ELEMENTOS FINITOS II - 31.92

ESTUDIO TÉCNICO DE UN SATÉLITE DE TITANIO UTILIZANDO EL MÉTODO DE ELEMENTOS FINITOS

Autor

PATRICIO WHITTINGSLOW - 55423

Fecha de realización: 24 de junio de 2019
Fecha de entrega:
Firma del docente:

Glosario

[C] Matriz de capacidad térmica.

{R} Vector de cargas térmicas.

{T} Vector de Temperaturas.

[K] Matriz de conductividad.

Objetivo

Se va efectuar un pequeño estudio térmico de un satélite ubicado en el espacio profundo. El problema será resuelto mediante el método de elementos finitos y se analizaran las limitaciones de la resolución.

Hipótesis

- Material isótropo y homogéneo
- Propiedades sin dependencia de variables termodinámicas

Método

El satélite será modelado como un cubo de titanio macizo. Este se encuentra en el vacío del espacio profundo, el cual tiene una temperatura $T_{\rm CMBR}=2,7$ K. El modelo se simplifica tomando solo una octava parte del satélite, aprovechando la doble simetría.

El satélite tiene lados de longitud L=0,8m. Las propiedades del titanio son las siguientes:

- $c_n = 528 \text{J kg}^{-1} \text{K}^{-1}$
- $\rho = 4500 \text{kg m}^{-3}$
- $k = 17 \text{W m}^{-1} \text{ K}$

Las condiciones de operación son las siguientes

- El centro del satélite opera a 300K.
- El satélite genera $q_G = 2 \text{kW m}^{-3}$
- El calor radiado tomando en cuenta el factor de forma queda $q_r = 1.417 \times 10^{-8} \, \text{W/m}^2/\text{K}^4 \cdot \left(T^4 T_{\text{CMBR}}^4\right)$

Para la resolución se dividió el satélite en 64 elementos H8.

Las condiciones de borde son las siguientes

- Se fija el punto central del satélite a 300K
- Las superficies expuestas del satélite intercambian calor con el entorno según la ecuación mencionada anteriormente

Se comienza la iteración fijando las temperaturas en 300 grados kelvin y termina la iteración una vez llegado a un error aceptable (ecuación 1)

$$e_{\text{convergencia}} = \frac{||\{\mathbf{T}\}^{n+1} - \{\mathbf{T}\}^n||}{||\{\mathbf{T}\}^n||} < 10^{-8}$$
(1)

Resultados

Se puede observar en la figura 1 como la solución converge tal que la superficie es más caliente que el interior del satélite.

Figura 1: Evolución de temperaturas. T_s es la temperatura de la superficie radiante. T_i es la temperatura del nodo interior vecino a la superficie (central a la superficie).

Figura 2: x = 0,4m es el centro del satélite y x = 0m es la superficie.

Figura 3: x = 0,4m es en el borde del satélite y x = 0m es en el centro de la superficie.