Prénom: Nom: NOMA:

Travail 2

Transistor MOS: Analyse AC

Dans ce travail, on s'intéresse aux caractéristiques petit signal de l'amplificateur PMOS en source commune dont le point de polarisation a été étudié dans le travail 1. Pour ce second travail, le point de polarisation à utiliser est $V_G=2.15$ [V], généré par des résistances de polarisation $R_{B1}=363$ [k Ω] et $R_{B2}=680$ [k Ω]. Pour les questions qui suivent, les graphes demandés doivent être réalisés à la main. On considère une tension d'alimentation $V_{DD}=3.3$ V. Le schéma de l'amplificateur est représenté à la Fig. ?? et les paramètres du transistor PMOS sont repris dans la Table ??.

Fig. 2.1 – Schéma de l'amplificateur PMOS monté en source commune.

W [μm]	L [μm]	$\mu_p \left[\text{cm}^2/(\text{V.s}) \right]$	t_{ox} [nm]	$V_{T0,p}$ [V]	$V_{EA,p}$ [V]
2.5	1	250	20	-0.9	16

TABLE 2.1 – Paramètres technologiques du transistor PMOS.

ELEC1530 - Travail 2

1.	Paramètres	petit	signal	:
	1 011 011 11 00	P	222	

- Donnez la définition et l'expression analytique de la transconductance g_m et de la conductance de sortie g_d du transistor PMOS.
- Sur base du point de fonctionnement DC donné dans l'énoncé, estimez leur valeur numérique. Précisez les paramètres utilisés.
- Calculez le point de fonctionnement du circuit par une simulation Spice (.op) et reportez les valeurs de g_m et g_d présentes dans le fichier .log.

$g_d = $	vencents etc 8m cc	ou F		
	$g_m =$			
g _m	$g_d =$			
Sm Sm				
g _m				
g _m				
g_m				
g _m	Grandour	Unitá	Valour calculóo	Valour cimulóo cur Spico
		Office	vaicui Calculee	valeur simulee sur spice
	8 <i>d</i>			

ELEC1530 - Travail 2

Prénom: Nom: NOMA:

2. Dessinez le schéma petit signal du circuit d'amplification complet et donnez la définition et l'expression analytique du gain en tension intrinsèque de l'amplificateur. Comparez ensuite la valeur calculée avec la valeur simulée sur base du point de fonctionnement donné dans l'énoncé. Finalement, donnez la définition, l'expression analytique et la valeur numérique des résistances d'entrée et de sortie de l'amplificateur.

Schéma petit signal :
Gain en tension:
Résistances d'entrée et de sortie :

ELEC1530 - Travail 2 3

3. Réalisez une simulation AC du montage avec Spice et tracez le diagramme de Bode précis (avec échelles) du gain en tension. Pour ce faire, utilisez en entrée du circuit une source de tension AC, notée v_{sig} , appliquée via une capacité de couplage $C_{in}=10$ [μ F], et une charge capacitive $C_L=1$ [μ F] entre v_{OUT} et la masse. Comparez ensuite les résultats de simulation du gain dans la bande passante aux calculs effectués précédemment.

Schéma du mor	ntage :		
Diagramme de	Bode :		
Cain Jan-1-1			
Gain dans la ba		17.1	W1 . 1/ C .
Grandeur A_{v0}	Unité	Valeur calculée	Valeur simulée sur Spice

ELEC1530 - Travail 2

Prénom:	Nom:	NOMA:
i icitoiii.	1 VOIII:	1 1011111.

4. Quel est l'impact sur le gain en tension de l'ajout d'une résistance $R_{sig}=250~[\Omega]$ en série avec la source AC en entrée et d'une résistance de charge $R_L=5~[\mathrm{M}\Omega]$ en parallèle avec la sortie. Quelles conditions les résistances R_{sig} et R_L doivent-elles respecter pour que la dégradation du gain en tension dans la bande passante soit négligeable?

Impact sur le gain en tensi	on:		
Conditions de bon fonction	nnement :		

ELEC1530 - Travail 2 5