The Malgrange-Ehrenpreis Theorem.

Let $\mathfrak{D}=\mathfrak{D}(\mathbf{R}^n)$. A polynomial $P=\sum_{|\alpha|\leqslant N}a_{\alpha}X^{\alpha}\in \mathbf{C}[X_1,\ldots,X_n]$ induces a constant coefficient partial differential operator $P(\partial)=\sum_{|\alpha|\leqslant N}a_{\alpha}\partial^{\alpha}$. It extends to \mathfrak{D}' by $\langle P(\partial)T,\phi\rangle=\langle T,P(-\partial)\phi\rangle$ for $T\in\mathfrak{D}',\phi\in\mathfrak{D}$. A fundamental solution for the partial differential operator $P(\partial)$ is a distribution $E\in\mathfrak{D}'$ with $P(\partial)E=\delta_0$. Notice that such an E gives an explicit smooth solution of the partial differential equation $P(\partial)u=f$ $(f\in\mathfrak{D})$, namely $u=E*f\in C^{\infty}$. (We have $P(\partial)u=P(\partial)E*f=\delta_0*f=f$.)

Example. The Laplacian $-\Delta$ on \mathbb{R}^3 has a fundamental solution E given by $E(x) = 1/4\pi \|x\| \in L^1_{loc}(\mathbb{R}^3)$. For if $B_{\varepsilon} = B_{\varepsilon}(0)$, then we have for all $\phi \in \mathfrak{D}(\mathbb{R}^3)$

$$\langle -\Delta E, \phi \rangle = \lim_{\varepsilon \downarrow 0} \int_{\mathbf{R}^3 - B_{\varepsilon}} E(-\Delta \phi) dx$$

$$= \lim_{\varepsilon \downarrow 0} \left\{ \int_{\mathbf{R}^3 - B_{\varepsilon}} \phi(-\Delta E) dx + \int_{\partial B_{\varepsilon}} \left(-E \frac{\partial \phi}{\partial n} + \phi \frac{\partial E}{\partial n} \right) d\sigma \right\}$$

$$= \lim_{\varepsilon \downarrow 0} \frac{1}{4\pi \varepsilon^2} \int_{\partial B_{\varepsilon}} \phi d\sigma$$

$$= \phi(0),$$

by Green's identity. Here we have used that $-\Delta E = 0$ on $\mathbb{R}^3 - \{0\}$, as well as

$$\left| \int_{\partial B_{\varepsilon}} E \frac{\partial \varphi}{\partial n} d\sigma \right| \leqslant \frac{C}{4\pi\varepsilon} \int_{\partial B_{\varepsilon}} d\sigma = C\varepsilon \to 0 \quad (\varepsilon \downarrow 0).$$

Thus we obtain a smooth solution of the Poisson equation $-\Delta u = f$, which is the well-known

$$u(x) = \frac{1}{4\pi} \int_{\mathbf{R}^3} \frac{f(y)}{|x - y|} dy.$$

(This happens to be the only solution of the Poisson equation with $u(x) \to 0$ for $|x| \to \infty$, as the difference of any two such solutions would be a bounded harmonic function on \mathbb{R}^3 .)

For differential operators with variable coefficients a fundamental solution need not exist.

Example. For $f \in \mathfrak{D}(\mathbf{R})$ the operator fd/dx on \mathbf{R} need not have a fundamental solution. (By definition we must have

$$\left\langle E, -\frac{d}{dx}(f\phi) \right\rangle = \left\langle f\frac{d}{dx}E, \phi \right\rangle = \phi(0).$$

Now pick f and ϕ with disjoint supports, as well as $\phi(0) \neq 0$.)

On the other hand, there is the following fundamental existence theorem for constant coefficient operators.

Theorem (Malgrange-Ehrenpreis). If $P \neq 0$, then $P(\partial)$ has a fundamental solution E.

The proof of this result relies on two lemmas.

Lemma 1. If $P: \mathbb{C}^n \to \mathbb{C}$ is a polynomial function, then there is a constant C such that for all entire functions $f: \mathbb{C}^n \to \mathbb{C}$ and $z \in \mathbb{C}^n$ we have

$$|f(z)| \leqslant C \int_{T^n} |(fP)(z+w)| dm(w),$$

where m is the Haar measure on $T^n \subset \mathbb{C}^n$.

We omit the proof of this lemma, as it properly belongs to complex analysis.

Lemma 2. *Define a seminorm* $\|\cdot\|$ *on* \mathfrak{D} *by*

$$\|\psi\| = \int_{T^n} \int_{\mathbf{R}^n} |\hat{\psi}(t+w)| dt dm(w).$$

Then for any sequence $(\psi_k)_{k=1}^{\infty}$ in \mathfrak{D} we have that $\psi_k \to 0$ implies $\|\psi_k\| \to 0$.

PROOF. We have $\hat{\psi}(t+w) = (\chi_{-w}\psi)^{\wedge}(t)$, where $\chi_w(x) = \exp(i\langle x, w \rangle)$. If $\psi_k \to 0$ in \mathfrak{D} , then there is a compact set $K \subset \mathbf{R}^n$ with supp $\psi_k \subset K$. As the $\chi_w(w \in T^n)$ are uniformly bounded on K, we obtain for every α

$$\|\partial^{\alpha}(\chi_{-w}\psi_{k})\|_{\infty} = \|\sum_{\beta \leqslant \alpha} {\alpha \choose \beta} \partial^{\alpha-\beta} \chi_{-w} \partial^{\beta} \psi_{k}\|_{\infty} \leqslant C(K,\alpha) \max_{\beta \leqslant \alpha} \|\partial^{\beta} \psi_{k}\|_{\infty} \to 0 \quad (k \to \infty)$$

independently of $w \in T^n$. Thus for every $\varepsilon > 0$ there is a k_0 with $\|(1 - \Delta)^n (\chi_{-w} \psi_k)\|_2 < \varepsilon$ for all $k > k_0$, $w \in T^n$. By the Plancherel theorem this is equivalent to

$$\sqrt{\int_{\mathbf{R}^n} |(1+|t|^2)^n \hat{\psi}_k(t+w)|^2 dt} < \varepsilon.$$

(We see by induction on n that $(1+|t|^2)^n \hat{\psi}_k(t+w)$ is the Fourier transform of $(1-\Delta)^n (\chi_{-w} \psi_k)$.) But by the Cauchy-Schwartz inequality we have

$$\|\psi_{k}\| = \int_{T^{n}} \int_{\mathbf{R}^{n}} |(\chi_{-w}\psi)^{\wedge}(t)| dt dm(w)$$

$$\leq \int_{T^{n}} \sqrt{\int_{\mathbf{R}^{n}} \frac{dt}{(1+|t|^{2})^{2n}}} \sqrt{\int_{\mathbf{R}^{n}} |(1+|t|^{2})^{n} \hat{\psi}_{k}(t+w)|^{2} dt} dm(w)$$

$$< C\varepsilon$$

whenever $k > k_0$.

PROOF OF THE MALGRANGE-EHRENPREIS THEOREM. For $\phi \in \mathfrak{D}$ we have $(P(-\partial)\phi)^{\wedge}(\xi) = P(-i\xi)\hat{\phi}(\xi)$, and $\hat{\phi}$ is entire. If $P(-\partial)\phi = P(-\partial)\psi$ with $\psi \in \mathfrak{D}$, then $\hat{\phi} = \hat{\psi}$ by the identity theorem (using that $P \neq 0$). By Fourier inversion we have $\phi = \psi$, and therefore we have a well-defined linear functional $l: P(-\partial)\mathfrak{D} \to \mathbb{C}$ by $\langle l, P(-\partial)\phi \rangle = \phi(0)$. Applying Lemma 1 gives

$$|\hat{\phi}(t)| \leqslant C \int_{T^n} |(P(-\partial)\phi)^{\wedge}(t+w)| dm(w)$$

for all $t \in \mathbf{R}^n$. Now

$$|\phi(0)| \leqslant \int_{\mathbf{R}^n} |\hat{\phi}(t)| dt \leqslant C \|P(-\partial)\phi\|$$

by the Fourier inversion theorem and the above estimate. By the Hahn-Banach theorem l extends to $E: \mathfrak{D} \to \mathbb{C}$ with $|E(\phi)| \leqslant C \|P(-\partial)\phi\|$. Now E is sequentially continuous by Lemma 2 and the continuity of $P(-\partial): \mathfrak{D} \to \mathfrak{D}$, and $\langle P(\partial)E, \phi \rangle = \langle E, P(-\partial)\phi \rangle = \phi(0)$ for all $\phi \in \mathfrak{D}$. The proof is complete.

Since the existence of the convolution E * f requires some decay of E or f (it is convenient to impose more decay on E rather than on f), it is natural to ask whether it is possible to find a *tempered* fundamental solution E. This is indeed the case; we merely indicate how one can deduce this result from the following result, the proof of which goes way beyond the scope of these notes. (It is impossible, however, to have a *compactly supported* fundamental solution, as in that case \hat{E} would be an entire function.)

Theorem (Hörmander). If $P \neq 0$ is a polynomial, then the map $\mathcal{S} \to \mathcal{S}$ by $f \mapsto Pf$ is a homeomorphism onto its image.

This theorem resolves the following division problem, which then implies (by taking fourier transforms) the existence of tempered fundamental solutions.

Corollary. For every $T \in S'$ there is $S \in S'$ with PS = T.

PROOF. The functional $l: PS \to \mathbb{C}$ by $\langle l, P\phi \rangle = \langle T, \phi \rangle$ is continuous, for $P\phi_k \to 0$ implies $\phi_k \to 0$ by Hörmander's theorem, and thus $\langle l, \phi \rangle \to 0$. By the Hahn-Banach theorem there is $S \in S'$ with S|PS = l. Then $\langle PS, \phi \rangle = \langle S, P\phi \rangle = \langle T, \phi \rangle$ for every $\phi \in S$.

Example. If $f(x) = 1/P(ix) \in L^1_{loc}(\mathbf{R}^n)$, then we get a tempered fundamental solution by $E = \check{f} \in \mathcal{S}'(\mathbf{R}^n)$ (fourier transform in the sense of distributions). This holds for instance if $x \mapsto P(ix)$ has no zeros on \mathbf{R}^n ; the size of the zero set of this polynomial is an obstruction to $f \in L^1_{loc}(\mathbf{R}^n)$.