

Text Compression

25 November 2024

Prof. Dr. Sebastian Wild

Learning Outcomes

Unit 7: *Text Compression*

- 1. Understand the necessity for encodings and know ASCII and UTF-8 character encodings.
- 2. Understand (qualitatively) the *limits of compressibility*.
- Know and understand the algorithms (encoding and decoding) for Huffman codes, RLE, Elias codes, LZW, MTF, and BWT, including their properties like running time complexity.
- **4.** Select and *adapt* (slightly) a *compression* pipeline for a specific type of data.

Outline

7 Text Compression

- 7.1 Context
- 7.2 Character Encodings
- 7.3 Huffman Codes
- 7.4 Entropy
- 7.5 Run-Length Encoding
- 7.6 Lempel-Ziv-Welch
- 7.7 Lempel-Ziv-Welch Decoding
- 7.8 Move-to-Front Transformation
- 7.9 Burrows-Wheeler Transform
- 7.10 Inverse BWT

7.1 Context

Overview

- ► Unit 6 & 13: How to *work* with strings
 - finding substrings
 - ► finding approximate matches → Unit & 😗
 - ► finding repeated parts → Unit 813
 - ▶ ..
 - assumed character array (random access)!
- ▶ Unit 7 & 8: How to *store/transmit* strings
 - computer memory: must be binary
 - ▶ how to compress strings (save space)
 - ▶ how to robustly transmit over noisy channels → Unit 8

Clicker Question

What compression methods do you know?

| → sli.do/cs566

Terminology

- ▶ **source text:** string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet
- ▶ **coded text:** encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- encoding: algorithm mapping source texts to coded texts $S \sim C$
- **decoding:** algorithm mapping coded texts back to original source text $C \leadsto S$

Terminology

- ▶ **source text:** string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet
- ▶ **coded text:** encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- ▶ encoding: algorithm mapping source texts to coded texts
- decoding: algorithm mapping coded texts back to original source text
- ► Lossy vs. Lossless
 - ▶ **lossy compression** can only decode **approximately**; the exact source text *S* is lost
 - ▶ **lossless compression** always decodes *S* exactly
- ► For media files, lossy, logical compression is useful (e.g. JPEG, MPEG)
- ► We will concentrate on *lossless* compression algorithms. These techniques can be used for any application.

What is a good encoding scheme?

- ▶ Depending on the application, goals can be
 - efficiency of encoding/decoding
 - resilience to errors/noise in transmission
 - security (encryption)
 - ▶ integrity (detect modifications made by third parties)
 - ▶ size

What is a good encoding scheme?

- ▶ Depending on the application, goals can be
 - efficiency of encoding/decoding
 - ► resilience to errors/noise in transmission
 - security (encryption)
 - ▶ integrity (detect modifications made by third parties)
 - ▶ size
- ► Focus in this unit: size of coded text

 Encoding schemes that (try to) minimize the size of coded texts perform *data*compression.
- We will measure the *compression ratio*: $\frac{|C| \cdot \lg |\Sigma_C|}{|S| \cdot \lg |\Sigma_S|} \stackrel{\Sigma_C = \{0,1\}}{=}$
 - < 1 means successful compression
 - = 1 means no compression
 - > 1 means "compression" made it bigger!? (yes, that happens ...)

Clicker Question

Do you know what uncomputable/undecidable problems (halting problem, Post's correspondence problem, . . .) are?

- A Sure, I could explain what it is.
- B Heard that in a lecture, but don't quite remember
- C No, never heard of it

→ sli.do/cs566

Is this image compressible?

Is this image compressible?

visualization of Mandelbrot set

- ► Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- but:
 - completely defined by mathematical formula
 - → can be generated by a very small program!

Is this image compressible?

visualization of Mandelbrot set

- ► Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- but:
 - completely defined by mathematical formula
 - → can be generated by a very small program!

→ Kolmogorov complexity

ightharpoonup C = any program that outputs S

self-extracting archives!

needs fixed machine model, but compilers transfer results

► Kolmogorov complexity = length of smallest such program

Is this image compressible?

visualization of Mandelbrot set

- Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- but:
 - completely defined by mathematical formula
 - \leadsto can be generated by a very small program!

→ Kolmogorov complexity

ightharpoonup C = any program that outputs S

self-extracting archives!

needs fixed machine model, but compilers transfer results

- ► Kolmogorov complexity = length of smallest such program
- ▶ **Problem:** finding smallest such program is *uncomputable*.
- → No optimal encoding algorithm is possible!
- → must be inventive to get efficient methods

What makes data compressible?

- ► Lossless compression methods mainly exploit two types of redundancies in source texts:
 - **1. uneven character frequencies** some characters occur more often than others → Part I
 - 2. repetitive texts different parts in the text are (almost) identical \rightarrow Part II

What makes data compressible?

- ► Lossless compression methods mainly exploit two types of redundancies in source texts:
 - 1. uneven character frequencies some characters occur more often than others \rightarrow Part I
 - 2. repetitive texts
 different parts in the text are (almost) identical → Part II

There is no such thing as a free lunch!

Not *everything* is compressible (\rightarrow tutorials)

→ focus on versatile methods that often work

Part I

Exploiting character frequencies

7.2 Character Encodings

Character encodings

- ► Simplest form of encoding: Encode each source character individually
- \rightarrow encoding function $E\left(\Sigma_S\right) \rightarrow \Sigma_C^*$
 - typically, $|\Sigma_S| \gg |\Sigma_C|$, so need several bits per character
 - for $c \in \Sigma_S$, we call E(c) the *codeword* of c
- ▶ **fixed-length code:** |E(c)| is the same for all $c \in \Sigma_{\mathbb{Z}S}$
- ▶ variable-length code: not all codewords of same length

Fixed-length codes

- fixed-length codes are the simplest type of character encodings
- Example: ASCII (American Standard Code for Information Interchange, 1963)

```
0000000 NUL
               0010000 DLE
                              0100000
                                            0110000 0
                                                         1000000 a
                                                                      1010000 P
                                                                                   1100000 '
                                                                                                 1110000 p
0000001 SOH
               0010001 DC1
                              0100001 !
                                            0110001 1
                                                         1000001 A
                                                                      1010001 0
                                                                                   1100001 a
                                                                                                 1110001 q
0000010 STX
               0010010 DC2
                              0100010 "
                                            0110010 2
                                                         1000010 B
                                                                      1010010 R
                                                                                   1100010 b
                                                                                                 1110010 r
0000011 ETX
              0010011 DC3
                              0100011 #
                                           0110011 3
                                                         1000011 C
                                                                      1010011 S
                                                                                   1100011 c
                                                                                                1110011 s
0000100 EOT
               0010100 DC4
                              0100100 $
                                           0110100 4
                                                         1000100 D
                                                                      1010100 T
                                                                                   1100100 d
                                                                                                 1110100 t
0000101 ENO
               0010101 NAK
                              0100101 %
                                            0110101 5
                                                         1000101 E
                                                                      1010101 U
                                                                                   1100101 e
                                                                                                 1110101 u
0000110 ACK
               0010110 SYN
                              0100110 &
                                            0110110 6
                                                         1000110 F
                                                                      1010110 V
                                                                                   1100110 f
                                                                                                1110110 v
0000111 BEL
               0010111 ETB
                              0100111 '
                                            0110111 7
                                                         1000111 G
                                                                      1010111 W
                                                                                   1100111 q
                                                                                                1110111 w
0001000 BS
               0011000 CAN
                              0101000 (
                                            0111000 8
                                                         1001000 H
                                                                      1011000 X
                                                                                   1101000 h
                                                                                                 1111000 x
0001001 HT
               0011001 EM
                              0101001 )
                                            0111001 9
                                                         1001001 I
                                                                      1011001 Y
                                                                                   1101001 i
                                                                                                 1111001 y
0001010 LF
               0011010 SUB
                              0101010 *
                                            0111010 :
                                                         1001010 J
                                                                      1011010 Z
                                                                                   1101010 j
                                                                                                 1111010 z
0001011 VT
               0011011 ESC
                              0101011 +
                                            0111011 ;
                                                         1001011 K
                                                                      1011011 [
                                                                                   1101011 k
                                                                                                 1111011 {
0001100 FF
               0011100 FS
                              0101100 .
                                            0111100 <
                                                         1001100 L
                                                                      1011100 \
                                                                                   1101100 l
                                                                                                 1111100
0001101 CR
               0011101 GS
                              0101101 -
                                            0111101 =
                                                         1001101 M
                                                                      1011101 ]
                                                                                   1101101 m
                                                                                                 1111101 }
0001110 SO
               0011110 RS
                              0101110 .
                                            0111110 >
                                                         1001110 N
                                                                      1011110 ^
                                                                                   1101110 n
                                                                                                 1111110 ~
0001111 SI
               0011111 US
                              0101111 /
                                            0111111 ?
                                                         1001111 0
                                                                      1011111
                                                                                   1101111 o
                                                                                                 1111111 DEL
```

- ▶ 7 bit per character
- ▶ just enough for English letters and a few symbols (plus control characters)

Fixed-length codes – Discussion

Encoding & Decoding as fast as it gets

Unless all characters equally likely, it wastes a lot of space

inflexible (how to support adding a new character?)

Variable-length codes

- ▶ to gain more flexibility, have to allow different lengths for codewords
- ► actually an old idea: Morse Code

https://commons.wikimedia.org/wiki/File: International_Morse_Code.svg

Clicker Question

How many characters are there in the alphabet of the coded text in Morse Code, i. e., what is (Σ_C) ?

26

256

→ sli.do/cs566

Clicker Question

How many characters are there in the alphabet of the coded text in Morse Code, i. e., what is $|\Sigma_C|$?

$\underline{\mathbf{A}}$	1	

E) 26

(F) 3

G 256

D) 4

→ sli.do/cs566

Variable-length codes – UTF-8

► Modern example: UTF-8 encoding of Unicode:

default encoding for text-files, XML, HTML since 2009

- ► Encodes any Unicode character (154 998 as of Nov 2024, and counting)
- \blacktriangleright uses 1-4 bytes (codeword lengths: 8, 16, 24, or 32 bits)
- Every ASCII character is encoded in 1 byte with leading bit 0, followed by the 7 bits for ASCII
- ► Non-ASCII characters start with 1 4 1s indicating the total number of bytes, followed by a 0 and 3–5 bits.

The remaining bytes each start with 10 followed by 6 bits.

Char. number range	UTF-8 octet sequence		
(hexadecimal)	(binary)		
0000 0000 - 0000 007F	0xxxxxx		
0000 0080 - 0000 07FF	110xxxxx 10xxxxxx		
0000 0800 - 0000 FFFF	1110xxxx 10xxxxxx 10xxxxxx		
0001 0000 - 0010 FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx		

For English text, most characters use only 8 bit, but we can include any Unicode character, as well.

Pitfall in variable-length codes

- ► Happily encode text S = banana with the coded text $C = \underbrace{110}_{\text{b a n a n a n a}} \underbrace{010}_{\text{b a n a n a}} \underbrace{010}_{\text{b a n a n a}}$

Pitfall in variable-length codes

7
$$C = 1100100100 \text{ decodes both to banana and to bass: $\frac{1100100}{b} \frac{100}{s} \frac{100}{s}$$$

→ not a valid code . . . (cannot tolerate ambiguity)
but how should we have known?

Pitfall in variable-length codes

- Suppose we have the following code: $\begin{array}{c|ccccc} c & a & n & b & s \\ \hline E(c) & 0 & 10 & 110 & 100 \\ \end{array}$
- ► Happily encode text $S = \text{banana with the coded text } C = \underbrace{110}_{\text{b a n a n a n a}} \underbrace{0100}_{\text{b a n a n a n}} \underbrace{0100}_{\text{b a n a n a n}}$
- **7** $C = 1100100100 \text{ decodes both to banana and to bass: <math>\frac{1100100}{b} \frac{100}{s} \frac{100}{s}$
- → not a valid code . . . (cannot tolerate ambiguity)
 but how should we have known?
- E(n) = 10 is a (proper) **prefix** of E(s) = 100
 - Leaves decoder wondering whether to stop after reading 10 or continue!
 - ✓ Usually require a *prefix-free* code: No codeword is a prefix of another.
 prefix-free ⇒ instantaneously decodable ⇒ uniquely decodable

Code tries

- ► From now on only consider prefix-free codes E: E(c) is not a proper prefix of E(c') for any $c, c' \in \Sigma_S$.

Any prefix-free code corresponds to a (code) trie:

- ▶ binary tree
- one **leaf** for each characters of Σ_S
- ▶ path from root to leave = codeword left child = 0; right child = 1

- ► Example for using the code trie:
 - ► Encode AN_ANT
 - ► Decode 11 100 00010101111

Code tries

- ► From now on only consider prefix-free codes E: E(c) is not a proper prefix of E(c') for any $c, c' \in \Sigma_S$.

Any prefix-free code corresponds to a *(code) trie*:

- ▶ binary tree
- one **leaf** for each characters of Σ_S
- ▶ path from root to leave = codeword left child = 0; right child = 1

- ► Example for using the code trie:
 - ► Encode $AN_{\square}ANT \rightarrow 010010000100111$
 - ► Decode 111000001010111 → T0_EAT

The Codeword Supermarket

total symbol codeword budget

The Codeword Supermarket

0	00	000	0000	00000
			0001	00010
				00011
		001	0010	00100
				00101
			0011	00110
				00111
U		010	0100	01000
				01001
		010	0101 0110	01010
	01			01011
	02	011		01100
				011101
			0111	01111
	10	100	1000	10000
				10001
			1001	10010
				10011
		101	1010	10100
				10101
			1011	10110
1				10111
_	11	110	1100	11000
				11001
			1101	11010
				111011
		111	1110	11100
				11110
			1111	11111

total symbol codeword budget

- ➤ Can "spend" at most budget of 1 across all codewords
 - ▶ Codeword with ℓ bits costs $2^{-\ell}$
- ► Kraft-McMillan inequality: any uniquely decodable code with codeword lengths $\ell_1, \dots, \ell_{\sigma}$ satisfies

$$\sum_{i=1}^{\sigma} 2^{-\ell_i} \le 1$$
 and for any such lengths there is a prefix-free code

The Codeword Supermarket

0	00	000	0000	00000
			0001	00010
				00011
		001	0010	00100
				00101
			0011	00110
				00111
O	01	010	0100	01000
				01001
			0101	01010
				01011
		011		01100
				01110
			0111	01111
	10	100	1000	10000
				10001
			1001	10010
				10011
		101	1010	10100
				10101
			1011	10110
1				10111
_	11	110	1100	11000
				11001
			1101	11010
				11011
		111	1110	11100
				111101
			1111	11111

total symbol codeword budget

- ► Can "spend" at most budget of 1 across all codewords
 - ▶ Codeword with ℓ bits costs $2^{-\ell}$
- ► Kraft-McMillan inequality: any uniquely decodable code with codeword lengths $\ell_1, \ldots, \ell_{\sigma}$ satisfies

$$\sum_{i=1}^{\sigma} 2^{-\ell_i} \leq 1 \quad \text{ and for any such lengths there is a prefix-free code}$$

Who decodes the decoder?

- ▶ Depending on the application, we have to **store/transmit** the **used code!**
- ▶ We distinguish:
 - ▶ fixed coding: code agreed upon in advance, not transmitted (e. g., Morse, UTF-8)
 - ► static coding: code depends on message, but stays same for entire message; it must be transmitted (e. g., Huffman codes → next)
 - adaptive coding: code depends on message and changes during encoding; implicitly stored withing the message (e. g., LZW → below)

7.3 Huffman Codes

Character frequencies

- ▶ Goal: Find character encoding that produces short coded text
- ▶ Convention here: fix $\Sigma_C = \{0, 1\}$ (binary codes), abbreviate $\Sigma = \Sigma_S$,
- ▶ **Observation:** Some letters occur more often than others.

Typical English prose:

e	12.70%		d	4.25%		p	1.93%	-]
t	9.06%		1	4.03%		b	1.49%	
a	8.17%		С	2.78%	_	v	0.98%	•
o	7.51%		u	2.76%		k	0.77%	
i	6.97%	_	m	2.41%		j	0.15%	1
n	6.75%	_	w	2.36%		X	0.15%	1
s	6.33%		f	2.23%	-	q	0.10%	1
h	6.09%		g	2.02%		Z	0.07%	1
r	5.99%		y	1.97%				
								J

→ Want shorter codes for more frequent characters!

Huffman coding

e.g. frequencies / probabilities

- ▶ **Given:** Σ and weights $w: \Sigma \to \mathbb{R}_{\geq 0}$
- ▶ **Goal:** prefix-free code E (= code trie) for Σ that minimizes coded text length

i. e., a code trie minimizing
$$\sum_{c \in \Sigma} w(c) \cdot |E(c)|$$

Huffman coding

- ▶ **Given:** Σ and weights $w : \Sigma \to \mathbb{R}_{\geq 0}$
- ▶ Goal: prefix-free code E (= code trie) for Σ that minimizes coded text length

i. e., a code trie minimizing
$$\sum_{c \in \Sigma} w(c) \cdot |E(c)|$$

- ▶ Let's abbreviate $|S|_c$ = #occurrences of c in S
- If we use $w(c) = |S|_c$, this is the character encoding with smallest possible |C|
 - → best possible character-wise encoding

▶ Quite ambitious! *Is this efficiently possible?*

Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

- 1. Find two characters a, b with lowest weights.
 - ▶ We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (u to be determined)
- **2.** (Conceptually) replace a and b by a single character "ab" with w(ab) = w(a) + w(b).
- **3.** Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines u = E(ab).

Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

- **1.** Find two characters a, b with lowest weights.
 - ▶ We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (u to be determined)
- **2.** (Conceptually) replace a and b by a single character "ab" with w(ab) = w(a) + w(b).
- **3.** Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines u = E(ab).
- efficient implementation using a (min-oriented) *priority queue*
 - start by inserting all characters with their weight as key
 - step 1 uses two deleteMin calls
 - step 2 inserts a new character with the sum of old weights as key

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ► Character frequencies: E:1, L:2, 0:1, S:4

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

4

S

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

- ► Example text: S = LOSSLESS \longrightarrow $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ► Character frequencies: E:1, L:2, 0:1, S:4

→ *Huffman tree* (code trie for Huffman code)

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ► Character frequencies: E:1, L:2, 0:1, S:4

→ *Huffman tree* (code trie for Huffman code)

LOSSLESS \rightarrow 01001110100011 compression ratio: $\frac{14}{8 \cdot \log 4} = \frac{14}{16} \approx 88\%$

Huffman tree – tie breaking

- ► The above procedure is ambiguous:
 - which characters to choose when weights are equal?
 - ▶ which subtree goes left, which goes right?
- ► For CS 566: always use the following rule:
 - To break ties when selecting the two characters, first use the smallest letter according to the <u>alphabetical order</u>, or the tree containing the smallest alphabetical letter.
 - 2. When combining two trees of different values, place the lower-valued tree on the left (corresponding to a θ-bit).
 - 3. When combining trees of equal value, place the one containing the smallest letter to the left.
 - → practice in tutorials

Encoding with Huffman code

- ► The overall encoding procedure is as follows:
 - ▶ **Pass 1:** Count character frequencies in *S*
 - Construct Huffman code E (as above)
 - ► Store the Huffman code in *C* (details omitted)
 - ▶ **Pass 2:** Encode each character in *S* using *E* and append result to *C*
- ► Decoding works as follows:
 - ▶ Decode the Huffman code *E* from *C*. (details omitted)
 - ▶ Decode *S* character by character from *C* using the code trie.
- ► Note: Decoding is much simpler/faster!

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \to \{0,1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \to \{0,1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Proof sketch: by induction over
$$\sigma = |\Sigma|$$

- \blacktriangleright Given any optimal prefix-free code E^* (as its code trie).
- ▶ code trie \rightarrow ∃ two sibling leaves x, y at largest depth D

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \to \{0,1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Proof sketch: by induction over $\sigma = |\Sigma|$

- ▶ Given any optimal prefix-free code E^* (as its code trie).
- ▶ code trie \rightarrow ∃ two sibling leaves x, y at largest depth D
- ▶ swap characters in leaves to have two lowest-weight characters a, b in x, y (that can only make ℓ smaller, so still optimal)

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \to \{0,1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Proof sketch: by induction over $\sigma = |\Sigma|$

- ightharpoonup Given any optimal prefix-free code E^* (as its code trie).
- ▶ code trie \rightarrow ∃ two sibling leaves x, y at largest depth D

- ▶ swap characters in leaves to have two lowest-weight characters a, b in x, y (that can only make ℓ smaller, so still optimal)
- ▶ any optimal code for $\Sigma' = \Sigma \setminus \{a, b\} \cup \{ab\}$ yields optimal code for Σ by replacing leaf ab by internal node with children a and b.
- \sim recursive call yields optimal code for Σ' by inductive hypothesis, so Huffman's algorithm finds optimal code for Σ .

7.4 Entropy

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

$$0 \leq \mathcal{H}(p_1, \dots, p_n) \leq l_3 n = \mathcal{H}(\frac{1}{n}, \dots, \frac{r}{n})$$

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0,1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0,1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0,1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0,1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0,1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0,1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0,1)": Land inside my interval by halving.

- \rightarrow Need to cut [0, 1) in half $\lg(1/p_i)$ times
- more precisely: the expected number of bits (Yes/No questions) required to nail down the random value

would ideally encode value i using $\lg(1/p_i)$ bits not always possible; cannot use codeword of 1.5 bits . . .

not as length of single codeword that is; / but can be possible on average!

would ideally encode value i using $\lg(1/p_i)$ bits g not as length of single codeword that is; but can be possible on average! not always possible; cannot use codeword of 1.5 bits . . . but:

Theorem 7.3 (Entropy bounds for Huffman codes)

For any probabilities
$$p_1, \ldots, p_\sigma$$
 for $\Sigma = \{a_1, \ldots, a_\sigma\}$, the Huffman code E for Σ with weights $p(a_i) = p_i$ satisfies $\mathcal{H} \leq \ell(E) \leq \mathcal{H} + 1$ where $\mathcal{H} = \mathcal{H}(p_1, \ldots, p_\sigma)$.

would ideally encode value i using $\lg(1/p_i)$ bits g not as length of single codeword that is; but can be possible on average! not always possible; cannot use codeword of 1.5 bits . . . but:

Theorem 7.3 (Entropy bounds for Huffman codes)

For any probabilities
$$p_1, \ldots, p_\sigma$$
 for $\Sigma = \{a_1, \ldots, a_\sigma\}$, the Huffman code E for Σ with weights $p(a_i) = p_i$ satisfies $\mathcal{H} \leq \ell(E) \leq \mathcal{H} + 1$ where $\mathcal{H} = \mathcal{H}(p_1, \ldots, p_\sigma)$.

Proof sketch:

► $\ell(E) \ge \mathcal{H}$ Any prefix-free code E induces weights $q_i = 2^{-|E(a_i)|}$. By Kraft's Inequality, we have $q_1 + \cdots + q_\sigma \le 1$.

in general
$$P_i \neq P_i$$

$$G=2 \quad P_i = \varepsilon$$

$$P_2 = (-\varepsilon)$$

$$Q_i = Q_i = \frac{1}{2}$$

• would ideally encode value i using $\lg(1/p_i)$ bits not always possible; cannot use codeword of 1.5 bits . . . but:

not as length of single codeword that is; /but can be possible on average!

Theorem 7.3 (Entropy bounds for Huffman codes)

For any probabilities p_1, \ldots, p_σ for $\Sigma = \{a_1, \ldots, a_\sigma\}$, the Huffman code E for Σ with weights

$$p(a_i) = p_i \text{ satisfies }$$
 $\mathcal{H} \leq \ell(E) \leq \mathcal{H} + 1$ where $\mathcal{H} = \mathcal{H}(p_1, \dots, p_\sigma).$ $\ell_{\mathcal{M}}(x) \leq x - 1$

Proof sketch:

$$\blacktriangleright \ \ell(E) \geq \mathcal{H}$$

Any prefix-free code *E* induces weights $q_i = 2^{-|E(a_i)|}$. By *Kraft's Inequality*, we have $q_1 + \cdots + q_{\sigma} \leq 1$. Hence we can apply Gibb's Inequality to get

$$\mathcal{H} = \underbrace{\sum_{i=1}^{\sigma} p_{i} \lg \left(\frac{1}{p_{i}}\right)}_{\text{I} p_{i} = 1} \leq \underbrace{\sum_{i=1}^{\sigma} p_{i} \lg \left(\frac{1}{q_{i}}\right)}_{\text{I} p_{i} = 1} = \ell(E).$$

$$0 \geq \sum_{i} P_{i} \cdot n(\frac{1}{p_{i}}) - \sum_{i} P_{i} \cdot n(\frac{1}{q_{i}})$$

$$= \sum_{i} P_{i} \cdot n(\frac{q_{i}}{p_{i}})$$

$$\leq \sum_{i} P_{i} \cdot (q_{i}/p_{i} - 1)$$

Proof sketch (continued):

$$\underbrace{\ell(E)}_{} \leq \mathcal{H} + 1$$
 Set $q_i = 2^{-\lceil \lg(1/p_i) \rceil}$. We have $\sum_{i=1}^{\sigma} p_i \lg\left(\frac{1}{q_i}\right) = \sum_{i=1}^{\sigma} p_i \lceil \lg(1/p_i) \rceil \leq \mathcal{H} + 1$.

Proof sketch (continued):

$$ightharpoonup \ell(E) \leq \mathcal{H} + 1$$

Set
$$q_i = 2^{-\lceil \lg(1/p_i) \rceil}$$
. We have $\sum_{i=1}^{\sigma} p_i \lg\left(\frac{1}{q_i}\right) = \sum_{i=1}^{\sigma} p_i \lceil \lg(1/p_i) \rceil \le \mathcal{H} + 1$.

We construct a code E' for Σ with $|\underline{E'(a_i)}| \le \lg(1/q_i)$ as follows; w.l.o.g. assume $q_1 \le q_2 \le \cdots \le q_\sigma$

► If $\sigma = 2$, E' uses a single bit each. Here, $q_i \le 1/2$, so $\lg(1/q_i) \ge 1 = |E'(a_i)|$ \checkmark

Proof sketch (continued):

 $ightharpoonup \ell(E) \leq \mathcal{H} + 1$

Set
$$q_i = 2^{-\lceil \lg(1/p_i) \rceil}$$
. We have $\sum_{i=1}^{\sigma} p_i \lg\left(\frac{1}{q_i}\right) = \sum_{i=1}^{\sigma} p_i \lceil \lg(1/p_i) \rceil \le \mathcal{H} + 1$.

We construct a code E' for Σ with $|E'(a_i)| \le \lg(1/q_i)$ as follows; w.l.o.g. assume $q_1 \le q_2 \le \cdots \le q_\sigma$

- ► If $\sigma = 2$, E' uses a single bit each. Here, $q_i \le 1/2$, so $\lg(1/q_i) \ge 1 = |E'(a_i)| \checkmark$
- ▶ If $\sigma \ge 3$, we merge a_1 and a_2 to $\boxed{a_1a_2}$, assign it weight $2\underline{q_2}$ and recurse. If $q_1 = q_2$, this is like Huffman; otherwise, $\underline{q_1}$ is a unique smallest value and $q_2 + q_2 + \cdots + q_{\sigma} \le 1$.

Proof sketch (continued):

 \blacktriangleright $\ell(E) \leq \mathcal{H} + 1$

Set
$$q_i = 2^{-\lceil \lg(1/p_i) \rceil}$$
. We have $\sum_{i=1}^{\sigma} p_i \lg\left(\frac{1}{q_i}\right) = \sum_{i=1}^{\sigma} p_i \lceil \lg(1/p_i) \rceil \le \mathcal{H} + 1$.

We construct a code E' for Σ with $|E'(a_i)| \le \lg(1/q_i)$ as follows; w.l.o.g. assume $q_1 \le q_2 \le \cdots \le q_\sigma$

- ► If $\sigma = 2$, E' uses a single bit each. Here, $q_i \le 1/2$, so $\lg(1/q_i) \ge 1 = |E'(a_i)| \checkmark$
- ▶ If $\sigma \ge 3$, we merge a_1 and a_2 to $\boxed{a_1a_2}$, assign it weight $2q_2$ and recurse. If $q_1 = q_2$, this is like Huffman; otherwise, q_1 is a unique smallest value and $q_2 + q_2 + \cdots + q_{\sigma} \le 1$.

By the inductive hypothesis, we have $\left|E'(\underline{a_1a_2})\right| \leq \lg\left(\frac{1}{2q_2}\right) = \lg\left(\frac{1}{q_2}\right) - 1$.

Entropy and Huffman codes [2]

Proof sketch (continued):

 $\begin{array}{l} \blacktriangleright \ \ell(E) \leq \mathfrak{H} + 1 \\ \mathrm{Set} \ \overline{q_i} = 2^{-\lceil \lg(1/p_i) \rceil}. \ \mathrm{We \ have} \ \sum_{i=1}^{\sigma} p_i \lg \left(\frac{1}{q_i}\right) \ = \ \sum_{i=1}^{\sigma} p_i \lceil \lg(1/p_i) \rceil \ \leq \ \mathfrak{H} + 1. \end{array}$

We construct a code E' for Σ with $|E'(a_i)| \le \lg(1/q_i)$ as follows; w.l.o.g. assume $q_1 \le q_2 \le \cdots \le q_\sigma$

- ► If $\sigma = 2$, E' uses a single bit each. Here, $q_i \le 1/2$, so $\lg(1/q_i) \ge 1 = |E'(a_i)| \checkmark$
- ▶ If $\sigma \ge 3$, we merge a_1 and a_2 to $\boxed{a_1a_2}$, assign it weight $2q_2$ and recurse. If $q_1 = q_2$, this is like Huffman; otherwise, q_1 is a unique smallest value and $q_2 + q_2 + \cdots + q_{\sigma} \le 1$.

By the inductive hypothesis, we have $\left|E'(\overline{a_1a_2})\right| \leq \lg\left(\frac{1}{2q_2}\right) = \lg\left(\frac{1}{q_2}\right) - 1$. By construction, $\left|E'(a_1)\right| = \left|E'(a_2)\right| = \left|E'(\overline{a_1a_2})\right| + 1$, so $\left|E'(a_1)\right| \leq \lg\left(\frac{1}{q_1}\right)$ and $\left|E'(a_2)\right| \leq \lg\left(\frac{1}{q_2}\right)$.

By optimality of E, we have $\ell(E) \leq \ell(E') \leq \sum_{i=1}^{\sigma} p_i \lg \left(\frac{1}{q_i}\right) \leq \mathcal{H} + 1$.

Clicker Question

When does Huffman coding yield more efficient compression than a fixed-length character encoding?

- (A) always
- B) when $\mathcal{H} \approx \lg(\sigma)$
- C when $\mathcal{H} < \lg(\sigma)$
- D when $\mathcal{H} < \lg(\sigma) 1$
- E when $\mathcal{H} \approx 1$

→ sli.do/cs566

Clicker Question

When does Huffman coding yield more efficient compression than a fixed-length character encoding?

- A always 🗸
- B when $\mathcal{H} \approx \lg(\sigma)$
- C when $\mathcal{H} < \lg(\sigma)$
- E when 1€ ≈ 1

→ sli.do/cs566

Empirical Entropy

▶ Theorem 7.3 works for any character *probabilities* $p_1, ..., p_\sigma$

... but we only have a string S! (nothing random about it!)

Empirical Entropy

▶ Theorem 7.3 works for any character *probabilities* p_1, \ldots, p_{σ} ... but we only have a string S! (nothing random about it!)

use relative frequencies:
$$p_i = \frac{|S|_{a_i}}{|S|} = \frac{\text{\#occurences of } a_i \text{ in string } S}{\text{length of } S}$$

► Recall: For S[0..n) over $\Sigma = \{a_1, \ldots, a_{\sigma}\}$, length of Huffman-coded text is

$$|C| = \sum_{i=1}^{\sigma} |S|_{a_i} \cdot |E(a_i)| = n \sum_{i=1}^{\sigma} \frac{|S|_{a_i}}{n} \cdot |E(a_i)| = \underline{n\ell(E)}$$

→ Theorem 7.3 tells us rather precisely how well Huffman compresses: $\mathcal{H}_0(S) \cdot n \leq |C| \leq (\mathcal{H}_0(S) + 1)n$

$$\mathcal{H}_{\sigma}(S) = \mathcal{H}\left(\frac{|S|_{a_1}}{|S|_{a_2}} - \frac{|S|_{a_{\sigma}}}{|S|_{a_{\sigma}}}\right) = \sum_{i=1}^{\sigma} \frac{n}{\log_{\sigma}\left(\frac{|S|_{a_i}}{|S|_{a_i}}\right)}$$
 is called the *empirical entropy*

 $\mathcal{H}_0(S) = \mathcal{H}\left(\frac{|S|_{a_1}}{n}, \dots, \frac{|S|_{a_\sigma}}{n}\right) = \sum_{i=1}^{\sigma} \frac{n}{|S|_{a_i}} \log_2\left(\frac{|S|_{a_i}}{n}\right)$ is called the *empirical entropy* of S

Huffman coding – Discussion

- ▶ running time complexity: $O(\sigma \log \sigma)$ to construct code
 - ▶ build PQ + σ · (2 deleteMins and 1 insert)
 - can do $\Theta(\sigma)$ time when characters already sorted by weight
 - time for encoding text (after Huffman code done): O(n + |C|)
- ▶ many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, ...)

Huffman coding – Discussion

- ▶ running time complexity: $O(\sigma \log \sigma)$ to construct code
 - ▶ build PQ + σ · (2 deleteMins and 1 insert)
 - can do $\Theta(\sigma)$ time when characters already sorted by weight
 - time for encoding text (after Huffman code done): O(n + |C|)
- ▶ many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, ...)
- optimal prefix-free character encoding
- very fast decoding
- needs 2 passes over source text for encoding
 - one-pass variants possible, but more complicated
- $\hfill \Box$ have to store code alongside with coded text

Part II

Compressing repetitive texts

Beyond Character Encoding

► Many "natural" texts show repetitive redundancy

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- ► character-by-character encoding will **not** capture such repetitions
 - → Huffman won't compression this very much

Beyond Character Encoding

► Many "natural" texts show repetitive redundancy

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- ► character-by-character encoding will **not** capture such repetitions
 - → Huffman won't compression this very much
- \rightarrow Have to encode whole *phrases* of *S* by a single codeword

7.5 Run-Length Encoding

▶ simplest form of repetition: *runs* of characters

- same character repeated
- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

▶ simplest form of repetition: *runs* of characters

00010110010000000001111100000000011111000 00110000000001110000000000111000000000 00110000000001110000000000111000000000 00000000011100111000000111001110000001110 00000000011100111000000110001110000001100 0000000000110001100000011100011000001110 0000000001100111000000110001110000001100 0000000011100011000000111000110000001110 0000000011000011100001110000111000011100

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

run-length encoding (RLE):

use runs as phrases: S = 00000 111 0000

▶ simplest form of repetition: *runs* of characters

```
00010110010000000001111100000000011111000
00110000000001110000000000111000000000
00110000000001110000000000111000000000
00000000011100111000000111001110000001110
00000000011100111000000110001110000001100
00000000001100011000000111000110000001110
00000000001100111000000110001110000001100
0000000011100011000000111000110000001110
0000000011000011100001110000111000011100
```

same character repeated

- ▶ here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - ► can be extended for larger alphabets

→ run-length encoding (RLE):

use runs as phrases: S = 00000 111 0000

- → We have to store
 - ▶ the first bit of *S* (either 0 or 1)
 - ▶ the length of each subsequent run
 - ▶ Note: don't have to store bit for later runs since they must alternate.
- ► Example becomes: 0,5,3,4

▶ simplest form of repetition: *runs* of characters

```
00010110010000000001111100000000011111000
00110000000001110000000000111000000000
00110000000001110000000000111000000000
00000000011100111000000111001110000001110
00000000011100111000000110001110000001100
00000000001100011000000111000110000001110
00000000001100111000000110001110000001100
0000000011100011000000111000110000001110
0000000011000011100001110000111000011100
```

uns of characters

- same character repeated
- ▶ here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets
- → run-length encoding (RLE):

use runs as phrases: S = 00000 111 0000

- → We have to store
 - ▶ the first bit of *S* (either 0 or 1)
 - ▶ the length of each subsequent run
 - ▶ Note: don't have to store bit for later runs since they must alternate.
- ► Example becomes: 0,5,3,4
- ▶ **Question**:(How to encode a run length *k* in binary?

(*k* can be arbitrarily large!)

Clicker Question

How would you encode a string that can we arbitrarily long?

→ sli.do/cs566

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, ..., \}$
 - ► must allow arbitrarily large integers
 - must know when to stop reading

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, ..., \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

30

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
 - (wasn't the whole point of RLE to get rid of long runs??)

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, ..., \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
 - (wasn't the whole point of RLE to get rid of long runs??)
- ► Refinement: *Elias gamma code*
 - ▶ Store the **length** ℓ of the binary representation in **unary**
 - ► Followed by the binary digits themselves

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, ..., \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
 - (wasn't the whole point of RLE to get rid of long runs??)
- ► Refinement: *Elias gamma code*
 - ▶ Store the **length** ℓ of the binary representation in **unary**
 - Followed by the binary digits themselves
 - ▶ little tricks:
 - ▶ always have $\ell \ge 1$, so store $\ell 1$ instead
 - ▶ binary representation always starts with 1 → don't need terminating 1 in unary
 - \rightarrow Elias gamma code = $\ell 1$ zeros, followed by binary representation

Examples:
$$1 \mapsto 1$$
, $3 \mapsto 011$, $5 \mapsto 00101$, $30 \mapsto 000011110$

Clicker Question

Decode the **first** number in Elias gamma code (at the beginning) of the following bitstream:

<u>000,1101,</u>11011100110.

→ sli.do/cs566

► Encoding:

$$C = 1$$

► Decoding:

$$C = 00001101001001010$$

$$S =$$

► Encoding:

► Decoding:

C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

$$C = 20001101001001010$$

$$b = 0$$

$$S =$$

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

$$C = 00001101001001010$$

$$b = 0$$

$$\ell = 3 + 1$$

$$S =$$

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

$$C = 00001101001001010$$

b = 0

 $\ell = 3 + 1$

k = 13

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 00001101001001010

b = 1

\ell = 2 + 1

k = 4

S = 000000000000001111
```

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

```
C = 00001101001001010

b = 0

\ell = 0 + 1

k = 000000000000001111
```

Run-length encoding – Examples

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 0000110100100101

b = 0

\ell = 0 + 1

k = 1

S = 00000000000011110
```

Run-length encoding – Examples

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

```
C = 00001101001001010

b = 1

\ell = 1 + 1

k = 1

k = 1
```

Run-length encoding – Examples

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

```
C = 00001101001001010

b = 1

\ell = 1 + 1

k = 2

S = 0000000000001111011
```

Run-length encoding – Discussion

- extensions to larger alphabets possible (must store next character then)
- ▶ used in some image formats (e.g. TIFF)

Run-length encoding – Discussion

- extensions to larger alphabets possible (must store next character then)
- ▶ used in some image formats (e.g. TIFF)
- fairly simple and fast
- can compress n bits to $\Theta(\log n)$! for extreme case of constant number of runs
- negligible compression for many common types of data
 - No compression until run lengths $k \ge 6$
 - **expansion** for run length k = 2 or 6

7.6 Lempel-Ziv-Welch

Warmup

https://www.itickr.com/photos/quintanaroo/2/42/2034

https://classic.csunplugged.org/text-compression/

Clicker Question

Lempel-Ziv Compression

- ► Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - ▶ in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
"

Lempel-Ziv Compression

- ► Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - ▶ in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
"
- ▶ **Lempel-Ziv** stands for family of *adaptive* compression algorithms.
 - ▶ **Idea:** store repeated parts by reference!
 - → each codeword refers to
 - \triangleright either a single character in Σ_S ,
 - or a *substring* of *S* (that both encoder and decoder have seen before).

Lempel-Ziv Compression

- ► Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - ▶ in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
"
- ▶ **Lempel-Ziv** stands for family of *adaptive* compression algorithms.
 - ▶ **Idea:** store repeated parts by reference!
 - → each codeword refers to
 - \triangleright either a single character in Σ_S ,
 - or a *substring* of *S* (that both encoder and decoder have seen before).
 - ► Variants of Lempel-Ziv compression
 - "LZ77" Original version (sliding window, overlapping phrases) Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, ... DEFLATE used in (pk)zip, gzip, PNG
 - "LZ78" Second version (whole-phrase references)
 Derivatives: LZW, LZMW, LZAP, LZY, . . .
 LZW used in compress, GIF

Lempel-Ziv-Welch

- ► here: Lempel-Ziv-Welch (LZW) (arguably the "cleanest" variant of Lempel-Ziv)
- variable-to-fixed encoding
 - ▶ all codewords have k bits (typical: k = 12) \rightsquigarrow fixed-length
 - but they represent a variable portion of the source text!

Lempel-Ziv-Welch

- ► here: Lempel-Ziv-Welch (LZW) (arguably the "cleanest" variant of Lempel-Ziv)
- variable-to-fixed encoding
 - ▶ all codewords have k bits (typical: k = 12) \rightsquigarrow fixed-length
 - but they represent a variable portion of the source text!
- ▶ maintain a **dictionary** D with 2^k entries \longrightarrow codewords = indices in dictionary
 - ▶ initially, first $|\Sigma_S|$ entries encode single characters (rest is empty)
 - ▶ add a new entry to *D* after each step:
 - ► **Encoding:** after encoding a substring *x* of *S*, add *xc* to *D* where *c* is the character that follows *x* in *S*.

- \rightsquigarrow new codeword in D
- \triangleright D actually stores codewords for x and c, not the expanded string

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

C =

D =

Code	String		
32	П		
33	!		
79	0		
82	R		
85	U		
89	Y		

Code	String
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

C = 89

D =

Code	String	
32	П	
33	!	
79	0	
82	R	
85	U	
89	Υ	

Code	String
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

C = 89

Code	String		
32	П		
33	!		
79	0		
82	R		
85	U		
89	Υ		

Code	String
128	Y0
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y = 0C = 89 = 79

Code	String		
32			
33	!		
79	0		
82	R		
85	U		
89	Y		

Code	String
128	Y0
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

	Υ	C
C =	89	7

Code	String		
32	П		
33	ļ.		
79	0		
82	R		
85	U		
89	Υ		

Code	String
128	Y0
129	0!
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

 $C = 89 \quad 79 \quad 33$

Code	String	
32	П	
33	!	
79	0	
82	R	
85	U	
89	Y	

Code	String
128	Y0
129	0!
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: YO! YOU! YOUR YOYO!

hannah ban s ba already encoded

 Σ_S = ASCII character set (0–127)

	Υ	0	!
C =	89	79	33

encode x = ban

add xc = bana to dictionary

	L
	I
=	ĺ
	l
	ļ
	l

Code	String		
32	Ш		
33	!		
79	0		
82	R		
85	U		
89	Υ		

Code	String
128	Y0
129	0!
130	!"
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш
C = 89	79	33	32

Code	String		
32			
33	!		
79	0		
82	R		
85	U		
89	Y		

Code	String
128	Y0
129	0!
130	!
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш
C = 89	79	33	32

D =

Code	String			
32	П			
33	!			
79	0			
82	R			
85	U			
89	Y			

Code	String
128	YO
	-
129	0!
130	!
131	Y
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	ļ.	ш	Y0
C = 89	79	33	32	128

D =

Code	String							
32	П							
33	!							
79	0							
82	R							
85	U							
89	Y							

	1
Code	String
128	Y0
129	0!
130	!
131	υY
132	
133	
134	
135	
136	
137	
138	
139	

								6			=	$\hat{\mathbb{L}}$		_			
S	h	а	n	n	а	h	b	а	n	S	b	а	n	a	n	а	S
	already encoded								x		c						
									ade	d xc	_ : = 1	bana	a to	dict	, tion	arv	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	ļ.	ш	Y0
C = 89	79	33	32	128

D =

Code	String								
32	П								
33	ļ.								
79	0								
82	R								
85	U								
89	Y								

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U
C = 89	79	33	32	128	85

Code String 32 □ 33 ! 79 0 82 R 85 U 89 Y									
33 !	Code	String							
33 !									
79 0 82 R 85 U		П							
82 R 85 U	33	!							
82 R 85 U									
85 U	79	0							
85 U									
	82	R							
89 Y	85	U							
89 Y									
	89	Υ							

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U
C = 89	79	33	32	128	85

Code	String								
32	П								
33	!								
79	0								
82	R								
85	U								
89	Y								

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	П	Y0	U	!
C = 89	79	33	32	128	85	130

D =

Code	String				
32	П				
33	!				
79	0				
82	R				
85	U				
89	Y				

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U	!
C = 89	79	33	32	128	85	130

D =

Code	String				
32	П				
33	!				
79	0				
82	R				
85	U				
89	Υ				

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	!⊔Y
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U	!	YOU
C = 89	79	33	32	128	85	130	132

encode x = ban

String					
П					
!					
0					
R					
U					
Υ					

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	!⊔Y
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U	!	YOU
C = 89	79	33	32	128	85	130	132

encode x = ban

String					
П					
!					
0					
R					
U					
Υ					

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	! _L Y
135	YOUR
136	
137	
138	·
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U	!	YOU	R
C = 89	79	33	32	128	85	130	132	82

D =

Code	String		
32			
33	!		
79	0		
82	R		
85	U		
89	Y		

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	! _L Y
135	Y0UR
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U	!	YOU	R
C = 89	79	33	32	128	85	130	132	82

Code	String		
32			
33	!		
79	0		
82	R		
85	U		
89	Y		

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	!⊔Y
135	Y0UR
136	R⊔
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! $_{\square}$ Y0 U ! $_{\square}$ Y0U R $_{\square}$ Y C = 89 79 33 32 128 85 130 132 82 131

D =

String				
!				
0				
R				
U				
Υ				

Code	String
128	Y0
129	0!
130	!
131	LΥ
132	YOU
133	U!
134	! Y
135	Y0UR
136	R⊔
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! \Box Y0 U ! \Box Y0U R \Box Y C = 89 79 33 32 128 85 130 132 82 131

String			
!			
0			
R			
U			
Y			
• •			

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	!⊔Y
135	Y0UR
136	R⊔
137	۷0 ا
138	·
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! \Box Y0 U ! \Box Y0U R \Box Y 0 C = 89 79 33 32 128 85 130 132 82 131 79

D =

String			
!			
0			
R			
U			
Y			
• •			

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	! _L Y
135	Y0UR
136	R⊔
137	۷0 ا
138	·
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! ... Y0 U !... Y0U R ... Y 0 C = 89 79 33 32 128 85 130 132 82 131 79

D =

Code	String		
32			
33	!		
79	0		
82	R		
85	U		
89	Y		

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	!⊔Y
135	Y0UR
136	R⊔
137	۷0 ا
138	0Y
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y = 0 ! ... Y0 = U !... Y0U = R ... Y = 0 Y0 C = 89 = 79 = 33 = 32 = 128 = 85 = 130 = 132 = 82 = 131 = 79 = 128

String		
!		
0		
R		
U		
Y		

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	U!
134	! _L Y
135	Y0UR
136	R⊔
137	۷0 ا
138	0Y
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

D =

String		
!		
0		
R		
U		
Y		

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	!_Y
135	Y0UR
136	R⊔
137	۲0 ا
138	0Y
139	Y0!

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! \Box Y0 U ! Y0U R \Box Y 0 Y0 ! C = 89 79 33 32 128 85 130 132 82 131 79 128 33

Code	String		
32			
33			
79	0		
82	R		
85	U		
89	Υ		

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	!_Y
135	Y0UR
136	R⊔
137	٦Y0
138	0Y
139	Y0!

LZW encoding – Code

```
procedure LZWencode(S[0..n))
       x := \varepsilon // previous phrase, initially empty
      C := \varepsilon // output, initially empty
       D := dictionary, initialized with codes for c \in \Sigma_S // stored as trie (\rightsquigarrow Unit &
      k := |\Sigma_S| // next free codeword
      for i := 0, ..., n-1 do
            c := S[i]
            if D.containsKey(xc) then
8
                 x := xc
9
            else
10
                 C := C \cdot D.get(x) // append codeword for x
11
                 D.put(xc, k) // add xc to D, assigning next free codeword
12
                 k := k + 1: x := c
13
       end for
14
       C := C \cdot D.get(x)
15
       return C
16
```