Computability

Rasmus Guldborg Pedersen

January 2015

Regular expression

Define formally a regular expression and the language generated by a regular language. Give an example of a regular expression and sketch how to construct a finite automaton accepting the same language as generated by the regular expression.

Regular Languages

If Σ is an alphabet, then the set of regular languages is defined as: \mathcal{R} :

- ② For every $a \in \Sigma$, $\{a\} \in \mathcal{R}$
- 3 For any L_1 and L_2 in \mathcal{R} ,

$$L_1 \cup L_2 \in \mathcal{R}$$

$$L_1L_2\in\mathcal{R}$$

$$L_1^* \in \mathcal{R}$$

Regular Expression

Regular Launguage	Regular Expression
Ø	Ø
{Λ}	٨
${a}{a}, {aa}$	aa
$\{a\} \cup \{a\}, \{a,a\}$	a + a
$\{a\}^*$, a , aa ,	a*
$\{a,b\}^*$	$(a+b)^*$

Language accepted by a FA

Let
$$M = (Q, \Sigma, q_0, A, \delta)$$
, and let $x \in \Sigma^*$.

$$L(M) = x \in \Sigma^* | \delta^*(q_0, x) \in A$$

M accepts L if L = L(M).

Examples

Figure: aa

Figure: a^*

Figure: a + b

Examples

Figure: $a + b^*$

The End

The End