Lecture 2

Let
$$P(x) = x^3 + 3x^2 + x - 1$$

Since R=0, : (x+1) is a factor of P(x).

 $P(x) = (x+1)(Ax^2+Bx+C)$ L-Division method $x^2 + 2x - 1$ $x+1 \int x^3 + 3x^2 + x - 1$

 $2x^2 + x - 1$

-x-1

-x-1

2x2 +2x

$$\chi(t) = 0$$
 or $\chi^2 + 2\chi - 1 = 0$

$$\chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\chi = -2 \pm \sqrt{4 - 4(1)(-1)}$$

$$x = \frac{-2 \pm 2\sqrt{2}}{2}$$

... The roots are
$$x=-1$$
, $x=-1+\sqrt{2}$ and $x=-1-\sqrt{2}$.

Exercise

Show that X+3X3+5X2+X-10 has only two real factors.

Let
$$P(x) = x^4 + 3x^3 + 5x^2 + x - 10$$

* How to know values 1 and -2 ? Get Hint from calculator 11

R=P(-1)

R = 16 - 24 + 20 - 2 - 10

Since R=0, : (x-1) and (x+2) are the factors of P(x).

$$P(x) = x^4 + 3x^3 + 5x^2 + x - 10$$

Find A, B, C using

P(x) = (x2+x-2)(Ax2+Bx+C)

 $\chi^4 = A\chi^4$

A= 1

constant: -10 = -2C

C = 5

 x^3 : $3x^3 = 8x^3 + 4x^3$

3 = B + A

3 = B+1

3 = 2

 $x = -2 \pm \sqrt{(2)^2 - 4(1)(5)}$

 $x = -2 \pm \sqrt{-16}$

 $x = \frac{-2 \pm 4i}{2}$

x = -1 ± 2i (not real)

.: (x-1) and (x+2) are two real factors of P(x) : #.