Data Science for Civil Engineering

Gradient Descent Method and Newtown's Method

Jintao Ke

Department of Civil Engineering
Faculty of Engineering
The University of Hong Kong, Pokfulam, Hong Kong
Email: kejintao@hku.hk

Table of Contents

Gradient Descent

Newton's Method

Optimization Problems

To obtain the minimum value of a problem is to find x^* , s.t.

$$f(\mathbf{x}) > f(\mathbf{x}^*), \forall \mathbf{x} \in \Omega^n.$$

- For solving global minima/maxima for convex functions¹
- For solving local minima/maxima for non-convex functions

¹A convex function f(x) is that $\mu f(x_1) + (1-\mu)f(x_2) \ge f(\mu x_1 + (1-\mu)x_2)$, $\forall x_1, x_2 \in \Omega$.

Update rules

$$\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i - \eta \nabla f(\mathbf{x}_i), i = 1, \dots, n$$
 (1)

- where η is the learning rate to control the speed of gradient descent.
- • ∇ denote the gradient operator. Note that gradient always points to the direction that the function value increases.

• Step 1, initialization

- Step 2, obtain gradient. Note that gradient always points to the direction that the function value increases.
- Step 3, update

obtain new gradient, update

• repeat until "close" to minimum

Summary

- Iterative. 1) random initialization 2) obtain gradient 3) update value according to gradient and learning rate 4) repeat until close to minima.
- The update direction is opposite to the gradient. That's why it is called gradient DESCENT.
- Different learning rate may result different descent speed.

Gradient Descent - Multi-variable

Consider function f(x, y).

The gradient of a multi-variable function, $f(\cdot)$, is represented as $\nabla f(\cdot)$. In 2-variable case,

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix} \quad (2)$$

Gradient Descent - Multi-variable

Consider function f(x, y).

Gradient Descent - Multi-variable - Example

Consider function $f(x,y)=(x-2)^2+(y-2)^2,$ $x,y\in\mathbb{R}.$ Denote $x_{(i)}$ and $y_{(i)}$ the i^{th} iteration result.

Random Initialization

$$x_0 = 1, y_0 = 1$$
. Learning rate $\eta = 0.1$

Obtain gradient

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x-4 \\ 2y-4 \end{bmatrix}. \text{ Then } \nabla f(x_0,y_0) = \begin{bmatrix} -2 \\ -2 \end{bmatrix}.$$

Update value according to gradient and learning rate

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} - \eta \times \nabla f(x,y) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 0.1 \times \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 1.2 \\ 1.2 \end{bmatrix}.$$

Repeat the above steps.

• Suppose we are solving an optimization problem

$$\min g(x) \tag{3}$$

- The optimal solution x^* should satisfy $g'(x^*) = 0$.
- Then the question becomes: how to find x^* such that $g'(x^*) = 0$?
- In other words, how to obtain one zero point of a differentiable function numerically?
- Newton's method could be useful.

• Let f(x) = g'(x), then we try using Newton's method to find the point x^* that satisfies $f(x^*) = g'(x^*) = 0$

• Step 1, random initialization

• Step 2, take the derivative, obtain the zero point of the tangent line

• Step 3, get the new value, which is the function value of the corresponding zero point

• Step 4, repeat: take the derivative again and obtain the new tangent line and zero point.

Summary

- Iterative. 1) random initialization 2) derivative, get zero point of the tangent line 3) get new value 4) repeat until "close" to the zero.
- Fast. And no pre-specified learning rate needed.
- Can only solve for one zero. Different initials may result to different zeros.