Dice Game

Hannah Smith, Nicolas Gomez, Justin Phuc Le Nguyen

Verilog-Based Dice Game

- Overview
 - Introducing a digital rendition of a classic dice game implemented in Verilog
- Game Concept
 - Description: Players engage in a virtual two-player dice rolling contest
 - Objective: Roll dice, calculate scores, and enjoy a competitive gaming experience
- Implementation
 - Description: Utilizing Verilog, a hardware description language
 - Purpose: To simulate game logic, randomization, and visual display

Dice Game Overview

- Dice simulation
 - Four dice represented on-screen
 - Each player rolls two dice, resulting in unique values
- Score Tracking
 - Players score displayed alongside the dice
 - Scores update based on the total values of rolled dice
- Player Turns
 - Rolling trigger generates random values for each dice
- Score Calculation
 - Compare the sum of values from both players' dice rolls
 - Scores update based on the total values of rolled dice

Dice Game Logic

- Inputs
 - clk: Clock signal, rst: Reset signal, roll_trigger: Trigger signal for dice rolling
- Outputs
 - die1 to die4: Outputs representing the values of four dice
 - player1score: Output for players 1's score
 - player2score: Output for players 2's score
- Score Calculation
 - Compares total values of dice pairs to determine score increments
 - o Increases the score for the respective player based on the comparison
- Increment Control
 - Manages increment_done flag to ensure scores are updated only once per roll_trigger

Linear Feedback Shift Register (LFSR)

- Initialization
 - Resets the counter and sets initial values for random outputs on reset signals
- Roll Trigger
 - Incrementing counter on roll_trigger signal
 - Utilizes counter values for pseudo-random number generation
- Logic
 - Implements feedback logic for each output using counter values
 - Generates pseudo-random numbers using modular arithmetic

Seven Segment Display Module

- Resets the display and timers on reset signal
- Display Control
 - Utilizes digit_select to cycle through different displays
 - Maps input values to corresponding seven-segment representations
- Segment Output
 - Maps input and values to corresponding seven-segment representations
- Clock and Timer
 - Tracks and controls digit selection and display timing

VGA Display

- Input Mapping
 - Maps 4-bit input values to corresponding 7-segment display codes
- Display Data Generation
 - Combines the four 4-bit inputs into a 16-bit display data for VGA
- Visual Feedback
 - VGA display showcases dice values and scores
 - Real-time representation of the game state

Conclusion

- Game Logic and Functionality
 - Utilized verilog to simulate a two-player dice game
 - Modular design with components for dice simulation, score tracking, and VGA display
- Technical Implementation
 - Efficient utilization of clock cycles and trigger signals
 - VGA output for visually engaging gameplay representation
- Component Highlights
 - Seven-segment display for visual representation of dice values
 - LFSR generating pseudo-random numbers
 - VGA display module presenting dice and scores in real-time