IMAGE PROCESSING I IntuoN Lertrusdachakul Tutorial III: Spatial Filtering

Intro...

Tutorial III: Spatial Filtering

Outline

Perform Different Filtering

(observe the effect to the image quality)

- Manually
- By built-in command (e.g. fspecial, medfilt2, conv2, filter2, etc.)
- By your own code

6	6	6	6	6	6	6
5	5	5	5	5	5	5
4	4	4	4	4	4	4
3	3	3	10	3	3	3
2	2	2	2	2	2	2
1	1	1	1	1	1	1
0	0	0	0	0	0	0

Perform LPF (Mean Filtering)

A Convolution Mask

A Digital Image

6	6	6	6	6	6	6
5	5	5	5	5	5	5
4	4	4	4	4	4	4
3	3	3	10	3	3	3
2	2	2	2	2	2	2
1	1	1	1	1	1	1
0	0	0	0	0	0	0

Perform LPF (Weighted Averaging Filtering)

A Convolution Mask

A Digital Image

Sample Code

```
%Define an image
img=[ 6 6 6 6 6 6 6; 5 5 5 5 5 5;
      4 4 4 4 4 4 4; 3 3 3 10 3 3 3;
      2 2 2 2 2 2 2; 1 1 1 1 1 1 1;0 0 0 0 0 0 0]
%Define a mask for filtering
mask=fspecial('average',3) OR
mask=[1 1 1; 1 1 1; 1 1 1]/9
%Filtering in two ways
output=filter2(mask,img,'same') OR
output=conv2(img,mask,'same')
```

Effect of Low Pass Filtering

Tutorial III: Spatial Filtering 30/09/2009

Perform LPF (Median Filtering)

Example 1

5	5	5	5	5
4	4	4	4	4
3	3	10	3	3
2	2	2	2	2
1	1	1	1	1

Perform LPF (Median Filtering)

Example 2

0	0	0	0	0
0	0	0	0	0
0	0	10	10	10
0	0	10	10	10
0	0	10	10	10

LPF (Median Filtering)

Example 3

10	10	0	10	10
10	10	0	10	10
10	10	0	10	10
10	10	0	10	10
10	10	0	10	10

LPF (Median Filtering)

Example 4

0	0	10	0	0
0	0	10	0	0
0	0	10	0	0
0	0	10	0	0
0	0	10	0	0

Sample Code

```
% Define an image

img=[5 5 5 5 5; 4 4 4 4 4; 3 3 10 3 3; 2 2 2 2 2; 1
    1 1 1 1]

% Median filtering

output=medfilt2(img,[3 3],'symmetric')
```

•

Effect of Median Filtering

a b c

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3 × 3 averaging mask. (c) Noise reduction with a 3 × 3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

HPF (Gradient-based)

Sobel

Tutorial III: Spatial Filtering 30/09/2009

Perform HPF (Gradient-based)
Prewitt Operators

0	0	0	0	0	0	0
0	0	0	0	0	0	1
0	0	0	0	0	1	1
0	0	0	0	1	1	1
0	0	0	1	1	1	1
0	0	1	1	1	1	1
0	1	1	1	1	1	1

Sample Code

```
% Call the Prewitt operators
mask1=fspecial('Prewitt')
mask2=mask1'
% Filtering
tmp1=conv2(img,mask1,'same');
tmp2=conv2(img,mask2,'same');
% Calculate the magnitude
mag=sqrt(tmp1.^2+tmp2.^2);
% Display it as an image
imshow(mat2gray(mag))
```

Edge Detection by Sobel Operators

a b

FIGURE 3.45 Optical image of contact lens (note defects on the boundary at 4 and 5 o'clock). (b) Sobel gradient. (Original image courtesy of Mr. Pete Sites, Perceptics Corporation.)

HPF (Laplacian-based)

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

a	b
c	d

FIGURE 3.39

(a) Filter mask used to implement the digital Laplacian, as defined in Eq. (3.7-4). (b) Mask used to implement an extension of this equation that includes the diagonal neighbors. (c) and (d) Two other implementations of the Laplacian.

0	0	0	0	0	0	0
0	0	0	0	0	0	1
0	0	0	0	0	1	1
0	0	0	0	1	1	1
0	0	0	1	1	1	1
0	0	1	1	1	1	1
0	1	1	1	1	1	1

Perform HPF

(Laplacian Operators)

Sample Code

```
% Call the Laplacian operator
mask=fspecial('Laplacian')
% Filtering
tmp=conv2(img,mask,'same');
% Display it as an image
imshow(mat2gray(tmp))
% Enhancement
tmp=img-tmp*0.1
% Display the enhanced image
imshow(mat2gray(tmp))
```

a b c d

moon.

NASA.)

Image Enhancement by Laplacian

Tutorial III: Spatial Filtering 30/09/2009

Assignment

- Add 'Gaussian' and 'Salt&Pepper' noise to your image separately. Then, apply Averaging filters and Median filters to the noisy images.
- Apply the Sobel and Laplacian filters to your original facial image separately. Also attempt to enhance your image using the Laplacian filter.

Additional Material

Averaging Filtered

Noisy Image (Gaussian)

Median Filtered

Additional Material

Sample Results
From Salt & Pepper Noisy Image

Original Image

Averaging Filtered

Noisy Image (Salt&Pepper)

Median Filtered

Additional Material

Original Image

Laplacian Filtered

Enhanced Image

