Lucinara Fernandes

Universidade Federal do Ceará - campus Sobral Programa de Educação Tutorial (PET)

August 24, 2019

Sumário

- Introdução
- 2 Noções sobre Grafos
- 3 Teorema de Ramsey para grafos
- 4 Número de Ramsey
- 5 Size-Ramsey number

Introdução

- Frank Plumpton Ramsey;
- "On a problem of formal logic";
- Teoria de Ramsey;
 - busca regularidade em meio a desordem;
 - possibilidade de encontrar um grau de ordem em um conjunto desordenado;

Figure: F. P. Ramsey

• Um grafo ilustra as ligações ou as relações entre objetos.

Figure: Exemplo de grafo

• Um grafo ilustra as ligações ou as relações entre objetos.

Figure: Exemplo de grafo

Definição 1

Um grafo G = (V, E) é constituído por um conjunto (finito e não-vazio) V de vértices e um conjunto E de arestas. Cada aresta é um par não-ordenado de vértices distintos (conjunto de cardinalidade 2). Se uma aresta corresponde ao par de vértices i, j, dizemos que i e j são as extremidades da aresta.

. / 2

• Ordem: número de vértices em um grafo;

- Ordem: número de vértices em um grafo;
- Grau de um vértice V (gr(V)): número de arestas conectadas a um dado vértice;

- Ordem: número de vértices em um grafo;
- Grau de um vértice V (gr(V)): número de arestas conectadas a um dado vértice;
- Grafo completo: grafo em que há uma aresta conectando cada par de vértices distintos. (K_n , grafo completo com n vértices);

- Ordem: número de vértices em um grafo;
- Grau de um vértice V (gr(V)): número de arestas conectadas a um dado vértice;
- Grafo completo: grafo em que há uma aresta conectando cada par de vértices distintos. (K_n , grafo completo com n vértices);
- Grafo bicolorido: grafo em que as arestas são coloridas com apenas duas cores distintas. Um grafo será monocromático se todas arestas forem da mesma cor;

- Ordem: número de vértices em um grafo;
- Grau de um vértice V (gr(V)): número de arestas conectadas a um dado vértice;
- Grafo completo: grafo em que há uma aresta conectando cada par de vértices distintos. (K_n , grafo completo com n vértices);
- Grafo bicolorido: grafo em que as arestas são coloridas com apenas duas cores distintas. Um grafo será monocromático se todas arestas forem da mesma cor;
- Subgrafo G'=(V',E') de um grafo G=(V,E) é um grafo tal que $V'\subset V$ e $E'\subset E$.

Teorema de Ramsey para Duas Cores

Sejam s e t inteiros positivos. Existe um menor inteiro positivo R=R(s,t) tal que toda a coloração de arestas de K_R , com as cores vermelho e azul, admite um subgrafo K_s vermelho ou um subgrafo K_t azul.

Exemplo 1 - "Problema da festa"

Em uma festa com seis pessoas, existe três pessoas que são mutualmente conhecidas entre si ou três pessoas que são mutualmente estranhas entre si.

Exemplo 1 - "Problema da festa"

Em uma festa com seis pessoas, existe três pessoas que são mutualmente conhecidas entre si ou três pessoas que são mutualmente estranhas entre si.

Figure: Problema da festa

Teorema de Ramsey para grafos multicoloridos

Para quaisquer r números naturais, $a_1, a_2, ..., a_r$, existe um número natural, $R(a_1, a_2, ..., a_r) = n$, tal que qualquer grafo completo multicolorido de ordem pelo menos n, colorido com r cores distintas, deve conter um monocromático Ka_1 da cor 1 ou um monocromático Ka_2 da cor 2 ou um monocromático Ka_3 da cor 3, e assim sucessivamente.

Número de Ramsey

Definição

Ordem do menor grafo completo que, quando bicolorido, deve conter um K_s azul ou um K_t vermelho.

Número de Ramsey

Definição

Ordem do menor grafo completo que, quando bicolorido, deve conter um K_s azul ou um K_t vermelho.

Consequências

- R(s,t) = R(t,s);
- R(s,1) = 1;
- R(s,2) = s.

Número de Ramsey

I	3	4	5	6	7	8	9	10	11	12	13	14	15
k													
3	6		14	18	23	28	36	40	47	53	60	67	74
		9						42	50	59	68	77	87
4		18	25	36	49	59	73	92	102	128	138	147	155
				41	61	84	115	149	191	238	291	349	417
5			43	58	80	101	133	149	183	203	233	267	269
			48	87	143	216	316	442	633	848	1138	1461	1878
6				102	115	134	183	204	256	294	347		401
				165	298	495	780	1171	1804	2566	3703	5033	6911
7					205	217	252	292	405	417	511		
					540	1031	1713	2826	4553	6954	10578	15263	22112
8						282	329	343			817		865
						1870	3583	6090	10630	16944	27485	41525	63609
9							565	581					
							6588	12677	22325	38832	64864		
10								798					1265
								23556	45881	81123			

Figure: Alguns valores de número de Ramsey para grafos bicoloridos [Radziszowski 17']

Size-Ramsey number

Teorema 2 [Erdős 78']

$$\widehat{r}(H) = \min\left\{|E(G)|: G \to (H)_2\right\}$$

Size-Ramsey number

Teorema 2 [Erdős 78']

$$\widehat{r}(H) = \min\{|E(G)| : G \to (H)_2\}$$

Teorema 3 [Conlon 15']

Dados os grafos G e H e um inteiro positivo q temos que G é q-Ramsey para H, denotado $G \to (H)_q$, se toda q-coloração das arestas de G contiver uma cópia monocromática de H.

Referências

- G. A. M. J. Soares. O Teorema de Ramsey e outros resultados de combinatória. IMPA.
- S. P. Radziszowski. Small Ramsey Numbers. Rochester Institute of Technology, 2017
- B. Landman and A. Robertson. Ramsey Theory on the Integers. Student mathematical library. American Mathematical Society, 2004
- O. Conlon, J. Fox, and B. Sudakov, Recent developments in graph Ramsey theory, Surveys in combinatorics 2015, 2015, pp. 49–118.
- P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp, The size Ramsey number, Period. Math. Hungar. 9 (1978), no. 1-2, 145–161