IB Physics Topic B3 Gas Laws; SL & HL

By timthedev07, M25 Cohort

Table of Contents

1	Pressure		T
	1.1	Avogadro's Number and the Mole	1
		1.1.1 Molar Mass	2
2	Gas	Laws	3
	2.1	Boyle's Law	3
	2.2	Charles' Law	4
	2.3	Gay-Lussac's Law	4
	2.4	Avogadro's Law	4
	2.5	The Ideal Gas Law	4
3	Mic	roscopic Model of Gases	5
4	Kin	etic Model of Ideal Gases	6
	4.1	Temperature	6
	4 2	Ideal vs. Real Gases	6

1 Pressure

Pressure is defined as the force per unit area.

$$P = \frac{F}{A} \tag{1}$$

• Solid: The pressure due to the weight W over an area A is given by

$$P = \frac{W}{A} \tag{2}$$

• Liquid: The pressure in a liquid at a depth h is given by

$$P = \rho g h \tag{3}$$

where ρ is the density of the liquid, g is the acceleration due to gravity, and h is the depth.

• Gas: Will be discussed later.

1.1 Avogadro's Number and the Mole

The **mole** is the SI unit for the amount of substance. It has been historically defined as the number of atoms in approximately 12 grams of carbon-12. This quantity is known as the Avogadro number, N_A ,

$$N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$$

"Every mol is N_A things". For instance, 3 mol of electrons is simply the quantity of $3N_A$ electrons.

1.1.1 Molar Mass

Molar mass is the mass of one mole of a substance, typically given in grams per mole (g/mol). The molar mass of a substance is numerically equal to the atomic mass of the substance in atomic mass units (u). E.g. water has a molar mass of 18.015 g/mol \equiv 18.015 u, and the mass of a single water molecule is $\frac{18.015}{N_A}$.

2 Gas Laws

2.1 Boyle's Law

This states that the pressure of a gas is inversely proportional to its volume at constant temperature. Mathematically, this is

$$P \propto \frac{1}{V}$$

Figure 1: Two graphs that arise from Boyle's Law

- Every one of the curves in (a) is an isothermal curve.
- In the second graph
 - 1. For a higher temperature and the same mass of gas, the curve is steeper but still linear
 - 2. For a higher mass of gas and the same temperature, the curve would also be steeper.

2.2 Charles' Law 2 GAS LAWS

2.2 Charles' Law

This states that the **volume** of a gas is **directly proportional** to its **temperature** at **constant pressure**. Mathematically, this is

$$V \propto T$$

2.3 Gay-Lussac's Law

This states that the **pressure** of a gas is **directly proportional** to its **temperature** at **constant volume**. Mathematically, this is

$$P \propto T$$

2.4 Avogadro's Law

This states that the volume of a gas is directly proportional to the quantity (in mol) of the gas at constant temperature and pressure. Mathematically, this is

$$V \propto n$$

2.5 The Ideal Gas Law

Derived from the previous laws; they combine to give

$$PV = nRT$$
 or $R = \frac{PV}{nT}$

where R is the ideal gas constant, 8.31 J $\mathrm{mol}^{-1}~\mathrm{K}^{-1}.$

3 Microscopic Model of Gases

4 Kinetic Model of Ideal Gases

- 4.1 Temperature
- 4.2 Ideal vs. Real Gases