A Note on Algebraic Structures

David Meyer

dmm613@gmail.com

Last Update: December 17, 2024 Initial Version: May 8, 2018

1 A Few Algebraic Structures and Their Features

Structure	ABO^1	Identity	Inverse	Distributive ²	Commutative ³	Comments
Semigroup	√	no	no	N/A	no	(S, \circ)
Monoid	✓	✓	no	N/A	no	Semigroup with identity $\in S$
Group	✓	✓	✓	N/A	no	Monoid with inverses: $a \in S \setminus \{0\} \Rightarrow a^{-1} \in S$
Abelian Group	✓	✓	✓	N/A	√ (○)	Commutative group
$Ring_{+}$	✓	✓	✓	N/A	√ (+)	Abelian group under +
Ring_*	✓	yes/no	no	✓	no	Monoid under *
Division Ring	✓	√ (+,*)	√ (+,*)	✓	✓(+)	Ring with multiplicative inverses
Field	✓	√ (+,*)	√ (+,*)	✓	√ (+,*)	Division ring with commutative multiplication
Module	✓	√ (+,*)	√(+)	✓	√ (+)	Abelian group under $+$, scalars \in Ring
Vector Space	✓	√ (+,*)	√ (+)	✓	√ (+)	Abelian group under $+$, scalars \in Field
Algebra over a Ring	yes/no	√ (+,*)	√ (+)	✓	√ (+)	Module with bilinear product ⁴
Algebra over a Field	yes/no	√ (+,*)	√ (+)	✓	√ (+)	Vector space with bilinear product

Table 1: A Few Algebraic Structures and Their Features

1.1 Definitions

- 1. ABO: Associative Binary Operation
 - $(x \circ y) \circ z = x \circ (y \circ z)$ for all $x, y, z \in S$
 - $x \circ y \in S$ for all $x, y \in S$ (S is closed under \circ)
- 2. **Distributive:** Distributive Property
 - Left Distributive Property: x*(y+z)=(x*y)+(x*z) for all $x,y,z\in S$
 - Right Distributive Property: (y+z)*x = (y*x) + (z*x) for all $x,y,z \in S$
 - \bullet * is distributive over + if * is left and right distributive
- 3. Commutative: Commutative Property
 - $x \circ y = y \circ x$ for all $x, y \in S$

4. **Bilinear Map:** A bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments [2]. Matrix multiplication is an example.

More specifically, a bilinear map is a function $B: V \times W \to Z$ such that for all $v_1, v_2 \in V$, $w_1, w_2 \in W$, and scalars $\alpha \in \mathbb{F}$:

$$B(\alpha v_1 + v_2, w) = \alpha B(v_1, w) + B(v_2, w)$$

and

$$B(v, \alpha w_1 + w_2) = \alpha B(v, w_1) + B(v, w_2)$$

Note that it may be the case that V = W = Z.

2 Notes

- Table 1 implies that $F \subset R \subset G \subset M \subset SG$.
- Whether or not a ring has a multiplicative identity seems to depend on the field of study.

In general the definition of a ring R doesn't require a multiplicative inverse in R ($a^{-1} \notin R$ for all $a \in R$) or that multiplication be commutative in R. Specifically: R is an Abelian group under + but we don't require that multiplication be commutative (while a + b = b + a for all $a, b \in R$, we don't require that ab = ba for all $a, b \in R$). These are perhaps the main ways in which a ring differs from a field. In addition, as mentioned above in some cases R need not include a multiplicative identity ($1 \notin R$).

• VS \subset Module since the scalars in a module come from a ring as opposed to a field like we find in vector spaces and F \subset R [1].

LATEX Source

https://www.overleaf.com/read/fcfcnyxmgzwv

References

- [1] T. S. Blyth. *Module Theory: An Approach to Linear Algebra*. Oxford University Press, July 1977.
- [2] Wikipedia contributors. Bilinear map Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Bilinear_map&oldid=1239420853, 2024. [Online; accessed 16-December-2024].