Lista de Exercícios Cálculo I

James Stewart; Cálculo - Volume 1; 6^a edição. Seções 1.1, 1.3, 1.5, 1.6 e Apêndices A.9, A.30

Apêndice A.9

Enunciado para as questões 1 e 11: Reescreva as expressões sem usar o símbolo de valor absoluto:

1.
$$|5-23|$$

$$11. |x^2 + 1|$$

Enunciado para as questões 17 e 21: Resolva as inequações em termos de intervalos e represente o conjunto solução na reta real.

17.
$$2x + 1 < 5x - 8$$

21.
$$0 \le 1 - x < 1$$

45. Resolva a equação para x.

$$|x+3| = |2x+1|$$

51. Resolva a inequação.

$$|x+5| \ge 2$$

Seção 1.1

- 2. Dado os gráficos de f e g:
- (a) Obtenha os valores de f(-4) e g(3).
- (b) f(x) = g(x) para quais valores de x?
- (c) Estime a solução da equação f(x) = -1.
- (d) Em qual intervalo f é decrescente?
- (e) Dê o domínio e a imagem de f.
- (f) Obtenha o domínio e a imagem de g.

Enunciado para as questões 5 a 7: Determine se a curva dada é o gráfico de uma função de x. Se for o caso, obtenha o domínio e a imagem da função.

5.

23. Calcule o quociente das diferenças para a função dada. Simplifique sua resposta.

$$f(x) = 4 + 3x - x^2$$
, $\frac{f(3+h) - f(3)}{h}$

Enunciado ~para~as~questões~27~e~30: Encontre o domínio da função. 27. $f(x)=\frac{x}{3x-1}$ 30. $g(u)=\sqrt{u}+\sqrt{4-u}$

$$27. \ f(x) = \frac{x}{3x - 1}$$

30.
$$g(u) = \sqrt{u} + \sqrt{4 - u}$$

41. Encontre o domínio e esboce o gráfico da função.

$$f(x) = \begin{cases} x + 2, \text{se } x < 0\\ 1 - x, \text{se } x \ge 0 \end{cases}$$

45. Encontre uma expressão para a função cujo gráfico é a curva dada.

Segmento de reta unindo os pontos (1,3) e (5,7).

51. Encontre uma fórmula para a função descrita e obtenha seu domínio.

Um retângulo tem um perímetro de 20 metros. Expresse a área do retângulo como uma função do comprimento de um de seus lados. .

3. Dado o gráfico y=f(x), associe cada equação com seu gráfico e justifique suas escolhas:

(a)
$$y = f(x-4)$$
 (b) $y = f(x) + 3$ (c) $y = \frac{1}{3}f(x)$ (d) $y = -f(x+4)$ (e) $y = 2f(x+6)$

Enunciado para as questões 21 e 23: Faça o gráfico de cada função, sem marcar pontos, mas começando com o gráfico de uma das funções básicas

dadas na Seção 1.2* e então aplicando as transformações apropriadas.

21.
$$y = \frac{2}{x+1}$$

23.
$$y = |\sin x|$$

29. Encontre f + g, f - g, fg, f/g e defina seus domínios donde

$$f(x) = x^3 + 2x^2$$
, $g(x) = 3x^2 - 1$

Enunciado para as questões 31 e 35: Encontre as funções (a) $f \circ g$, (b) $g \circ f$, (c) $f \circ f$ e (d) $g \circ g$ e seus domínios.

31.
$$f(x) = x^2 - 1$$
, $g(x) = 2x + 1$.

35.
$$f(x) = x + \frac{1}{x}$$
, $g(x) = \frac{x+1}{x+2}$

Enunciado para as questões 37 e 39: Encontre $f \circ g \circ h$.

37.
$$f(x) = x + 1$$
, $g(x) = 2x$, $h(x) = x - 1$

39.
$$f(x) = \sqrt{x-3}$$
, $g(x) = x^2$, $h(x) = x^3 + 2$

41. Expresse a função na forma $f \circ g$.

$$F(x) = (x^2 + 1)^{10}$$

Seção 1.5

1.

- (a) Escreva uma equação que defina a função exponencial com base a > 0.
- (b) Qual é o domínio dessa função?
- (c) se $a \neq 1$, qual a imagem dessa função?
- (d) Esboce a forma geral do gráfico da função exponencial nos seguintes casos.

$$(i)a > 1$$
 $(ii)a = 1$ $(iii)0 < a < 1$

15. Encontre o domínio de cada função

(a)
$$f(x) = \frac{1}{1 + e^{a}}$$

(a)
$$f(x) = \frac{1}{1 + e^x}$$
 (b) $f(x) = \frac{1}{1 - e^x}$

29. Se você traçar o gráfico da função

$$f(x) = \frac{1 - e^{1/x}}{1 + e^{1/x}}$$

verá que f parece ser uma função ímpar. Demonstre isso.

Enunciado para as questões 9 e 11: Determine se as seguintes funções são injetoras:

9.
$$f(x) = \frac{1}{2}(x+5)$$

11.
$$g(x) = |x|$$
.

- 17. Se $g(x) = 3 + x + e^x$, ache $g^{-1}(4)$.
- 21. Dada $f(x) = \sqrt{10-3x}$, encontre uma fórmula para a função inversa.
- 23. Encontre uma fórmula para a função inversa da função $f(x)=e^{x^3}$.
- 48. Resolva a seguinte equação em x.

$$e^{2x+3} - 7 = 0.$$

- 53. Seja $f(x) = \sqrt{3 e^{2x}}$. Determine:
 - (a) O domínio de f.
 - (b) A inversa de f e seu domínio.

Apêndice A.30

- 1. Converta 210° para radianos.
- 9. Converta $\frac{5\pi}{12}$ para graus.

- 42. Demonstre a seguinte identidade: $\cos\left(\frac{\pi}{2} x\right) = \sin(x)$.
- 59. Se sen(x) = 1/3 e sec(y) = 5/4, onde x e y estão entre 0 e $\pi/2$, cacule a seguinte expressão: sen(x+y).
- 87. Use a fórmula da adição para cosseno e as identidades

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta)$$
 , $\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)$

para demonstrar a fórmula da subtração para a função seno.

Gabaritos

Apêndice A.9

1. 18

11.
$$x^2 + 1$$

17.
$$x \in (3, \infty)$$

21.
$$x \in [1, 2)$$

45.
$$x \in \{2\}$$

51.
$$x \ge 5$$
 ou $x \le -7$

Seção 1.1

2.

a)
$$f(-4) = -2eg(3) = 4$$

b)
$$x = -2 e x = 2$$

c)
$$x = -3$$
 ou $x = 4$

e)
$$D = [-4, 4]$$
 e $I = [-2, 3]$

a)
$$f(-4) = -2eg(3) = 4$$
 b) $x = -2$ e $x = 2$ c) $x = -3$ ou $x = 4$ d) $[0,4]$ e) $D = [-4,4]$ e $I = [-2,3]$ f) $D = [-4,3]$ e $I = [\frac{1}{2},4]$

5. Não

6. Sim,
$$D = [-2,2]$$

7. Sim,
$$D = [-3,2]$$

27. D =
$$x \neq \frac{1}{3}$$

30.
$$D = [0,4]$$

41.
$$D = Reais$$

45.
$$f(x) = \frac{5x}{2} - \frac{11}{2}$$

51.
$$A(x) = -x^2 + 10x$$

Seção 1.3

21.

23.

29.

$$(f+g)(x) = x^3 + 5x^2 - 1, (-\infty, \infty)$$

$$(f-g)(x) = x^3 - x^2 + 1, (-\infty, \infty)$$

$$(fg)(x) = 3x^5 + 6x^4 - x^3 - 2x^2, (-\infty, \infty)$$

$$(f/g)(x) = (x^3 + 2x^2)/(3x^2 - 1), \{x \mid x \neq \pm 1/\sqrt{3}\}$$

31.

(a)
$$(f \circ g)(x) = 4x^2 + 4x, (-\infty, \infty)$$

(b)
$$(g \circ f)(x) = 2x^2 - 1, (-\infty, \infty)$$

(b)
$$(g \circ f)(x) = 2x^2 - 1, (-\infty, \infty)$$

(c) $(f \circ f)(x) = x^4 - 2x^2, (-\infty, \infty)$

(d)
$$(g \circ g)(x) = 4x + 3, (-\infty, \infty)$$

35.

(a)
$$(f \circ g)(x) = (2x^2 + 6x + 5)/[(x+2)(x+1)], \{x \mid x \neq -2, -1\}$$

(b)
$$(g \circ f)(x) = (x^2 + x + 1)/(x + 1)^2, \{x \mid x \neq -1\}$$

(a)
$$(f \circ g)(x) = (2x + 6x + 3)/[(x + 2)(x + 1)], \{x \mid x \in (b) (g \circ f)(x) = (x^2 + x + 1)/(x + 1)^2, \{x \mid x \neq -1\}$$

(c) $(f \circ f)(x) = (x^4 + 3x^2 + 1)[x(x^2 + 1)], \{x \mid x \neq 0\}$

(d)
$$(g \circ g)(x) = (2x+3)/(3x+5), \{x \mid x \neq -2, -\frac{5}{3}\}$$

37.
$$(f \circ g \circ h)(x) = 2x - 1$$

39.
$$(f \circ g \circ h)(x) = \sqrt{x^6 + 4x^3 + 1}$$

41.
$$g(x) = x^2 + 1$$
, $f(x) = x^{10}$

Seção 1.5

1.

- (a). $f(x) = a^x, a > 0$
- (b) ℝ
- (c) $(0, \infty)$
- (d) Veja as Figuras 4(c), 4(b) e 4(a) respectivamente. (seção 1.5 da referência, J.Stewart Ed.6ª)

15.
$$(a)$$
 $(-\infty, \infty)$ (b) $(-\infty, 0) \cup (0, \infty)$

29. Uma função impar é aquela que satisfaz a propriedade: f(-x) = -f(x) para todo x no domínio. Em particular para a função f em questão temos:

$$f(-x) = \frac{1 - e^{\frac{1}{-x}}}{1 + e^{\frac{1}{-x}}} = \frac{1 - e^{-\frac{1}{x}}}{1 + e^{-\frac{1}{x}}} = \frac{1 - \frac{1}{e^{\frac{1}{x}}}}{1 + \frac{1}{e^{\frac{1}{x}}}} = \frac{\frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}}}}{\frac{e^{\frac{1}{x}} + 1}{e^{\frac{1}{x}}}} = \frac{-1 + e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}} = -\frac{1 - e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}} = -f(x)$$

Seção 1.6

- 9. Sim (Teste da reta horizontal)
- 11. Não (g(1)=g(-1)=1)
- 17. 0

21.
$$f^{-1}(x) = -\frac{x^2}{3} + \frac{10}{3}, \ x \ge 0$$

23.
$$f^{-1}(x) = \sqrt[3]{\ln(x)}, \ x > 0$$

48.
$$\frac{\ln(7) - 3}{2}$$

53. (a)
$$\left(-\infty, \frac{\ln(3)}{2}\right]$$

(b) $f^{-1}(x) = \frac{1}{2}\ln(3-x^2), [0, \sqrt{3})$

Apêndice A.30

1.
$$\frac{7\pi}{6}$$

42. Utilize a fórmula de subtração do cosseno e o fato de que $\cos(\pi/2)=0$ e $\sin(\pi/2)=1$.

59.
$$\frac{4+6\sqrt{2}}{15}$$

87. Utilize a fórmula para $\cos(x+y)$ com $x=\pi/2-\alpha$ e $y=\beta$ e aplique as identidades sugeridas no enunciado.