ABES ENGINEERING COLLEGE, GHAZIABAD (032)

B. TECH FIRST SEMESTER 2023-2024

ENGINEERING MATHEMATICS-I (BAS-103)

UNIT-2: Differential Calculus-I

Ouestion Bank

- 1. Find the n^{th} derivative of sinx. sin2x. sin3x.
- 2. Find the n^{th} derivative of $\frac{2x+1}{(2x-1)(2x+3)}$
- 3. Find the n^{th} derivative of $\frac{x}{2x^2+3x+1}$.
- 4. If $y = x \log \frac{x-1}{x+1}$, show that $y_n = (-1)^{n-2} (n-2)! \left[\frac{x-n}{(x-1)^n} \frac{x+n}{(x+1)^n} \right]$
- 5. Find the n^{th} derivative of $tan^{-1}\left(\frac{1+x}{1-x}\right)$.
- 6. If $y^{1/m}+y^{-1/m}=2x$, prove that $(x^2-1)y_{n+2}+(2n+1)xy_{n+1}+(n^2-m^2)y_n=0$. 7. Apply Leibnitz Theorem to find y_n if $y=x^{n-1}logx$.
- 8. If $y = e^{\tan^{-1} x}$, Prove that $(1+x^2)y_{n+2} + [2(n+1)x-1]y_{n+1} + n(n+1)y_n = 0$
- 9. If $y = \left(\frac{1+x}{1-x}\right)^{1/2}$, prove that $(1-x^2)y_n [2(n-1)x+1]y_{n-1} (n-1)(n-2)y_{n-2} = 0$.
- 10. If $x = \tan(\log y)$, Prove that $(1+x^2)y_{n+2} + [2(n+1)x-1]y_{n+1} + n(n+1)y_n = 0$
- 11. If $y = \sin(a\sin^{-1}x)$, prove that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} (n^2-a^2)y_n = 0$ and hence find the value of y_n when x = 0.
- 12. If $y = \left[log(x + \sqrt{1 + x^2})\right]^2$, find $y_n(0)$.
- 13. If $y = \sin^{-1} x$, prove that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} n^2y_n = 0$ and hence find the value of y_n when x = 0.
- 14. If u = f(r), where $r^2 = x^2 + y^2$, prove that $\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial v^2} = f''(r) + \frac{1}{r}f'(r)$.
- 15. If $u = x^2 \tan^{-1} \frac{y}{x} y^2 \tan^{-1} \frac{x}{y}$, then prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{x^2 y^2}{x^2 + y^2}$.
- 16. If $z = f(x+ct) + \phi(x-ct)$, show that $\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$
- 17. If $x^2 = au + bv$, $y^2 = au bv$, prove that $\left(\frac{\partial u}{\partial x}\right) \cdot \left(\frac{\partial x}{\partial u}\right) = \frac{1}{2} = \left(\frac{\partial v}{\partial v}\right) \cdot \left(\frac{\partial y}{\partial v}\right)$.
- 18. If $u = e^{xyz}$ show that $\frac{\partial^3 u}{\partial x \partial y \partial z} = (1 + 3xyz + x^2y^2z^2)u$.