Петля гистерезиса (динамический метод) (3.4.5)

Стеценко Георгий, Б02-312

1 Цель работы

Изучение петель гистерезиса различных ферромагнитных материалов в переменных полях.

2 Теоретические сведения

Магнитная индукция B и напряжённость поля H в ферромагнитном материале неоднозначно связаны между собой: индукция зависит не только от напряжённости, но и от предыстории образца. Связь между B и H типичного ферромагнетика иллюстрирует рисунок 1.

Если к ферромагнитному образцу прикладывать переменное внешнее магнитное поле, то его состояние на плоскости H-B будет изменяться по замкнутой кривой – $nemne\ sucmepesuca$. Резмер петли определяется максимальным значением напряжённости H в цикле (например, петля AA', обозначенная пунктиром на рисунке 1). Если амплитуда напряжённости достаточно велика, то образец будет периодически достигать hacumenum, что на рисунке 1 соответствует кривой CERC'E'F'C (npedenum $nemns\ sucmepesuca$). Пересечение предельной петли с вертикальной осью соответствует остаточной индукции B_r , пересечение с горизонтальной осью – коэрцитивному полю H_c . Крайние точки петель, соответствующие амплитудным значениям H (например, точка A на рисунке 1), лежат на $havanbhoù\ кривоù\ hamashuvuвания\ (OAC)$.

Рис. 1: Теоретический вид петли гистерезиса.

Измерение магнитной индукции. Магнитную индукцию B удобно определять с помощью ЭДС, возникающей при измерении магнитного потока Φ в катушке, намотанной на образец. Пусть катушка с N витками плотно охватывает образец сечением S, и индукция B в образце однородна. Тогда

$$|B| = \frac{1}{SN} \int \mathscr{E} dt.$$

Таким образом, для определения *В* нужно проинтегрировать сигнал, наведённый меняющимся магнитным полем в измерительной катушке, намотанной на образец.

Для интегрирования в работе используется интегрирующая RC-цепочка. Входное напряжение от источника $U_{\text{вк}}(t)$ подаётся на последовательно соединённые резистор $R_{\text{и}}$ и конденсатор $C_{\text{и}}$. Выходное напряжение $U_{\text{вых}}(t)$ снимается с конденсатора. Предположим, что (1) сопротивление источника мало по сравнению с $R_{\text{и}}$; (2) выходное сопротивление (сопротивление на входе осциллографа), напротив, велико: $R_{\text{вых}} \gg R_{\text{и}}$; и, наконец, (3) сопротивление $R_{\text{и}}$ достаточно велико, так что почти всё падение напряжения приходится на него, а $U_{\text{вых}} \ll U_{\text{вх}}$. В таком случае ток цепи равен $I = \frac{U_{\text{вх}} - U_{\text{вых}}}{R_{\text{и}}} \approx \frac{U_{\text{вх}}}{R_{\text{и}}}$, и входное и выходное сопротивление связаны соотношением

$$U_{\scriptscriptstyle \rm BMX} \frac{q}{C_{\scriptscriptstyle \rm H}} = \frac{1}{C_{\scriptscriptstyle \rm H}} \int_0^t I \mathrm{d}t \approx \frac{1}{\tau_{\scriptscriptstyle \rm H}} \int_0^t U_{\scriptscriptstyle \rm BX} \mathrm{d}t,$$

где $au_{\tt u} = R_{\tt u} C_{\tt u}$ – постоянная времени RC-цепочки. Для индукции поля получаем

$$|B| = \frac{1}{SN} \int U_{\text{bx}} dt = \frac{\tau_{\text{ii}}}{SN} U_{\text{bx}}.$$

Уточним, когда наше предположение справедливо. Необходимо, чтобы было выполнено

$$U_{ ext{bux}}/U_{ ext{bx}} = rac{rac{1}{\omega C_{ ext{m}}}}{\sqrt{R_{ ext{m}}^2 + rac{1}{\omega^2 C_{ ext{m}}^2}}},$$

то есть $R\gg \frac{1}{\omega C}$, что равносильно $au_{\rm H}=R_{\rm H}C_{\rm H}\gg \frac{1}{\omega}$ (характерное время релаксации много больше периода вынужденных колебаний).

3 Методика измерений и результаты

В работе используются: автотрансформатор, понижающий трансформатор, интегрирующая цепочка, амперметр, вольтметр, электронный осциллограф, делитель напряжения, тороидальные образцы с двумя обмотками.

Рис. 2: Схема установки

Пользуясь уравнениями Максвелла, поймём, как в нашей работе связаны мгновенные значения напряжений с индукцией и напряжённостью магнитного поля.

$$H = \frac{N_0 U_R}{R_0 \cdot 2\pi R} \tag{1}$$

$$B = \frac{R_{\rm H} C_{\rm H} U_C}{N_{\rm H} S} \tag{2}$$

3.1 Подготовка. Проверка калибровки осциллографа

Горизонтальная ось. Здесь контакты, которые шли на намагничивающий контур N_0 закорачиваются. При масштабе клетки в 10 mV действующему значению тока в 56.12 mA через резистор $R_0 = 0.3~\Omega$ соответствовал размах на осциллографе, равный 5.0 клеткам.

$$I_{osc}^{\pi} = \frac{50 \text{ mV}}{2 \cdot 0.3 \Omega} \cdot \frac{1}{\sqrt{2}} = 58.9 \text{ mA},$$

что достаточно хорошо совпадает с измеренным на амперметре действующим значением. Корректировка значений с осциллографа не требуется.

Вертикальная ось. Здесь измерение происходит в калибровочном контуре (верхняя вторичная обмотка на трансформаторе T). При масштабе клетки в 50~mV действующему значению напряжения в 13.5~V на калибровочном делителе 1:100~соответствовал размах на осциллографе, равный 7.8~клеткам.

$$U_{osc}^{\text{A}} = 7.8 \cdot 50 \text{ mV} \cdot 100 \cdot \frac{1}{\sqrt{2}} = 13.8 \text{ V},$$

что достаточно хорошо совпадает с измеренным на вольтметра действующим значением. Корректировка значений с осциллографа не требуется.

3.2 Подготовка. Проверка предположения о линейности переходной характеристики интегрирующей цепи

Подадим на участок RC переменное напряжение, и снимем показания напряжения на всём участке и только на конденсаторе. $2U_{\rm C.m}=7.6\cdot 20~{\rm mV}=152~{\rm mV}, 2U_{\rm RC.m}=3.8*5~{\rm V}=19~{\rm V}, \frac{Z_{\rm C}}{Z_{\rm CR}}\approx \frac{1}{\omega\cdot CR}\approx 0.8\%\ll 1.$ Значит, наше предположение выполнено, и CR-делитель действительно можно считать интегрирующей цепочкой.

3.3 Петля гистерезиса на экране осциллографа

На рис. 2 изображена схема экспериментальной установки. Напряжение с латра, работающего в диапазоне $0 \sim 250 \text{ V}$, понижается на трансформаторе T и подаётся на контур с исследуемой катушкой. Ток в первичной обмотке, пропорциональный напряженности магнитного поля, измеряется токоизмерительным резистором R_0 , а интеграл ЭДС индукции во вторичной обмотке, пропорциональное индукции магнитного поля, измеряется по величине напряжения на конденсатора $C_{\text{и}}$ в интегрирующей цепочке.

Перечислим свойства исследуемых катушек:

Таблица 1: Характеристики катушек

Материал	N_0	$N_{\scriptscriptstyle \mathrm{II}}$	S^2 , cm ²	$2\pi R$, cm
Феррит	35	400	3.0	25
Пермаллой	40	200	3.8	24
Крем. железо	25	250	2.0	11

Снимем предельные петли гистерезиса и будем медленно их уменьшать, чтобы по концам петель восстановить кривую намагничивания. Результаты измерений приведены в векторизированном виде на рис. 3.

Рис. 3: Кривые гистерезиса (зелёным цветом) и криывые намагничивания (красным). Слева направо: пермаллой, кремнистое железо, феррит

Видно, что была допущена ошибка при измерении для пермаллоя: начальная кривая намагничивания не выходит на насыщение. Это означает, что была снята не предельаня петля гистерезиса,

а одна из меньших. Тем не менее, дифференциальную магнитную проницаемость всё ещё можно измерить.

Пользуясь соотношениями (1) и (2), пересчитаем масштаб по осям для каждой катушки:

Таблица 2: Коэффициенты усиления

Материал	K_x , mV/div	$K_y, \mathrm{mV/div}$	B_0 , mT/div	H_0 , A/m/div
Пермаллой	10	50	52.6	11.1
Крем. железо	20	10	80.0	15.2
Феррит	50	50	167	23.3

Тогда по графикам найдём и искомые величины:

Таблица 3: Полученные характеристики сплавов

Материал	$H_c, A/m$	B_r, mT	$\mu_{\mathrm{dif}}^{max}, 1$	B_s, mT
Пермаллой	_		9800	l
Крем. железо	12	184	8800	360
Феррит	21	220	6300	580

4 Обсуждение результатов и вывод

Были получены кривые гистерезиса для катушек из трёх различных материалов. Для них так же были построены кривые начального намагничивания. В ходе обработки обнаружилось, что для одного из образцов точно была снята характеристика, далёкая от предельной. Тем не менее, была показана возможность пользоваться описанной схемой для построения петли гистерезиса в реальном времени и получены некоторые численные результаты, которые хоть и достаточно далеки от табличных, всё же близки к ним по порядку.