Symmetric group $S_n = \{ \text{ bijections } X \rightarrow X \}$ $X = \{1, 2, 3, ..., n \}$ permutations

Array notation: $\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 3 & 5 \end{bmatrix}$

<u>Cyclic notation:</u> $\sigma = (1 \ 2) (3 \ 4) (3) = (12)(34)$ To disjoint

Every TeSn is a product of dujoint ageles:

 $0 = \begin{bmatrix} 1 & 3 & 2 & 4 & 8 & 5 & 7 & 8 \\ 1 & 3 & 2 & 4 & 8 & 5 & 7 & 6 \end{bmatrix} = (1)(23)(4)(586)$

Note: disjoint cycles commute: $\alpha\beta = \beta\alpha$, so $(\alpha\beta)^k = \alpha^k\beta^k$

(a, p divjoint)

not true for not disjoint, e.g. $(12)(23) \neq (23)(12)$

(123) / (132)

Recall, if $\sigma \in S_n$, order $O(\sigma) = k$ where k is min s.t. $\alpha^k = 1$. Thus O(k ayde) = k.

Definition 4 12: A transposition is a 2-cycle.

Eseample: (23), (6,8), (...)

Proposition 4.13: Any k-cycle is a product of transposition.

Proof: (1,2,3,...,k) = (1k)(1k-1)(1k-2)...(13)(12) (= (123...))

(check!)

Corollary 4.14: Any permutation is a product of transposition.

Proof: expely 4.13 to explic decomposition.

Proposition 4.15: Every permutation can be withen as a product of either even it of transposition or odd it of transposition, but not both

then ...
$$(ab) = \sigma(ab) = ... (ab)^2$$
 identity

Full proof in MA3131 Groups and Symmetry.

Befinition 4.16: H τ \in S_n can be written as the product of an even (resp. odd) number of transposition. Then we say that τ is even (resp. odd) and its sign $sgn(\tau) = +1$ (resp. -1).

Note: Nove well-defined function som: Sn -> {+1,-13

huma 4.17: zgn (Tu) = zgn (T) zgn (u)

(nove) blos 4, o rof shaha). naela: joarg

(Note: by 4.17, sqn: $S_n \longrightarrow \{213 \text{ is a group howomorphism.})$

Lemma 4.18: (1)
$$f = 1_x$$
 (identity) then $sgn(1_x)=1$ ($1_x=(12)(12)$)

(2) If
$$\sigma$$
 is a product of m transposition, then $sgn(\sigma) = (-1)^m$

(3) If
$$\sigma$$
 is k -cycle then $sgn(\sigma) = (-1)^{k-1}$

Proof: (1)
$$I_{x} = (17)(12)$$
 so $sgn(I_{x}) = 1$.
(2) by 4.17, $sgn(T) = sgn((...)(...)) = sgn(...)$. $sgn(...) \Rightarrow m$ transposition = (-1)^m
(3) use 4.13 (M-cycle = product of k-1 transposition)

Example: Easy to find
$$sgn(\sigma)$$
 for any σ , e.g. if $\sigma = (1+2)(3879)(57)$ then $sgn(\sigma) = sgn(1+2) \cdot sgn(3879) \cdot sgn(57) = (-1)^2 \cdot (-1)^3 \cdot (-1)^4$

$$= (-1)^6$$

so Tis even.