CS 105 Final Project

Presented by
Isiah Montalvo
Amir Shirazi
Regan Jia
Xirong Xie
Samantha Nino

Project description

We are going to analyse a dataset about Valorant's leaderboards. We will use the data to predict a player's rank based on their headshot statistic with the K-means clustering method.

Techniques we use

- K-means clustering
 - Elbow Method
- Data cleaning

Dataset we use

region	name	tag	rating	damage_round	headshots	headshot_percent	aces	clutches	flawless	first_bloods	kills	deaths	assists
NA	ShimmyXD	#NA1	Radiant	135.8	992	24.9	0	140	80	161	1,506	1,408	703
NA	XSET Cryo	#cells	Radiant	170.3	879	28.3	2	122	94	316	1,608	1,187	206
NA	PuRelittleone	#yoruW	Radiant	147.5	720	24	3	117	59	216	1,115	1,064	267
NA	Boba	#0068	Radiant	178.2	856	37.3	3	83	49	235	1,134	812	157
NA	i love mina	#kelly	Radiant	149.8	534	24.4	2	71	38	137	869	781	213
NA	Decay	#GODK	Radiant	134.1	1,038	26	2	162	94	179	1,542	1,492	629
NA	Osias	#1212	Radiant	163.4	1,472	25.2	7	186	92	311	2,190	1,890	614
NA	Knights RIKU	#KRN	Radiant	153.3	510	17.5	2	112	64	215	1,246	1,066	341
NA	RaijuACE	#3131	Radiant	153.7	1,181	24.6	2	189	132	515	2,859	2,182	440
NA	dawn	#24k	Radiant	153.6	339	20.8	1	56	44	103	774	564	140
NA	100T Derrek	#100	Radiant	144.2	795	35.3	1	91	46	101	1,029	930	445
NA	acts017	#ttv	Radiant	137.8	868	29.2	0	146	80	226	1,397	1,358	379
NA	sam wow	#linda	Radiant	142.2	1,226	32.3	1	157	84	250	1,633	1,559	419
NA	kipp	#0002	Radiant	131.1	1,016	20.1	2	175	98	235	1,887	1,819	620
NA	Dinxx	#frog	Radiant	157	724	27.4	1	92	70	161	1,081	841	203
NA	svL	#DEMON	Radiant	151.9	681	22.4	1	68	60	104	1,046	875	534
NA	pnk	#drvn	Radiant	131.4	821	20.3	1	131	81	93	1,389	1,299	656
NA	jwr	#washd	Radiant	161.8	1,195	30.1	5	128	75	251	1,621	1,323	321
NA	j0HNL3	#wtF	Radiant	152	523	22.8	0	70	38	85	872	772	338
NA	LunatiK	#urdog	Radiant	130.1	1,702	19.7	3	294	205	458	2,902	2,979	952
NA	Summr	#TT7M	Radiant	143.7	953	28.5	4	123	64	232	1,290	1,323	336
NA	Ziehm	#2121	Radiant	142.3	1,830	21.6	3	275	157	452	3,195	2,988	947
NA	Darth Vader	#SVJ	Radiant	140.6	1,231	29.8	3	132	64	221	1,639	1,541	543
NA	chosen	#ari	Radiant	131.8	774	21.9	0	145	73	114	1,257	1,259	460
NA	krisspy	#fox	Radiant	133.4	888	28.4	0	117	74	119	1,230	1,182	545
NA	attach	#2uu	Radiant	127.7	690	19.1	0	126	72	154	1,182	1,300	657
NA	Hydra	#zzz	Immortal 3	136.5	1,273	22.7	1	138	133	196	1,973	1,737	779

- Valorant Leaderboard Statistics
- We will need the stats of players, including their rank, headshots, headshot percentage, etc
- We can find these in the data set
- When we do the data cleaning, we replace "," with "", and we also have different numbers represent for different gun names. In this case, we could just use numbers, which will be easier to make graphs.

Dataset we use

```
df.drop(df.columns[[0, 1, 2, 3, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 21, 22, 24, 25, 26, 29, 30, 31, 34, 35, 36]], axis=1, inpla
df.drop(df.index[5000:], axis = 0, inplace=True)
df.head()
```

	damage_round	headshots	headshot_percent	kills	wins	win_percent	agent_1	gun1_name	gun1_kills	gun2_name	gun2_kills	gun3_name	gun3_kil
0	135.8	992	24.9	1,506	59	59.6	Fade	Vandal	802	Phantom	220	Classic	14
1	170.3	879	28.3	1,608	52	65.8	Chamber	Vandal	689	Operator	226	Phantom	19
2	147.5	720	24.0	1,115	42	65.6	Yoru	Vandal	444	Phantom	231	Operator	10
3	178.2	856	37.3	1,134	32	62.8	Jett	Vandal	754	Sheriff	48	Phantom	3
4	149.8	534	24.4	869	32	62.8	Jett	Vandal	419	Spectre	65	Operator	6

Cleaned Data Set

Data Cleaning

```
df['guni name'].replace(['Vandal', 'Operator', 'Phantom', 'Judge', 'Odin', |
-'Guardian', 'Spectre', 'Classic', 'Ghost', 'Sheriff', 'Marshal', 'Shorty', ...
⇔'Bulldog', 'Frenzy', 'Bucky', 'Ares', 'Stinger'], □
→[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], inplace=True)
df['gun2 name'].replace(['Vandal', 'Operator', 'Phantom', 'Judge', 'Odin',
-'Guardian', 'Spectre', 'Classic', 'Ghost', 'Sheriff', 'Marshal', 'Shorty', "
→ 'Bulldog', 'Frenzy', 'Bucky', 'Ares', 'Stinger'], □
\rightarrow [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], inplace=True)
df['gun3 name'].replace(['Vandal', 'Operator', 'Phantom', 'Judge', 'Odin', |
-'Guardian', 'Spectre', 'Classic', 'Ghost', 'Sheriff', 'Marshal', 'Shorty', u
↔ 'Bulldog', 'Frenzy', 'Bucky', 'Ares', 'Stinger'],
 \rightarrow [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], inplace=True)
df['headshots'] = df['headshots'].str.replace(",","",regex = False)
df['headshots'] = df['headshots'].astype(int)
df['kills'] = df['kills'].str.replace(",","",regex = False)
df['kills'] = df['kills'].astype(int)
df['guni_kills'] = df['guni_kills'].str.replace(",","",regex = False)
df['guni kills'] = df['guni kills'].astype(int)
df['gun2_kills'] = df['gun2_kills'].str.replace(",","",regex = False)
df['gun2 kills'] = df['gun2 kills'].astype(int)
df.dtypes
```


- Scatter plot that shows the correlation between the amount of kills and wins a player has
- With this graph, we can see that the more kills a players has, the more wins they receive

- Pie graph that shows the total amount of wins each agent has
- Chamber, Jett, and Reyna has the most wins, Jett, and Reyna has the most wins

0: Vandal 1: Operator

10: Marshal 11: Shorty

2: Phantom

3: Judge

4: Odin

5: Guardian

6: Spectre

7: Classic

8: Ghost

9: Sheriff

- Stacked bar graph to show which guns resulted in the most kills
- We can see that Vandal(0) and Phantom(2) was the most used guns with the most kills

- Scatter plot that shows the gun kills perspective to the gun name
- Each point is an individual using that gun name (x-axis) and the amount of kills with that gun (y-axis)
- Attached below is the respective numerical gun name to the actual gun name

df['gun1_name'].replace(['Vandal', 'Operator', 'Phantom', 'Judge', 'Odin', 'Guardian', 'Spectre', 'Classic', 'Ghost', 'Sheriff', 'Marshal', 'Shorty'], [0,1,2,3,4,5,6,7,8,9,10,11], inplace=True)

- Violin plot displaying the agents that players play with the respective win rates
- White circle indicates median
- Attached below is the respective numerical agent name to the actual agent name

K-Means Clustering

- Performed K-Means clustering to group players of similar Rank.
- Set K=4, since there are four ratings Radiant, Immortal 3, Immortal 2, Immortal 1

```
In [11]: kmean_df=df
##kmean_df.head()

In [12]: km = KMeans(n_clusters=4, init='random', n_init=10, max_iter=300, tol=1e-04, random_state=0)
kmean_df=kmean_df.to_numpy()
y_km = km.fit_predict(kmean_df)
y=y_km
print(y)
print(km.labels_)

[1 1 1 ... 1 1 3]
[1 1 1 ... 1 1 3]
```

K-Means Clustering

We can see that through the use of k-means clustering, we were able to successfully cluster the headshot data into 4 distinct player rankings that confirm our intuition. With cluster 1 being the best players with the highest headshot ratings and cluster 4 being the lower ranked players with lower headshot ratings. We can see that the graph and clusters tighten up as headshot rating increases implying that there are a lower amount of players able to achieve that level of play. We see that cluster 1 has a few standout outliers that go far beyond their predecessors, clusters 2 and 3 are fairly tight knit with most players being very similar in skill and cluster 4 has the most variance with both low and high outliers at the lower ranks.

Elbow Method

- Visualization method to estimate the optimal number of K Clusters.
- Using within-clusters Sum of Square Error to measure the variability.
- We pick the optimal K by finding the elbow in the plot.
- We can notice that the elbow is at K=4.

Questions for you

Q1: What do the clusters represent and what pattern did the data form as the headshot rating increased

Q2: What agent had the highest contribution to a players wins?

Q3: How could clustering be used to improve matchmaking in competitive games?

Thank you for watching this video!