Vers une nouvelle politique énergie-climat:

Méthodologie de construction des trajectoires pour réduire les émissions de CO2 dans le secteur électrique au Vietnam

Dang Van Thanh – EDDEN-PACTE

Introduction

- Défi du changement climatique et action dans les PED
- Approche sectorielle de la politique énergie-climat
- Trois grands défis pour le secteur électrique vietnamien
 - Très forte augmentation de la demande
 - Sécurité d'approvisionnement électrique
 - Réduction des émissions de GES
- Nécessité d'une transition énergétique dans le secteur électrique du Viêtnam

Méthodologie

Graphique 1. Démarche de la réduction des émissions de CO2

Méthodologie

• L'approche de la construction des scénarios dans les études (Elie et al., 2013), (Arditi, 2012), (Alazard-Toux et al., 2014), et (Aldy et al, 2008)

• L'outil de simulation du secteur électrique ELECSIM (Criqui, 2013)

• Source de données: Etat vietnamien (ministères), Enerdata, TECHPOL, IEA, BP TECHPOL

Hypothèse économique

Hypothèse de relation entre consommation électrique par tête et revenu par tête

Hypothèse de l'objectif de réduction de CO2

Nous utilisons le « benchmark » de l'intensité carbone du secteur électrique dans l'étude de (SDSN et IDDRI 2014) pour calculer des objectifs pour la réduction des émissions de CO2. Ces objectifs sont le contrainte introduite de réduction de CO2 par les différents moyens comme l'amélioration de l'efficacité énergétique et la décarbonisation de la production électrique par les technologies nucléaire, renouvelables et du CCS (Carbon capture and storage) (Williams et al., 2012).

Les principaux résultats des scénarios

- On retient ici trois scénarios (parmi les six scénarios produits) représentant deux niveaux de la démarche de réduction CO2
- On a retenu 5 catégories de variables. Parmi lesquelles:
- ➤ Mix de production électrique
- > Capacité installée
- Quelques indicateurs de la contexte et contraintes de la politique énergie-climat

Les principaux résultats du scénario REF

Demande d'électricité du scénario REF (TWh)

Capacité installées du scénario REF (MW)

Quelques indicateurs du scénario REF

Scénario REF		2010	2020	2030	2040	2050
Contexte	Croissance du PIB (%/année)	6.42	5.57	4.71	3.86	3.00
	Croissance de la population (%/année)	1.09	0.84	0.46	0.22	0.11
Politique	Croissance de la demande électrique (%/année)	14.10	6.27	5.10	4.04	3.09
énergie-	Croissance de l'intensité énergétique (%/année)	9.04	-0.16	-0.08	-0.05	-0.03
climat	Emission de CO2 (Million de tonne)	11	61	125	233	363
Accessibilité	Consommation électrique/tête (kWh/habitant)	1.000	1.904	3.093	4.656	6.472
	Capacité électrique/tête (kW/habitant)	0,2	0,4	0,6	0,9	1,2
Acceptabilité	Emission de CO2/kWh (gCO2/kWh)	433	334	392	468	517
Energie	Hydroélectricité (%)	32	34	22	14	10
renouvelable	Electricité renouvelable hors Hydroélectricité (%)	2	7	12	8	6

Les principaux résultats du scénario EFF

Demande d'électricité du scénario EFF (TWh)

Capacité installées du scénario EFF (MW)

Quelques indicateurs du scénario EFF

Scénario EFF		2010	2020	2030	2040	2050
Contexte	Croissance du PIB (%/année)	6.42	5.57	4.71	3.86	3.00
	Croissance de la population (%/année)	1.09	0.84	0.46	0.22	0.11
Politique	Croissance de la demande électrique (%/année)	14.10	4.93	4.32	3.60	2.83
énergie-	Croissance de l'intensité énergétique (%/année)	9.04	-0.16	-0.08	-0.05	-0.03
climat	Emission de CO2 (Million de tonne)	11	44	84	137	210
Accessibilité	Consommation électrique/tête (kWh/habitant)	1.000	1.687	2.489	3.543	4.768
	Capacité électrique/tête (kW/habitant)	0.2	0.4	0.6	0.7	0.9
Acceptabilité	Emission de CO2/kWh (gCO2/kWh)	433	272	328	361	404
Energie	Hydroélectricité (%)	32	39	26	18	14
renouvelable	Electricité renouvelable hors Hydroélectricité (%)	2	10	13	11	9

Les principaux résultats du scénario REN

Demande d'électricité du scénario REN (TWh)

Capacités installées du scénario REN (MW)

Quelques indicateurs du scénario REN

Scénario REN		2010	2020	2030	2040	2050
Contexte	Croissance du PIB (%/année)	6.42	5.57	4.71	3.86	3.00
	Croissance de la population (%/année)	1.09	0.84	0.46	0.22	0.11
Politique	Croissance de la demande électrique (%/année)	14.10	6.27	5.10	4.04	3.09
énergie-	Croissance de l'intensité énergétique (%/année)	9.04	-0.16	-0.08	-0.05	-0.03
climat	Emission de CO2 (Million de tonne)	11	29	30	31	32
Accessibilité	Consommation électrique/tête (kWh/habitant)	1.000	1.904	3.093	4.656	6.472
	Capacité électrique/tête (kW/habitant)	0,2	0,4	0,7	1,0	1,5
Acceptabilité	Emission de CO2/kWh (gCO2/kWh)	433	188	117	81	61
Energie	Hydroélectricité (%)	32	34	22	14	10
renouvelable	Electricité renouvelable hors Hydroélectricité (%)	2	21	28	33	40

Conclusion

- Le scénario CCS n'est pas satisfaisant sur les deux critères utilisés (coût d'investissement élevé et émanation de CO2) du fait des incertitudes technologiques.
- Le scénario nucléaire, conditionné par le débat politique et environnemental, semble le choix le plus judicieux si on considère en priorité les coûts totaux.
- Le scénario renouvelable est particulièrement intéressant, car il est moins sujet aux risques d'opposition que celui nucléaire.
- Enfin, le scénario équilibré, bien qu'il soit plus coûteux que celui nucléaire, permet d'être moins dépendant d'une seule filière, ce qui accroît la sécurité de l'approvisionnement de l'électricité du pays.