9.1 Understanding the concept of Relations-Reading

Notebook: Discrete Mathematics [CM1020]

Author: SUKHJIT MANN

Cornell Notes

Topic:

9.1 Understanding the concept of Relations-Reading

Course: BSc Computer Science

Class: Discrete Mathematics-Reading

Date: January 11, 2020

Essential Question:

What are relations & their properties. Also, how can they be represented?

Questions/Cues:

- What is a binary relation from A to B?
- How are functions described as relations?
- What are relations on a set?
- What are some properties of relations?
- How do we combine two relations from A to B?
- What is the composite of two relations?
- How can a relation be represented using a matrix?
- How can a relation be represented using a digraph?
- What types of closures can be performed on relations?

Notes

DEFINITION 1

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

In other words, a binary relation from A to B is a set R of ordered pairs where the first element of each ordered pair comes from A and the second element comes from B. We use the notation a R b to denote that $(a, b) \in R$ and a R b to denote that $(a, b) \notin R$. Moreover, when (a, b) belongs to R, a is said to be related to b by R.

Binary relations represent relationships between the elements of two sets. We will introduce *n*-ary relations, which express relationships among elements of more than two sets, later in this chapter. We will omit the word *binary* when there is no danger of confusion.

EXAMPLE 1

Let A be the set of students in your school, and let B be the set of courses. Let R be the relation that consists of those pairs (a, b), where a is a student enrolled in course b. For instance, if Jason Goodfriend and Deborah Sherman are enrolled in CS518, the pairs

(Jason Goodfriend, CS518) and (Deborah Sherman, CS518) belong to R. If Jason Goodfriend is also enrolled in CS510, then the pair (Jason Goodfriend, CS510) is also in R. However, if Deborah Sherman is not enrolled in CS510, then the pair (Deborah Sherman, CS510) is not in R.

Note that if a student is not currently enrolled in any courses there will be no pairs in *R* that have this student as the first element. Similarly, if a course is not currently being offered there will be no pairs in *R* that have this course as their second element.

EXAMPLE 2 Let A be the set of cities in the U.S.A., and let B be the set of the 50 states in the U.S.A. Define the relation R by specifying that (a, b) belongs to R if a city with name a is in the state b. For instance, (Boulder, Colorado), (Bangor, Maine), (Ann Arbor, Michigan), (Middletown, New Jersey), (Middletown, New York), (Cupertino, California), and (Red Bank, New Jersey) are in R.

EXAMPLE 3 Let $A = \{0, 1, 2\}$ and $B = \{a, b\}$. Then $\{(0, a), (0, b), (1, a), (2, b)\}$ is a relation from A to B. This means, for instance, that 0 R a, but that 1 R b. Relations can be represented graphically, as shown in Figure 1, using arrows to represent ordered pairs. Another way to represent this relation is to use a table, which is also done in Figure 1. We will discuss representations of relations in more detail in Section 9.3.

FIGURE 1 Displaying the Ordered Pairs in the Relation R from Example 3.

Functions as Relations

Recall that a function f from a set A to a set B (as defined in Section 2.3) assigns exactly one element of B to each element of A. The graph of f is the set of ordered pairs (a, b) such that b = f(a). Because the graph of f is a subset of f is a relation from f to f. Moreover, the graph of a function has the property that every element of f is the first element of exactly one ordered pair of the graph.

Conversely, if R is a relation from A to B such that every element in A is the first element of exactly one ordered pair of R, then a function can be defined with R as its graph. This can be done by assigning to an element a of A the unique element $b \in B$ such that $(a, b) \in R$. (Note that the relation R in Example 2 is not the graph of a function because Middletown occurs more than once as the first element of an ordered pair in R.)

A relation can be used to express a one-to-many relationship between the elements of the sets A and B (as in Example 2), where an element of A may be related to more than one element of B. A function represents a relation where exactly one element of B is related to each element of A.

Relations are a generalization of graphs of functions; they can be used to express a much wider class of relationships between sets. (Recall that the graph of the function f from A to B is the set of ordered pairs (a, f(a)) for $a \in A$.)

DEFINITION 2

A relation on a set A is a relation from A to A.

In other words, a relation on a set A is a subset of $A \times A$.

EXAMPLE 4 Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) \mid a \text{ divides } b\}$?

Solution: Because (a, b) is in R if and only if a and b are positive integers not exceeding 4 such that a divides b, we see that

$$R = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}.$$

The pairs in this relation are displayed both graphically and in tabular form in Figure 2.

R	1	2	3	4
1	×	×	\times	×
2		\times		×
3			\times	
4				×
	l			

FIGURE 2 Displaying the Ordered Pairs in the Relation R from Example 4.

EXAMPLE 5 Consider these relations on the set of integers:

$$R_1 = \{(a, b) \mid a \le b\},\$$

$$R_2 = \{(a, b) \mid a > b\},\$$

$$R_3 = \{(a, b) \mid a = b \text{ or } a = -b\},\$$

$$R_4 = \{(a, b) \mid a = b\},\$$

$$R_5 = \{(a, b) \mid a = b + 1\},\$$

$$R_6 = \{(a, b) \mid a + b \le 3\}.$$

Which of these relations contain each of the pairs (1, 1), (1, 2), (2, 1), (1, -1), and (2, 2)?

Remark: Unlike the relations in Examples 1-4, these are relations on an infinite set.

Solution: The pair (1, 1) is in R_1 , R_3 , R_4 , and R_6 ; (1, 2) is in R_1 and R_6 ; (2, 1) is in R_2 , R_5 , and R_6 ; (1, -1) is in R_2 , R_3 , and R_6 ; and finally, (2, 2) is in R_1 , R_3 , and R_4 .

It is not hard to determine the number of relations on a finite set, because a relation on a set A is simply a subset of $A \times A$.

DEFINITION 3

A relation R on a set A is called *reflexive* if $(a, a) \in R$ for every element $a \in A$.

Remark: Using quantifiers we see that the relation R on the set A is reflexive if $\forall a((a, a) \in R)$, where the universe of discourse is the set of all elements in A.

We see that a relation on A is reflexive if every element of A is related to itself. **EXAMPLE 7** Consider the following relations on {1, 2, 3, 4}:

 $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},\$

$$R_2 = \{(1, 1), (1, 2), (2, 1)\},\$$

 $R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\},\$

$$R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},\$$

 $R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},\$

$$R_6 = \{(3,4)\}.$$

Which of these relations are reflexive?

Solution: The relations R_3 and R_5 are reflexive because they both contain all pairs of the form (a, a), namely, (1, 1), (2, 2), (3, 3), and (4, 4). The other relations are not reflexive because they do not contain all of these ordered pairs. In particular, R_1 , R_2 , R_4 , and R_6 are not reflexive because (3, 3) is not in any of these relations.

EXAMPLE 8

Which of the relations from Example 5 are reflexive?

Solution: The reflexive relations from Example 5 are R_1 (because $a \le a$ for every integer a), R_3 , and R_4 . For each of the other relations in this example it is easy to find a pair of the form (a, a) that is not in the relation. (This is left as an exercise for the reader.)

EXAMPLE 9 Is the "divides" relation on the set of positive integers reflexive?

Solution: Because $a \mid a$ whenever a is a positive integer, the "divides" relation is reflexive. (Note that if we replace the set of positive integers with the set of all integers the relation is not reflexive because by definition 0 does not divide 0.)

In some relations an element is related to a second element if and only if the second element is also related to the first element. The relation consisting of pairs (x, y), where x and y are students at your school with at least one common class has this property. Other relations have the property that if an element is related to a second element, then this second element is not related to the first. The relation consisting of the pairs (x, y), where x and y are students at your school, where x has a higher grade point average than y has this property.

DEFINITION 4

A relation R on a set A is called *symmetric* if $(b,a) \in R$ whenever $(a,b) \in R$, for all $a,b \in A$. A relation R on a set A such that for all $a,b \in A$, if $(a,b) \in R$ and $(b,a) \in R$, then a=b is called *antisymmetric*.

Remark: Using quantifiers, we see that the relation R on the set A is symmetric if $\forall a \forall b ((a,b) \in R \to (b,a) \in R)$. Similarly, the relation R on the set A is antisymmetric if $\forall a \forall b (((a,b) \in R \land (b,a) \in R) \to (a=b))$.

Ŷ

That is, a relation is symmetric if and only if a is related to b implies that b is related to a. A relation is antisymmetric if and only if there are no pairs of distinct elements a and b with a related to b and b related to a. That is, the only way to have a related to b and b related to a is for a and b to be the same element. The terms *symmetric* and *antisymmetric* are not opposites, because a relation can have both of these properties or may lack both of them (see Exercise 10). A relation cannot be both symmetric and antisymmetric if it contains some pair of the form (a, b), where $a \neq b$.

EXAMPLE 10 Which of the relations from Example 7 are symmetric and which are antisymmetric?

Solution: The relations R_2 and R_3 are symmetric, because in each case (b, a) belongs to the relation whenever (a, b) does. For R_2 , the only thing to check is that both (2, 1) and (1, 2) are in the relation. For R_3 , it is necessary to check that both (1, 2) and (2, 1) belong to the relation, and (1, 4) and (4, 1) belong to the relation. The reader should verify that none of the other relations is symmetric. This is done by finding a pair (a, b) such that it is in the relation but (b, a) is not.

 R_4 , R_5 , and R_6 are all antisymmetric. For each of these relations there is no pair of elements a and b with $a \neq b$ such that both (a, b) and (b, a) belong to the relation. The reader should verify that none of the other relations is antisymmetric. This is done by finding a pair (a, b) with $a \neq b$ such that (a, b) and (b, a) are both in the relation.

EXAMPLE 11 Which of the relations from Example 5 are symmetric and which are antisymmetric?

Solution: The relations R_3 , R_4 , and R_6 are symmetric. R_3 is symmetric, for if a = b or a = -b, then b = a or b = -a. R_4 is symmetric because a = b implies that b = a. R_6 is symmetric because $a + b \le 3$ implies that $b + a \le 3$. The reader should verify that none of the other relations is symmetric.

The relations R_1 , R_2 , R_4 , and R_5 are antisymmetric. R_1 is antisymmetric because the inequalities $a \le b$ and $b \le a$ imply that a = b. R_2 is antisymmetric because it is impossible that a > b and b > a. R_4 is antisymmetric, because two elements are related with respect to R_4 if and only if they are equal. R_5 is antisymmetric because it is impossible that a = b + 1 and b = a + 1. The reader should verify that none of the other relations is antisymmetric.

EXAMPLE 12 Is the "divides" relation on the set of positive integers symmetric? Is it antisymmetric?

Solution: This relation is not symmetric because $1 \mid 2$, but $2 \nmid 1$. It is antisymmetric, for if a and b are positive integers with $a \mid b$ and $b \mid a$, then a = b (the verification of this is left as an exercise for the reader).

Let R be the relation consisting of all pairs (x, y) of students at your school, where x has taken more credits than y. Suppose that x is related to y and y is related to z. This means that x has taken more credits than y and y has taken more credits than z. We can conclude that x has taken more credits than z, so that x is related to z. What we have shown is that R has the transitive property, which is defined as follows.

DEFINITION 5

A relation R on a set A is called *transitive* if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, for all $a,b,c \in A$.

Remark: Using quantifiers we see that the relation R on a set A is transitive if we have $\forall a \forall b \forall c (((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R)$.

Solution: R_4 , R_5 , and R_6 are transitive. For each of these relations, we can show that it is transitive by verifying that if (a, b) and (b, c) belong to this relation, then (a, c) also does. For instance, R_4 is transitive, because (3, 2) and (2, 1), (4, 2) and (2, 1), (4, 3) and (3, 1), and (4, 3) and (3, 2) are the only such sets of pairs, and (3, 1), (4, 1), and (4, 2) belong to R_4 . The reader should verify that R_5 and R_6 are transitive.

 R_1 is not transitive because (3, 4) and (4, 1) belong to R_1 , but (3, 1) does not. R_2 is not transitive because (2, 1) and (1, 2) belong to R_2 , but (2, 2) does not. R_3 is not transitive because (4, 1) and (1, 2) belong to R_3 , but (4, 2) does not.

EXAMPLE 14 Which of the relations in Example 5 are transitive?

Solution: The relations R_1 , R_2 , R_3 , and R_4 are transitive. R_1 is transitive because $a \le b$ and $b \le c$ imply that $a \le c$. R_2 is transitive because a > b and b > c imply that a > c. R_3 is transitive because $a = \pm b$ and $b = \pm c$ imply that $a = \pm c$. R_4 is clearly transitive, as the reader should verify. R_5 is not transitive because (2, 1) and (1, 0) belong to R_5 , but (2, 0) does not. R_6 is not transitive because (2, 1) and (1, 2) belong to R_6 , but (2, 2) does not.

EXAMPLE 15 Is the "divides" relation on the set of positive integers transitive?

Solution: Suppose that a divides b and b divides c. Then there are positive integers k and l such that b = ak and c = bl. Hence, c = a(kl), so a divides c. It follows that this relation is transitive.

We can use counting techniques to determine the number of relations with specific properties. Finding the number of relations with a particular property provides information about how common this property is in the set of all relations on a set with n elements.

EXAMPLE 17 Let $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4\}$. The relations $R_1 = \{(1, 1), (2, 2), (3, 3)\}$ and $R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4)\}$ can be combined to obtain

$$R_1 \cup R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)\},\$$

 $R_1 \cap R_2 = \{(1, 1)\},\$
 $R_1 - R_2 = \{(2, 2), (3, 3)\},\$
 $R_2 - R_1 = \{(1, 2), (1, 3), (1, 4)\}.$

EXAMPLE 18 Let A and B be the set of all students and the set of all courses at a school, respectively. Suppose that R_1 consists of all ordered pairs (a, b), where a is a student who has taken course b, and R_2 consists of all ordered pairs (a, b), where a is a student who requires course b to graduate. What are the relations $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 \oplus R_2$, $R_1 - R_2$, and $R_2 - R_1$?

Solution: The relation $R_1 \cup R_2$ consists of all ordered pairs (a, b), where a is a student who either has taken course b or needs course b to graduate, and $R_1 \cap R_2$ is the set of all ordered pairs (a, b), where a is a student who has taken course b and needs this course to graduate. Also, $R_1 \oplus R_2$ consists of all ordered pairs (a, b), where student a has taken course b but does not need it to graduate or needs course b to graduate but has not taken it. $R_1 - R_2$ is the set of ordered pairs (a, b), where a has taken course b but does not need it to graduate; that is, b is an elective course that a has taken. $R_2 - R_1$ is the set of all ordered pairs (a, b), where b is a course that a needs to graduate but has not taken.

EXAMPLE 19 Let R_1 be the "less than" relation on the set of real numbers and let R_2 be the "greater than" relation on the set of real numbers, that is, $R_1 = \{(x, y) \mid x < y\}$ and $R_2 = \{(x, y) \mid x > y\}$. What are $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, $R_2 - R_1$, and $R_1 \oplus R_2$?

Solution: We note that $(x, y) \in R_1 \cup R_2$ if and only if $(x, y) \in R_1$ or $(x, y) \in R_2$. Hence, $(x, y) \in R_1 \cup R_2$ if and only if x < y or x > y. Because the condition x < y or x > y is the same as the condition $x \neq y$, it follows that $R_1 \cup R_2 = \{(x, y) \mid x \neq y\}$. In other words, the union of the "less than" relation and the "greater than" relation is the "not equals" relation.

Next, note that it is impossible for a pair (x, y) to belong to both R_1 and R_2 because it is impossible that x < y and x > y. It follows that $R_1 \cap R_2 = \emptyset$. We also see that $R_1 - R_2 = R_1$, $R_2 - R_1 = R_2$, and $R_1 \oplus R_2 = R_1 \cup R_2 - R_1 \cap R_2 = \{(x, y) \mid x \neq y\}$.

DEFINITION 6

Let R be a relation from a set A to a set B and S a relation from B to a set C. The *composite* of R and S is the relation consisting of ordered pairs (a,c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$. We denote the composite of R and S by $S \circ R$.

Computing the composite of two relations requires that we find elements that are the second element of ordered pairs in the first relation and the first element of ordered pairs in the second relation, as Examples 20 and 21 illustrate.

EXAMPLE 20 What is the composite of the relations R and S, where R is the relation from $\{1, 2, 3\}$ to $\{1, 2, 3, 4\}$ with $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}$ and S is the relation from $\{1, 2, 3, 4\}$ to $\{0, 1, 2\}$ with $S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}$?

> Solution: $S \circ R$ is constructed using all ordered pairs in R and ordered pairs in S, where the second element of the ordered pair in R agrees with the first element of the ordered pair in S. For example, the ordered pairs (2, 3) in R and (3, 1) in S produce the ordered pair (2, 1) in $S \circ R$. Computing all the ordered pairs in the composite, we find

$$S \circ R = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}.$$

EXAMPLE 21

Composing the Parent Relation with Itself Let R be the relation on the set of all people such that $(a, b) \in R$ if person a is a parent of person b. Then $(a, c) \in R \circ R$ if and only if there is a person b such that $(a, b) \in R$ and $(b, c) \in R$, that is, if and only if there is a person b such that a is a parent of b and b is a parent of c. In other words, $(a, c) \in R \circ R$ if and only if a is a grandparent of c.

The powers of a relation R can be recursively defined from the definition of a composite of two relations.

DEFINITION 7

Let R be a relation on the set A. The powers R^n , $n = 1, 2, 3, \ldots$, are defined recursively by

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$.

The definition shows that $R^2 = R \circ R$, $R^3 = R^2 \circ R = (R \circ R) \circ R$, and so on.

EXAMPLE 22

Let $R = \{(1, 1), (2, 1), (3, 2), (4, 3)\}$. Find the powers R^n , $n = 2, 3, 4, \dots$

Solution: Because $R^2 = R \circ R$, we find that $R^2 = \{(1, 1), (2, 1), (3, 1), (4, 2)\}$. Furthermore, because $R^3 = R^2 \circ R$, $R^3 = \{(1, 1), (2, 1), (3, 1), (4, 1)\}$. Additional computation shows that R^4 is the same as R^3 , so $R^4 = \{(1, 1), (2, 1), (3, 1), (4, 1)\}$. It also follows that $R^n = R^3$ for $n = 5, 6, 7, \ldots$ The reader should verify this.

The following theorem shows that the powers of a transitive relation are subsets of this relation. It will be used in Section 9.4.

THEOREM 1

The relation R on a set A is transitive if and only if $R^n \subseteq R$ for $n = 1, 2, 3, \ldots$

Representing Relations Using Matrices

A relation between finite sets can be represented using a zero—one matrix. Suppose that R is a relation from $A = \{a_1, a_2, \dots, a_m\}$ to $B = \{b_1, b_2, \dots, b_n\}$. (Here the elements of the sets A and B have been listed in a particular, but arbitrary, order. Furthermore, when A = B we use the same ordering for A and B.) The relation R can be represented by the matrix $\mathbf{M}_R = [m_{ij}]$, where

$$m_{ij} = \begin{cases} 1 \text{ if } (a_i,b_j) \in R, \\ 0 \text{ if } (a_i,b_j) \notin R. \end{cases}$$

In other words, the zero—one matrix representing R has a 1 as its (i, j) entry when a_i is related to b_i , and a 0 in this position if a_i is not related to b_i . (Such a representation depends on the orderings used for A and B.)

EXAMPLE 1

Suppose that $A = \{1, 2, 3\}$ and $B = \{1, 2\}$. Let R be the relation from A to B containing (a, b)if $a \in A$, $b \in B$, and a > b. What is the matrix representing R if $a_1 = 1$, $a_2 = 2$, and $a_3 = 3$, and $b_1 = 1$ and $b_2 = 2$?

Solution: Because $R = \{(2, 1), (3, 1), (3, 2)\}$, the matrix for R is

$$\mathbf{M}_R = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

The 1s in M_R show that the pairs (2, 1), (3, 1), and (3, 2) belong to R. The 0s show that no other pairs belong to R.

EXAMPLE 2 Let $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, b_3, b_4, b_5\}$. Which ordered pairs are in the relation R represented by the matrix

$$\mathbf{M}_{\textit{R}} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}?$$

Solution: Because R consists of those ordered pairs (a_i, b_j) with $m_{ij} = 1$, it follows that

$$R = \{(a_1, b_2), (a_2, b_1), (a_2, b_3), (a_2, b_4), (a_3, b_1), (a_3, b_3), (a_3, b_5)\}.$$

The matrix of a relation on a set, which is a square matrix, can be used to determine whether the relation has certain properties. Recall that a relation R on A is reflexive if $(a, a) \in R$ whenever $a \in A$. Thus, R is reflexive if and only if $(a_i, a_i) \in R$ for $i = 1, 2, \ldots, n$. Hence, R is reflexive if and only if $m_{ii} = 1$, for $i = 1, 2, \ldots, n$. In other words, R is reflexive if all the elements on the main diagonal of M_R are equal to 1, as shown in Figure 1. Note that the elements off the main diagonal can be either 0 or 1.

The relation R is symmetric if $(a,b) \in R$ implies that $(b,a) \in R$. Consequently, the relation R on the set $A = \{a_1, a_2, \ldots, a_n\}$ is symmetric if and only if $(a_j, a_i) \in R$ whenever $(a_i, a_j) \in R$. In terms of the entries of M_R , R is symmetric if and only if $m_{ji} = 1$ whenever $m_{ij} = 1$. This also means $m_{ji} = 0$ whenever $m_{ij} = 0$. Consequently, R is symmetric if and only if $m_{ji} = m_{ji}$, for all pairs of integers i and j with $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, n$. Recalling the definition of the transpose of a matrix from Section 2.6, we see that R is symmetric if and only if

$$\mathbf{M}_R = (\mathbf{M}_R)^t$$
,

that is, if \mathbf{M}_R is a symmetric matrix. The form of the matrix for a symmetric relation is illustrated in Figure 2(a).

The relation R is antisymmetric if and only if $(a,b) \in R$ and $(b,a) \in R$ imply that a = b. Consequently, the matrix of an antisymmetric relation has the property that if $m_{ij} = 1$ with $i \neq j$, then $m_{ji} = 0$. Or, in other words, either $m_{ij} = 0$ or $m_{ji} = 0$ when $i \neq j$. The form of the matrix for an antisymmetric relation is illustrated in Figure 2(b).

FIGURE 1 The Zero-One Matrix for a Reflexive Relation. (Off Diagonal Elements Can

Be 0 or 1.)

(a) Symmetric

(b) Antisymmetric

FIGURE 2 The Zero-One Matrices for Symmetric and Antisymmetric Relations.

EXAMPLE 3 Suppose that the relation R on a set is represented by the matrix

$$\mathbf{M}_R = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

Is R reflexive, symmetric, and/or antisymmetric?

Solution: Because all the diagonal elements of this matrix are equal to 1, R is reflexive. Moreover, because M_R is symmetric, it follows that R is symmetric. It is also easy to see that R is not antisymmetric.

The Boolean operations join and meet (discussed in Section 2.6) can be used to find the matrices representing the union and the intersection of two relations. Suppose that R_1 and R_2 are relations on a set A represented by the matrices \mathbf{M}_{R_1} and \mathbf{M}_{R_2} , respectively. The matrix representing the union of these relations has a 1 in the positions where either \mathbf{M}_{R_1} or \mathbf{M}_{R_2} has a 1. The matrix representing the intersection of these relations has a 1 in the positions where both \mathbf{M}_{R_1} and \mathbf{M}_{R_2} have a 1. Thus, the matrices representing the union and intersection of these relations are

$$\mathbf{M}_{R_1 \cup R_2} = \mathbf{M}_{R_1} \vee \mathbf{M}_{R_2} \qquad \text{and} \qquad \mathbf{M}_{R_1 \cap R_2} = \mathbf{M}_{R_1} \wedge \mathbf{M}_{R_2}.$$

EXAMPLE 4 Suppose that the relations R_1 and R_2 on a set A are represented by the matrices

$$\mathbf{M}_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 and $\mathbf{M}_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$.

What are the matrices representing $R_1 \cup R_2$ and $R_1 \cap R_2$?

Solution: The matrices of these relations are

$$\mathbf{M}_{R_1 \cup R_2} = \mathbf{M}_{R_1} \vee \mathbf{M}_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix},$$

$$\mathbf{M}_{R_1\cap R_2} = \mathbf{M}_{R_1} \wedge \mathbf{M}_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

We now turn our attention to determining the matrix for the composite of relations. This matrix can be found using the Boolean product of the matrices (discussed in Section 2.6) for these relations. In particular, suppose that R is a relation from A to B and S is a relation from B to C. Suppose that A, B, and C have m, n, and p elements, respectively. Let the zero-one matrices for $S \circ R$, R, and S be $\mathbf{M}_{S \circ R} = [t_{ij}]$, $\mathbf{M}_R = [r_{ij}]$, and $\mathbf{M}_S = [s_{ij}]$, respectively (these matrices have sizes $m \times p$, $m \times n$, and $n \times p$, respectively). The ordered pair (a_i, c_j) belongs to $S \circ R$ if and only if there is an element b_k such that (a_i, b_k) belongs to R and (b_k, c_j) belongs to S. It follows that $t_{ij} = 1$ if and only if $t_{ik} = s_{kj} = 1$ for some $t_{ik} = t_{ik} = t$

$$M_{S \circ R} = M_R \odot M_S$$
.

EXAMPLE 5 Find the matrix representing the relations $S \circ R$, where the matrices representing R and S are

$$\mathbf{M}_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{M}_S = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

Solution: The matrix for $S \circ R$ is

$$\mathbf{M}_{S \circ R} = \mathbf{M}_R \odot \mathbf{M}_S = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

The matrix representing the composite of two relations can be used to find the matrix for \mathbf{M}_{R^n} . In particular,

$$\mathbf{M}_{R^n} = \mathbf{M}_R^{[n]},$$

from the definition of Boolean powers.

EXAMPLE 6 Find the matrix representing the relation R^2 , where the matrix representing R is

$$\mathbf{M}_R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Solution: The matrix for R^2 is

$$\mathbf{M}_{R^2} = \mathbf{M}_R^{[2]} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

DEFINITION 1

A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the *initial* vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

An edge of the form (a, a) is represented using an arc from the vertex a back to itself. Such an edge is called a loop.

EXAMPLE 7

The directed graph with vertices a, b, c, and d, and edges (a, b), (a, d), (b, b), (b, d), (c, a), (c, b), and (d, b) is displayed in Figure 3.

FIGURE 3 A Directed Graph.

The relation R on a set A is represented by the directed graph that has the elements of A as its vertices and the ordered pairs (a,b), where $(a,b) \in R$, as edges. This assignment sets up a one-to-one correspondence between the relations on a set A and the directed graphs with A as their set of vertices. Thus, every statement about relations corresponds to a statement about directed graphs, and vice versa. Directed graphs give a visual display of information about relations. As such, they are often used to study relations and their properties. (Note that relations from a set A to a set B can be represented by a directed graph where there is a vertex for each element of A and a vertex for each element of A, as shown in Section 9.1. However, when A = B, such representation provides much less insight than the digraph representations described here.) The use of directed graphs to represent relations on a set is illustrated in Examples 8–10.

EXAMPLE 8

The directed graph of the relation

$$R = \{(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)\}$$

on the set $\{1, 2, 3, 4\}$ is shown in Figure 4.

FIGURE 4 The Directed Graph of the Relation R.

EXAMPLE 9 What are the ordered pairs in the relation *R* represented by the directed graph shown in Figure 5?

Solution: The ordered pairs (x, y) in the relation are

$$R = \{(1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 3)\}.$$

Each of these pairs corresponds to an edge of the directed graph, with (2, 2) and (3, 3) corresponding to loops.

FIGURE 5 The Directed Graph of the Relation R.

The directed graph representing a relation can be used to determine whether the relation has various properties. For instance, a relation is reflexive if and only if there is a loop at every vertex of the directed graph, so that every ordered pair of the form (x, x) occurs in the relation. A relation is symmetric if and only if for every edge between distinct vertices in its digraph there is an edge in the opposite direction, so that (y, x) is in the relation whenever (x, y) is in the relation. Similarly, a relation is antisymmetric if and only if there are never two edges in opposite directions between distinct vertices. Finally, a relation is transitive if and only if whenever there is an edge from a vertex x to a vertex y and an edge from a vertex y to a vertex y, there is an edge from y to y (completing a triangle where each side is a directed edge with the correct direction).

Remark: Note that a symmetric relation can be represented by an undirected graph, which is a graph where edges do not have directions. We will study undirected graphs in Chapter 10.

EXAMPLE 10 Determine whether the relations for the directed graphs shown in Figure 6 are reflexive, symmetric, antisymmetric, and/or transitive.

Solution: Because there are loops at every vertex of the directed graph of R, it is reflexive. R is neither symmetric nor antisymmetric because there is an edge from a to b but not one from b to a, but there are edges in both directions connecting b and c. Finally, R is not transitive because there is an edge from a to b and an edge from b to b, but no edge from a to b.

Because loops are not present at all the vertices of the directed graph of S, this relation is not reflexive. It is symmetric and not antisymmetric, because every edge between distinct vertices is accompanied by an edge in the opposite direction. It is also not hard to see from the directed graph that S is not transitive, because (c, a) and (a, b) belong to S, but (c, b) does not belong to S.

(b) Directed graph of S

FIGURE 6 The Directed Graphs of the Relations *R* and *S*.

Closures

The relation $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$ on the set $A = \{1, 2, 3\}$ is not reflexive. How can we produce a reflexive relation containing R that is as small as possible? This can be done by adding (2, 2) and (3, 3) to R, because these are the only pairs of the form (a, a) that are not in R. Clearly, this new relation contains R. Furthermore, any reflexive relation that contains R must also contain (2, 2) and (3, 3). Because this relation contains R, is reflexive, and is contained within every reflexive relation that contains R, it is called the reflexive closure of R.

As this example illustrates, given a relation R on a set A, the reflexive closure of R can be formed by adding to R all pairs of the form (a, a) with $a \in A$, not already in R. The addition of these pairs produces a new relation that is reflexive, contains R, and is contained within any reflexive relation containing R. We see that the reflexive closure of R equals $R \cup \Delta$, where $\Delta = \{(a, a) \mid a \in A\}$ is the diagonal relation on A. (The reader should verify this.)

EXAMPLE 1 What is the reflexive closure of the relation $R = \{(a, b) \mid a < b\}$ on the set of integers?

Solution: The reflexive closure of R is

$$R \cup \Delta = \{(a, b) \mid a < b\} \cup \{(a, a) \mid a \in \mathbb{Z}\} = \{(a, b) \mid a \le b\}.$$

The relation $\{(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2)\}$ on $\{1, 2, 3\}$ is not symmetric. How can we produce a symmetric relation that is as small as possible and contains R? To do this, we need only add (2, 1) and (1, 3), because these are the only pairs of the form (b, a) with $(a, b) \in R$ that are not in R. This new relation is symmetric and contains R. Furthermore, any symmetric relation that contains R must contain this new relation, because a symmetric relation that contains R must contain (2, 1) and (1, 3). Consequently, this new relation is called the symmetric closure of R.

As this example illustrates, the symmetric closure of a relation R can be constructed by adding all ordered pairs of the form (b,a), where (a,b) is in the relation, that are not already present in R. Adding these pairs produces a relation that is symmetric, that contains R, and that is contained in any symmetric relation that contains R. The symmetric closure of a relation can be constructed by taking the union of a relation with its inverse (defined in the preamble of Exercise 26 in Section 9.1); that is, $R \cup R^{-1}$ is the symmetric closure of R, where $R^{-1} = \{(b,a) \mid (a,b) \in R\}$. The reader should verify this statement.

EXAMPLE 2 What is the symmetric closure of the relation $R = \{(a, b) \mid a > b\}$ on the set of positive integers?

Solution: The symmetric closure of R is the relation

$$R \cup R^{-1} = \{(a, b) \mid a > b\} \cup \{(b, a) \mid a > b\} = \{(a, b) \mid a \neq b\}.$$

This last equality follows because R contains all ordered pairs of positive integers where the first element is greater than the second element and R^{-1} contains all ordered pairs of positive integers where the first element is less than the second.

Suppose that a relation R is not transitive. How can we produce a transitive relation that contains R such that this new relation is contained within any transitive relation that contains R? Can the transitive closure of a relation R be produced by adding all the pairs of the form (a, c), where (a, b) and (b, c) are already in the relation? Consider the relation

 $R = \{(1, 3), (1, 4), (2, 1), (3, 2)\}$ on the set $\{1, 2, 3, 4\}$. This relation is not transitive because it does not contain all pairs of the form (a, c) where (a, b) and (b, c) are in R. The pairs of this form not in R are (1, 2), (2, 3), (2, 4), and (3, 1). Adding these pairs does *not* produce a transitive relation, because the resulting relation contains (3, 1) and (1, 4) but does not contain (3, 4). This shows that constructing the transitive closure of a relation is more complicated than constructing either the reflexive or symmetric closure. The rest of this section develops algorithms for constructing transitive closures. As will be shown later in this section, the transitive closure of a relation can be found by adding new ordered pairs that must be present and then repeating this process until no new ordered pairs are needed.

A path in a directed graph is obtained by traversing along edges (in the same direction as indicated by the arrow on the edge).

DEFINITION 1

A path from a to b in the directed graph G is a sequence of edges (x_0, x_1) , (x_1, x_2) , (x_2, x_3) , ..., (x_{n-1}, x_n) in G, where n is a nonnegative integer, and $x_0 = a$ and $x_n = b$, that is, a sequence of edges where the terminal vertex of an edge is the same as the initial vertex in the next edge in the path. This path is denoted by $x_0, x_1, x_2, \ldots, x_{n-1}, x_n$ and has length n. We view the empty set of edges as a path of length zero from a to a. A path of length $n \ge 1$ that begins and ends at the same vertex is called a *circuit* or *cycle*.

A path in a directed graph can pass through a vertex more than once. Moreover, an edge in a directed graph can occur more than once in a path.

EXAMPLE 3

Which of the following are paths in the directed graph shown in Figure 1: a, b, e, d; a, e, c, d, b; b, a, c, b, a, a, b; d, c; c, b, a; e, b, a, b, a, b, e? What are the lengths of those that are paths? Which of the paths in this list are circuits?

Solution: Because each of (a, b), (b, e), and (e, d) is an edge, a, b, e, d is a path of length three. Because (c, d) is not an edge, a, e, c, d, b is not a path. Also, b, a, c, b, a, a, b is a path of length six because (b, a), (a, c), (c, b), (b, a), (a, a), and (a, b) are all edges. We see that d, c is a path of length one, because (d, c) is an edge. Also c, b, a is a path of length two, because (c, b) and (b, a) are edges. All of (e, b), (b, a), (a, b), (a, b), and (b, e) are edges, so (c, b), (a, b), (a,

The two paths b, a, c, b, a, a, b and e, b, a, b, e are circuits because they begin and end at the same vertex. The paths a, b, e, d; c, b, a; and d, c are not circuits.

FIGURE 1 A Directed Graph.

The term path also applies to relations. Carrying over the definition from directed graphs to relations, there is a path from a to b in R if there is a sequence of elements $a, x_1, x_2, \ldots, x_{n-1}, b$ with $(a, x_1) \in R$, $(x_1, x_2) \in R$, ..., and $(x_{n-1}, b) \in R$. Theorem 1 can be obtained from the definition of a path in a relation.

THEOREM 1

Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from a to b if and only if $(a, b) \in R^n$.

Transitive Closures

We now show that finding the transitive closure of a relation is equivalent to determining which pairs of vertices in the associated directed graph are connected by a path. With this in mind, we define a new relation.

DEFINITION 2

Let R be a relation on a set A. The *connectivity relation* R^* consists of the pairs (a, b) such that there is a path of length at least one from a to b in R.

Because R^n consists of the pairs (a, b) such that there is a path of length n from a to b, it follows that R^* is the union of all the sets R^n . In other words,

$$R^* = \bigcup_{n=1}^{\infty} R^n.$$

The connectivity relation is useful in many models.

EXAMPLE 4 Let R be the relation on the set of all people in the world that contains (a, b) if a has met b. What is R^n , where n is a positive integer greater than one? What is R^* ?

Solution: The relation R^2 contains (a, b) if there is a person c such that $(a, c) \in R$ and $(c, b) \in R$, that is, if there is a person c such that a has met c and c has met b. Similarly, R^n consists of those pairs (a, b) such that there are people $x_1, x_2, \ldots, x_{n-1}$ such that a has met x_1, x_1 has met x_2, \ldots , and x_{n-1} has met b.

The relation R^* contains (a, b) if there is a sequence of people, starting with a and ending with b, such that each person in the sequence has met the next person in the sequence. (There are many interesting conjectures about R^* . Do you think that this connectivity relation includes the pair with you as the first element and the president of Mongolia as the second element? We will use graphs to model this application in Chapter 10.)

EXAMPLE 5

Let R be the relation on the set of all subway stops in New York City that contains (a, b) if it is possible to travel from stop a to stop b without changing trains. What is R^n when n is a positive integer? What is R^* ?

Solution: The relation \mathbb{R}^n contains (a, b) if it is possible to travel from stop a to stop b by making at most n-1 changes of trains. The relation \mathbb{R}^* consists of the ordered pairs (a, b) where it is possible to travel from stop a to stop b making as many changes of trains as necessary. (The reader should verify these statements.)

EXAMPLE 6

Let R be the relation on the set of all states in the United States that contains (a, b) if state a and state b have a common border. What is R^n , where n is a positive integer? What is R^* ?

Solution: The relation R^n consists of the pairs (a, b), where it is possible to go from state a to state b by crossing exactly n state borders. R^* consists of the ordered pairs (a, b), where it is possible to go from state a to state b crossing as many borders as necessary. (The reader should verify these statements.) The only ordered pairs not in R^* are those containing states that are not connected to the continental United States (i.e., those pairs containing Alaska or Hawaii).

Theorem 2 shows that the transitive closure of a relation and the associated connectivity relation are the same.

THEOREM 2

The transitive closure of a relation R equals the connectivity relation R^* .

LEMMA 1

Let A be a set with n elements, and let R be a relation on A. If there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n. Moreover, when $a \neq b$, if there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n-1.

THEOREM 3

Let M_R be the zero—one matrix of the relation R on a set with n elements. Then the zero—one matrix of the transitive closure R^* is

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \vee \mathbf{M}_R^{[n]}.$$

EXAMPLE 7

Find the zero—one matrix of the transitive closure of the relation R where

$$\mathbf{M}_R = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

Solution: By Theorem 3, it follows that the zero–one matrix of R^* is

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]}.$$

Because

$$\mathbf{M}_{R}^{[2]} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
 and $\mathbf{M}_{R}^{[3]} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$,

it follows that

$$\mathbf{M}_{R^*} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

Summary

In this week, we learned what a relation is, the properties of relations, how to combine relations, the representations of relations & transitive closure of a relation.