Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 23

23 de Junio MAT1106 - Introducción al Cálculo

1) Sea X un conjunto acotado y no vacío. Muestre que el supremo de X es único.

Demostración 1. Supongamos que hay dos supremos, s_1 y s_2 . Por definición de supremo, para cada cota superior M, se cumple $s_1 \leq M$ y $s_2 \leq M$. Esto implica $s_1 \leq s_2$ y $s_2 \leq s_1$. Por propiedad vista en clase, se tiene $s_1 = s_2$, por lo que son iguales.

Por lo tanto, el supremo es único.

Demostración 2. Supongamos que hay dos supremos, s_1 y s_2 . Sin perder generalidad, $s_1 < s_2$. Por una caracterización de supremo, tenemos que como s_2 es supremo, para cada $\varepsilon > 0$ existe un $x \in X$ tal que

$$s_2 - \varepsilon < x$$
.

Como $s_2 - s_1 > 0$, usando este valor como ε implica que existe un $x \in X$ tal que $s_1 < x$. Pero s_1 es cota superior, $\rightarrow \leftarrow$.

Por lo tanto, el supremo es único.

2) Sea $A = \{x \in \mathbb{R} : x > \sqrt{2}\}$, y sea $B = \{x \in \mathbb{R} : x > \sqrt{3}\}$. Muestre que el ínfimo de $AB = \{ab : a \in A, b \in B\}$ es $\sqrt{6}$.

Demostración. Sea $a \in A$, $b \in B$. Tenemos que $a > \sqrt{2}$, $b > \sqrt{3}$. Multiplicando, se tiene que $ab > \sqrt{6}$. Esto implica que $\sqrt{6}$ es cota inferior de AB.

Consideremos $a_n = \sqrt{2} + 1/n$, $b_n = \sqrt{3} + 1/n$. Luego, $(ab)_n = \sqrt{6} + (\sqrt{2} + \sqrt{3})/n + 1/n^2$. Notar que $(ab)_n \to \sqrt{6}$ y que $(ab)_n \in AB$ para todo n. Luego, para todo $\varepsilon > 0$, existe un n_0 tal que para todo $n \ge n_0$ se cumple

$$|(ab)_n - \sqrt{6}| < \varepsilon$$

expandiendo esto, tenemos

$$\sqrt{6} - \varepsilon < (ab)_n < \sqrt{6} + \varepsilon$$

Supongamos que existe una cota inferior $i>\sqrt{6}$. Luego, $i-\sqrt{6}>0$. Usando esto como ε se tiene

$$(ab)_n < i$$
.

Pero $(ab)_n \in AB, \rightarrow \leftarrow$.

Por lo tanto, $\sqrt{6}$ es ínfimo de AB, que es lo que queríamos probar.

3) Sea A un conjunto no vacío y acotado inferiormente de números reales. Demuestre que si un número real δ es el supremo de $-A = \{-x : x \in A\}$, entonces $-\delta = \inf A$.

Demostración. Como δ es supremo de -A, tenemos que $\delta > -x$ para todo $x \in A$. Multiplicando por -1, se llega a $-\delta < x$ para todo $x \in A$. Esto implica que $-\delta$ es cota inferior. Supongamos que existe un $i > -\delta$ tal que i es cota inferior. Esto implica que para todo $x \in A$,

$$x > i > -\delta$$
.

Multiplicando por -1, se tiene

$$-x < -i < \delta$$
,

lo que implica que δ no es supremo, $\rightarrow \leftarrow$.

Por lo tanto, se tiene lo pedido.

4) Muestre que $x_n = 1 - 1/10^n$ es de Cauchy.

Demostración 1. Sea $m \ge n.$ Notar que

$$|x_m - x_n| = \left| \left(1 - \frac{1}{10^m} \right) - \left(1 - \frac{1}{10^n} \right) \right| = \left| \frac{1}{10^n} - \frac{1}{10^m} \right| = \frac{1}{10^n} - \frac{1}{10^m} < \frac{1}{10^n}$$

Sea $\varepsilon > 0$. Por arquimediana, existe un n_0 natural tal que $1/n_0 < \varepsilon$. Notar que $1/10^{n_0} < 1/n_0$. Esto implica que para todo $m \ge n \ge n_0$ se cumple

$$|x_m - x_n| < \frac{1}{10^n} \le \frac{1}{10^{n_0}} < \varepsilon$$

Por lo tanto, x_n es de Cauchy.

Demostración 2. Notar que x_n converge por álgebra de límites, por lo que es de Cauchy.

- 5) Sea x_n una sucesión de Cauchy.
 - a) Muestre que es posible encontrar una subsucesión x_{n_k} tal que para todo k natural, se cumple $|x_{n_{k+1}}-x_{n_k}|<\frac{1}{k}$.

Demostración. Como x_n es de Cauchy, existe un ψ tal que para todo $n, m \geq \psi$ se cumple

$$|x_n - x_m| < 1.$$

Definimos $n_1 = \psi$. Del mismo modo, existe un ξ tal que para todo $n, m \geq \xi$ se cumple

$$|x_n - x_m| < \frac{1}{2}$$

Definimos $n_2 = \max\{\xi, \psi + 1\}$. Notar que como $n_1, n_2 \ge \psi$, se cumple

$$|x_{n_2} - x_{n_1}| < 1.$$

Inductivamente, definimos $n_k = \max\{n_{k-1} + 1, \bigstar\}$, donde \bigstar cumple que para todo $n, m \geq \bigstar$ se tiene

$$|x_n - x_m| < \frac{1}{k}$$

(\bigstar siempre existe, ya que x_n es de Cauchy).

Notar que por construcción se tiene que para todo $n, m \geq n_k$, se cumple

$$|x_n - x_m| < \frac{1}{k}.$$

En particular, se tiene

$$|x_{n_{k+1}} - x_{n_k}| < \frac{1}{k}.$$

Por lo tanto, tenemos lo pedido.

b) Sea y_n una sucesión decreciente de reales positivos que converge a 0. Muestre que es posible encontrar una subsucesión x_{n_k} tal que para todo k natural, se cumple $|x_{n_{k+1}} - x_{n_k}| < y_k$.

Demostración. Como x_n es de Cauchy, existe un ψ tal que para todo $n, m \ge \psi$ se cumple

$$|x_n - x_m| < y_1.$$

Definimos $n_1 = \psi$. Del mismo modo, existe un ξ tal que para todo $n, m \geq \xi$ se cumple

$$|x_n - x_m| < y_2$$

Definimos $n_2 = \max\{\xi, \psi + 1\}$. Notar que como $n_1, n_2 \ge \psi$, se cumple

$$|x_{n_2} - x_{n_1}| < y_1.$$

Inductivamente, definimos $n_k = \max\{n_{k-1} + 1, \bigstar\}$, donde \bigstar cumple que para todo $n, m \geq \bigstar$ se tiene

$$|x_n - x_m| < y_k$$

(★ siempre existe, ya que x_n es de Cauchy).

Notar que por construcción se tiene que para todo $n,m \geq n_k,$ se cumple

$$|x_n - x_m| < y_k.$$

En particular, se tiene

$$|x_{n_{k+1}} - x_{n_k}| < y_k.$$

Por lo tanto, tenemos lo pedido.