	Fundamentos Físicos y Tecnológicos G.I.I.M.	Examen de Problemas 1 de Febrero de 2013	
Apellidos:			Firma:
Nombre:	DNI:	Grupo:	

- Responda a cada pregunta en hojas separadas.
- Indique en cada hoja su nombre, el número de página y el número de páginas totales que se entregan.
- Lea detenidamente los enunciados antes de contestar.
- No es obligatorio hacer los ejercicios en el orden en el que están planteados.
- Recomendación: resuelva el ejercicio 5 en último lugar.
- 1. a) Calcule el equivalente Thévenin entre los puntos A y B del circuito de la figura 1. (1.25 puntos)
 - *b*) Calcule el equivalente Norton entre los puntos A y B del circuito de la figura 1. (**1.25 puntos**) Datos: $R=2k\Omega$, V=6V, $I_1=4mA$ y $I_2=2mA$.

Figura 1:

2. Determinar el valor de I_D , V_{DS} y V_{GS} en el circuito de la Figura 2. Datos: $V_{DD}=12V$, $R_1=2k\Omega$, $R_2=1M\Omega$, $V_T=3V$, $k=0.48\cdot 10^{-3}\frac{A}{V^2}$. (1.5 puntos)

Figura 2:

- 3. a) Diseñar con tecnología CMOS una puerta que realice la función lógica NAND. (0.5 puntos)
 - b) Diseñar con tecnología CMOS una puerta que realice la función lógica AND. (0.5 puntos)
 - c) Dado el circuito lógico de la Figura 3 determinar la función lógica que realiza. Explique razonadamente el estado en el que se encuentra cada uno de los transistores. (1 punto)
 - d) Explique razonadamente si la tecnología CMOS presenta alguna ventaja sobre la NMOS. (0.5 puntos)

Figura 3:

4. Dado $v_{in}(t) = sen(2000t)$ V, calcule $v_{out}(t)$ para el circuito de la Figura 4. (2 puntos)

Figura 4:

- 5. Determine las corrientes que circulan por el circuito de la figura 5 para los siguientes valores de v_I :
 - a) v_I =+2.5 V (**0.5 puntos**) (suponga v_{DS} pequeño)
 - b) $v_I = -2.5 \text{ V } (0.5 \text{ puntos})$
 - c) $v_I=0 V (0.5 \text{ puntos})$

Datos: $k_n = k_p = 1 \text{ mA/V}^2$, $V_{Tn} = -V_{Tp} = 1 \text{ V}$.

Figura 5:

