-> describer how the "Eigensystem" routine works:

- For exact or symbolic matrices m, the eigenvectors are not normalized.
- For approximate numerical matrices m, the eigenvectors are normalized.

Generalized equation for eigenvalues and eigenvectors:

$$M \sqrt{T} = \sqrt{T} \Lambda$$

$$q1 = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix} \qquad \boxed{ }$$

MVT = VT N N -> rectors N -> diagonal motor roated from the list of eigenvalues

In[17]:= Eigensystem[q1]

Out[17]=
$$\{\{4, -2, -2\}, \{\{1, 1, 2\}, \{-1, 0, 1\}, \{1, 1, 0\}\}\}$$

In[18]:= Eigensystem[q1][[1]]

Out[18]= $\{4, -2, -2\}$

ln[19]:= Eigensystem[q1][[2]]

Out[19]= $\{\{1, 1, 2\}, \{-1, 0, 1\}, \{1, 1, 0\}\}$

In[20]:= Eigensystem[q1][[2]] // MatrixForm

 ${\scriptstyle \mathsf{In}[22] \coloneqq } \ Transpose[Eigensystem[q1][[2]]] \ / / \ MatrixForm$

In[23]:= DiagonalMatrix[Eigensystem[q1][[1]]] // MatrixForm

MyT= VT)

I test the symbolic calculation

B test numerical calculation