

Modelling Land-Climate Interactions in Amazônia under Uncertainty

Nathan Moore¹, Robert Walker¹, Eustaquio Reis², Eugenio Arima³, Renato Ramos da Silva⁴, Alex Pfaff⁵, Marcellus Caldas¹, Stephen Perz⁶, Jiaguo Qi¹, Claudio Bohrer⁷, Juan Robalino⁸

¹Michigan State University ² IPEA ³ Hobart & William Smith Colleges/IMAZON ⁴UFPA ⁵Duke University ⁶ University of Florida ⁷University Federal Fluminense ⁸Columbia University

Presentation of work from recent publication—

Moore, N., E. Arima, R. Walker, and R. Ramos da Silva (2007), Uncertainty and the changing hydroclimatology of the Amazon, *Geophys. Res. Lett.*, 34, L14707, doi:10.1029/2007GL030157.

Questions:

- 1) What is the "Future of the Amazon"?
- 2) How is uncertainty represented in predicted Amazonian climate outcomes?

Land-Climate System

Method

No one has future observations— so we must model the future

Represent the Uncertainty of these predictions

Assume two fundamental sources of uncertainty:

- 1. actual landscapes (stochastic)
- 2. external forcings in general climate

Land-Climate Modeling

Econometric (probit model)

Regional Climate Model (RCM)

Method

How we deal with these uncertainties:

- use econometric model for landscapes
 A Spatially Explicit Model of Pixels
 Bernoulli trials, as inputs to RCM
- 2. Run the RCM, using a range of general atmospheric conditions, across the spectrum, wet/normal/dry

Modeling Objective

- to produce actual estimates of uncertainty based on probability distributions.
- Hypothesis:

Ultimately, feedback climate changes to landscape

Precipitation
$$n = 500$$

Precipitation $n = 500$

Precipitation $n = 5$

Method

1. Motivation

 Oyama & Nobre coupled modeling: (CPTEC/COLA AGCM)

2 potential equilibria

From Oyama & Nobre 2003 doi:10.1029/2003GL018600

"If sustainable development and conservation policies are not able to halt this increasing environmental degradation, then land use changes could, *per se*, tip the biome-climate system towards a *new alternative drier stable equilibrium state* with savannization of parts of Amazonia and desertification of the driest area of Northeast Brazil."

Technical Considerations

- 4.1 T of data (and counting...)
- 100 year-long simulations (50 ROD, 50 BAU)
- 1 sim month: 6 real days

Postprocessing:

- Only retained a subset of variables
- LBA data, TRMM, MODIS LST available for validation

5. Results

Brighter albedo

Precipitation difference (ROD – BAU), %

Domain-Averaged rainfall histograms

Total Deforestation?

Total Deforestation?

Average difference in wind direction

Major Advancements

- Treatment of uncertainty
- Spatial representation of threatened areas
- Span over wet-dry transition

Extras

2) Represent these maps in the RAMS Climate Model

Aggregated to 20 km

Classes from GLC2000

WCS in RAMS

BCS in RAMS

Total Deforestation

4. Aspects of Model Configuration

- 20 km grid spacing (c.f. Ramos da Silva & Avissar 2006)
- 30 vertical levels
- Kain-Frisch convective parameterization
- LEAF-2 (Walko et al. 2000) biophysical characteristics
- Chen radiation scheme
- Mellor-Yamada diffusion
- Soil levels = -4.0, -2.0, -1.0, -.8, -.6, -.4, -.2, -.1, meters