge 2$.
 - Le couple $(\mathbb{Z}/n\mathbb{Z}, +)$ est un groupe pour tout $n \ge 1$.
 - Si $(G_1, *_1)$ et $(G_2, *_2)$ sont des groupes, alors on peut former leur produit $(G_1 \times G_2, *)$ où la loi * est définie par $(x, y) * (x', y') = (x *_1 x', y *_2, y')$ pour tout $x, y \in G_1$ et $x', y' \in G_2$.

DÉFINITION 1.3 (table d'un groupe fini). Soit (G,*) un groupe fini. On le note $G = \{a_1, \ldots, a_n\}$. On peut dresser la table de l'opération * qui est la table dont le coefficient en (i,j) en $a_i * a_j$.

 \triangleright Exemple. La table du groupe $(\mathbb{Z}/3\mathbb{Z},+)$ est

DÉFINITION 1.4 (sous-groupe). Soit (G, *) un groupe. Une partie non vide H de G est un sous-groupe de (G, *) si, pour tous $x, y \in H$, on a $x * y \in H$ et $x^{-1} \in H$. Alors (H, *) est un groupe et on note H < G.

- ♦ REMARQUES. 1. Le couple (H, *) est un sous-groupe de G si et seulement si, pour tous $x, y \in H$, on a $xy^{-1} \in H$. 2. Si $(H_i)_{i \in I}$ est une famille de sous-groupes de G, alors $\bigcap_{i \in I} H_i < G$.
 - 3. Si A est une partie finie et non vide de G, alors A est un sous-groupe de G si et seulement si, pour tous $x, y \in A$, on a $xy \in A$.
- \triangleright EXEMPLES. On a $\mathbb{Z} < \mathbb{Q} < \mathbb{R} < \mathbb{C}$ et $GL_n(\mathbb{Q}) < GL_n(\mathbb{R}) < GL_n(\mathbb{C})$. Si $n \in \mathbb{N}$, alors $n\mathbb{Z} < \mathbb{Z}$. Pour $n \geqslant 1$, en notant $GL_n(\mathbb{Z}) = \{M \in GL_n(\mathbb{Q}) \mid M \in \mathscr{M}_n(\mathbb{Z}), \det M = \pm 1\}$, on a $GL_n(\mathbb{Z}) < GL_n(\mathbb{Q})$.

EXERCICE 1.1. Montrer que $Q_8 := \{\pm \operatorname{Id}, \pm I, \pm J, \pm K\}$ est un groupe non abélien, appelé groupe des quaternions, où

$$\mathrm{Id} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \text{et} \quad K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

DÉFINITION 1.5 (groupe engendré). Soient G un groupe et $A \subset G$. On note

$$\langle A \rangle = \bigcap_{\substack{H < G \\ H \supset A}} H$$

C'est le plus petit sous-groupe de G contenant A.

- $\triangleright \text{ EXEMPLE.} \quad \text{On a } \langle G \rangle = G \text{ et } \langle \emptyset \rangle = \{e\}. \text{ Si } x \in G, \text{ alors } \langle x \rangle \coloneqq \langle \{x\} \rangle = \{x^n \mid n \in \mathbb{Z}\}.$
- DÉFINITION 1.6. On dira que G est de type fini s'il existe $A \subset G$ finie telle que $\langle A \rangle = G$.
- \diamond REMARQUE. Si G est fini, alors G est de type fini. La réciproque est fausse en considérant $\mathbb{Z} = \langle 1 \rangle$.
- DÉFINITION 1.7. L'ordre d'un groupe G est son cardinal noté |G|. L'ordre de $x \in G$ est l'ordre de $\langle x \rangle$ noté o(x).

PROPOSITION 1.8. Soit $x \in G$. On a $o(x) < +\infty$ si et seulement s'il existe $n \in \mathbb{N}^*$ tel que $x^n = 1$. Dans ce cas, l'ordre m = o(x) divise n et $\langle x \rangle = \{1, x, \dots, x^{m-1}\}$.

Preuve On suppose qu'il existe $n \in \mathbb{N}^*$ tel que $x^n = 1$. On pose alors $m = \min \{x \in \mathbb{N}^* \mid x^n = 1\}$. On a $m' \leqslant n$. Une division euclidienne donne l'existence de $q, r \in \mathbb{N}$ tels que n = qm + r et r < m. On a alors $x^n = x^r$, donc $x^r = 1$, donc r = 0 par minimalité de m', donc $m \mid n$. On note $A = \{1, x, \dots, x^{m-1}\}$. On a $A \subset \langle x \rangle$. De plus, on a |A| = m sinon il existerai $a, b \in [0, m-1]$ tels que a < b et $x^a = x^b$, donc $x^{b-a} = 1$ avec b-a < m ce qui impossible. Montrons que A est stable par multiplication. Si $a, b \in [0, m-1]$, alors $x^a x^b = x^r$ où r est le reste de la division euclidienne de a + b par m. Montrons que A est stable par inverse. Si $a \in [0, m-1]$, alors $(x^a)^{-1} = x^{m'-a} \in A$. Donc $A = \langle x \rangle$ et o(x) = m.

THÉORÈME 1.9 (LAGRANGE). Soient G un groupe fini et H un sous-groupe de G. Alors $|H| \mid |G|$. En particulier, si $x \in G$, alors $o(x) \mid |G|$.

NOTATION. On pose alors [G:H] = |G|/|H|, appelé indice de H dans H.

- \diamond Remarque. Si |G|=4, alors on est dans un des deux cas :
 - soit il existe $x \in G$ tel que o(x) = 4 et $G = \langle x \rangle$,
 - soit $x^2 = 1$ pour tout $x \in G$.

DÉFINITION 1.10 (morphisme de groupes). Une application $f\colon (G,\cdot)\to (H,*)$ entre deux groupes est un morphisme si, pour tous $x,y\in G$, on a $f(x\cdot y)=f(x)*f(y)$. On dira que f est un isomorphisme si f est bijective. On dira que f est un automorphisme de G si $f\colon G\to G$ est un isomorphisme et on note $\operatorname{Aut}(G)$ l'ensemble des automorphismes de G

♦ REMARQUE. On a $f(e_G) = e_H$ car $f(e_G) = f(e_G * e_G) = f(e_G) * f(e_G)$ et, en multipliant par $f(e_G)^{-1}$, on a $f(e_G) = e_H$. Par conséquent, si $x \in G$, alors $f(x)^{-1} = f(x^{-1})$.

PRINCIPE GÉNÉRAL. Si $\varphi \colon G \to H$ est un isomorphisme, alors tout ce qui vaut pour G vaut pour H.

- ightharpoonup EXEMPLES. L'application $f:(\{\pm 1\},\times)\to(\mathbb{Z}/2\mathbb{Z},+)$ telle que $f(1)=\overline{0}$ et $f(-1)=\overline{1}$ est un morphisme.
 - Si H < G, alors $h \in H \longmapsto h \in H$ est un morphisme.
 - Si $n \in \mathbb{Z}^*$, alors $n \in \mathbb{Z} \longmapsto \overline{n} \in \mathbb{Z}/n\mathbb{Z}$ est un morphisme surjectif.
 - Si $G = \langle x \rangle$ et |G| = n, alors $\overline{a} \in \mathbb{Z}/n\mathbb{Z} \longmapsto x^a \in G$ est un morphisme.
 - La fonction exp: $(\mathbb{R}, +) \longmapsto (\mathbb{R}^*, \times)$ est un morphisme.
 - Si K est un corps commutatif, alors det: $GL_n(K) \to K^*$ est un morphisme surjectif.
 - Si G est abélien, alors $g \in G \longrightarrow g^{-1} \in G$ est un morphisme.

PROPOSITION 1.11. Soit $f: G \to H$ un morphisme. Si G' < G, alors f(G') < H. Si H' < H, alors $f^{-1}(H') < G$. En particulier, on a Ker f < G.

DÉFINITION 1.12. Deux groupes G et H sont dits isomorphes s'il existe un isomorphisme de G dans H. Dans ce cas, on note $G \simeq H$.

PROPOSITION 1.13. Un morphisme $f: G \to H$ est injectif si et seulement si Ker $f = \{1_H\}$.

EXERCICE 1.2. Soient G un groupe et H et K deux sous-groupes de G. On pose

$$\varphi \colon \left| \begin{matrix} H \times K \longrightarrow G, \\ (h,k) \longmapsto h+k \end{matrix} \right.$$

Montrer que

- l'application φ est surjective si et seulement si $\langle H \cap K \rangle = G$;
- l'application φ est injective si et seulement si $H \cap K = \{0\}$.

Théorème 1.14 (chinois). Soient $m, n \in \mathbb{N}^*$ tels que $m \wedge n = 1$. Alors l'application

$$\varphi \colon \begin{vmatrix} \mathbb{Z}/mn\mathbb{Z} \longrightarrow \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}, \\ \overline{a}^{mn} \longmapsto (\overline{a}^m, \overline{a}^n) \end{vmatrix}$$

est un isomorphisme.

1.2 Groupes abéliens de type fini

1.2.1 Groupes monogènes, cycliques

DÉFINITION 1.15. Un groupe G est monogène s'il existe $x \in G$ tel que $G = \langle x \rangle$. De plus, si G est fini, alors il est dit cyclique.

- ♦ REMARQUE. Dans l'anneau ($\mathbb{Z}/n\mathbb{Z}, +, \times$), on peut considérer le groupe des éléments inversibles pour \times , noté $(\mathbb{Z}/n\mathbb{Z})^{\times}$. Si a et b sont inversibles pour \times , alors $ab \equiv 1 \mod n$, donc le théorème de Bézout donne alors $a \wedge n = 1$. Alors ce groupe est fini, abélien mais pas forcément cyclique. Par exemple, le groupe ($\mathbb{Z}/8\mathbb{Z}$) $^{\times} = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ n'est pas cyclique
- PROPOSITION 1.16. Si G est un groupe monogène et H < G, alors H est monogène.

Preuve Il suffit de prendre $G = \mathbb{Z}$ ou $G = \mathbb{Z}/n\mathbb{Z}$. On suppose que $G = \mathbb{Z}$. Soit H un sous-groupe de \mathbb{Z} . Si $H = \{0\}$, c'est bon. Sinon on suppose que $H \neq \{0\}$ et alors $H \cap \mathbb{N}^* \neq \emptyset$. Soit $m := \min\{n \in \mathbb{N}^* \mid n \in H\} > 0$. Par suite, on a $n\mathbb{Z} < H$. De plus, si $b \in H$, alors il existe $q \in \mathbb{N}$ et $r \in [0, m-1]$ tels que b = nq + r, donc $r \in H$, donc r = 0 par minimalité de m, donc $b \in n\mathbb{Z}$. Même argument dans le cas où $G = \mathbb{Z}/n\mathbb{Z}$.

PROPOSITION 1.17. Soit G un groupe cyclique. On note $G = \langle x \rangle$ et m = |G|. Soit $d \in \mathbb{N}^*$ et $d_1 \coloneqq d \land n$. Alors l'équation $X^d = 1$ admet d_1 solutions et l'ensemble solution de $X^d = 1$ est l'ensemble des solutions de $X^{d_1} = 1$, i. e. $S \coloneqq \{x_k \mid 0 \leqslant k \leqslant d_1 - 1\}$ où $x_k \coloneqq x^{km/d_1}$.

Preuve Montrons que les deux ensembles sont égaux. Soit $y \in G$. Alors $y^d = 1 \Leftrightarrow y^{d_1} = 1$. En effet, le sens réciproque est évident car $d_1 \mid d$. Le théorème de BÉZOUT donne l'existence de $u, v \in \mathbb{Z}$ tels que $um + vd = d_1$. Si $y^d = 1$, alors $y^{d_1} = y^{um}y^{vd} = (y^m)^u(u^d)^v = 1$.

Par ailleurs, pour tout $k \in [0, d_1 - 1]$, on a $x_k^{d_1} = 1$. Si $z \in G - S$, alors on peut écrire $z = x^{km/d_1 + i}$ avec $1 < i < m/d_1$, donc $z^{d_1} = x^{d_1 i} \neq 1$ car $d_1 i < m$.

LEMME 1.18. Soient G un groupe abélien et $x, y \in G$ d'ordres finis respectifs n et m. On suppose que $n \wedge m = 1$. Alors l'ordre de xy est nm.

Preuve On a $(xy)^{nm} = 1$, donc $o(xy) \mid nm$. Par ailleurs, le groupe $\langle x \rangle \cap \langle y \rangle$ est un sous-groupe de $\langle x \rangle$ et de $\langle y \rangle$, donc le théorème de LAGRANGE donne que $|\langle x \rangle \cap \langle y \rangle|$ divise à la fois n et m, donc $\langle x \rangle \cap \langle y \rangle = \{1_G\}$ car $n \wedge m = 1$. On note p = o(xy). Par commutativité et comme $(xy)^p = 1$, on a $x^p = y^{-p}$, donc $x^p = y^{-p} = 1$, donc $x^p = 1$ et $x^p = 1$, donc $x^p = 1$. D'où $x^p = 1$, donc $x^p = 1$.

PROPOSITION 1.19. Soit G un groupe abélien fini tel que, pour tout $d \in \mathbb{N}^*$, l'équation $X^d = 1$ admette au plus d solutions dans G. Alors G est cyclique.

Preuve On note $n \coloneqq |G|$. La proposition est évidente pour n = 1. On suppose que $n \geqslant 2$. Il existe p_1, \ldots, p_ℓ premiers et $d_1, \ldots, d_\ell > 0$ tels que $n = \prod_{i=1}^\ell p_i^{\alpha_i}$. Soit $i \in [\![1,\ell]\!]$. Par hypothèse, il existe $b_i \in G$ tel que $b_i^{n/p_i} \neq 1$, donc $b_i^{n/p_i^{\gamma_i}} \neq 1$ (*) pour tout $\gamma_i \in [\![1,\alpha_i]\!]$. On note $a_i \coloneqq b_i^{n/p_i^{\alpha_i}}$. Alors $a_i^{p_i^{\alpha_i}} = b_i^n = 1$, donc $o(a_i) \mid p_i^{\alpha_i}$ et donc il existe $\beta_i \in [\![0,\alpha_i]\!]$ tel que $o(a_i) = p_i^{\beta_i}$. Par (*), on conclut que $o(a_i) = p_i^{\alpha_i}$. Par application successives du lemmes, on en déduit que

$$o\left(\prod_{i=1}^{\ell} a_i\right) = \prod_{i=1}^{\ell} p_i^{\alpha_i} = n.$$

Donc le groupe G est cyclique et engendré par $\prod_{i=1}^{\ell} a_i$.

COROLLAIRE 1.20. Si K est un corps commutatif, alors tout sous-groupe fini de (K^*, \times) est cyclique. En particulier, le groupe $((\mathbb{Z}/p\mathbb{Z})^{\times}, \times)$ est cyclique pour p premier.

Preuve Si $d \in \mathbb{N}^*$, alors le polynôme $X^d - 1$ de K[X] a au plus d racines dans K. Donc K^* est cyclique. \square

1.2.2 Groupes abéliens de type fini

DÉFINITION 1.21. Soient (G, +) un groupe abélien de type fini. On dit qu'une famille génératrice (x_1, \ldots, x_n) est une pseudo-base si

$$\forall (m_1, \dots, m_n) \in \mathbb{Z}^n, \quad \sum_{i=1}^n m_i x_i = 0 \quad \Longrightarrow \quad m_1 x_1 = \dots = m_n x_n = 0.$$

On dit que c'est une base si

$$\forall (m_1, \dots, m_n) \in \mathbb{Z}^n, \quad \sum_{i=1}^n m_i x_i = 0 \quad \Longrightarrow \quad m_1 = \dots = m_n = 0.$$

On note $\text{Tor}(G) := \{x \in G \mid \text{o}(x) < +\infty\}$. Alors Tor(G) est un sous-groupe de G, appelé sous-groupe de torsion de G. Si Tor(G) = G, on dira que G est de torsion.

- ightharpoonup EXEMPLES. Soit $r \in \mathbb{N}^*$. Pour $i \in [1, r]$, on note x_i l'élément de \mathbb{Z}^r dont toutes les composantes sont nulles sauf la i-ième qui vaut 1. Alors (x_1, \ldots, x_r) est une base de \mathbb{Z}^r , appelée base canonique.
 - Soit $n \in \mathbb{N}^*$. On note $G := \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}$. Alors (x_1, x_2) est une pseudo-base de G où $x_1 := (\overline{1}, 0)$ et $x_2 := (\overline{0}, 1)$. On a $Tor(G) = \mathbb{Z}/n\mathbb{Z} \times \{0\} \simeq \mathbb{Z}/n\mathbb{Z}$.
- \diamond REMARQUES. Si G admet une pseudo-base (x_1, \ldots, x_n) , alors $G \simeq \langle x_1 \rangle \times \cdots \times \langle x_n \rangle$. En effet, il suffit de considérer le morphisme

$$\phi \colon \begin{vmatrix} \langle x_1 \rangle \times \cdots \times \langle x_n \rangle \longrightarrow G, \\ (m_1 x_1, \dots, m_n x_n) \longmapsto m_1 x_1 + \cdots + m_n x_n. \end{vmatrix}$$

– Si G admet une base (x_1,\ldots,x_r) , alors $G\simeq\mathbb{Z}^r$. En effet, il suffit de considérer le morphisme

$$\psi : \left| \begin{array}{c} \mathbb{Z}^r \longrightarrow G, \\ (m_1, \dots, m_r) \longmapsto m_1 x_1 + \dots + m_r x_r. \end{array} \right|$$

THÉORÈME 1.22. Si G est un groupe abélien de type fini, alors il admet une pseudo-base. En particulier, il existe $m_1, \ldots, m_s \in \mathbb{Z}$ et $r \in \mathbb{N}$ tels que $G \simeq \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_s\mathbb{Z} \times \mathbb{Z}^r$.

 \diamond REMARQUES. Par un isomorphisme, le groupe Tor(G) s'identifie à $\mathbb{Z}/m_1\mathbb{Z}\times\cdots\times\mathbb{Z}/m_s\mathbb{Z}$. Alors G est d'ordre fini si et seulement si Tor(G)=G. De plus, on a $\text{Tor}(G)=\{0\}$ si et seulement si $G\simeq\mathbb{Z}^r$. Dans ce dernier cas, on dira que G est un groupe abélien libre.

LEMME 1.23 (RADO). Soient G un groupe abélien de type fini, (x_1, \ldots, x_k) une famille génératrice de G et $c := (c_1, \ldots, c_k) \in \mathbb{N}^k$ telle que $c_1 \wedge \cdots \wedge c_k = 1$. Alors il existe une famille génératrice (y_1, \ldots, y_k) de G telle que

$$y_1 = \sum_{i=1}^k c_i x_i.$$

Preuve On procède par récurrence sur $\sum_{i=1}^k c_i$. Si $\sum_{i=1}^k c_i = 1$, alors quitte à permuter les indices, on peut supposer que $c_1 = 1$ et donc $c_i = 0$ pour $i \in [\![2,k]\!]$, donc la famille (x_1,\ldots,x_n) convient.

On suppose que $\sum_{i=1}^k c_i > 1$. Alors il existe au moins deux éléments non nuls parmi c. Quitte à permuter les indices con suppose que $\sum_{i=1}^k c_i > 1$.

On suppose que $\sum_{i=1}^k c_i > 1$. Alors il existe au moins deux éléments non nuls parmi c. Quitte à permuter les indices, on suppose que c_1 et c_2 sont non nuls et que $c_1 \geqslant c_2$. On considère la famille $c' := (c_1 - c_2, c_2, \dots, c_k)$. On a bien $(c_1 - c_2) \wedge c_2 \wedge \dots \wedge c_k = 1$. On considère la famille génératrice $(x_1, x_1 + x_2, x_3, \dots, x_k)$. On a alors $(c_1 - c_2) + c_2 + \dots + c_k \leqslant \sum_{i=1}^k c_i$. D'après l'hypothèse de récurrence, il existe une famille génératrice (y_1, \dots, y_k) de G telle que

$$y_i = (c_1 - c_2)x_1 + c_2(x_1 + x_2) + c_3x_3 + \dots + c_kx_k = \sum_{i=1}^k c_i x_i$$

ce qui termine la récurrence.

Preuve du théorème On montre le résultat sur le nombre minimal k de générateurs. C'est vrai si k=1 car alors $G\simeq\mathbb{Z}$. Soit $k\geqslant 2$. On suppose que la propriété est vraie au rang k-1. Parmi les famille génératrice à k éléments, on en prend une (x_1,\ldots,x_k) où l'ordre de x_1 est minimal. Montrons que $G\simeq\langle x_1\rangle\times\langle x_2,\ldots,x_k\rangle$ ce qui permettra de conclure par l'hypothèse de récurrence. Il suffit de montrer que $\langle x_1\rangle\cap\langle x_2,\ldots,x_k\rangle=\{0\}$. Par l'absurde, supposons que $\langle x_1\rangle\cap\langle x_2,\ldots,x_k\rangle\neq\{0\}$. Dans ce cas, il existe $(m_1,\ldots,m_r)\in\mathbb{Z}^r$ telle que $\sum_{i=1}^k m_i x_i=0$. Quitte à remplacer les x_i par $-x_i$, on peut supposer que $m_i\geqslant 0$ pour tout $i\in[1,r]$ et que $0\neq m_1< o(x_1)$. Pour $i\in[1,r]$, on note $c_i=m_i/d$ avec $d:=m_1\wedge\cdots\wedge m_k$. Alors la famille $c:=(c_1,\ldots,c_k)$ satisfait les hypothèses du lemme, donc il existe une famille génératrice (y_1,\ldots,y_k) telle que

$$y_1 = \sum_{i=1}^k c_i x_i.$$

En multipliant cette relation par d, on a $dy_1 = \sum_{i=1}^k m_i x_i = 0$, donc $o(y_1) \mid d \leq m_1 < o(x_1)$ avec $o(x_1)$ minimal ce qui est impossible. D'où $G \simeq \langle x_1 \rangle \times \langle x_2, \dots, x_k \rangle$. L'hypothèse de récurrence permet alors de conclure.

PROPOSITION 1.24. Soit G un groupe abélien de type fini. De la décomposition $G \simeq \text{Tor}(G) \times \mathbb{Z}^r$, l'entier r est défini de façon unique et s'appelle le rang de G.

Preuve On traite le cas où $\operatorname{Tor}(G) = \{0\}$. Alors $G \simeq \mathbb{Z}^r$. Il suffit de montrer que, si $\varphi \colon \mathbb{Z}^r \to \mathbb{Z}^{r'}$ est un isomorphisme, alors r = r'. Soit (e_1, \ldots, e_r) la base canonique de \mathbb{Z}^r . Comme φ est un isomorphisme, la famille $(\varphi(e_1), \ldots, \varphi(e_r))$ est une base de $\mathbb{Z}^{r'}$, donc elle engendre sur \mathbb{Q} un \mathbb{Q} -espace vectoriel de dimension r, donc $r' \geqslant r$. En utilisant φ^{-1} , on obtient également que $r' \leqslant r$. D'où r = r' et donc l'unicité.

THÉORÈME 1.25. Soit G un groupe abélien de type fini. On note r son rang. Soit H un sous-groupe de G. Alors H est de type fini et son rang est inférieur à r.

Preuve On suppose que G est libre. Alors $G \simeq \mathbb{Z}^r$. On procède alors par récurrence sur r. Si r=1, alors $H=n\mathbb{Z}$ avec $n\in\mathbb{N}$, donc le rang de H vaut 0 ou 1. Soit r>1. On suppose que la propriété est vraie au rang r-1. On considère la projection

$$\varphi \colon \left| \begin{array}{c} \mathbb{Z}^r \longrightarrow \mathbb{Z}, \\ (m_1, \dots, m_r) \longmapsto m_r. \end{array} \right.$$

Alors l'application φ est un morphisme. Soit H un sous-groupe de \mathbb{Z}^r . Alors $\varphi(H)$ est un sous-groupe de \mathbb{Z} , donc il s'écrit sous la forme $\varphi(H) = \varphi(h_0)\mathbb{Z}$ avec $h_0 \in H$. Si $\varphi(H) = \{0\}$, alors $H < \text{Ker } \varphi \simeq \mathbb{Z}^{r-1}$ et on applique la récurrence. On suppose désormais que $\varphi(H) \neq \{0\}$. Alors $H \cap \text{Ker } \varphi$ est un sous-groupe de \mathbb{Z}^{r-1} , donc il admet une base (h_1, \ldots, h_s) avec $s \leqslant r-1$ par l'hypothèse de récurrence. Soit $h \in H$. Alors il existe $n_0 \in \mathbb{Z}$ tels que $\varphi(h) = n_0 \varphi(h_0)$, donc $h - n_0 h_0 \in \text{Ker } \varphi$. De même, on montre qu'il existe $(m_0, \ldots, m_s) \in \mathbb{Z}^{s+1}$ telle que $h = \sum_{i=0}^s m_i h_i$. Donc la famille (h_0, \ldots, h_s) est génératrice de H et on vérifie qu'elle est libre, donc le rang s de H est inférieur à r.

On revient au cas général. On peut supposer que $G = \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_s\mathbb{Z} \times \mathbb{Z}^r$. Soit H un sous-groupe de G. Alors Tor(H) est un sous-groupe de Tor(G), donc $H = \text{Tor}(G) \times p(H)$ où $p \colon G \to \mathbb{Z}^r$ est la projection sur \mathbb{Z}^r . On se ramène alors au cas précédent.

 \diamond REMARQUE. Il n'y a pas unicité des entiers m_i . Par exemple, le théorème chinois donne $\mathbb{Z}/6\mathbb{Z} \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. Par contre, il y a unicité dans le cas suivant.

THÉORÈME 1.26. Un groupe abélien G de type fini s'écrit sous l'une des formes suivantes :

- 1. il existe $m_1, \ldots, m_s \in \mathbb{Z}$ et $r \in \mathbb{N}$ tels que $G \simeq \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_s\mathbb{Z} \times \mathbb{Z}^r$ et $m_i \mid m_{i+1}$ pour tout $i \in [1, s-1]$;
- 2. il existe $p_1, \ldots, p_s \in \mathbb{N}$ premiers, $\alpha_1, \ldots, \alpha_s \in \mathbb{N}^*$ et $r \in \mathbb{N}$ tels que $G \simeq \mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p_s^{\alpha_s}\mathbb{Z} \times \mathbb{Z}^r$.

Ces décompositions sont uniques à l'ordre près des facteurs.

EXERCICE 1.3. Donner les décompositions 1 et 2 du groupe

$$G := \mathbb{Z}/60\mathbb{Z} \times \mathbb{Z}/45\mathbb{Z} \times \mathbb{Z}/36\mathbb{Z}.$$

 \triangleright On a $60=2^2\times 3\times 5,\, 45=3^2\times 5$ et $36=2^2\times 3^2,\, donc$ le théorème chinois donne

$$G \simeq (\mathbb{Z}/2^2\mathbb{Z})^2 \times \mathbb{Z}/3\mathbb{Z} \times (\mathbb{Z}/3^2\mathbb{Z})^2 \times (\mathbb{Z}/5\mathbb{Z})^2 = (\mathbb{Z}/4)^2 \times \mathbb{Z}/3\mathbb{Z} \times (\mathbb{Z}/9\mathbb{Z})^2 \times (\mathbb{Z}/5\mathbb{Z})^2.$$

Pour avoir la décomposition 1 à partir de la décomposition 2, on la casse et on la recompose avec le théorème chinois.

1.3 LE GROUPE DIÉDRAL

1.3.1 Définition

DÉFINITION 1.27. Soit $n \ge 3$. On identifie \mathbb{C} à \mathbb{R}^2 . On considère le polygone régulier

$$\mathscr{P}_n = \{e^{2i\pi k/n} \mid k \in [0, n-1]\}$$

qui possède n sommets. Le groupe D_n est le sous-groupe des isométries du plan affine qui fixent globalement \mathscr{P}_n .

Théorème 1.28. Le groupe D_n est d'ordre 2n, il est engendré par la symétrie axiale $s \in \mathcal{L}(\mathbb{R}^2)$ telle que

$$\operatorname{Mat}_{\mathscr{B}}(s) := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

et par la rotation r d'angle $\theta := 2\pi/n$ telle que

$$\operatorname{Mat}_{\mathscr{B}}(r) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

où \mathscr{B} est la base canonique de \mathbb{R}^2 . Les isométries r et r sont respectivement d'ordre 2 et n. On a $srs=r^{-1}$. Enfin, on a

$$D_n = \{ \mathrm{Id}, r, \dots, r^{n-1}, s, rs, r^2 s, \dots, r^{n-1} s \}.$$

Preuve II est clair que $\langle r,s \rangle$ est un sous-groupe de D_n . Réciproquement, soit $f \in D_n$. Comme f est une isométrie affine préservant \mathscr{P}_n , elle préserve les barycentres et l'origine en particulier, donc f(0) = 0, donc f est une rotation ou une symétrie axiale. Soit $A \in \mathscr{P}_n$. Alors $f(A) \in \mathscr{P}_n$, donc il existe $k \in [0, n-1]$ tel que $r^k(A) = f(A)$, donc $r^{-k} \circ f(A) = A$. Si f est une rotation, alors $r^{-k} \circ f$ est aussi une rotation fixant A et o, donc $r^{-k} \circ f = \operatorname{Id}$ et $f = r^k$. Si f est une symétrie, alors $f \circ s$ est une rotation, donc on se ramène au cas précédent et il existe $k \in [0, n-1]$ tel que $f = r^k \circ s$. D'où le théorème.

- \diamond REMARQUES. 1. On remarque que $D_n = \langle r \rangle \sqcup \langle r \rangle s$.
 - 2. On peut définir D_1 et D_2 comme $D_i = \langle r_\theta, s \rangle$ avec $\theta = 2\pi/i$. On vérifie que $D_1 \simeq \mathbb{Z}/2\mathbb{Z}$ et $D_2 \simeq (\mathbb{Z}/2\mathbb{Z})^2$.
 - 3. Si $n \ge 3$, alors le groupe D_n n'est pas abélien car, si rs = sr, alors $srs = s^2r = r = r^{-1}$, donc $r^2 = \text{Id}$ ce qui est impossible.

1.3.2 Caractérisation abstraite

LEMME 1.29. Soient G un groupe et H et K deux sous-groupes de G. On note $HK := \{hk \mid h \in H, k \in K\}$. On suppose que $H \cap K = \{1\}$. Alors l'application

$$| H \times K \longrightarrow HK, (h, k) \longmapsto hk$$

est bijective. En particulier, on a $\sharp HK = |H||K|$ si H et K sont finis.

Preuve Il suffit de montrer que cette application est injective. Soient $h, h' \in H$ et $k, k' \in K$ tels que hk = h'k'. Alors $k' = h'^{-1}hk \in K$ avec $k \in K$, donc $h'^{-1}h \in K \cap H$, donc h' = h puis k' = k. D'où l'injectivité.

Théorème 1.30. Soit G un groupe. On suppose que

- (i) le groupe G est engendré par deux éléments r et s;
- (ii) $o(s) = 2 \text{ et } o(r) = n \ge 3$;
- (iii) $srs = r^{-1}$.

Alors $G \simeq D_n$.

Preuve On a $\langle s \rangle \cap \langle r \rangle = \{1\}$ car sinon, comme $\langle s \rangle = \langle 1, s \rangle$, il existerait $k \in \mathbb{N}$ tel que $s = r^k$, donc sr = rs ce qui est impossible. D'après le lemme précédent, la partie

$$A := \{r^i s^j \mid i \in [0, n-1], j \in \{0, 1\}\}$$

possède 2n éléments dont r et s. Montrons que A=G. On a déjà $A\subset G$. Puisque A est finie, il suffit de montrer qu'elle est stable par multiplication. Pour cela, remarquons que $srs=srs^{-1}=r^{-1}$, donc $sr^is=r^{-i}$ pour tout $i\in [0,n-1]$. Puis pour tout $i,i'\in [0,n-1]$ et $j,j'\in \{0,1\}$,

- si j = 0, alors $r^i s^j r^{i'} s^{j'} = r^I s^{j'}$ avec $I := i + i' \quad [n] \in [0, n 1]$;
- $-\text{ si } j=1, \text{ alors } r^i s^j r^{i'} s^{j'} = r^I s^J \text{ avec } I \coloneqq i-i' \ \ [n] \in [\![0,n-1]\!] \text{ et } J \coloneqq 1+j^2 \ \ [2] \in \{0,1\}.$

Dans tous les cas, on a $r^i s^j r^{i'} s^{j'} \in A$ ce qui permet de conclure que A = G. On a ainsi calculé la table : elle est entièrement déterminée par les hypothèses (i), (ii) et (iii), conditions vérifiées par D_n . D'où $G \simeq D_n$.

1.4 Sous-groupes Normaux

1.4.1 Définition

DÉFINITION 1.31. Soient G un groupe et H un sous-groupe de G. On dit que H est normal (ou distingué) dans G si, pour tous $g \in G$ et $h \in H$, on a $ghg^{-1} \in H$. Dans ce cas, on note $H \triangleleft G$.

♦ Remarque. On peut également reformuler cette définition par l'équivalence

$$H \triangleleft G \iff (\forall g \in G, \text{ int}_g(H) = H)$$

où, pour tout $g \in G$, on pose l'automorphisme de G

$$\operatorname{int}_g : \begin{vmatrix} G \longrightarrow G, \\ x \longmapsto gxg^{-1}, \end{vmatrix}$$

appelé automorphisme intérieur de G associé à g. On a également

$$H \triangleleft G \iff (\forall h \in G, gH = Hg).$$

- \triangleright Exemples. 1. Si G est abélien, alors tout sous-groupe de G est normal.
 - 2. Les groupes G et $\{1\}$ sont des sous-groupes normaux dans G.
 - 3. Soit $\varphi \colon G \to G'$ un morphisme. Alors $\operatorname{Ker} \varphi$ est un sous-groupe normal dans G'.
 - 4. Comme det: $GL_n(K) \to K^{\times}$ est un morphisme, son noyau, noté $SL_n(K)$, est normal dans $GL_n(K)$.
 - 5. Dans D_n avec $n \ge 3$, le groupe $\langle s \rangle$ n'est pas normal. En effet, on a $rsr^{-1} = r^2s \ne s$

PROPOSITION 1.32. Soient G un sous-groupe et H un sous-groupe de G. Si [G:H]=2, alors $H \triangleleft G$.

Preuve On suppose que [G:H]=2. Soit $g\in G\setminus H$. La partition par les classes à droites donne $G=H\sqcup Hg$ et celle par les classes à gauches donne $G=H\sqcup gH$, donc Hg=gH. Ceci est également vrai pour $g\in H$. \square

 \diamond REMARQUE. Soit G un groupe de type fini, noté $G = \langle A \rangle$, et H un sous-groupe de G. Alors

$$H \triangleleft G \iff (\forall g \in A, \text{ int}_a(H) = H)$$

car le groupe $\{a \in G \mid \text{int}_a(H) = H\}$ est un sous-groupe de G.

PROPOSITION 1.33. Soient G un groupe et $A \subset G$ telle que $xAx^{-1} = A$ pour tout $x \in G$. Alors $\langle A \rangle \triangleleft G$.

LEMME 1.34. Soient G_1 et G_2 deux groupes, $\varphi \colon G_1 \to G_2$ un morphisme et $A \subset G_1$. Alors $\varphi(\langle A \rangle) = \langle \varphi(A) \rangle$.

Preuve de la proposition Il suffit de prendre $G = G_1 = G_2$ et $\varphi = \operatorname{int}_x$ pour $x \in G$.

 \triangleright EXEMPLE. Soit G un groupe. Pour tous $x,y\in G$, on note $[x,y]=xyx^{-1}y^{-1}$ le commutateur de x et y. On pose

$$D(G) := \langle \mathscr{C} \rangle \text{ avec } \mathscr{C} := \{ [x, y] \mid x, y \in G \}$$

le groupe dérivé de G. Montrons qu'il est normal dans G. Il suffit de montrer que $\varphi(\mathcal{D}(G)) = \mathcal{D}(G)$ pour tout $\varphi \in \operatorname{Aut}(G)$ et il suffira de prendre $\varphi = \operatorname{int}_x$ ensuite. Soient $\varphi \in \operatorname{Aut}(G)$ et $x, y \in G$. On a $[x, y] = xyx^{-1}y^{-1}$, donc $\varphi([x, y]) = \varphi(x)\varphi(y)\varphi(x)^{-1}\varphi(y)^{-1} = [\varphi(x), \varphi(y)] \in \mathcal{D}(G)$ et $[x, y] = \varphi([\varphi^{-1}(x), \varphi^{-1}(y)]) \in \varphi(\mathcal{D}(G))$. Ainsi $\varphi(\mathscr{C}) = \mathscr{C}$, donc le lemme donne $\varphi(\mathcal{D}(G)) = \mathcal{D}(G)$.

DÉFINITION 1.35. Soient G un groupe et H un sous-groupe de G. On dit que H est caractéristique si, pour tout $\varphi \in \operatorname{Aut}(G)$, on a $\varphi(H) = H$.

 \triangleright Exemple. On vient de démontrer que $\mathrm{D}(G)$ est caractéristique.

1.4.2 Groupes quotient

DÉFINITION 1.36. Soient G un groupe et H un sous-groupe de G. On pose

$$G/H := \{gH \mid g \in G\}$$

l'ensemble des classes d'équivalences par la relation d'équivalence \sim sur G définie par

$$x \sim y \iff y^{-1}x \in H.$$

But. On considère la projection canonique

$$\pi\colon \left|\begin{matrix} G \longrightarrow G/H, \\ g \longmapsto g \mod H. \end{matrix}\right|$$

On veut munir l'ensemble G/H d'une structure de groupe pour une loi * telle que l'application φ sois un morphisme, $i.\ e.\ \overline{x}*\overline{y}=\overline{x*y}$. Dans ce cas, le loi * est unique.

Théorème 1.37. Soit H un sous-groupe normal de G. Il existe une unique loi * de groupe sur G/H telle que l'application π soit un morphisme.

Preuve Il s'agit de montrer que * est bien définie. Soient $x, x' \in G$ et $y, y' \in G$ tels que $\overline{x} = \overline{x'}$ et $\overline{y} = \overline{y'}$. Il faut et il suffit que $\overline{xy} = \overline{x'y'}$. On a $(xy)^{-1}x'y' = y^{-1}x^{-1}x'y' \in H$ car $x^{-1}x' \in H$ et le sous-groupe H est normal. Donc la loi * a un sens : elle ne dépend pas des représentants choisis.

On remarque que G/H admet bien un élément neutre qui est $\overline{1_G}$. Par ailleurs, pour tout $x \in G$, le symétrique de \overline{x} est $\overline{x^{-1}}$. On montre également l'associativité. En particulier, l'application φ est bien un morphisme. \square

COROLLAIRE 1.38. Alors H est un sous-groupe normal dans G si et seulement s'il existe un groupe G_1 et un morphisme $\varphi \colon G \to G_1$ tel que $H = \operatorname{Ker} \varphi$.

Preuve Le sens réciproquement a déjà été montré. Si H est normal dans G, alors on prend $\varphi \colon G \to G/H$ la projection canonique de G sur G/H.

THÉORÈME 1.39 (de factorisation). Soient $\varphi \colon G \to H$ un morphisme et N un sous-groupe normal de G qui soit un sous-groupe de Ker φ . Alors il existe un unique morphisme $\overline{\varphi} \colon G/N \to H$ qui fait commuter le diagramme

i. e. tel que $\overline{\varphi} \circ \pi = \varphi$. De plus, si $N = \operatorname{Ker} \varphi$, alors l'application $\overline{\varphi}$ est injective et l'application

$$\label{eq:GN} \begin{vmatrix} G/N \longrightarrow \operatorname{Im} \overline{\varphi} = \operatorname{Im} \varphi, \\ x \longmapsto \overline{\varphi}(x) \end{vmatrix}$$

est un isomorphisme.

Preuve Si un telle application $\overline{\varphi}$ existe, alors $\overline{\varphi}(\overline{x}) = \varphi(x)$ pour tout $x \in G$, donc φ est unique. Par ailleurs, si $\overline{y} = \overline{x}$, alors $x^{-1}y \in N < \text{Ker } \varphi$, donc $\varphi(x^{-1}y) = 1$, donc $\varphi(x) = \varphi(y)$. Donc $\overline{\varphi}$ est bien définie. Le reste se vérifient facilement.

PROPOSITION 1.40. Soit $N \triangleleft G$. On note $\overline{G} := G/N$, puis \mathfrak{G} l'ensemble des sous-groupes H de G tel que N < H

et $\overline{\mathfrak{G}}$ l'ensemble des sous-groupes de $\overline{G}.$ Alors les applications

$$\begin{vmatrix} \mathfrak{G} \longrightarrow \overline{\mathfrak{G}}, \\ H \longmapsto \pi(H) = \overline{H}, \end{vmatrix} \text{ et } \begin{vmatrix} \overline{\mathfrak{G}} \longrightarrow \mathfrak{G}, \\ \overline{H} \longmapsto \pi^{-1}(\overline{H}) \end{vmatrix}$$

sont des bijections, réciproque l'une de l'autre. De plus, on a $N < H \triangleleft H \Leftrightarrow \overline{H} \triangleleft \overline{G}$

1.4.3 Exemples fondamentaux

(i) Centre d'un groupe

DÉFINITION 1.41. Soit G un groupe. On pose

$$Z(G) := \{ x \in G \mid \forall g \in G, xg = gx \}$$

le centre de G.

Proposition 1.42. Alors $Z(G) \triangleleft G$ comme noyau du morphisme

Int:
$$G \longrightarrow \operatorname{Aut}(G),$$

 $g \longmapsto \operatorname{int}_g.$

Par le théorème d'isomorphisme, on a $\operatorname{Im}(\operatorname{Int}) \simeq G/\operatorname{Z}(G)$

- \triangleright EXEMPLE. Comme $Z(D_3) = \{Id\}$, on a $Int(D_3) \simeq D_3$, donc $Aut(D_3) = D_3$.
- ♦ Remarques. 1. Un groupe coïncide avec son centre si et seulement s'il est abélien.
 - 2. Pour tout $n \in \mathbb{N}$, on a $|\operatorname{Aut}(D_n)| = n\varphi(n)$.
 - 3. On peut montrer que $\operatorname{Int}(G) \triangleleft \operatorname{Aut}(G)$. Le quotient $\operatorname{Out}(G) \coloneqq \operatorname{Aut}(G)/\operatorname{Int}(G)$ est appelé groupe des automorphismes extérieurs de G.

(ii) Groupe dérivé

DÉFINITION 1.43. Soit G un groupe. On pose

$$D(G) := \langle \mathscr{C} \rangle \text{ avec } \mathscr{C} := \{ [x, y] := xyx^{-1}y^{-1} \mid x, y \in G \}$$

le groupe dérivé de G.

 \diamond REMARQUE. On a D(G) = {1} si et seulement si G est abélien.

Proposition 1.44. 1. On a $D(G) \triangleleft G$. On note alors

$$G^{\mathrm{ab}} \coloneqq G/\mathrm{D}(G)$$

l'abélianisé de G. C'est un groupe abélien.

2. Soient G_1 un groupe abélien et $\varphi \colon G \to G_1$ un morphisme. Alors $\mathcal{D}(G) < \operatorname{Ker} \varphi$ et il existe un unique morphisme $\overline{\varphi} \colon G^{\operatorname{ab}} \to G_1$ tel que $\overline{\varphi} \circ \pi = \varphi$ où l'application π est la projection de G sur G^{ab}

Preuve 1. Cela résulte du fait que D(G) est caractéristique dans G (cf. exemple page 8). Montrons que G^{ab} est abélien. Soient $\overline{x}, \overline{y} \in G^{ab}$. On a $[\overline{x}, \overline{y}] = [\overline{x}, \overline{y}]$ car l'application π est un morphisme.

2. Soient $x, y \in G$. On a $\varphi([x, y]) = [\varphi(x), \varphi(y)] = 1$, donc $[x, y) \in \operatorname{Ker} \varphi$. D'où $\operatorname{D}(G) < \operatorname{Ker} \varphi$. On conclut par factorisation des morphismes.

COROLLAIRE 1.45. Soit $H \triangleleft G$ tel que G/H soit abélien. Alors D(G) < H.

Preuve C'est la conséquence du point 3 de la proposition précédente avec $\varphi = \pi$.

- ▷ EXEMPLES. On a $D(D_3) = \langle r \rangle$ et, puisque $[D_3, \langle r \rangle] = 2$, on a $D_3^{ab} = D_3/\langle r \rangle \simeq \mathbb{Z}/2\mathbb{Z}$. En effet, on a $[s, r] = srs^{-1}r^{-1} = srsr^{-1} = r^{-2} = r$, donc $D(D_3) > \langle r \rangle$. Par ailleurs, on a $\langle y \rangle \triangleleft D_3$ car $[D_3, \langle r \rangle] = 2$, donc le groupe $D_3/\langle r \rangle \simeq \mathbb{Z}/2\mathbb{Z}$ est abélien, donc $D(D_3) < \langle r \rangle$ par le corollaire.
 - On a D(D₄) = $\langle r^2 \rangle$ = $\langle \pm \operatorname{Id} \rangle$. En effet, on a $r^{-2} = [s, r]$, donc D(D₄) > $\langle r^{-2} \rangle$ = $\{\pm \operatorname{Id}\}$. Par ailleurs, on a $\{\pm \operatorname{Id}\} \triangleleft D_4$, donc le groupe quotient $D_4/\{\pm \operatorname{Id}\}$ est d'ordre 4 et donc il est isomorphe à $\mathbb{Z}/4\mathbb{Z}$ ou $(\mathbb{Z}/2\mathbb{Z})^2$ qui sont abéliens. Comme précédent, on conclut que D(D₄) = $\{\pm \operatorname{Id}\}$. Finalement, on a $D_4^{\text{ab}} \simeq (\mathbb{Z}/2\mathbb{Z})^2$.

Pour conclure. Soit G un groupe abélien de type fini. Alors il existe $m_1, \ldots, m_s \in \mathbb{Z}$ et $r \in \mathbb{N}$ tels que

$$G \simeq \underbrace{\mathbb{Z}/p_1^{n_1} \times \cdots \times \mathbb{Z}/p_s^{n_s}}_{\cong \operatorname{Tor}(G)} \times \mathbb{Z}^r \quad \text{et} \quad m_1 \mid \cdots \mid m_s.$$

On a donc $G/\operatorname{Tor}(G) \simeq \mathbb{Z}^r$. Ceci montre en toute généralité la proposition 1.24, i. e. le rang r de G est unique.

1.5 ACTIONS DE GROUPES

1.5.1 Définitions et premières propriétés

NOTATION. Soit X un ensemble. On note \mathfrak{S}_X son groupe symétrique, i. e. l'ensemble des bijections $X \to X$.

DÉFINITION 1.46 (action de groupe). Soient G un groupe et X un ensemble. On appelle action de G sur X tout morphisme $\rho \colon G \to \mathfrak{S}_X$ telle que l'application

$$\left| \begin{matrix} G \times X \longrightarrow X, \\ (g,x) \longmapsto g \cdot x \coloneqq \rho(g)(x) \end{matrix} \right|$$

vérifie les conditions suivantes :

- (i) pour tout $x \in X$, on a $1 \cdot x = x$;
- (ii) pour tous $g, h \in G$ et $x \in X$, on a $g \cdot (h \cdot x) = (gh) \cdot x$.
- \diamond REMARQUE. Beaucoup de groupes viennent naturellement avec des actions. Par exemple, l'ensemble [1, n] agit sur les groupes \mathfrak{S}_n et D_n , l'ensemble \mathbb{R}^n agit sur le groupe $\mathrm{GL}_n(\mathbb{R})$.

DÉFINITION 1.47 (terminologie de base). Pour tout $x \in X$, on appelle orbite de x l'ensemble

$$G \cdot x \coloneqq \{g \cdot x \mid g \in G\}$$

et on appelle stabilisateur de x l'ensemble

$$G_x := \{ g \in G \mid g \cdot x = x \}.$$

On a alors $G \cdot x \subset X$ et $G_x < G$.

 \triangleright EXEMPLE. On fait agir l'ensemble des sommets $\{A_0,\ldots,A_3\}$ du carré sur le groupe D_4 .

Alors $(D_4)_{A_0} = \{ \text{Id}, s \} \text{ et } D_4 \cdot A_0 = \mathscr{P}_4.$

Proposition 1.48. Soit X un ensemble agissant sur G. Alors

- 1. pour tout $g \in G$ et $x \in X$, on a $G_{g \cdot x} = gG_xg^{-1}$;
- 2. pour tout $x \in X$, l'application

$$\alpha \colon \left| \begin{matrix} G/G_x \longrightarrow G \cdot x, \\ gG_x \longmapsto g \cdot x \end{matrix} \right|$$

est bien définie et bijective.

3. Soit \mathscr{R} la relation sur X telle que $x\mathscr{R}y \Leftrightarrow x \in G \cdot y$ pour tout $x,y \in X$. Alors \mathscr{R} est une relation d'équivalence. En particulier, ses classes forment une partition de X.

Preuve 1. Soient $q \in G$, $x \in X$ et $h \in G$. On a

$$h \in G_{g \cdot x} \Leftrightarrow h \cdot (g \cdot x) = g \cdot x \Leftrightarrow (hg) \cdot x = g \cdot x \Leftrightarrow (g^{-1}hg) \cdot x = x \Leftrightarrow h \in gG_xg^{-1}.$$

2. Soit $x \in X$. L'application α est bien définie car, pour $h \in gG_x$, on a $g^{-1}h \in G_x$, donc $g^{-1}h \cdot x = x$, donc $h \cdot x = g \cdot x$. Elle est clairement surjective. Montrons qu'elle est injective. Soient $g, h \in G$ tels que $\alpha(g) = \alpha(h)$. Alors $h \cdot x = g \cdot x$, donc $(g^{-1}h) \cdot = x$, donc $g^{-1}h \in G_x$, donc $h \in gG_x$. On en déduit que $gG_x = hG_x$.

3. La relation \mathscr{R} est réflexive car, pour tout $x \in X$, le premier axiome donne $x = 1 \cdot x$, donc $x \mathscr{R} x$. Pour tous $x, y \in X$, si $x \mathscr{R} y$, alors il existe $g \in G$ tel que $x = g \cdot y$, donc $y = g^{-1} \cdot x$, donc $y \mathscr{R} x$. On montre également que \mathscr{R} est transitive ce qui en fait une relation d'équivalence avec ce qui précède.

- \diamond REMARQUE. Ainsi, si G est fini, alors $|G \cdot x| = [G : G_x]$ pour tout $x \in X$ et, en particulier, $|G \cdot x| \mid |G|$. Si G possède une unique orbite, on dit que l'action est transitive.
- EXEMPLES. L'ensemble \mathbb{R}^n agit sur le groupe $G := GL_n(\mathbb{R})$ par l'action $(A, x) \longmapsto Ax$. On a $G \cdot 0 = \{0\}$ et, si $x \in \mathbb{R}^n \{0\}$, on a $G \cdot x = \mathbb{R}^n$. Ainsi, la partition de \mathbb{R}^n par les orbites donne $\mathbb{R}^n = (\mathbb{R}^n \{0\}) \sqcup \{0\}$. De plus, on a $G_0 = G$ et, si e_1 désigne le premier vecteur de la base canonique de \mathbb{R}^n , alors

$$G_{e_1} = \left\{ \begin{pmatrix} 1 & * & \cdots & * \\ 0 & & & \\ \vdots & & M & \\ 0 & & & \end{pmatrix} \middle| M \in \mathrm{GL}_{n-1}(\mathbb{R}) \right\}.$$

- • Translation à gauche. On fait agir G sur lui-même via l'action $(g, x) \mapsto gx$. Cette action est transitive car toutes les orbites coïncident avec G. De plus, pour tout $x \in G$, on a $G_x = \{1\}$. En particulier, l'application

$$\varphi \colon \left| \begin{matrix} G \longrightarrow \mathfrak{S}_G \\ g \longmapsto \{x \longmapsto gx\} \end{matrix} \right|$$

est injective, donc $G \simeq \varphi(G) < \mathfrak{S}_G$. Ainsi, on en déduit le théorème de CAYLEY qui affirme que, si G est d'ordre n, alors G est isomorphe à un sous-groupe de \mathfrak{S}_n .

1.5.2 Exemples fondamentaux

(i) Action par conjugaison

L'application Int: $G \to \operatorname{Aut}(G) < \mathfrak{S}_G$ induit une action de groupe $(g, x) \longmapsto g \cdot x \coloneqq gxg^{-1}$ de G sur lui-même. Pour $x \in G$, on appelle alors $G \cdot x$ la classe de conjugaison de x dans G et on note

$$C_G(x) := G_x = \{ g \in G \mid gx = xg \},\,$$

appelé centralisateur de x dans G.

 \triangleright EXEMPLE. On prend $G = D_3$. La partition suivant les classes de conjugaison donne

$$|D_3 \cdot x| = \frac{6}{|C_{D_3}(x)|}, \quad \forall x \in D_3.$$

On a $D_3 \cdot \operatorname{Id} = \{\operatorname{Id}\}$. Que vaut $D_3 \cdot r$? On a $C_{D_3}(r) = \langle r \rangle$, donc $|D_3 \cdot r| = 2$. Par ailleurs, on a $r^{-1} = srs = srs^{-1}$, donc $D_3 \cdot r = \{r, r^{-1}\}$. De même, on a $C_{D_3}(s) = \langle s \rangle$, donc $|D_3 \cdot s| = 3$. Puis $1 + 2 + 3 = 6 = |D_3|$, donc on a nécessairement $D_3 \cdot s = \{s, rs, r^2s\}$.

(ii) Action sur un groupe quotient

Soit H < G. On considère une action de G sur G. Alors G agit sur G/H par $g \cdot (xH) := (gx) \cdot H$. Alors c'est une action transitive, i. e. $G_H = H$. On montre alors que $G_{xH} = xHx^{-1}$ pour tout $x \in G$.

(iii) Action sur les sous-groupes

Un groupe G agit sur l'ensemble des sous-groupes de G par conjugaison $g \cdot H := gHg^{-1} = \operatorname{int}_g(H)$. Pour un sous-groupe H de G, on note

$$N_G(H) := G_H = \{ g \in G \mid gHg^{-1} = H \},$$

appelé normalisateur de H dans G. On remarque que $H \triangleleft N_G(H)$ et que, si $H \triangleleft K < G$, alors $K < N_G(H)$.

1.5.3 Equation aux classe

Soit X un ensemble fini. On considère une action de groupe de X sur G. On rappelle que les orbites partitionnent X et que, pour tout $x \in X$, on a $\sharp(G \cdot x) = [G : G_x]$. On prend un système de représentants des orbites $\{x_1, \ldots, x_n\} \subset X$. On a donc

$$\sharp X = \sum_{i=1}^{n} [G:G_x].$$

En distinguant les orbites formées d'un seul élément (les classes de x_i telles que $g \cdot x_i = x_i$ pour tout $g \in G$), on obtient la proposition suivante.

PROPOSITION 1.49 (équation aux classes). Alors en notant $X^G := \{x \in X \mid \forall g \in G, g \cdot x = x\}$, on a

$$|X| = |X^G| + \sum_{\substack{i \in [\![1,n]\!] \\ G_{x_i} \neq G}} [G:G_{x_i}].$$

Application

DÉFINITION 1.50. Un p-groupe est un groupe G tel qu'il existe $n \in \mathbb{N}^*$ vérifiant $|G| = p^n$.

COROLLAIRE 1.51. Soit une action de X sur un p-groupe G avec $\sharp X < +\infty$. Alors $\sharp X = |X^G| \mod p$.

PROPOSITION 1.52. Soit G un p-groupe. Alors $Z(G) \neq \{1\}$

Preuve On considère l'action par conjugaison de G sur lui-même. Alors $Z(G) = G^G \neq \{1\}$.

THÉORÈME 1.53 (CAUCHY). Soient G un groupe fini et $p \in \mathbb{N}$ un diviseur premier de |G|. Alors G contient au moins un élément d'ordre p.

Preuve On suppose d'abord que G est abélien. Dans ce cas, il est isomorphe à un groupe de la forme

$$\prod_{i=1}^{\ell} \mathbb{Z}/m_i \mathbb{Z}.$$

En particulier, on a $|G| = \prod_{i=1}^{\ell} m_i$. Ainsi il existe $i \in [1, \ell]$ tel que $p \mid m_i$. Alors l'élément

$$\left(0,\ldots,0,\frac{\overline{m_i}}{p},0,\ldots,0\right)$$

est d'ordre p. On ne suppose plus que G est abélien. On procède par récurrence sur |G|. Si |G| = p, alors $G \simeq \mathbb{Z}/p\mathbb{Z}$ et le résultat devient évident. On suppose que |G| est quelconque. Alors on considère l'action de G sur lui-même par conjugaison. En notant $\{x_1, \ldots, x_n\}$ l'ensemble des représentants des classes, l'équation aux classes donne

$$|G| = |Z(G)| + \sum_{i=1}^{n} [G : C_G(x_i)].$$

S'il existe $i \in [1, n]$ tel que $p \nmid [G : C_G(x_i)]$, alors $p \mid |C_G(x_i)|$ puisque $p \mid |G|$ et on conclut par récurrence. Sinon on a $p \mid |Z(G)|$ et on peut se ramener au cas précédent. Ce qui montre le résultat dans tous les cas.

APPLICATION. Si |G| = 2p avec $p \ge 3$ premier, alors $G \simeq \mathbb{Z}/2p\mathbb{Z}$ ou $G \simeq D_p$. En effet, le théorème de CAUCHY affirme l'existence de $x, y \in G$ d'ordre respectifs 2 et p. Alors $\langle x \rangle \cap \langle y \rangle = \{e\}$ car l'ordre de $\langle x \rangle \cap \langle y \rangle$ divise à la fois 2 et p. Par conséquent, on a $x \notin \langle y \rangle$ et $[G : \langle y \rangle] = 2$, donc la partition suivant les orbites donne

$$G = \langle x \rangle \sqcup \langle y \rangle x.$$

Puisque $\langle y \rangle \triangleleft G$, on a $xyx^{-1} = y^j$ avec $j \in [1, p-1]$. En particulier, si j = 1, on trouve que G est abélien et, par suite, que $G \simeq \mathbb{Z}/2\pi\mathbb{Z}$ par la structure des groupes abéliens de types finis et le théorème chinois. Si j = p - 1, alors $G \simeq D_p$ par la caractérisation de D_p .

1.6 GROUPES SYMÉTRIQUES

DÉFINITION 1.54. Soit $n \in \mathbb{N}^*$. On appelle groupe symétrique d'ordre n l'ensemble des bijections de $[\![1,n]\!]$ dans lui-même. On le note \mathfrak{S}_n .

NOTATION. Une permutation $\sigma \in \mathfrak{S}_n$ sera notée

$$\sigma = \begin{pmatrix} 1 & \cdots & n \\ \sigma(1) & \cdots & \sigma(n) \end{pmatrix}.$$

1.6.1 Signature

DÉFINITION 1.55. La signature d'une permutation $\sigma \in \mathfrak{S}_n$ est l'entier

$$\epsilon(\sigma) = \prod_{1 \leqslant i < j \leqslant n} \frac{\sigma(j) - \sigma(i)}{j - i}.$$

DÉFINITION-PROPOSITION 1.56. La signature définit une morphisme $\epsilon \colon \mathfrak{S}_n \to (\{\pm 1\}, \times)$. On note \mathfrak{A}_n son noyau, appelé groupe alterné.

Preuve Comme $\epsilon(\mathfrak{S}_n) < \mathbb{Q}^{\times}$, il suffit de montrer que $\epsilon \colon \mathfrak{S}_n \to \mathbb{Q}^{\times}$ est bien un morphisme. Soient $\sigma, \tau \in \mathfrak{S}_n$. On a

$$\begin{split} \epsilon(\sigma\tau) &= \prod_{1\leqslant i < j \leqslant n} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{j-i} \\ &= \prod_{1\leqslant i < j \leqslant n} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{\tau(j) - \tau(i)} \frac{\tau(j) - \tau(i)}{j-i} \\ &= \prod_{1\leqslant i < j \leqslant n} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{\tau(j) - \tau(i)} \epsilon(\tau) \\ &= \prod_{1\leqslant i < j \leqslant n} \frac{\sigma(j) - \sigma(i)}{j-i} \epsilon(\tau) = \epsilon(\sigma) \epsilon(\tau) \end{split}$$

car l'application τ est une bijection.

1.6.2 Décomposition en produit de cycles

DÉFINITION 1.57. Soit $\sigma \in \mathfrak{S}_n$. On note

$$\operatorname{supp}(\sigma) := \{ i \in [1, n] \mid \sigma(i) \neq i \},\,$$

appelé support de σ .

DÉFINITION 1.58. Soit $k \in [1, n]$. On appelle k-cycle toute permutation $\sigma \in \mathfrak{S}_n$ telle que, en notant

$$\operatorname{supp}(\sigma) = \{a_1, \dots, a_k\},\,$$

on ait

$$\sigma(a_k) = a_1$$
 et $\forall i \in [1, k-1], \quad \sigma(a_i) = a_{i+1}.$

On le note alors $\sigma = (a_1 \ a_2 \ \cdots \ a_k)$. Une transposition est un 2-cycle.

- \diamond REMARQUES. Pour toute $\sigma \in \mathfrak{S}_n$, on a $\sigma \circ (a_1 \cdots a_k) \circ \sigma^{-1} = (\sigma(a_1) \cdots \sigma(a_k))$. Par suite, tous les k-cycles sont conjugués.
 - Un k-cycle est d'ordre k.
 - On a $(a_1 \cdots a_k) = (a_1 \ a_k) \circ \cdots \circ (a_2 \ a_3) \circ (a_1 \ a_2)$.
 - Soit τ une transposition. Alors $\epsilon(\tau) = -1$. Si $n \ge 2$, l'application $\varepsilon \colon \mathfrak{S}_n \to \{\pm 1\}$ est surjective et $|\mathfrak{A}_n| = n!/2$. En effet, on a $\epsilon(1\ 2) = -1$ et on exploite la première remarque.
 - Comme ε est un morphisme et par la deuxième remarque, on a $\varepsilon(a_1 \cdots a_k) = (-1)^{k-1}$.
 - Si $n \geq 3$, alors le groupe D_n s'injecte dans \mathfrak{S}_n en numérotant les sommets du polygone de 1 à n. Cette application $\rho \colon D_n \to \mathfrak{S}_n$ injective définit une action de D_n dans $[\![1,n]\!]$.

PROPOSITION 1.59. Soient $\sigma, \tau \in \mathfrak{S}_n$ telles que $\operatorname{supp}(\sigma) \cap \operatorname{supp}(\tau) = \emptyset$. Alors $\sigma \tau = \tau \sigma$.

LEMME 1.60. Soit $\sigma \in \mathfrak{S}_n$. Alors $\sigma(\operatorname{supp}(\sigma)) = \operatorname{supp}(\sigma)$. S'il existe $\sigma_1, \ldots, \sigma_\ell \in \mathfrak{S}_n$ dont les supports sont deux à deux disjoints telles que $\sigma = \sigma_1 \cdots \sigma_\ell$, alors

$$\operatorname{supp}(\sigma) = \bigsqcup_{i=1}^{\ell} \operatorname{supp}(\sigma_i).$$

En particulier, on a $\sigma = \text{Id si et seulement si } \sigma_i = \text{Id pour tout } i \in [1, \ell]$

Preuve de la proposition Soit $i \in [1, n]$. Si $i \notin \operatorname{supp}(\tau) \cup \operatorname{supp}(\sigma)$, alors $\sigma(i) = \tau(i) = i$, donc $\sigma\tau(i) = \tau\sigma(i) = i$. Si $i \in \operatorname{supp}(\sigma)$, alors $\tau(i) = i$ et le lemme donne $\sigma(i) \in \operatorname{supp}(\sigma)$, donc $\tau\sigma(i) = \tau(i) = \sigma(\tau(i))$. De même pour $i \in \operatorname{supp}(\tau)$.

THÉORÈME 1.61. Toute permutation $\sigma \in \mathfrak{S}_n \setminus \{\text{Id}\}\$ s'écrit sous la forme $\sigma = c_1 \cdots c_k$ où les c_i sont des cycles à supports disjoints. De plus, cette décomposition est unique à l'ordre près des facteurs et

$$o(\sigma) = ppcm(\ell(c_1), \dots, \ell(c_k))$$

où $\ell(c)$ désigne la longueur d'un cycle c.

Preuve On regarde l'action du groupe $\langle \sigma \rangle$ sur X := [1, n]. On peut alors décomposer G en orbites

$$X = \bigsqcup_{i=1}^{r} O_i.$$

Pour $i \in [1, r]$, on note $a_i := \sharp O_i$ et $\sigma_i \in \mathfrak{S}_n$ telle que

$$\forall x \in X, \quad \sigma_i(x) = \begin{cases} x & \text{si } x \notin O_i, \\ \sigma(x) & \text{sinon.} \end{cases}$$

En particulier, on a $\sigma = \operatorname{Id} \Leftrightarrow \sharp O_i = 1$. Si $\sigma_i \neq \operatorname{Id}$, alors on peut l'écrire sous la forme $(\alpha_i \ \sigma(\alpha_i) \ \cdots \ \sigma^{a_i-1}(\alpha_i))$ où $\alpha_i \in O_i$. D'après la partition en orbites, on obtient que $\sigma = \sigma_1 \cdots \sigma_r = \sigma_{i_1} \cdots \sigma_{i_k}$ où les entiers i_j sont tels que les orbites O_{i_j} soient de cardinaux supérieurs ou égaux à 2. Pour $j \in [1, k]$, on pose alors $c_j \coloneqq \sigma_{i_k}$.

Montrons l'unicité. On se donne une décomposition $\sigma = c_1 \cdots c_N$. Soient $i \in [1, n]$ et $j \in [1, N]$ tel que $i \in \text{supp } c_j$. Puisque $c_j(\text{supp } c_j) = \text{supp } c_j$, on a $\sigma(i) = c_j(i)$. Finalement, on a $\sigma(\text{supp } c_j) = \text{supp } c_j$. Ainsi les supports supp c_j sont les orbites de cardinaux supérieur à 2 sous l'action de $\langle \sigma \rangle$ et ils sont déterminés de façon unique.

Déterminons son ordre. Soit $\ell \in \mathbb{N}^*$. On a $\sigma^{\ell} = c_1^{\ell} \cdots c_k^{\ell}$, donc $\sigma^{\ell} = \operatorname{Id}$ si et seulement si $c_i^{\ell} = \operatorname{Id}$ pour tout $i \in [\![1,k]\!]$ par le lemme et le fait que supp $c_i^{\ell} \subset \operatorname{supp} c_i$. Comme $o(c_i) = \ell(c_i)$ pour tout $i \in [\![1,k]\!]$, le plus petit entier ℓ qui vérifie cela est bien $\operatorname{ppcm}(\ell(c_1),\ldots,\ell(c_k))$.

▷ Exemple. La permutation

$$\sigma := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 5 & 1 & 8 & 7 & 2 \end{pmatrix}$$

se décompose en produit de transpositions

$$\sigma = (1\ 3\ 4\ 5) \circ (2\ 6\ 8).$$

COROLLAIRE 1.62. Le groupe \mathfrak{S}_n est engendré par les cycles ou par les transpositions.

COROLLAIRE 1.63. Le groupe \mathfrak{A}_n est engendré par les 3-cycles.

Preuve On pose H le sous-groupe engendré par les 3-cycles. Il suffit de montrer que $H \ni \tau_1 \tau_2$ où τ_1 et τ_2 sont deux transpositions. Si supp $\tau_1 = \text{supp } \tau_2$, alors $\tau_1 = \tau_2$, donc $\tau_1 \tau_2 = \text{Id} \in H$. Si $|\text{supp } \tau_1 \cap \text{sup } \tau_2| = 1$, alors on note $\tau_1 = (a \ b)$ et $\tau_2 = (a \ c)$, donc $\tau_1 \tau_2 = (a \ c)$ $\in H$. Si supp $\tau_1 \cap \text{supp } \tau_2 = \emptyset$, alors on note $\tau_1 = (a \ b)$ et $\tau_2 = (a \ b)(c \ d)$ et on se ramène au cas précédent.

Théorème 1.64. Deux permutations de \mathfrak{S}_n différentes de l'identité sont conjugués si et seulement si, pour tout $k \in [\![2,n]\!]$, elles ont le même nombre de k-cycle dans leur décomposition.

Preuve On rappel les faits suivants. Soient $c := (a_1 \cdots a_p)$ et c' deux permutations conjugués. Alors il existe $\sigma \in \mathfrak{S}_n$ tel que $c' = \sigma c \sigma^{-1} = (\sigma(a_1) \cdots \sigma(a_p))$. Alors σ' est un p-cycle vérifiant supp $c' = \sigma(\text{supp } c)$ et c'est seulement déterminé par $\sigma_{|\text{supp } c}$.

Soit $\tau \in \mathfrak{S}_n$. On la décompose en cycles $\tau = c_1 \cdots c_k$. Alors la décomposition d'une permutation conjuguées $\sigma \in \mathfrak{S}_n$ s'écrit $\sigma \tau \sigma^{-1} = (\sigma c_1 \sigma^{-1}) \cdots (\sigma c_k \sigma^{-1})$. Réciproquement, soient $\tau = c_1 \cdots c_k$ et $\tau' = c'_1 \cdots c'_k$ avec $\ell(c_i) = \ell(c'_i)$ pour tout $i \in [1, k]$. On considère $\sigma \in \mathfrak{S}_n$ tel que $\sigma c_i \sigma^{-1} = c'_i$ pour tout $i \in [1, k]$. Une telle permutation σ existe sachant que les supports des c_i sont disjoints, donc τ et τ' sont conjuguées.

PROPOSITION 1.65. Le nombre de classes de conjugaisons dans \mathfrak{S}_n est

$$p(n) := \sharp \Big\{ (n_1, \dots, n_\ell) \in \mathbb{N}^\ell \ \bigg| \ \ell \in \mathbb{N}, \ 1 \leqslant n_1 \leqslant \dots \leqslant n_\ell \leqslant n, \ \sum_{i=1}^\ell n_i = n \Big\}.$$

 \triangleright EXEMPLE. On vérifie que p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5 et p(5) = 7.

1.6.3 Le groupe alterné

PROPOSITION 1.66. Si $n \ge 5$, les 3-cycles sont conjugués dans \mathfrak{A}_n .

Preuve Soient $c := (a \ b \ c)$ et c' deux 3-cycles. On sait qu'il existe $\sigma \in \mathfrak{S}_n$ tel que $\sigma c \sigma^{-1} = c' = (\sigma(a) \ \sigma(b) \ \sigma(c))$. Si $\sigma \in \mathfrak{A}_n$, la preuve est terminée. Sinon on considère $\tau = (e \ f)$ avec $e, f \notin \{a, b, c\}$ (c'est possible car $n \ge 5$). Alors $\sigma \tau \in \mathfrak{A}_n$ et $(\sigma \tau)c(\sigma \tau)^{-1} = (\sigma \tau(a) \ \sigma \tau(b) \ \sigma \tau(c)) = (\sigma(a) \ \sigma(b) \ \sigma(c)) = c'$, donc c et c' sont conjugués. \square

La proposition suivante donne des propriétés sur le centre et le groupe dérivée de \mathfrak{A}_n et de \mathfrak{S}_n .

PROPOSITION 1.67. 1. Si $n \ge 3$, on a $Z(\mathfrak{S}_n) = \{Id\}$ et, si $n \ge 4$, on a $Z(\mathfrak{A}_n) = \{Id\}$.

- 2. Si $n \ge 1$, on a $D(\mathfrak{S}_n) = \mathfrak{A}_n$.
- 3. Si $n \ge 5$, on a $D(\mathfrak{A}_n) = \mathfrak{A}_n$.
- \diamond REMARQUES. Pour n=2, on a $\mathfrak{S}_2 \simeq \mathbb{Z}/2\mathbb{Z}$, donc $Z(\mathfrak{S}_2)=\mathfrak{S}_2$. Pour $n\geqslant 4$ ou $n\in\{1,2\}$, on a $Z(\mathfrak{A}_n)=\{\mathrm{Id}\}$. Pour n=3, on a $\mathfrak{A}_3=\langle (1\ 2\ 3)\rangle$, donc $Z(\mathfrak{A}_3)=\mathfrak{A}_3$. Calculons $D(\mathfrak{A}_4)$. On remarque que

$$V_4 := \{ \mathrm{Id}, (1\ 2)(3\ 4), (2\ 3)(1\ 4), (1\ 3)(2\ 4) \}$$

est un sous-groupe de \mathfrak{S}_4 . De plus, celui-ci est formé de deux classes de conjugaison dans \mathfrak{S}_4 , donc $V_4 \triangleleft \mathfrak{S}_4$. En remarquant que $V_4 \triangleleft \mathfrak{A}_4$, on a $V_4 \triangleleft \mathfrak{A}_4$. On a $V_4 \simeq (\mathbb{Z}/2\mathbb{Z})^2$, donc $\mathfrak{A}_4/V_4 \simeq \mathbb{Z}/3\mathbb{Z}$ est abélien. On en déduit que $D(\mathfrak{A}_4) \triangleleft V_4$. Montrons qu'il y en fait égalité. Il suffit de remarquer que $(1\ 2)(3\ 4) = [(1\ 2\ 3), (1\ 2\ 4)]$ et de même pour les autres, donc $V_4 = D(\mathfrak{A}_4)$.

Preuve 1. Soit $n \ge 3$. Soit $\sigma \in \mathfrak{S}_n - \{\text{Id}\}$. Il existe $i, j \in [1, n]$ tels que $i \ne j$ et $\sigma(i) = j$. Comme $n \ge 3$, soit $k \in [1, n] - \{i, j\}$. On considère $\tau := (j \ k)$. On a alors $\sigma \tau(i) = j$ et $\tau \sigma(i) = k$.

Soit $n \geq 4$. On considère $\tau \coloneqq (j \ k \ \ell)$ avec $k, \ell \notin \{i, j\}$ et on montre de même que $\sigma \tau \neq \tau \sigma$ pour $\sigma \in \mathfrak{A}_n$. 2 et 3. Remarquons que $D(\mathfrak{S}_n) < \mathfrak{A}_n$ car, pour tous $\sigma, \tau \in \mathfrak{S}_n$, on a $\epsilon([\sigma, \tau]) = [\epsilon(\sigma), \epsilon(\tau)] = 1$. On peut supposer que $n \geq 3$. Soit $c \coloneqq (a \ b \ c)$ un 3-cycle. Alors $c^2 = (a \ c \ b)$, donc il existe $sigma \in \mathfrak{S}_n$ tel que $c^2 = \sigma c \sigma^{-1}$, $i. \ e. \ c = [\sigma, c]$. De plus, on peut choisir $\sigma \in \mathfrak{A}_n$ si $n \geq 5$ et donc $c \in D(\mathfrak{A}_n)$. On conclut en utilisant le fait que les 3-cycles engendrent \mathfrak{A}_n .

DÉFINITION 1.68. On dira qu'un groupe non nul G est simple si $\{e\}$ et G sont les seuls sous-groupes distingués dans G.

EXERCICE 1.4. Soit G un groupe abélien. Montrer que G est simple si et seulement si $G \simeq \mathbb{Z}/p\mathbb{Z}$ avec p premiers.

- Théorème 1.69 (Galois). Pour $n \ge 5$, le groupe \mathfrak{A}_n est simple.
- \diamond Remarque. Il n'existe pas de groupes simples non abélien de cardinal strictement inférieur à $60 = |\mathfrak{A}_5|$. Le groupe \mathfrak{A}_5 est le seul groupe simple abélien d'ordre 60. Le suivant sur la liste est $GL_3(\mathbb{Z}/2\mathbb{Z})$ qui est d'ordre 168.

Preuve Soit $n \ge 5$. Soit N un sus-groupe distingué non nul dans \mathfrak{A}_n . Montrons que $N = \mathfrak{A}_n$. C'est vrai si N contient un 3-cycles car les 3-cycles engendrent \mathfrak{A}_n et ils sont conjugués dans \mathfrak{A}_n . On choisit $\sigma \in N - \{\mathrm{Id}\}$ tel que $L := |\mathrm{supp}\,\sigma|$ soit minimal. Comme σ n'est ni l'identité ni une transposition, on a $L \ge 3$. Si σ_0 est un 3-cycle, c'est fini. Sinon on suppose que ce n'est pas un 3-cycle. On va exhiber $\sigma_2 \in N - \{\mathrm{Id}\}$ avec $\mathrm{supp}\,\sigma_2 \subseteq \mathrm{supp}\,\sigma_0$. On décompose $\sigma_0 = c_1 \cdots c_k$ en cycles à supports disjoints. On peut supposer que $\ell(c_1)$ est maximale parmi les $\ell(c_i)$. On a alors deux cas :

- On suppose que $c_1 = (a_1 \cdots a_\ell)$ avec $\ell \geqslant 3$. Si $k \geqslant \ell$, alors |supp $\sigma_0| \geqslant 5$. Si k = 1, alors le cas $\ell = 3$ est clair et, si $\ell > 3$, on a $\ell \geqslant 5$ car $\sigma_0 \in \mathfrak{A}_n$. En conclusion, si σ_0 n'est pas un 3-cycle, alors $L \geqslant 5$. Alors il existe $\gamma \coloneqq (a_3 \ a \ b)$ un 3-cycle tel que $a, b \notin \text{supp } \sigma_0 \{a_2, a_3\}$. On pose alors $\sigma_1 \coloneqq \gamma \sigma_0 \gamma^{-1} \in N$. Alors $\sigma_1 \neq \sigma_0$ car $\sigma_1(a_2) = a$ et $\sigma_0(a_2) = a_3 \neq a$. On remarque que les points fixes de σ_0 sont fixes pour σ_1 et $\sigma_2 \coloneqq \sigma_1 \sigma_0^{-1} \in N \{\text{Id}\}$, donc supp $\sigma_2 \subset \text{supp } \sigma_0$. Cette inclusion est stricte puisque $\sigma_2(a_2) = a_2$ avec $a_2 \in \text{supp } \sigma_0$. Ceci est impossible.
- On suppose que chaque c_i est une transposition et donc $k \ge 2$. On note alors $\sigma_0 = (a_1 \ a_2)(a_3 \ a_4) \cdots$. On prend ici un 3-cycle $\gamma := (a_3 \ a_4 \ f)$ avec $f \notin \{a_1, a_2, a_3, a_4\}$. On vérifie que $\sigma_1 = \gamma \sigma_0 \gamma^{-1} \ne \sigma_0$ et, en considérant $\sigma_2 := \sigma_1 \sigma_0^{-1}$, on obtient que supp $\sigma_2 \{f\} \subset \text{supp } \sigma_0$, mais on a $\sigma_2(a_1) = a_1$ et $\sigma_2(a_2) = a_2$ avec $a_1, a_2 \in \text{supp } \sigma_0$, donc $\sharp \text{supp } \sigma_2 \le \sharp \text{supp } \sigma_0 1$ ce qui est également impossible. □
- COROLLAIRE 1.70. Soient $n \ge 5$ et $N \triangleleft \mathfrak{S}_n$. Alors $N \in \{\{1\}, \mathfrak{A}_n, \mathfrak{S}_n\}$.

Preuve On note $G := N \cap \mathfrak{A}_n \triangleleft \mathfrak{A}_n$. Par la simplicité de \mathfrak{A}_n , on a $G = \{1\}$ ou $G = \mathfrak{A}_n$. Si $G = \mathfrak{A}_n$, alors $N = \mathfrak{A}_n$ ou $N = \mathfrak{S}_n$ car $[\mathfrak{S}_n : \mathfrak{A}_n] = 2$. Si $G = \{1\}$, alors |N| = 1 ou |N| = 2 car $\epsilon : N \to \{\pm 1\}$ est injectif. Si |N| = 1, alors $N = \{1\}$. Si |N| = 2, alors $N < Z(\mathfrak{S}_n) = 1$ car $G \triangleleft \mathfrak{S}_n$ ce qui est impossible.

1.7 Produit semi-direct

1.7.1 Produit direct

DÉFINITION-PROPOSITION 1.71. Soient N et Q deux groupes. La loi

$$| (N \times Q) \times (N \times Q) \longrightarrow N \times Q, ((n_1, q_1), (n_2, q_2)) \longmapsto (n_1 n_2, q_1, q_2)$$

définit une structure de groupe sur $N \times Q$. Avec les injections canoniques

$$\begin{vmatrix} N \longrightarrow N \times Q, \\ n \longmapsto (n, 1_Q) \end{vmatrix} \text{ et } \begin{vmatrix} Q \longrightarrow N \times Q, \\ q \longmapsto (1_N, Q), \end{vmatrix}$$

on vérifie que $N, Q \triangleleft N \times Q$ et que

$$\frac{N\times Q}{N}\simeq Q\quad {\rm et}\quad \frac{N\times Q}{Q}\simeq N.$$

PROPOSITION 1.72. Soient G un groupe et $N, Q \triangleleft G$. On suppose que $N \cap Q = \{1\}$ et NQ = G. Alors l'application

$$f : \begin{vmatrix} N \times Q \longrightarrow G, \\ (n,q) \longmapsto nq \end{vmatrix}$$

est un isomorphisme.

Preuve Comme $N \cap Q = \{1\}$, l'application f est injective et, comme $\operatorname{Im} f = NQ = G$, elle est surjective. Pour $n \in N$ et $q \in Q$. Comme $nqn^{-1} \in Q$ et $qn^{-1}q^{-1} \in Q$, on a $[n,q] = nqn^{-1}q^{-1} \in N \cap Q$, donc [n,q] = 1. Montrons que c'est un morphisme. Pour $(n_1,q_1), (n_2,q_2) \in N \times Q$, on a

$$f((n_1, q_1)(n_2, q_2)) = f(n_1 n_2, q_1 q_2)$$

$$= n_1 n_2 q_1 q_2$$

$$= n_1 q_1 n_2 q_2$$

$$= f(n_1, q_1) f(n_2, q_2).$$

1.7.2 Produit semi-direct

On veut étendre la notion de produit direct.

DÉFINITION 1.73. Soient N et Q deux groupes et α une action de Q sur N par automorphisme, i. e. un morphisme $\alpha \colon Q \to \operatorname{Aut}(N)$. Ceci permet de définir la loi $*_{\alpha}$ sur $N \times Q$ par

$$(n_1, q_1) *_{\alpha} (n_2, q_1) = (n_1(q_1 \cdot n_2), q_1q_2)$$
 avec $q \cdot n = \alpha(q)(n)$.

Le couple $(N \times Q, *_{\alpha})$ est noté $N \rtimes_{\alpha} Q$, appelé produit semi direct de N et Q.

- EXEMPLES. 1. Soient N, Q < G tels que $N \triangleleft G$. Alors une action de Q sur N par automorphisme est donnée par $q \cdot n := qnq^{-1}$ et on peut considérer $N \rtimes Q$.
 - 2. Soient N et Q deux sous-groupes. Soit $\alpha \colon \mathbb{Q} \to \operatorname{Aut}(N)$ le morphisme triviale. On a un produit semi-direct.
 - 3. On a un produit semi-direct $N \rtimes \operatorname{Aut}(N)$ en prenant $Q = \operatorname{Aut}(N)$ et $\alpha = \operatorname{Id}_N$ muni de la loi

$$(n,\varphi)*(n,\varphi')=(n\varphi(n'),\varphi\circ\varphi').$$

PROPOSITION 1.74. L'ensemble $N \rtimes_{\alpha} Q$ est un groupe.

Preuve Montrons l'associativité. Pour $(n_1, q_1), (n_2, q_2), (n_3, q_3) \in N \times Q$, on a

$$\begin{aligned} \left[(n_1, q_1) *_{\alpha} (n_2, q_2) \right] *_{\alpha} (n_3, q_3) &= (n_1(q_1 \cdot n_2), q_1 q_2) *_{\alpha} (n_3, q_3) \\ &= (n_1(q_1 \cdot n_2)(q_1 q_2 \cdot n_3), q_1 q_2 q_3) \\ &= (n_1 q_1 \cdot (n_2(q_2 \cdot n_3)), q_1 q_2 q_3) \\ &= (n_1, q_1) *_{\alpha} \left[(n_2, q_2) *_{\alpha} (n_3, q_3) \right]. \end{aligned}$$

On vérifie que l'élément neutre est $(1_N, 1_Q)$ et que le symétrique de (n, q) est $(q^{-1} \cdot n^{-1}, q^{-1})$.

♦ Remarque. Les applications

$$\begin{vmatrix} N \longrightarrow N \rtimes_{\alpha} Q, \\ n \longmapsto (n, 1_Q) \end{vmatrix} \text{ et } \begin{vmatrix} Q \longrightarrow N \rtimes_{\alpha} Q, \\ q \longmapsto (1_N, Q) \end{vmatrix}$$

sont des morphismes injectifs avec les identifications $N \triangleleft N \rtimes_{\alpha} Q$ et $(N \rtimes_{\alpha} Q)/N \simeq Q$. Dans la suite, on omettra le morphisme α en indice, mais il sera sous-entendue.

PROPOSITION 1.75. Soient G un groupe et N, Q < G avec $N \triangleleft G$. On pose

$$\alpha \colon \left| \begin{matrix} Q \longrightarrow \operatorname{Aut}(N), \\ q \longmapsto \alpha(q) \coloneqq \operatorname{int}_{q|N}. \end{matrix} \right.$$

On suppose que $N \cap Q = \{1\}$ et NQ = G. Alors l'application

$$f : \begin{cases} N \rtimes_{\alpha} Q \longrightarrow G, \\ (n,q) \longmapsto nq \end{cases}$$

est un isomorphisme.

Preuve Comme précédemment, c'est une bijection. Pour tous $(n_1, q_1), (n_2, q_2) \in N \times Q$, on a

$$f((n_1, q_1)(n_2, q_2)) = f(n_1(q_1 \cdot n_2), q_1 q_2)$$

$$= f(n_1 q_1 n_2 q_2^{-1}, q_1 q_2)$$

$$= n_1 q_1 n_2 q_2^{-1} q_1 q_2$$

$$= n_2 q_1 n_2 q_2 = f(n_1, q_1) f(n_2, q_2).$$

- $\diamond \ \text{Remarque}. \quad \text{Si } N, Q < G \ \text{et} \ N \triangleleft G, \ \text{alors} \ NQ < G.$
- ▷ EXEMPLES. Soit $n \ge 2$. Dans $G := \mathfrak{S}_n$, on pose $N := \mathfrak{A}_n$ et $Q := \langle \tau \rangle \simeq \mathbb{Z}/2\mathbb{Z}$ où τ est une transposition de \mathfrak{S}_n . On a $N \triangleleft \mathfrak{S}_n$ et $\mathfrak{S}_n = N \sqcup \tau N$. De plus, on a $\mathfrak{S}_n = NQ$ et $N \cap Q = \{ \mathrm{Id} \}$. On a donc $\mathfrak{S}_n \simeq \mathfrak{A}_n \rtimes \langle \tau \rangle \simeq \mathfrak{A}_n \rtimes \mathbb{Z}/2\mathbb{Z}$ par l'action définie par $\overline{1} \cdot \sigma = \tau \sigma \tau^{-1}$ et $\overline{0} \cdot \sigma = \sigma$.
 - Soit k un corps. On pose $G := \mathrm{GL}_n(k)$. On a $G \simeq G \simeq N \rtimes Q \simeq \mathrm{SL}_n(k) \rtimes k^*$ avec $N := \mathrm{SL}_n(k)$ et

$$Q \coloneqq \left\{ \begin{pmatrix} \ell & 0 \\ 0 & I_{n-1} \end{pmatrix} \;\middle|\; \ell \in k^* \right\}.$$

En effet, on a $N \triangleleft G$ et $N \cap Q = \{I_n\}$. Par ailleurs, si $g \in G$, on a

$$g\begin{pmatrix} (\det g)^{-1} & 0\\ 0 & I_{n-1} \end{pmatrix} \in N,$$

donc NQ = G. L'ensemble k^* agit sur N par l'action définie par

$$\ell \cdot g = \begin{pmatrix} \ell & 0 \\ 0 & I_{n-1} \end{pmatrix} g \begin{pmatrix} \ell^{-1} & 0 \\ 0 & I_{n-1} \end{pmatrix}.$$

1.7.3 Le groupe \mathfrak{S}_4 comme produit semi-direct

RAPPEL. On a $V_4 \triangleleft \mathfrak{S}_4$ avec

$$V_4 := \{ \mathrm{Id}, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3) \}.$$

On considère $\Sigma := \{ \sigma \in \mathfrak{S}_n \mid \sigma(4) = 4 \}$. Alors $\Sigma \simeq \mathfrak{S}_3$. On a $\Sigma \cap V_4 = \{ \mathrm{Id} \}$. Comme $|\Sigma| = 6$ et $|V_4| = 4$, du fait de l'intersection vide, on a $|\Sigma V_4| = 24$. On en déduit que $\Sigma V_4 = 24$. On a alors le produit semi-direct $\mathfrak{S}_4 \simeq V_4 \rtimes \Sigma$ où on considère l'action α de Σ sur V_4 par conjugaison. On remarque que

$$\alpha \colon \Sigma \to \operatorname{Aut}(V_4) \hookrightarrow \mathfrak{S}_4$$

est injectif (à vérifier). Réciproquement, si $\varphi \in \text{Aut}(V_4)$, on a $\varphi(\text{Id}) = \text{Id}$. Donc l'action de $\text{Aut}(V_4)$ sur V_4 induit une action de $\text{Aut}(V_4)$ sur $\{a,b,c\}$. On a donc une morphisme injectif de $\text{Aut}(V_4)$ dans $\mathfrak{S}_{\{a,b,c\}} \simeq \mathfrak{S}_3$, donc $\text{Aut}(V_4) \simeq \mathfrak{S}_3$. Finalement, on a $\mathfrak{S}_4 \simeq V_4 \times \text{Aut}(V_4)$;

1.7.4 Critère d'isomorphisme du produit semi-direct

PROPOSITION 1.76. Soient N et Q deux groupes et $\alpha, \beta \colon Q \to \operatorname{Aut}(N)$. Alors $N \rtimes_{\alpha} Q \simeq N \rtimes_{\beta} Q$ si l'un des deux critères est vérifié :

- (i) il existe $\varphi \in Aut(Q)$ tel que $\alpha = \beta \circ \varphi$;
- (ii) il existe $u \in \operatorname{Aut}(N)$ tel que, pour tout $q \in Q$, on ait $\alpha(q) = u \circ \beta(q) \circ u^{-1}$.

Preuve On suppose (i). Alors l'application

$$f \colon \begin{vmatrix} N \rtimes_{\alpha} Q \longrightarrow N \rtimes_{\beta} Q, \\ (n,q) \longmapsto (n,\varphi(q)). \end{vmatrix}$$

est une bijection et un morphisme. En effet, pour tous $(n_1, q_1), (n_2, q_2) \in N \times Q$, on a

$$f((n_1, q_1)(n_2, q_2)) = f(n_1 \alpha(q_1)(n_2), q_1 q_2)$$

$$= (n_1 \alpha(q_1)(n_2), \varphi(q_1 q_2))$$

= $(n_1 \beta \circ \varphi(q_1)(n_2), \varphi(q_1)\varphi(q_2))$
= $(n_1, \varphi(q_1))(n_2, \varphi(q_2))$

ce qui montre que f est un morphisme. On montre ensuite que c'est une bijection ce qui montre l'isomorphie. Pour le point (ii), on considère l'application

$$f \colon \begin{vmatrix} N \rtimes_{\alpha} Q \longrightarrow N \rtimes_{\beta} Q, \\ (n,q) \longmapsto (u(n),q). \end{vmatrix} \Box$$

APPLICATION. Soient $\alpha, \beta \colon Q \to \operatorname{Aut}(N)$ injectif de même image. Alors $N \rtimes_{\alpha} Q \simeq N \rtimes_{\beta} Q$.

Preuve Il suffit de remplir la condition (i) de la proposition précédente en posant $\varphi = \beta^{-1} \circ \alpha$ où β^{-1} est le morphisme réciproque de $\beta \colon Q \to \operatorname{Im} \beta = \operatorname{Im} \alpha$.

1.7.5 Remarques finales

Si $G = N \rtimes Q$ avec $N \triangleleft G$, alors $G/N \simeq Q$. Réciproquement, si $N \triangleleft G$, alors on n'a pas nécessairement $G \simeq N \rtimes G/N$. En effet, il suffit de prendre $G = Q_8$ et $N = \operatorname{Z}(Q_8) \triangleleft Q_8$. Alors pour tout $H < Q_8$ tel que $|H| \neq 1$, on a $1 \in H$, donc $H \cap N \neq \{1\}$, donc on n'aura jamais $Q_8 \simeq \operatorname{Z}(Q_8) \rtimes H$ et, en particulier, avec $H = Q_8/\operatorname{Z}(Q_8)$. En revanche, le critère suivant est vraie.

PROPOSITION 1.77. Soit $N \triangleleft G$. On note $\pi \colon G \to G/N$ la projection canonique. S'il existe Q < G tel que $\pi \colon Q \to G/N$ soit un isomorphisme, alors $G \simeq N \rtimes Q$ où Q agit par conjugaison sur N.

Preuve Comme $\pi_{|Q}$ est injective, on a $N \cap Q = \{1\}$ et, comme elle est surjective, on a G = NQ. D'où le produit semi-direct.

1.8 Théorème de Sylow

1.8.1 Préliminaires

On va décrire les groupes d'ordre inférieur ou égal à 11. Si G est un groupe finie, ce qu'on sait :

- si p := |G| est premier, alors $G \simeq \mathbb{Z}/p\mathbb{Z}$;
- si |G| = 2p est pair avec p premier, alors $G \simeq D_p$ ou $G \simeq \mathbb{Z}/2p\mathbb{Z}$;
- Si G est abélien, on peut écrire $G \simeq \prod_{i=1}^{\ell} \mathbb{Z}/m_i \mathbb{Z}$;
- si G est non abélien et |G| = 8, alors soit $G \simeq D_4$ soit $G \simeq Q_8$;

Preuve Montrons ce dernier point. Comme |G|=8, il existe un élément y de G d'ordre 4. Soit $x\in G-\langle y\rangle$. Alors o(x)=2 ou o(x)=4. En notant $H:=\langle y\rangle$, on a [G:H]=2, donc $H\triangleleft G$. De plus, comme $G=H\sqcup Hx$, on a $G=\langle x,y\rangle$. L'élément y ou y^{-1} est un générateur de H et y^2 est l'unique élément d'ordre 2 dans H. Comme G est abélien, on a $xyx^{-1}=y^{-1}=y^3$. Si o(x)=2, alors $G\simeq D_4$. Sinon on suppose que o(x)=4. En posant $K:=\langle x\rangle$, on a $K\cap H\neq \{1\}$ car sinon on aurait $|KH|=|K|\,|H|=16$ ce qui est impossible. Donc $|H\cap K|=2$ et $x^2=y^2$. Finalement, on a $G=\langle x,y\rangle$ où o(x)=o(y)=4, $xyx^{-1}=y^3$ et $x^2=y^2$. Cela suffit pour dresser la table de

$$G := \{1, y, y^2, y^2, x, yx, y^2x, y^2x\}$$

et, en identifiant x à I et y à J, on a $G \simeq Q_8$.

On peut compléter ces résultats par la proposition suivant.

PROPRIÉTÉ 1.78. Soit G un groupe tel que $G/\mathbb{Z}(G)$ soit monogène. Alors G est abélien.

Preuve On note $\pi: G \to G/\mathbb{Z}(G)$ la projection. Soit $a \in G$. Alors $\langle \pi(a) \rangle = G/\mathbb{Z}(G)$. Soient $x, y \in G$. Il existe $m, n \in \mathbb{Z}$ et $c, d \in \mathbb{Z}(G)$ tels que $x = a^n c$ et $y = a^m d$, donc $[x, y] = [a^n, a^m] = 1$. Donc le groupe G est abélien. \square

COROLLAIRE 1.79. Soient G un groupe tel que $|G| = p^2$ avec p premier. Alors G est abélien.

Preuve On sait que $Z(G) \neq \{1\}$. Il existe $r \in \{1,2\}$ tel que $|Z(G)| = p^r$. Si r = 2, on a terminé. Si r = 1, alors $G/Z(G) \simeq \mathbb{Z}/p\mathbb{Z}$ et on peut appliquer la proposition.

On obtient la classification suivant pour les groupes d'ordre inférieur à 11.

G	G à isomorphisme près
2	$\mathbb{Z}/2\mathbb{Z}$
3	$\mathbb{Z}/3\mathbb{Z}$
4	$\mathbb{Z}/4\mathbb{Z}, (\mathbb{Z}/2\mathbb{Z})^2$
5	$\mathbb{Z}/5\mathbb{Z}$
6	$\mathbb{Z}/6\mathbb{Z}, D_3$
7	$\mathbb{Z}/7\mathbb{Z}$
8	$\mathbb{Z}/8\mathbb{Z}, D_4, Q_8, \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, (\mathbb{Z}/2\mathbb{Z})^3$
9	$\mathbb{Z}/9\mathbb{Z}, (\mathbb{Z}/3\mathbb{Z})^2$
10	$\mathbb{Z}/10\mathbb{Z},\ D_5$
11	$\mathbb{Z}/11\mathbb{Z}$

1.8.2 Structure des *p*-groupes

PROPOSITION 1.80. Soit G un p-groupe. On note $|G| = p^n$. Alors

- 1. pour tout $r \in [0, n]$, il existe un sous-groupe de G d'ordre p^r ;
- 2. pour tout H < G tel que [G : H] = p, alors $H \triangleleft G$;
- 3. pour tout K < G tel que $K \neq G$, il existe H < G tel que [G : H] = p et K < H.

Preuve Procédons par récurrence sur n. C'est vrai pour n=1. Soit n>1. Pour $N \triangleleft G$, on note $\pi_N \colon G \to G/N$ la projection canonique. Si $K \triangleleft G/N$ et $H := \pi_N^{-1}(K)$, alors $[G/N \colon K] = [G \colon H]$ où K = H/N et, si $K \triangleleft G/N$, alors $H \triangleleft H$.

On suppose que les résultats vrais pour des groupes d'ordre inférieur ou égal à n-1. Montrons le point 1. Soit G un p-groupe tel que $|G|=p^n$. Alors il existe $m\in [\![1,n]\!]$ tel que $|Z(G)|=p^m$. Par le théorème de CAUCHY, il existe $x\in Z(G)$ tel que o(x)=p. Comme $x\in Z(G)$, on a $\langle x\rangle \triangleleft G$, donc le groupe $G/\langle x\rangle$ est d'ordre p^{n-1} . Par hypothèse de récurrence, pour tout $r\in [\![0,n-1]\!]$, il existe $K< G/\langle x\rangle$ tel que $|K|=p^r$ et donc $H=\pi_{\langle x\rangle}^{-1}(K)$ est d'ordre p^{r+1} .

Montrons le point 2. Soit H < G d'indice p. On pose $K := \operatorname{Z}(G)H < G$. On a $H < K < \operatorname{N}_G(H)$. Si $\operatorname{Z}(G) \not < H$, alors $H \not < K = G = \operatorname{N}_g(H)$ car [G:H] = p, donc $H \triangleleft G$. On suppose que $\operatorname{Z}(G) < h$. Le groupe $G/\operatorname{Z}(G)$ est un p-groupe d'ordre p^m avec m < n. Comme $\pi_{\operatorname{Z}(G)}^{-1}(\pi_{\operatorname{Z}(G)}(H)) = H$, on a $[G/\operatorname{Z}(G):\pi_{\operatorname{Z}(G)}(H)] = p$ et on conclut par récurrence.

Montrons le point 3. Soit K < G tel que $K \neq G$ et $K \neq \{1\}$. Si $K \triangleleft G$, on applique l'hypothèse de récurrence à G/K. Si $K > \operatorname{Z}(G)$, on applique l'hypothèse de récurrence au couple $(G/\operatorname{Z}(G), \pi_{\operatorname{Z}(G)}(K))$. Dans le cas général, on considère $K' \coloneqq \operatorname{Z}(G)K < \operatorname{N}_G(H)$. Si K' = G, alors $K \triangleleft G$. Sinon $K' > \operatorname{Z}(G)$ et on se ramène au cas précédent.

1.8.3 Énonce des deux théorèmes de Sylow

DÉFINITION 1.81. Soit G un groupe fini. On suppose que $|G| = p^r m$ où p est un nombre premier, r > 0 et $p \nmid m$. Un p-sous-groupe de SYLOW de G est un sous-groupe H de G d'ordre p^r . On note $\mathrm{Syl}_p(G)$ l'ensemble des p-groupes de SYLOW de G et $\mathrm{sp}(G)$ son cardinal.

THÉORÈME 1.82 (SYLOW). Avec les notations précédentes, on a $s_p(G) \ge 1$.

 \triangleright EXEMPLE. On note $G := \mathrm{GL}_n(\mathbb{F}_p)$ avec $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$. Le cardinal de |G| est le nombre de base du \mathbb{F}_p -espace vectoriel \mathbb{F}_p^n qui est

$$(p^n - 1)(p^n - p) \cdots (p^n - p) = p^{n(n-1)/2}m$$
 avec $m := \prod_{i=1}^d (p^i - 1)$

avec $m \wedge p = 1$. On note

$$\mathbf{U}_n(\mathbb{F}_p) \coloneqq \left\{ \begin{pmatrix} 1 & & * \\ & \ddots & \\ & & 1 \end{pmatrix} \right\} < G.$$

Alors $|U_n(\mathbb{F}_p)| = p^{n(n-1)/2}$, donc $U_n(\mathbb{F}_p) \in Syl_p(G)$.

Théorème 1.83 (Sylow). Avec les notations précédentes,

1. deux p-sous-groupe de Sylow de G sont conjugués dans G, i. e. pour tous $P_1, P_2 \in \mathrm{Syl}_p(G)$, il existe $g \in G$

tel que $P_1 = gP_2g^{-1}$;

- 2. on a $s_p(G) \mid m \text{ et } s_p(G) \equiv 1 \ [p];$
- 3. tout p-sous-groupes de G est contenu dans un p-sous-groupe de Sylow de G.

On admet provisoirement ces deux théorèmes.

COROLLAIRE 1.84. Soit G un groupe telle que $|G| = p^r m$ avec p premiers, r > 0 et $p \nmid m$. Alors

- 1. pour tout $r' \in [0, r]$, il existe H < G tel que $|H| = p^{r'}$;
- 2. pour tout $P \in \operatorname{Syl}_p(G)$, on a $P \triangleleft G$ si et seulement si $\operatorname{sp}(G) = 1$.
- ♦ REMARQUE. Une action naturelle existe de G sur $\operatorname{Syl}_p(G)$ par conjugaison, définie par $g \cdot H := gHg^{-1}$. D'après le point 1 du théorème 1.83, cette action est transitive. Soient $P, P' \in \operatorname{Syl}_p(G)$. On note $\operatorname{N}_G(P)$ le stabilisateur de P. Alors $\operatorname{s}_p(G) = |\operatorname{N}_G(P)| = |G|$. De plus, le groupe $\operatorname{N}_G(P)$ est conjugués à $\operatorname{N}_G(P')$.

1.8.4 Exemples et applications

(i) Critère de non simplicité

Ces théorèmes donnent un critère de non simplicité. Par exemple, un groupe d'ordre $99 = 3^2 \times 11$ n'est pas simple. En effet, on a $s_3(G) \mid 11$ et $s_3(G) \equiv 1$ [3], donc $s_3(G) = \{1\}$. Donc il existe un seul sous-groupe d'ordre 9 dans G et donc normal.

(ii) Description des p-Sylow

On considère les groupes \mathfrak{S}_n avec $n \in \{3, 4, 5\}$. On suppose que n = 3. Alors \mathfrak{A}_3 est l'unique 3-Sylow. De plus, on a $s_2(\mathfrak{S}_3) = 3$ car les sous-groupes $\langle \tau_i \rangle$ sont des 2-Sylow avec $\tau_1 = (1\ 2), \tau_2 = (1\ 3)$ et $\tau_3 = (2\ 3)$.

On suppose que n=4. Comme $|\mathfrak{S}_4|=2^3\times 3$, on a $s_2(\mathfrak{S}_4) \mid 4$ et $s_2(\mathfrak{S}_4)\equiv 1$ [2], donc $s_2(\mathfrak{S}_4)\in\{1,3\}$. Par ailleurs, pour $P\in \mathrm{Syl}_2(\mathfrak{S}_4)$, on a |P|=8 et $P\not\preceq\mathfrak{S}_4$ car sinon $\mathfrak{S}_4/P\simeq\mathbb{Z}/3\mathbb{Z}$ est abélien et donc $\mathfrak{A}_4=\mathrm{D}(\mathfrak{S}_4)< P$ ce qui est absurde. On en déduit que $s_2(\mathfrak{S}_4)=3$ et, par exemple, le groupe D_4 est un isomorphe à un groupe de $\mathrm{Syl}_2(\mathfrak{S}_4)$. Alors $|\mathrm{N}_{D_4}(\mathfrak{S}_4)|s_2(\mathfrak{S}_4)=24$, donc $|\mathrm{N}_{D_4}(\mathfrak{S}_4)|=8$ et, puisque $D_4<\mathrm{N}_{D_4}(\mathfrak{S}_4)$, on a $D_4=\mathrm{N}_{D_4}(\mathfrak{S}_4)$. Par ailleurs, on a vu que $s_3(\mathfrak{S}_4)=4$.

On suppose que n=5, On a $|\mathfrak{S}_5|=2^3\times 3\times 5$. On a $\mathfrak{S}_5>S_4:=\{\sigma\in\mathfrak{S}_5\mid\sigma(5)=5\}$. Donc les 2 et 3-Sylows sont, à conjugaisons près, D_4 et $\langle(1\ 2\ 3)\rangle$. De plus, pour $\sigma\in N_{D_4}(\mathfrak{S}_5)$, on a $\sigma(5)=5$. On en déduit que $N_{D_4}(\mathfrak{S}_4)=N_{D_4}(\mathfrak{S}_5)$, donc $s_2(\mathfrak{S}_5)=|\mathfrak{S}_5|/8=15$. Il reste le cas des 5-Sylows. Les 5-Sylows sont les sous-groupes $\langle\sigma\rangle$ où σ est un 5-cycle. Il faut donc dénombrer le nombre de 5-cycles. On a donc $s_5(\mathfrak{S}_6)=4!/4=6$. En conséquence, pour tout $P\in \mathrm{Syl}_5(\mathfrak{S}_5)$, on a $|N_P(\mathfrak{S}_5)|=20$.

(iii) Classification des groupes d'ordre pq

Soit G un groupe d'ordre pq où p et q sont deux nombres premiers distincts tels que p < q. Les théorèmes donnent $s_q(G) \mid p$ et $s_q(G) \equiv 1 \mod q$, donc $s_p(G) = 1$. Par suite, on a $G = N \rtimes H$ où $N \coloneqq \mathbb{Z}/q\mathbb{Z}$ et $H \coloneqq \mathbb{Z}/p\mathbb{Z}$ sont les uniques q et p-SYLOW. Par ailleurs, on a $\operatorname{Aut}(\mathbb{Z}/q\mathbb{Z}) = \mathbb{Z}/(q-1)\mathbb{Z}$. Alors si $p \nmid q-1$, on a

$$G \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \simeq \mathbb{Z}/pq\mathbb{Z}$$

et, si $p \mid q - 1$, on a

$$G \simeq \mathbb{Z}/pq\mathbb{Z}$$
 ou $G \simeq \mathbb{Z}/q\mathbb{Z} \rtimes_{\alpha} \mathbb{Z}/p\mathbb{Z}$

où $\alpha \colon \mathbb{Z}/q\mathbb{Z} \to \mathbb{Z}/(q-1)\mathbb{Z}$ est le morphisme naturel.

1.8.5 Classification des groupes d'ordre 12

Soit G un groupe d'ordre $12 = 2^2 \times 3$. Distinguons deux cas.

1. On suppose que $s_2(G) = 1$. Alors G peut s'écrire sous la forme $N \rtimes H$ où N est un 2-Sylow et H est un 3-Sylow. On peut avoir (i) $N = \mathbb{Z}/4\mathbb{Z}$ ou (ii) $N = (\mathbb{Z}/2\mathbb{Z})^2$. Dans le premier cas (i), on aura

$$G \simeq \mathbb{Z}/4\mathbb{Z} \rtimes_{\alpha} \mathbb{Z}/3\mathbb{Z}$$

avec un morphisme $\alpha \colon \mathbb{Z}/2\mathbb{Z} \longrightarrow \operatorname{Aut}(\mathbb{Z}/4\mathbb{Z}) \simeq (\mathbb{Z}/4\mathbb{Z})^{\times} \simeq \mathbb{Z}/2\mathbb{Z}$ qui est nécessairement le morphisme trivial. Le théorème chinois donne alors

$$G \simeq \mathbb{Z}/12\mathbb{Z} \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}.$$

Dans le second cas (ii), on a

$$G \simeq (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}/3\mathbb{Z}.$$

Or $\operatorname{Aut}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \simeq \mathfrak{S}_3$. Alors un morphisme $\alpha \colon \mathbb{Z}/3\mathbb{Z} \longrightarrow \mathfrak{S}_3$ est (ii.a) soit trivial (ii.b) soit $\operatorname{Ker} \alpha = \{0\}$ et $\operatorname{Im} \alpha = \langle (1\ 2\ 3) \rangle$. Dans cette première situation (ii.a), on a

$$G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}.$$

Dans cette seconde situation (ii.b), on a

$$G \simeq (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}/3\mathbb{Z} \simeq \mathfrak{A}_4$$

pour un morphisme non trivial α .

2. On suppose que $s_3(G) = 1$. Alors G peut s'écrire sous la forme $N \rtimes H$ où N est un 3-Sylow et H est un 2-Sylow. On a $N = \mathbb{Z}/3\mathbb{Z}$. Alors (i) soit $H = \mathbb{Z}/4\mathbb{Z}$ (ii) soit $H = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Dans ce premier cas (i), on a

$$G \simeq \mathbb{Z}/3\mathbb{Z} \rtimes_{\alpha} \mathbb{Z}/4\mathbb{Z}$$

avec un morphisme $\alpha \colon \mathbb{Z}/4\mathbb{Z} \longrightarrow \operatorname{Aut}(\mathbb{Z}/3\mathbb{Z}) \simeq \mathbb{Z}/2\mathbb{Z}$. Soit α est trivial (voir précédemment), soit $\alpha(1) = 1$. Dans le second cas (ii), on a

$$G \simeq \mathbb{Z}/3\mathbb{Z} \rtimes_{\alpha} (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$$

avec un morphisme $\alpha \colon \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z}$. Si α est non trivial, alors

$$G \simeq \mathfrak{S}_3 \times \mathbb{Z}/2\mathbb{Z}$$
.

En effet, dans $G' := \mathbb{Z}/2\mathbb{Z}$, on a $s_3(G') = 1$, donc $\langle (1\ 2) \rangle \times \mathbb{Z}/2\mathbb{Z} \simeq (\mathbb{Z}/2\mathbb{Z})^2$ est un 2-Sylow et G' est non abélien.

BILAN. Pour les 5 premiers cas, on a au plus 5 classes d'isomorphisme deux à deux non isomorphes. À isomorphisme près, il y a donc 5 groupes d'ordre 12.

1.8.6 Preuve des deux théorèmes de Sylow

On considère un groupe G d'ordre p^rm où p est un nombre premier, r > 0 et $p \nmid m$. Il faut montrer l'existence d'un p-Sylow. Pour cela, on admet provisoirement le lemme suivant.

Lemme 1.85. On a

$$p \nmid \binom{mp^r}{p^r}$$
.

Preuve du premier théorème On note

$$\mathscr{X} := \{X \subset G \mid |X| = p^r\}.$$

Remarquons que $|\mathscr{X}| = {mp^r \choose p^r}$. On considère l'action de G sur X par l'action $(g,X) \longmapsto g \cdot X \coloneqq gX$. Pour $X \in \mathscr{X}$, le groupe G_X agit alors sur X par l'action $(h,x) \longmapsto k \cdot x \coloneqq hx$. Pour $x \in X$, l'application

$$\varphi_x : \begin{vmatrix} G_X \longrightarrow X, \\ h \longmapsto hx \end{vmatrix}$$

est injective, donc $|G_X| \leq p^r$. Choisissons un bon ensemble $X \in \mathcal{X}$ de sorte que $|G_X| = p^r$. Soit (X_1, \dots, X_n) un famille de \mathcal{X} de représentants des orbites de l'action de G sur X. L'équation aux classes donne

$$|\mathscr{X}| = \sum_{i=1}^{n} |G \cdot X_i|.$$

Le lemme affirme l'existence d'un indice $i_0 \in \llbracket 1, n \rrbracket$ tel que $p \nmid |G \cdot X_{i_0}|$. Puisque $|G \cdot X_{i_0}| = |G|/|G_{X_{i_0}}|$, on a $|G_{X_{i_0}}| \geqslant p^r$. Finalement, on a $|G_{X_{i_0}}| = p^r$ et le groupe $G_{X_{i_0}}$ est bien un p-Sylow.

Preuve du lemme On a

$$\binom{mp^r}{p^r} = \frac{(mp^r)!}{(p^r)([m-1]p^r)!} = \prod_{j=1}^{p^r-1} \frac{mp^r - j}{p^r - j}.$$

Pour tout $j \in [1, p^r - 1]$, les entiers $mp^r - j$ et $p^r - j$ sont divisibles par la même puissance de p, donc le quotient $(mp^r - j)/(p^r - j)$ n'est pas divisible par p ce qui donne le lemme.

Montrons maintenant le second théorème de Sylow. La preuve repose sur une application du second théorème d'isomorphisme.

1.8. THÉORÈME DE SYLOW

THÉORÈME 1.86. Soient G un groupe et N et H deux sous-groupes de G tels que $N \triangleleft G$. Alors

- 1. NH est un sous-groupe de G;
- 2. $H/(H \cap N) \simeq (NH)/N$

Preuve Montrons le point 1. On a bien $e \in NH$. Soient $x := nk \in NH$ et $y := n'h' \in NH$. On a

$$xy^{-1} = nhh'^{-1}n'^{-1} = nhh'^{-1}n'^{-1}(hh'^{-1})^{-1}hh'^{-1} \in NH$$

puisque, comme N est distingué, on a $hh'^{-1}n'^{-1}(hh'^{-1})^{-1} \in N$.

Il existe un morphisme naturel

$$\varphi \colon H \stackrel{i}{\longrightarrow} NH \stackrel{\pi}{\longrightarrow} NH/N.$$

Il est surjectif puisque, pour tous $n \in N$ et $h \in H$, on a $\pi(h) = \pi(nh)$. De plus, on a Ker $\varphi = H \cap N$. On conclut alors par le premier théorème d'isomorphisme.

COROLLAIRE 1.87. Soit $P \in \text{Syl}_p(G)$ et H < G un p-sous-groupe tel que $H < \text{N}_G(P)$. Alors H < P

Preuve Comme P et H sont des sous-groupes de $\mathcal{N}_G(P)$ et $P \triangleleft \mathcal{N}_G(P)$, le second théorème d'isomorphisme donne

$$H/(P \cap H) \simeq (PH)/P$$
.

Le groupe $H/(P \cap H)$ est un p-groupe. Comme P est un p-Sylow, on en déduit que PH est un p-sous-groupe et P < PH, donc P = PH et donc H < P.

Preuve du second théorème Le groupe G agit sur $\mathrm{Syl}_p(G)$ par conjugaison par l'action $(g,P)\longmapsto g\cdot P\coloneqq gPg^{-1}$. Soit $P_0\in\mathrm{Syl}_p(G)$. On considère $\mathscr{O}\coloneqq G\cdot P_0$. Alors on a une action induit de H< G sur \mathscr{O} par conjugaison. Si H est un p-sous-groupe, alors l'équation aux classes s'écrit

$$|\mathscr{O}| \equiv |\mathscr{O}^H| \quad [p].$$

Si on prend $H = P_0$ et $P \in \mathcal{O}$, alors $P \in \mathcal{O}^{P_0} \Leftrightarrow P_0 < \mathcal{N}_G(P) \Leftrightarrow P = P_0$ par le corollaire. On en déduit que $\mathcal{O}^{P_0} = \{P_0\}$. Ainsi par l'équation aux classes, on a donc $|\mathcal{O}| \equiv 1$ [p]. On en déduit que, pour tout p-sous-groupe H, on a $|\mathcal{O}^H| \equiv 1$ [p] et, en particulier, on a $\mathcal{O}^H \neq \emptyset$, donc il existe $P \in \mathcal{O}$ tel que $H < \mathcal{N}_G(P)$. On en déduit les points 1 et 3 du second théorème. Par suite, on a $\mathcal{O} = \mathrm{Syl}_p(G)$ ce qui entraı̂ne le point 2.