VE311 RC1

Jiaying Li

University of Michigan-Shanghai Jiao Tong University Joint Institute

June 29, 2023

Overview

- Diode and Diode Circuit
- 2 BJT
- BJT Common-Emitter Amplifier

PN Junction Diode

 N_A , N_D : doping densities n_i : intrinsic carrier concentration

hole in p:

$$p_p = N_A \tag{1}$$

electron in p:

$$n_p = \frac{n_i^2}{N_A} \tag{2}$$

electron in n:

$$n_n = N_D \tag{3}$$

hole in n:

$$p_n = \frac{n_i^2}{N_D} \tag{4}$$

PN Junction Diode

built-in potential:

$$V_{bi} = V_T \ln(\frac{N_A N_D}{n_i^2}) \quad (5)$$

- ➤ Some electrons/holes in the neutral regions with sufficient energy continuously diffuse to the opposite sides. → Formation of diffusion
- Some electrons/holes wandering into the in the depletion region get swept by the built-in electric field. → Formation of drift current
- Diffusion current cancels drift current. No net current flowing.

Diode Equation

- Forward Bias: Diode is on. Current flows from p to n.
- ► Reverse Bias: Diode is off. Current doesn't flow, but saturation current exists.

$$I_D = I_S \left(e^{\frac{qV_D}{KT}} - 1 \right) = I_S \left(e^{\frac{V_D}{V_T}} - 1 \right)$$
 (6)

Note:

- ightharpoonup k = Boltzmann's constant, 8.62 imes 105 eV/K
- $ightharpoonup \frac{kT}{q} = 0.026(0.025875) V$ at 300K when calculation.

IV Characteristics of Diode

Non-linear, or rectifying, behavior

- ► Non-linear behavior
- ightharpoonup turn-on voltage $>V_{bi}$

Exercise 1

(23FA Mid/1) Choose one description that is not right.

- (1) At equilibrium, a PN diode current is zero.
- (2) Under a forward bias, a PN diode current increases exponentially.
- (3) Under a forward bias, a PN diode current is from P to N.
- (4) Under a moderate reverse bias (before the breakdown), a PN diode current is almost zero.
- (5) A PN diode shows a rectifying behavior, i.e. nonlinear I-V curve, because a drift current is dominant over a diffusion current under a forward bias.

Diode Simplification

- ► Ideal Diode Model: Short circuit for Forward Bias and Open Circuit for Reverse Bias
- ► Constant Voltage Drop Model: Replace Diode with a voltage source for Forward Bias and Open Circuit for Reverse Bias.

Diode Simplification

- 1. Identify the model for simplification.
- 2. Assume the voltage applied on the diode
- 3. Transform the diode to source and resistor according to the assumption.
- 4. Validate that the assumption is correct or not.

Diodes (Zener) in Breakdown Region

Method: Replace the Diode with a "Reverse" voltage source and a resistance.

IV Characteristics

When $V_D < V_{break}$, voltage source is V_{break} , slope is $\frac{1}{R_Z}$.

Voltage Regulator

Assume the zener diode operates in reverse breakdown region.

$$V_{eq} = V_{break} + \frac{V_s - V_{break}}{R + R_Z} R_Z \tag{7}$$

$$V_L = V_{eq} \frac{R_L}{(R||R_Z) + R_L} \tag{8}$$

Voltage Regulator

Line Regulation =
$$\frac{dV_L}{dV_S} = \frac{R_Z}{R + R_Z} (R_L = \infty)$$
 (9)

Load Regulation =
$$\frac{dV_L}{dI_L} = R \parallel R_Z$$
 (10)

Exercise 2

- (23FA Mid/6) For the diode circuit below:
- (1) Calculate the value I_L . [10 points]
- (2) Find the maximum value of R required for reverse breakdown to happen. [5 points]

Half-Wave Rectifier

The basic rectifier circuit converts an AC voltage to a pulsating DC voltage.

 $V_p \sin \omega t > V_0$ Diode ON

Half-Wave Rectifier

CTPP Time!

- 1. $V_{dc} = V_s V_{on}$
- 2. $I_{dc} = \frac{V_{dc}}{R}$
- 3. Ripple Voltage: $V_r = V_{dc}(1 e^{-\frac{T \Delta T}{RC}}) \approx V_{dc} \frac{T}{RC}$
- 4. Conduction Angle: $\theta_c = \sqrt{\frac{2V_r}{V_S}}$
- 5. Conduction Interval: $\Delta T = \frac{\theta_c}{\omega}$
- 6. Diode Current: $I_{peak} = \frac{2I_{dc}T}{\Delta T}$
- 7. Surge Current: $I_{surge} = C \frac{dV}{dt} = \omega CV_S(t=0)$
- 8. Peak Inverse Voltage (PIV): $PIV = 2V_s V_{on}$

Full-Wave Rectifier

Full-wave rectifier circuits cut the capacitor discharge time in half and offer the advantage of requiring only one-half the filter capacitance to achieve a given ripple voltage

Full-Wave Rectifier

CTPP Time!

Just replace T with $\frac{T}{2}$ in the Half-Wave rectifier.

- 1. $V_{dc} = V_s V_{on}$
- $2. I_{dc} = \frac{V_{dc}}{R}$
- 3. Ripple Voltage: $V_r = V_{dc}(1 e^{-\frac{T/2 \Delta T}{RC}}) \approx V_{dc}\frac{T}{2RC}$
- 4. Conduction Angle: $\theta_c = \sqrt{\frac{2V_r}{V_S}}$
- 5. Conduction Interval: $\Delta T = \frac{\theta_c}{\omega}$
- 6. Diode Current: $I_{peak} = \frac{I_{dc}T}{\Delta T}$
- 7. Surge Current: $I_{surge} = C \frac{dV}{dt} = \omega CV_S(t=0)$
- 8. Peak Inverse Voltage (PIV): $PIV = 2V_s V_{on}$

Full-Wave Bridge Rectifier

- ▶ For $v_1 > 0$, D_2 and D_4 will be on and D_1 and D_3 will be off.
- For $v_1 < 0$, D_2 and D_4 will be off and D_1 and D_3 will be on.

Full-Wave Bridge Rectifier

CTPP Time!

Just replace V_{on} with $2V_{on}$ in the Full-Wave rectifier and change PIV.

- 1. $V_{dc} = V_s 2V_{on}$
- 2. $I_{dc} = \frac{V_{dc}}{R}$
- 3. Ripple Voltage: $V_r = V_{dc}(1 e^{-\frac{T/2 \Delta T}{RC}}) \approx V_{dc}\frac{T}{2RC}$
- 4. Conduction Angle: $\theta_c = \sqrt{\frac{2V_r}{V_S}}$
- 5. Conduction Interval: $\Delta T = \frac{\theta_c}{\omega}$
- 6. Diode Current: $I_{peak} = \frac{I_{dc}T}{\Delta T}$
- 7. Surge Current: $I_{surge} = C \frac{dV}{dt} = \omega CV_S(t=0)$
- 8. Peak Inverse Voltage (PIV): $PIV = V_s V_{on}$

Overview

- Diode and Diode Circuit
- BJT
- BJT Common-Emitter Amplifier

npn and pnp

Forward Active Mode

- ▶ EB diode is forward biased ($V_{BE} > 0$ or $V_{EB} < 0$)
- ▶ BC diode is reversed biased (V_{BC} < 0 or V_{CB} > 0)

Saturation v.s. Forward Active

- $ightharpoonup V_{CE} < V_{BE}$, then $V_{CB} < 0$ or $V_{BC} > 0$, meaning that BC diode is forward biased. Both diodes are on, which is called as saturation.
- ▶ $V_{CE} > V_{BE}$, then $V_{CB} > 0$ or $V_{BC} < 0$, meaning that BC diode is reverse biased. \rightarrow Forward Active

BJT

Summary:

Don't forget this: $I_E = I_C + I_B$

Early effect

Early effect: V_A is called the Early voltage

$$I_C = I_S \left(e^{\frac{qV_{BE}}{kT}} - 1 \right) \left(1 + \frac{V_{CE}}{V_A} \right) \tag{11}$$

or

$$I_C = I_S \left(e^{\frac{qV_{BE}}{kT}} \right) \left(1 + \frac{V_{CE}}{V_A} \right) \tag{12}$$

 $V_{out} = V_{OUT} + v_{out}$

 V_{out} : DC+AC, V_{OUT} : DC, v_{out} : AC

It is important to bear in mind that small-signal analysis deals with only (small) changes in voltages and currents in a circuit around their quiescent values. Thus, all constant sources, i.e., voltage and current sources that do not vary with time (independent sources), must be set to zero for small-signal analysis.

How to get a small signal circuit:

- ▶ DC voltage source: short circuit
- ▶ DC current source: open circuit
- ► Capacitor: short circuit (short in AC, open in DC)

Without Early Effect

Modified Small-Signal Model

With Early Effect

$$r_{\pi} = \frac{dV_{BE}}{dl_{B}} = \frac{1}{\frac{dl_{C}}{\beta dV_{BE}}} = \frac{1}{\frac{g_{m}}{\beta}} = \frac{\beta}{g_{m}}$$
 (13)

$$g_m = \frac{dI_C}{dV_{BE}} \cong \frac{I_C}{kT/q} \tag{14}$$

$$r_o = \frac{1}{\frac{dI_C}{dV_{CE}}} \cong \frac{V_A}{I_C} \tag{15}$$

Attention:

- \triangleright V_{out} is not connected in the circuit! There is no current to it.
- \triangleright V_{in} is connected. There is current from it.

Tips: See V_{out} as a voltmeter, V_{in} as a voltage source.

R_{out}

How to calculate R_{out} ?

- 1. Draw small signal model.
- 2. Connect port with V_{in} to ground. Connect a test voltage v_t on port with V_{out} .
- 3. Derive i_t .
- 4. Calculate $R_{out} = \frac{v_t}{i_t}$

R_{in}

How to calcaulate R_{in} ?

- 1. Draw small signal model.
- 2. Connect a test voltage v_t on port with V_{in} . Do nothing on output port.
- 3. Derive i_t .
- 4. Calculate $R_{in} = \frac{v_t}{i_t}$

Exercise 3

Assuming that the BJT operates in the forward active region, determine the impedance seen into the collector of Q1. Please consider the Early effect.

Exercise 4

Assuming that the BJT operates in the forward active region, determine the impedance seen at the emitter. Please **neglect the Early effect** for simplicity.

Overview

- Diode and Diode Circuit
- 2 BJT
- 3 BJT Common-Emitter Amplifier

CE Amplifier (Without Early Effect)

$$A_{v} = \frac{V_{out}}{V_{in}} = -g_{m}R_{C} \tag{16}$$

$$R_{in} = r_{\pi} = \frac{\beta}{g_m} = \frac{\beta V_T}{I_C} \tag{17}$$

$$R_{out} = R_C \tag{18}$$

CE Amplifier (Without Early Effect)

Important properties of the CE stage:

- 1. The small-signal gain is negative, i.e. $V_{BE} \uparrow$ and $I_C \uparrow$ lower V_{out} .
- 2. The voltage gain of the stage is limited by the supply voltage.

$$|A_{\nu}| = g_m R_C = \frac{I_C R_C}{V_T} \tag{19}$$

 I_CR_C indicates the voltage drops at the collector resistor R_C . Because $I_CR_C < V_{CC}$, $|A_v| < \frac{V_{CC}}{V_T}$. Finally, as the BJT is in the active region, we can say that, $|A_v| < \frac{V_{CC} - V_{BE}}{V_T}$.

However, when $R_C \to \infty$, $|A_v| \to \infty$. Contradiction!

CE Amplifier (With Early Effect)

$$A_{v} = \frac{V_{out}}{V_{in}} = -g_{m}(R_{C} \parallel r_{O})$$
 (20)

$$R_{in} = r_{\pi} = \frac{\beta}{g_m} = \frac{\beta V_T}{I_C} \tag{21}$$

$$R_{out} = R_C \parallel r_O \tag{22}$$

CE Amplifier (With Early Effect)

If $R_C \to \infty$, $A_v = -g_m r_O \to \text{intrinsic gain}$

Because

$$g_m = \frac{I_C}{V_T} \tag{23}$$

and

$$r_O = \frac{V_A}{I_C},\tag{24}$$

we can get

$$A_{\nu} = -\frac{V_A}{V_T} \tag{25}$$

The Early effect limits the voltage gain even if R_C approaches infinity.

CE Stage With Emitter Degeneration (Without Early Effect)

$$A_{v} = \frac{V_{out}}{V_{in}} = \frac{-g_{m}R_{C}}{1 + (\frac{1}{r_{c}} + g_{m})R_{E}}$$
 (26)

$$R_{in} = r_{\pi} + (\beta + 1)R_{E} \tag{27}$$

$$R_{out} = R_C \tag{28}$$

Jiaying Li (UM-SJTU JI)

CE Stage With Emitter Degeneration (With Early Effect)

$$R_{out} = r_o + (g_m r_o + 1)(R_E \parallel r_\pi) \approx r_o [1 + g_m(R_E \parallel r_\pi)]$$
 (29)

Jiaying Li (UM-SJTU JI)

Summary

	Definition	Expression	
		With emitter degeneration	Without emitter degeneration; i.e., $R_E = 0$
Current gain	$A_{ m i} riangleq rac{i_{ m out}}{i_{ m in}}$	β	β
Voltage gain	$A_{ m v} riangleq rac{v_{ m out}}{v_{ m in}}$	$-\frac{\beta R_{\rm C}}{r_\pi + (\beta+1)R_{\rm E}}$	$-g_m R_{ m C}$
Input impedance	$r_{ m in} riangleq rac{v_{ m in}}{i_{ m in}}$	$r_\pi + (eta+1)R_{ m E}$	r_{π}
Output impedance	$r_{ ext{out}} riangleq rac{v_{ ext{out}}}{i_{ ext{out}}}$	$R_{ m C}$	$R_{ m C}$

Suggestion

Suggestion:

- ► Remember the general case
- ► First identify B, C, E port
- ► Know how to analyze small signal model
- ▶ Understand all the exercise in lecture slides
- Don't ignore some small values too easily! Be careful!

Exercise 5

(23FA Mid/5) Using a small-signal model, determine output impedance of the circuit shown below with and without Early effect. [10 points]

Exercise 6

Determine the voltage gain of the stage shown below. No Early effect.

Extra Exercise 1

Determine the output resistance of the circuit below. With Early Effect.

Extra Exercise 2

(23FA Mid/9) The figure below shows a BJT amplifier. Assume V_{BE} = 0.7 V, V_T = 25 mV, β is very large (to be infinity). No Early effect. [15 points]

(a) Draw the small signal model and derive the gain for the amplifier. [5 points]

Extra Exercise 2

- (b) Find values of V_{BB} and R_C to have a gain of 20 and a matched resistance of 100 Ω at the input, i.e. $R_{in}=100~\Omega$ from the point above R_S . [5 points]
- (c) By cascading another BJT circuit to the circuit in part b as shown below, find the total parametric gain of the amplifier. [5 points]

