```
_VS_TGFBETA1_IL6_IL23A_TREATED_CD4_TCELL_UP, GSE39820_TGFBETA1_IL6_VS_TGFBETA1_IL6_IL23A_TREATED_CD4 TCELL UP 🤘
```

```
/ GSE8921_UNSTIM_VS_TLR1_2_STIM_MONOCYTE_3H_DN, GSE8921_UNSTIM_VS_TLR1_2_STIM_MONOCYTE_3H_DN
/ GSE39820_CTRL_VS_IL1B_IL6_IL23A_CD4_TCELL_DN, GSE39820_CTRL_VS_IL1B_IL6_IL23A_CD4_TCELL_DN
/ GSE36392_TYPE_2_MYELOID_VS_NEUTROPHIL_IL25_TREATED_LUNG_UP, GSE36392_TYPE_2_MYELOID_VS_NEUTROPHIL_IL25_TREATED_LUNG_UP
```

/ GSE30962_PRIMARY_VS_SECONDARY_CHRONIC_LCMV_INF_CD8_TCELL_DN, GSE30962_PRIMARY_VS_SECONDARY_CHRONIC_LCMV_INF_CD8_TC / GSE12366_NAIVE_VS_MEMORY_BCELL_DN, GSE12366_NAIVE_VS_MEMORY_BCELL_DN / GSE36888_UNTREATED_VS_IL2_TREATED_TCELL_2H_UP, GSE36888_UNTREATED_VS_IL2_TREATED_TCELL_2H_UP

GSE36888_UNTREATED_VS_IL2_TREATED_TCELL_2H_UP, GSE36888_UNTREATED_VS_IL2_TREATED_TCELL_2H_UP
GSE37605_NOD_VS_C57BL6_IRES_GFP_TREG_UP, GSE37605_NOD_VS_C57BL6_IRES_GFP_TREG_UP

GSE40274_HELIOS_VS_FOXP3_AND_HELIOS_TRANSDUCED_ACTIVATED_CD4_TCELL_UP, GSE40274_HELIOS_VS_FOXP3_AND_HELIOS_TRANSDUCED
GSE4142_NAIVE_VS_MEMORY_BCELL_UP, GSE4142_NAIVE_VS_MEMORY_BCELL_UP

GSE4142_NATVE_VS_MEMORY_BCELL_UP, GSE4142_NATVE_VS_MEMORY_BCELL_UP

GSE37301_PRO_BCELL_VS_GRANULOCYTE_MONOCYTE_PROGENITOR_UP, GSE37301_PRO_BCELL_VS_GRANULOCYTE_MONOCYTE_PROGENITOR_V

GSE22611_NOD2_TRANSD_VS_CTRL_TRANSD_HEK293_MDP_STIM_2H_UP, GSE22611_NOD2_TRANSD_VS_CTRL_TRANSD_NOD2_TRANSD_TRANSD_NOD2_TRANSD_TRANSD_NOD2_