Econometrics in Economics / Introduction to Econometrics

Intro

Patrick Schmidt (based on slides by Simon Heß and Daniel Gutknecht)

Winter 23

Welcome to econometrics

Economics without data?

• Economics without data? No, thank you.

- Economics without data? No, thank you.
- Econometrics: Connects economic theory to data.

- Economics without data? No, thank you.
- Econometrics: Connects economic theory to data.
- We will learn:

- Economics without data? No, thank you.
- Econometrics: Connects economic theory to data.
- We will learn:
 - How to analyze data

000

- Economics without data? No, thank you.
- Econometrics: Connects economic theory to data.
- We will learn:
 - How to analyze data
 - How to test economic models

000

- Economics without data? No, thank you.
- Econometrics: Connects economic theory to data.
- We will learn:
 - How to analyze data
 - How to test economic models
 - How to understand causality (≠ correlation)

- Economics without data? No, thank you.
- Econometrics: Connects economic theory to data.
- We will learn:
 - How to analyze data
 - How to test economic models
 - How to understand causality (≠ correlation)
 - How to forecast

- Economics without data? No, thank you.
- Econometrics: Connects economic theory to data.
- We will learn:
 - ,

How to analyze data

- How to test economic models
- How to understand causality (≠ correlation)
- How to forecast
- Statistics for regression models

- Economics without data? No, thank you.
- Econometrics: Connects economic theory to data.
- We will learn:
 - ,

How to analyze data

- How to test economic models
- How to understand causality (≠ correlation)
- How to forecast
- Statistics for regression models

Roadmap for today

- Formalities
- Why should I study econometrics?
- Big picture: Causality and data
- Refresher on statistics and probability (partly in exercise)

Formalities

Two rules, one course:

• lectures (weekly), exercise (bi-weekly), and computer sessions (bi-weekly)

Two rules, one course:

- lectures (weekly), exercise (bi-weekly), and computer sessions (bi-weekly)
- Econometrics in Economics (BOEE):
 - all are relevant for the exam
- Introduction to Econometrics (EOEK):
 - only lectures and exercise relevant for the exam
 - computer sessions still recommended

Two rules, one course:

- lectures (weekly), exercise (bi-weekly), and computer sessions (bi-weekly)
- Econometrics in Economics (BOEE):
 - all are relevant for the exam
- Introduction to Econometrics (EOEK):
 - only lectures and exercise relevant for the exam
 - computer sessions still recommended

slides and problem sets will be distributed via OLAT

- slides and problem sets will be distributed via OLAT
- for content questions, please use the **OLAT forum**

- slides and problem sets will be distributed via OLAT
- for content questions, please use the OLAT forum
- my office hours: Wednesday 11pm by email appointment

- slides and problem sets will be distributed via OLAT
- for content questions, please use the OLAT forum
- my office hours: Wednesday 11pm by email appointment
- recordings on OLAT (if technology allows)

- slides and problem sets will be distributed via OLAT
- for content questions, please use the OLAT forum
- my office hours: Wednesday 11pm by email appointment
- recordings on OLAT (if technology allows)

- we use **R** and **RStudio** in the computer sessions
 - free, powerful (for statistics and data science), and open source software

- we use R and RStudio in the computer sessions
 - free, powerful (for statistics and data science), and open source software
 - common alternatives: Stata (commercial), Matlab (commercial), Python (more general), Julia (new)
- if possible, bring a laptop with R and RStudio installed (installation tutorial on OLAT)

- we use R and RStudio in the computer sessions
 - free, powerful (for statistics and data science), and open source software
 - common alternatives: Stata (commercial), Matlab (commercial), Python (more general), Julia (new)
- if possible, bring a laptop with R and RStudio installed (installation tutorial on OLAT)
- coding can be fun, potentially useful for Bachelor's Thesis, and for your career

- we use **R** and **RStudio** in the computer sessions
 - free, powerful (for statistics and data science), and open source software
 - common alternatives: Stata (commercial), Matlab (commercial), Python (more general), Julia (new)
- if possible, bring a laptop with R and RStudio installed (installation tutorial on OLAT)
- coding can be fun, potentially useful for Bachelor's Thesis, and for your career
- Tech Academy offers courses on data science (Flyer on OLAT)

- we use **R** and **RStudio** in the computer sessions
 - free, powerful (for statistics and data science), and open source software
 - common alternatives: Stata (commercial), Matlab (commercial), Python (more general), Julia (new)
- if possible, bring a laptop with R and RStudio installed (installation tutorial on OLAT)
- coding can be fun, potentially useful for Bachelor's Thesis, and for your career
- Tech Academy offers courses on data science (Flyer on OLAT)

• Cannon Warren will hold the computer tutorials

- Cannon Warren will hold the computer tutorials
- final exam (in person, 90 minutes)

- Cannon Warren will hold the computer tutorials
- final exam (in person, 90 minutes)
 - For BOEE: exam will contain questions on R code

- Cannon Warren will hold the computer tutorials
- final exam (in person, 90 minutes)
 - For BOEE: exam will contain questions on R code
- there will be a mock exam

- Cannon Warren will hold the computer tutorials
- final exam (in person, 90 minutes)
 - For BOEE: exam will contain questions on R code
- there will be a mock exam
- exercises will not be handed in. Solutions will be discussed in the exercise classes and uploaded to OLAT.

Organisation¹

- Cannon Warren will hold the computer tutorials
- final exam (in person, 90 minutes)
 - For BOEE: exam will contain questions on R code
- there will be a mock exam
- exercises will not be handed in. Solutions will be discussed in the exercise classes and uploaded to OLAT.
- I appreciate active participation: ask if stuff is unclear

Organisation¹

- Cannon Warren will hold the computer tutorials
- final exam (in person, 90 minutes)
 - For BOEE: exam will contain questions on R code
- there will be a mock exam
- exercises will not be handed in. Solutions will be discussed in the exercise classes and uploaded to OLAT.
- I appreciate active participation: ask if stuff is unclear

Useful textbooks

- 1. J. Wooldridge (2019), 7th edition: Introductory Econometrics, Cengage Learning.
- 2. J. Stock and M.Watson (2019): Introduction to Econometrics, Pearson.
- 3. J. Angrist and S. Pischke (2008): Mostly Harmless Econometrics, Princeton Univ. Press.

Motivation: Why econometrics?

In a nutshell, econometrics can be characterized by using statistics to address economic questions.

In a nutshell, econometrics can be characterized by using statistics to address economic questions.

Economics:

 explains relationships between economic variables, or the behavior of economic agents or markets through models

In a nutshell, econometrics can be characterized by using statistics to address economic questions.

Economics:

 explains relationships between economic variables, or the behavior of economic agents or markets through models

Econometrics:

studies the related quantitative questions using economic data and statistical methods

In a nutshell, econometrics can be characterized by using statistics to address economic questions.

Economics:

 explains relationships between economic variables, or the behavior of economic agents or markets through models

Econometrics:

studies the related quantitative questions using economic data and statistical methods

Question:

So what are these quantitative questions?

1. Testing and falsifying economic theories empirically:

- Are exchange rate markets for freely-traded currencies rational?
- Are stock prices unpredictable?

1. Testing and falsifying economic theories empirically:

- Are exchange rate markets for freely-traded currencies rational?
- Are stock prices unpredictable?

Quantifying relationships between economic variables:

- does education have a positive (causal) effect on wages? And if yes, what is the magnitude?
- what is the average gender pay gap?

1. Testing and falsifying economic theories empirically:

- Are exchange rate markets for freely-traded currencies rational?
- Are stock prices unpredictable?

Quantifying relationships between economic variables:

- does education have a positive (causal) effect on wages? And if yes, what is the magnitude?
- what is the average gender pay gap?

3. **Program evaluation** for policy analysis:

- does a specific job training shorten unemployment duration on average?
- does a reduction in class size have a differential effect on male and female students?

- 1. Testing and falsifying economic theories empirically:
 - Are exchange rate markets for freely-traded currencies rational?
 - Are stock prices unpredictable?
- 2. **Quantifying relationships** between economic variables:
 - does education have a positive (causal) effect on wages? And if yes, what is the magnitude?
 - what is the average gender pay gap?

3. **Program evaluation** for policy analysis:

- does a specific job training shorten unemployment duration on average?
- does a reduction in class size have a differential effect on male and female students?
- 4. **Prediction (forecasting)** of economic variables:
 - by how much will GDP grow next year?
 - how volatile will stock markets be over the next week?
 - How large will be the demand for specific jobs in 10 years?

A policy maker wonders how much money to invest in additional teachers and asks you to investigate empirically (i.e., using data):

how does class size influence school performance?

A policy maker wonders how much money to invest in additional teachers and asks you to investigate empirically (i.e., using data):

how does class size influence school performance?

First, you develop a model for **test scores**, say y, as a function of **class size**, say x.

A policy maker wonders how much money to invest in additional teachers and asks you to investigate empirically (i.e., using data):

how does class size influence school performance?

First, you develop a model for **test scores**, say y, as a function of **class size**, say x.

Can we learn anything about this model from the data?

A policy maker wonders how much money to invest in additional teachers and asks you to investigate empirically (i.e., using data):

how does class size influence school performance?

First, you develop a model for **test scores**, say y, as a function of **class size**, say x.

Can we learn anything about this model from the data?

Let's look at CASchools

- data set on math and reading test performance
- across 420 Californian school districts in the year 1999
- plot test score against the class size (both measured as averages in each district)

Scatter plot

Relationship is not determinstic: But is there some connection between class size and test scores?

Scatter plot

A fitted linear line, indicates a negative relation

Scatter plot

Another approach: Divide observations in groups and calculate test score averages by group:

- Group **small** (class size ≤ 20): average score = 657
- Group **medium** (class size $> 20 \& \le 25$): average score = 650
- Group large (class size > 25): average score = 647

R code

```
library(AER)
               # provides sample data sets
library(dplyr) # provides data analyses tools
library(scales) # for nicer plots/transparency
data("CASchools")
CASchools <- CASchools |>
  mutate( student teacher ratio = students / teachers.
          test score = (read + math)/2
plot(CASchools$student teacher ratio.CASchools$test score.
     xlab="student teacher ratio".
     vlab="test score".
     col=alpha("grey",0.7), pch=19)
abline( lm(test score ~ student teacher ratio, dat=CASchools).
        col="indianred".
        lw=3)
```

R code

```
library(AER)
               # provides sample data sets
library(dplyr) # provides data analyses tools
library(scales) # for nicer plots/transparency
data("CASchools")
CASchools <- CASchools |>
  mutate( student teacher ratio = students / teachers.
          test score = (read + math)/2
plot(CASchools$student teacher ratio.CASchools$test score.
     xlab="student teacher ratio".
     vlab="test score".
     col=alpha("grey",0.7), pch=19)
abline( lm(test score ~ student teacher ratio, dat=CASchools).
        col="indianred".
        lw=3)
```

Question

Would you recommend increasing gov't spending to reduce class sizes based on these numbers?

Estimation uncertainty:

- the size of subgroups differs substantially
 - 243 districts have *small* and 174 have *medium* avg. class sizes

Estimation uncertainty:

- the size of subgroups differs substantially
 - 243 districts have *small* and 174 have *medium* avg. class sizes
 - only 3 districts have large avg. class size ⇒ substantial estimation uncertainty

Estimation uncertainty:

- the size of subgroups differs substantially
 - 243 districts have small and 174 have medium avg. class sizes
 - only 3 districts have large avg. class size ⇒ substantial estimation uncertainty

Causality:

- can we infer that smaller class sizes caused higher test scores
 - would large-class districts have performed better with smaller classes?

Estimation uncertainty:

- the size of subgroups differs substantially
 - 243 districts have small and 174 have medium avg. class sizes
 - only 3 districts have large avg. class size ⇒ substantial estimation uncertainty

Causality:

- can we infer that smaller class sizes caused higher test scores
 - would large-class districts have performed better with smaller classes?
- or are we comparing apples and oranges?
 - districts with larger classes may be special in other dimensions (income, government spending, socio-economic status, school quality)

- i.e., class size may not be the **cause** of lower test scores, but just a **correlate**
- so a policy that changes class sizes would not actually affect test scores

- i.e., class size may not be the cause of lower test scores, but just a correlate
- so a policy that changes class sizes would not actually affect test scores

- i.e., class size may not be the **cause** of lower test scores, but just a **correlate**
- so a policy that changes class sizes would not actually affect test scores

- but also about rigorous thinking
 - to interpret the **empirical evidence**

- i.e., class size may not be the cause of lower test scores, but just a correlate
- so a policy that changes class sizes would not actually affect test scores

- but also about rigorous thinking
 - to interpret the empirical evidence and
 - to choose the right statistical tool

- i.e., class size may not be the cause of lower test scores, but just a correlate
- so a policy that changes class sizes would not actually affect test scores

- but also about rigorous thinking
 - to interpret the empirical evidence and
 - to choose the right statistical tool

- 2021: Joshua D. Angrist and Guido W. Imbens
 - "for their methodological contributions to the analysis of causal relationships"
 - related to our chapter on instrumental variables

- 2021: Joshua D. Angrist and Guido W. Imbens
 - "for their methodological contributions to the analysis of causal relationships"
 - related to our chapter on instrumental variables
- 2019: Abhijit Banerjee, Esther Duflo and Michael Kremer
 - "for their experimental approach to alleviating global poverty"
 - related to our chapter on causality

- 2021: Joshua D. Angrist and Guido W. Imbens
 - "for their methodological contributions to the analysis of causal relationships"
 - related to our chapter on instrumental variables
- 2019: Abhijit Banerjee, Esther Duflo and Michael Kremer
 - "for their experimental approach to alleviating global poverty"
 - related to our chapter on causality
- 2003: Robert F. Engle III
 - "for methods of analyzing economic time series with time-varying volatility (ARCH)"
 - related to our chapter on time series

- 2021: Joshua D. Angrist and Guido W. Imbens
 - "for their methodological contributions to the analysis of causal relationships"
 - related to our chapter on instrumental variables
- 2019: Abhijit Banerjee, Esther Duflo and Michael Kremer
 - "for their experimental approach to alleviating global poverty"
 - related to our chapter on causality
- 2003: Robert F. Engle III
 - "for methods of analyzing economic time series with time-varying volatility (ARCH)"
 - related to our chapter on time series

Causality, data types, data

structures

Causality

Economists are often concerned with understanding causal effects

- of one variable (a price, a policy change, ...)
- on an outcome variable (demand, wages, unemployment spell, ...).

Causality

Economists are often concerned with understanding causal effects

- of one variable (a price, a policy change, . . .)
- on an outcome variable (demand, wages, unemployment spell, ...).

Informal definition: Causality

We speak of 'causality' if **manipulating one variable** in isolation has a direct **consequence on another variable**.

Causality

Economists are often concerned with understanding causal effects

- of one variable (a price, a policy change, ...)
- on an outcome variable (demand, wages, unemployment spell, ...).

Informal definition: Causality

We speak of 'causality' if manipulating one variable in isolation has a direct consequence on another variable.

Ex.: Fertilizer on crop yield

Classical example from the early statistics literature: How does the use of fertilizer affect crop yields?

Causality

Economists are often concerned with understanding causal effects

- of one variable (a price, a policy change, . . .)
- on an outcome variable (demand, wages, unemployment spell, ...).

Informal definition: Causality

We speak of 'causality' if manipulating one variable in isolation has a direct consequence on another variable.

Ex.: Fertilizer on crop yield

Classical example from the early statistics literature: How does the use of fertilizer affect crop yields?

What kind of **statistical experiment** could we design to infer such a causal relationship?

The gold standard evidence: Experiments

- 1. We want to generate variation: So we could divide the field into 100 equally spaced plots.
- 2. We then **randomly select**
 - 50 plots were we use fertilizer (treated)
 - 50 plots that we leave without fertilizer (control)
- 3. We measure crop yield on each plot

These data allow us to estimate the (average) causal effect of fertilizer on crop yields:

- compare the average yield on treated plots with the control plots
- assumption: fertilizer only affects plots it is applied to ("no interference/spillovers')

These data allow us to estimate the (average) causal effect of fertilizer on crop yields:

- compare the average yield on treated plots with the control plots
- assumption: fertilizer only affects plots it is applied to ("no interference/spillovers'")

Such an experiment is called Randomized Control Trial (RCT)

These data allow us to estimate the (average) causal effect of fertilizer on crop yields:

- compare the average yield on treated plots with the control plots
- assumption: fertilizer only affects plots it is applied to ("no interference/spillovers')

Such an experiment is called Randomized Control Trial (RCT)

If carried out properly, it comes as close as possible to an ideal experiment in the natural sciences

- data collected from RCTs are usually called experimental data
- Yet, in social sciences it is often difficult to obtain experimental data.

These data allow us to estimate the (average) causal effect of fertilizer on crop yields:

- compare the average yield on treated plots with the control plots
- assumption: fertilizer only affects plots it is applied to ("no interference/spillovers')

Such an experiment is called Randomized Control Trial (RCT)

If carried out properly, it comes as close as possible to an ideal experiment in the natural sciences

- data collected from RCTs are usually called experimental data
- Yet, in social sciences it is often difficult to obtain experimental data.

Ex.: The causal effect of class size on test scores

Suppose, we study the causal effect of changing class sizes on test scores. An RCT would have to:

- randomly reallocate teachers
- prohibit students from changing schools
- and establish identical tests
- Questions that we cannot tackle with experiments
 - "What is the effect of a school closures on student happiness?"
 - "What is the effect of a gas import stop from Russia for Germany?"

For those questions, we cannot rely on experimental data

Ex.: The causal effect of class size on test scores

Suppose, we study the causal effect of changing class sizes on test scores. An RCT would have to:

- randomly reallocate teachers
- prohibit students from changing schools
- and establish identical tests
- Questions that we cannot tackle with experiments:
 - "What is the effect of a school closures on student happiness?"
 - "What is the effect of a gas import stop from Russia for Germany?"

Ex.: The causal effect of class size on test scores

Suppose, we study the causal effect of changing class sizes on test scores. An RCT would have to:

- randomly reallocate teachers
- prohibit students from changing schools
- and establish identical tests
- Questions that we cannot tackle with experiments:
 - "What is the effect of a school closures on student happiness?"
 - "What is the effect of a gas import stop from Russia for Germany?"
- For those questions, we cannot rely on experimental data

Ex.: The causal effect of class size on test scores

Suppose, we study the causal effect of changing class sizes on test scores. An RCT would have to:

- randomly reallocate teachers
- prohibit students from changing schools
- and establish identical tests
- Questions that we cannot tackle with experiments:
 - "What is the effect of a school closures on student happiness?"
 - "What is the effect of a gas import stop from Russia for Germany?"
- For those questions, we cannot rely on experimental data

- Data can be obtained from a variety of sources/methods/settings.
 - These determine what we are able to learn from data.

- Data can be obtained from a variety of sources/methods/settings.
 - These determine what we are able to learn from data.
- Experimental data became increasingly important, but most data in the social sciences are observational data.

- Data can be obtained from a variety of sources/methods/settings.
 - These determine what we are able to learn from data.
- Experimental data became increasingly important, but most data in the social sciences are observational data.
 - is not experimental, i.e. has not been generated from an RCT
 - usually from surveys or administrative records

- Data can be obtained from a variety of sources/methods/settings.
 - These determine what we are able to learn from data.
- Experimental data became increasingly important, but most data in the social sciences are observational data.
 - is not experimental, i.e. has not been generated from an RCT
 - usually from surveys or administrative records

Downsides of observational data:

Downsides of observational data:

more difficult to infer the causal effect

Downsides of observational data:

- more difficult to infer the causal effect
 - needs more "econometric work" than just comparing averages

Advantages:

- often larger in scope (exists where no experiments are done)
- often larger scale (may comprise the entire population of a country)
- typically reflects real-life behavior rather than artificial experimental setting

Downsides of observational data:

- more difficult to infer the causal effect
 - needs more "econometric work" than just comparing averages

Advantages:

- often larger in scope (exists where no experiments are done)
- often larger scale (may comprise the entire population of a country)
- typically reflects real-life behavior rather than artificial experimental setting

Downsides of observational data:

- more difficult to infer the causal effect
 - needs more "econometric work" than just comparing averages

Advantages:

- often larger in scope (exists where no experiments are done)
- often larger **scale** (may comprise the entire population of a country)
- typically reflects real-life behavior rather than artificial experimental setting

This class focuses on **observational data** and studies the **assumptions and situations** under which we can **learn about causal effects**.

1. Cross-sectional data:

• We observe multiple individual units (individuals, firms, ...) at one point in time

1. Cross-sectional data:

- We observe multiple individual units (individuals, firms, ...) at one point in time
- Usually units are denoted with subscript i, e.g., we record the income of n individuals and income of individual i is given by y_i with i=1,..,n

1. Cross-sectional data:

- We observe multiple individual units (individuals, firms, ...) at one point in time
- Usually units are denoted with subscript i, e.g., we record the income of n individuals and income of individual i is given by y_i with i=1,..,n
- Often units are assumed to be randomly sampled from a population

1. Cross-sectional data:

- We observe multiple individual units (individuals, firms, ...) at one point in time
- Usually units are denoted with subscript i, e.g., we record the income of n individuals and income of individual i is given by y_i with i=1,..,n
- Often units are assumed to be randomly sampled from a population

Table 1: Mock data on income of individuals

id	income	age
1	0	68
2	384	23
3	0	34
4	1795	32

Data structures - time series data

Data structures – time series data

2. Time series

• We observe one unit at many different points in time (frequency: hourly, monthly, etc.)

Data structures – time series data

- We observe one unit at many different points in time (frequency: hourly, monthly, etc.)
- Usually units are denoted with subscript t, e.g. y_t with t=1,...,T, and T is the number of time points

Data structures – time series data

- We observe one unit at many different points in time (frequency: hourly, monthly, etc.)
- Usually units are denoted with subscript t, e.g. y_t with t=1,...,T, and T is the number of time points
- Typically dependence over time plays a central role, which complicates statistical inference

Data structures - time series data

- We observe one unit at many different points in time (frequency: hourly, monthly, etc.)
- Usually units are denoted with subscript t, e.g. y_t with t=1,...,T, and T is the number of time points
- Typically dependence over time plays a central role, which complicates statistical inference

Table 2: GDP of The Gambia

year	GDPpc	growth
2017	680	0.98
2018	733	1.08
2019	773	1.05
2020	757	0.98
2021	836	1.10

3. Panel data (sometimes: "longitudinal")

- **3. Panel data** (sometimes: "longitudinal")
 - We observe multiple units across multiple points in time
 - Observations typically indexed by it. So y_{it} with, i=1,...,n; and t=1,...,T

- **3. Panel data** (sometimes: "longitudinal")
 - We observe multiple units across multiple points in time
 - Observations typically indexed by it. So y_{it} with, i=1,...,n; and t=1,...,T
 - Observations are, e.g, student-semester, country-year, or city-month

- 3. Panel data (sometimes: "longitudinal")
 - We observe multiple units across multiple points in time
 - Observations typically indexed by it. So y_{it} with, i = 1, ..., n; and t = 1, ..., T
 - Observations are, e.g, student-semester, country-year, or city-month

Table 3: City populations over time		
year	city	population
2018	Vienna	1,889,000
2019	Vienna	1,890,000
2020	Vienna	1,911,000
2018	Frankfurt/Main	769,000
2019	Frankfurt/Main	777,000
2020	${\sf Frankfurt}/{\sf Main}$	785,000

T 11 2 60 1 1 1

Recap

Recap

- Questions to be answered using econometrics:
 - Falsifying theories, quantifying relationships, treatment evaluation, forecasting
- Example of Californian school districts:
 - Visual analysis, basic quantitative analysis
 - Issues: Estimation uncertainty, causality
- Causality
- Experimental vs observational data
- Data structures (cross-sectional, time series, panel)

Course outline

Course outline (1)

- will be updated
- 1. Introduction
 - Motivation
 - Econometric data, problems, and analyses (W ch. 1, SW ch. 1)
 - Review of probability & statistics (W appendix B-C, SW ch. 2+3)
- 2. Bivariate regression (W ch. 2, SW ch. 4)
 - The simple regression model
 - OLS estimator
 - Basic properties of OLS
 - Variance estimation

Course outline (2)

- 3. Multivariate regression (W ch. 3, SW ch. 6)
 - Matrix notation
 - Derivation and mechanics of OLS
 - Omitted variable bias
 - Gauss-Markov
 - Inference and testing (W ch. 4, SW ch. 7)
- 4. Further topics in regression analyses
 - Functional form, dummy variables (W ch. 6–7, SW ch. 8)
 - Testing (SW ch. 5)
 - Heteroscedasticity and generalized error term structures (W ch. 8, SW ch. 5)
 - Measurement error, missing data (W ch. 9)

Course outline (3)

- 5. Time series (SW ch. 15)
- 6. Causality
 - Instrumental variable estimation (W ch. 15, SW ch. 12)
- 7. Machine Learning (SW ch. 14)
 - Lasso

- W: J. Wooldridge (2019), 7th edition: Introductory Econometrics, Cengage Learning.
- SW: J. Stock and M.Watson (2019): Introduction to Econometrics, Pearson.

How to study effectively?

How to study effectively?

- Comes last, because it is the most important point today
- Econometrics is relatively abstract
 - do not binge, study regularly
 - Reiterate. Rest and sleep inbetween. It get's easier each time.
 - Your mind is not a computer. Reiterate in different forms.
 - If you are stuck, change perspective and try to find the simplest thing you can understand. Ask. Sometimes just formulating the question is helpful.
 - Do not just sit there and read/watch, instead summarize slides, try exercises without solutions, etc.

How to study effectively?

- Comes last, because it is the most important point today
- Econometrics is relatively abstract
 - do not binge, study regularly
 - Reiterate. Rest and sleep inbetween. It get's easier each time.
 - Your mind is not a computer. Reiterate in different forms.
 - If you are stuck, change perspective and try to find the simplest thing you can understand. Ask. Sometimes just formulating the question is helpful.
 - Do not just sit there and read/watch, instead summarize slides, try exercises without solutions, etc.

If you go on a journey, take someone with you.

- Form study groups (2-5 persons)
 - Easier to get started and more fun
 - Meet and discuss lectures or try exercises
 - Ask on OLAT or write me a mail. I will connect you randomly.
 - Study groups also make sense if experience differs: Explaining and asking is also very effective.
 - Fixed time day before or after the lecture makes sense

Appendix