

中华人民共和国国家标准

GB/T 32907-2016

信息安全技术 SM4 分组密码算法

Information security technology—SM4 block cipher algorithm

2016-08-29 发布 2017-03-01 实施

目 次

前	言	· I
1	范围	··· 1
2	术语和定义	··· 1
3	符号和缩略语	··· 1
4	算法结构	··· 2
5	密钥及密钥参量	··· 2
6	轮函数 F ······	··· 2
	6.1 轮函数结构	··· 2
	6.2 合成置换 T ·······	··· 2
7	算法描述	··· 3
	7.1 加密算法	··· 3
	7.2 解密算法	··· 3
	7.3 密钥扩展算法	··· 3
陈	录 A (资料性附录) 运算示例 ····································	··· 5
	A.1 示例 1 ·····	··· 5
	A.2 示例 2 ······	6

前 言

本标准按照 GB/T 1.1-2009 给出的规则起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。

本标准由国家密码管理局提出。

本标准由全国信息安全标准化技术委员会(SAC/TC 260)归口。

本标准起草单位:中国科学院数据与通信保护研究教育中心、国家密码管理局商用密码检测中心、 北京信息科学技术研究院。

本标准主要起草人: 吕述望、李大为、邓开勇、张超、罗鹏、张众、董芳、毛颖颖、刘振华。

信息安全技术 SM4 分组密码算法

1 范围

本标准规定了 SM4 分组密码算法的算法结构和算法描述,并给出了运算示例。 本标准适用于商用密码产品中分组密码算法的实现、检测和应用。

2 术语和定义

下列术语和定义适用于本文件。

2.1

分组长度 block length

一个信息分组的比特位数。

2.2

密钥长度 key length

密钥的比特位数。

2.3

密钥扩展算法 key expansion algorithm

将密钥变换为轮密钥的运算单元。

2.4

轮数 rounds

轮函数的迭代次数。

2.5

轮密钥 round key

又称子密钥,在迭代分组密码中每一轮使用的密钥,根据输入密钥用密钥编排算法推导得出。

2.6

字 word

长度为32比特的组(串)。

2.7

S 盒 S-box

S 盒为固定的 8 比特输入 8 比特输出的置换,记为 Sbox(.)。

3 符号和缩略语

下列符号和缩略语适用于本文件:

⊕ 32 位异或

<<<ii>32 位循环左移 i 位

 Z_2^n 比特长度为n的二进制序列集合

4 算法结构

SM4 密码算法是一个分组算法。该算法的分组长度为 128 比特,密钥长度为 128 比特。加密算法与密钥扩展算法均采用非线性迭代结构,运算轮数均为 32 轮。数据解密和数据加密的算法结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。

5 密钥及密钥参量

密钥长度为 128 比特,表示为 $MK = (MK_0, MK_1, MK_2, MK_3)$,其中 $MK_i (i=0,1,2,3)$ 为字。 轮密钥表示为 $(rk_0, rk_1, \cdots, rk_{31})$,其中 $rk_i (i=0, \cdots, 31)$ 为 32 比特字。轮密钥由密钥生成。 $FK = (FK_0, FK_1, FK_2, FK_3)$ 为系统参数, $CK = (CK_0, CK_1, \cdots, CK_{31})$ 为固定参数,用于密钥扩展算法,其中 $FK_i (i=0, \cdots, 3)$ 、 $CK_i (i=0, \cdots, 31)$ 为字。

6 轮函数 F

6.1 轮函数结构

设输入为 $(X_0, X_1, X_2, X_3) \in (Z_2^{32})^4$,轮密钥为 $rk \in Z_2^{32}$,则轮函数 F 见式(1): $F(X_0, X_1, X_2, X_3, rk) = X_0 \oplus T(X_1 \oplus X_2 \oplus X_3 \oplus rk) \quad \cdots (1)$

6.2 合成置换 T

 $T: Z_2^{32} \rightarrow Z_2^{32}$ 是一个可逆变换,由非线性变换 τ 和线性变换 L 复合而成,即 $T(.) = L(\tau(.))$ 。

a) 非线性变换 τ

τ由 4 个并行的 S 盒构成。

式中,Sbox数据见表1。

设输入为 $A = (a_0, a_1, a_2, a_3) \in (Z_2^8)^4$,输出为 $B = (b_0, b_1, b_2, b_3) \in (Z_2^8)^4$,则见式(2): $(b_0, b_1, b_2, b_3) = \tau(A) = (\operatorname{Sbox}(a_0), \operatorname{Sbox}(a_1), \operatorname{Sbox}(a_2), \operatorname{Sbox}(a_3)) \quad \dots \dots \dots (2)$

表 1 Sbox 数据

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	D6	90	E9	FE	CC	E1	3D	В7	16	В6	14	C2	28	FB	2C	05
1	2B	67	9 A	76	2A	BE	04	С3	AA	44	13	26	49	86	06	99
2	9C	42	50	F4	91	EF	98	7A	33	54	0B	43	ED	CF	AC	62
3	E4	В3	1C	A 9	C9	08	E8	95	80	DF	94	FA	75	8F	3F	A6
4	47	07	A7	FC	F3	73	17	ВА	83	59	3C	19	E6	85	4F	A8
5	68	6B	81	B2	71	64	DA	8B	F8	EB	0F	4B	70	56	9D	35
6	1E	24	0E	5E	63	58	D1	A2	25	22	7C	3B	01	21	78	87
7	D4	00	46	57	9F	D3	27	52	4C	36	02	E7	A0	C4	С8	9E
8	EA	BF	8A	D2	40	C7	38	B5	A3	F7	F2	CE	F9	61	15	A1
9	E0	AE	5D	A4	9B	34	1A	55	AD	93	32	30	F5	8C	В1	E3

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
А	1D	F6	E2	2E	82	66	CA	60	C0	29	23	AB	0D	53	4E	6F
В	D5	DB	37	45	DE	FD	8E	2F	03	FF	6 A	72	6D	6C	5B	51
С	8D	1B	AF	92	BB	DD	ВС	7F	11	D9	5C	41	1F	10	5 A	D8
D	0A	C1	31	88	A5	CD	7B	BD	2D	74	D0	12	В8	E5	B4	В0
Е	89	69	97	4 A	0C	96	77	7E	65	В9	F1	09	C5	6E	C6	84
F	18	F0	7D	EC	3A	DC	4D	20	79	EE	5F	3E	D7	СВ	39	48

表 1 (续)

例如:输入'EF',则经 S 盒后的值为表中第 E 行和第 F 列的值,Sbox(EF)=84。

b) 线性变换 L

非线性变换 τ 的输出是线性变换 L 的输入。设输入为 $B \in Z_2^{32}$,输出为 $C \in Z_2^{32}$,则见式(3):

$$C = L(B) = B \oplus (B < << 2) \oplus (B < << 10) \oplus (B < << 18) \oplus (B << 24) \cdots (3)$$

7 算法描述

7.1 加密算法

本加密算法由32次迭代运算和1次反序变换R组成。

设明文输入为 $(X_0, X_1, X_2, X_3) \in (Z_2^{32})^4$,密文输出为 $(Y_0, Y_1, Y_2, Y_3) \in (Z_2^{32})^4$,轮密钥为 $rk_i \in Z_2^{32}$, $i = 0, 1, 2, \dots, 31$ 。加密算法的运算过程如下:

a) 32 次迭代运算见式(4):

$$X_{i+4} = F(X_i, X_{i+1}, X_{i+2}, X_{i+3}, rk_i), i = 0, 1, \dots, 31$$
(4)

b) 反序变换见式(5):

$$(Y_0, Y_1, Y_2, Y_3) = R(X_{32}, X_{33}, X_{34}, X_{35}) = (X_{35}, X_{34}, X_{33}, X_{32}) \cdots (5)$$

加密运算过程的示例参见附录A。

7.2 解密算法

本算法的解密变换与加密变换结构相同,不同的仅是轮密钥的使用顺序。解密时,使用轮密钥序 $(rk_{31},rk_{30},\cdots,rk_0)$ 。

7.3 密钥扩展算法

式中:

加密过程使用的轮密钥由加密密钥生成,其中加密密钥 $MK = (MK_0, MK_1, MK_2, MK_3) \in (Z_3^{32})^4$,加密过程中的轮密钥生成方法见式(6)和式(7):

$$(K_{0}, K_{1}, K_{2}, K_{3}) = (MK_{0} \oplus FK_{0}, MK_{1} \oplus FK_{1}, MK_{2} \oplus FK_{2}, MK_{3} \oplus FK_{3}) \cdots (6)$$

$$rk_{i} = K_{i+4} = K_{i} \oplus T'(K_{i+1} \oplus K_{i+2} \oplus K_{i+3} \oplus CK_{i}), i = 0, 1, \dots, 31 \cdots (7)$$

a) T'是将 6.2 中合成置换 T 的线性变换 L 替换为 L', 见式(8):

b) 系统参数 FK 的取值为:

$$FK_0 = (A3B1BAC6), FK_1 = (56AA3350), FK_2 = (677D9197), FK_3 = (B27022DC);$$

c) 固定参数 CK 取值方法为:

GB/T 32907-2016

设 $ck_{i,j}$ 为 CK_i 的第 j 字节 $(i=0,1,\cdots,31;j=0,1,2,3)$,即 $CK_i=(ck_{i,0},ck_{i,1},ck_{i,2},ck_{i,3})\in (Z_2^8)^4$,则 $ck_{i,j}=(4i+j)\times 7 \pmod{256}$ 。

固定参数 CK_i ($i=0,1,\dots,31$)具体值为:

00070E15, 1C232A31, 383F464D, 545B6269,

70777E85, 8C939AA1, A8AFB6BD, C4CBD2D9,

E0E7EEF5, FC030A11, 181F262D, 343B4249,

50575E65, 6C737A81, 888F969D, A4ABB2B9,

C0C7CED5, DCE3EAF1, F8FF060D, 141B2229,

30373E45, 4C535A61, 686F767D, 848B9299,

A0A7AEB5, BCC3CAD1, D8DFE6ED, F4FB0209,

10171E25, 2C333A41, 484F565D, 646B7279。

解密密钥同加密密钥,解密使用的轮密钥由解密密钥生成,其轮密钥生成方法同加密过程的轮密钥生成方法。

5/10

附 录 A (资料性附录) 运算示例

A.1 示例 1

本附录为 SM4 分组密码算法对一组明文进行加密的运算示例。 输入明文: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 输入密钥: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 轮密钥与每轮输出状态:

```
rk [ 0] = F12186F9
                           X \lceil 4 \rceil = 27FAD345
rk [1] = 41662B61
                           X \lceil 5 \rceil = A18B4CB2
rk \lceil 2 \rceil = 5A6AB19A
                           X \lceil 6 \rceil = 11C1E22A
rk[3] = 7BA92077
                           X[7] = CC13E2EE
                           X[8] = F87C5BD5
rk [4] = 367360 F4
rk [5] = 776 \text{A}_{0}\text{C}_{61}
                           X [ 9] = 33220757
rk \lceil 6 \rceil = B6BB89B3
                           X \lceil 10 \rceil = 77 \text{F4C297}
rk \lceil 7 \rceil = 24763151
                           X \lceil 11 \rceil = 7A96F2EB
rk[8] = A520307C
                           X[12] = 27DAC07F
rk[9] = B7584DBD
                           X[13] = 42DD0F19
rk[10] = C30753ED
                           X[14] = B8A5DA02
rk[11] = 7EE55B57
                           X[15] = 907127FA
rk[12] = 6988608C
                           X[16] = 8B952B83
rk[13] = 30D895B7
                           X[17] = D42B7C59
rk[14] = 44BA14AF
                           X[18] = 2FFC5831
rk \lceil 15 \rceil = 104495A1
                           X [19] = F69E6888
rk[16] = D120B428
                           X[20] = AF2432C4
rk \lceil 17 \rceil = 73B55FA3
                           X \lceil 21 \rceil = \text{ED1EC85E}
rk \lceil 18 \rceil = CC874966
                           X \lceil 22 \rceil = 55A3BA22
rk[19] = 92244439
                           X[23] = 124B18AA
rk \lceil 20 \rceil = E89E641F
                           X \lceil 24 \rceil = 6 \text{AE} 7725 \text{F}
rk[21] = 98CA015A
                           X[25] = F4CBA1F9
rk \lceil 22 \rceil = C7159060
                           X \lceil 26 \rceil = 1DCDFA10
rk[23] = 99E1FD2E
                           X[27] = 2FF60603
rk \lceil 24 \rceil = B79BD80C
                           X \lceil 28 \rceil = EFF24FDC
rk[25] = 1D2115B0
                           X[29] = 6FE46B75
rk[26] = 0E228AEB
                           X[30] = 893450AD
rk \lceil 27 \rceil = F1780C81
                           X \lceil 31 \rceil = 7B938F4C
rk[28] = 428D3654
                           X[32] = 536E4246
rk[29] = 62293496
                           X[33] = 86B3E94F
```

X[34] = D206965E

rk[30] = 01CF72E5

GB/T 32907—2016

rk[31] = 9124A012 X[35] = 681EDF34

输出密文: 68 1E DF 34 D2 06 96 5E 86 B3 E9 4F 53 6E 42 46

A.2 示例 2

本附录为 SM4 分组密码算法使用固定的加密密钥,对一组明文反复加密 1 000 000 次的运算示例。

输入明文: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 输入密钥: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 输出密文: 59 52 98 C7 C6 FD 27 1F 04 02 F8 04 C3 3D 3F 66

