Freight transport systems: analysis and modelling

CIEM6210 (U3) CIEQ6213 SEN173A

Assignment onboarding

Arjan van Binsbergen, Lóri Tavasszy, Stefano Fazi, Mahnam Saeednia, Allan Guzman Fallas

TIMETABLE CIEM6210-U3 / CIEQ6213 / SEN173A FREIGHT TRANSPORT NETWORKS AND SYSTEMS

Timetable; version 23 April 2024

(c.wk. 26) TUE 25 JUN 2024 13:30

(c.wk. 29) TUE 16 JUL 2024 13:30

CEG 0.20

week: lecture week in quarter 4 (c.wk.: calendar week)	Where	Туре	Title/topic	Exercise/assignment	Lecturer involved
week 1 TUE 23 APR 2024 10:15-10:45	CEG-Lecture Hall E	Lecture	Part A: Freight & logistics systems (LO1-short) Short introduction to course		Stefano Fazi, Mahman Saeednia,
(c.wk. 17) TUE 23 APR 2024 10:45-12:45 THU 25 APR 2024 10:45-12:45		Lecture Lecture	(LO2) Supply chains, logistics, freight transport systems (LO3) Intermodal transport networks: strategic, tactical, operational perspectives		Arjan van Binsbergen Arjan van Binsbergen Mahman Saeednia
week 2 TUE 30 APR 2024 10:45-12:45 (c.wk. 18) THU 2 MAY 2023 10:45-12:45 week 3 TUE 7 MAY 2024 10:45-12:45		Lecture Workshop Lecture	Part B: Models (L04) Demand models 1, mode and route choice Introduction to exercise, including Python refresher etc. (L05) Demand models 2, generation and distribution	Start exercise pt 1	Lori Tavasszy Staff You are here
(c.wk. 19) {No lectures on Thursday} week 4 TUE 14 MAY 2024 10:45-12:45 THU 16 MAY 2024 10:45-12:45		Lecture Lecture	(LO6) Introduction to basic optimization models for network design for tactical/strategic decisions (LO7) Stochastic two-stage mathematical models for operational	Start exercise pt 2	Stefano Fazi
(c.wk. 20) week 5 TUE 21 MAY 2024 10:45-12:45 (c.wk. 21) THU 23 MAY 2024 10:45-12:45		Lecture Guest lecture	decisions in freight transport (LO8) Freight transport policy - networks (LO9) Modelling in practice [Guest Lecture]		Stefano Fazi Arjan van Binsbergen Jan Kiel (confirmed)
week 6 TUE 28 MAY 2024 10:45-12:45 (c.wk. 22) THU 30 MAY 2024 10:45-12:45		Lecture Guest lecture	Part C: Policy and practice (L10) Freight transport policy - sustainability (L11) Policy in practice [Guest Lecture]	Start exercise pt 3	Arjan van Binsbergen Johan Visser (confirmed)
week 7 TUE 4 JUN 2024 10:45-12:45 (c.wk. 23) THU 6 JUN 2024 10:45-12:45	CEG-Lecture Hall E CEG-Lecture Hall E	Lecture Lecture	(L12) Freight transport policy - cities (L13) Applied freight models [Guest Lecture]		Arjan van Binsbergen Michiel de Bok (confirmed
week 8 THU 13 JUN 2024 10:45-12:45 (c.wk. 24) FRI 14 JUN 2024 10:45	CEG-Lecture Hall E (via BrightSpace)	Lecture	(optional) Exam preparation Exercise delivery deadline	Deadline exercise	14 June deadline

Fellowship Studio Classroom 1&2 Exam Exam (resit)

Assignment in a nutshell

Function = to help internalize the theoretical knowledge of the lectures

Topic: network design for the European intermodal container transport system

Problems addressed

- Mode choice: user decides value of options
- Network design: choose the best place(s) to invest
- Policy evaluation: scenarios to incentivize use

Approach: simplified but realistic case, pre-programmed models, stepwise approach

Goal: design a multimodal freight network for container flows in Europe

Modes

- Conventional Rail
- 2. Road
- 3. Intermodal

Subgoals

1. Determine user preferences related to mode choice

2. Identify priority locations for intermodal terminals

3. Pricing policy to help achieve modal shift

Implementation

Steps

- Freight transport demand (coach: Tavasszy)
- 2. Network optimization (coach: Fazi)
- 3. Freight Policy Analysis (coach: van Binsbergen)

Assignment in 3 parts

Part 1: estimate demand model

Pt 1: mode choice model

Purpose: behaviour of flows is input for network design

- a) Check data: distance and time matrices, speeds, costs, all modes
- b) Estimate an aggregate logit model to predict the share of transport modes
 - <u>Check</u> model specification
 - Solve in Python (code provided)
- c) <u>Interpret</u> the estimated parameters in the context of multimodal freight transport.

Pt 2: network design model

Design a multimodal network

- 1. Calculate optimal networks for different number of terminals
- 2. Create the Pareto frontier of best designs
- 3. Discuss modal split changes (if any)
- 4. Discuss feasibility of terminal investments

To achieve overall CO_2 emission reduction targets, the CO_2 emissions in the freight transport systems must be reduced by 30%.

You will look at the following approaches to achieve this target:

- Internalize (part of the) external costs of CO₂ emissions for all transport modes
- II. Subsidize specific modes

Organization

Group work

- Form your own group asap! 4 students per group
- Separate groups for SEN173A and CIEM6210-U3/SIEQ6213

Delivery

- Max 3 page written report per part-assignment.
 Add file with model code (e.g. Jupyter Notebook) where applicable.
- Save the assignment files with group number and assignment number in the filename. Zip file is OK.
- Include student names & numbers in report
- Deliver to respective lecturers

Assessment

For CEG and TIL: formative assessment, meaning no grading

- As for all, group work
- Reflection report = recommended
- Feedback provided when asked

For CoSEM: summative assessment (graded)

- 30% of course grade; 1 EC extra
- Group report to be delivered by 14 June
- Grade must be at least 5,0
- Assignments done last year are still valid for 2024

Exam may include question about the assignment

Preparations for programming

Install anaconda

- Installs jupyter notebook, spyder and the packages you need for the assignment
- Follow the <u>instructions</u> depending on your OS

Teaching assistant: Allan Guzman Fallas

Check packages / libraries

- (base) C:\Users\username>conda list
- (base) C:\Users\username>conda install package

- Go to: Environments
- Filter by: All
- Search: package

Preparations for programming

FILES EXECUTE PACKAGES / LIBRARIES ■ CIE5830 Part1 Question.py math openpyxl CIE5830_AssignmentPart1.xlsx numpy scipy Network_design_assignment2.py Spyder matplotlib numpy ■ Data2.xlsx seaborn scipy pandas networkx Green_network_design_assignment3.py itertools Spyder ■ Data2.xlsx

Helpful links

NetworkX

SciPy & NumPy

Python

- Documentation
- Documentation
- General tutorial

Partial tutorial

- Tutorial
- Another tutorial

