Основы программирования Задание 4, функции, простые сортировки и перестановки

Задача 1. НОД

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Наибольшим общим делителем целых чисел A и B называется такое целое число D, что:

- D > 0;
- \bullet A и B делятся на D без остатка;
- D максимально при выполнении первых двух условий.

Заметим, что НОД существует всегда, кроме случая A = B = 0.

Требуется найти наибольший общий делитель двух чисел.

Формат входных данных

Во входном файле записаны через пробел два целых числа A и B $(0 \leqslant A, B \leqslant 10^9, A+B>0).$

Формат выходных данных

В выходной файл необходимо вывести одно целое число – наибольший общий делитель заданных чисел.

input.txt	output.txt
40 12	4

Задача 2. Сортировка вставками

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 6 секунд
Ограничение по памяти: разумное

Отсортировать заданную последовательность целых чисел методом вставок.

Формат входных данных

В первой строке входного файла записано целое число N – длина последовательности (1 $\leq N \leq 10^5$).

В следующей строке через пробел записано N целых чисел. Все числа по модулю не превосходят 10^6 .

Формат выходных данных

В выходной файл необходимо вывести заданную последовательность в отсортированном по возрастанию виде. Числа выводить через пробел в одну строку.

input.txt	output.txt
5	-3 1 4 5 12
12 5 1 -3 4	

Задача 3. Таблица инверсий

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Для заданной перестановки построить соответствующую ей таблицу инверсий.

Формат входных данных

В первой строке входного файла записано целое число N — длина перестановки (1 $\leq N \leq 1000$) .

Во второй строке через пробел записаны различные натуральные числа $a_1, a_2, \dots a_N$, принимающие значения от 1 до N.

Формат выходных данных

В выходной файл необходимо вывести через пробел N целых чисел, которые будут образовывать таблицу инверсий для заданной перестановки.

input.txt	output.txt
8	7 1 2 4 0 2 0 0
5 2 7 3 8 6 4 1	

Задача 4. Сортировка выбором

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 9 секунд Ограничение по памяти: разумное

Отсортировать заданную последовательность целых чисел методом выбора

Формат входных данных

В первой строке входного файла записано целое число N – длина последовательности (1 $\leq N \leq 10^5$).

В следующей строке через пробел записано N целых чисел. Все числа по модулю не превосходят 10^6 .

Формат выходных данных

В выходной файл необходимо вывести заданную последовательность в отсортированном по возрастанию виде. Числа выводить через пробел в одну строку.

input.txt	output.txt
5	-3 1 4 5 12
12 5 1 -3 4	

Задача 5. Шейкер-сортировка

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 14 секунд Ограничение по памяти: разумное

Отсортировать заданную последовательность целых чисел шейкер-сортировкой.

Формат входных данных

В первой строке входного файла записано целое число N – длина последовательности (1 $\leq N \leq 10^5$).

В следующей строке через пробел записано N целых чисел. Все числа по модулю не превосходят $10^6.$

Формат выходных данных

В выходной файл необходимо вывести заданную последовательность в отсортированном по возрастанию виде. Числа выводить через пробел в одну строку.

input.txt	output.txt
5	-3 1 4 5 12
12 5 1 -3 4	

Задача 6. Восстановление перестановки

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда Ограничение по памяти: разумное

По заданной таблице инверсий восстановить соответствующую ей перестановку.

Формат входных данных

В первой строке входного файла записано целое число N — длина таблицы инверсий (1 $\leq N \leq 10^3$).

Во второй строке через пробел записаны натуральные числа $a_1, a_2, \dots a_N$, принимающие значения в диапазоне от 0 до N-1, образующие таблицу инверсий.

Формат выходных данных

В выходной файл необходимо вывести соответствующую заданной таблице инверсий перестановку.

Если таблица инверсий задана некорректно, то вывести слово NO.

input.txt	output.txt
8	5 2 7 3 8 6 4 1
7 1 2 4 0 2 0 0	
3	NO
1 0 1	

Задача 7. Следующая по алфавиту перестановка

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда Ограничение по памяти: разумное

Для заданной перестановки чисел от 1 до N построить следующую за ней по алфавиту перестановку.

Формат входных данных

В первой строке входного файла записано целое число N – длина перестановки (1 $\leq N \leq 10^3$).

Во второй строке через пробел записаны различные натуральные числа $a_1, a_2, \dots a_N$, принимающие значения от 1 до N.

Формат выходных данных

В выходной файл необходимо вывести через пробел N заданных чисел, которые будут образовывать следующую по алфавиту перестановку для заданной.

Если следующей по алфавиту перестановки не существует, то вывести первую.

input.txt	output.txt
8	5 2 7 4 1 3 6 8
5 2 7 3 8 6 4 1	

Задача 8. НОК

Источник: повышенной сложности

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Наименьшим общим кратным целых чисел A и B называется такое целое число M, что:

- 1. M > 0,
- $2. \ M$ делится на A и на B без остатка,
- 3. М минимально при выполнении условий 1 и 2.

Требуется найти наименьшие общие кратные заданных пар чисел.

Формат входных данных

В первой строке входного файла записано число N — количество пар чисел $(1\leqslant N\leqslant 5000).$

В каждой из следующих N строк записано по два числа A_i и B_i ($1 \le A_i, B_i \le 10^9$).

Формат выходных данных

Каждая строка выходного файла должна содержать одно целое число – $HOK(A_i, B_i)$.

input.txt	output.txt
6	15
3 5	60
20 12	9999
1 9999	1109889
999 9999	225000
45000 75000	640000
1024 10000	

Задача 9. Функция

Источник: повышенной сложности

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Пусть P — множество целых чисел от 1 до N. Задано отношение R на множестве $P \times P$. Отношение задаётся списком принадлежащих ему элементов: множеством пар $(x,y) \in P \times P$. Для заданного отношения R требуется определить:

- 1. Является ли R функцией: $\forall x \in P$: $(x,u) \in R$ и $(x,v) \in R \Rightarrow u = v$ отсутствует многозначность.
- 2. Является ли R всюду определённой функцией: R является функцией и $\forall x \in N \; \exists \; y \mid (x,y) \in R$ значение определено на всём множестве P.
- 3. Является ли R инъекцией: $(x, u) \in R$ и $(y, u) \in R \Rightarrow x = y$.
- 4. Является ли R сюръекцией: $\forall u \in N \exists x \mid (x, u) \in R$.
- 5. Является ли R биекцией: отношение R и инъективно, и сюръективно.

Формат входных данных

Первая строка входного файла содержит два целых числа N и M, записанных через пробел – размер множества и количество пар $(1 \le N \le 300, 1 \le M \le N^2)$.

В следующих M строках записано по два целых числа x и y – элементы отношения $R(1 \leq x, y \leq N)$. Гарантируется, что все пары различны.

Формат выходных данных

Если отношение R не удовлетворяет ни одному из описанных свойств, то в выходной файл нужно вывести число 0.

В противном случае необходимо вывести через пробел номера свойств, которыми обладает отношение R, в порякде увеличения значений.

input.txt	output.txt
3 5	0
1 2	
3 3	
1 3	
1 1	
2 1	
5 2	1
1 3	
2 3	
5 2	1 3
1 3	
2 5	
3 3	1 2 3 4 5
1 1	
2 3	
3 2	

Задача 10. Количество боксов

Источник: повышенной сложности

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Во входном файле содержится целое число N ($1 \le N \le 10^9$). Нужно найти количество прямоугольных параллелепипедов с целочисленными сторонами, объём которых не превышает N. Параллелепипеды, которые можно перевести друг в друга с помощью поворота, считаются одинаковыми.

Замечание: Ответ к этой задаче может быть настолько большим, что не войдёт в переменную типа int. Используйте 64-битный тип следующим образом:

```
long long answer;
answer = 1000000000;
answer = answer * 1000000000;
printf("%lld", answer);
```

Пример

input.txt	output.txt
10	16
100000000	39218340164

Пояснение к примеру

Вот все возможные тройки размеров из первого примера:

- 1 1 1
- 1 1 2
- 113
- 1 1 4
- 115
- 1 1 6
- 117
- 1 1 8
- 119
- 1 1 0
- 1 2 2
- 1 2 3
- 124
- 1 2 5
- 133
- 2 2 2