Transformations of Quadratic Functions – Lesson

MCR3U Jensen

DO IT NOW!

a) Complete the table of values for the function f(x) and g(x). Then use the table of values to plot image points and graph the function g(x)

f(x):(x,f(x))	g(x):(x,f(x)+4)
A(-3, 1)	A'(-3, 5)

Quadratic Functions

Base Function:

Key Points:

x	y

Graph of Base Function:

Order of Transformations

- 1. stretches, compressions, reflections
- 2. translations

Example 1: If $f(x) = x^2$, describe the changes and write the transformed function:

$$\mathbf{a)} \ g(x) = 2f(x)$$

b)
$$g(x) = f(2x)$$

c)
$$g(x) = f(x) + 4$$

$$\mathbf{d}) g(x) = f(x+3)$$

$$e) g(x) = -f(x)$$

$$\mathbf{f)} \ g(x) = f(-x)$$

Example 2: For each of the following functions, describe the transformations to $f(x) = x^2$ in order and write the transformed equation.

a)
$$g(x)=-2f[-3(x+3)]-1$$

b)
$$y = \frac{1}{2}f[-3(x-2)] + 5$$

Example 3: for each of the following functions...

- i) make a table of values for the parent function
- **ii)** graph the parent function $f(x) = x^2$
- iii) describe the transformations
- iv) make a table of values of image points
- v) graph the transformed function and write it's equation

$$\mathbf{a)} \ g(x) = -f(2x)$$

x	y

b)
$$g(x) = f\left[-\frac{1}{2}(x-1)\right]$$

y

c)
$$g(x) = -2f[-3(x+3)] - 1$$

x	y

