3 Complex number

3.1 De Movire's theorem

The modulus-argument form of the complex number z = x + iy is

$$z = r(\cos\theta + i\sin\theta)$$

where

- r is called the _____, $r \geqslant 0$.
- θ is called the principal ______, $-\pi < \theta \leqslant \pi$.

Multiplication and Division:

For two complex numbers $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$

- $z_1 z_2 =$
- $\bullet \ \frac{z_1}{z_2} =$

In the case r = 1, thus $z = \cos \theta + i \sin \theta$, it follows that

$$z^{2} = (\cos \theta + i \sin \theta)^{2} =$$

$$z^{3} =$$

$$z^{4} =$$

A conjecture can be made that, for any positive integer, n is

$$z^n = (\cos\theta + i\sin\theta)^n = \tag{3.1}$$

This is **de Movire's theorem**. Furthermore, It will be shown that it is true for any interger n.

Proof:

• For positive integer n:

• For negative integer n:

Notice: if stated in exponential form, de Movire's theorem can be written as:

$$(\cos\theta + i\sin\theta)^n = = =$$

However, above deduction can not be used to prove the theorem directly.

1. Find the value of each of the following complex numbers.

(a)
$$\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^8$$

(b)
$$(\sqrt{3} - i)^{18}$$

(c)
$$\left(\frac{1}{1+i}\right)^6$$

(d)
$$\frac{\left(\cos\frac{9}{17}\pi + i\sin\frac{9}{17}\pi\right)^{5}}{\left(\cos\frac{2}{17}\pi - i\sin\frac{2}{17}\pi\right)^{3}}$$

Trigonometric functions of multiple angles

Applying binomial expansion in de Moivre's Theorem, we can find multiple-angle formulae.

2. Find an expression for $\cos 5\theta$ in terms of $\cos \theta$.

$$\cos 5\theta + i \sin 5\theta = (\cos \theta + i \sin \theta)^5$$

$$= (C + iS)^5$$

$$=$$

$$=$$

$$=$$

Hence,

$$\cos 5\theta = \operatorname{Re}\{\cos 5\theta + i \sin 5\theta\}$$

$$=$$

$$=$$

$$=$$

$$=$$

- 3. (a) Find $\sin 3\theta$ in terms of $\sin \theta$.
 - (b) Find $\frac{\sin 6\theta}{\sin \theta}$, $\theta \neq n\pi$, $n \in \mathbf{Z}$, in terms of powers of $\cos \theta$.

4. By considering the form of $\tan 3\theta$, solve the cubic equation $3t^3 + 6t^2 - 9t - 2 = 0$.

5. Show that $\tan 5\theta = \frac{5 \tan \theta - 10 \tan^3 \theta + \tan^5 \theta}{1 - 10 \tan^2 \theta + 5 \tan^4 \theta}$, find all solutions for the polynomial

$$2x^5 - 5x^4 - 20x^3 + 10x^2 + 10x = 1.$$

Powers of trigonometric functions:

Given that $z = \cos \theta + \mathrm{i} \sin \theta$, then $\frac{1}{z} = 0$, hence

$$z + \frac{1}{z} = \tag{3.2}$$

$$z - \frac{1}{z} = \tag{3.3}$$

According to de Movire's theorem, $z^n =$, and $\frac{1}{z^n} =$, it follows that

$$z^n + \frac{1}{z^n} = \tag{3.4}$$

$$z^n - \frac{1}{z^n} = \tag{3.5}$$

Use binomial expansion and above results, we can find the expression of powers of trigonometric functions.

6. Express $\cos^5 \theta$ in the form $a \cos 5\theta + b \cos 3\theta + c \cos \theta$, where a, b and c are constants.

7. Prove that

$$\sin^5 \theta = \frac{1}{16} \sin 5\theta - \frac{5}{16} \sin 3\theta + \frac{5}{8} \sin \theta.$$

- 8. (a) Express $\sin^4 \theta$ in the form of $d\cos 4\theta + e\cos 2\theta + f$, where d, e and f are constants.
 - (b) Hence find the exact value of $\int_0^{\frac{\pi}{2}} \sin^4 \theta \, d\theta$.

9. By considering $\left(z - \frac{1}{z}\right)^2 \left(z + \frac{1}{z}\right)^4$, find the constants p, q, r and s such that

$$\sin^2\theta\cos^4\theta = p + q\cos 2\theta + r\cos 4\theta + s\cos 6\theta.$$

Using the substitution $x = 2\cos\theta$, show that

$$\int_{1}^{2} x^{4} \sqrt{4 - x^{2}} \, \mathrm{d}x = \frac{4}{3} \pi + \sqrt{3}$$

3.2 The *n*th roots of unity

Every polynomial equation of degree n has exactly n roots, including repeated roots. Therefore equation

$$z^n = 1$$

has n roots. z = 1 is one of these roots, if n is even, then z = -1 is another. All of the other roots are **complex** roots.

- 1. (a) Write down the two roots of the equation $z^2 = 1$ and show them on an Argand diagram.
 - (b) Use $z^3 1 = (z 1)(z^2 + z + 1)$ to find the three roots of $z^3 = 1$. Show them on the Argand diagram.
 - (c) Find the four roots of $z^4 = 1$ and show them on Argand diagram.

From the above example, you may have noticed that:

- all the roots lie on a _____
- one root at _____.

In fact, every root of the equation $z^n = 1$ lies on the unit circle, and is equally distributed around the circle.

Proof:

Suppose $z = r(\cos \theta + i \sin \theta)$, r > 0 and $-\pi < \theta \leqslant \pi$, it follows that

$$z^n = r^n(\cos\theta + i\sin\theta)^n = r^n(\cos n\theta + i\sin n\theta).$$

Since $|z^n| = 1$, it is true that

$$r^n = 1$$
,

it can be deduced that

$$r =$$
, $\cos n\theta =$, $\sin n\theta =$.

Therefore,

$$r =$$
, $\theta = \frac{2k\pi}{n}$.

Generally, as k takes values 0, 1, 2, \cdots , n-1 the corresponding values of θ are:

$$0, \frac{2\pi}{n}, \frac{4\pi}{n}, \frac{6\pi}{n}, \cdots, \frac{2(n-1)\pi}{n}$$

giving n distinct values of z.

When k=n then $\theta=$, which gives the same z as $\theta=0$. Similarly, any integer values of k larger than n will differ from $0, 1, 2, \dots, (n-1)$ by a multiple of n, and so gives a value of θ differing by a multiple of 2π from one already listed; the same applies when k is any negative integer.

Therefore, the equation $z^n = 1$ has exactly n roots. These are

$$z_k = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}, \qquad k = 0, 1, 2, 3, \dots, (n-1)$$
 (3.6)

These n complex numbers are called the nth roots of unity.

It is clear that these roots are on a unit circle and equally distributed around it.

2. Solve the equation $z^6 = 1$. Show the roots on a Argand diagram.

Exponential form of roots of unity

Since

$$e^{i\theta} = \cos \theta + i \sin \theta$$

substitute $\theta = 0$, we can have $e^{i0} = \cos 0 + \sin 0 = 1$, it follows that

$$z^{n} = 1$$

$$z^{n} = e^{i0}$$

$$z^{n} = e^{i(0+2k\pi)}$$

$$(z^{n})^{\frac{1}{n}} = \left(e^{i(2k\pi)}\right)^{\frac{1}{n}}$$

$$z = e^{i\left(\frac{2k\pi}{n}\right)}.$$

Therefore we can also have exactly n distinct roots of unity:

$$z_k = e^{i\left(\frac{2k\pi}{n}\right)}, \qquad k = 0, 1, 2, 3, \dots, (n-1).$$
 (3.7)

These are the exponential form of the *n*th roots of unity.

3. Find in exponential form, the 7th roots of unity, and show the roots on a Argand diagram.

Properties of the *n*th root of unity

It is common to use Greek letter ω for the root with the smallest positive argument:

$$\omega = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n} = e^{i\left(\frac{2\pi}{n}\right)}.$$

Then by the de Movire's theorem:

$$\omega^k = \cos\frac{2k\pi}{n} + \mathrm{i}\sin\frac{2k\pi}{n}$$

so the nth roots of unity can be written as:

$$1, \omega, \omega^2, \omega^3, \cdots, \omega^{n-1}$$
.

The roots of unity have some important properties:

• Complex roots of unity occur in conjugate pairs. In particular,

$$(z_k)^* = z_{n-k}. (3.8)$$

 \bullet The sum of the *n*th roots of unity is always 0 because

$$z_0 + z_1 + z_2 + \dots + z_{n-k} = 1 + \omega^1 + \omega^2 + \dots + \omega^{n-1} =$$
(3.9)

 z^n-1 can be factorised into linear and quadratic factors with real coefficients:

Notice, for even and odd number of n, the factorization can be different:

• for odd n,

$$z^n - 1 = \underline{()()} \tag{3.10}$$

• for even n,

$$z^n - 1 = \underline{ () } \tag{3.11}$$

- 4. Factorise the following in linear or quadratic factors.
 - (a) $z^5 1$
 - (b) $z^6 1$

- 5. If ω is a complex cube root of unity,
 - (a) Simplify $(1+\omega)(1+\omega^2)$ and $(1+6\omega)(1+6\omega^2)$. (b) Prove that $(a+b)(a+\omega b)(a+\omega^2 b)=a^3+b^3$.

6. Find the fifth root of 1 and hence prove that

$$\cos\frac{2}{5}\pi + \cos\frac{4}{5}\pi = -\frac{1}{2}$$
, and $\cos\frac{1}{5}\pi + \cos\frac{3}{5}\pi = \frac{1}{2}$.

- 7. (a) Draw an Argand diagram showing the point 1, ω , ω^2 , ω^3 , ω^4 , where $\omega = \cos \frac{2}{5}\pi + i \sin \frac{2}{5}\pi$.
 - (b) If $\alpha = \omega^2$, show that the point 1, α , α^2 , α^3 , α^4 are the same as the points in the first part, but in a different order. Indicate this order by labelling the points clearly.
 - (c) Repeat the second part with α replaced by β , where $\beta = \omega^3$.

8. Prove that all the roots of

$$z^n = (z-1)^n$$

have real part $\frac{1}{2}$.

9. (a) By considering the solutions of the equation $z^n - 1 = 0$ prove that

$$(z-\omega)(z-\omega^2)(z-\omega^3)\cdots(z-\omega^{n-1}) = z^{n-1} + z^{n-2} + \cdots + z + 1$$

where $\omega = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$.

- (b) There are n points equally spaced around the circumference of a unit circle. Prove that the product of the distances from one of these points to each of the others is n.
- (c) By finding expressions for the distances in the previous part, deduce that

$$\sin\left(\frac{\pi}{n}\right)\sin\left(\frac{2\pi}{n}\right)\sin\left(\frac{3\pi}{n}\right)\cdots\sin\left(\frac{(n-1)\pi}{n}\right) = \frac{n}{2^{n-1}}.$$

3.3 The nth roots of a complex number

To solve the equation

$$z^n = u$$

where u is a non-zero complex number, we first rewrite the complex number u in modulus argument form:

$$u = s(\cos \phi + i \sin \phi), \quad s > 0, \text{ and } 0 \leqslant \phi < 2\pi$$

and then set $z = r(\cos \theta + i \sin \theta)$, it follows that

$$(r(\cos\theta + i\sin\theta))^n = s(\cos\phi + i\sin\phi)$$

$$r^n(\cos n\theta + i\sin n\theta) = s(\cos(\phi + 2k\pi) + i\sin(\phi + 2k\pi))$$

hence

$$r^n = s$$
, and $n\theta = \phi + 2k\pi$.

It can then be deduced that

$$r=s^{\frac{1}{n}}\quad \text{and}\quad \theta=\frac{\phi+2k\pi}{n}\quad (k=0,1,2,\cdots,n-1)$$

The first expression indicates that all the roots have the same $____$, and the second one implies that there are $____$ distinct nth roots of a complex number.

Therefore the non-zero complex number u has precisely n different nth roots, which are

$$s^{\frac{1}{n}}\left(\cos\left(\frac{\phi+2k\pi}{n}\right) + i\sin\left(\frac{\phi+2k\pi}{n}\right)\right) = s^{\frac{1}{n}}e^{i\left(\frac{\phi+2k\pi}{n}\right)},\tag{3.12}$$

where $k = 0, 1, 2, 3, \dots, n - 1$.

These roots can also be expressed in terms of the nth roots of unity as

$$\alpha, \alpha\omega, \alpha\omega^2, \cdots \alpha\omega^{n-1} \tag{3.13}$$

where

$$\alpha = s^{\frac{1}{n}} \left(\cos \left(\frac{\phi}{n} \right) + i \sin \left(\frac{\phi}{n} \right) \right) = s^{\frac{1}{n}} e^{i \left(\frac{\phi}{n} \right)} \quad \text{and} \quad \omega = \cos \left(\frac{2\pi}{n} \right) + i \sin \left(\frac{2\pi}{n} \right) = e^{i \left(\frac{2\pi}{n} \right)}. \tag{3.14}$$

1. Solve

$$z^{12} = -1$$
,

giving all answers in the form $z = re^{i\theta}$.

2. Solve

$$z^6 = 4 + 4\sqrt{3}i,$$

giving all answers in the form $z=r\mathrm{e}^{\mathrm{i}\theta}.$ Show all your solutions on an Argand diagram.

3. Find the roots of the equation

$$z^3 = -4\sqrt{3} + 4i$$

giving your answers in the form $re^{i\theta}$, where r > 0 and $0 \le \theta < 2\pi$.

Denoting these roots by z_1, z_2, z_3 , show that, for every positive integer k,

$$z_1^{3k} + z_2^{3k} + z_3^{3k} = 3\left(2^{3k}e^{\frac{5}{6}k\pi i}\right).$$

4. The polynomial P is given by

$$(z+2-3i)^3 = 2+2i.$$

- (a) Given that $\omega = z + 2 3i$, find the roots ω , ω^2 , ω^3 . State, in terms of the z-plane, the value of $\omega + \omega^2 + \omega^3$.
- (b) Sketch the three solutions on an Argand diagram.

5. Solve the equation

$$(z+i)^n + (z-i)^n = 0.$$

6. (a) If
$$u = \cos \theta + i \sin \theta$$
, show that

$$\frac{1+u}{1-u} = i\cot\left(\frac{\theta}{2}\right).$$

$$u^n = -1,$$

where n is a positive integer.

(c) Hence, by writing
$$u$$
 as $\frac{x-1}{x+1}$, prove that the roots of $(x-1)^n=-(x+1)^n$ are

$$i\cot\left(\frac{(2r+1)\pi}{2n}\right)$$

for
$$r = 0, 1, 2, \dots, n - 1$$
.

3.4 Complex summations

Geometric sequence

The sum, S_n , of the first n terms of a geometric sequence is

$$S_n = \frac{a(1-r^n)}{1-r}$$

where a is the first term and r is the common ratio, and r is not equal to one.

• 'Coefficient' of common ratio is "1"

Suppose $z = \cos \theta + i \sin \theta = e^{i\theta}$, then summation of a geometric sequence such as

$$\sum_{n=1}^{N} z^n = z + z^2 + z^3 + \dots + z^N$$

has common ratio z with 'coefficient' 1, this means 1z, not 2z, 3z or otherwise.

There are usually two methods carried out to convert the complex denominator into real one.

Method 1: (conjugate multiplication)

Since

$$(1-z)(1-z^{-1}) = 1 - (z+z^{-1}) + 1 = 2 - 2\cos\theta,$$

it follows that

$$\sum_{n=1}^{N} z^{n} = \frac{z(1-z^{N})}{1-z} = \frac{z(1-z^{N})(1-z^{-1})}{(1-z)(1-z^{-1})} = \frac{(1-z^{N})(z-1)}{2-2\cos\theta} = \frac{z-1-z^{N+1}+z^{N}}{2-2\cos\theta}$$
(3.15)

Method 2: (factorization)

De Movire's theorem is also valid for rational number, hence

$$z^{\frac{1}{2}} + z^{-\frac{1}{2}} = 2\cos\frac{1}{2}\theta$$
$$z^{\frac{1}{2}} - z^{-\frac{1}{2}} = 2i\sin\frac{1}{2}\theta$$

it follows that

$$\sum_{n=1}^{N} z^n = \frac{z(1-z^N)}{1-z} = \frac{z(1-z^N)}{z^{\frac{1}{2}}(z^{-\frac{1}{2}}-z^{\frac{1}{2}})} = \frac{z^{\frac{1}{2}}(1-z^N)}{-2i\sin\frac{1}{2}\theta} = \frac{iz^{\frac{1}{2}}(1-z^N)}{2\sin\frac{1}{2}\theta} = \frac{i\left(z^{\frac{1}{2}}-z^{N+\frac{1}{2}}\right)}{2\sin\frac{1}{2}\theta}$$
(3.16)

1. By considering the expansion of $\sum_{n=0}^{N-1} z^n$, show that

$$\sum_{n=0}^{N-1} \cos n\theta = \frac{1}{2} \left[\sin \left(N - \frac{1}{2} \right) \theta \csc \left(\frac{1}{2} \theta \right) + 1 \right].$$

Proof:

Let
$$C = 1 + \cos \theta + \cos 2\theta + \dots + \cos(N-1)\theta$$
,
and $S = \sin \theta + \sin 2\theta + \dots + \sin(N-1)\theta$.

Thus
$$C + iS = 1 + z + z^2 + \dots + z^{N-1} = \sum_{n=0}^{N-1} z^n$$
, it follows that $C = \text{Re}\left\{\sum_{n=0}^{N-1} z^n\right\}$.

2. By considering the expansion of $\sum_{n=0}^{N} z^{2n-1}$, show that

$$\sum_{n=0}^{N-1} \cos(2n-1)\theta = \frac{\sin 2N\theta}{2\sin \theta}.$$

• Coefficient of common ratio is NOT "1"

The above Method 1 (conjugate multiplication) is still valid, since

$$(1 - az)(1 - az^{-1}) = 1 - a(z + z^{-1}) + a^{2} = 1 + a^{2} - 2a\cos\theta$$
(3.17)

3. Prove

$$\sum_{n=1}^{N} 2^{n} \sin n\theta = \frac{2^{N+2} \sin N\theta - 2^{N+1} \sin(N+1)\theta + 2\sin \theta}{5 - 4\cos \theta}.$$

4. By first expanding
$$\sum_{n=0}^{N-1} \left(\frac{z}{3}\right)^n$$
, show that

$$\sum_{n=0}^{N} 3^{-n} \cos n\theta = \frac{3^{-N+1} \cos(N-1)\theta - 3^{-N+2} \cos N\theta - 3\cos \theta + 9}{10 - 6\cos \theta}.$$

5. Determine the value of

$$\sum_{n=0}^{\infty} 2^{-n} \sin\left(\frac{n\pi}{2}\right).$$

- 6. It is given that $u = 1 e^{i\theta} \cos \theta$, where $0 < \theta < \frac{\pi}{2}$.
 - (a) Express $e^{ik\theta}$ and $e^{-ik\theta}$ in the form a + ib, show that $u = -ie^{i\theta} \sin \theta$.
 - (b) Find |u| and argu. Hence write down the modulus and argument of each of the two roots of u. Series C and S are defined by

$$C = \cos\theta\cos\theta + \cos 2\theta\cos^2\theta + \cos 3\theta\cos^3\theta + \dots + \cos n\theta\cos^n\theta$$

$$S = \sin\theta\cos\theta + \sin 2\theta\cos^2\theta + \sin 3\theta\cos^3\theta + \dots + \sin n\theta\cos^n\theta$$

- (c) Show that C + iS is a geometric series, and write down the sum of this series.
- (d) Using the results of the first part, or otherwise, show that $C = \frac{\sin n\theta \cos^{n+1} \theta}{\sin \theta}$, and nd a similar expression for S.

Binomial expansion

7. Let $z = \cos \theta + i \sin \theta$. Use the binomial expansion of $(1+z)^n$, where n is a positive integer, to show that

$$\binom{n}{1}\cos\theta + \binom{n}{2}\cos 2\theta + \cdots + \binom{n}{n}\cos n\theta = 2^n\cos^n\left(\frac{1}{2}\theta\right)\cos\left(\frac{1}{2}n\theta\right) - 1.$$

Find

$$\binom{n}{1}\sin\theta + \binom{n}{2}\sin 2\theta + \cdots + \binom{n}{n}\sin n\theta$$

8. (a) Show the points 2 and $2 + \cos \frac{2}{3}\pi + i \sin \frac{2}{3}\pi$ on an Argand diagram, and hence show that

$$2 + \cos\frac{2}{3}\pi + i\sin\frac{2}{3}\pi = \sqrt{3}e^{i\frac{\pi}{6}}.$$

(b) Deduce that

$$\sum_{r=0}^{n} \binom{n}{r} 2^{n-r} \cos \frac{2r\pi}{3} = 3^{\frac{n}{2}} \cos \frac{\pi}{6}.$$

(c) State the corresponding result for

$$\sum_{r=0}^{n} \binom{n}{r} 2^{n-r} \sin \frac{2r\pi}{3}.$$