Introduction and Overview of $\mathbb{Y}_n(F)$ Number Systems

Mathematician

September 15, 2024

Overview of $\mathbb{Y}_n(F)$ (2 minutes)

- ▶ Introduction to $\mathbb{Y}_n(F)$ number systems.
- ▶ Motivation behind the development of $\mathbb{Y}_n(F)$.
- Significance in advancing mathematical theory.

Historical Context and Motivation (2 minutes)

- ightharpoonup Review of traditional number systems: \mathbb{R} , \mathbb{C} , and their limitations.
- The need for new frameworks in higher-dimensional and non-commutative settings.
- ▶ Emergence of $\mathbb{Y}_n(F)$ to address these challenges.

Traditional Number Systems (5 minutes)

- lackbox Overview of the real numbers $\mathbb R$ and their completeness.
- ightharpoonup Complex numbers $\mathbb C$ and their algebraic closure.
- Limitations in handling certain algebraic and geometric structures.

Introduction to $\mathbb{Y}_n(F)$ (5 minutes)

- ▶ Definition of $\mathbb{Y}_n(F)$ as an extension of traditional number systems.
- ▶ General structure: $\mathbb{Y}_n(F)$ includes elements of *n*-dimensional spaces.
- ▶ Discussion of how $\mathbb{Y}_n(F)$ generalizes vector spaces and fields.

Detailed Definitions and Notations (10 minutes)

- Formal definition: $\mathbb{Y}_n(F)$ is a set equipped with two binary operations + and \times , with specific properties.
- Associativity and distributivity in $\mathbb{Y}_n(F)$.
- Notation: $\mathbb{Y}_n(F)$ represents the *n*-dimensional extension over field F.
- Examples to illustrate basic operations and structures in $\mathbb{Y}_n(F)$.

Comparison with Traditional Systems (5 minutes)

- ▶ How $\mathbb{Y}_n(F)$ differs from \mathbb{R} and \mathbb{C} .
- Introduction of higher dimensions and non-commutativity.
- ▶ Advantages: flexibility in modeling complex systems.
- Limitations: challenges in computation and interpretation.

Advantages and Limitations (5 minutes)

- Advantages: potential applications in algebra, geometry, and cryptography.
- Theoretical challenges: complexity in defining operations and proving properties.
- Computational challenges: difficulty in performing calculations and verifying results.
- ▶ Future work: exploring ways to overcome these limitations.

Potential Applications in Mathematics (10 minutes)

- Algebra: applications in solving polynomial equations with higher degrees.
- ► Geometry: modeling higher-dimensional shapes and spaces.
- Cryptography: potential for new encryption methods using non-commutative operations.
- Example: how $\mathbb{Y}_3(\mathbb{R})$ can be used in cryptographic key exchange protocols.

Speculative Future Directions (10 minutes)

- Exploration of $\mathbb{Y}_n(F)$ in physics, particularly in quantum mechanics.
- Potential for new mathematical theories that extend beyond current paradigms.
- Interdisciplinary applications: how $\mathbb{Y}_n(F)$ can contribute to computer science, engineering, and beyond.
- ▶ Discussion on the possible integration of $\mathbb{Y}_n(F)$ into machine learning and AI.

Summary and Next Steps (5 minutes)

- ► Recap of the key points discussed: introduction, basic definitions, comparison, and potential applications.
- ▶ Importance of $\mathbb{Y}_n(F)$ in the broader context of mathematics.
- Preview of the next lecture: foundational properties of $\mathbb{Y}_n(F)$ and deeper exploration into its algebraic structures.