

Machine Learning I

CS 5805

Homework #8

In this LAB, you will practice the Naive bayes and Bayesian network. (this assignment does not require python coding).

- 1. Consider the data set shown in Table 1 and estimate the following probabilities: (without performing the Laplace smoothing). Show all your work. [12.5pts]
 - a. P(A = 0 | +)
 - b. P(A = 0 | -)
 - c. P(B = 1 | +)
 - d. P(B = 1 | -)
 - e. P(C = 0 | +)
 - f. P(C = 0 | -)

Record	Α	В	С	Class
1	0	0	0	+
2	0	0	1	_
3	0	1	1	-
4	0	1	1	-
4 5	0	0	1	+
6	1	0	1	+
7	1	0	1	_
8	1	0	1	-
9	1	1	1	+
10	1	0	1	+

Table 1

- 2. Use the estimate of conditional probabilities given in the previous question to predict the class label for a test sample (A = 0, B = 1, C = 0) using the Naïve Bayes approach. What is the predicted label for the test sample? Show all your work. [10pts]
- 3. Consider the data set shown in Table 1 and estimate the following probabilities: (With Laplace smoothing and $\alpha = 2$). Show all your work. [12.5pts]
 - a. P(A = 0 | +)
 - b. P(A = 0 | -)
 - c. P(B = 1 | +)
 - d. P(B = 1 | -)
 - e. P(C = 0 | +)
 - f. P(C = 0 | -)

- 4. Use the estimate of conditional probabilities given in the previous question to predict the class label for a test sample (A = 0, B = 1, C = 0) using the <u>Naïve Bayes approach</u>. What is the predicted label for the test sample? Show all your work. [7.5pts]
- 5. Compare the label prediction in question 2 and 4. Are the results the same? Which method is better and why? [5pts]
- 6. Consider the dataset shown in Table 2. Estimate the following conditional probabilities. Show all your work. [12.5pts]
 - a. P(A = 1 | +)
 - b. P (A = 1 | -)
 - c. P(B = 1 | +)
 - d. P(B = 1 | -)
 - e. P(C = 1 | +)
 - f. P(C = 1 | -)

Instance	Α	В	С	Class
1	0	0	1	-
2	1	0	1	+
3	0	1	0	-
4	1	0	0	-
4 5	1	0	1	+
6	0	0	1	+
7	1	1	0	-
8	0	0	0	_
8 9	0	1	0	+
10	1	1	1	+

Table 2

- 7. Use the conditional probabilities in the previous question to predict the class label for a test sample (A = 1, B = 1, C = 1) using the <u>Naïve Bayes approach</u>. What is the predicted label for the test sample? Show all your work. [10pts]
- 8. Two events can cause grass to be wet as shown in figure 1: an active sprinkler or rain. Rain has a direct effect on the use of the sprinkler. Using the <u>Bayesian network</u> and given that the grass is wet, find out if it rained or not? Show all your work. [30pts]

Upload a formal **report (as a single pdf**) through canvas by the due date.