Mathematical Model for Engineering Drawing (COP 290)

Ujjwal Gupta, 2016CS10087, Chetan Mittal, 2016CS10343

Abstract

We hope to develop a mathematical model for engineering drawing. We present the various theorems and lemmas regarding the same.

1. Orthographic Projection of 3D objects

Here we present the projection, scaling and rotation matrices needed while projection a 3D object onto a 2D surface.

Input Specifications: A list of 3D points. (Each representing intersection of two lines in 3D space).

Output Specifications: A list of 2D points. (Each representing intersection of two lines in 2D space).

1.1. Projection Matrices

To construct the top view of an object, we must project a 3D point (x_i, y_i, z_i) onto a 2D point (x_i, y_i) on the x-y plane. We define the following function:

$$f: R^3 \to R^3 \ni f(x_i, y_i, z_i) = (x_i, y_i, 0)$$

We construct the following matrix:

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

We define the vector representing the 3D point:

$$X = \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}$$

Then we observe that:

$$PX = \begin{bmatrix} x_i \\ y_i \\ 0 \end{bmatrix}$$

Thus PX represents a point on the x-y plane. Thus, P defines the required function, P is called a projection matrix.

Preprint submitted to Elsevier

January 14, 2018

1.2. Translation Matrices

If we need to project a 3D point onto the planes of a translated origin, we need a translation matrix. We define the following function:-

$$f: R^3 \to R^3 \ni f(x_i, y_i, z_i) = (x_i + x_0, y_i + y_0, z_0)$$

where

$$(x_0, y_0, z_0)$$

represents the transformed origin. We construct the following matrix:

$$T = \begin{bmatrix} 1 & 0 & 0 & x_0 \\ 0 & 1 & 0 & y_0 \\ 0 & 0 & 0 & z_0 \end{bmatrix}$$

We define the vector representing the 3D point:

$$X = \begin{bmatrix} x_i \\ y_i \\ z_i \\ 1 \end{bmatrix}$$

Then we observe that:

$$TX = \begin{bmatrix} x_i + x_0 \\ y_i + y_0 \\ z_0 \end{bmatrix}$$

Thus TX represents a point on the x-y plane for the transformed origin. Thus T defines the required function, T is called a translation matrix.

1.3. Scaling Matrices

If we need to scale a 3D point, we need a scaling matrix. We define the following function :-

$$f: R^3 \to R^3 \ni f(x_i, y_i, z_i) = (x_i s_x, y_i s_y, z_i s_z)$$

where

$$(s_x, s_y, s_z)$$

represents the scaling factors. We construct the following matrix:

$$S = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & s_z \end{bmatrix}$$

We define the vector representing the 3D point:

$$X = \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}$$

Then we observe that:

$$SX = \begin{bmatrix} x_i s_x \\ y_i s_y \\ z_i s_z \end{bmatrix}$$

S defines the required function, S is called a scaling matrix.