Data Analysis Steps

Pandas lib

pandas is an open source library providing high-performance, easy-to-use data structures and data analysis tools for the Python

pandas.read_csv()

Read a commaseparated values (csv) file into DataFrame.

	id	iv2	rt			
count	120.000000	120.00000	120.000000			
mean	9.500000	2.00000	877.587425			
std	5.790459	0.81992	309.293048			
min	0.000000	1.00000	283.240752			
25%	4.750000	1.00000	582.630955			
50%	9.500000	2.00000	902.719888			
75%	14.250000	3.00000	1114.050194			
max	19.000000	3.00000	1472.688933			

pandas.DataFrame.head()

Return the first *n* rows

	Name	Team	Number	Position	Age	Height	Weight	College	Salary
0	Avery Bradley	Boston Celtics	0.0	PG	25.0	6-2	180.0	Texas	7730337.0
1	Jae Crowder	Boston Celtics	99.0	SF	25.0	6-6	235.0	Marquette	6796117.0
2	John Holland	Boston Celtics	30.0	SG	27.0	6-5	205.0	Boston University	NaN
3	R.J. Hunter	Boston Celtics	28.0	SG	22.0	6-5	185.0	Georgia State	1148640.0
4	Jonas Jerebko	Boston Celtics	8.0	PF	29.0	6-10	231.0	NaN	5000000.0

pandas.DataFrame.describe()

Generate descriptive statistics

Why data preprocessing

Data may be

- Incomplete (missing values)
- Noisy (containing errors or outliers)
- Inconsistent (containing discrepancies in dates, names, rates)

Data cleaning

Outliers detection

Three sigma rule

Normally data with $|x - \mu| > 3\sigma$ are considered as outliers

Data cleaning

Missing data

pandas.DataFrame.dropna()

Remove missing values.

- may be deleted
- may be filled by:
 - ✓ the attribute mean
 - ✓ the attribute mean for all samples belonging to the same class
 - ✓ or other

pandas.DataFrame.fillna()
Fill missing values

·-	col1	col2	col3	col4	col5			col1	col2	col3	col4	col5
0	2	5.0	3.0	6	NaN	df.fillna(0)	0	2	5.0	3.0	6	0.0
1	9	NaN	9.0	0	7.0		1	9	0.0	9.0	0	7.0
2	19	17.0	NaN	9	NaN		2	19	17.0	0.0	9	0.0

Data Normalization

After min-max scaling, all feature values are within the [0, 1] range

After standardization, a feature has mean 0 and variance 1

Data Visualization: Histogram

A **histogram** is an estimate of the probability distribution of a continuous variables.

To construct a histogram:

- bin the range of values;
- plot a rectangle over each bin with height proportional to the frequency

seaborn.distplot()

Data Visualization: Box Plot

A boxplot is a standardized way of displaying the distribution of data based on a five number summary ("minimum", first quartile (Q1), median, third quartile (Q3), and "maximum").

seaborn.boxplot()

Iris dataset

Plot pairwise relationships in a dataset

seaborn.pairplot()

Pearson correlation coefficient

 $\frac{\sum (x-\overline{x})(y-\overline{y})}{\sqrt{\sum (x-\overline{x})^2}\sqrt{\sum (y-\overline{y})^2}}$

Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations

seaborn.heatmap()

- 0.9

- 0.6

- 0.3

- 0.0

-0.3

Label 11