UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

ESCUELA DE ESTUDIOS GENERALES ÁREA DE INGENIERÍA

Álgebra y Geometría Analítica

Tema: rectas en el plano

Semestre: 2022

GUÍA DE PRÁCTICA N 10

1. Probar que las rectas $L_1 \wedge L_2$ son iguales, donde:

$$L_1 = \left\{ (0,6) + t \left(1, -\frac{1}{7} \right) / t \in \mathbb{R} \right\}, \ L_2 = \left\{ (2,7) + r \left(-14, 2 \right) / r \in \mathbb{R} \right\}$$

- 2. Sean $L: \frac{x}{-4} + \frac{y}{3} = 1 \land A = \left\{ P(x, y) \in \mathbb{R} \times \mathbb{R} / P \text{ equidista de } L \land de\left(6, \frac{15}{2}\right) \right\}$
 - (a) ¿A es una recta? Justifique (b) Si A es una recta, halle su ecuación.
- 3. Sea L: ax + by + c = 0, $a^2 + b^2 > 0$, $P_0(x_0, y_0) \in L$; demostrar que $A = \left\{ P(x, y) \in \mathbb{R} \times \mathbb{R} \mid P \text{ equidista de } L \land \text{de } P_0 \right\}$ es una recta.
- 4. Sea $L: P = P_0 + t \overline{a}$, $t \in \mathbb{R}$, $a \neq (0,0)$, $A = P_1 \in L A = P_2 \in L$; demostrar que $P_1 + P_2 \in L \leftrightarrow L$ pasa por el origen.
- 5. Sea la recta $L: P = P_0 + t\overline{a}$, $t \in \mathbb{R}$; en cada caso, siguiente hallar el punto P_2 simétrico al punto P_1 respecto a L:
 - (a) $P_0 = (0,0)$, $\overline{a} = (1,1)$, $P_1 = (1,2)$ (b) $P_0 = (1,0)$, $\overline{a} = (-1,1)$, $P_1 = (3,3)$
 - (c) $P_0 = (0, 1), \ \overline{a} = (1, 1), \ P_1 = (-6, 5)$ d) $P_0 = (x_0, y_0), \ \overline{a} = (a_1, a_2), \ P_1 \in L \land P_1 = (x_1, y_1)$
- 6. Desde el punto P(4,5) se emite un rayo de luz que incide en el espejo representado por la recta \overrightarrow{AB} , donde A(2,5) y B(-2,1), reflejándose y pasando por C(9,6). Halle la ecuación del: (a) Rayo reflejado
 - (b) Rayo de incidencia
- (c) El punto de incidencia
- 7. Sea la recta L que pasa por (0,10) y (-5,5); halle $Proy_L(0,10)$.
- 8. Sean las rectas $L_1: \frac{x}{-10} + \frac{y}{10} = 1 \land L_2: y = 5$
 - (a) Hallar la ecuación de la recta bisectriz del ángulo agudo de $L_1 \wedge L_2$.
 - (b) Hallar la ecuación de la recta bisectriz del ángulo obtuso de $L_1 \wedge L_2$.
- 9. Sean P(2,-3), Q(1,9) y R(c,d), donde c es un número entero mayor que 5, y área del triángulo de vértices P, Q y R es 50 m², y \overrightarrow{RQ} es perpendicular a \overrightarrow{RP} .
 - (a) Hallar las ecuaciones de las tres rectas bisectrices de $\triangle POR$.
 - (b) Hallar las ecuaciones de las tres rectas medianas de $\triangle PQR$.
 - (c) Hallar las ecuaciones de las tres rectas alturas de $\triangle PQR$.

- 10. Sean $A(a,0) \wedge B(0,b) \wedge P_1 \wedge P_2$ puntos de \overline{AB} , que dividen a \overline{AB} en tres partes iguales $\wedge //\overline{AB} //= 50 \text{ m}$, hallar $//\overline{OA} + \overline{OB} + \overline{OP_1} + \overline{OP_2} //$, (donde O es el origen de coordenadas).
- 11. Sean $A(-40,0) \wedge B(0,30) \wedge P_1 \wedge P_2 \wedge P_3$ puntos de \overrightarrow{AB} , que dividen a \overrightarrow{AB} en cuatro partes iguales; hallar $/\!/ \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OP_1} + \overrightarrow{OP_2} + \overrightarrow{OP_3} /\!/$, (donde O es el origen de coordenadas).
- 12. La recta L interseca los ejes coordenados positivos, formando un triángulo de área 600, y (40,30) $\in L$; halle la ecuación de L.
- 13. Hallar un punto de L: P = (2,11) + t (2,4), que equidiste del eje x y de L_1 : Q = (1,7) + r(1,0).
- 14. Hallar la ecuación de la recta L que pasa por el punto medio de \overline{OA} , donde O(0,0) y A(2,4), e interseca a la recta L_1 que pasa por los puntos B(-3,-3) y C(3,3), formando un ángulo de 60° con L.
- 15. Sea L: (2,2) + t (1,-2), y el punto P(4,1); hallar todas las rectas que pasan por P, e intersecan a L en los puntos de intersección M y N y disten $\sqrt{5}$ del punto (3,0).
- 16. Sean las rectas L_1 que pasa por (1,3) y (3,6), L_2 : P = (5,10) + t (-1,5), t $\in \square$; L_3 perpendicular a L_1 en (3,6); hallar: (a) $L_1 \cap L_3$ (b) El ángulo agudo entre $L_1 \wedge L_2$.
- 17. Sean los vértices $A(x_1, y_1)$, $B(x_2, y_2)$ y $C(x_3, y_3)$ de un triángulo; demostrar que la intersección de las medianas es $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$.
- 18. Las rectas \overrightarrow{AC} y \overrightarrow{BD} , forman un ángulo θ , demostrar que el área del cuadrilátero convexo de vértices A, B, C y D es igual a: $\frac{\overrightarrow{AC} / / \overrightarrow{BD} / / sen \theta}{2}$.
- 19. Sean las rectas L_1 : $P = P_0 + t \overline{a} \wedge L_2$: $Q = Q_0 + r \overline{b}$; demostrar que L_3 : $R = R_0 + s(\overline{a} + \overline{b})$ es la ecuación de la bisectriz del ángulo entre $L_1 \wedge L_2$, si $\{R_0\} = L_1 \cap L_2 \wedge ||\overline{a}|| = ||\overline{b}||$.
- 20. La partícula P_1 se mueve en la trayectoria rectilínea L_1 : P = (0,0) + (t-0)(100,30), y la partícula P_2 , en la trayectoria rectilínea L_2 : Q = (0,270) + (r-0)(50,-30)
 - (a) ¿Dónde se intersecan las trayectorias?
 - (b) ¿Chocan las partículas?
 - (c) ¿En qué instante debe dejar la partícula P_1 el origen para que choque con P_2 ?