Table des matières

Ι	Généralités : notations, définitions	1
	I. 1 Définitions : systèmes linéaires	
	I. 2 Ensemble solution d'un système linéaire	2
II	Cas particuliers importants : les systèmes échelonnés	3
	II. 1 Systèmes linéaires triangulaires - échelonnés	3
	II. 2 Rang d'un système linéaire échelonné	6
II:	IMéthode du pivot de Gauss	7
	III. 1Opérations élémentaires sur les lignes et les colonnes	7
	III. 2Algorithme du pivot de Gauss	8

CH6: Systèmes linéaires

Ι Généralités: notations, définitions

Définitions : systèmes linéaires

Définition 1. On appelle système linéaire de n équations à p inconnues tout système de la forme

$$(S) \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{np}x_p = b_n. \end{cases}$$

- $(x_1, \ldots, x_p) \in \mathbb{R}^p$: les inconnues du système
- $(a_{ij})_{1 \leq i \leq n, 1 \leq j \leq p}$: les coefficients du système
- $\bullet \ (b_i)_{1 \leq i \leq n}$: les seconds membres du système
- $\mathcal{L}_i: a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{ip}x_p = b_i:=$ la i-ème équation du système = la i-ème

Exemples.

- ligne du système.

 (S_1) $\begin{cases} 2x + 3y = 4 \\ -x + y = 1 \end{cases}$ est un système linéaire

 (S_2) $\begin{cases} x + 3y z = 6 \\ y + 6z = 1 \end{cases}$ est un système linéaire

 (S_3) $\begin{cases} x + 3y z = 6 \\ 0 = 0 \end{cases}$ est un système linéaire

 (S_4) $\begin{cases} x + 3y z = 6 \\ 0 = 0 \end{cases}$ est un système linéaire

Définition 2. \bullet Si le second membre d'un système linéaire de n équations à p inconnues est nul, c'est-à-dire si :

 $\forall i \in [1, n], b_i = 0$, le système est dit homogène.

• On appelle système homogène associé à (S) le système (S_0) obtenu en remplaçant le second membre du système linéaire (S) par un second membre nul :

$$(S) \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{np}x_p = b_n. \end{cases}$$

$$(S) \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p = b_n \\ \vdots \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p = 0 \\ \vdots \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{np}x_p = 0. \end{cases}$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{np}x_p = 0.$$

Exemples. Donner les systèmes linéaires homogènes associés à (S_1) et (S_2) :

$$\bullet (S_{1,0}) \left\{ \begin{array}{rcl} 2x & + & 3y & = & 0 \\ -x & + & y & = & 0 \end{array} \right.$$

Examples. Donner les systèmes lineaires
$$\bullet (\mathcal{S}_{1,0}) \left\{ \begin{array}{rcl} 2x & + & 3y & = & 0 \\ -x & + & y & = & 0 \end{array} \right.$$

$$\bullet (\mathcal{S}_{2,0}) \left\{ \begin{array}{rcl} x & + & 3y & - & z & = & 0 \\ y & + & 6z & = & 0 \end{array} \right.$$

Ensemble solution d'un système linéaire

Définition 3. Ensemble solution :

- Une solution d'un système linéaire de n équations à p inconnues (S) est un p-uplet (un élément de \mathbb{R}^p , bref p réels) qui vérifient toutes les équations.
- Résoudre (S), c'est déterminer l'ensemble des solutions.

Exemples. • Un système linéaire homogène de n équation à p inconnues a toujours au moins une solution: $(0,0,\cdots,0)$

• Résoudre les systèmes linéaires (S_1) et (S_2) .

Définition 4. Un système linéaire est dit compatible si il admet au moins une solution. Sinon, il est dit incompatible.

Définition 5. Un système de Cramer est un système linéaire admettant une unique solution.

Exemples. • Les systèmes homogènes sont compatibles.

- (S_1) et (S_2) sont

Définition 6. Deux systèmes linéaires sont dits équivalents si ils ont même ensemble de solutions.

Remarque. Si on résout un système d'équations par implications successives, il faut alors vérifier que les solutions candidates trouvées sont bien solutions du système. En effet, dans un raisonnement par implication, des solutions parasites peuvent apparaître. Les solutions obtenues ne sont que des solutions éventuelles. Il faut donc alors toujours vérifier si les solutions trouvées sont bien solutions du système de départ.

En conséquence, on cherchera plutôt à raisonner par équivalence et à transformer un système en un système équivalent. Ainsi, aucune vérification ne sera à faire, les deux systèmes ayant le même ensemble de solutions. On verra tout à l'heure quelles sont les opérations qui transforment un système en un système équivalent.

II Cas particuliers importants : les systèmes échelonnés

Les systèmes échelonnés sont des systèmes linéaires que l'on sait résoudre facilement. La partie 3 présentera alors une méthode qui permet de ramener tout système à un système échelonné.

II. 1 Systèmes linéaires triangulaires - échelonnés

Ce sont des systèmes échelonnés particuliers.

Définition 7. Un système linéaire est dit triangulaire s'il est de la forme :

Les coefficients encadrés doivent être NON NULS et sont appelés les

Exemple 1. Résoudre le système suivant :
$$(S_4)$$

$$\begin{cases} x + 2y + 3z + 4t = 1 \\ y + 2z + 3t = 2 \\ z + 2t = 3 \\ t = 4 \end{cases}$$

Méthode : Calculer la solution de proche en proche en remontant de la dernière ligne à la première.

Définition 8. On dit qu'un système linéaire de n équations à p inconnues est un système échelonné s'il est de la forme : vérifie les deux conditions suivantes :

- Lorsque les coefficients de x_1, \ldots, x_k sont nuls sur la ligne i, alors les coefficients de $x_1, \ldots, x_k, x_{k+1}$ sont nuls sur la ligne i+1. Chaque ligne contient au moins une inconnue de moins que la précédente de façon consécutive à compter du premier.
- ullet Lorsque le membre de gauche de la i-ème ligne est nul, alors c'est le cas de toutes les lignes suivantes.

On est ainsi dans une situation de type:

Les coefficients encadrés doivent être NON NULS et sont appelés les pivots. D'une ligne à l'autre, il y a au moins une inconnue de moins de façon consécutive puis éventuellement des lignes triviales sans inconnues.

Quitte à réordonner les inconnues $(x_i \leftrightarrow x_j)$ un système échelonné est de la forme :

Exemples.

II. 2 Rang d'un système linéaire échelonné

C'est une notion très importante qui intervient dans de nombreux chapitres.

Définition 9. On appelle rang d'un système linéaire échelonné, le nombre d'équations non triviales. C'est-à-dire l'entier r dans la définition précédente.

Exemples. Donner les rangs des systèmes (S_4) et des trois exemples donnés ci-dessus.

Remarque. Le rang est inférieur ou égal au nombre d'inconnues

Proposition 1. Deux systèmes linéaires équivalents ont même rang.

Proposition 2. Soit (S) un système <u>échelonné</u> de n équations à p inconnues et soit r son rang.

- 2. Si (S) ne comporte pas d'équation de type $0 = b_k$ avec $b_k \neq 0$ (mais il peut comporter des équations de type 0=0), alors le système (S) a des solutions, il est compatible. Plus précisemment,
 - (a) Si r=p, alors le système (\mathcal{S}) a une unique solution qui s'obtient en éliminant les équations 0=0 et en déterminant la valeur de chaque inconnue par une lecture de bas en haut. En particulier tout système échelonné avec n=p=r est de Cramer.
 - (b) Si r < p, alors le système (\mathcal{S}) a une infinité de solutions.
 - Les inconnues x_1, \ldots, x_r correspondant aux pivots sont appelées inconnues principales.
 - Les p-r autres inconnues x_{r+1}, \ldots, x_p sont appelées inconnues secondaires et vont jouer le rôle de paramètres.
 - On passe en second membre les p-r inconnues secondaires qui deviennent des paramètres. On obtient un système triangulaire que l'on sait résoudre. L'ensemble des solutions est ainsi paramétré par les p-r inconnues secondaires. On dit qu'il y a p-r degrés de liberté (on dira de dimension (p-r) un peu plus tard)

Méthode:

- Reconnaître un système linéaire échelonné à n équations et n inconnues.
- Calculer le rang.
- Identifier les inconnues principales et des inconnues secondaires.

- Les inconnues secondaires passent au second membre et jouent alors le rôle de paramètre.
- Résoudre le système en remontant les calculs.

Exemples. • Résoudre le système (S_4) .

• Résoudre les systèmes linéaires suivants :

$$(S_{5}) \begin{cases} x + y + z + t + w = 1 \\ y + t + w = 2 \\ 2z + 3w = 6 \end{cases}$$
 et $(S_{6}) \begin{cases} x + y - 2z = \alpha \\ 3y - 4z = \beta \\ 5z = \gamma \end{cases}$
$$(S_{7}) \begin{cases} x + y + z + t + w = 1 \\ z - t = 6 \\ 2t + w = 8 \\ 0 = 0 \end{cases}$$
 et $(S_{8}) \begin{cases} a - b + 2c - 3d + e = 0 \\ 2b + 4c + d - 5e = 3 \\ 2d + 3e = -1 \end{cases}$

III Méthode du pivot de Gauss

Nous savons donc résoudre les systèmes linéaires échelonnés. Nous allons maintenant établir que tout système linéaire peut être mis sous la forme d'un système échelonné qui lui est ÉQUIVALENT par une succession de transformations élémentaires sur les lignes et les colonnes.

III. 1 Opérations élémentaires sur les lignes et les colonnes

Proposition 3. Un système (S_1) est transformé en un système (S_2) qui lui est ÉQUI-VALENT si :

- on échange la colonne i avec la colonne $j: C_i \leftrightarrow C_j$.
- on échange la ligne i avec la ligne $j: L_i \leftrightarrow L_j$.
- ullet on multiplie la ligne i par un scalaire α NON NUL :

$$L_i \leftarrow \alpha L_i, \ \alpha \neq 0.$$

• on remplace la ligne d'indice i par la somme de la ligne i et de β fois la ligne j:

$$L_i \leftarrow L_i + \beta L_i$$
.

• On supprime une ligne triviale 0 = 0.

Remarque. 1. Importance de ne procéder que par ÉQUIVALENCES. Ainsi, les seules opérations à effectuer sur un système sont les opérations ci-dessus.

2. On peut appliquer une combinaison à plusieurs lignes en même temps si on choisit une ligne pivot (par exemple L_1) qui n'est pas modifiée et que toutes les combinaisons se font à partir de

cette ligne:

$$\begin{cases} L_1 \\ L_2 \leftarrow \alpha_2 L_2 + \beta_2 L_1 & (\alpha_2 \neq 0) \end{cases}$$

$$\vdots$$

$$L_n \leftarrow \alpha_n L_n + \beta_n L_1 & (\alpha_n \neq 0).$$

Exemple 2. Résoudre le système suivant :
$$(S_9)$$
 :
$$\begin{cases} x + y + z = -1 \\ x - 2y - z = 4 \\ -x + 5y + 2z = 1 \end{cases}$$

Systèmes linéaires à paramètres

Méthode : Faire des cas selon les opérations élémentaires effectuées

- Ne pas confondre $L_i \leftarrow 0L_j$ où l'on transforme une ligne non nulle, en ligne 0 = 0... Evidemment ca va changer l'ensemble des solutions et $L_i \leftarrow L_i + 0L_j$ où l'on change L_i en L_i . Ici rien ne change, c'est le même système.
- Résoudre le système à part pour les valeurs particulières des paramètres pour lesquelles les pivots s'annulaient.

Exercice 1. Résoudre

$$(S_{10}): \begin{cases} x+2y = 1 \\ \lambda x + y = 0 \end{cases} \text{ et } (S_{11}): \begin{cases} (m+1)x + my = 2m \\ mx + (m-1)y = 1 \end{cases}$$
$$(S_{12}): \begin{cases} -(2+m)x - 2y + z = 0 \\ -2x + (1-m)y - 2z = 0 \\ x - 2y - (2+m)z = 0 \end{cases}$$

III. 2 Algorithme du pivot de Gauss

Méthode:

- À chaque étape, on choisit une ligne pivot et un pivot. On fait tous les calculs par rapport à cette ligne pivot.
- On utilise alors les opérations élémentaires sur les lignes :
 - * La ligne pivot n'est pas modifiée.
 - * Toutes les opérations élémentaires se font à partir de cette ligne.
 - \star Choix des opérations : élimination d'une même inconnue dans toutes les lignes sauf la ligne pivot.
- On transforme ainsi notre système linéaire de départ en un système linéaire échelonné équivalent.

Exemples. Résoudre les systèmes linéaires suivants :

•
$$(S_{10})$$
: $\begin{cases} 2x - y - z = 0 \\ 3x + y + 3z = 1 \end{cases}$

•
$$(S_{11})$$
:
$$\begin{cases} 2x + y - z = 1 \\ 3x + 3y - z = 2 \\ 2x + 4y = 2 \end{cases}$$

Remarques. 1. A chaque étape, le pivot doit être

Attention aux systèmes dont les coefficients dépendent d'un ou plusieurs paramètres (voir plus loin).

2. On a intérêt à choisir un pivot le plus simple possible, le mieux étant 1 ou -1. Ainsi, il est parfois intéressant d'échanger des lignes ou des inconnues pour faire apparaître un pivot plus simple.

Théorème 4. Tout système linéaire est équivalent à un système échelonné de même taille.

Définition 10. On appelle rang d'un système linéaire, échelonné ou pas, le rang d'un système linéaire échelonné qui lui est équivalent.

Remarque. Pour un même système linéaire, selon les choix faits lors de l'algorithme du pivot de Gauss, on peut obtenir des systèmes échelonnés différents. Ces systèmes échelonnés sont tous équivalents puisqu'ils sont équivalents à un même système. Pour autant, il est parfois difficile de s'en rendre compte au premier coup d'oeil. Il existe néanmoins une caractéristique commune à tous ces systèmes qui est justement leur rang.

Exemples. Donner le rang des systèmes linéaires S_9 à S_{11} .