Lecture 18 - State-space modeling: Gatenby and

Vincent 2003

Modeling density-independent growth

Unlimited growth of a population over discrete time steps:

$$N_{t+1} = N_t + RN_t$$

Change in population over a single time step:

$$N_{t+1} - N_t = RN_t$$

Change in population over any time step:

$$\frac{\Delta N}{\Delta t} = R_N N$$

Considering a very small change in time gives us the continuous differential equation:

$$\frac{dN}{dt} = RN$$

Density-dependent growth adds realism to density-independent growth

$$\frac{dN}{dt} = R(1 - \alpha N)N$$

 α is a coefficient describing competition with individuals from the same population.

The inverse of this is carrying capacity $\frac{1}{K}$.

So the equation above can also be written as:

$$\frac{dN}{dt} = R(1 - \frac{N}{K})N$$

State variables vs. parameters

State variables are quantities of individuals, matter, or energy that are simulated through time.

Parameters are constants or values that describe change in state variables or relationships amongst state variables.

What are the the state variables and parameters in Gatenby and Vincent?

What are the the state variables and parameters in Gatenby and Vincent?

- State variables
 - \triangleright N_N : normal cells
 - \triangleright N_T : tumor cells
- Parameters
 - ► R_N: growth rate for normal cells; [time^{-1}]
 - $ightharpoonup K_N$: carrying capacity for normal cells; [cells]
 - α_{NT}: effect of tumor cells on normal cells; [cells cell⁻{-1}]
 - ▶ R_T: growth rate for tumor cells; [time^{-1}]
 - ► K_T: carrying capacity for normal cells; [cells]
 - α_{TN}: effect of normal cells on tumor cells; [cells cell[^]{-1}]

SPECIFICALLY, what model behavior was the basis for the authors' conceptual inferences?

talk about how to simulate models with Python and $\ensuremath{\mathtt{R}}$

recreate Gatenby & Vincent 2003 and extend to other examples