

Training Manual

42PQ30 Plasma Display

Advanced Single Scan Troubleshooting

NOTICE:

ALL INFORMATION CONTAINED WITHIN THIS PACKAGE IS BASED ON PRE-SALES MODEL. INFORMATION SUBJECT TO CHANGE AT FINAL PRODUCTION

Updated: September 23rd, 2009

OUTLINE

Overview of Topics to be Discussed

Section 1

Contact Information, Preliminary Matters, Specifications, Plasma Overview, General Troubleshooting Steps, Disassembly Instructions, Voltage and Signal Distribution

Section 2

Circuit Board Operation, Troubleshooting and Alignment of :

- Switch mode Power Supply
- Y SUS Board
- Y Drive Boards (Receives Y Drive signals from Y-SUS PWB)
- Z SUS Output Board (Connects directly with FPC to Panel)
- Control Board
- X Drive Boards (2)
- Main Board

NEW • Main Power Switch, deactivates all inputs from IR or Keys

Overview of Topics to be Discussed

42PQ30 Plasma Display

Section 1

This Section will cover Contact Information and remind the Technician of Important Safety Precautions for the Customers Safety as well as the Technician and the Equipment.

Basic Troubleshooting Techniques which can save time and money sometimes can be overlooked. These techniques will also be presented.

This Section will get the Technician familiar with the Disassembly, Identification and Layout of the Plasma Display Panel.

At the end of this Section the Technician should be able to Identify the Circuit Boards and have the ability and knowledge necessary to safely remove and replace any Circuit Board or Assembly.

Preliminary Matters (The Fine Print)

IMPORTANT SAFETY NOTICE

The information in this training manual is intended for use by persons possessing an adequate background in electrical equipment, electronic devices, and mechanical systems. In any attempt to repair a major Product, personal injury and property damage can result. The manufacturer or seller maintains no liability for the interpretation of this information, nor can it assume any liability in conjunction with its use. When servicing this product, under no circumstances should the original design be modified or altered without permission from LG Electronics. Unauthorized modifications will not only void the warranty, but may lead to property damage or user injury. If wires, screws, clips, straps, nuts, or washers used to complete a ground path are removed for service, they must be returned to their original positions and properly fastened.

CAUTION

To avoid personal injury, disconnect the power before servicing this product. If electrical power is required for diagnosis or test purposes, disconnect the power immediately after performing the necessary checks. Also be aware that many household products present a weight hazard. At least two people should be involved in the installation or servicing of such devices. Failure to consider the weight of a product could result in physical injury.

ESD NOTICE

(Electrostatic Static Discharge)

Today's sophisticated electronics are electrostatic discharge (ESD) sensitive. ESD can weaken or damage the electronics in a manner that renders them inoperative or reduces the time until their next failure. Connect an ESD wrist strap to a ground connection point or unpainted metal in the product. Alternatively, you can touch your finger repeatedly to a ground connection point or unpainted metal in the product. Before removing a replacement part from its package, touch the anti-static bag to a ground connection point or unpainted metal in the product. Handle the electronic control assembly by its edges only. When repackaging a failed electronic control assembly in an anti-static bag, observe these same precautions.

REGULATORY INFORMATION

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential installation. This equipment generates, uses, and can radiate radio frequency energy, and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: Reorient or relocate the receiving antenna; Increase the separation between the equipment and the receiver; Connect the equipment to an outlet on a different circuit than that to which the receiver is connected; or consult the dealer or an experienced radio/TV technician for help.

CONTACT INFORMATION

Customer Service (and Part Sales) **(800) 243-0000**

Technical Support (and Part Sales) **(800) 847-7597**

USA Website (GCSC) **aic.lgservice.com**

Customer Service Website **us.lgservice.com**

LG CS Academy **lgcsacademy.com**

<http://136.166.4.200>
<http://136.166.44.7>

LCD-DV:	32LG40, 42LG60, 42LG70, 47LG90, 42LH20
PLASMA:	42PG20, 50PG20, 42PQ20, 42PQ30

**Plasma Panel
Alignment Handbook**

LG Web Training **lge.webex.com**

Published March 2009 by LG Technical Support and Training

**LG Electronics Alabama, Inc. 201
James Record Road, Huntsville,
AL, 35813.**

SECTION 1: PLASMA OVERVIEW

Safety & Handling Regulations

1. Approximately 10 minute pre-run time is required before any adjustments are performed.
2. Refer to the Voltage Sticker inside the Panel when making adjustments on the Power Supply, Y SUS and Z SUS Boards.
Always adjust to the specified voltage level (+/- ½ volt).
3. Be cautious of electric shock from the PDP module since the PDP module uses high voltage, check that the Power Supply and Drive Circuits are completely discharged because of residual current stored before Circuit Board removal.
4. C-MOS circuits are used extensively for processing the Drive Signals and should be protected from static electricity.
5. The PDP Module must be carried by two people. **Always carry vertical NOT horizontal.**
6. **The Plasma television should be transported vertical NOT horizontal.**
7. Exercise care when making voltage and waveform checks to prevent costly short circuits from damaging the unit.
8. Be cautious of lost screws and other metal objects to prevent a possible short in the circuitry.
9. **New Panels and Frames are much thinner than previous models. Be Careful with flexing these panels. Be careful with lifting Panels from a horizontal position. Damage to the Frame mounts or panel can occur.**
10. **New Plasma models have much thinner cabinet assemblies and mounts. Be extremely careful when moving the set around as damage can occur.**

Checking Points to be Considered

1. Check the appearance of the Replacement Panel and Circuit Boards for both physical damage and part number accuracy.
2. Check the model label. Verify model names and board model matches.
3. Check details of defective condition and history. Example: Y Board Failure, Mal-discharge on screen, etc.

Basic Troubleshooting Steps

Define, Localize, Isolate and Correct

•**Define** Look at the symptom carefully and determine what circuits could be causing the failure. Use your senses Sight, Smell, Touch and Hearing. Look for burned parts and check for possible overheated components. Capacitors will sometimes leak dielectric material and give off a distinct odor. Frequency of power supplies will change with the load, or listen for relay closing etc. **Observation of the front Power LED may give some clues.**

•**Localize** After carefully checking the symptom and determining the circuits to be checked and after giving a thorough examination using your senses the first check should always be the DC Supply Voltages to those circuits under test. Always confirm the supplies are not only the proper level but be sure they are noise free. If the supplies are missing check the resistance for possible short circuits.

•**Isolate** To further isolate the failure, check for the proper waveforms with the Oscilloscope to make a final determination of the failure. Look for correct Amplitude Phasing and Timing of the signals also check for the proper Duty Cycle of the signals. Sometimes “glitches” or “road bumps” will be an indication of an imminent failure.

•**Correct** The final step is to correct the problem. Be careful of ESD and make sure to check the DC Supplies for proper levels. Make all necessary adjustments and lastly always perform a Safety AC Leakage Test before returning the product back to the Customer.

42PQ30 Product Information

This section of the manual will discuss the specifications of the 42PQ30 Advanced Single Scan Plasma Display Panel.

720P PLASMA HDTV

42" Class (41.5" diagonal)

- 720p HD Resolution**
- Dual XD Engine™**
- 20,000:1 Contrast Ratio**
- Fluid Motion**
- 3x HDMI™ V.1.3 with Deep Color**
- AV Mode (Cinema, Sports, Game)**
- Clear Voice**
- LG SimpLink™ Connectivity**
- Invisible Speaker System**
- 100,000 Hours to Half Brightness (Typical)**
- PC Input**

42PQ30 Specifications Logo Familiarization

HD RESOLUTION 720p HD Resolution Pixels: 1024 (H) × 768 (V)
High definition television is the highest performance segment of the DTV system used in the US. It's a wide screen, high-resolution video image, coupled with multi-channel, compact-disc quality sound.

HDMI (1.3 Deep Color) Digital multi-connectivity

HDMI (1.3 Deep color) provides a wider bandwidth (340MHz, 10.2Gbps) than that of HDMI 1.2, delivering a broader range of colors, and also drastically improves the data-transmission speed.

Invisible Speaker

Personally tuned by Mr. Mark Levinson for LG

TAKE IT TO THE EDGE newly introduces 'Invisible Speaker' system, guaranteeing first class audio quality personally tuned by Mr. Mark Levinson, world renowned as an audio authority. It provides Full Sweet Spot and realistic sound equal to that of theaters with its Invisible Speaker.

Dual XD Engine

Realizing optimal quality for all images

One XD Engine optimizes the images from RF signals as another XD Engine optimizes them from External inputs. Dual XD Engine presents images with optimal quality two times higher than those of previous models.

42PQ30 Specifications Logo Familiarization

AV Mode "One click" - Cinema, Sports, Game mode.

TAKE IT TO THE EDGE is a true multimedia TV with an AV Mode which allows you to choose from 3 different modes of Cinema, Sports and Game by a single click of a remote control.

Clear Voice Clearer dialogue sound

Automatically enhances and amplifies the sound of the human voice frequency range to provide high-quality dialogue when background noise swells.

Save Energy, Save Money

It reduces the plasma display's power consumption.

The default factory setting complies with the Energy Star requirements and is adjusted to the comfortable level to be viewed at home.
(Turns on Intelligent Sensor).

Save Energy, Save Money

Home electronic products use energy when they're off to power features like clock displays and remote controls. Those that have earned the ENERGY STAR use as much as 60% less energy to perform these functions, while providing the same performance at the same price as less-efficient models. Less energy means you pay less on your energy bill. Draws less than 1 Watt in stand by.

42PQ30 Specifications FluidMotion Familiarization

FluidMotion (180 Hz Effect)

Enjoy smoother, clearer motion with all types of programming such as sports and action movies.

The moving picture resolution give the impression of performance of up to 3x the panels actual refresh rate.

**LCD
60Hz**

**PDP
180Hz**

**Moving Picture Response Time
is 16.5 milliseconds
(120Hz takes MPRT to 8.25ms)**

**Panel Response Time
is 4 to 8 milliseconds**

**Moving Picture Response Time
is 5.44 milliseconds**

**Panel Response Time
is less than 1 millisecond**

42PQ30 Remote Control

TOP PORTION

BOTTOM PORTION

Rear and Side Input Jacks

42PQ30 Product Dimensions

DISASSEMBLY SECTION

This section of the manual will discuss Disassembly, Layout and Circuit Board Identification, of the 42PQ30 Advanced Single Scan Plasma Display Panel.

Upon completion of this section the Technician will have a better understanding of the disassembly procedures, the layout of the printed circuit boards and be able to identify each board.

42PQ30 Removing the Back Cover

To remove the back cover, remove the 26 screws
(The Stand does not need to be removed).

Indicated by the arrows.

PAY CLOSE ATTENTION TO THE TYPE, SIZE AND LENGTH
Of the screws when replacing the back cover.
Improper type can damage the front.

42PQ30 Circuit Board Layout

Disassembly Procedure for Circuit Board Removal

Notes: 1) All Plugs listed are from left to right Pin 1,2, 3, ETC.
2) Remember to be cautious of ESD as some semiconductors are CMOS and prone to static failure

Switch Mode Power Supply Board Removal

Disconnect the following connectors: P811, P813, SC101

Remove the 8 screws holding the PWB in place

Remove the PWB

When replacing, be sure to readjust the Va/Vs voltages in accordance with the Panel Label.

Confirm VSC, -Vy and ZBias as well.

Y-SUS Board Removal

Disconnect the following connectors: P201, P206, P101, P202

Remove the 7 screws holding the PWB in place

Remove the PWB by lifting slightly and sliding it to the right.

When replacing, be sure to readjust the Va/Vs voltages in accordance with the Panel Label.

Confirm VSC, -Vy and Zbias as well.

Y Drive Board Removal

Disconnect the following Flexible Ribbon Connectors: P1, P2, P3, P4, P5, P6, P7 and P8

Disconnect the following connectors: P201, P801, P101, P202

Remove the 3 screws holding the PWB in place

Remove the PWB by lifting slightly and sliding the PWB to the left unseating P204 and P200 from the Y-SUS PWB.

Note: PWB stand-offs have a small collar. The board must be lifted slightly to clear these collars.

Disassembly Procedure for Circuit Board Removal (2)

Z-SUS Board Removal

Disconnect the following connectors: P3, P2.

Disconnect the following connectors: P6 and P7. These are the FPC cables. Pull the locking caps to the right. Lift carefully the Flexible Printed Circuits (FPCs) and slide them out to the right.

Remove the 5 screws holding the PWB in place

Lift the PWB up and remove the PWB.

When replacing, be sure to readjust the Va/Vs voltages in accordance with the Panel Label.

Confirm VS, -Vy and Zbias as well.

Main Board Removal

Disconnect the following connectors: P301, P1001, P1002 and P1005

Remove the 1 screws holding on the decorative plastic piece on the right side

Remove the 4 screws holding the PWB in place and Remove the PWB.

Control Board Removal

Disconnect the following connectors: P121 LVDS, P101, P111 Ribbon, P161 Ribbon and P162 Ribbon.

Remove the 4 screws holding the PWB in place Remove the PWB.

Front Key and LED PWB Removal

Remove the 2 screws holding the Key PWB in place. Remove the PWB. Disconnect P101, (Note:

LED PWB is behind the Key PWB. Remove it's 2 screws and remove. Disconnect J1 and J2.

X-Drive Boards Removal

Disconnect the following connectors: P232, P211, P311 and P331

Remove the 6 screws holding the Heat Sink in place. Rock back and slide down to remove.

Disconnect the following connectors: P201 through P206 and P301 through P306

Remove the 3 screws holding each of the X Drive PWBS in place (8 total)

Remove the PWBS.

X Drive Circuit Board Removal Continued

Lay the Plasma down carefully on a padded surface.

Make sure AC is removed and remove the Back Cover and the Stand.

Carefully remove the LVDS Cable **P121** from the Control Board by pressing the Locking Tabs together and Pull the connector straight back to remove the cable see illustration below. (This prevents possible damage).

- (A) Remove the Stand mount (4 Screws removed during back removal).
- (B) Remove the Stand Metal Support Bracket (4 Screws).
- (C) Remove connector P1001 and P1005.
- (D) Remove the 4 screws from the Main Board Mounting Bracket. (Note: Decorative Plastic Piece on right does not need to be removed)
Carefully reposition the Main Board and Mounting Bracket up and off to the right side.
- (E) Remove the metal support Braces marked "E". Note: There is a Left and a Right brace. (3 Screws per/bracket).
- (F) Remove the 13 screws holding the Heat Sink.

X-DRIVE PWBS REMOVAL:

Disconnect all TCP ribbon cables from the defective X-Drive PWB. Remove the 4 screws holding the PWB in place. Remove the PWB. Reassemble in reverse order. Recheck Va / Vs / VScan / -VY / Z-Drive.

Getting to the X Circuit Boards

Warning: Never run the TV with the TCP Heat Sink removed

Warning Shorting Hazard: Conductive Tape. Do not allow to touch energized circuits.

Left and Right X Drive Removal

After removing the back cover, Main PWB is lifted out of the way, 6 screws removed from heat sink covering heat sink and TCPs removed, the X-Drive PWBs can be removed.

Showing the tape on the connectors P232 or P331

Peel the tape off the connectors

Gently pry the locking mechanism upward and remove the ribbon cable from the connector.

Removing TCPs.

Gently lift the locking mechanism upward on all
TCP connectors P201~206 or P301~306

Cushion (Chocolate)
TCP
Flexible ribbon cable

Carefully lift the TCP ribbon up and off.

TCP (Tape Carrier Package) Generic Removal Precautions

Note:

These picture are taken from a different model. But the precautions are the same.

TCP Connector Removal

Lift up the lock as shown by arrows.
**(The Lock can be easily broken.
It needs to be handled carefully.)**

Pull TCP apart as shown by arrow.
**(TCP Film can be easily damaged.
Handle with care.)**

Left and Right X Drive Removal

Remove the 4 screws for either PWB or 7 total for both. (The Center screw secures both PWBS)

Left X Board drives the right side of the screen

Right X Board drive the left side of the screen

SECTION 2: CIRCUIT OPERATION, TROUBLESHOOTING AND CIRCUIT ALIGNMENT SECTION

42PQ30 Plasma Display

This Section will cover Circuit Operation, Troubleshooting and Alignment of the Power Supply, Y-SUS Board, Y Drive Boards, Z-SUS Board, Control Board, Main Board and the X Drive Boards.

At the end of this Section the technician should understand the operation of each circuit board and how to adjust the controls. The technician should be able with confidence to troubleshoot a circuit board failure, replace the defective circuit and perform all necessary adjustments.

42PQ30 SIGNAL and VOLTAGE DISTRIBUTION BLOCK DIAGRAM

Y Drive PWB

Y-SUS PWB

M5V, Vs, Va

SMPS PWB

SMPS OUTPUT VOLTAGES IN STBY
STB +5V (AC Voltage Det)
SMPS OUTPUT VOLTAGES IN RUN
STB +5V, 17V, 12V to Main PWB
Vs, Va and M5V to Y-SUS

SMPS Turn On Commands
Relay On
M5 On
VS On

Display Panel
Horizontal Address Reset

Z SUS PWB

Vs and
Er Com

Vs

M5V / 17V
Z Drive Signals

CONTROL PWB

RGB Logic Signals
3.3V

Va

RGB Logic Signals
3.3V

Va

Set Off: STB +5
AC Voltage Det

5V
STBY

MAIN PWB

Speakers

Control Keys
Master Power Switch

X-PWB-Left

X-PWB-Right

Display Panel Vertical Address

PANEL LABEL EXPLANATION

(1) MODEL : PDP42G20001
 (2)
 (3) 809K442G2000568.AKLGGDD
 (4) Voltage Setting:5V/ Va:60/ Vs:193
 (5) H.A / -180 / 140 / N.A / 60
 (6) LG Electronics Inc. (7) KOREA 2008.09

(9)
 (10)
 (11) MODEL : PDP42G2#/# #
 (12) E227451/E227452
 Total Max Watt: (13)
 Max Volt(---): (14)
 Max Amps: (15)

(1) Model Name	(9) TUV Approval Mark
(2) Bar Code	(10) UL Approval Mark
(3) Manufacture No.	(11) UL Approval No.
(4) Adjusting Voltage DC, Va, Vs	(12) Model Name
(5) Adjusting Voltage (Set Up / -Vy / Vsc / Ve / Vzb)	(13) Max. Watt (Full White)
(6) Trade name of LG Electronics	(14) Max. Volts
(7) Manufactured date (Year & Month)	(15) Max. Amps
(8) Warning	

ADJUSTMENT NOTICE

All adjustments (DC or Waveform) are adjusted in WHITE WASH.
Customer's Menu, Select "Options", select "ISM" select "WHITE WASH".

It is critical that the DC Voltage adjustments be checked when;

- 1) SMPS, Y-SUS or Z-SUS PWB is replaced.
- 2) Panel is replaced, Check Va/Vs since the SMPS does not come with new panel
- 3) A Picture issue is encountered
- 4) As a general rule of thumb when ever the back is removed

ADJUSTMENT ORDER "IMPORTANT"

DC VOLTAGE ADJUSTMENTS

- 1) **SMPS PWB: Va Vs** (Always do SMPS first)
- 2) **Y-SUS PWB: Adjust -Vy, Vscan,**
- 3) **Z-SUS PWB: Adjust ZBias**

WAVEFORM ADJUSTMENTS

- 1) **Y-SUS PWB: Set-Up, Set-Down**

The Waveform adjustment is only necessary

- 1) When the Y-SUS PWB is replaced
- 2) When a "Mal-Discharge" problem is encountered
- 3) When an abnormal picture issues is encountered

Remember, the Voltage Label MUST be followed,
it is specific to the panel's needs.

Model : PDP42G2####
809K442G2000568.AKLGGDD

Voltage Setting:5V / Va:60 / Vs:193
NA / -180 / 140 / N.A. / 80

Set-Up -VY Vscan Ve Z_BIAS

Manufacturer Bar Code

Panel "Rear View"

All label references are from a specific panel.
They are not the same for every panel encountered.

SWITCH MODE POWER SUPPLY Troubleshooting

This Section of the Presentation will cover troubleshooting the Switch Mode Power Supply for the Single Scan Plasma. Upon completion of the section the technician will have a better understanding of the operation of the Power Supply Circuit and will be able to locate voltage and test points needed for troubleshooting and alignments.

- DC Voltages developed on the SMPS
- Adjustments VA and VS.

- Always refer to the Voltage Sticker located on the back of the panel, in the upper Left Hand side for the correct voltage levels for the VA, VS, -VY, Vscan, and Z Bias as these voltages will vary from Panel to Panel even in the same size category.
- Set-Up and Ve are just for Label location identification and are not adjusted in this panel.

SMPS P/N EAY58349601

Check the silk screen label on the top center of the PWB of the Power Supply itself to identify the PWB P/N.

We will examine the Operation of this Power Supply.

42PQ30 SMPS PWB LAYOUT (POWER SUPPLY)

Switch Mode Power Supply Overview

The Switch Mode Power Supply Board Outputs to the :

	VS	Drives the Display Panel Horizontal Grid
Y-SUS Board	VA	Primarily responsible for Display Panel Vertical Grid
	M5V VCC	Used to develop Bias Voltages on the Y-SUS, X Drive, and Control Boards

Main Board	16V	Audio B+ Supply
	5V	Signal Processing Circuits

There are 2 adjustments located on the Power Supply Board VA and VS. The 5V VCC is pre-adjusted and fixed. All adjustments are made with relation to Chassis Ground. Use “Full White Raster” 100 IRE

Adjustments	VA	RV901
	VS	RV951

Switch Mode Power Supply Circuit Layout

Power Supply Basic Operation

AC Voltage is supplied to the SMPS Board at Connector SC101 from the AC Input Filter. Standby 5V is developed from 90V source supply (which during run measures 359V). This supply is also used to generate all other voltages on the SMPS.

The 5V (standby) voltage is routed to the Sub Micon circuit (IC701) on the SMPS and through P813 to the Main PWB for Micon (IC1) operation. AC detect Pin 18, P813 is generated on the SMPS by monitoring the AC input and rectifying a small sample voltage. This **AC Detect** Voltage is routed to (IC701) the Sub Micon on the SMPS and through pin 18 of PG813 to the Micon (IC1) located on the Main Board and is used to **Reset** the Main Board.

When the Micon (IC1) on the Main Board receives an “ON” Command from either the Keyboard or the Remote IR Signal it outputs a high called **RL ON**. This signal first turns on a DC level shifter on the main board which creates a voltage called 5V General. This 5V General now provides the pull up voltages which supply the output control circuits to the SMPS. The RL ON enters the SMPS Board (Pin 19 of P813). At the same time, the 5V General voltage also creates a signal called **5V Det**. This is routed to the main Micon and to the SMPS (Pin 17 PG813) notifying the SMPS sub-Micon that the main board is functioning. The RL ON Voltage is sensed by the Sub Micon (IC701) circuit which causes the Relay Drive Circuit to close both Relays RL101 and RL103 bringing the PFC source up to full power by increasing the 90V standby to 340V which can be read Fuse F801. At this time the 17V and 12V sources becomes active and are sent to the Main Board via P813. (17V pins 1 and 2 and 12V at pins 5 and 6 of P813)

The next step is for the Micon (IC1) on the Main Board to output a high on **M5V ON** Line to the SMPS at P813 Pin 21 which is sensed by the Sub Micon IC (IC701) on the SMPS turning on the M5V line from P811pins 9 and 10 to the Y-SUS board.

The last step to bring the supply to “Full Power” occurs when the Micon (IC100) on the Main Board brings the **VS-ON** line high at Pin 20 of P813 on the SMPS Board which when sensed by the Sub Micon IC (IC701) turns on the VA and VS Supplies (VA pins 6 and 7 is brought high before VS pins 1 and 2) and output from P811 to the Y-SUS board.

42PQ30 POWER SUPPLY TURN ON COMMANDS FROM MAIN PWB

Power Supply Generic Troubleshooting Tips

Remember if a voltage is missing check for proper resistance before proceeding

Understanding the Power On Sequence when Troubleshooting a possible Power Supply Failure will simplify the process of isolating which circuit board failed to operate properly. In this Section we will investigate the Power on Sequence and examine ways to locate quickly where the failure occurred.

When Power is pressed, listen for a Relay Click, the click of the Relay is an indication of RL-ON going high. RL-ON is sent from the Main Board to the SMPS and when present the IC701 controls the operation of both Relays. RL-ON going High and no Relay is a failure of the SMPS, RL-ON staying low is a failure of the Main Board or something between.

Relay Operation means that the SMPS if working properly will output the 17V and 12V Supplies to the Main Board. These voltages will allow the Tuner, Audio and Video Circuits on the Main Board to function and if connected to an Antenna Input, Audio would be present. If the Relays closes and these supplies failed suspect a problem with the SMPS or an excessive load on the line.

The next step of operation calls for the M5V ON line from the Main Board to the SMPS to go high on P813 pin 21. A high on the M5V ON Line activates the M5V line to the Y-SUS Board. Loss of M5V results in no "Raster", no Display Panel Reset, no Y, Z, Control or X Board operation. Loss of M5V and/or M5V ON going high could be caused by any of these boards or failure of the SMPS. M5V ON staying low indicates a problem on the Main Board.

VS-ON is the last step of the Power Sequence and is responsible for bringing the VS and VA Voltages up. The VS ON signal pin 20 P813 is sent from the Main Board to the SMPS as a high, VS and VA and full operation of the Display Panel are now enabled. Loss of VS-ON results in loss of VA and VS and no Raster, no Panel Display Reset but Audio would be present. If VS-ON went high and VS and VA were missing the problem could be caused by a failure on the SMPS or a circuit using these voltages. A Resistance check should narrow the possible failures quickly.

Switch Mode Power Supply Static Test

This test can confirm the proper operation of the SMPS without the need to exchange the board. This Power Supply can operate in a No Load State. This means that by applying AC power to SC101 and all other plugs disconnected, this power supply will function.

Simply removing P813 (Lower Right Hand Side of the PWB), will cause the “AUTO” Pin 22 to go high from its normal low state allowing the Power Supply to go to full power on mode when AC Power is Supplied. *Be careful after this test and make sure the VA and VS lines have discharged before reconnecting the supply cables.*

For a “Stand-Alone” static test for the Power Supply, apply the usual 2 100Watt light Bulbs in series test between Vs output and chassis ground for a simulated 200Watt load. If the Power Supply operates in this condition, it is assured it can maintain its output power under load.

If the Y-SUS, Z-SUS and X PWBs are working normal, when the SMPS comes up to full power on, “Display Panel Reset” will be visible. Shorting the Auto Pattern Gen. test points at this time should result with test patterns on the screen.

If either Y-SUS or Z-SUS is causing the power supply to shutdown, unplug the Z-SUS.

(Remember, Vs is routed to the Z-SUS PWB P3 from the Y-SUS P206 pins 1 & 2.

This will allow the Y-SUS to function. Also, if you unplug the Y-SUS from the SMPS and jump the 5V VCC line to any 5V location on the Control Board the Control PWB will function.

42PQ30 SMPS STATIC TEST UNDER LOAD

Using two 100 Watt light bulbs, attach one end to Vs and the other end to ground. Apply AC to SC101. If the light bulbs turn on, allow the SMPS to run for several minutes to be sure it will operate under load. If this test is successful and all other voltages are generated, you can be assured the power supply is OK.

Note: The light bulb test is not necessary for the SMPS to turn on and stay on. This SMPS will run without a load. But it is necessary to test the SMPS under a load.

Switch Mode Power Supply Static Test (Forcing on the SMPS in stages)

Remove AC apply the next step and then reapply AC

P811 disconnected from the Power Supply.
P813 disconnected from the Main PWB.

(A) Ground the Auto Ground (Pin 22) on P813

(B) When AC Power is applied, Check AC Det (Pin 18) and 5V Stand-By (Pins 9 ~ 12) are 5V.

(C) 100Ω ¼ watt resistor added from 5V STB (Pins 9 ~ 12) to RL ON (Pin 19) closes relay RL101 and RL103 turning on the 17V and 12V Supplies.

(D) 100Ω ¼ watt resistor added from 5V STB (Pins 9 ~ 12) to M5 ON (Pin 21) brings the M5V (P811 pins 9, 10) line high.

(E) 100Ω ¼ watt resistor added from 5V STB (Pins 9 ~ 12) to VS ON (Pin 20) brings the VA and VS (P811 pins 1 and 2 Vs and Pins 6 and 7 Va) Lines high

SMPS Va and Vs Adjustments

**Use Full White Raster
“White Wash”**

Pull P813.
Apply AC Power.
Power Supply Starts
Automatically.

This Power Supply will
come up and run with
“NO” load on
P811.
But, check using 200W
light bulb test.

With P811 in circuit,
Y & Z SUS Run.
Both Y and Z waveforms
are generated.

Va TP
P811
Pin 6 or 7

Vs TP
P811
Pin 1 or 2

Model : PDP 42G2####
Voltage Setting:5V / Va:60V / Vs:194V
N.A. / -175 / 140 / N.A. / 80
Max Watt : 330 W (Full White)

VA Adjust
VR502 VS Adjust
VR901

Important:
Use the Panel Label
Not this book for all
voltage adjustments.

TRAINING CENTER

P813 Odd Pins ID and Voltages

Voltage and Diode Mode Measurements for the SMPS

P813 CONNECTOR "SMPS" to "Main PWB" P301

Pin	Label	STBY	Run	Diode Mode
1	17V	0V	17.3V	Open
3	Gnd	Gnd	Gnd	Gnd
5	12V	0V	12V	Open
7	Gnd	Gnd	Gnd	Gnd
9	5V	5V	5V	1.1V
11	5V	5V	5V	1.1V
13	Gnd	Gnd	Gnd	Gnd
15	Gnd	Gnd	Gnd	Gnd
17	5V Det	.15V	5V	3.1V
19	RL On	0V	3.73V	Open
21	M5 ON	0V	3.24V	Open
23	Stby 5V	5V	5V	Open

Pin	Label	STBY	Run	Diode Mode
2	17V	0V	17.3V	Open
4	Gnd	Gnd	Gnd	Gnd
6	12V	0V	12V	Open
8	Gnd	Gnd	Gnd	Gnd
10	5V	5V	5V	1.1V
12	5V	5V	5V	1.1V
14	Gnd	Gnd	Gnd	Gnd
16	Gnd	Gnd	Gnd	Not Used
18	AC Det	5V	5V	1.0V
20	VS On	0V	3.2V	Open
22	Auto Gnd	Gnd	Gnd	Open
24	*Key On	0V	0V	Open

*Note: If the Key On line is 4.38V, the Main Power Switch is open.
Stand-By 5V will shut off.

Diode Mode Readings taken with all connectors Disconnected. DVM in Diode Mode.

SC101 and P811 Pin ID and Voltages

Voltage and Resistance Measurements for the SMPS.

SC101 AC INPUT

Connector	Pin Number	Standby	Run	Diode Mode
SC101	1 and 3	120VAC	120VAC	Open

P811 CONNECTOR "Power Supply PWB" to Y-SUS

Pin	Label	STBY	Run	Diode Mode
1	Vs	0V	*194V	Open
2	Vs	0V	*194V	Open
3	Gnd	0V	0V	Gnd
4	n/c	n/c	n/c	n/c
5	Gnd	0V	0V	Gnd
6	Va	0V	*60V	Open
7	Va	0V	*60V	Open
8	Gnd	0V	0V	Gnd
9	M5V	0V	5V	2.99V
10	M5V	0V	5V	2.99V

*** Note: This voltage will vary in accordance with Panel Label**

Diode Mode Readings taken with all connectors Disconnected. DVM in Diode Mode.

Y-SUS PWB SECTION (Overview)

Y-SUS Board develops the Y-Scan to the Y-Drive boards.

This Section of the Presentation will cover troubleshooting the Y-SUS Board for the Single Scan Plasma. Upon completion of the Section the technician will have a better understanding of the operation of the circuit and will be able to locate voltage and resistance test points needed for troubleshooting and alignments.

- Adjustments
- DC Voltage and Waveform Checks
- Resistance Measurements

Operating Voltages

<u>SMPS Supplied</u>	VA VS M5V	VA supplies the Panel Vertical Grid (Routed to the X-Boards) VS Supplies the Panel Horizontal Grid (Also routed to the Z-SUS) 5V Supplies Bias to Y-Z SUS, (Routed to the Control Board)
<u>Y-Z SUS Developed</u>	-VY VR502 VSC VR501 V SET UP VR601 V SET DN VR602 15V	-VY Sets the Negative excursion of the Y SUS Drive Waveform VSC Set the amplitude of the complex waveform. Ramp UP sets amplitude of the Top Ramp of the Drive Waveform V Set Down sets the Pitch of the Bottom Ramp of the Drive Waveform To the Control Board then routed to the Z-SUS board
<u>Floating Ground</u>	FG 5V	Used on the Y-Drive boards (Measured from Floating Gnd)

Y-SUS PWB Layout

Y-SUS PWB P207 Explained

VSC and -VY Adjustments

Y SUSTAIN ADJUSTMENT DETAILS

**These are DC level
Voltage Adjustments**

CAUTION: Use the actual panel label and not the book for exact voltage settings.

Lower Left Side of PWB

Set should run for 15 minutes, this is the "Heat Run" mode.
Set screen to "White Wash" mode or 100 IRE White input.

Adjust -Vy to Panel Label voltage (+/- 1V)
Adjust VSC to Panel Label voltage (+/- 1V)

Y-Drive Signal Overview

**Y-Drive PWB Test Point
(Top of Y-Drive Board)**

① Overall signal observed 4mS/div

② Highlighted signal from waveform above observed 400uS/div

③ Highlighted signal from waveforms above observed 100uS/div

NOTE: The Waveform Test Point is fragile. If by accident the land is torn and the run lifted, make sure there are no lines left to right in the screen picture.

NOTE: The two test points just below and to the left will also work for the Y-Drive waveform Test Point.

TRAINING CENTER

Observing (Capturing) the Y-Drive Signal for Vsetup Ramp-Up (RAMP)

Set must be in "WHITE WASH" All other DC Voltage adjustments should have already been made.

Fig 1:

As an example of how to lock in to the Y-Drive Waveform.
Fig 1 shows the signal locked in at 4ms per/div. Note the
2 blanking sections.
The signal for SET-UP is outlined within the Waveform

FIG1
4mS

FIG2
2mS

FIG3
400uS

Fig 3:

At 400us per/div. the signal for SET-UP is now easier to recognize. It is outlined within the Waveform

FIG4
40uS

Fig 4:

At 40uSec per/division, the adjustment for SET-UP can be made.

Area to
be adjusted

Observing (Capturing) the Y-Drive Signal for Vsetup Ramp-Down

Set must be in "WHITE WASH" All other DC Voltage adjustments should have already been made.

Fig 1:

As an example of how to lock in to the Y-Drive Waveform. Fig 1 shows the signal locked in at 4ms per/div. Note the 2 blanking sections. The signal for SET-DN is outlined within the Waveform

FIG1
4mS

FIG2
2mS

FIG3
400uS

Fig 3:

At 400us per/div. the signal for SET-DN is now easier to recognize. It is outlined within the Waveform

FIG4
40uS

Fig 4:

At 40uSec per/division, the adjustment for SET-DN can be made.

V-Set Up and V-Set Down Adjustments

Y SUSTAIN ADJUSTMENT DETAILS (Vs, Va, VSC and –VY must have already been completed). Set in White Wash.

Observe the Picture while making these adjustments. Normally, they do not have to be done.

SET-UP ADJUST:

- 1) Adjust **VR601** and set the **(A)** portion of the signal to match the waveform above.

SET-DN ADJUST:

2) Adjust **VR401** and set the **(B)** time of the signal to match the waveform above.

ADJUSTMENT LOCATION:

Just to the bottom right of the right hand heat sink.

V Set Up Too High or Low

Ramp (Vset UP) too high

Ramp (Vset UP) too low

Panel Waveform Adjustment

The center begins to wash out and arc due to **Vset UP**
Peaking too late and alters the start of the **Vset DN** phase.

Very little alteration to the picture, the wave form indicates a distorted **Vset UP**. The peak widens due to the **Vset UP** peaking too quickly.

V Set Dn Too High or Low

Vset Dn swing is Minimum 110uS Max 200uS+

Vset DN too high

Vset DN too low

Panel Waveform Adjustment

All of the center washes out due to increased Vset_DN time.

The center begins to wash out and arc due to decreased Vset DN time.

Y SUS Block Diagram

Block Diagram of Y-Sustain Board

Y-SUS How to Check the Output FETs

Name is printed on the components. Readings “In Circuit”.

IRFP4332

Forward: 0.5V ~ 0.7V
Reverse: 1.1V

IRGP4086

Forward: 0.6V ~ 0.7V
Reverse: 1.3V

IRFP4332

Forward: 0.4V ~ 0.5V
Reverse: Open

IRGP4086

Forward: 0.39V ~ 0.5V
Reverse: Open

IRFP4332

Forward: 1.6V
Reverse: Open

IRGP4086

Forward: 0.6V ~ 0.7V
Reverse: 1.3V

RF2001

Forward: Shorted
Reverse: Shorted

30N45T

Forward: 0.6V
Reverse: Shorted

K3667

Forward: 0.22V
Reverse: Open

RF2001

Forward: 0.4V
Reverse: Open

30N45T

Forward: 0.6V
Reverse: Shorted

K3667

Forward: 0.5V
Reverse: Open

RF2001

Forward: 0.38V
Reverse: Open

IRGP4086

Forward: 0.39V ~ 0.5V
Reverse: Open

K3667

Forward: 0.4V ~ 0.5V
Reverse: Open

Y-SUS P201 to SMPS P812 Plug Information

Voltage and Resistance Measurement

P201 CONNECTOR "Y-SUS" to "Power Supply PWB" P811

Pin	Label	STBY	Run	Diode Mode
1	Vs	0V	*193V	Open
2	Vs	0V	*193V	Open
3	NC	NC	NC	NC
4	Gnd	Gnd	Gnd	Gnd
5	Gnd	Gnd	Gnd	Gnd
6	Va	0V	*60V	Open
7	Va	0V	*60V	Open
8	Gnd	Gnd	Gnd	Gnd
9	M5V	0V	5V	1.1V
10	M5V	0V	5V	1.1V

* Note: This voltage will vary in accordance with Panel Label

Diode Mode Readings taken with all connectors Disconnected. DVM in Diode Mode.

Y-SUS P202 to X Drive P211 and P311 Plug Information

Voltage and Diode Mode Measurements for the Y SUS Board

P202 CONNECTOR "Y-SUS PWB" to "X-Drive" Left P233

Pin	Label	STBY	Run	Diode Mode
1	Gnd	Gnd	Gnd	Gnd
2	Gnd	Gnd	Gnd	Gnd
3	Gnd	Gnd	Gnd	Gnd
4	nc	nc	nc	nc
5	VA	0V	*60V	Open
6	VA	0V	*60V	Open
7	VA	0V	*60V	Open

* Note: This voltage will vary in accordance with Panel Label

Diode Mode Readings taken with all connectors Disconnected. DVM in Diode Mode.

Y-SUS P801 to Z Drive P1 Plug Information

Voltage and Diode Mode Measurements for the Y SUS Board

P206 Connector Y-SUS to Z Drive P1 Plug Information

Pin	Label	STBY	Run	Diode Mode
1	Er Com	0V	* 94.9V	Open
2	Er Com	0V	*94.9V	Open
3	nc	nc	nc	nc
4	Gnd	Gnd	Gnd	Gnd
5	Gnd	Gnd	Gnd	Gnd
6	nc	nc	nc	nc
7	VS	0V	*193V	Open
8	VS	0V	*193V	Gnd

* Note: This voltage will vary in accordance with Panel Label

Diode Mode Readings taken with all connectors Disconnected. DVM in Diode Mode.

P101 Y-SUS to Control PWB P111 Plug Information

Voltage Measurements for the Y SUS Board

These connector pins are too close to read without possible damage to the PWB

Actually a 30 Pin Connector "Measurements can be made on the Control PWB

Y-SUS Board B+ checks for the P101 connector.

FS201

5V to run the Control Board.

Also sent to the Z-SUS Board.

Routed through the Control Board.

Leaves the Control Board on P101 pins 10.

Standby: 0V

Run: 5V

Diode Check: 1.1V

15V Test Point

15V to run the Z-SUS Board.

Routed out P101 through the Control Board.

Leaves the Control Board on P101 pins 11 and 12.

Standby: 0V

Run: 15V

Diode Check: 0.78V

Y-SUS P101 to Control P111 Plug Information

"Y-SUS" P101 CONNECTOR to "Control PWB" P111

Pin	Label	STBY	Run	Diode Mode
1	Gnd	Gnd	0V	Gnd
3	n/a	0V	0.1V	0.65V
5	n/a	0V	1.28V	0.65V
7	n/a	0V	0V	0.65V
9	n/a	0V	0.6V	0.65V
11	n/a	0V	2.96V	0.65V
13	n/a	0V	1.4V	0.65V
15	n/a	0V	0V	0.65V
17	n/a	0V	1.89V	0.65V
19	n/a	0V	2.16V	0.65V
21	Gnd	Gnd	Gnd	Gnd
23	Gnd	Gnd	Gnd	Gnd
25	5V	0V	5V	0.44V
27	5V	0V	5V	0.44V
29	15V	0V	15V	Open

Pin	Label	STBY	Run	Diode Mode
2	n/a	0V	0.12V	0.65V
4	n/a	0V	0.13V	0.65V
6	n/a	0V	0.2V	0.65V
8	n/a	0V	1.05V	0.65V
10	n/a	0V	0.17V	0.65V
12	n/a	0V	2.5V	0.65V
14	n/a	0V	0V	0.65V
16	n/a	0V	0V	0.65V
18	n/a	0V	0V	Open
20	Gnd	Gnd	Gnd	Gnd
22	Gnd	Gnd	Gnd	Gnd
24	5V	0V	5V	0.44V
26	5V	0V	5V	0.44V
28	5V	0V	5V	0.44V
30	15V	0V	15V	Open

Diode Mode Readings taken with all connectors Disconnected. DVM in Diode Mode.

Y-SUS P207 Voltage Readings

All voltages taken from Floating Ground.

Warning: Do not hook scope ground up unless set plugged into an isolation transformer.

P207

Pin Label Voltage

1)	VSC	140V
2)	VSC	140V
3)	Nc	
4)	5V VF	5V
5)	5V VF	5V
6)	SUS_DN	FGnd
7)	CLK	0.96V
8)	STB	2.3V
9)	OC1	2.3V
10)	DATA	0V
11)	Nc	
12)	SUS_DN	FGnd

Y-SUS P207 (Drive Output Plug) TESTING

P104 OF THE
Y-DRIVE PWB P207 OF THE
Y-DRIVE PWB

CHECKING THE Y-SUS PWB
Disconnected from the Y-DRIVE PWB

Readings from Floating Ground (Pin 1)

	RED LEAD Blk Lead FG	BLACK LEAD Red Lead FG
Y Drive Sig	1.) VSC	Open
Y Drive Sig	2.) VSC	Open
	3.) nc	Open
	4.) FG+5V	1.78V
	5.) FG+5V	1.78V
Floating Gnd	6.) SUS Dn	0V
	7.) CLK	1.57V
	8.) LE	1.57V
	9.) OC1	1.67V
	10.) Data	1.57V
	11.) nc	1.67V
Floating Gnd	12.) SUS Dn	0V

Meter in the Diode Mode

TRAINING CENTER

Y-DRIVE PWB SECTION (Y-Drive Explained)

Y-Drive Board works as a path supplying the Sustain and Reset waveforms which are made in the Y SUSTAIN PWB and sent to the Panel through SCAN DRIVER IC's.

The Y Drive Boards supply a waveform which selects the horizontal electrodes sequentially.

* 42PQ30 uses 8 DRIVER ICs on 1 Y Drive Board

Y DRIVE WAVEFORM TEST POINT

To facilitate scope attachment, solder a small wire (Stand Off) at this point.

Y Drive PWB ID

5 Volts, Y Drive and Logic Signals from Y SUS Board are supplied to the Drive Board on Connectors P104.

Y Drive P207 Voltage Readings

*All voltages taken
from Floating
Ground.*

*Warning: Do not
hook scope ground
up unless set
plugged into an
isolation
transformer.*

Pin	Label	Voltage
1)	VSC	140V
2)	VSC	140V
3)	Nc	
4)	5V VF	5V
5)	5V VF	5V
6)	SUS_DN	FGnd
7)	CLK	0.96V
8)	STB	2.3V
9)	OC1	2.3V
10)	DATA	0V
11)	Nc	
12)	SUS_DN	FGnd

Y-Drive PWB Buffer Troubleshooting

CHECKING THE Y-DRIVE PWB Disconnected from the Y-SUS PWB

P104 OF THE
Y-DRIVE PWB

P207 OF THE
Y-DRIVE PWB

Readings from Floating Ground (Pin 1)

		RED LEAD Blk Lead FG	BLACK LEAD Red Lead FG
Y Drive Sig	12.) VSC	1.15V	Open
Y Drive Sig	11.) VSC	1.15V	Open
	10.) nc	Open	Open
	9.) FG+5V	0.4V	Open
	8.) FG+5V	0.4V	Open
Floating Gnd	7.) SUS Dn	0V	0V
	6.) CLK	0.5V	2.9V
	5.) LE	0.5V	2.9V
	4.) OC1	0.5V	Open
	3.) Data	0.62V	Open
	2.) nc	0.48V	Open
Floating Gnd	1.) SUS Dn	0V	0V

Meter in the Diode Mode

Pin 1
Floating
Ground

Pin 1 on Y-SUS
is backwards
compared to
Y-Drive

Removing (Panel) Flexible Ribbon from Y Drive

Flexible Ribbon Cables shown are from a different model, but process is the same.

To remove the Ribbon Cable from the connector first carefully lift the Locking Tab from the back and tilt it forward (lift from under the tab as shown in Fig 1).

The locking tab must be standing straight up as shown in Fig 2.

Lift up the entire Ribbon Cable gently to release the Tabs on each end. (See Fig 3)
Gently slide the Ribbon Cable free from the connector.

Fig 1

Fig 2

Fig 3

To reinstall the Ribbon Cable, carefully slide it back into the slot see (Fig 3), be sure the Tab is seated securely and press the Locking Tab back to the locked position see (Fig 2 then Fig 1).

Y Drive Flexible Ribbon Incorrectly Seated

The Ribbon Cable is clearly improperly seated into the connector. You can tell by observing the linearity.

The Locking Tab will offer a greater resistance to closing in the case.

Note the cable is crooked. In this case the Tab on the Ribbon cable was improperly seated at the top. This can cause bars, lines, intermittent lines abnormalities in the picture.

Remove the ribbon cable and re-seat it correctly.

Y Drive BUFFER Troubleshooting

YOU CAN CHECK ALL 8 BUFFER ICs USING THIS PROCEDURE

BACK SIDE OF Y-DRIVE PWB

BUFFER IC FLOATING GROUND (FGnd)

Using the "Diode Test" on the DVM, check the pins for shorts or abnormal loads.

**RED LEAD ON
BUFFER IC FGnd**

Indicated by white outline

**BLACK LEAD ON "ANY"
OUTPUT LUG.
READING 0.78 V**

**BLACK LEAD ON
BUFFER IC FGnd**

Indicated by white outline

**RED LEAD ON "ANY"
OUTPUT LUG.
READING "OPEN"**

- Any of these output lugs can be tested.
- Look for shorts indicating a defective Buffer IC

128 Output Pins per/buffer

6 Ribbon cables (Horizontal Grids)

768 Total Horizontal Grids controlling Vertical resolution

Troubleshooting the Z-SUS Drive section of the Y-SUS PWB

This Section of the Presentation will cover troubleshooting the Z-Drive section of the Y-Z-SUS Board Assembly. Upon completion of this section the Technician will have a better understanding of the circuit and be able to locate voltage and resistance test points needed for troubleshooting and alignment.

Locations

- DC Voltage and Waveform Test Points
- Z BIAS Alignment
- Resistance Test Points

<u>Operating Voltages</u>	<u>Y SUS Supplied</u>	VS
		5V Vcc
		15V
	<u>Developed on Y SUS</u>	Z Bias

Z-SUS Board Layout

No IPMs

Read the Label on the back of the upper left hand side of the panel.

Model : PDP42G2####

809K442G2000568.AKLGGDD

Voltage Setting:5V / Va:60 / Vs:193
NA / -180 / 140 / N.A. / 80

Logic Signals from the Control PWB
Also +15V and +5V

Z-SUS Waveform

Provides the SUSTAIN PULSE and ERASE PULSE for generating SUSTAIN discharge in the panel by receiving Drive signals from the Y-Z-SUS PWB.

This waveform is supplied to the panel through FPC (Flexible Printed Circuit).

Z-Bias is a “DC” adjustment.

The effects of this adjustment can be observed on the scope looking at the Z-SUS output.

Oscilloscope Connection Point.
J27 to check Z Output waveform.
Right Hand side Center.

Note: The Vzb Adjustment is a DC level adjustment

This Waveform is just for reference to observe the effects of Zbz adjustment

VZ (Z-Bias) Adjustment

Read the Label on the back of the upper left hand side of the panel.
Adjust using VR8.

Model : PDP42G2####

809K442G2000568.AKLGGDD

Voltage Setting:5V / Va:60 / Vs:193
NA / -180 / 140 / N.A. / 80

Z Bias

VZ (Z-Bias) TP Right Side R49 or R50

Measured from Chassis Ground

Set should run for 15 minutes, this is the “Heat Run” mode.
Set screen to “White Wash” mode or 100 IRE White input.

Adjust VZ (Z-Bias) to Panel Label ($\pm 1V$)

TRAINING CENTER

Z-SUS Block Diagram

Diagram of Z Sustain Board

Z-SUS P3 Connector to Y-SUS P206 Voltages and Resistance

Voltage and Diode Mode Measurements

P3 CONNECTOR "Z-SUS PWB" to "Y-SUS Out" P206

Pin	Label	STBY	Run	Diode Mode
1	ER COM	0V	*94.9V	Open
2	ER COM	0V	*94.9V	Open
3	nc	nc	nc	Open
4	Gnd	Gnd	Gnd	Gnd
5	Gnd	Gnd	Gnd	Gnd
6	nc	nc	nc	Open
7	VS	0V	*193V	Open
8	VS	0V	*193V	Open

* Note: This voltage will vary in accordance with Panel Label

Diode Mode Readings taken with all connectors Disconnected. DVM in Diode Mode.

Z-SUS P2 Connector to Control P101 Voltages and Resistance

Voltage and Diode Mode Measurements

P2 CONNECTOR "Z-SUS PWB" to "Control" P101

Pin	Label	STBY	Run	Diode Mode
1	Z SUS DN	0V	0.79V	2.8V
2	Z SUS UP	0V	0.13V	2.8V
3	Z ER UP	0V	0.19V	2.8V
4	Z ER DN	0V	0.4V	2.8V
5	Z BIAS	0V	1.9V	2.8V
6	OE	0V	0.8V	Open
7	CTRL_OE	0V	1.9V	Open
8	Gnd	Gnd	Gnd	Gnd
9	Gnd	Gnd	Gnd	Gnd
10	+5V	0V	4.9V	Open
11	+15V	0V	16.9V	Open
12	+15V	0V	16.9V	Open

Pin 1 on Left side
of connector

Diode Mode Readings taken with all connectors Disconnected. DVM in Diode Mode.

CONTROL PWB SECTION

This Section of the Presentation will cover troubleshooting the Control Board Assembly. Upon completion of this section the Technician will have a better understanding of the circuit and be able to locate voltage and resistance test points needed for troubleshooting.

- DC Voltage and Waveform Test Points
- Resistance Test Points

<u>Signals</u>	<u>Main Board Supplied</u>	LVDS Signal
	<u>Control Board Generated</u>	Y and Z Sustain Drive Signals (Luminance) X Board Drive Signals (Color)
<u>Operating Voltages</u>	<u>Y SUS Supplied</u>	+5V (Also Routed to the Z-SUS) +15V (Routed to the Z-SUS)
	<u>Developed on the Control board</u>	+1.8V (2) +3.3V

Control PWB Identified

42PQ30 INTERCONNECT DIAGRAM CONTROL BOARD BLOW UP

Troubleshooting Tips

Unplug all connectors. Jump 5V from SMPS (P813 pins 9~12) to pin 1 of IC211. Observe LED. If it blinks, most likely Control PWB is OK. FL111 and FL112 should be checked.

Disconnect P201 from the Y SUS Board and connect a Jumper from Pin 10 of P812 (M5V) to Pin 10 P201 (5V). The 5V will be routed to the Control Board via FS201, Ribbon Cable P101 on the Y SUS Board and FL111 and FL112 on the Control Board for Control Board operation verification.

With the unit on, if D201 does not blink on/off, check 5V supply.
If present replace the Control PCB

Short across the two points labeled Auto Gen to generate a test pattern.
(LVDS Cable Must Be Removed)

* If the complaint is no video and shorting the points (AutoGen) causes video to appear suspect the Digital PCB.

Control PWB Testing

For quick PWB test.
(All PWB connectors
Disconnected).

Jump 5V from Power Supply to IC201 Pin 1.
(Bottom Pin)
If the LED blinks,
Pretty much guaranteed,
PWB is OK.

Confirm B+ to Control PWB VS_DA
Control PWB Check
3V ~ 3.3V
(Note, this TP can also be Used as an External Trigger For scope when locking onto the Y-Drive signal).

When the Television has a problem related to;

- 1) Shutdown caused by Main PWB
- 2) No Video (No Picture) Sound OK.

This can be checked by the following.

(1) Disconnect the Main PWB from all connectors. Apply AC power.

Since P813 is not connected to the SMPS, the set will come on.

Short the two pins on the Auto Test Pattern lands.

If there is a picture of cycling colors and patterns, the Y-SUS, Y-Drive, Z-SUS, Power Supply, Control PWB, X-Boards, TCPs and Panel are all OK.

Use the same test for problem (2) above to tell if the No Video is caused by the Main PWB or failed LVDS cable.

Quick observation
Of LED blinking
Tell if the Control Board is running.

Checking the Crystal X101 "Clock" on the Control Board

CONTROL
PWB CRYSTAL
LOCATION

DC Voltage Check
1.5V ~ 1.8V

Check the output of the Oscillator (Crystal).
The frequency of the sine wave is 25 MHZ.
Missing this clock signal will halt operation of
the panel drive signals.

TRAINING CENTER

Control LVDS Signals

Pins are close together,
Use Main PWB side.

P1002 on Main Board

Connector P1002 Configuration

● - indicates signal pins.

LVDS Cable
P121 on Control PWB shown.
Press two outside tabs inward
to release.

LVDS

Video Signals from the Main Board to the Control Board are referred to as Low Voltage Differential Signals or LVDS. Their presence can be confirmed with the Oscilloscope by monitoring the LVDS signals with no input signal selected while pressing the Menu Button "on" and "off" with the Remote Control or Keypad. Loss of these Signals would confirm the failure is on the Main Board!

Example of Normal Signals measured at 200mv/cm at 5μs/cm.

Control PWB Signal Block

The Control Board supplies Video Signals to the TCP (Tape Carrier Package) ICs.

If there is a bar defect on the screen, it could be a Control Board problem.

Control Board to X Board Address Signal Flow

This Picture shows Signal Flow Distribution to help determine the failure depending on where the it shows on the screen.

Basic Diagram of Control Board

Removing the LVDS Cable from the Control PWB

The LVDS Cable has two “Interlocks” that must be disengaged to remove the LVDS Cable.

To Disengage, press the two Locking Tabs Inward and pull the plug out.

Control PWB Connector P111 to Y-SUS P101 Voltages and Resistance

P111 These pins are very close together. When taking Voltage measurements use Caution.

Control PWB Connector P111 Silkscreen Can Be Misleading

P111 The silkscreen indicates the left side is 1~15 and the right side is 16~30, however this is not correct. Use the normal Left Side Odd and Right Side Even pin configuration.

Odd Pins

Silkscreen Label:
The pin numbers are correct. Remember Odd pins on the left and even pins are on the right.

Even Pins

Example:

Pin ①

Pin ②

Silkscreen Label:
The pin numbers are correct. Remember Odd pins on the left and even pins are on the right.

TRAINING CENTER

Control P111 to Y-SUS P101 Plug Information

P111 CONNECTOR "Control PWB" to "Y-SUS" P101

Pin	Label	STBY	Run	Diode Mode
1	15V	0V	15V	Open
3	5V	0V	5V	0.97V
5	5V	0V	5V	0.97V
7	5V	0V	5V	0.97V
9	Gnd	Gnd	Gnd	Gnd
11	Gnd	Gnd	Gnd	Gnd
13	OE	0V	0V	Open
15	SUS-DN	0V	0V	2.8V
17	ER_DN	0V	0V	2.8V
19	Set_Up	0V	2.5V	2.8V
21	Dummy 5	0V	0.17V	2.8V
23	Dummy 1	0V	1.05V	2.8V
25	ER_UP	0V	0.2V	2.8V
27	SUS_UP	0V	0.13V	2.8V
29	SET_DN	0V	0.12V	2.8V

Pin	Label	STBY	Run	Diode Mode
2	15V	0V	15V	Open
4	5V	0V	5V	0.97V
6	5V	0V	5V	0.97V
8	Gnd	Gnd	Gnd	Gnd
10	Gnd	Gnd	Gnd	Gnd
12	Dummy 2	0V	2.16V	2.8V
14	OC2	0V	1.89V	2.8V
16	Data	0V	0V	2.8V
18	BLK	0V	1.4V	2.8V
20	STB	0V	2.96V	2.8V
22	CLK	0V	0.6V	2.8V
24	Dummy 3	0V	0V	2.8V
26	Dummy 4	0V	1.28V	2.8V
28	CTRL_OE	0V	0.1V	3.2V
30	Gnd	Gnd	Gnd	Gnd

Diode Mode Readings taken with all connectors Disconnected. DVM in Diode Mode.

Control P101 to Z-SUS P2 Plug Information

Diode Mode Readings taken with all connectors Disconnected. DVM in Diode Mode.

P101 CONNECTOR "Control PWB" to "Z-SUS" P2

Pin	Label	STBY	Run	Diode Mode
1	Z SUS Dn	0V	0.75V	Open
2	Z SUS Up	0V	0.18V	0.65V
3	Z ER Up	0V	0.16V	0.65V
4	Z ER Dn	0V	0.3V	0.65V
5	Z Bias	0V	2V	0.65V
6	OE	0V	0.07V	0.65V
7	CTRL_OE	0V	0.06V	0.65V
8	Gnd	Gnd	Gnd	Gnd
9	Gnd	Gnd	Gnd	Gnd
10	5V	0V	4.9V	0.97V
11	15V	0V	17V	Open
12	15V	0V	17V	Open

Pin 1 at the bottom
of the connector

Control PWB Connector P161 and P162 to X-Drive PWBs

P161 and P162 Connectors from the "Control PWB" to "X Drive"

These pins are covered with tape for transportation issues. (Tape can be removed).

Left and Right X Drive (Commonly known as A-BUS)

The X Drive PWBs deliver the Color drive signals to the Vertical Grids.
The 42PQ30 has a Left and a Right X-Drive board. Each with 6 connectors to a TCP.
And each TCP with 2 buffers.
Each buffer controls 128 vertical grids lines.

Generally speaking, there isn't many active components on the X-Drive PWBs
(Printed Circuit Boards). So they are not prone to failure.

In this section the X-Drive will be discussed and information given allowing the service technician to determine if a failure has occurred in the X-Drive section.

X-BOARDS CONTROL THE VERTICAL GRIDS WHICH DETERMINE THE HORIZONTAL PIXEL COUNT.
TOTAL HORIZONTAL GRIDS 3072. TOTAL HORIZONTAL PIXELS 1024.

Total Buffer Count = 24
(TCPs = 12 @ 2 buffers per/TCP)

Total Output Pins = 3072
(128 per buffer X 24 total)

Total Pixels (Horizontal) 1024
(3072 / 3) Three cells per pixel (Red, Green and Blue)

Left and Right X Drive (Commonly known as A-BUS)

Warning: DO NOT attempt to run the set with the Heat Sink over the TCPs removed. After a very short time, these ICs will begin to self destruct due to overheating.

TCP (Tape Carrier Package)

TCP ICs supply RGB 16 bit signal to the PDP by connecting the PAD Electrode of the PANEL with the X Board.

Back side of TCP Ribbon

TCP Testing

1

- On any Gnd

10,11,12,13,14,27,28,
29,30,37,38,39,40,41

-

On any Va

4,5,6,7,44,45,46,47

Typical Reading 0.65V

Reverse leads Reading Open

ANY X BOARD CONNECTION TO TCP P201~P206 or P301~P306

Flexible Printed Ribbon Cable to TCP IC

Look for any TCPs being discolored.
Ribbon Damage. Cracks, folds
Pinches, scratches, etc...

TCP 3.3V B+ Check

Checking IC221 for 3.3V, use center pin.

Warning: DO NOT attempt to run the set with the Heat Sink over the TCPs removed.

Left X PWB

TCP Visual Observation. Damaged TCP

**Warning: DO NOT attempt to run the set with the Heat Sink over the TCPs removed.
After a very short time, these ICs will begin to self destruct due to overheating.**

This damaged TCP can,

- a) Cause the Power Supply to shutdown
- b) Generate abnormal vertical bars
- c) Cause the entire area driven by the TCP to be “All White”
- d) Cause the entire area driven by the TCP to be “All Black”
- e) Cause a “Single Line” defect

X Drive Left Connector P211 Voltages and Resistance

Voltage and Diode Mode Measurements for the X Drive Board

P211 CONNECTOR "X Drive Left" to "X-Drive Right" P311

Pin	Label	STBY	Run	Diode Mode
1	Gnd	0V	Gnd	Gnd
2	Gnd	0V	Gnd	Gnd
3	15V	0V	15.4V	Open
4	n/c	0V	n/a	n/a
5	n/c	0V	n/a	n/a
6	VPP/ER1	0V	*61.4V	Open
7	VPP/ER1	0V	*61.4V	Open
8	VA	0V	*64.9V	Open

*** Note: This voltage will vary in accordance with Panel Label**

Diode Mode Readings taken with all connectors Disconnected. DVM in Diode Mode.

X Drive Right Connector P311 Voltages and Resistance

Voltage and Diode Mode Measurements for the X Drive Board

P311 CONNECTOR "X Drive Right" to "X Drive Left" P211

Pin	Label	STBY	Run	Diode Mode
1	Gnd	Gnd	Gnd	Gnd
2	Gnd	Gnd	Gnd	Gnd
3	15V	0V	15V	Open
4	n/c	0V	n/a	n/a
5	n/c	0V	n/a	n/a
6	VPP/ER2	0V	*61.4V	Open
7	VPP/ER2	0V	*61.4V	Open
8	VA	0V	*64.9V	Open

* Note: This voltage will vary in accordance with Panel Label

Diode Mode Readings taken with all connectors Disconnected. DVM in Diode Mode.

X Drive Left and Right Connector P232 and P331

Voltage and Diode Mode Measurements for the X Drive Board

**Voltage and Diode Mode Measurements for these connectors are difficult to read.
They are too close together for safe test.**

The pins are also protected by a layer of tape to prevent the tab from being released causing separation from the Cable and the connector.

Main PWB Troubleshooting

This Section of the Presentation will cover troubleshooting the Main Board. Upon completion of this Section the technician will have a better understanding of the operation of the circuit and will be able to locate voltage and resistance test points needed for troubleshooting and alignments.

- DC Voltage and Waveform Checks
- Resistance Measurements

Operating Voltages

SMPS Supplied

5V Stand-By
12V
16V

Developed on the Main Board

5V
3.3V (2)
2.5V
1.8V

Main PWB Layout and Identification

42PQ30 INTERCONNECT DIAGRAM MAIN PWB BLOW UP

Front of the board

*Grayed out ICs are on the back of the board

Back of the board

3.1V REG	8V regulator For IC505 Tuner B+	EDID
IC302	IC503	IC805
1) 5.4V 2) 5V 3) 1.3V 4) 0V	5) 0.9V 6) 1.5V 7) 4.9V 8) 3.6V	1) 12V 2) 0V 3) 8V 4) 4.7V 5) 4.7V 6) 4.7V 7) 3.3V 8) 4.7V

NV RAM	HDCP	1.8V MST	1.2V VSB	IC602, IC802, IC803 1,2,3,4) 0V
IC201	IC202	IC304	IC502	5) 4.6V
1,2) 0V	1,2) 0V	1) 0.63V	1) 3.3V	6) 4.6V
3,4) 0V	3,4) 0V	2) 1.85V	2) 1.27V	7) 3.3V
5, 6) 3.3V	5, 6) 3.3V	3) 3.3V	3) 0V	8) 4.6V
7) 0V	7) 0V	3.3V MST	5V regulator	
8) 3.3V	8) 3.3V	IC305	Tuner B+	
		IC505		
		1) 0V	1) 3.375V	
		2) 3.4V	2) 5V	
		3) 5.0V	3) 8V	

42PQ30 MAIN PWB (BACK SIDE VIEW) DRAWING

IC505	IC201	IC202	IC304	IC305	IC503	IC602	IC802	IC803
1) 3.8V	1,2) 3.4V	1,2) 3.4V	1) 0.63V	1) 0V	1) 9.3V	1,2,3,4) 0V	1,2,3,4) 0V	1,2,3,4) 0V
2) 5V	3) 0V	3) 0V	2) 1.93V	2) 3.4V	2) 0V	5) 4.73V	5) 4.58V	5) 4.58V
3) 8V	4) 3.4V	4) 3.4V	3) 3.4V	3) 05.1V	3) 13.8V	6) 4.73V	6) 4.6V	6) 4.6V
	5,6,7,8) 0V	5,6) 0V				7) 3.44V	7) 3.6V	7) 3.6V
		7) 3.39V				8) 4.71V	8) 4.8V	8) 4.8V
		8) 0V						

Main PWB Tuner Check (Shield Off) Pins Exposed

Main PWB Tuner Video and SIF Output Check

USING COLOR BAR SIGNAL INPUT

Note:
"Video Out" Signal only when receiving an analog Channel.

Note:
"Dig IF" Signal only when receiving a Digital Channel.

Main PWB Crystal X1 and X501 Check

Main PWB P1002 LVDS Video Signal Check

USING GRAY SCALE SIGNAL INPUT

Main PWB Plug P1002 "LVDS" Resistance

Voltage and Resistance Measurements for the Main Board

Pin ①

P1002 CONNECTOR "Main" Odd Pins to P121 "Control PWB"

Pin	SBY	Run	Diode Mode
1	0V	0V	Open
3	0V	3.29V	2.49V
5	Gnd	Gnd	Gnd
7	Gnd	Gnd	Gnd
9	0V	3.29V	2.49V
11	0V	1.25V	0.85V
13	0V	1.25V	0.85V
15	0V	1.27V	0.77V
17	0V	1.22V	0.77V
19	0V	1.24V	0.77V
21	0V	1.24V	0.85V
23	0V	0.58V	1.01V
25	0V	2.81V	0.49V

P1002 CONNECTOR "Main" Even Pins to P121 "Control PWB"

Pin	SBY	Run	Diode Mode
2	0V	0V	Open
4	0V	3.28V	2.49V
6	Gnd	Gnd	Gnd
8	Gnd	Gnd	Gnd
10	0V	3.29V	2.44V
12	0V	1.21V	0.77V
14	0V	1.21V	0.85V
16	0V	1.21V	0.91V
18	0V	1.25V	0.81V
20	0V	1.21V	0.85V
22	0V	1.18V	0.77V
24	0V	3.29V	1.3V
26	Gnd	Gnd	Gnd

Resistance Readings with the PWB Disconnected. DVM in the Diode mode.

Main PWB Plug P1001 to Ft Keys Voltages and Resistance

Voltage and Diode Mode Measurements for the Main Board

P1001 CONNECTOR "MAIN PWB" to "Front Keys"

Pin	Label	STBY	Run	Diode Mode
1	IR	5V	5V	3.17V
2	Gnd	Gnd	Gnd	Gnd
3	Key1	3.29V	3.29V	1.85V
4	Key2	3.29V	3.29V	1.85V
5	P Key	0V *(5V)	0V	Open
6	Gnd	Gnd	Gnd	Gnd
7	EYE-SCL	0V	3.28V	2.49V
8	EYE-SDA	0V	3.28V	2.49V
9	Gnd	Gnd	Gnd	Gnd
Stand By 5V	10	5VST	5V	1.06V
	11	3.3VST	0V	5.13V
	12	Gnd	Gnd	Gnd
	13	LED-R	3.3V	0V
	14	LED-W	0V	03.25
	15	PWM	Gnd	Gnd

Pin ①

* Pin 5 (Power Key) This pin is 0V when the button is lock “On” (In) and 5V when Locked “Off” (Out)

Diode Mode Readings taken with all connectors Disconnected. DVM in Diode Mode.

Main PWB Plug P301 to Power Supply Voltages "Odd Pins"

P301

Voltage and Diode Mode Measurements

*Note: If the Key On line is 4.38V, the Main Power Switch is open.
Stand-By 5V will shut off.

P301 CONNECTOR "Main" to "SMPS PWB" P813

Pin	Label	STBY	Run	Diode Mode
1	17V	0V	17.3V	Open
3	Gnd	Gnd	Gnd	Gnd
5	12V	0V	12V	Open
7	Gnd	Gnd	Gnd	Gnd
9	5V	5V	5V	1.1V
11	5V	5V	5V	1.1V
13	Gnd	Gnd	Gnd	Gnd
15	Gnd	Gnd	Gnd	Gnd
17	5V Det	.15V	5V	2.98V
19	RL On	0V	3.73V	Open
21	M5 ON	0V	3.24V	Open
23	Stby 5V	5V	5V	1.06V

Pin	Label	STBY	Run	Diode Mode
2	17V	0V	17.3V	Open
4	Gnd	Gnd	Gnd	Gnd
6	12V	0V	12V	Open
8	Gnd	Gnd	Gnd	Gnd
10	5V	5V	5V	1.1V
12	5V	5V	5V	1.1V
14	Gnd	Gnd	Gnd	Gnd
16	Gnd	Gnd	Gnd	Gnd
18	AC Det	5V	5V	Open
20	VS On	0V	3.2V	Open
22	Auto Gnd	Gnd	Gnd	Gnd
24	*Key On	0V	0V	Open

Resistance Readings with the PWB Disconnected. DVM in the Diode mode.

Main PWB Speaker Plug P1005 Voltages and Resistance

Voltage and Diode Mode Measurements for the Main Board Speaker Plug

P1005 CONNECTOR "Main" to "Speakers"

Pin	Label	SBY	Run	Diode Mode
1	R+	0V	8.65V	Open
2	R-	0V	8.65V	Open
3	L+	0V	8.65V	Open
4	L-	0V	8.65V	Open

Resistance Readings with the PWB Disconnected. DVM in the Diode mode.

Ft Control PWB and Power LED (IR) PWB Removal

The Control Switch PWB and Power Switch PWB are located (as viewed from the rear) in the lower left hand section.

REMOVAL: Remove the 2 screws and unplug the connector P101.

Then remove the 2 screws from the Front IR and Power LED PWB. Remove J1 connector.

Ft Power LED (IR) PWB Layout

The Ft Power LED PWB includes the IR Receiver and the Intelligent Sensor.
The Front POWER LED is also located on this board.

Front LED PWB Plug J1 to Main Voltages and Resistance

Voltage and Diode Mode Measurements for the Main Board

J1 CONNECTOR "MAIN PWB" to "Front Keys"

Pin	Label	STBY	Run	Diode Mode
1	IR	5V	5V	3.2V
2	Gnd	Gnd	Gnd	Gnd
3	Key1	3.29V	3.29V	1.6V
4	Key2	3.29V	3.29V	1.6V
*5	P Key	0V *(5V)	0V	Open
6	Gnd	Gnd	Gnd	Gnd
7	EYE-SCL	0V	3.28V	2.5V
8	EYE-SDA	0V	3.28V	2.5V
9	Gnd	Gnd	Gnd	Gnd
Stand By 5V	10	5VST	5V	1.06V
	11	3.3VST	0V	5.13V
	12	Gnd	Gnd	Gnd
	13	LED-R	3.3V	0V
	14	LED-W	0V	0.325
	15	PWM	Gnd	Gnd
				1V

* Pin 5 (Power Key)
This pin is 0V when the Main Power button is locked “On” (In) and 5V when it is locked “Off” (Out)

* Pin 5 (Power Key)
When this switch is out, Stand-By 5V turns off.

Diode Mode Readings taken with all connectors Disconnected. DVM in Diode Mode.

Front LED PWB Plug J2 to Key PWB Voltages and Resistance

Voltage and Diode Mode Measurements for the Main Board

*STBY1 Main Power Switch "OUT" Vacation

J2 CONNECTOR "Ft LED PWB" to "Ft Keys"

J2 Pin ①

Pin	*STBY1	*STBY2	Run	Diode Mode
1	0V	3.29V	3.29V	Open
2	0V	3.29V	3.29V	Open
3	4.38V	Gnd	0V	Gnd
4	Gnd	Gnd	Gnd	Gnd

*STBY2 Main Power Switch "IN" Normal

Diode Mode Readings taken with all connectors Disconnected. DVM in Diode Mode.

Front Key PWB Layout

The Ft Key PWB contains the Master Power Switch, Volume Up/Down and Channel Up/Down keys. Also the Menu and Select keys.

Front LED PWB Plug P101 to Ft LED PWB Voltages and Resistance

Voltage and Diode Mode Measurements for the Main Board

Pin	*STBY1	*STBY2	Run	Diode Mode
1	0V	3.29V	3.29V	Open
2	0V	3.29V	3.29V	Open
3	4.38V	Gnd	Gnd	Open
4	Gnd	Gnd	Gnd	Gnd

*STBY1 Main Power Switch "OUT" Vacation

P101 CONNECTOR "Ft Key PWB" to "Ft LED"

*STBY2 Main Power Switch "IN" Normal

P101 Pin ①

Diode Mode Readings taken with all connectors Disconnected. DVM in Diode Mode.

Invisible Speakers Section

The Invisible Speaker System keeps the speaker grills off the front of the TV.
The speakers actually point downward.

At the top of the speaker is a rubber cushion.
Be sure to return this to its proper position to prevent vibrations.

11 X 17 Foldout Section

This section shows the 11X17 foldout that's available in the Paper and Adobe version of the Training Manual.

Circuit Interconnect Diagram

Connector P1002 Configuration

This page intentionally left blank

End of Presentation

This concludes the Presentation

Thank You

