计算理论作业参考答案

计算理论

(a) {w|w由1开头,由一个0结尾}

Solution

构造自动机 $M=\{Q,\Sigma,\delta,q_1,F\}$,其中: $Q=\{q_1,q_2,q_3,q_4\},\Sigma=\{0,1\},F=\{q_3\}$

	0	1
q_1	q_4	q_2
q_2	q_3	q_2
q ₃	q 5	q ₂
q_4	q_4	q_4
q_5	q_5	q_2

Table: δ 定义

- **← □ → ← □ → ← 글 → ← 글 → ∽ へ ○**

计算理论 2 / 19

(b) {w|w至少包含3个1}

Solution

构造自动机
$$M=\{Q,\Sigma,\delta,q_1,F\}$$
,其中: $Q=\{q_1,q_2,q_3,q_4\},\Sigma=\{0,1\},F=\{q_4\}$

	0	1
q_1	q_1	q ₂
q_2	q_2	q ₃
q ₃	q ₃	q_4
q_4	q_4	q_4

Table: δ 定义

计算理论 3 / 19

 $(c) \{w | w$ 在奇数位置是1 $\}$

Solution

构造自动机 $M = \{Q, \Sigma, \delta, q_1, F\}$,其中: $Q = \{q_1, q_2, q_3\}, \Sigma = \{0, 1\},$ $F = \{q_1, q_2\}$

	0	1
q_1	q ₃	q_2
q_2	q_1	q_1
q ₃	q ₃	q ₃

Table: δ 定义

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

(d) {w|w的长度至多为5}

Solution

构造自动机
$$M = \{Q, \Sigma, \delta, q_1, F\}$$
,其中: $Q = \{q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$, $\Sigma = \{0, 1\}$, $F = \{q_1, q_2, q_3, q_4, q_5, q_6\}$

	0	1
q_1	q_2	q_2
q_2	q ₃	q ₃
q ₃	q_4	q_4
q_4	q_5	q_5
q_5	q_6	q 6
q_6	q_7	q ₇
q_7	q_7	q ₇

Table: δ 定义

算理论 5 / 19

(a) {w|w以00结尾}并且仅有3个状态

Solution

构造自动机 $N = \{Q, \Sigma, \delta, q_1, F\}$,其中: $Q = \{q_1, q_2, q_3\}, \Sigma = \{0, 1\}, F = \{q_3\}$

	0	1	ε
q_1	$\{q_1,q_2\}$	q_1	Ø
q_2	q ₃	Ø	Ø
q ₃	Ø	Ø	Ø

Table: δ 定义

计算理论 6 / 19

(b) {0}仅有2个状态

Solution

构造自动机 $N = \{Q, \Sigma, \delta, q_1, F\}$,其中: $Q = \{q_1, q_2\}, \Sigma = \{0, 1\}, F = \{q_2\}$

$q_1 \mid q_2 \mid \emptyset \mid$	d
91 92 9	Ø
$q_2 \mid \emptyset \mid \emptyset$	Ø

 $start \rightarrow q_1 0 q_2$

Table: δ 定义

7 / 19

算理论

3. 证明非确定自动机可以等价地转换为确定自动机.

Proof.

设非确定自动机 $N=(Q,\Sigma,\delta,q_0,F)$ 识别语言A,即 $N \mapsto A$.构造确定自动机 $M=(Q',\Sigma,\delta',q'_0,F')$ 如下:

- 1) $Q' = 2^Q$
- 2) $\delta': Q' \times \Sigma \to Q'$, $\delta'(R, a) = \{q \in Q \mid q \in E(\delta(r, a))$ 对某个 $r \in R\}$
- 3) $q_0' = E(\{q_0\})$
- 4) $F' = \{R \in Q' \mid R$ 至少包含N的一个终止状态}

下面运用数学归纳法证明 $M \mapsto A$:

对任意 $\omega \in A$, 设存在一个序列 $y_1y_2...y_m = \omega$ 能被N识别, 即 $N \mapsto y_1y_2...y_m$.

* 先考虑 y_1 , 设 $f = q'_0$. 若 $y_1 = \epsilon$, 则 $\emptyset \neq \delta(q_0, y_1) = \delta(q_0, \epsilon) \subseteq E(\{q_0\}) = q'_0 = g$. 若 $y_1 \neq \epsilon$, 则根据M的定义有 $\emptyset \neq \delta(q_0, y_1) \subseteq \delta'(q'_0, y_1) = \{q \in Q \mid q \in E(\delta(r, y_1))$ 对某个 $r \in q'_0\} = g$.

所以存在这样的 $f, g \in Q'$,满足 $\delta'(f, y_1) = g$ 或 $f = g = q'_0$,并且 $\{q \in Q \mid \delta(q, y_1) \neq \emptyset\} = \{q_0\} \subseteq f$.

计算理论 8/

Proof(Cont.)

* 现假设对于 y_{k-1} , 存在 f_{k-1} , $g_{k-1} \in Q'$ 使得 $\delta'(f_{k-1}, y_{k-1}) = g_{k-1}$ 或 $f_{k-1} = g_{k-1}$, 并且 $\{q \in Q \mid \delta(q, y_{k-1}) \neq \emptyset\} \subseteq f_{k-1}$. 设 $Q_k = \bigcup_{q \in f_{k-1}} \delta(q, y_{k-1})$. 易知 $Q_k \subseteq g_{k-1}$. 设 $f_k = g_{k-1}$.

事实上, 对于上述 y_k 的两种情况, 易知 $\{q \mid \delta(q, y_k) \neq \emptyset\} \subseteq f_k = g_{k-1}$. 因为对于任意 $q \in \{q \mid \delta(q, y_k) \neq \emptyset\}$, 由于N接受... $y_{k-1}y_k$..., 所以必存在 $q' \in \{q \in Q \mid \delta(q, y_{k-1}) \neq \emptyset\} \subseteq f_{k-1}$ 使得 $q \in \delta(q', y_{k-1})$. 所以 $q \in g_{k-1}$.

所以无论如何,存在这样的 $f_k, g_k \in Q'$, 使得 $\delta(f_k, y_k) = g_k$ 或 $f_k = g_k$, 并且有 $\{q \in Q \mid \delta(q, y_k) \neq \emptyset\} \subseteq f_k$.

由上述的证明过程易知若 $\delta(q_k, y_k) \subseteq F(q_k \in Q_k)$, 我们有 $g_k \in F'$.

9 / 19

计算理论

Proof(Cont.)

由归纳法我们证明了对于一切 y_n ($n \le m$), 存在 $f_n, g_n \in Q'$, 满足 $\delta'(f_n, y_n) = g_n$ 或 $f_n = g_n$,且 $g_m \in F'$. 由以上证明易知所有的令 $f_n = g_n$ 成立的 y_n 恰好都是 ϵ . 在原序列 $y_1y_2...y_m$ 中去掉那些 $y_n = \epsilon$,我们得到序列 $z_1z_2...z_p$,显然M中有这样的一个状态序列 $q_0q_1...q_l$ 接受它(若 $g_m \ne q_l$,不影响 $q_l \in F$,因为我们去掉的那些状态 q_{l+1} 都满足 $q_i = q_{l+1}$, $i \ge 0$). 所以 $M \mapsto z_1z_2...z_p$ 且 $z_1z_2...z_n = y_1y_2...y_m = \omega$. 所以 $M \mapsto \omega$.

因为 $\omega \in A$ 是任意的, 所以 $M \mapsto A$.

十算理论 10 / 19

1. 证明: 上下文无关语言在语言的并运算、链接运算以及Kleene星运算是封闭的.

Proof.

设 $G_1 = (V_1, \Sigma_1, R_1, S_1)$ 和 $G_2 = (V_2, \Sigma_2, R_2, S_2)$ 为任意两个上下文无关文法.

1) 并运算:

构造 $G = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R, S)$, 其中 $R = R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$. 下面证明: $\mathcal{L}(G) = \mathcal{L}(G_1) \cup \mathcal{L}(G_2)$.

设 $w \in \mathcal{L}(G_1)$,则 G_1 中存在一个序列 $S_1 \Rightarrow P_1 \Rightarrow P_2 \Rightarrow ... \Rightarrow P_n = w$ 生成w,记作: $S_1 \stackrel{*}{\Rightarrow} w$.

显然G中存在一个序列 $S \Rightarrow S_1 \Rightarrow ... \Rightarrow P_n = w$ 生成w, 即 $S \stackrel{*}{\Rightarrow} w$, 所以 $w \in \mathcal{L}(G)$. G_2 同理.

反之, 对于任意 $w \in \mathcal{L}(G)$, 设其生成序列为 $S \Rightarrow Q_1 \Rightarrow Q_2 \Rightarrow ... \Rightarrow Q_n = w$. 易知 $Q_1 = S_1$ 或 $Q_1 = S_2$. 所以w 也能被 G_1 或 G_2 接受, 即 $w \in \mathcal{L}(G_1) \cup \mathcal{L}(G_2)$.

综上,
$$\mathcal{L}(G) = \mathcal{L}(G_1) \cup \mathcal{L}(G_2)$$
.

计算理论 11 / 19

Cont.

2) 链接运算:

构造 $G = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R, S)$, 其中 $R = R_1 \cup R_2 \cup \{S \rightarrow S_1 S_2\}$. 下面证明: $\mathcal{L}(G) = \mathcal{L}(G_1)\mathcal{L}(G_2)$.

设 w_1 ∈ $\mathcal{L}(G_1)$, w_2 ∈ $\mathcal{L}(G_2)$, 则 G_1 中存在一个序

列 $S_1 \Rightarrow P_1 \Rightarrow P_2 \Rightarrow ... \Rightarrow P_n = w_1$ 生成 w_1 , 记作: $S_1 \stackrel{*}{\Rightarrow} w_1$. G_2 中同理,

设 $S_2 \Rightarrow Q_1 \Rightarrow Q_2 \Rightarrow ... \Rightarrow Q_n = w_2$ 生成 w_2 , 记作: $S_2 \stackrel{*}{\Rightarrow} w_2$.

显然G中存在一个序列 $S \Rightarrow S_1S_2 \Rightarrow P_1S_2 \Rightarrow ... \Rightarrow w_1S_2 \Rightarrow w_1Q_1 \Rightarrow ... \Rightarrow w_1w_2$ 生成 w_1w_2 , 即 $S \stackrel{*}{\Rightarrow} w_1w_2$, 所以 $w_1w_2 \in \mathcal{L}(G)$.

反之, 对于任意 $w \in \mathcal{L}(G)$, 设其生成序列

为 $S \Rightarrow (Q_1 = S_1S_2) \Rightarrow Q_2 \Rightarrow ... \Rightarrow Q_n = w$. 根据R 的定义, 该序列接下来必然 仅按照 R_1 和 R_2 中的规则演化, 所以w 必为 w_1w_2 的形式, 其中 $S_1 \stackrel{*}{\Rightarrow} w_1$, $S_2 \stackrel{*}{\Rightarrow} w_2$. 即 $w \in \mathcal{L}(G_1)\mathcal{L}(G_2)$.

综上, $\mathcal{L}(G) = \mathcal{L}(G_1)\mathcal{L}(G_2)$.

计算理论 12 / 19

Cont.

2) Kleen运算:

构造 $G = (V_1 \cup \{S\}, \Sigma_1, R, S)$, 其中 $R = R_1 \cup \{S \rightarrow \epsilon, S \rightarrow SS_1\}$. 下面证明: $\mathcal{L}(G) = \mathcal{L}(G_1)^*$. 设 $w = w_1 w_2 ... w_n \in \mathcal{L}(G_1)^*$, 其中 $w_i \in \mathcal{L}(G_1)$, $i \geq 0$. 则 G_1 中存在一个序列 $G_1 \Rightarrow P_1^i \Rightarrow P_2^i \Rightarrow ... \Rightarrow P_n^i = w_i$ 生成 w_i , 记作: $G_1 \stackrel{*}{\Rightarrow} w_i$, 对某个 $G_1 \stackrel{*}{\Rightarrow} 0$. 显然G中存在一个序列 $G_2 \Rightarrow SG_1 \Rightarrow SG_1 \Rightarrow SG_1 \Rightarrow ... \Rightarrow SG_1 ... SG_1 \Rightarrow ... \Rightarrow SG_1$

反之, 用数学归纳法易证 $w \in \mathcal{L}(G) \subseteq \mathcal{L}(G_1)^*$:

当|w|=1时, 显然必有 $w\in\mathcal{L}(G_1)$ (因为w要么是 ϵ , 要么必为 S_1 生成的字符), 因此结论成立.

13 / 19

Cont.

假设对于任意满足 $|p| \le k$ 的 $p \in \mathcal{L}(G)$,都有 $p \in \mathcal{L}(G_1)^*$ 成立. 现设 $w \in \mathcal{L}(G)$ 且|w| = k+1. 设存在一个G中的序列生成w,在这个序列生成的过程中,必会出现这种形式: $S \Rightarrow ... \Rightarrow a_1a_2...a_nS'b_1b_2...b_m \Rightarrow ... \Rightarrow w$,其中 $n \ge 0$, $m \ge 0$,且 $a_1, ..., a_n, b_1, ...b_m$ 均为字符. S'是变量. 根据R的定义,S'只能是 ϵ ,S, S_1 ,或者满足 $S_1 \stackrel{*}{\Rightarrow} S'$. 无论如何,终有 $S' \stackrel{*}{\Rightarrow} w' \in \mathcal{L}(G_1)$. 又由归纳假设知 $a_1a_2...a_n \in \mathcal{L}(G_1)^*$,且 $b_1b_2...b_m \in \mathcal{L}(G_1)^*$. 所以 $S \stackrel{*}{\Rightarrow} a_1a_2...a_nw'b_1b_2...b_m = w \in \mathcal{L}(G_1)^*$.

综上, $\mathcal{L}(G) = \mathcal{L}(G_1)^*$.

计算理论 14 / 19

2. 构造一个上下文无关文法G和一个下推自动机P都生成 $\{0,1\}$ 上的语 (n30) Solution $G: S \rightarrow 0S1 \mid \epsilon$ P如下图所示: $0,0 \rightarrow \epsilon_{II}$ $\epsilon,\$ o S$ $\epsilon, \epsilon \to \$$ q_{start} $\epsilon, \$ \to \epsilon$ $\epsilon, \mathcal{S}
ightarrow$ $\epsilon,\epsilon o {\mathcal S}$ q_{accept} q_3 15 / 19

1. 构造TM计算n-1函数.

Solution

如下图所示:

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

十算理论 16 / 19

2.依据下面的图灵机构造格局演算序列,表明图灵机能接受输入11001#11001.

TM能识别语言 $B = \{\omega \sharp \omega | \omega \in \{0,1\} *\}.$ 设 $\Sigma = \{0,1,\sharp\}, \Gamma = \{0,1,\sharp,X,\sqcup,\rhd\},$ 转移函数 δ 定义如下表:

			Symbol			
state	\triangleright	0	1	#	X	Ш
q_0	(q_1,\rhd,R)					
q_1		,	(q_3, X, R)	(q_8,\sharp,R)		
q_2		$(q_2, 0, R)$	$(q_2,1,R)$	(q_4,\sharp,R)		
q_3		$(q_3, 0, R)$	$(q_3,1,R)$	(q_5,\sharp,R)		
q_4		(q_6, X, L)			(q_4, X, R)	
q_5			(q_6, X, L)		(q_5, X, R)	
q_6		$(q_6, 0, L)$	$(q_6, 1, L)$	(q_7,\sharp,L)	(q_6, X, L)	
q_7		$(q_7, 0, L)$	$(q_7,1,L)$		(q_1,X,R)	
q ₈					(q_8, X, R)	(q_a,\sqcup,R)

17 / 19

计算理论

Solution

```
格局演算序列为: q_0 \triangleright 11001\sharp 11001 \sqcup, \triangleright q_1 11001\sharp 11001 \sqcup, \triangleright Xq_3 1001\sharp 11001 \sqcup, \triangleright X1001\sharp q_5 11001 \sqcup, \triangleright X1001q_6 \sharp X1001 \sqcup, \triangleright X100q_7 1\sharp X1001 \sqcup, \triangleright X1001\sharp X1001 \sqcup, \triangleright XXq_3 001\sharp X1001 \sqcup, \triangleright XX001\sharp q_5 X1001 \sqcup, \triangleright XX001\sharp Xq_6 001 \sqcup, \triangleright XX001\sharp XX001 \sqcup, \triangleright XXXq_2 01\sharp XX001 \sqcup, \triangleright XXX01\sharp q_4 XX001 \sqcup, \triangleright XXX01\sharp Xq_6 XX01 \sqcup, \triangleright XXXXq_2 1\sharp XXX01 \sqcup, \triangleright XXXX1\sharp XXQ_2 1\sharp XXX01 \sqcup, \triangleright XXXX1\sharp XXQ_2 1\sharp XXXX1 \sqcup, \triangleright XXXXX1\sharp XXXX1 \sqcup, \triangleright XXXXX1 \sharp XXXX1 \sqcup, \triangleright XXXXX1 \sharp XXXX1 \sqcup, \triangleright XXXXXX1 \sqcup, \triangleright XXXXXXX1 \sqcup, \triangleright XXXXXX1 \sqcup, \triangleright XXXXXX1 \sqcup,
```

18 / 19

理论

3.修改图灵机TM $M_0 = (\{q_0, q_1, q_2, q_3, q_4, q_a, q_r\}, \{0, 1\}, \{0, 1, X, Y, \triangleright, \sqcup\}, \delta, q_0, q_{accept}, q_{reject})$,使之能判定语言: $\{0^n 1^n | n \geq 1\}$.

			Symbol			
state	\triangleright	0	1	X	Y	\sqcup
q_0	(q_1,\rhd,R)					
q_1		(q_2, X, R)			(q_4, Y, R)	
q_2		$(q_2, 0, R)$	(q_3, Y, L)		(q_2, Y, R)	
q_3		$(q_3, 0, L)$		(q_1,X,R)	(q_3, Y, L)	
q_4					(q_4, Y, R)	(q_a,\sqcup,R)

Solution Symbol X state (q_1, \triangleright, R) q_0 (q_2, X, R) $(q_r, 1, R)$ (q_4, Y, R) (q_r, \sqcup, R) q_1 (q_3, Y, L) (q_2, Y, R) (q_r, \sqcup, R) $(q_2, 0, R)$ q_2 (q_1, X, R) (q_3, Y, L) $(q_3, 0, L)$ q_3 $(q_r,0,R)$ $(q_r, 1, R)$ (q_4, Y, R) (q_a, \sqcup, R) q_4