(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 22 January 2004 (22.01.2004)

(10) International Publication Number WO 2004/007556 A1

(51) International Patent Classification7: A61K 39/00, 39/245, 39/29

C07K 19/00.

(74) Agent: BLAKE DAWSON WALDRON PATENT SER-VICES; Level 39, 101 Collins Street, MELBOURNE, Vic-

(21) International Application Number:

PCT/AU2003/000910

(22) International Filing Date: 14 July 2003 (14.07.2003)

(25) Filing Language:

(30) Priority Data:

2002950183

English

(26) Publication Language:

English

12 July 2002 (12.07.2002) ΑU

(71) Applicants (for all designated States except US): CSL LIMITED [AU/AU]; 45 Poplar Road, PARKVILLE, Victoria 3052 (AU). THE COUNCIL OF THE QUEENS-LAND INSTITUTE OF MEDICAL RESEARCH [AU/AU]; 300 Herston Road, HERSTON, Queensland 4029 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WEBB, Elizabeth, Ann [AU/AU]; 36 Zig Zag Road, ELTHAM, Victoria 3095 (AU). SCHOOFS, Peter [AU/AU]; 5 MacBean Court, Greenvale, Victoria 3405 (AU).

toria 3000 (AU). (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA,

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

Published:

- with international search report
- with amended claims

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: EXPRESSION OF HYDROPHOBIC PROTEINS

(57) Abstract: Methods are disclosed for the design of non-native (i.e. heterologous) polypeptides comprising a proportion of hydrophobic amino acids which have an increased probability of being efficiently expressed in an expression system such as a bacterial host (e.g. E. coli). The methods involve identifying one or more hydrophobic peptide sequences within a polypeptide of interest, and arranging or re-locating at least one of the hydrophobic peptide sequences within said polypeptide so as to generate a candidate polypeptide with reduced amplitude in hydrophobicity and/or length of any hydrophobic region(s). Such methods are particularly useful for designing polyepitope polypeptides, and specific examples of such are described for Epstein-Barr virus (EBV), hepatitis C virus (HCV) and human immunodeficiency virus (HIV).

929

WO 2004/007556

5

10

15

20

25

30

OT12 7'd PCT/PTO 1.2 JAN 2005

EXPRESSION OF HYDROPHOBIC PROTEINS

Field of the Invention:

This invention relates to the expression of non-native (ie heterologous) polypeptides which comprise a proportion of hydrophobic amino acids in an expression system such as a bacterial host (eg *E. coli*). In particular, the invention provides a method for designing polyepitope polypeptides with an increased probability of being efficiently expressed (ie in amounts detectable by SDS-PAGE). One particular application of the invention relates to the production of a polyepitope polypeptide comprising cytotoxic T-cell lymphocyte (CTL) epitopes from Epstein-Barr virus (EBV) for use in a polyepitope vaccine capable of eliciting a CTL immune response for the prevention of diseases associated with EBV (eg infectious mononucleosis (IM) and nasopharyngeal carcinoma (NPC)). Other particular applications relate to the production of polyepitope polypeptides suitable for use in polyepitope vaccines for preventing and/or treating hepatitis C virus (HCV) and human immunodeficiency virus (HIV).

Background of the Invention:

In order to maximise production of recombinant polypeptides in a bacterial host (eg *E. coli*), a number of parameters can be considered including factors affecting transcription (eg promoter choice, etc) and factors affecting translation mechanisms such as minimising the use of rare codons. However, these are unlikely to have an impact on the production of recombinant polypeptides comprising stretches of hydrophobic amino acids, which have traditionally proven difficult to produce in recombinant bacterial expression systems. Indeed, in the case of polypeptides comprising transmembrane sequences, the removal of these hydrophobic sequences generally improves yields of the recombinant molecule (Frace et al, 1999; Hobman et al, 1994; Polte et al, 1991; EMBL website-protein toxicity: www.embl-heidelberg.de/ExternalInfo).

The most likely reason for problems occurring in the production of foreign polypeptides possessing regions of hydrophobicity (particularly those with non-native sequences such as fusion proteins), is the post-translational association of nascent polypeptides with chaperone proteins such as *E. coli* groEL. GroEL is involved in the refolding process of polypeptides emerging from the ribosome and proteins will recycle through the chaperone system until the correct conformation is achieved or the protein is

targeted for degradation. GroEL is known to bind hydrophobic amino acids and part of the refolding process is essentially to bury these hydrophobic sequences within the interior of the protein (Fisher and Yuan, 1994; Zahn and Pluckthun, 1994; Hayer-Hartl et al, 1994; Richarme and Kohiyama, 1994; Hendrick and Hartl, 1995; Lin et al, 1995).

Polyepitope or "polytope™" constructs (ie polypeptides comprising a tandem array of epitopes which may be contiguous or otherwise spaced apart by short intervening amino acid sequences of, for example, 1 to 5 amino acids in length), would be expected to be inherently unable to internalise any hydrophobic regions as they are not naturally-occurring sequences and lack the folding capabilities inbuilt in naturally-occurring proteins. Hence polypeptides which consist of non-native sequences, particularly those with a high proportion of hydrophobic amino acids, are likely to be sequestered in the chaperone folding pathway and ultimately targeted for degradation if a certain degree of conformational stability cannot be achieved.

10

15

. 20

25

30

Polyepitope vaccines typically comprise one or more polypeptides each made up of a tandem array of CTL epitopes. These CTL epitopes, particularly those of the HLA A2 type, often comprise predominantly hydrophobic amino acids and since HLA A2 is represented in over 40% of the human population it is mandatory that these epitopes be included in any effective polyepitope vaccine formulation.

Examples of polyepitope vaccines are described in Australian Patent No. 736336, the entire disclosure of which is to be regarded as being incorporated herein by reference. In this patent, vaccines are described which comprise a synthetic or recombinant polypeptide, or a recombinant vaccinia virus or DNA vaccine encoding same, wherein the synthetic or recombinant polypeptide typically comprises a tandem array of CTL epitopes (eg a tandem array of 2 to 10 CTL epitopes) wherein at least two of the CTL epitopes are contiguous or spaced apart by intervening sequences in which the intervening sequences do not comprise any substantial lengths of naturally occurring flanking sequences of the epitopes. Particularly described in the prior patent are vaccines comprising a polyepitope vaccinia virus encoding a polyepitope polypeptide comprising nine CTL epitopes (each CTL epitope being of 9 to 10 amino acids in length) from EBV. Standard chromium release assays conducted with this virus in a panel of target cells expressing the HLA alleles for restriction of each epitope and using autologous CTL clones specific for each epitope as effector cells, showed that each epitope could be efficiently processed from the polyepitope polypeptide since, in all cases, the CTL clones recognised and killed the HLA matched

target cell infected with the polyepitope vaccinia virus, but did not kill any of the negative controls (ie TK-vaccinia).

Further examples of polyepitope vaccines are described in International patent specification WO 01/47541, the entire disclosure of which is to be regarded as being incorporated herein by reference. In this specification, vaccines are described which comprise multiple HLA epitopes wherein the multiple HLA epitopes have been sorted so as to minimise the number of "junctional epitopes" (ie epitopes inadvertently created by the juxtaposition of two other epitopes) and wherein flanking amino acid residues are introduced wherever junctional epitopes are unavoidable.

10

15

Polyepitope vaccines may include a large number of CTL epitopes (eg 10 or more) so that the HLA diversity of the target population is covered. It has therefore been contemplated by the present applicants to produce an EBV polyepitope vaccine which includes EBV epitopes restricted by HLA A2, A3, A11, A23, A24, B7, B8, B27, B35, B44, B46, B57, B58, B60 and B62, so as to provide protection against EBV in over 90% of the human population. This would involve the incorporation of about 26 EBV CTL epitopes into a polyepitope polypeptide. For the reasons given above, it was expected that such a polypeptide would contain hydrophobic regions and that expression in a suitable host could be highly problematical.

20

25

30

The work leading to the present invention was aimed at elucidating a method or procedure for overcoming the difficulties of expressing non-native polypeptides which comprise a proportion of hydrophobic amino acids (eg polyepitope polypeptides) in a bacterial host such as E. coli. The present applicants have, as a result of that work, identified a novel method for designing candidate polyepitope polypeptides with an increased probability of being efficiently expressed in a bacterial host and/or yielding a purified polyepitope polypeptide which is soluble in aqueous solutions. The identification of this method arose out of a recognition of a need for individual epitopes to be arranged in a non-random way within a polyepitope polypeptide so that regions of hydrophobicity are distributed more evenly throughout the molecule rather than clustered in one or more particular regions. The novel method therefore involves identifying one or more hydrophobic peptide s equences within a polypeptide and arranging or re-locating at least one of the hydrophobic peptide sequence(s), so as to; (a) reduce or minimise amplitude (ie peaks) in hydrophobicity across the length of the polypeptide, and/or (b) reduce or minimise the total length of any hydrophobic region(s) within the polypeptide. To assist in the utility of this method, the present applicants have also identified an algorithm which

F C 1/15 U 2003/000710

5

10

15

20

25

30

permits any number of epitopes to be readily ordered into a polyepitope polypeptide sequence lacking or having reduced regions of relative high hydrophobicity.

Summary of the Invention:

In a first aspect, the present invention provides a method for designing a candidate polypeptide for expression in a prokaryotic or eukaryotic host, said method comprising,

identifying one or more hydrophobic peptide sequences within a polypeptide of interest, and

arranging or re-locating at least one of said hydrophobic peptide sequences within said polypeptide so as to generate said candidate polypeptide with reduced amplitude in hydrophobicity and/or length of any hydrophobic region(s).

Preferably, the polypeptide of interest is non-native to the intended host. Since the most preferred host is *E. coli*, most preferably the polypeptide is non-native to *E. coli*.

The polypeptide of interest will preferably be a non-natural polypeptide or even a theoretical non-natural polypeptide (ie a polypeptide yet to be synthesised or expressed) comprising a plurality of amino acid sequences of interest some of which may be hydrophobic or suspected to be hydrophobic, and which has been found not to be, or is suspected not to be, efficiently expressed in said host. For such a polypeptide of interest, the method of the first aspect provides the possibility of identifying one or more hydrophobic peptide sequences, if any, within the polypeptide of interest and arranging or re-locating at least one of the hydrophobic peptide sequence(s) so as to generate a candidate polypeptide with reduced amplitude in hydrophobicity and/or length of any hydrophobic region(s), and therefore an increased probability of being efficiently expressed in a suitable host.

Preferably, the polypeptide of interest may be a synthesised or theoretical polypeptiope polypeptide comprising a tandem array of epitopes of interest (eg CTL epitopes, which, as is mentioned above, often predominantly comprise hydrophobic amino acids). For such a polypeptide of interest, the method of the first aspect permits the design of candidate polypeptides comprising a large number of epitopes of interest (eg 5 to 100 or more) with an increased probability of being efficiently expressed in a suitable host, by enabling the possibility of identifying one or more hydrophobic epitopes and arranging or re-locating at least one of the hydrophobic epitope(s), so as to generate a candidate polypeptiope polypeptide with reduced amplitude in hydrophobicity and/or length of any hydrophobic region(s).

10

15

20

25

It has been found that the method of the first aspect is best applied to the design of a candidate polyepitope polypeptide in a manner which identifies and ranks the relative hydrophobicity of each of the selected epitopes (nb The epitopes of interest may be a range of epitopes from a single pathogen (eg EBV) selected to provide a polyepitope polypeptide that covers the HLA diversity of the target population. The epitopes of interest may also be one or more epitopes from a range of pathogens or the epitopes may be derived from a non-microbial source such as a tumour cell for treating or preventing cancer.), groups the ranked epitopes into three groups of substantially equivalent numbers, based upon the identified relative hydrophobicity (ie so as to produce the groups, Group 1 = most hydrophobic, Group 2 = middle hydrophobicity, and Group 3 = least hydrophobic and "residual" epitopes where the total number of epitopes (N) is not wholly divisible by 3), and then arranges the epitopes into triplets where the triplets contain an epitope from each group (ie three linked epitopes; epitope 1 - epitope 2 - epitope 3) and arranged into a candidate polyepitope polypeptide having the formula, Triplet 1 - Triplet 2 - - Triplet N/3, as follows:

	Epitope 1	Epitope 2	Epitope 3
Triplet 1 (N-terminal)	Most hydrophilic of	Most hydrophobic of	Most hydrophilic of
	Group 2	Group 1	Group 3
Triplet 2	2 nd most hydrophilic	2 nd most hydrophobic	2 nd most hydrophilic
	of Group 2	of Group 1	of Group 3
		·	
Triplet N/3 (C-	Most hydrophobic of	Most hydrophilic of	Most hydrophobic of
terminal)	Group 2	Group 1	Group 3

(Any "leftover" epitope(s) (ie least hydrophilic epitope(s) of Group 3) may be added to the C-terminal of Triplet N/3, or otherwise may be located within the candidate polyepitope polypeptide sequence so as to reduce any local peaks of hydrophobicity.)

Between the epitope triplets, or between any or all of the epitopes within a triplet, there may be intervening sequences (preferably short sequences of 1 to 10 amino acids) which may optionally be hydrophilic (eg lysine-lysine) so as to reduce any local peaks of hydrophobicity. Preferably, the epitopes within a triplet are contiguous.

Other simple methods for arranging the epitope(s) so as to minimise extremes in hydrophobicity in a polyepitope polypeptide will be readily apparent to persons skilled in the art, and are to be considered as forming part of the present invention. For example, in

20

30

one variation of the above method, and referring again to Table 1, epitope 1 would instead be selected using the stated criteria for epitope 2, epitope 2 would instead be selected using the stated criteria for epitope 3, and epitope 3 would instead be selected using the stated criteria for epitope 1. In another variation, the epitopes would be selected from four groups of ranked epitopes and consequently arranged into sets of 4 epitopes.

As mentioned above, the method of the first aspect generates a candidate polypeptide with reduced amplitude in hydrophobicity and/or length of any hydrophobic region(s). In the context of applying the method to a natural polypeptide, "reduced amplitude in hydrophobicity" is to be understood to mean that any peaks of hydrophobicity of the candidate polypeptide (ie as may be calculated/measured using Pinsoft 2 from Mimotopes Pty Ltd, Melbourne, Australia) is reduced relative to the natural polypeptide, and that "reduced length of any hydrophobic region(s)" is to be understood to mean that the length of amino acid sequence of any hydrophobic region(s) in the candidate polypeptide is/are reduced relative to the natural polypeptide. In the context of applying the method to a non-natural polypeptide (including a theoretical non-natural polypeptide), "reduced amplitude in hydrophobicity" is similarly to be understood to mean that any peaks of hydrophobicity of the candidate polypeptide (ie as may be calculated/measured using Pinsoft 2 from Mimotopes Pty Ltd) is reduced relative to the non-natural polypeptide, and that "reduced length of any hydrophobic region(s)" is to be understood to mean that the length of amino acid sequence of any hydrophobic region(s) in the candidate polypeptide is/are reduced relative to the non-natural polypeptide. In the context of applying the method to the more specific non-natural polypeptide example of a polyepitope polypeptide, "reduced amplitude in hydrophobicity" is to be understood to mean that any peaks of hydrophobicity of the candidate polypeptide (ie as may be calculated using the mathematical expression described below) is reduced relative to most of the possible random arrangements of the epitopes comprising the polyepitope polypeptide, and that "reduced length of any hydrophobic region(s)" is to be understood to mean that the length of amino acid sequence of any hydrophobic region(s) in the candidate polypeptide is/are reduced relative to most of the possible random arrangements of the epitopes within the polyepitope polypeptide.

Once a candidate polypeptide has been designed in accordance with the method of the first aspect, a polynucleotide encoding the candidate polypeptide may be synthesised according to any of the methods well known to persons skilled in the art. The encoding polynucleotide may be incorporated into, for example, vectors such as viral vectors (eg

10

15

20

25

30

vaccinia to provide a recombinant polyepitope viral vaccine) or expression vectors such as those suitable for expression in a suitable host.

Thus, in a second aspect, the present invention provides a method of expressing a polypeptide in a suitable host, said method comprising,

designing a polypeptide in accordance with the method of the first aspect,
introducing a polynucleotide encoding said polypeptide into said host, such that
said host is capable of expressing said polypeptide, and

culturing said host under conditions suitable for expression of said polypeptide.

The expressed polypeptide may be isolated by, for example, lysing the host cell and purifying the polypeptide from the produced cell lysate.

The polynucleotide introduced into the host cell may encode the polypeptide in the form of a fusion of the polypeptide with a suitable carrier protein. Alternatively, the polypeptide could be expressed and subsequently linked to or otherwise associated with a suitable carrier protein. Suitable carrier proteins are well known to persons skilled in the art and include β -galactosidase, glutathione S-transferase and the gp350 structural protein from EBV or a fragment thereof. The carrier protein may comprise additional useful epitopes. Further increases in expression benefits provided by ordering may be conferred by the carrier protein.

In a third aspect, the present invention provides a polypeptide designed in accordance with the method of the first aspect.

If desired, the polypeptide of the third aspect may be in the form of a fusion of the polypeptide with a suitable carrier protein.

In a fourth aspect, the present invention provides a polyepitope polypeptide designed in accordance with the method of the first aspect.

If desired, the polypeptide of the fourth aspect may be in the form of a fusion of the polypeptide with a suitable carrier protein.

In a fifth aspect, the present invention provides a polyepitope polypeptide comprising N epitopes, wherein N is any integer (preferably an integer in the range of 5 to 100, and more preferably, 10 to 35), said polyepitope polypeptide having the formula;

Triplet 1 - Triplet 2 - - Triplet N/3,

wherein each of said triplets comprises three linked epitopes selected by,

identifying and ranking the relative hydrophobicity of each of the N epitopes, grouping the ranked N epitopes into three groups of substantially equivalent numbers, based upon the identified relative hydrophobicity of the N epitopes, to produce a

first group (ie Group 1) comprising the most hydrophobic epitopes, a second group (ie Group 2) comprising the epitopes having a middle level of hydrophobicity, and a third group (ie Group 3) comprising the least hydrophobic epitopes, and

selecting the epitopes for each of said triplets according to the following table:

10

15

20

25

	Epitope 1	Epitope 2	Epitope 3
Triplet 1 (N-terminal)	Most hydrophilic of	Most hydrophobic of	Most hydrophilic of
	Group 2	Group 1	Group 3
Triplet 2	2 nd most hydrophilic	2 nd most hydrophobic	2 nd most hydrophilic
	of Group 2	of Group 1	of Group 3
Triplet N/3 (C-	Most hydrophobic of	Most hydrophilic of	Most hydrophobic of
terminal)	Group 2	Group 1	Group 3

Preferably, the first, second and third groups comprise identical numbers of epitopes. Where N is an integer not wholly divisible by 3 (ie an integer other than, for example, 6, 9, 12, 15, and 18), then the residual epitopes are preferably included within the third group.

At the end of the step of selecting epitopes for each of said triplets, if there is/are any leftover epitope(s) (ie least hydrophilic epitope(s) of Group 3), then this/these may be added to the C-terminal of Triplet N/3, or otherwise may be located within the candidate polyepitope polypeptide sequence so as to reduce any local peaks of hydrophobicity.

Between the epitope triplets, or between any or all of the epitopes within a triplet, there may be intervening sequences (preferably short sequences of 1 to 10 amino acids) which may optionally be hydrophilic (eg lysine-lysine) so as to reduce any local peaks of hydrophobicity, or otherwise avoid the creation of junctional epitopes. Preferably, the epitopes within a triplet are contiguous.

If desired, the polyepitope polypeptide of the fifth aspect may be in the form of a fusion of the polyepitope polypeptide with a suitable carrier protein.

In a sixth aspect, the present invention provides a polypeptide vaccine comprising a polyepitope polypeptide according to the fourth or fifth aspect and a pharmaceutically acceptable carrier and/or adjuvant.

In a seventh aspect, the present invention provides a polyepitope polypeptide comprising an amino acid sequence substantially corresponding to an amino acid sequence selected from the group consisting of:

FLRGRAYGL - PYLFWLAAI - HRCQAIRKK - RRIYDLIEL - VQPPQLTLQV-GLCTLVAML - RLRAEAQVK - IEDPPFNSL - YLLEMLWRL - GQGGSPTAM - AVLLHEESM - IALYLQQNWWTL-RAKFKQLL - SSCSSCPLSKI- TYGPVFMCL-QAKWRLQTL - RPPIFIRRL- VSFIEFVGW - YPLHEQHGM - VEITPYKPTW - CLGGLLTMV - EENLLDFVRF - TYSAGIVQI - LLDFVRFMGV - EGGVGWRHW (SEQ ID NO:1),

10

5

FLRGRAYGL - PYLFWLAAI - HRCQAIRKK - RRIYDLIEL - GLCTLVAML - RLRAEAQVK - IEDPPFNSL - TYSAGIVQI - LLDFVRFMGV - EGGVGWRHW - IALYLQQNWWTL - RAKFKQLL - SSCSSCPLSKI - TYGPVFMCL - QAKWRLQTL-RPPIFIRRL - VSFIEFVGW - YPLHEQHGM - VEITPYKPTW - CLGGLLTMV - EENLLDFVRF - YLLEMLWRL - GQGGSPTAM - AVLLHEESM - VQPPQLTLQV (SEQ ID NO:2),

15

SSCSSCPLSKI - HRCQAIRKK - CLGGLLTMV - LTAGFLIFL - RLRAEAQVK - IEDPPFNSL - LLSAWILTA - RRRWRRLTV - PYLFWLAAI - YLLEMLWRL - GQGGSPTAM - VMSNTLLSAW - ALLVLYSFA - RAKFKQLL - IALYLQQNW - TYGPVFMCL - QAKWRLQTL - YLQQNWWTL - YPLHEQHGM - CPLSKILL (SEQ ID NO:3),

20

25

IPIVAIVALV - RLRPGGKKK - ILKEPVHGV - PLVKLWYQL - RPGGKKKYKL KYKLKHIVW - TWETWWTEYW - EIKDTKEAL - KRWIILGLNK KLWVTVYYGV - KIEELRQHL - MTNNPPIPV - VTLWQRPLV - WASRELERF LLWKGEGAV - YTAFTIPSI - IYQEPFKNLK - SLYNTVATL - AIIRILQQL AIFQSSMTK - VTYQYMDDL - LVGPTPVNI - TPQDLNTML - YLAWVPAHK ALVEICTEM - TLNAWVKVV (SEO ID NO:4).

and

30

LLFNILGGWV - KTSERSQPR - FLLLADARV - LLFLLLADA - RLGVRATRK GVAGALVAFK - LPGCSFSIF - RMYVGGVEHR - VAGALVAFK - DLMGYIPLV LIFCHSKKK - ILAGYGAGV - HMWNFISGI - QLFTFSPRR - VGIYLLPNR FWAKHMWNF - YLVTRHADV - LSAFSLHSY - WMNRLIAFA - YLLPRGPRL -

10

15

20

25

30

YLVAYQATV - RLIVFPDLGV - TLGFGAYMSK - IPFYGKAI - VLVGGVLAA - CTCGSSDLY (SEQ ID NO:5).

In an eighth aspect, the present invention provides a polyepitope vaccine comprising a polyepitope polypeptide according to the seventh aspect and a pharmaceutically acceptable carrier and/or adjuvant.

Detailed Description of the Invention:

The present applicants have identified novel methods for designing a candidate polyepitope polypeptide, with an increased probability of being efficiently expressed in a prokaryotic or eukaryotic host (ie in amounts detectable by SDS-PAGE). The method involves identifying one or more hydrophobic epitope(s) and arranging or re-locating at least one of the hydrophobic epitope(s) so as to generate a candidate polyepitope polypeptide with reduced amplitude in hydrophobicity and/or length of any hydrophobic region(s).

An algorithm to calculate hydrophobicity values of amino acid sequences and subsequently arrange sequences to; (a) reduce or minimise amplitude in hydrophobicity, and/or (b) reduce or minimise the length of hydrophobic sequences, was generated and initially applied to 26 CTL epitope sequences from EBV. This resulted in the design of two initial candidate polyepitope polypeptides (designated PT26A and PT26B, described hereinafter), one of which proved to be efficiently expressed in *E. coli*. The expressed polyepitope polypeptide shows promise as the basis of an EBV vaccine for prevention or treatment of infectious mononucleosis and/or EBV-related cancers such as Burkitts lymphoma, Hodgkin's disease, non-Hodgkin's lymphoma, nasopharyngeal carcinoma, gastric adenocarcinoma, lymphomas associated with immunosupression, lymphoepithelioma-like carcinomas, and immunodeficiency-related leiomyosarcoma.

While looking for an explanation as to why the expression capabilities of *E. coli* for the two similar candidate polyepitope polypeptides were different, summations of hydrophobicity values (designated Hydrophobic Index (HI) values) were calculated for different numbers of epitopes over the length of the candidate polyepitope polypeptides to identify local areas of hydrophobicity. Summation over 3 and 4 epitopes showed that there were regions in the non-expressed polypeptide where the HI value was higher than in the expressed polypeptide. This information enabled the identification of a threshold HI value, such that polypeptide sequences which comprised a region with an HI value in

excess of the threshold value, could be predicted as being less likely of being efficiently expressed in a bacterial host.

Thus, in a preferred embodiment of the methods of the present invention for designing candidate polypeptides, the methods involve initially calculating hydrophobicity values and arranging peptide sequences to; (a) reduce or minimise amplitude in hydrophobicity, and (b) reduce or minimise the length of hydrophobic sequences; and then "fine-tuning", if necessary, by calculating the HI values over different peptide sequence groups, thus providing numerical values for comparison and prediction of the likelihood of a candidate polypeptide sequence being efficiently expressed in a bacterial host. So, in applying this preferred embodiment to the design of a candidate polypeptide polypeptide, the method involves:

- (i) Calculating the hydrophobic value for each epitope using a suitable algorithm (eg Fauschere and Pliska, 1983 contained within the software package "Pinsoft 2" from Mimotopes Pty Ltd).
- 15 (ii) Ranking the set of epitopes in order of decreasing hydrophobicity.
 - (iii) Dividing the rank ordered set of epitopes into a number of equal groups (eg three equal groups wherein group 1 = most hydrophobic, group 2 = middle hydrophobicity and group 3 = least hydrophobic (most hydrophilic)), and including any residual epitopes in the most hydrophilic group.
- 20 (iv) Creating sets (eg triplets) of epitopes by taking, in for example a case where the epitopes have been divided into three groups, the most hydrophilic epitope of group 2 (ie last in group 2), then the most hydrophobic epitope (ie number 1 in group 1) and lastly the most hydrophilic epitope (ie last in group 3) until all epitopes in groups 1 and 2 have been used (nb "Leftover" epitopes are handled as set out in step (ix) below).
- 25 (v) Arranging the sets of epitopes (eg triplets) into a sequence in the order in which they were produced (eg Triplet 1 Triplet 2 Triplet 3 etc).
 - (vi) Plotting the hydrophobicity of the arranged polyepitope polypeptide sequence using a suitable algorithm (eg Fauschere and Pliska, 1983, or Hopp and Woods, 1981).
- (vii) If necessary, reducing hydrophobic amplitude by re-locating sets of epitopes (eg 30 triplets) from areas of low hydrophobicity into areas of high peak hydrophobicity and/or by re-locating individual hydrophobic (ie group 1) epitopes from areas of peak hydrophobicity into areas of low hydrophobicity.
 - (viii) Re-calculating the hydrophobicity plots and continuing, if necessary, to shuffle sets of epitopes (eg triplets) as in step (vii) above to generate a final sequence arrangement.

- (ix) Placing any leftover epitopes (eg least hydrophilic epitopes of group 3) at the C-terminal of the final sequence arrangement or other location so as to further reduce local peaks in hydrophobicity (ie by inserting them adjacent to epitopes of peak hydrophobicity).
- (x) Placing any affinity tags (usually hydrophilic, eg a hexa-histidine sequence) at either the N- or C- terminal of the final polyepitope polypeptide sequence or at the C-terminal if the final polyepitope polypeptide sequence is to be expressed as a fusion protein.

The HI values may be calculated by using the mathematical expression:

10

15

20

25

5

$$HI_m = \Sigma \times_e$$

e=m

(where m = group number, n = group size, e = integer (epitope) number, x = epitope hydrophobicity value).

Preferably, the HI values are calculated using this mathematical expression when n=3 and n=4. In the examples provided hereinafter, this calculation predicted that to be able to express linked, random, short amino acid sequences in E coli in SDS-PAGE detectable amounts, the hydrophobic index over groups of three epitope sequences would need to be less than 1.8 (HI₃ < 1.8) and/or that over groups of four epitope sequences, the hydrophobic index would need to be less than 2.5 when x was calculated using Pinsoft 2 (Mimotopes Pty Ltd) and specifying the N-terminus as N-acetyl and the C-terminus as carboxy amide. Different cut-off values will be obtained with different hydrophobicity algorithms.

It will be readily appreciated that the calculation of HI values in this manner, would be useful for predicting whether a natural, non-bacterial polypeptide or a derivative thereof may be efficiently expressed in *E. coli*. The present invention therefore further extends to a method of predicting efficient expression of a polypeptide in a suitable host (eg a bacterial host), involving calculating HI values in accordance with the mathematical expression:

30

$$HI_m = \sum x_e$$

e=n

(where m = group number, n = group size, e = integer (epitope) number, x = epitope hydophobicity value).

15

20

25

30

The methods of the present invention permit the design of candidate polyepitope polypeptides comprising a large number of epitopes of interest (eg 5 to 100 or more) with an increased probability of being efficiently expressed in a suitable host (eg a bacterial host). The epitopes of interest may be a range of epitopes from a single pathogen selected to provide a polyepitope polypeptide that covers the HLA diversity of the target population, or the epitopes of interest may be one or more epitopes from a range of pathogens or tumour antigens. As is evident from the above, one particular application of the methods of the present invention is to the design of candidate polyepitope polypeptides comprising 26 EBV CTL epitopes for use in a vaccine to provide protection against EBV in over 90% of the human population, or for treating diseases associated with EBV such as NPC. Other particular applications of the methods of the present invention relate to the design of candidate polyepitope polypeptides suitable for use in polyepitope vaccines for preventing and/or treating HCV and HIV. Another particular application of the methods of the present invention is to the design of candidate polyepitope polypeptides comprising CTL epitopes from cytomegalovirus (CMV), for use in a vaccine to prevent or treat CMV-causative diseases.

A candidate polypeptide designed in accordance with the methods of the present invention may be expressed by firstly synthesising a polynucleotide encoding the candidate polypeptide according to any of the methods well known to persons skilled in the art, and then by introducing the polynucleotide into a suitable host. Typically, this will be achieved by cloning the polynucleotide into an expression vector and then introducing the expression vector into said host by any of the transformation methods well known to persons skilled in the art. Expression from the expression vector may result in the polypeptide being expressed as a fusion protein comprising the polypeptide and a suitable carrier protein (eg β -galactosidase, glutathione S-transferase or the gp350 structural protein from EBV or a fragment thereof). Alternatively, the polypeptide may be expressed by the host cell, and following isolation of the polypeptide, the polypeptide may be linked to or otherwise associated with a suitable carrier protein. The carrier protein may also confer additional useful properties (ie the carrier protein may comprise useful epitopes or sequences to enhance solubility, further enhance purification procedures, facilitate association with an adjuvant or to which an immune response is desirable).

It is further contemplated that candidate polypeptides designed in accordance with the methods of the present invention may be expressed in prokaryotic expression systems

15

20

25

30

other than *E. coli*. Typical alternative systems include *B. subtilis*, Salmonella sp., Streptococcus sp., Lactobacillus sp., and Streptomyces sp.

It is also contemplated that candidate polypeptides designed in accordance with the methods of the present invention may be readily expressed in whole cell lysates and nonbacterial host cells as well, and accordingly such alternative expression methods for candidate polypeptides are to be considered as forming part of the present invention. In particular, the present invention is to be considered as extending to a method of expressing a polypeptide in a non-bacterial host cell such as a mammalian cell (eg a CHO cell or COS cell line), a yeast cell (eg Saccharomyces cerevisiae) or insect cell (eg SF9 cell line), wherein the method comprises designing a polypeptide in accordance with the method of the first aspect, introducing a polynucleotide encoding the polypeptide into the host cell such that the host cell is capable of expressing the polypeptide, and culturing the host cell under conditions suitable for expression of the polypeptide. The expressed polypeptide may be isolated from the host cell culture by lysing the cells and purifying the polypeptide from the produced cell lysate, or alternatively, the polypeptide could be expressed with a suitable secretion signal such that the polypeptide is secreted into the culture medium (from where it may be purified). Designing a polyepitope polypeptide in accordance with the methods of the present invention may also overcome non-secretion problems which are sometimes experienced when a hydrophobic polypeptide is expressed with a foreign secretion signal.

Where the expressed polypeptide is of pharmacological or veterinary significance, the polypeptide may be formulated into a pharmaceutical or veterinary composition.

Generally, such compositions will comprise a pharmaceutically acceptable or veterinary acceptable carrier, and may include other substances and excipients as may be required.

Polyepitope polypeptides may be formulated into vaccine compositions. Generally, such compositions will comprise a pharmaceutically acceptable or veterinary acceptable carrier and may include adjuvants (eg an ISCOMTM adjuvant, DEAE, polysaccharides, saponins, liposomes and virus-like particles), and other substances and excipients as may be required. The vaccine compositions may also include helper epitopes/CD4 epitopes or B-cell epitopes. The vaccine compositions may be adapted for administration to a subject by, for example, intramuscular injection, nasal administration via an aerosol spray, or oral administration. Preferably, the vaccine compositions are ISCOMTM adjuvant compositions.

Polyepitope polypeptides may also be administered to a subject in the form of a viral vaccine (eg a recombinant polyepitope vaccinia or adenovirus) or DNA vaccine.

10

15

20

25

30

Thus, in a further aspect, the present invention provides a polynucleotide vaccine comprising a polynucleotide encoding a polypeptide designed in accordance with the method of the first aspect, and a pharmaceutically acceptable carrier and/or adjuvant.

Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

The term "substantially corresponding" as used herein in relation to an amino acid sequence is intended to encompass the exact amino acid sequence as well as minor variations which do not result in a substantial decrease in the biological activity of the amino acid sequence (eg variations which do not diminish the ability of an epitope to provoke a CTL immune response). These variations may include one or more conservative amino acid substitutions. The conservative amino acid substitutions envisaged are: G, A, V, I, L, M; D, E, N, Q; S, C, T; K, R, H; and P, Nα-alkylamino acids.

Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is therefore, not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the art relevant to the present invention as it existed in Australia or elsewhere before the filing or priority date of the present specification.

The invention will hereinafter be further described by way of the following nonlimiting examples and accompanying figures.

Brief Description of the accompanying Figures:

Figure 1 provides the epitope configuration and amino acid sequences for EBV-polyepitope polypeptides, PT26A and PT26B. Numbers above epitopes represent hydrophobicity values for each epitope calculated with Pinsoft 2 software, specifying an acetyl N-terminal and an amide C-terminal.

Figure 2 provides hydrophobicity plots of PT26A and PT26B. Hydrophobicity values of a moving nine amino acid window are derived using the algorithm of Fauchere and Pliska, 1983.

Figure 3 provides the amino acid sequence of the fusion of residues 21 to 447 of EBV gp350 to PT26A (A) or to PT26B (B).

10

15

20

25

30

Figure 4 shows Coomassie stained SDS-PAGE gels showing the time course of expression following induction with IPTG (+IPTG or I) of: (A) PT26A (at approximately 30kDa), (B) gp350/PT26A (at approximately 80kDa), and (C) PT26B expression. Arrows indicate the location of recombinant protein.

Figure 5 provides ELISPOT assay results of CTL responses to the five HLA A2 epitopes contained within the polyepitope polypeptides, PT26A and PT26B, under two formulation conditions: (A) $10\mu g$ gp350-PT26A, (B) $10\mu g$ gp350-PT26B, and (C) positive control peptide mix containing a mixture of each of the 5 A2 epitopes contained in the polypeptide polypeptide. Each of the epitopes is represented below by their first 3 amino acids. The CTL response of each mouse M1-M5 to each A2 epitope is presented as a bar indicating the number of IFN- γ spots produced.

Figure 6 provides the epitope configuration and amino acid sequences for an EBV polyepitope polypeptide, EBV-NPCa. Numbers above epitopes represent hydrophobicity values for each epitope calculated with Pinsoft 2 software, specifying an acetyl N-terminus and an amide C-terminus.

Figure 7 provides the epitope configuration and amino acid sequences for HIV polyepitope polypeptides, HIVa and HIVb. Numbers above epitopes represent hydrophobicity values for each epitope calculated with Pinsoft 2 software, specifying an acetyl N-terminus and an amide C-terminus. Hydrophobic Index values across 3 epitopes (n = 3) are shown below.

Figure 8 provides the epitope configuration and amino acid sequences for HCV polyepitope polypeptides, HCVa and HCVb. Numbers above epitopes represent hydrophobicity values for each epitope calculated with Pinsoft 2 software, specifying an acetyl N-terminus and an amide C-terminus. Hydrophobic Index values across 3 epitopes (n = 3) are shown below.

Figures 9 and 10 show Coomassie stained SDS-PAGE gels and also immunoblots from an expression time course of constructs HIVa, HIVb, HCVa and HCVb. Figure 9 - Panel A: 1 hour timepoint. Lane 1) Novex SeeBlue+2 MW markers; 2) Negative vector/host control; 3) HIVa uninduced; 4) HIVa induced; 5) HIVb uninduced; 6) HIVb induced; 7) HCVa uninduced; 8) HCVa induced; 9) HCVb uninduced; 10) HCVb induced. Panel B: 2 hour timepoint. Lane 1) Negative vector/host control; 2) Novex SeeBlue+2 MW markers; 3) HIVa uninduced; 4) HIVa induced; 5) HIVb uninduced; 6) HIVb induced; 7) HCVa uninduced; 8) HCVa induced; 9) HCVb uninduced. Figure 10 - Panel A: 3 hour timepoint. Lane 1) Negative vector/host control; 2) HIVa uninduced; 3) HIVa induced; 4)HIVb

10

uninduced; 5) HIVb induced; 6) Novex SeeBlue+2 MW markers; 7) HCVa uninduced; 8) HCVa induced; 9) HCVb uninduced; 10) HCVb induced. Panel B: Overnight timepoint.

Lane 1) Negative vector/host control; 2) HIVa uninduced; 3) HIVa induced; 4)HIVb uninduced; 5) HIVb induced; 6) HCVa uninduced; 7) HCVa induced; 8) HCVb uninduced; 9) HCVb induced; 10) Novex SeeBlue+2 MW markers.

Example 1: EBV polyepitope fusions as vaccine candidates.

MATERIALS AND METHODS

Epitope sequences

The 26 CTL epitopes for inclusion in an EBV vaccine, the proteins from which they originate and HLA type are shown in Table 1.

TABLE 1. CTL epitopes included in the EBV polytopes

HLA Type	EBV Protein	Epitope
A2	LMP2	CLGGLLTMV (SEQ ID NO:6)
	BMLF1	GLCTLVAML (SEQ ID NO:7)
	EBNA6	LLDFVRFMGV (SEQ ID NO:8)
	LMP1	YLLEMLWRL (SEQ ID NO:9)
	LMP1	YLQQNWWTL (SEQ ID NO:10)
A3	EBNA3	RLRAEAQVK (SEQ ID NO:11)
A11	LMP2	SSCSSCPLSKI (SEQ ID NO:12)
A23	LMP2	PYLFWLAAI (SEQ ID NO:13)
A24	LMP2A	TYGPVFMCL (SEQ ID NO:14)
	EBNA4	TYSAGIVQI (SEQ ID NO:15)
В7	EBNA3	RPPIFIRRL (SEQ ID NO:16)
В8	EBNA3	FLRGRAYGL (SEQ ID NO:17)
	EBNA3	QAKWRLQTL (SEQ ID NO:18)
	BZLF1	RAKFKQLL (SEQ ID NO:19)
B27	EBNA4	HRCQAIRKK (SEQ ID NO:20)
	EBNA6	RRIYDLIEL (SEQ ID NO:21)
B35	EBNA4	AVLLHEESM (SEQ ID NO:22)
	EBNA3	YPLHEQHGM (SEQ ID NO:23)
B44	EBNA6	EENLLDFVRF (SEQ ID NO:24)
	EBNA6	EGGVGWRHW (SEQ ID NO:25)
	EBNA4	VEITPYKPTW (SEQ ID NO:26)
B46	EBNA3	VQPPQLTLQV (SEQ ID NO:27)
B57	LMP1	IALYLQQNW (SEQ ID NO:28)
B58	EBNA4	VSFIEFVGW (SEQ ID NO:29)
B60	LMP2	IEDPPFNSL (SEQ ID NO:30)
B62	EBNA4	GQGGSPTAM (SEQ ID NO:31)

15

20

30

Design/Ordering of epitopes

The following method was used to generate ordered arrangements of CTL epitopes to produce a polyepitope sequence with favourable hydrophobicity characteristics:

- 5 (i) The hydrophobic value for each epitope was calculated using a suitable algorithm (ie Pinsoft 2 from Mimotopes Pty Ltd, specifying the N-terminus as N-acetyl and the C-terminus as carboxy amide).
 - (ii) The set of epitopes was ranked in order of decreasing hydrophobicity.
 - (iii) The rank ordered set of epitopes was divided into 3 equal groups (ie group 1 = most hydrophobic, group 2 = middle hydrophobicity and group 3 = least hydrophobic (most hydrophilic)). Residual epitopes (ie 2 epitopes left over after the set of 26 was divided by 3), were included in the most hydrophilic group.
 - (iv) Triplets of epitopes were created by taking the most hydrophilic of group 2 (ie last in group 2), then the most hydrophobic epitope (ie number 1 in group 1) and lastly the most hydrophilic (ie last in group 3). This was continued until all epitopes in groups 1 and 2 had been used (nb "Leftover" epitopes were added to the C-terminal end of the final sequence arrangement).
 - (v) The triplets were then arranged into a sequence in the order in which they were produced (ie Triplet 1 Triplet 2 Triplet 3 etc).
- 25 (vi) The hydrophobicity of this triplet arrangement was then plotted using a suitable algorithm (ie Fauschere and Pliska).
 - (vii) If and where necessary, relocating triplets from areas of low hydrophobicity into areas of high peak hydrophobicity in order to reduce hydrophobic amplitude.
 - (viii) Re-calculating the hydrophobicity plots and continuing, if necessary, to shuffle triplets as in the step (vii) above.

VY CF 400-1/00/-

5

20

25

30

- (ix) Any residual epitopes (ie least hydrophilic of group 3) can be placed C-terminally in the final sequence arrangement or can be used to further reduce local peaks in hydrophobicity by inserting them adjacent to epitopes of peak hydrophobicity, according to a hydrophobicity plot of the assembled triplets.
- (x) Any affinity tags (usually hydrophilic, eg a hexa-histidine sequence) should be located either N- or C- terminally or preferably C-terminally if the construct is a fusion protein.
- 10 (xi) Confirmation of satisfactory HI.

Using this process, EBV polyepitope configurations PT26A and PT26B were created. The example of PT26A is shown in Table 4.

15 Hydrophobic Index (HI) calculations

HI values for favourable configurations (PT26A, PT26B) were calculated according to the mathematical expression:-

e=m+n-1

$$HI_m = \Sigma x_e$$

e=m

(where m = group number, n = group size, e = integer (epitope) number, x = epitope hydophobicity value) over values of n from 2 to 5.

Preparation of recombinant proteins

DNA sequences encoding the polyepitopes (PT26A and PT26B) were generated from synthetic oligonucleotides using a Splicing by Overlap Extension technique (SOE) as described by Horton et al (1995). The codon usage was optimised for *E. coli* expression (Wada et al 1992). The polyepitopes were tagged at the C-terminus with a hexa-histidine tag for protein purification and detection. The DNA was subcloned into pET28b (Novagen) and transformed into *E. coli* BL21(DE3) cells (Novagen) for expression.

A fragment corresponding to the N-terminal region (amino acid residues 21 – 447) of EBV gp350 was amplified from plasmid DNA containing the full length gp350 sequence by PCR using the following oligonucleotides:

5' AGGGATCCCATGGAAGATCCTGGTTTTTTC 3' (forward) (SEQ ID NO:32) and

10

15

20

25

30

5' TCTAGAGGTCGACACCTGTCGTTGTATTGGG 3' (reverse) (SEQ ID NO:33). This DNA fragment was subcloned into pET28b (Novagen) containing the polyepitope insert, resulting in an in-frame fusion between gp350 and the polyepitope polypeptide. The constructs were referred to as gp350/PT26A (Figure 3A) and gp350/PT26B (Figure 3B).

For protein expression testing, transformed cells were grown in 50mg/ml Kanamycin containing L broth at 37°C until OD600 reached 2. Protein expression was induced by the addition of IPTG (0.25mM) and cells were grown for another 3 hours. Cells

were pelleted and boiled in SDS sample buffer before analysing by SDS-PAGE.

For protein purification, cells induced by IPTG were pelleted, resuspended in binding buffer (20mM Tris-HCl pH 7.9, 0.5M NaCl, 5mM imidazole) and then sonicated. Inclusion bodies were pelleted and washed in buffer. The proteins were solubilised overnight in binding buffer containing 8M urea and purified on a Ni⁺⁺-NTA column.

Preparation of ISCOM™ formulations

ISCOMATRIXTM-adjuvant was prepared by combining adjuvant components in a formulation vessel. Cholesterol, 1,2, dipalmitoyl phosphatidylcholine (DPPC), and ISCOPREPTM as a source of purified Quillaja saponins, were mixed in a weight ratio of 1:1:5 in the presence of the detergent Mega-10 (United States Patent No. 5,679,354) at a concentration of 2%. The detergent was removed by diafiltration with PBS and the formation of ISCOMATRIXTM confirmed by negative contrast electron microscopy revealing complexes including cage-like structures typically with a diameter of 40nm. ISCOMTM-adjuvanted vaccines were prepared by mixing the EBV polyepitope antigen with preformed ISCOMATRIXTM-adjuvant, which was prepared as described below: The dose strength of ISCOM-adjuvant as saponin was quantified by reverse phase HPLC assay.

ISCOM™ vaccines were prepared by gentle mixing at 22°C of an equal volume of 2x final dose strength ISCOMATRIX™ with an equal volume of 2x final dose strength EBV polyepitope antigen (gp350-PT26A and B). After 60 minutes, the formulation was subjected to extensive dialysis, in order to remove urea, at 4°C into PBS buffer pH6.2 using 12,000 molecular weight cut off dialysis membrane (Cellu Sep T3, San Antonio Texas).

Mouse immunogenicity

Dosing

10

15

20

25

30

Female HLA A2 transgenic C57Bl/6 mice (HDD) were bred at Queensland Institute of Medical Research (QIMR, Brisbane, Australia) and immunised at 5-7 weeks of age. Mice were housed in filter-topped cages in the PC3 animal facility at QIMR. Groups of 4 or 5 mice were dosed sub-cutaneously at the tail base with 0.1ml formulation. This was followed by removal of spleens at day 21 for *ex-vivo* ELISPOT assay (below).

Mice dosed sub-cutaneously, received 10µg ISCOM™-adjuvant (as saponin) and 10µg EBV polyepitope antigen. For a vaccine control group, mice were dosed subcutaneously with a peptide mixture comprising free peptides (Mimotopes Pty Ltd) formulated with tetanus toxoid and Montanide ISA 720 (SEPPIC, Paris, France) as previously described (Elliot et al, 1999). Peptide control immunisations come from two groups of mice, one group immunised with GLCTLVAML(SEQ ID NO:6)/YLLEMLWRL(SEQ ID NO:9)/LLDFVRFMGV(SEQ ID NO:8) peptide mixture and the other YLQ/CLG. A mixture of all five epitopes showed some insolubility problems.

CTL activity (ex-vivo ELISPOT)

Ex vivo ELISPOT measures/quantitates both effector and memory CTL which secrete IFNy. Peptide-specific IFNy secreting cells are enumerated by an enzyme linked immuno-spot (ELISpot) assay modified from Murali-Krishna et al. Flat bottomed 96-well microtitre plates are coated overnight with 5 ug/mL of rat anti-mouse IFNy antibody(clone RA-6A2, BD PharMingen, San Diego, California, USA). Coated plates are then blocked for 1 hour with 1% FBS in PBS, and then washed three times with PBS / 0.05% Tween 20 (PBS-T), and incubated for 1 hour at 37°C with medium comprising RPMI 1640, supplemented with 100 μg/ml streptomycin and 100 IU/ml penicillin, 10% FBS and 10.5 M 2mercaptoethanol. Mouse splenocytes were then treated with red blood cell lysis buffer, washed and resuspended to 1 x 107 cells/ml in medium, for use in the ex vivo IFNy ELISPOT assay. Splenocytes (1 x 106/well) are then placed in the first wells of the ELISpot plate and serially diluted two fold. Recombinant human IL-2 (kindly provided by Cetus Corp., Emeryville, California, USA) is then added to the plate at a final concentration of 5 IU/well together with EBV peptide (Mimotopes Pty Ltd) at a final concentration of 100 µg/ml. Media containing IL-2 without peptide is added to control wells. The final volume in each well is 100 µl. Plates are incubated at 37°C in 5% CO₂ for approximately 18 hours. After incubation, cells are lysed by rinsing the plates in H₂O and then washed twice in PBS-T. Biotinylated anti-mouse IFNy antibody clone XMG1.2 (BD Phar Mingen) is diluted 1:500

(2 μ g/ml final concentration) in PBS-T/5% FBS and added to all wells at 50 μ l/well and incubated for 2 hours at RT. Plates are then washed in PBS-T and streptavidin-alkaline phosphatase, diluted 1:400 in PBS-T/5% FBS, is added at 50 μ l per well and incubated for a further 2 hours. After washing, plates are developed by adding Sigma Fast BCIP/NBT substrate at 50 μ l/well. Plates are incubated at 37°C for approximately 20 minutes to allow colour development, and then washed with water to stop the reaction. IFNy specific spots are counted using KS ELISPOT Reader (Zeiss).

RESULTS

5

15

20

25

30

10 Epitope Fusions

26 EBV CTL epitopes were selected to provide >90% human population coverage for a vaccine formulation.

In order to link these CTL epitopes (Table 1) together and facilitate the design of a polyepitope antigen to form the basis of an EBV prophylactic vaccine, the hydrophobicity value of each epitope was calculated using Pinsoft 2 software (Table 2). Two versions of 26 epitopes were then ordered into configurations PT26A and PT26B (Figure 1), which reduced peak hydrophobicity and hydrophobic sequence length (Figure 2). When these constructs were cloned for expression in *E. coli* it was found that only one of the configurations (PT26A) was able to produce a polyepitope polypeptide (Figure 4A). PT26B was not produced (Figure 4C).

To identify a potential reason for this unexpected finding, local areas of high hydrophobicity were examined by summation of overlapping hydrophobicity values (Pinsoft 2, Mimotopes Pty Ltd) to provide a hydrophobicity index (HI) over varying numbers of peptides in a group (n). For n=2, no correlation was apparent. However, for n=3 and n=4 (Table 3), the highest HI values for the expressed sequence (PT26A) were lower (1.79 and 2.51 respectively) than the highest values obtained for the non-expressed sequence (2.02 and 2.54 respectively). For n=5, again no significant differences were seen. This would indicate that there were local areas of slightly higher hydrophobicity in PT26B than PT26A.

The above analysis can be represented by the mathematical expression:-

e=m+n-1

$$HI_m = \sum x_e$$

(where m = group number, n = group size, e = integer (epitope) number, x = epitope hydophobicity value).

5

10

15

Overall, the results with n=3 and n=4 appeared to show the most distinctive differences. This would make the prediction that to be able to express linked, random, short amino acid sequences in E. coli in SDS-PAGE detectable amounts, the hydrophobic index over groups of three epitope sequences would preferably need to be less than 1.8 (HI₃ < 1.8) and/or that over groups of four the hydrophobic index would preferably need to be less than 2.5 (HI₄ < 2.5), where x was calculated using Pinsoft 2 (Mimotopes Pty Ltd) and specifying the N-terminus as N-acetyl and the C-terminus as carboxy amide. Different cutoff values will be obtained with different hydrophobicity algorithms.

Table 4 shows the HI values over 3 peptides (n=3) for 15 random arrangements of the 26 EBV CTL epitopes that were generated and analysed by calculating the HI. This shows that all 15 random configurations contain multiple HI values which are all in the range predicted to preclude the production of a recombinant polypeptide in *E. coli* (ie HI greater than 1.8). This also shows that the arrangements made in accordance with the present methods are unlikely to be arrived at without application of the insights embodied in the present invention.

Ordering process for generation of a polyepitope polypeptide for 26* EBV CTL epitopes (PT26A). TABLE 2:

assessed using a hydrophobicity plot and scored for HI value by summing the epitope hydrophobicity values over a moving 3-mer window. If necessary, fine-tuning of the epitope order is done and the sequence reassessed. The final epitope order and amino acid sequence for the The hydrophobicity value for each epitope is calculated, then the epitopes are rank ordered, and grouped into triplets. The sequence is 26* EBV CTL epitopes and hexa-histidine affinity tag is shown below.

Sum Hyd for triplets			1.33	1.34	0.87	1.79	1.34	1.19	1.19	1.43
Hyd H H	0.38	1.02	-0.07	0.39	0.55	0.85	-0.06	0.40	0.85	0.18
		, ,		•	_		11	•)	ب
Hyd. Order after fine tuning	AYGL	LAAI	AIRKK	TET	VQPPQLTLQV	VAML	AOVK	±NST.	ILWRL	PTAM
Order a	0.38 FLRGRAYGL	1.02 PYLFWLAAI	-0.07 HRCOAIRKK	0.39 RRIYDLIEL		GLCTLVAML	RLRAEAOVK	0.85 IEDPPFNSL	YLLEMLWRL	0.43 GOGGSPTAM
	0.38	1.02	-0.07	0.39	0.85	-0.06	0.40	0.85	0.18	0.43
Grouped into triplets										
ed into	FLRGRA YGL	PYLFWLAAI	HRCOAIRKK	TEIT	GLCTLVAML	RLRAEAOVK	IEDPPFNSL	YLLEMLWRL	COCCSPTAM	0.53 · AVLLHEESM
Group		PYLF	HRCC	RRIYDLIEL	GLCT	RLRA	IEDPI	YLLEI		AVLL
Hyd	1.02	0.85	0.85	0.83	0.83	0.83	0.82	0.71	0.55	0.53
				WTL*				>		
ordered v <u>d</u>	PYLFWLAAI	GLCTLVAML	YLLEMLWRL	IALYLQQNWWTL*	TYGPVFMCL	VSFIEFVGW	CLGGLLTMV	LLDFVRFMGV	VQPPQLTLQV	TYSAGIVQI
Rank On Hy	PYLF	GIC	YLLE	IALY	TYGI	VSFI	CTC	LLDF	VQPI	TYSA
Hydropho-Rank ordered bicity (Hyd) on Hyd (Pinsoft 2)	0.82	0.85	0.71	0.85	0.83	-0.06	0.45	1.02	0.53	0.83
			_		WTL*					
		. 1	\mathcal{G}	R.	7.34 2.34	ŅΚ	SKI	\AI	Ö	¶CL
<u>PE</u>	LLTMV	LVAM	/RFM	MÎ.W]	Q̈́Ω Q̈́Ω	EAC	G	Ϋ́L,	317	Æ.
EPITOPE	CLGGLLTMV	GLCTLVAML	LLDFVRFMGV	YLLEMLWRL	IALYLQQNWWTL* (SEQ ID NO:34)	RLRAEAQVK	SSCSSCPLSKI	PYLFWLAAI	TYSAGIVQI	TYGPVFMCL
HLA EPITOPE Type	A2 CLGGLLTMV	A2 GLCTLVAM	A2 LLDFVRFM	A2 YLLEMLWI	A2/B57 IALYLQQI (SEQ ID N	A3 RLRAEAC	A11 SSCSSCPI	A23 PYLFWL	A24 TYSAGIV	A24 TYGPVFN

0.47	VEITPYKPTW	0.52	IALYLQQNWWTL⁺	0.83	AVLLHEESM	0.4 identif ying 3	1.46
0.38	RPPIFIRRL	0.47	RAKFKOLL	0.20	IALYLQQNWWTL*	0.83	1.44
0.32	SSCSSCPLSKI	0.45	SSCSSCPLSKI	0.45	RAKFKOLL	0.20	1.46
0.20	AVLLHEESM	0.43	TYGPVFMCL	0.83	SSCSSChTSKI	0.45	1.48
-0.07	IEDPPFNSL	0.40	OAKWRLOTL	0.32	TYGPVFMCL	0.83	1.48
0.39	RRYDLIEL	0.39	RPPIFIRRL	0.47	OAKWRLOTL	0.32	1.60
0.34	FLRGRA YGL	0.38	VSFIEFVGW	0.83	RPPIFIRRL	0.47	1.62
0.43 E	EGGVGWRHW	0.36	YPLHEOHGM	0.34	VSFIEFVGW	0.83	1.62
0.52 E	EENLLDFVRF	0.35	VEITPYKPTW	0.52	YPLHEOHGM	0.34	1.64
0.36 XI	YPLHEOHGM	0.34	CLGGLLTMV	0.82	VEITPYKPTW	0.52	1.69
0.35 Q	OAKWRLOTL	0.32	EENLLDFVRF	0.35	CLGGLLTMY	0.82	1.68
0.55 R	RAKFKOLL	07.70	TYSAGIVQI	0.53	EENLLDFVRF	0.35	1.69
0.83 <u>C</u>	GOGGSPTAM	0.18	LLDFVRFMGV	0.71	TYSAGIVQI	0.53	1.70
0.40	RLRAEAOVK	-0.06	EGGVGWRHW	0.36	LLDFVRFMGV	0.71	1.59
0.18	HRCOAIRKK	-0.07	VQPPQLTLQV	0.55	EGGVGWRHW	0.36	1.60
0.04 I	нинин	0.04	нининн	0.04	нннннн	0.04	1.11

(* The epitope IALYLQQNWWTL is comprised of two overlapping CTL epitopes IALYLQQNW and YLQQNWWTL that were combined for this study.)

		1.6	1.16						
		1.59	1.46				1.95	2.01	
		1.7	1.38		_		2.41	1.81	
		1.69	2.02				2.22	2.2	
		1.68	1.69				2.03	2.54	
		1.69	1.68				2.51	2.03	
		1.64	1.69				2.16	2.51	
		1.62	1.64				1.96	2.16	
		1.62	1.62				2.45	1.96	
		1.6	1.62				2.07	2.45	
		1.48	1.6				1.8	2.07	
TABLE 3:		1.48	1.48	•			2.31	1.8	
TAB		1.46	1.48		-		1.91	2.31	
		1.44	1.39				1.64	1.84	•
		1.46	1.9				2.29	2.1	
		1.43	1.6				1.86	2.43	
		1.19	1.64				1.37	8	
		1.19	0.87				2.04	1.58	
·		1.34	1.19				1.74	1.72	
		1.79	1.18				1.73	1.58	
		0.87	1.17		٠		1.72	1.11	
	(n=3)	1.34	1.34			(n=4)	1.89	2.19	
		1.33	1.33			ŗ	1.72	1.72	
	3mers	PT26A 1.33 1.34 0.87 1.79	PT26B 1.33 1.34			4mers	PT26A 1.72 1.89 1.72	PT26B	

. 17 🕶 2007/00/

Hydrophobic Index	lohqc	bic In	dex	-						TABLE	LE 4:										٠			
3mers (n=3)	; (n=	3)	• .			•																	**	>1.8
PT26B	1.33	1.34	1.17	1.18	1.19	0.87	1.64	1.6	1.9	1.39	1.48	1.48	1.6	1.62	1.62	1.64	1.69	1.68	1.69	2.02	1.38	1.46	1.16	2
PT26A 1.33	1.33	1.34	0.87	1.79	1.34	1.19	1.19	1.43	1.46	1.44	1.46	1.48	1.48	1.6	1.62	1.62	1.64	1.69	1.68	1.69	1.7	1.59	1.6	0
Random	۶																							
н	1.93	1.62	1.41	0.93	-	1.67	1.66	1.64	0.72	0.91	0.82	1.21	1.51	1.09	1.29 (0.89	1.5	74	2.42	2.25	2.05	2.03	1.85	~
7	69.0	0.64	1.54	1.65	1.75	1.31	1.39	0.88	1.51	1.81	2.58	2.41	1.94	1.75	1.24	1.69	1.49	1.98	1.58	1.44	0.81	0.91	1.55	S
ю	1.67	1.47	1.62	74	1.52	1	0.45	0.96	1.58	1.8	1.33	1.61	1.74	1.88	1.9	1.8	1.67	92.0	0.8	1.24	1,62	1.86	1.39	ıcı
4	1.86	1.5	1.71	1.28	1.36	1.19	1.17	1.56	2.05	2.52	2.15	213	1.21	1.78	1.15	1.69	0.85	0.59	0.51	1.16	1.56	1.69	1.41	נע
ro.	1.67	1.36	1.44	1.88	1.68	1.58	0.93	0.99	0.49	0.51	0.98	1.88	2,08	225	2.13	2.2	1.53	92.0	1.11	1.61	2.03	1.55	1.25	^
9	1.1	0.94	1.39	1.46	2.11	1.46	1.58	1.22	1.47	1.74	1.62	2.02	1.91	2.58	. 202	1.87	123	1.74	1.73	1.28	1.28	1.15	1.15	9
^	1.03	0.58	0.72	1.34	1.6	1.22	0.85	1.05	0.94	1.14	1.06	1.22	1.27	1.78	211 2	2.02	2.21	1.71	2.2	1.63	1.61	1.8	2.18	7
ω	1.48	1.88	1.52	2.03	1.7	1.41	1.25	0.66	0.82	0.65	1.74	1.75	1.31	0.68	1.16	1.65	1.79	1.78	2.18	1.97	1.51	1.53	1.61	4
63	2.04	1.83	1.75	1.16	1.02	1.45	1.85	N	2.01	1.56	1.74	1.74	1.76	1.17 · 1	1.19	1.15	1.53	1.39	0.98	0.82	0.56	1.48	1.82	9
6	1.24	1.15	0.71	1.62	1.69	2.13	1.68	1.57	1.29	1.24	1.72	2.02	1.85	1.74	1.42 2	2.26 1	1.91	1.81	Ξ.	1.58	1.35	1.55	0.65	9
=	0.52	0.94	0.86	1.03	Ξ	1.23	1.26	1.66	2.06	1.88	1.52	3.	1.82	2.18 2	2.37 2	2.38 1	1.48	0.85	1.17 1	1.95	6.1	9.	1.71	80
12	1.56	1.86	1.97	1.46	1.45	4.4	2.05	1.16	0.72	0.26	0.88	1.96	1.92	1.77.1	1.58 2	2.06 2	2.02	1.53	0.88 0	0.99	1.5	1.84	1.82	6
€.	0.68	0.74	1.36	1.83	1.72	1.57	0.92	4.	1.35	1.7	1,35	1.32	1.64	2	2:51 2	2.37	2.39 2	2.08	1.31	1.48	1.16	6.1	1.01	9
7	4.	1.35	1.36	1.17	1.62	2.06	1.62	1.24	1.39	1.2	0.91	0.7	0.84	1.18	1.41	1.92	2.23	2.51 2	2.09	1.62	1.14	1.53	1.88	9
15	0.52	50.	1.67	2	2.02	1.85	1.67	1.63	1.61	1.66	1.55	1.27	1.7	1.77	1.74 1	1.25 0	0.79 1	1.09	1.58	2.5 1	1.86	1.74	1.25	ιΩ

Fusions of these polyepitopes with the N-terminal 400 amino acids of a naturally-occurring EBV protein (gp350).

Provision of CD4 help has previously been shown to improve CTL induction (Thuy et al, 2001) and the EBV structural protein gp350 was identified as the preferred candidate to provide this property because it would provide cognate help. Hence the two polyepitopes, PT26A and PT26B, the latter of which was unable to be expressed in *E. coli*, were cloned onto the C-terminus of the N-terminal 400 amino acids of gp350 (Figure 3) and expressed as the fusion protein in *E. coli*. Both of these fused polypeptides were well-produced, being clearly visible on a Coomassie-stained gel above the background of *E. coli* proteins (profile for PT26A shown in Figure 4B).

CTL activity

10

25

30

Vaccination of HLA A2 transgenic mice with either gp350-PT26A-ISCOM™ vaccine or gp350-PT26B-ISCOM™ vaccine induced a CTL immune response (IFN ELISPOT) to all five A2 epitopes (Figure 5), thus indicating that all A2 epitopes were properly processed and presented to the immune system.

Example 2: EBV polyepitope fusions as nasopharyngeal carcinoma vaccine candidates.

20 MATERIALS AND METHODS

Epitope sequences

The 20 CTL epitopes for inclusion in an EBV-NPC vaccine, the proteins from which they originate and HLA type are shown in Table 5.

Design/Ordering of epitopes

An ordered arrangement of CTL epitopes to produce a polyepitope sequence with favourable hydrophobicity characteristics was generated by the method described in Example 1 (i) - (xi).

The final shuffle involved taking YPLHEQHGM (SEQ ID NO:23) from position 3 and changing with CLGGLLTMV (SEQ ID NO:16) at position 19 to reduce a high hydrophobic index (HI) which resulted from summing epitopes 18, 19 and 20.

The ordering process for this optimised EBV-NPC polyepitope (EBV-NPCa) configuration is shown in Table 6.

W U 4004/00/2

5

10

15

20

25

LC LAWOTOON COOLIN

Hydrophobic Index (HI) calculations

HI values for EBV-NCPa were calculated according to the mathematical expression:-

e=m+n-1

 $HI_m = \Sigma x_e$

e=m

(where m = group number, n = group size, e = integer (epitope) number, x = epitope hydophobicity value) over values of n from 2 to 5).

Generation of DNA constructs

The amino acid sequence of the EBV-NPC polyepitope was back translated to DNA using the Dnastar Editseq software (DNASTAR Inc, Madison, Wisconsin, USA) and codons optimised for *E. coli* expression. A C-terminal hexa-histidine tag was incorporated for purification and detection. The DNA encoding the polyepitope was generated from synthetic oligonucleotides using a Splicing by Overlap Extension technique (SOE) as described by Horton et al (1995). This was cloned into pET24b (Novagen) and the resulting construct sequenced to ensure that no errors were present (Big Dye Terminator Kit V3.1; Applied Biosystems). For expression purposes, DNA was transformed into *E. coli* BL21(DE3) cells (Novagen).

Protein Expression and Analysis

Tranformed cells were grown at 37°C in Terrific Broth containing 50mg/ml Kanamycin. At an OD600 of ~2, protein expression was induced by addition of 0.5mM IPTG and samples taken at 1 hour ,2 hours, 3 hours and overnight post-induction. Cells were pelleted, resuspended to equal densities and boiled in SDS sample buffer prior to analysing by SDS-PAGE on Novex 4-20% Tris-Glycine gels. Gels were analysed both by Coomassie Blue staining and immunoblotting. Blots were probed with Dianova anti hexahistidine monoclonal antibody.

TABLE 5: CTL epitopes included in the EBV-NPCa polyepitope

		<u></u>
HLA Type	EBV Protein	Epitope
A11 ·	LMP2	SSCSSCPLSKI (SEQ ID NO:12)
A23, A24	LMP2	PYLFWLAAI (SEQ ID NO:13)
A24	LMP2	TYGPVFMCL (SEQ ID NO:14)
A25	LMP2	VMSNTLLSAW (SEQ ID NO:36)
A2.1	LMP2	CLGGLLTMV (SEQ ID NO:6)
A2.3	LMIP2	LLSAWILTA (SEQ ID NO:37)
A2.6	LMIP2	LTAGFLIFL (SEQ ID NO:38)
B8	LMP2	CPLSKILL (SEQ ID NO:39)
B27	LMP2	RRRWRRLTV (SEQ ID NO:40)
B40	LMP2	IEDPPFNSL (SEQ ID NO:30)
A2, A68, A69	LMP1	YLLEMLWRL (SEQ ID NO:9)
A2	LMP1	YLQQNWWTL (SEQ ID NO:10)
A2	LMP1	ALLVLYSFA(SEQ ID NO:41)
B57, B58	LMP1	IALYLQQNW (SEQ ID NO:28)
A3	EBNA3	RLRAEAQVK (SEQ ID NO:11)
B8	EBNA3	QAKWRLQTL (SEQ ID NO:18)
B35	EBNA3	YPLHEQHGM (SEQ ID NO:23)
B27	EBNA4	HRCQAIRKK (SEQ ID NO:20)
B62	EBNA4	GQGGSPTAM (SEQ ID NO:31)
В8	BZLF1	RAKFKQLL (SEQ ID NO:19)

TABLE 6: Ordering process for generation of a polypepitope polypeptide for 20 EBV CTL epitopes (EBV-NPCa)

If necessary, fine-tuning of the epitope order is done and the sequence is reassessed. The final epitope order and amino acid sequence for the assessed using a hydrophobicity plot and scored for HI value by summing the epitope hydrophobicity values over a moving 3-mer window. The hydrophobicity value for each epitope is calculated, then the epitopes are rank ordered, and grouped into triplets. The sequence is Normal font; epitopes of set with mid-hydrophobicity used as the third epitope within each triplet. Italic font; most hydrophilic epitopes of the set used as the second epitope in each triplet. Bold font; most hydrophobic epitopes of the set used as the first epitope in each triplet. 20 EBV CTL epitopes and C-terminal hexa-histidine affinity tag is shown below.

Sum Hyd for triplets [HI, n=3]			1.77	1.73	1.74	1.32	1.22	1.29
Hyd	1.02	-0.07	0.82	0.98	-0.06	0.4	0.88	0.01
Order after fine tuning (epitopes 3 & 19 swapped)	SCSSCPLSKI	HRCQAIRKK	CLGGLLTMV	LTAGFLIFL	RLRAEAQVK	IEDPPFNSL	LLSAWILTA	RRRWRRLTV
Sum Hyd for triplets [HL n=3]			1.29	1.25	1.26	1.32	1.22	1.29
Hyd	1.02	-0.07	0.34	0.98	-0.06	0.4	0.88	0.01
Optimised sequence grouped into triplets	SSCSSCPLSKI	HRCQAIRKK	YPLHEQHGM	LTAGFLIFL	RLRAEAQVK	IEDPPPNSL	LLSAWILTA	RRRWRRLTV
Hyd	1.02	0.98	0.88	0.85	0.85	0.83	0.82	0.78
Rank ordered on Hyd and divided into 3 groups	SSCSSCPLSKI	LTAGFLIFL	LLSAWILTA	YLLEMLWRL	ALLVLYSFA	TYGPVFMCL	CLGGLLTMV	CPLSKILL
Hydropho- bicity (Hyd) (Pinsoft 2)	0.45	1.02	0.83	0.01	0.88	0.98	0.82	0.64
EPITOPE	PYLFWLAAI	SSCSSCPLSKI	TYGPVFMCL	RRRWRRLTV	LLSAWILTA	LTAGFLIFL	CLGGLLTMV	VMSNTLLSAW
HLA Type	A23, A24	A11	A24	B27	A2.3	A2.6	A2.1	A25

TABLE 6 continued	inued									
B40	IEDPPFNSL	0.4	YLQQNWWTL	0.71	PYLFWLAAI	0.45	1.34	PYLFWLAAI	0.45	1.34
A2, A68, A69	YLLEMLWRL	0.85	IALYLQQNW	0.67	YLLEMLWRL	. 0.85	1.31	YLLEMLWRL	0.85	1.31
A2	YLQQNWWTL	0.71	VMSNTLLSAW	0.64	GQGGSPTAM	0.18	1.48	GOGGSPTAM	0.18	1.48
A2	ALLVLYSFA	0.85	PYLFWLAAI	0.45	VMSNTLLSAW	0.64	1.67	VMSNTLLSAW	0.64	1.67
B57, B58	IALYLQQNW	0.67	IEDPPFNSL	0.4	ALLVLYSFA	0.85	1.67	ALLVLYSFA	0.85	1.67
B8	CPLSKILL	0.78	YPLHEQHGM	0.34	RAKFKQLL	0.20	1.69	RAKFKQLL	0.20	1.69
B35	YPLHEQHGM	0.34	QAKWRLQTL	0.32	IALYLQQNW	. 0.67	1.72	IALYLQQNW	29.0	1.72
B8	QAKWRLQTL	0.32	RAKFKQLL	0.20	TYGPVFMCL	0.83	1.7	TYGPVFMCL	0.83	1.70
B8	RAKFKQLL	0.20	GOGGSPTAM	0.18	QAKWRLQTL	0.32	1.82	QAKWRLQTL	0.32	1.82
B62	GQGGSPTAM	0.18	RRRWRRLTV	0.01	YLQQNWWTL	0.71	1.86	YLQQNWWTL	0.71	1.86
A3	RLRAEAQVK	-0.06	RLRABAQVK	-0.06	CLGGLLTMV	0.82	1.85	YPLHEQHGM	0.34	1.37
B27	HRCQAIRKK	-0.07	HRCQAIRKK	-0.07	CPLSKILL	0.78	2.31	CPLSKILL	0.78	1.83
			ннинин	0.04	нининн	0.04	1.16	нининн	0.04	1.16

Example 3: HIV polyepitope fusions as vaccine candidates.

MATERIALS AND METHODS

Epitope sequences

10

15

20

25

** ** & UUT/UU/

The 26 CTL epitopes for inclusion in a HIV vaccine, the proteins from which they originate and HLA type are shown in Table 7.

Design/Ordering of epitopes

An ordered arrangement of CTL epitopes to produce a polyepitope sequence with favourable hydrophobicity characteristics was generated by the method described in Example1 (i) – (xi). At the same time, five random sequences were generated and one of these (HIVb) was taken for comparison with the optimised sequence.

The ordering process for the optimised HIV polyepitope (HIVa) configuration is shown in Table 8.

Hydrophobic Index (HI) calculations

HI values for both configurations (HIVa and HIVb) were calculated according to the mathematical expression:-

e≈m+n-1

 $HI_m = \Sigma x_e$

e=m

(where m = group number, n = group size, e = integer (epitope) number, x = epitope hydophobicity value) over values of n from 2 to 5).

Generation of DNA constructs

Each polyepitope amino acid sequence was back translated to DNA using the Dnastar Editseq software and codons optimised for *E. coli* expression. C-terminal hexahistidine tags were incorporated for purification and detection. The DNA encoding the polyepitopes was generated from synthetic oligonucleotides using a Splicing by Overlap Extension technique (SOE) as described by Horton et al (1995). These were cloned into pET24b (Novagen) and the resulting constructs sequenced to ensure that no errors were present (Big Dye Terminator Kit V3.1; Applied Biosystems). For expression purposes, DNA was transformed into *E. coli* BL21(DE3) cells (Novagen).

Protein Expression and Analysis

Tranformed cells were grown at 37°C in Terrific Broth containing 50mg/ml Kanamycin. At an OD600 of ~2, protein expression was induced by addition of 0.5mM IPTG and samples taken at 1 hour, 2 hours, 3hours and overnight post-induction. Cells were pelleted, resuspended to equal densities and boiled in SDS sample buffer prior to analysing by SDS-PAGE on Novex 4-20% Tris-Glycine gels. Gels were analysed both by Coomassie Blue staining and immunoblotting. Blots were probed with Dianova anti hexahistidine monoclonal antibody.

RESULTS

10 Epitope fusions

15

20

25

26 HIV CTL epitopes were selected to provide the components of a vaccine formulation. In order to link these CTL epitopes (Table 5) together and facilitate the design of a polyepitope antigen to form the basis of a HIV vaccine, the hydrophobicity value of each epitope was calculated (as in the case of Example 1) using Pinsoft 2 software. Two versions of the 26 epitopes were then created (Figure 7), one which reduced peak hydrophobicity and hydrophobic sequence length (HIVa) and another in which the epitopes were randomly arranged (HIVb). These constructs were then assembled and cloned into *E.coli* for a comparison of their ability to produce a polyepitope polypeptide.

HIVa (optimised polyepitope)

Good expression of polyepitope polypeptide at the predicted MW of 29kDa was observed on Coomassie stained gels from the 1 hour time point and the protein was recognised by an anti hexa-histidine monoclonal antibody on the immunoblot (Figures 9 and 10). Maximum expression was reached by 1 hour post-induction. Leaky, uninduced expression was seen at each time point, gradually increasing to induced levels after overnight incubation. A potential dimer was visible only by immunoblot after overnight induction, with some higher molecular weight material also being detected at 3 hours and overnight post-induction timepoints.

HIVb (random polyepitope)

No polyepitope polypeptide was detected on the stained gel or by immunoblotting 30 (Figures 9 & 10).

DISCUSSION

Use of the above algorithm to order the 26 CTL epitopes has allowed the expression of an HIV polyepitope polypeptide in good yields. On the other hand, expression of a polyepitope sequence which was randomly ordered failed to yield any detectable product.

TABLE 7: CTL epitopes included in the HIV polytopes

HLA Type	HIV Protein	Epitope
A3	p17	RLRPGGKKK (SEQ ID NO: 42)
A*2402,A24,A23	p17	KYKLKHIVW (SEQ ID NO: 43)
B35	p17	WASRELERF (SEQ ID NO: 44)
B7,B8	p17 -	RPGGKKKYKL (SEQ ID NO: 45)
A2,A*0202,B62	p17	SLYNTVATL (SEQ ID NO: 46)
B8,B60	p17	EIKDTKEAL (SEQ ID NO: 47)
A2,A*0202	p24	TLNAWVKVV (SEQ ID NO: 48)
B7,B42,B53	p24	TPQDLNTML (SEQ ID NO: 49)
A2	p24	MTNNPPIPV (SEQ ID NO: 50)
B27	p24	KRWIILGLNK (SEQ ID NO: 51)
A28, A74	Protease	VTLWQRPLV (SEQ ID NO: 52)
A2, A*0201	Protease	LVGPTPVNI (SEQ ID NO: 53)
A2,A0201	Reverse Transcriptase	ALVEICTEM (SEQ ID NO: 54)
A2,B51	Reverse Transcriptase	YTAFTIPSI (SEQ ID NO: 55)
A3,A11	Reverse Transcriptase	AIFQSSMTK (SEQ ID NO: 56)
A2,A*0201	Reverse Transcriptase	VIYQYMDDL (SEQ ID NO: 57)
A2,B60	Reverse Transcriptase	KIEELRQHL (SEQ ID NO: 58)
A2	Reverse Transcriptase	ILKEPVHGV (SEQ ID NO: 59)
A11	Reverse Transcriptase	IYQEPFKNLK (SEQ ID NO: 60)
B44	Reverse Transcriptase	TWETWWTEYW (SEQ ID NO: 61)
A2	Reverse Transcriptase	PLVKLWYQL (SEQ ID NO: 62)
B7,A3	Reverse Transcriptase	YLAWVPAHK (SEQ ID NO: 63)
A2,A*0201	Integrase	LLWKGEGAV (SEQ ID NO: 64)
A2,A*0201	Vpr	AIIRILQQL (SEQ ID NO: 65)
B7	Vpu	IPIVAIVALV (SEQ ID NO: 66)
A2,A2.1	gp160	KLWVTVYYGV (SEQ ID NO: 67)

TABLE 8: Ordering process for generation of a polypepitope polypeptide for 26 HIV CTL epitopes (HIVa).

The hydrophobicity value for each epitope is calculated, then the epitopes are rank ordered, and grouped into triplets. The sequence is window. If necessary, fine-tuning of the epitope order is done and the sequence is reassessed. The final epitope order and amino acid assessed using a hydrophobicity plot and scored for HI value by summing the epitope hydrophobicity values over a moving 3-mer Normal font; epitopes of set with mid-hydrophobicity used as the third epitope within each triplet. sequence for the 20 EBV CTL epitopes and C-terminal hexa-histidine affinity tag is shown below. Italic font, most hydrophilic epitopes of the set used as the second epitope in each triplet. Bold font; most hydrophobic epitopes of the set used as the first epitope in each triplet.

Sum Hyd for triplets [HI, n=3]			1.16	0.98	1.08	80'1	1.04	18
. अस्य भारत				0	1	H	-	_
<u>Hyd</u>	96.0	-0.26	0.44	8.0	-0.16	0.44	0.76	-0.02
Optimised sequence	IPIVAIVALV	RLRPGGKKK	ILKEPVHGV	PLVKLWYQL	RPGGKKKYKL	KYKLKHIVW	TWETWWTEYW	EIKDTKEAI.
Hyd	0.98	. 8.0	0.76	0.71	69.0	69.0	29.0	0.61
Rank ordered on Hyd and divided into 3 groups	IPIVAIVALV	PLVKLWYQL	TWETWWTEYW	KLWVTVYYGV	VTLWQRPLV	YTAFTIPSI	AIRILQQL	LVGPTPVNI
<u>Hydropho-</u> bicity (Hyd) (Pinsoft 2)	-0.26	0.44	0.22	-0.16	0.5	-0.02	0.57	0.36
EPITOPE	RLRPGGKKK	KYKLKHIVW	WASRELERF	RPGGKKKYKL	SLYNTVATL	EIKDTKEAL	TLNAWVKVV	TPQDLNTML
HLA Type	A3	A*2402, A24, A23	B35	B7, B8	A2, A*0202, B62	B8, B60	A2, A*0202	B7, B42, B53

TABLE 8 continued	ģ						
A2	MTNNPPIPV	0.47	ALVEICTEM	0.59	KRWIILGLNK	0.45	1.19
B27	KRWIILGLNK	0.45	TLNAWVKVV	. 0.57	KLWVTVYYGV	0.71	1.14
A28, A74	VTLWQRPLV	69:0	YLAWVPAHK	. 0.57	KIEELRQHL	0.14	1.3
A2, A*0201	LVGPTPVNI	0.61	VIYQYMDDL	0.53	MTNNPPIPV	0.47	1.32
A2, A*0201	ALVEICTEM	0.59	SLYNTVATL	0.5	VTLWQRPLV	69:0	1.3
A2, B51	YTAFTIPSI	69.0	LLWKGEGAV	0.48	WASRELERF	0.22	1.38
A3, A11	AIFQSSMTK.	0.35	MTNNPPIPV	0.47	LLWKGEGAV	0.48	1.39
A2, A*0201	VIYQYMDDL	0.53	KRWIILGLNK	0.45	YTAFTIPSI	69.0	1.39
A2, B60	KIEELROHL	0.14	KYKLKHIVW	0.44	IYQEPFKNLK	0.27	1.44
A2	ILKEPVHGV	0.44	ILKEPVHGV	0.44	SLYNTVATL	0.5	1.46
A11	IYQEPFKNLK	0.27	TPQDLNTML	96.0	AIIRILQQL	29.0	1.44
B44	TWETWWTEYW	92.0	AIFQSSMTK	0.35	AIFQSSMTK	0.35	1.52
A2	PLVKLWYQL	8.0	IYQEPFKNLK	0.27	VIYQYMDDL	0.53	1.55
B7, A3	YLAWVPAHK	0.57	WASRELERF	0.22	LVGPTPVNI	0.61	1.49
A2, A*0201	LLWKGEGAV	0.48	KIBELRQHL	0.14	TPQDLNTML	0.36	1.5
A2, A*0201	AIRILQQL	29.0	EIKDTKEAL	-0.02	YLAWVPAHK	0.57	1.54
B7	IPIVAIVALV	0.98	RPGCKKKYKL	-0.16	ALVEICTEM	0.59	1.52
A2, A2.1	KLWVTVYYGV	0.71	RLRPGGKKK	-0.26	TLNAWVKVV	0.57	1.73
			нинин	0.04	ннинин	0.04	1.2

Example 4: HCV polyepitope fusions as vaccine candidates.

MATERIALS AND METHODS

Epitope sequences

The 26 CTL epitopes for inclusion in a HCV vaccine, the proteins from which they originate and HLA type are shown in Table 9.

Design/Ordering of epitopes

An ordered arrangement of CTL epitopes to produce a polyepitope sequence with favourable hydrophobicity characteristics was generated by the method described in Example1 (i) – (xi). The final shuffle involved taking CTCGSSDLY (SEQ ID NO:68) from position 3 and changing with FLLLADARV (SEQ ID NO:69) at position 26 to reduce a high hydrophobic index (HI) which resulted from summing epitopes 24, 25 and 26. At the same time, five random sequences were generated and one of these (HCVb) was taken for comparison with the optimised sequence.

The ordering process for the optimised HCV polyepitope (HCVa) configuration is shown in Table 10.

Hydrophobic Index (HI) calculations

HI values for both configurations (HCVa and HCVb) were calculated according to the mathematical expression:-

e=m+n-1

20

25

30

5

10

15

$$HI_m = \Sigma x_e$$

e=m

(where m = group number, n = group size, e = integer (epitope) number, x = epitope hydophobicity value) over values of n from 2 to 5).

Generation of DNA constructs

Each polyepitope amino acid sequence was back translated to DNA using the Dnastar Editseq software and codons optimised for *E. coli* expression. C-terminal hexahistidine tags were incorporated for purification and detection. The DNA encoding the polyepitope sequences was generated from synthetic oligonucleotides using a Splicing by Overlap Extension technique (SOE) as described by Horton et al (1995). These were cloned into pET24b (Novagen) and the resulting constructs sequenced to ensure that no errors

were present (Big Dye Terminator Kit V3.1; Applied Biosystems). For expression purposes, DNA was transformed into *E. coli* BL21(DE3) cells (Novagen).

Protein Expression and Analysis

Tranformed cells were grown at 37°C in Terrific Broth containing 50mg/ml Kanamycin. At an OD600 of ~2, protein expression was induced by addition of 0.5mM IPTG and samples taken at 1 hour, 2 hours, 3 hours and overnight post-induction. Cells were pelleted, resuspended to equal densities and boiled in SDS sample buffer prior to analysing by SDS-PAGE on Novex 4-20% Tris-Glycine gels. Gels were analysed both by Coomassie Blue staining and immunoblotting. Blots were probed with Dianova anti hexahistidine monoclonal antibody.

RESULTS

5.

10

15

20

25

30

Epitope fusions

26 HCV CTL epitopes were selected to provide the components of a vaccine formulation. In order to link these CTL epitopes (Table 7) together and facilitate the design of a polyepitope polypeptide to form the basis of a HCV vaccine, the hydrophobicity value of each epitope was calculated (as in the case of Example 1) using Pinsoft 2 software. Two versions of the 26 epitopes were then created (Figure 8), one which reduced peak hydrophobicity and hydrophobic sequence length (HCVa) and another in which the epitopes were randomly arranged (HCVb). These constructs were then assembled and cloned into *E. coli* for a comparison of their ability to produce a polyepitope polypeptide.

HCVa (optimised polyepitope)

While induced monomeric polyepitope polypeptide was not visible on Coomassie stained gels, protein of the predicted MW of 27.5kDa was detected at 2 and 3 hours post-induction when immunoblots were probed with the anti hexa-histidine antibody (Figures 9 and 10). Over time there was an increasing presence of high molecular weight products as a smear, indicating protein aggregation. After overnight induction these high molecular weight aggregates were also visible on the Coomassie stained gel (Figure 10).

HCVb (random polyepitope)

There was no detection of any induced monomeric polyepitope polypeptide either on Coomassie stained gels or by immunoblotting (Figures 9 and 10). Two faint bands were detected by immunoblotting after overnight induction, however these were at ~24 and

30kDa and were clearly not the predicted product of MW 27.5kDa. They most likely corresponded to two histidine-rich proteins of *E.coli*, rotamase (~23kDa; NCBI Accession NP_417808) and a protein of unknown function (~32kDa; NCBI Accession BAA15973). Since the former is a peptidyl-prolyl-isomerase involved in protein folding, it is perhaps not surprising that this should be overproduced in this situation.

DISCUSSION

10

11 V 40071001.

In designing a HCV polyepitope, use of the above algorithm to order the 26 CTL epitopes has allowed the polypeptide sequence to be expressed, mainly as an aggregated product. On the other hand, expression of the polyepitope sequence which was randomly ordered failed to yield any detectable product.

TABLE 9: CTL epitopes included in the HCV polytopes

HLA Type	HCV Protein	Epitope
A2	NS1/E2	FLLLADARV (SEQ ID NO: 69)
A2	NS4	YLVAYQATV (SEQ ID NO: 70)
A2	NS5	RLIVFPDLGV (SEQ ID NO: 71)
A2	CORE	DLMGYIPLV (SEQ ID NO: 72)
A2	NS4	WMNRLIAFA (SEQ ID NO: 73)
A2	NS4	VLVGGVLAA (SEQ ID NO: 74)
A2	NS4	HMWNFISGI (SEQ ID NO: 75)
A2	. NS4	ILAGYGAGV (SEQ ID NO: 76)
A2	CORE	YLLPRRGPRL (SEQ ID NO: 77)
A2	NS1/E2	LLFLLLADA (SEQ ID NO: 78)
A2	NS3	YLVTRHADV (SEQ ID NO: 79)
A3	CORE	KTSERSQPR (SEQ ID NO: 80)
A3	CORE	RLGVRATRK (SEQ ID NO: 81)
A3	ENV	QLFTFSPRR (SEQ ID NO: 82)
A3	NS1/E2	RMYVGGVEHR (SEQ ID NO: 83)
A3	NS3	LIFCHSKKK (SEQ ID NO: 84)
A3	NS4	GVAGALVAFK (SEQ ID NO: 85)
A3	NS4	VAGALVAFK (SEQ ID NO: 86)
A3	NS3	TLGFGAYMSK (SEQ ID NO: 87)
В7	CORE	LPGCSFSIF (SEQ ID NO: 88)
A1	NS5	LSAFSLHSY (SEQ ID NO: 89)
A1	NS3	CTCGSSDLY (SEQ ID NO: 68)
A24	NS4B	FWAKHMWNF (SEQ ID NO: 90)
A31	NS5	VGIYLLPNR (SEQ ID NO: 91)
A2	NS4	LLFNILGGWV (SEQ ID NO: 92)
B7	NS3	IPFYGKAI (SEQ ID NO: 93)

TABLE 10: Ordering process for generation of a polypepitope polypeptide for 26 HCV CTL epitopes (HCVa)

The hydrophobicity value for each epitope is calculated, then the epitopes are rank ordered, and grouped into triplets. The sequence is window. If necessary, fine-tuning of the epitope order is done and the sequence is reassessed. The final epitope order and amino acid assessed using a hydrophobicity plot and scored for HI value by summing the epitope hydrophobicity values over a moving 3-mer Normal font; epitopes of set with mid-hydrophobicity used as the third epitope within each triplet. sequence for the 20 EBV CTL epitopes and C-terminal hexa-histidine affinity tag is shown below. Italic font; most hydrophilic epitopes of the set used as the second epitope in each triplet. Bold font; most hydrophobic epitopes of the set used as the first epitope in each triplet.

Sum Hyd for triplets [HI, n=3]			1.25	1.21	1.44	1.30
Hyd	0.94	-0.3	0.61	6.0	-0.07	0.47
<u>Order after fine</u> <u>tuning (epitopes 3</u> <u>& 26 swapped)</u>	LLFNILGGWV	KTSERSQPR	FLLLADARV	LLFLLLADA	RLGVRATRK	GVAGALVAFK
Sum Hyd for triplets [HI,n=3]	- ,		1.08	1.04	1.27	1.30
Hyd	0.94	-0.3	0.44	6.0	-0.07	0.47
Optimised sequence grouped into triplets	LLFNILGGWV	KTSERSQPR	CICGSSDLY	LFLLLADA	RLGVRATRK	GVAGALVAFK
Hyd	0.94	6.0	0.82	0.75	0.73	0.72
Rank ordered on Hyd and divided into 3 groups	LLFNILGGWV	LLFLLLADA	LPGCSFSIF	DLMGYIPLV	HMWNFISGI	FWAKHIMWNF
Hydropho- bicity (Hyd) (Pinsoft 2)	0.61	0.58	0.67	0.75	99.0	0.67
EPITOPE	FLLLADARV	YLVAYQATV	RLIVFPDLGV	DLMGYIPLV	WMNRLIAFA	VLVGGVLAA
HLA Type	A2	A2	A2	A 2	A2	A2

															•						
	B7	A2	A31	A24	A1	Al	В7	A3	A3	Α3	A3	A3	A3	A3	. A3	A2	A2	A2	A2	A2	TABLE
	IPFYGKAI	LLFNILGGWV	VGIYLLPNR	FWAKHMWNF	CTCGSSDLY	LSAFSLHSY	LPGCSFSIF	TLGFGAYMSK	VAGALVAFK	GVAGALVAFK	LIFCHSKKK	RMYVGGVEHR	QLFTFSPRR	RLGVRATRK	KTSERSQPR	YLVTRHADV	LLFLLLADA	YLLPRRGPRL	ILAGYGAGV	HMWNFISGI	TABLE 10 continued
	0.61	0.94	0.56	0.72	0.44	0.56	0.82	0.41	0.51	0.47	0.33	0.15	0.34	-0.07	-0.3	0.34	0.9	0.35	0.55	0.73	
ннннн	KTSERSQPR	RLGVRATRK	RMYVGGVEHR	LIFCHSKKK	QLFTFSPRR .	YLVTRHADV	YLLPRRGPRL	TLGFGA YMSK	CTCGSSDLY	GVAGALVAFK	VAGALVAFK	ILAGYGAGV	VGIYLLPNR	LSAFSLHSY	YLVAYQATV	IPFYGKAI	FLLLADARV	VLVGGVLAA	RLIVFPDLGV	WMINRLIAFA	
0.04	-0.3	-0.07	0.15	0.33	0.34	0.34	0.35	0.41	0.44	0.47	0.51	0.55	0.56	0.56	0.58	0.61	0.61	0.67	0.67	0.68	
ннннн	FLLLADARV	VLVGGVLAA	IPFYGKAI	TLGFGA YMSK	RLIVFPDLGV	YLVAYQATV	YLLPRRGPRL	WMNRLIAFA	LSAFSLHSY	YLVTRHADV	FWAKHMWNF	VGIYLLPNR	QLFTFSPRR	HMWNFISGI	ILAGYGAGV	LIFCHSKKK	DLMGYIPLV	VAGALVAFK	RMYVGGVEHR	LPGCSFSIF	. •
0.04	0.61	0.67	0.61	0.41	0.67	0.58	0.35	0.68	0.56	0.34	0.72	0.56	0.34	0.73	0.55	0.33	0.75	0.51	0.15	0.82	
1.32	1.89	1.69	1.69	1.66	1.60	1.61	1.59	1.58	1.62	1.62	1.62	1.63	1.62	1.61	1.63	1.59	1.41	1.48	1.44	1.22	
нннннн	CTCGSSDLY	VLVGGVLAA	IPFYGKAI	TLGFGA YMSK	RLIVFPDLGV	YLVAYQATV	YLLPRRGPRL	WMNRLIAFA	LSAFSLHSY	YLYTRHADV	FWAKHMWNF	VGIYLLPNR .	QLFTFSPRR	HMWNFISGI	ILAGYGAGV	LIFCHSKKK	DLMGYIPLV	VAGALVAFK	RMYVGGVEHR	LPGCSFSIF	
0.04	0.44	0.67	0.61	0.41	0.67	0.58	0.35	0.68	0.56	0.34	0.72	. 0.56	0.34	0.73	0.55	0.33	0.75	0.51	0.15	0.82	
1.15	1.72	1.69	1.69	1.66	1.60	1.61	1.59	1.58	1.62	1.62	1.62	1.63	1,62	1.61	1.63	1.59	1.41	1.48	1.44	1.22	

It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

References:

Elliot S.L., Pye S., Le T. et al. Peptide based cytotoxic T-cell vaccines; Delivery of multiple epitopes, help, memory and problems. Vaccine 1999; 17:2009-2019.

5 Fauchere J.-L and Pliska V.E. (1983), Eur. J. Med. Chem. 18:369-375.

Fisher M-T, Yuan X. The rates of commitment to renaturation of rhodanese and glutamine synthetase in the presence of the groE chaperonins. J. Bio. Chem. 1994 Nov 25; 269(47): 29598-601.

10

Frace A-M, Klimov A-I, rowe T, Black R-A, Katz J-M. Modified M2 proteins produce heterotypic immunity against influenza A virus. Vaccine. 1999 May; 17(18): 2237-44.

Hayer-Hartl M-K, Ewbank J-J, Creighton T-E, Hartl F-U. Conformational specificity of the chaperonin GroEL for the compact folding intermediates of alpha-lactalbumin. EMBO J. 1994 Jul; 13(13): 3192-202.

Hendrick J-P, Hartl F-U. The role of molecular chaperones in protein folding. FASEB J. 1995 Dec; 9(15): 1559-69.

20

Hobman T-C, Seto N-O, Gillam S. Expression of soluble forms of rubella virus glycoproteins in mammalian cells. Virus-Res. 1994 Mar; 31(3): 277-89.

Hopp T.P., Woods K.R. Proc. Nat. Acad. Sci USA 1981; 78:3824-3828.

25

Horton R-M, Cai Z-L, Ho S-N, Pease L-R. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques, 1990; 528-35.

Lin Z, Schwartz F-P, Eisenstein E. The hydrophobic nature of GroEL substrate binding. J. Biol. Chem. 1995; 270(3): 1011-4.

10

Murali-Krishna K., Altman J.D., Suresh M. et al. Counting antigen specific CD8 T-cells; A re-evaluation of bystander activation during viral activation. Immunity 1998; 8:177-187.

Polte T, Newman W, Raghunathan G, Gopal TV. Structural and functional studies of full-length vascular cell adhesion molecule – 1: internal duplication and homology to several adhesion proteins. DNA Cell Biol. 1991; 10(5): 349-57

Richarme G, Kohiyama M. Amino acid specificity of the Escherichia coli chaperone GroEL (heat shock protein 60). J. Biol. Chem. 1994 Mar 11; 269(10): 7095-8.

Thuy TT Le et al. Cytotoxic T cell polyepitope vaccines delivered by ISCOMS. Vaccine 2001 19:4669-4675.

Wada K, Wada Y, Ishibashi F, Gojobori T, Ikemura T. Codon usage tabulated from the Gen

Bank genetic sequence data. Nucleic Acids Research 1992 20 Suppl:2111-8

Zahn R, Pluckthun A. Thermodynamic partitioning model for hydrophobic binding of polypeptides by GroEL. II. GroEL recognizes thermally unfolded mature beta-lactamase. J. Mol. Biol. 1994 Sep 16; 242(2): 165-74.

Claims:

20

25

1. A method for designing a candidate polypeptide for expression in a suitable host, said method comprising,

identifying one or more hydrophobic peptide sequences within a polypeptide of 5 interest, and

arranging or re-locating at least one of said hydrophobic peptide sequences within said polypeptide so as to generate said candidate polypeptide with reduced amplitude in hydrophobicity and/or length of any hydrophobic region(s).

- 2. The method of claim 1, wherein the polypeptide of interest is to be expressed in a lo bacterial host.
 - 3. The method of claim 1 or 2, wherein the bacterial host is *E. coli*.
 - 4. The method of claim 3, wherein the polypeptide is non-native to E. coli.
 - 5. The method of any one of the preceding claims, wherein the polypeptide of interest comprises a non-natural polypeptide or a theoretical non-natural polypeptide.
- 15 6. The method of claim 5, wherein the polypeptide comprises a polypeptide polypeptide comprising a tandem array of epitopes of interest.
 - 7. A method for designing a candidate polyepitope polypeptide comprising a tandem array of epitopes for expression in a suitable host, said method comprising,
 - identifying the relative hydrophobicity of each of said epitopes,

dividing said epitopes on the basis of said identified hydrophobicities into groups of substantially equivalent numbers, said groups comprising at least a first group of epitopes of most relative hydrophobicity and a second group of epitopes of least relative hydrophobicity, and

arranging epitopes from said first and second groups in a substantially alternating manner so as to generate said candidate polyepitope polypeptide with reduced amplitude in hydrophobicity and/or length of any hydrophobic region(s).

8. A method for designing a candidate polyepitope polypeptide comprising a tandem array of epitopes for expression in a suitable host, said method comprising,

identifying the relative hydrophobicity of each of said epitopes,

5

10

15

20

25

dividing said epitopes on the basis of said identified hydrophobicities into three groups of substantially equivalent numbers, said groups comprising a first group of epitopes of most hydrophobicity, a second group of epitopes of intermediate relative hydrophobicity, and a third group of epitopes of least relative hydrophobicity,

arranging epitopes from said first, second and third groups into triplets containing an epitope from each group, and

arranging said triplets in a linked sequence so as to generate said candidate polyepitope polypeptide with reduced amplitude in hydrophobicity and/or length of any hydrophobic region(s).

9. A method for designing a candidate polyepitope polypeptide comprising a tandem array of epitopes for expression in a suitable host, said method comprising,

identifying the relative hydrophobicity of each of said epitopes,

dividing said epitopes on the basis of said identified hydrophobicities into four groups of substantially equivalent numbers, said groups comprising a first group of epitopes of most hydrophobicity, a second group of epitopes of lesser relative hydrophobicity, a third group of epitopes of even lesser relative hydrophobicity, and a fourth group of least relative hydrophobicity

arranging epitopes from said first, second and third groups into quadruplets containing an epitope from each group, and

arranging said quadruplets in a linked sequence so as to generate said candidate polyepitope polypeptide with reduced amplitude in hydrophobicity and/or length of any hydrophobic region(s).

- 10. The method of any one of claims 7 to 9, wherein the polyepitope polypeptide comprises 5 to 100 epitopes.
- 11. The method of any one of claims 7 to 9, wherein the polyepitope polypeptide 30 comprises 10 to 35 epitopes.

12. The method of any one of claims 7 to 11, wherein the epitopes comprising the polyepitope polypeptide are selected from epitopes of any one of the viruses of the group consisting of Epstein-Barr virus (EBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV) and cytomegalovirus (CMV).

5

13. A method of expressing a polypeptide in a suitable host, said method comprising, designing a polypeptide in accordance with the method of any one of claims 1 to 12, introducing a polynucleotide encoding said polypeptide into said host, such that said host is capable of expressing said polypeptide, and

10 .

20

25

- culturing said bacterial host under conditions suitable for expression of said polypeptide.
- 14. A polypeptide designed in accordance with the method of any one of claims 1 to 5.
- 15. A polyepitope polypeptide designed in accordance with the method of any one of claims 1 to 12.
 - 16. A polyepitope polypeptide comprising N epitopes, wherein N is any integer, said polyepitope polypeptide having the formula;

Triplet 1 - Triplet 2 - - Triplet N/3,

wherein each of said triplets comprises three linked epitopes selected by,

identifying and ranking the relative hydrophobicity of each of the N epitopes, grouping the ranked N epitopes into three groups of substantially equivalent numbers, based upon the identified relative hydrophobicity of the N epitopes, to produce a first group comprising the epitopes of most relative hydrophobicity, a second group of epitopes of intermediate relative hydrophobicity, and a third group of epitopes of least relative hydrophobicity, and

selecting the epitopes for each of said triplets according to the following table:

15 .

25

·	Epitope 1	Epitope 2	Epitope 3
Triplet 1 (N-terminal)	Most hydrophilic of	Most hydrophobic of	Most hydrophilic of
	Group 2	Group 1	Group 3
Triplet 2	2 nd most hydrophilic	2 nd most hydrophobic	2 nd most hydrophilic
	of Group 2	of Group 1	of Group 3
Triplet N/3 (C-	Most hydrophobic of	Most hydrophilic of	Most hydrophobic of
terminal)	Group 2	Group 1	Group 3

- 17. The polyepitope polypeptide of claim 15 or 16, wherein the epitopes are contiguous or spaced apart by intervening sequences which are substantially free of sequences which naturally flank said epitopes.
- 18. A polypeptide vaccine comprising a polypeptide polypeptide according to any one of claims 14 to 17 and a pharmaceutically acceptable carrier and/or adjuvant.
- 19. A polyepitope polypeptide comprising an amino acid sequence substantially
 10 corresponding to an amino acid sequence selected from the group consisting of:

FLRGRAYGL - PYLFWLAAI - HRCQAIRKK - RRIYDLIEL - VQPPQLTLQV-GLCTLVAML - RLRAEAQVK - IEDPPFNSL - YLLEMLWRL - GQGGSPTAM - AVLLHEESM - IALYLQQNWWTL-RAKFKQLL - SSCSSCPLSKI- TYGPVFMCL-QAKWRLQTL - RPPIFIRRL- VSFIEFVGW - YPLHEQHGM - VEITPYKPTW - CLGGLLTMV - EENLLDFVRF - TYSAGIVQI - LLDFVRFMGV - EGGVGWRHW (SEQ ID NO:1),

FLRGRAYGL - PYLFWLAAI - HRCQAIRKK - RRIYDLIEL - GLCTLVAML
20 RLRAEAQVK - IEDPPFNSL -TYSAGIVQI - LLDFVRFMGV - EGGVGWRHW
IALYLQQNWWTL - RAKFKQLL - SSCSSCPLSKI - TYGPVFMCL - QAKWRLQTL
RPPIFIRRL - VSFIEFVGW - YPLHEQHGM - VEITPYKPTW - CLGGLLTMV
EENLLDFVRF - YLLEMLWRL - GQGGSPTAM - AVLLHEESM - VQPPQLTLQV

(SEQ ID NO:2),

SSCSSCPLSKI - HRCQAIRKK - CLGGLLTMV - LTAGFLIFL - RLRAEAQVK - IEDPPFNSL - LLSAWILTA - RRRWRRLTV - PYLFWLAAI - YLLEMLWRL - GQGGSPTAM - VMSNTLLSAW - ALLVLYSFA - RAKFKQLL - IALYLQQNW - TYGPVFMCL - QAKWRLQTL - YLQQNWWTL - YPLHEQHGM - CPLSKILL (SEQ ID NO:3),

IPIVAIVALV - RLRPGGKKK - ILKEPVHGV - PLVKLWYQL - RPGGKKKYKL KYKLKHIVW - TWETWWTEYW - EIKDTKEAL - KRWIILGLNK KLWVTVYYGV - KIEELRQHL - MTNNPPIPV - VTLWQRPLV - WASRELERF LLWKGEGAV - YTAFTIPSI - IYQEPFKNLK - SLYNTVATL - AIIRILQQL AIFQSSMTK - VIYQYMDDL - LVGPTPVNI - TPQDLNTML - YLAWVPAHK ALVEICTEM - TLNAWVKVV (SEQ ID NO:4),

and

15

5

10

LLFNILGGWV - KTSERSQPR - FLLLADARV - LLFLLLADA - RLGVRATRK GVAGALVAFK - LPGCSFSIF - RMYVGGVEHR - VAGALVAFK - DLMGYIPLV LIFCHSKKK - ILAGYGAGV - HMWNFISGI - QLFTFSPRR - VGIYLLPNR FWAKHMWNF - YLVTRHADV - LSAFSLHSY - WMNRLIAFA - YLLPRRGPRL YLVAYQATV - RLIVFPDLGV - TLGFGAYMSK - IPFYGKAI - VLVGGVLAA CTCGSSDLY (SEQ ID NO:5).

20

20. The polyepitope polypeptide of claim 19, wherein the polyepitope polypeptide comprises an amino acid sequence substantially corresponding to:

25

30

FLRGRAYGL - PYLFWLAAI - HRCQAIRKK - RRIYDLIEL - VQPPQLTLQV-GLCTLVAML - RLRAEAQVK - IEDPPFNSL - YLLEMLWRL - GQGGSPTAM - AVLLHEESM - IALYLQQNWWTL-RAKFKQLL - SSCSSCPLSKI- TYGPVFMCL-QAKWRLQTL - RPPIFIRRL- VSFIEFVGW - YPLHEQHGM - VEITPYKPTW - CLGGLLTMV - EENLLDFVRF - TYSAGIVQI - LLDFVRFMGV - EGGVGWRHW (SEQ ID NO:1).

21. The polyepitope polypeptide of claim 19, wherein the polyepitope polypeptide comprises an amino acid sequence substantially corresponding to:

FLRGRAYGL - PYLFWLAAI - HRCQAIRKK - RRIYDLIEL - GLCTLVAML
RLRAEAQVK - IEDPPFNSL - TYSAGIVQI - LLDFVRFMGV - EGGVGWRHW
IALYLQQNWWTL - RAKFKQLL - SSCSSCPLSKI - TYGPVFMCL - QAKWRLQTL
RPPIFIRRL - VSFIEFVGW - YPLHEQHGM - VEITPYKPTW - CLGGLLTMV
EENLLDFVRF - YLLEMLWRL - GQGGSPTAM - AVLLHEESM - VQPPQLTLQV

(SEQ ID NO:2).

10

22. The polyepitope polypeptide of claim 19, wherein the polyepitope polypeptide comprises an amino acid sequence substantially corresponding to:

SSCSSCPLSKI – HRCQAIRKK – CLGGLLTMV – LTAGFLIFL – RLRAEAQVK –

IEDPPFNSL – LLSAWILTA – RRRWRRLTV - PYLFWLAAI – YLLEMLWRL –

GQGGSPTAM – VMSNTLLSAW – ALLVLYSFA – RAKFKQLL – IALYLQQNW –

TYGPVFMCL - QAKWRLQTL – YLQQNWWTL – YPLHEQHGM – CPLSKILL

(SEQ ID NO:3).

20 23. The polyepitope polypeptide of claim 19, wherein the polyepitope polypeptide comprises an amino acid sequence substantially corresponding to:

IPIVAIVALV - RLRPGGKKK - ILKEPVHGV - PLVKLWYQL - RPGGKKKYKL -

- KYKLKHIVW TWETWWTEYW EIKDTKEAL KRWIILGLNK
 KLWVTVYYGV KIEELRQHL MTNNPPIPV VTLWQRPLV WASRELERF –

 LLWKGEGAV YTAFTIPSI IYQEPFKNLK SLYNTVATL AIIRILQQL –

 AIFQSSMTK VIYQYMDDL LVGPTPVNI TPQDLNTML YLAWVPAHK –

 ALVEICTEM TLNAWVKVV (SEQ ID NO:4).
- 30 24. The polyepitope polypeptide of claim 19, wherein the polyepitope polypeptide comprises an amino acid sequence substantially corresponding to:

LLFNILGGWV - KTSERSQPR - FLLLADARV - LLFLLLADA - RLGVRATRK GVAGALVAFK - LPGCSFSIF - RMYVGGVEHR - VAGALVAFK - DLMGYIPLV LIFCHSKKK - ILAGYGAGV - HMWNFISGI - QLFTFSPRR - VGIYLLPNR FWAKHMWNF - YLVTRHADV - LSAFSLHSY - WMNRLIAFA - YLLPRRGPRL YLVAYQATV - RLFVFPDLGV - TLGFGAYMSK - IPFYGKAI - VLVGGVLAA CTCGSSDLY (SEQ ID NO:5).

- 25. A polypeptide vaccine comprising a polypeptide according to any one of claims 19 to 24 and a pharmaceutically acceptable carrier and/or adjuvant.
- 10 26. A viral or DNA vaccine comprising a polynucleotide encoding a polypeptide designed in accordance with the method of any one of claims 1 to 12 and a pharmaceutically acceptable carrier and/or adjuvant.
- 27. A viral or DNA vaccine comprising a polynucleotide encoding a polypeptide
 according to any one of claims 19 to 24 and a pharmaceutically acceptable carrier and/or adjuvant.

10

15

20

25

AMENDED CLAIMS

[(received by the International Bureau on 12 November 2003 (12.11.03); original claim 13 amended; remaining claims unchanged (1 page)]

- 12. The method of any one of claims 7 to 11, wherein the epitopes comprising the polyepitope polypeptide are selected from epitopes of any one of the viruses of the group consisting of Epstein-Barr virus (EBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV) and cytomegalovirus (CMV).
- 13. A method of expressing a polypeptide in a suitable host, said method comprising, designing a polypeptide in accordance with the method of any one of claims 1 to 12, introducing a polynucleotide encoding said polypeptide into said host, such that said host is capable of expressing said polypeptide, and
- culturing said host under conditions suitable for expression of said polypeptide.
- 14. A polypeptide designed in accordance with the method of any one of claims 1 to 5.
- 15. A polyepitope polypeptide designed in accordance with the method of any one of claims 1 to 12.
- 16. A polyepitope polypeptide comprising N epitopes, wherein N is any integer, said polyepitope polypeptide having the formula;

 $\label{eq:Triplet 2-...} Triplet 1 - Triplet 2 - - Triplet N/3,$ wherein each of said triplets comprises three linked cpitopes selected by,

identifying and ranking the relative hydrophobicity of each of the N epitopes, grouping the ranked N epitopes into three groups of substantially equivalent numbers, based upon the identified relative hydrophobicity of the N epitopes, to produce a first group comprising the epitopes of most relative hydrophobicity, a second group of epitopes of intermediate relative hydrophobicity, and a third group of epitopes of least relative hydrophobicity, and

selecting the epitopes for each of said triplets according to the following table:

AMENDED SHEET (ARTICLE 19)

1/28

Sequence Listing:

<110			al R			Coun	CIT (or t	ne Q	ueen	sıan	a ın	stit	ute	oi
<120 <130 <150 <150 <160 <170	0> 1 0> 2 0> 2 1> 2 0> 3	Expr 1345 AU20 2002	essi	on o: 0183 12	f hy		hobi	c pro	otei.	ns					
<21: <21: <21: <24:0	1> 2 2> 1 3> 6	l 233 PRT epsto l	ein-l	barr	vir	us (i	EBV)								
Phe 1	Leu	Arg	Gly	Arg 5	Ala	Tyr	Gly	Leu	Pro 10	Tyr	Leu	Phe	Trp	Leu 15	Ala
Ala	Ile	His	Arg 20	Cys	Gln	Ala	Ile	Arg 25	Lys	Lys	Arg	Arg	Ile 30	Tyr	Ası
Leu	Ile	Glu 35	Leu	Val	Gln	Pro	Pro 40	Gln	Leu	Thr	Leu	Gln 45	Val	Gly	Let
Сув	Thr 50	Leu	Val	Ala	Met	Leu 55	Arg	Leu	Arg	Ala	Glu 60	Ala	Gln	Val	Lys
Ile 65	Glu	Asp	Pro	Pro	Phe 70	Asn	Ser	Leu	Tyr	Leu 75	Leu	Glu	Met	Leu	Tri 80
Arg	Leu	Gly	Gln	Gly 85	Gly	Ser	Pro	Thr	Ala 90	Met	Ala	Val	Leu	Leu 95	His
Glu	Glu	Ser	Met 100	Ile	Ala	Leu	Tyr	Leu 105	Gln	Gln	Asn	Trp	Trp 110	Thr	Let
Arg	Ala	Lys 115	Phe	Lys	Gln	Leu	Leu 120	Ser	Ser	Cys	Ser	Ser 125	Cys	Pro	Let
Ser	Lys 130		Thr	Tyr	Gly	Pro 135	Val	Phe	Met	Cys	Leu 140	Gln	Ala	Lys	Tr
Arg 145	Leu	Gln	Thr	Leu	Arg 150	Pro	Pro	Ile	Phe	Ile 155		Arg	Leu	Val	Ser 160
Phe	Ile	Glu	Phe	Val 165	Gly	Trp	Tyr	Pro	Leu 170	His	Glu	Gln	His	Gly 175	Met
Val	Glu	Ile	Thr 180	Pro	Tyr	Lys	Pro	Thr 185	Trp	Cys	Leu	Gly	Gly 190	Leu	Leu
Thr	Met	Val 195	Glu	Glu	Asn	Leu	Leu 200	Asp	Phe	Val	Arg	Phe 205	Thr	Tyr	Ser
Ala	Gly 210	Ile	Val	Gln	Ile	Leu 215	Leu	Asp	Phe	Val	Arg 220	Phe	Met	Gly	Val
Glu	Gly	Gly	Val	Gly	Trp	Arg	His	Trp							

230 225 <210> 2 233 <211> <212> PRT <213> epstein-barr virus (EBV) Phe Leu Arg Gly Arg Ala Tyr Gly Leu Pro Tyr Leu Phe Trp Leu Ala Ala Ile His Arg Cys Gln Ala Ile Arg Lys Lys Arg Arg Ile Tyr Asp Leu Ile Glu Leu Gly Leu Cys Thr Leu Val Ala Met Leu Arg Leu Arg Ala Glu Ala Gln Val Lys Ile Glu Asp Pro Pro Phe Asn Ser Leu Thr Tyr Ser Ala Gly Ile Val Gln Ile Leu Leu Asp Phe Val Arg Phe Met Gly Val Glu Gly Gly Val Gly Trp Arg His Trp Ile Ala Leu Tyr Leu Gln Gln Asn Trp Trp Thr Leu Arg Ala Lys Phe Lys Gln Leu Leu Ser 105 Ser Cys Ser Ser Cys Pro Leu Ser Lys Ile Thr Tyr Gly Pro Val Phe Met Cys Leu Gln Ala Lys Trp Arg Leu Gln Thr Leu Arg Pro Pro Ile Phe Ile Arg Arg Leu Val Ser Phe Ile Glu Phe Val Gly Trp Tyr Pro Leu His Glu Gln His Gly Met Val Glu Ile Thr Pro Tyr Lys Pro Thr Trp Cys Leu Gly Gly Leu Leu Thr Met Val Glu Glu Asn Leu Leu Asp Phe Val Arg Phe Tyr Leu Leu Glu Met Leu Trp Arg Leu Gly Gln Gly Gly Ser Pro Thr Ala Met Ala Val Leu Leu His Glu Glu Ser Met Val 215 220 Gln Pro Pro Gln Leu Thr Leu Gln Val

<210> 3

<211> 181

<212> PRT

<213> epstein-barr virus (EBV)

<400> 3

Ser Ser Cys Ser Ser Cys Pro Leu Ser Lys Ile His Arg Cys Gln Ala

1				5					10					15	
Ile	e Arg	J Ly:	s Ly: 20	s Cy	s Lei	u Gl	y Gl	y Let 25	u Lei	u Th	r Me	ț Va	l Le 30	u Th	r Ala
ĠΪλ	Phe	Let 35	u Ile	e Phe	e Lei	ı Arç	g Le	u Arq	g Ala	a Glu	ı Ala	a Gl: 45	n Va	l Ly:	s Ile
Glu	Asr 50	Pro	Pro	o Phe	e Ası	55	r Lei	u Lei	ı Leı	ı Sei	Ala 60	a Trj	o Il	e Lei	ı Thr
Ala 65	Arg	Arg	y Arg	Tr	Arg 70	y Arg	J Lei	ı Thi	Va]	l Pro 75	тут	. Le	ı Phe	e Trp	Leu 80
Ala	. Ala	Ile	э Туг	2 Let 85	ı Lev	Glu	1 Met	Lev	Trp 90	Arg	Leu	Gl ₂	/ Glr	n Gly 95	/ Gly
Ser	Pro	Thr	100	Met	: Val	Met	Ser	Asn 105	Thr	Leu	. Leu	Sex	Ala 110		Ala
Leu	Leu	Val 115	Leu	туг	Ser	Phe	Ala 120	Arg	Ala	Lys	Phe	Lys 125	Glr	1 Leu	Leu
Ile	Ala 130	Leu	Тут	Leu	Gln	Gln 135	Asn	Trp	Thr	Tyr	Gly 140	Pro	Val	Phe	Met
Cys 145	Leu	Gln	Ala	Lys	Trp 150	Arg	Leu	Gln	Thr	Leu 155	Туг	Leu	Gln	Gln	Asn 160
Trp	Trp	Thr	Leu	Tyr 165	Pro	Leu	His	Glu	Gln 170	His	Gly	Met	Cys	Pro 175	Leu
Ser	Lys	Ile	Leu 180	Leu								•			
<210> 4 <211> 240 <212> PRT <213> Human immunodeficiency virus <400> 4															
Ile 1	Pro	Ile	Val	Ala 5	Ile	Val	Ala	Leu	Val 10	Arg	Leu	Arg	Pro	Gly 15	Gly
Lys	Lys	Lys	Ile 20	Leu	Lys	Glu	Pro	Val 25	His	Gly	Val	Pro	Leu 30	Val	Lys
Leu	Trp	Tyr 35	Gln	Leu	Arg	Pro	Gly 40	Gly	Lys	Lys	Lys	Tyr 45	Lys	Leu	Lys
Tyr	Lys 50	Leu	Lys	His	Ile	Val 55	Trp	Thr	Trp	Glu	Thr 60	Trp	Trp	Thr	Glu
Tyr 55	Trp	Glu	Ile	Lys	Asp 70	Thr	Lys	Glu	Ala	Leu 75	Lys	Arg	Trp	Ile	Ile 80
Leu	Gly	Leu	Asn	Lys 85	Lys	Leu	Trp	Val	Thr 90	Val	Tyr	Tyr	Gly	Val 95	Lys
[le	Glu	Glu	Leu	Ara	Gln	His	T.A11	Mot	Mb	7	3	n	_		_

100 105 Val Val Thr Leu Trp Gln Arg Pro Leu Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Leu Leu Trp Lys Gly Glu Gly Ala Val Tyr Thr Ala Phe Thr Ile Pro Ser Ile Ile Tyr Gln Glu Pro Phe Lys Asn Leu Lys Ser Leu Tyr Asn Thr Val Ala Thr Leu Ala Ile Ile Arg Ile Leu Gln Gln Leu Ala Ile Phe Gln Ser Ser Met Thr Lys Val Ile Tyr Gln Tyr Met Asp Asp Leu Leu Val Gly Pro Thr Pro Val Asn Ile Thr Pro Gln Asp Leu Asn Thr Met Leu Tyr Leu Ala Trp Val Pro Ala His Lys Ala Leu 215 Val Glu Ile Cys Thr Glu Met Thr Leu Asn Ala Trp Val Lys Val Val <210> 239 <211> <212> PRT <213> Hepatitis C virus Leu Leu Phe Asn Ile Leu Gly Gly Trp Val Lys Thr Ser Glu Arg Ser Gln Pro Arg Phe Leu Leu Ala Asp Ala Arg Val Leu Leu Phe Leu Leu Leu Ala Asp Ala Arg Leu Gly Val Arg Ala Thr Arg Lys Gly Val Ala Gly Ala Leu Val Ala Phe Lys Leu Pro Gly Cys Ser Phe Ser Ile Phe Arg Met Tyr Val Gly Gly Val Glu His Arg Val Ala Gly Ala Leu Val Ala Phe Lys Asp Leu Met Gly Tyr Ile Pro Leu Val Leu Ile Phe Cys His Ser Lys Lys Lys Ile Leu Ala Gly Tyr Gly Ala Gly Val His Met Trp Asn Phe Ile Ser Gly Ile Gln Leu Phe Thr Phe Ser Pro Arg

Arg Val Gly Ile Tyr Leu Leu Pro Asn Arg Phe Trp Ala Lys His Met

Trp Asn Phe Tyr Leu Val Thr Arg His Ala Asp Val Leu Ser Ala Phe

5/28

155

150

```
160
Ser Leu His Ser Tyr Trp Met Asn Arg Leu Ile Ala Phe Ala Tyr Leu
                                     170
Leu Pro Arg Arg Gly Pro Arg Leu Tyr Leu Val Ala Tyr Gln Ala Thr
                                 185
Val Arg Leu Ile Val Phe Pro Asp Leu Gly Val Thr Leu Gly Phe Gly
        195
                             200
Ala Tyr Met Ser Lys Ile Pro Phe Tyr Gly Lys Ala Ile Val Leu Val
                        215
Gly Gly Val Leu Ala Ala Cys Thr Cys Gly Ser Ser Asp Leu Tyr
<210>
       6
       9
<211>
<212>
       PRT
<213>
       epstein-barr virus (EBV)
<400>
Cys Leu Gly Gly Leu Leu Thr Met Val
<210>
       7
<211> 9
<212> PRT
<213>
      epstein-barr virus (EBV)
Gly Leu Cys Thr Leu Val Ala Met Leu
<210> 8
<211>
       10
<212>
      PRT
<213>
      epstein-barr virus (EBV)
Leu Leu Asp Phe Val Arg Phe Met Gly Val
                5
                                    10
<210> 9
       9
<211>
<212>
       PRT
<213>
       epstein-barr virus (EBV)
<400>
Tyr Leu Leu Glu Met Leu Trp Arg Leu
<210>
       10
<211>
       9
<212>
       PRT
<213>
       epstein-barr virus (EBV)
<400>
       10
```

Tyr Leu Gln Gln Asn Trp Trp Thr Leu

```
5
<210> 11
       9
<211>
<212> PRT
<213> epstein-barr virus (EBV)
<400> 11
Arg Leu Arg Ala Glu Ala Gln Val Lys
<210> 12
<211> 11
<212> PRT
<213> epstein-barr virus (EBV)
<400> 12
Ser Ser Cys Ser Ser Cys Pro Leu Ser Lys Ile
                   5
<210> 13
<211> 9
<212> PRT
<213> epstein-barr virus (EBV)
<400> 13
Pro Tyr Leu Phe Trp Leu Ala Ala Ile
                   5
 <210> 14
 <211> 9
<212> PRT
<213> epstein-barr virus (EBV)
<400> 14
 Thr Tyr Gly Pro Val Phe Met Cys Leu
                   5
 <210> 15
<211> 9
 <212> PRT
 <213> epstein-barr virus (EBV) <400> 15
 Thr Tyr Ser Ala Gly Ile Val Gln Ile
 <210> 16
<211> 9
 <212> PRT
 <213> epstein-barr virus (EBV) <400> 16
 Arg Pro Pro Ile Phe Ile Arg Arg Leu
 <210> 17
<211> 9
<212> PRT
```

```
.<400> 17
Phe Leu Arg Gly Arg Ala Tyr Gly Leu
                5
<210> 18
<211>
       9
       PRT
<212>
<213> epstein-barr virus (EBV)
<400> 18
Gln Ala Lys Trp Arg Leu Gln Thr Leu
                5 (
<210> 19
<211>
      8
<212> PRT
<213> epstein-barr virus (EBV) <400> .19
Arg Ala Lys Phe Lys Gln Leu Leu
<210> 20
<211>
<212> PRT
<213> epstein-barr virus (EBV) <400> 20
His Arg Cys Gln Ala Ile Arg Lys Lys
                5
<210> 21
<211>
<212> PRT
<213> epstein-barr virus (EBV) <400> 21
Arg Arg Ile Tyr Asp Leu Ile Glu Leu
                5
1
<210>
       22
       9
<211>
<212> PRT
<213> epstein-barr virus (EBV)
<400> 22
Ala Val Leu Leu His Glu Glu Ser Met
<210>
       23
<211>
       9
<212> PRT
<213> epstein-barr virus (EBV)
Tyr Pro Leu His Glu Gln His Gly Met
```

<213> epstein-barr virus (EBV)

```
<210> 24
<211> 10
 <212> PRT
 <213> epstein-barr virus (EBV)
 <400> 24
 Glu Glu Asn Leu Leu Asp Phe Val Arg Phe
 <210> 25
 <211> 9
<212> PRT
 <213> epstein-barr virus (EBV) <400> 25
 Glu Gly Gly Val Gly Trp Arg His Trp
 <210> 26
 <211> 10
 <212> PRT
<213> epstein-barr virus (EBV)
<400> 26
  Val Glu Ile Thr Pro Tyr Lys Pro Thr Trp
 <210> 27
  <211> 10
 <212> PRT
  <213> epstein-barr virus (EBV) <400> 27
  Val Gln Pro Pro Gln Leu Thr Leu Gln Val
  <210> 28
  <211> 9
  <212> . PRT
  <213> epstein-barr virus (EBV) <400> 28
  Ile Ala Leu Tyr Leu Gln Gln Asn Trp
  <210> 29
  <211> 9
  <212> PRT
  <213> epstein-barr virus (EBV)
<400> 29
  Val Ser Phe Ile Glu Phe Val Gly Trp
 <210> 30
<211> 9
<212> PRT
<213> epstein-barr virus (EBV) <400> 30
```

```
Ile Glu Asp Pro Pro Phe Asn Ser Leu
<210> 31
<211>
<212> PRT
<213> epstein-barr virus (EBV) <400> 31
Gly Gln Gly Gly Ser Pro Thr Ala Met
<210>
       32
<211>
       30
<212>
       DNA
<213>
       epstein-barr virus (EBV)
<400>
       32
agggatccca tggaagatcc tggtttttc 30
<210>
       33
<211>
       31
<212>
       DNA
<213>
       epstein-barr virus (EBV)
<400>
       33
tctagaggtc gacacctgtc gttgtattgg g 31
<210>
       34
<211>
       12
       PRT
<212>
<213>
       epstein-barr virus (EBV)
<400>
      34
Ile Ala Leu Tyr Leu Gln Gln Asn Trp Trp Thr Leu
                                     10
<210>
       35
<211>
       6
<212>
       PRT
<213>
       Hexa-histidine tag
<400>
      35
His His His His His
1
                5
<210>
       36
<211>
       10
<212>
       PRT
<213>
       epstein-barr virus (EBV)
<400>
       36
Val Met Ser Asn Thr Leu Leu Ser Ala Trp
<210>
       37
<211>
       9
<212> PRT
```

```
<213> epstein-barr virus (EBV)
<400> 37
Leu Leu Ser Ala Trp Ile Leu Thr Ala
<210>
<211> 9
<212> PRT
<213> epstein-barr virus (EBV) <400> 38
Leu Thr Ala Gly Phe Leu Ile Phe Leu
<210> 39
<211> 8
<212> PRT
<213> epstein-barr virus (EBV) <400> 39
Cys Pro Leu Ser Lys Ile Leu Leu
<210> 40
<211> 9
<212> PRT
<213> epstein-barr virus (EBV) <400> 40
Arg Arg Arg Trp Arg Arg Leu Thr Val
<210> 41
<211> 9
<211> 9
<212> PRT
<213> epstein-barr virus (EBV)
<400> 41
Ala Leu Leu Val Leu Tyr Ser Phe Ala
                  5
<210> 42.
<211> 9
<212> PRT
<213> Human immunodeficiency virus
<400> 42
Arg Leu Arg Pro Gly Gly Lys Lys
<210> 43
<211> 9
<212> PRT
<213> Human immunodeficiency virus
<400> 43
Lys Tyr Lys Leu Lys His Ile Val Trp
```

```
<210>. 44
<211> 9
<212> PRT
<213> Human immunodeficiency virus <400> 44
Trp Ala Ser Arg Glu Leu Glu Arg Phe
<210>
      45
      10
<211>
<212> PRT
<213> Human immunodeficiency virus
<400> 45
Arg Pro Gly Gly Lys Lys Lys Tyr Lys Leu .
<210>
      46
       9
<211>
<212>
      PRT
<213> Human immunodeficiency virus
<400> 46
Ser Leu Tyr Asn Thr Val Ala Thr Leu
                5
<210> 47
<211> 9
<212> PRT
<213> Human immunodeficiency virus
<400> 47
Glu Ile Lys Asp Thr Lys Glu Ala Leu
<210> 48
<211>
       9
<212> PRT
<213> Human immunodeficiency virus
<400> 48
Thr Leu Asn Ala Trp Val Lys Val Val
<210> 49
       9
<211>
       PRT
<212>
<213> Human immunodeficiency virus
<400> 49
Thr Pro Gln Asp Leu Asn Thr Met Leu
<210> 50
<211>
       9
<212>
      PRT
       Human immunodeficiency virus
<213>
<400>
```

```
Met Thr Asn Asn Pro Pro Ile Pro Val
<210> 51
-211> 10
<211>
      10
<212> PRT
<213> Human immunodeficiency virus
<400> 51
Lys Arg Trp Ile Ile Leu Gly Leu Asn Lys
<210>
      52
      9
<211>
      PRT
<212>
<213> Human immunodeficiency virus
<400> 52
Val Thr Leu Trp Gln Arg Pro Leu Val
<210>
      53
<211>
      9
      PRT
<212>
<213> Human immunodeficiency virus <400> 53
Leu Val Gly Pro Thr Pro Val Asn Ile
<210>
      54
<211>
<212> PRT
<213> Human immunodeficiency virus
<400> 54
Ala Leu Val Glu Ile Cys Thr Glu Met
<210>
      55
      9
<211>
<212>
      PRT
<213> Human immunodeficiency virus
<400> 55
Tyr Thr Ala Phe Thr Ile Pro Ser Ile
<210>
      56
      9
<211>
      PRT
<212>
<213>
      Human immunodeficiency virus
<400> 56
Ala Ile Phe Gln Ser Ser Met Thr Lys
<210> 57
<211> 9
<212> PRT
```

```
<213> Human immunodeficiency virus <400> 57
Val Ile Tyr Gln Tyr Met Asp Asp Leu
<210> 58
<211> 9
<212> PRT
<213> Human immunodeficiency virus
<400> 58
Lys Ile Glu Glu Leu Arg Gln His Leu
<210> 59
<211> 9
<212> PRT
<213> Human immunodeficiency virus
<400> 59
Ile Leu Lys Glu Pro Val His Gly Val
<210> 60
<211>
       10
<212> PRT
<213> Human immunodeficiency virus
<400> 60
Ile Tyr Gln Glu Pro Phe Lys Asn Leu Lys
<210> 61
<211>
       10
<212>
       PRT
<213> Human immunodeficiency virus
Thr Trp Glu Thr Trp Trp Thr Glu Tyr Trp
1
<210> 62
<211> 9
<212> PRT
<213> Human immunodeficiency virus
<400> 62
Pro Leu Val Lys Leu Trp Tyr Gln Leu
<210> 63
<211>
<212> PRT
<213> Human immunodeficiency virus
<400>
Tyr Leu Ala Trp Val Pro Ala His Lys
```

4 C 11110 2000100010007 10

```
<210> 64
 <211> 9
 <212> PRT
 <213> Human immunodeficiency virus
 <400> 64
 Leu Leu Trp Lys Gly Glu Gly Ala Val
 <210> 65
<211> 9
 <212> PRT
 <213> Human immunodeficiency virus
 <400> 65
 Ala Ile Ile Arg Ile Leu Gln Gln Leu 5
 <210> 66
<211> 10
<212> PRT
 <213> Human immunodeficiency virus
 <400> 66
 Ile Pro Ile Val Ala Ile Val Ala Leu Val
<210> 67
       10
PRT
 <211>
 <212>
<213> Human immunodeficiency virus
 <400> 67
Lys Leu Trp Val Thr Val Tyr Tyr Gly Val
                  5
<210> 68
<211>
       9
<212>
       PRT
<213> Hepatitis C virus
<400> 68
Cys Thr Cys Gly Ser Ser Asp Leu Tyr
<210> 69
<211> 9
<212> PRT
<213> Hepatitis C virus
<400> 69
Phe Leu Leu Ala Asp Ala Arg Val
<210> 70
<211> 9
<212> PRT
<213> Hepatitis C virus
<400> 70
```

```
Tyr Leu Val Ala Tyr Gln Ala Thr Val
<210> 71
<211> 10
<212> PRT
<213> Hepatitis C virus
<400>
       71
Arg Leu Ile Val Phe Pro Asp Leu Gly Val
<210>
       72
<211> 9
<212> PRT
<213> Hepatitis C virus
<400> 72
Asp Leu Met Gly Tyr Ile Pro Leu Val
<210>
       73
<211> 9
<212> PRT
<213> Hepatitis C virus
<400> 73
Trp Met Asn Arg Leu Ile Ala Phe Ala
<210> 74
<211> 9
<212> PRT
<213> Hepatitis C virus
<400> 74
Val Leu Val Gly Gly Val Leu Ala Ala
<210>
      75
<211>
      9
<212>
      PRT
<213>
      Hepatitis C virus
<400>
His Met Trp Asn Phe Ile Ser Gly Ile
<210>
      76
<211>
      9
<212>
      PRT
<213>
      Hepatitis C virus
      76
<400>
Ile Leu Ala Gly Tyr Gly Ala Gly Val
<210> 77
<211> 10
<212> PRT
```

```
.<213> Hepatitis C virus
<400> 77
Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu
<210> 78
<211> 9
<212> PRT
<213> Hepatitis C virus
<400> 78
Leu Leu Phe Leu Leu Leu Ala Asp Ala
<210> 79
<211> 9
<212> PRT
<213> Hepatitis C virus <400> 79
Tyr Leu Val Thr Arg His Ala Asp Val
<210> 80
<211> 9
<212> PRT
 <213> Hepatitis C virus <400> 80
Lys Thr Ser Glu Arg Ser Gln Pro Arg
              . 5
<210> 81
<211> 9
 <212> PRT
 <213> Hepatitis C virus
 <400> 81
 Arg Leu Gly Val Arg Ala Thr Arg Lys
<210> 82
<211> 9
<212> PRT
 <213> Hepatitis C virus <400> 82
 Gln Leu Phe Thr Phe Ser Pro Arg Arg
 <210> 83
 <211> 10
 <212> PRT
<213> Hepatitis C virus
<400> 83
 Arg Met Tyr Val Gly Gly Val Glu His Arg
```

5

** **U** 400*/00/.

```
<210> 84
<211> 9
<212> PRT
<213> Hepatitis C virus
<400> 84
Leu Ile Phe Cys His Ser Lys Lys Lys
<210> 85 
<211> 10
<212> PRT
<213> Hepatitis C virus
<400> 85
Gly Val Ala Gly Ala Leu Val Ala Phe Lys
<210> 86
<211> 9
<212> PRT
<213> Hepatitis C virus <400> 86
Val Ala Gly Ala Leu Val Ala Phe Lys
<210> 87
<211> 10
<212> PRT
<213> Hepatitis C virus
<400> 87
Thr Leu Gly Phe Gly Ala Tyr Met Ser Lys
<210> 88
<211>
<212> PRT
<213> Hepatitis C virus
<400> 88
Leu Pro Gly Cys Ser Phe Ser Ile Phe
<210> 89
<211> 9
<212>
      PRT
<213> Hepatitis C virus
<400> 89
Leu Ser Ala Phe Ser Leu His Ser Tyr
<210> 90
      9
<211>
<212> PRT
<213> Hepatitis C virus
<400> 90 ·
```

A C 4//40/2000/000/20

```
Phe Trp Ala Lys His Met Trp Asn Phe
                 5
<210> 91
<211> 9
<212> PRT
<213> Hepatitis C virus
<400> 91
Val Gly Ile Tyr Leu Leu Pro Asn Arg
<210> 92
<211> 10
<212> PRT
<213> Hepatitis C virus
<400> 92
Leu Leu Phe Asn Ile Leu Gly Gly Trp Val 1 5 10
<210> 93
<211> 8
<212> PRT
<213> Hepatitis C virus
<400> 93
Ile Pro Phe Tyr Gly Lys Ala Ile
1 5
<210> 94
<211> 242
<212> PRT
<213> epstein-barr virus (EBV)
<400> 94
Met Val Asp Phe Leu Arg Gly Arg Ala Tyr Gly Leu Pro Tyr Leu Phe
Trp Leu Ala Ala Ile His Arg Cys Gln Ala Ile Arg Lys Lys Arg Arg
Ile Tyr Asp Leu Ile Glu Leu Val Gln Pro Pro Gln Leu Thr Leu Gln
Val Gly Leu Cys Thr Leu Val Ala Met Leu Arg Leu Arg Ala Glu Ala
Gln Val Lys Ile Glu Asp Pro Pro Phe Asn Ser Leu Tyr Leu Leu Glu
Met Leu Trp Arg Leu Gly Gln Gly Gly Ser Pro Thr Ala Met Ala Val
Leu Leu His Glu Glu Ser Met Ile Ala Leu Tyr Leu Gln Gln Asn Trp
                                 105
Trp Thr Leu Arg Ala Lys Phe Lys Gln Leu Leu Ser Ser Cys Ser Ser
```

Cys Pro Leu Ser Lys Ile Thr Tyr Gly Pro Val Phe Met Cys Leu Gln 130 Lys Trp Arg Leu Gln 135 Tr Leu Arg Pro Pro Ile Phe Ile Arg Arg 160 Leu Val Ser Phe Ile Glu Phe Val Gly Trp Tyr Pro Leu His Glu Gln 175 His Gly Met Val Glu Ile Thr Pro Tyr Lys Pro Thr Trp Cys Leu Gly 180 Gly Leu Leu Thr Met Val Glu Glu Glu Asn Leu Leu Asp Phe Val Arg Phe 205 Thr Tyr Ser Ala Gly Ile Val Gln Ile Leu Leu Asp Phe Val Arg Phe 210 Gly Val Gly Val Gly Trp Arg His Trp His His His His 240

His His

<210> 95

<211> 242

<212> PRT

<213> epstein-barr virus (EBV)

<400> 95

Met Val Asp Phe Leu Arg Gly Arg Ala Tyr Gly Leu Pro Tyr Leu Phe 1 5 10 15

Trp Leu Ala Ile His Arg Cys Gln Ala Ile Arg Lys Lys Arg Arg 20 25 30

Ile Tyr Asp Leu Ile Glu Leu Gly Leu Cys Thr Leu Val Ala Met Leu 35 40 45

Arg Leu Arg Ala Glu Ala Gln Val Lys Ile Glu Asp Pro Pro Phe Asn 50 55 60

Ser Leu Thr Tyr Ser Ala Gly Ile Val Gln Ile Leu Leu Asp Phe Val 65 70 75 80

Arg Phe Met Gly Val Glu Gly Gly Val Gly Trp Arg His Trp Ile Ala 85 90 95

Leu Tyr Leu Gln Gln Asn Trp Trp Thr Leu Arg Ala Lys Phe Lys Gln 100 105 110

Leu Leu Ser Ser Cys Ser Ser Cys Pro Leu Ser Lys Ile Thr Tyr Gly
115 120 125

Pro Val Phe Met Cys Leu Gln Ala Lys Trp Arg Leu Gln Thr Leu Arg 130 135 140

Pro Pro Ile Phe Ile Arg Arg Leu Val Ser Phe Ile Glu Phe Val Gly 145 150 155 160

₩₩ ՀՍՍՎ/(ՄՄ). FC.1/MU.2003/(UU)3/10

20/28

Trp Tyr Pro Leu His Glu Gln His Gly Met Val Glu Ile Thr Pro Tyr 165 170 175

Lys Pro Thr Trp Cys Leu Gly Gly Leu Leu Thr Met Val Glu Glu Asn 180 185 190

Leu Leu Asp Phe Val Arg Phe Tyr Leu Leu Glu Met Leu Trp Arg Leu 195 200 205

Gly Gln Gly Ger Pro Thr Ala Met Ala Val Leu Leu His Glu Glu 210 215 220

Ser Met Val Gln Pro Pro Gln Leu Thr Leu Gln Val His His His 225 230 235 240

His His

<210> 96

<211> 669

<212> PRT

<213> epstein-barr virus (EBV)

<400> 96

Met Glu Asp Pro Gly Phe Phe Asn Val Glu Ile Pro Glu Phe Pro Phe 1 5 10 15

Tyr Pro Thr Cys Asn Val Cys Thr Ala Asp Val Asn Val Thr Ile Asn 20 25 30

Phe Asp Val Gly Gly Lys Lys His Gln Leu Asp Leu Asp Phe Gly Gln 35 40 45

Leu Thr Pro His Thr Lys Ala Val Tyr Gln Pro Arg Gly Ala Phe Gly 50 55 60

Gly Ser Glu Asn Ala Thr Asn Leu Phe Leu Leu Glu Leu Leu Gly Ala 65 70 75 80

Gly Glu Leu Ala Leu Thr Met Arg Ser Lys Leu Pro Ile As
n Val $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Thr Thr Gly Glu Glu Gln Gln Val Ser Leu Glu Ser Val Asp Val Tyr
100 105 110

Phe Gln Asp Val Phe Gly Thr Met Trp Cys His His Ala Glu Met Gln 115 120

Asn Pro Val Tyr Leu Ile Pro Glu Thr Val Pro Tyr Ile Lys Trp Asp 130 135 140

Asn Cys Asn Ser Thr Asn Ile Thr Ala Val Val Arg Ala Gln Gly Leu 145 150 155 160

Asp Val Thr Leu Pro Leu Ser Leu Pro Thr Ser Ala Gln Asp Ser Asn 165 170 175

Phe Ser Val Lys Thr Glu Met Leu Gly Asn Glu Ile Asp Ile Glu Cys 180 185 190

Ile Met Glu Asp Gly Glu Ile Ser Gln Val Leu Pro Gly Asp Asn Lys 200 . Phe Asn Ile Thr Cys Ser Gly Tyr Glu Ser His Val Pro Ser Gly Gly 210 215 220 Ile Leu Thr Ser Thr Ser Pro Val Ala Thr Pro Ile Pro Gly Thr Gly 230 Tyr Ala Tyr Ser Leu Arg Leu Thr Pro Arg Pro Val Ser Arg Phe Leu 250 Gly Asn Asn Ser Ile Leu Tyr Val Phe Tyr Ser Gly Asn Gly Pro Lys 265 Ala Ser Gly Gly Asp Tyr Cys Ile Gln Ser Asn Ile Val Phe Ser Asp 275 280 285 Glu Ile Pro Ala Ser Gln Asp Met Pro Thr Asn Thr Thr Asp Ile Thr 295 Tyr Val Gly Asp Asn Ala Thr Tyr Ser Val Pro Met Val Thr Ser Glu 310 Asp Ala Asn Ser Pro Asn Val Thr Val Thr Ala Phe Trp Ala Trp Pro Asn Asn Thr Glu Thr Asp Phe Lys Cys Lys Trp Thr Leu Thr Ser Gly 345 Thr Pro Ser Gly Cys Glu Asn Ile Ser Gly Ala Phe Ala Ser Asn Arg Thr Phe Asp Ile Thr Val Ser Gly Leu Gly Thr Ala Pro Lys Thr Leu Ile Ile Thr Arg Thr Ala Thr Asn Ala Thr Thr Thr His Lys Val Ile Phe Ser Lys Ala Pro Glu Ser Thr Thr Thr Ser Pro Thr Leu Asn 405 Thr Thr Gly Phe Ala Asp Pro Asn Thr Thr Thr Gly Val Asp Phe Leu 425 Arg Gly Arg Ala Tyr Gly Leu Pro Tyr Leu Phe Trp Leu Ala Ala Ile His Arg Cys Gln Ala Ile Arg Lys Lys Arg Arg Ile Tyr Asp Leu Ile 455 Glu Leu Val Gln Pro Pro Gln Leu Thr Leu Gln Val Gly Leu Cys Thr Leu Val Ala Met Leu Arg Leu Arg Ala Glu Ala Gln Val Lys Ile Glu 490 Asp Pro Pro Phe Asn Ser Leu Tyr Leu Leu Glu Met Leu Trp Arg Leu

505

Gly Gln Gly Gly Ser Pro Thr Ala Met Ala Val Leu Leu His Glu Glu 515 520 525

Ser Met Ile Ala Leu Tyr Leu Gln Gln Asn Trp Trp Thr Leu Arg Ala 530 535 540

Lys Phe Lys Gln Leu Leu Ser Ser Cys Ser Ser Cys Pro Leu Ser Lys 545 550 560

Ile Thr Tyr Gly Pro Val Phe Met Cys Leu Gln Ala Lys Trp Arg Leu 565 570 575

Gln Thr Leu Arg Pro Pro Ile Phe Ile Arg Arg Leu Val Ser Phe Ile 580 585 590

Glu Phe Val Gly Trp Tyr Pro Leu His Glu Gln His Gly Met Val Glu
595 600 605

Ile Thr Pro Tyr Lys Pro Thr Trp Cys Leu Gly Gly Leu Leu Thr Met 610 620

Val Glu Glu Asn Leu Leu Asp Phe Val Arg Phe Thr Tyr Ser Ala Gly 625 630 635 640

Ile Val Gln Ile Leu Leu Asp Phe Val Arg Phe Met Gly Val Glu Gly 645 650 655

Gly Val Gly Trp Arg His Trp His His His His His 660 665

<210> 97

<211> 669

<212> PRT

<213> epstein-barr virus (EBV)

<400> 97

Met Glu Asp Pro Gly Phe Phe Asn Val Glu Ile Pro Glu Phe Pro Phe 1 5 10 15

Tyr Pro Thr Cys Asn Val Cys Thr Ala Asp Val Asn Val Thr Ile Asn 20 25 30

Phe Asp Val Gly Gly Lys Lys His Gln Leu Asp Leu Asp Phe Gly Gln 35 40 45

Leu Thr Pro His Thr Lys Ala Val Tyr Gln Pro Arg Gly Ala Phe Gly 50 55 60

Gly Ser Glu Asn Ala Thr Asn Leu Phe Leu Leu Glu Leu Leu Gly Ala 65 70 75 80

Gly Glu Leu Ala Leu Thr Met Arg Ser Lys Leu Pro Ile Asn Val 85 90 95

Thr Thr Gly Glu Glu Gln Gln Val Ser Leu Glu Ser Val Asp Val Tyr
100 105 110

Phe Gln Asp Val Phe Gly Thr Met Trp Cys His His Ala Glu Met Gln 115 120 125

Asn Pro Val Tyr Leu Ile Pro Glu Thr Val Pro Tyr Ile Lys Trp Asp 135 Asn Cys Asn Ser Thr Asn Ile Thr Ala Val Val Arg Ala Gln Gly Leu 155 Asp Val Thr Leu Pro Leu Ser Leu Pro Thr Ser Ala Gln Asp Ser Asn 170 Phe Ser Val Lys Thr Glu Met Leu Gly Asn Glu Ile Asp Ile Glu Cys 185 Ile Met Glu Asp Gly Glu Ile Ser Gln Val Leu Pro Gly Asp Asn Lys 200 205 Phe Asn Ile Thr Cys Ser Gly Tyr Glu Ser His Val Pro Ser Gly Gly 210 220 Ile Leu Thr Ser Thr Ser Pro Val Ala Thr Pro Ile Pro Gly Thr Gly Tyr Ala Tyr Ser Leu Arg Leu Thr Pro Arg Pro Val Ser Arg Phe Leu 245 Gly Asn Asn Ser Ile Leu Tyr Val Phe Tyr Ser Gly Asn Gly Pro Lys Ala Ser Gly Gly Asp Tyr Cys Ile Gln Ser Asn Ile Val Phe Ser Asp 275 280 285 Glu Ile Pro Ala Ser Gln Asp Met Pro Thr Asn Thr Thr Asp Ile Thr 295 300 Tyr Val Gly Asp Asn Ala Thr Tyr Ser Val Pro Met Val Thr Ser Glu 310 315 Asp Ala Asn Ser Pro Asn Val Thr Val Thr Ala Phe Trp Ala Trp Pro 330 Asn Asn Thr Glu Thr Asp Phe Lys Cys Lys Trp Thr Leu Thr Ser Gly 345 Thr Pro Ser Gly Cys Glu Asn Ile Ser Gly Ala Phe Ala Ser Asn Arg 360 Thr Phe Asp Ile Thr Val Ser Gly Leu Gly Thr Ala Pro Lys Thr Leu Ile Ile Thr Arg Thr Ala Thr Asn Ala Thr Thr Thr His Lys Val 390 Ile Phe Ser Lys Ala Pro Glu Ser Thr Thr Thr Ser Pro Thr Leu Asn 405 410 Thr Thr Gly Phe Ala Asp Pro Asn Thr Thr Thr Gly Val Asp Phe Leu · 425 430 Arg Gly Arg Ala Tyr Gly Leu Pro Tyr Leu Phe Trp Leu Ala Ala Ile

440

445

His Arg Cys Gln Ala Ile Arg Lys Lys Arg Arg Ile Tyr Asp Leu Ile 450 455 460

Glu Leu Gly Leu Cys Thr Leu Val Ala Met Leu Arg Leu Arg Ala Glu 465 470 475 480

Ala Gln Val Lys Ile Glu Asp Pro Pro Phe Asn Ser Leu Thr Tyr Ser 485 490 495

Ala Gly Ile Val Gln Ile Leu Leu Asp Phe Val Arg Phe Met Gly Val 500 505 510

Glu Gly Gly Val Gly Trp Arg His Trp Ile Ala Leu Tyr Leu Gln Gln 515 520 525

Asn Trp Trp Thr Leu Arg Ala Lys Phe Lys Gln Leu Leu Ser Ser Cys 530 540

Ser Ser Cys Pro Leu Ser Lys Ile Thr Tyr Gly Pro Val Phe Met Cys 545 550 560

Leu Gln Ala Lys Trp Arg Leu Gln Thr Leu Arg Pro Pro Ile Phe Ile 565 570 575

Arg Arg Leu Val Ser Phe Ile Glu Phe Val Gly Trp Tyr Pro Leu His 580 585 590

Glu Gln His Gly Met Val Glu Ile Thr Pro Tyr Lys Pro Thr Trp Cys 595 600 605

Leu Gly Gly Leu Leu Thr Met Val Glu Glu Asn Leu Leu Asp Phe Val 610 615 620

Arg Phe Tyr Leu Leu Glu Met Leu Trp Arg Leu Gly Gln Gly Gly Ser 625 630 635

Pro Thr Ala Met Ala Val Leu Leu His Glu Glu Ser Met Val Gln Pro 645 650 655

Pro Gln Leu Thr Leu Gln Val His His His His His His 660 665

<210> 98

<211> 187

<212> PRT

<213> epstein-barr virus (EBV)

<400> 98

Ser Ser Cys Ser Ser Cys Pro Leu Ser Lys Ile His Arg Cys Gln Ala 1 5 10 15

Ile Arg Lys Lys Cys Leu Gly Gly Leu Leu Thr Met Val Leu Thr Ala 20 25 30

Gly Phe Leu Ile Phe Leu Arg Leu Arg Ala Glu Ala Gln Val Lys Ile 35 40 45

Glu Asp Pro Pro Phe Asn Ser Leu Leu Leu Ser Ala Trp Ile Leu Thr 50 55 60 Ala Arg Arg Arg Trp Arg Arg Leu Thr Val Pro Tyr Leu Phe Trp Leu 65 70 75 80

Ala Ala Ile Tyr Leu Leu Glu Met Leu Trp Arg Leu Gly Gln Gly Gly 85 90 95

Ser Pro Thr Ala Met Val Met Ser Asn Thr Leu Leu Ser Ala Trp Ala 100 105 110

Leu Leu Val Leu Tyr Ser Phe Ala Arg Ala Lys Phe Lys Gln Leu Leu 115 120 125

Ile Ala Leu Tyr Leu Gl
n Gl
n Asn Trp Thr Tyr Gly Pro Val Phe Met 130 $$135\$

Cys Leu Gln Ala Lys Trp Arg Leu Gln Thr Leu Tyr Leu Gln Gln Asn 145 150 155 160

Trp Trp Thr Leu Tyr Pro Leu His Glu Gln His Gly Met Cys Pro Leu 165 170 175

Ser Lys Ile Leu Leu His His His His His His 180 185

<210> 99

<211> 246

<212> PRT

<213> Human immunodeficiency virus

<400> 99

Ile Pro Ile Val Ala Ile Val Ala Leu Val Arg Leu Arg Pro Gly Gly 1 5 15

Lys Lys Lys Ile Leu Lys Glu Pro Val His Gly Val Pro Leu Val Lys 20 25 30

Leu Trp Tyr Gln Leu Arg Pro Gly Gly Lys Lys Lys Tyr Lys Leu Lys 35 40 45

Tyr Lys Leu Lys His Ile Val Trp Thr Trp Glu Thr Trp Trp Thr Glu
50 55 60

Tyr Trp Glu Ile Lys Asp Thr Lys Glu Ala Leu Lys Arg Trp Ile Ile 65 70 75 80

Leu Gly Leu Asn Lys Lys Leu Trp Val Thr Val Tyr Tyr Gly Val Lys 85 90 95

Ile Glu Glu Leu Arg Gln His Leu Met Thr Asn Asn Pro Pro Ile Pro 100 105 110

Val Val Thr Leu Trp Gln Arg Pro Leu Val Trp Ala Ser Arg Glu Leu 115 120 125

Glu Arg Phe Leu Leu Trp Lys Gly Glu Gly Ala Val Tyr Thr Ala Phe 130 140

Thr Ile Pro Ser Ile Ile Tyr Gln Glu Pro Phe Lys Asn Leu Lys Ser 145 150 155 160

LC IVVOTARIONALIA

Leu Tyr Asn Thr Val Ala Thr Leu Ala Ile Ile Arg Ile Leu Gln Gln
165 170 175

Leu Ala Ile Phe Gln Ser Ser Met Thr Lys Val Ile Tyr Gln Tyr Met 180 185 190

Asp Asp Leu Leu Val Gly Pro Thr Pro Val Asn Ile Thr Pro Gln Asp 195 200 205

Leu Asn Thr Met Leu Tyr Leu Ala Trp Val Pro Ala His Lys Ala Leu 210 215 220

Val Glu Ile Cys Thr Glu Met Thr Leu Asn Ala Trp Val Lys Val Val 225 230 235 240

His His His His His Eis 245

<210> 100

<211> 246

<212> PRT

<213> Human immunodeficiency virus

<400> 100

Ile Leu Lys Glu Pro Val His Gly Val Lys Arg Trp Ile Ile Leu Gly 1 5 10 15 .

Leu Asn Lys Thr Leu Asn Ala Trp Val Lys Val Val Lys Ile Glu Glu 20 25 30

Leu Arg Gln His Leu Tyr Thr Ala Phe Thr Ile Pro Ser Ile Trp Ala 35 40 45

Ser Arg Glu Leu Glu Arg Phe Pro Leu Val Lys Leu Trp Tyr Gln Leu 50 55 60

Leu Val Gly Pro Thr Pro Val Asn Ile Ile Pro Ile Val Ala Ile Val 65 70 75 80

Ala Leu Val Ser Leu Tyr Asn Thr Val Ala Thr Leu Met Thr Asn Asn 85 90 95

Pro Pro Ile Pro Val Leu Leu Trp Lys Gly Glu Gly Ala Val Thr Trp
100 105 110

Glu Thr Trp Trp Thr Glu Tyr Trp Ala Ile Phe Gln Ser Ser Met Thr 115 120 125

Lys Arg Leu Arg Pro Gly Gly Lys Lys Lys Ala Leu Val Glu Ile Cys 130 135 140

Thr Glu Met Lys Leu Trp Val Thr Val Tyr Tyr Gly Val Tyr Leu Ala 145 150 155 160

Trp Val Pro Ala His Lys Ala Ile Ile Arg Ile Leu Gln Gln Leu Glu
165 170 175

Ile Lys Asp Thr Lys Glu Ala Leu Val Thr Leu Trp Gln Arg Pro Leu 180 185 190

Val Ile Tyr Gln Glu Pro Phe Lys Asn Leu Lys Val Ile Tyr Gln Tyr 195 200 205

Met Asp Asp Leu Thr Pro Gln Asp Leu Asn Thr Met Leu Arg Pro Gly 210 220

Gly Lys Lys Lys Tyr Lys Leu Lys Tyr Lys Leu Lys His Ile Val Trp 225 230 235

His His His His His His

<210> 101

<211> 245

<212> PRT

<213> Hepatitis C virus

<400> 101

Leu Leu Phe Asn Ile Leu Gly Gly Trp Val Lys Thr Ser Glu Arg Ser 1 5 10 15

Gln Pro Arg Phe Leu Leu Leu Ala Asp Ala Arg Val Leu Leu Phe Leu 20 25 30

Leu Leu Ala Asp Ala Arg Leu Gly Val Arg Ala Thr Arg Lys Gly Val 35 40 45

Ala Gly Ala Leu Val Ala Phe Lys Leu Pro Gly Cys Ser Phe Ser Ile 50 55 60

Phe Arg Met Tyr Val Gly Gly Val Glu His Arg Val Ala Gly Ala Leu 65 70 75 80

Val Ala Phe Lys Asp Leu Met Gly Tyr Ile Pro Leu Val Leu Ile Phe 85 90 95

Cys His Ser Lys Lys Lys Ile Leu Ala Gly Tyr Gly Ala Gly Val His 100 105 110

Met Trp Asn Phe Ile Ser Gly Ile Gln Leu Phe Thr Phe Ser Pro Arg 115 120 125

Arg Val Gly Ile Tyr Leu Leu Pro Asn Arg Phe Trp Ala Lys His Met 130 140

Trp Asn Phe Tyr Leu Val Thr Arg His Ala Asp Val Leu Ser Ala Phe 145 150 155 160

Ser Leu His Ser Tyr Trp Met Asn Arg Leu Ile Ala Phe Ala Tyr Leu 165 170 175

Leu Pro Arg Arg Gly Pro Arg Leu Tyr Leu Val Ala Tyr Gln Ala Thr

Val Arg Leu Ile Val Phe Pro Asp Leu Gly Val Thr Leu Gly Phe Gly 195 200 205

Ala Tyr Met Ser Lys Ile Pro Phe Tyr Gly Lys Ala Ile Val Leu Val 210 215 220

A TO ALLE WAS SERVICED AND

Gly Gly Val Leu Ala Ala Cys Thr Cys Gly Ser Ser Asp Leu Tyr His 225 230 235 240

His His His His His 245

<210> 102

<211> 245

<212> PRT

<213> Hepatitis C virus

<400> 102

Tyr Leu Val Thr Arg His Ala Asp Val Trp Met Asn Arg Leu Ile Ala 1 5 10 15

Phe Ala Cys Thr Cys Gly Ser Ser Asp Leu Tyr Val Gly Ile Tyr Leu 20 25 30

Leu Pro Asn Arg Ile Leu Ala Gly Tyr Gly Ala Gly Val Leu Ile Phe $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Cys His Ser Lys Lys Lys His Met Trp Asn Phe Ile Ser Gly Ile Phe 50 55 60

Leu Leu Leu Ala Asp Ala Arg Val Leu Leu Phe Leu Leu Leu Ala Asp 65 70 75 80

Ala Leu Ser Ala Phe Ser Leu His Ser Tyr Gly Val Ala Gly Ala Leu 85 90 95

Val Ala Phe Lys Lys Thr Ser Glu Arg Ser Gln Pro Arg Arg Leu Gly
100 105 110

Val Arg Ala Thr Arg Lys Asp Leu Met Gly Tyr Ile Pro Leu Val Val 115 120 125

Leu Val Gly Gly Val Leu Ala Ala Leu Leu Phe Asn Ile Leu Gly Gly 130 135 140

Trp Val Tyr Leu Val Ala Tyr Gln Ala Thr Val Tyr Leu Leu Pro Arg 145 150 155 160

Arg Gly Pro Arg Leu Phe Trp Ala Lys His Met Trp Asn Phe Gln Leu 165 170 175

Phe Thr Phe Ser Pro Arg Arg Leu Pro Gly Cys Ser Phe Ser Ile Phe 180 185 190

Ile Pro Phe Tyr Gly Lys Ala Ile Arg Met Tyr Val Gly Gly Val Glu 195 200 205

His Arg Thr Leu Gly Phe Gly Ala Tyr Met Ser Lys Arg Leu Ile Val 210 215 220

Phe Pro Asp Leu Gly Val Val Ala Gly Ala Leu Val Ala Phe Lys His 225 230 235 240

His His His His

24!

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU03/00910

				PC1/AU03/00910					
	Α.	CLASSIFICATION OF SUBJECT MATTER							
ľ	Int. Cl. 7:								
	According to l	International Patent Classification (IPC) or to bot	onal Patent Classification (IPC) or to both national classification and IPC						
	В.	FIELDS SEARCHED							
ļ	Minimum documentation searched (classification system followed by classification symbols)								
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched									
-		arch terms used)							
Databases: medline, ca, wpids, biosis, biotechabs Keywords: hydrophobic, epitope, polyepitope, polytope, shuffle, recombine, rearrange, reorder, relocate									
				•					
<u></u>	:	GenPept, PIR, SwissProt, TrEMBL							
Sequences: SEQ ID NOs: 1-5									
	C.	DOCUMENTS CONSIDERED TO BE RELEVAN	T						
	Category*	ategory* Citation of document, with indication, where appropriate, of the relevant passages							
	A	US 6,070,126 A (KOKOLUS, W.J. et al.)	30 May 2000						
			•						
	Α	 WO 00/63693 A (KOKOLUS, W.J.), 26 C	ctober 2000						
A DEAVIN, A.J. et al., "Statistical comparison of established T-cell epitope predictors against a large database of human and murine antigens", Molecular Immunology (1996), vol. 33, no. 2, pages 145-155									
	ХF	X Further documents are listed in the continuation of Box C X See patent family annex							
4		Special categories of cited documents:							
	"A" docume	nt defining the general state of the art "T"		ter document published after the international filing date or priority date					
	relevan		or theory underlying the invention	n but cited to understand the principle					
		application or patent but published on or "X" e international filing date	ocument of particular relevance; the claimed invention cannot be onsidered novel or cannot be considered to involve an inventive step						
	"L" docume	ent which may throw doubts on priority "Y"	when the document is taken alone document of particular relevance; the	hen the document is taken alone ocument of particular relevance; the claimed invention cannot be onsidered to involve an inventive step when the document is combined ith one or more other such documents, such combination being obvious to					
		or which is cited to establish the tion date of another citation or other special							
	reason ((as specified) ont referring to an oral disclosure, use, "&"	a person skilled in the art document member of the same patent						
	exhibiti	on or other means	va nie omire public						
	"P" document published prior to the international filing date but later than the priority date claimed								
		al completion of the international search	Date of mailing of the internation	al search report - 7 AUG 2003					
-	28 July 2003 Name and maili	ing address of the ISA/AU	Authorized officer						
	AUSTRALIAN	PATENT OFFICE	all for						
1		WODEN ACT 2606, AUSTRALIA pct@ipaustralia.gov.au	STUART BARROW	STUART BARROW					
	Facsimile No.		Telephone No : (02) 6283 228	Telephone No : (02) 6283 2284					

INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU03/00910

<u> </u>	TC1/A003/00	
C (Continuati	on). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Relevant to claim No.	
A	WO 01/47541 A (EPIMMUNE INC.), 5 July 2001	
A .	WO 96/03144 A (THE COUNCIL OF THE QUEENSLAND INSTITUTE OF MEDICAL RESEARCH et al.), 8 February 1996	
A	WO 97/05164 A (CSL LIMITED et al.), 13 February 1997	
Α.	WO 97/05104 A (CDD DAMINDS of Mr.), 15 Yourand, 1997	
	• ,	
	·	
ļ		

The initial three residues MVD have been introduced due to restriction sites

0.34 0.52 0.82 0.33 0.71 0.36 YPLHEQHGM - VEITPYKPTW- CLGGLLTMV – EENLLDFVRF - TYSAGIVQI – LLDFVRFMGV -EGGVGWRHW – НЯННЫН (SEQ ID NO:94) 0.38 1.02 -0.07 0.39 0.55 0.85 -0.06 0.4 0.85 MYÖFLRGRAYGL - PYLFWLAAI – HRCQAIRKK – RRIYDLIEL – VQPPQLTLQV-GLCTLVAML - RLRAEAQVK -IEDPPFNSL -YLLEMLWRL - 0.18 0.43 0.32 0.47 0.83 GOGGSPTAM - AVLLHEESM - IALYLQQNWWTL-RAKFKQLL - SSCSSCPLSKI- TYGPVFMCL-QAKWRLQTL- RPPIFIRRL- VSFIEFVGW-0.71 0.36 0.71 0.36 0.71 0.36 0.71 0.36 0.71 0.36 0.71 0.36 0.71 P26A

EGGVGWRHW - IALYLQQNWWTL - RAKFKQLL - SSCSSCPLSKI – TYGPVFMCL – QAKWRLQTL - RPPIFIRRL - VSFIEFVGW –YPLHEQHGM-0.52 0.85 0.18 0.43 VEITPYKPTW - CLGGLLTMV - EENLLDFVRF - YLLEMLWRL - GQGGSPTAM - AVLLHEESM -VQPPQLTLQV -HHHHHHH (SEQ ID NO:95)
 0.38
 1.02
 -0.07
 0.39
 0.85
 -0.06
 0.4
 0.53
 0.71

 MVDFLRGRAYGL- PYLFWLAAI – HRCQAIRKK - RRIYDLIEL- GLCTLVAML- RLRAEAQVK- IEDPPFINSL -TYSAGIVQI- LLDFVRFMGV 0.083
 0.32
 0.47
 0.83
 P268

Figure 1

Hydrophobicity Index (Fauschere & Pliska)

Figure 3A gp350/PT26A

MEDPGFFNVEIPEFPFYPTCNVCTADVNVTINFDVGGKKHQLDLDF <u>GQ</u> LTPHTKAVYQPRGAFGGSENAT									
						T-he	lp epitop	e	70
NLFLL	ELLGAGE	LALTMR.	SKKLPINVT	TGEEQQ	VSLESV:	DVYFQDVFG	TMWCHHAEM	QNPVYLIP:	ETVPY
									140
IKWDN	CNSTNIT	AVVRAQ	GLDVTLPLS	LPTSAQ	DSNFSV	KTEMLGNEI	DIECIMEDG	EISQVLPG	DNKFN
	T-help	epitop	e						210
ITCSG	YESHVPS	GGILTS'	TSPVATPIP	GTGYAY	SLRLTP	RPVSRFLGN	NSILYVFYS	GNGPKASG	GDYCI
									280
QSNIV	FSDEIPA	SQDMPT	NTTDITYVG	DNATYS	VPMVTS!	EDANSPNVT	VTAFWAWPN	NTETDFKC	KWTLT
		_							350
SGTPS	GCENISG	AFASNR'	TFDITVSGL	GTAPKT	LIITRT	ATNATTTTH	KVIFSKAPE	STTTSPTL	NTTGF
									420
ADPNT	TTG <i>VD</i> FL	RGRAYG	LPYLFWLAA	IHRCQA	IRKKRR:	IYDLIELVQ	PPQLTLQVG	LCTLVAML	RLRAE
	428	B8		B2	7	B27	B46	A2	A3
AQVKI	EDPPFNS	LYLLEM	LWRLGQGGS	PTAMAV	LLHEESI	MIALYLOON	<u>wwtl</u> rakfk	QLLSSCSS	CPLSK -
	B60	A2	В6	2	B35	B57/A2	B8	A1:	L .
ITYGP	ITYGPVFMCLQAKWRLQTLRPPIFIRRLVSFIEFVGWYPLHEQHGMVEITPYKPTWCLGGLLTMVEENLL								
A	24	B8	B7	B 5	8	B35	B44	A2	
DFVRFTYSAGIVQILLDFVRFMGVEGGVGWRHWHHHHHH									
B44	A24		A2	B44 (SEQ ID	NO:96)			

Figure 3B gp350/PT26B

${\tt MEDPGFFNVEIPEFPFYPTCNVCTADVNVTINFDVGGKKHQLDLDF} \underline{{\tt GQLTPHTKAVYQPRGAFGGSENAT}}.$								
				*	•	T-help	epitope	70
NLF	LLELLGAG	ELALTMRS:	KKLPINVTTO	EEOOVSLES	SVDVYFOD	VFGTMWCHH	AEMONPVYI	IPETVPY
								140
TKW	יייאראפייאדי	••••••••••••••••••••••••••••••••••••	LDVTLPLSLE	TEACHENE	STAKALEMI 'C	NETDIECTN	POCETSOM	
T1/11			<u> </u>	TONQDOM:	3 V ICI EMELO	METDIECIE	EDGETSQVI	
	T-help							210
ITC	SGYESHVP	SGGILTST	SPVATPIPGT	'GYAYSLRL'	PRPVSRF	LGNNSILYV	FYSGNGPKA	
								280
QSN	IVFSDEIP	ASQDMPTN	TTDITYVGDN	IATYSVPMV'	rsedansp	NVTVTAFWA	WPNNTETDF	KCKWTLT
								350
SGT	PSGCENIS	GAFASNRT:	FDITVSGLGT	APKTLIIT	RTATNATT	TTHKVIFSK	APESTTTS	TLNTTGF
								. 420
ADPNTTTGVDFLRGRAYGLPYLFWLAAIHRCQAIRKKRRIYDLIELGLCTLVAMLRLRAEAQ VKIEDPPF								
ADE			_				_	
	428	B8	A23	B27	B27	A2	A3	B60
NSL	TYSAGIVQ	I <u>LLDFVRF</u>	<u>MGVE</u> GGVGWR	HWIALYLO	<u> DNWWTL</u> RA	KFKQLL <u>SSC</u>	SSCPLSKIT	YGPVFMC
	A24	A2	B44	B57	/A2	в8	A11	A24
LOAKWRLOTLRPPIFIRRLVSFIEFVGWYPLHEOHGMVEITPYKPTWCLGGLLTMVEENLLDFVRFYLLE								
<u> </u>	B8	B7	B58	B35	B44	A2	B44	<u> </u>
	20	ν,	200	223	Dwa	A2	Dan	
MLW	MLWRLGQGGSPTAMAVLLHEESMVQPPQLTLQVHHHHHH (SEQ ID NO:97)							

B46

WO 2004/007556

PCT/AU2003/000910

4/10

Figure 5

 $X_{t} \rightarrow \{t \in \mathcal{F}_{t} \mid t \in \mathcal{F}_{t}\}$

GQGGSPTAM - VMSNTLLSAW - ALLVLYSFA - RAKFKQLL - IALYLQQNW - TYGPVFMCL - QAKWRLQTL - YLQQNWWTL - YPLHEQHGM - CPLSKILL -SSCSSCPLSKI - HRCQAIRKK - CLGGLLTMV - LTAGFLIFL - RLRAEAQVK - IEDPPFNSL - LLSAWILTA - RRRWRRLTV · PYLFWLAAI - YLLEMLWRL -НННННН (SEQ ID NO:98)

Figure 6

EBV-NPCa 1.02

0.71

-0.02

Figure 7

7/10

KIEELRQHL – MINNPPIPV – VTLWQRPLV – WASRELERF – LLWKGEGAV – YTAFTIPSI – IYQEPFKNLK – SLYNTVATL – AIIRILQQL – AIFQSSMTK – VIYQYMDDL – IPIVAIVALV - RLRPGGKKK - ILKEPVHGV - PLVKLWYQL - RPGGKKKYKL - KYKLKHIVW - TWETWWTEYW - EIKDTKEAL - KRWIILGLNK · KLWYTVYYGV -LVGPTPVNI - TPQDLNTML - YLAWVPAHK - ALVEICTEM - TLNAWVKVV - HHHHHH (SEQ ID NO.99)

HI values (n=3): 1.16 0.98 1.08 1.08 1.08 1.04 1.18 1.19 1.14 1.30 1.32 1.30 1.38 1.39 1.39 1.44 1.46 1.44 1.52 1.55 1.49 1.50 1.54 1.52 1.73 1.20

ILKEPVHGV - KRWIILGLNK - TLNAWVKVV - KIEELRQHL - YTAFTIPSI - WASRELERF - PLVKLWYQL - LVGPTPVNI - IPIVAIVALV - SLYNTVATL - MTNNPPIPV -LLWKGEGAV – TWETWWTEYW – AIFQSSMTK – RLRPGGKKK – ALVEICTEM – KLWVTVYYGV – YLAWVPAHK – AIIRLQQL – EIKDTKEAL – VTLWQRPLV – 0.98 0.61 IYQEPFKNLK - VIYQYMDDL - TPQDLNTML - RPGGKKKYKL - KYKLKHIVW - HHHHHH (SEQ ID NO:100)

HI values (n=3): 1.46 1.16 1.40 1.05 1.71 1.63 2.39 2.09 1.95 1.45 1.71 1.59 0.85 0.68 1.04 1.87 1.95 1.22 1.34 0.94 1.49 1/16 0.73 0.64 0.32

LIFCHSKKK - ILAGYGAGV - HMWNFISGI - QLFTFSPRR - VGIYLLPNR - FWAKHMWNF - YLVTRHADV - LSAFSLHSY - WMNIRLIAFA - YLLPRRGPRL -YLVAYQATV - RLIVFPDLGV - TLGFGAYMSK - IPFYGKAI - VLVGGVLAA - CTCGSSDLY - HHHHHH (SEQ ID NO:101)

LLFNILGGWV - KTSERSQPR - FLLLADARV - LLFLLLADA - RLGVRATRK - GVAGALVAFK - LPGCSFSIF - RMYVGGVEHR - VAGALVAFK - DLMGYPPLV -

6.0

Figure 8

HI values (n=3): 1.25 1.21 1.44 1.49 1.22 1.44 1.48 1.41 1.59 1.63 1.61 1.62 1.63 1.62 1.62 1.62 1.58 1.59 1.61 1.60 1.66 1.69 1.69 1.72 1.15 GVAGALVAFK – KTSERSQPR – RLGVRATRK – DLMGYIPLV – VLVGGVLAA – LLFNILGGWV – YLVAYQATV – YLLPRRGPRL – FWAKHMWNF – QLFTFSPRR – YLVTRHADV - WMNRLIAFA - CTCGSSDLY - VGIYLLPNR - ILAGYGAGV - LIFCHSKKK - HMWNFISG - IFLLLADARV - LLFLLADA - LSAFSLHSY -LPGCSFSIF - IPFYCKAI - RMYVGGVEHR - TLGFGAYMSK - RLIVFPDLGV - VAGALVAFK - HHHHHH (SEQ ID NO:102) 0.44

HI values (n=3): 1.46 1.68 1.55 1.44 1.61 1.67 2.24 2.07 1.93 0.73 0.10 0.38 1.35 2.36 2.19 1.87 1.65 1.41 1.88 1.77 1.58 1.17 1.23 1.59 1.22

/ PCT/AU2003/000910

9/10

Figure 9

WO 2004/007556

PCT/AU2003/000910

10/10

Figure 10

The State of the S

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

OTHER: