Contents

0.1	Unitary groups $U(n,F)$		1
	0.1.1	Metric preserving transformations for sesquilinear forms .	1
	0.1.2	The unitary group	1
	0.1.3	Parameters of the unitary group	1
	0.1.4	We generally refer only to the complex	2
	0.1.5	U(1): The circle group	2

0.1 Unitary groups U(n, F)

0.1.1 Metric preserving transformations for sesquilinear forms

For bilinear forms, the transformations which preserved metrics were:

$$P^T = P^{-1}$$

For sesquilinear they are different:

 u^*Mv

 $(Pu)^*M(Pv)$

 u^*P^*MPv

So we want the matrices where:

$$P^*MP = M$$

0.1.2 The unitary group

The unitary group is where M = I

$$P^*P = I$$

$$P^* = P^{-1}$$

We refer to these using U instead of P.

$$U^*=U^{-1}$$

0.1.3 Parameters of the unitary group

The unitary group depends on the dimension of the vector space, and the underlying field. So we can have:

- U(n,R); and
- U(n,C).

0.1.4 We generally refer only to the complex

For the U(n,R) we have:

$$U^*=U^{-1}$$

$$U^T = U^{-1}$$

This is the condition for the orthogonal group, and so we would instead write O(n).

As a result, U(n) refers to U(n, C).

0.1.5 U(1): The circle group