

Hackathon Track:

"Al-Powered Smart Kitchen & Waste Minimizer for Restaurants"

Objective:

Develop an **Al-driven** system for **restaurant owners** that enhances kitchen efficiency through **computer vision**, **machine learning**, and **advanced analytics**. The platform will automate inventory tracking, predict food spoilage, optimize menus, and deliver actionable insights to reduce waste and increase profitability.

Challenge Statement:

"Create an Al-powered Smart Kitchen System for Restaurants that uses computer vision and machine learning to automate inventory tracking, predict food spoilage, and optimize operations to minimize waste and maximize efficiency."

1. Computer Vision for Smart Inventory Management

- **Visual Inventory Tracking:** Use image recognition to identify and log ingredients (e.g., scanning kitchen shelves or refrigerator contents).
- Real-Time Stock Detection: Detect and track ingredient levels via camera feeds.
- **Food Spoilage Detection:** Use computer vision to identify spoiled or near-expiry ingredients.

Al Models:

- TensorFlow/YOLO for object detection.
- OpenCV for visual monitoring.
- AWS Rekognition or Google Vision API for pre-trained models.

2. Al-Powered Demand & Waste Prediction

- Sales Forecasting: Predict ingredient consumption based on historical sales data and seasonality.
- **Waste Prediction:** Identify high-risk items prone to spoilage and overuse using machine learning.
- **Dynamic Inventory Replenishment:** Use AI to auto-suggest optimal stock levels, reducing over-purchasing.

ML Models:

- Time Series Forecasting (ARIMA, Prophet, LSTM) for demand prediction.
- Regression Models for Waste Forecasting.
- Reinforcement Learning for dynamic stock adjustment.

3. Intelligent Menu Optimization

- Al-Driven Recipe Recommendations: Suggest daily specials using surplus or soon-to-expire items.
- Cost Optimization: Calculate real-time dish costs and suggest menu adjustments for profitability.
- **Custom Dish Creation:** Use generative AI to create new dishes based on available inventory.

Al Models:

- Natural Language Generation (OpenAI, Hugging Face) for dynamic recipes.
- Linear Optimization for cost calculation.

4. Vision-Powered Waste Analysis & Reporting

- **Food Waste Classification:** Use vision models to categorize and log discarded food (e.g., over-portioning, spoiled items).
- **Waste Heatmap:** Visualize high-waste areas within the kitchen (e.g., specific stations or processes).
- Loss-to-Profit Dashboard: Quantify waste in financial terms to improve operational decisions.

Al Models:

- Image Segmentation (U-Net) for food waste identification.
- Computer Vision with YOLO for categorizing disposed items.

■ Suggested Tech Stack:

- Frontend: React (Web) or Flutter (Mobile).
- Backend: Node.js (Express) or FastAPI (Python for AI models).
- Database: PostgreSQL (structured data), MongoDB (for unstructured vision data).
- Al/ML Frameworks: TensorFlow, PyTorch, Hugging Face, OpenCV.
- Vision APIs: Google Vision, AWS Rekognition, OpenCV.

Hackathon Timeline Expectation:

Day 1:

- Build core infrastructure (Inventory system, Image Capture pipeline).
- Integrate basic AI models (object detection for inventory).

Day 2:

- Implement demand forecasting & waste prediction.
- Build Al-based menu and recipe optimization.
- Develop waste tracking & reporting dashboard.

Day 3:

- Optimize and fine-tune AI models.
- Integrate advanced features (e.g., portion control, multi-modal analysis).
- Final testing and preparing live demo.

🏆 Evaluation Criteria:

- 1. **Al Innovation:** Creative use of vision and machine learning to solve real-world problems.
- 2. **Business Impact:** Ability to reduce food waste and improve profitability for restaurant owners.
- 3. **Technical Depth:** Sophistication and accuracy of AI/ML models.
- 4. **Scalability:** Solution's ability to expand across multiple restaurant branches.
- 5. **User Experience:** Intuitive design for kitchen staff and managers.