Code to learn with Scratch?

A systematic literature review

J. Moreno-León, Gregorio Robles

jesus.moreno@programamos.es, grex@gsyc.urjc.es GSyC/Libresoft, Universidad Rey Juan Carlos

IEEE EDUCON 2016, Abu Dhabi, April 12th 2016

(cc) 2016 J. Moreno-León and Gregorio Robles Some rights reserved. This work licensed under Creative Commons Attribution-ShareAlike License. To view a copy of full license, see http://creativecommons.org/licenses/by-sa/3.0/ or write to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Some of the figures have been taken from the Internet Source, and author and licence if known, is specified.

For those images, fair use applies.

Code to learn (I)

Logo programming language

- Developed in the 1960s
- Its educational impact was intensively investigated in the 70s and 80s
- Students' improvements in maths (and other disciplines) were proved
- "Disappeared" from the educational landscape since mid-90s

Seymour Papert's picture: jgora.net

Code to learn (and II)

1) steps

New visual programming languages

- Alice, Greenfoot, Kodu, Scratch
- Code.org, EU Code Week, Africa Code Week, ArabCode.org
- If there is no evidence showing educational impact of programming, this resurgence of programming in schools could disappear in a few years.

Research questions

- RQ1. What K-12 subjects have used programming with Scratch as an educational resource?
- RQ2. Is programming with Scratch a good educational tool that enhances student learning?
- RQ3. What other skills are developed while learning to code with Scratch?

Background picture: rebel-performance.com

Methodology

Figure: Systematic literature review process

Source: Guidelines for Performing Systematic Literature Reviews in Software Engineering

Selection of primary studies

Out of 107 located articles, the final number of selected papers is 15.

Motive of exclusion	Number of papers
Focused on programming	32
No evidence provided	7
University students	7
Out of context	41
No English version	2
Articles not accessed	3

Table: Summary of article exclusion

Findings, RQ1

Paper	Age	Subject	Environment
[21]	Middle School	Mathematics	School
[22]	5th grade	Mathematics, Language Arts	Summer camp
[23]	3rd grade	Mathematics	School
[24]	5th grade	Science	School
[25]	5th grade	Science	School
[26]	10-14 years old	Storytelling, Creative writing	After school
[27]	12-14 years old	Writing	School
[28]	4th-5th grade	English as a second language	School

Table: Subjects learned through coding with Scratch

Findings, RQ2 (I)

```
control group
Random selection
       sample > 30
       sample > 100
Pre and post
       evidence collection
       Tests
       Surveys
       In-field observation
```

Figure: Description of the 8 papers under investigation for RQ2

Findings, RQ2 (and II)

Subject	Paper	Proved results	Non-proved results
	[21]	Significantly more positive attitudes	
Maths		towards maths	
	[22]	Test scores in maths highly cor-	
		related with programming perfor-	
		mance	
	[23]	Improvements at comparing num-	No differences at spatial loca-
		bers and establishing order	tion
Science	[24]		How or if learners deepened
Science			their science knowledge
	[25]	61.5% reported a better under-	
		standing of science	
L. arts	[26]	60% indicated their storytelling	
		skills improved	
	[27]	Effective framework for facilitating	
		digital composition	
English	[28]	Experimental improved more than	
		control groups	

Table: Programming with Scratch to learn other subjects

Findings, RQ3 (I)

Figure: Description of the 7 papers under investigation for RQ3

Findings, RQ3 (and II)

Paper	Proved results	Non-proved results
[25]	Better performance in logical think-	
	ing and problem solving	
[30]	Students in the treatment group	
	show improvement in their problem	
	solving skills at a rate greater than	
	those in the control group	
[31]	Improved problem solving ability	
[32]	The effect on problem solving abil-	No significant effect on logical
	ities is significant, especially at the	reasoning skills
	reason of prediction	
[33]	Improved problem solving skills and	
	reasoning practices	
[34]	Increase in self-confidence in prob-	No significant differences in
	lem solving ability	problem solving skills
[35]	Increase in logic, creativity and	
	learning skills	

Table: Skills developed by programming with Scratch

Conclusions

- Programming with Scratch to learn other subjects
 - 8 studies
 - Very promising outlook
 - Most investigations did not follow basic recommendation for education research
- Programming with Scratch to develope other skills
 - 7 papers
 - Positive results
 - Most investigations used control groups, pre- and post-tests, and samples bigger than 30.
- It is necessary to conduct further research with larger samples to justify the use of programming as an educational tool in K-12

Background picture: flamingcow.co.uk

Future Work

We are performing a **broader systematic literature review**, not restricting the programming language to Scratch, in order to:

- Identify potential differences of different programming languages
- State stronger conclusions regarding the usefulness of computer programming as an educational tool for primary and secondary students

Background picture: Simon Cunningham

Code to learn with Scratch?

A systematic literature review

J. Moreno-León, Gregorio Robles

jesus.moreno@programamos.es, grex@gsyc.urjc.es GSyC/Libresoft, Universidad Rey Juan Carlos

IEEE EDUCON 2016, Abu Dhabi, April 12th 2016

