Package 'dgdecomp'

January 14, 2020

Type Package

Title Das Gupta Decomposition on Multiplicative Factors

Version 1.1.0

Description Takes any P number of factors, and decomposes them into additive factors.

Encoding UTF-8 **LazyData** TRUE

URL https://github.com/sadatnfs/dgdecomp

BugReports https://github.com/sadatnfs/dgdecomp/issues

NeedsCompilation yes **Author** Nafis Sadat [aut]

Maintainer Nafis Sadat <sadatnfs@gmail.com>

LinkingTo Rcpp, RcppArmadillo

Depends data.table, Rcpp, RcppArmadillo

Suggests assertthat, testthat, foreach, data.table, matrixStats, MASS,

knitr, rmarkdown

VignetteBuilder knitr

License MIT + file LICENSE

RoxygenNote 6.1.1 **RemoteType** github

RemoteHost api.github.com

RemoteRepo dgdecomp

RemoteUsername sadatnfs

RemoteRef master

RemoteSha 545f88d3b3677b192c3fca1b5a4cf0c39d2bef9a

RemoteSubdir dgdecomp GithubRepo dgdecomp GithubUsername sadatnfs

GithubRef master

GithubSHA1 545f88d3b3677b192c3fca1b5a4cf0c39d2bef9a

GithubSubdir dgdecomp

Archs i386, x64

2 dgdecomp-package

R topics documented:

dgdecomp-package Das Gupta Decomposition on Multiplicative Factors

Description

Takes any P number of factors, and decomposes them into additive factors.

Details

The DESCRIPTION file:

Package: dgdecomp Type: Package

Title: Das Gupta Decomposition on Multiplicative Factors

Version: 1.1.0

Authors@R: person("Nafis", "Sadat", email = "sadatnfs@gmail.com", role = c("aut", "cre"))

Description: Takes any P number of factors, and decomposes them into additive factors.

Encoding: UTF-8 LazyData: TRUE

URL: https://github.com/sadatnfs/dgdecomp
BugReports: https://github.com/sadatnfs/dgdecomp/issues

NeedsCompilation: yes

Author: Nafis Sadat [aut]

Maintainer: Nafis Sadat <sadatnfs@gmail.com>

LinkingTo: Rcpp, RcppArmadillo

Depends: data.table, Rcpp, RcppArmadillo

Suggests: assertthat, testthat, foreach, data.table, matrixStats, MASS, knitr, rmarkdown

VignetteBuilder: knitr

License: MIT + file LICENSE

RoxygenNote: 6.1.1
RemoteType: github
RemoteHost: api.github.com
RemoteRepo: dgdecomp
RemoteUsername: sadatnfs

RemoteRef: master

RemoteSha: 545f88d3b3677b192c3fca1b5a4cf0c39d2bef9a

RemoteSubdir: dgdecomp GithubRepo: dgdecomp GithubUsername: sadatnfs GithubRef: master

GithubSHA1: 545f88d3b3677b192c3fca1b5a4cf0c39d2bef9a

GithubSubdir: dgdecomp

Index of help topics:

given input

Decomp_on_DT Apply DG Decomposition to data.table columns

Decomp_Factors 3

Func_Create_Combn Compute the combination of all positions of the

given factor segmented into two pieces

Func_Cross Compute the combination of all the elements of

the given vectors corresponding to the given

sizes (using Func_Create_Combn)

Func_Dem Compute the denomiator of the inner sums in the

DG Decomposition

Func_Inner Compute the fraction for the inner sum in the

DG Decomposition where all the params gets

passed to Func_Num() and Func_Den()

Sum over all inner sums for the DG

Decomposition

Func_Num Compute the numerator of the inner sums in the

DG Decomposition

dgdecomp-package Das Gupta Decomposition on Multiplicative

Factors

factors such that the product of P factors

equal a measure for 2 time periods

simulate_decomp_data_fullmat

Simulate grouped data for decomp analysis (T by

IDI by factors)

This section should provide a more detailed overview of how to use the package, including the most important functions.

Author(s)

Nafis Sadat [aut]

Func_Inner_Sum

Maintainer: Nafis Sadat <sadatnfs@gmail.com>

References

This optional section can contain literature or other references for background information.

See Also

Optional links to other man pages

Examples

```
## Optional simple examples of the most important functions
## Use \dontrun{} around code to be shown but not executed
```

Decomp_Factors Compute the marginal decomposition effects from given input

Description

Decomp_Factor_Matx() can be used if the input has multiple rows of data to decompose, whereas Decomp_Factor() only takes in vectors as inputs.

4 Decomp_on_DT

Usage

```
Decomp_Factors(vec_x, vec_y, return_dt = TRUE, equality_check = TRUE,
  ...)
Decomp_Factors_Matx(mat_x, mat_y, return_dt = TRUE, use_cpp = TRUE,
  parallel = 1, equality_check = TRUE, ...)
```

Arguments

First input vector (represents t-1) vec_x vec_y Second input vector (represents t) A boolean on whether to return a data.table or a vector return_dt equality_check Check whether the decomp values align with inputs. Default: TRUE. Highly

recommended to set to TRUE.

extra parameters to be passed to all.equal(), for e.g. the tolerance.

First input matrix (only for Decomp_Factor_Matx()) mat_x mat_y Second input matrix (only for Decomp_Factor_Matx())

A boolean on whether to use the C++ compiled code or not. Default: TRUE use_cpp

Number of threads. Default: 1 parallel

Value

A data.table or vector of decomposed effects for each factors, which is already multiplied by the change values

Decomp_on_DT

Apply DG Decomposition to data.table columns

Description

Apply DG Decomposition to data.table columns

Usage

```
Decomp_on_DT(input_data, factor_names, time_col, bycol, use_cpp = TRUE,
 parallel = 1, ...)
```

Arguments

input_data	A data.table with the factors, which must already be sorted
factor_names	A vector of column names for the factor
time_col	A string for the column name
bycol	The 'by' slicer which must make sure that the data is reduced to just 2 rows per group after slicing
use_cpp	A boolean on whether to use the C++ compiled code for the factor for-loop or not (passes to $Decomp_Factor_Matx()$). Default: TRUE
parallel	Number of threads. Default: 1
	extra parameters to be passed through Decomp_Factors() to all.equal()

Func_Create_Combn 5

Value

A data.table of the same size as input, but instead with the additive decomposition results (first row will be NA as being the starting period)

 $\begin{tabular}{ll} Func_Create_Combn & Compute the combination of all positions of the given factor segmented \\ into two pieces \\ \end{tabular}$

Description

Compute the combination of all positions of the given factor segmented into two pieces

Usage

```
Func_Create_Combn(Pfac, size1, size2)
```

Arguments

Pfac	Number of factors minus 1
size1	Number of elements to take from vec_x
size2	Number of elements to take from vec_y

Value

A vector of positions made from the unique combinations of size1 and size2

Func_Cross	Compute the combination of all the elements of the given vectors cor-
	responding to the given sizes (using Func_Create_Combn)

Description

Compute the combination of all the elements of the given vectors corresponding to the given sizes (using Func_Create_Combn)

Usage

```
Func_Cross(vec_x, vec_y, size1, size2)
Func_Cross_Matx(vec_x, vec_y, size1, size2)
```

Arguments

vec_x	First input vector
vec_y	Second input vector
size1	Number of elements to take from vec_x
size2	Number of elements to take from vec_y

Value

A vector of column products made from the unique combinations of the *data*

6 Func_Inner

_		_
F	unc	Dem

Compute the denomiator of the inner sums in the DG Decomposition

Description

Compute the denomiator of the inner sums in the DG Decomposition

Usage

```
Func_Dem(P, r)
```

Arguments

P Number of factors

r The summing indicator

Value

A numeric with value of P * choose((P-1), (r-1))

Func_Inner

Compute the fraction for the inner sum in the DG Decomposition where all the params gets passed to Func_Num() and Func_Den()

Description

Compute the fraction for the inner sum in the DG Decomposition where all the params gets passed to Func_Num() and Func_Den()

Usage

```
Func_Inner(P, r, vec_x, vec_y)
Func_Inner_Matx(P, r, vec_x, vec_y)
```

Arguments

Р	Number of factors
r	The summing indicator
vec_x	First input vector
vec_y	Second input vector

Value

The fraction of the results of Func_Num() and Func_Den

Func_Inner_Sum 7

_	-	_
Func	Inner	Sum

Sum over all inner sums for the DG Decomposition

Description

Sum over all inner sums for the DG Decomposition

Usage

```
Func_Inner_Sum(P, vec_x, vec_y)
Func_Inner_Sum_Matx(P, vec_x, vec_y)
```

Arguments

P	Number of factors
vec_x	First input vector
vec_y	Second input vector

threads Number of OpenMP threads to use. Default: 1

Value

A numeric value with the full inner sum for the given effect

Func_Num

Compute the numerator of the inner sums in the DG Decomposition

Description

Compute the numerator of the inner sums in the DG Decomposition

Usage

```
Func_Num(P, r, vec_x, vec_y)
Func_Num_Matx(P, r, vec_x, vec_y)
```

Arguments

P	Number of factors
r	The summing indicator
vec_x	First input vector
vec_y	Second input vector

Value

A single numeric from the sums of Func_Cross()

simulate_decomp_data Simulate simple random decomp data for P factors such that the product of P factors equal a measure for 2 time periods

Description

Simulate simple random decomp data for P factors such that the product of P factors equal a measure for 2 time periods

Usage

```
simulate_decomp_data(num_fac)
```

Arguments

num_fac Number of factors to simulate

Value

A named list with the vector of P factors for 2 time periods, and 2 numeric measures for each time period, which are just the product of each of the two factor vectors

```
simulate_decomp_data_fullmat
```

Simulate grouped data for decomp analysis (T by IDI by factors)

Description

Simulate grouped data for decomp analysis (T by IDI by factors)

Usage

```
simulate_decomp_data_fullmat(T_term, num_factors, id_grps)
```

Arguments

T_term Number of time periods

id_grps Number of groups

Value

A data.table with T_{term} rows and num_factors+1 columns where X_1, \dots, X_p are the factors, and Y is the rowwise product of the factors