Question 1

(Bubbles)

A dividend process follows the deterministic process:

$$x_{t+1} = A \cdot x_t \tag{1}$$

where x_t is an $n \times 1$ vector and A is an $n \times n$ matrix, and

$$y_t = G \cdot x_t \tag{2}$$

where y_t is the dividend(a scalar), and G is an $1 \times n$ vector. Assume future profits are discounted by $\beta \in (0,1)$, and that $I - \beta A$ is invertible.

- (a) What is the stock price of the firm p_t , in terms of A and G if there was no bubble?
- (b) What is the stock price of the firm today, p_t , in terms of the price tomorrow, p_{t+1} , and the state today, x_t ?
- (c) A friend guesses that the stock price should be

$$p_t = H \cdot x_t + c \cdot \lambda^t \tag{3}$$

for some vector $H \in \mathbb{R}^n$ and scalars c, λ .

Get as far as you can in finding formulas for H, c, λ . (**Hint**: use the guess and verify to find the undetermined constants, with the recursive definition of the price from (b)).

(d) Is H unique? How about c and λ ?

Question 2

(Practice with State Spaces)

A dividend obeys:

$$y_{t+1} = \lambda_0 + \lambda_1 y_t + \lambda_2 y_{t-1} \tag{4}$$

where y_t is scalar

The stock price obeys:

$$p_t = \sum_{j=0}^{\infty} \beta^j y_{t+j} \tag{5}$$

(a) Find a solution for the price p_t of the form:

$$p_t = a_0 + a_1 y_t + a_2 y_{t-1} \tag{6}$$

for some a_0, a_1 , and a_2 in terms of model parameters.¹ (No need to actually invert matrices, etc. to find the solution to the particular a_0, a_1, a_2)

¹Hint: Set it up as a linear state space.

Question 3

(Rationalizing Interest Rates)

A consumer chooses consumption and savings to maximize their welfare subject to a budget constraints.

$$\max_{\{c_t, F_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t) \tag{7}$$

s.t.
$$F_{t+1} = R_t (F_t + y_t - c_t)$$
, for all $t \ge 0$ (8)

$$c_t \ge 0$$
, for all $t \ge 0$ (9)

$$\lim_{T \to \infty} \beta^T u'(c_T) F_{T+1} = 0 \quad \text{(Transversality Condition)}$$
 (10)

Where $u(c_t) = \frac{c_t^{1-\gamma}}{1-\gamma}$, $\beta \in (0,1)$, $\gamma > 0$, $F_0 = 0$, and $\{y_t\}_{t=0}^{\infty}$ is an exogenous, deterministic sequence of labor income with at least some positive y_t . $\{R_t\}_{t=0}^{\infty}$ are the gross interest rate on financial assets, and are an exogenous, deterministic sequence known to the consumer.

- (a) Setup the Lagrangian for this problem, being clear on Lagrange Multipliers and equality/inequality constraints.²
- (b) Show that the $c_t \geq 0$ constraint can never bind, then find the Euler equation for the consumer at all $t \geq 0$.
- (c) For some $\delta \geq 0$ and $\phi \geq 0$, let the labor income process be

$$y_t = \begin{cases} y_0 \delta^t & t = 0, \dots T \\ y_0 \delta^t \phi^{t-T} & t = T+1, \dots \infty \end{cases}$$

It just happens that $\{R_t\}_{t=0}^{\infty}$ is such that the consumer optimally sets $c_t = y_t$ and $F_{t+1} = 0$ for all t (i.e., this is a particular sequence of R_t which rationalizes this behavior). Find a formula for $\{R_t\}_{t=0}^{\infty}$ and justify your formula.⁴

(d) Interpret your formula for R_t in terms of (i) the consumer's impatience, and (ii) the consumer's income growth.

²Hint: You can be sloppy and skip the multiplier on the Transversality condition, as we have done in class. As always, I strongly suggesting using present-value Lagrange multipliers to simplify algebra.

³Hint: The only change from our standard problem is the time varying interest rate. You will need to be careful with the timing when taking first order conditions. To proof that $c_t > 0$, you will need to use the marginal utility and use the fact that there is at least some positive income.

⁴Hint: What does optimality mean? Also, be a little careful around T for the calculation of R_t

Question 4

(Practice with Lagrange Multipliers)

A consumer chooses consumption and savings to maximize their welfare subject to a budget constraints.

$$\max_{\{c_t, F_{t+1}\}_{t=0}^T} \sum_{t=0}^T \beta^t c_t \tag{11}$$

s.t.
$$F_{t+1} = R(F_t - c_t)$$
, for $t = 0, ... T$ (12)

$$c_t \ge 0$$
, for $t = 0, \dots T$ (13)

$$F_{T+1} = 0 (14)$$

where $T < \infty, F_0 > 0, R > 0$, and $\beta \in (0,1)^5$ Note that there is positive initial wealth, but no labor income. They are choosing how to spend their wealth

- (a) Check if the utility function is concave.
- (b) Setup the Lagrangian and find the first-order necessary conditions.⁶
- (c) Using the first-order necessary conditions, find the optimal path of $\{c_t, F_{t+1}\}_{t=0}^T$. Is the solution always unique, and if not, why?
- (d) Interpret how does the optimal allocation depends on the relationship between R and β .

⁵Hint: This has **not** assumed any relationship between β and R. Consider that $\beta R \leq 1$ as potentially having different behaviors.

⁶Hint: You will have to be very careful with Lagrange multipliers here. The complementarity conditions will be important for the c_t constraints. Also, what do you know about linear objectives and linear constraints?