

5.1 承数单调性和极值第一判别法

若在区间上 f'(x) = 0 的点仅有有限个,仍有 (1) 在 (a,b) 上 $f'(x) > 0 \Rightarrow$ 在 [a,b] 上单调增加.

(2) 在 (a,b) 上 $f'(x) \le 0 \Rightarrow$ 在 [a,b] 上单调减少.

承数在某驻点两边导数同号,则不改变承数的单调性,

△ 4/28 ♥

函数单调性判别法

那么 (1) 如果在 (a,b) 上恒有 f'(x) > 0, 则 f(x) 在 [a,b] 上单调递增.

如果在 (a,b) 上恒有 f'(x) < 0, 则 f(x) 在 [a,b] 上单调递减.

第五节・函数的单调性与曲线的凹凸性 ▶ 函数单调性和极值第一判别法 ∆ 3/28 ♥

第五节·函数的单调性与曲线的凹凸性 b 函数单调性和极值第一判别法

函数单调性判别法

设函数 f(x) 在闭区间 [a,b] 上连续,则可按照下面步骤求出函数 在各个区间的单调性:

■ 求一阶导函数 得驻点: 2 用驻点划分单调区间:

3 在每一区间用定理1判断区间单调性。

解 **1** 求驻点: $f'(x) = 6x^2 - 18x + 12 = 6(x - 1)(x - 2)$,

用驻点划分单调区间, 判断单调件:

例 1 确定函数 $f(x) = 2x^3 - 9x^2 + 12x - 3$ 的单调区间

x	$(-\infty, 1)$	1	(1, 2)	2	$(2, +\infty)$
f'(x)	+	0	-	0	+
f(x)	7	2	7	1	Z

3 故 f(x) 的单调增区间为 $(-\infty,1),(2,+\infty)$;

f(x) 的单调减区间为 (1,2).

第五节・函数的单调性与曲线的凹凸性 b 函数单调性和极值第一判别法

例 2 讨论函数 $y = x^{2/3}$ 的单调性

解

从而有两个单调区间: $(-\infty,0)$ 和 $(0,+\infty)$. 当 $x \in (-\infty, 0)$ 时, y' < 0, 函数在 $(-\infty, 0]$ 单调递减; 当 $x \in (0, +\infty)$ 时, y' > 0, 函数在 $[0, +\infty)$ 单调递增. 例3 证明当 x > 1 时, $2\sqrt{x} > 3 - \frac{1}{x}$

第五节・函数的单调性与曲线的凹凸性 ▶ 函数单调性和极值第一判别法 利用单调性来证明不等式

今 f'(x) = 0. 得 x = 1, x = 2

证明 令 $f(x) = 2\sqrt{x} - 3 + \frac{1}{x}$, $f'(x) = \frac{1}{\sqrt{x}} - \frac{1}{x^2} = \frac{x\sqrt{x}-1}{x^2}$.

因为 x > 1. 所以 x = 1 为唯一驻点.

得两个单调区间: $(-\infty, 1)$ 和 $(1, +\infty)$

当 x > 1 时, $x \in (1, +\infty)$, f'(x) > 0.

因此 f(x) 在 $(1,+\infty)$ 上单调递增.

第五节·函数的单调性与曲线的凹凸性 b 函数单调性和极值第一判别法

△ 7/28 ♥

从而当 x > 1 时, 有 f(x) > f(1) = 0, 即 $2\sqrt{x} > 3 - \frac{1}{x}$.

第五节・函数的单调性与曲线的凹凸性 b 函数单调性和极值第一判别法 Δ 8/28 ♥

极值第一判别法

定理 2 若 ξ 为连续函数 f(x) 的驻点, 且 f(x) 在 ξ 的某领去心域内可导, 当 x 从左往右通过 ξ 时:

- (1) 如果 f'左正右负, 则称 f(x) 在 ξ 取极小值;
- (2) 如果 f' 左负右正, 则称 f(x) 在 ξ 取极大值;
- (3) 如果 f'左右同号, 则称 f(x) 在 ξ 无极值.

第五节·函数的单调性与曲线的凹凸性 ▶ 函数单调性和极值第一判别法

5.2 曲线凹凸性和极值第二判别法

例 4 求函数 $f(x) = (x-1)x^{\frac{2}{3}}$ 的极值.

解

- 歌驻点: $f'(x) = x^{\frac{2}{3}} + (x-1) \cdot \frac{2}{3}x^{-\frac{1}{3}} = \frac{5x-2}{3x^{\frac{1}{3}}},$ f'(x) = 0, 得 $x_1 = \frac{2}{5}$. f'(x) 不存在. 得 $x_2 = 0$
- 2 判断导函数在驻点两则正负号:

x	$(-\infty, 0)$	0	$(0, \frac{2}{5})$	<u>2</u> 5	$(\frac{2}{5}, +\infty)$
f'(x)	+	0	-	0	+
f(x)	7	2	>	-0.33	7

•

3 极大值 f(0) = 0, 极小值 $f(\frac{2}{\epsilon}) = -0.33$.

第五节・函数的单调性与曲线的凹凸性 ▶ 函

Δ 10/28

凹凸性

定义 1 设函数 f(x) 在区间 I 上连续. 如果对任何 I 上任何两点 x_1 和 x_2 , 恒有

$$\frac{f(x_1) + f(x_2)}{2} > f\left(\frac{x_1 + x_2}{2}\right)$$

则称曲线 f(x) 在区间 I 上是凹(上凹) 的. 反之则称曲线 f(x) 在区间 I 上是凸(下凹) 的.

 (x_1+x_2) $(x_1)+f(x_2)$ $(x_1)+f(x_2)$ $(x_1)+f(x_2)$ (x_2) (x_1) (x_2) (x_2) (x_1) (x_2) (x_2) (x

凹凸性

直观观察, 任取点 x, 若 f(x) 的曲线总位于该点切线的上方, 则称曲线在区间 I 上是凹(上凹, 下凸) 的. 反之, 则称曲线在区间 I 上是凸(下凹, 上凸) 的.

第五节·函数的单调性与曲线的凹凸性 b 曲线凹凸性和极值第二判别法

例 5 自证函数 $y=x^3$ 曲线的凹凸性, 见上图

....

例 6 设函数 $y=x^2$, 在区间 $(-\infty, +\infty)$, y''=2>0, 所以函数曲 线在 $(-\infty, +\infty)$ 总是上凹.

凹凸性的判别法

定理 3 设函数 f(x) 在 [a,b] 上连续, 在 (a,b) 内有二阶导数, 那 么

- (1) 如果 $x \in (a, b)$ 时, 恒有 f''(x) > 0, 则函数的曲线在 [a, b] 上是凹的.
- (2) 如果 $x \in (a,b)$ 时, 恒有 f''(x) < 0, 则函数的曲线在 [a,b] 上是凸的.

拐点判别法

.

定义 2 若点 (c, f(c)) 上有切线,且该点左右两侧的凹凸性不同, 称该点为拐点。

注 若点 (c, f(c)) 为函数曲线的拐点, 则有

$$f''(c) = 0;$$

■ 或 f"(c) 不存在

性是否相同 (f" 是否异号).

反过来讲, 若 f''(c) 不存在, f'(c) 一定不存在, 因此 c 点有垂直切线, 根据函数曲线性质, 必为拐点. 然而当 f''(c) = 0 时, (c, f(c)) 未必是拐点. 需验证 c 点两侧凹凸

函数曲线凹凸性判别法

设函数 f(x) 在闭区间 [a,b] 上连续,则可按照下面步骤求出函数 在各个区间的凹凸性及拐点:

- 求二阶导函数,或导数不存在的点,得可疑拐点:
- 2 用可疑拐点划分单调区间:
- 在每一区间用定理3判断区间曲线凹凸性。
- 於证拐点两侧凹凸性是否相同。确认拐点。

例7 函数 $f(x) = x^3 - 3x^2 + 2$, $f'(x) = 3x^2 - 6x$.

$$f''(x) = 6x - 6.$$

当 x = 1 时, f''(x) = 0. 所以 x = 1 为可疑拐点

当 x < 1 时, f''(x) < 0, 曲线是凸的: 当 x > 1 时, f''(x) > 0, 曲线是凹的

二阶导函数为零,且两侧异号,所以 x=1 为函数曲线的拐点,

第五节・函数的单调性与曲线的凹凸性

Δ 18/28 γ

例8 函数 $f(x) = x^4$, $f'(x) = 4x^3$, $f''(x) = 12x^2 = 0$.

当 x = 0 时, f''(x) = 0, 所以 x = 0 为可疑拐点.

当 $x \le 0$ 时, f''(x) > 0, 曲线是凹的:

二阶导函数为零。但两侧同号。所以 x=0 不是函数曲线的拐点。

例 9 函数 $f(x) = x^{5/3}$, $f'(x) = \frac{5}{3}x^{2/3}$, $f''(x) = \frac{10}{9}x^{-1/3}$. 当 x = 0 时, f''(x) 不存在. 所以 x = 0 为 (可疑) 拐点.

当 x < 0 时, f''(x) < 0, 曲线是凹的: 当 x > 0 时, f''(x) > 0, 曲线是凹的

二阶导函数不存在,且两侧异号,所以 x=0 为函数曲线的拐点。

利用凸凹性来证明不等式 例 10 函数
$$f(x)=x^{1/3}, f'(x)=\frac{1}{2}x^{-2/3}, f''(x)=-\frac{2}{6}x^{-5/3}.$$

当 x = 0 时, f''(x) 不存在, 所以 x = 0 为 (可疑) 拐点,

第五节・函数的单调性与曲线的凹凸性 ▶

若函数 f'' 在点 c 的一个邻域内连续

(1) 如果 f'(c) = 0 且 f''(c) < 0. 则函数 f(x) 在点 c 取极大值:

二阶导函数不存在,且两侧异号,所以 x=0 是函数曲线的拐点,

- (2) 如果 f'(c) = 0 且 f''(c) > 0, 那么函数 f(x) 在点 c 取极小 值:
- (3) 如果 f'(c) = 0 且 f''(c) = 0. 无法判定极值.

曲线凹凸性和极值第二判别法

例 11 证明 $\frac{e^a+e^b}{3} > e^{\frac{a+b}{2}}$ $(a \neq b)$

例 11 证明
$$\frac{e+e}{2} > e^{-2}$$
 $(a \neq b)$

证明 令 $f(x) = e^x$, 因 $f''(x) = e^x > 0$, 所以曲线 $f(x) = e^x$ 在

$$(-\infty, +\infty)$$
 上是凹的.故对任意 a , $b(a \neq b)$, 有
$$f\left(\frac{a+b}{2}\right) < \frac{f(a)+f(b)}{2}$$

 $\frac{e^a + e^b}{2} > e^{\frac{a+b}{2}}$

即

例 12 求函数 $f(x) = (x^2 - 1)^3 + 1$ 的极值

解

■ 求异数:

$$f'(x) = 6x(x^2 - 1)^2$$
, $f''(x) = 6(x^2 - 1)(5x^2 - 1)$

2
$$\Rightarrow f'(x) = 0$$
. $\exists x_1 = -1, x_2 = 0, x_3 = 1$

因
$$f''(0) = 6 > 0$$
, 故 $f(0) = 0$ 为极小值;
又 $f''(-1) = f''(1) = 0$, 故需用第一判别法判别。由于 $f'(x)$ 在 $x = \pm 1$ 左右邻域内不变号,所以 $f(x)$ 在 $x = \pm 1$ 没有极值。

例 13 铁路 AB 段长为 100km. 工厂 C 距 A 处 20km. $AC \perp AB$. 要在 AB 线上洗定一点 D 向工厂修一条公路, 已知铁路与公路每 公里货运价之比为 3:5. 为使货物从 B 运到工厂 C 的运费最省. 问 D 点应如何取?

5.3 内容小结

解 设
$$AD = x(\text{km})$$
, 则 $CD = \sqrt{20^2 + x^2}$

总运费 $y = 5k\sqrt{20^2 + x^2} + 3k(100 - x)$ (0 < x < 100)

$$y' = k \left(\frac{5x}{\sqrt{400 + x^2}} - 3 \right), \quad y'' = 5k \frac{400}{(400 + x^2)^{3/2}}$$

令 y' = 0, 得 x = 15, 又 $y''|_{x=15} > 0$, 所以 5 为唯一的极小值点, 从而为最小值点, 故 AD = 15km 时运费最省。

第五节・函数的单调性与曲线的凹凸性 > 曲线凹凸性和极值第二利别法

第五节・函数的单调性与曲线的凹凸性 ▶

△ 28/28 ♥

内容小结

- 2 极值第一判别法, 定理2:
- 3 凹凸性的判别法,定理3:
- 4 极值第二判别法, 定理4.

本节完!

第五节·函数的单调性与曲线的凹凸性 ▷ 内容小结

△ 27/28 ♥

第五节・函数的单调性与曲线的凹凸性 ▶

内容小结