Change-point detection in a Poisson process

S. Robin

joint work with E. Lebarbier, C. Dion-Blanc [DBLR23]

Sorbonne université

Stats au sommet, Rochebrune, Mar. 2022

Example

Bat cries (night of the 17 jul. 2019)

Example

Point process on $t \in [0, 1]$.

Event times:

$$0 < T_1 < \dots T_i < \dots T_n < 1$$

Counting process:

$$N(t) = \sum_{i=1}^{n} \mathbb{I}\{T_i \leqslant t\}$$

Bat cries (night of the 17 jul. 2019)^a

^asource: Vigie-Chiro program, Y. Bas, CESCO-MNHN

Example

Point process on $t \in [0, 1]$.

Event times:

$$0 < T_1 < \dots T_i < \dots T_n < 1$$

Counting process:

$$N(t) = \sum_{i=1}^{n} \mathbb{I}\{T_i \leqslant t\}$$

Poisson Process.

$$\{N(t)\}_{0 \leqslant t \leqslant 1} \sim PP(\lambda(t))$$

Bat cries (night of the 17 jul. 2019)^a

^asource: Vigie-Chiro program, Y. Bas, CESCO-MNHN

Intensity function $\lambda(t)$:

$$\lambda(t) = \lim_{\Delta t o 0} rac{\mathbb{P}\{ \mathcal{N}(t + \Delta t) - \mathcal{N}(t) = 1\}}{\Delta t},$$

$$\mathbb{E}N(s) - \mathbb{E}N(t) = \int_{t}^{s} \lambda(u) \, du$$

Piecewise constant intensity function.

Change-points

$$(\tau_0 =) \ 0 < \tau_1 \cdots < \tau_{K-1} < 1 \ (= \tau_K)$$

For $t \in I_k =]\tau_{k-1}, \tau_k]$:

$$\lambda(t) = \lambda_k$$

ightarrow Continuous piecewise linear cumulated intensity function

$$\Lambda(0,t) = \int_0^t \lambda(s) \, ds.$$

Bat cries (night of the 17 jul. 2019)^a

^asource: Vigie-Chiro program, Y. Bas, CESCO-MNHN

Piecewise constant intensity function.

Change-points

$$(\tau_0 =) \ 0 < \tau_1 \cdots < \tau_{K-1} < 1 \ (= \tau_K)$$

For $t \in I_k =]\tau_{k-1}, \tau_k]$:

$$\lambda(t) = \lambda_k$$

ightarrow Continuous piecewise linear cumulated intensity function

$$\Lambda(0,t) = \int_0^t \lambda(s) \, ds.$$

Bat cries (night of the 17 jul. 2019)^a

asource: Vigie-Chiro program, Y. Bas, CESCO-MNHN

Aim

- Segmentation: estimate (τ, λ) in a reasonnably fast manner
- ▶ Model selection: choose *K*

Piecewise constant intensity function.

Change-points

$$(\tau_0 =) \ 0 < \tau_1 \cdots < \tau_{K-1} < 1 \ (=\tau_K)$$

For $t \in I_k =]\tau_{k-1}, \tau_k]$:

$$\lambda(t) = \lambda_k$$

 $\,\rightarrow\,$ Continuous piecewise linear cumulated intensity function

$$\Lambda(0,t) = \int_0^t \lambda(s) \, ds.$$

Kilauea eruptions

Aim.

- ${\blacktriangleright}$ Segmentation: estimate (τ,λ) in a reasonnably fast manner
- Model selection: choose K

Piecewise constant intensity function.

Change-points

$$(\tau_0 =) \ 0 < \tau_1 \cdots < \tau_{K-1} < 1 \ (= \tau_K)$$

For $t \in I_k =]\tau_{k-1}, \tau_k]$:

$$\lambda(t) = \lambda_k$$

ightarrow Continuous piecewise linear cumulated intensity function

$$\Lambda(0,t) = \int_0^t \lambda(s) \, ds.$$

Kilauea eruptions (from 1750 to 1984)^a

^asource: [HB17]

Aim.

- Segmentation: estimate (τ, λ) in a reasonnably fast manner
- ▶ Model selection: choose *K*

Piecewise constant intensity function.

Change-points

$$(\tau_0 =) \ 0 < \tau_1 \cdots < \tau_{K-1} < 1 \ (=\tau_K)$$

For $t \in I_k =]\tau_{k-1}, \tau_k]$:

$$\lambda(t) = \lambda_k$$

ightarrow Continuous piecewise linear cumulated intensity function

$$\Lambda(0,t) = \int_0^t \lambda(s) \ \mathrm{d} s.$$

Kilauea eruptions (from 1750 to 1984)^a

^asource: [HB17]

Aim

- Segmentation: estimate (τ, λ) in a reasonnably fast manner
- ▶ Model selection: choose *K*

Outline

Estimation

Model selection

Illustrations

Extensions

First useful property of Poisson processes: Independence of disjoint intervals.

First useful property of Poisson processes: Independence of disjoint intervals.

(Neg-log-)likelihood. Denoting

- $\Delta \tau_k$ the length of the k-th interval $(= \tau_k \tau_{k-1})$,
- $ightharpoonup \Delta N_k$ the number of events within the k-th interval (= $N(\tau_k) N(\tau_{k-1})$):

$$-\log p_{\tau,\lambda}(N) = \sum_{k=1}^K \lambda_k \Delta \tau_k - \Delta N_k \log \lambda_k,$$

First useful property of Poisson processes: Independence of disjoint intervals.

(Neg-log-)likelihood. Denoting

- $\Delta \tau_k$ the length of the k-th interval $(=\tau_k-\tau_{k-1})$,
- ΔN_k the number of events within the k-th interval $(=N(\tau_k)-N(\tau_{k-1}))$:

$$-\log p_{\tau,\lambda}(N) = \sum_{k=1}^{K} \lambda_k \Delta \tau_k - \Delta N_k \log \lambda_k,$$

Additive contrast. General form = sum over the segments

$$\gamma(\tau,\lambda) = \sum_{k=1}^{K} C(\Delta N_k, \Delta \tau_k, \lambda_k)$$

First useful property of Poisson processes: Independence of disjoint intervals.

(Neg-log-)likelihood. Denoting

- $\Delta \tau_k$ the length of the k-th interval $(=\tau_k-\tau_{k-1})$,
- $ightharpoonup \Delta N_k$ the number of events within the k-th interval (= $N(\tau_k) N(\tau_{k-1})$):

$$-\log p_{\tau,\lambda}(N) = \sum_{k=1}^K \lambda_k \Delta \tau_k - \Delta N_k \log \lambda_k,$$

Additive contrast. General form = sum over the segments

$$\gamma(\tau, \lambda) = \sum_{k=1}^{K} C(\Delta N_k, \Delta \tau_k, \lambda_k)$$

Optimization problem.

$$(\hat{\tau}, \hat{\lambda}) = \underset{\tau \in \mathcal{T}^K, \lambda \in (\mathbb{R}^+)^K}{\arg \min} \quad \gamma(\tau, \lambda).$$

Minimizing the contrast function

Optimal λ . Because the contrast is additive, we may define

$$\widehat{\lambda}_k = \widehat{\lambda}_k(\tau) = \operatorname*{arg\,min}_{\lambda_k \in \mathbb{R}^+} C(\Delta N_k, \Delta \tau_k, \lambda_k)$$

e.g. $\hat{\lambda}_k = \Delta N_k / \Delta \tau_k$ if $\gamma = -\log p_\theta$.

Minimizing the contrast function

Optimal λ . Because the contrast is additive, we may define

$$\widehat{\lambda}_k = \widehat{\lambda}_k(\tau) = \operatorname*{arg\,min}_{\lambda_k \in \mathbb{R}^+} C(\Delta N_k, \Delta \tau_k, \lambda_k)$$

e.g. $\hat{\lambda}_k = \Delta N_k / \Delta \tau_k$ if $\gamma = -\log p_\theta$.

Optimal τ . We are left with the minimization problem

$$\hat{\tau} = \underset{\tau \in \mathcal{T}^K}{\min} \ \ \hat{\gamma}(\tau), \qquad \text{where} \quad \hat{\gamma}(\tau) = \gamma(\tau, \hat{\lambda}(\tau))$$

where \mathcal{T}^{K} is the continuous segmentation space:

$$\mathcal{T} = \left\{ \tau \in \left[0,1\right]^{K+1} : 0 = \tau_0 < \tau_1 \dots < \tau_{K-1} < \tau_K = 1 \right\}.$$

Minimizing the contrast function

Optimal λ . Because the contrast is additive, we may define

$$\widehat{\lambda}_k = \widehat{\lambda}_k(\tau) = \operatorname*{arg\,min}_{\lambda_k \in \mathbb{R}^+} C(\Delta N_k, \Delta \tau_k, \lambda_k)$$

e.g. $\hat{\lambda}_k = \Delta N_k / \Delta \tau_k$ if $\gamma = -\log p_\theta$.

Optimal τ . We are left with the minimization problem

$$\hat{\tau} = \underset{\tau \in \mathcal{T}^K}{\min} \ \ \hat{\gamma}(\tau), \qquad \text{where} \quad \hat{\gamma}(\tau) = \gamma(\tau, \hat{\lambda}(\tau))$$

where \mathcal{T}^K is the continuous segmentation space:

$$\mathcal{T} = \left\{ \tau \in [0,1]^{K+1} : 0 = \tau_0 < \tau_1 \dots < \tau_{K-1} < \tau_K = 1 \right\}.$$

Main issue: The contrast $\hat{\gamma}(\tau)$ is neither convex nor continuous wrt τ .

Shape of the contrast fonction

Observed N(t): n = 10,

¹gray borders come by pair

Shape of the contrast fonction

Observed N(t): n = 10,

Contrast $\hat{\gamma}(\tau)$ for K=3 segments:

$$\tau=(\tau_1,\tau_2).$$

One 'block' = one specific value for the vector 1

$$\Delta \textit{N} = (\Delta \textit{N}_1, \Delta \textit{N}_2, \Delta \textit{N}_3)$$

 $^{^{1}\}mathrm{gray}$ borders come by pair

Partitioning the segmentation space

Partitioning the number of events. Define $\mathcal{N}^K = \left\{ \nu \in \mathbb{N}^K : \sum_{k=1}^K \nu_k = n \right\}$.

 $\rightarrow \nu_k$ = given number of events in segment k.

Partitioning the segmentation space

Partitioning the number of events. Define $\mathcal{N}^K = \left\{ \nu \in \mathbb{N}^K : \sum_{k=1}^K \nu_k = n \right\}$.

 $\rightarrow \nu_k$ = given number of events in segment k.

Partitioning the segmentation space. For $\nu \in \mathcal{N}_K$, define

$$\mathcal{T}_{\nu}^{K} = \left\{ \tau \in \mathcal{T}^{K} : \Delta N = \nu \right\}.$$

 $\to \mathcal{T}_{\nu}^{K}=$ set of segmentation satisfying the prescribed $\nu=(\nu_{1},\ldots\nu_{K}).$

We have

$$\min_{\tau \in \mathcal{T}^K} \widehat{\gamma}(\tau) = \min_{\nu \in \mathcal{N}^K} \min_{\tau \in \mathcal{T}^K_\nu} \widehat{\gamma}(\tau,).$$

Optimal segmentation

Proposition 1. If $K\leqslant n$ and if $\hat{\gamma}(\tau)$ is strictly concave wrt $\tau\in\mathcal{T}_{\nu}^{K}$ for each $\nu\in\mathcal{N}^{K}$, then

$$\widehat{\tau} = \operatorname*{arg\,min}_{\tau \in \mathcal{T}^K} \widehat{\gamma}(\tau) \subset \{T_1^-, T_1, T_2^-, T_2^-, \dots T_n^-, T_n\}.$$

Optimal segmentation

Proposition 1. If $K \leqslant n$ and if $\hat{\gamma}(\tau)$ is strictly concave wrt $\tau \in \mathcal{T}_{\nu}^{K}$ for each $\nu \in \mathcal{N}^{K}$, then

$$\widehat{\tau} = \operatorname*{arg\,min}_{\tau \in \mathcal{T}^K} \widehat{\gamma}(\tau) \subset \{\mathit{T}_1^-, \mathit{T}_1, \mathit{T}_2^-, \mathit{T}_2^-, \ldots \mathit{T}_n^-, \mathit{T}_n\}.$$

Proposition 2. If each $\hat{C}(\nu_k, \Delta \tau_k) := C(\nu_k, \Delta \tau_k, \hat{\lambda}_k)$ is strictly concave wrt $\Delta \tau_k$, $\hat{\gamma}(\tau)$, then is strictly concave wrt $\tau \in \mathcal{T}_{\nu}^K$.

Optimal segmentation

Proposition 1. If $K \leq n$ and if $\hat{\gamma}(\tau)$ is strictly concave wrt $\tau \in \mathcal{T}_{\nu}^{K}$ for each $\nu \in \mathcal{N}^{K}$, then

$$\widehat{\tau} = \underset{\tau \in \mathcal{T}^K}{\text{arg min }} \widehat{\gamma}(\tau) \subset \{T_1^-, T_1, T_2^-, T_2^-, \dots T_n^-, T_n\}.$$

Proposition 2. If each $\hat{C}(\nu_k, \Delta \tau_k) := C(\nu_k, \Delta \tau_k, \hat{\lambda}_k)$ is strictly concave wrt $\Delta \tau_k$, $\hat{\gamma}(\tau)$, then is strictly concave wrt $\tau \in \mathcal{T}_{\nu}^K$.

Consequence. $\hat{\tau}$ can be obtained by dynamic programming over the 2n+2 possible change-points

$$S = \{0, T_1^-, T_1, T_2^-, T_2, \dots T_n^-, T_n, 1\}$$

with complexity at most $O(n^2)$.

Admissible contrasts

Poisson contrast. $\hat{C}_P(\nu_k, \Delta \tau_k) = \nu_k (1 - \log \nu_k + \log \Delta \tau_k)$ is concave wrt $\Delta \tau$.

Admissible contrasts

Poisson contrast. $\hat{C}_P(\nu_k, \Delta \tau_k) = \nu_k (1 - \log \nu_k + \log \Delta \tau_k)$ is concave wrt $\Delta \tau$.

Poisson-Gamma model. For each segment $1 \le k \le K$:

$$\Lambda_k \text{ iid } \sim \mathcal{G}am(a, b),$$

$$\Lambda_k \text{ iid } \sim \mathcal{G}am(a, b), \qquad \{N(t)\}_{t \in I_k} \mid \Lambda_k \sim PP(\Lambda_k).$$

Admissible contrasts

Poisson contrast. $\hat{C}_P(\nu_k, \Delta \tau_k) = \nu_k (1 - \log \nu_k + \log \Delta \tau_k)$ is concave wrt $\Delta \tau$.

Poisson-Gamma model. For each segment $1 \le k \le K$:

$$\Lambda_k \text{ iid } \sim \mathcal{G}am(a, b), \qquad \{N(t)\}_{t \in I_k} \mid \Lambda_k \sim PP(\Lambda_k).$$

Contrast for one segment:

$$C_{PG}(\Delta N_k, \Delta \tau_k) = \operatorname{cst} - \log \Gamma(a + \Delta N_k) + (a + \Delta N_k) \log(b + \Delta \tau_k)$$

 \rightarrow Strictly concave wrt $\Delta \tau_k$.

Desirable contrast

Remark. The Poisson contrast $\hat{C}_P(\nu_k, \Delta \tau_k) = \nu_k (1 - \log \nu_k + \log \Delta \tau_k)$ satisfies

$$\hat{C}_P(\nu_k=1,\Delta\tau_k=0)=-\infty.$$

- The optimal solution will involve segments with null length and containing only one event.
- 'Undesirable' contrast.

Desirable contrast

Remark. The Poisson contrast $\hat{C}_P(\nu_k, \Delta \tau_k) = \nu_k (1 - \log \nu_k + \log \Delta \tau_k)$ satisfies

$$\hat{C}_P(\nu_k = 1, \Delta \tau_k = 0) = -\infty.$$

- The optimal solution will involve segments with null length and containing only one event.
- 'Undesirable' contrast.

Poisson-Gamma contrast. $C_{PG}(\nu_k, \Delta \tau_k) = -\log \Gamma(a + \nu_k) + (a + \nu_k) \log(b + \Delta \tau_k)$.

- ▶ Satisfies the concavity property (→ admissible),
- but avoids segments with null length (→ desirable).

Outline

Estimation

Model selection

Illustrations

Extensions

Second useful property of Poisson processes: Thining.

- $\blacktriangleright \ \{\textit{N}(t)\} \sim \textit{PP}(\lambda(t))$
- ► Sample event times (with prob. v)
- ► Store the remaining events

Second useful property of Poisson processes: Thining.

- $\{N(t)\} \sim PP(\lambda(t))$
- ► Sample event times (with prob. v)
- Store the remaining events

$$\{N^L(t)\} \sim PP(v\lambda(t)), \qquad \{N^T(t)\} \sim PP((1-v)\lambda(t)), \qquad \{N^L(t)\} \perp \{N^T(t)\}$$

Second useful property of Poisson processes: Thining.

- $\{N(t)\} \sim PP(\lambda(t))$
- ► Sample event times (with prob. v)
- Store the remaining events

$$\{N^L(t)\} \sim PP(v\lambda(t)), \qquad \{N^T(t)\} \sim PP((1-v)\lambda(t)), \qquad \{N^L(t)\} \perp \{N^T(t)\}$$

Consequence. If $\{N(t)\}_{0 \le t \le 1} \sim PP(\lambda(t))$, with $\lambda(t)$ piecewise constant with change-points $\tau = (\tau_k)$ and intensities $\lambda = (\lambda_k)$, then

Second useful property of Poisson processes: Thining.

- $\{N(t)\} \sim PP(\lambda(t))$
- ► Sample event times (with prob. v)
- Store the remaining events

$$\{N^L(t)\} \sim PP(v\lambda(t)), \qquad \{N^T(t)\} \sim PP((1-v)\lambda(t)), \qquad \{N^L(t)\} \perp \{N^T(t)\}$$

Consequence. If $\{N(t)\}_{0 \le t \le 1} \sim PP(\lambda(t))$, with $\lambda(t)$ piecewise constant with change-points $\tau = (\tau_k)$ and intensities $\lambda = (\lambda_k)$, then

- $\lambda^{L}(t)$ piecewise constant with change-points (τ_{k}) and intensities $(v\lambda_{k})$,
- $\lambda^T(t)$ piecewise constant with change-points (τ_k) and intensities $((1-v)\lambda_k)$,
- $\{N^L(t)\} \perp \{N^T(t)\}.$

Cross validation

Sampling event times provides two independent Poisson processes with same change-points.

Cross validation

Sampling event times provides two independent Poisson processes with same change-points.

Cross-validation procedure. For $1 \leqslant K \leqslant K_{\text{max}}$,

- ▶ Repeat for $1 \le m \le M$:
 - 1 Sample the event times to form $\{N^{L,m}(t)\}$ (learn) and $\{N^{T,m}(t)\}$ (test),
 - 2 Estimate $\hat{\tau}^{L,m}$ and $\hat{\lambda}^{L,m}$ from $\{N^{L,m}(t)\}$,
 - 3 Compute the contrast $\gamma_K^{T,m} = \gamma \left(\{ N^T(t) \}; \hat{\tau}^{L,m}, \frac{1-v}{v} \hat{\lambda}^{L,m} \right)$.

Cross validation

Sampling event times provides two independent Poisson processes with same change-points.

Cross-validation procedure. For $1 \leqslant K \leqslant K_{\text{max}}$,

- ▶ Repeat for $1 \le m \le M$:
 - 1 Sample the event times to form $\{N^{L,m}(t)\}$ (learn) and $\{N^{T,m}(t)\}$ (test),
 - 2 Estimate $\hat{\tau}^{L,m}$ and $\hat{\lambda}^{L,m}$ from $\{N^{L,m}(t)\}$,
 - 3 Compute the contrast $\gamma_K^{T,m} = \gamma \left(\{ N^T(t) \}; \hat{\tau}^{L,m}, \frac{1-v}{v} \hat{\lambda}^{L,m} \right)$.
- Compute

$$\overline{\gamma}_K = \frac{1}{M} \sum_{m=1}^{M} \gamma_K^{T,m}$$

Cross validation

Sampling event times provides two independent Poisson processes with same change-points.

Cross-validation procedure. For $1 \le K \le K_{\text{max}}$,

- ▶ Repeat for $1 \le m \le M$:
 - 1 Sample the event times to form $\{N^{L,m}(t)\}$ (learn) and $\{N^{T,m}(t)\}$ (test),
 - 2 Estimate $\hat{\tau}^{L,m}$ and $\hat{\lambda}^{L,m}$ from $\{N^{L,m}(t)\}$,
 - 3 Compute the contrast $\gamma_K^{T,m} = \gamma \left(\{ N^T(t) \}; \hat{\tau}^{L,m}, \frac{1-v}{v} \hat{\lambda}^{L,m} \right)$.
- Compute

$$\overline{\gamma}_K = \frac{1}{M} \sum_{m=1}^M \gamma_K^{T,m}$$

Select

$$\widehat{K} = \mathop{\arg\min}_K \overline{\gamma}_K$$

Outline

Estimation

Model selection

Illustrations

Extensions

Practical implementation.

Contrasts. During the CV process, we use

- a sampling rate of v = 4/5,
- ${}^{\blacktriangleright}$ the Poisson-Gamma contrast γ_{PG} for the learning step and
- the Poisson contrast γ_P for the test step.

Practical implementation.

Contrasts. During the CV process, we use

- a sampling rate of v = 4/5,
- the Poisson-Gamma contrast γ_{PG} for the learning step and
- the Poisson contrast γ_P for the test step.

Hyper-parameters. For an observed path $\{N(t)\}_{0 \le t \le 1}$ with n events, we use

$$a = 1,$$
 $b = 1/n$

to fit the observed total number of events.

Practical implementation.

Contrasts. During the CV process, we use

- a sampling rate of v = 4/5,
- the Poisson-Gamma contrast γ_{PG} for the learning step and
- the Poisson contrast γ_P for the test step.

Hyper-parameters. For an observed path $\{N(t)\}_{0 \le t \le 1}$ with n events, we use

$$a = 1,$$
 $b = 1/n$

to fit the observed total number of events.

R package CptPointProcess available on github.com/Elebarbier/CptPointProcess.

Some simulations

Simulation setting. K = 6 segments with varying length. Tuning parameters:

- $\overline{\lambda}$ average intensity (\rightarrow total number of events),
- ▶ λ_R = height of the steps (→ contrast between segments).

Some simulations

Simulation setting. K = 6 segments with varying length. Tuning parameters:

- $\overline{\lambda}$ average intensity (\rightarrow total number of events),
- ▶ λ_R = height of the steps (→ contrast between segments).

Results. Choose K via CV, then refit the parameters to the whole dataset.

Kilauea eruptions

n = 63 eruptions reported between the mid 18th and the late 20th century.

1850 1900 1950

Resulting segmentation

1750 1800

Outline

Estimation

Model selection

Illustrations

Extensions

Extensions

Marked Poisson Process.

• $\{Y(t)\}_{0 \leqslant t \leqslant 1} \sim MPP(\lambda(t), \mu(t))$:

$$\{N(t)\}_{0\leqslant t\leqslant 1}\sim PP(\lambda(t)), \qquad \text{at each } T_i\colon \ X_i\sim \mathcal{F}(\mu(T_i))$$

- Works the same way, provided that concavity holds.
- ▶ Bat cries: Mark = bat species or cry duration.
- ▶ Poisson-Gamma events + Exponential-Gamma durations is both admissible and desirable.

Extensions

Marked Poisson Process.

• $\{Y(t)\}_{0 \leq t \leq 1} \sim MPP(\lambda(t), \mu(t))$:

$$\{N(t)\}_{0 \leqslant t \leqslant 1} \sim PP(\lambda(t)),$$
 at each T_i : $X_i \sim \mathcal{F}(\mu(T_i))$

- Works the same way, provided that concavity holds.
- ▶ Bat cries: Mark = bat species or cry duration.
- ▶ Poisson-Gamma events + Exponential-Gamma durations is both admissible and desirable.

Segmentation-clustering.

- ▶ Each segment belongs to a class $1 \leq q \leq Q$ (with probability π_q and intensity $\lambda_k = \ell_q$),
- Combination of EM and DP algorithms [PRLD07],
- ▶ Bat cries: Class = animal behaviour (hunt, transit, ...)

Extensions

Marked Poisson Process.

• $\{Y(t)\}_{0 \leqslant t \leqslant 1} \sim MPP(\lambda(t), \mu(t))$:

$$\{N(t)\}_{0 \leqslant t \leqslant 1} \sim PP(\lambda(t)),$$
 at each T_i : $X_i \sim \mathcal{F}(\mu(T_i))$

- Works the same way, provided that concavity holds.
- Bat cries: Mark = bat species or cry duration.
- ▶ Poisson-Gamma events + Exponential-Gamma durations is both admissible and desirable.

Segmentation-clustering.

- ▶ Each segment belongs to a class $1 \leq q \leq Q$ (with probability π_q and intensity $\lambda_k = \ell_q$),
- Combination of EM and DP algorithms [PRLD07],
- ▶ Bat cries: Class = animal behaviour (hunt, transit, ...)

And also.

- ► Theoretically grounded model selection criterion (BIC),
- Consistency of the estimated change-points,
- Other desirable contrasts, ...

References I

ion-Blanc, E Lebarbier, and S Robin. Multiple change-point detection for poisson processes. Technical Report 2302.09103, arXiv, 2023.

Figure 1. Card, S. Robin, E Lebarbier, and J-J Daudin. A segmentation/clustering model for the analysis of array CGH data. *Biometrics*, 63(3):758–766, 2007.

Appendix

Number of elements in the partition of the segmentation space.

$$|\mathcal{N}_{\mathcal{K}}| = \sum_{h=\lfloor (\mathcal{K}-1)/2 \rfloor}^{\mathcal{K}} {n-1 \choose h-1} {h+1 \choose \mathcal{K}-h}$$

Appendix

Number of elements in the partition of the segmentation space.

$$|\mathcal{N}_{\mathcal{K}}| = \sum_{h=\lfloor (\mathcal{K}-1)/2 \rfloor}^{\mathcal{K}} {n-1 \choose h-1} {h+1 \choose \mathcal{K}-h}$$

Simulations: Shape of the intensity function $\lambda(t)$. K=6, $\overline{\lambda}=100$, $\lambda_R=1,3,8$.

Poisson process: Mauna Loa eruptions

Count and marks: Events = eruptions, marks = duration of each eruption.

Model.

- ▶ Piecewise-constant intensity Poisson process for the events
- ▶ Exponential distribution (with segment specific parm.) for the durations

Count and marks: Events = eruptions, marks = duration of each eruption.

Model.

- ▶ Piecewise-constant intensity Poisson process for the events
- Exponential distribution (with segment specific parm.) for the durations

CV for the selection of K.

