CE085 - Estatística Inferencial Testes de hipóteses

Prof. Wagner Hugo Bonat

Laboratório de Estatística e Geoinformação - LEG Curso de Bacharelado em Estatatística Universidade Federal do Paraná - UFPR

16 de outubro de 2018

Conteúdo

Conteúdo

- ► Motivação e definições.
- ► Teste da Razão de verossimilhança.
- ► Teste de Wald.
- ► Teste escore.

Definições

- Chamamos de hipótese estatística qualquer afirmação acerca da distribuição de probabilidade de uma ou mais v.a.
- ▶ Chamamos de **teste de uma hipótese estatística** a função de decisão $\chi \to \{a_0, a_1\}$, em que a_0 corresponde à ação de considerar a hipótese H_0 verdadeira e a_1 corresponde à ação de considerar H_0 como falsa.
- $ightharpoonup \chi$ denota o espaço amostra.
- A função de decisão d divide χ em dois conjuntos

$$A_0 = \{(y_1, \ldots, y_n) \in \chi; d(y_1, \ldots, y_n) = a_0\}$$

$$A_1 = \{(y_1, \dots, y_n) \in \chi; d(y_1, \dots, y_n) = a_1\},$$
 onde $A_0 \cup A_1 = \chi \, e \, A_0 \cap A_1 = \emptyset.$

Exemplo 1

➤ Suponha que, entre pessoas sadias, a concentração de certa substância no sangue se comporta segundo um modelo Normal com média 14 unidades/ml e desvio padrão 6 unidades/ml. Pessoas sofrendo de uma doença específica êm concentração méda da substância alterada para 18 unidades/ml. Admitimos que o modelo Normal com desvio padrão 6 unidades/ml, continua representado de forma adequada a concentração da substância em pessoas com a doença.

Exemplo 8.1

Exemplo 1

- ▶ Interesse geral $\mu = 14$?
- ▶ Distribuição da média amostral $N(\mu, 36/30)$.
- ▶ Critério para decidir sobre o valor de μ .
- Valor crítico, digamos x_c tal que se a média for maior que x_c concluímos que a amostra pertence a população com média 18.
- ► Erros associados.

Tipos de Hipóteses

► Hipótese simples:

 H_0 : O tratamento não é eficaz ($\mu=18$); H_1 : O tratamento é eficaz ($\mu=14$).

► Hipótese unilateral:

 H_0 : O tratamento não é eficaz ($\mu = 18$); H_1 : O tratamento é eficaz ($\mu < 18$).

► Hipótese bilateral:

 H_0 : O tratamento não é eficaz ($\mu = 18$); H_1 : O tratamento é eficaz ($\mu \neq 18$).

Erros ao realizar um teste de hipótese

- ► Erro Tipo I: rejeitar H₀, quando H₀ é verdadeira.
- ► Erro Tipo II: não rejeitar H₀ quando H₀ é falsa.

		Situação	
-	1/2/18/	H ₀ Verdadeira	H ₀ Falsa
Decisão	Rejeitar H ₀	Erro Tipo I	Sem erro
	Não rejeitar H_0	Sem error	Erro Tipo II

- $\sim \alpha = P(\text{erro tipo I}) = P(\text{rejeitar } H_0 H_0 \text{ verdadeira});$
- $\beta = P(\text{error tipo II}) = P(\text{não rejeitar } H_0 H_0 \text{ falsa}).$
- $\alpha = P(\text{concluir que o tratamento é eficaz quando na verdade não é});$
- β = P(concluir que o tratamento não é eficaz quando na verdade ele é).

Valor crítico

- $ightharpoonup \alpha$ é chamado nível de significância do teste.
- ▶ Suponha que n = 30 observação e a média amostral é \bar{X} .
- Supondo α conhecido podemos determinar o valor crítico x_c .

$$\alpha = P(\text{Erro tipo I}) = P(\text{rejeitar} \ H_0|H_0 \ \text{Verdadeira})$$

$$= P(\bar{X} < x_c | \mu = 18) = P(\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} < \frac{x_c - 18}{6 / \sqrt{30}})$$

$$= P(Z < Z_c)$$

 $com Z \sim N(0, 1)$.

Obtendo o valor crítico

- ▶ Dado α encontramos z_c na Tabela normal padrão.
- ► Obtemos x_c

$$z_c = \frac{x_c - 18}{6/\sqrt{30}} \to x_c = 18 + z_c \frac{6}{\sqrt{30}}.$$

▶ Supondo $\alpha = 0.05$ temos

$$0.05 = P(Z < z_c) \rightarrow z_c = -1.64;$$

logo

$$x_c = 18 - 1.64 \frac{6}{\sqrt{30}} = 16.20.$$

Regiões de aceitação e rejeição

Região crítica ou região de rejeição

$$RC = \{x \in \Re : x < 16.20\}.$$

▶ Região de aceitação (RA) é o complemento de RC.

Tipos de Teste de hipóteses

Teste da razão de verossimilhança

► Teste da razão de verossimilhança para testar $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$ é

$$\lambda(\underline{y}) = \frac{\sup_{\Theta_0} L(\theta|\underline{y})}{\sup_{\Theta} L(\theta|\underline{y})}.$$

- ▶ O teste da razão de verossimilhança (TRV) é qualquer teste que tenha uma região de rejeição da forma $\underline{y}: \lambda(\underline{y}) \leq c$ onde c é qualquer número que satisfaça $0 \leq c \leq 1$.
- Para testar $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$, suponha Y_1, \dots, Y_n sejam iid $f(\underline{y}|\theta)$, $\hat{\theta}$ seja o EMV de θ , e $f(\underline{y}|\theta)$ satisfaça as condições de regularidade. Assim, sob H_0 a medida que $n \to \infty$

$$-2\log\lambda(\underline{y})\to\chi_1^2$$
.

Teste Wald

- ▶ Hipóteses H_0 : $\theta = \theta_0$ versus H_1 : $\theta \neq \theta_0$.
- Estatística de teste Wald

$$\frac{\hat{\theta} - \theta_0}{\sqrt{V(\hat{\theta})}} \sim N(0, 1).$$

 $ightharpoonup V(\hat{\theta})$ é a variância do estimador $\hat{\theta}$.

Teste escore

A função escore é definida como

$$U(\theta) = \frac{\partial}{\partial \theta} I(\theta | \underline{Y}).$$

- ▶ Sabemos que para todo θ , $E(U(\theta)) = 0$.
- ► $H_0: \theta = \theta_0$ e se H_0 for verdadeira, então $U(\theta)$ tem média 0. Além disso,

$$V_{\theta}(U(\theta)) = -E_{\theta}\left(\frac{\partial^2}{\partial \theta^2}I(\theta|\underline{Y})\right) = I_{E}(\theta).$$

A estatística de teste para o teste de escore é

$$Z_S = \frac{U(\theta_0)}{\sqrt{I_E(\theta_0)}} \sim N(0, 1).$$

