# PREDICTING COVID-19 CASES IN BRITISH COLUMBIA

Anna Kawiecki, John Mensah, Rafael Miranda, Norma Forero 28 Jul 2023



## Background

- First confirmed case in Canada on 25 January, 2020
- WHO pandemic declaration on 11 March, 2020
- British Columbia:
- First case on January 28, 2020
- Public health emergency declared on 17
   March



## Background

- Masking mandates have the potential to decrease transmission of the virus
- Viable public health measure, mostly in the early stages of the pandemic
  - Little evidence on effective treatment
  - Overload to Health Care systems
  - No available vaccine
  - Essential workers
- Governments must make decisions quickly, based on available information

## Decision-maker/Research question

- How many COVID-19 cases can be prevented from 29 March 28 April in BC with introduction of mandatory masking?
- Compared to current trends in cases with no masking mandates
- Mandatory masking introduced 1 week after last day of available data
- Short time horizon:
  - Increasing uncertainty into future
  - Continuous data generation
  - Growing body of evidence

### Methods

ODE model with 4 states (SEIR)

$$egin{aligned} rac{dS}{dt} &= -eta \cdot S \cdot rac{I}{N} \ rac{dE}{dt} &= eta \cdot S \cdot rac{I}{N} - \sigma \cdot E \ rac{dI}{dt} &= \sigma \cdot E - \gamma \cdot I \ rac{dR}{dt} &= \gamma \cdot I \end{aligned}$$

#### **Initial Model**

```
// define parameters.
// any non-fixed parameters are in the theta array. Any fixed
// parameters are in the x_r array
real R0 = theta[1];
real sigma = x_r[1];
real gamma = x_r[2];
real pop_size = x_r[3];
real lambda = (R0 * gamma * y[3]) / pop_size;
// S
dydt[1] = - lambda * y[1];
// E
dydt[2] = lambda * y[1] - sigma * y[2];
// I
dydt[3] = sigma * y[2] - gamma * y[3];
// R
dydt[4] = gamma * y[3];
return dydt;
```

## **Initial Model**





#### Modified model

```
// define parameters.
// any non-fixed parameters are in the theta array. Any fixed
// parameters are in the x_r array
real logR0_baseline = theta[1];
real logpan_impact = theta[2];
real sigma = x_r[1];
real gamma = x_r[2];
real pop_size = x_r[3];
real time_masking = x_r[4];
real logmask_impact = x_r[5];
real time_start_of_pandemic = x_r[6];
real R0 = exp(logR0_baseline - (t > time_masking) * logmask_impact -
(t > time_start_of_pandemic) * logpan_impact);
real lambda = (R0 * gamma * y[3]) / pop_size;
// S
dydt[1] = - lambda * y[1];
// E
dydt[2] = lambda * y[1] - sigma * y[2];
// I
dydt[3] = sigma * y[2] - gamma * y[3];
// R
dydt[4] = gamma * y[4];
return dydt;
```

#### Modified model

- Developed by Dr Michael Irvine
- Additional parameters/data:
  - Masking effect: relative rate = 0.7<sup>1</sup>
  - Decreased social interactions after pandemic declaration: Day 15<sup>2</sup>

| Source            | Location                               | Population studied                                              | Intervention                                                                                              | Outcome                                                                                                                                           |
|-------------------|----------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Hendrix et al     | Hair salon in<br>Springfield, Missouri | 139 Patrons at a salon with 2 infected and symptomatic stylists | Universal mask wearing in salon<br>(by local ordinance and company<br>policy)                             | No COVID-19 infections among 67 patrons who were available for follow-up                                                                          |
| Payne et al       | USS Theodore<br>Roosevelt, Guam        | 382 US Navy service members                                     | Self-reported mask wearing                                                                                | Mask wearing reduced risk of infection by 70% (unadjusted odds ratio, 0.30 [95% CI, 0.17-0.52])                                                   |
| Wang Y et al      | Households in Beijing,<br>China        | 124 Households of diagnosed cases comprising 335 people         | Self-reported mask wearing by<br>index cases or ≥1 household<br>member prior to index case's<br>diagnosis | Mask wearing reduced risk of secondary infection by 79% (adjusted odds ratio, 0.21 [95% CI, 0.06-0.79])                                           |
| Doung-ngern et al | Bangkok, Thailand                      | 839 Close contacts of 211 index cases                           | Self-reported mask wearing by contact at time of high-risk exposure to case                               | Always having used a mask reduced infection risk by 77% (adjusted odds ratio, 0.23 [95% CI, 0.09-0.60])                                           |
| Gallaway et al    | Arizona                                | State population                                                | Mandatory mask wearing in<br>public                                                                       | Temporal association between institution of<br>mask wearing policy and subsequent decline<br>in new diagnoses                                     |
| Rader et al       | US                                     | 374 021 Persons who completed web-based surveys                 | Self-reported mask wearing in grocery stores and in the homes of family or friends                        | A 10% increase in mask wearing tripled<br>the likelihood of stopping community<br>transmission (adjusted odds ratio,<br>3.53 [95% CI, 2.03-6.43]) |
| Wang X et al      | Boston, Massachusetts                  | 9850 Health care workers<br>(HCWs)                              | Universal masking of HCWs and<br>patients in the Mass General<br>Brigham health care system               | Estimated weekly decline in new diagnoses among HCWs of 3.4% after full implementation of the mask wearing policy                                 |
| Mitze et al       | Jena (Thuringia),<br>Germany           | City population aged ≥15 y                                      | Mandatory mask wearing in<br>public spaces (eg, public<br>transport, shops)                               | Estimated daily decline in new diagnoses of 1.32% after implementation of the mask mandate                                                        |
| Van Dyke et al    | Kansas                                 | State population                                                | Mandatory mask wearing in public spaces                                                                   | Estimated case rate per 100 000 persons decreased by 0.08 in counties with mask mandates but increased by 0.11 in those without                   |
| Lyu and Wehby     | 15 US states and<br>Washington, DC     | State populations                                               | Mandatory mask wearing in public                                                                          | Estimated overall initial daily decline in new diagnoses of 0.9% grew to 2.0% at 21 days following mandates                                       |
| Karaivanov et al  | Canada                                 | Country population                                              | Mandatory mask wearing indoors                                                                            | Estimated weekly 25%-40% decline in new diagnoses following mask mandates                                                                         |

#### Modified model

- Developed by Dr Michael Irvine
- Additional parameters/data:
  - Masking effect: relative rate =  $0.7^{1}$
  - Decreased social interactions after pandemic declaration: Day 15<sup>2</sup>



```
stan_data_extended <- list(
 T = length(fitting_time_points), # number of data points
  y = fitting_cases, # observed infection cases
  ts = fitting_time_points, # Time points
  forecast_T = length(forecast_time_points), # number of forecast points
  forecast_ts = forecast_time_points, # Forecast time points
  R0_{prior} = c(log(2.5), 0.2), # log Mean and std for R0
  i0\_prior = c(log(8), 1.0), # log Mean and std for i0
  gamma = 1 / 7, # recovery rate
  sigma = 1 / 5, # incubation rate
  pop_size = 5e6, # population of BC
 t0 = -1,
 logmask_impact = log(0.5),
 time_masking = 52,
 time_start_of_pandemic = 15
```

## Validation data



Observations

## Comparing forecast to validation data



Original data and validation data

# Comparing model forecast: Masking vs non masking effect





Original data and validation data

## Residuals (Masking effect model)



#### Conclusions

#### Our model:

- Limited for predicting future cases in spite of the modifications that accounted for a possible effect of masking ad general behavioural changes in the population at the beginning of the pandemic
- Improvements could be:
  - Modify the beginning of the "pandemic start" and "masking start"
  - Using a negative binomial instead of a Poisson to estimate the number of cases or use another framework to account for changes in the system.
- Several parameters influence over the transmission.

#### References

- 1. Brooks JT, Butler JC. Effectiveness of Mask Wearing to Control Community Spread of SARS-CoV-2. JAMA.2021;325(10):998–999. doi:10.1001/jama.2021.1505
- 2. Edouard Mathieu, Hannah Ritchie, Lucas Rodés-Guirao, Cameron Appel, Charlie Giattino, Joe Hasell, Bobbie Macdonald, Saloni Dattani, Diana Beltekian, Esteban Ortiz-Ospina and Max Roser (2020) "Coronavirus Pandemic (COVID-19)". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/coronavirus' [Online Resource]