Package 'stability'

September 29, 2024

Type Package

NeedsCompilation no

```
Title Stability Analysis of Genotype by Environment Interaction (GEI)
Version 0.6.0
Maintainer Muhammad Yaseen <myaseen208@gmail.com>
Description Provides functionalities for performing stability analysis of genotype by environment in-
     teraction (GEI) to identify superior and stable genotypes across diverse environments. It imple-
     ments Eberhart and Rus-
     sell's ANOVA method (1966)(<doi:10.2135/cropsci1966.0011183X000600010011x>), Fin-
     lay and Wilkinson's Joint Linear Regres-
     sion method (1963) (<doi:10.1071/AR9630742>), Wricke's Ecova-
     lence (1962, 1964), Shukla's stability variance parame-
     ter (1972) (<doi:10.1038/hdy.1972.87>), Kang's simultaneous selection for high yield and stabil-
     ity (1991) (<doi:10.2134/agronj1991.00021962008300010037x>), Additive Main Ef-
     fects and Multiplicative Interaction (AMMI) method and Genotype plus Genotypes by Environ-
     ment (GGE) Interaction methods.
URL https://myaseen208.com/stability/
     https://CRAN.R-project.org/package=stability
BugReports https://github.com/myaseen208/stability/issues
Depends R (>= 3.1)
Imports dplyr, ggplot2, ggfortify, lme4, magrittr, matrixStats,
     reshape2, rlang, scales, stats, tibble, tidyr
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
Note 1. School of Mathematical & Statistical Sciences, Clemson
     University, Clemson, South Carolina, USA 2. Department of
     Mathematics and Statistics, University of Agriculture
     Faisalabad, Faisalabad, Pakistan
```

2 add_anova

```
Author Muhammad Yaseen [aut, cre, cph]
(<a href="https://orcid.org/0000-0002-5923-1714">https://orcid.org/0000-0002-5923-1714</a>),
Kent M. Eskridge [aut, ctb]

Repository CRAN
```

Date/Publication 2024-09-29 06:30:02 UTC

Contents

add_a	anova	Ad		A	NC	OVA	f	or	G	ien	ot _.	уp	es	b.	y I	En	vir	on	me	eni	t I	nt	er	ас	tio	on	(GI	EI)	
Index																														22
	stab_reg	 • •	 •		•		•	•	•		•	•	•		•	•	•	•	•	•	•		•	•	•	٠	٠	•		20
	stab_par																													19
	stab_measures .																													18
	stab_masv																												•	17
	stab_kang																													16
	stab_fox																												-	15
	stab_dist	 					•				•				•															14
	stab_asv																												•	13
	stability	 																												12
	indiv_anova	 																												11
	gge_biplot	 																												10
	ge_means	 																												9
	ge_effects	 																												8
	ge_data	 																												7
	er_anova																													6
	ammi_biplot																													5
	ammi																													3
	add_anova	 																												2

Description

Additive ANOVA for Genotypes by Environment Interaction (GEI) model

Usage

```
add_anova(.data, .y, .rep, .gen, .env)
## Default S3 method:
add_anova(.data, .y, .rep, .gen, .env)
```

ammi 3

Arguments

.data	data.frame
. y	Response Variable
.rep	Replication Factor
.gen	Genotypes Factor
.env	Environment Factor

Value

Additive ANOVA

Author(s)

- 1. Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

References

Singh, R. K. and Chaudhary, B. D. (2004) *Biometrical Methods in Quantitative Genetic Analysis*. New Delhi: Kalyani.

Examples

```
data(ge_data)
YieldANOVA <-
    add_anova(
        .data = ge_data
    , .y = Yield
    , .rep = Rep
    , .gen = Gen
    , .env = Env
)
YieldANOVA</pre>
```

ammi

Additive Main Effects and Multiplicative Interaction (AMMI)

Description

Performs Additive Main Effects and Multiplicative Interaction (AMMI) Analysis for Genotypes by Environment Interaction (GEI)

4 ammi

Usage

```
ammi(.data, .y, .rep, .gen, .env)
## Default S3 method:
ammi(.data, .y, .rep, .gen, .env)
```

Arguments

.data	data.frame
. y	Response Variable
.rep	Replication Factor
.gen	Genotypes Factor
. env	Environment Factor

Value

Stability Measures

Author(s)

- 1. Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

References

Singh, R. K. and Chaudhary, B. D. (2004) *Biometrical Methods in Quantitative Genetic Analysis*. New Delhi: Kalyani.

ammi_biplot 5

 ${\tt ammi_biplot}$

Additive Main Effects and Multiplicative Interaction (AMMI) Biplot

Description

Plots Additive Main Effects and Multiplicative Interaction (AMMI) for Genotypes by Environment Interaction (GEI)

Usage

```
ammi_biplot(.data, .y, .rep, .gen, .env)
## Default S3 method:
ammi_biplot(.data, .y, .rep, .gen, .env)
```

Arguments

.data	data.frame
. y	Response Variable
.rep	Replication Factor
.gen	Genotypes Factor
.env	Environment Factor

Value

Stability Measures

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

References

Singh, R. K. and Chaudhary, B. D. (2004) *Biometrical Methods in Quantitative Genetic Analysis*. New Delhi: Kalyani.

6 er_anova

er_anova

Eberhart & Russel's Model ANOVA

Description

ANOVA of Eberhart & Russel's Model

Usage

```
er_anova(.data, .y, .rep, .gen, .env)
## Default S3 method:
er_anova(.data, .y, .rep, .gen, .env)
```

Arguments

.data	data.frame
. y	Response Variable
.rep	Replication Factor
.gen	Genotypes Factor
.env	Environment Factor

Value

Additive ANOVA

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

References

Singh, R. K. and Chaudhary, B. D. (2004) *Biometrical Methods in Quantitative Genetic Analysis*. New Delhi: Kalyani.

ge_data 7

Examples

ge_data

Data for Genotypes by Environment Interaction (GEI)

Description

ge_data is used for performing Genotypes by Environment Interaction (GEI) Analysis.

Usage

```
data(ge_data)
```

Format

A data. frame 1320 obs. of 6 variables.

Details

- Gen Genotype
- Institute Institute
- Rep Replicate
- Block Block
- Env Environment
- Yield Yield Response

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

References

Singh, R. K. and Chaudhary, B. D. (2004) *Biometrical Methods in Quantitative Genetic Analysis*. New Delhi: Kalyani.

8 ge_effects

Examples

```
data(ge_data)
```

ge_effects

Genotype by Environment Interaction Effects

Description

Calcuates Genotype by Environment Interaction Effects

Usage

```
ge_effects(.data, .y, .gen, .env)
## Default S3 method:
ge_effects(.data, .y, .gen, .env)
```

Arguments

.data	data.frame
. у	Response Variable
.gen	Genotypes Factor
.env	Environment Factor

Value

Effects

Author(s)

- 1. Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

References

Singh, R. K. and Chaudhary, B. D. (2004) *Biometrical Methods in Quantitative Genetic Analysis*. New Delhi: Kalyani.

ge_means 9

Examples

ge_means

Genotype by Environment Interaction Means and Ranks

Description

Calcuates Genotype by Environment Interaction Means along with their Ranks

Usage

```
ge_means(.data, .y, .gen, .env)
## Default S3 method:
ge_means(.data, .y, .gen, .env)
```

Arguments

.data	data.frame
. y	Response Variable
.gen	Genotypes Factor
.env	Environment Factor

Value

Means and Ranks

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

10 gge_biplot

References

Singh, R. K. and Chaudhary, B. D. (2004) *Biometrical Methods in Quantitative Genetic Analysis*. New Delhi: Kalyani.

Examples

gge_biplot

Genotype plus Genotypes by Environment (GGE) Interaction Biplot

Description

Plots Genotype plus Genotypes by Environment (GGE) Interaction Biplot for Genotypes by Environment Interaction (GEI)

Usage

```
gge_biplot(.data, .y, .rep, .gen, .env)
## Default S3 method:
gge_biplot(.data, .y, .rep, .gen, .env)
```

Arguments

.data	data.frame
. у	Response Variable
.rep	Replication Factor
.gen	Genotypes Factor
.env	Environment Factor

indiv_anova 11

Value

Stability Measures

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

References

Singh, R. K. and Chaudhary, B. D. (2004) *Biometrical Methods in Quantitative Genetic Analysis*. New Delhi: Kalyani.

Examples

indiv_anova

Individual ANOVA for Each Environment

Description

Individual ANOVA for Each Environment

Usage

```
## Default S3 method:
indiv_anova(.data, .y, .rep, .gen, .env)
```

Arguments

.data	data.frame
. у	Response Variable
.rep	Replication Factor
.gen	Genotypes Factor
.env	Environment Factor

12 stability

Value

Additive ANOVA

Author(s)

- 1. Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)
- 3. Ghulam Murtaza (<gmurtaza208@gmail.com>)

References

Singh, R. K. and Chaudhary, B. D. (2004) *Biometrical Methods in Quantitative Genetic Analysis*. New Delhi: Kalyani.

Examples

stability

Stability Analysis of Genotype by Environment Interaction (GEI)

Description

The stability package provides functionalities to perform Stability Analysis of Genotype by Environment Interaction (GEI) to identify superior and stable genotypes under diverse environments. It performs Eberhart & Russel's ANOVA (1966), Finlay and Wilkinson (1963) Joint Linear Regression, Wricke (1962, 1964) Ecovalence, Shukla's stability variance parameter (1972) and Kang's (1991) simultaneous selection for high yielding and stable parameter.

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

stab_asv 13

stab_asv

Additive Main Effects and Multiplicative Interacion Stability Value

Description

Additive ANOVA for Genotypes by Environment Interaction (GEI) model

Usage

```
stab_asv(.data, .y, .rep, .gen, .env)
## Default S3 method:
stab_asv(.data, .y, .rep, .gen, .env)
```

Arguments

.data	data.frame
. y	Response Variable
.rep	Replication Factor
.gen	Genotypes Factor
.env	Environment Factor

Value

Additive ANOVA

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

References

Singh, R. K. and Chaudhary, B. D. (2004) *Biometrical Methods in Quantitative Genetic Analysis*. New Delhi: Kalyani.

14 stab_dist

YieldASV

 $\operatorname{stab_dist}$

Stability Distance in AMMI

Description

Stability Distance of Genotypes in Additive ANOVA for Genotypes by Environment Interaction (GEI) model

Usage

```
stab_dist(.data, .y, .rep, .gen, .env, .m = 2)
## Default S3 method:
stab_dist(.data, .y, .rep, .gen, .env, .m = 2)
```

Arguments

.data	data.frame
. y	Response Variable
.rep	Replication Factor
.gen	Genotypes Factor
.env	Environment Factor
. m	No of PCs retained

Value

Stability Distance

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

stab_fox

```
)
YieldDist
```

stab_fox

Stability Fox Function

Description

Performs a stability analysis based on the criteria of Fox et al. (1990), using the statistical "TOP third" only. In Fox function, a stratified ranking of the genotypes at each environment separately is done. The proportion of locations at which the genotype occurred in the top third are expressed in TOP output.

Usage

```
stab_fox(.data, .y, .rep, .gen, .env)
## Default S3 method:
stab_fox(.data, .y, .rep, .gen, .env)
```

Arguments

```
.data data.frame
.y Response Variable
.rep Replication Factor
.gen Genotypes Factor
.env Environment Factor
```

Author(s)

- 1. Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

References

1. Fox, P.N. and Skovmand, B. and Thompson, B.K. and Braun, H.J. and Cormier, R. (1990). Yield and adaptation of hexaploid spring triticale. *Euphytica*, **47**, 57-64.

stab_kang

```
, .gen = Gen
, .env = Env
)
YieldFox
```

stab_kang

Stability Kang Function

Description

Performs a stability analysis based on the Kang (1988) criteria. Kang nonparametric stability (ranksum) uses both "trait single value" and stability variance (Shukla, 1972), and the genotype with the lowest ranksum is commonly the most favorable one.

Usage

```
stab_kang(.data, .y, .rep, .gen, .env)
## Default S3 method:
stab_kang(.data, .y, .rep, .gen, .env)
```

Arguments

.data	data.frame
. y	Response Variable
.rep	Replication Factor
.gen	Genotypes Factor
.env	Environment Factor

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

References

- 1. Kang, M.S. (1988). A rank-sum method for selecting high-yielding, stable corn genotypes. *Cereal Research Communications*, **16**, 1-2.
- 2. Shukla, G.K. (1972). Some aspects of partitioning genotype environmental components of variability. *Heredity*, **29**, 237-245.

stab_masv 17

Examples

stab_masv

Modified Additive Main Effects and Multiplicative Interacion Stability Value

Description

Additive ANOVA for Genotypes by Environment Interaction (GEI) model

Usage

```
stab_masv(.data, .y, .rep, .gen, .env, .m = 2)
## Default S3 method:
stab_masv(.data, .y, .rep, .gen, .env, .m = 2)
```

Arguments

.data	data.frame
. y	Response Variable
.rep	Replication Factor
.gen	Genotypes Factor
.env	Environment Factor
. m	No of PCs retained

Value

Additive ANOVA

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

stab_measures

References

Singh, R. K. and Chaudhary, B. D. (2004) *Biometrical Methods in Quantitative Genetic Analysis*. New Delhi: Kalyani.

Examples

stab_measures

Stability Measures for Genotypes by Environment Interaction (GEI)

Description

Stability Measures for Genotypes by Environment Interaction (GEI)

Usage

```
stab_measures(.data, .y, .gen, .env)
## Default S3 method:
stab_measures(.data, .y, .gen, .env)
```

Arguments

.data	data.frame
. y	Response Variable
.gen	Genotypes Factor
.env	Environment Factor

Value

Stability Measures

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

stab_par

References

Singh, R. K. and Chaudhary, B. D. (2004) *Biometrical Methods in Quantitative Genetic Analysis*. New Delhi: Kalyani.

Examples

stab_par

Stability Parameters for Genotypes by Environment Interaction (GEI)

Description

Stability Parameters for Genotypes by Environment Interaction (GEI)

Usage

```
stab_par(.data, .y, .rep, .gen, .env, alpha = 0.1, .envCov = NULL)
## Default S3 method:
stab_par(.data, .y, .rep, .gen, .env, alpha = 0.1, .envCov = NULL)
```

Arguments

.data	data.frame
. y	Response Variable
.rep	Replication Factor
.gen	Genotypes Factor
.env	Environment Factor
alpha	Level of Significance, default is 0.1
.envCov	Environmental Covariate, default is NULL

Value

Stability Parameters

20 stab_reg

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

References

Singh, R. K. and Chaudhary, B. D. (2004) *Biometrical Methods in Quantitative Genetic Analysis*. New Delhi: Kalyani.

Examples

```
data(ge_data)
Yield.StabPar <-
  stab_par(
            .data = ge_data
                   = Yield
          , .у
          , .rep
                   = Rep
          , .gen
                   = Gen
          , .env
                   = Env
          , alpha = 0.1
          , .envCov = NULL
)
Yield.StabPar
```

stab_reg

Individual Regression for each Genotype

Description

Individual Regression for each Genotype in Genotypes by Environment Interaction (GEI)

Usage

```
stab_reg(.data, .y, .rep, .gen, .env)
## Default S3 method:
stab_reg(.data, .y, .rep, .gen, .env)
```

Arguments

.data	data.frame
. y	Response Variable
.rep	Replication Factor
.gen	Genotypes Factor
.env	Environment Factor

stab_reg 21

Value

Additive ANOVA

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Kent M. Edkridge (<keskridge1@unl.edu>)

References

Singh, R. K. and Chaudhary, B. D. (2004) *Biometrical Methods in Quantitative Genetic Analysis*. New Delhi: Kalyani.

Examples

Yield.StabReg

Index

```
\ast datasets
     ge_data, 7
\mathsf{add}_{\mathsf{anova}}, 2
ammi, 3
ammi_biplot, 5
er_anova, 6
ge_data, 7
ge_effects, 8
{\tt ge\_means}, \textcolor{red}{9}
{\tt gge\_biplot}, \textcolor{red}{10}
indiv_anova, 11
stab_asv, 13
\mathtt{stab\_dist}, \textcolor{red}{14}
stab_fox, 15
stab_kang, 16
stab_masv, 17
stab_measures, 18
stab_par, 19
stab_reg, 20
\verb|stability|, \\ 12
```