Report "Distributed Systems for Measurement and Automation"

Jo Black, John Doe

Abstract-Add the abstract of the report here.

I. INTRODUCTION

The mechanism underlying the information sharing

Example of citation: In [1] you may find... Example of equation: In the following equation

$$\cos(\alpha^2)^3 = \tan\frac{1}{a + x_a^2} \left[\left(\frac{y}{x} + 10 \right)^{\sqrt{2}} + \frac{\frac{1}{5}}{\beta} \right]$$
 (1)

The relation (1) describes...

Introduction of the problem (with bibliography if needed)

A. Problem Formulation

Formulation of the problem to solve

II. ADOPTED MODELS

A. Communication System

Communication system and/or distributed system adopted (SCADA, DCS, robot network, etc.)

B. System Model

System model (robot, sensors and actuators)

III. SOLUTION

In this section, we will analyse in details the three main points of the proposed approach... bla bla...

Proposed solution (control laws, estimators, etc.)

IV. IMPLEMENTATION DETAILS

Implementation (practical and/or developed simulator)

V. RESULTS

Experimental results on the system, to be shown with numeric data evidence and graphs

In Figure 1 it is shown...

VI. CONCLUSIONS

In this report we...

Conclusions and discussions of the benefits and limits of the application and possible future directions

REFERENCES

[1] D. Fontanelli, D. Macii, P. Nazemzadeh, and L. Palopoli, "Collaborative Localization of Robotic Wheeled Walkers using Interlaced Extended Kalman Filters," in *Proc. IEEE Int. Instrumentation and Measurement Technology Conference (I2MTC)*. Taipei, Taiwan: IEEE, May 2016, pp. 1–6.

The authors have the following addresses: Italy {jo.black, john.doe}@studenti.unitn.it.

This report is the final document for the course of "Distributed Systems for Measurement and Automation".

Fig. 1. Example of figure.