Στοιχεία Στατιστικής

Δημήτρης Κουγιουμτζής

10 Μαΐου 2011

Σημειακή εκτίμηση

Μέση τιμή και διασπορά Βαθμοί ελευθερίας Κριτήρια καλών εκτιμητών Μέθοδος μέγιστης πιθανοφάνειας

Εκτίμηση διαστήματος εμπιστοσύνης

Διάστημα εμπιστοσύνης μέσης τιμής Διάστημα εμπιστοσύνης διασποράς

Έλεγχος υπόθεσης

Έλεγχος μέσης τιμής Έλεγχος διασποράς Έλεγχος καταλληλότητας \mathcal{X}^2

Εισαγωγικά

Πιθανότητα: σχετική συχνότητα εμφάνισης n_i κάποιας τιμής x_i μιας διακριτής τ.μ. X.

$$P(x_i) \equiv P(X = x_i) = \lim_{n \to \infty} \frac{n_i}{n}$$

n παρατηρήσεις της X

 Σ τατιστική Εκτίμηση της p από n παρατηρήσεις της X

$$\hat{p} = n_i/n$$
.

Σημειακή εκτίμηση, διάστημα εμπιστοσύνης, έλεγχος υπόθεσης

Στατιστικές προσεγγίσεις

 $\{x_1,x_2,\ldots,x_n\}$ δείγμα από την τ.μ. X

Κατηγορηματικά δεδομένα: αναλογία ρ;

Αριθμητικά δεδομένα: μέση τιμή μ ; διασπορά σ^2 της κατανομής της X

Γενικά εκτίμηση / έλεγχο για άγνωστη παράμετρος heta

Προσεγγίσεις:

- 1. παραμετρική: υποθέτει γνωστή κατανομή
- 2. μη-παραμετρική: δεν υποθέτει γνωστή κατανομή
- 3. με επαναδειγματοληψία για να δημιουργήσει νέα δείγματα και την κατανομή του εκτιμητή.

Σημειακή εκτίμηση

 $\hat{ heta}$: σημειακή εκτίμηση της heta, στατιστικό που υπολογίζεται από το δείγμα, $\{x_1, x_2, ..., x_n\}$ $\hat{\theta} = g(x_1, \dots, x_n)$ extiuntής της θ $\hat{\theta}$ είναι τ.μ. $\{x_1,\ldots,x_n\}$ είναι τ.μ. με ασκ $F_X(x;\theta)$ $\hat{\theta}$ συνάρτηση τ.μ. άρα και η ίδια είναι τ.μ. μέση τιμή: $\mu_{\hat{\theta}} \equiv \mathsf{E}[\hat{\theta}]$ διασπορά: $\sigma_{\hat{\theta}}^2 \equiv \text{Var}[\hat{\theta}]$.

Σημειακή εκτίμηση, Μέση τιμή και διασπορά

Εκτιμητής της μ: δειγματική μέση τιμή ή μέσος όρος

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Εκτιμητής της σ^2 : δειγματική διασπορά

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2} \right).$$

$$\tilde{s}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2.$$

Για μεγάλο η οι δύο εκτιμητές συγκλίνουν στην ίδια τιμή.

Σημειακή εκτίμηση, Βαθμοί ελευθερίας

Βαθμοί ελευθερίας: ελεύθερες (τυχαίες) τιμές στο πρόβλημα.

Δείγμα $\{x_1, x_2, \ldots, x_n\} \Rightarrow \beta$ αθμοί ελευθερίας n

$$s^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2} \right).$$

Στον ορισμό της δειγματικής διασποράς περιλαμβάνεται η \bar{x} .

Δεσμεύονται οι n ελεύθερες τιμές να τηρούν την συνθήκη $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

Οι βαθμοί έλευθερίας στον υπολογισμό της δειγματικής διασποράς είναι n-1.

Σημειακή εκτίμηση, κριτήρια καλών εκτιμητών

Είναι το \bar{x} καλός εκτιμητής της μ ; s^2 ή \tilde{s}^2 για σ^2 ; $\hat{\theta}$ αμερόληπτος εκτιμητής

$$\mathsf{E}(\hat{\theta}) = \theta.$$

μεροληψία: $b(\hat{\theta}) = \mathsf{E}(\hat{\theta}) - \theta$. $\hat{\theta}_1$ πιο αποτελεσματικός από $\hat{\theta}_2$ αν $\sigma_{\hat{\theta}_1}^2 < \sigma_{\hat{\theta}_2}^2$.

- lacktriangle $ar{x}$ αμερόληπτος και ο πιο αποτελεσματικός για μ
- $ightharpoonup s^2$ αμερόληπτος και ο πιο αποτελεσματικός για σ^2
- ightharpoonup $ilde{s}^2$ είναι μεροληπτικός με μεροληψία $b(ilde{s}^2)=-\sigma^2/n$.
- $ightharpoonup n o\infty$: $b(ilde{s}^2) o 0$, $ilde{s}^2$ ασυμπτωτικά αμερόληπτος.

Σημειακή εκτίμηση, κριτήρια καλών εκτιμητών

μέσο τετραγωνικό σφάλμα

$$\mathsf{MSE}[\hat{\theta}] = b(\hat{\theta})^2 + \sigma_{\hat{\theta}}^2 = (\mathsf{E}[\hat{\theta}] - \theta)^2 + \mathsf{E}[\hat{\theta}^2] - (\mathsf{E}[\hat{\theta}])^2 = \mathsf{E}[(\hat{\theta} - \theta)^2]$$

Στον ορισμό των \bar{x} και s^2 δεν κάναμε κάποια υπόθεση για την κατανομή της τ.μ. X και άρα μπορούμε να τις χρησιμοποιήσουμε για οποιαδήποτε τ.μ. X που παρατηρούμε.

Σημειακή εκτίμηση, εκτίμηση μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας δίνει την εκτίμηση που είναι η πιό πιθανή με βάση το δείγμα.

Προϋπόθεση:

- ightharpoonup $F_X(x;\theta)$ γνωστή με θ άγνωστη
- $ightharpoonup \{x_1,\ldots,x_n\}$ ανεξάρτητες

συνάρτηση πιθανόφανειας

$$L(x_1,\ldots,x_n;\theta)=f_X(x_1;\theta)\cdots f_X(x_n;\theta).$$

 $L(x_1,\ldots,x_n;\theta_1)>L(x_1,\ldots,x_n;\theta_2)\Rightarrow \theta_1$ πιο αληθοφανής από θ_2 Η ΄πιό αληθοφανής ΄ τιμή της θ μεγιστοποιεί τη $L(x_1,\ldots,x_n;\theta)$ ή $\log L(x_1,\ldots,x_n;\theta)$.

Σημειακή εκτίμηση, Εκτίμηση μέγιστης πιθανοφάνειας

εκτιμητής μέγιστης πιθανοφάνειας $\hat{\theta}$:

$$\frac{\partial \log L(x_1,\ldots,x_n;\theta)}{\partial \theta}=0.$$

Παράμετροι θ_1,\ldots,θ_m

Συνάρτηση πιθανόφανειας $L(x_1,\ldots,x_n;\theta_1,\ldots,\theta_m)$

εκτιμητές $\hat{\theta}_1,\ldots,\hat{\theta}_m$: βρίσκονται από

$$\frac{\partial \log L(x_1,\dots,x_n;\theta_1,\dots,\theta_m)}{\partial \theta_j} = 0 \quad \text{gia} \quad j=1,\dots,m.$$

Παράδειγμα

 $\{x_1,\ldots,x_n\}$ ανεξάρτητες, $X\sim \mathsf{N}(\mu,\sigma^2)$, σ^2 γνωστή. Εκτίμηση της μ ;

Συνάρτηση πιθανόφανειας

$$L(x_1,\ldots,x_n;\mu)=\left(\frac{1}{2\pi\sigma^2}\right)^{n/2}\exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2\right],$$

$$\log L(x_1,\ldots,x_n;\mu) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2.$$

$$\frac{\partial \log L}{\partial \mu} = 0 \quad \Rightarrow \quad \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0$$

που δίνει τη λύση

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x},$$

Παράδειγμα (συνέχεια)

Έστω και η σ^2 άγνωστη.

$$\frac{\partial \log L}{\partial \sigma^2} = 0 \quad \Rightarrow \quad -\frac{n}{2\sigma^2} + \frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0.$$

Επίλυση συσήματος δύο εξισώσεων

$$\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2.$$

Για κανονική κατανομή οι εκτιμητές μέγιστης πιθανοφάνειας είναι \bar{x} για μ και \tilde{s}^2 για σ^2 .

Εκτίμηση διαστήματος εμπιστοσύνης

Πόσο κοντά είναι η $\hat{\theta}$ στην θ ;

Το διάστημα $[\theta_1,\theta_2]$ περιέχει την θ με κάποια πιθανότητα $1-\alpha$

Θεωρούμε x_1, \ldots, x_n ανεξάρτητες.

Κατανομή του εκτιμητή; $(π.χ. \bar{x} \acute{\eta} s^2)$

Κατανομή της \bar{x} ;

Μέση τιμή της \bar{x} ;

$$\mu_{\bar{x}} \equiv \mathsf{E}(\bar{x}) = \mu$$

 Δ ιασπορά της \bar{x} ;

$$\sigma_{\bar{x}}^2 \equiv \mathsf{Var}(\bar{x}) = \mathsf{Var}\left(\frac{1}{n}\sum_{i=1}^n x_i\right) = \frac{1}{n^2}\sum_{i=1}^n \mathsf{Var}(x_i) = \frac{1}{n^2}(n\sigma^2) = \frac{\sigma^2}{n}.$$

και τυπική απόκλιση ή σταθερό σφάλμα του εκτιμητή $ar{x}$

$$\sigma_{\bar{x}} = \sigma/\sqrt{n}$$

Η μορφή της κατανομής της \bar{x} εξαρτάται από:

- ▶ το μέγεθος του δείγματος n,
- από το αν η κατανομή της X είναι κανονική
- από το αν γνωρίζουμε τη διασπορά της

Διάστημα εμπιστοσύνης μέσης τιμής

- 1. $X \sim N(\mu, \sigma^2) \Rightarrow x_1, \dots, x_n \sim N(\mu, \sigma^2) \Rightarrow \bar{x} \sim N(\mu, \sigma^2/n)$.
- 2. Aν n > 30, από το $KO\Theta \Rightarrow \bar{x} \sim N(\mu, \sigma^2/n)$.

Αλλά ... δε γνωρίζω τη σ^2 . Την αντικαθιστώ με το s^2 . Ισχύει

$$ar{x} \sim \mathcal{N}(\mu, s^2/n)$$
 ή $rac{ar{x} - \mu}{s/\sqrt{n}} \sim \mathcal{N}(0, 1)$? OXI

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}} \sim t_{n-1}, \ n - 1 \ \beta \alpha \theta \mu o i \ \epsilon \lambda \epsilon \nu \theta \epsilon \rho i \alpha \varsigma.$$

Διάστημα εμπιστοσύνης μέσης τιμής

t₁: κατανομή Cauchy, Lorentzian, Breit-Wigner

Για μεγάλα δείγματα δεν υπάρχει διαφορά μεταξύ της κατανομής Student και της τυπικής κανονικής κατανομής.

Παράδειγμα: Αν $\alpha=0.05$ και n-1=24, $t_{24,0.975}=2.064$, το διάστημα [-2.064,2.064] περιέχει την τ.μ. t με πιθανότητα 0.95.

Διάστημα εμπιστοσύνης μέσης τιμής

Για την τυπική κανονική κατανομή:

$$\mathsf{P}(-z_{1-\alpha/2} < z \le z_{1-\alpha/2}) = \Phi(z_{1-\alpha/2}) - \Phi(-z_{1-\alpha/2}) = 1 - \alpha,$$

Αντίστοιχα για t_{n-1}

$$P(-t_{n-1,1-\alpha/2} < t \le t_{n-1,1-\alpha/2}) = 1 - \alpha$$

$$P(-t_{n-1,1-\alpha/2} < \frac{\bar{x} - \mu}{s/\sqrt{n}} \le t_{n-1,1-\alpha/2}) = 1 - \alpha,$$

$$P(\bar{x} - t_{n-1,1-\alpha/2} \frac{s}{\sqrt{n}} < \mu \le \bar{x} - t_{n-1,1-\alpha/2} \frac{s}{\sqrt{n}}) = 1 - \alpha.$$

$$ar{x}\pm t_{n-1,1-lpha/2}rac{s}{\sqrt{n}}$$
 $\acute{\eta}$ $\left[ar{x}-t_{n-1,1-lpha/2}rac{s}{\sqrt{n}}, \quad ar{x}+t_{n-1,1-lpha/2}rac{s}{\sqrt{n}}
ight]$

διάστημα εμπιστοσύνης της μ σε επίπεδο $1 - \alpha$

Παράδειγμα, ασφάλειες των 40 αμπέρ

Μετρήσεις έντασης του ηλεκτρικού ρεύματος στις οποίες κάηκαν 25 ασφάλειες των 40 αμπέρ.

	γ	,		٠, ٦					
40.9	40.3	39.8	40.1	39.0	41.4	39.8	41.5	40.0	40.6
38.3	39.0	40.9	39.1	40.3	39.3	39.6	38.4	38.4	40.7
39.7	38.9	38.9	40.6	39.6					

X: όριο έντασης ηλεκτρικού ρεύματος που καίγονται ασφάλειας των 40 αμπέρ.

$$\bar{x} = \frac{1}{25} \sum_{i=1}^{25} x_i = \frac{1}{25} 995.1 = 39.80$$

$$s^2 = \frac{1}{24} \left(\sum_{i=1}^{25} x_i^2 - 25\bar{x}^2 \right) = \frac{1}{24} (39629 - 25 \cdot 39.80^2) = 0.854.$$

$$n = 25 < 30. X \sim N(\mu, \sigma^2)$$
?

Παράδειγμα (συνέχεια)

 $X \sim N(\mu, \sigma^2)$ δεκτό Κρίσιμη τιμή για $1 - \alpha/2 = 0.975$ και n-1=24:

 $t_{n-1,1-lpha/2}=t_{24,0.975}=$ 2.064 95% διάστημα εμπιστοσύνης για μ

$$39.80 \pm 2.064 \frac{\sqrt{0.854}}{5} \rightarrow [39.42, 40.18].$$

Διάστημα εμπιστοσύνης διασποράς

Για μ , εκτιμητής $ar{x}$ και $t=rac{ar{x}-\mu}{s/\sqrt{n}}\sim t_{n-1}$

Για σ^2 , εκτιμητής s^2 και $\chi^2=rac{(n-1)s^2}{\sigma^2}\sim \mathcal{X}_{n-1}^2$

 χ^2 : άθροισμα τετραγώνων των διαφορών μεταξύ παρατηρούμενων και προσδοκώμενων τιμών διαιρούμενο με τη διασπορά τους Αν οι παρατηρήσεις προέρχονται από την ίδια κατανομή

$$\chi^{2} = \sum_{i=1}^{n} \frac{(x_{i} - \bar{x})^{2}}{\sigma^{2}} \sim \mathcal{X}_{n-1}^{2} \quad s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$
$$\chi^{2} = \frac{(n-1)s^{2}}{\sigma^{2}} \sim \mathcal{X}_{n-1}^{2}.$$

Διάστημα εμπιστοσύνης διασποράς

- ightharpoonup n-1 μικρό: \mathcal{X}_{n-1}^2 ασύμμετρη
- ightharpoonup n-1 μεγάλο: \mathcal{X}_{n-1}^2 προσεγγίζει την κανονική κατανομή.
- ightharpoonup Δύο κρίσιμες τιμές: $\chi^2_{n-1,\alpha/2}$ και $\chi^2_{n-1,1-\alpha/2}$

Διάστημα εμπιστοσύνης διασποράς

$$P(\chi_{n-1,\alpha/2}^2 < \chi^2 < \chi_{n-1,1-\alpha/2}^2) = 1 - \alpha.$$
 $\chi^2 = \frac{(n-1)s^2}{\sigma^2}$

 $(1-\alpha)$ % διάστημα εμπιστοσύνης για σ^2

$$\left[\frac{(n-1)s^2}{\chi^2_{n-1,1-\alpha/2}}, \frac{(n-1)s^2}{\chi^2_{n-1,\alpha/2}}\right].$$

(1-lpha)% διάστημα εμπιστοσύνης για σ

$$\left[\sqrt{\frac{(n-1)s^2}{\chi^2_{n-1,1-\alpha/2}}},\,\sqrt{\frac{(n-1)s^2}{\chi^2_{n-1,\alpha/2}}}\right].$$

Παράδειγμα, ασφάλειες των 40 αμπέρ

Σημειακή εκτίμηση: $s^2 = 0.854 (αμπέρ)^2$.

$$n-1=$$
 24 και $\alpha=$ 0.05 $\Rightarrow \chi^2_{24,\,0.025}=$ 12.4 και $\chi^2_{24,\,0.975}=$ 39.4

95% δ.ε. για τη διασπορά σ^2 του ορίου έντασης

$$\left[\frac{24 \cdot 0.854}{39.4}, \, \frac{24 \cdot 0.854}{12.4}\right] = [0.52, \, 1.65].$$

95% δ.ε. για την τυπική απόκλιση σ του ορίου έντασης

$$[\sqrt{0.52}, \sqrt{1.65}] = [0.72, 1.28],$$

Παράδειγμα (συνέχεια)

Όριο έντασης που καίγονται ασφάλειες των 40 αμπέρ:

μέση τιμή μ : 39.80 \pm 0.38 ή [39.42, 40.18].

τυπική απόκλιση σ: [0.72, 1.28].

Τυπική μέτρηση x_i : $\bar{x} \pm s = 39.80 \pm \sqrt{0.854} = 39.80 \pm 0.925$.

διάστημα 95 % των μετρήσεων:

$$\bar{x} \pm t_{n-1,1-\alpha/2}s = 39.80 \pm 2.064 \cdot 0.925 = 39.80 \pm 1.763$$

Έλεγχος υπόθεσης

Είναι 40 αμπέρ το μέσο όριο που καίγονται οι ασφάλειες ;

Προσεγγίσεις:

- 1. Ανήκει το 40 στο διάστημα εμπιστοσύνης της μ ;
- 2. Μπορούμε να υποθέσουμε $\mu = 40$; \Rightarrow έλεγχος υπόθεσης

Γενικά η διαδικασία ελέγχου μιας στατιστικής υπόθεσης:

- Ορίζουμε τη στατιστική υπόθεση
- Υπολογίζουμε το στατιστικό ελέγχου
- Αποφασίζουμε με βάση το στατιστικό από το δείγμα

Η₀: μηδενική υπόθεση που θέτουμε υπό έλεγχο

 H_1 : εναλλακτική υπόθεση που δεχόμαστε αν απορρίψουμε την H_0

Δυνατές αποφάσεις ελέγχου

- 1. Σωστή απόφαση: P(αποδοχή της H₀ | H₀ σωστή) = 1 α
- Σφάλμα τύπου II: P(αποδοχή της H₀ | H₀ λανθασμένη) = β
- 3. Σφάλμα τύπου Ι, σημαντικότητα ελέγχου: $P(\alpha \pi \delta \rho \rho \iota \psi \eta \ \tau \eta \varsigma \ H_0 \ | \ H_0 \ \sigma \omega \sigma \tau \eta) = \alpha$
- 4. $\Sigma \omega \sigma \tau \eta$ απόφαση, ισχύς ελέγχου: $P(\alpha \pi \delta \rho \rho \iota \psi \eta \ \tau \eta \varsigma \ H_0 \ | \ H_0 \ \lambda \alpha \nu \theta \alpha \sigma \mu \acute{\epsilon} \nu \eta) = 1 \beta$

	Αποδοχή της Η0	Απόρριψη της Η ₀
Η ₀ σωστή	ορθή απόφαση $(1-lpha)$	σφάλμα τύπου Ι $(lpha)$
Η ₀ λανθασμένη	σφάλμα τύπου ΙΙ (eta)	ορθή απόφαση $(1-eta)$

Έλεγχος μέσης τιμής

 $H_0: \mu = \mu_0$

 H_0 ορθή όταν η μ βρίσκεται ΄κοντά΄ στο μ_0

Εκτιμητής της μ: \bar{x}

Τιμές του \bar{x} 'κοντά' στο $\mu_0 \Rightarrow$ απόφαση ορθότητας της H_0

 \Rightarrow ανήκουν στην περιοχή αποδοχής της H_0

Τιμές της \bar{x} 'μακριά' από το μ_0

 \Rightarrow σχηματίζουν την περιοχή απόρριψης R.

'κοντά' / 'μακριά' καθορίζεται από το α (ουρές της κατανομής του \bar{x})

Έχει δειχθεί: $X \sim \mathsf{N}(\mu, \sigma^2) \lor n > 30 \Rightarrow t = rac{ar{x} - \mu}{s/\sqrt{n}} \sim t_{n-1}$

Απορριπτική περιοχή $R = \{t \, | \, |t| > t_{n-1,1-\alpha/2}\}.$

Έλεγχος μέσης τιμής, απόφαση ελέγχου

 \tilde{t} : τιμή του στατιστικού t από το δείγμα,

 $ilde{t} \in R \Rightarrow$ απόρριψη της H_0 για lpha

 $ilde{t}
otin R\Rightarrow$ μη-απόρριψη της H_0 για lpha

p-τιμή: η μικρότερη τιμή του α που δίνει απόρριψη της H_0

p-τιμή: η πιθανότητα να παρατηρήσουμε για το t μια τιμή τόσο ακραία όσο η \tilde{t} όταν ισχύει η H_0 .

$$p = 2 P(t > |\tilde{t}|) = 2 (1 - P(t < |\tilde{t}|)).$$

Όσο πιο κοντά στο 0 είναι η p-τιμή τόσο πιο σίγουρη είναι η απόρριψη της H_0

Η p-τιμή υπολογίζεται εύκολα από την ασκ της κατανομής t_{n-1}

Μονόπλευρος έλεγχος

Μονόπλευρος έλεγχος

$$H_0: \mu \geq \mu_0 \ (H_0: \mu = \mu_0)$$

 $H_1: \mu < \mu_0$

... αν γνωρίζουμε πως δε μπορεί $\mu>\mu_0$.

Η επιλογή μονόπλευρου ή δίπλευρου ελέγχου εξαρτάται από την έρευνα που θέλουμε να κάνουμε και από το κατά πόσο μπορούμε να προβλέψουμε το αποτέλεσμα της έρευνας.

Παράδειγμα, ασφάλειες των 40 αμπέρ

 $H_0: μ = 40$ και $H_1: μ \neq 40$.

Στατιστικό ελέγχου:
$$t=rac{ar{x}-40}{s/\sqrt{n}}\sim t_{n-1}$$
.

$$α = 0.05$$
 και $t_{n-1,1-α/2} = t_{24,0.975} = 2.064$

$$R = \{t \mid t < -2.064 \lor t > 2.064\} = \{t \mid |t| > 2.064\}.$$

Τιμή του στατιστικού από το δείγμα ($\bar{x}=39.8,\ s=0.925$)

$$\tilde{t} = \frac{39.8 - 40}{0.925/5} = -1.081$$

 $ilde{t}
otin R \Rightarrow \mu$ η-απόρριψη της H_0

$$p = 2(1 - P(t \le |\tilde{t}|)) = 2(1 - P(t \le 1.081)) = 2(1 - 0.855) = 0.29$$

Παράδειγμα (συνέχεια)

Αν οι ασφάλειες δε μπορούν να καίγονται σε υψηλότερο όριο από 40 αμπέρ:

$$H_0: μ \ge 40$$
 και $H_1: μ < 40$

$$R = \{t \mid t < t_{n-1,\alpha/2}\} = \{t \mid t < t_{24,0.05}\} = \{t \mid t < -1.71\}.$$

$$ilde{t} = -1.081
otin R \; \Rightarrow \mu$$
η-απόρριψη της $extsf{H}_0$

$$p = P(t \le \tilde{t}) = 0.145$$

Έλεγχος διασποράς

 $H_0: \sigma^2 = \sigma_0^2$ με H_1 για δίπλευρο ή μονόπλευρο έλεγχο.

εκτιμητής s^2 και στατιστικό ελέγχου: $\chi^2 \equiv \frac{(n-1)s^2}{\sigma_0^2} \sim \mathcal{X}_{n-1}^2$

- 1. $H_1: \sigma^2 \neq \sigma_0^2$, $R = \{\chi^2 | \chi^2 < \chi^2_{n-1,\alpha/2} \lor \chi^2 > \chi^2_{n-1,1-\alpha/2} \}$.
- 2. $H_1: \sigma^2 < \sigma_0^2$, $R = \{\chi^2 | \chi^2 < \chi_{n-1,\alpha}^2\}$.
- 3. $H_1: \sigma^2 > \sigma_0^2$, $R = \{\chi^2 | \chi^2 > \chi_{n-1,1-\alpha}^2\}$.

Στατιστικό ελέγχου από το δείγμα $\tilde{\chi}^2$

Αν $\tilde{\chi}^2 \in R \Rightarrow \mathsf{H}_0$ απορρίπτεται.

- 1. $H_1: \sigma^2 \neq \sigma_0^2$, $p = P(\chi^2 < \tilde{\chi}^2 \lor \chi^2 > \tilde{\chi}^2)$.
- 2. $H_1: \sigma^2 < \sigma_0^2, \quad p = P(\chi^2 < \tilde{\chi}^2).$
- 3. $H_1: \sigma^2 > \sigma_0^2$, $p = P(\chi^2 > \tilde{\chi}^2)$.

Παράδειγμα, ασφάλειες των 40 αμπέρ

Έλεγχος για $\alpha=0.01$ αν $\sigma=0.7$

$$H_0: \sigma^2 = 0.49, \quad H_1: \sigma^2 \neq 0.49$$

$$n = 25$$
, $s^2 = 0.49$ (αμπέρ)², $\alpha = 0.01$
 $\Rightarrow \chi^2_{24.0.005} = 9.886$ και $\chi^2_{24.0.995} = 45.558$.

Περιοχή απόρριψης: $R = \{\chi^2 \mid \chi^2 < 9.886 \lor \chi^2 > 45.558\}$

$$\tilde{\chi}^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{24 \cdot 0.854}{0.49} = 41.829$$

 $\tilde{\chi}^2 \notin R \Rightarrow \mu$ η-απόρριψη της H_0 για $\alpha = 0.01$.

$$p = P(\chi^2 < \tilde{\chi}^2 \lor \chi^2 > \tilde{\chi}^2) = P(\chi^2 > 41.829)$$

= 1 - P(\chi^2 < 41.829) = 1 - 0.986 = 0.014.

Έλεγχος καταλληλότητας \mathcal{X}^2

Προσαρμόζονται τα δεδομένα σε κάποια γνωστή κατανομή;

Έλεγχος καλής προσαρμογής \mathcal{X}^2

 H_0 : Η κατανομή της παρατηρούμενης X είναι '...'

Έλεγχος καταλληλότητας \mathcal{X}^2

Αριθμητικές παρατηρήσεις \Rightarrow διακριτικοποίηση

 O_{j} , $j=1,\ldots,K$: παρατηρούμενες διακριτές τιμές

 $extbf{\textit{E}}_{j},\,j=1,\ldots, extbf{\textit{K}}$: αναμενόμενες διακριτές τιμές

$$\chi^{2} = \sum_{j=1}^{K} \frac{(O_{j} - E_{j})^{2}}{E_{j}}$$

X διακριτή: $E_j = nf_X(x_i) = nP(X = x_i)$.

X συνεχής: $E_j = n(F_X(x_j^u) - F_X(x_j^l)),$

 x_j^I και x_j^μ είναι το κάτω και πάνω άκρο του διαστήματος j.

Έλεγχος καταλληλότητας \mathcal{X}^2

Βαθμοί ελευθερίας της \mathcal{X}^2 : K-c,

X διακριτή:
$$c=1$$
 $(\sum_{j=1}^K E_j = n)$

X συνεχής: πλήθος παραμέτρων κατανομής $+ \ 1 \pmod{\sum_{j=1}^K E_j} = n$

Αν Η $_0$ είναι ορθή $\chi^2 \sim \mathcal{X}_{\mathcal{K}-c}^2$

Απόφαση ελέγχου:

•
$$\tilde{\chi}^2 \in R = \{\chi^2 | \chi^2 > \chi^2_{K-c,1-\alpha/2}\}$$
 ?

•
$$p = P(\chi^2 > \tilde{\chi}^2)$$
 ?

Παράδειγμα, εξάρες

Ο παίχτης πετάει το ζάρι τρεις φορές και κερδίζει ανάλογα με το πλήθος των εξαριών που φέρνει.

Ένας παίχτης παίζει 100 φορές

πλήθος εξαριών	παρατηρούμενο πλήθος
0	47
1	36
2	14
3	4

Πιθανότητα 'επιτυχίας' (εξάρι): p=1/6, m=3 ρίψεις

X: επιτυχίες στις m ρίψεις, X=0,1,2,3

 H_0 : $X \sim B(m, p)$, Ειδικά: H_0 : $X \sim B(3, 1/6)$.

Παράδειγμα (συνέχεια)

Av
$$X \sim B(3, 1/6)$$
: $P(X = 0) = 0.579$, $P(X = 1) = 0.347$, $P(X = 2) = 0.069$, $P(X = 3) = 0.005$. $E_j = n \cdot P(X = x_j)$

πλήθος εξαριών		παρατηρούμενο πλήθος	αναμενόμενο πλήθος
	0	47	57.9
	1	36	34.7
	2	14	6.9
	3	4	0.5

$$\tilde{\chi}^2 = \sum_{i=1}^K \frac{(O_j - E_j)^2}{E_j} = 36.28$$

Κρίσιμη τιμή της \mathcal{X}_3^2 για $\alpha = 0.05$: $\chi^2_{3,0.95} = 7.815$.

$$p = P(\chi^2 > \tilde{\chi}^2) = P(\chi^2 > 36.28) = 6.5 \cdot 10^{-8}!!!$$