EUROPEAN PATENT OFFICE

Pat nt Abstracts f Japan

PUBLICATION NUMBER

02050403

PUBLICATION DATE

20-02-90

APPLICATION DATE

12-08-88

APPLICATION NUMBER

63201334

APPLICANT:

MITSUBISHI HEAVY IND LTD;

INVENTOR

HAYAKAWA KAZUYOSHI;

INT.CL.

H01F 5/08 H01B 12/10 H01B 13/00

TITLE

METHOD AND APPARATUS FOR

MANUFACTURING

SUPERCONDUCTING COIL

ABSTRACT :

PURPOSE: To obtain almost the complete filling of the solder and the complete surface connection by using a clad solder sheet for connection between superconducting wires and a reinforcing material and between the superconducting wires and a stabilizing material and by using the reinforcing material having a stepped ditch.

CONSTITUTION: A group of superconductive wires and a stabilizing material are placed in a ditch of a reinforcing material. After putting a soldering material foil into a space between the materials, the whole body is heated and pressed. For the soldering material foil 4, a core 4a which has a higher melting point than that of the solder and is coated on both faces with the soldering material is used. The reinforcing material has a step between an upper portion and a lower portion, with the width \mathbf{w}_1 of the upper ditch in which the stabilizing material 3 is placed larger than the width \mathbf{w}_2 of the lower ditch in which the superconducting wires are placed. An opening section of the reinforcing material is opened wide with a side wall section slanted as it goes upward. Also, the depth \mathbf{d}_1 of the lower ditch of the reinforcing material is made large than the width \mathbf{d}_2 of the superconducting wire. The coil is heated at the melting temperature of the solder and is pressed vertically and laterally from the outside to overflow the excessive melted solder out of the reinforcing and stabilizing materials. By this method, the spaces between the materials and between the conducting wires are filled completely with the solder and a good connection can be obtained.

COPYRIGHT: (C)1990,JPO&Japio

⑩ 日本国特許庁(JP)

40 特許出願公開

⑫ 公 開 特 許 公 報 (A) 平2-50403

@int. Cl. 5 H 01 F 5/08 識別記号

庁内整理番号

母公開 平成2年(1990)2月20日

H 01 B 12/10 13/00

ZAA N ZAA

6447-5E 7826—5 G

審査請求 未請求 請求項の数 2 (全6頁)

❷発明の名称 超電導コイルの製造方法及び製造装置

> 创特 顧 昭63-201334

> > 明

顧 昭63(1988)8月12日 多出

70発 明 者 夫

兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式

会社高砂研究所内 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式

会社高砂研究所内

@発 早川 数 良

兵庫県神戸市兵庫区和田崎町1丁目1番1号 三菱重工業

株式会社神戸造船所内

の出 類 人 三菱重工業株式会社

浜 中

東京都千代田区丸の内2丁目5番1号

70代理 武彦 外2名 弁理士 鈴江

L発明の名称

仍発

明

超電導コイルの製造方法及び製造装置 2. 特許請求の範囲

補強材の存内に、趣電導業群と安定化材 を設置し、各部材間難に単田材フェイルを介押し た後加熱、単田部融及びコイル外層からの押圧に より半田付する製造方法において、

半田材フェイルには、半田の融点よりも高い融 点を有する芯材の両面に半田材を被覆した部材を 用い、補強材の断面形状は上部と下部の間に食差 を設け、安定化材の入る上部の存稿 Wi を超電導差 の入る下部の俳優 w。よりも大きくし、 上部の 何覺 都を外部に傾斜させて入口が広くなるように第ロ させ、補強材下部の体操さdgを超電導線の厚みdg よりも大きくするとともに、コイルを半田の将職 温度に加熱した状態でコイル外貫から、上下、左 右に押圧し、余期審融半田を補強材と安定化材の、

(2) コイルを連続通過させるトンネル型加熱炉 と、コイルを上下方向に押圧する上部押圧ローラ と支持ローラとコイルを左右方向に押圧する何部 押圧ローラと、余剰半田を除去するカッタロール と、コイルの移動装置からなり、上部押圧ローラ は前記加熱炉内及び加熱炉後方に設置し、何部押 圧ローラは、剪記両上部押圧ローラ間に収置し、 カッタロールは、上部押圧ローラ及び何部押圧ロ - ゥよりも後方に配置したことを帯徴とする辨求 項1に記載した方法の実施に使用する超ば導っイ ルの製造装置。

3.発明の詳細な説明

〔重要上の利用分野〕

本発明は慰覚導を利用した各種製品(電力貯 黒、MRI, MHDなど)の超電導コイルの製造時に 於ける超電導線と複数材及び安定化材との接合技 御の改 に関する。

〔従来の技術〕

算!2回に従来の想覚導コイルの新面斜視図

ー うと、コイルを左右方向に押圧する側部押圧ロー うと、余 料半田を除去するカックロールと、コイルの移動装置からなり、上部押圧ロー うは前記 加熱炉内及び加熱炉後方に設置し、 側部押圧ロー うは、前記両上部押圧ロー う及び偶部押圧ロー うよりも後方に配置したことを特象とする。

(作用)

5.

本発明によれば、

(1) 半田村フォルには、半田より融点の高い芯村 4 m が存在するため従来の半田フェイルの如く 静落せずに、両面が半田で濡れた芯材 4 m が名部村間の全面に押圧により接すると共に余剰落散半田 4 c は押圧によりオーパフローし、かつ落散半田 4 c 表面の浮上散化物は接合面外部へ放出され

(2) 補強材に設差部 C G、及び D H 部を設ける ことにより、 a. 超電導線 2 の入る碑部の無整厚 さを、安定化材 2 の入る碑部の偶整厚さよりも厚 くするため左右押圧力 P a. により安定化材 3 の入

第1回は本発明方法で製造する超電率コイルの 断面回を示し、第2回~第11回にその製造方法 及び製造装置を示す。

本発明方法においては、

- (I) 単田シート材として第4回に示す様に単田の融点よりも高い芯材 4 g の両面に単田 4 b をクラッドしたシート材 4 を用いる。
- (2) 補強材 1 の断面形状として第 2 図に示す様に a. 何壁部 B C , P D 面を外部へ傾斜 (*> 0) させ、 b. 超電導線 2 の入る準備 W₁ と安定化材の入る準備 W₁の関係を W₁> W₂ とし、設差部 C G 及び D H を設け、 c. 超電導線 2 の入る準保さ d₁ と超電導線の厚み d₁ の関係を d₁> d₂ とする。
- (3) 各部材を第5回に示すごとく配設し、学田の溶験型度に連続加熱し、第6回に示す如くコイルをトンネル型加熱炉8内を連続通過させるとともに上下、左右に押圧するためにローラ 6 a , 及びローラ中が設備的に狭くなるローラ群

る 質量部のみが変形すること及び b. 上下押圧力 F_1 を受けた時に $w_2>w_4$ で、かつ数差部 CG_1 DH に於て安定化材 g が垂下するのを防止することにより、超電導材の圧縮による盗発生を阻止できる。

- (3) 善歌半田 4 c は超電導線 2 間隙に圧入されると共に余類善融半田 4 c は、洗動しつ 5 外部へ放出されるため超電導線 2 に過度の圧力がか 5 らずに上記間算をほゞ完全に充満しうる。
- (4) 補強材 / を第 5 図に示すように BC , FD 面を逆ハの字型に設定することにより、部材挿入が 容易であると共に、押圧により静脉半田 ∢ c を上 方に恰も絞り出すが如く放出できる。
- (5) 第6回に示すごとく连続的に部材挿入、加熱、半田春融、余瀬春融半田放出、余瀬固化半田 除去が可能である為、長尺コイル部材を高速接合 できる。

〔実施例〕

(製造方法の実施例)

本発明方法の実施例を第1図~第11回に示す。

類溶散半田 ∉ cを外部へオーパーフローさせ、固 化後放出された余類要固半田 8 をカッタロール 9 で削除する。

- (4) 押任ロール 8 による 2 による 3 になって 4 になって 4 には 2 になって 4 になって 5 になって 5
- (5) 第 1 図は第 1 0 図の余 利 半田 8 をカッタロール 9 で仕上げた状況を示し、 1 0 は仕上面を示す。
 - (6) 美罗克斯斯伊克尔大学教教外上,中央化块

素領(Oxide Free Cupper)被覆部の外面に予め係 メッキを施すと共に、加熱炉 5 内を不活性ガス (N₂, Ar など)雰囲気とすることにより、ペース ト材(半田及び母材の酸化被膜除去及び硬化防止 材)を省略することが可能となり、後工程でのペ ースト残液除去工程も略すことが可能となる。

前記実施例において、半田クラッド材の具体例 としては芯材として 30~50 mm の純類もしくは 純 Au 箱を用い、両面に Pb—Sn—Ag 系、 Pb—Ag 系、 Pb—In 系などの半田が 30~100 mmでクラッドさ れたものを用いる。

超電球線 3 の素線外径は通常 1 p~3 mp 程度が用いられるため線関鍵は比較的祖大となる。 従って、超電球線群の周囲に複数する 半田 クラッド層の厚さは 100 mm 以上とすることが好ましい。 又、半田付板帯上からこの部分の半田には 芯材を省いた半田フォイルを用いても良い。

(製造装置の実施例)

本発明装置の実施例を第6間に示す。

コイルは、参勤装置(関示省略)によりトンネ

滑化実施できる。

4. 図面の簡単な説明

第1回は本発明を記載される の 第2回は本発明を指する を 第3回の の 第4回回形状、 第4回回形で の 第4回回形状、 第4回回形で の 第4回回形状、 第4回回形で の 第4回回の の 第4回回の の 第4回回の の 第4回回の の 第4回回の の 第5回回の の 第5回回の

』… 補強材、 2 … 超電導線、 2 … 安定化材、 4 … クラッド学田材フォイル、 4 a … 志材、 4 b … 学田クラッド層、 4 c … 審融学田、 5 … 加熱炉、 δa, δa' … 上部押圧ロール、 δ b … 支持ロール、 ァ a, γ b, γ c … 偏部押圧ロール、 8 … 余利学 ル型加熱炉内を通過移動する。そして炉内に設置された上部押圧ローラ 6 a と支持ロール 6 b により上下に押圧される。しかし、補強材 1 に設けた設備により安定化材 3 が超電導材を圧縮することは防止できる。

次にコイルはローラ幅が設階的に狭くなるロー ラ岸 7 a-7a,7b-7b,7c-7c により左右に押圧され る。そのため余剰薔融半田は外部へオーバフロー する。そして固化後、カッタロールで徐去される。

〔発明の効果〕

上配したように本発明方法によれば、 クラッド半田シートを用い、 かつ 収差 付待を有する 補独都材を用いることにより、

- (1) ほど完全な半田充填、面接合が可能となる。
- ・(2) 超電導線に対する歪発生を低レベルに出来

- (3) 大型半田裕福等高価な設備が不要となる。
- 、(4) 生童性が高い。
- (5) 長尺コイル材の連続製造が出来る。
- 又、本発明装置を用いれば、前記製造方法を円

第 8 页

特開平2-50403 (5)

特開平2-50403(6)

第 12 図