# Elementi di Bioinformatica

#### Gianluca Della Vedova

Univ. Milano—Bicocca http://gianluca.dellavedova.org

30 novembre 2018

Alberi evolutivi

# Evolution



- Change over generations
- Random mutations

# **Actual Mutation**



# Hollywood Mutation



### **Individual Evolution**



Cells accumulate mutations throughout the entire life

## Character-based evolution



A possible rule

Each character is gained exactly once in the tree.

# Perfect Phylogeny Problem

|            | Α | J | H | L | V |
|------------|---|---|---|---|---|
| Scorpion   | 0 | 0 | 0 | 0 | 0 |
| Lamprey    | 0 | 0 | 0 | 0 | 1 |
| Tuna       | 0 | 1 | 0 | 0 | 1 |
| Salamander | 0 | 1 | 0 | 1 | 1 |
| Turtle     | 1 | 1 | 0 | 1 | 1 |
| Leopard    | 1 | 1 | 1 | 1 | 1 |

#### Problem

- Input: a binary matrix *M*
- Output: a tree explaining M, if it exists



## Linear time algorithm (Gusfield, Networks 1991)

- 1 Radix Sort the columns by decreasing number of 1s
- 2 Build the tree, inserting the species one at a time

## Characters and States

# Change of state

- A character c is gained  $\Rightarrow$  the state of c changes from 0 to 1 in an edge
- A character c is  $h(s) \Rightarrow$  the state of c changes from 1 to 0 in an edge (backmutation)

#### Models of Evolution

Each character c is gained exactly once in the tree.

- Perfect Phylogeny: No backmutations
- 2 Persistent Phylogeny: Each character can be lost at most once in the tree. 012 model
- 3 Dolo parsimony: Unlimited backmutations

## **Tumors**



- A tumor is a mixture of healthy and cancer cells
- A tumor is a mixture of cancer clones

### Tumor Evolution



 Different clones make different fractions of the tumor

### **Tumor Evolution**



- A sample is a mixture of clones
- For each sample, we have the frequency of each mutation
- frequency matrix F



 $S_1$  0.2 0.6 0.6 0.4 0.2 0.0

S<sub>2</sub> 0.0 0.4 1.0 0.0 0.0 0.4

# Tumor Evolution: Compute

## Matrix B representing tree T



### Usage matrix L

Species
0 0.2 0.2 0 0.2
0.4 0 0.4 0.2 0



# Approcci basati su parsimonia.

- Piccola vs grande parsimonia
- Algoritmo di Fitch
- Algoritmo di Sankoff
- Confronto

# Piccola parsimonia

#### Istanza

- Matrice binaria *M* con *n* specie e insieme di caratteri *C*
- $\blacksquare$  Albero T, le cui foglie corrispondono alle specie di M
- Per ogni carattere  $c \in C$ , un costo  $w_c$  fra ogni coppia di stati

### Soluzioni ammissibili

Per ogni carattere  $c \in C$ , una etichettatura  $\lambda_c$  che assegna ad ogni nodo uno degli stati possibili per C

### Funzione obiettivo

 $\min \sum_{c \in C} \sum_{(x,y) \in E(T)} w_c(\lambda_c(x), \lambda_c(y))$ , dove E(T) è l'insieme di lati di T

# Algoritmo Sankoff

### Osservazione

Ogni carattere può essere gestito separatamente

### Programmazione dinamica

- M[x,z]: soluzione ottimale del sottoalbero di T che ha radice x, sotto la condizione che x abbia etichetta z
- M[x,z] = 0, se x è una foglia con etichetta z
- $M[x,z] = +\infty$ , se x è una foglia con etichetta diversa da z
- $M[x,z] = \sum_{f \in F(x)} \min_s \{w(z,s) + M[f,s]\}$ , dove F(x) è l'insieme dei figli di x in T, se x è un nodo interno
- soluzione ottimale  $\min_s \{M[r,s]\}$ , dove r è la radice di T

# Algoritmo Fitch

Solo per il caso non pesato, albero *T* binario

## Algoritme

- $S(x) = \lambda_c(x)$ , se x è una foglia
- $S(x) = S(f_l) \cap S(f_r)$ , dove  $f_l$  e  $f_r$  sono i figli di x in T, se  $S(f_l) \cap S(f_r) \neq \emptyset$
- $S(x) = S(f_l) \cup S(f_r)$ , dove  $f_l$  e  $f_r$  sono i figli di x in T, se  $S(f_l) \cap S(f_r) = \emptyset$

### Unificazione

B(x): insieme degli stati z tali che M[x,z] è minimo.



# Algoritmo Fitch

Solo per il caso non pesato, albero T binario

## Algoritme

- $S(x) = \lambda_c(x)$ , se x è una foglia
- $S(x) = S(f_l) \cap S(f_r)$ , dove  $f_l$  e  $f_r$  sono i figli di x in T, se  $S(f_l) \cap S(f_r) \neq \emptyset$
- $S(x) = S(f_l) \cup S(f_r)$ , dove  $f_l$  e  $f_r$  sono i figli di x in T, se  $S(f_l) \cap S(f_r) = \emptyset$

### Unificazione

B(x): insieme degli stati z tali che M[x,z] è minimo. B(x) = S(x)



# Algoritmo Fitch

Solo per il caso non pesato, albero *T* binario

## Algoritme

- $S(x) = \lambda_c(x)$ , se x è una foglia
- $S(x) = S(f_l) \cap S(f_r)$ , dove  $f_l$  e  $f_r$  sono i figli di x in T, se  $S(f_l) \cap S(f_r) \neq \emptyset$
- $S(x) = S(f_l) \cup S(f_r)$ , dove  $f_l \in f_r$  sono i figli di x in T, se  $S(f_l) \cap S(f_r) = \emptyset$

### Unificazione

B(x): insieme degli stati z tali che M[x,z] è minimo. B(x) = S(x)

Come estendere Fitch ad albero generico (sempre caso non pesato)?

# Approcci basati su distanze.

Ultrametrica e orologio molecolare.

# Alberi e distanze additive.

## Proprietà

Sia T un albero binario senza radice e sia D la matrice delle distanze associata a T. Allora D soddisfa la condizione dei 4 punti.

### Condizione dei 4 punti

Si consideri:

- 1 D[v, w] + D[x, y]
- **2** D[v, x] + D[w, y]
- $\overline{D[v,y]} + \overline{D[w,x]}$

Il massimo dei tre valori è ottenuto da esattamente due dei 3 casi sopra

Algoritmo per matrice di distanze additive.

## **UPGMA**

- Unweighted Pair Group with Arithmetic Mean
- $D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$
- All'inizio h = 0 per ogni cluster/specie
- Fondi i due cluster  $C_1$ ,  $C_2$  con minimo  $D(\cdot, cdot)$ , ottenendo C
- Per ogni cluster  $C^* \neq C$ ,  $D(C, C^*) = \frac{1}{|C||C^*|} \sum_{i \in C} \sum_{j \in C^*} D(i, j)$
- $h(C) \leftarrow \frac{1}{2}D(C_1, C_2)$
- $h(C) h(C_1)$  etichetta  $(C, C_1)$ ;  $h(C) h(C_2)$  etichetta  $(C, C_2)$
- UPGMA produce ultrametrica

# Neighbor Joining.

$$D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$$

$$u(C) \leftarrow \frac{1}{\text{num. cluster}-2} \sum_{C_3} D(C, C_3)$$

- All'inizio h = 0 per ogni cluster/specie
- Fondi i due cluster  $C_1$ ,  $C_2$  con minimo  $D(C_1, C_2) u(C_1) u(C_2)$ , ottenendo C
- Per ogni cluster  $C^* \neq C$ ,  $D(C, C^*) = \frac{1}{|C||C^*|} \sum_{i \in C} \sum_{j \in C^*} D(i, j)$
- $\frac{1}{2}(D(C_1, C_2) + u(C_1) u(C_2))$  etichetta  $(C, C_1)$
- $\frac{1}{2}(D(C_1, C_2) + u(C_2) u(C_1))$  etichetta  $(C, C_2)$

## Modelli di evoluzione.

- Probabilità di transizione fra stati (A, C, G, T).
- dipende dal tempo trascorso fra i due eventi
- tasso istantaneo di mutazione
- probabilità di mutazione in una generazione: somma su ogni riga = 1
- J. Felsenstein. Theoretical Evolutionary Genetics

## Modelli di evoluzione: Jukes-Cantor.

- ogni mutazione è equiprobabile
- $\mathbf{1} \mu$ : nessuna mutazione
- $\mu/3$ : mutazione

# Modelli di evoluzione: Kimura 2 parametri

- Distinzione transizioni ( $A \longleftrightarrow G, C \longleftrightarrow T$ ), transversioni
- $\mathbf{1} \mu$ : nessuna mutazione
- $\frac{R}{R+1}\mu$ : probabilità transizione
- $\frac{1}{2(R+1)}\mu$ : probabilità di trasversione  $A \leftrightarrow C$  o  $G \leftrightarrow T$
- $\frac{1}{2(R+1)}\mu$ : probabilità di trasversione  $A \longleftrightarrow T$  o  $C \longleftrightarrow G$
- $R = \frac{R}{R+1}\mu/\left(2\frac{1}{2(R+1)}\mu\right)$ : rapporto probabilità di transizioni / probabilità trasversioni

# Modelli di evoluzione: General time-reversible

- matrice simmetrica
- consequenza: alberi senza radice

# Massima verosimiglianza.

# Licenza d'uso

Quest'opera è soggetta alla licenza Creative Commons: Attribuzione-Condividi allo stesso modo 4.0. https://creativecommons.org/licenses/by-sa/4.0/ Sei libero di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire, recitare e modificare quest'opera alle seguenti condizioni:

- Attribuzione Devi attribuire la paternità dell'opera nei modi indicati dall'autore o da chi ti ha dato l'opera in licenza e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l'opera.
- Condividi allo stesso modo Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con una licenza identica o equivalente a questa.