University of Minnesota EE 2301 Introduction to Logic Design Summer 2023

Danya,
work4 Falsafi Homework 4

1. Design a synchronous counter to count like 2, 3, 5, 7, 2...... with J-K flip flops.

- Show your results of
- a) Next state table
- b) Karnaugh maps
- c) The resultant flip-flop circuit.

Step 1: State Diagram:

Step 2: Next State Table:

Present state Q ₂ Q ₁ Q ₀	Next state Q ₂ Q ₁ Q ₀	J ₂	K ₂	J ₁	K ₁	Jo	K ₀

00

01

11

Step 3: Transition Table for the Flip Flop:

00

01

11

10

FF inputs
J K
0 X
1 X
X 1
X 0

01

11

10

Step 4: Prepare Karnaugh maps and write the functio

00

01

11

	010	0 1 1	0 X	χο	1 X	
	011	1 0 1	1 X	XJ	χο	
	101]] [X 0	1×	χδ	
	1 1 1	010	X 1	ХØ	X L	
			Q2 J	2 0	k _z	
1	[~]		0100	1 Q1Q0	0 1	
	b)		00 7	★ 00	x x	
		/J= Q /~	01 X	X 01	X O	- k= = B
		[0]	11 1	プ 11	X 1	1/2-0
			10	$\frac{1}{x}$	XX)
	,	J_1 a k_1	س	<i>/</i>		
	Q_1Q_0	Q ₁ Q ₂ 0 1	6 5 0 0	0.	, ko	
			d 100 1	Q Q		

 $\frac{\partial}{\partial \chi} = \overline{Q}_2 Q_0$

11

2. Calculate the output values for the functions implemented in the following circuits for the given

	Inputs			Outputs		
_	w2	w1	w0	f1	f2	
Frint	0	0	0	1	1	
	0	1	0	0	0	
5	1	0	0	1	0	
	1	0	1	0	1	
f2=W1	-W _{2 3.}	F, 1	oesn't w	ork for w	$w_1w_0 > 0.10$ due due due	or lot 2 to 1 neching

a) Implement the following function using an 4x1 multiplexer. Sketch the circuit completely, label everything properly.

$$F(A,B,C) = \sum_{i} {0,1,4,6}$$

b) Implement the following function using an 8x1 multiplexer. Sketch the circuit completely, label everything properly.

$$F(A,B,C,D) = \sum_{i=1}^{n} (0,1,4,5,8,9,14,15)$$

4. Derive the state diagram for an FSM that has an input w and an output z. The machine has to generate z = 1 when the previous four values of w were 1001 or 1111; otherwise, z = 0. Overlapping input patterns are allowed. An example of the desired behavior is below:

w: 010111100110011111z: 000000010010001001

5. An FSM is defined by the following state-assigned table. Derive a circuit that realizes this FSM using D flip-flops.

Present	Next		
state	w = 0 $w = 1$		Output
$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	Z
0 0	10	11	0
0 1	0 1	00	0
10	11	00	0
11	10	0 1	1

Question 5

