

Aprendizaje automático de máquina

Guía de asignatura

Última actualización: agosto de 2022

1. Información general

Nombre de la asignatura	Aprendizaje automático de máquina
Código	11310063
Tipo de asignatura	Electiva
Número de créditos	
Tipo de crédito	1A+1B
Horas de trabajo semanal con acompañamiento directo del profesor	64
Horas semanales de trabajo independiente del estudiante	32
Prerrequisitos	Optimización, Álgebra Lineal
Correquisitos	Ninguno
Horario	
Líder de área	
Salón	

2. Información del profesor y monitor

Nombre del profesor	Yiby Morales	
Perfil profesional	Ph.D. en matemáticas. Machine Learning engineer. Áreas de interés: Álgebra cuántica, computación cuántica, teoría de categorías.	

Correo electrónico institucional	yiby.morales@urosario.edu.co
Lugar y horario de atención	Martes 2:00pm - 3:00pm Jueves 11:00am - 12:00m Edificio Cabal, Piso 4, Oficina 408

3. Resumen y propósitos del curso

Este curso introductorio de aprendizaje automático de máquina aborda el diseño de modelos de clasificación, regresión, clustering y modelos utilizando redes neuronales.

Al final de este curso los estudiantes estarán en la capacidad definir qué es aprendizaje automático de máquinas, diseñar, implementar y evaluar algoritmos para clasificación, regresión o agrupamiento utilizando herramientas de aprendizaje automático basadas en redes neuronales.

4. Conceptos fundamentales

- 1. Introducción al aprendizaje Automático de Máquinas
- 2. Clasificadores: Lineal, perceptrón, clasificadores de margen.
- 3. Regresión logística
- 4. Redes neuronales
- 5. Clasificadores con redes Neuronales
- 6. Regresión No Lineal
- 7. Clustering, k means,
- 8. Selección de Modelo: entrenamiento, Validación y Test

5. Resultados de aprendizaje esperados (RAE)

Al finalizar el curso el estudiante estará en la capacidad de:

Diferenciar entre métodos de aprendizaje automático supervisados y no supervisados.
 Conocer y explicar las características de modelos que usan redes neuronales para

regresión y clasificación.

• Resolver problemas utilizando métodos de aprendizaje automático, evaluar su rendimiento de forma cuantitativa, y seleccionar el mejor modelo.

6. Modalidad del curso

Presencial

7. Estrategias de aprendizaje

- Introducción de cada tema por medio de una clase magistral.
- Análisis y discusión de los conceptos clave en cada clase.
- Trabajo personal asistido por *jupyter notebooks* para la ilustración de conceptos y su implementación en el computador.
- Talleres prácticos para afianzar los conocimientos vistos en clase.

8 Actividades de evaluación

Este curso estará orientado a proyectos, lo que significa que se evaluará en función al desarrollo de cuatro proyectos. Los proyectos se asignarán a lo largo del semestre y serán evaluados gracias a la entrega de un reporte, el código utilizado y una sustentación oral donde demuestren dominio sobre los conceptos aprendidos y como se aplican. Además, habrá quices y tareas de resolución de ejercicios, así como evaluación de material de lectura adicional, tal como artículos o secciones de libros.

Tema	Actividad de evaluación	Porcentaje	Fecha de examen	Fecha de retroalimen-tación
Clase 1 – Clase 7	Proyecto 1	20	Semana 5	Semana 6
Clase 10 – Clase 15	Proyecto 2	20	Semana 8	Semana 9
Clase 18 – Clase 23	Proyecto 3	20	Semana 14	Semana 13
Clase 1 – Clase 30	Proyecto 4	20	Semana 16	Semana de exámenes
Todas las clases	Quices y tareas	20	Todo el semestre	

9. Programación de actividades

Semana	Fecha	Tema	Recursos que apoyan la actividad
1 Clase 1 Enero 31		 Introducción al curso. Generalidades de	Libro 1, Capitulo I
	Clase 2 Febrero 2	Regresión Lineal I:	Libro 1, secciones: 3.1, 3.2.
2	Clase 3	Regresión Lineal II: • Ridge Regression • LASSO	Libro 1, secciones: 3.4, 3.5
	Clase 4 Taller en Clase o		egresión Lineal
3	Clase 5	Árboles de decisión para clasificación y regresión	Libro 1, secciones: 9.2
	Clase 6	Taller en Clase de Cla	nsificación Lineal
4	Clase 7	KNN	

	Clase 8	Taller en Clase de knn	
5	Clase 9	Proyecto I: Regresión, árboles y KNN	
	Clase 10	Desarrollo	del Taller I
6	Clase 11	 Introducción a Redes Neuronales. El Perceptrón Regresión logística 	Libro 1, sección 11 Libro 2 Capítulo 4
	Clase 12	 Redes Feedforward de una y múltiples capas. Algoritmo Backpropagation 	Libro 1, sección 11 Libro 2 Capítulo 4
7	Clase 13	Taller en Clase NN1	
	Clase 14	Overfitting, Underfitting, regularización cross-validation	Libro 1, secciones 7.2, 7.3, 7.4
8	Clase 15	Taller en (Clase NN2
	Clase 16	PROYECTO II: Redes Neuronales	
9	Clase 17	Desarrollo del Taller II	
	Clase 18	Máquina de soporte Vectorial	Libro 1, Sección 12
10	Clase 19	DImensión VC	Libro 2, Sección 7.4.2-7.4.4 Libro 1 Sección 7.9
	Clase 20	Taller en Clase: Máquina de soporte vectorial	
11	Clase 21	Random Forest (Bagging)	Libro 1, secciones:

		15

		1	
12	Clase 23	Boosting y métricas	
	Clase 24	Desarrollo de Prop	uesta Proyecto III
13	Clase 25	Selección de Características - PCA	Libro 1 Sección 3.5.1
	Clase 26	Naive Bayes	
14	Clase 27	PROYECTO III: Problema libre de ML supervisado Desarrollo del Taller III	
	Clase 28		
15	Clase 29	Clustering	Libro 1, Capítulos 12 y 15
	Clase 30	Clustering	
16	Clase 31	PROYECTO IV: Clustering	
	Clase 32	Desarrollo del Taller IV	
Semana de Exámenes	Clase 33	Socialización de proyecto III	

10. Factores de éxito para este curso

A continuación se sugieren una serie de acciones que pueden contribuir, de manera significativa, con el logro de metas y consecuentemente propiciar una experiencia exitosa en este curso:

- 1. Planificar y organizar el tiempo de trabajo individual que le dedicará al curso
- 2. Organizar el sitio y los materiales de estudios
- 3. Tener un grupo de estudio, procurar el apoyo de compañeros
- 4. Cultivar la disciplina y la constancia, trabajar semanalmente, no permitir que se acumulen

temas ni trabajos

- 5. Realizar constantemente una autoevaluación, determinar si las acciones realizadas son productivas o si por el contrario se debe cambiar de estrategias
- 6. Asistir a las horas de consulta del profesor, participar en clase, no quedarse nunca con la duda
- 7. Utilizar los espacios destinados para consultas y resolución de dudas, tales como Sala Gauss y Sala Knuth
- 8. Propiciar espacios para el descanso y la higiene mental, procurar tener buenos hábitos de sueño
- 9. Tener presente en todo momento valores como la honestidad y la sinceridad, al final no se trata solo de aprobar un examen, se trata de aprender y adquirir conocimientos. El fraude es un autoengaño.

11.Bibliografía y recursos

- [1] Hastie, T., Tibshirani, R., Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nda Edición). Springer Science & Business Media, 2009. ISBN: 9780387848570.
- [2] Mitchell, Tom, Machine Learning http://www.cs.cmu.edu/~tom/mlbook.html

12. Bibliografía y recursos complementarios

- [4] Shalev-Shwartz, Shai, and Shai Ben-David. *Understanding Machine Learning: From Theory to Algorithms*. Cambridge University Press, 2014. ISBN: 9781107057135.
 - [3] Hertz, John, Anders Krogh, and Richard G. Palmer. *Introduction to the Theory of Neural Computation*. Redwood City, CA: Addison-Wesley Pub. Co., 1991. ISBN: 9780201515602.

[4] Strang, Gilbert. *Linear Algebra and Learning from Data*. Wellesley-Cambridge Press, 2019. ISBN: 9780692196380.

13. Acuerdos para el desarrollo del curso

14. Respeto y no discriminación

A continuación, encontrará unas orientaciones institucionales básicas que sugerimos mantener en su guía de asignatura. Puede ampliar esta información si lo considera pertinente: Si tiene alguna discapacidad, sea este visible o no, y requiere algún tipo de apoyo para estar en igualdad de condiciones con los(as) demás estudiantes, por favor informar a su profesor(a) para que puedan realizarse ajustes razonables al curso a la mayor brevedad posible. De igual forma, si no cuenta con los recursos tecnológicos requeridos para el desarrollo del curso, por favor informe de manera oportuna a la Secretaría Académica de su programa o a la Dirección de Estudiantes, de manera que se pueda atender a tiempo su requerimiento.

Recuerde que es deber de todas las personas respetar los derechos de quienes hacen parte de la comunidad Rosarista. Cualquier situación de acoso, acoso sexual, discriminación o matoneo, sea presencial o virtual, es inaceptable. Quien se sienta en alguna de estas situaciones puede denunciar su ocurrencia contactando al equipo de la Coordinación de Psicología y Calidad de Vida de la Decanatura del Medio Universitario (Teléfono o WhatsApp 322 2485756).