Syntax der Daten für LIDAR und RADAR

Die Daten für LIDAR und RADAR werden anhand des verwendeten Protokolls auf dem Bus in einem Datenblock gespeichert. Sie müssen sich an dessen Struktur halten.

Adresse	Länge (Bytes)	Funktion	Beschreibung	Format
0x00C	2	Kurswinkel	In Grad (von Nordrichtung im Uhrzeigersinn)	UQ9.7
0x00E	3	Zeitstempel	Im RTC-Format gesendet	RTC
0x012	1	RADAR_1	Abstand (m)	UQ8.0
0x013	2	RADAR_2	Geschwindigkeit (m/s)	Q8.8
0x015	180	LIDAR	Punkte mit Abstand	Spez.
0x0C9	()	()	()	()

Zu Adresse 0x012:

Das Radar gibt einen Abstand in Metern zurück. Dabei wird auf den ganzen Meter abgerundet. Der Wert hat kein Vorzeichen und kann maximal 255m betragen (theoretischer Wert).

Adresse (12bit)	Länge	Wert
0x012	0x01	4E
18	1	78
0000 00010010	0000 0001	01001110
Beispieldatensatz für 78,232 m		

Zu Adresse 0x013:

Das Radar gibt eine Geschwindigkeit in Meter pro Sekunde zurück. Ein Meter kann in bis zu 2⁸, also 256 Teile aufgeteilt werden. Das erste Bit des Formats gibt das Vorzeichen an (0 für positiv und 1 für negativ). Die maximale Geschwindigkeit ist somit 127,99609375 m/s.

Adresse (12bit)	Länge	Wert
0x013	0x02	1080
19	2	-16,5
0000 00010011	0000 0011	1001 0000 1000 0000
Beispieldatensatz für -16,5 m/s		

Zu Adresse 0x015:

Das LIDAR teilt den Bereich vor sich in 180 Abschnitte mit jeweils einem Grad auf. Jeder Abschnitt hat einen Abstand, welcher null ist, wenn kein Hindernis gefunden wurde. Der Abstand bezogen auf den jeweiligen Abschnitt ist ein Byte lang und wird auf einen halben Meter gerundet angegeben. Ein Abstand von 80 Metern entspricht binär also 1010 0000. (Der binäre Wert muss also durch zwei geteilt werden, um den realen Wert zu erhalten)

Beispielereignis	Binärer Rückgabewert	Dezimaler Rückgabewert
Kein Hindernis im Abschnitt	0000 0000	0
Hindernis 20m entfernt	0010 1000	40
Hindernis 121,5 m entfernt	1111 0011	243

Die maximale Entfernung (theoretischer Wert) beträgt 127,5m. Das LIDAR gibt jedes Mal insgesamt 180 Byte aus, welche für die 180 Abschnitte stehen. Diese werden aneinandergereiht, in eine Hexadezimalzahl umgewandelt und verschickt.

Adresse (12bit)	Länge	Wert
0x015	0xB4	()
21	180	()
0000 00010101	1011 0100	[Byte1][Byte2][Byte3] () [Byte179][Byte180]
Beispieldatensatz prinzipiell		

Zur Verdeutlichung ein vereinfachtes Beispiel:

Der Erfassungsbereich von 180° sei in vier Teile aufgeteilt (0°-45°; 46°-90°; 91°-135°; 136°-180°). In den jeweiligen Teilen wurden folgende Abstände gemessen:

- (0°-45°) kein Hindernis
- (46°-90°) 69m
- (91°-135°) 67,5m
- (136°-180°) kein Hindernis

Das entspricht einem Datenpaket von 4 Byte Länge. Die Daten werden jetzt in Binärzahlen angeordnet und aneinandergereiht. Danach erfolgt die Umwandlung in eine Hexadezimalzahl.

Zustand	Wert
Erfassung	Nichts, 69m, 67.5m, nichts
Umwandlung in binär	0000 0000, 1000 1010, 1000 0111, 0000 0000
Aneinanderreihen	0000000100010101000011100000000
Hexadezimalzahl	8A8700