Laptop Data Analysis

```
In [1]:
import pandas as pd

In [2]:

data = pd.read_csv('E:/file2/Downloads/laptop_details.csv')
data.head()
```

Out[2]:

	Product	Rating	MRP	Feature
0	Lenovo IdeaPad 3 Core i3 11th Gen - (8 GB/256	4.2	₹36,990	Intel Core i3 Processor (11th Gen)8 GB DDR4 RA
1	Lenovo IdeaPad 3 Core i3 11th Gen - (8 GB/512	4.2	₹39,990	Intel Core i3 Processor (11th Gen)8 GB DDR4 RA
2	ASUS VivoBook 15 (2022) Core i3 10th Gen - (8	4.3	₹32,990	Intel Core i3 Processor (10th Gen)8 GB DDR4 RA
3	HP Pavilion Ryzen 5 Hexa Core AMD R5-5600H - (4.4	₹49,990	AMD Ryzen 5 Hexa Core Processor8 GB DDR4 RAM64
4	ASUS TUF Gaming F15 Core i5 10th Gen - (8 GB/5	4.4	₹49,990	Intel Core i5 Processor (10th Gen)8 GB DDR4 RA

```
import re
regex = r'\b(?:AMD|Intel|M1|M2|Qualcomm)[\s\w]+Processor'
fun = lambda x: re.findall(regex, x)
data['processor'] = data['Feature'].apply(fun)
```

```
In [4]: ▶
```

data['processor']

Out[4]:

```
0
                 [Intel Core i3 Processor]
1
                 [Intel Core i3 Processor]
2
                 [Intel Core i3 Processor]
3
         [AMD Ryzen 5 Hexa Core Processor]
4
                 [Intel Core i5 Processor]
715
       [Intel Celeron Dual Core Processor]
         [AMD Ryzen 7 Octa Core Processor]
716
717
         [AMD Ryzen 9 Octa Core Processor]
                 [Intel Core i7 Processor]
718
719
                 [Intel Core i5 Processor]
Name: processor, Length: 720, dtype: object
```

```
In [5]:
                                                                                          M
regex = r'\d+\sGB[\s\w]+RAM'
fun = lambda x : re.findall(regex, x)
data['RAM'] = data['Feature'].apply(fun)
In [6]:
data['RAM']
Out[6]:
0
          [8 GB DDR4 RAM]
1
          [8 GB DDR4 RAM]
2
          [8 GB DDR4 RAM]
3
          [8 GB DDR4 RAM]
4
          [8 GB DDR4 RAM]
        [4 GB LPDDR4 RAM]
715
716
          [8 GB DDR4 RAM]
717
         [16 GB DDR5 RAM]
718
       [16 GB LPDDR5 RAM]
719
          [8 GB DDR4 RAM]
Name: RAM, Length: 720, dtype: object
In [7]:
                                                                                          M
regex = r'(?:Windows|Chrome|Mac|Dos)[\s\w]+Operating System'
fun = lambda x : re.findall(regex, x, re.IGNORECASE)
data["os"] = data.Feature.apply(fun)
In [8]:
```

Out[8]:

data.head()

	Product	Rating	MRP	Feature	processor	RAM	os
0	Lenovo IdeaPad 3 Core i3 11th Gen - (8 GB/256 	4.2	₹36,990	Intel Core i3 Processor (11th Gen)8 GB DDR4 RA	[Intel Core i3 Processor]	[8 GB DDR4 RAM]	[Windows 11 Operating System]
1	Lenovo IdeaPad 3 Core i3 11th Gen - (8 GB/512 	4.2	₹39,990	Intel Core i3 Processor (11th Gen)8 GB DDR4 RA	[Intel Core i3 Processor]	[8 GB DDR4 RAM]	[Windows 11 Operating System]
2	ASUS VivoBook 15 (2022) Core i3 10th Gen - (8 	4.3	₹32,990	Intel Core i3 Processor (10th Gen)8 GB DDR4 RA	[Intel Core i3 Processor]	[8 GB DDR4 RAM]	[Windows 11 Operating System]
3	HP Pavilion Ryzen 5 Hexa Core AMD R5- 5600H - (4.4	₹49,990	AMD Ryzen 5 Hexa Core Processor8 GB DDR4 RAM64	[AMD Ryzen 5 Hexa Core Processor]	[8 GB DDR4 RAM]	[Windows 10 Operating System]
4	ASUS TUF Gaming F15 Core i5 10th Gen - (8 GB/5	4.4	₹49,990	Intel Core i5 Processor (10th Gen)8 GB DDR4 RA	[Intel Core i5 Processor]	[8 GB DDR4 RAM]	[Windows 11 Operating System]

In [12]:

```
#product = r'(?:Lenovo|ASUS|HP|DELL|RedmiBook|realme Book|acer|MSI|APPLE|Infinix)'
#pro = lambda x : re.findall(product,x, re.IGNORECASE)
regex = r'^\w+'

new_data["brand"] = data.Product.apply(lambda x: re.findall(regex, x))
#data['product']=data.Product.apply(pro)
```

In [13]:

new_data.head()

Out[13]:

	Product	os	RAM	processor	Rating	MRP	brand
0	Lenovo IdeaPad 3 Core i3 11th Gen - (8 GB/256	[Windows 11 Operating System]	[8 GB DDR4 RAM]	[Intel Core i3 Processor]	4.2	₹36,990	[Lenovo]
1	Lenovo IdeaPad 3 Core i3 11th Gen - (8 GB/512	[Windows 11 Operating System]	[8 GB DDR4 RAM]	[Intel Core i3 Processor]	4.2	₹39,990	[Lenovo]
2	ASUS VivoBook 15 (2022) Core i3 10th Gen - (8	[Windows 11 Operating System]	[8 GB DDR4 RAM]	[Intel Core i3 Processor]	4.3	₹32,990	[ASUS]
3	HP Pavilion Ryzen 5 Hexa Core AMD R5- 5600H - ([Windows 10 Operating System]	[8 GB DDR4 RAM]	[AMD Ryzen 5 Hexa Core Processor]	4.4	₹49,990	[HP]
4	ASUS TUF Gaming F15 Core i5 10th Gen - (8 GB/5	[Windows 11 Operating System]	[8 GB DDR4 RAM]	[Intel Core i5 Processor]	4.4	₹49,990	[ASUS]

In [11]:

new_data =data[['Product','os','RAM','processor','Rating','MRP']]
new_data.head()

Out[11]:

	Product	os	RAM	processor	Rating	MRP
0	Lenovo IdeaPad 3 Core i3 11th Gen - (8 GB/256 	[Windows 11 Operating System]	[8 GB DDR4 RAM]	[Intel Core i3 Processor]	4.2	₹36,990
1	Lenovo IdeaPad 3 Core i3 11th Gen - (8 GB/512 	[Windows 11 Operating System]	[8 GB DDR4 RAM]	[Intel Core i3 Processor]	4.2	₹39,990
2	ASUS VivoBook 15 (2022) Core i3 10th Gen - (8	[Windows 11 Operating System]	[8 GB DDR4 RAM]	[Intel Core i3 Processor]	4.3	₹32,990
3	HP Pavilion Ryzen 5 Hexa Core AMD R5- 5600H - ([Windows 10 Operating System]	[8 GB DDR4 RAM]	[AMD Ryzen 5 Hexa Core Processor]	4.4	₹49,990
4	ASUS TUF Gaming F15 Core i5 10th Gen - (8 GB/5	[Windows 11 Operating System]	[8 GB DDR4 RAM]	[Intel Core i5 Processor]	4.4	₹49,990

```
H
In [14]:
new_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 720 entries, 0 to 719
Data columns (total 7 columns):
 #
     Column
                Non-Null Count Dtype
                                ----
---
     Product
                720 non-null
0
                                object
 1
                720 non-null
     OS
                                object
 2
     RAM
                720 non-null
                                object
     processor 720 non-null
 3
                                object
 4
                581 non-null
                                float64
     Rating
 5
     MRP
                720 non-null
                                object
 6
                720 non-null
                                object
     brand
dtypes: float64(1), object(6)
memory usage: 39.5+ KB
                                                                                         M
In [15]:
new_data['MRP'] = new_data['MRP'].str.replace('₹',
new_data['MRP'] = new_data['MRP'].str.replace(',',')
In [16]:
                                                                                         H
new_data['MRP']=new_data['MRP'].astype(int)
new_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 720 entries, 0 to 719
Data columns (total 7 columns):
 #
     Column
                Non-Null Count Dtype
0
     Product
                720 non-null
                                object
 1
     os
                720 non-null
                                object
 2
                720 non-null
     RAM
                                object
 3
     processor 720 non-null
                                object
                581 non-null
 4
                                 float64
     Rating
 5
     MRP
                720 non-null
                                 int32
                720 non-null
     brand
                                 object
dtypes: float64(1), int32(1), object(5)
memory usage: 36.7+ KB
In [17]:
                                                                                         H
regex = r'[\d]+\s(?:GB|TB)\s(?:HDD|SSD)'
new_data['Storage'] = data['Feature'].apply(lambda x : re.findall(regex, x))
In [18]:
                                                                                         H
new_data.processor = new_data.processor.apply(lambda x: ''.join(x))
new_data.RAM = new_data.RAM.apply(lambda x: ''.join(x))
new_data.os = new_data.os.apply(lambda x: ''.join(x))
new_data.Storage = new_data.Storage.apply(lambda x: ''.join(x))
new_data.brand = new_data.brand.apply(lambda x: ''.join(x))
```

In [19]: ▶

new_data.head()

Out[19]:

	Product	os	RAM	processor	Rating	MRP	brand	Storage
0	Lenovo IdeaPad 3 Core i3 11th Gen - (8 GB/256 	Windows 11 Operating System	8 GB DDR4 RAM	Intel Core i3 Processor	4.2	36990	Lenovo	256 GB SSD
1	Lenovo IdeaPad 3 Core i3 11th Gen - (8 GB/512 	Windows 11 Operating System	8 GB DDR4 RAM	Intel Core i3 Processor	4.2	39990	Lenovo	512 GB SSD
2	ASUS VivoBook 15 (2022) Core i3 10th Gen - (8	Windows 11 Operating System	8 GB DDR4 RAM	Intel Core i3 Processor	4.3	32990	ASUS	512 GB SSD
3	HP Pavilion Ryzen 5 Hexa Core AMD R5- 5600H - (Windows 10 Operating System	8 GB DDR4 RAM	AMD Ryzen 5 Hexa Core Processor	4.4	49990	HP	512 GB SSD
4	ASUS TUF Gaming F15 Core i5 10th Gen - (8 GB/5	Windows 11 Operating System	8 GB DDR4 RAM	Intel Core i5 Processor	4.4	49990	ASUS	512 GB SSD

In [20]: ▶

df = new_data[['brand','os','RAM','processor','Rating','MRP']]
df.head()

Out[20]:

	brand	os	RAM	processor	Rating	MRP
0	Lenovo	Windows 11 Operating System	8 GB DDR4 RAM	Intel Core i3 Processor	4.2	36990
1	Lenovo	Windows 11 Operating System	8 GB DDR4 RAM	Intel Core i3 Processor	4.2	39990
2	ASUS	Windows 11 Operating System	8 GB DDR4 RAM	Intel Core i3 Processor	4.3	32990
3	HP	Windows 10 Operating System	8 GB DDR4 RAM	AMD Ryzen 5 Hexa Core Processor	4.4	49990
4	ASUS	Windows 11 Operating System	8 GB DDR4 RAM	Intel Core i5 Processor	4.4	49990

```
In [21]:
                                                                                            H
df['brand'].value_counts()
Out[21]:
             251
ASUS
Lenovo
             196
HP
              61
              61
DELL
acer
              35
RedmiBook
              31
MSI
              30
Infinix
              20
APPLE
              19
realme
               6
ALIENWARE
               3
               2
SAMSUNG
Ultimus
               2
               1
Vaio
GIGABYTE
               1
Nokia
Name: brand, dtype: int64
In [22]:
                                                                                            H
df['MRP'].value_counts()
Out[22]:
39990
          61
36990
          39
85990
          34
38705
          30
196990
          30
301990
           1
37000
           1
42690
           1
140990
           1
23490
Name: MRP, Length: 251, dtype: int64
In [23]:
print('mean value :',df['MRP'].mean())
print('median value:',df['MRP'].median())
print('std value:',df['MRP'].std())
mean value: 81605.8375
median value: 59990.0
std value: 61552.95510244973
```

localhost:8888/notebooks/Untitled165.ipynb?kernel_name=python3

```
In [24]:

print('minimum value:',df['MRP'].min())
print('maximum value:', df['MRP'].max())
```

minimum value: 14990
maximum value: 434830

In [25]: ▶

```
df['MRP'].value_counts().plot(kind='hist')
```

Out[25]:

<AxesSubplot:ylabel='Frequency'>

In [26]: ▶

from sklearn.preprocessing import LabelEncoder
label = LabelEncoder()

In [27]: ▶

df['brand']=label.fit_transform(df['brand'])

C:\Users\Safuvan\AppData\Local\Temp\ipykernel_20036\1606693397.py:1: Setti
ngWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['brand']=label.fit_transform(df['brand'])

In [28]: ▶

df.head()

Out[28]:

	brand	os	RAM	processor	Rating	MRP
0	7	Windows 11 Operating System	8 GB DDR4 RAM	Intel Core i3 Processor	4.2	36990
1	7	Windows 11 Operating System	8 GB DDR4 RAM	Intel Core i3 Processor	4.2	39990
2	2	Windows 11 Operating System	8 GB DDR4 RAM	Intel Core i3 Processor	4.3	32990
3	5	Windows 10 Operating System	8 GB DDR4 RAM	AMD Ryzen 5 Hexa Core Processor	4.4	49990
4	2	Windows 11 Operating System	8 GB DDR4 RAM	Intel Core i5 Processor	4.4	49990

In [29]:

```
df.plot(kind='scatter',x='brand',y='MRP')
```

Out[29]:

<AxesSubplot:xlabel='brand', ylabel='MRP'>


```
In [30]: ▶
```

```
ram_label = LabelEncoder()
df['RAM']=ram_label.fit_transform(df['RAM'])
```

C:\Users\Safuvan\AppData\Local\Temp\ipykernel_20036\3658044334.py:2: Setti
ngWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['RAM']=ram_label.fit_transform(df['RAM'])

In [31]: ▶

```
df.plot(kind='scatter',x='RAM',y='MRP')
```

Out[31]:

<AxesSubplot:xlabel='RAM', ylabel='MRP'>

In [32]: ▶

df.plot(kind='box',x='processor',y='MRP')

Out[32]:

<AxesSubplot:>

In [33]: ▶

df['RAM'].unique()

Out[33]:

array([15, 1, 2, 13, 12, 18, 17, 7, 14, 5, 6, 11, 4, 9, 0, 16, 8, 10, 3])

In [34]:

df.head()

Out[34]:

In [35]:

	brand	os	RAM	processor	Rating	MRP
0	7	Windows 11 Operating System	15	Intel Core i3 Processor	4.2	36990
1	7	Windows 11 Operating System	15	Intel Core i3 Processor	4.2	39990
2	2	Windows 11 Operating System	15	Intel Core i3 Processor	4.3	32990
3	5	Windows 10 Operating System	15	AMD Ryzen 5 Hexa Core Processor	4.4	49990
4	2	Windows 11 Operating System	15	Intel Core i5 Processor	4.4	49990

processer = LabelEncoder()
df['processor']=processer.fit_transform(df['processor'])

C:\Users\Safuvan\AppData\Local\Temp\ipykernel_20036\3617156379.py:2: Setti
ngWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['processor']=processer.fit_transform(df['processor'])

```
In [36]:
```

```
os = LabelEncoder()
df['os']= os.fit_transform(df['os'])
```

C:\Users\Safuvan\AppData\Local\Temp\ipykernel_20036\985728333.py:2: Settin
gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

```
df['os']= os.fit_transform(df['os'])
```

M

```
In [37]:
                                                                                             H
df.head()
Out[37]:
                                    MRP
   brand os RAM processor Rating
0
       7
          5
               15
                         14
                               4.2 36990
1
       7
               15
                         14
                               4.2
                                   39990
                               4.3 32990
2
       2
          5
               15
                         14
                          7
       5
                               4.4 49990
3
          3
       2
                               4.4 49990
          5
               15
                         15
In [38]:
                                                                                             H
df.isnull().sum()
Out[38]:
brand
                0
os
RAM
                0
processor
                0
              139
Rating
MRP
dtype: int64
In [39]:
                                                                                             H
from sklearn.model_selection import train_test_split
x =df.drop(['MRP','Rating'],axis=1)
In [40]:
                                                                                             H
y = df['MRP']
In [41]:
                                                                                             H
x.columns
Out[41]:
Index(['brand', 'os', 'RAM', 'processor'], dtype='object')
In [42]:
                                                                                             H
x_train,x_test,y_train,y_test =train_test_split(x,y,test_size=0.2,random_state=42)
```

```
In [43]:
                                                                                         H
print('x_train :',x_train.shape)
print('x_test :',x_test.shape)
print('y_train :',y_train.shape)
print('y_test :',y_test.shape)
x_train : (576, 4)
x_test: (144, 4)
y_train : (576,)
y_test : (144,)
In [44]:
                                                                                         M
from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor()
In [45]:
model.fit(x_train,y_train)
Out[45]:
 ▼ RandomForestRegressor
RandomForestRegressor()
In [46]:
                                                                                         H
prediction = model.predict(x_test)
In [49]:
                                                                                         M
from sklearn.metrics import r2_score,mean_absolute_error
In [50]:
print(r2_score(prediction,y_test))
print(mean_absolute_error(prediction,y_test))
0.9003842855303008
9469.831915380848
In [ ]:
                                                                                         H
```