An Effective Version of Chevalley-Weil Theorem for Projective Plane Curves

Konstantinos Draziotis and Dimitrios Poulakis

Abstract

We obtain a quantitative version of the classical Chevalley-Weil theorem for curves. Let $\phi: \tilde{C} \to C$ be an unramified morphism of non-singular plane projective curves defined over a number field K. We calculate an effective upper bound for the norm of the relative discriminant of the number field K(Q) over K for any point $P \in C(K)$ and $Q \in \phi^{-1}(P)$.

2000 MCS: 14G25, 14H25, 11G30.

1 Introduction

Let $\phi: V \to W$ be an unramified covering of projective normal varieties defined over a number field K. By the classical theorem of Chevalley-Weil [2], [10], [5, Theorem 8.1, page 45], [4, page 292], there exists a finite extension L/K such that $\phi^{-1}(W(K)) \subseteq V(L)$. In [3, Theorem 1.1], we obtained a quantitative version of the Chevalley-Weil theorem in case where $\phi: \tilde{C} \to C$ is an unramified morphism of non-singular affine plane curves defined over K. More precisely, we gave, following a new approach, an effective upper bound for the relative discriminant of the minimal field of definition K(Q) of Q over K for any integral point $P \in C(K)$ and $Q \in \phi^{-1}(P)$. In this paper, we consider the case where $\phi: \tilde{C} \to C$ is an unramified morphism of non-singular projective plane curves defined over K and we obtain, extending our method, an effective upper bound for the relative discriminant of K(Q) over K for any $P \in C(K)$ and $Q \in \phi^{-1}(P)$.

Consider the set of absolute values on \mathbb{Q} consisting of the ordinary absolute value and for every prime p the p-adic absolute value $|\cdot|_p$ with $|p|_p = p^{-1}$. Let M(K) be a set of symbols v such that with every $v \in M(K)$ there is precisely one associated absolute value $|\cdot|_v$ on K which extends one of the above absolute values of \mathbb{Q} . We denote by d_v its local degree. Let $\mathbf{x} = (x_0 : \ldots : x_n)$ be a point of the projective space $\mathbb{P}^n(K)$ over K. We define the field height $H_K(\mathbf{x})$ of \mathbf{x} by

$$H_K(\mathbf{x}) = \prod_{v \in M(K)} \max\{|x_0|_v, \dots, |x_n|_v\}^{d_v}.$$

Let d be the degree of K. We define the absolute height $H(\mathbf{x})$ by $H(\mathbf{x}) = H_K(\mathbf{x})^{1/d}$. Furthermore, for $x \in K$ we put $H_K(x) = H_K(1:x)$ and H(x) = H(1:x). If $G \in K[X_1, \ldots, X_m]$, then we define the field height $H_K(G)$ and the absolute height H(G) of G as the field height and the absolute height of the point whose coordinates are the coefficients of G. For an account of the properties of heights see [9, chapter VIII] or [5, chapter 3].

Let \overline{K} be an algebraic closure of K and O_K the ring of algebraic integers of K. If M is a finite extension of K, then we denote by $D_{M/K}$ the relative discriminant of the extension M/K and by N_M the norm from M to \mathbb{Q} .

Let $F, \bar{F} \in K[X_1, X_2, X_3]$ be two homogeneous absolute irreducible polynomials with $N = \deg F > 1$ and $\bar{N} = \deg \bar{F} > 1$. We denote by C and \bar{C} the projective curves defined by $F(X_1, X_2, X_3) = 0$ and $\bar{F}(X_1, X_2, X_3) = 0$ respectively. Let $\phi: \bar{C} \to C$ be a nonconstant morphism of degree m > 1 defined by $\phi(X_1, X_2, X_3) = (\phi_1(X_1, X_2, X_3), \phi_2(X_1, X_2, X_3), \phi_3(X_1, X_2, X_3))$, where $\phi_i(X_1, X_2, X_3)$ (i = 1, 2, 3) are relatively prime homogeneous polynomials in $K[X_1, X_2, X_3]$ of the same degree M. Let Φ be a point in the projective space having as coordinates the coefficients of ϕ_i (i = 1, 2, 3).

Theorem 1 Suppose that C is nonsingular and the morphism $\phi: \overline{C} \to C$ unramified. Then for any point $P \in C(K)$ and $Q \in \phi^{-1}(P)$, we have

$$N_K(D_{K(Q)/K}) < \Omega(H(F)^{6N^2\bar{N}}H(\Phi_i)^{\bar{N}}H(\bar{F})^M)^{\omega dm^3M^7N^{30}\bar{N}^{13}}$$

where Ω is an effectively computable constant in terms of N, \bar{N}, M, m and d, and ω a numerical constant.

Remarks. 1) By [8, Corollary 3, p. 120], the curve \bar{C} is nonsingular.

- 2) Since m > 1, the quantity M is > 1.
- 3) By Hurwitz's formula, \bar{C} and C have positive genus and $\bar{N} \geq N \geq 3$.
- 4) Since $\bar{F}(X,Y,Z)$ divides $F(\phi_1(X,Y,Z),\phi_2(X,Y,Z),\phi_3(X,Y,Z)), H(\bar{F})$ and \bar{N} can be bounded by constants depending only on F and ϕ .

Let $K(\bar{C})$ and K(C) be the function fields of \bar{C} and C, respectively, over K, $P=(p_1:p_2:p_3)$ and $\phi^*:K(C)\to K(\bar{C})$ the field homomorphism associated to ϕ . We denote by $\phi_{j,i}$ the function on \bar{C} defined by the fraction ϕ_j/ϕ_i . The idea of the proof of Theorem 1 is as follows. For every affine view C_i , with $X_i=1$ (i=1,2,3), of C we construct two primitive elements u_{is} (s=1,2) for the field extension $K(\bar{C})/\phi^*(K(C))$ which are integral over the ring $K[\phi_{j,i},\phi_{k,i}]$ and such that $K(u_{is}(Q))=K(Q)$. Further, we construct polynomials $P_{is}(X,Y,U)$ (s=1,2) representing the minimal polynomials of u_{is} over $K[\phi_{j,i},\phi_{k,i}]$ such that the discriminants $D_{is}(X,Y)$ of $P_{is}(X,Y,U)$ (s=1,2) have no common zero on C_i . It follows that for every prime ideal \wp of O_K with quite large norm there is $i \in \{1,2,3\}$ such that \wp cannot divide both $D_{is}(p_j/p_i,p_k/p_i)$ (s=1,2) and hence cannot divide the discriminant of K(Q). Thus, we determine the prime ideals of K which are ramified in K(Q) and the result follows. A totally different effective approach of Chevalley-Weil theorem is given in [1, Chapter 4].

The paper is organized as follows. In section 2 we give some auxiliary results and in section 3 we obtain the proof of Theorem 1.

Notations. If C is a projective plane curve defined over \overline{K} , then we denote by O(U) the ring of regular functions on an open subset U of C and by $\overline{K}(C)$ the function field of C. Let G be a homogeneous polynomial of $\overline{K}[X_1,X_2,X_3]$. We denote by $D_C(G)$ and $V_C(G)$ the set of points $P \in C(\overline{K})$ with $G(P) \neq 0$ and G(P) = 0 respectively. Finally, throughout the paper, we denote by $\Lambda_1(a_1,\ldots,a_s), \Lambda_2(a_1,\ldots,a_s),\ldots$ effectively computable positive numbers in terms of indicated parameters.

2 Auxiliary Results

We keep the notations and the assertions of the Introduction. The restriction of ϕ on $\phi^{-1}(D_C(X_i))$ is a finite morphism. Thus, the associated ring homomorphism $\phi^*: O(D_C(X_i)) \to O(\phi^{-1}(D_C(X_i)))$, defined by $\phi^*(f) = f \circ \phi$, for every $f \in O(D_C(X_i))$, is injective and the ring $O(\phi^{-1}(D_C(X_i)))$ is finite over $\phi^*(O(D_C(X_i)))$. We denote by $\bar{x}_{j,i}$ and $x_{j,i}$ the functions defined by X_j/X_i on \bar{C} and C, respectively. The function $\phi^*(x_{j,i})$ is defined by the fraction ϕ_j/ϕ_i and so $\phi_{j,i} = \phi^*(x_{j,i})$. Then we have $\phi^*(O(D_C(X_i))) = \overline{K}[\phi_{j,i},\phi_{k,i}]$. Let ρ be an integer such that for every $(z_1:z_2:z_3) \in V_{\bar{C}}(X_i)$ we have $z_k + \rho z_j \neq 0$, where $\{i,j,k\} = \{1,2,3\}$ with j < k. Thus, the poles of the function $u = \bar{x}_{k,i} + \rho \bar{x}_{j,i}$ are the points of $V_{\bar{C}}(X_i)$. Put $\Pi_i = \phi^{-1}(D_C(X_i)) \cap V_{\bar{C}}(X_i)$.

Proposition 1 There is a monic polynomial $f(T) \in K[T]$ such that the function $\tilde{u} = uf(\phi_{j,i})$ is integral over $K[\phi_{j,i}, \phi_{k,i}]$. We have $\deg f \leq \bar{N}$,

$$H(f) < \Lambda_1(\rho, M, N, \bar{N})H(F)^{\bar{N}}H(\bar{F})^{MN}H(\Phi)^{N\bar{N}},$$

and the roots of f(T) are the elements $\phi_{j,i}(R)$, where $R \in \Pi_i$. Moreover, there is a polynomial of $K[X_j, X_k]$,

$$P(X_i, X_k, U) = U^{\mu} + p_1(X_i, X_k)U^{\mu-1} + \dots + p_{\mu}(X_i, X_k),$$

such that $P(\phi_{j,i}, \phi_{k,i}, U)$ is the minimal polynomial of \tilde{u} over $K[\phi_{j,i}, \phi_{k,i}]$. We have $\mu \leq m$, $\deg p_l < 11MN^4\bar{N}^2$ $(l = 1, ..., \mu)$ and

$$H(P) < \Lambda_2(\rho, m, M, N, \bar{N})(H(F)^{6N^2\bar{N}}H(\Phi)^{\bar{N}}H(\bar{F})^M)^{240mM^3N^{12}\bar{N}^5}$$

For the proof of Proposition 1 we shall need the following lemma.

Lemma 1 There is a polynomial $G(W,X,U) \in K[W,X,U] \setminus \{0\}$ such that $G(\rho,\phi_{\underline{j},i},u) = 0$. We have $\deg_X G \leq N\bar{N}$, $\deg_U G \leq 2MN\bar{N}$, $\deg_W G \leq 2MN\bar{N}$ and the polynomial $G_{\rho}(X,U) = G(\rho,X,U)$ satisfies

$$H(G_{\rho}) < \Lambda_3(\rho, M, N, \bar{N})H(F)^{\bar{N}}H(\bar{F})^{MN}H(\Phi)^{N\bar{N}}.$$

Proof. We may suppose, without loss of generality, that j=1, k=2 and i=3. Consider the polynomials $\bar{F}_1(W,V,U)=\bar{F}(V,U-WV,1)$ and

$$E(W, X, V, U) = F(X\phi_3(V, U - WV, 1), \phi_2(V, U - WV, 1), \phi_3(V, U - WV, 1)).$$

We have $\bar{F}_1(\rho, \bar{x}_{1,3}, u) = E(\rho, \phi_{1,3}, \bar{x}_{1,3}, u_\rho) = 0$. If G(W, X, U) is the resultant of E(W, X, V, U) and $\bar{F}_1(W, V, U)$ with respect to V, then $G(\rho, \phi_{1,3}, u) = 0$.

Suppose that G(W, X, U) is equal to zero. Thus, since $\bar{F}_1(W, V, U)$ is absolutely irreducible, $\bar{F}_1(W, V, U)$ divides E(W, X, V, U). It follows that $\bar{F}(V, U, 1)$ divides $F(X\phi_3(V, U, 1), \phi_2(V, U, 1), \phi_3(V, U, 1))$. Write

$$F(X_1, X_2, X_3) = A_0(X_2, X_3)X_1^n + \dots + A_n(X_2, X_3),$$

where $A_i(X_2, X_3)$ (i = 0, ..., n) are homogeneous polynomials with deg $A_i = N - n + i$. If $P = (p_1 : p_2 : 1) \in D_{\bar{C}}(\phi_3)$, then

$$A_0(\phi_{2,3}(P),1)(X_1/\phi_3(P))^n + \dots + A_n(\phi_{2,3}(P),1) = 0.$$

It follows that $A_j(\phi_{2,3}(P), 1) = 0$ (j = 0, ..., n) which is a contradiction since $F(X_1, X_2, X_3)$ is absolutely irreducible. Thus G(W, X, U) is not zero.

By [3, Lemma 4.2], we have $\deg_X G \leq N\bar{N}$, $\deg_U G \leq 2MN\bar{N}$, and $\deg_W G \leq 2MN\bar{N}$. Further, if $G_\rho(X,U) = G(\rho,X,U)$, $E_\rho(X,V,U) = E(\rho,X,V,U)$ and $\bar{F}_\rho(V,U) = \bar{F}_1(\rho,V,U)$, then

$$H(G_{\rho}) < \Lambda_4(M, N, \bar{N}) H(E_{\rho})^{\bar{N}} H(\bar{F}_{\rho})^{MN}.$$

By [3, Lemma 4.4], we obtain

$$H(\bar{F}_{\rho}) \le 2^{\bar{N}}(\bar{N}+1) \max\{1, |\rho|\}^{\bar{N}} H(\bar{F}).$$

Next, put $\varphi_{\rho,l}(V,U) = \phi_l(V,U-\rho V)$ (l=1,2). By [4, Lemma B.7.4], for every absolute value $|\cdot|_v$ of K,

$$|E_{\rho}|_{v} \le \max\{1, |2N|_{v}^{2}\}|F|_{v} \max_{0 \le j \le N}\{|\varphi_{\rho,2}^{j}|_{v}|\varphi_{\rho,3}^{N-j}|_{v}\}$$

and for every positive number k,

$$|\varphi_{\rho,l}^k|_v \le \max\{1, |2M|_v\}^{2(k-1)M} |\varphi_{\rho,l}|_v^k.$$

Furthermore, the proof of [3, Lemma 4.4] gives

$$|\varphi_{\rho,l}|_v \le \max\{1, |\rho|_v\}^M \max\{1, |2|_v\}^M \max\{1, |M+1|_v\} |\phi_l|_v \quad (l=1,2).$$

The above inequalities yield

$$H(E_{\rho}) < \Lambda_5(\rho, M, N, \bar{N})H(F)H(\Phi)^N.$$

Combining all theses estimates, the bound for $H(G_o)$ follows.

Proof of Proposition 1. By Lemma 1, there is $G_{\rho}(X,U) \in K[X,U]$ such that $G_{\rho}(\phi_{j,i},u) = 0$. Write $G_{\rho}(X,U) = g_0(X)U^{\nu} + \cdots + g_{\nu}(X)$. Thus, $ug_0(\phi_{j,i})$ is an integral element over $K[\phi_{\underline{j},i},\phi_{k,i}]$ and so $ug_0(\phi_{j,i}) \in O(\phi^{-1}(D_C(X_i)))$.

If $h \in \overline{K}(\bar{C})$ and $S \in \bar{C}$, then we denote by $\operatorname{ord}_S(h)$ the order of h at S. Put $B_R = \phi_{j,i}(R)$, where $R \in \Pi_i$. Let m_R be the smallest integer such that $(\phi_{j,i} - B_R)^{m_R}u$ is defined at R. Then $m_R \leq |\operatorname{ord}_R(u)|$. Set $f(X) = \prod_{R \in \Pi_i} (X - B_R)^{m_R}$. We have $uf(\phi_{j,i}) \in O(\phi^{-1}(D_C(X_i))$ and since $[\overline{K}(\bar{C}) : \overline{K}(u)] = \bar{N}$, we obtain $\deg f = \sum_{R \in \Pi_i} m_R \leq \bar{N}$. The elements of the Galois group $\operatorname{Gal}(\overline{K}/K)$ permute the elements of Π_i and consequently the numbers B_R . For every $\sigma \in \operatorname{Gal}(\overline{K}/K)$, we have $\operatorname{ord}_R(\phi_{j,i} - B_R) = \operatorname{ord}_{R^{\sigma}}(\phi_{j,i} - B_{R^{\sigma}})$ and $\operatorname{ord}_R(u) = \operatorname{ord}_{R^{\sigma}}(u)$. It follows that $m_R = m_{R^{\sigma}}$. Hence $f(X) \in K[X]$. Since $ug_0(\phi_{j,i}) \in O(\phi^{-1}(D_C(X_i)))$, we have $g_0(X) = f(X)l(X)$, where $l(X) \in K[X]$. By [4, Proposition B.7.3], $H(f) \leq e^{N\bar{N}}H(G_{\rho})$. The bound for H(f) follows.

Consider the polynomial

$$\tilde{G}_{\rho}(X,U) = l(X)U^{\nu} + g_1(X)U^{\nu-1} + g_2(X)f(X)U^{\nu-1} + \dots + g_{\nu}(X)f(X)^{\nu-1}.$$

We have $\tilde{G}_{\rho}(\phi_{j,i}, uf(\phi_{j,i}) = 0$. The estimates for $G_{\rho}(X, U)$ and [4, Proposition B.7.4] yield

$$H(\tilde{G}_{\rho}) < \Lambda_7(\rho, M, N, \bar{N})(H(F)^{\bar{N}}H(\bar{F})^{MN}H(\Phi)^{N\bar{N}})^{2MN\bar{N}}.$$

Using [3, Proposition 2.1] and the estimates for \tilde{G}_{ρ} , we obtain the existence of polynomial $P(X_j, X_k, U) \in K[X_j, X_k, U]$ having the required properties.

Lemma 2 Let $P \in C(K)$ and $Q \in \overline{C}(\overline{K})$ with $\phi(Q) = P$. Then

$$N_K(D_{K(Q)/K}) < ((e^3(M+\bar{N}))^{dM\bar{N}}(H_K(P)H_K(\Phi))^{\bar{N}}H_K(\bar{F})^M)^{40dM^3\bar{N}^3}.$$

Proof. We may suppose, without loss of generality, that $Q=(q_1:q_2:1)$ and $P=(p_1:p_2:1)$. Put $G_1(X_1,U,V)=X_1\phi_3(U,V,1)-\phi_1(U,V,1)$. Then $G_1(p_1,q_1,q_2)=\bar{F}(q_1,q_2,1)=0$. We denote by $R_1(U)$ and $R_2(V)$ the resultants of $\bar{F}(U,V,1)$ and $\Gamma(U,V)=G_1(p_1,U,V)$ with respect to V and U. Then $R_1(q_1)=R_2(q_2)=0$. By [3, Lemma 4.2] and [4, Proposition B.7.4(b)] we obtain

$$H(R_i) \le (M+\bar{N})!(\bar{N}+1)^M(M+1)^{\bar{N}}(2H(p_1)H(\Phi))^{\bar{N}}H(\bar{F})^M.$$

Furthermore, we have $\deg R_i \leq 2M\bar{N}$.

Let $B_i(T) = T^{m_i} + b_1 T^{m_i-1} + \dots + b_{m_i}$, where $m_i \leq 2M\bar{N}$, be the irreducible polynomial of q_i over K. By [3, Lemma 4.1] there is a positive integer β_i with $\beta_i \leq H_K(B_i)^{m_i}$ such that $\beta_i b_1 \cdots b_{m_i} \in O_K$. Then $\beta_i q_i$ is an algebraic integer with minimal polynomial $\bar{B}_i(T) = T^{m_i} + \beta b_1 T^{m_i-1} + \dots + \beta^{m_i} b_{m_i}$. Using [4, Proposition B.7.3] we obtain

$$H(\bar{B}_i) \le H(B_i)\beta_i^{m_i} \le (e^{2M\bar{N}}H(R_i))^{1+2dM\bar{N}}.$$

Let $\Delta(\bar{B}_i)$ be the discriminant of $\bar{B}_i(T)$. By [6, Lemma 5], we have

$$N_K(\Delta(\bar{B}_i)) \le H_K(\Delta(\bar{B}_i)) \le m_i^{3m_i d} H_K(\bar{B}_i)^{2m_i - 2} \le (e^{2dM\bar{N}} H_K(R_i))^{9dM^2\bar{N}^2}.$$

Put $K_i = K(q_i)$. Since $b_i q_i$ is an algebraic integer, the discriminant D_i of the extension K_i/K divides the discriminant of $1, b_i q_i, \ldots, (b_i q_i)^{m_i-1}$ which is equal to $\Delta(\bar{B}_i)$. Thus $N_K(D_i) \leq |N_K(\Delta(\bar{B}_i))|$. If I(T) is the irreducible polynomial of $b_2 q_2$ over K_1 , then I(T) divides $\bar{B}_2(T)$ (in $K_1[T]$) and so the discriminant $\Delta(I)$ of I(T) divides $\Delta(\bar{B}_2)$. Hence, $D_{K(Q)/K_1}$ divides $\Delta(\bar{B}_2)$. Thus,

$$N_K(D_{K(Q)/K}) \le N_K(D_1)^{2M\bar{N}} N_{K_1}(D_{K(Q)/K_1}) \le (N_K(\Delta(\bar{B}_1)N_K(\Delta(\bar{B}_2))^{2M\bar{N}}.$$

Using the upper bounds for $N_K(\Delta(\bar{B}_i))$ and $H_K(R_i)$, the result follows.

3 Proof of Theorem 1

Let $P=(a_1:a_2:a_3),\ Q\in\phi^{-1}(P)$ and L=K(Q). If $a_j=0$ for some $j\in\{1,2,3\}$, then [7, Lemma 4] gives H(P)<2H(F). So Lemma 2 yields a sharper bound for $N_K(D_{L/K})$ than that of Theorem 1. Thus, we may suppose that $a_j\neq 0$ (j=1,2,3).

Let Θ_i be the set of $\rho \in \mathbb{Z}$ such that for every $(z_1:z_2:z_3) \in V_{\bar{C}}(X_i)$ we have $z_k + \rho z_j = 0$, where $\{i,j,k\} = \{1,2,3\}$ with j < k. Set $u_{\rho,i} = \bar{x}_{k,i} + \rho \bar{x}_{j,i}$, where $\rho \notin \Theta_i$. By Proposition 1, there is a monic polynomial $f_i \in K[T]$ such that the function $\tilde{u}_{\rho,i} = u_{\rho,i}f_i(\phi_{j,i})$ is integral over $K[\phi_{j,i},\phi_{k,i}]$, deg $f_i \leq \bar{N}$, the roots of $f_i(T)$ are the elements $\phi_{j,i}(R)$, where $R \in \phi^{-1}(D_C(X_i)) \cap V_{\bar{C}}(X_i)$ and

$$H(f) < \Lambda_1(\rho, M, N, \bar{N})H(F)^{\bar{N}}H(\bar{F})^{MN}H(\Phi)^{N\bar{N}}.$$

Moreover, there is a polynomial of $K[X_i, X_k, U]$.

$$P_{\rho,i}(X_j, X_k, U) = U^{\mu} + p_{\rho,i,1}(X_j, X_k)U^{\mu-1} + \dots + p_{\rho,i,\mu}(X_j, X_k),$$

such that $P_{\rho,i}(\phi_{j,i},\phi_{k,i},U)$ is the minimal polynomial of $\tilde{u}_{\rho,i}$ over $K[\phi_{j,i},\phi_{k,i}]$. We have $\mu \leq m$, $\deg p_{\rho,i,l} < 11MN^4\bar{N}^2$ $(l=1,\ldots,\mu)$, and

$$H(P) < \Lambda_2(\rho, m, M, N, \bar{N})(H(F)^{6N^2\bar{N}}H(\Phi)^{\bar{N}}H(\bar{F})^M)^{240mM^3N^{12}\bar{N}^5}$$

Suppose that there is $i \in \{1, 2, 3\}$ such that $f_i(a_j/a_i) = 0$. By [7, Lemma 4] and [6, Lemma 7], we have

$$H(P) \le H(a_j/a_i)H(a_k/a_i) \le 2(N+1)H(F)(2H(f_i))^{N+1}.$$

Using the bound for $H(f_i)$, Lemma 2 gives a sharper bound for $N_K(D_{L/K})$ than that of Theorem 1. Next, suppose that for every i = 1, 2, 3 we have $f_i(a_j/a_i) \neq 0$ and so $u_{\varrho,i}$ is defined at Q.

The monomorphism $\phi^*: O(D_C(X_i)) \to O(\phi^{-1}(D_C(X_i)))$ extends to a field homomorphism $\phi^*: \overline{K}(C) \to \overline{K}(\overline{C})$. We have $\phi^*(\overline{K}(C)) = \overline{K}(\phi_{j,i}, \phi_{k,i})$. If $\sigma_1, \ldots, \sigma_m$ are all the $\overline{K}(C)$ -embeddings of $\phi^*(\overline{K}(\overline{C}))$ into an algebraic closure of $\phi^*(\overline{K}(C))$, then we denote by Γ_i the set of integers $\rho \notin \Theta_i$ with $\sigma_p(\tilde{u}_{\rho,i}) \neq \sigma_q(\tilde{u}_{\rho,i})$ for $p \neq q$. For every $\rho \in \Gamma_i$, we have $\overline{K}(\overline{C}) = \phi^*(\overline{K}(C))(\tilde{u}_{\rho,i})$ and so $m = \mu$. Note that at most $m(m-1)/2 + \overline{N}$ integers ρ do not lie in Γ_i . Further, there are at most $m(m-1)/2 + \overline{N}$ integers ρ such that $K(u_{\rho,i}(Q)) \neq K(Q)$. Hence, there is $r(i) \in \mathbb{Z}$ with $r(i) \in \Gamma_i$ and $|r(i)| \leq \overline{N} + m^2/2$ such that $K(u_{r(i),i}(Q)) = K(Q)$.

Putting $X_i=1$ in $F(X_1,X_2,X_3)$ we obtain $F_i(X_j,X_k)$, with j< k. Let $D_{\rho,i}(X_j,X_k)$ be the discriminant of $P_{\rho,i}(X_j,X_k,U)$ with respect to U. We have $\deg D_{\rho,i}<11(2m-1)MN^4\bar{N}^2$. Since $P_{\rho,i}(\phi_{j,i},\phi_{k,i},U)$ is irreducible, F_i does not divide $D_{\rho,i}$. We denote by $J_{r(i),i}$ the set of points $(z_1:z_2:z_3)\in D_C(X_i)$ with $z_i=1$ and $D_{r(i),i}(z_j,z_k)=0$. By Bézout's theorem, $|J_{r(i),i}|<11(2m-1)MN^5\bar{N}^2$. Thus, if $B_i=J_{r(i),i}\cup\{P\}$, then there is an integer s(i) with $|s(i)|\leq 11m^2\bar{N}^2N^5M$ such that $B_i\cap\phi(V_{\bar{C}}(X_k+s(i)X_j))=\emptyset$.

We denote by $\tilde{F}_i(Y_1,Y_2,Y_3)$ and $\tilde{\phi}_{i,l}(Y_1,Y_2,Y_3)$ the polynomials obtained from $\bar{F}(X_1,X_2,X_3)$ and $\phi_l(X_1,X_2,X_3)$, respectively, using the projective change of coordinates χ defined by $Y_j=X_i,\ Y_k=X_j,\ Y_i=X_k+s(i)X_j$. Set $\tilde{Q}=\chi(Q)$. Let \tilde{C}_i be the curve defined by $\tilde{F}_i(Y_1,Y_2,Y_3)=0$. The morphism $\psi_i:\tilde{C}_i\to C$, defined by $\psi_i(Y_1,Y_2,Y_3)=(\psi_{i,1}(Y_1,Y_2,Y_3),\psi_{i,2}(Y_1,Y_2,Y_3),\psi_{i,3}(Y_1,Y_2,Y_3))$ is unramified of degree m. We denote by Ψ_i a point in the projective space with coordinates the coefficients of $\psi_{i,s}$ (s=1,2,3).

Let $y_{j,i}$ be the function defined by Y_j/Y_i on \tilde{C}_i . We set $v_{\tau,i} = \tau y_{j,i} + y_{k,i}$, where $\{i,j,k\} = \{1,2,3\},\ j < k$ and $\tau \in \mathbb{Z}$. Further, we denote by $\psi_{i,j,k}$ the function defined on \tilde{C}_i by the fraction $\psi_{i,j}/\psi_{i,k}$. By Proposition 1, there is a monic polynomial $g_i(T) \in K[T]$ such that the function $\tilde{v}_{\tau,i} = g_i(\psi_{i,j,i})v_{\tau,i}$ is integral over $K[\psi_{i,j,i},\psi_{i,k,i}]$, $\deg g_i \leq \bar{N}$ and

$$H(g_i) < \Lambda_1(\rho, M, N, \bar{N})H(F)^{\bar{N}}H(\tilde{F}_i)^{MN}H(\Psi_i)^{N\bar{N}}.$$

The zeros of $g_i(T)$ are the elements $\psi_{i,j,i}(R)$, where $R \in \psi_i^{-1}(D_C(X_i)) \cap V_{\tilde{C}_i}(Y_i)$. Moreover, there is $\Pi_{\tau,i}(X_j, X_k, U) \in K[X_j, X_k, U]$ such that $\Pi_{\tau,i}(\psi_{i,j,i}, \psi_{i,k,i}, U)$ is the minimal polynomial of $\tilde{v}_{\tau,i}$ over the ring $K[\psi_{i,j,i}, \psi_{i,k,i}]$. Write

$$\Pi_{\tau,i}(X_j, X_k, U) = U^{\nu} + \pi_{\tau,i,1}(X_j, X_k)U^{\nu-1} + \dots + \pi_{\tau,i,\nu}(X_j, X_k).$$

We have $\nu \le m$, deg $\pi_{\tau,i,l} < 11MN^4\bar{N}^2$ $(l = 1, ..., \nu)$ and

$$H(\Pi_{\tau,i}) < \Lambda_8(\tau,m,M,N,\bar{N}) (H(F)^{6N^2\bar{N}} H(\Psi_i)^{\bar{N}} H(\tilde{F}_i)^M)^{240mM^3N^{12}\bar{N}^5}.$$

By [3, Lemma 4.4], $H(\tilde{F}_i) < \Lambda_9(\bar{N}, s(i))H(\bar{F})$ and $H(\Psi_i) < \Lambda_{10}(M, s(i))H(\Phi)$. It follows that $H(g_i)$ and $H(\Pi_{\tau,i})$ satisfy inequalities as above having $H(\bar{F})$ and $H(\Phi)$ in place of $H(\tilde{F}_i)$ and $H(\Psi_i)$ respectively.

The points $(z_1:z_2:z_3) \in D_C(X_i)$ with $z_i=1$ and $g_i(z_j)=0$ belong to $\phi(V_{\overline{C}}(X_k+s(i)X_j))$. On the other hand, $P \in B_i$ and $B_i \cap \phi(V_{\overline{C}}(X_k+s(i)X_j))=\emptyset$. Hence, $g_i(a_j/a_i) \neq 0$ and so $v_{\tau,i}$ is defined at \tilde{Q} (i=1,2,3).

Let $\psi_i^* : \overline{K}(C) \to \overline{K}(\tilde{C}_i)$ be the field homomorphism associated to the morphism ψ_i . As previously, there is a set $\Delta_i \subset \mathbb{Z}$ with $|\Delta_i| \leq m(m-1) + 2\bar{N}$ such that for every integer $\tau \not\in \Delta_i$ we have $\overline{K}(\tilde{C}_i) = \psi_i^*(\overline{K}(C))(\tilde{v}_{\tau,i})$ (so $\nu = m$) and $K(v_{\tau,i}(\tilde{Q})) = K(\tilde{Q}) = K(Q)$.

Let $\Sigma_{\tau,i}(X_j,X_k)$ be the discriminant of $\Pi_{\tau,i}(X_j,X_k,U)$ with respect to U. We have $\deg \Sigma_{\tau,i} \leq (2m-1)11\bar{N}^2N^4M$. We denote by Ξ_i the set of points $(z_1:z_2:z_3)\in D_C(X_i)$ with $z_i=1,\ D_{r(i),i}(z_j,z_k)=0$ and $\Sigma_{\tau,i}(z_j,z_k)=0$, for every $\tau\in\mathbb{Z}$. Suppose that $(z_1:z_2:z_3)\in\Xi_i$ with $z_i=1$. Then, for every $\tau\in\mathbb{Z}$, $\Pi_{\tau,i}(z_j,z_k,U)$ has at most m-1 distinct roots. If $g_i(z_j)\neq 0$, then there are m distinct points $Q_t\in\tilde{\phi}_i^{-1}(z_1:z_2:z_3)$ $(t=1,\ldots,m)$ and $\tau_0\in\mathbb{Z}$ such that $\tilde{v}_{\tau_0,i}(Q_p)\neq\tilde{v}_{\tau_0,i}(Q_q)$ for $p\neq q$. Thus, $\Pi_{\tau_0,i}(z_j,z_k,U)$ has m distinct roots which is a contradiction. Hence $g_i(z_j)=0$. Then $(z_1:z_2:z_3)\in\phi(V_{\bar{C}}(X_k+s(i)X_j)\cap B_i=\emptyset$ which is a contradiction. So, for every $(z_j,z_k)\in\overline{K}^2$ with $D_{r(i),i}(z_j,z_k)=F_i(z_j,z_k)=0$, the polynomial in $\tau,\Sigma_{\tau,i}(z_j,z_k)$, is not zero.

Since $\tilde{v}_{\tau,i}$ is a root of $\Pi_{\tau,i}(\psi_{i,j,i},\psi_{i,k,i},U)$, $\pi_{\tau,i,l}(\psi_{i,j,i},\psi_{i,k,i})$, as polynomial in τ , has degree $\leq l$. Hence, the degree in τ of $\Sigma_{\tau,i}(\psi_{i,j,i},\psi_{i,k,i})$ is $\leq (2m-1)m$. So, for every $(z_1,z_2,z_3)\in J_{\tau(i),i}$ with $z_i=1$ there are at most (2m-1)m integers τ , such that $\Sigma_{\tau,i}(z_j,z_k)=0$. Thus, there is $\tau(i)\in\mathbb{Z}$ with $|\tau(i)|<22m^3M\bar{N}^2N^5$, such that $\overline{K}(\tilde{C}_i)=\psi_i^*(\overline{K}(C))(\tilde{v}_{\tau(i),i})$ (so $\nu=m$), $K(v_{\tau(i),i}(\tilde{Q}))=K(Q)$ and for every $(z_1,z_2,z_3)\in J_{\tau(i),i}$ with $z_i=1$ we have $\Sigma_{\tau(i),i}(z_j,z_k)\neq 0$.

Let $D_{\rho,i}^1$ and $\Sigma_{\tau,i}^1$ be two points in the projective space having as coordinates 1 and the coefficients of $D_{\rho,i}(X_j, X_k)$ and $\Sigma_{\tau,i}(X_j, X_k)$, respectively. By [3, Lemma 4.2], we have

$$H(D^1_{\rho,i}) < m^{3m-1} (11MN^4 \bar{N}^2)^{4m-2} H(P_{\rho,i})^{2m-1}.$$

$$H(\Sigma_{\tau,i}^1) < m^{3m-1} (11MN^4 \bar{N}^2)^{4m-2} H(\Pi_{\tau,i})^{2m-1}.$$

We may assume, without loss of generality, that one of the coefficients of F is 1. By [3, Lemma 4.1], there are positive integers $a_{\rho,i}, b_{\rho,i}, c$ with

$$c \le H_K(F)^{2N^2}, \ a_{\rho,i} \le H_K(P_{\rho,i})^{61mM^2\bar{N}^4N^8}, \ b_{\rho,i} \le H_K(\Pi_{\tau,i})^{61mM^2\bar{N}^4N^8}$$

such that $a_{\rho,i}P_{\rho,i}(X_j,X_k,U)$, $b_{\rho,i}\Pi_{\rho,i}(X_j,X_k,U)$ and $cF_i(X_j,X_k)$ have all theirs coefficients in O_K . So, $a_{\rho,i}^{2m-2}D_{\rho,i}(X_j,X_k)$, $b_{\rho,i}^{2m-2}\Sigma_{\tau,i}(X_j,X_k) \in O_K[X_j,X_k]$. Since $D_{\tau(i),i}(X_j,X_k)$, $\Sigma_{\tau(i),i}(X_j,X_k)$ and $F_i(X_j,X_k)$ have no common zero, [3, Lemma 2.9] implies that there are $A_{i,s} \in O_K[X_j,X_k]$ (s=1,2,3) and $A_i \in O_K \setminus \{0\}$ such that

$$A_{i,1}a_{\tau(i),i}^{2m-1}D_{\tau(i),i} + A_{i,2}b_{\tau(i),i}^{2m-1}\Sigma_{\tau(i),i} + A_{i,3}cF_i = A_i.$$

Furthermore, for every archimedean absolute value $|\cdot|_v$ of K we have

$$|A_i|_v \le ((\delta+1)(\delta+2)/2)! |E_i|_v^{(\delta+1)(\delta+2)/2},$$

where $\delta=11MN^5\bar{N}^2$ and E_i is a point of the projective space with coordinates the coefficients of $a_{r(i),i}^{2m-1}D_{r(i),i},\ b_{\tau(i),i}^{2m-1}\Sigma_{\tau(i),i}$ and cF_i . The bounds for $a_{r(i),i},\ b_{\tau(i),i},\ c,\ H(D^1_{r(i),i}),\ H(\Sigma^1_{\tau(i),i}),\ H(P_{r(i),i})$ and $H(\Pi_{\tau(i),i})$ give

$$|N_K(A_i)| < \Lambda_{11}(d, m, M, N, \bar{N})(H(F)^{6N^2\bar{N}}H(\Phi_i)^{\bar{N}}H(\bar{F})^M)^{\lambda dm^3M^7N^{30}\bar{N}^{13}},$$

where λ is a numerical constant.

Let $p_i = (a_j/a_i, a_k/a_i)$. Since $D_{r(i),i}(X_j, X_k)$, $\Sigma_{\tau(i),i}(X_j, X_k)$ and $F_i(X_j, X_k)$ have no common zero, we have either $D_{r(i),i}(p_i) \neq 0$ or $\Sigma_{\tau(i),i}(p_i) \neq 0$. Let S be the set of prime ideals of O_K dividing $A_1A_2A_3$. Suppose that \wp is a prime ideal of O_K with $\wp \notin S$. Then there is $i \in \{1,2,3\}$ such that $a_j/a_i, a_k/a_i \in O_{K,\wp}$. Put L = K(Q) and $\xi = [L:K]$. We have $L = K(u_{r(i),i}(Q)) = K(v_{\tau(i),i}(\tilde{Q}))$. We denote by $O_{K,\wp}$ the local ring at \wp , by $\tilde{\wp}$ the prime ideal of $O_{K,\wp}$ generated by \wp and by D_\wp the discriminant of the integral closure of $O_{K,\wp}$ into L over $O_{K,\wp}$. Since \wp does not divide A_i , it follows that either $a_{r(i),i}^{2m-1}D_{r(i),i}(p_i)$ or $b_{\tau(i),i}^{2m-1}\Sigma_{\tau(i),i}(p_i)$ is not divisible by $\tilde{\wp}$ (into $O_{K,\wp}$). If $\tilde{\wp}$ does not divide $a_{r(i),i}^{2m-1}D_{r(i),i}(p_i)$, then $\tilde{\wp}$ does not divide $a_{r(i),i}$ and $a_{r(i),i}^{2m-2}D_{r(i),i}(p_i)$. Thus $a_{r(i),i}$ is a unit in $O_{K,\wp}$ and so $u = u_{r(i),i}(Q)$ is integral over $O_{K,\wp}$. Then D_\wp divides the discriminant $D(1,u,\ldots,u^{\xi-1})$ of $1,u,\ldots,u^{\xi-1}$ into $O_{K,\wp}$. Further, $D(1,u,\ldots,u^{\xi-1})$ divides $a_{r(i),i}^{2m-2}D_{r(i),i}(p_i)$. Since $\tilde{\wp}$ does not divide $a_{r(i),i}^{2m-2}D_{r(i),i}(p_i)$, $\tilde{\wp}$ does not divide D_\wp . Thus, \wp is not ramified into L. If $\tilde{\wp}$ does not divide $b_{\tau(i),i}^{2m-1}\Sigma_{\tau(i),i}(p_i)$, then we have the same result. By [3, Lemma~4.3],

$$N_K(D_{L/K}) < \prod_{\wp \in S} N_K(\wp)^{m-1} \exp(2m^2 d) \le N_K(A_1 A_2 A_3)^{m-1} \exp(2m^2 d).$$

Using the estimates for $N_K(A_i)$, the result follows.

References

- [1] Y. Bilu, Effective Analysis of Integral Points on Algebraic Curves, Ph. D. Thesis, Beer Sheva, 1993.
- [2] C. Chevalley, Un théorème d'arithmétique sur les courbes algébriques, C. R. Acad. Sci. Paris 195 (1932), 570-572.
- [3] K. Draziotis and D. Poulakis, An Explicit Chevalley-Weil Theorem for Affine Plane Curves, Rocky Mountain Journal of Mathematics, Rocky Mountain Journal of Mathematics, 39(1) (2009), 49-70.
- [4] M. Hindry J. Silverman, *Diophantine Geometry*, New-York Inc.: Springer-Verlag 2000.
- [5] S. Lang, Diophantine Geometry, Springer Verlag 1983.
- [6] D. Poulakis, Polynomial bounds for the solutions of a class of Diophantine equations, *J. Number Theory*, 66, 2 (1997), 271-281.
- [7] D. Poulakis, Integer points on algebraic curves with exceptional units, *J. Austral. Math. Soc. (Series A)* 63 (1997), 145-164.

- [8] I. Shafarevich, *Basic Algebraic Geometry*, Berlin-Heidelberg-New York: Springer Verlag 1977.
- [9] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer Verlag 1986.
- [10] A. Weil, Arithmétique et géométrie sur les variétés algébriques, *Act. Sci. et Ind.* No 206, Paris: Hermann 1935.

Dimitrios Poulakis, Aristotle University of Thessaloniki, Department of Mathematics, 54124 Thessaloniki, Greece Email Adress: poulakis@math.auth.gr

Konstantinos Draziotis Kromnis 33 54454 Thessaloniki, Greece Email Adress: drazioti@math.auth.gr