

Topics in Pattern Recognition

- Assignment-1 - 1 -

Swapan Das M.Tech $(2^{nd}year)CSA$ Indian Institute of Science, Bangalore February 11, 2019

Contents

1	:: Random Projection ::			
	1.1	Introduction]	
	1.2	Data set: twitter.csv	1	
	1.3	Random projection algoritham :	1	
2	Tas	ask 2 :: Bayes classifier and Nearest Neighbour classifier.		
	2.1	Bayes Classifier		
	2.2	k-NN Classifier	9	
3	Tas	k 3 :: Cross-Validation technique, Measure accuracy and F1-score	5	
	3.1	Bayes Classifier using cross validation :	Ę	
	3.2	k-NN Classifier using cross validation :	Ę	
4	Tas	k 4 :: Bayes classifier and Nearest Neighbour classifier using scikit-learn library	7	
	4.1	Bayes Classifier using scikit-learn:	7	
	4.2	k-NN Classifier using scikit-learn :	7	
5	Tas	k 5 :: Compare Task 3 and Task 4	g	
6	Tas	k 6 :: Locality Sensitive Hashing(LSH)	11	
	6.1	Locality Sensitive Hashing Implementation:	11	
7	Tas	k :: Classification with lsh and PCA	13	
	7.1	Classifier using lsh:	13	
	7 2	Classifier using nea:	19	

:: Random Projection ::

1.1 Introduction

Implement random projection algorithm in projection.py file to reduce the dimension of all the three given data set(dolphins, pubmen and twitter). Let original dimension of a given data set is K. Using the random projection algorithm I created low dimensional data set for all the three given data set, for $D = \{2, 4, \dots, \lceil K/2 \rceil\}$. See (Table : 1.1) for details.

1.2 Data set: twitter.csv

For twitter data set implement a twitter_test.py in twitter directory. Using this I read all sentence from the twitter.txt file convert them into feature vector and store in a new feature_vector.csv file in the twitter directory. To create low dimensional data set for twitter data and to perform all other operations, I used this feature vector.csv file as original input.

1.3 Random projection algorithm:

Implemented in projection.py file in src directory.

Step 1: Create random matrix for various dimension d using normal distribution with $(\mu = 0 \text{ and } \sigma = 1)$.

Step 2: Perform dot product between given data set and the random matrix to create a low dimensional projected data set. Store the newly created low dimensional data set for future use.

	Data set	Total low dim file	Directory	File name
1	dolphins	8	$"/data/Projected_data/dolphins/"$	dolphins_d.csv
2	pubmed	32	$"/data/Projected_data/pubmed/"$	pubmed_d.csv
3	twitter	750	$"/ddata/Projected_data/twitter/"$	twitter_d.csv

Table 1.1: Low-dimensional Projected data set for three given data set. The value of d different for different file.

 ${\bf Step~3:}~{\bf Repeate~step-1~and~step-2~for~all~three~given~data~set~and~for~all~values~of~d.$

Task 2 :: Bayes classifier and Nearest Neighbour classifier.

2.1 Bayes Classifier

Implement in: Implemented in bayes.py file of src directory.

Test on: All the given data set and all newly created low dimensional data set.

Result: Gives test accuracy, F1_score for macro, micro and weighted format. To calculate F1_score I used

F1_score() method of metrics module.

 $Output \ file: The \ outputs \ are \ stored \ in \ various \ file \ with \ name \ as \ "Task_2_bayes_datasetName.txt" \ file. \ dataset-part \ file \ fi$

Name is different for three different type of dataset. Each row in the output file contain a pair as (x,y),

where x is the dimension of the data set and y define test accuracy in percentaage.

Each file is stored in "/output data/" directory.

2.2 k-NN Classifier

Implement in: Implemented in nn.py file of src directory.

Test on: All the given data set and all newly created low dimensional data set.

	Dimension	Test accuracy (%)
1	2	69.23
2	4	46.15
3	6	76.92
4	8	84.61
5	10	92.30
6	12	84.61
7	14	84.61
8	16	69.23
9	32	84.61

Table 2.1: Result of Bayes classifier for dolphins data set.

	Dimension	Test accuracy (%)
1	2	41.35
2	6	39.94
3	10	38.80
5	14	39.79
6	18	40.64
7	22	41.92
8	26	41.48
9	54	42.69
10	128	42.35

Table 2.2: Result of Bayes classifier for pubmed data set.

Result: Gives test accuracy, F1_score for macro, micro and weighted format. To calculate F1_score I used F1_score() method of metrics module.

Output file: The outputs are stored in various file with name as "Task_2_nn_datasetName.txt" file. datasetName is different for three different type of dataset. Each row in the output file contain a pair as (x,y), where x is the dimension of the data set and y define test accuracy in percentaage. Each file is stored in "/output_data/" directory.

Task 3 :: Cross-Validation technique, Measure accuracy and F1-score

3.1 Bayes Classifier using cross validation :

Implement in: Implemented in cross validation bayes.py file of src directory.

Test on: All the given data set and all newly created low dimensional data set.

Result: Gives test accuracy, F1_score for macro, micro and weighted format. To calculate F1_score I used F1_score() method of metrics module.

Output file: The outputs are stored in various file with name as "Task_3_bayes_datasetName.txt" file. dataset-Name is different for three different type of dataset. Each row in the output file contain a pair as (x,y), where x is the dimension of the data set and y define test accuracy in percentaage. Each file is stored in "/output data/" directory.

3.2 k-NN Classifier using cross validation :

Implement in: Implemented in cross validation NN.py file of src directory.

Test on: All the given data set and all newly created low dimensional data set.

Result: Gives test accuracy, F1_score for macro, micro and weighted format. To calculate F1_score I used F1_score() method of metrics module.

Output file: The outputs are stored in various file with name as "Task_3_nn_datasetName.txt" file. datasetName is different for three different type of dataset. Each row in the output file contain a pair as (x,y), where x is the dimension of the data set and y define test accuracy in percentaage. Each file is stored in "/output data/" directory.

Task 4:: Bayes classifier and Nearest Neighbour classifier using scikit-learn library

4.1 Bayes Classifier using scikit-learn:

Implement in : Implemented in bayes_CV_sklearn.py file of src directory.

Test on: All the given data set and all newly created low dimensional data set.

Result: Gives test accuracy, F1_score for macro, micro and weighted format. To calculate F1_score I used F1_score() method of metrics module.

Output file: The outputs are stored in various file with name as "Task_4_bayes_datasetName.txt" file. dataset-Name is different for three different type of dataset. Each row in the output file contain a pair as (x,y), where x is the dimension of the data set and y define test accuracy in percentaage. Each file is stored in "/output data/" directory.

4.2 k-NN Classifier using scikit-learn:

Implement in: Implemented in kNN CV sklearn.py file of src directory.

Test on: All the given data set and all newly created low dimensional data set.

Result: Gives test accuracy, F1_score for macro, micro and weighted format. To calculate F1_score I used F1_score() method of metrics module.

Output file: The outputs are stored in various file with name as "Task_4_nn_datasetName.txt" file. datasetName is different for three different type of dataset. Each row in the output file contain a pair as (x,y), where x is the dimension of the data set and y define test accuracy in percentaage. Each file is stored in "/output data/" directory.

Task 5 :: Compare Task 3 and Task 4

Task 6 :: Locality Sensitive Hashing(LSH)

Implement without using library.

6.1 Locality Sensitive Hashing Implementation:

Implement in: Implemented in lsh.py file of src directory.

Test on: All the given data set and all newly created low dimensional data set.

Result: It gives a hash table with all locally sensetive mappings of given data set and the hash functions used

to create that hash table. And these are used in the classification.

Output file: No output to store.

Task:: Classification with lsh and PCA

7.1 Classifier using lsh:

lsh is implemented by using the algorithm implemented in previous task.

Implement in: Implemented in classifier—using—lsh.py file of src directory.

Test on: All the given data set and all newly created low dimensional data set.

Result: Gives test accuracy, F1_score for macro, micro and weighted format. To calculate F1_score I used F1_score() method of metrics module.

Output file: The outputs are stored in various file with name as "Task_7_lsh_datasetName.txt" file. datasetName is different for three different type of dataset. Each row in the output file contain a pair as (x,y), where x is the dimension of the data set and y define test accuracy in percentaage. Each file is stored in "/output_data/" directory.

7.2 Classifier using pca:

PCA is implemented by using standard library.

Implement in: Implemented in classifier_using_pca.py file of src directory.

Test on: All the given data set and all newly created low dimensional data set.

Result : Gives test accuracy, F1_score for macro, micro and weighted format. To calculate F1_score I used F1_score() method of metrics module.

Output file: The outputs are stored in various file with name as "Task_7_pca_datasetName.txt" file. datasetName is different for three different type of dataset. Each row in the output file contain a pair as (x,y), where x is the dimension of the data set and y define test accuracy in percentaage. Each file is stored in "/output data/" directory.