The homotopy type of the independence complex of ternary graphs

Jinha Kim

IBS Discrete Mathematics Group

September 27, 2021 SCMS Combinatorics Seminar

Independence complex

- A graph G is an ordered pair of a vertex set V(G) and an edge set E(G), where an edge $e \in E(G)$ is an un-ordered pair of vertices.
- $I \subseteq V(G)$ is an **independent set** of a graph G if any two vertices in I does not form an edge of G.
- A simplicial complex on the ground set V is a collection of subsets
 of V such that it is closed under taking subsets.
- The independence complex of a graph G is

 $I(G) = \{I \subseteq V(G) : I \text{ is an independent set of } G\}.$

Independence complexes of cycles

Kozlov(1999):

$$I(C_{\ell}) \simeq \begin{cases} \mathbb{S}^k \vee \mathbb{S}^k & \text{if } \ell = 3k + 3, \\ \mathbb{S}^k & \text{if } \ell = 3k + 2 \text{ or } 3k + 4. \end{cases}$$

Known results

Theorem (Ehrenborg-Hetyei, 2006)

If a graph G does not contain a cycle, then I(G) is either contractible or homotopy equivalent to a sphere.

A graph G is **chordal** if it contains induced cycles of length at least 4.

Theorem (Engström, 2008)

For a chordal graph G, I(G) is either contractible of homotopy equivalent to the repeated wedge sum of a finite number of spheres.

Kalai-Meshulam conjecture

A graph G is **ternary** if it has no induced cycles of length divisible by 3.

Conjecture 1 (Kalai-Meshulam)

For a ternary graph G, the number of independent sets of even size and the number of independent sets of odd size differ by at most 1.

For a simplicial complex X, let $f_i(X)$ be the number of i-dimensional faces of X.

Conjecture 1 (reformulated)

 $|\sum_{i\geq 0} (-1)^i f_i(I(G))| \leq 1$ for every ternary graph G.

Kalai-Meshulam conjecture

For a simplicial complex X, consider the chain complex

$$\cdots \xrightarrow{\partial_{i+2}} C_{i+1}(X) \xrightarrow{\partial_{i+1}} C_i(X) \xrightarrow{\partial_i} C_{i-1}(X) \xrightarrow{\partial_{i-1}} \cdots$$

where $C_i(X)$ is the \mathbb{Z} -module generated by the i-dimensional faces of X for $i \geq 0$ and $C_{-1}(X) = \mathbb{Z}$.

- The *i*-th (reduced) homology group of X is $\tilde{H}_i(X) = \ker \partial_i / \operatorname{im} \partial_{i+1}$.
- The *i*-th (reduced) Betti number of X is $\tilde{\beta}_i(X) = \operatorname{rank} \tilde{H}_i(X)$.

Conjecture 2 (Kalai-Meshulam)

$$\sum_{i\geq 0} \tilde{\beta}_i(I(G)) \leq 1$$
 for a ternary graph G .

Observation:
$$\sum_{i>0} (-1)^i f_i(X) = \sum_{i>0} (-1)^i \tilde{\beta}_i(X)$$
.

Conjecture $2 \implies \text{Conjecture } 1$.

Kalai-Meshulam conjecture

Conjecture 3 (Engström)

For a ternary graph G, I(G) is either contractible or homotopy equivalent to a sphere.

- $\tilde{\beta}_i(X) = 0$ for all $i \ge 0$ if X is contractible.
- For a d-dimensional sphere \mathbb{S}^d , $\tilde{\beta}_d(\mathbb{S}^d)=1$ and $\tilde{\beta}_i(\mathbb{S}^d)=0$ if $i\neq d$.

Conjecture $3 \implies \text{Conjecture } 2$.

Main results

- Chudnovsky-Scott-Seymour-Spirkl (2020): proved Conjecture 1.
- Zhang-Wu (2020): proved Conjecture 2.
- Engström (2020): proved a weaker version of Conjecture 3.

Theorem (K. 2021+)

A graph G is ternary if and only if I(H) is either contractible or homotopy equivalent to a sphere for every induced subgraph H.

Proof idea

Let G be a graph.

For a vertex v, let $N(v):=\{u\in V(G): uv\in E(G)\}$ and $N[v]:=N(v)\cup \{v\}.$

Note that any independent set containing v is contained in V(G) - N(v).

For any vertex v,

- $I(G) = I(G v) \cup I(G N(v))$,
- $I(G-v)\cap I(G-N(v))=I(G-N[v])$, and
- I(G N(v)) is contractible.

Topological tools

Mayer-Vietoris Sequence

For simplicial complexes A and B, the following sequence is exact.

$$\cdots \to \tilde{H}_i(A \cap B) \to \tilde{H}_i(A) \oplus \tilde{H}_i(B) \to \tilde{H}_i(A \cup B) \to \tilde{H}_{i-1}(A \cap B) \to \cdots$$

For a graph G and a vertex v of G,

the following sequence is exact:

$$\cdots \to \tilde{H}_i(I(G-N[v])) \to \tilde{H}_i(I(G-v)) \to \tilde{H}_i(I(G)) \to \tilde{H}_{i-1}(I(G-N[v])) \to \cdots,$$

and

• if $N[v] \neq V(G)$, then $I(G) \simeq I(G-v)/I(G-N[v])$.

Topological tools

Lemma 1

Let G be a graph and $v \in V(G)$ such that $N[v] \neq V(G)$.

If each of I(G), I(G-v), I(G-N[v]) is either contractible or homotopy equivalent to a sphere, then one of the following holds:

- $\ \, \textbf{1}(G) \text{ is contractible and } I(G-v) \simeq I(G-N[v]) \text{,} \\$
- $\ \, \textbf{2} \ \, I(G-N[v]) \text{ is contractible and } I(G) \simeq I(G-v) \text{, and} \\$
- $\ \, \textbf{3} \ \, I(G-v) \,\, \text{is contractible and} \,\, I(G) \simeq \Sigma I(G-N[v]), \\$

where $\Sigma \mathbb{S}^d \simeq \mathbb{S}^{d+1}$.

Proof sketch

For the sake of contradiction, take a minimal counter-example G:

- G is a ternary graph,
- ullet I(G) is neither contractible nor homotopy equivalent to a sphere,
- I(H) is contractible or homotopy equivalent to a sphere, $\forall H \leq G$.

For disjoint vertex subsets X, Y of G, let

$$G(X|Y) := G[V(G) - N[X] - Y]$$
 if X is independent,

and let

$$d(X|Y) := \begin{cases} d & \text{if } X \text{ is independent and } I(G(X|Y)) \simeq \mathbb{S}^d, \\ * & \text{otherwise}. \end{cases}$$

Rmk: If a graph H has no vertex, then we write $I(H) \simeq \mathbb{S}^{-1}$.

Proof sketch

Lemma 2

For $X,Y\subseteq V(G)$ s.t. $X\cup Y\neq\emptyset$ and $X\cap Y=\emptyset$ and a vertex $v\not\in X\cup Y$, $(d(X|Y),d(X\cup\{v\}|Y),d(X|Y\cup\{v\}))$ equals to one of the following:

$$(*,*,*), (k,*,k), (*,k,k), (k+1,k,*)$$

for some integer $k \ge -1$.

Proof sketch

Lemma 3

There is a non-negative integer k s.t. $\forall v \in V(G)$, $d(\emptyset|v) = d(v|\emptyset) = k$.

(Proof of main theorem)

By Lemma 3, $\exists k$ s.t. $\forall v \in V(G)$, $d(v|\emptyset) = d(\emptyset|v) = k$.

Claim: $\forall u, v \in V(G)$ s.t. $u \neq v$, $d(u, v | \emptyset) = k - 1$.

By Lemma 2,

$$(d(v|\emptyset), d(u, v|\emptyset), d(v|u)) = (k, *, k) \text{ or } (k, k - 1, *),$$

$$(d(\emptyset|u),d(v|u),d(\emptyset|u,v)) = (k,*,k) \text{ or } (k,k-1,*).$$

$$\Rightarrow d(v|u) = *, (d(v|\emptyset), d(u, v|\emptyset), d(v|u)) = (k, k - 1, *).$$

Since $d(u, v | \emptyset) = k - 1 \neq * \Rightarrow \{u, v\}$ is an independent set.

 $\Rightarrow V(G)$ is an independent set $\Rightarrow I(G)$ is contractible (contradiction).

Open questions

Q. For a ternary graph G, when is I(G) contractible?

Q. For a ternary graph G, can we compute the dimension of the sphere that is homotopy equivalent to I(G)?

Q. Can we find an analogue for hypergraphs?

Thank you!