

Symetrická kryptografia

Stanislav Palúch

Fakula riadenia a informatiky, Žilinská univerzita

9. novembra 2010

Všeobecný princíp symetrickej kryptografie

- A a B sa dohodnú na kryptosystéme
- A a B sa dohodnú na kľúči
- 3 A (resp. B) šifruje priamy text x ako $y = E_K(x)$
- **9** B (resp. A) dešifruje zašifrovaný text y ako $x = D_K(y)$

Sú to systémy s blokovou šifrou – šifrujú sa celé bloky priameho textu. Pre kryptosystémy Feistelovho typu musí mať blok párny počet bitov.

Blok sa rozdelí na dve rovnako dlhé časti – ľavú L_i a pravú R_i .

Šifrovanie prebieha po kolách Jedno kolo urobí:

$$R_{i+1} = L_i \oplus f(R_i, K_i)$$

 $L_{i+1} = R_i$

Počítajme X.

$$X = \underbrace{R_{i+1}}_{=L_i \oplus f(R_i, K_i)} \oplus f(\underbrace{L_{i+1}}_{=R_i}, K_i) = \underbrace{L_i \oplus \underbrace{f(R_i, K_i) \oplus f(R_i, K_i)}_{=0}}_{=0} = L_i$$

Dôsledok: Ak kolovému algoritmu vložíme kolový kľúč K_i , na miesto pravej časti L_{i+1} a na miesto ľavej časti R_{i+1} , dostaneme na jeho výstupe na pravej a ľavej časti porade pôvodné L_i a R_i . Ten istý kolový algoritmus (s prehodenou ľavou a pravou stranou a tým istým kolovým kľúčom) teda môžeme použiť ako inverznú funkciu.

Feistelova sieť je iterované niekoľkonásobné opakovanie kolových algoritmov, každý s iným kolovým kľúčom.

Dešifrovanie sa urobí tou istou sieťou. ktorej sa na vstup vloží zašifrovaný text s poradím kolových kľúčov K_n, K_{n-1,\dots,K_1} a so zameneným poradím pravej a ľavej časti.

Dôležité: Práve popísaný inverzný mechanizmus nezáleží na tvare funkcie $f(R_i, K_i)$.

Na funkcii $f(R_i, K_i)$ však podstatne závisia kryptografické vlastnosti

DES - Data Encryption Standard

- Vyvinutý v IBM, publikovaný 1975
- Bloková šifra 64-bitový blok
- 56-bitový kľúč
- Feistelova sieť so 16 kolami so vstupnou a výstupnou permutáciou
- IP vstupná (inicializačná) permutácia
- IP⁻¹ − výstupná permutácia

Vstupná a výstupná permutácia nemajú žiaden vplyv na bezpečnosť kryptosystému.

Vstupná a výstupná permutácia

Table 12.1 Initial Permutation

58	50	42	34	26	18	10	2	60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6	64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1	59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5	63	55	47	39	31	23	15	7

Table 12.8 Final Permutation

40	8	48	16	56	24	64	32	39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30	37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28	35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26	33	1	41	9	49	17	57	25

Popis funkcie f v kryptosystéme DES

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Popis funkcie f v kryptosystéme DES - znovu

- S-box je tabuľka so štyrmi riadkami a šestnástimi stĺpcami.
- Riadky sú číslované od 0 do 3, stĺpce sú číslované od 0 do 15.
- DES používa 8 S-boxov, bloku B_i je priradený S-box S_i .
- Každé B_i je 6-bitové číslo $b_1b_2b_3b_4b_5b_6$ a predstavuje adresu príslušného štvorbitového čísla C_i v S-boxe S_i .

Adresa sa vypočíta takto:

Nech $B_1 = b_1 b_2 b_3 b_4 b_5 b_6$.

 b_1b_6 je číslo riadku, $b_2b_3b_4b_5$ je číslo stĺpca v príslušnom S-boxe.

S-box 1:

14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

Príklad:

$$B_1 = 101011$$
. $b_1b_6 = (11)_2 = 3$, $b_2b_3b_4b_5 = (0101)_2 = 5$.

V S-boxe S_1 je v riadku 3 a stĺpci 5 číslo 9 (pozor, riadky a stĺpce sa číslujú od 0), ktorého binárny rozvoj je 1001. Je teda

$$S_1(B_1) = S_1(101011) = 1001 = C_1.$$

S-box 2:

ſ	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
ſ	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
Ī	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
ſ	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

S-box 3:

	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
Г	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12

S-box 4:

	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
Ì	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
Ì	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
Ì	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

_		_
<u> </u>	box	h.
J-	DDX	J.

$\mathbf{J}^{-}\mathbf{D}\mathbf{U}$	·^ J.														
2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3

S-box 6:

12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13

S-box 7

<u> </u>	<u> </u>														
4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12

S-box 8:

	S-DO	x o:														
	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
ĺ	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
ſ	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
ĺ	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

Záverečná permutácia kolovej funkcie

Table 12.7 P-Box Permutation

16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25

	16	7	20	21
ſ	29	12	28	17
ſ	1	15	23	26
ſ	5	18	31	10
ſ	2	8	24	14
ſ	32	27	3	9
ſ	19	13	30	6
ſ	22	11	4	25

16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25

16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25

Generovanie kolových kľúčov

28 \(\) 28 \(\) 28 \(\) 28 \(\) 28 \(\) 28 \(\) 28 \(\) 28 \(\) 28 \(\) 28 \(\) 28 \(\) 28 \(\) 28 \(\) 8 \(\) 8 \(\) 16 \(\) 17 \(\) 17 \(\) 17 \(\) 18 \(

Kľúč pre systém DES je 56-bitový, ale ukladá sa ako 64 bitov s tým, že v každom bajte je 7 bitov kľúča a jeden kontrolný bit doplňujúci bajt na napárnu paritu. Po odstránení paritných bitov sa získa 56 bitov kľúča, ktorých poradie sa zmení podľa permutácie PC-1.

Potom sa 56 bitov kľúča rozdelí na dve 28-bitové časti C_0 , D_0 , na každú z nich sa postupne aplikuje ľavý rotačný posun LS_1 , LS_2 ..., LS_{16} . Pre i=1,2,9,16 je LS_i posun o jedno miesto, inak o 2 miesta.

Získa sa tak postupnosť $C_1D_1, C_2D_2, \ldots, C_{16}D_{16}$ 56 bitových reťazcov, z ktorých operácia PC-2 výberom 48 bitov a ich permutáciou vytvorí postupne kľúče K_1, K_2, \ldots, K_{16} .

Permutácia PC-1 a zobrazenie PC-2

Permutácia PC-1

57	49	41	33	25	17	9	1	58	50	42	34	26	18
10	2	59	51	43	35	27	19	11	3	60	52	44	36
63	55	47	39	31	23	15	7	62	54	46	38	30	22
14	6	61	53	45	37	29	21	13	5	28	20	12	4

Zobrazenie PC-2

14	17	11	24	1	5	3	28	15	6	21	10
23	19	12	4	26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40	51	45	33	48
44	49	39	56	34	53	46	42	50	36	29	32

Jediná nelinearita šifrovacieho algoritmu DES je v S-boxoch. Na nich závisí odolnosť DESu.

- Každý riadok je permutáciou čísel 0 15.
- Žiaden S-box nie je lineárnou alebo afinnou funkciou vstupov
- Zmena jedného vstupného bitu S-boxu spôsobí zmenu aspoň dvoch bitov výstupu
- ullet Pre každý S-box a pre každé šesťbitové x S(x) a $S(x\oplus 001100)$ sa líšia aspoň v dvoch bitoch
- The pre každý S-box a pre každé šesťbitové x a pre ľubovoľné bity $r, s \in \{0, 1\}$ $S(x) \neq S(x \oplus 11rs00)$.
- Ak fixujeme hodnotu jedného vstupného bitu, potom počet vstupných hodnôt, pre ktoré je ľubovoľný určený bit rovný 0 (alebo 1), je medzi 13 a 19.

Útok hrubou silou.

Počet kľúčov 2⁵⁶ sa ukazuje v dnešnej dobe malý. Podarilo sa prelomiť DES distribuovaným výpočtom na Internete.

Diferenciálna kryptoanalýza.

Je to útok typu "chosen plaintext attack". Šifrovaciemu algoritmu s neznámym kľúčom sa dávajú šifrovať dvojice priamych textov P_1 , P_2 s určitou diferenciou $P_1 \oplus P_2$ a na základe diferencie príslušných zašifrovaných textov sa usudzuje na niektoré vlastnosti kľúča.

Lineárna kryptoanalýza.

Ak pre priamy text $x_1x_2...x_{64}$, kľúč $k_1k_2...k_{56}$ a pre príslušný zašifrovaný text $y_1y_2...y_{64}$ platí

$$\bigoplus_{i=1}^{64} a_i x_i \oplus \bigoplus_{i=1}^{64} b_i y_i = \bigoplus_{i=1}^{56} c_i k_i$$

s pravdepodobnosťou rôznou od $\frac{1}{2}$, dá sa to využiť pri kryptoanalýze.

Pre DES platí

$$x_{17} \oplus y_3 \oplus y_8 \oplus y_{14} \oplus y_{25} = K_{i,26}$$

s pravdepodobnosťou $\frac{1}{2} - \frac{5}{16} = \frac{3}{16}$.

Na základe tohoto faktu boľ navrhnutý chosen plaintext attack analyzujúci priemerne 2⁴³ známych priamych textov, ktorý odhalil kľúč za 50 dní práce 12 počítačov HP9735 (v roku 1994).

Pokusy o predĺženie kľúča

Namiesto jedného šifrovania kľúčom K_1 zašifrujeme dvakrát – najprv kľúčom K_1 a potom kľúčom K_2 . Teda

šifrujeme:
$$y = E_{K_2}[E_{K_1}(x)]$$
 dešifrujeme: $x = D_{K_1}[D_{K_2}(x)]$

Ak by boli šifrovacie a dešifrovacie zobrazenia systému DES grupou, t.j. ak by pre K_1 , K_2 existovalo K_3 také, že $E_{K_2}[E_{K_1}] = E_{K_3}$, dvojité šifrovanie by nemalo význam.

Príklady šifier, ktoré sú grupami:

- cézarovská šifra
- všeobecná monoalfabetická šifra
- permutačná šifra
- hillovská šifra

DES však nie je (pravdepodobne) grupou.

Útok typu "Meet-in-the-middle"

Predpokladajme že poznáme dvojicu x, y priameho textu a textu zašifrovaného dvojicou kľúčov $K_1, K_2,$ t.j. $y = E_{K_2} [E_{K_1}(x)].$ $D_{K_2}(y) = D_{K_2} \{E_{K_2} [E_{K_1}(x)]\} = E_{K_1}(x)$ Hľadáme takú dvojicu kľúčov $K_1, K_2,$ pre ktoré je

$$D_{K_2}(y)=E_{K_1}(x).$$

Zostrojíme dve tabuľky – tabuľku 1. závislosti $E_{K_1}(x)$ na K_1 a tabuľku 2. závislosti $D_{K_2}(y)$ na K_2 .

Ak nájdeme taký prvok v druhom stĺpci tabuľky 1., ktorý sa rovná niektorému prvku v druhom stĺpci tabuľky 2., našli sme v príslušných prvých stĺpcoch kandidátov na kľúče K_1 . K_2 .

K_1	$E_{K_1}(x)$	K_2	$D_{K_2}(y)$
0		0	_
1			
1 2		1 2	
_		_	
L_1	Z		
		L ₂	Z
056 4		$2^{56}-1$	
$2^{56}-1$		$ 2^{55} - 1$	

Postup možno zjednodušiť tak, že zostrojíme a zapamätáme len tabuľku 1. a postupne generujeme $D_{K_2}(y)$ pre $K_2=0,1,...$ a hľadáme jeho výskyt v druhom stĺpci tabuľky 1.

Pamäťové nároky: 2^n (2^{56}) riadkov tabuľky 1.

Výpočtové nároky:

$$2 \times 2^n$$
 (2×2^{56}) kódovaní

 2^n . $\log_2 2^n = n \cdot 2^n$ (56.2⁵⁶) krokov na usporiadanie tabuľky 1 a najviac $2^n \cdot \log_2 2^n = n \cdot 2^n$ (56.2⁵⁶) krokov na vyhľadávanie v tabuľke 1.

Spolu: $2.2^n + n.2^n + n.2^n = (2 + 2n)2^n = (1 + n).2^{n+1}$ (57.2⁵⁷).

Sú známe aj efektívnejšie útoky.

Útok hrubou silou na odhalenie kľúčov K_1 , K_2 vyžaduje 2^{2n} (2^{112})kódovaní.

Dôsledok: Dvojité šifrovanie neprináša očakávané zosilnenie šifry.

šifrujeme:
$$y=E_{\mathcal{K}_3}\big\{D_{\mathcal{K}_2}\left[E_{\mathcal{K}_1}(x)\right]\big\}$$
 dešifrujeme: $y=D_{\mathcal{K}_1}\big\{E_{\mathcal{K}_2}\left[D_{\mathcal{K}_3}(x)\right]\big\}$

GOST

Sovietsky kryptovací systém používaný v časoch studenej vojny.

Bloková šifra.

64 bitový blok, 256 bitový kľúč.

Feistelova sieť s 32 kolami.

S-boxy sú jednoriadkové tabuľky obsahujúce permutácie čísel $0, 1, \ldots, 15$.

S-boxy kryptosystému GOST

S -b 4	ox 1: 10	9	2	13	8	0	14	6	11	1	12	7	15	5	3
S-b 14	ox 2:	4	12	6	13	15	10	2	3	8	1	0	7	5	9
S -b	ox 3 :	1	13	10	3	4	2	14	15	12	7	6	0	9	11
S-b	ox 4 :	10	1	0	8	9	15	14	4	6	12	11	2	5	3
S -b	ox 5 :	7	1	5	15	13	8	4	10	9	14	0	3	11	2
S -b	ox 6 :	10	0	7	2	1	13	3	6	8	4	9	12	15	14

S-boxy kryptosystému GOST

Generovanie kolových kľúčov

Kľúč je 256 bitový. Možno ho rozdeliť na osem 32-bitových kľúčov K_1, K_2, \ldots, K_8 .

Tieto sa potom použijú v poradí:

$$K_1, K_2, \dots, K_8, K_1, K_2, \dots, K_8, K_1, K_2, \dots, K_8, K_8, K_7, \dots K_1$$

TD**‡**A − International Data Encryption Algorithm (Xueija Lai and James Massey) -1992.

Je patentovaný, US patent vyprší 7.1.2012

Bloková šifra – blok 64 bitov Kľúč 128 bitov.

64- bitový blok sa rozdelí na 4 16-bitové časti x_1, x_2, x_3, x_4 , s ktorými s urobí 8 kôl algoritmu plus záverečné "polovičné kolo."

V kolách sa používajú tieto operácie:

- → XOR po bitoch
- \blacksquare sčítanie mod 2^{16}
- násobenie mod (2¹⁶ + 1) pričom sa 16-bitové slovo pozostávajúce zo samých 0 považuje za reprezentáciu čísla 2¹⁶ + 1.

Jedno kolo algoritmu IDEA

Záverečné polovičné kolo

Generovanie kolových kľúčov

Každé kolo potrebuje 6 kľúčov a záverečné polovičné kolo 4 kľúče, t.j spolu 6*8+4=52 16-bitových kľúčov

Najprv sa 128 bitový kľúč rozdelí na 8 16-bitových kľúčov

Potom sa na kľúč aplikuje ľavý rotačný posun o 25 bitov a získa sa ďalších 8 kľúčov.

Kľúč sa znovu rotuje o 25 bitov a získa sa ďalších 8 kľúčov. Atď.

Dešifrovanie

Ten istý algoritmus sa použije aj na dešifrovanie s tým, že ako kľúče sa použijú opačné resp. inverzné hodnoty kľúčov zo šifrovania vo vhodnom poradí.

.

Operačné módy blokových šifier

Majme blokovú šifru so šifrovacím zobrazením $E_K(x)$ a dešifrovacím zobrazením $D_K(x)$. Máme priamy text vyjadrený ako postupnosť blokov

$$x_1, x_2, \ldots, x_n$$

Je niekoľko spôsobov, ako vytvoriť zodpovedajúcu postupnosť blokov zašifrovaného textu

$$y_1, y_2, \ldots, y_n$$

s použitím zobrazenia $E_K(x)$ tak, aby sa pomocou dešifrovacieho zobrazenia dala zrekonštruovať pôvodná postupnosť

$$x_1, x_2, \ldots, x_n$$

Tieto spôsoby sa nazývajú operačné módy blokových šifier.

ECB – Electronic Code Book mód

Najjednoduchším módom je ECB mód, kedy sa šifruje priamy text blok po bloku predpisom

$$y_i = E_K(x_i)$$

a dešifruje predpisom

$$x_{i} = D_{K}(y_{i})$$

$$x_{1} \quad x_{2} \quad x_{3} \quad y_{1} \quad y_{2} \quad y_{3}$$

$$E_{K} \quad E_{K} \quad E_{K}$$

Nevýhoda: Rovnaký blok x_i sa zakaždým zašifruje na rovnaký blok v_i , čo môže uľahčiť niektoré útoky.

Šifrovanie v ECB móde

Dešifrovanie v ECB móde

OFB – Output Feedback Mode mód

Pri tomto móde sa najprv zvolí náhodný inicializačný blok IV zvaný tiež inicializačný vektor a položí sa $y_0 = IV$. Postupne sa vypočítajú $z_1 = E_K(y_0)$, a rekurentne $z_{i+1} = E_K(z_i)$.

$$IV=y_0$$
 $\leftarrow E_K()$ $\leftarrow Z_1$ $\leftarrow E_K()$ $\leftarrow Z_2$ $\leftarrow E_K()$ $\leftarrow Z_3$

Šifrujeme predpisom

$$y_i = z_i \oplus x_i$$

Zašifrovaná správa je postupnosť $y_0, y_1, y_2, \dots, y_n$ (má o jeden blok viacej) a dešifrujeme predpisom

$$x_i = z_i \oplus y_i$$
.

Tento mód pripomína prúdovú šifru s prúdom kľúčov z_1, z_2, \ldots, z_n , preto je nutné pre každú správu používať iný inicializačný vektor.

CBC Cipher Block Chaining Mode

Cipher Block Chaining Mode

Šifrujeme predpisom

$$y_i = E_K(x_i \oplus y_{i-1})$$

Zašifrovaná správa je postupnosť

$$y_0, y_1, y_2, \dots, y_n$$

(má o jeden blok viacej).

Dešifrujeme predpisom

$$x_i = y_{i-1} \oplus D_K(y_i).$$

CFB Cipher Feedback Mode

Cipher Feedback Mode

Šifrujeme predpisom

$$y_i = E_K(y_{i-1}) \oplus x_i$$

Zašifrovaná správa je postupnosť

$$y_0, y_1, y_2, \dots, y_n$$

(má o jeden blok viacej).

Dešifrujeme predpisom

$$x_i = y_i \oplus E_K(y_{i-1}).$$

Galoisove pole $GF(2^8)$

Pole GF(28) Prvky: polynómy typu

$$b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x^1 + b_0$$

s koeficientami v \mathbb{Z}_2 .

Takýto polynóm modeluje bajt $b_7b_6b_5b_4b_3b_2b_1b_0$. Tak napríklad {0 1 0 1 0 1 1 1} zodpovedá polynómu $x^6 + x^4 + x^2 + x + 1$.

Sčítanie v $GF(2^8)$ je sčítanie polynómov nad \mathbb{Z}_2 .

$$(x^6 + x^4 + x^2 + x + 1) + (x^7 + x^6 + x^4 + x^2) = (x^7 + x + 1)$$

{0 1 0 1 0 1 1 1} \oplus {1 1 0 1 0 1 0 0}= {1 0 0 0 0 1 1}
V hexadecimálnom zápise (57)_H \oplus (D4)_H = (83)_H.

Sčítaniu bajtov \oplus zodpovedá počítačová bajtová operácia XOR pobitoch.

AES – Násobenie v Galiosovom poli GF(28)

Násobenie v $GF(2^8)$ sa definuje ako

$$p(x) \otimes q(x) = p(x).q(x) \mod m(x),$$

kde m(x) je ireducibilný polynóm stupňa 8 nad $GF(2^8)$.

AES používa tento ireducibliný polynóm $m(x) = x^8 + x^4 + x^3 + x + 1$.

$$\left(\underbrace{(x^6 + x^4 + x^2 + x + 1)}_{57_H = \{01010111\}} \cdot \underbrace{(x^7 + x + 1)}_{\{11010100\}}\right) \mod \underbrace{(x^8 + x^4 + x^3 + x + 1)}_{=m(x)} =$$

$$(x^{13} + x^{11} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + 1) \mod m(x) = \underbrace{(x^7 + x^6 + 1)}_{}$$

{11000001}

 $V\ GF(2^8)\ teda\ máme\ \{01010111\}\otimes\{11010100\}=\{11000001\}$

AES – Násobenie číslom $2 \equiv \{00000010\} \equiv x$

Polynóm x zodpovedá bajtu $\{00000010\}$, t.j číslu $2 = (02)_H$. Skúmajme, čomu sa rovná $\{00000010\} \otimes b$.

Nech $b(x) = b_7 x^7 + b_6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x^1 + b_0$ Potom $x.b(x) = b_7x^8 + b_6x^7 + b_5x^6 + b_4x^5 + b_3x^4 + b_2x^3 + b_1x^2 + b_0x$

Ak
$$b_7 = 0$$
, $x.b(x) \mod m(x) = x.b(x)$,

kde $m(x) = x^8 + x^4 + x^3 + x + 1$.

Túto operáciu vykoná ľavý posun bajtu b o 1 bit.

Ak $b_7 = 1$. potom $x.b(x) \mod m(x) = x.b(x) \oplus m(x) = x.b(x) \oplus m(x).$

Túto operáciu vykoná ľavý posun bajtu b a následne bitový XOR s $\begin{array}{ll} \text{bajtom} \ \big\{00011011\big\} \ \big(\text{hexadecimálne} \ \big(1B\big)_{H}\big). \\ \text{Stanislav Palúch, Fakula riadenia a informatiky.} \ Zilinská univerzita \end{array}$

```
Môžeme teda definovať funkciou
xtime(b)
t=b;
leftshift(t);
if(b > OFH) then t=t XOR 1BH;
return t;
Potom násobenie a \otimes b realizujeme nasledovne:
t0=b:
t1=xtime(t0);
t2=xtime(t1):
t3=xtime(t2);
t4=xtime(t3):
t6=xtime(t5);
t7=xtime(t6);
t=a[0]t0\oplus a[1]t1\oplus a[2]t2\oplus \ldots \oplus a[7]t7;
return t:
```


AES – Výpočet inverzného prvku b⁻¹

 $GF(2^8)$ s operáciami \oplus , \otimes tvorí pole, v ktorom

- nulový prvok je polynóm 0 00000000
- jednotkový prvok je prvok $1-00000001\equiv 0x^7+0x^6+\cdots+0x+1$
- ku každému prvku b existuje opačný prvok je to samotné b,
- ku každému prvku $b \neq 0$ existuje inverzný prvok b^{-1} .

Inverzný prvok možno vypočítať rozšíreným Euklidovým algoritmom. Pre účely AES však stačí vypočítať tabuľku binárnej operácie \otimes (má rozmer 256 \times 256) a pre každé $b=1,2,\ldots,255$ nájsť to c, pre ktoré je $b\otimes c=1$, a položiť $b^{-1}=c$.

Ak vytvoríme tabuľku s 256 položkami typu

inverzný prvok b^{-1} k prvku b získame ako položku tejto tabuľky na mieste (adrese) b.

AES – Advanced Encryption Standard – História

- 1997 inicializácia procesu výberu vhodného symetrického kryptografického algoritmu – NIST (National Institute of Standards and Technology - USA)
- Súťaže sa zúčastnilo 15 algoritmov
- 1998 publikovali Vincent Rijmen (1970) a Joan Daemen (1965) (Belgicko) algoritmus Rijndael
- Od roku 2002 bol Rijndael uznaný autoritami NIST, FIPS¹, NSA² za nový kryptografický štandard označovaný ako AES
- AES je jediný verejne dostupný šifrovací algoritmus schválený NSA pre najtajnejšie (top secret) informácie

Výhody:

- Výkonnosť v hardvérovej i softvérovej implementácii
- Nízke pamäťové nároky
- Možnosť ochrany pred útokmi parazitnými kanálmi

¹FIPS – Federal Information Processing Standard)

²NSA - National Security Agency

AES - Advanced Encryption Standard - Špecifikácia

Bloková šifra

Dĺžka bloku: 128 bitov

Dĺžka kľúča: voliteľne 128, 192 alebo 256 bitov

128-bitový blok priameho textu berieme ako postupnosť 16 8-bitových bajtov:

$$a_{00}a_{10}a_{20}a_{30}a_{01}a_{11}a_{21}a_{31}a_{02}a_{12}a_{22}a_{32}a_{03}a_{13}a_{23}a_{33}$$

Tieto sa usporiadajú do tabuľky, ktorý sa volý stav

a ₀₀	a ₀₁	a ₀₂	a ₀₃
a ₁₀	a ₁₁	a ₁₂	a ₁₃
a ₂₀	a ₂₁	a ₂₂	a ₂₃
a ₃₀	a ₃₁	a ₃₂	a ₃₃

Stav

k_{00}	k_{01}	k_{02}	k_{03}
k ₁₀	k ₁₁	k ₁₂	k ₁₃
k ₂₀	k ₂₁	k ₂₂	k ₂₃
k ₃₀	k ₃₁	k ₃₂	k ₃₃

Kolový kľúč

S týmto stavom sa iteračne vykonáva niekoľko kôl operácií, niektoré z nich závisia na kolovom kľúči, reprezentovanom ako matica bajtov

AES - Operácia SubBytes

S každým bajtom *a* tabuľky Stav sa vykonajú dve operácie:

- Najprv sa k hodnote a najde v poli $GF(2^8)$ inverzný prvok $x=a^{-1}$, ak $a\neq 0$.
 - Ak a = 0, položíme x = 0.
- ② Potom sa vypočíta byte $b = b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7$

$$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} , \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

AES - Tabulka funkcie SubByte

	Ī	У															
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	63	7с	77	7b	f2	6b	6f	с5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c 0
	2	b7	fd	93	26	36	3f	£7	CC	34	a 5	e 5	f1	71	d8	31	15
	3	04	c7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e 3	2f	84
	5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7£	50	3с	9f	a 8
l	7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
x	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5 e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e 7	c8	37	6d	8d	d5	4e	a 9	6c	56	f4	ea	65	7a	ae	80
	С	ba	78	25	2e	1c	a6	b4	c6	e 8	dd	74	1f	4b	bd	8b	8a
	d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
	е	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e 9	ce	55	28	df
	f	8c	a1	89	0d	bf	e6	42	68	41	99	2d	0f	b0	54	bb	16

AES - Operácia ShiftRows

Na riadky tabuľky Stav sa aplikujú nasledujúce ľavé rotačné posuny

- 1. riadok ostáva bez zmeny
- 2 2. riadok posun o 1 bajt t.j 8 bitov
- 3. riadok posun o 2 bajty t.j 16 bitov
- 4. riadok posun o 3 bajty t.j 24 bitov

AES- Operácia MixColumns

Pri tejto operácii považujeme maticu Stav za maticu prvkov poľa $GF(2^8)$. S každým jej stĺpcom $\mathbf{a}_i = \begin{bmatrix} a_{0i} & a_{1i} & a_{2i} & a_{3i} \end{bmatrix}^T$ vykonáme

$$\underbrace{\begin{bmatrix} b_{0i} \\ b_{1i} \\ b_{2i} \\ b_{3i} \end{bmatrix}}_{\mathbf{b}_{i}} = \underbrace{\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix}}_{\mathbf{M}} \underbrace{\bigotimes_{GF(2^{8})} \underbrace{\begin{bmatrix} a_{0i} \\ a_{1i} \\ a_{2i} \\ a_{3i} \end{bmatrix}}_{\mathbf{a}_{i}} \quad \text{t. j.} \quad \mathbf{b}_{i} = \mathbf{M} \otimes \mathbf{a}_{i}$$

V maticovom tvare: $\mathbf{B} = \mathbf{M}.\mathbf{A}$

$$\mathbf{M}^{-1} = \begin{bmatrix} 0e & 0b & 0d & 09\\ 09 & 0e & 0b & 0d\\ 0d & 09 & 0e & 0b\\ 0b & 0d & 09 & 0e \end{bmatrix}$$

AES - Funkcia AddRoundKey

V tomto kole sa pre každý prvok a_{ij} Stavu vykoná

$$b_{ij}=a_{ij}\oplus k_{ij},$$

kde k_{ij} je prvok matice príslušného kolového kľúča. V maticovom tvare:

AES – šifrovací algoritmus

- 1 Inicializačné kolo
 - 1.1 AddRoundKey
- 2 for Round = 1 to $N_r 1$
 - 2.1 SubBytes
 - 2.2 ShiftRows
 - 2.3 MixColumns
 - 2.4 AddRoundKey
- 3 Záverečné kolo (bez MixColumns)
 - 3.1 SubBytes
 - 3.2 ShiftRows
 - 3.3 AddRoundKey

Dĺžka kľúča	128	192	256
Počet kôl <i>N_r</i>	10	12	14

- 1 Inicializačné kolo
 - 1.1 AddRoundKey
 - 1.2 InvShiftRows
 - 1.3 InvSubBytes
- 2 for Round = 1 to $N_r 1$
 - 2.1 AddRoundKey
 - 2.2 InvMixColumns
 - 2.3 InvShiftRows
 - 2.4 InvSubBytes
- 3 Záverečné kolo
 - 3.3 AddRoundKey

- 1 Inicializačné kolo
 - 1.1 AddRoundKey
- 2 for Round = 1 to $N_r 1$
 - 2.1 InvSubBytes
 - 2.2 InvShiftRows
 - 2.3 InvMixColumns
 - 2.4 AddRoundKey
- 3 Záverečné kolo
 - 3.1 InvSubBytes
 - 3.2 InvShiftRows
 - 3.3 AddRoundKey

Poradie operácií InvShiftRows a InvSubBytes je zameniteľné.

 $\begin{subarray}{l} AddRoundKey(InvMixcolumns(B)) = K \oplus M^{-1}.B. \\ InvMixcolumns(AddRoundKey(B)) = M^{-1}.(K \oplus B) = M^{-1}K \oplus M^{-1}B. \\ \end{subarray}$

AES – Funkcie pre expanziu kolových kľúčov

Príklad pre 128 bitový kľúč

\mathbf{W}_0	W_1	W_2	W_3	W_4	W_5	W_6	W_7	W_8	W_9	W_{10}	W_{11}	
k ₀₀	k ₀₁	k ₀₂	k ₀₃									
k ₁₀	k ₁₁	k ₁₂	k ₁₃									
k ₂₀	k ₂₁	k ₂₂	k ₂₃									
k ₃₀	k ₃₁	k ₃₂	k ₃₃									
1. kolový kľúč				2. kolový kľúč				3. kolový kľúč				

$$\mathbf{W}_i = \begin{cases} \mathbf{W}_{i-4} \oplus W_{i-1} & \text{ak } i \text{ nie je delitené 4} \\ \mathbf{W}_{i-4} \oplus \textit{SubByte}(\textit{RotByte}(\mathbf{W}_{i-1})) \oplus \textit{Rcon}(i/4) & \text{ak } i \text{ je delitené 4} \end{cases}$$

$$Rcon(i) = [\{x^{i-1}\}\{00\}\{00\}\{00\}]$$

 $RotByte[w_1, w_2, w_3, w_4] = [w_2, w_3, w_4, w_1]$

AES – Expanzia kolových kľúčov

```
KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
begin
  word temp
  i = 0
  while (i < Nk)
    w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
    i = i+1
  end while
  i = Nk
  while (i < Nb * (Nr+1)]
    temp = w[i-1]
    if (i \mod Nk = 0)
         temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]
    else if (Nk > 6 and i mod Nk = 4)
         temp = SubWord(temp)
    end if
    w[i] = w[i-Nk] xor temp
    i = i + 1
  end while
end
Nb -= 4 - počet stĺpcov matice Stav
Nk - = 4, 6 resp. 8 pre 128-, 192- resp. 256-bitový kľúč
       (počet 32-bitových slov kľúča)
Nr - = 10, 12, \text{ resp. } 16 \text{ pre } 128-, 192- \text{ resp. } 256-\text{bitový kľuč} - \text{počet kôl}
```