Surface Splatting

Matthias Zwicker Markus Gross

Hanspeter Pfister Jeroen van Baar

ETH Zurich

Outline

- Introduction
- Related work
- Technical discussion
- Further issues
- Conclusion

Point Rendering

- Surfaces are represented as a set of points without connectivity information
- Points store several surface attributes (surfels)
- To render, forward project each point separately

Point vs. Polygon Rendering

Points

- Efficient for highly complex models
- Fast preprocessing
- *Ad hoc texture filtering and image reconstruction

Polygons

- Good for flat or slightly curved
- Oustayanesh generation and LOD
- Hatch structures texture filtering algorithms available

Image Reconstruction

- Generate a raster image from projected points
- Similar to polygon rasterization: Sample projected rendering primitives at output pixel locations
- Avoid sampling artifacts (holes, aliasing)

Sampling Artifacts

screen space

pixel sampling

Pixel Sampling

minification

128 x 192

aliasing

holes

Splatting

screen space

splatting

Splatting Comparison

Related Work

Point Rendering

- Levoy, Whitted 1985
- Rusinkiewicz, Levoy 2000 Heckbert 1989
- Pfister et al. 2000

Volume Rendering
Image-based Rendering

Texture Mapping

- Greene, Heckbert 1986
- Heckbert 1989 *EWA texture filter*

Surface Splatting

The Surface Splatting Framework: 1D

The Surface Splatting Framework: 1D

The Surface Splatting Framework: 1D

2D Texture Function

local parameterization

3D object space

2D parameterization

small neighborhood reconstruction kernel around **Q**

Warping the 2D Texture Function

forward projection

screen space

object space

reconstruction kernel

warped reconstruction kernel

Projecting the Reconstruction Kernels

Mathematical Formulation

$$g(x) = \sum_{k} w_{k} r_{k} (m^{1}(x)) \otimes h(x)$$

screen space resampling filter

- The *screen space* resampling filter combines a *warped reconstruction kernel* and a *lowpass filter*
- The *screen space* formulation is inverse to Heckbert's *source space* resampling filter

Gaussian Kernels

$$g(x) = \sum_{k} w_{k} r_{k} (m^{1}(x)) \otimes h(x)$$

Gaussian Gaussian reconstruction kernel low-pass filter

screen space

screen space

Gaussian Kernels

Closed under affine mappings and convolution

$$g(x) = \sum_{k} w_{k} r_{k} (m^{1}(x)) \otimes h(x)$$
$$= \sum_{k} w_{k} G_{k}(x)$$

Gaussian resampling filter "screen space EWA"

 Analytic expression of the resampling filter can be computed efficiently

The Surface Splatting Algorithm

```
for each point P {
  project P to screen space;
  shade P;
  determine resampling kernel G;
  splat G;
}
```

Reconstruction Kernel Only

minification
aliasing

smooth reconstruction

Low-Pass Filter Only

minification

no aliasing

holes

Screen Space EWA **Properties**

warped recon- low-pass struction kernel filter

resampling filter

minification

Irregular Textures

pixel sampling

sampling pattern

screen space EWA

Filter Normalization

- In the irregular setting, the resampling kernels do not sum up to one
- Solution alternatives:
 - In a pre-process, optimize the weights such that normalization is not necessary
 - Perform per pixel normalization after sampling at the pixel centers

Textured Digital Terrain

Further Issues

- Mathematical formulation of the resampling filter
- Details of the surface splatting algorithm
- Texture acquisition, weight computation

- Rendering semi-transparent surfaces
- Edge antialiasing

Semi-transparent Surfaces Edge Antialiasing

Summary: Surface Splatting

- Point rendering method with high-quality image reconstruction
- Based on Paul Heckbert's EWA texture filter
- Anisotropic texture filtering for irregular point-sampled objects
- Transparency, edge antialiasing
- Can replace heuristics of previous splatting methods and provides superior texture quality

Future Work

- Computation of Gaussian reconstruction kernels
- Scanned objects
- Compression
- Volume rendering (IEEE Visualization 2001)
- Hardware acceleration

Acknowledgements

Paul Heckbert
Mark Pauly
Martin Roth
Jennifer Roderick
Marc Levoy and the
Digital Michelangelo Project
Matterhorn data set courtesy of
Bundesamt für
Landestopographie,
Bern, Switzerland

ETH Zurich

Transparency

- Use modified A-buffer algorithm
- Contributions of each surface are accumulated in a separate bucket
- Challenge is to correctly decide to which bucket a new contribution belongs

Transparency

- Extrapolate depth on tangent plane
- Use depth comparisons to find correct bucket
- Blend buckets back-to-front