Outline

Priming

- Define priming
- Principles of priming
- Neural substrates of priming

Conditioning

STUDY:

XXXX - COLD

HOT - COLD

HOT -

RECOGNITION:

COLD ("old"/"new"?)

STUDY:

XXXX - COLD

HOT - COLD

HOT -

RECOGNITION:

COLD ("old"/"new"?)

PERCEPTUAL IDENTIFICATION:

Flash COLD for 34 msec Subject attempts to identify flashed word Results of Jacoby (1983, Experiment 2)

STUDY:

XXXX - COLD

HOT - COLD

HOT -

RECOGNITION:

COLD ("old"/"new"?)

PERCEPTUAL IDENTIFICATION:

Flash COLD for 34 msec Subject attempts to identify flashed word Results of Jacoby (1983, Experiment 2)

Priming (Old - New)

Note. The study manipulation produced opposite results on recognition memory (an explicit test) and on primed perceptual identification (an implicit test). From "Remembering the Data: Analyzing Interactive Processes in Reading" by L. L. Jacoby, 1983, Journal of Verbal Learning and Verbal Behavior, 22, p. 493. Copyright 1983 by Academic Press. Adapted by permission.

STUDY:

XXXX - COLD

HOT - COLD

HOT -

performance on NEW Difference = Priming

RECOGNITION.

COLD ("old"/"new"?)

PERCEPTUAL IDENTIFICATION:

Flash COLD for 34 msec Subject attempts to identify flashed word

Priming (Old - New)

Note. The study manipulation produced opposite results on recognition memory (an explicit test) and on primed perceptual identification (an implicit test). From "Remembering the Data: Analyzing Interactive Processes in Reading" by L. L. Jacoby, 1983, Journal of Verbal Learning and Verbal Behavior, 22, p. 493. Copyright 1983 by Academic Press. Adapted by permission.

STUDY:

XXXX - COLD

HOT - COLD

HOT -

RECOGNITION:

COLD ("old"/"new"?)

PERCEPTUAL IDENTIFICATION:

Flash COLD for 34 msec Subject attempts to identify flashed word

Note. The study manipulation produced opposite results on recognition memory (an explicit test) and on primed perceptual identification (an implicit test). From "Remembering the Data: Analyzing Interactive Processes in Reading" by L. L. Jacoby, 1983, Journal of Verbal Learning and Verbal Behavior, 22, p. 493. Copyright 1983 by Academic Press. Adapted by permission.

Perceptual Specificity of Priming

STUDY:Pictures or Words

camel

window

TEST:

- Free Recall
- Word-fragment completion:

Perceptual Specificity of Priming

Perceptual Specificity

Pict→Pict > Pict→Word

Word→Word > Word→Pict

Priming

A facilitative change or bias in the ability to identify, generate, or process an item due to a specific prior encounter with the item

- priming is implicit in behavior; does not depend on conscious, intentional remembrance or awareness of the past
- priming on perceptual identification (word or object identification) and completion (word stem, word fragment, or object fragment) tasks is sensitive to study–test perceptual similarity
 - enhanced processing of perceptual form due to prior perceptual processing
- patients with global amnesia demonstrate preserved perceptual priming even after long delays (i.e., reflect long-term memory)

Outline

- Priming
 - Define priming
 - Principles of priming
 - Neural substrates of priming
- Conditioning

Principles of Priming

Transfer appropriate processing

- distinction between perceptual (sensory-driven) vs. conceptual (semantic) processes
 - priming will occur when the processes engaged at study are required at test (TAP)

Multiple Memory systems

- dissociation between priming and episodic memory reveals distinct memory systems
 - declarative / explicit memory depends on MTL
 - non-declarative / implicit memory operates independently of MTL

STUDY

Read: RELIGIOUS

Generate: "Attended church three times a

week - R

STUDY

Read: RELIGIOUS

Generate: "Attended church three times a

week - R

Free Recall

Word-Fragment Completion:

R I OS

Category Accessibility:

Given a description of ambiguous behaviors of a person and asked to provide a one-word trait describing the person

STUDY

Read: RELIGIOUS

Generate: "Attended church three times a week - R

Free Recall

Word-Fragment Completion:

R_I_O_S

Category Accessibility:

Given a description of ambiguous behaviors of a person and asked to provide a one-word trait describing the person

Table 1

Proportion of Words Correctly Recalled, Completed, or Accessed in the Three Test Conditions as a Function of Study Conditions

Test condition	Study condition		
	Read	Generate	Nonstudie
Free recall	.45	.61	

Note. Numbers in parentheses indicate priming (studied-nonstudied performance) in the implicit memory conditions. From "Category Accessibility as Implicit Memory" by E. R. Smith and N. Branscombe, 1988, Journal of Experimental Social Psychology, 24, p. 498. Copyright 1988 by Academic Press. Reprinted by permission.

(Smith and Branscombe, 1988)

STUDY

Read: RELIGIOUS

Generate: "Attended church three times a week - R

Free Recall

Word-Fragment Completion:

R_I_O_S

Category Accessibility:

Given a description of ambiguous behaviors of a person and asked to provide a one-word trait describing the person

Table 1

Proportion of Words Correctly Recalled, Completed, or Accessed in the Three Test Conditions as a Function of Study Conditions

	Study condition		
Test condition	Read	Generate	Nonstudied
Free recall Word-fragment completion	.45 .62(.21)	.61 .43 (.02)	<u> </u>

Note. Numbers in parentheses indicate priming (studied-nonstudied performance) in the implicit memory conditions. From "Category Accessibility as Implicit Memory" by E. R. Smith and N. Branscombe, 1988, Journal of Experimental Social Psychology, 24, p. 498. Copyright 1988 by Academic Press. Reprinted by permission.

(Smith and Branscombe, 1988)

STUDY

Read: RELIGIOUS

Generate: "Attended church three times a week - R

Free Recall

Word-Fragment Completion:

R_I_O_S

Category Accessibility:

Given a description of ambiguous behaviors of a person and asked to provide a one-word trait describing the person

Table 1

Proportion of Words Correctly Recalled, Completed, or Accessed in the Three Test Conditions as a Function of Study Conditions

	Study condition		
Test condition	Read	Generate	Nonstudied
Free recall Word-fragment completion Category accessibility	.45 .62 (.21) .43 (.09)	.61 .43 (.02) .52 (.18)	 .41 .34

Note. Numbers in parentheses indicate priming (studied-nonstudied performance) in the implicit memory conditions. From "Category Accessibility as Implicit Memory" by E. R. Smith and N. Branscombe, 1988, Journal of Experimental Social Psychology, 24, p. 498. Copyright 1988 by Academic Press. Reprinted by permission.

(Smith and Branscombe, 1988)

Conceptual Priming in Amnesia

Conceptual priming benefits from prior semantic ("deep") elaboration

Amnesics show intact conceptual priming

Conceptual vs. Perceptual Tasks: Transfer Appropriate Processing

Conceptual priming

- shows a "generation effect": generate > presented
- insensitive to changes in study—test modality/perceptual similarity
- shows a depth-of-processing effect

Perceptual priming

- shows a "reverse—generation effect": presented > generate
- sensitive to changes in study—test modality/perceptual similarity
- shows no depth-of-processing effect

The Power of Conceptual Priming: Effects on Language

The Power of Conceptual Priming: Effects on Language

The Power of Conceptual Priming: Effects on Language

Table 1 Description of card 4 across all 24 trials for the same amnesic patient and partner

Session number and trial number	Card description	
Session 1		
Trial 1	The next one looks almostthe opposite of somebody kind uh slumped down, on the ground, with the same type of sh: head.	
Trial 2	The guy that looks like he's sleeping with his knees bent and he's got- Sitting?	
Trial 3	The guy that's slumped over re- or sleeping or reading a book or something. Kinda siesta time?	
Trial 4	This would be the siesta guy.	
Trial 5	The person that looks like he is siestaing.	
Trial 6	The guy taking the siesta.	
Session 4		
Trial 1	Siesta man.	
Trial 2	Siesta man.	
Trial 3	Siesta man.	
Trial 4	Siesta man.	
Trial 5	Siesta man.	
Trial 6	Siesta man.	
Bold text is familiar o	ommunication partner; "", a pause in speech of less than 1 s;	

Another example: E.P.'s repeated description of the former size of computers

(Duff et al., 2006)

Bold text is familiar communication partner; "...", a pause in speech of less than 1 s; ":", prolonged sound.

Participation Prompt #3

- There are many ways in which learning from past experience impacts behavior in the present. Sometimes priming impacts behavior without our awareness—that is, we are unaware that memory is shaping our current thoughts and actions.
- Describe one instance in which priming might have impacted your thoughts or actions.

Outline

- Priming
 - Define priming
 - Principles of priming
 - Neural substrates of priming
- Conditioning

Declarative Memory vs. Priming

Declarative Memory

a type of memory that depends on plasticity *across* multiple neocortical zones and that requires cross-cortical conjunctions mediated via cortico-hippocampal networks

often consciously aware of memory's operation and expressed explicitly

Priming

a type of neocortical memory that depends on plasticity within single neocortical zones that are responsible for distinct functions

often unaware of memory's operation and expressed implicitly

Visual Cortex and Visual Word-Form Priming

M.S. fails to demonstrate font-specific priming in word-stem completion

M.S. shows intact font-independent priming

NOVEL > ALL REPEATED

Left Fusiform Gyrus

Right Fusiform Gyrus

(Koutstaal et al., 2001)

NOVEL > ALL REPEATED

Left Fusiform Gyrus

Right Fusiform Gyrus

(Koutstaal et al., 2001)

NOVEL > ALL REPEATED

Right Fusiform Gyrus

(Koutstaal et al., 2001)

Cortical Bases of Conceptual Priming: Item vs. Task-Level Learning?

CAKE - ?

NOVEL

(Raichle et al., 1994)

(Raichle et al., 1994)

Conceptual priming:
Repetition suppression in left lateral PFC

& left temporal

cortex.

Conceptual priming: Repetition suppression in left lateral PFC & left temporal cortex.

Conceptual priming:

Repetition suppression in left lateral PFC & left temporal cortex.

Priming is itemspecific; does not reflect general task learning.

Alzheimer's Disease

Alzheimer's Disease

- progressive disorder, typically first impacting entorhinal cortex
- beta-amyloid plaques clumps of protein that accumulate outside neurons
- neurofibrillary tangles twisted strands of the *tau* protein form inside cells

Alzheimer's Disease

Alzheimer's Disease – typically affects temporal, parietal, & frontal cortical areas more than occipital cortex

PET imaging of resting metabolism:

Neural Bases of Conceptual Priming: Alzheimer's Disease

Alzheimer's Disease

- impaired conceptual priming (shown at left)
- can demonstrate intact perceptual priming (data not shown)

(Vaidya et al., 1999)

Dissociations btwn Memory Systems

Condition	Declarative memory	Perceptual priming	Conceptual priming	Skills & Habits
MTL amnesia	Impaired	Intact	Intact	Intact
Alzheimer's disease	Impaired	Intact	Impaired	Intact
Right occipital lesion	Intact	Impaired	Intact	Intact
Basal Gan. dysfunction	Intact	Intact	Intact	Impaired

- Strengthened feedforward connections
- Enables more rapid settling on stimulus representation

- Strengthened feedforward connections
- Enables more rapid settling on stimulus representation

- Input
- Strengthened feedforward connections
- Enables more rapid settling on stimulus representation

Strengthening

Input

- Strengthened feedforward connections
- Enables more rapid settling on stimulus representation

Strengthening

Input

- Strengthened feedforward connections
- Enables more rapid settling on stimulus representation

Sharpening

Input

- Strengthened feedforward connections
- Enables more rapid settling on stimulus representation

Sharpening

Input

- Sharpened stimulus representation
- Enables more rapid settling on stimulus representation

Input

- Strengthened feedforward connections
- Enables more rapid settling on stimulus representation

Sharpening

• Sharpened stimulus representation

Input

• Enables more rapid settling on stimulus representation

Strengthening

Input

- Strengthened feedforward connections
- Enables more rapid settling on stimulus representation

Sharpening

- Input
- Sharpened stimulus representation
- Enables more rapid settling on stimulus representation

Input

- Strengthened feedforward connections
- Enables more rapid settling on stimulus representation

Sharpening

Input

- Sharpened stimulus representation
- Enables more rapid settling on stimulus representation

Input

- Strengthened feedforward connections
- Enables more rapid settling on stimulus representation

Conditioning

Classical Conditioning

- Principles and Stages of conditioning
- Model of Classical Conditioning

Operant Conditioning

Schedule of Reinforcement

Conditioning

Classical Conditioning

- · Principles and Stages of conditioning
- Model of Classical Conditioning

Operant Conditioning

Schedule of Reinforcement

What is Classical Conditioning?

What is Classical Conditioning?

What is Classical Conditioning?

(a) Initial State – Acquisition

Experimenter Presents:

Organism's Response:

Acquisition: The gradual increase in the CR with repetition (learning function: *law of diminishing returns*)

Acquisition: The gradual increase in the CR with repetition (learning function: *law of diminishing returns*)

Extinction: The gradual reduction in the CR due to repeated presentation of the CS without the US (does not occur due to decay; requires presentation of CS without US)

Acquisition: The gradual increase in the CR with repetition (learning function: *law of diminishing returns*)

Extinction: The gradual reduction in the CR due to repeated presentation of the CS without the US (does not occur due to decay; requires presentation of CS without US)

Stages & Principles of Classical Conditioning

Spontaneous Recovery: After extinction, wait a little while, present the CS alone, and the CR shows some recovery

Temporal Ordering:

- Conditioning is strongest when the CS precedes the US
- The nature of what is learned during conditioning depends on temporal overlap of CS and US

Initial state P=0

Conditioning

Context Cues CS-US

Initial state P=0

Conditioning

Conditioning

Context Cues CS-US Context Cues CS-US

Initial state P=0

Conditioning

Conditioning

Context Cues CS-US

Initial state P=0

Context Cues CS-US

Context Cues CS-US

Context Cues CS-No US

Temporal Ordering: Continguity & Contingency

Law of Contiguity

Two things become associated when they occur together in time

Law of Contingency

- Conditioning occurs if the CS predicts the US
- Co-occurrence is insufficient
- The CS must predict an increased probability that the US will occur

Overshadowing

learning

Overshadowing

Overshadowing

When more than one CS is present, the strong CS 'overshadows' the weak CS

Blocking

learning 1

Blocking

Blocking

learning 1 learning 2

test

Once learned that CS1 predicts the US, a CR will not develop for CS2 presented with CS1. CS1 blocks conditioning of other

CS.

Predictability and Conditioning (informational value of cues)

Rescorla-Wagner Model Of Conditioning

Situation	CS:	US:	learning
1	Novel	yes	high (+)
2	Well learned	yes	low
3	Well learned	no	high (-)

The amount of learning that takes place is proportional to the surprise of the US outcome

Conditioning

Classical Conditioning

- Principles and Stages of conditioning
- Model of Classical Conditioning

Operant Conditioning

· Schedule of Reinforcement

Instrumental / Operant Conditioning

Thordike Studied rate at which cats learned to press lever to escape box

CS = puzzle box; **CR** = press lever; **US** = escape + food (reward)

In classical conditioning, learn Stim1 (CS) predicts Stim2 (US) In operant conditioning, learn CR elicits US (reward)

Operant Conditioning & Reward Schedules

VR = variable ratio;
rewarded after variable
of responses

FR = fixed ratio; rewarded after fixed # of responses

VI = variable interval; rewarded after variable amount of time

FI = fixed interval; rewarded after fixed amount of time

Reward Schedules

Variable reinforcement schedule

Will yield greater rate of responding

Extinction occurs slowly

Fixed reinforcement schedule

Will yield lower rate of responding

Extinction occurs quickly

Conditioning Recap

Classical Conditioning

- Principles and Stages of conditioning
- Rescorla-Wagner model of Classical Conditioning: Prediction Error drives conditioning/learning

Operant Conditioning

Response rate depends on reward schedule