Etajele amplificării cu TMOS (proiect)

Lazăr – Alexandru Solcan

Componența proiectului:

- -un buton popupmenu cu diferitele configurații ale etajului de amplificare cu TMOS + imaginea cu circuitul pentru configurația aleasă;
- -un grup de butoatene care conferă controlul manual ai anumitor parametrii ai circuitului într-un anumit range $\{VDD(14V-20V), Beta(0,25mA/V^2-1,5mA/V^2), RG1(1M\Omega-4M\Omega), RG2(3M\Omega-6M\Omega) și RD(5K\Omega-20K\Omega)\}$
- -2 butoane de tip pushbutton care deschid o interfata grafică nouă în care se găsesc schemele aferente de curent continuu, respect schemele de semnal mic;
- -2 grupuri de butoane în care găsim parametrii punctului static de functionare Q(Id[mA];Vds[V]), respect parametrii la semnal mic: gm[mS], Rin[M Ω],Rout[K Ω] și Av(mărime adimensională);
- -1 grup de butoane din care putem modifica parametrii semnalelor alcătuit din 3 butoane de tip text si 3 butoane de tip edit;
- -1 reprezentare grafică a semnalului de ieșire în funcție de semnalul de intrare;

Ecuații utilizate

Notă:

Pentru fiecare configurație am considerat că se cunoaște curentul Id!

Pentru configurația sursă comună:

Punctul static de funcționare:

- Vgs = Vp + sqrt(Id/Beta)
- Vds = Vdd (Rd*Id) (Rs*Id)

Parametrii de semnal mic:

- Rds = Va/Id
- gm = 2*sqrt(Beta*Id)
- Rin = (Rg1*Rg2)/(Rg1+Rg2)
- Rout = (rds*Rd)/(rds+Rd)
- Av = -gm*Rout

Pentru configurația grilă comună:

Punctul static de funționare:

- Vgs = Vp + sqrt(Id/Beta)
- Vds = Vdd (Rd*Id) + Vgs

Parametrii de semnal mic:

- rds=Va/ID;
- gm = 2*sqrt(BETA*ID);
- Rin = $(1/gm)*10^{(-6)}$;
- Rout = (rds*RD)/(rds+RD);
- Av = gm*Rout;

Pentru configurația drenă comună:

Punctul static de funționare:

- vgs = Vp + sqrt(ID/BETA);
- vds = VDD-ID*RS;

Parametrii de semnal mic:

- gm = 2*sqrt(BETA*ID);
- Rin = (RG1*RG2)/(RG1+RG2);
- Rout = ((RS*(1/gm))/(RS+(1/gm)));
- Av= (gm*RS)/(1+(gm*RS))