SIGNAL PROCESSING

FUNDAMENTALS

Through NCERT

G. V. V. Sharma

Copyright ©2024 by G. V. V. Sharma.

https://creative commons.org/licenses/by-sa/3.0/

 $\quad \text{and} \quad$

 $\rm https://www.gnu.org/licenses/fdl-1.3.en.html$

Contents

Int	roduction	ii
1	Harmonics	1
2	Filters	79
3	Z-transform	93
4	Sequences	193
5	Contour Integration	287
6	Laplace Transform	371
7	Systems	377
A	Convolution	379
В	Z-transform	381
\mathbf{C}	Contour Integration	387
D	Fourier Series	303

Introduction

This book introduces some concepts in signal processing through maths and physics problems in NCERT textbooks.

Chapter 1

Harmonics

1.0.1 A circular disk of mass 10kg is suspended by a wire attached to its centre. The wire is twisted by rotating the disc and released. The period of torsional oscillations is found to be 1.5s. The radius of the disc is 15cm. Determine the torsional spring constant of the wire. (Torsional spring constant α is defined by the relation $J=-\alpha\theta$, where J is the restoring couple and θ is the angle of twist).

Solution:

Symbols	Description	Values
T	Time period of a body following the law $x_{(t)} = a \sin \omega t$	$\frac{2\pi}{\omega}$
α	Torsional constant	(?)
m	Mass of pendulum	9kg
r	Radius of disc	15cm
I	Moment of inertia of the disc	$0.1125 kgm^{-2}$
R	Residual formula for m=1	$\lim_{s \to a} \left((s - a)\theta(t)e^{st} \right)$

Table 1.1: Parameters, Descriptions, and Values

A torsional pendulum is governed by the following law:

$$J = -\alpha \theta(t) \tag{1.1}$$

From $J=I\alpha$ and $\alpha=\frac{\mathrm{d}^2\theta(t)}{\mathrm{d}t^2}$

$$\frac{\mathrm{d}^2 \theta(t)}{\mathrm{d}t^2} + \frac{\alpha \theta(t)}{I} = 0 \tag{1.2}$$

For the Laplace transform of the differential: Assuming $\theta(0) = 0$,

$$0 = s^2 \mathcal{L}(\theta(t)) - s\theta(0) - \theta'(0) + \frac{\alpha \mathcal{L}(\theta(t))}{I}$$
(1.3)

$$\mathscr{L}(\theta(t)) = \frac{\theta'(0)}{s^2 + \frac{\alpha}{I}} \tag{1.4}$$

For the Inverse Laplace transform of $\mathscr{L}(\theta(t))$: Using Bromwich integral,

$$\theta(t) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} \mathcal{L}\left(\theta(t)\right) e^{st} dt, c > 0$$
(1.5)

$$= \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} \frac{\theta'(0)e^{st}}{s^2 + \frac{\alpha}{I}} dt$$
 (1.6)

Since the poles $s=j\sqrt{\frac{\alpha}{I}}$ and $s=-j\sqrt{\frac{\alpha}{I}}$ (both non repeated, i.e. m=1) lie inside a

semicircle for some c > 0. Using Jordans lemma and method of residues from 1.1:

$$R_1 = \lim_{s \to j\sqrt{\frac{\alpha}{I}}} \left(\left(s - j\sqrt{\frac{\alpha}{I}} \right) \left(\frac{\theta'(0)}{s^2 + \frac{\alpha}{I}} \right) e^{st} \right)$$
 (1.7)

$$= \left(\frac{\theta'(0)Ie^{j\sqrt{\frac{\alpha}{I}}t}}{2j\alpha}\right) \tag{1.8}$$

$$R_2 = \lim_{s \to -j\sqrt{\frac{\alpha}{I}}} \left(\left(s + j\sqrt{\frac{\alpha}{I}} \right) \left(\frac{\theta'(0)}{s^2 + \frac{\alpha}{I}} \right) e^{st} \right)$$
 (1.9)

$$= \left(\frac{-\theta'(0)Ie^{-j\sqrt{\frac{\alpha}{I}}t}}{2j\alpha}\right) \tag{1.10}$$

$$\theta(t) = R_1 + R_2 \tag{1.11}$$

$$\theta(t) = \left(\frac{\theta'(0)I\left(e^{j\sqrt{\frac{\alpha}{I}}t} - e^{-j\sqrt{\frac{\alpha}{I}}t}\right)}{2j\alpha}\right)$$
(1.12)

$$\implies \theta(t) = \theta'(0)\sin\left(t\sqrt{\frac{\alpha}{I}}\right) \tag{1.13}$$

For calculating the torsional constant: From table 1.1.

$$T = 2\pi \sqrt{\frac{I}{\alpha}} \tag{1.14}$$

$$\implies \alpha = 1.972 Nms^{-1} \tag{1.15}$$

Figure 1.1: $\theta(t)$ vs t

- 1.0.2 Suppose that the electric field amplitude of an electromagnetic wave is $E_0 = 120 \text{N/C}$ and that its frequency is f = 50.0 MHz.
 - (a) Determine, B_0, ω, k and λ
 - (b) Find expressions for ${\bf E}$ and ${\bf B}$

Table 1.2: Input Parameters

Symbol	Description	value
f	frequency of source	50.0 MHz
E_0	Electric field amplitude	120 N/C
c	speed of light	3×10^8 m/s
$\mathbf{e_2},\mathbf{e_3}$	Standard Basis vectors	N/A

1.0.3 A charged particle oscillates about its mean equilibrium position with a frequency of $10^9 Hz$. What is the frequency of the electromagnetic waves produced by the oscillator?

Table 1.3: Formulae and Output

Symbol	Description	Formula	Value
E	Electric field vector	$E_0 \sin(kx - 2\pi ft)\mathbf{e_2}$	$ \begin{array}{r} 120\sin[1.05x - \\ 3.14\times10^8t]\mathbf{e_2} \end{array} $
В	Magnetic field vec- tor	$B_0 \sin(kx - 2\pi ft)\mathbf{e_3}$	$(4x10^{-7})\sin[1.05x-3.14x10^8t]$ e ₃
B_0	Magnetic field strength	$\frac{E_0}{c}$	400nT
ω	Angular fre- quency	$2\pi f$	$3.14 \times 10^8 \text{m/s}$
k	Propagation constant	$\frac{2\pi f}{c}$	$1.05 \mathrm{rad/s}$
λ	Wavelength	$\frac{c}{f}$	6.0m

- 1.0.4 Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represents (i) travelling wave, (ii) a stationary wave or (iii) none at all:
 - (a) $y = 2\cos(3x)\sin(10t)$
 - (b) $y = 2\sqrt{x vt}$
 - (c) $y = 3\sin(5x 0.5t) + 4\cos(5x 0.5t)$
 - (d) $y = \cos x \sin t + \cos 2x \sin 2t$

Figure 1.0.2: Graphs of ${\bf E}$ and ${\bf B}$

Let us assume an equation:

$$y = A(x)\cos(\omega t + \phi(x)) \tag{1.16}$$

Fig. 1.0.4 and Fig. 1.0.4 are self explanatory for stationary and travelling waves. Fig. 1.0.4 and Fig. 1.0.4 are neither stationary nor travelling waves.

Symbol	Value	Description
y(t)	$\cos\left(2\pi f_c t\right)$	Wave equation of electro-magnetic wave
f_c	10^{9}	Frequency of electromagnetic wave
t	seconds	Time

Table 1.0.3: Variable description

TRAVELLING WAVE	STATIONARY WAVE
$y(x,t) = A\sin(kx \pm \omega t)$	$y(x,t) = A\sin kx \cos \omega t$
PARAMETERS	DEFINITION
A	Amplitude
ω	Angular Velocity
x	Position
k	Wavenumber

Table 1.0.4: Travelling wave vs Stationary wave

- 1.0.5 For the travelling harmonic wave $y(x,t) = 2.0\cos 2\pi (10t 0.0080x + 0.35)$ where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of
 - (a) 4m
 - (b) 0.5m
 - (c) $\lambda/2$
 - (d) $3\lambda/4$

$$(\Delta\theta) = (2\pi ft - kx_1 + \phi) - (2\pi ft - kx_2 + \phi) \tag{1.17}$$

$$= k(x_2 - x_1) (1.18)$$

STATIONARY WAVE CONDITION	TRAVELLING WAVE CONDITION
(1) $A(x)$ should be a function of position x, and it can be expressed as $A(x) = A_0 cos(\omega t + \alpha)$ where A_0 is a constant, k is the wavenumber, x is the position and α is a phase constant.	(1) $A(x)$ should be a constant, and it can be expressed as $A(x) = A_0$ where A_0 is a constant number.
(2) $\phi(x)$ can be expressed as $\phi(x) = c$ where c is a constant.	(2) $\phi(x)$ represents a linear expression in x, and it can be expressed as $\phi(x) = kx + \theta$ where k is the wavenumber and θ is the phaseconstant.

Table 1.0.4: Travelling wave vs Stationary wave

Parameter	Description	Value
$y(x_i,t)$ equation of harmonic wave		$A\cos\left(2\pi ft - kx_i + \phi\right)$
k	angular wave number	$2\pi (0.008)$
$\lambda = \frac{2\pi}{k}$	wavelength	125cm
f	frequency	10
A	amplitude	2.0
ϕ	phase constant	$2\pi (0.35)$
θ_i	phase of i^{th} harmonic wave	$(2\pi ft - kx + \phi)$
x_i	position of i^{th} harmonic wave	
t time		
$x_2 - x_1$	path difference	$ \begin{array}{c} 400 cm \\ 50 cm \\ \hline \frac{\lambda}{2} \\ \hline \frac{3\lambda}{4} \end{array} $

Table 1.0.5: Given parameters list

Figure 1.0.3: $y(t) = \cos(2\pi \times 10^9 t)$

1.0.6 (a) The peak voltage of an AC supply is 300 V. What is the rms voltage?

(b) The rms value of current in an AC circuit is 10 A. What is the peak current?

Figure 1.0.4: DIPLACEMENT vs TIME-graph1

Figure 1.0.4: DIPLACEMENT vs TIME-graph2

(a)

$$V_{\rm rms}^2 = \frac{1}{T} \int_0^T [V(t)]^2 dt \tag{1.19}$$

$$= f \int_0^{\frac{1}{f}} V_0^2 \cdot \sin^2(2\pi f t + \phi) dt$$
 (1.20)

$$= \frac{1}{2}V_0^2 \left(1 - \frac{1}{f} \int_0^{\frac{1}{f}} \cos(4\pi f t + 2\phi) dt\right)$$
 (1.21)

$$= \frac{1}{2}V_0^2 \left(1 - \frac{1}{f} \left[\frac{\sin(4\pi f t + 2\phi)}{4\pi f} \right]_0^{\frac{1}{f}} \right)$$
 (1.22)

$$= \frac{1}{2}V_0^2 \left(1 - \frac{1}{f} \cdot \frac{\sin(4\pi + 2\phi) - \sin(0 + 2\phi)}{4\pi f}\right)$$
 (1.23)

$$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$$
 12 (1.24)

Figure 1.0.4: DIPLACEMENT vs TIME-graph3

To find the RMS voltage $(V_{\rm rms})$ when the peak voltage (V_0) is 300V, you can use equation (1.24)

$$V_{\rm rms} = \frac{300V}{\sqrt{2}} \approx 212.13V$$
 (1.25)

Figure 1.0.4: DIPLACEMENT vs TIME-graph4

Parameter	Description	subquestion	Value
		(a)	6.4π radians
Δ.θ	$\theta_1 - \theta_2$	(b)	0.8π radians
	$v_1 - v_2$	(c)	π radians
		(d)	$\frac{3\pi}{2}$ radians

Table 1.0.5: Phase differences

parameter	value	description	
V(t)	$V_0 \cdot \sin(2\pi f t + \phi)$	voltage in terms of time	
I(t)	$I_0 \cdot \sin(2\pi f t + \phi)$	current in terms of time	
V_0	300 V	peak voltage	
$V_{ m rms}$	$\sqrt{\frac{1}{T} \int_0^T [V(t)]^2 dt}$	rms value of Voltage	
$I_{ m rms}$	10 A	rms value of current	
I_0	$\sqrt{2} \times I_{\rm rms}$	peak current	
f	$50\mathrm{Hz}$	frequency of the sinusoidal wave	
T	$0.02\mathrm{s}$	time period of sinusoidal wave	

Table 1.0.6: Input Parameter Table

(b)

$$I_{\rm rms}^2 = \frac{1}{T} \int_0^T [I(t)]^2 dt \tag{1.26}$$

$$= f \int_0^{\frac{1}{f}} I_0^2 \cdot \sin^2(2\pi f t + \phi) dt$$
 (1.27)

$$= f \int_0^{\frac{1}{f}} I_0^2 \cdot \sin^2(2\pi f t + \phi) dt$$

$$= \frac{1}{2} I_0^2 \left(1 - \frac{1}{f} \left[\frac{\sin(4\pi f t + 2\phi)}{4\pi f} \right]_0^{\frac{1}{f}} \right)$$
(1.28)

$$= \frac{1}{2}I_0^2 \left(1 - \frac{1}{f} \cdot \frac{\sin(4\pi + 2\phi) - \sin(0 + 2\phi)}{4\pi f}\right)$$
 (1.29)

$$I_{\rm rms} = \frac{I_0}{\sqrt{2}} \tag{1.30}$$

To find the peak current (I_0) when the RMS current $(I_{\rm rms})$ is given, you can use equation (1.30)

Figure 1.0.5:

Figure 1.0.5:

Figure 1.0.5:

1.0.7 In Young's double-slit experiment using monochromatic light of wavelength λ , the intensity of light at a point on the screen where path difference is λ , is K units. What is the intensity of light at a point where path difference is $\lambda/3$?

Solution:

From Table 1.0.7:

$$y(t) = A\sin(2\pi ft - kx_1) + A\sin(2\pi ft - kx_2)$$
(1.32)

$$y(t) = 2A\cos\left(\frac{k\Delta x}{2}\right)\sin\left(2\pi ft - \frac{k(x_1 + x_2)}{2}\right)$$
 (1.33)

Figure 1.0.5:

From Table 1.0.7 and equation (1.33):

$$\therefore I \propto 4A^2 \cos^2\left(\frac{k\Delta x}{2}\right) \tag{1.34}$$

From Table 1.0.7 and equation (1.34):

$$\frac{K}{I_r} = \frac{4A^2 \cos^2\left(\frac{2\pi}{2}\right)}{4A^2 \cos^2\left(\frac{\pi}{3}\right)} \implies I_r = \frac{K}{4}$$
(1.35)

Hence, the Intensity of light at a point where path difference is $\frac{\lambda}{3}$ is $\frac{K}{4}$ units.

Parameter	Description	Value
$y_{i}\left(t ight)$	Equation of light from $S_{i^{\text{th}}}$	$A\sin(\omega t - kx_i)$
k	Wave number	$\frac{2\pi}{\lambda}$
I	Intensity of wave	$\propto A^2$
		λ
$\Delta x = x_1 - x_2$	Path difference	$\frac{\lambda}{3}$
K	K Intensity of light at $\Delta x = \lambda$	
A	Amplitude of wave from source	
r	constant	$r \ge 0$

Table 1.0.7: Parameters

Parameter	Description	Value
I_r	Net Intensity of light at $\Delta x = \frac{\lambda}{3}$	$\frac{K}{4}$

Table 1.0.7:

Assuming $\Delta x = r\lambda$,

From equation (1.34):

Figure 1.0.7:

1.0.10 A transverse l	narmonic wave on	a string is	described	bv

$$y(x,t) = 3.0\sin\left(36t + 0.018x + \frac{\pi}{4}\right)$$
 (1.36)

where x and y are in cm and t in s. The positive direction of x is from left to right.

- (a) Is this a travelling wave or a stationary wave? If it is travelling, what are the speed and direction of its propagation?
- (b) What are its amplitude and frequency?
- (c) What is the initial phase at the origin?
- (d) What is the least distance between two succesive crests in the wave?

	Solution:
	at angles of $\frac{n\lambda}{a}$. Justify this by suitably dividing the slit to bring out the cancellation.
1.0.11	In deriving the single slit diffraction pattern, it was stated that the intensity is zero

1.0.12~ A 60 μ F capacitor is connected to a 110 V, 60 Hz ac supply. Determine the rms value of the current in the circuit.

1.0.13 A charged $30\mu F$ capacitor is connected to a 27mH inductor. What is the angular frequency of free oscillations of the circuit?

1.0.14 Obtain the resonance frequency of a series LCR circuit with $L=2.0\,H,\,C=32\,\mu F,$ and $R=10\,\Omega.$ What is the Q-value of the circuit.

1.0.15 A charged 30 μ F capacitor is connected to a 27 mH inductor. Suppose the initial charge on the capacitor is 6mC. What is the total energy stored in the circuit initially? What is the total energy at later time?

1.0.16 A wire stretched between two rigid supports vibrates in its fundamental mode with a frequency of 45 Hz. The mass of the wire is 3.5×10^{-2} kg, and its linear mass density is 4.0×10^{-2} kg/m. The length of the wire is 0.875 m. Determine the speed of a transverse wave on the string and the tension in the string.

1.0.17 The given figure shows a series LCR circuit connected to a variable frequency $230~\mathrm{V}$ source.

$$L = 5.0 \text{ H}, C = 80 \mu\text{F}, R = 40 \Omega.$$

- (a) Determine the source frequency which drives the circuit in resonance.
- (b) Obtain the impedance of the circuit and the amplitude of current at the resonating frequency.
- (c) Determine the rms potential drops across the three elements of the circuit. Show that the potential drop across the LC combination is zero at the resonating frequency.

- 1.0.18 Q23) A narrow sound pulse (for example, a short pip by a whistle) is sent across a medium.
 - (a) Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propagation?
 - (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of second after every 20 s), Is the frequency of note produced by whistle equal to 1/20 or $0.05~\mathrm{Hz}$?

1.0.19 Suppose that the electric field part of an electromagnetic wave in vacuum given as

 $\mathbf{E} = \!\! \{ (3.1 \mathrm{N/C}) \mathrm{cos}[(1.8~\mathrm{rad/m}) \mathrm{y} + (5.4 \times 10^6 \mathrm{rad/s}) \mathrm{t}] \} \hat{\imath}$

- (a) What is the direction of propagation?
- (b) What is the wavelength?
- (c) What is the frequency?
- (d) What is the amplitude of the magnetic field part of the wave?
- (e) Write an expression for the magnetic field part of the wave.

 $1.0.20\,$ A 44 mH inductor is connected to 220 V, 50 Hz ac supply. Determine the rms value of the current in the circuit.

1.0.21 The 6563 Å H α line emitted by hydrogen in a star is found to be redshifted by 15 Å. Estimate the speed with which the star is receding from the Earth. **Solution:**

1.0.22 The amplitude of the magnetic part of a harmonic electromagnetic wave is $B_0 = 510$ nT. What is the amplitude of the electric part of the electromagnetic wave.

- $1.0.24\,$ A 100 Ω resistor is connected to $220V,\,50Hz$ AC supply.
 - (1) What is the rms value of current in the circuit?
 - (2) What is the net power consumed over a full cycle?

1.0.25 Two towers on top of two hills are 40 km apart. This line joining them passes 50 m above a hill halfway between the towers. What is the longest wavelength of radio waves, which can be sent between the towers without appereciable diffraction effects?

Solution:

1.0.26	A circuit containing a 80mH inductor and a $60\mu F$ capacitor in series is connected to a 230V, 50Hz supply. The resistance of the circuit is negligible.
	(a) Obtain the current amplitude and rms value.
	(b) Obtain the rms value of potential drops across each element.
	(c) What is the average power transferred to the inductor ?
	(d) What is the average power transferred to the capacitor ?
	(e) What is the total average power absorbed by the circuit? ('Average' implies 'averaged ov

- 1.0.27 A coil of inductance 0.50 H and resistance 100 Ω is connected to a 240 V, 50 Hz ac supply.
 - (a) What is the maximum current in the coil?
 - (b) What is the time lag between the voltage maximum and the current maximum?

1.0.28 A plane electromagnetic wave travels in vacuum along the z-direction. What can you say about the directions of its electric (\mathbf{E}) and magnetic (\mathbf{B}) field vectors? If the frequency of the wave is 30 MHz, what can you say about its wavelength?

1.0.29 Earthquakes generate sound waves inside the earth. Unlike a gas, the earth can experience both transverse (S) and longitudinal (P) sound waves. Typically the speed of S wave is about 4.0km/s, and that of P wave is 8.0km/s. A seismograph records P and S waves from an earthquake. The first P wave arrives 4min before the first S wave. Assuming the waves travel in straight line, at what distance does the earthquake occur? Solution:

1.0.30 A hospital uses an ultrasonic scanner to locate tumors in a tissue. What is the wavelength of sound in the tissue in which the speed of sound is $1.7\,\mathrm{km/s?}$ The operating frequency of the scanner is $4.2\,\mathrm{MHz}$. Solution:

	Solution:									
	fringe formed o	on a distant	screen is 0.1	l°.	What is the	e spacing	; bet	ween the	two sl	its?
1.0.31	In double-slit e	experiment	using light	of	wavelength	600nm,	the	angular	width	of a

 $1.0.32~{
m A}$ spring having with a spring constant $1200~{
m N}m^{-1}$ is mounted on a horizontal table as shown in Fig.A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released.

Determine (i) the frequency of oscillations, (ii) maximum acceleration of the mass, and (iii) the maximum speed of the mass. **Solution:**

Figure 1.0.32:

1.0.34 In a Young's double-slit experiment, the slits ar e separated by 0.28 mm and the screen is placed 1.4m away. The distance between the central bright fringe and the fourth bright fringe is measured to be 1.2cm. Determine the wavelength of light used in the experiment.

1.0.35 Keeping the source frequency equal to the resonating frequency of the series LCR circuit, if the three elements, L, C, and R are arranged in parallel, show that the total current in the parallel LCR circuit is minimum at this frequency. Obtain the current rms value in each branch of the circuit for the elements and source specified in Exercise 7.11 for this frequency

$$\varepsilon=230V,\,L=5.0H,\,C=80\mu\mathrm{F},\,R=40\Omega$$

Solution:

1.0.36 A SONAR system fixed in a submarine operates at a frequency 40.0 kHz. An enemy submarine moves towards the SONAR with a speed of 360 km/hr. What is the frequency of sound reflected by the submarine? Take the speed of sound in water to be 1450 m/s.

1.0.37 Figure 1.0.35 (a) shows a spring of force constant k clamped rigidly at one end and a mass m attached to its free end. A force F applied at the free end stretches the spring. Figure 1.0.35 (b) shows the same spring with both ends free and attached to a mass m at either end. Each end of the spring in Fig. 1.0.35(b) is stretched by the same force F.

Figure 1.0.37:

- (a) What is the maximum extension of the spring in the two cases?
- (b) If the mass in Fig. (a) and the two masses in Fig. (b) are released, what is the period of oscillation in each case?

1.0.38 A bat is flitting about in a cave, navigating via ultrasonic beeps. Assume that the sound emission frequency of the bat is 40 kHz. During one fast swoop directly toward a flat wall surface, the bat is moving at 0.03 times the speed of sound in air. What frequency does the bat hear reflected off the wall?

NCERT Analog 11.15.27

1.0.39 One end of a long string of linear mass density $8.0 \times 10^{-3}\,\mathrm{kg\ m^{-1}}$ is connected to an electrically driven tuning fork of frequency 256 Hz. The other end passes over a pulley and is tied to a pan containing a mass of 90 kg. The pulley end absorbs all the incoming energy so that reflected waves at this end have negligible amplitude. At t=0, the left end (fork end) of the string x=0 has zero transverse displacement (y=0) and is moving along positive y-direction. The amplitude of the wave is 5.0 cm. Write down the transverse displacement y as a function of x and t that describes the wave on the string.

1.0.40 A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at 20 $^{\circ}C=343ms^{-1}$ NCERT Analog 11.15.3

1.0.41	What is the Brewster angle for air to glass transition? (Refractive index of glass $=1.5$)
	Solution:

1.0.42 A parallel beam of light with a wavelength of 500 nm falls on a narrow slit, and the resulting diffraction pattern is observed on a screen 1 m away. The distance to the first minimum from the center of the screen is 2.5 mm.

Find the width of the slit given that y=0.0025 m, L=1 m, and $\lambda=5\times10^{-7}$ m.

1.0.43 Two sitar strings A and B playing the note 'Ga' are slightly out of tune and produce beats of frequency 6Hz. The tension in the string A is slightly reduced and the beat frequency is found to reduce to 3Hz. If the original frequency of A is 324Hz, what is the frequency of B?

1.0.44 Which of the following functions of time represent (a) simple harmonic, (b) periodic but not simple harmonic, and (c) non-periodic motion? Give period for each case of periodic motion (ω is any positive constant):

- (a) $\sin(\omega t) \cos(\omega t)$
- (b) $\sin^3(\omega t)$
- (c) $3\cos\left(\frac{\pi}{4} 2\omega t\right)$
- (d) $\cos(\omega t) + \cos(3\omega t) + \cos(5\omega t)$
- (e) $\exp(-\omega^2 t^2)$
- (f) $1 + \omega t + \omega^2 t^2$

Solution:

(a) Periodic function:

$$x(t+T) = x(t) \quad \forall x \in \mathbb{R}$$
 (1.37)

where min T s.t T > 0 is time period

(b) SHM:

For a function to be in shm it must satisfy

$$\frac{d^2x(t)}{dt^2} = -(2\pi f_0)^2 x(t) \tag{1.38}$$

Variable	Description	formula
x(t)	Displacemen wrt mean position	none
ω	Angular frequecy	$2\pi f$
T	Time period	$\frac{1}{f}$
ϕ	phase angle	none

Table 1.0.44: input parameters

(a)
$$\sin(2\pi ft) - \cos(2\pi ft)$$

The function can be rewritten as:

$$= \sin(2\pi ft) - \sin\left(\frac{\pi}{2} - 2\pi ft\right) \tag{1.39}$$

$$=2\cos\left(\frac{\pi}{4}\right)\sin\left(2\pi ft - \frac{\pi}{4}\right) \tag{1.40}$$

$$=\sqrt{2}\sin\left(2\pi ft - \frac{\pi}{4}\right) \tag{1.41}$$

$$\frac{d^2(\sin(2\pi ft) - \cos(2\pi ft))}{dt^2} = -(2\pi f)^2(\sin(2\pi ft) - \cos(2\pi ft)) \qquad (1.42)$$

$$\frac{d^2x(t)}{dt^2} = -(2\pi f)^2x(t) \qquad (1.43)$$

$$\frac{d^2x(t)}{dt^2} = -(2\pi f)^2x(t) \tag{1.43}$$

(1.44)

$$\therefore$$
 SHM, T is $\frac{1}{f} \text{and } \phi$ is $\left(\frac{-\pi}{4}\right)$ or $\left(\frac{7\pi}{4}\right)$

$$\sin\left(2\pi f\left(t+\frac{1}{f}\right)\right) - \cos\left(2\pi f\left(t+\frac{1}{f}\right)\right) = \sin(2\pi ft) - \cos(2\pi ft) \quad (1.45)$$

Graph of function is shown in (Fig. 1.0.44)

(3) $3\cos\left(\frac{\pi}{4} - 4\pi ft\right)$

This function can be rewritten as

$$=3\cos\left(4\pi ft - \frac{\pi}{4}\right) \tag{1.46}$$

$$\frac{d^2 \left(3 \cos\left(\frac{\pi}{4} - 4\pi f t\right)\right)}{dt^2} = -3(4\pi f)^2 \left(\cos\frac{\pi}{4} - 4\pi f t\right) \qquad (1.47)$$

$$\frac{d^2 x(t)}{dt^2} = -(4\pi f)^2 x(t) \qquad (1.48)$$

$$\frac{d^2x(t)}{dt^2} = -(4\pi f)^2 x(t) \tag{1.48}$$

 \therefore SHM, T is $\frac{1}{2f}$ and ϕ is $\left(\frac{-\pi}{4}\right)$ or $\left(\frac{7\pi}{4}\right)$

$$3\cos\left(\frac{\pi}{4} - 4\pi f\left(t + \frac{1}{2f}\right)\right) = 3\cos\left(\frac{\pi}{4} - 4\pi ft\right) \tag{1.49}$$

(1.50)

Graph of function is shown in (Fig. 1.0.44)

(4)
$$\cos(2\pi ft) + \cos(6\pi ft) + \cos(10\pi ft)$$

This function can be rewritten as

$$= \cos(2\pi ft) + \cos(10\pi ft) + \cos(6\pi ft)$$

$$= 2\cos\left(\frac{2\pi ft + 10\pi ft}{2}\right)\cos\left(\frac{10\pi ft - 2\pi ft}{2}\right) + \frac{1}{(1.52)}$$

$$= 2\cos(6\pi ft)\cos(2\pi ft) + \cos(6\pi ft)$$

$$= \cos(6\pi ft)(1 + 2\cos(2\pi ft)) \qquad (1.54)$$

$$= \cos(6\pi ft)(1 + 2\cos(2\pi ft)) \qquad (1.54)$$

$$\frac{d^2\cos(2\pi ft) + \cos(6\pi ft) + \cos(10\pi ft)}{dt^2} = (2\pi f)^2\cos(2\pi ft) + (6\pi f)^2\cos(6\pi ft) + (10\pi f)^2$$

$$= \cos(2\pi ft) + \cos(6\pi ft) + \cos(10\pi ft) \qquad (1.55)$$

$$\frac{d^2x(t)}{dt^2} \neq -(2\pi f)^2x(t) \qquad (1.56)$$

Period of $\cos(6\pi ft)$ is $\frac{1}{3f}$ Period of $1 + 2\cos(2\pi ft)$ is $\frac{1}{f}$ Lcm is $\frac{1}{f}$

 \therefore SHM,T is $\frac{1}{f}$

$$\cos\left(2\pi f\left(t+\frac{1}{f}\right)\right) + \cos\left(6\pi f\left(t+\frac{1}{f}\right)\right) + \cos\left(10\pi f\left(t+\frac{1}{f}\right)\right) = \cos(2\pi f t) + \cos(6\pi f\left(t+\frac{1}{f}\right))$$
(1.57)

Graph of function is shown in (Fig. 1.0.44)

(5) $\exp\left(-(2\pi f)^2 t^2\right)$

As
$$T \to \infty$$
 (1.58)

$$\exp\left(-(2\pi f)^2 t^2\right) \to \infty \tag{1.59}$$

$$\frac{d^2(\exp\left(-(2\pi f)^2 t^2\right)))}{dt^2} = 2(2\pi f t)^2 \exp\left(-(2\pi f)^2 t^2\right) + 2(2\pi f t)^4 \exp\left(-(2\pi f)^2 t^2\right)$$
(1.60)

$$\frac{d^2x(t)}{dt^2} \neq -(2\pi f)^2 x(t) \tag{1.61}$$

... This never repeats and non periodic

Graph of function is shown in (Fig. 1.0.44)

(6)
$$1 + 2\pi f t + (2\pi f)^2 t^2$$

As
$$T \to \infty$$
 (1.62)

$$1 + 2\pi f t + (2\pi f)^2 t^2 \to \infty \tag{1.63}$$

$$\frac{d^2(1+2\pi ft+(2\pi f)^2t^2)}{dt^2}=2(2\pi f)^2\tag{1.64}$$

$$\frac{d^2x(t)}{dt^2} \neq -(2\pi f)^2 x(t)$$
 (1.65)

... This never repeats and non periodic

Graph of function is shown in (Fig. 1.0.44)

:

Table 1.0.44: Summary

	Function	Periodic	Simple harmonic motion	Non Per	
(a)	$\sin(2\pi ft) - \cos(2\pi ft)$	Yes	Yes	No	
(b)	$\sin^3(2\pi ft)$	Yes	No	No	
(c)	$3\cos\left(\frac{\pi}{4} - 4\pi ft\right)$	Yes	Yes	No	
(d)	$\cos(2\pi ft) + \cos(6\pi ft) + \cos(10\pi ft)$	Yes	No	No	
(e)	$\exp\left(-(2\pi ft)^2\right)$	No	No	Yes	
(f)	$1 + (2\pi f)t + (2\pi f)^2 t^2$	No	No	Yes	

Figure 1.0.44: $\sin(2\pi ft) - \cos(2\pi ft)$

1.0.45 A metre-long tube open at one end, with a movable piston at the other end, shows resonance with a fixed frequency source (a tuning fork of frequency 340 Hz) when the tube length is 25.5 cm or 79.3 cm. Estimate the speed of sound in air at the temperature of the experiment. The edge effects may be neglected.

Figure 1.0.44: $\sin^3(2\pi f t)$

1.0.46 In a double-slit experiment the angular width of a fringe is found to be 0.2° on a screen placed 1 m away. The wavelength of light used is 600 nm. What will be the angular width of the fringe if the entire experimental apparatus is immersed in water? Take refractive index of water to be $\frac{4}{3}$ Solution:

Figure 1.0.44: $3\cos\left(\frac{\pi}{4} - 4\pi ft\right)$

1.0.47 An air chamber of volume V has a neck area of cross section a into which a ball of mass m just fits and can move up down without any friction. Show that when the ball is pressed down a little and released, it executes SHM. Obtain an expression for the time period of oscillations assuming pressure-volume variations of air to be isothermal.

Figure 1.0.44: $\cos(2\pi ft) + \cos(6\pi ft) + \cos(10\pi ft)$

- 1.0.48 (a) The refractive index of glass is 1.5. What is the speed of light in glass?(Speed of light in vacuum is $3.0 \times 10^8 ms^{-1}$)
 - (b) Is the speed of light in glass independent of the colour of light? If not, which of the two colours red and violet travels slower in a glass prism?

Figure 1.0.44: $exp^{\left(-(2\pi ft)^2\right)}$

1.0.49 The motion of a particle executing simple harmonic motion is described by the displacement function, $x(t) = A\cos(\omega t + \phi)$. If the initial (t = 0) position of the particle is 1cm and its initial velocity is $\omega - cm/s$, what are its amplitude and initial phase angle? The angular frequency of the particle is $\pi - s^{-1}$. If instead of the cosine function, we choose the sine function to describe the SHM: $x = B\sin(\omega t + \alpha)$, what are the amplitude and initial phase of the particle with the above initial conditions.

Figure 1.0.44: $1 + 2\pi f t + (2\pi f t)^2$

1.0.50 A stone dropped from the top of a tower of height 300 m splashes into the water of a pond near the base of the tower. When is the splash heard at the top given that the speed of the sound in air is 340 m s^{-1} .(g=9.8 m s^{-2})

1.0.51	Monochromatic light of wavelength $589\mathrm{nm}$ is incident from air on a water surface.
	What are the wavelength, frequency and speed of
	(a) Reflected light?
	(b) refracted light? Refractive index of water is 1.33.

- $1.0.52\,$ A bat emits ultrasonic sound of frequency 1000kHz in air. If the sound meets a water surface, what is the wavelength of
 - (a) the reflected sound
 - (b) the transmitted sound?

Speed of sound in air is $340ms^{-1}$ and in water is $1486ms^{-1}$.

53	A pipe 20	cm long	is closed a	it one end.	Which ha	rmonic mod	le of the pip	e is
	resonantly	excited	by a 430 I	Iz source ?	Will the	same source	be in reson	ance with
	the pipe in							

1.0.54 Figures correspond to two circular motions. The radius of the circle, the period of revolution, the initial position and the sense of revolution (i.e. clockwise or anti-clockwise) are indicated on each figure. Obtain the corresponding simple harmonic motions of the x-projections of the radius vector of resolving particle P in each case.

1.0.55 A steel rod 100cm long is clamped at its middle. The fundamental frequency of the longitudinal vibrations of the rod are given to be 2.53kHz. What is the speed of sound in steel?

1.0.56 A train, standing in a station yard, blows a whistle of frequency 400 Hz in still air. The wind starts blowing in the direction from the yard to the station with a speed of 10 m/s. What are the frequency, wavelength, and the speed of sound for an observer standing on the station's platform? Is the situation exactly identical to the case when the air is still and the observer runs towards the yard at a speed of 10 m/s? The speed of sound in still air can be taken as 340 m/s.

1.0.57 A radio can tune in to any station in the 7.5 MHz to 12 MHz band. What is the corresponding wavelength band?

1.0.58 A travelling harmonic wave on a string is described by

$$y(x,t) = 7.5\sin(0.0050x + 12t + \frac{\pi}{4})$$

(a) What are the displacement and velocity of oscillation of a point at x = 1 cm and t = 1 s? Is this velocity equal to the velocity of wave propagation?

(b) Locate the points on the string which have the same transverse displacements and velocity as the point at $x=1\,\mathrm{cm}$ at $t=2\,\mathrm{s},\,t=5\,\mathrm{s},$ and $t=11\,\mathrm{s}.$

Chapter 2

Filters

- 2.0.1 An LC circuit contains a $50\mu H$ inductor and a $50\mu F$ capacitor with an initial charge of 10mC. The resistance of the circuit is negligible. Let the instant the circuit is closed by t=0.
 - a) What is the total energy stored initially? Is it conserved during LC oscillations?
 - b) What is the natural frequency of the circuit?
 - c) At what time is the energy stored (i) completely electrical (i.e., stored in the capacitor)? (ii) completely magnetic (i.e., stored in the inductor)?
 - d) At what times is the total energy shared equally between the inductor and the capacitor?
 - **e)** If a resistor is inserted in the circuit, how much energy is eventually dissipated as heat?

(NCERT-Physics 12.7 12Q)

2.0.2 Obtain the resonant frequency and Q-factor of a series LCR circuit with $L=3.0\,H$, $C=27\,\mu F$, and $R=7.4\,\Omega$. It is desired to improve the sharpness of the resonance of the circuit by reducing its 'full width at half maximum' by a factor of 2. Suggest a suitable way.

Solution: Given parameters are:

Symbol	Value	Description
L	3.0 H	Inductance
C	$27\mu\mathrm{F}$	Capacitance
R	7.4Ω	Resistance
Q		Quality Factor: ratio of voltage across inductor or capacitor to that across the resistor at resonance
ω_0	$\frac{1}{\sqrt{LC}}$	Angular Resonant Frequency

Table 2.1: Given Parameters

Figure 2.1: LCR Circuit

(a) Frequency Response of the Circuit

From Kirchhoff's Voltage Law (KVL):

$$V(t) = V_R + V_L + V_C \tag{2.1}$$

Using reactances from Fig. 2.2,

$$V(s) = RI(s) + sLI(s) + \frac{1}{sC}I(s)$$
(2.2)

$$=I(s)\left(R+Ls+\frac{1}{sC}\right) \tag{2.3}$$

$$\implies I(s) = \frac{V(s)}{\left(R + Ls + \frac{1}{sC}\right)} \tag{2.4}$$

At resonance, the circuit becomes purely resistive. The reactances of capacitor

Figure 2.2: LCR Circuit

and inductor cancel out as follows:

$$Ls + \frac{1}{sC} = 0 (2.5)$$

$$\implies s = j \frac{1}{\sqrt{LC}} \tag{2.6}$$

s can be expressed in terms of angular resonance frequency as

$$s = j\omega_0 \tag{2.7}$$

Comparing (2.6) and (2.7), we get

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{2.8}$$

(b) Quality Factor

i. Using voltage across inductor,

$$Q = \left(\frac{V_L}{V_R}\right)_{\omega_0} = \frac{|sLI(s)|}{|RI(s)|} \tag{2.9}$$

$$=\frac{1}{\sqrt{LC}}\frac{L}{R}\tag{2.10}$$

$$=\frac{1}{R}\sqrt{\frac{L}{C}}\tag{2.11}$$

ii. Using voltage across capacitor,

$$Q = \left(\frac{V_C}{V_R}\right)_{\omega_0} = \frac{\left|\frac{I(s)}{sC}\right|}{|RI(s)|}$$
 (2.12)

$$=\frac{\sqrt{LC}}{RC}\tag{2.13}$$

$$=\frac{1}{R}\sqrt{\frac{L}{C}}\tag{2.14}$$

(c) Plot of Impedance vs Angular Frequency

Impedance is defined as

$$H(s) = \frac{V(s)}{I(s)} \tag{2.15}$$

Using (2.4),

$$H(s) = R + sL + \frac{1}{sC} \tag{2.16}$$

$$\implies H(j\omega) = R + j\omega L + \frac{1}{j\omega C} \tag{2.17}$$

$$H(s) = R + sL + \frac{1}{sC}$$

$$\implies H(j\omega) = R + j\omega L + \frac{1}{j\omega C}$$

$$\implies |H(j\omega)| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
(2.16)
$$(2.17)$$

Figure 2.3: Impedance vs ω (using values in Table 2.1)

2.0.3 A circuit containing a 80mH inductor and a $60\mu F$ capacitor in series is connected to a 230V, 50Hz supply. A resistance of 15Ω is connected in series. Obtain the average power transferred to each element of the circuit, and the total power absorbed.

Solution:

Figure 2.4: LCR Circuit

In Fig. 2.4 the following information is provided:

Symbol	Value	Description	
L	80mH	Inductance	
C	$60 \mu F$	Capacitance	
R	15Ω	Resistance	
V_{rms}	230 V	Voltage	
f	50Hz	Frequency	
ω	$2\pi f = 100\pi$	Angular Frequency	
φ	-	Phase difference between current and voltage	
$I_{ m rms}$	-	rms value of current	
V_m	-	Maximum voltage	
I_m	_	Maximum current	
P_m	-	Maximum Power	

Table 2.2: Given Parameters

Applying Kirchoff's Voltage Law in the Fig. 2.5

Figure 2.5: s domain circuit

$$V(s) = RI(s) + sLI(s) + \frac{1}{sC}I(s)$$
(2.19)

$$=I(s)\left(R+sL+\frac{1}{sC}\right) \tag{2.20}$$

$$I(s) = \frac{V(s)}{\left(R + sL + \frac{1}{sC}\right)} \tag{2.21}$$

$$H(s) = \frac{V(s)}{I(s)} \tag{2.22}$$

$$H(s) = R + sL + \frac{1}{sC} \tag{2.23}$$

Substituting s with $j\omega$

$$H(j\omega) = R + j\omega L + \frac{1}{j\omega C}$$
 (2.24)

$$\Rightarrow |H(j\omega)| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
 (2.25)

Let the input voltage be:

$$V = V_m sin(\omega t) \tag{2.26}$$

Let the current at a given instant be:

$$I = I_m sin\left(\omega t - \phi\right) \tag{2.27}$$

Instantaneous power is given by:

$$P = VI (2.28)$$

$$P = V_m sin(\omega t) \times I_m sin(\omega t - \phi)$$
(2.29)

Average power is given by:

$$P_{av} = \frac{W}{T} \tag{2.30}$$

$$dW = Pdt (2.31)$$

Integrating on both sides

$$W = V_m I_m \int_0^T \sin(\omega t) \sin(\omega t - \phi) dt$$
 (2.32)

$$= V_m I_m \int_0^T \sin(\omega t) \left(\sin(\omega t)\cos(\phi) - \cos(\omega t)\sin(\phi)\right) dt \tag{2.33}$$

$$= V_m I_m \int_0^T (\sin(\omega t))^2 \cos(\phi) dt - V_m I_m \int_0^T \sin(\omega t) \cos(\omega t) \sin(\phi) dt \qquad (2.34)$$

$$= V_m I_m \int_0^T \frac{1 - \cos(2\omega t)}{2} \cos(\phi) \, dt - V_m I_m \int_0^T \sin(2\omega t) \sin(\phi) \, dt$$
 (2.35)

After solving the integral we get,

$$W = \frac{1}{2} V_m I_m T \cos \phi \tag{2.36}$$

Relation between V_{rms} and V_m :

$$V_{\rm rms} = \frac{V_m}{\sqrt{2}} \tag{2.37}$$

Relation between I_{rms} and I_m :

$$I_{\rm rms} = \frac{I_m}{\sqrt{2}} \tag{2.38}$$

a) The average power dissipated in a RLC circuit is given by :

$$P = V_{rms}I_{rms}cos(\phi) \tag{2.39}$$

The phase difference is given by:

$$tan\left(\phi\right) = \frac{\frac{1}{\omega C} - \omega L}{R} \tag{2.40}$$

After substituting the values from Table 2.2:

$$tan\left(\phi\right) = 1.86\tag{2.41}$$

Rms value of current I_{rms} is given by :

$$I_{rms} = \frac{V_{rms}}{R} = \frac{230}{15} = 15.33A \tag{2.42}$$

Now, susbtituting the value of ϕ , I_{rms} and values from Table 2.2 in (2.39) we obtain the total power:

$$P_{av} = 789.62W (2.43)$$

b) Average power transferred to the capacitor, P_C :

For a capacitor the phase angle is:

$$\phi = \frac{\pi}{2} \tag{2.44}$$

$$\cos(\phi) = 0 \tag{2.45}$$

$$P_C = 0 (2.46)$$

c) Average power transferred to the inductor, P_L :

For an inductor the phase angle is:

$$\phi = -\frac{\pi}{2} \tag{2.47}$$

$$\cos(\phi) = 0 \tag{2.48}$$

$$P_L = 0 (2.49)$$

d) Average Power transferred to the resistor, P_R :

$$P_{avg} = P_R + P_C + P_L \tag{2.50}$$

$$P_R = P_{avg} - P_C - P_L \tag{2.51}$$

$$P_R = 789.62 - 0 - 0 \tag{2.52}$$

$$P_R = 789.62W (2.53)$$

Figure 2.6: |H(j/omega)| vs ω

Bandwidth is defined as the range of frequencies, where power ranges from its maximum value to half of its maximum value.

$$I_{rms} = \frac{V_{rms}}{|H\left(j\omega\right)|} \tag{2.54}$$

At maximum power, $|H(j\omega)|$ will be minimum,

$$|H(j\omega)| = R \tag{2.55}$$

$$I_m = \frac{V_{rms}}{R} \tag{2.56}$$

when, power is half of the maximum value of power

$$P = \frac{P_m}{2} \tag{2.57}$$

$$I_{rms} = \frac{I_m}{\sqrt{2}} \tag{2.58}$$

$$|H(j\omega)| = \sqrt{2}R\tag{2.59}$$

$$|H(j\omega)| = \sqrt{2}R$$

$$\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} = \sqrt{2}R$$
(2.59)

$$\left(\omega L - \frac{1}{\omega C}\right)^2 = R^2 \tag{2.61}$$

This equation has 2 roots, ω_1 and ω_2 :

$$\omega_{1} = -\frac{R}{2L} + \sqrt{\frac{R^{2}}{4R} + \frac{1}{LC}}$$

$$\omega_{2} = \frac{R}{2L} + \sqrt{\frac{R^{2}}{4R} + \frac{1}{LC}}$$
(2.62)

$$\omega_2 = \frac{R}{2L} + \sqrt{\frac{R^2}{4R} + \frac{1}{LC}} \tag{2.63}$$

Thus Bandwidth of circuit is:

$$\omega_2 - \omega_1 = \frac{R}{L} = 187.5 \tag{2.64}$$

$$f = \frac{\omega_2 - \omega_1}{2\pi} = 29.85 \tag{2.65}$$

- 2.0.4 A series LCR circuit with L=0.12H C=480nF $R=23\Omega$ is connected to a 230V variable frequency supply.
 - (a) What is the source frequency for which current amplitude is maximum? Obtain this maximum value.
 - (b) What is the source frequency for which the average power absorbed by the circuit is maximum? Obtain the value of this maximum power.
 - (c) For which frequencies of the source is the power transferred to the circuit half the power at resonant frequency? What is the current amplitude at these frequencies?
 - (d) What is the Q-factor of the given circuit?

 $2.0.5\,$ A radio can tune over the frequency range of a portion of the MW broadcast band: (800 kHz to 1200 kHz). If its LC circuit has an effective inductance (L) and a variable capacitor with capacitance (C), what must be the range of C?

Chapter 3

Z-transform

3.0.1 Find four numbers forming a geometric progression in which the third term is greater than the first term by 9, and the second term is greater than the 4^{th} by 18.

Solution:

Symbols	Description	Values
r	Common ratio of the GP	-2
x(n)	$(n+1)^{th}$ term of the Sequence	$x(0)r^nu(n)$
x(0)	First term of the GP	3
x(2) - x(0)	First constraint	9
x(1) - x(3)	Second constraint	18

Table 3.1: Parameters, Descriptions, and Values

From the constraints given in 3.1:

$$x(0) r^2 - 9 = x(0) (3.1)$$

$$x(0) r + 18 = x(0) r^{3}$$
(3.2)

$$\implies x(0)(r^2 - 1) = 9$$
 (3.3)

$$\implies x(0)r(r^2 - 1) = 18$$
 (3.4)

By dividing (3.3) and (3.4) and solving ,we get:

$$\implies x\left(0\right) = 3\tag{3.5}$$

$$\implies r = -2 \tag{3.6}$$

Z-Transform for $\mathbf{x}(n)$: Using (B.1.1) :

$$X(z) = \frac{1}{1 + 2z^{-1}}, \quad |z| > |2|$$
 (3.7)

Figure 3.1: x(n) vs n

3.0.2 The 4^{th} term of a G.P. is square of its second term, and the first term is -3. Determine its 7^{th} term.

Solution:

Variable	Description	value
x(0)	first term of G.P.	-3
r	Common ratio of G.P.	?
x(n)	general term of the G.P.	$x(0)r^n$
x(3)	fourth term	$[x(1)]^2$
$u\left(n\right)$	unit step function	-

Table 3.2: A Table with input parameters

from Table 3.2

$$x(0) r^{3} = (x(0) r^{1})^{2}$$
 (3.8)

$$= x (0)^2 r^2 (3.9)$$

$$\implies r = x(0) \tag{3.10}$$

$$= -3 \tag{3.11}$$

general term

$$x(n) = x(0) r^{n} u(n)$$

$$(3.12)$$

$$= (-3)^{n+1} u(n) (3.13)$$

The 7^{th} term of the sequence will be:

$$x(6) = (-3)(-3)^{6}$$
 (3.14)

$$=-2187$$
 (3.15)

Z transform of the given G.P is:

$$X(z) = \frac{x(0)}{1 - rz^{-1}} = \frac{-3}{1 + 3z^{-1}}. \quad |z| > 3$$
 (3.16)

Figure 3.2: Graph showing first 8 terms of the GP

3.0.3 Show that

$$\frac{1 \times 2^2 + 2 \times 3^2 + \dots + n \times (n+1)^2}{1^2 \times 2 + 2^2 \times 3 + \dots + n^2 \times (n+1)} = \frac{3n+5}{3n+1}$$

Solution:

Parameter	Description	Value
n	Integer	2,-1,0,1, 2,
$x_1(n)$	General term of Numerator	$(n^3 + 5n^2 + 8n + 4) \cdot u(n)$
$x_2(n)$	General Term of Denominator	$(n^3 + 4n^2 + 5n + 2) \cdot u(n)$
$y_1(n)$	Sum of terms of numerator	?
$y_2(n)$	Sum of terms of denominator	?
U(z)	z-transform of $u(n)$	$\frac{1}{1-z^{-1}}, \{z \in \mathbb{C} : z > 1\}$
ROC	Region of convergence	$\left\{z: \left \sum_{n=-\infty}^{\infty} x(n)z^{-n}\right < \infty\right\}$

Table 1: Parameter Table

1. Analysis of Numerator:

$$X_{1}(z) = \sum_{n=-\infty}^{\infty} x_{1}(n) z^{-n}$$
(3.17)

$$= \sum_{n=-\infty}^{\infty} (n^3 + 5n^2 + 8n + 4) u(n) z^{-n}$$
 (3.18)

Using results of equations (B.3.2) to (B.3.5) we get:

$$\therefore X_1(z) = \frac{4 + 2z^{-1}}{(1 - z^{-1})^4}, |z| > 1$$
(3.19)

From (A.3.2)

$$y_1(n) = x_1(n) * u(n)$$
 (3.20)

$$Y_1(z) = X_1(z) U(z)$$
 (3.21)

$$= \frac{4+2z^{-1}}{(1-z^{-1})^5}, |z| > 1 \tag{3.22}$$

Using partial fractions:

$$Y_1(z) = \frac{22z^{-1}}{(1-z^{-1})} + \frac{48z^{-2}}{(1-z^{-1})^2} + \frac{52z^{-3}}{(1-z^{-3})^3},$$

$$+ \frac{28z^{-4}}{(1-z^{-1})^4} + \frac{6z^{-5}}{(1-z^{-1})^5} + 4, |z| > 1$$
(3.23)

Substituting results of equation (B.4.6) to (B.4.9) in equation (3.23):

$$y_1(n) = \frac{3n^4 + 26n^3 + 81n^2 + 106n + 48}{12}u(n)$$
 (3.24)

$$= \frac{(3n+8)(n+1)(n+2)(n+3)}{12}u(n)$$
 (3.25)

2. Analysis of Denominator:

$$X_{2}(z) = \sum_{n=-\infty}^{\infty} x_{2}(n) z^{-n}$$
(3.26)

$$= \sum_{n=-\infty}^{\infty} (n^3 + 4n^2 + 5n + 2) u(n) z^{-n}$$
 (3.27)

Using results of equation (B.3.2) to (B.3.5) we get:

$$\therefore X_2(z) = \frac{2 + 4z^{-1}}{(1 - z^{-1})^4}, |z| > 1$$
 (3.28)

From (A.3.2)

$$y_2(n) = x_2(n) * u(n)$$
 (3.29)

$$Y_{2}(z) = X_{2}(z) U(z)$$
 (3.30)

$$= \frac{2+4z^{-1}}{(1-z^{-1})^5}, |z| > 1 \tag{3.31}$$

Using partial fractions:

$$Y_{2}(z) = \frac{14z^{-1}}{(1-z^{-1})} + \frac{36z^{-2}}{(1-z^{-1})^{2}} + \frac{44z^{-3}}{(1-z^{-3})^{3}} + \frac{26z^{-4}}{(1-z^{-1})^{4}} + \frac{6z^{-5}}{(1-z^{-1})^{5}} + 2, |z| > 1$$
(3.32)

Substituting results of equation (B.4.6) to (B.4.9) in equation (3.32):

$$y_2(n) = \frac{3n^4 + 22n^3 + 57n^2 + 62n + 24}{12}u(n)$$
 (3.33)

$$= \frac{(3n+4)(n+1)(n+2)(n+3)}{12}u(n)$$
 (3.34)

As the sequence start from n=0 , in RHS of question n should be replaced by n+1:

$$\frac{y_1(n)}{y_2(n)} = \frac{3n+8}{3n+4} \tag{3.35}$$

Hence Prooved.

Figure 3.3: Stem Plot of $x_1(n)$

Figure 3.4: Stem Plot of $x_{2}\left(n\right)$

Figure 3.5: Stem Plot of $y_1(n)$

Figure 3.6: Stem Plot of $y_{2}\left(n\right)$

3.0.4 Write the five terms at $n=1,\,2,\,3,\,4,\,5$ of the sequence and obtain the Z-transform of the series

$$x\left(n\right) = -1, \qquad \qquad n = 0 \tag{3.36}$$

$$=\frac{x\left(n-1\right)}{n},\qquad \qquad n>0\tag{3.37}$$

$$=0, (3.38)$$

Solution:

$$x(1) = \frac{x(0)}{1} = -1 \tag{3.39}$$

$$x(2) = \frac{x(1)}{2} = -\frac{1}{2} \tag{3.40}$$

$$x(3) = \frac{x(2)}{3} = -\frac{1}{(2)(3)} = -\frac{1}{6}$$
(3.41)

$$x(4) = \frac{x(3)}{4} = -\frac{1}{(2)(3)(4)} = -\frac{1}{24}$$
 (3.42)

$$x(5) = \frac{x(4)}{5} = -\frac{1}{(2)(3)(4)(5)} = -\frac{1}{120}$$
(3.43)

$$x(n) = \frac{-1}{n!}(u(n)) \tag{3.44}$$

$$x(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$$
 (3.45)

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$
(3.46)

using (3.44),

$$= \sum_{n=-\infty}^{\infty} \frac{-1}{n!} u(n) z^{-n}$$
 (3.47)

$$=\sum_{n=0}^{\infty} \frac{-1}{n!} z^{-n} \tag{3.48}$$

$$= -e^{z^{-1}} \{z \in \mathbb{C} : z \neq 0\} (3.49)$$

Symbol	Value	Description
x(n)	$\frac{-1}{n!}$	general term of the series
X(z)	$-e^{z^{-1}}$	Z-transform of $x(n)$
u(n)		unit step function

Table 3.4: Parameters

Figure 3.7: Plot of x(n) vs n

3.0.5 Subba Rao started work in 1995 at an annual salary of Rs. 5000 and received an increment of Rs. 200 each year. In which year did his income reach Rs. 7000?

Solution:

Parameter	Value	Description
x(0)	5000	Initial Income
d	200	Annual Increment (Common Difference)
x(n)	(x(0) + nd)u(n)	n^{th} term of the AP

Table 3.5: Input Parameters

From the values given in Table 3.5:

$$7000 = 5000 + 200n \tag{3.50}$$

$$\implies 2000 = 200n \tag{3.51}$$

$$\therefore n = 10 \tag{3.52}$$

Let Z-transform of x(n) be X(z).

Figure 3.8: Plot of x(n) vs n. See Table 3.5 for details.

$$X(z) = \frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2} \quad |z| > 1$$
 (3.53)

Using the values from Table 3.5:

$$X(z) = \frac{5000}{1 - z^{-1}} + \frac{200z^{-1}}{(1 - z^{-1})^2} \quad |z| > 1$$
 (3.54)

3.0.6 Consider the sequence whose n^{th} term is given by 2^n . Find the first 6 terms of this sequence.

Solution:

Variable	Description	Value
x(n)	general term of sequence	$2^n u(n)$

Table 3.6: input parameters

$$X(Z) = \frac{1}{1 - 2z^{-1}} \quad |z| > |2| \tag{3.55}$$

Figure 3.9: Six terms of given sequence

3.0.7 If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289, find the sum of first n terms.

Solution:

Variable	Description
x(0)	First term of the AP
d	Common difference of the AP
$y\left(n\right)$	Sum of $n+1$ terms of the AP
x(n)	General term

Table 3.7: Variables Used

$$y(n) = \frac{n+1}{2} (2x(0) + nd) u(n)$$
 (3.56)

$$y(6) = 49$$
 (3.57)

$$y(16) = 289 (3.58)$$

Then,

$$x(0) + 3d = 7 (3.59)$$

$$x(0) + 8d = 17 (3.60)$$

From equations 3.59 and 3.60, the augmented matrix is:

$$\begin{pmatrix} 1 & 3 & 7 \\ 1 & 8 & 17 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - R_1} \begin{pmatrix} 1 & 3 & 7 \\ 0 & 5 & 10 \end{pmatrix} \tag{3.61}$$

$$\stackrel{R_1 \leftarrow R_1 - \frac{3}{5}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 10 \end{pmatrix}$$
(3.62)

$$\stackrel{R_2 \leftarrow \frac{R_2}{5}}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
(3.63)

$$\implies \begin{pmatrix} x(0) \\ d \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{3.64}$$

$$x(n) = (1+2n)u(n) (3.65)$$

$$X(z) = \frac{1}{1 - z^{-1}} + \frac{2z^{-1}}{(1 - z^{-1})^2} \quad \{z \in \mathbb{C} : |z| > 1\}$$
 (3.66)

$$y(n) = x(n) * u(n)$$

$$(3.67)$$

$$Y(z) = X(z) U(z)$$
(3.68)

$$\implies Y(z) = \left(\frac{1}{1 - z^{-1}} + \frac{2z^{-1}}{(1 - z^{-1})^2}\right) \left(\frac{1}{1 - z^{-1}}\right) \tag{3.69}$$

$$= \frac{1}{(1-z^{-1})^2} + \frac{2z^{-1}}{(1-z^{-1})^3}$$
 (3.70)

$$(n+1) u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{(1-z^{-1})^2} \left\{ z \in \mathbb{C} : |z| > 1 \right\}$$

$$(3.71)$$

$$n((n+1)u(n)) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{2z^{-1}}{(1-z^{-1})^3} \{z \in \mathbb{C} : |z| > 1\}$$
 (3.72)

From equations (B.11.1) and (B.11.2), taking the inverse Z Transform,

$$y(n) = (n+1) u(n) + n ((n+1) u(n))$$
 (3.73)

$$\implies y(n) = (n+1)^2 u(n) \tag{3.74}$$

Figure 3.10: Stem Plot of y(n)

3.0.8 Write the first five terms of the sequence and obtain the corresponding series:

$$a_1 = a_2 = 2, \ a_n = a_{n-1} - 1, \ n > 2$$

Solution:

Parameter	Description	Value	
x(0)	First term	2	
x (1)	Second term	2	
ROC	Region of convergence	$\left\{ z : \left \sum_{n=-\infty}^{\infty} x(n) z^{-n} \right < \infty \right\}$	
x(n)	General term	$x(n) = \begin{cases} ? & ; n \ge 0 \\ 0 & ; n < 0 \end{cases}$	

Table 1: Parameter Table

$$x(n) - x(n-1) = 2u(n) - 2u(n-1) - u(n-2)$$
 (3.75)

$$X(z) - z^{-1}X(z) = \frac{2}{(1 - z^{-1})} - \frac{z^{-2}}{(1 - z^{-1})} - \frac{2z^{-1}}{(1 - z^{-1})}$$
(3.76)

$$X(z) = \frac{2 - 2z^{-1} - z^{-2}}{(1 - z^{-1})^2}, |z| > 1$$
(3.77)

Using partial fractions

$$X(z) = \frac{2z^{-1}}{(1-z^{-1})} - \frac{z^{-2}}{(1-z^{-1})^2} + 2$$
(3.78)

Taking inverse Z-transform by result of equation (B.4.6) in equation (3.78):

$$x(n) = 2u(n) + (1 - n)u(n - 1)$$
(3.79)

Figure 3.11: Comparison of Theory and Simulated Values

From the figure Fig. 3.11 we can see that the theoretical and simulated values overlap.

3.0.9 Insert two numbers between 3 and 81 so that the resulting sequence is G.P.

Solution:

Parameter	Description	Value
x(0)	First term of G.P.	3
x(3)	Fourth term of G.P.	81
r	common ratio of G.P.	r

Table 3.9: input values

(a)

$$x(n) = x(0) r^n (3.80)$$

from the values in Table 3.9

$$\frac{x(0)r^3}{x(0)} = 27\tag{3.81}$$

$$r = 3 \tag{3.82}$$

 \therefore Required numbers are 9 and 27.

(b)

$$x(n) = 3^{n+1}u(n)$$
 (3.83)

$$X(z) = \frac{3}{1 - 3z^{-1}} \quad |z| > 3$$
 (3.84)

Figure 3.12: Graph of x(n)

3.0.10 What will Rs 500 amounts to in 10 years after its deposit in a bank which pays annual interest rate of 10% compounded annually?

Solution:

The Z-transform of a sequence x(n) is given by:

$$x(n) = 500(1.1)^n u(n) (3.85)$$

$$X(Z) = \frac{500}{1 - (1.1)z^{-1}}; |z| > 1.1$$
(3.86)

Parameter	Value	Description
x(0)	500	Principal amount before first year
r	1.1	Common ratio of GP
n	10	Number of years
x(10)	$500(1.1)^{10} = 1296.87$	Amount after 10 years

Table 3.10: Parameter Table

Figure 3.13: Plot of $x(n) = 500(1.1)^n$

3.0.11 Find the 20^{th} term from the last term of the AP: 3, 8, 13.....253.

Solution: As the 20^{th} term is considered from last,

Parameter	Description	Value
x(0)	first term	253
d	common difference	3 - 8 = -5
x(n)	$(n+1)^{th}$ term	(x(0) + nd)u(n)
u(n)	unit step function	
x(n)	20^{th} term	158

Table 3.11: Input table

From equation (B.1.1) and (B.3.2):

$$X(z) = \frac{253}{1 - z^{-1}} + \frac{-5z^{-1}}{(1 - z^{-1})^2}; \{|z| > 1\}$$
 (3.87)

Figure 3.14:

3.0.12 Find the sum to n terms of series, whose n^{th} term is: n(n+1)(n+4).

Solution:

Parameter	Description	Value
x(n)	n^{th} term of series	n(n+1)(n+4)u(n)
y(n)	sum of n terms of series	

Table 3.12: Given parameters

$$nu(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1-z^{-1})^2} \{|z| > 1\}$$
 (3.88)

$$n^2 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1} (1 + z^{-1})}{(1 - z^{-1})^3} \{ |z| > 1 \}$$
 (3.89)

$$n^3 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1} \left(1 + 4z^{-1} + z^{-2}\right)}{\left(1 - z^{-1}\right)^4} \{|z| > 1\}$$
 (3.90)

$$n^{4}u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}\left(1 + 11z^{-1} + 11z^{-2} + z^{-3}\right)}{\left(1 - z^{-1}\right)^{5}} \left\{|z| > 1\right\}$$
 (3.91)

From equation (B.3.2) to (B.3.4),

$$X(z) = \frac{z^{-1} (1 + 4z^{-1} + z^{-2})}{(1 - z^{-1})^4} + \frac{5z^{-1} (z^{-1} + 1)}{(1 - z^{-1})^3} + \frac{4z^{-1}}{(1 - z^{-1})^2} \{|z| > 1\} \quad (3.92)$$

$$Y(z) = X(z)U(z) \tag{3.93}$$

$$= \frac{z^{-1} \left(1 + 4z^{-1} + z^{-2}\right)}{\left(1 - z^{-1}\right)^5} + \frac{5z^{-1} \left(z^{-1} + 1\right)}{\left(1 - z^{-1}\right)^4} + \frac{4z^{-1}}{\left(1 - z^{-1}\right)^3}$$
(3.94)

$$= \frac{1}{4} \left[\frac{z^{-1} \left(1 + 11z^{-1} + 11z^{-2} + z^{-3} \right)}{\left(1 - z^{-1} \right)^{5}} \right] + \frac{13}{6} \left[\frac{z^{-1} \left(1 + 4z^{-1} + z^{-2} \right)}{\left(1 - z^{-1} \right)^{4}} \right] + \frac{19}{4} \left[\frac{z^{-1} \left(1 + z^{-1} \right)}{\left(1 - z^{-1} \right)^{3}} \right] + \frac{17}{6} \left[\frac{z^{-1}}{\left(1 - z^{-1} \right)^{2}} \right] \left\{ |z| > 1 \right\} \quad (3.95)$$

Taking reverse z transform, using equations (3.88) to (3.91)

$$y(n) = \left(\frac{n^4}{4} + \frac{13n^3}{6} + \frac{19n^2}{4} + \frac{17n}{6}\right)u(n)$$
 (3.96)

$$= \left(\frac{n^4}{4} + \frac{2n^3}{4} + \frac{10n^3}{6} + \frac{n^2}{4} + \frac{15n^2}{6} + \frac{4n^2}{2} + \frac{5n}{6} + \frac{4n}{2}\right)u\left(n\right) \quad (3.97)$$

$$= \left(\frac{n^4 + 2n^3 + n^4}{4}\right) u(n) + \left(\frac{10n^3 + 15n^2 + 5n}{6}\right) u(n) + \left(\frac{4n^2 + 4n}{2}\right) u(n)$$

$$+ \left(\frac{4n^2 + 4n}{2}\right) u(n) \quad (3.98)$$

$$= \left(\frac{n^2(n+1)^2}{4} + \frac{5n(n+1)(2n+1)}{6} + \frac{4n(n+1)}{2}\right)u(n) \quad (3.99)$$

Figure 3.15: Sum of n terms of series

3.0.13 Find the indicated terms in the sequence whose nth terms is a(n) = 4n - 3. Find a(17) and a(24).

Solution: In the question, following information is provided:

$$x(n) = (4n+1)(u(n)) (3.100)$$

Symbol	Value	Description
x(n)	(4n+1)u(n)	The nth term of the sequence
x(16)	?	17th term
x(23)	?	24th term

Table 3.13: Parameters

$$x(16) = 4 \times 16 + 1 = 65 \tag{3.101}$$

$$x(23) = 4 \times 23 + 1 = 93 \tag{3.102}$$

Using Z-Transform,

$$X(z) = 4\frac{z^{-1}}{(1-z^{-1})^2} + \frac{1}{1-z^{-1}} \quad |z| > 1$$
 (3.103)

Figure 3.16: x(n) vs n

3.0.14 The difference between any two cosecutive interior angles of a polygon is 5° . If the smallest angle is 120° , find the number of sides of polygon.

Solution:

Variable	Description	Value
x(0)	first term of AP	120
d	common difference of AP	5
x(n)	general term of AP	none

Table 3.14: input parameters

Sum of interior angles of a polygon with n+1 sides is given by

$$S = (n-1)180 (3.104)$$

Sum of n terms of AP is given by

$$y(n) = x(n) * u(n)$$
 (3.105)

where x(n) = 120 + 5n

$$x(n) * u(n) = (n-1)180 (3.106)$$

$$Y(z) = X(z)U(z) \tag{3.107}$$

$$= \left(\frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2}\right) \frac{1}{1 - z^{-1}} \quad |z| > 1$$
 (3.108)

$$= \frac{120}{(1-z^{-1})^2} + \frac{5z^{-1}}{(1-z^{-1})^3} \quad |z| > 1$$
 (3.109)

$$(n+1) u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \left(\frac{1}{(1-z^{-1})^2}\right) \quad |z| > 1 \tag{3.110}$$

$$\frac{(n)(n-1)}{2}u(n-1) \stackrel{\mathcal{Z}}{\longleftrightarrow} \left(\frac{z^{-1}}{(1-z^{-1})^3}\right) \quad |z| > 1$$
 (3.111)

applying inverse Z-transform for each term and solving we get,

$$y(n) = \frac{n+1}{2} (240 + 5n) u(n)$$
(3.112)

now from (3.106)

$$y(n) = (n-1)180 (3.113)$$

$$\frac{n+1}{2}(240+5n)u(n) = (n-1)180 (3.114)$$

now replace n by n-1:

$$n(235 + 5n) = (n - 2)360 (3.115)$$

$$5n^2 - 125n + 720 = 0 (3.116)$$

$$n = 16, 9 (3.117)$$

Figure 3.17: Plot of the sum of n terms taken from Python

3.0.15 The 5th,8th and 11th terms of a GP are p,q and s respectively .show that $q^2=ps$ Solution:

Symbol	Value	Description
x(5)	p	$x\left(0\right)r^{5}$
x(8)	q	$x(0) r^8$
x(11)	s	$x(0) r^{11}$
x(n)		$x\left(0\right)r^{n}u\left(n\right)$
r	$\left(\frac{s}{p}\right)^{\frac{1}{6}}$	common ratio

Table 3.15: input parameters

From Table 3.15:

$$q^{2} = x(0) r^{8} x(0) r^{8}$$
(3.118)

$$= x(0)^2 r^{16} (3.119)$$

$$ps = x(0) r^5 x(0) r^{11}$$
 (3.120)

$$= x(0)^2 r^{16} (3.121)$$

$$\implies q^2 = ps \tag{3.122}$$

now we will find r and x(0):

$$\frac{s}{p} = \frac{x(0) r^{11}}{x(0) r^5} \tag{3.123}$$

$$r = \left(\frac{s}{p}\right)^{\frac{1}{6}} \tag{3.124}$$

$$p = x\left(0\right) \left(\frac{s}{p}\right)^{\frac{5}{6}} \tag{3.125}$$

$$x(0) = \frac{p^{\frac{11}{6}}}{s^{\frac{5}{6}}} \tag{3.126}$$

Applying z-Transform:

$$X(z) = \frac{x(0)}{1 - rz^{-1}}, |z| > |r|$$
(3.127)

$$\implies X(z) = \frac{p^3}{p^{\frac{7}{6}} s^{\frac{5}{6}} - q^2 z^{-1}}, |z| > \left| \left(\frac{q}{p} \right)^{\frac{1}{3}} \right|$$
 (3.128)

Figure 3.18: plot x(n)vs n $p=486,\ q=13122,\ s=354294,\ r=3$

3.0.16 The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112.
If its first term is 11, then find the number of terms.

Solution:

$$y(n) = \left[\frac{(n+1)}{2}(2x(0) + nd)\right]u(n)$$
 (3.129)

$$\implies y(3) = \frac{4}{2} (2x(0) + 3d) \tag{3.130}$$

(3.131)

Symbol	Value	Description
x(0)	11	First term of AP
y (3)	56	Sum of the first four terms of AP
$y\left(n\right) - y\left(n-4\right)$	112	Sum of the last four terms of AP

Table 3.16: Input Parameters

From Table 3.16:

$$\frac{4}{2}(2x(0) + 3d) = 56 (3.132)$$

$$2x(0) + 3d = 28 (3.133)$$

$$\implies d = 2 \tag{3.134}$$

$$y(n) - y(n-4) = \frac{4}{2}(2x(n) + 3(-d))$$
 (3.135)

From Table 3.16:

$$\frac{4}{2}(2x(n) + 3(-d)) = 112 (3.136)$$

$$2x(n) - 3d = 56 (3.137)$$

$$\implies x(n) = 31 \tag{3.138}$$

$$x(0) + (n) 2 = 31 (3.139)$$

$$\implies n = 10 \tag{3.140}$$

$$x(n) = (x(0) + 2n) u(n)$$
 (3.141)

$$\implies X(z) = \frac{x(0)}{1 - z^{-1}} + 2 \frac{z^{-1}}{(1 - z^{-1})^2}. \quad |z| > 1$$
 (3.142)

Figure 3.19: Plot y(n) vs n

3.0.17 Find the sum to n terms of the series whose n^{th} term is given by $(2n-1)^2$? **Solution:** Sum

Variable	Description	Value
x(n)	n^{th} term of sequence	$(2n+1)^2 u(n)$

Table 3.17: input parameters

of n terms of AP is given by

$$y(n) = x(n) * u(n)$$
 (3.143)

$$x(n) = (2n+1)^2 u(n) (3.144)$$

$$u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{(1-z^{-1})} \quad |z| > 1$$
 (3.145)

$$nu(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1-z^{-1})^2} \quad |z| > 1$$
 (3.146)

$$n^2 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3} \quad |z| > 1$$
 (3.147)

$$n^3 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1} \left(1 + 4z^{-1} + z^{-2}\right)}{\left(1 - z^{-1}\right)^4} \quad |z| > 1$$
 (3.148)

$$\implies X(z) = \frac{4z^{-1}(1+z^{-1})}{(1-z^{-1})^3} + \frac{1}{(1-z^{-1})} + \frac{4z^{-1}}{(1-z^{-1})^2} \quad |z| > 1$$
 (3.149)

$$Y(z) = X(z)U(z) \tag{3.150}$$

$$= \left(\frac{4z^{-1}(z^{-1}+1)}{(1-z^{-1})^3} + \frac{1}{(1-z^{-1})} + \frac{4z^{-1}}{(1-z^{-1})^2}\right) \left(\frac{1}{1-z^{-1}}\right)$$
(3.151)

$$= \frac{4z^{-1}(z^{-1}+1)}{(1-z^{-1})^4} + \frac{1}{(1-z^{-1})^2} + \frac{4z^{-1}}{(1-z^{-1})^3}$$
(3.152)

$$\implies Y(Z) = \frac{1}{(1-z^{-1})} + \frac{9z^{-1}}{(1-z^{-1})} + \frac{25z^{-2}}{(1-z^{-1})^2} + \frac{24z^{-3}}{(1-z^{-1})^3} + \frac{8z^{-4}}{(1-z^{-1})^4} \quad |z| > 1 \quad (3.153)$$

Now from (3.145), (3.146), (3.147), (3.148), (3.153) By using inverse Z-transform pairs,

$$y(n) = u(n) + 9u(n-1) + 25(n-1)u(n-2) + 24\frac{(n-1)(n-2)}{2}u(n-3) + 8\frac{(n-1)(n-2)(n-3)}{6}u(n-4)$$
(3.154)

$$\implies y(n) = \left(\frac{4n^3 + 12n^2 + 11n + 3}{3}\right)u(n) \tag{3.155}$$

... Sum of n terms of the series whose n^{th} term is given by $(2n+1)^2$ is $\frac{4n^3+12n^2+11n+3}{3}$.

Figure 3.20: Theory vs Simulation

3.0.18 If the 4^{th} , 10^{th} and 16^{th} terms of a G.P. are x, y, and z, respectively. Prove that x, y, z are in G.P.

Solution:

Symbol	Value	Description
x	$x\left(0\right)r^{4}$	x(4)
y	$x(0) r^{10}$	x(10)
z	$x\left(0\right)r^{16}$	x(16)
r	?	$\frac{x(n)}{x(n-1)}$
x(0)	?	First term
x(n)	$x\left(0\right)r^{n}u\left(n\right)$	General Term

Table 3.18: Given Information

(a) From Table 3.0.18,

$$x = x(3) = x(0) r^{3} (3.156)$$

$$y = x(9) = x(0) r^{9}$$
 (3.157)

$$z = x (15) = x (0) r^{15}$$
 (3.158)

Consider $\frac{x(9)}{x(3)}$ and $\frac{x(15)}{x(9)}$;

$$\frac{x(9)}{x(3)} = \frac{x(0) r^9}{x(0) r^3} = r^6 = \frac{x(15)}{x(9)} = \frac{x(0) r^{15}}{x(0) r^9}$$
(3.159)

From (3.159), x(3), x(9), x(15) are in G.P.

 $\therefore x, y, z$ are in G.P.

(b) x(0) and r can be expressed in terms of x, y, and z in the following manner.

$$\frac{y}{x} = r^6 \tag{3.160}$$

$$\Longrightarrow r = \sqrt[6]{\frac{y}{x}} = \left(\frac{y}{x}\right)^{\frac{1}{6}} \tag{3.161}$$

$$\Longrightarrow x(0) = \frac{x}{r^3} = x\left(\frac{x}{y}\right)^{\frac{3}{6}} \tag{3.162}$$

$$\therefore x(0) = x^{\frac{5}{3}}y^{-\frac{2}{3}} \text{ and } r = \left(\frac{y}{x}\right)^{\frac{1}{6}} = y^{\frac{1}{6}}x^{-\frac{1}{6}}$$
 (3.163)

(c) From (B.5.4) Z-transform of a G.P. is

$$X(z) = \frac{x(0)}{1 - rz^{-1}}; |z| > |r|$$
(3.164)

Substituting r and x(0) from (3.163),

$$X(z) = \frac{x^{\frac{5}{3}}y^{-\frac{2}{3}}}{1 - \left(\frac{y}{x}\right)^{\frac{1}{6}}z^{-1}}$$
(3.165)

(d) Example Let x(0) = 1 and r = 1.2

$$x = x(3) = (1.2)^3 (3.166)$$

$$y = x(9) = = (1.2)^9 (3.167)$$

$$z = x (15) = (1.2)^{15}$$
 (3.168)

Figure 3.21: Stem Plot of x(n) vs n

3.0.19 Show that the ratio of the sum of the first n terms of a geometric progression (G.P.) to the sum of terms from (n+1)th to (2n)th term is $\frac{1}{r^n}$. Solution:

3.0.20 A G.P consists of an even number of terms. If the sum of all terms is 5 times the sum of terms occupying odd places, then find its common ratio.

Solution: Solving the Question in time domain:

Parameter	Description	condition
N	Number of terms in the G.P	-
M	number of odd place terms	N=2M
x(0)	first term in the G.P	-
r	common ratio in the G.P	-
x(n)	n+1 th term in the G.P	$x(n) = x(0)r^n$
y(n)	sum of G.P series	$y(n) = x(0) \left(\frac{r^{n+1}-1}{r-1}\right) u(n)$
$x_o(n)$	n+1 th term of G.P of odd places	$x_o(n) = x(0)r^{2n}$
$y_o(n)$	sum of terms in odd places	$y_o(n) = x(0) \left(\frac{r^{n+1}-1}{r^2-1}\right) u(n)$

Table 3.19: Input Parameters

$$x(n) = x(0)r^n \tag{3.169}$$

$$y(n) = x(0) \left(\frac{r^{n+1} - 1}{r - 1}\right) u(n)$$
(3.170)

The sum of terms in odd places:

$$x_o(n) = x(0)r^{2n} (3.171)$$

$$y_o(n) = x(0) \left(\frac{r^{n+1} - 1}{r^2 - 1}\right) u(n)$$
 (3.172)

Then from (3.170) and (3.172)

$$x(0)\left(\frac{r^{N}-1}{r-1}\right)u(n) = 5\left(x(0)\left(\frac{r^{2M}-1}{r^{2}-1}\right)u(n)\right)$$
(3.173)

$$\frac{r^2 - 1}{r - 1} = 5\tag{3.174}$$

as
$$r \neq 1$$
, hence $r = 4$ (3.175)

(3.176)

X,Y,Xo,Yo are frequency counterparts of the above GP

$$X(z) = \frac{x(0)}{1 - rz^{-1}} \quad |z| > |r| \tag{3.177}$$

$$X_o(z) = \frac{x(0)}{1 - r^2 z^{-1}} \tag{3.178}$$

$$Y(z) = \frac{x(0)}{(1 - rz^{-1})(1 - z^{-1})} \tag{3.179}$$

$$Y(z) = \frac{x(0)}{(1 - rz^{-1})(1 - z^{-1})}$$

$$Y_o(z) = \frac{x(0)}{\left(1 - rz^{-\frac{1}{2}}\right)(1 - z^{-1})}$$
(3.179)
$$(3.180)$$

3.0.21 Find the sum to indicated number of terms in the geometric progression $x^3, x^5, x^7, ...n$ terms (if $x \neq \pm 1$).

Solution:

Input Parameters	Values	Description
x(0)	x^3	Initial term
r	x^2	Common ratio
x(n)	$x^{2n+3}u(n)$	General term

Table 3.20: Given inputs

From Table 3.20,

$$X(z) = \frac{x(0)}{1 - rz^{-1}} \tag{3.181}$$

$$=\frac{x^3}{1-x^2z^{-1}} \quad |z| > x^2 \tag{3.182}$$

$$y(n) = x(n) * u(n)$$
 (3.183)

$$Y(z) = X(z)U(z) \tag{3.184}$$

$$=\frac{x^3}{(1-x^2z^{-1})(1-z^{-1})} \quad |z| > x^2 \cap |z| > 1 \tag{3.185}$$

$$= \frac{x^3}{x^2 - 1} \left(\frac{x^2}{1 - x^2 z^{-1}} - \frac{1}{1 - z^{-1}} \right)$$
 (3.186)

$$u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1 - z^{-1}} \quad |z| > 1$$
 (3.187)

$$x^{2n+2}u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{x^2}{1 - x^2 z^{-1}} \quad |z| > x^2$$
 (3.188)

Taking inverse Z transform of Y(z),

$$y(n) = x^{3} \left(\frac{x^{2n+2} - 1}{x^{2} - 1} \right) u(n)$$
(3.189)

Figure 3.22: Plot of x(n) for x = 1.2

3.0.22 Determine the AP whose third term is 16 and the 7th term exceeds the 5th term by 12. Solution:

Parameter	Value	Description
x(6) - x(4)	12	7th term exceeds 5th by 12
x(2)	16	Third term
d	?	Common difference
x(0)	?	First term of AP
x(n)	(x(0) + nd)u(n)	General term

Table 3.21: Input parameters table

From Table 3.21

$$x(0) + 6d - x(0) - 4d = 12 (3.190)$$

$$\implies 2d = 12 \tag{3.191}$$

$$\implies d = 6 \tag{3.192}$$

Also,

$$x(0) + 2d = 16 (3.193)$$

$$\implies x(0) + 2(6) = 16 \tag{3.194}$$

$$\implies x(0) = 4 \tag{3.195}$$

$$\therefore x(n) = 6n + 4 \tag{3.196}$$

From Table 3.21

$$X(z) = x(0)\frac{1}{1-z^{-1}} + d\frac{z^{-1}}{(1-z^{-1})^2}$$

$$= 4\frac{1}{1-z^{-1}} + 6\frac{z^{-1}}{(1-z^{-1})^2}$$

$$= \frac{4+2z^{-1}}{(1-z^{-1})^2} \quad |z| > 1$$
(3.197)
$$(3.198)$$

$$=4\frac{1}{1-z^{-1}}+6\frac{z^{-1}}{(1-z^{-1})^2}$$
 (3.198)

$$= \frac{4+2z^{-1}}{(1-z^{-1})^2} \quad |z| > 1 \tag{3.199}$$

Figure 3.23: Given AP

3.0.23 Find the seventh term of the sequence where the nth term is given by $a_n = \frac{n^2}{2^n}$ Solution:

$$x(n) = \frac{(n+1)^2}{2^{(n+1)}}u(n) \tag{3.200}$$

Parameter	Value
x(n)	$\frac{(n+1)^2}{2(n+1)}u(n)$
x(6)	?

Table 3.22: Input Parameters

$$x(6) = \frac{(6+1)^2}{2^{(6+1)}} \tag{3.201}$$

$$=\frac{49}{128}\tag{3.202}$$

(a) Scaling property:

$$a^n u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{(1 - az^{-1})}, \quad |z| > |a|$$
 (3.203)

(b) Differentiation property:

$$nu(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} (-z) \frac{dY(z)}{dz}$$
 (3.204)

$$nu(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} (-z) \frac{dY(z)}{dz}$$

$$\implies nu(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1-z^{-1})^2}, \quad |z| > 1$$
(3.204)

$$\implies n^2 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1} (1 + z^{-1})}{(1 - z^{-1})^3}, \quad |z| > 1$$
 (3.206)

(c) Time shifting property:

$$y(n-k) \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-k}Y(z)$$
 (3.207)

The Z transform of x(n) is given by:

from(4)

$$\frac{u(n)}{2^n} \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{(1 - (2z)^{-1})}, \quad |z| > \frac{1}{2}$$
 (3.208)

from(5)

$$\frac{n}{2^n}u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{(2z)^{-1}}{(1-(2z)^{-1})^2}, \quad |z| > \frac{1}{2}$$
 (3.209)

$$\frac{n^2}{2^n}u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{(2z)^{-1}(1+(2z)^{-1})}{(1-(2z)^{-1})^3}, \quad |z| > \frac{1}{2}$$
 (3.210)

from(8)

$$\frac{(n+1)^2}{2(n+1)}u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} (z)\frac{(2z)^{-1}(1+(2z)^{-1})}{(1-(2z)^{-1})^3}, \quad |z| > \frac{1}{2}$$
 (3.211)

$$X(z) = \frac{1 + (2z)^{-1}}{2(1 - (2z)^{-1})^3}, \quad |z| > \frac{1}{2}$$
 (3.212)

Figure 3.24: Stem plot of x(n)

3.0.24 Find sum to n terms of the following series:

$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots$$

 $3.0.25 \ 1x2x3 + 2x3x4 + 3x4x5 + \dots$

3.0.26 Find the sum of the following series up to n terms:

(a)
$$5 + 55 + 555 + \dots$$

(b)
$$.6 + .66 + .666 + \dots$$

3.0.27 Find a_9 in the sequence $a_n = (-1)^{n-1} n^3$ Solution:

3.0.28 Find the 20th term in this series.

$$2 \times 4 + 4 \times 6 + 6 \times 8 \cdots + n terms$$

3.0.29 Q10) The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an arithmetic progression. Find the numbers.

Solution: Table of Parameters

Input Variable	Condition
x(0), x(n)	first term and general term of a GP
r	common ratio of a GP
$x\left(0\right),x\left(1\right),x\left(2\right)$	three terms in GP
$x_i(n)$	general term of i th GP sequence
$x_i(0)$	first term of i th GP sequence
r_i	common ratio of i th GP sequence

 $(n+1)^{th}$ term of GP x(n) is given by:

$$x(n) = x(0) r^{n} u(n)$$
 (3.213)

Then from given table of parameters,

$$x(0) + x(1) + x(2) = 56$$
 (3.214)

$$x(0) \implies \frac{56}{(1+r+r^2)} \tag{3.215}$$

and from given another case following are in AP,

$$x(0) - 1, x(1) - 7, x(2) - 21$$

$$2(x(1) - 7) = x(0) - 1 + x(2) - 21 (3.216)$$

$$x(0)(r^2 - 2r + 1) = 8 (3.217)$$

and from (3.215)

$$\frac{56.\left(r^2 - 2r + 1\right)}{\left(1 + r + r^2\right)} = 8\tag{3.218}$$

$$r_1 = 2 \; , \; r_2 = \frac{1}{2}$$
 (3.219)

so from (3.215),

$$x_1(0) = 8, \ x_2(0) = 32$$
 (3.220)

Then from (3.213)

$$x_1(n) = 8.2^n = 2^{n+3} u(n)$$
 (3.221)

$$x_2(n) = 32. \left(\frac{1}{2}\right)^n u(n) = 2^{5-n} u(n)$$
 (3.222)

 $x_{1}\left(0\right),\,x_{1}\left(1\right)\,$ and $x_{1}\left(2\right)\,$ are 8, 16, 32 $\left(or\right)\,x_{2}\left(0\right),\,x_{2}\left(1\right)\,$ and $x_{2}\left(2\right)\,$ are 32, 16, 8 respectively

Graph of $x_1(n)$

z-transform of $x_1(n)$ is given by:

$$X_1(z) = \sum_{k=-\infty}^{\infty} x_1(k) . z^{-k}$$
 (3.223)

from (3.221),

$$X_1(z) = \sum_{k=0}^{\infty} 2^{k+3} z^{-k}$$
 (3.224)

Hence,

$$X_1(z) = \frac{8}{1 - 2z^{-1}}, \quad |2z^{-1}| < 1$$
 (3.225)

Graph of $x_2(n)$

and also from (3.222),

$$X_{2}(z) = \sum_{k=-\infty}^{\infty} x_{2}(k) . z^{-k}$$
 (3.226)

$$X_2(z) = \sum_{k=0}^{\infty} 2^{5-k} z^{-k}$$
 (3.227)

Hence,

$$X_2(z) = \frac{32}{1 - (2z)^{-1}}, \quad |(2z)^{-1}| < 1$$
 (3.228)

3.0.30 Find the sum to n terms for the given series: $3 \times 8 + 6 \times 11 + 9 \times 14 + \dots$

Solution: Sum of n terms of AP is given by

Variable	Description	Value
x(n)	n^{th} term of sequence	(3n+3)(3n+8)u(n)

Table 3.23: input parameters

$$x(n) = (3n+3)(3n+8)u(n)$$
(3.229)

$$y(n) = x(n) * u(n)$$

$$(3.230)$$

$$u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{(1-z^{-1})} \quad |z| > 1$$
 (3.231)

$$nu(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1-z^{-1})^2} \quad |z| > 1$$
 (3.232)

$$n^2 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3} \quad |z| > 1$$
 (3.233)

$$n^3 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1} \left(1 + 4z^{-1} + z^{-2}\right)}{\left(1 - z^{-1}\right)^4} \quad |z| > 1$$
 (3.234)

$$\implies X\left(z\right) = 9z^{-1}\frac{\left(1+z^{-1}\right)}{\left(1-z^{-1}\right)^{3}} + \frac{33\left(z^{-1}\right)}{\left(1-z^{-1}\right)^{2}} + \frac{24}{\left(1-z^{-1}\right)}\left|z\right| > 1 \tag{3.235}$$

$$Y(z) = X(z)U(z) \tag{3.236}$$

$$\implies Y(z) = 9z^{-1} \frac{\left(1 + z^{-1}\right)}{\left(1 - z^{-1}\right)^4} + \frac{33\left(z^{-1}\right)}{\left(1 - z^{-1}\right)^3} + \frac{24}{\left(1 - z^{-1}\right)^2} |z| > 1$$
 (3.237)

Now from (3.231), (3.232), (3.233), (3.234), (3.237) By using inverse Z-transform pairs,

$$y(n) = \left(\frac{9n(n+1)(2n+1)}{6} + \frac{33n(n+1)}{2} + 24(n+1)\right)u(n)$$
 (3.238)

∴ Sum of n terms of the series whose n^{th} term is given by (3n+3)(3n+8)u(n) is $(\frac{9n(n+1)(2n+1)}{6} + \frac{33n(n+1)}{2} + 24(n+1))u(n)$

Figure 3.25: Theory vs Simulation

3.0.31 Find the sum to n terms of the series:

$$1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + \dots$$
 (NCERT 11.9.4.7)

Solution:

Variable	Description	Value
$y\left(n\right)$	Sum of $n+1$ terms of the series	?
x(n)	General term	$\left(n+1\right)^{2}u\left(n\right)$

Table 3.24: Variables Used

$$y(n) = 1^{2} + (1^{2} + 2^{2}) + (1^{2} + 2^{2} + 3^{2}) + \dots$$
 (3.239)

Let,

$$x(n) = (n+1)^{2} u(n)$$
 (3.240)

$$\implies y(n) = x(n) * u(n) * u(n)$$
(3.241)

$$Y(z) = X(z) (U(z))^{2}$$
 (3.242)

From (B.3.3),

$$n^{2}u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}} \{|z|>1\}$$
 (3.243)

Using (B.4.1),

$$(n+1)^2 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1+z^{-1}}{(1-z^{-1})^3} \quad \{|z| > 1\}$$
 (3.244)

From (3.244),

$$Y(z) = \left(\frac{1+z^{-1}}{(1-z^{-1})^3}\right) \left(\frac{1}{1-z^{-1}}\right)^2$$
(3.245)

$$=\frac{1+z^{-1}}{(1-z^{-1})^5}\tag{3.246}$$

$$= \frac{1}{(1-z^{-1})^5} + \frac{z^{-1}}{(1-z^{-1})^5} \{|z| > 1\}$$
 (3.247)

From (B.4.9), using (B.4.1),

$$\frac{(n+1)(n+2)(n+3)(n+4)}{24}u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{(1-z^{-1})^5} \{|z| > 1\}$$
 (3.248)

$$\frac{(n)(n+1)(n+2)(n+3)}{24}u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1-z^{-1})^5} \{|z| > 1\}$$
 (3.249)

From (3.248) and (3.249), taking the Inverse Z Transform,

$$y(n) = \left(\frac{(n+1)(n+2)(n+3)(n+4)}{24}u(n)\right) + \left(\frac{(n)(n+1)(n+2)(n+3)}{24}u(n)\right)$$
(3.250)

$$\implies y(n) = \frac{(n+1)(n+2)^2(n+3)}{12}u(n) \tag{3.251}$$

Figure 3.26: Stem Plot of $y\left(n\right)$

3.0.32 Find a GP for which sum of the first two terms is -4 and the fifth term is 4 times the third term.

Solution: From Table 3.25:

$$x(0)r^4 = 4x(0)r^2 (3.252)$$

$$\implies r = \pm 2 \tag{3.253}$$

From Table 3.25 and (3.253):

Parameter	Description	Value
x(0)	First term of AP	_
r	Common ratio	_
x(n)	General term of given AP	$x(0)r^nu(n)$
x(0) + x(1)	sum of 1st and 2nd term	-4
$\frac{x(4)}{x(2)}$	Ratio of 5th and 3rd term	4

Table 3.25: Input Parameters

$$x(0)r + x(0) = -4 (3.254)$$

$$\implies x(0) = \frac{-4}{r+1} \tag{3.255}$$

$$x(0) = \begin{cases} \frac{-4}{3}, & r = +2\\ 4, & r = -2 \end{cases}$$
 (3.256)

$$X(z) = \frac{x(0)}{1 - rz^{-1}} \quad , |z| > |r| \tag{3.257}$$

$$X(z) = \begin{cases} \frac{4}{3(2z^{-1} - 1)}, & r = +2\\ \frac{4}{1 + 2z^{-1}}, & r = -2 \end{cases}$$
 (3.258)

3.0.33 Find the sum of the following series up to n terms and obtain the Z-transform:

$$\frac{1^3}{1} + \frac{1^3 + 2^3}{1+3} + \frac{1^3 + 2^3 + 3^3}{1+3+5} + \dots$$

Symbol	Description
s(n)	sum of n terms
$S\left(z\right)$	Z-transform of s(n)
$s_1(n)$	$(n+1)^3 * u(n)$
$S_1(z)$	Z-transform of $s_1(n)$
$s_2(n)$	(2n+1)*u(n)
$S_{2}\left(z ight)$	Z-transform of $s_2(n)$

Table 3.26: Parameters

$$s(n) = \sum_{r=0}^{n} \left(\frac{\sum_{i=0}^{r} (i+1)^{3}}{\sum_{i=0}^{r} (2i+1)} \right)$$
 (3.259)

$$= \frac{(n+1)^3 * u(n)}{(2n+1) * u(n)} * u(n)$$
(3.260)

$$= \frac{s_1(n)}{s_2(n)} * u(n) \tag{3.261}$$

$$s_1(n) = (n+1)^3 * u(n)$$
 (3.262)

$$s_1(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} S_1(z)$$
 (3.263)

$$(n+1)^3 \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1+4z^{-1}+z^{-2}}{(1-z^{-1})^4} \tag{3.264}$$

$$S_1(z) = \left(\frac{1 + 4z^{-1} + z^{-2}}{(1 - z^{-1})^4}\right) \left(\frac{1}{1 - z^{-1}}\right)$$
 {|z| > 1}

$$= \frac{1}{(1-z^{-1})^5} + \frac{4z^{-1}}{(1-z^{-1})^5} + \frac{z^{-2}}{(1-z^{-1})^5}$$
 (3.266)

using (B.4.1) and (B.4.9)

$$s_{1}(n) = \frac{(n+4)(n+3)(n+2)(n+1)}{24}u(n+4)$$

$$+ \frac{(n+3)(n+2)(n+1)n}{6}u(n+3)$$

$$+ \frac{(n+2)(n+1)n(n-1)}{24}u(n+2)$$

$$= \frac{(n+2)^{2}(n+1)^{2}}{4}$$

$$\{n \ge 0\}$$
(3.268)

$$s_2(n) = (2n+1) * u(n)$$
 (3.269)

$$s_2(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} S_2(z)$$
 (3.270)

$$2n+1 \stackrel{\mathcal{Z}}{\longleftrightarrow} \left(\frac{1+z^{-1}}{\left(1-z^{-1}\right)^2}\right) \tag{3.271}$$

$$S_2(z) = \left(\frac{1+z^{-1}}{(1-z^{-1})^2}\right) \left(\frac{1}{1-z^{-1}}\right)$$
 {|z| > 1}

$$= \frac{1}{(1-z^{-1})^3} + \frac{z^{-1}}{(1-z^{-1})^3}$$
 (3.273)

using (B.4.1) and (B.4.7)

$$s_{2}(n) = \frac{(n+2)(n+1)}{2}u(n+2) + \frac{(n+1)(n)}{2}u(n+1)$$
(3.274)

$$= (n+1)^2 {n \ge 0} (3.275)$$

replacing (3.268) and (3.275) in (3.261)

$$s(n) = \frac{(n+2)^2}{4} * u(n)$$
(3.276)

$$s(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} S(z)$$
 (3.277)

$$\frac{(n+2)^2}{4} \stackrel{\mathcal{Z}}{\longleftrightarrow} \left(\frac{4 - 3z^{-1} + z^{-2}}{4(1 - z^{-1})^3} \right) \tag{3.278}$$

$$S(z) = \left(\frac{4 - 3z^{-1} + z^{-2}}{4(1 - z^{-1})^3}\right) \left(\frac{1}{1 - z^{-1}}\right)$$
 {|z| > 1}

$$= \frac{1}{(1-z^{-1})^4} - \frac{3z^{-1}}{4(1-z^{-1})^4} + \frac{z^{-2}}{4(1-z^{-1})^4}$$

$$+\frac{z^{-2}}{4(1-z^{-1})^4}\tag{3.280}$$

$$s\left(n\right)=\frac{\left(n+3\right)\left(n+2\right)\left(n+1\right)}{6}u\left(n+3\right)$$

$$-\frac{(n+2)(n+1)(n)}{8}u(n+2)$$

$$+\frac{(n+1)(n)(n-1)}{24}u(n+1)$$
 (3.281)

$$= \left(1 + \frac{37n}{24} + \frac{5n^2}{8} + \frac{n^3}{12}\right)u(n) \tag{3.282}$$

3.0.34	Insert five numbers between 8 and 26 such that the resulting sequence is an A.P. and obtain the Z-transform of the sequence.

3.0.35 If S_1 , S_2 , S_3 are the sum of the first n natural numbers, their squares, and their cubes, respectively, show that

$$9(S_2)^2 = (S_3)(1 + 8(S_1))$$

3.0.36 If a, b, c, d are in G.P, prove that (a^n+b^n) , (b^n+c^n) , (c^n+d^n) are in G.P Solution:

Table 3.27: Input Parameters

Symbol	Remarks
x(0)	a
x(1)	b
x(2)	c
x(3)	d
r	ratio of G.P a,b,c
r_1	ratio of G.P $a^n + b^n, b^n + c^n, \dots$
X(z)	z transform of G.P a,b,c
Y(z)	z transform of G.P $a^n + b^n, b^n + c^n, \dots$

From Table 3.27

$$r = \frac{b}{a} = \frac{c}{b} = \frac{d}{c} \tag{3.283}$$

From eq (3.283)

$$\frac{b^n + c^n}{a^n + b^n} = \frac{(ar)^n + (ar^2)^n}{(a)^n + (ar)^n}$$
(3.284)

$$= \frac{a^n r^n (1+r^n)}{a^n (1+r^n)}$$
 (3.285)

$$=r^n\tag{3.286}$$

$$\frac{c^n + d^n}{b^n + c^n} = \frac{\left(ar^2\right)^n + \left(ar^3\right)^n}{\left(ar\right)^n + \left(ar^2\right)^n}$$
(3.287)

$$=\frac{a^{n}r^{2n}(1+r^{n})}{a^{n}r^{n}(1+r^{n})}$$
(3.288)

$$=r^n\tag{3.289}$$

$$\frac{b^n + c^n}{a^n + b^n} = \frac{c^n + d^n}{b^n + c^n} \tag{3.290}$$

Hence proved they are in in G.P

$$x(n) = a\left(\frac{b}{a}\right)^n u(n) \tag{3.291}$$

$$X(z) = \frac{a}{1 - \left(\frac{b}{a}\right)z^{-1}}, \quad |z| > \left|\frac{b}{a}\right| \tag{3.292}$$

$$r_1 = \frac{b^n + c^n}{a^n + b^n} = \frac{c^n + d^n}{b^n + c^n}$$
 (3.293)

From eq (3.293)

$$y(n) = (a^n + b^n) \left(\frac{b^n + c^n}{a^n + b^n}\right)^n u(n)$$
 (3.294)

$$y(n) = (a^{n} + b^{n}) \left(\frac{b^{n} + c^{n}}{a^{n} + b^{n}}\right)^{n} u(n)$$

$$Y(z) = \frac{a^{n} + b^{n}}{1 - \left(\frac{b^{n} + c^{n}}{a^{n} + b^{n}}\right) z^{-1}}, \quad |z| > \left|\frac{b^{n} + c^{n}}{a^{n} + b^{n}}\right|$$
(3.294)

3.0.37 Write the first five terms of the sequence whose n^{th} terms $a_n = \frac{n}{n+1}$ Solution:

Term	Value	Description
x(n)	$\frac{n+1}{n+2}u\left(n\right)$	General term

Table 3.28: Input Parameters

Here, Z-transform

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) . z^{-n}$$
 (3.296)

$$= \sum_{n=-\infty}^{\infty} \frac{n+1}{n+2} \cdot u(n) \cdot z^{-n}$$
 (3.297)

$$= \sum_{n=-\infty}^{\infty} u(n) . z^{-n} - \frac{1}{n+2} u(n) . z^{-n}$$
 (3.298)

Now,

$$u(n) \stackrel{Z}{\longleftrightarrow} \frac{1}{1-z^{-1}}, \quad |z| > 1$$
 (3.299)

$$\begin{split} \sum_{n=-\infty}^{\infty} -\frac{1}{n+2} u\left(n\right) . z^{-n} &= -\frac{1}{2} - \frac{z^{-1}}{3} - \frac{z^{-2}}{4} ... \\ &= z^2 [-z^{-1} - \frac{z^{-2}}{2} - \frac{z^{-3}}{3} ...] + z \\ &= z + z^2 \log(1-z^{-1}) \end{split}$$

$$\frac{-1}{n+2} \cdot u(n) \stackrel{Z}{\longleftrightarrow} \frac{1}{z^{-1}} + \frac{\log(1-z^{-1})}{z^{-2}}, \quad |z| > 1$$
 (3.300)

$$X(z) = \frac{1}{1 - z^{-1}} + \frac{1}{z^{-1}} + \frac{\log(1 - z^{-1})}{z^{-2}}, \quad |z| > 1$$
 (3.301)

3.0.38 150 workers were engaged to finish a job in a certain number of days, 4 workers dropped out on second day, 4 more workers dropped out on third day and so on. It took 8 more days to finish the work. Find the number of days in which the work was completed.

3.0.39 The Fibonacci sequence is defined by $1=a1=a_2$ and $a_n=an-1+a_{n-2}$, n>2 Find $\frac{a_{n+1}}{a_n}$, for $n=1,\,2,\,3,\,4,\,5$ Solution:

3.0.41 1) Find the sum to n terms for the given series: $3 \times 8 + 6 \times 11 + 9 \times 14 + \dots$ Solution:

3.0.42 The sum of the first n terms of two arithmetic progressions (AP) is in the ratio 5n+4:9n+6. Find the ratio of their 18th terms.

3.0.44 How many terms of the A.P. -6, $-\frac{11}{2}$, -5, are needed to give the sum -25? Solution:

Symbol	Value	Description
x(0)	-6	first term of AP
d	$\frac{1}{2}$	common difference of AP
n+1	?	number of terms
x(n)	x(0) + nd	nth term of the AP

Table 1: Input data

$$y(n) = x(n) * u(n)$$

$$(3.302)$$

$$Y(z) = X(z)U(z) \tag{3.303}$$

$$Y(z) = \frac{x(0)}{(1-z^{-1})^2} + \frac{dz^{-1}}{(1-z^{-1})^3} \quad |z| > 1$$
(3.304)

$$Y(z) = \frac{-6}{(1-z^{-1})^2} + \frac{0.5z^{-1}}{(1-z^{-1})^3} \quad |z| > 1$$
 (3.305)

Some Results:

$$(n+1) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{(1-z^{-1})^2} \quad |z| > 1$$
 (3.306)

$$(n^2 + n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{2z^{-1}}{(1 - z^{-1})^3} \quad |z| > 1$$
 (3.307)

Using (5) and (6) and taking inverse Z-transform

$$y(n) = (-6(n+1) + \frac{1}{4}(n^2 + n))u(n)$$
(3.308)

$$\implies -25 = \frac{1}{4}n^2 - \frac{23}{4}n - 6 \tag{3.309}$$

$$\implies 0 = n^2 - 23n + 76 \tag{3.310}$$

$$n = 190r4 (3.311)$$

Hence number of terms required is 5 or 20.

3.0.45 Find the sum to indicated number of terms in the geometric progression:

$$1,\,-a,\,a^2$$
 , $-a^3$, ... n terms (if $a\neq -1).$ Solution:

3.0.46 Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that $P^2R^n=S^n.$

 ${\bf Solution:}$

3.0.47 Find the sum to n terms to the series $3 \times (1)^2 + 5 \times (2)^2 + 7 \times (3)^2 + \dots$

 ${\bf Solution:}$

 $3.0.48\,$ Find the sum to n terms of the sequence 8,88,888,8888...

3.0.49 If the first and the n^{th} term of a G.P. are a and b, respectively, and if P is the product of n terms, prove that $P^2 = (ab)^n$

Solution:

Parameter	Value	Description
x(0)	a	First Term
x(n)	b	n^{th} term
r	$\left(\frac{b}{a}\right)^{\frac{1}{n}}$	Common Ratio
\overline{P}	?	Product of n terms

Table 3.30: Parameter Table 11.9.3.22

' The n^{th} term of GP is :-

$$x(n) = x(0) r^{n} u(n)$$

$$(3.312)$$

$$P = \prod_{k=0}^{n} x(0) r^{k} = (x(0))^{n} r^{\frac{n^{2}}{2}} = (ab)^{\frac{n}{2}}$$
(3.313)

$$\implies P^2 = (ab)^n \tag{3.314}$$

Z-transform of x(n):

$$X(z) = \frac{a}{1 - \left(\frac{b}{a}\right)^{\frac{1}{n}} z^{-1}}, \quad |z| > \left(\frac{b}{a}\right)^{\frac{1}{n}}$$
 (3.315)

3.0.50 Find the sum of the following APs:

(a) $2, 7, 12, \dots$ to 10 terms.

(b) $-37, -33, -29, \dots$ to 12 terms.

(c) $0.6, 1.7, 2.8, \dots$ to 100 terms.

(d) $\frac{1}{15}$, $\frac{1}{12}$, $\frac{1}{10}$, ... to 11 terms.

3.0.51 Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7 th and (m - 1) th numbers is 5:9. Find the value of m.

Solution:

Symbol	Value	description	
x(0)	1	First term of A.P	
x(n)	31	(n+1) th term	
$\frac{x(7)}{x(m-1)}$	$\frac{5}{9}$	ratio of 7 th and $(m-1)$ th numbers	
n	m+2	number of terms	

Table 3.31:

The last term is

$$x(n) = x(0) + (n) d (3.316)$$

$$\implies 31 = 1 + (m+1) d \tag{3.317}$$

$$\implies 30 = (m+1) d \tag{3.318}$$

$$\implies \frac{30}{m+1} = d \tag{3.319}$$

Now 7th and (m-1)th terms

$$x(7) = x(0) + 7d (3.320)$$

$$x(m-1) = x(0) + (m-1) d (3.321)$$

From equations (3.320) and (3.321)

$$\frac{x(0) + 7d}{x(0) + (m-1)d} = \frac{5}{9}$$
 (3.322)

Substituting (3.319) in (3.322)

$$\Rightarrow \frac{1+7\left(\frac{30}{m+1}\right)}{1+(m-1)\left(\frac{30}{m+1}\right)} = \frac{5}{9}$$

$$\Rightarrow \frac{m+1+210}{m+1+30m-30} = \frac{5}{9}$$

$$\Rightarrow \frac{m+181}{31m-29} = \frac{5}{9}$$
(3.323)
(3.325)

$$\implies \frac{m+1+210}{m+1+30m-30} = \frac{5}{9} \tag{3.324}$$

$$\implies \frac{m+181}{31m-29} = \frac{5}{9} \tag{3.325}$$

$$\implies 9m + 1899 = 155m - 145 \tag{3.326}$$

$$\implies 155m - 9m = 1899 + 145 \tag{3.327}$$

$$\implies 146m = 2044 \tag{3.328}$$

$$\implies m = 14 \tag{3.329}$$

Therefore, m = 14.

General term of AP is

$$x(n) = (2n+1)u(n) (3.330)$$

$$x(n) = (2n) u(n) + u(n)$$
 (3.331)

The Z-Transform is

$$X(z) = 2\left(\frac{z}{(z-1)^2}\right) + U(z)$$
(3.332)

$$= \frac{2z}{(z-1)^2} + \frac{1}{1-z^{-1}} \tag{3.333}$$

$$X(z) = \frac{z^2 + z}{(z - 1)^2} \quad |z| > 1 \tag{3.334}$$

3.0.52 Find the sum of n terms of this sequence:

$$5^2 + 6^2 + 7^2 \dots + 20^2$$

3.0.53 In an A.P., if the *p*-th term is $\frac{1}{q}$ and *q*-th term is $\frac{1}{p}$, prove that the sum of the first pq terms is $\frac{1}{2}(pq+1)$, where $p \neq q$.

Solution:

$$\frac{1}{q} = x\left(0\right) + pd\tag{3.335}$$

$$\frac{1}{p} = x(0) + qd \tag{3.336}$$

From equations (3.335) and (3.336), the argumented matrix is:

$$\begin{pmatrix} 1 & p & \frac{1}{q} \\ 1 & q & \frac{1}{p} \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - R_1} \begin{pmatrix} 1 & p & \frac{1}{q} \\ 0 & q - p & \frac{q - p}{pq} \end{pmatrix}$$
(3.337)

$$\stackrel{R_2 \leftarrow \frac{R_2}{q-p}}{\longleftrightarrow} \begin{pmatrix} 1 & p & \frac{1}{q} \\ 0 & 1 & \frac{1}{pq} \end{pmatrix}$$
(3.338)

$$\stackrel{R_1 \leftarrow R_1 - pR_2}{\longrightarrow} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{1}{pq} \end{pmatrix}$$
(3.339)

$$\implies \begin{pmatrix} x(0) \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{pq} \end{pmatrix} \tag{3.340}$$

$$x(n) = \left(\frac{n}{pq}\right)u(n) \tag{3.341}$$

$$X(z) = \frac{z^{-1}}{pq(1-z^{-1})^2} , |z| > 1$$
 (3.342)

Finding sum of pq terms,

$$y(n) = \frac{n}{2} (2x(0) + (n+1)d)$$
(3.343)

$$y(pq) = \frac{1}{2}(pq+1)$$
 (3.344)

Symbols	Values	Description
x(n)	$\left(\frac{n}{pq}\right)u\left(n\right)$	general term of the series
$y\left(n\right)$	$\frac{(n+1)}{2}$	sum of n terms

Table 3.32: Input Parameters

Figure 3.27: Representation of x(n) for r=2

Figure 3.28: Representation of x(n) for r=-2

Figure 3.29: Plot of s(n) vs n

Figure 3.30: Stem Plot of $x(n) = (0.25)2^n u(n)$, a = 0.25, r = 2

Figure 3.31: Stem Plot of $x(n) = (0.25^n + 0.5^n) u(n)$, a = 0.25, b = 0.5

Figure 3.32: Stem plot for $\mathbf{x}(n)$

Figure 3.33: Theory matches with simulated values

Figure 3.34: (x(0)=5, r=2) Plot of x(n)= $(5)(2)^n$

Figure 3.35: Plot of $\mathbf{x}(\mathbf{n})$ vs \mathbf{n}

Chapter 4

Sequences

4.0.1 Find the number of terms in each of the following APs.

(b)
$$18, 15\frac{1}{2}, 13, \dots -47$$

Solution: The number of terms in the AP x(n) is given by:

Parameter	Used to denote	Values
$x_i(n)$	n^{th} term of i^{th} series $(i = (1, 2))$	$\left \left(x_i \left(0 \right) + n d_i \right) u \left(n \right) \right $
$x_i(0)$	First term of i^{th} AP	$x_1(0) = $
		$ \begin{vmatrix} 7 \\ x_2(0) = \\ 18 \end{vmatrix} $
		$\frac{x_2(0)}{18}$
d_i	Commun difference of i^{th} AP	$ \begin{aligned} d_1 &= 6 \\ d_2 &= \\ -2.5 \end{aligned} $
		$d_2 =$
		-2.5

Table 4.1: Parameter Table

$$\frac{x\left(n\right) - x\left(0\right)}{d} + 1\tag{4.1}$$

$$X_i(z) = \frac{x_i(0)}{1 - z^{-1}} + d_i \frac{z^{-1}}{(1 - z^{-1})^2}$$
, for i=1,2 (4.2)

$$ROC: |z| > 1 \text{ as it is an AP} \tag{4.3}$$

(a)

$$x_1(n) = (7 + (n) 6) u(n)$$
 (4.4)

Using the values in Table 4.1 and equation (4.1),

$$k_1 = \frac{205 - 7}{6} + 1 = 34 \tag{4.5}$$

Using the values in Table 4.1 and equation (4.2):

$$X_1(z) = \frac{7 - z^{-1}}{(1 - z^{-1})^2} \tag{4.6}$$

ROC is |z| > 1

(b)

$$x_2(n) = (18 + n(-2.5)u(n))$$
 (4.7)

Using the values in Table 4.1 and equation (4.1),

$$k_2 = \frac{-47 - 18}{-2.5} + 1 = 27 \tag{4.8}$$

Using the values in Table 4.1 and equation (4.2):

$$X_2(z) = \frac{18 - (20.5) z^{-1}}{(1 - z^{-1})^2}$$
(4.9)

ROC is |z| > 1.

Figure 4.1: Plot of $x_1(n)$

4.0.2 For what value of n, are the nth terms of two A.Ps: $63, 65, 67, \ldots$ and $3, 10, 17, \ldots$ equal?

Figure 4.2: Plot of $x_2(n)$

$$x_i(n) = x(0) u(n) + dnu(n)$$
 (4.10)

$$X(z) = \frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2} \quad |z| > 1$$
(4.11)

(a)

$$x_1(n) = 63u(n) + 2nu(n)$$
 (4.12)

$$X_1(z) = \frac{63}{1 - z^{-1}} + \frac{2z^{-1}}{(1 - z^{-1})^2} \quad |z| > 1$$
 (4.13)

Parameter	Sub-question	Description	Value
$x_{\cdot}(0)$	$x_1(0)$	1^{st} term of 1^{st} A.P.	63
$x_i(0)$	$x_2(0)$	1^{st} term of 2^{nd} A.P.	3
d.	d_1	Common difference of 1^{st} A.P.	2
$ a_i $	d_2	Common difference of 2^{nd} A.P.	7

Table 4.2: input values

(b)

$$x_2(n) = 3u(n) + 7nu(n)$$
 (4.14)

$$X_2(z) = \frac{3}{1 - z^{-1}} + \frac{7z^{-1}}{(1 - z^{-1})^2} \quad |z| > 1$$
 (4.15)

(c) given,

$$x_1(n) = x_2(n)$$
 (4.16)

$$\therefore 63 + 2n = 7n + 3 \tag{4.17}$$

$$\implies n = 12 \tag{4.18}$$

4.0.3 Two APs have the same common difference. The difference between their 100th terms is 100, what is the difference between their 1000th terms?

Figure 4.3: Graphs of $x_{1}\left(n\right)$ and $x_{2}\left(n\right)$ and both are equal at n=12

$$x(n) = \{x(0) + nd\}u(n) \tag{4.19}$$

$$x(99) - y(99) = 100 (4.20)$$

$$\implies (x(0) + 99d) - (y(0) + 99d) = 100 \tag{4.21}$$

$$\implies x(0) - y(0) = 100$$
 (4.22)

$$x(n) - y(n) = (x(0) + nd) - (y(0) + nd)$$
(4.23)

$$= x(0) - y(0) \tag{4.24}$$

$$=100$$
 (4.25)

$$\implies x(999) - y(999) = 100 \tag{4.26}$$

Variable	Description	Value
x(n)	n^{th} term of X	none
y(n)	n^{th} term of Y	none
d	common difference between the terms of AP	none
x(99) - y(99)	difference of 99^{th} terms of X and Y	100

Table 4.3: input parameters

Let

$$x(n) = \{101, 106, 111, \dots\} \tag{4.27}$$

$$y(n) = \{1, 6, 11, \dots\} \tag{4.28}$$

 $4.0.4\,$ Check whether -150 is a term of the AP: $11,\!8,\!5,\!2,\!\ldots$

$$x(n) = x(0) + nd (4.29)$$

$$n = \frac{x(n) - x(0)}{d} \tag{4.30}$$

Figure 4.4:

$$x(n) - x(0) \equiv 0 \pmod{d} \tag{4.31}$$

On substitutings values

$$-161 \equiv 2 \pmod{-3} \tag{4.32}$$

Thus -150 is not a term of the given AP.

$$x(n) = (11 - 3n) \times u(n) \tag{4.33}$$

$$X(z) = \frac{11}{1 - z^{-1}} - \frac{3z^{-1}}{(1 - z^{-1})^2} \quad |z| > 1$$
 (4.34)

Variable	Description	Value
x(0)	First term of AP	11
d	Common difference	-3
x(n)	General term of given AP	None

Table 4.4: Input parameters

Figure 4.5: Representation of x(n)

4.0.5 Write the first five terms of the sequence $a_n = \frac{n(n^2+5)}{4}$.

$$x(n) = \left(\frac{n^3 + 3n^2 + 8n + 6}{4}\right)u(n) \tag{4.35}$$

$$n^k u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} (-1)^k z^k \frac{d^k}{dz^k} U(z)$$
 (4.36)

$$nu(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1-z^{-1})^2} \quad |z| > 1$$
 (4.37)

$$n^2 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{(z^{-1})(1+z^{-1})}{(1-z^{-1})^3} \quad |z| > 1$$
 (4.38)

$$n^3 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{(z^{-1})(1 + 4z^{-1} + z^{-2})}{(1 - z^{-1})^4} \quad |z| > 1$$
 (4.39)

Referencing the equations from (4.37), (4.38), and (4.39).

$$x(n) \longleftrightarrow \frac{(z^{-1})(1+4z^{-1}+z^{-2})}{4(1-z^{-1})^4} + \frac{3(z^{-1})(1+z^{-1})}{4(1-z^{-1})^3} + \frac{2z^{-1}}{(1-z^{-1})^2} + \frac{3}{2(1-z^{-1})} \quad |z| > 1$$

$$(4.40)$$

$$x(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{3}{2(1-z^{-1})^3} + \frac{3z^{-2}}{2(1-z^{-1})^4} \quad |z| > 1$$
 (4.41)

4.0.6 (a) 30th term of the AP: 10, 7, 4, \dots is

(b) 11th term of the AP: $-3, -\frac{1}{2}, 2, ...$ is

Parameter	value	Description
$x_i(0)$	10	First
$x_i(0)$	-3	term
d_i	-3	Common
$ a_i $	$\frac{5}{2}$	difference
$x_1(29)$?	30th term
$x_2(10)$?	11th term

Table 4.5: Input Parameters

$$x_i(n) = [x_i(0) + nd_i] u(n)$$
(4.42)

Figure 4.6: Plot of equation (4.35)

(a) From (4.42) Table 4.5:

$$x_1(n) = [10 - 3n] u(n) (4.43)$$

$$x_1(29) = -77 (4.44)$$

$$X_1(z) = \frac{10 - 13z^{-1}}{(1 - z^{-1})^2} \quad |z| > 1$$
 (4.45)

(b) From (4.42) and Table 4.5:

$$x_2(n) = \left[-3 + \frac{5}{2}n \right] u(n) \tag{4.46}$$

$$x_2(10) = 22 (4.47)$$

$$X_2(z) = \frac{5.5z^{-1} - 3}{(1 - z^{-1})^2} \quad |z| > 1 \tag{4.48}$$

Figure 4.7: stem plots of $x_1(n)$ and $x_2(n)$

4.0.7 Write the first five terms of the sequence whose nth term is $\frac{2n-3}{6}$ and obtain the Z transform of the series **Solution**:

$$x(n) = \frac{2n-1}{6}(u(n))$$
 (4.49)

Figure 4.8: Plot of x(n) vs n

$$X(z) = \frac{3z^{-1} - 1}{6(1 - z^{-1})^2} \quad |z| > 1$$
 (4.50)

4.0.8 For what values of x, the numbers $-\frac{2}{7}$, x, $-\frac{7}{2}$ are in G.P ?

Solution: Let r be the common ratio

Variable	Description	Value
x(0)	First term of the GP	$-\left(\frac{2}{7}\right)$
x(1)	Second term of the GP	x
x(2)	Third term of the GP	$-\left(\frac{7}{2}\right)$
r	Common ratio of the GP	
x(n)	General term	$x(0) r^n u(n)$

Table 4.6: Variables Used

From Table 4.6:

$$\implies \frac{x}{\left(-\frac{2}{7}\right)} = \frac{\left(-\frac{7}{2}\right)}{x} = r \tag{4.51}$$

$$x^2 = \left(-\frac{2}{7}\right) \cdot \left(-\frac{7}{2}\right) \tag{4.52}$$

$$x = \pm 1 \tag{4.53}$$

$$\implies r = \pm \frac{7}{2} \tag{4.54}$$

The signal corresponding to this is

$$x(n) = \left(-\frac{2}{7}\right) \left(\pm \frac{7}{2}\right)^n u(n) \tag{4.55}$$

Applying z-Transform :

$$\implies X_1(z) = \left(\frac{1}{7}\right) \left(\frac{4}{7z^{-1} + 2}\right) \quad |z| > \frac{7}{2}$$
 (4.56)

$$\implies X_2(z) = \left(\frac{1}{7}\right) \left(\frac{4}{7z^{-1} - 2}\right) \quad |z| > \frac{7}{2}$$
 (4.57)

4.0.9 Find the 20^{th} and n^{th} terms of the G.P $\frac{5}{2},\,\frac{5}{4},\,\frac{5}{8},.....$

Figure 4.9: Stem Plot of $x_1(n)$

Solution:

From Table 4.7: Z-Transform of x(n):

$$\implies X(z) = \frac{5}{2} \left(\frac{1}{1 - \frac{z^{-1}}{2}} \right); \left\{ z \in \mathbb{C} : |z| > \frac{1}{2} \right\}$$
 (4.58)

 $4.0.10\,$ Which term of the following sequences:

(a)
$$2,2\sqrt{2},4...$$
 is 128 (b) $\sqrt{3},3,3\sqrt{3}...$ is 729

Figure 4.10: Stem Plot of $x_2(n)$

(c)
$$\frac{1}{3}, \frac{1}{9}, \frac{1}{27}$$
... is $\frac{1}{19683}$

Solution: For a general GP series and k > 0,

$$x\left(k\right) = x\left(0\right)r^{k} \tag{4.59}$$

$$\therefore k = \log_r \frac{x(k)}{x(0)} \tag{4.60}$$

Parameter	Description	Value
x(0)	First Term	$\frac{5}{2}$
$r = \frac{x(1)}{x(0)}$	Common Ratio	$\frac{1}{2}$
x(n)	n^{th} Term	$\frac{5}{2} \left(\frac{1}{2}\right)^n \cdot u(n)$
x(19)	20^{th} Term	$\frac{5}{2}\left(\frac{1}{2}\right)^{19}$
u(n)	Unit step function	

Table 4.7: Parameters

And the Z-transform $X\left(z\right)$:

$$X(z) = \frac{x(0)}{1 - rz^{-1}} \quad |z| > |r|$$
 (4.61)

(a) By Table 4.8, (4.60) and Table 4.8:

$$x_1(n) = x_1(0) r_1^n u(n)$$
 (4.62)

$$k_1 = \log_{r_1} \frac{128}{x_1(0)} \tag{4.63}$$

$$\therefore k_1 = 12 \tag{4.64}$$

$$X_1(z) = \frac{2}{1 - \sqrt{2}z^{-1}} \quad |z| > \sqrt{2}$$
 (4.65)

Figure 4.11:

(b) By (4.60), (4.61) and Table 4.8:

$$x_{2}(n) = x_{2}(0) r_{2}^{n} u(n)$$
 (4.66)

$$k_2 = \log_{r_2} \frac{729}{x_2(0)} \tag{4.67}$$

$$\therefore k_2 = 11 \tag{4.68}$$

$$X_2(z) = \frac{\sqrt{3}}{1 - \sqrt{3}z^{-1}} \quad |z| > \sqrt{3}$$
 (4.69)

Figure 1: Plot of $x_1(n)$ vs n. See Table 4.8

(c) By (4.60), (4.61) and Table 4.8:

$$x_3(n) = x_3(0) r_3^n u(n)$$
 (4.70)

$$k_3 = \log_{r_3} \frac{1}{19683x_3(0)} \tag{4.71}$$

$$\therefore k_3 = 8 \tag{4.72}$$

$$X_3(z) = \frac{1}{3 - z^{-1}} \quad |z| > \frac{1}{3}$$
 (4.73)

Find the 20^{th} and n^{th} terms of the G.P $\frac{5}{2},\,\frac{5}{4},\,\frac{5}{8},...$

Figure 2: Plot of $x_2(n)$ vs n. See Table 4.8

Parameter	Description	Value
r_i	Common ratio of G.P (a),(b),(c)	$\sqrt{2}, \sqrt{3}, \frac{1}{3}$
$x_i(0)$	Initial Values	$2, \sqrt{3}, \frac{1}{3}$
$x_i(k_i)$	Given Values	$128,729,\frac{1}{19683}$
k_i	Desired index	12, 11, 8
$x_i(n)$	Series	$x_{i}\left(0\right)r_{i}^{n}u\left(n\right)$
$X_{i}\left(z\right)$	Z-Transform of $x_i(n)$	$\frac{x(0)}{1-rz^{-1}}$

Table 4.8: Table of parameters

Figure 3: Plot of $x_3(n)$ vs n. See Table 4.8

4.0.11 The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2^{nd} hour, 4^{th} hour and n^{th} hour?

Solution: From Table 4.9:

Parameter	Value	Description
x(0)	30	Initial no. of bacteria
r	2	Ratio of no. of bacteria at end of
		hour to start of hour (Common Ratio)
x(n)	$r^n x(0)u(n)$	n^{th} term of the GP

Table 4.9: Input Parameters

$$x(2) = 120 (4.74)$$

$$x(4) = 480 (4.75)$$

$$x(n) = 30(2^n)u(n) (4.76)$$

$$X(z) = \frac{30z^{-1}}{1 - 2z^{-1}} \quad |z| > 2 \tag{4.77}$$

4.0.12 Ramkali saved Rs 5 in the first week of a year and then increased her weekly savings by Rs 1.75. If in the nth week, her weekly savings become Rs 20.75, find n.

Solution:

Parameter	Value	Description
x(0)	5	First term of AP
d	1.75	Common difference of AP
x(n)	20.75	n^{th} term of AP

Table 4.10: Parameter List

Figure 4.15: Plot of x(n) vs n. See Table 4.9 for details.

$$x(n) = x(0) + (n)(d) (4.78)$$

$$20.75 = 5 + (n)(1.75) (4.79)$$

$$\implies 15.75 = (n)(1.75)$$
 (4.80)

$$\implies n = \frac{15.75}{1.75} \tag{4.81}$$

$$\implies n = 9 \tag{4.82}$$

$$x(n) = 5u(n) + 1.75nu(n)$$
(4.83)

Figure 4.16: Plot of x(n) = 5 + 1.75n

The Z-transform of a sequence x(n) is given by:

$$X(z) = \frac{5z^{-1}}{1 - z^{-1}} + \frac{1.75z^{-1}}{(1 - z^{-1})^2}; |z| > 1$$
(4.84)

4.0.13 Show that the sum of $(m+n)^{th}$ and $(m-n)^{th}$ terms of an A.P., is equal to twice the m^{th} terms.

Solution:

For an AP,

$$x(n) = [x(0) + nd]u(n)$$
 (4.85)

$$\implies x(m+n) + x(m-n) = [x(0) + (m+n)d] + [x(0) + (m-n)d]$$
 (4.86)

$$= 2[x(0) + md] (4.87)$$

$$\therefore x(m+n) + x(m-n) = 2x(m) \tag{4.88}$$

PARAMETERVALUE		DESCRIPTION
$x\left(0\right)$	$x\left(0\right)$	First term
d	d	common dif- ference
x(n)	[x(0)+nd]u(n)	General term of the series

Table 4.11: Parameter Table1

4.0.14 The sum of the first three terms of a G.P is 39/10 and their product is 1. Find the common ratio and the terms.

Solution:

$$y(n) = x(0) \left(\frac{r^{n+1} - 1}{r - 1}\right) u(n) \tag{4.89}$$

From Table 4.13 and (4.89):

$$y(2) = x(0) \left(\frac{r^3 - 1}{r - 1}\right) \tag{4.90}$$

$$\frac{39}{10} = x(0) \left(r^2 + r + 1 \right) \tag{4.91}$$

$$\implies \frac{39r}{10} = r^2 + r + 1 \quad (\because x(0)r = 1) \tag{4.92}$$

$$\implies (2r - 5)(5r - 2) = 0 \tag{4.93}$$

$$\implies r = \frac{2}{5} \quad or \quad \frac{5}{2} \tag{4.94}$$

(a) If $r = \frac{2}{5}$, then terms are $\frac{5}{2}$, 1, $\frac{2}{5}$.

(b) If $r = \frac{5}{2}$, then terms are $\frac{2}{5}$, $1, \frac{5}{2}$.

Figure 4.17: stem plots of GP if $r = \frac{2}{5}$

4.0.15 The ratio of the A.M and G.M of two positive numbers a and b is m:n. Show that $a:b=\left(m+\sqrt{m^2-n^2}\right):\left(m-\sqrt{m^2-n^2}\right)$.

Solution: Expressing A.M and G.M in terms of a and b:

$$\frac{a+b}{2\sqrt{ab}} = \frac{m}{n} \tag{4.95}$$

Figure 4.18: stem plots of GP if $r = \frac{5}{2}$

Let's assume that $x = \sqrt{\frac{a}{b}}$. Then, we have:

$$\frac{a}{b} = x^2 \tag{4.96}$$

Substituting the value of x in equation (4.95):

$$\frac{1+x^2}{2x} = \frac{m}{n} \tag{4.97}$$

$$\frac{1+x^2}{2x} = \frac{m}{n}$$

$$\frac{1}{x} + x = \frac{2m}{n}$$
(4.97)

$$x^2 - \frac{2m}{n}x + 1 = 0 (4.99)$$

$$\implies x = \frac{m}{n} \pm \frac{\sqrt{m^2 - n^2}}{n} \tag{4.100}$$

Since $x = \sqrt{\frac{a}{b}}$, x must be positive.

$$x = \frac{m + \sqrt{m^2 - n^2}}{n} \tag{4.101}$$

Referencing the value of x from equation (4.96).

$$\frac{a}{b} = \left(\frac{m + \sqrt{m^2 - n^2}}{n}\right)^2 \tag{4.102}$$

Multiplying both the numerator and denominator with $(m - \sqrt{m^2 - n^2})$:

$$\frac{a}{b} = \frac{1}{n^2} \frac{\left(m + \sqrt{m^2 - n^2}\right)^2 \left(m - \sqrt{m^2 - n^2}\right)}{\left(m - \sqrt{m^2 - n^2}\right)}$$
(4.103)

$$\implies a: b = \left(m + \sqrt{m^2 - n^2}\right): \left(m - \sqrt{m^2 - n^2}\right)$$
 (4.104)

nth term of the AP:

$$y(n) = [a + n (b - a)] u(n)$$
(4.105)

$$n^k u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} (-1)^k z^k \frac{d^k}{dz^k} U(z)$$
 (4.106)

$$u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{(1-z^{-1})} \quad |z| > |1| \tag{4.107}$$

$$nu(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1-z^{-1})^2} \quad |z| > |1|$$
 (4.108)

Referencing the equations from (4.107),(4.108).

$$y(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{a}{(1-z^{-1})} + \frac{(b-a)z^{-1}}{(1-z^{-1})^2} \quad |z| > |1|$$
 (4.109)

nth term of the GP:

$$y(n) = a\left(\frac{b}{a}\right)^n u(n) \tag{4.110}$$

$$r^n u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{(1 - rz^{-1})} \quad |z| > |r|$$
 (4.111)

Referencing the equation from (4.111).

$$y(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{a^2 z^{-1}}{(a - b z^{-1})} \quad |z| > \left| \frac{b}{a} \right|$$
 (4.112)

4.0.16 The sum of three numbers in an arithmetic progression (AP) is 24 and the product of those three numbers is 440, find the values of the three numbers.

Solution: The following information is provided in the question:

Let the three numbers in the arithmetic progression be denoted as x(0), x(1), and x(2).

From Table 4.14

$$x(0) + x(1) + x(2) = 24$$
 (4.113)

$$(x(1) - d) + x(1) + (x(1) + d) = 24 (4.114)$$

$$3x(1) = 24 \tag{4.115}$$

$$\implies x(1) = 8 \tag{4.116}$$

$$x(0) \cdot x(1) \cdot x(2) = 440 \tag{4.117}$$

$$(8-d)\cdot(8)\cdot(8+d) = 440 \tag{4.118}$$

$$(8-d) \cdot (8+d) = 55 \tag{4.119}$$

$$64 - d^2 = 55 (4.120)$$

$$\implies d = 3 \tag{4.121}$$

$$\implies x(0) = 5 \tag{4.122}$$

$$x(n) = (5+3n) u(n) (4.123)$$

From equation (B.3.2):

$$X(z) = \frac{5 - 8z^{-1}}{(1 - z^{-1})^2}; \quad |z| > |1|$$
(4.124)

Therefore, the required three numbers in AP are 5, 8, and 11.

Figure 4.19: stem plots of x(n)

4.0.17 The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.

Solution:

$$x(n) = x(0)r^n u(n)$$
 (4.125)

From (B.5.4)

$$X(z) = \frac{5}{1 - 2z^{-1}} \quad |z| > |2| \tag{4.126}$$

By contour integration:

$$y(n) = x(0) \left(\frac{r^{n+1} - 1}{r - 1}\right) u(n)$$
(4.127)

$$315 = 5\left(2^{n+1} - 1\right) \tag{4.128}$$

$$\implies n = 5 \tag{4.129}$$

The number of terms is n+1=6

From (4.125):

$$x(5) = 5\left(2^{5}\right) \tag{4.130}$$

$$= 160 (4.131)$$

Figure 4.20: Stem plot of x(n)

Figure 4.21: Stem plot of y(n)

4.0.18 Find the sum of n terms of the A.P. whose kth term is 5k + 1.

Solution:

Apply the Z-transform to x(n):

$$X(z) = \frac{5z^{-1}}{(1-z^{-1})^2} + \frac{1}{(1-z^{-1})} \quad |z| > 1$$
 (4.132)

Sum of First n Terms:

$$y(n) = x(n) * u(n)$$

$$(4.133)$$

Applying Z transform on both sides:

$$Y(z) = X(z)U(z) \tag{4.134}$$

$$= \frac{1}{(1-z^{-1})^2} + \frac{5}{2} \cdot \frac{2z^{-1}}{(1-z^{-1})^3}$$
 (4.135)

Now we can compare the above pairs as;

$$nu(n) \stackrel{\mathbf{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1-z^{-1})^2} \tag{4.136}$$

$$u\left(n\right) \stackrel{\mathrm{Z}}{\longleftrightarrow} \frac{1}{\left(1 - z^{-1}\right)} \tag{4.137}$$

$$n(n-1)u(n) \stackrel{Z}{\longleftrightarrow} \frac{2z^{-1}}{(1-z^{-1})^3}$$
 (4.138)

On referring the above equations and comparing, we can obtain the Z transform inverse as follows:

$$y(n) = (n+1)u(n) + \frac{5}{2}n(n-1)u(n)$$
 (4.139)

$$= \left(n + 1 + \frac{5}{2}n(n-1)\right)u(n) \tag{4.140}$$

Since we are taking n starting from 0 we replace n with n+1 to make our simulation match with the theory

Therefore, we have got the sum of n terms as:

$$y(n) = \left(n + 2 + \frac{5}{2}n(n+1)\right)u(n+1) \tag{4.141}$$

The stem plot is given as

4.0.19 How many 3 digit numbers are divisible by 7?

Solution:

We can use modular arithmetic to determine last three digit number divisible by 7 .

$$x(k-1) \equiv 0 \bmod 7 \tag{4.142}$$

So we need to find the largest multiple of 7 less than 1000. We can find this by subtracting the remainder when 1000 is divided by 7 from 1000.

$$1000 - (1000 \bmod 7) = 1000 - 6 \tag{4.143}$$

$$x(k-1) = 994 (4.144)$$

From Table 4.17, the number of terms in the AP, k is:

$$k = \frac{x(k-1) - x(0)}{d} + 1 \tag{4.145}$$

$$\frac{994 - 105}{7} + 1 = 128\tag{4.146}$$

Taking z transform using B.8.2:

$$X(z) = \frac{105 - 98z^{-1}}{(1 - z^{-1})^2} \quad |z| > 1$$
 (4.147)

4.0.20 A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.

Solution:

$$x\left(n\right) = x\left(0\right)r^{n}u\left(n\right) \tag{4.148}$$

On taking Z transform

$$X(z) = \frac{x(0)}{1 - rz^{-1}} \quad |z| > |r|$$
 (4.149)

$$=\frac{4}{1-4z^{-1}}\tag{4.150}$$

Figure 4.22: Plot of x(n)

$$y(n) = x(n) * u(n)$$

$$(4.151)$$

$$\implies Y\left(z\right) = X\left(z\right)U\left(z\right) \tag{4.152}$$

$$= \frac{4}{(1 - 4z^{-1})} \frac{1}{(1 - z^{-1})} \quad |z| > |r| \cap |z| > |1| \tag{4.153}$$

Using contour integration to find the inverse Z-transform:

$$\implies y(7) = \frac{1}{2\pi i} \oint_C Y(z) \ z^6 \ dz \tag{4.154}$$

$$= \frac{1}{2\pi i} \oint_C \frac{4z^6}{(1 - 4z^{-1})(1 - z^{-1})} dz \tag{4.155}$$

$$= \frac{4}{3} \left(\frac{1}{2\pi j} \oint_C \frac{z^9}{z - 4} dz - \frac{1}{2\pi j} \oint_C \frac{z^9}{z - 1} \right) dz \tag{4.156}$$

We know that

$$\implies R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right) \tag{4.157}$$

For first contour integral,

$$R_1 = \frac{1}{(1-1)!} \lim_{z \to a} ((z-a) f(z))$$
(4.158)

$$=r^{n+1}$$
 (4.159)

For second contour integral,

$$R_2 = \frac{1}{(1-1)!} \lim_{z \to a} ((z-a) f(z))$$
 (4.160)

$$=1$$
 (4.161)

The sum of n terms of a GP is given by :

$$s(n) = \frac{x(0)}{r-1} (R_1 - R_2)$$
(4.162)

$$=87380$$
 (4.163)

∴ Total amount spent on postage
$$=87380 \times 0.5$$
 (4.165)

$$=Rs. 43690 (4.166)$$

Figure 4.23: Plot of x(n) vs n

4.0.21 If a, b, c are in A.P.; b, c, d are in G.P and $\frac{1}{c}$, $\frac{1}{d}$, $\frac{1}{e}$ are in A.P. prove that a, c, e are in G.P.

Solution:

$$b - a = c - b \tag{4.167}$$

$$2b = a + c \tag{4.168}$$

$$c^2 = b \times d \tag{4.169}$$

$$d = \frac{c^2}{b} \tag{4.170}$$

$$\frac{1}{d} - \frac{1}{c} = \frac{1}{e} - \frac{1}{d}$$

$$\frac{2}{d} = \frac{1}{c} + \frac{1}{e}$$
(4.171)
$$(4.172)$$

$$\frac{2}{d} = \frac{1}{c} + \frac{1}{c} \tag{4.172}$$

From (4.170),

$$\frac{2b}{c^2} = \frac{1}{c} + \frac{1}{e} \tag{4.173}$$

From (4.168),

$$\frac{a+c}{c^2} = \frac{1}{c} + \frac{1}{e} \tag{4.174}$$

$$\frac{a}{c^2} + \frac{1}{c} = \frac{1}{c} + \frac{1}{e} \tag{4.175}$$

$$a \times e = c^2 \tag{4.176}$$

So, a,c,e are in G.P

(a) For y(n):

$$y(n) = a\left(\frac{c}{a}\right)^n u(n) \tag{4.177}$$

$$y(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} Y(z)$$

$$Y(z) = \frac{c}{1 - \frac{c}{a}z^{-1}}, \quad |z| > \left|\frac{c}{a}\right|$$
 (4.178)

(b) For $x_1(n)$:

$$x_1(n) = (b + n(b - a))u(n)$$
(4.179)

$$x_1(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} X_1(z)$$

$$X_1(z) = \frac{a}{1 - z^{-1}} + \frac{(b - a)z^{-1}}{(1 - z^{-1})^2}, \quad |z| > 1$$
(4.180)

(c) For $x_2(n)$:

$$x_2(n) = b\left(\frac{c}{b}\right)^n u(n) \tag{4.181}$$

$$x_2(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} X_2(z)$$

$$X_2(z) = \frac{c}{1 - \frac{c}{b}z^{-1}}, \quad |z| > \left|\frac{c}{b}\right| \tag{4.182}$$

(d) For $x_3(n)$:

$$x_3(n) = \left(\frac{1}{c} + n\left(\frac{1}{c} - \frac{1}{d}\right)\right)u(n) \tag{4.183}$$

$$x_3(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} X_3(z)$$

$$X_3(z) = \frac{\frac{1}{c}}{1 - z^{-1}} + \left(\frac{1}{d} - \frac{1}{c}\right) \frac{z^{-1}}{(1 - z^{-1})^2}, \quad |z| > 1$$
 (4.184)

4.0.22 Find the 31st term of an AP whose 11th term is 38 and the 16th term is 73.

Solution:

From Table 4.20

$$x(0) + 10d = 38 \tag{4.185}$$

$$x(0) + 15d = 73 \tag{4.186}$$

From equations 4.185 and 4.186, the augmented matrix is:

$$\begin{pmatrix} 1 & 10 & 38 \\ 1 & 15 & 73 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{pmatrix} 1 & 10 & 38 \\ 0 & 5 & 35 \end{pmatrix} \tag{4.187}$$

$$\stackrel{R_1 \to R_1 - 2R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -32 \\ 0 & 5 & 35 \end{pmatrix}$$

$$(4.188)$$

$$\stackrel{R_2 \to \frac{R_2}{5}}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -32 \\ 0 & 1 & 7 \end{pmatrix}$$

$$(4.189)$$

$$\implies \begin{pmatrix} x(0) \\ d \end{pmatrix} = \begin{pmatrix} -32 \\ 7 \end{pmatrix} \tag{4.190}$$

The general term and the Z-transform are given by

$$x(n) = (-32 + 7n) u(n) (4.191)$$

(4.192)

The 31st term of this A.P. is

$$x(30) = 178 (4.193)$$

From (B.10.6), the Z-Transform of x(n) is given by

$$X(z) = \frac{-32}{1 - z^{-1}} + \frac{7z^{-1}}{(1 - z^{-1})^2}$$
(4.194)

Figure 4.24: Stem plot of $x\left(0\right)$ v/s n

4.0.23 If $a\left(\frac{1}{b} + \frac{1}{c}\right)$, $b\left(\frac{1}{c} + \frac{1}{a}\right)$, $c\left(\frac{1}{a} + \frac{1}{b}\right)$ are in arithmetic progression (AP), prove that a, b, c are also in AP.

Solution: Common difference can be written as:

$$b\left(\frac{1}{c} + \frac{1}{a}\right) - a\left(\frac{1}{b} + \frac{1}{c}\right) = c\left(\frac{1}{a} + \frac{1}{b}\right) - b\left(\frac{1}{c} + \frac{1}{a}\right) \tag{4.195}$$

$$\implies (b-a)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) = (c-b)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \tag{4.196}$$

$$\implies b - a = c - b \tag{4.197}$$

Hence proved that a, b, c are in AP.

From table Table 4.21

$$X(z) = x(0) \left(\frac{1}{1-z^{-1}}\right) + d\left(\frac{z^{-1}}{(1-z^{-1})^2}\right)$$

$$= a\left(\frac{1}{b} + \frac{1}{c}\right) \left(\frac{1}{1-z^{-1}}\right) + (b-a)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \left(\frac{z^{-1}}{(1-z^{-1})^2}\right) |z| > 1$$

$$(4.198)$$

Figure 4.25: graph with value of a=3,b=5,c=7

4.0.24 If $\frac{a^n+b^n}{a^{n-1}+b^{n-1}}$ is A.M between a and b, then find value of n.

Solution:

A.M of two numbers a,b is $\frac{a+b}{2}$.

$$x(n) = x(0) + n \cdot d \cdot u(n)$$
 (4.200)

Where,

$$x(1) = \frac{x(0)^n + x(2)^n}{x(0)^{n-1} + x(2)^{n-1}}$$
(4.201)

$$=\frac{a+b}{2}\tag{4.202}$$

$$\Rightarrow \frac{x(0)^n + x(2)^n}{x(0)^{n-1} + x(2)^{n-1}} = \frac{x(0) + x(2)}{2}$$
(4.203)

$$\Rightarrow x(0)^{n-1}(x(0) - x(2)) = x(2)^{n-1}(x(0) - x(2)) \tag{4.204}$$

From (4.204)

$$\Rightarrow n \begin{cases} = 1 & \text{if } a \neq b \\ \in R & \text{if } a = b \end{cases}$$
 (4.205)

From (4.200)

$$d = x(1) - x(0) (4.206)$$

$$= \frac{a+b}{2} - a {(4.207)}$$

$$=\frac{b-a}{2}\tag{4.208}$$

Using Z transform.

$$x(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$$
 (4.209)

$$X(z) = \frac{a}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2}$$
(4.210)

From (4.208)

$$X(z) = \frac{a}{1 - z^{-1}} + \frac{(b - a)z^{-1}}{2(1 - z^{-1})^2}$$
(4.211)

4.0.25 The 17th term of ap exceeds its 10th term by 7. FInd its common difference?

Solution:

$$x(n) = \{x(0) + nd\}u(n) \tag{4.212}$$

$$x(17) - x(10) = 7 (4.213)$$

$$\implies x(0) + 17d - x(0) + 10d = 7 \tag{4.214}$$

$$\implies 17d - 10d = 7 \tag{4.215}$$

$$\implies 7d = 7 \tag{4.216}$$

$$\implies d = 1 \tag{4.217}$$

Taking Z-Transform:

(a) $\mathcal{Z}\{u(n)\}$

$$u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1 - z^{-1}} \{ |z| > 1 \} \tag{4.218}$$

(b) $\mathcal{Z}\{nu(n)\}$

$$nu(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1-z^{-1})^2} \{|z| > 1\}$$
 (4.219)

0 Taking Z-Transform of (4.212) using (4.218)and (4.219)

$$X(n) = 100 \frac{1}{1 - z^{-1}} + \frac{z^{-1}}{(1 - z^{-1})^2}$$
(4.220)

Let

Figure 4.26:

$$x(n) = \{101, 102, 103, \ldots\} \tag{4.221}$$

 $4.0.26\,$ If p^{th},q^{th},r^{th} term of a GP are a,b and c respectively Prove that

$$a^{q-r}b^{r-p}c^{p-q} = 1$$

Solution:

$$x(n) = (x(0)d^{n})u(n)$$
(4.222)

$$a = x(p) = (x(0)d^p) (4.223)$$

$$b = x(q) = (x(0)d^{q}) (4.224)$$

$$c = x(r) = (x(0)d^r) (4.225)$$

$$a^{q-r}b^{r-p}c^{p-q} = x(0)^{q-r}d^{p(q-r)}x(0)^{r-p}d^{q(r-p)}x(0)^{p-q}d^{r(p-q)}$$
(4.226)

$$= x(0)^{q-r+r-p+p-q} d^{p(q-r)+q(r-p)+r(p-q)}$$
(4.227)

$$=x(0)^0 d^0 (4.228)$$

$$a^{q-r}b^{r-p}c^{p-q} = 1 (4.229)$$

Taking Z-Transform:

(a) $\mathcal{Z}\{u(n)\}$

$$u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1 - z^{-1}} \{ |z| > 1 \}$$
 (4.230)

(b) $\mathcal{Z}\{d^nu(n)\}$

$$nu(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1 - dz^{-1})} \{|z| > |d|\}$$
 (4.231)

Taking Z-Transform of (4.222) using (4.230) and (4.231)

$$X(z) = \frac{x(0)}{1 - dz^{-1}} \qquad |z| > |d|$$
(4.232)

4.0.27 Write the first five terms of the sequence whose n^{th} term is : $x(n) = (-1)^{n-1}5^{n+1}$. Solution:

$$x(n) = (-1)^n 5^{n+2} u(n) (4.233)$$

$$= 25(-5)^n u(n) \tag{4.234}$$

On substituting n = 0, 1, 2, 3 and 4, we get the first five terms.

Hence, the required terms are 25, -125, 625, -3125, 15625.

$$x(n) \longleftrightarrow X(z)$$

$$a^n u(n) \longleftrightarrow \frac{1}{1 - az^{-1}} \; ; \; |z| > |a|$$
 (4.235)

$$\therefore X(z) = \frac{25}{1 + 5z^{-1}}; (|z| > 5)$$
 (4.236)

4.0.28 The ratio of sums of m and n terms of an A.P. is $m^2:n^2$. Show that the ratio of m^{th} and n^{th} term is (2m-1):(2n-1).

4.0.29 If a and b are the roots of $x^2-3x+p=0$ and c, d are roots of $x^2-12x+q=0$ where a,b,c,d form a G.P. Prove that $(q+p):(q-p)=17{:}15$.

4.0.30 Write the first five terms in the sequence defined recursively as follows:

$$a_0 = 3$$

$$a_n = 3a_{n-1} + 2 \quad \text{for } n > 0$$

4.0.31

$$\frac{a+bx}{a-bx} = \frac{b+cx}{b-cx} = \frac{c+dx}{c-dx}$$

$$\tag{4.237}$$

then show that a,b,c,d are in G.P

Solution: let,

$$\frac{b}{a} = \frac{c}{b} = \frac{d}{c} = r \tag{4.238}$$

$$\frac{a+bx}{a-bx} = \frac{a+arx}{a-arx} \tag{4.239}$$

$$= \frac{1+rx}{1-rx}$$
 (4.240)

$$\frac{b+cx}{b-cx} = \frac{ar+ar^2x}{ar-ar^2x} \tag{4.241}$$

$$= \frac{1+rx}{1-rx} \tag{4.242}$$

$$\begin{aligned}
 &= \frac{1 + rx}{1 - rx} \\
 &= \frac{1 + rx}{1 - rx} \\
 &= \frac{c + dx}{c - dx} = \frac{ar^2 + ar^3x}{ar^2 - ar^3x} \\
 &= \frac{1 + rx}{1 - rx}
\end{aligned} (4.242)$$

$$= \frac{1+rx}{1-rx} \tag{4.244}$$

As, equations

$$(4) = (6) = (8) \tag{4.245}$$

so, a,b,c,d are in G.P

Applying z-transform

$$X(z) = \frac{a^2}{a - bz^{-1}} \quad |z| > \left| \frac{b}{a} \right| \tag{4.246}$$

4.0.32 Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that
$$\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q) = 0$$
 NCERT-discrete 11.9.2.11

Solution:

$$y(n) = \frac{n+1}{2} (2x(0) + nd) u(n)$$
(4.247)

Using y(n),

$$a = \frac{p}{2} (2x (0) + (p - 1) d)$$
(4.248)

$$b = \frac{q}{2} (2x (0) + (q - 1) d)$$
(4.249)

$$c = \frac{r}{2} (2x (0) + (r - 1) d)$$
(4.250)

which can be represented as,

$$p.x(0) + \frac{p(p-1)}{2}.d + a.(-1) = 0$$
(4.251)

$$q.x(0) + \frac{q(q-1)}{2}.d + b.(-1) = 0$$
(4.252)

$$r.x(0) + \frac{r(r-1)}{2}.d + c.(-1) = 0$$
 (4.253)

resulting in the matrix equation,

$$\begin{pmatrix} p & \frac{p(p-1)}{2} & a \\ q & \frac{q(q-1)}{2} & b \\ r & \frac{r(r-1)}{2} & c \end{pmatrix} \mathbf{x} = 0$$

$$(4.254)$$

where,

$$\mathbf{x} = \begin{pmatrix} x(0) \\ d \\ -1 \end{pmatrix} \tag{4.255}$$

solving the equations (4.248),(4.249) and (4.250) by row reducing the matrix in (4.254),

$$\begin{pmatrix} p & \frac{p(p-1)}{2} & a \\ q & \frac{q(q-1)}{2} & b \\ r & \frac{r(r-1)}{2} & c \end{pmatrix} \xleftarrow{R_3 \leftarrow \frac{R_3}{r}} \begin{pmatrix} 1 & \frac{p-1}{2} & \frac{a}{p} \\ 1 & \frac{q-1}{2} & \frac{b}{q} \\ 1 & \frac{r-1}{2} & \frac{c}{r} \end{pmatrix}$$
(4.256)

$$\begin{array}{c}
\stackrel{R_3 \leftarrow R_3 - R_1}{\underset{R_2 \leftarrow R_2 - R_1}{\longleftrightarrow}} \begin{pmatrix} 1 & \frac{p-1}{2} & \frac{a}{p} \\ 0 & \frac{q-p}{2} & \frac{b}{q} - \frac{a}{p} \\ 0 & \frac{r-p}{2} & \frac{c}{r} - \frac{a}{p} \end{pmatrix}
\end{array} (4.257)$$

$$\stackrel{R_2 \leftarrow \frac{R_2}{q - p}}{\longleftrightarrow} \begin{pmatrix}
1 & \frac{p - 1}{2} & \frac{a}{p} \\
0 & 1 & \left(\frac{b}{q} - \frac{a}{p}\right) \frac{2}{q - p} \\
0 & \frac{r - p}{2} & \frac{c}{r} - \frac{a}{p}
\end{pmatrix} \tag{4.258}$$

$$\frac{R_3 \leftarrow R_3 - \frac{r-p}{2} R_2}{R_1 \leftarrow R_1 - \frac{p-1}{2} R_2} \begin{pmatrix}
1 & 0 & \frac{a}{p} - \frac{\left(\frac{b}{q} - \frac{a}{p}\right)(p-1)}{q-p} \\
0 & 1 & \left(\frac{b}{q} - \frac{a}{p}\right) \frac{2}{q-p} \\
0 & 0 & \left(\frac{c}{r} - \frac{a}{p}\right) - \frac{\left(\frac{b}{q} - \frac{a}{p}\right)(r-p)}{q-p}
\end{pmatrix} (4.259)$$

$$\implies \begin{pmatrix} 1 & 0 & \frac{aq(q-1)-bp(p-1)}{pq(q-p)} \\ 0 & 1 & \left(\frac{b}{q} - \frac{a}{p}\right) \frac{2}{q-p} \\ 0 & 0 & \frac{\frac{a}{p}(r-q) + \frac{b}{q}(p-r) + \frac{c}{r}(q-p)}{q-p} \end{pmatrix}$$
(4.260)

After row reduction of matrix we get,

$$x(0) = \left(\frac{aq(q-1) - bp(p-1)}{pq(q-p)}\right)$$

$$(4.261)$$

$$d = \left(\frac{b}{q} - \frac{a}{p}\right) \frac{2}{q - p} \tag{4.262}$$

$$\frac{\frac{a}{p}(r-q) + \frac{b}{q}(p-r) + \frac{c}{r}(q-p)}{q-p} = 0$$
 (4.263)

$$\therefore \frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q) = 0$$
 (4.264)

$$x(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$$
 (4.265)

$$X(z) = \frac{aq(q-1) - bp(p-1)}{pq(q-p)(1-z^{-1})} + \frac{2\left(\frac{b}{q} - \frac{a}{p}\right)z^{-1}}{(q-p)(1-z^{-1})^2}$$
(4.266)

$$R.O.C(|z| > 1) \tag{4.267}$$

Figure 4.27: Plot of x(n) vs n

4.0.33 The pth, qth and rth terms of an AP are a,b,c respectively. Show that

$$(q-r)a + (r-p)b + (p-q)c = 0$$

4.0.34 Find the sum to indicated number of term in each of the geometric progressions in $\sqrt{7}, \sqrt{21}, 3\sqrt{7}, ..., n$ terms

Solution:

$$X(z) = x(0) \left(\frac{1}{1 - rz^{-1}}\right), \quad |rz^{-1}| < 1$$
 (4.268)

$$y(n) = x(n) * u(n)$$

$$(4.269)$$

$$Y(z) = X(z)U(z) \tag{4.270}$$

$$= \sqrt{7} \left(\frac{1}{1 - \sqrt{3}z^{-1}} \right) \left(\frac{1}{1 - z^{-1}} \right), \quad |z| > \sqrt{3}$$
 (4.271)

$$= \left(\frac{\sqrt{7}}{\sqrt{3}-1}\right) \left(\left(\frac{\sqrt{3}}{1-\sqrt{3}z^{-1}}\right) - \left(\frac{1}{1-z^{-1}}\right)\right) \tag{4.272}$$

$$\frac{1}{1 - rz^{-1}} \stackrel{\mathcal{Z}^{-1}}{\longleftrightarrow} r^n u(n), \quad |z| > r \tag{4.273}$$

$$y(n) = \sqrt{7} \left(\frac{\sqrt{3}^{n+1} - 1}{\sqrt{3} - 1} \right) u(n), \quad |z| > \sqrt{3}$$
 (4.274)

4.0.35 How many multiples of 4 lie between 10 and 250?

Figure 4.28: STEM PLOT OF $y\left(n\right)$

4.0.36 if a, b, c and d are in GP then show that $(a^2 + b^2 + c^2)(b^2 + c^2 + d^2) = (ab + bc + cd)^2$ Solution:

4.0.37 In an A.P. the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20^{th} term is -112. (NCERT MATHS 11.9.2.3)

Solution:

General term can be written as

$$x(n) = (x(0) + nd) u(n)$$
 (4.275)

By referring (B.8.2)

$$X(z) = \frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2}$$
(4.276)

Taking the inverse Z-transform by contour integration by referring (B.10.6),

$$y(n) = x(0) \left[(n+1)u(n) \right] + \frac{d}{2} \left[n(n+1)u(n) \right]$$
 (4.277)

$$= \frac{n+1}{2} \left\{ 2x(0) + nd \right\} u(n) \tag{4.278}$$

Therefore,

$$y(4) = 5x(0) + 10d (4.279)$$

$$y(9) = 10x(0) + 45d \tag{4.280}$$

Given,

$$\sum_{n=0}^{4} x(n) = \frac{1}{4} \sum_{n=5}^{9} x(n)$$
 (4.281)

Simplifying:

$$y(4) = \frac{1}{4} (y(9) - y(4)) \tag{4.282}$$

$$\implies 5x(0) + 10d = \frac{1}{4}(5x(0) + 35d) \tag{4.283}$$

$$x\left(0\right) = \frac{-d}{3}\tag{4.284}$$

$$\implies d = -6 \tag{4.285}$$

From (4.285) and Table 1:

$$x(n) = (2 - 6n) u(n)$$
 (4.286)

From (4.286):

$$x(19) = x(0) + 19d (4.287)$$

$$=-112$$
 (4.288)

From (4.286) and (4.276):

$$X(z) = \frac{2}{1 - z^{-1}} - \frac{6z^{-1}}{(1 - z^{-1})^2} \quad |z| > 1$$
 (4.289)

Figure 1: graph of x(n) = 2 - 6n

4.0.38 If the 3rd and the 9th terms of an AP are 4 and -8, respectively, which term of this AP is zero?

4.0.39 Find the sum of the products of the corresponding terms of the sequences 2,4,8,16,32 and $128,32,8,2,\frac{1}{2}$. Solution:

4.0.40 Let the sum of n, 2n, 3n terms of an AP be S_1, S_2 and S_3 , respectively, show that $S_3 = 3(S_2 - S_1)$

4.0.41 Show that the products of the corresponding terms of the sequences $a, ar, ar2, \dots ar^{n-1}$ and $A, AR, AR2, \dots AR^{n-1}$ form a G.P, and find the common ratio. **Solution:**

4.0.42 The sum of the 4th and 8th terms of an AP is 24 and the sum of the 6th and 10th terms is 44. Find the first three terms of the AP.

4.0.43 If A and G be A.M. and G.M., respectively between two positive numbers, prove that the numbers are $A \pm \sqrt{(A+G)(A-G)}$

4.0.44 A man starts repaying a loan as first instalment of Rs.100. If he increases the instalment by Rs 5 every month, what amount he will pay in the 30^{th} instalment? Solution:

4.0.45 Write the first five terms of the sequence $a_n = n(n+2)$.

4.0.46	If A.M. and G.M. of roots of a quadratic equation are 8 and 5, respectively,then obtain the quadratic equation. Solution:

4.0.47 An AP consists of 50 terms of which 3^{rd} term is 12 and the last term is 106. Find the 29^{th} term.

Parameter	Value	description
x(2)	12	Third term
x(49)	106	Last term
x(0)		First term
d		Common difference
x(n)	(x(0) + nd)u(n)	general term

Table 4.31: Input parameters

$$\begin{pmatrix} x(2) \\ x(49) \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 49 \end{pmatrix} \begin{pmatrix} x(0) \\ d \end{pmatrix} \tag{4.290}$$

$$\begin{pmatrix} 12\\106 \end{pmatrix} = \begin{pmatrix} x(0) + 2d\\x(0) + 49d \end{pmatrix} \tag{4.291}$$

converting to augmented matrix
$$(4.292)$$

$$= \begin{pmatrix} x(0) + 2d & |12\\ x(0) + 49d & |106 \end{pmatrix}$$
 (4.293)

$$R_2 \to R_2 - R_1$$
 (4.294)

$$\xrightarrow{R_2 \to R_2 - R_1} \begin{pmatrix} x(0) + 2d & |12 \\ 47d & |94 \end{pmatrix}$$
 (4.295)

From (4.295), we get

$$\Longrightarrow x(0) = 8 \tag{4.296}$$

$$\implies d = 2 \tag{4.297}$$

From the Table 4.31:

$$\implies x(n) = (8+2n)u(n) \tag{4.298}$$

Finding x(28):

$$x(28) = x(0) + 28(2) (4.299)$$

$$\implies x(28) = 64 \tag{4.300}$$

 ${\it Z-transform}:$

$$\Longrightarrow X(z) = \frac{8 - 6z^{-1}}{(1 - z^{-1})^2} \quad |z| > 1 \tag{4.301}$$

Figure 4.30: graph of the given AP

4.0.48 The first term of an AP is 5, the last term is 45 and the sum is 400. Find the number of terms and the common difference.

4.0.49 Which term of the arithmetic progression (AP): $3, 8, 13, 18, \ldots$ is 78?

Solution:

$$x(n) = (3 + (n)5) u(n)$$
(4.302)

$$78 = 3 + (k)5 \tag{4.303}$$

$$k = 15 \tag{4.304}$$

So, the term of the arithmetic progression that is equal to 78 is the 16th term.

$$X(z) = \frac{3 + 2z^{-1}}{(1 - z^{-1})^2} \quad |z| > 1 \tag{4.305}$$

Figure 4.31: Arithmetic Progression Plot

4.0.50 The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio $\frac{(3+2\sqrt{2})}{(3-2\sqrt{2})}$. **Solution:** Let the two numbers be x(0) and x(2) such that $x(2) \geq x(0)$

From Table 4.33:

$$x(0) + x(2) = 6x(1) (4.306)$$

$$\implies x(0) + x(0)r^2 = 6x(0)r \tag{4.307}$$

$$\implies r^2 - 6r + 1 = 0 \tag{4.308}$$

$$\implies r = 3 \pm 2\sqrt{2} \tag{4.309}$$

$$\therefore \frac{x(2)}{x(0)} = (3 + 2\sqrt{2})^2 \tag{4.310}$$

$$=\frac{(3+2\sqrt{2})}{(3-2\sqrt{2})}\tag{4.311}$$

$$x(n) = (x(0)(3+2\sqrt{2})^n)u(n)$$
(4.312)

Taking z - Transform of x(n):

$$X(z) = \frac{x(0)}{1 - (3 + 2\sqrt{2})z^{-1}}; |z| > (3 + 2\sqrt{2})$$
(4.313)

Figure 4.32:

4.0.51 Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b.

Consider a GP as in Table 4.34,

$$\therefore \frac{a^{n+1} + b^{n+1}}{a^n + b^n} = x(1) \tag{4.314}$$

$$\implies a^{n+1} + b^{n+1} = a^{n+\frac{1}{2}}b^{\frac{1}{2}} + a^{\frac{1}{2}}b^{n+\frac{1}{2}}$$
(4.315)

$$\implies a^{n+\frac{1}{2}}(a^{\frac{1}{2}} - b^{\frac{1}{2}}) = b^{n+\frac{1}{2}}(a^{\frac{1}{2}} - b^{\frac{1}{2}}) \tag{4.316}$$

$$\implies \left(\frac{a}{b}\right)^{n+\frac{1}{2}} = \left(\frac{a}{b}\right)^0 \tag{4.317}$$

$$\implies n = -\frac{1}{2} \tag{4.318}$$

From Table 4.34,

$$X(z) = \frac{a}{1 - (\sqrt{\frac{b}{a}})z^{-1}} \quad |z| > \left| \sqrt{\frac{b}{a}} \right| \tag{4.319}$$

4.0.52 Which term of the AP : 121, 117, 113, . . . , is its first negative term? Solution:

4.0.53 The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.

4.0.54 If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p+q) terms.

$x\left(0\right)$	3
d	2
m	6
n	2
$x\left(m+n\right)$	19
x(m-n)	11
$x\left(m\right)$	15

Table 4.12: Verified Values

Parameter	Value	Description
x(0)		First term
r		Common ratio
$x(0)^3r^3$	1	Product of terms
$x(0) + x(0)r + x(0)r^2$	$\frac{39}{10}$	Sum of terms

Table 4.13: Input Parameters

Parameter	Value	Description
x(n)	$(x(0) + n \cdot d) u(n)$	(n+1)th term
d	3	common difference
x(0) + x(1) + x(2)	24	sum of the terms
$x(0) \cdot x(1) \cdot x(2)$	440	product of terms

Table 4.14: Parameters

Parameter	Value	Description
x(0)	5	First term
r	2	Common ratio
y(n)	315	Sum of $n+1$ terms
x(n)	?	Last term

Table 4.15: Input Parameters

Symbol	Value	Parameter
x(0)	1	First Term
x(n)	(5n+1)u(n)	kth Term
d	5	Common Difference

Table 4.16: Given Parameters

Table 4.17: Input Parameters

Parameter	Used to denote	Values
x(0)	First three digit number divisible by 7	105
x(k-1)	Last three digit number divisible by 7	?
d	Common difference of A.P	7
k	Number of 3 digit terms divisible by 7	?

Parameter	Description	Value
x(0)	First Term	4
r	Common Ratio	4
n	n Total terms	
s(n)	Sum of n terms of GP	$r^n x(0)u(n)$
m	No of poles	2

Table 4.18: Given Parameters

Symbol	Value	Description	Z-Transform
$x_1(n)$	$\{a,b,c\}$	A.P Sequence	$X_1(z)$
$x_2(n)$	$\{b,c,d\}$	G.P Sequence	$X_2(z)$
$x_3(n)$	$\left\{\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\right\}$	A.P Sequence	$X_3(z)$
y(n)	$\{a,c,e\}$	Sequence	Y(z)

Table 4.19: Parameters

Symbol	Value	Description
x(0)	-32	First term
x(10)	38	11th term
x(15)	73	16th term
d	7	Common Difference
x(n)	x(0) + nd	(n+1)th term

Table 4.20: Given Values

parameter	value	description
x(0)	$a\left(\frac{1}{b} + \frac{1}{c}\right)$	First Term of given AP
d	$(b - a)(\frac{1}{a} + \frac{1}{b} + \frac{1}{c})$	Common Difference of given AP
x(n)	(x(0) + nd)u(n)	General Term of given AP

Table 4.21: Input Parameter Table

Symbol	Values	Description
x(0)	a	First term of A.P
x(1)	$\frac{a+b}{2}$	A.M of first and third terms of A.F
x(2)	b	Third term of A.P

Table 4.22: parameters

Variable	Description	Value
x(n)	n^{th} term of AP	none
d	common difference between the terms of AP	none
x(17) - x(10)	difference of 17^{th} and 10^{th} term of X	7

Table 4.23: input parameters

Variable	Description	Value
x(n)	n^{th} term of GP	none
x(0)	First term of GP	none
d	common ratio between the terms of GP	none
x(p)	\mathbf{a}	$x(0)d^p$
x(q)	b	$x(0)d^q$
x(r)	c	$x(0)d^r$

Table 4.24: input parameters

Parameter	Value	Description
x(n)	$(-1)^n 5^{n+2}$	General Term
x(0)	25	First term of G.P.
r	-5	Common ratio of G.P.
X(z)	-	Z-Transform

Table 4.25: Given Parameters

parameter	description	value
$x\left(0\right)$	first term	a
x(1)	second term	b
x(2)	third term	c
x(3)	fourth term	d
r	common ratio	$\frac{b}{a}$
n	no of terms	4
x(n)	$n/^{th}$ term	$x(0)r^n$

Table 4.26: input parameters

Symbol	Value	Description
x(n)	(x(0) + nd)u(n)	n^{th} term of an A.P
x(0)	x(0)	1^{st} term of the A.P
d	d	Common difference
y(n)	x(n) * u(n)	Sum of n terms of an AP
a	y(p-1)	Sum of first p terms of the AP
b	y(q-1)	Sum of first q terms of the AP
c	y(r-1)	Sum of first r terms of the AP

Table 4.27: Variable description

$x\left(0\right)$	5
d	2
p	8
q	10
r	4
a	96
b	140
c	32

Table 4.28: Verified Values

variable	value	description
x(0)	$\sqrt{7}$	first term of the geometric progession
r	$\sqrt{3}$	common ratio of the geometeric progression
x(n)	$\sqrt{7(3^n)}u\left(n\right)$	n^{th} term of the geometric progession
y(n)	$\frac{x(0)(r^{n+1}-1)}{r-1}u(n)$	Sum of the n term of the geometric progression

Table 4.29: Input parameters $\,$

Parameter	Description	Value
x(0)	First term	2
x(19)	20 th term	-112
y(n)	sum upto n^{th} term	

Table 1: Input data

Parameters	Value	Description
x(0)	3	Initial Term
d	5	Common Difference
x(k)	78	Target Term
k	?	Target Term Number
x(n)	x(0) + (n)d	General term

Table 4.32: Parameters for the Arithmetic Progression

Parameter	Description	Value
x(0)	first number	
r	common ratio	
x(2)	second number	$x(0)r^2$
x(1)	G.M	x(0)r
x(n)	$(n+1)^{th}$ term	$(x(0)r^n)u(n)$

Table 4.33: Input table

Parameter	Value	Description
x(0)	a	First term
x(2)	b	Third term
x(1)	$\sqrt{ab} = \frac{a^{n+1} + b^{n+1}}{a^n + b^n}$	Second term
r	$\sqrt{rac{b}{a}}$	Common ratio
n	-	Given variable
x(k)	$ar^k u(k)$	General term

Table 4.34: Input parameters table

Chapter 5

Contour Integration

5.1 In a potato race, a bucket is placed at the starting point, which is 5 m from the first potato, and the other potatoes are placed 3 m apart in a straight line. There are ten potatoes in the line. A competitor starts from the bucket, picks up the nearest potato, runs back with it, drops it in the bucket, runs back to pick up the next potato, runs to the bucket to drop it in, and she continues in the same way until all the potatoes are in the bucket. What is the total distance the competitor has to run?

(NCERT-Maths 10.5.3.20Q)

Solution:

Parameter	Description	Value
$x\left(0\right)$	First term	10
d	Common Difference	6
y(9)	Total distance covered	?

Table 1: Parameter Table

From (B.8.2):

$$X(z) = \frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2}, \quad |z| > 1$$
 (5.1)

$$= \frac{10}{1 - z^{-1}} + \frac{6z^{-1}}{(1 - z^{-1})^2}, \quad |z| > 1$$
 (5.2)

$$= \frac{10 - 4z^{-1}}{(1 - z^{-1})^2} \quad |z| > 1$$
 (5.3)

From (A.3.2)

$$y(n) = \sum_{k=0}^{n} x(k) = x(n) * u(n)$$
(5.4)

Taking z transform:

$$Y(z) = X(z)U(z) \tag{5.5}$$

$$\implies Y(z) = \frac{10 - 4z^{-1}}{(1 - z^{-1})^3} \quad |z| > 1 \tag{5.6}$$

Taking inverse z transform:

$$y(n) = \frac{1}{2\pi j} \oint_C Y(z) z^{n-1} dz$$
 (5.7)

$$y(9) = \frac{1}{2\pi i} \oint_C Y(z) \ z^8 \ dz \tag{5.8}$$

$$= \frac{1}{2\pi j} \oint_C \frac{10z^{11} - 4z^{10}}{(z - 1)^3} dz \tag{5.9}$$

We can observe that the pole is repeated 3 times and thus m = 3,

$$R = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} (f(z))$$

$$= \frac{1}{(2)!} \lim_{z \to 1} \frac{d^2}{dz^2} (10z^{11} - 4z^{10})$$
(5.10)

$$= \frac{1}{(2)!} \lim_{z \to 1} \frac{d^2}{dz^2} \left(10z^{11} - 4z^{10} \right) \tag{5.11}$$

$$=370$$
 (5.12)

$$\therefore y(9) = 370 \tag{5.13}$$

Figure 5.1: Theory matches with the simulated values

5.2 Find the sum of the first 15 multiples of 8.

Solution:

PARAMETERVALUE		DESCRIPTION
$x\left(0\right)$	8	First term
d	8	common dif- ference
x(n)	$[8+8n]u\left(n\right)$	General term of the series

Table 5.2: Parameter Table1

For an AP,

$$X(z) = \frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2}$$
(5.14)

$$\implies X(z) = \frac{8}{1 - z^{-1}} + \frac{8z^{-1}}{(1 - z^{-1})^2}$$
 (5.15)

$$= \frac{8}{(1-z^{-1})^2}, \quad |z| > 1 \tag{5.16}$$

$$y(n) = x(n) * u(n)$$

$$(5.17)$$

$$\implies Y(z) = X(z)U(z) \tag{5.18}$$

$$Y(z) = \left(\frac{8}{(1-z^{-1})^2}\right) \left(\frac{1}{1-z^{-1}}\right)$$
 (5.19)

$$= \frac{8}{(1-z^{-1})^3}, \quad |z| > 1 \tag{5.20}$$

Using Contour Integration to find the inverse Z-transform,

$$y(14) = \frac{1}{2\pi j} \oint_C Y(z) z^{13} dz$$
 (5.21)

$$= \frac{1}{2\pi i} \oint_C \frac{8z^{13}}{(1-z^{-1})^3} dz \tag{5.22}$$

We can observe that the pole is repeated 3 times and thus m = 3,

$$R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$
 (5.23)

$$= \frac{1}{(2)!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z-1)^3 \frac{8z^{16}}{(z-1)^3} \right)$$
 (5.24)

$$=4\lim_{z\to 1}\frac{d^2}{dz^2}(z^{16})\tag{5.25}$$

$$=960$$
 (5.26)

$$\therefore \boxed{y(14) = 960} \tag{5.27}$$

Figure 5.2: Plot of $\mathbf{x}(\mathbf{n})$ vs \mathbf{n}

5.3 If the sum of n terms of an A.P. is $3n^2 + 5n$ and its m^{th} term is 164, find the value of m.

Solution:

$$Y(z) = \sum_{n=0}^{\infty} y(n) z^{-n}$$
 (5.28)

$$=\frac{2(4-z^{-1})}{(1-z^{-1})^3}, \qquad |z|>1 \tag{5.29}$$

$$U(z) = \frac{1}{1 - z^{-1}}, \qquad |z| > 1$$
 (5.30)

$$X\left(z\right) = \frac{Y\left(z\right)}{U\left(z\right)}\tag{5.31}$$

$$= 2\left(\frac{1}{1-z^{-1}}\right) + 6\left(\frac{1}{(1-z^{-1})^2}\right) \tag{5.32}$$

$$=\frac{8z^2 - 2z}{(z-1)^2} \tag{5.33}$$

Using Contour Integration to find the inverse Z-transform,

$$x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

$$(5.34)$$

$$= \frac{1}{2\pi j} \oint_C \frac{\left(8z^{n+1} - 2z^n\right) dz}{(z-1)^2}$$
 (5.35)

$$= \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$
 (5.36)

$$= \lim_{z \to 1} \frac{d}{dz} \left((z - 1)^2 \frac{8z^{n+1} - 2z^n}{(z - 1)^2} \right)$$
 (5.37)

$$= \lim_{z \to 1} \left(8(n+1)z^n - 2nz^{n-1} \right) \tag{5.38}$$

$$\implies x(n) = (6n+8)(u(n)) \tag{5.39}$$

$$164 = (6m + 8) (u (m)) (5.40)$$

$$\implies m = 26 \tag{5.41}$$

Symbol	Remarks
$y(n) = (3n^2 + 11n + 8)(u(n))$	Sum of n terms
x(m-1)	164
$y\left(n\right)$	x(n) * u(n)

Table 5.3: Parameters

Figure 5.3: Plot of x(n) vs n

5.4 Find the sums given below:

(a)
$$7 + \frac{21}{2} + 14 \dots + 84$$

(b)
$$34 + 32 + 30... + 10$$

(c)
$$-5 + -8 + -11... - 230$$

Solution:

Symbols	Description	Values
d_i	Common Difference for i^{th} AP	3.5
		-2
		-3
$x_i(n)$	n^{th} term for i^{th} Sequence	$(7 + \frac{7n}{2})u_{(n)}$
		$(34 - 2n)u_{(n)}$
		$(-5 + -3n)u_{(n)}$
$x_i(0)$	First term for i^{th} AP	7
		34
		-5

Table 5.4: Parameters , Descriptions And Values

(a)
$$7 + \frac{21}{2} + 14 \dots + 84$$

$$x_1(n) = (x_1(0) + nd_1) u_{(n)}$$
 (5.42)

$$\implies 84 = 7 + \frac{7n}{2} \tag{5.43}$$

$$\implies n = 22 \tag{5.44}$$

i. z-Transform of $x_1(n)$: Using (B.1.1)

$$X_1(z) = \frac{7z}{z-1} + \frac{7z}{2(z-1)^2}, \quad |z| > |1|$$
 (5.45)

ii. Z-Transform of $y_1(n)$:

$$y_1(n) = x_1(n) * h(n)$$
 (5.46)

$$h\left(n\right) = u\left(n\right) \tag{5.47}$$

$$H\left(z\right) = \frac{z}{z - 1} \tag{5.48}$$

$$Y_{1}(z) = X_{1}(z) * H(z)$$

$$(5.49)$$

$$= \left(\frac{7z}{z-1} + \frac{7z}{2(z-1)^2}\right) \left(\frac{z}{z-1}\right), \quad |z| > |1|$$
 (5.50)

iii. Inversion of $Y_1(z)$: Using Contour Integration:

$$y_1(22) = \frac{1}{2\pi j} \oint_C Y(z) \ z^{21} \ dz \tag{5.51}$$

$$\implies = \frac{1}{2\pi j} \oint_C \left(\frac{7z^{23}}{(z-1)^2} + \frac{7z^{23}}{2(z-1)^3} \right) dz \tag{5.52}$$

$$R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$
 (5.53)

For R_1 , m=2 , where m corresponds to number of repeated poles .

$$R_1 = \frac{1}{(1)!} \lim_{z \to 1} \frac{d}{dz} \left((z - 1)^2 \frac{7z^{23}}{(z - 1)^2} \right)$$
 (5.54)

$$=7\lim_{z\to 1}\frac{d}{dz}(z^{23})\tag{5.55}$$

$$= 161 \tag{5.56}$$

For R_2 , m=3

$$R_2 = \frac{1}{(2)!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z - 1)^3 \frac{(7z^{13})}{2(z - 1)^3} \right)$$
 (5.57)

$$= \left(\frac{7}{4}\right) \lim_{z \to 1} \frac{d^2}{dz^2} (z^{23}) \tag{5.58}$$

$$=\frac{1771}{2} \tag{5.59}$$

$$R_1 + R_2 = \frac{2093}{2} \tag{5.60}$$

$$\implies y_1(22) = \frac{2093}{2} \tag{5.61}$$

Figure 5.4: $y_1(n)$ vs n

(b) $34 + 32 + 30 \dots + 10$

$$x_2(n) = (x_2(0) + nd_2) u_{(n)}$$
 (5.62)

$$\implies 10 = 34 - 2n \tag{5.63}$$

$$\implies n = 12 \tag{5.64}$$

i. Z-Transform of $x_2(n)$: Using (B.1.1)

$$X_2(z) = \frac{34z}{z - 1} - \frac{2z}{(z - 1)^2}, \quad |z| > |1|$$
 (5.65)

ii. Z-Transform of $y_2(n)$:

$$y_2(n) = x_2(n) * h(n)$$
 (5.66)

$$h\left(n\right) = u\left(n\right) \tag{5.67}$$

$$Y_2(z) = X_2(z) * H(z)$$
 (5.68)

$$= \left(\frac{34z}{(z-1)^1} - \frac{2z}{(z-1)^2}\right) \left(\frac{z}{z-1}\right), \quad |z| > |1| \tag{5.69}$$

iii. Inversion of $Y_{2}\left(z\right)$: Using Contour Integration :

$$y_2(12) = \frac{1}{2\pi j} \oint_C Y(z) \ z^{11} \ dz \tag{5.70}$$

$$\implies = \frac{1}{2\pi j} \oint_C \left(\frac{34z^{13}}{(z-1)^2} - \frac{2z^{13}}{(z-1)^3} \right) dz \tag{5.71}$$

Using (5.53) For R_1 , m=2:

$$R_1 = \frac{1}{(1)!} \lim_{z \to 1} \frac{d}{dz} \left((z - 1)^2 \frac{34z^{13}}{(z - 1)^2} \right)$$
 (5.72)

$$= 34 \lim_{z \to 1} \frac{d}{dz}(z^{13}) \tag{5.73}$$

$$=442\tag{5.74}$$

For R_2 , m=3:

$$R_2 = \frac{1}{(2)!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z - 1)^3 \frac{(-2z^{13})}{(z - 1)^3} \right)$$
 (5.75)

$$= -\lim_{z \to 1} \frac{d^2}{dz^2}(z^{13}) \tag{5.76}$$

$$=-156$$
 (5.77)

$$R_1 + R_2 = 286 (5.78)$$

$$\implies y_2(12) = 286 \tag{5.79}$$

(c) $-5 + -8 + -11 \dots -230$

$$x_3(n) = (x_3(0) - 3n) u_{(n)}$$
 (5.80)

$$\implies -230 = -5 - 3n \tag{5.81}$$

$$\implies n = 75 \tag{5.82}$$

i. Z-Transform of $x_3(n)$: Using (B.1.1)

$$X_3(z) = \frac{-5z}{(z-1)^1} - \frac{3z}{(z-1)^2}, \quad |z| > |1|$$
 (5.83)

Figure 5.5: $y_2(n)$ vs n

ii. Z-Transform of $y_3\left(n\right)$:

$$y_3(n) = x_3(n) * h(n)$$
 (5.84)

$$h\left(n\right) = u\left(n\right) \tag{5.85}$$

$$Y_3(z) = X_3(z) * H(z)$$
 (5.86)

$$= \left(\frac{-5z}{(z-1)^1} - \frac{3z}{(z-1)^2}\right) \left(\frac{z}{z-1}\right), \quad |z| > |1|$$
 (5.87)

iii. Inversion of $Y_{3}\left(z\right)$: Using Contour Integration :

$$y_1(75) = \frac{1}{2\pi i} \oint_C Y(z) \ z^{74} \ dz \tag{5.88}$$

$$\implies = \frac{1}{2\pi j} \oint_C \left(\frac{-5z^{76}}{(z-1)^2} - \frac{3z^{76}}{(z-1)^3} \right) dz \tag{5.89}$$

Using (5.53) For R_1 , m=2 :

$$R_1 = \frac{1}{(1)!} \lim_{z \to 1} \frac{d}{dz} \left((z - 1)^2 \frac{-5z^{76}}{(z - 1)^2} \right)$$
 (5.90)

$$= -5\lim_{z \to 1} \frac{d}{dz}(z^{76}) \tag{5.91}$$

$$=-380$$
 (5.92)

For R_2 , m=3 :

$$R_2 = \frac{1}{(2)!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z - 1)^3 \frac{3z^{76}}{(z - 1)^3} \right)$$
 (5.93)

$$=1.5\lim_{z\to 1}\frac{d^2}{dz^2}(z^{76})\tag{5.94}$$

$$=-8550$$
 (5.95)

$$R_1 + R_2 = -8930 (5.96)$$

$$\implies y_3(75) = -8930 \tag{5.97}$$

Figure 5.6: $y_3(n)$ vs n

5.5 Show that a_0 , a_1 , a_2 , . . ., a_n , . . . form an AP where an is defined as below :

(a)
$$a_n = (3+4n)$$

(b)
$$a_n = (9 - 5n)$$

Also find the sum of the first 15 terms in each case. Solution:

Parameter	Description	Value
		(3+4n)u(n)
$x_i(n)$	i^{th} Discrete signal	(9-5n)u(n)
		3
$x_i(0)$	First term of $i^{th}AP$	9
		4
d_i	common difference of $i^{th}AP$	-5

Table 5.5: Given parameters $\,$

(a) From equation (B.10.6)

$$X(z) = \frac{3}{1 - z^{-1}} + \frac{4 \cdot z^{-1}}{(1 - z^{-1})^2}; |z| > 1$$
 (5.98)

$$y(n) = x(n) * u(n)$$
(5.99)

$$Y(z) = X(z)U(z) \tag{5.100}$$

$$= \left[\frac{3}{(1-z^{-1})^2} + \frac{4z^{-1}}{(1-z^{-1})^3} \right]$$
 (5.101)

Using contour integration for inverse Z transformation,

$$y(14) = \frac{1}{2\pi j} \int Y(z)z^{13}dz \tag{5.102}$$

$$= \frac{1}{2\pi j} \int \frac{3 \cdot z^{15}}{(z-1)^2} dz + \frac{1}{2\pi j} \int \frac{4 \cdot z^{15}}{(z-1)^3} dz$$
 (5.103)

$$\therefore R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$
 (5.104)

$$R_1 = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} \left((z - 1)^2 \cdot \frac{3 \cdot z^{15}}{(z - 1)^2} \right)$$
 (5.105)

$$=45$$
 (5.106)

$$R_2 = \frac{1}{2!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z - 1)^3 \cdot \frac{4 \cdot z^{15}}{(z - 1)^3} \right)$$
 (5.107)

$$=420$$
 (5.108)

$$\implies y(14) = R_1 + R_2 \tag{5.109}$$

$$=465$$
 (5.110)

(b) From equation (B.10.6)

$$X(z) = \frac{9}{1 - z^{-1}} - \frac{5 \cdot z^{-1}}{(1 - z^{-1})^2}; |z| > 1$$
 (5.111)

$$y(n) = x(n) * u(n)$$
(5.112)

$$Y(z) = X(z)U(z) \tag{5.113}$$

$$= \left[\frac{9}{(1-z^{-1})^2} - \frac{5z^{-1}}{(1-z^{-1})^3} \right]$$
 (5.114)

Figure 5.7: $x_1(n) = (3 + 4n)u(n)$

Using contour integration for inverse Z transformation,

$$y(14) = \frac{1}{2\pi i} \int Y(z)z^{13}dz \tag{5.115}$$

$$= \frac{1}{2\pi j} \int \frac{9 \cdot z^{15}}{(z-1)^2} dz - \frac{1}{2\pi j} \int \frac{5 \cdot z^{15}}{(z-1)^3} dz$$
 (5.116)

$$\therefore R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$
 (5.117)

$$R_1 = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} \left((z - 1)^2 \cdot \frac{9 \cdot z^{15}}{(z - 1)^2} \right)$$
 (5.118)

$$= 135$$
 (5.119)

$$R_2 = \frac{1}{2!} \lim_{z \to 1} \frac{d^2}{dz_{300}^2} \left((z - 1)^3 \cdot \frac{5 \cdot z^{15}}{(z - 1)^3} \right)$$
 (5.120)

,

Figure 5.8: $x_1(n) = (2n^2 + 5n + 3)u(n)$

5.6 If the sum of n terms of an AP is $(pn + qn^2)$, where p and q are constants, find the common difference. **Solution:**

Symbol	Value	Description
y(n)	$(pn + qn^2)$	Sum of n terms
x(n)		n^{th} term of AP
\overline{d}	x(n+1) - x(n)	Common Difference

Table 5.6: Given Parameters

Figure 5.9: $x_2(n) = (9 - 5n)u(n)$

Sum of n terms, as a discrete signal:

$$y(n) = (pn + qn^2)u(n) (5.124)$$

Taking the Z-Transform,

(a) $\mathcal{Z}\{u(n)\}$

$$u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1 - z^{-1}} \{ |z| > 1 \}$$
 (5.125)

Figure 5.10: $x_2(n) = (-5n^2 + 13n + 18)u(n)$

(b) $\mathcal{Z}\{nu(n)\}$

$$nu(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1-z^{-1})^2} \{|z| > 1\}$$
 (5.126)

(c) $\mathcal{Z}\{n^2u(n)\}$

$$n^2 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3} \{|z| > 1\}$$
 (5.127)

Taking the Z-Transform of (5.124) using (5.126) and (5.127)

$$Y(z) = p\left(\frac{z^{-1}}{(1-z^{-1})^2}\right) + q\left(\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}\right)$$
 (5.128)

Now,

$$y(n) = x(n) * u(n)$$
 (5.129)

$$\implies Y(z) = X(z)U(z) \tag{5.130}$$

$$\implies X(z) = \frac{Y(z)}{U(z)} \tag{5.131}$$

Using (5.125) in (5.131),

$$X(z) = p\left(\frac{z^{-1}}{(1-z^{-1})}\right) + q\left(\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^2}\right)$$
 (5.132)

Using contour integration for inverse Z-Transform:

$$x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$
 (5.133)

$$=\frac{1}{2\pi j}\oint_{C}\left[p\left(\frac{z^{-1}}{(1-z^{-1})}\right)+q\left(\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^{2}}\right)\right]z^{n-1}dz\tag{5.134}$$

Calculating the residues R_1 and R_2 at pole z=1:

$$R_1 = \frac{1}{0!} \lim_{z \to 1} (z - 1) \left(p \left(\frac{z^{-1}}{1 - z^{-1}} \right) \right) z^{n-1}$$
 (5.135)

$$= p \tag{5.136}$$

$$R_2 = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} \left((z - 1)^2 q \left(\frac{z^{-1} (1 + z^{-1})}{(1 - z^{-1})^2} \right) \right) z^{n-1}$$
 (5.137)

$$= q \lim_{z \to 1} \frac{d}{dz} \left(z^n + z^{n-1} \right)$$
 (5.138)

$$= q(2n-1) (5.139)$$

$$\implies x(n) = R_1 + R_2 \tag{5.140}$$

$$= p + q(2n - 1) (5.141)$$

Writing x(n) as a discrete signal we get:

$$x(n) = (p - q)u(n) + 2qnu(n)$$
(5.142)

To simplify, use n = 0:

$$y(0) = x(0) (5.143)$$

$$\implies 0 = (p - q)u(0) + 2q(0)u(0) \tag{5.144}$$

$$\implies p = q \tag{5.145}$$

 \therefore (5.142) an be written as:

$$x(n) = 2qnu(n) \tag{5.146}$$

Common difference is given by:

$$d = x(n+1) - x(n) (5.147)$$

$$=2q\tag{5.148}$$

Figure 5.11: Plot of x(n) vs n for p=q=0.5

Figure 5.12: Plot of y(n) vs n for p=q=0.5

 $5.7\,$ Find the sum of the first 40 positive integers divisible by $6\,$

Solution:

Parameter	Description	Value
x(0)	First Term	6
d	Common Difference	6

Table 5.7: Parameter Table 10.5.3.12

$$x(n) = (6+6n)(u(n))$$
 (5.149)

$$\implies X(z) = \frac{6}{1 - z^{-1}} + \frac{6z^{-1}}{(1 - z^{-1})^2} \quad (B.10.6)$$

$$\implies X(z) = \frac{6}{(1-z^{-1})^2}, \quad |z| > 1$$
 (5.151)

$$y(n) = x(n) * u(n)$$

$$(5.152)$$

$$\implies Y(z) = X(z)U(z) \tag{5.153}$$

$$=\frac{6}{(1-z^{-1})^3}, \quad |z| > 1 \tag{5.154}$$

Using contour integration to find the inverse Z-transform:

$$\implies y(39) = \frac{1}{2\pi j} \oint_C Y(z) \ z^{38} \ dz \tag{5.155}$$

$$= \frac{1}{2\pi i} \oint_C \frac{6z^{41}}{(z-1)^3} dz \tag{5.156}$$

We can observe that there is only a three times repeated pole at z=1,

$$\implies R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$
 (5.157)

$$= \frac{1}{(2)!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z - 1)^3 \frac{6z^{41}}{(z - 1)^3} \right)$$

$$= 3 \lim_{z \to 1} \frac{d^2}{dz^2} \left(z^{41} \right)$$
(5.158)

$$= 3\lim_{z \to 1} \frac{d^2}{dz^2} \left(z^{41} \right) \tag{5.159}$$

$$= 4920 (5.160)$$

$$\therefore y(39) = 4920 \tag{5.161}$$

Figure 5.13: Plot of y(n) vs n

 $5.8\,$ If the sum of certain number of terms in a AP 25,22,19,... is 116. Find the last term. Solution:

Symbol	Value	Description
x(0)	25	first term of AP
d	-3	common difference
x(n)	(25-3n)u(n)	<i>n</i> -th term of AP
y(n)	116	sum of terms

Table 5.8: Input Parameters

$$x(n) = (25 - 3n)u(n) (5.162)$$

Applying Z transform:

$$x(z) = \frac{25}{1 - z^{-1}} - \frac{3z^{-1}}{(1 - z^{-1})^2}$$

$$= \frac{25 - 28z^{-1}}{(1 - z^{-1})^2}$$
(5.163)

$$=\frac{25-28z^{-1}}{(1-z^{-1})^2}\tag{5.164}$$

Region of Convergence or R.O.C:

$$|z| > 1 \tag{5.165}$$

For AP, the sum of first n+1 terms can be written as:

$$y(n) = x(n) * u(n)$$
 (5.166)

Applying Z transform on both sides

$$Y(z) = X(z)U(z) \tag{5.167}$$

$$= \frac{25}{(1-z^{-1})^2} - \frac{3z^{-1}}{(1-z^{-1})^3}$$
 (5.168)

Using contour integration to find inverse Z transform:

$$y(n) = \frac{1}{2\pi j} \oint_C Y(z)z^{n-1}dz$$
 (5.169)

$$= \frac{1}{2\pi j} \oint_C \left[\frac{25}{(1-z^{-1})^2} - \frac{3z^{-1}}{(1-z^{-1})^3} \right] z^{n-1} dz$$
 (5.170)

The sum of the terms of the sequence is computed using the residue theorem, expressed as R_i , which represents the residue of the Z-transform at z = 1 for the expression Y(z).

$$R_i = R_1 + R_2 (5.171)$$

 R_1 and R_2 are residues calculated at the poles of the Z-transform.

$$R_1 = \frac{1}{(2-1)!} \left. \frac{d(25z^{n+1})}{dz} \right|_{z=1}$$
 (5.172)

$$= 25(n+1) \tag{5.173}$$

$$R_2 = \frac{1}{(3-1)!} \left. \frac{d^2(-3z^{n+1})}{dz^2} \right|_{z=1}$$
 (5.174)

$$= \frac{-3}{2}(n+1)(n) \tag{5.175}$$

The sum of terms is given by R_i :

$$25(n+1) + \frac{-3}{2}n(n+1) = 116 \tag{5.176}$$

Solving the equation gives:

$$n = 7 \tag{5.177}$$

$$n = 8.667 (5.178)$$

Since n can take only integer values, n=8.667 is rejected. Upon substituting the value of n in equation (5.162):

$$x(7) = 4 (5.179)$$

Hence the last term of the given AP is 4.

5.9 The first and the last terms of an AP are 17 and 350 respectively. If the common difference is 9, how many terms are there and what is their sum?

Solution:

$$x(n) = (x(0) + nd)u(n)$$
(5.180)

$$x(l) = (17 + 9l)u(l) (5.181)$$

Thus,

$$l = 37 \tag{5.182}$$

Parameters in expression		
Symbol	Description Value	
x(n)	n^{th} term of series	
x(l)	Last (l^{th}) term of series	350
x(0)	Starting (0^{th}) term of series	17
d	Common difference of AP	9

Table 5.9: Parameters

Using (B.10.6),

$$X(z) = \frac{(17 - 8z^{-1})}{(1 - z^{-1})^2}, \quad |z| > |1|$$
 (5.183)

$$y(n) = x(n) * u(n)$$
 (5.184)

$$\implies Y(z) = X(z)U(z) \tag{5.185}$$

$$=\frac{(17-8z^{-1})}{(1-z^{-1})^3}\tag{5.186}$$

Using contour integral to find Z transform, we get

$$y(37) = \frac{1}{2\pi j} \oint_C Y(z)z^{36} dz$$

$$= \frac{1}{2\pi j} \oint_C \frac{(17 - 8z^{-1})}{(1 - z^{-1})^3} z^{36} dz$$
(5.188)

$$= \frac{1}{2\pi j} \oint_C \frac{(17 - 8z^{-1})}{(1 - z^{-1})^3} z^{36} dz \tag{5.188}$$

Now, using Cauchy's residual theorem and observing the fact that 3 repeated poles

exist at z = 1,

$$R = \frac{1}{(k-1)!} \lim_{z \to c} \frac{d^{k-1}}{dz^{k-1}} ((z-c)^k f(z))$$

$$= \frac{1}{2!} \lim_{z \to 1} \frac{d^{k-1}}{dz^{k-1}} ((z-1)^3 \frac{(17-8z^{-1})}{(1-z^{-1})^3} z^{36})$$
(5.189)

$$= \frac{1}{2!} \lim_{z \to 1} \frac{d^{k-1}}{dz^{k-1}} ((z-1)^3 \frac{(17-8z^{-1})}{(1-z^{-1})^3} z^{36})$$
 (5.190)

$$= \frac{1}{2} \lim_{z \to 1} \frac{d^2}{dz^2} (17z^{39} - 8z^{38})$$
 (5.191)

$$=6973$$
 (5.192)

Figure 5.14: Stem Plot of x(n) v/s n

5.10 A small terrace at a football ground comprises of 15 steps each of which is 50 m long and built of solid concrete. Each step has a rise of 1/4 m and a tread of 1/2 m. Calculate the total volume of concrete required to build the terrace. [Hint: Volume of concrete required to build the first step=

$$V = \frac{1}{4} \cdot \frac{1}{2} \cdot 50 \tag{5.193}$$

Solution: here

parameter	description	value
$x\left(0\right)$	first term	6.25
d	common difference	6.25
n	no of terms -1	14
x(n)	volume of $(n+1)$ th step	(6.25 + 6.25n) u(n)

Table 5.10: formula parameters

$$X(z) = \frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2} \qquad |z| > |1|$$
 (5.194)

$$X(z) = \frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2} \quad |z| > |1|$$

$$\implies X(z) = \left(\frac{6.25}{(1 - z^{-1})^2}\right) \quad |z| > |1|$$
(5.194)

Figure 5.15: plot y(n) vs n

$$y(n) = x(n) * u(n)$$

$$(5.196)$$

$$\implies Y\left(z\right) = X\left(z\right)U\left(z\right) \tag{5.197}$$

$$U(z) = \frac{1}{1 - z^{-1}} \quad |z| > |1| \tag{5.198}$$

$$Y(z) = \left(\frac{6.25}{1 - z^{-1}} + \frac{6.25z^{-1}}{(1 - z^{-1})^2}\right) \left(\frac{1}{1 - z^{-1}}\right) \quad |z| > |1| \tag{5.199}$$

$$Y(z) = \frac{6.25z^3}{(z-1)^3} \quad |z| > |1| \tag{5.200}$$

contour integration to find inverse z transform

$$y(14) = \frac{1}{2\pi j} \oint_{C} Y(z) z^{13} dz$$
 (5.201)

$$=\frac{1}{2\pi j} \oint_{c} \frac{6.25z^{16}}{(z-1)^{3}} \tag{5.202}$$

pole at 1 repeated 3 times

$$\implies m = 3 \tag{5.203}$$

$$R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$
 (5.204)

$$\implies y(14) = \frac{1}{(2!)} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z - 1)^3 \frac{6.25z^{16}}{(z - 1)^3} \right)$$
 (5.205)

$$=3.125\lim_{z\to 1}\frac{d^2}{dz^2}\left(z^{16}\right) \tag{5.206}$$

$$y(14) = 750 (5.207)$$

5.11 Given a GP with a = 729 and 7^{th} term 64, find S_7 .

Solution:

Parameter	Description	Value
x(0)	First Term	729
r	Common Ratio	
$\mathbf{x}(n)$	$(n+1)^{th}$ Term	$x\left(0\right)r^{n}u\left(n\right)$
x(6)	7^{th} Term	64
y(k)	Sum of first $(k+1)$ terms	

Table 5.11: Parameter Table

from Table 5.11:

$$x(6) = x(0) r^6 (5.208)$$

$$\Longrightarrow 64 = 729r^6 \tag{5.209}$$

$$\therefore r = \frac{2}{3} \tag{5.210}$$

using Table 5.11 and equation (5.210)

$$X(z) = \frac{729}{1 - \frac{2}{3}z^{-1}}, |z| > \frac{2}{3}$$
 (5.211)

using Table 5.11 and equation (5.211)

$$Y(z) = \frac{729}{\left(1 - \frac{2}{3}z^{-1}\right)(1 - z^{-1})}$$
 (5.212)

$$=2187\left(\frac{1}{1-z^{-1}}-\frac{\frac{2}{3}}{1-\frac{2}{3}z^{-1}}\right), |z|>1\tag{5.213}$$

Using contour integration for inverse z transform,

$$y(6) = \frac{1}{2\pi j} \oint Y(z) z^5 dz \qquad (5.214)$$

Using equation (5.213) in (5.214):

$$y(6) = \frac{1}{2\pi j} \left(\oint \frac{2187z^6}{z - 1} dz - \oint \frac{1458z^6}{z - \frac{2}{3}} dz \right)$$
 (5.215)

$$\frac{1}{2\pi j} \left(\oint \frac{2187z^6}{z - 1} dz \right) = 2187 \tag{5.216}$$

$$\frac{1}{2\pi j} \left(\oint \frac{1458z^6}{z - \frac{2}{3}} dz \right) = 128 \tag{5.217}$$

using equations (5.216) and (5.217) in (5.215):

$$y(6) = 2187 - 128 \tag{5.218}$$

$$=2059$$
 (5.219)

Figure 5.16: Plot of y(n)

5.12 Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.

Solution:

$$x(n) = (105 + 5n)(u(n))$$
(5.220)

Figure 5.17: Plot of x(n)

Parameter	Description	Value
x(0)	First Term	105
d	Common Difference	5
n	Total terms	179
x(178)	Last Term	995
m	No of poles	3

Table 5.12: Given Parameters

On taking Z transform

$$X(z) = \frac{x(0)}{(1-z^{-1})} + \frac{dz^{-1}}{(1-z^{-1})^2}$$
 (5.221)

$$= \frac{105}{1 - z^{-1}} + \frac{5z^{-1}}{(1 - z^{-1})^2}$$
 (5.222)

$$\implies X(z) = \frac{105 - 100z^{-1}}{(1 - z^{-1})^2} \quad |z| > 1 \tag{5.223}$$

$$y(n) = x(n) * u(n)$$

$$(5.224)$$

$$\implies Y(z) = X(z)U(z) \tag{5.225}$$

$$= \frac{105 - 100z^{-1}}{(1 - z^{-1})^2} \frac{1}{(1 - z^{-1})}$$
 (5.226)

$$=\frac{105 - 100z^{-1}}{(1 - z^{-1})^3} \quad |z| > 1 \tag{5.227}$$

Using contour integration to find the inverse Z-transform:

$$\implies y(178) = \frac{1}{2\pi j} \oint_C Y(z) \ z^{177} \ dz \tag{5.228}$$

$$= \frac{1}{2\pi j} \oint_C \frac{\left(105 - 100z^{-1}\right)z^{177}}{\left(1 - z^{-1}\right)^3} dz \tag{5.229}$$

We can observe that there is only a 3 times repeated pole at z = 1,

$$\implies R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right) \tag{5.230}$$

$$= \frac{1}{(2)!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z-1)^3 \frac{\left(105 - 100z^{-1}\right)z^{180}}{(z-1)^3} \right)$$
 (5.231)

$$= \frac{1}{2} \lim_{z \to 1} \frac{d^2}{dz^2} \left(105z^{180} - 100z^{179} \right) \tag{5.232}$$

$$= 98450 (5.233)$$

$$y(178) = 98450 (5.234)$$

Figure 5.18: Plot of x(n) vs n

5.13 Find the sum of odd numbers between 0 and 50.

Solution:

Symbol	Value	Description
x(0)	1	first term of AP
d	2	common difference
x(n)	(1+2n)u(n)	n-th term of AP

Table 5.13: Given Parameters

Last term of the given sequence is 49.

$$x(n) = (2n+1)u(n) (5.235)$$

$$\therefore (2n+1) = 49 \tag{5.236}$$

$$\implies n = 24 \tag{5.237}$$

Applying Z transform From equation (B.3.2):

$$X(z) = \frac{1+z^{-1}}{(1-z^{-1})^2}, \quad |z| > |1|$$
 (5.238)

For AP, the sum of first n+1 terms can be written as

$$y(n) = x(n) * u(n)$$
 (5.239)

$$Y(z) = X(z)U(z) \tag{5.240}$$

$$= \frac{1}{(1-z^{-1})^2} + \frac{2z^{-1}}{(1-z^{-1})^3}, \quad |z| > |1|$$
 (5.241)

Using contour integration to find inverse Z transform

$$y(n) = \frac{1}{2\pi i} \oint_C Y(z) z^{n-1} dz$$
 (5.242)

$$y(24) = \frac{1}{2\pi j} \int Y(z)z^{23}dz \tag{5.243}$$

$$= \frac{1}{2\pi j} \int \frac{1 \cdot z^{25}}{(z-1)^2} dz - \frac{1}{2\pi j} \int \frac{2 \cdot z^{25}}{(z-1)^3} dz$$
 (5.244)

$$\therefore R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$
 (5.245)

For R1 , m=2 , where m corresponds to number of repeated poles

$$R_1 = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} \left((z - 1)^2 \cdot \frac{1 \cdot z^{25}}{(z - 1)^2} \right)$$
 (5.246)

$$=25\tag{5.247}$$

For R2 , m=3

$$R_2 = \frac{1}{2!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z - 1)^3 \cdot \frac{2 \cdot z^{25}}{(z - 1)^3} \right)$$
 (5.248)

$$=600$$
 (5.249)

$$\implies y(24) = R_1 + R_2 \tag{5.250}$$

$$=625$$
 (5.251)

Figure 5.19: Combination of stem and scatter plot of y(n)

5.14 A ladder has rungs 25cm apart. The rungs decrease uniformly in length from 45cm at the bottom to 25cm at the top. If the top and bottom rungs are 2 and 1/2 meter apart. what is length of wood required for the rungs?

5.15 Q2) The sum of the third and the seventh terms of AP is 6 and their product is 8.

Find the sum of first sixteen terms of the AP

Solution: Table of Parameters

Input Variables	Input Condition
x(2)+x(6)	6
x(2).x(6)	8
$x_i(n)$	general term of AP sequence
$y_i(n)$	sum of first n terms of AP sequence
$x_i(0)$	first term of AP sequence
d_i	common difference of AP sequence

Then from table of parameters,

$$x^{2}(6) - 6x(6) + 8 = 0 (5.252)$$

$$x(6) = 2 \text{ or } 4$$
 (5.253)

(a)

$$(x_i(2), x_i(6)) = \begin{cases} (2,4) & \text{if } i = 1\\ (4,2) & \text{if } i = 2 \end{cases}$$
 (5.254)

(b)

$$(x_{i}(0), d_{i}) = \begin{cases} (1, \frac{1}{2}) & \text{if } i = 1\\ (5, -\frac{1}{2}) & \text{if } i = 2 \end{cases}$$
 (5.255)

(c)

$$x_{i}(n) = \begin{cases} \left(\frac{n+2}{2}\right) u(n) & \text{if } i = 1\\ \left(\frac{10-n}{2}\right) u(n) & \text{if } i = 2 \end{cases}$$
 (5.256)

z-Transform of x_1 (n), x_2 (n) are given by:

$$X_1(z) = \frac{1 - \frac{z^{-1}}{2}}{(1 - z^{-1})^2}, \quad |z^{-1}| < 1$$
 (5.257)

$$X_2(z) = \frac{5 - \frac{11z^{-1}}{2}}{(1 - z^{-1})^2}, \quad |z^{-1}| < 1$$
 (5.258)

Similarly for sum of first n terms of AP,

$$y_i(n) = x_1(n) * u(n)$$
 (5.259)

$$Y_i(z) = \frac{X_i(z)}{(1-z^{-1})}$$
 (5.260)

$$Y_1(z) = \frac{1 - \frac{z^{-1}}{2}}{(1 - z^{-1})^3}, \quad |z| > 1$$
 (5.261)

$$Y_2(z) = \frac{5 - \frac{11z^{-1}}{2}}{(1 - z^{-1})^3}, \quad |z| > 1$$
(5.262)

Graph of $x_1(n)$

Graph of $x_2(n)$

Inverse z-transform by counter integral method for $y_1(z)$,

Since n starts from 0 to n-1 for $x_1(n)$ so, $n \to n$ -1 so that $y_1(n)$ starts from 1 to n for given n,

$$y_1(16) = \oint_C \frac{z^3 \left(1 - \frac{z^{-1}}{2}\right)}{(z - 1)^3} z^{14} dz$$
 (5.263)

$$y_1(16) = \frac{1}{2!} \left(\frac{d^2}{dz^2} z^{17} - \frac{1}{2} \frac{d^2}{dz^2} z^{16} \right)_{z=1}$$
 (5.264)

$$y_1(16) = 76 (5.265)$$

Similarly for $y_2(z)$,

$$y_2(16) = \oint_C \frac{z^3 \left(5 - \frac{11z^{-1}}{2}\right)}{(z - 1)^3} z^{14} dz$$
 (5.266)

$$y_2(16) = \frac{1}{2!} \left(5 \frac{d^2}{dz^2} z^{17} - \frac{11}{2} \frac{d^2}{dz^2} z^{16} \right)_{z=1}$$
 (5.267)

$$y_2(16) = 20 (5.268)$$

In fact,

(a)

$$y_1(n) = \left(\frac{n(n+3)}{4}\right)u(n) \tag{5.269}$$

(b)

$$y_2(n) = \left(\frac{n(21-n)}{4}\right)u(n)$$
 (5.270)

Graph of $y_1(n)$

5.16 A spiral is made up of successive semicircles, with centres alternately at A and B, starting with centre at A, of radii 0.5cm, 1.0cm, 1.5cm, 2.0cm, . . . What is the total length of such a spiral made up of thirteen consecutive semicircles? (Take $\pi = \frac{22}{7}$)

Solution:

Variable	Description	Value
x(0)	First term	0.5
d	common difference	0.5
y(n)	Sum of $n+1$ terms	-
C_n	Length of n^{th} semicircle	$\pi x(n)$

Table 1: Variables Used

General Term can be written as

$$x\left(n\right) = x\left(0\right) + nd\tag{5.271}$$

Sum upto n+1 terms is given by

$$y(n) = x(n) * u(n)$$

$$(5.272)$$

The corresponding Z-Transform is given by (B.10.6). Referring to Table 1, substituting the values in (B.10.6),

$$Y(z) = \frac{0.5}{(1-z^{-1})^2} + \frac{0.5z^{-1}}{(1-z^{-1})^3} \quad ROC(|z| > 1)$$
 (5.273)

Finding y(n) by Contour Integration,

$$y(12) = \frac{1}{2\pi j} \oint_C \left(\frac{0.5z^{12-1}}{(1-z^{-1})^2} + \frac{0.5z^{12-2}}{(1-z^{-1})^3} \right) dz$$
 (5.274)

Using Residue Theorem to evaluate the integral, let

$$Y(z) = S_1 + S_2 (5.275)$$

 S_1 has 2 poles,

$$S_1 = \frac{1}{(1)!} \lim_{z \to 1} \frac{d}{dz} \left((z - 1)^2 \frac{0.5z^{12+1}}{(z - 1)^2} \right)$$
 (5.276)

$$S_1 = 0.5 (12+1) \lim_{z \to 1} (z^1 2)$$
 (5.277)

$$S_1 = 0.5 (12 + 1) (5.278)$$

Similarly, S_2 has 3 poles,

$$S_2 = \frac{1}{(2)!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z - 1)^3 \frac{0.5z^{12+1}}{(z - 1)^3} \right)$$
 (5.279)

$$= \frac{0.5(12+1)}{2} \lim_{z \to 1} \frac{d}{dz} (z^{1}2)$$
 (5.280)

$$= \frac{0.5(12+1)}{2} \lim_{z \to 1} \frac{d}{dz} (z^{1}2)$$

$$= \frac{0.5(12+1)(12)}{2} \lim_{z \to 1} (z^{12-1})$$
(5.280)

$$=\frac{0.5(12)(12+1)}{2} \tag{5.282}$$

Finally,

$$y(12) = 0.5(12+1) + \frac{0.5(12)(12+1)}{2}$$
 (5.283)

$$y(12) = 45.5 (5.284)$$

$$\sum_{n=0}^{12} C_n = \pi y \,(12) \tag{5.285}$$

$$\sum_{n=0}^{12} C_n = \pi (45.5) \tag{5.286}$$

$$=143$$
 (5.287)

Figure 1: Plot of Sum of n terms taken from Python3

5.17 Find the sum to indicated number of terms in each of the geometric progressions in $0.15, 0.015, 0.0015 \dots 20 terms$.

Solution:

Parameter	Description	Value
n	No. of terms in the G.P	20
x(0)	first term in the G.P	0.15
r	common ratio in the G.P	0.1

Table 5.15: Variables and their descriptions

$$x(n) = x(0)r^n \tag{5.288}$$

$$X(z) = \frac{x(0)}{1 - rz^{-1}} \qquad |z| > |r| \tag{5.289}$$

$$U(z) = \frac{1}{1 - z^{-1}}, \qquad |z| > 1 \tag{5.290}$$

$$y(n) = x(n) * u(n)$$
 (5.291)

$$Y(z) = X(z)U(z) \tag{5.292}$$

$$= \left(\frac{0.15}{1 - 0.1z^{-1}}\right) \left(\frac{1}{1 - z^{-1}}\right) \quad |z| > 1 \tag{5.293}$$

Using Contour integration

$$y(20) = \frac{1}{2\pi j} \oint_C \frac{0.15z^2}{(z-1)(z-0.1)} z^{19} dz$$
 (5.294)

$$= \frac{1}{2\pi j} \oint_C \frac{0.15}{0.9} \left(\frac{1}{z-1} - \frac{1}{z-0.1} \right) z^{21} dz \tag{5.295}$$

$$= \frac{1}{6} \left(\left(\lim_{z \to 1} \frac{z^{21}}{z - 1} (z - 1) \right) - \left(\lim_{z \to 0.1} \frac{z^{21}}{z - 0.1} (z - 0.1) \right) \right)$$
 (5.296)

$$=\frac{1}{6}(1-0.1^{21})\tag{5.297}$$

$$= 0.16667 \tag{5.298}$$

.: Sum of 20 terms of the given GP is 0.16667

Figure 5.17: Stem plot of y(n)

5.18 A man deposited Rs 10000 in a bank at the rate of 5% simple interest anually. Find the amount in $15^{\rm th}$ year since he deposited the amount and also calculate the total amount after 20 years.

Solution:

Interest in one year =
$$\frac{10000 \times 5 \times 1}{100}$$
 (5.299)

$$d = 500 (5.300)$$

Parameter	Value/Formula	$\operatorname{description}$
x(0)	Rs.10000	Total amount deposited
r	5	Rate of interest
$x\left(n\right)$	$\left(x\left(0\right) +nd\right) u\left(n\right)$	amount at the start of $(n+1)^{th}$ year
d	?	common difference

Table 1: Input data

From (5.300) and Table 1:

$$x(n) = (10000 + 500n)u(n) (5.301)$$

From (B.8.2)

$$X(z) = \frac{10000}{1 - z^{-1}} + \frac{500z^{-1}}{(1 - z^{-1})^2} \quad |z| > 1$$
 (5.302)

Amount in $15^{\rm th}$ year is

$$x(14) = x(0) + 14 \times d \tag{5.303}$$

$$\implies x(14) = 17000 \tag{5.304}$$

Total amount after 20 years is

$$x(20) = x(0) + 20 \times 500 \tag{5.305}$$

$$\implies x(20) = 20000 \tag{5.306}$$

Figure 1: graph for x(n) = 10000 + 500n

5.19 A manufacturer reckons that the value of a machine, which costs him Rs.15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.

Solution:

$$x(n) = 15625 \left(1 - \frac{1}{5}\right)^n u(n) \tag{5.307}$$

Result:

$$a^n u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{(1 - az^{-1})} \quad |z| > a$$
 (5.308)

Symbol	Value	Description
x(0)	15625	Initial Cost
r	$\frac{4}{5}$	common ratio of GP
n	5	Number of years
x(5)	$15625(\frac{4}{5})^5$	Estimated value after 5 years

Table 1: Parameter Table

From (5.308)

$$X(Z) = \frac{15625}{1 - \left(1 - \frac{1}{5}\right)z^{-1}} \quad |z| > \frac{4}{5}$$
 (5.309)

Figure 5.19: Theory matches with simulated values

5.20 The houses of a row are numbered consecutively from 1 to 49. Show that there is a value of x such that the sum of the numbers of the houses preceding the house numbered is equal to the sum of the numbers of the houses following it. Find this value of x.

$$Hint: S_{x-1} = S_{49} - S_x$$

Solution:

Parameter	Value	Description
x(0)	1	First house
d	1	Common difference
$x\left(n\right)$	(n+1)u(n)	(n+1) th house
$y\left(n\right)$	$\left(\frac{n+1}{2}\right)(n+2)u(n)$	Sum of $n+1$ number of houses.
$x_{2}\left(n\right)$	(49-n) u (n)	(n+1) th house from last house
$y_{2}\left(n ight)$	$\left[49n - \left(\frac{n}{2}\right)(n+1)\right]u(n)$	Sum of $n+1$ houses from last house.

Table 5.20: Input Parameters

For an AP:

$$X(z) = \frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2}$$
 (5.310)

$$X(z) = \frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2}$$

$$\implies X(z) = \frac{1}{1 - z^{-1}} + \frac{z^{-1}}{(1 - z^{-1})^2}$$
(5.310)

$$=\frac{1}{(1-z^{-1})^2}, \quad |z| > 1 \tag{5.312}$$

$$\therefore y(n) = \frac{(n+1)}{2}(n+2) \tag{5.313}$$

$$y(x-2) = y(n-1) - y(x-1)$$
 (5.314)

From Table 5.20:

$$\left(\frac{x-1}{2}\right)x = \frac{n}{2}(n+1) - \frac{x}{2}(x+1)$$
 (5.315)

$$(x-1) + x(x+1) = n(n+1)$$
 (5.316)

$$2x^2 = n(n+1) (5.317)$$

$$x = \sqrt{\frac{n}{2}(n+1)} \tag{5.318}$$

$$x = 35 \tag{5.319}$$

Result Confirmation:

To prove:

$$y(33) = y_2(13) \tag{5.320}$$

LHS:

$$y(n) = x(n) * u(n)$$

$$(5.321)$$

$$\implies Y(z) = X(z) \times U(z) \tag{5.322}$$

$$Y(z) = \left(\frac{1}{(1-z^{-1})^2}\right) \left(\frac{1}{1-z^{-1}}\right)$$
 (5.323)

$$= \frac{1}{(1-z^{-1})^3}, \quad |z| > 1 \tag{5.324}$$

(5.325)

Using Contour Integration to find inverse Z-transform,

$$y(33) = \frac{1}{2\pi i} \oint_C Y(z) \ z^{32} \ dz \tag{5.326}$$

$$= \frac{1}{2\pi j} \oint_C \frac{z^{32}}{(1-z^{-1})^3} dz$$
 (5.327)

We can observe that the pole is repeated 3 times and thus m = 3,

$$R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$
 (5.328)

$$= \frac{1}{(2)!} \lim_{z \to 1} \frac{d^2}{dz^2} \left(z^{35}\right) \tag{5.329}$$

$$=595$$
 (5.330)

RHS:

From Table 5.20:

$$X_2(z) = \frac{49 - 50z^{-1}}{(1 - z^{-1})^2}$$
 (5.331)

$$y_2(n) = x_2(n) * u(n)$$
 (5.332)

$$\implies Y_2(z) = X_2(z) \times U(z) \tag{5.333}$$

$$y_2(z) = \frac{49 - 50z^{-1}}{(1 - z^{-1})^3}$$
 (5.334)

(5.335)

Using Contour Integration to find inverse Z-transform,

$$y_2(13) = \frac{1}{2\pi j} \oint_C Y(z) \ z^{12}; dz \tag{5.336}$$

$$= \frac{1}{2\pi j} \oint_C \frac{49 - 50z^{-1}}{\left(1 - z^{-1}\right)^3} \left(z^{12}\right) dz \tag{5.337}$$

We can observe that the pole is repeated 3 times and thus m = 3,

$$R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$
 (5.338)

$$= \frac{1}{(2)!} \lim_{z \to 1} \frac{d^2}{dz^2} \left(49z^{15} - 50z^{14} \right) \tag{5.339}$$

$$=49.15.14 - 50.14.13\tag{5.340}$$

$$=595$$
 (5.341)

Figure 5.20: Ploty(n) vs n

5.21 A contract on construction job specifies a penalty for delay of completion beyond a certain date as follows: ₹200 for the first day, ₹250 for the second day, ₹300 for the third day, etc., the penalty for each succeeding day being ₹50 more than for the preceding day. How much money the contractor has to pay as penalty, if he has delayed the work by 30 days?

Solution:

Variable	Description	Value
x(0)	First term of AP	200
d	common difference in the AP	50
x(n)	General term	$(200 + n \times 50) \mathrm{u(n)}$

Table 5.21: Variables Used

From equation (B.8.2)

$$\implies X(z) = \frac{200}{1 - z^{-1}} + \frac{200z^{-1}}{(1 - z^{-1})^2} \qquad |z| > |1| \tag{5.342}$$

$$y(n) = x(n) * u(n)$$

$$(5.343)$$

$$Y(z) = X(z) U(z)$$

$$(5.344)$$

$$\Rightarrow Y(z) = \left(\frac{200}{1 - z^{-1}} + \frac{50z^{-1}}{(1 - z^{-1})^2}\right) \left(\frac{1}{1 - z^{-1}}\right)$$

$$= \frac{200}{(1 - z^{-1})^2} + \frac{50z^{-1}}{(1 - z^{-1})^3}$$
(5.346)

$$= \frac{200}{(1-z^{-1})^2} + \frac{50z^{-1}}{(1-z^{-1})^3}$$
 (5.346)

Figure 5.21: Combination of scatter plot and stem plot

Contour integration to find z transform

$$y(29) = \frac{1}{2\pi j} \oint_{c} Y(Z) z^{28} dz$$
 (5.347)

$$= \frac{1}{2\pi j} \oint_{c} \frac{(200 - 150z^{-1})z^{28}}{(1 - z^{-1})^{3}}$$
 (5.348)

pole at 1 repeated 3 times

$$\therefore m = 3 \tag{5.349}$$

$$R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((za)^m f(z) \right)$$
 (5.350)

$$R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} ((za)^m f(z))$$

$$= \frac{1}{(2!)} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z-1)^3 \frac{(200-150z^{-1})z^{28}}{(1-z^{-1})^3} \right)$$

$$= \lim_{z \to 1} \frac{d^2}{dz^2} \left(100 - 75z^{-1} \right) z^{31}$$
(5.352)

$$= \lim_{z \to 1} \frac{d^2}{dz^2} \left(100 - 75z^{-1} \right) z^{31} \tag{5.352}$$

$$\implies y(n) = 27750 \tag{5.353}$$

5.22 Find the sum of all two digit numbers which when divided by 4, yields 1 as reminder? **Solution:** Input parameters are:

PARAMETER	VALUE	DESCRIPTION
$x\left(0\right)$	13	First term
d	4	common differ- ence
x(n)	$[13+4n]u\left(n\right)$	General term of the series

Table 5.22: INPUT PARAMETER TABLE

$$x(n) = x(0) + nd$$
 (5.354)

$$n = \frac{97 - 13}{4} = 21\tag{5.355}$$

(5.356)

From B.3.2

$$X(z) = \frac{13 - 9z^{-1}}{(1 - z^{-1})^2}, |z| > 1$$
 (5.357)

$$y(n) = x(n) * u(n)$$
 (5.358)

$$Y(z) = X(z)U(z) \tag{5.359}$$

$$\implies Y(z) = \frac{13 - 9z^{-1}}{(1 - z^{-1})^3}, |z| > 1$$
 (5.360)

Using contour integration to find the inverse z-transform,

$$y(n) = \frac{1}{2\pi j} \oint_C Y(z) z^{n-1} dz$$
 (5.361)

$$y(21) = \frac{1}{2\pi i} \oint_C \frac{(13 - 9z^{-1})z^{20}}{(1 - z^{-1})^3}$$
 (5.362)

We can observe that the pole is repeated 3 times and thus m = 3,

$$R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$
 (5.363)

$$= \frac{1}{(2)!} \lim_{z \to 1} \frac{d^2}{dz^2} \left(13z^{23} - 9z^{22} \right) \tag{5.364}$$

$$R = 1210 (5.365)$$

$$\therefore y(21) = 1210 \tag{5.366}$$

Therefore, the sum of all two-digit numbers that, when divided by 4, yield a remainder

of 1 is 1210.

Figure 5.22: $y(n) = 13 + 15n + 2n^2$

5.23 A spiral is made up of successive semicircles, with centres alternately at A and B, starting with centre at A,of radii 0.5cm, 1.0cm, 1.5cm, 2.0cm,... as shown in Fig. 5.4.what is the total length of such a spiral made up of thirteen consecutive semicircles? (Take $\pi = \frac{22}{7}$)

5.24 200 logs are stacked in the following manner: 20 logs in the bottom row, 19 in the next row,18 in the row next to it and so on (see Fig 5.24). In how many rows are the 200 logs placed and how many logs are in the top row? **Solution:**

Figure 5.24:

Symbol	Value	Description
$x\left(0\right)$	20	first term of AP
d	-1	common difference
x(n)		$\left(x\left(0\right) +nd\right) u\left(n\right)$
$y\left(n\right)$	200	

Table 1: input parameters

$$x(n) \stackrel{z}{\longleftrightarrow} (-z) \frac{dX(z)}{dz}$$
 (5.367)

$$\implies nu(n) \stackrel{z}{\longleftrightarrow} \frac{z^{-1}}{(1-z^{-1})^2}, |z| > 1 \tag{5.368}$$

$$\implies n^{2}u(n) \stackrel{z}{\longleftrightarrow} \frac{z^{-1}(z^{-1}+1)}{(1-z^{-1})^{3}}, |z| > 1$$
 (5.369)

$$\implies Z^{-1} \left[\frac{1}{(1 - z^{-1})^2} \right] = (n+1) u(n) \tag{5.370}$$

$$\implies Z^{-1} \left[\frac{z^{-1}}{(1 - z^{-1})^3} \right] = \frac{n(n+1)}{2} u(n) \tag{5.371}$$

from (5.368)

$$\implies X(Z) = \frac{20}{1 - z^{-1}} - \frac{z^{-1}}{(1 - z^{-1})^2}, |z| > 1$$
 (5.372)

from (5.372)

$$y(n) = x(n) * u(n)$$

$$(5.373)$$

$$\implies Y(Z) = X(Z)U(Z) \tag{5.374}$$

$$= \frac{20}{(1-z^{-1})^2} - \frac{z^{-1}}{(1-z^{-1})^3}, |z| > 1$$
 (5.375)

substituting (5.370), (5.371):

$$y(n) = \left(20(n+1) - \frac{n(n+1)}{2}\right)u(n)$$
 (5.376)

$$=\frac{(n+1)(40-n)}{2}\tag{5.377}$$

since number of logs=200

$$200 = \frac{(n+1)(40-n)}{2} \tag{5.378}$$

$$n = 24, 15 \tag{5.379}$$

for n=24

$$x(24) = 20 - 24 \tag{5.380}$$

$$= -4 \tag{5.381}$$

but logs can't be negative

for n=15

$$x(15) = 20 - 15 \tag{5.382}$$

$$=5 \tag{5.383}$$

so number of rows=15

number of logs=5

Figure 1: plot of y(n) v/s n

5.25 In an AP:

- (a) given a = 5, d = 3, $a_n = 5$, find n and S_n .
- (b) given a = 7, a_{13} =35, find d and S_{13} .
- (c) given $a_{12} = 37$, d = 3, find a and S_{12} .
- (d) given a_3 = 15, S_{10} = 125, find d and a_{10} .
- (e) given d = 5, $S_9 = 75$, find a and a_9 .
- (f) given a = 2, d = 8, $S_n = 90$, find n and a_n .

(g) given a = 8, a_n = 62, S_n = 210, find n and d.

(h) given an= 4, d = 2, $S_n = -14$, find n and a.

(i) given a = 3, n = 8, S = 192, find d.

(j) given $l=28,\,S=144,\,\mathrm{and}$ there are total 9 terms. Find a.

5.26 Find the sum of n terms of the series: $1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5 + \dots$

5.27	Find the sum of the first 22 terms of an AP in which $d=7$ and the 22^{nd} term is 149. Solution:	

5.28 Find the sum of integers from 1 to 100 that are divisible by 2 or 5. Solution:

5.29	In a school, students thought of planting trees in and around the school to reduce air
	pollution. It was decided that the number of trees, that each section of each class will
	plant, will be the same as the class, in which they are studying, e.g., a section of Class I
	will plant 1 tree, a section of Class II will plant 2 trees and so on till Class XII. There are
	three sections of each class. How many trees will be planted by the students?

5.30 A sum of Rs.700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If each prize is Rs.20 less than its preceding prize, find the value of each of the prizes.

5 21	Find the sum of all numbers between 200 and 400 which are divisible by 7.
0.01	Solution:

Chapter 6

Laplace Transform

- 6.0.1 You are riding in an automobile of mass 3000 kg. Assuming that you are examining the oscillation characteristics of its suspension system. The suspension sags 15 cm when the entire automobile is placed on it. Also, the amplitude of oscillation decreases by 50% during one complete oscillation. Estimate the values of
 - (a) The spring constant K
 - (b) The damping constant b for the spring and shock absorber system of one wheel, assuming that each wheel supports 750 kg.

Solution: The parameters are :

Parameter	Value(SI)	Description
x_0	0.15	Initial spring compression
m	750	Mass
g	9.8	Gravitational acc
k	mg/x_0	Spring constant
b		Damping constant

Table 6.1: Input Parameters

Parameter	Value(SI)	Description
x		Spring Extension
F_1	kx	Spring Force
F_2	$b\frac{dx}{dt}$	Damping Force
s		Complex Frequency
s_1, s_2		Values of s

Table 6.2: Intermediate Parameters

Initially the automobile is in rest, so we can use,

$$mg = kx_0 (6.1)$$

$$\Longrightarrow k = \frac{mg}{x_0} \tag{6.2}$$

Now, as the oscillation begins, from the FBD, we have net force on the mass as,

$$F = F_1 + F_2 + mgu(t) (6.3)$$

$$\implies -m\frac{d^2x(t)}{dt^2} = kx(t) + b\frac{dx(t)}{dt} + mgu(t)$$
(6.4)

$$\Longrightarrow \frac{d^2x(t)}{dt^2} + \left(\frac{b}{m}\right)\frac{dx(t)}{dt} + \left(\frac{k}{m}\right)x(t) = -gu(t) \tag{6.5}$$

Now, taking the Laplace transform on both sides,

$$s^{2}X(s) + \frac{b}{m}sX(s) + \frac{k}{m}X(s) = -\frac{g}{s}$$
 (6.6)

$$\Longrightarrow X(s) = -\frac{g}{s\left(s^2 + \frac{b}{m}s + \frac{k}{m}\right)} \tag{6.7}$$

$$\Longrightarrow X(s) = -\frac{g}{s(s-s_1)(s-s_2)} \tag{6.8}$$

Figure 6.1: FBD of the damped oscillation system

Where

$$s_1 = -\frac{b}{2m} + \sqrt{\left(\frac{b}{2m}\right)^2 - \frac{k}{m}} \tag{6.9}$$

$$s_2 = -\frac{b}{2m} - \sqrt{\left(\frac{b}{2m}\right)^2 - \frac{k}{m}} \tag{6.10}$$

From (6.8) we get,

$$\implies X(s) = \frac{g}{(s_1 - s_2)} \left[\frac{1}{s_2(s - s_2)} - \frac{1}{s_1(s - s_1)} \right] + \frac{g}{s_1 s_2} \left(\frac{1}{s} \right)$$
(6.11)

Now again taking the inverse Laplace transform we have,

$$x(t) = \frac{g}{s_1 s_2} u(t) + \frac{g}{(s_1 - s_2)} \left[\frac{1}{s_2} e^{s_2 t} - \frac{1}{s_1} e^{s_1 t} \right] u(t)$$
 (6.12)

$$\implies x(t) = \sqrt{\left(\frac{mg}{k}\right)^2 + \left(\frac{gb}{2mk}\right)^2} e^{-bt/2m} u(t)$$

$$\sin\left(\sqrt{\frac{k}{m} - \left(\frac{b}{2m}\right)^2} t + \tan^{-1}\left(\frac{2mg\sqrt{\frac{k}{m} - \left(\frac{b}{2m}\right)^2}}{gb}\right)\right)$$

$$+ \frac{mg}{k} u(t)$$
(6.13)

(Substituting the values of s_1 and s_2 from (6.9) and (6.10))

From (6.13) we have the amplitude after one time period T,

$$\frac{1}{2}\sqrt{\left(\frac{mg}{k}\right)^2 + \left(\frac{gb}{2mk}\right)^2} = \sqrt{\left(\frac{mg}{k}\right)^2 + \left(\frac{gb}{2mk}\right)^2}e^{-bT/2m}$$
(6.14)

$$\Longrightarrow e^{\pi b/\sqrt{mk}} = 2 \tag{6.15}$$

$$\Longrightarrow b = \frac{\sqrt{mk} \ln 2}{\pi} \tag{6.16}$$

Figure 6.2: Displacement Vs. Time Graph

6.0.2 A mass attached to a spring is free to oscillate, with angular velocity ω , in a horizontal plane without friction or damping. It is pulled to a distance x_0 and pushed towards the centre with a velocity v_0 at time t=0. Determine the amplitude of the resulting oscillations in terms of the parameters ω , x_0 , and v_0 . [Hint: Start with the equation $x=a\cos{(\omega t+\theta)}$ and note that the initial velocity is negative.]

Chapter 7

Systems

7.0.1 A simple pendulum of length l and having a bob of mass M is suspended in a car. The car is moving in a circular track of radius R with a uniform speed v. If the pendulum makes small oscillations in a radial direction about its equilibrium position, what will be its time period?

 $7.0.2\,$ A spring balance has a scale that that reads from 0 to 50 kg. The length of the scale is $20\,$ cm. A body is suspended from this balance, when displaced and released, oscillates with a period of $0.6\,$ s. What is weight of the body?

Appendix A

Convolution

A.1 The convolution sum is defined as

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$
 (A.1.1)

A.2 The unit step function is defined as

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (A.2.1)

A.3 If

$$x(n) = 0, \quad n < 0,$$
 (A.3.1)

from (A.1.1),

$$x(n) * u(n) = \sum_{k=0}^{n} x(k)$$
 (A.3.2)

Appendix B

Z-transform

B.1 The Z-transform of p(n) is defined as

$$P(z) = \sum_{n = -\infty}^{\infty} p(n)z^{-n}$$
(B.1.1)

B.2 If

$$p(n) = p_1(n) * p_2(n), (B.2.1)$$

$$P(z) = P_1(z)P_2(z)$$
 (B.2.2)

B.3

$$nx(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} -zX'(z)$$
 (B.3.1)

From (B.3.1)

$$\implies nu(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1-z^{-1})^2}, |z| > 1$$
 (B.3.2)

$$\implies n^{2}u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}(z^{-1}+1)}{(1-z^{-1})^{3}}, |z| > 1$$
 (B.3.3)

$$\implies n^{3}u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}\left(1 + 4z^{-1} + z^{-2}\right)}{\left(1 - z^{-1}\right)^{4}}, |z| > 1$$
 (B.3.4)

$$\implies n^{4}u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}\left(1 + 11z^{-1} + 11z^{-2} + z^{-3}\right)}{\left(1 - z^{-1}\right)^{5}}$$
 (B.3.5)

where |z| > 1

B.4

$$x(n-k) \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-k} X(z)$$
 (B.4.1)

Using (B.4.1):

$$nu(n-1) \stackrel{\mathcal{Z}}{\longleftrightarrow} z \frac{2z^{-2}}{(1-z^{-1})^2}$$
 (B.4.2)

Now,

$$\frac{(n-1)}{2}u(n-2) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-2}}{(1-z^{-1})^2}$$
 (B.4.3)

$$\frac{(n-1)(n-2)}{6}u(n-3) \longleftrightarrow \frac{z^{-3}}{(1-z^{-1})^3}$$
 (B.4.4)

:

$$\frac{(n-1)(n-2)\dots(n-k+1)}{(k-1)!}u(n-k) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-k}}{(1-z^{-1})^k}$$
 (B.4.5)

$$\implies Z^{-1} \left[\frac{z^{-2}}{(1 - z^{-1})^2} \right] = (n - 1) u (n - 1)$$
(B.4.6)

$$\implies Z^{-1} \left[\frac{z^{-3}}{(1-z^{-1})^3} \right] = \frac{(n-1)(n-2)}{2} u(n-1)$$
 (B.4.7)

$$\implies Z^{-1} \left[\frac{z^{-4}}{(1-z^{-1})^4} \right] = \frac{(n-1)(n-2)(n-3)}{6} u(n-1)$$
 (B.4.8)

$$\implies Z^{-1} \left[\frac{z^{-5}}{(1-z^{-1})^5} \right] = \frac{(n-1)(n-2)(n-3)(n-4)}{24}$$

$$u(n-1)$$
(B.4.9)

B.5 For a Geometric progression

$$x(n) = x(0) r^n u(n), \qquad (B.5.1)$$

$$\implies X(z) = \sum_{n = -\infty}^{\infty} x(n) z^{-n} = \sum_{n = 0}^{\infty} x(0) r^n z^{-n}$$
 (B.5.2)

$$= \sum_{n=0}^{\infty} x(0) (rz^{-1})^n$$
 (B.5.3)

$$= \frac{x(0)}{1 - rz^{-1}}, \quad |z| > |r| \tag{B.5.4}$$

B.6 Substituting r = 1 in (B.5.4),

$$u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1$$
 (B.6.1)

B.7 From (B.3.1) and (B.6.1),

$$nu(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1-z^{-1})^2}, \quad |z| > 1$$
 (B.7.1)

B.8 For an AP,

$$x(n) = [x(0) + nd] u(n) = x(0)u(n) + dnu(n)$$
(B.8.1)

$$\implies X(z) = \frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2}, \quad |z| > 1$$
 (B.8.2)

upon substituting from (B.6.1) and (B.7.1).

B.9 From (A.3.2), the sum to n terms of a GP can be expressed as

$$y(n) = x(n) * u(n)$$
(B.9.1)

where x(n) is defined in (B.5.1). From (B.2.2), (B.5.4) and (B.6.1),

$$Y\left(z\right) = X\left(z\right)U\left(z\right) \tag{B.9.2}$$

$$= \left(\frac{x(0)}{1 - rz^{-1}}\right) \left(\frac{1}{1 - z^{-1}}\right) \quad |z| > |r| \cap |z| > |1| \tag{B.9.3}$$

$$= \frac{x(0)}{(1-rz^{-1})(1-z^{-1})} \quad |z| > |r| \tag{B.9.4}$$

which can be expressed as

$$Y(z) = \frac{x(0)}{r-1} \left(\frac{r}{1-rz^{-1}} - \frac{1}{1-z^{-1}} \right)$$
 (B.9.5)

using partial fractions. Again, from (B.5.4) and (B.6.1), the inverse of the above can be expressed as

$$y(n) = x(0) \left(\frac{r^{n+1} - 1}{r - 1}\right) u(n)$$
 (B.9.6)

B.10 For the AP x(n), the sum of first n+1 terms can be expressed as

$$y(n) = \sum_{k=0}^{n} x(k)$$
 (B.10.1)

$$\implies y(n) = \sum_{k=-\infty}^{\infty} x(k)u(n-k)$$
 (B.10.2)

$$= x(n) * u(n)$$
 (B.10.3)

Taking the Z-transform on both sides, and substituting (B.8.2) and (B.6.1),

$$Y(z) = X(z)U(z)$$
(B.10.4)

$$\implies Y(z) = \left(\frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2}\right) \frac{1}{1 - z^{-1}} \quad |z| > 1 \tag{B.10.5}$$

$$= \frac{x(0)}{(1-z^{-1})^2} + \frac{dz^{-1}}{(1-z^{-1})^3}, \quad |z| > 1$$
 (B.10.6)

B.11 From (B.4.1) and (B.7.1),

$$(n+1)u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{(1-z^{-1})^2}, \quad |z| > 1,$$
 (B.11.1)

From (B.11.1) and (B.3.1),

$$n(n+1)u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{(1-z^{-1})^3}, \quad |z| > 1,$$
 (B.11.2)

B.12 Taking the inverse Z-transform of (B.10.6),

$$y(n) = x(0) [(n+1)u(n)] + \frac{d}{2} [n(n+1)u(n)]$$
 (B.12.1)

$$= \frac{n+1}{2} \{2x(0) + nd\} u(n)$$
 (B.12.2)

Appendix C

Contour Integration

C.1

$$x(n) \xrightarrow{Z} X(z)$$
 (C.1.1)

$$\implies X(z) = \sum_{k=-\infty}^{\infty} x(k) z^{-k}$$
 (C.1.2)

Multiplying both side with z^{k-1} and integrating on a contour integral enclosing the region of convergence. Where C is a counter-clockwise closed contour in region of convergence.

$$\frac{1}{2\pi j} \oint_C X(z) z^{k-1} dz = \frac{1}{2\pi j} \oint_C \sum_{k=-\infty}^{\infty} x(k) z^{-n+k-1} dz$$
 (C.1.3)

$$= \sum_{k=-\infty}^{\infty} x(k) \frac{1}{2\pi j} \oint_{C} z^{-n+k-1} . dz$$
 (C.1.4)

From cauchy's integral theorem

$$\frac{1}{2\pi j} \oint_C z^{-k} dz = \begin{cases} 1, & k = 1\\ 0, & k \neq 1 \end{cases}$$
 (C.1.5)

$$= \delta \left(1 - k \right) \tag{C.1.6}$$

So eq (C.1.4) becomes

$$\frac{1}{2\pi j} \oint_C X(z) z^{k-1} dz = \sum_{k=-\infty}^{\infty} x(k) \delta(k-n)$$
 (C.1.7)

$$\implies x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$
 (C.1.8)

Contour integrals like (C.1.8) can be evaluated using Cauchy's residue theorem.

$$x(n) = \frac{1}{2\pi i} \oint_C X(z) z^{n-1} dz \tag{C.1.9}$$

$$= \sum \left[\text{Residue of } X(z) z^{n-1} \text{ at poles inside } C \right]$$
 (C.1.10)

C.2 Question: Find the sum of n terms of an AP where common difference =d using Contour Integration.

Solution:

By performing inverse Z transform on S(z) using contour integration

$$s(n) = \frac{1}{2\pi i} \oint_C S(z) \ z^{n-1} \ dz \tag{C.2.1}$$

$$s(n) = \frac{1}{2\pi j} \oint_C \left(\frac{x(0)z^{n-1}}{(1-z^{-1})^2} + \frac{dz^{n-2}}{(1-z^{-1})^3} \right) dz$$
 (C.2.2)

For R_1 we can observe that the pole has been repeated twice.

$$R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$
 (C.2.3)

$$R_1 = \frac{1}{(1)!} \lim_{z \to 1} \frac{d}{dz} \left((z - 1)^2 \frac{x(0)z^{n+1}}{(z - 1)^2} \right)$$
 (C.2.4)

$$= x(0)(n+1)\lim_{n \to \infty} (z^n)$$
 (C.2.5)

$$= x(0)(n+1)$$
 (C.2.6)

For R_2 we can observe that the pole has been repeated thrice.

$$R_2 = \frac{1}{(2)!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z - 1)^3 \frac{dz^{n+1}}{(z - 1)^3} \right)$$
 (C.2.7)

$$= \frac{d(n+1)}{2} \lim_{z \to 1} \frac{d}{dz} (z^n)$$
 (C.2.8)

$$= \frac{d(n+1)(n)}{2} \lim_{z \to 1} (z^{n-1})$$
 (C.2.9)

$$= \frac{d(n)(n+1)}{2}$$
 (C.2.10)

$$\implies R = R_1 + R_2 \tag{C.2.11}$$

Using (C.2.6) and (C.2.10) in (C.2.11)

$$R = x(0)(n+1) + \frac{d(n)(n+1)}{2}$$
 (C.2.12)

Finally,

$$s(n) = x(0)(n+1)u(n) + d\left(\frac{n(n+1)}{2}\right)u(n)$$
 (C.2.13)

$$= \frac{n+1}{2} (2x(0) + nd) u(n)$$
 (C.2.14)

C.3 Question: Find the sum of n terms of GP where common ratio is r using Contour Integration.

Symbol	Value	Description
x(n)	$x(0)r^nu(n)$	n^{th} n^{th} term of gp G.P
x(0)	x(0)	1^{st} term of the G.P
d	r	Common ratio
s(n)	$\sum_{k=0}^{n} x\left(k\right)$	Sum of n terms of GP

$$X(z) = \sum_{n = -\infty}^{\infty} x(n) z^{-n}$$
 (C.3.1)

$$= \sum_{n=-\infty}^{\infty} x(0)r^n u(n)z^{-n}$$
(C.3.2)

$$= \sum_{n=0}^{\infty} x(0)r^n z^{-n}$$
 (C.3.3)

$$=\frac{x(0)}{1-rz^{-1}}\tag{C.3.4}$$

$$U\left(z\right) = \frac{1}{1-z^{-1}} 3 \mathfrak{g} \mathfrak{g} |>1 \tag{C.3.5}$$

Now we will perform inverse Z transform on S(z) using contour integration to find s(n)

$$s(n) = \frac{1}{2\pi j} \oint_C S(z) \ z^{n-1} \ dz \tag{C.3.10}$$

$$= \frac{1}{2\pi j} \oint_C \frac{x(0)z^{n-1}}{(1-rz^{-1})(1-z^{-1})} dz$$
 (C.3.11)

$$= \frac{1}{2\pi j} \oint_C \frac{x(0)z^{n+1}}{(z-r)(z-1)} dz$$
 (C.3.12)

$$= \frac{x(0)}{r-1} \left(\frac{1}{2\pi j} \oint_C \frac{z^{n+1}}{z-r} dz - \frac{1}{2\pi j} \oint_C \frac{z^{n+1}}{z-1} \right) dz$$
 (C.3.13)

we already know;

$$R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} ((z-a)^m f(z))$$
 (C.3.14)

Now for first contour integral,

$$R_1 = \frac{1}{(1-1)!} \lim_{z \to a} ((z-a)f(z))$$
 (C.3.15)

$$= \lim_{z \to r} \left((z - r) \frac{z^{n+1}}{z - r} \right) \tag{C.3.16}$$

$$= \lim_{z \to r} \left(z^{n+1} \right) \tag{C.3.17}$$

$$=r^{n+1}$$
 (C.3.18)

for second contour integral,

$$R_2 = \frac{1}{(1-1)!} \lim_{z \to a} ((z-a)f(z))$$
 (C.3.19)

$$= \lim_{z \to 1} \left((z - 1) \frac{z^{n+1}}{z - 1} \right) \tag{C.3.20}$$

$$=\lim_{z\to 1} \left(z^{n+1}\right) \tag{C.3.21}$$

$$=1$$
 (C.3.22)

So finally the sum of n terms of the GP is given by:

$$s(n) = \frac{x(0)}{r-1} (R_1 - R_2)$$
 (C.3.23)

$$= \frac{x(0)}{r-1} \left(r^{n+1} - 1 \right) \tag{C.3.24}$$

Appendix D

Fourier Series

D.1 Complex Fourier Series

Consider,

$$x(t) = \sum_{n = -\infty}^{\infty} c_n e^{j2\pi nft}$$
 (D.1.1)

where c_n is the exponential fourier coefficient.

$$c_n = \frac{1}{T} \int_0^T x(t)e^{-j2\pi nft} dt$$
 (D.1.2)

where T is the time period of function x(t).

D.2 Trigonometric Fourier Series

We can write:

$$e^{j2\pi nft} = \cos(2\pi nftt) + j\sin(2\pi nft) \tag{D.2.1}$$

Substituting (D.2.1) in (D.1.1)

$$x(t) = \sum_{n = -\infty}^{\infty} c_n \left(\cos(2\pi n f t) + j \sin(2\pi n f t)\right)$$
 (D.2.2)

$$= a_0 + \sum_{n=1}^{\infty} (a_n \cos(2\pi n f t)) + (b_n \sin(2\pi n f t))$$
 (D.2.3)

where a_0, a_n and b_n are trigonometric fourier series.

$$a_0 = c_0 \tag{D.2.4}$$

$$= \frac{1}{T} \int_0^T x(t) \, dt$$
 (D.2.5)

$$a_n = 2Re(c_n) \tag{D.2.6}$$

$$= \frac{2}{T} \int_0^T x(t) \cos(2\pi n f t) dt$$
 (D.2.7)

$$b_n = -2Im(c_n) (D.2.8)$$

$$= \frac{2}{T} \int_0^T x(t) \sin(2\pi n f t) dt$$
 (D.2.9)