GBI Zusammenfassung

Jessica Ochs und Andreas Mai 17.02.2016

GBI Klausur am 02.03.2016 14:00 - 16:00

Kein Anspruch auf Vollständigkeit;)

Inhaltsverzeichnis

T	Mengen	1
	1.1 Kartesisches Produkt	. 1
2	Relationen	1
	2.1 Funktionen	. 1
	2.2 Potenzmengen	. 1
	2.3 Mengengleichheit	. 1
3	Wörter	1
	3.1 Konkatenation	
	3.2 Das Leere Wort	
	3.3 Länge eines Wortes	
4	Binäre Operationen	2
5	Aussagenlogik	2
6	Induktion	2
7	Formale Sprachen	3
•	7.1 Produkt formaler Sprachen	
	7.2 Potenz Formaler Sprachen	
	7.3 Konkatenationsabschluss	
	7.3.1 ε -freier Konkatenationsabschluss:	
8	Übersetzung von Wörtern in Zahlen	3
•	8.1 Zweierkomplement	
9	Homomorphismus	4
	9.1 Strukturerhaltend	. 4
	9.2 ε -frei	. 4
	9.3 Präfixfrei	. 4
	9.4 Huffman-Codierung	. 4
10	Speicher	5
11	MIMA (Minimalmaschiene)	5
	11.1 Wichtige Register	. 5
	11.2 Befehle	
12	Kontextfreie Grammatik	8
	12.1 Ableitung	_
	12.2 Erzeugte Sprache	
	12.3 Ableitungsbaum	
	=	

13	Relationen Part 2	9
	13.1 Produkt	9
	13.2 Potenzen	9
	13.3 Reflexiv-transitive Hülle einer Relation R \dots	9
14	0	9
		9
		9
	14.3 Prädikatenlogische Formeln	0
15	Hoare-Kalkül 1	0
	15.1 Hoare Tripel	0
	15.2 Hoare Regeln	0
16	Graphen 1	1
	16.1 Teilgraph	1
	16.2 Knotengrad	2
	16.3 Pfad	2
17	Wege in Graphen finden	2
	17.1 Adjazenzliste	3
	17.2 Adjazenzmatrix	3
	17.3 Wegematrix	3
18	Relationen (21 im Skript)	4
	18.1 Äquivalenzrelation $\equiv \dots $	4
	18.2 Äquivalenzklasse	4
	18.3 Verträglichkeit von Relaionen und Operationen	
	18.4 Kongruenzrelation	
	18.5 Antisymmetrie	
	18.6 Halbordnung	
	18.7 Hasse-Diagram	
	18.8 Nerode Äquivalenzelation	
	18.9 Minimale und Maximale Elemente	
	18.10Kleinste und Größte Elemente	
	18.11Untere und Obere Schranke	
	18.12Supremum und Infimum	6
19	Quantitative Aspekte 1	
	19.1 Asymptotosches Wachstum: $f \approx g$	
	19.2 Groß-O Notation Θ	7

1 Mengen

1.1 Kartesisches Produkt

- $M \times N = \{(m, n) \mid m \in M, n \in N\}$
- $A \times \emptyset = \emptyset$

2 Relationen

2.1 Funktionen

- Funktion = Rechtseindeutige und Linkstotale Relation
- Injektive Funktion = Linkseindeutige Funktion
- Surjektive Funktion = Rechtstotale Funktion
- Bijektive Funktion = Injektive und Surjektive Funktion

2.2 Potenzmengen

- $\mathcal{P}(M)$ ist die Menge aller möglichen Teilmengen von M
- $\forall M_i \subseteq M : M_i \in \mathcal{P}(M)$

2.3 Mengengleichheit

- $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$
- $A \setminus B \Leftrightarrow \{x \in A \land x \notin B\}$

3 Wörter

- Alphabet = Endliche Menge von Zeichen
- ullet Wort w aus dem Alphabet A ist eine Folge von konkatenierten Zeichen aus A
- $A^* = \text{Menge aller W\"{o}rter \"{u}ber } A$

3.1 Konkatenation

- $w_1 \circ w_2 \neq w_2 \circ w_1$
- $w = w_1 \circ w_2$ und $w_1 \in A^*, w_2 \in B^* \Rightarrow w \in (A \cup B)^*$

3.2 Das Leere Wort

- $\varepsilon := P_0 \to A$
- $\varepsilon: \{\} \rightarrow \{\}$

3.3 Länge eines Wortes

- $\bullet |w^k| = k * |w|$
- $|\varepsilon| = 0$
- $\bullet |a \circ b| = |a| + |b|$
- $\bullet \ A^n$ ist die Menge aller Wörter der Länge n
- $\bullet \ A^* = \bigcup_{i=0}^{\infty} A^i$

4 Binäre Operationen

- $\bullet\,$ Eine Binäre Operation auf einer Menge M ist eine Abbildung $\diamond: M \times M \to M$
- kommutativ: $\forall x, y \in M : x \diamond y = y \diamond x$
- assoziativ: $\forall x, y, z \in M : (x \diamond y) \diamond z = x \diamond (y \diamond z)$

5 Aussagenlogik

- Var_{AL} = Menge aller Aussagevariablen Beispiel: $Var_{AL} = \{A, B, C\}$
- For_{AL} = Menge aller möglichen Formeln über Var_{AL} Beispiel: $For_{AL} = \{A \rightarrow B, ...\}$

6 Induktion

- Behauptung
- \bullet Induktionsanfang: Zeige: Behauptung gilt für n=0
- Induktionsvoraussetzung: Die Beh. gelte für ein beliebiges aber festes $n \in \mathbb{N}_0$
- \bullet Induktionsschritt: Zeige: Behauptung gilt für n+1

7 Formale Sprachen

Sei A ein Alphabet. Die Formale Sprache $L\subseteq A^*$ ist eine Sprache, die alle laut L syntaktisch korrekten Gebilde enthält

7.1 Produkt formaler Sprachen

$$L_1 * L_2 = \{ w_1 * w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$$

7.2 Potenz Formaler Sprachen

$$L^{0} = \{\varepsilon\}$$

$$L^{i+1} = L^{i} * L \ (i \in \mathbb{N}_{0})$$

7.3 Konkatenationsabschluss

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

7.3.1 ε -freier Konkatenationsabschluss:

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

Achtung: Allgemein gilt nicht $\varepsilon \notin L^+$

8 Übersetzung von Wörtern in Zahlen

Ich will ja nicht klugscheißen, aber meinst du nicht Codierung??

- ullet Zahlenbasis b
- $Num_b(\varepsilon) = 0$
- $\forall w \in \mathbb{Z}_0^*, \forall x \in \mathbb{Z}_0 : Num_b(w * x) = b * Num_b(w) + num_b(x)$
- \bullet Num_b ist die Umrechnung aus dem Binärsystem in das Dezimalsystem
- $Repr_k(n)$ ist das kürzesze Wort $w \in \mathbb{Z}_k^*$ mit $Num_k(w) = n$, also $Num_k(Repr_k(n)) = n$ Achtung: Im allgemeinen: $Repr_k(Num_k(w)) \neq w$

 $Repr_k: \mathbb{N}_0 \to \mathbb{Z}_k$

•
$$n \mapsto \begin{cases} repr_k(n) & \text{wenn } n < k \\ Repr_k(n \ div \ k) * repr_k(n \ mod \ k) \end{cases}$$
 wenn $n \le k$

8.1 Zweierkomplement

- Bietet die Möglichkeit, negative Zahlen Binär darzustellen
- Vorteilhaft bei Berechnungen im Prozessor

•
$$Zkpl_k(x) = \begin{cases} 0 * bin_{k-1}(n) & \text{wenn } x \ge 0 \\ 1 * bin_{k-1}(2^{k1} + x) & \text{wenn } x < 0 \end{cases}$$

9 Homomorphismus

- Strukturerhaltene Abbildung
- $\bullet\,$ Kann Präfixfrei und $\varepsilon\text{-frei}$ sein

9.1 Strukturerhaltend

 $\forall x, y \in A^* : A(xy) = h(x) \circ h(y)$ Beispiel: $h(a) = 2, h(b) = 3 \Rightarrow h(aba) = 232$

9.2 ε -frei

 $\forall x \in A : h(x) \neq \varepsilon$

Beispiel: Kannichnichtlesen

9.3 Präfixfrei

 $\forall x \in A^* \not\exists \, v, z \in A^* \land w \neq vz : h(w) = h(v) \circ h(z)$

Beispiel: Kannichauchnedlesen

9.4 Huffman-Codierung

Beispiel: w = strrprrrstprprtt

Buchstabe aus w	x	r	t	p	s
Anzahl des Buchstabens in w	$N_x(w)$	7	4	3	2
Huffman-Codierung	h(x)	1	01	001	000

Aus der Tabelle folgt: h(w) = 000011100111100001001100110101

10 Speicher

- Eine Speichereinheit, 0 oder 1, wird Bit genannt
- $\bullet\,$ Ein Wort aus 8 Bits wird Byte genannt
- Ein Speicher bildet Adressen (adr) auf Werte (val) ab.
- Methoden
 - memread(m, adr): Liest den Wert val einer Zelle adr aus dem Speicher m
 - $-\ memwrite(m,adr,val)$ Schreibt einen Wertval in die Zelleadreines Speichers m

11 MIMA (Minimalmaschiene)

- idealisierter Prozessor
- \bullet Adressen adr sind 20-Bit Wörter
- ullet Werte val sind 24-Bit Wörter
- Befehlscodierungen
 - 4-Bit Befehl + 20-Bit Parameter
 - 8-Bit Befehl + irrelevanter Rest

11.1 Wichtige Register

Register		ster	Beschreibung			
IAR InductionAddressRegister		Induction Address Register	Speichert Adresse des aktuell auszuführenden Befehls			
	IR	InductionRegister	Speichert den aktuell auszuführenden Befehl			
	SAR	${\bf Storage Address Register}$	Enthält Adresse eines Wertes, der aus dem Speicher gelesen			
			werden soll			
	SDR	${\bf Storage Data Register}$	Enthält den Wert, der aus dem Speicher geladen wurde			

11.2 Befehle

Befehl	Beschreibung	Funktion	
LDIV adr	Load indirect value from address	$M(M(adr)) \to Akku$	
STIV adr	Store indirect value at address	$Akku \to M(M(adr))$	
LDC const	Load constant	$const \rightarrow Akku$	
LDV adr	Load value from address	$M(adr) \to Akku$	
STV adr	Store value at address	$Akku \rightarrow M(adr)$	

11.2.1 Fetch (Befehlsholphase)

- $IAR \rightarrow X$
- \bullet $Eins \rightarrow Y$
- \bullet $Z \rightarrow IAR$

11.2.2 LDC (Load Constant)

- Fetch
- \bullet $IR \rightarrow Akku$

11.2.3 LDV (Load Value)

- Fetch
- $IR \rightarrow SAR$
- $SDR \rightarrow Akku$

11.2.4 LDIV (Load Indirect Value)

- \bullet Fetch
- $IR \rightarrow SAR$
- $SDR \rightarrow SAR$
- $SDR \rightarrow Akku$

11.2.5 STV (Store Value)

- Fetch
- $IR \rightarrow SAR$
- $Akku \rightarrow SDR$

11.2.6 STIV (Store Indirect Value)

- Fetch
- $IR \rightarrow SAR$
- $SDR \rightarrow SAR$
- $Akku \rightarrow SDR$

11.2.7 JMP (Jump)

- Fetch
- $IR \rightarrow IAR$

11.2.8 EQL (Vergleich)

- Fetch
- $IR \rightarrow SAR$
- $Akku \rightarrow X$
- $SDR \rightarrow Y$
- $ALU \rightarrow Z$ (Bei Gleichheit -1, ansonsten 0)
- \bullet $Z \rightarrow Akku$

11.2.9 ADD (Addition)

- \bullet Fetch
- $IR \rightarrow SAR$
- $\bullet \ Akku \to X$
- $SDR \rightarrow Y$
- $ALU \rightarrow Z$ (Addition)
- \bullet $Z \rightarrow Akku$

12 Kontextfreie Grammatik

G = (N, T, S, P) ist eine kontextfreie Grammatik

- \bullet N: Nichtterminalsymbole
- T: Terminalsymbole, disjunkt zu N
- S: Startsymbol $S \in N$
- P: Produktionsmenge $P \subseteq N \times (N \cup T)^*$

12.1 Ableitung

Annahme: $w \in V^*, v \in V^*$ und es gibt eine Aufspaltung in $w = w_1 X w_2$ und $v = v_1 w v_2$ Mit $w_1, w_2 \in V^*$ und der Produktion $(X, w) \in P$ ist v aus w ableitbar.

Wir schreiben nun $w \Rightarrow v$

Mit $w \Rightarrow^i v$ für $i \in \mathbb{N}$ bezeichnen wir zwei Wörter, wenn zwischen ihnen i (gleiche) Ableitungsschritte liegen.

 \Rightarrow^* ist die reflexiv-transitive Hülle der Relation \Rightarrow

12.2 Erzeugte Sprache

- L = L(G) mit $L = \{w \in T^* \mid S\} \Rightarrow^* w$
- \bullet L(G) ist die von der Grammatik G erzeugte Sprache

12.3 Ableitungsbaum

Beispiel: $G = (\{S\}, \{a, b\}, S, \{S \to baSab \mid b\})$

Ableitung für w = babababab:

 $S \Rightarrow baSab \Rightarrow babaSabab \Rightarrow babababab$

13 Relationen Part 2

13.1 Produkt

 $S \circ R = \{(x, z) \in M_1 \times M_3 \mid \exists y \in M_2 \text{ mit } (x, y) \in R \text{ und } (y, z) \in S\}$ für $R \subseteq M_1 \times M_2 \text{ und } S \subseteq M_2 \times M_3$

13.2 Potenzen

- $R^0 = I_{\mu}$
- $R^{i+1} = R^i \circ R$ für alle $i \in \mathbb{N}$

13.3 Reflexiv-transitive Hülle einer Relation R

- $\bullet \ R^* = \bigcup_{i \in \mathbb{N}_{\not\vdash}} R^i$
- Reflexiv: $\forall x \in M : (x, x) \in R$
- Transitiv: $\forall x, y, z \in M : (x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$

14 Prädikatenlogik

3 Schritte für den Aufbau Prädikatenlogischer Formeln

14.1 Terme

- Konstantensymbole $Const_{PL}$ c_i (für endlich viele $i \in \mathbb{N}_{\not\leftarrow}$, kurz c, d)
- Variablensymbole Var_{PL} x_i (für endlich viele $i \in \mathbb{N}_{\vdash}$, kurz x, y, z)
- Funktionssymbole Fun_{PL} f_i (für endlich viele $i \in \mathbb{N}_{\vdash}$, kurz f, g, h) jedes $f_i \in Fun_{PL}$ hat Stelligkeit $ar(f_i \in \mathbb{N}_+)$

14.2 Atomare Formeln

• Relationssymbole Rel_{PL} \doteq immer dabei R_i (für endlich viele $i \in \mathbb{N}_{\vdash}$, kurz: R, Sjedes $R_i \in Rel_{PL}$ hat Stelligkeit $ar(R_i \in \mathbb{N}_+)$

14.3 Prädikatenlogische Formeln

Bestehen aus Atomaren Formeln und aussagenlogischen Konnektiven und Quantoren Aussagenlogische Konnektive: $\{, \neg \land, \lor, \rightarrow, \forall, \exists\}$ Beispiele (aus dem Tutorium):

- $\forall x(x \doteq a \lor x \doteq b \lor x \doteq c)$
- $\forall x, \forall y (kills(x, y) \rightarrow \neg richer(x, y))$ mit:

Freie und gebundene Variablen können vorkommen

- $\forall x(p_0(x,y) \to \forall z(\exists yp_1(y,z) \lor \forall xp_2(f(x),x)))$
- $\forall x (R(x, y) \land \exists y (R(x, y)))$

15 Hoare-Kalkül

15.1 Hoare Tripel

- Tripel ($\{P\}S\{Q\}$) mit einem Programmstück S und prädikatenlogischen Zusicherungen P,Q
- P: Bedingung vor Ausführung (Vorbedingung)
- Q: Bedingung nach Ausführung (Nachbedingung)

15.2 Hoare Regeln

15.2.1 HT1

Wenn $({P}S{Q})$ gilt, dann gilt auch $({P}S{Q})$ mit:

- $P' \Rightarrow P$
- $Q \Rightarrow Q'$
- \Rightarrow Vorbedingungen können stärker und Nachbedingungen können schwächer werden

15.2.2 HT2

Wenn ($\{P\}S_1\{Q\}$) und ($\{P\}S_2\{Q\}$) gilt, dann gilt auch ($\{P\}S_1S_2\{Q\}$) \Rightarrow Hoare-Tripel können transitiv zusammengefasst werden

15.2.3 HT3

$$\{\sigma_{x/E}(Q)\}x \leftarrow E\{Q\}$$

 \Rightarrow Nach der Zuweisung gilt jede Aussage für die Variable, die vorher für die linke Seite galt.

 $\sigma_{x/E}(Q)$ ist die Aussage, die dadurch entsteht, dass man in Q jedes freie Vorkommen von x durch E ersetzt.

Beispiel:
$$\{x + 1 = 43\}y := x + 1\{y = 43\}$$

15.2.4 HT4

Wenn $\{P \land B\}S_1\{Q\}$ und $\{P \land \neg B\}S_2\{Q\}$ gilt, dann gilt auch $\{P\}$ if B then S_1 else S_2 fi $\{Q\}$

15.2.5 Schleifeninvarianten

- Aussagen, die bei jedem Schleiendurchgang gleich sind
- helfen Korrektheit eines Programms zu beweisen
- beweist man durch vollständige Induktion

Beispiel:

```
\begin{aligned} x &\leftarrow a \in \mathbb{N}_{\vdash} \\ y &\leftarrow b \in \mathbb{N}_{\vdash} \\ \text{for } i \text{ in } 1 \text{ to } b \text{ do} \\ x &\leftarrow x + 1 \\ y &\leftarrow y + 1 \\ \text{od} \\ \text{Output } x \end{aligned}
```

Schleifeninvariante: $x_i + y_i = a + b$

16 Graphen

- G = (V, E)
- \bullet V: Menge aller Knoten im Graph G
- \bullet E: Menge aller Kanten im Graph G
 - Gerichteter Graph: $E \subseteq V \times V$ Tupel, da Reihenfolge wichtig
 - Ungerichteter Graph: $E \subseteq \{\{x,y\} \mid x,y \in V\}$ Mengen, da Reihenfolge unwichtig
- Schlinge: Kante zu sich Selber. Schlinge von V_0 : (V_0, V_0)

16.1 Teilgraph

Ein Graph T = (V', E') ist ein Teilgraph von G, wenn:

- \bullet $V' \subseteq V$
- $E' \subseteq E \cap V' \times V'$
- Also dürfen keine Kanten aus dem Teilgraphen hinausführen

16.2 Knotengrad

- Eingangsgrad: $d^-(k) = |\{x \mid (x, k) \in E\}|$ Anzahl aller Eingehenden Kanten
- Ausgangsgrad: $d^+(k) = |\{x \mid (k, x) \in E\}|$ Anzahl aller Ausgehenden Kanten
- Grad: $d^-(k) + d^+(k)$ Eingangsgrad + Ausgangsgrad Anzahl aller Kanten
- bei Ungerichteten Graphen gilt: $d^-(k) = d^+(k)$ Eingangsgrad = Ausgangsgrad

16.3 Pfad

- Folge von Knoten, die über Kanten erreichbar sind $p = (v_0, v_1, ..., v_n)$ mit $(v_i, v_{i+1}) \in E$
- Länge des Pfades = Anzahl der Knoten
- Geschlossener Pfad: $v_0 = v_n$
- Wiederholungsfreier Pfad: Alle Knoten sind Paarweise Verschieden (außer v_0 und v_n)
- einfacher Zyklus: geschlossen und wiederholngsfreier Pfad

17 Wege in Graphen finden

Zwei Knoten x, y sind adjazent, wenn die im Graphen durch eine Kante verbunden sind

Beispielgraph:

17.1 Adjazenzliste

Alle Knoten y, die zu einem Knoten x adjazent sind, werden eingetragen

	\boldsymbol{x}	y
	0	1, 2, 3
Beispiel:	1	3
	2	1, 2, 3
	3	2

17.2 Adjazenzmatrix

• Graph G = (V, E) mit n Knoten

$$A_{ij} = \begin{cases} 0 & \text{wenn } (i,j) \notin E \\ 1 & \text{wenn } (i,j) \in E \end{cases}$$

• Beispiel:
$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

• Schlingen: $A_{ii} = 1$

ullet Ungerichteter Graph: A ist Symmetrisch

• Potenzen der Adjazenzmatrix

- $(A^n)_{ij}$ gibt Auskunft darüber, ob es einen Weg der Längen von i nach j gibt.

- Beispiel:
$$A^2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

17.3 Wegematrix

•
$$W_{ij} = \begin{cases} 0 & \text{wenn } (i,j) \notin E^* \\ 1 & \text{wenn } (i,j) \in E^* \end{cases}$$

$$\bullet$$
lässt sich berechnen über: $sgn((\sum\limits_{k=0}^{n}A^{k})_{ij})$

- Signum Funktion:
$$sgn(x) = \begin{cases} 1 & \text{wenn } x > 0 \\ 0 & \text{wenn } x = 0 \\ -1 & \text{wenn } x < 0 \end{cases}$$

• Die Wegematrix ist die reflexiv-transitive Hülle der Adjazenzmatrix

• Beispiel:
$$W = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

18 Relationen (21 im Skript)

18.1 Äquivalenzrelation \equiv

Eine Äquivalnz
relation \equiv besitzt immer folgende 3 Eigenschaften:

13

- reflexiv: $\forall x \in M : x \equiv x$
- symmetrisch: $\forall x, y \in M : x \equiv y \Leftrightarrow y \equiv x$
- transitiv: $\forall x, y, z \in M : x \equiv y \lor y \equiv z \Leftrightarrow x \equiv z$

18.2 Äquivalenzklasse

- Eine Äquivalenzklasse $[x]_{\equiv}$ von x für $x \in M$ ist definiert durch $\{y \in M \mid x \equiv y\}$
- Die Faktormenge $M_{/\equiv}$ bezeichnet die Menge aller Äquivalenzklassen $\{[x]_{\equiv} \mid x \in M\}$

18.3 Verträglichkeit von Relaionen und Operationen

- \equiv ist die Äquivalenzrelation auf M
- $f: M \to M$ ist eine Abbildung verträglich mit $\equiv: \forall x_1, x_2 \in M: x_1 \equiv x_2 \Rightarrow f(x_1) \equiv f(x_2)$
- \diamond sei eine binäre Operation auf M verträglich mit \equiv : $\forall x_1, x_2, y_1, y_2 \in M : x_1 \equiv x_2 \lor y_1 \equiv y_2 \Rightarrow x_1 \diamond y_1 \equiv x_2 \diamond y_2$

18.4 Kongruenzrelation

Eine Kongruenzrelation ist eine Äquivalenzrelation, die mit interessierenden Funktionen, Operationen oder beidem verträglich ist.

18.5 Antisymmetrie

- Eine Relation $R \subseteq M \times M$ ist antisymmetrisch, wenn gilt:
- $\forall x, y \in M : xRy \land yRx \Rightarrow x = y$

18.6 Halbordnung

Eine Relation ist eine Halbordnung, wenn sie reflexiv, antisymmetrisch und transitiv ist.

18.7 Hasse-Diagram

- "Skelett der Halbordnung"
- \bullet Hasse-Diagramm \Rightarrow Halbordnung: reflexiv-transitive Hülle bilden
- \bullet Halbordnung \Rightarrow Hasse-Diagramm: Kanten, die wegen Reflexivität und Transitivität klar sind, weglassen

- \bullet Rist die Halbordnung und H_R das dazugehörige Hasse-Diagramm. Dann gilt: $H_R^*=R$
 - DAG = Directed Acyclic Graph
- = gerichteter zyklenfreier Graph
 - = Hasse-Diagramm einer endlichen Halbordnung

18.8 Nerode Äquivalenzelation

- Für jede formale Sprache L ist \equiv_L eine Äquivalenzrelation $w_1 \equiv_L w_2 \Leftrightarrow \forall w \in A^* : w_1 w \in L \Leftrightarrow w_2 w \in L$
- $w_1 \not\equiv_L w_2 \Leftrightarrow \text{Es gibt ein } w \in A^*$, sodass genau eines der wörter w_1w und w_2w in L liegt und das jeweils andere nicht

18.9 Minimale und Maximale Elemente

- Sei (M, \sqsubseteq) eine Halbordnung und $T \subseteq M$
- $x \in T$ heißt **Maximales Element** von T, wenn es kein $y \in T$ gibt, mit $x \sqsubseteq y$ und $x \neq y$
- $x \in T$ heißt **Minimales Element** von T, wenn es kein $y \in T$ gibt, mit $y \sqsubseteq x$ und $y \neq x$

18.10 Kleinste und Größte Elemente

- Sei (M, \sqsubseteq) eine Halbordnung und $T \subseteq M$
- $x \in T$ heißt Größtes Element von T, wenn $\forall y \in T : y \sqsubseteq x$
- $x \in T$ heißt Kleinstes Element von T, wenn $\forall y \in T : x \sqsubseteq y$
- Kleinstes und Größtes Element sind eindeutig

18.11 Untere und Obere Schranke

- Sei (M, \sqsubseteq) eine Halbordnung und $T \subseteq M$
- $x \in M$ heißt **Obere Schranke** von T, wenn $\forall y \in T : y \sqsubseteq x$
- $x \in M$ heißt **Untere Schranke** von T, wenn $\forall y \in T : x \sqsubseteq y$
- Können auch außerhalb von T sein

18.12 Supremum und Infimum

Besitzt eine Menge T aller $\frac{\text{unteren}}{\text{oberen}}$ Schranken ein $\frac{\text{kleinstes}}{\text{gr\"{o}Btes}}$ Element, so heißt dies Infimum Supremum von T

19 Quantitative Aspekte

19.1 Asymptotosches Wachstum: $f \approx g$

• Eine Funktion $g: \mathbb{N}_0 \to \mathbb{R}_0^+$ wächst größenordnungsmäßig genauso schnell wie eine Funktion $f: \mathbb{N}_0 \to \mathbb{R}_0^+$, wenn:

$$\exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : cf(n) \le g(n) \le c'f(n)$$

$$\Leftrightarrow f \asymp g$$

$$\Leftrightarrow cf(n) \le g(n) \land g(n) \le c'f(n)$$

- $\forall a, b \in \mathbb{R}_+ : af(n) \asymp bf(n)$
- $f \approx g$ ist eine Äquivalenzrelation
- Beispiel: $f: n \mapsto 3n^2$ und $g: n \mapsto 10^{-2}n^2$ Behauptung: $f \approx g$

$$-cf(n) \le g(n)$$
: für $c = 10^{-3}$ und $n_0 = 0$ gilt: $\forall n \le n_0 : cf(n) = 10^{-3} * 3n^2 \le 10^{-2}n^2 = g(n)$

$$-g(n) \le c' f(n)$$
: für $c' = 1$ und $n_0 = 0$ gilt: $\forall n \le n_0 : g(n) = 10^{-2} n^2 \le 3n^2 = c' f(n)$

- Beispiel 2: $f: n \mapsto n^3 + 5n^2$ und $g: n \mapsto 3n^3 n$ Behauptung: $f \approx g$
 - für $n \leq 0$ gilt:

$$f(n) = n^{3} + 5n^{2}$$

$$\leq n^{3} + n^{3} = 6n^{3}$$

$$= 9n^{3} - 3n^{3}$$

$$\leq 9n^{3} - 3n$$

$$= 3(3n^{3} - n) = 3g(n)$$
also $\frac{1}{3}f(n) = g(n)$

- Sowie:
$$g(n) = 3n^3 - n \le 3n^3 \le 3(n^3 + 5n^2) = 3f(n)$$

19.2 Groß-O Notation Θ

- $\Theta(f) = \{g \mid f \asymp g\}$ $\Theta(f) = \{g \mid \exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : cf(n) \leq g(n) \leq c'f(n)\}$ - aus $\forall a, b \in \mathbb{R}_+ : af(n) \asymp bf(n)$ folgt $\forall a, b \in \mathbb{R}_+ : \Theta(af) = \Theta(bf)$
- $O(f) = \{g \mid \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : g(n) \leq cf(n) g \leq f, \text{ falls } g \in O(f) \Leftrightarrow g \text{ wächst asymptotisch höchstens so schnell wie } f$
- $\Omega(f) = \{g \mid \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : g(n) \geq cf(n) g \succeq f, \text{ falls } g \in \Omega(f) \Leftrightarrow g \text{ wächst asymptotisch mindestens so schnell wie } f$
- $g \in O(f) \Leftrightarrow f \in \Omega(g)$, somit $g \leq f \Leftrightarrow f \geq g$
- $\Theta(f) = O(f) \cap \Omega(f)$, somit $g \approx f \Leftrightarrow g \leq f \land g \succeq f$

$log_2 n$	1	2	3	4	5	6
n	2	4	8	16	32	64
n^2	4	16	64	256	1024	4096
n^3	8	64	512	4096	32768	262144
2^n	4	16	256	65536	viel	extrem viel