

Spotify Regression Project

Shai Finger August 2021

Overview

- Dataset and Objective
- EDA
- Preprocessing
- Feature Engineering
- Regression Models
- Summary and Future Directions

Data and Objective

The dataset chosen for this project has 170,653 rows, each representing one music track on Spotify originally released between 1921 to Nov. 2020.

The 19 columns of the dataset contain various features of the tracks:

- 1. Valence (Float ranging 0 to 1)
- 2. Year (Release year)
- 3. Acousticness (Float ranging 0 to 1)
- 4. Artists (List of artists)
- 5. Danceability (Float ranging 0 to 1)
- 6. Duration ms (Integer)
- 7. Energy (Float ranging 0 to 1)
- 8. Explicit (0 /1)
- 9. id (Unique string track generated by Spotify)
- 10. Instrumentalness (Float ranging 0 to 1)

- 11. Key (Key encoding 0 to 11 C = 0, C# = 1, etc.)
- 12. Liveness (Float ranging 0 to 100)
- 13. Loudness (Float typically ranging from -60 to 0)
- 14. Mode (0: Minor / 1: Major)
- 15. Name (Name of the song)
- **16.** Popularity (Float ranging 0 to 100)
- 17. Release_date
- 18. Speechiness (Float ranging 0 to 100)
- 19. Tempo (Float typically ranging from 50 to 150)

Objective

Attempt to predict the popularity of a contemporary track (song) on Spotify based on the track's features.

EDA (1/5)

- Original data set has 170,653 rows, each representing one track originally released between 1921 to Nov. 2020.
- Since we are trying to predict the popularity of a contemporary or new song, tracks released before 2011 were dropped – leaving us with 19,788 tracks released in the last decade.
- Initial analysis:
 - 1. No missing values.
 - No duplicates found.
 - 3. However, after dropping the unique "id" feature, 39 duplicate rows were found and removed, resulting in 19,749 rows.
- Preliminary transformations:
 - 1. Converted duration from milliseconds to minutes.
 - 2. Added textual values of modality (minor, major) for graphs and easier analysis.
 - 3. Added textual values of keys (C,D,E,etc.) for graphs and easier analysis.
 - 4. Added textual explanation of explicitness ("Explicit", "Not explicit or unknown").

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19749 entries, 0 to 19748
Data columns (total 18 columns):
     Column
                       Non-Null Count
     valence
                       19749 non-null float64
                       19749 non-null int64
     year
     acousticness
                       19749 non-null float64
     artists
                       19749 non-null object
     danceability
                      19749 non-null float64
    duration ms
                       19749 non-null int64
     energy
                       19749 non-null float64
     explicit
                       19749 non-null int64
     instrumentalness 19749 non-null float64
                       19749 non-null int64
     key
     liveness
                       19749 non-null float64
     loudness
                       19749 non-null float64
     mode
                       19749 non-null int64
 13
     name
                       19749 non-null object
    popularity
                       19749 non-null int64
     release date
                      19749 non-null object
     speechiness
                       19749 non-null float64
    tempo
                       19749 non-null float64
dtypes: float64(9), int64(6), object(3)
memory usage: 2.7+ MB
```

EDA (2/5)

Most numerical features are on a 0-1 scale

Potential outliers:

- Duration
- Tempo

Rescale to 0 to 1?

- Duration
- Tempo
- Loudness
- Popularity

What the f%\$#?

Instrumentalness

EDA (3/5)

Instrumentalness

count	19749.000000
mean	0.080618
std	0.235063
min	0.000000
25%	0.000000
50%	0.000002
75%	0.000717
max	1.000000

Decision:

Split to 3 categories:

- 1. under 0.2
- 2. between 0.2 and 0.8
- 3. over 0.8

Loudness

count	19749.000000
mean	-7.479523
std	4.624972
min	-54.837000
25%	-8.530000
50%	-6.421000
75%	-4.896000
max	1.023000

Decision:

1. Rescale to 0-1 using MinMax

Tempo

count	19749.000000
mean	120.888211
std	30.285489
min	0.000000
25%	97.031000
50%	120.931000
75%	140.081000
max	220.099000

Decision:

- 1. Drop tracks with tempo=0 (68 tracks)
- 2. Rescale to 0-1 using MinMax

Duration

count	19749.000000
mean	3.701432
std	1.357751
min	0.505017
25%	3.082667
50%	3.561783
75%	4.099467
max	90.058333

Decision:

- 1. Drop outliers using 3 stdev (265 tracks)
- 2. Rescale to 0-1 using MinMax

Popularity

rity Decision

Decision:Divide by 100 to rescale to 0-1

Result: loss of 333 rows (1.7%)

Data Enrichment

- 1. Added new feature "scale" combination of "key" (C) and "mode" (major) i.e. C# major, Bb minor, etc.
- 2. Added "days since release" computed # of days between release date and database date (scaled to 0-1)
- 3. Added "release month" extracted from "release date" i.e. Jan, Feb, Mar, etc.
- 4. Added new feature "release season" combination of months i.e. Dec, Jan, Feb -> "Winter", etc.

Feature Selection

With plotting it is difficult to see correlations with popularity

Correlation Matrix

-0.4

-0.2

- 0.0

- -0.2

Categorical Feature Correlation

Used one hot encoding (added 58 dummy variables) to examine correlation of categorical features with popularity using Pearson correlation visualizer. Dummies were then dropped and not used for regression.

Pre-processing (1/2)

Applied **target encoding** to transform 8 categorical features using means from the training set data.

- 1. Season means (popularity) will replace season categories.
- 2. Month means (popularity) will replace month categories.
- 3. Modality means (popularity) will replace mode categories.
- 4. Explicitness means (popularity) will explicitness categories.
- 5. Key means (popularity) will replace key categories.
- 6. Modality means (popularity) will replace mode categories.
- 7. Scale means (popularity) will replace scale categories.
- 8. Instrumental groups (popularity) will replace instrumentalness.

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 19416 entries, 0 to 19748
Data columns (total 8 columns):
     Column
                              Non-Null Count
    artists
                                              object
    modality
     key name
                                              object
    explicit detailed
                                              object
    instrumentalness groups 19416 non-null
                                              object
                                              object
    release month
                              19416 non-null object
                              19416 non-null object
     release season
dtypes: object(8)
memory usage: 1.3+ MB
```

release_s	season	releas	e month	explicit detailed		key_n	ame	modality		scale		instrumen	talness_groups
Fall	0.590752	Apr	0.591183	Known to be Explicit	0.626210	A	0.588178	Major	0.589274	A Major	0.594639	High	0.471395
Spring	0.599563	Aug	0.618209	Not Explicit or Unkmown	0.575851	Α#	0.602644	Minor	0.594483	A Minor	0.578377	Low	0.602602
Summer	0.617804	Dec	0.511941	*	C3 . C4	В	0.577196			A♯ Major	0.607895	Medium	0.504062
Winter	0.563598	Feb	0.623445			С	0.580888			A# Minor	0.597927		
		Jan	0.565928			C♯	0.599136			B Major	0.580414		
		Jul	0.613778			D	0.581571			B Minor	0.574596		
		Jun	0.620769			D♯	0.584408			C Major	0.572452		
		Mar	0.584581			E	0.593166			C Minor	0.607133		
		May	0.623063			F	0.604042			C♯ Major	0.598167		
		Nov	0.557107			F♯	0.603627			C# Minor	0.601439		
		Oct	0.611626			G	0.581205			D Major	0.579720		
		Sep	0.601819			G♯	0.603152						

Pre-processing (2/2)

8. Artists *

- Initially thought to drop this along with the name of the song.
- Artist means (popularity) will replace artist name when there are 3 or more rows from the same artist in the training set.
- Otherwise, will replace the artist's name with the overall popularity mean of the training set.
- In the testing set, an unknown artist will be replaced with the overall popularity mean of the training set .

artists 0.660 "Adolescents Orquesta" 0.620 "Aulii Cravalho" 0.620 "Aulii Cravalho", Vai Mahina, "Olivia Foai", "Opetaia Foai", Matthew Ineleo 0.515 "Bears Den" 0.580 "Childrens Music" ...

* This solution has 2 unsolved problems:

- a. Does not handle multiple artists on the same track (i.e. song by Bruno Mars and Beyonce). A combination is treated as a separate artist.
- b. Does not take time into account (the popularity of a track from a specific artist should only be influenced by the popularity of the artist's previous tracks).

Linear Regression

```
shape of original dataset: (19416, 19) shape of input - training set (15532, 18) shape of output - training set (15532,) shape of input - testing set (3884, 18) shape of output - testing set (3884,)
```

Metric	Train	Test
Mean Absolute Error (MAE)	0.076439	0.077052
Mean Squared Error (MSE)	0.013383	0.013103
Root Mean Square Error (RMSE)	0.115688	0.114470
R2	0.384753	0.341499

For popularity (unscaled) multiply RMSE X 100 (i.e. 11.5688 out of 100)

Regression Tree

Results for Regression Tree (max depth = 8)

Metric	Train	Test
Root Mean Square Error (RMSE)	0.096005	0.104603
R2	0.576377	0.450477

of Leaves = 140

R² vs. Max Depth of Tree

Optimal R2 score is 0.44363983549684305 when max depth = 8

RMSE vs. Max Depth of Tree

Optimal RMSE score is 0.10525253506234485 when max depth of tree = 8

Regression Tree

Results for Regression Tree (max depth = 8)

Metric	Train	Test
Root Mean Square Error (RMSE)	0.096005	0.104603
R2	0.576377	0.450477

of Leaves = 140

Full Tree

K Nearest Neighbors

K (# of nearest neighbors)	Root Mean Square Error (RMSE)		Accuracy Score			
Metric	Train	Test	Train	Train (CV=5)	Test	
5 (default)	0.094228	0.112206	0.591915	0.376604	0.367696	
11 (GridSearch)	0.103885	0.107961	0.512561	0.402489	0.414629	
19 (Loop)	0.107525	0.107156	0.468614	0.396945	0.423332	

Removing Outliers from Target

Remove outliers (3 stdev) from target?

Not sure we can allow a track to have a popularity of zero:

- Could be an error
- Track could be new
- Track may not have enough clicks for a score
- Other reasons

Linear Regression

With Popularity Outliers

Metric	Train	Test
Root Mean Square Error (RMSE)	0.115688	0.114470
R2	0.384753	0.341499

Without Popularity Outliers

Metric	Train	Test
Root Mean Square Error (RMSE)	0.071141	0.073387
R2	0.433742	0.381877

Regression Tree

With Popularity Outliers

Metric	Train	Test
Root Mean Square Error (RMSE)	0.096005	0.104603
R2	0.576377	0.450477

Without Popularity Outliers

Metric	Train	Test
Root Mean Square Error (RMSE)	0.062652	0.073387
R2	0.560811	0.401364

Depth=8

Depth=4

Thoughts and Future Directions

- Does the musical genre influence popularity? Are heavy metal songs more popular than hip-hop songs? (Spoiler: NO!)
- Different musical genres may have different regressions on the various features (i.e. "speechiness" will have a greater correlation to popularity of songs from the genres "rap" and "hip-hop").
- Many features are highly correlated (loudness and energy, etc.) is it better practice to reduce the number of features (using factor analysis).
- "Popularity" in Spotify is a score from 0 to 100 but what makes a track a "hit"? Is there a
 popularity score threshold (i.e. score over 75?). This can be a classification exercise.
- Will be interesting to predict song success on an external contest (not Spotify) for example predict a song's popularity on the "Billboard Hot 100" based on the Spotify song features.

Thank You