Training a Logistic Regression model

(used to solve Classification problems)

Prabhjot Kaur

Background

- Supervised Machine Learning
- Classification
- Sigmoid function
- Cost function
- Gradient descent

What is logistic regression?

$$y = w_0 + w_1 x_1 + w_2 x_2$$

$$y = w_0 + [w_1 \ w_2][x_1 \ x_2]^T$$

Input samples	Feature 1 (x1)	Feature 2 (x2)	Labels
1	50	32	1
2	10	22	1
3	55	39	1
4	34	67	0

$$y = w_0 + wx^T$$
(scalar) (scalar) (1x2)*(2x1) (scalar)

$$\bar{y} = \frac{1}{1 + e^{-y}}$$

$$y_predicted = \begin{cases} 0 \text{ if } \overline{y} < 0.5\\ 1 \text{ if } \overline{y} >= 0.5 \end{cases}$$

$$Y = W_0 + WX^T$$
(1x4) (1x4) (1x2)*(2x4)

Process entire dataset at once

Training the model

- 1. Start with a random set of parameters (W)
- 2. For epoch 1: N
 - i. For all samples in the training set (say, m number of samples)
 - i. Predict the output using a LR model based on the random set of weights
 - ii. Find the cost function (error between true and predicted output)
 - ii. Find average cost for all training samples
 - iii. Minimize the cost function (using gradient descent)
 - iv. Update model parameters
 - v. Repeat step 2 until convergence or for N iterations

$$C(\theta) = \begin{cases} -\log(\bar{y}), & \text{if } ytrue = 1 \\ -\log(1-\bar{y}), & \text{if } ytrue = 0 \end{cases}$$

Cost function for the LR

Cost function for LR

$$C(w) = \begin{cases} -\log(\bar{y}), & \text{if } ytrue = 1\\ -\log(1-\bar{y}), & \text{if } ytrue = 0 \end{cases}$$

$$J(w) = \frac{-1}{m} \sum_{i=0}^{m} \left[ytrue^{i} \log(\bar{y}i) + \left(1 - ytrue^{i}\right) \log(1 - \bar{y}i) \right]$$

$$\frac{\partial}{\partial w_j} J(w) = \frac{1}{m} \sum_{i=1}^m \left(\overline{y^i} - y^i \right) x^i$$

Derivative of the cost function – used to update the parameters using gradient descent

Update parameters using gradient descent

$$\frac{\partial}{\partial w_j} J(w) = \frac{1}{m} \sum_{i=1}^m \left(\overline{y^i} - y^i \right) x^i$$

$$w_{new} = w - \alpha \frac{\partial}{\partial w} J(w)$$

After the model is trained, we will have the model parameters (W) and bias(Wo).

Let's code!