

Fisiologia do Sistema Circulatório ou Cardiovascular

• Esse sistema é constituído por um <u>fluido circulante</u> (o sangue ou hemolinfa) que é transportado no interior de <u>vasos</u>, banhando todas as células do organismo. Esse líquido é impulsionado por uma bomba propulsora, o <u>coração</u>.

Funções do sistema cardiovascular:

- -Distribuição de nutrientes absorvidos no intestino delgado e do gás oxigênio captado nos pulmões para todas as células do corpo
- -Retirar das células as excretas e o gás carbônico resultante do metabolismo.

Evolução do sistema circulatório

- Surge pela primeira vez nos anelídeos (ex. minhocas)
- Em animais como cnidários, platelmintos e nematelmintos, as trocas gasosas, de nutrientes e de excretas são realizadas por difusão.

nematelmintos

Evolução do sistema circulatório

- Surge pela primeira vez nos anelídeos (ex. minhocas)
- Em animais como cnidários, platelmintos e nematelmintos, as trocas gasosas, de nutrientes e de excretas são realizadas por difusão.

Tipos de sistemas circulatórios: aberto e fechado

Lacunas, ou Hemocele ou Hemocelas

Na lacuna, a hemolinfa entra em contato direto com os tecidos

Tipos de sistemas circulatórios

- Todos os vertebrados (peixes, anfíbios, répteis, aves e mamíferos) possuem sistema circulatório fechado.
- O sangue é impulsionado pelo coração e corre o tempo todo no interior de um vaso (artéria, veia ou capilar).
- De forma geral, todo vaso que <u>sai do</u> <u>coração</u>, conduzindo sangue deste para os tecidos, é uma <u>artéria</u>; todo vaso que <u>chega</u> <u>ao coração</u>, trazendo sangue dos tecidos, é uma <u>veia</u>.
- Os vasos sanguíneos se ramificam e formam uma rede de <u>capilares sanguíneos</u>, a qual conecta a porção de vasos arteriais e venosos.

Vasos capilares

• Diferenças anatômicas e fisiológicas entre artérias, capilares e veias

- Diferenças anatômicas e fisiológicas entre artérias, capilares e veias.
- Como ocorrem as trocas entre o sangue dos capilares e as células teciduais?

Na porção arterial da rede de capilares, a pressão do sangue é maior do que a pressão osmótica, direcionando o fluxo de água para fora do capilar. Essa água banha as células e lhes fornece O2 e nutrientes.

Na porção venosa dos capilares, a pressão do sangue é menor do que a pressão osmótica, direcionando o fluxo de água para dentro do capilar. Agora, a água remove o CO₂ e resíduos metabólicos, e novamente passa a constituir o <u>plasma</u> sanguíneo.

- •Diferenças anatômicas e fisiológicas entre artérias , capilares e veias.
- •Como ocorrem as trocas entre o sangue dos capilares e as células teciduais.
- •Nas artérias, o que mantém o fluxo de sangue?
- -Pressão gerada pelos batimentos cardíacos.

- Diferenças anatômicas e fisiológicas entre artérias, capilares e veias.
- Como ocorrem as trocas entre o sangue dos capilares e as células teciduais.
- •Nas artérias, o que mantém o fluxo de sangue?
- -Pressão gerada pelos batimentos cardíacos.
- -A pressão é mantida pela resistência das paredes arteriais.

- •Diferenças anatômicas e fisiológicas entre artérias , capilares e veias.
- Como ocorrem as trocas entre o sangue dos capilares e as células teciduais.
- •Nas artérias, o que mantém o fluxo de sangue?
- -Pressão gerada pelos batimentos cardíacos.
- -A pressão é mantida pela resistência das paredes arteriais.
- •Nas **veias**, o fluxo se dá pela contração da musculatura esquelética e o seu refluxo é impedido por valvas (ou válvulas)

Fluxo sanguíneo nas veias

- Diferenças anatômicas e fisiológicas entre artérias, capilares e veias.
- •Como ocorrem as trocas entre o sangue dos capilares e as células teciduais.
- •Nas artérias, o que mantém o fluxo de sangue?
- -Pressão gerada pelos batimentos cardíacos.
- -A pressão é mantida pela resistência das paredes arteriais.
- •Nas **veias**, o fluxo se dá pela contração da musculatura esquelética e o seu refluxo é impedido por valvas (ou válvulas)

Fluxo sanguíneo nas veias

Circulação Humana

- É a circulação do tipo fechada, dupla e completa.
- Fluxo sanguíneo tomando como ponto de partida o coração.
- •O <u>sangue arterial (rico em O2)</u> esta representado em vermelho; o <u>sangue</u> <u>venoso (rico em CO2)</u> aparece em azul.
- O circuito de vasos compreendido entre o coração e os pulmões é chamado <u>pequena circulação</u> (ou circulação pulmonar).
- O circuito que percorre o coração e os demais sistemas corporais é chamado grande circulação (ou circulação sistêmica)

Fluxo sanguíneo no interior do coração

Reconhecer:

- Os principais vasos sanguíneos e o fluxo de sangue no interior das câmaras cardíacas
- Compreender o conceito de *miocárdio*
- Estrutura, localização e função das valvas

Reconhecer:

- Os principais vasos sanguíneos e o fluxo de sangue no interior das câmaras

cardíacas

Compreender o conceito de miocárdio

Estrutura, localização e função das valvas

Nutrição do tecido cardíaco (artérias coronárias)

Reconhecer:

- Os principais vasos sanguíneos e o fluxo de sangue no interior das câmaras cardíacas
- Compreender o conceito de *miocárdio*
- Estrutura, localização e função das valvas
- Nutrição do tecido cardíaco (artérias coronárias)
- Ciclo cardíaco: movimentos de sístole (contração) e diástole (relaxamento)

Ciclo cardíaco

Ciclo cardíaco

Reconhecer:

- Os principais vasos sanguíneos e o fluxo de sangue no interior das câmaras cardíacas
- Compreender o conceito de *miocárdio*
- Estrutura, localização e função das valvas
- Nutrição do tecido cardíaco (artérias coronárias)
- Ciclo cardíaco: movimentos de sístole (contração) e diástole (relaxamento)
- Conceito de pressão arterial (PA) e sua aferição ver recursos do livro

Reconhecer:

- Os principais vasos sanguíneos e o fluxo de sangue no interior das câmaras cardíacas
- Compreender o conceito de *miocárdio*
- Estrutura, localização e função das valvas
- Nutrição do tecido cardíaco (artérias coronárias)
- Ciclo cardíaco: movimentos de sístole (contração) e diástole (relaxamento)
- Conceito de <u>pressão arterial</u> (PA) e sua aferição ver recursos do livro
- Marca passos do coração automatismo cardíaco

- Marca passos do coração automatismo cardíaco: sistema de geração de impulsos elétricos que resultam na contração rítmica da miocárdio
- Cada marca passo é formado por um conjunto de células especializadas na produção e condução de impulsos elétricos que fazem o miocárdio se contrair.

Reconhecer:

- Os principais vasos sanguíneos e o fluxo de sangue no interior das câmaras cardíacas
- Compreender o conceito de *miocárdio*
- Estrutura, localização e função das valvas
- Nutrição do tecido cardíaco (artérias coronárias) recursos do livro
- Ciclo cardíaco: movimentos de sístole (contração) e diástole (relaxamento)
- Conceito de <u>pressão arterial</u> (PA) e sua aferição ver recursos do livro
- Marca passos do coração automatismo cardíaco
- Frequência cardíaca é o número de vezes que o coração se contrai por unidade de tempo, variando em função do tipo de atividade física do organismo e do seu estado emocional. O valor médio é de 70~80 batimentos por minuto.

Formação do Sangue

- •Durante a vida embrionária e fetal ocorre em vários órgãos: fígado, baço, medula óssea vermelha, etc.
- Após o nascimento ocorre apenas na medula óssea vermelha.

Estrutura e Funções:

- •O sangue é um tipo de tecido líquido cujas células estão separadas por grande quantidade de **plasma**.
- •A porção celular do tecido sanguíneo, ou <u>elementos figurados do sangue</u>, é composta por hemácias, leucócitos e plaquetas
- •O sangue realiza o transporte de várias substâncias: gases oxigênio e carbônico, nutrientes e hormônios; também participa dos mecanismos de defesa orgânica (sistema imunológico).
- •Além de transporte de substâncias, o sangue mantém a homeostase sistêmica por outros mecanismos: regulação da temperatura, do pH e do volume de água citoplasmática.

Composição do sangue

É a porcentagem ocupada pelos glóbulos vermelhos ou hemácias no volume total de sangue.

Composição do sangue

52~57% do volume sanguíneo

Plasma Sanguíneo:

- Água (~90%);
- Sais inorgânicos (0,9%) Na, P, Mg, Cl, K, Ca;
- Proteínas (7%) albumina, imunoglobulinas, etc;
- Outros compostos (2,1%) vitaminas, hormônios, etc;
- Gases respiratórios oxigênio e carbônico.

Composição do sangue

- Elementos Figurados: originados na medula óssea
- Leucócitos células imunitárias
- Eritrócitos (hemácias) transporte de gases respiratórios (O₂ e CO₂);
- Plaquetas atuam na coagulação.

Formação do Sangue

- •Durante a vida embrionária e fetal ocorre em vários órgãos: fígado, baço, medula óssea vermelha, etc.
- Após o nascimento ocorre apenas na medula óssea vermelha.

Estrutura e Funções:

- •O sangue é um tipo de tecido líquido cujas células estão separadas por grande quantidade de plasma.
- •A porção celular do tecido sanguíneo, ou elementos figurados do sangue, é composta por hemácias, leucócitos e plaquetas
- •O sangue realiza o transporte de várias substâncias: gases oxigênio e carbônico, nutrientes e hormônios; também participa dos mecanismos de defesa orgânica (sistema imunológico).
- •Além de transporte de substâncias, o sangue mantém a homeostase sistêmica por outros mecanismos: regulação da temperatura, do pH e do volume de água citoplasmática.

•Plasma: homeostase sistêmica (orgânica):

Regulação do pH – a ocorrência das atividades metabólicas celulares depende de valores de pH específicos, ou seja, a concentração orgânica de [H⁺] deve ser constante.

Processo Respiratório na manutenção do pH sanguíneo

•Plasma: homeostase sistêmica (orgânica):

Regulação do pH – a ocorrência das atividades metabólicas celulares depende de valores de pH específicos, ou seja, a concentração orgânica de [H⁺] deve ser constante.

Processo Respiratório na manutenção do pH sanguíneo

$$CO_2$$
 + $H_2O \longrightarrow H_2CO_3 \longrightarrow H^+$ + HCO_3 Torna o sangue ácido os níveis plasmáticos de CO_2 são detectados por quimiorreceptores do SNC (Bulbo).

- Efeitos fisiológicos da acidose: depressão do SNC desorientação e coma.
- Efeitos fisiológicos da alcalose: hiperexcitabilidade do SNC nervosismo e convulsões.

•Plasma: homeostase sistêmica (orgânica):

Osmorregulação – as concentrações dos líquidos extravasculares, bem como do meio intravascular, são de fundamental importância para a homeostase metabólica.

Albumina:

- proteína sintetizada no fígado e que perfaz 50% das proteínas plasmáticas;
- dentre outras funções, atua na manutenção do equilíbrio osmótico entre o sangue e os tecidos;
- o excesso de albumina gera problemas hepáticos e renais.

•Plasma: homeostase sistêmica (orgânica):

Osmorregulação – as concentrações dos líquidos extravasculares, bem como do meio intravascular, são de fundamental importância para a homeostase metabólica.

→ Sais Inorgânicos

• o íon sódio é o responsável **pela maior parte** da regulação da pressão osmótica extracelular. <u>Sua concentração</u> <u>é maior no meio extracelular do que no intracelular.</u>

•Plasma: homeostase sistêmica (orgânica):

Termorregulação – a temperatura corporal é uma variável de extrema importância para as atividades enzimáticas.

A água do plasma absorve o excesso de calor e o elimina por meio da transpiração, atuando como um refrigerador corpóreo.

O fluxo de água através da pele varia de acordo com a temperatura ambiente e corporal.

Temperatura ambiental elevada

 resposta fisiológica – vasodilatação – permite maior fluxo de água aquecida pelas paredes dos capilares epidérmicos, favorecendo a transpiração pelas glândulas sudoríparas

•Plasma: homeostase sistêmica (orgânica):

Coagulação – processo em que o plasma liquido é transformado em uma massa proteica gelatinosa, fundamental para interromper as hemorragias.

Fatores que interferem na coagulação:

- vitamina K e íons Ca²⁺
- proteínas hepáticas: protrombina e fibrinogênio
- fibrina: proteína insolúvel que retém células sanguíneas e plaquetas para constituir o coágulo.

Plasma: homeostase sistêmica (orgânica):

Coagulação – processo em que o plasma liquido é transformado em uma massa proteica gelatinosa, fundamental para interromper as hemorragias.

Formação do coágulo

•Porção celular do sangue: Elementos Figurados

Eritrócitos (hemácias) – correspondem a aproximadamente 45% do volume sanguíneo.

Na maioria dos mamíferos as hemácias são anucleadas (sem núcleo)

•Porção celular do sangue: Elementos Figurados

Eritrócitos (hemácias) – correspondem a aproximadamente 45% do volume sanguíneo.

•Possui o pigmento vermelho hemoglobina (Hb), que possui ferro (Fe²⁺) na

constituição.

1 – eritrócito (hemácias)

2 - plaquetas

•Porção celular do sangue: Elementos Figurados

Eritrócitos (hemácias) – correspondem a aproximadamente 45% do volume sanguíneo.

- •Possui o pigmento vermelho **hemoglobina** (**Hb**), que possui **ferro** (**Fe**²⁺) na constituição.
- •Os 4 íons **Fe**²⁺ que compõem a hemoglobina ligam-se, cada um, a uma molécula de oxigênio.

Nos alvéolos pulmonares: Hb + 4O₂ ← HbO₂ oxihemoglobina

•Porção celular do sangue: Elementos Figurados

Eritrócitos (hemácias) no processo de hematose e de oxigenação tecidual

Trocas gasosas:

$$CO_2 + H_2O \longrightarrow H_2CO_3 \longrightarrow H^+ + HCO_3^-$$

•Porção celular do sangue: Elementos Figurados

Eritrócitos (hemácias) — variáveis que interferem na afinidade de ligação entre a Hb e o O_2 :

•Porção celular do sangue: Elementos Figurados

Eritrócitos (hemácias) — variáveis que interferem na afinidade de ligação entre a Hb e o O_2 :

- Concentração de CO₂

•Porção celular do sangue: Elementos Figurados

Eritrócitos (hemácias) — variáveis que interferem na afinidade de ligação entre a Hb e o O_2 :

- pH sanguineo

•Porção celular do sangue: Elementos Figurados

Eritrócitos (hemácias) — variáveis que interferem na afinidade de ligação entre a Hb e o O_2 :

- Altitude: quanto maior, menor a pressão de O₂ (PO₂) atmosférico

•Porção celular do sangue: Elementos Figurados

Eritrócitos (hemácias) – por serem anucleados, as hemácias duram cerca de 120 dias

Composição do sangue (resumo)

SANGUE	FUNÇÃO PRINCIPAL	ORIGEM
Glóbulos vermelhos	Transporte de oxigénio	Medula óssea
Plaquetas	Coagulação	Medula össea
Glóbulos brancos	Defesa do organismo	Medula óssea
Água	Transporte de moléculas, manutenção do volume sanguíneo	Absorvida do intestino
Albumina	Transporte	Figado
Fibrinogénio	Coagulação	Figado
Globulinas	Transporte e combate a infecções	Figado e linfócitos
Oxigénio	Respiração celular aeróbia	Pulmões
Dióxido de carbono	(*)	Tecidos
Nutrientes orgânicos	Metabolismo celular	Absorvidos no intestino
Sais minerais	Manutenção da pressão e do pH sanguineos; metabolismo	Absorvidos no intestino
Residuos	(*)	Tecidos e figado
Hormonas, vitaminas	Metabolismo celular	Variada (**)