$\begin{array}{c} {\rm UMC~202} \\ {\rm PROBLEM~SET~6} \end{array}$

- (1) Use Taylor's series method of order 2 to approximate the solution for each of the following initial value problems and compare the results to the actual values
 - (a) $y' = \frac{y}{x} \frac{y^2}{x^2}$, $x \in [1, 1.2]$, y(1) = 1 with h = 0.1,; actual solution $y(x) = \frac{x}{1 + \ln(x)}$
 - (b) $y' = \frac{(y^2+y)}{x}$, $x \in [1,3]$, y(1) = -2, with h = 0.5,; actual solution $y(x) = \frac{2x}{1-2x}$;
 - (c) $y' = -xy + \frac{4x}{y}$, $x \in [0,1]$, y(0) = 1, with h = 0.25; actual solution $y(x) = \sqrt{4 3e^{-x^2}}$.
- (2) Redo Problem 1 using the Runge Kutta method of order 2.
- (3) Redo Problem 1 using the Trapezoidal Method.
- (4) Using the Taylor's series method of order 2, Runge Kutta method of order 2 and the Trapezoidal Method to approximate the solutions of the following initial value problems and compare the results
 - (a) $y' = xe^{3x} 2y$, $x \in [0, 1]$, y(0) = 0 with h = 0.5; actual solution $y(x) = \frac{1}{5}xe^{3x} \frac{1}{25}e^{3x} + \frac{1}{25}e^{-2x}$.
 - (b) $y' = 1 + (x y)^2$, $x \in [2, 3]$, y(2) = 1, with h = 0.5; actual solution $y(x) = x + \frac{1}{(1-x)}$.
 - (c) $y' = 1 + \frac{y}{x}$, $x \in [1, 2]$, y(1) = 2 with h = 0.25; actual solution $y(x) = x \ln x + 2x$.