Eshetu Wekjira

Lab 07- Adder/Subtractor

Task 1: 1-bit Full Adder

B) Truth Table

A	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

C) Sum of products

Sum = A'B'Cin + A'BCin' + AB'Cin' + ABCin

Cout = A'BCin +AB'Cin +ABCin' +ABCin

To find the sum of the product just by the sum of all the values of output 1. In this case, the output is (sum and Cout).

D) K-Map for Sum

BCin	00	01	11	10
A				
0	0	1	0	1
1	1	0	1	0

We can't minimize the sum values of the k-map

Sum = A'B'Cin + A'BCin' + AB'Cin' + ABCin

K- Map for Cout

BCin	00	01	11	10
A				
0	0	0	1	0
		-		
1	0 (1	1	1

Cout = AB + BCin + ACin

E, F) Implement a Full adder

After I found the truth tables for the Sum and Cout, I tried to use different gates to see the result that much with sum or Cout, and after trying and error; I got the three circuit gates that gave the correct output that much my truth tables for Sum and Cout.

Figure 1: The digital schematic for the adder

The test result for the **Sum** schematic

Figure 2: test result of the sum schematic

The test result for the **Cout** schematic

Figure 3: test result of the Cout schematic

Task 2: Adder/Subtractor

In this case, we have three inputs and two outputs, such as the sum and Cout; in this case, the Cout is the previous borrow value and is not a carryout. We must borrow values to subtract one or more from zeros in a subtractor circuit.

Figure 4: The digital schematic for the adder/subtractor

The test results for the **Cout** schematic; in this case, Cout is the previous borrow values.

Figure 5: test result of the Subtractor schematic