Fraud prediction: a implementation of a Observation Undersampling model

Implementation by José P. Barrantes Model taken from Perols et al. (2017)¹

¹ Perols, J. L., Bowen, R. M., Zimmermann, C., & Samba, B. (2017). Finding needles in a haystack: Using data analytics to improve fraud prediction. *The Accounting Review*, 92, 221-245.

Overview

- About the model.
- 2. Implementation.
- 3. Results, and commentaries.
- 4. Pros of the model.
- 5. Conclusions.

About the model: Multi-Subset Observation

Undersampling

To address the rarity of fraud examples.

So the model can learn to recognise the fraud cases with limited fraud examples to learn.

About the model: first step

First we partition our data in two sets.

- One with the data to to be used to train the models.
- The other to fine-tune the cutoff (decision boundary) of the ensembled model.

About the model: OU Subsets

Then, we split the training data set into several OU subsets.

Each one will contain a copy of **all** the instances of the minority class (frauds) available in the training set, and several random instances of the majority class.

About the model: train the models

With each OU subset, we train a probability prediction model.

About the model: run models

We use the dataset we want to classify into frauds and true transactions.

To predict a probability for each instance, in every model.

About the model: combine probabilities

For each instance, we average the probability who renders every model.

This is the combiner method.

About the model: prediction

We make a decision with the ensembled probability.

About the model: cutoff

Decision threshold must be fine-tuned with validation unseen (by the models) data.

The threshold who renders the lesser error is selected.

Figure modified from:

Huang, S. H., Mo, D., Meller, J., & Wagner, M. (2012). Identifying a small set of marker genes using minimum expected cost of misclassification. *Artificial intelligence in medicine*, *55*, 51-59.

About the implementation

- One Jupyter notebook, in which I detail all the steps.
- Two Python files containing the classes to manage the ensembled models.
- Python packages:
 - o Pandas.
 - NumPy.
 - Scikit-Learn.
 - Matplotlib.
 - Pandarallel
- Dataset: Machine Learning Group ULB. (2018, March). Credit Card Fraud Detection:
 Anonymized credit card transactions labeled as fraudulent or genuine, Versión 3. Rescatado el 15 de octubre del 2019 de https://www.kaggle.com/mlg-ulb/creditcardfraud/

Performance measure: Expected Cost of Misclassification (ECM)

ECM =
$$C^{FN} \times P(Fraud) \times n^{FN} / n^P + C^{FP} \times P(Non-Fraud) \times n^{FP} / n^N$$

C^{FN}: cost of false positive.

C^{FP}: costo of false negative.

P(Fraud): prior probability of fraud.

n^{FN}: number of false negatives.

n^{FP}: number of false positives.

n^P: number of positives, in out-sample set.

n^N: number of negatives, in out-sample set.

P(Non-Fraud): prior probability of non-fraud.

Performance measure: Expected Cost of Misclassification (ECM)

ECM =
$$C^{FN} \times P(Fraud) \times n^{FN} / n^P + C^{FP} \times P(Non-Fraud) \times n^{FP} / n^N$$

A Bayesian approach. The value of the costs, and priors are obtained through literature.

Results and commentaries: ECM

Lower is better.

The ECM is almost **three times lower** in the OU models.

The superior performance in the OU models is evident.

Results and commentaries: Sensitivity

Capacity of detecting fraud.

With the **sensitivity**, we can see that the OU models are more capable of correctly classify the fraud cases.

Results and commentaries: general overview

Model	Туре	False Negatives	False Positives	True Positives	Sensitivity	ECM
SVMs	OU	11.2	119	86.8	0.886	0.023
Logistics	OU	11	285.7	87	0.888	0.025
SVMs	Naive	51	7	47	0.48	0.094
Logistics	Naive	42	12	56	0.571	0.077

Pros of the Observation Undersampling model

- Renders a good performances under class-unbalance conditions.
- Models like SVM are very computing expensive, the smaller subsets make possible use big data to train several models.
 - One big model could be impossible to train, several small ones is very feasible.
- It addresses the rarity of fraud instances problem.
- Results could be improved with causal thinking and feature engineering.

Conclusions

- The Observation Undersampling Model is a reliable approach to solve problems with unbalanced classes.
- This methodology can be also an alternative to process big data when the computing power is limited.