Simulation in Thermo and Fluid Dynamics

Aerodynamics of Bluff Bodies and Airfoils

Luca Mangani

Ernesto Casartelli

luca.mangani@hslu.ch

ernesto.casartelli@hslu.ch

Aerodynamic forces on bodies

Drag: parallel to flow direction

- Pressure drag
$$F_p = \oint\limits_{A} p \sin \varphi \cdot dA$$
 - Friction drag
$$F_f = \oint\limits_{A} \tau \cos \varphi \cdot dA$$

Lift: perpendicular to flow direction

Definition of dimensionless coefficients

- Dimensional analysis shows that presenting physical data in dimensionless form has considerable advantages when interpreting and using the obtained results
- Lift coefficient

$$F_L = c_L A \rho \frac{c^2}{2} \Longrightarrow c_L = \frac{F_L}{A \rho \frac{c^2}{2}}$$

Drag coefficient

$$F_D = c_D A \rho \frac{c^2}{2} \Longrightarrow c_D = \frac{F_D}{A \rho \frac{c^2}{2}}$$

Pressure coefficient

$$F_p = c_p A \rho \frac{c^2}{2} \Rightarrow c_p = \frac{F_p}{A \rho \frac{c^2}{2}} = \frac{p}{\rho \frac{c^2}{2}}$$

Aerodynamic forces on bodies

- Drag: parallel to flow direction
 - General expression for (drag) forces

$$F_D = c_D A \rho \frac{c^2}{2} = c_D A \cdot p_{Dyn}$$

Aerodynamic vs. bluff body

Inviscid flow

Viscous flow

Drag coefficient for flow past various bodies

	c _D
→)	1,33
\rightarrow D	1,17
\rightarrow	0,4
\rightarrow	1,11
$\rightarrow \swarrow_p^{\mu}$	2,01 1,19

Flow past a bluff body

Airfoils: 2D (idealized) flow

Airfoils: geometry definition

Airfoils: forces

Airfoils: comparison to flat plate

Airfoils: curved plates

Airfoils: example

Airfoils: effect of Reynolds number

Airfoils: 3D effects

