Analysis and Synthesis of Sequential Logic Circuits

- The sequential circuits are logic circuits

by whose output depends not only on the present input but also on the history of the input (state)

- A sequential logic circuit thus has storage (memory) Us while a combinational logic circuit does not

- The input/state of a sequential circuit at t=i uniquely,

Specify the output at t=i and the state at t=i+1, i.e. next state.

- Given a sequential circuit, we need to specify i) The outputs corresponding to a present state

and input sequence

ii) The next state corresponding to a present state and input sequence

-this relationship can be given in two weys:

- state table - state diagram

Sequential circuit and state table

- state table is a matrix with r rows and m columns where m < 2" with n denoting number of inputs, r denoting # of states, m denoting # of outputs

-each row represents a single state

-each column represents an input sequence

- the (i,j) entry of metrix involves next state and output information

Ly which are for's of > Z1 present state, di Sequential Logic Circuit and input sequence, $\times_j \triangleq (\times_1, \dots, \times_n)_j$

$$Z_k = f_k(x_1,...,x_n,d_i)$$
, $k=1,...,m$: outputs $d_j = g(x_1,...,x_n,d_i)$, $j=1,...,s$: next state

example.

-Let n=1, m=1 and r=6 for a sequential

Lywhose state table is given as follows

$\setminus X_1$		
di	0	1
A	E,0	0,1
В	F, O	0,0
C	E, 0	8,1
D	F, 0	B,0
E	C,0	F,1
F	B, 0	C,0
		1

State Table

-while the sequential circuit is in state B, if we apply the input sequence

$$x^{i} x^{i+1} x^{i+2} x^{i+3} x^{i+4} = 10110$$

then the next state and output values are summarized in the following table

+	0	1	2	3	4
X	1	0	1	1	0
di	B	D	F	C	B
Z	0	0	0	1	0

Sequential circuit and state diagram

- In order to specify the behavior of a sequential circuit,

Ly each state is represented with a node

-if the state machine is in state di and if the next state becomes dj when input x; is applied,

With a topologic element whose direction is from i to j

-on top of this topologic element, the input xj and output z = f(xj,di) are specified appropriately example. Let us consider the previous example and give the state diagram as follows

Sequential circuit elements which is a -we investigate basic storage element in sequential logic and their describing functions

S-R Plip-Plop

-shown in block diagram as follows

SF	00	01	11	10
0	0	0	d	1
1	1	0	d	1

Y = S + R'y , Y: next state

1) describing function

13	1 00	01	11	10
	o,d	1,0	d,0	0,1
		5.	R	7

Ly inverse describing function

J-K Flip-Flop

-shown as follows

Winverse describing function