I Questions de cours

- 1 Donner les solutions d'une équation du second degré à coefficients complexes et démontrer ce résultat.
- 2 Donner les racines n-ième de l'unité ainsi que la valeur de leur somme et démontrer ces résultats.

II Exercices sur les nombres complexes

Exercice 1:

Soient m et n dans \mathbb{N}^* .

Montrer que $\mathbb{U}_n \subseteq \mathbb{U}_m$ si, et seulement si, n divise m.

Exercice 2:

Résoudre dans \mathbb{C} l'équation $e^z + e^{-z} = 2i$.

Exercice 3:

Résoudre de deux façons différentes l'équation : $(1+iz)^5 = (1-iz)^5$ et en déduire la valeur de tan $\left(\frac{\pi}{5}\right)$.

Exercice 4:

Caractériser la similitude directe s dont l'expression complexe est $z \longmapsto (-\sqrt{3} + i) z + i$.

III Exercices sur les intégrales et primitives

 $\underline{Exercice\ 5}$:

- 1 Donner une primitive de la fonction $f: x \longmapsto \frac{1}{x^2 + x + 1}$.
- 2 Donner une primitive de la fonction $g: t \longmapsto \frac{1}{t \ln(t)}$ sur]1; $+\infty$ [.

Exercice 6

Déterminer les primitives sur] -1; 1[de la fonction $x \mapsto Arcsin(x)$.

Exercice 7: Calculer $I = \int_{-1}^{1} \sqrt{x^2 + x^4} dx$.

Exercice 8:

Soit $n \in \mathbb{N}^*$.

On pose
$$I_n = \int_0^1 t^n \sqrt{1-t} dt$$
.

- 1 Trouver une relation de récurrence entre I_{n-1} et I_n .
- 2 En déduire une expression de I_n .
- 3 En déduire que :

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+3} \binom{n}{k} = 2^{2n+2} \frac{n!(n+2)!}{(2n+4)!}$$