МОДЕЛИРОВАНИЕ ВОЛНОВЫХ ПРОЦЕССОВ ПРИ ЭЛЕКТРОРАЗРЯДАХ В ЖИДКОСТИ

А.Н. Потапенко, А.И. Штифанов

Электрогидравлический эффект как способ трансформации электрической энергии в механическую широко используется в самых различных областях науки и техники [1].

Процессы, протекающие в электрогидроимпульсных установках, использующих электрогидравлический эффект, в основном состоят из следующих операций: накопления электрической энергии в конденсаторной батареи, подключения специальным коммутирующим устройством высоковольтного напряжения к электродам, пробоя жидкости, образования разрядного канала с высоким давлением и возникновения гидродинамических явлений в жидкости в виде ударных волн и гидропотока от расширяющегося газообразного канала.

В настоящее время при электрогидравлической обработке материалов применяется оборудование, оснащенное новой разрядной системой в виде многоэлектродных разрядных блоков (МРБ) [2]. Функциональное назначение МРБ - это управление выделением высококонцентрированных потоков энергии в технологическом пространстве при импульсной обработке материалов.

Экспериментальные исследования МРБ [3] позволили впервые выявить существование неравномерного поля давлений на заготовке при осесимметричном расположении изолированного электрода в разрядной камере. При этом было установлено, что разрядный канал, например, образуется в одном радиальном направлении между центральным изолированным электродом и стержнем-тоководом, а максимальное давление на поверхности заготовки — в противоположном радиальном направлении. На основе полученных экспериментальных исследований, авторами работы [3] была разработана эмпирическая модель.

Цель данной работы — это исследование с помощью вычислительного эксперимента гидродинамических явлений для объяснения сложной физической картины волновых процессов, установленных экспериментально в работе [3].

1. Постановка задачи. Схема для моделирования нестационарных и неодномерных процессов в жидкости при электроразряде представлена на рис. 1.

Исследование процессов в ограниченном объеме разрядной камеры при электроразряде, выполняется с помощью модели сплошной среды. Для определения гидродинамического поля внутри одной из камер с двумя электродами Γ_6 и Γ_7 , погруженными в жидкость (см. рис. 1) необходимо найти решение краевой задачи.

Процессы, протекающие в жидкости будут определяться импульсным источником B(t), образовавшемся в результате пробоя межэлектродного прмежутка в виде разрядного канала с высоким давлением.

Из расчета электрического поля определяется граница B(t) как линия с максимальными значениями напряженности электрического поля между электродами, причем в этом случае параметры жидкости не изменяются, т.е. скорость частиц U в начале $t_{\rm H}$ и в конце $t_{\rm K}$ этого этапа расчета равна нулю: $t_{\rm H} = t_{\rm K} = t_0$, U = 0.

Рис. 1. Схема одной из разрядных камер МРБ (в разрезе):

A(t) — жидкая передающая среда, B(t) — импульсный источник, S(t) — граница симметрии, $\Gamma_1...\Gamma_{11}$ — жесткие границы, причем Γ_6 — центральный изолированный электрод, Γ_7 — неизолированный электрод (стержень-токовод), связанный с корпусом разрядной камеры, I и II — номера разрядных камер.

Определение границы канала пробоя в жидкости связано с расчетом поля электрического потенциала ξ в области A(t₀). Для расчета электрического поля используется уравнение Лапласа, которое в декартовой системе координат имеет вид:

$$\frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi}{\partial y^2} + \frac{\partial^2 \xi}{\partial z^2} = 0.$$
 (1)

На граница электродов Γ_6 и Γ_7 применяется уравнение Пуассона в виде

$$\frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi}{\partial y^2} + \frac{\partial^2 \xi}{\partial z^2} = \frac{\rho_q}{\epsilon_0 \epsilon_r},$$
 (2)

где ρ_q — объемная плотность зарядов; ϵ_0 — электрическая постоянная; ϵ_r — относительная диэлектрическая проницаемость жидкости.

Для представления параметров исследуемого процесса в безразмерных величинах исходя из закона подобия и размерности, а также выбрав за базовые величины разность потенциалов между электродами $\mathbf{u}=\xi_1$ - ξ_2 , характерный размер разрядной камеры l в поперечном направлении и величину $\mathbf{c}_1=\rho_\mathbf{q}/\epsilon_0\epsilon_\mathbf{r}$, запишем их в следующем виде: $\xi^*=\xi/\mathbf{u}$; $\mathbf{x}^*=\mathbf{x}/l$; $\mathbf{y}^*=\mathbf{y}/l$; $\mathbf{z}^*=\mathbf{z}/l$; $\mathbf{c}_0^*=\rho_\mathbf{q}/\epsilon_0\epsilon_\mathbf{r}(1/c_1)$.

С учетом введенных безразмерных величин уравнение Лапласа будет иметь вид:

$$\Delta \xi^* = 0, \tag{3}$$

где Δ — оператор Лапласа.

Аналогично уравнение Пуассона

$$\Delta \xi^* = c_0^*. \tag{4}$$

Граничные условия для расчета электрического поля следующие:

- на границе Γ_6 : $\xi^* = \text{const}$;
- на Γ_1 , ... Γ_4 , Γ_7 , Γ_{10} , ... Γ_{12} : $\xi^* = 0$;
- на Γ_5 , Γ_8 и Γ_9 : $\partial \xi^*/\partial n = 0$;
- на $S(t_0)$: условие непротекания тока в виде $\partial \xi^*/\partial n = 0$.

Учитывая, что напряженность электрического поля определяется как

$$E_i = \text{grad}\xi,$$
 (5)

тогда в безразмерном виде компоненты напряженности электрического поля следующие:

$$E_{x}^{*} = \partial \xi^{*} / \partial x^{*}; \quad E_{y}^{*} = \partial \xi^{*} / \partial y^{*}; \quad E_{z}^{*} = \partial \xi^{*} / \partial z^{*}. \tag{6}$$

Зная компоненты напряженности E^*_{i} , можно определить модуль E^* в любой точке области $A(t_0)$

$$E_{i}^{*} = \sqrt{(E_{x}^{*})^{2} + (E_{y}^{*})^{2} + (E_{z}^{*})^{2}}.$$
 (7)

Определив поле E_i^* в области $A(t_0)$, находим границу канала пробоя в жидкости между электродами Γ_6 и Γ_7 как линию с максимальными значениями E_i^* в виде границы $B(t_0)$.

Для исследования нестационарных и неодномерных процессов в жидкости, возникающих при высоковольтном электрическом разряде, используем подход, изложенный в [4].

Расчет гидродинамического поля ведем с использованием волнового уравнения, которое относительно потенциала скорости у имеет вид

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} = \frac{1}{a_0^2} \frac{\partial^2 \Psi}{\partial t^2}, \tag{8}$$

где ао - скорость звука в жидкости.

Учитывая, что в области жидкости A(t) имеется импульсный источник B(t), то тогда на границе канала пробоя в жидкости необходимо использовать неоднородное волновое уравнение

$$\Delta \psi - \frac{1}{a_0^2} \frac{\partial^2 \psi}{\partial t^2} = f(t), \qquad (9)$$

где f(t) — потенциальная функция, учитывающая изменение давления в источнике B(t).

Зная распределение потенциала ψ в области A(t) можно определить основные параметры исследуемого процесса при высоковольтном разряде в жидкости, а именно, давление, плотность и скорость жидкости как в [4].

Граничные условия для расчета гидродинамического поля следующие:

- на жестких границах $\Gamma_1, \dots \Gamma_5, \Gamma_8, \dots \Gamma_{12}$: $\partial \psi / \partial n = 0$;

- на границе
$$B(t)$$
: $\Psi_B = \frac{1}{\rho_0} \int_0^t P_m \frac{t}{\tau} exp(1-\frac{t}{\tau}) dt$,

(15)

где P_m — максимальное давление в источнике B(t); ρ_0 — исходная плотность жидкости; τ — постоянный коэффициент, характеризующий процесс изменения давления в источнике B(t);

- на границе S(t):
 - если разрядная камера окружена по периферии другими разрядными камерами как в случае [3], то условие на границе $\partial \psi/\partial n = 0$;
 - если исследуется одна из разрядных камер в многокамерном разрядном блоке как в случае [3], то условие на границе $\partial \psi / \partial t = 0$;

• в других случаях [3] используется комбинация условий на границе в виде $\partial \psi/\partial n = 0$ и $\partial \psi/\partial t = 0$.

Начальные условия при t=t₀ нулевые.

Для представления характерных гидродинамических параметров исследуемого процесса в безразмерном виде за базовые величины были выбраны τ , P_m , I, где τ , P_m — параметры импульсного источника B(t). Тогда безразмерные параметры определяются как $F^* = F_i/F_6$, где F_6 — базовая величина.

2. Результаты вычислений. Для решения краевой задачи применен метод конечных разностей [5]. Исследуемая область жидкости представляется в виде дискретной (сеточной) области. В основу положена замена уравнений в частных производных для рассматриваемой краевой задачи их разностными аналогами.

В расчетах реализуется явная разностная схема Дюфорта-Франкела [5] для уравнений (8) и (9). Для уравнений Лапласа и Пуассона реализуется неявная разностная схема с использованием для их решения метода Либмана с ускоряющим множителем для оптимизации итерационного процесса [6].

Учитывая экспериментальные данные [3], рассмотрим процессы, протекающие при высоковольтном разряде в жидкости одновременно в полостях двух камер МРБ при условиях как на рис.1, т.е. разрядные каналы смещены к оси симметрии между камерами.

Используя методику расчета электрического поля для краевой задачи, определим распределение электрического потенциала ξ , напряженность E и границу канала прбоя в жилкости.

На рис. 2 приведено характерное распределение эквипотенциальных линий электростатического поля при подключении к электродам высоковольтного напряжения с указанием границы канала пробоя в жидкости, соответствующей максимальному значению напряженности электрического поля E_m между электродами.

Рис. 2. Распределение эквипотенциальных линий электростатического поля в полости разрядной камеры для плоского варианта задачи с шагом $\delta \xi^* = 0.04$

Вычислив место расположения импульсного источника B(t), образовавшегося в жидкости в результате пробоя разрядного промежутка, а также учитывая характер изменения давления P(t) â âèäå колоколообразного закона в источнике B(t) [7], можно с помощью численных расчетов определить гидродинамические поля в полости разрядной камеры. При этом следует отметить, что в отличие от подхода [4], когда при решении неоднородного волнового уравнения параметры импульсного источника, а именно, P_m и τ , характеризующие процесс изменения давления в нем, определялись в соответствии с [8], в данном случае крутизна переднего фронта нарастания давления при электроразряде в жидкости значительно выше

[7]. Исходя из обобщенных экспериментальных данных величина параметра τ в зависимости (10) принималась равной $10\cdot 10^{-6}$ с., т.е. более, чем в 20 раз меньше, чем в [4].

На рис. З приведено характерное распределение давления P^*_{1n} по поверхности Γ_1 (плоский вариант задачи) для разных моментов времени t_i^* , причем на рис. З,а показан процесс нарастания давления P^*_{1n} до максимальной величины P^*_{max} , а затем на рис. З,б показан процесс уменьшения давления P^*_{1n} от P^*_{max} до его некоторого значения. При этом следует отметить, что длина границы Γ_1 в расчете принималась равной L=7l, величина разрядного промежутка $\Delta L=0.15l$, расстояние от электродов до границы Γ_1 составляло H=0.9l и расстояние между центральными линиями двух разрядных камер принималось равным $L_{12}=1.25l$.

Анализ результатов численных расчетов (см. рис. 3) показал, что при смещении разрядного промежутка относительно центральной линии для первой (I) разрядной камеры вправо путем размещения неизолированного электрода Γ_7 как показано на рис.1 и соответственно на рис.2, приводит к возникновению канала пробоя данного разрядного промежутка и появлению импульсного источника B(t) справа (см. рис. 3, поз. 1). Однако, максимальная величина давления P_m^* на преграде, а именно, внизу под импульсным источником B(t) смещается влево по отношению к центральной линии первой (I) разрядной камеры (см.рис. 3, поз. 4), т.е. наблюдается случай, при котором максимальное значение P_m^* не расположено непосредственно под источником B(t), как следовало бы этого ожидать.

Аналогичные результаты расчетов одновременно наблюдаются и во второй (II) разрядной камере, когда неизолированный электрод Γ_7 (см.рис.1) размещен слева от центральной линии. При этом канал пробоя разрядного промежутка и импульсный источник B(t) возникает слева относительно центральной линии камеры (II) (см. рис. 3, поз. 2), а максимальная величина давления P^*_{max} на преграде Γ_1 возникает справа от этой линии (см. рис. 3, поз. 5).

В связи с тем, что разрядные камеры в МРБ сообщаются между собой (по поверхности S(t) как на рис.1), поэтому по оси симметрии между ними на преграде Γ_1 возникает дополнительное экстремальное значение давления P^*_{1n} (см. рис.3,6, поз. 3).

Следует отметить, что данный эффект наблюдается только при определенных соотношениях размеров разрядной камеры (l и H) и при варьировании параметров импульсного источника B(t) ($P_{\rm m}$ и τ) в некотором диапазоне значений. При параметрах B(t) как в [4] эффект не наблюдается.

Сравнение результатов численных расчетов, показанных на рис. 3 с экспериментальными данными [3] говорит об их качественном совпадении, так как в теоретическом плане решается задача для плоского варианта, а в экспериментах приводится карта полей давлений в виде линий изобар в относительных единицах для осесимметричной задачи. Однако, сопоставительный анализ по экстремальным значениям давления на преграде показал, что также имеется и количественное совпадение теоретических и экспериментальных результатов. В численных расчетах и экспериментальных данных фиксируются 3 экстремальных значения давления P_{m}^* . Два из них в обоих камерах равны и смещены относительно центральных линий для каждой из камер. Третий максимум лежит по оси симметрии между разрядными камерами и имеет значение меньшее, чем в камерах.

Рис. 3. Зависимость распределения давления $P_{1\,n}$ по поверхности Γ_1 для разных моментов времени t_i^* . Цифрами обозначено:

- 1 смещение источника относительно центральной линии камеры I;
- 2 смещение источника относительно центральной линии камеры II;
- 4 максимум P^*_{ln} â ïîëîñòè êàìåðû I;
- 5 максимум P^*_{ln} â ïîëîñòè êàìåðû II;

a)
$$t_1^* = 2.3$$
, $t_2^* = 2.6$, $t_3^* = 3.2$, $t_4^* = 3.9$, $t_5^* = 4.5$;

6)
$$t_5^* = 4.5$$
, $t_6^* = 5.0$, $t_7^* = 6.4$, $t_8^* = 6.7$, $t_9^* = 7.0$

Полученные с помощью разработанной математической модели результаты численных расчетов позволяют объяснить с позиции волновых процессов установленный экспериментально в работе [3] факт возникновения неравномерного распределения поля давления по поверхности заготовки или преграды.

Сопоставительный анализ результатов расчета и данных эксперимента позволяет сделать вывод о том, что асимметричный относительно центральной линии камеры пробой разрядного промежутка в одной из ее зон в многокамерных разрядных блоках приводит к фокусированию волн от импульсного источника в виде разрядного канала с высоким давлением за счет их отражения от близко расположенных стенок камеры и концентрации импульса давления в прямо противоположной зоне исследуемой камеры по отношению к каналу пробоя. Таким образом, исходя из полученных результатов расчета следует вывод о том, что при проведении вычислительного эксперимента выявлен эффект самофокусировки волн с большим градиентом нарастания давления и концентрации энергии этих волн.

3. Заключение. Установленный эффект самофокусировки волн и концентрации их энергии необходимо учитывать специалистам в решении практических задач, связанных с обработкой материалов в электрогидроимпульсных установках. Кроме того, практической ценностью обладают разработанные алгоритмы и программное обеспечение для автоматизированных рабочих мест (АРМ) конструктора и технолога, которые необходимо использовать при проектировании специализированного импульсного оборудования и при разработке новых технологических процессов.

Список литературы.

- 1. Юткин Л.А. Электрогидравлический эффект и его применение в промышленности. Л.: Машиностроение, 1986. 253 стр.
- 2. Тараненко М.Е., Чебанов Ю.И., Князев М.К., Перский Е.Г. Новый энергонасыщенный электрогидравлический пресс // Кузнечно-штамповочное производство. 1992.№2.С.30-31
- 3. Чебанов Ю.И., Борисевич В.К., Князев М.К. Формирование поля давления на заготовке при штамповке на электрогидравлических установках // Кузнечноштамповочное производство. 1996.№4.С.15-18
- 4. Shtifanov A.I., Potapenko A.N., El-Hammoudani A. Simulation of Dynamic Processes at Powdery Materials Pulse Loading // In book. Modeling. Compaction. Testing. Advances in Powder Metallurgy & Particulate Materials. Part 7, MPIF, Washington, 1996. P.3-12.
 - 5. Самарский А.А. Теория разностных схем. М: Наука, 1977.-656с.
- **6.** Бинс К., Лауренсон П. Анализ и расчет электрических и магнитных полей. М: Энергия, 1970 370 с.
- 7. Богуславский Л.З., Кривицкий Е.В., Ромакин В.В. Моделирование электрического разряда в жидкости при параметрическом изменении элементов в контуре // Техническая электродинамика. 1990. №2. С.З-7.
- 8. Вовк В.Т., Софронов А.Г. Экспериментальное исследование поля давлений при взрыве газового заряда в гидросреде // В кн.: Импульсная обработка металлов давлением. Харьков, ХАИ, Вып. 10, 1982.- с. 105-108