Assignment Project Exam Help

https://powcoder.com

New York University Center for Data Science

Add We (ug 1st 2), 12030 we coder Acknowledgement: Slides including material from DS-US 201 Fall 2021 offered by Marco Morucci.

Recall

So far we have studied selection-on-observables designs. These Project Exam Help $Y_i(d) \perp D_i \mid X_i \dots$

ightharpoonup ...and X_i is observed **in full**.

https://powcoder.com Starting with today we will be looking at settings in which X_i is not fully observed

- We have seen that we often incur in omitted variable bias in such catches we construct powcoder
- However we will see that if the unobserved confounders follow certain conditions then causal inference is still possible!

What types of unobservables?

Today and in the next few lectures we will see that causal inference A SSILPANIPHE is PROPERTY CONTOURS... • Onobservables are constant within groups...

- Unobservables are constant over time...
- The relationship become the real ment assignment can be accounted for with some other variable ...
- Treatment is assigned across an arbitrary threshold.

Today: Other ations are group at sup Owy Conferred confounders are constant within groups.

▶ and how to use regression to estimate the ATE in this setting.

Recall: Regression

Assignment Project Exam Help

- ► Westing Still be a property of the ATE
- We also saw that the coefficient on D_i can be interpreted as the ATE indercertain conditions.
 ... and what to do when we don't think those conditions are
- ... and what to do when we don't think those conditions are met
- ► In all cases: OLS requires some **strong assumptions**!

Grouped observations

Suppose we are in this setting:

Assignment Project Exam Help

▶ There is an **unobserved** confounder, *U*

https://powcoder.com

Add WeChat powcoder

Assume that U is **constant within groups**, that is, if $i, j \in S_g$, then $U_i = U_i = U_{\sigma}$.

Grouped observations

Assignment Project Exam Help

- ▶ We cannot **condition** on *U* explicitly
- But if we do not account for *U*, then we will have OVB Can we exploit the fact that *U* is constant within groups to solve this problem?
 - Intuitively . . .

What kinds of groups could we have?

Assignment Project Exam Help research:

- The same unit is observed multiple times over time

 The same unit is observed multiple times over time

 Cities Diggs, Cight Cities C. Qellaphic groups)
- Days, weeks, years ... (temporal groups)
 Social networks/clusters nat powcoder

Stratified vs. Grouped data

Assignment Project Exam Help

- ► The units can be divided into **mutually exclusive** groups
- https://powcoder.com

What are the differences between grouped and stratified data?

- Differences are almost exclusively conceptual
- Indicated, whose or shrifted provide ordered
- The distinction is still useful to design and understand a study

Stratified vs. Grouped data

A Stratified vs. grouped Project Exam Help whereas in grouped data we do not.

- In the first case, we create strata so that observed con our ders are constant with Description of the constant of the constan
- In the second case, we assume that confounders are constant within a group
 - confounder that is associated with a stratum
- In grouped data we do not know the value of the confounder

Grouped observations and linear models

Today we make an additional assumption, that our outcome model is **linear**:

Assignment Project Exam Help

with $E[\epsilon_i] = 0$.

- This enables us to estimate the ATE with OLS

 orouge observations can also be used without this
 - Groupe deservations can also be used without this assumption, but other estimators are needed.

If we result the hat natue power oder

$$Y_i = \alpha + D_i \beta + \sum_{g=1}^G \mathbb{1}\{i \in S_g\} U_g + \epsilon_i$$

Can we use this to get rid of U somehow?

"Within" estimator

What happens if we average all the outcomes within one group?

$$\dot{Y}_{g} = \alpha + \beta \bar{D}_{g} + U_{g} + \bar{\epsilon}_{g}, \\
Assignment Project Exam Help$$

If we de-mean the units in group g with \overline{Y}_g we get ...

$$= \alpha + \beta D_i + U_g - \epsilon_i - \alpha - \beta \bar{D}_g - U_g - \bar{\epsilon}_g$$

- $ightharpoonup U_g$ is gone!
- $ightharpoonup E[\epsilon_i \bar{\epsilon}] = 0$ by assumption
- ► This is still a linear regression!

"Within" estimator: summary

As its within estimator Provided at tylenses The Ip in the mean outcome Y_g and mean treatment D_g in

- each group g
- 2. For each unit, subtract the respective group means from the land treatment would be subtracted the respective group means from the land treatment of th
 - $\tilde{Y}_i = Y_i \bar{Y}_{\sigma}$
 - $\tilde{D}_i = D_i \bar{\bar{D}}_g$
- 3. estimate the vertession from the resulting coefficient on \tilde{D} , β will be a consistent estimate of

The resulting coefficient on D, β will be a consistent estimate of the ATE.

Fixed-effects regression

There is an **alternative** way to formulate and implement regression for grouped data

Assignment to the "within" estimator potential to "within" estimator potential to

For electrons greate/apen sex Cointer rariables W_{i1}, \ldots, W_{ig} such that: $W_{ig} = \mathbb{F}(i \in S_g)$.

For each unit, only one of these variables is 1 and all others
 arA⁰dd WeChat powcoder

Then we estimate the model:

$$Y_{i} = \alpha + \beta D_{i} + \sum_{g=1}^{G} \lambda_{g} W_{ig} + \epsilon_{i}$$

Fixed-effects estimator

The fixed-effects model looks like this:

Assignment Project Exam Help

- https://gpow.coder.com

$$Y_i = \beta D_i + \lambda_{g_i} + \epsilon_i$$

Add WeChat powcoder

- Again, this is equivalent to the "within" estimator.
- Coefficients on each dummy variable (λ_g) are often referred to as "fixed-effects"

"Within" estimator: summary

Assignment Project Exam Help To fit a fixed effect estimator to grouped data you must:

1. Create G binary variables for each unit, such that:

2. Estimate the regression: $Y_i = \alpha + \beta D_i + \sum_{g=1}^{G} \lambda_g W_{ig} + \epsilon_i$

The resulting coefficient on D, $\hat{\beta}$ will be a consistent estimate of the AA dd WeChat powcoder

Treatment effect heterogeneity

We've assumed so far that the TE is constant: β . What if we have heterogeneous effects β_i ? Project Exam Help Recall last lecture we have seen that if $Y_i = \alpha + \beta_i D_i + \epsilon_i$, then

https://poweoder.com

and this is not the ATE!

This problem still was in fixed effects regression, jet if $Y_i = \alpha + \beta_i D_i + \lambda_g + \epsilon_i$, then β will still not be consistent for the ATE.

Intuitively, this happens because $Pr(D_i = 1)$ is different for units in different groups!

Treatment effect heterogeneity

Solution: Adapt the Lin estimator to this setting (Gibbons, Serrato, and Urbancic, 2019).

We create the G variables denoting group membership

Assignmente Protectors xuam Help

$$https://powcoder.com$$

► We de-mean each unit's binary variable like we did with covariates:

Add We@hat prowcoder

Then we fit the regression:

$$Y_{i} = \alpha + \beta D_{i} + \sum_{g=1}^{G} \lambda_{g} \tilde{W}_{ig} + \sum_{g=1}^{G} \omega_{g} \left[\tilde{W}_{ig} D_{i} \right] + \epsilon_{i}$$

Treatment effect heterogeneity

The regression:

Assignment Project Exam Help $Y_{i} = \alpha + \beta D_{i} + \sum_{g=1}^{n} \lambda_{g} \tilde{W}_{ig} + \sum_{g=1}^{n} \omega_{g} \left[\tilde{W}_{ig} D_{i} \right] + \epsilon_{i}$ https://powcoder.com

- It's the "Lin" estimator with the "dummy" variables as the covariates!
- Aildule Weichhat ipowcoder

This model will lead to consistent estimates of the ATE even when individual TEs vary across units.

Relationship with stratification

Assignment Project Exam Help

$$Y_{i} = \alpha + \beta D_{i} + \sum_{g=1}^{3} \lambda_{g} \tilde{W}_{ig} + \sum_{g=1}^{3} \omega_{g} \left[\tilde{W}_{ig} D_{i} \right] + \epsilon_{i}$$

https://powcoder.com strata defined by the groups.

- Estimate $\hat{\mathbf{r}}(g)$ by taking the difference-in-means in each group

 Aggregate with a weighted average $\hat{\mathbf{r}}_{block} = \sum_{g=1}^{g-1} \hat{\mathbf{r}}(g) \frac{N_g}{p}$
- \triangleright $\hat{\beta}$ and $\hat{\tau}_{block}$ will have the same value

Relationship with stratification

Assingoniement for regression is the same as the stratification Help

► FE regression requires stronger assumptions on Y than the stratification estimator!

But: https://powcoder.com

- FE regression can give use precise variance estimates even when outcomes are correlated within groups

 Antili case in the warrantee within groups

 consistent for the ATE variance
- FE regression can handle multiple groups at once

For simplicity define: $\mathbf{X}_i = [1, D_i, W_{i1}, \dots, W_{iG}]$. Then:

$$Y_i = \mathbf{X}_i \boldsymbol{\gamma} + \epsilon_i.$$

Assignment various ect. Frairement p assumption, that errors in the outcome are uncorrelated across units:

Add WeChatpowcoder

- For example, when groups are social networks and units are individuals
- ► In general reasonable to assume this when there is significant interaction between units

Recall: Estimating the variance of $\hat{\gamma}$ in OLS requires at least one assumption, that errors in the outcome are **uncorrelated** across

Assignment Project Exam Help

Under this assumption, we saw that a **consistent** estimator for the variance matrix of $\hat{\gamma}$ is: $Var_{HCO}[\hat{\gamma}] = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{S}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1},$

 $\begin{tabular}{lll} \textbf{Add} & \textbf{We}(\hat{\textbf{e}}_1, \textbf{hat}, \textbf{powcoder} \\ \textbf{s} = \begin{pmatrix} 0, & \hat{\textbf{e}}_2, \dots, & 0 \\ \vdots, & & & \vdots \\ 0, & \dots, & \hat{\textbf{e}}_n, \end{pmatrix}$

and $\hat{\epsilon}_i = Y_i - \mathbf{X}_i \hat{\gamma}$.

To account for correlation of errors within the same group, we

Assignment Project Exam Help $Cov(\epsilon_i, \epsilon_j | G_i \neq G_j) = 0$,

That is errors are uncorrelated only if units are in different groups. | DOWCOGET.COM

Under this assumption, we can extend the previous variance estimator by defining:

$$Add_{\hat{\ell}_{ij}} = \begin{cases} W_i \text{ e.c.} \\ 0 \end{cases} \text{ hat } powceder \\ \text{ otherwise }. \end{cases}$$

Note that $\hat{\epsilon}_{ii} = \hat{\epsilon}_i^2$.

Then we construct the matrix:

Assignment
$$\mathbf{Project} \to \mathbf{Exam} \to \mathbf{Help}$$

and flatte Sin justice we contain a cluster-robust estimator:

Add WēChat's powcoder

 This will account for error correlation across units in the same group

Multiple groups

Assignment.Project.Exam.Help

- For example, if the same units are observed at multiple times, one group is the unit and another group is the day of the **DOWCOGET.COM**
- ► The same unit is member of multiple groups at once
- Mutually-exclusive strata would have only one observation in them! Later than the stratification were at the content of the stratification were at the stratification were

Many fixed effects

Fixed-effects regression can handle this setting easily.

Assignment Project Example p

Where:

- the transfer of the total number of groups defined by g and H is the
- → G is the total number of groups defined by g and H is the same for groups defined by H
- ▶ W_{ig} is 1 if $i \in S_g$ and V_{ig} is 1 if $i \in L_h$.

Many fixed effects

Assignmentar of each Exam Help

- Intuitively, FE regression solves the problem of unique groups having only one member by extrapolating from the problem of unique groups having only one member by extrapolating from the problem.
- Units in different groups contribute to estimates for units in other groups
- If we believe there to be error correlation within multipler groups variance estimation is a problem
- Many strong modeling assumptions!

The BIMAS program

Satiset pf 1927 obsertations program increase Production program increase

- output?
- reatment: is the farm taking part in the program?
 Outcome: Gross ree output in Kilograms

- We will group on the The geographic region of the farm

 Son Gerbns wheen by an acre a probe to Good Etion
 - Because of weather, economic conditions...

Data loading and Naive estimator

```
library (estimatr)
 library (plm)
 ssignment Project Exam Help
6 # Define treatment, outcome and grouping variable
 D = ifelse(RiceFarms$bimas="no", 0, 1.0)
S = Littps://powcoder.com
11 # Naive estimate
Add WeChat powcoder
```

- Estimate: 770.5
- ► SE: 164.2
- ▶ 95% CI: [448.2, 1092.8]

```
Ytilde = rep(NA, nrow(ChickWeight))

Assignmente(h)(OjectExam Help

ss = which(S = chk)

Ytilde[ss] = Y[ss] - mean(Y[ss])

ptilde[ss] = D[ss] - mean(D[ss])

https://powcoder.com

Im_robust(Ytilde ~ Dtilde)
```

Add WeChat powcoder

Estimate: 632.2

► SE: 167.5

▶ 95% CI: [303.5, 961.0]

FE estimator

```
Assignment Project Exam Help
     \lim_{r \to \infty} robust(Y \sim D + factor(S))
```

- Estimate: 632.2
- SE: 167.5
- ► Add WeChat powcoder

Lin FF estimator

Assignment Project Exam Help Im_lin(Y ~ D, covariates=~ S)

- Estimate: 539.6
- SE: 150.9
- ► Add₄WæChat powcoder

Allowing for in-group correlations

```
Assignment Project Exam Help

| Robust variance | Im_robust (Y ~ D + factor(S), clusters = S)
```

- Estimate: 632.2
- ► SE: 258.9
- ► Add Nat powcoder

Multiple groupings

Now we also group by the pariety of rice produced by the famelp

```
Multiple FEs
Ittps://poweoder.com
```

- * And down of the Chat powcoder
- 95% CI: [345.2, 986.3]

Summary

A SSI When there are unobserved of mounters that are constant elp within groups, then we can still estimate the ATE

- ► Fixed effects or "within" estimators extend regression to these

 The DS://powcoder.com
- The Lin estimator still allows for valid OLS with TE heterogeneity
- ► Vaianted f Wegesion and accomposition in the
- FE regression can handle multiple groups