Analisi Reale

Laurea Triennale in Matematica

Registro Didattico a.a. 2017/2018

14 gennaio 2018

Lezione 1-2 (27 settembre 2017) Introduzione al corso. Teoria della misura: cosa vuol dire "misurare" e quali sono le principali problematiche. Controesempio di Vitali (insieme non misurabile in \mathbb{R}). Misura di Peano-Jordan in \mathbb{R}^d : definizione e sue proprietà.

Lezione 3-4 (28 settembre 2017) Insiemi non misurabili secondo Peano–Jordan. Connessione con l'integrale di Riemann: integrale di Darboux. Esercizio svolto: equivalenza tra l'integrabilità secondo Darboux di una funzione non negative a la misurabilità secondo PJ dell'area sottesa dal suo grafico. Applicazione: equivalenza tra la misurabilità secondo PJ di un insieme e l'integrabilità secondo Darboux della sua funzione caratteristica.

Lezione 5-6 (29 settembre 2017) Proprietà di una misura: monotonia, subadditività numerabile, continuità dal basso e dall'alto. Misure complete e Teorema di completamento di un misura (solo enunciato). Definizione di misura esterna.

Lezione 7-8 (4 ottobre 2017) Misure esterne: costruzione di una misura esterna. Nozione di misurabilità (alla Caratheodory) rispetto ad una misura esterna. Teorema di Caratheodory. Svolgimento di uno degli esercizi proposti.

Lezione 9-10 (5 ottobre 2017) Definizione di premisura. Costruzione di una misura esterna a partire da una premisura e sue proprietà. La misura di Lebesgue su \mathbb{R}^d : dimostrazione che la misura elementare dei plurirettangoli costituisce una premisura.

Lezione 11-12 (6 ottobre 2017) Regolarità interna ed esterna della misura di Lebesgue. Corollario: $(\mathcal{L}(\mathbb{R}^d), \mathcal{L}^d)$ è il completamento di $(\mathscr{B}(\mathbb{R}^d), \mathcal{L}^d)$

Lezione 13-14 (11 ottobre 2017) Confronto tra la misura di Lebesgue e quella di Peano–Jordan e caratterizzazione degli insiemi PJ–misurabili. Esempi: l'insieme $\mathbb{Q} \cap [0,1]$ è misurabile secondo Lebesgue (ma non secondo Peano–Jordan); i razionali gonfiati (esempio di aperto non limitato e denso in \mathbb{R} di misura piccola a piacere); l'insieme di Cantor e sue proprietá. La funzione di Cantor–Vitali (o scala del Diavolo).

Lezione 15-16 (12 ottobre 2017) Esercizio: ogni insieme di misura esterna positiva contiene un insieme non misurabile. Esempio di insieme misurabile secondo Lebesgue (e anche secondo PJ) ma non Boreliano. Integrale di Lebesgue—Stieltjes in \mathbb{R} .

Lezione 17-18 (13 ottobre 2017) Teoria dell'integrazione: definizione di funzione $(\mathcal{M}, \mathcal{N})$ -misurabile tra due spazi misurabili (X, \mathcal{M}) e (Y, \mathcal{N}) ; la composizione di funzioni misurabili è misurabile; una funzione continua tra due spazi topologici X e Y è $(\mathcal{B}(X), \mathcal{B}(Y))$ -misurabile. Svolgimento di alcuni esercizi del Foglio 2.

Lezione 19-20 (18 ottobre 2017) Funzione $(\mathcal{M}, \mathcal{N})$ -misurabile tra due spazi misurabili (X, \mathcal{M}) e (Y, \mathcal{N}) : caso di $Y = \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$ e $\mathcal{N} = \mathscr{B}(\overline{\mathbb{R}})$: somma, prodotto, inf, sup, liminf e limsup di funzioni misurabili è misurabile; le parti positiva e negativa di una funzione misurabile sono misurabili; definizione di funzione semplice. Teorema: approssimazione di una funzione misurabile non negativa con funzioni semplici. Teorema: data una funzione Lebesgue-misurabile $f: \mathbb{R}^d \to \overline{\mathbb{R}}$, esiste una funzione Borel-misurabile $g: \mathbb{R}^d \to \overline{\mathbb{R}}$ che coincide quasi ovunque con f. Definizione di integrale di una funzione semplice.

Lezione 21-22 (19 ottobre 2017) Definizione di integrale di una funzione semplice e sue proprietà. Definizione di integrale di una funzione misurabile non negativa. Teorema della convergenza monotona. Additività dell'integrale. Proposizione: l'integrale di una funzione non negativa f è zero se e solo se f=0 quasi ovunque. Lemma di Fatou.

Lezione 23-24 (20 ottobre 2017) Varie proprietà dell'integrale: modulo dell'integrale è minore o uguale all'integrale del modulo; indipendenza dell'integrale da modifiche della funzione integranda su insiemi di misura nulla. Generalizzazione del Teorema della Convergenza Monotona e del Lemma di Fatou: basta che le condizioni e/o le convergenze puntuali valgano quasi ovunque. Cenni all'integrazione delle funzioni complesse. Svolgimento di alcuni esercizi.

Lezione 25-26 (25 ottobre 2017) Spazio $L^1(X)$. Teorema della convergenza dominata. Scambio tra integrale e serie (teorema). Derivazione sotto il segno di integrale. Relazioni tra i vari tipi di convergenze per funzioni L^1 : convergenza uniforme, quasi ovunque, in $L^1(X)$.

Lezione 27-28 (26 ottobre 2017) Teorema: una successione di funzioni convergente in $L^1(X)$ ammette una estratta convergente quasi ovunque. Generalità su spazi vettoriali normati: definizione di norma e di spazio di Banach; caratterizzazione della completezza tramite serie. Definizione di prodotto scalare complesso; disuguaglianza di Schwartz; il prodotto scalare induce una norma.

Lezione 29-30 (27 ottobre 2017) Disuguaglianza di Schwartz; identità del parallelogramma; definizioni di spazi di Banach e di Hilbert. Spazi di Hilbert: nozione di ortogonalità; teorema di Pitagora; proiezione su un convesso. Teorema: dato M sottospazio vettoriale chiuso, H si scrive come somma diretta di M e di M^{\perp} . Corollario: se M è un sottospazio vettoriale chiuso e non vuoto di H con $M \neq H$, allora esiste un elemento $y \in H$ non nullo ortogonale a M.

Lezione 31-32 (2 novembre 2017) Teorema di rappresentazione di Riesz per funzionali lineari e continui da H in \mathbb{C} (o in \mathbb{R}). Teorema di Riesz: la palla unitaria di uno spazio vettoriale normato E è compatta se e solo se E ha dimensione finita. Svolgimento di alcuni esercizi.

Lezione 33-34 (3 novembre 2017) Spazi $L^p(X,\mu)$: introduzione; $\|\cdot\|_p$ non è una norma su $L^p(X,\mu)$ per 0 . Disuguaglianza di Hölder, disuguaglianza di Minkowski.

Lezione 35-36 (8 novembre 2017) Norma $\|\cdot\|_{\infty}$ e spazio $L^{\infty}(X)$; $L^{p}(X)$ è uno spazio di Banach per $1 \leq p \leq +\infty$. Svolgimento di alcuni esercizi.

Lezione 37-38 (10 novembre 2017) Relazioni tra spazi $L^p(X)$ al variare di p; disuguaglianza di interpolazione; caso $\mu(X) < +\infty$. Disuguaglianza di Chebyshev. Esempi ed esercizi.

Lezione 39-40 (17 novembre 2017) Separabilità di $L^p(X,\mu)$ per $1 \le p < +\infty$: teorema generale; dimostrazione nel caso X aperto di \mathbb{R}^d e μ misura di Lebesgue. Non separabilità di $L^{\infty}(X)$: teorema generale; dimostrazione nel caso di $L^{\infty}(\Omega)$ e ℓ^{∞} . Svolgimento del primo esercizio dell'esonero.

Lezione 41-42 (22 novembre 2017) Densità di $C_c(\mathbb{R}^d)$ in $L^p(\mathbb{R}^d)$ per $1 \leq p < +\infty$. Definizione di misura di Radon. Teorema di Lusin (solo enunciato). Svolgimento degli esercizi dell'esonero.

Lezione 43-44 (23 novembre 2017) Funzionali lineari su spazi vettoriali normati: funzionali lineari, funzionali lineari continui, funzionali lineari limitati. Duale di uno spazio vettoriale normato, norma duale, proprietà. Relazione tra il duale di $L^p(X)$ e $L^q(X)$ (con p e q esponenti coniugati). Teorema di rappresentazione di Riesz per il duale di $L^p(X)$ con $1 \leq p < +\infty$ (solo enunciato). L'inclusione $L^1(X) \subseteq (L^\infty(X))'$ è sempre stretta (a parte il caso in cui $L^\infty(X)$ sia finito dimensionale): enunciato ed esempio nel caso di $X := \mathbb{R}^d$ con la misura di Lebesgue.

Lezione 45-46 (24 novembre 2017) Spazi prodotto e σ -algebre prodotto. Misura prodotto $\mu \times \nu$ sulla sigma algebra prodotto $\mathcal{M} \otimes \mathcal{N}$ in $X \times Y$ a partire da due spazi di misura $(X\mathcal{M}, \mu)$ e (Y, \mathcal{N}, ν) . Misurabilità delle sezioni di un insieme in $\mathcal{M} \otimes \mathcal{N}$. Misurabilità delle funzioni $f(x, \cdot) : (Y, \mathcal{N}) \to \overline{\mathbb{R}}$ e $f(\cdot, y) : (X, \mathcal{M}) \to \overline{\mathbb{R}}$ per una funzione misurabile $f: (X \times Y, \mathcal{M} \otimes \mathcal{N}) \to \overline{\mathbb{R}}$.

Lezione 47-48 (30 novembre 2017) Definizione di classe monotona. Lemma della classe monotona (solo enunciato). Teorema di Fubini-Tonelli: esempi e controesempi.

Lezione 49-50 (1 dicembre 2017) Teorema di Fubini–Tonelli: esempi e controesempi. Teorema di Fubini-Tonelli per il completamento di $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$. Applicazioni: relazione tra integrale di una funzione e sua funzione di distribuzione; convoluzioni.

Lezione 51-52 (8 dicembre 2017) Funzioni convesse su aperti convessi di \mathbb{R}^d : locale Lipschitzianità, nozione di sottodifferenziale, relazione tra convessità di una funzione e suo sottodifferenziale (cenni). Disuguaglianza di Jensen e applicazioni.

Lezione 53-54 (13 dicembre 2017) Misure con segno: definizione, osservazioni ed esempi. Continuità dall'alto e dal basso di una funzione con segno. Insieme positivo, negativo e nullo per una misura con segno. Proposizione: esistenza di un insieme negativo per una misura non positiva.

Lezione 55-56 (14 dicembre 2017) Teorema di decomposizione di Hahn. Misure mutualmente singolari: definizione ed esempi. Teorema di decomposizione di Jordan. Definizione di variazione positiva, negativa, totale di una misura.

Lezione 57-58 (15 dicembre 2017) Definizione di assoluta continuità di una misura e teorema relativo. Teorema di decomposizione di Lebesgue.

Lezione 59-60 (20 dicembre 2017) Teorema di Radon-Nikodym. Teorema di rappresentazione di Riesz per il duale di $L^p(X)$ con $1 \leq p < +\infty$ (con dimostrazione). Esercizi.

Lezione 61-62 (21 dicembre 2017) Svolgimento di alcuni esercizi proposti (relazione tra convergenza in L^p ed equi-assoluta integrabilità; convergenza quasi ovunque e convergenza delle norme L^p implica convergenza in L^p). Definizione di punto di Lebesgue per una funzione in $u \in L^1_{loc}(\mathbb{R}^d)$ e teorema relativo (solo enunciato). Antiderivata di una funzione $u \in L^1_{loc}(\mathbb{R})$ e sue proprietà.

Lezione 63-64 (9 gennaio 2018) Derivabilità quasi ovunque delle funzioni monotone. Funzioni a variazione limitata: definizione; variazione totale di una funzione su un intervallo e sue proprietà; esempi di funzioni a variazione limitata. Svolgimento di alcuni esercizi.

Lezione 65-66 (10 gennaio 2018) Una funzione u a variazione limitata su un intervallo si può scrivere come differenza di due funzioni monotone u_1, u_2 ; relazione tra la variazione totale di u su un intervallo ed u_1, u_2 . Svolgimento di alcuni esercizi.

Lezione 67-68 (12 gennaio 2018) Funzioni assolutamente continue: definizione; una funzione assolutamente continua è a variazione limitata; una funzione assolutamente continua è derivabile quasi ovunque e soddisfa il teorema fondamentale del calcolo integrale. Commenti sulla decomposizione della misura di Lebesgue—Stieltjes associata ad una funzione crescente in parte assolutamente continua, parte di salto e parte Cantoriana. Svolgimento di alcuni esercizi.

Referenze bibliografiche: per le lezioni 1–4 si vedano le dispense di T. Tao. Per le lezioni 5–50, 53–60 si veda G.B. FOLLAND, Real Analysis (capitoli 1, 2, 5). Per la lezione 27-28 e 39-40 si veda anche H. BREZIS, Analisi Funzionale. Per le lezioni 29–30 e 49–52 si veda anche W. RUDIN, Analisi Reale e Complessa. Per le lezioni 53–68 si veda anche R.F. BASS, Real Analysis for graduate students.