Лекция 5 Линейные (и не совсем) модели классификации. Часть 2.

Марк Блуменау

На основе материалов Кантонистовой Е.О.

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

Хотим предсказывать не классы, а вероятности классов.

- Линейная регрессия: $a(x, w) = (x, w) = w^T x \in \mathbb{R}$
- Логистическая регрессия: $a(x, w) = \sigma(w^T x)$,

где $\sigma(z) = \frac{1}{1+e^{-z}}$ - сигмоида (логистическая функция),

$$\sigma(z) \in (0;1)$$
.

Логистическая регрессия:
$$a(x, w) = \frac{1}{1 + e^{-wT}}$$

РАЗДЕЛЯЮЩАЯ ГРАНИЦА

Предсказываем y = +1, если $a(x, w) \ge 0.5$.

$$a(x, w) = \sigma(w^T x) \ge 0.5$$
, если $w^T x \ge 0$.

Получаем, что

•
$$y = +1$$
 при $w^T x \ge 0$

•
$$y = -1$$
 при $w^T x < 0$,

т.е. $w^T x = 0$ – разделяющая гиперплоскость.

Логистическая регрессия - это линейный классификатор!

ФУНКЦИЯ ПОТЕРЬ ЛОГИСТИЧЕСКОЙ РЕГРЕССИИ

Возьмем логистическую функцию потерь (log-loss):

$$Q(w) = -\sum_{i=1}^{l} ([y_i = +1] \cdot \log(a(x_i, w)) + [y_i = -1] \cdot \log(1 - a(x_i, w)))$$

ВЕРОЯТНОСТНАЯ ПОСТАНОВКА ЗАДАЧИ

Предположение: В каждой точке x пространства объектов задана вероятность p(y=+1|x)

Объекты с одинаковым признаковым описанием могут иметь разные значения целевой переменной.

Цель: построить алгоритм b(x), в каждой точке x предсказывающий p(y=+1|x).

Комментарий: пока что мы будем решать задачу в общем виде, то есть у нас нет ограничений на вид алгоритма b(x) и на вид функции потерь L(y,b).

ВЕРОЯТНОСТНАЯ ПОСТАНОВКА ЗАДАЧИ

• Пусть объект x встречается в выборке n раз с ответами $\{y_1, \dots, y_n\}$. Хотим, чтобы алгоритм выдавал вероятность положительного класса:

$$b_*(x) = \underset{b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n L(y_i, b) \approx p(y = +1|x)$$

По закону больших чисел при $n \to \infty$ получаем

$$b_*(x) = \underset{b \in \mathbb{R}}{\operatorname{argmin}} E[L(y, b)|x]$$

Отсюда получаем условие на функцию потерь:

$$\operatorname{argmin} E[L(y,b)|x] = p(y = +1|x)$$

ЗАКОН БОЛЬШИХ ЧИСЕЛ

• Закон больших чисел (ЗБЧ) в теории вероятностей — принцип, описывающий результат выполнения одного и того же эксперимента много раз. Согласно закону, среднее значение конечной выборки из фиксированного распределения близко к математическому ожиданию этого распределения.

равдоподобие и log-loss

- Вероятности, которые выдает алгоритм b(x), должны согласовываться с выборкой
- Вероятность того, что в выборке встретится объект x с классом y:

$$b(x)^{[y=+1]} \cdot (1-b(x))^{[y=-1]}$$

Правдоподобие выборки:

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]}$$

ПРАВДОПОДОБИЕ?

- Правдоподобие (likelihood function) это вероятность получить наблюдаемую выборку при конкретном значении параметра.
- Оценка максимального правдоподобия значение параметра, которое максимизирует правдоподобие.
- Если вероятность позволяет нам предсказывать неизвестные результаты, основанные на известных параметрах, то правдоподобие позволяет нам оценивать неизвестные параметры, основанные на известных результатах.
- «Какова вероятность выпадения 12 очков в каждом из ста бросков двух костей?»
- «Насколько правдоподобно, что кости честно, если из ста бросков в каждом выпало 12 очков?»

рФУНКЦИЯ ПОТЕРЬ ДЛЯ ОБУЧЕНИЯ

 Для нахождения оптимальных параметров алгоритма можно воспользоваться методом максимума правдоподобия (ММП):

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]} \to \max_b$$

• Прологарифмируем правдоподобие и поставим перед ним минус, получим следующую эквивалентную задачу:

Это log-loss!

$$-\sum_{i=1}^{t} ([y_i = +1] \log b(x_i) + [y_i = -1] \log(1 - b(x_i))) \to \min_{b}$$

Вывод: логистическая функция потерь корректно предсказывает вероятности.

ВЫБОР АЛГОРИТМА b(x)

- ullet Хотим, чтобы алгоритм b(x) возвращал числа из отрезка [0,1].
- Можно взять $b(x) = \sigma(w^T x)$, где σ любая монотонно неубывающая функция с областью значений [0,1].
- Возьмем *сигмоиду*: $\sigma(z) = \frac{1}{1 + e^{-z}}$

СМЫСЛ (w, x) В ЛОГИСТИЧЕСКОЙ РЕГРЕССИИ

- Логистическая регрессия в каждой точке x предсказывает вероятность того, что x принадлежит положительному классу p(y=+1|x).
- То есть $p(y = +1|x) = \frac{1}{1 + e^{-w^T x}}$. Отсюда можно выразить $(w, x) = w^T x$:

$$(w, x) = w^T x = \log \frac{p(y = +1|x)}{p(y = -1|x)}$$

• Величина $\log \frac{p(y=+1|x)}{p(y=-1|x)}$ называется **логарифм отношения шансов (log odds)**. Из формулы видно, что величина может принимать любое значение.

ЛОГАРИФМИЧЕСКАЯ ФУНКЦИЯ ПОТЕРЬ

Утверждение. Логарифмическая функция потерь может быть записана в виде

$$L(b,X) = \sum_{i=1}^{l} \log(1 + e^{-y_i(w,x)})$$

Идея доказательства:

Подставляем явный вид сигмоиды в логарифмическую функцию потерь:

$$-\sum_{i=1}^{t} ([y_i = +1] \log \sigma(w^T x_i) + [y_i = -1] \log (1 - \sigma(w^T x_i))) \to \min_{w}$$

НАИВНЫЙ БАЙЕСОВСКИЙ КЛАССИФИКАТОР

НАИВНЫЙ БАЙЕСОВСКИЙ КЛАССИФИКАТОР

Наивный байесовский классификатор — это алгоритм классификации, основанный на теореме Байеса с допущением о независимости признаков.

Пример: фрукт может считаться яблоком, если:

- 1) он красный
- 2) круглый
- 3) его диаметр составляет порядка 8 см

Предполагаем, что признаки вносят независимый вклад в вероятность того, что фрукт является яблоком.

ТЕОРЕМА БАЙЕСА

Теорема Байеса:

$$P(c|x) = \frac{P(x|c) \cdot P(c)}{P(x)}$$

- P(c|x) вероятность того, что объект со значением признака x принадлежит классу c.
- P(c) априорная вероятность класса c.
- P(x|c) вероятность того, что значение признака равно x при условии, что объект принадлежит классу c.
- P(x) априорная вероятность значения признака x.

ПРИМЕР РАБОТЫ БАЙЕСОВСКОГО АЛГОРИТМА

Пример: на основе данных о погодных условиях необходимо определить, состоится ли матч.

• Преобразуем набор данных

в следующую таблицу:

Weather	No	Yes
Overcast	0	4
Rainy	3	2
Sunny	2	3
Grand Total	5	9

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

ПРИМЕР РАБОТЫ БАЙЕСОВСКОГО АЛГОРИТМА

Решим задачу с помощью теоремы Байеса:

$$P(Yes|Sunny) = P(Sunny|Yes) \cdot P(Yes)/P(Sunny)$$

Таб	лица часто	DΤ		
Weather	No	Yes	:	
Overcast	0	4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
Grand Total	5	9		
	=5/14	=9/14	Ī	
	0.36	0.64		

•
$$P(Sunny|Yes) = \frac{3}{9}, P(Sunny) = \frac{5}{14}, P(Yes) = \frac{9}{14}.$$

•
$$P(Yes|Sunny) = \frac{3}{9} \cdot \frac{9}{14} : \frac{5}{14} = \frac{3}{5} = 0.6 \Rightarrow 60\%.$$

В СЛУЧАЕ НЕСКОЛЬКИХ ПРИЗНАКОВ

Пусть $x_1, ..., x_n$ - признаки объекта, y – целевая переменная.

Тогда теорема Байеса записывается в виде

$$P(y|x_1,...,x_n) = \frac{P(x_1|y)P(x_2|y)...P(x_n|y)P(y)}{P(x_1)P(x_2)...P(x_n)}.$$

Вероятности в правой части формулы вычисляются с помощью частотных таблиц, как и в одномерном случае.

БАЙЕСОВСКИЙ АЛГОРИТМ ДЛЯ КЛАССИФИКАЦИИ

Плюсы и минусы:

- + классификация быстрая и простая
- + в случае, если выполняется предположение о независимости, классификатор показывает очень высокое качество
- если в тестовых данных присутствует категория, не встречавшаяся в данных для обучения, модель присвоит ей нулевую вероятность

Идея: схожие объекты находятся близко друг к другу в пространстве признаков.

Чтобы классифицировать новый объект, нужно:

- Вычислить расстояние до каждого из объектов обучающей выборки.
- Выбрать к объектов обучающей выборки, расстояние до которых минимально.
- Класс классифицируемого объекта это класс, наиболее часто встречающийся среди к ближайших соседей.

Число ближайших соседей k – гиперпараметр метода.

Например, для k = 4 получим:

То есть объект будет отнесён к классу *треугольников*.

ФОРМАЛИЗАЦИЯ МЕТОДА

Пусть k — количество соседей. Для каждого объекта u возьмём k ближайших к нему объектов из тренировочной выборки:

$$\chi_{(1;u)}, \chi_{(2;u)}, \dots, \chi_{(k;u)}.$$

Тогда класс объекта u определяется следующим образом:

$$a(u) = \underset{y \in Y}{\operatorname{argmax}} \sum_{i=1}^{k} [y(x_{(i;u)}) = y].$$

ФОРМАЛИЗАЦИЯ МЕТОДА

Пусть k — количество соседей. Для каждого объекта u возьмём k ближайших к нему объектов из тренировочной выборки:

$$\chi_{(1;u)},\chi_{(2;u)},\ldots,\chi_{(k;u)}.$$

Тогда класс объекта u определяется следующим образом:

$$a(u) = \underset{y \in Y}{\operatorname{argmax}} \sum_{i=1}^{\kappa} [y(x_{(i;u)}) = y].$$

Ближайшие объекты – это объекты, расстояние от которых до данного объекта наименьшее по некоторой метрике ρ .

ФОРМАЛИЗАЦИЯ МЕТОДА

Пусть k — количество соседей. Для каждого объекта u возьмём k ближайших к нему объектов из тренировочной выборки:

$$\chi_{(1;u)}, \chi_{(2;u)}, \dots, \chi_{(k;u)}.$$

Тогда класс объекта u определяется следующим образом:

$$a(u) = \underset{y \in Y}{\operatorname{argmax}} \sum_{i=1}^{k} [y(x_{(i;u)}) = y].$$

Ближайшие объекты – это объекты, расстояние от которых до данного объекта наименьшее по некоторой метрике ρ .

- В качестве метрики ρ как правило используют евклидово расстояние, но можно использовать и другие метрики.
- Перед использованием метода необходимо масштабировать данные, иначе признаки с большими числовыми значениями будут доминировать при вычислении расстояний.

МЕТОД ОПОРНЫХ ВЕКТОРОВ

> ЛИНЕЙНО РАЗДЕЛИМАЯ ВЫБОРКА

Выборка *линейно разделима*, если существует такой вектор параметров w^* , что соответствующий классификатор a(x) не допускает ошибок на этой выборке.

МЕТОД ОПОРНЫХ ВЕКТОРОВ: РАЗДЕЛИМЫЙ СЛУЧАЙ

С Цель метода опорных векторов (Support Vector Machine) — максимизировать ширину разделяющей полосы.

МЕТОД ОПОРНЫХ ВЕКТОРОВ: РАЗДЕЛИМЫЙ СЛУЧАЙ

- $a(x) = sign((w, x) + w_0)$
- ullet Нормируем параметры w и w_0 так, что

$$\min_{x \in X} |(w, x) + w_0| = 1$$

Расстояние от точки x_0 до разделяющей гиперплоскости,

задаваемой

классификатором:

$$\rho(x_0, a) = \frac{|(w, x_0) + w_0|}{||w||}$$

МЕТОД ОПОРНЫХ ВЕКТОРОВ: РАЗДЕЛИМЫЙ СЛУЧАЙ

ullet Нормируем параметры w и w_0 так, что

$$\min_{x \in X} |(w, x) + w_0| = 1$$

Тогда расстояние от точки x_0 до разделяющей гиперплоскости, задаваемой классификатором:

$$\rho(x_0, a) = \frac{|(w, x_0) + w_0|}{||w||}$$

• Расстояние до ближайшего объекта $x \in X$:

$$\min_{x \in X} \frac{|(w, x) + w_0|}{||w||} = \frac{1}{||w||} \min_{x \in X} |(w, x) + w_0| = \frac{1}{||w||}$$

разделяющая полоса

ОПТИМИЗАЦИОННАЯ ЗАДАЧА SVM ДЛЯ РАЗДЕЛИМОЙ ВЫБОРКИ

$$\begin{cases} \frac{1}{2} ||w||^2 \to \min_{w} \\ y_i((w, x_i) + w_0) \ge 1, i = 1, ..., l \end{cases}$$

Утверждение. Данная оптимизационная задача имеет единственное решение.

ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

• Существует хотя бы один объект $x \in X$, что $y_i \big((w, x_i) + w_0 \big) < 1$

ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

• Существует хотя бы один объект $x \in X$, что $y_i ((w, x_i) + w_0) < 1$

Смягчим ограничения, введя штрафы $\xi_i \geq 0$:

$$y_i((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l$$

МЕТОД ОПОРНЫХ ВЕКТОРОВ: НЕРАЗДЕЛИМЫЙ СЛУЧАЙ

О Хотим:

- ullet Минимизировать штрафы $\sum_{i=1}^{l} \xi_i$
- ullet Максимизировать отступ $\frac{1}{||w||}$

Задача оптимизации:

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{l} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i ((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l \\ \xi_i \ge 0, i = 1, ..., l \end{cases}$$

МЕТОД ОПОРНЫХ ВЕКТОРОВ: НЕРАЗДЕЛИМЫЙ СЛУЧАЙ

Утверждение. Задача

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{l} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i ((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l \\ \xi_i \ge 0, i = 1, ..., l \end{cases}$$

Является выпуклой и имеет единственное решение.

СВЕДЕНИЕ К БЕЗУСЛОВНОЙ ЗАДАЧЕ

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{l} \xi_i \to \min_{w, w_0, \xi_i} (1) \\ y_i((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l (2) \\ \xi_i \ge 0, i = 1, ..., l (3) \end{cases}$$

• Перепишем (2) и (3):

$$\begin{cases} \xi_i \ge 1 - y_i ((w, x_i) + w_0) = 1 - M_i \\ \xi_i \ge 0 \end{cases}$$

СВЕДЕНИЕ К БЕЗУСЛОВНОЙ ЗАДАЧЕ

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i} ((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

• Перепишем (2) и (3):

$$\begin{cases} \xi_i \ge 1 - y_i ((w, x_i) + w_0) \\ \xi_i \ge 0 \end{cases} \Rightarrow \xi_i = \max(0, 1 - y_i ((w, x_i) + w_0))$$

СВЕДЕНИЕ К БЕЗУСЛОВНОЙ ЗАДАЧЕ

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i}((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

• Перепишем (2) и (3):

$$\begin{cases} \xi_i \ge 1 - y_i ((w, x_i) + w_0) \\ \xi_i \ge 0 \end{cases} \Rightarrow \xi_i = \max(0, 1 - y_i ((w, x_i) + w_0))$$

Получаем безусловную задачу оптимизации:

$$\frac{1}{2}||w||^{2} + C\sum_{i=1}^{r} \max(0, 1 - y_{i}((w, x_{i}) + w_{0})) \to \min_{w, w_{0}}$$

» МЕТОД ОПОРНЫХ ВЕКТОРОВ: ЗАДАЧА ОПТИМИЗАЦИИ

• На задачу оптимизации SVM можно смотреть, как на оптимизацию функции потерь $L(M) = max(0,1-M) = (1-M)_+$ с регуляризацией:

$$Q(a,X) = \sum_{i=1}^{l} \left(1 - M_i(w, w_0)\right)_+ + \frac{1}{2C} ||w||^2 \to \min_{w, w_0}$$

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i} ((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

Положительная константа *С* является управляющим параметром метода и позволяет находить компромисс между максимизацией разделяющей полосы и минимизацией суммарной ошибки.

ь ТИПЫ ОБЪЕКТОВ В SVM

