

从零手写VIO-第九期 第二章作业 思路讲解

主讲人常鑫

作业

●作业内容

基础作业、必做

① 设置 IMU 仿真代码中的不同的参数, 生成 Allen 方差标定曲线。 allan 方差工具:

https://github.com/gaowenliang/imu_utils https://github.com/rpng/kalibr_allan

...

② 将 IMU 仿真代码中的欧拉积分替换成中值积分。

提升作业、选做

阅读从已有轨迹生成 imu 数据的论文, 撰写总结推导:

 2013 年 BMVC, Steven Lovegrove ,Spline Fusion: A continuous-timerepresentation for visual-inertial fusion withapplication to rolling shutter cameras.

●使用Allan曲线标定IMU参数

图: Allan曲线标定流程

●注意事项

- ●标定参数的含义:
 - ●IMU仿真代码设置了陀螺仪和加速度计的高斯白噪声和bias随机游走
 - ●Kalibr标定得到的是高斯白噪声和bias随机游走
 - ●imu_utils 得到的是高斯白噪声和bias
- ●imu_utils和kalibr的标定参数含义请参考其github介绍
 - ●kalibr链接: https://github.com/ethz-asl/kalibr
 - imu_utils链接: https://github.com/gaowenliang/imu_utils

- ●使用ROS注意事项
 - ●查找bag文件发布(publish)的话题(topic)名称: rosbag info
 - ●rqt_graph可以查看节点信息是否接通
 - ●利用rosbag play -r可以加快包的播放速度,减少等待时间

●使用Allan曲线标定IMU参数(kalibr效果)

参数名称	陀螺仪 bias 随机游走偏差 σ _{bg}	陀螺仪白噪声 σg	加速度计 bias 随机游走偏差 σ _{ba}	加速度计 白噪声 σ _α
设定值	0.000050	0.015000	0.000500	0.019000
标定值	0.000048	0.015137	0.000443	0.019110
相对误差	4.0%	0.9%	11.4%	0.6%

参数名称	陀螺仪 bias 随机游走偏差 σ _{bg}	陀螺仪白噪声 σg	加速度计 bias 随机游走偏差 σ _{ba}	加速度计 白噪声 σ _a
设定值	0.000250	0.075000	0.002500	0.095000
标定值	0.000255	0.075900	0.002462	0.095929
相对误差	2.0%	1.2%	1.5%	1.0%

默认值放大5倍

使用Kalibr结果可视化效果更好,但是安装相对imu_utils来说比较复杂;kalibr如果遇到NaN,可以适当调大仿真参数

- ●使用imu_utils的步骤
 - (1) workspace的src中加入code_utils,编译
 - (2) 加入imu_utils,编译

- ●使用imu_utils的结果后处理
 - ●从离散到连续,除以sqrt(200)

$$\sigma_d = \frac{\sigma}{\sqrt{\Delta t}}$$
$$\sigma = \frac{\sigma_d}{\sqrt{f}}$$

- ●使用imu_utils的结果后处理
 - ●从离散到连续,除以sqrt(200)

$$\sigma_d = \frac{\sigma}{\sqrt{\Delta t}}$$
$$\sigma = \frac{\sigma_d}{\sqrt{f}}$$

●imu utils标定效果

陀螺仪

加速度计

- 产生动态数据,使用欧拉积分和中值积分处理离散测量值 使用非ROS版本的代码,修改其中的数值积分部分,画出轨迹
- 中值积分和欧拉积分

第一中值积分
$$\int_{a}^{b} f(x)dx = f(\xi)(b-a)$$
$$\int_{a}^{b} f(x)dx \approx \frac{f(b) + f(a)}{2}(b-a)$$
$$\int_{a}^{b} f(x)dx \approx f(a)(b-a)$$

●对比欧拉积分和中值积分

欧拉积分

中值积分

提升作业

- Lovegrove, Steven, Alonso Patron-Perez, and Gabe Sibley. "Spline Fusion: A continuoustime
- representation for visual-inertial fusion with application to rolling shutter cameras." BMVC. Vol.
- 2. No. 5. 2013.
- ●目的:用离散位姿拟合曲线,获得连续运动方程,用于优化高频,异步的传感器融合算法
- ●为什么得到连续方程又离散化
 - ●通过视觉估计的位姿是低频的(10-30Hz), IMU测量数据是高频的。通过B 样条估计相机的连续运动方程,求导得到合成的IMU测量值

提升作业

- ●辅助型问题
 - ●贝塞尔曲线是什么? 它的控制点有什么样的特点?
 - ●贝塞尔曲线的缺点是什么?
 - ●B样条曲线和贝塞尔曲线有怎样的关系?

在线问答

感谢各位聆听

Thanks for Listening

