НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ" ФАКУЛЬТЕТ ІНФОРМАТИКИ ТА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ

Кафедра обчислювальної техніки

РОЗРАХУНКОВА РАБОТА

по курсу "Комп'ютерна логіка-2"

Виконав: Бедь Анатолій Михайлович

Група Ю-12, Факультет ЮТ,

Залікова книжка № 1202

Номер технічного завдання 10010110001

(підпис керівника

Завдання:

- 1. Числа X_2 і Y_2 в прямому коді записати у формі з плаваючою комою (з порядком і мантисою, а також з характеристикою та мантисою), як вони зберігаються у пам'яті. На порядок відвести 8 розрядів, на мантису 16 розрядів (з урахуванням знакових розрядів).
- 2. Виконати 8 операцій з числами X_2 і Y_2 з плаваючою комою (чотири способи множення, два способи ділення, додавання додавання та віднімання). Номери операцій (для п.3) відповідають порядку переліку (наприклад, 6 ділення другим способом). Для обробки мантис кожної операції, подати:
 - 2.1 теоретичне обгрунтування способу;
 - 2.1 операційну схему;
 - 2.2 змістовний мікроалгоритм;
- 2.3 таблицю станів регістрів (лічильника), довжина яких забезпечує одержання 15 основних розрядів мантиси результату;
 - 2.4 функціональну схему з відображенням управляючих сигналів;
- 2.5 закодований мікроалгоритм (мікрооперації замінюються управл. сигналами);
 - 2.6 граф управляючого автомата Мура з кодами вершин;
 - 2.7 обробку порядків (показати у довільній формі);
 - 2.8 форму запису нормалізованого результату з плаваючою комою в пам'ять.

Вказані пункти для операцій додавання та віднімання виконати для етапу нормалізації результату з урахуванням можливого нулевого результату. Інші дії до етапу нормалізації результату можна проілюструвати у довільній формі.

3. Для операції з номером $x_3x_2x_1$ побудувати управляючий автомат Мура на тригерах (тип вибрати самостійно) і елементах булевого базису.

Визначення та обгрунтування варіанту:

Перевести номер залікової книжки в двійкову систему. Записати два двійкових числа:

$$X_2 = -1x_{10}x_91x_8x_7x_61, x_5x_40x_31x_2x_1 \text{ i } Y_2 = +1x_{10}1x_9x_8, x_7x_61x_5x_40x_3x_2x_11,$$

де x_i - двійкові цифри номера залікової книжки у двійковій системі числення (x_i - молодший розряд).

$$1202_{10} = 10010110001_2;$$

$$X_2 = -1x_{10}x_91x_8x_7x_61, x_5x_40x_31x_2x_1 = -10011011,1000101;$$

$$Y_2 = +1x_{10}1x_9x_8, x_7x_61x_5x_40x_3x_2x_11 = +10101,0111000011;$$

Основна частина:

Завдання №1

$$X_{\text{IIK}} = 1.10011011,1000101;$$

$$Y_{\text{TIK}} = 0.10101,0111000011;$$

Представлення чисел у формі з плаваючою точкою з порядком і мантисою:

Представлення чисел у формі з плаваючою точкою з характеристикою і мантисою:

$$E = P + 2^{m}$$
,
 $m = 7$;
 $2^{7} = 10000000_{2}$

$$E_x = 10000000 + 1000 = 10001000$$

Завдання №2

2.1 Перший спосіб множення.

2.1.1 Теоретичне обгрунтування першого способу множення:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Для визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення мантис першим способом здійснюється з молодших розрядів множника, сума часткових добутків зсувається вправо, а множене залишається нерухомим. Тоді добуток двох чисел представляється у вигляді:

$$Z=YX=Yx_n2^{-n}+Yx_{n-1}2^{-n+1}...+Yx_12^{-1}=$$

$$= ((...(0+Yx_n) 2^{-1} + Yx_{n-1}) 2^{-1} + ... + Yx_i) 2^{-1} + ... + Yx_1) 2^{-1};$$

$$Z = \sum_{i=1}^{n} (Z_{i-1} + Yx_{n-i+1}) 2^{-1};$$

2.1.2 Операційна схема:

Рисунок 2.1.1- Операційна схема.

2.1.3 Змістовний мікроалгоритм:

Рисунок 2.1.2 - Змістовний мікроалгоритм виконання операції множення першим способом.

2.1.4 Таблиця станів регістрів:

Таблиця 2.1.1-Таблиця станів регістрів для першого способу множення.

Nº	RG1	RG2	RG3	СТ
пс	0	10011011100010 1	0101010111000011	1111
1	+101010111000011			
	=0101010111000011			
	0010101011100001	11001101110001 0		1110
2	001010101110000	11100110111000 1		1101
3	+1010101111000011			
	=0110101100110011			
	0011010110011001	11110011011100 0		1100
4	0001101011001100	11111001101110 0		1011
5	0000110101100110	01111100110111 0		1010
6	0000011010110011	00111110011011 1		1001
7	+1010101111000011			
	=0101110001110110			
	0010111000111011	00011111001101 1		1000
8	+101010111000011			
	=1000001111111110			
	0100000111111111	00001111100110 1		0111
9	+101010111000011			
	=1001011111000010			
	0100101111100001	00000111110011 0		0110
10	0010010111110000	10000011111001 1		0101
11	+101010111000011			
	=0111101110110011			
	0011110111011001	11000001111100 1		0100
12	+101010111000011			
	=1001001110011100			
	0100100111001110	01100000111110 0		0011
13	0010010011100111	00110000011111 0		0010
14	0001001001110011	100110000011111 1		0001
15	+101010111000011			
	=0110100000110110			
	0011010000011011	010011000001111		0000

2.1.5 Функціональна схема:

Рисунок 2.1.3- Функціональна схема.

2.1.6 Закодований мікроалгоритм

Таблиця 2.1.2-Таблиця кодування операцій і логічних умов.

Кодування мік	рооперацій	Кодування логічних умов			
MO	УС	ЛУ	Позначення		
G1:=0	R	RG2[0]	X1		
RG2:=X	W2	CT=0	X2		
RG3:=Y	W3				
CT:=15	W_{CT}				
RG1:=RG1+RG3	W1				
RG1:=0.r(RG1)	ShR1				
RG2:=RG1[0].r(RG2)	ShR2				
CT:=CT-1	dec				

Рисунок 2.1.4-Закодований мікроалгоритм.

2.1.7 Граф управляючого автомата Мура з кодами вершин:

Рисунок 2.1.5-Граф автомата Мура

2.1.8 Обробка порядків:

Порядок добутку буде дорівнювати сумі порядків множників з урахуванням знаку порядків: $P_z = P_x + P_y$;

$$P_x$$
=8; P_v =5; P_z =13₁₀=1101₂

2.1.9 Нормалізація результату:

Отримали результат: 011010000011011010011000001111

Знак мантиси: $1 \oplus 0 = 1$.

Робимо зсув результату вліво, доки у першому розряді не буде одиниця,

Порядок зменшуємо на 1:

11010000011011010011000001111; P_z =12;

	_	_	_								_		_	_	_	_	_			_			
\cap	Λ	0	Λ	1	1	\cap	Λ	1	1	1	Λ	1	Λ	0	0	0	Λ	1	1	Λ	1	1	n
U	U	U	U	1	1	U	U	1	1	1	U	1	U	U	U	U	U	1	1	U	1	1	U

2.2 Другий спосіб множення.

2.2.1 Теоретичне обгрунтування другого способу множення:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення мантис другим способом здійснюється з молодших розрядів, множене зсувається вліво, а сума часткових добутків залишається нерухомою.

$$\begin{split} & Z = YX_n 2^{-n} + YX_{n-1} 2^{-n+1} \ldots + YX_1 2^{-1}; \\ & Z = ((0 + YX_n 2^{-n}) + YX_{n-1} 2^{-n+1}) \ldots + YX_1 2^{-1}; \\ & Z = \sum_{i=1}^n Z_{i-1} + YX_{n-i+1} 2^{-n+i-1}; \\ & Z_0 = 0; \\ & Y_0 = 0 \end{split}$$

2.2.2 Операційна схема:

Рисунок 2.2.1- Операційна схема.

2.2.3 Змістовний мікроалгоритм:

Рисунок 2.2.2 - Змістовний мікроалгоритм.

2.2.4 Таблиця станів регістрів:

Таблиця 2.2.1-Таблиця станів регістрів.

Nº	RG1	RG3 ←	RG2 →
пс	0	000000000000000101010111000011	10011011100010 1
1	+00000000000000101010111000011		
	=00000000000000101010111000011	00000000000000101011110000110	01001101110001 0
2	00000000000000101010111000011	000000000000010101011100001100	00100110111000 1
3	+0000000000001010111100001100	000000000000101010111000011000	00010011011100 0
	=000000000000011010110011001111		
4	00000000000011010110011001111	00000000001010101110000110000	00001001101110 0
5	00000000000011010110011001111	00000000010101011100001100000	00000100110111 0
6	00000000000011010110011001111	000000001010101111000011000000	00000010011011 1

7	+000000000101010111000011000000	000000001010101110000110000000	00000001001101 1
	=000000000101110001110110001111		
8	+000000010101011110000110000000	000000101010111100001100000000	00000000100110 1
	=000000010000011111111111100001111		
9	+000000010101011100001100000000	0000001010101111000011000000000	00000000010011 0
	=000000100101111100001000001111		
10	000000100101111100001000001111	000001010101110000110000000000	00000000001001 1
11	+0000010101011110000110000000000	0000101010111100001100000000000	00000000000100 1
	=000001111011101100111000001111		
12	+00001010101111000011000000000000	00010101011110000110000000000000	00000000000010 0
	=000100100111001110011000001111		
13	000100100111001110011000001111	00101010111000011000000000000000	00000000000001 0
14	000100100111001110011000001111	01010101110000110000000000000000	0000000000000001
15	+01010101110000110000000000000000	10101011100001100000000000000000	000000000000000
	= 011010000011011010011000001111		

2.2.5 Функціональна схема:

Рисунок 2.2.3- Функціональна схема.

2.2.6 Закодований мікроалгоритм

Таблиця 2.2.2-Таблиця кодування операцій і логічних умов.

	•	,	•		
Кодування мі	крооперацій	Кодування логічних умов			
MO	УС	ЛУ	Позначення		
RG1:=0	R	RG2[0]	X1		
RG2:=X	W2	RG2=0	X2		
RG3:=Y	W3				
RG1:=RG1+RG3	W1				
RG2:=0.r(PG2)	ShR				
RG3:=l(RG3).0	ShL				

Рисунок 2.2.4-Закодований мікроалгоритм.

2.2.7 Граф управляючого автомата Мура з кодами вершин:

Рисунок 2.2.5 - Граф автомата Мура

2.2.8 Обробка порядків:

Порядок добутку буде дорівнювати сумі порядків множників з урахуванням знаку порядків: $P_z = P_x + P_y$;

$$P_x=8; P_y=5; P_z=13_{10}=1101_2$$

2.2.9 Нормалізація результату:

Отримали результат: 011010000011011010011000001111

Знак мантиси: $1 \oplus 0 = 1$.

Робимо здвиг результату вліво, доки у першому розряді не буде одиниця,

Порядок зменшуємо на 1:

 $11010000011011010011000001111; P_z=12;$

Запишемо нормалізований результат:

2.3 Третій спосіб множення.

2.3.1Теоретичне обгрунтування третього способу множення:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення мантис третім способом здійснюється зі старших розрядів множника, сума часткових добутків і множник зсуваються вліво, а множене нерухоме.

$$\begin{split} Z &= Y X_n 2^{-n} + Y X_{n-1} 2^{-n+1} \ldots + Y X_1 2^{-1}; \\ Z &= Y X_n 2^{-n} + 2 (Y X_{n-1} 2^{-n} + 2 (Y X_{n-2} 2^{-n} \ldots + 2 Y X_1 2^{-n})); \\ Z &= \sum_{i=1}^n 2 Z_{i-1} + Y X_i 2^{-n}; \\ Z_0 &= 0; \\ Y_0 &= 0 \end{split}$$

2.3.2 Операційна схема:

Рисунок 2.3.1 - Операційна схема

2.3.3 Змістовний мікроалгоритм:

Рисунок 2.3.2 - Змістовний мікроалгоритм.

2.3.4 Таблиця станів регістрів:

Таблиця 2.3.1- Таблиця станів регістрів

N₀	RG1 ←	RG2 ←	RG3	CT
пс	000000000000000000000000000000000000000	1 00110111000101	101010111000011	1111
1	+000000000000000101010111000011			
	=000000000000000101010111000011			1110
	000000000000001010101110000110	0 01101110001010		
2	00000000000010101011100001100	0 11011100010100		1101
3	000000000000101010111000011000	1 10111000101000		1100
4	+000000000000000101010111000011	1 01110001010000		
	=000000000000110000001111011011			1011
	00000000001100000011110110110			
5	+000000000000000101010111000011	0 11100010100000		
	=000000000001100101110101111001			1010
	00000000011001011101011110010			
6	00000000110010111010111100100	1 11000101000000		1001
7	+000000000000000101010111000011	1 10001010000000		
	=000000000110011100101110100111			1000
	000000001100111001011101001110			
8	+000000000000000101010111000011	1 00010100000000		
	=000000001100111110110100010001			0111
	000000011001111101101000100010	• • • • • • • • • • • • • • • • • • • •		
9	+0000000000000001010111000011	0 00101000000000		0440
	=0000000110100000101111111100101			0110
10	0000001101000001011111111001010	• • • • • • • • • • • • • • • • • • • •		01.01
10	000001101000001011111110010100	0010100000000000		0101
11	000011010000010111111100101000	0 101000000000000		0100
12	0001101000001011111111001010000	1 010000000000000		0011
13	+0000000000000001010111000011	0 100000000000000		0010
	=000110100000110101010000010011			0010
1.4	001101000001101010100000100110	100000000000000000000000000000000000000		0001
14	011010000011010101000001001100	1000000000000000		0001
15	+00000000000000010101111000011	0000000000000000		0
	=011010000011011010011000001111			

2.3.5 Функціональна схема:

Рисунок 2.3.3 - Функціональна схема.

2.3.6 Закодований мікроалгоритм:

Таблиця 2.3.2-Таблиця кодування операцій і логічних умов.

Кодування мі	крооперацій	Кодування логічних умов			
MO	УС	ЛУ	Позначення		
RG1:=0	R	RG2[n-1]	X1		
RG2:=X	W2	CT=0	X2		
RG3:=Y	W3				
CT:=15	W_{CT}				
RG1:=RG1+RG3	W1				
RG1:=l(RG1).0	ShL1				
RG2:=l(RG2).0	ShL2				
CT:=CT-1	dec				

Рисунок 2.3.4-Закодований мікроалгоритм.

2.3.7 Граф управляючого автомата Мура з кодами вершин:

Рисунок 2.3.5 - Граф автомата Мура

2.3.8 Обробка порядків:

Порядок добутку буде дорівнювати сумі порядків множників з урахуванням знаку порядків: $P_z = P_x + P_y$;

$$P_x = 8; P_y = 5; P_z = 13_{10} = 1101_2$$

2.3.9 Нормалізація результату:

Отримали результат: 011010000011011010011000001111

Знак мантиси: $1 \oplus 0 = 1$.

Робимо здвиг результату вліво, доки у першому розряді не буде одиниця,

порядок зменшуємо на 1:

 $11010000011011010011000001111; P_z\!=\!12;$

Запишемо нормалізований результат:

0	0	0	0	1	1	0	0	1	1	1	0	1	0	0	0	0	0	1	1	0	1	1	0
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_

2.4 Четвертий спосіб множення.

2.4.1 Теоритичне обгрунтування четвертого способу множення:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення здійснюється зі старших розрядів множника, сума часткових добутків залишається нерухомою, множене зсувається праворуч, множник ліворуч.

$$Z = Y \cdot x_n \cdot 2^{-n} + Y \cdot x_{n-1} \cdot 2^{-n+1} + \dots + Y \cdot x_1 \cdot 2^{-1} .$$

$$Z = ((\dots((0+Y\cdot 2^{-1}x_1)+Y\cdot 2^{-2}x_2)+\dots + Y\cdot 2^{-k}x_k)+\dots + Y\cdot 2^{-k}x_k).$$

$$Z_i = Z_{i-1} + 2^{-1}Y_{i-1} \cdot x_i \text{ з початковими значеннями } i=1, Y_0=2^{-1}Y, Z_0=0.$$

2.4.2 Операційна схема:

Рисунок 2.4.1- Операційна схема

2.4.3 Змістовний мікроалгоритм:

Рисунок 2.4.2 - Змістовний мікроалгоритм.

2.4.4 Таблиця станів регістрів:

Таблиця 2.4.1- Таблиця станів регістрів

		Tuoming 2.1.1 Tuoming emanto peetempio						
№	RG1	$RG3 \rightarrow$	RG2 ←					
ПС	000000000000000000000000000000000000000	01010101110000110000000000000000	1 00110111000101					
1	+0101010111100001100000000000000000000	001010101111000011000000000000000	0 01101110001010					
2	01010101110000110000000000000000	00010101011110000110000000000000	0 11011100010100					
3	01010101110000110000000000000000	00001010101111000011000000000000	1 10111000101000					
4	+0000101010111100001100000000000 =011000000111101101100000000	0000010101011110000110000000000	1 01110001010000					
5	+0000010101011110000110000000000 =0110010111010111100100000000	0000001010101111000011000000000	0 11100010100000					

6	0110010111010111100100000000000	0000000101010111100001100000000	1 11000101000000
	+000000101010111100001100000000		
7	=011001110010111010011100000000	00000001010101110000110000000	1 10001010000000
	+000000010101011110000110000000		
8	=011001111101101000100010000000	00000000101010111000011000000	1 00010100000000
	+00000000101010111000011000000		
9	=0110100000101111111100101000000	000000000101010111100001100000	0 00101000000000
10	0110100000101111111100101000000	000000000010101011110000110000	0 01010000000000
11	0110100000101111111100101000000	00000000000101010111000011000	0 10100000000000
12	0110100000101111111100101000000	0000000000001010111100001100	1 01000000000000
	+00000000000001010111100001100		
13	=011010000011010101000001001100	00000000000001010101110000110	0 10000000000000
14	011010000011010101000001001100	00000000000000101010111000011	1000000000000000
	+000000000000000101010111000011		
15	=011010000011011010011000001111	00000000000000010101011100001	000000000000000

2.4.5Функціональна схема:

Рисунок 2.4.3 - Функціональна схема.

2.4.6 Закодований мікроалгоритм

Таблиця 2.4.2-Таблиця кодування операцій і логічних умов.

Кодування	мікрооперацій	Кодування логічних умов				
MO	УС	ЛУ	Позначення			
RG1:=0	R	RG2[n-1]	X1			
RG2:=X	W2	RG2=0	X2			
RG3:=Y	W3					
RG1:=RG1+RG3	W1					
RG3:=0.r(RG3)	ShR					
RG2:=l(RG2).0	ShL					

Рисунок 2.4.4-Закодований мікроалгоритм.

2.4.7 Граф управляючого автомата Мура з кодами вершин:

Рисунок 2.4.5 - Граф автомата Мура

2.4.8 Обробка порядків:

Порядок добутку буде дорівнювати сумі порядків множників з урахуванням знаку порядків: $P_z = P_x + P_y$;

$$P_x=8; P_y=5; P_z=13_{10}=1101_2$$

2.4.9 Нормалізація результату:

Отримали результат: 011010000011011010011000001111

Знак мантиси: $1 \oplus 0 = 1$.

Робимо здвиг результату вліво, доки у першому розряді не буде одиниця,

Порядок понижаємо на 1:

 $11010000011011010011000001111; P_z=12;$

Запишемо нормалізований результат:

2.5. Першиий спосіб ділення.

2.5.1 Теоритичне обтрунтування першого способу ділення:

Нехай ділене X і дільник Y є n-розрядними правильними дробами, поданими в прямому коді. В цьому випадку знакові й основні розряди операндів обробляються окремо. Знак результату визначається шляхом підсумовування по модулю 2 цифр, записаних в знакових розрядах.

При реалізації ділення за першим методом здійснюється зсув вліво залишку при нерухомому дільнику. Черговий залишок формується в регістрі RG2 (у вихідному стані в цьому регістрі записаний X). Виходи RG2 підключені до входів CM безпосередньо, тобто ланцюги видачі коду з RG2 не потрібні. Час для підключення n+1 цифри частки визначається виразом t=(n+1)(tt+tc), де tt тривалість виконання мікрооперації додавання-віднімання; tc - тривалість виконання мікрооперації зсуву.

2.5.2 Операційна схема:

Рисунок 2.5.1- Операційна схема

2.5.3 Змістовний мікроалгоритм:

Рисунок 2.5.2-Змістовний мікроалгоритм

2.5.4 Таблиця станів регістрів:

Nº	RG3 (Z)	RG2 (X)	RG1 (Y)
пс		00100110111000101	001010101111000011
	000000000000000		
1		01001101110001010	
		+11010101000111101	
	0000000000000001	= 0 0100010111000111	
2		01000101110001110	
		+11010101000111101	
	000000000000011	= 0 0011010111001011	
3		00110101110010110	
		+11010101000111101	
	000000000000111	= 0 0001010111010011	
4		00010101110100110	
		+11010101000111101	
	000000000001111	= 1 1101010111100011	
5		11010101111000110	
		+00101010111000011	
	000000000011110	=0 0000000110001001	
6		00000001100010010	
		+11010101000111101	
	000000000111101	= 1 1010110101001111	
7		10101101010011110	
		+00101010111000011	
	0000000001111010	= 1 1011000001100001	
8		10110000011000010	
		+00101010111000011	
	000000011110100	= 1 1011011010000101	
9		10110110100001010	
		+00101010111000011	
	0000000111101000	=11100001011001101	
10		11000010110011010	
	0000001111010000	+00101010111000011	
	0000001111010000	=11101101101011101	
11		11011011010111010	
	0000011110100000	+00101010111000011	
12	0000011110100000	= 0 0000110001111101	
12		$\begin{array}{c c} 00001100011111010 \\ +11010101000111101 \end{array}$	
	0000111101000001	= 1 1000011000111101 = 1 1100001100110111	
13	0000111101000001	1100001100110111	
13		+00101011110	
	0001111010000010	= 1 1101111000011	
14	0001111010000010	1101110000110001	
T-4		+00101010111000011	
	0011110100000100	= 0 0000111000101	
15	0011110100000100	0000111000100101	
10		+11010101001010101	
	0111101000001001	= 1 1000101000111101	
16	011110100001001	110001101000111	
-0		+00101010100001110	
	1111010000010010	=111100010110100011	
i	1111010000010010	-11110001011010001	

2.5.5 Функціональна схема:

Рисунок 2.5.3 – Функціональна схема

2.5.6 Закодований мікроалгоритм

	\	• • •	•
Таблиця 2.5.2-Таблиця	VOUNGULUA OI	ทอทสมมม 1 ธศ	02111111111111111111111111111111111111
1 aomayn 2.5.2 1 aomayn	Kooyounni or	πυραφια ι πυ	cianux ymoo.

Кодування мікроо	перацій	Кодування л	огічних умов
MO	УС	ЛУ	Позначення
RG3:=0	W3	RG2[n-1]	X1
RG2:=X;	W2	RG2=0	X2
RG1:=Y;	W1		
$RG3:=l(RG3).\overline{RG2[n+1]}$	ShL1		
RG2:=l(RG2).0	ShL2		
$RG2:=RG2+\overline{RG1}+1$	W4		
RG2:=RG2+RG1	W5		

Рисунок 2.5.4-Закодований мікроалгоритм.

2.5.7 Граф управляючого автомата Мура з кодами вершин:

Рисунок 2.5.5 - Граф управляючого автомата.

2.5.8 Обробка порядків:

Порядок частки буде дорівнювати: $P_z = P_x - P_y$;

В моєму випадку P_x =8; P_y =5; P_z =3;

2.5.8 Нормалізація результату:

Отримали результат: 1111010000010010

Знак мантиси: $1 \oplus 0 = 1$.

Нормалізація мантиси не потрібна.

2.6. Другий спосіб ділення.

2.6.1 Теоритичне обгрунтування другого способу ділення:

Нехай ділене X і дільник Y є n-розрядними правильними дробами, поданими в прямому коді. В цьому випадку знакові й основні розряди операндів обробляються окремо. Знак результату визначається шляхом підсумовування по модулю 2 цифр, записаних в знакових розрядах.

Остача нерухома, дільник зсувається праворуч. Як і при множенні з нерухомою сумою часткових добутків можна водночає виконувати підсумування і віднімання, зсув в регістрах Y,Z. Тобто 1 цикл може складатися з 1 такту, це дає прискорення відносно 1-го способу.

2.6.2 Операційна схема

Рисунок 2.6.1-Операційна схема

2.6.3 Змістовний мікроалгоритм

Рисунок 2.6.2-Змістовний мікроалгоритм

2.6.4 Таблиця станів регістрів

Таблиця 2.6.1- Таблиця станів регістрів

Nº	RG3 (Z)	RG2 (X)	RG1 (Y)
пс	100 (2)	1-02 (1-)	102 (1)
110			
	000000000000000001	01001101110001010000000000000000	001010101110000110000000000000
1	0000000000000001		001010101110000110000000000000
1		0100110111000101000000000000000	
		+11010101000111101000000000000000000000	
	0000000000000011	=00100010111000111000000000000000000000	000101010111000011000000000000
2		0010001011100011100000000000000	
		+1110101010001111010000000000000	
	0000000000000111	=00001101011110010110000000000000	000010101011100001100000000000
3		0000110101110010110000000000000	
		+111101010100011110100000000000	
	0000000000001111	=000000101011101001100000000000	000001010101110000110000000000
4		000000101011101001100000000000	
		+111110101010001111010000000000	
	000000000011110	=1111110101011111000110000000000	000000101010111000011000000000
5		1111110101011111000110000000000	
		+000000101010111000011000000000	
	0000000000111101	=00000000000110001001000000000	00000010101011100001100000000
6		00000000000110001001000000000	
		+111111101010100011110100000000	
	0000000001111010	=1111111010110101001111100000000	00000001010101110000110000000
7		111111101011010100111100000000	
		+00000001010101110000110000000	
	0000000011110100	=111111110110000011000010000000	00000000101010111000011000000

8		111111110110000011000010000000	
		+00000000101010111000011000000	
	0000000111101000	=111111111011011010000101000000	00000000010101011100001100000
9		111111111011011010000101000000	
		+00000000010101011100001100000	
	0000001111010000	=111111111110000101100110100000	00000000001010101110000110000
10		111111111110000101100110100000	
		+00000000001010101110000110000	
	0000011110100000	=1111111111110110110110111010000	00000000000101010111000011000
11		1111111111110110110101111010000	
		+00000000000101010111000011000	
	0000111101000001	=00000000000000110001111101000	00000000000010101011100001100
12		00000000000000110001111101000	
		+111111111111101010100011110100	
	0001111010000010	=111111111111110000110011011100	00000000000001010101110000110
13		111111111111110000110011011100	
		+0000000000000101011110000110	
	0011110100000100	=1111111111111111011100001100010	00000000000000101010111000011
14		1111111111111111011100001100010	
		+00000000000000101010111000011	
	0111101000001001	=00000000000000000111000100101	00000000000000010101011100001
15		00000000000000000111000100101	
		+111111111111111101010100011111	
	1111010000010010	=111111111111111110001101000100	00000000000000001010101110000

2.6.5 Функціональна схема з відображенням управляючих сигналів

Рисунок 2.6.3-Функціональна схема

2.6.6 Закодований мікроалгоритм

Таблиця 2.6.2- Таблиця кодування мікрооперацій

Таблиця кодуванн	ня мікрооперацій		Таблиця кодування
			логічних умов
MO	УС	ЛУ	Позначення
RG3:=0	R	RG2[2n+1]	X1
RG1:=Y	W1	RG3[n]	X2
RG2:=X	W2		
RG2:=RG2+RG1	W3		

RG1:=0.r(RG1)	ShR	
RG3:=l(RG3).SM(p)	ShL	
$RG2:==RG2+\overline{RG1}+1$	W4	

Рисунок 2.6.4- Закодований мікроалгоритм

2.6.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 2.6.5- Граф автомата Мура

2.6.8 Обробка порядків:

Порядок частки буде дорівнювати: $P_z = P_x - P_y$;

В моєму випадку P_x =8; P_v =5; P_z =3;

2.6.9 Нормалізація результату:

Отримали результат: 1111010000010010

Знак мантиси: $1 \oplus 0 = 1$.

Нормалізація мантиси не потрібна.

2.7. Операція додавання та віднімання чисел.

2.7.1 Теоретичне обгрунтування способу

В пам'яті числа зберігаються у ПК. На першому етапі додавання чисел з плаваючою комою виконують вирівнювання порядків до числа із старшим порядком. На другому етапі виконують додавання мантис. Додавання мантис виконується у доповнювальних кодах, при необхідності числа у ДК переводяться в АЛП. Додавання виконується порозрядно на n-розрядному суматорі з переносом. Останній етап — нормалізація результату. Виконується за допомогою зсуву мантиси результату і коригування порядку результату. Порушення нормалізації можливо вліво і вправо, на 1 розряд вліво і на n розрядів вправо. Віднімання будемо виконувати як операцію додавання але змінивши знак від'ємника на протилежний Z = X - Y = X + (-Y)

1. Порівняння порядків.

$$P_x = +8_{10} = +1000_2$$

$$P_y = +5_{10} = +0101_2$$

$$P_x > P_y =>$$

$$\Delta = P_x - P_y = 8_{10} - 5_{10} = 3_{10} = 11_2$$

2. Вирівнювання порядків.

Робимо зсув вправо мантиси числа Y, зменшуючи Δ на кожному кроці, доки Δ не стане 0.

Таблиця 2.7.1- Таблиця зсуву мантиси на етапі вирівнювання порядків

$M_{ m Y}$	Δ	Мікрооперація
0,101010111000011	11	Початковий стан
0,0101010111100001	10	$\mathbf{M}_{\mathbf{y}} = 0.\mathbf{r}(\mathbf{M}_{\mathbf{y}}); \ \Delta = \Delta - 1$
0,001010101110000	01	$\mathbf{M}_{\mathbf{y}} = 0.\mathbf{r}(\mathbf{M}_{\mathbf{y}}); \ \Delta = \Delta - 1$
0,000101010111000	00	$M_y=0.r(M_y); \Delta=\Delta-1$

3. Додавання мантис у модифікованому ДК.

 $X_{MJIK} = 11.011001000111011$

 $Y_{\text{MJK}} = 00.0001010101111000$

Таблиця 2.7.2-Додавання мантис(для додавання)

M_{X}	1	1,	0	1	1	0	0	1	0	0	0	1	1	1	0	1	1
M_{Y}	0	0,	0	0	0	1	0	1	0	1	0	1	1	1	0	0	0
M_{Z}	1	1,	0	1	1	1	1	0	0	1	1	1	1	0	0	1	1

 $Z_{\text{IIK}} = 1.100001100001101$

4. Віднімання мантис у модифікованому ДК.

 $X_{MJK} = 11.011001000111011$

 Y_{MJK} : = - Y_{MJK} = 11. 111010101001000

Таблиця 2.7.3-Додавання мантис (для віднімання)

N	$M_{\rm X}$	1	1,	0	1	1	0	0	1	0	0	0	1	1	1	0	1	1
N	$M_{\rm Y}$	1	1,	1	1	1	0	1	0	1	0	1	0	0	1	0	0	0
N	$M_{\rm Z}$	1	1	0	1	0	0	1	1	1	1	0	0	0	0	0	1	1

 $Z_{\text{TIK}} = 1.1011000011111100$

5. Нормалізація результату (В ПК).

Для даних результатів додавання та віднімання нормалізація не потрібна.

2.7.2 Операційна схема

m-кількість розрядів мантиси n-кількість розрядів порядку q=]log₂m[

Рисунок 2.7.1-Операційна схема

Виконаємо синтез КС для визначення порушення нормалізації.

Таблиця 2.7.4-Визначення порушення нормалізації

Розряди регістру			Значення		
RGZ		функцій			
Z' ₀	Z_0	Z_1	L R		
0	0	0	0	1	
0	0	1	0	0	
0	1	0	1	1	
0	1	1	1	0	

$$L=Z_0$$
, $R=\overline{Z_1}$.

Результат беремо по модулю, знак встановлюємо за Z'_0 до нормалізації.

2.7.3 Змістовний алгоритм

Рисунок 2.7.2-Змістовний мікроалгоритм

2.7.4 Таблиця станів регістрів

1) Додавання

Таблиця 2.7.5- Таблиця станів регістрів

		Telesticipi 21, le Telesticipi enteritto peeterripio					
№	RGPZ	RGZ	ЛПН(L)	$\Pi\Pi H(\mathbf{R})$	CT	Мікрооперація	
такту							
ПС	001000	11.100001100001101	0	0	100		

2)Віднімання

Таблиця 2.7.6- Таблиця станів регістрів

		Tuoning 2.7.0 Tuoning emanto peetempi					
№	RGPZ	RGZ	ЛПН(L)	$\Pi\Pi H(\mathbf{R})$	CT	Мікрооперація	
такту							
ПС	001000	11.1011000011111100	0	0	100		

2.7.5 Функціональна схема з відображенням керуючих сигналів

Рисунок 2.7.3 – Функціональна схема

2.7.6 Закодований мікроалгоритм

Таблиця 2.7.7— Таблиця кодування

Таблиця кодування мік	рооперацій		Таблиця кодування
			логічних умов
MO	УС	ЛУ	Позначення
CT:=m	W	Z' ₀ =0	X1
RGZ:=Z	W1	$L=Z_0$	X2
$Z'_0 Z_0 := \overline{Z_0} \overline{Z_0}$ RGZ := RGZ(m+2).r(RGZ) RGPZ := RGPZ+1 RGZ := l(RGZ).0 RGPZ := RGPZ-1 CT := CT-1	W2 ShR Inc ShL decRGZ decCT	$R = \overline{Z_1}$ $CT = 0$	X3 X4

2.7.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 2.7.5 – Граф автомата Мура

2.7.8 Обробка порядків

- 1) $P_{X+Y} = 8_{10} = 1000_2$
- 2) $P_{X-Y} = 8_{10} = 1000_2$

2.7.9 Форма запису результату з плаваючою комою

1) Результат додавання Z=X+Y.

 $Z_{\rm nk} = 1.100001100001101$

$$P_z = 8_{10} = 1000_2 \qquad \qquad M_z = 100001100110001_2$$

2) Результат віднімання Z=X-Y.

 $Z_{\rm nk} = 1.1011000011111100$

 $P_z = 8_{10} = 1000_2$ $M_z = 1011000011111100_2$

Завдання 3

$$x_3 x_2 x_1 = 001_2 = 1_{10}$$
.

Синтез управляючого автомату Мура на тригерах для операції множення першим способом

3.1 Таблиця кодування сигналів

Таблиця 3.1 – Таблиця кодування сигналів

R, W2, W3, W _{CT}	Y1	
W1	Y2	
ShR1,ShR2,dec	Y3	

3.2 Мікроалгоритм в термінах управляючого автомата

Рисунок 3.1 – Закодований мікроалгоритм

3.3 Граф автомата

Рисунок 3.2 – Граф циклічного автомата

3.4 Таблиця переходів циклічного автомата на D-тригерах

Таблиця 3.2 – Таблиця переходів

Пер.	Ст. ст.	Нов. стан	Вх. сигн.	Вих. сигн.	Функції тригерів	
Пер.	Q_2Q_1	Q_2Q_1	X_2X_1	$Y_1Y_2Y_3$	D_2	D_1
$Z_1 \rightarrow Z_2$	00	10		000	1	0
$Z_2 \rightarrow Z_3$	10	11	- 1	100	1	1
$Z_2 \rightarrow Z_4$	10	01	- 0	100	0	1
$Z_3 \rightarrow Z_4$	11	01		010	0	1
$Z_4 \rightarrow Z_3$	01	11	0 1	0 0 1	1	1
$Z_4 \rightarrow Z_4$	01	01	0 0	0 0 1	0	1
$Z_4 \rightarrow Z_1$	01	00	1 -	0 0 1	0	0

3.5 Мінімізація функцій тригерів

Рисунок 3.3 – Мінімізація функцій тригерів

Рисунок 3.4 – Діаграми Вейча для вихідних сигналів

$$D_{2} = \overline{Q_{2}} \overline{Q_{1}} v \overline{Q_{1}} X_{1} v \overline{Q_{2}} \overline{X_{2}} X_{1}$$

$$D_{1} = Q_{2} v Q_{1} \overline{X_{2}}$$

$$Y1 = Q_{2} \overline{Q_{1}}$$

$$Y2 = Q_{2} Q_{1}$$

$$Y3 = \overline{Q_{2}} Q_{1}$$

3.6 Функціональна схема автомата

Рисунок 3.5 - Функціональна схема