

End-to-end Delay of Videoconferencing over Packet Switched Networks

Mario Baldi

Technical University of Torino Computer Engineering Department (Joint work with Dr Yoram Ofek)

September 2003

This set of transparencies, hereinafter referred to as slides, is protected by copyright laws and provisions of International Treaties. The title and copyright regarding the slides (including, but not limited to, each and every image, photography, animation, video, audio, music and text) are property of the authors specified on page 1.

The slides may be reproduced and used freely by research institutes, schools and Universities for non-profit institutional purposes. In such cases, no authorization is requested.

Any total or partial use or reproduction (including, but not limited to, reproduction on magnetic media, computer networks, and printed reproduction) is forbidden, unless explicitly authorized by the authors by means of written license.

Information included in these slides is deemed as accurate at the date of publication. Such information is supplied for merely educational purposes and may not be used in designing systems, products, networks, etc. In any case, these slides are subject to changes without any previous notice. The authors do not assume any responsibility for the contents of these slides (including, but not limited to, accuracy, completeness, enforceability, updated-ness of information hereinafter provided).

In any case, accordance with information hereinafter included must not be declared.

In any case, this copyright notice must never be removed and must be reported even in partial uses.

PSvideoconf_en - 2 © M. Baldi: see page 2

Videoconferencing Requirements

- ➤ Bound on end-to-end delay
 - ≥100 ms
- **>** Synchronization

The receiver continuously shows pictures at the same rate they had been captured

September 2003

Identify components of the end-to-end delay

Find out which configurations of the videoconferencing system allow the end-to-end delay to be kept below the 100 ms bound

Components of End-to-end Delay

> Processing delay

- ≥ e.g., encoding
- > Network delay

> e.g., shaping, propagation, queueing

➤ network resynchronization delay

➤ e.g., jitter compensation

PSvideoconf_en - 5 © M. Baldi: see page 2

Configurations

September 2003

	Dedicated link	Circuit switching	Statistical multiplexing	Time driven priority
Raw video	£++++	$\frac{r}{B}$ + $\sin r + r$	$\frac{P_{c}}{C} + P + Q_{c} + P_{c} + P_{c}$ $S_{c} + \frac{P_{c}}{C} + P + Q_{c} + E_{c} + P_{c}$	3
CBR MPEG	$S_c + P + D + P_d$	5	$\begin{array}{c} S + P + \frac{E}{C} + \\ \mathbf{S} \\ + Q_{M} + E_{c} + D + P_{c} \end{array}$	$S_c + L \cdot T_f + D + P_d$
VBR MPEG	$C_M + P + D + P_d$		$\begin{array}{c} C_{x} + X_{1} + P + \frac{P_{1}}{C} + \\ 7 \\ + Q_{y} + E_{z} + D + P_{z} \end{array}$	8

PSvideoconf_en - 6 © M. Baldi: see page 2

	Dedicated link	Circuit switching	Statistical multiplexing	Time driven priority
Raw video	1	2	$\frac{F_r}{C} + P + Q_M + E_r + P_d$ $S_n + \frac{P_s}{C} + P + Q_M + E_r + P_d$	$\frac{L \cdot T_f + P_d}{3}$
CBR MPEG	$S_c + P + D + P_d$	$S_c + Sw + P + D + P_d$	$ \begin{array}{c} C \\ C \\ + Q_M + E_r + D + P_d \end{array} $	$S_c + L \cdot T_f + D + P_d$
VBR MPEG	$C_M + P + D + P_d$		$C_M + S_n + P + \frac{P_s}{C} + \frac{P_s}{C} + Q_M + E_r + D + P_d$	$C_M + L \cdot T_f + D + P_d$

PSvideoconf_en - 8

$$\Delta_{raw}^{ded} = \frac{F_r}{C} + P + P_d$$

- $\rightarrow P$ propagation delay
- → C link capacity
- N
- $\rightarrow F_r$ picture dimension
- $\rightarrow P_d$ presentation delay
 - → synchronize adaptor and capture card

PSvideoconf_en - 9 © M. Baldi: see page 2

Dedicated link

September 2003

- For example C = 100 Mb/sQCIF: $F_r = 176 \text{x} 144 = 198 \text{ kb} \rightarrow \frac{F_r}{C} = 1.98 \text{ ms}$
 - ► HDTV: $F_r = 1920 \times 1080 = 16200 \text{ kb} \rightarrow \frac{F_r}{C} = 162 \text{ ms}$
- For real-time video $\Rightarrow \frac{F_r}{C} \le T$
 - ► HDTV (30 fps) C > 486 Mb/s \rightarrow need for compression
- \odot Short delay \Rightarrow large capacity \Rightarrow low utilization
 - ➤ QCIF example: 3%

utilization © M. Baldi: see page 2

	Dedicated link	Circuit switching	Statistical multiplexing	Time driven priority
Raw video	$\frac{F_r}{C} + P + P_d$	2	$\frac{F_r}{C} + P + Q_M + E_r + P_d$ $S_n + \frac{P_s}{C} + P + Q_M + E_r + P_d$	$\frac{L \cdot T_f + P_d}{3}$
CBR MPEG	$S_c + P + D + P_d$	$S_c + Sw + P + D + P_d$	$S_c + P + \frac{P_s}{C} + \frac{P_s}{C} + Q_M + E_r + D + P_d$	$S_c + L \cdot T_f + D + P_d$
VBR MPEG	$C_M + P + D + P_d$		$C_M + S_n + P + \frac{P_s}{C} + \frac{P_s}{C} + Q_M + E_r + D + P_d$	$C_M + L \cdot T_f + D + P_d$

PSvideoconf_en - 11 © M. Baldi: see page 2

September 2003

$$\Delta_{raw}^{CS} = \frac{F_r}{B} + Sw + P + P_d$$

- → *P* propagation delay
- → Sw switching delay
- → B circuit bandwidth
- $\rightarrow F_r$ picture dimension

PSvideoconf_en - 12

	Dedicated link	Circuit switching	Statistical multiplexing	Time driven priority
Raw video	$\frac{F_r}{C} + P + P_d$	N	$\frac{F_r}{C} + P + Q_M + E_r + P_d$ $S_n + \frac{P_s}{C} + P + Q_M + E_r + P_d$	3
CBR MPEG	$S_c + P + D + P_d$	$S_c + Sw + P + D + P_d$	$S_c + P + \frac{P_s}{C} + \frac{P_s}$	$S_c + L \cdot T_f + D + P_d$
VBR MPEG	$C_M + P + D + P_d$		$C_M + S_n + P + \frac{P_s}{C} + \frac{P_s}{C} + Q_M + E_r + D + P_d$	$C_M + L \cdot T_f + D + P_d$

PSvideoconf_en - 13 © M. Baldi: see page 2

Time Driven Priority

September 2003

- ➤ Nodes share a global timing reference
 - > external reference (e.g., GPS) used

beginning and end

 \triangleright typical duration T_f = 125 μs

can be

A fixed amount of bits $T_f \cdot C$ can be sent on a link during a Time Frame

RISC-like forwarding of packets

Traffic Multiplexing

September 2003

September 2003

PSvideoconf_en - 16

$$\Delta_{raw}^{TDP} = L \cdot T_f + P_d$$

- \rightarrow L depends on number of hops
- \rightarrow Network jitter $2 \cdot T_f$
 - → no need for resynchronization
- $\rightarrow P_d$ presentation delay

Comparison with Dedicated Link

System parameters

$$ightharpoonup$$
 Capacity $C = 100 \text{ Mb/s}$

$$L = 3$$
, $P = 0$, $Sw = 0$

$$\Delta_{raw}^{ded} = 1.98 \text{ m/s}$$

$$\Delta_{raw}^{TDP} = 2.175 \text{ ms} \quad \Delta_{raw}^{CS} = 66.67 \text{ ms}$$

97 % of dedicated link capacity unused

PSvideoconf_en - 18

	Dedicated link	Circuit switching	Statistical multiplexing	Time driven priority
Raw video	$\frac{F_r}{C} + P + P_d$	$\frac{F_r}{B} + Sw + P + P_d$	4	$L \cdot T_f + P_d$
CBR MPEG	$S_c + P + D + P_d$	$S_c + Sw + P + D + P_d$	$S_c + P + \frac{P_s}{C} + \frac{P_s}{C} + Q_M + E_r + D + P_d$	$S_c + L \cdot T_f + D + P_d$
VBR MPEG	$C_M + P + D + P_d$		$C_M + S_n + P + \frac{P_s}{C} + \frac{P_s}{C} + Q_M + E_r + D + P_d$	$C_M + L \cdot T_f + D + P_d$

PSvideoconf_en - 19 © M. Baldi: see page 2

September 2003

- Fixed transmission and propagation delay
- ➤ Variable queueing delay
 - >queueing policies
 - >network load

Non deterministic behavior

Network delay is not bound deterministically

Network Resynchronization

September 2003

September 2003

Use a **guessed bound** Q_M on network delay

Resynchronization Excess Delay

$$\Delta_{raw}^{bursty} = \frac{F_r}{C} + P + Q_M + E_r + P_d$$

- $\triangleright E_r \in [0, \Delta Q]$ resynchronization excess delay
 - constant during the videoconference call
- $\triangleright \Delta Q = Q_M Q_m$ maximum jitter
- $\triangleright Q_M$ (guess on) maximum queueing delay
- $\triangleright Q_m$ minimum queuing delay
- $\triangleright P$ propagation delay
- > C capacity of links

 $\rightarrow P_d$ presentation delay

© M. Baldi: see page 2

PSvideoconf_en - 23

September 2003

- For example, *leaky bucket*
 - ➤ token generation rate B
 - ➤ token bucket size A

$$\triangleright P_s$$
 packet size

> network shaping delay
>
$$P_s$$
 packet size $S_n = \frac{F_r - A}{B}$

© M. Baldi: see page 2

PSvideoconf_en - 25 © M. Baldi: see page 2

PSvideoconf_en - 26

MPEG Compression Standard

Intra-frame coding (I-Frame)
8x8 blocks
Discrete Cosine Transform (DCT)
Quantization
Encoding
Predictive coding (P-Frame)
MacroBlock (MB)
motion estimation
motion compensation

- ► Quantization matrices $q_{i,j}^{[I|P]}$ ➤ Global distortion level *G* \triangleright MB activity level p_{mb}
- Quantization parameter $Q_{mb} = p_{mb} \cdot G$

PSvideoconf_en - 27

© M. Baldi: see page 2

Cheerleaders Scene

September 2003

PSvideoconf_en - 28

PSvideoconf_en - 29 © M. Baldi: see page 2

PR

September 2003

PSvideoconf_en - 31

September 2003

Video Buffer Verifier Fullness

PSvideoconf_en - 32

Video Buffer Verifier and Picture Quality

➤ V_s Video Buffer Verifier (VBV) size determines

>variability of picture dimension

$$\max_{seq} F \leq V_s$$

$$\min_{Seq} F \ge 2 \cdot B \cdot T - V_s$$

➤ visual quality of encoded video

High and uniform quality ⇒ large VBV

Up to GOP size for static scenes

PSvideoconf_en - 33

© M. Baldi: see page 2

September 2003

Video Buffer Verifier and Delay

$$S_c \ge \frac{\max_{s e q} F}{R}$$

- $\rightarrow \max_{seq} F$ is not known when starting encoding
- \triangleright dimension the system using an upper bound (V_s)

High picture quality \Rightarrow large delay Up to GOP period for static scenes

PSvideoconf_en - 34

	Dedicated link	Circuit switching	Statistical multiplexing	Time driven priority
Raw video	$\frac{F_r}{C} + P + P_d$	$\frac{F_r}{B} + Sw + P + P_d$	$S_n + \frac{P_s}{C}$ $E_r + P_d$	$L \cdot T_f + P_d$
CBR MPEG	$S_c + P + D + P_d$	5	$S_c + P + \frac{P_s}{C} + \frac{P_s}$	$S_c + L \cdot T_f + D + P_d$
VBR MPEG	$C_M + P + D + P_d$		$C_M + S_n + P + \frac{P_s}{C} + \frac{P_s}{C} + Q_M + E_r + D + P_d$	$C_M + L \cdot T_f + D + P_d$

PSvideoconf_en - 35 © M. Baldi: see page 2

$$\Delta^{CS}_{CBR} = S_c + Sw + P + D + P_d$$

- $\triangleright S_c$ coding shaping delay
- PR
- ► D decoding delay
- >Sw switching delay

- ► P propagation delay
- $\triangleright P_d$ presentation delay

PSvideoconf_en - 37 © M. Baldi: see page 2

Packet Switching with Statistical Multiplexing

$$\Delta_{CBR}^{SM} = S_c + \frac{P_s}{C} + P + Q_M + E_r + D + P_d$$

- $\triangleright E_r \in [0, \Delta Q]$ resynchronization excess delay
- $\Delta Q = Q_M Q_m$ maximum jitter
- $\triangleright Q_M$ (guess on) maximum queueing delay
- $\triangleright Q_m$ minimum queueing delay
- ► P propagation delay
- $\triangleright P_s$ packet size
- $\triangleright C$ link capacity
- $\rightarrow S_c$ coding shaping delay
- $\rightarrow D$ decoding delay
- $\rightarrow P_d$ presentation delay

PSvideoconf_en - 39 © M. Baldi: see page 2

VBR MPEG Encoding

September 2003

 $\triangleright C_M$ maximum coding delay

> the decoder buffer compensates variations of coding delay

>processing resynchronization delay

Packet Switching with Statistical Multiplexing

$$\Delta_{VBR}^{TS} = C_M + S_n + \frac{P_s}{C} + P + Q_M + E_r + D + P_d$$

- $\triangleright C_M$ maximum coding delay
- $\triangleright S_n$ network shaping delay

 $\triangleright P_s$ packet size

PSvideoconf_en - 41

© M. Baldi: see page 2

Problems with VBR MPEG and Statistical Multiplexing

MPEG stream not compatible with traffic shaper parameters

Discard data Use best effort service

Not acceptable

compressed video is sensitive to losses

Forward adaptation Hierarchical encoding

PSvideoconf_en - 42

PSvideoconf_en - 43 © M. Baldi: see page 2

Packet Switching with Time **Driven Priority**

$$\Delta_{VBR}^{TDP} = C_M + L \cdot T_f + D + P_d$$

- $\triangleright C_M$ maximum coding delay
- $\triangleright L$ depends on number of hops

 $\triangleright P_d$ presentation delay

Picture dimension must be bound

Bounding Picture Dimension

Resource Allocation

September 2003

- Time cycle equal to video frame period T
- > Reserve 1 time frame per time cycle

$$S_n + L \cdot T_f + P_d \pm T_f$$

$$S_n = S_t \in [0, T]$$

- S_n network shaping delay
- $ightharpoonup S_t = 0$ if the capture card is synchronized with network interface

$$C \ge \frac{F_r}{T}$$

- ➤ QCIF C > 1.5 Gb/s
- ➤ HDTV C > 130 Gb/s

PSvideoconf_en - 47

© M. Baldi: see page 2

Network Shaping Delay

September 2003

$$S_n = S_t + (N_r - 1)$$

$$N_r \ge \left\lceil \frac{F_r}{T_f \cdot C} \right\rceil$$

- ► N_r depends on scheduling
 - **≻**constant
 - > fixed at reservation time

PSvideoconf_en - 49 © M. Baldi: see page 2

September 2003

Statistical Multiplexing

- →non deterministically bound delay
- → large guessed bound

CBR MPEG Encoding

→long coding shaping delay

up to GOP period

PSvideoconf_en - 50

Time driven priority

- →strict bound on jitter (250 µs)
- → VBR MPEG encoder

The end-to-end delay can be less than a video frame period T

PSvideoconf_en - 51