Métodos numéricos

1 Práctica 1

Ejercicio 1.1. Escribe una función que tome como variable de entrada el numero del DNI y de como variable de salida la letra correspondiente.

Ejercicio 1.2. Escribe una función que tome como variable de entrada los números naturales a_0 , a_1 y N, devuelva un vector con los N primeros elementos de la sucesión definida por

$$a_n = a_{n-1} + a_{n-2}$$

2 Práctica 2

Ejercicio 2.1. Escribir un programa que dado un número en base 10, me devuelva un vector de 0 y 1 con su representación en base 2.

Ejercicio 2.2. Escribir un programa que dado un número en base 2 (representado por vector de 0 y 1), me devuelva el número en base 10.

Ejercicio 2.3. Determinar el épsilon de la máquina. Para ello, calcular 1 + x con $x = 2^{-i}$ para para i = 1, 2, ... mientras que 1 + x > 1. Comparar con el comando eps de MATLAB.

Ejercicio 2.4. Dada la función f(x) = sen(x), se utiliza el cociente incremental

$$\frac{\operatorname{sen}(x+h) - \operatorname{sen}(x)}{h}$$

en x = 1 para aproximar

$$0,540302305868140 = \cos(1) = f'(1) = \lim_{h \to 0} \frac{\sin(1+h) - \sin(1)}{h}$$

Escribir una función que dado un número natural N, nos devuelva la matriz siguiente:

- 1. la primera columna sea el vector $[10^{-1}, 10^{-2}, 10^{-3}, \dots, 10^{-N}]'$;
- 2. la segunda columna sea el valor aproximado;
- 3. la tercera columna sea el error absoluto cometido en la aproximación;
- 4. la cuarta columna sea el error relativo cometido en la aproximación;

Comprobar que se produce una pérdida de precisión por cancelación.

Ejercicio 2.5. Las raíces exactas de la ecuación de segundo grado

$$x^{2} - (64 + 10^{-15})x + 64 \times 10^{-15} = 0$$

son x1 = 64 y $x2 = 10^{-15}$. Calcular sus raíces comprobando que el resultado obtenido para la menor de ellas no coincide con el exacto en ninguna cifra significativa.

Ejercicio 2.6. Comprobar los resultados del ejemplo estudiado en clase relativo al cálculo de $(1/7)^{100}$ utilizando la recurrencia

$$a_{n+2} = \frac{22}{7}a_{n+1} - \frac{3}{7}a_n \quad n \ge 2$$

Buscando soluciones de la forma $a_n = \lambda^n$ se puede obtener la siguiente expresión del término general de la sucesión,

$$a_n = C_1 \left(\frac{1}{7}\right)^n + C_2 3^n$$

Por tanto, si tomamos $a_0 = 1$ y $a_1 = 1/7$, tenemos que $C_1 = 1$ y $C_2 = 0$, por lo que

$$a_n = \left(\frac{1}{7}\right)^n$$

3 Práctica 3

Ejercicio 3.1 Escribir un programa que calcule las normas uno, infinito y Fröbenius de una matriz dada. Comprobar los resultados obtenidos con el comando *norm* de MATLAB.

Ejercicio 3.2. Escribir un programa específico para el producto de una matriz triangular superior (resp. inferior) por un vector, y el producto de dos matrices triangulares superiores (resp. inferiores).

Ejercicio 3.5. (Factorización PALU) Escribir una función que reciba como parámetro una matriz A cuadrada invertible de orden n y devuelva las matrices P, L y U de la factorización PA = LU.

4 Práctica 4

Supongamos que queremos calcular una aproximación numérica de la solución del problema

$$\begin{cases} y'' - y = 0 & x \in (0,1) \\ y(0) = 1 \\ y(1) = e \end{cases}$$

cuya solución es $y = e^x$. Para ello:

- 1. Tomamos una partición uniforme de tamaño h del intervalo (0,1). Esto es, dado un número N, consideramos el vector $(0,h,2h,3h,\cdots,Nh,1)$. Obsérvese que el vector de nodos tiene N nodos interiores, por lo que, h=1/(N+1).
- 2. Aproximamos la derivada segunda,

$$y''(x_i) \simeq \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}$$

donde, $x_i = ih$ y $y_i \simeq y(x_i)$ es la aproximación que queremos calcular.

3. Sustituyendo la aproximación en la ecuación diferencial, evaluada en x_i , obtenemos el sistema lineal de ecuaciones

$$\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} - y_i = 0 \quad i = 1, \dots, N$$

Obsérvese que los valores de y_0 e y_{N+1} son conocidos, en nuestro caso $y_0 = 1$ e $y_{N+1} = \exp(1)$. Como h va a ser un número pequeño y dividir por números pequeños genera problemas de estabilidad, consideramos el sistema lineal

$$y_{i+1} - 2y_i + y_{i-1} - h^2 y_i = 0$$
 $i = 1, \dots, N$

- 4. Este sistema lineal se puede escribir en forma matricial $AY_h = b$ donde
- a) la matriz A es tridiagonal y viene dada por

$$A = \begin{pmatrix} -2 & 1 & & & \\ 1 & -2 & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ & & & 1 & -2 \end{pmatrix} - h^2 I$$

donde I es la matriz identidad.

b) el vector b viene dado por

$$b = \begin{pmatrix} -1 \\ 0 \\ \vdots \\ 0 \\ -e \end{pmatrix}$$

5. De donde,

$$Y_h = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{N-1} \\ y_N \end{pmatrix} = A \backslash b$$

6. Añadiendo las condiciones de contorno, tenemos que la aproximación numérica a la función y(x) en los puntos $(0, h, 2h, \dots, Nh, 1)$ viene dada por el vector $Y_h = [1; Y_h; \exp(1)]$.

Ejercicio 4.1. Escribir un programa que resuelva el problema anterior y que pinte:

- i) En una misma gráfica la solución real en rojo y la solución aproximada en verde.
- ii) En otra gráfica el error cometido.

Ejercicio 4.2. Repetir el ejercicio anterior para el problema de contorno

$$\begin{cases} y'' + y' - 5y = x & x \in (0, 2) \\ y(0) = 3 \\ y(2) = e^4 - 2 \end{cases}$$

Cuya solución es $y = e^{2x} + 2 - 2x$. En este caso aproximar las derivadas por

$$y'(x_i) \simeq \frac{y_{i+1} - y_{i-1}}{2h}, \quad y''(x_i) \simeq \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}$$