Рython для задач химической технологии Лабораторная работа № 2

Введение в библиотеки NumPy, SciPy и Matplotlib

Задание 1

Формула нормализованной гауссовой функции со средним значением μ и стандартным отклонением σ :

$$g\left(x
ight)=rac{1}{\sigma\sqrt{2\pi}}\mathrm{exp}\left(-rac{\left(x-\mu
ight)^{2}}{2\sigma^{2}}
ight)$$

Необходимо написать функцию, основанную на использовании массивов NumPy для вычисления гауссовых функций при $\mu=0$ и $\sigma^2=0.5; 1.0; 1.5$. Использовать сетку из 1000 точек в интервале $-10\leqslant x\leqslant 10$. Постройте графики данных функций.

Задание 2

Уравнение Ван дер Ваальса, описывающее состояние газа, можно записать в виде следующей формулы как зависимость давления p газа от его молярного объема V и температуры T:

$$p = rac{RT}{V-b} - rac{a}{V^2}$$

где a и b – специальные молекулярные константы, а $R=8.314~\rm Дж$ / К·моль – универсальная газовая константа.

Формулу легко преобразовать для вычисления температуры по заданному давлению и объему, но ее форма, представляющая молярный объем в отношении к давлению и температуре, является кубическим уравнением:

$$pV^3 - (pb + RT)V^2 + aV - ab = 0$$

Все три корня этого уравнения ниже критической точки (T_c, p_c) являются действительными: наибольший и наименьший соответствуют молярному объему газообразной фазы и жидкой фазы соответственно. Выше критической точки, где не существует жидкая фаза, только один корень является действительным и соответствует молярному объему газа (в этой области его также называют сверхкритической жидкостью, или сверхкритической средой).

Критическая точка определяется по условию $(\partial p/\partial V)_T=\left(\partial^2 p/\partial V^2\right)_T=0$ и для идеального газа Ван дер Ваальса выводятся формулы:

$$T_c=rac{8a}{27Rb} \qquad p_c=rac{a}{27b^2}$$

Для NH_3 константы Ван дер Ваальса $a=0.4225~\pi^2\cdot \Pi a\cdot {\it M}^6\cdot {\it Moлb}^{-2}$ и $b=37.07\times 10^{-6}~{\it M}^3\cdot {\it Moлb}^{-1}.$

- Найти критическую точку для аммиака, затем определить молярный объем при комнатной температуре и давлении (298 К, 1 атм) и при следующих условиях (500 К, 12 МПа).
- Изотерма это множество точек (p,V) при постоянной температуре, соответствующее уравнению состояния газа. Построить изотерму (p в зависимости от V) для аммиака при температуре 350 K, используя уравнение Ван дер Ваальса, и сравнить ее с изотермой при температуре 350 K для идеального газа, уравнение состояния которого имеет вид p = RT/V (принять значения p принадлежащими интервалу [101325;1000000] Па, 1000 элементов).

Задание 3

Закон Бугера–Ламберта–Бера связывает концентрацию вещества c в образце раствора с интенсивностью света, проходящего через этот образец I_t с заданной толщиной слоя вещества l при известной длине волны λ :

$$I_t = I_0 e^{-\alpha cl}$$

где I_0 - интенсивность света на входе в вещество, α - коэффициент поглощения при длине волны λ .

После проведения ряда измерений, позволяющих определить часть света, которая прошла сквозь раствор, I_t/I_0 , коэффициент поглощения α можно при помощи линейной аппроксимации:

$$y = \ln \left(I_t / I_0 \right) = -\alpha c l$$

Несмотря на то что эта прямая проходит через начало координат (y=0 при c=0), мы будем выполнять подгонку для более общего линейного отношения:

$$y = mc + k$$

где $m=-\alpha l$ с проверкой k на приближение к нулю.

При рассмотрении образца раствора с толщиной слоя 0.8 см при измерениях были получены данные, приведенные в таблице: отношение I_t/I_0 при пяти различных концентрациях:

С, моль/л	I_t/I_0
0.4	0.891
0.6	0.841
0.8	0.783

С, моль/л	I_t/I_0
1.0	0.744
1.2	0.692

Используя линейную аппроксимацию, определите коэффициент lpha.