ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES CONTRÔLE PÉRIODIQUE — AUTOMNE 2021

INFORMATIONS UTILES

Date: Le vendredi 22 octobre 2021

Heure: 12 h 45 à 14 h 35

Documentation: Une feuille manuscrite recto verso 8.5" x 11"

Calculatrice : Calculatrice autorisée seulement

RÉPONDEZ DIRECTEMENT SUR LE QUESTIONNAIRE DANS L'ESPACE PRÉVU À CETTE FIN. SI VOUS UTILISEZ LE VERSO DES PAGES, VEUILLEZ L'INDIQUER CLAIREMENT. <u>NE DÉTACHEZ AUCUNE PAGE DE CE QUESTIONNAIRE</u>.

CE QUESTIONNAIRE COMPREND 14 PAGES.

NOM :	MATRICULE :	
PRÉNOM :		
SIGNATURE :	Tota	l: /20

Cet examen est composé de quatre questions :

Question	Temps suggéré	Pondération
Question 1 : Questions en rafale	15 minutes	2,5 points
Question 2 : Le développement durable et vous	20 minutes	4 points
Question 3 : Climatisation de votre salle d'examen	15 minutes	3,5 points
Question 4 : Production d'éthanol dénaturé	60 minutes	10 points

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES CONTRÔLE PÉRIODIQUE — AUTOMNE 2021

1.	Questions en rafale Temps suggéré : 15 minutes	(2,5 points)
A)	Un mélange liquide ayant une masse molaire moyenne de 23,7 g/mol s'écoul conduite. Un débitmètre installé sur cette même conduite indique une valeur de Sachant que le débit molaire total dans la conduite est de 124 000 mol/h, détermin volumique du mélange (kg/m³). <i>(1,5 point)</i>	148,3 ft ³ /h.

- B) Soit un mélange formé de 20 g de benzène (C_6H_6) et de 40 g de toluène (C_7H_8). Lequel des énoncés suivants est faux ? Encerclez votre réponse. **(0,5 point)**
 - a. La fraction massique du benzène dans le mélange est de 0,33.
 - b. La fraction molaire du benzène dans le mélange est de 0,37.
 - c. Le nombre de molécules de benzène dans le mélange est supérieur au nombre de molécules de toluène.
 - d. Le nombre total d'atomes de carbone provenant du benzène est inférieur au nombre total d'atomes de carbone provenant du toluène.

C)	Déterminez si l'énoncé suivant est vrai ou faux. Justifiez votre réponse. (0,5 point)
<i>D</i>	ans un courant d'air humide à pression atmosphérique, une augmentation de la température entraîne augmentation de l'humidité absolue.
2.	Le développement durable et vous (4 points) Temps suggéré : 20 minutes
A)	Selon les capsules portant sur le développement durable écoutées dans le cadre de notre cours, donnez l'objectif principal du protocole de Kyoto, puis identifiez le seul pays qui s'est retiré de ce protocole en 2011. <i>(1 point)</i>
B)	Selon les capsules portant sur le développement durable écoutées dans le cadre de notre cours, identifiez deux initiatives de l'ONU pour la mobilisation mondiale en matière de développement durable. (1 point)

C)	Les applications de photos des téléphones récents permettent une sauvegarde synchronisée dans le nuage. Depuis peu, ces applications proposent aussi une nouvelle fonctionnalité à leurs utilisateurs : un algorithme analyse les images et propose de supprimer d'anciennes captures d'écran ou encore des égoportraits ratés. (2 points)
	Identifiez et justifiez deux impacts d'une telle mesure sur les piliers du développement durable. Chacun des deux impacts doit être sur un pilier différent que vous devez identifier clairement.
lmp	pact 1:
lmp	pact 2 :

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES CONTRÔLE PÉRIODIQUE — AUTOMNE 2021

3. Climatisation de votre salle d'examen

(3,5 points)

Temps suggéré : 15 minutes

Le procédé partiellement annoté ci-dessous est un procédé de climatisation permettant de retirer de l'eau à partir d'un courant d'air extérieur et de l'acheminer dans votre salle d'examen. À la sortie du climatiseur, une boucle de recirculation permet d'acheminer une partie de l'air asséché à l'entrée du procédé.

De l'air frais à 30°C et 1 atm contenant 4,00 % molaire de vapeur d'eau et 96% molaire d'air sec (noté AS sur le schéma) doit être refroidi et déshumidifié jusqu'à une teneur de 1,70 % molaire d'H₂O. Le flux d'air frais est combiné à un flux d'air recyclé précédemment déshumidifié. Le mélange de ces deux flux, contenant 2,30 % molaire de H₂O, est introduit dans l'unité de refroidissement où l'eau est condensée et enlevée à l'état liquide. Une fraction de l'air déshumidifié est séparée pour être recyclée, le reste étant libéré dans votre salle d'examen.

Figure 1 - Procédé de climatisation

A) Comment varient les compositions en air sec (AS) et en eau (H₂O) entre l'entrée et la sortie du point de division ? Justifiez votre réponse. (0,5 point)

B)	Outre le système du climatiseur, nommez les différents systèmes sur lesquels vous pouvez réaliser une analyse des degrés de liberté. <i>(0,5 point)</i>
C)	Faites l'analyse des degrés de liberté sur le climatiseur en prenant soin d'annoter le schéma précédent si des informations sont manquantes. (1 point)
D)	Calculez l'humidité relative de l'air frais à l'entrée du procédé. (1 point)

E)	C	:a	lc	CU	اړ	e	Z	le	d	éŀ	oi	t (ď	ea	u	CC	on	de	en	sé	ŗ	13	(r	m	ol	H	12	O,	/h	ı).	(0),5	р	oi	nt)								

4. Production d'éthanol dénaturé

(10 points)

Temps suggéré : 60 minutes

L'éthanol (ou bioéthanol) (C₂H₅OH ou C₂H₆O) produit à partir de biomasse doit absolument être dénaturé avant de pouvoir être utilisé comme source d'énergie. Afin de le rendre impropre à la consommation et ainsi éviter plusieurs problèmes (comme la contrebande ou l'utilisation artisanale), une petite quantité d'un autre composé chimique (le méthanol CH₃OH dans notre cas) doit être ajoutée au bioéthanol avant la revente. Le procédé présenté à la figure suivante montre le diagramme d'écoulement des dernières étapes du procédé de fabrication d'éthanol.

Un mélange de 1000 mol/h formé d'eau et d'éthanol entre tout d'abord dans le courant 1 dans une colonne à distiller (DIST-01) pour y être séparé. Ce courant contient 80% molaire d'éthanol et de 20% molaire d'eau.

Le courant vapeur 2 entre dans un condenseur (HX-01) où il est **partiellement** condensé. La sortie du condenseur est acheminée au ballon de reflux R-01 qui contient du liquide et de la vapeur et dont la température est de 50°C. Le courant liquide 3 sortant de R-01 est retourné à la colonne DIST-01 alors que le courant gazeux 4 passe à travers un condenseur **total** HX-02. Ce courant contient 95% molaire d'éthanol et 5% molaire d'eau. De plus, 90% molaire de l'éthanol alimenté à la colonne à distiller se retrouve dans le courant 4.

Après s'être condensé, le courant 4 est acheminé vers la colonne d'extraction solide/liquide SL-01 où la solution entre en contact avec une poudre de sulfate de magnésium MgSO₄ provenant du courant 7. Le sulfate de magnésium permet d'assécher l'éthanol en captant **toutes** les molécules d'eau avec un ratio de 7 moles d'eau pour 1 mole de MgSO₄. À la sortie de l'extracteur, l'éthanol asséché du courant 8 se combine avec du méthanol CH₃OH du courant 9. Le mélange d'éthanol dénaturé avec du méthanol contient 92% molaire d'éthanol et sort par le courant 10.

Figure 2 - Diagramme d'écoulement du procédé

•	(0,5 point)
A)	Effectuez une analyse des degrés de liberté sur le système de distillation (courants 1, 4 et 5).

B)	Déterminez le débit total du courant 4 (mol/h) et les débits partiels du courant 5 (mol/h). <i>(1,5 point)</i>
C)	Déterminez le débit massique (kg/h) de MgSO ₄ du courant 7 nécessaire pour assécher complètement l'éthanol. (1,5 points)

D)	Calculez le débit volumique (L/h) de méthanol à ajouter (courant 9) sachant que la densité du méthanol est de 0,792. <i>(3 points)</i>

E)	Déterminez les fractions massiques d'éthanol et d'eau dans le courant 3. (3,5 points)

Bonne chance!

Patrice Farand

Annexes

Tableau de conversion d'unités

Quantité	Équivalences
Masse	$1 \ kg = 1000 \ g = 0,001 \ t = 2,20462 \ lb_m = 35,27392 \ oz \\ 1 \ lb_m = 16 \ oz = 453,593 \ g$
Longueur	1 m = 100 cm = 1000 mm = $10^6 \mu m = 10^{10} \text{ Å}$ = 39,37 po = 3,2808 pi = 1,0936 vg = 0,0006214 mi 1 pi = 12 po = $1/3$ vg = 0,3048 m = 30,38 cm
Volume	1 m ³ = 1000 L = 10 ⁶ cm ³ = 10 ⁶ mL = 35,3145 pi ³ = 264,17 gal 1 pi ³ = 1728 po ³ = 7,4805 gal = 0,028317 m ³ = 28,317 L = 28 317 cm ³
Force	$ 1 N = 1 kg \cdot m/s^2 = 10^5 dyn = 10^5 g \cdot cm/s^2 = 0,22481 lb_f $ $ 1 lb_f = 32,174 lb_m \cdot ft/s^2 = 4,4482 N = 4,4482 \times 10^5 dyn $
Pression	1 atm = $1,01325 \times 10^5 \text{ N/m}^2$ (Pa) = $101,325 \text{ kPa}$ = $1,01325 \text{ bar}$ = $1,01325 \times 10^6 \text{ dyn/cm}^2$ = = $760 \text{ mm Hg à } 0^{\circ}\text{C}$ = $10,333 \text{ m H}_2\text{O à } 4^{\circ}\text{C}$ = $14,696 \text{ lb}_f/\text{po}^2$ (psi) = $33,9 \text{ pi H}_2\text{O à } 4^{\circ}\text{C}$ = $29,921 \text{ po Hg à } 0^{\circ}\text{C}$
Énergie	1 J = 1 N•m = 10 ⁷ dyn•cm = 2,778 x 10 ⁻⁷ kW•h = 0,23901 cal = 9,486 x 10 ⁻⁴ Btu
Puissance	$1 \text{ W} = 1 \text{ J/s} = 0.23901 \text{ cal/s} = 9.486 \text{ x } 10^{-4} \text{ Btu/s} = 1.341 \text{ x } 10^{-3} \text{ hp}$

							<u>Tak</u>	lean p	vériodi	idne de	Tableau périodique des éléments	nents						18 VIII A
T hydrog 1,008	iène 2	⋖											13 III A	14 IV A	15 VA	16 ∨I A	17 VII A	7 He hélium 4,003
E 🗀		4 Be bérvlium											5	6 C carbone	Z azote		9 Huor	10 Ne
6,941		12											10,81	12,01	14,01		19,00	20,18
⊒ <mark>¤</mark>	12 Mg	-											ಬ A	<u>S</u> :	ਹ ਾ	%	<u>17</u>	4 18
sodium 22,99	_	ésium	3 IIIB	4 IV B	5 < B	6 VI B	7 VII B	ω _	9 VIIIIB	10	11 18	12 II B	aluminium 26,98	silicium 28,09	phosphore 30,97	soufre 32,07	chlore 35,45	argon 39,95
6 ×	2 ⊗		27 Sc	1 52	٤	ڏ ٪	Z5 Mn	26 Fe	27 Co	8 :Z	Cn	30 Zu	31 Ga	32 Ge	33 As	34 Se	32 B	%호
potass	ium		dium 6	titane 47,88	vanadium 50,94	chrome 52,00		fer 55,85	cobalt 58,93	nickel 58,69	cuivre 63,55	zinc 65,39	gallium 69,72		arsenic 74,92	sélénium 78,96	brome 79,90	krypton 83,80
37 Rb	∞ ∞	× 39	6	40 Zr	41 Nb	42 Mo			45 Rh	46 Pd	47 Au	64	49 In	2 0	51 Sb	52 Te	53	54 X
rubi 85,4	lium /	Ę	yttrium 88,91	zirconium 91,22	niobium 92,91	molybdène 95,94			rhodium 102,9	palladium 106,4	argent 107,9	cadmium 112,4	indium 114,8	étain 118,7	antimoine 121,8	tellure 127,6	iode 126,9	xénon 131,3
55	56		57	72 Lif	73	74			77	78 6	79	80	81 F	82 Ph	83	84	85	% 6
césium 132,9		E	La Ianthane 138,9	hafnium 178,5	tantale 180,9	tungstène 183,9	rhénium 186,2	osmium 190,2	iridium 192,2	F.L platine 195,1	or 197,0	mercure 200,6	thallium 204,4	F.U plomb 207,2	bismuth 209,0	polonium (210)	astate (210)	radon (222)
87 Fr franci (223)	Fr Ra francium radium (223)		89 Ac actinium (227)	104	105 Db dubnium (260)	Sg seaborgium (263)	107 Bh bohrium (262)	108 HS hassium (265)	109 Mt meitnerium (266)									
					58 Ce cérium 140,1	Pr praséodyme 140,9	60 Nd neodyme 144,2	61 Pm prométhium (147)	62 Sm samarium 150,4	63 Eu europium 152,0	64 Gd gadolinium 157,3	65 Tb terbium 158,9	66 Dy dysprosium 162,5	67 Ho holium 164,9	68 Er erbium 167,3	69 Tm thulium 168,9	70 Yb ytterbium 173,0	71 Lu lutécium 175,0
	POLY.	POLYTECHNIQUE Montréal	QUE		90 Th thorium 232,0	91 92 Da U protactinium uranium (231)	92 U uranium 238,0	93 Np neptunium (237)	94 Pu plutonium (242)	95 Am américium (243)	96 Cm curium (247)	97 Bk berkélium (247)	98 Cf californium (249)	99 Es einsteinium (254)	100 Fm fermium (253)	101 102 Md No mendélévium nobélium (256)	No nobélium	103 Lr lawrencium (257)

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES CONTRÔLE PÉRIODIQUE — AUTOMNE 2021

Table B.4 Antoine Equation Constants^a

 $\log_{10} p^* = A - \frac{B}{T+C} \qquad p^* \text{ in mm Hg,} \quad T \text{ in } {}^{\circ}\text{C}$

Example: The vapor pressure of acetaldehyde at 25°C is determined as follows:

 $\log_{10} p_{C_2H_4O}^*(25^{\circ}C) = 8.00552 - \frac{1600.017}{25 + 291.809} = 2.9551$

 $\implies p_{C_2H_4O}^{\bullet}(25^{\circ}C) = 10^{2.9551} = 902 \text{ mm Hg}$

Compound	Formula	Range (°C)	A	В	С
Acetaldehyde	C_2H_4O	-0.2 to 34.4	8.00552	1600.017	291.80
Acetic acid	$C_2H_4O_2$	29.8 to 126.5	7.38782	1533.313	222.30
Acetic acid*	$C_2H_4O_2$	0 to 36	7.18807	1416.7	225
Acetic anhydride	$C_4H_6O_3$	62.8 to 139.4	7.14948	1444,718	199.81
Acetone	C ₃ H ₆ O	-12.9 to 55.3	7.11714	1210.595	229.66
Acrylic acid	$C_3H_4O_2$	20.0 to 70.0	5.65204	648.629	154.68
Ammonia*	NH_3	-83 to 60	7.55466	1002.711	247.88
Aniline	C_6H_7N	102.6 to 185.2	7.32010	1731.515	206.04
Benzene	C_6H_6	14.5 to 80.9	6.89272	1203.531	219.88
n-Butane	$n-C_4H_{10}$	-78.0 to -0.3	6.82485	943.453	239.71
i-Butane	i-C4H10	-85.1 to -11.6	6.78866	899.617	241.94
1-Butanol	C ₄ H ₁₀ O	89.2 to 125.7	7.36366	1305.198	173.42
2-Butanol	C ₄ H ₁₀ O	72.4 to 107.1	7.20131	1157.000	168.27
1-Butene	C ₄ H ₈	-77.5 to -3.7	6.53101	810.261	228.06
Butyric acid	$C_4H_8O_2$	20.0 to 150.0	8.71019	2433:014	255.18
Carbon disulfide	CS ₂	3.6 to 79.9	6.94279	1169.110	241.59
Carbon tetrachloride	CCL	14.1 to 76.0	6.87926	1212.021	226.40
Chlorobenzene	C ₆ H ₅ Cl	62.0 to 131.7	6.97808	1431.053	217.5
Chlorobenzene*	C ₆ H ₅ Cl	0 to 42	7.10690	1500.0	224.0
Chlorobenzene*	C ₆ H ₅ Cl	42 to 230	6.94504	1413.12	216.0
Chloroform	CHCl	-10.4 to 60.3	6.95465	1170.966	226.2
Chloroform*	CHCl	-30 to 150	6.90328	1163.03	227.4
Cyclohexane	C6H12	19.9 to 81.6	6.84941	1206.001	223.1
Cyclohexanol	C ₆ H ₁₂ O	93.7 to 160.7	6.25530	912.866	109.1
n-Decane	n-C ₁₀ H ₂₂	94.5 to 175.1	6.95707	1503.568	194.7
1-Decene	C ₁₀ H ₂₀	86.8 to 171.6	6.95433	1497.527	197.0
1.1-Dichloroethane	C ₂ H ₄ Cl ₂	-38.8 to 17.6	6.97702	1174.022	229.0
1.2-Dichloroethane	C ₂ H ₄ Cl	-30.8 to 99.4	7.02530	1271.254	222.9
Dichloromethane	CH ₂ Cl ₂	-40.0 to 40	7.40916	1325.938	252.6
Diethyl ether	C ₄ H ₁₀ O	-60.8 to 19.9	6.92032	1064.066	228.7
Diethyl ketone	C ₅ H ₁₀ O	56.5 to 111.3	7.02529	1310.281	214.1
Diethylene glycol	C ₄ H ₁₀ O ₂	130.0 to 243.0	7.63666	1939.359	162.7
Dimethyl ether	C ₂ H ₆ O	-78.2 to -24.9	6.97603	889.264	241.9
Dimethylamine	C ₂ H ₇ N	-71.8 to 6.9	7.08212	960.242	221.6
N,N-Dimethylformamide	C ₃ H ₇ NO	30.0 to 90.0	6.92796	1400.869	196.4
1,4-Dioxane	C ₄ H ₈ O ₂	20.0 to 105.0	7.43155	1554.679	240.3
Ethanol	C ₂ H ₆ O	19.6 to 93.4	8.11220	1592.864	226.1
Ethanolamine	C ₂ H ₇ NO	65.4 to 170.9	7.45680	1577.670	173.3
Ethyl acetate	C ₂ H ₇ NO C ₄ H ₈ O ₂	15.6 to 75.8	7.10179	1244.951	217.8
Ethyl acetate*	$C_4H_8O_2$ $C_4H_8O_2$	-20 to 150	7.09808	1238.710	217.0
Ethyl chloride	C ₂ H ₅ Cl	-55.9 to 12.5	6.98647	1030.007	238.6
Ethylbenzene	C ₈ H ₁₀	56.5 to 137.1	6.95650	1423.543	213.0

Table B.4 (Continued)

Compound	Formula	Range (°C)	A	В	С
Ethylene glycol	C ₂ H ₆ O ₂	50.0 to 200.0	8.09083	2088.936	203.454
Ethylene oxide	C ₂ H ₄ O	0.3 to 31.8	8.69016	2005.779	334.765
1,2-Ethylenediamine	$C_2H_8N_2$	26.5 to 117.4	7.16871	1336.235	194.366
Formaldehyde	HCHO	-109.4 to -22.3	7.19578	970.595	244.124
Formic acid	CH_2O_2	37.4 to 100.7	7.58178	1699.173	260.714
Glycerol	$C_3H_8O_3$	183.3 to 260.4	6.16501	1036.056	28.097
n-Heptane	n-C7H16	25.9 to 99.3	6.90253	1267.828	216.823
i-Heptane	i-C7H16	18.5 to 90.9	6.87689	1238.122	219.783
1-Heptene	C7H14 *	21.6 to 94.5	6.91381	1265,120	/220.051
n-Hexane	n-C6H14	13.0 to 69.5	6.88555	1175.817	224.867
i-Hexane	i-C6H14	12.8 to 61.1	6.86839	1151.401	228,477
1-Hexene	C6H12	15.9 to 64.3	6.86880	1154.646	226.046
Hydrogen Cyanide	HCN	-16.4 to 46.2	7.52823	1329.49	260.418
Methanol	CH ₃ OH	14.9 to 83.7	8.08097	1582,271	239,726
Methanol*	CH ₃ OH	-20 to 140	7.87863	1473.11	230.0
Methyl acetate	C ₃ H ₆ O ₂	1.8 to 55.8	7.06524	1157.630	219.726
Methyl bromide	CH ₃ Br	-70.0 to 3.6	7.09084	1046,066	244.914
Methyl chloride	CH ₃ Cl	-75.0 to 5.0	7.09349	948.582	249.336
Methyl ethyl ketone	C ₄ H ₈ O	42.8 to 88.4	7.06356	1261.339	221.969
Methyl isobutyl ketone	C ₆ H ₁₂ O	21.7 to 116.2	6.67272	1168.408	191.944
Methyl methacrylate	C ₅ H ₈ O ₂	39.2 to 89.2	8.40919	2050.467	274.369
Methylamine	CH ₅ N	-83.1 to -6.2	7.33690	1011.532	233.286
Methylcyclohexane	C ₇ H ₁₄	25.6 to 101.8	6.82827	1273.673	221.723
Naphthalene	C ₁₀ H ₈	80.3 to 179.5	7.03358	1756,328	204.842
Nitrobenzene	C ₆ H ₅ NO ₂	134.1 to 210.6	7.11562	1746.586	201.783
Nitromethane	CH ₃ NO ₂	55.7 to 136.4	7.28166	1446.937	227.600
n-Nonane	n-C ₉ H ₂₀	70.3 to 151.8	6.93764	1430.459	201.808
1-Nonane	C ₉ H ₁₈	66.6 to 147.9	6.95777	1437.862	205.814
n-Octane	n-C ₈ H ₁₈	52.9 to 126.6	6.91874	1351.756	209.100
i-Octane	i-C ₈ H ₁₈	41.7 to 118.5	6.88814	1319.529	211.625
1-Octene	C ₆ H ₁₆	44.9 to 122.2	6.93637	1355.779	213.022
n-Pentane	n-C ₅ H ₁₂	13.3 to 36.8	6.84471	1060.793	231.541
i-Pentane	i-C ₅ H ₁₂	16.3 to 28.6	6.73457	992.019	229.564
1-Pentanol	C ₅ H ₁₂ O	74.7 to 156.0	7.18246	1287.625	161.330
1-Pentene	C ₅ H ₁₀	12.8 to 30.7	6.84268	1043.206	233.344
Phenol	C ₆ H ₆ O	107.2 to 181.8	7.13301	1516.790	174.954
1-Propanol	C ₃ H ₈ O	60.2 to 104.6	7.74416	1437.686	198.463
2-Propanol	C ₃ H ₈ O	52.3 to 89.3	7.74021	1359.517	197.527
Propionic acid	C ₃ H ₆ O ₂	72.4 to 128.3	7.71423	1733,418	
Propylene oxide	C ₃ H ₆ O ₂	-24.2 to 34.8	7.71423	1086.369	217.724
Pyridine		67.3 to 152.9			
Styrene	C ₅ H ₅ N C ₈ H ₈	29.9 to 144.8	7.04115 7.06623	1373.799 1507.434	214.979 214.985
Toluene	C ₇ H ₈	35.3 to 111.5	6.95805	1346.773	219.693
1,1,1-Trichloroethane					
1,1,2-Trichloroethane	C ₂ H ₃ Cl ₃ C ₂ H ₃ Cl ₃	-5.4 to 16.9 50.0 to 113.7	8.64344 6.95185	2136.621 1314.410	302.769 209.197
Trichloroethylene	C ₂ HCl ₃	17.8 to 86.5	6.51827	1018.603	192.731
Vinyl acetate	C ₂ HC ₁₃ C ₄ H ₆ O ₂	21.8 to 72.0	7.21010	1296.130	226.655
Water*	H ₂ O	0 to 60	8.10765	1750.286	235.000
Water*	H ₂ O H ₂ O				
m-Xylene		60 to 150	7.96681	1668.210	228.000
o-Xylene	m-C ₈ H ₁₀	59.2 to 140.0	7.00646	1460.183	214.827
	o-C ₈ H ₁₀	63.5 to 145.4	7.00154	1476.393	213.872
p-Xylene	p-C ₈ H ₁₀	58.3 to 139.3	6.98820	1451.792	215.111