

2.
$$\cos^2\theta = \frac{1}{2}\left(1 + \cos^2\theta\right)$$

D = $e^{j\theta} = \cos\theta + j\sin\theta$ $j = \sqrt{1}$, $j^2 = 1$
 $e^{j\theta} = \cos\theta + j\sin\theta$
 $e^{-j\theta} = \cos\theta + j\sin\theta + \cos\theta - j\sin\theta = 2\cos\theta$
 $e^{j\theta} + e^{-j\theta} = (\cos\theta + j\sin\theta + \cos\theta - j\sin\theta) = 2\cos\theta$
 $e^{j\theta} + e^{-j\theta} = (\cos\theta + j\sin\theta + \cos\theta) = \cos^2\theta$
 $e^{j\theta} + e^{-j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{-j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{-j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{-j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{-j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{j\theta}) = \cos^2\theta$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{j\theta}) = e^{j\theta} = (e^{j\theta} + e^{j\theta}) = e^{j\theta}$
 $e^{j\theta} + e^{j\theta} = (e^{j\theta} + e^{j\theta}) = e^{j\theta} = (e^{j\theta} + e^{j\theta}) = e^{j\theta}$
 $e^{j\theta} + e^{j\theta} = (e^{$

4.
$$5^{th}$$
 Roots of $z = 2e^{j\frac{\pi}{4}}$
 $z = 2e^{j\frac{\pi}{4}} = 2e^{j(\frac{\pi}{4} + 2\pi)} = 2e^{j(\frac{\pi}{4} + 4\pi)} = 2e^{j(\frac{\pi}{4} + 4\pi)}$

1st root: $\sqrt{2}e^{j\frac{\pi}{4}} = \sqrt{2}e^{j\frac{\pi}{4}}$

2nd root: $\sqrt{2}e^{j\frac{\pi}{4} + 2\pi} = \sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)}$

2nd root: $\sqrt{2}e^{j(\frac{\pi}{4} + 2\pi)} = \sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)}$

3nd root: $\sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)} = \sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)}$

3nd root: $\sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)} = \sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)}$

4nd root: $\sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)} = \sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)}$

5nd root: $\sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)} = \sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)}$

5nd root: $\sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)} = \sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)}$

5nd root: $\sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)} = \sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)}$

5nd root: $\sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)} = \sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)}$

5nd root: $\sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)} = \sqrt{2}e^{j(\frac{\pi}{4} + 4\pi)}$

- ① Express each of the following complex numbers in exponential form.
 - (a) -2i
- (b) $(1-j)^2$ (c) $\frac{1+j}{1-j}$
- (2) Using Euler's relation, derive the following relationship.

$$\cos^2\theta = \frac{1}{2}(1 + \cos 2\theta)$$

→ 3. Using Euler's and geometric sum formulas, evaluate the following sum. The final answer is a numerical

$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \cos\left(\frac{\pi n}{2}\right)$$

- Find all the fifth roots of $z = 2e^{j\frac{\pi}{4}}$
- 5 Compute the magnitude and the angle of a complex number below.

Compute the magnitude and the angle of a complex number below.
$$z = e^{j\frac{5\pi}{6}} + e^{j\frac{1\pi}{2} - \frac{7}{3}} = \frac{3\pi}{6}$$