Devoir facultatif n° 5

On appelle $\mathscr{A} = \mathbb{C}^{\mathbb{N}^*}$ l'ensemble des fonctions de \mathbb{N}^* dans \mathbb{C} (ensemble des fonctions arithmétiques).

Pour tout entier n non nul, on note $\mathcal{D}^+(n)$ l'ensemble des diviseurs positifs de n:

$$\mathscr{D}^+(n) = \{ d \in \mathbb{N}^* , d \mid n \}.$$

Si $f,g\in\mathscr{A}$, on définit la fonction $f*g:\mathbb{N}^*\to\mathbb{C}$ par :

$$\forall n \in \mathbb{N}^*, \ (f * g)(n) = \sum_{d \in \mathcal{D}^+(n)} f(d)g\left(\frac{n}{d}\right).$$

On pourra remarquer que

$$\forall n \in \mathbb{N}^*, \ (f * g)(n) = \sum_{a,b \in \mathbb{N}^*, \ ab=n} f(a)g(b).$$

Cette opération * est appelée convolution de Dirichlet et définit naturellement une loi de composition interne sur \mathscr{A} .

On définit deux éléments δ et $\mathbf 1$ de $\mathscr A$ par :

$$\forall n \in \mathbb{N}^*, \ \delta(n) = \begin{cases} 1 & \text{si } n = 1 \\ 0 & \text{sinon} \end{cases}$$

et

$$\forall n \in \mathbb{N}^*, \ \mathbf{1}(n) = 1.$$

I - Structure de $(\mathscr{A}, +, *)$.

- 1) Justifier que * est associative sur \mathscr{A} .
- 2) La loi * est-elle commutative sur \mathscr{A} ?
- 3) Montrer que δ est un élément neutre pour * dans \mathscr{A} .
- 4) Soit $f \in \mathscr{A}$ vérifiant f(1) = 0. Cet élément f est-il inversible? Est-ce que $(\mathscr{A}, *)$ possède une structure de groupe?
- 5) La réciproque du résultat précédent est-elle vraie?
- **6)** Montrer que $(\mathscr{A}, +, *)$ a une structure d'anneau.
- 7) Cet anneau est-il intègre?

II - Fonction et formule d'inversion de Möbius.

On définit l'élément μ de $\mathscr A$ (fonction de Möbius) de la manière suivante : pour tout $n\in\mathbb N^*$:

- si n est divisible par le carré d'un nombre premier, $\mu(n) = 0$;
- si n s'écrit comme le produit de k nombres premiers distincts, $\mu(n) = (-1)^k$.
- 8) Soit I un ensemble fini. Justifier que I possède autant de parties paires que de parties impaires.

Remarque : on se rappellera que si $0 \le k \le n$, tout ensemble fini contenant n éléments possède exactement $\binom{n}{k}$ parties ayant k éléments.

9) En déduire que pour tout $n \in \mathbb{N}^*$ différent de 1 :

$$\sum_{d \in \mathscr{D}^+(n)} \mu(d) = 0.$$

- 10) Comment peut-on réécrire le résultat précédent, en fonction de 1 et au regard des objets introduits dans la première partie?
- 11) En déduire la formule d'inversion de Möbius : pour tout $f, g \in \mathcal{A}$,

$$\left(\forall n \in \mathbb{N}^*, \ g(n) = \sum_{d \in \mathscr{D}^+(n)} f(d)\right) \Leftrightarrow \left(\forall n \in \mathbb{N}^*, \ f(n) = \sum_{d \in \mathscr{D}^+(n)} g(d) \mu\left(\frac{n}{d}\right)\right).$$

III - Une application.

Soit $n \in \mathbb{N}^*$. On note $\omega = e^{\frac{2i\pi}{n}}$ et on rappelle que

$$\mathbb{U}_n = \left\{ \omega^k, \ 0 \leqslant k \leqslant n - 1 \right\}.$$

Si $z \in \mathbb{U}_n$, on appelle ordre de z le plus petit entier $d \geqslant 1$ tel que $z^d = 1$.

Si $d \ge 1$, on note $\varphi(d)$ le nombre d'entiers de [1, d] premiers avec d:

$$\varphi(d)=\operatorname{Card}\left\{k\in [\![1,d]\!],\ k\wedge d=1\right\}.$$

- 12) Soit $z \in \mathbb{U}_n$, montrer que l'ordre de z est bien défini, et qu'il divise n.
- 13) Soit $d \in [1, n-1]$ tel que d|n. Montrer qu'il y a exactement $\varphi(d)$ éléments d'ordre d dans \mathbb{U}_n .

Indication : avec $e \in [1, n-1]$ tel que d.e = n, considérer ω^e .

14) En déduire que pour tout $n \ge 1$, $\varphi(n) = \sum_{\substack{a,b \in \mathbb{N}^* \\ ab=n}} a\mu(b)$.

— FIN —