Вычислить интегралы:

3906.
$$\int_{0}^{1} dx \int_{0}^{1} (x+y) dy$$
. 3907. $\int_{0}^{1} dx \int_{x^{2}}^{x} xy^{2} dy$.
3908. $\int_{0}^{2\pi} d\varphi \int_{0}^{a} r^{2} \sin^{2}\varphi dr$.

3909. Доказать равенство

$$\iint\limits_{R} X(x) Y(y) dx dy = \int\limits_{a}^{A} X(x) dx \cdot \int\limits_{b}^{B} Y(y) dy,$$

если R — прямоугольник: $a \le x \le A$, $b \le y \le B$, и функции X(x) и Y(y) непрерывны на соответствующих сегментах.

3910. Вычислить
$$I = \int\limits_a^A dx \int\limits_b^B f(x, y) \, dy$$
, если $f(x, y) = F_{xy}^{''}(x, y)$.

3911. Пусть f(x) — непрерывная функция в промежутке $a \le x \le b$. Доказать неравенство

$$\left[\int_{a}^{b} f(x) dx\right]^{2} \leq (b-a) \int_{a}^{b} f^{2}(x) dx,$$

где знак равенства имеет место лишь, если f(x) = constУказание. Рассмотреть интеграл

$$\int_{a}^{b} dx \int_{a}^{b} [f(x) - f(y)]^{2} dy.$$

3912. Какой знак имеют интегралы:

a)
$$\iint_{|x|+|y|\leq 1} \ln(x^2+y^2) \, dx \, dy;$$

6)
$$\iint_{x^2+y^2 \le 4} \sqrt[3]{1-x^2-y^2} \, dx \, dy;$$

6)
$$\int_{x^2+y^2 \le 1}^{3} \sqrt{1-x^2-y^2} \, dx \, dy;$$
B)
$$\int_{0 \le x \le 1}^{0 \le x \le 1} \arcsin(x+y) \, dx \, dy?$$

3913. Найти среднее значение функции $f(x, y) = \sin^2 x \sin^2 y$

в квадрате: $0 \le x \le \pi$, $0 \le y \le \pi$.

3914. Пользуясь теоремой о среднем, оценить интеграл

$$I = \int_{|x|+|y| \le 10} \frac{dx \, dy}{100 + \cos^2 x + \cos^2 y} \, .$$