PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(21) International Application Numbers DCT/US
G01N 33/574, 33/577, C07K 16/30, A61K 39/395, 47/48, C12Q 1/68, G01N 33/543
(51) International Patent Classificati n 0:

(11) Internati nal Publication Number:

WO 98/37418

(43) International Publication Date:

27 August 1998 (27.08.98)

(21) International	Appl	ication l	Number:
--------------------	------	-----------	---------

PCT/US98/03690

A2

(22) International Filing Date:

25 February 1998 (25.02.98)

(30) Priority Data:

 08/806,596
 25 February 1997 (25.02.97)
 US

 08/904,809
 1 August 1997 (01.08.97)
 US

 Not furnished
 9 February 1998 (09.02.98)
 US

(71) Applicant: CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US).

(72) Inventors: XU, Jiangchun; 15805 Southeast 43rd Place, Bellevue, WA 98006 (US). DILLON, Davin, C.; 21607 N.E. 24th Street, Redmond, WA 98053 (US).

(74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US). (81) Designated States: AL, AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: COMPOUNDS FOR IMMUNODIAGNOSIS OF PROSTATE CANCER AND METHODS FOR THEIR USE

(57) Abstract

Compounds and methods for diagnosing prostate cancer are provided. The inventive compounds include polypeptides containing at least a portion of a prostate tumor protein. The inventive polypeptides may be used to generate antibodies useful for the diagnosis and monitoring of prostate cancer. Nucleic acid sequences for preparing probes, primers, and polypeptides are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

					•		
AL .	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
MA	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD ·	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	T.J	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Paso	GŔ	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU .	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	. IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	lialy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE -	Niger	VN	Viet Nam
CG	Congo	KE.	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG-	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon	•	Republic of Korea	PL	Poland		•
CN ·	China	KR	Republic of Korea	PT	Portugal	•	
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DB	Germany	u	Liechtenstein	SD	Sudan		
DK .	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

COMPOUNDS FOR IMMUNODIAGNOSIS OF PROSTATE CANCER AND METHODS FOR THEIR USE

TECHNICAL FIELD

The present invention relates generally to the treatment and monitoring of prostate cancer. The invention is more particularly related to polypeptides comprising at least a portion of a prostate protein. Such polypeptides may be used for the production of compounds, such as antibodies, useful for diagnosing and monitoring the progression of prostate cancer, and possibly other tumor types, in a patient.

BACKGROUND OF THE INVENTION

Prostate cancer is the most common form of cancer among males, with an estimated incidence of 30% in men over the age of 50. Overwhelming clinical evidence shows that human prostate cancer has the propensity to metastasize to bone, and the disease appears to progress inevitably from androgen dependent to androgen refractory status, leading to increased patient mortality. This prevalent disease is currently the second leading cause of cancer death among men in the U.S.

In spite of considerable research into diagnosis and therapy of the disease, prostate cancer remains difficult to detect and to treat. Commonly, treatment is based on surgery and/or radiation therapy, but these methods are ineffective in a significant percentage of cases. Two previously identified prostate specific proteins - prostate specific antigen (PSA) and prostatic acid phosphatase (PAP) - have limited diagnostic and therapeutic potential. For example, PSA levels do not always correlate well with the presence of prostate cancer, being positive in a percentage of non-prostate cancer cases, including benign prostatic hyperplasia (BPH). Furthermore, PSA measurements correlate with prostate volume, and do not indicate the level of metastasis.

Accordingly, there remains a need in the art for improved and diagnostic methods for prostate cancer.

SUMMARY OF THE INVENTION

The present invention provides methods for immunodiagnosis of prostate cancer, together with kits for use in such methods. Polypeptides are disclosed which comprise at least an immunogenic portion of a prostate tumor protein or a variant of said protein that differs only in conservative substitutions and/or modifications, wherein the prostate tumor protein comprises an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 5-107, 109-11, 115-171, 173-175, 177, 179-224 and variants thereof. Such polypeptides may be usefully employed in the diagnosis and monitoring of prostate cancer.

In one specific aspect of the present invention, methods are provided for detecting prostate cancer in a patient, comprising: (a) contacting a biological sample obtained from a patient with a binding agent that is capable of binding to one of the above polypeptides; and (b) detecting in the sample a protein or polypeptide that binds to the binding agent. In preferred embodiments, the binding agent is an antibody, most preferably a monoclonal antibody.

In related aspects, methods are provided for monitoring the progression of prostate cancer in a patient, comprising: (a) contacting a biological sample obtained from a patient with a binding agent that is capable of binding to one of the above polypeptides; (b) determining in the sample an amount of a protein or polypeptide that binds to the binding agent; (c) repeating steps (a) and (b); and comparing the amounts of polypeptide detected in steps (b) and (c).

Within related aspects, the present invention provides antibodies, preferably monoclonal antibodies, that bind to the inventive polypeptides, as well as diagnostic kits comprising such antibodies, and methods of using such antibodies to inhibit the development of prostate cancer.

The present invention further provides methods for detecting prostate cancer comprising: (a) obtaining a biological sample from a patient; (b) contacting the sample with a first and a second oligonucleotide primer in a polymerase chain reaction, at least one of the oligonucleotide primers being specific for a DNA molecule that encodes one of the above polypeptides; and (c) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers. In a preferred embodiment, at least one of the

机试剂解放流流流 化碳酸钠 "管务会" 计划

oligonucleotide primers comprises at least about 10 contiguous nucleotides of a DNA molecule having a partial sequence selected from the group consisting of SEQ ID Nos: 2-3, 5-107, 109-11, 115-171, 173-175, 177 and 179-224.

In a further aspect, the present invention provides a method for detecting prostate cancer in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe specific for a DNA molecule that encodes one of the above polypeptides; and (c) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe. Preferably, the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA molecule having a partial sequence selected from the group consisting of SEQ ID Nos: : 2-3, 5-107, 109-11, 115-171, 173-175, 177 and 179-224.

In related aspects, diagnostic kits comprising the above oligonucleotide probes or primers are provided.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for the immunodiagnosis and monitoring of prostate cancer. The inventive compositions are generally polypeptides that comprise at least a portion of a prostate tumor protein. Also included within the present invention are molecules (such as an antibody or fragment thereof) that bind to the inventive polypeptides. Such molecules are referred to herein as "binding agents."

In particular, the subject invention discloses polypeptides comprising at least a portion of a human prostate tumor protein, or a variant thereof such a protein, wherein the prostate tumor protein includes an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 5-107, 109-11, 115-171, 173-175, 177, 179-224, the complements of said nucleotide sequences and variants thereof. As used herein, the term "polypeptide"

encompasses amino acid chains of any length, including full length proteins, wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising a portion of one of the above prostate proteins may consist entirely of the portion, or the portion may be present within a larger polypeptide that contains additional sequences. The additional sequences may be derived from the native protein or may be heterologous, and such sequences may be immunoreactive and/or antigenic.

As used herein, an "immunogenic portion" of a human prostate tumor protein is a portion that is capable of eliciting an immune response in a patient inflicted with prostate cancer and as such binds to antibodies present within sera from a prostate cancer patient. Immunogenic portions of the proteins described herein may thus be identified in antibody binding assays. Such assays may generally be performed using any of a variety of means known to those of ordinary skill in the art, as described, for example, in Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988. For example, a polypeptide may be immobilized on a solid support (as described below) and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, ¹²⁵I-labeled Protein A. Alternatively, a polypeptide may be used to generate monoclonal and polyclonal antibodies for use in detection of the polypeptide in blood or other fluids of prostate cancer patients.

The compositions and methods of the present invention also encompass variants of the above polypeptides and DNA molecules. A polypeptide "variant," as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that the therapeutic, antigenic and/or immunogenic properties of the polypeptide are retained. Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity to the identified polypeptides. For prostate tumor polypeptides with immunoreactive properties, variants may, alternatively, be identified by modifying the amino acid sequence of one of the above polypeptides, and evaluating the immunoreactivity of the modified polypeptide. For prostate tumor polypeptides useful for the generation of diagnostic binding agents, a variant may be identified by evaluating a modified polypeptide for the ability to

generate antibodies that detect the presence or absence of prostate cancer. Such modified sequences may be prepared and tested using, for example, the representative procedures described herein.

As used herein, a "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

Variants may also, or alternatively, contain other modifications, including the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

A nucleotide "variant" is a sequence that differs from the recited nucleotide sequence in having one or more nucleotide deletions, substitutions or additions. Such modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (DNA, 2:183, 1983). Nucleotide variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant nucleotide sequences preferably exhibit at least about 70%, more preferably at least about 80% and most preferably at least about 90% identity to the recited sequence. Such variant nucleotide sequences will generally hybridize to the recite nucleotide sequence under stringent conditions. As used herein, "stringent conditions" refers to prewashing in a solution of 6X SSC, 0.2% SDS; hybridizing at 65 °C, 6X SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1X SSC, 0.1% SDS at 65 °C and two washes of 30 minutes each in 0.2X SSC, 0.1% SDS at 65 °C.

"Polypeptides" as used herein also include combination, or fusion, polypeptides. A "combination polypeptide" is a polypeptide comprising at least one of the above immunogenic portions and one or more additional immunogenic prostate tumor-specific sequences, which are joined via a peptide linkage into a single amino acid chain. The sequences may be joined directly (i.e., with no intervening amino acids) or may be joined by way of a linked sequence (e.g., Gly-Cys-Gly) that does not significantly diminish the immunogenic properties of the component polypeptides.

The prostate tumor proteins of the present invention, and DNA molecules encoding such proteins, may be isolated from prostate tumor tissue using any of a variety of methods well known in the art. DNA sequences corresponding to a gene (of a portion thereof) encoding one of the inventive prostate tumor proteins may be isolated from a prostate tumor cDNA library using a subtraction technique as described in detail below. Examples of such DNA sequences are provided in SEQ ID Nos: 1-107, 109-111, 115-171, 173-175, 177 and 179-224. Partial DNA sequences thus obtained may be used to design oligonucleotide primers for the amplification of full-length DNA sequences in a polymerase chain reaction (PCR), using techniques well known in the art (see, for example, Mullis et al., Cold Spring Harbor Symp. Quant. Biol., 51:263, 1987; Erlich ed., PCR Technology, Stockton Press, NY, 1989). Once a DNA sequence encoding a polypeptide is obtained, any of the above modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (DNA, 2:183, 1983).

The prostate tumor polypeptides disclosed herein may also be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain (see, for example, Merrifield, *J. Am. Chem. Soc.* 85:2149-2146, 1963). Equipment for automated synthesis of polypeptides is commercially available from

suppliers such as Perkin Elmer/Applied BioSystems Division (Foster City, CA), and may be operated according to the manufacturer's instructions.

Alternatively, any of the above polypeptides may be produced recombinantly by inserting a DNA sequence that encodes the polypeptide into an expression vector and expressing the protein in an appropriate host. Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides of this invention. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line, such as CHO cells. The DNA sequences expressed in this manner may encode naturally occurring polypeptides, portions of naturally occurring polypeptides, or other variants thereof.

In general, regardless of the method of preparation, the polypeptides disclosed herein are prepared in substantially pure form (i.e., the polypeptides are homogenous as determined by amino acid composition and primary sequence analysis). Preferably, the polypeptides are at least about 90% pure, more preferably at least about 95% pure and most preferably at least about 99% pure. In certain embodiments, described in more detail below, the substantially pure polypeptides are incorporated into pharmaceutical compositions or vaccines for use in one or more of the methods disclosed herein.

In a related aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, a polypeptide of the present invention and a known prostate antigen, together with variants of such fusion proteins. The fusion proteins of the present invention may also include a linker peptide between the first and second polypeptides.

A DNA sequence encoding a fusion protein of the present invention is constructed using known recombinant DNA techniques to assemble separate DNA sequences encoding the first and second polypeptides into an appropriate expression vector. The 3' end of a DNA sequence encoding the first polypeptide is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide so that the reading frames

of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker with the same standard techniques well known in the art. sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., Gene 40:39-46, 1985; Murphy et al., Proc. Natl. Acad. Sci. USA 83:8258-8262, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. Peptide sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons require to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

Polypeptides and/or fusion proteins of the present invention may be used to generate binding agents, such as antibodies or fragments thereof, that are capable of detecting metastatic human prostate tumors. Binding agents of the present invention may generally be prepared using methods known to those of ordinary skill in the art, including the representative procedures described herein. Binding agents are capable of differentiating between patients with and without prostate cancer, using the representative assays described

herein. In other words, antibodies or other binding agents raised against a prostate tumor protein, or a suitable portion thereof, will generate a signal indicating the presence of primary or metastatic prostate cancer in at least about 20% of patients afflicted with the disease, and will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without primary or metastatic prostate cancer. Suitable portions of such prostate tumor proteins are portions that are able to generate a binding agent that indicates the presence of primary or metastatic prostate cancer in substantially all (i.e., at least about 80%, and preferably at least about 90%) of the patients for which prostate cancer would be indicated using the full length protein, and that indicate the absence of prostate cancer in substantially all of those samples that would be negative when tested with full length protein. The representative assays described below, such as the two-antibody sandwich assay, may generally be employed for evaluating the ability of a binding agent to detect metastatic human prostate tumors.

The ability of a polypeptide and/or fusion protein prepared as described herein to generate antibodies capable of detecting primary or metastatic human prostate tumors may generally be evaluated by raising one or more antibodies against the polypeptide (using, for example, a representative method described herein) and determining the ability of such antibodies to detect such tumors in patients. This determination may be made by assaying biological samples from patients with and without primary or metastatic prostate cancer for the presence of a polypeptide that binds to the generated antibodies. Such test assays may be performed, for example, using a representative procedure described below. Polypeptides that generate antibodies capable of detecting at least 20% of primary or metastatic prostate tumors by such procedures are considered to be useful in assays for detecting primary or metastatic human prostate tumors. Polypeptide specific antibodies may be used alone or in combination to improve sensitivity.

Polypeptides and/or fusion proteins capable of detecting primary or metastatic human prostate tumors may be used as markers for diagnosing prostate cancer or for monitoring disease progression in patients. In one embodiment, prostate cancer in a patient may be diagnosed by evaluating a biological sample obtained from the patient for the level of

one or more of the above polypeptides, relative to a predetermined cut-off value. As used herein, suitable "biological samples" include blood, sera, urine and/or prostate secretions.

The level of one or more of the above polypeptides may be evaluated using any binding agent specific for the polypeptide(s). A "binding agent," in the context of this invention, is any agent (such as a compound or a cell) that binds to a polypeptide as described above. As used herein, "binding" refers to a noncovalent association between two separate molecules (each of which may be free (i.e., in solution) or present on the surface of a cell or a solid support), such that a "complex" is formed. Such a complex may be free or immobilized (either covalently or noncovalently) on a support material. The ability to bind may generally be evaluated by determining a binding constant for the formation of the complex. The binding constant is the value obtained when the concentration of the complex is divided by the product of the component concentrations. In general, two compounds are said to "bind" in the context of the present invention when the binding constant for complex formation exceeds about 10³ L/mol. The binding constant may be determined using methods well known to those of ordinary skill in the art.

Any agent that satisfies the above requirements may be a binding agent. For example, a binding agent may be a ribosome with or without a peptide component, an RNA molecule or a peptide. In a preferred embodiment, the binding partner is an antibody, or a fragment thereof. Such antibodies may be polyclonal, or monoclonal. In addition, the antibodies may be single chain, chimeric, CDR-grafted or humanized. Antibodies may be prepared by the methods described herein and by other methods well known to those of skill in the art.

There are a variety of assay formats known to those of ordinary skill in the art for using a binding partner to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In a preferred embodiment, the assay involves the use of binding partner immobilized on a solid support to bind to and remove the polypeptide from the remainder of the sample. The bound polypeptide may then be detected using a second binding partner that contains a reporter group. Suitable second binding partners include antibodies that bind to the binding partner/polypeptide complex. Alternatively, a competitive assay may be utilized, in which a

polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding partner after incubation of the binding partner with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding partner is indicative of the reactivity of the sample with the immobilized binding partner.

The solid support may be any material known to those of ordinary skill in the art to which the antigen may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer. with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about 10 µg, and preferably about 100 ng to about 1 μg, is sufficient to immobilize an adequate amount of binding agent.

Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

In certain embodiments, the assay is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that polypeptides within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a second antibody (containing a reporter group) capable of binding to a different site on the polypeptide is added. The amount of second antibody that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20TM (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (i.e., incubation time) is that period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with prostate cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least about 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. The second antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of antibody to reporter group may be achieved using standard methods known to those of ordinary skill in the art.

The second state of the second

The second antibody is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound second antibody is then removed and bound second antibody is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of prostate cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without prostate cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for prostate cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, Little Brown and Co., 1985, p. 106-7. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for prostate cancer.

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the antibody is immobilized on a membrane, such as nitrocellulose. In the flow-through test, polypeptides within the sample bind to the immobilized antibody as the sample passes through the membrane. A second, labeled antibody then binds to the antibodypolypeptide complex as a solution containing the second antibody flows through the membrane. The detection of bound second antibody may then be performed as described above. In the strip test format, one end of the membrane to which antibody is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second antibody and to the area of immobilized antibody. Concentration of second antibody at the area of immobilized antibody indicates the presence of prostate cancer. Typically, the concentration of second antibody at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of antibody immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody sandwich assay, in the format discussed above. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1µg, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount of biological sample.

Of course, numerous other assay protocols exist that are suitable for use with the antigens or antibodies of the present invention. The above descriptions are intended to be exemplary only.

In another embodiment, the above polypeptides may be used as markers for the progression of prostate cancer. In this embodiment, assays as described above for the diagnosis of prostate cancer may be performed over time, and the change in the level of reactive polypeptide(s) evaluated. For example, the assays may be performed every 24-72 hours for a period of 6 months to 1 year, and thereafter performed as needed. In general, prostate cancer is progressing in those patients in whom the level of polypeptide detected by the binding agent increases over time. In contrast, prostate cancer is not progressing when the level of reactive polypeptide either remains constant or decreases with time.

Antibodies for use in the above methods may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In one such technique, an immunogen comprising the antigenic polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep and goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for the antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield,

such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Monoclonal antibodies of the present invention may also be used as therapeutic reagents, to diminish or eliminate prostate tumors. The antibodies may be used on their own (for instance, to inhibit metastases) or coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include ⁹⁰Y, ¹²³I, ¹²⁵I, ¹³¹I, ¹⁸⁶Re, ¹⁸⁸Re, ²¹¹At, and ²¹²Bi. Preferred drugs include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid. Preferred toxins include ricin, abrin, diptheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.

A therapeutic agent may be coupled (e.g., covalently bonded) to a suitable monoclonal antibody either directly or indirectly (e.g., via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulfhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.

Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.

It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the

catalog of the Pierce Chemical Co., Rockford, IL), may be employed as the linker group. Coupling may be effected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues. There are numerous references describing such methodology, e.g., U.S. Patent No. 4,671,958, to Rodwell et al.

Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group which is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Patent No. 4,489,710, to Spitler), by irradiation of a photolabile bond (e.g., U.S. Patent No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Patent No. 4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (e.g., U.S. Patent No. 4,671,958, to Rodwell et al.), and acid-catalyzed hydrolysis (e.g., U.S. Patent No. 4,569,789, to Blattler et al.).

It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.

A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Patent No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Patent No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Patent Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Patent No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing

nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Patent No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.

A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in the bed of a resected tumor. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density on the tumor, and the rate of clearance of the antibody.

Diagnostic reagents of the present invention may also comprise DNA sequences encoding one or more of the above polypeptides, or one or more portions thereof. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify prostate tumor-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for a DNA molecule encoding a prostate tumor protein of the present invention. The presence of the amplified cDNA is then detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes specific for a DNA molecule encoding a prostate tumor protein of the present invention may be used in a hybridization assay to detect the presence of an inventive polypeptide in a biological sample.

As used herein, the term "oligonucleotide primer/probe specific for a DNA molecule" means an oligonucleotide sequence that has at least about 80%, preferably at least about 90% and more preferably at least about 95%, identity to the DNA molecule in question. Oligonucleotide primers and/or probes which may be usefully employed in the inventive diagnostic methods preferably have at least about 10-40 nucleotides. In a preferred embodiment, the oligonucleotide primers comprise at least about 10 contiguous nucleotides of a DNA molecule having a sequence selected from SEQ ID Nos: 1-107, 109-111, 115-171, 173-175, 177 and 179-224. Preferably, oligonucleotide probes for use in the inventive diagnostic methods comprise at least about 15 contiguous oligonucleotides of a DNA molecule having a sequence provided in SEQ ID Nos: 1-107, 109-111, 115-171, 173-175, 177 and 179-224. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al. *Ibid*; Ehrlich, *Ibid*). Primers or probes may

thus be used to detect prostate tumor-specific sequences in biological samples, including blood, semen, prostate tissue and/or prostate tumor tissue.

Polypeptides of the present invention that comprise an immunogenic portion of a prostate tumor protein may also be used for immunotherapy of prostate cancer, wherein the polypeptide stimulates the patient's own immune response to prostate tumor cells. In further aspects, the present invention provides methods for using one or more of the immunoreactive polypeptides encoded by a DNA molecule having a sequence provided in SEQ ID NO: 1-107, 109-111, 115-171, 173-175, 177 and 179-224 (or DNA encoding such polypeptides) for immunotherapy of prostate cancer in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may be afflicted with a disease, or may be free of detectable disease. Accordingly, the above immunoreactive polypeptides may be used to treat prostate cancer or to inhibit the development of prostate cancer. The polypeptides may be administered either prior to or following surgical removal of primary tumors and/or treatment by administration of radiotherapy and conventional chemotherapeutic drugs.

In these aspects, the polypeptide is generally present within a pharmaceutical composition and/or a vaccine. Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a physiologically acceptable carrier. The vaccines may comprise one or more of such polypeptides and a non-specific immune response enhancer, such as an adjuvant, biodegradable microsphere (e.g., polylactic galactide) or a liposome (into which the polypeptide is incorporated). Pharmaceutical compositions and vaccines may also contain other epitopes of prostate tumor antigens, either incorporated into a combination polypeptide (i.e., a single polypeptide that contains multiple epitopes) or present within a separate polypeptide.

Alternatively, a pharmaceutical composition or vaccine may contain DNA encoding one or more of the above polypeptides, such that the polypeptide is generated in situ. In such pharmaceutical compositions and vaccines, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Appropriate nucleic acid

expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an epitope of a prostate cell antigen on its cell surface. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Suitable systems are disclosed, for example, in Fisher-Hoch et al., PNAS 86:317-321, 1989; Flexner et al., Ann. N.Y. Acad. Sci. 569:86-103, 1989; Flexner et al., Vaccine 8:17-21, 1990; U.S. Patent Nos. 4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Patent No. 4,777,127; GB 2,200,651; EP 0,345,242; WO 91/02805; Berkner, Biotechniques 6:616-627, 1988; Rosenfeld et al., Science 252:431-434, 1991; Kolls et al., PNAS 91:215-219, 1994; Kass-Eisler et al., PNAS 90:11498-11502, 1993; Guzman et al., Circulation 88:2838-2848, 1993; and Guzman et al., Cir. Res. 73:1202-1207, 1993. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in published PCT application WO 90/11092. and Ulmer et al., Science 259:1745-1749, 1993, reviewed by Cohen, Science 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

Routes and frequency of administration, as well as dosage, will vary from individual to individual and may parallel those currently being used in immunotherapy of other diseases. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 and 10 doses may be administered over a 3-24 week period. Preferably, 4 doses are administered, at an interval of 3 months, and booster administrations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of polypeptide or DNA that is effective to raise an immune response (cellular and/or humoral) against prostate tumor cells in a treated patient. A suitable immune response is at least 10-50% above the basal (i.e., untreated) level. In general, the amount of polypeptide present in a dose (or produced in situ by the DNA in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from

about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 µg. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.01 mL to about 5 mL.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a lipid, a wax and/or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and/or magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactic glycolide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

Any of a variety of non-specific immune response enhancers may be employed in the vaccines of this invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a nonspecific stimulator of immune response, such as lipid A, Bordella pertussis or Mycobacterium tuberculosis. Such adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI) and Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ).

Polypeptides disclosed herein may also be employed in ex vivo treatment of prostate cancer. For example, cells of the immune system, such as T cells, may be isolated from the peripheral blood of a patient, using a commercially available cell separation system, such as CellPro Incorporated's (Bothell, WA) CEPRATETM system (see U.S. Patent No. 5,240,856; U.S. Patent No. 5,215,926; WO 89/06280; WO 91/16116 and WO 92/07243). The separated cells are stimulated with one or more of the immunoreactive polypeptides contained within a delivery vehicle, such as a microsphere, to provide antigen-specific T cells. The population of tumor antigen-specific T cells is then expanded using standard techniques and the cells are administered back to the patient.

The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLES

EXAMPLE 1

ISOLATION AND CHARACTERIZATION OF PROSTATE TUMOR POLYPEPTIDES

This Example describes the isolation of prostate tumor polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library was constructed from prostate tumor poly A⁺ RNA using a Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning kit (BRL Life Technologies, Gaithersburg, MD 20897) following the manufacturer's protocol. Specifically, prostate tumor tissues were homogenized with polytron (Kinematica, Switzerland) and total RNA was extracted using Trizol reagent (BRL Life Technologies) as directed by the manufacturer. The poly A⁺ RNA was then purified using a Qiagen oligotex spin column mRNA purification kit (Qiagen, Santa Clarita, CA 91355) according to the manufacturer's protocol. First-strand cDNA was synthesized using the Notl/Oligo-dT18 primer. Double-stranded cDNA was synthesized, ligated with EcoRI/BAXI adaptors (Invitrogen, San Diego, CA) and digested with Notl. Following size fractionation with Chroma Spin-1000 columns (Clontech, Palo Alto, CA 94303), the cDNA was ligated into the EcoRI/Notl site of pCDNA3.1 (Invitrogen) and transformed into ElectroMax E. coli DH10B cells (BRL Life Technologies) by electroporation.

Using the same procedure, a normal human pancreas cDNA expression library was prepared from a pool of six tissue specimens (Clontech). The cDNA libraries were characterized by determining the number of independent colonies, the percentage of clones that carried insert, the average insert size and by sequence analysis. The prostate tumor library contained 1.64×10^7 independent colonies, with 70% of clones having an insert and the average insert size being 1745 base pairs. The normal pancreas cDNA library contained 3.3×10^6 independent colonies, with 69% of clones having inserts and the average insert size

being 1120 base pairs. For both libraries, sequence analysis showed that the majority of clones had a full length cDNA sequence and were synthesized from mRNA, with minimal rRNA and mitochondrial DNA contamination.

cDNA library subtraction was performed using the above prostate tumor and normal pancreas cDNA libraries, as described by Hara et al. (*Blood*, 84:189-199, 1994) with some modifications. Specifically, a prostate tumor-specific subtracted cDNA library was generated as follows. Normal pancreas cDNA library (70 µg) was digested with EcoRI, NotI, and SfuI, followed by a filling-in reaction with DNA polymerase Klenow fragment. After phenol-chloroform extraction and ethanol precipitation, the DNA was dissolved in 100 µl of H₂O, heat-denatured and mixed with 100 µl (100 µg) of Photoprobe biotin (Vector Laboratories, Burlingame, CA). As recommended by the manufacturer, the resulting mixture was irradiated with a 270 W sunlamp on ice for 20 minutes. Additional Photoprobe biotin (50 µl) was added and the biotinylation reaction was repeated. After extraction with butanol five times, the DNA was ethanol-precipitated and dissolved in 23 µl H₂O to form the driver DNA.

To form the tracer DNA, 10 μg prostate tumor cDNA library was digested with BamHI and XhoI, phenol chloroform extracted and passed through Chroma spin-400 columns (Clontech). Following ethanol precipitation, the tracer DNA was dissolved in 5 μl H₂O. Tracer DNA was mixed with 15 μl driver DNA and 20 μl of 2 x hybridization buffer (1.5 M NaCl/10 mM EDTA/50 mM HEPES pH 7.5/0.2% sodium dodecyl sulfate), overlaid with mineral oil, and heat-denatured completely. The sample was immediately transferred into a 68 °C water bath and incubated for 20 hours (long hybridization [LH]). The reaction mixture was then subjected to a streptavidin treatment followed by phenol/chloroform extraction. This process was repeated three more times. Subtracted DNA was precipitated, dissolved in 12 μl H₂O, mixed with 8 μl driver DNA and 20 μl of 2 x hybridization buffer, and subjected to a hybridization at 68 °C for 2 hours (short hybridization [SH]). After removal of biotinylated double-stranded DNA, subtracted cDNA was ligated into BamHI/XhoI site of chloramphenicol resistant pBCSK* (Stratagene, La Jolla, CA 92037) and transformed into ElectroMax *E. coli* DH10B cells by electroporation to generate a prostate tumor specific subtracted cDNA library/(prostate subtraction 1.

t de la espera según a la decida de la específica

To analyze the subtracted cDNA library, plasmid DNA was prepared from 100 independent clones, randomly picked from the subtracted prostate tumor specific library and grouped based on insert size. Representative cDNA clones were further characterized by DNA sequencing with a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A (Foster City, CA). Six cDNA clones, hereinafter referred to as F1-13, F1-12, F1-16, H1-1, H1-9 and H1-4, were shown to be abundant in the subtracted prostate-specific cDNA library. The determined 3' and 5' cDNA sequences for F1-12 are provided in SEQ ID NO: 2 and 3, respectively, with determined 3' cDNA sequences for F1-13, F1-16, H1-1, H1-9 and H1-4 being provided in SEQ ID No: 1 and 4-7, respectively.

The cDNA sequences for the isolated clones were compared to known sequences in the gene bank using the EMBL and GenBank databases (release 96). Four of the prostate tumor cDNA clones, F1-13, F1-16, H1-1, and H1-4, were determined to encode the following previously identified proteins: prostate specific antigen (PSA), human glandular kallikrein, human tumor expression enhanced gene, and mitochondria cytochrome C oxidase subunit II. H1-9 was found to be identical to a previously identified human autonomously replicating sequence. No significant homologies to the cDNA sequence for F1-12 were found.

Subsequent studies led to the isolation of a full-length cDNA sequence for F1
12. This sequence is provided in SEQ ID NO: 107, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 108.

To clone less abundant prostate tumor specific genes, cDNA library subtraction was performed by subtracting the prostate tumor cDNA library described above with the normal pancreas cDNA library and with the three most abundant genes in the previously subtracted prostate tumor specific cDNA library: human glandular kallikrein, prostate specific antigen (PSA), and mitochondria cytochrome C oxidase subunit II.

Specifically, 1 µg each of human glandular kallikrein, PSA and mitochondria cytochrome C oxidase subunit II cDNAs in pCDNA3.1 were added to the driver DNA and subtraction was performed as described above to provide a second subtracted cDNA library hereinafter referred to as the "subtracted prostate tumor specific cDNA library with spike".

Twenty-two cDNA clones were isolated from the subtracted prostate tumor specific cDNA library with spike. The determined 3' and 5' cDNA sequences for the clones referred to as J1-17, L1-12, N1-1862, J1-13, J1-19, J1-25, J1-24, K1-58, K1-63, L1-4 and L1-14 are provided in SEQ ID Nos: 8-9, 10-11, 12-13, 14-15, 16-17, 18-19, 20-21, 22-23, 24-25, 26-27 and 28-29, respectively. The determined 3' cDNA sequences for the clones referred to as J1-12, J1-16, J1-21, K1-48, K1-55, L1-2, L1-6, N1-1858, N1-1860, N1-1861, N1-1864 are provided in SEQ ID Nos: 30-40, respectively. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to three of the five most abundant DNA species, (J1-17, L1-12 and N1-1862; SEQ ID Nos: 8-9, 10-11 and 12-13, respectively). Of the remaining two most abundant species, one (J1-12; SEQ ID NO:30) was found to be identical to the previously identified human pulmonary surfactant-associated protein, and the other (K1-48; SEQ ID NO:33) was determined to have some homology to R. norvegicus mRNA for 2-arylpropionyl-CoA epimerase. Of the 17 less abundant cDNA clones isolated from the subtracted prostate tumor specific cDNA library with spike, four (J1-16, K1-55, L1-6 and N1-1864; SEQ ID Nos:31, 34, 36 and 40, respectively) were found to be identical to previously identified sequences, two (J1-21 and N1-1860; SEQ ID Nos: 32 and 38, respectively) were found to show some homology to non-human sequences, and two (L1-2 and N1-1861; SEQ ID Nos: 35 and 39, respectively) were found to show some homology to known human sequences. No significant homologies were found to the polypeptides J1-13, J1-19, J1-24, J1-25, K1-58, K1-63, L1-4, L1-14 (SEQ ID Nos: 14-15, 16-17, 20-21, 18-19, 22-23, 24-25, 26-27, 28-29, respectively).

Subsequent studies led to the isolation of full length cDNA sequences for J1-17, L1-12 and N1-1862 (SEQ ID NOS: 109-111, respectively). The corresponding predicted amino acid sequences are provided in SEQ ID NOS: 112-114.

In a further experiment, four additional clones were identified by subtracting a prostate tumor cDNA library with normal prostate cDNA prepared from a pool of three normal prostate poly A+ RNA (prostate subtraction 2). The determined cDNA sequences for these clones, hereinafter referred to as U1-3064, U1-3065, V1-3692 and 1A-3905, are provided in SEQ ID NO: 69-72, respectively. Comparison of the determined sequences with those in the gene bank revealed no significant homologies to U1-3065.

A second subtraction with spike (prostate subtraction spike 2) was performed by subtracting a prostate tumor specific cDNA library with spike with normal pancreas cDNA library and further spiked with PSA, J1-17, pulmonary surfactant-associated protein, mitochondrial DNA, cytochrome c oxidase subunit II, N1-1862, autonomously replicating sequence, L1-12 and tumor expression enhanced gene. Four additional clones, hereinafter referred to as V1-3686, R1-2330, 1B-3976 and V1-3679, were isolated. The determined cDNA sequences for these clones are provided in SEQ ID NO:73-76, respectively. Comparison of these sequences with those in the gene bank revealed no significant homologies to V1-3686 and R1-2330.

Further analysis of the three prostate subtractions described above (prostate subtraction 2, subtracted prostate tumor specific cDNA library with spike, and prostate subtraction spike 2) resulted in the identification of sixteen additional clones, referred to as 1G-4736, 1G-4738, 1G-4741, 1G-4744, 1G-4734, 1H-4774, 1H-4781, 1H-4785, 1H-4787, 1H-4796, 1I-4810, 1I-4811, 1J-4876, 1K-4884 and 1K-4896. The determined cDNA sequences for these clones are provided in SEQ ID NOS: 77-92, respectively. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to 1G-4741, 1G-4734, 1I-4807, 1J-4876 and 1K-4896 (SEQ ID NOS: 79, 81, 87, 90 and 92, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1G-4736, 1G-4738, 1G-4741, 1G-4744, 1H-4774, 1H-4781, 1H-4785, 1H-4787, 1H-4796, 1I-4807, 1J-4876, 1K-4884 and 1K-4896, provided in SEQ ID NOS: 179-188 and 191-193, respectively, and to the determination of additional partial cDNA sequences for 1I-4810 and 1I-4811, provided in SEQ ID NOS: 189 and 190, respectively.

An additional subtraction was performed by subtracting a normal prostate cDNA library with normal pancreas cDNA (prostate subtraction 3). This led to the identification of six additional clones referred to as 1G-4761, 1G-4762, 1H-4766, 1H-4770, 1H-4771 and 1H-4772 (SEQ ID NOS: 93-98). Comparison of these sequences with those in the gene bank revealed no significant homologies to 1G-4761 and 1H-4771 (SEQ ID NOS: 93 and 97, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1G-4761, 1G-4762, 1H-4766 and 1H-4772 provided in SEQ

ID NOS: 194-196 and 199, respectively, and to the determination of additional partial cDNA sequences for 1H-4770 and 1H-4771, provided in SEQ ID NOS: 197 and 198, respectively.

Subtraction of a prostate tumor cDNA library, prepared from a pool of polyA+RNA from three prostate cancer patients, with a normal pancreas cDNA library (prostate subtraction 4) led to the identification of eight clones, referred to as 1D-4297, 1D-4309, 1D.1-4278, 1D-4283, 1D-4283, 1D-4304, 1D-4296 and 1D-4280 (SEQ ID NOS: 99-107). These sequences were compared to those in the gene bank as described above. No significant homologies were found to 1D-4283 and 1D-4304 (SEQ ID NOS: 103 and 104, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1D-4309, 1D-4278, 1D-4288, 1D-4283, 1D-4304, 1D-4296 and 1D-4280, provided in SEQ ID NOS: 200-206, respectively.

cDNA clones isolated in prostate subtraction 1 and prostate subtraction 2, described above, were colony PCR amplified and their mRNA expression levels in prostate tumor, normal prostate and in various other normal tissues were determined using microarray technology (Synteni, Palo Alto, CA). Briefly, the PCR amplification products were dotted onto slides in an array format, with each product occupying a unique location in the array. mRNA was extracted from the tissue sample to be tested, reverse transcribed, and fluorescent-labeled cDNA probes were generated. The microarrays were probed with the labeled cDNA probes, the slides scanned and fluorescence intensity was measured. This intensity correlates with the hybridization intensity. Two novel clones (referred to as P509S and P510S) were found to be over-expressed in prostate tumor and normal prostate and expressed at low levels in all other normal tissues tested (liver, pancreas, skin, bone marrow, brain, breast, adrenal gland, bladder, testes, salivary gland, large intestine, kidney, ovary, lung, spinal cord, skeletal muscle and colon). The determined cDNA sequences for P509S and P510S are provided in SEQ ID NO: 223 and 224, respectively. Comparison of these sequences with those in the gene bank as described above, revealed some homology to previously identified ESTs.

A CARLON DE LA CARLO DE PARTE DA CARLO DE LA CARLO DE CA

Later Control Control Control Control Control

The Mark Control of the Assessment of the

EXAMPLE 2

DETERMINATION OF TISSUE SPECIFICITY OF PROSTATE TUMOR POLYPEPTIDES

Using gene specific primers, mRNA expression levels for the representative prostate tumor polypeptides F1-16, H1-1, J1-17, L1-12, F1-12 and N1-1862 were examined in a variety of normal and tumor tissues using RT-PCR.

Briefly, total RNA was extracted from a variety of normal and tumor tissues using Trizol reagent as described above. First strand synthesis was carried out using 1-2 μg of total RNA with SuperScript II reverse transcriptase (BRL Life Technologies) at 42 °C for one hour. The cDNA was then amplified by PCR with gene-specific primers. To ensure the semi-quantitative nature of the RT-PCR, β-actin was used as an internal control for each of the tissues examined. First, serial dilutions of the first strand cDNAs were prepared and RT-PCR assays were performed using β-actin specific primers. A dilution was then chosen that enabled the linear range amplification of the β-actin template and which was sensitive enough to reflect the differences in the initial copy numbers. Using these conditions, the β-actin levels were determined for each reverse transcription reaction from each tissue. DNA contamination was minimized by DNase treatment and by assuring a negative PCR result when using first strand cDNA that was prepared without adding reverse transcriptase.

mRNA Expression levels were examined in four different types of tumor tissue (prostate tumor from 2 patients, breast tumor from 3 patients, colon tumor, lung tumor), and sixteen different normal tissues, including prostate, colon, kidney, liver, lung, ovary, pancreas, skeletal muscle, skin, stomach, testes, bone marrow and brain. F1-16 was found to be expressed at high levels in prostate tumor tissue, colon tumor and normal prostate, and at lower levels in normal liver, skin and testes, with expression being undetectable in the other tissues examined. H1-1 was found to be expressed at high levels in prostate tumor, lung tumor, breast tumor, normal prostate, normal colon and normal brain, at much lower levels in normal lung, pancreas, skeletal muscle, skin, small intestine, bone marrow, and was not detected in the other tissues tested. J1-17 and L1-12 appear to be specifically over-expressed in prostate, with both genes being expressed at high levels in prostate tumor and normal prostate but at low to undetectable levels in all the other tissues

examined. N1-1862 was found to be over-expressed in 60% of prostate tumors and detectable in normal colon and kidney. The RT-PCR results thus indicate that F1-16, H1-1, J1-17, N1-1862 and L1-12 are either prostate specific or are expressed at significantly elevated levels in prostate.

Further RT-PCR studies showed that F1-12 is over-expressed in 60% of prostate tumors, detectable in normal kidney but not detectable in all other tissues tested. Similarly, R1-2330 was shown to be over-expressed in 40% of prostate tumors, detectable in normal kidney and liver, but not detectable in all other tissues tested. U1-3064 was found to be over-expressed in 60% of prostate tumors, and also expressed in breast and colon tumors, but was not detectable in normal tissues.

RT-PCR characterization of R1-2330, U1-3064 and 1D-4279 showed that these three antigens are over-expressed in prostate and/or prostate tumors.

Northern analysis with four prostate tumors, two normal prostate samples, two BPH prostates, and normal colon, kidney, liver, lung, pancrease, skeletal muscle, brain, stomach, testes, small intestine and bone marrow, showed that L1-12 is over-expressed in prostate tumors and normal prostate, while being undetectable in other normal tissues tested. J1-17 was detected in two prostate tumors and not in the other tissues tested. N1-1862 was found to be over-expressed in three prostate tumors and to be expressed in normal prostate, colon and kidney, but not in other tissues tested. F1-12 was found to be highly expressed in two prostate tumors and to be undetectable in all other tissues tested.

The micro-array technology described above was used to determine the expression levels of representative antigens described herein in prostate tumor, breast tumor and the following normal tissues: prostate, liver, pancreas, skin, bone marrow, brain, breast, adrenal gland, bladder, testes, salivary gland, large intestine, kidney, ovary, lung, spinal cord, skeletal muscle and colon. L1-12 was found to be over-expressed in normal prostate and prostate tumor, with some expression being detected in normal skeletal muscle. Both J1-12 and F1-12 were found to be over-expressed in prostate tumor, with expression being lower or undetectable in all other tissues tested. N1-1862 was found to be expressed at high levels in prostate tumor and normal prostate, and at low levels in normal large intestine and normal colon, with expression being undetectable in all other tissues tested. R1-2330 was found to

be over-expressed in prostate tumor and normal prostate, and to be expressed at lower levels in all other tissues tested. 1D-4279 was found to be over-expressed in prostate tumor and normal prostate, expressed at lower levels in normal spinal cord, and to be undetectable in all other tissues tested.

Example 3

ISOLATION AND CHARACTERIZATION OF PROSTATE TUMOR POLYPEPTIDES BY PCR-BASED SUBTRACTON

A cDNA subtraction library, containing cDNA from normal prostate subtracted with ten other normal tissue cDNAs (brain, heart, kidney, liver, lung, ovary, placenta, skeletal muscle, spleen and thymus) and then submitted to a first round of PCR amplification, was purchased from Clontech. This library was subjected to a second round of PCR amplification, following the manufacturer's protocol. The resulting cDNA fragments were subcloned into the vector pT7 Blue T-vector (Novagen, Madison, Wl) and transformed into XL-1 Blue MRF' E. coli (Stratagene). DNA was isolated from independent clones and sequenced using a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A.

Fifty-nine positive clones were sequenced. Comparison of the DNA sequences of these clones with those in the gene bank, as described above, revealed no significant homologies to 25 of these clones, hereinafter referred to as P5, P8, P9, P18, P20, P30, P34, P36, P38, P39, P42, P49, P50, P53, P55, P60, P64, P65, P73, P75, P76, P79, and P84. The determined cDNA sequences for these clones are provided in SEQ ID NO:41-45, 47-52 and 54-65, respectively. P29, P47, P68, P80 and P82 (SEQ ID NO:46, 53 and 66-68, respectively) were found to show some degree of homology to previously identified DNA sequences. To the best of the inventors' knowledge, none of these sequences have been previously shown to be present in prostate.

Further studies using the PCR-based methodology described above resulted in the isolation of more than 180 additional clones, of which 23 clones were found to show no significant

homologies to known sequences: The determined cDNA sequences for these clones are provided in SEQ ID NO: 115-123, 127, 131, 137, 145, 147-151, 153, 156-158 and 160. Twenty-three clones (SEQ ID NO: 124-126, 128-130, 132-136, 138-144, 146, 152, 154, 155 and 159) were found to show some homology to previously identified ESTs. An additional ten clones (SEQ ID NO: 161-170) were found to have some degree of homology to known genes. An additional clone, referred to as P703, was found to have five splice variants. The determined DNA sequence for the variants referred to as DE1, DE13 and DE14 are provided in SEQ ID NOS: 171, 175 and 177, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 172, 176 and 178, respectively. The DNA sequences for the splice variants referred to as DE2 and DE6 are provided in SEQ ID NOS: 173 and 174, respectively.

mRNA Expression levels for representative clones in tumor tissues (prostate (n=5), breast (n=2), colon and lung) normal tissues (prostate (n=5), colon, kidney, liver, lung (n=2), ovary (n=2), skeletal muscle, skin, stomach, small intestine and brain), and activated and non-activated PBMC was determined by RT-PCT as described above. Expression was examined in one sample of each tissue type unless otherwise indicated.

P9 was found to be highly expressed in normal prostate and prostate tumor compared to all normal tissues tested except for normal colon which showed comparable expression. P20 was found to be highly expressed in normal prostate and prostate tumor, compared to all twelve normal tissues tested. A modest increase in expression of P20 in breast tumor (n=2), colon tumor and lung tumor was seen compared to all normal tissues except lung (1 of 2). Increased expression of P18 was found in normal prostate, prostate tumor and breast tumor compared to other normal tissues except lung and stomach. A modest increase in expression of P5 was observed in normal prostate compared to most other normal tissues. However, some elevated expression was seen in normal lung and PBMC. Elevated expression of P5 was also observed in prostate tumors (2 of 5), breast tumor and one lung tumor sample. For P30, similar expression levels were seen in normal prostate and prostate tumor, compared to six of twelve other normal tissues tested. Increased expression was seen in breast tumors, one lung tumor sample and one colon tumor sample, and also in normal PBMC. P29 was found to be over-expressed in prostate tumor (5 of 5) and normal prostate (5

of 5) compared to the majority of normal tissues. However, substantial expression of P29 was observed in normal colon and normal lung (2 of 2). P80 was found to be over-expressed in prostate tumor (5 of 5) and normal prostate (5 of 5) compared to all other normal tissues tested, with increased expression also being seen in colon tumor.

Further studies using the above methodology resulted in the isolation of twelve additional clones, hereinafter referred to as 10-d8, 10-h10, 11-c8, 7-g6, 8-b5, 8-b6, 8-d4, 8-d9, 8-g3, 8-h11, g-f12 and g-f3. The determined DNA sequences for 10-d8, 10-h10, 11-c8, 8-d4, 8-d9, 8-h11, g-f12 and g-f3 are provided in SEQ ID NO: 207, 208, 209, 216, 217, 220, 221 and 222, respectively. The determined forward and reverse DNA sequences for 7-g6, 8-b5, 8-b6 and 8-g3 are provided in SEQ ID NO: 210 and 211; 212 and 213; 214 and 215; and 218 and 219, respectively. Comparison of these sequences with those in the gene bank revealed no significant homologies to the sequences of 7-g6 and g-f3. The clones 10-d8, 11-c8 and 8-h11 were found to show some homology to previously isolated ESTs, while 10-h10, 8-b5, 8-b6, 8-d4, 8-d9, 8-g3 and g-f12 were found to show some homology to previously identified genes.

EXAMPLE 4 SYNTHESIS OF POLYPEPTIDES

Polypeptides may be synthesized on an Applied Biosystems 430A peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation, binding to an immobilized surface, or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following

WO 98/37418 PCT/US98/03690

33

lyophilization of the pure fractions, the peptides may be characterized using electrospray or other types of mass spectrometry and by amino acid analysis.

ranga kabipatèn dan mengah ajad di kepadahan ke

1. Comment of the Co

Bally the Bullion of the control of the control of the second

terran en levere per servicione de la representación de Sistem el Egypte de la Persona. Compresan el como en legera en les entre

and the second of the second o

and the Bright time of the control of the control of the

·萨朗·西里克 马克斯克斯内斯 医环状皮膜神经炎 医抗病

troj partikuja ejalu i Napolio i Siridar sadat gada ti Misalioj.

ing kalah diga panggalah di kabipatan dalah panggalah di kabipatan dalah biranggalah di kabipatan dalah birang

Commence of the Commence of th

SHE WISH SHE TWO LIFE SHE SEEDING

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

til er Bereit seller i tre pelljeter i seller av present seller vijer sjeger i se

The second of the live of the second of the second

医大胆病 医多种 医多种 医多氏 医抗性病 经基本基本 医皮肤

人名英西克纳 网络乳头 经基本股份股份 经成本 化二甲基甲基甲基

Application and the second of the second of

SEQUENCE LISTING .

- (1) GENERAL INFORMATION:
 - (i) APPLICANTS: Xu, Jiangchun Dillon, Davin C.
- (ii) TITLE OF INVENTION: COMPOUNDS FOR IMMUNODIAGNOSIS OF PROSTATE CANCER AND METHODS FOR THEIR USE
 - (iii) NUMBER OF SEQUENCES: 224
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SEED and BERRY LLP
 - (B) STREET: 6300 Columbia Center, 701 Fifth Avenue
 - (C) CITY: Seattle
 - (D) STATE: WA
 - (E) COUNTRY: USA
 - (F) ZIP: 98104
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 23-FEB-1998
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Maki, David J.
 - (B) REGISTRATION NUMBER: 31,392
 - (C) REFERENCE/DOCKET NUMBER: 210121.428C3
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (206) 622-4900
 - (B) TELEFAX: (206) 682-6031
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 814 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
- TTTTTTTTT TTTTCACAG TATAACAGCT CTTTATTTCT GTGAGTTCTA CTAGGAAATC

ATCAAATCTG	AGGGTTGTCT	GGAGGACTTC	AATACACCTC	CCCCCATAGT	GAATCAGCTT	. 120
CCAGGGGGTC	CAGTCCCTCT	CCTTACTTCA	TCCCCATCCC	ATGCCAAAGG	AAGACCCTCC	180
CTCCTTGGCT	CACAGCCTTC	TCTAGGCTTC	CCAGTGCCTC	CAGGACAGAG	TGGGTTATGT	240
TTTCAGCTCC	ATCCTTGCTG	TGAGTGTCTG	GTGCGTTGTG	CCTCCAGCTT	CTGCTCAGTG	300
CTTCATGGAC	AGTGTCCAGC	ACATGTCACT	CTCCACTCTC	TCAGTGTGGA	TCCACTAGTT	360
CTAGAGCGGC	CGCCACCGCG	GTGGAGCTCC	AGCTTTTGTT	CCCTTTAGTG	AGGGTTAATT	420
GCGCGCTTGG	CGTAATCATG	GTCATAACTG	TTTCCTGTGT	GAAATTGTTA	TCCGCTCACA	480
ATTCCACACA	ACATACGAGC	CGGAAGCATA	AAGTGTAAAG	CCTGGGGTGC	CTAATGAGTG	540
ANCTAACTCA	CATTAATTGC	GTTGCGCTCA	CTGNCCGCTT	TCCAGTCNGG	AAAACTGTCG	600
TGCCAGCTGC	ATTAATGAAT	CGGCCAACGC	NCGGGGAAAA	GCGGTTTGCG	TTTTGGGGGC	660
TCTTCCGCTT	CTCGCTCACT	NANTCCTGCG	CTCGGTCNTT	CGGCTGCGGG	GAACGGTATC	720
ACTCCTCAAA	GGNGGTATTA	CGGTTATCCN	NAAATCNGGG	GATACCCNGG	AAAAAANTTT	780
AACAAAAGGG	CANCAAAGGG	CNGAAACGTA	AAAA			814

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 816 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ACAGAAATGT	TGGATGGTGG	AGCACCTTTC	TATACGACTT	ACAGGACAGC	AGATGGGGAA	60
TTCATGGCTG	TTGGAGCAAT	AGAACCCCAG	TTCTACGAGC	TGCTGATCAA	AGGACTTGGA	120
CTAAAGTCTG	ATGAACTTCC	CAATCAGATG	AGCATGGATG	ATTGGCCAGA	AATGAAGAAG	180
AAGTTTGCAG	ATGTATTTGC	AAAGAAGACG	AAGGCAGAGT	GGTGTCAAAT	CTTTGACGGC	240
ACAGATGCCT	GTGTGACTCC	GGTTCTGACT	TTTGAGGAGG	TTGTTCATCA	TGATCACAAC	300
AAGGAACGGG	GCTCGTTTAT	CACCAGTGAG	GAGCAGGACG	TGAGCCCCCG	CCCTGCACCT	360
CTGCTGTTAA	ACACCCCAGC	CATCCCTTCT	TTCAAAAGGG	ATCCACTAGT	TCTAGAAGCG	420
GCCGCCACCG	CGGTGGAGCT	CCAGCTTTTG	TTCCCTTTAG	TGAGGGTTAA	TTGCGCGCTT	480
GGCGTAATCA	TGGTCATAGC	TGTTTCCTGT	GTGAAATTGT	TATCCGCTCA	CAATTCCCCC	540
AACATACGAG	CCGGAACATA	AAGTGTTAAG	CCTGGGGTGC	CTAATGANTG	AGCTAACTCN	600
CATTAATTGC	GTTGCGCTCA	CTGCCCGCTT	TCCAGTCGGG	AAAACTGTCG	TGCCACTGCN	660
TTANTGAATC	NGCCACCCC	CGGGAAAAGG	CGGTTGCNTT	TTGGGCCTCT	TECCTTTCC	720
TCGCTCATTG	ATCCTNGCNC	CCGGTCTTCG	GCTGCGGNGA	ACGGTTCACT	CCTCAAAGGC	780
GGTNTNCCGG	TTATCCCCAA	ACNGGGGATA	CCCNGA			816

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 773 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CTTTTGAAAG AAGG	GATGGC TGGGGTGTT	AACAGCAGAG	GTGCAGGGCG	GGGGCTCACG	60
TCCTGCTCCT CACT	GGTGAT AAACGAGCC	CGTTCCTTGT	TGTGATCATG	ATGAACAACC	120

TCCTCAAAAG	TCAGAACCGG	AGTCACACAG	GCATCTGTGC	CGTCAAAGAT	TTGACACCAC	180
TCTGCCTTCG	TCTTCTTTGC	AAATACATCT	GCAAACTTCT	TCTTCATTTC	TGGCCAATCA	. 240
TCCATGCTCA	TCTGATTGGG	AAGTTCATCA	GACTTTAGTC	CANNTCCTTT	GATCAGCAGC	300
TCGTAGAACT	GGGGTTCTAT	TGCTCCAACA	GCCATGAATT	CCCCATCTGC	TGTCCTGTAA	360
GTCGTATAGA	AAGGTGCTCC	ACCATCCAAC	ATGTTCTGTC	CTCGAGGGG	GGCCCGGTAC	420
CCAATTCGCC	CTATANTGAG	TCGTATTACG	CGCGCTCACT	GGCCGTCGTT	TTACAACGTC	480
GTGACTGGGA	AAACCCTGGG	CGTTACCAAC	TTAATCGCCT	TGCAGCACAT	CCCCTTTCG	540
CCAGCTGGGC	GTAATANCGA	AAAGGCCCGC	ACCGATCGCC	CTTCCAACAG	TTGCGCACCT	600
GAATGGGNAA	ATGGGACCCC	CCTGTTACCG	CGCATTNAAC	CCCCGCNGGG	TTTNGTTGTT	660
ACCCCCACNT	NNACCGCTTA	CACTTTGCCA	GCGCCTTANC	GCCCGCTCCC	TTTCNCCTTT	720
CTTCCCTTCC	TTTCNCNCCN	CTTTCCCCCG	GGGTTTCCCC	CNTCAAACCC	CNA	773

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 828 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CCTCCTGAGT	CCTACTGACC	TGTGCTTTCT	GGTGTGGAGT	CCAGGGCTGC	TAGGAAAAGG	60
AATGGGCAGA	CACAGGTGTA	TGCCAATGTT	TCTGAAATGG	GTATAATTTC	GTCCTCTCCT	120,
TCGGAACACT	GGCTGTCTCT	GAAGACTTCT	CGCTCAGTTT	CAGTGAGGAC	ACACACAAAG	180
ACGTGGGTGA	CCATGTTGTT	TGTGGGGTGC	AGAGATGGGA	GGGGTGGGGC	CCACCCTGGA	240
				ACTGAGGATA		300
ACAATGCATG	AGGCACACAC	ACAGCAAGGA	TGACNCTGTA	AACATAGCCC	ACCCTGTCCT	360
GNGGGCACTG	GGAAGCCTAN	ATNAGGCCGT	GAGCANAAAG	AAGGGGAGGA	TCCACTAGTT	420
CTANAGCGGC	CGCCACCGCG	GTGGANCTCC	ANCTTTTGTT	CCCTTTAGTG	AGGGTTAATT	480
GCGCGCTTGG	CNTAATCATG	GTCATANCTN	TTTCCTGTGT	GAAATTGTTA	TCCGCTCACA	540
					TAATGANTGA	600
CTAACTCACA	TTAATTGCGT	TGCGCTCACT	GCCCGCTTTC	CAATCNGGAA	ACCTGTCTTG	660
					TGGGCGCTCT	720
TCCGCTTCCT	CNCTCANTTA	NTCCCTNCNC	TCGGTCATTC	CGGCTGCNGC	AAACCGGTTC	780
ACCNCCTCCA	AAGGGGGTAT	TCCGGTTTCC	CCNAATCCGG	GGANANCC		828

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 834 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TTTTTTTTT	TTTTTACTGA	TAGATGGAAT	TTATTAAGCT	TTTCACATGT	GATAGCACAT	60
AGTTTTAATT	GCATCCAAAG	TACTAACAAA	AACTCTAGCA	ATCAAGAATG	GCAGCATGTT	120
ATTTTATAAC	AATCAACACC	TGTGGCTTTT	AAAATTTGGT	TTTCATAAGA	TAATTTATAC	180
TGAAGTAAAT	CTAGCCATGC	TTTTAAAAAA	TGCTTTAGGT	CACTCCAAGC	TTGGCAGTTA	240

ል ረን ምምምረረረር	ጥልልል ሮልልሞልል	TABARCARTC	አረን አጥጥጥለ አጥ	*********	TACAACATTG	. 300
	•	•				
				GTTGAGTAAG		360
AATAGAATAC	CTTGGCCTCT	ATGCAAATAT	GTCTAGACAC	TTTGATTCAC	TCAGCCCTGA	420
CATTCAGTTT	TCAAAGTAGG	AGACAGGTTC	TACAGTATCA	TTTTACAGTT	TCCAACACAT	480
				CATTACATCC		540
				AGTCATATAA		600
			and the second s	AATGGTCCCC		660
			and the second s	AGGCTTTTGA		720
				ACAGTGTGCT		780
TGTTATTTTG	TTAAAAATTA	AATTTTAACC	TGGTGGAAAA	ATAATTTGAA	ATNA	834

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 818 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TTTTTTTTT	TTTTTTTTT	AAGACCCTCA	TCAATAGATG	GAGACATACA	GAAATAGTCA	60
AACCACATCT	ACAAAATGCC	AGTATCAGGC	GGCGGCTTCG	AAGCCAAAGT	GATGTTTGGA	120
TGTAAAGTGA	AATATTAGTT	GGCGGATGAA	GCAGATAGTG	AGGAAAGTTG	AGCCAATAAT	180
GACGTGAAGT	CCGTGGAAGC	CTGTGGCTAC	AAAAAATGTT	GAGCCGTAGA	TGCCGTCGGA	240
AATGGTGAAG	GGAGACTCGA	AGTACTCTGA	GGCTTGTAGG	AGGGTAAAAT	AGAGACCCAG	300
TAAAATTGTA	ATAAGCAGTG	CTTGAATTAT	TTGGTTTCGG	TTGTTTTCTA	TTAGACTATG	360
GTGAGCTCAG	GTGATTGATA	CTCCTGATGC	GAGTAATACG	GATGTGTTTA	GGAGTGGGAC	420
TTCTAGGGGA	TTTAGCGGGG	TGATGCCTGT	TGGGGGCCAG	TGCCCTCCTA	GTTGGGGGGT	480
AGGGGCTAGG	CTGGAGTGGT	AAAAGGCTCA	GAAAAATCCT	GCGAAGAAA	AAACTTCTGA	540
GGTAATAAAT	AGGATTATCC	CGTATCGAAG	GCCTTTTTGG	ACAGGTGGTG	TGTGGTGGCC	600
TTGGTATGTG	CTTTCTCGTG	TTACATCGCG	CCATCATTGG	TATATGGTTA	GTGTGTTGGG	660
TTANTANGGC	CTANTATGAA	GAACTTTTGG	ANTGGAATTA	AATCAATNGC	TTGGCCGGAA	720
GTCATTANGA	NGGCTNAAAA	GGCCCTGTTA	NGGGTCTGGG	CTNGGTTTTA	CCCNACCCAT	780
GGAATNCNCC	CCCCGGACNA	NTGNATCCCT	AATTOTTA			818
				•		

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 817 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

TTTTTTTTT TTTTTTTT TGGCTCTAGA GGGGGTAGAG GGGGTGCTAT AGGGTAAATA	60
CGGGCCCTAT TTCAAAGATT TTTAGGGGAA TTAATTCTAG GACGATGGGT ATGAAACTGT	120
GGTTTGCTCC ACAGATTTCA GAGCATTGAC CGTAGTATAC CCCCGGTCGT GTAGCGGTGA	180
AAGTGGTTTG GTTTAGAGGT CCGGGAATTG CATCTGTTTT TAAGCCTAAT GTGGGGACAG	240
CTCATGAGTG CAAGACGTCT TGTGATGTAA TTATTATACN AATGGGGGCT TCAATCGGGA	300

GTACTACTCG	ATTGTCAACG	TCAAGGAGTC	GCAGGTCGCC	TGGTTCTAGG	AATAATGGGG	-360
GAAGTATGTA	GGAATTGAAG	ATTAATCCGC	CGTAGTCGGT	GTTCTCCTAG	GTTCAATACC	420
ATTGGTGGCC	AATTGATTTG	ATGGTAAGGG	GAGGGATCGT	TGAACTCGTC	TGTTATGTAA	480
AGGATNCCTT	NGGGATGGGA	AGGCNATNAA	GGACTANGGA	TNAATGGCGG	GCANGATATT	540
TCAAACNGTC	TCTANTTCCT	GAAACGTCTG	AAATGTTAAT	AANAATTAAN	TTTNGTTATT	600
GAATNTTNNG	GAAAAGGGCT	TACAGGACTA	GAAACCAAAT	ANGAAAANTA	ATNNTAANGG	660
CNTTATCNTN	AAAGGTNATA	ACCNCTCCTA	TNATCCCACC	CAATNGNATT	CCCCACNCNN	720
ACNATTGGAT	NCCCCANTTC	CANAAANGGC	CNCCCCCGG	TGNANNCCNC	CTTTTGTTCC	780
CTTNANTGAN	GGTTATTCNC	CCCTNGCNTT	ATCANCC		:	817

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 799 base pairs
- (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPQLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

CATTTCCGGG TTTACTTTCT	AAGGAAAGCC	GAGCGGAAGC	TGCTAACGTG	GGAATCGGTG	60
CATAAGGAGA ACTTTCTGCT	GGCACGCGCT	AGGGACAAGC	GGGAGAGCGA	CTCCGAGCGT	120
CTGAAGCGCA CGTCCCAGAA	GGTGGACTTG	GCACTGAAAC	AGCTGGGACA	CATCCGCGAG	180
TACGAACAGC GCCTGAAAGT	GCTGGAGCGG	GAGGTCCAGC	AGTGTAGCCG	CGTCCTGGGG	240
TGGGTGGCCG ANGCCTGANC	CGCTCTGCCT	TGCTGCCCCC	ANGTGGGCCG	CCACCCCCTG	300
ACCTGCCTGG GTCCAAACAC					360
GGATTTTGCT CCTANANTAA	GGCTCATCTG	GCCTCGGCC	CCCCCACCTG	GTTGGCCTTG	420
TCTTTGANGT GAGCCCCATG					480
CTCCTTACAA CCACANNATG					540
CAAGNCCTGN ATCCACTNNT					600
TCCTTTTCNT TNAGGGTTAA					660
GTTNAAATTG TTANGCNCCC					720
NCCTGGGGGT NCCNNCNGAT	TGACCCNNCC	NCCCTNTANT	TGCNTTNGGG	NNCNNTGCCC	780
CTTTCCCTCT NGGGANNCG		•			799

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 801 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

					•
ACGCCTTGAT CCTCCCAGGC	TGGGACTGGT	TCTGGGAGGA	GCCGGGCATG	CTGTGGTTTG	60
TAANGATGAC ACTCCCAAAG	GTGGTCCTGA	CAGTGGCCCA	GATGGACATG	GGGCTCACCT	120
CAAGGACAAG GCCACCAGGT					180
AATCCCCTGT GGGGGCTTCT					240
CAGGTCATGG GGTTGTNGNC	CAACTGGGGG	CCNCAACGCA	AAANGGCNCA	GGGCCTCNGN	300
CACCCATCCC ANGACGCGGC	TACACTNCTG	GACCTCCCNC	TCCACCACTT	TCATGCGCTG	360

1997年 - 1987年 - 19874年 - 1987年 - 19874 - 19874 - 19874 - 19874 - 19874 - 19874 - 19874 - 19874 - 19874 - 19874 - 1987

The second to be a first

TTCNTACCCG	CGNATNTGTC	CCANCTGTTT	CNGTGCCNAC	TCCANCTTCT	NGGACGTGCG	4	20
CTACATACGC	CCGGANTCNC	NCTCCCGCTT	TGTCCCTATC	CACGTNCCAN	CAACAAATTT	4	80
CNCCNTANTG	CACCNATTCC	CACNTTTNNC	AGNTTTCCNC	NNCGNGCTTC	CTTNTAAAAG	5	40
GGTTGANCCC	CGGAAAATNC	CCCAAAGGGG	GGGGGCCNGG	TACCCAACTN	CCCCCTNATA	6	00
GCTGAANTCC	CCATNACCNN	GNCTCNATGG	ANCENTECNT	TTTAANNACN	TTCTNAACTT	6	60
GGGAANANCC	CTCGNCCNTN	CCCCCNTTAA	TCCCNCCTTG	CNANGNNCNT	CCCCCNNTCC	7	20
NCCCNNNTNG	GCNTNTNANN	CNAAAAAGGC	CCNNNANCAA	TCTCCTNNCN	CCTCANTTCG	. 7	80-
CCANCCCTCG	AAATCGGCCN	_					01
			and the first state of the	a lifer of a life	J. 1997 19 19 17.		.4,

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 789 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CAGTCTATNT GGCCAGTGT	G GCAGCTTTCC	CTGTGGCTGC	CGGTGCCACA	TGCCTGTCCC	6.0
ACAGTGTGGC CGTGGTGAC	A GCTTCAGCCG	CCCTCACCGG	GTTCACCTTC	TCAGCCCTGC	120
AGATCCTGCC CTACACACT	G GCCTCCCTCT	·ACCACCGGGA	GAAGCAGGTG	TTCCTGCCCA	180
AATACCGAGG GGACACTGG	A GGTGCTAGCA	GTGAGGACAG	CCTGATGACC	AGCTTCCTGC	240
CAGGCCCTAA GCCTGGAGC	T CCCTTCCCTA	ATGGÄCACGT	GGGTGCTGGA	GGCAGTGGCC	300
TGCTCCCACC TCCACCCGC					360
TGGTGGGTGA GCCCACCGA					420
CCATCCTGGA TAGTGCTTC	C · MCCARCACCAY	Managagaa	TO COMOMINA	magagangarm	400
					4.80
TGTCCAGCTC AGCCAGTCT	G TCACTGCCTA	TATGGTGTCT	GCCGCAGGCC	TGGGTCTGGT	540
TGTCCAGCTC AGCCAGTCT GCCATTTACT TTGCTACAC	G TCACTGCCTA A GGTANTATTT	TATGGTGTCT GACAAGAACG	GCCGCAGGCC ANTTGGCCAA	TGGGTCTGGT ATACTCAGCG	5.00
TGTCCAGCTC AGCCAGTCT GCCATTTACT TTGCTACAC TTAAAAAATT GCAGCAACA	G TCACTGCCTA A GGTANTATTT T TGGGGGTGGA	TATGGTGTCT GACAAGAACG AGGCCTGCCT	GCCGCAGGCC ANTTGGCCAA CACTGGGTCC	TGGGTCTGGT ATACTCAGCG AACTCCCCGC	540
TGTCCAGCTC AGCCAGTCT GCCATTTACT TTGCTACAC TTAAAAAATT CCAGCAACA TGCTGTTAAC GCCATGGGG	G TCACTGCCTA A GGTANTATTT T TGGGGGTGGA C TGGGGGCTTG	TATGGTGTCT GACAAGAACG AGGCCTGCCT GCCGCCAATT	GCCGCAGGCC ANTTGGCCAA CACTGGGTCC TCTGTTGCTG	TGGGTCTGGT ATACTCAGCG AACTCCCCGC CCAAANTNAT	540 500
TGTCCAGCTC AGCCAGTCT GCCATTTACT TTGCTACAC TTAAAAAATT GCAGCAACA	G TCACTGCCTA A GGTANTATTT T TGGGGGTGGA C TGGGGGCTTG	TATGGTGTCT GACAAGAACG AGGCCTGCCT GCCGCCAATT	GCCGCAGGCC ANTTGGCCAA CACTGGGTCC TCTGTTGCTG	TGGGTCTGGT ATACTCAGCG AACTCCCCGC CCAAANTNAT	540 500 660
TGTCCAGCTC AGCCAGTCT GCCATTTACT TTGCTACAC TTAAAAAATT CCAGCAACA TGCTGTTAAC GCCATGGGG	G TCACTGCCTA A GGTANTATTT T TGGGGGTGGA C TGGGGGCTTG	TATGGTGTCT GACAAGAACG AGGCCTGCCT GCCGCCAATT	GCCGCAGGCC ANTTGGCCAA CACTGGGTCC TCTGTTGCTG	TGGGTCTGGT ATACTCAGCG AACTCCCCGC CCAAANTNAT NGGGGGGTNG	540 500 660 720

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 772 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

60	TCCCTTCTAC	AGCAATGGAT	CAGAAAAGCT	GACACCAACA	CCAAATATTA	CCCACCCTAC
120	CAACAGAAGG	TCTGTGATGG	TGCCTGTGTC	AATATTTAAA	AAATAAGTTA	TTTGTTAAAT
180	AAGACAGTGC					
240	CCTACAAATA	GGACTCTTCC	TTGCCCCTCA	TTCTTGTGTG	GGGGACCTGG	TGTGGGCTGA
300	CATGCAAGAG	TAGAAACTCC	TGTTTCATCC	CATGGAGGAG	GTTCAAATCC	ACTTTCATAT
360	TGACTGAGTT	GGAAACCAGG	CTTANAGATG	GGTTAAGGGG	CGAAGCTGCA	CTACATTAAA
420	GCTGTTAACC	TAGGAGGCTA	GTGTCTCAAC	TTCTCTAGGT	CCAAAAACCC	TATTCAGCTC

					CCCTTCTGGC		480
CTCCCTGTAT	AAGTCCAGAC	TGAAACCCCC	TTGGAAGGNC	TCCAGTCAGG	CAGCCCTANA		540
AACTGGGGAA	AAAAGAAAAG	GACGCCCCAN	CCCCCAGCTG	TGCANCTACG	CACCTCAACA	•	600
GCACAGGGTG	GCAGCAAAAA	AACCACTTTA	CTTTGGCACA	AACAAAAACT	NGGGGGGCA	f. "	660
ACCCCGGCAC	CCCNANGGGG	GTTAACAGGA	ANCNGGGNAA	CNTGGAACCC	AATTNAGGCA		720
GGCCCNCCAC	CCCNAATNTT	GCTGGGAAAT	TTTTCCTCCC	CTAAATTNTT	TC	• •	772

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 751 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GCCCCD አ ጥጥር	CAGCTGCCAC	ACCACCCACC	OTTO TOTO OTTO	ma composes m		
						60
	AGCAACCCTC					120
	TGGTGACGTT					180
	AGTCCTCAAA					240
	TCCACACTTG					300
	GCAACGTCAG					360
	ACCTCAGCAA					420
	TCAGTCTTAN					480 -
	GATGAAGAAA					540
	AAAATCTTCA					600
CCAACAGGGG	CTGCCCCACN	CNCNNAACGA	TGANCCNATT	GNACAAGATC	TNCNTGGTCT	660
TNATNAACNT	GAACCCTGCN	TNGTGGCTCC	TGTTCAGGNC	CNNGGCCTGA	CTTCTNAANN	720
AANGAACTCN	GAAGNCCCCA	CNGGANANNC	G			751
						and the second of the

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 729 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GAGCCAGGCG	TCCCTCTGCC	TGCCCACTCA	GTGGCAACAC	CCGGGAGCTG	TTTTGTCCTT	60
		CTCTTTCAGA				120
		CATTAAGACC				180
		GGCAGTGGGC				240
		GTCGTCCAGT				300
		GGTCTTAGCT				360
		CGTGACGTTC				420
		GCCTTGGTGT				480
		AANAAAAGAT				540
GTTGGAACAC	CACCATGAAA	GGGCTCAAGT	GCTGTGGCTT	CNNCCAACTA	TACGGATTTT	600

					CAATTGACAA	660
•	CACAGCCAAT	TGAAAACCTG	CACCCAACCC	AAANGGGTCC	CCAACCANAA	
ATTNAAGGG	• •		W comments	The second secon		729
(0)			Market Art Services	the second second		and the second of the second o
(2) INFORMAT	TION FOR SE	EQ ID NO:14				
		RACTERISTICS				
		816 base pa	airs	and the second of the second o	of the case of the	
		cleic acid		. ,		
		ONESS: singl	le	• ' ' ' ' ' ' ' '		*
(1	D) TOPOLOGY	Y: linear				•
					et gwal water bilita di sik	
(ii) MO	LECULE TYPE	E: cDNA			A TO THE SHAPE STATE OF	The state of the s
(xi) SE	QUENCE DESC	CRIPTION: SI	EQ ID NO:14	:	ilia de le de la lacia de la cipe. La companya de la co	
•						• • • •
TGCTCTTCCT (60
TGTTCGCTGA A						120
GGCAGGTCCA (180
CCACTCGTGT A						240
TCACACTCCA (300
CANGTGCCAG A						360
					CTAGAATGGA	420
ATCTTCTTCC (480
GCANATCTGC :						540
CAANCTTGTT :						600
CTGTNNANCT :						660
					TGGGGTTTTN	
CNCNCTCCTA (CCCCAGAAAN	NCCGTGTTCC	CCCCCAACTA	GGGGCCNAAA	CCNNTTNTTC	
CACAACCCIN (CCCCACCCAC	GGGTTCNGNT	GGTTNG			816
		•			ta seni ta kacebi iledi d	
(2) INFORMAT	TION FOR SE	Q ID NO:15:				
				·		on the second second
		RACTERISTICS		<u> </u>		and the second second second
		783 base pa	irs			
		cleic acid				. 0
		ONESS: sing?	.e	, to 100 miles		
1)	D) TOPOLOGY	: linear			•	
				•	***	
(ii) MOI	LECULE TYPE	E: CDNA		100	erre er	to the second of the second
		•	•			
(xi) SEX	QUENCE DESC	CRIPTION: SE	Q ID NO:15			
						•
					GTGCTGAAGG	60
					GTAGAGAGGA	120
AAGACCCAAA (180
					GTGCTGTCCA	240
CCAAGCAGAC A						300
					TATGGAGGCT	360
GCTTGGGCAA						420
TGCAAGGTGG (480
CCATGGAAAG (540
NCAATGGCTG (600
CCCTCCCAAC I						660
					AACCCNGGAA	720

740

CCC AAAAANTNCC CCCCCTGGTT CCTNNAANC	C CCTCCNCNAA	•	780
			783
(2) THEORYSMICH TOR ONE TO THE	Service of the first		
(2) INFORMATION FOR SEQ ID NO:16:			
(i) CEOUTHOR OUT DE CORRECTE			. :
(i) SEQUENCE CHARACTERISTICS:	the same as the stig		
(A) LENGTH: 801 base pairs	•		
(B) TYPE: nucleic acid			
(C) STRANDEDNESS: single			
(D) TOPOLOGY: linear		Eligible Property	•• •
(22)			
(ii) MOLECULE TYPE: cDNA	•		
(
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1	6:		
	•	•	
GCCCCAATTC CAGCTGCCAC ACCACCCACG GTGACTGCA	T TAGTTCGGAT	GTCATACAAA	. 60
AGCTGATTGA AGCAACCCTC TACTTTTTGG TCGTGAGCC	T TTTGCTTGGT	GCAGGTTTCA	120
TTGGCTGTGT TGGTGACGTT GTCATTGCAA CAGAATGGG	G GAAAGGCACT	GTTCTCTTTG	180
AAGTAGGGTG AGTCCTCAAA ATCCGTATAG TTGGTGAAG	C CACAGCACTT	GAGCCCTTTC	240
ATGGTGGTGT TCCACACTTG AGTGAAGTCT TCCTGGGAA	C CATAATCTTT	CTTGATGGCA	300
GGCACTACCA GCAACGTCAG GAAGTGCTCA GCCATTGTG	G TGTACACCAA	GGCGACCACA	360
GCAGCTGCAA CCTCAGCAAT GAAGATGAGG AGGAGGATG	A AGAAGAACGT	CNCGAGGGCA	420
CACTTGCTCT CCGTCTTAGC ACCATAGCAG CCCANGAAA	C CAAGAGCAAA	GACCACAACG	480
CCNGCTGCGA ATGAAAGAAA NTACCCACGT TGACAAACT	G CATGGCCACT	GGACGACAGT	54 Ò
TGGCCCGAAN ATCTTCAGAA AAGGGATGCC CCATCGATT	G AACACCCANA	TGCCCACTGC	600
CNACAGGGCT GCNCCNCNC GAAAGAATGA GCCATTGAA	G AAGGATCNTC	NTGGTCTTAA	660
TGAACTGAAA CCNTGCATGG TGGCCCCTGT TCAGGGCTC	T TGGCAGTGAA	TTCTGANAAA	720
AAGGAACNGC NTNAGCCCCC CCAAANGANA AAACACCCC	C GGGTGTTGCC	CTGAATTGGC .	780
GGCCAAGGAN CCCTGCCCCN G			801
(0)			
(2) INFORMATION FOR SEQ ID NO:17:			
/; \ CECHENGE GUADAGEDTOETOS			
(i) SEQUENCE CHARACTERISTICS:		•	•
(A) LENGTH: 740 base pairs(B) TYPE: nucleic acid	•	•	
(C) STRANDEDNESS: single			
			•
(D) TOPOLOGY: linear			٠
(ii) NOTEGIVE TURE	• • •		
(ii) MOLECULE TYPE: cDNA			
(vi) SPOJENCE DESCRIPTION ORD TO US	_		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1			
GTGAGAGCCA COCCTOCCTC TOCCTCCCA CTCACTC	• • • • • • • • • • • • • • • • • • • •		
GTGAGAGCCA GGCGTCCCTC TGCCTGCCCA CTCAGTGGC	A ACACCCGGGA	GCTGTTTTGT	60
CCTTTGTGGA GCCTCAGCAG TTCCCTCTTT CAGAACTCA	C TGCCAAGAGC	CCTGAACAGG	120
AGCCACCATG CAGTGCTTCA GCTTCATTAA GACCATGAT	G ATCCTCTTCA	ATTTGCTCAT	180
CTTTCTGARG ATCTTCCCCC TGTTGGCAGT GGGCATCTG	G GTGTCAATCG	ATGGGGCATC	240
CTTTCTGAAG ATCTTCGGGC CACTGTCGTC CAGTGCCAT	G CAGTTTGTCA	ACGTGGGCTA	:300
CTTCCTCATC GCAGCCGGCG TTGTGGTCTT TGCTCTTGG	T TTCCTGGGCT	GCTATGGTGC	360
TAAGACGGAG AGCAAGTGTG CCCTCGTGAC GTTCTTCTT	C ATCCTCCTCC	TCATCTTCAT	420
TGCTGAAGTT GCAGCTGCTG TGGTCGCCTT GGTGTACAC	C ACAATGGCTG	AACCATTCCT	480
GACGTTGCTG GTANTGCCTG CCATCAANAA AGATTATGG	G TTCCCAGGAA	AAATTCACTC	540
AANTHTGGAA CACCHCCATG AAAAGGGCTC CAATTTCTG	N TGGCTTCCCC	AACTATACCG	600
GAATTTTGAA AGANTCNCCC TACTTCCAAA AAAAANAN	T TGCCTTTNCC	CCCNTTCTGT	660
TGCAATGAAA ACNTCCCAAN ACNGCCAATN AAAACCTGC	C CNNNCAAAAA	GGNTCNCAAA	720

CAAAAAANT NNAAGGGTTN

on and the state of the state o

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 802 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

		GNGNAGCCAC				6	0
CAAGGTCTTC	CAGCTGCCGC	ACATTACGCA	GGGCAAGAGC	CTCCAGCAAC	ACTGCATATG	12	0
		GCCAGGGTGA				18	0
					TATGTCCCAT	24	0
					AGCTCTCTAA	- 30	0
					AGCACCTGAT.	36	0
					AATTGCTCCT	42	Ö
		ACTTCCGCAC				48	0
		TGGTTCCGCC				54	0
		TTCGTCGTNC				60	o
		AATTCACCNC				6.6	Ö
		GGAACTCCAC				72	0
ACCCTTNNCG	TTACCTTGGT	CCAAACCNTN	CCNTGTGTCG	ANATNGTNAA	TCNGGNCCNA	78	O
TNCCANCCNC	ATANGAAGCC	NG ·				80	2 .

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 731 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

CNAAGCTTCC	AGGTNACGGG	CCGCNAANCC	TGACCCNAGG	TANCANAANG	CAGNCNGCGG	60
GAGCCCACCG	TCACGNGGNG	GNGTCTTTAT	NGGAGGGGC	GGAGCCACAT	CNCTGGACNT	120
	ACTCCCCNCC					180
	GANCAAANNC					240
GCNCATCCNT	CNAGTGCTGN	AAAGCCCCNN	CCTGTCTACT	TGTTTGGAGA	ACNGCNNNGA	300
	GTTANATAAC					360
CGNGTNTGCT	TAGNGGACAT	AACCTGACTA	CTTAACTGAA	CCCNNGAATC	TNCCNCCCCT	420
	CAGAACAAAA					480
	CATNCCCAAT					540
	CAATTNAAGC					600
	AGGGGGGGNC					660
CCCCCNGGCC	CGGCCTTTTA	CNANCNTCNN	NNACNGGGNA	AAACCNNNGC	TTTNCCCAAC	720
NNAATCCNCC	T	• • •		• • • •		731

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 754 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

TTTTTTTTT	TTTTTTTTT	TAAAAACCCC	CTCCATTNAA	TGNAAACTTC	CGAAATTGTC	60
CAACCCCCTC	NTCCAAATNN	CCNTTTCCGG	GNGGGGGTTC	CAAACCCAAN	TTANNTTTGG	120
ANNTTAAATT	AAATNTTNNT	TGGNGGNNNA	ANCCNAATGT	NANGAAAGTT	NAACCCANTA	180
TNANCTTNAA	TNCCTGGAAA	CCNGTNGNTT	CCAAAAATNT	TTAACCCTTA	ANTCCCTCCG	240
AAATNGTTNA	NGGAAAACCC	AANTTCTCNT	AAGGTTGTTT	GAAGGNTNAA	TNAAAANCCC	300
NNCCAATTGT	TTTTNGCCAC	GCCTGAATTA	ATTGGNTTCC	GNTGTTTTCC	NTTAAAANAA	360
GGNNANCCCC	GGTTANTNAA	TCCCCCCNNC	CCCAATTATA	CCGANTTTTT	TTNGAATTGG	420
GANCCCNCGG	GAATTAACGG	GGNNNNTCCC	TNTTGGGGGG	CNGGNNCCCC	CCCCNTCGGG	480
GGTTNGGGNC	AGGNCNNAAT	TGTTTAAGGG	TCCGAAAAAT	CCCTCCNAGA	AAAAAANCTC	540
CCAGGNTGAG	NNTNGGGTTT	NCCCCCCCC	CANGGCCCCT	CTCGNANAGT	TGGGGTTTGG	600
GGGGCCTGGG	ATTTTTTTC	CCCTNTTNCC	TCCCCCCCC	CCNGGGANAG	AGGTTNGNGT	660
TTTGNTCNNC	GGCCCCNCCN	AAGANCTTTN	CCGANTTNAN	TTAAATCCNT	GCCTNGGCGA	720
AGTCCNTTGN	AGGGNTAAAN	GGCCCCTNN	CGGG			754

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 755 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: CDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

ATCANCCCAT	GACCCCNAAC	NNGGGACCNC	TCANCCGGNC	NNNCNACCNC	CGGCCNATCA	60
NNGTNAGNNC	ACTNCNNTTN	NATCACNCCC	CNCCNACTAC	GCCCNCNANC	CNACGCNCTA	120
NNCANATNCC	ACTGANNGCG	CGANGTNGAN	NGAGAAANCT	NATACCANAG	NCACCANACN	180
CCAGCTGTCC	NANAANGCCT	NNNATACNGG	NNNATCCAAT	NTGNANCCTC	CNAAGTATTN	240
		ANCCGATTAC				300
CGAAGGCNCT	GGNCCNAAGG	NNGCGNCNCC	CCGCTAGNTC	CCCNNCAAGT	CNCNCNCCTA	360
		TTCNTGAGTA				420
		AATNCAAGCC				480
		CTAATACTTC				540
		GTTCCCNNTT				600
					TTCCCNTTTT	660
AAATTCNTNC	CNTTTANTTT	TGGCNTTCNA	AACCCCCGGC	CTTGAAAACG	GCCCCTGGT	720
AAAAGGTTGT	TTTGANAAAA	TTTTTGTTTT	GTTCC	****		755

- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 849 base pairs

- (B) TYPE: nucleic acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

TTTTTTTTTT. TT	TTTANGTG	TNGTCGTGCA	GGTAGAGGCT	TACTACAANT	GTGAANACGT	60
ACGCTNGGAN TA	ANGCGACC	CGANTTCTAG	GANNCNCCCT	AAAATCANAC	TGTGAAGATN	120
ATCCTGNNNA CG	GAANGGTC	ACCGGNNGAT	NNTGCTAGGG	TGNCCNCTCC	CANNNCNTTN	180
CATAACTCNG NG	GCCCTGCC	CACCACCTTC	GGCGGCCCNG	NGNCCGGGCC	CGGGTCATTN	240
GNNTTAACCN CA	CTNNGCNA	NCGGTTTCCN	NCCCCNNCNG	ACCCNGGCGA	TCCGGGGTNC	300
TCTGTCTTCC CC						360
CNGCCNTCTA NO	CNCNGCCC	CCCCTCCANT	NNGGGGGACT	GCCNANNGCT	CCGTTNCTNG	420
NNACCCCNNN GG				· ·		480
TGCGTTNTTG GG						540
CNCNNCGNNG CC						600
NCCCTCNCNC NG						660
NTCANCCACN GG						720
CTNCNTCNGG CC						780
NCCTCCNCGA GT	CCTCCCGN	CTTCCNACCC	ANGNNTTCCN	CGAGGACACN	NNACCCCGCC	840
NNCANGCGG					• • • • •	849

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 872 base pairs
 - (B) TYPE: nucleic acid ·
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GCGCAAACTA	TACTTCGCTC	GNACTCGTGC	GCCTCGCTNC	TCTTTTCCTC	CGCAACCATG	60
TCTGACNANC	CCGATTNGGC	NGATATCNAN	AAGNTCGANC	AGTCCAAACT	GANTAACACA	120
CACACNCNAN	AGANAAATCC	NCTGCCTTCC	ANAGTANACN	ATTGAACNNG	AGAACCANGC	180
NGGCGAATCG	TAATNAGGCG	TGGGCGGCCA	ATNTGTCNCC	GTTTATTNTN	CCAGCNTCNC	240
CTNCCNACGC	TACNTCTTCN	NAGCTGTCNN	ACCCCTNGTN	CGNACCCCCC	NAGGTCGGGA	300
TCGGGTTTNN	NNTGACCGNG	CNNCCCCTCC	CCCCNTCCAT	NACGANCONC	CCGCACCACC	360
NANNGCNCGC	NCCCCGNNCT	CTTCGCCNCC	CTGTCCTNTN	CCCCTGTNGC	CTGGCNCNGN	420
ACCGCATTGA	·CCCTCGCCNN	CTNCNNGAAA	NCGNANACGT	CCGGGTTGNN	ANNANCGCTG	480
TGGGNNNGCG	TCTGCNCCGC	GTTCCTTCCN	NCNNCTTCCA	CCATCTTCNT	TACNGGGTCT	540
CCNCGCCNTC	TCNNNCACNC	CCTGGGACGC	TNTCCTNTGC	CCCCCTTNAC	TCCCCCCCTT	600
CGNCGTGNCC	*CGNCCCCACC	NTCATTTNCA	NACGNTCTTC	ACAANNNCCT	GGNTNNCTCC	660
CNANCNGNCN	-GTCANCCNAG	GGAAGGGNGG	GGNNCCNNTG	NTTGACGTTG	NGGNGANGTC	720
CGAANANTCC	TCNCCNTCAN	CNCTACCCCT	CGGGCGNNCT	CTCNGTTNCC	AACTTANCAA	780
NTCTCCCCCC	NGNGCNCNTC	TCAGCCTCNC	CCNCCCCNCT	CTCTGCANTG	TNCTCTGCTC	840
TNACCNNTAC	GANTNTTCGN	CNCCCTCTTT	CC			872

- (2) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 815 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GCATGCAAGC	TTGAGTATTC	TATAGNGTCA	CCTAAATANC	TTGGCNTAAT	CATGGTCNTA	60
NCTGNCTTCC	TGTGTCAAAT	GTATACNAAN	TANATATGAA	TCTNATNTGA	CAAGANNGTA	120
TCNTNCATTA	GTAACAANTG	TNNTGTCCAT	CCTGTCNGAN	CANATTCCCA	TNNATTNCGN	180
CGCATTCNCN	GCNCANTATN	TAATNGGGAA	NTCNNNTNNN	NCACCNNCAT	CTATCNTNCC	240
GCNCCCTGAC	TGGNAGAGAT	GGATNANTTC	TNNTNTGACC	NACATGTTCA	TCTTGGATTN	300
				CCAAGACCTC		360
AACCTGCGTC	AGANNCATCA	AACNTGGGAA	ACCCGCNNCC	ANGTNNAAGT	NGNNNCANAN	420
				TTNGTGCCTT		480
GTGTCCNANC	CNCTCAACAT	GANACGCGCC	AGNCCANCCG	CAATTNGGCA	CAATGTCGNC	540
				CNCNCANGAA		600
				GTNCCAGTCC		660
				CNGNCGAGGN		720
				CGTATAACCC		780
	AGNTCCCCC					815

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 775 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

CCGAGATGTC	TCGCTCCGTG	GCCTTAGCTG	TGCTCGCGCT	ACTCTCTCTT	TCTGGCCTGG	60
				TCATCCAGCA		120
AGTCAAATTT	CCTGAATTGC	TATGTGTCTG	GGTTTCATCC	ATCCGACATT	GAANTTGACT	180
TACTGAAGAA	TGGANAGAGA	ATTGAAAAAG	TGGAGCATTC	AGACTTGTCT	TTCAGCAAGG	240
ACTGGTCTTT	CTATCTCNTG	TACTACACTG	AATTCACCCC	CACTGAAAAA	GATGAGTATG	300
CCTGCCGTGT	GAACCATGTG	ACTTTGTCAC	AGCCCAAGAT	AGTTAAGTGG	GATCGAGACA	360
				GATTGGATGA		420
CTGCTTGCTT	GCNTTTTAAT	ANTGATATGC	NTATACACCC	TACCCTTTAT	GNCCCCAAAT	480
				CTTTATAANT		540
AATTGCCCGT	CNCCCNGTTN	NGAATGTTTC	CNNAACCACG	GTTGGCTCCC	CCAGGTCNCC	600
TCTTACGGAA	GGGCCTGGGC	CNCTTTNCAA	GGTTGGGGGA	ACCNAAAATT	TCNCTTNTGC	660
CCNCCCNCCA	CNNTCTTGNG	NNCNCANTTT	GGAACCCTTC	CNATTCCCCT	TGGCCTCNNA	720
NCCTTNNCTA	ANAAAACTTN	AAANCGTNGC	NAAANNTTTN	ACTTCCCCCC	TTACC	775

- (2) INFORMATION FOR SEQ ID NO:26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 820 base pairs
 - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

ANATTANTAC	AGTGTAATCT	TTTCCCAGAG	GTGTGTANAG	GGAACGGGGC	CTAGAGGCAT	60
CCCANAGATA	NCTTATANCA	ACAGTGCTTT	GACCAAGAGC	TGCTGGGCAC	ATTTCCTGCA	120
GAAAAGGTGG	CGGTCCCCAT	CACTCCTCCT	CTCCCATAGC	CATCCCAGAG	GGGTGAGTAG	180
CCATCANGCC	TTCGGTGGGA	GGGAGTCANG	GAAACAACAN	ACCACAGAGC	ANACAGACCA	240
NTGATGACCA	TGGGCGGGAG	CGAGCCTCTT	CCCTGNACCG	GGGTGGCANA	NGANAGCCTA	300
NCTGAGGGGT	CACACTATAA	ACGTTAACGA	CCNAGATNAN	CACCTGCTTC	AAGTGCACCC	360
TTCCTACCTG	ACNACCAGNG	ACCNNNAACT	GCNGCCTGGG	GACAGCNCTG	GGANCAGCTA	420
ACNNAGCACT	CACCTGCCCC	CCCATGGCCG	TNCGCNTCCC	TGGTCCTGNC	AAGGGAAGCT	480
CCCTGTTGGA	ATTNCGGGGA	NACCAAGGGA	NCCCCCTCCT	CCANCTGTGA	AGGAAAANN	540
GATGGAATTT	TNCCCTTCCG	GCCNNTCCCC	TCTTCCTTTA	CACGCCCCCT	NNTACTCNTC	600
TCCCTCTNTT	NTCCTGNCNC	ACTTTTNACC	CCNNNATTTC	CCTTNATTGA	TCGGANNCTN	660
GANATTCCAC	TNNCGCCTNC	CNTCNATCNG	NAANACNAAA	NACTNTCTNA	CCCNGGGGAT	720
GGGNNCCTCG	NTCATCCTCT	CTTTTTCNCT	ACCNCCNNTT	CTTTGCCTCT	CCTTNGATCA	780
TCCAACCNTC	GNTGGCCNTN	CCCCCCNNN	TCCTTTNCCC			820

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 818 base pairs
 - (E) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

TCTGGGTGAT	GGCCTCTTCC	TCCTCAGGGA	CCTCTGACTG	CTCTGGGCCA	AAGAATCTCT	60
TGTTTCTTCT	CCGAGCCCCA	GGCAGCGGTG	ATTCAGCCCT	GCCCAACCTG	ATTCTGATGA	120
CTGCGGATGC	TGTGACGGAC	CCAAGGGGCA	AATAGGGTCC	CAGGGTCCAG	GGAGGGGGCC	180
CTGCTGAGCA	CTTCCGCCCC	TCACCCTGCC	CAGCCCCTGC	CATGAGCTCT	GGGCTGGGTC	240
TCCGCCTCCA	GGGTTCTGCT	CTTCCANGCA	NGCCANCAAG	TGGCGCTGGG	CCACACTGGC	300
TTCTTCCTGC	CCCNTCCCTG	GCTCTGANTC	TCTGTCTTCC	TGTCCTGTGC	ANGCNCCTTG	360
GATCTCAGTT	TCCCTCNCTC	ANNGAACTCT	GTTTCTGANN	TCTTCANTTA	ACTNTGANTT	420
TATNACCNAN	TGGNCTGTNC	TGTCNNACTT	TAATGGGCCN	GACCGGCTAA	TCCCTCCCTC	44.480
NCTCCCTTCC	ANTTCNNNNA	ACCNGCTTNC	CNTCNTCTCC	CCNTANCCCG	CCNGGGAANC	540
CTCCTTTGCC	CTNACCANGG	GCCNNNACCG	CCCNTNNCTN	GGGGGCNNG	GTNNCTNCNC	600
CTGNTNNCCC	CNCTCNCNNT	TNCCTCGTCC	CNNCNNCGCN	NNGCANNTTC	NCNGTCCCNN	660
TNNCTCTTCN	NGTNTCGNAA	NGNTCNCNTN	TNNNNNGNCN	NGNTNNTNCN	TCCCTCTCNC	720
CNNNTGNANG	TNNTTNNNNC	NCNGNNGCCC	NNNNCNNNNN	NGGNNNTNNN	TCTNCNCNGC	780
CCCNNCCCCC	NGNATTAAGG	CCTCCNNTCT	CCGGCCNC		And the second	818

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 731 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 822 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

ACTAGTCCAG	TGTGGTGGAA	TTCCATTGTG	TTGGGGNCNC	TTCTATGANT	ANTNTTAGAT	60
CGCTCANACC	TCACANCCTC	CCNACNANGC	CTATAANGAA	NANNAATAGA	NCTGTNCNNT	120
ATNTNTACNC	TCATANNCCT	CNNNACCCAC	TCCCTCTTAA	CCCNTACTGT	GCCTATNGCN	- 180
TNNCTANTCT	NTGCCGCCTN	CNANCCACCN	GTGGGCCNAC	CNCNNGNATT	CTCNATCTCC	240
TCNCCATNTN	GCCTANANTA	NGTNCATACC	CTATACCTAC	NCCAATGCTA	NNNCTAANCN	300
TCCATNANTT	ANNNTAACTA	CCACTGACNT	NGACTTTCNC	ATNANCTCCT	AATTTGAATC	360
TACTCTGACT	CCCACNGCCT	ANNNATTAGC	ANCNTCCCCC	NACNATNTCT	CAACCAAATC	420
NTCAACAACC	TATCTANCTG	TTCNCCAACC	NTTNCCTCCG	ATCCCCNNAC	AACCCCCCTC	480
CCAAATACCC	NCCACCTGAC	NCCTAACCCN	CACCATCCCG	GCAAGCCNAN	GGNCATTTAN	540
CCACTGGAAT	CACNATNGGA	NAAAAAAAAC	CCNAACTCTC	TANCNCNNAT	CTCCCTAANA	600
AATNCTCCTN	NAATTTACTN	NCANTNCCAT	CAANCCCACN	TGAAACNNAA	CCCCTGTTTT	660
TANATCCCTT	CTTTCGAAAA	CCNACCCTTT	ANNNCCCAAC	CTTTNGGGCC	CCCCCNCTNC	720
CCNAATGAAG	GNCNCCCAAT	CNANGAAACG	NCCNTGAAAA	ANCNAGGCNA	ANANNNTCCG	780
CANATCCTAT	CCCTTANTTN	GGGGNCCCTT	NCCCNGGGCC	·CC		822

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 787 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

CGGCCGCCTG	CTCTGGCACA	TGCCTCCTGA	ATGGCATCAA	AAGTGATGGA	CTGCCCATTG	60
CTAGAGAAGA	CCTTCTCTCC	TACTGTCATT	ATGGAGCCCT	GCAGACTGAG	GGCTCCCCTT	120
GTCTGCAGGA	TTTGATGTCT	GAAGTCGTGG	AGTGTGGCTT	GGAGCTCCTC	ATCTACATNA	180
GCTGGAAGCC	CTGGAGGGCC	TCTCTCGCCA	GCCTCCCCCT	TCTCTCCACG	CTCTCCANGG	240
					TCCACGCGGA	300
CCCATGGGGC	CTGNAAGGCC	AGGGTCTCCT	TTGACACCAT	CTCTCCCGTC	CTGCCTGGCA	360
GGCCGTGGGA	TCCACTANTT	CTANAACGGN	CGCCACCNCG	GTGGGAGCTC	CAGCTTTTGT	420
				NGGTCANAAC		480
GTGAAATTGT	TTNTCCCCTC	NCNATTCCNC	NCNACATACN	AACCCGGAAN	CATAAAGTGT	540
TAAAGCCTGG	GGGTNGCCTN	NNGAATNAAC	TNAACTCAAT	TAATTGCGTT	GGCTCATGGC	600
				GAATCGGCCA		660
AAAAGCGGTT	TGCNTTTTNG	GGGGNTCCTT	CCNCTTCCCC	CCTCNCTAAN	CCCTNCGCCT	720
CGGTCGTTNC	NGGTNGCGGG	GAANGGGNAT	NNNCTCCCNC	NAAGGGGGNG	AGNNNGNTAT	780
CCCCAAA	• • • • • • • • • • • • • • • • • • • •		1. 1.1.2		The state of the state of	787

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 799 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

TTTTTTTTT	TTTTTTTGGC	GATGCTACTG	TTTAATTGCA	GGAGGTGGGG	GTGTGTGTAC	60
CATGTACCAG	GGCTATTAGA	AGCAAGAAGG	AAGGAGGGAG	GGCAGAGCGC	CCTGCTGAGC	120
AACAAAGGAC	TCCTGCAGCC	TTCTCTGTCT	GTCTCTTGGC	GCAGGCACAT	GGGGAGGCCT	180
CCCGCAGGGT	GGGGGCCACC	AGTCCAGGGG	TGGGAGCACT	ACANGGGGTG	GGAGTGGGTG	240
	CNAATGGCCT					300
GGGGACCTTC	TGTTCTCCCA	NGGNAACTTC	NTNNATCTCN	AAAGAACACA	ACTGTTTCTT	360
	GGCTGTTCAT					420
	GCCCACCTCT					480
	TAANTACCCA					540
	CCTGAANGCG					600
	CANCTAATGC					660
	CCCCGNCTCG					720
					NGGTNNCNAC	
 CTCCCCCCCC					WOO IMMENIAC	799
		•		•		,,,,

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 789 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

TTTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	60
TTTTNCCNAG	GGCAGGTTTA	TTGACAACCT	CNCGGGACAC	AANCAGGCTG	GGGACAGGAC	. 120
	TCCGGCGGCG					180
CGCTCCCGCT	TGATNTTCCT	CTGCAGCTGC	AGGATGCCNT	AAAACAGGGC	CTCGGCCNTN	240
GGTGGGCACC	CTGGGATTTN	AATTTCCACG	GGCACAATGC	GGTCGCANCC	CCTCACCACC	300
NATTAGGAAT	AGTGGTNTTA	CCCNCCNCCG	TTGGCNCACT	CCCCNTGGAA	ACCACTINIC	3.60
GCGGCTCCGG	CATCTGGTCT	TAAACCTTGC	AAACNCTGGG	GCCCTCTTTT	TGGTTANTNT	420
NCCNGCCACA	ATCATNACTC	AGACTGGCNC	GGGCTGGCCC	CAAAAAANCN	CCCCAAAACC	480
GGNCCATGTC	TTNNCGGGGT	TGCTGCNATN	TNCATCACCT	CCCGGGCNCA	NCAGGNCAAC	540
CCAAAAGTTC	TTGNGGCCCN	CAAAAAANCT.	CCGGGGGGGNC	CCAGTTTCAA	CAAAGTCATC	600
CCCCTTGGCC	CCCAAATCCT	CCCCCGNTT	NCTGGGTTTG	GGAACCCACG	CCTCTNNCTT	660
TGGNNGGCAA	GNTGGNTCCC	CCTTCGGGCC	CCCGGTGGGC	CCNNCTCTAA	NGAAAACNCC	720
NTCCTNNNCA	CCATCCCCC	NNGNNACGNC	TANCAANGNA	TCCCTTTTTT	TANAAACGGG	780
CCCCCCNCG			2		na vana van	789

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 793 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

	GACAGAACAT	GTTGGATGGT	GGAGCACCTT	TCTATACGAC	TTACAGGACA	GCAGATGGGG	60
	AATTCATGGC	TGTTGGAGCA	ATANAACCCC	AGTTCTACGA	GCTGCTGATC	AAAGGACTTG	120
	GACTAAAGTC	TGATGAACTT	CCCAATCAGA	TGAGCATGGA	TGATTGGCCA	GAAATGAANA	180
	AGAAGTTTGC	AGATGTATTT	GCAAAGAAGA	CGAAGGCAGA	GTGGTGTCAA	ATCTTTGACG	240
	GCACAGATGC	CTGTGTGACT	CCGGTTCTGA	CTTTTGAGGA	GGTTGTTCAT	CATGATCACA	300
	ACAANGAACG	GGGCTCGTTT	ATCACCANTG	AGGAGCAGGA	CGTGAGCCCC	CGCCCTGCAC	360
	CTCTGCTGTT	AAACACCCCA	GCCATCCCTT	CTTTCAAAAG	GGATCCACTA	CTTCTAGAGC	420
•	GGNCGCCACC	GCGGTGGAGC	TCCAGCTTTT	GTTCCCTTTA	GTGAGGGTTA	ATTGCGCGCT	480
	TGGCGTAATC	ATGGTCATAN	CTGTTTCCTG	TGTGAAATTG	TTATCCGCTC	ACAATTCCAC	540
	ACAACATACG	ANCCGGAAGC	ATNAAATTT	AAAGCCTGGN	GGTNGCCTAA	TGANTGAACT	600
	NACTCACATT	AATTGGCTTT	GCGCTCACTG	CCCGCTTTCC	AGTCCGGAAA	ACCTGTCCTT	660
	GCCAGCTGCC	NTTAATGAAT	CNGGCCACCC	CCCGGGGAAA	AGGCNGTTTG	CTTNTTGGGG	720
	CGCNCTTCCC	GCTTTCTCGC	TTCCTGAANT	CCTTCCCCCC	GGTCTTTCGG	CTTGCGGCNA	780
	ACGGTATCNA	CCT					793

(2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 756 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GCCGCGACCG	GCATGTACGA	GCAACTCAAG	GGCGAGTGGA	ACCGTAAAAG	CCCCAATCTT	60
ANCAAGTGCG	GGGAANAGCT	GGGTCGACTC	AAGCTAGTTC	TTCTGGAGCT	CAACTTCTTG	120
CCAACCACAG	GGACCAAGCT	GACCAAACAG	CAGCTAATTC	TGGCCCGTGA	CATACTGGAG	180
ATCGGGGCCC	AATGGAGCAT	CCTACGCAAN	GACATCCCCT	CCTTCGAGCG.	CTACATGGCC	240
CAGCTCAAAT	GCTACTACTT	TGATTACAAN	GAGCAGCTCC	CCGAGTCAGC	CTATATGCAC	300
CAGCTCTTGG	GCCTCAACCT	CCTCTTCCTG	CTGTCCCAGA	ACCGGGTGGC	TGANTNCCAC	360
ACGGANTTGG	ANCGGCTGCC	TGCCCAANGA	CATACANACC	AATGTCTACA	TCNACCACCA	420
GTGTCCTGGA	GCAATACTGA	TGGANGGCAG	CTACCNCAAA	GTNTTCCTGG	CCNAGGGTAA	480
CATCCCCCGC	CGAGAGCTAC	ACCTTCTTCA	TTGACATCCT	GCTCGACACT	ATCAGGGATG	540
AAAATCGCNG	GGTTGCTCCA	GAAAGGCTNC	AANAANATCC	TTTTCNCTGA	AGGCCCCCGG	600
ATNCNCTAGT	NCTAGAATCG	GCCCGCCATC	GCGGTGGANC	CTCCAACCTT	TCGTTNCCCT	660
TTACTGAGGG	TTNATTGCCG	CCCTTGGCGT	TATCATGGTC	ACNCCNGTTN	CCTGTGTTGA	720
AATTNTTAAC	CCCCCACAAT	TCCACGCCNA	CATTNG	i kumin i men	lah di Marahampi dan	756

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 834 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEO ID NO:35:

GGGGATCTCT	ANATCNACCT	GNATGCATGG	TTGTCGGTGT	GGTCGCTGTC	GATGAANATG	60
AACAGGATCT	TGCCCTTGAA	GCTCTCGGCT	GCTGTNTTTA	AGTTGCTCAG	TCTGCCGTCA	120
TAGTCAGACA	CNCTCTTGGG	CAAAAAACAN	CAGGATNTGA	GTCTTGATTT	CACCTCCAAT	180
AATCTTCNGG	GCTGTCTGCT	CGGTGAACTC	GATGACNANG	GGCAGCTGGT	TGTGTNTGAT	240
AAANTCCANC	ANGTTCTCCT	TGGTGACCTC	CCCTTCAAAG	TTGTTCCGGC	CTTCATCAAA	300
CTTCTNNAAN	ANGANNANCC	CANCTTTGTC	GAGCTGGNAT	TTGGANAACA	CGTCACTGTT	360
GGAAACTGAT	CCCAAATGGT	ATGTCATCCA	TCGCCTCTGC	TGCCTGCAAA	AAACTTGCTT	420
GGCNCAAATC	CGACTCCCCN	TCCTTGAAAG	AAGCCNATCA	CACCCCCTC	CCTGGACTCC	480
NNCAANGACT	CTNCCGCTNC	CCCNTCCNNG	CAGGGTTGGT	GGCANNCCGG	GCCCNTGCGC	540
TTCTTCAGCC	AGTTCACNAT	NTTCATCAGC	CCCTCTGCCA	GCTGTTNTAT	TCCTTGGGGG	600
GGAANCCGTC	TCTCCCTTCC	TGAANNAACT	TTGACCGTNG	GAATAGCCGC	GCNTCNCCNT	660
ACNTNCTGGG	CCGGGTTCAA	ANTCCCTCCN	TTGNCNNTCN	CCTCGGGCCA	TTCTGGATTT	720
NCCNAACTTT	TTCCTTCCCC	CNCCCCNCGG	NGTTTGGNTT	TTTCATNGGG	CCCCAACTCT	780
GCTNTTGGCC	ANTCCCCTGG	GGGCNTNTAN	·CNCCCCCTNT	GGTCCCNTNG	GGCC	834

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 814 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

CGGNCGCTTT	CCNGCCGCGC	CCCGTTTCCA	TGACNAAGGC	TCCCTTCANG	TTAAATACNN	60
CCTAGNAAAC	ATTAATGGGT	TGCTCTACTA	ATACATCATA	CNAACCAGTA	AGCCTGCCCA	120
NAACGCCAAC	TCAGGCCATT	CCTACCAAAG	GAAGAAAGGC	TGGTCTCTCC	ACCCCCTGTA	180
GGAAAGGCCT	GCCTTGTAAG	ACACCACAAT	NCGGCTGAAT	CTNAAGTCTT	GTGTTTTACT	240
aatggaaaaa	AAAAATAAAC	AANAGGTTTT	GTTCTCATGG	CTGCCCACCG	CAGCCTGGCA	300
CTAAAACANC	CCAGCGCTCA	CTTCTGCTTG	GANAAATATT	CTTTGCTCTT	TTGGACATCA	360
	TATCACTGCC					- 420
ANTGANCTGG	AAGGCCTGAA	NCTTAGTCTC	CAAAAGTCTC	NGCCCACAAG	ACCGGCCACC	480
AGGGGANGTC	NTTTNCAGTG	GATCTGCCAA	ANANTACCCN	TATCATCNNT	GAATAAAAAG	540
GCCCCTGAAC	GANATGCTTC	CANCANCCTT	TAAGACCCAT	AATCCTNGAA	CCATGGTGCC	600
CTTCCGGTCT	GATCCNAAAG	GAATGTTCCT	GGGTCCCANT	CCCTCCTTTG	TINCTTACGT	660
TGTNTTGGAC	CCNTGCTNGN	ATNACCCAAN	TGANATCCCC	NGAAGCACCC	TNCCCCTGGC	720
ATTTGANTTT	CNTAAATTCT	CTGCCCTACN	NCTGAAAGCA	CNATTCCCTN	GGCNCCNAAN	780
GGNGAACTCA	AGAAGGTCTN	NGAAAAACCA	CNCN			814

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 760 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GCATGCTGCT	CTTCCTCAAA	GTTGTTCTTG	TTGCCATAAC	AACCACCATA	GGTAAAGCGG	60
GCGCAGTGTT	CGCTGAAGGG	GTTGTAGTAC	CAGCGCGGGA	TGCTCTCCTT	GCAGAGTCCT	120
GTGTCTGGCA	GGTCCACGCA	ATGCCCTTTG	TCACTGGGGA	AATGGATGCG	CTGGAGCTCG	180
TCNAANCCAC	TCGTGTATTT	TTCACANGCA	GCCTCCTCCG	AAGCNTCCGG	GCAGTTGGGG	240
GTGTCGTCAC	ACTCCACTAA	ACTGTCGATN	CANCAGCCCA	TTGCTGCAGC	GGAACTGGGT	300
	GTGCCAGAAC					360
CNCCTNANCC	CAAACTGCCT	CTCAAAGGCC	ACCTTGCACA	CCCCGACAGG	CTAGAAATGC	420
ACTCTTCTTC	CCAAAGGTAG	TTGTTCTTGT	TGCCCAAGCA	NCCTCCANCA	AACCAAAANC	480
TTGCAAAATC	TGCTCCGTGG	GGGTCATNNN	TACCANGGTT	GGGGAAANAA	ACCCGGCNGN	540
GANCCNCCTT	GTTTGAATGC	NAAGGNAATA	ATCCTCCTGT	CTTGCTTGGG	TGGAANAGCA	600
CAATTGAACT	GTTAACNTTG	GGCCGNGTTC	CNCTNGGGTG	GTCTGAAACT	AATCACCGTC	660
ACTGGAAAAA	GGTANGTGCC	TTCCTTGAAT	TCCCAAANTT	CCCCTNGNTT	TGGGTNNTTT	720
CTCCTCTNCC	CTAAAAATCG	TNTTCCCCCC	CCNTANGGCG	an international section of the sect	en fa ele est elemen.	760
•				Annual Control of the		and the second second

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 724 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

TTTTTTTTT TTTTTTTTT TTTTTTTTT TTTTTAAAAA CCCCCTCCAT TGAATGAAAA 60 CTTCCNAAAT FGTCCAACCC CCTCNNCCAA ATNNCCATTT CCGGGGGGGG GTTCCAAACC 120

GCCG	•	•• • •				724
	TTTTGGGCCC	CTTNANGGAC	CTTCCGGATN	GAAA1TAAAT	CCCCGGGNCG	720
TTTNTGGGGG	CCNGGGANTT	CNTTCCCCCN	TTNCCNCCCC	CCCCCCNGGT	AAANGGTTAT	660
AAAAAACTCC	CAAGNNTTAA	TTNGAATNTC	CCCCTTCCCA	GGCCTTTTGG	GAAAGGNGGG	600
			TTTTTNNANG			540
			CCGGGGTTTT			480
		•	GAANNNCCCT			420
			and the second second			
NGATTTAAAC	CCCCTTNANT	ייאמייייעערער אַרעריייעערער	CNNGNCTNAA	NTATTTKENT	TCCCCTCTT	360
CTTAAATCCC	TCCGAAATTG	NTAANGGAAA	ACCAAATTCN	CCTAAGGCTN	TTTGAAGGTT	300
AATTTAACCC	ATTATNAACT	TAAATNCCTN	GAAACCCNTG	CNTTCCAAAA	ATTTTTAACC	240
					ATGTNAAGAA	180
			•	•		

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 751 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

TTTTTTTTT	TTTTTCTTTG	CTCACATTTA	TTTATTTTA	TGATTTTTTT	TAATGCTGCA	60
CAACACAATA	TTTATTTCAT	TTGTTTCTTT	TATTTCATTT	TATTTGTTŢG	CTGCTGCTGT	. 120
TTTATTTATT	TTTACTGAAA	GTGAGAGGGA	ACTTTTGTGG	CCTTTTTTCC	TTTTTCTGTA	180
GGCCGCCTTA	AGCTTTCTAA	ATTTGGAACA	TCTAAGCAAG	CTGAANGGAA	AAGGGGGTTT	240.
CGCAAAATCA	CTCGGGGGAA	NGGAAAGGTT	GCTTTGTTAA	TCATGCCCTA	TGGTGGGTGA	300
TTAACTGCTT	GTACAATTAC	NTTTCACTTT	TAATTAATTG	TGCTNAANGC	TTTAATTANA	360
CTTGGGGGTT	CCCTCCCCAN	ACCAACCCCN	CTGACAAAA	GTGCCNGCCC	TCAAATNATG	420
TCCCGGCNNT	CNTTGAAACA	ÇACNGCNGAA	NGTTCTCATT	NTCCCCNCNC	CAGGTNAAAA	480
TGAAGGGTTA	CCATNTTTAA'	CNGCAGCTCC	ACNTGGCNNN	GCCTGAATCC	TCNAAAANCN	540
CCCTCAANCN	AATTNCTNNG	CCCCGGTCNC	GCNTNNGTCC	CNCCCGGGCT	CCGGGAANTN	600
CACCCCCNGA	ANNCNNTNNC	NAACNAAATT	CCGAAAATAT	TCCCNNTCNC	TCAATTCCCC	660
CNNAGACTNT	CCTCNNCNAN	CNCAATTTTC	TTTTNNTCAC	GAACNCGNNC	CNNAAAATGN	720
NNNNCNCCTC	CNCTNGTCCN	NAATCNCCAN	C			751

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 753 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

GTGGTATTTT -	CTGTAAGATC	AGGTGTTCCT	CCCTCGTAGG	TTTAGAGGAA	ACACCCTCAT	60
AGATGAAAAC	CCCCCGAGA	CAGCAGCACT	GCAACTGCCA	AGCAGCCGGG	GTAGGAGGGG	120
CGCCCTATGC	ACAGCTGGGC	CCTTGAGACA	GCAGGGCTTC	GATGTCAGGC	TCGATGTCAA	180
TGGTCTGGAA	GCGGCGGCTG	TACCTGCGTA	GGGGCACACC	GTCAGGGCCC	ACCAGGAACT	240
TCTCAAAGTT	CCAGGCAACN	TCGTTGCGAC	ACACCGGAGA	CCAGGTGATN	AGCTTGGGGT	300

CGGTCATAAN CGCGGTGGCG TCGTCGCTGG GAGCTATAAAAGGTG CGCCCCCGCA CCGTTCANCT CGCAGCNAACCCACC ACCANNCCGG ACTTCCTTGA NGGAATCTCTTCATGAT GCCCTANCTG GTTGCCCNGN ATGCCAAANCACCCN CCTCCTCNTT TCATCTGGGT TNTTTGGANCCCATA TCTCNACCAN TACTCACCNT NCCCCTCCCCCG NCCTCTGGCC CNTCAAANAN GCTTTCCCCCCCG NACCCCCCCC TTTGTCTCAN TNT	ATTCTC NAANACCATG ANGTTGGGCT 420 ATTCCC AAATCTCTTC GNTCTTGGGC 480 CAANCA NCCCCAANCC CCGGGGTCCT 540 ATCCCC GGACCNTGGT TCCTCTCAAG 600 CCCCNT GNNACCCANC CTTCTANNGN 660
(2) INFORMATION FOR SEQ ID NO:41:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 341 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	•
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	• «·
(vi) ORIGINAL SOURCE:	•
(A) ORGANISM: Homo sapiens	
· · · · · · · · · · · · · · · · · · ·	
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO:41:
ACTATATCCA TCACAACAGA CATGCTTCAT CCCA	TAGACT TCTTGACATA GCTTCAAATG 60
AGTGAACCCA TCCTTGATTT ATATACATAT ATGT	
TTCTTTAAAC CTTGTTCATT ATGAACACTG AAAA	
TATAGCTTGT TTACGTAGTA AGTTTTTGAA GTCT	
TGTTAAACTG TGATTTTTAA AAAATATCAT TTGAG	
TTTTACTTT TGATTAATTG TGTTTTATAT ATTAC	
	341
(2) INFORMATION FOR SEQ ID NO:42:	
(-) Interditted for one ID Ro.42.	
(i) SEQUENCE CHARACTERISTICS:	
(5)	
(A) LENGTH: 101 base pairs. (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	· · · · · · · · · · · · · · · · · · ·
(D) TOPOLOGY: linear	
(33) NOT BOTT B. MILES	• •
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	•
(xi) SEQUENCE DESCRIPTION: SEQ.ID	NO:42:
ACTTACTGAA TTTAGTTCTG TGCTCTTCCT TATT GTTTCAAACA TTCTAAATAA ATAATTTTCA GTGG	
(2) INFORMATION FOR SEQ ID NO:43:	
(i) SEQUENCE CHARACTERISTICS:	·
(A) LENGTH: 305 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single	

(D) TOPOLOGY: linear	÷ .			•
		and the state of the state of the state of		
(ii) MOLECULE TYPE: cDNA				
(vi) ORIGINAL SOURCE:			Element and the	
(A) ORGANISM: Homo spid				
(A) ORGANISM: HOMO SPI	ens			
(xi) SEQUENCE DESCRIPTION: SI	EQ ID NO:43		er ja komunen ett er komunen er Galler er skolle statte ett flygt Gent ett er skolle skolle	
ACATCTTTGT TACAGTCTAA GATGTGTTCT				
TCCAGGGTGG TCTCACACTG TAATTAGAGC	TATTGAGGAG	TCTTTACAGC	AAATTAAGAT	120
TCAGATGCCT TGCTAAGTCT AGAGTTCTAG	AGTTATGTTT	CAGAAAGTCT	AAGAAACCCA	180
CCTCTTGAGA GGTCAGTAAA GAGGACTTAA				
TGGATACAGA ACGAGAGTTA TCCTGGATAA		AGTACCTGCC	CGGGGGCCGC	300
TCGAA	* : *		ethe space	305
(2) INFORMATION FOR SEQ ID NO:44	•			
			A Section of	
(i) SEQUENCE CHARACTERISTICS	S :			
(A) LENGTH: 852 base pa	airs	•		-
(B) TYPE: nucleic acid				
(C) STRANDEDNESS: sing	le ·			
(D) TOPOLOGY: linear		2 .4		
(
(ii) MOLECULE TYPE: cDNA	•	•	•	•
(:) 07707			•	••
(vi) ORIGINAL SOURCE:	,		*	
(A) ORGANISM: Homo sap	iens			
(xi) SEQUENCE DESCRIPTION: SI		The state of the s		
(X1) SEQUENCE DESCRIPTION: SI	EQ 10 NO:44		randina. Albana arabaran da	
ACATAAATAT CAGAGAAAAG TAGTCTTTGA		•		
GATTATTTGG TGTGTGTTTT GGTTTGTGTC				
CTCTCCATCC TCGGGCATTC TTCCCAAATT				
CCAGAATTC TCTTTTGTAG TAATATCTCA				
TGCTGTTGTT CTTCTTTTTA CCCCATAGCT AGACGCCCTC AGATCGGTCT TCCCATTTTA				
GGATGTCGCG GATGAATTCC CATAAGTGAG		*		
ACTTGGCAGG GGGGTCTTGC TCCTTTTTCA				
TGGTGGTTGT CATGGAGATC TGAGCCCGGC				540
TGCTACCATA GTTGGTGTCA TATAAATAGT				
GCTCAGTTTG TTCAGTCTTG ACAATGACAT				
ACTGGCCGTT CCACTTCAGA TGCTGCAAGT				
CCGCCCGGGT GAACTCCTGC AAACTCATGC				
CNTGGAAAGG GATACAATTG GCATCCAGCT	GGTTGGTGTC	CAGGAGGTGA	TGGAGCCACT	
CCCACACCTG GT			•	852
(2) THEODINATES				
(2) INFORMATION FOR SEQ ID NO:45				•
(i) SECULENCE CUADACTEDICTO		•	· · · · · · · · · · · · · · · · · · ·	
(i) SEQUENCE CHARACTERISTIC: (A) LENGTH: 234 base page 1				
			•	•
(B) TYPE: nucleic acid			•	
(C) STRANDEDNESS: sing:	TE.			· · ·

TOPOLOGY: linear

60

120

(ii) MOLECULE TYPE: cDNA			
(vi) ORIGINAL SOURCE:			
(A) ORGANISM: Homo sapiens	• ,		
(A) ORGANISM: HOMO Bapiens		•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45	:	Samuel State	
(, begoins because it is.	•		
ACAACAGACC CTTGCTCGCT AACGACCTCA TGCTCATCAA	GTTGGACGAA	TCCGTGTCCG	60
AGTCTGACAC CATCCGGAGC ATCAGCATTG CTTCGCAGTG			
GCCTCGTTTC TGGCTGGGGT CTGCTGGCGA ACGGCAGAAT	GCCTACCGTG	CTGCAGTGCG	180
TGAACGTGTC GGTGGTGTCT GAGGAGGTCT GCAGTAAGCT			234
			1.11.
(2) INFORMATION FOR SEQ ID NO:46:	• • • •		
	•		
(i) SEQUENCE CHARACTERISTICS:			
(A) LENGTH: 590 base pairs	*		•
(B) TYPE: nucleic acid	•		
(C) STRANDEDNESS: single	•		
(D) TOPOLOGY: linear		•	-
(ii) MOLECULE TYPE: cDNA	*		**
(11) MOLECULE TIPE: CDNA			,
(vi) ORIGINAL SOURCE:			
(A) ORGANISM: Homo sapiens			
(as, constant to the bapters			•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46	:		
		:	
ACTITITATI TAAATGTTTA TAAGGCAGAT CTATGAGAAT			60
ATTTGATAGC AATATTTTGG AGATTACAGA GTTTTAGTAA	TTACCAATTA	CACAGTTAAA	120
AAGAAGATAA TATATTCCAA GCANATACAA AATATCTAAT	GAAAGATCAA	GGCAGGAAAA	180
TGANTATAAC TAATTGACAA TGGAAAATCA ATTTTAATGT			240
AAAGCTTTCA AAANAAANAA TTATTGCAGT CTANTTAATT	CAAACAGTGT	TAAATGGTAT	300
CAGGATAAAN AACTGAAGGG CANAAAGAAT TAATTTTCAC	TTCATGTAAC	NCACCCANAT	360
TTACAATGCC TTAAATGCAN GGAAAAAGCA GTGGAAGTAG			420
TGGTCTCTAA TCTGCCTTAC TCTTTGGGTG TGGCTTTGAT GGCTCCTGTT ATATCCACAA TCCCAGCAGC AAGATGAAGG			480
GCCTTCCTTT GAGGAGACTT CATCTCACTG GCCAACACTC	GATGAAAAAG	GACACATGCT	540
OCCITECITI GAGGAGACII CATCICACIG GCCAACACIC	AGTCACATGT		590
(2) INFORMATION FOR SEQ ID NO:47:			
	•	•	
(i) SEQUENCE CHARACTERISTICS:	-	•	
(A) LENGTH: 774 base pairs	· · · · · · · · · · · · · · · · · · ·		•
(B) TYPE: nucleic acid	• • •		
(C) STRANDEDNESS: single			
(D) TOPOLOGY: linear		· ·	*
(ii) MOLECULE TYPE: cDNA			
(vi) OBTATURE COMMO	•		•
(vi) ORIGINAL SOURCE:		•	
(A) ORGANISM: Homo sapiens	•		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47		•	
() opposite procession: SEG ID MO:47	•		•

ACAAGGGGC ATAATGAAGG AGTGGGGANA GATTTTAAAG AAGGAAAAAA AACGAGGCCC

TGAACAGAAT TTTCCTGNAC AACGGGGCTT CAAAATAATT TTCTTGGGGA GGTTCAAGAC

AACATCAA					ACCCTGAGGG	180
	AC GGGACTCTG	G GAGGAAGGAT	AAACAGAAAG	GGGACAAAGG	CTAATCCCAA	240
CCTCATCC	AG AAAGGAAGG	T GGCGTCATAC	CTCCCAGCCT	ACACAGTTCT	CCAGGGCTCT	300
	CT GGAGGACGA	C AGTGGAGGAA	CAACTGACCA	TGTCCCCAGG	CTCCTGTGTG	360
CTGGCTCC	IG GTCTTCAGC	C CCCAGCTCTG	GAAGCCCACC	CTCTGCTGAT	CCTGCGTGGC	420
CCACACTC	CT TGAACACAC	A TCCCCAGGTT	ATATTCCTGG	ACATGGCTGA	ACCTCCTATT	480
		G CTCCCTGCAG			·	540
		T GACTTGCCTG				600
		A AGATAGGGTG				660
		N TGGCTCATTT				720
		T TTGTTCTACC				774
(2) INFO	RMATION FOR	SEQ ID NO:48	•	AND THE		
,_,				1.		
(i)	SEQUENCE CH	ARACTERISTICS	S:			
(-)		: 124 base pa			•	
		nucleic acid				
		EDNESS: sing	l e	•		
		GY: linear			4	
	(2) 100020	01. 1111041			the second second	
(ii)	MOLECULE TY	DE CONA				
(11)	MODECODE 11	ID. CDIM				
··· (371)	ORIGINAL SO	IIDCE				
, (11)		SM: Homo sap:	iens			
	(II) ONCIAVI	Err. nome bup.	10115			
(vi)	SECTIONCE DE	SCRIPTION: SI	EU ID MU'46			
					GATATAATTT CAACGCAACT	120 124
						•
(2) INFO	RMATION FOR	SEQ ID NO:49	•		=	
	*					
(i)	SEQUENCE CH	ARACTERISTIC	S:	er en		
, . (i)	(A) LENGTH	: 147 base p	airs			
, (i)	(A) LENGTH	: 147 base p	airs			
(i)	(A) LENGTH	: 147 base p	airs			
, . (i)	(A) LENGTH (B) TYPE: (C) STRAND		airs le			
	(A) LENGTH (B) TYPE: (C) STRAND (D) TOPOLO	: 147 base panucleic acid EDNESS: sing GY: linear	airs le			
	(A) LENGTH (B) TYPE: (C) STRAND	: 147 base panucleic acid EDNESS: sing GY: linear	airs le			
(ii)	(A) LENGTH (B) TYPE: (C) STRAND (D) TOPOLO MOLECULE TY	: 147 base panucleic acid EDNESS: sing GY: linear	airs le			
(ii)	(A) LENGTH (B) TYPE: (C) STRAND (D) TOPOLO MOLECULE TY ORIGINAL SO	: 147 base point nucleic acid EDNESS: sing EGY: linear EPE: cDNA	airs le			
(ii)	(A) LENGTH (B) TYPE: (C) STRAND (D) TOPOLO MOLECULE TY ORIGINAL SO	: 147 base panucleic acid EDNESS: sing GY: linear	airs le iens			
(ii) (vi)	(A) LENGTH (B) TYPE: (C) STRAND (D) TOPOLO MOLECULE TY ORIGINAL SO (A) ORGANI	: 147 base point of the control of t	airs le iens			
(ii) (vi) (xi)	(A) LENGTH (B) TYPE: (C) STRAND (D) TOPOLO MOLECULE TY ORIGINAL SO (A) ORGANI SEQUENCE DE	: 147 base panucleic acid EDNESS: sing GY: linear PE: cDNA URCE: SM: Homo sap	airs le iens EQ ID NO:49	•• •		
(ii) (vi) (xi) GCCGATGC	(A) LENGTH (B) TYPE: (C) STRAND (D) TOPOLO MOLECULE TY ORIGINAL SO (A) ORGANI SEQUENCE DE	: 147 base panucleic acid EDNESS: sing GY: linear PE: cDNA URCE: SM: Homo sap ESCRIPTION: SECRIPTION:	airs le iens EQ ID NO:49	TATTATTCTC	TCAACAGCTT	60
(ii) (vi) (xi) GCCGATGC TGTGGCTA	(A) LENGTH (B) TYPE: (C) STRAND (D) TOPOLO MOLECULE TY ORIGINAL SO (A) ORGANI SEQUENCE DE TA CTATTTAT CA GGTGGTGTC	: 147 base point of the point o	airs le iens EQ ID NO:49	TATTATTCTC	TCAACAGCTT	60 120
(ii) (vi) (xi) GCCGATGC TGTGGCTA	(A) LENGTH (B) TYPE: (C) STRAND (D) TOPOLO MOLECULE TY ORIGINAL SO (A) ORGANI SEQUENCE DE	: 147 base point of the process of t	airs le iens EQ ID NO:49 *GGGGTGTTT AAAANTTTTT	TATTATTCTC	TCAACAGCTT	60
(ii) (vi) (xi) GCCGATGC TGTGGCTA TTAGGGCA	(A) LENGTH (B) TYPE: (C) STRAND (D) TOPOLO MOLECULE TY ORIGINAL SO (A) ORGANI SEQUENCE DE TA CTATTTAT CA GGTGGTGTC CC CATATCCCA	: 147 base positive acid mucleic acid EDNESS: sing EGY: linear EPE: cDNA SURCE: SM: Homo sape ESCRIPTION: SECRIPTION: SECRIPT	airs le iens EQ ID NO:49 *GGGGTGTTT AAAANTTTTT	TATTATTCTC	TCAACAGCTT	60 120
(ii) (vi) (xi) GCCGATGC TGTGGCTA TTAGGGCA	(A) LENGTH (B) TYPE: (C) STRAND (D) TOPOLO MOLECULE TY ORIGINAL SO (A) ORGANI SEQUENCE DE TA CTATTTAT CA GGTGGTGTC CC CATATCCCA	: 147 base point of the process of t	airs le iens EQ ID NO:49 *GGGGTGTTT AAAANTTTTT	TATTATTCTC	TCAACAGCTT	60 120

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 107 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
ACATTAAATT AATAAAAGGA CTGTTGGGGT TCTGCTAAAA CACATATGGTTTGAG GTTAGGAGGA GTTAGGCATA TGTTTTGGGA GAGGG	RGGCTT GATATATTGC 60
(2) INFORMATION FOR SEQ ID NO:51:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 204 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE:</pre>	
GTCCTAGGAA GTCTAGGGGA CACACGACTC TGGGGTCACG GGGCCCGGGAAGGAA AGGCAGAGAA GTGACACCGT CAGGGGGAAA TGACACCTTGCAAG GTCAGAAAGG GGACTCAGGG CTTCCACCAC AGCCCCCTCCCTTTT GGGACCAGCA ATGT	AGAAAG GAAAATCAAG 120
(2) INFORMATION FOR SEQ ID NO:52:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 491 base pairs(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear	er en state en sjørte i skrivere en elektricker. Konstante i det en state en skriver en elektricker.
(ii) MOLECULE TYPE: CDNA	:
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:	
ACAAAGATAA CATTTATCTT ATAACAAAAA TTTGATAGTT TTAACGGGTATTTC CAAAAGACTA AAGAGATAAC TCAGGTAAAA AGTTCCATCAGACA GGTTTTTAAA AAACAACATA TTACAAAATT AGACAAAACTTCTT GTATCAAAATT CTTTTGTTCA AAATGACTGA CTTACCAAAAAACAC TTCCTCAAAA ATTTTCAANA TGGTAGCTTT CANACATGTTGCTCA GATAAATAAA TCTCGTGAGA ACTTACCACC CACCA	AGAAAT GTATAAAACA 120 AATCAT CCTTAAAAAA 180 ANTATT TTTAAATATT 240 IGTNCC CTCAGTCCCA 300
ATGCAACAGT GTCTTTTCTT TNCTTTTTCT TTTTTTTTTT TTAC	

CAATTTTATT TGGATAACAA AGGGTCTCCA AATTATATTG	AAAAATAAAT	CCAAGTTAAT	480
ATCACTCTTG T			491
	•		*
(2) INFORMATION FOR SEQ ID NO:53:		•	
			·
(i) SEQUENCE CHARACTERISTICS:			
(A) LENGTH: 484 base pairs			
(B) TYPE: nucleic acid	Anna de Antonio de Ant		in the latest and the
(C) STRANDEDNESS: single			•
(D) TOPOLOGY: linear	· .	•	
			•
(ii) MOLECULE TYPE: cDNA			
() ODICINAL COMPOR			
(vi) ORIGINAL SOURCE:		en e	
(A) ORGANISM: Homo sapiens	*		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53			•
(XI) SEQUENCE DESCRIPTION: SEQ ID NO:53	•	• 1	
ACATAATTTA GCAGGGCTAA TTACCATAAG ATGCTATTTA	ምምል ል NI ልናደረታ ጥላ፣	ጥልብርኒስጥርጥርኣ	60
GTATTAACAG TTGCTGAAGT TTGGTATTTT TATGCAGCAT			120
ACTACAGAAC CCTTAAGGAC ACTGAAAATT AGTAAGTAAA			180
CAATCAAATC TCTACATAAC ACTATAGTAA TTAAAACGTT			240
GCACTAGTAT ANACCGCTCC TGTCAGGATA ANACTGCTTT			300
AGCTTTGANT TTCTTTGTGC TGATANGAGG AAAGGCTGAA			360
AATGATTGGC AGGTCNGGTA AATNCCAAAA CATATTCCAA			420
TANCTTGANT CTGTGTATTC CAGGANCAGG CGGATGGAAT			480
CANT			484
the second of th			
(2) INFORMATION FOR SEQ ID NO:54:			e e
	• •		
(i) SEQUENCE CHARACTERISTICS:	3		
(A) LENGTH: 151 base pairs			• • • • •
(B) TYPE: nucleic acid		•	
(C) STRANDEDNESS: single			
(D) TOPOLOGY: linear			•
(ii) MOLECULE TYPE: cDNA			:
(vi) ORIGINAL SOURCE:			
(A) ORGANISM: Homo sapiens			
(A) ORGANISM: HOMO Baptens			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54	-		
(XI) DEGORACE DESCRIPTION. SEQ ID NO.54	•		
ACTAAACCTC GTGCTTGTGA ACTCCATACA GAAAACGGTG	CCATCCCTCA	ACACCCCTCC	60
CCACTGGGTA TACTGCTGAC AACCGCAACA ACAAAAACAC			120
TCTATGTCCT CTCAAGTGCC TTTTTGTTTG T		CACICOCIAC	151
	•	•	
(2) INFORMATION FOR SEQ ID NO:55:			•
			•
(i) SEQUENCE CHARACTERISTICS:			
(A) LENGTH: 91 base pairs			
(B) TYPE: nucleic acid	•		
(C) STRANDEDNESS: single			
(D) TOPOLOGY: linear		0	

(ii) MOLECULE TYPE: cDNA	
	• •
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID	
	CONCOR MOCCORDAN A CONCORDAD CO
ACCTGGCTTG TCTCCGGGTG GTTCCCGGCG CCCCCGCCCTCCAGT GGATACTCGA GCCAAAGTGG T	
GCCCCCCAGI GGATACICGA GCCAAAGIGG I	91
(2) INFORMATION FOR SEQ ID NO:56:	
(2) Intoldition for one of the Ro.50.	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 133 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	••
(D) TOPOLOGY: linear	
(b) Toronogi. Timeat	
(ii) MOLECULE TYPE: cDNA	
(11) CDIRCOLL IIII. CDIR	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(1) Ondravion. Homo Bupieno	
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO:56:
GGCGGATGTG CGTTGGTTAT ATACAAATAT GTCA	
TGGATTTTTG GTATCTGTGG GTTGGGGGGA CGGTG	
AAGGGACAAC TGT	CCAGGA ACCAATACCC CATGGATACC 120
ARGUCACARC 101	
(2) INFORMATION FOR SEQ ID NO:57:	 And the control of the state of
(i) SEQUENCE CHARACTERISTICS:	But the first parties of the property of the
(A) LENGTH: 147 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
,	
(vi) ORIGINAL SOURCE:	• • • •
(A) ORGANISM: Homo sapiens	and the second s
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO:57:
10000000101 1 00001000 0000 00000000 0000	
ACTCTGGAGA ACCTGAGCCG CTGCTCCGCC TCTG	
GACTGGGAGC TGAGCCCTTC CCTTTGCGCC TGCC	
TCTCANTGGG CTGGATNCAT GCAGGGT	147
(2) TMDODWAMTON BOD CO	·
(2) INFORMATION FOR SEQ ID NO:58:	
(i) Operation	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 198 base pairs	
(B) TYPE: nucleic acid	•
(C) STRANDEDNESS: single	

(D) TOPOLOGY: linear

(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58: ACAGGGATAT AGGITTNAAG TTATTGTNAT TGTAAAATAC ATTGAATTTT CTGTATACTC TGATTACCAT GAGTTACCTT GTAAAATAGA AGTCATGATA GCATCTATTA ATTTACCAAT GAGTTACCTT GTAAAATAGA AGTCATGATA GCACTGAATT TTAACTAGTT 198 (2) INFORMATION FOR SEQ ID NO:59: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sspiens (XI) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAAATG GGTTGTGAGG AAGTCTTATC AGCAAAAACTG GTGATGGCTA CTGAAAAAGAT CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAAACTC ACTCAATTTT 120 CACCTGTGCT AGCTGCTAA AATGGGAGTT ACCTCTGAGA TACTCTCTGAA 180 TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGT TCCAGACCCAG CAGAAGGAAT CTATTTTATC ACATGGAGTT ACCTCTGGACTT CCAGACCCAG CAGAAGGAAT CTATTTTATC ACATGGAGT ACCGTCTGTGC TCAAAATACC TAATGATATT 330 (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	(A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58: ACAGGGATAT AGGTTTNAAG TTATTGTNAT TGTAAAATAC ATTGAATTTT CTAATACATA CATTTACCT TTAAAAAAGA TGTAAATCT AATTTTATG CXATTTACCAAT GAGTTACCTT GTAAATGAGA AGTCATGATA GCACTGAATT TTTGACTTCTA AGTTTGGT (2) INFORMATION FOR SEQ ID NO:59: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sspiens (Xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTCACTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATTACATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACCACTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATTACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGAAGGAAT CTATTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TRTTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:		
(A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58: ACAGGGATAT AGGTTTNAAG TTATTGTNAT TGTAAAATAC ATTGAATTT CTGTATACTC TGATTACCAT GAGTTACCT TTAAAAAAGA TGTAAATCT AATTTTATG CCATCTATTA ATTTACCAT GAGTTACCT GTAAATGAGA AGTCATGATA GCACTGAAT TTAACTAGTT TTGACTTCTA AGTTTGGT (2) INFORMATION FOR SEQ ID NO:59: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT CCATTGAAAA TTATCATTAA TGATTTTAAA TGACTACAAGTTA TCAAAAACTC ACTCAATTTT 120 CACCTGTGCT AGCTTGCTAA AATGGGAGTT ACCTCAGAG CAAAATTAGT ATCTCTCAAA TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACCTT CCAGCCCAG CAGAAGGAAT CTATTTTATA CACTGGAGTT ACCAGTTGGTT TCCAGACCTT CCAGCCCAG CAGAAGGAAT CTATTTTATA CACTGGAGTT CCGGTCTTT CCAGACCCAG CAGAAGGAAT CTATTTTATA CACTGGAGTT CCGGTCTTT CCAGACCCAG CAGAAGGAAT CTATTTTATC ACATGGAGTT CCGGTCTTT CCAGACCCAG CAGAAGGAAT CTATTTTATA TGACTGCATC CCGTCTGTGC TCAAAATACC TAATGATATT 300 TTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(A) ORGANISM: Homo sapiens (Xi) SEQUENCE DESCRIPTION: SEQ ID NO:58: ACAGGGATAT AGGTTINAAG TTATTGTNAT TGTAAAATAC ATTGAATTIT CTAGATTACAT CATTTATCCT TTAAAAAAGA TGTAAATCTT AATTTTATG CX ATTTACCAAT GAGTTACCTT GTAAAATGAGA AGTCATGATA GCACTGAATT TTTGACTTCTA AGTTTGGT (2) INFORMATION FOR SEQ ID NO:59: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (Vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (Xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATACT ATTACATTAA TGATTTTAAA TGACAGTTA TCAAAAACTC ACCCTGTGCT AGCTGTGCTAA AATGGGAGTT CCGTCTGGC TAAAAATACC TATTCCGTCATA AAATGACAAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGAAGAAA CTATTTATC ACATGGATCT CCGTCTGTC TCAAAAATACC TATTCCGTCTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
ACAGGATAT AGGTTINAAG TTATTGTNAT TGTAAAATCA ATTGAATTTT CTGTATACTC TGATTACATA CATTTATCCT TTAAAAAGGA TGTAAAATCA ATTGAATTTT CTGTATACTC TGATTACAAT GAGTTACCTT GTAAAAAGGA TGTAAAATCA AGATTTATATG CATCTATTA ATTTACCAAT GAGTTACCTT GTAAAATGAGA AGTCATGATA GCACTGAATT TTAACTAGTT 198 (2) INFORMATION FOR SEQ ID NO:59: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sspiens (Xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT 120 CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAAGTTA TCAAAAACTC ACTCAATTTT 120 CCACTGTGCT AGGTTGCTAA AATGGGAGTT ACACTCATGAG CAAAATTAGT ATCTCTGAAA TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT GCAGACCCAG CAGAAAGGAAT CTATTTTATA CACTGGAGTT AACCTCTAGGA CAAAATTAGT ATCTCTGAAA TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT GCAGACCCAG CAGAAAGGAAT CTATTTTATA CACTGGAGTT CCGTCTGTGC TCAAAAATACC TAATGATATT 300 CAGAAAGGAAT CTATTTTATA CACTGGAGTT CCGTCTGTGC TCAAAAATACC TAATGATATT 310 (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	ACAGGGATAT AGGTTTNAAG TTATTGTNAT TGTAAAATAC ATTGAATTTT CONTINUES OF ATTTACATA CATTTATCCT TTAAAAAAGA TGTAAATCT AATTTTATG CONTINUES OF ATTTACCAAT GAGTTACCTT GTAAATGAGA AGTCATGATA GCACTGAATT TOTTGACTTCTA AGTTTGGT (2) INFORMATION FOR SEQ ID NO:59: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: HOMO SEPIENS (Xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CONTINUESCAAT AGTTGCAAT AATTACATTAA TGATTTTAAA TGACAAGATTA TCAAAAACTC ACCACTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATTACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGAAAGAAC CTATTTTTATC ACAATGGATC CCGTCTGTGC TCAAAATACC TATTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: HOMO SEPIENS	to the state of	(i, x) = i
ACAGGGATAT AGGTTINAAG TTATTGTNAT TGTAAAATAC ATTGAATTTT CTGTATACTC TGATTACCAAT CATTTATCCT TTAAAAAAGA TGTAAAATCT AATTTTATG CCATCTATTA ATTTACCAAT GAGTTACCTT GTAAATGAGA AGTCATGATA GCACTGAATT TTAACTAGTT TTGACTTCTA AGTTTGGT (2) INFORMATION FOR SEQ ID NO:59: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT CCATTGAAAA TTATCATTAA TGATTTTAAAA TGACAAGATTA TCAAAAACTC ACTCAATTTT CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATCTTCTGAA TACAGTCAAT AAATGACAAA GCCAGGGGCT ACAGGTGGTT TCCAGACTTAT CAGGACCACG CAGAAAGAAT CTATTTATAC ACATGGATCT CCGTCTGTGC TCAAAAATACC TAATGATATT TTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	ACAGGGATAT AGGTTINAAG TTATTGTNAT TGTAAAATAC ATTGAATTTT CTGATTACATA CATTTATCCT TTAAAAAAGA TGTAAATCTT AATTTTATG CX ATTTACCAAT GAGTTACCTT GTAAATGAGA AGTCATGATA GCACTGAATT TTGACTTCTA AGTTTGGT (2) INFORMATION FOR SEQ ID NO:59: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: HOMO SSPIENS ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CACCTGTGCT AGCTTGCTAA AATGGGAGTT ACTCAAGAACTC ACCCTGTGCT AGCTTGCTAA AATGGGAGTT ACCTAGAGG CAAATATAGT TACAAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CACAGAAGCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CACAGAAGAAACTC TTTCCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: HOMO SAPIENS	•	
TGATTACCAT CATTTATCCT TTAAAAAAGA TGTAAATCTT AATTTTATG CCATCTATTA ATTTACCAAT GAGTTACCTT GTAAATGAGA AGTCATGATA ATTTACCAAT GAGTTACCTT GTAAATGAGA AGTCATGATA TTGACTTCTA AGTTTGGT (2) INFORMATION FOR SEQ ID NO:59: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: HOMO SEPIENS (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT CACTGTGCT AGCTTGCTAA AATGGAGATT ACACAAGATTA TCAAAAACTC ACTCAATTTT 120 CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATCTTCTGAA TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTC CCAGACCCAC CAGAAAGAAT CTATTTATAC CACTGATCT CCGTCTGTGC TCAAAAATCC TAATGATATT 330 (2) INFORMATION FOR SEQ ID NO:60: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	TGATTACATA CATTTATCCT TTAAAAAAGA TGTAAATCTT AATTTTATG COATTTACCAAT GAGTTACCTT GTAAATGAGA AGTCATGATA GCACTGAATT TTTGACTTCTA AGTTTGGT (2) INFORMATION FOR SEQ ID NO:59: (i) SEQUENCE CHARACTERISTICS:		
ATTTACCAAT GAGTTACCTT GTAAATGAGA AGTCATGATA GCACTGAATT TTAACTAGTT TTGACTTCTA AGTTTGGT (2) INFORMATION FOR SEQ ID NO:59: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT CCACTGTGCT AGCTTGCTAA AATGGAGTT AACTCTAGAG CAAAATATAGT ATCTTCTGAA TACAGTCAAT AAATGACAAA GCCAGGGGCT ACAGGTGGTT TCCAGACTTT GCAGAACCAG CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TAATGATATT TTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE:	ATTTACCAAT GAGTTACCTT GTAAATGAGA AGTCATGATA GCACTGAATT TTGACTTCTA AGTTTGGT (2) INFORMATION FOR SEQ ID NO:59: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTCATTGAAAA TTATCATTAA TGATTTATAA TGACAAGTTA TCAAAAACTC ACCACTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TATTCTGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(2) INFORMATION FOR SEQ ID NO:59: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT 60 CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACTCAATTTT 120 CACCTGTGCT AGCTTGCTAA AATGGGGTT ACACTGAGG CAAAATATTGA TATCTTCTGAA CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGT TCCAGACTTG CACGACCCAG 240 CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TAATGATATT 3300 CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAAATACC TAATGATATT TTTCGTCTTT ATTGGACTTC TTTGAAGAGT 3300 (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE:	(2) INFORMATION FOR SEQ ID NO:59: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CACCTGTGCT AGCTTGCTAA AATGGGAGTT ACCTAGAGG CAAATATAGT ATTACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CACAGACGAAT CTATTATATA TGATTTATA TGACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CACAGAGGAAT CTATTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TATTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAAACTC ACTCAATTTT 120 CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAAATATGT ATCTTCTGAA 180 TACAGTCAAT AAATGACAAA GCCAGGCCT ACAGGTGGTT TCCAGACTTT CCAGACCCAG 240 CAGAAAGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TAATGATATT 3300 (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CACCTGTGATAA TATACATTAA TGATTTTAAA TGACAAGTTA TCAAAAAACTC ACCACTGTGAT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAAATAAGT ATACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CACAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAAATACC TATTCTGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		198
(A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACTCAATTTT 120 CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATCTTCTGAA 180 TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT GCAGACCCAG 240 CAGAAAGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TAATGATATT 300 TTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CACCTTGAAAA TTATCATTAA TGATTTAAA TGACAAGTTA TCAAAAACTC ACCACTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATTACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TATTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACTCAATTTT 120 CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATCTTCTGAA 180 TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT GCAGACCCAG 240 CAGAAAGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TAATGATATT 300 TTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CACCTTGAAAA TTATCATTAA TGATTTAAA TGACAAGTTA TCAAAAACTC ACCACTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATTACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TATTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT CCATTGAAAA TTATCATTAA TGATTTAAA TGACAAGTTA TCAAAAACTC ACTCAATTTT 120 CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATACT ATCTTCTGAA 180 TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGACCCAG 240 CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TAATGATATT 300 TTTCGTCTTT ATTGGACTTC TTTGAAGAGT 330 (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTCCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACCCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATTACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TATTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATAGGCTA CTGAAAAGAT CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACTCAATTTT 120 CACCTGTGCT AGCTTGCTAA AATGGAGTT AACTCTAGAG CAAATATAGT ATCTTCTGAA 180 TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT GCACACCCAG 240 CAGAAGGAAT CTATTTATC ACATGGATCT COGTCTGTGC TCAAAATACC TAATGATATT 300 CAGAAGGAAT CTATTTATC ACATGGATCT COGTCTGTGC TCAAAATACC TAATGATATT 300 (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TATTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACCACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATTACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TATTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	-X-	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACTCAATTTT 120 CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATCTTCTGAA 180 TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGACCCAG CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TAATGATATT 300 TTTCGTCTTT ATTGGACTTC TTTGAAGAGT 330 (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CACACTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACCACTGTGCT AGCTTGCTAA AATGGAGTT AACTCTAGAG CAAATATAGT ATTACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CAGAAGGAAT CTATTTTATC ACATGGATCT COGTCTGTGC TCAAAATACC TATTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACTCAATTTT 120 CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATCTTCTGAA 180 TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGACCCAG CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TAATGATATT 300 TTTCGTCTTT ATTGGACTTC TTTGAAGAGT 330 (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CACACTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACCACTGTGCT AGCTTGCTAA AATGGAGTT AACTCTAGAG CAAATATAGT ATTACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CAGAAGGAAT CTATTTTATC ACATGGATCT COGTCTGTGC TCAAAATACC TATTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(A) ORGANISM: Homo sapiens (Xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACTCAATTTT 120 CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATCTTCTGAA 180 CACGAGCAAA AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT GCAGACCCAG CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TAATGATATT 300 CTTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE:	(A) ORGANISM: Homo sapiens (XI) SEQUENCE DESCRIPTION: SEQ ID NO:59: ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTCAATGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACCACTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATTACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TATTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	•	•
ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAAACTC ACTCAATTTT CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATCTTCTGAA TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT GCAGACCCAG CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TAATGATATT TTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE:	ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTCCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACCACTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATTACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TATTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		. : *
ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACTCAATTTT CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATCTTCTGAA TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGACCCAG CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAAATACC TAATGATATT TTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	ACAACAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTCCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACCACTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATTACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TATTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	:	
ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACTCAATTTT CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATCTTCTGAA TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGACCCAG CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAAATACC TAATGATATT TTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	ACAACAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTCCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACCACTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATTACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TATTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACTCAATTTT CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATCTTCTGAA TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT GCAGACCCAG CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TAATGATATT 300 TTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACCACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATTACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT GCCAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TATTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATCTTCTGAA TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT GCAGACCCAG CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TAATGATATT 300 TTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT AT TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT GC CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TA TTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT GCAGACCCAG CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TAATGATATT 300 TTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT GCCAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TATTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TAATGATATT 300 TTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	CAGAAGGAAT CTATTTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TATTTCGTCTTT ATTGGACTTC TTTGAAGAGT (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	CAGACCCAG	
(2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		330
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	•	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	(ii) MOLECULE TYPE: cDNA(vi) ORIGINAL SOURCE:(A) ORGANISM: Homo sapiens	• •	
(vi) ORIGINAL SOURCE:	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
	(A) ORGANISM: Homo sapiens	÷ .	
	(A) ORGANISM: Homo sapiens	•	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:		
	(X1) SEQUENCE DESCRIPTION: SEQ ID NO:60:		
(X1) SEQUENCE DESCRIPTION: SEQ ID NO:60:			
ACCGTGGGTG CCTTCTACAT TCCTGACGGC TCCTTCACCA ACATCTGGTT CTACTTCGGC 60	ACCGTGGGTG CCTTCTACAT TCCTGACGGC TCCTTCACCA ACATCTGGTT CT	TACTTCGGC	60
and the second of the second o	GTCGTGGGCT CCTTCCTCTT CATCCTCATC CAGCTGGTGC TGCTCATGGA CT	TTTGCGCAC	120
	TCCTGGAACC AGGGGTGGCT GGGCAAGGCC GAGGAGTGCG ATTCCCGTGC CT	TGGT	175

(2) INFORMATION FOR SEQ ID NO:61:

	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 154 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear			•
	(ii)	MOLECULE TYPE: cDNA			
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens			
	(xi)	SEQUENCE DESCRIPTION: SEQ ID	NO:61:	·	
GGT	rgttg	TT TCCTCCTGTG AGCAGTCTGG ACTT CT CTTCAACAGT ATCCTCCCCT TTCC AC AGCCCCGGGG CTCCACATTG CTGT	GGATCT GCTGAGC		60 120 154
(2)	INFO	RMATION FOR SEQ ID NO:62:		<u>.</u>	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear			
	(ii)	MOLECULE TYPE: cDNA		·	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens			
.•	(xi)	SEQUENCE DESCRIPTION: SEQ ID	NO:62:		•
CGC	TCGAG	CC CTATAGTGAG TCGTATTAGA	1 W		30
(2)	INFO	RMATION FOR SEQ ID NO:63:	•		
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 89 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single			
	*	(D) TOPOLOGY: linear			
	(ii)	MOLECULE TYPE: cDNA			
-	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens			
	(xi)	SEQUENCE DESCRIPTION: SEQ ID	NO:63:		
		TT TCAGCACCCT TTGCTCTTCA AAAC AT AAAAATGGTT ATGTCAAGT	TGACCA TCTTTTA	TAT TTAATGCTTC	60 89
(2)	INFO	RMATION FOR SEQ ID NO:64:	•	, _(V)	

60

(i) SEQUENCE CHARACTERISTICS:			
(A) LENGTH: 97 base pairs			
(B) TYPE: nucleic acid			
(C) STRANDEDNESS: single		na e	
(D) TOPOLOGY: linear		·	
		•	
(ii) MOLECULE TYPE: cDNA			
(vi) ORIGINAL SOURCE:	e jako en jako en jako en j		
(A) ORGANISM: Homo sapiens	•		. 0
			. :
(xi) SEQUENCE DESCRIPTION: SEQ II	NO:64:		٠
ACCGGAGTAA CTGAGTCGGG ACGCTGAATC TGAAAATCAGTGCA TCCAGGATTG GTCCTTGGAT CTGC		GGTTCTGCAG	60 97
(2) INFORMATION FOR SEQ ID NO:65:		*	
(i) SEQUENCE CHARACTERISTICS:			
(A) LENGTH: 377 base pairs			•
(B) TYPE: nucleic acid			
(C) STRANDEDNESS: single			
(D) TOPOLOGY: linear		•	
			•
(ii) MOLECULE TYPE: cDNA		• • •	
(vi) ORIGINAL SOURCE:			<u>.</u>
(A) ORGANISM: Homo sapiens			
	• • • •		
(xi) SEQUENCE DESCRIPTION: SEQ II		a majiri kat Barangiri	
ACAACAANAA NTOCCTTCTT TAGGCCACTG ATGC	JAAACCT GGAACCCCCT	TTTGATGGCA	60
GCATGGCGTC CTAGGCCTTG ACACAGCGGC TGGC	GTTTGG GCTNTCCCAA	ACCGCACACC	120
CCAACCCTGG TCTACCCACA NTTCTGGCTA TGGC			- 180
TCGGTCATAA NATGAAATCC CAANGGGGAC AGAC	SGTCAGT AGAGGAAGCT	CAATGAGAAA	240
GGTGCTGTTT GCTCAGCCAG AAAACAGCTG CCTC	SGCATTC GCCGCTGAAC	TATGAACCCG	300
TGGGGGTGAA CTACCCCCAN GAGGAATCAT GCC	FGGGCGA TGCAANGGTG	CCAACAGGAG	360
GGGCGGAGG AGCATGT			. 377
·			
(2) INFORMATION FOR SEQ ID NO:66:			
(i) SEQUENCE CHARACTERISTICS:			
(A) LENGTH: 305 base pairs		•	
(B) TYPE: nucleic acid	• •		
(C) STRANDEDNESS: single		,	
(D) TOPOLOGY: linear			
	· .	,	
(ii) MOLECULE TYPE: cDNA	•	*	
	• • •		
(vi) ORIGINAL SOURCE:			
(A) ORGANISM: Homo sapiens			
		. 8 4	
(vi) SPOTENCE DESCRIPTION, SPO J	D NICHES		

ACGCCTTTCC CTCAGAATTC AGGGAAGAGA CTGTCGCCTG CCTTCCTCCG TTGTTGCGTG

AGAACCCGTG TGCCCCTTCC CACCATATCC AGGAACTAAC TGCACCCTGG TCCTCTCCCC TCCTCCACTC TAAGGGATAT CAACACTGCC TTATATATTT TTTAATAAGA TGCACTTTAT TGTTT	AGTCCCCAGT CAGCACAGGG	TCACCCTCCA GCCCTGAATT	TCCCTCACCT TATGTGGTTT	120 180 240 300 305
(2) INFORMATION FOR SEQ ID NO:67:		•	•	•
(i) SEQUENCE CHARACTERISTICS				
(A) LENGTH: 385 base pa	irs			
(B) TYPE: nucleic acid				
(C) STRANDEDNESS: singl	.e			
(D) TOPOLOGY: linear		•		•
(ii) MOLECULE TYPE: cDNA		*		
(•	·		
(vi) ORIGINAL SOURCE:				
(A) ORGANISM: Homo sapi	.ens			
(xi) SEQUENCE DESCRIPTION: SE	O TD NO.67	_		
(MI) DEGEMEN DESCRIPTION. BE	Q ID NO.67			
ACTACACAC CTCCACTTGC CCTTGTGAGA	CACTTTGTCC	CAGCACTTTA	GGAATGCTGA	60
GGTCGGACCA GCCACATCTC ATGTGCAAGA				120
CCCTTTTAAA AAAGGGGACT TGCTTAAAAA				180
TGTGCTGTGC TGGAGATTCA CTTTTGAGAG				240
CTGGGCAGTC TTGCACATGA GATGGGGCTG				300
CCTCTCCCAG GGCCCCAGCC TGGCCACACC	TGCTTACAGG	GCACTCTCAG	ATGCCCATAC	360
CATAGTTTCT GTGCTAGTGG ACCGT				. 385
(2) INFORMATION FOR SEQ ID NO:68:		• • • • • • • • • • • • • • • • • • • •		
		•		
(i) SEQUENCE CHARACTERISTICS		•		٠,
(A) LENGTH: 73 base pai				
. (B) TYPE: nucleic acid		er.		•
(C) STRANDEDNESS: singl	.e			
(D) TOPOLOGY: linear	•	• •	• • **	
(ii) NOT BOWN BURNS - Days				
(ii) MOLECULE TYPE: cDNA				
(vi) ORIGINAL SOURCE:				
(A) ORGANISM: Homo sapi	enc			
(11) 011012111111111111111111111111111111				
(xi) SEQUENCE DESCRIPTION: SE	% ID NO:68		·.	
ACTTAACCAG ATATATTTTT ACCCCAGATG	CCCATATTY	TTCTAAAAA	ממממממים א	60
GTTTTTTAA TGG	COGNINITE	IIOIMMANA	IGAAAAIAAA	73
(2) INFORMATION FOR SEQ ID NO:69:				
(+) CROVINGS CO			- 0	
(i) SEQUENCE CHARACTERISTICS				
(A) LENGTH: 536 base pa				•
(B) TYPE: nucleic acid (C) STRANDEDNESS: singl			• •	•
(D) TOPOLOGY: linear	. c			

- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

ACTAGTCCAG	TGTGGTGGAA	TTCCATTGTG	TTGGGGGCTC	TCACCCTCCT	CTCCTGCAGC	60
TCCAGCTTTG	TGCTCTGCCT	CTGAGGAGAC	CATGGCCCAG	CATCTGAGTA	CCCTGCTGCT	120
CCTGCTGGCC	ACCCTAGCTG	TGGCCCTGGC	CTGGAGCCCC	AAGGAGGAGG	ATAGGATAAT	180
CCCGGGTGGC	ATCTATAACG	CAGACCTCAA	TGATGAGTGG	GTACAGCGTG	CCCTTCACTT	240
CGCCATCAGC	GAGTATAACA	AGGCCACCAA	AGATGACTAC	TACAGACGTC	CGCTGCGGGT	300
ACTAAGAGCC	AGGCAACAGA	CCGTTGGGGG	GGTGAATTAC	TTCTTCGACG	TAGAGGTGGG	360
CCGAACCATA	TGTACCAAGT	CCCAGCCCAA	CTTGGACACC	TGTGCCTTCC	ATGAACAGCC	420
AGAACTGCAG	AAGAAACAGT	TGTGCTCTTT	CGAGATCTAC	GAAGTTCCCT	GGGGAGAACA	480
GAANGTCCCT	GGGTGAAATC	CAGGTGTCAA	GAAATCCTAN	GGATCTGTTG	CCAGGC	536

- (2) INFORMATION FOR SEQ ID NO:70:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 477 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

ATGACCCCTA ACAGGGGCCC TCTCAGCCCT CCTAATGACC TCCGGCCTAG CCATGTGATT	60
TCACTTCCAC TCCATAACGC TCCTCATACT AGGCCTACTA ACCAACACAC TAACCATATA	120
CCAATGATGG OGCGATGTAA CACGAGAAAG CACATACCAA GGCCACCACA CACCACCTGT	180
CCAAAAAGGC CTTCGATACG GGATAATCCT ATTTATTACC TCAGAAGTTT TTTTCTTCGC	240
AGGGATTTTT CTGAGCCTTT TACCACTCCA GCCTAGCCCC TACCCCCCAA CTAGGAGGGC	300
ACTGGCCCCC AACAGGCATC ACCCCGCTAA ATCCCCTAGA AGTCCCACTC CTAAACACAT	360
CCGTATTACT CGCATCAGGA GTATCAATCA CCTGAGCTCA CCATAGTCTA ATAGAAAACA	420
ACCGAAACCA AATTATTCAA AGCACTGCTT ATTACAATTT TACTGGGTCT CTATTTT	477

- (2) INFORMATION FOR SEQ ID NO:71:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 533 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: CDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

AGAGCTATAG	GTACAGTGTG	ATCTCAGCTT	TGCAAACACA	TTTTCTACAT	AGATAGTACT	60
AGGTATTAAT	AGATATGTAA	AGAAAGAAAT	CACACCATTA	ATAATGGTAA	GATTGGTTTA	120
TGTGATTTTA	GTGGTATTTT	TGGCACCCTT	ATATATGTTT	TCCAAACTTT	CAGCAGTGAT	180
ATTATTTCCA	TAACTTAAAA	AGTGAGTTTG	AAAAAGAAAA	TCTCCAGCAA	GCATCTCATT	. 240
	TTTGTCATCT					300
AAATAGGTGT	GACCCTACTA	ATAATTATTA	GAAATACATT	TAAAAACATC	GAGTACCTCA	360
AGTCAGTTTG	CCTTGAAAAA	TATCAAATAT	AACTCTTAGA	GAAATGTACA	TAAAAGAATG	420
CTTCGTAATT	TTGGAGTANG	AGGTTCCCTC	CTCAATTTTG	TATTTTTAAA	AAGTACATGG	480
AAAAAAAT	AATTCACAAC	AGTATATAAG	GCTGTAAAAT	GAAGAATTCT	GCC	533
						· · · · · · · · · · · · · · · · · · ·

(2) INFORMATION FOR SEQ ID NO:72:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 511 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

TATTACGGAA	AAACACACCA	CATAATTCAA	CTANCAAAGA	ANACTGCTTC	AGGGCGTGTA	60
AAATGAAAGG	CTTCCAGGCA	GTTATCTGAT	TAAAGAACAC	TAAAAGAGGG	ACAAGGCTAA	120
	ATGTCTACAC					180
	AGATTGGTGC					240
					GAATAGTACA	300
	CTGAAATGGC					360
	ACAATAACCG					420
	ATTGCAGCNA			AACNCAGGTG	ATGATGGCNA	480
AAATACACCC	CCTCTTGAAG	NACCNGGAGG	Α .	•		511

(2) INFORMATION FOR SEQ ID NO:73:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 499 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

CAGTGCCAGC ACTGGTGCCA GTACCAGTAC CAATAACAGT GCCAGTGCCA GTGCCAGCAC	60
CAGTGGTGGC TTCAGTGCTG GTGCCAGCCT GACCGCCACT CTCACATTTG GGCTCTTCGC	120
TGGCCTTGGT GGAGCTGGTG CCAGCACCAG TGGCAGCTCT GGTGCCTGTG GTTTCTCCTA	180
CAAGTGAGAT TTTAGATATT GTTAATCCTG CCAGTCTTTC TCTTCAAGCC AGGGTGCATC	240

CTCAGAAACC TAC	TCAACAC AGCACTCTAG	GCAGCCACTA	TCAATCAATT	GAAGTTGACA	300
and the second s	CTATTTG CCATTTCTGA				360
ANTCTAGAGG GCC	CGTTTAA ACCCGCTGAT	CAGCCTCGAC	TGTGCCTTCT	ANTTGCCAGC	420
CATCTGTTGT TTG	CCCCTCC CCCGNTGCCT	TCCTTGACCC	TGGAAAGTGC	CACTCCCACT	480
GTCCTTTCCT AAN	TAAAAT	•	•	•	499

(2) INFORMATION FOR SEQ ID NO:74:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 537 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

TTTCATAGGA	GAACACACTG	AGGAGATACT	TGAAGAATTT	GGATTCAGCC	GCGAAGAGAT	- 60
TTATCAGCTT	AACTCAGATA	AAATCATTGA	AAGTAATAAG	GTAAAAGCTA	GTCTCTAACT	120
TCCAGGCCCA	CGGCTCAAGT	GAATTTGA AT	ACTGCATTTA	CAGTGTAGAG	TAACACATAA	180
CATTGTATGC	ATGGAAACAT	GGAGGAACAG	TATTACAGTG	TCCTACCACT	CTAATCAAGA	240
AAAGAATTAC	AGACTCTGAT	TCTACAGTGA	TGATTGAATT	CTAAAAATGG	TAATCATTAG	.300
GGCTTTTGAT	TTATAANACT	TTGGGTACTT	ATACTAAATT	ATGGTAGTTA	TACTGCCTTC	360
CAGTTTGCTT	GATATATTTG	TTGATATTAA	GATTCTTGAC	TTATATTTTG	AATGGGTTCT	420
ACTGAAAAAN	GAATGATATA	TTCTTGAAGA	CATCGATATA	CATTTATTTA	CACTCTTGAT	480
TCTACAATGT	AGAAAATGAA	GGAAATGCCC	CAAATTGTAT	GGTGATAAAA	GTCCCGT	537

(2) INFORMATION FOR SEQ ID NO:75:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 467 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

CAAANACAAT	TGTTCAAAAG	ATGCAAATGA	TACACTACTG	CTGCAGCTCA	CAAACACCTC	60
TGCATATTAC	ACGTACCTCC	TCCTGCTCCT	CAAGTAGTGT	GGTCTATTTT	GCCATCATCA	120
CCTGCTGTCT	GCTTAGAAGA	ACGGCTTTCT	GCTGCAANGG	AGAGAAATCA	TAACAGACGG	180
TGGCACAAGG	AGGCCATCTT	TTCCTCATCG	GTTATTGTCC	CTAGAAGCGT	CTTCTGAGGA	240
TCTAGTTGGG	CTTTCTTTCT	GGGTTTGGGC	CATTTCANTT	CTCATGTGTG	TACTATTCTA	300
TCATTATTGT	ATAACGGTTT	TCAAACCNGT	GGGCACNCAG	AGAACCTCAC	TCTGTAATAA	360
CAATGAGGAA	TAGCCACGGT	GATCTCCAGC	ACCAAATCTC	TCCATGTTNT	TCCAGAGCTC	420
CTCCAGCCAA	CCCAAATAGC	CGCTGCTATN	GTGTAGAACA	TCCCTGN		467

(2)	INFORMATION	FOR	SEQ	ID	NO:76	:
-----	-------------	-----	-----	----	-------	---

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 400 base pairs .
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

AAGCTGACAG	CATTCGGGCC	GAGATGTCTC	GCTCCGTGGC	CTTAGCTGTG	CTCGCGCTAC	60
TCTCTCTTTC	TGGCCTGGAG	GCTATCCAGC	GTACTCCAAA	GATTCAGGTT	TACTCACGTC	. 120
ATCCAGCAGA	GAATGGAAAG	TCAAATTTCC	TGAATTGCTA	TGTGTCTGGG	TTTCATCCAT	180
CCGACATTGA	AGTTGACTTA	CTGAAGAATG	GAGAGAGAAT	TGAAAAAGTG	GAGCATTCAG	240
ACTTGTCTTT	CAGCAAGGAC	TGGTCTTTCT	ATCTCTTGTA	CTACACTGAA	TTCACCCCCA	300
CTGAAAAAGA	TGAGTATGCC	TGCCGTGTGA	ACCATGTGAC	TTTGTCACAG	CCCAAGATNG	360
TTNAGTGGGA	TCGANACATG	TAAGCAGCAN	CATGGGAGGT			400

- (2) INFORMATION FOR SEQ ID NO:77:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 248 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo Sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

CTGGAGTGCC	TTGGTGTTTC	AAGCCCCTGC	AGGAAGCAGA	ATGCACCTTC	TGAGGCACCT	60
CCAGCTGCCC	CGGCGGGGGA	TGCGAGGCTC	GGAGCACCCT	TGCCCGGCTG	TGATTGCTGC	120
CAGGCACTGT	TCATCTCAGC	TTTTCTGTCC	CTTTGCTCCC	GGCAAGCGCT	TCTGCTGAAA	180
GTTCATATCT	GGAGCCTGAT	GTCTTAACGA	ATAAAGGTCC	CATGCTCCAC	CCGAAAAAA	240
AAAAAAA						248

- (2) INFORMATION FOR SEQ ID NO:78:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 201 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

ACTAGTCCAG	TGTGGTGGAA	TTCCATTGTG	TTGGGCCCAA	CACAATGGCT	ACCTTTAACA	60
TCACCCAGAC	CCCGCCCTGC	CCGTGCCCCA	CGCTGCTGCT	AACGACAGTA	TGATGCTTAC	120
TCTGCTACTC	GGAAACTATT	TTTATGTAAT	TAATGTATGC	TTTCTTGTTT	ATAAATGCCT	180
GATTTAAAAA	АААААААА	A			the control of the second	201

(2) INFORMATION FOR SEQ ID NO:79:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 552 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

TCCTTTTGTT	AGGTTTTTGA	GACAACCCTA	GACCTAAACT	GTGTCACAGA	CTTCTGAATG	60
TTTAGGCAGT	GCTAGTAATT	TCCTCGTAAT	GATTCTGTTA	TTACTTTCCT	ATTCTTTATT	120
CCTCTTTCTT	CTGAAGATTA	ATGAAGTTGA	AAATTGAGGT	GGATAAATAC	AAAAAGGTAG	180
TGTGATAGTA	TAAGTATCTA	AGTGCAGATG	AAAGTGTGTT	ATATATATCC	ATTCAAAATT	240
ATGCAAGTTA	GTAATTACTC	AGGGTTAACT	AAATTACTTT	AATATGCTGT	TGAACCTACT	300
CTGTTCCTTG	GCTAGAAAA	ATTATAAACA	GGACTTTGTT	AGTTTGGGAA	GCCAAATTGA	360
TAATATTCTA	TGTTCTAAAA	GTTGGGCTAT	ACATAAANTA	TNAAGAAATA	TGGAATTTTA	420
TTCCCAGGAA	TATGGGGTTC	ATTTATGAAT	ANTAGGGGG	ANAGAAGTTT	TGANTNAAAC	480
CNGTTTTGGT	TAATACGTTA	ATATGTCCTN	AATNAACAAG	GCNTGACTTA	TTTCCAAAAA	540
AAAAAAAAA	AA					552

(2) INFORMATION FOR SEQ ID NO:80:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 476 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

ACAGGGATTT	GAGATGCTAA	GGCCCCAGAG	ATCGTTTGAT	CCAACCCTCT	TATTTTCAGA	60
GGGGAAAATG	GGGCCTAGAA	GTTACAGAGC	ATCTAGCTGG	TGCGCTGGCA	CCCCTGGCCT	120
CACACAGACT	CCCGAGTAGC	TGGGACTACA	GGCACACAGT	CACTGAAGCA	GGCCCTGTTT	180
GCAATTCACG	TTGCCACCTC	CAACTTAAAC	ATTCTTCATA	TGTGATGTCC	TTAGTCACTA	240
AGGTTAAACT	TTCCCACCCA	GAAAAGGCAA	CTTAGATAAA	ATCTTAGAGT	ACTTTCATAC	300

TCTTCTAAGT CCTCTTCCAG CCTCACTTTG AGTCCTCCTT GGGGGTTGAT AGGAANTNTC TCTTGGCTTT CTCAATAAAA TCTCTATCCA TCTCATGTTT AATTTGGTAC GCNTAAAAAT GCTGAAAAAA TTAAAATGTT CTGGTTTCNC TTTAAAAAAA AAAAAAAAA AAAAAA	360 420 476
(2) INFORMATION FOR SEQ ID NO:81:	•
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 232 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear) ¥)
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Homo sapiens(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:	
TTTTTTTTG TATGCCNTCN CTGTGGNGTT ATTGTTGCTG CCACCCTGGA GGAGCCCAGT	60
TTCTTCTGTA TCTTTCTTTT CTGGGGGATC TTCCTGGCTC TGCCCCTCCA TTCCCAGCCT	.120
CTCATCCCCA TCTTGCACTT TTGCTAGGGT TGGAGGCGCT TTCCTGGTAG CCCCTCAGAG	180
ACTCAGTCAG CGGGAATAAG TCCTAGGGGT GGGGGGTGTG GCAAGCCGGC CT	232
(2) INFORMATION FOR SEQ ID NO:82:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 383 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
1212 407 707 7 707	
(ii) MOLECULE TYPE: CDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:	•
AGGCGGGAGC AGAAGCTAAA GCCAAAGCCC AAGAAGAGTG GCAGTGCCAG CACTGGTGCC	60
AGTACCAGTA CCAATAACAT GCCAGTGCCA GTGCCAGCAC CAGTGGTGGC TTCAGTGCTG	120
GTGCCAGCCT GACCGCCACT CTCACATTTG GGCTCTTCGC TGGCCTTGGT GGAGCTGGTG	180
CCAGCACCAG TGGCAGCTCT GGTGCCTGTG GTTTCTCCTA CAAGTGAGAT TTTAGATATT	240
GTTAATCCTG CCAGTCTTTC TCTTCAAGCC AGGGTGCATC CTCAGAAACC TACTCAACAC	300
AGCACTCTNG GCAGCCACTA TCAATCAATT GAAGTTGACA CTCTGCATTA AATCTATTTG	360
CCATTTCAAA AAAAAAAAA AAA	383
(2) INFORMATION FOR SEQ ID NO:83:	

BNSDOCID: <WO___9837418A2_I_>

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 494 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

ACCGAATTGG	GACCGCTGGC	TTATAAGCGA	TCATGTCCTC	CAGTATTACC	TCAACGAGCA	60
GGGAGATCGA	GTCTATACGC	TGAAGAAATT	TGACCCGATG	GGACAACAGA	CCTGCTCAGC	120
CCATCCTGCT	CGGTTCTCCC	CAGATGACAA	ATACTCTCGA	CACCGAATCA	CCATCAAGAA	180
ACGCTTCAAG	GTGCTCATGA	CCCAGCAACC	GCGCCCTGTC	CTCTGAGGGT	CCTTAAACTG	240
ATGTCTTTTC	TGCCACCTGT	TACCCCTCGG	AGACTCCGTA	ACCAAACTCT	TCGGACTGTG	300
AGCCCTGATG	CCTTTTTGCC	AGCCATACTC	TTTGGCNTCC	AGTCTCTCGT	GGCGATTGAT	360
TATGCTTGTG	TGAGGCAATC	ATGGTGGCAT	CACCCATNAA	GGGAACACAT	TTGANTTTTT	420
TTTCNCATAT	TTTAAATTAC	NACCAGAATA	NTTCAGAATA	AATGAATTGA	AAAACTCTTA	480
AAAAAAAA	AAAA .					494

- (2) INFORMATION FOR SEQ ID NO:84:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 380 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

GCTGGTAGCC TATGGCGTGG CCACGGANGG GCTCCTGAGG CACGGGACAG TGACTTCCCA	60
AGTATCCTGC GCCGCGTCTT CTAGCGTCCC TACCTGCAGA TCTTCGGGCA GATTCCCCAG	120
GAGGACATGG ACGTGGCCCT CATGGAGCAC AGCAACTGCT CGTCGGAGCC CGGCTTCTGG	180
GCACACCCTC CTGGGGCGCA GGCGGGCACC TGCGTCTCCC AGTATGCCAA CTGGCTGGTG	240
GTGCTGCTCC TCGTCATCTT CCTGCTCGTG GCCAACATCC TGCTGGTCAC TTGCTCATTG	300
CCATGTTCAG TTACACATTC GGCAAAGTAC AGGGCAACAG CNATCTCTAC TGGGAAGGCC	360
AGCGTTNCCG CCTCATCGGG	380

- (2) INFORMATION FOR SEQ ID NO:85:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 481 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

GAGTTAGCTC	CTCCACAACC	TTGATGAGGT	CGTCTGCAGT	GGCCTCTCGC	TTCATACCGC	60
TNCCATCGTC	ATACTGTAGG	TTTGCCACCA	CCTCCTGCAT	CTTGGGGCGG	CTAATATCCA	120
GGAAACTCTC	AATCAAGTCA	CCGTCNATNA	AACCTGTGGC	TGGTTCTGTC	TTCCGCTCGG	180
TGTGAAAGGA	TCTCCAGAAG	GAGTGCTCGA	TCTTCCCCAC	ACTTTTGATG	ACTTTATTGA	240
GTCGATTCTG	CATGTCCAGC	AGGAGGTTGT	ACCAGCTCTC	TGACAGTGAG	GTCACCAGCC	300
CTATCATGCC	NTTGAACGTG.	CCGAAGAACA	CCGAGCCTTG	TGTGGGGGGT	GNAGTCTCAC	360
CCAGATTCTG	CATTACCAGA	NAGCCGTGGC	AAAAGANATT	GACAACTCGC	CCAGGNNGAA	420
AAAGAACACC	TCCTGGAAGT	GCTNGCCGCT	CCTCGTCCNT	TGGTGGNNGC	GCNTNCCTTT	480
T				••		481

(2) INFORMATION FOR SEQ ID NO:86:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 472 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

AACATCTŢCC	TGTATAATGC	TGTGTAATAT	CGATCCGATN	TTGTCTGCTG	AGAATTCATT	60
ACTTGGAAAA	GCAACTTNAA	GCCTGGACAC	TGGTATTAAA	ATTCACAATA	TGCAACACTT	120
TAAACAGTGT	GTCAATCTGC	TCCCTTACTT	TGTCATCACC	AGTCTGGGAA	TAAGGGTATG	180
CCCTATTCAC	ACCTGTTAAA	AGGCCCTAA	GCATTTTTGA	TTCAACATCT	TTTTTTTGA	240
CACAAGTCCG	AAAAAAGCAA	AAGTAAACAG	TTNTTAATTT	GTTAGCCAAT	TCACTTTCTT	300
CATGGGACAG	AGCCATTTGA	TTTAAAAAGC	AAATTGCATA			360
	AGCCATTTGA GGAAGANTAG			ATATTGAGCT	TTGGGAGCTG	360 420
ATATNTGAGC		CCTTTCTACT	TCACCAGACA	ATATTGAGCT CAACTCCTTT	TTGGGAGCTG CATATTGGGA	

(2) INFORMATION FOR SEQ ID NO:87:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 413 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

AGAAACCAGT	ATCTCTNAAA	ACAACCTCTC	ATACCTTGTG	GACCTAATTT	TGTGTGCGTG	60
TGTGTGTGCG	CGCATATTAT	ATAGACAGGC	ACATCTTTTT	TACTTTTGTA	AAAGCTTATG	120
					TTGGGGACCT	180
TTGTCTTCTG	TGTAAATGGT	ACTAGAGAAA	ACACCTATNT	TATGAGTCAA	TCTAGTTNGT	240
				CAAACTCTCC		300
GGGGACAAAG	AAAAGCANAA	CTGAACATNA	GAAACAATTN	CCTGGTGAGA	AATTNCATAA	360

ACAGAAATTG GGTNGTATAT TGAAANANNG CATCATTNAA ACGTTTTTTT TTT	413
(2) INFORMATION FOR SEQ ID NO:88:	•
(i) SEQUENCE CHARACTERISTICS:	·
(A) LENGTH: 448 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	en de la companya de La companya de la co
(D) TOPOLOGY: linear	٠
(ii) NOT FOUT E MUDE. ADMA	
(ii) MOLECULE TYPE: CDNA	
(vi) ORIGINAL SOURCE:	* .
(A) ORGANISM: Homo sapiens	,
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:	•
CGCAGCGGGT CCTCTCTATC TAGCTCCAGC CTCTCGCCTG CCCCACTCCC CGCGTCCCGC	60
GTCCTAGCCN ACCATGGCCG GGCCCCTGCG CGCCCCGCTG CTCCTGCTGG CCATCCTGGC	120
CGTGGCCCTG GCCGTGAGCC CCGCGGCCGG CTCCAGTCCC GGCAAGCCGC CGCGCCTGGT	180
GGGAGGCCCA TGGACCCCGC GTGGAAGAAG AAGGTGTGCG GCGTGCACTG GACTTTGCCG	240
TCGGCNANTA CAACAAACCC GCAACNACTT TTACCNAGCN CGCGCTGCAG GTTGTGCCGC	300
CCCAANCAAA TTGTTACTNG GGGTAANTAA TTCTTGGAAG TTGAACCTGG GCCAAACNNG	360
TTTACCAGAA CCNAGCCAAT TNGAACAATT NCCCCTCCAT AACAGCCCCT TTTAAAAAAGG	420
GAANCANTCC TGNTCTTTTC CAAATTTT	448
	2.2
(2) INFORMATION FOR SEQ ID NO:89:	• ;):
(i) OPOLITING OVER CORRECT CORT.CO	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 463 base pairs	, A.
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	•
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:	
GAATTTTGTG CACTGGCCAC TGTGATGGAA CCATTGGGCC AGGATGCTTT GAGTTTATCA	60
GTAGTGATTC TGCCAAAGTT GGTGTTGTAA CATGAGTATG TAAAATGTCA AAAAATTAGC	120
AGAGGTCTAG GTCTGCATAT CAGCAGACAG TTTGTCCGTG TATTTTGTAG CCTTGAAGTT	180
CTCAGTGACA AGTTNNTTCT GATGCGAAGT TCTNATTCCA GTGTTTTAGT CCTTTGCATC	240
TTTNATGTTN AGACTTGCCT CTNTNAAATT GCTTTTGTNT TCTGCAGGTA CTATCTGTGG	300
TTTAACAAAA TAGAANNACT TCTCTGCTTN GAANATTTGA ATATCTTACA TCTNAAAATN	360
AATTCTCTCC CCATANNAAA ACCCANGCCC TTGGGANAAT TTGAAAAANG GNTCCTTCNN	420
AATTCNNANA ANTTCAGNTN TCATACAACA NAACNGGANC CCC	463
ANTICHMAN ANTICAGNIN TOATACAACA WAACWOOMNC CCC	403
(2) INFORMATION FOR SEQ ID NO:90:	-

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 400 base pairs(B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

AGGGATTGAA G	STCTNTTNT ACTGI	CGGAC TGTTCANCC	A CCAACTCTAC	AAGTTGCTGT	60
CTTCCACTCA C	IGTCTGTAA GCNTN	ITTAAC CCAGACTGT	A TCTTCATAAA	TAGAACAAAT	120
TCTTCACCAG TO	CACATCTTC TAGGA	CCTTT TTGGATTCA	G TTAGTATAAG	CTCTTCCACT	180
TCCTTTGTTA AC	SACTTCATC TGGTA	AAGTC TTAAGTTTT	G TAGAAAGGAA	TTTAATTGCT	240
CGTTCTCTAA C	AATGTCCTC TCCT1	GAAGT ATTTGGCTG	A ACAACCCACC	TNAAGTCCCT	300
TTGTGCATCC A	TTTAAATA TACTI	AATAG GGCATTGGT	N CACTAGGTTA	AATTCTGCAA	360
GAGTCATCTG TO	CTGCAAAAG TTGCG	TTAGT ATATCTGCC	Ά		400

- (2) INFORMATION FOR SEQ ID NO:91:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 480 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear .
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

	GAGCTCGGAT	CCAATAATCT	TTGTCTGAGG	GCAGCACACA	TATNCAGTGC	CATGGNAACT	60
	GGTCTACCCC	ACATGGGAGC	AGCATGCCGT	AGNTATATAA	GGTCATTCCC	TGAGTCAGAC	120
	ATGCCTCTTT	GACTACCGTG	TGCCAGTGCT	GGTGATTCTC	ACACACCTCC	NNCCGCTCTT	180
					ACTTACAAAT		240
	GACACTTGAA	AGGTGTAACA	AAGCGACTCT	TGCATTGCTT	TTTGTCCCTC	CGGCACCAGT	300
٠	TGTCAATACT	AACCCGCTGG	TTTGCCTCCA	TCACATTTGT	GATCTGTAGC	TCTGGATACA	360
					AGCAACTCTT		420
	NGATCAGGTT	CCCATTTCCC	AGTCCGAATG	TTCACATGGC	ATATNTTACT	TCCCACAAAA	480

- (2) INFORMATION FOR SEQ ID NO:92:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 477 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

ATACAGCCCA	NATCCCACCA	CGAAGATGCG	CTTGTTGACT	GAGAACCTGA	TGCGGTCACT		60
GGTCCCGCTG	TAGCCCCAGC	GACTCTCCAC	CTGCTGGAAG	CGGTTGATGC	TGCACTCCTT		120
CCCACGCAGG	CAGCAGCGGG	GCCGGTCAAT	GAACTCCACT	CGTGGCTTGG	GGTTGACGGT	*	180
					GTGCGGGACC		240
					GCCTTGCCCA		300
					TCGGCCTCGG		360
					GTCGCGCTCC		420
				CTCCGCGGGT			477
							· · · /

(2) INFORMATION FOR SEQ ID NO:93:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 377 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

						AAGCAGCTCC	60
٠	AGTCCGAGCA	GCCCCAGACC,	GCTGCCGCCC	GAAGCTAAGC	CTGCCTCTGG	CCTTCCCCTC	120
	CGCCTCAATG	CAGAACCANT	AGTGGGAGCA	CTGTGTTTAG	AGTTAAGAGT	GAACACTGTN	180
					CAATGCTAAT		240
	CAACAACAAA	ATAACATGTT	TGCCTGTTNA	GTTGTATAAA	AGTANGTGAT	TCTGTATNTA	300
	AAGAAAATAT	TACTGTTACA	TATACTGCTT	GCAANTTCTG	TATTTATTGG	TNCTCTGGAA	360
	TATATAAATA	TATTAAA			•		377

(2) INFORMATION FOR SEQ ID NO:94:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 495 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

CCCTTTGAGG GGTT	PAGGGTC CAGTTCCCAG	TGGAAGAAAC	AGGCCAGGAG	AANTGCGTGC	60
CGAGCTGANG CAGA	ATTTCCC ACAGTGACCC	CAGAGCCCTG	GGCTATAGTC	TCTGACCCCT	120
CCAAGGAAAG ACCA	ACCTTCT GGGGACATGG	GCTGGAGGGC	AGGACCTAGA	GGCACCAAGG	180
GAAGGCCCCA TTCC	CGGGGCT GTTCCCCGAG	GAGGAAGGGA	AGGGGCTCTG	TGTGCCCCCC	240
ACGAGGAANA GGCC	CTGANT CCTGGGATCA	NACACCCCTT	CACGTGTATC	CCCACACAAA	300

			•			
TGCAAGCTCA	CCAAGGTCCC	CTCTCAGTCC	CTTCCCTACA	CCCTGAACGG	NCACTGGCCC	360
ACACCCACCC	AGANCANCCA	CCCGCCATGG	GGAATGTNCT	CAAGGAATCG	CNGGGCAACG	420
TGGACTCTNG	TCCCNNAAGG	GGGCAGAATC	TCCAATAGAN	GGANNGAACC	CTTGCTNANA	480
AKAAAAAA	AAAAA		•			495
	-					
(2) INFORM	ATION FOR SI	EQ ID NO:95	:			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 472 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

GGTTACTTGG	TTTCATTGCC	ACCACTTAGT	GGATGTCATT	TAGAACCATT	TTGTCTGCTC	60
CCTCTGGAAG	CCTTGCGCAG	AGCGGACTTT	GTAATTGTTG	GAGAATAACT	GCTGAATTTT	120
TAGCTGTTTT	GAGTTGATTC	GCACCACTGC	ACCACAACTC	AATATGAAAA	CTATTTNACT	180
TATTTATTAT	CTTGTGAAAA	GTATACAATG	AAAATTTTGT	TCATACTGTA	TTTATCAAGT	240
ATGATGAAAA	GCAATAGATA	TATATTCTTT	TATTATGTTN	AATTATGÄTT	GCCATTATTA	300
ATCGGCAAAA	TGTGGAGTGT	ATGTTCTTTT	CACAGTAATA	TATGCCTTTT	GTAACTTCAC	360
TTGGTTATTT	TATTGTAAAT	GAATTACAAA	ATTCTTAATT	TAAGAAAATG	GTANGTTATA	420
TTTANTTCAN	TAATTTCTTT	CCTTGTTTAC	GTTAATTTTG	AAAAGAATGC	TA .	472

(2) INFORMATION FOR SEQ ID NO:96:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 476 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

CTGAAGCATT TCTTCAAACT	TNTCTACTTT	TGTCATTGAT	ACCTGTAGTA	AGTTGACAAT	60
GTGGTGAAAT TTCAAAATTA	TATGTAACTT	CTACTAGTTT	TACTTTCTCC	CCCAAGTCTT	120
TTTTAACTCA TGATTTTAC	ACACACAATC	CAGAACTTAT	TATATAGCCT	CTAAGTCTTT	180
ATTCTTCACA GTAGATGATG	AAAGAGTCCT	CCAGTGTCTT	GNGCANAATG	TTCTAGNTAT	240
AGCTGGATAC ATACNGTGGG	AGTTCTATAA	ACTCATACCT	CAGTGGGACT	NAACCAAAAT	300
TGTGTTAGTC TCAATTCCTA	CCACACTGAG	GGAGCCTCCC	AAATCACTAT	ATTCTTATCT	360
GCAGGTACTC CTCCAGAAAA					420
TACAAAGTCT ATCTTCCTCA	NANGTCTGTN	AAGGAACAAT	TTAATCTTCT	AGCTTT	476

(2) INFORMATION FOR SEQ ID NO:97:

				• •				
	•							
	(i) SEOU	ENCE CHAR	ACTERISTIC	S:	* .			
			479 base p					
			cleic acid			•		
			NESS: sing					
		TOPOLOGY		•	+ + +	•		
	(ii) MOLE	CULE TYPE	: cDNA	•				
	(vi) ORIG	TNAL COUR					•	
				:	*. *			
	(A)	ORGANISH	: Homo sap	Tens				
	(xi) SEOU	ENCE DESC	RIPTION S	EQ ID NO:97				
	(412) 2220				•	8		
ACTO	TTTCTA AT	GCTGATAT	GATCTTGAGT	ATAAGAATGC	· ATATGTCACT	AGAATGGATA		60
LAAA	AATGCT GC	AAACTTAA	TGTTCTTATG	CAAAATGGAA	CGCTAATGAA	ACACAGCTTA		120
CAAT	CGCAAA TC	AAAACTCA	CAAGTGCTCA	TCTGTTGTAG	ATTTAGTGTA	ATAAGACTTA		180
GATI	GTGCTC CT	TCGGATAT	GATTGTTTCT	CANATCTTGG	GCAATNTTCC	TTAGTCAAAT		240
CAGG	CTACTA GA	ATTCTGTT	ATTGGATATN	TGAGAGCATG	AAATTTTAA	NAATACACTT		300
GTGA	ATTATNA AA	TTAATCAC	AAATTTCACT	TATACCTGCT	ATCAGCAGCT	AGAAAAACAT		360
						TGAATGTGGG		420
TTCN	IATCTTA TT	TTTTCCCN	GACNACTANT	TNCTTTTTTA	GGGNCTATTC	TGANCCATC		479
(0)	**************************************			•	•			, ,
(2)	INFORMATI	ON FOR SE	Q ID NO:98	:				
	(i) SEOU	ENCE CHAE	ACTERISTIC	c .		•		
			461 base pa					
			cleic acid					
			NESS: sing	le .				
			: linear					
	(-,					. *		
	(ii) MOLE	CULE TYPE	E: cDNA					
	z* *	·						
	(vi) ORIG	INAL SOUP	RCE:					
	(Å)	ORGANISM	: Homo sap	iens				
	• 0					•		
	(xi) SEOU	ENCE DESC	RIPTION: S	BO ID NO:98	•	•		

AGTGACTTGT CCTCCAACAA AACCCCTTGA TCAAGTTTGT GGCACTGACA ATCAGACCT	A 60
TGCTAGTTCC TGTCATCTAT TGGCTACTAA ATGCAGACTG GAGGGGACCA AAAAGGGGC	A 120
TCAACTCCAG CTGGATTATT TTGGAGGCTG CAAATCTATT CCTACTTGTA CGGACTTTC	A 180
AGTGATTCAG TTTCCTCTAC GGATGAGAGA CTGGCTCAAG AATATCCTCA TGCAGCTT	'A 240
TGAAGCCACT CTGAACACGC TGGTTATCTA GATGAGAACA GAGAAATAAA GTCAGAAAA	T 300
TTACCTGGAG AAAAGAGGCT TTGGCTGGGG ACCATCCCAT TGAACCTTCT CTTAAGGAC	T 360
TTAAGAAAA CTACCACATG TTGTGTATCC TGGTGCCGGC CGTTTATGAA CTGACCACC	C 420
TTTGGAATAA TCTTGACGCT CCTGAACTTG CTCCTCTGCG A	461

- (2) INFORMATION FOR SEQ ID NO:99:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 171 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: CDNA

(V1) ORIGINAL SOURCE:	*	•	••
(A) ORGANISM: Homo sapiens	• •		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99	•		
	•		•
GTGGCCGCGC GCAGGTGTTT CCTCGTACCG CAGGGCCCCC	magammaaaa		
SECONDETER SECONDETER COLORS CAGGGCCCCC	recerrecee	AGGCGTCCCT	. 60
CGGCGCCTCT GCGGGCCCGA GGAGGAGCGG CTGGCGGGTG	GGGGGAGTGT	GACCCACCCT	120
CGGTGAGAAA AGCCTTCTCT AGCGATCTGA GAGGCGTGCC	TTGGGGGTAC	C	171
		•	-
(2) INFORMATION FOR SEQ ID NO:100:		•	
· ·		• • •	
(i) SEQUENCE CHARACTERISTICS:		•	
	•	•	
(A) LENGTH: 269 base pairs			
(B) TYPE: nucleic acid			
(C) STRANDEDNESS: single			
(D) TOPOLOGY: linear	•	*	
(ii) MOLECULE TYPE: cDNA			
	•	,	
(vi) ORIGINAL SOURCE:		•	
·			•
(A) ORGANISM: Homo sapiens			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100	O: • •		
· · · ·			
CGGCCGCAAG TGCAACTCCA GCTGGGGCCG TGCGGACGAA	GATTCTGCCA	GCAGTTGGTC	60
CGACTGCGAC GACGGCGGCG GCGACAGTCG CAGGTGCAGC	GCGGGCGCCT	GGGGTCTTGC	120
AAGGCTGAGC TGACGCCGCA GAGGTCGTGT CACGTCCCAC	GACCTTGACG	CCGTCGGGGA	180
CAGCCGGAAC AGAGCCCGGT GAAGCGGGAG GCCTCGGGGA	·CCCCCTCCCC	ANCCOCCCC	
CGAGAGATAC GCAGGTGCAG GTGGCCGCC	GCCCCTCGGG	AAGGGCGGCC	24(
COMOMOMIME GENEGIGENG GIGGECCOCC			269
(2) INFORMATION FOR SEQ ID NO:101:			
•		-	· .
(i) SEQUENCE CHARACTERISTICS:	:		
(A) LENGTH: 405 base pairs			
(B) TYPE: nucleic acid	4		
(C) STRANDEDNESS: single	_		
(D) TOPOLOGY: linear		•	
(D) TOPOLOGI: Tinear			
////		•	
(ii) MOLECULE TYPE: cDNA			
	<u> </u>		<u></u>
(vi) ORIGINAL SOURCE:	•		
(A) ORGANISM: Homo sapiens			
•			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:			
Was and	••	-	
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	2002200	mm> m========	
TTTTTTTTT TTTTGGAATC TACTGCGAGC ACAGCAGGTC	AGCAACAAGT	TTATTTTGCA	. 60
GCTAGCAAGG TAACAGGGTA GGGCATGGTT ACATGTTCAG	GTCAACTTCC	TTTGTCGTGG	120
TTGATTGGTT TGTCTTTATG GGGGCGGGGT GGGGTAGGGG	AAACGAAGCA	AATAACATGG	180
AGTGGGTGCA CCCTCCCTGT AGAACCTGGT TACAAAGCTT			
TGACCGTCAT TTTCTTGACA TCAATGTTAT TAGAAGTCAG			
CTGTTCTGGA GGGAGATTAG GGTTTCTTGC CAAATCCAAC	Αλλαγγγαζα	GAAAAAGTTC	360
GATGATCAGT ACGAATACCG AGGCATATTC TCATATCGGT			
THE TOTAL PROPERTY OF THE PROP	GGCCA		409
(2) INFORMATION FOR CHO TO THE			٠,
(2) INFORMATION FOR SEQ ID NO:102:			

(; '	SECUENCE	CHARACTERISTICS:
١ ــــ		CIMICAC I ERISIICS:

- (A) LENGTH: 470 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	60
GGCACTTAAT	CCATTTTTAT	TTCAAAATGT	CTACAAATTT	AATCCCATTA	TACGGTATTT	120
TCAAAATCTA	AATTATTCAA	ATTAGCCAAA	TCCTTACCAA	ATAATACCCA	AAAATCAAAA	180
ATATACTTCT	TTCAGCAAAC	TTGTTACATA	AATTAAAAAA	ATATATACGG	CTGGTGTTTT	240
CAAAGTACAA	TTATCTTAAC	ACTGCAAACA	TTTTAAGGAA	CTAAAATAAA	AAAAAACACT	300
CCGCAAAGGT	TAAAGGGAAC	AACAAATTCT	TTTACAACAC	CATTATAAAA	ATCATATCTC	360
AAATCTTAGG	GGAATATATA	CTTCACACGG	GATCTTAACT	TTTACTCACT	TTGTTTATTT	420
TTTTAAACCA	TTGTTTGGGC	CCAACACAAT	GGAATCCCCC	CTGGACTAGT		470

- (2) INFORMATION FOR SEQ ID NO:103:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 581 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

TTTTTTTTT	TTTTTTTGA	CCCCCCTCTT	ATAAAAAACA	AGTTACCATT	TTATTTTACT	60
TACACATATT	TATTTTATAA	TTGGTATTAG	ATATTCAAAA	GGCAGCTTTT	AAAATCAAAC	120
TAAATGGAAA	CTGCCTTAGA	TACATAATTC	TTAGGAATTA	GCTTAAAATC	TGCCTAAAGT	180
GAAAATCTTC	TCTAGCTCTT	TTGACTGTAA	ATTTTTGACT	CTTGTAAAAC	ATCCAAATTC	240
ATTTTTCTTG	TCTTTAAAAT	TATCTAATCT	TTCCATTTT	TCCCTATTCC	AAGTCAATTT	300
GCTTCTCTAG	CCTCATTTCC	TAGCTCTTAT	CTACTATTAG	TAAGTGGCTT	TTTTCCTAAA	360
AGGGAAAACA	GGAAGAGAAA	TGGCACACAA	AACAAACATT	TTATATTCAT	ATTTCTACCT	420
ACGTTAATAA	AATAGCATTT	TGTGAAGCCA	GCTCAAAAGA	AGGCTTAGAT	CCTTTTATGT	480
CCATTTTAGT	CACTAAACGA	TATCAAAGTG	CCAGAATGCA	AAAGGTTTGT	GAACATTTAT	540
TCAAAAGCTA	ATATAAGATA	TTTCACATAC	TCATCTTTCT	G		581

- (2) INFORMATION FOR SEQ ID NO:104:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 578 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

TTTTTTTTTT TTTTTTTTTT	TTTTTCTCTT	CTTTTTTTT	GAAATGAGGA	TCGAGTTTTT	60
CACTCTCTAG ATAGGGCATC	AAGAAAACTC	ATCTTTCCAG	CTTTAAAATA	ACAATCAAAT	120
CTCTTATGCT ATATCATATT	TTAAGTTAAA	CTAATGAGTC	ACTGGCTTAT	CTTCTCCTGA	180
AGGAAATCTG TTCATTCTTC	TCATTCATAT	AGTTATATCA	AGTACTACCT	TGCATATTGA	240
GAGGTTTTTC TTCTCTATTT	ACACATATAT	TTCCATGTGA	ATTTGTATCA	AACCTTTATT	300
TTCATGCAAA CTAGAAAATA	ATGTTTCTTT	TGCATAAGAG	AAGAGAACAA	TATAGCATTA	360
CAAAACTGCT CAAATTGTTT	GTTAAGTTAT	CCATTATAAT	TAGTTGGCAG	GAGCTAATAC	420
AAATCACATT TACGACAGCA	ATAATAAAAC	TGAAGTACCA	GTTAAATATC	CAAAATAATT	480
AAAGGAACAT TTTTAGCCTC	GGTATAATTA	GCTAATTCAC	TTTACAAGCA	TTTATTAGAA	540
TGAATTCACA TGTTATTATT	CCTAGCCCAA	CACAATGG			578

- (2) INFORMATION FOR SEQ ID NO:105:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 538 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

					-
TTTTTTTTT TT	TTTCAGTA ATAATC	AGAA CAATATTT	TTTTATATTT TA	AAAATTCATA	60
	ACATTTAA TAAAAG				120
GTCTTGAACA CC	AATATTAA TTTGAG	GAAA ATACACCAI	AA ATACATTAAG	TAAATTATTT	180
AAGATCATAG AG	CTTGTAAG TGAAAA	GATA AAATTTGAG	C TCAGAAACTC	TGAGCATTAA	240
AAATCCACTA TT	AGCAAATA AATTAC	TATG GACTTCTTY	C TTTAATTTTG	TGATGAATAT	300
GGGGTGTCAC TG	GTAAACCA ACACAT	CTG AAGGATAC	AT TACTTAGTGA	TAGATTCTTA	- 360
TGTACTTTGC TAI	ATACGTGG ATATGA	STTG ACAAGTTT(CT CTTTCTTCAA	TCTTTTAAGG	420
GGCGAGAAAT GA	GGAAGAAA AGAAAA	GAT TACGCATA	CT GTTCTTTCTA	TGGAAGGATT	480
AGATATGTTT CC	TTTGCCAA TATTAA	YTAATAATA AAAA	TTACTACTAG	TGAAACCC	538

- (2) INFORMATION FOR SEQ ID NO:106:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 473 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

TTTTTTTTT	TTTTTTAGTC	AAGTTTCTAT	TTTTATTATA	ATTAAAGTCT	TGGTCATTTC	60
ATTTATTAGC	TCTGCAACTT	ACATATTTAA	ATTAAAGAAA	CGTTTTAGAC	AACTGTACAA	120
TTTATAAATG	TAAGGTGCCA	TTATTGAGTA	ATATATTCCT	CCAAGAGTGG	ATGTGTCCCT	180
TCTCCCACCA	ACTAATGAAC	AGCAACATTA	GTTTAATTTT	ATTAGTAGAT	ATACACTGCT	240
GCAAACGCTA	ATTCTCTTCT	CCATCCCCAT	GTGATATTGT	GTATATGTGT	GAGTTGGTAG	300
			ATGAAGCTAG			360
AGACTGTGTC	TGTCTGAATC	AAATGATCTG	ACCTATCCTC	GGTGGCAAGA	ACTCTTCGAA	420
CCGCTTCCTC	AAAGGCGCTG	CCACATTTGT	GGCTCTTTGC	ACTTGTTTCA	AAA	473

(2) INFORMATION FOR SEQ ID NO:107:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1621 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

	·					
CGCCATGGCA	CTGCAGGGCA	TCTCGGTCAT	GGAGCTGTCC	GGCCTGGCCC	CGGGCCCGTT	60
CTGTGCTATG	GTCCTGGCTG	ACTTCGGGGC	GCGTGTGGTA	CGCGTGGACC	GGCCCGGCTC	120
CCGCTACGAC	GTGAGCCGCT	TGGGCCGGGG	CAAGCGCTCG	CTAGTGCTGG	ACCTGAAGCA	180
GCCGCGGGGA	GCCGCCGTGC	TGCGGCGTCT	GTGCAAGCGG	TCGGATGTGC	TGCTGGAGCC	240
CTTCCGCCGC	GGTGTCATGG	AGAAACTCCA	GCTGGGCCCA	GAGATTCTGC	AGCGGGAAAA	300
TCCAAGGCTT	ATTTATGCCA	GGCTGAGTGG	ATTTGGCCAG	TCAGGAAGCT	TCTGCCGGTT	360
AGCTGGCCAC	GATATCAACT	ATTTGGCTTT	GTCAGGTGTT	CTCTCAAAAA	TTGGCAGAAG	420
TGGTGAGAAT	CCGTATGCCC	CGCTGAATCT	CCTGGCTGAC	TTTGCTGGTG	GTGGCCTTAT	480
GTGTGCACTG	GGCATTATAA	TGGCTCTTTT	TGACCGCACA	CGCACTGACA	AGGGTCAGGT	540
CATTGATGCA	AATATGGTGG	AAGGAACAGC	ATATTTAAGT	TCTTTTCTGT	GGAAAACTCA	600
GAAATCGAGT	CTGTGGGAAG	CACCTCGAGG	ACAGAACATG	TTGGATGGTG	GAGCACCTTT	660
CTATACGACT	TACAGGACAG	CAGATGGGGA	ATTCATGGCT	GTTGGAGCAA	TAGAACCCCA	720
GTTCTACGAG	CTGCTGATCA	AAGGACTTGG	ACTAAAGTCT	GATGAACTTC	CCAATCAGAT	780
GAGCATGGAT	GATTGGCCAG	AAATGAAGAA	GAAGTTTGCA	GATGTATTTG	CAAAGAAGAC	840
GAAGGCAGAG	TGGTGTCAAA	TCTTTGACGG	CACAGATGCC	TGTGTGACTC	CGGTTCTGAC	900
TTTTGAGGAG	GTTGTTCATC	ATGATCACAA	CAAGGAACGG	GGCTCGTTTA	TCACCAGTGA	960
GGAGCAGGAC	GTGAGCCCCC	GCCCTGCACC	TCTGCTGTTA	AACACCCCAG	CCATCCCTTC	1020
TTTCAAAAGG	GATCCTTTCA	TAGGAGAACA	CACTGAGGAG	ATACTTGAAG	AATTTGGATT	1080
CAGCCGCGAA	GAGATTTATC	AGCTTAACTC	AGATAAAATC	ATTGAAAGTA	ATAAGGTAAA	1140
AGCTAGTCTC	TAACTTCCAG	GCCCACGGCT	CAAGTGAATT	TGAATACTGC	ATTTACAGTG	1200
TAGAGTAACA	CATAACATTG	TATGCATGGA	AACATGGAGG	AACAGTATTA	CAGTGTCCTA	1260
CCACTCTAAT	CAAGAAAAGA	ATTACAGACT	CTGATTCTAC	AGTGATGATT	GAATTCTAAA	1320
AATGGTTATC	ATTAGGGCTT	TTGATTTATA	AAACTTTGGG	TACTTATACT	AAATTATGGT	1380
AGTTATTCTG	CCTTCCAGTT	TGCTTGATAT	ATTTGTTGAT	ATTAAGATTC	TTGACTTATA	1440
TTTTGAATGG	GTTCTAGTGA	AAAAGGAATG	ATATATTCTT	GAAGACATCG	ATATACATTT	1500
ATTTACACTC	TTGATTCTAC	AATGTAGAAA	ATGAGGAAAT	GCCACAAATT	GTATGGTGAT	1560

- (2) INFORMATION FOR SEQ ID NO:108:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 382 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

Met 1	Ala	Leu	Gln	Gly 5	Ile	Ser	Val	Met	Glu 10	Leu	Ser	Gly	Leu	Ala 15	Pro
Gly	Pro	Phe	Сув 20	Ala	Met	Val	Leu	Ala 25	Asp	Phe	Gly	Ala	Arg 30	Val	Val
Arg	Val	Asp 35	Arg	Pro	Gly	Ser	Arg 40	Tyr	Asp	Val	Ser	Arg 45	Leu	Gly	Arg
Gly	Lys 50	Arg	Ser	Leu	Val	Leu 55	Asp	Leu	Lys	Gln	Pro 60	Arg	Gly	Ala	Ala
Val 65	Leu	Arg	Arg	Leu	Су <i>є</i> 70	Lys	Arç	Ser	Asp	Va] 75	Leu	Leu	Glu	Prc	Phe 80
Arg	Arg	Gly	Val	Met 85	Glu	Lys	Leu	Gln	Leu 90	Gly	Pro	Glu	Ile	Leu 95	Gln
Arg	Glu	Asn	Pro 100	Arg	Leu	Ile	Tyr	Ala 105	Arg	Leu .	Ser	Gly	Phe 110	Gly	Gln
Ser	Gly	Ser 115	Phe	Cys	Arg	Leu	Ala 120	Gly	His	qaA	Ile	Asn 125	-	Leu	Ala
Leu	Ser 130	Gly	Val	Leu	Ser	Lys 135	Ile	Gly	Arg	Ser	Gly 140	Glu	Asn	Pro	Tyr
Ala 145	Pro	Leu	Asn	Leu	Leu 150	Ala	Asp	Phe	Ala	Gly 155	Gly	Gly.	Leu	Met	Cys 160
Ala	Leu	Gly	Ile	Ile 165	Met	Ala	Leu	Phe	Asp 170	Arg	Thr	Arg	Thr	Asp 175	
Gly	Gln	Val	Ile 180	Asp	Ala	Asn	Met.	Val. 185	Glu	Gly	Thr		Tyr.		Ser
Ser		Leu 195	Trp	Lys	Thr		Lys 200	Ser	Ser	Leu	Trp	Glu 205	Ala	Pro	Arg
Gly	Gln 210	Asn		Leu	Asp	Gly 215	Gly	Ala	Pro		Tyr 220		Thr	Tyr	Arg
Thr 225	Ala	Asp	Gly	Glu	Phe 230	Met	Ala	Val	Gly	Ala 235	Ile	Glu	Pro	Gln	Phe 240
Tyr	Glu	Leu	Leu	Ile 245	Lys	Gly	Leu	Gly	Leu 250		Ser	Asp	Glu	Leu 255	
Asn	Gln	Met	Ser 260	Met	Asp	Asp	Trp	Pro 265	Glu	Met	Lys	Lys	Lys 270		Ala
Asp	Val	Phe 275	Ala	Lys	Lys	Thr	Lys.		Glu	Trp	Сув	Gln 285		Phe	Asp
Gly	Thr	Asp	Ala	Cys	Val	Thr		Val	Leu	Thr	Phe		Glu	Val	Val

	290			•	•	295					300		- 1		
His	His	Asp	His	Asn	Lys	Glu	Arg	Gly	Ser	Phe	Ile	Thr	Ser	Glu	Glu
305					310					315					320
Gln	Asp	Val	Ser	Pro	Arg	Pro	Ala	Pro	Leu	Leu	Leu	Asn	Thr	Pro	Ala
		••		325				. ×	330					335	
Ile	Pro	Ser	Phe	Lys	Arg	Asp	Pro	Phe	Ile	Gly	Glu	His	Thr	Glu	Glu
			340					345					350		
Ile	Leu	Glu	Glu	Phe	Gly	Phe	Ser	Arg	Glu	Glu	Ile	Tyr	Gln	Leu	Asn
		355					360					365			
Ser	Asp	Lys	Ile	Ile	Glu	Ser	Asn	Lys	Val	Lys	Ala	Ser	Leu		
	370	٠.				375	•				380				

(2) INFORMATION FOR SEQ ID NO:109:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1524 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

GGCACGAGGC	TGCGCCAGGG	CCTGAGCGGA	GGCGGGGCA	GCCTCGCCAG	CGGGGGCCCC	60
GGGCCTGGCC	ATGCCTCACT	GAGCCAGCGC	CTGCGCCTCT	ACCTCGCCGA	CAGCTGGAAC	120
CAGTGCGACC	TAGTGGCTCT	CACCTGCTTC	CTCCTGGGCG	TGGGCTGCCG	GCTGACCCCG	180
GGTTTGTACC	ACCTGGGCCG	CACTGTCCTC	TGCATCGACT	TCATGGTTTT	CACGGTGCGG	240
CTGCTTCACA	TCTTCACGGT	CAACAAACAG	CTGGGGCCCA	AGATCGTCAT	CGTGAGCAAG	300
ATGATGAAGG	ACGTGTTCTT	CTTCCTCTTC	TTCCTCGGCG	TGTGGCTGGT	AGCCTATGGC	360
GTGGCCACGG	AGGGGCTCCT	GAGGCCACGG	GACAGTGACT	TCCCAAGTAT	CCTGCGCCGC	420
GTCTTCTACC	GTCCCTACCT	GCAGATCTTC	GGGCAGATTC	CCCAGGAGGA	CATGGACGTG	480
GCCCTCATGG	AGCACAGCAA	CTGCTCGTCG	GAGCCCGGCT	TCTGGGCACA	CCCTCCTGGG	540
GCCCAGGCGG	GCACCTGCGT	CTCCCAGTAT	GCCAACTGGC	TGGTGGTGCT	GCTCCTCGTC	600
ATCTTCCTGC	TCGTGGCCAA	CATCCTGCTG	GTCAACTTGC	TCATTGCCAT	GTTCAGTTAC	660
ACATTCGGCA	AAGTACAGGG	CAACAGCGAT	CTCTACTGGA	AGGCGCAGCG	TTACCGCCTC	720
ATCCGGGAAT	TCCACTCTCG	GECCGCGCTG	GCCCCGCCCT	TTATCGTCAT	CTCCCACTTG	780
CGCCTCCTGC	TCAGGCAATT	GTGCAGGCGA	CCCCGGAGCC	CCCAGCCGTC	CTCCCCGGCC	840
CTCGAGCATT	TCCGGGTTTA	CCTTTCTAAG	GAAGCCGAGC	GGAAGCTGCT	AACGTGGGAA	900
TCGGTGCATA	AGGAGAACTT	TCTGCTGGCA	CGCGCTAGGG	ACAAGCGGGA	GAGCGACTCC	960
GAGCGTCTGA	AGCGCACGTC	CCAGAAGGTG	GACTTGGCAC	TGAAACAGCT	GGGACACATC	1020
CGCGAGTACG	AACAGCGCCT	GAAAGTGCTG	GAGCGGGAGG	TCCAGCAGTG	TAGCCGCGTC	1080
CTGGGGTGGG	TGGCCGAGGC	CCTGAGCCGC	TCTGCCTTGC	TGCCCCCAGG	TGGGCCGCCA	1140
CCCCCTGACC	TGCCTGGGTC	CAAAGACTGA	GCCCTGCTGG	CGGACTTCAA	GGAGAAGCCC	1200
CCACAGGGGA	TTTTGCTCCT	AGAGTAAGGC	TCATCTGGGC	CTCGGCCCCC	GCACCTGGTG	1260
GCCTTGTCCT	TGAGGTGAGC	CCCATGTCCA	TCTGGGGCAC	TGTCAGGACC	ACCTTTGGGA	1320
GTGTCATCCT	TACAAACCAC	AGCATGCCCG	GCTCCTGCCA	GAACCAGTCC	CAGCCTGGGA	1380
GGATCAAGGC	CTGGATCCCG	GGCCGTTATC	CATCTGGAGG	CTGCAGGGTC	CTTGGGGTAA	1440
CAGGGACCAC	AGACCCCTCA	CCACTCACAG	ATTCCTCACA	CTGGGGAAAT	AAAGCCATTT	1500
CAGAGGAAAA	AAAAAAAAA	AAAA				1524

(2) INFORMATION FOR SEQ ID NO:110:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3410 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

		TGGCTCCGGG				60
		TGAGGTGCCC				120
		GGCTGGCAGA				180
		GCCGCAGCTT				240
		GAGCCCTACC				300
		ACCGGAAAGC				360
TGGCCTGGAG	GTGTGTTTGG	CCGCAGGCAT	CACCTATGTG	-CCGCCTCTGC	TGCTGGAAGT	420
		TGACCATGGT				480
		CAGCCAGTGA				540
		CCTTGGGCAT				600
		TGTGCCCGGA				660
		ACTTCTGTGG				720
		ACCCGGACCA				780
		GCCTGGGCTA				840
		GCACCCAGGA				900
CTTCCTCACC	TGCGTAGCAG	CCACACTGCT	GGTGGCTGAG	GAGGCAGCGC	TGGGCCCCAC	960
CGAGCCAGCA	GAAGGGCTGT	CGGCCCCCTC	CTTGTCGCCC	CACTGCTGTC	CATGCCGGGC	1020
		TGGGCGCCCT				1080
		GGCTCTTCGT				1140
		CGGATTTCGT				1200
		CCCGGAGACA				1260
		CCATCTCCCT				1320
					CTGTGGCTGC	1380
		ACAGTGTGGC				1440
GTTCACCTTC	TCAGCCCTGC	AGATCCTGCC	CTACACACTG	GCCTCCCTCT	ACCACCGGGA	1500
GAAGCAGGTG	TTCCTGCCCA	AATACCGAGG	GGACACTGGA	GGTGCTAGCA	GTGAGGACAG	1560
		CAGGCCCTAA				1620
		TGCTCCCACC				1680
		TGGTGGGTGA				1740
		CCATCCTGGA				1800
		TTGTCCAGCT				1860
		TCGCCATTTA				1920
		CGTAGAAAAC				1980
CACTGGGTCC	CAGCTCCCCG	CTCCTGTTAG	CCCCATGGGG	CTGCCGGGCT	GGCCGCCAGT	2040
		TGTGGCTCTC				. 2100
		GCCTCCCTC				2160
		GTTTCAGTCT				2220
		TCTGCAGGTG				2280
		AGAGAAGGGT				2340
		TTAACCTGCA				2400
TTTCTAGGAT	GAAACACTCC	TCCATGGGAT	TTGAACATAT	GACTTATTTG	TAGGGGAAGA	2460

GTCCTGAGGG	GCAACACACA	AGAACCAGGT	CCCCTCAGCC	CACAGCACTG	TCTTTTTGCT	2520
GATCCACCCC	CCTCTTACCT	TTTATCAGGA	TGTGGCCTGT	TGGTCCTTCT	GTTGCCATCA	2580
CAGAGACACA	GGCATTTAAA	TATTTAACTT	AATTTATTTAA	CAAAGTAGAA	GGGAATCCAT	2640
TGCTAGCTTT	TCTGTGTTGG	TGTCTAATAT	TTGGGTAGGG	TGGGGGATCC	CCAACAATCA	2700
GGTCCCCTGA	GATAGCTGGT	CATTGGGCTG	ATCATTGCCA	GAATCTTCTT	CTCCTGGGGT	2760
CTGGCCCCCC	AAAATGCCTA	ACCCAGGACC	TTGGAAATTC	TACTCATCCC	AAATGATAAT	2820
TCCAAATGCT	GTTACCCAAG	GTTAGGGTGT	TGAAGGAAGG	TAGAGGGTGG	GGCTTCAGGT	2880
CTCAACGGCT	TCCCTAACCA	CCCCTCTTCT	CTTGGCCCAG	CCTGGTTCCC	CCCACTTCCA	2940
CTCCCCTCTA	CTCTCTCTAG	GACTGGGCTG	ATGAAGGCAC	TGCCCAAAAT	TTCCCCTACC	3000
CCCAACTTTC	CCCTACCCCC	AACTTTCCCC	ACCAGCTCCA	CAACCCTGTT	TGGAGCTACT	3060
GCAGGACCAG	AAGCACAAAG	TGCGGTTTCC	CAAGCCTTTG	TCCATCTCAG	CCCCCAGAGT	3120
ATATCTGTGC	TTGGGGAATC	TCACACAGAA	ACTCAGGAGC	ACCCCCTGCC	TGAGCTAAGG	3180
GAGGTCTTAT	CTCTCAGGGG	GGGTTTAAGT	GCCGTTTGCA	ATAATGTCGT	CTTATTTATT	3240
TAGCGGGGTG	AATATTTTAT	ACTGTAAGTG	AGCAATCAGA	GTATAATGTT	TATGGTGACA	3300
AAATTAAAGG	CTTTCTTATA	TGTTTAAAAA	AAAAAAAA	АААААААА	AAAAAAAA	3360
AAAAAAAARA	AAAAAAAAA	AAAAAAAAA	AAAAAAATAA	AAAAAAAA		3410

(2) INFORMATION FOR SEQ ID NO:111:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1289 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

AGCCAGGCGT CCCTCTGCCT GCCCACTCAG TGGCAACACC CGGGAGCTGT TTTGTCCTTT	60
GTGGAGCCTC AGCAGTTCCC TCTTTCAGAA CTCACTGCCA AGAGCCCTGA ACAGGAGCCA	120
CCATGCAGTG CTTCAGCTTC ATTAAGACCA TGATGATCCT CTTCAATTTG CTCATCTTTC	180
TGTGTGGTGC AGCCCTGTTG GCAGTGGGCA TCTGGGTGTC AATCGATGGG GCATCCTTTC	240
TGAAGATCTT CGGGCCACTG TCGTCCAGTG CCATGCAGTT TGTCAACGTG GGCTACTTCC	300
TCATCGCAGC CGGCGTTGTG GTCTTTGCTC TTGGTTTCCT GGGCTGCTAT GGTGCTAAGA	360
CTGAGAGCAA GTGTGCCCTC GTGACGTTCT TCTTCATCCT CCTCCTCATC TTCATTGCTG	420
AGGTTGCAGC TGCTGTGGTC GCCTTGGTGT ACACCACAAT GGCTGAGCAC TTCCTGACGT	480
TGCTGGTAGT GCCTGCCATC AAGAAAGATT ATGGTTCCCA GGAAGACTTC ACTCAAGTGT	540
GGAACACCAC CATGAAAGGG CTCAAGTGCT GTGGCTTCAC CAACTATACG GATTTTGAGG	600
ACTCACCCTA CTTCAAAGAG AACAGTGCCT TTCCCCCCATT CTGTTGCAAT GACAACGTCA	660
CCAACACAGC CAATGAAACC TGCACCAAGC AAAAGGCTCA CGACCAAAAA GTAGAGGGTT	720
GCTTCAATCA GCTTTTGTAT GACATCCGAA CTAATGCAGT CACCGTGGGT GGTGTGGCAG	780
CTGGAATTGG GGGCCTCGAG CTGGCTGCCA TGATTGTGTC CATGTATCTG TACTGCAATC	. 840
TACAATAAGT CCACTTCTGC CTCTGCCACT ACTGCTGCCA CATGGGAACT GTGAAGAGGC	900
ACCCTGGCAA GCAGCAGTGA TTGGGGGAGG GGACAGGATC TAACAATGTC ACTTGGGCCA	960
GAATGGACCT GCCCTTTCTG CTCCAGACTT GGGGCTAGAT AGGGACCACT CCTTTTAGCG	1020
ATGCCTGACT TTCCTTCCAT TGGTGGGTGG ATGGGTGGGG GGCATTCCAG AGCCTCTAAG	1080
GTAGCCAGTT CTGTTGCCCA TTCCCCCAGT CTATTAAACC CTTGATATGC CCCCTAGGCC	1140
TAGTGGTGAT CCCAGTGCTC TACTGGGGGA TGAGAGAAG GCATTTTATA GCCTGGGCAT	1200
AAGTGAAATC AGCAGAGCCT CTGGGTGGAT GTGTAGAAGG CACTTCAAAA TGCATAAACC	1260
TGTTACAATG TTAAAAAAAA AAAAAAAA	1289

(2) INFORMATION FOR SEQ ID NO:112:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 315 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

Met Val Phe Thr Val Arg Leu Leu His Ile Phe Thr Val Asn Lys Gln

1 10 15

Leu Gly Pro Lys Ile Val Ile Val Ser Lys Met Met Lys Asp Val Phe 20 25 30

Phe Phe Leu Phe Phe Leu Gly Val Trp Leu Val Ala Tyr Gly Val Ala 35 40 45

Thr Glu Gly Leu Leu Arg Pro Arg Asp Ser Asp Phe Pro Ser Ile Leu 50 55 60

Arg Arg Val Pne Tyr Arg Pro Tyr Leu Gln Ile Phe Gly Gln Ile Pro 65 70 75 80

Gln Glu Asp Met Asp Val Ala Leu Met Glu His Ser Asn Cys Ser Ser 85 90 95

Glu Pro Gly Phe Trp Ala His Pro Pro Gly Ala Gln Ala Gly Thr Cys
100 105 110

Val Ser Gln Tyr Ala Asn Trp Leu Val Val Leu Leu Val Ile Phe 115 120 125

Leu Leu Val Ala Asn Ile Leu Leu Val Asn Leu Leu Ile Ala Met Phe -- 130 -- 140 -- 140

Ser Tyr Thr Phe Gly Lys Val Gln Gly Asn Ser Asp Leu Tyr Trp Lys 145 150 155 160

Ala Gln Arg Tyr Arg Leu Ile Arg Glu Phe His Ser Arg Pro Ala Leu 165 170 175

Ala Pro Pro Phe Ile Val Ile Ser His Leu Arg Leu Leu Leu Arg Gln 180 185 190

Leu Cys Arg Arg Pro Arg Ser Pro Gln Pro Ser Ser Pro Ala Leu Glu 195 200 205

His Phe Arg Val Tyr Leu Ser Lys Glu Ala Glu Arg Lys Leu Leu Thr

87

	٠.	210					215	•			•	220		ė	*	
	Trp 225	Glu	Ser	Val	His	Lys 230	Glu	Asn	Phe	Leu	Leu 235	Ala	Arg	Ala	Arg	As 24
	Lys	Arg	Glu	Ser	Asp 245	Ser	Glu	Arg	Leu	Lys 250	Arg	Thr	Ser		Lys 255	Va
÷	Asp	Leu	Ala	Leu 260	Lys	Gln	Leu	Gly	His 265	Ile	Arg	Glu	Tyr	Glu 270	Gln	Ar
	Leu	Lys	Val 275	Leu	Glu	Arg	Glu	Val 280	Gln	Gln	Сув	Ser	Arg 285		Leu	Gl
*	Trp	Val 290	Ala	Glu	Ala	Leu	Ser 295	Arg	Ser	Ala	Leu	Leu 300	Pro	Pro	Gly	Gl
	Pro 305	Pro	Pro	Pro	Asp	Leu 310	Pro	Gly	Ser	Lys	Asp 315				•	
(2)	INFO	RMAT:	ON. I	FOR S	SEQ I	ID NO	0:11	3:		1.						:
	(i)	(A) (B) (C)	LEN TYI	NGTH PE: a RANDI	: 553 amino EDNES	reris ami aci ss: s lines	ino a id singl	acids	5							
	(ii)	MOLI	CULI	E TYI	PE: 1	prote	ein									
	(vi)					: Iomo	sap:	iens			÷			• •		
	(xi)	SEQ	JENCI	E DES	CRI	PTIO	N: SI	EQ II	ON C	:113	:				÷	
	Met 1	Val	Gln	Arg	Leu 5	Trp	Val	Ser	Arg	Leu 10	Leu	Arg	His	Arg	Lys 15	Ala
	Gln	Leu	Leu	Leu 20	Val	Asn	Leu	Leu	Thr 25	Phe	Gly		Glu	Val 30	Cys	Le
	Ala	Ala	Gly 35	Ile	Thr	Tyr	Val	Pro 40	Pro	Leu	Leu	Leu	Glu 45	Val	Gly	Va
	Glu	Glu 50	Lys	Phe	Met	Thr	Met 55	Val	Leu	Gly	Ile	Gly 60	Pro	Val	Leu	Gł
	Leu 65	Val	Сув	Val	Pro	Leu 70	Leu	Gly	Ser	Ala	Ser 75	Asp	His	Trp	Arg	G1; 80
٠	Arg	Tyr	Gly	Arg	Arg 85	Arg	Pro	Phe	Ile	Trp 90		Leu	Ser	Leu	Gly 95	

Leu Leu Ser Leu Phe Leu Ile Pro Arg Ala Gly Trp Leu Ala Gly Leu 100 105 110

Leu	Cys	Pro 115	Asp	Pro	Arg	Pro	Leu 120	Glu	Leu	Ala	Leu	Leu 125	Ile	Leu	Gly
Val	Gly 130	Leu	Leu	Asp	Phe	Сув 135	Gly	Gln	Val	Сув	Phe 140	Thr	Pro	Leu	Glu
Ala 145	Leu	Leu	Ser	Asp	Leu 150	Phe	Arg	Asp	Pro	Asp 155	His	Сув	Arg	Gln	Ala 160
Tyr	Ser	Val	Tyr	Ala 165	Phe	Met	Ile	Ser	Leu 170	Gly	Gly	Cys	Leu	Gly 175	Tyr
Leu _.	Leu	Pro	Ala 180	Ile	Asp	Trp	Asp	Thr 185	Ser	Ala	Leu	Ala	Pro 190	Tyr	Leu
Gly	Thr	Gln 195	Glu	Glu	Cys	Leu	Phe 200	Gly	Leu	Leu	Thr	Leu 205	İle	Phe	Leu
Thr	Cys 210		Ala	Ala	Thr	Leu 215	Leu	Val	Ala	Glu	Glu 220	Ala	Ala	Leu	Gly
Pro 225	Thr	Glu	Pro	Ala	Glu 230	Gly	Leu	Ser	Ala	Pro 235	Ser	Leu	Ser	Pro	His 240
Cys	Cys	Pro	Cys	Arg 245		Arg	Leu	Ala	Phe 250	Arg	Asn	Leu	Gly	Ala 255	Leu
Leu	Pro	Arg	Leu 260	His	Gln	Leu	Cys	Cys 265	Arg	Met	Pro	Arg	Thr 270	Leu	Arg
Arg	Leu	Phe 275	Val	Ala	Glu		Сув 280	Ser	Trp	Met	Ala	Leu 285	Met	Thr	Phe
Thr	Leu 290	Phe	Tyr	Thr	Asp	Phe 295	Val	Gly	Glu	Gly	Leu 300	Tyr	Gln	Gly	Val
Pro 305	Arg	Ala	Glu	Pro	Gly 310	Thr	Glu	Ala	Arg	Arg 315	His	Tyr	Asp	Glu	Gly 320
Val	Arg	Met	Gly	Ser 325	Leu	Gl <u>y</u>	Leu	Phe	Leu 330	Gln	Сув	Ala	Ile	Ser 335	Leu
Val	Phe	Ser	Leu 340	Val	Met	Asp	Arg	Leu 345	Val	Gln	Arg	Phe	Gly 350	Thr	Arg
Ala	Val	Tyr 355	Leu	Ala	Ser	Val	Ala 360	Ala	Phe	Pro	Val	Ala 365	Ala	Gly	Ala
Thr	Cys 370	Leu	Ser	His	Ser	Val 375	Ala	Val	Val	Thr	Ala 380	Ser	Ala	Ala	Leu
Thr 385	Gly	Phe	Thr	Phe	Ser 390	Ala	Leu	Gln	Ile	Leu 395	Pro	Tyr	Thr	Leu	Ala 400

Ser Leu Tyr His Arg Glu Lys Gln Val Phe Leu Pro Lys Tyr Arg Gly
405 410 415

Asp Thr Gly Gly Ala Ser Ser Glu Asp Ser Leu Met Thr Ser Phe Leu 420 425 430

Pro Gly Pro Lys Pro Gly Ala Pro Phe Pro Asn Gly His Val Gly Ala
435
440
445

Gly Gly Ser Gly Leu Leu Pro Pro Pro Pro Ala Leu Cys Gly Ala Ser 450 455 460

Ala Cys Asp Val Ser Val Arg Val Val Gly Glu Pro Thr Glu Ala 465 470 475 480

Arg Val Val Pro Gly Arg Gly Ile Cys Leu Asp Leu Ala Ile Leu Asp 485 490 495

Ser Ala Phe Leu Leu Ser Gln Val Ala Pro Ser Leu Phe Met Gly Ser 500 505 510

Ile Val Gln Leu Ser Gln Ser Val Thr Ala Tyr Met Val Ser Ala Ala
515 520 525

Gly Leu Giy Leu Val Ala Ile Tyr Phe Ala Thr Gln Val Val Phe Asp 530 535 540

Lys Ser Asp Leu Ala Lys Tyr Ser Ala 545 550

(2) INFORMATION FOR SEQ ID NO:114:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

Met Gln Cys Phe Ser Phe Ile Lys Thr Met Met Ile Leu Phe Asn Leu 1 5 10 15

Leu Ile Phe Leu Cys Gly Ala Ala Leu Leu Ala Val Gly Ile Trp Val 20 25 30

Ser Ile Asp Gly Ala Ser Phe Leu Lys Ile Phe Gly Pro Leu Ser Ser 35 40 45

Ser Ala Met Gln Phe Val Asn Val Gly Tyr Phe Leu Ile Ala Ala Gly

50 55 60

Val Val Val Phe Ala Leu Gly Phe Leu Gly Cys Tyr Gly Ala Lys Thr 65 70 75 80

Glu Ser Lys Cys Ala Leu Val Thr Phe Phe Phe Ile Leu Leu Ile 85 90 95

Phe Ile Ala Glu Val Ala Ala Ala Val Val Ala Leu Val Tyr Thr Thr 100 105 110

Met Ala Glu His Phe Leu Thr Leu Leu Val Val Pro Ala Ile Lys Lys 115 120 125

Asp Tyr Gly Ser Gln Glu Asp Phe Thr Gln Val Trp Asn Thr Thr Met 130 135 140

Lys Gly Leu Lys Cys Cys Gly Phe Thr Asn Tyr Thr Asp Phe Glu Asp 145 150 155 160

Ser Pro Tyr Phe Lys Glu Asn Ser Ala Phe Pro Pro Phe Cys Cys Asn 165 170 175

Asp Asn Val Thr Asn Thr Ala Asn Glu Thr Cys Thr Lys Gln Lys Ala 180 185 190

His Asp Gln Lys Val Glu Gly Cys Phe Asn Gln Leu Leu Tyr Asp Ile 195 200 205

Arg Thr Asn Ala Val Thr Val Gly Gly Val Ala Ala Gly Ile Gly Gly 210 215 220

Leu Glu Leu Ala Ala Met Ile Val Ser Met Tyr Leu Tyr Cys Asn Leu 225 230 235 240

Gln

(2) INFORMATION FOR SEQ ID NO:115:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 366 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo Sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

GCTCTTTCTC	TCCCCTCCTC	TGAATTTAAT	TCTTTCAACT	TGCAATTTGC	AAGGATTACA	60
CATTTCACTG	TGATGTATAT	TGTGTTGCAA	AAAAAAAA	GTGTCTTTGT	TTAAAATTAC	120
TTGGTTTGTG	AATCCATCTT	GCTTTTTCCC	CATTGGAACT	AGTCATTAAC	CCATCTCTGA	180
ACTGGTAGAA	AAACATCTGA	AGAGCTAGTC	TATCAGCATC	TGACAGGTGA	ATTGGATGGT	240
TCTCAGAACC	ATTTCACCCA	GACAGCCTGT	TTCTATCCTG	TTTAATAAAT	TAGTTTGGGT	300
TCTCTACATG	CATAACAAAC	CCTGCTCCAA	TCTGTCACAT	AAAAGTCTGT	GACTTGAAGT	360
TTAGTC		*				366

(2) INFORMATION FOR SEQ ID NO:116:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 282 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

TCAATCTNGA	ACTATCTANA	TCACAGACAT	TTCTATTCCT	TT		282
					AAATCTATGT	240
AGACTTTACT	ATTTTCATAT	TTTAAGACAC	ATGATTTATC	CTATTTTAGT	AACCTGGTTC	180
GAGAAATGAG	ATNAAACACA	AAATATTNTA	GTCTACTTAG	AGAAGATCAA	GTGACCTCAA	120
ACAAAGATGA	ACCATTTCCT	ATATTATAGC	AAAATTAAAA	TCTACCCGTA	TTCTAATATT	. 60

(2) INFORMATION FOR SEQ ID NO:117:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 305 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

ACACATGTCG	CTTCACTGCC	TTCTTAGATG	CTTCTGGTCA	ACATANAGGA	ACAGGGACCA	60
TATTTATCCT	CCCTCCTGAA	ACAATTGCAA	AATAANACAA	AATATATGAA	ACAATTGCAA	120
AATAAGGCAA	AATATATGAA	ACAACAGGTC	TCGAGATATT	GGAAATCAGT	CAATGAAGGA	180
TACTGATCCC	TGATCACTGT	CCTAATGCAG	GATGTGGGAA	ACAGATGAGG	TCACCTCTGT	240
GACTGCCCCA	GCTTACTGCC	TGTAGAGAGT	TTCTANGCTG	CAGTTCAGAC	AGGGAGAAAT	300
TGGGT						305

(2) INFORMATION FOR SEQ ID NO:118:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 base pairs

(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		
(2) Idiobodi. Ilincal		
(ii) MOLECULE TYPE: cDNA		
(vi) ORIGINAL SOURCE:		
(A) ORGANISM: Homo sapiens		
(A) ORGANISM: HOMO Sapiens		
	• •	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:		
•		
ACCAAGGTGT NTGAATCTCT GACGTGGGGA TCTCTGATTC CCGCACAAT	C TGAGTGGAAA	60
AANTCCTGGG T	C ICAGIGGAAA	
AANTCC1000 T		71
		• •
(2) INFORMATION FOR SEQ ID NO:119:		
	,	· ·
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 212 base pairs	•	
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: cDNA		
(11) MODECODE TIPE: CDRA		
	• •	
(vi) ORIGINAL SOURCE:		
(A) ORGANISM: Homo sapiens		
·		
(vi) SPOURNCE DESCRIPTION, SEC ID NO. 110		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:		
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG	C CCAAACCACA	. 60
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT	T TGCCACCAAC	60 120
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT	T TGCCACCAAC	120
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT	T TGCCACCAAC	120
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120:	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS:	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE:	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE:	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE:	T TGCCACCAAC	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:	T TGCCACCAAC C GGAATTAANT	120 180 212
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120: ACTCGTTGCA NATCAGGGGC CCCCCAGAGT CACCGTTGCA GGAGTCCTT	T TGCCACCAAC C GGAATTAANT	120 180
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:	T TGCCACCAAC C GGAATTAANT	120 180 212
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120: ACTCGTTGCA NATCAGGGGC CCCCCAGAGT CACCGTTGCA GGAGTCCTT	T TGCCACCAAC C GGAATTAANT	120 180 212
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAG GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANT AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAAN AATGGANTCA AGANACTCCC AGGCCTCAGC GT (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: CDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120: ACTCGTTGCA NATCAGGGGC CCCCCAGAGT CACCGTTGCA GGAGTCCTT	T TGCCACCAAC C GGAATTAANT	120 180 212

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 218 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	•
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:	
TGTANCGTGA ANACGACAGA NAGGGTTGTC AAAAATGGAG AANCCTTGAA GAATAAGATT TGCTAAAAGA TTTGGGGCTA AAACATGGTT ATTGGGAGAC ATATNCANGT AAATTANGGA ATGAATTCAT GGTTCTTTTG GGAATTCCTT AGCATANACT TCATGTGGGG ATANCAGCTA CCCTTGTA	ATTTCTGAAG 120
(2) INFORMATION FOR SEQ ID NO:122:	• 170
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 171 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Homo sapiens(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:	بو سی
TAGGGGTGTA TGCAACTGTA AGGACAAAAA TTGAGACTCA ACTGGCTTAA CATTTGTTAG CTCATGGAAC AGGAAGTCGG ATGGTGGGGC ATCTTCAGTG CACCACCCCG GCGGGGTCAT CTGTGCCACA GGTCCCTGTT GACAGTGCGG	CTGCATGAGT 120
(2) INFORMATION FOR SEQ ID NO:123:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 76 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	*
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	40
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:	
TGTAGCGTGA AGACNACAGA ATGGTGTGTG CTGTGCTATC CAGGAACACA TTATCAANTA TTGTGT	TTTATTATCA 60
(2) INFORMATION FOR SEQ ID NO:124:	

(A) LENGTH: 131 base pairs	•	
(B) TYPE: nucleic acid	•	
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		
•		
(ii) MOLECULE TYPE: cDNA		
:	·	
(vi) ORIGINAL SOURCE:	Ψ.	
(A) ORGANISM: Homo sapiens		
1		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12	•	_
	•	
ACCTTTCCCC AAGGCCAATG TCCTGTGTGC TAACTGGCCG	GCTGCAGGAC AGCTGCAATT	60
CAATGTGCTG GGTCATATGG AGGGGAGGAG ACTCTAAAAT	ACCANTET ATTOTOTOTO	120
TTANGATTTG T	AGCCARITIT ATTCTCTIGG	
	•	131
(2) INFORMATION FOR SEQ ID NO:125:		
(2) INFORMATION FOR SEQ ID NO:123:	•	
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 432 base pairs	• • •	
(B) TYPE: nucleic acid	·	•
		•
(C) STRANDEDNESS: single	· · · · · ·	**
(D) TOPOLOGY: linear	•	
(11)		
(ii) MOLECULE TYPE: cDNA	. 2.	
(1)		
(vi) ORIGINAL SOURCE:	•	
(A) ORGANISM: Homo sapiens		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12	!5 :	
ACTTTATCTA CTGGCTATGA AATAGATGGT GGAAAATTGC	GTTACCAACT ATACCACTGG	60
CTTGAAAAAG AGGTGATAGC TCTTCAGAGG ACTTGTGACT	TTTGCTCAGA TGCTGAAGAA	120
CTACAGTCTG CATTTGGCAG AAATGAAGAT GAATTTGGAT	TAAATGAGGA TGCTGAAGAT	180
ITGCCTCACC AAACAAAGT GAAACAACTG AGAGAAAATT	TTCAGGAAAA AAGACAGTGG	240
CTCTTGAAGT ATCAGTCACT TTTGAGAATG TTTCTTAGTT	ACTGCATACT TCATGGATCC	300
CATGGTGGGG GTCTTGCATC TGTAAGAATG GAATTGATTT	TGCTTTTGCA AGAATCTCAG	360
CAGGAAACAT CAGAACCACT ATTTTCTAGC CCTCTGTCAG	AGCAAACCTC AGTGCCTCTC	420
CTCTTTGCTT GT		432
	* .	
(2) INFORMATION FOR SEQ ID NO:126:	8	
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 112 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single	•	
(D) TOPOLOGY: linear		*
(D) IOPODOGI: IIIIEGI		
(ii) MOLECINE TUDE, anna		
(ii) MOLECULE TYPE: cDNA		

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:	
ACACAACTTG AATAGTAAAA TAGAAACTGA GCTGAAATTT CTAATTCACT TTCTAACCAT AGTAAGAATG ATATTTCCCC CCAGGGATCA CCAAATATTT ATAAAAATTT GT	60 112
(2) INFORMATION FOR SEQ ID NO:127:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 54 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:	•
ACCACGAAAC CACAAACAAG ATGGAAGCAT CAATCCACTT GCCAAGCACA GCAG	54
(2) INFORMATION FOR SEQ ID NO:128:	-
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 323 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	-
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:	
ACCTCATTAG TAATTGTTT GTTGTTTCAT TTTTTCTAA TGTCTCCCCT CTACCAGCTC ACCTGAGATA ACAGAATGAA AATGGAAGGA CAGCCAGATT TCTCCTTTGC TCTCTGCTCA TTCTCTCTGA AGTCTAGGTT ACCCATTTTG GGGACCCATT ATAGGCAATA AACACAGTTC CCAAAGCATT TGGACAGTTT CTTGTTGTGT TTTAGAATGG TTTTCCTTTT TCTTAGCCTT TTCCTGCAAA AGGCTCACTC AGTCCCTTGC TTGCTCAGTG GACTGGGCTC CCCAGGGCCT AGGCTGCCTT CTTTTCCATG TCC	60 120 180 240 300 323
(2) INFORMATION FOR SEQ ID NO:129:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 192 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

ACATACATGT GTGTATATTT TTAAATAT	ICA CTTTTGTATC ACTCTGACTT TTTAGCATAC	60
TGAAAACACA CTAACATAAT TTNTGTG	AAC CATGATCAGA TACAACCCAA ATCATTCATC	120
TAGCACATTC ATCTGTGATA NAAAGATA	AGG TGAGTTTCAT TTCCTTCACG TTGGCCAATG	180
GATAAACAAA GT		192

(2) INFORMATION FOR SEQ ID NO:130:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 362 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

G	3						362
		AGCACGTGTG	GGTTGGTTGT	AAAGCTCTTT	GCTAATCTTA	AAAAGTAATG	360
		AGCTCTTATT					300
		CATTTTGTTA					240
		TGTTTTGCCG					180
		CAACAAAAAG					120
		TGGAATGAGT					60

(2) INFORMATION FOR SEQ ID NO:131:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 332 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

CTTTTTGAAA (GATCGTGTCC	ACTCCTGTGG	ACATCTTGTT	TTAATGGAGT	TTCCCATGCA	60
GTANGACTGG :	TATGGTTGCA	GCTGTCCAGA	TAAAAACATT	TGAAGAGCTC	CAAAATGAGA	120
GTTCTCCCAG (STTCGCCCTG	CTGCTCCAAG	TCTCAGCAGC	AGCCTCTTTT	AGGAGGCATC	180
TTCTGAACTA	GATTAAGGCA	GCTTGTAAAT	CTGATGTGAT	TTGGTTTATT	ATCCAACTAA	240
CTTCCATCTG	TTATCACTGG	AGAAAGCCCA	GACTCCCCAN	GACNGGTACG	GATTGTGGGC	300
ATANAAGGAT	TGGGTGAAGC	TGGCGTTGTG	GT			332

(2) INFORMATION FOR SEQ ID NO:132:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 322 base pairs

(B) TYPE: nucleic acid	•	
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: cDNA		
(vi) ORIGINAL SOURCE:		
(A) ORGANISM: Homo sapiens		
(1.7)		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133	2:	
	-	
ACTITIGCCA TITIGTATAT ATAAACAATC TIGGGACATT	CTCCTGAAAA CTAGGTGTCC	60
AGTGGCTAAG AGAACTCGAT TTCAAGCAAT TCTGAAAGGA	AAACCAGCAT GACACAGAAT	120
CTCAAATTCC CAAACAGGGG CTCTGTGGGA AAAATGAGGG		180
TTTAGCAAGT TAAAATGAAN ATGACAGGAA AGGCTTATTT		240
GGATGCTTCT AAAAAAAACT TTGGTAGAGA AAATAGGAAT		300
GTAACAATCT ACAATTGGTC CA		322
	•	522
(2) INFORMATION FOR SEQ ID NO:133:		
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 278 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear	•	
(D) TOPOLOGI: IIIREAI		
(ii) MOLECULE TYPE: CDNA		
(11) MODECOLE 11FE. CDNA		
(vi) ORIGINAL SOURCE:	.*	
(A) ORGANISM: Homo sapiens		
(1) OKOMILOW HOMO DEPOSITO	•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	٦.	
(AL) DESCRICE PROCEED AND ALL TONIA DESCRIPTION OF THE PROCEED AND ALL THE PROCEED AND ALL THE PROCEED AND ALL THE PROCEDURE AND ALL		
ACAAGCCTTC ACAAGTTTAA CTAAATTGGG ATTAATCTTT	ርግር ፕልክፕፕልጥ ር ፕርርልፕልልፕፕ	60
CTTGTTTTC TTTCCATCTG GCTCCTGGGT TGACAATTTG	•	120
CTATTTAAAA AAAATCACAA ATCTTTGCCT TTAAGCTATG		180
CTATTCCTGT TTTGTCAAAG AAATTATATT TTTCAAAATA		240
CCCACGAAAC ACTAATAAAA ACCACAGAGA GCAGCCTG	TOTAL TITO TITO TITO TITO TITO TITO TITO TIT	278
TOURISH ACTALIANA ACCAMANA CONCELLO		270
(2) INFORMATION FOR SEQ ID NO:134:	•	
(a) Intelligible toll buy ID hereby.		
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 121 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear	* * * * * * * * * * * * * * * * * * * *	
(b) tolonogi: timegi		
(ii) MOLECULE TYPE: cDNA		
(11) MODECOBE ILEB. CDAN	•	
	•	

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:	
GTTTANAAAA CTTGTTTAGC TCCATAGAGG AAAGAATGTT AAACTTTGTA TTTTAAAACA TGATTCTCTG AGGTTAAACT TGGTTTTCAA ATGTTATTTT TACTTGTATT TTGCTTTTGG	6(12(
T	12
	•
(2) INFORMATION FOR SEQ ID NO:135:	
(i) SEQUENCE CHARACTERISTICS:	•
(A) LENGTH: 350 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(b) Torologi: Tilleal	
(ii) MOLECULE TYPE: CDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
<u>-</u>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:	
	•
ACTTANAACC ATGCCTAGCA CATCAGAATC CCTCAAAGAA CATCAGTATA ATCCTATACC	60
ATANCAAGTG GTGACTGGTT AAGCGTGCGA CAAAGGTCAG CTGGCACATT ACTTGTGTGC	120
AAACTTGATA CTTTTGTTCT AAGTAGGAAC TAGTATACAG TNCCTAGGAN TGGTACTCCA	180
GGGTGCCCCC CAACTCCTGC AGCCGCTCCT CTGTGCCAGN CCCTGNAAGG AACTTTCGCT	240
CCACCTCAAT CAAGCCCTGG GCCATGCTAC CTGCAATTGG CTGAACAAAC GTTTGCTGAG	300
TTCCCAAGGA TGCAAAGCCT GGTGCTCAAC TCCTGGGGCG TCAACTCAGT	350
(2) INFORMATION FOR SEQ ID NO:136:	
(2) INTOGRATION FOR DEG ID NO.136:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 399 base pairs	
(B) TYPE: nucleic acid	•
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	*.
(ii) MOLECULE TYPE: CDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:	
(XI) SEQUENCE DESCRIPTION: SEQ ID NO:136:	
TGTACCGTGA AGACGACAGA AGTTGCATGG CAGGGACAGG GCAGGGCCGA GGCCAGGGTT	60
GCTGTGATTG TATCCGAATA NTCCTCGTGA GAAAAGATAA TGAGATGACG TGAGCAGCCT	120
GCAGACTTGT GTCTGCCTTC AANAAGCCAG ACAGGAAGGC CCTGCCTGCC TTGGCTCTGA	180
CCTGGCGGCC AGCCAGCCAG CCACAGGTGG GCTTCTTCCT TTTGTGGTGA CAACNCCAAG	240
AAAACTGCAG AGGCCCAGGG TCAGGTGTNA GTGGGTANGT GACCATAAAA CACCAGGTGC	300
TCCCAGGAAC CCGGGCAAAG GCCATCCCCA CCTACAGCCA GCATGCCCAC TGGCGTGATG	360
GGTGCAGANG GATGAAGCAG CCAGNTGTTC TGCTGTGGT	399
	-
(2) INFORMATION FOR SEQ ID NO:137:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 165 base pairs	

(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(D) TOPOLOGY, linear	
(b) TOPOLOGI: Tillear	
	•
(ii) MOLECULE TYPE: cDNA	
(00, 11000000000000000000000000000000000	
/ 1)	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
	· · · · · · · · · · · · · · · · · · ·
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO.127
(XI) SEQUENCE DESCRIPTION: SEQ ID	NO:137:
* · · · · · · · · · · · · · · · · · · ·	
ACTGGTGTGG TNGGGGGTGA TGCTGGTGGT ANAAC	STTGAN GTGACTTCAN GATGGTGTGT 6
GGAGGAAGTG TGTGAACGTA GGGATGTAGA NGTT	TTGGCC GTGCTAAATG AGCTTCGGGA 12
TTGGCTGGTC CCACTGGTGG TCACTGTCAT TGGTC	
iloociooic ccaciooioo icacioicai 16010	GGGTT CCTGT 16
	• • • • • • • • • • • • • • • • • • • •
(2) INFORMATION FOR SEQ ID NO:138:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 338 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(5) 101020011 1111001	
	· · ·
(ii) MOLECULE TYPE: cDNA	•
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(A) ORGANION: NOMO Sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO:138:
ACTCACTGGA ATGCCACATT CACAACAGAA TCAGA	AGGTCT GTGAAAACAT TAATGGCTCC 6
TTAACTTCTC CAGTAAGAAT CAGGGACTTG AAATC	While complete and learness and
TIANCITCIC CAGIAMGMAI CAGGGACTIG AAAIG	GAAAC GTTAACAGCC ACATGCCCAA 12
TGCTGGGCAG TCTCCCATGC CTTCCACAGT GAAAC	GGCTT GAGAAAAATC ACATCCAATG 18
TCATGTGTTT CCAGCCACAC CAAAAGGTGC TTGGC	GTGGA GGGCTGGGGG CATANANGGT 24
CANGCCTCAG GAAGCCTCAA GTTCCATTCA GCTTT	TGCCAC TGTACATTCC CCATNTTTAA 30
CANGCCTCAG GAAGCCTCAA GTTCCATTCA GCTTT	TGCCAC TGTACATTCC CCATNTTTAA 30
CANGCCTCAG GAAGCCTCAA GTTCCATTCA GCTTT AAAAACTGAT GCCTTTTTTT TTTTTTTTTTT TAAAA	GCCAC TGTACATTCC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTTT TTTTTTTTTTTTTTTTTT	TGCCAC TGTACATTCC CCATNTTTAA 30
CANGCCTCAG GAAGCCTCAA GTTCCATTCA GCTTT AAAAACTGAT GCCTTTTTTT TTTTTTTTTTT TAAAA (2) INFORMATION FOR SEQ ID NO:139:	TGCCAC TGTACATTCC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTTT TTTTTTTTTTTTTTTTTT	TGCCAC TGTACATTCC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAA (2) INFORMATION FOR SEQ ID NO:139:	TGCCAC TGTACATTCC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAA (2) INFORMATION FOR SEQ ID NO:139: (i) SEQUENCE CHARACTERISTICS:	TGCCAC TGTACATTCC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAA (2) INFORMATION FOR SEQ ID NO:139: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 382 base pairs	TGCCAC TGTACATTCC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAA (2) INFORMATION FOR SEQ ID NO:139: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 382 base pairs (B) TYPE: nucleic acid	TGCCAC TGTACATTCC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAA (2) INFORMATION FOR SEQ ID NO:139: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 382 base pairs	TGCCAC TGTACATTCC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAA (2) INFORMATION FOR SEQ ID NO:139: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 382 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	TGCCAC TGTACATTCC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAA (2) INFORMATION FOR SEQ ID NO:139: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 382 base pairs (B) TYPE: nucleic acid	TGCCAC TGTACATTCC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTT TAAAAACTGAT GCCTTTTTT TTTTTTTTTT	TGCCAC TGTACATTCC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAA (2) INFORMATION FOR SEQ ID NO:139: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 382 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	TGCCAC TGTACATTCC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTT TAAAAACTGAT GCCTTTTTT TTTTTTTTTT	TGCCAC TGTACATTCC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAAACTGAT GCCTTTTTT TTTTTTTTTT	TGCCAC TGTACATTCC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAAACTGAT GCCTTTTTT TTTTTTTTTT	TGCCAC TGTACATTCC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAAACTGAT GCCTTTTTT TTTTTTTTTT	TGCCAC TGTACATTCC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAAACTGAT GCCTTTTTT TTTTTTTTTT	ATTC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAAACTGAT GCCTTTTTT TTTTTTTTTT	ATTC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAAACTGAT GCCTTTTTT TTTTTTTTTT	ATTC CCATNTTTAA 30
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAAACTGAT GCCTTTTTT TTTTTTTTTT	NO:139:
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAAACTGAT GCCTTTTTTT TTTTTTTTTT	NO:139:
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAAACTGAT GCCTTTTTTT TTTTTTTTTT	NO:139: AGCCGA GGCCACTTTG ACAGAACAAA CAGCCT AGTGCCCGAA GTGAAGGAGA 12
AAAAACTGAT GCCTTTTTT TTTTTTTTTT TAAAAACTGAT GCCTTTTTTT TTTTTTTTTT	NO:139: AGCCGA GGCCACTTTG ACAGAACAAA CAGCCT AGTGCCCGAA GTGAAGGAGA 12

100

ATTTGCCTTA CTCAGGTGCT ACCGGACTCT GGCCCCTGAT GTCTGTAGTT TCACAGGATG CCTTATTTGT CTTCTACACC CCACAGGGCC CCCTACTTCT TCGGATGTGT TTTTAATAAT GTCAGCTATG TGCCCCATCC TCCTTCATGC CCTCCCTCCC TTTCCTACCA CTGCTGAGTG GCCTGGAACT TGTTTAAAGT GT	240 300 360 382
(2) INFORMATION FOR SEQ ID NO:140:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 200 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	٠
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE:</pre>	
ACCAAANCTT CTTTCTGTTG TGTTNGATTT TACTATAGGG GTTTNGCTTN TTCTAAANAT ACTTTTCATT TAACANCTTT TGTTAAGTGT CAGGCTGCAC TTTGCTCCAT ANAATTATTG TTTTCACATT TCAACTTGTA TGTGTTTGTC TCTTANAGCA TTGGTGAAAT CACATATTTT ATATTCAGCA TAAAGGAGAA	60 120 180 200
(2) INFORMATION FOR SEQ ID NO:141:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 335 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:</pre>	
ACTTTATTT CAAAACACTC ATATGTTGCA AAAAACACAT AGAAAAATAA AGTTTGGTGG GGGTGCTGAC TAAACTTCAA GTCACAGACT TTTATGTGAC AGATTGGAGC AGGGTTTGTT ATGCATGTAG AGAACCCAAA CTAATTTATT AAACAGGATA GAAACAGGCT GTCTGGGTGA AATGGTTCTG AGAACCATCC AATTCACCTG TCAGATGCTG ATANACTAGC TCTTCAGATG TTTTTCTACC AGTTCAGAGA TNGGTTAATG ACTANTTCCA ATGGGGAAAA AGCAAGATGG ATTCACAAAC CAAGTAATTT TAAACAAAGA CACTT	60 120 180 240 300 335
(2) INFORMATION FOR SEQ ID NO:142:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 459 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(II) NOBECOLD III D. COM	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:	
ACCAGGTTAA TATTGCCACA TATATCCTTT CCAATTGCGG GCTAAACAGA CGTGTATTTA	60
GGGTTGTTTA AAGACAACCC AGCTTAATAT CAAGAGAAAT TGTGACCTTT CATGGAGTAT	120
CTGATGGAGA AAACACTGAG TTTTGACAAA TCTTATTTTA TTCAGATAGC AGTCTGATCA	180
CACATGGTCC AACAACACTC AAATAATAAA TCAAATATNA TCAGATGTTA AAGATTGGTC	240
TTCAAACATC ATAGCCAATG ATGCCCCGCT TGCCTATAAT CTCTCCGACA TAAAACCACA	300
TCAACACCTC AGTGGCCACC AAACCATTCA GCACAGCTTC CTTAACTGTG AGCTGTTTGA	360
AGCTACCAGT CTGAGCACTA TTGACTATNT TTTTCANGCT CTGAATAGCT CTAGGGATCT	420
CAGCANGGGT GGGAGGAACC AGCTCAACCT TGGCGTANT	459
(2) INFORMATION FOR SEO ID NO:143:	
(2) INFORMATION FOR SEQ ID NOTIFEE.	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 140 base pairs	
(B) TYPE: nucleic acid	, ,
(C) STRANDEDNESS: single	!
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(11) NOLLEGEL TITE. CHAR	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:	
	٠.
ACATTCCTT OCACCAAGTC AGGACTCCTG GCTTCTGTGG GAGTTCTTAT CACCTGAGGG	60
AAATCCAAAC AGTCTCTCCT AGAAAGGAAT AGTGTCACCA ACCCCACCCA TCTCCCTGAG	120
ACCATCCGAC TTCCCTGTGT	140
(2) INFORMATION FOR SEQ ID NO:144:	
(2) INFORMATION FOR SEQ ID NOTIFE.	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 164 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(II) POBECIE IIFE. CDAA	
() ODIGINAL COMPON	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:	
ACTTCAGTAA CAACATACAA TAACAACATT AAGTGTATAT TGGCATCTTT GTCATTTTCT	60
ATCTATACCA CTCTCCCTTC TGAAAACAAN AATCACTANC CAATCACTTA TACAAATTTG	120
AGGCAATTAA TCCATATTTG TTTTCAATAA GGAAAAAAG ATGT	164
TOTAL ADMINISTRA TATACHER COMMINION ALGI	104
(2) INFORMATION BOD CEO ID NO. 14E.	

(i) SEQUENCE CHARACTERISTICS:			
(A) LENGTH: 303 base pairs			
(B) TYPE: nucleic acid			
(C) STRANDEDNESS: single			
(D) TOPOLOGY: linear			
(ii) MOLECULE TYPE: cDNA	• • •		
(vi) ORIGINAL SOURCE:			٠
(A) ORGANISM: Homo sapiens	• . •		•
	*		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14	5:		
ACGTAGACCA TCCAACTTTG TATTTGTAAT GGCAAACATC	CAGNAGCAAT	TCCTAAACAA	60
ACTGGAGGGT ATTTATACCC AATTATCCCA TTCATTAACA	TGCCCTCCTC	CTCAGGCTAT	120
GCAGGACAGC TATCATAAGT CGGCCCAGGC ATCCAGATAC	TACCATTTGT	ATAAACTTCA	180
GTAGGGGAGT CCATCCAAGT GACAGGTCTA ATCAAAGGAG	GAAATGGAAC	ATAAGCCCAG	240
TAGTAAAATN TTGCTTAGCT GAAACAGCCA CAAAAGACTT	ACCGCCGTGG	TGATTACCAT	300
CAA	•		303
(2) INFORMATION FOR SEQ ID NO:146:	•	·.	
(i) SEQUENCE CHARACTERISTICS:			
(A) LENGTH: 327 base pairs			
(B) TYPE: nucleic acid			
(C) STRANDEDNESS: single			
(D) TOPOLOGY: linear	*	•	
(ii) MOLECULE TYPE: cDNA			•
(11) MODECODE 11FE. CDNA			
(vi) ORIGINAL SOURCE:	* * *		
(A) ORGANISM: Homo sapiens	•		•
(iii) one in the contract of t	- -		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14	6:		
ACTGCAGCTC AATTAGAAGT GGTCTCTGAC TTTCATCANC	TTCTCCCTGG	GCTCCATGAC	60
ACTGGCCTGG AGTGACTCAT TGCTCTGGTT GGTTGAGAGA			120
CCAAGTCAGG GCTGGGATTT GTTTCCTTTC CACATTCTAG			180
CCTGAACAGG GAGGGTGGGA GGAGCCAGCA TGGAACAAGC	TGCCACTTTC	TAAAGTAGCC	240
AGACTTGCCC CTGGGCCTGT CACACCTACT GATGACCTTC	TGTGCCTGCA	GGATGGAATG	300
TAGGGGTGAG CTGTGTGACT CTATGGT			327
(2) INFORMATION FOR SEQ ID NO:147:	• •		·.
(2) 2010 MARTION FOR BEQ ID NO:14/:			
(i) SEQUENCE CHARACTERISTICS:	•	•	
(A) LENGTH: 173 base pairs	. :		
(B) TYPE: nucleic acid			
	•		

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(A) ORGANISM: Homo sapiens

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

207

103

ACATTGTTTT TTTGA ACTGGAACAC ATACC	CE DESCRIPTION: S AGATAA AGCATTGANA CCACAT CTTTGTTCTC ATGTTA TATATTATTC	GAGCTCTCCT GAGGGATAATT	TAACGTGACA TTCTGATAAA	GTCTTGCTGT	6 12 17
(2) INFORMATION	FOR SEQ ID NO:14	8:			
(i) SEQUENC	CE CHARACTERISTIC	25			•
	ENGTH: 477 base p				
	PE: nucleic acid			•	
(C) SI	TRANDEDNESS: sing	le	•		
(D) TO	OPOLOGY: linear		• -		
(ii) MOLECUL	LE TYPE: cDNA				
		•			
(vi) ORIGINA	AL SOURCE:				
(A) OR	RGANISM: Homo sap	iens			
(X1) SEQUENC	CE DESCRIPTION: S	EQ ID NO:14	B :		
ACAACCACTT TATCT	CATCG AATTTTTAAC	CCAAACTCAC	TCACTGTGCC	тттстатсст	6
	TTGATG CTCCATTTCA				12
	GCAAT AATCACATTO				18
GTGGTCCTAG TGGCC	CATCAG TCCANGCCTG	CACCTTGAGC	CCTTGAGCTC	CATTGCTCAC	24
NCCANCCCAC CTCAC	CCGACC CCATCCTCTT	ACACAGCTAC	CTCCTTGCTC	TCTAACCCCA	30
	ATTCAG TCAATTAAGI				36
	CTTCTC CAGCCAACAC				42
CCAGGCACAG GCTAC	CCTCAT CTTCACAATC	: ACCCCTTTAA	TTACCATGCT	ATGGTGG	. 47
(2) INFORMATION	FOR SEQ ID NO:14	9:		÷	
(i) SECTIONS	CE CHARACTERISTIC	·c .			
	ENGTH: 207 base p		,		
	YPE: nucleic acid				
	TRANDEDNESS: sing				
(D) TO	OPOLOGY: linear		- .		-
(ii) MOLECUI	LE TYPE: cDNA			<u>.</u>	
() ODICING	NI COURCE.				
(vi) ORIGINA (A) OF	AL SOURCE: RGANISM: Homo sap	iens			-
(xi) SEQUENC	CE DESCRIPTION: S	SEQ ID NO:14	9 :		
ACACMMOMAM MAMA	MADON ACARAMATA	, mmoor : mo: -	1 G G 1 TTTT 1 T	200022022	_
	ATATCA AGAAATAAAC				6
CATCATA AAT AACAC	GAGCCA AGGAAGGTTT	· · · · · · · · · · · · · · · · · · ·	*		12

TTTCAGGCAG AGGGAACAGC AGTGAAA

(2) INFORMATION FOR SEQ ID NO:150:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 111 base pairs

	(C)	STRANDEDN	ESS: sinq	le			
		TOPOLOGY:					
	(2)	-0101001.	1~	•	. •		
		•		•	.:		
(i:) MOLE	CULE TYPE:	CDNA				
(v:) ORIG	INAL SOURCE	F:				
,,,		ORGANISM:					•
	(A)	ORGANISM:	nomo sap	lens			
							• • •
(x:) SEQU	ENCE DESCR	IPTION: SI	EQ ID NO:1	50:		
	•						
ልሮሮተሟር፤	מיז ידידידי.	יייזעבעיזעבעיזי עי	א א לאביטיים איניים	CCCNACTATI	C. maammaaa	T AAAACATGO	
CACCITO	7 TO TO	CECLOCI C	TOAT COMAA	CCCAACIAI	C TAATTTAGC	T AAAACA1GG	
CACTTA	AIG IG	GTCAGTGT T	IGGACTIGT	TAACTANTG	G CATCTTTGG	G T	111
		•					
(2) INE	'ORMATI	ON FOR SEQ	ID NO:15	1:			•
•			•				
,) CEOU	ENCE CHARAC	COMPAN TOMA				
. (2					-	· · · · · · · · · · · · · · · · · · ·	
		LENGTH: 1		airs	•		
	(B)	TYPE: nuc	leic acid				
		STRANDEDN		م ا			
				16			
•	(D)	TOPOLOGY:	linear	•	•		
•	•	•			*		•
(i:) MOLE	CULE TYPE:	CDNA				
	•	•					
	\	TAIRT COURS	_				
(\(\nabla \)		INAL SOURCE	E:				
	(A)	ORGANISM:	Homo sap	iens			•
	(A)	ORGANISM:	Homo sap:	iens	•		
(wi			_		5 1.		
(x 3		ORGANISM: ENCE DESCR	_		51:		
) SEQU	ENCE DESCR	IPTION: SI	EQ ID NO:1			
AGCGCGC) SEQU	ENCE DESCR	IPTION: SI	EQ ID NO:1	r tactcgate	SC TGTTGATAA	.C 50
AGCGCGC) SEQU	ENCE DESCR	IPTION: SI	EQ ID NO:1	r tactcgate	SC TGTTGATAA	.C 60 T 120
AGCGCGC) SEQU	ENCE DESCR CATATIGA AG TIGAACTC AG	IPTION: SI	EQ ID NO:1	T TACTCGATO	TA TGAAAACCA	T 120
AGCGCGC AGCAAGA GGATACC) SEQU CAG GT TGG CT	ENCE DESCR CATATTGA A TTGAACTC A GAAAACCC C	IPTION: SI	EQ ID NO:1	T TACTCGATO	SC TGTTGATAA TA TGAAAACCA AC TGTCTACGA	T 120 G 180
AGCGCGC) SEQU CAG GT TGG CT	ENCE DESCR CATATTGA A TTGAACTC A GAAAACCC C	IPTION: SI	EQ ID NO:1	T TACTCGATO	TA TGAAAACCA	T 120
AGCGCGC AGCAAGA GGATACC GTGCATC) SEQU CAG GT TGG CT CAAC CG	ENCE DESCRI CATATTGA AC TTGAACTC AC GAAAACCC C' CAGT	IPTION: SI CATTCCAGA GGGTCACCA TATCCCGCA	TACCTATCA CCAGCTATTA CAGCCCACTA	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC) SEQU CAG GT TGG CT CAAC CG	ENCE DESCR CATATTGA A TTGAACTC A GAAAACCC C	IPTION: SI CATTCCAGA GGGTCACCA TATCCCGCA	TACCTATCA CCAGCTATTA CAGCCCACTA	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC) SEQU CAG GT TGG CT CAAC CG	ENCE DESCRI CATATTGA AC TTGAACTC AC GAAAACCC C' CAGT	IPTION: SI CATTCCAGA GGGTCACCA TATCCCGCA	TACCTATCA CCAGCTATTA CAGCCCACTA	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI	SEQUECTO SEQUECTS SEQ	ENCE DESCRI CATATTGA AG TTGAACTC AG GAAAACCC CT CAGT	IPTION: SI CATTCCAGA GGGTCACCA TATCCCGCA ID NO:152	TACCTATCA CCAGCTATT CAGCCCACT	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI	SEQUENCE OF SEQUEN	ENCE DESCRI CATATTGA AG TTGAACTC AG GAAAACCC CT CAGT ON FOR SEQ ENCE CHARAG	IPTION: SI CATTCCAGA GGGTCACCA TATCCCGCA ID NO:15:	TACCTATCA CCAGCTATT CAGCCCACT	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI	CAG GT TAG CT CAAC CG CT CORMATI SEQU	ENCE DESCRI CATATTGA AG TTGAACTC AG GAAAACCC CT CAGT ON FOR SEQ ENCE CHARAG LENGTH: 1:	IPTION: SI CATTCCAGA GGGTCACCA TATCCCGCA ID NO:15: CTERISTICS 32 base pa	TACCTATCA CCAGCTATT CAGCCCACT	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI	CAG GT TAG CT CAAC CG CT CORMATI SEQU	ENCE DESCRI CATATTGA AG TTGAACTC AG GAAAACCC CT CAGT ON FOR SEQ ENCE CHARAG	IPTION: SI CATTCCAGA GGGTCACCA TATCCCGCA ID NO:15: CTERISTICS 32 base pa	TACCTATCA CCAGCTATT CAGCCCACT	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI	CAG GT TGG CT CAAC CG CGG CT CORMATI (A) (B)	ENCE DESCRI CATATTGA AC TTGAACTC AC GAAAACCC C' CAGT ON FOR SEQ ENCE CHARAC LENGTH: 1:	CATTCCAGA GGGTCACCA TATCCCGCA ID NO:152 CTERISTICS 32 base paleic acid	TACCTATCA CCAGCTATTA CAGCCCACTA 2: 3:	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI	CAG GT AAC CG CGG CT CORMATI (A) (B) (C)	ENCE DESCRI CATATTGA AC TTGAACTC AC GAAAACCC C' CAGT ON FOR SEQ ENCE CHARAC LENGTH: 1: TYPE: nuc:	CATTCCAGA GGGTCACCA TATCCCGCA ID NO:15: CTERISTICS 32 base paleic acid ESS: sing	TACCTATCA CCAGCTATTA CAGCCCACTA 2: 3:	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI	CAG GT AAC CG CGG CT CORMATI (A) (B) (C)	ENCE DESCRI CATATTGA AC TTGAACTC AC GAAAACCC C' CAGT ON FOR SEQ ENCE CHARAC LENGTH: 1:	CATTCCAGA GGGTCACCA TATCCCGCA ID NO:15: CTERISTICS 32 base paleic acid ESS: sing	TACCTATCA CCAGCTATTA CAGCCCACTA 2: 3:	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INE	CAG GT TAG CT CAAC CG CGG CT CORMATI (A) (B) (C) (D)	ENCE DESCRI CATATTGA AG TTGAACTC AG GAAAACCC C' CAGT ON FOR SEQ ENCE CHARAG LENGTH: 1: TYPE: NUC: STRANDEDNI TOPOLOGY:	CATTCCAGA GGGTCACCA TATCCCGCA ID NO:152 CTERISTICS 32 base pa leic acid ESS: sing:	TACCTATCA CCAGCTATTA CAGCCCACTA 2: 3:	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INE	CAG GT TAG CT CAAC CG CGG CT CORMATI (A) (B) (C) (D)	ENCE DESCRI CATATTGA AG TTGAACTC AG GAAAACCC C' CAGT ON FOR SEQ ENCE CHARAG LENGTH: 1: TYPE: nuc:	CATTCCAGA GGGTCACCA TATCCCGCA ID NO:152 CTERISTICS 32 base pa leic acid ESS: sing:	TACCTATCA CCAGCTATTA CAGCCCACTA 2: 3:	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INE	CAG GT TAG CT CAAC CG CGG CT CORMATI (A) (B) (C) (D)	ENCE DESCRI CATATTGA AG TTGAACTC AG GAAAACCC C' CAGT ON FOR SEQ ENCE CHARAG LENGTH: 1: TYPE: NUC: STRANDEDNI TOPOLOGY:	CATTCCAGA GGGTCACCA TATCCCGCA ID NO:152 CTERISTICS 32 base pa leic acid ESS: sing:	TACCTATCA CCAGCTATTA CAGCCCACTA 2: 3:	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI	CAG GT TAG CT CAAC CG CGG CT CORMATI (A) (B) (C) (D) MOLE	ENCE DESCRI CATATTGA AG TTGAACTC AG GAAAACCC C' CAGT ON FOR SEQ ENCE CHARAG LENGTH: 1: TYPE: NUC: STRANDEDNI TOPOLOGY:	CATTCCAGA GGGTCACCA TATCCCGCA ID NO:15: CTERISTICS 32 base paleic acid ESS: sing: linear cDNA	TACCTATCA CCAGCTATTA CAGCCCACTA 2: 3:	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI	CAG GT TAG CT CAAC CG CGG CT CORMATI (A) (B) (C) (D) MOLE	ENCE DESCRI CATATTGA AC TTGAACTC AC GAAAACCC C' CAGT ON FOR SEQ ENCE CHARAC LENGTH: 1: TYPE: NUC: STRANDEDNI TOPOLOGY: CULE TYPE:	CATTCCAGA GGGTCACCA TATCCCGCA ID NO:152 CTERISTICS 32 base paleic acid ESS: sing: linear cDNA	TACCTATCA CCAGCTATTA CAGCCCACTA 3: airs	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI	CAG GT TAG CT CAAC CG CGG CT CORMATI (A) (B) (C) (D) MOLE	ENCE DESCRI CATATTGA AG TTGAACTC AG GAAAACCC C' CAGT ON FOR SEQ ENCE CHARAG LENGTH: 1: TYPE: NUC: STRANDEDNI TOPOLOGY:	CATTCCAGA GGGTCACCA TATCCCGCA ID NO:152 CTERISTICS 32 base paleic acid ESS: sing: linear cDNA	TACCTATCA CCAGCTATTA CAGCCCACTA 3: airs	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI	CAG GT TAG CT CAAC CG CGG CT CORMATI (A) (B) (C) (D) MOLE	ENCE DESCRI CATATTGA AC TTGAACTC AC GAAAACCC C' CAGT ON FOR SEQ ENCE CHARAC LENGTH: 1: TYPE: NUC: STRANDEDNI TOPOLOGY: CULE TYPE:	CATTCCAGA GGGTCACCA TATCCCGCA ID NO:152 CTERISTICS 32 base paleic acid ESS: sing: linear cDNA	TACCTATCA CCAGCTATTA CAGCCCACTA 3: airs	T TACTCGATO	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI (ii	CAG GT TGG CT CAAC CG CGG CT CORMATI (A) (B) (C) (D) MOLE (A)	ENCE DESCRI CATATTGA AG TTGAACTC AG GAAAACCC CT CAGT ON FOR SEQ ENCE CHARAG LENGTH: 1: TYPE: NUC: STRANDEDNI TOPOLOGY: CULE TYPE: INAL SOURCE ORGANISM:	CATTCCAGA GGGTCACCA TATCCCGCA ID NO:15: CTERISTICS 32 base paleic acid ESS: sing: linear CDNA E: Homo sap:	TACCTATCA CCAGCTATTA CAGCCCACTA 3: airs le	T TACTCGATG G GACCTTACT G TGGTCCCCA	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI (ii	CAG GT TGG CT CAAC CG CGG CT CORMATI (A) (B) (C) (D) MOLE (A)	ENCE DESCRI CATATTGA AC TTGAACTC AC GAAAACCC C' CAGT ON FOR SEQ ENCE CHARAC LENGTH: 1: TYPE: NUC: STRANDEDNI TOPOLOGY: CULE TYPE:	CATTCCAGA GGGTCACCA TATCCCGCA ID NO:15: CTERISTICS 32 base paleic acid ESS: sing: linear CDNA E: Homo sap:	TACCTATCA CCAGCTATTA CAGCCCACTA 3: airs le	T TACTCGATG G GACCTTACT G TGGTCCCCA	TA TGAAAACCA	T 120 G 180
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI (ii) (vi)	CAG GT TAG CT TAG CT CAAC CG CGG CT CORMATI CAAC (A) (B) (C) (D) CORMATI CAAC (A) (B) (C) (A) (A) (B) (C) (A) (A) (B) (C) (B) (C) (A) (B) (C) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	ENCE DESCRI	IPTION: SI CATTCCAGA GGGTCACCA TATCCCGCA ID NO:15: CTERISTICS 32 base paleic acid ESS: sing: linear CDNA E: Homo sap: IPTION: SI	TACCTATCA CCAGCTATTA CAGCCCACTA S: airs Le Lens EQ ID NO:1	T TACTCGATG G GACCTTACT G TGGTCCCCA	TA TGAAAACCA	T 120 IG 180 196
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI (ii) (vi (vi ACAGCAC	CAG GT TAG CT TAG CT CAAC CG CGG CT CORMATI CA (A) (B) (C) (D) CORIG (A) CORIG (A) CORIG (A) CORIG COR	ENCE DESCRI	IPTION: SI CATTCCAGA GGGTCACCA ID NO:15: CTERISTICS 32 base pa leic acid ESS: sing: linear CDNA E: Homo sap: AGGGAGAAA	TACCTATCA CCAGCTATTA CAGCCCACTA S: airs le iens EQ ID NO:1:	T TACTCGATG G GACCTTACT G TGGTCCCCA	TA TGAAAACCA AC TGTCTACGA	T 120 IG 180 196
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI (ii) (vi (vi ACAGCAC	CAG GT TAG CT TAG CT CAAC CG CGG CT CORMATI CA (A) (B) (C) (D) CORIG (A) CORIG (A) CORIG (A) CORIG COR	ENCE DESCRI	IPTION: SI CATTCCAGA GGGTCACCA ID NO:15: CTERISTICS 32 base pa leic acid ESS: sing: linear CDNA E: Homo sap: AGGGAGAAA	TACCTATCA CCAGCTATTA CAGCCCACTA S: airs le iens EQ ID NO:1:	T TACTCGATG G GACCTTACT G TGGTCCCCA	TA TGAAAACCA AC TGTCTACGA	T 120 IG 180 196
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI (ii) (vi (xi ACAGCACC	CAG GT TAG CT CAAC CG CGG CT CORMATI (A) (B) (C) (D) MOLE (A) CORMATI CACTOR (A) CACTO	ENCE DESCRI CATATTGA AG TTGAACTC AG GAAAACCC C' CAGT ON FOR SEQ ENCE CHARAG LENGTH: 1: TYPE: NUC: STRANDEDNI TOPOLOGY: CULE TYPE: INAL SOURCE ORGANISM: ENCE DESCRI	IPTION: SI CATTCCAGA GGGTCACCA ID NO:15: CTERISTICS 32 base pa leic acid ESS: sing: linear CDNA E: Homo sap: AGGGAGAAA	TACCTATCA CCAGCTATTA CAGCCCACTA S: airs le iens EQ ID NO:1	T TACTCGATG G GACCTTACT G TGGTCCCCA	TA TGAAAACCA	C 60 G 120
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI (ii) (vi (vi ACAGCAC	CAG GT TAG CT CAAC CG CGG CT CORMATI (A) (B) (C) (D) MOLE (A) CORMATI CACTOR (A) CACTO	ENCE DESCRI CATATTGA AG TTGAACTC AG GAAAACCC C' CAGT ON FOR SEQ ENCE CHARAG LENGTH: 1: TYPE: NUC: STRANDEDNI TOPOLOGY: CULE TYPE: INAL SOURCE ORGANISM: ENCE DESCRI	IPTION: SI CATTCCAGA GGGTCACCA ID NO:15: CTERISTICS 32 base pa leic acid ESS: sing: linear CDNA E: Homo sap: AGGGAGAAA	TACCTATCA CCAGCTATTA CAGCCCACTA S: airs le iens EQ ID NO:1	T TACTCGATG G GACCTTACT G TGGTCCCCA	TA TGAAAACCA AC TGTCTACGA	T 120 IG 180 196
AGCGCGC AGCAAGA GGATACC GTGCATC (2) INI (ii) (vi (xi ACAGCACC	CAG GT TAG CT CAAC CG CGG CT CORMATI (A) (B) (C) (D) MOLE (A) CORMATI CACTOR (A) CACTO	ENCE DESCRI CATATTGA AG TTGAACTC AG GAAAACCC C' CAGT ON FOR SEQ ENCE CHARAG LENGTH: 1: TYPE: NUC: STRANDEDNI TOPOLOGY: CULE TYPE: INAL SOURCE ORGANISM: ENCE DESCRI	IPTION: SI CATTCCAGA GGGTCACCA ID NO:15: CTERISTICS 32 base pa leic acid ESS: sing: linear CDNA E: Homo sap: AGGGAGAAA	TACCTATCA CCAGCTATTA CAGCCCACTA S: airs le iens EQ ID NO:1	T TACTCGATG G GACCTTACT G TGGTCCCCA	TA TGAAAACCA AC TGTCTACGA	C 60 G 120

(A) LENGTH: 285 Dase pairs			
(B) TYPE: nucleic acid	• •		
(C) STRANDEDNESS: single			
(D) TOPOLOGY: linear		•	
(b) forobodi. Linear			
(ii) MOLECULE TYPE: cDNA		. *	
		the second second second	
(vi) ORIGINAL SOURCE:	*		
(A) ORGANISM: Homo sapiens	* *		
			•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15	i3 :	٠.	
ACAANACCCA NGANAGGCCA CTGGCCGTGG TGTCATGGCC	י ידריכא א אריאידים	A A ACTICITY AC	60
CTTCTGCTCT TATGTCCTCA TCTGACAACT CTTTACCATT			
GCACATCAAT AAAGTCCAAA GTCTTGGACT TGGCCTTGGC			
CCTGGCTAGT GAGGGTGCGG CGCCGCTCCT GGATGACGGC		TCGTGCACCA	240
GTCTGCAGGC CCTGTGGAAG CGCCGTCCAC ACGGAGTNAG	GAATT		285
(2) INFORMATION FOR SEQ ID NO:154:	· • •	* .	
(i) SEQUENCE CHARACTERISTICS:			
(A) LENGTH: 333 base pairs			• *
(B) TYPE: nucleic acid			
			•
(C) STRANDEDNESS: single			*
(D) TOPOLOGY: linear			4.
(ii) MOLECULE TYPE: cDNA			
(vi) ORIGINAL SOURCE:			1.4
(A) ORGANISM: Homo sapiens		÷	* *
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15	4:		
		÷	
ACCACAGTCC TGTTGGGCCA GGGCTTCATG ACCCTTTCTG	י יינט א א א א מכרכר א	ሚልጥሚልጥርልርር	60
ACCCCAAATT TTTCCTTAAA TATCTTTAAC TGAAGGGGTC			120
CCTAAGCCGG TTACACAGCT AACTCCCACT GGCCCTGATT	*		
			180
ATTGCACAG GAGTCGAAGG TGTTCAGCTC CCCTCCTCCG			
AGTTTCACAA ATTCTCGGGC CACCTCGTCA TTGCTCCTCT	GAAATAAAAT	CCGGAGAATG	
GTCAGGCCTG TCTCATCCAT ATGGATCTTC CGG		-	333
		į.	-
(2) INFORMATION FOR SEQ ID NO:155:			
(i) SEQUENCE CHARACTERISTICS:	,		
(A) LENGTH: 308 base pairs			
(B) TYPE: nucleic acid			
(C) STRANDEDNESS: single			
	•		
(D) TOPOLOGY: linear	:		•
(ii) MOLECULE TYPE: cDNA		•	
	. **		
(vi) ORIGINAL SOURCE:			
(A) ORGANISM: Homo sapiens			
test constant comme market man			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:

ACTGGAAATA ATAAAACCCA CATCACAGTG TTGTGTCAAA GATCATCAGG GAAAGTGCTT TGGGAACTGT AAAGTGCCTA ACACATGATC GATGATTTTT TTGAATCACG GTGCATACAA ACTCTCCTGC CTGCTCCTCC TGGGCCCCAG ATCACAGCTC ACTGCTCTGT TCATCCAGGC CCAGCATGTA GTGGCTGATT GCTTTTAGCC TCCANAAGTT TCTCTGAAGC CAACCAAACC TCTANGTGTA GCCCTGGT	GTTATAATAT CCCCAGCCCC CTTCTTGGCT	60 120 180 240 300 308
(2) INFORMATION FOR SEQ ID NO:156:	. · ·	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 295 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA		
	•	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:		
ACCTTGCTCG GTGCTTGGAA CATATTAGGA ACTCAAAATA TGAGATGATA TTATTGATTA CTGAGAGAAC TGTTAGACAT TTAGTTGAAG ATTTTCTACA GAATAGGAGA TTATGTTTGG CCCTCATATT CTCTCCTATC CTCCTTGCCT CTAATATATT CTCAATCAAA TAAGGTTAGC ATAATCAGGA AATCGACCAA AAAACCAGAT GTCTATCCTT AAGATTTTCA AATAGAAAAC AAATTAACAG (2) INFORMATION FOR SEQ ID NO:157: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 126 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	CAGGAACTGA CATTCTATGT ATACCAATAT	60 120 180 240 295
(vi) ORIGINAL SOURCE:		
(A) ORGANISM: Homo sapiens	•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:	÷. • • • • • • • • • • • • • • • • • • •	
ACAAGTTTAA ATAGTGCTGT CACTGTGCAT GTGCTGAAAT GTGAAATCCA GAAGAGCAAA ACAAATTCTG TCATGTAATC TCTATCTTGG GTCGTGGGTA CTTAGT (2) INFORMATION FOR SEQ ID NO:158:		60 120 126
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 442 base pairs		·

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii)	MOLECULE	TYPE:	cDNA
------	----------	-------	-------------

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:

ACCCACTGGT	CTTGGAAACA	CCCATCCTTA	ATACGATGAT	TTTTCTGTCG	TGTGAAAATG	, 60
AANCCAGCAG	GCTGCCCCTA	GTCAGTCCTT	CCTTCCAGAG	AAAAAGAGAT	TTGAGAAAGT	120
GCCTGGGTAA	TTCACCATTA	ATTTCCTCCC	CCAAACTCTC	TGAGTCTTCC	CTTAATATTT	180
CTGGTGGTTC	TGACCAAAGC	AGGTCATGGT	TTGTTGAGCA	TTTGGGATCC	CAGTGAAGTA	240
NATGTTTGTA	GCCTTGCATA	CTTAGCCCTT	CCCACGCACA	AACGGAGTGG	CAGAGTGGTG	300
CCAACCCTGT	TTTCCCAGTC	CACGTAGACA	GATTCACAGT	GCGGAATTCT	GGAAGCTGGA	360
NACAGACGGG	CTCTTTGCAG	AGCCGGGACT	CTGAGANGGA	CATGAGGGCC	TCTGCCTCTG	420
TGTTCATTCT	CTGATGTCCT	GT	•			442

(2) INFORMATION FOR SEQ ID NO:159:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 498 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:

ACTTCCAGGT	AACGTTGTTG	TTTCCGTTGA	GCCTGAACTG	ATGGGTGACG	TTGTAGGTTC	60
TCCAACAAGA	ACTGAGGTTG	CAGAGCGGGT	AGGGAAGAGT	GCTGTTCCAG	TTGCACCTGG	120
GCTGCTGTGG	ACTGTTGTTG	ATTCCTCACT	ACGGCCCAAG	GTTGTGGAAC	TGGCANAAAG	180
GTGTGTTGTT	GGANTTGAGC	TCGGGCGGCT	GTGGTAGGTT	GTGGGCTCTT	CAACAGGGGC	240
TGCTGTGGTG	CCGGGANGTG	AANGTGTTGT	GTCACTTGAG	CTTGGCCAGC	TCTGGAAAGT	300
ANTANATTCT	TCCTGAAGGC	CAGCGCTTGT	GGAGCTGGCA	NGGGTCANTG	TTGTGTGTAA	360
CGAACCAGTG	CTGCTGTGGG	TGGGTGTANA	TCCTCCACAA	AGCCTGAAGT	TATGGTGTCN	420
TCAGGTAANA	ATGTGGTTTC	AGTGTCCCTG	GGCNGCTGTG	GAAGGTTGTA	NATTGTCACC	480
AAGGGAATAA	GCTGTGGT		•			498

(2) INFORMATION FOR SEQ ID NO:160:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 380 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens

		•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16	0:		
ACCTGCATCC AGCTTCCCTG CCAAACTCAC AAGGAGACAT AGCTTCAGGA TACTTCCAGG AGACAGAGCC ACCAGCAGCA GGAGCATGGC ATAGAGGAAG CTGANAAATG TGGGGTCTGA CACTAGACAT CTCATCAGCC ACTTGTGTGA AGAGATGCCC CCACCCTTAC CTCCATCTCA CACACTTGAG CTTTCCACTC GAGAAAAATG GCAGTTTGAC CGAACCTGTT CACAACGGTA CTTGTAGAAT GAAGCCTGGA	AAACAAATAT GGAAGCCATT CATGACCCCA TGTATAATTC	TCCCATGCCT TGAGTCTGGC GATGCCTCTC TAACATCCTG	120 180 240 300 360 380
(2) INFORMATION FOR SEQ ID NO:161:			
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 114 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 			
(ii) MOLECULE TYPE: CDNA			
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	· · · · · · · · · · · · · · · · · · ·	•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16	1:		
ACTCCACATC CCCTCTGAGC AGGCGGTTGT CGTTCAAGGT CACTGTCCAC TGGCCCCTTA TCCACTTGGT GCTTAATCCC			. 60 114
(2) INFORMATION FOR SEQ ID NO:162:		*	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 177 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 		*	• 1
(ii) MOLECULE TYPE: cDNA			
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens			and the state
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:162	•		•
ACTTTCTGAA TCGAATCAAA TGATACTTAG TGTAGTTTTA GTTTTACTAC TCTGATAATT TTGTAAACCA GGTAACCAGA TGGTGATATA TAACTTGGCA ATAACCCAGT CTGGTGATAC	ACATCCAGTC	ATACAGCTTT	60 120 171
(2) INFORMATION FOR SEQ ID NO:163:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 137 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(II) MODECODE IIPE: CDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	٠
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:	
	60 120 137
(2) INFORMATION FOR SEQ ID NO:164:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 469 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:	
TGCATGGATC TCAAAGGAAA CAAACACCCA ATAAACTCGG AGTGGCAGAC TGACAACTGT GAGACATGCA CTTGCTACGA AACAGAAATT TCATGTTGCA CCCTTGTTTC TACACCTGTG GGTTATGACA AAGACAACTG CCAAAGAATC TTCAAGAAGG AGGACTGCAA GTATATCGTG GTGGAGAAGA AGGACCCAAA AAAGACCTGT TCTGTCAGTG AATGGATAAT CTAATGTGCT TCTAGTAGGC ACAGGGCTCC CAGGCCAGGC CTCATTCTCC TCTGGCCTCT AATAGTCAAT	60 120 180 240 360 120
(2) INFORMATION FOR SEQ ID NO:165:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 195 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	•
(ii) MOLECULE TYPE: CDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:	
TGCAGGCCGC CCGCCCGTAG TTCTCGTTCC AGTCGTCTTG GCACACAGGG TGCCAGGACT	60 120 180 195

(2)	INFORMATION	FOR	SEQ	ID	NO:166
-			1:		

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 383 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:

ACATCTTAGT AGTGTGGCAC	ATCAGGGGGC	CATCAGGGTC	ACAGTCACTC	ATAGCCTCGC	60
CGAGGTCGGA GTCCACACCA	CCGGTGTAGG	TGTGCTCAAT	CTTGGGCTTG	GCGCCCACCT	120
TTGGAGAAGG GATATGCTGC	ACACACATGT	CCACAAAGCC	TGTGAACTCG	CCAAAGAATT	180
TTTGCAGACC AGCCTGAGCA					240
GATGCCAACC TCGTCTANGG	TCCGTGGGAA	GCTGGTGTCC	ACNTCACCTA	CAACCTGGGC	300
GANGATCTTA TAAAGAGGCT	CCNAGATAAA	CTCCACGAAA	CTTCTCTGGG	AGCTGCTAGT	360
NGGGGCCTTT TTGGTGAACT	TTC				383

- (2) INFORMATION FOR SEQ ID NO:167:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 247 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:

	CTTGGCCA TAAATGAANC				-60
	TGGAGCAA GAAGTGGGCC				120
TATANCCATA CA	CAGAGCCA ACTCTCAGGC	CAAGGCNATG	GTTGGGGCAG	ANCCAGAGAC	180
TCAATCTGAN TC	CAAAGTGG TGGCTGGAAC	ACTGGTCATG	ACANAGGCAG	TGACTCTGAC	240
TGANGTC			:		247

- (2) INFORMATION FOR SEQ ID NO:168:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 273 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens	· · · · · · · · · · · · · · · · · · ·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:	· ·
ACTTCTAAGT TTTCTAGAAG TGGAAGGATT GTANTCATCC TGAAAATGGG TTTACTTCAA AATCCCTCAN CCTTGTTCTT CACNACTGTC TATACTGANA GTGTCATGTT TCCACAAAGG GCTGACACCT GAGCCTGNAT TTTCACTCAT CCCTGAGAAG CCCTTTCCAG TAGGGTGGGC AATTCCCAAC TTCCTTGCCA CAAGCTTCCC AGGCTTTCTC CCCTGGAAAA CTCCAGCTTG AGTCCCAGAT ACACTCATGG GCTGCCCTGG GCA	6 12 18 24 27
(2) INFORMATION FOR SEQ ID NO:169:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 431 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	·
ACAGCCTTGG CTTCCCCAAA CTCCACAGTC TCAGTGCAGA AAGATCATCT TCCAGCAGTC AGCTCAGACC AGGGTCAAAG GATGTGACAT CAACAGTTTC TGGTTTCAGA ACAGGTTCTA CTACTGTCAA ATGACCCCCC ATACTTCCTC AAAGGCTGTG GTAAGTTTTG CACAGGTGAG GGCAGCAGAA AGGGGGTANT TACTGATGGA CACCATCTTC TCTGTATACT CCACACTGAC CTTGCCATGG GCAAAGGCCC CTACCACAAA AACAATAGGA TCACTGCTGG GCACCAGCTC ACGCACATCA CTGACAACCG GGATGGAAAA AGAANTGCCA ACTTTCATAC ATCCAACTGG AAAGTGATCT GATACTGGAT TCTTAATTAC CTTCAAAAGC TTCTGGGGGC CATCAGCTGC TCGAACACTG A	6 12 18 24 30 36 42 43
(2) INFORMATION FOR SEQ ID NO:170: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 266 base pairs (B) TYPE: pucleic acid	

CCCCGCTAGA AAGACACCAG ATTGGAGTCC TGGGAGGGG AGTTGGGGTG GGCATTTGAT GTATACTTGT CAGCTGAATG AANGAGCCAG AGAGGAANGA GACGAANATG ANATTGGCCT TCAAAGCTAG GGGTCTGGCA GGTGGA 240

ACCTGTGGGC TGGGCTGTTA TGCCTGTGCC GGCTGCTGAA AGGGAGTTCA GAGGTGGAGC TCAAGGAGCT CTGCAGGCAT TTTGCCAANC CTCTCCANAG CANAGGGAGC AACCTACACT

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(2) INFORMATION FOR SEQ ID NO:171:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1248 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:

GGCAGCCAAA	TCATAAACGG	CGAGGACTGC	AGCCCGCACT	CGCAGCCCTG	GCAGGCGGCA	60
CTGGTCATGG	AAAACGAATT	GTTCTGCTCG	GGCGTCCTGG	TGCATCCGCA	GTGGGTGCTG	120
TCAGCCGCAC	ACTGTTTCCA	GAAGTGAGTG	CAGAGCTCCT	ACACCATCGG	GCTGGGCCTG	180
CACAGTCTTG	AGGCCGACCA	AGAGCCAGGG	AGCCAGATGG	TGGAGGCCAG	CCTCTCCGTA	240
CGGCACCCAG	AGTACAACAG	ACCCTTGCTC	GCTAACGACC	TCATGCTCAT	CAAGTTGGAC	300
GAATCCGTGT	CCGAGTCTGA	CACCATCCGG	AGCATCAGCA	TTGCTTCGCA	GTGCCCTACC	360
GCGGGGAACT	CTTGCCTCGT	TTCTGGCTGG	GGTCTGCTGG	CGAACGGCAG	AATGCCTACC	420
GTGCTGCAGT	GCGTGAACGT	GTCGGTGGTG	TCTGAGGAGG	TCTGCAGTAA	GCTCTATGAC	480
CCGCTGTACC	ACCCCAGCAT	GILCIGCGCC	GGCGGAGGGC	AAGACCAGAA	GGACTCCTGC	540
AACGGTGACT	CTGGGGGGCC	CCTGATCTGC	AACGGGTACT	TGCAGGGCCT	TGTGTCTTTC	600
GGAAAAGCCC	CGTGTGGCCA	AGTTGGCGTG	CCAGGTGTCT	ACACCAACCT	CTGCAAATTC	660
ACTGAGTGGA	TAGAGAAAAC	CGTCCAGGCC	AGTTAACTCT	GGGGACTGGG	AACCCATGAA	720
ATTGACCCCC	AAATACATCC	TGCGGAAGGA	ATTCAGGAAT	ATCTGTTCCC	AGCCCCTCCT	780
CCCTCAGGCC	CAGGAGTCCA	GGCCCCCAGC	CCCTCCTCCC	TCAAACCAAG	GGTACAGATC	840
CCCAGCCCCT	CCTCCCTCAG	ACCCAGGAGT	CCAGACCCCC	CAGCCCCTCC	TCCCTCAGAC	900
CCAGGAGTCC	AGCCCCTCCT	CCCTCAGACC	CAGGAGTCCA	GACCCCCCAG	CCCCTCCTCC	960
CTCAGACCCA	GGGGTCCAGG	CCCCCAACCC	CTCCTCCCTC	AGACTCAGAG	GTCCAAGCCC	1020
CCAACCCNTC	ATTCCCCAGA	CCCAGAGGTC	CAGGTCCCAG	CCCCTCNTCC	CTCAGACCCA	1080
			ACACAGTGCC			1140
AACCTTACCA	GTTGGTTTTT	CATTTTTNGT	CCCTTTCCCC	TAGATCCAGA	AATAAAGTTT	1200
AAGAGAAGNG	СААААААА	ААААААААА	AAAAAAAA	AAAAAAA		1248

- (2) INFORMATION FOR SEQ ID NO:172:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 159 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLÖGY: linear
 - (ii) MOLECULE TYPE: protein
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:

Met Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro 1 5 10 15

Leu	Leu	Ala	Asn 20	Asp	Leu	Met	Leu	Ile 25	Lys	Leu	Asp	Glu	Ser 30	Val	Sei
Glu	Ser	Asp 35	Thr	Ile	Arg	Ser	Ile 40	Ser	Ile	Ala	Ser	Gln 45	Cys	ĐṛO	Thi
Ala	Gly 50	Asn	Ser	Сув	Leu	Val 55	Ser	Gly	Trp	Gly	Leu 60	Leu	Ala	Asn	Gly
Arg 65	Met	Pro	Thr	Val	Leu 70	Gln	Сув	Val	Asn	Val 75	Ser	Val	Val	Ser	Glı 80
Glu	Val	Cys	Ser	Lys 85	Leu	Tyr	Asp	Pro	Leu 90	Tyr	His	Pro	Ser	Met 95	Phe
Cys	Ala	Gly	Gly 100	Gly	Gln	Xaa	Gln	Xaa 105	Asp	Ser	Cys	Asn	Gly 110	Asp	Sei
Gly	Gly	Pro 115	Leu	Ile	Cys	Asn	Gly 120	Tyr	Leu	Gln	Gly	Leu 125	Val ⁻	Ser	₽h€
Gly	Lys 130	Ala	Pro	Cys	Gly	Gln 135	Val	Gly	Val	Pro	Gly 140	Va l	Tyr	Thr	Asr
		-													

Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser

155

(2) INFORMATION FOR SEQ ID NO:173:

145

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1265 base pairs

150

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:

	GGCAGCCCGC	ACTCGCAGCC	CTGGCAGGCG	GCACTGGTCA	TGGAAAACGA	ATTGTTCTGC	·60
	TCGGGCGTCC	TGGTGCATCC	GCAGTGGGTG	CTGTCAGCCG	CACACTGTTT	CCAGAACTCC	120
	TACACCATCG	GGCTGGGCCT	GCACAGTCTT	GAGGCCGACC	AAGAGCCAGG	GAGCCAGATG	180
	GTGGAGGCCA	CCTCTCCGT	ACGGCACCCA	GAGTACAACA	GACCCTTGCT	CGCTAACGAC	240
	CTCATGCTCA	TCAAGTTGGA	CGAATCCGTG	TCCGAGTCTG	ACACCATCCG	GAGCATCAGC	300
	ATTGCTTCGC	AGTGCCCTAC	CGCGGGGAAC	TCTTGCCTCG	TTTCTGGCTG	GGGTCTGCTG	360
•	GCGAACGGTG	AGCTCACGGG	TGTGTGTCTG	CCCTCTTCAA	GGAGGTCCTC	TGCCCAGTCG	420
	CGGGGGCTGA	CCCAGAGCTC	TGCGTCCCAG	GCAGAATGCC	TACCGTGCTG	CAGTGCGTGA	480
	ACGTGTCGGT	GGTGTCTGAG	GAGGTCTGCA	GTAAGCTCTA	TGACCCGCTG	TACCACCCCA	540
•	GCATGTTCTG	CGCCGGCGGA	GGGCAAGACC	AGAAGGACTC	CTGCAACGGT	GACTCTGGGG	600
	GGCCCCTGAT	CTGCAACGGG	TACTTGCAGG	GCCTTGTGTC	TTTCGGAAAA	GCCCCGTGTG	660
	GCCAAGTTGG	CGTGCCAGGT	GTCTACACCA	ACCTCTGCAA	ATTCACTGAG	TGGATAGAGA	720

AAACCGTCCA GGCCAC	STTAA CTCTGGGGAC	TGGGAACCCA	TGAAATTGAC	CCCCAAATAC	780
ATCCTGCGGA AGGAAT	TTCAG GAATATCTGT	TCCCAGCCCC	TCCTCCCTCA	GGCCCAGGAG	840
TCCAGGCCCC CAGCCC	CCTCC TCCCTCAAAC	CAAGGGTACA	GATCCCCAGC	CCCTCCTCCC	900
TCAGACCCAG GAGTCC	CAGAC CCCCCAGCCC	CTCCTCCCTC	AGACCCAGGA	GTCCAGCCCC	960
TCCTCCNTCA GACCCA					1020
GAGGCCCCCA ACCCC3					1080
CAGACCCAGA GGTNNA					1140
TAGATTTTCC CTGNAC					1200
TTTTCATTTT TNGTCC	CCTTT CCCCTAGATC	CAGAAATAAA	GTTTAAGAGA	NGNGCAAAAA	1260
AAAA	•				1265

(2) INFORMATION FOR SEQ ID NO:174:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1459 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:

GGTCAGCCGC ACAC	CTGTTTC CAGAAGTGA	Ġ TGCĄGĄGCTC	CTACACCATC	GGGCTGGGCC	: 60
TGCACAGTCT TGAC	GGCCGAC CAAGAGCCA	G GGAGCCAGAT	GGTGGAGGCC	AGCCTCTCCG	. 120
TACGGCACCC AGAG	STACAAC AGACCCTTG	C TCGCTAACGA	CCTCATGCTC	ATCAAGTTGG	180
ACGAATCCGT GTCC	CGAGTCT GACACCATC	C GGAGCATCAG	CATTGCTTCG	CAGTGCCCTA	240
CCGCGGGGAA CTCT	TTGCCTC GTTTCTGGC	T GGGGTCTGCT	GGCGAACGGT	GAGCTCACGG	300
GTGTGTGTCT GCCC	CTCTTCA AGGAGGTCC	T CTGCCCAGTC	GCGGGGGCTG	ACCCAGAGCT	360
CTGCGTCCCA GGCA	AGAATGC CTACCGTGC	T GCAGTGCGTG	AACGTGTCGG	TGGTGTCTGA	420
NGAGGTCTGC ANTA	AAGCTCT ATGACCCGC	T GTACCACCCC	ANCATGTTCT	GCGCCGGCGG	480
AGGGCAAGAC CAGA	AAGGACT CCTGCAACG	T GAGAGAGGGG	AAAGGGGAGG	GCAGGCGACT	540
CAGGGAAGGG TGGA	AGAAGGG GGAGACAGA	G ACACACAGGG	CCGCATGGCG	AGATGCAGAG	600
ATGGAGAGAC ACAC	CAGGGAG ACAGTGACA	A CTAGAGAGAG	AAACTGAGAG	AAACAGAGAA	. 660
ATAAACACAG GAAT	TAAAGAG AAGCAAAGG	A AGAGAGAAAC	AGAAACAGAC	ATGGGGAGGC	720
AGAAACACAC ACAC	CATAGAA ATGCAGTTG	A CCTTCCAACA	GCATGGGGCC	TGAGGGCGGT	780
GACCTCCACC CAAT	TAGAAAA TCCTCTTAT	A ACTTTTGACT	CCCCAAAAAC	CTGACTAGAA	840
ATAGCCTACT GTTG	SACGGGG AGCCTTACC	A ATAACATAAA	TAGTCGATTT	ATGCATACGT	900
TTTATGCATT CATO	SATATAC CTTTGTTGG	A ATTTTTTGAT	ATTTCTAAGC	TACACAGTTC	960
GTCTGTGAAT TTTT	TTAAAT TGTTGCAAC	Т СТССТААААТ	TTTTCTGATG	TGTTTATTGA	1020
	TAAGTGG ACTTGTGCA				1080
	AACAGTG ACACAGATT				1140
	ACAAAGA GGCTGGGCA				1200
	GCAGAT CACTTGAGG				1260
GTGAAATCCT GTCT	IGTACTA AAAATACAA	A AGTTAGCTGG	ATATGGTGGC	AGGCGCCTGT	1320
	rgggagg ctgaggcag				1380
	ATCACAC CACTATACT	C CAGCTGGGGC	AACAGAGTAA	GACTCTGTCT	1440
CAAAAAAAA AAAA	AAAAA				1459

(2) INFORMATION FOR SEQ ID NO:175:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1167 base pairs
- (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:

GCGCAGCCCT	GGCAGGCGGC	ACTGGTCATG	GAAAACGAAT	TGTTCTGCTC	GGCGTCCTG	60
GTGCATCCGC	AGTGGGTGCT	GTCAGCCGCA	CACTGTTTCC	AGAACTCCTA	CACCATCGGG	120
CTGGGCCTGC	ACAGTCTTGA	GGCCGACCAA	GAGCCAGGGA	GCCAGATGGT	GGAGGCCAGC	180
CTCTCCGTAC	GGCACCCAGA	GTACAACAGA	CTCTTGCTCG	CTAACGACCT	CATGCTCATC	240
AAGTTGGACG	AATCCGTGTC	CGAGTCTGAC	ACCATCCGGA	GCATCAGCAT	TGCTTCGCAG	300
TGCCCTACCG	CGGGGAACTC	TTGCCTCGTN	TCTGGCTGGG	GTCTGCTGGC	GAACGGCAGA	360
ATGCCTACCG	TGCTGCACTG	CGTGAACGTG	TCGGTGGTGT	CTGAGGANGT	CTGCAGTAAG	420
CTCTATGACC	CGCTGTACCA	CCCCAGCATG	TTCTGCGCCG	GCGGAGGGCA	AGACCAGAAG	480
GACTCCTGCA	ACGGTGACTC	TGGGGGGCCC	CTGATCTGCA	ACGGGTACTT	GCAGGGCCTT	540
GTGTCTTTCG	GAAAAGCCCC	GTGTGGCCAA	CTTGGCGTGC	CAGGTGTCTA	CACCAACCTC	600
TGCAAATTÇA	CTGAGTGGAT	AGAGAAAACC	GTCCAGNCCA	GTTAACTCTG	GGGACTGGGA	660
ACCCATGAAA	TTGACCCCCA	AATACATCCT	GCGGAANGAA	TTCAGGAATA	TCTGTTCCCA	720
GCCCCTCCTC	CCTCAGGCCC	AGGAGTCCAG	GCCCCCAGCC	CCTCCTCCCT	CAAACCAAGG	780
GTACAGATCC	CCAGCCCCTC	CTCCCTCAGA	CCCAGGAGTC	CAGACCCCCC	AGCCCCTCNT	840
CCNTCAGACC	CAGGAGTCCA	GCCCCTCCTC	CNTCAGACGC	AGGAGTCCAG	ACCCCCAGC	900
CCNTCNTCCG	TCAGACCCAG	GGGTGCAGGC	CCCCAACCCC	TCNTCCNTCA	GAGTCAGAGG	960
TCCAAGCCCC	CAACCCCTCG	TTCCCCAGAC	CCAGAGGTNC	AGGTCCCAGC	CCCTCCTCCC	1020
TCAGACCCAG	CGGTCCAATG	CCACCTAGAN	TNTCCCTGTA	CACAGTGCCC	CCTTGTGGCA	1080
NGTTGACCCA	ACCTTACCAG	TTGGTTTTTC	ATTTTTTGTC	CCTTTCCCCT	AGATCCAGAA	1140
ATAAAGTNTA	AGAGAAGCGC	AAAAAA	Ý.		,	1167

- (2) INFORMATION FOR SEQ ID NO:176:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 205 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:
 - Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp

 1 10 15
 - Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu 20 25 30
 - Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val

480 :

			35					40					45				
٠	Glu	Ala 50	Ser	Leu	Ser	Val	Arg 55	His	Pro-	Glu	Tyr	Asn 60	Arg	Leu	Leu	Leu	
•	Ala 65	Asn	Asp	Leu	Met	Leu 70	Ile	Lys	Leu	Asp	Glu 75	Ser	Val	Ser	Glu	Ser 80	
	Asp	Thr	Ile	Arg	Ser 85	Ile	Ser	Ile	Ala	Ser 90	Gln	Cys	Pro	Thr	Ala 95	Gly	
	Asn	Ser	Сув	Leu 100	Val	Ser	Gly	Trp	Gly 105	Leu	Leu	Ala	Asn	Gly 110	Arg	Met	
	Pro	Thr	Val 115	Leu	His	Cys	Val	Asn 120	Val	Ser	Val	Val	Ser 125	Glu	Xaa	Val	
-	Cys	Ser 130	Lys	Leu	Tyr	Asp	Pro 135	Leu	Tyr	His	Pro	Ser 140		Phe	Cys	Ala	
	Gly 145	Gly	Gly	Gln	Asp	Gln 150	Lys	Asp	Ser	Cys	Asn 155	Gly	Asp	Ser	Gly	Gly 160	
	Pro	Leu	Ile	Cys	Asn 165	·Gly	туг	Leu	Gln	Gly 170	Leu	Val	Ser	Phe	Gly 175	Lys	
	Ala	Pro	Cys	Gly 180	Gln	Leu	Gly	Val	Pro 185	Gly	.Val	Tyr	Thr	Asn 190	Leu	Cys	•
· ·	Lys	Phe	Thr 195	Glu	Trp	Ile	Glu	Lys 200	Thr	Val	Gln	Xaa	Ser 205	÷			
(2)	INFO	RMAT	ION I	FOR !	SEQ :	ID N	0:17	7:									
-	(i)	(A) (B) (C)	LEI TYI	NGTH PE: 1 RAND	: 11 nucle EDNE	TERI: 19 ba eic a SS: a	ase pacid	pair	s		· .	•		·		-80-	
	(i i)					line			-		• • •					*	
	(vi)	ORIG	INA	L SO	JRCE									:			
•	(xi)	SEQ	JENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:177	:	٠.					
GTCC ATCG GCCA CTCA	ACTC TGGT GGCT GCCT ACAA	GC AT GG GG CT CG GT TG	PCCG CCTG CGTA CGAC	CAGT CACA CGGC GAAT	G GG G TC A CC C CG	TGCT TTGA CAGA TGTC	GTCA GGCC GTAC CGAG	GCCC GACC AACC TCTC	GCAC CAAG AGAC GACA	ACT (AGC (CCT (CCA (GTTT CAGG TGCT TCCG	CCAG GÁGC CGCT GAGC	AA C' CA G AA C' AT C	TCCT ATGG' GACC' AGCA'	ACACO TGGAO TCATO TTGC'	C 3 3 T	60 120 180 240 300
	AGTG CTGT																360 420

CAACCCTGGC AGGGTTGTAC CATTTCGGCA ACTTCCAGTG CAAGGACGTC CTGCTGCATC

CTCACTGGGT	GCTCACTACT	GCTCACTGCA	TCACCCGGAA	CACTGTGATC	AACTAGCCAG	540
		AGACTATCAT				600
ACTAACCATG	CCGATGTTTA	GGTGAAATTA	GCGTCACTTG	GCCTCAACCA	TCTTGGTATC	660
		AGATTTCCTG				720
TGACCTACAG	AGGTGAGGGA	TCATATAGCT	CTTCAAGGAT	GCTGGTACTC	CCCTCACAAA	780
TTCATTTCTC	CTGTTGTAGT	GAAAGGTGCG	CCCTCTGGAG	CCTCCCAGGG	TGGGTGTGCA	840
GGTCACAATG	ATGAATGTAT	GATCGTGTTC	CCATTACCCA	AAGCCTTTAA	ATCCCTCATG	900
CTCAGTACAC	CAGGGCAGGT	CTAGCATTTC	TTCATTTAGT	GTATGCTGTC	CATTCATGCA	960
ACCACCTCAG	GACTCCTGGA	TTCTCTGCCT	AGTTGAGCTC	CTGCATGCTG	CCTCCTTGGG	1020
GAGGTGAGGG	AGAGGGCCCA	TGGTTCAATG	GGATCTGTGC	AGTTGTAACA	CATTAGGTGC	1080
TTAATAAACA	GAAGCTGTGA	TGTTAAAAAA	АААААААА		•	1119

(2) INFORMATION FOR SEQ ID NO:178:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 164 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp

1 10 15

Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu 20 25 30

Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val 35 40 45

Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu Leu 50 55 60

Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser 65 70 75 80

Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly 85 90 95

Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Asp Ala Val

Ile Ala Ile Gln Ser Xaa Thr Val Gly Gly Trp Glu Cys Glu Lys Leu 115 120 125

Ser Gln Pro Trp Gln Gly Cys Thr Ile Ser Ala Thr Ser Ser Ala Arg 130 135 140

Thr Ser Cys Cys Ile Leu Thr Gly Cys Ser Leu Leu Leu Thr Ala Ser

145	150		155 .	160	
Pro Gl	y Thr Leu	:			
(2) INFORMA	TION FOR SEQ ID NO:179	:			
(A (B (C	SEQUENCE CHARACTERISTIC) LENGTH: 250 base paid) TYPE: nucleic acid) STRANDEDNESS: single				
(D) TOPOLOGY: linear				
(xi)	SEQUENCE DESCRIPTION:	SEQ ID NO:	179:		
CCAGCTGCCC GCCAGGCACT	TTGGTGTTTC AAGCCCCTGC CCGGCCGGGG GATGCGAGGC GTTCATCTCA GCTTTTCTGT CTGGAGCCTG ATGTCTTAAC	TCGGAGCACC CCCTTTGCTC	CTTGCCCGGC -CCGGCAAGCG	TGTGATTGCT CTTCTGCTGA	60 120 180 240 250
. (2) INFORMATION FOR SEQ	ID NO:180:	-		
A) (E) (C)	SEQUENCE CHARACTERISTIC Discrepance Characteristic Discr				
(xi)	SEQUENCE DESCRIPTION:	SEQ ID NO:	180:		
TCACCCAGAC CTCTGCTACT	TGTGGTGGAA TTCCATTGTG CCCGCCCCTG CCCGTGCCCC CGGAAACTAT TTTTATGTAA AAAAAAAAAA	ACGCTGCTGC	TAACGACAGT	ATGATGCTTA	60 120 180 202
	2) INFORMATION FOR SEQ	ID NO:181:			
(i)	SEQUENCE CHARACTERISTICAL) LENGTH: 558 base pai	CS:	· · ·	· · · · · · · · · · · · · · · · · · ·	(
(E	s) TYPE: nucleic acid :) STRANDEDNESS: single)) TOPOLOGY: linear				
(xi)	SEQUENCE DESCRIPTION:	SEQ ID NO:	181:		
AATGTTTAGG TTATTCCTCT GGTAGTGTGA AAATTATGCA	NAGGTTTKKG AGACAMCCCK CAGTGCTAGT AATTTCYTCG TTCTTCTGAA GATTAATGAA TAGTATAAGT ATCTAAGTGC AGTTAGTAAT TACTCAGGGT	TAATGATTCT GTTGAAAATT AGATGAAAGT TAACTAAATT	GTTATTACTT GAGGTGGATA GTGTTATATA ACTTTAATAT	TCCTNATTCT AATACAAAAA TATCCATTCA GCTGTTGAAC	60 120 180 240 300
CTACTCTGTT	CCTTGGCTAG AAAAAATTAT	AAACAGGACT	TTGTTAGTTT	GGGAAGCCAA	360

÷ .	119	*	
TTTTATTCCC AGGAATATGG KGTTCATTTT	ATGAATATTA CSCRGGATA	G AWGTWTGAGT	480
AAAAYCAGTT TTGGTWAATA YGTWAATATC	TCMTAAATAA ACAAKGCTT	T GACTTATTTC	540
CAAAAAAAA AAAAAAAA		1	558
(2) INFORMATION FOR SEC) TD NO:182.		
(2) Intoldation for one	. 13 1101101		
(i) SEQUENCE CHARACTERIST	CS:		
(A) LENGTH: 479 base pai	rs		
(B) TYPE: nucleic acid	• •	<i>:</i> .	
(C) STRANDEDNESS: single	*		
(D) TOPOLOGY: linear		••	
(xi) SEQUENCE DESCRIPTION:	SEQ ID NO:182:		
ACAGGGWTTK GRGGATGCTA AGSCCCCRGA	A RWTYGTTTGA TCCAACCCT	G GCTTWTTTTC	60
AGAGGGGAAA ATGGGGCCTA GAAGTTACAC	MSCATYTAGY TGGTGCGMT	G GCACCCCTGG	120
CSTCACACAG ASTCCCGAGT AGCTGGGACT			180
TTWGCAATTC ACGTTGCCAC CTCCAACTTA			240
CTAAGGTTAA ACTTTCCCAC CCAGAAAAGC	CAACTTAGAT AAAATCTTA	G AGTACTTTCA	300
TACTMTTCTA AGTCCTCTTC CAGCCTCACT	· ·		360
NTCTCTTGGC TTTCTCAATA AARTCTCTAT			420
AWTGSTGARA AAATTAAAAT GTTCTGGTT	•		479
(2) INFORMATION FOR SEQ ID NO:183	3:		

WO 98/37418 1

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 384 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:

	AGGCGGGAGC	AGAAGCTAAA	GCCAAAGCCC	AAGAAGAGTG	GCAGTGCCAG	CACTGGTGCC	60
	AGTACCAGTA	CCAATAACAG	TGCCAGTGCC	AGTGCCAGCA	CCAGTGGTGG	CTTCAGTGCT	120
	GGTGCCAGCC	TGACCGCCAC	TCTCACATTT	GGGCTCTTCG	CTGGCCTTGG	TGGAGCTGGT	180
	GCCAGCACCA	GTGGCAGCTC	TGGTGCCTGT	GGTTTCTCCT	ACAAGTGAGA	TTTTAGATAT	240
-	TGTTAATCCT	GCCAGTCTTT	CTCTTCAAGC	CAGGGTGCAT	CCTCAGAAAC	CTACTCAACA	300
	CAGCACTCTA	GGCAGCCACT	ATCAATCAAT	TGAAGTTGAC	ACTCTGCATT	ARATCTATTT	360
	GCCATTTCAA	AAAAAAAA	AAAA	• .			384

- (2) INFORMATION FOR SEQ ID NO:184:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 496 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:

ACCGAATTGG GACCGCTGGC TTATAAGCGA TCATGTYYNT CCRGTATKAC CTCAACGAGC

AGGGAGATCG	AGTCTATACG	CTGAAGAAAT	TTGACCCGAT	GGGACAACAG	ACCTGCTCAG	120
CCCATCCTGC	TCGGTTCTCC	CCAGATGACA	AATACTCTSG	ACACCGAATC	ACCATCAAGA	180
AACGCTTCAA	GGTGCTCATG	ACCCAGCAAC	CGCGCCCTGT	CCTCTGAGGG	TCCCTTAAAC	240
TGATGTCTTT	TCTGCCACCT	GTTACCCCTC	GGAGACTCCG	TAACCAAACT	CTTCGGACTG	300
TGAGCCCTGA	TGCCTTTTTG	CCAGCCATAC	TCTTTGGCAT	CCAGTCTCTC	GTGGCGATTG	360
				AAGGGAACAC		420
				WAAATGAWTT		480
AAAAAAAA			10			496
				•		470

(2) INFORMATION FOR SEQ ID NO:185:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 384 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:

		CCCACGGAGG				60
					CAGATTCCCC	120
					CCCGGCTTCT	180
		CAGGCGGGCA				240
		TTCCTGCTCG				300
TTGCCATGTT	CAGTTACACA	TTCGGCAAAG	TACAGGGCAA	CAGCGATCTC	TACTGGGAAG	360
GCGCAGCGTT	ACCGCCTCAT					384

(2) INFORMATION FOR SEQ ID NO:186:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 577 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

· ·					
GAGTTAGCTC CTCCACAAC					60
TNCCATCGTC ATACTGTAG	G TTTGCCACCA	CYTCCTGGCA	TCTTGGGGCG	GCNTAATATT	120
CCAGGAAACT CTCAATCAA	G TCACCGTCGA	TGAAACCTGT	GGGCTGGTTC	TGTCTTCCGC	180
TCGGTGTGAA AGGATCTCC	C AGAAGGAGTG	CTCGATCTTC	CCCACACTTT	TGATGACTTT	240
ATTGAGTCGA TTCTGCATG	T CCAGCAGGAG	GTTGTACCAG	CTCTCTGACA	GTGAGGTCAC	300
CAGCCCTATC ATGCCGTTG	A MCGTGCCGAA	GARCACCGAG	CCTTGTGTGG	GGGKKGAAGT	360
CTCACCCAGA TTCTGCATT	A CCAGAGAGCC	GTGGCAAAAG	ACATTGACAA	ACTCGCCCAG	420
GTGGAAAAAG AMCAMCTCC	T GGARGTGCTN	GCCGCTCCTC	GTCMGTTGGT	GGCAGCGCTW	480
TCCTTTTGAC ACACAACA	A GTTAAAGGCA	TTTTCAGCCC	CCAGAAANTT	GTCATCATCC	540
AAGATNTCGC ACAGCACTN	A TCCAGTTGGG	ATTAAAT			577

(2) INFORMATION FOR SEO ID NO:187:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 534 base pairs
- (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:

AACATCTTCC TGTATAATGC	TGTGTAATAT	CGATCCGATN	TTGTCTGSTG	AGAATYCATW	. 60
ACTKGGAAAA GMAACATTAA	AGCCTGGACA	CTGGTATTAA	AATTCACAAT	ATGCAACACT	120
TTAAACAGTG TGTCAATCTG	CTCCCYYNAC	TTTGTCATCA	CCAGTCTGGG	AAKAAGGGTA	180
TGCCCTATTC ACACCTGTTA	AAAGGGCGCT	AAGCATTTTT	GATTCAACAT	CTTTTTTTTT	240
GACACAAGTC CGAAAAAAGC	AAAAGTAAAC	AGTTATYAAT	TTGTTAGCCA	ATTCACTTTC	300
TTCATGGGAC AGAGCCATYT	GATTTAAAAA	GCAAATTGCA	TAATATTGAG	CTTYGGGAGC	360
TGATATTTGA GCGGAAGAGT	AGCCTTTCTA	CTTCACCAGA	CACAACTCCC	TTTCATATTG	420
GGATGTTNAC NAAAGTWATG	TCTCTWACAG	ATGGGATGCT	TTTGTGGCAA	TTCTGTTCTG	480
AGGATCTCCC AGTTTATTTA	CCACTTGCAC	AAGAAGGCGT	TTTCTTCCTC	AGGC	534

(2) INFORMATION FOR SEQ ID NO:188:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 761 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ. ID NO:188: ...

AGAAACCAGT AT	CTCTNAAA ACAA	CCTCTC ATAC	CTTGTG GACCTAATT	TGTGTGCGTG	60
TGTGTGTGCG CC	CATATTAT ATAC	ACAGGC ACAT	CTTTTT TACTTTGT	A AAAGCTTATG	120
CCTCTTTGGT AT	CTATATCT GTGA	AAGTTT TAAT	SATCTG CCATAATGT	C TTGGGGACCT	180
TTGTCTTCTG TG	STAAATGGT ACTA	GAGAAA ACAC	CTATNT TATGAGTCA	A TCTAGTTNGT	240
TTTATTCGAC AT	GAAGGAAA TTTC	CAGATN ACAA	CACTNA CAAACTCTC	CTKGACKARG	300
GGGGACAAAG AA	AAGCAAAA CTGA	MCATAA RAAA	CAATWA CCTGGTGAG	A ARTTGCATAA	360
ACAGAAATWR GO	TAGTATAT TGA	RNACAG CATC	ATTAAA RMGTTWTKT	T WTTCTCCCTT	420
GCAAAAAACA TO	STACNGACT TCCC	GTTGAG TAAT	SCCAAG TTGTTTTTT	AAAATANTAT 1	480
CTTGCCCTTC AT	TACATGTT TNAM	AGTGGT GTGG	RGGCC AAAATATTG	A AATGATGGAA	540
CTGACTGATA AA	GCTGTACA AATA	AGCAGT GTGC	CTAACA AGCAACACA	G TAATGTTGAC	600
ATGCTTAATT CA	CAAATGCT AATT	TCATTA TAAA	IGTTTG CTAAAATAC	A CTTTGAACTA	660
TTTTTCTGTN TI	CCCAGAGC TGAG	ATNTTA GATT	TATGT AGTATNAAG	T GAAAAANTAC	720
GAAAATAATA AC	CATTGAAGA AAAA	NAAA AAANA	AAAAA A		761

(2) INFORMATION FOR SEQ ID NO:189:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 482 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:

TTTTTTTTTT	TTTGCCGATN	CTACTATTTT	ATTGCAGGAN	GTGGGGGTGT	ATGCACCGCA	60
CACCGGGGCT	ATNAGAAGCA	AGAAGGAAGG	AGGGAGGCA	CAGCCCCTTG	CTGAGCAACA	120
AAGCCGCCTG	CTGCCTTCTC	TGTCTGTCTC	CTGGTGCAGG	CACATGGGGA	GACCTTCCCC	180

AAGGCAGGGG	CCACCAGTCC	AGGGGTGGGA	ATACAGGGGG	TGGGANGTGT	GCATAAGAAG	240
TGATAGGCAC	AGGCCACCCG	GTACAGACCC	CTCGGCTCCT	GACAGGTNGA	TTTCGACCAG	-300
GTCATTGTGC	CCTGCCCAGG	CACAGCGTAN	ATCTGGAAAA	GACAGAATGC	TTTCCTTTTC	. 360
	NGTCATNGAA					420
GTTCGGCCCA	GCTCCNCGTC	CAAAAANTAT	TCACCCNNCT	CCNAATTGCT	TGCNGGNCCC	480
CC				• .		482

.(2) INFORMATION FOR SEQ ID NO:190:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 471 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

TTTTTTTTT	TTTTAAAACA	GTTTTTCACA	ACAAAATTTA	TTAGAAGAAT	AGTGGTTTTG	60
AAAACTCTCG	CATCCAGTGA	GAACTACCAT	ACACCACATT	ACAGCTNGGA	ATGTNCTCCA	120
AATGTCTGGT	CAAATGATAC	AATGGAACCA	TTCAATCTTA	CACATGCACG	AAAGAACAAG	180.
CGCTTTTGAC	ATACAATGCA	СААААААА	AGGGGGGGG	GACCACATGG	ATTAAAATTT	240
TAAGTACTCA	TCACATACAT	TAAGACACAG	TTCTAGTCCA	GTCNAAAATC	AGAACTGCNT	300
TGAAAAATTT	CATGTATGCA	ATCCAACCAA	AGAACTTNAT	TGGTGATCAT	GANTNCTCTA	360
CTACATCNAC	CTTGATCATT	GCCAGGAACN	AAAAGTTNAA	ANCACNCNGT	ACAAAAANAA	420
TCTGTAATTN	ANTTCAACCT	CCGTACNGAA	TUNTTUTAAA	TATACACTCC	C .	4,71.

(2) INFORMATION FOR SEQ ID NO:191:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 402 base pairs
 - (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:

GAGGGATTGA	AGGTCTGTTC	TASTGTCGGM	CTGTTCAGCC	ACCAACTCTA	ACAAGTTGCT	60
GTCTTCCACT	CACTGTCTGT	AAGCTTTTTA	ACCCAGACWG	TATCTTCATA	AATAGAACAA	120
ATTCTTCACC	AGTCACATCT	TCTAGGACCT	TTTTGGATTC	AGTTAGTATA	AGCTCTTCCA	180
CTTCCTTTGT	TAAGACTTCA	TCTGGTAAAG	TCTTAAGTTT	TGTAGAAAGG	AATTYAATTG	240
CTCGTTCTCT	AACAATGTCC	TCTCCTTGAA	GTATTTGGCT	GAACAACCCA	CCTAAAGTCC	300
CTTTGTGCAT	CCATTTTAAA	TATACTTAAT	AGGGCATTGK	TNCACTAGGT	TAAATTCTGC	360
AAGAGTCATC	TGTCTGCAAA	AGTTGCGTTA	GTATATCTGC	CA		402

(2) INFORMATION FOR SEQ ID NO:192:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:

GAGCTCGGAT CCAATAATCT	TTGTCTGAGG	GCAGCACACA	TATNCAGTGC	CATGGNAACT	60
GGTCTACCCC ACATGGGAGC	AGCATGCCGT	AGNTATATAA	GGTCATTCCC	TGAGTCAGAC	120
ATGCYTYTTT GAYTACCGTG	TGCCAAGTGC	TGGTGATTCT	YAACACACYT	CCATCCCGYT	180
CTTTTGTGGA AAAACTGGCA	CTTKTCTGGA	ACTAGCARGA	CATCACTTAC	AAATTCACCC	240
ACGAGACACT TGAAAGGTGT	AACAAAGCGA	YTCTTGCATT	GCTTTTTGTC	CCTCCGGCAC	300
CAGTTGTCAA TACTAACCCG	CTGGTTTGCC	TCCATCACAT	TTGTGATCTG	TAGCTCTGGA	360
TACATCTCCT GACAGTACTG	AAGAACTTCT	TCTTTTGTTT	CAAAAGCARC	TCTTGGTGCC	420
TGTTGGATCA GGTTCCCATT	TCCCAGTCYG	AATGTTCACA	TGGCATATTT	WACTTCCCAC	480
AAAACATTGC GATTTGAGGC	TCAGCAACAG	CAAATCCTGT	TCCGGCATTG	GCTGCAAGAG	540
CCTCGATGTA GCCGGCCAGC	GCCAAGGCAG	GCGCCGTGAG	CCCCACCAGC	AGCAGAAGCA	600
G	•	•			601

(2) INFORMATION FOR SEQ ID NO:193:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 608 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:193:

ATACAGCCCA	NATCCCACCA	CGAAGATGCG	CTTGTTGACT	GAGAACCTGA	TGCGGTCACT	60
GGTCCCGCTG	TAGCCCCAGC	GACTCTCCAC	CTGCTGGAAG	CGGTTGATGC	TGCACTCYTT	120
CCCAACGCAG	GCAGMAGCGG	GSCCGGTCAA	TGAACTCCAY	TCGTGGCTTG	GGGTKGACGG	180
TKAAGTGCAG	GAAGAGGCTG	ACCACCTCGC	GGTCCACCAG	GATGCCCGAC	TGTGCGGGAC	240
CTGCAGCGAA	ACTCCTCGAT	GGTCATGAGC	GGGAAGCGAA	TGAGGCCCAG	GGCCTTGCCC	300
AGAACCTTCC	GCCTGTTCTC	TGGCGTCACC	TGCAGCTGCT	GCCGCTGACA	CTCGGCCTCG	360
GACCAGCGGA	CAAACGGCRT	TGAACAGCCG	CACCTCACGG	ATGCCCAGTG	TGTCGCGCTC	420
CAGGAMMGSC	ACCAGCGTGT	CCAGGTCAAT	GTCGGTGAAG	CCCTCCGCGG	GTRATGGCGT	480
CTGCAGTGTT	TTTGTCGATG	TTCTCCAGGC	ACAGGCTGGC	CAGCTGCGGT	TCATCGAAGA	540
GTCGCGCCTG	CGTGAGCAGC	ATGAAGGCGT	TGTCGGCTCG	CAGTTCTTCT	TCAGGAACTC	600
CACGCAAT		•	•			608

(2) INFORMATION FOR SEQ ID NO:194:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 392 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:

GAACGGCTGG	ACCTTGCCTC	GCATTGTGCT	TGCTGGCAGG	GAATACCTTG	GCAAGCAGYT	160 .
CCAGTCCGAG	CAGCCCCAGA	CCCCTGCCGC	CCGAAGCTAA	GCCTGCCTCT	GCCCTTCCCC	120
TCCGCCTCAA	TGCAGAACCA	GTAGTGGGAG	CACTGTGTTT	AGAGTTAAGA	GTGAACACTG	180
TTTGATTTTA	CTTGGGAATT	TCCTCTGTTA	TATAGCTTTT	CCCAATGCTA	ATTTCCAAAC	240
AACAACAACA	AAATAACATG	TTTGCCTGTT	AAGTTGTATA	AAAGTAGGTG	ATTCTGTATT	300
TAAAGAAAAT	ATTACTGTTA	CATATACTGC	TTGCAATTTC	TGTATTTATT	GKTNCTSTGG	360
TATAAATAAA	AGTTATTAAA	GGTTGTCANT	-CC	•		392

(2) INFORMATION FOR SEQ ID NO:195:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 502 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:

CCSTTKGAGG GG	TKAGGKYC CAG	TYCCGA GTGGAA	GAAA CAGGCCAGGA	GAAGTGCGTG	60
CCGAGCTGAG GC	AGATGTTC CCAC	CAGTGAC CCCCAG	AGCC STGGGSTATA	GTYTCTGACC	120
CCTCNCAAGG AA	AGACCACS TTC	NGGGGAC ATGGGC	TGGA GGGCAGGACC	TAGAGGCACC	180
AAGGGAAGGC CC	CATTCCGG GGS7	TGTTCCC CGAGGA	GGAA GGGAAGGGC	TCTGTGTGCC	240
CCCCASGAGG AA	GAGGCCCT GAGT	CCTGGG ATCAGA	CACC CCTTCACGTG	TATCCCCACA	300
CAAATGCAAG CT	CACCAAGG TCCC	CTCTCA GTCCCC	TTCC STACACCCTG	AMCGGCCACT	360
GSCSCACACC CA	CCCAGAGC ACGO	CACCCG CCATGG	GGAR TGTGCTCAAG	GARTCGCNGG	420
GCARCGTGGA CA	TCTNGTCC CAG	AGGGGG CAGAAT	CTCC AATAGANGGA	CTGARCMSTT	480
GCTNANAAAA AA	AA AAAAAAA		•	• .	502

(2) INFORMATION FOR SEQ ID NO:196:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 665 base pairs
 - (B) TYPE: nucleic acid.
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:

GGTTACTTGG TTTCATTGCC ACCACTTAGT GGATGTCATT TAGAACCATT	TIGTCTGCTC	60
CCTCTGGAAG CCTTGCGCAG AGCGGACTTT GTAATTGTTG GAGAATAACT (GCTGAATTTT	120
WAGCTGTTTK GAGTTGATTS GCACCACTGC ACCCACAACT TCAATATGAA	AACYAWTTGA	180
ACTWATTTAT TATCTTGTGA AAAGTATAAC AATGAAAATT TTGTTCATAC	TGTATTKATC	240
AAGTATGATG AAAAGCAAWA GATATATATT CTTTTATTAT GTTAAATTAT	GATTGCCATT	300
ATTAATCGGC AAAATGTGGA GTGTATGTTC TTTTCACAGT AATATATGCC	TTTTGTAACT	360
TCACTTGGTT ATTTTATTGT AAATGARTTA CAAAATTCTT AATTTAAGAR I	AATGGTATGT	420
WATATTATT TCATTAATTT CTTTCCTKGT TTACGTWAAT TTTGAAAAGA	WTGCATGATT	480
TCTTGACAGA AATCGATCTT GATGCTGTGG AAGTAGTTTG ACCCACATCC	CTATGAGTTT	540
TTCTTAGAAT GTATAAAGGT TGTAGCCCAT CNAACTTCAA AGAAAAAAAT (GACCACATAC	600
TTTGCAATCA GGCTGAAATG TGGCATGCTN TTCTAATTCC AACTTTATAA	ACTAGCAAAN	660
AAGTG		665

(2) INFORMATION FOR SEQ ID NO:197:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 492 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:

TTTTNTTTTT	TTTTTTTTGC	AGGAAGGATT	CCATTTATTG	TGGATGCATT	TTCACAATAT	60
ATGTTTATTG	GAGCGATCCA	TTATCAGTGA	AAAGTATCAA	GTGTTTATAA	NATTTTTAGG	120
AAGGCAGATT	CACAGAACAT	GCTNGTCNGC	TTGCAGTTTT	ACCTCGTANA	GATNACAGAG	180
AATTATAGTC	NAACCAGTAA	ACNAGGAATT	TACTTTTCAA	AAGATTAAAT	CCAAACTGAA	240
CAAAATTCTA	CCCTGAAACT	TACTCCATCC	AAATATTGGA	ATAANAGTCA	GCAGTGATAC	300
ATTCTCTTCT	GAACTTTAGA	TTTTCTAGAA	AAATATGTAA	TAGTGATCAG	GAAGAGCTCT	360
TGTTCAAAAG	TACAACNAAG	CAATGTTCCC	TTACCATAGG	CCTTAATTCA	AACTTTGATC	420
CATTTCACTC	CCATCACGGG	AGTCAATGCT	ACCTGGGACA	CTTGTATTTT	GTTCATNCTG	480
ANCNTGGCTT	AA					492

(2) INFORMATION FOR SEQ ID NO:198:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 478 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:

TTTNTTTTGN	ATTTCANTCT	GTANNAANTA	TTTTCATTAT	GTTTATTANA	AAAATATNAA	60
TGTNTCCACN	ACAAATCATN	TTACNTNAGT	AAGAGGCCAN	CTACATTGTA	CAACATACAC	1.20
TGAGTATATT	, TTGAAAAGGA	CAAGTTTAAA	GTANACNCAT	ATTGCCGANC.	ATANCACATT	180
	i i		•	GTGAGTTACC	.*	240
				TGGTACATAN		300
				TGTACAAAGA		360
AGCATTCTAG	TACCTCTACT	CCATGGTTAA	GAATCGTACA	CTTATGTTTA	CATATGTNCA	420
GGGTAAGAAT	TGTGTTAAGT	NAANTTATGG	AGAGGTCCAN	GAGAAAAATT	TGATNCAA	478

(2) INFORMATION FOR SEQ ID NO:199:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 482 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:199:

	AGTGACTTGT	CCTCCAACAA	AACCCCTTGA	TCAAGTTTGT	GGCACTGACA	ATCAGACCTA	60
٠	TGCTAGTTCC	TGTCATCTAT	TCGCTACTAA	ATGCAGACTG	GAGGGGACCA	AAAAGGGGCA	120
	TCAACTCCAG	CTGGATTATT	TTGGAGCCTG	CAAATCTATT	CCTACTTGTA	CGGACTTTGA	180
	AGTGATTCAG	TTTCCTCTAC	GGATGAGAGA	CTGGCTCAAG	AATATOCTCA	TGCAGCTTTA	240
	TGAAGCCNAC	TCTGAACACG	CTGGTTATCT	NAGATGAGAA	NCAGAGAAAT	AAAGTCNAGA	3.00
	AAATTTACCT	GGANGAAAAG	AGGCTTTNGG	CTGGGGACCA	TCCCATTGAA	CCTTCTCTTA	360
	ANGGACTTTA	AGAANAAACT	ACCACATGIN	TGTNGTATCC	TGGTGCCNGG	CCGTTTANTG	420
	AACNTNGACN	NCACCCTTNT	GGAATANANT	CTTGACNGCN	TCCTGAACTT	GCTCCTCTGC	480
	GA .			• 6			482

(2) INFORMATION FOR SEQ ID NO:200:

(i) SEQ	UENCE	CHARACTERISTICS:
---------	-------	------------------

- (A) LENGTH: 270 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:

CGGCCGCAAG TGCAACTCCA GCTGGGGCCG TGCGGACGAA	GATTCTGCCA GCAGTTGGTC	60
CGACTGCGAC GACGGCGGCG GCGACAGTCG CAGGTGCAGC	GCGGCCCCT GGGGTCTTGC	120
AAGGCTGAGC TGACGCCGCA GAGGTCGTGT CACGTCCCAC	GACCTTGACG CCGTCGGGGA	180
CAGCCGGAAC AGAGCCCGGT GAANGCGGGA GGCCTCGGGG	AGCCCCTCGG GAAGGGCGGC	240
CCGAGAGATA CGCAGGTGCA GGTGGCCGCC	*** ,	270

(2) INFORMATION FOR SEQ ID NO:201:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 419 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:

TTTTGGAATC	TACTGCGAGC	ACAGCAGGTC	AGCAACAAGT	TTATTTTGCA	60
TAACAGGGTA	GGGCATGGTT	ACATGTTCAG	GTCAACTTCC	TTTGTCGTGG	120
TGTCTTTATG	GGGGCGGGT	GGGGTAGGGG	AAANCGAAGC	ANAANTAACA	180
GCACCCTCCC	TGTAGAACCT	GGTTACNAAA	GCTTGGGGCA	GTTCACCTGG	240
TCATTTTCTT	GACATCAATG	TTATTAGAAG	TCAGGATATC	TTTTAGAGAG	300
					360
TGATNCANGT	ACNGAATACC	GANGGCATAN	TTCTCATANT	CGGTGGCCA	419
	TAACAGGTA TGTCTTTATG GCACCCTCCC TCATTTCTT CTGGAGGGAG	TAACAGGGTA GGGCATGGTT TGTCTTTATG GGGGCGGGGT GCACCCTCCC TGTAGAACCT TCATTTTCTT GACATCAATG CTGGAGGGAG ATTAGGGTTT	TAACAGGGTA GGGCATGGTT ACATGTTCAG TGTCTTTATG GGGGCGGGGT GGGGTAGGGG GCACCCTCCC TGTAGAACCT GGTTACNAAA TCATTTTCTT GACATCAATG TTATTAGAAG CTGGAGGGAG ATTAGGGTTT CTTGCCAANA	TAACAGGGTA GGGCATGGTT ACATGTTCAG GTCAACTTCC TGTCTTTATG GGGGCGGGGT GGGGTAGGGG AAANCGAAGC GCACCCTCCC TGTAGAACCT GGTTACNAAA GCTTGGGGCA TCATTTTCTT GACATCAATG TTATTAGAAG TCAGGATATC CTGGAGGGAG ATTAGGGTTT CTTGCCAANA TCCAANCAAA	TTTTGGAATC TACTGCGAGC ACAGCAGGTC AGCAACAAGT TTATTTTGCA TAACAGGGTA GGGCATGGTT ACATGTTCAG GTCAACTTCC TTTGTCGTGG TGTCTTTATG GGGGCGGGGT GGGGTAGGGG AAANCGAAGC ANAANTAACA GCACCCTCCC TGTAGAACCT GGTTACNAAA GCTTGGGGCA GTTCACCTGG TCATTTTCTT GACATCAATG TTATTAGAAG TCAGGATATC TTTTAGAGAG CTGGAGGGAG ATTAGGGTTT CTTGCCAANA TCCAANCAAA ATCCACNTGA TGATNCANGT ACNGAATACC GANGGCATAN TTCTCATANT CGGTGGCCA

(2) INFORMATION FOR SEQ ID NO:202:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 509 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:

TTTNTTTTTT	TTTTTTTTTT	TTTTTTTTT	TTTTTTTTTT	TTTTTTTTT	TTTTTTTTT	60
TGGCACTTAA	TCCATTTTTA	TTTCAAAATG	TCTACAAANT	TTNAATNCNC	CATTATACNG	120
GTNATTTTNC	AAAATCTAAA	NNTTATTCAA	ATNTNAGCCA	AANTCCTTAC	NCAAATNNAA	180
TACNCNCAAA	AATCAAAAAT	ATACNTNTCT	TTCAGCAAAC	TTNGTTACAT	AAATTAAAA	240
					ATNTTTNNAA	300
		CACTNCCGCA				360
		ATCATATCTC				420
		CTTTGTTTAT	TTTTTTANAA	CCATTGTNTT	GGGCCCAACA	480
CAATGGNAAT	NCCNCCNCNC	TGGACTAGT		•		509

(2) INFORMATION FOR SEQ ID NO:203:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 583 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:

TTTTTTTTT	TTTTTTTTGA	CCCCCTCTT	ATAAAAAACA	AGTTACCATT	TTATTTTACT	60
TACACATATT	TATTTTATAA	TTGGTATTAG	ATATTCAAAA	GGCAGCTTTT	AAAATCAAAC	120
TAAATGGAAA	CTGCCTTAGA	TACATAATTC	TTAGGAATTA	GCTTAAAATC	TGCCTAAAGT	180
GAAAATCTTC	TCTAGCTCTT	TTGACTGTAA	ATTTTTGACT	CTTGTAAAAC	ATCCAAATTC	240
ATTTTTCTTG	TCTTTAAAAT	TATCTAATCT	TTCCATTTTT	TCCCTATTCC	AAGTCAATTT	300
GCTTCTCTAG	CCTCATTTCC	TAGCTCTTAT	CTACTATTAG	TAAGTGGCTT	TTTTCCTAAA	360
AGGGAAAACA	GGAAGAGANA	ATGGCACACA	AAACAAACAT	TTTATATTCA	TATTTCTACC	420
TACGTTAATA	AAATAGCATT	TTGTGAAGCC	AGCTCAAAAG	AAGGCTTAGA	TCCTTTTATG	480
TCCATTTTAG	TCACTAAACG	ATATCNAAAG	TGCCAGAATG	CAAAAGGTTT	GTGAACATTT	540
ATTCAAAAGC	TAATATAAGA	TATTTCACAT	ACTCATCTTT	CTG		583

(2) INFORMATION FOR SEQ ID NO:204:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 589 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:

${\tt TTTTTTTTNT}$	TTTTTTTTTT	TTTTTTTNCTC	TTCTTTTTTT	TTGANAATGA	-GGATCGAGTT	60
TTTCACTCTC	TAGATAGGGC	ATGAAGAAAA	CTCATCTTTC	CAGCTTTAAA	ATAACAATCA	120
AATCTCTTAT	GCTATATCAT	ATTTTAAGTT	AAACTAATGA	GTCACTGGCT	TATCTTCTCC	180
TGAAGGAAAT	CTGTTCATTC	TTCTCATTCA	TATAGTTATA	TCAAGTACTA	CCTTGCATAT	240
TGAGAGGTTT	TTCTTCTCTA	TTTACACATA	TATTTCCATG	TGAATTTGTA	TCAAACCTTT	300
ATTTTCATGC	AAACTAGAAA	ATAATGTNTT	CTTTTGCATA	AGAGAAGAGA	ACAATATNAG	360
CATTACAAAA	CTGCTCAAAT	TGTTTGTTAA	GNTTATCCAT	TATAATTAGT	TNGGCAGGAG	420
CTAATACAAA	TCACATTTAC	NGACNAGCAA	TAATAAAACT	GAAGTACCAG	TTAAATATCC	480
ATTAATTA	AAGGAACATT	TTTAGCCTGG	GTATAATTAG	CTAATTCACT	TTACAAGCAT	540
TTATTNAGAA	TGAATTCACA	TGTTATTATT	CCNTAGCCCA	ACACAATGG	•	589

(2) INFORMATION FOR SEQ ID NO:205:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 545 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:

	•	
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TAAAATTCAT	60
AGAAAAGTGC CTTACATTTA ATAAAAGTTT GTTTCTCAAA GTGATCAGAG	GAATTAGATA	120
TNGTCTTGAA CACCAATATT AATTTGAGGA AAATACACCA AAATACATTA	AGTAAATTAT	180
TTAAGATCAT AGAGCTTGTA AGTGAAAAGA TAAAATTTGA CCTCAGAAAC	TCTGAGCATT	240
AAAAATCCAC TATTAGCAAA TAAATTACTA TGGACTTCTT GCTTTAATTT	TGTGATGAAT	300
ATGGGGTGTC ACTGGTAAAC CAACACATTC TGAAGGATAC ATTACTTAGT	GATAGATTCT	360
TATGTACTTT GCTANATNAC GTGGATATGA GTTGACAAGT TTCTCTTTCT	TCAATCTTTT	420
AAGGGGCNGA NGAAATGAGG AAGAAAAGAA AAGGATTACG CATACTGTTC	TTTCTATNGG	480
AAGGATTAGA TATGTTTCCT TTGCCAATAT TAAAAAAATA ATAATGTTTA	CTACTAGTGA	540
AACCC		545
		*
(2) INFORMATION FOR SEQ ID NO:206:	· ·	-
(i) SEQUENCE CHARACTERISTICS:	*	1.
(8) 8		-

- (A) LENGTH: 487 base pairs
- (B) TYPE: nucleic acid .
- (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:206:

1	TTTTTTTTT	TTTTTTAGTC	AAGTTTCTNA	TTTTTTTTT	AATTAAAGTC	TTGGTCATTT	€0
	CATTTATTAG	CTCTGCAACT	TACATATTTA	AATTAAAGAA	ACCTTNTTAG	ACAACTGTNA	120
	CAATTTATAA	ATGTAAGGTG	CCATTATTGA	GTANATATAT	TCCTCCAAGA	GTGGATGTGT	180
	CCCTTCTCCC	ACCAACTAAT	GAANCAGCAA	CATTAGTTTA	ATTTTATŢAG	TAGATNATAC	- 240
	ACTGCTGCAA	ACGCTAATTC	TCTTCTCCAT	CCCCATGTNG	ATATTGTGTA	TATGTGTGAG	300
	TTGGTNAGAA	TGCATCANCA	ATCTNACAAT	CAACAGCAAG	ATGAAGCTAG	GCNTGGGCTT	360
	TCGGTGAAAA	TAGACTGTGT	CTGTCTGAAT	CAAATGATCT	GACCTATCCT	CGGTGGCAAG	420
	AACTCTTCGA	ACCGCTTCCT	CAAAGGCNGC	TGCCACATTT	GTGGCNTCTN	TTGCACTTGT	480
	TTCAAAA						487

- (2) INFORMATION FOR SEQ ID NO:207:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 332 base pairs
 - (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:207:

TGAATTGGCT	AAAAGACTGC	ATTTTTANAA	CTAGCAACTC	TTATTTCTTT	CCTTTAAAAA	60
TACATAGCAT	TAAATCCCAA	ATCCTATTTA	AAGACCTGAC	AGCTTGAGAA	GGTCACTACT	120
				AANTCTGACA		180
ATCTTTGCAT	GCAGAGGAGG	TAAAAGGTAT	TGGATTTTCA	CAGAGGAANA	ACACAGCGCA	240
GAAATGAAGG	GGCCAGGCTT	ACTGAGCTTG	TCCACTGGAG	GGCTCATGGG	TGGGACATGG	300
AAAAGAAGGC	AGCCTAGGCC	CTGGGGAGCC	CA			332

- (2) INFORMATION FOR SEQ ID NO:208:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 524 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

	· (D)	TOPOLOGY:	linear				
		•					
	(ii)	MOLECULE T	YPE: cDNA				
			•				
	(xi)	SEQUENCE DI	ESCRIPTION:	SEQ ID NO:	208:		
	AGGGCGTGGT	GCGGAGGGCG	TTACTGTTTT	GTCTCAGTAA	CAATAAATAC	AAAAAGACTG	60
	GTTGTGTTCC	GCCCCCATCC	AACCACGAAG	TTGATTTCTC	TTGTGTGCAG	AGTGACTGAT	120
			TCACAATGTC	*			180
						TGTAAATACT	240
						ATTTCCCAAA	
						TTTACAAGTC	360
						CAGTCTGTCC	420
						ATCTATCCAA	480
			TCCGGTAATG			MICIAICCAA	524
	MAACCATIAC	CIGAZCCACI	ICCGGIAAIG	CACCACCITG	GIGA	,	524
) THEODWAM	TON DOD 000	TD 370 000	• •		٠.
	(2	i) informat.	ION FOR SEQ	ID NO:209:			•
	(1)	POMENCE CU	ARACTERISTIC	7C.			
		-	59 base pair			٠.	
		TYPE: nuc		. 5			
			ESS: single				
			_			•	
	(1)	TOPOLOGY:	inear				
	(ii)	MOLECULE T	YPE: cDNA				
7	•						•
	(xi)	SEQUENCE DI	ESCRIPTION:	SEQ ID NO:	209:		57
	•		. •				
						TTGCTCCTTG	60
	TGGCCCTCTC	CTACACTCTG	GCCAGAGATA	CCACAGTCAA	ACCTGGAGCC	AAAAAGGACA	120
	CAAAGGACTC	TCGACCCAAA	CTGCCCCAGA	CCCTCTCCA			159
			· :				
	(2) INFORMAT	ION FOR SEQ	ID NO:210:	(4)		• •
	(i) s	SEQUENCE CH	ARACTERISTI	cs:	* .		
			56 base pair		,		•
-		TYPE: nuc				·	
			ESS: single				
		TOPOLOGY:					
•	(2)	10102001.	1111001	•			
	(ii)	MOLECULE T	YPE: cDNA				
		•					
	(xi)	SEQUENCE D	ESCRIPTION:	SEQ ID NO:	210:		
	ACTCCCTGGC	AGACAAAGGC	AGAGGAGAGA	GCTCTGTTAG	TTCTGTGTTC	TTGAACTGCC	60
						GAAAAACGTA	120
						CGGGAGAGAT	
						GAGGTAGGCA	
	CCAGGATGCT		5001001110		DATASOC	J. JOSEPHONE	256
	CONCONICCI	enna.				•	230
		TNECOMBE	ION FOR SEO	- דר אַר יבֿיר			
	14	, IIII Oldurii		_D			
	•		•				

(i) SEQUENCE CHARACTERISTICS:

(A)	LENGTH: 264 base pain	rs	. • 0	•	~
(B)	TYPE: nucleic acid				
(C)	STRANDEDNESS: single				
	TOPOLOGY: linear		•		
(2)	10102001. 1111041				
(::)	MOLECULE TYPE: cDNA		•		
(11)	MOLECULE TYPE: CONA			•	
(X1)	SEQUENCE DESCRIPTION:	SEQ ID NO:	211:	•	
	TTTGAGATAA AGCATTGAGA				60
ACTGGAACAC	ATACCCACAT CTTTGTTCTG	AGGGATAATT	TTCTGATAAA	GTCTTGCTGT	120
ATATTCAAGC	ACATATGTTA TATATTATTC	AGTTCCATGT	TTATAGCCTA	GTTAAGGAGA	180
GGGGAGATAC	ATTCNGAAAG AGGACTGAAA	GAAATACTCA	AGTNGGAAAA	CAGAAAAAGA	240
	CAAATGAGAA GCCT				264
					201
1.	2) INFORMATION FOR SEQ	TD NO.212.	•	. •	•
1.	e, information for SEQ	1D NO:212:	•	•	•
121	CECURAL GUARACTER	~~			
	SEQUENCE CHARACTERISTIC			•	
	LENGTH: 328 base pai:	rs	•	:	
	TYPE: nucleic acid			"	
	STRANDEDNESS: single				
(D)	TOPOLOGY: linear				
	•	•		*	
(ii)	MOLECULE TYPE: cDNA				
				:	
(xi)	SEQUENCE DESCRIPTION:	SEO ID NO:	212.		
,				•	
таааасэээ	CCAATGCTGA ATATTTGGCT	TONTONTOC	CANATTOTOTO		60
	TTGTCTCAGC TTGGGCACTT				
					120
	GCAGCAACAA TATTCAAGCG				180
	TTCCCATTGA CTTGGGATCC				240
	TCTTTACTCT CTGGANAGGG	CCAGTGGTGG	TAGCTATAAG	CTTGGCCACA	300
TTTTTTTTC	CTTTATTCCT TTGTCAGA				328
	*			8.4	
· (:	2) INFORMATION FOR SEQ	ID NO:213:	•		
(i)	SEQUENCE CHARACTERISTIC	CS:			
(A) LENGTH: 250 base pair	rs			
(B) TYPE: nucleic acid		•		
) STRANDEDNESS: single		<u> </u>		
	TOPOLOGY: linear			•	
. \-	, Ioroboot. Illical				
/;;\	MOLECULE TYPE: cDNA		•		
(44)	MODECODE TIPE: CONA	-			
. ()	ABAIIMIAN DEGENTERTAL				
(X1)	SEQUENCE DESCRIPTION:	SEQ ID NO:	213:		
	AGAGCGACAT ATCCNAGTGT				60
	CTCACTGAAG GGATAGAAGT				120
	AAGGANATAT ACATTTCAAT				180
TTCAATATTT	GCATGAACCT GCTGATAANC	CATGTTAANA	AACAAATATC	TCTCTNACCT	240
TCTCATCGGT					250
•					
*. (2) INFORMATION FOR SEQ	ID NO:214:			
	,				

	 (i) SEQUENCE CHARACTERISTIC (A) LENGTH: 444 base pair (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	rs			
	(ii) MOLECULE TYPE: cDNA				
	(xi) SEQUENCE DESCRIPTION:	SEQ ID NO:	214:	*	
	ACCCAGAATC CAATGCTGAA TATTTGGCTT	CATTATTCCC	ልርልጥጥርጥጥፕር	ልተጥርጥር አልልር	60
	GATTTAATGT TGTCTCAGCT TGGGCACTTC				120
	TTTATATATG CAGCAACAAT ATTCAAGCGC	` _			180
	TGAATTTCAT TCCCATTGAC TTGGGATCCT	the state of the s			240
	CCCTACGACT CTTTACTCTC TGGAGAGGGC				
	TTTTTTTCC TTTATTCCTT TGTCAGAGAT				360
	AGTGACTTT ACAAAATTCC TATAGANATT				420
	ACTITGCTCT CCCTAATATA CCTC			HOTTOCCATT	444
	(2) INFORMATION FOR SEQ	ID NO:215:			••
	(i) SEQUENCE CHARACTERISTIC				7
	(A) LENGTH: 366 base pai:	rs	•		
	(B) TYPE: nucleic acid		•		
	(C) STRANDEDNESS: single				
-	(D) TOPOLOGY: linear			3 °	
	(34) MOT BOTT BOTT BOTT				
	(ii) MOLECULE TYPE: cDNA				
	(wi) COMPACE DECORIDETON	OTO TO NO			£.
	(xi) SEQUENCE DESCRIPTION:	SEQ ID NO:	215:		
	ACTTATGAGC AGAGGGACAT ATCCAAGTGT	አእየአ <i>ር</i> ማረግ አጥክ	7 7 7 COC 7 7 TOT	COCOO CONCORD	60
	TAAAGCATTG CTCACTGAAG GGATAGAAGT				
	CATTATGCCA AAGGANATAT ACATTTCAAT	•		•	
	TTCAATATTT GCATGAACCT GCTGATAAGC				
	TCTCATCGGT AAGCAGAGCC TGTAGGCAAC				
	TCCAAGCTGT TTTCTACACT GTAACCAGGT				
	GGTGCC	TICCAACCAA	GGTGGAAATC	TCCTATACTT	360 366
					300
	(2) INFORMATION FOR SEQ	ID NO:216:	-		(
	(i) SEQUENCE CHARACTERISTI	cs:			
	(A) LENGTH: 260 base pair		•	•	
	(B) TYPE: nucleic acid	- 	•		
	(C) STRANDEDNESS: single			• .	
	(D) TOPOLOGY: linear				
	(ii) MOLECULE TYPE: cDNA		÷		
		•			
	(xi) SEQUENCE DESCRIPTION:	SEQ ID NO:	216:	•	
	CTGTATAAAC AGAACTCCAC TGCANGAGGG	AGGGCCGGGC	CAGGAGAATC	TCCGCTTGTC	60
	CAAGACAGGG GCCTAAGGAG GGTCTCCACA				
	TAATAAAAAG TNNAAAAGGC CTCTTCTCAA				180
	ATCAAAAATT TCCTNAAGTT NTCAAGCTAT				240
	•				

AATTCTTCCT TCCCTCCTTT	260
(2) INFORMATION FOR SEQ ID NO:217:	10
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 262 base pairs	
(B) TYPE: nucleic acid	*
(C) STRANDEDNESS: single	•
(D) TOPOLOGY: linear	
	•
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:217:	
ACCTACGTGG GTAAGTTTAN AAATGTTATA ATTTCAGGAA NAGGAACGCA	TATAATTGTA 60
TCTTGCCTAT AATTTTCTAT TTTAATAAGG AAATAGCAAA TTGGGGTGGG	
GGCATTCTAC AGTTTGAGCA AAATGCAATT AAATGTGGAA GGACAGCACT	GAAAAATTTT 180
ATGAATAATC TGTATGATTA TATGTCTCTA GAGTAGATTT ATAATTAGCC	ACTTACCCTA 240
ATATCCTTCA TGCTTGTAAA GT	262
(2) INFORMATION FOR SEQ ID NO:218:	•
(i) anathran ann ann ann an	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 205 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single .	
(D) TOPOLOGY: linear	
(D) TOPOLOGI: Timear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:218:	
ACCAAGGTGG TGCATTACCG GAANTGGATC AANGACACCA TCGTGGCCAA	CCCCTGAGCA 60
CCCCTATCAA CTCCCTTTTG TAGTAAACTT GGAACCTTGG AAATGACCAG	
AGGCCTCCCC AGTTCTACTG ACCTTTGTCC TTANGTNTNA NGTCCAGGGT	
ANAAATCAGC AGACACAGGT GTAAA	209
(2) INFORMATION FOR SEQ ID NO:219:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 114 base pairs	·
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	•
(ii) MOLECULE TYPE: cDNA	• • • • • • • • • • • • • • • • • • •
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:219:	-
TACTGTTTTG TCTCAGTAAC AATAAATACA AAAAGACTGG TTGTGTTCCG	CCCCCATCCA C
ACCACGAAGT TGATTTCTCT TGTGTGCAGA GTGACTGATT TTAAAGGACA	
(2) INFORMATION FOR SEQ ID NO:220:	

(i) SEQUENCE CHARACTERISTICS:

(A) DENGIH: 93 Dase pair: (B) TYPE: nucleic acid. (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION:		220:		
ACTAGCCAGC ACAAAAGGCA GGGTAGCCTG AAATAAGCAT TTAGTGCTCA GTCCCTACTG		TGCTCTTTAC	ATTTCTTTTA	60 93
(2) INFORMATION FOR SEQ	ID NO:221:		•	
 (i) SEQUENCE CHARACTERISTIC (A) LENGTH: 167 base pair (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 				· .
(ii) MOLECULE TYPE: cDNA	,		•	
(xi) SEQUENCE DESCRIPTION:	SEQ ID NO:	221:		•
ACTANGTGCA GGTGCGCACA AATATTTGTC TCTTTTGCCC AGCCTGTGGC TCTACTGTAG CCCCCACTAC CTTCCCTGAC GCTCCCCANA	TAAGTTTCTG	CTGATGAGGA		60 . 120 167
(2) INFORMATION FOR SEQ	ID NO:222:			
(i) SEQUENCE CHARACTERISTIC (A) LENGTH: 351 base pair (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA				
(xi) SEQUENCE DESCRIPTION:	SEQ ID NO:	222:		
AGGGCGTGGT GCGGAGGGCG GTACTGACCT GTTCTTCACC TGTCCCCCAA TCCTTAAAAG ATGTTTGCTG AATTAAAGGA TGGATGAAAA TTTTCTCTTT TATATTTCTA GAAGAAGTTT TAGGTGAGCA TGATTAGAGA GCTTGTAGGT CTCGTATCAA AACAATAGAT TGGTAAAGGT	GCCATACTGC AAATTAATAA CTTTGAGCCT TGCTTTTACA	ATAAAGTCAA TGAATTTTTG ATTAGATCCC TATATCTGGC	CAACAGATAA CATAATCCAA GGGAATCTTT ATATTTGAGT	60 120 180 240 300 351
(2) INFORMATION FOR SEQ ID NO:223		•		
(i) CENTENOR CHARACTERICE				

(A) LENGTH: 383 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:223:

AAAACAAACA	AACAAAAAA	ACAATTCTTC	ATTCAGAAAA	ATTATCTTAG	GGACTGATAT	60
TGGTAATTAT	GGTCAATTTA	ATWRTRTTKT	GGGGCATTTC	CTTACATTGT	CTTGACAAGA	120
TTAAAATGTC	TGTGCCAAAA	TTTTGTATTT	TATTTGGAGA	CTTCTTATCA	AAAGTAATGC	180
TGCCAAAGGA	AGTCTAAGGA	ATTAGTAGTG	TTCCCMTCAC	TTGTTTGGAG	TGTGCTATTC	240
TAAAAGATTT	TGATTTCCTG	GAATGACAAT	TATATTTTAA	CTTTGGTGGG	GGAAANAGTT	300
			GTAAATTAAT	CTTTTATTGC	ACTTGTTTTG	360
ACCATTAAGC	TATATGTTTA	AAA	*			383

(2) INFORMATION FOR SEQ ID NO:224

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 320 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:224

CCCCTGAAGG	CTTCTTGTTA	GAAAATAGTA	CAGTTACAAC	CAATAGGAAC	AACAAAAAGA .	60
AAAAGTTTGT						120
GGATACATGG	TTAAAGGATA	RAAGGGCAAT	ATTTTATCAT	ATGTTCTAAA	AGAGAAGGAA	-180
GAGAAAATAC	TACTTTCTCR	AAATGGAAGC	CCTTAAAGGT	GCTTTGATAC	TGAAGGACAC	240
AAATGTGGCC	GTCCATCCTC	CTTTARAGTT	GCATGACTTG	GACACGGTAA	CTGTTGCAGT	300
TTTARACTOM	GCATTGTGAC				• •	320

CLAIMS

- 1. A method for detecting prostate cancer in a patient, comprising:
- (a) contacting a biological sample obtained from the patient with a binding agent which is capable of binding to a polypeptide, the polypeptide comprising an immunogenic portion of a prostate protein or a variant thereof, wherein said protein comprises an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224, the complements of said nucleotide sequences and variants of said nucleotide sequences; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting prostate cancer in the patient.
- 2. The method of claim 1 wherein the binding agent is a monoclonal antibody.
- 3. The method of claim 2 wherein the binding agent is a polyclonal antibody.
- 4. A method for monitoring the progression of prostate cancer in a patient, comprising:
- (a) contacting a biological sample obtained from the patient with a binding agent that is capable of binding to a polypeptide, said polypeptide comprising an immunogenic portion of a prostate protein or a variant thereof, wherein said protein comprises an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224, the complements of said nucleotide sequences and variants of said nucleotide sequences;
- (b) determining in the sample an amount of a protein or polypeptide that binds to the binding agent;
 - (c) repeating steps (a) and (b); and

- (d) comparing the amount of polypeptide detected in steps (b) and (c) to monitor the progression of prostate cancer in the patient.
- 5. A monoclonal antibody that binds to a polypeptide comprising an immunogenic portion of a prostate protein or a variant thereof, wherein said protein comprises an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 8-29, 41-45, 47-52, 54-65, 70, 73, 74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209-211, 220, 222-224, the complements of said nucleotide sequences variants of said nucleotide sequences.
- 6. A method for inhibiting the development of prostate cancer in a patient, comprising administering to the patient a therapeutically effective amount of a monoclonal antibody according to claim 5.
- 7. The method of claim 6 wherein the monoclonal antibody is conjugated to a therapeutic agent.
 - 8. A method for detecting prostate cancer in a patient comprising:
 - (a) obtaining a biological sample from the patient;
- (b) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, wherein at least one of the oligonucleotides is specific for a DNA molecule encoding a polypeptide comprising an immunogenic portion of a prostate protein or of a variant thereof, said protein comprising an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224, the complements of said nucleotide sequences variants of said nucleotide sequences; and
- (c) detecting in the sample a DNA sequence that amplifies in the presence of the oligonucleotide primers, thereby detecting prostate cancer.

- 9. The method of claim 8, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a DNA molecule having a sequence selected from SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224.
 - 10. A diagnostic kit comprising:
 - (a) one or more monoclonal antibodies of claim 5; and
 - (b) a detection reagent.
 - 11. A diagnostic kit comprising:
- (a) one or more monoclonal antibodies that bind to a polypeptide encoded by a DNA molecule having a nucleotide sequence selected from the group consisting of SEQ ID Nos: 5-7, 30-40, 46, 53, 66-69, 71, 72, 75-78, 80, 82-86, 88, 89, 91, 94-96, 98-102, 105, 106, 161-170, 179, 180, 182-187, 189, 190, 192, 195-197, 199-202, 205, 206, 208, 212-219, 221, the complements of said sequences and variants of said nucleotide sequences; and
 - (b) a detection reagent.
- 12. The kit of claims 10 or 11 wherein the monoclonal antibodies are immobilized on a solid support.
- 13. The kit of claim 12 wherein the solid support comprises nitrocellulose, latex or a plastic material.
- 14. The kit of claims 10 or 11 wherein the detection reagent comprises a reporter group conjugated to a binding agent.
- 15. The kit of claim 14 wherein the binding agent is selected from the group consisting of anti-immunoglobulins, Protein G, Protein A and lectins.
- 16. The kit of claim 14 wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin and dye particles.

- 17. A diagnostic kit comprising at least two oligonucleotide primers, at least one of the oligonucleotide primers being specific for a DNA molecule encoding a polypeptide comprising an immunogenic portion of a prostate protein or a variant thereof, said protein comprising an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224, the complements of said nucleotide sequences and variants of said nucleotide sequences.
- 18. A diagnostic kit of claim 17 wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a DNA molecule having a sequence selected from SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224.
 - 19. A method for detecting prostate cancer in a patient, comprising:
 - (a) obtaining a biological sample from the patient;
- (b) contacting the biological sample with an oligonucleotide probe specific for a DNA molecule encoding a polypeptide comprising an immunogenic portion of a prostate protein or a variant thereof, said protein comprising an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224, the complements of said nucleotide sequences and variants of said nucleotide sequences; and
- (c) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe, thereby detecting prostate cancer in the patient.
- 20. The method of claim 19 wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA molecule having a sequence selected from the group consisting of SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224.
- 21. A diagnostic kit comprising an oligonucleotide probe specific for a DNA molecule encoding a polypeptide comprising an immunogenic portion of a prostate

protein or a variant thereof, said protein comprising an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224, the complements of said nucleotide sequences variants of said nucleotide sequences.

22. The diagnostic kit of claim 21, wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA molecule having a sequence selected from the group consisting of SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION Internati nal Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) Internati nal Patent Classification ⁶:
G01N 33/574, 33/577, C07K 16/30, A61K 39/395, 47/48, C12O 1/68, G01N 33/543

(11) Internati nal Publication Number:

WO 98/37418

(43) International Publication Date:

27 August 1998 (27.08.98)

(21) International Application Number:

PCT/US98/03690

A2

(22) International Filing Date:

25 February 1998 (25.02.98)

(30) Priority Data:

08/806,596 25 February 1997 (25.02.97) US 08/904,809 1 August 1997 (01.08.97) US 09/020,747 9 February 1998 (09.02.98) US

(71) Applicant: CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US).

(72) Inventors: XU, Jiangchun; 15805 Southeast 43rd Place, Bellevue, WA 98006 (US). DILLON, Davin, C.; 21607 N.E. 24th Street, Redmond, WA 98053 (US).

(74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).

(81) Designated States: AL, AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(\$4) Title: COMPOUNDS FOR IMMUNODIAGNOSIS OF PROSTATE CANCER AND METHODS FOR THEIR USE

(57) Abstract

Compounds and methods for diagnosing prostate cancer are provided. The inventive compounds include polypeptides containing at least a portion of a prostate tumor protein. The inventive polypeptides may be used to generate antibodies useful for the diagnosis and monitoring of prostate cancer. Nucleic acid sequences for preparing probes, primers, and polypeptides are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Słovenia	
AM	Armenia	FI .	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
AZ	Azerbaijan	GB	United Kingdom	MC :	Monaco	TD .	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT.	Trinidad and Tobago	
BJ	Benin	IÈ	Ireland	MN	Mongolia	UA	Ukraine	
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	IT	Italy	MX-	Mexico	UZ.	Uzbekistan	
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam	
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
CM ·	Cameroon		Republic of Korea	PL	Poland			
CN	China	KR	Republic of Korea	PT	Portugal			
CU	Cuba	KZ	Kazakstan	RO	Romania			٠
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		•	
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden		· .	•
EE	Estonia	LR	Liberia	SG	Singapore	-		