многочлены 3.0 без п5-6

prerequisite knowledge: глава <u>кольцо многочленов</u> (a.k.a. многочлены база.pdf).

1. Наибольший общий делитель

Далее K - поле.

Есть какой-то набор многочленов: $f_1, \ldots, f_m \in K[x]$. Многочлен $d \in K[x]$ - их наибольший общий делитель, если:

- 1. d делит все многочлены: $d|f_1, \ldots, d|f_m$
- 2. Любой другой общий делитель делит d.

Обозначение:

$$d = \mathsf{HOД}\ (f_1,\ldots,f_m) = \gcd(f_1,\ldots,f_m) = (f_1,\ldots,f_m)$$

Пример:

$$f_1=\ldots=f_m=0$$

Тогда $d=0$

Пусть d,e - два наибольших делителя f_1,\ldots,f_m . d|e, и наоборот, $e|d \implies \deg e = \deg g$.

 $d=c\cdot e,\ c\in K^*$ - поле <u>обратимых</u> элементов K.

Два многочлена h,g ассоциированы, если $h=c\cdot g,\ c\in K^*.$

Упражнение: докажите, что ассоциированность отношение эквивалентности.

В классе ассоциированных многочленов есть ровно один со старшим коэффициентом единицей.

Теорема.
$$f_1,\ldots,f_m\in K[x]$$
.

Тогда существует их наибольший делитель, и более того, существуют $h_1,\dots,h_m\in K[x]$ такие, что

$$d=h_1f_1+\ldots+h_mf_m$$

Это линейное представление НОД.

🖹 Доказательство:

- 1. Тривиальный случай: $f_1=\ldots=f_m=0.$ $h_i=1\ orall i\in\{1,\ldots,m\}$
- 2. Среди f_1, \ldots, f_m есть ненулевой. Рассмотрим вспомогательное множество

$$I = \{h_1f_1 + \ldots + h_mf_m \mid h_i \in K[x]\}. \ f_1, \ldots, f_m \in I.$$

I содержит ненулевой многочлен. Выберем из ненулевых многочлен наименьший степени - d. Проверим, что он $\mathsf{HOД}(f_1,\ldots,f_m)$.

Каждый $f_i = q_i \cdot d + r_i, \; \deg r_i < \deg d.$ (<u>т. о делении</u>)

Проверим, что остаток нулевой:

$$r_i = f_i - q_i \cdot d$$
 $d = h_1 f_1 + \dots h_m f_m$. Подставляем:

$$r_i=(-h_1q_i)\cdot f_1+\ldots+(1-h_iq_i)f_i+\ldots+(-h_mq_i)f_m.$$

Получили, что $r_i \in I$. А так как d ненулевой многочлен наименьшей степени в I и $\deg r_i < \deg g$, то $r_i = 0$.

$$f_i = q_i \cdot d, \quad d | f_i.$$
 $d = h_1 f_1 + \ldots + h_m f_m$ (T.K. $d \in I$)

Теперь проверим наибольшесть делителя:

Пусть есть $e:e|f_1,\ldots,e|f_m$.

$$f_i = e \cdot ilde{q}_i$$
.

Так как d допускает линейное представление:

$$egin{aligned} d &= h_1 f_1 + \ldots + h_m f_m = e(h_1 ilde{q}_1 + \ldots + h_m ilde{q}_m) \implies e|d \ \implies d = \gcd(f_1, \ldots, f_m) \end{aligned}$$

По выбору $d \in I$, d допускает линейное представление.

2. Алгоритм Евклида

Докажем лемму:

Лемма. $f,g,q\in K[x]$.

 $\gcd(f,g)=\gcd(f-qg,g)$ (как <u>ассоциированные</u>)

🖹 Доказательство:

$$d=\gcd(f,g),\ e=\gcd(f-qg,g).$$

$$d|f, d|g \implies d|(f-qg) \implies$$

d - общий делитель $\{f-qg,g\} \implies d|e.$

$$e|(f-qg),e|g.$$
 $f=\underbrace{(f-qg)}_{e|}+\underbrace{qg}_{e|}\implies e|f$ $e|f,\ e|g\implies \underline{e|d}.$ $e|d,\ d|e\implies d=c\cdot e,\ c\in K^*.$ Таким образом, d и e ассоциированы.

Алгоритм Евклида (линейное представление НОД):

$$egin{aligned} r_0 &= f, \ r_1 = g \ & extstyle &$$

 r_n - последний ненулевой остаток.

Процесс обрывается, так как степени ненулевых остатков строго убывают: $r_{i+1} = r_{i-1} - q_i r_i, \ \deg r_{i+1} < \deg r_i.$

По лемме
$$\gcd(r_{i-1},r_i) = \gcd(r_{i+1},r_i) = \gcd(r_i,r_{i-1}) \implies$$

$$\gcd(f,g)=\gcd(r_o,r_1)=\gcd(r_1,r_2)=\cdots=\gcd(r_{n-1},r_n)=r_n$$

Линейное представление $r_n = \gcd(f,g)$ - читаем процесс снизу вверх и выражаем остатки:

$$r_n = r_{n-2} - q_{n-1} r_{n-1} = r_{n-2} - q_{n-1} (r_{n-3} - q_{n-2} r_{n-2}) = \dots$$

Упражнение: докажите, что $\gcd(f_1,\ldots,f_m)=\gcd(\gcd(f_1,\ldots,f_{m-1}),f_m)$

3. Взаимно простые многочлены

 $f_1,\ldots,f_m\in K[x]$ взаимно простые, если их НОД = 1 (конст.)

Следует различать простоту взаимную и попарно взаимную.

 $x(x-1), \ x(x+1), \ (x+1)(x-1)$ взаимно просты в \mathbb{Q} , но не попарно.

Теорема 1. Многочлены f_1, \ldots, f_m взаимно просты, тогда и только тогда, когда существует <u>линейное представление</u> единицы: $h_1f_1 + \ldots + h_mf_m = 1$.

🖹 Доказательство:

 \implies 1 = gcd. По теореме из <u>параграфа 1</u>, 1 допускает линейное представление.

otin=1 - общий делитель f_1,\ldots,f_m . Пусть d - тоже их общий делитель. Тогда d делит и правую часть равенства $h_1f_1+\ldots h_mf_m=1$, то есть d|1.

Отсюда $1 = \gcd(f_1, \ldots, f_m)$

Теорема 2. $f,g_1,\ldots,g_m\in K[x].$

 f,g_i взаимно просты для всех $i=1,\ldots,m$. Тогда f взаимно

🖹 Доказательство:

 f,g_i взаимно просты, значит $1=f\cdot u_i+g_iv_i,\ u_i,v_i\in K[x].$ $1-fu_i=g_iv_i\quad i=1,\ldots,m.$

Почленно перемножим:

$$\prod_{i=1}^m (1-fu_i) = g_1 \ldots g_m v_1 \ldots v_m.$$

Обозначим левую часть за 1+fA, где $A\in K[x]$.

$$1=-fA+g_1\dots g_mv_1\dots v_m.$$

 $1=-A\underline{f}+\underline{g_1\dots g_m}v_1\dots v_m.$ По первой теореме f и $g_1\dots g_m$ взаимно просты.

Теорема 3. (о сокращении) $f,g,h\in K[x]$. f|gh, f и g взаимно просты. Тогда f|h.

🖺 Доказательство:

$$u,v\in K[x].$$
 $fu+gv=1 \qquad |\cdot h$ $\underline{f}hu+\underline{gh}v=h \implies f|h \qquad (f$ делит f и $gh)$

4. Неприводимые многочлены. ОТА в кольце многочленов

$$f \in K[x] \setminus K$$
.

Многочлен f составной, если $\exists h, g \notin K^* : f = hg$ (строго меньшие степени).

Если таких h и g не существует, то f неприводимый.

f неприводимый $\implies f = hg \implies h \in K^*$ или $g \in K^*$. Это значит, что второй сомножитель ассоциирован с f (h или g).

f неприводим, если его делители - в точности константы и ассоциированные многочлены.

Теорема. (основная теорема арифметики для K[x]) $0 \neq f \in K[x]$. Тогда $\exists c \in K^*$ и неприводимые h_1, \dots, h_m со старшими коэффициентами 1 такие, что

$$f = c \cdot h_1 \dots h_m$$

и такое разложение единственно с точностью до порядка сомножителей.

🖹 Доказательство:

Доказывать будем в несколько этапов. Сначала покажем существование, а затем единственность.

Существование:

Если $f \in K^*$, то теорема очевидна: c = f, m = 0.

Если $\deg f > 0$:

f неприводим \Longrightarrow остановимся.

f составной \Longrightarrow разложим его на множители:

 $f = u \cdot v$, $\deg u, \deg v < \deg f$.

Так же поступаем с каждым сомножителем (раскладываем на множители):

 $f
ightarrow v \cdot u
ightarrow kd \cdot yt
ightarrow \dots$

Этот процесс конечен. В конце получим:

 $f=j_1\cdot\ldots j_m,\quad j_i$ неприводимы.

 $j_i = c_i \cdot h_i, \quad h_i$ неприводимы, со старшим коэфф. 1.

$$f=\underbrace{c_1\dots c_m}_c\cdot h_1\dots h_m.$$

Единственность:

 $f=c\cdot h_1\dots h_m=e\cdot g_1\dots g_n,\quad h_i,g_i$ неприводимы, со старшим коэфф. 1.

Хотим доказать, что $c=e,\ m=n,$ и $h_i=g_i$ после перенумерации.

Не умаляя общности, $m \leq n$. Будем доказывать индукцией по m - числу неприводимых многочленов в разложении.

База: m = 0. $f = c = eg_1 \dots g_n$.

 $\deg f = 0 \implies n = 0 = m \implies c = e$.

Индукционный переход: $m \geq 1, \; h_m | eg_1 \dots g_m.$

Два неприводимых многочлена либо ассоциированы, либо взаимно просты. Если h_m не ассоциирован ни с одним из g_1,\ldots,g_n , то он взаимно прост с каждым из g_1,\ldots,g_m , и как следствие, взаимно прост с их произведением (по теореме 2 из прошлого параграфа). Но это противоречие с $h_m|eg_1\ldots g_m$ (из этого следует, что $h_m=\gcd(h_1,eg_1\ldots g_m)$), поэтому h_m не взаимно прост со egtin formula for the standard process.

всеми g_i .

Отсюда $\exists i:h_m$ ассоциирован с g_i .

Не умаляя общности, положим i=n. Так как h_m,g_n со старшими коэффициентами 1, то $h_m=g_n.$

 $ch_1\dots h_m=eg_1\dots g_{n-1}h_m.$ $ch_1\dots h_{m-1}=eg_1\dots g_{n-1}.$ По индукционному предположению m-1=n-1. Отсюда c=e и после перенумерации $g_1=h_1,\ \dots,\ g_{m-1}=h_{m-1}\implies m=n$ и $g_n=h_m.$

5-6 нет в билетах:)