

Overview of image recognition tasks

Image Classification

Image classification

 Assigning a label (or multiple labels) to an entire image, identifying the main subject or the most prominent object present in the image

Binary and multi-class classification

"Does this image contain a horse"

Output:

"Yes"

Multi-class:

"Which animal (cat, dog, horse) is present in this image?"

Output:

"Horse"

→ Assigning a single label

Multi-label classification

"What animals (cat, dog, horse) are present in this image?"

Output:

"Cat", "Dog"

→ Assign a list of labels to an input image

Multi-class

Orange Banana Apple 0.71 0.26 0.0 Class probabilities

Sum to 1

Multi-label

Do not sum to 1

Softmax function

$$P = (\sigma_1, \sigma_2, \dots, \sigma_c)$$

$$\sigma(z)_i = \frac{e^{z_i}}{\sum_{j=1}^c e^{z_j}}$$

$$z = (z_1, z_2, \dots, z_c)$$

Multi-label classification

Multiple binary classifiers

Does the image contain this class?

→ Sigmoid function

$$\sigma(z_i) = \frac{1}{1 + e^{-z_i}}$$

Building an image classifier

Approach 1:

Train from scratch

CNN parameters are initialized randomly

Approach 2:

Transfer Learning

- Using pre-trained models
 - Fine-tune the last layer

Performance Metrics

Accuracy

$$Accuracy = \frac{\text{# correctly classified}}{\text{# total}}$$

- Not suitable for imbalanced classes
- No information on individual class performance

Performance Metrics

Precision & Recall

$\begin{array}{c|c} \mathbf{TP}_i & \mathbf{FP}_i \\ \hline \mathbf{FN}_i & \mathbf{TN}_i \end{array}$

$$Precision_{i} = \frac{TP_{i}}{TP_{i} + FP_{i}}$$

$$Recall_{i} = \frac{TP_{i}}{TP_{i} + FN_{i}}$$

Macro-averaging:

treating classes equally

Micro-averaging:

treat each sample equally

F1 score

Harmonic mean of precision and recall

$$F1 Score = 2 \times \frac{Precicion \times Recall}{Precicion + Recall}$$

Balancing precision and recall

Multi-label Performance Metrics

Zero-One Accuracy

(aka subset accuracy)

Ground Truth 0 1 0 1 1

 Predicted
 0
 1
 0
 1
 0

→ Incorrect prediction

A sample is counted as correct if the two vectors match entirely.

Multi-label Performance Metrics

Hamming Accuracy

Multi-label Performance Metrics

(Intersection over Union – IoU)

Ground Truth (Y) Predicted (\tilde{Y})

Strawberry Banana Orange Apple

• Size of intersection = 2
• Size of union = 4 $\Rightarrow IoU = \frac{|Y \cap \tilde{Y}|}{|Y \cup \tilde{Y}|}$

Object Localization

Object localization

- What is the object in the image?
- Where is it?

Object localization involves not only identifying what the primary object in an image is (classification) but also determining its specific location with a bounding box.

Object localization

Limitations of object localization

Single Object Focus:

Traditional object localization techniques may struggle when multiple instances of the same object are present, often creating a bounding box that encompasses all instances as a single object.

Object Detection

Object detection

• Detecting multiple instances of semantic objects (pedestrians, cars, ...)

 Finding bounding-boxes around each instance

- Output:
 - Object class
 - o Bounding boxes can be represented with a vector of 4 values: (x_1, y_1, x_2, y_2)

Object detection

Example output \rightarrow

Bounding box formats

Read more: https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/

Object detection models

R-CNN

Regions with Convolutional Neural Networks

R-CNN: Regions with CNN features

Step 1: Extract ~2000 region proposals using **selective search algorithm**

Step 2: Compute features for each region

Step 3: Classify each region using linear-SVM

Drawback: redundant computations

Evolution of R-CNN Models

- R-CNN
 - Selective search on the original image
 - Computes the features for each region proposal

- Fast R-CNN
 - Sharing the computations for different region proposals
 - → shared feature maps
 - Extract feature vectors from the shared feature maps

- Faster R-CNN
 - Region proposal network (RPN)
 - ROI-Pool

Architecture of Faster R-CNN

- Backbone network
 - ResNet-50
 - ResNet-101
- Feature Pyramid Network (FPN)
 - Using lateral connections at different feature scales
 - Extracts different feature hierarchies
 - Multiscale object recognition
- RPN and ROI-pool: Extracting features for each region
- Two heads: classification and bounding-box regression

Object Detection Performance Metrics

 Mapping predictions and ground truth boxes into TP, FP, or FN based on intersection over union (IoU)

the same class with IoU > threshold

Precision and Recall

Average Precision – AP

- Calculated for each class individually
- Precision-recall curve based on confidence values
- Area under the curve of the precision-recall curve
 - For class k:

$$AP_k = \int_0^1 p(r) \, dr$$

$$AP_k \approx \frac{1}{11} \sum_{r \in \{0,0.1,\dots,1.0\}} p(r)$$

Semantic Segmentation

Semantic segmentation

 Pixel-wise classification: Assigns a class label to each individual pixel in an image, effectively partitioning it into regions.

 Provides detailed comprehension of the scene, distinguishing between different objects and background.

Applications:

- Medical imaging
- Autonomous vehicles
- Scene understanding tasks.

Applications

- Medical imaging
- Self-driving cars
- Robotics
- Image editing
- Agriculture automation
- •

Semantic segmentation

Semantic segmentation with UNet

"U-Net: Convolutional Networks for Biomedical Image Segmentation, O Ronneberger et al.", 2015, https://arxiv.org/pdf/1505.04597.pdf

Performance metrics for semantic segmentation

Pixel Accuracy

of correctly classified pixels

Total # of pixels

- → Not symmetric
- → Biased towards predictions larger than GT
- → Suffers from imbalanced classes

Per-class Precision & Recall

For each class, map each pixel into TP, FP, TN, FN categories

$$Precision_{k} = \frac{TP_{k}}{TP_{k} + FP_{k}}$$

$$Recall_{k} = \frac{TP_{k}}{TP_{k} + FN_{k}}$$

- → Provides detailed class-level performance measure
- → Not symmetric

IoU

$$IoU_k = \frac{|g_k \cap p_k|}{|g_k \cup p_k|}$$

Dice Coefficient (F1 score)

$$Dice_c = \frac{2 \times |g_k \cap p_k|}{|g_k| + |p_k|}$$

IoU

$$IoU_k = \frac{|g \cap p|}{|g \cup p|}$$
$$= \frac{TP_k}{TP_k + FP_k + FN_k}$$

Dice Coefficient

$$Dice_k = \frac{2 \times |g \cap p|}{|g| + |p|}$$
$$= \frac{2TP_k}{2TP_k + FP_k + FN_k}$$

More sensitive for small objects

Boundary IoU

Source: https://arxiv.org/pdf/2103.16562

Instance Segmentation

Instance segmentation

Individual Object Identification:

- Identifying instances of objects in an image
- Differentiating between multiple instances of the same class
- Combining detection and segmentation
- Applicable to countable things (not stuff)

Objects (things) vs. stuff

- Objects: discrete and countable things
 - E.g., people, animals, cars, ...
- Stuff: continuous areas (not countable)
 - E.g., sky, grass, road, ...

Instance segmentation

Faster R-CNN

Only detection

Performance metrics for instance segmentation

(Mask) Average Precision: $AP_{IoU=0.5}^{k}$

- For each class k, assign predicted masks to GT masks based on their Mask-IoU → determine TP, FP, FN
- Sort predictions based on their confidences
- Construct precision-recall curve and calculate area under the curve

Mean Average Precision (mAP)

Mean of average precisions for all classes

Panoptic Segmentation

Panoptic segmentation

- Integrates semantic and instance segmentation
- Applicable to both <u>things</u> and <u>stuff</u>

Segmentation Tasks

Things and stuff

Panoptic segmentation metrics

Panoptic Quality (PQ)

Matching predicted and ground truth segments based on IoU > 0.5

$$PQ_k = \frac{\sum_{p,g \in TP_k} IoU(p,g)}{|TP_k| + \frac{1}{2}|FP_k| + \frac{1}{2}|FN_k|}$$

Panoptic segmentation metrics

Segmentation Quality (SQ)

Recognition Quality (RQ)

$$PQ_k = \frac{\sum_{p,g \in TP_k} IoU(p,g)}{|TP_k|} \times \frac{|TP_k|}{|TP_k| + \frac{1}{2}|FP_k| + \frac{1}{2}|FN_k|}$$

Decomposition provides further insights for error analysis

Visual Grounding

Visual Grounding

- Links language descriptions to specific objects or regions in visual data, enhancing interpretability and interaction.
- Identifies specific image regions corresponding to textual descriptions.

"a cool dog skateboarding"

Visual Grounding

- Understanding the context
- Identifying the objects

- Identifying the relationship between objects
- Provide a **description** of the image in natural language

Summary: Overview of object recognition tasks

- Classification: Assigns a label to the entire image (or multiple labels in multi-label).
- Object Localization: Identifies a single object's locations with a bounding box.
- Object Detection: Combines classification and localization for multiple objects.
- Semantic Segmentation: Pixel-wise classification.
- Instance Segmentation: Combining detection and segmentation (only for things).
- Panoptic Segmentation: Segmenting stuff and things.

