Machine Learning

Machine Learning คืออะไร?

Machine Learning คือ "การทำให้ระบบคอมพิวเตอร์สามารถเรียนรู้ได้ด้วยตนเองโดยใช้ข้อมูล" Machine Learning เป็น subset ของ AI จุดประสงค์คือเพื่อใช้ในการสร้างแอปพลิเคชั่นที่มี ประสิทธิภาพมากกว่ามนุษย์ในการทำงานบางประเภท โดยการทำให้ฉลาดขึ้น สามารถพัฒนา

และเรียนรู้ได้ด้วยตนเอง

Rule-based Systems

Machine Learning Systems

Task Driven

Data Driven

Supervised Learning

(Pre Categorized Data)

Unsupervised Learning

(Unlabelled Data)

Classification

(Divide the socks by Color)

Eg. Identity Fraud Detection Regression

(Divide the Ties by Length)

Eg. Market Forecasting Clustering

(Divide by Similarity)

Eg. Targeted Marketing

Association

(Identify Sequences)

Eg. Customer Recommendation

Dimensionality Reduction

(Wider

Dependencies)

Eg. Big Data Visualization

Obj:

Predications & Predictive Models

Pattern/ Structure Recognition

SUPERVISED LEARNING

Supervised machine learning is a branch of artificial intelligence that focuses on training models to make predictions or decisions based on labeled training data.

Labeled Data

UNSUPERVISED LEARNING

Unsupervised learning is a type of machine learning where the algorithm learns from unlabeled data without any predefined outputs or target variables.

Deep Learning คืออะไร?

Deep Learning คือ หนึ่งในเทคโนโลยี Machine Learning ที่สร้างขึ้นมาเพื่อใช้สอน ปัญญาประดิษฐ์ (AI) โดย Deep Learning จะใช้โครงข่ายประสาทเทียม (Artificial Neural Network: ANN) ในการเรียนรู้เพื่อให้ใกล้เคียงกับสมองของมนุษย์ ทำให้มี ความแม่นยำในการประมวลผลข้อมูลที่มีความซับซ้อนและชุดข้อมูลขนาดใหญ่ เช่น การจดจำรูปภาพ, การประมวลผลคำพูด และสามารถเข้าใจภาษาทั่วไป Deep Learning จึงเหมาะกับการจัดการข้อมูลที่มีมิติสูง (High-Dimensional Data)

Machine Learning

Deep Learning

Neural Network Architecture

GPT

Decoder

Transformers Architecture

Which to choose?

Tabular Data (Low-Dimensional Data): Machine Learning

Date collected	Plot	Species	Sex	Weight
1/9/78	1	DM	М	40
1/9/78	1	DM	F	36
1/9/78	1	DS	F	135
1/20/78	1	DM	F	39
1/20/78	2	DM	М	43
1/20/78	2	DS	F	144
3/13/78	2	DM	F	51
3/13/78	2	DM	F	44
3/13/78	2	DS	F	146

Complex & Big Data (High-Dimensional Data): Deep Learning

Model Performance = Model + Data Quality