Robust Optimization: Static Case

V. Leclère (ENPC)

November 24, 2023

Probability guarantee

- Introduction and motivations
 - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization?
- - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polvhedral uncertainty set
 - Cardinality constrained LP

Contents

- 1 Introduction and motivations
 - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization?
- 2 Solving the robust optimization problem
- 3 Robust optimization for Linear Programn
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polyhedral uncertainty set
 - Cardinality constrained LP
- Probability guarantee
- Robust Combinatorial Problem
- 6 Conclusion

An optimization problem

A generic optimization problem can be written

$$\min_{x} \quad L(x)$$
s.t. $g(x) \le 0$

where

- x is the decision variable
- L is the objective function
- g is the constraint function

An optimization problem with uncertainty

Adding uncertainty ξ in the mix

$$\min_{x} L(x, \tilde{\xi})$$
s.t. $g(x, \tilde{\xi}) \le 0$

Remarks

- ullet is unknown. Two main way of modelling it:
 - $\tilde{\xi} \in R$ with a known uncertainty set R, and a pessimistic approach. This is the robust optimization approach (RO).
 - ξ is a random variable with known probability law. This is the Stochastic Programming approach (SP).
- Cost is not well defined.
 - RO: $\max_{\xi \in R} L(x, \xi)$.
 - SP: $\mathbb{E}[L(x,\xi)]$.
- Constraints are not well defined.
 - RO: $g(x,\xi) \le 0$, $\forall \xi \in R$.

An optimization problem with uncertainty

Adding uncertainty ξ in the mix

$$\min_{x} L(x, \tilde{\xi})$$
s.t. $g(x, \tilde{\xi}) \le 0$

Remarks:

- $\tilde{\xi}$ is unknown. Two main way of modelling it:
 - $\tilde{\xi} \in R$ with a known uncertainty set R, and a pessimistic approach. This is the robust optimization approach (RO).
 - ullet is a random variable with known probability law. This is the Stochastic Programming approach (SP).
- Cost is not well defined.
 - RO: $\max_{\xi \in R} L(x, \xi)$.
 - SP: $\mathbb{E}[L(x,\xi)]$.
- Constraints are not well defined.
 - RO: $g(x, \xi) < 0$. $\forall \xi \in R$.

An optimization problem with uncertainty

Adding uncertainty ξ in the mix

$$\min_{x} L(x, \tilde{\xi})$$
s.t. $g(x, \tilde{\xi}) \leq 0$

Remarks:

- ullet is unknown. Two main way of modelling it:
 - $\tilde{\xi} \in R$ with a known uncertainty set R, and a pessimistic approach. This is the robust optimization approach (RO).
 - $\tilde{\xi}$ is a random variable with known probability law. This is the Stochastic Programming approach (SP).
- Cost is not well defined.
 - RO: $\max_{\xi \in R} L(x, \xi)$.
 - SP: $\mathbb{E}[L(x,\xi)]$.
- Constraints are not well defined.
 - RO: $g(x,\xi) \le 0$, $\forall \xi \in R$.
- \circ SP: $\sigma(x, \xi) < 0$. $\mathbb{P} a.s$

Requirements and limits

- Stochastic optimization:
 - requires a law of the uncertainty ξ
 - can be hard to solve (generally require discretizing the support and blowing up the dimension of the problem)
 - there exists specific methods (like Bender's decomposition)
- Robust optimization:
 - requires an uncertainty set R
 - can be overly conservative, even for reasonable R
 - complexity strongly depend on the choice of R
- Distributionally robust optimization:
 - is a mix between robust and stochastic optimization
 - consists in solving a stochastic optimization problem where the law is chosen in a robust way
 - is a fast growing fields with multiple recent results
 - but is still hard to implement than other approaches

Requirements and limits

- Stochastic optimization:
 - requires a law of the uncertainty ξ
 - can be hard to solve (generally require discretizing the support and blowing up the dimension of the problem)
 - there exists specific methods (like Bender's decomposition)
- Robust optimization:
 - requires an uncertainty set R
 - can be overly conservative, even for reasonable R
 - complexity strongly depend on the choice of R
- Distributionally robust optimization:
 - is a mix between robust and stochastic optimization
 - consists in solving a stochastic optimization problem where the law is chosen in a robust way
 - is a fast growing fields with multiple recent results
 - but is still hard to implement than other approaches

Conclusion

Requirements and limits

- Stochastic optimization:
 - requires a law of the uncertainty ξ
 - can be hard to solve (generally require discretizing the support and blowing up the dimension of the problem)
 - there exists specific methods (like Bender's decomposition)
- Robust optimization:
 - requires an uncertainty set R
 - can be overly conservative, even for reasonable R
 - complexity strongly depend on the choice of R
- Distributionally robust optimization:
 - is a mix between robust and stochastic optimization
 - consists in solving a stochastic optimization problem where the law is chosen in a robust way
 - is a fast growing fields with multiple recent results
 - but is still hard to implement than other approaches

Probability guarantee

- Introduction and motivations
 - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization?
- - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polvhedral uncertainty set
 - Cardinality constrained LP

Introduction

Conclusion

Some numerical tests on real-life LPs

From Ben-Tal and Nemirovski

- take LP from Netlib library
- look at non-integer coefficients, assuming that they are not known with perfect certainty
- What happens if you change them by 0.1%?
 - constraints can be violated by up to 450%
 - $\mathbb{P}(\text{violation} > 0) = 0.5$
 - $\mathbb{P}(\text{violation} > 150\%) = 0.18$
 - $\mathbb{E}[\text{violation}] = 125\%$

What do you want from robust optimization?

- finding a solution that is less sensible to modified data, without a great increase of price
- choosing an uncertainty set *R* that:
 - offer robustness guarantee
 - yield an easily solved optimization problem

Contents

- - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization?
- Solving the robust optimization problem
- - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polvhedral uncertainty set
 - Cardinality constrained LP

Solving a robust optimization problem

The robust optimization problem we want to solve is¹

$$\min_{x} L(x)$$

$$s.t. g(x,\xi) \le 0$$

$$\forall \xi \in R$$

Two main approaches are possible

Constraint generation: replace R by a finite set of ξ , that is we replace an "infinite number of contraints" by a finite number of them.

Reformulation: replace
$$g(x, \xi) \le 0$$
 $\forall \xi \in R$ by $\sup_{\xi \in R} g(x, \xi) \le 0$, then explicit the $\sup_{\xi \in R} g(x, \xi) \le 0$

V. Leclère Robust Optimization: Static Case November 24, 2023

¹For simplicity reason we dropped w.l.o.g. the uncertainty in the objective.

Solving a robust optimization problem

The robust optimization problem we want to solve is¹

$$\min_{x} L(x)$$
s.t. $g(x, \xi) \le 0$

$$\forall \xi \in R$$

Two main approaches are possible:

Constraint generation: replace R by a finite set of ξ , that is we replace an "infinite number of contraints" by a finite number of them.

Reformulation: replace
$$g(x, \xi) \le 0$$
 $\forall \xi \in R$, by $\sup_{\xi \in R} g(x, \xi) \le 0$, then explicit the $\sup_{\xi \in R} g(x, \xi) \le 0$

V. Leclère Robust Optimization: Static Case November 24, 2023

¹For simplicity reason we dropped w.l.o.g. the uncertainty in the objective.

The robust optimization problem we want to solve is¹

Two main approaches are possible:

Constraint generation: replace R by a finite set of ξ , that is we replace an "infinite number of contraints" by a finite number of them.

V. Leclère Robust Optimization: Static Case November 24, 2023

¹For simplicity reason we dropped w.l.o.g. the uncertainty in the objective.

Solving a robust optimization problem

The robust optimization problem we want to solve is¹

$$\min_{x} L(x)$$
s.t. $g(x,\xi) \le 0$ $\forall \xi \in R$

Two main approaches are possible:

Constraint generation: replace R by a finite set of ξ , that is we replace an "infinite number of contraints" by a finite number of them.

```
Reformulation: replace g(x, \xi) \leq 0 \quad \forall \xi \in R,
                 by sup g(x, \xi) \leq 0,
                 then explicit the sup.
```

V. Leclère Robust Optimization: Static Case November 24, 2023

¹For simplicity reason we dropped w.l.o.g. the uncertainty in the objective.

Constraint generation algorithm

Algorithm 1: Constraint Generation Algorithm

Note that we are solving a problem similar to the deterministic problem with an increasing number of constraints.

This is easy to implement and can be numerically efficient.

Constraint generation algorithm

```
Data: Problem parameters, reference uncertainty \xi_0
Result: approximate value with gap:
for k \in \mathbb{N} do
    solve \tilde{v} = \min \{L(x) \mid g(x, \xi_{\kappa}) \ \forall \kappa \leq k\} \quad \rightsquigarrow x_k;
    solve s = \max_{\xi \in R} g(x_k, \xi) \quad \rightsquigarrow \xi_{k+1};
    if s < 0 then
          Robust optimization problem solved,
         with value \tilde{v} and optimal solution x_k
```

Algorithm 1: Constraint Generation Algorithm

Note that we are solving a problem similar to the deterministic problem with an increasing number of constraints.

Constraint generation algorithm

Algorithm 1: Constraint Generation Algorithm

Note that we are solving a problem similar to the deterministic problem with an increasing number of constraints.

This is easy to implement and can be numerically efficient.

Reformulation principle

Introduction

We can write the robust optimization problem as

$$\min_{x} L(x)$$
s.t.
$$\sup_{\xi \in R} g(x, \xi) \le 0$$

Now, there are two ways of simplifying this problem:

- we can explicitly compute $\bar{g}(x) = \sup g(x, \xi)$;
- by duality we can write $\sup_{\xi \in R} g(x, \xi) = \min_{\eta \in Q} h(x, \eta)$
- \implies min $h(x,\eta) \le 0$ is equivalent to $\exists \eta$ such that $h(x,\eta) \le 0$, i.e. just add η as a

Reformulation principle

Introduction

We can write the robust optimization problem as

$$\min_{x} L(x)$$
s.t.
$$\sup_{\xi \in R} g(x, \xi) \le 0$$

Now, there are two ways of simplifying this problem:

- we can explicitly compute $\bar{g}(x) = \sup g(x, \xi)$;
- by duality we can write $\sup_{\xi \in R} g(x, \xi) = \min_{\eta \in Q} h(x, \eta)$
- $\implies \min_{\eta \in \mathcal{Q}} h(x,\eta) \leq 0$ is equivalent to $\exists \eta$ such that $h(x,\eta) \leq 0$, i.e. just add η as a variable in your optimization problem

Contents

- Introduction and motivations
 - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization?
- Solving the robust optimization problem
- Robust optimization for Linear Programm
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polyhedral uncertainty set
 - Cardinality constrained LP
- Probability guarantee
- Sobust Combinatorial Problem
- 6 Conclusion

Contents

- - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization?
- Robust optimization for Linear Programm
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polvhedral uncertainty set
 - Cardinality constrained LP

We consider

$$\min_{x \ge 0} \max_{(A,b,c) \in R} c^{\top} x$$

s.t.
$$Ax < b$$

Without loss of generality we can consider a deterministic cost:

$$egin{array}{ll} \min & \theta \ \geq 0, heta \ & s.t. & Ax \leq b \ & c^{ op} x \leq \theta \end{array} \qquad egin{array}{ll} orall (A,b,c) \in F \ & \forall (A,b,c) \in F \ \end{array}$$

That can be written as

$$\min_{\substack{x \geq 0, \theta}} \theta$$
 $s.t. \quad a_i^\top x - b_i \leq 0 \quad \forall (A, b, c) \in R, \forall i \in [m]$

We consider

Introduction

$$\min_{x \ge 0} \max_{(A,b,c) \in R} c^{\top} x$$

s.t. Ax < b

Without loss of generality we can consider a deterministic cost:

Robust LP

$$egin{array}{ll} \min_{x\geq 0, heta} & heta \\ s.t. & Ax \leq b & & \forall (A, b, c) \in R \\ & c^{\top}x < heta & & \forall (A, b, c) \in R \end{array}$$

$$v \geq 0, \theta$$
 $s.t. \quad a_i^\top x - b_i \leq 0 \quad \forall (A, b, c) \in R, \forall i \in [n]$

We consider

$$\min_{x \ge 0} \max_{(A,b,c) \in R} c^{\top} x$$

s.t.
$$Ax \leq b$$

Without loss of generality we can consider a deterministic cost:

Robust LP

$$egin{array}{ll} \min_{x\geq 0, heta} & heta \\ s.t. & Ax \leq b & & \forall (A, b, c) \in R \\ & c^{\top}x < heta & & \forall (A, b, c) \in R \end{array}$$

That can be written as

$$\begin{array}{ll}
\min_{x \ge 0, \theta} & \theta \\
s.t. & \mathbf{a_i}^\top x - \mathbf{b_i} \le 0 & \forall (A, b, c) \in R, \forall i \in [m]
\end{array}$$

We now consider

$$\min_{x\geq 0} c^{\top}$$

s.t.
$$a_i^\top x - b_i \leq 0$$

$$\forall (A, b) \in R, \forall i \in [m]$$

Let R_i be the projection of R onto coordinate i.

We have in particular $R \subset R_1 \times \cdots \times R_m$

But note that, in the robust constraint, R can be replaced by $R_1 \times \cdots \times R_m$, indeed,

$$f_i(x, \xi_i) \leq 0, \quad \forall i \in [m], \quad \forall \xi \in R$$

$$\iff f_i(x, \xi_i) \leq 0, \quad \forall i \in [m], \forall \xi \in R_1 \times \dots \times R_n$$

$$\iff f_i(x, \xi_i) \leq 0, \quad \forall \xi_i, \in R_i \quad \forall i \in [m]$$

We now consider

Introduction

$$\begin{array}{ll}
\min_{x \ge 0} & c^{\top} x \\
s.t. & \mathbf{a}_i^{\top} x - \mathbf{b}_i \le 0
\end{array} \qquad \forall (A, b) \in R, \forall i \in [m]$$

Let R_i be the projection of R onto coordinate i.

We have in particular $R \subset R_1 \times \cdots \times R_m$.

$$f_i(x, \xi_i) \leq 0, \quad \forall i \in [m], \quad \forall \xi \in R$$

$$\iff f_i(x, \xi_i) \leq 0, \quad \forall i \in [m], \forall \xi \in R_1 \times \dots \times R_m$$

$$\iff f_i(x, \xi_i) \leq 0, \quad \forall \xi_i, \xi_i \in R_i \quad \forall i \in [m]$$

Robust LP

Conclusion

Canonization of the problem

We now consider

Introduction

$$\begin{array}{ll}
\min_{x \ge 0} & c^{\top} x \\
s.t. & \mathbf{a}_i^{\top} x - \mathbf{b}_i \le 0
\end{array} \qquad \forall (A, b) \in R, \forall i \in [m]$$

Let R_i be the projection of R onto coordinate i.

We have in particular $R \subset R_1 \times \cdots \times R_m$.

But note that, in the robust constraint, R can be replaced by $R_1 \times \cdots \times R_m$, indeed,

$$f_i(x,\xi_i) \leq 0, \quad \forall i \in [m], \quad \forall \xi \in R$$
 $\iff f_i(x,\xi_i) \leq 0, \quad \forall i \in [m], \forall \xi \in R_1 \times \cdots \times R_m$
 $\iff f_i(x,\xi_i) \leq 0, \quad \forall \xi_i, \in R_i \quad \forall i \in [m]$

We now consider

$$\min_{x>0} c^{\top}$$

$$\min_{x \ge 0} c^{\top} x$$

$$s.t. \mathbf{a}_{i}^{\top} x - \mathbf{b}_{i} \le 0$$

$$\forall (a_i, b_i) \in R_i, \forall i \in [m]$$

We now consider

$$\min_{x>0} c^{\top}x$$

$$\min_{x \ge 0} c^{\top} x$$

$$s.t. \quad \mathbf{a}^{\top} x - \mathbf{b} \le 0$$

$$\forall (a,b) \in R$$
,

We now consider

Introduction

$$\min_{x \ge 0} c^{\top} x$$

$$s.t. \quad \mathbf{a}^{\top} x - \mathbf{b} \le 0 \qquad \forall (\mathbf{a}, \mathbf{b}) \in R,$$

To model correlation we set

$$a = \bar{a} + P\zeta$$
 $b = \bar{b} + p^{\top}\zeta$

where (\bar{a}, \bar{b}) are the nominal value, and ζ is the primitive/residual uncertainty.

We now consider

$$\min_{x \ge 0} c^{\top} x$$

$$s.t. \quad \mathbf{a}^{\top} x - \mathbf{b} \le 0 \qquad \forall (\mathbf{a}, \mathbf{b}) \in R,$$

To model correlation we set

$$a = \bar{a} + P\zeta$$
 $b = \bar{b} + p^{\top}\zeta$

where (\bar{a}, \bar{b}) are the nominal value, and ζ is the primitive/residual uncertainty. The robust constraint now reads

$$(\bar{a}^{\top}x - \bar{b}) + (P^{\top}x - p)^{\top}\zeta \leq 0 \qquad \forall \zeta \in \mathcal{Z}$$

Example: assume that \underline{a} is a random variable with mean \overline{a} and covariance Σ . Then, a natural reformulation would be

$$a=\bar{a}+\Sigma^{1/2}\zeta,$$

so that ζ is centered with uncorrelated coordinates.

Introduction

Canonization of the problem

Example: assume that \underline{a} is a random variable with mean \overline{a} and covariance Σ . Then, a natural reformulation would be

$$a=\bar{a}+\Sigma^{1/2}\zeta,$$

so that ζ is centered with uncorrelated coordinates.

Finally, w.l.o.g. we assume that b is deterministic (can be obtained by adding a variable x_{n+1} constrained to be equal to 1).

Contents

- Introduction and motivations
 - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization?
- Solving the robust optimization problem
- 3 Robust optimization for Linear Programm
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polyhedral uncertainty set
 - Cardinality constrained LP
- Probability guarantee
- Sobust Combinatorial Problem
- **6** Conclusion

Introduction

An explicit worst case value

We consider an ellipsoidal uncertainty set

$$R = \left\{ \xi = \left\{ \bar{a} + P\zeta \right\}_i \mid \|\zeta\|_2 \le \rho \right\}$$

 \bullet Here we can, for a given x, explicitly compute

$$\sup_{\xi \in R} \xi^{\top} x = \bar{a}^{\top} x + \sup_{\|\zeta\|_2 \le \rho} (P\zeta)^{\top} x$$
$$= \bar{a}^{\top} x + \rho \|P^{\top} x\|_2$$

Hence, constraint

$$\sup_{\xi \in R} \xi^{\top} x \le b$$

can he written

$$\bar{a}^{\top}x + \rho \|P^{\top}x\|_2 < b$$

Introduction

An explicit worst case value

We consider an ellipsoidal uncertainty set

$$R = \left\{ \xi = \left\{ \bar{a} + P\zeta \right\}_i \mid \|\zeta\|_2 \le \rho \right\}$$

• Here we can, for a given x, explicitly compute

$$\sup_{\boldsymbol{\xi} \in R} \boldsymbol{\xi}^{\top} x = \bar{\boldsymbol{a}}^{\top} x + \sup_{\|\boldsymbol{\zeta}\|_{2} \le \rho} (P\boldsymbol{\zeta})^{\top} x$$
$$= \bar{\boldsymbol{a}}^{\top} x + \rho \|P^{\top} x\|_{2}$$

Hence, constraint

$$\sup_{\xi \in R} \xi^{\top} x \le b$$

can be written

$$\bar{a}^{\top}x + \rho \|P^{\top}x\|_2 < b$$

An explicit worst case value

Introduction

We consider an ellipsoidal uncertainty set

$$R = \left\{ \xi = \left\{ \bar{a} + P\zeta \right\}_i \mid \|\zeta\|_2 \le \rho \right\}$$

• Here we can, for a given x, explicitly compute

$$\sup_{\boldsymbol{\xi} \in R} \boldsymbol{\xi}^{\top} x = \bar{\boldsymbol{a}}^{\top} x + \sup_{\|\boldsymbol{\zeta}\|_{2} \le \rho} (P\boldsymbol{\zeta})^{\top} x$$
$$= \bar{\boldsymbol{a}}^{\top} x + \rho \|P^{\top} x\|_{2}$$

Hence, constraint

$$\sup_{\xi \in R} \xi^{\top} x \le b$$

can be written

$$\bar{a}^{\top}x + \rho \|P^{\top}x\|_2 < b$$

SOCP problem

Introduction

An Second Order Cone Programming constraint is a constraint of the form

$$||Ax + b||_2 \le c^{\top}x + d$$

- An SOCP problem is a (continuous) optimization problem with linear cost and linear and SOCP constraints
- There exists powerful software to solve SOCP (e.g. CPLEX, Gurobi, MOSEK...) with dedicated interior points methods
- There exist a duality theory akin to the LP duality theory
- If a robust optimization problem can be cast as an SOCP the formulation is deemed efficient

Solution approaches Robust LP Probability guarantee

Contents

Introduction

- Introduction and motivations
 - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization?
- Solving the robust optimization problem
- 3 Robust optimization for Linear Programm
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polyhedral uncertainty set
 - Cardinality constrained LP
- Probability guarantee
- Robust Combinatorial Problem
- 6 Conclusion

Robust combinatorial

Linear duality: recalls

Recall that, if finite,

$$\max_{\xi} \quad \xi^{\top} x$$
s.t. $D\xi \le d$

as the same value as

$$\begin{aligned} & \min_{\eta} & & \eta^{\top} d \\ & s.t. & & \eta^{\top} D = x \\ & & & \eta \geq 0 \end{aligned}$$

Thus.

$$\sup_{\xi:D\xi \le d} \xi^\top x \le b \iff \min_{\eta \ge 0: \eta^\top D = x} \eta^\top d \le b$$

$$\iff \exists \eta \ge 0, \quad \eta^\top D = x, \quad \eta^\top d \le b$$

Linear duality: recalls

Recall that, if finite,

$$\max_{\xi} \quad \xi^{\top} x$$

$$s.t. \quad D\xi \le d$$

as the same value as

$$\begin{aligned} & \min_{\eta} & & \eta^{\top} d \\ & s.t. & & \eta^{\top} D = x \\ & & & \eta \geq 0 \end{aligned}$$

Thus.

$$\sup_{\boldsymbol{\xi}: D\boldsymbol{\xi} \leq d} \boldsymbol{\xi}^{\top} x \leq b \iff \min_{\boldsymbol{\eta} \geq 0: \boldsymbol{\eta}^{\top} D = x} \boldsymbol{\eta}^{\top} d \leq b$$
$$\iff \exists \boldsymbol{\eta} \geq 0, \quad \boldsymbol{\eta}^{\top} D = x, \quad \boldsymbol{\eta}^{\top} d \leq b$$

Polyhedral uncertainty

We consider a polyhedral uncertainty set

$$R = \left\{ \boldsymbol{\xi} \mid D\boldsymbol{\xi} \leq d \right\}$$

• Then the robust optimization problem

$$\min_{x\geq 0} c^{\top}x$$

s.t.
$$\sup_{\xi \in R} \xi^{\top} x \le h$$

reads

$$\min_{\substack{x \ge 0, \eta \ge 0}} c^{\top} x$$

$$s.t. \quad \eta^{\top} d \le h$$

$$\eta^{\top} d = x$$

Contents

- - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization?
- Robust optimization for Linear Programm
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polvhedral uncertainty set
 - Cardinality constrained LP

The problem

$$\min_{x} c^{\top}x$$

$$\tilde{A}x \leq b$$

$$\underline{\mathbf{x}} \leq \underline{\mathbf{x}} \leq \overline{\mathbf{x}}$$

where each coefficient
$$\tilde{a}_{ij} \in [\bar{a}_{ij} - \delta_{ij}, \bar{a}_{ij} + \delta_{ij}]$$

The problem

$$\min_{x} c^{\top}x$$

$$\sup_{\tilde{A} \in R} \tilde{A}x \le b$$

$$\underline{x} \le x \le \bar{x}$$

where each coefficient $\tilde{a}_{ij} \in [\bar{a}_{ij} - \delta_{ij}, \bar{a}_{ij} + \delta_{ij}]$

The problem

$$\min_{x} c^{\top} x$$

$$\sup_{\tilde{A} \in R} \tilde{A} x \le b$$

$$\underline{x} \le x \le \bar{x}$$

where each coefficient $\tilde{a}_{ij} \in [\bar{a}_{ij} - \delta_{ij}, \bar{a}_{ij} + \delta_{ij}]$ can be written

$$\min_{\mathbf{x}} \quad c^{\top} \mathbf{x}$$

$$\sum_{j} \bar{a}_{ij} \mathbf{x}_{j} + \sum_{j} \delta_{ij} |\mathbf{x}_{j}| \le b_{i}$$

$$\mathbf{x} \le \mathbf{x} \le \bar{\mathbf{x}}$$

 $\forall i$

The problem

$$\min_{x} c^{\top} x$$

$$\sup_{\tilde{A} \in R} \tilde{A} x \leq b$$

$$\underline{x} \leq x \leq \bar{x}$$

where each coefficient $\tilde{a}_{ii} \in [\bar{a}_{ii} - \delta_{ii}, \bar{a}_{ii} + \delta_{ii}]$ can be written

$$\min_{\mathbf{x}} \quad c^{\top} \mathbf{x}$$

$$\sum_{j} \bar{a}_{ij} x_{j} + \sum_{j} \delta_{ij} y_{j} \leq b_{i}$$

$$\underline{\mathbf{x}} \leq \mathbf{x} \leq \bar{\mathbf{x}}$$

$$y_{i} \geq x_{i}, \quad y_{i} \geq -x_{i}$$

 $\forall i$

Introduction

Soyster's model is over conservative, we want to consider a model where only Γ_i coefficient per line have non-zero errors, leading to

$$\min_{x,y} c^{\top}x$$

$$\sum_{j} \bar{a}_{ij}x_{j} + \max_{S_{i}:|S_{i}|=\Gamma_{i}} \sum_{j\in S_{i}} \delta_{ij}y_{j} \leq b_{i} \qquad \forall i$$

$$\underline{x} \le x \le \bar{x}$$

$$y_j \ge x_j, \quad y_j \ge -x_j$$

Introduction

Soyster's model is over conservative, we want to consider a model where only Γ_i coefficient per line have non-zero errors, leading to

$$\min_{x,y} c^{\top} x$$

$$\sum_{j} \bar{a}_{ij} x_{j} + \beta_{i} \leq b_{i}$$

$$\max_{S_{i}:|S_{i}|=\Gamma_{i}} \sum_{j \in S_{i}} \delta_{ij} y_{j} \leq \beta_{i}$$

$$\underline{x} \leq x \leq \bar{x}$$

$$y_{i} > x_{i}, \quad y_{i} > -x_{i}$$

 $\forall i$

This means that, for line i we take a margin of

$$eta_i(x,\Gamma_i) := \max_{S_i:|S_i|=\Gamma_i} \sum_{j\in S_i} \delta_{ij}|x_j|$$

which can be obtained as

$$eta_i(x, \Gamma_i) = \max_{\mathbf{z} \geq 0} \quad \sum_j \delta_{ij} |x_j| \mathbf{z}_{ij}$$
 $\sum_j \mathbf{z}_{ij} \leq \Gamma_i$ $[\lambda_i]$ $\mathbf{z}_{ij} \leq 1$ $[\mu_{ij}]$

This LP can be then dualized to be integrated in the original LP.

 $[\lambda_i]$

 $[\mu_{ij}]$

Cardinality constrained LP

$$eta_i(x, \Gamma_i) = \max_{\mathbf{z} \geq 0} \quad \sum_j \delta_{ij} |x_j| \mathbf{z}_{ij} \ \sum_j \mathbf{z}_{ij} \leq \Gamma_i \ \mathbf{z}_{ij} \leq 1$$

$$eta_i(x,\Gamma_i) = \max_{\mathbf{z} \geq 0} \quad \sum_j \delta_{ij} |x_j| \mathbf{z}_{ij}$$
 $\sum_j \mathbf{z}_{ij} \leq \Gamma_i$ $[\lambda_i]$ $\mathbf{z}_{ij} \leq 1$ $[\mu_{ij}]$

$$\beta_i(\mathbf{x}, \Gamma_i) = \max_{\mathbf{z} \geq 0} \min_{\lambda, \mu \geq 0} \quad \sum_j \delta_{ij} |\mathbf{x}_j| \mathbf{z}_{ij} + \lambda_i \Big(\Gamma_i - \sum_j \mathbf{z}_{ij} \Big) \sum_j \mu_{ij} \Big(1 - \mathbf{z}_{ij} \Big)$$

$$eta_i(x,\Gamma_i) = \max_{z \geq 0} \quad \sum_j \delta_{ij} |x_j| \mathbf{z}_{ij}$$
 $\sum_j \mathbf{z}_{ij} \leq \Gamma_i$ $[\lambda_i]$ $\mathbf{z}_{ij} \leq 1$ $[\mu_{ij}]$

$$\beta_{i}(x,\Gamma_{i}) = \max_{\mathbf{z} \geq 0} \min_{\lambda,\mu \geq 0} \quad \sum_{j} \delta_{ij}|x_{j}|\mathbf{z}_{ij} + \lambda_{i} \left(\Gamma_{i} - \sum_{j} \mathbf{z}_{ij}\right) \sum_{j} \mu_{ij} \left(1 - \mathbf{z}_{ij}\right)$$

$$= \min_{\lambda,\mu \geq 0} \max_{\mathbf{z} \geq 0} \quad \lambda_{i}\Gamma_{i} + \sum_{j} \mu_{ij} \quad + \sum_{i} \mathbf{z}_{ij} \left(\delta_{ij}|x_{j}| - \lambda_{i} - \mu_{ij}\right)$$

Robust LP

$$eta_i(x,\Gamma_i) = \max_{z \geq 0} \quad \sum_j \delta_{ij} |x_j| \mathbf{z}_{ij}$$
 $\sum_j \mathbf{z}_{ij} \leq \Gamma_i$ $[\lambda_i]$ $\mathbf{z}_{ij} \leq 1$ $[\mu_{ij}]$

$$\begin{split} \beta_i(x,\Gamma_i) &= \max_{\mathbf{z} \geq 0} \min_{\lambda,\mu \geq 0} \quad \sum_j \delta_{ij} |x_j| \mathbf{z}_{ij} + \lambda_i \Big(\Gamma_i - \sum_j \mathbf{z}_{ij} \Big) \sum_j \mu_{ij} \Big(1 - \mathbf{z}_{ij} \Big) \\ &= \min_{\lambda,\mu \geq 0} \quad \lambda_i \Gamma_i + \sum_j \mu_{ij} \\ \text{s.t.} \quad \delta_{ij} |x_j| \leq \lambda_i + \mu_{ij} \end{split}$$

In the end we obtain

$$\min_{\mathbf{x},\beta,\lambda,\mu} \quad c^{\top}\mathbf{x}$$

$$\sum_{j} \bar{a}_{ij} x_{j} + \beta_{i} \leq b_{i} \qquad \forall i$$

$$\lambda_{i} \Gamma_{i} + \sum_{j} \mu_{ij} \leq \beta_{i} \qquad \forall i$$

$$\delta_{ij} x_{j} \leq \lambda_{i} + \mu_{ij} \qquad \forall i,j$$

$$-\delta_{ij} x_{j} \leq \lambda_{i} + \mu_{ij} \qquad \forall i,j$$

$$\lambda \geq 0, \quad \mu \geq 0$$

$$\mathbf{x} \leq \mathbf{x} \leq \bar{\mathbf{x}}$$

Contents

Introduction

- - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization?
- - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polvhedral uncertainty set
 - Cardinality constrained LP
- Probability guarantee

Robust constraint implying a probabilistic guarantee

Definition

Introduction

We say that, for a given set of probability measures $\mathbb{P} \in \mathcal{P}$, the constraint

$$g(x,\xi) \leq 0, \quad \forall \xi \in R,$$

implies a probabilistic guarantee of level ε if, for all $\mathbb{P} \in \mathcal{P}$,

$$\mathbb{P}\Big(g(x,\xi)\leq 0\Big)\geq 1-\varepsilon.$$

Introduction

Probability guarantee for ellipsoidal uncertainty

We consider a linear constraint.

$$\sum_{j} \tilde{\mathbf{a}}_{ij} x_j \le b_i, \qquad \forall i \in [m]$$

- We assume that $\tilde{a}_{ij} = \bar{a}_{ij}(1 + \varepsilon \xi_{ii})$ where ξ_{ii} is a random variable with mean 0, contained in [-1, 1], and independent in i.
- Then the robust constraint

$$\sum_{j} \bar{a}_{ij} x_{j} + \varepsilon \Omega \sqrt{\sum_{j} \bar{a}_{ij}^{2} x_{j}^{2}} \leq b_{i}^{+}, \qquad \forall i \in [m]$$

implies a probabilistic guarantee of level $1 - e^{-\Omega^2/2}$.

0000000 0000

Introduction

Contents

- Introduction and motivations
 - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization?
- 2 Solving the robust optimization problem
- Robust optimization for Linear Programn
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polyhedral uncertainty set
 - Cardinality constrained LP
- Probability guarantee
- Sobust Combinatorial Problem
- 6 Conclusion

A combinatorial optimization problem with cardinality constraint

We consider a combinatorial optimization problem:

$$\min_{\substack{x \in \{0,1\}^N \\ s.t. \ x \in X}} \max_{\tilde{c} \in R} \tilde{c}^\top x$$

where R is such that each $\tilde{c}_i \in [\bar{c}_i, \bar{c}_i + \delta_i]$, with at most Γ coefficient deviating from \bar{c}_i . Thus, the problem reads

$$(P) \quad \min_{\mathbf{x} \in \{0,1\}^N} \quad \bar{c}^\top \mathbf{x} + \max_{|S| \le \Gamma} \sum_{i \in S} \delta_i \mathbf{x}_i$$

$$s.t. \quad \mathbf{x} \in X$$

wlog we assume that the i are ordered by decreasing cost uncertainty span: $\delta_1 > \delta_2 > \dots > \delta$

Introduction

A combinatorial optimization problem with cardinality constraint

We consider a combinatorial optimization problem:

$$\min_{\substack{x \in \{0,1\}^N \\ s.t. \ x \in X}} \max_{\tilde{c} \in R} \tilde{c}^\top x$$

where R is such that each $\tilde{c}_i \in [\bar{c}_i, \bar{c}_i + \delta_i]$, with at most Γ coefficient deviating from \bar{c}_i . Thus, the problem reads

(P)
$$\min_{\mathbf{x} \in \{0,1\}^N} \bar{c}^{\top} \mathbf{x} + \max_{|S| \le \Gamma} \sum_{i \in S} \delta_i \mathbf{x}_i$$

 $\mathbf{s}.t. \quad \mathbf{x} \in X$

wlog we assume that the i are ordered by decreasing cost uncertainty span:

$$\delta_1 \geq \delta_2 \geq \cdots \geq \delta_n$$
.

Solving the robust combinatorial problem

We can write (P) as

Introduction

$$\min_{\mathbf{x} \in \{0,1\}^N} \max_{\boldsymbol{\zeta} \in [0,1]^n} \quad \bar{c}^\top \mathbf{x} + \sum_{i=1}^n \delta_i x_i \boldsymbol{\zeta} \\
\mathbf{s}.t. \qquad \mathbf{x} \in X \\
\sum_{i=1}^n \boldsymbol{\zeta} \le \Gamma$$

For a given $x \in X$ we dualize the inner maximization LP problem

Solving the robust combinatorial problem

Thus we can write (P) as

$$\min_{x,y,\theta} \quad \bar{c}^{\top}x + \Gamma\theta + \sum_{j=1}^{n} y_j$$
 $s.t. \quad x \in X$
 $y_j + \theta \ge \delta_j x_j$
 $y_j, \theta \ge 0$

$$y_j = (\delta_j x_j - \theta)^+ = (\delta_j - \theta)^+ x_j$$

V. Leclère

Robust combinatorial

Solving the robust combinatorial problem

Thus we can write (P) as

Introduction

$$\min_{x,y,\theta} \quad \bar{c}^{\top}x + \Gamma\theta + \sum_{j=1}^{n} y_j$$

$$s.t. \quad x \in X$$

$$y_j + \theta \ge \delta_j x_j$$

$$y_j, \theta \ge 0$$

Note that an optimal solution satisfies

$$y_i = (\delta_i x_i - \theta)^+ = (\delta_i - \theta)^+ x_i$$

as $x_i \in \{0, 1\}$, and $\theta \ge 0$.

V. Leclère

Solving the robust combinatorial problem

Thus we can write (P) as

$$\min_{\theta \ge 0} \min_{\mathbf{x}} \quad \bar{\mathbf{c}}^{\top} \mathbf{x} + \Gamma \theta + \sum_{j=1}^{n} x_j (\delta_j - \theta)^+$$

$$s.t. \quad \mathbf{x} \in X$$

We can now decompose the problem for $\theta \in [\delta_{\ell}, \delta_{\ell-1}]$ where $\delta_{n+1} = 0$ and $\delta_0 = +\infty$. Therefore, we have

$$val(P) = \min_{\ell \in [n]} Z^{\ell}$$

where

Introduction

$$Z^\ell = \min_{x \in X, heta \in [\delta_\ell, \delta_{\ell-1}]} \quad ar{c}^ op x + \Gamma heta + \sum_{j=1}^{\ell-1} x_j (\delta_j - heta)$$

Solving the robust combinatorial problem

Thus we can write (P) as

$$\min_{\theta \geq 0} \min_{x} \quad \bar{c}^{\top}x + \Gamma\theta + \sum_{j=1}^{n} x_{j}(\delta_{j} - \theta)^{+}$$
 $s.t. \quad x \in X$

We can now decompose the problem for $\theta \in [\delta_{\ell}, \delta_{\ell-1}]$ where $\delta_{n+1} = 0$ and $\delta_0 = +\infty$.

Therefore, we have

$$val(P) = \min_{\ell \in [n]} Z^{\ell}$$

where

$$Z^{\ell} = \min_{\mathbf{x} \in X, \theta \in [\delta_{\ell}, \delta_{\ell-1}]} \quad ar{c}^{ op} \mathbf{x} + \Gamma \mathbf{ heta} + \sum_{j=1}^{\ell-1} \mathbf{x}_j (\delta_j - \mathbf{ heta})$$

Conclusion

Solving the robust combinatorial problem

Thus we can write (P) as

$$\min_{\theta \geq 0} \min_{x} \quad \bar{c}^{\top}x + \Gamma\theta + \sum_{j=1}^{n} x_{j}(\delta_{j} - \theta)^{+}$$
 $s.t. \quad x \in X$

We can now decompose the problem for $\theta \in [\delta_{\ell}, \delta_{\ell-1}]$ where $\delta_{n+1} = 0$ and $\delta_0 = +\infty$.

Therefore, we have

$$val(P) = \min_{\ell \in [n]} Z^{\ell}$$

where

$$Z^\ell = \min_{\mathbf{x} \in X, \theta \in [\delta_\ell, \delta_{\ell-1}]} \quad ar{\mathbf{c}}^ op \mathbf{x} + \Gamma \mathbf{ heta} + \sum_{j=1}^{\ell-1} \mathbf{x}_j (\delta_j - \mathbf{ heta})$$

Solving the robust combinatorial problem

As the problem is linear in θ we have that

$$Z^{\ell} = \min_{\mathbf{x} \in X, \theta \in [\delta_{\ell}, \delta_{\ell-1}]} \quad \bar{c}^{\top} \mathbf{x} + \Gamma \theta + \sum_{j=1}^{\ell-1} x_j (\delta_j - \theta)$$

is attained for $\theta = \delta_{\ell}$ or $\theta = \delta_{\ell-1}$.

So in the end, we have

$$val(P) = \min_{\ell \in [n]} G^{\ell}$$

where

$$G^{\ell} = \Gamma \delta_{\ell} + \min_{\mathbf{x} \in X} \left\{ \bar{c}^{\top} \mathbf{x} + \sum_{j=1}^{\ell} \underbrace{(\delta_{j} - \delta_{\ell})}_{>0} \mathbf{x}_{j} \right\}$$

Algorithm for the robust problem

• For $\ell \in [n]$, solve

Introduction

$$G^{\ell} = \Gamma \delta_{\ell} + \min_{\mathbf{x} \in X} \quad \left\{ \bar{\mathbf{c}}^{\top} \mathbf{x} + \sum_{i=1}^{\ell} (\delta_{i} - \delta_{\ell}) \mathbf{x}_{\mathbf{j}} \right\}$$

with optimal solution x_{ℓ}

- ② Set $\ell^* \in \operatorname{arg\,min}_{\ell \in [n]} G^{\ell}$
- **3** Return $val(P) = G^{\ell^*}$ and $x^* = x_{\ell}$

Contents

- - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization?
- - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polvhedral uncertainty set
 - Cardinality constrained LP

- 6 Conclusion

Why do robust optimization?

- Because you want to account for some uncertainty
- Because you want to have a solution that resists to changes in data
- Because your data is unprecise and robustness yield better out-of-sample result
- Because you do not have the law of the uncertainty
- Because you can control the robustness level
- Because vour problem is "one-shot"

Which uncertainty set to choose?

- An uncertainty set that is computationally tractable
- An uncertainty set that yields good results
- An uncertainty set that have some theoretical soundness
- An uncertainty set that take available data into account
- Select uncertainty set / level through cross-validation

Introduction

Is there some theoretical results?

• Yes: with some assumption over the randomness (e.g. bounded and symmetric around \bar{a}) some uncertainty set (e.g. ellipsoidal) have a probabilistic guarantee:

$$orall oldsymbol{\xi} \in R_{arepsilon}, \quad g(x, oldsymbol{\xi}) \leq 0 \qquad \Longrightarrow \qquad \mathbb{P}\Big(g(x, oldsymbol{\xi}) \leq 0\Big) \geq 1 - arepsilon$$

- Yes: in some cases approximation scheme for nominal problem can be extended to robust problem (e.g. cardinal uncertainty in combinatorial problem)
- Yes: using relevant data we can use statistical tools to construct a robust set R
 that imply a probabilistic guarantee

D. Bertsimas, D. Brown, C. Caramanis Theory and applications of robust optimization Siam Review, 2011.

