

from "Pattern Recognition and Machine Learning by Christopher M. Bishop Springer Verlag, New York 2006

## **Appendix E. Lagrange Multipliers**

Lagrange multipliers, also sometimes called undetermined multipliers, are used to find the stationary points of a function of several variables subject to one or more constraints.

Consider the problem of finding the maximum of a function  $f(x_1, x_2)$  subject to a constraint relating  $x_1$  and  $x_2$ , which we write in the form

$$g(x_1, x_2) = 0. (E.1)$$

One approach would be to solve the constraint equation (E.1) and thus express  $x_2$  as a function of  $x_1$  in the form  $x_2 = h(x_1)$ . This can then be substituted into  $f(x_1, x_2)$  to give a function of  $x_1$  alone of the form  $f(x_1, h(x_1))$ . The maximum with respect to  $x_1$  could then be found by differentiation in the usual way, to give the stationary value  $x_1^*$ , with the corresponding value of  $x_2$  given by  $x_2^* = h(x_1^*)$ .

One problem with this approach is that it may be difficult to find an analytic solution of the constraint equation that allows  $x_2$  to be expressed as an explicit function of  $x_1$ . Also, this approach treats  $x_1$  and  $x_2$  differently and so spoils the natural symmetry between these variables.

A more elegant, and often simpler, approach is based on the introduction of a parameter  $\lambda$  called a Lagrange multiplier. We shall motivate this technique from a geometrical perspective. Consider a D-dimensional variable  $\mathbf x$  with components  $x_1,\ldots,x_D$ . The constraint equation  $g(\mathbf x)=0$  then represents a (D-1)-dimensional surface in  $\mathbf x$ -space as indicated in Figure E.1.

We first note that at any point on the constraint surface the gradient  $\nabla g(\mathbf{x})$  of the constraint function will be orthogonal to the surface. To see this, consider a point  $\mathbf{x}$  that lies on the constraint surface, and consider a nearby point  $\mathbf{x} + \boldsymbol{\epsilon}$  that also lies on the surface. If we make a Taylor expansion around  $\mathbf{x}$ , we have

$$g(\mathbf{x} + \boldsymbol{\epsilon}) \simeq g(\mathbf{x}) + \boldsymbol{\epsilon}^{\mathrm{T}} \nabla g(\mathbf{x}).$$
 (E.2)

Because both  $\mathbf{x}$  and  $\mathbf{x} + \boldsymbol{\epsilon}$  lie on the constraint surface, we have  $g(\mathbf{x}) = g(\mathbf{x} + \boldsymbol{\epsilon})$  and hence  $\boldsymbol{\epsilon}^T \nabla g(\mathbf{x}) \simeq 0$ . In the limit  $\|\boldsymbol{\epsilon}\| \to 0$  we have  $\boldsymbol{\epsilon}^T \nabla g(\mathbf{x}) = 0$ , and because  $\boldsymbol{\epsilon}$  is

Figure E.1 A geometrical picture of the technique of Lagrange multipliers in which we seek to maximize a function  $f(\mathbf{x})$ , subject to the constraint  $g(\mathbf{x}) = 0$ . If  $\mathbf{x}$  is D dimensional, the constraint  $g(\mathbf{x}) = 0$  corresponds to a subspace of dimensionality D-1, indicated by the red curve. The problem can be solved by optimizing the Lagrangian function  $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$ .



then parallel to the constraint surface  $g(\mathbf{x}) = 0$ , we see that the vector  $\nabla g$  is normal to the surface.

Next we seek a point  $\mathbf{x}^*$  on the constraint surface such that  $f(\mathbf{x})$  is maximized. Such a point must have the property that the vector  $\nabla f(\mathbf{x})$  is also orthogonal to the constraint surface, as illustrated in Figure E.1, because otherwise we could increase the value of  $f(\mathbf{x})$  by moving a short distance along the constraint surface. Thus  $\nabla f$  and  $\nabla g$  are parallel (or anti-parallel) vectors, and so there must exist a parameter  $\lambda$  such that

$$\nabla f + \lambda \nabla g = 0 \tag{E.3}$$

where  $\lambda \neq 0$  is known as a *Lagrange multiplier*. Note that  $\lambda$  can have either sign. At this point, it is convenient to introduce the *Lagrangian* function defined by

$$L(\mathbf{x}, \lambda) \equiv f(\mathbf{x}) + \lambda g(\mathbf{x}).$$
 (E.4)

The constrained stationarity condition (E.3) is obtained by setting  $\nabla_{\mathbf{x}} L = 0$ . Furthermore, the condition  $\partial L/\partial \lambda = 0$  leads to the constraint equation  $g(\mathbf{x}) = 0$ .

Thus to find the maximum of a function  $f(\mathbf{x})$  subject to the constraint  $g(\mathbf{x}) = 0$ , we define the Lagrangian function given by (E.4) and we then find the stationary point of  $L(\mathbf{x}, \lambda)$  with respect to both  $\mathbf{x}$  and  $\lambda$ . For a D-dimensional vector  $\mathbf{x}$ , this gives D+1 equations that determine both the stationary point  $\mathbf{x}^*$  and the value of  $\lambda$ . If we are only interested in  $\mathbf{x}^*$ , then we can eliminate  $\lambda$  from the stationarity equations without needing to find its value (hence the term 'undetermined multiplier').

As a simple example, suppose we wish to find the stationary point of the function  $f(x_1, x_2) = 1 - x_1^2 - x_2^2$  subject to the constraint  $g(x_1, x_2) = x_1 + x_2 - 1 = 0$ , as illustrated in Figure E.2. The corresponding Lagrangian function is given by

$$L(\mathbf{x}, \lambda) = 1 - x_1^2 - x_2^2 + \lambda(x_1 + x_2 - 1).$$
 (E.5)

The conditions for this Lagrangian to be stationary with respect to  $x_1$ ,  $x_2$ , and  $\lambda$  give the following coupled equations:

$$-2x_1 + \lambda = 0 ag{E.6}$$

$$-2x_2 + \lambda = 0 ag{E.7}$$

$$x_1 + x_2 - 1 = 0. ag{E.8}$$

Figure E.3

Figure E





is normal

naximized. onal to the ld increase . Thus  $\nabla f$  arameter  $\lambda$ 

(E.3)

her sign. efined by

(E.4)

= 0. Fur= = 0. t  $g(\mathbf{x}) = 0$ , stationary ctor  $\mathbf{x}$ , this value of  $\lambda$ . arity equaltiplier'). he function - 1 = 0, as

(E.5)

, and  $\lambda$  give

1 by

- (E.6)
- (E.7)
- (E.8)





Solution of these equations then gives the stationary point as  $(x_1^*, x_2^*) = (\frac{1}{2}, \frac{1}{2})$ , and the corresponding value for the Lagrange multiplier is  $\lambda = 1$ .

So far, we have considered the problem of maximizing a function subject to an equality constraint of the form  $g(\mathbf{x}) = 0$ . We now consider the problem of maximizing  $f(\mathbf{x})$  subject to an inequality constraint of the form  $g(\mathbf{x}) \geqslant 0$ , as illustrated in Figure E.3.

There are now two kinds of solution possible, according to whether the constrained stationary point lies in the region where  $g(\mathbf{x})>0$ , in which case the constraint is *inactive*, or whether it lies on the boundary  $g(\mathbf{x})=0$ , in which case the constraint is said to be *active*. In the former case, the function  $g(\mathbf{x})$  plays no role and so the stationary condition is simply  $\nabla f(\mathbf{x})=0$ . This again corresponds to a stationary point of the Lagrange function (E.4) but this time with  $\lambda=0$ . The latter case, where the solution lies on the boundary, is analogous to the equality constraint discussed previously and corresponds to a stationary point of the Lagrange function (E.4) with  $\lambda\neq 0$ . Now, however, the sign of the Lagrange multiplier is crucial, because the function  $f(\mathbf{x})$  will only be at a maximum if its gradient is oriented away from the region  $g(\mathbf{x})>0$ , as illustrated in Figure E.3. We therefore have  $\nabla f(\mathbf{x})=-\lambda \nabla g(\mathbf{x})$  for some value of  $\lambda>0$ .

For either of these two cases, the product  $\lambda g(\mathbf{x}) = 0$ . Thus the solution to the

Figure E.3 Illustration of the problem of maximizing  $f(\mathbf{x})$  subject to the inequality constraint  $g(\mathbf{x})\geqslant 0.$ 



problem of maximizing  $f(\mathbf{x})$  subject to  $g(\mathbf{x}) \geqslant 0$  is obtained by optimizing the Lagrange function (E.4) with respect to  $\mathbf{x}$  and  $\lambda$  subject to the conditions

$$g(\mathbf{x}) \geqslant 0$$
 (E.9)

$$\lambda \geqslant 0$$
 (E.10)

$$\lambda q(\mathbf{x}) = 0 \tag{E.11}$$

These are known as the *Karush-Kuhn-Tucker* (KKT) conditions (Karush, 1939; Kuhn and Tucker, 1951).

Note that if we wish to minimize (rather than maximize) the function  $f(\mathbf{x})$  subject to an inequality constraint  $g(\mathbf{x}) \ge 0$ , then we minimize the Lagrangian function  $L(\mathbf{x}, \lambda) = f(\mathbf{x}) - \lambda g(\mathbf{x})$  with respect to  $\mathbf{x}$ , again subject to  $\lambda \ge 0$ .

Finally, it is straightforward to extend the technique of Lagrange multipliers to the case of multiple equality and inequality constraints. Suppose we wish to maximize  $f(\mathbf{x})$  subject to  $g_j(\mathbf{x}) = 0$  for  $j = 1, \ldots, J$ , and  $h_k(\mathbf{x}) \geqslant 0$  for  $k = 1, \ldots, K$ . We then introduce Lagrange multipliers  $\{\lambda_j\}$  and  $\{\mu_k\}$ , and then optimize the Lagrangian function given by

$$L(\mathbf{x}, \{\lambda_j\}, \{\mu_k\}) = f(\mathbf{x}) + \sum_{j=1}^{J} \lambda_j g_j(\mathbf{x}) + \sum_{k=1}^{K} \mu_k h_k(\mathbf{x})$$
 (E.12)

subject to  $\mu_k \geqslant 0$  and  $\mu_k h_k(\mathbf{x}) = 0$  for k = 1, ..., K. Extensions to constrained functional derivatives are similarly straightforward. For a more detailed discussion of the technique of Lagrange multipliers, see Nocedal and Wright (1999).

Appendix D

## Reference

Abramowitz, M. ar of Mathematica

Adler, S. L. (1981) Monte Carlo e tion for multiqu D 23, 2901–29

Ahn, J. H. and J. F algorithm for pr ral Computation

Aizerman, M. A., F noer (1964). Th recognition lean functions. *Autor* 1175–1190.

Akaike, H. (1974). identification. *Il* Control 19, 716

Ali, S. M. and S. D of coefficients o from another. *Joi ciety, B* 28(1), 13

Allwein, E. L., R. E. Reducing multic proach for margin Learning Resean

Amari, S. (1985). Di in Statistics. Spri