Generalized orientations for list coloring

landon rabern*

February 12, 2018

1 Basic notions

For a set S, let \mathbb{N}^S be all functions from S to \mathbb{N} . Let $T \subseteq S$. For $g \in \mathbb{N}^S$ and $h \in \mathbb{N}^T$, define $g + h \in \mathbb{N}^S$ by (g + h)(x) = g(x) + h(x) for $x \in T$ and (g + h)(x) = g(x) for $x \in S \setminus T$. Define $g - h \in \mathbb{N}^S$ by $(g - h)(x) = \max\{0, g(x) + h(x)\}$ for $x \in T$ and (g + h)(x) = g(x) for $x \in S \setminus T$. For $g \in \mathbb{N}^S$ let $g + \mathbb{N}^T$ be all functions of the form g + h where $h \in \mathbb{N}^T$. Let $1_T \in \mathbb{N}^T$ be given by $1_T(x) = 1$ for $x \in T$. When $T = \{u\}$, we write 1_u in place of $1_{\{u\}}$. If $a: S \to \mathbb{N}$ and $b: S \to \mathbb{N}$, then a > b just in case a(v) > b(v) for all $v \in S$. Extend all these definitions to functions with codomain \mathbb{Q} as well with the proviso that a sum or difference operation on functions with different codomains results in a function whose codomain in the union of the input codomains. If functions with different domains are compared, the comparison is on the intersection of the domains.

If G is a graph and $f: V(G) \to \mathbb{N}$, then G is online f-list-colorable just in case for every nonempty $S \subseteq V(G)$ there is a nonempty independent set $F \subseteq S$ such that G - F is online $(f - 1_{S \setminus F})$ -list-colorable.

2 Generalized orientations

Let G be a graph. For $v \in V(G)$, let E(v) be the edges incident to v. For a finite set $W \subset \mathbb{Q}$, a W-orientation of G is an assignment $\pi(v,e) \in W$ to each pair (v,e) where $e \in E(v)$ such that

^{*}landon.rabern@gmail.com

- (1) $\pi(v, vw) + \pi(w, wv) = 1$ for each $vw \in E(G)$; and
- (2) $\sum_{e \in E(v)} \pi(v, e) \ge 0$ for all $v \in V(G)$.

When $W = \{0, 1\}$, W-orientations are equivalent to the usual notion of orienting a graph by directing its edges. Each W-orientation π of G induces a score function $h_{\pi} \colon V(G) \to \mathbb{Q}_{\geq 0}$ given by $h_{\pi}(v) := \sum_{e \in E(v)} \pi(v, e)$. By (1), $\sum_{v \in V(G)} h_{\pi}(v) = ||G||$. Let $\eta(W, G, D)$ be shorthand for "the number of W-orientations π of G with $h_{\pi} \in D$ ". Let $\kappa(W)$ be the number of $(a, b) \in W \times W$ with a + b = 1.

Theorem 1 Let G be a graph, $f: V(G) \to \mathbb{N}$ and $g: V(G) \to \mathbb{Q}$ with f > g. If $W \subset \mathbb{Q}$ is finite and the number of W-orientations π of G with $h_{\pi} = g$ is not a multiple of $\kappa(W)$, then G is online f-list-colorable.

By induction on |G|, it will suffice to find, for each nonempty $S \subseteq V(G)$, a nonempty independent set $F \subseteq S$ and $g' \colon V(G - F) \to \mathbb{Q}$ such that $f - 1_{S \setminus F} > g'$ and the number of W-orientations π of G - F with $h_{\pi} = g'$ is not a multiple of $\kappa(W)$.

Fix nonempty $S \subseteq V(G)$. Since $\sum_{v \in V(G)} h_{\pi}(v) = ||G||$ for every Worientation π of G, it follows that $\eta(W, G, \{g\}) = \eta(W, G, g + \mathbb{N}^S)$. In particular, $\eta(W, G, g - 1_{\emptyset} + \mathbb{N}^{S \setminus \emptyset})$ is not a multiple of $\kappa(W)$. This allows picking $X \subseteq S$ maximal such that there is $Y \subseteq X$ where $\eta(W, G, (g - 1_X) + \mathbb{N}^{S \setminus Y})$ is not a multiple of $\kappa(W)$. Suppose $X \neq S$. Pick $v \in S \setminus X$. Put $X' := X \cup \{v\}$ and $Y' := Y \cup \{v\}$. Then $(g - 1_{X'}) + \mathbb{N}^{S \setminus Y}$ is the disjoint union of $(g - 1_{X'}) + \mathbb{N}^{S \setminus Y'}$ and $(g - 1_X) + \mathbb{N}^{S \setminus Y}$. By maximality of X, $\eta(W, G, (g - 1_{X'}) + \mathbb{N}^{S \setminus Y})$ is a multiple of $\kappa(W)$. But the same holds for $\eta(W, G, (g - 1_{X'}) + \mathbb{N}^{S \setminus Y'})$, so $\eta(W, G, (g - 1_X) + \mathbb{N}^{S \setminus Y})$ must be a multiple of $\kappa(W)$, a contradiction. Hence X = S.

So there is $Y \subseteq S$ such that $\eta(W, G, (g - 1_S) + \mathbb{N}^{S \setminus Y})$ is not a multiple of $\kappa(W)$. Suppose $G[S \setminus Y]$ contains an edge vw.

3 Applications