ANALYTICKÁ GEOMETRIA LINEÁRNYCH ÚTVAROV UHLY (ODCHÝLKY) DVOCH ROVÍN, PRIAMKY A ROVINY

- 1. Dané sú body A[2,0,5]; B[3,-1,3]; C[4,-2,0]; D[5,2,-1]; E[0,0,8]; F[6,2,-1]. Vypočítajte uhol: (D.ú.)
 - a. rovin ABC, DEJ;
 - b. priamky BC a roviny ADE.

(Pomôcka: Pre každú rovinu si určte 2 smerové vektory a potom cez vektorový súčin z nich vytvorte normálový vektor roviny.)

- 2. Vypočítajte uhol dvoch rovín, ktoré sú určené všeobecnými rovnicami $\alpha: x+2y+z-6=0, \quad \beta: x-z-2y+1=0$
- 3. Vypočítajte uhol roviny určenej všeobecnou rovnicou $\alpha: 2x y + 3z 4 = 0$ a roviny, ktorá je určená parametricky $\beta: x = 2 s + 3t$, y = -1 + 2s t, z = 5 + s + t, $s, t \in R$.
- 4. Vypočítajte odchýlku priamky p od roviny β , ak $p: x=3-2t, y=-5+3t, z=1+7t, t \in R$ a $\beta: 6x-3y+3z-1=0$.
- 5. Vypočítajte veľkosť uhla, ktorý zvierajú roviny α a β , ak $\alpha:6x-7y+8z-9=0$

a
$$\beta: 4x-3y-2z+1=0$$
.

6. Daná je priamka p a rovina ω . Určte veľkosť uhla, ktorý zvierajú.

p:
$$x = 7 - 3t$$
, $y = 5 + 2t$, $z = 1 - t$, $t \in \mathbb{R}$
 $\omega: 2x - 3y + z - 9 = 0$

7. Určte všeobecnú rovnicu roviny α , v ktorej leží priamka p a kolmú na rovinu β .

p:
$$x = 1 + 6t$$
, $y = -3 - 3t$, $z = -2 + 3t$, kde $t \in \mathbb{R}$, $\beta : 6x - y + 4z + 7 = 0$