LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING Funktionsteori 2015–10–29 kl 14–19

Hjälpmedel: Bifogat formelblad.

Lösningarna skall vara försedda med ordentliga motiveringar. Skriv fullständiga meningar och förklara dina beteckningar. Ge tydliga och enkla svar där så är möjligt.

Observera! För att underlätta rättningen utan att påverka anonymiteten, ber vi att studenter på F skriver F som programkod, och att övriga studenter skriver X som programkod på omslaget.

1. Endast kortfattade lösningar behövs på denna uppgift.

a) Lös ekvationen
$$e^{2z} = i$$
 fullständigt. (0.2)

b) Vilken konvergensradie har serien
$$\sum_{k=0}^{\infty} kz^k$$
? (0.2)

c) Vilken ordning har nollstället till
$$f(z) = 1 - e^{-z^2}$$
 i $z = 0$? (0.3)

d) Beräkna
$$\underset{z=0}{\text{Res}} \left(\frac{\cos z}{z^2 (1+z)} \right)$$
. (0.3)

2. Bestäm alla holomorfa funktioner f(z) = f(x+iy) = u(x,y) + iv(x,y) sådana att

$$u(x,y) = x^2 - 2xy - y^2.$$

Svara på formen f(z).

- **3.** a) Lös rekursionsekvationen $x_{n+2} 5x_{n+1} + 6x_n = 2^{n+1}$, där $x_0 = 1$, $x_1 = 1$. (0.6)
 - b) Låt x_n vara lösningen till ekvationen i a-uppgiften. Avgör om följande serier konvergerar eller divergerar:

$$\sum_{n=0}^{\infty} \frac{1}{x_n}, \qquad \sum_{n=0}^{\infty} \frac{(-1)^n x_n}{x_{n+1}}.$$
 (0.4)

4. Funktionen f är jämn, 4-periodisk och uppfyller att

$$f(t) = \begin{cases} 1 - t, & 0 \le t \le 1, \\ \frac{1}{2}, & 1 < t < 2. \end{cases}$$

- a) Rita en tydlig bild av grafen till f på intervallet [-2, 6]. (0.1)
- b) Låt S(t) beteckna seriesumman till f:s trigonometriska Fourierserie. Rita en tydlig bild av grafen till S på intervallet [-2, 6]. (0.3)
- c) Låt c_0, a_k, b_k vara (de trigonometriska) Fourierkoefficienterna till f. Beräkna

$$\sum_{k=1}^{\infty} a_k \quad \text{och} \quad \sum_{k=1}^{\infty} a_k^2. \tag{0.6}$$

5. Definiera en funktionsföljd, $f_n : \mathbb{R} \to \mathbb{R}$ genom

$$f_n(x) = \frac{1 + nx^2}{n + x^2}.$$

- a) Vilket är det största intervall på vilket funktionsföljden konvergerar punktvis? Vad blir gränsfunktionen f? (0.3)
- b) Låt $g: D \to \mathbb{C}$ vara en funktion (där D är en delmängd av \mathbb{R} eller \mathbb{C}). Definiera vad som menas med $||g||_D$. (0.2)
- c) Beräkna $||f_1 f||_{[0,1]}$ och $||f_1 f||_{[0,\infty)}$. (0.2)
- d) Konvergerar följden (f_n) likformigt på [0,1]? På [0,R] för varje reellt R>0? På $[0,\infty)$? (0.3)
- 6. Låt $-1 < \alpha < 1$ vara ett reellt tal. Beräkna integralen

$$\int_0^\infty \frac{x^\alpha}{1+x^2} \, dx.$$

Ledning: integrera en lämpligt vald funktion längs en hel eller halv "hålkaka".