

Adjoint Algorithmic Differentiation Calibration and implicit function theorem

Marc Henrard

Quantitative Research - OpenGamma

Interest Rate Conference, London, March 30th, 2012

Based on:

Adjoint Algorithmic Differentiation: Calibration and Implicit Function Theorem To appear in *The Journal of Computational Finance* Available at *SSRN Working Paper series*, 1896329, September 2011.

Algorithmic Differentiation

- 2 Algorithmic Differentiation
- 3 Finance: calibration

- 4 Conclusion
- **OpenGamma**

Algorithmic Differentiation

- 2 Algorithmic Differentiation
- 3 Finance: calibration
- 4 Conclusion
- **OpenGamma**

- Quantitative finance time: price.
- CPU time: greeks (derivatives with respect to the input).
- Computing derivatives is known in computer science under the name of Algorithmic Differentiation.
- Algorithmic Differentiation comes in two modes:
 - Forward/standard
 - 2 Reverse/adjoint
- The Adjoint mode is often the most efficient in finance.
- It can also be used efficiently when an equation solving problem (calibration) is part of the algorithm.

- Quantitative finance time: price.
- CPU time: greeks (derivatives with respect to the input).
- Computing derivatives is known in computer science under the name of Algorithmic Differentiation.
- Algorithmic Differentiation comes in two modes:
 - Forward/standard
 - 2 Reverse/adjoint
- The Adjoint mode is often the most efficient in finance
- It can also be used efficiently when an equation solving problem (calibration) is part of the algorithm.

- Quantitative finance time: price.
- CPU time: greeks (derivatives with respect to the input).
- Computing derivatives is known in computer science under the name of Algorithmic Differentiation.
- Algorithmic Differentiation comes in two modes:
 - Forward/standard
 - 2 Reverse/adjoint
- The Adjoint mode is often the most efficient in finance.
- It can also be used efficiently when an equation solving problem (calibration) is part of the algorithm.

- Quantitative finance time: price.
- CPU time: greeks (derivatives with respect to the input).
- Computing derivatives is known in computer science under the name of Algorithmic Differentiation.
- Algorithmic Differentiation comes in two modes:
 - Forward/standard
 - Reverse/adjoint
- The Adjoint mode is often the most efficient in finance.
- It can also be used efficiently when an equation solving problem (calibration) is part of the algorithm.

- Quantitative finance time: price.
- CPU time: greeks (derivatives with respect to the input).
- Computing derivatives is known in computer science under the name of Algorithmic Differentiation.
- Algorithmic Differentiation comes in two modes:
 - Forward/standard
 - Reverse/adjoint
- The Adjoint mode is often the most efficient in finance.
- It can also be used efficiently when an equation solving problem (calibration) is part of the algorithm.

Algorithmic Differentiation

- 2 Algorithmic Differentiation
- 3 Finance: calibration
- 4 Conclusion
- **OpenGamma**

Mathematics (1): Differentiation ratio

The most often used approximation for derivative computation is

Approximation (Differentiation ratio)

One side:

$$D_{x_i}f(x)\simeq \frac{f(x+\epsilon_i)-f(x)}{|\epsilon_i|}.$$

Two sides (or symmetrical):

$$D_{x_i}f(x) \simeq \frac{f(x+\epsilon_i)-f(x-\epsilon_i)}{2|\epsilon_i|}.$$

Mathematics (2): Chain rule

The main piece of mathematics for Algorithmic Differentiation is

Theorem (Chain rule)

For two differentiable functions f and g, one has

$$D(f \circ g)(x) = Df(g(x)) \cdot Dg(x).$$

Computer: function

The starting point is the algorithm for

$$z = f(a)$$
.

The function input are: $a=a[0:p_a]$ (dimension p_a+1). The function output is z (dimension 1).

The program is Initialisation
$$[j=-p_a:0]$$
 $b[j]$ = $a[j+p_a]$

Computer: function

The starting point is the algorithm for

$$z = f(a)$$
.

The function input are: $a=a[0:p_a]$ (dimension p_a+1). The function output is z (dimension 1).

The program is
$$\begin{array}{ll} \text{Initialisation} & [j=-p_a:0] & b[j] = a[j+p_a] \\ \text{Algorithm} & [j=1:p_b] & b[j] = g_j(b[-p_a:j-1]) \end{array}$$

Computer: function

The starting point is the algorithm for

$$z = f(a)$$
.

The function input are: $a=a[0:p_a]$ (dimension p_a+1). The function output is z (dimension 1).

The program is Initialisation
$$[j=-p_a:0]$$
 $b[j]$ = $a[j+p_a]$ Algorithm $[j=1:p_b]$ $b[j]$ = $g_j(b[-p_a:j-1])$ Value z = $b[p_b]$

This algorithm is supposed to be implemented.

Computer: Algorithmic Differentiation

Goal: compute the derivatives of z (dimension 1) with respect to a_i (dimension $p_a + 1$):

$$\frac{\partial}{\partial a_i} f(a) = \frac{\partial}{\partial a_i} z.$$

The emphasis can be put on with respect to a_i (standard) or on of z (adjoint).

Goal: derivatives with respect to a_i : $\frac{\partial}{\partial a_i}b[j] = \overset{\bullet}{b}[j][i]$.

Goal: derivatives with respect to a_i : $\frac{\partial}{\partial a_i}b[j] = \overset{\bullet}{b}[j][i]$.

The program is

$$[j=-p_a:0]\quad b[j]=a[j+p_a]$$

$$[j=1:p_b] \quad b[j] = g_j(b[-p_a:j-1])$$

$$z = b[p_b]$$

Derivatives: $[i = 0 : p_a]$

Goal: derivatives with respect to a_i : $\frac{\partial}{\partial a_i}b[j] = \overset{\bullet}{b}[j][i]$.

$$[j = -p_a:0]$$
 $b[j] = a_{j+p_a}$

$$[j = 1 : p_b]$$
 $b[j] = g_j(b[-p_a : j-1])$

$$z = b[p_b]$$

Function
$$\begin{aligned} \mathbf{f} & = -p_a : 0 \\ \mathbf{f} & = -p_a : 0 \end{aligned} \quad b[j] = a_{j+p_a} \\ b[j] & = \mathbf{f} & = \mathbf{f} \\ b[j][i] & = \mathbf{f} \\ b[j][i] & = \mathbf{f} & = \mathbf{f} \\ b[j][i] &$$

Goal: derivatives with respect to a_i : $\frac{\partial}{\partial a_i}b[j] = \overset{\bullet}{b}[j][i]$.

$$[j = -p_a:0]$$
 $b[j] = a_{j+p_a}$

$$[j = 1 : p_b]$$
 $b[j] = g_j(b[-p_a : j-1])$

$$z = b[p_b]$$

Function
$$[j = -p_a:0] \quad b[j] = a_{j+p_a}$$

$$[j = 1:p_b] \quad b[j] = g_j(b[-p_a:j-1])$$

$$b[j][i] = \sum_{k=-p_a}^{j-1} \frac{\partial}{\partial b_k} g_j \cdot \frac{\partial}{\partial a_i} b[k]$$

$$= \sum_{k=-p_a}^{j-1} \frac{\partial}{\partial b_k} g_j \cdot b[k][i]$$

$$z = b[p_b]$$

$$z = b[p_b]$$

Goal: derivatives with respect to a_i : $\frac{\partial}{\partial a_i}b[j] = \overset{\bullet}{b}[j][i]$.

$$[j = -p_a:0]$$
 $b[j] = a_{j+p_a}$

$$[j = 1 : p_b]$$
 $b[j] = g_j(b[-p_a : j-1])$

$$z = b[p_b]$$

Function
$$[j = -p_a:0] \quad b[j] = a_{j+p_a}$$

$$[j = 1:p_b] \quad b[j] = g_j(b[-p_a:j-1])$$

$$b[j][i] = \sum_{k=-p_a}^{j-1} \frac{\partial}{\partial b_k} g_j \cdot \frac{\partial}{\partial a_i} b[k]$$

$$= \sum_{k=-p_a}^{j-1} \frac{\partial}{\partial b_k} g_j \cdot \frac{\partial}{\partial b[k]} [i]$$

$$z = b[p_b]$$

$$z = b[p_b]$$
 Derivatives: $[i = 0:p_a]$
$$b[j][i] = \delta_{j+p_a,i}$$

$$b[j][i] = \sum_{k=-p_a}^{j-1} \frac{\partial}{\partial b_k} g_j \cdot \frac{\partial}{\partial a_i} b[k]$$

$$= \sum_{k=-p_a}^{j-1} \frac{\partial}{\partial b_k} g_j \cdot \frac{\partial}{\partial b[k]} [i]$$

Goal: derivatives with respect to a_i : $\frac{\partial}{\partial a_i}b[j] = \overset{\bullet}{b}[j][i]$.

$$[j = -p_a:0] \quad b[j] = a_{j+p_a}$$

$$[j = 1 : p_b]$$
 $b[j] = g_j(b[-p_a : j-1])$

$$z = b[p_b]$$

Function
$$\begin{aligned} & \text{Derivatives: } [i=0:p_a] \\ & [j=-p_a:0] \quad b[j] = a_{j+p_a} \\ & [j=1:p_b] \quad b[j] = g_j(b[-p_a:j-1]) \end{aligned} \qquad \begin{aligned} & \overset{\bullet}{b}[j][i] = \delta_{j+p_a,i} \\ & \overset{\bullet}{b}[j][i] = \sum_{k=-p_a}^{j-1} \frac{\partial}{\partial b_k} g_j \cdot \frac{\partial}{\partial a_i} b[k] \\ & = \sum_{k=-p_a}^{j-1} \frac{\partial}{\partial b_k} g_j \cdot \overset{\bullet}{b}[k][i] \end{aligned}$$

$$z = b[p_b] \qquad \qquad \underbrace{z = b[p_b]}$$

Goal: derivatives with respect to a_i : $\frac{\partial}{\partial a_i}b[j] = \overset{\bullet}{b}[j][i]$.

The program is

Function Derivatives:
$$[i = 0 : p_a]$$

$$[j = -p_a : 0] \quad b[j] = a_{j+p_a}$$

$$[j = 1 : p_b] \quad b[j] = g_j(b[-p_a : j-1])$$

$$\begin{bmatrix} b \\ b[j][i] = \delta_{j+p_a,i} \\ b \\ b[j][i] = \sum_{k=-p_a}^{j-1} \frac{\partial}{\partial b_k} g_j \cdot \frac{\partial}{\partial a_i} b[k]$$

$$= \sum_{j=1}^{j-1} \frac{\partial}{\partial a_j} a_j \cdot \frac{\partial}{\partial a_j} b[k][i]$$

 $z = b[p_h]$

Derivatives:
$$[i = 0 : p_a]$$

$$\begin{vmatrix} \mathbf{b} & [j][i] = \delta_{j+p_a,i} \\ \mathbf{b} & [j][i] = \sum_{k=-p_a}^{j-1} \frac{\partial}{\partial b_k} g_j \cdot \frac{\partial}{\partial a_i} b[k] \\ = \sum_{k=-p_a}^{j-1} \frac{\partial}{\partial b_k} g_j \cdot \mathbf{b}[k][i] \\ \frac{\partial}{\partial a_i} \mathbf{z} = \mathbf{b}[p_b][i] \end{vmatrix}$$

there green line of code for each line in f. $\operatorname{Cost}(P+D) \leq (1+1.5p_a) \operatorname{Cost}(P)$

Computer: AD reverse/adjoint

```
Goal: derivatives of z: \frac{\partial}{\partial b[j]}z = \bar{b}[j].

Init [j = -p_a : 0] b[j] = a[j + p_a]
Algorithm [j = 1 : p_b] b[j] = g_j(b[-p_a : j - 1])
Value z = b[p_b]
```


Computer: AD reverse/adjoint

Goal: derivatives of
$$z$$
: $\frac{\partial}{\partial b[j]}z = \bar{b}[j]$.

Init $[j = -p_a: 0]$ $b[j] = a[j + p_a]$
Algorithm $[j = 1: p_b]$ $b[j] = g_j(b[-p_a: j-1])$
Value $z = b[p_b]$

Value $\bar{b}[p_b] = 1.0$

Algorithm $[j = p_b - 1: -1: -p_a]$ $\bar{b}[j] = \sum_{k=j+1}^{p_b} \frac{\partial}{\partial b_k} z \frac{\partial}{\partial b_j} b_k$
 $= \sum_{k=j+1}^{p_b} \bar{b}[k] \frac{\partial}{\partial b_j} g_k$

Init $[i = 0: p_a]$ $\frac{\partial}{\partial a_i} z = \bar{b}[i - p_a + 1]$

OpenGamma

Computer: AD reverse/adjoint

Goal: derivatives of
$$\mathbf{z}$$
: $\frac{\partial}{\partial b[j]}\mathbf{z} = \bar{b}[j]$.

Init $[j = -p_a: 0]$ $b[j] = a[j + p_a]$
Algorithm $[j = 1: p_b]$ $b[j] = g_j(b[-p_a: j-1])$
Value $\mathbf{z} = b[p_b]$

Value $\bar{b}[p_b] = 1.0$

Algorithm $[j = p_b - 1: -1: -p_a]$ $\bar{b}[j] = \sum_{k=j+1}^{p_b} \frac{\partial}{\partial b_k} \mathbf{z} \frac{\partial}{\partial b_j} b_k$

$$= \sum_{k=j+1}^{p_b} \bar{b}[k] \frac{\partial}{\partial b_j} g_k$$
Init $[i = 0: p_a]$ $\frac{\partial}{\partial a_i} \mathbf{z} = \bar{b}[i - p_a + 1]$

OpenGamma

There is one line of code for each line in f. Coct(D + D) < c, Coct(D)

Cost
$$(P \perp D) < \omega_A \operatorname{Cost}(P)$$
 $\omega_A \in [$

AD adjoint: advantages/drawbacks

Required: algorithmic differentiation for (almost) all functions g_j . Bottom-up approach: it can be implemented for an algorithm only if all the components are already implemented. When it is there, it can be very fast!

AD adjoint: example

The function (with 4 inputs)

```
z = (a_0 + \exp(a_1)) \left( \sin(a_2) + \cos(a_3) \right) + (a_1)^2 + a_3. public double f(double[] a) { double b1 = a[0] + Math.exp(a[1]); double b2 = Math.sin(a[2]) + Math.cos(a[3]); double b3 = b1 * b2 + Math.pow(a[1], 2) + a[3]; return b3; }
```


AD adjoint: example

```
public double f(double[] a, double[] aBar) {
  // Forward sweep
  double b1 = a[0] + Math.exp(a[1]);
  double b2 = Math.sin(a[2]) + Math.cos(a[3]);
  double b3 = b1 * b2 + Math.pow(a[1], 2) + a[3];
  // Backward sweep
  double b3Bar = 1.0;
  double b2Bar = b1 * b3Bar;
  double b1Bar = b2 * b3Bar + 0.0 * b2Bar:
  aBar[3] = 1.0 * b3Bar - Math.sin(a[3]) * b2Bar;
  aBar[2] = Math.cos(a[2]) * b2Bar:
 aBar[1] = 2 * a[1] * b3Bar + Math.exp(a[1]) * b1Bar;
  aBar[0] = 1.0 * b1Bar:
)pert@antma
```

AD adjoint: example

Example implementation:

1,000,000 f - value: 79 ms

1,000,000 f - value and 4 derivatives (adjoint): 149 ms

1,000,000 f - value and 4 derivatives (adjoint) - $\exp(a[1])$ stored: 126

ms

AD adjoint: SABR swaption

OpenGamma

```
public double pv(Swaption swpt, SABRData sabr) {
 double maturity = swpt.getMaturityTime();
 double expiry = swpt.getTimeToExpiry();
 FixedCouponSwap swap = swpt.getUnderlyingSwap();
 // Forward sweep
 double fwd = PRC.visit(swap, sabr);
 double pvbp = SwapMethod.pvbp(swap, sabr);
double strike = SwapMethod.couponEquivalent(swap, pvbp, sabr);
EuropeanVanillaOption option = new EuropeanVanillaOption(strike,
double volatility = sabr.vol(expiry, maturity, strike, fwd);
 BlackData dataBlack = new BlackData(fwd, 1.0, volatility);
 double black = black.price(dataBlack);
 double pv = pvbp * black;
 return pv
```

AD adjoint: SABR swaption - curve sensitivity

```
public IRSensitivity pvSensi(Swaption swpt, SABRData sabr) {
 double maturity = swpt.getMaturityTime();
 double expiry = swpt.getTimeToExpiry();
 FixedCouponSwap swap = swpt.getUnderlyingSwap();
 double fwd = PRC.visit(swap, sabr);
 double pvbp = SwapMethod.pvbp(swap, sabr);
double strike = SwapMethod.couponEquivalent(swap, pvbp, sabr);
EuropeanVanillaOption option = new EuropeanVanillaOption(strike,
double[] volAdj = sabr.volAdj(expiry, maturity, strike, fwd);
BlackData dataBlack = new BlackData(forward, 1.0, volAdj[0]);
 double[] bsAdj = black.priceAdj(option, dataBlack);
 double pv = pvbp * bsAdj[0]; double pvBar = 1.0;
 double volBar = pvbp * bsAdj[2] * pvBar;
 double pvbpBar = bsAdj[0] * pvBar;
double fwdBar = pvbp * bsAdj[1] * pvBar + volAdj[1] * volBar;
 IRSensi pvbpDr = SwapMethod.pvbpSensi(swap, sabr);
 IRSensi fwdDr = PRSC.visit(swap, sabr);
 repurn (pydpphrnmalt (pybpBar).plus (fwdDr.mult (fwdBar));
```

AD adjoint: example (financial functions)

The standard option price in the Black framework (BlackPriceFunction): 1,000,000 - value: 156 ms

1,000,000 - value + 3 derivatives: 176 ms

The price of European swaptions (5Y quarterly) with physical delivery for a swap rate following a SABR model (Hagan et al. approximation) in a multi-curve framework (SwaptionPhysicalFixedIborSABRMethod): 1,000 - swaptions SABR (price): 20 ms

1,000 - swaptions SABR (price + 20+24 delta + 3 vega): 98 ms

Algorithmic Differentiation

1 Introduction

2 Algorithmic Differentiation

- 3 Finance: calibration
- 4 Conclusion
- **OpenGamma**

Calibration

- the price of an exotic instrument is related to a specific basket of vanilla instruments;
- the price of these vanilla instruments is computed in a given base model;
- the complex model parameters are calibrated to fit the vanilla option prices from the base model. This step is usually done through a generic numerical equation solver; and
- the exotic instrument is then priced with the calibrated complex model.
- Goal: derivative of the exotic instrument price with respect to the base model parameters.

Calibration

- the price of an exotic instrument is related to a specific basket of vanilla instruments;
- the price of these vanilla instruments is computed in a given base model;
- the complex model parameters are calibrated to fit the vanilla option prices from the base model. This step is usually done through a generic numerical equation solver; and
- the exotic instrument is then priced with the calibrated complex model.
- Goal: derivative of the exotic instrument price with respect to the base model parameters.

Greeks through calibration

Input C: yield curves

Input Θ : parameters for the base model (SABR parameters). Intermediary value Φ : parameters for the calibrated model.

NPV^{Vanilla}: pv of vanilla instruments in base model.

 $\mathsf{NPV}^{\overline{\mathsf{Vanilla}}}_{\underline{\mathsf{Calibrated}}} : \mathsf{pv} \text{ of vanilla instruments in calibrated model}.$

NPV^{Exotic} pv of exotic instrument in calibrated model.

The calibration procedure (perfect calibration) is

$$0 = f(C, \Theta, \Phi) = \mathsf{NPV}_{\mathsf{Base}}^{\mathsf{Vanilla}}(C, \Theta) - \mathsf{NPV}_{\mathsf{Calibrated}}^{\mathsf{Vanilla}}(C, \Phi).$$

AD: equation solving

The calibration problem looks like:

$$b = g_1(a)$$

 $c \text{ s. t. } g_2(b,c) = 0$
 $z = g_3(c)$

with $g_1: \mathbb{R}^{p_a} \to \mathbb{R}^{p_b}$, $g_2: \mathbb{R}^{p_b} \times \mathbb{R}^{p_c} \to \mathbb{R}^{p_c}$ and $g_3: \mathbb{R}^{p_c} \to \mathbb{R}^{p_z}$. We know how to deal with

$$b = g_1(a)$$

$$c = g_4(b)$$

$$z = g_3(c)$$

Mathematics (2): Implicit function theorem

Theorem (Implicit function theorem)

Under mild regularity conditions on f, if

$$f(\mathbf{x}_0, \mathbf{y}_0) = 0$$

and if $D_y f(x_0, y_0)$ is invertible, then, near x_0 , there exists a (implicit) function g such that f(x, g(x)) = 0, g is differentiable in x_0 and

$$D_x g(x_0) = -(D_y f(x_0, y_0))^{-1} D_x f(x_0, y_0).$$

The term *exists* is in the sense of the mathematicians, not of the computer scientists!

Implicit AAD

The elements of \mathbb{R}^p are represented by column vectors. The derivative $Df(a) \in \mathcal{L}(\mathbb{R}^{p_a}, \mathbb{R}^{p_z})$ is represented by a $p_z \times p_a$ matrix $(p_z \text{ rows}, p_a \text{ columns})$.

The adjoint version of the algorithm is

$$ar{z} = I \quad \text{(with } I \text{ the } p_z \times p_z \text{ identity)}$$
 $ar{c} = (D_c g_3(c))^T ar{z}$
 $ar{b} = (D_b g_4(b))^T ar{c} = -\left((D_c g_2(b,c))^{-1} D_b g_2(b,c)\right)^T ar{c}$
 $ar{a} = (D_a g_1(a))^T ar{b}$.

Greeks through calibration

Calibration: $\Phi = \Phi(C, \Theta)$. Using the calibration:

$$\mathsf{NPV}^{\mathsf{Exotic}}_{\mathsf{Base}}(\mathsf{C},\Theta) = \mathsf{NPV}^{\mathsf{Exotic}}_{\mathsf{Calibrated}}(\mathsf{C},\Phi(\mathsf{C},\Theta))$$

The quantities of interest are

$$D_C NPV_{Base}^{Exotic}$$
 and $D_{\Theta} NPV_{Base}^{Exotic}$.

Through composition we have

$$\textit{D}_{\textit{C}} \textit{NPV}_{\textit{Base}}^{\textit{Exotic}} = \textit{D}_{\textit{C}} \textit{NPV}_{\textit{Calibrated}}^{\textit{Exotic}}(\textit{C}, \Phi) + \textit{D}_{\Phi} \textit{NPV}_{\textit{Calibrated}}^{\textit{Exotic}}(\textit{C}, \Phi) \textit{D}_{\textit{C}} \Phi(\textit{C}, \Theta),$$

and

where $D_C\Phi$ and $D_{\Theta}\Phi$ are unknown.

Greeks through calibration

Using the implicit function theorem, the function Φ is differentiable and its derivatives can be computed from the derivative of f:

$$\mathcal{D}_{\Theta}\Phi(\mathcal{C},\Theta) = \left(\mathcal{D}_{\Phi}\mathsf{NPV}_{\mathsf{Calibrated}}^{\mathsf{Vanilla}}(\mathcal{C},\Phi)\right)^{-1}\mathcal{D}_{\Theta}\mathsf{NPV}_{\mathsf{Base}}^{\mathsf{Vanilla}}(\mathcal{C},\Theta)$$

and

$$\begin{array}{lcl} \mathcal{D}_{\mathcal{C}}\Phi(\mathcal{C},\Theta) & = & \left(\mathcal{D}_{\Phi}\mathsf{NPV}_{\mathsf{Calibrated}}^{\mathsf{Vanilla}}(\mathcal{C},\Phi)\right)^{-1} \\ & & \left(\mathcal{D}_{\mathcal{C}}\mathsf{NPV}_{\mathsf{Base}}^{\mathsf{Vanilla}}(\mathcal{C},\Theta) - \mathcal{D}_{\mathcal{C}}\mathsf{NPV}_{\mathsf{Calibrated}}^{\mathsf{Vanilla}}(\mathcal{C},\Phi)\right). \end{array}$$

Exotic: 10Y amortised European swaption (yearly amortisation) Vanilla: 10 vanilla swaptions with tenors between 1Y and 10Y

Base model: SABR model

Calibrated model: two-factor LMM with displaced diffusion.

Calibration: for each year the weights of the 4 parameters are fixed;

weights multiplied by a common factor (Φ).

Exotic: 10Y amortised European swaption (yearly amortisation) Vanilla: 10 vanilla swaptions with tenors between 1Y and 10Y

Base model: SABR model

Calibrated model: two-factor LMM with displaced diffusion.

Calibration: for each year the weights of the 4 parameters are fixed; weights multiplied by a common factor (Φ) .

Risk type	Approach	Price time	Risks time	Total
SABR	FD	1.00	30×1.00	31.00
SABR	AAD	1.00	0.18	1.18
Curve	FD	1.00	42×1.00	43.00
Curve	AAD	1.00	0.74	1.74
Curve and SABR	FD	1.00	72×1.00	73.00
Curve and SABR	AAD	1.00	0.75	1.75

Algorithmic Differentiation

Introduction

- 2 Algorithmic Differentiation
- 3 Finance: calibration

- 4 Conclusion
- **OpenGamma**

Conclusion

- Algorithmic differentiation: price and derivatives (greeks) at the computation cost of less than 4 times the cost of one price.
- The fast execution time comes with a cost: a (slightly) longer development time (the code length is doubled, not the development time).
- Calibrations require equation solving. With the implicit function approach: only the adjoint methods for the prices, not for the equation solver, are required.
- Prices including calibration: ratio price and derivatives computation cost to the price computation cost can be below two.

Conclusion

- Algorithmic differentiation: price and derivatives (greeks) at the computation cost of less than 4 times the cost of one price.
- The fast execution time comes with a cost: a (slightly) longer development time (the code length is doubled, not the development time).
- Calibrations require equation solving. With the implicit function approach: only the adjoint methods for the prices, not for the equation solver, are required.
- Prices including calibration: ratio price and derivatives computation cost to the price computation cost can be below two.

