- (a) Wir wählen 2k+1 elemente. Die Wahrscheinlichkeit dass ein zufällig gewählte element kleiner ist als das $\lfloor \frac{1-\epsilon}{2}n \rfloor$ -grösste element ist $\frac{\lfloor \frac{1-\epsilon}{2}n \rfloor 1}{n}$. Durch die Linearität der Erwartungswert erhalten wir für $\mathbb{E}[K] = \frac{(2k+1)(\lfloor \frac{1-\epsilon}{2}n \rfloor 1)}{n}$. Analog berechnen wir $\mathbb{E}[G]$. Wahrscheinlichkeit dass ein zufällig gewählte element grösser gleich das $\lceil \frac{1+\epsilon}{2}n \rceil$ -grösste element ist $\frac{\lceil \frac{1+\epsilon}{2}n \rceil}{n}$. Durch die Linearität der Erwartungswert erhalten wir für $\mathbb{E}[G] = \frac{(2k+1)(\lceil \frac{1+\epsilon}{2}n \rceil)}{n}$
- (b)
- (c)
- (d)