Bài toán logarit rời rạc và Diffie-Hellman

Nội dung

- Bài toán Logarit rời rạc
- Bài toán Diffie-Hellman

Định nghĩa Nhóm

Một nhóm Abel (G,\cdot) thoả mãn các tính chất sau:

- 1. Có phần tử đơn vị: $1 \in G$ thoả mãn $\forall a \in G, \ a \cdot 1 = 1 \cdot a = a$
- 2. Mọi phần tử đều khả nghịch: $\forall a \in G, \exists b \in G \text{ thoả mãn } a \cdot b = 1$
- 3. Kết hợp: $\forall a, b, c \in G$ ta có $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 4. Giao hoán: $\forall a, b \in G$ ta có $a \cdot b = b \cdot a$

Cấp của một phần tử trong nhóm

• Cấp của phần tử a, ký hiệu ord(a), là số u>0 nhỏ nhất thoả mãn $a^u=1\in G$.

• Định lý Lagrange: Trong nhóm hữu hạn G với lực lượng t, ta có $\forall a \in G$, $\operatorname{ord}(a) \mid t$.

• **Hệ quả:** Trong nhóm hữu hạn G với lực lượng t, ta có $\forall a \in G$, $a^t = 1$.

• Ký hiệu: $\langle a \rangle = \{a^i \mid i \geq 0\}$ là nhóm con sinh bởi a.

Nhóm vòng

• Ký hiệu $\langle a \rangle = \{a^i \mid i \geq 0\}$ là nhóm con sinh bởi a.

• Nếu $\langle a \rangle = G$ thì a là một phần tử sinh của G.

• Khẳng định: $|\langle a \rangle| = \operatorname{ord}(a)$.

• Định nghĩa: G là nhóm vòng nếu có g thoả mãn $\langle g \rangle = G$

Hàm logarit rời rạc và hàm mũ

• Khẳng định: Nếu G là nhóm vòng cấp t và g là phần tử sinh, thì quan hệ

$$x\leftrightarrow g^x$$
 là 1-to-1 giữa $\{0,1,\dots,t-1\}$ và G .

• Hàm mũ

$$x \rightarrow g^x$$

Hàm logarit rời rạc g^x → x

Tính ngẫu nhiên của lũy thừa 627^x (mod 941)

Bài toán Logarit rời rạc

- Xét g là một phần tử sinh của \mathbb{Z}_p^* và $h \in \mathbb{Z}_p^*$.
- Bài toán Logarit rời rạc (DLP) là bài toán tìm một số mũ x thỏa mãn $g^x \equiv h \bmod p$.
- Số x được gọi là logarit rời rạc cơ sở g của h và ký hiệu $\mathsf{Dlog}_g(h)$.

Bài tập

Hãy tính các logarit rời rạc sau.

- 1. $Dlog_2(13)$ trong modun nguyên tố 23
- 2. $D\log_{10}(22)$ trong modun nguyên tố p=47.
- 3. $D\log_{627}(608)$ trong modun nguyên tố p = 941.

Tính Logarit rời rạc

- Xét số nguyên tố p=56509, và ta có thể kiểm tra g=2 là một căn nguyên thủy modun p.
- Làm thế nào để tính $log_2(38679)$?
- Một phương pháp là tính

 2^0 , 2^1 , 2^2 , 2^3 , \cdots mod 56509 cho đến khi được lũy thừa bằng 38679.

• Bạn có thể kiểm tra rằng $2^{11235} \equiv 38679 \mod 56509$.

Nội dung

- Bài toán Logarit rời rạc
- Bài toán Diffie-Hellman

Bài tập

Hãy tính hai giá trị sau trong \mathbb{Z}_{13}^* .

- $DH_7(10,5)$
- $DH_2(12,9)$

biết rằng

$$\langle 2 \rangle = \{1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7\}$$

$$\langle 7 \rangle = \{1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2\}$$

$$DH_g(g^a, g^b) = g^{ab} \pmod{p}$$

Nhắc lại: Giao thức Diffie-Hellman (1977)

Xét nhóm vòng G (e.g $G = (Z_p)^*$) với cấp n Lấy một phần tử sinh g thuộc G (i.e. $G = \{1, g, g^2, g^3, ..., g^{n-1}\}$)

Alice

Chọn ngẫu nhiên **a** in {1,...,n}

Bob

Chọn ngẫu nhiên **b** trong {1,...,n}

$$A = g^a$$

$$B = g^b$$

$$\mathbf{B}^{\mathsf{a}} = \left(\mathsf{g}^{\mathsf{b}} \right)^{\mathsf{a}} =$$

$$k_{AB} = g^{ab}$$
 = $(g^a)^b$ = A^b

Bài tập

- Alice và Bob dùng số nguyên tố p=1373 và cơ sở g=2 để trao đổi khóa.
- Alice gửi Bob giá trị A = 974.
- Bob chọn số bí mật b=871.
- Bob nên gửi cho Alice giá trị gì, và khóa bí mật họ chia sẻ là gì?
- Bạn có thể đoán được số bí mật a của Alice không?

Một câu hỏi mở

• Nếu ta có thể giải bài toán Logarit rời rạc, vậy ta có thể giải bài toán Diffie-Hellman. Tại sao?

 Nhưng nếu ta có thể giải được bài toán Diffie-Hellman, vậy liệu ta có thể giải được bài toán logarit rời rạc không?

Một số nhóm hay được dùng

- Nhóm $\mathbb{Z}_p^* = \{1, ..., p-1\}$ với p nguyên tố
- Nhóm thặng dư bình phương $\mathbb{Q}_p = \{a^2 \mid a \in \mathbb{Z}_p^*\}$
- Nhóm $\mathbb{Z}_n^*=\{a\in\{1,\dots,n-1\}\mid \gcd(a,n)=1\}.$ Hệ RSA sử dụng \mathbb{Z}_{pq} với p,q là các số nguyên tố ngẫu nhiên lớn.
- Nhóm $\mathbb{Q}_n = \{a^2 \mid a \in \mathbb{Z}_n^*\}$
- Nhóm điểm trên đường cong Elliptic