Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No V
D2	Sunny	Hot	High	Strong	No. V
D3	Overcast	Hot	High	Weak	Yes V
D4	Rain	Mild	High	Weak	Yes 🗸
D5	Rain	Cool	Normal	Weak	Yes 🔪
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes 🕻
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
011	Sunny	Mild	Normal	Strong	Yes
012	Overcast	Mild	High	Strong	Yes
013	Overcast	Hot	Normal	Weak	Yes
014	Rain	Mild	High	Strong	No

TABLE 3.2

Training examples for the target concept PlayTennis.

$$\begin{aligned} & \text{Entropy}(D) \middle/ \text{Info}(D) \\ & \text{Info}(D) = -\frac{2}{5} \text{Piloga} \text{Pi} \\ & P_1 = \frac{9}{14} \quad P_2 = \frac{5}{14} \\ & \text{Entropy}(D) = -\left[\frac{9}{14} \log_2(\frac{9}{14}) + \frac{5}{14} \log_2(\frac{5}{14}) \right] \\ & = -\left[0.642 \times (-0.637) + 0.557 \left(-1.485 \right) \right] \\ & = -\left[-0.408 - 0.530 \right] \\ & P_2 = \frac{0.940 \text{ lots}}{2} \\ & = 0.940 \text{ lots}. \end{aligned}$$

$$\begin{aligned} & \text{Info}(D) \\ & \text{outloons} \end{aligned} \qquad & \text{outloons} \end{aligned}$$

$$= \frac{10}{5} \frac{|D_j|}{|D|} \text{ Info}(D_j)$$

$$= \frac{3}{5} \frac{|D_j|}{|D|} \text{ Info}(D_j)$$

$$= \frac{10}{5} \frac{|D_j|}{|D|} \text{ Info}(D_{\text{Sunny}})$$

$$+ \frac{10}{5} \frac{|D_{\text{pain}}|}{|D|} \text{ Info}(D_{\text{pain}})$$

Info (D) outlook =
$$\frac{5}{14}$$
 Info (Dsung) + $\frac{4}{14}$ Info (Pounlast)

+ $\frac{5}{14}$ Info (Dpain)

= $\frac{5}{14}$ [- $\frac{2}{5}$ log₂ ($\frac{2}{5}$) - $\frac{3}{5}$ log₂ ($\frac{3}{5}$)]

+ $\frac{4}{14}$ [- $\frac{4}{4}$ log₂ ($\frac{4}{4}$) - $\frac{0}{4}$ log₂ ($\frac{0}{4}$)]

+ $\frac{5}{14}$ [- $\frac{3}{5}$ log₂ ($\frac{3}{5}$) - $\frac{9}{5}$ log₂ ($\frac{2}{5}$)]

= 0.346 + 0 + 0.346

 \approx 0.693

Gain (outlook) = Info (D) - Info (D) outlook

= 0.940 - 0.693

Into (D)

Fingerative =
$$\frac{9}{100} | D_{1} | D_{1} | D_{2} | D_{3} | D_{3} | D_{4} |$$

$$\begin{array}{lll}
& (D) & (D) - (D) & (D) \\
& = (D) & (D) & (D) & (D) \\
& = (D) & (D) & (D) & (D) \\
& = (D) & (D) & (D) & (D) \\
& = (D) & (D) & (D) & (D) & (D) \\
& = (D) & (D) & (D) & (D) & (D) \\
& = (D) & (D) & (D) & (D) & (D) & (D) \\
& = (D) & (D) & (D) & (D) & (D) & (D) & (D) \\
& = (D) & (D) &$$

Since Downy in impure, Split Downy lat 9 Now our D in Drunny Info (D) = - Splogoli D. P. = 2 B = -5 $=- \left[\frac{2}{5}\log_{2}(\frac{2}{5}) + \frac{3}{5}\log_{2}(\frac{2}{5})\right]$ = 0.970 bitis Dosfo (A) To Split Down, We have Toup, Humd, Wind 3 [Into (1)] = \(\frac{3}{2} \ \big| \frac{D_j}{|D_j|} \] Info (D_j) = [Dnot] Into (Dnot) + Dwid Int()) + (D(001 | x Info (D(001)

() ain (Humidily) = Info(ned with CamScanner

(114)

Into (D) =
$$\frac{2^{-2}}{5} \frac{|D_j|}{|D|} Into (D_j)$$

= $\frac{|D_j|}{|D|} Into (D_j)$

+ $\frac{|D_j|}{|D|} Into (D_j)$

= $\frac{3}{5} \left[-\frac{1}{3} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right) \right]$

+ $\frac{2}{5} \left[-\frac{1}{2} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right) \right]$

= $\frac{3}{5} \left[-\frac{1}{3} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right) \right]$

= $\frac{2}{5} \left[-\frac{1}{3} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right) \right]$

= $\frac{2}{5} \left[-\frac{1}{3} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right) \right]$

= $\frac{2}{5} \left[-\frac{1}{3} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right) \right]$

= $\frac{2}{5} \left[-\frac{1}{3} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right) \right]$

= $\frac{2}{5} \left[-\frac{1}{3} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right) \right]$

= $\frac{2}{5} \left[-\frac{1}{3} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right) \right]$

= $\frac{2}{5} \left[-\frac{1}{3} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right) \right]$

= $\frac{2}{5} \left[-\frac{1}{3} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right) \right]$

= $\frac{2}{5} \left[-\frac{1}{3} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right) \right]$

= $\frac{2}{5} \left[-\frac{1}{3} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right) \right]$

= $\frac{2}{5} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right)$

= $\frac{2}{5} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right)$

= $\frac{2}{5} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right)$

= $\frac{2}{5} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right)$

= $\frac{2}{5} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right)$

= $\frac{2}{5} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right)$

= $\frac{2}{5} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right)$

= $\frac{2}{5} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{1}{3} \right)$

= $\frac{2}{5} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{1}{3} \right)$

= $\frac{2}{5} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{1}{3} \right)$

= $\frac{2}{5} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{1}{3} \right)$

= $\frac{2}{5} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{1}{3} \right)$

= $\frac{2}{5} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{1}{3} \right)$

= $\frac{2}{5} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{1}{3} \right)$

= $\frac{2}{5} log_2 \left(\frac{1}{3} \right)$

$$\begin{array}{lll}
& & & & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

Decinian Tree outlook? Sunny outlook Humar Wind ? Normal high Strong Weak yer