1.绪论

(c) 大0记号

Mathematics is more in need of good notations than of new theorems.

- Alan Turing

好读书不求甚解 每有会意,便欣然忘食 —陶渊明

邓俊辉

deng@tsinghua.edu.cn

渐进分析:大0记号

❖ 回到原先的问题:随着问题规模的增长,计算成本如何增长?

注意:这里更关心足够大的问题,注重考察成本的增长趋势

❖ 渐进分析:在问题规模足够大后,计算成本如何增长?

Asymptotic analysis: 当n >> 2后,对于规模为n输入,算法

需执行的基本操作次数:T(n) = ?

需占用的存储单元数:S(n) = ?

//通常可不考虑,为什么?

渐进分析:大∂记号

❖大0记号(big-Ø notation)

//Paul Bachmann, 1894

T(n)

$$\sqrt{5n \cdot [3n \cdot (n+2) + 4] + 6} < \sqrt{5n \cdot [6n^2 + 4] + 6} < \sqrt{35n^3 + 6} < 6 \cdot n^{1.5} = O(n^{1.5})$$

❖与T(n)相比,f(n)更为简洁,但依然反映前者的增长趋势

常系数可忽略: $O(f(n)) = O(c \times f(n))$

低次项可忽略: $O(n^a + n^b) = O(n^a)$, a > b > 0

f(n) ↑ ______

r

渐进分析:其它记号

```
❖ T(n) = \Omega( f(n) ):
∃ c > 0, 当 n >> 2 后, 有 T(n) > c·f(n)
```

$$T(n) = \Theta(f(n))$$
:

 $\exists c_1 > c_2 > 0$, 当 n >> 2 后, 有 $c_1 \cdot f(n) > T(n) > c_2 \cdot f(n)$

r

0(1)

❖常数 (constant function)

- ❖ 这类算法的效率最高
- ❖ 什么样的代码段对应于常数执行时间?
 - 一定不含循环?

一定不含分支转向?

一定不能有(递归)调用?

if
$$(2 == (n * n) % 5) 01(n);$$

//总不能奢望不劳而获吧

//应具体分析

O(log^cn)

❖ 对数 Ø(logn)

 $\ln n \mid \lg n \mid \log_{100} n \mid \log_{2013} n$

*常底数无所谓

$$\forall$$
 a, b > 0, $\log_a n = \log_b \cdot \log_b n = \Theta(\log_b n)$

*常数次幂无所谓

$$\forall$$
 c > 0, $\log n^c = c \cdot \log n = \Theta(\log n)$

❖ 对数多项式 (ploy-log function)

$$123*\log^{321}n + \log^{105}(n^2 - n + 1) = \Theta(\log^{321}n)$$

❖ 这类算法非常有效,复杂度无限接近于常数

$$\forall$$
 c > 0, $\log n = O(n^c)$

$O(n^c)$

❖多项式 (polynomial function)

$$100n + 200 = O(n)$$

$$(100n - 500)(20n^2 - 300n + 2013) = O(n \times n^2) = O(n^3)$$

$$(2013n^2 - 20)/(1999n - 1) = O(n^2/n) = O(n)$$
一般地: $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n + a_0 = O(n^k)$, $a_k > 0$

- ❖线性(linear function):所有O(n)类函数
- ❖从Ø(n)到Ø(n²):编程习题主要覆盖的范围
- ❖幂: [$(n^{2013} 24n^{2009})^{1/3} + 512n^{567} 1978n^{123}$] $^{1/11} = O(n^{61})$
- ❖ 这类算法的效率通常认为已可令人满意,然而...

这个标准是否太低了?

//P难度!

$\mathcal{O}(2^n)$

❖指数(exponential function): T(n) = aⁿ

- ❖ 这类算法的计算成本增长极快,通常被认为不可忍受
- ❖从Ø(nc)到Ø(2n),是从有效算法到无效算法的分水岭
- ❖ 很多问题的∅(2°)算法往往显而易见 然而,设计出∅(n°)算法却极其不易 甚至,有时注定地只能是徒劳无功
- ❖ 更糟糕的是,这类问题要远比我们想象的多得多...

- 2-
- Subset ❖【问题描述】
 - **S包含n个正整数**, ΣS = 2m S是否有子集T, 满足ΣT = m?
- ❖【选举人制】
 各州议会选出的选举人团投票
 而不是由选民直接投票
 50个州加1个特区,共538票
 获270张选举人票,即可当选
- **※但是...**
- ❖ 若共有两位候选人 是否可能恰好各得269票?

55	California	11	Indiana	7	Connecticut	4	Idaho
34	Texas	11	Missouri	7	Iowa	4	Maine
31	New York	11	Tennessee	7	Oklahoma	4	New Hampshire
27	Florida	11	Washington	7	Oregon	4	Rhode Island
21	Illinois	10	Arizona	6	Arkansas	3	Alaska
21	Pennsylvania	10	Maryland	6	Kansas	3	Delaware
20	Ohio	10	Minnesota	6	Mississippi	3	D. C.
17	Michigan	10	Wisconsin	5	Nebraska	3	Montana
15	Georgia	9	Alabama	5	Nevada	3	North Dakota
15	New Jersey	9	Colorado	5	New Mexico	3	South Dakota
15	North Carolina	9	Louisiana	5	Utah	3	Vermont
13	Virginia	8	Kentucky	5	West Virginia	3	Wyoming
12	Massachusetts	8	South Carolina	4	Hawaii		538 = ∑

2-Subset

❖ 直觉算法:逐一枚举S的每一子集,并统计其中元素的总和

❖定理: |2^s| = 2^{|s|} = 2ⁿ

❖ 亦即:直觉算法需要迭代2º轮,并(在最坏情况下)至少需要花费这么多的时间

— 不甚理想!

❖ 还是直觉:应该有更好的办法吧?

❖定理: 2-Subset is NP-complete

一 什么意思?

❖ 意即:就目前的计算模型而言,不存在可在多项式时间内回答此问题的算法

一 就此意义而言,上述的直觉算法已属最优

复杂度层次

0(1)	常数复杂度	再好不过,但难得如此幸运	对数据结构的基本操作			
⊘ (log*n)		在这个宇宙中,几乎就是常数				
Ø(logn)	对数复杂度	与常数无限接近,且不难遇到	有序向量的二分查找 堆、词典的查询、插入与删除			
Ø(n)	线性复杂度	努力目标,经常遇到	树、图的遍历			
<pre>Ø(nlog*n)</pre>		几乎几乎几乎接近线性	某些MST算法			
<pre>∅(nloglogn)</pre>		几乎接近线性	某些三角剖分算法			
⊘ (nlogn)		最常出现,但不见得最优	排序、EU、Huffman编码			
0(n ²)	平方复杂度	所有输入对象两两组合	Dijkstra 算法			
O (n ³)	立方复杂度	不常见	矩阵乘法			
O(n ^c), c常数 多项式复杂度		P问题 = 存在多项式算法的问题				
Ø(2 ⁿ)	指数复杂度	很多问题的平凡算法,再尽可能优化				
• •	•	绝大多数问题 , 并不存在算法				

课后

```
❖ 证明、证否或计算: Fibonacci数 fib(n) = O(2<sup>n</sup>)
                         12n + 5 = O(nlogn)
                         \log^2(n^{1024} - 2*n^6 + 101) = O(?)
                         \log^{d} n = \mathcal{O}(n^{c}), \forall c > 0, d > 1
                         \log^{1.001} n = \mathcal{O}(\log(n^{1001}))
                         (n^2 + 1) / (2n + 3) = O(n)
                         n^{2013} = O(n!)
                         n! = O(n^{2013})
                         2^n = \mathcal{O}(n!)
```

- k-Subset:任给整数集S,判定S可否划分为k个不交子集,其和均为(ΣS)/k证明或证否:(k+1)-Subset的难度不低于k-Subset
- ❖ Google: small-o notation