

DATA SET INTRODUCTION

Portugal

Overview

01
Bussiness Understanding

U2Data Understanding

U3
Data Cleaning

04Modelling

05

06

Success Metric

Conclusion and Recommendation

1.Bussiness Understanding

Background

According to the Hotel Bed Occupancy Rate data in Portugal for 2023, the hotel occupancy rate in Portugal reached only 48% throughout the year 2023.

False Prediction

Aktual/Prediksi	Not Canceled(0)	Canceled(1)	
Not Canceled(0)	True Negative Prediction: Not Canceled Actual: Not Canceled	False Positive Prediction: Canceled Actual: Not Canceled	
Canceled(1)	False Negative Prediction: Not Canceled Actual: Canceled	True Positif Prediksi: Cancel Aktual: Cancel	

Type 1 error: False Positive (FP): The model predicts a hotel booking will be canceled, but it turns out the booking is not canceled.

Type 2 error: False Negative (FN): The model predicts that a hotel booking will not be canceled, but it turns out the booking is canceled.

From the false predictions, it is known that for this booking case, False Negatives (FN) cause more direct losses than False Positives (FP). This is because when the model fails to predict a cancellation (FN), it leads to lost revenue or missed opportunities.

Problem Statement

Booking cancellations have a direct impact on hotel profitability because canceled rooms cannot be resold in a short period of time.

Goals

Optimizing Reservation
Management and
Maximizing Profitability

Analytical Approach

Using the recall metric to minimize the number of people who will cancel their bookings.

2.Data Understanding

Data Cleaning

- Handling Missing Value
- Handling Outlier
- Handling Duplicate Data

Data Preprocessing

- Encoding
- Scaling
- Balancing

Data Features

- 1. country: Country of origin. (Kategori)
- 2. market_segment: Market segment designation. (Kategori)
- 3. previous_cancellations: Number of previous bookings that were cancelled by the customer prior to the current booking. (Numerik)
- 4.booking_changes: Number of changes/amendments made to the booking from the moment the booking was entered on the PMS until the moment of check-in or cancellation. (Numerik)
- 5. deposit_type: Indication on if the customer made a deposit to guarantee the booking. (Kategori)
- 6. days_in_waiting_list: Number of days the booking was in the waiting list before it was confirmed to the customer. (Numerik)
- 7. customer_type: Type of booking. (Kategori)
- 8.reserved_room_type: Code of room type reserved. Code is presented instead of designation for anonymity reasons. (Kategori)
- 9. required_car_parking_space: Number of car parking spaces required by the customer. (Numerik)
- 10.total_of_special_request: Number of special requests made by the customer (e.g. twin bed or high floor). (Numerik)

is_canceled: Value indicating if the booking was canceled (1) or not (0).

There are 83,573 rows with 10 feature columns and 1 target column

3.Data Cleaning

Missing Value

Missing values are only present in the country column.

Drop

Missing values were dropped because the amount of missing data was minimal, and thus, it did not have a significant impact.

country	118
market_segment	0
previous_cancellations	0
booking_changes	0
deposit_type	0
days_in_waiting_list	0
customer_type	0
reserved_room_type	0
required_car_parking_spaces	0
total_of_special_requests	0
is_canceled	0
dtype: int64	

Outlier

It is still considered reasonable and relevant in the context of the analysis

Duplicate Data

73371 duplicates (**87.79%** of the data)

Percentage of Booking Cancellations

Imbalanced Target Data

Data Preprocessing

This dataset uses two types of encoding: one-hot encoding and binary encoding.

Scaling

Scaling using robust scaler

Balancing

Using resampler to balancing data

4.Modeling

Model Benchmark and Evaluation

Benchmark

The model achieved the highest recall value on both the training and test sets.

The best model was obtained using LightGBM and the Random Under Sampling resampler.

The higher the recall score, the better the prediction model.

Performing hyperparameter tuning to get best model.

Hyperparameter

- Looking best combination with Cross Validation
- Using Random Search Sampling

Best Model: LightGBM

Training Score

82.46 %

Test Score

87,89

Before Tuned

	precision	recall	f1-score	support
0	0.92	0.66	0.77	1537
1	0.43	0.82	0.57	479
accuracy			0.70	2016
macro avg	0.68	0.74	0.67	2016
weighted avg	0.81	0.70	0.72	2016

After Tuned

	precision	recall	f1-score	support
0		0.63	0.75	1537
1	0.42	0.88	0.57	479
accuracy			0.69	2016
macro avg	0.68	0.75	0.66	2016
weighted avg	0.82	0.69	0.71	2016

Confussion Matrix

Feature Importance LightGBM

Importance

Feature Importance Shap

Feature Importance Model

5. Success Metric

Calculation With and Without Model

Explanation	Without Model	With Model
Total Customer	2016	2016
Price Each Room	50 USD	50 USD
Total Price	100,800 USD	70,800 USD
Total Served Customers Without Cancellation	1537	995
Total Unserved Customers Without Cancellation	0	542
Total Served Customers with Cancellation	0	421
Total Unserved Customers with Cancellation	0	58
Loss	23,950 USD	27,100 USD
Savings	0 USD	30,000 USD

Conclusion

1.Best Model

- Model: LightGBM
- Resampler: RandomUnderSampling
- 2.Model Interpretation
 - Scaling: Robust Scaling
 - Encoders: Binary and One-Hot Encoding

3. Model Limitations

- Duplicate data removed to prevent overfitting
- Minimal missing values dropped to avoid bias
- LightGBM is a "black-box" model, making it less interpretable
- 4. Using Feature Selection

Bussiness Reccommendation

Certain Date

- No Cancellation for Certain Categories
- Remove Refundable Option
- 2. Offer Special Deals or Discounts
 - Special Offers for Substitutes
 - Incentive Offers for Rescheduling
- 3.ImplementPre-Authorization Policies
 - Credit Card Pre-Authorization
 - Non-Refundable Deposit
- 4. Enhancing Customer Experience
 - Improved User Experience
 - Increase Customer Satisfaction

