Prova scritta di Calcolo Scientifico – 18 settembre 2017

(i fogli senza nome e cognome non saranno corretti)

- 1. Sia $\mathcal{F} = \mathcal{F}(2, 4, p, q)$ l'insieme di numeri di macchina con l'arrotondamento.
 - Definisci in generale la precisione di macchina u e determina quella di \mathcal{F} .
 - Determina p, q in modo che i numeri positivi di \mathcal{F} siano 80 e realmax = 60.
 - Sia $x = \frac{2}{5}$. Verifica che $x \notin \mathcal{F}$ e determina $\tilde{x} = fl(x) \in \mathcal{F}$.
 - Sia $y = \frac{3}{10}$. Verifica che $y \notin \mathcal{F}$ e determina $\tilde{y} = fl(y) \in \mathcal{F}$.
 - Calcola $z = \tilde{x} \tilde{y}$ e $\tilde{z} = \tilde{x}fl(-)\tilde{y}$.
 - Definisci i numeri denormalizzati. Quanti sono i numeri positivi denormalizzati relativi a \mathcal{F} ?
- 2. Si vuole calcolare la funzione y = f(x).
 - Definisci l'errore inerente e il concetto di condizionamento.
 - Studia il condizionamento della funzione $f(x) = \frac{(x^2-2)}{(x^2+1)}$.
 - Definisci l'errore algoritmico e il concetto di stabilità.
 - Studia la stabilità dell' algoritmo che valuta $\sqrt{f(x)}$ in un punto x.
- 3. Sia $f(x) = 2x^3 9x^2 + 5$.
 - Disegna il grafico di f. Localizza le tre radici α, β, γ con $\alpha < \beta < \gamma$.
 - Studia la convergenza ad α del metodo di Newton. La successione ottenuta con $x_0 = -1$ è convergente a α ? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.
 - Studia la convergenza a γ del metodo di Newton. La successione ottenuta con $x_0 = 4$ è convergente a γ ? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.

Sia $g(x) = x + \frac{f(x)}{18}$. Verifica che α, β, γ sono punti fissi di g.

- Studia la convergenza ad α, β, γ del metodo iterativo $x_{k+1} = g(x_k), k = 0, 1, \dots$
- La successione ottenuta con $x_0 = \frac{1}{2}$ è convergente? Se convergente, a quale delle tre radici converge? Qual è l'ordine di convergenza? Giustifica la risposta.
- Fissata una precisione TOL, proponi un criterio d'arresto e analizza l'errore dell'approssimazione ottenuta.
- Definisci il concetto di ordine di convergenza p per una generica successione $x_k \to \alpha$ per $k \to +\infty$.
- 4. Sia data la matrice

$$A = \left(\begin{array}{ccc} \alpha & -1 & 2\alpha \\ 2 & 0 & 1 \\ -3 & -1 & -2 \end{array} \right).$$

- Disegna il grafico della funzione $\alpha \to \|A(\alpha)\|_{\infty}$.
- Disegna il grafico della funzione $\alpha \to ||A(\alpha)||_1$.
- \bullet Calcola la fattorizzazione LU di A.
- Per quale scelta del parametro α il sistema Ax = b ha un'unica soluzione?
- Illustra in generale la strategia del pivot parziale per il metodo di Gauss. Perchè si applica?
- Per quali valori del parametro α il metodo di Gauss con il pivot parziale al primo passo scambia la prima con la terza riga di A?
- Sia $\alpha = 3$. Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- Sia $\alpha = -4$. Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- Nota la fattorizzazione LU di A spiega come risolvi in generale il sistema lineare Ax = b? Nota la fattorizzazione PA = LU come risolvi in generale il sistema lineare Ax = b?
- 5. Sia $f(x) = \frac{(x^2-2)}{(x^2+1)}$. Dati i punti $P_0 = (-1, f(-1)), P_1 = (0, f(0)), P_2 = (1, f(1)).$
 - Determina il polinomio p che interpola i tre punti nella forma di Newton.
 - Dato l'ulteriore punto $P_3 = (2, f(2))$, determina in maniera efficiente il polinomio \tilde{p} che interpola i quattro punti nella forma di Newton.
 - Determina il polinomio q di primo grado di miglior approssimazione dei tre punti P₀, P₁, P₂ nel senso dei minimi quadrati.
 - Determina il polinomio r di primo grado di miglior approssimazione dei tre punti P₀, P₁, P₃ nel senso dei minimi quadrati.
 - Sia p_n il polinomio che interpola in n + 1 punti distinti a = x₀ < x₁ < ··· < x_n = b una generica funzione f sufficientemente regolare. Scrivi la formula dell'errore f(x) − p_n(x) e determina una maggiorazione di max_{x∈[a,b]} |f(x) − p_n(x)|.
- Scrivi la pseudocodifica di un algoritmo efficiente per calcolare un generico polinomio p_n(x) = ∑_{i=0}ⁿ a_ixⁱ in un punto x assegnato e analizza la sua complessità computazionale.
 - Modifica la pseudocodifica al punto precedente in modo da calcolare anche $p'_n(x)$.
 - Scrivi una pseudocodifica che implementa in maniera efficiente il metodo di Newton per il polinomio p_n con un criterio d'arresto data una precisione TOL.