

Problem Solving

Group Project #2: Maximum Profit

Instructor: Jae-Pil Heo (허재필)

Maximum Profit

- You are going to lease a piece of land
- For each unit:
 - You need to pay F dollars (single price for all units)
 - You will earn A(i, j) dollars (depending on the location)
 - Your profit by the lease: A(i, j) F
- Goal: Find a rectangular area that maximizes your profit.

Example

• Given a matrix A and F = 100,

	j = 0	j = 1	j=2	j=3	<i>j</i> = 4
i = 0	110	130	80	170	160
i = 1	150	120	170	160	90
i=2	110	190	180	120	30
i=3	10	80	110	130	140
i = 4	120	130	30	120	90
i = 5	60	120	80	100	50

- If you lease from (1,0) to (4,2)
 - Your profit is: $150 + 120 + 170 + 110 + 190 + 180 + 10 + 80 + 110 + 120 + 130 + 30 12 \times 100 = 200$
 - Note that, the index is row major [i.e. (i, j)] and begins with 0 like C/C++ programming languages.

Example

• Given a matrix A and F = 100,

	j = 0	<i>j</i> = 1	j=2	<i>j</i> = 3	<i>j</i> = 4
i = 0	110	130	80	170	160
i = 1	150	120	170	160	90
i=2	110	190	180	120	30
i=3	10	80	110	130	140
i = 4	120	130	30	120	90
i = 5	60	120	80	100	50

- If you lease from (0,0) to (2,3)
 - Vour profit is: $110 + 130 + 80 + 170 + 150 + 120 + 170 + 160 + 110 + 190 + 180 + 120 12 \times 100 = 490$
 - It is the maximum case.

Input & Output

Input

- $N \times M$ matrix A, where $5 \leq N, M \leq 40$
- Each A(i, j) is a multiple of 10, ranging from 10 to 990
- F is also a multiple of 10, ranging from 10 to 990

Output

- The indices of the left upper and right lower corner
- Example: (3,2), (10,9)
- Note that, we use the indexing rule of C/C++ language.

Rules

- You can only use white papers and pens
- We will perform 3 or 4 plays
 - For each play, you will have T minutes $(2 \le T \le 15)$
 - You may need different algorithms depending on T

Presentation

- Present the strategy of your team
 - Prepare slides (Powerpoint)
 - 3 5 minutes for each team
 - Penalty for exceeding time
- Play: 70%
- Presentation: 30%

Schedule

- May/20: in-class practice, Q&A (OpenSW Room, 6th floor, Semiconductor Bd.)
- May/27: play (OpenSW Room, 6th floor, Semiconductor Bd.)
- May/29: presentation