CENG 391 Introduction to Image Understanding

November 3, 2016

Harris Corner Detector

Write a C++/Python program that takes an argument as the name of an image and operates the following tasks.

- 1. Read the image ("img1.ppm")
- 2. Calculate first gradient images in both x and y directions and obtain I_x and I_y .
- 3. Then define a Gaussian window as follows: $G_{x,y} = \exp \frac{-(x^2+y^2)}{2\sigma^2}$ where x and y are the coordinates of the corresponding pixel.
- 4. Obtain following images:
 - $--I_A = G(I_x^2)$
 - $-I_B = G(I_y^2)$
 - $-I_C = G(I_x I_y)$ where G denotes the smoothing window.
- 5. Construct a matrix S so that: $\begin{bmatrix} I_A & I_C \\ I_C & I_B \end{bmatrix}$
- 6. Then calculate corner response of the pixel p by the following formula: $R_p = \lambda(S)_p k * T(S)_p^2$, where
 - $\lambda(S)$ is the determinant of the matrix S and can be found as follows: $\lambda(S) = I_A I_B I_C^2$.

— T(S) is the trace of the matrix S and can be found as follows: $T(S) = I_A + I_B$.

Value of the R_p determines the type of the region that pixel p locates as it is indicated in the below.

- R_p is a large for corner.
- R_p is negative with large magnitude for an edge.
- $|R_p|$ is small for a flat region.
- 7. Applying non-maxima supression. Pick 8-way local maximas as corner canditates.
- 8. You should determine the threshold for R on your own and construct a set of corners.
- 9. Draw final set of corners on the image by using "drawKeypoints()" method of OpenCV and save the image as "img1_corners.png".

NOTE: Take k = 0.04 and $\sigma = 2.0$