1. (currently amended) A compound of formula

a

$$A \xrightarrow{(CH_2)_m} R^2 \xrightarrow{R^3} X \xrightarrow{Z} Q$$

wherein:

5 (a) all of X, Y and Z are CH; or (b) one of X, Y and Z is N and the rest of X, Y and Z are CH; or (c) two of X, Y and Z are N and the other of X, Y and Z is CH; or (d) all of X, Y and Z are N;

A is A^1 or A^2 ;

 A^1 is $R^4R^5N-C(O)$ -

10

 A^2 is chosen from $R^7C(O)NH$ -, $R^7S(O)_2NH$ -, R^4NH -, and R^4O -;

Q is chosen from heteroaryl, aryl, -CH₂R¹³, -CH=N-OCH₃ and

W is chosen from H, Cl, F, R^8 , C_1 - C_4 -alkylaryl, $-OR^8$, $-SR^8$, $-NR^9R^{10}$ and - NHC(O) R^{11} , with the proviso that when two of X, Y and Z are N and Q is imidazolyl, W may not be H, Cl, F or R^8 ;

R¹ is chosen from alkyl, cycloalkyl, alkenyl, C₁-C₃-alkylcycloalkyl, heterocyclyl, C₁-C₃-alkylheterocyclyl, aryl, C₁-C₃-alkylaryl, heteroaryl, C₁-C₃-alkylheteroaryl, (C₁-C₃-alkyloxy)alkyl, (C₁-C₃-alkyloxy)cycloalkyl, (C₁-C₃-alkylthio)alkyl, (C₁-C₃-alkylthio)alkyl, (C₁-C₃-alkylthio)cycloalkyl and (C₁-C₃-alkylsulfonyl)alkyl;

20

 R^2 is H or C_1 - C_3 -alkyl, or R^1 and R^2 taken together form a 5- to 7-membered ring structure optionally containing O, S or NR^{12} ;

R³ is H or C₁-C₆-alkyl, or, when n is zero, R² and R³ taken together may form a 6-membered ring, which may be fused to a six-membered saturated or aromatic carbocycle;

 R^4 is chosen from H, aryl, heteroaryl, C_1 - C_4 -alkyl substituted with from one to three aryl or heteroaryl residues,

, wherein
$$J^1$$
 and J^2 are independently chosen from J^2

H, F, Cl, CN, NO₂ and CH₃, and G is chosen from -CH₂-, -CH₂CH₂-, -CH₂CH₂-, -CH₂CH₂-, -OCH₂-, -CH₂O-, -CH₂CH₂O-, -OCH₂CH₂-, -O-, -N(lower alkyl)-, -N(lower alkyl)CH₂-, -CH₂N(lower alkyl)-, -S-, -SO-, -SO₂-, -CH₂S-, -SCH₂-, -CH₂SO-, -SOCH₂-, -CH₂SO₂-, and -SO₂CH₂-;

R⁵ is H or C₁-C₃-alkyl, with the proviso that both R³ and R⁵ cannot be alkyl;

 R^{5} is H or C_{1} - C_{3} -aikyi, with the proviso that both R^{5} and R^{6} cannot be aikyi R^{6} is aryl;

 R^7 is aryl or C_1 - C_3 -alkylaryl;

 R^8 is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C_1 - C_4 -alkylheterocyclyl and C_1 - C_4 -alkylheteroaryl;

 R^9 is chosen from H, alkyl, alkenyl, substituted alkyl, cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, C_1 - C_4 -alkylcycloalkyl, $(C_1$ - C_4 -alkoxy)alkyl, $(C_1$ - C_4 -alkoxycarbonyl)alkyl, $(C_1$ - C_4 -alkylthio)alkyl, heterocyclyl, C_1 - C_4 -alkylheterocyclyl, C_1 - C_4 -alkylheteroaryl;

 R^{10} is H or C_1 - C_3 -alkyl, or

R⁹ and R¹⁰ taken together may form a 5- to 7-membered ring structure optionally containing O, S, SO, SO₂ or NR¹², said ring optionally substituted with - OH, -CN, -COOH or -COOCH₃;

R¹¹ is aryl;

40

R¹² is chosen from H, C₁-C₃-alkyl, alkoxycarbonyl, methoxyacetyl and aryl;

50 R¹³ is chosen from -OH, -OTHP, 1-imidazolyl, and 1-pyrrolyl;

m is zero or one; and

n is zero or one, with the proviso that when A is A^2 , m and n cannot both be zero.

2. (canceled)

3. (currently amended) A 4-pyrimidinamine according to claim 2 claim 1 wherein Z is CH, having the formula

a'

$$A \xrightarrow{(CH_2)_m} R^2 \xrightarrow{R^3} N$$

- 4. (original) A 4-pyrimidinamine according to claim 3 wherein Q is chosen from imidazolyl, methylimidazolyl, pyrrolyl, methylpyrrolyl, pyrazolyl, methylpyrazolyl, hydroxymethylimidazolyl, (dimethylaminomethyl)imidazolyl, furanyl, methylfuranyl, thienyl, oxazolyl, thiazolyl, pyridinyl, quinolinyl, 1-methylpyrimidin-2-onyl, phenyl,
- fluorophenyl, hydroxymethyl, tetrahydropyranyloxymethyl, imidazolylmethyl, pyrrolylmethyl, -CH=N-OCH₃ and S————.

- 5. (original) A 4-pyrimidinamine according to claim 4 wherein:
- Q is chosen from pyrrol-1-yl, imidazol-1-yl, furan-3-yl, 2-methylimidazol-1-yl and 4-methylimidazol-1-yl;
- 10 A is $R^4R^5N-C(O)$ -;
 - W is Cl, NHR⁹, N(CH₃)R⁹, OR⁸, SR⁸, R⁸, morpholin-4-yl,

$$-N$$
 SO_2 $-N$ $N-R^{12}$

- R^1 is chosen from alkyl, cycloalkyl, C_1 - C_3 -alkylaryl, C_1 - C_3 -alkylheterocyclyl, C_1 - C_3 -alkylheteroaryl;
- 15 R^2 , R^3 and R^5 are H;

 R^8 is C_1 - C_4 -alkylaryl

 R^9 is chosen from hydrogen, alkyl, substituted alkyl, (C_1-C_4) -alkoxy, C_1-C_4 -alkylcycloalkyl, C_1-C_4 -alkylaryl, heterocyclyl, C_1-C_4 -alkylheterocyclyl; and

20 m and n are zero.

5

10

- 6. (original) A 4-pyrimidinamine according to claim 5 wherein W is NHR⁹ and
- R⁹ is chosen from hydrogen; methyl; ethyl; 2,2,2-trifluoroethyl; allyl; cyclopropyl; 2-cyanoethyl; propargyl; methoxy; methoxyethyl; cyclopropyl; cyclopropylmethyl; (methylthio)ethyl; 3-methoxypropyl; 3-pyridyl; 2-(3-pyridyl)ethyl; 2-(2-pyridyl)ethyl; 3-pyridylmethyl; 4-pyridylmethyl; 4-pyridylmethyl-N-oxide; 2-pyridazinylmethyl; sulfolan-3-yl; 3-tetrahydrofuranyl; 2-tetrahydrofuranylmethyl; 3-(1-imidazolyl)propyl; 1-t-butoxycarbonyl-4-piperidinyl; 1-t-butoxycarbonyl-4-piperidinyl; 2-(hydroxyimino)propyl; 2-

(methoxyimino)propyl; 2-oxo-1-propyl; and (CHa), R¹⁴ wherein

R¹⁴ is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, OH, SO₂CH₃, N(CH₃)₂ and COOH;

 R^{15} is chosen from H, OCH₃ and Cl; and

p is 1 or 2.

7. (original) A 4-pyrimidinamine according to claim 5 wherein W

is
$$-N$$
 $N-R^{12}$ and

R¹² is t-butoxycarbonyl, methoxyacetyl or phenyl.

a!

8. (currently amended) A 4-pyrimidinamine according to elaim 2 claim 1 wherein

Z is CH;

A is

5

10

$$R^6$$
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6

R¹ is chosen from n-butyl; cyclohexylmethyl; cyclopentylmethyl; 2-methylpropyl; 3-methyl-1-butyl; cyclohexyl; 2,2-dimethylpropyl; benzyl; 2-thienylmethyl; 1-t-butoxycarbonyl-4-piperidinyl; 4-chlorobenzyl; 2-pyranylmethyl; 4-pyranylmethyl; 4-pyranyl and 1,1-dimethylethyl;

R² and R³ are H;

Q is imidazolyl or pyrrolyl;

W is NHR⁹; and

R⁹ is alkyl, cycloalkyl or R¹⁴ wherein

15 R^{14} is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and

 R^{15} is chosen from H, OCH₃ and Cl.

9. (currently amended) A pyrimidine according to **claim 2** wherein:

A is $R^4R^5N-C(O)$ -

R¹ is chosen from isopropyl; n-butyl; cyclohexylmethyl; cyclopentylmethyl; naphthylmethyl; cyclohexylethyl; 2-methylpropyl; 3-methyl-1-butyl; cyclohexyl; 2,2-dimethylpropyl; benzyl; 2-thienylmethyl; 1-*t*-butoxycarbonyl-4-piperidinyl; 4-methoxybenzyl; 4-chlorobenzyl; 3,4-dichlorobenzyl; 2-pyranylmethyl; 4-pyranylmethyl; 4-pyranyl and 1,1-dimethylethyl; and

R², R³ and R⁵ are H.

5

15

10 10. (original) A pyrimidine according to claim 9 wherein:

 R^4 is pyridinyl, pyridinylmethyl, tetrahydronaphthalenyl, indanylmethyl, furanylmethyl, substituted phenyl, or R^{16} ;

 R^{16} is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, CH₃, COOCH₃, OCH₃, SO₂CH₃, SOCH₃, N(CH₃)₂, tetrazol-5-yl, CONH₂, C(=NOH)NH₂ and COOH; and

R¹⁷ is chosen from H, OCH₃, F and Cl.

11. (original) A pyrimidine according to claim 9 wherein R⁴ is J¹

4 is J

one of J^1 and J^2 is H and the other is H, Cl or CN and G is chosen from -CH₂-, -CH₂CH₂-, -OCH₂-, -O- and -CH₂N(lower alkyl)-.

12. (currently amended) A 2-pyrimidinamine according to **claim 2** claim 1, wherein Y is CH, having the formula

$$A \xrightarrow{(CH_2)_m} R^2 \xrightarrow{R^3} N \xrightarrow{N} Q$$

- 13. (currently amended) A 2-pyrimidinamine according to **claim 11** claim 12 wherein Q is chosen from imidazolyl, pyrrolyl, pyridinyl, fluorophenyl and 2-thienyl.
- 14. (original) A 2-pyrimidinamine according to claim 13 wherein

A is $R^4R^5N-C(O)$ -;

5 W is H, Cl, NHR⁹ or OR⁸;

R¹ is chosen from alkyl and C₁-C₃-alkylcycloalkyl;

R², R³ and R⁵ are H;

 R^4 is C_1 - C_4 -alkylaryl or C_1 - C_4 -alkylheteroaryl;

 R^8 is C_1 - C_4 -alkylaryl;

10 R^9 is chosen from hydrogen, alkyl, fluoroalkyl, $(C_1-C_4-alkoxy)$ alkyl, $(C_1-C_4-alkylthio)$ alkyl, $C_1-C_4-alkylcycloalkyl$, $C_1-C_4-alkylaryl$, heterocyclyl, $C_1-C_4-alkylheteroaryl$, $C_1-C_4-alkylheterocyclyl$; and

m and n are zero.

15. (original) A 2-pyrimidinamine according to claim 14 wherein W is NHR9 and

R⁹ is

a'

 R^{14} is chosen from H, F, Cl, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and

5 R^{15} is chosen from H, OCH₃ and Cl.

16. (currently amended) A 4-pyrimidinamine according to **claim 2** claim 1, wherein X is CH, having the formula

$$A \xrightarrow{(CH_2)_m} (CH_2)_n \xrightarrow{R^3} N \xrightarrow{N} Q$$

- 17. (original) A 4-pyrimidinamine according to claim 16 wherein Q is chosen from imidazolyl and pyrrolyl and m and n are zero.
- 18. (original) A 4-pyrimidinamine according to claim 17 wherein:

A is $R^4R^5N-C(O)$ -;

W is NHR⁹;

R¹ is chosen from cyclohexylmethyl; 2-methylpropyl and 3-methyl-1-butyl;

 $5 R^2$, R^3 and R^5 are H; and

 R^4 and R^9 are benzyl or substituted benzyl.

- 19. (canceled)
- 20. (canceled)
 - 21. (canceled)
 - 22. (canceled)
 - 23. (canceled)
 - 24. (original) A compound according to claim 1 wherein m and n are zero and R^2 is H having the R configuration at the carbon to which R^2 is attached.
 - 25. (original) A compound according to claim 1 wherein m and n are zero and $R^1 = R^2$.
 - 26. (original)A compound according to claim 1 wherein R⁴ is J¹

 J²

 *

having the R configuration at the carbon indicated with an asterisk.

27. (original) A pyrimidine according to claim 12 wherein R⁴ is

a!

G naving the

having the R configuration at the carbon indicated with an

asterisk.

28. (currently amended) A compound of formula

$$A \xrightarrow{(CH_2)_m} R^2 \xrightarrow{R^3} X \xrightarrow{Z} Q$$

wherein:

(a) all of X, Y and Z are CH; or (b) one of X, Y and Z is N and the rest of X, Y and Z are CH; or (c) two of X, Y and Z are N and the other of X, Y and Z is CH; or (d) all of X, Y and Z are N;

A is A^1 or A^2 ;

 A^1 is $R^4R^5N-C(O)$ -

 A^2 is chosen from $R^7C(O)NH$ -, $R^7S(O)_2NH$ -, R^4NH -, and R^4O -;

 $Q \hspace{1cm} \text{is} \hspace{1cm} \text{chosen from aryl, -CH$_2$R13 , -CH=N-OCH$_3$ and}$

heteroaryl other than 1-imidazolyl and 1-triazolyl;

a

W is chosen from H, Cl, F, R⁸, C₁-C₄-alkylaryl, -OR⁸, -SR⁸, -NR⁹R¹⁰ and -NHC(O)R¹¹, with the proviso that when two of X, Y and Z are N and Q is imidazolyl, W may not be H, Cl, F or R⁸;

 $R^1 \qquad \text{is} \qquad \text{chosen from alkyl, cycloalkyl, alkenyl, C_1-C_3-alkylcycloalkyl,} \\ \qquad \text{heterocyclyl, C_1-C_3-alkylheterocyclyl, aryl, C_1-C_3-alkylaryl, heteroaryl,} \\ \qquad C_1$-$C_3$-alkylheteroaryl, $(C_1$-C_3-alkyloxy)alkyl, $(C_1$-C_3-alkyloxy)cycloalkyl, $(C_1$-C_3-alkylthio)alkyl, $(C_1$-C_3-alkylthio)cycloalkyl,} \\ \qquad \text{and $(C_1$-C_3-alkylsulfonyl)alkyl;} \\ \qquad \text{and $(C_1$-C_3-alkylsulfonyl)alkyl;} \\ \end{cases}$

R² is H or C₁-C₃-alkyl, or R¹ and R² taken together form a 5- to 7-membered ring structure optionally containing O, S or NR¹²;

R³ is H or C₁-C₆-alkyl, or, when n is zero, R² and R³ taken together may form a 6-membered ring, which may be fused to a six-membered saturated or aromatic carbocycle;

 R^4 is chosen from H, aryl, heteroaryl, C_1 - C_4 -alkyl substituted with from one to three aryl or heteroaryl residues,

J , wherein J^1 and J^2 are independently chosen from J^2

a'

H, F, Cl, CN, NO₂ and CH₃, and G is chosen from -CH₂-, -CH₂CH₂-, -CH₂CH₂-, -CH₂CH₂-, -OCH₂CH₂-, -OCH₂CH₂-, -O-, -N(lower alkyl)-, -N(lower alkyl)CH₂-, -CH₂N(lower alkyl)-, -S-, -SO-, -SO₂-, -CH₂S-, -SCH₂-, -CH₂SO-, -SOCH₂-, -CH₂SO₂-, and -SO₂CH₂-;

 R^5 is H or C_1 - C_3 -alkyl, with the proviso that both R^3 and R^5 cannot be alkyl;

R⁶ is aryl;

 R^7 is aryl or C_1 - C_3 -alkylaryl;

 R^8 is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C_1 - C_4 -alkylaryl, C_1 - C_4 -alkylheterocyclyl and C_1 - C_4 -alkylheteroaryl;

R⁹ is chosen from H, alkyl, alkenyl, substituted alkyl, cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, C₁-C₄-alkylcycloalkyl, (C₁-C₄-alkoxy)alkyl, (C₁-C₄-alkoxycarbonyl)alkyl, (C₁-C₄-alkylthio)alkyl, heterocyclyl, C₁-C₄-alkylheterocyclyl, C₁-C₄-alkylheteroaryl;

 R^{10} is H or C_1 - C_3 -alkyl, or

R⁹ and R¹⁰ taken together may form a 5- to 7-membered ring structure optionally containing O, S, SO, SO₂ or NR¹², said ring optionally substituted with - OH, -CN, -COOH or -COOCH₃;

R¹¹ is aryl;

R¹² is chosen from H, C₁-C₃-alkyl, alkoxycarbonyl, methoxyacetyl and aryl;

R¹³ is chosen from -OH, -OTHP, 1-imidazolyl, and 1-pyrrolyl;

m is zero or one; and

n is zero or one, with the proviso that when A is A², m and n cannot both be zero.

29. (canceled)

30. (currently amended) A 4-pyrimidinamine according to claim 29 claim 28, wherein Z is CH, having the formula

a. 1

$$A \xrightarrow{(CH_2)_m} R^2 \xrightarrow{R^3} N$$

- 31. (original) A 4-pyrimidinamine according to claim 30 wherein Q is chosen from methylimidazolyl, pyrrolyl, methylpyrrolyl, pyrazolyl, methylpyrazolyl, furanyl, methylfuranyl, thienyl, oxazolyl, thiazolyl, pyridinyl, quinolinyl, 1-methylpyrimidin-2-onyl, phenyl, fluorophenyl, hydroxymethyl, 2-imidazolyl,
- 5 tetrahydropyranyloxymethyl, imidazolylmethyl, pyrrolylmethyl, -CH=N-OCH₃ and

- 32. (original) A 4-pyrimidinamine according to claim 31 wherein:
- Q is chosen from pyrrol-1-yl, imidazol-1-yl, furan-3-yl, 2-methylimidazol-1-yl and 4-methylimidazol-1-yl;
- 10 A is $R^4R^5N-C(O)$ -;
 - W is Cl, NHR⁹, N(CH₃)R⁹, OR⁸, SR⁸, R⁸, morpholin-4-yl,

$$-N$$
 SO_2 $-N$ $N-R^{12}$

 R^1 is chosen from alkyl, cycloalkyl, C_1 - C_3 -alkylaryl, C_1 - C_3 -alkylheterocyclyl, C_1 - C_3 -alkylheteroaryl;

 R^2 , R^3 and R^5 are H;

 R^8 is C_1 - C_4 -alkylaryl

 R^9 is chosen from hydrogen, alkyl, substituted alkyl, (C_1-C_4) -alkoxy, C_1-C_4 -alkylcycloalkyl, C_1-C_4 -alkylaryl, heterocyclyl, C_1-C_4 -alkylheterocyclyl; and

20 m and n are zero.

10

- 33. (original) A 4-pyrimidinamine according to claim 32 wherein W is NHR⁹ and
- R⁹ is chosen from hydrogen; methyl; ethyl; 2,2,2-trifluoroethyl; allyl; cyclopropyl; 2-cyanoethyl; propargyl; methoxy; methoxyethyl; cyclopropyl; cyclopropylmethyl; (methylthio)ethyl; 3-methoxypropyl;
- 3-pyridyl; 2-(3-pyridyl)ethyl; 2-(2-pyridyl)ethyl; 3-pyridylmethyl; 4-

pyridylmethyl; 4-pyridylmethyl-N-oxide; 2-pyridazinylmethyl;

sulfolan-3-yl; 3-tetrahydrofuranyl; 2-tetrahydrofuranylmethyl; 3-(1-

imidazolyl)propyl; 1-t-butoxycarbonyl-4-piperidinyl; 1-t-

butoxycarbonyl-4-piperidinylmethyl; 2-(hydroxyimino)propyl; 2-

(methoxyimino)propyl; 2-oxo-1-propyl; and R¹⁴ wherein

R¹⁴ is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, OH, SO₂CH₃, N(CH₃)₂ and COOH;

R¹⁵ is chosen from H, OCH₃ and Cl; and

p is 1 or 2.

34. (original) A 4-pyrimidinamine according to claim 32 wherein W

is
$$-N$$
 $N-R^{12}$ and

R¹² is t-butoxycarbonyl, methoxyacetyl or phenyl.

35. (currently amended) A 4-pyrimidinamine according to **claim 29** claim 28 wherein

Z is CH;

A is

5

10

R¹ is chosen from n-butyl; cyclohexylmethyl; cyclopentylmethyl; 2-methylpropyl; 3-methyl-1-butyl; cyclohexyl; 2,2-dimethylpropyl; benzyl; 2-thienylmethyl; 1-t-butoxycarbonyl-4-piperidinyl; 4-chlorobenzyl; 2-pyranylmethyl; 4-pyranylmethyl; 4-pyranyl and 1,1-dimethylethyl;

R² and R³ are H;

Q is pyrrolyl;

W is NHR⁹; and

 R^9 is alkyl, cycloalkyl or R^{14} wherein

15 R¹⁴ is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and

- R^{15} is chosen from H, OCH₃ and Cl.
- 36. (currently amended) A pyrimidine according to claim 29 claim 28 wherein:

A is $R^4R^5N-C(O)$ -

R¹ is chosen from isopropyl; n-butyl; cyclohexylmethyl; cyclopentylmethyl; naphthylmethyl; cyclohexylethyl; 2-methylpropyl; 3-methyl-1-butyl; cyclohexyl; 2,2-dimethylpropyl; benzyl; 2-thienylmethyl; 1-t-butoxycarbonyl-4-piperidinyl; 4-methoxybenzyl; 4-chlorobenzyl; 3,4-dichlorobenzyl; 2-pyranylmethyl; 4-pyranylmethyl; 4-pyranyl and 1,1-

R², R³ and R⁵ are H;

5

is pyridinyl, pyridinylmethyl, indanylmethyl, furanylmethyl, tetrahydronaphthalenyl, substituted phenyl, or R¹⁶

 R^{16} is chosen from H, Cl, F, CN, NO_2 , SO_2NH_2 , CF_3 , CH_3 , $COOCH_3$, OCH_3 , SO_2CH_3 , $N(CH_3)_2$ and COOH; and

 R^{17} is chosen from H, OCH₃, F and Cl.

dimethylethyl;

- 37. (currently amended) A pyrimidine according to claim 29 claim 28 wherein R⁴
- is J' G

- 38. (original) A pyrimidine according to claim 37 wherein one of J^1 and J^2 is H and the other is H, Cl or CN and G is chosen from -CH₂-, -CH₂CH₂-, -OCH₂-, -O- and -CH₂N(lower alkyl)-.
- 39. (currently amended) A 2-pyrimidinamine according to **claim 29** claim 28, wherein Y is CH, having the formula

$$A \xrightarrow{(CH_2)_m} R^2 \xrightarrow{R^3} N \xrightarrow{N} Q$$

- 40. (original) A 2-pyrimidinamine according to claim 39 wherein Q is chosen from pyrrolyl, pyridinyl, fluorophenyl and 2-thienyl.
- 41. (original) A 2-pyrimidinamine according to claim 40 wherein

A is $R^4R^5N-C(O)$ -;

5 W is H, Cl, NHR⁹ or OR⁸;

R¹ is chosen from alkyl and C₁-C₃-alkylcycloalkyl;

R², R³ and R⁵ are H;

 R^4 is C_1 - C_4 -alkylaryl or C_1 - C_4 -alkylheteroaryl;

 R^8 is C_1 - C_4 -alkylaryl;

10 R^9 is chosen from hydrogen, alkyl, fluoroalkyl, $(C_1-C_4-alkoxy)$ alkyl, $(C_1-C_4-alkylthio)$ alkyl, $C_1-C_4-alkylcycloalkyl$, $C_1-C_4-alkylaryl$, heterocyclyl, $C_1-C_4-alkylheteroaryl$, $C_1-C_4-alkylheterocyclyl$; and

m and n are zero.

42. (original) A 2-pyrimidinamine according to claim 41 wherein W is NHR⁹ and

R⁹ is R¹⁴ wherein

 R^{14} is chosen from H, F, Cl, CN, NO_2 , SO_2NH_2 , CF_3 , $COOCH_3$, OCH_3 , SO_2CH_3 , $N(CH_3)_2$ and COOH; and

5 R¹⁵ is chosen from H, OCH₃ and Cl.

43. (original) A 2-pyrimidineamine according to claim 39 wherein R^4 is , one of J^1 and J^2 is H and the other is H, Cl or CN and G is chosen

from -CH₂-, -CH₂CH₂-, -OCH₂-, -O- and -CH₂N(lower alkyl)-.

44. (currently amended) A 4-pyrimidinamine according to claim 29 claim 28, wherein X is CH, having the formula

$$A \xrightarrow{(CH_2)_m} R^2 \xrightarrow{R^3} N \xrightarrow{N} Q$$

45. (original) A 4-pyrimidinamine according to claim 44 wherein Q is pyrrolyl and m and n are zero.

a'

- 46. (original) A 4-pyrimidinamine according to claim 45 wherein:
- A is $R^4R^5N-C(O)$ -;
- W is NHR⁹;
- R¹ is chosen from cyclohexylmethyl; 2-methylpropyl and 3-methyl-1-butyl;
- 5 R^2 , R^3 and R^5 are H; and

R⁴ and R⁹ are benzyl or substituted benzyl.

47. (original) A 4-pyrimidineamine according to claim 44 wherein R^4 is , one of J^1 and J^2 is H and the other is H, Cl or CN and G is chosen

from $-CH_2$ -, $-CH_2CH_2$ -, $-OCH_2$ -, -O- and $-CH_2N$ (lower alkyl)-.

- 48. (original) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound according to claim 1.
- 49. (original) A pharmaceutical composition according to claim 48 additionally comprising a steroidal or nonsteroidal antiinflammatory drug (NSAID).
- 50. (original) A pharmaceutical composition according to claim 48 additionally comprising a nonsteroidal antiinflammatory drug (NSAID).

a'

- 51. (original) A pharmaceutical composition according to claim 50 wherein said NSAID is chosen from arylpropionic acids, arylacetic acids, arylbutyric acids, fenamic acids, arylcarboxylic acids, pyrazoles, pyrazolones, salicylic acids; and oxicams.
- 52. (original) A pharmaceutical composition according to claim 48 additionally comprising a cyclooxygenase inhibitor.
- 53. (original) A pharmaceutical composition according to claim 52 wherein said cyclooxygenase inhibitor is ibuprofen or a salicylic acid derivative.
- 54. (original) A pharmaceutical composition according to claim 48 additionally comprising a selective cyclooxygenase-2 inhibitor.
- 55. (original) A pharmaceutical composition according to claim 54 wherein said selective cyclooxygenase-2 inhibitor is rofecoxib or celecoxib.
- 56. (original) A pharmaceutical composition according to claim 48 additionally comprising a selective cyclooxygenase-1 inhibitor.
- 57. (original) A pharmaceutical composition according to claim 48 additionally comprising a steroidal antiinflammatory drug.
- 58. (original) A pharmaceutical composition according to claim 57 wherein said steroidal antiinflammatory drug is chosen from finasteride, beclomethasone and hydrocortisone.

a'

- 59. (original) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound according to claim 28.
- 60. (original) A pharmaceutical composition according to claim 59 additionally comprising a steroidal or nonsteroidal antiinflammatory drug (NSAID).
- 61. (original) A pharmaceutical composition according to claim 59 additionally comprising a nonsteroidal antiinflammatory drug (NSAID).
- 62. (original) A pharmaceutical composition according to claim 61 wherein said NSAID is chosen from arylpropionic acids, arylacetic acids, arylbutyric acids, fenamic acids, arylcarboxylic acids, pyrazoles, pyrazolenes, salicylic acids; and oxicams.
- 63. (original) A pharmaceutical composition according to claim 59 additionally comprising a cyclooxygenase inhibitor.
- 64. (original) A pharmaceutical composition according to claim 63 wherein said cyclooxygenase inhibitor is ibuprofen or a salicylic acid derivative.
- 65. (original) A pharmaceutical composition according to claim 59 additionally comprising a selective cyclooxygenase-2 inhibitor.
- 66. (original) A pharmaceutical composition according to claim 65 wherein said selective cyclooxygenase-2 inhibitor is rofecoxib or celecoxib.

- 67. (original) A pharmaceutical composition according to claim 59 additionally comprising a selective cyclooxygenase-1 inhibitor.
- a'
- 68. (original)A pharmaceutical composition according to claim 59 additionally comprising a steroidal antiinflammatory drug.
- 69. (original) A pharmaceutical composition according to claim 68 wherein said steroidal antiinflammatory drug is chosen from finasteride, beclomethasone and hydrocortisone.
- 70. (currently amended) A method of treating a condition resulting from inappropriate bradykinin receptor activity comprising administering to a subject in need of such treatment a therapeutically effective amount of a compound of formula I

$$A \xrightarrow{(CH_2)_m} R^2 \xrightarrow{R^3} X \xrightarrow{Z} Q$$

I

wherein:

(a) all of X, Y and Z are CH; or (b) one of X, Y and Z is N and the rest of X, Y

and Z are CH; or (e) two of X, Y and Z are N and the other of X, Y and Z is CH; or (d) all of X, Y and Z are N;

A is A^1 or A^2 ;

 A^1 is $R^4R^5N-C(O)$ -

 A^2 is chosen from $R^7C(O)NH$ -, $R^7S(O)_2NH$ -, R^4NH -, and R^4O -;

Q is chosen from heteroaryl, aryl, -CH₂R¹³, -CH=N-OCH₃ and

W is chosen from H, Cl, F, R⁸, C₁-C₄-alkylaryl, -OR⁸, -SR⁸, -NR⁹R¹⁰ and -NHC(O)R¹¹, with the proviso that when two of X, Y and Z are N and O is imidazolyl, W may not be H, Cl, F or R⁸;

R¹ is chosen from alkyl, cycloalkyl, alkenyl, C_1 - C_3 -alkylcycloalkyl, heterocyclyl, C_1 - C_3 -alkylheterocyclyl, aryl, C_1 - C_3 -alkylaryl, heteroaryl, C_1 - C_3 -alkylheteroaryl, $(C_1$ - C_3 -alkyloxy)alkyl, $(C_1$ - C_3 -alkyloxy)cycloalkyl, $(C_1$ - C_3 -alkylthio)alkyl, $(C_1$ - C_3 -alkylthio)cycloalkyl and $(C_1$ - C_3 -alkylsulfonyl)alkyl;

R² is H or C₁-C₃-alkyl, or R¹ and R² taken together form a 5- to 7-membered ring structure optionally containing O, S or NR¹²;

R³ is H or C₁-C₆-alkyl, or, when n is zero, R² and R³ taken together may form a 6-membered ring, which may be fused to a six-membered saturated or aromatic carbocycle;

 R^4 is chosen from H, aryl, heteroaryl, C_1 - C_4 -alkyl substituted with from one to three aryl or heteroaryl residues,

 $\int_{\mathbb{R}^2}$

, wherein J^1 and J^2 are independently chosen from J^2

H, F, Cl, CN, NO₂ and CH₃, and G is chosen from -CH₂-, -CH₂CH₂-, -CH₂CH₂-, -OCH₂-, -CH₂O-, -CH₂CH₂O-, -OCH₂CH₂-, -O-, -N(lower alkyl)-, -N(lower alkyl)CH₂-, -CH₂N(lower alkyl)-, -S-, -SO-, -SO₂-, -CH₂S-, -SCH₂-, -CH₂SO-, -SOCH₂-, -CH₂SO₂-, and -SO₂CH₂-;

 R^5 is H or C_1 - C_3 -alkyl, with the proviso that both R^3 and R^5 cannot be alkyl;

R⁶ is aryl;

 R^7 is aryl or C_1 - C_3 -alkylaryl;

 R^8 is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C_1 - C_4 -alkylaryl, C_1 - C_4 -alkylheterocyclyl and C_1 - C_4 -alkylheteroaryl;

R⁹ is chosen from H, alkyl, alkenyl, substituted alkyl, cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, C_1 - C_4 -alkylcycloalkyl, $(C_1$ - C_4 -alkoxy)alkyl, $(C_1$ - C_4 -alkoxycarbonyl)alkyl, $(C_1$ - C_4 -alkylthio)alkyl, heterocyclyl, C_1 - C_4 -alkylheterocyclyl, C_1 - C_4 -alkylheteroaryl;

 R^{10} is H or C_1 - C_3 -alkyl, or

R⁹ and R¹⁰ taken together may form a 5- to 7-membered ring structure optionally

containing O, S, SO, SO₂ or NR¹², said ring optionally substituted with - OH, -CN, -COOH or -COOCH₃;

R¹¹ is aryl;

R¹² is chosen from H, C₁-C₃-alkyl, alkoxycarbonyl, methoxyacetyl and aryl;

R¹³ is chosen from -OH, -OTHP, 1-imidazolyl, and 1-pyrrolyl;

m is zero or one; and,

n is zero or one, with the proviso that when A is A², m and n cannot both be zero.

71. (canceled)

- 72. (original) The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is diabetic vasculopathy, post-capillary resistance or diabetic symptoms associated with insulitis.
- 73. (original) The method according to claim 72 wherein said diabetic symptoms associated with insulitis comprise hyperglycemia, diuresis, proteinuria and increased nitrite and kallikrein urinary excretion.
- 74. (original) The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is inflammation, edema, liver disease, asthma, rhinitis, or septic shock.
- 75. (original) The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is pain or hyperalgesia.

 a^{\prime}

- 76. (original) The method according to claim 75 wherein said pain is chronic pain, pain associated with inflammation or dental pain.
- 77. (original) The method of treating pain or hyperalgesia according to claim 75 additionally comprising administering a steroidal or nonsteroidal antiinflammatory drug (NSAID).
- 78. (original) The method of treating pain or hyperalgesia according to claim 77 wherein an NSAID is administered.
- 79. (original) The method of treating pain or hyperalgesia according to claim 75 additionally comprising administering a cyclooxygenase inhibitor.
- 80. (original) The method of treating pain or hyperalgesia according to claim 79 wherein said cyclooxygenase inhibitor is a selective cyclooxygenase-2 inhibitor.
- 81. (original) The method of treating pain or hyperalgesia according to claim 79 wherein said cyclooxygenase inhibitor is a selective cyclooxygenase-1 inhibitor.
- 82. (original) The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is multiple sclerosis.
- 83. (original) The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is atherosclerosis.

- 84. (original) The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is Alzheimer's disease or closed head trauma.
- 85. (original) A method for stimulating hair growth or preventing hair loss comprising administering to a subject in need of such treatment a therapeutically effective amount of a compound formula I according to claim 70.
- 86. (canceled)
- 87. (canceled)
- 88. (canceled)
- 89. (canceled)
- 90. (canceled)
- 91. (canceled)
- 92. (canceled)
- 93. (canceled)
- 94. (canceled)