

Nombre:			
Curso:	FYQ 4º ESO	Examen 6	
Fecha:	27 de marzo de 2017	3ª Evaluación	

Instrucciones: Cada ejercicio vale 2,5 puntos. La mala o nula explicación de cada ejercicio implica una penalización de hasta el 25% de la nota.

Opción A

- **1.-** Un cubo de 5 cm de lado y 100 gr de masa se deja libre en el fondo de una piscina de 3 metros de profundidad. Determina: (1 punto)
 - a) La velocidad con la que llega el cubo a la superficie.
 - **b)** El volumen del cubo que emerge cuando este se queda flotando. $d_{agua}=1 \text{ g/cm}^3$ Sol: a) V=3,83 m/s; b) Sobresalen 25 cm³
- **2.-** Un trozo de aluminio de 600 g de masa que se encuentra a 550 °C se introducen en un recipiente que contiene 2 litros de agua a 20 °C. Calcula la temperatura final del sistema una vez que alcanza el equilibrio. (2 puntos)

Datos: Calor específico del aluminio: 878 J/kg K. Calor específico del agua: 4180 J/kg K. Sol: t=51,52°C

- 3.- Un bloque de 15 kg cae desde una altura de 15 m y llega al suelo en 2 s. (2 puntos)
 - a) ¿Qué fuerza de rozamiento hace el aire, suponiendo que sea constante?
 - **b)** ¿Cuánta energía mecánica se ha perdido?
 - c) ¿Qué velocidad lleva el bloque inmediatamente antes de chocar contra el suelo?

Sol: a) 34,65N; b) 519,75 J; c) 15 m/s

4.- Nombra los compuestos: 5.- Formula los compuestos:

Na ₂ O	Óxido de Sodio	Hidruro de hierro (III)	FeH ₃
Br_2O_3	Trióxido de Dibromo	Sulfuro de plata	Ag ₂ S
SnO_2	Óxido Estáñico	Cloruro de sodio	NaCl
AuH	Hidruro de Oro (I)	Hidruro de estaño (IV)	SnH ₄
NH_3	Amoniaco	Óxido de azufre (IV)	SO ₂
PbCl ₄	Tetracloruro de Carbono	Bromuro de magnesio	MgBr ₂
As_2O_3	Óxido de Arsénico (III)	Óxido de aluminio	Al ₂ O ₃
HClO ₂	Ácido Cloroso	Ácido carbónico	H ₂ CO ₃
$NaNO_3$	Nitrato Sódico	Nitrato de potasio	KNO ₃
KBrO ₄	Perbromato Potásico	Sulfito de sodio	Na ₂ SO ₃

Nombre:		
Curso:	FYQ 4º ESO	Examen 6
Fecha:	27 de marzo de 2017	3ª Evaluación

<u>Instrucciones:</u> Cada ejercicio vale 2,5 puntos. La mala o nula explicación de cada ejercicio implica una penalización de hasta el 25% de la nota.

Opción B

- **1.-** Un cubo de 50 cm de lado y 50 kg de masa se deja libre en el fondo de un lago de 30 metros de profundidad. Determina: (1 punto)
 - a) La velocidad con que llega el cubo a la superficie;
 - **b)** La altura del cubo que emerge cuando éste quede flotando. Dato la densidad del agua es 1 g/cm³.

Sol: a) 29,71 m/s; b) Sobresalen 30 cm.

- **2.-** Una bola de hierro de 400 g que se encuentra a 750 °C se introduce en un recipiente que contiene 1 litro de agua a 20 °C. Calcula la temperatura final del sistema una vez que alcanza el equilibrio. (2 puntos)

 Datos: Calor específico del hierro: 460 J/kg K. Calor específico del agua: 4180 J/kg K. Sol: 58,66 °C
- **3.-** Una muelle se estira 6 cm cuando se aplica una fuerza de 2 N. ¿Cuál será su energía potencial cuando se estire 10 cm? (2 puntos)

Sol: E=1/6 J = 0.167 J

4.- Nombra los compuestos:

5.- Formula los compuestos:

PH ₃ Fosfano		Hidruro de estaño (II) SnH ₂	
PbCl ₄ Tetracl	oruro de Plomo	Óxido de azufre (VI) SO ₃	
As ₂ O ₃ Trióxid	o de diarsénico	Bromuro de Estroncio SrBr ₂	
SnCl ₂ Clo	ruro Estañoso	Óxido de cloro (V) Cl ₂ O ₅	
SO ₂	Óxido sulfuroso	Óxido de calcio CaO	
N ₂ O ₃ Óxido	de nitrógeno (III)	Heptaóxido de diyodo I ₂ O ₇	
H_2CO_3	Ácido Carboso	Hidróxido de níquel (III) Ni(OH) ₃	
HNO_2	Ácido Nitroso	Ácido hipocloroso HCIO	
PbSO ₄	Sulfato Plumboso	Nitrato cúprico Cu(NO ₃) ₂	
$Au_2(SO_4)_3$	Sulfato Aúrico	Dicromato Potásico K ₂ Cr ₂ O ₇	

Nombre:		
Curso:	FYQ 4º ESO	Examen 6
Fecha:	27 de marzo de 2017	3ª Evaluación

Instrucciones: Cada ejercicio vale 2,5 puntos. La mala o nula explicación de cada ejercicio implica una penalización de hasta el 25% de la nota.

Opción C

1.- Cuando se introduce un cilindro de corcho blanco de 2 cm de radio y 5 cm de altura en un líquido de densidad $1,2 \text{ g/cm}^3$, se observa que solo emerge una altura de 3 cm del cilindro. Calcula: **a)** El empuje y **b)** la densidad del corcho blanco.

Sol: a) 0,3 N; b) 478,6 Kg/m³

2.- Hoy me he despertado tarde y no quería quemarme la lengua al tomarme el café. Sabiendo que mi magnífica máquina nesspreso prepara tazas de café de 60 g a 95°C, ¿Qué cantidad de leche desnatada del frigorífico que está a 10°C tengo que añadir a mi taza de Bart Simpson para poder tomarme el café sin quemarme, es decir a 36°C? (2 puntos)

Datos: $Ce(Agua con Café) = 4,150 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$; $Ce(Leche) = 4,281 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$; d(leche) = 1,036 g/ml

Sol: Tengo que añadir 132 g de leche que son 127,4 ml

3.- Un bloque de 5 kgr que desliza por una superficie horizontal choca con una velocidad de 10 m/s con un muelle de constante elástica k = 25 N/m. Si en el choque se pierden 10J por disipación de energía, calcula la longitud que se comprime el muelle. (2 puntos)

Sol: 4,38 metros.

4.- Nombra los compuestos:

5.- Formula los compuestos:

CH_4	Metano	Hidruro de estaño (IV)	SnH ₄
CCl ₄	Tetracloruro de Carbono	Óxido de azufre (II)	so
Sb_2O_3	Óxido de Antimonio (III)	Clorato Cálcico	Ca(ClO ₃) ₂
PbCl ₂	Cloruro Pumboso	Óxido de cloro (V)	Cl ₂ O ₅
SO_3	Óxido Sulfúrico	Óxido ferroso	FeO
P_2O_3	Trióxido de difósforo	Pentóxido de dibromo	Br ₂ O ₅
CaCO ₃	Carbonato Cálcico	Hidróxido de Manganeso	(II) Mn(OH) ₂
HNO₃ Ácido Nítrico		Ácido clorídrico	HCI
HgSO ₄ Sulfato mercúrico		Nitrito de plata	AgNO ₂
$Au_2(SO_4)_3$	Sulfato Aúrico	Permanganato Potásico	KMnO ₄