

Sequential mixed-integer dynamic optimization for integrated design and control

M. Alizadeh

M. Ramezani

Supervisor:

Dr. Sahlodin

Summer 2022

Superstructure¹

Fig1. Superstructure of processing alternatives¹

Optimization Problem(cont'd)

$$\min \frac{1}{\mathsf{t}_{\mathsf{f}}} \left(\int_{0}^{\mathsf{t}_{\mathsf{f}}} \left(\, \mathsf{T}_{2}^{\mathsf{sp}} - \mathsf{T}_{2} \right)^{2} dt + \int_{0}^{\mathsf{t}_{\mathsf{f}}} \left(\, \mathsf{T}_{1}^{\mathsf{sp}} - \mathsf{T}_{1} \right)^{2} dt \right)$$

-10% Step change for Setpoints

$$C_f = C_f^{\text{nominal}} + \alpha_d(e^{-\lambda t} - 1)$$

$$T_{c1}^{in} = T_{cf}y_c + (1 - y_c)T_{c2}$$

$$T_{c2}^{in} = T_{c1}y_c + (1 - y_c)T_{cf}$$

$$Q_{c} = Q_{c}^{bias} - (1 - y_{i})(K_{p_{1}}P_{1} + K_{i_{1}}I_{1}) - y_{i} \times (K_{p_{2}}P_{2} + K_{i_{2}}I_{2})$$

$$T_f = T_f^{bias} + y_i \times (K_{p_1}P_1 + K_{i_1}I_1) + (1 - y_i)(K_{p_2}P_2 + K_{i_2}I_2)$$

Mass and Energy Equations

$$I_1 = \int P_1 dt$$

$$I_2 = \int P_2 dt$$

Processing constraints

Optimization Problem(cont'd)

$$\min \frac{1}{\mathsf{t}_{\mathsf{f}}} \left(\int_{0}^{\mathsf{t}_{\mathsf{f}}} \left(\, \mathsf{T}_{2}^{\mathsf{sp}} - \mathsf{T}_{2} \right)^{2} dt + \int_{0}^{\mathsf{t}_{\mathsf{f}}} \left(\, \mathsf{T}_{1}^{\mathsf{sp}} - \mathsf{T}_{1} \right)^{2} dt \right)$$

-10% Step change for Setpoints

$$C_f = C_f^{\text{nominal}} + \alpha_d(e^{-\lambda t} - 1)$$

$$T_{c1}^{in} = T_{cf}y_c + (1 - y_c)T_{c2}$$

$$T_{c2}^{in} = T_{c1}y_c + (1 - y_c)T_{cf}$$

$$Q_c = Q_c^{bias} - (1 - y_i)(K_{p_1}P_1 + K_{i_1}I_1) - y_i \times (K_{p_2}P_2 + K_{i_2}I_2)$$

$$T_f = T_f^{bias} + y_i \times (K_{p_1}P_1 + K_{i_1}I_1) + (1 - y_i)(K_{p_2}P_2 + K_{i_2}I_2)$$

Mass and Energy Equations

$$I_1 = \int P_1 dt$$

$$I_2 = \int P_2 dt$$

Processing constraints

$$\begin{split} \frac{dc_1}{dt} &= \frac{C_f - C_1}{\theta} + r_{A1} \\ \frac{dT_1}{dt} &= \frac{T_f - T_1}{\theta} + \beta r_{A1} - \alpha (T_1 - T_{c_1}) \\ \frac{dc_2}{dt} &= \frac{C_1 - C_2}{\theta} + r_{A2} \\ \frac{dT_2}{dt} &= \frac{T_1 - T_2}{\theta} + \beta r_{A2} - \alpha (T_2 - T_{c_2}) \\ \frac{dT_1}{dt} &= \frac{Q_c (T_{c1}^{in} - T_{c1})}{V_c} + \alpha (T_1 - T_{c_1}) \\ \frac{dT_2}{dt} &= \frac{Q_c (T_{c2}^{in} - T_{c2})}{V_c} + \alpha (T_2 - T_{c_2}) \end{split}$$

Optimization Problem

$$\min \frac{1}{\mathsf{t}_{\mathsf{f}}} \left(\int_{0}^{\mathsf{t}_{\mathsf{f}}} \left(\, \mathsf{T}_{2}^{\mathsf{sp}} - \mathsf{T}_{2} \right)^{2} dt + \int_{0}^{\mathsf{t}_{\mathsf{f}}} \left(\, \mathsf{T}_{1}^{\mathsf{sp}} - \mathsf{T}_{1} \right)^{2} dt \right)$$

-10% Step change for Setpoints

$$C_f = C_f^{\text{nominal}} + \alpha_d (e^{-\lambda t} - 1)$$

$$T_{c1}^{in} = T_{cf}y_c + (1 - y_c)T_{c2}$$

$$T_{c2}^{in} = T_{c1}y_c + (1 - y_c)T_{cf}$$

$$Q_c = Q_c^{bias} - (1 - y_i)(K_{p_1}P_1 + K_{i_1}I_1) - y_i \times (K_{p_2}P_2 + K_{i_2}I_2)$$

$$T_f = T_f^{bias} + y_i \times (K_{p_1}P_1 + K_{i_1}I_1) + (1 - y_i)(K_{p_2}P_2 + K_{i_2}I_2)$$

Mass and Energy Equations

$$I_1 = \int P_1 dt$$

$$I_2 = \int P_2 dt$$

Processing constraints

$$\int \max(0, T_F - 60) dt \le tol$$

$$\int \max(0, -(\mathbf{T}_{\mathbf{F}}))dt \le tol$$

$$\int \max(0, Q_{c} - 8) dt \le tol$$

$$\int \max(0, -\mathbf{Q}_{c}) dt \le tol$$

Single shooting method (sequential)

Optimum parameters

yi=1

$$V_1 = 1079.996$$

$$V_2 = 720.000$$

$$K_{c1} = 1.32260$$

$$K_{i1} = 0.0036670$$

$$K_{c2} = 0.3321133$$

$$K_{i2} = 0.0004051$$

Counter-Current flow

$$(T_2-Q_c) (T_1,T_f)$$

Simulation

Fig2. C1 vs Time

Fig2. T1 vs Time

Fig3. C2 vs Time

Fig4. T2 vs Time

Fig5. Tc1 vs Time

Fig6. Tc2 vs Time

Fig8. Qc vs Time

Setpoint Kick issue!

7.5 7 8 6.5 6 5.5 0 500 1000 1500 2000 2500 3000 time

Fig7. Tf vs Time

Fig8. Qc vs Time

$$u_{MV} = u_{MV}^{steady} + \left(K_{p_1} (Y_{CV}^{sp} - Y_{CV}) + K_{i_1} \int (Y_{CV}^{sp} - Y_{CV}) dt \right)$$

$$u_{MV} = u_{MV}^{steady} + \left(K_{p_1} (Y_{CV}^{sp} - Y_{CV}) + K_{i_1} \int (Y_{CV}^{sp} - Y_{CV}) dt \right)$$

9

usteady MV

t=0

$$u_{MV} = u_{MV}^{steady} + \left(K_{p_1} (Y_{CV}^{sp} - Y_{CV}) + K_{i_1} \int (Y_{CV}^{sp} - Y_{CV}) dt \right)$$

Fig9. schematic of the discontinuity at the initial time

$$u_{MV} = u_{MV}^{steady} + \left(K_{p_1} (Y_{CV}^{sp} - Y_{CV}) + K_{i_1} \int (Y_{CV}^{sp} - Y_{CV}) dt \right)$$

Before setpoint change:

$$Y_{CV}^{sp1} = Y_{CV}(t=0) = Y_{CV}^{steady}$$

After setpoint change:

$$Y_{CV}^{sp2} \neq Y_{CV}^{steady}$$

Proposed Solution:

$$(u_{MV}^{\text{steady}} - u_{MV}(t=0))^2 \le tol$$

Fig9. schematic of the discontinuity at the initial time

Corrected optimum parameters

$$V_1 = 938.894$$

$$V_2 = 720.2794$$

$$K_{c1} = 0.0002030$$

$$K_{i1} = 2.9940214e-10$$

$$K_{c2} = 0.00018071$$

$$K_{i2} = 2.8542763e-06$$

Counter-Current flow

$$(T_2-Q_c) (T_1,T_f)$$

Fig9. schematic of the discontinuity at the initial time