1) Importing the Required Libraries

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline import warnings warnings.filterwarnings('ignore')

2) Read the data and Explore it

Titanic = pd.read_csv("/content/Titanic.csv")
Survival= pd.read_csv("/content/Survival.csv")
Titanic.describe(include="all")

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	
count	891.000000	891.000000	891.000000	891	891	714.000000	891.000000	891.
unique	NaN	NaN	NaN	891	2	NaN	NaN	
top	NaN	NaN	NaN	Braund, Mr. Owen Harris	male	NaN	NaN	
freq	NaN	NaN	NaN	1	577	NaN	NaN	
mean	446.000000	0.383838	2.308642	NaN	NaN	29.699118	0.523008	0.
std	257.353842	0.486592	0.836071	NaN	NaN	14.526497	1.102743	0.
min	1.000000	0.000000	1.000000	NaN	NaN	0.420000	0.000000	0.0
25%	223.500000	0.000000	2.000000	NaN	NaN	20.125000	0.000000	0.0
50%	446.000000	0.000000	3.000000	NaN	NaN	28.000000	0.000000	0.0
75%	668.500000	1.000000	3.000000	NaN	NaN	38.000000	1.000000	0.

3) Analyzing the Data

print(Titanic.columns)

```
Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
    'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
    dtype='object')
```

С→

•	PassengerId		Survived	Pclass	Name	Sex	Age	SibSp	
	count	891.000000	891.000000	891.000000	891	891	714.000000	891.000000	891.
	unique	NaN	NaN	NaN	891	2	NaN	NaN	
	top	NaN	NaN	NaN	Braund, Mr. Owen Harris	male	NaN	NaN	
	freq	NaN	NaN	NaN	1	577	NaN	NaN	
	mean	446.000000	0.383838	2.308642	NaN	NaN	29.699118	0.523008	0.
	std	257.353842	0.486592	0.836071	NaN	NaN	14.526497	1.102743	0.
	min	1.000000	0.000000	1.000000	NaN	NaN	0.420000	0.000000	0.1
	25%	223.500000	0.000000	2.000000	NaN	NaN	20.125000	0.000000	0.1
	50%	446.000000	0.000000	3.000000	NaN	NaN	28.000000	0.000000	0.1
	4								•

print(pd.isnull(Titanic).sum())

PassengerId Survived 0 **Pclass** 0 Name 0 Sex Age 177 SibSp Parch Ticket Fare Cabin 687 Embarked dtype: int64

4) Data Visualization

Sex Feature

sns.barplot(x="Sex", y="Survived", data=Titanic)
print("Female Percentage who have Survived:",Titanic["Survived"][Titanic["Sex"] == 'female'].value_counts(normalize = print("Male Percentage who have Survived:", Titanic["Survived"][Titanic["Sex"] == 'male'].value_counts(normalize = Tru print("Chance For Female is More Than Male")
print("Female>Male")

Female Percentage who have Survived: 74.20382165605095 Male Percentage who have Survived: 18.890814558058924 Chance For Female is More Than Male

Pclass Feature

sns.barplot(x="Pclass", y="Survived", data=Titanic)
print("Pclass =1 Percentage who survived:", Titanic["Survived"][Titanic["Pclass"] == 1].value_counts(normalize = True)[1
print("Pclass =2 Percentage who survived:", Titanic["Survived"][Titanic["Pclass"] == 2].value_counts(normalize = True)[
print("Pclass =3 Percentage who survived:", Titanic["Survived"][Titanic["Pclass"] == 3].value_counts(normalize = True)[
print("P1>P2>P3")

Pclass =1 Percentage who survived: 62.96296296296296 Pclass =2 Percentage who survived: 47.28260869565217 Pclass =3 Percentage who survived: 24.236252545824847 P1>P2>P3

SibSp Feature

sns.barplot(x="SibSp", y="Survived", data=Titanic)
print("SibSp = o Percentage who survived:", Titanic["Survived"][Titanic["SibSp"] == o].value_counts(normalize = True)[
print("SibSp = 1 Percentage who survived:", Titanic["Survived"][Titanic["SibSp"] == 1].value_counts(normalize = True)[1]

 $print("SibSp = 2 Percentage who survived:", Titanic["Survived"][Titanic["SibSp"] == 2].value_counts(normalize = True)[print("SibSp(o)<(SibSp(1)&SibSp(2))")]$

SibSp = 0 Percentage who survived: 34.53947368421053 SibSp = 1 Percentage who survived: 53.588516746411486 SibSp = 2 Percentage who survived: 46.42857142857143 SibSp(0)<(SibSp(1)&SibSp(2))

Age Feature

Titanic["Age"] = Titanic["Age"].fillna(-o.5)

Survival["Age"] = Survival["Age"].fillna(-o.5)

bins = [-1, 0, 5, 12, 18, 24, 35, 60, np.inf]

labels = ['Unknown', 'Baby', 'Child', 'Teenager', 'Student', 'Young Adult', 'Adult', 'Senior']

Titanic['AgeGroup'] = pd.cut(Titanic["Age"], bins, labels = labels)

Survival['AgeGroup'] = pd.cut(Survival["Age"], bins, labels = labels)

sns.barplot(x="AgeGroup", y="Survived", data=Titanic)
plt.show()

5) Cleaning Data

Titanic.describe(include="all")

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	
count	891.000000	891.000000	891.000000	891	891	891.000000	891.000000	891.
unique	NaN	NaN	NaN	891	2	NaN	NaN	
top	NaN	NaN	NaN	Braund, Mr. Owen Harris	male	NaN	NaN	
freq	NaN	NaN	NaN	1	577	NaN	NaN	
mean	446.000000	0.383838	2.308642	NaN	NaN	23.699966	0.523008	0.
std	257.353842	0.486592	0.836071	NaN	NaN	17.731181	1.102743	0.
min	1.000000	0.000000	1.000000	NaN	NaN	-0.500000	0.000000	0.
25%	223.500000	0.000000	2.000000	NaN	NaN	6.000000	0.000000	0.
50%	446.000000	0.000000	3.000000	NaN	NaN	24.000000	0.000000	0.
75%	668.500000	1.000000	3.000000	NaN	NaN	35.000000	1.000000	0.1

Droping Cabin Feature

Titanic = Titanic.drop(['Cabin'], axis = 1) Survival = Survival.drop(['Cabin'], axis = 1)

Droping Ticket Feature

Titanic = Titanic.drop(['Ticket'], axis = 1) Survival = Survival.drop(['Ticket'], axis = 1)

Age Feature

combine = [Titanic,Survival]

for dataset in combine:

 $dataset['Title'] = dataset.Name.str.extract('([A-Za-z]+)\.', expand=False)$

pd.crosstab(Titanic['Title'], Titanic['Sex'])

Sex	female	male
Title		
Capt	0	1
Col	0	2
Countess	1	0
Don	0	1
Dr	1	6
Jonkheer	0	1
Lady	1	0
Major	0	2
Master	0	40
Miss	182	0
Mlle	2	0
Mme	1	0
Mr	0	517
Mrs	125	0
Ms	1	0
Rev	0	6
Sir	0	1

for dataset in combine:

dataset['Title'] = dataset['Title'].replace(['Lady', 'Capt', 'Col',

'Don', 'Dr', 'Major', 'Rev', 'Jonkheer', 'Dona'], 'Rare')

dataset['Title'] = dataset['Title'].replace(['Countess', 'Lady', 'Sir'], 'Royal')

dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')

dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')

dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')

Titanic[['Title', 'Survived']].groupby(['Title'], as_index=False).mean()

		Title	Survived	
	0	Master	0.575000	
	1	Miss	0.702703	
	2	Mr	0.156673	
	3	Mrs	0.793651	
for data	aset set[in combir 'Title'] = d	ne:	2, "Mrs": 3, "Master": 4, "Royal": 5, "Rare": 6}].map(title_mapping)].fillna(o)

Titanic.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Fare	Embark
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs	female	38.0	1	0	71.2833	

Predicting the missing age values

```
mr_age = Titanic[Titanic["Title"] == 1]["AgeGroup"].mode()
miss_age = Titanic[Titanic["Title"] == 2]["AgeGroup"].mode()
mrs_age = Titanic[Titanic["Title"] == 3]["AgeGroup"].mode()
master_age = Titanic[Titanic["Title"] == 4]["AgeGroup"].mode()
royal_age = Titanic[Titanic["Title"] == 5]["AgeGroup"].mode()
rare_age = Titanic[Titanic["Title"] == 6]["AgeGroup"].mode()
age_title_mapping = {1: "Young Adult", 2: "Student", 3: "Adult", 4: "Baby", 5: "Adult", 6: "Adult"}
for x in range(len(Titanic["AgeGroup"])):
    if Titanic["AgeGroup"][x] == "Unknown":
        Titanic["AgeGroup"][x] = age_title_mapping[Titanic["Title"][x]]
```

for x in range(len(Survival["AgeGroup"])):

```
if Survival["AgeGroup"][x] == "Unknown":
    Survival["AgeGroup"][x] = age title mapping[Survival["Title"][x]]
```

```
age_mapping = {'Baby': 1, 'Child': 2, 'Teenager': 3, 'Student': 4, 'Young Adult': 5, 'Adult': 6, 'Senior': 7}
Titanic['AgeGroup'] = Titanic['AgeGroup'].map(age_mapping)
Survival['AgeGroup'] = Survival['AgeGroup'].map(age_mapping)
```

Titanic.head()
#Droping age just for now
Titanic = Titanic.drop(['Age'], axis = 1)
Survival = Survival.drop(['Age'], axis = 1)

Droping Name

Titanic = Titanic.drop(['Name'], axis = 1) Survival = Survival.drop(['Name'], axis = 1)

Sex Feature

```
sex_mapping = {"male": 0, "female": 1}
Titanic['Sex'] = Titanic['Sex'].map(sex_mapping)
Survival['Sex'] = Survival['Sex'].map(sex_mapping)
```

Titanic.head()

	PassengerId	Survived	Pclass	Sex	SibSp	Parch	Fare	Embarked	AgeGroup	CabinB
0	1	0	3	0	1	0	7.2500	S	4.0	
1	2	1	1	1	1	0	71.2833	С	6.0	
2	3	1	3	1	0	0	7.9250	S	5.0	
3	4	1	1	1	1	0	53.1000	S	5.0	
4	5	0	3	0	0	0	8.0500	S	5.0	

```
embarked_mapping = {"S": 1, "C": 2, "Q": 3}
Titanic['Embarked'] = Titanic['Embarked'].map(embarked_mapping)
Survival['Embarked'] = Survival['Embarked'].map(embarked_mapping)
```

Droping Fare Values

Titanic = Titanic.drop(['Fare'], axis = 1)

Survival = Survival.drop(['Fare'], axis = 1)

Titanic.head()

	PassengerId	Survived	Pclass	Sex	SibSp	Parch	Embarked	AgeGroup	CabinBool	Title
0	1	0	3	0	1	0	1	4.0	0	1
1	2	1	1	1	1	0	2	6.0	1	3
2	3	1	3	1	0	0	1	5.0	0	2
3	4	1	1	1	1	0	1	5.0	1	3
4	5	0	3	0	0	0	1	5.0	0	1

Survival.head()

	PassengerId	Pclass	Sex	SibSp	Parch	Embarked	AgeGroup	CabinBool	Title
0	892	3	0	0	0	3	5.0	0	1
1	893	3	1	1	0	1	6.0	0	3
2	894	2	0	0	0	3	7.0	0	1
3	895	3	0	0	0	1	5.0	0	1
4	896	3	1	1	1	1	4.0	0	3

Splitting the data we got

from sklearn.model_selection import train_test_split

```
predictors = Titanic.drop(['Survived', 'PassengerId'], axis=1)
target = Titanic["Survived"]
x_train, x_val, y_train, y_val = train_test_split(predictors, target, test_size = 0.22, random_state = 0)
```

BY LOGISTIC REGRESSION MODEL

from sklearn.linear_model import LogisticRegression

```
logreg = LogisticRegression()
logreg.fit(x_train, y_train)
y_pred = logreg.predict(x_val)
acc_logreg = accuracy_score(y_pred, y_val)
print(acc_logreg)
print("In Percentage:")
```

acc_logreg = round(accuracy_score(y_pred, y_val) * 100,4)
print(acc_logreg)

o.8071065989847716 In Percentage: 80.7107

Colab paid products - Cancel contracts here

×