List of Symbols

 ${\tt Version:} {\tt December}\ 1,\ 2022$

1 Font notation

$a, b, c, \ldots, A, B, C, \ldots$	Scalars
a, b, c, \dots	Vectors
A, B, C, \dots	Matrices
$\mathcal{A},\mathcal{B},\mathcal{C},\dots$	Tensors
$A, B, C, \ldots, A, B, C, \ldots$	Sets

2 Common symbols

$\mathbf{\nabla} f, \mathbf{g}$	Gradient vector
$\nabla_x f, \mathbf{g}_x$	Gradient vector with respect x
\mathbf{g} (or $\hat{\mathbf{g}}$ if the gradient vector is \mathbf{g})	Stochastic approximation of the gra-
	dient vector
$J(\cdot)$	Cost-function or objective function
$\Lambda(\cdot)$	Likelihood function
$\Lambda_l(\cdot)$	Log-likelihood function
$\mathcal{O}(\cdot), O(\cdot)$	big-O notation
$\mathbf{\mu}_x, \mathbf{m}_x$	Mean vector
$\hat{\boldsymbol{\mu}}_{x}^{\cdot},\hat{\mathbf{m}}_{x}$	Sample mean vector
$r_x(\tau), R_x(\tau)$	Autocorrelation function of the signal
	x(t) or $x[n]$
$\hat{r}_{\scriptscriptstyle X}(au),\hat{R}_{\scriptscriptstyle X}(au)$	Estimated autocorrelation function
	of the signal $x(t)$ or $x[n]$
$\mathbf{R}_{\mathbf{x}}$	(Auto)correlation matrix of x
$\hat{\mathbf{R}}_{\mathbf{x}}$	Sample (auto)correlation matrix
$r_{x,d}(\tau), R_{x,d}(\tau)$	Cross-correlation between $x[n]$ and
.,,	d[n] or $x(t)$ and $d(t)$
$\hat{r}_{x,d}(\tau), \hat{R}_{x,d}(\tau)$	Estimated cross-correlation between
	x[n] and $d[n]$ or $x(t)$ and $d(t)$
$\mathbf{R}_{\mathbf{x}\mathbf{y}}$	Cross-correlation matrix of x and y
J	· ·

$\hat{\mathbf{R}}_{\mathbf{x}\mathbf{y}}$	Sample cross-correlation matrix of $\mathbf{R}_{\mathbf{x}\mathbf{v}}$
$\mathbf{p}_{\mathrm{x}d}$	Cross-correlation vector
$\rho_{x,y}$	Pearson correlation coefficient be-
F A, y	tween x and y
$\hat{ ho}_{x,y}$	Estimated Pearson correlation coeffi-
	cient between x and y
$c_X(\tau), C_X(\tau)$	Autocovariance function of the signal
	x(t) or $x[n]$
$\hat{c}_{\scriptscriptstyle X}(au),\hat{C}_{\scriptscriptstyle X}(au)$	Estimated autocovariance function of
	the signal $x(t)$ or $x[n]$
C_x, K_x, Σ_x	(Auto)covariance matrix of \mathbf{x}
$\hat{\mathbf{C}}_{\mathbf{x}}, \hat{\mathbf{K}}_{\mathbf{x}}, \hat{\mathbf{\Sigma}}_{\mathbf{x}}$	Sample (auto)covariance matrix
$c_{xy}(\tau), C_{xy}(\tau)$	Cross-covariance function of the sig-
^ / \ ^	$\operatorname{nal} x(t) \text{ or } x[n]$
$\hat{c}_{xy}(au), \hat{C}_{xy}(au)$	Estimated cross-covariance function
$C - V - \Sigma$	of the signal $x(t)$ or $x[n]$
$egin{array}{c} \mathrm{C}_{\mathrm{xy}}, \mathrm{K}_{\mathrm{xy}}, \Sigma_{\mathrm{xy}} \ \hat{\mathrm{C}} & \hat{\mathrm{X}} \end{array}$	Cross-covariance matrix of x
$\hat{\mathbf{C}}_{\mathbf{xy}}, \hat{\mathbf{K}}_{\mathbf{xy}}, \hat{\mathbf{\Sigma}}_{\mathbf{xy}} \\ \delta(t)$	Sample cross-covariance matrix Delta function
$\delta[n]$	Kronecker function
h(t), h[n]	Impulse response (continuous and
(-),[]	discrete time)
\mathbf{C}	Cofactor matrix
\mathbf{W}, \mathbf{D}	Diagonal matrix
$\mathbf{w}, \mathbf{\theta}$	Parameters, coefficients, or weights
	vector
$\mathbf{w}_{o}, \mathbf{w}^{\star}, \mathbf{\theta}_{o}, \mathbf{\theta}^{\star}$	Optimum value of the parameters,
***	coefficients, or weights vector
W	Matrix of the weights
P	Projection matrix; Permutation matrix
Λ	Eigenvalue matrix
Σ	Singular value matrix
_ U	Upper matrix; Left singular vectors
${f L}$	Lower matrix
V	Right singular vectors
J	Jordan matrix; Jacobian matrix
\mathbf{S}	Symmetric matrix
Q	Orthogonal matrix
\mathbf{I}_N	$N \times N$ -dimensional identity matrix
$0_{M imes N}$	$M \times N$ -dimensional null matrix
0_N	N-dimensional null vector
0	Null matrix, vector, or tensor (dimensionality understood by context)
	mensionality understood by context)

$1_{M imes N}$	$M \times N$ -dimensional ones matrix
1_N	N-dimensional ones vector
1	Ones matrix, vector, or tensor (di-
	mensionality understood by context)
j	$\sqrt{-1}$

3 Linear Algebra operations

\mathbf{A}^{-1}	I
	Inverse matrix
$\mathbf{A}^{+}, \mathbf{A}^{\dagger}$	Moore-Penrose pseudoinverse
\mathbf{A}^{T}	Transpose
A* . L	Conjugate
A ^H	Hermitian
$\ \mathbf{A}\ _{\mathrm{F}}$	Frobenius norm
$\ \mathbf{A}\ $	Matrix norm
$\ \mathbf{a}\ $	l_1 norm, 1-norm, or Manhatan norm
$\ \mathbf{a}\ , \ \mathbf{a}\ _2$	l_2 norm, 2-norm, or Euclidean norm
$\ \mathbf{a}\ _p$	l_p norm, p -norm, or Minkowski norm
$\ \mathbf{a}\ _{\infty}$	l_{∞} norm, ∞ -norm, or Chebyshev
	norm
$ \mathbf{A} , \det{(\mathbf{A})}$	Determinant
$\operatorname{diag}\left(\mathbf{a}\right),\operatorname{diag}\left(\mathbf{A}\right)$	Diagonalization: a square, diagonal
	matrix with entries given by the vec-
	tor a or the elements in the diagonal
	of \mathbf{A}
$\text{vec}\left(\mathbf{A}\right)$	Vectorization: stacks the columns of
	the matrix A into a long column vec-
	tor
$\operatorname{vec}_{\operatorname{d}}\left(\mathbf{A}\right)$	Extracts the diagonal elements of a
	square matrix and returns them in a
	column vector
$\operatorname{vec}_{\operatorname{l}}\left(\mathbf{A}\right)$	Extracts the elements strictly below
	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\mathrm{vec_{u}}\left(\mathbf{A}\right)$	Extracts the elements strictly above
	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\operatorname{vec_b}\left(\mathbf{A}\right)$	Block vectorization operator: stacks
	square block matrices of the input
	into a long block column matrix
$\operatorname{unvec}\left(\mathbf{A}\right)$	Reshapes a column vector into a ma-
a	

$[\mathbf{A},\mathbf{B},\mathbf{C},\dots]$ $[\lambda;\mathbf{A},\mathbf{B},\mathbf{C},\dots]$	CANDECOMP/PARAFAC (CP) decomposition of the tensor \mathcal{X} from the outer product of column vectors of \mathbf{A} , \mathbf{B} , \mathbf{C} , (TODO: change the square brackets to the double one by using the commented commands) Normalized CANDECOMP/PARAFAC (CP) decomposition of the tensor \mathcal{X} from the outer product of column vectors of \mathbf{A} , \mathbf{B} , \mathbf{C} , (TODO: change the square brackets to the double one by
$N(\mathbf{A})$, nullspace(\mathbf{A}), kernel(\mathbf{A})	using the commented commands) Nullspace (or kernel)
$C(\mathbf{A})$, range(\mathbf{A}), range(\mathbf{A})	Columnspace (or range), i.e., the
c (12), columnispace (12), lange (12)	space span $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, where \mathbf{a}_i is
	the ith column vector of the matrix
	A
$\mathrm{span}\left(\mathbf{a}_{1},\mathbf{a}_{2},\ldots,\mathbf{a}_{n}\right)$	Space spanned by the argument vec-
anon (A)	tors
$\operatorname{span}\left(\mathbf{A}\right)$	Space spanned by the column vectors of \mathbf{A}
$\operatorname{rank}\left(\mathbf{A}\right)$	Rank, that is,
()	$\dim (\operatorname{span} (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)) =$
	$\dim(C(\mathbf{A}))$, where \mathbf{a}_i is the ith
	column vector of the matrix ${\bf A}$
nullity (A)	Nullity of \mathbf{A} , i.e., dim (N (\mathbf{A}))
$\operatorname{tr}\left(\mathbf{A}\right)$	trace
$\mathbf{a} \perp \mathbf{b}$ $\mathbf{a} \not\perp \mathbf{b}$	a is orthogonal to ba is not orthogonal to b
$\langle a, b \rangle$	Inner product, i.e., $\mathbf{a}^{T}\mathbf{b}$
$\mathbf{a} \circ \mathbf{b}$	Outer product, i.e., $\mathbf{a}\mathbf{b}^{T}$
⊗	Kronecker product
⊙	Hadamard (elementwise) product
♦	Khatri-Rao product
\otimes	Kronecker Product
\times_n	<i>n</i> -mode product
$\mathbf{X}_{(n)}$	n -mode matricization of the tensor \mathcal{X}
$\mathcal{X} \leq 0$	Nonnegative tensor Generalized inequality meaning that
$\mathbf{a} \leq_K \mathbf{b}$	b - a belongs to the conic subset K in
	the space \mathbb{R}^n
$\mathbf{a} \prec_K \mathbf{b}$	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the interior of
	the conic subset K in the space \mathbb{R}^n

$\mathbf{a} \leq \mathbf{b}$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the nonnegative or-
	thant conic subset, \mathbb{R}^n_+ , in the space
	\mathbb{R}^n
a < b	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the positive or-
	thant conic subset, \mathbb{R}^n_{++} , in the space
	\mathbb{R}^n
$\mathbf{A} \leq_K \mathbf{B}$	Generalized inequality meaning that
	${f B}-{f A}$ belongs to the conic subset K
	in the space S^n
$\mathbf{A} \prec_K \mathbf{B}$	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the interior of
	the conic subset K in the space \mathcal{S}^n
$A \leq B$	Generalized inequality meaning that
	$\mathbf{B} - \mathbf{A}$ belongs to the positive semidef-
	inite conic subset, \mathcal{S}^n_+ , in the space \mathcal{S}^n
A < B	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the positive or-
	thant conic subset, \mathcal{S}_{++}^n , in the space
	\mathcal{S}^n

3.1 Indexing

x_{i_1,i_2,\ldots,i_N}	Element in the position
	(i_1,i_2,\ldots,i_N) of the tensor $\boldsymbol{\mathcal{X}}$
$\mathcal{X}^{(n)}$	nth tensor in a nontemporal sequence
$[\mathcal{X}]_{i_1,i_2,,i_N}$	Element $x_{i_1,i_2,,i_N}$
$\mathbf{x}_{i}, \mathbf{x}_{:i}$	jth column of the matrix X
\mathbf{x}_{i} :	jth row of the matrix X
$\mathbf{X}_{i_1,,i_{j-1},:,i_{j+1},,i_N}$	Mode- j fiber of the tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{X}_{:,i_2,i_3}$	Column fiber (mode-1 fiber) of the
7.27.0	thrid-order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{x}_{i_1,:,i_3}$	Row fiber (mode-2 fiber) of the thrid-
	order tensor \mathcal{X}
$\mathbf{x}_{i_1,i_2,:}$	Tube fiber (mode-3 fiber) of the
	thrid-order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{X}_{i_1,:,:}$	Horizontal slice of the thrid-order
	tensor \mathcal{X}
$\mathbf{X}_{:,i_2,:}$	Lateral slices slice of the thrid-order
, 2,	tensor \mathcal{X}
$\mathbf{X}_{i_3}, \mathbf{X}_{:,:,i_3}$	Frontal slices slice of the thrid-order
	tensor \mathcal{X}

4 Sets

$A\setminus B$	Set subtraction, i.e., the set containing the elements of A that are not in
	B
$A \cup B$	Set of union
$A \cap B$	Set of intersection
$A \times B$	Cartesian product
$A \oplus B$	Direct sum, e.g., $C(A^{\top}) \oplus C(A^{\top})^{\perp} = \mathbb{R}^{n}$
A^{\perp}	Orthogonal complement
A^c	Complement
#A	Cardinality
$a \in A$	a is element of A
$a \notin A$	a is not element of A
$\{1,2,\ldots,n\}$	Discrete set containing the integer el-
	ements $1, 2, \ldots, n$
\mathbb{R}	Set of real numbers
\mathbb{C}	Set of complex numbers
$\mathbb Z$	Set of integer number
$\mathbb{B} = \{0, 1\}$	Boolean set
Ø	Empty set
\mathbb{N}	Set of natural numbers
$\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$???
$\mathbb{K}^{I_1 imes I_2 imes \cdots imes I_N}$	$I_1 \times I_2 \times \cdots \times I_N$ -dimensional real (or complex) space
\mathbb{K}_{+}	Nonnegative real (or complex) space
\mathbb{K}_{++}	Positive real (or complex) space, i.e.,
	$\mathbb{K}_{++} = \mathbb{K}_+ \setminus \{0\}$
$\mathbb{S}^n, \mathcal{S}^n$	Conic set of the symmetric matrices in $\mathbb{R}^{n \times n}$
$\mathbb{S}^n_+, \mathcal{S}^n_+$	Conic set of the symmetric positive semidefinite matrices in $\mathbb{R}^{n \times n}$
$\mathbb{S}^n_{++}, \mathcal{S}^n_{++}$	Conic set of the symmetric positive definite matrices in $\mathbb{R}^{n \times n}$, i.e., \mathbb{S}^n_{++} =
	S ₊ ⁿ \ { 0 }
\mathbb{H}^n	Set of all hermitian matrices in $\mathbb{C}^{n\times n}$
[a,b]	Closed interval of a real set from a to
[···, ··]	b
(a,b)	Opened interval of a real set from a
(, - /	to b
[a,b),(a,b]	Half-opened intervals of a real set
r / //()	from a to b

5 Signals and functions operations and indexing

$f:A\to B$	A function f whose domain is A and codomain is B
$f^{(n)}$	nth derivative of the function f
$f \circ g$	Composition of the functions f and
$J \circ g$	g
$\inf g(\mathbf{y}, \mathbf{v})$	S Infimum
$\inf_{\mathbf{y}\in\mathcal{A}}g(\mathbf{x},\mathbf{y})$	
$\sup_{\mathbf{y}\in\mathcal{A}}g(\mathbf{x},\mathbf{y})$	Supremum
*	Convolution
x(t)	Continuous-time t
$x[n], x[k], x[m], x[i], \dots$	Discrete-time n, k, m, i, \dots
$x(n), x(k), x(m), x(i), \dots$	Discrete-time n, k, m, i, \ldots (it should
	be used only if there are no
	continuous-time signals in the con-
	text to avoid ambiguity)
$\tilde{x}(t)$ or $\tilde{x}[n]$	Estimate of $x(t)$ or $x[n]$; the Hilbert
	transform of $x(t)$ or $x[n]$
$x_I(t)$ or $x_I[n]$	Real or in-phase part of $x(t)$ or $x[n]$
$x_{Q}(t)$ or $x_{Q}[n]$	Imaginary or quadrature part of $x(t)$
	or $x[n]$
X(s)	Laplace transform of $x(t)$
X(f)	Fourier transform (in linear fre-
	quency, Hz) of $x(t)$
$X(j\omega)$	Fourier transform (in angular fre-
	quency, rad/sec) of $x(t)$
$S_x(f)$	Power spectral density of $x(t)$ in lin-
	ear frequency
$S_x(j\omega)$	Power spectral density of $x(t)$ in an-
	gular frequency
X(z)	Z-transform of $x[n]$

6 Probability and stochastic processes

$E\left[\cdot\right]$	Statistical expectation
$E_u\left[\cdot\right]$	Statistical expectation with respect
	to u
var(x)	Variance of the random variable x
$\operatorname{erfc}(\cdot)$	Complementary error function
P(A)	Probability of the event or set A
$p(\cdot)$	Probability density function

$p(x \mid A)$	Conditional probability density function
$a \sim P$	Random variable a with distribution P
$\mathcal{N}(\mu,\sigma^2)$	Gaussian distribution of a random variable with mean μ and variance σ^2
$\mathcal{CN}(\mu,\sigma^2)$	Complex Gaussian distribution of a random variable with mean μ and variance σ^2
$\mathcal{N}(\pmb{\mu},\pmb{\Sigma})$	Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ
$\mathcal{CN}(\pmb{\mu},\pmb{\Sigma})$	Complex Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ
$\mathcal{U}(a,b)$	Uniform distribution from a to b

7 General notations

$a \wedge b$	Logical AND of a and b
$a \lor b$	Logical OR of a and b
$\neg a$	Logical negation of a
Э	There exists
∄	There does not exist
∃!	There exist an unique
A	For all
	Such that
∴	Therefore
\iff	Logical equivalence
≜	Equal by definition
≠	Not equal
∞	Infinity
a	Absolute value of a
log	Base-10 logarithm or decimal loga-
	rithm
ln	Natual logarithm
$\operatorname{Re}\left\{ x\right\}$	Real part of x
$\operatorname{Im}\left\{ x\right\}$	Imaginary part of x
[·]	Ceiling operation
[·]	Floor operation
∠.	phase (complex argument)
$x \mod y$	Remainder, i.e., $x - y \lfloor x/y \rfloor$
$\operatorname{frac}(x)$	Fractional part, i.e., $x \mod 1$

8 Abbreviations

wrt. With respect to st. Subject to iff. If and only if

EVD Eigenvalue decomposition, or eigen-

 ${\it decomposition}$

SVD Singular value decomposition CP CANDECOMP/PARAFAC