

Claim Amendments

1. (currently amended) A method of JPEG compression of an image frame divided up into a plurality of non-overlapping, tiled 8×8 pixel blocks $B_{ij}-X_i$ comprising:

(a) forming a discrete cosine transform (DCT) of each block $B_{ij}-X_i$ of the image frame to produce a matrix of blocks of transform coefficients $D_{ij}-Y_i$;

(b) calculating a visual importance, $I_{ij}-I_i$, for each block of the image, based upon assigning zeros for flat features and values approaching unity for sharply varying features;

(c) forming a global quantization matrix Q by one of

(i) selecting a standard JPEG quantization table and

(ii) selecting a quantization table such that the magnitude of each quantization matrix coefficient $Q_{ij}-Q[m,n]$ is inversely proportional to the aggregate visual importance in the image of the corresponding DCT basis vector; and

(d) selecting calculating linear scaling factors $S_{ij}-S_i$ defining bounds over which the image is to be variably quantized;

(e) quantizing the transform coefficients, D_{ijmn} , by an equivalent of dividing them by a factor $S_{min} * Q$, where S_{min} is a user selected minimum scaling factor, and approximating variable quantization of the transform coefficients, $Y_i[m, n]$, using the local quantization table $S_i Q$ while actually producing coefficients $T_i[m, n]$ that have been quantized using global quantization table $S_{min} Q$; and

(f) entropy encoding quantized coefficients T_{ijmn} $T_i[m, n]$ and global quantization table $S_{min} Q$ to create a JPEG Part 1 image file.

2. (currently amended) A method according to claim 1, wherein step (e) includes rounding $D_{ijmn} / (S_{min} * Q) \rightarrow Y_i[m, n] / (S_{min} Q[m, n])$ to the nearest integer to form quantized DCT transformed coefficients $T_{ijmn} T_i[m, n]$;

(f) setting $T_{ijmn} T_i[m, n] = 0$ if $\text{round}(D_{ijmn} / (Q_{mn} * S_{ij}))$ $\text{round}(Y_i[m, n] / (S_i Q[m, n])) = 0$; and

(g) setting $T_{ijmn} =$
 ~~$\text{sign}(D_{ijmn}) * (2^{\lceil \text{ceil}(\lg(\text{abs}(D_{ijmn})+1)) \rceil} - 1)$ if $\text{abs}(D_{ijmn})$ $(2^{\lceil \text{ceil}(\lg(\text{abs}(D_{ijmn})+1)) \rceil} - 1)$ is less than or equal to $\text{abs}(D_{ijmn}) Q_{mn} S_{ij} * \text{round}(D_{ijmn} / (S_{ij} * Q_{mn}))$,~~
~~setting $T_i[m, n] = \text{sign}(T_i[m, n]) P(T_i[m, n])$ if $\text{Ernd}_i[m, n]$ is less than or equal to $\text{Evq}_i[m, n]$.~~

3. (currently amended) A method according to claim 1, including calculating a linear scaling factor S_{ij} S_i equal to $\frac{I_{ij}}{I_i} \cdot (S_{max} - S_{min}) + S_{min}$ where S_{min} and S_{max} are user specified to define bounds over which the image will be variably quantized.

4. (currently amended) The method according to claim 1, where $\frac{I_{ij}}{I_i}$ I_i is determined by discrete edge detection and summation of transform coefficients.

5. (currently amended) The method according to claim 1, wherein $\frac{I_{ij}}{I_i}$ I_i is determined by creating a 24 x 24 matrix of image pixels of DCT coefficients centered on a block $B_{ij}-X_i$, where i and $j=1, 2, 3, 8$, convolving said 24 x 24 matrix with an edge tracing kernel to produce a convolved matrix, summing center 10 x 10 matrix values of said convolved matrix to produce a summed value, and normalizing said summed value to produce a visual importance, $\frac{I_{ij}}{I_i}$ I_i .

6. (currently amended) The method according to claim 1, wherein said global quantization matrix Q is formed by calculating an 8 x 8 matrix A by calculating matrix elements A_{mn} $A[m, n]$ of said A according to the formula

$$A_{mn} = I_{ij} \cdot (B_{ij})_{mn}^T$$

$$A[m, n] = \sum_{a11} \sum_{i1} I_i Y_i [m, n]$$

calculating elements Q_{mn} of said Q according to the formula

$$Q_{mn} = \max(A_{mn})$$

$$Q[m, n] = \max(\text{entries of } A) / A[m, n]$$

and scaling values of Q_{mn} coefficients of Q by a constant factor s for all values of (m, n) except $(0, 0)$ in order to minimize an error between Q and a standard JPEG quantization matrix.

7. (currently amended) A method of JPEG compression of an image frame divided up into a plurality of non-overlapping, tiled 8×8 pixel blocks $B_{ij} X_i$ where i, j are integers covering all of the blocks in the image frame, comprising:

- (a) forming a discrete cosine transform (DCT) of each block $B_{ij} X_i$ of the image frame to produce a matrix of blocks of transform coefficients $D_{ij} Y_i$;
- (b) calculating a visual importance, $I_{ij} - L_i$, for each block of the image, based upon assigning zeros for flat features and values approaching unity for sharply varying features;
- (c) forming a global quantization matrix Q by one of
 - (i) selecting a standard JPEG quantization table and
 - (ii) selecting a quantization table such that the magnitude of each quantization matrix coefficient

$Q_{ij} - Q[m, n]$ is inversely proportional to the aggregate visual importance, I_{ij} , to the image of a the corresponding DCT basis vector; and

(d) selecting a linear scaling factor $S_{ij} - S_i$ defining bounds over which the image is to be variably quantized wherein $S_{ij} - S_i = I_{ij} - I_i (S_{max} - S_{min}) + S_{min}$, where S_{max} and S_{min} are user selected;

(e) quantizing the transform coefficients, $D_{ijm} - Y_i[m, n]$, to produce quantized blocks $T_{ijm} - T_i[m, n]$ as follows:

(i) $T_{ijm} = \text{round}(D_{ijm} / (S_{min} * Q_{mn})) \rightarrow T_i[m, n] = \text{round}(Y_i[m, n] / (S_{min} * Q[m, n]))$, where round denotes rounding to the nearest integer;

(ii) setting $T_{ijm} T_i[m, n] = 0$ if $\text{round}(D_{ijm} / (Q_{mn} * S_{ij})) \text{round}(Y_i[m, n] / (S_i * Q[m, n])) = 0$; and

(iii) setting $T_{ijm} = \text{sign}(D_{ijm}) + 1 \rightarrow T_i[m, n] = \text{sign}(T_i[m, n]) P(\text{abs}(T_i[m, n]))$ if $\text{abs}(D_{ijm}) > 2^{\lceil \text{ceil}(\lg(\text{abs}(D_{ijm})) + 1) \rceil - 1}$; $Erd_i[m, n]$ is less than or equal to $(\text{abs}(D_{ijm} * Q_{mn} * S_{ij}) + \text{round}(D_{ijm} / (S_{ij} * Q_{mn}))) - Evq_i[m, n]$;

(f) entropy encoding quantized coefficients $T_{ijm} T_i[m, n]$ and global quantization matrix $S_{min} Q$, to create a JPEG Part 1 image file.

8. (currently amended) A method of JPEG compression of a colour image represented by channels Y for greyscale data, and U and V each for colour, comprising:

(a) ~~shrinking~~ subsampling the colour channels U and V by a an integer fraction of their size;

(b) forming a discrete cosine transform (DCT) $B_{ij} Y_i$ for each block $B_{ij} X_i$ of each of channels Y, U and V;

(c) calculating a visual importance, $I_{ij} - I_i$, for each Y channel block of each image and setting $I_{ij} I_i = \max\{-I_{ij} I_i\}$ values for corresponding Y channel blocks} for blocks in the U and V channels;

(d) forming a global quantization matrix Q for the Y channel block and one for channels U and V combined such that a magnitude of each quantization matrix coefficient $Q_{ij} - Q[m,n]$ is inversely proportional to an the aggregate visual importance in the image of a the corresponding DCT basis vector; and

(e) approximating variable quantization of the transform coefficients, $Y_i[m,n]$, using the local quantization table $S_i Q$ while actually producing coefficients $T_i[m,n]$ that have been quantized using global quantization table $S_{min} Q$, where Q is the global quantization table for the associated channel being quantized; and quantizing the transform coefficients for

~~each of the Y, U and V channels by dividing them by a factor s_{ij} , Q' , where s_{ij} is a linear scaling factor for each of channels Y, U and V and Q' is the quantization table for the associated channel being quantized; and~~

(fe) entropy encoding quantized coefficients T_{ijmn} $T_{i[m,n]}$ and $Q'*S_{min}$ global quantization table $S_{min} Q$, where S_{min} is a user selected minimum scaling factor for each of channels Y, U, and V, to create a JPEG Part 1 image file for each of channels Y, U and V.

9. (currently amended) The method of claim 8 wherein the shrinking subsampling factor is $1/2$ 2.

10. (currently amended) Apparatus for JPEG compression of an image frame divided up into a plurality of non-overlapping, tiled 8×8 pixel blocks $B_{ij}-X_i$ where i, j are integers covering all of the blocks in the image frame, comprising:

(a) a discrete cosine transformer (DCT) operative to form the ~~deiscrete~~ discrete cosine transform of each block $B_{ij}-X_i$ of the image frame to produce a ~~matrix~~ of blocks of transform coefficients $D_{ij}-Y_i$;

(b) a visual importance calculator operative to calculate the visual importance, $I_{ij}-I_i$, for each block of the image, based upon assigning zeros for flat features and values approaching unity for sharply varying features;

(c) a global quantization matrix calculator operative to calculate the global quantization matrix, Q , by one of

(i) selecting a standard JPEG quantization table and

(ii) selecting a quantization table such that the magnitude of each quantization matrix coefficient $Q_{ij} - Q[m, n]$ is inversely proportional to the aggregate visual importance in the image of the corresponding DCT basis vector; and

(d) a linear scaling factor calculator operative to determine a linear scaling factor, $S_{ij}S_i$, defining bounds over which the image is to be variably quantized based on user established values of S_{\max} and S_{\min} ;

(e) a variable quantization operative approximating variable quantization of the transform coefficients, $Y_i[m, n]$, using the local quantization table S_iQ while actually producing coefficients $T_i[m, n]$ that have been quantized using global quantization table $S_{\min}Q$, where S_{\min} is a user selected minimum scaling factor; and a quantizer operative to divide the transform coefficients, D_{ijmn} , by a value equivalent to dividing them by a factor $S_{\min} * Q$, where S_{\min} is a user selected minimum scaling factor; and

(f) an entropy encoder operative to encode the quantized coefficients $T_{ijmn} - T_i[m,n]$ and $Q * S_{min}$ global quantization table $S_{min} Q$ to create a JPEG Part 1 image file.

11. (currently amended) Apparatus according to claim 10, wherein said quantizer rounds $D_{ijmn} / (S_{min} * Q)$ $Y_i[m,n] / (S_{min} Q[m,n])$ to the nearest integer to form quantized DCT transformed coefficients $T_{ijmn} - T_i[m,n]$ and

(f) sets $T_{ijmn} - T_i[m,n] = 0$ if $\text{round}(D_{ijmn} / Q_{mn} * S_{ij})$ $\text{round}(Y_i[m,n] / (S_i Q[m,n])) = 0$; and

(g) sets $T_{ijmn} - \text{sign}(D_{ijmn}) * (2^{\lceil \text{ceil}(\lg(\text{abs}(D_{ijmn})) + 1) \rceil} - 1)$ $T_i[m,n] = \text{sign}(T_i[m,n]) P(\text{abs}(T_i[m,n]))$ if $\text{abs}(D_{ijmn}) - (2^{\lceil \text{ceil}(\lg(\text{abs}(D_{ijmn})) + 1) \rceil} - 1) - 1$ $\text{Ernd}_i[m,n]$ is less than or equal to $\text{abs}(D_{ijmn} - Q_{mn} S_{ij}) * \text{round}(D_{ijmn} / (S_{ij} * Q_{mn}))$ $\text{Evg}_i[m,n]$;

12. (currently amended) Apparatus according to claim 10, wherein said linear scaling factor calculator determines a linear scaling factor $S_{ij} - S_i$ equal to $I_{ij} - I_i * (S_{max} - S_{min}) + S_{min}$ where S_{min} and S_{max} are user specified to define bounds over which the image will be variably quantized.