Literature Review (Secondary Research) Template

Student Name	Aarya Gouthula
Project Topic Title Abnormal Event Detection on Pathway using deep learning	

	Type of Variables that You Need to Search for in Each Article (Each Current Solution)					
	Dependent variable	Independent variable		Moderating variable		Mediating (Intervening) variable
•	The presumed effect in an experimental study. The values of those variable depend upon another variable that are the independent variables. Strictly speaking, "dependent variable" should not be used when writing about non-experimental designs.	 The presumed cause in an experimental study. The variables that may impact on the dependent variable The values of those variable are under experimenter control. Strictly speaking, "independent variable" should not be used when writing about non-experimental designs. 	•	has a strong <i>contingent</i> effect on the independent variable-dependent variable relationship and thus produces an interaction effect.	•	It comes between the independent and dependent variables and shows the link or mechanism between them.
•	Examples: 1. performance. 2. Test Score. 3. stock market. 4. performance of the students	 Examples: 1. run time that will impact and cause high/low performance. 2. Time Spent Studying that will cause the high/low score. 3. New product that will impact on the stock market price. 4. quality of library facilities 	•	Example: 4. There is a strong relationship between the quality of library facilities (X) and the performance of the students (Y). Only those student s who have the interest and inclination to use the library will show improve d performance in their studies, which moderates the strength of the	•	Example: Parents transmit their social status to their children directly, but they also do so indirectly, through education: viz. Parent's status →child's education → child's status Example: The statistical association between income and longevity needs to be explained because just having money does not make one live longer. Other variables intervene between money and long life. People with high incomes tend to have better medical care than those with low incomes. Medical care is an intervening

	association between	variable. It mediates the relation between income and
	X and Y variables.	longevity.

Relationship among Variables - Correlations (Univariate, Bivariate, Multivariate)

- Once the variables relevant to the topic of research have been identified, then the researcher is interested in the relationship among them.
- A statement containing the variable is called a **proposition**. It may contain one or more than one variable.
- The proposition having one variable in it may be called as **univariate** proposition, those with two variables as **bivariate** proposition, and then of course **multivariate** containing three or more variables.
- Prior to the formulation of a proposition the researcher has to develop strong logical arguments which could help in establishing the relationship.
- For example, age at marriage and education are the two variables that could lead to a proposition: the higher the education, the higher the age at marriage . What could be the logic to reach this conclusion? All relationships have to be explained with strong logical arguments. If the relationship refers to an observable reality, then the proposition can be put to test, and any testable proposition is hypothesis.

Research Model That The Author Followed to Propose His Solution						
1. Where we are now	2. Where are we going	3. How do we get there	4. How do we know when we are finished			
 What the author has done in the area; The constructs that the literature examine What the problem is available in this paper that has solved by the author The purpose of that is to avoid pursing research which has already been undertaken 	 What the author objective of the research is to gain a clearer understanding the relationships between variables What is the goal of the paper The purpose is to know what is the plan to do before he did the research 	 How the author conducted the research; How the problem has solved How he analysed the data generated by the research; A quantitative research design 	 What is the value of this solution A series of recommendations which flow from the data analysis have been made 			

Version 1.0 Week 1

1

Reference in APA format			
URL of the Reference	Authors Names and Emails	Keywords in this Reference	
https://www.sciencedirect.com/science/article/pii/S0925231223006847	Yuxing Yang Zeyu Fu Syed Mohsen Naqvi	Enhanced fusion framework, Classification, Prediction streams, Normality scores, Abnormal events.	
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?	
Enhanced Fusion Framework with Classification and Prediction Streams	The system is designed to recognize anomalous items or unusual behavior in footage clips. The main objective is to enhance the detection of various abnormal events by using subject.	Author used Framework for object detection and abnormal event detection in classification of the actions in the video surveillance. It also aims to better detect and classify different types of abnormal events.	

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

The proposed framework for abnormal event detection (AED) consists of two concurrent streams: the action-based classification stream and the motion-based prediction stream.

Process Steps		Advantage	Disadvantage (Limitation)
1	Object Detection and Pose Estimation	It also has the benefit of capturing the classes, confidence evaluations; and localization information of the targets, all of which are necessary for additional processing.	The drawback is that it might not identify small things like skateboards with enough clarity.
2	Action-Based Classification	The advantage of using the ST-GCN model is that it captures spatial and temporal features of body joints, allowing for more accurate classification.	The disadvantage is that it may not perform well in detecting abnormal events involving hidden drivers.
3	Motion-Based Prediction	This step predicts subsequent frames based on historical trajectories, which can help identify abnormal events.	This relies on optical flow calculations, which may not be accurate in all scenarios.

Major Impact Factors in this Work

<Find all main factors and variables that are related to each solutions. Then find the relationship between factors. (Independent variable) causes a change in (Dependent Variable) and it isn't possible that (Dependent Variable) could cause a change in (Independent Variable).

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Dependent variable	macpenaem variable	1,10del dillig variable	Treatms (Theer vehing) variable

	Abnormal Event Detection	Two-Stream Fusion Method	Lighting Conditions or Camera	Feature Representation Quality or
	Performance		Quality	Temporal-Spatial Information
				Integration
L				

Relationship Among The Above 4 Variables in This article

This framework provides a foundation for understanding and studying the factors involved in the abnormal event detection process with a focus on the enhanced two-stream fusion method in video surveillance. However, it's important to tailor these variables based on the specific details and goals of your research or study.

Input and Output		Feature of	f This Solution	Contribution & The Value of This Work
		This solution proposes a unified Abnormal Event		The framework is suitable for detecting abnormal
Input Output		Detection (AED) framework that combines multiple features to detect different types of		events containing abnormal behaviors and objects.
Photographs	Final normality score	video-based abnormal	events	
Positive Impac	t of this Solution in This Pr	oiest Domain	Negative Impa	ct of this Solution in This Project Domain
rositive illipat	t of this solution in This Fi	oject Domain		•
	The proposed fusion framework offers improved of		Limited consideration of no	on-human-related abnormal events and Data
flexibility in model selection, and potential for real-world		world applications.	imbalance challenges.	
Analyse This Work By Critical Thinking Th		The Tools That	Assessed this Work	What is the Structure of this Paper

This work presents a joint fusion approach for		Abstract		
abnormal event detection (AED) in surveillance videos. It combines pose, class, and motion		I.	Introduction	
information to improve the accuracy of anomaly		II.	Related Work	
detection.		III.	Proposed Framework	
		IV.	Experiments	
		V.	Conclusion	
Diagram/Flowchart				

---End of Paper 1-

2

Reference in APA format			
URL of the Reference	Authors Names and Emails	Keywords in this Reference	
https://arxiv.org/pdf/2304.01226.pdf The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	Bo Yan Cheng Yang Chuan Shi Jiawei Liu Xiaochen Wang The Goal (Objective) of this Solution & What is the problem that need to be solved	Embedding learning, Heterogeneous information networks, Abnormal event detection, Contrastive learning, Graph neural networks . What are the components of it?	
AEHCL (Abnormal Event Hypergraph Contrastive Learning)	The solution aims to capture complex abnormal set-wise patterns in AHIN and develop a framework for detecting abnormal events.	Event Modeling, Intra-event Contrastive Module, Inter-event Contrastive Module and Abnormal Event Score Function are the components of AEHCL	

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

All of these components work together in AEHCL in order to record abnormal event patterns in an unsupervised way, increasing AHIN's abnormal event detection capabilities.

	Process Steps	Advantage	Disadvantage (Limitation)
1	Intra-event Contrastive Module	It aims to capture abnormal patterns within an event by considering both pair-wise and multivariate interaction patterns	This may not fully capture the complexity of abnormal patterns

2	Inter-event Contrastive Module	it aims to capture abnormal patterns within an event by considering both pair-wise and multivariate interaction patterns.	This may weaken the true abnormal degrees when directly fusing all pair-wise matching degrees within an event to obtain an event abnormal score
3	Abnormal Event Score Function	This allows for more accurate detection of abnormal events and better understanding of abnormal event patterns.	This may be less discriminative in certain scenarios

The main impacting factors in this work are the abnormal event score functions, hyper-parameters, pair-wise contrastive module, multivariate contrastive module, and inter-event contrastive module. These factors support the proposed AEHCL model's effects in AHIN abnormal event detection.

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Abnormal Event Detection	Hypergraph Contrastive Learning		
Performance or Anomaly Score	Method	_	_

Relationship Among The Above 4 Variables in This article

This framework provides a foundation for understanding and studying the factors involved in abnormal event detection using hypergraph contrastive learning. However, it's crucial to adapt these variables based on the specific details and goals of your research or study.

Input and Output	Feature of This Solution	Contribution in This Work

Images	Output Abnormal event score	features to design a hy	ration of two classifiers brid one. We can still ers which gives us even	The contribution of this work is the development of a hypergraph contrastive learning method called AEHCL for abnormal event detection in Attributed Heterogeneous Information Networks (AHIN).
Positive Impac	t of this Solution in This Pr	oject Domain	Negative Impa	ct of this Solution in This Project Domain
abnormal event detection	AEHCL model provides a comprehensive and effect abnormal event detection in AHIN, leading to impro the ability to capture complex interactions and rare			rmation is that it may reduce the performance of ing the original features directly
Analyse This Work	By Critical Thinking	The Tools That	Assessed this Work	What is the Structure of this Paper
•	capture complex erns in AHIN and proposes thods at the intra-event			Abstract Introduction Related Work Proposed Method Experiment Results Conclusion References Acknowledgment

Diagram/Flowchart

--End of Paper 2-

~
-<
•

Reference in APA format			
URL of the Reference	Authors Names and Emails	Keywords in this Reference	
https://www.researchgate.net/publication/329353016_Fast_Abnormal_Event_Detection	Cewu Lu Wei-Ming Wang Jiaya Jia	Abnormal Event Detection, Sparse Combination Learning, Framework Large Scale Dataset and Subspace Clustering	
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?	
Current Solution: Maximum Commonness Representation Strategy (MCRS)	The goal is to reduce the number of combinations and represent as many training samples as possible.	Learning Combinations on Training Data Generating New Combinations	

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

	Process Steps	Advantage	Disadvantage (Limitation)
1	Sparse Combination Learning Framework:	Dividing the training data into passes allows for the creation of combinations that represent the remaining data, reducing the number of combinations needed.	The process of dividing the training data into passes may result in some training samples being left out if they cannot be well represented by the current combinations.

the sparse combination learning framework, online extension, fast testing scheme, and benchmark datasets are the major impact factors in this work, contributing to the advancement of abnormal event detection in surveillance videos.

Independent Variable	Moderating variable	Mediating (Intervening) variable
Detection Algorithm or Methodology	-	-
	Petection Algorithm or	Detection Algorithm or

Relationship Among The Above 4 Variables in This article

It's essential to adapt these variables based on the specific details and goals of your research or study. Additionally, consider other relevant factors that may impact the speed and efficiency of abnormal event detection in your particular context.

Input and Output		Feature of This Solution		Contribution & The Value of This Work
Input Output		The approach is effective in distinguishing between normal and abnormal patterns and		The work contributes to the understanding of crowd dynamics and provides insights into the factors that influence crowd behavior. This
Video	active scores	achieves high detection	•	knowledge can be used to improve crowd management strategies and enhance public safety measures
Positive Impact of this Solution in This Project Domain		Negative Impa	ct of this Solution in This Project Domain	

The iterative update of combinations and weights all refinement of the model, reaching a global optimum detection.		No negative impact of this	solution in th	ne project domain
Analyse This Work By Critical Thinking	The Tools Tha	t Assessed this Work	W	hat is the Structure of this Paper
The work also mentions the evaluation of the proposed method on benchmark datasets and compares the results with other approaches.			Abstract I. II. III. IV. V. VI. VII.	Introduction Related Work Sparse Combinations Training Birth-and-Death Combination Online Learning Testing Experiment References
	Diagra	am/Flowchart		

--End of Paper 3--

4

Reference in APA format			
URL of the Reference	Authors Names and Emails	Keywords in this Reference	
https://ieeexplore.ieee.org/document/882 4981	Hoang Duy Trinh Lorenza Giupponi Paolo Dini	LTE network data, Anomaly detection with LSTM neural networks	
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?	
Long Short-Term Memory (LSTM) neural networks.	The problem that needs to be solved is the detection of urban anomalies, such as unexpected crowd gatherings, using mobile network data.	Data Collection, Data Preprocessing, LSTM Architecture, Anomaly Detection Algorithms, Performance Evaluation are the components	

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

	Process Steps	Advantage	Disadvantage (Limitation)
ı			

1	Data Collection	Using the LTE control channel data is that it provides fine-grained scheduling information for all connected users.	It requires the use of an over-the-air sniffer and specific hardware for decoding the DCI messages.		
2	Data Preprocessing	It resampling and normalizing the data is that it helps in identifying anomalies quickly, even through visual inspection.	It filters the input sequence and may remove some important information.		
3	Anomaly Detection with LSTM Neural Networks:	LSTM neural networks is that they can learn long-term dependencies and solve the vanishing-gradient problem	It requires tuning of training parameters and may have higher computational requirements compared to other algorithms.		

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable	
Accuracy in Detecting Anomalies	LSTM Neural Network Model	Traffic Density	Sequential Pattern Recognition	

Relationship Among The Above 4 Variables in This article

Important to adapt these variables based on the specific details and goals of your research or study. Additionally, consider other relevant factors that may impact the performance of anomaly detection in urban environments.

Input an	d Output	Feature of	This Solution	Contribution & The Value of This Work						
		The proposed solution	_	This work provides valuable insights into the						
Input	Output		nobile network as a sensing detection in urban areas.	potential of utilizing mobile network data for anomaly detection and emphasizes the advantages						
messages	values			of a supervised learning approach when a labeled						
				dataset is available.						
Positive Impact	of this Solution in This Pr	oject Domain	Negative Impact of this Solution in This Project Domain							
approach to urban anom	t-effective, privacy-preser naly detection, contributing ng the existing mobile netw	g to sustainable	Potential negative impacts related to coverage limitations, privacy concerns, reliance on mobile network operators							
Analyse This Work	By Critical Thinking	The Tools That	The Tools That Assessed this Work What is the Structure of the							
urban anomalies for pub and proposes the use of supplementary sensing p	the mobile network as a			Abstract I. INTRODUCTION II. SCENARIO III. DATASET IV. ANOMALY DETECTION FRAMEWORK V. PERFORMANCE EVALUATION VI. CONCLUSIONS						

--End of Paper 4—

Reference in APA format				
URL of the Reference	Authors Names and Emails	Keywords in this Reference		
https://www.ncbi.nlm.nih.gov/pmc/article s/PMC7506808/#sec1-sensors-20- 04943title	Dimitriou N Lalas A Dasygenis M	Abnormal passenger behavior End-to-end detection Computer vision and deep learning		
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?		
Stacked Bidirectional LSTM Classifier	The problem that needs to be solved is the detection and prevention of petty crimes in the context of autonomous shuttles	The components of the system include camera sensors, video analytics component, deep learning model, surveillance software, security alert system, data datasets, and performance/power analysis.		

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

The proposed solution provides an end-to-end detection system for petty crimes using deep learning techniques

	Process Steps	Advantage	Disadvantage (Limitation)
1			

1	Stacked Bidirectional LSTM Classifier	It achieves high accuracy and supports multiple camera types	It requires a lot of data and may have events of occlusion, leading to low accuracy.		
2	Spatiotemporal Autoencoder	It offers robustness and high accuracy	It requires depth and acceleration data, which may not always be available		
3	Hybrid LSTM Classifier	His approach combines the strengths of the previous methods and offers flexibility, high accuracy,	It also requires a significant amount of data and fine-tuning.		

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Effectiveness of Abnormal Event	Detection System Parameters or	Environmental Conditions or	Response Time of Emergency
Detection	Sensor Inputs	Traffic Density	Systems or Communication Latency

Relationship Among The Above 4 Variables in This article

This is a generalized framework, and the actual variables might vary based on the specific details and objectives of your research or study. It's essential to tailor these variables to fit the unique characteristics of the autonomous shuttles mobility infrastructure and the goals of your investigation.

Input and Output	Feature of This Solution	Contribution & The Value of This Work
		This work contributes to the field of abnormal
		event detection by providing a comprehensive and

Input video data	Output F1-Score metrics		learning techniques to utomatic detection system	efficient solution that can improve passenger security and assist in the re-identification of offenders.		
Positive Impact	of this Solution in This Pr	oject Domain	Negative Impact of this Solution in This Project Domain			
It enhances passenger security by detecting and addressing various petty crimes such as aggression, bag-snatching, and vandalism. This ensures the safety and well-being of passengers during their journey.			One potential negative impact is the reliance on camera sensors for surveillance, which may raise privacy concerns among passengers.			
Analyse This Work	By Critical Thinking	The Tools That	Assessed this Work What is the Structure of this Paper			
The goal is to develop a solution that can address the complexities of detecting abnormal events using modern technologies and deep learning techniques.				Abstract Introduction Related Work Dataset Methodology Experimental Results Conclusions		
		Diagra	m/Flowchart			

Work Evaluation Table

<Use the same factors you have used in "Work Evaluation Table" to build your own "Proposed and Previous comparison table ">

	Work Goal	System's Component s	System's Mechanism	Features /Characteri stics	Cost	Spe ed	Secu rity	Performance	Advantages	Limitations /Disadvantages	Platform	Results
Yuxing Yang Zeyu Fu Syed Mohsen Naqvi	Abnorma I event detectio n for video surveilla nce using an enhance d two- stream fusion method	Two-stream fusion method: Sensors, feature extraction, fusion algorithm for precise abnormal event detection in video surveillance.	Sensors capture video data, feature extraction refines, fusion method enhances precision—detecting abnormal events in surveillance.	Two- stream fusion method: heightened accuracy, improved precision, robust abnormal event detection for video surveillance excellence.	-		-	Enhanced two- stream fusion excels in video surveillance: heightened accuracy, rapid abnormal event detection, superior performance.	Enhanced two-stream fusion yields heightened accuracy, real-time detection, and improved adaptability for video surveillance advantages.	Challenges include potential high computational load, complexity, and sensitivity to diverse environmental conditions in surveillance.	Utilizes enhance d two- stream fusion method on a video surveilla nce platform for accurate abnorm al event detectio n.	Enhance d two- stream fusion boosts video surveilla nce accuracy , detectin g abnorm al events with heighten ed precisio n and efficienc y.

Bo Yan	Abnorma	Hypergraph	Hypergraph	Hypergraph	_	-	-	Hypergraph	Benefits	Challenges	Impleme	Researc
Cheng Yang	I Event	representati	contrastive	-based				contrastive learning	include	encompass	nted on	h unveils
Chuan Shi	Detectio	on,	learning: intricate	representat				exhibits superior	precise	potential	a robust	superior
Jiawei Liu	n via	contrastive	process involving	ion,				performance:	anomaly	complexity,	platform	results:
Xiaochen	Hypergra	learning	hypergraph	contrastive				enhanced accuracy,	detection,	computational	,	heighten
Wang	ph	algorithm,	representation,	learning,				robust anomaly	adaptability	load, and	abnorm	ed
	Contrasti	feature	feature	robust				detection, and	to complex	sensitivity to	al event	accuracy
	ve	extraction	extraction, and	feature				heightened efficiency	scenarios,	certain	detectio	,
	Learning	modules—	advanced	extraction				in abnormal event	and	conditions—	n via	efficienc
		constituting	algorithms for	_				detection research.	improved	highlighting	hypergra	y, and
		a	abnormal event	culminating					accuracy—	limitations of	ph	adaptabi
		comprehens	detection.	in precise					highlighting	hypergraph	contrasti	lity in
		ive system		abnormal					advantages	contrastive	ve	abnorm
		for		event					of	learning in	learning	al event
		abnormal		detection					hypergraph	research.	ensures	detectio
		event		via					contrastive		precisio	n
		detection		hypergraph					learning in		n and	through
		via		contrastive					research.		adaptabi	hypergra
		hypergraph		learning.							lity in	ph
		contrastive									surveilla	contrasti
		learning.									nce	ve
											systems.	learning
												method
												ologies
Cewu Lu	Developi	Components	Real-time sensors	Swift				Swift response and	Enhanced	Potential	The	The
Wei-Ming	ng a	include real-	capture data,	response,				real-time accuracy	security and	limitations	platform	result of
Wang	swift	time	swift processing	real-time				showcase the	efficient	include the risk	involves	the fast

Jiaya Jia	abnorma I event detectio n system to enhance security and responsi veness in real-time scenario s for efficient surveilla	sensors, rapid data processing units, and efficient anomaly detection algorithms —forming a responsive system for fast abnormal event detection.	employs efficient algorithms— constituting a mechanism for fast abnormal event detection in responsive surveillance systems.	processing, and high precision characteriz e the fast abnormal event detection system, enhancing efficiency and security.	performance of the fast abnormal event detection system, ensuring efficient and effective surveillance.	surveillance highlight the advantages of the fast abnormal event detection system, ensuring improved responsivene ss and heightened precision.	of a high computational load, which may impact the system's efficiency in fast abnormal event detection.	robust and adaptabl e systems for impleme nting the fast abnorm al event detectio n method, ensuring	abnorm al event detectio n research , showcas ing the system's effective ness in real- world surveilla nce
Hoang Duy Trinh Lorenza Giupponi Paolo Dini	Developi ng urban anomaly detectio n via LSTM network s for enhance	Data Preprocessin g Mechanis,M obile Traffic Traces, Feature Extraction Modules,	Mobile traffic traces processed through LSTM networks for real-time anomaly detection, enhancing urban	Temporal pattern recognition , real-time anomaly detection, adaptability to urban dynamics—	High-performance: real-time anomaly detection, precision in traffic pattern recognition, ensuring urban security with LSTM neural networks.	Enhanced security, real-time anomaly detection, adaptability to dynamic urban environment	Potential drawbacks: High computational demand, sensitivity to diverse urban conditions— addressing challenges in	efficienc y and responsi venes Impleme nted on a robust platform , seamles sly integrati ng LSTM	Improve d urban safety: Enhance d anomaly detectio n, realtime

	d	security and	enhancing		s—advancing	mobile traffic	neural	respons
	security	safety.	security in		safety with	anomaly	network	e, and
	in		mobile		LSTM neural	detection.	s for	adaptabl
	processi		traffic		networks.		precise	е
	ng		surveillance				urban	surveilla
	mobile				•		anomaly	nce in
	traffic						detectio	mobile
	traces.						n and	traffic
							surveilla	scenario
							nce	s with
								LSTM
								network
								S.
Dimitriou N								
Lalas A								
Dasygenis M								