

UNIVERSIDAD DE ANTIQUIA

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Cursos de Servicios para Ingeniería

Alumno:			Carné:
Asignatura: Álgebra lineal		Profesor: Holmes Chavarria	
Parcial # 1	Valor: 25 %	Fecha:	

Instrucciones: El examen tiene una duración de 1 hora y 50 minutos. No está permitido sacar ningún tipo de documento durante el examen. Realice los procedimientos de forma clara y ordenada.

- 1. (25%) En los siguientes ejercicios responda falso o verdadero y justifique brevemente.
 - (a) En todo espacio vectorial existen dos identidades aditivas: el cero del espacio y el uno.
 - (b) Si B es una base para las matrices simétricas cuadradas, entonces de B se puede extraer una base para las matrices cuadradas.
 - (c) La unión de dos bases para un espacio vectorial V, es otra base para el mismo V.
 - (d) Si H_1 y H_2 son subespacios de dimensiones finitas, de un espacio vectorial V, entonces $\dim(H_1 \cap H_2) > \dim H_1$.
 - (e) La unión de dos planos que pasan por el origen en \mathbb{R}^3 es un subespacio.

2. (10%) Sea $V = \mathbb{P}_2$, sean $p = ax^2 + bx + c$ y $q = dx^2 + ex + m$ considere la operación \oplus como $p \oplus q = adx^2 + bex + 1$ y la operación producto escalar usual. Determine si V con las operaciones definidas es espacio vectorial.

3. (25%) Extraiga de cada conjunto C una base para el espacio vectorial V. Muestre que el conjunto extraído es una base.

(a)
$$V = \mathbb{P}_2$$
, $C = \{1 + x, 2 - x, 7 + x^2, 5x + 1, 1 + x - x^2\}$

(b)
$$V = \mathbb{R}^3$$
, $C = \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$

4. (40%) Determine si cada subonjunto H es subespacio de V. Si lo es halle una base y determine su dimensión.

(a)
$$V = \mathbb{M}_{23}, H = \left\{ \begin{bmatrix} a & b & c \\ d & 2a & bd \end{bmatrix} : a, b, c, d \in \mathbb{R} \right\}$$

(b)
$$V = \mathbb{P}_2, \ H = \{p(x) \in \mathbb{P}_2 | p(2) = 1\}$$

(c)
$$V = \mathbb{P}_4$$
, $H = \{p(x) \in \mathbb{P}_4 | p(0) = 0, p(1) = 0\}$