

<u>Gameboard</u>

Maths

Complex Numbers: Manipulations 3i

Complex Numbers: Manipulations 3i

The complex number 2+i is denoted by z, and the complex conjugate of z is denoted by z^* .

Part A z^2

Express z^2 in the form x+iy, where x and y are exact real numbers.

The following symbols may be useful: i

Part B $4z-z^2$

Express $4z-z^2$ in the form x+iy, where x and y are exact real numbers.

The following symbols may be useful: i

Part C zz^*

Express zz^* in the form x+iy, where x and y are exact real numbers.

The following symbols may be useful: i

Part D
$$\frac{z+1}{z-1}$$

Express $\frac{z+1}{z-1}$ in the form x+iy, where x and y are exact real numbers.

The following symbols may be useful: i

Adapted with permission from UCLES, A Level, OCR FP1 Specimen paper, Paper 4725, Question 3.

<u>Gameboard</u>

Maths

Complex Numbers: Manipulations 1i

Complex Numbers: Manipulations 1i

The complex number z has modulus $2\sqrt{3}$ and argument $-\frac{\pi}{3}$.

Part A

Find z in the form z=x+iy, where x and y are are exact real numbers.

The following symbols may be useful: i, z

Part B
$$\frac{1}{(z^*-5i)^2}$$

Find $\frac{1}{(z^*-5i)^2}$ in the form x+iy, where x and y are exact real numbers.

The following symbols may be useful: i

Adapted with permission from UCLES, A Level, June 2016, Paper 4725, Question 2.

Gameboard:

STEM SMART Double Maths 31 - Complex Numbers &

Argand Diagrams

<u>Gameboard</u>

Maths

Complex Numbers: x+iy and Euler 3i

Complex Numbers: x+iy and Euler 3i

The complex number z satisfies the equation

$$z + 2iz^* = 12 + 9i$$

Part A 2

Find z in the form z = x + iy.

The following symbols may be useful: i, z

Part B Modulus-Argument

 \boldsymbol{z} can also be expressed in the form

$$z = r(\cos\theta + i\sin\theta)$$

Find r.

The following symbols may be useful: r

Find $\boldsymbol{\theta}$ to 3 significant figures in radians.

<u>Gameboard</u>

Maths

Complex Numbers: Equations to Quartics 1ii

Complex Numbers: Equations to Quartics 1ii

Part A Square roots

The square roots of the complex number 5 + 12i can be expressed in the form x + iy.

Give the square root with positive x and positive y.

The following symbols may be useful: i

Give the square root with negative x and negative y.

The following symbols may be useful: \mathtt{i}

Part B
$$(3-2i)^2$$

Find $(3-2i)^2$ in the form x+iy where x and y are exact.

The following symbols may be useful: i

Part C Roots of quartic

					_	_		_
The		- 41-	e previous	10 - 14				
I ne	angwerg	io in	2 DEPVIOLIS	name c	an ne	nicen in	SOIVE INF	anianic
	answers	to til	5 PICVIOUS	parts of		asca to		qualtic

$$z^4 - 10z^2 + 169 = 0$$

The roots to the quartic can be expressed in the form x + iy.

Give the root with positive x and positive y.

The following symbols may be useful: i

Give the root with positive x and negative y.

The following symbols may be useful: i

Give the root with negative x and positive y.

The following symbols may be useful: i

Give the root with negative x and negative y.

The following symbols may be useful: i

Adapted with permission from UCLES, A Level, June 2008, Paper 4725, Question 9.

Gameboard:

STEM SMART Double Maths 31 - Complex Numbers &

Argand Diagrams

<u>Gameboard</u>

Maths

Applying Complex Numbers 2ii

Applying Complex Numbers 2ii

One root of the cubic equation $z^3+bz^2+cz-15=0$, where b and c are real constants, is the complex number 2+i.

Part A Complex root

Find the other complex root in the form x+iy.

The following symbols may be useful: i

Part B Real root

Find the real root.

Part C b

Find b.

The following symbols may be useful: b

Part D	c		
Find c .			
The followir	ng symbols may be useful: c		
Adapted with	permission from Sally Waugh.		

Gameboard:

STEM SMART Double Maths 31 - Complex Numbers & Argand Diagrams

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}},$ unless stated otherwise.

The following symbols may be useful: b

<u>Home</u>

<u>Gameboard</u>

Maths

Complex Numbers: Equations to Quartics 1i

Complex Numbers: Equations to Quartics 1i

One root of the quadratic equation $z^2+az+b=0$, where a and b are real, is $16-30i$.
Part A Other root
Give the other root in the form $x+iy$.
The following symbols may be useful: i
Part B a and b
Find the value of \boldsymbol{a}
The following symbols may be useful: a
Find the value of b .

The quartic equation $z^4+az^2+b=0$ has roots in the form $x+iy$.			
Give the root with positive x and positive y .			
The following symbols may be useful: i			
Cive the root with positive a and positive a			
Give the root with positive x and negative y .			
The following symbols may be useful: i			
Give the root with negative x and positive y .			
The following symbols may be useful: i			
Give the root with negative x and negative y .			
The following symbols may be useful: i			

 $\label{eq:Adapted with permission from UCLES, A Level, June 2011, Paper 4725, Question \, 9.$

Gameboard:

STEM SMART Double Maths 31 - Complex Numbers & Argand Diagrams

Quartic

Part C

<u>Gameboard</u>

Maths

Argand Diagrams and Simple Loci 2i

Argand Diagrams and Simple Loci 2i

e complex number a is denoted by $1+i\sqrt{3}$.
Part A a
find the value of $ a $.
ind $rg a$ in exact form.
he following symbols may be useful: pi

Part B Loci

Sketch the loci given by |z-a|=|a| and $\arg{(z-a)}=\frac{1}{2}\pi$ on a single Argand diagram.

Adapted with permission from UCLES, A Level, June 2010, Paper 4725, Question 5.

Gameboard:

STEM SMART Double Maths 31 - Complex Numbers &

Argand Diagrams

<u>Gameboard</u>

Maths

Argand Diagrams: Using Loci 2i

Argand Diagrams: Using Loci 2i

The loci C_1 and C_2 are given by |z|=|z-4i| and $\arg z=rac{\pi}{6}$ respectively.

Part A Loci of C_1 and C_2

Sketch the loci C_1 and C_2 on a single Argand diagram.

Part B Intersection

Hence find, in the form x + iy, the complex number represented by the point of intersection of C_1 and C_2 . Give your answer in exact form.

The following symbols may be useful: i

Home Gamel

<u>Gameboard</u> Maths

Argand Diagrams: Solving Inequalities 1ii

Argand Diagrams: Solving Inequalities 1ii

The loci L_1 and L_2 are given by |z|=2 and $rg(z-3-i)=\pi$ respectively.

Part A Equation of L_1

By writing z in the form x + iy, express the equation for L_1 in Cartesian form, simplifying your answer as far as possible.

The following symbols may be useful: x, y

Part B Loci

Sketch \mathcal{L}_1 and \mathcal{L}_2 on a single Argand diagram.

Part C Inequalities

Select from the images below the shaded region of the Argand diagram for which

$$|z| \leq 2 \quad ext{and} \quad 0 \leq ext{arg}(z-3-i) \leq \pi$$

Region A.

Region B.

Region C.

Region D.

- Region A.
- Region B.
- Region C.
- Region D.

<u>Gameboard</u>

Maths

Argand Diagrams: Solving Inequalities 4ii

Argand Diagrams: Solving Inequalities 4ii

The loci L_1 and L_2 are given by |z-3+4i|=5 and |z|=|z-6| respectively.

Part A Equation of L_1

Give the equation of L_1 in the form $(x-a)^2+(y-b)^2=c^2$.

The following symbols may be useful: x, y

Part B Loci

Sketch the loci \mathcal{L}_1 and \mathcal{L}_2 on a single Argand diagram.

Part C Inequalities

Select from the images below the shaded region of the Argand diagram for which

$$|z-3+4i| \leq 5 \quad ext{and} \quad |z| \geq |z-6|$$

Region A.

Region B.

Region C.

Region D.

- Region A.
- Region B.
- Region C.
- Region D.