MSRI Soergel bimodule workshop

June/July 2017

Week 1 Day 4 Afternoon: Supplementary/Advanced Exercises

1. Prove that a rex move $\underline{w} \to \underline{w'}$ (obviously with w = w') induces an isomorphism between the top summands B_w and $B_{w'}$. Prove that this isomorphism does not depend on the choice of rex move.

Light leaves and indecomposables

- 2. Let \underline{w} and \underline{x} be rexes. We work modulo terms lower than x. We have seen that the coefficient of H_x inside $\underline{H}(\underline{w})$ describes the graded rank of $\operatorname{Hom}(BS(\underline{w}), B_x)$ modulo lower terms, and that light leaves for \underline{w} with terminus x give a basis for this space (as a right R-module). Let e_w denote the idempotent in $\operatorname{End}(BS(\underline{w}))$ which picks out the indecomposable B_w . Let the x-kernel of \underline{w} be those linear combinations of light leaves with terminus x which vanish after precomposition with e_w . Then $\operatorname{Hom}(B_w, B_x)$ is precisely $\operatorname{Hom}(BS(\underline{w}), B_x)$ modulo the x-kernel, modulo lower terms.
 - a) Justify that the graded rank of $\text{Hom}(BS(\underline{w}), B_x)$ modulo lower terms should agree with the coefficient of H_x in the character of $BS(\underline{w})$.
 - b) Assuming that $[B_w] = \underline{H}_w$, justify that the graded rank of $\text{Hom}(B_w, B_x)$ modulo lower terms should agree with the coefficient $h_{x,w}$ of H_x in \underline{H}_w .
 - c) Let $m_{st} = 3$. Compute the x-kernel of the rex <u>sts</u>, for each $x \leq sts$. Do the graded ranks agree with your expectations?
- **3.** Recall that $\underline{H}_w \underline{H}_s = \underline{H}_{ws} \sum_u \mu(y, w, s) \underline{H}_u$ for various integers $\mu(y, w, s)$.
 - a) Using the inductive algorithm, prove that $\mu(y, w, s)$ is zero unless ys < y. When ys < y, prove that $\mu(y, w, s)$ is equal to the coefficient of v^1 in $h_{y,w}$.
 - b) Assuming that one knows the y-kernel of \underline{w} , construct a diagrammatic basis of $\operatorname{Hom}^0(B_wB_s, B_y)$. Use symbols to denote e_w and e_y . (Hint: How does the light leaf construction connect degree +1 maps from \underline{w} and degree +0 maps from $\underline{w}s$?)

Constructing idempotents

- **4.** In this exercise, we work in type B_2 , so that $m_{st} = 4$, and we use a non-symmetric Cartan matrix where $a_{s,t} = -1$ and $a_{t,s} = -2$.
 - a) In type B_2 , write $\underline{H_sH_tH_sH_t}$ as a sum of KL basis elements. How do you expect $B_sB_tB_sB_t$ to decompose?
 - b) Calculate the graded rank of $\text{Hom}(B_sB_t, B_sB_tB_sB_t)$. Compute a diagrammatic basis of maps in degree 0 (you should have found it to be a 2-dimensional space).
 - c) Calculate the graded rank of $\text{Hom}(B_sB_tB_sB_t, B_sB_t)$. Compute a diagrammatic basis of maps in degree 0. Why is this really easy, given the last part?
 - d) Calculate the graded rank of $\operatorname{End}(B_sB_t)$ and deduce that the only degree zero map is the identity.
 - e) Therefore, one can construct a 2×2 matrix given by composing a map $B_sB_t \to B_sB_tB_sB_t$ of degree 0 with a map $B_sB_tB_sB_t \to B_sB_t$ of degree 0, and computing the coefficient of the identity. This is called a *local intersection form*; one thinks of it as a bilinear form on $\text{Hom}(B_sB_tB_sB_t, B_sB_t)$... How? Compute this matrix.

- f) Whenever two maps pair under the local intersection form to the value 1, one can construct an idempotent in $\operatorname{End}(B_sB_tB_sB_t)$ which factors through B_sB_t . Whenever one has dual bases under the local intersection form, the corresponding idempotents will be orthogonal. Find dual bases and compute these orthogonal idempotents.
- g) You have just proven that B_sB_t occurs as a summand inside $B_sB_tB_sB_t$ precisely 2 times. Can there be any other summands besides B_{stst} ? Why or why not?
- h) Suppose that we work in characteristic 2. How many times does B_sB_t occur as a summand inside $B_sB_tB_sB_t$?
- **5.** What happens if you repeat the previous exercise in type H_2 ? One has $m_{st} = 5$, and $a_{s,t} = a_{t,s} = -\phi$, the (negative) golden ratio.
- **6.** If you want more exercise, repeat again in type H_2 , except with the goal of decomposing $B_sB_tB_sB_tB_s$.
- 7. Let V be the standard representation of \mathfrak{sl}_2 . Compute the decomposition of $V \otimes V \otimes V$ into direct summands, by constructing an idempotent decomposition of the identity. Does this remind you of any previous exercises? What happens when q is an 8-th root of unity?