МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Московский институт электронной техники»

Институт микроприборов и систем управления 09.03.01 «Информатика и вычислительная техника»

КУРСОВАЯ РАБОТА

по дисциплине: «Электротехника»

на тему: «Разработка схемы формирования питания»

Выполнил:

студент гр. ИВТ-22

Лыков И.А.

Руководитель:

ст. преподаватель

Хисамов В.Т.

Оглавление

Часть 1. Расчет линейного стабилизатора	4
Задание 1. Линейный стабилизатор с регулируемым выходом	4
1.1 Выбор стабилизатора	4
1.2 Расчет параметров пассивных компонентов	4
1.3 Выбор пассивных компонентов с учётом номинального ряда (Е24).	5
1.4 Разработка схемы электрической принципиальной	5
1.5 Расчёт тока потребления на фиксированную нагрузку	6
1.6 Расчёт мощности, рассеиваемой на стабилизаторе	6
Задание 2. Линейный стабилизатор с фиксированным выходом	6
2.1 Расчёт потребляемого нагрузкой тока и мощности, рассеиваемой на	a
нагрузке	6
2.2 Выбор стабилизатора	7
2.3 Расчёт температуры нагруженного стабилизатора	7
2.4, 2.5 Расчёт параметров пассивных компонентов	8
2.6 Разработка схемы электрической принципиальной	8
Задание 3. Линейный стабилизатор с низким падением напряжения	8
3.1 Изучение спецификации	9
3.2 Общие характеристики	9
3.3 Выбор произвольных входного и выходного напряжения	. 11
3.4 Расчёт сопротивления нагрузки	. 12
3.5 Разработка схемы электрической принципиальной	. 12
Часть 2. Расчёт импульсного преобразователя напряжения	. 13
Задание 1. Рассчитать импульсный преобразователь напряжения с	
регулируемым выходом	13
1.1 Выбор преобразователя	13

1.2 Расчёт параметров пассивных компоне	ентов14
1.3 Расчёт тока потребления на фиксирова	нную нагрузку15
1.4 Разработка схемы электрической прин	ципиальной15
Задание 2. Рассчитать импульсный преобраз	ователь напряжения с
фиксированным выходом	16
2.1 Выбор преобразователя	
2.2 Расчёт параметров пассивных компоне	ентов17
2.3 Разработка схемы электрической прин	ципиальной18
Часть 3. Схема формирования питания	
Задание	19
1. Фрагменты из таблиц с вариантом задан	ния20
2. Оценка уровня выходного напряжения п	импульсного стабилизатора 121
3. Выбор линейных стабилизаторов	21
4. Оценка выходного тока импульсного ст	абилизатора 124
5. Выбор импульсного стабилизатора 1	25
6. Выбор импульсных стабилизаторов 2 и	326
7. Итоговая схема формирования питания	с учётом выбранных
компонентов	
8. Оценка выходного тока ИП (источника	питания)34
Список истонников	35

Часть 1. Расчет линейного стабилизатора

Задание 1. Линейный стабилизатор с регулируемым выходом

Параметры для подбора линейного стабилизатора:

$$U_{\text{in min}} = 14 \text{ B}, U_{\text{in max}} = 16 \text{ B}, U_{\text{out nom}} = 9 \text{ B}, I_{\text{out}} = 410 \text{ MA}.$$

1.1 Выбор стабилизатора

Выбран линейный стабилизатор LM217MDT-TR компании STMicroelectronics. Параметры этого устройства удовлетворяют параметрам моего варианта.

Output voltage range: 1.2 to 37 V
Output current in excess of 500 mA
Line regulation typ. 0.01%
Load regulation typ. 0.1%
Thermal overload protection
Short-circuit protection
Output transition safe area compensation
Floating operation for high voltage applications

Рисунок 1 — Характеристики LM217MDT-TR

1.2 Расчет параметров пассивных компонентов

Рисунок 2 — Схема для расчета пассивных компонентов LM217MDT-TR

Расчётная формула для KM217MDT-TR:

$$V_{\text{out}} = V_{\text{ref}} \cdot \left(1 + \frac{R_2}{R_1}\right) + I_{\text{adj}} \cdot R_2$$

 $V_{\rm ref}=1,\!25$ В, вторым слагаемым можно пренебречь, так как значение тока на adj пине будет незначительным. Пусть $V_{\rm out}=9$ В, $R_1=240$ Ом, подставим в уравнение и найдем R_2 .

$$9 = 1,25 \cdot \left(1 + \frac{R_2}{240}\right)$$

$$9 = 1,25 + 1,25 \cdot \frac{R_2}{240}$$

$$7,75 = R_2 \cdot \frac{1,25}{240}$$

$$R_2 = 7,75 \cdot \frac{240}{1,25} = 1488 \text{ Om}$$

1.3 Выбор пассивных компонентов с учётом номинального ряда (E24)

Номиналы для R_1 и R_2 — 240 и 1.5к Ом соответственно. Вернемся к формуле вычисления выходного напряжения, чтобы удостовериться в верности выбранных значений компонентов.

$$V_{\text{out}} = 1,25 \cdot \left(1 + \frac{1500}{240}\right) = 1,25 \cdot (1 + 6,25) = 9,0625 \text{ B}$$

1.4 Разработка схемы электрической принципиальной

Рисунок 3 — Схема линейного стабилизатора напряжения на базе микросхемы LM217MDT-TR

1.5 Расчёт тока потребления на фиксированную нагрузку

$$I_R = \frac{U_{out}}{R_{Harp}} = \frac{9}{100} = 0.09 A = 90 \text{ mA}$$

1.6 Расчёт мощности, рассеиваемой на стабилизаторе

$$P_{cra6} = (U_{in max} - U_{out nom}) \cdot I_{out} = (16 - 9) \cdot 0.41 = 2.87 BT$$

Задание 2. Линейный стабилизатор с фиксированным выходом

Параметры для подбора линейного стабилизатора: $U_{\rm in\; min}=12{,}5\;B,\,U_{\rm in\; max}=16\;B,\,U_{\rm out\; nom}=5\;B,\,R_{\rm harp}=18\;O{\rm m}.$

2.1 Расчёт потребляемого нагрузкой тока и мощности, рассеиваемой на нагрузке

$$I = \frac{U_{\text{out nom}}}{R_{\text{Harp}}} = \frac{5}{18} = 0,278 \text{ A} = 278 \text{ MA}$$

$$P_{\text{Harp}} = U_{\text{out}} \cdot I = 5 \cdot 0.278 = 1.39 \text{ BT}$$

$$P_{cra6} = (U_{in max} - U_{out nom}) \cdot I_{out} = (16 - 5) \cdot 0.278 = 3.058 BT$$

Проверка корректности выполненных расчётов с учётом того, что стабилизатор подключен с нагрузкой последовательно, соответственно ток I в цепи одинаков, а полное падение напряжения складывается из падения напряжения на стабилизаторе и падения на нагрузке. Соответственно, мощность, потребляемая от источника питания, равна сумме мощностей, рассеиваемых на стабилизаторе и нагрузке.

$$P = P_{cTa6} + P_{Harp}$$

$$16 \cdot 0,278 = (16 - 5) \cdot 0,278 + 5 \cdot 0,278$$

$$4,448 = 4,448$$

2.2 Выбор стабилизатора

Был выбран линейный стабилизатор KF50BDT-TR компании STMicroelectronics. Параметры этого устройства удовлетворяют параметрам моего варианта.

Полярность	Положительная
Тип выхода	Фиксированный
Количество выходов	1
Выходное напряжение, В	5
Максимальный ток нагрузки, А	0.5
Падение напряжения при Івых, В (А)	0.7(0.5)
Максимальное входное напряжение, В	20
Рабочая температура,°C	-40+125
Корпус	DPAK/TO-252
Вес, г	0.4

Рисунок 4 — Характеристики стабилизатора KF50BDT-TR

2.3 Расчёт температуры нагруженного стабилизатора

Symbol	Parameter	DPAK	SO-8	Unit
R _{thJC}	Thermal resistance junction-case	8	20	°C/W
R _{thJA}	Thermal resistance junction-ambient	100	55	°C/W

Рисунок 5 — Термическое сопротивления в зависимости от корпуса KF50BDT-TR

Был выбран корпус DPAK.

$$T_{thJC} = P_{Harp} \cdot R_{thJC} = 1.39 \cdot 8 = 11.12 \text{ °C}$$
 $T_{thJA} = P_{Harp} \cdot R_{thJA} = 1.39 \cdot 100 = 139 \text{ °C}$

2.4, 2.5 Расчёт параметров пассивных компонентов

Рисунок 6 — Схема для расчета пассивных компонентов KF50BDT-TR

Данная схема с рассчитанными пассивными компонентами была приведена в спецификации.

2.6 Разработка схемы электрической принципиальной

Рисунок 7 — Схема линейного стабилизатора напряжения на базе микросхемы KF50BDT-TR

Задание 3. Линейный стабилизатор с низким падением напряжения

P/N стабилизатора: NCV8711ASNADJT1G.

3.1 Изучение спецификации

NCV8711ASNADJT1G – регулируемый стабилизатор напряжения, с входным напряжением от 2,7 В до 18 В, выходным напряжением 1,2–17 В/100 мА.

3.2 Общие характеристики

3.2.1 Наименование доступных корпусов с указанием максимальной рассеивающей мощности

Рисунок 8 — Корпус TSOP-5 стабилизатора NCV8711

Рисунок 9 — Корпус WDFNW6(2x2) NCV8711

3.2.2 Допустимый диапазон входных напряжений

Operating Input Voltage Range: 2.7 V to 18 V

Рисунок 11 — Допустимый диапазон входных напряжений NCV8711ASNADJT1G

3.2.3 Допустимый диапазон регулируемого выходного напряжения

Output Voltage: 1.2 V to 17 V

3.2.4 Максимальный выходной ток

Maximum Output Current

100mA

Рисунок 12 — Максимальный выходной ток NCV8711ASNADJT1G

3.2.5 Зависимость падения напряжения на LDO стабилизаторе от какоголибо параметра

Рисунок 13 — Зависимость падения напряжения от температуры NCV8711ASNADJT1G

3.2.6 Описание каждого вывода стабилизатора LDO

IN — вывод, на который подается входное напряжение.

OUT — вывод, с которого идет выходное напряжение.

EN — вывод, который используется для включения или отключения работы устройства.

GND — земля.

NC — вывод используется для установки регулируемого выходного напряжения путем подключения его к внешним резисторам.

ADJ — вывод, регулирующий выходное напряжение.

PG — этот вывод определяет, установлено ли напряжение в пределах нормы.

3.2.7 Формульные соотношения, для определения номиналов «обвязки»

• Выходное напряжение и соответствующая схема

Рисунок 14 — Пример использования стабилизатора с регулируемым выходным напряжением

3.2.8 «ABSOLUTE MAXIMUM RATINGS» - допустимый рабочий диапазон

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
VIN Voltage (Note 2)	V _{IN}	-0.3 to 22	٧
VOUT Voltage	V _{OUT}	-0.3 to [(V _{IN} + 0.3) or 22 V; whichever is lower]	٧
EN Voltage	V _{EN}	-0.3 to (V _{IN} + 0.3)	٧
ADJ Voltage	V _{FB/ADJ}	-0.3 to 5.5	V
PG Voltage	V_{PG}	-0.3 to (V _{IN} + 0.3)	V
Output Current	I _{OUT}	Internally limited	mA
PG Current	I _{PG}	3	mA
Maximum Junction Temperature	$T_{J(MAX)}$	150	°C
Storage Temperature	T _{STG}	-55 to 150	°C
ESD Capability, Human Body Model (Note 3)	ESD _{HBM}	2000	٧
ESD Capability, Charged Device Model (Note 3)	ESD _{CDM}	1000	V

Рисунок 15 — Абсолютные максимальные показатели NCV8711ASNADJT1G

3.3 Выбор произвольных входного и выходного напряжения

$$V_{BX} = 6.5 B$$

$$V_{\text{вых}} = 5 \text{ B}$$

3.4 Расчёт сопротивления нагрузки

$$I_{\text{нагр}} = 0.5 \cdot I_{\text{нагр}_{\text{макс}}} = 0.5 \cdot 0.1 = 0.05 \,\text{A}$$
 $R_{\text{нагр}} = \frac{V_{\text{вых}}}{I_{\text{нагр}}} = \frac{5}{0.05} = 100 \,\text{Ом}$

3.5 Разработка схемы электрической принципиальной

Рисунок 16 — Схема линейного стабилизатора напряжения на базе микросхемы NCV8711ASNADJT1G

Часть 2. Расчёт импульсного преобразователя напряжения

Задание 1. Рассчитать импульсный преобразователь напряжения с регулируемым выходом

Параметры для подбора импульсного преобразователя: $U_{in\;min}=12{,}5\;B,\,U_{in\;max}=16\;B,\,U_{out\;nom}=6\;B,\,I_{out}=280\;\text{мA}.$

1.1 Выбор преобразователя

Был выбран импульсный повышающий/понижающий преобразователь напряжения с регулируемым выходом LM2575GR-ADJ, удовлетворяющий параметрам моего варианта.

Рисунок 17 — Доступные корпуса преобразователя напряжения LM2575GR-ADJ

Серия	LM2575
Тип устройства	DC-DC конвертер Step-Down
Конфигурация выхода	Positive
Топология	Buck
Тип выхода	Регулируемый
Количество выходов	1
Входное напряжение (Мин), В	4
Входное напряжение (Макс), В	40
Выходное напряжение (Мин/Фикс), В	1.23
Выходное напряжение (Макс), В	37
Выходной ток, А	1
Частота переключения, кГц	52
Синхронный выпрямитель	Нет
Рабочая температура, °С	-40+125
Корпус	D2PAK-5/TO-263-5
Вес, г	2.8

Рисунок 18 — Характеристики LM2575GR-ADJ

1.2 Расчёт параметров пассивных компонентов

Рисунок 19 — Схема для расчета пассивных параметров LMR2575

$$V_{\rm out}=6$$
 B, $V_{\rm ref}=1$,23 B, $R_1=2$ кОм. Тогда:
$$6=1$$
,23 $\cdot \left(1+\frac{R_2}{2000}\right)$

$$4,77 = 1,23 \cdot \frac{R_2}{2000}$$
 $R_2 = 4,77 \cdot \frac{2000}{1.23} = 7756 \text{ Ом}$

Согласно номинальному ряду Е24, для $\rm R_2$ был подобран номинал 7,5 кОм, а для $\rm R_1 - 2$ кОм.

1.3 Расчёт тока потребления на фиксированную нагрузку

$$R_{\text{harp}} = 10 \text{ Om}$$
 $U_{\text{bbix}} = 6 \text{ B}$ $I_{\text{harp}} = \frac{U_{\text{bbix}}}{R_{\text{harp}}} = \frac{6}{10} = 600 \text{ MA}$

 $I_{\rm harp} > I_{\rm max\,dc-dc}$, а именно 600 мA > 380 мA, следовательно преобразователь не выдержит такую нагрузку. Чтобы $I_{\rm harp}$ стал меньше $I_{\rm max\,dc-dc}$, надо либо уменьшить напряжение на выходе, либо повысить сопротивление нагрузки.

1.4 Разработка схемы электрической принципиальной

Рисунок 20 — Схема импульсного преобразователя напряжения на базе микросхемы LM2575GR-ADJ

Задание 2. Рассчитать импульсный преобразователь напряжения с фиксированным выходом

Параметры для подбора импульсного преобразователя: $U_{\rm in\; min}=14{,}5\;B,\,U_{\rm in\; max}=17\;B,\,U_{\rm out\; nom}=3{,}3\;B,\,R_{\rm Harp}=9\;{\rm Om}.$

2.1 Выбор преобразователя

Я выбрал импульсный повышающий/понижающий преобразователь напряжения с фиксированным выходом MAX5035AASA+, удовлетворяющий параметрам моего варианта. В технической спецификации представлен преобразователь в корпусе SOIC-8.

Серия	MAX5035
Тип устройства	DC-DC конвертер Step-Down
Конфигурация выхода	Positive
Топология	Buck
Тип выхода	Фиксированный
Количество выходов	1
Входное напряжение (Мин), В	7.5
Входное напряжение (Макс), В	76
Выходное напряжение (Мин/Фикс), В	3.3
Выходной ток, А	1
Частота переключения, кГц	125
Синхронный выпрямитель	Нет
Рабочая температура, °С	-40+125
Корпус	SOIC-8(0.154")
Вес, г	0.54

Рисунок 21 — Характеристики MAX5035AASA+

2.2 Расчёт параметров пассивных компонентов

V _{IN} (V)	V _{OUT} (V)	I _{OUT} (A)	EXTERNAL COMPONENTS
7.5 to 76	3.3	0.5	C_{IN} = 68 μ F, Panasonic, EEVFK2A680Q C_{OUT} = 68 μ F, Vishay Sprague, 594D686X_010C2T C_{BST} = 0.1 μ F, 0805 R1 = 1M Ω ±1%, 0805
7.5 to 76	3.3	1	R2 = $384k\Omega \pm 1\%$, 0805 D1 = $50SQ100$, IR L1 = 100μ H, Coilcraft Inc., DO5022P-104

Рисунок 22 — Схема для расчета параметров пассивных компонентов MAX5035AASA+

Схема и соответствующие номиналы пассивных компонентов приведены в спецификации.

$$R_{\text{нагр}} = 10 \text{ Ом}$$
 $U_{\text{вых}} = 3,3 \text{ B}$ $I_{\text{нагр}} = \frac{U_{\text{вых}}}{R_{\text{нагр}}} = \frac{3,3}{10} = 330 \text{ мA} = 0,33 \text{ A}$

 $I_{\rm harp} < I_{\rm max\, dc-dc}$, а именно 0,33 A < 1 A, следовательно преобразователь выдержит такую нагрузку.

2.3 Разработка схемы электрической принципиальной

Рисунок 23 — Схема импульсного преобразователя напряжения на базе микросхемы MAX5035AASA+

Часть 3. Схема формирования питания

Задание

Разработать схему формирования питания как составную часть устройства X с заданными характеристиками.

Схема должна обеспечивать необходимые уровни напряжения для перечисленных ниже узлов схемы.

Описание структурных блоков устройства X в части питания, для которого в данной части курсовой работы необходимо разработать схему формирования питания:

- 1. Микроконтроллер (далее МК)
 - 1.1.VD (питание цифровой части МК, обычно в спецификации называется VDD)
 - 1.2. VA (питание аналоговой части МК, обычно в спецификации называется VDDA)
- 2. Программируемая логическая интегральная схема (далее ПЛИС)
 - 2.1. VCCINT (напряжение питания ядра)
 - 2.2. VCCO (напряжение питания блоков ввода-вывода)
 - 2.3. V CCAUX (вспомогательное напряжение питания)
- 3. Операционный усилитель (Operational Amplifier, OA) с однополярным питанием («Single-supply», далее OУ-1) +V (положительное питание ОУ)
- 4. Операционный усилитель (Operational Amplifier, OA) с двухполярным питанием («Dual-supply», далее ОУ-2)
 - 4.1.+V (положительное питание ОУ)
 - 4.2.-V (отрицательное питание ОУ)

Рисунок 24 — Структурная схема устройства X

Рисунок 25 — Предлагаемая схема формирования питания

1. Фрагменты из таблиц с вариантом задания

Уровни напряжений для схемы формирования питания:

$$U_{\text{вх}} = 26 \text{ B}, U_{\text{мк Vdd}} = 3,3 \text{ B}, U_{\text{мк Vdda}} = 3,3 \text{ B}, U_{\text{плис Vcco}} = 3,3 \text{ B},$$

$$U_{\text{плис Vccint}} = 1 \text{ B}, U_{\text{плис Vccaux}} = 1,5 \text{ B}, +U_{\text{oy1 Vdda}} = 11 \text{ B}, +U_{\text{oy2 Vdda}} = 14 \text{ B},$$

$$-U_{\text{oy2 Vdda}} = -14 \text{ B}.$$

Токи потребления для схемы формирования питания:

$$\begin{split} &I_{\text{мк Vdd}}=160\text{ MA},\ I_{\text{мк Vdda}}=30\text{ MA},\ I_{\text{плис Vcco}}=300\text{ MA},\ I_{\text{плис Vccint}}=80\text{ MA},\\ &I_{\text{плис Vccaux}}=110\text{ MA},\ +I_{\text{oy1 Vdda}}=10\text{ MA},\ +I_{\text{oy2 Vdda}}=10\text{ MA},\\ &-I_{\text{oy2 Vdda}}=10\text{ MA}. \end{split}$$

2. Оценка уровня выходного напряжения импульсного преобразователя 1

Максимальное напряжение, которое требуется сформировать для МК и ПЛИС равно 3,3 В, согласно моему варианту. Величина падения напряжения на линейном стабилизаторе варьируется от 1 В до 2 В. Допустим, эта величина будет равна 1,7 В. То есть, на выходе импульсного преобразователя необходимо сформировать напряжение приблизительно:

$$U_{_{\text{ИМ}\Pi_{\text{BЫX}}}} = 3.3 \text{ B} + 1.7 \text{ B} = 5 \text{ B}.$$

3. Выбор линейных стабилизаторов

3.1 Вводные данные для выбора стабилизатора ($U_{\text{вх}}$, $U_{\text{вых}}$, $I_{\text{вых}}$)

- Для выбора линейного стабилизатора 1 выберу $U_{BX_1}=5\,B,$ $U_{BыX_1}=3,3\,B,\,I_{BыX_1}=160\,\text{мA};$
- Для линейного стабилизатора 2 выберу $U_{\text{вх}_2} = 5 \text{ B}, \ U_{\text{вых}_2} = 3,3 \text{ B},$ $I_{\text{вых}_2} = 30 \text{ мA};$
- Для линейного стабилизатора 3 выберу $U_{\text{вх}_3} = 5 \text{ B}, U_{\text{вых}_3} = 3,3 \text{ B},$ $I_{\text{вых}_3} = 300 \text{ мA};$
- Для линейного стабилизатора 4 выберу $U_{\text{вх}_4} = 5 \text{ B}, U_{\text{вых}_4} = 1 \text{ B},$ $I_{\text{вых}_4} = 80 \text{ мA};$
- Для линейного стабилизатора 5 выберу $U_{\text{вх}_5} = 5$ В, $U_{\text{вых}_5} = 1,5$ В, $I_{\text{вых}_5} = 110$ мА.

3.2 Обоснование выбора данного стабилизатора

- Линейный стабилизатор 1: NCP114ASN330T1G. Его параметры:
 - . Operating Input Voltage Range: 1.7 V to 5.5 V
 - Available in Fixed Voltage Options: 0.75 V to 3.6 V Contact Factory for Other Voltage Options
 - Very Low Quiescent Current of Typ. 50 μA
 - Standby Current Consumption: Typ. 0.1 μA
 - · Low Dropout: 135 mV Typical at 300 mA
 - · ±1% Accuracy at Room Temperature
 - · High Power Supply Ripple Rejection: 75 dB at 1 kHz
 - · Thermal Shutdown and Current Limit Protections
 - Stable with a 1 μF Ceramic Output Capacitor
 - · Available in UDFN and TSOP Packages
 - · These are Pb-Free Devices

Рисунок 26 — Параметры стабилизатора NCP114ASN330T1G

• Линейный стабилизатор 2: МСР1702Т-3302Е/МВ. Его параметры:

Полярность	Положительная
Тип выхода	Фиксированный
Количество выходов	1
Выходное напряжение, В	3.3
Максимальный ток нагрузки, А	0.25
Падение напряжения при Івых, В (А)	0.09(0.04)
Максимальное входное напряжение, В	14
Рабочая температура,°С	-25+70
Корпус	sot-89
Вес, г	0.2

Рисунок 27 — Параметры стабилизатора МСР1702Т-3302Е/МВ

• Линейный стабилизатор 3: KF33BD-TR. Его параметры:

Полярность	Положительная
Тип выхода	Фиксированный
Количество выходов	1
Выходное напряжение, В	3.3
Максимальный ток нагрузки, А	0.5
Падение напряжения при Івых, В (А)	0.7(0.5)
Максимальное входное напряжение, В	20
Рабочая температура,°С	-40+125
Корпус	SOIC-8
Вес, г	0.15

Рисунок 28 — Параметры стабилизатора KF33BD-TR

• Линейный стабилизатор 4: LD39015M10R. Его параметры:

Input voltage from 1.5 to 5.5 V Ultra low-dropout voltage (80 mV typ. at 100 mA load) Very low quiescent current (18 μ A typ. at no load, 38 μ A typ. at 150 mA load, 1 μ A max. in OFF mode) Very low noise without bypass capacitor (29 μ V_{RMS} at V_{OUT} = 0.8 V) Output voltage tolerance: \pm 2.0% @ 25 °C 150 mA guaranteed output current Wide range of output voltages available on request: 0.8 V to 3.3 V with 100 mV step Logic-controlled electronic shutdown

Рисунок 29 — Параметры стабилизатора LD39015M10R

• Линейный стабилизатор 5: MAX603ESA+T. Его параметры:

Полярность	Положительная
Тип выхода	Регулируемый
Количество выходов	1
Выходное напряжение, В	1.2511
Максимальный ток нагрузки, А	0.5
Падение напряжения при Івых, В (А)	0.55(0.5)
Максимальное входное напряжение, В	11.5
Рабочая температура,°C	-40+85
Корпус	SOIC-8
Вес, г	0.15

Рисунок 30 — Параметры стабилизатора MAX603ESA+T

Сравнив выбранные параметры и параметры каждого из линейных стабилизаторов, делаю вывод, что данные стабилизаторы подходят.

3.3 Расчёт мощности, выдаваемой в нагрузку Р_{нагр}

$$P_{\text{Harp}_1} = U_{\text{BыX}_1} \cdot I_{\text{BыX}_1} = 3,3 \cdot 0,16 = 0,528 \, \text{Bt}$$
 $P_{\text{Harp}_2} = U_{\text{BыX}_2} \cdot I_{\text{BыX}_2} = 3,3 \cdot 0,03 = 0,1 \, \text{Bt}$
 $P_{\text{Harp}_3} = U_{\text{BыX}_3} \cdot I_{\text{BыX}_3} = 3,3 \cdot 0,3 = 1 \, \text{Bt}$
 $P_{\text{Harp}_4} = U_{\text{BыX}_4} \cdot I_{\text{BыX}_4} = 1 \cdot 0,08 = 0,08 \, \text{Bt}$

$$P_{\text{Harp}_5} = U_{\text{Bbix}_5} \cdot I_{\text{Bbix}_5} = 1.5 \cdot 0.11 = 0.165 \text{ Bt}$$

3.4 Расчёт рассеивающей на стабилизаторе мощности \mathbf{P}_{pacc}

$$\begin{split} P_{\text{pacc}_1} &= \left(U_{\text{BX}_1} - U_{\text{BbIX}_1} \right) \cdot I_{\text{BbIX}_1} = \left(5 - 3,3 \right) \cdot 0,16 \ = 0,272 \, \text{BT} \\ P_{\text{pacc}_2} &= \left(U_{\text{BX}_2} - U_{\text{BbIX}_2} \right) \cdot I_{\text{BbIX}_2} = \left(5 - 3,3 \right) \cdot 0,03 \ = 0,051 \, \text{BT} \\ P_{\text{pacc}_3} &= \left(U_{\text{BX}_3} - U_{\text{BbIX}_3} \right) \cdot I_{\text{BbIX}_3} = \left(5 - 3,3 \right) \cdot 0,3 \ = 0,51 \, \text{BT} \\ P_{\text{pacc}_4} &= \left(U_{\text{BX}_4} - U_{\text{BbIX}_4} \right) \cdot I_{\text{BbIX}_4} = \left(5 - 1 \right) \cdot 0,08 \ = 0,32 \, \text{BT} \\ P_{\text{pacc}_5} &= \left(U_{\text{BX}_5} - U_{\text{BbIX}_5} \right) \cdot I_{\text{BbIX}_5} = \left(5 - 1,5 \right) \cdot 0,11 \ = 0,385 \, \text{BT} \end{split}$$

3.5 Расчёт суммарной мощности, потребляемой стабилизатором и нагрузкой

$$P_1 = P_{pacc_1} + P_{Harp_1} = 0.528 \, BT + 0.272 \, BT = 0.8 \, BT$$
 $P_2 = P_{pacc_2} + P_{Harp_2} = 0.1 \, BT + 0.051 \, BT = 0.151 \, BT$
 $P_3 = P_{pacc_3} + P_{Harp_3} = 1 \, BT + 0.51 \, BT = 1.51 \, BT$
 $P_4 = P_{pacc_4} + P_{Harp_4} = 0.08 \, BT + 0.32 \, BT = 0.4 \, BT$
 $P_5 = P_{pacc_5} + P_{Harp_5} = 0.165 \, BT + 0.385 \, BT = 0.55 \, BT$

4. Оценка выходного тока импульсного преобразователя 1

Для оценки выходного тока импульсного преобразователя 1 необходимо оценить мощность потребителей после импульсного преобразователя. Просуммировав мощности всех линейных стабилизаторов, можно оценить $P_{\text{имп}_{\text{вых}}}$ — требуемую выходную мощность импульсного преобразователя 1.

$$P_{_{\rm IM\Pi_{BbIX}}} = P_1 + P_2 + P_3 + P_4 + P_5$$

$$P_{_{\rm IM\Pi_{BbIX}}} = 0.8 + 0.151 + 1.51 + 0.4 + 0.55 = 3.411 \, \mathrm{BT}$$

$$I_{_{\text{ИМ}\Pi_{\text{ВЫХ}}}} = \frac{P_{_{\text{ИМ}\Pi_{\text{ВЫХ}}}}}{U_{_{\text{ИМ}\Pi_{\text{ВЫХ}}}}} = \frac{3,411}{5} = 0,682 \text{ A} = 682 \text{ MA}$$

5. Выбор импульсного преобразователя 1

5.1 Вводные данные для выбора преобразователя

$$U_{BX_1} = 26 B$$

$$U_{\text{вых}_1} = 5 \text{ B}$$

$$I_{\text{вых}_1} = 682 \text{ MA}$$

5.2 Обоснование выбора данного преобразователя

Я выбрал импульсный преобразователь LM2575HVT-5.0. Его параметры:

Серия	LM2575
Тип устройства	DC-DC конвертер Step-Down
Конфигурация выхода	Positive
Топология	Buck
Тип выхода	Фиксированный
Количество выходов	1
Входное напряжение (Мин), В	4
Входное напряжение (Макс), В	60
Выходное напряжение (Мин/Фикс), В	5
Выходной ток, А	1
Частота переключения, кГц	52
Синхронный выпрямитель	Нет
Рабочая температура, °C	-40+125
Корпус	TO-220-5
Вес. г	3

Рисунок 31 — Параметры стабилизатора LM2575HVT-5.0

Сравнив выбранные параметры и параметры преобразователя, делаю вывод, что он подходит.

6. Выбор импульсных преобразователей 2 и 3

6.1 Вводные данные для выбора стабилизатора

- Для выбора импульсного преобразователя 2 выберу $U_{\text{вх}_2}=26\ \text{B},$ $U_{\text{вых}_2}=11\ \text{B},\ I_{\text{вых}_2}=10\ \text{мA};$
- Для выбора импульсного преобразователя 3 выберу $U_{\text{вх}_3}=26\ \text{B},$ $U_{\text{вых}_3}=14\ \text{B},$ $I_{\text{вых}_3}=10\ \text{мA}.$

6.2 Обоснование выбора данного стабилизатора

• Импульсный преобразователь 2: LM2575GR-ADJ. Его параметры:

Серия	LM2575
Тип устройства	DC-DC конвертер Step-Down
Конфигурация выхода	Positive
Топология	Buck
Тип выхода	Регулируемый
Количество выходов	1
Входное напряжение (Мин), В	4
Входное напряжение (Макс), В	40
Выходное напряжение (Мин/Фикс), В	1.23
Выходное напряжение (Макс), В	37
Выходной ток, А	1
Частота переключения, кГц	52
Синхронный выпрямитель	Нет
Рабочая температура, °C	-40+125
Корпус	D2PAK-5/TO-263-5
Вес, г	2.8

Рисунок 32 — Параметры стабилизатора LM2575GR-ADJ

• Импульсный преобразователь 3: LM2591HVS-ADJ. Его параметры:

Корпус	TO2635
Тип преобразователя	Buck
Входное напряжение	057 B
Выходное напряжение	1.257 B
Максимальный выходной ток	1 A
Кол-во выходов	1
Частота преобразования	110173 кГц
Рабочая температура	-40125 °C

Рисунок 33 — Параметры стабилизатора LM2591HVS-ADJ

Сравнив выбранные параметры и параметры стабилизаторов 2 и 3, делаю вывод, что данные стабилизаторы подходят.

7. Итоговая схема формирования питания с учётом выбранных компонентов

• Линейный стабилизатор 1: NCP114ASN330T1G

Рисунок 34 — Пример использования NCP114ASN330T1G

В технической документации предлагается взять $C_{\rm in}=~1~{\rm mk}\Phi.$

• Линейный стабилизатор 2: KF33BD-TR

Рисунок 35 — Пример использования KF33BD-TR

Данная схема с рассчитанными пассивными компонентами была приведена в спецификации.

• Линейный стабилизатор 3: MAX603ESA+T

Рисунок 36 — Пример использования MAX603ESA+T

Данная схема с рассчитанными пассивными компонентами была приведена в спецификации.

• Линейный стабилизатор 4: LD39015M10R

Рисунок 37 — Пример использования стабилизатора LD39015M10R

Данная схема с рассчитанными пассивными компонентами была приведена в спецификации.

• Линейный стабилизатор 5: МСР1702Т-3302Е/МВ

Рисунок 38— Пример использования стабилизатора МСР1702Т-3302Е/МВ

Данная схема с рассчитанными пассивными компонентами была приведена в спецификации.

• Импульсный преобразователь 1: LM2575HVT-5.0

Рисунок 39 — Пример использования LM2575HVT-5.0

Данная схема с рассчитанными пассивными компонентами была приведена в спецификации.

• Импульсный преобразователь 2: LM2575GR-ADJ

Рисунок 40 — Пример использования LM2575GR-ADJ

 $V_{\rm ref}=1,\!23$ В, вторым слагаемым можно пренебречь, так как значение тока на adj пине будет незначительным. Пусть $V_{\rm out}=11$ В, $R_1=2000$ Ом, подставим в уравнение и найдем R_2 .

$$11 = 1,23 \cdot \left(1 + \frac{R_2}{2000}\right)$$

$$11 = 1,23 + 1,23 \cdot \frac{R_2}{2000}$$

$$9,77 = R_2 \cdot \frac{1,23}{2000}$$

$$R_2 = 9,77 \cdot \frac{2000}{1,23} = 15886 \text{ Om}$$

Согласно ряду Е96, для R_1 и R_2 были подобраны номиналы 2 кОм и 16,2 кОм соответственно.

• Импульсный преобразователь 3: LM2591HVS-ADJ

$$V_{OUT} = V_{REF} \left(1 + \frac{R_2}{R_1} \right)$$

where V_{REF} = 1.23V

$$R_2 = R_1 \left(\frac{V_{OUT}}{V_{REF}} - 1 \right)$$

Select R_1 to be approximately 1 $k\Omega,$ use a 1% resistor for best stability.

C_{IN} —470 μF, 50V, Aluminum Electrolytic Nichicon "PL Series"

 C_{OUT} $-220~\mu\text{F}$, 35V Aluminum Electrolytic, Nichicon "PL Series"

D1 -2A, 60V Schottky Rectifier

L1 — 100 µH

R1 —1 kΩ, 1%

CFF — See Application Information Section

Рисунок 41 — Пример использования LM2591HVS-ADJ

 $V_{\rm out}=14$ B, $C_{\rm in}=470$ мкФ, $C_{\rm out}=220$ мкФ, диод 1N589, L=100 мкГн, $R_1=1$ кОм, $C_{\rm ff}=3$,3 нФ. Осталось рассчитать R_2 по формуле на рисунке выше.

$$R_2 = 1000 \cdot \left(\frac{14}{1,23} - 1\right) = 10382 \text{ Om}$$

По ряду Е96 R_2 выбран с номиналом 10,5 кОм.

Остался выход -Uoy2_Vdda. Найти импульсный преобразователь с двумя выходами, удовлетворяющий условиям моего варианта, мне не удалось, но к уже готовому выходу второго импульсного преобразователя можно подключить инвертирующий импульсный преобразователь, получив отрицательное напряжение.

• Инвертирующий импульсный преобразователь: ICL7662CBA+T

Серия	7662
Тип устройства	DC-DC конвертер Switched-Capacitor
Конфигурация выхода	Negative
Топология	Charge Pump
Тип выхода	Фиксированный
Количество выходов	1
Входное напряжение (Мин), В	4.5
Входное напряжение (Макс), В	20
Выходное напряжение (Мин/Фикс), В	-Vin
Частота переключения, кГц	10
Синхронный выпрямитель	Нет
Рабочая температура, °С	0+70
Корпус	SOIC-8(0.154")
Вес, г	0.15

Рисунок 42 — Параметры ICL7662CBA+T

Этот преобразователь подходит.

Рисунок 43 — Пример использования ICL7662CBA+T

Данная схема с рассчитанными пассивными компонентами была приведена в спецификации.

Ниже представлена итоговая схема формирования питания.

Рисунок 44 — Схема формирования питания, разработанная в САПР Altium Designer (часть 1)

Рисунок 45 — Схема формирования питания, разработанная в САПР Altium Designer (часть 2)

8. Оценка выходного тока ИП (источника питания)

$$\begin{split} P_{_{IM\Pi_{BbiX1}}} &= 3,411 \text{ BT} \\ P_{_{IM\Pi_{BbiX2}}} &= I_{_{IM\Pi_{BbiX2}}} \cdot U_{_{IM\Pi_{BbiX2}}} = 11 \cdot 0,01 = 0,11 \text{ BT} \\ P_{_{IM\Pi_{BbiX3}}} &= I_{_{IM\Pi_{BbiX3}}} \cdot U_{_{IM\Pi_{BbiX3}}} = 14 \cdot 0,01 = 0,14 \text{ BT} \\ P_{_{III}} &= P_{_{IM\Pi_{BbiX1}}} + P_{_{IM\Pi_{BbiX2}}} + P_{_{IM\Pi_{BbiX3}}} = 3,411 + 0,11 + 0,14 = 3,661 \text{ BT} \\ I_{_{III}} &= \frac{P_{_{III}}}{U_{_{RV}}} = \frac{3,661}{26} = 0,141 \text{ A} = 141 \text{ MA} \end{split}$$

Список источников

- 1. Техническая документация линейного стабилизатора LM217MDT-TR // STMicroelectronics [электронный ресурс]. URL: https://www.st.com/resource/en/datasheet/lm217m.pdf (дата обращения: 21.03.2024).
- 2. Техническая документация линейного стабилизатора KF50BDT-TR // STMicroelectronics [электронный ресурс] URL: https://www.st.com/resource/en/datasheet/kfxx.pdf (дата обращения: 21.03.2024).
- **3.** Техническая документация линейного стабилизатора NCV8711ASNADJT1G // Onsemi [электронный ресурс] URL: https://www.onsemi.com/pdf/datasheet/ncv8711-d.pdf (дата обращения: 21.03.2024).
- **4.** Техническая документация импульсного преобразователя LM2575GR-ADJ // HTC Korea [электронный ресурс] URL: https://www.htckorea.co.kr/Datasheet/Step-down/LM2575.pdf (дата обращения: 26.03.2024).
- **5.** Техническая документация импульсного преобразователя MAX5035AASA+ // chipdip [электронный ресурс] URL: https://static.chipdip.ru/lib/291/DOC012291415.pdf (дата обращения: 26.03.2024).
- **6.** Техническая документация линейного стабилизатора NCP114ASN330T1G // chipdip [электронный ресурс] URL: https://static.chipdip.ru/lib/847/DOC011847349.pdf (дата обращения: 02.04.2024).
- **7.** Техническая документация линейного стабилизатора MCP1702T-3302E/MB // chipdip [электронный ресурс] URL:

https://static.chipdip.ru/lib/363/DOC011363760.pdf (дата обращения: 02.04.2024).

- **8.** Техническая документация линейного стабилизатора KF33BD-TR // chipdip [электронный ресурс] URL: https://static.chipdip.ru/lib/972/DOC015972020.pdf (дата обращения: 02.04.2024).
- **9.** Техническая документация линейного стабилизатора LD39015M10R // chipdip [электронный ресурс] URL: https://static.chipdip.ru/lib/479/DOC011479370.pdf (дата обращения: 02.04.2024).
- **10.** Техническая документация линейного стабилизатора MAX603ESA+T // chipdip [электронный ресурс] URL: https://static.chipdip.ru/lib/316/DOC011316972.pdf (дата обращения: 02.04.2024).
- **11.** Техническая документация импульсного преобразователя LM2575HVT-5.0 // chipdip [электронный ресурс] URL: https://static.chipdip.ru/lib/990/DOC019990554.pdf (дата обращения: 04.04.2024).
- **12.** Техническая документация импульсного преобразователя LM2591HVS-ADJ // chipdip [электронный ресурс] URL: https://static.chipdip.ru/lib/071/DOC001071168.pdf (дата обращения: 04.04.2024).
- **13.** Техническая документация импульсного преобразователя ICL7662CBA+T // chipdip [электронный ресурс] URL: https://static.chipdip.ru/lib/141/DOC011141613.pdf (дата обращения: 04.04.2024).