

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

O I I E I			
по лабораторной работе №3			
Название:	Синхронные однос	ступенчатые триггер	ы со
статическим и динамическим управлением записью			
Дисциплина: Схемотехника			
Студент	ИУ6-52Б		С.В. Астахов
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподавател	Ъ		Т.А. Ким
		(Подпись, дата)	(И.О. Фамилия)

<u>Цель работы:</u> изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

Ход работы.

- 1. Исследовать работу асинхронного RS-триггера с инверсными входами (см. рис. 3) в статическом режиме. Для этого необходимо:
- собрать схему RS-триггера на ЛЭ И-НЕ;
- к выходам Q и not-Q триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах not-S и not-R триггера, составить таблицу переходов.

Рисунок 1 - асинхронный RS-триггер

Таблицы переходов представлена таблицей 1.

Таблица 1 - переходы асинхронного RS-триггера.

not-S	not-R	Q_{t+1}
0	0	зап. сост.
0	1	1
1	0	0
1	1	Qt

- 2. Исследовать работу синхронного RS-триггера (см. рис. 4) в статическом режиме. Для этого необходимо:
- собрать схему RS-триггера на ЛЭ И-НЕ (рис. 4);
- к выходам Q и not-Q триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах S, R и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору S, R и Q будет соответствовать 3 строки: сначала задать C=0 (момент времени t_n), затем при C=1 (момент времени t_{n+1}) определяется Qn+1 и снова при C=0 переход в режим хранения.

Рисунок 2 - синхронный RS-триггер

Таблица 2 - таб	блица переходов синхр	онного RS-триггера
1 0001111111111111111111111111111111111	eringa nepeneges emmi	cimero res remitores

	1 1		
C	S	R	Q_{t+1}
0	0	0	Qt
1	0	0	Q_{t}
0	0	0	Qt
0	0	1	Qt
1	0	1	0
0	0	1	0
0	1	0	Qt
1	1	0	1
0	1	0	1
0	1	1	Qt
1	1	1	зап. сост.
0	1	1	зап. сост.

- 3. Исследовать работу синхронного D-триггера (см. рис. 5) в статическом режиме. Для этого необходимо:
- собрать схему D-триггера на ЛЭ И-НЕ (рис. 5); в приложении Multisim, можно использовать макросхему D-триггера;
- к выходам Q и not-Q триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору D и Q будет соответствовать 3 строки: сначала задать C=0 (момент времени t_n), затем при C=1 (момент времени t_{n+1}) определяется Q_{n+1} и снова при C=0 происходит переход в режим хранения.

Рисунок 3 - синхронный D-триггер

Таблица 3 - тест синхронного D-триггера

С	D	Q_{t+1}
0	0	Q_{t}
1	0	0
0	0	0
0	1	Qt
1	1	1
0	1	1

- 4. Исследовать схему синхронного D-триггера с динамическим управлением записью (рис. 6) в статическом режиме. В приложениях Electronics Workbench и Multisim имеются макросхемы такого триггера. Для этого необходимо:
- к выходам Q и not-Q триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера. В таблице теста следует отметить реакцию триггера на изменения сигнала D при C=0 и при C=1, а также способность триггера принимать сигнал D только по перепаду 0/1 сигнала C.

Рисунок 4 - синхронный D-триггер с динамическим управлением записью

Таблица 4 - тест синхронного D-триггера с динамическим управлением записью

С	D	Q_{t+1}
0	D_1	Qt
0	$not-D_1$	Q_{t}
0	\mathbf{D}_1	Q_{t}
1	D_2	Q_{t}
1	not-D2	Q_{t}
1	\mathbf{D}_2	Q_{t}
0	D_3	Q_{t}
1	\mathbf{D}_3	\mathbf{D}_3
0	\mathbf{D}_3	\mathbf{D}_3
1	D_4	Q_t
0	D_4	Q_{t}

Из таблицы видно, что триггер осуществляет запись значения только при переходе значения на входе С из 0 в 1.

- 5. Исследовать схему синхронного DV-триггера с динамическим управлением записью в динамическом режиме. Для этого необходимо:
- построить схему синхронного DV-триггера на основе синхронного D-триггера и мультиплексора MS 2-1 (выход MS 2-1 соединить с D-входом триггера, вход 0 MS 2-1 соединить с выходом Q триггера. Тогда вход 1 MS 2-1 будет D-входом, адресный вход A MS 2-1 входом V синхронного DV-триггера), вход С D-триггера входом С DVтриггера;
- подать сигнал генератора на вход счетчика и на С-вход DV-триггера;
- подать на входы D и V триггера сигналы с выходов 2-го и 3-го разрядов счетчика;
- снять временные диаграммы синхронного DV-триггера;
- объяснить работу синхронного DV-триггера по временным диаграммам.

Рисунок 5 - синхронный D-триггер с динамическим управлением записью

Рисунок 6 - временные диаграммы синхронного DV-триггера

Из данной диаграммы видно, что триггер принимает на хранение значение D только когда на разрешающем входе V установлена 1, а вход синхронизации C переходит из состояния 0 в 1.

- 6. Исследовать работу DV-триггера, включенного по схеме TV-триггера Для этого необходимо:
- на вход D подать сигнал not-Q, на вход C подать сигналы генератора, а на вход V c

выхода 3-го разряда счетчика;

- снять временные диаграммы Т-триггера;
- объяснить работу синхронного Т-триггера по временным диаграммам.

Рисунок 6 - DV-триггер, включенный по схеме TV-триггера

Рисунок 6 - временные диаграммы TV-триггера

Когда на вход V подан уровень логической 1, на вход D-триггера подается сигнал not-Q, так как D-триггер имеет динамическое управление записью - при переходе сигнала C из 0 в 1 происходит запись значение not-Q в триггер

и его хранимое значение меняется на противоположное. Когда на вход V подан логический 0, на вход D подан сигнал Q, что обеспечивает сохранение состояния.

<u>Вывод</u>: в ходе данной лабораторной работы были изучены принципы работы синхронного и асинхронного RS-триггера, D-триггера со статическим управлением записью и DV-триггера с динамическим управлением записью, а так же TV триггера (на основе D-триггера и дешифратора).