$$\mathbf{c}'(t) = \begin{bmatrix} dx_1/dt \\ dx_2/dt \\ \vdots \\ dx_n/dt \end{bmatrix},$$

que también puede escribirse en forma de vector como

$$(dx_1/dt,\ldots,dx_n/dt)$$
 o como $(x_1'(t),\ldots,x_n'(t)).$

Recordemos de la Sección 2.4 que $\mathbf{c}'(t)$ es el vector tangente a la trayectoria en el punto $\mathbf{c}(t)$. Recordemos también que si \mathbf{c} representa la trayectoria de una partícula en movimiento, entonces su vector velocidad es

$$\mathbf{v} = \mathbf{c}'(t),$$

y su rapidez es $s = ||\mathbf{v}||$.

El cálculo práctico de derivadas de trayectorias se simplifica si tenemos en cuenta las siguientes reglas.

Reglas de derivación Sean $\mathbf{b}(t)$ y $\mathbf{c}(t)$ trayectorias diferenciables en \mathbb{R}^3 y sean p(t) y q(t) funciones escalares diferenciables:

Regla de la suma:
$$\frac{d}{dt}[\mathbf{b}(t) + \mathbf{c}(t)] = \mathbf{b}'(t) + \mathbf{c}'(t)$$

Regla de la multiplicación por una función escalar: $\frac{d}{dt}[p(t)\mathbf{c}(t)] = p'(t)\mathbf{c}(t) + p(t)\mathbf{c}'(t)$

Regla del producto escalar:
$$\frac{d}{dt}[\mathbf{b}(t)\cdot\mathbf{c}(t)] = \mathbf{b}'(t)\cdot\mathbf{c}(t) + \mathbf{b}(t)\cdot\mathbf{c}'(t)$$

Regla del producto vectorial:
$$\frac{d}{dt}[\mathbf{b}(t) \times \mathbf{c}(t)] = \mathbf{b}'(t) \times \mathbf{c}(t) + \mathbf{b}(t) \times \mathbf{c}'(t)$$

Regla de la cadena:
$$\frac{d}{dt}[\mathbf{c}(q(t))] = q'(t)\mathbf{c}'(q(t))$$

Estas reglas se deducen inmediatamente aplicando componente a componente las fórmulas usuales de derivación de funciones escalares.

Ejemplo 1

Demostrar que si $\mathbf{c}(t)$ es una función vectorial tal que $\|\mathbf{c}(t)\|$ es constante, entonces $\mathbf{c}'(t)$ es perpendicular a $\mathbf{c}(t)$ para todo t.

Solución

Puesto que $\|\mathbf{c}(t)\|$ es constante, también lo será su cuadrado $\|\mathbf{c}(t)\|^2 = \mathbf{c}(t) \cdot \mathbf{c}(t)$. La derivada de dicha constante es cero, de modo que aplicando la regla de la derivada del producto escalar de dos funciones vectoriales,

$$0 = \frac{d}{dt}[\mathbf{c}(t) \cdot \mathbf{c}(t)] = \mathbf{c}'(t) \cdot \mathbf{c}(t) + \mathbf{c}(t) \cdot \mathbf{c}'(t) = 2\mathbf{c}(t) \cdot \mathbf{c}'(t);$$

por tanto, $\mathbf{c}(t) \cdot \mathbf{c}'(t) = 0$; es decir, $\mathbf{c}'(t)$ es perpendicular a $\mathbf{c}(t)$.