

Linear regression for inference

Dr Gianluca Campanella 17th May 2016

Contents

Regression models

Linear regression

Diagnostics for linear regression

Model selection

Where we are

- 1. Define the **research question**
- 2. Get the data
- 3. Explore the data
 - · (Re)format, clean, merge, stratify...
 - Identify trends and outliers
- 4. Model the data
 - Select and build model(s)
 - Evaluate and refine model(s)
- 5. **Summarise** the results
 - · Summarise findings
 - · Describe assumptions and limitations
 - Identify follow-up research questions

Regression models explore associations between:

- · a response variable y
- explanatory variables (or predictors) x_1, \ldots, x_p

Regression models explore associations between:

- · a response variable y
- explanatory variables (or predictors) x_1, \ldots, x_p

Question

Do the $x_1, ..., x_p$ capture the variability of y?

Regression models explore associations between:

- · a response variable y
- explanatory variables (or predictors) x_1, \ldots, x_p

Question

Do the x_1, \ldots, x_p capture the variability of y?

Aims

- 1. Predict the future (easy)
- 2. Understand the system being modelled (hard)

Regression modelling steps

- Formulation
 - 1. Error distribution for the response y
 - 2. Combination of predictors
 - 3. Link function
- Estimation of parameters
- Diagnostics (does the model fit the data well?)
- Selection (can we improve the fit?)

Components of regression models

- (1) A model for the **variability** of the response **y**
 - y is continuous \rightarrow normal distribution
 - y is categorical \rightarrow (more later in the course...)

Components of regression models

- (1) A model for the **variability** of the response **y**
 - y is continuous \rightarrow normal distribution
 - y is categorical \rightarrow (more later in the course...)
- (2) A combination of predictors x_1, \ldots, x_p
 - Often linear, e.g. $2x_1 + 3x_2$
 - $\beta_1 = 2$ and $\beta_2 = 3$ are regression coefficients

Components of regression models

- (1) A model for the **variability** of the response **y**
 - y is continuous \rightarrow normal distribution
 - y is categorical \rightarrow (more later in the course...)
- (2) A combination of predictors x_1, \ldots, x_p
 - Often linear, e.g. $2x_1 + 3x_2$
 - $\beta_1 = 2$ and $\beta_2 = 3$ are regression coefficients
- (3) A link between the two
 - Often depends on the model for the response
 - Linear regression: $\mathbb{E}[y] = 2x_1 + 3x_2$

Predictors and response

Predictors

- Viewed as fixed variables
- Assumed not to be affected by measurement error
- → 'Independent' or 'exogenous'

Response

- Variability is modelled (but could also be attributed to other factors)
- → 'Dependent' or 'endogenous'

Example: estimation of parameters

Linear regression

Simple linear regression

For the i^{th} observation:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

 β_0 Intercept

 β_1 Slope

 $arepsilon_i$ Individual error term

Regression coefficients

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Intercept Average y when x = 0**Slope** Increase in y for a one-unit increase in x

The regression line passes through:

- The point $(0, \beta_0)$
- The 'centre' of the data (\bar{x},\bar{y})

Error term

$$y_i = \beta_0 + \beta_1 x_i + \mathbf{\varepsilon}_i$$

- · 'Sucks up' unaccounted variation in y
- Model assumptions are mostly on ϵ (more later...)

Multiple linear regression

For the ith observation:

$$y_i = \beta_0 + \sum_j \beta_j x_{ij} + \epsilon_i$$

 β_0 Intercept

β_j Slopes

 ε_i Individual error term

Intercept Average y when all $x_{.j} = 0$ Slopes Increase in y for a one-unit increase in $x_{.j}$ all else being equal

Multiple linear regression

In matrix form:

$$y = X\beta + \epsilon$$

- X Design matrix
- β Regression coefficients
- ε Error term

Gauss—Markov assumptions

If the following holds...

- The relationship between **y** and **X** is linear
- X has full rank (no multicollinearity)
- Exogeneity: $\mathbb{E}[\mathbf{\epsilon}_i \,|\, \mathbf{X}_i] = 0$
- Homoscedasticity: $\mathbb{V}[\varepsilon_i \,|\, X_i] = \sigma^2 < \infty$
- Uncorrelated error terms: $\mathbb{V}\big[\epsilon_i,\epsilon_j\big]=0$, $i\neq j$
- X_i is deterministic and thus uncorrelated with ε_i : $\mathbb{V}[X_i, \varepsilon_i] = \mathbb{E}[X_i \varepsilon_i] - \mathbb{E}[X_i] \mathbb{E}[\varepsilon_i] = X_i \mathbb{E}[\varepsilon_i] - X_i \mathbb{E}[\varepsilon_i] = 0$

Gauss—Markov assumptions

...then the OLS estimator of β is **BLUE**:

Best Minimal variance

Linear Like the relationship between **y** and **X**

Unbiased $\mathbb{E}[\beta]$ equals the 'true' values for β

Estimator

Outside of physics, these assumptions are often violated

Model fitting: ordinary least squares

For the *i*th observation:

$$\hat{\epsilon}_i = y_i - \left(\hat{\beta}_0 + \sum_j \hat{\beta}_j x_{ij}\right)$$

Ordinary least squares Find $\hat{\beta}_j$ that minimise the residual sum of squares

RSS =
$$\sum_{i} \hat{\epsilon}_{i}^{2}$$

Model fitting: maximum likelihood

$$Y_i \sim \mathcal{N}ig(\mu_i, \sigma^2ig)$$
 where $\mu_i = eta_0 + \sum_j eta_j x_{ij}$

- · Assume that there are **fixed**, 'true' values for the $\hat{\beta}_i$
- We can write down the **densities** of the Y_i
- Assuming independence of the Y_i, we can write down the joint density of the Y_i
- $\rightarrow f(y | \hat{\beta}_j)$ represents the probability of observing the data given the parameters

Model fitting: maximum likelihood

$$Y_i \sim \mathcal{N}ig(\mu_i, \sigma^2ig)$$
 where $\mu_i = eta_0 + \sum_j eta_j x_{ij}$

Maximum likelihood principle

- Consider instead the likelihood function $f(\hat{\beta}_j | y)$
- Same as before, but interpreted as the probability of certain parameter values given the data
- ightarrow Can optimise to estimate the $\hat{oldsymbol{eta}}_i$
- ightarrow Additional assumption: $arepsilon_i \stackrel{ ext{i.i.d.}}{\sim} \mathcal{N}ig(0, \sigma^2ig)$

Hypothesis testing for parameters

 $\hat{\beta}_0, \hat{\beta}_1, \ldots$ are **estimated** from the data (they have a hat). How do we know they are not just random fluctuations?

- Define confidence intervals for \hat{eta}_j
- Test H_0 that $\hat{\beta}_i = 0$

Need sampling distribution of β_j

Hypothesis testing for parameters

- Standard deviation of the sampling distribution $\sqrt{\mathbb{V}\left[\beta_{j}\right]}$ (standard error) is known
- Test statistic is simply $T_j = \beta_j / \sqrt{\mathbb{V}[\beta_j]}$
- It can be shown that T_i follows a t-distribution
- \rightarrow Can compute confidence intervals and p-values

Diagnostics for linear regression

Violations of linearity or additivity

Extremely serious

- · Model is misspecified
- · Inference outside of observed range is misleading

- Predicted $\hat{\mathbf{y}}$ versus observed \mathbf{y} values
- · Residuals $\hat{\mathbf{\epsilon}}$ versus predicted $\hat{\mathbf{y}}$ values
- · Residuals $\hat{\pmb{\varepsilon}}$ versus each independent variable $\pmb{\mathsf{x}}_i$

Violations of independence

Potentially very serious

- Especially if dealing with time series (autocorrelation)
- · Can also result from model misspecification

- · Residuals $\hat{\epsilon}$ versus time, row number...
- Residual autocorrelation
- Durbin—Watson test for autocorrelation at lag 1

Violations of homoscedasticity

Serious

- · Confidence intervals are too wide or too narrow
- · Data are weighted unequally

- · Residuals $\hat{\epsilon}$ versus predicted \hat{y} values
- · Residuals $\hat{\epsilon}$ versus time, row number...
- · Residuals $\hat{m{\epsilon}}$ versus each independent variable $m{x}_j$

Violations of normality

Somewhat serious

- · Often due to a few outliers
- Confidence intervals and *p*-values unreliable

- · Normal quantile plot of the residuals $\hat{\epsilon}$
- · Statistical tests for normality (e.g. Anderson—Darling)
- · Studentised residuals:

$$\hat{r}_i = \frac{y_i - \hat{y}_i}{\sqrt{\mathbb{V}[\hat{y}_i]}}$$

Transformations

- · Can be applied to predictors and/or response
- Can improve model fit (e.g. when residuals are not normally distributed or homoscedastic)

Commonly used transformations

- $\cdot \log y$ and $\exp y$
- \sqrt{y} and y^2
- · 1/y

Many datasets, one regression line

Model selection

Coefficient of determination

Total sum of squares

$$TSS = \sum_{i} (y_i - \bar{y}_i)^2$$

Residual sum of squares

$$RSS = \sum_{i} \hat{\varepsilon}_{i}^{2} = \sum_{i} (y_{i} - \hat{y}_{i})^{2}$$

Coefficient of determination

$$R^2 = 1 - \frac{RSS}{TSS}$$

Coefficient of determination

Problem

 R^2 increases with the number of predictors

Idea

Penalise larger models in the goodness-of-fit metric

- Adjusted R²
- Mallows's C_p
- · AIC and BIC