In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: df=pd.read_csv("Unemployment in India1.csv")

In [3]: **df**

Out[3]:

		Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Area
	0	Andhra Pradesh	31-05- 2019	Monthly	3.65	11999139	43.24	Rural
1	1	Andhra Pradesh	30-06- 2019	Monthly	3.05	11755881	42.05	Rural
	2	Andhra Pradesh	31-07- 2019	Monthly	3.75	12086707	43.50	Rural
	3	Andhra Pradesh	31-08- 2019	Monthly	3.32	12285693	43.97	Rural
	4	Andhra Pradesh	30-09- 2019	Monthly	5.17	12256762	44.68	Rural
	•••	•••						
7	35	West Bengal	29-02- 2020	Monthly	7.55	10871168	44.09	Urban
7.	36	West Bengal	31-03- 2020	Monthly	6.67	10806105	43.34	Urban
7.	37	West Bengal	30-04- 2020	Monthly	15.63	9299466	41.20	Urban
7.	38	West Bengal	31-05- 2020	Monthly	15.22	9240903	40.67	Urban
7	39	West Bengal	30-06- 2020	Monthly	9.86	9088931	37.57	Urban

740 rows × 7 columns

```
In [4]: df.hist(figsize=(14,14))
plt.show
```

Out[4]: <function matplotlib.pyplot.show(close=None, block=None)>

In [5]: df.plot.scatter(x=" Estimated Unemployment Rate (%)", y=" Estimated Employed", alpha=@
plt.show()

In [50]: df.plot.scatter(x=" Estimated Unemployment Rate (%)", y=" Frequency", alpha=0.4)
plt.show()


```
In [7]: df['total']=df.iloc[:,-34:].sum(axis=1)
    df.head()
```

C:\Users\KIIT\AppData\Local\Temp\ipykernel_12496\633210928.py:1: FutureWarning: Dropp ing of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

df['total']=df.iloc[:,-34:].sum(axis=1)

Out[7]:

•		Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Area	total
	0	Andhra Pradesh	31- 05- 2019	Monthly	3.65	11999139	43.24	Rural	11999185.89
	1	Andhra Pradesh	30- 06- 2019	Monthly	3.05	11755881	42.05	Rural	11755926.10
	2	Andhra Pradesh	31- 07- 2019	Monthly	3.75	12086707	43.50	Rural	12086754.25
	3	Andhra Pradesh	31- 08- 2019	Monthly	3.32	12285693	43.97	Rural	12285740.29
	4	Andhra Pradesh	30- 09- 2019	Monthly	5.17	12256762	44.68	Rural	12256811.85

```
In [8]: plt.xticks(rotation='vertical')
  plt.bar(x=" Frequency", height=" Estimated Unemployment Rate (%)", visible=True, width
  plt.show()
```


In [9]:	df.dtypes						
Out[9]:	Region	object					
ouclo].	Date	object					
	Frequency	object					
	Estimated Unemployment Rate (%)	float64					
	Estimated Employed	int64					
	Estimated Labour Participation Rate (%)	float64					
	Area	object					
	total	float64					
	dtype: object						
In [10]:	data=df[:-200]						
In [11]:	print(data)						
In [10]: In [11]:	<pre>data=df[:-200] print(data)</pre>						

Region

Date

Frequency

Estimated Unemployment Rate (%) \

```
31-05-2019
          0
               Andhra Pradesh
                                                Monthly
                                                                                        3.65
          1
               Andhra Pradesh
                                 30-06-2019
                                                Monthly
                                                                                        3.05
          2
               Andhra Pradesh
                                 31-07-2019
                                                Monthly
                                                                                        3.75
                                                Monthly
          3
               Andhra Pradesh
                                 31-08-2019
                                                                                        3.32
               Andhra Pradesh
          4
                                 30-09-2019
                                                Monthly
                                                                                        5.17
                           . . .
                                                    . . .
                                                                                        . . .
          535
                                 31-07-2019
                                                Monthly
                                                                                       7.58
                        Kerala
          536
                        Kerala
                                 31-08-2019
                                                Monthly
                                                                                        7.69
          537
                        Kerala
                                 30-09-2019
                                                Monthly
                                                                                        5.52
          538
                        Kerala
                                 31-10-2019
                                                Monthly
                                                                                       5.35
          539
                        Kerala
                                 30-11-2019
                                                Monthly
                                                                                       6.71
                Estimated Employed
                                      Estimated Labour Participation Rate (%)
                                                                                   Area \
          0
                           11999139
                                                                           43.24
                                                                                  Rural
          1
                                                                          42.05
                           11755881
                                                                                  Rural
          2
                           12086707
                                                                          43.50
                                                                                  Rural
          3
                                                                          43.97
                           12285693
                                                                                  Rural
          4
                           12256762
                                                                          44.68
                                                                                  Rural
                                                                             . . .
                                                                                    . . .
          535
                            4105211
                                                                           33.13
                                                                                  Urban
          536
                            4448650
                                                                           35.91
                                                                                  Urban
          537
                            4640642
                                                                           36.57
                                                                                  Urban
          538
                                                                           36.49
                            4644510
                                                                                  Urban
          539
                            4062767
                                                                           32.36
                                                                                  Urban
                     total
          0
               11999185.89
          1
               11755926.10
          2
               12086754.25
          3
               12285740.29
          4
               12256811.85
          . .
          535
                4105251.71
          536
                4448693.60
          537
                4640684.09
          538
                4644551.84
          539
                4062806.07
          [540 rows x 8 columns]
         data.info()
In [12]:
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 540 entries, 0 to 539
          Data columns (total 8 columns):
           #
               Column
                                                            Non-Null Count
                                                                            Dtype
          ---
                                                            _____
           0
               Region
                                                                             object
                                                            540 non-null
                                                            540 non-null
                                                                             object
           1
                Date
           2
                Frequency
                                                            540 non-null
                                                                             object
                Estimated Unemployment Rate (%)
           3
                                                            540 non-null
                                                                             float64
           4
                                                                             int64
                Estimated Employed
                                                            540 non-null
           5
                Estimated Labour Participation Rate (%)
                                                            540 non-null
                                                                             float64
           6
               Area
                                                            540 non-null
                                                                             object
           7
                                                                             float64
               total
                                                            540 non-null
          dtypes: float64(3), int64(1), object(4)
          memory usage: 33.9+ KB
```

```
import matplotlib.pyplot as plt

# Assuming you have your data stored in a DataFrame called 'df'

# Create a bar plot
plt.figure(figsize=(10, 6)) # Adjust the figure size if needed
plt.bar(x=df['Region'], height=df[' Estimated Unemployment Rate (%)'])

# Set the title and labels for the plot
plt.title('Estimated Unemployment Rate by Region')
plt.xlabel('Region')
plt.ylabel(' Estimated Unemployment Rate (%)')

# Rotate x-axis labels vertically
plt.xticks(rotation='vertical')

# Display the plot
plt.show()
```



```
In [14]: plt.xticks(rotation='vertical')
   plt.bar(x="Andhra Pradesh",height=" Estimated Unemployment Rate (%)" ,width=0.1, botto
Out[14]: 

Cout[14]: barContainer object of 540 artists>
```



```
plt.xticks(rotation='vertical')
In [59]:
         plt.bar(x="Bihar",height=" Estimated Unemployment Rate (%)" ,width=0.2, align='center
         <BarContainer object of 720 artists>
```

Out[59]:


```
In [15]: import matplotlib.pyplot as plt

# Assuming you have your data stored in a DataFrame called 'df'

# Create a bar plot
plt.figure(figsize=(10, 6)) # Adjust the figure size if needed
plt.bar(x=df['Region'], height=df[' Estimated Labour Participation Rate (%)'])

# Set the title and labels for the plot
plt.title(' Estimated Labour Participation (%)')
plt.xlabel('Region')
plt.ylabel(' Estimated Labour Participation Rate (%)')

# Rotate x-axis Labels vertically
plt.xticks(rotation='vertical')

# Display the plot
plt.show()
```

Estimated Labour Participation (%)


```
x=df.loc[df["Region"]=="West Bengal"]
In [16]:
          print(x[" Estimated Unemployment Rate (%)"].sum())
         227.49
In [17]:
          x=df.loc[df["Region"]=="Andhra Pradesh"]
          print(x[" Estimated Unemployment Rate (%)"].sum())
         209.3599999999999
         x=df.loc[df["Region"]=="Assam"]
In [18]:
          print(x[" Estimated Unemployment Rate (%)"].sum())
         167.13
         x=df.loc[df["Region"]=="Bihar"]
In [19]:
          print(x[" Estimated Unemployment Rate (%)"].sum())
         529.71
         x=df.loc[df["Region"]=="Goa"]
In [20]:
          print(x[" Estimated Unemployment Rate (%)"].sum())
         222.5799999999998
In [21]:
          sns.pairplot(df)
          <seaborn.axisgrid.PairGrid at 0x2a977a7a130>
Out[21]:
```



```
In [22]: x = input("Enter a region : ")
    rslt_df = df[df['Region'] == x]
    rslt_df
```

Enter a region : Bihar

Out[22]:

	Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Area	total
26	Bihar	31- 05- 2019	Monthly	9.27	24322330	39.75	Rural	24322379.02
27	Bihar	30- 06- 2019	Monthly	10.20	24097712	39.71	Rural	24097761.91
28	Bihar	31- 07- 2019	Monthly	13.44	23248875	39.66	Rural	23248928.10
29	Bihar	31- 08- 2019	Monthly	11.00	22260203	36.85	Rural	22260250.85
30	Bihar	30- 09- 2019	Monthly	8.87	23905700	38.57	Rural	23905747.44
31	Bihar	31- 10- 2019	Monthly	12.47	24053140	40.31	Rural	24053192.78
32	Bihar	30- 11- 2019	Monthly	12.40	22445989	37.51	Rural	22446038.91
33	Bihar	31- 12- 2019	Monthly	10.16	22914530	37.25	Rural	22914577.41
34	Bihar	31- 01- 2020	Monthly	9.13	23409006	37.54	Rural	23409052.67
35	Bihar	29- 02- 2020	Monthly	9.61	23168192	37.28	Rural	23168238.89
36	Bihar	31- 03- 2020	Monthly	15.39	22667882	38.88	Rural	22667936.27
37	Bihar	30- 04- 2020	Monthly	45.09	14645275	38.63	Rural	14645358.72
38	Bihar	31- 05- 2020	Monthly	47.26	14050319	38.50	Rural	14050404.76
39	Bihar	30- 06- 2020	Monthly	20.49	20622566	37.40	Rural	20622623.89
387	Bihar	31- 05- 2019	Monthly	19.90	3029344	39.80	Urban	3029403.70

	Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Area	total
388	Bihar	30- 06- 2019	Monthly	13.29	3248864	39.35	Urban	3248916.64
389	Bihar	31- 07- 2019	Monthly	16.41	3059744	38.36	Urban	3059798.77
390	Bihar	31- 08- 2019	Monthly	17.66	2994763	38.03	Urban	2994818.69
391	Bihar	30- 09- 2019	Monthly	20.46	2992082	39.25	Urban	2992141.71
392	Bihar	31- 10- 2019	Monthly	14.06	3173429	38.45	Urban	3173481.51
393	Bihar	30- 11- 2019	Monthly	17.62	3081077	38.86	Urban	3081133.48
394	Bihar	31- 12- 2019	Monthly	14.91	2977857	36.29	Urban	2977908.20
395	Bihar	31- 01- 2020	Monthly	20.69	2988665	38.99	Urban	2988724.68
396	Bihar	29- 02- 2020	Monthly	15.11	3113464	37.87	Urban	3113516.98
397	Bihar	31- 03- 2020	Monthly	15.73	3049637	37.29	Urban	3049690.02
398	Bihar	30- 04- 2020	Monthly	58.77	1400962	34.94	Urban	1401055.71
399	Bihar	31- 05- 2020	Monthly	37.87	2207026	36.45	Urban	2207100.32
400	Bihar	30- 06- 2020	Monthly	12.45	3124663	36.54	Urban	3124711.99

In [23]: sns.heatmap(df.corr(),annot=True)

Out[23]: <AxesSubplot:>


```
In [24]: plt.xticks(rotation='vertical')
sns.lineplot(x=df['Region'], y=df[' Estimated Unemployment Rate (%)'], color = 'green'
Out[24]: <AxesSubplot:xlabel='Region', ylabel=' Estimated Unemployment Rate (%)'>
```



```
In [25]: plt.xticks(rotation='vertical')
    sns.scatterplot(x=df[' Date'], y=df['Region'], color = 'green',data=df)

Out[25]: <AxesSubplot:xlabel=' Date', ylabel='Region'>
```


In [28]: pd.pivot_table(data = df, values =' Estimated Unemployment Rate (%)', index =['Region'

Out[28]:

Estimated Unemployment Rate (%)

Region	Date	Area	
Andhra Pradesh	29-02-2020	Rural	5.91
		Urban	5.66
	30-04-2020	Rural	16.29
		Urban	32.30
	30-06-2019	Rural	3.05
		•••	
West Bengal	31-08-2019	Urban	7.27
	31-10-2019	Rural	6.78
		Urban	7.83
	31-12-2019	Rural	5.79
		Urban	7.24

740 rows × 1 columns

```
In [40]: pq2 = df.loc[df['Region']=='Bihar']
    plt.figure(figsize=(20,10))
    plt.title("Estimated Unemployment Rate of Bihar on particular dates")
    sns.barplot(data=pq2,y=" Estimated Unemployment Rate (%)",x=" Date",estimator=sum,pale
```

Out[40]: $AxesSubplot:title={'center':'Estimated Unemployment Rate of Bihar on particular date s'}, xlabel=' Date', ylabel=' Estimated Unemployment Rate (%)'>$


```
In [45]: pq2 = df.loc[df['Region']=='Bihar']
  plt.figure(figsize=(20,10))
  plt.title("Estimated Unemployment Rate of Bihar on the basis of area")
  sns.barplot(data=pq2,y=" Estimated Unemployment Rate (%)",x="Area",estimator=sum,palet
```

Out[45]: caxesSubplot:title={'center':'Estimated Unemployment Rate of Bihar on the basis of ar
ea'}, xlabel='Area', ylabel=' Estimated Unemployment Rate (%)'>


```
In [46]: pq2 = df.loc[df['Region']=='Goa']
    plt.figure(figsize=(20,10))
    plt.title("Estimated Unemployment Rate of Goa on particular dates")
    sns.barplot(data=pq2,y=" Estimated Unemployment Rate (%)",x=" Date",estimator=sum,pale
```

Out[46]: <AxesSubplot:title={'center':'Estimated Unemployment Rate of Goa on particular date
s'}, xlabel=' Date', ylabel=' Estimated Unemployment Rate (%)'>


```
pq2 = df.loc[df['Region']=='Goa']
plt.figure(figsize=(20,10))
plt.title("Estimated Unemployment Rate of Goa on the basis of area")
sns.barplot(data=pq2,y=" Estimated Unemployment Rate (%)",x="Area",estimator=sum,palet
```

Out[42]: Out[42]:
AxesSubplot:title={'center':'Estimated Unemployment Rate of Goa on the basis of are a'}, xlabel='Area', ylabel=' Estimated Unemployment Rate (%)'>


```
In [44]: pq2 = df.loc[df['Region']=='Assam']
  plt.figure(figsize=(20,10))
  plt.title("Estimated Unemployment Rate of Assam on the basis of area")
  sns.barplot(data=pq2,y=" Estimated Unemployment Rate (%)",x="Area",estimator=sum,palet
```

Out[44]: CaxesSubplot:title={'center':'Estimated Unemployment Rate of Assam on the basis of ar
ea'}, xlabel='Area', ylabel=' Estimated Unemployment Rate (%)'>

s'}, xlabel=' Date', ylabel=' Estimated Unemployment Rate (%)'>


```
Bihar = [9.27, 10.2, 13.44, 11, 8.87, 12.47, 12.4, 10.16]
In [82]:
          Goa = [5.45,10.98,1.98,3.61,7.21,23.71,3.54,5.38]
          n=8
          r = np.arange(n)
          width =0.4
          plt.figure(figsize=(10, 6))
          plt.bar(r,Bihar, color = 'b',width = width, edgecolor = 'black',label='BIHAR')
          plt.bar(r + width, Goa, color = 'g', width = width, edgecolor = 'black', label='GOA')
          plt.xlabel("DATE")
          plt.ylabel("UNEMPLOYMENT RATE")
          plt.title("Comparison of Unemployment of Bihar VS Goa")
          # plt.grid(linestyle='--')
          plt.xticks(r + width/2,[' 31-05-2019',
           '30-06-2019',
           '31-07-2019',
           '31-08-2019',
           '30-09-2019',
           '31-10-2019',
           '30-11-2019',
           '31-12-2019',])
          plt.legend()
          plt.show()
```

Comparison of Unemployment of Bihar VS Goa


```
Assam = [4.29]
In [108...
           5.08,
           4.26,
           5.79,
           4.46,
           4.65,
           4.66]
           Telangana = [2.23]
           5.92,
           2.45,
           1.4,
           5.49,
           7.29,
           6.47]
           Bihar = [9.27, 10.2, 13.44, 11, 8.87, 12.47, 12.4]
           Goa = [5.45, 10.98, 1.98, 3.61, 7.21, 23.71, 3.54]
           n=7
           r = np.arange(n)
           width =0.4
           plt.figure(figsize=(20, 10))
           plt.bar(r,Assam, color = 'r',width = width, edgecolor = 'black',label='ASSAM')
           plt.bar(r + width, Telangana, color = 'orange', width = width, edgecolor = 'black', label
           plt.bar(r + width+width, Bihar, color = 'g', width = width, edgecolor = 'black', label=
           plt.bar(r + width+width+width, Goa, color = 'b', width = width, edgecolor = 'black', lat
           plt.xlabel("DATE")
           plt.ylabel("UNEMPLOYMENT RATE (%)")
           plt.title("Comparison of Unemployment Rate(%) of ASSAM VS TELANGANA VS BIHAR VS GOA")
           # plt.grid(linestyle='--')
           plt.xticks(r + width/2,[' 31-05-2019',
            '30-06-2019',
            '31-07-2019',
            '31-08-2019',
```

```
'30-09-2019',
'31-10-2019',
'30-11-2019'])
plt.legend()
plt.show()
```



```
In [117...
y = np.array([4.29,57.39])
mylabels = [" Estimated Unemployment Rate (%)"," Estimated Labour Participation Rate (
plt.pie(y, labels= mylabels)
plt.legend(title="31/05/ASSAM 2019", fontsize=8)
plt.show()
```



```
In [120...
    y = np.array([23.92,41.4])
    mylabels = [" Estimated Unemployment Rate (%)"," Estimated Labour Participation Rate (
    plt.title("Pie Chart Analysis of Estimated Unemployement and Estimated Labour Participation Partic
```

Pie Chart Analysis of Estimated Unemployement and Estimated Labour Participation of Haryana on 31/05/2019


```
y = np.array([4.59,36.36])
mylabels = [" Estimated Unemployment Rate (%)"," Estimated Labour Participation Rate (
plt.title("Pie Chart Analysis of Estimated Unemployement and Estimated Labour Particip
plt.pie(y, labels= mylabels)
plt.legend(title="Odisha on 30-06-2020", fontsize=5)
plt.show()
```

Pie Chart Analysis of Estimated Unemployement and Estimated Labour Participation of Odisha on 30-06-2020


```
y = np.array([26.53,63.02])
mylabels = [" Estimated Unemployment Rate (%)"," Estimated Labour Participation Rate (
plt.title("Pie Chart Analysis of Estimated Unemployement and Estimated Labour Particip
plt.pie(y, labels= mylabels)
plt.legend(title="Tripura on 31-12-2019", fontsize=5)
plt.show()
```

Pie Chart Analysis of Estimated Unemployement and Estimated Labour Participation of Tripura on 31-12-2019

