

Lambda Architektur für verteilte mobile Sensoren

von Mike Wüstenberg

Übersicht

- 1. Projekt Übersicht
- 2. Warum keine traditionellen Datenbank
- 3. Anforderungen an die Lambda Architektur
- 4. Aufbau der Lambda Architektur
- 5. Experiment

Projekt Übersicht

Eine Lambda Architektur ist eine, Generische, skalierbare und fehlertolerante Datenverarbeitungsarchitektur.

Beispiel: Distanz Berechnung

{ 10:02, (10,10,0) }

Neu Daten

Zeit	Koordinaten	
10:00	(0,0,0)	
10:01	(0,10,0)	

Distanz

0
10
...

Problem Beschreibung

- Traditioneller Ansatz
- Monolithische relationale Datenbank

Le Einfache SQL Anfragen

Kleine Anzahl an Nachrichten

{ 10:02, (10,10,0) } Neu Daten

Zeit	Koordinaten	<u> </u>	Distanz
		SQL Anfrage	0
10:00	(0,0,0)		
			10
10:01	(0,10,0)		
			•••
•••	•••		

- Schreibvorgänge überwältigen Datenbank
- Skalierung wird Notwendig

{ 10:02, (10,10,0) }	ERROR
{ 10:03, (10,20,0) }	

Zeit	Koordinaten	
10:00	(0,0,0)	
10:01	(0,10,0)	

<u> </u>	Distanz
SQL Anfrage	0
	10

- communication and distributed systems
- Komplizierter Aufbau durch "Shard" Verwaltung
- SQL Anfragen werden Komplizierter

			Datembank		
		Zeit	Koordinaten		
{ 10:02, (10,10,0) }	No. o Police				Distanz
{ 10:03, (10,20,0) }	Neue Daten	10:00	(0,0,0)	SQL Anfrage	0
	Neue Daten	Zeit	Koordinaten	SQL Anfrage	10
		10:01	(0,10,0)		

Fehlertoleranz Probleme

■ Korrupte Daten

Zeit	Koordinaten
10:00	(0,0,0)
Zeit	Koordinaten
10:01	(0,10,0)

- Skalierbarkeit
 - Auf allen Ebenen
 - Verteilte Software vom Start
 - Horizontale Skalierung

- Erweiterbarkeit
 - Neue Funktionen hinzuzufügen
 - Gleichbleibendes System
 - Migration der Daten in neues Format

- Fehlertoleranz
 - gegenüber Menschlichen Fehler
 - Neuberechnung von Ergebnissen
 - Unveränderlicher Daten

- Minimale Wartung
 - Reduzierung von Komplexität in Implementierung
 - Komplexität nicht in Kern Komponenten
 - Komplexität in Daten die verworfen werden
- Geringe Latenz
 - Schnelles Lesen
 - Schnelles schreiben wenn nötig

- Jede Ebene skalierbar
- 3 Layer

- Batch Layer
 - Speichert Daten im Original zustand
 - Alle Berechnungen auf kompletten Datensatz

- Batch Layer
 - Speichert Daten im Original zustand
 - Alle Berechnungen auf kompletten Datensatz

- Batch Layer
 - Speichert Daten im Original zustand
 - Alle Berechnungen auf kompletten Datensatz

- Batch Layer
 - Speichert Daten im Original zustand
 - Alle Berechnungen auf kompletten Datensatz

- Serving Layer
 - Speichert Vorberechnete Daten vom Batch Layer
 - Bietet Vorberechnete Daten an

Muss nur wenig können

- Serving Layer
 - Speichert Vorberechnete Daten vom Batch Layer
 - Bietet Vorberechnete Daten an

Muss nur wenig können

- Serving Layer
 - Speichert Vorberechnete Daten vom Batch Layer
 - Bietet Vorberechnete Daten an
 - Muss nur wenig können

- Erfühlte Anforderungen
 - Skalierbar
 - Fehlertoleranz
 - Erweiterbarkeit
 - Minimale Wartung

- Streaming Layer
 - Echtzeit Berechnung
 - Schnelle inkrementelle Algorithmen

- Streaming Layer
 - Echtzeit Berechnung
 - Schnelle inkrementelle Algorithmen

- Streaming Layer
 - Echtzeit Berechnung
 - Schnelle inkrementelle Algorithmen

- Streaming Layer
 - Echtzeit Berechnung
 - Schnelle inkrementelle Algorithmen

 Erhöht sich die Berechnungszeit mit der Anzahl an Nachrichten?

- Skalierbarkeit des Streaming Layer
- Skalierung über die Anzahl Nachrichten

- Daten Vorbereitung
 - Einlesen der Daten
 - Abflachen der Hierarchie
 - Normalisierung

- Erwartung
 - Konstante Komplexität
 - Berechnungszeit bleibt gleich.

- Spark eigene "Aggregation"
 - Daten WiFi stärke
 - Minimum, Maximum, Durchschnitt

- Erwartung
 - Erstmal Linear Komplex mit Anzahl an Daten
 - Speichert zwischen Ergebnisse
 - Berechnungszeit abhängig von Batch Größe

- Distanz Berechnung "genau"
 - "ROS Odometry" Daten
 - Sammeln und Sortieren der Daten

- Erwartung
 - Quadratische Komplexität
 - Möglicher Einfluss durch Datenübertragung
 - Berechnungszeit abhängig von Anzahl Daten

- Distanz Berechnung "ungenau"
 - "ROS Odometry" Daten
 - Buffern des letzten Eintrags
 - Sammeln der Zwischen Ergebnisse

- Erwartung
 - Konstante Komplexität
 - Berechnungszeit bleibt gleich.

Fragen?

Quellen

- Nathan Marz, James Warren:
 - Big Data Principles and Best Practices of Scalable Realtime Data Systems