

(11)Publication number:

05-271414

(43)Date of publication of application: 19.10.1993

(51)Int.CI.

CO8G 75/02

(21)Application number: 04-067285

(71)Applicant: DAINIPPON INK & CHEM INC

(22)Date of filing:

25.03.1992

(72)Inventor: MATSUKI KOICHIRO

HAYAKAWA HITOSHI

INOUE TOSHIO

(54) PRODUCTION OF HIGH-MOLECULAR-WEIGHT POLYARYLENE SULFIDE

(57)Abstract:

PURPOSE: To obtain a polyarylene sulfide having a low oligomer content, a high molecular weight without thermal cross-linking and excellent impact strength by reacting a polyhaloaromatic compound with a sulfiding agent in an organic polar solvent in two steps.

CONSTITUTION: The title process comprises reacting a polyhaloaromatic compound (B) with a sulfiding agent (A) in an organic polar solvent. The reaction is carried out in two steps: step 1 of reacting compound B with agent A in the presence of water in the organic polar solvent to form a polyarylene sulfide prepolymer, and step 2 of adding fresh compound B and fresh water to the system and continuing the reaction to increase the molecular weight of the polyarylene sulfide (prepolymer). The melt viscosity of the prepolymer obtained in step 1 is about 5–1000 P (under conditions of a load of 10kg, a temperature of 316° C and a holding time of 5min).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-271414

(43)公開日 平成5年(1993)10月19日

(51)Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

C 0 8 G 75/02

NTX

7167-4 J

(21)出願番号

(22)出願日

特願平4-67285

平成 4年(1992) 3月25日

(71)出願人 000002886

大日本インキ化学工業株式会社

東京都板橋区坂下3丁目35番58号

(72)発明者 松木 光一郎

千葉県佐倉市六崎1550-2、3-304

審査請求 未請求 請求項の数7(全 8 頁)

(72)発明者 早川 均

千葉県佐倉市六崎24-1、A-308

(72)発明者 井上 敏夫

大阪府阪南市鳥取1542-97

(74)代理人 弁理士 高橋 勝利

(54)【発明の名称】 高分子量ポリアリーレンスルフィドの製造方法

(57)【要約】

【構成】 (1) 有機極性溶媒中、(C) 水の存在下で(A) スルフィド化剤(例えば、硫化アルカリや水硫化アルカリと水酸化アルカリ混合系)と(B) ポリハロ芳香族化合物(例えば、pージハロベンゼン)を反応させる際、(B) / (A) が0.98~1.02(モル比)、(C) / (A) が0.5~2.4(モル比)の範囲で反応させてポリアリーレンスルフィドプレポリマーを生成させる第1工程、(2) 次いで、系内に(B) ポリハロ芳香族化合物と(C) 水とを添加して反応を続けるが、その際の添加量が(A) スルフィド化剤1モルに対し(B) が0.01~0.20モル、(C) が0.10~6.00モルの範囲であるポリアリーレンスルフィドを高分子量化する第2工程、の少なくとも2工程で行う高分子量ポリアリーレンスルフィドの製造方法。【効果】 オリゴマー量が少なく、衝撃強度に優れた特

【効果】 オリゴマー量が少なく、衝撃強度に優れた特性をもつ高分子量 PASを得る。

2

【特許請求の範囲】

【請求項1】 有機極性溶媒中、スルフィド化剤(A)とポリハロ芳香族化合物(B)を反応させてポリアリーレンスルフィドを製造する方法において、この反応を少なくとも次の2工程で行うことを特徴とする高分子量ポリアリーレンスルフィドの製造方法。

(1) 有機極性溶媒中、水(C)の存在下でスルフィド 化剤(A)とポリハロ芳香族化合物(B)を反応させて ポリアリーレンスルフィドプレポリマーを生成させる第 1工程、(2)次いで、系内にポリハロ芳香族化合物 (B)と水(C)を添加して反応を続け、ポリアリーレ ンスルフィドを高分子量化する第2工程。

【請求項2】 第2工程において、ポリハロ芳香族化合物 (B) の添加量がスルフィド化剤 (A) 1.00モルに対して0.01 \sim 0.20モルであり、かつ水(C)の添加量がスルフィド化剤 (A) 1.00モルに対して0.10 \sim 6.00モルである請求項1記載の製造方法。

【請求項3】 第1工程においてスルフィド化剤(A)に対するポリハロ芳香族化合物(B)のモル比〔(B) / (A)〕」が0.98~1.02、スルフィド化剤 (A)に対する水(C)のモル比〔(C) / (A)〕」が0.5~2.4であり、かつ、スルフィド化剤(A)に対する第1工程と第2工程で添加したポリハロ芳香族化合物(B)の総量のモル比〔(B) / (A)〕 $_2$ が 1.00~1.15、スルフィド化剤(A)に対する第1工程と第2工程で添加した水(C)の総量のモル比〔(C) / (A)〕 $_2$ が 1.4~6.5である請求項1記載の製造方法。

【請求項4】 第1工程において、ポリハロ芳香族化合物の転化率が98モル%より大きくなるまで反応させる請求項1、2又は3記載の製造方法。

【請求項5】 第1工程で得られるポリアリーレンスルフィドプレポリマーの溶融粘度が、 $5\sim1000$ ポイズ(316 $\mathbb C$ 、荷重10kg、5分間保持、以下同様)である請求項2又は3記載の製造方法。

【請求項6】 第1工程で得られるポリアリーレンスルフィドプレポリマーの溶融粘度が、350~800ポイズである請求項2、3又は4記載の製造方法。

【請求項7】 第1工程における反応温度が180~2 60℃であり、かつ第2工程における反応温度が235 ~290℃である請求項2、3、4又は5記載の製造方 法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は高分子量のポリアリーレンスルフィド(以下PASと略す)の製造方法に関するものである。更に詳しくは重合助剤を使用したり、熱架橋することなしに、実質的に線状または分岐を有し、オリゴマー量が少なく、衝撃強度に優れた特性をもつPA

Sの製造方法に関するものである。

【0002】PASは耐熱性、耐薬品性、成形品の寸法 安定性等の優れた特性を持つ熱可塑性樹脂であり、主として電気・電子機器部品、機械部品、自動車部品等として利用されている。近年、これらの用途においてもさらに高い耐熱性と高い力学的強度をもつ熱可塑性樹脂が求められてきている。本発明の製造方法により得られるPASは、これらの用途に利用でき、さらにフィルム、シート、繊維などの利用にも期待できるものである。

[0003]

【従来の技術】PASの代表的な製造方法としては、Nーメチルピロリドン等有機極性溶媒中でジハロ芳香族化合物と硫化ナトリウムとを反応させる方法が特公昭45ー3368号公報に記載されている。この方法で製造されたPASは分子量および溶融粘度が極めて低いため、このPASを空気中で加熱処理することにより酸化架橋させ、射出成形可能な粘度をもつPASとして用いられていた。しかし、このように3次元架橋されたPASは、非常に脆く、衝撃強度に欠けるものであった。

【0004】このような欠点を改善するために、熱架橋することなく高重合度のPASを得るためのさまざまな方法が提案されてきた。その代表としては、特公昭52~12240号公報記載の方法がある。上記記載の反応系に重合助剤としてアルカリ金属カルボン酸塩を用いるのである。この方法は重合助剤を硫化ナトリウムに対し等モル以上を必要とするため原料コストがかかるだけでなく、重合終了後の精製分離工程も困難なものとなり、経済的に欠点の大変多い方法である。

【0005】このコストの問題を大きく改善した方法として、特公昭63-33775号公報記載の方法がある。これは重合助剤の代わりに多量の水を用いたものであり、重合温度と水の量を2段階に変化させて反応を行う方法である。この方法は低コストで合成が行え、高分子量のPASが得られる。しかし、ここで得られたPASは大変オリゴマー量が多いため、直鎖型であるにもかかわらず衝撃強度等の力学的特性が十分に向上していないことがわかった。

[0006]

【発明が解決しようとする課題】本発明は、上述のような非架橋である高分子量PASの衝撃強度等の力学的特性における欠点を改善するものである。つまりその原因となっているオリゴマー量を少なくし、且つ酸化架橋処理をせずに高分子量であり、その結果衝撃強度等の力学的特性が改善された、PASの製造方法を提供すものである。

[0007]

【課題を解決するための手段】上述における直鎖状高分子量PASの衝撃強度等の力学的特性が上がらない原因である、オリゴマー量を低減下したPASの製造方法について種々検討した結果、第2工程においてポリハロ芳

香族化合物を反応系に添加することに効果のあることが わかった。その製造方法は、有機極性溶媒中、スルフィ ド化剤(A)とポリハロ芳香族化合物(B)を反応させ てPASを製造する方法において、この反応を少なくと も次の2工程で行うことを特徴とする高分子量PASの 製造方法である。

【0008】(1)有機極性溶媒中、水(C)の存在下でスルフィド化剤(A)とポリハロ芳香族化合物(B)を反応させてポリアリーレンスルフィドプレポリマーを生成させる第1工程、(2)次いで、系内にポリハロ芳香族化合物(B)と水(C)を添加して反応を続け、ポリアリーレンスルフィドを高分子量化する第2工程。

【0009】本製造方法では、第1工程においてポリアリーレンスルフィドプレポリマーを製造する。本工程は重合反応に伴ってモノマーの消費が行われ、分子量が増大する工程である。しかしある程度モノマーが消費され、重合反応が進行すると、平行して分解反応が生じる。この分解反応が高分子量化を阻害し、オリゴマー量を増大する原因となっている。分解反応は無機硫黄によるものやジスルフィドの分解、連鎖移動等に伴う分解が考えられる。分解反応によって生じたオリゴマーの末端は硫黄末端であることから、第2工程でジハロ芳香族化合物を添加することでオリゴマー同志の重合反応が進行し、オリゴマー量の少ないPASを得ることができる。

【0010】本発明で使用される有機極性溶媒として は、たとえばアミド化合物、ラクタム化合物、尿素化合 物、環式有機リン化合物等の非プロトン性有機溶媒が望 ましい。

【0011】前記アミド化合物の具体例としては、ホルムアミド、アセトアミド、Nーメチルホルムアミド、N, Nージメチルホルムアミド、N, Nージメチルアセトアミド、N, Nージエチルアセトアミド、Nーエチルプロピオンアミド、N, Nージプロピルブチルアミド、N, Nージメチル安息香酸アミド、などを挙げることができる。

【0012】前記ラクタム化合物の具体例としては、カプロラクタム、Nーメチルカプロラクタム、Nーエチルカプロラクタム、Nーエチルカプロラクタム、Nーイソプロピルカプロラクタム、Nーイソプロピルカプロラクタム、Nーノルマルブチルカプロラクタム、Nーノルマルブチルカプロラクタム、Nーノルマルブチルカプロラクタム、Nーメチルー2ーピロリドン、Nーエチルー2ーピロリドン、Nーノルマルブチルー2ーピロリドン、Nーノルマルブチルー2ーピロリドン、Nーメチルー2ーピロリドン、Nーメチルー3ーメチルー2ーピロリドン、Nーメチルー3、4、5ートリメチルー2ーピロリドン、Nーメチルー2ーピペリドン、Nーエチルー2ーピペリドン、Nーエチルー6 50

ーメチルー2ーピペリドン、Nーメチルー3ーエチルー2ーピペリドンなどを挙げることができる。

【0013】前記尿素化合物の具体例としては、テトラメチル尿素、N, N'ージメチルエチレン尿素、N, N'ージメチルプロピレン尿素などを挙げることがだきる。また環式有機リン化合物の具体例としては1ーメチルー1ーオキソスルホラン、1ーエチルー1ーオキソスルホラン、1ーフェニルー1ーオキソスルホラン、1ーノルマルプロピルー1ーオキソホスホラン、1ーフェニルー1ーオキソホスホラン、等を挙げることができる。

【0014】これらの溶媒は、それぞれ単独で用いてもよいし、2種以上を混合して用いてもよい。

【0015】前記各種の溶媒の中でも、好ましいのはNーアルキルラクタム、およびNーアルキルピロリドンであり、特に好ましいのはNーメチルピロリドンである。極性溶媒の使用量は、スルフィド化剤に対してモル比で1~20の範囲、好ましくは2~10の範囲である。該溶媒量が1・未満では反応が不均一になる可能性があり、また20を超えると反応速度が著しく遅くなることに伴う生産性の低下が生じるといった面が生じる。

【0016】本発明の方法においては、スルフィド化剤 としてたとえばアルカリ金属硫化物、アルカリ金属水硫 化物をいずれも好適に使用することができる。またこれ らの混合物を用いてもよい。

【0017】前期アルカリ金属硫化物としては、たとえば硫化リチウム、硫化ナトリウム、硫化カリウム、硫化 ルビジウム、硫化セシウム等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また前記アルカリ金属硫化物は、無水物、水和物、水溶液のいずれを用いてもよいが、水和物や水溶液を用いる場合には、後述するように反応前に脱水操作を行うほうがよい。これらの中でも、好ましいのは硫化リチウム及び硫化ナトリウムであり、特に好ましいのは硫化ナトリウムである。

【0018】また、前記アルカリ金属水硫化物としては、たとえば水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウム、水硫化セシウム等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また前記アルカリ金属水硫化物は、無水物、水和物、水溶液のいずれを用いてもよいが、水和物や水溶液を用いる場合には、後述するように脱水操作を行うほうがよい。これらの中でも、好ましいのは水硫化リチウム及び水硫化ナトリウムであり、特に好ましいのは水硫化ナトリウムである。

【0019】スルフィド化剤としてアルカリ金属水硫化物を用いる場合にはアルカリ金属水酸化物との混合物として使用する。この時使用するアルカリ金属水酸化物の量は、アルカリ金属水硫化物の硫黄源に対しモル比で0.5~5の範囲、好ましくは0.6~3の範囲であ

る。

【0020】前記アルカリ金属水酸化物としては、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等が挙げられるが、これらはそれぞれ単独で用いてもよいし、2種以上を混合して用いてもよい。

【0021】前記アルカリ金属水酸化物の中では水酸化 リチウムと水酸化ナトリウムおよび水酸化カリウムが好 ましく、特に水酸化ナトリウムが好ましい。

【0022】本発明において用いられるポリハロ芳香族 10 化合物としては、例えばoージハロベンゼン、mージハ ロベンゼン、pージハロベンゼン等のジハロベンゼン 類;2,3-ジハロトルエン、2,5-ジハロトルエ ン、2,6-ジハロトルエン、3,4-ジハロトルエ ン、2,5-ジハロキシレン、1-エチル-2,5-ジ ハロベンゼン、1, 2, 4, 5-テトラメチルー3, 6 ージハロベンゼン、1ーノルマルヘキシルー2,5ージ ハロベンゼン、1-シクロヘキシル-2,5-ジハロベ ンゼン等のジハロゲノアルキルまたはシクロアルキル置 換ベンゼン類;1-フェニル-2,5-ジハロベンゼ ン、1-ベンジル-2、5-ジハロベンゼン、1-p-トルイル-2, 5-ジハロベンゼン等のジハロゲノアリ ール置換ベンゼン類;4、4'ージハロビフェニル等の ジハロゲノビフェニル類;1,4-ジハロナフタレン、 1,6-ジハロナフタレン、2,6-ジハロナフタレン 等のジハロゲノナフタレン類、1、2、4-トリハロベ ンゼン、1、3、5ートリハロベンゼン、1、4、6ー トリハロナフタレン等が挙げられる。

【0023】これらのポリハロ芳香族化合物における複数個のハロゲン元素は、それぞれフッ素、塩素、臭素ま 30 たはヨウ素であり、それぞれは同一であってもよいし、互いに異なっていてもよい。

【0024】これらのポリハロ芳香族化合物は、単独で用いてもよいし、また2種類以上を混合して用いてもよい。

【0025】上記ポリハロ芳香族化合物の中ではポリハロベンゼン類が好ましく、特にp-ジクロロベンゼンが好ましい。

【0026】また、本発明の目的を逸脱しない範囲において、必要に応じて活性水素含有ハロ芳香族化合物、ハ 40 ロ芳香族ニトロ化合物等の分岐剤もしくは分子量調整剤、金属塩等の重合添加剤、還元剤、不活性有機溶媒等を適当に選択し、反応系に添加して反応を行なってもよい。

【0027】前記活性水素含有ハロ芳香族化合物とは、例えばアミノ基、チオール基、ヒドロキシル基、カルボキシル基等の活性水素を持つ官能基を有するハロゲノ芳香族化合物のことであり、具体的には、2,3-ジクロロアニリン、2,4-ジクロロアニリン、2,5-ジクロロアニリン、2,6-ジクロロアニリン等のジハロア 50

ニリン類;2,3,4-トリクロロアニリン、2,3, 5-トリクロロアニリン、2,3,6-トリクロロアニ リン、2、4、5ートリクロロアニリン、2、4、6ー トリクロロアニリン、3,4,5-トリクロロアニリン 等のトリハロアニリン類;2,3,4,5-テトラクロ ロアニリン、2,3,5,6-テトラクロロアニリン等 のテトラハロアニリン類;2,2'-ジアミノー4, 4'ージクロロジフェニルエーテル、2,4'ージアミ ノー2', 4-ジクロロジフェニルエーテル等のジハロ ジアミノジフェニルエーテル類;及びこれらの化合物 で、アミノ基がチオール基、ヒドロキシル基、カルボキ シル基に置換された化合物等が挙げられる。また、これ ら活性水素含有ハロ芳香族化合物中の芳香族環を形成す る炭素原子に結合した水素原子がアルキル基等の不活性 基に置換している活性水素含有ハロ芳香族化合物も使用 可能である。これらの各種活性水素含有ハロ芳香族化合 物の中で、活性水素含有ジハロ芳香族化合物が好まし く、特にジクロロアニリンが好ましい。

【0028】また、前記ハロ芳香族ニトロ化合物とは、ニトロ基を有する芳香族環にハロ原子が置換した化合物であり、具体的には、2,4ージニトロクロロベンゼン、2,5ージクロロニトロベンゼン等のモノまたはジハロニトロベンゼン類;2ーニトロー4,4'ージクロロジフェニルエーテル類;3,3'ージニトロー4,4'ージクロロジフェニルスルホン等のジハロニトロジフェニルスルホン類;2,5ージクロロー3ーニトロピリジン、2ークロロー3,5ージニトロピリジン等のモノまたはジハロニトロピリジン類;あるいは各種ジハロニトロナフタレン類等が挙げられる。

【0029】これらの活性水素含有ハロ芳香族化合物、ハロ芳香族ニトロ化合物等を使用することにより、必要に応じて生成する共重合体の分岐度を増加させたり、分子量を増加させたり、あるいは残存含塩量を低下せる等、該共重合体の諸物性を改良することができる。

【0030】また、分岐剤もしくは分子量調整剤としては、上記の化合物の他に、例えば、塩化シアヌル等の3個以上の反応性ハロゲン原子を有する化合物等も使用可能である。本発明においては、これらの分岐剤もしくは分子量調整剤を1種類だけを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。

【0031】本発明のオリゴマー量の少ない高分子量PASの製造方法は、上述のように有機極性溶媒中、スルフィド化剤とポリハロ芳香族化合物を反応させ、少なくとも前記の2つの工程を行うことからなる。

【0032】第1工程はポリアリーレンスルフィドプレポリマーを生成させる工程である。実施に際して特に制限はないが、好適な例を以下に記す。まず有機極性溶媒中にスルフィド化剤とポリハロ芳香族化合物を加える。そしてポリハロ芳香族化合物を加えるにあたっては、ス

ルフィド化剤とともに加えても良いし、昇温を始めその 過程、または所定の温度において固体、溶融状態、有機 極性溶媒に溶かして、系内に加えてもよい。このときの ポリハロ芳香族化合物量は特に規定しないが、好ましく はスルフィド化剤1モルに対し0.98モル~1.02 モルが良い。またスルフィド化剤にアルカリ金属水硫化 物を用いた場合については、アルカリ金属水酸化物を添 加するが、この添加方法も特に制限はなく、アルカリ金 属水硫化物と同時、または昇温途中に固体あるいは水溶 液で加えることができる。ただしアルカリ金属水酸化物 10 の添加は、好ましくはポリハロ芳香族化合物の添加前に 行うのが良い。アルカリ金属水酸化物はスルフィド化剤 1モルに対し0.93~1.20が好ましい。かかる範 囲では反応が円滑に進み、また高分子量化し易い。昇温 過程は窒素雰囲気下で行うことが好ましく、必要に応じ 系内の水を系外に不必要量分留出させることができる。 但し、系内の水分量が少ない場合は水を添加することに

(1)ポリハロ芳香族化合物仕込量

スルフィド化剤仕込量

(B1) - (B2)[ポリハロ芳香族化合物の転化率] (%)= (B3)

> 1

(B2):ポリハロ芳香族化合物残存量(mol) ポリハロ芳香族化合物仕込量 (2)

スルフィド化剤仕込量

(B1) - (B2)[ポリハロ芳香族化合物の転化率] (%)= $- \times 100$

【0036】第2工程は、基本的に第1工程で得たポリ アリーレンスルフィドプレポリマー同士の反応による高 分子量化の工程である。特に本工程ではポリハロ芳香族 化合物と水の両方を添加することで、分解反応により生 じたオリゴマー同志の重合反応を起こし、その結果オリ ゴマー量が少ない高分子量のPASを得る工程である。 【0037】ポリハロ芳香族化合物の添加に当たって、 該化合物の添加形態は固体、溶融状態、または有機極性 溶媒に溶かしもののいずれでも良い。またその際の系は 40 開放系でもよいし、また密閉系でもよい。添加時期につ いては特段の制限はなくいずれの時において好適に行う ことができ、例えば第1工程の反応後直ちに、第1工程 の反応終了後一旦温度を下げてから、第2工程の反応温 度に昇温した後に、またはそれぞれの昇温途中等任意の 段階で添加可能である。

(B1):ポリハロ芳香族化合物仕込量(mol)

【0038】第2工程におけるポリハロ芳香族化合物の 添加量は、スルフィド化剤1モルに対し0.01~0. 20モルが好ましい。またスルフィド化剤1モルに対 し、第1工程と第2工程で添加したポリハロ芳香族化合 50 なる。このときの水分量は特に規定しないが、好ましく はスルフィド化剤1モルに対し0.5モル~2.4モル が良い。以上の操作の後、所定温度で所定時間反応せし める。このときの反応温度は、好ましくは180℃~2 60℃で行うのが良い。

【0033】第一工程で得られるポリアリーレンスルフ ィドプレポリマーについて特に規定はないが、好ましく は以下に定めるポリハロ芳香族化合物の転化率で98モ ル%以上反応せしめたプレポリマーであること、また得 られたポリアリーレンスルフィドプレポリマーの粘度が 5~1000ポイズ(316℃、荷重10Kg、5分間 保持)であり、さらに好ましくは350~800ポイズ の範囲であると、より高分子量で、かつオリゴマー量の より少ないPASを製造することができる。

【0034】ここで、ポリハロ芳香族化合物の転化率 は、以下の式より求めたものである。

-x100

(B3):スルフィド化剤仕込量(mol) [0035]

であるとき、

≤ 1 であるとき、

(B1)

物の総量は1.00~1.15モルであることが好まし

【0039】水の添加についても同様であり、添加方 法、添加時期、いずれも好適に行うことができる。な お、水の添加時期について補足すると、ポリハロ芳香族 化合物の添加と同時に、あるいは添加前に、添加後に等 など行うことができる。第2工程における水の添加量 は、スルフィド化剤1モルに対し0.10~6.00で あることが好ましい。またスルフィド化剤 1 モルに対 し、第1工程と第2工程で添加した水の総量は1.4~ 6. 5モルであることが好ましい。

【0040】また第2工程の反応温度は235~290 ℃で行うのが良い。

[0041]

【実施例】以下に本発明を実施例により具体的に説明す るが、本発明はこれら実施例にのみ限定されるものでは ない。

【0042】〔実施例1〕

1. 第1工程

4 1 オートクレーブにNーメチルピロリドン(NMP) 1260g, NaSH·xH2O 309.3g (4.00 m o1) を仕込、アルカリトラップを装備し、窒素雰囲気下 開放系において昇温を始め、100℃であらかじめ水酸 化ナトリウム164.8g(4.12 mol)を水178. 5gに溶かしておいた水溶液を加え、さらに昇温を続け た。145℃付近で水-NMP混合物が留出を始め、2 00℃まで留出させた。このとき留出した水は221. 6g, NMPは184.9g, S2-は68.73mmolであ った。ついでこの系を密閉して p - ジクロロベンゼン5 77.9g(3.93 mol) (モノマー比1.00)をN MP311.2gに溶かした溶液を圧入添加し、さらに NMP 1 7 2. 5g添加した。そして 2 2 0 ℃ で 5 時間 さらに240℃で2時間窒素雰囲気、加圧下で反応させ た。反応終了後冷却し、スラリーを半分取り液体成分と 固体成分をろ別後、80℃の温水15 Kgを用いて30分 **攪拌後ろ別し、これを2回行った。そして80℃で減圧** 乾燥し、白色の粉末状のポリアリーレンスルフィドプレ ポリマーを得た。このポリマーの溶融粘度を島津製のフ ローテスターを用いて316℃、5分間保持、10 Kg荷 20 重で測定したところ450 poiseであった。また得られ たスラリーより転化率を求めたところ99.2%であっ た。

【0043】2. 第2工程

21オートクレーブに第1工程で得たスラリー128 3.9gを取り、p-ジクロロベンゼン8.67g(0. 059mol) (モノマー比1.03)、水127.2g (H₂O/S=5.00)、NMP194.79gを加え た。系内を窒素雰囲気とした後系を閉じ、250℃で5 時間反応を行った。得られた生成物はろ別により固体成 30 分を分離し、その後80℃の温水15 Kgを用いて30分 攪拌後ろ別し、これを2回行った。そして80℃で減圧 乾燥し、白色の粒状のポリアリーレンスルフィド重合体 を得た。このポリマーの溶融粘度を測定したところ17 0 0 poise (3 1 6 °C、1 0 Kg荷重) であった。また T HF抽出率は3.09%、アイゾット衝撃試験13.0 Kgf・cm/cm² (ノッチ無し)であった。

【0044】尚、THF抽出率は以下のように求めた。 THF70ml中に、粉末状のPPS5gを加え、室温中 で1時間攪拌する。冷却管を取り付け、75℃の温浴で 40 1時間還流させ、栓をして約15時間放置後、ろ過を行 う。ろ液をエバポレーターを使って濃縮した後、80℃ で約15時間真空乾燥し、抽出物の重量からTHF抽出 率を得た。

【0045】アイゾット衝撃試験は射出成形機を用いて サンプル片を作成し、ノッチ無しで測定を行った。サン プル片は、断面積が(3.2×3.2) mm² のものを用 いた。

【0046】〔実施例2〕

1. 第1工程

実施例1の第1工程においてp-ジクロロベンゼンの添 加後、220℃で5時間後さらに240℃に昇温して4 時間反応を行ったことの他は、実施例1の第1工程と同 様に行った。得られたポリアリーレンスルフィドプレポ リマーの溶融粘度は650 poiseであった。また得られ たスラリーより転化率を求めたところ99.8%であっ

【0047】2. 第2工程

実施例1の第2工程と同様に行った。この結果得られた ポリマーの溶融粘度は1750 poise、THF抽出率は 3. 05%であった。またアイゾット衝撃試験は13. 1 Kgf・cm/cm²であった。

【0048】〔実施例3〕

1. 第1工程

実施例1の第1工程においてp-ジクロロベンゼンの添 加後、220℃で4時間後さらに240℃に昇温して1 時間反応を行ったことの他は、実施例1の第1工程と同 様に行った。得られたポリアリーレンスルフィドプレポ リマーの溶融粘度は100poiseであった。また得られ たスラリーより転化率を求めたところ98.7%であっ た。

【0049】2. 第2工程

実施例1の第2工程において反応温度を260℃で行っ たことの他は、実施例1の第2工程と同様に行った。こ の結果得られたポリマーの溶融粘度は1600poise、 THF抽出率は3.30%であった。またアイゾット衝 撃試験は12. 5 Kgf·cm/cm²であった。

【0050】〔実施例4~5〕実施例1において、第2 工程でのモノマー比を1.01~1.10としたほかは 実施例1と同様に行った。これらの重合条件及び結果は 表1と表2にまとめて示す。

【0051】〔実施例6〕実施例2において、第1工程 でのモノマー比を1.01とし、第2工程でのモノマー 比を1.05としたほかは実施例2と同様に行った。こ れらの重合条件及び結果は表1と表2にまとめて示す。 【0052】〔比較例1〕

1. 第1工程

4 l オートクレーブにN-メチルピロリドン(NMP) 1260g, NaSH·xH2O 309.3g (4.00 m ol)を仕込、アルカリトラップを装備し、窒素雰囲気下 開放系において昇温を始め、100℃であらかじめ水酸 化ナトリウム164.8g(4.12 mol)を水178. 5gに溶かしておいた水溶液を加え、さらに昇温を続け た。145℃付近で水-NMP混合物が留出を始め、2 00℃まで留出させた。このとき留出した水は221. 6g, NMPは184. 9g, S²-は68. 73mmolであ った。ついでこの系を密閉して p - ジクロロベンゼン5 77.9g(3.93 mol) (モノマー比1.00)をN MP311.2gに溶かした溶液を圧入添加し、さらに

NMP172.5g添加した。そして窒素雰囲気、加圧

12

下で220℃で3時間反応をさせた。反応終了後冷却し、スラリーを半分取り液体成分と固体成分をろ別後、80℃の温水15 Kgを用いて30分攪拌後ろ別し、これを2回行った。そして80℃で減圧乾燥し、白色の粉末状のポリアリーレンスルフィドプレポリマーを得た。このポリマーの溶融粘度は70 poiseであった。また得られたスラリーより転化率を求めたところ95.2%であった。

【0053】2. 第2工程

第1工程

2 1 オートクレーブに第 1 工程で得たスラリー 1 2 8 3.9 gを取り、水 1 2 7.2 g $(H_2 \, \text{O}/\text{S} = 5.0)$ 0)、NMP 1 9 4.79 gを加えた。系内を窒素雰囲気とした後系を閉じ、260℃で5時間反応を行った。得られた生成物はろ別により固体成分を分離し、その後80℃の温水 15 Kgを用いて30分攪拌後ろ別し、これを2回行った。そして80℃で減圧乾燥し、白色の粒状のポリアリーレンスルフィド重合体を得た。このポリマーの溶融粘度を測定したところ 1 4 0 0 poise (3 1 6

℃、10 Kg荷重)であった。またTHF抽出率は4.3 0%、アイゾット衝撃10.7 Kgf・cm/cm²であった。 【0054】〔比較例2〕

1. 第1工程

比較例 1 の第 1 工程においてp ージクロロベンゼンの添加後、2 2 0 \mathbb{C} で 4 時間後さらに 2 4 0 \mathbb{C} に昇温して 1 時間反応を行ったことの他は、比較例 1 の第 1 工程と同様に行った。得られたポリアリーレンスルフィドプレポリマーの溶融粘度は 1 0 0 poiseであった。また得られたスラリーより転化率を求めたところ 9 8 8 %であった。

【0055】2. 第2工程

比較例1の第2工程と同様に行った。この結果得られたポリマーの溶融粘度は1200poise、THF抽出率は4.50%であった。またアイゾット衝撃試験は10.2 Kgf^{*} cm/ Cm^{2} であった。

[0056]

【表1】

	モノマー比	水分量比 (H ₂ O/S)	重合温度一重合時間 (℃) (時間)	転化率 (%)	溶融粘度
実施例1	1.00	1 . 2 2	2 2 0 ℃ 5 時間後 2 4 0 ℃ 2 時間	99.2	450
実施例 2	1.00	1.21	2 2 0 ℃ 5 時間後 2 4 0 ℃ 4 時間	99.8	650
実施例3	1.00	1.22	2 2 0 ℃ 4 時間後 2 4 0 ℃ 1 時間	98.7	100
実施例 4	1.00	1.22	2 2 0 ℃ 5 時間後 2 4 0 ℃ 2 時間	99.1	450
実施例5	1.00	1.21	2 2 0 ℃ 5 時間後 2 4 0 ℃ 2 時間	99.2	4 6 0
実施例 6	1.01	1.22	2 2 0 ℃ 5 時間後 2 4 0 ℃ 4 時間	99.7	640
比較例1	1.00	1.20	2 2 0 ℃ 3 時間	95.2	7 0
比較例 2	1.00	1.21	2 2 0 ℃ 4 時間後 2 4 0 ℃ 1 時間	98.8	1 0 0

【0057】 【表2】

14

	キノマー比	水分量比 (H ₂ 0/S)	重合温度一重合時間 (で) (時間)	THF抽出率 (%)	帝融粘度	717.74衝撃値 (Kgf·cm/cm ²)
実施例 1	1.03	5.00	250℃5時間	9.09	1700	13.0
実施例 2	1.03	6.00	220℃5時間	3.05	1750	13, 1
実施例3	1.03	5.00	260℃4時間	3.30	1600	12.5
実施例4	1.01	5.00	250℃5時間	8. 1.3	1650	12.8
実施例 5	1.10	5.00	250℃5時間	3.40	1600	12.4
実施例6	1,05	5.00	250℃5時間	3.08	1700	13.1
比較例1	1.00	5.00	260℃5時間	4.30	1400	10.7
比較例 2	1.00	5.00	260℃5時間	4.50	1200	10.2

無って

【0058】 【発明の効果】本発明方法のよれば、オリゴマー量が少

40 なく、衝撃強度に優れた高分子量の P A S が得られる。