Assignment 1

Physics III: Electricity and Magnetism B. Math. Year 3, September - December 2021.

Due on: October 28^{th} , 2021.

Please give arguments where necessary. If it is unclear from your answer why a particular step is being taken, full credit will not be awarded. Please feel free to discuss amongst yourselves; however, copying the assignment solutions from someone else is strictly prohibited and both persons involved will be penalized. Each one of you must submit your own answers. Total: 60 points.

- 1. (a) Total charge Q is uniformly distributed inside a sphere of radius R. Find the total force the southern hemisphere exerts on the northern hemisphere of the sphere. [5]
 - (b) A uniform surface charge density σ is smeared over a hemispherical bowl of radius R. What is the potential difference between the north pole and the center of the sphere. Ignore the flat surface at the equator in your calculations. [5]
 - (c) The electric potential of a charge configuration is given by

$$\Phi\left(\vec{r}\right) = A \frac{e^{-\lambda r}}{r}$$

Find the electric field $\vec{E}(\vec{r})$, the charge density $\rho(\vec{r})$ and the total charge Q that can lead to this configuration potential. A and λ are constants. [5]

- 2. Imagine two infinitely long and infinitely thin wires running parallel to the x-axis at a distance $y=\pm d_0$ from the x-axis, lying on the xy-plane. One (at $y=+d_0$) of them carries a uniform charge density λ and the other a uniform charge density $-\lambda$.
 - (a) Find the potential $\Phi(\vec{r})$ at any point \vec{r} , using the origin as reference. [7]
 - (b) Show that the equipotential surfaces are circular cylinders. [4]
 - (c) For a given potential Φ_0 , find the location and orientation of the axis and radius of the equipotential cylinder. [4]

3. Imagine that the actual force between two charges q_1 and q_2 is not quite Coulomb's Law, but has a small correction. The precise form is (for the force on q_2 due to q_1):

$$\vec{F_{12}} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r_{12}^2} \left(1 + \frac{r_{12}}{\lambda} \right) e^{-\frac{r_{12}}{\lambda}} \hat{e}_{12}$$

where λ is a new constant of nature, having the dimension of length, r_{12} is the distance between the two charges, and \hat{e}_{12} is the unit vector from q_1 to q_2 , ensuring that the force acts along the line joining the two charges, and it is repulsive (attractive) when the two charges are of the same (opposite) signs.

- (a) Prove that one can attach a potential $\Phi(\vec{r})$ which can generate the corrected Coulomb force as above, without actually evaluating the potential. [3]
- (b) Evaluate the potential $\Phi(\vec{r})$. [4]
- (c) For a point charge q at the origin, derive the modified integral form of Gauss'Law for "electrostatics" with the new force law for any sphere centred at the origin. As a reminder, in the limit $\lambda \to \infty$, the force law reduces to our well-known $\frac{1}{r^2}$ Coulomb's Law, and the Gauss' Law, in integral form, reads

$$\oint_{\mathcal{S}} \vec{E} \cdot d\vec{S} = \frac{q}{\epsilon_0}$$

where all the symbols have the usual meanings. [5]

- (d) Assume that the integral form of Gauss's Law not only holds for a single charge at the origin of an arbitrary sphere, but for any continuous charge distribution $\rho(\vec{r})$ over any closed volume V, enclosed by the surface \mathcal{S} . Derive the modified Poisson's Equation in such a scenario. [3]
- 4. Modern Electrodynamics by Andrew Zangwill, 2013 Edition, Cambridge University Press, **Problem 3.19**, **parts (a) and (b)**. Part (a) is worth 8 points, while part (b) is worth 7 points. In part (b), the word *localized* should be interpreted as: a surface $\partial \mathbb{V}$ (with well-defined outside and inside) can always be found completely enclosing a finite volume \mathbb{V} such that there is no charge on $\partial \mathbb{V}$ or outside it.