

Implementazione e testing di un cluster di database su una rete di pari

Scuola di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea in Informatica

Relatore

Prof. Lorenzo Bettini

Candidato

Linda Luciano

Scopo del progetto

La replica di dati è un trasferimento dati unidirezionale da uno o più nodi che permette:

 aumento di affidabilità del sistema, in modo da renderlo tollerante ai guasti

 miglioramento delle prestazioni del sistema, aumentandone la scalabilità

Scopo del progetto

Trovare compromesso tra:

- → Numero di repliche
- → Sicurezza del dato
- → Buone performance

Qual è il modo più proficuo per eseguire la replica di un file in upload?

Tecnologie

Cluster di database

Fault tolerance (tolleranza ai guasti)

in caso di guasto del singolo server, il cluster offre un'alternativa a cui connettersi

Load balancing (bilanciamento del carico)

consente agli utenti di essere assegnati automaticamente al server con il minor carico

Rete di pari

Principali vantaggi di una rete di pari (peer-to-peer network):

- → Se un dispositivo collegato interrompe la connessione, il servizio non termina
- → Non si basa esclusivamente su server centrali, è più resistenti in caso di guasti o colli di bottiglia del traffico
- → Con l'aumentare del numero di dispositivi, aumenta la potenza della rete, poiché ogni computer aggiuntivo è disponibile per l'elaborazione dei dati

Architettura del progetto

Suddivisione di un file

Quando un file è scritto sul disco sono scritte due informazioni:

- > File intero diviso in chunk
- ➤ Una parte di metadato, che rappresenta l'informazione anagrafica del dato

Suddivisione di un file

In che modo possiamo ottenere affidabilità del dato/metadato senza compromettere le performance?

Replicare i dati/metadati su almeno due board differenti in modo tale che, in casi di fault, guasti o perdite, sia possibile ottenere nuovamente il dato originale.

Replica metadato/dato

Scrittura di un file

Problema: se board 01 è offline?

BOARD	range ID
B 01 01	0-10
B 01 02	11-20
B 01 03	21-30
B 01 01	31-40
B 01 02	41-50
B 01 03	51-60

Replica metadato - PostgreSQL

➤ Write-Ahead Log (WAL)

- · Garantisce integrità dei metadati
- In caso di crash è possibile recuperare il database usando il log

➤ Pglogical

 Replica completa o selettiva di insieme di tabelle di database ad altri nodi di un cluster

Replica metadato/dato

Le mappe

Per i metadati:

la mappa gestisce un solo nodo per board, un solo database, quindi una sola replica

> Per i dati:

la mappa gestisce più nodi per board

Ogni board ha otto database di dati e uno solo di metadati.

Replica metadato - Pglogical

Publish - Subscribe

Utilizzando la replica in cascata, ogni nodo *Subscriber* è in contemporanea *Provider* di altri nodi *Subscriber*

Replica metadato

Rappresentazione del nodo

Replica metadato

Replica asincrona

Non aspetta che lo storage primario confermi la completa scrittura del dato sul disco. Il client ha la conferma di avvenuto successo quando è stato scritto sul WAL.

Replica sincrona

Il client ha la conferma di avvenuto successo solo quando è stato effettivamente replicato il dato. Scrive la copia primaria e la replica contemporaneamente, in modo da renderli sempre sincronizzati.

Replica metadato – Set di replica

2a01:84a0:1001:a001::1:4;30;40;30

2a01:84a0:1001:a001::1:5;40;50;40

2a01:84a0:1001:a001::1:6;50;60;50

2a01:84a0:1001:a001::2:1;60;70;60

2a01:84a0:1001:a001::2:2;70;80;70

2a01:84a0:1001:a001::2:2;70;80;70

2a01:84a0:1001:a001::2:3;80;90;80

2a01:84a0:1001:a001::2:4;90;a0;90

2a01:84a0:1001:a001::2:5;a0;b0;a0

2a01:84a0:1001:a001::2:6;b0;c0;b0

Replica metadato

Sottoscrizioni native

→ ID chunk e contenuto

- → Funzione restituisce IP della board e il successivo
- → Aperte due connessioni parallele
- → Query in parallelo che permette la scrittura dei chunk su due host differenti
- Chiusura connessioni

Quanti dischi possono essere danneggiati per causare la perdita di un dato?

Perdita di un chunk e la sua parità

Perdita di due chunk

Perdita di un chunk

Ascisse: tempo impiegato per ogni dato

Nessuna copia di ridondanza

Sottoscrizioni asincrone

Ordinate: frequenza di PUT registrate

Connessioni e PUT sequenziali, sottoscrizioni sincrone

Connessioni sequenziali e PUT in parallelo

- Connessioni aperte in parallelo
- Scrittura sul database, senza attendere messaggi di successo
- Compromesso con il caso ottimale

Evoluzioni e conclusioni

> Evoluzioni hardware

- Utilizzo di processori dual core
- Utilizzo di dischi SSD

"I computer sono incredibilmente veloci, accurati e stupidi. Gli uomini sono incredibilmente lenti, inaccurati e intelligenti. L'insieme dei due costituisce una forza incalcolabile." -Albert Einstein