Отчет о выполнении лабораторной работы 3.2.6 Изучение гальванометра

Г. А. Багров

ФРКТ МФТИ, 01.10.2022

Цель работы: изучение работы высокочувствительного зеркального гальванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического заряда.

В работе используются: зеркальный гальванометр с осветителем и шкалой, источник постоянного напряжения, делитель напряжения, магазин сопротивлений, эталонный конденсатор, вольтметр, переключатель, ключи, линейка.

Теоретические сведения:

Баллистический гальванометр — электроизмерительный прибор магнитоэлектрической системы, отличающийся высокой чувствительностью к току и сравнительно большим периодом свободных колебаний. Главной частью высокочувствительного гальванометра магнитоэлектричес койсистемы является подвешенная на вертикальной нити рамка, помещённая в полепостоянного магнита (рис. 1).

Рис. 1: Рамка с током в магнитном поле

На помещённую в магнитное поле обтекаемую током рамку гальванометра действуют момент закрученной нити, момент магнитных сил и тормозящий момент (зависит от сил сопротивления воздуха и от вихревых токов). Учитывая все эти моменты, уравнение движения рамки принимает вид

$$\ddot{\varphi} + 2\gamma \dot{\varphi} + \omega_0^2 \varphi = KI,$$

где γ — коэффициент затухания подвижной системы гальванометра, ω_0 — собственная частота колебаний рамки, I - сила тока, K - коэффициент пропорциональности.

Динамическая постоянная гальванометра определяется при пропускании через рамку постоянного тока:

$$C_I = \frac{I}{\varphi} = \frac{D}{BSN},$$

где B - индукция магнитного поля в рамке, S - площадь одного витка рамки, D - модуль кручения нити.

При пропускании коротких импульсов тока через баллистический гальванометр начальная скорость движения рамки пропорциональна электрическому заряду, прошедшему через рамку за всё время импульса. Отношение баллистических постоянных в критическом и свободном режимах равно e.

1) Определение динамической постоянной:

Рис. 2: Схема установки для работы гальванометра в стационарном режиме

Постоянное напряжение U=1,5 В снимается с блока питания и измеряется вольтметром V. Ключ K_3 позволяет менять величину тока через гальванометр Γ , делитель напряжения - менять величину тока в широких пределах. Ключ K_2 служит для включения гальванометра, кнопка K_1 – для его успокоения. Магазин сопротивлений R позволяет менять режим работы гальванометра от колебательного до апериодического.

При малых R_1 сила тока, протекающего через гальванометр, может быть вычислена по формуле

$$I = U_0 \frac{R_1}{R_2} \frac{1}{R + R_0}. (1)$$

Динамическую постоянную вычисляется по формуле

$$C_I = \frac{2aI}{x},\tag{2}$$

где a - расстояние от шкалы до зеркальца.

2) Определение критического сопротивления гальванометра:

Выполняется с помощью той же цепи, что и на рис. 1. При больших R движение рамки имеет колебательный характер, с уменьшением R затухание увеличивается, и колебательный режим переходит в апериодический.

Найдём логарифмический декремент затухания колебаний рамки Θ .

$$\Theta = \ln \frac{x_n}{x_{n+1}} = \gamma T = \frac{2\pi\gamma}{\sqrt{\omega_0^2 - \gamma^2}} = \frac{2\pi R_3}{\sqrt{(R_0 + R)^2 - R_3^2}}$$
(3)

где введено обозначение:

$$R_3 = \frac{(BSN)^2}{2\sqrt{JD}} = R_0 + R_{\mathrm{\kappa p}}$$

Тогда при $R=R_{\rm kp}$ выполняется: $\Theta \to \infty$.

Преобразуя (3) получим

$$\frac{1}{\theta^2} = \frac{(R+R_0)^2}{4\pi^2 R_3^2} - \frac{1}{4\pi^2} \tag{4}$$

Из (3) можно получить уравнение прямой в координатах $X=(R_0+R)^2$ и $Y=1/\Theta^2$:

$$\frac{1}{\theta^2} = \frac{(R_0 + R)^2}{4\pi^2 R_2^3} - \frac{1}{4\pi^2}$$

Тогда

$$R_{\rm Kp} = \frac{1}{2\pi} \sqrt{\frac{\Delta X}{\Delta Y}} - R_0 \tag{5}$$

3) Определение баллистической постоянной и критического сопротивления гальванометра, работающего в баллистическом режиме:

Для изучения работы гальванометра в режиме измерения заряда используется схема, представленная на рис. 2.

Рис. 3: Схема установки для определения баллистической постоянной

При нормальном положении кнопки K_0 конденсатор C заряжается до напряжения

$$U_c = \frac{R_1}{R_2} U_0$$

Заряд конденсатора равен

$$q = \frac{R_1}{R_2} U_0 C$$

При нажатии на ключ K_0 конденсатор отключается от источника постоянного напряжения и подключается к гальванометру. К моменту замыкания ключа K_4 весь заряд успевает пройти через гальванометр, рамка получает начальную скорость. Баллистическая постоянная гальванометра определяется при критическом сопротивлении

$$C_{Qcr} = \frac{q}{\varphi_{maxkr}} = 2a \frac{R_1}{R_2} \frac{U_0 C}{l_{maxkr}} \tag{6}$$

Следует помнить, что наблюдать колебания рамки при полном отсутствии затухания, конечно, невозможно, т. к. даже при разомкнутой внешней цепи (бесконечное сопротивление) остаётс я трение в подвеске и трение рамки о воздух. Величину максимального отклонения гальванометра без затухания ϕ_0 можно, однако, рассчитать, если при разомкнутой цепи измерены максимальное отклонение рамки ϕ_1 и логарифмический декремент затухания θ_0 : $\phi_0 = \phi_1 \cdot e^{0.25\theta_0}$ или $l_0 = l_1 \cdot e^{0.25\theta_0}$.

Рис. 4: Рабочий стол с установкой (в разобранном состоянии)

Измерения и обработка данных

1) Настроим осветитель гальванометра, соберем электрическую цепь согласно рис.1 для измерений в стационарном (токовом) режиме. Зафиксируем константы установки в таблицу 1. Делитель может быть изменён, но изначально зафиксируем его значение. В п.4 будем его менять, ориентируясь на удобство снятия измерений.

Константа	Значение
U_0	1,38 B
R_0	580 Ом
R_2	10 кОм
Делитель $\frac{R_1}{R_2}$	$\frac{1}{2000}$
2a	2,2 м

Таблица 1: неизменные параметры установки

2) Определение динамической постоянной ${\cal C}_I$ в стационарном режиме гальванометра.

Измерим зависимость отклонения зайчика x от сопротивления магазина R. Угол отклонения рамки будем измерять c помощью осветителя, зеркальца и шкалы, находящейся на расстоянии a от зеркальца. По формуле (1) найдём значения силы тока, соответствующие измеренным значениям отклонения x (см. табл. 2).

x, MM	126	86	64	54	45	38	35	30	26
σ_x , MM	5	0,5	5	5	5	5	5	5	5
R, кОм	10	15	20	25	30	35	40	45	50
I, нА	65,2	33,5	44,3	27,0	22,6	17,0	19,4	15,1	13,6
σ_I , нА	0,9	0,5	0,6	0,4	0,3	0,2	0,3	0,2	0,2

Таблица 2: Результаты измерений x(R)

Рис. 5: График зависимости I=f(x)

Из графика получим, что
$$\frac{C_I}{2a}=0,52\pm0,08~\frac{\text{нA}}{\text{мм}}$$

Тогда динамическая постоянная гальванометра $C_I=1,14\pm0,18$ $\frac{\text{HA}\cdot\text{M}}{\frac{\text{MM}}{\text{MM}}}$ Чувствительность гальванометра к току $S_I=\frac{1}{C_I}=0,88\pm0,14$ $\frac{\frac{\text{MA}\cdot\text{M}}{\text{MM}}}{\text{HA}\cdot\text{M}}$

3) Определение критического сопротивления $R_{\rm kp}$ подбором.

Используя ту же схему, пронаблюдаем свободные колебания рамки и измерим последовательные отклонения зайчика в одну сторону. Измерим период T_0 свободных колебаний рамки. По формуле (3) расчитаем логарифмический декремент затухания θ_0 разомкнутого гальванометра. Полученные данные занесём в таблицу 3.

R, к O м	x_1,mm	$_{\mathrm{X}_{2},\mathrm{MM}}$	T_0 , c	θ_0
6,0	189	169	5,5	0,11
6,5	177	158	5,1	0,11
7,0	167	150	5,3	0,11

Таблица 3: Результаты измерений периода и декремента

Подберём наибольшее сопротивление магазина R, при котором при размыкании ключа K_3 (см. рис. 3) зайчик не переходит за нулевое значение. Для большей точности каждый раз будем подбирать положение делителя так, чтобы зайчик отклонялся почти на всю шкалу. Получим

$$R_{\rm kp} \approx 4,7 \ {
m кOm}$$

4) Определение критического сопротивления $R_{\rm kp}$ по зависимости логарифмического декремента затухания от сопротивления магазина.

Аналогично началу п.3 проведём измерения для различных значений сопротивления магазина. При помощи формулы (5) найдём логарифмический декремент затухания θ для каждого R (см. табл. 4).

R, кОм	x_n , MM	x_{n+1} , MM	Θ	$1/\Theta^2$	σ_{1/Θ^2}	$(R+R_0)^2$ кОм ²
15,0	78	09	2,16	0,21	0,02	242,7
16,0	79	10	2,07	0,23	0,02	274,9
17,0	79	11	1,97	0,26	0,02	309,1
18,0	78	13	1,79	0,31	0,02	345,3
19,0	76	14	1,69	0,35	0,02	383,6
20,0	74	14	1,67	0,36	0,02	423,8
21,0	74	15	1,60	0,39	0,02	466,0
22,0	74	16	1,52	0,43	0,03	510,2
25,0	70	17	1,42	0,50	0,03	654,9
27,0	69	20	1,24	0,65	0,04	761,3
29,0	66	20	1,19	0,70	0,04	875,8
31,0	64	22	1,07	0,88	0,06	997,2
34,0	61	22	1,02	0,96	0,06	1194,9
37,0	57	22	0,95	1,10	0,08	1411,5
40,0	55	23	0,87	1,32	0,10	1645,2
43,0	53	23	0,83	1,43	0,12	1895,8
46,0	49	23	0,76	1,75	0,16	2167,5
49,0	47	23	0,71	1,98	0,19	2458,2

Таблица 4: Измерение зависимости Θ от R

Рис. 6: График зависимости $1/\Theta^2 = f((R_0 + R)^2)$

Из графика
$$\frac{\Delta X}{\Delta Y} = 1160 \pm 10$$
к
Ом², откуда по формуле (5)

 $R_{
m \kappa p} = 4,8 \pm 0,3 \,\, {
m кOm}$

5) Определение баллистической переменной и критического сопротивления в баллистическом режиме гальванометра.

Соберем схему по рис. 3. Зафиксируем ёмкость C=2 мк Φ , положение делителя $R_1/R_2=1/2$. Измерим отклонение первого отброса в режиме свободных колебаний (бесконечное сопротивление) $l_0=190$ мм. Измерим зависимость первого отброса зайчика от сопротивления (см. табл.5)

R, кОм	l_{max} , mm	$\sigma_{l_{max}}$, MM	$(R+R_0)^{-1}$, 10^6 Om^{-1}
50	160	5	2,0
40	153	5	2,5
30	136	5	3,3
25	132	5	3,9
20	128	5	4,9
15	116	5	6,4
10	95	5	9,4
5	69	5	17,9

Таблица 5: Исследуем зависимость между l_{max} и R

$$l_{max} = f[(R_0 + R)^{-1}]$$

Рис. 7: Зависимость $l_{max} = f[(R_0 + R)^{-1}]$

Определим значение $R_{\rm kp}$ по графику, учитывая, что значение максимального отклонения в критическом режиме в e раз меньше, чем в режиме свободных колебаний. Найдём $l_m ax = l_0 \cdot e^{0.25\theta_0}$, $\theta_0 = 0, 11$ из п.3.

Зная зависимость $l_{max} = f[(R_0 + R)^{-1}]$ получим, что

$$R_{\text{KD}} = R(l_{max}/e) = R(124 \text{ мм}) = 5,0 \pm 0,3 \text{ кОм}$$

Определим баллистическую постоянную гальванометра $C_{Q_{\mathrm{kp}}}\left[\frac{\mathrm{K}}{\mathrm{_{MM/M}}}\right]$:

$$C_{Q_{\mathrm{Kp}}} = \frac{q}{\varphi_{max\;\mathrm{Kp}}} = 2a\frac{R_1}{R_2}\frac{CU_0}{l_{max\;\mathrm{Kp}}} = 2,45\pm0,42\;\mathrm{M}\cdot\mathrm{HK/MM}$$

Время релаксации $t=R_0C=1,16\cdot 10^{-3}~{\rm c}\ll T_0=5,3~{\rm c}$

Выводы

В данной работе были найдены параметры гальванометра: значения динамической постоянной гальванометра, критического сопротивления тремя способами и баллистической постоянной. Измерения $R_{\rm kp}$ совпадают с учетом погрешности. Наибольшая погрешность в третьем эксперименте, так как большой вклад в погрешность дает скорость реакции человека (отклонения зайчика происходят быстро, необходимо успевать замыкать ключ и считывать значения). Результаты сведём в таблицу:

N_{ycr}	R_0, O_{M}		$R_{\rm \kappa p}$		C_I	$C_{Q_{Kp}}$
		Подбор	метод $\frac{1}{\Theta^2}$	Балл. метод		
1	560	4,7	$4,8\pm0,3$ кОм	$5,0\pm0,3$ кОм	$1,14 \pm 0,18 \frac{\text{HA} \cdot \text{M}}{\text{MM}}$	$2,45\pm0,42~\mathrm{M}\cdot\mathrm{HK/MM}$

Таблица 6: Результаты