[Time	e : 3Hou	ırs]			[Total	marks :10	0]
N.B. :	(2) Fig	questions are compul gures to the right indic	ate full mar		3		
	(3) Use	e of logarithmic table/	non-progran	nmable calc	ulator is allo	owed .	
N = 6.0 F = 96, R = 8.3	314 J / K	²³ Z/mol	2.3031	u. = 1.66 x 10 = 931 Me RT / F = 0.05	V S		
	26×10^{-9}	·34 J.s		a. m. u.			
c = 3 x	10^{8}		$\mathbf{J} = 1$	27 a.m. u.	X		
1.	Atten A.	npt any four of the follo	/ \ -	ency separat	ion of line	s in the	5
	B. C. D. E.	rotational spectrum of Explain the structure of Show that the frequent bands in anharmonic What is Raman effect Stokes lines. The frequency separated Calculate the bond lend A substance was expected first Stokes line at the structure of the first Stokes line at the structure of the structure o	f a diatomic roof CH ₄ on the ncy of fundation are art and Ramanation in rotatingth.	molecule. e basis of dip mental, first e in the ratio n shift? Exp tional spectra tion of wave	ole moment. and second 1: 2: 3. lain Stokes a a of HI is 1	overtone and anti- 100 m ⁻¹ .	5 5 5 5
		shift.			2837		
2.	Atten A. B.	opt any four of the follow What is meant by relaw Dynamic method of merive from the Therrore.	tive lowering neasurement	of lowering of	of vapour pre		1+4
		elevation in boiling po	$Dint \Delta T_b = \frac{RT}{\Delta I}$	$\frac{r_0^2}{r_0^2} x^2$.			
	C. D.	Explain reverse Osmo State the important as rates.					3+2 5
	E. F.	Explain the Lindeman When 3g of phenol, w found to freeze at 3.55 its cryoscopic constar weight of phenol in be	as dissolved to 5°C. The free ont is 5.12 K	in 50g of ben zing point of	zene the solubenzene is 5	ution was .5 ⁰ C and	5 5
3.	Atten	npt any four of the follo	- / Ja	7			
	A. B.	Explain the behaviour Explain how reaction hydrolysis be explained tracers.	mechanism o	of Friedel-cra	ofts reaction a		5 5
	C.	With the help of suita fertile material.	able example	distinguish b	oetween fissi	le and	5
	D.	Explain the Carbon –	Nitrogen cyc	ele.			5

26319 Page 1 of 4

	E.	Calculate Q – value for the following nuclear reaction –	5
		$^{24}\text{Mg} + ^{2}\text{H} \rightarrow ^{22}\text{Na} + ^{4}\text{He}$	
		Given isotopic masses in a.m.u. –	
		Mg = 23.9927 $H = 2.0147$	
	_	Na = 22.0013 $He = 4.004$	
	F.	Wooden artifact and a freshly cut tree give 8.3 and 24.9 counts	5
		min ⁻¹ g ⁻¹ carbon. The half-life period of carbon is 57760 years.	
		Calculate the age of the wooden artifact.	
_			
4.		mpt any four of the following:	_/
	A.	Distinguish between physical adsorption and chemical adsorption.	5
	В.	What is adsorption phenomenon? Adsorption of hydrogen on a	5
		certain catalyst material was determined at 78 K. The BET plot data	
		yielded the value of v_m as 1.56 x 10^{-3} dm ³ g ⁻¹ of the adsorbent, when	
		reduced to NTP. Assuming that the gas molecule adsorbed in first	
		layer are closely packed, calculate the surface area of the adsorbent.	
	0	Molecular area of hydrogen is 15.84 x 10 ⁻²⁰ m ² .	Nº
	C .	What are emulsions? How are they classified? Give example for	5 2
	N.D.	each type. Write a short note on electrophorosis of selections.	5
	D. E.	Write a short note on electrophoresis of sols. Give applications of surfactants.	5 5
	F. c	Discuss origin of charge on colloidal particle due to effect of	5 5
	r.	dispersion medium and self-dissociation of colloidal solutions.	9
		dispersion medium and sen-dissociation of conoidal solutions.	
5. ×	Ancs	wer the following:	
J. ΔC	Alls	State whether the following statements are true or false (Any five)	5
A.	a	Unit of dipole moment is cm.	J
	b.	Water has a linear structure.	
	c.	Rotational spectra are observed only for molecules having permanent	
	367	dipole moment	
	d.	For non-linear molecules degrees of freedom is (3n-6).	
	e.	In stretching vibrations, the bond length changes.	
	f.	Rocking vibrations are in-plane vibrations.	
	g,	Twisting vibrations are out-of-plane vibrations.	
	h.	For a molecule to be Raman active, there must be change in	
		polarizability of the molecule.	
В.		Choose the correct answer. (Any five)	5
	a.	For an Ideal solution, Van't Hoff factor 'i' is	
77		i) Zero	
		ii) Equal to one	
		iii) Less than one	
		iv) Greater than one	
	b.	method is used for determination of molecular weight of	
		solute.	
		i) Static	
		ii) Rast	
		iii) Dynamic	
		iv) Berkeley and Hartley's	

Page 2 of 4

c.	of solute is dissolved in 1 Kg of solvent.
	i) 1 g
	ii) 1 Kg
	iii) 1 mole
	iv) 1 milli mole
a	
d.	When NaCl solution is separated from water by a semipermeable
	membrane,
	i) Water flows into NaCl Solution
	ii) Both flow into each other
	iii) There is no flow of water or NaCl
	iv) NaCl flows into water
e.	The minimum energy molecule must possess so that they can react
	upon collision is called as
	i) Boltzmann energy
	ii) Collision energy
	iii) Activation energy
	iv) Molecular energy
f.	Stop flow method is used to study kinetics of reactions.
Ax.	i) Slow
	ii) Very slow
	iii) Fast
	iv) Moderate
g.	Maxwell-Boltzmann law gives explanation about
9 P.	i) basis for bimolecular reactions
	ii) The collision theory
	iii) Activated complex theory.
	iv) Distribution of velocities of gases
	1v) Distribution of velocities of guses
	Select and write the appropriate answer. (Any five).
a.	In a nuclear reaction
	i. Change in nucleus of the atom takes place.
	ii. New elements can be produced.
	iii. Rate of reaction is dependent on temperature.
(Q)	iv. They are not often accompanied by the release of enormous
	amounts of energy.
b.	A Geiger-Muller tube is a
~ •	i. gas ionization detector
	ii. cloud chamber
	iii. fluorescence detector
	iv. photographic detector
~	Which of the following describes what occurs in the fission process?
C.	
	iii. Two light nuclei are combined into a heavier one.
	iv. A proton is split into three parts.

	²³⁹ Pu + alpha particle →		
	ru + aipiia particie -	+	neutron
	i. 2 ¹⁰⁶ Rh		
	ii. ²³⁵ U		
	iii. ²³³ Pa		
	iv. ²⁴² Cm		
e.	The neutrons used for fission pr	ocess a	re called as
•	i. Fast neutrons	00000 0	to curred us,
	ii. Slow neutrons		
	iii. fermions		
	iv. bosons		
f.	After three half-lives, what frac	tion of t	he original radioactive
	isotope remains?	tion of t	or original radioactive
	i. 1/16		
	ii. 1/4		
	iii. 1/8		
	iv. 1/2		
σ	A nuclear reactor that produces	more fi	uel than it consumes for
<u>5</u>	power production are called.	more re	ier than it consumes for
	i. Power reactor		
	ii. Batch reactor		
	iii. Breeder reactor		
	iv Thermal reactor		
	iv. Thermal reactor Name the moderator used in the	e nuclea	r reactor?
h.	Name the moderator used in the	e nuclea	r reactor?
h.	Name the moderator used in the i. Plutonium	e nuclea	r reactor?
h.	Name the moderator used in the i. Plutonium ii. Thorium	e nuclea	r reactor?
h.	Name the moderator used in the i. Plutonium ii. Thorium iii. Graphite	e nuclea	r reactor?
h.	Name the moderator used in the i. Plutonium ii. Thorium	e nuclea	r reactor?
h.	Name the moderator used in the i. Plutonium ii. Thorium iii. Graphite iv. Berilium		
h.	Name the moderator used in the i. Plutonium ii. Thorium iii. Graphite iv. Berilium Match the colum		(Any five)
a.	Name the moderator used in the i. Plutonium ii. Thorium iii. Graphite iv. Berilium Match the colum [AgCl]Cl- K+	mn: Š	(Any five) Catalysts
b.	Name the moderator used in the i. Plutonium ii. Thorium iii. Graphite iv. Berilium Match the colum [AgCl]Cl- K+ Vanishing cream	mn: vi.	(Any five) Catalysts Electrokinetic phenomenon
b. c.	Name the moderator used in the i. Plutonium ii. Thorium iii. Graphite iv. Berilium Match the colum [AgCl]Cl- K+ Vanishing cream Adsorbent	mn: i. ii. iii.	(Any five) Catalysts Electrokinetic phenomenon Colloidal electrolyte
b. c. d.	Name the moderator used in the i. Plutonium ii. Thorium iii. Graphite iv. Berilium Match the colum [AgCl]Cl- K+ Vanishing cream Adsorbent Sedimentation potential	mn: i. ii. iii. iv.	(Any five) Catalysts Electrokinetic phenomenon Colloidal electrolyte Negative charged
b. c.	Name the moderator used in the i. Plutonium ii. Thorium iii. Graphite iv. Berilium Match the colum [AgCl]Cl- K+ Vanishing cream Adsorbent Sedimentation potential Unequal distribution of NaCl	mn: i. ii. iii.	(Any five) Catalysts Electrokinetic phenomenon Colloidal electrolyte
b. c. d.	Name the moderator used in the i. Plutonium ii. Thorium iii. Graphite iv. Berilium Match the colum [AgCl]Cl- K+ Vanishing cream Adsorbent Sedimentation potential Unequal distribution of NaCl across semipermeable	mn: i. ii. iii. iv.	(Any five) Catalysts Electrokinetic phenomenon Colloidal electrolyte Negative charged
b. c. d.	Name the moderator used in the i. Plutonium ii. Thorium iii. Graphite iv. Berilium Match the colum [AgCl]Cl- K+ Vanishing cream Adsorbent Sedimentation potential Unequal distribution of NaCl across semipermeable membrane in presence of	mn: i. ii. iii. iv.	(Any five) Catalysts Electrokinetic phenomenon Colloidal electrolyte Negative charged
b. c. d. e.	Name the moderator used in the i. Plutonium ii. Thorium iii. Graphite iv. Berilium Match the colum [AgCl]Cl- K+ Vanishing cream Adsorbent Sedimentation potential Unequal distribution of NaCl across semipermeable membrane in presence of protein	mn: i. ii. iv. <u>v</u> .	(Any five) Catalysts Electrokinetic phenomenon Colloidal electrolyte Negative charged Positive charged
b. c. d. e.	Name the moderator used in the i. Plutonium ii. Thorium iii. Graphite iv. Berilium Match the colum [AgCl]Cl- K+ Vanishing cream Adsorbent Sedimentation potential Unequal distribution of NaCl across semipermeable membrane in presence of protein Potassium oleate	mn: i. ii. iii. v. v.	(Any five) Catalysts Electrokinetic phenomenon Colloidal electrolyte Negative charged Positive charged
b. c. d. e.	Name the moderator used in the i. Plutonium ii. Thorium iii. Graphite iv. Berilium Match the colum [AgCl]Cl- K+ Vanishing cream Adsorbent Sedimentation potential Unequal distribution of NaCl across semipermeable membrane in presence of protein	mn: i. ii. iv. v. vi. vii.	(Any five) Catalysts Electrokinetic phenomenon Colloidal electrolyte Negative charged Positive charged Electroosmosis Donnan equilibrium
b. c. d. e.	Name the moderator used in the i. Plutonium ii. Thorium iii. Graphite iv. Berilium Match the colum [AgCl]Cl- K+ Vanishing cream Adsorbent Sedimentation potential Unequal distribution of NaCl across semipermeable membrane in presence of protein Potassium oleate	mn: i. ii. iv. v. vi. vii. viii.	(Any five) Catalysts Electrokinetic phenomenon Colloidal electrolyte Negative charged Positive charged Electroosmosis Donnan equilibrium Water in oil
b. c. d. e.	Name the moderator used in the i. Plutonium ii. Thorium iii. Graphite iv. Berilium Match the colum [AgCl]Cl- K+ Vanishing cream Adsorbent Sedimentation potential Unequal distribution of NaCl across semipermeable membrane in presence of protein Potassium oleate	mn: i. ii. iii. v. vi. vii. viii. ix.	(Any five) Catalysts Electrokinetic phenomenon Colloidal electrolyte Negative charged Positive charged Electroosmosis Donnan equilibrium Water in oil Oil in water
b. c. d. e.	Name the moderator used in the i. Plutonium ii. Thorium iii. Graphite iv. Berilium Match the colum [AgCl]Cl- K+ Vanishing cream Adsorbent Sedimentation potential Unequal distribution of NaCl across semipermeable membrane in presence of protein Potassium oleate	mn: i. ii. iv. v. vi. vii. viii.	(Any five) Catalysts Electrokinetic phenomenon Colloidal electrolyte Negative charged Positive charged Electroosmosis Donnan equilibrium Water in oil