

Álgebra Linear

LCC

Teste 1

Duração: 1h45

4/11/2019

Α

Iniversidade do Minho

Proposta de resolução

Grupo I

Em cada questão deste grupo deve ser assinalada apenas uma das opções de resposta. A uma resposta correta é atribuída uma cotação de 1.25 valores (apenas uma resposta está correta) e a uma resposta errada é atribuída uma cotação de -0.25 valores. A cotação mínima total deste grupo é de 0 valores.

1.	. Dadas duas matrizes $A \in \mathcal{M}_{4\times 2}(\mathbb{R})$ e $B \in \mathcal{M}_{2\times 4}(\mathbb{R})$, a matriz	
	AB + BA está bem definida.	A^TB está bem definida.
	X $(A + B^T)^T$ pode ser calculada.	
2.	Considere a matriz $A = \begin{bmatrix} \alpha & \beta \\ 0 & 1 \end{bmatrix}$, com $\alpha \neq 0$.	
	A comuta com A^T para qualquer $\beta \in \mathbb{R}$.	$\hfill A$ e A^T nunca são comutáveis.
	A é uma matriz elementar quaisquer que sejam $\alpha, \beta \in \mathbb{R}$.	\overline{X} A é um produto de matrizes elementares para α e β não nulos.
3.	Se A é um matriz quadrada de ordem n tal que $A^3 = \frac{1}{4}I_n$, então	
	X A é invertível e $A^{-1} = 4A^2$.	\square A não é invertível.
	A^2 é invertível e $(A^2)^{-1} = A$.	
4.	Se A é uma matriz quadrada de ordem n e B	B é tal que $A \xrightarrow[l_1 \leftarrow 2l_1]{} B$, então
		$X \det(B) = 2 \det(A).$
5.	Considere a matriz $\begin{bmatrix} 1 & 1 & b & 1 \\ 0 & 1 & a & 1 \\ 0 & a & 0 & b \end{bmatrix}, \text{ com } a, b \in$	$\mathbb R.$ Sobre a característica de A sabemos que
	car(A) = 2 para quaisquer $a, b \in \mathbb{R}$.	
	car(A) ≥ 3 para quaisquer $a, b \in \mathbb{R}$.	X car $(A) = 3$ se $a \neq 0$.
6.		a de um sistema de equações lineares, com α
	$oxed{X}$ o sistema é possível e determinado se $lpha eq 1.$	o sistema é possível e indeterminado se $\alpha = 1$.
	o sistema é sempre possível.	o sistema é impossível se $\beta = 3$.

Grupo II

Neste grupo as respostas a todos as questões devem ser devidamente justificadas.

1. [1.5 valores] Se A e B são duas matrizes invertíveis de ordem n tais que $\left[\left(A^{-1}\right)^T B\right]^{-1} = I_n$, mostre que $B = A^T$.

Resolução.

$$[(A^{-1})^T B]^{-1} = I_n \Longrightarrow B^{-1} [(A^{-1})^T]^{-1} = I_n$$

$$\Longrightarrow B^{-1} [(A^T)^{-1}]^{-1} = I_n$$

$$\Longrightarrow B^{-1} A^T = I_n$$

$$\Longrightarrow BB^{-1} A^T = BI_n$$

$$\Longrightarrow I_n A^T = BI_n$$

$$\Longrightarrow A^T = B.$$

2. [3.5 valores] Considere o sistema de equações lineares nas incógnitas x_1, x_2, x_3 e x_4 com a seguinte matriz simples e vetor dos termos independentes:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 2 & -2 & -1 & -1 \\ 1 & 2 & 1 & 1 \end{bmatrix} \qquad \mathbf{e} \qquad \boldsymbol{b} = \begin{bmatrix} 1 \\ 1 \\ -2 \\ 5 \end{bmatrix}.$$

- (a) Verifique que $s_1 = (1, 4, -3, -1)$ é uma solução do sistema Ax = b.
- (b) Verifique que o sistema homogéneo associado Ax = 0 é possível e indeterminado, usando o método de eliminação de Gauss, e apresente a solução geral deste sistema.
- (c) Se s é uma solução do sistema Ax = 0, então $s + s_1$ é uma solução do sistema Ax = b. Mostre este resultado e use-o para apresentar duas outras soluções do sistema Ax = b.

Resolução.

(a)
$$As_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 2 & -2 & -1 & -1 \\ 1 & 2 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 4 \\ -3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -2 \\ 5 \end{bmatrix} = \boldsymbol{b}$$

(b)

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 2 & -2 & -1 & -1 & 0 \\ 1 & 2 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{l_2 \leftarrow l_2 - l_1} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & -2 & -1 & -1 & 0 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{l_3 \leftarrow l_3 + 2l_2} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{l_4 \leftarrow l_4 - l_1} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

2

Como $car(A) = car(A|\mathbf{0}) = 3 < n = 4$ (onde n é o número de incógnitas), o sistema Ax = 0 é possível e indeterminado.

Temos então o sistema equivalente

$$\begin{cases} x_1 & = 0 \\ x_2 + x_3 + x_4 = 0 \\ x_3 + x_4 = 0 \end{cases} \iff \begin{cases} x_1 = 0 \\ x_2 = -x_3 - x_4 \\ x_3 = -x_4 \end{cases} \iff \begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = -x_4 \end{cases},$$

onde x_4 é uma variável livre, podendo, portanto, tomar qualquer valor real. A solução geral do sistema é dada por

$$(x_1, x_2, x_3, x_4) = (0, 0, -\alpha, \alpha), \quad \alpha \in \mathbb{R}.$$

(c) Uma vez que As = 0 e $As_1 = b$, temos

$$A(s + s_1) = As + As_1 = 0 + b = b,$$

ou seja, $s + s_1 = (1, 4, -3 - \alpha, -1 + \alpha)$ é uma solução do sistema Ax = b. Assim, tomando $\alpha = 1$ e $\alpha = 2$, obtemos duas outras soluções do sistema, respetivamente,

$$(1,4,-4,0)$$
 e $(1,4,-5,1)$.

- 3. [3 valores] Considere a matriz invertível $A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & 2 \end{bmatrix}$.
 - (a) Verifique que $A^{-1} = \begin{bmatrix} 1 & 0 & -1/2 \\ 0 & 1 & -1/2 \\ -1 & 0 & 1 \end{bmatrix}$.
 - (b) Use A^{-1} para resolver as equações matriciais

i.
$$2A\boldsymbol{x} = \boldsymbol{b} \text{ com } \boldsymbol{b} = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T$$

i.
$$2A\boldsymbol{x} = \boldsymbol{b} \text{ com } \boldsymbol{b} = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T$$
. ii. $AA^T\boldsymbol{x} = A\boldsymbol{b} \text{ com } \boldsymbol{b} = \begin{bmatrix} 1 & 0 & 2 \end{bmatrix}^T$.

Resolução.

(a)
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -1/2 \\ 0 & 1 & -1/2 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(b) i.

$$2A\boldsymbol{x} = \boldsymbol{b} \iff A\boldsymbol{x} = \frac{1}{2}\boldsymbol{b} \iff \boldsymbol{x} = \frac{1}{2}A^{-1}\boldsymbol{b}$$

$$\iff \boldsymbol{x} = \frac{1}{2}\begin{bmatrix} 1 & 0 & -1/2 \\ 0 & 1 & -1/2 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ \frac{1}{2} \end{bmatrix}$$

ii.

$$AA^{T}\boldsymbol{x} = A\boldsymbol{b} \iff A^{-1}AA^{T}\boldsymbol{x} = A^{-1}A\boldsymbol{b} \iff I_{n}A^{T}\boldsymbol{x} = I_{n}\boldsymbol{b} \iff A^{T}\boldsymbol{x} = \boldsymbol{b}$$

$$\iff \boldsymbol{x} = (A^{T})^{-1}\boldsymbol{b} \iff \boldsymbol{x} = (A^{-1})^{T}\boldsymbol{b}$$

$$\iff \boldsymbol{x} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1/2 & -1/2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ \frac{3}{2} \end{bmatrix}$$

- 4. [3 valores] Suponha que existe uma matriz A tal que $\operatorname{adj}(A) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 4 & 1 \\ 3 & 2 & 2 \end{bmatrix}$ e $\det(A) = 3$.
 - (a) Calcule $\det (\operatorname{adj}(A))$ e verifique que $\det (\operatorname{adj}(A)) = [\det(A)]^2$. Conclua que $\operatorname{adj}(A)$ e A são matrizes invertíveis.
 - (b) Mostre que, em geral, para uma matriz invertível A de ordem n se tem

$$A = \det(A) \cdot \left[\operatorname{adj}(A)\right]^{-1}.$$

(c) Sem calcular $\left[\operatorname{adj}(A)\right]^{-1}$, determine o elemento na posição (3,2) de A. Sugestão: recorde que a segunda coluna de $\left[\operatorname{adj}(A)\right]^{-1}$ é a solução do sistema $\operatorname{adj}(A)\boldsymbol{x} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$ e use a Regra de Cramer.

Resolução.

(a)

$$\det \left(\operatorname{adj}(A) \right) = \det \begin{pmatrix} 1 & 1 & 0 \\ 0 & 4 & 1 \\ 3 & 2 & 2 \end{pmatrix} = 1 \times \det \begin{pmatrix} 4 & 1 \\ 2 & 2 \end{pmatrix} - 1 \times \det \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix} = (8-2) - (-3) = 9.$$

Verifica-se, então, que $\left[\det(A)\right]^2 = 3^2 = \det\left(\operatorname{adj}(A)\right)$.

As matrizes A e $\operatorname{adj}(A)$ são invertíveis uma vez que $\det(A)$ e $\det\left(\operatorname{adj}(A)\right)$ são não nulos.

(b) Sabemos que $A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A)$. Então,

$$(A^{-1})^{-1} = \left(\frac{1}{\det(A)} \cdot \operatorname{adj}(A)\right)^{-1} \Longrightarrow A = \left(\frac{1}{\det(A)}\right)^{-1} \cdot \left[\operatorname{adj}(A)\right]^{-1}$$
$$\Longrightarrow A = \det(A) \cdot \left[\operatorname{adj}(A)\right]^{-1}.$$

(c) Por (b), sabemos que o elemento na posição (3,2) de A é igual ao elemento na mesma posição da matriz $\left[\operatorname{adj}(A)\right]^{-1}$ multiplicado por $\det(A)$.

Sabemos também que o elemento na posição (3,2) da matriz $\left[\operatorname{adj}(A)\right]^{-1}$ é a componente x_3 da solução do sistema $\operatorname{adj}(A)\boldsymbol{x} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$. Assim,

$$a_{32} = \det(A) \cdot \frac{\det \begin{pmatrix} 1 & 1 & 0 \\ 0 & 4 & 1 \\ 3 & 2 & 0 \end{pmatrix}}{\det \left(\operatorname{adj}(A) \right)} = 3 \cdot \frac{1 \times \det \begin{pmatrix} 4 & 1 \\ 2 & 0 \end{pmatrix} - 1 \times \det \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix}}{9} = \frac{-2 + 3}{3} = \frac{1}{3}$$

- 5. [1.5 valores] Um matriz A de ordem n diz-se involutiva se $A^2 = I_n$ e idempotente se $A^2 = A$. Mostre que
 - (a) se N é involutiva, então $\frac{1}{2}(I_n+N)$ e $\frac{1}{2}(I_n-N)$ são idempotentes e $(I_n+N)(I_n-N)=O$.
 - (b) toda a matriz involutiva se pode escrever como a diferença de duas matrizes idempotentes, cujo produto é a matriz nula.

Resolução.

(a) A matriz $\frac{1}{2}(I_n \pm N)$ é uma matriz idempotente uma vez que

$$\left[\frac{1}{2}(I_n \pm N)\right]^2 = \frac{1}{4}(I_n \pm N)(I_n \pm N)
= \frac{1}{4}\left(I_nI_n \pm I_nN \pm NI_n + N^2\right)
= \frac{1}{4}\left(I_n \pm 2N + N^2\right)
= \frac{1}{4}\left(I_n \pm 2N + I_n\right) \quad \text{(porque } N \text{ \'e involutiva)}
= \frac{1}{4}\left(2I_n \pm 2N\right)
= \frac{1}{2}\left(I_n \pm N\right)$$

Temos também

$$(I_n+N)(I_n-N) = I_nI_n - I_nN + NI_n - N^2 = I_n - N + N - N^2 = I_n - N^2 = I_n - I_n = O.$$

(b) Podemos escrever uma matriz involutiva N na forma

$$N = \frac{1}{2} (I_n + N) - \frac{1}{2} (I_n - N),$$

onde, por (a), $\frac{1}{2}\left(I_n+N\right)$ e $\frac{1}{2}\left(I_n-N\right)$ são matrizes idempotentes cujo produto é a matriz nula.