

Series Circuits

PSI Physics

Name	Date:	Period:

Objectives:

- Measure and calculate voltage drops across any part of a series circuit
- Measure and calculate the current through any part of a series circuit
- Find the equivalent resistance for a series circuit

Materials:

- Battery (or DC Power Source)
- Connecting wires
- Two resistors
- Knife switch
- Ammeter
- Voltmeter

Series Circuits

Series circuits are circuits where all the resistors are along one path that has no branches.

Procedure: For each of circuits 1, 2 and 3 below:

- 1. Construct the circuit. Make sure that the ammeter is in line with the resistors, and that the voltmeter is connected as shown.
- 2. Record the current and voltage drops.

Data:

Ci	Circuit 1		Circuit 2		uit 3
I	V	I ₁	V_1	I_2	V ₂

Series Circuits

PSI Physics

Analysis:

Use Ohm's Law to calculate the resistance for each circuit.

Resistances				
Circuit 1	Circuit 2	Circuit 3		
$R_{\text{equivalent}} = \frac{V}{I}$	$R_1 = \frac{V_1}{I_1}$	$R_2 = \frac{V_2}{I_2}$		

Use the information in the Data Collection and Analysis Tables to answer the following questions:

- 1. How is the current, I, related to the other two currents, I_1 and I_2 ? Write an equation that describes the relationship.
- 2. How is the voltage, V, related to the other two voltage drops, V_1 and V_2 ? Write an equation that describes the relationship.
- 3. How is the equivalent resistance, $R_{equivalent}$, related to the two resistances, R_1 and R_2 ? Write an equation that describes the relationship.
- 4. A 9V battery is connected to two resistors in series ($R_1 = 12 \Omega$ and $R_2 = 33 \Omega$).
 - a. What is the equivalent resistance, R_{equivalent}, for the circuit?
 - b. What is the current, I, through the circuit? (use V = IR)
 - c. What is the voltage drop, V_1 , across resistor R_1 ? (use V = IR)

2

Series Circuits

PSI Physics

- 5. If you add a third resistor in series with the other two...
 - a. Will R_{equivalent}, increase, decrease or stay the same? Why?
 - b. Write the equation for R_{equivalent} for three resistances (R₁, R₂, and R₃) in series.
 - c. Does V, the voltage drop across all the resistors, increase, decrease or stay the same? Why?
 - d. Does I, the current through the circuit, , increase, decrease or stay the same? Why?
 - e. Does the voltage drop across R₁, increase, decrease or stay the same? Why?