フリーズパターンの不思議

黒木玄

東北大学数学教室

2012年11月15日

例1: フーリエ解析 (多くの技術の基礎)

数学の法則たちが応用されている

• あらゆる波形は正弦波の和で表現可能

● フーリエは 18~19世紀の人

例2: リーマン幾何学 (時空の幾何)

計量だけで時空の曲がり方を表現可能

• 19世紀中頃に大数学者リーマンが創始

• 20世紀初頭にアインシュタインが応用

例3:整数論 (数学の女王, 大昔からある分野)

数の世界には様々な法則がある

• 携帯電話が使えるのは整数論のおかげ

ーズパターンの不思議

私が特別に数学を研究する理由?

- 好きだから
- たくさんの驚くべき法則
- 不思議な世界への旅
- 成功したときの快感
- 理解力のパワーアップによる余得
- 100年後の世界を変えているかも

教訓

- 数学における驚くべき法則の発見は 我々の暮らしを変えて来たが、 応用されるまでには時間がかかる。
- 19世紀もしくはそれ以前に 法則を発見した数学者たちが現代の 応用先を予想できていたはずがない。
- 結論: 応用とは無関係に 研究を進めることも重要。

私が特別に数学を研究する理由?

好きだから

- たくさんの驚くべき法則
- 不思議な世界への旅
- 成功したときの快感
- 理解力のパワーアップによる余得
- 100年後の世界を変えているかも

未発見の法則がたくさんあるはず

- 新しい数学的法則のどれかは 将来の暮らしを豊かにするだろう。
- しかし数十年~数百年の時間が 必要になるかもしれない。
- 未発見の法則が残っている証拠: 現在でも新しい法則が発見され続けて いる。
- 例: クラスター代数

(フォーミン&ゼレヴィンスキーが 2001 年頃に発見した)

フリーズパターンの不思議 2012 年 11 月 15 日 6 / 71

数学は世界を変えて来た

- 例1: テレビのデジタル化
 - 動画と音声の圧縮技術
 - フーリエ解析+無駄な情報の削除
- 例2: GPSを使ったカーナビ
 - 一般および特殊相対性理論
 - 時空の幾何学 (リーマン幾何学)
- 例3: デジタル式の携帯電話
 - 符号理論 (通信の信頼性の確保)
 - 暗号理論 (プライバシーの確保)
 - これらは整数論の応用
- これからも世界を変えて行くだろう

プラトンの正多面体の分類

- すべての頂点に接する面の数は互いに等しい
- 正多面体は上の5種類に限る(プラトン学派の成果らしい)

サッカーボール・クイズ

問題: サッカーボールには黒の五角形と白の 六角形がそれぞれ幾つあるか? (制限時間 10 秒)

ヒント: 正十二面体と正二十面体との関係

黒木玄 (東北大学数学教室) フリーズパターンの不思議

E. ディンキン (1924-)

http://owpdb.mfo.de/detail?photo_id=973

フリーズパターンの不思議 2012 年 11 月 15 日 12 / 71

サッカーボール・クイズの解答

- 五角形は 12 個 (正十二面体の面の個数)
- 六角形は20個 (正二十面体の面の個数)

E型ディ図形と正多面体の対応

- の数と の数 (左側の長さと右側の長さ)
 - ←→ 各面の辺の数と各頂点に接する辺の数
 - (3,3) $E_6 \longleftrightarrow$ 正四面体
 - (3,4) $E_7 \longleftrightarrow$ 立方体 (と正八面体)
 - (3,5) $E_8 \longleftrightarrow$ 正十二面体 (と正二十面体)

温故知新

- 正多面体の分類論の現代的復活
- ディンキン数学
 - 多くの種類の数学的対象が ディンキン図形で分類される!
 - 正多面体は例外型 E₆, E₇, E₈ に対応
 - 特異点の分類
 - 有限次元単純 Lie 代数の分類
 - 他にもたくさんある
 - 最近の例: 有限型クラスター代数

(フォーミン&ゼレヴィンスキーが分類 (2003 年出版))

E型ディンキン図形の拡大図

フリーズパターンの不思議 2012 年 11 月 15 日 14 / 71

ディンキン図形

- n は O の個数
- \bullet $A_n, B_n, C_n, D_n \bigcirc$ 4種の無限系列 は古典型と 呼ばれている
- $E_{6,7,8}, F_4, G_2 \mathcal{O}$ 5つは例外型と 呼ばれている
- 基本はADE型

A型,D型ディ図形と正多角形の対応

正多角形の対称性

- 正 n 角形で裏返し禁止 ←→ A_{n-1} 型
- 正 n 角形で裏返し許可 $\longleftrightarrow D_{n+2}$ 型

木玄 (東北大学数学教室)

- フリーズ (frieze) = 装飾のある横壁 (実例を紹介するが主題ではない)
- (数学における) フリーズ (パターン) = ある単純な計算で得られる 装飾横壁に似た数字のパターン (この話の主題)
- 1970年代にコンウェイとコクセターはちょっと した数遊びで作れる繰り返しパターン(コンウェ イ・コクセター・フリーズと呼ばれる)が面白い 性質を持っていることを示した。
- 21 世紀の始めにフォーミンとゼレヴィンスキー はクラスター代数の概念を発見した。コンウェ イ・コクセター・フリーズはA型のクラスター 代数の特殊化になっている。

フリーズ(装飾横壁)の実例 (1)

The Frieze of Parnassus encircles the base of the Albert Memorial in London and consists of 169 life-size full-length sculptures of individual artists from history. The total length of the frieze is approximately 210 feet.

http://en.wikipedia.org/wiki/File:Decorative_emblems_The_Circus_Bath.jpg

J. H. コンウェイ (1937–)

http://en.wikipedia.org/wiki/File:John_H_Conway_2005.ipg

H. S. M. コクセター (1907-2003)

フリーズパターンの不思議 2012 年 11 月 15 日 21 / 71

ズ(装飾横壁)の実例(2)

Frieze of animals, mythological episodes at the base of Hoysaleswara temple, India

http://cms.math.ca/Prizes/info/images/coxeter.jpg

フリーズパターンの不思議 2012 年 11 月 15 日 22 / 71

フリーズ(装飾横壁)の実例(3)

The Circus (Bath), UK. Architectural detail of the frieze showing the alternating triglyphs and metope. (John Wood, the Elder, architect).

http://en.wikipedia.org/wiki/File:Albert_Memorial_Friese_Collage_-_May_2008-edit1.ipg

コンウェイ・コクセター・フリーズの例

ここでは理由を説明しないが、コンウェイ・コクセター・フリー ズはディンキン図形による分類ではA型に相当する.

A型のフリーズ・パターンの作り方 (1)

まず,以下のように1を並べる:

最上段と最下段は一直線.

左端の1の並びはもっとジグザグしていても構わない.

A型のフリーズ・パターンの作り方 (5)

その次のステップ

$$(3 \times 3 + 1)/2 = 5$$

 $(3 \times 1 + 1)/1 = 4$

フリーズパターンの不思議 2012 年 11 月 15 日

A型のフリーズ・パターンの作り方 (2)

そして、次のルールで数字を埋めて行く.

$$\begin{array}{ccc}
 & b \\
 a & d \\
 & c
\end{array}
\qquad ad = bc + 1$$

a,b,c から d を d=(bc+1)/a で定める.

(逆に d, b, c から a を a = (bc + 1)/d で定めることもできる.)

A型のフリーズ・パターンの作り方 (6)

さらにその次のステップ

$$(1 \times 5 + 1)/3 = 2$$

 $(5 \times 4 + 1)/3 = 7$
 $(4 \times 1 + 1)/1 = 5$

黒木玄 (東北大学数学教室) フリーズパターンの不思議 2012 年 11 月 15 日

フリーズパターンの不思議 2012 年 11 月 15 日 29 / 71

最初のステップ

 $(1 \times 1 + 1)/1 = 2$

A型のフリーズ・パターンの作り方

次の形まで計算できたとする.

赤い1の部分は青い1の上下をひっくり返した形. A型フリーズ・パターンのルールは上下の反転で不変. よって残りの部分は繰り返しの形になる.

黒木玄 (東北大学数学教室) フリーズパターンの不思議 2012 年 11 月 15 日 26 / 71

黒木玄 (東北大学数学教室) フリーズパターンの不思議 2012 年 11 月 15 日 30 / 71

A型のフリーズ・パターンの作り方 (4)

次のステップ

 $(1 \times 2 + 1)/1 = 3$ $(2 \times 1 + 1)/1 = 3$

A型フリーズ・パターンの作り方 (8)

最後に残りの部分を繰り返しで埋める.

赤い部分は青い部分の上下を反転した形になっている.

何が不思議かクイズ

問題: 何が不思議なのか? (制限時間30秒)

他の例で検証: 🗛 型

最上段と最下段を除いて4段の場合

やはり整数性と有限反復性が成立している.

何が不思議かクイズ解答

不思議なことが二つある.

計算結果が整数になる.

❷ (有限反復性) 有限個の数字を計算すれば 残りの部分はその繰り返しになる.

練習問題[1]

他の場合にも整数性と有限反復性が成立して いることを具体例の計算で確認せよ.

(一般的に成立することを最初は証明しよう としなくてもよい.後で証明の方針について 簡単に解説する.)

フリーズパターンの不思議 2012 年 11 月 15 日 37 / 71

他の例で検証: A,型

最上段と最下段を除いて2段の場合

やはり整数性と有限反復性が成立している.

練習問題[1]つづき

たとえば次のような1の並びから出発して数字を埋め ていって整数性と有限反復性が成立していることを確 認せよ

フリーズパターンの不思議 2012 年 11 月 15 日 34 / 71

他の例で検証: A3型

最上段と最下段を除いて3段の場合

やはり整数性と有限反復性が成立している.

どうしてA型か

始めの1の並びの左端の部分に注目

この例では A_5 型のディンキン図形が得られる.

A_n O—O—O—O—O

A型以外の型への一般化

- 各ディンキン図形ごとに整数性と有限反 復性を持つフリーズ・パターンのルール を定めることができる!
- ディンキン図形をさらに一般化すると整 数性は成立するが、有限反復性を持たな いフリーズ・パターンのルールも構成で きる.

この例では D_5 型ディンキン図形が得られる.

D型のフリーズ・パターンの例

以下最上段と最下段の1の並びは省略する.

整数性と有限反復性が成立している. すべて整数. 左 端と右端の形が同じなので残りは繰り返し.

*E*₆ 型のフリーズ・パターンの例

最上段と最下段の1の並びは省略する.

ちょっと分かりにくいが有限反復性も成立している.

D型のルール(1)

まず1を以下のように並べる.

左端の1の並びはもっとジグザグであってもよい

E6型のルール

次のルールにしたがって数を埋めて行く.

- 上の方に段を増やして E_{7.8} 型ルールも定義される.
- ullet $E_{7.8}$ 型でも整数性と有限反復性が成立している.

黒木玄 (東北大学数学教室) フリーズパターンの不思議 2012 年 11 月 15 日 42 / 71

D型のルール(2)

そして次のルールにしたがって数を埋めて行く.

どうして E_6 型か

B_n, C_n, F_4, G_2 型の場合

- 詳しくは説明しないが、B_n, C_n, F₄, G₂型 のフリーズ・パターンのルールの自然な 定義があって,整数性と有限反復性が成 立している.
- ディンキン図形の2重(3重)矢印に対応 する部分に2乗(3乗)するというルール を適切に追加することになる.

b+d

そのことは次を見ればわかる: ad = bc + 1 のとき

整数性と有限反復性の証明(4)

上と同様の手続きで常に A_n 型のフリーズパターンか ら A_{n+1} 型のフリーズパターンを作ることができる.

a(b+d) = ab + bc + 1 = b(a+c) + 1,(a + c)d = bc + 1 + cd = (b + d)c + 1.

つまり隙間を斜めに赤と青の数を足した数で埋めると いう規則で "ad = bc + 1" ルールを保ったままフリー ズパターンを拡張できるのである.

整数性と有限反復性の証明(1)

 A_n 型の Conway-Coxeter フリーズパターンの整数性 と有限反復性の証明のアイデアを説明しよう.

次の A_4 型のフリーズパターンの例を用いて説明する:

これを赤と青の部分に切り離して広げて隙間を作る.

整数性と有限反復性の証明**(5)**

以上の方法を使えば左端の1のジグザグの形が任意の A_{n+1} 型のフリーズパターンを A_n 型のフリーズパ ターンから作れる.

さらに A_n 型フリーズパターンで整数性と有限反復性 が成立していればそうやって作った A_{n+1} 型フリーズ パターンも整数性と有限反復性を満たす.

このようなアイデアで A 型のフリーズパターンの整 数性と有限反復性を証明することができる.

以上で説明のために使った A_4 型の場合の例とは別に A_n 型フリーズパターンから A_{n+1} 型フリーズパター ンを構成する具体的な計算を実行してみよん

整数性と有限反復性の証明(2)

赤と青の部分に切り離した結果は次の通り:

次に隙間を斜めに赤と青の数を足した数で埋める.

多角形の三角形分割との関係(1)

数の割り振り方のルールは以下の通り:

- 1. 頂点を一つ選ぶ. その頂点 → 0
- 2. 数 0 の頂点と線分で繋がっている頂点 → 1
- 3. 三角形の2つの頂点にすでに数 a, b が割り振られ ているならば. 残りの頂点 $\rightarrow a + b$.

整数性と有限反復性の証明(3)

斜めに数を足して隙間を埋めた結果は次の通り:

これは A_5 型のフリーズパターンである! 実際この数の並びは次の条件を満たしている:

$$\begin{array}{ccc} & b & & \\ a & & d & & ad = bc + 1. \end{array}$$

上のパターンがこれを満たしていることを確認せよ.

多角形の三角形分割との関係(2)

左端と右端は上の図の左上の七角形の頂点に割り振られた 0 以外の数.

多角形の三角形分割との関係(3)

次は七角形から右下の三角形を外した場合の図:

この図から A_3 型フリーズパターンが得られる:

 $a_1 = 1, \quad a_2 = 1,$ $a_{n+2} = \frac{a_{n+1}^2 + 1}{a_n}$ (n = 1, 2, 3, ...).

練習問題[2]

前ページの漸化式を示せ. すなわち以下を証明せよ.

このとき $a_{n+2} - 3a_{n+1} + a_n = 0$ が成立する.

数列 $a_1, a_2, a_3, a_4, \ldots$ を次のように定める:

ヒント:
$$K_n = a_{n+1}^{-1} a_n^{-1} + a_{n+1} a_n^{-1} + a_{n+1}^{-1} a_n$$
 とおくと $K_{n+1} = (a_{n+2} + a_n)/a_{n+1} = K_n = \cdots = K_1 = 3$ となる.

した.

クラスター代数とは

フォーミンとゼレヴィンスキーは2002 年出版の論文でクラスター代数を導入

• フリーズパターンでは最初の出発点を

クラスター代数とは、大雑把に言って、出 発点の「1の並び」における「左端」を

「1の並び」に取るのであった.

変数に置き換えたもの.

(これは非常に正確ではない説明なので注意)

多角形の三角形分割との関係(3)

七角形の三角形分割とそこから三角形を一つ外した場合から得られる2つのフリーズパターンの関係は以下の通り:

これらの関係は整数性と有限反復性の証明で利用したものと同じ.

次のルールを $A_1^{(1)}$ 型ルールと呼ぶ.

 $A_1^{(1)}$ 型のフリーズパターン:

有限反復性は成立していない.

 $A^{(1)}$ 型のフリーズパターン **(1)**

a a' . . $aa' = b^2 + 1$ b b' . . $bb' = a'^2 + 1$

A,型の場合

から出発して A 型フリ・パタのルールで計算すると

分母が $x^a y^b$ の形になり, 有限反復性が成立!

しかし次ページの良い性質を持つ.

2 13 89 610 1 5 34 233 1597

4181

$A^{(1)}$ 型のフリーズパターン **(2)**

 $A_1^{(1)}$ 型のフリーズパターンを構成する数列

1, 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, ...

は漸化式 $a_{n+2} - 3a_{n+1} + a_n = 0$ を満たしている. すなわち数列中の連続する3つの数字において両端の数の和は真ん中の数の3倍に等しい:

 $1,1,2 \longrightarrow 1+2=3\times 1,$ $1, 2, 5 \longrightarrow 1 + 5 = 3 \times 2,$ $2, 5, 13 \longrightarrow 2 + 13 = 3 \times 5,$

漸化式を $a_{n+2} = 3a_{n+1} - a_n$ と書きなおせば

 $A_{_{f 1}}^{(1)}$ 型の場合にも整数性が成立することがわかる.

A_2 型の場合の詳しい計算

$$x = \frac{1}{x} - \frac{1}{x} -$$

A3 型の場合

1 1 1 x z. 1

から出発して A型フリ・パタのルールで計算すると

分母が $x^a y^b z^c$ の形になり, 有限反復性が成立!

黒木玄 (東北大学数学教室) フリーズパターンの不思議

理論の発展のまとめ

● 20世紀に2000年以上前の成果である「正多面体 の分類」の話が「ディンキン数学」の形で復活

1970年代に発見されたコンウェイ・コクセター によるフリーズパターンの理論もまたディンキ

● 21 世紀になってからフリーズパターンの理論が クラスター代数の理論に一般化され、大流行した.

ン数学の一部とみなせる (A型の場合).

A_3 型の場合の計算の \cdot

黒木玄 (東北大学数学教室) フリーズパターンの不思議 2012 年 11 月 15 日

フリーズパターンの不思議 2012 年 11 月 15 日 69 / 71

クラスター代数の不思議

- 分子分母の複雑な因子が打ち消しあって、分母が $x^a y^b$ や $x^a y^b z^c$ のような簡単な形 (単項式) にな る (<mark>ローラン現象</mark> フリーズパターン (x = y = z = 1) の場合の整数性の一般化)
- ディンキン図形に対応するクラスター代数で は有限反復性が成立している. (実はフォーミン &ゼレヴィンスキーによって逆も成立すること がわかっている. 有限型クラスター代数の分類)

これも非常に正確でない説明の仕方なので注意!

計算結果の分子にマイナス記号が出て来ない. (正値性 証明はとても難しい まだ完全解決され ていない.)

黒木玄 (東北大学数学教室)

黒木玄 (東北大学数学教室)

フリーズパターンの不思議 2012 年 11 月 15 日 66 / 71

黒木玄 (東北大学数学教室)

フリーズパターンの不思議 2012 年 11 月 15 日 70 / 71

練習問題[3]

次の形から出発してA型フリーズパターンのルールに したがって残っている部分を埋めよ.

> 1 1 \boldsymbol{x} 1 1 1 1 ...

(1) 分母が単項式になること, (2) 有限反復性が成立し ていること, (3)計算結果の分子にマイナス記号が出 て来ないことを確認せよ.

驚くべき法則性のまとめ

- フリーズパターンでは奇跡的に割り切れてすべ てが整数になり,しかもディンキン図形に対応す る場合には有限反復性が成立している.
- クラスター代数の場合. 計算の途中で分子分母の 複雑な因子が奇跡的にキャンセルしあって分母 に単項式だけが残り、しかも分子にマイナス記号 が現われないということになっている(ようだ).
- 有限反復性を持つクラスター代数がディンキン 図形で分類される(クラスター代数もディンキン 数学の一種)...

練習問題[4]

- ◎ 省略した計算を埋めよ.
- ❷ インターネットで「正多面体」について 検索してみよ.
- ついて検索してみよ.
- ついて検索してみよ.

現代数学の世界へようこそ!

連絡先,参考文献

メールアドレス: kuroki@math.tohoku.ac.jp

ウェブ: http://www.math.tohoku.ac.jp/~kuroki/LaTeX/

コンウェイ・コクセター・フリーズ入門: [CG] J.H. コンウェイ, R.K. ガイ 共著, 『数の本』, シュプリンガー・フェア ラーク東京 (2001/12) にコンウェイ・コクセター・フリーズに関する話も書い

http://www.amazon.co.jp/dp/4431707700 で立ち読みできる.

フリーズパターン入門:

[K] http://www.math.tohoku.ac.jp/~kuroki/LaTeX/20120810FriezePattern.pdf

クラスター代数入門:

[N] http://www.kurims.kyoto-u.ac.jp/~kenkyubu/kokai-koza/nakajima.pdf

この文書の版: 2012/11/15 Version 2.2

黒木玄 (東北大学数学教室)