Statistical Machine Learning

Lecture 4: Classification

2022-23

- ▶ Given a vector space V a distance d is an application from $V \times V$ into the non-negative rals $\mathbb{R}^+ \cup \{0\}$ such that:
 - 1. For all x and y in \mathcal{V} $d(x,y) \ge 0$ and equal to 0 if and only if x = y. (Positivity)
 - 2. For all x and y in V d(x, y) = d(y, x). (Simetry)
 - 3. For all x, y and z in V $d(x,y) \le d(x,z) + d(z,y)$. (Triangula Inequality)

Gaussian distribution:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \mathbf{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d |\mathbf{\Sigma}|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

$$\Delta^2 \equiv (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

where Δ is the Mahalanobis distance determined by the matrix $\pmb{\Sigma}$

Σ is positive definite, therefore the solutions to the eigenvalue problem:

$$\Sigma u_{\lambda} = \lambda u_{\lambda}$$

are such that $\lambda \in \mathbb{R}^+$ and for any pair $\lambda \neq \lambda'$, $\boldsymbol{u}_{\lambda}^T \boldsymbol{u}_{\lambda'} = 0$.

- Let us define the matrix $U = (u_{\lambda_1}, u_{\lambda_2}, \dots, u_{\lambda_d})$. By the properties of the eigenvectors, $U^T U = U U^T = 1$.
- Let us define the matrix Λ such that $[\Lambda]_{i,i} = \lambda_i$ and $[\Lambda]_{i,j} = 0$ for all $i \neq j$.
- ▶ Observe that $[\Lambda, U] = \Lambda U U\Lambda = 0$.
- ► Then

$$\Sigma U = \Lambda U = U \Lambda$$

$$U^{T} \Sigma U = \Lambda$$

$$\Sigma = U \Lambda U^{T}$$

$$\Sigma^{-1} = \left(U \Lambda U^{T}\right)^{-1} = \left(U^{T}\right)^{-1} (U \Lambda)^{-1}$$

$$= U \Lambda^{-1} (U)^{-1} = U \Lambda^{-1} U^{T}$$

For any given pair of vectors x, $y \in \mathbb{R}^d$ and a covariance matrix Σ we have that:

$$\Delta^{2}(x,y) = (x-y)^{T} \mathbf{\Sigma}^{-1}(x-y)$$

$$= (x-y)^{T} U \mathbf{\Lambda}^{-1} U^{T}(x-y)$$

$$= \left[U^{T}(x-y) \right]^{T} \mathbf{\Lambda}^{-1} U^{T}(x-y)$$

$$= \sum_{i=1}^{d} \frac{\left(\left[U^{T}(x-y) \right]_{i} \right)^{2}}{\lambda_{i}},$$

similar to the Euclidian distance.

- Given the vectors $\mathbf{r}^T = (x, y)$ and $\boldsymbol{\mu} = (1, 1)$ find the set that satisfies $\Delta^2(\mathbf{r}, \boldsymbol{\mu}) = 4$, for a covariance $\boldsymbol{\Sigma} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$.
- ▶ Eigenvalues: First observe that the eigenvalues of the covariance satisfy the quadratic equation: $(2 \lambda)^2 1 = 0$ therefore the solutions are $\lambda = 1$ and $\lambda = 3$.
- ▶ Eigenvectors:

$$\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \lambda \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
 or $u_2 = (2 - \lambda)u_1$,

thus, for $\lambda=1$ we have that $u_1=u_2$ and for $\lambda=3$ we have that $u_1=-u_2$.

► The matrix of rotation *U* becomes

$$U = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = U^T.$$

► The covariance matrix can be expressed as:

$$\begin{split} \mathbf{\Sigma} &= \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ \mathbf{\Lambda} &= \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \\ \mathbf{\Sigma}^{-1} &= \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}. \end{split}$$

► The distance becomes:

$$4 = \Delta^{2}(\mathbf{r}, \boldsymbol{\mu})$$

$$= (x - 1, y - 1) \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x - 1 \\ y - 1 \end{pmatrix}$$

► The distance becomes:

$$4 = \Delta^{2}(\mathbf{r}, \boldsymbol{\mu})$$

$$= \begin{bmatrix} \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x - 1 \\ y - 1 \end{bmatrix} \end{bmatrix}^{T} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{pmatrix} \times \begin{bmatrix} \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x - 1 \\ y - 1 \end{bmatrix} \end{bmatrix}.$$

Let us define the new shifted (by μ) and rotated (by $m{U}$) vector $m{r}'$:

$$\mathbf{r}' = \begin{pmatrix} x' \\ y' \end{pmatrix} = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x - 1 \\ y - 1 \end{pmatrix} = \begin{pmatrix} \frac{(x-1)+(y-1)}{\sqrt{2}} \\ \frac{(x-1)-(y-1)}{\sqrt{2}} \end{pmatrix},$$

thus

$$x' = \frac{(x-1) + (y-1)}{\sqrt{2}}$$
$$y' = \frac{(x-1) - (y-1)}{\sqrt{2}},$$

The distance becomes:

$$4 = \Delta^{2}(\mathbf{r}, \boldsymbol{\mu}) = (x', y') \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$
$$4 = (x')^{2} + \frac{(y')^{2}}{3}$$
$$1 = \frac{(x')^{2}}{4} + \frac{(y')^{2}}{12},$$

which is the equation of an ellipsis centered at $\mathbf{0}$ with axis a=2 and $b=\sqrt{12}$.

Decision Trees

- 1. Supervised learning.
- 2. Determines a course of action.
- 3. Each branch represents a possible decision.
- 4. Descriptive on how are decisions are taken.

Definitions

- 1. There are three type of nodes in a decision tree: root, decision and leaf.
- 2. Root node is where the entire population of the data set sits before any decision is taken.
- 3. Decision node is where a split in the sample is performed according to an action.
- 4. Leaf node is a terminal node where no more decisions are taken and a final classification is reached.

Entropy

- 1. Given p(x) the information content of outcome x is defined as $h(x) = -\log_2 p(x)$.
- 2. The Entropy of a probability distribution is defined as the expected information content $H[p] = \sum_{x \in \mathcal{V}} p(x)h(x)$.
- 3. $H[p] \ge 0$ with = if and only if there exists $x_0 \in \mathcal{V}$ such that $p(x_0) = 1$.
- 4. H[p] is maximized if p(x) = p(x') for any pair $x, x' \in \mathcal{V}$.

Information-Based Decisions

- Let as assume we have features $x \in \mathcal{V}^d$ and labels $t \in \mathcal{T}$ (most probably $\{\pm 1\}$).
- Let as assume that there exists a probability p(t,x) such that

$$egin{aligned} p_t(t) &= \prod_{j=1}^d \sum_{x_j \in \mathcal{V}} p(t,x) \ p_{t,\ell}(t,x) &= \prod_{j
eq \ell} \sum_{x_j \in \mathcal{V}} p(t,x) \ p_{\ell}(x) &= \sum_{t \in \mathcal{T}} p_{t,\ell}(t,x) \ p_{t|\ell}(t|x) &= rac{p_{t,\ell}(t,x)}{p_{\ell}(x)} \end{aligned}$$

Information-Based Decisions

▶ Given the marginal (prior) probability p(t) the Entropy associated with it is defined as the functional:

$$H[p] \equiv -\sum_{t \in \mathcal{T}} p_t(t) \log_2 p_t(t).$$

On the same path we can define the conditional entropy function:

$$h_\ell(x) \equiv -\sum_{t \in \mathcal{T}} p_{t|\ell}(t|x) \log_2 p_{t|\ell}(t|x)$$

and the associated functional:

$$H_{\ell}[p] = \sum_{x \in \mathcal{V}} p_{\ell}(x) h_{\ell}(x)$$

Information-Based Decisions

▶ Information Gain associated to the ℓ -th feature x_{ℓ} :

$$I_{\ell}[p] \equiv H[p] - H_{\ell}[p],$$

▶ Splits are done according to the feature x_{ℓ} that provides the largest Information Gain.

► Suppose we have the following data set

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	t
0	1	1	1	1
1	1	1	1	1
2	1	1	0	0
3	0	1	1	1
4	1	1	1	1
5	1	1	1	1
6	1	0	0	0
7	1	1	0	0
8	1	1	1	1
9	0	1	1	0

▶ Let us consider first p(t) and $p(x_{\ell})$

$$p(t=1) = \frac{6}{10} \qquad p(t=0) = \frac{4}{10},$$

$$p(x_1=1) = \frac{8}{10} \qquad p(x_1=0) = \frac{2}{10},$$

$$p(x_2=1) = \frac{9}{10} \qquad p(x_2=0) = \frac{1}{10},$$

$$p(x_3=1) = \frac{7}{10} \qquad p(x_3=0) = \frac{3}{10},$$

► and the other marginals

$$p(t = 1|x_1 = 1) = \frac{5}{8} \qquad p(t = 0|x_1 = 1) = \frac{3}{8}$$

$$p(t = 1x_1 = 0) = \frac{1}{2} \qquad p(t = 0|x_1 = 0) = \frac{1}{2}$$

$$p(t = 1|x_2 = 1) = \frac{6}{9} \qquad p(t = 0|x_2 = 1) = \frac{3}{9}$$

$$p(t = 1|x_2 = 0) = 0 \qquad p(t = 0|x_2 = 0) = 1$$

$$p(t = 1|x_3 = 1) = \frac{6}{7} \qquad p(t = 0|x_3 = 1) = \frac{1}{7}$$

$$p(t = 1|x_3 = 0) = 0 \qquad p(t = 0|x_3 = 0) = 1$$

► Let us compute the entropy

= 0.414

$$H[p] = -\left[\frac{6}{10}\log_2\frac{6}{10} + \frac{4}{10}\log_2\frac{4}{10}\right] = 0.971$$

▶ and $H_{\ell}[p]$

$$H_1[p] = -\left\{\frac{8}{10}\left[\frac{5}{8}\log_2\frac{5}{8} + \frac{3}{8}\log_2\frac{3}{8}\right] + \frac{2}{10}\left[\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}\right]\right\}$$

$$= 0.964$$

$$= 0.964$$

$$H_2[p] = -\left\{\frac{9}{10}\left[\frac{6}{9}\log_2\frac{6}{9} + \frac{3}{9}\log_2\frac{3}{9}\right] + \frac{1}{10}\left[0\log_20 + 1\log_21\right]\right\}$$

$$= 0.826$$

$$H_3[p] = -\left\{\frac{7}{10}\left[\frac{6}{7}\log_2\frac{6}{7} + \frac{1}{7}\log_2\frac{1}{7}\right] + \frac{3}{10}\left[0\log_20 + 1\log_21\right]\right\}$$

► and then

$$I_1[p] = 0.007$$

 $I_2[p] = 0.145$
 $I_3[p] = 0.557$

► Since the largest information gain is associated to x_3 we use this feature to split the data:

	<i>x</i> ₁	<i>x</i> ₂	$x_3 = 1$	t
0	1	1	1	1
1	1	1	1	1
3	0	1	1	1
4	1	1	1	1
5	1	1	1	1
8	1	1	1	1
9	0	1	1	0

	<i>x</i> ₁	<i>x</i> ₂	$x_3 = 0$	t
2	1	1	0	0
6	1	0	0	0
7	1	1	0	0

Let us consider first $p(t, x_3 = 1)$ and $p(x_{\ell \neq 3}, x_3 = 1)$

$$p(t = 1|x_3 = 1) = \frac{6}{7}$$
 $p(t = 0|x_3 = 1) = \frac{1}{7},$ $p(x_1 = 1|x_3 = 1) = \frac{5}{7}$ $p(x_1 = 0|x_3 = 1) = \frac{2}{7},$ $p(x_2 = 1|x_3 = 1) = 1$ $p(x_2 = 0|x_3 = 1) = 0,$

and the other marginals

$$p(t = 1|x_1 = 1, x_3 = 1) = 1$$
 $p(t = 0|x_1 = 1, x_3 = 1) = 0$
 $p(t = 1|x_1 = 0, x_3 = 1) = \frac{1}{2}$ $p(t = 0|x_1 = 0, x_3 = 1) = \frac{1}{2}$

$$p(t = 1|x_2 = 1, x_3 = 1) = \frac{6}{7}$$
 $p(t = 0|x_2 = 1, x_3 = 1) = \frac{1}{7}$
 $p(t = 1|x_2 = 0, x_3 = 1) = 0$ $p(t = 0|x_2 = 0, x_3 = 1) = 0$

observe that the event with $x_3 = 1$ and $x_2 = 0$ does not occur therefore we cannot define the probability.

Let us compute the entropy

$$H[p, x_3 = 1] = -\left[\frac{6}{7}\log_2\frac{6}{7} + \frac{1}{7}\log_2\frac{1}{7}\right] = 0.592$$

▶ and $H_{\ell}[p]$

$$H_1[p, x_3 = 1] = -\left\{\frac{5}{7}\left[1\log_2 1 + 0\log_2 0\right] + \frac{2}{7}\left[\frac{1}{2}\log_2 \frac{1}{2} + \frac{1}{2}\log_2 \frac{1}{2}\right]\right\}$$

$$= 0.286$$

$$H_1[p, x_3 = 1] = -\left\{\frac{5}{7}\left[1\log_2 1 + 0\log_2 0\right] + \frac{2}{7}\left[\frac{1}{2}\log_2 \frac{1}{2} + \frac{1}{2}\log_2 \frac{1}{2}\right]\right\}$$

$$H_2[p, x_3 = 1] = -\left\{1\left[\frac{6}{7}\log_2\frac{6}{7} + \frac{1}{7}\log_2\frac{1}{7}\right] + 0 \text{ [undefined]}\right\}$$

= 0.592

► and then

$$I_1[p, x_3 = 1] = 0.307$$

 $I_2[p, x_3 = 1] = 0$

▶ Since the largest information gain is associated to x_3 we use this feature to split the data:

	$x_1 = 1$	<i>x</i> ₂	$x_3 = 1$	t
0	1	1	1	1
1	1	1	1	1
4	1	1	1	1
5	1	1	1	1
8	1	1	1	1

		$x_1 = 0$	<i>x</i> ₂	$x_3 = 1$	t
	3	0	1	1	1
Ì	9	0	1	1	0

► Final tree

