$2^{\underline{o}}$ Teste de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2 horas

Este teste é constituído por 4 perguntas. Todas as respostas devem ser devidamente justificadas.

- 1. Seja h a função obtida por recursão primitiva das funções $f: x \mapsto x$ e $g: (x, y, z) \mapsto x + z$.
 - a) Identifique a função h.
 - b) Mostre que h é uma função recursiva primitiva.
 - c) Determine a função M_q de minimização de g.
- 2. Seja $A: \mathbb{N}_0^2 \to \mathbb{N}_0$ a função de Ackermann que, recorde, é uma função total definida por:
- i) A(0,y) = y+1; ii) A(x+1,0) = A(x,1); iii) A(x+1,y+1) = A(x,A(x+1,y)).
- a) Determine A(2,1).
- b) Sabendo que A(x,y) > y para quaisquer $x,y \in \mathbb{N}_0$, prove que A(x,y+1) > A(x,y) para todos os $x, y \in \mathbb{N}_0$.

[Sugestão: Considere os casos x = 0 e $x \neq 0$.]

3. Seja $A = \{a, b\}$ e seja \mathcal{T} a seguinte máquina de Turing sobre A com duas fitas

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}aaababbaaba, \underline{\Delta})$ e diga se a palavra aaababbaaba é aceite por \mathcal{T} .
- **b)** Identifique a linguagem L reconhecida por \mathcal{T} .
- c) Identifique a função parcial $g: A^* \to A^*$ calculada por \mathcal{T} .
- d) Determine a função $tc_{\mathcal{T}}$, de complexidade temporal da máquina \mathcal{T} .
- e) Mostre que $L \in DTIME(n)$.
- **f)** Sendo K a linguagem $K = \{a^m b^{2n} : m, n \in \mathbb{N}_0\}$, mostre que $L \leq_p K$.
- 4. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - a) A função $f(n) = 3^n + n^2$ é de ordem $\mathcal{O}(3^n)$.
 - b) Se $f,g:\mathbb{N}_0\to\mathbb{N}_0$ são funções recursivas primitivas e A é a função de Ackermann, então a função $A \circ (f, g)$ é computável.

Cotações	1.	2.	3.	4.
	1,5+1,5+1,5	1,5+1,75	1,25+1,5+1,5+2+1+2	1,5+1,5