QUI022 - Química	Pontuação ↓		
Data: 04/12/2024	Questões: 3	Pontos totais: 35	
Matrícula:	Nome:		

Questão	Pontos	Nota	
1	15		
2	10		
3	10		
Total:	35		

Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas com essa folha anexa.
- 3. A Tabela Periódica dos Elementos está ao final da prova.

Valores de eletronegatividade de Pauling (χ) .

Elemento	χ	Elemento	χ	Elemento	χ	Elemento	χ
F	3,98	О	3,44	Cl	3,16	N	3,04
Br	2,96	I	2,66	\mathbf{S}	2,58	\mathbf{C}	$2,\!55$
Н	2,20	Р	2,19	В	2,04	Si	1,90

1. (15 pontos) Uma aluna foi analisar o pK_a de uma série de hidrocarbonetos cíclicos insaturados e se deparou com um resultado interessante. Ela observou que, enquanto o pK_a do ciclopentadieno é em torno de 15, o do cicloeptatrieno é em torno de 36. Ou seja, a desprotonação do ciclopentadieno leva à formação de uma base mais fraca e mais **estável** que a do cicloeptatrieno. Justifique essas observações experimentais. Considere que a base usada foi a mesma para ambos os casos (B^-).

Ciclopenta-
dieno
$$+ : B^- \longrightarrow H$$
 + BH $pK_a \sim 15$
Cicloepta-
trieno $+ : B^- \longrightarrow H$ + BH $pK_a \sim 36$

Resposta:

Para analisar a estabilidade das bases conjugadas, pode-se verificar a aromaticidade de ambas. Como ambas são cíclicas, planares e totalmente conjugadas, basta utilizar a regra de Hückel para verificar se são aromáticas ou antiaromáticas.

Para o ânion ciclopentadienil, o somatório de elétrons π é igual a 6 devido ao par de elétrons não-ligantes que estão conjugado com o sistema π . Sendo assim,

$$4n+2 = \sum e^{-}\pi : 4n+2 = 6 : n = 1.$$

Logo, o ânion é aromático. Para o ânion cicloeptatrienil, o somatório de elétrons π é igual a 8 e a regra de Hückel fornece

$$4n+2 = \sum e^{-}\pi : 4n+2 = 8 : n = \frac{3}{2}.$$

Logo, o ânion é antiaromático. Sendo assim, o p K_a do ciclopentadieno é menor que do cicloeptatrieno pois sua base conjugada é mais estável, por ser aromática.

2. (10 pontos) Ao comparar uma série de resultados de acilação de Friedel Crafts em análogos do benzeno usando o cloreto de butanoíla na presença de AlCl₃, um aluno observou que a acilação do nitrobenzeno produziu apenas traços de produto e que a reação, no geral, não produziu resultados satisfatórios. Todavia, a acilação do anisol (metoxibenzeno) produziu uma mistura dos produtos o-, m- e p-dissubstituídos com um rendimento bruto de 90 %.

$$NO_2$$
 NO_2 NO_2 NO_2 NO_2 NO_2 NO_3 NO_2 NO_3 NO_2 NO_3 NO_3

- (a) Justifique a formação de apenas traços de produto na reação de acilação do nitrobenzeno.
- (b) Considerando que a reação formou 87 % do produto p-dissubstituído, 11 % do o-dissubstituído e 2 % do m-dissubstituído, justifique a regiosseletividade observada. Use o mecanismo da reação para justificar sua resposta.

Resposta:

Na letra a, a acilação do nitrobenzeno fornece apenas traços do produto pois o grupo nitro é um retirador de elétrons por efeito indutivo e conjugativo. Dessa forma, ele retira densidade eletrônica do anel aromático e o torna menos nucleofílico, diminuindo a velocidade da reação e os rendimentos da acilação.

Na letra b, o mecanismo da reação é mostrado abaixo.

1. Formação do eletrófilo

2. Formação do complexo-σ

a. Ataque em orto

b. Ataque em meta

c. Ataque em para

3. Regeneração da aromaticidade

$$O = H \qquad Cl \qquad Cl \qquad O \qquad + HCl + AlCl_3$$

$$O = H \qquad Cl \qquad O \qquad + HCl + AlCl_3$$

Como se pode ver, os produtos de acilação *orto* e *para* dissubstituídos são oriundos de ataques nucleofílicos que geram espécies mais estáveis pelo efeito doador de elétrons do grupo metóxi. A formação preferencial do produto *para* se dá pelo fator espacial, já que o grupo $-OCH_3$,

nesse caso, foi volumoso suficiente para dificuldar a aproximação do eletrófilo nas posições orto.

3. (10 pontos) Policarbonatos são polímeros termoplásticos de policondensação de extrema importância para a indústria química, com propriedades mecânicas interessantes para aplicações que exijam resistência mecânica, como em materiais de construção e componentes de segurança em automóveis. A síntese de um policarbonato a base de bisfenol A e fosgênio é mostrada abaixo e envolve a desprotonação do bisfenol A com hidróxido de sódio e pela subsequente adição de fosgênio (COCl₂), formando o polímero desejado.

(a) Por que a primeira etapa da reação – *i.e.*, desprotonação do bisfenol A com hidróxido de sódio – é importante para a eficiência da reação?

n
$$+ 2n \text{ NaOH}$$
 $- n$ $+ 2n \text{ HaO}$ $+ 2n \text{ Ha$

- (b) Mostre o mecanismo da **primeira** substituição nucleofílica no carbono acílico, na qual **um** equivalente do sal de sódio do bisfenol A reagente com **um** equivalente de fosgênio (COCl₂).
- (c) O carbonato de difenila é uma alternativa industrial consideravelmente menos tóxica que o fosgênio. Todavia, sabe-se que o desempenho da reação de produção do policarbonato com o fosgênio é significativamente superior ao do carbonato de difenila. Justifique essa observação.

Carbonato de difenila

Resposta:

Na letra a, a primeira etapa da reação é importante pois a desprotonação do bisfenol A faz

com que um nucleófilo fraco (R-OH) se torne um nucleófilo mais forte ($R-O^-$), favorecendo a reação.

Na letra b, o mecanismo é mostrado abaixo. Há uma etapa de adição nucleofílica (ataque nucleofílico) do sal de sódio à carbonila do fosgênio, formando o intermediário tetrédrico, seguida de uma eliminação do ânion Cl⁻.

Na letra c, percebe-se que o fosgênio libera um ânion Cl⁻ em solução ao realizar a reação de substituição nucleofílica no carbono acílico, enquanto o carbonato de difenila libera o ânion Ph-O⁻. Considerando os ácidos conjugados das respectivas bases, tem-se que o ácido clorídrico (HCl) é mais forte que o fenol (PhOH), gerando, portanto, uma base mais fraca e mais estável em solução. Logo, o desempenho reacional do fosgênio é superior pela carbonila ser mais reativa.

