

Random Polygons
2. Zwischenpräsentation

Freie Universität Berlin 6th December 2011

- ► Testing framework for algorithms related to random polygons
- ► Generate random polygons (fair, representative)
- ▶ Run shortest path algorithm on polygon
- Statistical analysis

2. Milestone

- ▶ accomplish 6.12.-12.12.
- ▶ all polygon generation algorithms
- shortest path algorithm
- GUI basic version

Geometry Framework

- needed for some polygon generation algorithms
- existing:
 - needed accuracy not given
 - ► too big
 - partly inconsistent

•

therefore small own implementation

Permute and Reject by Auer and Held

input: size n or n points

- i. generate points, if necessary
- ii. permute points
- iii. test if polygon simple. if not, continue with ii.
 - simple to implement
 - generates all simple polygons with uniform distribution
- runntime depends on polygons needed to be generated to encounter simple polygon (max. n=15 for fast results)
- not suited for practical use

2opt.-Moves by Auer and Held

input: size n or n points

- i. generate random permutation of n points
- ii. for every self intersection of two edges \overline{ab} and \overline{cd}
 - a. remove \overline{ab} and \overline{cd}
 - b. insert \overline{ac} and \overline{bd}
- needs special treatment for polygons not in general position
- generates all polygons, but not with uniform distribution

Space Partitioning by Auer and Held

input: set S of n points

- i. choose points $s_f, s_t \in S$ at random
- ii. draw line $\overline{s_f s_t} \rightarrow 2$ sets
- iii. recursively for all subsets S', s'_f first, s'_t last point:
 - a. if S' only consists of s'_f , s'_t , return $\overline{s'_f s'_t}$
 - b. choose s' from S' at random
 - c. draw random line through s' intersecting $\overline{s'_f s'_t}$, thereby creating subsets S", S"', first and last point s'_f, s' and s', s'_t
- generates not every possible simple polygon

Incremental Construction & Backtracking by Auer and Held

input: n points

- i. set of all possible edges, all unmarked, randomly choose current point s
- ii. recursively for current point:
 - a. add next possible unmarked edge to polygon, mark all intersecting edges
 - b. backtrack if no unmarked edges left and incompleted polygon
- speed depends on backtracking
- complex to optimize backtracking
- currently not suited for practical use

Generating random Polygons by O'Rourke and Virmani

input: size n, radius circle, max. speed, steps t

- i. generate random points on circle ightarrow regular polygon
- ii. t times:
 - a. move each vertex with random speed and direction
 - b. test if move violates 2 conditions:
 - polygon is simple
 - vertices in bounding region
 - c. discard last step if violation of conditions
- still not accessible from GUI
- seems to generate specific class of polygons
- interesting for statistical analysis

Random Polygon Algorithm by Dailey and Whitfield

input: size n

- i. generate 3 random points \rightarrow random n-gon P size 3
- ii. randomly choose and discard edge \overline{ab}
- iii. determine region P' in polygon visible from \overline{ab}
- iv. randomly choose point c in P'
- v. add edges \overline{ac} , \overline{bc} to polygon P
- main reason for geometry framework
- nontrivial problem to determine visible region P'
- most complex of all generation algorithms

- order of points representing polygon: cc-wise
- ► triangularization
- random point in polygon
- intersection line with polygon
- surface area of polygon

Demonstration GUI

- basic version
- next important step: better way to pass parameters

Again Milestones

This Milestone:

- ▶ 2 polygon generation algorithms missing
- shortest path generator missing
- ▶ possible in 1 week

Next Milestone:

- history objects
- step-by-step visualization
- statistic backend