

Kinds of Ensembles

Tested on apple quality dataset

David Nardi

June 11, 2024

MSc in AI, University of Florence

Apple quality dataset

Variables

- Size
- Weight
- Sweetness
- Crunchiness
- Juiciness
- Ripeness
- Acidity

Binary classification task

Class distribution: 0.49 - 0.51

Methods

- kNN, Decision tree, Logistic regression
- Random forest
- AdaBoost
- Super learner

Random forest

$$G(x) = \operatorname{arg\,max}_k \sum_{b=1}^B \mathbb{I}(T_b(x) = k)$$

$$\operatorname{mtry} = \lfloor \sqrt{p} \rfloor$$

randomForest(x, y, importance=TRUE, ntree=500, ntree=B.oob $\leftarrow B^*$)

Random forest tuning

AdaBoost algorithm

Encoding
$$\mathcal{Y} \in \{-1,1\}$$

ada::ada(x, y,
loss="exponential",
type="discrete",
iter $\leftarrow M^*$, nu $\leftarrow \lambda^*$,
bag.frac $\leftarrow \pi^*$,
control=base.learner)

AdaBoost tuning

AdaBoost variable importance

Super Learner flow diagram

Super Learner in practice

```
SuperLearner(Y, X, cluster, SL.library \leftarrow \{\varphi_k\}, cvControl=list( V=10, shuffle=FALSE))
```

What's in the ensemble?

- Response variable mean \bar{y}
- Logistic Regression with $\alpha = 0, 1$ and 0.5
- Grown and pruned Decision Tree
- Random Forest

Performance

Model	Train score	Test score
CART	0.0000	0.0000
Random forest	0.0000	0.0000
AdaBoost	0.0000	0.0000
Super learner	0.0000	0.0000

References i

- T. Hastie, R. Tibshirani, and J. H. Friedman
 The Elements of Statistical Learning
 Springer, 2009.
- E. C. Polley, and M. J. van der Laan
 Super Learner in Prediction
 U.C. Berkeley Division of Biostatistics Working Paper Series.
 Working Paper 266, 2010
- M. Culp, K. Johnson and G. Michailidis ada: The R Package Ada for Stochastic Boosting Journal of Statistical Software, 17(2), 1–27, 2006

Discrete AdaBoost algorithm

Discrete AdaBoost with shrinkage and out-of-bag, as an additive model with prediction function $f_m(x)$

```
Input: M, \{(x_i, y_i)\}_{1}^{N}, x_i \in \mathbb{R}^{p}
1 Initialize f_0(x) = 0;
2 for m=1 to M do
        Set w_i^{(m)} = -\frac{\partial L(y,g)}{\partial g}\Big|_{g=f_m(x)} s.t. \sum_{i=1}^N w_i^{(m)} = 1;
        Fit classifier G_m(x) using w_i^{(m)} with samples from \pi_m;
      Weighted error rate \operatorname{err}_m = \sum_{i=1}^N w_i^{(m)} \mathbb{I}(y_i \neq G(x_i));
5
Set \alpha_m = \frac{1}{2} \log(\frac{1 - \operatorname{err}_m}{\operatorname{orr}_m});
         Update f_m(x) \leftarrow f_{m-1}(x) + \lambda \alpha_m G_m(x):
8 end
   Output: G(x) = sign(f_M(x))
```

Super Learner algorithm flow diagram

Input:
$$\mathcal{D} = \{(x_i, y_i)\}_1^N$$
, $\mathcal{L} = \{\varphi_k(X)\}_{k=1}^K$
1 foreach strong learner in \mathcal{L} do

Fit φ_k on $\mathcal{D} \Rightarrow \hat{\varphi}_k(\mathbf{X}) \rightarrow \hat{\mathcal{L}} = \{\hat{\varphi}_k\}_{k=1}^K$;

$$2 \mid \text{Fit } \varphi_k \text{ on } D \Rightarrow \varphi_k(\mathbf{A}) \rightarrow \mathcal{L} = \{\varphi_k\}_{k=1}$$
 \mathbf{g} end

4 for
$$\nu = 1, 2, ..., V$$
 do
5 | foreach strong learner in \mathcal{L} do

6 | Fit
$$\varphi_k$$
 on $T(\nu)$, predict $\hat{\varphi}_{k,T(\nu)}(X_i \in V(\nu))$;

$$\varphi_k$$
 end

8 end

9 Stack output in an
$$N \times K$$
 matrix $Z = \{\hat{\varphi}_{k,T(\nu)}(X_{V(\nu)})\}$;
10 Propose a family of weighted combinations

$$m(z|\alpha) = \sum_{k=1}^{N} \alpha_k \hat{\varphi}_{k,T(\nu)} (\boldsymbol{X}_{V(\nu)}) \to \hat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{N} L(Y_i, m(z_i|\alpha))$$

of size N s.t.
$$\alpha_k \ge 0$$
, $\sum_k \alpha_k = 1$ and minimizes $\sum_k \alpha_k \hat{\varphi}_k$;

11 Combine
$$\hat{\alpha}$$
 with the library $\hat{\mathcal{L}} \to \hat{\varphi}_{\mathsf{SL}}(\boldsymbol{X}) = \sum_{k=1}^K \hat{\alpha}_k \hat{\varphi}_k(\boldsymbol{X});$

Output: $\hat{\varphi}_{SL}$