Access answers to Maths RD Sharma Solutions For Class 12 Chapter 17 – Increasing and Decreasing Functions

Exercise 17.1 Page No: 17.10

1. Prove that the function $f(x) = \log_e x$ is increasing on $(0, \infty)$.

Solution:

Let $x_1, x_2 \in (0, \infty)$

We have, $x_1 < x_2$

 $\Rightarrow log_e x_1 < log_e x_2$

 $\Rightarrow f(x_1) < f(x_2)$

So, f(x) is increasing in $(0, \infty)$

2. Prove that the function $f(x) = \log_a x$ is increasing on $(0, \infty)$ if a > 1 and decreasing on $(0, \infty)$, if 0 < a < 1. Solution:

Case I

When a > 1

Let
$$x_1, x_2 \in (0, \infty)$$

We have, $x_1 < x_2$

$$\Rightarrow \log_e x_1 < \log_e x_2$$

$$\Rightarrow f(x_1) < f(x_2)$$

So, f(x) is increasing in $(0, \infty)$

Case II

When 0 < a < 1

$$f(x) = log_a x = \frac{log x}{log a}$$

When $a < 1 \Rightarrow \log a < 0$

Let
$$x_1 < x_2$$

$$\Rightarrow \log x_1 < \log x_2$$

$$\Rightarrow \frac{\log x_1}{\log a} > \frac{\log x_2}{\log a} \left[\because \log a < 0 \right]$$

$$\Rightarrow$$
 f (x₁) > f (x₂)

So, f(x) is decreasing in $(0, \infty)$

$$\Rightarrow \frac{\log x_1}{\log a} > \frac{\log x_2}{\log a} \, [\because \log a \, < \, 0]$$

$$\Rightarrow f(x_1) > f(x_2)$$

So, f(x) is decreasing in $(0, \infty)$

3. Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R.

Solution:

Given,

$$f(x) = ax + b, a > 0$$

Let
$$x_1, x_2 \in R$$
 and $x_1 > x_2$

$$\Rightarrow$$
 ax₁ > ax₂ for some a > 0

$$\Rightarrow$$
 ax₁ + b> ax₂ + b for some b

$$\Rightarrow f(x_1) > f(x_2)$$

Hence,
$$x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$$

So, f(x) is increasing function of R

4. Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R.

Solution:

Given,

$$f(x) = ax + b, a < 0$$

Let
$$x_1, x_2 \in R$$
 and $x_1 > x_2$

$$\Rightarrow$$
 ax₁ < ax₂ for some a > 0

$$\Rightarrow$$
 ax₁ + b < ax₂ + b for some b

$$\Rightarrow f(x_1) < f(x_2)$$

Hence,
$$x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$$

So, f(x) is decreasing function of R

Exercise 17.2 Page No: 17.33

1. Find the intervals in which the following functions are increasing or decreasing.

(i)
$$f(x) = 10 - 6x - 2x^2$$

Solution:

Given f (x) =
$$10 - 6x - 2x^2$$

By differentiating above equation we get,

$$\Rightarrow f'(x) = \frac{d}{dx}(10 - 6x - 2x^2)$$

$$\Rightarrow$$
 f'(x) = -6 - 4x

For f(x) to be increasing, we must have

$$\Rightarrow$$
 f'(x) > 0

$$\Rightarrow$$
 -6 -4x > 0

$$\Rightarrow$$
 -4x > 6

$$\Rightarrow$$
 $X < -\frac{6}{4}$

$$\Rightarrow$$
 $X < -\frac{3}{2}$

$$\Rightarrow$$
 $X \in (-\infty, -\frac{3}{2})$

Thus f(x) is increasing on the interval $\left(-\infty, -\frac{3}{2}\right)$

Again, for f(x) to be increasing, we must have

$$\Rightarrow$$
 $-6-4x<0$

$$\Rightarrow$$
 -4x < 6

$$\Rightarrow$$
 $X > -\frac{6}{4}$

$$_{\Rightarrow} x > -\frac{3}{2}$$

$$\Rightarrow$$
 $X \in \left(-\frac{3}{2}, \infty\right)$

Thus f(x) is decreasing on interval $x \in (-\frac{3}{2}, \infty)$

$$\Rightarrow$$
 $X > -\frac{3}{2}$

$$\Rightarrow$$
 $X \in \left(-\frac{3}{2}, \infty\right)$

Thus f(x) is decreasing on interval $x \in (-\frac{3}{2}, \infty)$

(ii)
$$f(x) = x^2 + 2x - 5$$

Solution:

Given
$$f(x) = x^2 + 2x - 5$$

Now by differentiating the given equation we get,

$$\Rightarrow f'(x) = \frac{d}{dx}(x^2 + 2x - 5)$$

$$\Rightarrow$$
 f'(x) = 2x + 2

For f(x) to be increasing, we must have

$$\Rightarrow$$
 f'(x) > 0

$$\Rightarrow$$
 2x + 2 > 0

$$\Rightarrow 2x < -2$$

$$\Rightarrow$$
 $X < -\frac{2}{2}$

$$\Rightarrow$$
 x < -1

$$\Rightarrow$$
 x \in ($-\infty$, -1)

Thus f(x) is increasing on interval $(-\infty,-1)$

Again, for f(x) to be increasing, we must have

$$\Rightarrow 2x + 2 < 0$$

$$\Rightarrow 2x > -2$$

$$\Rightarrow$$
 $x > -\frac{2}{2}$

$$\Rightarrow$$
 $X > -\frac{2}{2}$

$$\Rightarrow$$
 x>-1

$$\Rightarrow$$
 x \in (-1, ∞)

Thus f(x) is decreasing on interval $x \in (-1, \infty)$

(iii)
$$f(x) = 6 - 9x - x^2$$

Solution:

Given f (x) = $6 - 9x - x^2$

$$\Rightarrow f'(x) = \frac{d}{dx}(6 - 9x - x^2)$$

$$\Rightarrow$$
 f'(x) = -9 - 2x

For f(x) to be increasing, we must have

$$\Rightarrow$$
 f'(x) > 0

$$\Rightarrow$$
 -9 - 2x > 0

$$\Rightarrow -2x > 9$$

$$\Rightarrow$$
 $X < -\frac{9}{2}$

$$\Rightarrow$$
 $X < -\frac{9}{2}$

$$\Rightarrow$$
 $X \in (-\infty, -\frac{9}{2})$

Thus f(x) is increasing on interval $\left(-\infty, -\frac{9}{2}\right)$

Again, for f(x) to be decreasing, we must have

$$\Rightarrow$$
 $-9 - 2x < 0$

$$\Rightarrow$$
 $-2x < 9$

$$\Rightarrow$$
 $x > -\frac{9}{2}$

$$\Rightarrow$$
 $x > -\frac{9}{2}$

$$\Rightarrow$$
 $X \in \left(-\frac{9}{2}, \infty\right)$

Thus f(x) is decreasing on interval $x \in (-\frac{9}{2}, \infty)$

(iv)
$$f(x) = 2x^3 - 12x^2 + 18x + 15$$

Solution:

Given f (x) = $2x^3 - 12x^2 + 18x + 15$

$$\Rightarrow f'(x) = \frac{d}{dx}(2x^3 - 12x^2 + 18x + 15)$$

$$\Rightarrow$$
 f'(x) = 6x² - 24x + 18

For f(x) we have to find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow 6x^2 - 24x + 18 = 0$$

$$\Rightarrow 6(x^2 - 4x + 3) = 0$$

$$\Rightarrow 6(x^2 - 3x - x + 3) = 0$$

$$\Rightarrow 6(x-3)(x-1)=0$$

$$\Rightarrow$$
 (x - 3) (x - 1) = 0

$$\Rightarrow$$
 x = 3, 1

Clearly, f'(x) > 0 if x < 1 and x > 3 and f'(x) < 0 if 1 < x < 3

Thus, f(x) increases on $(-\infty, 1) \cup (3, \infty)$ and f(x) is decreasing on interval $x \in (1, 3)$

(v) f (x) =
$$5 + 36x + 3x^2 - 2x^3$$

Solution:

Given
$$f(x) = 5 + 36x + 3x^2 - 2x^3$$

 \Rightarrow

$$f(x) = \frac{d}{dx}(5 + 36x + 3x^2 - 2x^3)$$

$$\Rightarrow$$
 f'(x) = 36 + 6x - 6x²

For f(x) now we have to find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow$$
 36 + 6x - 6x² = 0

$$\Rightarrow 6(-x^2 + x + 6) = 0$$

$$\Rightarrow$$
 6(-x² + 3x - 2x + 6) = 0

$$\Rightarrow -x^2 + 3x - 2x + 6 = 0$$

$$\Rightarrow x^2 - 3x + 2x - 6 = 0$$

$$\Rightarrow (x-3)(x+2) = 0$$

$$\Rightarrow$$
 x = 3, -2

Clearly, f'(x) > 0 if -2 < x < 3 and f'(x) < 0 if x < -2 and x > 3

Thus, f(x) increases on $x \in (-2, 3)$ and f(x) is decreasing on interval $(-\infty, -2) \cup (3, \infty)$

(vi)
$$f(x) = 8 + 36x + 3x^2 - 2x^3$$

Solution:

Given
$$f(x) = 8 + 36x + 3x^2 - 2x^3$$

Now differentiating with respect to x

$$\Rightarrow$$

$$f(x) = \frac{d}{dx}(8 + 36x + 3x^2 - 2x^3)$$

$$\Rightarrow f'(x) = 36 + 6x - 6x^2$$

For f(x) we have to find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow 36 + 6x - 6x^2 = 0$$

$$\Rightarrow 6(-x^2 + x + 6) = 0$$

$$\Rightarrow 6(-x^2 + 3x - 2x + 6) = 0$$

$$\Rightarrow -x^2 + 3x - 2x + 6 = 0$$

$$\Rightarrow x^2 - 3x + 2x - 6 = 0$$

$$\Rightarrow (x-3)(x+2) = 0$$

$$\Rightarrow$$
 x = 3. - 2

Clearly, f'(x) > 0 if -2 < x < 3 and f'(x) < 0 if x < -2 and x > 3

Thus, f(x) increases on $x \in (-2, 3)$ and f(x) is decreasing on interval $(-\infty, 2) \cup (3, \infty)$

(vii)
$$f(x) = 5x^3 - 15x^2 - 120x + 3$$

Solution:

Given
$$f(x) = 5x^3 - 15x^2 - 120x + 3$$

Now by differentiating above equation with respect x, we get

 \Rightarrow

$$f'(x) = \frac{d}{dx}(5x^3 - 15x^2 - 120x + 3)$$

$$\Rightarrow$$
 f'(x) = 15x² - 30x - 120

For f(x) we have to find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow 15x^2 - 30x - 120 = 0$$

$$\Rightarrow 15(x^2 - 2x - 8) = 0$$

$$\Rightarrow 15(x^2 - 4x + 2x - 8) = 0$$

$$\Rightarrow x^2 - 4x + 2x - 8 = 0$$

$$\Rightarrow (x-4)(x+2) = 0$$

$$\Rightarrow$$
 x = 4, -2

Clearly, f'(x) > 0 if x < -2 and x > 4 and f'(x) < 0 if -2 < x < 4

Thus, f(x) increases on $(-\infty,-2) \cup (4, \infty)$ and f(x) is decreasing on interval $x \in (-2, 4)$

(viii)
$$f(x) = x^3 - 6x^2 - 36x + 2$$

Solution:

Given
$$f(x) = x^3 - 6x^2 - 36x + 2$$

 \Rightarrow

$$f'(x) = \frac{d}{dx}(x^3 - 6x^2 - 36x + 2)$$

$$\Rightarrow f'(x) = 3x^2 - 12x - 36$$

For f(x) we have to find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow 3x^2 - 12x - 36 = 0$$

$$\Rightarrow 3(x^2 - 4x - 12) = 0$$

$$\Rightarrow$$
 3(x² - 6x + 2x - 12) = 0

$$\Rightarrow$$
 x² - 6x + 2x - 12 = 0

$$\Rightarrow (x-6)(x+2) = 0$$

$$\Rightarrow$$
 x = 6, -2

Clearly, f'(x) > 0 if x < -2 and x > 6 and f'(x) < 0 if -2 < x < 6

Thus, f(x) increases on $(-\infty,-2) \cup (6, \infty)$ and f(x) is decreasing on interval $x \in (-2, 6)$

(ix)
$$f(x) = 2x^3 - 15x^2 + 36x + 1$$

Solution:

Given
$$f(x) = 2x^3 - 15x^2 + 36x + 1$$

Now by differentiating above equation with respect x, we get

$$\Rightarrow$$

$$f(x) = \frac{d}{dx}(2x^3 - 15x^2 + 36x + 1)$$

$$\Rightarrow$$
 f'(x) = 6x² - 30x + 36

For f(x) we have to find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow 6x^2 - 30x + 36 = 0$$

$$\Rightarrow$$
 6 (x² - 5x + 6) = 0

$$\Rightarrow 3(x^2 - 3x - 2x + 6) = 0$$

$$\Rightarrow x^2 - 3x - 2x + 6 = 0$$

$$\Rightarrow (x-3)(x-2) = 0$$

$$\Rightarrow$$
 x = 3, 2

Clearly, f'(x) > 0 if x < 2 and x > 3 and f'(x) < 0 if 2 < x < 3

Thus, f(x) increases on $(-\infty, 2) \cup (3, \infty)$ and f(x) is decreasing on interval $x \in (2, 3)$

(x) f (x) =
$$2x^3 + 9x^2 + 12x + 20$$

Solution:

Given
$$f(x) = 2x^3 + 9x^2 + 12x + 20$$

Differentiating above equation we get

 \Rightarrow

$$f'(x) = \frac{d}{dx}(2x^3 + 9x^2 + 12x + 20)$$

$$\Rightarrow$$
 f'(x) = 6x² + 18x + 12

For f(x) we have to find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow$$
 6x² + 18x + 12 = 0

$$\Rightarrow 6(x^2 + 3x + 2) = 0$$

$$\Rightarrow$$
 6(x² + 2x + x + 2) = 0

$$\Rightarrow$$
 x² + 2x + x + 2 = 0

$$\Rightarrow$$
 (x + 2) (x + 1) = 0

$$\Rightarrow$$
 x = -1, -2

Clearly, f'(x) > 0 if -2 < x < -1 and f'(x) < 0 if x < -1 and x > -2

Thus, f(x) increases on $x \in (-2,-1)$ and f(x) is decreasing on interval $(-\infty, -2) \cup (-2, \infty)$

2. Determine the values of x for which the function $f(x) = x^2 - 6x + 9$ is increasing or decreasing. Also, find the coordinates of the point on the curve $y = x^2 - 6x + 9$ where the normal is parallel to the line y = x + 5.

Solution:

Given
$$f(x) = x^2 - 6x + 9$$

$$\Rightarrow$$

$$f'(x) = \frac{d}{dx}(x^2 - 6x + 9)$$

$$\Rightarrow$$
 f'(x) = 2x - 6

$$\Rightarrow f'(x) = 2(x - 3)$$

For f(x) let us find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow 2(x-3)=0$$

$$\Rightarrow$$
 (x - 3) = 0

$$\Rightarrow$$
 x = 3

Clearly, f'(x) > 0 if x > 3 and f'(x) < 0 if x < 3

Thus, f(x) increases on $(3, \infty)$ and f(x) is decreasing on interval $x \in (-\infty, 3)$

Now, let us find coordinates of point

Equation of curve is $f(x) = x^2 - 6x + 9$

Slope of this curve is given by

$$\Rightarrow$$
 $m_1 = \frac{dy}{dx}$

$$\Rightarrow m_1 = \frac{d}{dx}(x^2 - 6x + 9)$$

$$\Rightarrow$$
 m₁ = 2x - 6

Equation of line is y = x + 5

Slope of this curve is given by

$$\Rightarrow m_2 = \frac{dy}{dx}$$

$$\Rightarrow m_2 = \frac{d}{dx}(x+5)$$

$$\Rightarrow$$
 m₂ = 1

Since slope of curve is parallel to line

Therefore, they follow the relation

$$\Rightarrow \frac{-1}{m_1} = m_2$$

$$\Rightarrow \frac{-1}{2x-6} = 1$$

$$\Rightarrow 2x - 6 = -1$$

$$\Rightarrow$$
 $X = \frac{5}{2}$

Thus putting the value of x in equation of curve, we get

$$\Rightarrow y = x^2 - 6x + 9$$

$$\Rightarrow$$
 2x - 6 = -1

$$\Rightarrow$$
 $X = \frac{5}{2}$

Thus putting the value of x in equation of curve, we get

$$\Rightarrow$$
 y = $x^2 - 6x + 9$

$$\Rightarrow y = \left(\frac{5}{2}\right)^2 - 6\left(\frac{5}{2}\right) + 9$$

$$\Rightarrow y = \frac{25}{4} - 15 + 9$$

$$\Rightarrow$$
 y = $\frac{25}{4}$ - 6

$$\Rightarrow y = \frac{1}{4}$$

Thus the required coordinates is $(\frac{5}{2}, \frac{1}{4})$

3. Find the intervals in which $f(x) = \sin x - \cos x$, where $0 < x < 2\pi$ is increasing or decreasing. Solution:

Given $f(x) = \sin x - \cos x$

$$\Rightarrow f(x) = \frac{d}{dx}(\sin x - \cos x)$$

$$\Rightarrow$$
 f'(x) = cos x + sin x

For f(x) let us find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow$$
 Cos x + sin x = 0

$$\Rightarrow$$
 Tan (x) = -1

$$\Rightarrow$$
 $X = \frac{3\pi}{4}, \frac{7\pi}{4}$

Here these points divide the angle range from 0 to 2 π since we have x as angle

Clearly,
$$f'(x) > 0$$
 if $0 < x < \frac{3\pi}{4}$ and $\frac{7\pi}{4} < x < 2\pi_{and\ f'(x)} < 0$ if $\frac{3\pi}{4} < x < \frac{7\pi}{4}$

Thus, f(x) increases on $(0,\frac{3\pi}{4}) \cup (\frac{7\pi}{4},2\pi)$ and f(x) is decreasing on interval $(\frac{3\pi}{4},\frac{7\pi}{4})$

Clearly, f'(x) > 0 if
$$0 < x < \frac{3\pi}{4}$$
 and $\frac{7\pi}{4} < x < 2\pi_{and f'(x)} < 0$ if $\frac{3\pi}{4} < x < \frac{7\pi}{4}$

Thus, f(x) increases on $(0,\frac{3\pi}{4}) \cup (\frac{7\pi}{4},2\pi)$ and f(x) is decreasing on interval $(\frac{3\pi}{4},\frac{7\pi}{4})$

4. Show that $f(x) = e^{2x}$ is increasing on R.

Solution:

Given $f(x) = e^{2x}$

$$\Rightarrow$$

$$f'(x) = \frac{d}{dx}(e^{2x})$$

$$\Rightarrow$$
 f'(x) = 2e^{2x}

For f(x) to be increasing, we must have

$$\Rightarrow$$
 f'(x) > 0

$$\Rightarrow$$
 2e^{2x} > 0

$$\Rightarrow e^{2x} > 0$$

Since, the value of e lies between 2 and 3

So, whatever be the power of e (that is x in domain R) will be greater than zero.

Thus f(x) is increasing on interval R

5. Show that f (x) = $e^{1/x}$, x \neq 0 is a decreasing function for all x \neq 0.

Solution:

Given
$$f(x) = e^{\frac{1}{x}}$$

$$\Rightarrow f'(x) = \frac{d}{dx} \left(e^{\frac{1}{x}} \right)$$

$$\Rightarrow f'(x) = e^{\frac{1}{x}} \cdot \left(\frac{-1}{x^2}\right)$$

$$_{\Rightarrow}f'(x)=\,-\frac{e^{\frac{1}{x}}}{x^2}$$

As given $x \in R$, $x \neq 0$

$$\Rightarrow \frac{1}{x^2} > 0$$
 and $e^{\frac{1}{x}} > 0$

Their ratio is also greater than 0

$$\Rightarrow \frac{e^{\frac{1}{x}}}{x^2} > 0$$

Their ratio is also greater than 0

$$\Rightarrow \frac{e^{\frac{1}{x}}}{x^2} > 0$$

$$\Rightarrow$$
 $-\frac{e^{\frac{1}{x}}}{x^2}$ < 0; as by applying negative sign change in comparison sign \Rightarrow f'(x) < 0

Hence, condition for f(x) to be decreasing

Thus f(x) is decreasing for all $x \neq 0$

6. Show that $f(x) = \log_a x$, 0 < a < 1 is a decreasing function for all x > 0.

Solution:

Given f (x) = $\log_a x$, 0 < a < 1

$$\Rightarrow f(x) = \frac{d}{dx}(\log_a x)$$

$$\Rightarrow f(x) = \frac{1}{x \log a}$$

As given 0 < a < 1

$$\Rightarrow$$
 log (a) < 0 and for x > 0

$$\Rightarrow \frac{1}{x} > 0$$

Therefore f'(x) is

$$\Rightarrow \frac{1}{x \log a} < 0$$

$$\Rightarrow$$
 f'(x) < 0

Hence, condition for f(x) to be decreasing

Thus f(x) is decreasing for all x > 0

7. Show that $f(x) = \sin x$ is increasing on $(0, \pi/2)$ and decreasing on $(\pi/2, \pi)$ and neither increasing nor decreasing in $(0, \pi)$.

Solution:

Given $f(x) = \sin x$

$$\Rightarrow f'(x) = \frac{d}{dx}(\sin x)$$

$$\Rightarrow$$
 f'(x) = cos x

Taking different region from 0 to 2π

Let
$$x \in (0, \frac{\pi}{2})$$

$$\Rightarrow$$
 Cos (x) > 0

$$\Rightarrow f'(x) > 0$$

Thus f(x) is increasing in $(0, \frac{\pi}{2})$

Let
$$x \in (\frac{\pi}{2}, \pi)$$

$$\Rightarrow$$
 Cos (x) < 0

$$\Rightarrow$$
 f'(x) < 0

Thus f(x) is decreasing in $(\frac{\pi}{2}, \pi)$

Therefore, from above condition we find that

$$\Rightarrow$$
 f (x) is increasing in $(0,\frac{\pi}{2})$ and decreasing in $(\frac{\pi}{2},\pi)$

Hence, condition for f(x) neither increasing nor decreasing in $(0, \pi)$

8. Show that $f(x) = \log \sin x$ is increasing on $(0, \pi/2)$ and decreasing on $(\pi/2, \pi)$.

Solution:

Given $f(x) = \log \sin x$

$$\Rightarrow f(x) = \frac{d}{dx}(\log sinx)$$

$$\Rightarrow f'(x) = \frac{1}{\sin x} \times \cos x$$

$$\Rightarrow f'(x) = \frac{1}{\sin x} \times \cos x$$

$$\Rightarrow$$
 f'(x) = cot(x)

Taking different region from 0 to $\boldsymbol{\pi}$

Let
$$x \in (0, \frac{\pi}{2})$$

$$\Rightarrow$$
 Cot(x) > 0

$$\Rightarrow$$
 f'(x) > 0

Thus f(x) is increasing in $(0, \frac{\pi}{2})$

Let
$$x \in (\frac{\pi}{2}, \pi)$$

$$\Rightarrow$$
 Cot (x) < 0

$$\Rightarrow f'(x) < 0$$

Thus f(x) is decreasing in $(\frac{\pi}{2}, \pi)$

Hence proved

9. Show that $f(x) = x - \sin x$ is increasing for all $x \in R$. Solution:

Given $f(x) = x - \sin x$

$$\Rightarrow$$

$$f(x) = \frac{d}{dx}(x - \sin x)$$

$$\Rightarrow$$
 f'(x) = 1 - cos x

Now, as given x ∈ R

$$\Rightarrow$$
 -1 < cos x < 1

$$\Rightarrow$$
 -1 > cos x > 0

$$\Rightarrow$$
 f'(x) > 0

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval $x \in R$

10. Show that $f(x) = x^3 - 15x^2 + 75x - 50$ is an increasing function for all $x \in \mathbb{R}$.

Solution:

Given
$$f(x) = x^3 - 15x^2 + 75x - 50$$

 \Rightarrow

$$f'(x) = \frac{d}{dx}(x^3 - 15x^2 + 75x - 50)$$

$$\Rightarrow$$
 f'(x) = 3x² - 30x + 75

$$\Rightarrow$$
 f'(x) = 3(x² - 10x + 25)

$$\Rightarrow$$
 f'(x) = 3(x - 5)²

Now, as given $x \in R$

$$\Rightarrow (x-5)^2 > 0$$

$$\Rightarrow 3(x-5)^2 > 0$$

$$\Rightarrow$$
 f'(x) > 0

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval $x \in R$

11. Show that $f(x) = \cos^2 x$ is a decreasing function on $(0, \pi/2)$.

Solution:

Given
$$f(x) = \cos^2 x$$

 \Rightarrow

$$f'(x) = \frac{d}{dx}(\cos^2 x)$$

$$\Rightarrow$$
 f'(x) = 2 cos x (-sin x)

$$\Rightarrow$$
 f'(x) = -2 sin (x) cos (x)

$$\Rightarrow$$
 f'(x) = -sin2x

Now, as given x belongs to $(0, \pi/2)$.

$$\Rightarrow 2x \in (0, \pi)$$

$$\Rightarrow$$
 Sin (2x)> 0

$$\Rightarrow$$
 -Sin (2x) < 0

$$\Rightarrow$$
 f'(x) < 0

Hence, condition for f(x) to be decreasing

Thus f(x) is decreasing on interval $(0, \pi/2)$.

Hence proved

12. Show that $f(x) = \sin x$ is an increasing function on $(-\pi/2, \pi/2)$.

Solution:

Given $f(x) = \sin x$

 \Rightarrow

$$f'(x) = \frac{d}{dx}(\sin x)$$

$$\Rightarrow$$
 f'(x) = cos x

Now, as given $x \in (-\pi/2, \pi/2)$.

That is 4th quadrant, where

$$\Rightarrow$$
 Cos x> 0

$$\Rightarrow$$
 f'(x) > 0

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval $(-\pi/2, \pi/2)$.

13. Show that $f(x) = \cos x$ is a decreasing function on $(0, \pi)$, increasing in $(-\pi, 0)$ and neither increasing nor decreasing in $(-\pi, \pi)$.

Solution:

Given
$$f(x) = \cos x$$

 \Rightarrow

$$f'(x) = \frac{d}{dx}(\cos x)$$

$$\Rightarrow$$
 f'(x) = -sin x

Taking different region from 0 to 2π

Let $x \in (0, \pi)$.

$$\Rightarrow$$
 Sin(x) > 0

$$\Rightarrow$$
 -sin x < 0

$$\Rightarrow$$
 f'(x) < 0

Thus f(x) is decreasing in $(0, \pi)$

Let
$$x \in (-\pi, o)$$
.

$$\Rightarrow$$
 Sin (x) < 0

$$\Rightarrow$$
 -sin x > 0

$$\Rightarrow$$
 f'(x) > 0

Thus f(x) is increasing in $(-\pi, 0)$.

Therefore, from above condition we find that

 \Rightarrow f (x) is decreasing in (0, π) and increasing in ($-\pi$, 0).

Hence, condition for f(x) neither increasing nor decreasing in $(-\pi, \pi)$

14. Show that $f(x) = \tan x$ is an increasing function on $(-\pi/2, \pi/2)$.

Solution:

Given $f(x) = \tan x$

$$\Rightarrow$$

$$f'(x) = \frac{d}{dx}(\tan x)$$

$$\Rightarrow$$
 f'(x) = sec²x

Now, as given

$$x \in (-\pi/2, \pi/2).$$

That is 4th quadrant, where

$$\Rightarrow$$
 sec²x > 0

$$\Rightarrow$$
 f'(x) > 0

Hence, Condition for f(x) to be increasing

Thus f(x) is increasing on interval $(-\pi/2, \pi/2)$.

15. Show that $f(x) = tan^{-1} (sin x + cos x)$ is a decreasing function on the interval $(\pi/4, \pi/2)$.

Solution:

Given $f(x) = tan^{-1} (sin x + cos x)$

$$\Rightarrow f'(x) = \frac{d}{dx} (\tan^{-1}(\sin x + \cos x))$$

$$\Rightarrow f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \times (\cos x - \sin x)$$

$$\Rightarrow f'(x) = \frac{(\cos x - \sin x)}{1 + \sin^2 x + \cos^2 x + 2\sin x \cos x}$$

$$\Rightarrow f'(x) = \frac{\cos x - \sin x}{2(1 + \sin x \cos x)}$$

Now, as given

$$x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

 \Rightarrow Cos x – sin x < 0; as here cosine values are smaller than sine values for same angle

$$\Rightarrow \frac{\cos x - \sin x}{2(1 + \sin x \cos x)} < 0$$

$$\Rightarrow$$
 f'(x) < 0

Hence, Condition for f(x) to be decreasing

Thus f(x) is decreasing on interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

16. Show that the function f (x) = $\sin (2x + \pi/4)$ is decreasing on $(3\pi/8, 5\pi/8)$.

Solution:

Given,
$$f(x) = \sin(2x + \frac{\pi}{4})$$

$$\Rightarrow f'(x) = \frac{d}{dx} \{ \sin(2x + \frac{\pi}{4}) \}$$

$$\Rightarrow$$
 f'(x) = cos $\left(2x + \frac{\pi}{4}\right) \times 2$

$$\Rightarrow f'(x) = 2\cos\left(2x + \frac{\pi}{4}\right)$$

Now, as given
$$x \in \left(\frac{3\pi}{8}, \frac{5\pi}{8}\right)$$

$$\Rightarrow \frac{3\pi}{8} < X < \frac{5\pi}{8}$$

$$\Rightarrow \frac{3\pi}{4} < 2x < \frac{5\pi}{4}$$

$$\Rightarrow \pi < 2x + \frac{\pi}{4} < \frac{3\pi}{2};$$

As here $2x + \frac{\pi}{4}$ lies in 3^{rd} quadrant

$$\Rightarrow \cos\left(2x + \frac{\pi}{4}\right) < 0$$

$$\Rightarrow 2\cos\left(2x + \frac{\pi}{4}\right) < 0$$

$$\Rightarrow f'(x) < 0$$

Hence, condition for f(x) to be decreasing

Thus f (x) is decreasing on the interval $(3\pi/8, 5\pi/8)$.

17. Show that the function $f(x) = \cot^{-1} (\sin x + \cos x)$ is decreasing on $(0, \pi/4)$ and increasing on $(\pi/4, \pi/2)$.

Solution:

Given
$$f(x) = \cot^{-1} (\sin x + \cos x)$$

$$\Rightarrow f'(x) = \frac{d}{dx} \{ \cot^{-1}(\sin x + \cos x) \}$$

$$\Rightarrow f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \times (\cos x - \sin x)$$

$$\Rightarrow f'(x) = \frac{(\cos x - \sin x)}{1 + \sin^2 x + \cos^2 x + 2\sin x \cos x}$$

$$\Rightarrow f'(x) = \frac{\cos x - \sin x}{2(1 + \sin x \cos x)}$$

Now, as given
$$x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

 \Rightarrow Cos x – sin x < 0; as here cosine values are smaller than sine values for same angle

$$\Rightarrow \frac{\cos x - \sin x}{2(1 + \sin x \cos x)} < 0$$

$$\Rightarrow f'(x) < 0$$

Hence, condition for f(x) to be decreasing

Thus f(x) is decreasing on interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

18. Show that $f(x) = (x - 1) e^x + 1$ is an increasing function for all x > 0.

Solution:

Given
$$f(x) = (x - 1) e^{x} + 1$$

Now differentiating the given equation with respect to x, we get

$$\Rightarrow$$

$$f'(x) = \frac{d}{dx}((x-1)e^{x} + 1)$$

$$\Rightarrow f'(x) = e^{x} + (x-1)e^{x}$$

$$\Rightarrow f'(x) = e^{x}(1+x-1)$$

$$\Rightarrow f'(x) = x e^{x}$$

As given x > 0

$$\Rightarrow e^x > 0$$

$$\Rightarrow x e^x > 0$$

$$\Rightarrow$$
 f'(x) > 0

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval x > 0

19. Show that the function $x^2 - x + 1$ is neither increasing nor decreasing on (0, 1).

Solution:

Given
$$f(x) = x^2 - x + 1$$

Now by differentiating the given equation with respect to x, we get

$$\Rightarrow$$

$$f'(x) = \frac{d}{dx}(x^2 - x + 1)$$

$$\Rightarrow$$
 f'(x) = 2x - 1

Taking different region from (0, 1)

Let
$$x \in (0, \frac{1}{2})$$

$$\Rightarrow 2x - 1 < 0$$

$$\Rightarrow$$
 f'(x) < 0

Thus f(x) is decreasing in $(0, \frac{1}{2})$

Let
$$x \in (\frac{1}{2}, 1)$$

$$\Rightarrow 2x - 1 > 0$$

$$\Rightarrow$$
 f'(x) > 0

Thus f(x) is increasing in $(\frac{1}{2}, 1)$

Therefore, from above condition we find that

 \Rightarrow f (x) is decreasing in (0, ½) and increasing in (½, 1)

Hence, condition for f(x) neither increasing nor decreasing in (0, 1)

20. Show that $f(x) = x^9 + 4x^7 + 11$ is an increasing function for all $x \in \mathbb{R}$.

Solution:

Given
$$f(x) = x^9 + 4x^7 + 11$$

Now by differentiating above equation with respect to x, we get

$$\Rightarrow$$

$$f'(x) = \frac{d}{dx}(x^9 + 4x^7 + 11)$$

$$\Rightarrow f'(x) = 9x^8 + 28x^6$$

$$\Rightarrow f'(x) = x^6(9x^2 + 28)$$
As given $x \in \mathbb{R}$

$$\Rightarrow x^6 > 0 \text{ and } 9x^2 + 28 > 0$$

$$\Rightarrow x^6(9x^2 + 28) > 0$$

$$\Rightarrow f'(x) > 0$$

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval $x \in R$