CMS COLLEGE OF ENGINEERING AND TECNOLOGY

Appachigoundanpathy, Kummitipathy , Coimbatore, Tamil Nadu 641032

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING.
WEB PHISHING DETECTION (ASSIGNMENT 2)

DATE : 30-09-2022

PROBLEM: PERFORM TASKS ACCORDINGLY

NAME : SANJAY R J

OUTPUT:

SCREENSHOTS:

1.Download the Dataset

2.Load the Dataset

In [1]: import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import sklearn

In [2]: data = pd.read_csv(r"C:\Users\chand\Downloads\IBM-Project\Assignments\Ass-2\Churn_Modelling.csv")

3.Perform below Visualizations

Univariate Analysis

Univariate Analysis

In [3]: sns.distplot(data['Age'])

C:\Users\chand\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar fle xibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[3]: <AxesSubplot:xlabel='Age', ylabel='Density'>

In [4]: sns.histplot(data['Age'])

Out[4]: <AxesSubplot:xlabel='Age', ylabel='Count'>

In [5]: sns.boxplot(data['Age'])

C:\Users\chand\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword a rg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit ke yword will result in an error or misinterpretation.

warnings.warn(

Out[5]: <AxesSubplot:xlabel='Age'>

Bi - Variate Analysis

In [6]: sns.lineplot(data['Age'],data['Tenure'])

C:\Users\chand\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

Out[6]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

In [7]: sns.barplot(data['Age'],data['Tenure'])

C:\Users\chand\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword ar gs: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[7]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

In [8]: sns.scatterplot(data['Age'],data['Tenure'])

C:\Users\chand\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[8]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

Multi - Variate Analysis

In [9]: sns.scatterplot(data['Age'],data['Tenure'], hue=data['IsActiveMember'])

C:\Users\chand\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword ar gs: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[9]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

4. Descriptive Statistics

In [11]: data.mean()

C:\Users\chand\AppData\Local\Temp\ipykernel_7968\531903386.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

data.mean()

dataillean

Out[11]: RowNumber 5.000500e+03 1.569094e+07 CustomerId CreditScore 6.505288e+02 Age Tenure 3.892180e+01 5.012800e+00 Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember EstimatedSalary 5.151000e-01 1.000902e+05 2.037000e-01 Exited dtype: float64

In [12]: data.median()

C:\Users\chand\AppData\Local\Temp\ipykernel_7968\4184645713.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

data.median()

Out[12]: RowNumber

5.000500e+03 CustomerId CreditScore 1.569074e+07 6.520000e+02 3.700000e+01 Age Tenure 5.000000e+00 Balance 9.719854e+04 NumOfProducts 1.000000e+00 HasCrCard 1.000000e+00 IsActiveMember 1.000000e+00 EstimatedSalary 1.001939e+05 Exited 0.000000e+00 dtype: float64

In [13]: data.mode()

Out[13]:

	RowNumber	Customerld	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Sala
0	1	15565701	Smith	850.0	France	Male	37.0	2.0	0.0	1.0	1.0	1.0	24924.
1	2	15565706	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
2	3	15565714	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
3	4	15565779	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
4	5	15565796	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
	1999		***	440.	***	666	200		***			***	
9995	9996	15815628	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
9996	9997	15815645	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
9997	9998	15815656	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
9998	9999	15815660	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
9999	10000	15815690	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N

10000 rows × 14 columns

5. Missing Values

omisoning valu

In [14]:	data.isnull().any	()
Out[14]:	RowNumber	False
	CustomerId	False
	Surname	False
	CreditScore	False
	Geography	False
	Gender	False
	Age	False
	Tenure	False
	Balance	False
	NumOfProducts	False
	HasCrCard	False
	IsActiveMember	False
	EstimatedSalary	False
	Exited	False
	dtype: bool	

There are no missing values

6.Handling Outliners

	RowNumber	Customerld	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	1000.9	15591167.1	521.0	200000	1.0	0.0	1.0	0.0	0.0	20273.58	0.0
	.quantile([[0.1,0.5])									
	RowNumber	Customerld	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary	Exited
	1000.9	15591167.1	521.0	27.0	1.0	0.00	1.0	0.0	0.0	20273.580	0.0
	5000.5	15690738.0	652.0	37.0	5.0	97198.54	1.0	1.0	1.0	100193.915	0.0
a	.quantile([0.1,0.9])									
	RowNumber	Customerld	CreditScore	Age	Tenure	Balance	e NumOfProduc	ts HasCrCa	rd IsActiveMemb	er EstimatedSala	ry Exited
1	1000.9	15591167.1	521.0	27.0	1.0	0.00	0 1	.0 0	0.0	.0 20273.58	30 0.0
9	9000.1	15790830.7	778.0	53.0	9.0	149244.79	2 2	.0 1	.0 1	.0 179674.70	1.0

7.Perform Encoding

	om sklearn	ziiipor e prej	DI OCC3311	15										
: le	<pre>le = preprocessing.LabelEncoder()</pre>													
<pre>oneh = preprocessing.OneHotEncoder()</pre>														
da	data['Age'] = le.fit_transform(data['Age'])													
da	ta.head()													
	RowNumber	Customerld	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary	
0	1	15634602	Hargrave	619	France	Female	24	2	0.00	1	1	1	101348.88	
1	2	15647311	Hill	608	Spain	Female	23	1	83807.86	1	0	1	112542.58	
_	3	15619304	Onio	502	France	Female	24	8	159660.80	3	1	0	113931.57	
2	4	15701354	Boni	699	France	Female	21	1	0.00	2	0	0	93826.63	
3				2223	0	Female	25	2	125510.82	1	1	1	79084.10	
	5	15737888	Mitchell	850	Spain	remale	25	-	120010.02				73004.10	

8. Split into Dependent and Independent variables (X and Y)

```
In [24]: x = data.iloc[:,0:12]
In [25]: x
Out[25]:
            RowNumber Customerld Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember
        0 1 15634602 Hargrave 619 France Female 24 2 0.00
                                        608
                                                              1 83807.86
          1
                  2 15647311
                                              Spain Female 23
            3 15619304 Onio 502 France Female 24 8 159660.80
                              Boni
                 4 15701354
                                       699
                                                                                  2
                                                                                          0
                                                                                                     0
          3
                                             France Female 21
                                                              1
                                                                     0.00
                  5 15737888 Mitchell 850 Spain Female 25 2 125510.82
                                             France Male 21 5
                9996 15606229 Obijiaku 771
                     15569892 Johnstone
                                       516
                                              France
                                                     Male 17
                                                               10 57369.61
                9998 15584532 Liu
        9997
                                      709 France Female 18 7
                                                                   0.00
                                                                                          0
                9999 15682355 Sabbatini 772 Germany Male 24
                                                                                  2
                                                                                          1
        9998
                                                                3 75075.31
                                                                                                     0
               10000 15628319 Walker 792 France Female 10 4 130142.79
        9999
       10000 rows × 12 columns
In [26]: y = data['Balance']
```

```
In [27]: y
Out[27]: 0
                 83807.86
        2
               159660.80
                    0.00
               125510.82
                 0.00
        9995
               57369.61
        9996
        9997
                    0.00
                 75075.31
         9999
                130142.79
        Name: Balance, Length: 10000, dtype: float64
```

9. Scale Independent values

```
In [7]: x = data.iloc[:,0:1]
In [8]: from sklearn.preprocessing import StandardScaler, MinMaxScaler
          sc = StandardScaler()
          x_scaled = sc.fit_transform(x)
In [9]: x_scaled
Out[9]: array([[-1.73187761],
                  [-1.73157701],
[-1.7315312],
[-1.73118479],
                   [ 1.73118479],
                   [ 1.7315479],
[ 1.7315312 ],
[ 1.73187761]])
```

10. Split the data into train and test

```
In [12]: from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0)
In [13]: x_train
Out[13]: array([[ 0.92889885],
                   [ 1.39655257],
[-0.4532777 ],
                      0.60119484],
                      1.67853045],
                   [-0.78548505]])
In [15]: x_train.shape
Out[15]: (7000, 1)
In [16]: y_train
Out[16]: 7681
                    146193.60
                    0.00
160979.68
           3691
           202
                          0.00
           5625
                   143262.04
                   120074.97
           9225
                    114440.24
161274.05
0.00
           4859
           3264
           9845
                   108076.33
           2732
           Name: Balance, Length: 7000, dtype: float64
```

*******THANKING

YOU**********************