

Programme	:	M.Tech Software Engineering	Semester	:	Fall2020
Course	:	Natural Language Processing	Code	:	SWE1017
Faculty	:	Prof. SHRAVAN KUMAR	Slot	:	G1

NLP FINAL REVIEW DOCUMENT

PROJECT TITLE TEXT SUMMARIZATION USING TEXT RANKING

BY
P JYOSHNA-17MIS1153

ABSTRACT

Text Summarization is one of those applications of Natural Language Processing (NLP) which is bound to have a huge impact on our lives. The demand for automatic text summarization systems is spiking these days thanks to the availability of large amounts of textual data. In this project we take a dataset with the interview articles of sportspersons and summarize the big articles into small paragraphs.

The algorithm we use is Text Ranking. We use Extractive Summarization, this relies on extracting several parts, such as phrases and sentences, from a piece of text and stack them together to create a summary. Therefore, identifying the right sentences for summarization is of utmost importance in an extractive method.

LITERATURE SURVEY

TECHNIQUES USED FOR TEXT SUMMARIZATION

Text summarization is broadly divided into abstractive and extractive. The brief description about each approach is discussed in following section:

Abstractive Summarization Approach

Summarizations using abstractive techniques are broadly classified into two categories: Structured based approach and Semantic based approach

Structured Based Approach:

Structured based approach encodes most important information from the document through cognitive schemes such as templates, extraction rules and other structures such as tree, ontology, lead and body phrase structure

ABSTARCTIVE TEXT SUMMARIZATIONMETHODS: USING STRUCTURED BASED APPROACHS

Methods	Description	Advantages	Limitation	Author & Year
Tree Based	-It uses a	- It walks on	- It lacks a	Barzilay and
Method	dependency	units of the	complete	McKeown (1999,
	tree to	given	model which	2005) et al.
	represent the	document read	would include	
	text of a	and easy to	an abstract	
	document.	summary.	representation	
	-It uses either		for content	
	a language		selection.	
	generator or an			
	algorithm for			
	generation of			
T 1 .	summary.	T	D .	TT 1 ' 1
Template	-It uses a	-It generates	Requires	Harabagiu and
Based	template to	summary is	designing of	Lacatusu (2002)
Method	represent a	highly coherent	templates and	
	whole	because it	generalization	
	document.	relies on	of template is to difficult	
	Linguistic	relevant information	to difficult	
	patterns or extraction	identified by		
	rules are	IE system		
	matched to	in system		
	identify text			
	snippets that			
	will be			
	mapped into			
	template slots			
Ontology	-Use ontology	-Drawing	-This approach	Lee and Jian (2005),
Based	(knowledge	relation or	is limited to	Meghana
Method	base) to	context is easy	Chinese news	viswanath(2006), et
	improve the	due to	only	al.
	process of	ontology -	Creating Rule	
	summarization.	Handles	based system	
	-It exploits	uncertainty at	for handling	
	fuzzy ontology	reasonable	uncertainty is a	
	to handle	amount	complex task.	
	uncertain data			
	that simple			
	domain			
	ontology			
	cannot			
Lead and	- This method	-It is good for	-Parsing errors	Tanaka and
Body Phrase	is based on the	semantically	degrade	Kinoshita (2009).
Method	operations of	appropriate	sentential	
	phrases	revisions for	completeness	

	(insertion and	revising a lead	such as	
	substitution)	sentence.	grammaticality	
	that have same		and repetition.	
	syntactic head		-It focuses on	
	chunk in the		rewriting	
	lead and body		techniques, and	
	sentences in		lacks a	
	order to rewrite		complete	
	the lead		model which	
	sentence.		would include	
			an abstract	
			representation	
			for content	
			selection	
Rule Based	-Documents to	-It has a	-The drawback	Genest and Lapalme
Method	be summarized	potential for	of this	(2012)[2]
	are represented	creating	methodology is	
	in terms of	summaries	that all the	
	categories and	with greater	rules and	
	a list of	information	pattern are	
	aspects.	density than	manually	
		current state of	written, which	
		art.	is tedious &	
			time	
			consuming.	

Semantic Based Approach

In Semantic based approach, semantic representation of document is used to feed into natural language generation (NLG) system. This method focuses on identifying noun phrase and verb phrase by processing linguistic data.

EXTRACTIVE TEXT SUMMARIZATION TECHNIQUES USING SEMANTIC BASED APPROACH

Methods	Description	Advantages	Limitation	Author & Year
Multimodal	A semantic	-An important	- The limitation	Greenbacker
semantic model	model, which	advantage of	of this	(2011)
	captures	this framework	framework is	
	concepts and	is that it	that it is	
	relationship	produces	manually	
	among	abstract	evaluated by	
	concepts, is	summary,	humans.	

	built to represent the contents of multimodal documents	whose coverage is excellent because it includes salient textual and graphical content from the entire document		
Information Item Based Method	-The contents of summary are generated from abstract representation of source documents, rather than from sentences of source documents The abstract Representation is Information Item, which is the smallest element of coherent information in a text	-The major strength of this approach is that it produces short, coherent, information rich and less redundant summary	-It rejected due to the difficulty of creating meaningful and grammatical sentences from them Linguistic quality of summaries is very low due to incorrect parses	Genest and Lapalme (2011)
Semantic Graph Based Method	-This method is used to summarize a document by creating a semantic graph called Rich Semantic Graph (RSG) for the original document, reducing the generated semantic graph.	- It produces concise, coherent and less redundant and grammatically correct sentences	This method is limited to single document abstractive summarization	Moawad & Aref (2012) et al.

B. Extractive Summarization Techniques

An extractive summarization method consists of selecting important sentences, paragraphs etc. from the original document and concatenating them into shorter form. The importance of sentences is decided based on statistical and linguistic features of sentences

Methods	Description	Author & Year
Term Frequency Inverse	-Sentence frequency is	M.Fachrurrozi, Novi
Document Frequency	defined as the number of	Yusliani, and Rizky Utami
Method	sentences in the document	Yoanita, (2013) et al.
	that contain that termThen	
	this sentence vectors are	
	scored by similarity to the	
	query and the highest	
	scoring sentences are picked	
	to be part of the summary	
Graph Theoretic Approach	-Graph theoretic	Rada Mihalcea, Niraj Kumar
	representation of passages	et al.
	provides a method of	
	identification of themes	
	After the common pre-	
	processing steps, namely,	
	stemming and stop word	
	removal; sentences in the	
	documents are represented	
	as nodes in an undirected	
T	graph This method involves	V1
Text summarization With Neural Networks		Khosrow Kaikhan(2004), Sarda A.T. and Kulkarni
Neural Networks	training the neural networks to learn the types of	A.R.(2015).
	sentences that should be	A.K.(2013).
	included in the summaryIt	
	uses three- layered Feed	
	Forward neural network	
Automatic TS based on	-This method considers each	Ladda Suanmali, Naomie
fuzzy logic	characteristic of a text such	Salim, and Mohammed
1022) 10810	as similarity to title,	Salem Binwahlan (2009) et
	sentence length and	al.
	similarity to key word etc. as	
	the input of the fuzzy	
	system.	
Query Based Extractive	In query based text	Ibrahim Imam, Nihal
Text Summarization	summarization system, the	Nounou, Alaa Hamouda et
	sentences in a given	al.
	document are scored based	
	on the frequency counts of	
	termsIt uses Vector Space	
	Model	

The existed works on this topic and how they solved:

For text summarization they used many methods like tree, template, ontology, lead and body phrase, and rule based methods in structured based approach but they lacks in different ways like lack in model for content selection, designing and generalization of template is difficult and some are time consuming etc same for semantic based approach. In extractive summarization technique they solved by using methods like graph theoretic approach, with neural networks, term-frequency inverse document method, automatic TS based on fuzzy logic, query based here also they lack like in TF-IDF which may be slow for large vocabularies., measures are fundamentally limited in GTA, for NN in text summarization requires a lot of computational power, and some doesn't have the correct sense to summarize so these are all the methods used and solved.

The proposed method to solve the problem:

We use text ranking algorithm for text extraction, in this number of common words measure the sentences similarity, it gives the most informative document or summary also used in order to find the most relevant sentences in text and also to find most relevant keywords

ALGORITHM

Text Rank Algorithm

Let's understand the Text Rank algorithm, now that we have a grasp on PageRank. I have listed the similarities between these two algorithms below:

- In place of web pages, we use sentences
- Similarity between any two sentences is used as an equivalent to the web page transition probability
- The similarity scores are stored in a square matrix, similar to the matrix M used for PageRank

Text Rank is an extractive and unsupervised text summarization technique. Let's take a look at the flow of the Text Rank algorithm that we will be following:

- The first step would be to concatenate all the text contained in the articles
- Then split the text into individual sentences
- In the next step, we will find vector representation (word embeddings) for each and every sentence
- Similarities between sentence vectors are then calculated and stored in a matrix
- The similarity matrix is then converted into a graph, with sentences as vertices and similarity scores as edges, for sentence rank calculation
- Finally, a certain number of top-ranked sentences form the final summary

PROGRAM CODE

import numpy as np import

pandas as pd import nltk

from keras import backend as K from

matplotlib import pyplot

nltk.download('punkt') # one time execution import re

df = pd.read_csv("/Users/DELL/Desktop/tennis_articles_v4.csv") df.head()

```
df['article_text'][0]
df['article_text'][1]
df['article_text'][2]
from nltk.tokenize import sent_tokenize
sentences = []
for s in df['article_text']:sentences.append(sent_tokenize(s))
sentences = [y for x in sentences for y in x] # flatten list
sentences[:5]
!wget http://nlp.stanford.edu/data/glove.6B.zip
!unzip glove*.zip
# Extract word vectors
word_embeddings = {}
f = open('glove.6B.100d.txt', encoding='utf-8')
for line in f:values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
word_embeddings[word] = coefs
f.close()
len(word_embeddings)
# remove punctuations, numbers and special characters
clean_sentences = pd.Series(sentences).str.replace("[^a-zA-Z]", " ")
```

```
# make alphabets lowercase
clean_sentences = [s.lower() for s in clean_sentences]
nltk.download('stopwords')
from nltk.corpus import stopwords
stop_words = stopwords.words('english')
# function to remove stopwords
def remove_stopwords(sen):sen_new = " ".join([i for i in sen if i not in stop_words])
returnsen_new
# removestopwords from the sentences
clean_sentences = [remove_stopwords(r.split()) for r in clean_sentences]
# Extract word vectors
word_embeddings = {}
f = open('glove.6B.100d.txt', encoding='utf-8')
for line in f:values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
word_embeddings[word] = coefs
f.close()
sentence_vectors = []
for i in clean_sentences:
     if len(i) != 0: v = sum([word\_embeddings.get(w, np.zeros((100,))) for w in i.split ()])/(len(i.split())+0.001)
```

else:v = np.zeros((100,))

```
sentence_vectors.append(v)
# similarity matrix
sim_mat = np.zeros([len(sentences), len(sentences)])
from sklearn.metrics.pairwise import cosine_similarity
for i in range(len(sentences)):
     for j in range(len(sentences)):
          if i != j:sim_mat[i][j] = cosine_similarity(sentence_vectors[i].reshape(1,100
),sentence_vectors[j].reshape(1,100))[0,0]
import networkx as nx
nx_graph = nx.from_numpy_array(sim_mat)
scores = nx.pagerank(nx_graph)
ranked_sentences = sorted(((scores[i],s) for i,s in enumerate(sentences)), reverse=Tr ue)
# Extract top 10 sentences as the summary
for i in range(10):print(ranked_sentences[i][1])
#model building
K.clear_session()
latent_dim = 500
encoder_inputs = Input(shape=(max_len_text,))
enc_emb = Embedding(x_voc_size, latent_dim,trainable=True)(encoder_inputs)
encoder_lstm1 = LSTM(latent_dim,return_sequences=True,return_state=True)
encoder_output1, state_h1, state_c1 = encoder_lstm1(enc_emb)
```

encoder_lstm2 = LSTM(latent_dim,return_sequences=True,return_state=True)

```
encoder_output2, state_h2, state_c2 = encoder_lstm2(encoder_output1)
decoder inputs = Input(shape=(None,))
dec_emb_layer = Embedding(y_voc_size, latent_dim,trainable=True)
dec_emb = dec_emb_layer(decoder_inputs)
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs,decoder_fwd_state, decoder_back_state = decoder_lstm(dec_emb,initial_ state=[state_h,
state c])
Attention layer attn_layer = AttentionLayer(name='attention_layer')
attn_out, attn_states = attn_layer([encoder_outputs, decoder_outputs])
decoder_concat_input = Concatenate(axis=-1, name='concat_layer')([decoder_outputs, at tn_out])
decoder_dense = TimeDistributed(Dense(y_voc_size, activation='softmax'))
decoder_outputs = decoder_dense(decoder_concat_input)
# Define the model
model = Model([encoder inputs, decoder inputs], decoder outputs)
model.summary()
model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy')
history=model.fit([x_tr,y_tr[:,:-1]], y_tr.reshape(y_tr.shape[0],y_tr.shape[1], 1)[:,
1:] ,epochs=50,callbacks=[es],batch_size=512, validation_data=([x_val,y_val[:,:-1]],
y_val.reshape(y_val.shape[0],y_val.shape[1], 1)[:,1:]))
pyplot.plot(history.history['loss'], label='train')
pyplot.plot(history.history['val loss'], label='test')
pyplot.legend() pyplot.show()
```

def seq2summary(input_seq):

```
newString="
     for i in input_seq:
        if((i!=0 and i!=target_word_index['start']) and i!=target_word_index['end']):
           newString=newString+reverse_target_word_index[i]+' '
     return newString
def seq2text(input_seq):
     newString="
     for i in input_seq:
        if(i!=0):
          newString=newString+reverse_source_word_index[i]+' '
     return newString
for i in range(len(x_val)):
  print("Review:",seq2text(x_val[i]))
  print("Original summary:",seq2summary(y_val[i]))
  print("Predicted summary:", decode\_sequence(x\_val[i].reshape(1, max\_len\_text)))
  print("\n")
```

When I'm on the courts or when I'm on the court playing, I'm a competitor and I want to beat every single person whether they're in the locker room or across the net.So I

'm not the one to strike up a conversation about the

weather and know that in the next few minutes I have to go and try to win a tennis ma tch.

Major players feel that a big event in late November combined with one in January bef ore the Australian Open will mean too much tennis and too little rest.

Speaking at the Swiss Indoors tournament where he will play in Sundays final against Romanian qualifier Marius Copil, the world number three said that given the impossibly short time frame to make a decision, he opted out of any commitment.

"I felt like the best weeks that I had to get to know players when I was playing were the Fed Cup weeks or the Olympic weeks, not necessarily during the tournaments.

Currently in ninth place, Nishikori with a win could move to within 125 points of the cut for the eight-man event in London next month.

He used his first break point to close out the first set before going up 3-0 in the s econd and wrapping up the win on his first match point.

The Spaniard broke Anderson twice in the second but didn't get another chance on the South African's serve in the final set.

"We also had the impression that at this stage it might be better to play matches than to train.

The competition is set to feature 18 countries in the November 18-24 finals in Madrid next year, and will replace the classic home-and-away ties played four times per year for decades.

Federer said earlier this month in Shanghai in that his chances of playing the Davis Cup were all but non-existent.

The top 10 sentences are selected and displayed as summary of the article

OUTPUT SCREENSHOTS

```
In[1]:
                                                                                                                                                  importnumpyas npimport
                                                                                                                                              pandas as pdimport nltk
                                                                                                                                              nltk.download('punkt') # one time execution
                                                                                                                                                  [nltk_data] Downloading package punkt to
                                                                                                                                                                                                                                                                                                              C:\Users\dell\AppData\Roaming\nltk data...
                                                                                                                                                  [nltk data]
                                                                                                                                              [nltk data]
                                                                                                                                                                                                                                                                                   Package punktis alreadyup-to-date!
  In[2]:
                                                                                                                                              df= pd.read_csv("tennis_articles_v4.csv")
  In[3]:
                                                                                                                                              df.head()
Out[3]:
                                                                                                                                                       0
                                                                                                                                                                                                                                                                                               Maria Sharapova has basically no friends aste... https://www.tennisworldusa.org/tennis/news/Mar...
                                                                                                                          article id
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                article text
                                                                                                                                                                                        2 BASEL, Switzerland (AP), Roger Federer advance... http://www.tennis.com/pro-game/2018/10/copil-s...
                                                                                                                                                                                                                                     Roger Federer has revealed thatorganisersof...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               https://scroll.in/field/899938/tennis-roger-fe...
                                                                                                                                                                                                                                                                                                                      Federer, 37, first broke through on tour over ...https://www.express.co.uk/sport/tennis/1036101...
                                                                                                                                                                                                                                                                          Kei Nishikoriwill try to end his long losing... http://www.tennis.com/pro-game/2018/10/nishiko...
                                                                                                                                              df['article text'][0]
\verb|Out[4]:"MariaSharapovahasbasicallynofriends as tennisplayers on the \verb|WTATour.The Russian playerh| and the work of the tennisplayer in the ten
                                                                                        asnoproblemsinopenlyspeakingaboutitandinarecentinterviewshesaid:'Idon'treallyhi
                                                                                      \verb|henI'month| ecourtplaying, I'macompetitor and Iwant to be a tever ysing lepers on whether the large transfer of the property of the proper
                                                                                      \verb|y'reinthelockerroomoracrossthenet.SoI'mnot the one to strike up a conversation about the other conversation of the convers
                                                                                        eweather and know that in the next few \verb|minutesIhav| etogoand try tow in a tennism atch. \verb|I'ma| pretty the state of th
                                                                                      competitive girl. I say my hellos, but I'm not sending any players flowers as well. Uhm,
                                                                                      {\tt I'mnotreally friendly or close to many players.} I have not allot of friends a way from the court
                                                                                        \verb|s.'When she said she is not really close to a lot of players, is that something strategic th
                                                                                      heisdoing?Isitdifferentonthemen'stourthanthewomen'stour?'No,notatall.Ithinkjustbecauseyou'rei
                                                                                    nthesamesportdoesn'tmeanthatvouhavetobefriendswithevervonejustb
                                                                                        \verb|ecauseyou'recategorized, you'reatennisplayer, soyou'regoing to get along with tennisplayers. It hinkever the property of t
                                                                                        \verb|eryperson| has different interests. I have friends that have completely different jumps and the property of the property o
                                                                                        obsand interests, and \verb|I'vemettheminverydifferent parts of mylife. It hinkevery one just think sbecause \verb|we'| if the minimum of the minim
                                                                                        {\tt retennisplayers} we should be the {\tt greatestoffriends.B} utultimately tennisis
                                                                                      \verb|justaverysmall| part of \verb|what| we do. The rear esomany other things that \verb|we're| interested in, the at we do. \verb|'''| is a function of the part o
In [5]:
                                                                                                                                              df['article text'][1]
\verb"Out[5]:"BASEL, Switzerland (AP)", RogerFedererad vanced to the 14th Swiss Indoors final of his career by the same of the s
```

```
beatingseventh-seededDaniilMedvedev6-1,6-
                                                                    {\tt 4onSaturday.Seeking an inthtitle a this home town event, and a 99 thou erall, {\tt Federer will play 93 through the things of the things of
                                                                     ranked Marius Copilon Sunday. Federer dominated the 20th-ranked Med vedev and hadhis first matches a constant of the contraction of the contract
                                                                    pointchancetobreakserveagainat5-1.He
                                                                     then dropped his servet olove, and let another match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medved ev's next service game and the match points lip in Medve
                                                                    \verb|bynettingaback| \verb|hand.| \verb|Heclinc| hed on his fourth chance \verb|when Med vedevnetted from the base line. Calculate the line of the large terms of the line of the large terms of the 
                                                                    opilupsetexpectationsofaFedererfinalagainstAlexanderZverevina6-3,6-7(6),6-4winoverthefifth-
                                                                     ranked German in the earlier semifinal. The Romanian aims for a first title after arriving at Basel without a calculation of the semigraphic content of th
                                                                     reerwinoveratop-10opponent.CopilhastwoafteralsobeatingNo.
                                                                     6 \texttt{MarinCilic} in the second round. \texttt{Copilfired26} aces past \texttt{Zverev} and never dropped serve, \texttt{clinchingafter21/2} and \texttt{clinchingafter21/2} are the second round. \texttt{Copilfired26} aces \texttt{pastZverev} and \texttt{never dropped} aces \texttt{pastZverev} and \texttt{pastZverev} are the second round. \texttt{Copilfired26} aces \texttt{pastZverev} and \texttt{pastZverev} are the second round. \texttt{Copilfired26} aces \texttt{pastZverev} and \texttt{pastZverev} are the second round. \texttt{Copilfired26} aces \texttt{pastZverev} and \texttt{pastZverev} are the second round. \texttt{Copilfired26} aces \texttt{pastZverev} are the second round. \texttt{Copilfired26} according to the second round. \texttt{Copilfired26} according 
                                                                    hourswithaforehandvollevwinnertobreakZverevforthesecondtimeinthes
                                                                    \verb|emifinal.Hecamethroughtworoundsofqualifying| as tweekend to reach the Baselmain draw, \verb|including| beating the contract of the contract of
                                                                    athree-setteratShanghaitwoweeksago."
        Tn[6]:
                                                                                                           ##SPLITTING INTO SENTENES
                                                                                                           fromnltk.tokenizeimport sent_tokenize sentences = []
                                                                                                           fors in df['article_text']:
                                                                                                                       sentences.append(sent tokenize(s))
        In[7]:
         Out[7]: ['Maria Sharapovahas basically no friends as tennis players on the WTATour.',
                                                                               "TheRussianplayerhasnoproblemsinopenlyspeakingaboutitandinarecentinterviewshesaid: 'I don't
                                                                    really hide any feelings toomuch.",
                                                                               'I think everyone knows this is my jobhere.',
                                                                            \verb|"WhenI'monthecourtsorwhenI'monthecourtplaying, I'macompetitor and Iwant to be a tevery single person
                                                                    whether the \verb|v'reinth| elocker room or a cross the net. So I'm not the one to strike up a conversation about the weat in the conversation of th
                                                                    herandknowthatinthenextfewminutesIhavetogoandtry to win a tennismatch.",
                                                                         "I'm a pretty competitive girl."]
        In[8]:
                                                                                                         #FROM GLOVE WORD EMBEDDINGS
                                                                                                         # Extract word vectors
                                                                                                         word_embeddings= {}
                                                                                                           f = open('glove.6B.100d.txt', encoding='utf-8')
                                                                                                        forline in f:
                                                                                                                                     values= line.split()
        Tn[91:
                                                                                                        len (word embeddings)
      Out[9]: 400000
 In[10]:
                                                                                                         #TEXT PROCESSING
                                                                                                         # remove punctuations, numbers and special characters
                                                                                                           clean_sentences= pd.Series(sentences).str.replace("[^a-zA-Z]", " ")
 In[11]:
                                                                                                         nltk.download('stopwords')
                                                                                                           [nltk_data] Downloading package stopwords to
                                                                                                           [nltk_data]
                                                                                                                                                                                                                     C:\Users\dell\AppData\Roaming\nltk_data...
                                                                                                           [nltk data]
                                                                                                                                                                                                            Package stopwordsis alreadyup-to-date!
Out[11]: True
 In[13]:
                                                                                                           fromnitk.corpusimport stopwordsstop words=
                                                                                                           stopwords.words('english')
 In[14]:
                                                                                                           ## define a function to remove these stopwordsfrom our dataset. # function to remove stopwords
                                                                                                           defremove_stopwords(sen):
                                                                                                                                       sen_new= " ".join([i for i in senif i not in stop_words])
                                                                                                                                     returnsen_new
 Tn[15]:
                                                                                                         #Vector Representation of Sentences # Extract word
                                                                                                           vectors word_embeddings= {}
                                                                                                           f = open('glove.6B.100d.txt', encoding='utf-8')
                                                                                                         forline in f:
                                                                                                                                       values= line.split()
                                                                                                                                       word = values[0]
                                                                                                                                     coefs= np.asarray(values[1:], dtype='float32')
```

```
In[16]:
                                                                                                                      sentence vectors= []
                                                                                                                      fori in clean_sentences:
                                                                                                                                      iflen(i) != 0:
                                                                                                                                                        v = \\ \text{sum([word\_embeddings.get(w, np.zeros((100,)))} \  \, \textbf{for} \  \, \text{w in i.split()]} / \\ (\text{len(i.split())} + 0.001)
                                                                                                                                        else:
In[17]:
                                                                                                                      # similarity matrix
                                                                                                                        #We will use Cosine Similarity to compute the similarity between a pair of sentences.
In[18]:
                                                                                                                        # initialize the matrix with cosine similarity scores.
                                                                                                                        fori in range(len(sentences)):
                                                                                                                                      forj in range(len(sentences)):
In[19]:
                                                                                                                        #Applying PageRank Algorithm
                                                                                                                      importnetworkxas nx
In[21]:
                                                                                                                      #Summary Extraction
                                                                                                                        ranked sentences= sorted(((scores[i],s) for i,sin enumerate(sentences)),reverse=True)
                                                                                                                      # Extract top 10 sentences as the summary
                                                                             WhenI'monthecourtsorwhenI'monthecourtplaying,I'macompetitorandIwanttobeatever
                                                                          ysinglepersonwhetherthey'reinthelockerroomoracrossthenet.SoI'mnottheonetostrike
                                                                             {\tt upaconversation about the weather and know that in the next few minutes {\tt Ihave togo} and {\tt trytogo} an
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                win
                                                                             tennismatch.
                                                                            {\tt MajorplayersfeelthatabigeventinlateNovember combined with one in {\tt January before the {\tt Australian Open will and {\tt MajorplayersfeelthatabigeventinlateNovember combined with one in {\tt January before the {\tt Australian Open will approximate the {\tt MajorplayersfeelthatabigeventinlateNovember combined with one in {\tt January before the {\tt Australian Open will approximate the {\tt MajorplayersfeelthatabigeventinlateNovember combined with one in {\tt January before the {\tt Australian Open will approximate the {\tt MajorplayersfeelthatabigeventinlateNovember combined with one in {\tt January before the {\tt Australian Open will approximate the {\tt MajorplayersfeelthatabigeventinlateNovember combined with one in {\tt January before {\tt MajorplayersfeelthatabigeventinlateNovember combined with {\tt MajorplayersfeelthatabigeventinlateN
                                                                            lmeantoomuchtennisandtoolittlerest.
                                                                             {\tt Speaking at the Swiss Indoors tournament where he will play in {\tt Sundays final against Romanian quantum of the terms of the {\tt Swiss Indoors tournament} and {\tt Swiss Indoors} and {\tt Swiss Indoors tournament} and {\tt Swiss Indoors tournament} and {\tt Swiss Indoors} and {\tt Swiss Indo
                                                                             {\tt lifier Marius Copil, the world number three said that given the impossibly short time frame to many the said that the said the said that 
                                                                             decision, he opted out ofany commitment.
                                                                             "IfeltlikethebestweeksthatIhadtogettoknowplayerswhenIwasplayingweretheFedCup weeks or the
```

Olympic weeks, not necessarily during thetournaments.

event in London nextmonth.

 ${\tt Currentlyinninthplace, Nishikoriwithawincould move to within 125 points of the cut for the analysis of the cut for the analysis of the cut for th$

eight-man

```
input_1 (InputLayer)
embedding (Embedding)
                                                        25785500
                                                                     input_1[0][0]
                                  (None, 80, 500)
lstm (LSTM)
                                                                     embedding[0][0]
                                  [(None, 80, 500), (N 2002000
input_2 (InputLayer)
                                  (None, None)
                                                        0
lstm_1 (LSTM)
                                  [(None, 80, 500), (N 2002000
                                                                     lstm[0][0]
embedding_1 (Embedding)
                                  (None, None, 500)
                                                        7848888
                                                                     input_2[0][0]
1stm_2 (LSTM)
                                  [(None, 80, 500), (N 2002000
                                                                     1stm_1[0][0]
1stm_3 (LSTM)
attention_layer (AttentionLayer [(None, None, 500), 500500
                                                                     1stm_2[0][0]
1stm_3[0][0]
                                                                     lstm_3[0][0]
attention_layer[0][0]
concat_layer (Concatenate)
                                  (None, None, 1000)
time_distributed (TimeDistribut (None, None, 14096) 14110096
                                                                     concat_layer[0][0]
```


Predicted output: ['Maria Sharapovahas basically no friends as tennis players on the WTATour.', "The Russian player has no problems in openly speaking about it and in a recent interviews he said: 'I don't really hide any feelings too much.", 'I think everyone knows this is my jobhere.', "When I'monthe courts or when I'monthe courtplaying, I'm a competitor and I want to be ate very single person whether they're in the locker room or a cross the net. So I'm not the one to strike up a conversation about the weather and know that in the next few minutes I have to go and try to win a tennismatch.", "I'm a pretty competitive girl."]

RESULT

The text summarization of the article was done efficiently by the text ranking algorithm.

This algorithm finds plays an important role in summarization and is used in various application.

And as well as the LSTM model also able to perform and evaluate efficiently.

Statistical Summarization

Iris DataSet:

sepal_length	sepal_width	petal_length	petal_width	Species
5.1	3.5	1.4	0.2	Setosa
4.9	3	1.4	0.2	Setosa
4.7	3.2	1.3	0.2	Setosa
4.6	3.1	1.5	0.2	Setosa
5	3.6	1.4	0.2	Setosa
5.4	3.9	1.7	0.4	Setosa
4.6	3.4	1.4	0.3	Setosa
5	3.4	1.5	0.2	Setosa
4.4	2.9	1.4	0.2	Setosa
4.9	3.1	1.5	0.1	Setosa
5.4	3.7	1.5	0.2	Setosa
4.8	3.4	1.6	0.2	Setosa
4.8	3	1.4	0.1	Setosa
4.3	3	1.1	0.1	Setosa
5.8	4	1.2	0.2	Setosa
5.7	4.4	1.5	0.4	Setosa
5.4	3.9	1.3	0.4	Setosa
5.1	3.5	1.4	0.3	Setosa
5.7	3.8	1.7	0.3	Setosa
5.1	3.8	1.5	0.3	Setosa
5.4	3.4	1.7	0.2	Setosa
5.1	3.7	1.5	0.4	Setosa
4.6	3.6	1	0.2	Setosa
5.1	3.3	1.7	0.5	Setosa
4.8	3.4	1.9	0.2	Setosa
5	3	1.6	0.2	Setosa
5	3.4	1.6	0.4	Setosa
5.2	3.5	1.5	0.2	Setosa
5.2	3.4	1.4	0.2	Setosa
4.7	3.2	1.6	0.2	Setosa
4.8	3.1	1.6	0.2	Setosa
5.4	3.4	1.5	0.4	Setosa
5.2	4.1	1.5	0.1	Setosa
5.5	4.2	1.4	0.2	Setosa
4.9	3.1	1.5	0.2	Setosa
5	3.2	1.2	0.2	Setosa
5.5	3.5	1.3	0.2	Setosa
4.9	3.6	1.4	0.1	Setosa
4.4	3	1.3	0.2	Setosa
5.1	3.4	1.5	0.2	Setosa
5	3.5	1.3	0.3	Setosa
4.5	2.3	1.3	0.3	Setosa

4.4	3.2	1.3	0.2	Setosa
5	3.5	1.6	0.6	Setosa
5.1	3.8	1.9	0.4	Setosa
4.8	3	1.4	0.3	Setosa
5.1	3.8	1.6	0.2	Setosa
4.6	3.2	1.4	0.2	Setosa
5.3	3.7	1.5	0.2	Setosa
5	3.3	1.4	0.2	Setosa
7	3.2	4.7	1.4	Versicolor
6.4	3.2	4.5	1.5	Versicolor
6.9	3.1	4.9	1.5	Versicolor
5.5	2.3	4	1.3	Versicolor
6.5	2.8	4.6	1.5	Versicolor
5.7	2.8	4.5	1.3	Versicolor
6.3	3.3	4.7	1.6	Versicolor
4.9	2.4	3.3	1	Versicolor
6.6	2.9	4.6	1.3	Versicolor
5.2	2.7	3.9	1.4	Versicolor
5	2	3.5	1	Versicolor
5.9	3	4.2	1.5	Versicolor
6	2.2	4	1	Versicolor
6.1	2.9	4.7	1.4	Versicolor
5.6	2.9	3.6	1.3	Versicolor
6.7	3.1	4.4	1.4	Versicolor
5.6	3	4.5	1.5	Versicolor
5.8	2.7	4.1	1	Versicolor
6.2	2.2	4.5	1.5	Versicolor
5.6	2.5	3.9	1.1	Versicolor
5.9	3.2	4.8	1.8	Versicolor
6.1	2.8	4	1.3	Versicolor
6.3	2.5	4.9	1.5	Versicolor
6.1	2.8	4.7	1.2	Versicolor
6.4	2.9	4.3	1.3	Versicolor
6.6	3	4.4	1.4	Versicolor
6.8	2.8	4.8	1.4	Versicolor
6.7	3	5	1.7	Versicolor
6	2.9	4.5	1.5	Versicolor
5.7	2.6	3.5	1	Versicolor
5.5	2.4	3.8	1.1	Versicolor
5.5	2.4	3.7	1	Versicolor
5.8	2.7	3.9	1.2	Versicolor
6	2.7	5.1	1.6	Versicolor
5.4	3	4.5	1.5	Versicolor

6	3.4	4.5	1.6	Versicolor
6.7	3.1	4.7	1.5	Versicolor
6.3	2.3	4.4	1.3	Versicolor
5.6	3	4.1	1.3	Versicolor
5.5	2.5	4	1.3	Versicolor
5.5	2.6	4.4	1.2	Versicolor
6.1	3	4.6	1.4	Versicolor
5.8	2.6	4	1.2	Versicolor
5	2.3	3.3	1	Versicolor
5.6	2.7	4.2	1.3	Versicolor
5.7	3	4.2	1.2	Versicolor
5.7	2.9	4.2	1.3	Versicolor
6.2	2.9	4.3	1.3	Versicolor
5.1	2.5	3	1.1	Versicolor
5.7	2.8	4.1	1.3	Versicolor
6.3	3.3	6	2.5	Virginica
5.8	2.7	5.1	1.9	Virginica
7.1	3	5.9	2.1	Virginica
6.3	2.9	5.6	1.8	Virginica
6.5	3	5.8	2.2	Virginica
7.6	3	6.6	2.1	Virginica
4.9	2.5	4.5	1.7	Virginica
7.3	2.9	6.3	1.8	Virginica
6.7	2.5	5.8	1.8	Virginica
7.2	3.6	6.1	2.5	Virginica
6.5	3.2	5.1	2	Virginica
6.4	2.7	5.3	1.9	Virginica
6.8	3	5.5	2.1	Virginica
5.7	2.5	5	2	Virginica
5.8	2.8	5.1	2.4	Virginica
6.4	3.2	5.3	2.3	Virginica
6.5	3	5.5	1.8	Virginica
7.7	3.8	6.7	2.2	Virginica
7.7	2.6	6.9	2.3	Virginica
6	2.2	5	1.5	Virginica
6.9	3.2	5.7	2.3	Virginica
5.6	2.8	4.9	2	Virginica
7.7	2.8	6.7	2	Virginica
6.3	2.7	4.9	1.8	Virginica
6.7	3.3	5.7	2.1	Virginica
7.2	3.2	6	1.8	Virginica
6.2	2.8	4.8	1.8	Virginica
6.1	3	4.8	1.8	Virginica
0.1	3	4.5	1.0	v ii Sii iica

6.4	2.8	5.6	2.1	Virginica
7.2	3	5.8	1.6	Virginica
7.4	2.8	6.1	1.9	Virginica
7.9	3.8	6.4	2	Virginica
6.4	2.8	5.6	2.2	Virginica
6.3	2.8	5.1	1.5	Virginica
6.1	2.6	5.6	1.4	Virginica
7.7	3	6.1	2.3	Virginica
6.3	3.4	5.6	2.4	Virginica
6.4	3.1	5.5	1.8	Virginica
6	3	4.8	1.8	Virginica
6.9	3.1	5.4	2.1	Virginica
6.7	3.1	5.6	2.4	Virginica
6.9	3.1	5.1	2.3	Virginica
5.8	2.7	5.1	1.9	Virginica
6.8	3.2	5.9	2.3	Virginica
6.7	3.3	5.7	2.5	Virginica
6.7	3	5.2	2.3	Virginica
6.3	2.5	5	1.9	Virginica
6.5	3	5.2	2	Virginica
6.2	3.4	5.4	2.3	Virginica
5.9	3	5.1	1.8	Virginica

Program Code:

Statistical Summarization

```
import pandas as pd
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
%matplotlib inline
# read dataset
df = pd.read\_csv("C:\Users\DELL\Desktop\iris.csv")
def histo():
  # create histogram
  bin_edges = np.arange(0, df['sepal_length'].max() + 1, 0.5)
  fig = plt.hist(df['sepal_length'], bins=bin_edges)
  # add plot labels
  plt.xlabel('count')
  plt.ylabel('sepal length')
histo()
plt.show()
x = df['sepal\_length'].values
x.dtype # dtype means type to use in computing the SD. for array of integers, the defualt is
float64.
```

```
### Sample Mean:
\$ \int x = \frac{1}{n}\sum_{i=1}^n = x_i
sum(i for i in x) / len(x)
x_mean = np.mean(x)
x_mean
histo()
plt.axvline(x_mean, color='darkorange')
plt.show()
### Sample Variance:
\$Var_x = \frac{1}{n-1}\sum_{i=1}^n (x_i - bar\{x\})^2
sum([(i - x\_mean)**2 for i in x]) / (len(x) - 1)
var = np.var(x, ddof=1) #ddof means delta degree of freedom. by default ddof =0
var
df['sepal_length'].var()
histo()
```

```
plt.axvline(x_mean + var, color='darkorange')
plt.axvline(x_mean - var, color='darkorange')
plt.show()
### Sample Standard Deviation:
Std_x = \sqrt{1}{n-1}{\sum_{i=1}^n (x_i - bar\{x\})^2}
(sum([(i - x_mean)**2 \text{ for } i \text{ in } x]) / (len(x) - 1))**0.5
np.sqrt(np.var(x, ddof=1))
std = np.std(x, ddof=1)
std
df['sepal_length'].std() # note that Bessel's correction+ is the default
histo()
plt.axvline(x_mean + std, color='darkorange')
plt.axvline(x_mean - std, color='darkorange')
plt.show()
### Min/Max:
np.min(x)
```

```
np.max(x)
### Mode:
lst = list(x)
mode = max(set(lst), key=lst.count)
mode
lst.count(mode)
stats.mode(x)
### 25th and 75th Percentile:
y = np.sort(x)
percentile_25th = y[round(0.25 * y.shape[0]) + 1]
percentile_25th
percentile_{75th} = y[round(0.75 * y.shape[0]) - 1]
percentile_75th
np.percentile(x, q=[25, 75], interpolation='lower')
df['sepal_length'].quantile(0.25, interpolation='lower')
```

```
df['sepal_length'].quantile(0.75, interpolation='lower')
histo()
plt.axvline(percentile_75th, color='darkorange')
plt.axvline(percentile_25th - var, color='darkorange')
plt.show()
### Median (50th Percentile):
x = np.sort(x)
tmp = round(0.5 * x.shape[0])
if x.shape[0] % 2:
  median = x[tmp - 1]
else:
  median = x[tmp - 1] + (x[tmp] - x[tmp - 1]) / 2.
median
np.median(x)
histo()
plt.axvline(median, color='darkorange')
```

plt.show()

OUTPUT SCREENSHOTS

Statistical Summarization

```
In [95]: import pandas as pd
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
Xmatplotlib inline

In [96]: # read dataset
df = pd.read_csv("c:\\Users\\DELL\\Desktop\\iris.csv")
def histo():
    # create histogram
    bin_edges = np.arange(0, df['sepal_length'].max() + 1, 0.5)
    fig = plt.hist(df['sepal_length'], bins=bin_edges)

# add plot labels
plt.xlabel('count')
plt.ylabel('sepal_length')

histo()

histo()

25

65

20

26

27

Activa
```

```
In [97]: x = df['sepal_length'].values x.dtype # dtype means type to use in computing the SD. for array of integers,the defualt is float64.
Out[97]: dtype('float64')
           Sample Mean:
                                                                             \bar{x} = \frac{1}{n} \sum_{i=1}^n = x_i
In [98]: sum(i for i in x) / len(x)
Out[98]: 5.843333333333335
In [70]: x_mean = np.mean(x)
x_mean
Out[70]: 5.843333333333334
In [99]: histo()
           plt.axvline(x_mean, color='darkorange')
           plt.show()
              30
              25
            angth
20
           le 15
              10
               0 -
```

Sample Variance:

$$Var_x = \frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})^2$$

Go to Setti

```
In [100]: sum([(i - x_mean)**2 for i in x]) / (len(x) - 1)

Out[100]: 0.6856935123642504

In [101]: var = np.var(x, ddof=1) #ddof means delta degree of freedom. by default ddof =0

Out[101]: 0.6856935123042507

In [74]: df['sepal_length'].var()

Out[74]: 0.6856935123042505

In [102]: histo()
    plt.axvline(x_mean + var, color='darkorange')
    plt.show()

Double the plt of the plt
```

Sample Standard Deviation:

Out[112]: ModeResult(mode=array([5.]), count=array([10]))

$$Std_x = \sqrt{rac{1}{n-1}{\sum_{i=1}^n(x_i-ar{x})^2}}$$

```
In [103]: (sum([(i - x_mean)**2 for i in x]) / (len(x) - 1))**0.5
Out[103]: 0.8280661279778628
In [104]: np.sqrt(np.var(x, ddof=1))
Out[104]: 0.828066127977863
In [105]: std = np.std(x, ddof=1)
           std
Out[105]: 0.828066127977863
In [106]: df['sepal_length'].std() # note that Bessel's correction+ is the default
Out[106]: 0.8280661279778629
In [107]: histo()
plt.axvline(x_mean + std, color='darkorange')
plt.axvline(x_mean - std, color='darkorange')
           plt.show()
               30
              25
            튌 20
            se 15
               10
                                                                                                                                                Activa
             Min/Max:
  In [108]: np.min(x)
 Out[108]: 4.3
 In [109]: np.max(x)
 Out[109]: 7.9
             Mode:
```

```
In [110]: lst = list(x)
    mode = max(set(lst), key=lst.count)

Out[110]: 5.0

In [111]: lst.count(mode)

Out[111]: 10

In [112]: stats.mode(x)
```

```
25th and 75th Percentile:
In [113]: y = np.sort(x)
percentile_25th = y[round(0.25 * y.shape[0]) + 1]
             percentile_25th
 Out[113]: 5.1
 In [114]: percentile_75th = y[round(0.75 * y.shape[0]) - 1]
percentile_75th
 Out[114]: 6.4
 In [115]: np.percentile(x, q=[25, 75], interpolation='lower')
 Out[115]: array([5.1, 6.4])
 In [116]: df['sepal_length'].quantile(0.25, interpolation='lower')
 Out[116]: 5.1
 In [117]: df['sepal_length'].quantile(0.75, interpolation='lower')
 Out[117]: 6.4
In [118]: histo()
   plt.axvline(percentile_75th, color='darkorange')
   plt.axvline(percentile_25th - var, color='darkorange')
   plt.show()
                30
                25
              ng th
              le 15
                10
                                                                                                                                                           Activa
                                                                                                                                                           Go to Se
           Median (50th Percentile):
In [119]: x = np.sort(x)
           tmp = round(0.5 * x.shape[0])
           if x.shape[0] % 2:
    median = x[tmp - 1]
           else:
                median = x[tmp - 1] + (x[tmp] - x[tmp - 1]) / 2.
```

Activa Go to S

CONCLUSION

Automatic Text Summarization is a hot topic of research .Text Summarization is one of those applications of Natural Language Processing (NLP) which is bound to have a huge impact on our lives. With growing digital media and ever growing publishing — who has the time to go through entire articles / documents / books to decide whether they are useful or not.so here we are using text ranking algorithm which gives the best summarization and also gives us efficient prediction.

FUTURE WORK

Coming to future work, we will explore the abstractive text summarization technique. In addition, we can also look into the following summarization tasks: Problem specific-Multiple domain text summarization, Single document summarization. Algorithm-specific: Text summarization using Reinforcement Learning.

REFERENCES

- [1] Dazhi Yang_ and Allan N. Zhang Singapore Institute of Manufacturing Technology "Title of the paper Performing literature review using text mining, Part III: Summarizing articles using Text Rank".
- [2] Ali Toofanzadeh Mozhdehi, Mohamad Abdolahi and Shohreh Rad Rahimi title "Overview of extractive text summarization".
- [3] Wengen Li and Jiabao Zhao School of management and engineering title "Text Rank algorithm by exploiting Wikipedia for short text keywords extraction."
- [4] Sonya Rapinta Manalu, Willy School of Computer Science title "Stop Words in Review Summarization Using Text Rank".

[5]Blog Vidhya Analytics https://www.analyticsvidhya.com/blog/2018/11/introduct ion-text-summarization-textrank-python/