Examples of (non-split) reductive gps

- 1. forms
- 2 torus case
- 3. other cases
- 4. conclusions on various forms

Setting. We work over conn red gp over F. (G/= conn red)

 $H^1(W,A) = Z^1(W,A)/A.$

Borel = maximal (Zar-closed) conn sol alg subgp
= minimal parabolic subgp
Parabolic =
$$H \leq G$$
 closed subgp s.t G/H is projective
= closed subgp containing a Borel.

Ref:

 $[ECII] \ Silverman, The Arithmetic of Elliptic Curves$

[Buzzard] Kevin Buzzard, Forms of reductive algebraic groups. https://www.ma.imperial.ac.uk/~buzzard/maths/research/notes/forms_of_reductive_algebraic_groups.pdf

[KP] Tasho Kaletha and Gopal Prasad, Bruhat{Tits theory: a new approach. version from May 27, 2022.

[DR09] Stephen DeBacker and Mark Reeder, Depth-zero supercuspidal L-packets and their stability https://annals.math.princeton.edu/wp-content/uploads/annals-v169-n3-p03.pdf

https://mathoverflow.net/questions/121959/classification-of-tori-of-gl2-up-to-conjugation

I make no claim to originality.

1. forms.

Def.
$$G_{1},G_{2}/F$$
 are called forms, if $\exists \ \alpha: G_{2},F \xrightarrow{\sim} G_{1},F$ as qps not as $\Gamma_{F}-qps!$ d is considered as the information of forms.

Thm.
$$\{F - forms \ of \ G \} \longrightarrow H'(\Gamma_F, Aut \ (G_E))$$

$$[G_2, \lambda, G_2, \overline{F} \longrightarrow G_{\overline{F}}] \longrightarrow Y_{\lambda} = \lambda \sigma \lambda^{-1} \sigma^{-1} \longrightarrow G_2$$

$$G_1 \longleftarrow G_2 \longrightarrow G_{\overline{F}} \longrightarrow$$

$$(G_2, \lambda) \sim (G'_1, \lambda')$$
, if $\exists \beta: G_2 \longrightarrow G'_2$ as an iso.

$$\begin{array}{ccc}
G_{2,\overline{F}} & \xrightarrow{\Delta} & G_{\overline{F}} \\
\beta_{\overline{F}} \downarrow & & \downarrow \lambda' \circ \beta_{\overline{F}} \circ \lambda^{-1} \\
G'_{2,\overline{F}} & \xrightarrow{\Delta'} & G_{\overline{F}}
\end{array}$$

Functorial on F. (Inflation - Restriction seq. [ECII, Appendix B, Prop 13]) Let E/F be finite Galois.

Rmk. We have the classification of connected reductive gps.

Split red gp/F
$$\} \longleftrightarrow (X^*, \Delta, X_*, \Delta^{\vee}) \Rightarrow \mathbb{I}(G,B,T)$$

 $\{ qs \text{ red gp/F }\} \longleftrightarrow (X^*, \Delta, X_*, \Delta^{\vee}) + \Gamma_{F}\text{-action}$
 $= (X^*, \Delta, X_*, \Delta^{\vee}) + H'(\Gamma_{F}, Out(G_{F}))$
 $\{ red gp/F \} \longleftrightarrow (X^*, \Delta, X_*, \Delta^{\vee}) + H'(\Gamma_{F}, Aut(G_{F})) \}$

To understand the result, the following isos are needed:

$$Aut(G_{\bar{F}}) \cong Inn(G_{\bar{F}}) \times Aut(G_{,B},T_{,fu_{\bar{a}}})$$

Out
$$(G_{\overline{F}}) \cong Aut (G,B,T, \{u_a\})$$
 for embedding $\cong Aut (\mathcal{L}(G,B,T))$ for combinatorics

Also, by the Hilbert 90, one has $H'(\Gamma_F, Aut(G,B,T, iud)) \cong H'(\Gamma_F, Aut(G,B,T))$

2. torus case

Let us try to find all the forms of the split torus and. They're called (non-split) torus.

We know

$$Aut(G_m^n) \subseteq End(G_m^n) \qquad Hom(G_m,G_m) \cong \mathbb{Z}$$
 $II \qquad \qquad II \qquad \qquad (-)^n \iff n$
 $GL_n(\mathbb{Z}) \subseteq M^{n \times n}(\mathbb{Z})$

Therefore,

$$H'(\Gamma_F, Aut(G_{m,F}^n)) = H'(\Gamma_F, GL_n(Z))$$

$$= Hom_{Grp}(\Gamma_F, GL_n(Z))/GL_n(Z)-conj$$

$$\underset{\text{when } F=R}{==R} g \in GL_n(Z) \mid g^2 = Id \int/GL_n(Z)-conj$$

$$\begin{bmatrix}
\Gamma_{F} \text{ acts on } Aut (G_{m,F}^{n}) \subseteq End (G_{m,F}^{n}) \text{ trivially:} \\
\text{See } \overline{F} \text{-pts, } n = 1: \\
F^{\times} \xrightarrow{d} \overline{F}^{\times} \\
\downarrow \qquad \qquad \downarrow \sigma \\
F^{\times} \xrightarrow{\sigma_{d}} \overline{F}^{\times}$$

$$\Rightarrow \sigma_{(x)} \qquad \sigma_{(x^{n})} = \sigma_{(x)}^{n}$$

$$\Rightarrow \sigma_{(x)} = \sigma_{(x)}^{n}$$

E.g. n=1, F=1R

$$H'(\Gamma_F, Aut(G_{m,F})) \cong \{1, -1\}$$

$$G_m \quad G = ?SO_{27R}$$

$$G(IR) = \{g \in G_{m}(\mathbb{C}) \mid (\varphi(\sigma) \circ \sigma) g = g \}$$

$$= \{g \in \mathbb{C}^{\times} \mid (\overline{g})^{-1} = g\}$$

$$= \{g \in \mathbb{C}^{\times} \mid (gl = 1)\}$$

$$= S'$$

$$G(\mathbb{C}) = G_{m}(\mathbb{C}) = \mathbb{C}^{\times}$$

$$\Rightarrow G = \{Spec \mid R[x,y]/(x^{2}+y^{2}-1) = SQ_{2},R\}$$

$$Check: G(\mathbb{C}) = \{(x,y) \in \mathbb{C} \times \mathbb{C} \mid x^{2}+y^{2}-1 = 0\}$$

$$= \{(x,y) \in \mathbb{C} \times \mathbb{C} \mid (x+iy)(x-iy) = 1\}$$

$$= \{(x,y,t) \in \mathbb{C} \times \mathbb{C} \times \mathbb{C}^{\times} \mid x+iy = t\}$$

$$\Rightarrow \mathbb{C}^{\times}$$

$$SQ_{2}(K) = \{(x,y,y) \mid x,y \in K, x^{2}+y^{2} = 1\}$$

Fact. Any (conn) IR-torus is product of
$$G_m$$
, $SO_{2,IR}$. Rescur G_m
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$

⇒ G = Resair Gm

Rmk, Using the same argument, one can show that $\{T/IF_p : T \mid T_{IF_p} \cong G_{n,IF_p}^n\} = products of G_m, (\varepsilon_{eb}^ab), Res_{IF_p} G_m$

The torus
$$G$$
 cyspol to -1 : Assume $S \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p$, $S^2 = \varepsilon \in \mathbb{F}_p$, $\binom{\varepsilon}{p} = -1$

$$G(\mathbb{F}_p) = Sg \in G_m(\mathbb{F}_{p^2}) \mid (\varphi(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_k$$

$$= Sa+bS \in \mathbb{F}_p^2 \mid \varphi(\sigma) (a-bS) = a+bS$$

$$= Sa+bS \in \mathbb{F}_p^2 \mid a^2-b^2\varepsilon = 1$$

$$\cong S(aba) \subseteq GL_2(\mathbb{F}_p)$$

3. other cases.

By using the same methods introduced in last section, we can compute the (inner) forms of reductive gps.

	inner forms	outer forms	Ī
(G _m) ² (G _m) ²	ý	SOz SOz×Gm, (SOz), Resc/IR Gm product of lower rank torus	
GL2,1R SL2,1R PGL2,1R	H* = GL, (IH 0,R-) H*= SUz, G/IR ?	(U2, C/IR, W = U(1,1) U(2,0)) \$\phi\$ \$\phi\$	
GLn, IR	?	$\mathcal{U}_{n,\mathcal{O}_{IR},\omega} = \begin{cases} \mathcal{U}\left(\frac{n}{2},\frac{n}{2}\right) & n \text{ even} \\ \mathcal{U}\left(\frac{n+1}{2},\frac{n-1}{2}\right) & n \text{ odd} \end{cases}$	
SLn.IR PGLn.IR	GLn/2(IH⊗ _{IR} -) when n even		- need clarification
(SL ₂) ² /IR (SL ₂) ³ /IR	SL,×SU, (SU,),	Res _{CUR} SL ₂	

?: I have no time to compute /don't know any symbol to represent : quasi-split gp

Compute Aut (GF)
Lemma. We understand Aut (GF) quite well.

	$G(\overline{F})/_{Z(G(\overline{F}))} = G^{ad}(\overline{F})$		Aut(↓₀)	
G	$I \longrightarrow I_{nn}(G_{\overline{F}}) \longrightarrow$	\rightarrow Aut($G_{\bar{r}}$) \rightarrow	Out (GF) -	→ 1
Trkn	1	$GL_{n}(\mathbb{Z})$	$GL_n(\mathbb{Z})$	
GL2,1R	PGL ₂ (C)	PGL2(C) x [±1]	8±1}	
SL2, IR	PGL2(C)	PGL2(C)	1	
PGLz, IR	PGLL(C)	PGLL(C)	1	
n≥3		612	Δ.	
GLn,IR	PGLn(C)	PGLn(C) x [±1]	β±1} ^{Φ2}	
SLnir	PGLn(C)	PGLn(C) X [±1]	8±1}	
PGLn.IR	PGLn(C)	PGLn(C) X [±1]	8±1}	
(SL)2/1R	PGLn(C) ²	PGLn(C) > [t]	8±1}	
Resola SLz	PGLn(C)	PGLn(C) X [±1]	8±1}	with different PiR-action
(SL.) "/IR	PGLn(C)	PGLn(C)"> S"	2,	11

Compute $H'(\Gamma_F, -)$

Method 1: Hilbert 90 + LES

Method 2: Use black box

p-adic field: Kottwitz's isomorphism

Theorem 12.7.7 There is a functorial isomorphism $H^1(k,G) \to \pi_1(G)_{\Theta,\text{tor}}$.

COROLLARY 2.4.3. The composition

$$[\bar{X}/(1-\vartheta)\bar{X}]_{\mathrm{tor}} \xrightarrow{\sim} H^{1}(\mathcal{F},\Omega_{C}) \xrightarrow{a_{*}^{-1}} H^{1}(\mathcal{F},N_{C}) \xrightarrow{b_{*}} H^{1}(\mathcal{F},G)$$

is a bijection.

$$[\bar{X}/(1-\vartheta)\bar{X}]_{\mathrm{tor}} = \mathrm{Irr}[\pi_0(\hat{Z}^{\hat{\vartheta}})].$$

real field:

Mikhail Borovoi, Galois cohomology of reductive algebraic groups over the field of real numbers https://arxiv.org/abs/1401.5913

3.1. Theorem. Let G, T_0 , T, and W_0 be as above. The map

$$H^1(\mathbb{R},T)/W_0(\mathbb{R}) \to H^1(\mathbb{R},G)$$

induced by the map $H^1(\mathbb{R},T) \to H^1(\mathbb{R},G)$ is a bijection.

global field:

 $\label{lem:mikhail Borovoi, Tasho Kaletha, Galois cohomology of reductive groups over global fields $$ $$ $$ https://arxiv.org/pdf/2303.04120.pdf$

E.g.
$$G = SL_{1,R}$$
, $F = IR$

$$G \qquad I \longrightarrow I_{nn}(G_{\overline{F}}) \longrightarrow Aut(G_{\overline{F}}) \longrightarrow Out(G_{\overline{F}}) \longrightarrow 1$$

$$SL_{2,IR} \qquad PGL_{2}(\mathbb{C}) \qquad PGL_{2}(\mathbb{C}) \qquad 1$$

$$H'(\Gamma_{IR}, Aut(SL_{2}, \mathbb{C})) = H'(\Gamma_{IR}, PGL_{2}(\mathbb{C}))$$

$$= \{ I, \omega(I) \omega^{-1} \} \qquad \omega^{-1} = \{ I, \omega(I) \omega^{-1} \} \qquad \omega^{-1} = \{ I, \omega(I) \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I, \omega(I) \} \}$$

$$= \{ I, \omega(I) \omega = \{ I,$$

4. conclusions on various forms $H'(\Gamma_F, -)$ as parameter space

$$I \longrightarrow Z(G(\overline{F})) \longrightarrow G(\overline{F}) \longrightarrow Inn(G_{\overline{F}}) \longrightarrow Aut(G_{\overline{F}}) \longrightarrow Out(G_{\overline{F}}) \longrightarrow 1$$

$$\longrightarrow H'(\Gamma_F, Z(G(\overline{F}))) \longrightarrow H'(\Gamma_F, G(\overline{F})) \xrightarrow{\text{inner twist}} H'(\Gamma_F, Aut(G_{\overline{F}})) \longrightarrow H'(\Gamma_F, Out(G_{\overline{F}}))$$

$$= P'(\Gamma_F, Aut(G_{\overline{F}})) \longrightarrow P'(\Gamma_F, Aut(G_{\overline{F}})) \longrightarrow P'(\Gamma_F, Aut(G_{\overline{F}}))$$

$$= P'(\Gamma_F, Aut(G_{\overline{F}})) \longrightarrow P'(\Gamma_F, Aut(G_{\overline{F}}))$$

$$= P'(\Gamma_F, Aut(G_{\overline{F}})) \longrightarrow P'(\Gamma_F, Aut(G_{\overline{F}}))$$

$$= P'(\Gamma_F, Aut(G_{\overline{F}})) \longrightarrow P'(\Gamma_F, Out(G_{\overline{F}}))$$

$$= P'(\Gamma_F, Aut(G_{\overline{F}}))$$

$$= P'($$

Q. Do we have

$$2H'(\Gamma_{F}, Inn(G_{\overline{F}})) \longrightarrow H'(\Gamma_{F}, Aut(G_{\overline{F}})) \longrightarrow H'(\Gamma_{F}, Out(G_{\overline{F}}))$$

$$1 \longrightarrow Inn(G_{\overline{F}})^{F} \longrightarrow Aut(G_{\overline{F}})^{\Gamma_{F}} \longrightarrow Out(G_{\overline{F}})^{\Gamma_{F}})^{\circ}$$

$$Inn'(G_{F}) \longrightarrow Aut'(G_{F}) \longrightarrow Out(G_{F})^{\circ}$$

Give one example s.t. $H'(\Gamma_F, Inn(G_{\overline{F}})) \longrightarrow H'(\Gamma_F, Aut(G_{\overline{F}}))$ is not inj?

Categorification of $H'(\Gamma_F, -)$ These categories are all groupoids. These $H'(\Gamma_F, -)$ are all achieved as isomorphism classes.

	Obj	$Mov((G_{2},a),(G_{2}',a'))$
	$(G_{2}, \lambda_{i} G_{2}, \overline{F} \rightarrow G_{\overline{F}})$	$\beta: G_2 \longrightarrow G'_2$ iso
form	$\Rightarrow G_{2,\overline{F}} \xrightarrow{\lambda} G_{\overline{F}}$	⇒ G _{2,F} → GF
$H'(\Gamma_{F}, Aut(G_{\tilde{F}}))$	$G_{2,\overline{F}} \xrightarrow{\partial} G_{\overline{F}} \xrightarrow{\sigma(a) \circ d^{-1}}$	β=
	Commutes ∀ = ∈ PF	$G_{z,\overline{F}} \xrightarrow{\Delta'} G_{\overline{F}}$ commutes
dunar farm	$(G_{2}, \lambda_{i} G_{2}, \overline{F} \rightarrow G_{\overline{F}})$	$\beta: G_2 \longrightarrow G_2'$ iso
inner form	s.t. $G_{2,\overline{F}} \xrightarrow{\lambda} G_{\overline{F}}$	⇒ G.,F → GF
$Im \begin{pmatrix} H'(\Gamma_F, Inn(G_F)) \\ H'(\Gamma_F, Aut(G_F)) \end{pmatrix}$	σ	β=
r El (LE'YMEME))	$G_{2,\overline{F}} \xrightarrow{\partial} G_{\overline{F}} \xrightarrow{\sigma(\omega) \circ d^{-1}} G_{\overline{F}}$	$G_{z,\overline{F}} \xrightarrow{\lambda'} G_{\overline{F}}$
full subcategory of "form"	σ(a)·a ⁻¹ is inner auto.	commutes
	$(G_{2}, \lambda_{1}, G_{2}, \overline{F} \rightarrow G_{\overline{F}})$	$\beta: G_2 \longrightarrow G_2'$ iso
inner twist	s.t. Gz, F ~ ~ ~ ~ GF	st G.F -2 GF
H'(rf, Inn(Gf))	S.t. $G_{2,\overline{F}}$ $G_{\overline{F}}$ $G_{\overline{F}}$ $G_{\overline{F}}$ $G_{\overline{F}}$	St G2, F - D - CF Z'OBOD-1
less isomorphisms	$G_{2,\overline{F}} \xrightarrow{\Delta} G_{\overline{F}}$	$G_{2,\overline{F}} \xrightarrow{\lambda'} G_{\overline{F}}$
compared with inner form	σ(a) o a inner auto.	d'oβε o d ⁻¹ is inner auto.
4	$(G_{s}, \lambda: G_{s,\overline{F}} \to G_{\overline{F}}, \phi)$ $\phi \in Z'(\Gamma_{F}, G(\overline{F}))$	(β, δ) $\beta: G_2 \longrightarrow G'_2$ iso $\delta \in G(\overline{F})$
pure inner twist		,
' Η'(Γ _F , G(Ē))	s.t. $G_{2,\overline{F}} \xrightarrow{\lambda} G_{\overline{F}}$	$\text{s.t.} G_{2,\overline{F}} \xrightarrow{\lambda} G_{\overline{F}}$
11 (17, 5(17)	$G_{2,\overline{F}} \xrightarrow{\partial} G_{\overline{F}}^{(G)-conj} G_{\overline{F}}^{\overline{F}}$	β̄F
	$G_{2,\overline{F}} \xrightarrow{\alpha} G_{\overline{F}}^{z}$ Commutes	$G_{z,\overline{F}} \xrightarrow{\lambda'} G_{\overline{F}}$ commutes, and
	COMPTA (CS	$\phi_{i}(\sigma) = \delta^{-1}\phi_{i}(\sigma) \sigma(\delta)$