

4回路入り 出力フルスイング 単電源オペアンプ

概要

NJM2747 は、出力フルスイングが可能な4回路入り単電源オペアンプです。

出力振幅がグランドレベルから電源電圧レベルまでフルスイン グで出力することが可能ですので、従来の単電源オペアンプで不可 能だった出力ダイナミックレンジの確保が容易になりました。

また、グランドレベルからの入力が可能ですので、単電源でのアプリケーションに適しております。

各種アンプやバッファ、フィルター等による、音声処理、信号検 出等々、各種アプリケーションへの応用にも最適です。

NJM2747SCC は高密度実装に寄与する小型リードレスパッケージにてご提供しております。

外 形

特徴

動作電源電圧 2.5~14V

出力フルスイング V_{OH} 4.9V typ. (at V⁺=5V, R_L=5k) V_{OL} 0.1V typ. (at V⁺=5V, R_L=5k Ω)

入力オフセット電圧 1mV typ. スルーレート 3.5V/ μ s typ.

低歪率 0.001% typ. (at V[†]=5V, f=1kHz) 低入力換算雑音電圧 10nV/ Hz typ. (at f=1kHz)

バイポーラ構造

外形 NJM2747D: DIP14 (リードタイプ)

NJM2747M: DMP14 (リードタイプ) NJM2747V: SSOP14 (リードタイプ)

NJM2747SCC: PCSP20-CC (リードレスタイプ・外形寸法 2.7 x 2.7 x 0.8 [mm])

端子配列

リードタイプパッケージ: NJM2747D、NJM2747M、NJM2747V

ピン配置

1. OUTPUT A 8. OUTPUT C
2. -INPUT A 9. -INPUT C
3. +INPUT A 10. +INPUT C
4. V[†] 11. GND
5. +INPUT B 12. +INPUT D
6. -INPUT B 13. -INPUT D
7. OUTPUT B 14. OUTPUT D

リードレスタイプパッケージ: NJM2747SCC

ピン配置

1. NC 11. NC 2. OUTPUT B 12. OUTPUT D 3. NC 13. NC 14. OUTPUT A 4. OUTPUT C 5. NC 15. NC 6. -INPUT C 16. -INPUT A 17. +INPUTA 7. +INPUT C 8. GND 18. V⁺ 9. +INPUT D 19. +INPUT B 10. -INPUT D 20. -INPUT B

- (注1) NC 端子とパッケージ底面の PAD は、IC の GND 端子と同電位になるように接続してください。
- (注2) NC 端子はIC 内部チップと電気的に接続されていません。
- (注3) パッケージ底面の PAD はIC 内部チップと電気的に接続されていません。GND 端子としての機能はありません。
- (注4) NJM2747SCC の標準的な外形寸法は『水平方向 2.7 × 2.7 [mm] 、高さ方向 0.8 [mm] 』です。寸法公差や端子間隔などの寸法詳細情報はパッケージデータシートでご確認ください。

絶対最大定格 (Ta=25°C)

項 目								記号	定格	単 位	
電	電 源 電 圧		V ⁺	15	V						
差	動	入	力	電	圧		範	井	V _{ID}	±15(注5)	V
同	相	λ	力	電	圧		範	拼	V _{ICM}	0~15(注 5)	V
						870 [DIP14]					
						450 [DMP14] (注 6),					
				420 [SSOP14] (注 6),							
			P_D	380 [PCSP20-CC] (注 6)	mW						
				560 [DMP14](注 7),							
消	消費電		費電力			力		520 [SSOP14](注 7),			
										550 [PCSP20-CC] (注7)	
動	作	=	温	度		範	į,	拼	T_{opr}	-40 ~ +85	°C
保	存	<u>7</u>	温	度		範	į	井	T _{stg}	-50 ~ +125	°C

- (注 5) 入力電圧は、 V^{\dagger} または 15V より小さいほうの値を越えて印加しないで下さい。
- (注6)消費電力はEIAJEDEC仕様基板(76.2×114.3×1.6mm、2層、FR-4)実装時。
- (注7)消費電力はEIAJEDEC仕様基板(76.2×114.3×1.6mm、4層、FR-4)実装時。
- (注8) IC での消費電力が絶対最大定格で示されている「消費電力: PD」を越えないようにしてください。 周囲温度(Ta)が Ta 25 である場合の許容損失は、下記の図1Aおよび図1Bを参照ください。

図1A:消費電力-周囲温度特性

図1B:消費電力-周囲温度特性

推奨動作節囲 (Ta=25°C)

	項	目		記 号	定格	単 位						
電	源	電	圧	V ⁺	2.5~14 (注8)	V						

電気的特性

D C特性 (V⁺=5V, Ta=25°C)

	項	目		記号	条件	最 小	標準	最大	単 位
消	費	電	流	Icc	R _L = , V _{IN} =2.5V, 無信号時	-	8	11	mA
入力	」オフセ	ット電	圧	V_{10}	R _s 10k	-	1	6	mV
入り	カ バ イ	ア ス 電	流	I_B		-	100	350	nA
入力	」オフセ	ット電	流	I_{10}		-	5	100	nA
電	圧	利	得	A_V	R_L 10k to 2.5V, Vo=0.5V ~ 4.5V	65	85	-	dB
同	相信号	除去	比	CMR	0V Vcm 4V	60	75	-	dB
電	源電圧	除去	比	SVR	V ⁺ =2.5V ~ 14V	60	80	-	dB
	+ ш	+ =		V_{OH}	R _L 5k to 2.5V	4.75	4.9	-	V
最	大 出	力 電	圧	V_{OL}	R _L 5k to 2.5V	-	0.1	0.25	V
同木	11 入力	電圧範	井	V_{ICM}	CMR 60dB	0	-	4	V

A C特性 (V⁺=5V, Ta=25°C)

	項	目		記号	条件	最 小	標準	最 大	単 位
利	得 芹	芦 域	幅	GB	f=10kHz	-	10	-	MHz
位	相	余	裕	М	R_L =10k Ω , C_L =10pF	-	75	-	Deg
入	力 換 算	雑 音 電	圧	V_{NI}	f=1kHz , V _{CM} =2.5V	-	10	-	nV/ Hz
全	高 調	波 歪	率	THD	f=1kHz , A_V =+2, R _L =10k Ω to 2.5V , Vo=1.5Vrms	-	0.001	-	%
チ セ	ヤ オパレー	ト ル - ショ	間ン	cs	f=1kHz, R _L =10k Ω to 2.5V , Vo=1.5Vrms	-	120	-	dB

過渡応答特性 (V⁺=5V, Ta=25°C)

	I	頁	目			記号	条件	最 小	標準	最 大	単 位
ス	ル	-	V	_	7	SR	(注 9), A_V =1, V_{IN} =2 V pp, R_L =10 $k\Omega$ to 2.5 V , C_L =10pF to 2.5 V	1	3.5	1	V/µs

(注9)正または負のスルーレートの遅いほうの値を、スルーレート値とします。

消費電流 対 電源電圧特性例 (周囲温度)

入力オフセット電圧 対 電源電圧特性例

入力オフセット電圧 対 同相入力電圧特性例

消費電流 対 周囲温度特性例 (電源電圧)

入力オフセット電圧 対 周囲温度特性例 (電源電圧)

最大出力電圧 対 出力負荷特性例

新日本無線

最大出力電圧 対 周囲温度特性例 (周囲温度・R_L=10kΩ)

同相信号除去比 対 周囲温度特性例 (電源電圧)

最大出力電圧 対 周囲温度特性例 (周囲温度・R_L=5kΩ)

電源電圧変動除去比 対 周囲温度特性例

40dB電圧利得・位相 対 周波数特性例 (負荷容量)

40dB電圧利得・位相 対 周波数特性例 (周囲温度)

位相余裕 対 負荷容量特性例 (電源電圧)

パルス応答特性例 (負荷容量・V⁺/V⁻=±2.5V)

パルス応答特性例 (周囲温度・V⁺/V˙=±2.5V)

全高調波歪率 対 出力電圧特性例 (周波数)

 $V^{+}=5V$, $A_{V}=+2$, $R_{S}=600\Omega$, $R_{F}=5k\Omega$, $R_{G}=5k\Omega$, BW=10Hz~80kHz, Ta=25°C

全高調波歪率 対 出力電圧特性例 (電源電圧)

f=1kHz, A_V=+2, R_S=600 Ω , R_F=5k Ω , R_G=5k Ω , BW=10Hz~80kHz, Ta=25°C

入力換算雑音電圧 対 周波数特性例 (電源電圧)

チャンネルセパレーション 対 周波数特性例

チャンネルセパレーション 対 周波数特性例

 V^{+} =5V, Cch入力, V_{O} =1.5Vrms, G_{V} =40dB, R_{F} =100k Ω , $R_G=1k\Omega$, $R_L=10k\Omega$, Ta=25°C

MEMO

<注意事項>

<注意事員>
このデータブックの掲載が容の正確さには
万全を期しておりますが、掲載が容について
何らかの活がな保証を行うものではありませ
ん。とくに応用回路については、製品の代表
的な応用例を説明するためのものです。また、工業所有権その他の権利の実施権の結構を得
うものではなく、第三者の権利を侵害しない
ことを保証するものでもありません。