Entrega P2

Matias Bajac

2023-06-12

Ejercicio 3.84

Aplicamos la **desigualdad de Jensen**, $\phi(\mathbf{E}(X) \leq \mathbf{E} \phi(X))$.

Tenemos que $\phi(x)$ es convexa ya que $\phi''(x) > 0$

$$\mathbf{E}(\phi(x)) = \mathbf{E}(e^x) = \underbrace{\sum_{m=1}^{n} p(m) y_m}_{\text{Por definición de esperanza}}$$

$$\phi(\mathbf{E}(X) = exp(\sum_{m=1}^{n} p(m) \log(y_m))$$

$$\underbrace{\exp(\log \prod_{m=1}^{n} y_m^{p(m)})}_{\text{Por propiedad}} = \prod_{m=1}^{n} y_m^{p(m)})$$

entonces por la desigualdad de Jensen podemos concluir que

$$\exp \mathbf{E}(X) \le \mathbf{E}(e^x)$$

Ejercicio 4.5

Si $X_n \stackrel{L^2}{\rightarrow} X$ entonces $X_n \stackrel{P}{\rightarrow} X$

Para todo $\epsilon > 0$

$$\Pr(|X_n - X| > \epsilon) = \Pr(|X_n - X|^2 > \epsilon^2) \le \mathbf{E}\left(\frac{|X_n - X|^2}{\epsilon^2}\right) \xrightarrow{n} 0$$

Usando la desigualdad de Chebyshev - Markov, queda probado que Si $X_n \stackrel{L^2}{\to} X$ entonces $X_n \stackrel{p}{\to} X$.

• El recíproco no es cierto.