

Tecnologie e Servizi di Rete

Computer Network Technologies and Services

Mario Baldi, Claudio Casetti, Guido Marchetto, Fulvio Valenza

Copyright Notice

- This set of transparencies, hereinafter referred to as slides, is protected by copyright laws and provisions of International Treaties.
 The title and copyright regarding the slides (including, but not limited to, each and every image, photography, animation, video, audio, music and text) are property of the authors specified on page 1.
- The slides may be reproduced and used freely by research institutes, schools and Universities for non-profit, institutional purposes.
 In such cases, no authorization is requested.
- Any total or partial use or reproduction (including, but not limited to, reproduction on magnetic media, computer networks, and
 printed reproduction) is forbidden, unless explicitly authorized by the authors by means of written license.
- Information included in these slides is deemed as accurate at the date of publication. Such information is supplied for merely educational purposes and may not be used in designing systems, products, networks, etc. In any case, these slides are subject to changes without any previous notice. The authors do not assume any responsibility for the contents of these slides (including, but not limited to, accuracy, completeness, enforceability, updated-ness of information hereinafter provided).
- In any case, accordance with information hereinafter included must not be declared.
- In any case, this copyright notice must never be removed and must be reported even in partial uses.

IP addressing: terminology

- IP address: 32-bit identifier for host, router interfaces
- Network part: high order bits of the IP address
- Host part: low order bits of the IP address
- IP network: set of IP devices whose interfaces
 - Have the same network part of the IP address
 - Are connected to the same physical (link-layer) network

IP addressing: special addresses

IP addressing classes

- CIDR: Classless InterDomain Routing
 - network portion of address of arbitrary length
 - address format: network ID + prefix length or netmask
 - prefix length: /x, where x is # bits in network portion of address
 - netmask: all 'Is' in the network part, all '0s' in the host part

Valid netmasks: possible values in the 4 bytes composing the address

0	0000	0000	(256)	
128	1000	0000	(128)	
192	1100	0000	(64)	
224	1110	0000	(32)	
240	1111	0000	(16)	
248	1111	1000	(8)	
252	1111	1100	(4)	smaller usable netmask
254	1111	1110	(2)	not valid in the 4° byte
255	1111	1111	(1)	represents the single device

Some examples

- 130.192.0.0/16 − 130.192.0.0 255.255.0.0
- 130.192.0.0/24 130.192.0.0 255.255.255.0
- 130.192.0.0/25 130.192.0.0 255.255.255.128
- 130.192.2.0/23 130.192.2.0 255.255.254.0
- 130.192.1.4/30 130.192.1.4 255.255.255.252
- 130.192.1.0/31 130.192.1.0 255.255.255.254

Each IP network *must* contain at least the network ID and the broadcast address!

Valid Network ID

- **I** 130.192.1.4/30
- **I** 130.192.1.16/30
- 130.192.1.16/29

Invalid Network ID

- **I** 130.192.1.1/30
- **I** 130.192.1.4/29
- 130.192.1.24/28

IP addressing: a real example

netmask: 255.255.25.0

IP routing

- The general rules:
 - Given a destination IP address to reach, an IP device search its own routing table, looking for a match
 - In case of multiple matches, it selects the most specific one (longest prefix matching)

routing table				
destination	output link			
200.23.16.0/20	1			
200.23.18.0/23	2			
199.31.0.0/16	2			

IP routing: an example

Ipv4 Summary - © see page 2

IP routing: an example

R1 routing table

Type	Destination
S	130.192.0.0/24
S	130.192.1.0/24
S	130.192.3.8/30
S	0.0.0.0/0
D	130.192.2.0/24
D	130.192.3.0/30
D	130.192.3.4/30
D	80.105.10.0/30

remote	
Next/-hop	Cost
130.192.3.2	2
130.192.3.2	2
130.192.3.2	2
80.105.10.2	2
130.192.2.1	1
130.192.3.1	1
130, 192.3.5	1
80.105.0.1	1
local	
interface	all.
l interrace	=::

IPv4 Multicast 1859

Underlying Concept

- Packets routed from source to multiple destinations
 - Key for group communication
 - e.g., videoconferencing, video broadcasting
- Address identifies a group

Multicast addressing

- Class D addresses
 - Begin with IIIO
 - 224.O.O.O 239.255.255.255
- Address identifies a host group
 - Packet is delivered to all hosts in the group
 - Anywhere in the network

Host Group

- Hosts join and leave dynamically
- Recipients establish which hosts receive a packet
 - In unicast it is the source
 - Controlling traffic reach is more difficult

Within an IEEE 8O2 Network

- Group delivery delegated to lower level (MAC)
- IP multicast address mapped to a MAC multicast address
 - OI-OO-5E-O ← I bit
 - 23 least significant bits of IP address

Within an IEEE 8O2 Network

Interface card configured to receive that MAC multicast

Recipient-initiated group join

Beyond single networks

- Routers discover host groups on each LAN
 - Internet Group Management Protocol (IGMP)
- Routers announce host groups to others
 - Multicast routing protocols
- Routers build a distribution tree for each host group
 - To all LANs with at least a member

Deployment status

- Not widely supported
- Not fit to common traffic control/engineering practice
- Mostly limited to controlled environments
 - e.g., video broadcasting over IP solutions