

planetmath.org

Math for the people, by the people.

independent sigma algebras

 ${\bf Canonical\ name} \quad {\bf Independent Sigma Algebras}$

Date of creation 2013-03-22 16:22:58 Last modified on 2013-03-22 16:22:58

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 9

Author CWoo (3771) Entry type Definition Classification msc 60A05

Synonym mutually independent σ -algebras Defines mutually independent sigma algebras

Let (Ω, \mathcal{B}, P) be a probability space. Let \mathcal{B}_1 and \mathcal{B}_2 be two sub sigma algebras of \mathcal{B} . Then \mathcal{B}_1 and \mathcal{B}_2 are said to be if for any pair of events $B_1 \in \mathcal{B}_1$ and $B_2 \in \mathcal{B}_2$:

$$P(B_1 \cap B_2) = P(B_1)P(B_2).$$

More generally, a finite set of sub- σ -algebras $\mathcal{B}_1, \ldots, \mathcal{B}_n$ is independent if for any set of events $B_i \in \mathcal{B}_i$, $i = 1, \ldots, n$:

$$P(B_1 \cap \cdots \cap B_n) = P(B_1) \cdots P(B_n).$$

An arbitrary set S of sub- σ -algebras is mutually independent if any finite subset of S is independent.

The above definitions are generalizations of the notions of http://planetmath.org/Independer for events and for random variables:

- 1. Events B_1, \ldots, B_n (in Ω) are mutually independent if the sigma algebras $\sigma(B_i) := \{\emptyset, B_i, \Omega B_i, \Omega\}$ are mutually independent.
- 2. Random variables X_1, \ldots, X_n defined on Ω are mutually independent if the http://planetmath.org/MathcalFMeasurableFunctionsigma algebras \mathcal{B}_{X_i} generated by the X_i 's are mutually independent.

In general, mutual independence among events B_i , random variables X_j , and sigma algebras \mathcal{B}_k means the mutual independence among $\sigma(B_i)$, \mathcal{B}_{X_j} , and \mathcal{B}_k .

Remark. Even when random variables X_1, \ldots, X_n are defined on different probability spaces $(\Omega_i, \mathcal{B}_i, P_i)$, we may form the http://planetmath.org/InfiniteProductMea of these spaces (Ω, \mathcal{B}, P) so that X_i (by abuse of notation) are now defined on Ω and their independence can be discussed.