

Vorlesungsskript

Mitschrift von Falk-Jonatan Strube

Vorlesung von Dr. Boris Hollas 16. März 2016

Inhaltsverzeichnis

1	Auto	omaten und Formale Sprachen	3
	1.1	Formale Sprachen	3
	1.2	Reguläre Sprachen	4
		1.2.1 Deterministische endliche Automaten (DFA)	4

Inhalte

Grundlage: Grundkurs Theoretische Informatik [1]

- Formale Sprachen
 - Reguläre Sprachen
 - * Endliche Automaten
 - * Reguläre Ausdrücke
 - Nichtreguläre Sprachen
 - Kontextfreie Sprachen
 - * Kellerautomaten
 - * Grammatiken
- Berechenbarkeit
 - Halteproblem
- Komplexitätsklassen
 - **-** P
 - **-** *NP*
 - NP-vollständige Probleme

1 Automaten und Formale Sprachen

1.1 Formale Sprachen

Def.: Ein Alphabet ist eine Menge $\Sigma \neq \emptyset$ (Symbole in Σ – müssen nicht einzelne Buchstaben sein, auch Wörter usw. [bspw. "if" oder "else" im Alphabet der Programmiersprache C]).

Def.: Für $w_1,...,w_n \in \Sigma$ ist $w=w_1...w_n$ ein Wort der Länge n.

 Σ^n beschreibt alle Worte mit der Länge genau n

Das Wort ε ist das *leere Wort*.

Die Menge aller Wörter bezeichnen wir mit Σ^* (einschließlich dem leeren Wort).

Bsp.:
$$\Sigma = \{a, b, c\} \rightarrow \Sigma^* = \{\varepsilon, a, b, c, aa, ab, ac, aaa, ...\}$$

Def.: Für Wörter $a, b \in \Sigma^*$ ist ab die Konkatenation dieser Wörter.

Für ein Wort w ist w^n die n-fache Konkatenation von w, wobei $w^0 = \varepsilon$.

Bemerkung: Für alle $w \in \Sigma^*$ gilt $\varepsilon w = w = w \varepsilon$. ε ist also das neutrale Element der Konkatenation.

Def.: Eine *formale Sprache* ist eine Teilmenge von σ^* .

Def.: Für Sprachen A, B ist $AB = \{ab \mid a \in A, b \in B\}$ sowie $A^n = \prod_{i=1}^n A$, wobei $A^0 = \{\varepsilon\}$.

Bemerkung: $\emptyset, \varepsilon, \{\varepsilon\}$ sind unterschiedliche Dinge (leere Menge, leeres Wort, Menge mit leerem Wort).

Bemerkung: Σ^* lässt sich ebenfalls definieren durch $\Sigma^* = \bigcup_{n \geq 0} \Sigma^n$.

Ferner ist $\Sigma^+ = \Sigma^* - \{\varepsilon\}$.

1.2 Reguläre Sprachen

1.2.1 Deterministische endliche Automaten (DFA)

Bsp.:

ABB1

(Pfeil zeigt auf Startzustand, Endzustand ist doppelt umrandet)

Dieser DFA akzeptiert alle Wörter über $\Sigma = \{a, b, c\}$, die abc enthalten.

Deterministisch: Es gibt genau ein Folgezustand. Von jedem Knoten aus gibt es genau eine Kante für jedes Zeichen, nicht mehrere und nicht keine.

Bsp.:

ABB2

Dieser DFA erkennt die Sprache $\{a, b, c\}^*$.

Def.: Ein DFA ist ein Tupel $\mathcal{M} = (Z, \Sigma, \delta, z_0,)$

- Z: Menge der Zustände
- Σ: Eingabealphabet
- δ : Überführungsfunktion $Z \times \Sigma \to Z$. Dabei bedeutet $\delta(z,a) = z'$, dass $\mathcal M$ im Zustand z für das Zeichen a in den Zustand z' wechselt.
- $z_0 \in Z$: Startzustand
- E: Menge der Endzustände

 δ : ABB3

Def.: Die erweiterte Überführungsfunktion $\hat{\delta}: Z \times \Sigma^* \to Z$ ist definiert durch

$$\hat{\delta}(z,w) = \begin{cases} z & \text{für } w = \varepsilon \\ \hat{\delta}(\delta(z,a),x) & \text{für } w = ax \text{ mit } a \in \Sigma, x \in \Sigma^* \end{cases}$$

Dazu vergleichbarer C-Code:

```
int \hat{\delta}(\text{int } z, \text{ char}* w) {
if ( strlen(w) == 0 )
    return z;
else
    return \hat{\delta}(\delta(z, w[0]), w[1]);
```

Veranschaulichung:

ABB4

Die erweiterte Überführungsfunktion bestimmt den Zustand nach dem vollständingen Lesen eines Wortes.

Bsp.: ABB5

$$\begin{split} \hat{\delta}(z_0, aaba) &= \hat{\delta}(\delta(z_0, a), aba) = \\ \hat{\delta}(z_0, aba) &= \hat{\delta}(\delta(z_0, a), ba) = \\ \hat{\delta}(z_0, ba) &= \hat{\delta}(\delta(z_0, b), a) = \\ \hat{\delta}(z_E, a) &= \hat{\delta}(\delta(z_E, a), \varepsilon) = \\ \hat{\delta}(z_E, \varepsilon) &= z_E \end{split}$$

Die von \mathcal{M} akzeptierte Sprache ist $L(\mathcal{M}) = \{w \in \Sigma^* \mid \hat{\delta}(z_0, w) \in E\}$

Literatur

[1] Boris Hollas. *Grundkurs Theoretische Informatik: Mit Aufgaben und Anwendungen*. Springer Berlin, 2015.