Bank Loan
Term Prediction

Ali Ahm ed Abdulrahm an

Table of contents

- 01 Introduction
 - 02 Data Analysis
 - Data Cleaning and Feature Engineering
 - 04 Classification Models
 - 05 Conclusion

Introduction

Backstory

- Loan is one of the most important schemes of banks.
- Short Term Loan or Long Term Loan.
- Buying a house → Long term.
- Take a trip → short term.
- Help bankers to determine the type of loan.

Data set

- Bank Loan Status Dataset
- Kaggle.
- 110867 rows.
- 19 column.
- 16 feature columns.
- 1binary class target column
- Target column:
 - Short term
 - Long term

Tools

- Pandas
- Numpy
- Matplotlib
- Seaborn
- Sklearn
- XGBoost
- Pickle

Data Analysis

Type of Terms Plot

Time Period of Taking Loan

Features and Target Correlation

Credit Score Loan_Status_Fully Paid Bankruptcies Number_of_Credit_Problems

Tax_Liens

Years of Credit History

Number_of_Open_Accounts

Annual_Income

Monthly_Debt

Maximum Open Credit

Current_Credit_Balance

Current_Loan_Amount

Term_Short Term

Months_since_last_delinquent

0.039 0.033 0.0093 0.0013

0.54

0.094

-0.064

-0.12-0.23

-0.27

0.00

1.00

0.75

0.50

0.25

Outliers Boxplot

Data Cleaning

01

Check for NaN and deal with them.

02

Drop unwanted columns.

Loan ID, customer ID

03

Check and drop duplicate.

04

Check and drop outliers.

Feature Engineering

New columns

(Credit Score)³

(Current Loan Amount) * (Credit Score)

 $(Annual\ Income)^{0.05}*(Current\ Loan\ Amount)$

 $\left(\sqrt{\textit{Current Credit Balance}}*(\textit{Credit Score})
ight)^{2}$

Baseline Model

Logistic Regression

Model	Accuracy		
	Train	Validation	
Logistic Regression	0.8423	0.8327	
Logistic Regression Scaled	0.8613	0.8670	
LogisticRegression class weight {Long Term: 2, Short term: 1}	0.8435	0.8466	
LogisticRegression class weight : balanced	0.8382 0.8363		

Naive Bayes

Model	Accuracy		
	Train	Validation	
Gaussian NB	0.8311	0.8308	
Bernoulli NB	0.6871	0.6888	
Multinomial NB	0.7807	0.7771	

Contents of this template

Model	Accuracy		F1Score	
	Train	Validation	Train	Validation
Logistic Regression Scaled	0.8613	0.8670	0.9045	0.9044
K- Neatest Neighbors (3)	0.9051	0.8332	0.9339	0.8849
Decision Tree	0.8741	0.8683	0.9148	0.9073
Random Forest	0.9999	0.8732	1.0	0.9141
Extra Tree	1.0	0.8699	1.0	0.9111
Ada Boost	0.8738	0.8758	0.9131	0.9155
Stochastic Gradient Descent	0.8580	0.8616	0.9035	0.9067
XGBoost	0.8916	0.8856	0.9266	0.9179

Best Classification model

XGBoost classifier

Precision: 0.9225

Recall: 0.9220

ROC AUC Curve

XGBoost classifier

F1 Score

Train: 0.9215

0.9181 Test: