

Arduino Gestion de la puissance

Jean-Christophe Carré

IFNTI Sokodé S3

28 mars 2022

Table des matières

- Rappels sur la puissance
- 2 Transistors
 - Transistor bipolaire
 - Transistor à effet de champ
 - Commutation / amplification
- Relais
 - Principe
 - Configurations de contacts
 - Exemple

Rappels sur la puissance

Puissance

000

Formule générale

P = U * I

P: puissance en watt (W)

U: tension en volts (V)

I : courant en ampère (A)

Analogie : chute d'eau

Où a-t-on le plus de puissance : une chute d'eau haute avec un débit faible ou une chute basse avec un débit fort?

000

Ordres de grandeur

		_		
LED	moteur CC	Ampoule LED	Ventilateur	bouilloire
2V	5V	230V	230V	230V
10mA	100mA	20mA	200 mA	5A
20 mW	500 mW	5W	50W	1kW
DC	DC réversible	AC	AC	sans importance

Limitation matérielle

Courant max broche Arduino: 20mA

Tension broche Arduino: 5V DC

Transistors

Transistor bipolaire

Lire la datasheet!

- Tension Émetteur-collecteur maximale
- Courant collecteur maximal
- Puissance maximale délivrée
- Ordre des broches (pinout)

NPN

Polarisation du circuit

Règles

Transistor passant si $V_{BE} > 0.6V$

$$I_C = \beta . I_B$$
 β est le gain du transistor $(\beta \gg 1)$

Puissance dissipée - intérêt de la PWM (1/2)

Calcul

Puissance dissipée : $P_d = V_{BE}.i_E + V_{CE}.i_C$

 $V_{BE} \approx V_{CE}$ et $i_C \gg i_E$ donc $P_d \approx V_{CE}.i_C$

Or:
$$V_{CE} = V_{CC} - R_C.i_C$$
 donc $P_d \simeq (V_{CC} - R_C.i_C).i_C = V_{CC}.i_C - R_C.i_C^2$

$$\frac{dP_d}{di_C} = V_{CC} - 2.R_C.i_C \qquad \qquad \frac{dP_d}{di_C} = 0 \Leftrightarrow i = \frac{V_{CC}}{2.R_C}$$

Puissance maximale dissipée :

$$P_{d_{max}} = \left(V_{CC} - R_C \frac{V_{CC}}{2R_C}\right) \frac{V_{CC}}{2R_C}$$
$$= \frac{V_{CC}^2}{2R_C} \left(1 - \frac{R_C}{2R_C}\right)$$
$$= \frac{1}{4} \frac{V_{CC}^2}{R_C}$$

Soit 1/4 de la puissance maximale que peut prendre R_C !

マロケス部を大きたえきと (達)人

Puissance dissipée - intérêt de la PWM (2/2)

Diode de roue libre

À chaque fois qu'il y a une bobine à alimenter (moteur ou bien relais)

Évite les surtensions au moment ou on cesse d'alimenter la bobine.

Relais au repos

Relais actif

Configuration de relais

Remarque

Même dénomination pour les contacteurs / interrupteurs

Comparaisons techniques

	Relais	Transistor	optocoupleur
Isolation galvanique	Oui	Non	Oui
Temps de basculement	pprox10 ms	$pprox$ 10 μ s	$pprox$ 10 μ s
Nombre de cycles	$pprox 10^5$	∞	∞
Consommation électrique	≈10 W	0 à 50 W	$pprox 1 \ W$
		Attention	
		refroidissement	
Puissance en sortie	∞	< 1000 W	< 10 W
Compaptible AC	Oui	Non	Oui si Triac

Contrôler un moteur 230V

