Write your name here Surname	Othe	r names
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Chemistry Advanced Subsidiary Unit 1: The Core Prin	/	mistry
Thursday 9 January 2014 – Time: 1 hour 30 minutes	Morning	Paper Reference WCH01/01
Candidates may use a calcula	tor.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- 1 Which of the following ions would be deflected **least** in a mass spectrometer?

 - B ³⁵Cl²⁺

 - □ 37Cl²⁺

Relative abundance

(Total for Question 1 = 1 mark)

2 The mass spectrum of an element is shown below.

Mass/charge ratio

The relative atomic mass of the element is

- A 69.4
- **■ B** 69.8
- **◯ C** 70.0
- **■ D** 70.2

(Total for Question 2 = 1 mark)

- 3 In a mass spectrometer, positive ions are accelerated by
 - ☑ A bombarding them with fast-moving electrons.
 - B bombarding them with fast-moving protons.
 - **C** passing them between charged plates.
 - **D** passing them through a magnetic field.

(Total for Question 3 = 1 mark)

- 4 The number of unpaired electrons in a nitrogen atom in its ground state is
 - A 0
 - **■ B** 1
 - **◯ C** 2
 - **■ D** 3

(Total for Question 4 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

5	Four sequences	of ionization	energies of	elements	, in kJ	mol-1	, are shown	below

- A 590 1145 4912 6474 8144
- B 520 496 419 403 376
- C 1000 1251 1521 419 590
- D 631 658 650 653 717
- (a) The sequence giving the first ionization energies of elements going down a Group in the Periodic Table is

(1)

- × A
- \bowtie B
- X C
- \boxtimes D
- (b) The sequence showing the first five ionization energies of calcium is

(1)

- \times A
- \mathbb{Z} B
- \times C
- \boxtimes D
- (c) The sequence showing the first ionization energy of successive elements, in which atomic number increases by one each time, starting with an element in Group 6 is

(1)

- A
- \square B
- **⋈** C
- \boxtimes D

(Total for Question 5 = 3 marks)

- **6** Which of the following ions has the **smallest** ionic radius?

 - B K⁺

 - ☑ D CI

(Total for Question 6 = 1 mark)

- **7** A liquid, which conducts electricity, continues to conduct when it is cooled and solidified. Which of the following could it be?
 - A Mercury
 - **B** Bromine
 - ☑ C Molten sodium chloride
 - **D** Tetrachloromethane

(Total for Question 7 = 1 mark)

8 Calculate the number of **atoms** in one mole of hydrogen peroxide, H₂O₂.

[The Avogadro constant, $L = 6.0 \times 10^{23} \text{ mol}^{-1}$]

- \triangle **A** 1.5 × 10²³
- $lacktriangleq B \ 6.0 imes 10^{23}$
- 1.2×10^{24}
- \square **D** 2.4 × 10²⁴

(Total for Question 8 = 1 mark)

9 When 0.1 mol of atoms of an element reacts with chlorine, there is an increase in mass of 7.1 g.

The element could be

- **A** carbon.
- **B** sodium.
- **C** magnesium.
- **D** aluminium.

(Total for Question 9 = 1 mark)

10 Magnesium nitrate is decomposed by heat in the following reaction.

$$2Mg(NO_3)_2(s) \rightarrow 2MgO(s) + 4NO_2(g) + O_2(g)$$

In an experiment, 0.10 mol of magnesium nitrate was heated. What is the maximum volume of gas, measured in dm³ at room temperature and pressure, which could be obtained?

[Molar volume of a gas = $24 \text{ dm}^3 \text{ mol}^{-1}$ at room temperature and pressure]

- **■ B** 2.4
- **■ D** 6.0

(Total for Question 10 = 1 mark)

11 Ammonia gas decomposes when heated.

$$2NH_3(g) \rightarrow N_2(g) + 3H_2(g)$$

In an experiment, a sample of 500 cm³ of ammonia was heated and 20% decomposed.

The total volume of gas present at the end of the experiment, in cm³, was

- **■ B** 400
- □ 1000

(Total for Question 11 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

12 The standard enthalpy change for the formation of ethene, C_2H_4 , is +52.2 kJ mol⁻¹ and that of ethane, C_2H_{sr} is -84.7 kJ mol⁻¹.

Calculate the standard enthalpy change for the reaction below, in kJ mol⁻¹.

$$C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$$

- **B** -136.9
- **C** +136.9
- D This cannot be calculated using only the data above.

(Total for Question 12 = 1 mark)

- 13 Which of the following equations represents a reaction for which the enthalpy change is the standard enthalpy change of formation of water, $\Delta H_{\rm f,298}^{\odot}$?

 - \square **B** H₂(g) + ½O₂(g) \rightarrow H₂O(l)
 - \square **C** $H_2O(g) \rightarrow H_2O(l)$
 - \square **D** $H_2O(s) \rightarrow H_2O(l)$

(Total for Question 13 = 1 mark)

14 Consider the following bond enthalpy values.

Bond	Bond enthalpy / kJ mol ⁻¹
CO in carbon monoxide	+1077
0=0	+498
C=O in carbon dioxide	+805

The enthalpy change for the reaction

$$CO(g) + \frac{1}{2}O_{2}(g) \rightarrow CO_{2}(g)$$

in units of kJ mol⁻¹ is

- **A** -284
- **B** +35
- **C** +521
- **D** +770

(Total for Question 14 = 1 mark)

15 (a) Which of the following represents the equation for the reaction between ethane and chlorine in the presence of UV radiation?

(1)

- \square A $C_2H_6 + Cl_2 \rightarrow C_2H_4Cl_2 + H_2$
- $\begin{tabular}{lll} \hline \blacksquare & $\mathsf{C}_2\mathsf{H}_6$ + & CI_2 $\rightarrow $\mathsf{C}_2\mathsf{H}_5\mathsf{CI}$ + HCI \\ \hline \end{tabular}$
- \square **C** C_2H_6 + CI_2 \rightarrow 2 CH_3CI
- \square **D** $C_2H_6 + 2CI_2 \rightarrow 2CH_3CI + 2HCI$
- (b) The UV radiation initially causes the formation of

(1)

- A Cl⁻ ions.
- B Cl⁺ ions.
- \square **D** C₂H₅• free radicals.
- (c) Once it has started, the reaction can proceed for a time without UV light because

(1)

- A a chain reaction is occurring.
- **B** initiation is occurring.
- ☑ C a substitution reaction is occurring.
- D termination steps cannot occur without UV light.

(Total for Question 15 = 3 marks)

16 Which of the following is the systematic name for the hydrocarbon shown below?

- A 5-ethyl-4-methylhexane
- **B** 2-ethyl-3-methylhexane
- **D** 3,4-dimethylheptane

(Total for Question 16 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

- 17 This question is about some of the elements in Period 3 of the Periodic Table.
 - (a) (i) An atom of silicon has mass number 29. Complete the table below showing the numbers of sub-atomic particles in this atom of silicon. Use the Periodic Table as a source of data.

(1)

Sub-atomic particles present in one atom of ²⁹ Si	Number
protons	
electrons	
neutrons	

(ii) Complete the electronic configuration of silicon.

(1)

Explain the following, referring to differences in structure and bonding.	
(i) Silicon has a higher melting temperature than phosphorus.	
(i) Sincon has a higher menting temperature than phosphoras.	(3)
(ii) Magnesium has a higher melting temperature than sodium.	(2)
	(2)

(c) Suggest why th sodium to silico	e atomic radius decrease on.	s going across the Po	eriodic Table from	(2)
(d) At room tempe electricity.	rature, silicon tetrachloric	de, SiCl ₄ , is a liquid th	nat does not conduct	
only the outer o	cross diagram illustrating electron shells of the ator d dots to represent the el	ns. Use crosses to re	present the electrons	(2)
				(2)

(e) The diagram below shows the values of the first ionization energies of sodium and magnesium.

(i) On the diagram, add crosses to mark the approximate positions for the values of the first ionization energies of the elements Al and Si.

(1)

*(ii) Justify your suggested values in terms of the atomic structure and electronic configuration of the elements.

Aluminium.....

(2)

Silicon	

(Total for Question 17 = 14 marks)

18	Barium chloride can be made by reacting solid barium carbonate with dilute
	hydrochloric acid in the following reaction.

$$BaCO_3(s) + 2HCI(aq) \rightarrow BaCI_2(aq) + CO_2(g) + H_2O(I)$$

(a) (i) Write the ionic equation for the reaction of solid barium carbonate with hydrogen ions from the hydrochloric acid. State symbols are not required.

(1)

(ii) State **two** observations you would make while the reaction is taking place. No change of colour occurs.

(2)

Observation 1

Observation 2

- (b) In an experiment to prepare crystals of hydrated barium chloride, $BaCl_2.2H_2O$, a volume of 25.0 cm³ of 2.00 mol dm⁻³ hydrochloric acid, HCl, was transferred to a beaker and solid barium carbonate, $BaCO_3$, was added until it was in excess.
 - (i) How many moles of acid were used in the reaction?

(1)

(ii) What mass of barium carbonate, in grams, reacts with this amount of acid? The molar mass of barium carbonate is 197.3 g mol^{-1} .

(1)

(iii) Why was an **excess** of barium carbonate used in the experiment?

(1)

(iv) How would you separate the barium chloride solution from the reaction mixture in part (iii)?	(1)
(v) The barium chloride solution was left to crystallize. The crystals were separated and dried carefully. A sample of 5.35 g of hydrated crystals, BaCl ₂ •2H ₂ O, which has molar mass 244 g mol ⁻¹ , was obtained. Calculate the percentage yield of this reaction.	(2)
(vi) Give one reason why the yield of crystals is less than 100%, even when the reactants contain no impurities.	(1)

(c) The diagram below, which is not drawn to scale, shows how the lattice energy of barium chloride can be calculated using the Born-Haber cycle.

(i) Using the letters **A** to **F**, complete the table below by matching each letter to its corresponding energy change.

(3)

(ii) The energy change \mathbf{X} is $-697.6 \text{ kJ mol}^{-1}$.

In the table, add the name of the enthalpy change which is occurring in this stage of the cycle.

(1)

Energy change	Letter	ΔH / kJ mol ⁻¹
Lattice energy of barium chloride		
Enthalpy change of atomization of barium		180.0
Enthalpy change of atomization of Cl ₂ (g) to 2Cl(g)		243.4
First ionization energy of barium		503
Second ionization energy of barium		965
	x	2 × (-348.8) = -697.6
Enthalpy change of formation of barium chloride		-858.6

(iii) Use the data to calculate the lattice energy of barium chloride.	(2)
Answer =	kJ mol ⁻¹
*(iv) Lattice energies can be calculated from electrostatic theory (theoretical values) as well as by Born-Haber cycles (experimental values).	I
What can you deduce from the fact that the experimental and theoretic values for the lattice energy of barium chloride are very close?	cal
	(2)
(Total for Question 18 =	= 18 marks)

BLANK PAGE

Γhi	is question is about the flammable liquid, methanol, CH ₃ OH.	
(a)	Methanol starts to have toxic effects when it is present in blood at levels of above 200 mg in 1000 g.	
	Express this concentration in parts per million.	(1)
(b)	The enthalpy change of combustion of methanol was measured using a spirit burner to heat a known mass of water in a calorimeter. The temperature increase of the water in the calorimeter was measured when a known mass of methanol was burned.	
	(i) Write an equation for the complete combustion of methanol, CH ₃ OH, under standard conditions. Include state symbols in the equation.	
		(2)
		(2)
		(2)
	(ii) Identify two other products that could form if the combustion was incomplete .	
		(2)
	incomplete.	(1)
		(1)
	incomplete.	(1)

(c) The results of the experiment are summarised in the table below.

Mass of water in the calorimeter	150.0 g
Mass of spirit burner + contents (initial)	52.24 g
Mass of spirit burner + contents (final)	51.60 g
Temperature of water (initial)	21.4°C
Temperature of water (final)	37.2°C

(i) Calculate the heat energy produced in this experiment using the equation

Heat energy produced (J) = mass of water \times 4.18 \times temperature change

(1)

(ii) Calculate the number of moles of methanol burned in this experiment.

(1)

(iii) Calculate the enthalpy change of combustion of methanol in kJ mol⁻¹. Give your answer to **three** significant figures.

(2)

(iv) The experimental result differs from the true value for the enthalpy change of combustion of methanol.	
State one factor in the experimental method, other than heat losses or incomplete combustion, which causes the result to differ from the true value.	
Explain the effect this factor has on the magnitude of the experimental value compared to the true value.	(0)
Factor	(2)
Explanation	
(d) The value of the enthalpy change for the combustion of methanol can be calculated from the mean bond enthalpies of the substances in the reaction.	
Give two reasons why this value differs from the value obtained in the experiment, even after corrections are made for experimental error.	(2)
Reason 1	
Reason 2	
(Total for Question 19 = 12 ma	rks)

	State what is meant by the term unsat	turated as applied to a hydrocarbon.	(1)
(b)	An organic compound, X , is an unsatur C ₄ H ₈ . (i) Draw the displayed formulae and g molecules with molecular formula		
[lsomer 1	Isomer 2	(3)
,	Name:	Name:	
- 1			
	(ii) Both isomers react with a solution manganate(VII).	of acidified aqueous potassium	
	manganate(VII).	of acidified aqueous potassium vould observe when this reaction is carried	

(iii) Draw the structure of the organic product of this reaction with either o these isomers.	ne of (1)
(iv) Compounds such as C_4H_8 are formed when fractions of crude oil are cracking when applied to processing fraction obtained from crude oil.	
 (v) Write an equation to show the cracking of the hydrocarbon octane into	
and a saturated hydrocarbon as the only products.	(1)

(c) Another alkene is propene, C_3H_6 .

Describe the mechanism for the addition reaction of propene with bromine, Br_2 , to form $C_3H_6Br_2$.

In your answer you should include:

- the name for the type of addition which occurs
- the name of the product
- the mechanism using curly arrows to show the movement of electron pairs.

(5)

Type of addition		
Name of product	 	
Mechanism		

Draw a section of this polymer, showing two repeat units. i) Poly(propene) is used to make synthetic fibres which are extra act as good insulators. Comment on the sustainability of this use of poly(propene). (Total for Ques	ion 20 = 16 marks
i) Poly(propene) is used to make synthetic fibres which are extre act as good insulators.	
i) Poly(propene) is used to make synthetic fibres which are extre act as good insulators.	(1)
i) Poly(propene) is used to make synthetic fibres which are extre	
Draw a section of this polymer, showing two repeat units.	nely light and
Draw a section of this polymer, showing two repeat units.	
Draw a section of this polymer, showing two repeat units.	
Draw a section of this polymer, showing two repeat units.	
Draw a section of this polymer, showing two repeat units.	
Draw a section of this polymer, showing two repeat units.	
	(1)

	1	3
100000000000000000000000000000000000000	Š	Ę
-	č	_
10000	$\frac{\Box}{\Box}$	5
7	-	í
	_	-
	c	
3	D	ږ
	c	5
ŀ	900	3
:	F	=
0.000	בייי	Ś
•	ì	-
	-	5
()	-
	a	J
_	2	=
ŀ	_	-

0 (8)	4.0 He	20.2 Ne	10	39.9 Ar	argon 18	83.8	kryoton	36	131.3	Xe	54	[222]	R	radon 86									
0	hel T		24	33	183	8	- 55	-		1004		[2		March 2		orted		_		_		E	_
7	(17)	19.0 F	6	35.5	chlorine 17	79.9	Br bromine	35	126.9	— jodine	53	[210]	Αt	astatine 85		been rep		175	3	71	[257]	Lr lawrencium	COL
9	(16)	16.0	oxygen 8	32.1	sulfur 16	0.62	Selenium	34	127.6	Te tellurium	52	[506]	Ъ	polonium 84		-116 have		173	ΑÞ.	70	[254]	No nobelium	102
ις	(15)	14.0 N	7 7	31.0 D	phosphorus 15	74.9	As	33	121.8	Sb antimony	51	209.0	Bi	bismuth 83		tomic numbers 112-116 hav but not fully authenticated		169	T _m	69	[526]	Md mendelevium	101
4	(14)	12.0 C	6	28.1 Si	silicon 14	72.6	Ge	32	118.7	Sn E	20	207.2	Pb	lead 82	1	atomic nu but not f		167	ы :		[253]	Fm fermium	100
ю	(13)	10.8 B	5	27.0	aluminium 13	2.69	Ga	31	114.8	In	49	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported but not fully authenticated		165		67	[254]	Cf Es	77
	,				(12)	65.4	Zn	30	112.4	Cd	48	200.6	Hg	mercury 80				163	Dy	66	[251]	Cf californium	70
					(11)	63.5	Cu	29	107.9	Ag silver	47	197.0	Αn	gold 79	[272]	Rg roentgenium	111	159	TP	65	[245]	BK berkelium o7	71
					(10)	58.7	E	28	106.4	Pd	46	195.1	7	platinum 78	_	Ds damstadtium		157	P5	64	[247]	Canium Gurium	70
_					(6)	58.9	Signal	27	102.9	Rh	45	192.2	Ŀ	iridium 77	[368]	Mt meitnerium	109	152	Eu	63	[243]	Am americium os	73
	1.0 Hydrogen				(8)	55.8	F	26	101.1	Ru	44	190.2	os	osmium 76	[277]	HS hassium	108	150		62	-	Pu plutonium	74
					(2)	54.9	Mn	25	[86]	Tc	43	186.2	Re	rhenium 75	_	Bh bohrium		[147]	Pm	61	[237]	Np neptunium	7.2
		mass bol	umber		(9)	52.0	Cr Mn	24	95.9	Mo Tc	42	183.8	>	tungsten 74	[592]	Sg seaborgium	106	144	PN -	59 60 61		uranium	7,5
	Key	relative atomic mass atomic symbol	atomic (proton) number		(5)	50.9	> ×	23	92.9	Niobium	41	180.9	Тa	tantalum 73	_	Db		141	Pr	59	[231]	Pa protactinium 01	71
		relati ato	atomic		(4)	47.9	it it	22	91.2	Zirconium	40	178.5	Ŧ	hafnium 72	[261]	Rf rutherfordium	104	140		58	232	thorium 90	70
					(3)	45.0	Sc	21	88.9	vttrium	39	138.9	La*	lanthanum 57	[227]	Ac* actinium			S				
2	(2)	9.0 Be	beryulum 4	24.3 Mg	magnesium 12	40.1	Calcilla	20	9.78	Sr	38	137.3	Ba	barium 56	[326]	Ra radium	88		* Lanthanide series	* Actinide series			
-	(1)	6.9 Li	3	23.0	E	39.1	K	19	85.5	Rb rubidium	37	132.9	S	caesium 55	[223]	Fr francium	87		* Lanth	* Actin			

	_		70
173	ytterbium	[254]	nobelium
X	70	No	102
169	thulium	[256]	mendelevium
Tm	69	Md	101
167	erbium	[253]	fermium
Fr	68	Fm	100
165	holmium	[254]	einsteinium
Ho	67	Fe	99
163	dysprosium 66	[251]	californium 98
159	terbium	[245]	berketium
Th	65	Rk	97
157	gadolinium	[247]	curium
Gd	64		96
152	europium	[243]	americium
Fu	63		95
150	samarium	[242]	plutonium
Sm	62	P 11	94
[147]	promethium	[237]	neptunium
Pm	61	Nn	93
4 Z	neodymium 60	238	uranium 92
141	praseodymium	[231]	protactinium
P	59	Pa	91
45 a	cerium	232	thorium
	58	Th	90