TP1 Simulation de Système

Terenui Rouby et Karim Mouaddel February 10, 2019

Contents

1	Par	tie 1																
	1.1	Mélange	du deck		 													
	1.2	Résultat			 													
	1.3	Pertinen	ice des r	ésultat	 													
		1.3.1	Jame 1		 													
		1.3.2	$3 \mathrm{ame} \ 2$		 													
		1.3.3	3 3		 													
		1.3.4	6ame 4		 													
		1.3.5	$_{ m Jame~5}$		 													

2 Partie 2

1 Partie 1

1.1 Dealer

1.2 Mélange du deck

Afin d'effectuer le mélange du jeu de carte on utilise la méthode $\mathit{shuffle}()$ qui est inclut dans dealer

1.3 Résultat

Numéro du jeu	Pourcentage de victoire							
1	24,9772							
2	1,929							
3	38,2073							
4	99,9828							
5	3,4771							

1.4 Pertinence des résultat

- 1.4.1 Game 1
- 1.4.2 Game 2
- 1.4.3 Game 3
- 1.4.4 Game 4
- 1.4.5 Game 5

2 Partie 2

Figure 1: Graphique d'une simulation Prédateur Proie normale

Quand le paramètre grass regrowth time est mis à 10 les moutons se déplacent très peu. De ce fait lorsque la population de mouton diminue les loups dépensent plus d'énergie pour les atteindre. Arrivé à un certain point la population de loup disparait par manque de nourriture(plus d'energie) car ils ne peuvent pas atteindre les moutons isolés(si il en reste).