Twitter & Polls: Analyzing and estimating political orientation of Twitter users in India General #Elections2014

Abhishek Bhola Advisor: Dr. Ponnurangam Kumaraguru

M.Tech Thesis Defense 06-June-2014

Thesis Committee

- Dr. Ayesha Choudhary, JNU
- Dr. Vinayak Naik, IIIT-Delhi
- Dr. PK (Chair), IIIT-Delhi

Presentation Outline

- Research Motivation
- Research Aim
- Related Work
- Research Gap
- Data Analysis
- Classification of Political Orientation
- System Design
- Conclusion
- Limitations and Future Work

Presentation Outline

- Research Motivation
- Research Aim
- Related Work
- Research Gap
- Data Analysis
- Classification of Political Orientation
- System Design
- Conclusion
- Limitations and Future Work

India General Elections 2014

- Elections for the 16th Lok Sabha
- Total Seats: 543
- Number of Registered Voters: 813 million
- Newly registered voters: 100 million
- Money at stake: \$5 billion
- Number of parties registered with the Election Commission: 1616
- National Parties: 6
- State Parties: 47
- Number of candidates: 8000

India General Elections 2014

Elections and Social Media

- Major parties battling it out:
 - Aam Aadmi Party (AAP)
 - Bhartiya Janta Party (BJP)
 - Indian National Congress (INC)
- Their PM Candidates:
 - Arvind Kejriwal
 - Narendra Modi
 - Rahul Gandhi
- Internet Users in India: 243 million (by June 2014)
- Facebook Users: 114.8 million
- Twitter Users: 33 million

Elections and Social Media

- Google+ Hangout: Interaction with party workers
- What'sApp: To send bulk messages
- Facebook: Televised Interviews and ad campaigns
- Instagram: Pictures of party rallies uploaded
- YouTube: Videos of rallies uploaded
- Google's Election Hub

Research Motivation

- Social Media could sway 3-4% of urban votes: IAMAI
- Increase in elections related data- 600% from 2009
- Almost all leaders and parties are on Twitter
- Extensively used for communicating and interaction

Presentation Outline

- Research Motivation
- Research Aim
- Related Work
- Research Gap
- Data Analysis
- Classification of Political Orientation
- System Design
- Conclusion
- Limitations and Future Work

Research Aim

- To analyze and draw meaningful inferences from the collection of tweets collected over the entire duration of elections
- To check the feasibility of development of a classification model to identify the political orientation of the twitter users based on the tweet content and other user based features.
- To develop a system to analyze and monitor the election related tweets on daily basis.

Presentation Outline

- Research Motivation
- Research Aim
- Related Work
- Research Gap
- Data Analysis
- Classification of Political Orientation
- System Design
- Conclusion
- Limitations and Future Work

Related Work

Jungherr et. al. Why the pirate party won the german election of 2009 or the trouble with predictions, 2012

Skoric et. al. Tweets and votes: A study of the 2011 Singapore general election, 2012

Conover et. al.

Predicting the

political alignment

of twitter users,

2011

Related Work

Cohen et. al.

Classifying political

orientation on twitter:

Its not easy!, 2013

Simplify360: Calculation of SSI

NExT Centre, NUS
Weekly Infographics

Twitritis +
Wright State
University

Presentation Outline

- Research Motivation
- Research Aim
- Related Work
- Research Gap
- Data Analysis
- Classification of Political Orientation
- System Design
- Conclusion
- Limitations and Future Work

Research Gap

- No previous attempts to classify the political orientation of users in the Indian scenario
- No previous work explored both 'Pro' as well as 'Anti' views

Presentation Outline

- Research Motivation
- Research Aim
- Related Work
- Research Gap
- Data Analysis
- Classification of Political Orientation
- System Design
- Conclusion
- Limitations and Future Work

Data Collection

Keywords for Election related tweets

Elections related tweets

Data Collection

Streaming $\{JSON\} \rightarrow$

Screen names of Twitter Profiles

130 Twitter Profiles

Twitter Data

As per reports, what Twitter had:

- #Tweets till April 30: 49 million*
- #Tweets, Jan 1- May 12: 56 million¹
- 600% rise in #Tweets from 2009 elections
- 2009 elections only 1 politician had an account with 6K followers

What we had with us:

- #Tweets, **Sept 25 May 16**: **18.21** million
- #Tweets, Jan 1- May 12: 13.09 million
- 23.37 % of Tweets
- Difference in the keywords used

[†] Twitter's official blog: https://blog.twitter.com/2014/indias-2014-twitterelection

^{*} India Today Post: http://bit.ly/1hukpDE

Methodology for Analysis

- Tweets were picked from the database
- Different fields were exploited for different analysis
- Python, Matplotlib and Excel were used to plot graphs

07th Apr: 1st phase of elections and BJP's manifesto

Volume Analysis

Hourly Frequency Analysis

Hour v/s Day of the Week

- Max #Tweets during weekdays
- Max Tweets on Tuesdays and Wednesdays
- Tweeting activity goes higher during the second half of the day
- Most of the relevant events were on weekdays

Who tweets how much

- Inverse Law Proportion
- Graph for the tweets of month of all the months
- April has the highest number of unique users
- April is the month with a single user tweeting
 >10⁴ times
- 815,425 total unique users

Top 5 active tweeters

Which party received maximum mentions

Comparing electoral results with tweet share

Top 5 Hashtags of every week

Analyzing the popularity of Modi & Kejriwal: #Followers

Analyzing the popularity of Modi & Kejriwal: #Followers

Analyzing the popularity of Modi & Kejriwal: Retweet Frequency on Tweets

Tradeoff b/w #Followers & Retweet Frequency

- Klout score uses a lot of factors viz.,
 - #Followers
 - #Friends
 - #Retweets on each tweet
- Pearson's correlation between
 - #Followers and Klout score
 - Avg. #retweets on tweets and Klout score

Narendra Modi's popularity was more than Arvind Kejriwal based on the number of followers 0.463

0.956

Presentation Outline

- Research Motivation
- Research Aim
- Related Work
- Research Gap
- Data Analysis
- Classification of Political Orientation
- System Design
- Conclusion
- Limitations and Future Work

Political Orientation of Users

1000 random twitter
user profiles
tweeting about India
Elections were
selected

Pro

- BJP
- Cong
- Can't Say

Anti

- AAP
- BJP
- Cong
- Can't Say

Other information about these profiles such as #Followers, #Friends, Tweets between Mar 20 – Apr 10 was also collected

Agreement between the annotators

Confusion Matrix for the 1st set of 250 instances (Pro)

	Annotator 1				
Annotator 2		AAP	ВЈР	CONG	CAN'T SAY
	AAP	18	4	0	3
	ВЈР	6	76	1	21
	CONG	0	4	2	3
	CAN'T SAY	11	11	4	86

Observed agreement:

Cohen's Kappa coefficient,

$$\kappa = \frac{Pr(a) - Pr(e)}{1 - Pr(e)}$$

Hypothetical Chance agreement

•
$$Pr(e) = 0.375$$

•
$$\kappa = 0.571$$

Annotation Results

Party	Pro	Anti
AAP	133	205
ВЈР	447	85
CONG	33	135
CAN'T SAY	387	575

ANTI

Text Based Classification

- Text of 200 tweets collected
- Stop words, URLs, Hashtags and user mentions removed
- Words like 'RT', '&', 'ka', 'ke', 'ki' etc. were also removed
- Vector based on TF-IDF of every term and each user was Number of times the term 'i' is used by user 'j'

 Total users

$$TF_{i,j} = \frac{n_{i,j}}{\sum_{k} n_{k,j}}$$

Number of terms used by the user 'j' in 'k' tweets

Users using the term 'i'

Text Based Classification: Results

Results for all 613 'Pro' Instances

	Instances: 613			
	Attributes: 9312			
Classifie			folds cross-validation	
	Effici	ency: 72.	36%	
Party	Precision	Recall	F-measure	
AAP	0.381	0.061	0.105	
BJP	0.736	0.975	0.839	
CONG		0	0	
Good Efficiency				
Good Efficiency				
₩ But 0 Precision and Recall for Congress				

Results for equal '**Pro**' Instances

Precision and Recall for Congress not 0

•We tried 2-class classification with all 3 possible pairs and got 65.15% efficiency for AAP-BJP

Text Based Classification: Results

Results for all 425 'Anti' Instances

Instances: 425				
	Attrib	utes: 80	14	
Cla	ssifier:	Random	Forest	
	Efficien	cy: 47.7	5%	
Party	Pre	Pre Recall F-		
larty	116	rtecan	measure	
AAP	0.489	0.863	0.624	
ВЈР	0.313	0.059	0.099	
CONG	0.447	0.157	0.232	

Less instances of BJP result in low Precision and recall values

Results for equal 'Anti' Instances

Instances: 255			
	Attrib	utes: 684	47
Cla	ssifier:	Random	Forest
	Efficien	cy: 37.2	5%
Ponty	ъ и F-		
Party	Pre	Recall	measure
AAP	0.321	0.529	0.4
BJP	0.47	0.365	0.411
CONG	0.388	0.224	0.284

Hashtags Based Classification

- Hashtags represent the topic of the tweet
- Picked up all the hashtags in the last 200 tweets of the user
- Computed the user vector in same manner as in text based classification
- Terms in this case were the hashtags instead of words used in the tweets

Hashtags Based Classification: Results

Results for all 613 'Pro' Instances

Instances: 613				
	Attrib	utes: 139	98	
Cla	ssifier:	Random	Forest	
	Efficiency: 75.49%			
Party	Pre	Pre Recall F-		
larty	116	rtecan	measure	
AAP	0.759	0.167	0.273	
BJP	0.756	0.983	0.856	
CONG	0	0	0	

Results for all 425 'Anti' Instances

Instances: 425					
	Attrib	utes: 11	82		
Cla	ssifier:	Random	Forest		
	Efficien	cy: 50.3	5%		
Party	Pre Recall F-				
larty	110	$\begin{array}{c c} \mathbf{re} & \mathbf{Recall} \\ \mathbf{me} \end{array}$			
AAP	0.5	0.946	0.654		
BJP	0.875	0.165	0.277		
CONG	0.286	0.045	0.077		

- Efficiency improved by 2-3%, even with equal number of instances
- Precision and recall values remain 0 for Congress with all 'Pro' instances

User Features Based Classification

- #Friends
- #Followers
- 3. Following AAP?
- 4. Following BJP?
- 5. Following Congress?
- 6. #AAP related words
- 7. #BJP related words
- 8. #Congress related words
- 9. #AAP related hashtags
- 10. #BJP related hashtags
- 11. #Congress related hashtags

User Features Based Classification

User Features Based Classification: Results || | | | |

Results for all 613 '**Pro**' Instances

Instances: 613			
	Attrib	outes: 1	12
Cla	ssifier:	Randon	ı Forest
	Efficien	cy: 71.4	15%
Party	Party Pre Recall F-		
larty	116	rtecar	measure
AAP	0.455	0.376	0.412
BJP	0.781	0.855	0.816
CONG	0.429	0.182	0.255

Good Efficiency

Precision and Recall not 0

Results for equal '**Pro**' Instances

Attrib	outes:	12	
sifier:	Randon	ı Forest	
Efficiency: 50%			
Bass F-			
116	rteca	measure	
0.483	0.412	0.44	
0.439	0.486	0.462	
0.588	0.606	0.597	
	sifier: Efficie Pre 0.483 0.439	sifier: Randon Efficiency: 50 Pre Recal 0.483 0.412 0.439 0.486	

Improvement in efficiency by 6.4%

User Features Based Classification: Results IIII

Equal instances	of ' Pro '	AAP-BJP
-----------------	-------------------	---------

Instances: 266				
	\mathbf{Attri}	butes: 9		
Cla	ssifier:	Random	Forest	
Efficiency: 61.27%				
Party	Pre	Pre Recall F-		
larty	116	Hecan	measure	
AAP	0.606 0.62 0.615			
BJP	0.781	0.59	0.603	

2-Class Classification

Equal instances of 'Pro' AAP-Cong

Instances: 66				
	\mathbf{A} ttri	butes: 9		
Cla	ssifier:	Random	Forest	
	Efficiency: 71.21%			
Party	Pro	Pre Recall F-measure		
larty	116			
AAP	0.706 0.727 0.716			
CONG	0.719	0.697	0.708	

- For BJP-Cong also the efficiency was > 60%
- This method works well for 2-class classification
- For 'Anti' category, there was a 6% improvement with this method

Network Based Classification

- Network formed on the basis of
 - Retweets
 - User mentions
- Undirected, without weights graph
- Users formed the nodes
- Used Gephi 0.8.2
- Community detection algorithm
 - Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, Etienne Lefebvre, Fast unfolding of communities in large networks
 - Fastest for large networks

Network Based Classification: Results

- With all 613 'Pro' instances
- #Communities: 11
- 3 major communities
- Rest had 0.05% of nodes
- Modularity Score: 0.402

Network Based Classification: Results

• With all 613 'Pro' instances

#Nodes: 6022				
	$\#\mathrm{Edg}$	es: 1369	3	
Mo	dularity	y Score:	0.402	
	Efficiency: 78.31%			
Party	Pre	Pre Recall F-		
larty	116	rtecan	measure	
AAP	0.709	0.672	0.690	
BJP	0.939	0.850	0.897	
CONG	0.326	0.576	0.451	

Network Based Classification: Results

- With equal instances of 'Pro' category
- #Communities: 8
- 3 major and rest with 0.05% of nodes

#Nodes: 1193					
#Edges: 1489					
Modularity Score: 0.582					
Efficiency: 80.00%					
Party	Pre	Recall	F-		
			measure		
AAP	0.856	0.733	0.794		
BJP	0.769	0.952	0.860		
CONG	0.818	0.897	0.857		

Presentation Outline

- Research Motivation
- Research Aim
- Related Work
- Research Gap
- Data Analysis
- Classification of Political Orientation
- System Design
- Conclusion
- Limitations and Future Work

System Design

- Requirement: To be able to see and analyze the election related tweets on daily basis
- Used PHP and Javascript to develop the portal

http://bheem.iiitd.edu.in/IndiaElections

Refreshes at a 24 hour interval, but displays the tweets at an interval of 5000 ms

India General Elections 2014

Realtime Tweets	Trending Politicians	Location	Network Analysis	What's Trending	Sentiment
-----------------	----------------------	----------	------------------	-----------------	-----------

Realtime Tweets

India General Elections 2014

Realtime Tweets **Trending Politicians** Location **Network Analysis** What's Trending Sentiment

18 new Tweets

Ticker

KJS Arora@KanwaljtSingA

Wen Bjp n sangh parivar put Twitter n fb to good use in LS polls it becums Jurassic park take on Star Wars #144inAmethi

□View summary

Gurmeet S. Randhir@gsrandhir

@M Lekhi BJP must thank Cong' 4 their Mindless Election Camp'n as they would't hav got such Overwhelming Support & Sure Victory in d end.

□View summary

Naresh dixit@nareshdixit82

RT @ANI_news: Sushil Modi: More than 50 JDU MLAs helping BJP win elections, they know JDU has slipped to 3rd position, don't want RJD to rega?

□View summary

DNAPopularNews@DNAPopularNews

Congress facing its worst time, says Narendra Modi: This is the worst ever time for Congress, BJP prime minist... http://t.co/UHjOfsaoJB

□View summary

less than a minute ago

Trending Politicians

India General Elections 2014

Realtime Tweets Trending Politicians Location Network Analysis What's Trending Sentiment

mage Name		Screen Name	Followers	Klout score A	
	Narendra Modi	narendramodi	3892386	88.9544376106022	
1	Shashi Tharoor	ShashiTharoor	2158589	83.8670452261145	
	Omar Abdullah	abdullah_omar	495903	82.2925779719157	
登	Rajeev Chandrasekhar	rajeev_mp	127523	80.4229036163932	
	Dr Manmohan Singh	PMOIndia	1202471	80.2100714321393	
1	Milind Deora	milinddeora	131956	79.6566835279628	

Location

India General Elections 2014

Realtime Tweets Trending Politicians Location Network Analysis What's Trending Sentiment

Network Analysis

India General Elections 2014

Realtime Tweets Trending Politicians Location Network Analysis What's Trending Sentiment

What's Trending

India General Elections 2014

Sentiment

India General Elections 2014

Realtime Tweets Trending Politicians Location Network Analysis What's Trending	Sentiment	
--	-----------	--

Presentation Outline

- Research Motivation
- Research Aim
- Related Work
- Research Gap
- Data Analysis
- Classification of Political Orientation
- System Design
- Conclusion
- Limitations and Future Work

Conclusion

- Twitter activity is directly proportional to the real time activities
- Data is particularly higher on weekdays
- BJP emerged as the leader in tweet share as well as seat share in both Assembly and General Elections
- Predicting the political orientation with content based methods is not easy
- The transliteration and sarcasm used in the text can be possible causes for poor performance of content based methods

Conclusion

- The user features based classification can improve the efficiency, but not for the 'Anti' category
- Prediction of 'Anti' political orientation is even more difficult
- Network based methods worked best for the Indian users
- A 2-class classification gives better results in all the methods as compared to 3-class classification
- A system to monitor and analyze the recent tweets was also developed

Presentation Outline

- Research Motivation
- Research Aim
- Related Work
- Research Gap
- Data Analysis
- Classification of Political Orientation
- System Design
- Conclusion
- Limitations and Future Work

Limitations & Future Work

- API rate limit puts a restriction on the data collected
- Political views of people is difficult to judge only on the basis of tweets
- Too much of content by BJP made the results biased towards
 BJP
- Future work can include to see the change in sentiments post elections
- To look at if the parties that lost the elections were still active and trending

Acknowledgement

- Dr. PK, IIIT-D
- Anupama Aggarwal, PhD Scholar, IIIT-D
- Data Annotators
- CERC@IIIT-D
- Precogs
- Family and Friends

References

- [1] Aramaki, E., Maskawa, S., and Morita, M. Twitter catches the u: detecting inuenza epidemics using twitter. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (2011), Association for Computational Linguistics, pp. 1568-1576.
- [2] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008, 10 (2008), P10008.
- [3] Bollen, J., Mao, H., and Pepe, A. Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In ICWSM (2011)
- [4] Boyd, D., Golder, S., and Lotan, G. Tweet, tweet, retweet: Conversational aspects of retweeting on twitter. In System Sciences (HICSS), 2010 43rd Hawaii International Conference on (2010), IEEE, pp. 10.
- [5] Bruns, A., and Burgess, J. E. The use of twitter hashtags in the formation of ad hoc publics.
- [6] Carletta, J. Assessing agreement on classi_cation tasks: the kappa statistic. Computational linguistics 22, 2 (1996), 249-254.
- [7] Castillo, C., Mendoza, M., and Poblete, B. Information credibility on twitter. In Proceedings of the 20th international conference on World wide web (2011), ACM, pp. 675-684.
- [8] Cohen, R., and Ruths, D. Classifying political orientation on twitter: Its not easy! In Proceedings of the 7th International Conference on Weblogs and Social Media (2013).
- [9] Conover, M. D., Gonc_alves, B., Ratkiewicz, J., Flammini, A., and Menczer, F. Predicting the political alignment of twitter users. In Privacy, security, risk and trust (passat), 2011 ieee third international conference on and 2011 ieee third international conference on social computing (socialcom) (2011), IEEE, pp. 192-199.

References

- [10] Fruchterman, T. M., and Reingold, E. M. Graph drawing by force-directed placement. Software: Practice and experience 21, 11 (1991), 1129-1164.
- [11] Gayo-Avello, D. Don't turn social media into another'literary digest'poll. Communications of the ACM 54, 10 (2011), 121-128.
- [12] Golbeck, J., and Hansen, D. Computing political preference among twitter followers. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2011),

ACM, pp. 1105-1108.

- [13] Gupta, A., and Kumaraguru, P. Credibility ranking of tweets during high impact events. In Proceedings of the 1st Workshop on Privacy and Security in Online Social Media (2012), ACM, p. 2.
- [14] Himelboim, I., McCreery, S., and Smith, M. Birds of a feather tweet together: Integrating network and content analyses to examine cross-ideology exposure on twitter. Journal of Computer-Mediated Communication 18, 2 (2013), 40-60.
- [15] Honey, C., and Herring, S. C. Beyond microblogging: Conversation and collaboration via twitter. In System Sciences, 2009. HICSS'09. 42nd Hawaii International Conference on (2009), IEEE, pp. 1-10.
- [16] Hong, S., and Nadler, D. Does the early bird move the polls?: the use of the social media tool'twitter'by us politicians and its impact on public opinion. In Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times (2011), ACM, pp. 182-186.
- [17] Jungherr, A., Jurgens, P., and Schoen, H. Why the pirate party won the german election of 2009 or the trouble with predictions: A response to tumasjan, a., sprenger, to, sander, pg, & welpe, im predicting elections with twitter: What 140 characters reveal about political sentiment. Social Science Computer Review 30, 2 (2012), 229-234.
- [18] Krenn, B., Evert, S., and Zinsmeister, H. Determining intercoder agreement for a collocation identi_cation task. In Proceedings of KONVENS (2004), pp. 89-96.
- [19] Metaxas, P. T., Mustafaraj, E., and Gayo-Avello, D. How (not) to predict elections. In privacy, security, risk and trust (PASSAT), 2011 IEEE third international conference on and 2011 IEEE third international conference on social computing (SocialCom)

Feedback/ Suggestions:

pk@iiitd.ac.in
abhishek1231@iiitd.ac.in