Minimal FD Set and BCNF Proof

Accommodation

```
Accommodation_ID -> Accommodation_Name
```

Accommodation_ID -> Accommodation_Type

Accommodation_ID -> Street

Accommodation_ID -> Landmark

Accommodation_ID -> City

Accommodation_ID -> State

Accommodation_ID -> Pincode

Accommodation_ID -> Check_In_Time

Accommodation_ID -> Check_Out_Time

Accommodation_ID -> User_Rating

Accommodation_ID -> Star_Category

Accommodation_ID -> Starting_Price

Here we can infer from the given FDs that Accommodation_ID is the key. It matches the key from the relation. Hence' Accommodation' is in BCNF.

Room_Type

```
{Accommodation_ID,Room_Type_ID} -> Room_Type_Name
```

{Accommodation_ID,Room_Type_ID} -> Capacity

{Accommodation_ID,Room_Type_ID} -> Bed_Type

{Accommodation_ID,Room_Type_ID} -> Area

{Accommodation_ID,Room_Type_ID} -> Extra_Capacity

{Accommodation_ID,Room_Type_ID} -> Total_Rooms

Here we can infer from the given FDs that {Accommodation_ID, Room_Type_ID} is the key. It matches the key from the relation. Hence 'Room_Type' is in BCNF.

Available_Rooms

```
{Accommodation_ID,Room_Type_ID,Check_In_Date,Check_Out_Date} -> Available_Rooms
```

Here we can infer from the given FDs that

{Accommodation_ID,Room_Type_ID,Check_In_Date,Check_Out_Date} is the key. It matches the key from the relation. Hence 'Available_Rooms' is in BCNF.

Accommodation_Fares

```
{Accomodation_ID,Room_Type_ID} -> Base_Price
```

{Accommodation_ID,Room_Type_ID} -> Mattresses

{Accommodation_ID,Room_Type_ID} -> Breakfast

{Accommodation_ID,Room_Type_ID} -> Lunch_Or_Dinner

{Accommodation_ID,Room_Type_ID} -> Lunch_And_Dinner

{Accommodation ID,Room Type ID} -> Zero Cancellation

 $\{Accommodation_ID,Room_Type_ID\} -> Taxes$

Here we can infer from the given FDs that {Accommodation_ID, Room_Type_ID} is the key. It matches the key from the relation. Hence 'Accommodation_Fares' is in BCNF.

Accommodation_Refund_Rules

{Accommodation_ID,Room_Type_ID,Grace_Period} -> Cancellation_Penalty

Here we can infer from the given FDs that {Accommodation_ID,Room_Type_ID,Grace_Period} is the key. It matches the key from the relation. Hence 'Accommodation_Refund_Rules' is in BCNF.

Transportation_Owner

{Transportation_Owner_ID, Transportation_Type} -> Transportation_Owner_Name

Here we can infer from the given FDs that{Transportation_Owner_ID, Transportation_Type} is the key. It matches the key from the relation. Hence 'Transportation_Facilities_Owner' is in BCNF.

Station

Station_Code -> Station_Name
Station_Code -> City
Station_Code -> Transportation_Type

Here we can infer from the given FDs that Station_Code is the key. It matches the key from the relation. Hence 'Station' is in BCNF.

Classes

Class_ID -> Class_Name Class_ID -> Transportation_Type

Here we can infer from the given FDs that Class_ID is the key. It matches the key from the relation. Hence 'Classes' is in BCNF.

Transportation

Transportation_ID -> Source_Code

Transportation_ID -> Destination_Code

Transportation_ID -> Departure

Transportation_ID -> Arrival

Transportation_ID -> Transportation_Name

Transportation_ID -> Transportation_Type

Transportation_ID -> Transportation_Owner_ID

Transportation_ID -> User_Rating

Transportation_ID -> No_Of_Days

Here we can infer from the given FDs that Transportation_ID is the key. It matches the key from the relation. Hence 'Transportation' is in BCNF.

Transportation_Class

{Transportation_ID ,Class_ID } -> Total_Seats {Transportation_ID ,Class_ID } -> Hand_Luggage {Transportation_ID ,Class_ID } -> Check-In_Luggage

Here we can infer from the given FDs that {Transportation_ID ,Class_ID} is the key. It matches the key from the relation. Hence 'Transportation_Class' is in BCNF

Routes

```
{Transportation_ID,Station_Code } -> Stop_Number {Transportation_ID,Station_Code } -> Arrival_Time {Transportation_ID,Station_Code } -> Departure_Time {Transportation_ID,Station_Code } -> Day_No {Transportation_ID,Station_Code } -> Halt {Transportation_ID,Station_Code } -> Km_From_Origin
```

Here we can infer from the given FDs that {Transportation_ID,Station_Code } is the key. It matches the key from the relation. Hence 'Routes' is in BCNF.

Avialable_Seats

```
{Transportation_ID, Class_ID, Departure_Timestamp, Arrival_Timestamp} -> To_Station {Transportation_ID, Class_ID, Departure_Timestamp, Arrival_Timestamp} -> From_Station {Transportation_ID, Class_ID, Departure_Timestamp, Arrival_Timestamp} -> Available_Seats
```

Here we can infer from the given FDs that {Transportation_ID ,Class_ID} is the key. It matches the key from the relation. Hence 'Available_Seats' is in BCNF.

Transportation_Fares

```
{Transportation_ID ,Class_ID } -> Base_Price

{Transportation_ID ,Class_ID } -> Breakfast

{Transportation_ID ,Class_ID } -> Lunch

{Transportation_ID ,Class_ID } -> Dinner

{Transportation_ID ,Class_ID } -> Zero_Cancellation

{Transportation_ID ,Class_ID } -> Taxes
```

Here we can infer from the given FDs that {Transportation_ID ,Class_ID } is the key. It matches the key from the relation. Hence 'Transportation_Fares' is in BCNF.

Transportation_Refund_Rules

{Transportation_ID ,Class_ID ,Grace_Period} -> Cancellation_Penalty

Here we can infer from the given FDs that {Transportation_ID ,Class_ID, Grace_Period } is the key. It matches the key from the relation. Hence 'Transportation_Refund_Rules' is in BCNF.

Package

```
Package_ID -> Package_Name
Package_ID -> Starting_Price
```

Here we can infer from the given FDs that Package_ID is the key. It matches the key from the relation. Hence 'Package' is in BCNF.

Offers

```
{Offer_ID, Package_ID} -> Offer_Name
{Offer_ID, Package_ID} -> No_Of_Days
{Offer_ID, Package_ID} -> No_Of_Nights
{Offer_ID, Package_ID} -> No_Of_Accommodations
{Offer_ID, Package_ID} -> No_Of_Transportations
{Offer_ID, Package_ID} -> Price
```

Here we can infer from the given FDs that {Offer_ID, Package_ID} is the key. It matches the key from the relation. Hence 'Offers' is in BCNF.

Offer_Dates

Here we have no FDs, meaning all the attributes are keys. It matches the key from the relation. Hence 'Offer_Dates' is in BCNF.

Offer Accommodation

```
{Offer_ID, Check-In_Date, Check-Out_Date, Accommodation_ID} -> Room_Type_ID {Offer_ID, Check-In_Date, Check-Out_Date, Accommodation_ID} -> Day_No
```

Here we can infer from the given FDs that {Offer_ID, Check-In_Date, Check-Out_Date, Accommodation_ID} is the key. It matches the key from the relation. Hence 'Offer_Accommodation' is in BCNF.

Offer_Transportation

```
{Offer_ID, Departure_Timestamp, Arrival_Timestamp, Transportation_ID} -> Class_ID
```

Here we can infer from the given FDs that {Offer_ID, Journey_Start_Date, Journey_End_Date, Transportation_ID} is the key. It matches the key from the relation. Hence 'Offer_Transportation' is in BCNF.

Offer_fares

```
{Offer_ID, Package_ID} -> Total_Accm_amt
{Offer_ID, Package_ID} -> Total_Trans_Amt
{Offer_ID, Package_ID} -> Total_Taxes
```

Here we can infer from the given FDs that {Offer_ID, Package_ID} is the key. It matches the key from the relation. Hence 'Offer_fares' is in BCNF.

Consumer

Consumer_ID -> UserName Consumer_ID -> Password Consumer_ID -> Prev_Password

Here we can infer from the given FDs that Consumer_ID is the key. It matches the key from the relation. Hence 'Consumer' is in BCNF.

Consumer_Profile

Consumer_ID -> First_Name Consumer_ID -> Last_Name Consumer_ID -> Email_ID Consumer_ID -> Mobile_No

Consumer_ID -> DoB

Consumer_ID -> Age

Consumer_ID -> Gender

Consumer_ID -> City

Consumer_ID -> Rating

Here we can infer from the given FDs that Consumer_ID is the key. It matches the key from the relation. Hence 'Consumer_Profile' is in BCNF.

Bank_Details

```
{Consumer_ID,Account_No} -> Account_Holder_Name
{Consumer_ID,Account_No} -> IFSC_Code
{Consumer_ID,Account_No} -> UPI_ID
{Consumer_ID,Account_No} -> Credit_Card_No
{Consumer_ID,Account_No} -> Debit_Card_No
```

Here we can infer from the given FDs that {Consumer_ID,Account_No} is the key. It matches the key from the relation. Hence 'Bank_Details' is in BCNF.

Invoice_Details

Invoice_ID -> Total_Amount
Invoice_ID -> Taxes
Invoice_ID -> Grand_Total
Invoice_ID -> Total_Amount_Paid
Invoice_ID -> Amount_left
Invoice_ID -> Next_Installment

Here we can infer from the given FDs that Invoice_ID is the key. It matches the key from the relation. Hence 'Invoice_Details' is in BCNF.

Booking

Booking_ID -> Facility_Type
Booking_ID -> Consumer_ID
Booking_ID -> Invoice_ID
Booking_ID -> Booking_Date
Booking_ID -> No_Of_Travellers

Here we can infer from the given FDs that Booking_ID is the key. It matches the key from the relation. Hence 'Booking' is in BCNF.

Transactions

Transaction_ID -> Invoice_ID
Transaction_ID -> Transaction_Mode
Transaction_ID -> Amount
Transaction_ID -> Transaction_TimeStamp

Here we can infer from the given FDs that Transaction_ID is the key. It matches the key from the relation. Hence 'Transactions' is in BCNF.

Accommodation_Booking

Booking_ID -> Accomodation_ID
Booking_ID -> Room_Type_ID
Booking_ID -> Check_In_Date
Booking_ID -> Check_Out_Date
Booking_ID -> No_Of_Rooms
Booking_ID -> Booking_Status

Here we can infer from the given FDs that Booking_ID is the key. It matches the key from the relation. Hence 'Accommodation_Booking' is in BCNF.

Accommodation_Add_On

```
Booking_ID -> Breakfast
```

Booking_ID -> Lunch_Or_Dinner

Booking_ID -> Lunch_And_Dinner

Booking_ID -> No_Of_Mattresses

Booking_ID -> Zero_Cancellation

Here we can infer from the given FDs that Booking_ID is the key. It matches the key from the relation. Hence 'Accommodation_Add_On' is in BCNF.

Transportation_Booking

Booking_ID -> Transportation_ID

Booking_ID -> Class_ID

Booking_ID -> Departure_Timestamp

Booking_ID -> Arrival_Timestamp

Booking_ID -> PNR

Booking_ID -> To_Station

Booking_ID -> From_Station

Booking_ID -> Booking_Status

Here we can infer from the given FDs that Booking_ID is the key. It matches the key from the relation. Hence 'Transportation_Booking' is in BCNF.

Transportation_Add_On

Booking_ID -> Breakfast

Booking_ID -> Lunch

Booking_ID -> Dinner

Booking_ID -> Zero_Cancellation

Here we can infer from the given FDs that Booking_ID is the key. It matches the key from the relation. Hence 'Transportation_Add_On' is in BCNF.

Seats

Here we have no FDs, meaning all the attributes are keys. It matches the key from the relation. Hence 'Seats' is in BCNF.

Package_Booking

Booking_ID -> Package_ID

Booking_ID -> Offer_ID

Booking_ID -> Date_From

Booking_ID -> Date_To

Here we can infer from the given FDs that Booking_ID is the key. It matches the key from the relation. Hence 'Package_Booking' is in BCNF.

Package_Booking_Details

Here we have no FDs which means that all the attributes are keys. It matches the key from the relation. Hence 'Package_Booking_Details' is in BCNF.

Travellers

Traveller_ID -> First_Name

Traveller_ID -> Last_Name

Traveller_ID -> Age

Traveller_ID -> Gender

Traveller_ID -> Booking_ID

Here we can infer from the given FDs that Traveller_ID is the key. It matches the key from the relation. Hence 'Travellers' is in BCNF.

Cancellation

Cancellation_ID -> Booking_ID

Cancellation_ID -> Cancellation_Date

Cancellation_ID -> Cancellation_Penalty

Cancellation_ID -> Total_Refundable_Amount

Cancellation_ID -> Refund_Status

Here we can infer from the given FDs that Cancellation_ID is the key. It matches the key from the relation. Hence 'Cancellation' is in BCNF.