

LinkageJS Requirements Specification

(Working Draft)

Contents

1 Preamble and Conventions 1

2	Process Workflow 2
3	Requirements 3 3.1 General Description 3 3.2 Detailed Functionalities 6 3.3 Modelica Graphical User Interface 9 3.4 Configuration Widget 9 3.5 Schematics Export 31 3.6 Working with Tagged Variables 31 3.7 OpenStudio Integration 31 3.8 Interface with URBANopt GeoJSON 33 3.9 Encryption 33 3.10 Licensing 33
4	Software Architecture 34
5	Annex 35 5.1 Example of the Configuration Data Structure 35 5.2 Illustration of the Main Features of the Expandable Connectors 42 5.3 Validation of the Use of Expandable Connectors 45
6	Glossary 47
7	Acknowledgments 48
8	References 49
В	ibliography 50
ln	ndex 51

i

Preamble and Conventions

This documentation specifies the requirements for LinkageJS software.

It is still work in progress, intended to be used as a discussion basis.

The proposed design should not be considered finalized and will evolve as the development progresses.

Conventions

The words "must", "must not", "required", "shall", "shall not", "should", "should not", "recommended", "may" and "optional" in this document are to be interpreted as described in RFC2119.

Process Workflow

To be updated.

Requirements

Todo: How to extract CDL part (to be translated) from whole system model?

- Specification with the configuration widget of "unbreakable" parts of the control sequence.
- Also need to 1) expand arrays into scalar instances and connections 2) suppress bus gateway variables connect(v1, bus.v); connect(v2, bus.v) into connect(v1, v2) unless supported by CDL spec. & translator?

Devise how return status signals can be generated for components that do not have built-in output status variables.

• Typically the pump model: difficult to implement without state event, otherwise short circuit the input control signal potentially with a pre operator.

Allow for top level controller XOR individual controllers.

Specify more the tagging process and how it can support mapping with equipment characteristics and sizing from data & sizing sheets.

- EIKON uses two concepts: reference (used programmatically) and display (used for UI only) name.
- · HVAC zone, floor, room name is enough?

Specify how modifying mo files so that diffs are minimal? The diff has to be done on JSON objects only?

3.1 General Description

3.1.1 Main Requirements

The software is primarily a graphical user interface for editing Modelica models in a diagrammatic form: see Section 3.2 and Section 3.3.

Built around this core functionality the following additional features are required:

- 1. A configuration widget supporting assisted modeling based on a simple HTML input form: see Section 3.4
- 2. A schematics export functionality: see Section 3.5

3. A set of functionalities to enable working with tagged variables: see Section 3.6

In terms of software design:

- The software must rely on client side JS code with minimal dependencies and must be built down to a single page HTML document (SPA).
- A widget structure is required that allows seamless embedding into:
 - a desktop app with standard access to the local file system,
 - a standalone web app with access to the local file system limited to Download & Upload functions of the
 web browser (potentially with an additional sandbox file system to secure backup in case the app enters an
 unknown state),
 - any third party application with the suitable framework to serve a single page HTML document executing JS
 code with access to the local file system through the API of the third party application:
 - * the primary target is OpenStudio® (OS),
 - * an example of a JS application embedded in OS is FloorspaceJS. The standalone SPA lives here: https://nrel.github.io/floorspace.js. FloorspaceJS can be considered as a reference for the development.

Note: Those three integration targets are actual deliverables.

 A Python or Ruby API is required to access the data model and leverage the main functionalities of the software in a programmatic way e.g. by OpenStudio measures.

3.1.2 Software Compatibility

The software requirements regarding platform and environment compatibility are presented in Table 3.1.

Feature Support
Platform (minimum version) Windows (10), Linux Ubuntu (18.04), OS X (10.10)
Mobile device & responsive design ? iOS, Android?
Web browser Chrome, Firefox, Safari

Table 3.1: Requirements for software compatibility

3.1.3 UI Visual Structure

A minimal mockup of the UI is presented Fig. 3.1.

The minimal requirements are:

- Left panel: library navigator
- · Main panel: model editor with diagram, icon, documentation or code view
- · Right panel:
 - Configuration tab, see Section 3.4
 - Connections tab, see Section 3.4.4.4
 - Parameters tab, see Section 3.4.4.5
- Menu bar
- · Bottom panel: console

Fig. 3.1: UI Visual Structure

The placement of the different UI elements might be different than the one proposed here above but the user must have access to all those elements. Ideally a toggle feature should be implemented to show or hide each side panel, either by user click if the panel is pinned or automatically. Optionally a fully customizable workspace may be implemented.

3.2 Detailed Functionalities

Table 3.2: Functionalities of the software – R: required, P: required partially, O: optional, N: not required

Feature	V0	V1	Comment			
Main functionalities			(as per Section 3.1)			
Diagram editor for Modelica models	R		See detailed requirements below.			
Configuration widget	Р	R	An alpha version of the widget is required in V0 for testi and refining the requirements.			
Schematics export	N	R				
Working with tagged variables	N	R				
I/O						
Load mo file	P	R	To be updated cf. different integration targets Simple Modelica model or full package (V0). If the model contains annotations specific to the configuration widget (see Section 3.4), the corresponding data are loaded in memory for further configuration. If the model contains the Modelica annotation uses the corresponding library is loaded. If a package is loaded the structure of the package and sub packages is checked against <i>Chapter 13 Packages</i> (V1).			
Export mo file	R		"Total model" export option?			
Export simulation results	R		Export in the following format: mat, csv. All variables or selection based on variables browser (see below).			
Variables browser	Р	R	Query selection of model variables based on regular expression (V0) or Brick/Haystack tag [Bri] [Hay] (V1)			
Plot simulation results	N	0				
Export control points summary	R		Relies on LBL module to generate the list of A/B I/O variables.			
Export schematics	Р	R	Only the equipment drawing in V0. Control points and SOO description in V1 see Fig. 3.16. Relies on LBL module CDL to Word translator.			
Import/Export data sheet?	P	R	Additional module to 1) generate a file in CSV or JSON format from the configuration data (V0) 2) populate the configuration data based on a file input in CSV or JSON format (V1).			

Continued on next page

Table 3.2 – continued from previous page

Feature	VO	V1	Comment				
Modelica features							
Checking the compliance with	Р	R	Real-time checking of syntax (V0) and connection (V1).				
Modelica standard							
Translate model	Р		The software settings allow the user to specify a command for translating the model with a third party Modelica tool e.g. JModelica. The output of the translation routine is logged in LinkageJS console.				
Simulate model	Р		The software settings allow the user to specify a command for simulating the model with a third party Modelica tool e.g. JModelica. The output of the simulation routine is logged in LinkageJS console.				
Automatic medium propagation between connected components	P	P	Partially supported because only the configuration widget integrates that feature. When generating connect equation manually a similar approach as the <i>fluid path</i> used by the configuration widget might be developed, see components with 4 ports and 2 medium.				
Support of Modelica graphical annotations	R						
Code editor	Р	R	Raw text editor (V0) with linter and Modelica specification check upon save (V1)				
Icon editor	0	R	Editing functionalities similar to diagram editor				
Documentation view	R						
Library version management	0	R	If a loaded model contains the Modelica annotation uses e.g. uses (Buildings (version="6.0.0") the software checks the version number of the stored library, prompts the user for update if the version number does not match, executes the conversion script per user request.				
Path discovery	R		A routine to reconstruct the path or URL of a referenced resource within the loaded Modelica libraries is required. Typically a resource can be referenced with the following syntax modelica://Buildings.Air. Systems.SingleZone.VAV.				
Object manipulation							
Vectorized instances	R		An array dimension descriptor appending the name of an object is interpreted as an array declaration. Further connections to the connectors of that object must comply with the array structure.				
Expandable connectors	R						

Continued on next page

Table 3.2 – continued from previous page

Feature	V0	V1	Comment
Navigation in object composition	R		Right clicking an icon in the diagram view offers the option
rtavigation in object composition			to open the model in another tab
Multiple objects selection for in-	0	R	If several objects are selected only their common param-
put of common parameters			eters are listed in the Parameters panel. If a parameter
расот			alue s modified, all the selected objects will have their pa-
			rameter value change.
Avoiding duplicate names	R		When instantiating a component, if the default name is
5 1			already used in the model the software automatically ap-
			pends he name with the lowest integer value that would
			ensure uniqueness.
			When copying and pasting a set of objects connected to-
			gether, the set of connect equations is updated to ensure
			consistency with the appended object names.
Graphical features			A user experience similar to modern web based diagram-
			ming applications is expected e.g. draw.io.
Tab view	R		The diagram view is organized in tabs that can be manip-
			ulated, created and deleted typically as navigation tabs n
			a eb browser.
Diagram split view	N	R	The diagram view can be split (horizontally and vertically)
			into several views. Each tab can be dragged and dropped
			from one view to another. The views are synchronized so
			that if the same model is open in different views and gets
			modified, all the views of the model are updated to reflect
			the modifications.
Copy/Paste objects	R		Copying and pasting a set of objects connected together
			copies the objects declarations and the corresponding
	_		connect equations.
Pan and zoom on mouse actions	R		
Undo/Redo	R		
Draw shape, text box	0	R	
Start connection line when hover-	0	R	
ing connectors	0	n	Con impos et avecaine
Connection line jumps	0	R	Gap jump at crossing
Customize connection lines	0	R	Color, width and line can be specified in the annotations
Hover information	D		Class noth when hovering an object in the diagram view
Hover information	R		Class path when hovering an object in the diagram view
Color and atule of connection	Р	D	and tooltip help for each GUI element
Color and style of connection	「	R	Allow the user to manually specify (right click menu) the style of the connections lines (V0).
lines			, ,
			When generating a connect equation automatically select a line style based on some heuristic to be further
			specified (V1).
Miscellaneous			specified (VI).
wiioceiiaiieouo			

Continued on next page

Feature	V0	V1	Comment
Choice of units SI / IP	?	?	
User documentation	R		User manual of the GUI and the corresponding API. Both an HTML version and a PDF version are required (may rely on Sphinx).
Developer documentation	R		All classes, methods, free functions and modules must be documented with an exhaustive description of the functionalities, parameters and return values. UML diagrams should also be provided. At least an HTML version is required, PDF version is optional (may rely on Sphinx or VuePress).

Table 3.2 – continued from previous page

3.3 Modelica Graphical User Interface

The software must comply with the Modelica language specification [Mod17] for every aspect relating to (the chapter numbers refer to [Mod17]):

- · validating the syntax of the user inputs: see Chapter 2 Lexical Structure and Chapter 3 Operators and Expressions,
- the connection between objects: see Chapter 9 Connectors and Connections,
- the structure of packages: see Chapter 13 Packages,
- the annotations: see Chapter 18 Annotations.

Note: When drawing a connection line between two connector icons in the diagram view:

- a connect equation with the references to the two connectors must be created,
- with a graphical annotation defining the connection path as an array of points and providing an optional smoothing function e.g. Bezier.
- When no smoothing function is specified the connection path must be rendered graphically as a set of segments.
- The array of points must be either:
 - created fully automatically when the next user's click after having started a connection is made on a connector icon. The function call create_new_path(connector1, connector2) creates the minimum number of vertical or horizontal segments to link the two connector icons with the constraint of avoiding overlaying any instantiated object,
 - created semi automatically based on the input points corresponding to the user clicks outside any connector icon: the function call create_new_path(point[i], point[i+1]) is called to generate the path linking each pair of points together.
- The first and last couple of points must be so that the connection line does not overlap the component icon but rather grows the distance to it, see Fig. 3.2.

3.4 Configuration Widget

Fig. 3.2: Logic for generating a connection line in the neighborhood of a connector

3.4.1 Functionalities

The configuration widget allows the user to generate a Modelica model of an HVAC system and its controls by filling up a simple input form. It is mostly needed for integrating advanced control sequences that can have dozens of I/O variables. The intent is to reduce the complexity to the mere definition of the system's layout and the selection of standard control sequences already transcribed in Modelica [LBNL19].

Note: CtrlSpecBuilder is a tool widely used in the HVAC controls industry for specifying control sequences. It might be used as a reference for the development in terms of user experience minimal functionalities. Note that this software does not provide any Modelica modeling functionality.

There are fundamental requirements regarding the Modelica model generated by the configuration widget:

- 1. It must be "graphically readable" (both within LinkageJS and within any third-party Modelica GUI e.g. Dymola): this is a strong constraint regarding the placement of the composing objects and the connections that must be generated automatically.
- 2. It must be ready to simulate: no additional modeling work or parameters setting is needed outside the configuration widget.
- 3. It must contain all annotations needed to regenerate the HTML input form when loaded, with all entries corresponding to the actual state of the model.
 - Manual modifications of the Modelica model made by the user are not supported by the configuration widget: an additional annotation should be included in the Modelica file to flag that the model has deviated from the template. In this case the configuration widget is disabled when loading that model.
- 4. The implementation of control sequences must comply with OpenBuildingControl requirements, see *§7 Control Description Language* and *§8 Code Generation* in [LBNL19]. Especially:
 - It is required that the CDL part of the model can be programmatically isolated from the rest of the model in order to be translated into vendor-specific code (by means of a third-party translator).
 - The expandable connectors (control bus) are not part of CDL specification: **how to represent communication between sub-systems?**

The input form is provided by the template developer (e.g. LBL) in a data model with a format that is to be further specified in collaboration with the software developer.

The data model typically provides for each entry:

- the HTML widget and populating data to be used for requesting user input.
- the modeling data required to instantiate, position and set up the parameters of the different components,
- some tags to be used to automatically generate the connections between the different components connectors.

The user interface logic is illustrated in figures Fig. 3.3 and Fig. 3.4. Note that the comments in those figures are part of the requirements.

When no object is selected in the diagram view this is the default view for the Configuration panel

The Library name is the last value selected (further referenced as #library). The drop down menu allows selecting between loaded libraries. The Library name is used to 1) load the configuration data stored in #library/Configuration directory, 2) define the root path of the directory where the built models will be saved i.e. #library/User/*/. The Configure new drop down menu allows selecting the type of system model to configure. The menu is populated by #data/#system.value for all configuration data files in #library/Configuration.

The Project name is the last value entered (further referenced as #project). A real-time form test is required to validate the user input against syntax requirements and avoid duplicate in #library/User. The path of the directory where the built models will be saved is #library/User/#project.

The Model name is by default #data/#name.value (further referred to as #model). It can be modified by the user (call a rename_class function if the model has already been saved). A real-time form test is required to validate the user input against syntax requirements and avoid duplicate in #library/User/#project.

Fig. 3.3: Configuration widget - Configuring a new model

The envisioned data structure supporting this logic consists in:

- placement coordinates provided relatively to a simplified grid, see Fig. 3.5 those are to be mapped to Modelica diagram coordinates by the widget,
- an equipment section referencing the components that must be connected together with fluid connectors, see Section 3.4.3.
- a controls section referencing the components that must connected together with signal connectors, see Section 3.4.4.
- a dependencies section referencing additional components with the following characteristics:
 - they typically correspond to sensors and outside fluid connectors,
 - the model completeness depends on their presence,
 - the requirements for their presence can be deduced from the equipment and controls options,
 - they do not need additional fields in the user form of the configuration widget.

The equipment and controls models are connected together by means of a *control bus*, see Fig. 3.16: the upper-level model including the equipment and controls models is the ultimate output of the configuration widget (see Fig. 3.4 where the component named AHU_1_01_02 represents an instance of the upper-level model AHU_1 generated by the widget).

Implement the configuration options specified by the user in the Configuration form by instantiating and connecting objects in the file #library/User/#project/#model.

Instantiate model Update and instantiate the class #library/User/#project/#model in the model loaded in the active tab of the main panel (here Model1).

Reset configuration Reset the configuration options to the

Delete model Delete the class #library/User/#project/#model and all its instances in the model loaded in the active tab of the main panel (here Model1).

This is the view for the Configuration panel if:

- one object is selected in the main panel,
- and the corresponding class contains a model annotation __Linkage_data(...) providing the configuration data in a JSON-serialized format (further referred to as #data).

The Configuration panel is populated with the values from #data. The Library name and Configure new fields are locked.

The Project name can be modified: when clicking Update model this will call a move_class function. The Model name can be modified: when clicking Update model this will call a rename_class function.

All configuration options can be modified: when clicking Update model this will update the class #library/User/#project/#model.

Fig. 3.4: Configuration widget - Configuring an existing model

That component exposes the outside fluid connectors as well as the top level control bus.

The logic for instantiating classes from the library is straightforward. Each field of the form specifies:

- the path of the class to be instantiated depending on the user input;
- the position of the component in simplified grid coordinates to be converted in diagram view coordinates.

The next paragraphs address how the connections between the connectors of the different components are generated automatically based on this initial model structure.

Note: Data Structure Format

- JSON
 - Expensive syntax especially for boolean conditions or auto-referencing the data structure: is there any standard syntax?
- Specific format to be defined in collaboration with the UI developer and depending on the selected UI framework A robust syntax is required for:
 - auto-referencing the data structure e.g. #type.value refers to the value of the field value of the object which \$id is type,
 - conditional statements: potentially every field might require a conditional statement either data fields (e.g.
 the model to be instantiated and its placement) or UI fields (e.g. the condition to enable a widget itself or the
 different options of a menu widget).
 - Ideally the syntax should also allow iteration for loops to instantiate a given number (as parameter) of objects with an offset applied to the placement coordinates e.g. chiller plant with n chillers. Backup strategy: define all (e.g. 10) possible instances and enable only the first n ones based on a condition.

Reference Guideline for Controls Specification

• Providing a reference guideline for controls specification conditionally disables all controls options that do not comply with that guideline.

Parameters Exposed by the Configuration Widget

- The template developer is free to declare in the template any parameter of the composing components e.g. V_flowSup_nominal and reference them in the model declaration e.g. Buildings.Fluid. Movers.SpeedControlled_y (m_flow_nominal=(#air_supply.medium).rho_default / 3600 * #V_flowSup_nominal.value). The configuration widget must replace the referenced names by their actual values (literal or numerical). The user will be able to override those values in the parameters panel e.g. if he wants to specify a different nominal air flow rate for the heating or cooling coil. See additional requirements regarding the persistance of those references in Section 3.4.2.
- Some parameters *need* to be integrated in the template (examples are provided in reference to Buildings. Controls.OBC.ASHRAE.G36 PR1.AHUs.MultiZone.VAV.Controller):
 - when they impact the model structure e.g. use_enthalpy requires an additional enthalpy sensor: in that
 case the model declaration must use the final qualifier to prevent the user from overriding those values in
 the parameters panel,
 - when no default value is provided e.g. AFlo cf. requirement that the model generated by the configuration widget must be ready to simulate.

For each object, the fields are defined as follows. When the type of a field is specified as a string marked with (C) it may correspond to:

Fig. 3.5: Simplified grid providing placement coordinates for all objects to be instantiated when configuring an AHU model

- a conditional statement provided as a string that must be interpreted by the UI engine,
- a reference to another field value of type boolean (that may itself correspond to a conditional statement provided as a string).
- · The syntax supporting this feature shall be specified in collaboration with the UI developer.

Note: The syntax must support e.g. (#air_supply.medium).rho_default where the first dot is used to access the property medium of the object with \$id == #air_supply (which must be replaced by its value) while the second dot is used to access Modelica property rho_default of the class Medium (which must be kept literal).

Configuration object definition

type: string: required

Type of system to configure e.g. air handling unit, chilled water plant.

subtype: object: required

Subtype of system e.g. for an air handling unit: variable air volume or dedicated outdoor air.

Object defined as elementary object.

required: [\$id, description, widget, value]

name: object: required

Name of the component. Must be stored in the Modelica annotation <code>defaultComponentName</code>.

Object defined as elementary object.

```
required: [$id, description, widget, value]
fluid_paths: array: required
    items: object
    Definition of all parent fluid paths of the model.
    Object defined as follows.
         $id: string: required
            Unique string identifier starting with #.
         direction: string: required
            enum: ["north", "south", "east", "west"]
             Direction indicating the order in which the components must be connected along
            the path.
         medium: string: required
            Common medium for that fluid path and all derived paths e.g. "Buildings.
            Media.Air"
icon: string: required
    Path to icon file.
diagram: object: required
    Size of the diagram layout.
    Object defined as follows.
    configuration: array: required
         items: integer
         Array on length 2, providing the number of lines and columns of the simplified grid layout.
    model: array: required
         items: array
         Array on length 2 providing the coordinates tuples of two opposite corners of the diagram
         rectangular layout.
            items: integer
            Array on length 2 providing the coordinates of one corner of the diagram rectan-
            gular layout.
equipment: array: optional
    items: object
    Object defined as elementary object.
```

```
controls: array: optional
          items: object
          Object defined as elementary object.
     dependencies: array: optional
          items: object
          Object defined as elementary object.
Elementary object definition
     $id: string: required
          Unique string identifier starting with #.
          Used for referencing the object properties e.g. id_value.property.
          If the object has a declare field, the name of the declared component is the value of $id
          without the dash character.
          Must be suffixed with brackets e.g. [2] in case of array variables.
     description: string: required
          Descriptive string.
          If the object has a declaration field, the descriptive string appends the component declaration
          in the Modelica source file (referred to as comment in §4.4.1 Syntax and Examples of Component
          Declarations of [Mod17]).
     enabled: boolean, string (C): optional, default true
          Indicates if the object must be used or not. If not, the UI does not display the corresponding widget,
          no modification to the model is done and the object field value gets assigned its default value or
          null?.
     widget: object: optional
          Object defined as follows.
          type: string: required
               Type of UI widget.
          options: array: optional
               items: string
               Options to be displayed by certain widgets e.g. dropdown menu.
          options.enabled:array:optional
               items: boolean, string (C)
               Indicates which option can be selected by the user. Must be the same size as widget.
               options.
     value: string (C), number, boolean, null: required
```

[enum: widget.options (if provided)]

Value of the object (default value prior to user input).

May be provided as a literal expression in which all literal references to object properties (prefixed with #) must be replaced by their numerical value.

unit: string: optional

Unit of the value. Must be displayed in the UI.

declaration: array, string (C), null: optional

[items : string (C)]

Any valid Modelica declaration (component or parameter) or an array of those which must have the same size as widget.options if the latter is provided (in which case the elements of declaration get mapped with the elements of widget.options based on their indices).

Note: If one option requires multiple declarations, the first one will typically be specified here and the other ones as dependencies.

annotation: array, string (C), null: optional

[items : string (C)]

Any valid Modelica annotation or an array of those which must have the same size as widget. options if the latter is provided (in which case the elements of annotation get mapped with the elements of widget.options based on their indices).

protected: boolean: optional, default false

Indicates if the declaration should be public or protected.

icon_transformation:string(C):optional

Graphical transformation that must be applied to the component icon e.g. "flipHorizontal".

placement: array, string (C): optional

[items: array, integer]
[items: integer]

Placement of the component icon provided in simplified grid coordinates [line, column] to be mapped with the model diagram coordinates.

Can be an array of arrays where the main array must have the same size as widget.options if the latter is provided (in which case the elements of placement get mapped with the elements of widget.options based on their indices).

connect: object: optional

Data required to generate the connect equations involving the connectors of the component, see Section 3.4.3.

Object defined as follows.

```
type: string: optional, default path
    enum: ["path", "tags", "explicit"]

Type of connection logic.

value: string (C), object: required

If type == "path": fluid path (string) that must be used to generate the tags in case of two connectors only. It must not be used if the component has more than two connectors or a non standard connectors scheme (different from one instance of Modelica.Fluid.Interfaces.FluidPort_a and one instance of Modelica.Fluid.Interfaces.FluidPort_b).

If type == "tags": object providing for each connector (referenced by its instance name) the tag to be applied.

If type == "explicit": object providing for each connector (referenced by instance name) the connector to be connected to, using explicit names e.g. fanSup.port_a.
```

An example of the resulting data structure is provided in annex, see Section 5.1.

3.4.2 Persisting Data

3.4.2.1 Path of the Configuration File

The path (relative to the library entry path, see *Path discovery* in Table 3.2) must be stored in a hierarchical vendor annotation at the model level e.g. __Linkage (path="modelica://Buildings.Configuration.AHU").

3.4.2.2 Configuration Objects

The value of all objects must be stored with their \$id in a serialized format within a hierarchical vendor annotation at the model level. (This is done at the model level since some configuration data may be linked to some model declarations indirectly using dependencies so annotations at the declaration level would not cover all use cases.)

This is especially needed so that the references to the configuration data in the object declarations persist when saving and loading a model.

There are two kind of references:

- LinkageJS references prefixed by # which must be interpreted by the configuration widget and replaced by their actual value e.g. Modelica.Fluid.Interfaces.FluidPort_a(redeclare package Medium=#air_supply.medium).
- Modelica references provided as literal variables e.g. Buildings.Fluid.Movers. SpeedControlled_y (m_flow_nominal=m_flowRet_nominal).

Unless specified as final those references may be overwritten by the user. When loading a model the configuration widget must parse the \$id` and ``value of the stored configuration data and reconstruct the corresponding model

declarations using the configuration file (and interpreting the references prefixed by #). Those declarations are compared to the ones present in the model: if they differ, the ones in the model take precedence.

3.4.3 Fluid Connectors

The fluid connections (connect equations involving two fluid connectors) must be generated based on either:

- an explicit connection logic relying on one-to-one relationships between connectors (see Section 3.4.3.1) or,
- a heuristic connection logic (see Section 3.4.3.2) based on:
 - the coordinates of the components in the diagram layout i.e. after converting the coordinates provided relatively to the simplified grid,
 - a tag applied to the fluid connectors (or fluid ports) of the components.

3.4.3.1 Explicit Connection Logic

In certain cases it may be convenient to specify explicitly a one-to-one connection scheme between the connectors of the model e.g. a differential pressure sensor to be connected with the outlet port of a fan model and a port of a fluid source providing the reference pressure.

That logic is activated at the component level by the keyword connect.type == "explicit".

The user provides for each connector the name of the component instance and connector instance to be connected to e.g. "port 1": "component1.connector2.

3.4.3.2 Heuristic Connection Logic

That logic relies on connectors tagging which supports two modes:

- 1. Default mode (connect.type == "path")
 - By default the instances of Modelica.Fluid.Interfaces.FluidPort_a and Modelica.Fluid. Interfaces.FluidPort b will be suffixed inlet and outlet respectively.
 - The prefix tag is provided at the component level to specify the fluid path e.g. air_supply or air_return.
 - The fluid connectors are then tagged by concatenating the previous strings e.g. air_supply_inlet or air_return_outlet.
- 2. Detailed mode (connect.type == "tags")
 - We need an additional mechanism to allow tagging each fluid port individually. Typically for a three way valve, the bypass port should be on a different fluid path than the inlet and outlet ports see Fig. 3.6. Hence we need a mapping dictionary at the connector level which, if provided, takes precedence on the default logic specified above.
 - Furthermore a fluid connector can be connected to more than one other fluid connector (fork configuration). To support that feature the concept of *derived path* is introduced: if fluid_path is the name of a fluid path, each fluid path named /^fluid_path_((?!_).) *\$/gm is considered a *derived path*. The original (derived from) path is the *parent path*. A path with no parent path is referred to as *main path*.
 - For instance in case of a three way valve the mapping dictionary could be:

```
{"port_1": "hotwater_return_inlet", "port_2": "hotwater_return_outlet", "port_3": "hotwater_supply_bypass_inlet"} where hotwater_supply_bypass is a derived path from hotwater_supply.
```


Fig. 3.6: Example of the connection scheme for a three-way valve. The first diagram does not include an explicit model of the fluid junction whereas the second does (and represents the highly recommended modeling approach). This example illustrates how the fluid connection logic allows for both modeling approaches. In the first case the bypass and direct branches are derived paths from fluid_path0 which consists only in one connector. In the second case they are different main paths, the bypass branch having a different direction than the direct branch (the user could also use an "explicit" connection logic to avoid the definition of an additional main fluid path).

The conversion script throws an exception if an instantiated class has <code>connect.type != "explicit"</code> and some fluid ports that cannot be tagged nor connected with the previous logic e.g. non default names and no (or incomplete) mapping dictionary provided. Once the tagging is resolved for all fluid connectors of the instantiated objects with <code>connect.type != "explicit"</code>, the connector tags are stored in a list, furthered referred to as "tagged connectors list". All object names in that list thus reference instantiated objects with fluid ports that have to be connected to each other.

To build the full connection set, the direction (north, south, east, west) along which the objects must be connected needs to be provided for all main (not derived) fluid paths.

Note: The direction (as well as the fluid medium) of a derived path are inherited from the parent path.

Modelica connect construct is symmetric so at first glance only the vertical / horizontal direction of a fluid path seems enough. However the actual orientation along the fluid path is needed in order to identify the start and end connectors, see below.

The connection logic is then as follows:

• List all the different fluid paths in the tagged connectors list as obtained by truncating _inlet and _outlet from each connector name. Get the direction of the main fluid paths in the configuration data and finally reconstruct the tree structure of the fluid paths based on their names:

```
fluid_path0 (direction: east): [connectors list]

fluid_path0_0 (inherited direction: east): [connectors list]

fluid_path0_1 (inherited direction: east): [connectors list]

fluid_path0_1_0 (inherited direction: east): [connectors list]

fluid_path0_1_1 (inherited direction: east): [connectors list]

fluid_path1 (direction: west): [connectors list]

fluid_path3 (direction: north): [connectors list]

fluid_path4 (direction: south): [connectors list]
```

- For each fluid path:
 - Order all the connectors in the connectors list according to the direction of the fluid path and based on the
 position of the corresponding *objects* (not connectors) with the constraint that for each object inlet has to be
 listed first and outlet last.
 - For each derived path find the start and end connectors as described hereunder and prepend / append the connectors list.
 - * If the first (resp. last) connector in the ordered list is an outlet (resp. inlet), it is the start (resp. end) connector. (Note that the reciprocal is not true: a start port can be either an inlet or an outlet see Fig. 3.7.)
 - Otherwise the start (resp. end) connector is the outlet (resp. inlet) connector of the object in the parent path placed immediately before (resp. after) the object corresponding to the first (resp. last) connector – where before and after are relative to the direction and orientation of the fluid path (which are the same for the parent path).
 - For each parent path split the path into several sub paths whenever a connector corresponds to the start or end port of a derived path.
 - Throw an exception if one of the following rules is not verified:
 - * Derived paths must start *or* end with a connector from a parent path.
 - * Each branch of a fork must be a derived path, it cannot belong to the parent path: so no object from the parent path can be positioned between the objects corresponding to the first and last connector of any derived path.

- Generate the connect equations by iterating on the ordered list of connectors and generate the connection
 path and the corresponding graphical annotation. The only valid connection along a fluid path is outlet with
 inlet.
- Populate the iconTransformation annotation of each outside connector instantiated as a dependency so
 that they belong to the same border (top, left, bottom, right) as in the diagram layer and be evenly positioned
 considering the icon's dimensions. The bus connector is an exception and will always be positioned at the top
 center of the icon.

The implications of that logic are the following:

• Within the same fluid path, objects are connected in one given direction only: to represent a fluid loop (graphically) at least two fluid paths must be defined, typically supply and return.

Fig. 3.7 to Fig. 3.9 further illustrate the connection logic on different test cases.

Fig. 3.7: Connection scheme with nested fluid junctions not modeled explicitly

Fig. 3.8: Connection scheme with fluid branches with identical directions e.g. AHU with dedicated outdoor air damper for economizer

3.4.4 Signal Connectors

3.4.4.1 General Principles

Generating the connect equations for signal variables relies on:

Fig. 3.9: Connection scheme with fluid branches with different directions e.g. VAV duct system. Here a flow splitter is used to start several main fluid paths with a vertical connection direction.

- a (fuzzy) string matching principle applied to the names of the connector variables and their components e.g. com.y for the output connector y of the component com,
- a so-called *control bus* which has the type of an expandable connector, see *§9.1.3 Expandable Connectors* in [Mod17].

(For clarity it might be useful to group control input variables in one sub-bus and control output variables in another sub-bus. The experience feedback on bus usage in Modelica shows that restricting the number of sub-buses and the use of bus variables to sensed and actuated signals only is a preferred option.)

The following features of the expandable connector are leveraged:

1. All components in an expandable connector are seen as connector instances even if they are not declared as such. In comparison to a non expandable connector, that means that each variable (even of type Real) can be connected i.e. be part of a connect equation.

Note: Connecting a non connector variable to a connector variable with connect (non_connector_var, connector_var) yields a warning but not an error in Dymola. It is considered bad practice though and a standard equation should be used in place non_connector_var = connector_var.

Using a connect equation allows to draw a connection line which makes the model structure explicit to the user. Furthermore it avoids mixing connect equations and standard equations within the same equation set, which has been adopted as a best practice in the Modelica Buildings library.

2. The causality (input or output) of each variable inside an expandable connector is not predefined but rather set by the connect equation where the variable is first being used. For instance when the variable of an expandable connector is first connected to an inside connector Modelica.Blocks.Interfaces.RealOutput it gets the

- same causality i.e. output. The same variable can then be connected to another inside connector Modelica. Blocks.Interfaces.RealInput.
- 3. Potentially present but not connected variables are eventually considered as undefined i.e. a tool may remove them or set them to the default value (Dymola treat them as not declared: they are not listed in dsin.txt): all variables need not be connected so the control bus does not have to be reconfigured depending on the model structure.
- 4. The variables set of a class of type expandable connector is augmented whenever a new variable gets connected to any *instance* of the class. Though that feature is not needed by the configuration widget (we will have a predefined control bus with declared variables), it is needed to allow the user further modifying the control sequence. Adding new control variables is simply done by connecting them to the control bus.

Those features are illustrated with a minimal example in annex, see Section 5.2.

3.4.4.2 Generating Connections by Approximate String Matching

To support automatic connections of signal variables a predefined control bus will be defined for each type of system (e.g. VAV, CHW plant) with a set of predeclared variables. The names of the variables must allow a one-to-one correspondence between:

- the control sequence input variables and the outputs of the equipment model e.g. sensed quantities and actuators returned positions,
- the control sequence output variables and the inputs of the equipment model e.g. actuators commanded positions.

Thus the control bus variables are used as "gateways" to stream values between the controlled system and the controller system.

However an exact string matching is not conceivable. An approximate (or fuzzy) string matching algorithm must be used instead.

Listing 3.1: Example of a Python function used for fuzzy string matching

```
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
import itertools as it
import re
def return_best(string, choices):
    # Constrain array to array and scalar (or array element) to scalar.
    # Need to specify a logic for tagging scalar variables that should be connected to array.
→elements e.g. '*_zon*.y'.
    # Guard against array element A[i] to be connected to scalar variable.
    if bool(re.search('\[.+\]|_zon.*\.', string)) and not bool(re.search('\[\d+\]', string)):
        choices = [el for el in choices if re.search('\[.+\]', el)]
        # Replace [.*] by [:]
        string = re.sub('\[.*\]', '[:]', string, flags=re.I)
        string = re.sub('_zon.*\.', '[:].', string, flags=re.I)
    else:
        choices = [el for el in choices if not re.search('\[.+\]', el)]
                                                                                (continues on next page)
```

(continued from previous page)

```
# Replace pre by p and tem by t.
string = re.sub('pre', 'P', string, flags=re.I)
string = re.sub('tem', 'T', string, flags=re.I)

# Perform comparison.
res = process.extract(string, choices, limit=2, scorer=fuzz.token_sort_ratio)
return list(it.chain(*res))
```

Results in Fig. 3.10.

Connector	Variable to connect to	Bus variable	10	match	score	sec_score	match_to	score_to	sec_score_to
TDis[numZon]	TDis_zonA.T	TDis[:]	1	TDis[:]	100	46	TDis[:]	80	40
TMix	TMix.T	TMix	1	TMix	100	25	TMix	80	40
T0ut	TOut.T	T0ut	1	T0ut	100	75	T0ut	80	62
TOutCut	TOutCut.y	TOutCut	1	TOutCut	100	86	TOutCut	88	75
TSup	TSup.T	TSup	1	TSup	100	73	TSup	80	62
TZonCooSet	modSetZon.TZonCooSet[1]	TZonCooSet	1	TZonCooSet	100	70	TZonCooSet	62	44
TZonHeaSet	<pre>modSetZon.TZonHeaSet[numZom]</pre>	TZonHeaSet	1	TZonHeaSet	100	70	TZon[:]	33	33
TZonResReq[nin].u	conVAVBox_zonA.yZonTemResReq	reqResT[:]	1	TZon[:]	50	42	reqResT[:]	29	26
TZon[numZon]	TZon_zonA.T	TZon[:]	1	TZon[:]	100	57	TZon[:]	80	50
<pre>VDis_flow[numZon]</pre>	V_flowDis_zonA.V_flow	<pre>V_flowDis[:]</pre>	1	<pre>V_flowDis[:]</pre>	67	46	V_flowDis[:]	72	30
VOut_flow	V_flowOut.V_flow	V_flowOut	1	V_flowOut	67	46	V_flowOut	72	35
ducStaPre	pStaDuc.p_rel	pStaDuc	1	staFrePro	50	43	pStaDuc	70	70
h0ut	hOut.h	h0ut	1	h0ut	100	75	h0ut	80	62
hOutCut	hOutCut.y	hOutCut	1	hOutCut	100	86	hOutCut	88	75
nOcc[numZon]	nOcc[numZom].y	n0cc[:]	1	n0cc[:]	100	25	n0cc[:]	80	20
uFreProSta	frePro.ySta	staFrePro	1	staFrePro	63	59	staFrePro	60	56
u0peMod	modSetZon.yOpeMod	mod0pe	1	mod0pe	46	43	modOpe	52	44
uWin[numZon]	staWin_zonA.y	staWin[:]	1	staWin[:]	60	31	staWin[:]	86	33
uZonPreResReq	reqResPZon.y	reqResPZon	1	TZonHeaSet	57	48	reqResPZon	91	82
uZonTemResReq	reqResTZon.y	reqResTZon	1	TZonHeaSet	57	48	reqResTZon	91	82
TSupSet	TSupSet.T	TSupSet	О	TSupSet	100	73	TSupSet	88	62
yCoo	valCoo.y	yValCoo	О	yValCoo	73	43	yValCoo	80	47
уНеа	valHea.y	yValHea	О	yValHea	73	43	yValHea	80	40
yOutDamPos	eco.yOut	yDamOut	О	yDamOut	59	47	yDamOut	53	50
yRetDamPos	eco.yRet	yDamRet	О	yDamOut	59	47	reqResT	53	53
ySupFanSpe	fanSup.y	yFanSup	О	yFanSup	71	59	yFanSup	80	50
pStaDuc	pStaDuc.p_rel	pStaDuc	1	pStaDuc	100	100	pStaDuc	70	70
reqResTZon[nin].u	conVAVBox_zonA.yReqResT	reqResTZon[:]	1	reqResTZon[:]	91	74	reqResT[:]	56	50
uReqResP	reqResP.y	reqResP	1	reqResP	93	80	reqResP	88	75
uReqResT	reqResT.y	reqResT	1	reqResT	93	80	reqResT	88	75

Fig. 3.10: Fuzzy string matching test case – G36 VAV AHU Controller

3.4.4.3 Validation and Additional Requirements

The use of expandable connectors (control bus) is validated in case of a complex controller, see Section 5.3.

Note: Connectors with conditional instances must be connected to the bus variables with the same conditional statement e.g.

```
if have_occSen then
    connect(ahuSubBusI.nOcc[1:numZon], nOcc[1:numZon])
end if;
```

With Dymola, bus variables cannot be connected to array connectors without explicitly specifying the indices range. Using the unspecified [:] syntax yields the following translation error.

```
Failed to expand conAHU.ahuSubBusI.nOcc[:] (since element does not exist) in connect(conAHU. 

--ahuSubBusI.nOcc[:], conAHU.nOcc[:]);
```

Providing an explicit indices range e.g. [1:numZon] like in the previous code snippet only causes a translation warning: Dymola seems to allocate a default dimension of **20** to the connector, the unused indices (from 3 to 20 in the example hereunder) are then removed from the simulation problem since they are not used in the model.

```
Warning: The bus-input conAHU.ahuSubBusI.VDis_flow[3] matches multiple top-level connectors_
in the connection sets.

Bus-signal: ahuI.VDis_flow[3]

Connected bus variables:
ahuSubBusI.VDis_flow[3] (connect) "Connector of Real output signal"
conAHU.ahuBus.ahuI.VDis_flow[3] (connect) "Primary airflow rate to the ventilation zone from_
the air handler, including outdoor air and recirculated air"
ahuBus.ahuI.VDis_flow[3] (connect)
conAHU.ahuSubBusI.VDis_flow[3] (connect)
```

This is a strange behavior in Dymola. On the other hand JModelica 1) allows the unspecified [:] syntax and 2) does not generate any translation warning when explicitly specifying the indices range. JModelica's behavior seems more aligned with [Mod17] §9.1.3 Expandable Connectors that states: "A non-parameter array element may be declared with array dimensions ":" indicating that the size is unknown." The same logic as JModelica for array variables connections to expandable connectors is required for LinkageJS.

3.4.4.4 Additional Requirements for the UI

Based on the previous validation case, Fig. 3.11 presents the Dymola pop-up window displayed when connecting the sub-bus of input control variables to the main control bus. A similar view of the connections set must be implemented with the additional requirements listed below. That view is displayed in the connections tab of the right panel.

The variables listed immediately after the bus name are either:

Fig. 3.11: Dymola pop-up window when connecting the sub-bus of input control variables (left) to the main control bus (right) – case of outside connectors

- declared variables that are not connected e.g. ahuBus.yTest (declared as Real in the bus definition): those
 variables are only potentially present and eventually considered as undefined when translating the model (treated
 by Dymola as if they were never declared) or,
- present variables i.e. variables that appear in a connect equation e.g. ahuSubBusI.TZonHeaSet: the icon next to each variable then indicates the causality. Those variables can originally be either declared variables or variables elaborated by the augmentation process for that instance of the expandable connector i.e. variables that are declared in another component and connected to the connector's instance.

The variables listed under Add variable are the remaining *potentially present variables* (in addition to the declared but not connected variables). Those variables are elaborated by the augmentation process for *all instances* of the expandable connector, however they are not connected in that instance of the connector.

In addition to Dymola's features for handling the bus connections, LinkageJS requires the following:

- · Color code to distinguish between:
 - Variables connected only once (within the entire augmentation set): those variables should be listed first and
 in red color. This is needed so that the user immediately identify which connections are still required for the
 model to be complete.

Warning: Dymola does not throw any exception when a *declared* bus variable is connected to an input (resp. output) variable but not connected to any other non input (resp. non output) variable. It then uses the default value (0 for Real) to feed the connected variable.

That is not the case if the variable is not declared i.e. elaborated by augmentation: in that case it has to be connected in a consistent way.

JModelica throws an exception in any case with the message The following variable(s) could not be matched to any equation.

- Declared variables which are only potentially present (not connected): those variables should be listed last (not first as in Dymola) and in light grey color. That behavior is also closer to [Mod17] §9.1.3 Expandable Connectors: "variables and non-parameter array elements declared in expandable connectors are marked as only being potentially present. [...] elements that are only potentially present are not seen as declared."
- View the "expanded" connection set of an expandable connector in each level of composition that covers several topics:
 - The user can view the connection set of a connector simply by selecting it and without having to make an actual connection (as in Dymola).
 - The user can view the name of component and connector variable to which the expandable connector's variables are connected: similar to Dymola's function Find Connection accessible by right-clicking on a connection line.
 - From [Mod17] §9.1.3 Expandable Connectors: "When two expandable connectors are connected, each is
 augmented with the variables that are only declared in the other expandable connector (the new variables are
 neither input nor output)."

That feature is illustrated in the minimal example Fig. 3.12 where a sub-bus <code>subBus</code> with declared variables <code>yDeclaredPresent</code> and <code>yDeclaredNotPresent</code> is connected to the declared sub-bus <code>bus.ahuI</code> of a bus. <code>yDeclaredPresent</code> is connected to another variable so it is considered present. <code>yDeclaredNotPresent</code> is not connected so it is only considered potentially present. Finally

yNotDeclaredPresent is connected but not declared which makes it a present variable. Fig. 3.13 to Fig. 3.15 then show which variables are exposed to the user. In consistency with [Mod17] the declared variables of subBus are considered declared variables in bus.ahuI due to the connect equation between those two

instances and they are neither input nor output. Furthermore the present variable <code>yNotDeclaredPresent</code> appears in <code>bus.ahuI</code> under <code>Add variable</code> i.e. as a potentially present variable whereas it is a present variable in the connected sub-bus <code>subBus</code>.

- * This is an issue for the user who will not have the information at the bus level of the connections which are required by the sub-bus variables e.g. Dymola will allow connecting an output connector to bus. ahuI.yDeclaredPresent but the translation of the model will fail due to Multiple sources for causal signal in the same connection set.
- * Directly connecting variables to the bus (without intermediary sub-bus) can solve that issue for outside connectors but not for inside connectors, see below.
- Another issue is illustrated Fig. 3.15 where the connection to the bus is now made from an outside component for which the bus is considered as an inside connector. Here Dymola only displays declared variables of the bus (but not of the sub-bus) but without the causality information and even if it is only potentially present (not connected). Present variables of the bus or sub-bus which are not declared are not displayed. Contrary to Dymola, LinkageJS requires that the "expanded" connection set of an expandable connector be exposed, independently from the level of composition. That means exposing all the variables of the augmentation set as defined in [Mod17] 9.1.3 Expandable Connectors. In our example the same information displayed in Fig. 3.13 for the original sub-bus should be accessible when displaying the connection set of bus.ahuI whatever the current status (inside or outside) of the connector bus. A typical view of the connection set of expandable connectors for LinkageJS could be:

Table 3.3: Typical view of the connection set of expandable connectors – visible from outside component (connector is inside), "Present" and "I/O" columns display the connection status over the full augmentation set

Variable	Present	Declared	I/O	Description
bus				
var1 (present variable connected only	х	0	\rightarrow compl.var1	
once: red color)				
var2 (present variable connected twice:	х	0	comp2.var1 \rightarrow	
default color)			comp1.var2	
var3 (declared variable not connected:	0	х		
light grey color)				
Add variable				
var4 (variable elaborated by augmenta-	0	0		
tion from all instances of the connector:				
light grey color)				
subBus				
var5 (present variable connected only	х	0	comp3.var5 \rightarrow	
once: red color)				
Add variable				
var6 (variable elaborated by augmenta-	0	0		
tion from all instances of the connector:				
light grey color)				

3.4.4.5 Parameters Setting

To be updated.

Fig. 3.12: Minimal example of sub-bus to bus connection illustrating how the bus variables are exposed in Dymola – case of outside connectors

Fig. 3.13: Sub-bus variables being exposed in case the sub-bus is an outside connector

Fig. 3.14: Bus variables being exposed in case the bus is an outside connector

Fig. 3.15: Bus variables being exposed in case the bus is an inside connector

The name and comment of the instance must be displayed in the parameters tab.

3.5 Schematics Export

Fig. 3.16: Mockup of the schematics export – Input Modelica file

3.6 Working with Tagged Variables

To be updated: specify the requirements for tagging variables and performing some queries of the set of tagged variables Set up parameters values with OS measures e.g. nominal electrical loads or boiler efficiency

3.7 OpenStudio Integration

To be updated.

Fig. 3.17: Mockup of the schematics export – Output file (format to be specified: Word or PDF)

3.8 Interface with URBANopt GeoJSON

To be updated.

3.9 Encryption

See current standardization effort in #1868.

3.10 Licensing

To be updated cf. licensing strategy different for each integration target

Software Architecture

Fig. 4.1 presents the envisioned software architecture for the desktop app.

Fig. 4.1: Software architecture - Desktop app

Annex

5.1 Example of the Configuration Data Structure

Listing 5.1: Partial example of the configuration data structure for an air handling unit (pseudo-code, especially for autoreferencing the data structure and writing conditional statements)

```
"type": {
    "$id": "#type",
    "description": "System type",
    "value": "AHU"
"subtype": {
    "$id": "#subtype",
    "description": "Type of AHU",
    "widget": {
       "type": "Dropdown",
        "options": ["VAV", "DOA", "Supply only", "Exhaust only"]
    },
    "value": "VAV"
},
"name": {
    "$id": "#name",
    "description": "Model name",
    "widget": {
       "type": "Text input"
    "value": "AHU"
},
"fluid_paths": [
        "$id": "#air_supply",
```

```
"direction": "east",
           "medium": "Buildings.Media.Air"
       },
           "$id": "#air_return",
           "direction": "west",
           "medium": "Buildings.Media.Air"
   ],
   "icon": "path of icon.mo",
   "diagram": {
       "configuration": [24, 24],
       "modelica": [[-120,-200], [120,120]]
   "equipment": [
           "$id": "#heaRec",
           "description": "Heat recovery",
           "enabled": "#subtype.value == 'DOA'",
           "widget": {
               "type": "Dropdown menu",
               "options": ["None", "Fixed plate", "Enthalpy wheel", "Sensible wheel"]
           },
           "value": "None",
           "declaration": [
               null,
               "Buildings.Fluid.HeatExchangers.PlateHeatExchangerEffectivenessNTU",
               "Buildings.Fluid.HeatExchangers.EnthalpyWheel",
               "Buildings.Fluid.HeatExchangers.EnthalpyWheel(sensible=true)"
           "icon_transformation": "flipHorizontal",
           "placement": [18, 6],
           "connect": {
               "type": "tags",
               "value": {
                   "port_a1": "air_return_inlet", "port_a2": "air_supply_inlet", "port_b1":
→"air_return_outlet", "port_b2": "air_supply_outlet"
       },
           "$id": "#eco",
           "description": "Economizer",
           "enabled": "#subtype.value == 'VAV'",
           "widget": {
               "type": "Dropdown menu",
               "options": ["None", "Dedicated OA damper", "Common OA damper"]
           "value": "None",
```

```
"declaration": [
                "Buildings.Fluid.Actuators.Dampers.MixingBoxMinimumFlow",
                "Buildings.Fluid.Actuators.Dampers.MixingBox"
            ],
            "icon_transformation": "flipVertical",
            "placement": [18, 9],
            "connect": {
                "type": "tags",
                "value": {
                    "port_Out": "air_supply_out_inlet", "port_OutMin": "air_supply_min_inlet
→", "port_Sup": "air_supply_outlet",
                    "port_Exh": "air_return_outlet", "port_Ret": "air_return_inlet"
            }
       },
            "$id": "#V_flowOut_nominal",
            "description": "Nominal outdoor air volumetric flow rate",
            "enabled": "#eco.value != 'None'",
            "widget": {
                "type": "Numeric input"
            "declaration": "Modelica.SIunits.VolumeFlowRate",
            "value": 0,
            "unit": "m3/s"
       },
            "$id": "#fanSup",
            "description": "Supply fan",
            "enabled": "#subtype.value != 'Exhaust only'",
            "widget": {
               "type": "Dropdown menu",
                "options": ["None", "Draw through", "Blow through"]
            "value": "Draw through",
            "declaration": "Buildings.Fluid.Movers.SpeedControlled_y (m_flow_nominal=m_
→flowSup_nominal)",
            "placement": [null, [18, 11], [18, 18]],
            "connect": {
               "value": "air_supply"
       },
            "$id": "#V_flowSup_nominal",
            "description": "Nominal supply air volumetric flow rate",
            "enabled": "#fanSup.value != 'None'",
            "widget": {
                "type": "Numeric input"
                                                                                (continues on next page)
```

```
},
        "value": 0,
        "unit": "m3/h"
    },
        "$id": "#fanRet",
        "description": "Return/Relief fan",
        "enabled": "#subtype.value != 'Supply only'",
        "widget": {
            "type": "Dropdown menu",
            "options": ["None", "Return", "Relief"]
        "value": "Relief",
        "declaration": [
            null,
            "Buildings.Fluid.Movers.SpeedControlled_y(m_flow_nominal=m_flowRet_nominal)",
            "Buildings.Fluid.Movers.SpeedControlled_y (m_flow_nominal=m_flowRel_nominal)"
        ],
        "icon_transformation": "flipHorizontal",
        "placement": [null, [14, 13], [14, 4]],
        "connect": {
            "value": "air_return"
    },
        "$id": "#V_flowRet_nominal",
        "description": "Nominal return air volumetric flow rate",
        "enabled": "#fanRet.value != 'None'",
        "widget": {
            "type": "Numeric input"
        "value": 0,
        "unit": "m3/h"
    }
],
"controls": [
        "$id": "#conAHURef",
        "description": "Reference guideline for control sequences",
        "widget": {
            "type": "Dropdown menu",
            "options": ["None", "ASHRAE 2006", "ASHRAE G36"]
        },
        "value": "None"
    },
        "$id": "#conAHUOpt",
        "description": "Optimal start up",
        "widget": {
```

```
"type": "Dropdown menu",
               "options": ["None", "Heating", "Cooling", "Heating and cooling"],
           },
           "value": "None",
           "declaration": [null,
               "Buildings.Controls.OBC.CDL.Utilities.OptimalStartUp(mode=#conAHUOpt.value)",
               "Buildings.Controls.OBC.CDL.Utilities.OptimalStartUp(mode=#conAHUOpt.value)",
               "Buildings.Controls.OBC.CDL.Utilities.OptimalStartUp(mode=#conAHUOpt.value)"
           1
       },
           "$id": "#conFanSup",
           "description": "Supply fan control",
           "enabled": "#fanSup.value != 'None'",
           "widget": {
               "type": "Text"
       },
           "$id": "#conFanSupStaSto",
           "description": "Supply fan start/stop control",
           "enabled": "#conFanSup.widget.enabled",
           "widget": {
               "type": "Dropdown menu",
               "options": ["On-Off", "Static Pressure Control"],
               "options.enabled": ["#conAHURef.value != 'ASHRAE G36'", true]
           },
           "value": "if #conAHURef.value == null then 'On-Off' elseif #conAHURef.value ==
→'ASHRAE G36' then 'Static Pressure Control'",
           "declaration": ["..."]
       },
           "$id": "#resPreStaSet",
           "description": "Static pressure set point reset",
           "enabled": "#conFanSup.widget.enabled",
           "widget": {
               "type": "Dropdown menu",
               "options": ["None", "T&R"],
               "options.enabled": ["#conAHURef.value != 'ASHRAE G36'", true]
           "value": "if #conAHURef.value == null then 'None' elseif #conAHURef.value ==
→'ASHRAE G36' then 'T&R'",
           "declaration": ["..."]
       },
           "$id": "#conTAirSup",
           "description": "Supply Air Temperature Control",
           "enabled": "#fanSup.value != 'None'",
           "widget": {
```

```
"type": "Text"
           }
       },
           "$id": "#resTSupSet",
           "description": "Supply air temperature set point reset",
           "enabled": "#conTAirSup.widget.enabled",
           "widget": {
               "type": "Dropdown menu",
               "options": ["None", "OAT Reset", "OAT and T&R"],
               "options.enabled": ["#conAHURef.value != ('ASHRAE G36' or 'ASHRAE 2006')", "
→#conAHURef.value != 'ASHRAE G36'", true]
           },
           "value": "if #conAHURef.value == null then 'None' else 'OAT and T&R'",
           "declaration": ["..."]
       },
           "$id": "#numZon",
           "description": "Number of served VAV boxes",
           "enabled": "#conTAirSup.widget.enabled and #resTSupSet.value == 'OAT and T&R'",
           "widget": {
               "type": "Numeric input"
           "value": null
   ],
   "dependencies": [
           "$id": "#port_outAir",
           "description": "Outside air port",
           "enabled": "#subtype.value != 'Exhaust only'",
           "declaration": "Modelica.Fluid.Interfaces.FluidPort_a (redeclare package Medium=
→#air_supply.medium)",
           "placement": [18, 1],
           "connect": {
               "value": "air_supply"
       },
           "$id": "#port_supAir",
           "description": "Supply air port",
           "enabled": "#subtype.value != 'Exhaust only'",
           "declaration": "Modelica.Fluid.Interfaces.FluidPort_b (redeclare package Medium=
→#air_supply.medium)",
           "placement": [18, 24],
           "connect": {
               "value": "air_supply"
       },
```

```
"$id": "#senFloOut",
           "description": "Outdoor airflow measurement station",
           "enabled": "#eco.value != 'None'",
           "declaration": "Buildings.Fluid.Sensors.VolumeFlowRate (redeclare package Medium=
→#air_supply.medium)",
           "placement": "if #eco.value == 'Dedicated OA damper' then [20, 5] else [18, 5]",
           "connect": {
               "value": "if #eco.value == 'Dedicated OA damper' then 'air_supply_min' else
→'air_supply_out'"
           }
       },
           "$id": "#m_flowOut_nominal",
           "description": "Nominal outdoor air mass flow rate",
           "enabled": "#V_flowOut_nominal.enabled",
           "declaration": "Modelica.SIunits.MassFlowRate",
           "value": "(#air_supply.medium).rho_default / 3600 * V_flowOut_nominal",
           "protected": true
       },
           "$id": "#m_flowSup_nominal",
           "description": "Nominal supply air mass flow rate",
           "enabled": "#V_flowSup_nominal.enabled",
           "declaration": "Modelica.SIunits.MassFlowRate",
           "value": "(#air_supply.medium).rho_default / 3600 * V_flowSup_nominal",
           "protected": true
       },
           "$id": "#m_flowRet_nominal",
           "description": "Nominal return air mass flow rate",
           "enabled": "#V_flowRet_nominal.enabled",
           "declaration": "Modelica.SIunits.MassFlowRate",
           "value": "(#air_supply.medium).rho_default / 3600 * V_flowRet_nominal",
           "protected": true
       },
           "$id": "#m_flowRel_nominal",
           "description": "Nominal relief air mass flow rate",
           "enabled": "#eco.value != 'None'",
           "declaration": "Modelica.SIunits.MassFlowRate",
           "value": "m_flowRet_nominal - m_flowSup_nominal + m_flowOut_nominal",
           "protected": true
       }
   ]
```

5.2 Illustration of the Main Features of the Expandable Connectors

The main features of the expandable connectors (as described in Section 3.4.4) are illustrated with a minimal example described in the figures below where:

- a controlled system consisting in a sensor (idealized with a real expression) and an actuator (idealized with a simple block passing through the value of the input control signal) is connected with,
- a controller system which divides the input variable (measurement) by itself and thus outputs a control variable equal to one.
- The same model is first implemented with an expandable connector and then with a standard connector.

Fig. 5.1: Minimal example illustrating the connection scheme with an expandable connector - Top level

```
model BusTestExp
BusTestControllerExp controllerSystem;
BusTestControlledExp controlledSystem;
equation
        connect(controllerSystem.ahuBus, controlledSystem.ahuBus);
end BusTestExp;
```


Fig. 5.2: Minimal example illustrating the connection scheme with an expandable connector – Controlled component sublevel

```
connect(ahuBus.yAct, actuator.u);
end BusTestControlledExp;

expandable connector AhuBus
extends Modelica.Icons.SignalBus;
end AhuBus;
```

Note: The definition of AhuBus in the code snippet here above does not include any variable declaration. However the variables ahuBus.yAct and ahuBus.yMea are used in connect equations. That is only possible with an expandable connector.

Fig. 5.3: Minimal example illustrating the connection scheme with an expandable connector - Controller component sublevel

Fig. 5.4: Minimal example illustrating the connection scheme with a standard connector - Top level

Fig. 5.5: Minimal example illustrating the connection scheme with a standard connector - Controlled component sublevel

```
model BusTestControlledNonExp
Modelica.Blocks.Sources.RealExpression sensor(y=2 + sin(time*3.14));
Modelica.Blocks.Routing.RealPassThrough actuator;
BaseClasses.NonExpandableBus nonExpandableBus;
equation
    nonExpandableBus.yMea = sensor.y;
    actuator.u = nonExpandableBus.yAct;
end BusTestControlledNonExp;
connector NonExpandableBus
```

```
connector NonExpandableBus
// The following declarations are required.
// The variables are not considered as connectors: they cannot be part of connect equations.
Real yMea;
Real yAct;
end NonExpandableBus;
```


Fig. 5.6: Minimal example illustrating the connection scheme with a standard connector - Controller component sublevel

5.3 Validation of the Use of Expandable Connectors

The use of expandable connectors (control bus) is validated in case of a complex controller (Buildings.Controls.OBC.ASHRAE.G36_PR1.AHUs.MultiZone.VAV.Controller).

The validation is performed:

- with Dymola (Version 2020, 64-bit, 2019-04-10) and JModelica (revision numbers from svn: JModelica 12903, Assimulo 873);
- first with a single instance of the controller and then with multiple instances corresponding to different parameters set up (see validation cases of the original controller Validation. Controller and Validation. ControllerConfigurationTest),
- with nested expandable connectors: a top-level control bus composed of a first sub-level control bus for control output variables and another for control input variables.

Simulation succeeds for the two tests cases with the two simulation tools. The results comparison to the original test case (without control bus) is presented in Fig. 5.7 for Dymola.

Fig. 5.7: G36 AHU controller model: comparison of simulation results (Dymola) between implementation without (origin) and with (new_bus) expandable connectors

Glossary

To be updated.

Analog Value In CDL, we say a value is analog if it represents a continuous number. The value may be presented by an analog signal such as voltage, or by a digital signal.

Binary Value In CDL, we say a value is binary if it can take on the values 0 and 1. The value may however be presented by an analog signal that can take on two values (within some tolerance) in order to communicate the binary value.

Building Model Digital model of the physical behavior of a given building over time, which accounts for any elements of the building envelope and includes a representation of internal gains and occupancy. Building model has connectors to be coupled with an environment model and any HVAC and non-HVAC system models pertaining to the building.

Acknowledgments

To be updated.

References

- [Bri] Brick A Uniform Metadata Schema for Buildings. URL: https://brickschema.org/#home.
- [Hay] Project Haystack 4 An Open Source initiative to streamline working with IoT Data. URL: https://project-haystack.dev.
- [Mod17] *Modelica A Unified Object-Oriented Language for Physical Systems Modeling, Language Specification, Version 3.4.* Modelica Association, April 2017. URL: https://www.modelica.org/documents/ModelicaSpec34.pdf.
- [LBNL19] OpenBuildingControl Specification. LBNL, 2019. URL: https://obc.lbl.gov/specification/index.html.

Index

Α

Analog Value, 47

В

Binary Value, 47
Building Model, 47