

ET660 - Séries Temporais para Atuária - 2020/02

Profa. Francyelle L. Medina

Atividades: Semanas 06 a 08

Shumway and Stoffer (2016)

Capítulo 3 - (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8) e (3.9)

Proposto:

1 - Considere o processo $x_t = \phi x_{t-1} + w_t$, com $|\phi| > 1$ e $w_t \sim N(0, \sigma_w^2)$. Mostre que a função de autocovariância do processo pode ser escrita como:

$$\gamma(h) = \sigma_w^2 \phi^{-2} \frac{\phi^{-h}}{1 - \phi^{-2}}.$$

- **2** Seja $y_t = \phi^{-1}y_{t-1} + v_t$, com $v_t \sim N(0, \sigma_w^2 \phi^{-2})$ e $|\phi| > 1$. Obtenha a função de autocovariância do processo e compare com o exercício **1**.
- 3 Considere o modelo ARMA(1,1) dado por $x_t = \phi x_{t-1} + \theta w_{t-1} + w_t, \text{ em que } w_t \sim RB(0,\sigma_w^2),$ com $E(x_t)=0.$ Mostre que:

(a)
$$\gamma_x(0) = \frac{\sigma_w^2}{1-\phi^2} \left[\theta^2 + 2\phi\theta + 1 \right];$$

(b)
$$\gamma_x(1) = \frac{\sigma_w^2}{1-\phi^2} \left[\theta^2 \phi + \phi^2 \theta + \phi + \theta \right];$$

(c)
$$\rho_x(1) = \frac{(1+\phi\theta)(\phi+\theta)}{\theta^2+2\phi\theta+1};$$

Morettin e Toloi(2004)

- ${f 4}$ Verifique se cada um dos itens é estacionário e invertível.
 - (a) $\tilde{Z}_t 0, 6\tilde{Z}_{t-1} = a_t;$

(b)
$$\tilde{Z}_t = a_t + 0.8a_{t-1}$$
;

(c)
$$\tilde{Z}_t = 0, 3\tilde{Z}_{t-1} - 0, 6\tilde{Z}_{t-2} + a_t;$$

(d)
$$\tilde{Z}_t - 0.4\tilde{Z}_{t-1} = a_t - 0.3a_{t-1} + 0.8a_{t-2}$$
;

(e)
$$\tilde{Z}_t = 1, 5\tilde{Z}_{t-1} - 0, 75\tilde{Z}_{t-2} + a_t + 0, 4;$$

(f)
$$\tilde{Z}_t = 0.3a_{t-1} + 0.6a_{t-2} + a_t$$
.

- 5 Obtenha os três primeiros pesos ψ_j e π_j para cada um dos modelos do exercício 1.
 - $\mathbf{6}$ Prove que um modelo ARMA(1,1) dado por

$$x_t = \phi x_{t-1} + \theta w_{t-1} + w_t$$
, em que $w_t \sim RB(0, \sigma_w^2)$,

pode ser escrito na forma $x_t = \psi(B)w_t$, em que os pesos $\psi_j = (\phi - \theta)\phi^{j-1}$, $j \ge 1$ e pode ser escrito na forma $\pi(B)x_t = w_t$, em que os pesos $\pi_j = (\phi - \theta)\theta^{j-1}$, $j \ge 1$.

 $\bf 7$ - Para cada um dos modelos AR(2), gere 200 observações e compare a função de autocorrelação (f.a.c.) amostral com a f.a.c. teórica:

(a)
$$\phi_1 = -0.5, \, \phi_2 = 0.3;$$

(b)
$$\phi_1 = 0.5, \, \phi_2 = 0.3;$$

(c)
$$\phi_1 = -1$$
, $\phi_2 = -0.6$;

(d)
$$\phi_1 = 1$$
, $\phi_2 = -0.6$.

8 - Utilizando uma rotina de computador para gerar números aleatórios, gere 200 valores de cada um dos modelos do problema 4 e esboce o gráfico da série.

- **9** Considere o modelo $Z(t) + kZ_{t-4} = a_t$.
- (a) Encontre uma representação de Z_t na forma $Z_t = \psi(B)a_t$ e comente sob qual condição Z_t é estacionário.
- (b) Obtenha a f.a.c. de Z_t .
 - ${f 10}$ Suponha que o processo estacionário $\{Z_t\}$ possui as seguintes variâncias e autocorrelações:

$$\gamma_0 = 12; \quad \rho_1 = 0, 8; \quad \rho_2 = 0, 46;$$

$$\rho_3 = 0,152; \text{ e } \rho_4 = -0,0476.$$

Resolva as equações de Yule-Walker para cada uma das possíveis ordens do modelo AR(1,2 e 3) e encontre os valores dos ϕ_i correspondentes. Determine também o valor de $\sigma^2 = Var(a_t)$ em cada caso. Qual é a ordem correta do processo AR?