cv and ml

Владимир Глазачев cv в rosebud.ai

Что у нас?

Будет:

- Растровые картинки тензор размера height x width x num_channels
- Data Driven картинки к нам откуда то пришли в разумном количестве
- Хотим делать какой то ml вокруг этого

Не будет:

- traditional cv, восприятие, цветовые пространства, как работают камеры, как хранить картинки, исторические справки, физика света и цвета и т.д.
 - ПРО ЭТО ИНТЕРЕСНО МОЖНО ПОСЛУШАТЬ ТУТ https://www.youtube.com/watch?v=zNCvTcoM114

Dataset

ML algo

Classes:

dog or food or nothing?

• Данные - куча картинок

- Данные куча картинок
- Алгоритм мл моделька

- Данные куча картинок
- Алгоритм мл моделька
- Фичи ???

- Данные куча картинок
- Алгоритм мл моделька
- Фичи ???

Крафтим фичи руками

- Используем пиксели as is
- Можно если все картинки одинакового размера
- Если ML модель не использует доп связи то пиксели не связаны

1d tensor (12288,)

image 64x64x3

Крафтим фичи руками

- Считаем гистограммы по цветам
- Работает с variable размерами

image 64x64x3

Крафтим фичи руками - локальные

- Histogram of Oriented Gradients (HOG)
- Scale-Invariant Feature Transform (SIFT)
- Speeded Up Robust Feature (SURF)
- ... и так далее

Крафтим фичи руками - bow

Из пикселей или локальных фич можем взять точки интереса, нарезать картинку оттуда и использовать их в мешке слов

Итого

Итого

Хотим избавиться от ручных фич

Итого

Хотим избавиться от ручных фич

У нас было это свойство в пиксель фичах, но не учитывались связи между пикселями; через локальные можно добавить - но все еще делаем это руками

Deep Learning quick intro - linear

Deep Learning quick intro - linear

 $y = W_2 (W_1 x)$ чего то не хватает

Deep Learning quick intro - linear

нелинейность - relu=max(0, x), sigmoid= $1/(1+e^{(-x)})$ и т д

Deep Learning quick intro

y = W 2 nonlinearity(W 1 x) - двухслойная нейронная сеть

- комбинация линейных слоев и нелинейностей универсальный апроксиматор
- представляется как вычислительный граф

Deep Learning quick intro - оптимизируем

- для линейных моделей у нас были аналитические решения
- сейчас у нас произвольный граф, в общем случае нейронная сеть невыпуклая функция
- оптимизируем градиентным спуском, над уметь считать градиенты
- оптимизируем какую нибудь loss функцию, для классификации кроссентропию например

Deep Learning quick intro - оптимизируем

Backpropagation: Simple Example

$$f(x,y,z)=(x+y)z$$
 e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

$$q = x + y$$
 $f = qz$

2. Backward pass: Compute derivatives

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Deep Learning quick intro - оптимизируем

Backpropagation: Simple Example

$$f(x,y,z)=(x+y)z$$
 e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

$$q = x + y$$
 $f = qz$

2. Backward pass: Compute derivatives

Want:
$$\dfrac{\partial f}{\partial x},\ \dfrac{\partial f}{\partial y},\ \dfrac{\partial f}{\partial z}$$

A closer look at spatial dimensions

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7

Filter: 3x3

Output: 5x5

In general: Very common:

Input: W Set P = (K-1)/2 to

Filter: K make output have same size as input!

Padding: P

Output: W - K + 1 + 2P

Стакая конволюции друг за другом мы не уменьшаем размерность

Hyperparameters:

Kernel Size
Stride
Pooling function

Max Pooling

X

Single depth slice

У

Max pooling with 2x2 kernel size and stride 2

6	8
3	4

Introduces **invariance** to small spatial shifts
No learnable parameters!

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Example: LeNet-5

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

Что получилось?

deep learning во многом про feature (representation) learning; мы не хотим крафтить фичи руками а хотим просто засыпать модель данными

Что дальше?

- Глубже смотрим в CNN
- Задачи зрения детекция, сегментация, мультимодальные задачи
- Современные архитектуры
- Генерация изображений
- Как это все запускать и использовать

Ссылки

- КУЧА ИЗОБРАЖЕНИЙ И ОТСЫЛОК ИЗ https://vas3k.com/blog/machine_learning/
- примеры и картинки из курса csc по compvision
 https://www.youtube.com/watch?v=zNCvTcoM1I4
- примеры и картинки из курса по compvision michigan university https://www.youtube.com/watch?v=ANyxBVxmdZ0
- если есть вопросы можно мне написать в телеграмме @vladgl