NASA/CR-2007-215093

Development and Processing Improvement of Aerospace Aluminum Alloys

Alex Cho Pechiney Rolled Products, Ravenswood, West Virginia

W. Barry Lisagor and Thomas T. Bales Analytical Services & Materials, Inc., Hampton, Virginia Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at (301) 621-0134
- Phone the NASA STI Help Desk at (301) 621-0390
- Write to: NASA STI Help Desk NASA Center for AeroSpace Information 7115 Standard Drive Hanover, MD 21076-1320

NASA/CR-2007-215093

Development and Processing Improvement of Aerospace Aluminum Alloys

Alex Cho Pechiney Rolled Products, Ravenswood, West Virginia

W. Barry Lisagor and Thomas T. Bales Analytical Services & Materials, Inc., Hampton, Virginia

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23681-2199 Prepared for Langley Research Center under Contract NNL04AB64T

The use of trademarks or names of manufacturers in constitute an official endorsement, either expressed or	this report is for accurate reporting and does not implied of such products or manufacturers by the
National Aeronautics and Space Administration.	implied, of such products of manufacturers by the
Available f	rom:
ASA Center for AeroSpace Information (CASI) 15 Standard Drive	National Technical Information Service (NTIS) 5285 Port Royal Road
anover, MD 21076-1320 01) 621-0390	Springfield, VA 22161-2171 (703) 605-6000
71 OB1 OJJO	(703) 003-0000

DEVELOPMENT AND PROCESSING IMPROVEMENT OF AEROSPACE ALUMINUM ALLOYS

INDEX

FINAL REPORT – INTRODUCTION	iii
OVERVIEW – PROCESSING IMPROVEMENT OF ALUMINUM ALLOYS & DEVELOPMENT OF	
AN AI-Cu-Mg-Ag ALLOY	1
Background	
Issues/Objectives	
Approach	
Results for 2195-T8 Plate	
Results for 2297-T8 Plate	14
Results for 7050-T7451 Plate	18
Conclusions for 2195-T8, 2297-T8, 7050-T7451	21
Results for 2139-T8 Plate	
Conclusions for 2139-T8 Plate	. 27
EFFECT OF PROCESSING MODIFICATIONS ON TEXTURE AND MECHANICAL PROPERTIES OF 2195-T8 PLATE	29
Part I – Effect of Alternate Hot Rolling Processing on Texture and Mechanical Properties of 2195-T8	
Objective	
Approach	
Background Information for 2195-T8 Plate	
Description of Standard and Trial Processing	
Property Test Results for Standard Plate and Trial Processed Ingots	
Summary of Results	
Texture Study Results	
Correlation of Texture with Properties in the Longitudinal (L) and	
Long Transverse (LT) Directions	. 62
Conclusions	
EFFECT OF PROCESSING MODIFICATIONS ON TEXTURE AND MECHANICAL PROPERTIES	
OF 2195-T8 PLATE	. 74
Part II – Effect of Cold Work Prior to Aging on Mechanical Properties and	
Through-Thickness Strength Uniformity	. 76
Objective	
Approach	
Alternate Temper development for 2195-T8 Plate	. 79
Effect of Stretch on Through-Thickness Strength Uniformity	. 80
Effect of "Cold Roll & Stretch" Prior to Age on Through-Thickness Strength Uniformity	
and Fracture Toughness	
Effect of "Multi-Step Stretch Prior to Aging" on Through-Thickness Strength Uniformity	105
Conclusions	110
PROCESS IMPROVEMENT OF 2297 PLATE	111
Process Improvement of 2.4 Inch gage 2297-T8 Plate for Aerospace Application	
Objective	
Approach	114
Background of 2.4 inch gage 2297-T8 Plate for Aerospace Application	
Process Description of Standard and Trial Lots	
Property Test Results from Standard and Trial Lots	120

	Summary of Property Test Results	136
	Comparison of Crystallographic Texture of 2297-T8 Plate at t/6 Location	138
	Correlation of Texture and Tensile Properties in Longitudinal (L) and	
		11/
	Long Transverse (LT) Directions	
	Conclusions	150
DEVELOPI	MENT OF AI-Cu-Mg-Ag ALLOY PLATE	151
	Background	
	Metallurgical Benefits of the Al-Cu-Mg-Ag Alloy System	
	Evaluation of Al-Cu-Mg-Ag Alloy Plate Product	
	Casting of Two Ingots	
	Conclusions	171
THE EFFE	CT OF HOT ROLLING PROCESSES ON THE TEXTURE AND MECHANICAL PROPE	RTIES
	LATE	
01 700011	Objective	
	Background Information of 7050-T7451 Plate	
	Approach	176
	The Effect of Hot Rolling Process on the Texture and Mechanical Properties of	
	7050 Plate	177
	The Effect of One and Two-Directional Rolling on Texture and Mechanical Properties	
		192
	of 7050 Plate	

Final Report

Development and Processing Improvement of Aerospace Aluminum Alloys

NASA Contract No. NNL04AB64T/GS-23F-0281K

This final report, in multiple presentation format, describes a comprehensive multi-tasked contract study to improve the overall property response of selected aerospace alloys, explore further a newly-developed and registered alloy, and correlate the processing, metallurgical structure, and subsequent properties achieved with particular emphasis on the crystallographic orientation texture developed. The study was funded by the Exploration Systems and Space Operations Directorate and managed by the Metals and Thermal Structures Branch, Research and Technology Directorate, NASA Langley Research Center. Mr. John A. Wagner served as the Technical Representative of the Contracting Officer. The primary contractor was Analytical Services and Materials, Inc. (AS&M) and the program manager was Mr. W. Barry Lisagor, a senior scientist with AS&M. The major portion of the experimental work was conducted by Pechiney Rolled Products Inc. (PRP) as a principal sub-contractor and the principal investigator was Dr. Alex Cho, a senior scientist with PRP.

Under the task on aluminum alloy 2195, the selected alloy for the Space Shuttle Super Lightweight tank, modifications to plate processing (particularly with regard to hot rolling practices) resulted in significant improvement in important mechanical properties. The work also resulted in an enhanced understanding of the correlation of processing, crystallographic texture, and mechanical properties achieved.

Under the task on aluminum alloy 2297, similar improvements were accomplished for this alloy, which is used for fabrication of the Space Shuttle external tank thrust panels. Successes achieved in this processing improvement will allow for utilization of the newly-developed procedures in production when improved properties are desired.

For the task on the aluminum-copper-silver based alloy system, efforts have resulted in substantial contributions to processing knowledge and property database for this recently registered alloy, AA 2139, which may have widespread utilization in future aerospace applications. This alloy composition was first explored under the earlier NASA High Speed Research program.

For the task on aluminum alloy 7050, significant new insight has been achieved in the correlation of chemistry, crystallographic texture, and properties which adds to the understanding of this important aerospace alloy.

The advancements achieved under this contract were substantial given the available resources and ambitious schedule, and would not have been possible without the efforts and insight of the AS&M and PRP Senior Research Scientists leading this activity.

Overview

Processing Improvement of Aluminum Alloys

&

Development of An Al-Cu-Mg-Ag Alloy

Alex Cho

Pechiney Rolled Products Ravenswood WV

NASA Contract No. NNL04AB64T with AS&M Inc.

Processing Improvement of Aluminum Alloys & Development of An Al-Cu-Mg-Ag Alloy

Contents:

- 1. Background
- 2. Issues/Objectives
- 3. Approach
- 4. Brief Description of Results
- 5. Conclusions

Processing Improvement of Aluminum Alloys

- 2195, 2297 and 7050

& Development of An Al-Cu-Mg-Ag Alloy

- 2139

TASKS:

- I. 2195
- II. 2297
- III. 7050
- IV. Al-Cu-Mg-Ag alloy 2139

1. Background

a brief description of four alloys of interest

- 2195: 4.0 Cu -1.0 Li- 0.4 Mg 0.4Ag 0.13 Zr

 Space Shuttle External Fuel Tank application
 1.575" & 1.85" gage Plate in T8 temper
 In-Plane Design properties are measured at t/6 location
- 2297: 3.0 Cu -1.25Li .4 Mn 0.1 Zr
 Originally developed for F-16 bulkhead application
 Replaced 2219 plate in the External Fuel Tank
 2.4" gage Plate in T8 temper
 In-Plane Design properties are measured at t/6 location
- 7050: 6.5 Zn 2.2 Mg 2.1 Cu- 0.1 Zr
 Most used wrought product alloy for aerospace structures
 Broad range of plate thickness (1.5" 8") in -T7451 temper (over aged)
 In-Plane Design properties are measured at t/4 location
- Al-Cu-Mg-Ag alloy(2139): 5.0 Cu 0.5 Mg 0.4 Ag 0.4 Mn

 Excellent DT & D capability in age hardened temper

1. Background

Metallurgical characteristics of four alloys selected

- 2195: 4.0 Cu -1.0 Li- 0.4 Mg - 0.4Ag - 0.13 Zr

High strength alloy with high solute content (at solubility limit)

Strengthened by T₁ phase(Al₂CuLi) on (111) – contribute to strength anisotropy

Precipitate nucleation & coarsening kinetics are strongly influenced by dislocation density

Strong crystallographic texture - contribute strength anisotropy

Mechanical properties are highly anisotropic

- 2297: 3.0 Cu -1.25Li - .4 Mn - 0.1 Zr

Medium strength alloy with moderate solute content

Strengthened by T₁ phase(Al₂CuLi) on (111) – contribute to strength anisotropy

Precipitate nucleation & coarsening kinetics are strongly influenced by dislocation density

- 7050: 6.5 Zn - 2.2 Mg - 2.1 Cu- 0.1 Zr

Very high strength in its peak strength temper condition

Excellent property balance in over aged -T7451 temper

Strengthened by multiple phases (MgZn₂(1.5), Al_xMg_xZn_x types, Al₂CuMg etc.)

Precipitate nucleation & coarsening kinetics are marginally influenced by dislocation density

- Al-Cu-Mg-Ag alloy(2139): 5.0 Cu - 0.5 Mg - 0.4 Ag - 0.4 Mn

Excellent property balance in its peak strength condition

Strengthened by Ω phase (Al₂Cu) with habit plane of (111)

Precipitate nucleation & coarsening kinetics are marginally influenced by dislocation density

2. Issues/Objectives

Mechanical Property issues of the four alloys

- 2195: 4.0 Cu -1.0 Li- 0.4 Mg 0.4Ag 0.13 Zr
 Low L UTS at t/6 (L UTS << LT UTS)</p>
 SST Fracture Toughness fails sometimes at t/6
- 2297: 3.0 Cu -1.25Li .4 Mn 0.1 Zr
 Low L UTS at t/6 (L UTS << LT UTS)
 K1c in S-L direction at Cryogenic temperature are marginal
- 7050: 6.5 Zn 2.2 Mg 2.1 Cu- 0.1 Zr
 Low L UTS at t/4 (L UTS < LT UTS) in 2.5" 4" gage range
 SCC Resistance/Electrical Conductivity fails sometimes
- Al-Cu-Mg-Ag alloy(2139): 5.0 Cu 0.5 Mg 0.4 Ag 0.4 Mn
 Better balanced properties in all directions
 Strength/Corrosion characteristics at very thick gage are unknown

<u>Processing Improvement of Aluminum Alloys – 2195, 2297 & 7050</u> & Development of an Al-Cu-Mg-Ag Alloy

3. Approach

- 2195: 4.0 Cu -1.0 Li- 0.4 Mg 0.4Ag 0.13 Zr
 Evaluated alternate hot rolling practice
 Explored various cold work practices prior to Artificial Aging
 Examined effects of crystallographic texture
- 2297: 3.0 Cu -1.25Li .4 Mn 0.1 Zr
 Evaluated combination of : Hot Rolling / Chemistry / Cold work
 Examined effects of crystallographic texture
- 7050: 6.5 Zn 2.2 Mg 2.1 Cu- 0.1 Zr

 Evaluated various plate gages

 Studied evolution of crystallographic texture through hot rolling gages
- AI-Cu-Mg-Ag alloy(2139): 5.0 Cu 0.5 Mg 0.4 Ag 0.4 Mn
 Examined the effects of two dispersoid forming elements
 Two ingots have been cast for additional thicker gage product

I. 2195-T8 Plate - alternate hot rolling process

<u>current Ravenswood Hot Rolling Practice for 2195 – (McCook Practice)</u>

Proposed Two-Directional Rolling Practice

Proposed practice provides balanced deformation in two directions

2.4X vs. 3.7X

1.2X vs. 7.4X

I. 2195-T8 Plate

<u>L UTS & LT UTS of two-directionally rolled production plate are better than those of standard production plate.</u>

Tensile Prop.(t/6) vs Hot Rolling Temperature of 1.575 inch 2195-T8 plate (production by uni-dir roll, 246263 & 265771 by two-dir roll)

I. 2195-T8 Plate

Higher volume % of Cu and S components favor L-direction strength, while higher vol % of Brass component would lower L UTS compared to LT UTS. Therefore, the ratio of L UTS/LT UTS increases as the vol % of (S+Cu-Brass) components increases.

Tensile property at t/6 vs Texture at t/6 in 1.575" gage 2195-T8 plate (246263N & S, 265771N & S were two-directionally rolled. Remaining were uni-dir. rolled)

I. 2195-T8 Plate

Improved Combination of Stress Ratio and L UTS was achieved by two-directionally rolled plate

Simulated Service Test on 1.575 in gage 2195-T8 temper plate Production lots by uni–directional rolling. Lot 246263 & 265771 by two dir.- rolling

I. 2195-T8 Plate

In addition to examining alternate hot rolling practice, various combinations of % Cold roll and % Stretch have been examined for through-thickness-strength uniformity by controlled experiments in a laboratory scale and plant scale trials.

Alternate Temper Development for 2195 Plate

A: Effect of Stretch on Through-Thickness Strength Uniformity

B: Effect of "Cold Roll & Stretch" prior to Age on Through-Thickness Strength Uniformity and Fracture Toughness

B-1: Lab scale experiment

B-2: Plant scale trial

C: Effect of "Multi- Step Stretch Prior to Aging" on Through-Thickness Strength Uniformity

- Lab scale experiment

I. 2195-T8 Plate

- Stretch prior to aging significantly raises L UTS; greater effect at t/2 location
- L UTS is more uniform through thickness in T6 temper condition (i.e., 0 % stretech)

Effect of Stretch & Aging on Through Thickness L UTS in 2195 Plate (1.575" gage, lot No 158162)

II. 2297-T8 Plate

Examination of chemistry, hot rolling practice and % cold work (cold roll + stretch)

Processing Study of 2.4 inch gage 2297-T8 plate

682311	low Li(1.2%)	Two-dir.roll	Cold Roll+stretch
682321	low Li(1.2%)	Two-dir.roll	stretch
200601	high Li(1.3%)	Two-dir.roll	stretch
Prev. 8 lots	high Li(1.3%)	One-dir. roll	stretch
Lot no.	<u>Alloy</u>	Hot Roll dir.	<u>Cold Work</u>

Lot No.	% Li	Hot Roll	Cold Work
Std. 8 lots	1.3	One-dir.	Stretch only
200601	1.3 Two-d		Stretch only
682321	1.2	Two-dir.	Stretch only
682311	1.2	Two-dir.	Cold Roll+Str.

II. 2297-T8 Plate

Standard production lots had low K1c's in S-L & L UTS at Room temperature. Two-directionally rolled plates (200601, 682321 & 682311) show the significant improvement on both properties.

K1c in S-L at -320F vs. L UTS at R.T.

II. 2297-T8 Plate

The ratio of LT UTS & L UTS shows good correlation with texture combination of S+Cu-Brass components except Lot 682321. It appears that 5.3% of Cold Rolling reduces degree of strength anisotropy for the plate with a similar texture.

LT UTS / L UTS vs Texture at t/6 location 2.4 inch gage 2297-T8 Plate

II. 2297-T8 Plate

The ratio of LT TYS & L TYS shows good correlation with texture combination of S+Cu-Brass components except lot 682311. It appears that 5.3% of Cold Rolling reduces degree of strength anisotropy for the plate with similar texture.

LT TYS / L TYS vs Texture at t/6 location 2.4 inch gage 2297-T8 plate

III. 7050-T7451 Plate

Correlation of Plate gage, Crystallographic Texture and Tensile properties of one and two-directionally rolled plate

Crystallographic texture of 7050 plate showed good correlation with plate gages. However, no significant differences are observed in texture between uni-directionally rolled plate and two-directionally rolled plate

Rolling Texture at t/4 location vs. Gage of 7050-T7451 plate Comparison of Uni -dir. Rolling vs. Two-dir. Rolling

III. 7050-T7451 Plate

The ratio of LT UTS/L UTS correlates with the deformation texture within the range of 2.0 to 3.8 inch. As deformation texture increases, the ratio of LT UTS/L UTS decreases. Two-directionally rolled plate shows no significant difference compared to uni-directionally rolled plate.

Ratio of LT UTS/L UTS at t/4 vs. Texture at t/4 of 7050-T7451 plate Comparison of uni-dir. Rolling vs. two-dir. Rolling

III. 7050-T7451 Plate

Only marginal correlation could be observed between L UTS values and deformation texture

L UTS at t/4 vs. Rolling Texture at t/4 location of 7050-T7451 plate Comparison of uni-dir. Rolling vs. two-dir. Rolling

<u>Processing Improvement of Aluminum Alloys – 2195, 2297 & 7050</u>

4. Conclusions

- For 2195 and 2297 alloys, alternate hot rolling practices (two-directional rolling) provide a desirable crystallographic texture, and significant improvement of L UTS values.
- For 2297 alloy plate, a slightly low solute alloy with higher amount of cold work provided best combined properties
- For 7050 plate, crystallographic texture of plate are strongly influenced by plate gage, but not by alternate hot rolling practice (i.e., two-directional rolling). Furthermore, two-directional rolling did not reduce strength anisotropy
- For better understanding of strength and strength anisotropy of 7050-T7451 plate, additional study on chemistry and aging practice would be needed

IV. Al-Cu-Mg-Ag Alloy; 2139-T8 plate

- -Two ingots were cast to evaluate Al-Cu-Mg-Ag based alloy
- -To examine the effect of dispersoid forming elements (Zr vs. Mn)
- Plate products were evaluated at two different gages

Chemistry of two Al-Cu-Mg-Ag based alloy ingots:

	Cu	Mg	Ag	Mn	Zr	Ti
Alloy A (Mn)	4.90	0.46	0.38	0.32	0.002	0.09
Alloy B (Zr)	4.81	0.45	0.39	0.01	0.14	0.02

Each ingot was hot rolled to two different gage plates for evaluation

- 1) 0.28 inch gage
- 2) 1.0 inch gage

IV. Al-Cu-Mg-Ag Alloy; 2139-T8 Plate

Difference in Fracture Toughness between alloy A(w/Mn) and alloy B(w/Zr) becomes larger at -65 deg F than that at room temperature

Fracture Toughness of 0.28 inch plate

Product Gage; 0.28 inch, 16 inch wide panel test - center notched

IV. Al-Cu-Mg-Ag Alloy; 2139-T8 Plate

Test results on Fatigue Resistance showed that Lot No. 831571 (Al-Cu-Mg-Ag-Mn alloy) is better than Al-Cu-Mg-Ag-Zr alloy and far superior compared to alloy 2324-T39

Fatigue Resistance of Al-Cu-Mg-Ag alloys and 2324-T39 Plate
Notch Fatigue Tests on 1 inch gage Plate

Notched Fatigue Tests on 1.0 in. gage Al-Cu-Mg-Ag-Mn (Alloy A & B) Plate in T8

L -dir. at t/2

Max. Stress; 39 ksi, R-Ratio; 0.1 Freq.; 15 Hz

Alloy A(Lot No.831571)						
S.N.	Cycle to Fail	Fail. Loc.				
1	1,500,000	Discont.				
2	1,500,000	Discont.				
3	1,500,000	Discont.				
4	1,500,000	Discont.				
5	158,968	Gage Sec.				

Avg.	<u>957,492</u>

	Alloy B(Lot No.831581)					
S.N.	Cycle to Fail	Fail. Loc.				
1	1,500,000	Discont.				
2	223,747	Gage Sec.				
3	1,500,000	Discont.				
4	1,500,000	Discont.				
5	455,387	Gage Sec.				

Avg. 807,760

2324-T39;(Lot 980Y667A)					
S.N.	Cycle to Fail	Fail. Loc.			
1	162,653	Notch			
2	157,222	Gage Sec.			
3	157,360	Gage Sec.			
4	164,409	Gage Sec.			
5	183,183	Gage Sec.			

Avg. 164,701

IV. Al-Cu-Mg-Ag Alloy; 2139-T8 Plate

SCC resistance of Al-Cu-Mg-Ag alloys (both alloy A & alloy B) is better than any other 2xxx alloy currently available commercially

Corrosion Resistance of 1.0 inch gage 2139-T8 Plate

■Alloy A(Lot no. 831571); 1.0 inch gage Plate

SCC: Passed at 30, 35, and 40 ksi for 20 days when tested in ST direction per ASTM G47 by ASTM G-38-01

Alloy B(Lot no. 831581); 1.0 inch gage plate

SCC: Passed at 30, 35, and 40 ksi for 20 days when tested in ST direction per ASTM G47 by ASTM G-38-01

IV. Al-Cu-Mg-Ag Alloy; 2139-T8 Plate

Casting of Two Ingots

For additional development, two more ingots of Al-Cu-Mg-Ag-Mn alloy have been cast.

Ingot #1; 17.5 inch x 88 inch x 125 inch (usable length)

Ingot #2; 17.5 inch x 88 inch x 126 inch (usable length)

Chemistry of Two Al-Cu-Mg-Ag-Mn alloy ingots

Drop	Si	Fe	Cu	Mn	Mg	Cr	Ti	Ag	Zr
Target	0.04	0.07	5	0.35	0.5	0	0.04	0.35	0
min	0	0	4.5	0.3	0.45	0	0.03	0.3	0
max	0.08	0.1	5.5	0.4	0.55	0.025	0.05	0.4	0.03
Ingot #1	0.0287	0.054	5.2	0.359	0.481	<0.0004	0.042	0.389	0.0016
Ingot #2	0.0223	0.04	5.23	0.361	0.493	<0.0004	0.042	0.358	<0.0005

note: All chemistries are in weight %

Development of Al-Cu-Mg-Ag Alloy; 2139-T8 plate

4. Conclusions

- Al-Cu-Mg-Ag alloy with Mn-containing dispersoids showed higher fracture toughness and fatigue resistance compared to Zr –containing dispersoids.
- Al-Cu-Mg-Ag alloys, having excellent Fracture Toughness, SCC Resistance and Fatigue resistance, would be most suitable for DT & D applications.
- Two ingots of Al-Cu-Mg-Ag-Mn alloy have been cast to explore thicker gage product.

Processing Improvement of Aluminum Alloys

- 2195, 2297 and 7050

& Development of An Al-Cu-Mg-Ag Alloy

- 2139

TASKS:

- 2195
- 2297
- 7050
- Al-Cu-Mg-Ag alloy 2139

Effect of Processing Modifications on Texture and Mechanical Properties of 2195-T8 Plate

Alex Cho

Pechiney Rolled Products
Ravenswood WV

NASA Contract No. NNL04AB64T with AS&M Inc.

Part I:

Effect of Alternate Hot Rolling Processing on Texture and Mechanical Properties of 2195-T8

Part II:

Effect of cold work prior to Artificial Age on the Mechanical Properties of 2195-T8 Plate

Part I:

Effect of Alternate Hot Rolling Processing on Texture and Mechanical Properties of 2195-T8

Effect of Alternate Hot Rolling Process on Texture and Mechanical Properties of 2195-T8

Contents:

- I. Objective
- II. Approach
- III. Background Information for 2195-T8 Plate
- IV. Description of Standard and Trial processing
- V. Property Test Results for Standard Plate and Trial Processed Ingots
- VI. Texture Study Results
- VII. Correlation of Texture wih Properties in the Longitudinal (L) and Long Transverse (LT) Directions
- VIII. Conclusions

Processing Modifications of 2195-T8 Plate

I. Objective

Improve the longitudinal tensile strength of 2195-T8 plate to produce a more isotropic plate product and improve damage tolerance

Processing Modifications of 2195-T8 Plate

II. Approach

Examine the past performance of 2195-T8 plate, identify an alternative hot rolling process and evaluate the effect on texture and mechanical properties by conducting a plant trial

III. Background Information for 2195-T8 Plate:

- Current standard processing of 2195-T8 plate product results in ultimate tensile strengths in the longitudinal direction (L UTS) frequently lower than the long transverse direction.
- Property improvement is most desirable in 1.575 inch plate at the t/6 and 5t/6 thickness locations.
- The objective is to improve L UTS values by at least 2 ksi, compared to typical values of the plate produced by current standard processing.

Average values from 130 lots							
of 1.575" gag	of 1.575" gage 2195-T8						
Average(130 lots)							
L UTS	79.1 ksi						
LT UTS	82.9 ksi						

IV. Process Description of Standard vs. Proposed Trial Lots

Current Ravenswood Uni-directional Practice on 2195 plate

- -Full size ingot: 16" x 60" x 120"
- -Straight Roll to 142" from 120"
- -Rotate 90 deg., Cross Roll to finish to 440" long from 60"
- -SHT /Stretch/Age

Proposed Two-directional Hot Rolling Practice

- -Full size ingot: 16" x 60" x 120"
- -Cross Roll to 142" wide from 60"
- -Rotate 90 deg., straight roll to finish to 440" long from 120"
- -SHT /Stretch/Age

current Ravenswood Hot Rolling Practice for 2195 – (McCook Practice)

Proposed Two-Directional Rolling Practice

Detailed Description of Proposed Hot Rolling Trials for 2195-T8 Plate

 Select 2 ingots of 16" x 60" x 120" (approx. 11,000 lbs) for Hot Rolling Trials

Lot No. 246263: 4.06 Cu - 0.95 Li - 0.35 Mg - 0.32 Ag - 0.14 Zr

Lot No. 265771: 3.97 Cu -0.96 Li - 0.31 Mg - 0.33 Ag - 0.14 Zr

Cross Roll (two-directional) to 142" wide from 60"
 Rotate 90 deg.,

straight roll to finish to 440" long from 120"

SHT/Stretch/Age (32 hours at 300 deg F) Final Gage : 1.575"

	Hot Rolling Pr	actice	SHT	Amount o	of Stretch	Conductivity(%IAC)		
Lot No.	Lay-on(degF)	Exit(deg F)	Soak time(hr)	Right Edge	Left Edge	Top surf.	Bottom surf.	
246263	880	729	4.8	3.50%	3.85%	22.8 / 23.7	22.9 / 24.1	
265771	872	770	4.8	3.88%	3.50%	22.9 / 23.6	22.7 / 23.7	

 Artificial Aging condition was selected to enable comparison with the mechanical properties of standard straight rolled plate

- Chemistry of trial ingots are within standard range
- Li content, the most significant alloying element, is very close to the average value of the past production ingot chemistries.

Chemistry of 1.575 inch 2195-T8 plate (production by uni-dir roll, 246263 & 265771 by two-dir roll)

Lay-on temperatures during rolling of the trial ingots were similar to the average value of the standard product. However, Exit temperatures from hot rolling for these two ingots werere lower then most of the standard production runs

Hot Rolling Temperature of 1.575 inch 2195-T8 plate

(production by uni-dir roll, 246263 & 265771 by two-dir roll)

V. Property Test Results for Standard Plate and Trial Ingots

- Trial ingots, 246263 and 265771, are two-directionally rolled. All other
 75 production ingots were uni-directionally rolled (i.e., standard practice)
- Tensile properties and <u>Simulated Service Tests</u> (SST) were performed on the two trial processed at three plate locations each and the results are compared to those of standard production lots.

Examination of the standard process plate showed that when the exit temperatures overlap, the L UTS is higher for the two –directionally rolled plate, lot no.246263 & 265771

Tensile Prop.(t/6) vs Hot Rolling Temperature of 1.575 inch 2195-T8 plate Production lots by uni–directional rolling. Lot 246263 & 265771 by two dir.- rolling

LT UTS for two-directionally rolled plate is comparable to production plate regardless of exit temperature.

Tensile Prop.(t/6) vs Hot Rolling Temperature of 1.575 inch 2195-T8 plate Production lots by uni–directional rolling. Lot 246263 & 265771 by two dir.- rolling

L UTS are higher for two-directionally rolled plate at simialr lay-on temperatures

Tensile Prop.(t/6) vs Hot Rolling Temperature of 1.575 inch 2195-T8 plate Production lots by uni-directional rolling. Lot 246263 & 265771 by two dir.- rolling

LT UTS of trial processed plate is comparable to production plate

Tensile Prop.(t/6) vs Hot Rolling Temperature of 1.575 " 2195-T8 plate Production lots by uni-directional rolling. Lot 246263 & 265771 by two dir.- rolling

L UTS & LT UTS for two-directionally rolled plate are better than production plate.

Tensile Prop.(t/6) vs Hot Rolling Temperature of 1.575 inch 2195-T8 plate (production by uni-dir roll, 246263 & 265771 by two-dir roll)

• Two-directionally rolled plate showed higher average value of L UTS by 3 ksi compared to the uni-directionally rolled plate.

Comparison of Tensile Properties for Plate Processed by Two-directional rolling vs. Uni-directional rolling

Tensile properties in L-dir. from two-directionally roll. plate 10 locations from 2 lots after aged at 300F for 32 hours

Lot	Sample	lest	lest	LUIS	LIYS	Le
No.	Location*	direction	plane	ksi	ksi	%
246263	N2	L	t/6	82.1	78.9	6.5
246263	N2	L	5t/6	83.4	77.7	7.5
246263	N4	L	t/6	83	79.5	8
246263	S2	L	t/6	82.4	79.5	7.5
246263	S2	L	5t/6	80.3	77.9	5.5
265771	N2	L	t/6	82.9	79.5	7.5
265771	N2	L	5t/6	82.8	79.5	7.5
265771	N4	L	t/6	81.3	78.2	8
265771	S2	L	t/6	83.5	79.7	/
265771	S2	L	5t/6	83.4	79.8	6.5
note*:see	a diagram ii	n page 25		80.3	77.7	5.5
			Max	83.5	79.8	8
			Average	82.51	79.02	7.15
			STD Dev	1.03	0.79	0.78

uni-directionally rolled Plate	Mın	78	73.7	7
75 lots aged at 300F for 32 hrs.	Max	82.1	77.9	10.5
	Average	79.45	75.83	9.11
	STD Dev	0.87	0.94	0.71
Difference between uni-dir. &	mın	2.3	4	-1.5
two-dir. rolled plate after aged	max	1.4	1.9	-2.5
at 300F for 32 hrs	Average	3.06	3.19	-1.96
	STD Dev	0.16	-0.14	0.07

• Two-directionally rolled plate showed lower average value of LT UTS by 1 ksi compared to the uni-directionally rolled plate. However, average value of LT UTS of uni-directionally rolled plates are higher by 4 ksi compared to the average value of L UTS. This would make the plate more isotropic in strength.

Comparison of Tensile Properties for Plate Processed by Two-directional rolling vs. Uni-directional rolling

Tensile properties in LT -dir. from two-dir. rolled Plate 10 locations from 2 lots after aged at 300F for 32 hours

Lot	Sample	Test	lest	LIUIS	LITYS	Lle				
No.	Location*	direction	plane	ksi	ksi	%				
246263	N2	LT	t/6	80.2	77.6	6.5				
246263	N2	LT	5t/6	83.3	77.7	7.5				
246263	N4	LI	t/6	82.6	76.5	8				
246263	S2	LT	t/6	82.7	77.3	6.5				
246263	S2	LI	5t/6	82.9	77.8	6.5				
265771	N2	LT	t/6	82.3	76.5	8				
265771	N2	LI	5t/6	81.7	76.2	7.5				
265771	N4	LT	t/6	82	76.3	8				
265771	S2	LI	t/6	81.9	75.7	10				
265771	S2	LT	5t/6	82	75.8	8.5				
note*:see	a diagram ii	n page 25	Mın	80.2	75.7	6.5				
			Max	83.3	77.8	10				
			Average	82.16	76.74	7.7				
			STD Dev	0.85	0.79	1.09				
Luni dirontio	nolly rolled	Dioto	Min	04.0	72.4	7				
	nally rolled			81.2	73.4	/				
75 lots age	ed at 300F f	or 32 nrs.	Max	85.5	78.7	10				
			Average	83.25	76.10	8.47				
			STD Dev	0.98	1.12	0.67				
	between ur		Min	-1	2.3	-0.5				
two-dir. rol	led plate af	ter aged	Max	-2.2	-0.9	0				
at 300F for	32 hrs		Average	-1.09	0.64	-0.77				
			STD Dev	-0.13	-0.32	0.41				

• Two-directionally rolled plate showed higher average value of 45 deg TYS by 2 ksi and average 45 deg UTS by 0.3 ksi compared to the uni-directionally rolled plate.

Comparison of Tensile Properties for Plate Processed by Two-directional rolling vs. Uni-directional rolling

Tensile properties in 45 deg -dir. from two-dir. rolled Plate 10 locations from 2 lots after aged at 300F for 32 hours

Lot	Sample	Test	Test	45 UIS	45 IYS	45 e
No.	Location*	direction	plane	ksi	ksi	%
246263	N2	45	t/6	81.9	75.6	6.5
246263	N2	45	5t/6	82.5	75.6	8.5
246263	N4	45	t/6	81	73.9	9
246263	S2	45	t/6	82.1	75.1	10
246263	S2	45	5t/6	81.9	75.5	9.5
265771	N2	45	t/6	81.9	74.8	8.5
265771	N2	45	5t/6	81.3	74	8
265771	N4	45	t/6	80.6	73.6	9
265771	S2	45	t/6	81.6	74.4	8.5
265771	S2	45	5t/6	82.1	74.8	8.5
note*:see a	a diagram ir	n page 25	Mın	80.6	73.6	6.5
			Max	82.5	75.6	10
			Average	81.69	74.73	8.6
			STD Dev	0.57	0.73	0.94

uni-directionally rolled Plate	Min	78.5	68.2	7
75 lots aged at 300F for 32 hrs.	Max	86.1	77.8	11
	Average	81.35	72.75	10.07
	STD Dev	1.13	1.39	0.71
Difference between uni-dir. &	Min	2.1	5.4	-0.5
two-dir. rolled plate after aged	Max	-3.6	-2.2	-1
at 300F for 32 hrs	Average	0.34	1.98	-1.47
	STD Dev	-0.56	-0.65	0.23

• Two-directionally rolled plate showed higher average values of ST UTS by 2.9 ksi and ST TYS by 2.6 ksi compared to the uni-directionally rolled plate.

Comparison of Tensile Properties for Plate Processed by Two-directional rolling vs. Uni-directional rolling

Tensile properties in ST -dir. from two-dir. rolled Plate 6 locations from 2 lots after aged at 300F for 32 hours

			_			
Lot	Sample	Test	Test	STUIS	STIYS	STe
No.	Location*	direction	plane	ksi	ksi	%
246263	N2	ST	t/2	87.5	76.5	3.6
246263	S2	ST	t/2	85.6	74.2	3
246263	N4	ST	t/2	88.8	76.8	3.1
265771	N2	ST	t/2	86.7	75.2	3.3
265771	S2	ST	t/2	85.6	73.9	3
265771	N4	ST	t/2	86.5	74.1	3.1
note*:see	a diagram ii	n page 25	Mın	85.6	73.9	3
			Max	88.8	76.8	3.6
			Average	86.78	75.12	3.18
			STD Dev	1.22	1.27	0.23

uni-directionally rolled Plate	Min	78.3	65.6	2
75 lots aged at 300F for 32 hrs.	Max	88.9	77.9	7.8
	Average	83.91	72.53	4.41
	STD Dev	1.93	1.55	1.32
Difference between uni-dir. &	Min	7.3	8.3	1
two-dir. rolled plate after aged	Max	-0.1	-1.1	-4.2
at 300F for 32 hrs	Average	2.87	2.59	-1.22
	STD Dev	-0.70	-0.28	-1.09

Simulated Service Test

Surface Crack Tension Specimen

0.087"+- 0.005" 12"±0.5 3.00"±.010 R=0.5" minimum typical 4 places 3.75"±0.10

Surface Crack Tension Specimen Cross Section

Net Section Stress(precrack)=Fracture load/(tW-πaprecrack2cprecrack/4)

Net Section Stress(post-proof)=Proof load/(tW-πapost-proof/4)

Testing Procedure

- 1. SST requires two specimens per lot
- 2. Specimen #1 is to measure "proof offset" and "proof stress" at room temperature
- 3. Specimen #2 is to measure fracture stress at -320F after four mission cycles at -320 deg F

Surface Crack Tension Specimen Cross Section

Stress Ratio = Fracture Stress after mission cycles at –320 deg F / Proof Stress at R.T.

Schematic diagram of test sample locations from 1.575" gage 2195 plate

Simulated Service Test Results for Two-Directionally Rolled Plate

(Sample Orientation in T-S, Aged at 300 deg F for 32 hours)

Lot No.	Sample Location	test plane	Ke (proof)	Ke fracture (post mission)	Net Fracture Stress	Net Proof Stress(po st proof flaw)		L UTS (ksi)
246263	N2	t/6	28	32.9	75.6	76.7	1.174	82.1
246263	N4	5t/6	27.7	32.3	75	77	1.166	83
246263	S2	5t/6	27.7	31.8	75.1	76.3	1.148	80.3
265771	N2	t/6	28.5	32.5	73.6	75	1.139	82.9
265771	N4	5t/6	28.6	32	76.1	78.3	1.118	81.3
265771	S2	t/6	28.3	32.2	75.2	76	1.137	83.5

Note: Ke values are in Ksi-√inch

Note: Stress values are in Ksi

Improved Combination of Stress Ratio and L UTS Achieved with Two-directionally Rolled Plate

Simulated Service Test on 1.575 in gage 2195-T8 temper plate

Production lots by uni-directional rolling. Lot 246263 & 265771 by two dir.- rolling

Small improvement in Stress Ratio achieved for two-dimensionally Rolled Plate for similar Proof Stress values

Simulated Service Test on 1.575 in gage 2195-T8 temper plate

Production lots by uni-directional rolling. Lot 246263 & 265771 by two dir.- rolling

Summary of Tensile and Simulated Service Test Results

Compared with production plates, two-directionally rolled plate showed:

- L UTS values are higher by 3 ksi
- More isotropic strengths
- Higher strengths in all directions except LT UTS
- SST results showed more favorable Stress Ratios vs. L UTS and Net Proof Stress

VI. Texture Study Results

- To investigate the effect of hot rolling practice on crystallographic texture of 2195-T8 plate, the CODF(crystallographic orientation distribution function) was measured at t/6 plane locations for 10 lots of standard production plate and two lots of two-directionally rolled plate
- Since there are only two lots of two-directionally rolled plate, two locations, front end (N) & tail end (S) of each plate were sampled and tested. All other production lots were tested at tail end(N)
- The results are presented by volume % of each texture components as follows:

```
Cube: {001} <100>,
Goss: {011} <100>,
Brass: {011} <211>,
S: {123} <634>
Cu: {112} <111>
rotated Cube: {001} <110>
```

- For S component, there are large overlaps in vol% values between two-directionally rolled and uni-directionally plate. However, two directionally rolled plate tended to have higher values.
- For Cu component, two-directionally rolled plate generally had a higher volume % except for 246263 S(front end).
- For Brass & Cube components, two-directionally rolled plate tended to have lower volume % with slight overlap in values.

Crystallographic Texture of 1.575" gage 2195-T8 Plate at t/6 location

(Texture components in vol.%)

(246263N & S, 265771N & S are two-dir. rolled. Remaining lots are uni-dir. rolled)

	-					•		•
Lot	Cube	Goss	Brass	S	Cu	R-Cube	S/Brass	Cu + R-Cube
246263 N	4.9	2.8	2.9	10.3	6.8	8.9	3.55	15.7
246263 S	6.8	2.1	2.6	9.3	3.6	13.5	3.65	17.1
265771 N	5.1	3.1	5.9	16.0	7.6	8.2	2.72	15.8
265771 S	6.3	3.0	4.7	12.6	6.4	8.4	2.71	14.8
158147	7.0	3.3	8.9	12.4	3.6	6.1	1.40	9.7
158149	6.6	3.9	6.4	8.4	3.3	7.3	1.32	10.6
158161	5.9	2.7	8.2	10.6	3.1	7.2	1.29	10.3
158162	6.9	2.5	6.0	7.6	2.7	7.9	1.27	10.6
158671	7.4	2.6	5.8	8.4	3.6	7.4	1.46	11.0
485705	7.8	3.1	9.4	12.0	4.8	5.1	1.28	9.9
485706	6.2	2.8	6.3	8.8	3.6	7.7	1.41	11.3
158128	6.9	2.0	6.8	8.7	3.0	6.4	1.28	9.4
158115	7.3	3.9	7.7	8.5	2.9	6.9	1.10	9.8
158109	7.1	3.8	8.6	11.3	3.6	6.4	1.31	10.0

 The volume% ratio of S/Brass components of two-directionally rolled plate are distinctively higher than those of uni-directionally rolled plate

Effect of Hot Roll Direction on Texture vol% (S/Brass) at T/6 (246263N & S, 265771N & S were two-dir. rolled. The rest were uni-dir. rolled)

 Sum of the vol.% of Cu & rotated Cube components of two-directionally rolled plate are distinctively higher than those of uni-directionally rolled plate

Effect of Hot Roll Direction on Texture (T/6) in vol% (Cu + R-Cube)

(246263N & S, 265771 N & S were two-dir.rolled. The rest were uni-dir. rolled)

VII. Correlation of Texture on L vs LT direction strengths

- Favored slip planes for fcc metals such as aluminum alloys are (111) planes. In 2195-T8 plate, the major strengthening phase is T₁(Al₂CuLi) phase with habit planes on (111) planes. The micro-mechanics of these interactions are not well known.
- However, assuming 2195-T8 plate still deforms with slip system on
 (111) with <011> type burgers vector, S and Cu components would favor
 increases in L direction strength and make strength directionality more
 isotropic, while Brass component would lower L direction strength.

Tensile Properties of 1.575" gage 2195-T8 plate at t/6 location

(246263 N & S, 265771 N & S were two-directionally rolled, The rest were uni-dir. rolled)

Lot No.	L UTS	L TYS	L el	Lt UTS	Lt TYS	Lt el	St UTS	St TYS	St el	45 UTS	45 TYS	45 el
	(ksi)	(ksi)	(%)	(ksi)	(ksi)	(%)	(ksi)	(ksi)	(%)	(ksi)	(ksi)	(%)
158147	77.9	73.2	11	81	72.5	9.5	80.4	69.7	4.4	79.1	70	10
158161	77.8	72.1	10	80.3	72.6	7.5	75.3	61.1	7.3	76.5	66.9	10.5
158162	75.2	68.7	10	80.9	72.9	9	82.5	70.5	4.5	78.7	68.1	10
158671	77.6	74	9.5	82.1	74.7	9.5	82.8	70.9	4.7	79.9	71.7	11
246263 N	82.1	78.9	6.5	80.2	77.6	6.5	87.5	76.5	3.6	81.9	75.6	6.5
246263 S	82.4	79.5	7.5	82.7	77.3	6.5	85.6	74.2	3	82.1	75.1	10
265771 N	82.9	79.5	7.5	82.3	76.5	8	86.7	75.2	3.3	81.9	74.8	8.5
265771 S	83.5	79.7	7	81.9	75.7	10	85.6	73.9	3	81.6	74.4	8.5

NOTE: Aged at 300 deg F for 32 hours

Higher volume % of S component favors L-direction strength. Therefore, ratio of L UTS/LT UTS tends to increase as S component increases.

Tensile prop(t/6) vs Texture(t/6) in 1.575" 2195-T8 plate
(246263N & S. 265771N & S were two-directionally rolled. Remaining were uni-dir. rolled)

Higher volume % of Brass component favors lower L-direction strength. Therefore, ratio of L UTS/LT UTS tends to decrease as vol % of Brass component increases.

Tensile prop(t/6) vs Texture(t/6) in 1.575" 2195-T8 plate (246263N & S, 265771N & S were two-directionally rolled. Remaining were uni-dir. rolled)

• The greater the difference between the vol% of S and Brass components, the higher the ratio of L UTS/LT UTS

Tensile prop(t/6) vs Texture(t/6) in 1.575" 2195-T8 plate

(246263N & S, 265771N & S were two-directionally rolled. Remaining were uni-dir. rolled)

The Ratio of S/Brass for uni-directionally rolled plate fall into a very narrow range, almost a constant value. Similarly for the two-directionally rolled plate. This observation suggests that the ratio of S/Brass is a good indication of over all deformation between L and LT direction in plate rolling.

Tensile prop(t/6) vs Texture(t/6) in 1.575" 2195-T8 plate (246263N & S, 265771N & S were two-directionally rolled. Remaining were uni-dir. rolled)

Higher volume % of Cu component favors L-direction strength. Therefore, ratio of L UTS/LT UTS tends to increase as Cu component increases.

Tensile prop(t/6) vs Texture(t/6) in 1.575" 2195-T8 plate

(246263N & S, 265771N & S were two-directionally rolled. Remaining were uni-dir. rolled)

Higher volume % of Cu and S components favor L-direction strength, while higher vol% of Brass component favors higher strength in LT direction. Therefore, the ratio of L UTS/LT UTS increases as the vol % of (S+Cu-Brass) components increases.

Tensile prop(t/6) vs Texture(t/6) in 1.575" 2195-T8 plate (246263N & S, 265771N & S were two-directionally rolled. Remaining were uni-dir. rolled)

Higher volume % of Cu and S components favor L-direction strength, while higher vol% of Brass component favors lower L direction strength. Therefore, the ratio of L TYS/LT TYS increases as the vol % of (S+Cu-Brass) components increases.

Tensile Prop.(t/6) vs Texture(t/6) in 1.575" 2195-T8 plate (246263N & S, 265771N & S were two-directionally rolled. Remaining were uni-dir. rolled)

As the ratio of L UTS/LT UTS correlate with vol% of (S+Cu-Brass), L UTS values correlate with the vol% of (S+Cu-Brass)

Tensile prop (t/6) vs Texture(t/6) in 1.575" 2195-T8 plate (246263N & S, 265771N & S were two-directionally rolled. Remaining were uni-dir. rolled)

LT UTS values for these 8 lots do not correlate with S+Cu-Brass components. Therefore, L UTS values are largely responsible for the good correlation between the ratio of L UTS/LT UTS and texture components of (S+Cu-Brass)

Tensile prop (t/6) vs Texture(t/6) in 1.575" 2195-T8 plate (246263N & S, 265771N & S were two-directionally rolled. Remaining were uni-dir. rolled)

VIII. Conclusions:

- 1. Test results from two-directionally rolled plate showed the average L UTS values increased by 3 ksi compared to uni-directionally rolled plates
- 2. Two-directionally rolled plate showed higher L UTS strengths and more favorable results from SST (Simulated Service Test) compared to the plates produced by uni-directional rolling
- 3. Improvement in L UTS values could not be attributed to either chemistry or hot rolling temperatures
- 4. Compared to uni-directionally rolled plate, two-directionally rolled plate showed higher volume% of S and Cu texture components and lower volume % of Brass component which would favor high L direction strength
- 5. Two-directionally rolled plate showed more isotropic properties between L and LT directions

Effect of Processing Modifications on Texture and Mechanical Properties of 2195-T8 Plate Part II

Effect of Cold work Prior to Aging on Mechanical Properties and Through-Thickness Strength Uniformity

Alex Cho

Pechiney Rolled Products
Ravenswood WV

NASA Contract No. NNL04AB64T with AS&M Inc.

Part I:

Effect of Alternate Hot Rolling Process on Texture and Mechanical Properties of 2195-T8 Plate

Part II:

Effect of Cold work Prior to Aging on the Mechanical Properties and Through-Thickness Strength Uniformity

Effect of Cold Work Prior to Aging on the Mechanical Properties of 2195-T8 Plate on Mechanical Properties

contents:

- I. Objective
- II. Approach
- III. Alternate Temper development for 2195-T8 Plate
 - A. Effect of Stretch on Through-Thickness Strength Uniformity
 - B. Effect of "Cold Roll& Stretch" prior to Age on Through-Thickness Strength Uniformity and Fracture Toughness
 - C. Effect of "Multi-Step stretch Prior to Aging" on Through-Thickness Strength Uniformity
- IV. Conclusions

I. Objective

Current application of 2195-T8 plate is driven by the mechanical properties at the near surface location(t/6 location). However, the mechanical properties decrease from the mid plane (i.e t/2 location) to the t/6 location. Since mechanical properties of 2195-T8 temper plate vary with the amount of cold work prior to artificial aging, the objective of this work is to improve mechanical properties at the t/6 location by exploring the effect of variation of cold work on through–thickness properties.

II. Approach

The effects of cold work on mechanical properties were examined in both lab scale experiments as well as plant scale trials. In this study, experimental variables include % stretch, % cold roll and multiple steps of stretch as well as various combinations of both.

Plant trials were conducted to examine the effect of cold rolling on mechanical properties and, to a limited degree, on damage tolerance of the plate by Simulated Service Testing (SST).

III. Alternate Temper Development for 2195 Plate

Content:

A: Effect of Stretch on Through-Thickness Strength Uniformity

B: Effect of Cold Roll & Stretch prior to Age on Through-Thickness Strength Uniformity and Fracture Toughness

B-1: Lab scale experiment

B-2: Plant scale trial

C: Effect of Multi- Step Stretch Prior to Aging on Through-Thickness Strength Uniformity

- Lab scale experiment

III. Alternate Temper Development for 2195 Plate

A: Effect of Stretch on Through-Thickness Strength Uniformity

Material: Lot No. 158162: 1.575 inch gage 2195-F temper plate

Chemistry: 4.0 Cu - 1.0 Li - 0.32 Mg - 0.31 Ag - 0.14 Zr

Rolling temperature: Lay-on Temp: 872 F, Exit Temp: 828 F

Lab processing: SHT at 950F for 2 hrs.

CWQ

% Stretch: 0% for samples no.1 & no.2

3.75 % for samples no. 3 & no. 4

A. Effect of Stretch on Through-Thickness Strength Uniformity

- Tensile Test results

Sample No.	Stretch %	Age Practice time at Temp.	Test location from surface	L TYS ksi	UTS ksi	Elongation %
1	0	30 hrs at 300F	0.278 0.528 0.778	43.6 47.6 49.4	61.5 70.9 72.5	24.8 16.6 15.3
2	0	16 hrs at 350F	0.278 0.528 0.778	69.4 74.5 72.8	74.7 81.0 81.0	6.7 6.4 5.9
3	3.75	30 hrs at 300F	0.278 0.528 0.778	71.7 79.8 83.6	73.7 83.9 87.2	8.2 8.6 6.5
4	3.75	30 hrs at 300F	0.278 0.528 0.778	72.9 81.5 84.5	74.7 85.1 88.1	5.4 6.3 6.9

NOTE: Test Location from Surface: 0.278 inch (t/6), 0.528 inch (t/3) and 0.778 inch (t/2)

NOTE: Sample No. 3 & No. 4 are duplicates

- Stretch prior to aging significantly raises L TYS; with greater effect at t/2 location
- L TYS is more uniform for –T6 temper condition (i.e., 0 % stretech)

Effect of Stretch & Aging on Through Thickness L TYS in 2195 Plate (1.575" gage lot No 158162)

- Stretch prior to aging significantly raises L UTS; with greater effect at t/2 location
- L UTS is more uniform for –T6 temper condition (i.e., 0 % stretech)

Effect of Stretch & Aging on Through Thickness L UTS in 2195 Plate (1.575" gage lot No 158162)

Alternate Temper Development for 2195 Plate

A: Effect of Stretch on "Through-Thickness Strength Uniformity"

SUMMARY

- 1.575" gage 2195 plate in T6 temper (0% stretch prior to age) shows more uniform through-thickness tensile properties after aging at two different age practices.
- 1.575" gage 2195 plate in T8 temper (3.75% stretch prior to age) shows higher strength at t/2 location compared to that at either at t/4 and at t/6 locations.
- Results showed that stretch prior to age significantly increases strength at t/2
 location, but is not effective in increasing strength at near surface
 locations.

Alternate Temper Development for 2195 Plate

- **B**: Effect of Cold Roll & Stretch prior to Age on Through-Thickness Strength Uniformity and on Fracture Toughness
- As a baseline, one sample was processed using standard practice of stretch only operation (no cold rolling)
- A laboratory scale experiment was conducted with four samples having different combinations of % stretch and % cold rolling
- A plant scale trial was conducted comparing the standard practice vs. cold roll
 & stretch practice prior to aging.

Alternate Temper Development for 2195 Plate

B-1: Effect of Cold Roll & Stretch prior to Age on Through-Thickness Strength Uniformity

Experimental Parameters for Laboratory Scale Experiment

- 1; Cold Roll 6% + 2.5% stretch
- 2; Cold Roll 3% + 3.75% stretch
- 3; Cold Roll 3% + 3.75% stretch
- 4; Cold Roll 6% + 2.5% stretch

Baseline Standard practice ; 0 % cold roll + 3.75% stretch

B-1: Effect of Cold Roll & Stretch prior to Age on Through-Thickness Strength Uniformity

Percent Cold Work and Tensile Properties for Baseline 2195 Standard Practice

Lot No.	S.N.	cold roll	%Stretch	cold work	test plane	Age (300F)	test dir.	UTS(ksi)	TYS(ksi)	EI(%)
158162	-1	none	3.82%	3.82%	5t/6	34	L	79.0	75.8	9.5
					t/6	34	L	79.4	76.3	9.0
	stretch: 3.82% by single step						L	89.4	85.4	9.0
					t/3	34	L	88.9	85.0	9.0
					t/2	34	L	92.0	88.4	9.0

B-1: Effect of Cold Roll & Stretch prior to Age on Through-Thickness Strength Uniformity

Percent Cold Work for Laboratory Scale 2195 Plate

B-1: Effect of "Cold Roll & Stretch" prior to Age on Through-Thickness Strength Uniformity

Percent Cold Work and Tensile Properties for Laboratory Scale 2195 Plate

(1.575" gage 2195 Plate)

Lot No.	S.N.	cold roll	%Stretch	cold work	test plane	Age (300F)	test dir.	UTS(ksi)	TYS(ksi)	EI(%)
158128	-1	5.5	2.36	7.86	5t/6	18	L	77.4	76.5	5.5
					t/6	24	L	77.5	76.4	5.5
					2t/3	18	L	84.3	81.8	8.5
					t/3	24	L	85.9	83.4	8.5
158128	-2	3.08	3.82	6.9	5t/6	18	L	78.2	77.3	5.5
130120	-2	3.00	3.02	0.3			-			
					t/6	24	<u>L</u>	78.0	77.0	11.5
					2t/3	18	L	84.6	82.4	7.5
					t/3	24	L	87.5	85.1	9.0
450400		0.75	0.00	0.70	F. (0	40			70.0	7.0
158128	-3	2.75	3.98	6.73	5t/6	18	L	77.5	76.3	7.0
					t/6	24	L	77.3	76.3	8.5
					2t/3	18	L	85.1	82.3	8.5
					t/3	24	L	87.4	84.6	9.5
158128	-4	5.97	2.46	8.43	5t/6	18		77.7	76.7	6.5
130120	-4	5.97	2.40	0.43						
					t/6	24	<u>L</u>	77.5	76.5	6.5
					2t/3	18	L	85.7	82.6	8.5
					t/3	24	L	86.2	83.1	8.5

- 158128-2&-3 show higher strength at t/3 because of their higher % stretch, despite of lower total % cold work
- There are little differences in strengths at t/6 location with total %cold work over 6.5% or so, regardless of the mode of cold work

B-1: Effect of "Cold Roll & Stretch" prior to Age on Through-Thickness Strength Uniformity

Effect of Total Cold Work on L UTS(ksi) at two thickness locations after 24 hr Age 1.575" gage 2195-T8 Plate

- 158128-2&-3 show higher strength at t/3 because of their higher % stretch, despite of lower total % cold work
- There are little differences in strengths at t/6 location with total %cold work over 6.5% or so, regardless of the mode of cold work

B-1: Effect of "Cold Roll & Stretch" prior to Age on Through-Thickness Strength Uniformity

Effect of %Stretch on L UTS(ksi) at two thickness locations after 24 hr Age 1.575" gage 2195-T8 Plate

Higher % stretch induces larger difference between strengths at t/6 vs t/3

Study B-1: Effect of Cold Roll & Stretch prior to Age on Through-Thickness Strength Uniformity

Effect of % Stretch on Through Thickness Variation in L UTS(ksi) at Two Thickness Locations after 24 hr Age
(1.575" gage 2195-T8 Plate)

B: Effect of Cold Roll & Stretch Prior to Age on Through-Thickness Strength Uniformity

SUMMARY on **B-1**: Lab scale experiment:

- L UTS at t/6 was not significantly affected by total % cold work. L UTS remained at approximately 78 ksi after aging at 300 deg F for 24 hours, regardless of % cold roll or % stretch
- 2. Strengths at t/3 location were more responsive to % stretch, not to % cold rolling.
- 3. Comparing the L UTS differences at t/6 and t/3 locations, the through-thickness strength variation for these four samples are very comparable to the baseline sample plate based on % stretch, which was 3.8% cold worked only by stretch and having L UTS difference of 9.5 ksi between t/6 & t/3 locations.

Study B-2: Effect of Cold Roll & Stretch Prior to Aging on Through-Thickness Strength Uniformity and Fracture Toughness

- Plant Scale Trial

Two lots of 1.575 inch gage plate were available for the plant scale experiment

Chemistry

Lot No.	Ingot No.	Li(%)	Zr (%)	Cu (%)	Mg (%)	Ag (%)
158149	18-516	0.96	0.14	3.99	0.31	0.32
158151	18-518	0.96	0.14	3.97	0.30	0.32

Processing Information

Lot No.	gage(in)	Hot Rolling	Lay-On Temp.	Exit Temp.	Anneal	SHT hr.
158149	1.575	standard	852	705	yes	5.0
158151	1.575	standard	832	738	yes	5.2

B: Effect of Cold Roll & Stretch Prior to Age on Through-Thickness Strength Uniformity and on Fracture Toughness

B-2: Plant Scale Trial

Lot 158151: Aging Curve Development at 300 deg F

Lot No.	‰cold roll	%Stretch	‰cold work	test location	Age time(hr)	test dir.	UTS(ksi)	TYS(ksi)	EI(%)
158151	none	3.55%	3.55%	t/6	30	L	78.5	75.5	7.5
				t/6	34	L	78.0	75.5	7.5
stretch:	3.55% by	single ste	e p	t/3	30	L	88.2	84.2	6.0
				t/3	34	L	89.7	85.3	7.5
				t/2	30	L	85.8	82.4	5.5
				t/2	34	L	86.7	82.7	8.5

Lot 158149: Aging Curve Development at 300 deg F

Lot No.	‰cold roll	%Stretch	‰cold work	test location	Age time(hr)	test dir.	UTS(ksi)	TYS(ksi)	EI(%)
158149	4.70%	2.07%	6.77%	t/6	18	L	79.1	78	6.5
				t/6	20	L	78.8	77.7	8.0
stretch:	4.7% cold	roll + 2%	stretch	t/3	18	L	88.8	85.7	8.5
				t/3	20	L	88.5	85.7	9.0
				t/2	18	L	84.4	81.6	8.5
				t/2	20	L	85.3	81.8	8.5

Percent Cold Work and Tensile Properties for Plant Scale 2195 Plate

Lot 158151: Parent Plate Properties after age at 300 F for 32 hrs.

Lot No.	‰cold roll	%Stretch	‰cold wor	test plane	test dir.	UTS(ksi)	TYS(ksi)	EI(%)
158151	none	3.55%	3.55%	t/6	L	78.8	76.1	8.0
				t/6	LT	83.5	77.4	8.0
stretch:	3.55% by	single st	tep	t/6	45 deg	81.4	73.5	10.5
				t/6	ST	85.3	73.3	6.2

Lot 158149: SST (Simulated Service Tests)

Net Proof Stress	Ke @proof	Ke @fracture	Stress Ratio(fracture / proof)
73.8 ksi	27.5 ksi Vinch	30.4 ksiVinch	1.103

Lot 158149: Parent Plate Properties after age at 300F for 20 hrs

Lot No.	cold roll	%Stretch	cold wor	test plane	test dir.	UTS(ksi)	TYS(ksi)	EI(%)
158149	4.70%	2.07%	6.77%	t/6	L	79.5	77	7.0
				t/6	LT	84.5	78.1	6.0
stretch:	4.7% cold	roll+2%	stretch	t/6	45 deg	81.9	75.9	9.0
				t/6	ST	84.4	78.1	6.0

Lot 158149: SST (Simulated Service Tests)

Net Proof Stress	Ke @proof	Ke @fracture	Stress Ratio(fracture / proof)
76 ksi	28.3 ksi Vinch	32 ksiVinch	1.131

- 158151 shows higher L UTS value at t/3 because of their higher % stretch, despite lower total % cold work
- 158149 shows slightly higher L UTS value at t/6 as a result of cold roll in addition to stretch

Effect of Cold Roll + Stretch on Thru-Thickness Properties of Plant Produced 2195-T8 plate Aged at 300 deg F

• % cold roll appears to be effective in raising L TYS values at both t/6 and t/3 locations.

Effect of "Cold Roll + Stretch" on Thru-Thickness Properties of Plant Produced 1.575 inch gage 2195-T8 plate Aged at 300 deg F

• Despite the higher % total cold work, 158149 shows better ducility at both t/6 & t/3 locations due to less % stretch, compared to 158151

Effect of "Cold Roll+Stretch" on Through-Thickness Properties of Plant Produced 1.575 inch gage 2195-T8 Plate Aged at 300 deg F

- •158151 shows higher L UTS value at t/3 because of their higher % stretch, despite lower total % cold work
- 158149 shows slightly higher L UTS value at t/6 as a result of cold roll in addition to stretch

Effect of Total % Cold Work on Through-Thickness Properties of Plant Produced 1.575 in. gage 2195-T8 Plate (158151 & 158149)

- •158151 shows higher L UTS value at t/3 because of their higher % stretch, despite lower total % cold work
- 158149 shows slightly higher L UTS value at t/6 as a result of cold roll in addition to stretch

Effect of % Stretch on Thru-Thickness Properties of Plant produced 1.575 inch gage 2195-T8 Plate (158151 & 158149)

• Cold roll + Stretch appears to improve SST performance, but the difference in effect falls within scatter for production material

Effect of " Cold Roll + Stretch" on SST on 1.575 in gage 2195-T8 plate (production & 158151 stretch, 158149 by "cold roll + stretch")

• Cold roll + Stretch appears to improve SST performance, but the difference in effect falls within scatter for production material

Effect of "Cold Roll+Stretch" on SST: 1.575 in gage 2195-T8 plate (production & 158151 stretch, 158149 by "cold roll + stretch")

B-2: Effect of Cold Roll & Stretch Prior to Aging on Through-Thickness Strength Uniformity and on Fracture Toughness

Summary - Plant scale experiment:

- 1. Strengths at t/6 were increased by additional % cold roll prior to stretch.
- Tensile strengths at t/3 location were more affected by the total % stretch, which was consistent with the results from Lab scale experiment.
- 3. Cold roll + Stretch appears to improve SST performance, but the difference in effect falls within scatter for production material.

Alternate Temper Development for 2195 Plate

C: Effect of Multiple - Step vs. Single Step Stretch prior to Age on Mechanical properties

Experimental Parameters for Lab. Trial on "Multi-step Stretch"

- -1; 2% stretch + Unload for 2 min delay + 1.8% stretch
- -2; 2% stretch + Unload for 24 hr delay + 1.8% stretch
- -3; 2% stretch + 2min delay in compression + 1.8% stretch

baseline: Standard practice: single step 3.75% target (3.82% actual) stretch

Process Parameters and Tensile Properties for 2195-T8 Plate using Multi-Step Stretching Practice on 1.575" gage 2195 Plate

Lot No.	S.N.	‰cold roll	%Stretch	‰cold work	test plane	Age (300F)	test dir.	UTS(ksi)	TYS(ksi)	EI(%)
158153	-2	none	3.80%	3.80%	5t/6	30	L	77	74.5	10.0
					t/6	34	L	80.2	77	9.0
	stretch:	2%+2min+1	.8%	ľ	2t/3	30	L	86.6	82.7	9.5
					t/3	34	L	87.4	82.7	8.5
					t/2	34	L	90.6	86.7	11.0

Lot No.	S.N.	cold roll	%Stretch	‰cold work	test plane	Age (300F)	test dir.	UTS(ksi)	TYS(ksi)	EI(%)
158162	-2	none	3.85%	3.85%	5t/6	30	L	78	75	9.0
					t/6	34	L	78.5	75.2	9.0
	stretch: 2	2%+2min+1	.8%	ľ	2t/3	30	L	87.1	82.6	9.5
					t/3	34	L	86.2	81.3	7.5
				ľ	t/2	34	L	89.1	85.1	8.5

Lot No.	S.N.	cold roll	%Stretch	‰cold work	test plane	Age (300F)	test dir.	UTS(ksi)	TYS(ksi)	EI(%)
158153	-3	none	3.82%	3.82%	5t/6	30	L	76.1	73.8	9.0
					t/6	34	L	78.2	75.5	9.0
	stretch:	2%+24 hrs+	1.8%	ľ	2t/3	30	L	84.6	80.7	9.0
					t/3	34	L	86.4	82.4	11.0
				Ī	t/2	34	L	88.5	84.8	10.0

Lot No.	S.N.	cold roll	%Stretch	‰cold work	test plane	Age (300F)	test dir.	UTS(ksi)	TYS(ksi)	EI(%)
158162	-3	none	3.84%	3.84%	5t/6	30	L	76.1	72.8	9.5
					t/6	34	L	76.8	73.9	9.0
	stretch:	2%+24 hrs+	1.8%		2t/3	30	L	85.7	80.9	9.0
					t/3	34	L	87	82.6	9.0
					t/2	34	L	89.6	84.8	12.0

Process Parameters and Tensile Properties for 2195 Plate using Multi-Step Stretching and Compression Practice on 1.575" gage 2195 Plate

Lot No.	S.N.	cold roll	%Stretch	%cold work	test plane	Age (300F)	test dir.	UTS(ksi)	TYS(ksi)	EI(%)
158153	-4	none	3.85%	3.85%	5t/6	34	L	78.7	75.91	9.0
					t/6	34	L	78.6	75.53	9.5
2% Stretch +	6.8ksi Co	ompression	+1.8% St	retch	2t/3	34	L	91	87.22	9.5
					t/3	34	L	88	84.33	7.5
					t/2	34	L	90.9	87.25	9.0

Lot No.	S.N.	%cold roll	%Stretch	%cold work	test plane	Age (300F)	test dir.	UTS(ksi)	TYS(ksi)	EI(%)
158162	-4	none	3.82%	3.82%	5t/6	34	L	79.5	76.70	9.5
					t/6	34	L	79.9	77.01	9.5
2% Stretch+	6.8ksi Co	mpression	+1.8% Str	etch	2t/3	34	L	89.8	86.02	9.0
					t/3	34	L	88.7	85.00	8.5
					t/2	34	L	90.3	86.59	9.5

• There is no indication that multi-step stretch increases L UTS values

Effect of Multiple Stretch on Properties at t/6 for 1.575" gage 2195 plate Lab Scale experiment

Alternate Temper Development for 2195 Plate

C: Effect of Multi- Step stretch vs. Single Step Stretch prior to Age on Fracture Toughness in Transverse direction

Summary on tensile data

- There is no indication that multi-step stretch increases L UTS values, which is consistent with past experience in high Lithium containing alloys
- SST Fracture Toughness tests were not conducted due to insufficient width of available material

Alternate Temper Development for 2195 Plate

IV. Conclusions:

- Results showed that stretch prior to age significantly increases strength at t/2 and t/3 locations, but is not effective in increasing strength at near surface locations such as t/6.
- Compared to the properties at the t/6 location, strengths at the t/3 location are more responsive to the amount of % stretch, not to the amount of % cold rolling. This could partially explain the strong through- thickness strength variation in the standard production 2195 –T8 plate which is cold worked by stretch only.
- 3. Plant scale experiments showed that "cold roll + stretch" appeared to improve SST performance compared to "stretch only" prior to age.
- 4. There is no indication that multi-step stretch increases L UTS values

Process Improvement of 2297 Plate

Alex Cho

Pechiney Rolled Products
Ravenswood WV

NASA Contract No. NNL04AB64T with AS&M Inc.

Process Improvement of 2.4 inch gage 2297-T8 Plate for Aerospace Application

Contents:

- 1. Objective
- 2. Approach
- 3. Background of 2.4 inch gage 2297-T8 Plate for Aerospace application
- 4. Process description of standard and three trial lots
- 5. Property test results from standard vs. trial Lots
- 6. Comparison of crystallographic texture of 2297-T8 plate at t/6 location
- 7. Correlation of texture and tensile properties in longitudinal (L) and long transverse (LT) directions
- 8. Conclusions

Process Improvement of 2.4 inch gage 2297-T8 Plate for Aerospace Application

1. Objective

Improve t/6 longitudinal tensile properties and S-L Fracture Toughness at t/2 location at room temperature and –320 deg F

Process Improvement of 2.4 inch gage 2297-T8 Plate for Aerospace Application

2. Approach

Evaluate an alternative hot rolling process and temper practices of 2.4 inch gage 2297-T8 plate by conducting plant scale trials. Examine the effects of these processing variables on texture and mechanical properties

3. Background of 2.4" gage 2297-T8 plate for aerospace application:

- McCook's past recovery rate of 2297 plate for Aerospace has not been satisfactory
- PRP's lot failure of 2297 plate has been largely due to marginal mechanical properties
- Among the properties, K1c in S-L direction at -320F and L UTS
 values are the most difficult to constantly maintain at an acceptable
 level
- Alternative process methods were identified to explore overall level and consistency of mechanical properties.

4. Process description of standard vs. three trial lots

Factors influencing plant practice for Al alloy production

- a. product dimensional requirement
- b. metallurgical considerations
- c. adaptation to facility limitations

Description of alternative processing

- current standard practice at Ravenswood is identical to McCook process
- Metallurgical considerations related to Alternate process
 - a. deformation directions
 - b. testing location
- Alternate practice will impart more balanced rolling deformation

Proposed Practice – Hot Rolling

current 2297 Practice - (McCook Practice)

Current practice provides essentially One Directional Deformation

2.33X vs. 2.5X

Lengthen. vs. Broaden.

1.07X vs. 5.56X

Proposed Process – Hot Rolling

Broaden. vs. Lengthen.

2.33X vs. 2.5X

Balanced deformation in Ingot Width vs. Length

- balanced strengths in L vs. LT
- Improved 45 deg strength
- balanced Fracture Toughness in L-T vs T-L
- Improved K1c in S-L relative to L UTS

Plate Testing Locations

Standard testing practice characterize plate properties across the ingot cross section

Ingot Butt

Proposed Practice

Broaden. vs. Lengthen.

2.33X vs. 2.5X

current Ravenswood Practice (McCook)

Ingot Head

Ingot Butt

Lengthen. vs. Broaden.

1.07X vs. 5.56X

5. Property test results from standard and trial lots

Summary of processing study of 2297 plate

Lot no.	\underline{Alloy}	Hot Roll dir.	<u>Cold Work</u>
Prev. 8 lots	high Li(1.3%)	Uni-dir. roll	stretch
200601	high Li(1.3%)	Two-dir.roll	stretch
682321	low Li(1.2%)	Two-dir.roll	stretch
682311	low Li(1.2%)	Two-dir.roll	cold roll+stretch

Lot no. 200601

- -Full size ingot: 16" x 60" x 132"
- -Chemistry: standard 2297 alloy

- -Hot Rolling: lay-on at 942F, exit at 856F
- -Broaden to 6.4" gage (58% reduction)
- -Rotate 90 deg., straight roll to finish at 2.59"(59% reduction)
- -SHT at 975F for 8hrs. 47 min.
- -Stretch 3.87%
- -Aged at 320F for 40 hrs.

Age Curves of Lot No.200601

Lot no. 682321

- -Full size ingot: 16" x 60" x 132"
- -Chemistry: standard 2297 alloy (2297)

<u>Cu</u>	<u>Li</u>	<u>Mn</u>	<u>Zr</u>	<u>Si</u>	<u>Fe</u>	<u>Ti</u>
2.99	1.20	.31	.10	.04	.06	.02

- -Hot Rolling by broadening to 5.2" thick x 88" wide
- -Air cool, saw to 160" long
- -Re heat to roll; lay-on at 850F
- -Broaden to 111" wide from 88" (total 47% reduction)
- -Rotate 90 deg., straight Roll to finish at 2.59" gage (total 57% reduction)
- -SHT at 975F
- -Stretch 3.5%
- -Aged at 320F for 60 hrs.

Lot no. 682311

- -Full size ingot: 16" x 60" x 132"
- -Chemistry: standard 2297 alloy (2297)

<u>Cu</u>	<u>Li</u>	<u>Mn</u>	\underline{Zr}	<u>Si</u>	<u>Fe</u>	<u>Ti</u>
2.94	1.18	.32	.10	.04	.04	.02

- -Hot Rolling by broadening to 5.3" thick x 82" wide x 192" long
- -Air cool, saw to 163" long
- -Re heat to roll; lay-on at 819F
- -Broaden to 114" wide from 82" (total 48% reduction)
- -Rotate 90 deg., straight Roll to finish at 2.67" gage (total 55% reduction)
- -SHT at 975F
- -Cold Roll 5.3% (target; 3%)then Stretch by 2.5%
- -Aged at 320F for 20 hrs.

Since Lot 682311 was heavily cold worked (5.3% by cold rolling and 2.5% by stretch), it appears that the strength in T3 temper condition already reached peak strength. Subsequent artificial aging step seems to be merely balancing of softening by anneal of cold work and strengthening by age hardening. The other two lots were stretched only, and demonstrated as normal age strengthening curve. Strength increases as aging time increases (as shown by 682321 in this chart and 200601 in page 12)

Age Curve of 682321 & 682311 by L UTS & L TYS

5. Property test results from standard and trial Lots

Chemistry of 2.4 inch gage 2297-T8 plate (in weight %)

Lot No.	Cu	Li	Mn	Mg	Zr	Ti	Si	Fe
436462	2.90	1.29	0.34	0.01	0.11	0.03	0.04	0.04
459722	3.05	1.30	0.33	0.01	0.10	0.02	0.04	0.04
460361	3.00	1.28	0.32	0.01	0.10	0.02	0.04	0.05
460362	3.06	1.33	0.34	0.01	0.10	0.02	0.04	0.05
460364	2.96	1.28	0.31	0.01	0.09	0.02	0.04	0.04
459723	3.06	1.34	0.32	0.01	0.10	0.02	0.04	0.05
200601	3.04	1.28	0.33	0.01	0.10	0.02	0.03	0.04
682321	2.99	1.20	0.31	0.01	0.10	0.03	0.04	0.06
682311	3.94	1.18	0.32	0.01	0.10	0.02	0.04	0.04

Note: Chemistries of 436461 &438911 were not available because these two lots were scrapped earlier and their chemistries were deleted from database.

Lot 200601 and other production lots contain high Li (approx.1.3%), and Lot 682321 & 682311 contain low Li (approx. 1.2%).

Alloy Chemistry of 2297 Plate

Lot 682321 shows isotropic tensile properties due to two-directional rolling. However, LT UTS was too low due to low Li content. LT UTS could be increased either by higher Li content (two-directionally rolled Lot 200601) or by an increase in the amount of cold work (8%) on a low Li alloy (two-directionally rolled Lot 682311). LT UTS values of both 200601 and 682311 are comparable to the one-directionally rolled high Li containing standard production lots. Lot 682311 shows highest L UTS values at comparable LT UTS values of the standard production lots.

Lot No.	% Li	Hot Roll	Cold Work
Std. 8 lots	1.3	One-dir.	Stretch only
200601	1.3	Two-dir.	Stretch only
682321	1.2	Two-dir.	Stretch only
682311	1.2	Two-dir.	Cold Roll+Str.

All three lots(682321, 682311 & 200601) of two directionally rolled plate show isotropic behavior. 200601 and 682311 show higher 45 deg UTS values at similar LT UTS values than one directionally rolled plate (i.e. other standard production lots)

Lot No.	% Li	Hot Roll	Cold Work
Std. 8 lots	1.3	One-dir.	Stretch only
200601	1.3	I wo-dır.	Stretch only
682321	1.2	Two-dir.	Stretch only
682311	1.2	I wo-dır.	Cold Roll+Str.

Standard production lots had low K1c's in S-L & L UTS at Room temperature. Two-directionally rolled plates (200601, 682321 & 682311) show the significant improvement on both properties.

K1c in S-L at -320F vs. L UTS at R.T.

Lot No.	% Li	Hot Roll	Cold Work
Std. 8 lots	1.3	One-dir.	Stretch only
200601	1.3	Two-dir.	Stretch only
682321	1.2	Two-dir.	Stretch only
682311	1.2	Two-dir.	Cold Roll+Str.

• Standard production lots had low K1c's in S-L at -320 F & L UTS at Room temperature. Two-directionally rolled plates (200601, 682321 & 682311) show the significant improvement on both properties.

K1c in S-L at Room Temp. vs. L UTS at Room Temp.

Lot No.	% Li	Hot Roll	Cold Work
Std. 8 lots	1.3	One-dir.	Stretch only
200601	1.3	Two-dir.	Stretch only
682321	1.2	Two-dir.	Stretch only
682311	1.2	Two-dir.	Cold Roll+Str.

Two directionally rolled plate (200601, 682321 & 682311) shows higher K1c in T-L at similar or higher L UTS values

Effect of Cross Roll (lot 200601&682321), Cold Roll(lot 682311) vs. No Cross Roll (others) on K1c in T-L vs. LT UTS

Lot No.	% Li	Hot Roll	Cold Work
Std. 8 lots	1.3	One-dir.	Stretch only
200601	1.3	Two-dir.	Stretch only
682321	1.2	Two-dir.	Stretch only
682311	1.2	Two-dir.	Cold Roll+Str.

Two directionally rolled plate (200601, 682321 & 682311) shows higher K1c in T-L at similar or higher L UTS values

Effect of Cross Roll (lot 200601. Lot 682321), Cold Roll(682311) vs. No Cross Roll (others) on K1c in T-L vs. LT UTS

Lot No.	% Li	Hot Roll	Cold Work
Std. 8 lots	1.3	One-dir.	Stretch only
200601	1.3	lwo-dır.	Stretch only
682321	1.2	Iwo-dir.	Stretch only
682311	1.2	Iwo-dir.	Cold Roll+Str.

Plate containing 1.3% Li (200601 and standard 8 lots) show similar K1c in L-T at -320 deg F at similar L UTS, regardless of rolling practice, in uni-dr. or in two-direction. Two plates containing 1.2% Li (682321 & 682311) show significant improvement- higher K1c values at similar LUTS or similar K1c values at much higher LUTS.

K1c in L-T at -320F vs. L UTS at Room Temperature

Lot No.	% Li	Hot Roll	Cold Work
Std. 8 lots	1.3	One-dir.	Stretch only
200601	1.3	Iwo-dır.	Stretch only
682321	1.2	Two-dir.	Stretch only
682311	1.2	I wo-dır.	Cold Roll+Str.

Except Lot 682321, two-directionally rolled plate (200601 & 682311) do not show improvement on K1c in L-T direction compared to the uni-directionally rolled standard production plate, even though two-directionally rolled plate show higher L UTS values at the comparable K1c in L-T. In most applications, K1c in L-T direction is usually sufficiently higher than the specification requirement and additional improvement of K1c in L-T is not necessary.

K1c in L-T at Room Temp vs. L UTS at Room Temperature

Summary of Property Test Results:

- Alternate processing did not affect tensile properties in LT direction significantly.
- 2. Two-directional rolling improved L UTS values
- 3. Two-directional rolling improved S-L Fracture Toughness
- "Cold rolling prior to Stretch" improved strength and Fracture Toughness in S-L relative to L-UTS
- 5. Two-directional rolling did not improve K1c in L-T direction
- 6. Excessive Cold Rolling prior to Stretch would adversely affect K1c in L-T direction.

Mechanical Properties of Uni-directionally rolled 2.4" gage 2297-T8 Plate

L	imits	RT	30	26	19	61	55	6	65	59	6	62	58	2	63	56	4
		-320	30	26	18												
	Age			Fracture			Direction			Direction			Directi			Directi	
Lot #	Time	Location	L-T	T-L	S-L	L-Ult	L-Yid	L-Ein	Lt-Ult	Lt-Yid	Lt-Ein	St-Ult	St-Yld	St-Ein	45-Ult	45-Yid	45-Ein
436461	48	N	32.5	29.3	18.5	61.9	57.1	9.8	68.0	61.5	8.8	68.6	61.4	6.3	65.4	58.2	8.7
436461	48	ΝĒ				59.8	55.2	10.5									
436461	48	îvivi				62.9	58.9	9.9									
436461	48	N-320	33.6	32.5	19.4	74.6	65.7	17.0	82.2	70.4	9.5	81.2	67.2	5	79	66.5	17
436461	48	NE-320			25.2												
436461	48	NW-320			16.7												
436462	40	N	33.4	29.1	21.8	62.5	58.6	11.0	67.5	61.0	9.5	68.5	59.7	7.3	65.4	58.3	11.3
436462		ΝĒ				62.2	58.1	11.0		00	0.0	00.0					1110
436462		NVV				62.3	58.2	11.0									
436462	40	N-320	30.9	29.1	18.0	76.1	67.4	19.0	83.6	72.6	12.0	83.3	67.2	8.0	79.4	67.9	17.0
436462	40	NE-320			19.1												
436462	40	NW-320			17.0												
438911	48	N	32.5	29.1	21.5	63.0	58.4	11.0	68.6	60.9	8.7	70.0	61.9	6.3	65.7	58.1	11.0
438911		ΝĒ				62.7	58.4	í í.û									
438911		NVV				62.7	58.1	10.0									
438911		N-320	32.5	29.0	17.7	76.7	67.8	16.0	83.6	72.0	12.0	83.9	69.4	6.0	81.0	68.8	14.0
438911		NE-320			19.9												
438911		<i>NW-320</i>			17.3												
459722		N	32.2	28.1	20.8	63.6	58.8	10.2	69.0	62.9	8.5	71.3	61.8	6.3	67.1	59.2	11.2
459722		ΝĒ				64.4	59.7	11.0									
459722	48	IVVV				63.5	59.4	11.0						4			
459722		N-320	31.6	29.3	18.6	78.2	68.8	16.0	85.1	73.2	11	83.7	69.2	4	82.7	69.7	15
459722 459722	48 48	NE-320 NW-320			17.9 17.1												
459723		N -320	30.8	28.2	21.8	63.5	59.5	11.0	69.0	623	6.5,8,7.	 5 70 4	61.4	5.8	67.2	62.6	10.7
459723	48	NE	30.0	20.2	21.0	64.1	59.9	11.5	03.0	02.5	5.5,6,7	70.4	01.4	3.0	07.2	02.0	10.7
459723		NVV				62.6	58.5	10.0									
459723	48	N-320	29.6	28.4	18.4	77.4	68.7	15.0	85.6	74.5	9	83	69.6	3	82	69.8	15
			25.0	20.4	20	77.4	00.7	15	05.0	74.5	9	03	69.6	3	02	69.6	15
459723	48	NE-320 NW-320															
459723		N -320	34.6	29.6	19.6	65.6	E 7 1	11.7	67.5	60.6	8.5	68.1	59.7	6.6	65.3	E9 -3	22.0
460361	48	NE	34.6	29.6	21.6	61.6 61.6	57.1	10.5	67.5	60.6	0.5	00.1	59.7	6.6	65.3	58.2	11.0
460361	48						57.3										
460361	48	NVV				62.0	57.9	11.5									
460361 460361	48 48	N-320 NE-320	31.6	29.9	18.5 <i>19.6</i>	74.9	66	16.0	83.3	71.2	11	82.8	67.2	5	79.3	67.3	15
460361		NW-320			20.9												
460362		N	34.3	27.9	20.9	61.5	56.7	11.2	67. í	60.3	8.7	69.2	60.6	6. i	64.9	57.4	10.3
460362	40	NE				61.8	5/.6	11.5	4111								1010
460362	40	NW				62.3	57.9	10.5									
460362	40	N-320	31.7	29.6	19.6	75.2	66.1	18.0	83.3	71.9	12.0	83.0	68.0	4.0	79.7	67.4	14.0
460362	40	NE-320		20.0	21.5	70.2	00.1	10.0	00.0	7 1.0	12.0	00.0	00.0	1.0	70.7	07.1	14.0
460362	40	NW-320			20.0								-				
460364	50	N	34.2	30.8	24.0	61.1	56.7	11.8	67.0	60.7	8.3	68.9	59.9	7.0	64.6	56.9	11.3
460364		NE	J-7.2	55.6	27.0	61.6	57.5	11.0	J 07.0	55.7	0.5	00.9	33.3	7.0	J	33.3	. 1.3
460364	50	NV				61.4	57.3	11.0									
			22.1	30.4	21.1	74.6			977 6	/1 6	10.0	0.5 V	66 /	4.0	/0 /	6/1	16.0
460364	50	NE-320	33.1	30.4	21.1	74.0	66.1	17.0	83.5	/1.6	10.0	83.4	66.7	4.0	79.7	67.1	15.0
460364	50	NE-320 NW-320			21.2												
460364	50	1111-320			∠∪.8												

6. Comparison of crystallographic texture of 2297-T8 plate at t/6 location (Uni- direction Rolling vs Two-direction Rolling)

Material:

To investigate the effect of hot rolling practice on crystallographic texture of 2297-T8 plate at t/6 locations, two lots of uni-directionally rolled standard production plate (125334 & 459724), and three lots (682321, 682311 & 200601) of two-directionally rolled plate were measured for CODF(crystallographic orientation distribution function) at t/6 plane locations.

Chemistry of 2.4 inch gage 2297-T8 plate (in weight %)

Lot No.	Cu	Li	Mn	Mg	Zr	Ti	Si	Fe
125334(1 dir HR,Stretch)	3.07	1.28	0.32	0.01	0.10	0.02	0.03	0.04
459724(1 dir HR,Stretch)	3.00	1.28	0.32	0.01	0.11	0.02	0.04	0.06
682311(2 dir HR,CR+Stretch)	2.94	1.18	0.32	0.01	0.10	0.02	0.04	0.04
682321(2-dir.HR,Stretch)	2.94	1.20	0.31	0.01	0.10	0.03	0.04	0.06
200601(2 dir HR,Stretch)	3.04	1.28	0.33	0.01	0.10	0.02	0.03	0.04

- 6. Comparison of crystallographic texture of 2297-T8 plate at t/6 location (Uni-direction Rolling vs Two-direction Rolling)
 - Texture measurement results from the five lots at t/6 location are presented by volume % of each texture components as follows:

Cube: {001} <100> Goss: {011} <100> Brass: {011} <211>

S: {123} <634>

Cu: {112} <111>

rotated Cube: {001} <110>

Crystallographic Texture of 2.4 inch gage 2297-T8 plate at t/6 location (in volume %)

Lot No	Cube	Goss	Brass	S	Cu	R- Cube	S/Br	Cu+ R.Cube
125334(1 dir HR,Stretch)	8.28	1.37	5.14	6.74	3.13	8.84	1.31	11.97
459724(1 dir HR, Stretch)	4.98	2.11	3.86	5.62	2.98	9.21	1.46	12.19
682311(2 dir HR, CR+Stretch)	7.43	3.26	3.60	9.57	6.66	9.43	2.36	16.36
682321(2 dir HR, Stretch)	6.69	2.53	3.02	7.14	3.94	12.42	2.66	16.09
200601(2 dir HR, Stretch)	6.25	3.56	3.78	6.96	5.12	13.68	1.84	18.80

• Two-directionally rolled plate shows higher volume % of S, Cu and Rotated Cube components, with slightly lower volume % of Brass component compared to the uni-directionally rolled plate

Texture of 2.4" gage 2297 Plate at t/6 location

The ratio of S/Brass components of the three lots of two-directionally rolled plate (682321, 682311 & 200601) are higher than those of uni-directionally rolled plate (125334 & 459724), which is one of the primary texture characteristics of two-directionally rolled plate

Volume % Ratio of texture components, S/Brass at t/6 plane in 2.4 inch 2297 Plate

The sum of Cu & rotated Cube components of the two-directionally rolled plate (682321, 682311 & 200601) is higher than those of uni-directionally rolled plate (125334 & 459724), which is one of the texture characteristics of two-directionally rolled plate

Volume % of (Cu+ Rotated Cube) components at T/6 location in 2.4 in 2297 Plate

Summary of texture measurement on 2.4 inch gage 2297-T8 plate

1. All three lots of two-directionally rolled 2.4 inch gage 2297-T8 plate show a higher ratio of S/Brass components and greater value of the sum of the volume % of Cu and rotated Cube components compared to uni-directionally rolled plate. These are interesting observations because these were unique characteristics of crystallographic texture of two-directionally rolled 1.575 inch gage 2195-T8 plate at the t/6 location from prior studies .

7. Correlation of Crystallographic Texture and Tensile properties in L & LT direction in 2.4 inch gage 2297-T8 plate

Tensile Properties of 2.4 inch gage 2297-T8 plate at t/6 location

1.73				ιŦ	LΤ		LTO#	LT TVO/I
Lot No	L UTS	L TYS	L EL	LT UTS	LT TYS	LTEL	UTS/L UTS	TYS/L TYS
	L 013			013	113		013	113
125334(1 dir HR,Stretch)	62.2	57.2	10.3	67.2	60.1	8.2	1.080	1.051
459724(1 dir HR, Stretch)	62.0	57.6	10.0	67.0	60.9	8.3	1.081	1.057
682311(2 dir HR, CR+Stretch)	65.6	63.2	8.0	67.2	63.9	8.5	1.024	1.010
682321(2 dir HR, Stretch)	62.7	57.4	9.4	63.8	58.3	9.2	1.018	1.016
200601(2 dir HR, Stretch)	64.9	60.1	9.0	67.6	62.0	8.6	1.042	1.032

Note: UTS & TYS values are in ksi, and elongation values are in %.

Note: All tensile tests were conducted at t/6 thickness location on flat tensile specimens with 0.125" x 1" gage cross section and 2.0" gage length

No correlation can be observed between chemistry and L UTS values.

L UTS (ksi) at t/6 location vs Chemistry (Cu+Li) 2.4 inch gage 2297-T8 plate

Except lot 682311 (cold rolled & stretched prior to age), LT UTS values appear to correlate with chemistry for the other four plate (stretched only prior to age) regardless of uni–dir. or two-dir. rolling. Previously, it was observed that two-directional rolling appeared to increase L-UTS values at t/6 location and affect little on LT UTS.

LT UTS (ksi) vs Chemistry(Cu+Li) at t/6 location 2.4 inch gage 2297-T8 plate

The ratio of LT UTS & L UTS shows good correlation with texture combination of S+Cu-Brass components except Lot 682311. It appears that 5.3% of cold rolling reduces degree of strength anisotropy for the the plate with a similar texture.

LT UTS / L UTS vs Texture at t/6 location 2.4 inch gage 2297-T8 Plate

The ratio of LT TYS & L TYS shows good correlation with texture combination of S+Cu-Brass components except Lot 682311. It appears that 5.3% of Cold Rolling reduces degree of strength anisotropy for the plate with similar texture.

LT TYS / L TYS vs Texture at t/6 location 2.4 inch gage 2297-T8 plate

Summary on Texture vs. Tensile Properties

- 1. It appears that L UTS at t/6 location can not be correlated with plate chemistry.
- 2. Except lot 682311 (cold rolled & stretched prior to age), LT UTS values appear to correlate with chemistry among other four plate (stretched only, prior to age) regardless of uni–dir. or two-dir. rolling. It has been observed on 2195-T8 plate that two-directional rolling appears to increase L UTS values at t/6 location and affect little on LT UTS.
- 3. The ratio of LT UTS / L UTS and LT TYS/L TYS showed good correlation with texture combination of (S+Cu-Brass) components except Lot 682311. It appears that 5.3% of Cold Rolling reduces degree of strength anisotropy in the plate with similar texture in the plate lot. 682311.

8. Conclusions

- a. Two-directionally rolled 2.4" gage 2297-T8 plate shows higher L UTS at t/6 location and higher K1c in T-L & S-L directions at both room temperature and at –320 deg F, compared to the unidirectionally rolled plate.
- Two-directionally rolled plate shows a unique crystallographic texture, more favorable isotropic behavior and exhibits a smaller difference between L UTS & LT UTS values.
- c. Two-directional rolling improves L UTS but does not affect LT UTS. Both LT UTS of uni-directionally & two-directionally rolled plate correlate with chemistry (Cu+Li).

Development of Al-Cu-Mg-Ag Alloy Plate

Alex Cho

Pechiney Rolled Products
Ravenswood WV

NASA Contract No. NNL04AB64T with AS&M Inc.

Contents

- I. Background
- II. Metallurgical benefits of the Al-Cu-Mg-Ag alloy system
- III. Development of Al-Cu-Mg-Ag alloy wrought product
 - Effect of dispersoid forming elements
- IV. Casting of two ingots
- V. Summary & Conclusion

I. BACKGROUND

Damage Tolerance Capability of 2xxx alloys

When 2xxx alloys are strengthened by artificial aging to -T6 or -T8 type temper for higher strengths, their damage tolerance capabilities are compromised as a result of weakened grain boundaries caused by grain boundary precipitation and PFZ's

2xxx –T3xx type temper for DT applications

By applying high levels of cold work (cold roll and/or cold stretch), W temper (i.e. as-heat- treated-and-quenched) results in T3xx type temper, having higher strength as a result of natural aging and strain hardening.

This could achieve the desirable balance of strength and Fracture Toughness

example:

2024-T351, 2524-T351 for Aircraft Fuselage skin sheet

cold work practice; 2-4% stretch

2324-T39 for Aircraft Lower Wing skin plate

cold work practice; 10% cold roll + 2% stretch

Damage Tolerance Capability of 2xxx alloys

<u>Limitations of –T3xx type temper</u>

- a. Limited Product Thickness
 - poor SCC resistance for thick plate (Slow Quench)
- b. Limited Product Forms
 - Very large amount of cold work by "cold rolling" is available <u>only</u> for thin plate
- c. Limited Fabrication Process
 - Age Forming cannot be utilized.
 - Formability of –O temper (annealed) is not available
- Therefore, it would be desirable to develop a 2xxx alloy in an artificially aged temper (T6 or T8 type temper) having DT capabilities of T3xx type temper product.

II. Metallurgical Benefits of Al-Cu-Mg-Ag alloy system

Age Hardening characteristics of 2xxx Alloys in High Strength Temper

alloy	example	strengthening	nucleation	required
<u>system</u>	<u>alloys</u>	<u>phase</u>	<u>mode</u>	cold work?
Al-Cu;	2219, 2519	θ'(Al2Cu)	heterogeneous	yes
Al-Cu-Mg,	2024, 2014	S' (Al2CuMg)	heterogeneous	yes
Al-Cu-Mg-Ag	2139, 2039	Ω (Al2Cu)	homogeneous	no

<u>Homogeneous nucleation mechanism of Ω phase</u> would allow more uniform distribution of precipitates without relying on dislocations, sub-grain and grain boundaries as nucleation sites. Therefore, Al-Cu-Mg-Ag alloy would be less prone to inter-granular and inter-sub-granular fracture after artificial age

<u>Homogeneous nucleation mechanism of Ω phase</u> would allow Al-Cu-Mg-Ag based alloys to achieve high strength without high level of cold work <u>prior to artificial age</u>.

III. Evaluation of Al-Cu-Mg-Ag alloy plate product

- -Two ingots were cast to evaluate Al-Cu-Mg-Ag based alloy
- -To examine the effect of dispersoid forming elements, the following two chemistries were selected.
- Plate products were evaluated at two different gages

Chemistry of two Al-Cu-Mg-Ag based alloy ingots:

	Cu	Mg	Ag	Mn	Zr	Ti
Alloy A (Mn)	4.90	0.46	0.38	0.32	0.002	0.09
Alloy B (Zr)	4.81	0.45	0.39	0.01	0.14	0.02

Each ingot was hot rolled to two different gage plates for evaluation

- 1) 0.28 inch gage
- 2) 1.0 inch gage

Mechanical Properties of 0.28 inch gage plate product

Tensile Properties of 0.28 inch gage plate in T8 temper

						Average	Average	Average
Lot number	Gage (in)	Direction	UTS (ksi)	TYS (ksi)	Elong (%)	UTS (ksi)	TYS (ksi)	Elong (%)
Alloy A	0.277	L	72	67.5	13.3	71.9	67.2	13.3
	0.277	L	71.7	66.8	13.3			
	0.279	LT	71.8	65.1	12.6	72.9	66.1	12.7
	0.271	LT	74	67	12.8			
	0.272	L-45-LT	73.4	65.5	13.5	73.5	66.1	13.6
	0.271	L-45-LT	73.6	66.6	13.6			
Alloy B	0.262	L	72.2	66.9	12.1	72.2	66.8	12.0
	0.262	L	72.1	66.7	11.9			
	0.263	L	72.3	65.3	11.3	72.3	65.4	11.1
	0.262	LT	72.2	65.4	10.9			
	0.263	L-45-LT	71.8	64.6	12.2	71.6	64.3	11.9
	0.263	L-45-LT	71.4	63.9	11.6			

Evaluation of Al-Cu-Mg-Ag alloy plate product

Plane Stress Fracture Toughness of 0.28" gage Al-Cu-Mg-Ag alloy plate:

Lot Number	direction	Temp(deg F)	Kc (ksi-in 1/2)	Kapp(ksi-in 1/2)	Validity
Alloy A	L-T	+75	171	118.8	Invalid
Alloy B	L-T	+75	161.3	109.9	Invalid
Alloy A	L-T	-65	173.6	116	Invalid
Alloy B	L-T	-65	133.7	94.5	Valid

<u>Difference in Fracture Toughness between alloy A(w/Mn) and alloy B(w/Zr) becomes larger at -65 deg F than that at room temperature</u>

Fracture Toughness of 0.28 inch plate

SEM Fractography after fracture tests at -65 deg F

ALLOY A: Al-Cu-Mg-Ag-Mn alloy

ALLOY B: Al-Cu-Mg-Ag-Zr alloy

Figure 1. Fractography of A sample tested at -65°F (showing ductile fracture mode)

Figure 2. Fractography of B sample tested at -65°F (showing many areas with brittle fracture mode)

Mechanical Properties of 1.00 inch gage Al-Cu-Mg-Ag alloy plate

Tensile Properties of 1.0 inch gage plate

Room Temp. Tensile Properties of 1 in. gage plate

Lot	Test	test	UTS	0.2% YS	Elong	Plastic Elong.
number	dir.	location	KSI	KSI	%	at Failure(%)
831571	L	t/2	71.9	68.3	16	14.6
831571	L	t/2	72.2	68.5	16	14.5
831571	LT	t/2	73.2	66.9	15	13.5
831571	LT	t/2	72.5	65.6	15	14.1
831581	L	t/2	70.1	66.1	15	14
831581	L	t/2	70.4	66.4	15	13.2
831581	LT	t/2	71.6	65.1	14	12.3
831581	LT	t/2	71.7	65	13	11.8

Note: Lot no.831571 is from Alloy A, Lot No.831581 is from Alloy B

Mechanical Properties of 1.00 in gage plate product

Fracture Toughness of 1.0 inch gage plate

Plane Strain Fracture Toughness of 1" plate

Lot	Test	test	Temp.	K1c	Kq	Validity
number	dir.	location		KSI-Vin.	KSI-Vin.	
831571	L-T	t/2	Room		51.1	Invalid
831571	T-L	t/2	Room		46.4	Invalid
831581	L-T	t/2	Room		44.6	Invalid
831581	T-L	t/2	Room		40.5	Invalid

CT specimen; B=1.0", W=3.0

Plane Stress Fracture Toughness of 1" plate

Lot	Test	test	Temp.	Kc	Kapp	Validity
number	dir.	location	deg F	KSI-Vin.	KSI-Vin.	
831571*	L-T	t/2	+75	180.3	125.2	Invalid
831581*	L-T	t/2	+75	171.5	116.2	Invalid
831571**	L-T	t/2	-65	225.4	155.1	Invalid

^{*}CCT(MT), precracked, B=0.25", W=16", ** B=0.25", W=30"

Note: Lot No.831571 is from Alloy A, Lot No.831581 is from Alloy B

Alloy A with Mn shows a higher combination of Strength and Fracture Toughness

1 inch gage Al-Cu-Mg-Ag alloy plate in T8 temper

Large particles of Mn containing dispersoids in Al-Cu-Mg-Ag-Mn alloy

Particle Morphology (TEM) in Alloy A and Alloy B

Al-Cu-Mg-Ag-Mn alloy

Al-Cu-Mg-Ag-Zr alloy

Zr-containing particles at (sub)grain boundaries provide nucleation sites for Cu-containing particles

- a) BF image of θ ' phase(Al₂Cu) formed at Al₃Zr
- b) DF image shows θ ' in the matrix and Al₃Zr by using θ ' reflection

Zr-containing particles at (sub)grain boundaries provide nucleation sites for Cu-containing particles

- This would weaken grain boundaries by further promoting boundary precipitation and PFZ's.

Alloys with weak g.b. strengths are more prone to intergranular fracture at very low service temperatures

Fatigue Resistance of Al-Cu-Mg-Ag alloys and 2324-T39 Plate Notch Fatigue Tests on 1 inch gage Plate

Notched Fatigue Tests on 1.0 in. gage Al-Cu-Mg-Ag-Mn (Alloy A & B) Plate in T8

L -dir. at t/2

Max. Stress; 39 ksi, R-Ratio; 0.1 Freq.; 15 Hz Lot No. 831571

	Alloy A(Lot No.831571)						
S.N.	Cycle to Fail	Fail. Loc.					
1	1,500,000	Discont.					
2	1,500,000	Discont.					
3	1,500,000	Discont.					
4	1,500,000	Discont.					
5	158,968	Gage Sec.					

Avg.	<u>957,492</u>
------	----------------

Alloy B(Lot No.831581)		
S.N.	Cycle to Fail	Fail. Loc.
1	1,500,000	Discont.
2	223,747	Gage Sec.
3	1,500,000	Discont.
4	1,500,000	Discont.
5	455,387	Gage Sec.

Avg. 807,760

2324-T39;(Lot 980Y667A)			
S.N.	Cycle to Fail	Fail. Loc.	
1	162,653	Notch	
2	157,222	Gage Sec.	
3	157,360	Gage Sec.	
4	164,409	Gage Sec.	
5	183,183	Gage Sec.	

Avg. 164,701

Fatigue Resistance of Al-Cu-Mg-Ag alloys and 2324-T39 Plate Double Open Hole Fatigue Tests on 1 inch gage Plate

Double Open Hole Axial Fatigue on 1.0" gage Al-Cu-Mg-Ag-Mn (Alloy A & B)plate in T8

L -dir. at t/2

Max. Stress; 20 ksi, R-Ratio; 0.1 Freq.; 15 Hz Lot No. 831571

Alloy A(Lot No.831571)			
S.N.	Cycle to Fail	Fail. Loc.	
1	1,500,000	Discont.	
2	1,500,000	Discont.	
3	1,500,000	Discont.	
4	842,407	A-Hole	
5	873,461	A-Hole	

Alloy B(Lot .831581)		
S.N.	Cycle to Fail	Fail. Loc.
1	1,500,000	Discont.
2	950,829	A-Hole
3	1,500,000	Discont.
4	278,594	A-Hole
5	1,500,000	Discont.

Avg. 977,844

2324-T39;(Lot 980Y667A)		
S.N.	Cycle to Fail	Fail. Loc.
1	953,753	B-Hole
2	224,820	A-Hole
3	266,575	A-Hole
4	177,150	A-Hole
5	292,459	B-Hole

Avg. 312,104

Corrosion Resistance of 1.0 inch gage 2139-T8 Plate

■Alloy A(Lot no. 831571); 1.0 inch gage Plate

SCC: Passed at 30, 35, and 40 ksi for 20 days when tested in ST direction per ASTM G47 by ASTM G-38-01

■Alloy B(Lot no. 831581); 1.0 inch gage plate

SCC: Passed at 30, 35, and 40 ksi for 20 days when tested in ST direction per ASTM G47 by ASTM G-38-01

IV. Conclusions

- Al-Cu-Mg-Ag based alloys show very high potential for use in aerospace vehicle structures for aircraft, space transportation and space applications.
- 2. Al-Cu-Mg-Ag based alloys demonstrated excellent combinations of Strength and Fracture Toughness capabilities.
- Al-Cu-Mg-Ag alloy with Mn-containing dispersoids showed higher fracture toughness and fatigue resistance compared to Zr – containing dispersoids.
- Al-Cu-Mg-Ag alloys, having excellent Fracture Toughness, SCC Resistance and Fatigue resistance, would be most suitable for DT & D applications.
- 5. Two ingots of Al-Cu-Mg-Ag-Mn alloy have been cast to explore thicker gage product.

The Effect of Hot Rolling Processes on the Texture and Mechanical Properties of 7050 Plate

Alex Cho
Pechiney Rolled Products
Ravenswood WV

NASA Contract No. NNL04AB64T With AS&M Inc.

The Effect of Hot Rolling Processes on the Texture and Mechanical Properties of 7050 Plate

Content

- Objective
- II. Background information of 7050-T7451 plate
- III. Approach
- IV. Examine the effect of hot rolling process and solution heat treatment on texture development and degree of recrystallization at various gages
- V. Compare one and two-directionally rolled 7050 Plate at the intermediate gage range on texture development and mechanical properties
- VI. Conclusions

I. Objective:

- Investigate the effect of hot rolling on the crystallographic texture and mechanical properties of 7050 plate.
- Evaluate the processing variables afftecting texture and mechanical properties to identify the cause for the low longitudinal ultimate tensile strength (L UTS) values in the intermediate plate gages (3- 4 inches)

II. Background Information on 7050-T7451 Plate

- 7050-T7451 Plate is the most widely used aluminum based alloy for high strength-high fracture toughness-high corrosion resistance application in aircraft structures today.
- Alloy 7050 is a versatile alloy produced in a wide range of thicknesses.
 7050-T7451 plate is manufactured in the gage range of 1.5 8.5 inch, most commonly at 2.00 6.00 inch gage range.
- The recovery rate could be further improved if there was better understanding of the metallurgical manifestation of the product at the intermediate gage range (notably between 2 – 4" gages), and adjust processing accordingly.
- Ultimate tensile strength in longitudinal direction (L UTS) could be improved without detrimentally affecting fracture toughness and corrosion resistance.

III. Approach

Examine the evolution of texture in 7050 plate during hot rolling and identify the variables affecting mechanical properties

- Examine the effect of hot rolling process and solution heat treatment on texture development and degree of recrystallization at various gages
- Compare uni-directional rolling and two-directional rolling of 7050 plate at the intermediate gage range on texture development and mechanical properties.

The Effect of Hot Rolling Processes on the Texture and Mechanical Properties of 7050 Plate

IV: Examine the effect of hot rolling on the texture and degree of recrystallization on 7050 plate for various gages

- a. Description of sample plate
- b. Degree of recrystallization during solution heat treatment
- c. Effect of plate thickness location on texture during rolling
- d. Tensile properties of plant processed 7050-T7451 plate at t/4 location
- e. Summary

IV. Examine the effect of hot rolling on the texture and degree of recrystallization on 7050 plate for various gages

- a. Description of Sample plate:
 - Six lots of 7050-F temper samples were selected to measure texture in F-temper and W-temper conditions
 - W-temper samples were solution heat treated using a laboratory furnace to simulate the plant heat treat process
 - Both F-temper and W-temper texture measurements were conducted at t/4 and t/2 thickness locations

Sample	Ga.(in)	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Zr
185781	5.157	0.04	0.05	2.09	0.02	2.29	0.00	6.09	0.03	0.09
177341	5.125	0.06	0.09	2.11	0.01	2.09	0.01	6.20	0.04	0.09
196661	3.8	0.05	0.08	2.16	0.01	2.23	0.01	6.35	0.04	0.09
177873	3.1	0.05	0.08	2.14	0.01	2.17	0.01	6.27	0.04	0.09
190921	2.125	0.06	0.08	2.11	0.01	2.18	0.01	6.29	0.03	0.11
209641	1.5	0.04	0.07	2.06	0.00	2.14	0.01	6.31	0.03	0.10

IV. Examine the effect of hot rolling on the texture and degree of recrystallization on 7050 plate for various gages

a. Description of Sample plate – results of texture measurement for six lots at t/2 & t/4 locations

in F & W temper

Lot	Alloy	Gage	Temper	Loc.	Cube	R-Cube	Brass	S	Goss	Cu	S+Cu+B	Brass+S	Cube+R-Cube
209641	7050	1.5	F	t/2	4.29	0.99	28.66	35.41	2.27	10.98	75.05	64.07	5.28
190921	7050	2.125	F	t/2	5.16	1.69	27.05	26.68	2.54	8.65	62.38	53.73	6.85
177873	7050	3.1	F	t/2	4.37	1.83	18.74	21.85	4.44	8.75	49.34	40.59	6.2
196661	7050	3.8	F	t/2	3.68	1.19	22.76	28.1	3.43	11.33	62.19	50.86	4.87
177341	7050	5.125	F	t/2	2.74	1.44	14.49	18.36	5.23	9.36	42.21	32.85	4.18
177341	7050	5.125	F	t/2	2.2	1.8	13.4	16.3	5.7	7.3	37	29.7	4
177341	7050	5.125	F	t/2	3.06	1.79	15.84	15.9	5.22	6.39	38.13	31.74	4.85
185781	7050	5.157	F	t/2	4.31	1.33	26	13.93	2.08	2.16	42.09	39.93	5.64
209641	7050	1.5	F	t/4	4.03	3.84	16.61	20.32	2.44	4.03	40.96	36.93	7.87
190921	7050	2.125	F	t/4	5.42	4.61	8.73	13.24	2.94	4.88	26.85	21.97	10.03
177873	7050	3.1	F	t/4	4.91	5.29	8.6	10.81	3.39	3.83	23.24	19.41	10.2
196661	7050	3.8	F	t/4	4.71	7.13	5	7.16	3.16	3.06	15.22	12.16	11.84
177341	7050	5.125	F	t/4	3.37	1.67	15.36	18.86	4.02	8.66	42.88	34.22	5.04
185781	7050	5.157	F	t/4	4.72	1.75	15.88	19.54	4.37	8.26	43.68	35.42	6.47
209641	7050	1.5	W -lab	t/2	3.74	0.79	35.66	38.38	2.27	9.37	83.41	74.04	4.53
190921	7050	2.125	W -lab	t/2	3.27	1.4	25.87	29.56	3.05	11.11	66.54	55.43	4.67
177873	7050	3.1	W -lab	t/2	3.31	1.6	19.97	25.46	3.32	10.17	55.6	45.43	4.91
196661	7050	3.8	W -lab	t/2	3.63	0.9	22.09	29.43	3.54	10.78	62.3	51.52	4.53
177341	7050	5.125	W -lab	t/2	2.53	1.49	15.56	19.41	4.23	7.5	42.47	34.97	4.02
185781	7050	5.157	W -lab	t/2	5.26	0.94	27.51	15.18	1.99	1.91	44.6	42.69	6.2
209641 (1.5")	7050	1.5	W -lab	t/4	4.92	4.52	14.47	20.76	2.6	6.89	42.12	35.23	9.44
190921 (2.125")	7050	2.125	W -lab	t/4	5.85	5.05	11.21	15.62	2.91	6.66	33.49	26.83	10.9
177873 (3.1")	7050	3.1	W -lab	t/4	5.49	5.85	9	10.74	3.24	4.17	23.91	19.74	11.34
196661 (3.8")	7050	3.8	W -lab	t/4	4.63	7.95	5.93	7.46	2.72	3.42	16.81	13.39	12.58
177341 (5.125")	7050	5.125	W -lab	t/4	3.09	1.55	15.57	21.93	2.77	9.82	47.32	37.5	4.64
185781 (5.25")	7050	5.157	W -lab	t/4	4.52	1.54	17.5	17.13	4.07	6.72	41.35	34.63	6.06

- IV. Examine the effect of hot rolling on the texture and degree of recrystallization on 7050 plate for various gages
- b. Degree of recrystallization during Solution Heat treatment (SHT)

Deformation Texture at t/4 location in 7050-F & 7050-W plate

- Unchanged deformation texture indicates that no recrystallization occurred during SHT

Deformation Texture at t/2 location in 7050-F & 7050-W plate

- Unchanged deformation texture indicates that no recrystallization occurred during SHT

Recrystallization Texture at t/4 location in 7050-F & 7050-W plate

Unchanged texture indicates that no recrystallization occurred during SHT

- IV. Examine the effect of hot rolling on the texture and degree of recrystallization on 7050 plate for various gages
- c. Effect of plate thickness location on texture evolution during rolling

Deformation Texture at t/2 & t/4 in Various Gages of 7050-F Plate

-As gage decreases, deformation texture at t/4 decreases, then increases again . Much higher deformation texture at t/2 than at t/4

Recrystallization Texture at t/2 Location in 7050-F & 7050-W plate

- IV. Examine the effect of hot rolling on the texture and degree of recrystallization on 7050 plate for various gages
- c. Effect of plate thickness location on texture evolution during rolling

Recrystallization Texture in 7050-F Temper Plate at Various Gages

- Slightly higher vol% of recrystallization texture at t/4 than at t/2

Deformation Texture at t/2 & t/4 in various gage 7050-W plate

-As gage decreases, deformation texture at t/4 decreases, then increases again . Much higher deformation texture at t/2 than at t/4

Recrystallization Texture at t/2 & t/4 in various gage 7050-W plate

- Slightly higher vol% of recrystallization texture at t/4 than at t/2

IV. Examine the effect of hot rolling on the texture and degree of recrystallization on 7050 plate for various gages

d. Tensile properties of plant processed 7050-T7451 plate at t/4 location

Plates at 3.0 - 3.5 inch gages show more strength anisotropy than other gages.

Lot	Gage	L UTS	L TYS	el	LT UTS	LT TYS	el	UTS (LT/L)	TYS(LT/L)	UTS(LT-L)	TYS(LT-L)
	INCH	KSI	KSI	%	KSI	KSI	%			KSI	KSI
209641	1.5	75	64.1	15	75.3	65.7	12.7	1.004	1.024961	0.3	1.6
190921	2.125	76.4	68.4	15	77.3	68.3	12.1	1.0117801	0.998538	0.9	-0.1
177873	3.1	76.6	70.3	14.7	78.3	71.2	11.1	1.0221932	1.0128023	1.7	0.9
196661	3.8	76.5	71.1	13	79.4	71.6	9.7	1.0379085	1.0070323	2.9	0.5
177341	5.125	74.7	67.3	11.5	75.3	66.2	9.1	1.0080321	0.9836553	0.6	-1.1
185781	5.157	74.6	67.5	10.1	75.3	67.5	9	1.0093834	1	0.7	0

The difference between LT UTS and L UTS decreases as the deformation texture components (Brass + S) increase

Deformation Texture (Brass+S) vol% vs. (LT UTS - L UTS) at t/4

The ratio of LT UTS/L UTS decreases as the volume % of deformation texture components (Brass & S) increases

Deformation Texture (Brass+S) vol% vs. (LT UTS / L UTS) at t/4

IV. Examine the effect of hot rolling on the texture and degree of recrystallization on 7050 plate for various gages

e. Summary

- Degree of recrystallization after solution heat treatment is minimal. W-temper plate is essentially unrecrystallized at t/4 thickness location for the plate samples examined.
- As the hot rolled gage decreases from 5-6 inch range to 3 4 inch range, volume % of deformation texture decreases at t/4 location
- As the hot rolled gage decreases from 3 inch range to 1.8 2 inch range, volume % of deformation texture increases at t/4 location
- Ratio of L UTS to LT UTS correlates with volume % of deformation texture

The Effect of Hot Rolling Processes on the Texture and Mechanical Properties of 7050 Plate

- V. Compare uni- and two-directionally rolled 7050 plate at the intermediate gage range on texture development and mechanical properties
 - a. Description of sample plate
 - b. Crystallographic texture at t/4 location from 7050-T7451 plate
 - c. Correlation of plate gage, crystallographic texture and tensile properties of uni- and two-directionally rolled plate
 - d. Summary

a. Description of Sample Plate

Chemistry of uni -directionally rolled plate samples

Lot No.	Gage inch	Width inch	Si (%)	Fe (%)	Cu (%)	Mg (%)	Zn(%)	Ti (%)	Zr (%)	Cu+Mg+Zn (%)
196661	3.8	48	0.05	0.08	2.16	2.23	6.35	0.04	0.09	10.74
836681	3.75	48	0.07	0.10	2.10	2.07	6.24	0.03	0.08	10.41
368262	3.5	48	0.03	0.06	2.10	2.23	6.33	0.03	0.09	10.66
401261	3.5	48	0.04	0.08	2.30	2.10	6.19	0.03	0.09	10.59
371441	3.5	48	0.06	0.08	2.12	2.12	6.19	0.04	0.09	10.43
177873	3.1	48	0.05	0.08	2.14	2.17	6.27	0.04	0.09	10.58
375922	3	48	0.03	0.07	2.30	2.13	6.44	0.03	0.09	10.87
190921	2.125	48	0.06	0.08	2.11	2.18	6.29	0.03	0.11	10.58

Chemistry of two-directionally rolled plate samples

Lot No.	Gage inch	Width inch	Si (%)	Fe (%)	Cu (%)	Mg (%)	Zn(%)	Ti (%)	Zr (%)	Cu+Mg+Zn (%)
383001	3.5	96	0.03	0.07	2.19	2.21	6.25	0.03	0.09	10.65
383002	3.5	96	0.03	0.07	2.19	2.21	6.25	0.03	0.09	10.65
383231	2	72	0.05	0.08	2.22	2.07	6.37	0.03	0.09	10.66

a. Description of Sample Plate

Tensile properties of uni -directionally rolled plate samples

L at Na	Gage	Width				LT UTS,	LT TYS,		LT UTS /	LT TYS/L
Lot No.	inch	inch	L UTS, ksi	L TYS, ksi	L E, %	ksi	ksi	LT el, %	L UTS	TYS
196661	3.8	48	76.5	71.1	13	79.4	71.6	9.7	1.038	1.007
836681	3.75	48	73.6	67.1	15	75.9	67.3	11	1.031	1.003
368262	3.5	48	76	68.9	14.5	78.3	69.6	11.5	1.030	1.010
401261	3.5	48	74.1	67.3	15.5	76.9	68	11.5	1.038	1.010
371441	3.5	48	74	66.8	15.5	76.1	66.8	11.5	1.028	1.000
177873	3.1	48	76.6	70.3	14.7	78.3	71.2	11.1	1.022	1.013
375922	3	48	77.5	71.1	13.5	79.4	71.1	11	1.025	1.000
190921	2.125	48	76.4	68.4	15	77.3	68.3	12.1	1.012	0.999

Tensile properties of two-directionally rolled plate samples

L at Na	Gage	Width				LTUTS	LT TYS,		LT UTS /	LT TYS/L
Lot No.	inch	inch	L UTS, ksi	L TYS, ksi	L E, %	ksi	ksi	LT el, %	L UTS	TYS
383001	3.5	96	74.4	67.4	14	77.1	69.2	8.5	1.036	1.027
383002	3.5	96	76.2	69.7	12	79.5	71.2	10.5	1.043	1.022
383231	2	72	77.7	69.9	13	78.9	70.2	12	1.015	1.004

a. Description of Sample Plate

Crystallographic texture of uni -directionally rolled plate

L et Ne	Gage	Width	Cube	Goss	Brass			R-Cube	Brass+S	S+Cu+Br
Lot No.	inch	inch	(vol%)	(vol%)	(vol%)	S (vol%)	Cu (%)	(vol%)	(vol%)	(vol%)
196661	3.8	48	4.63	2.72	5.93	7.46	3.42	7.95	13.39	16.81
836681	3.75	48	4.66	1.87	3.96	8.03	3.83	7.87	11.99	15.82
368262	3.5	48	4.43	2.38	4.5	8.67	3.79	6.23	13.17	16.96
401261	3.5	48	5.34	2.31	5.99	10.26	4.76	5.14	16.25	21.01
371441	3.5	48	4.52	2.45	5.28	10.43	4.73	6.57	15.71	20.44
177873	3.1	48	5.49	3.24	9	10.74	4.17	5.85	19.74	23.91
375922	3	48	4.15	3.1	7.5	12.47	5.3	4.9	19.97	25.27
190921	2.125	48	5.85	2.91	11.21	15.62	6.66	5.05	26.83	33.49

Crystallographic texture of two-directionally rolled plate samples

Lot No.	Gage inch	Width inch	Cube (vol%)	Goss (vol%)	Brass (vol%)	S (vol%)			Brass+S (vol%)	S+Cu+Br (vol%)
383001	3.5	96	4.21	2.43	3.5	8.25	5.33	10.34	11.75	17.08
383002	3.5	96	4.87	2.59	4.12	9.8	5.97	6.52	13.92	19.89
383231	2	72	4.69	2.81	9.23	13.35	5.91	4.7	22.58	28.49

a. Description of Sample Plate

Hot rolling reduction ratio of L vs. LT direction in uni -directionally rolled plate

Lot No.	Ingot thickness (inch)	Ingot Width (inch)	Ingot Length (inch)	Plate Gage (inch)	Plate Width (inch)	Plate Length (inch)	Redution Ratio L vs. LT
196661	14.4	55	189	3.79	55	729	3.86 vs. 1
836681	14.6	56	190	3.85	56	729	3.84 vs. 1
368262	14.4	56	160	3.59	56	650	4.06 vs. 1
401261	14.4	56	180	3.58	56	732	4.07 vs. 1
371441	14.4	56	190	3.58	56	771	4.06 vs. 1
177873	14.4	55	167	3.065	55	803	4.81 vs. 1
375922	14.4	56	170	3.067	56	804	4.73 vs. 1
190921	14.4	55	130	2.098	55	821	6.32 vs. 1

Hot rolling reduction ratio of L vs. LT direction in two -directionally rolled plate

	Ingot	Ingot	Ingot	Plate	Plate	Plate	Redution
Lot No.	thickness	Width	Length	Gage	Width	Length	Ratio
	(inch)	(inch)	(inch)	(inch)	(inch)	(inch)	L vs. LT
383001	14.6	56	155	3.625	108.4	326	1.086 vs.1
383002	14.6	56	155	3.61	108	328	1.097 vs.1
383231	14.4	56	160	2.106	84.9	741	3.054 vs.1

V - b. Crystallographic Texture at t/4 thickness location from 7050-T7451 plate

Brass and S components of two-directionally rolled plate tend to be lower compared to uni-directionally rolled plate. However, texture of two-directionally rolled 2" gage plate (Lot no.383231)is very similar to that of uni-directionally rolled plate, because the rolling reduction ratio of L vs .LT direction is not significantly different from that of uni-directionally rolled plate

Crystallographic Texture of 7050-T7451 Plate at T/4 location

(Comparison of Two-directionally rolled plate vs. One -directionally rolled plate)

Texture of Two-directionally rolled plate does not appear vastly different from that of uni-directionally rolled plate. However, having lower volume % of Brass component compared to uni-directionally rolled plates, these two plates still show unique characteristics of the two-directionally rolled plate texture

Crystallographic Texture of 3.5 inch gage 7050-T7451 Plate at t/4

(Comparison of two-directionally rolled plate vs. uni-directionally rolled plate)

Higher ratio of S/Brass components are observed in the two-directionally rolled plate, which is one of the unique characteristics of two-directionally rolled plate

Ratio of S/Brass at t/4 in 3.5 inch Gage 7050-T7451 plate

Sum of the Cu & rotated Cube components of the two-directionally rolled plate are greater than that of uni-directionally rolled plate, which is one of the unique characteristics of two directionally rolled plate

Sum of Cu + rotated Cube components at t/4 in 3.5 in gage 7050-T7451

- V. Compare uni- and two-directionally rolled 7050 Plate at the intermediate gage range on texture development and mechanical properties
- b. Crystallographic Texture at t/4 location from 7050-T7451 plate

SUMMARY:

- 1. Because the rolling reduction ratio of L vs,.LT direction in lot 383321 is not significantly different from that of uni-directionally rolled plate, texture of two-directionally rolled 2" gage plate (Lot no.383231) is very similar to that of uni-directionally rolled plate
- 2. Texture of two-directionally rolled 3.5 inch gage plate does not appear vastly different from that of uni-directionally rolled plate. By a detailed examination, these two plates still show unique characteristics of two-directionally rolled plate texture
- 3. The two-directionally rolled 3.5 inch gage plate showed a lower volume % of Brass component and a higher volume % of Cu component while having a similar volume % of S component compared to uni-directionally rolled plate. Therefore, a higher ratio of S/Brass component is observed which is one of the characteristics of two-directionally rolled plate
- 4. The sum of the Cu & rotated Cube components of the two-directionally rolled 3.5 inch gage plate is greater than that of uni-directionally rolled 3.5 inch gage plate. This is one of the characteristics of two-directionally rolled plate.

- V. Compare uni- and two-directionally rolled 7050 Plate at the intermediate gage range on texture development and mechanical properties
- c. Correlation of Plate gage, Crystallographic Texture and Tensile Properties of uni-directionally rolled and two-directionally rolled plate

- For the plate gage range from 2 inch to 3.8 inch, deformation texture components (S and Brass components) correlate with the plate gage by increasing the sum of S and Brass components as the plate gage decreases
- Deformation texture (represented by sum of Brass and S components) of the two-directionally rolled plates is very similar to that of the uni-directionally rolled plate

Rolling Texture at t/4 location vs. Gage of 7050-T7451 plate Comparison of Uni -dir. Rolling vs. Two-dir. Rolling

Except for the 2.0-2.125 inch gage plate, L UTS values show poor correlation with plate gage variation.

L UTS at t/4 location vs. Gage of 7050-T7451 plate Comparison of uni-dir. Rolling vs. two-dir. Rolling

L UTS values do not correlate with deformation texture components represented by the sum of Brass & S components

L UTS at t/4 vs. Rolling Texture at t/4 location of 7050-T7451 plate Comparison of uni-dir. Rolling vs. two-dir. Rolling

Except for the two-directionally rolled plate, L UTS values correlate with the sum of major alloying elements (Zn+Mg+Cu)

L UTS at t/4 location vs. Chemistry of 7050-T7451 plate Comparison of uni-dir. Rolling vs. two-dir. Rolling

Except for the two-directionally rolled plate, L UTS values correlate with the sum of major alloying elements (Zn+Mg)

L UTS at t/4 location vs. Chemistry(Zn+Mg) of 7050-T7451 plate Comparison of uni-dir. Rolling vs. two-dir. Rolling

LT UTS values do not correlate with plate gages within 2.0 to 3.8 inch gage range

LT UTS at t/4 location vs. Gage of 7050-T7451 plate Comparison of uni-dir. Rolling vs. two-dir. Rolling

Except for the two-directionally rolled plate, L UTS values correlate with the sum of two major alloying elements (Zn+Mg+Cu)

L UTS at t/4 location vs. Chemistry of 7050-T7451 plate Comparison of uni-dir. Rolling vs. two-dir. Rolling

LT UTS values do not correlate with the deformation texture represented by the sum of Brass and S components.

LT UTS at t/4 location vs. Rolling texture of 7050-T7451 plate Comparison of uni-dir. Rolling vs. two-dir. Rolling

Except for the two-directionally rolled plate, LT UTS values correlate with the sum of major alloying elements (Zn+Mg+Cu)

LT UTS at t/4 location vs. Chemistry of 7050-T7451 plate Comparison of uni-dir. Rolling vs. two-dir. Rolling

The ratio of LT UTS/L UTS correlates with plate gage within the range of 2.0 to 3.8 inch. As the plate gage decreases, the ratio of LT UTS/L UTS decreases. Uni-directionally rolled plate and two-directionally rolled plate shows no significant differences.

Ratio of LT UTS/L UTS at t/4 location vs. Gage of 7050-T7451 plate Comparison of uni -dir. Rolling vs. two-dir. Rolling

The ratio of LT UTS/L UTS correlates with the deformation texture within the range of 2.0 to 3.8 inch. As deformation texture increases, the ratio of LT UTS/L UTS decreases.

Ratio of LT UTS/L UTS at t/4 vs. Texture at t/4 of 7050-T7451 plate Comparison of uni-dir. Rolling vs. two-dir. Rolling

The difference between LT UTS & L UTS correlates with the deformation texture for the range of 2.0 to 3.8 inch. As the deformation texture increases, the difference between LT UTS and L UTS decreases.

Ratio of LT UTS/L UTS at t/4 vs. Texture at t/4 of 7050-T7451 plate Comparison of uni-dir. Rolling vs. two-dir. Rolling

No correlation can be observed for the ratio of LT UTS/ L UTS and plate chemistry (Zn+Mg+Cu)

Ratio of LT UTS/L UTS vs. Chemistry of 7050-T7451 plate Comparison of uni-dir. Rolling vs. two-dir. Rolling

No correlation can be observed for the ratio of LT UTS/ L UTS and plate chemistry (Zn+Mg)

Ratio of LT UTS/L UTS vs. Chemistry(Zn+Mg) of 7050-T7451 plate Comparison of uni-dir. Rolling vs. two-dir. Rolling

No correlation between chemistry and texture was observed. This validates the effect of chemistry on mechanical properties independent of texture effect.

Rolling Texture at t/4 location vs. Chemistry of 7050-T7451 plate Comparison of uni-dir. Rolling vs. two-dir. Rolling

No correlation between chemistry and texture was observed. This validates the effect of chemistry on mechanical properties independent of plate gage effect.

Plate Gage vs. Chemistry of 7050-T7451 Plate Comparison of uni-dir. Rolling vs. two-dir. Rolling

- V. Compare uni- and two-directionally rolled 7050 plate at the intermediate gage range on texture development and mechanical properties
- c. Correlation of plate gage, crystallographic texture and tensile properties of
 - uni-directionally rolled and two-directionally rolled plate

Summary

- 1. Deformation texture volume % increases as plate gage decreases within the gage range of 2 to 4 inches.
- 2. L UTS and LT UTS values correlate with chemistry more strongly than any other variables examined.
- 3. The ratio of LT UTS/ L UTS does not show correlation with plate chemistry. Instead, the ratio shows a strong correlation with deformation texture and plate gage
- 4. The difference between L UTS and LT UTS values due to anisotropy caused by texture is relatively small compared to the overall variation of L UTS values due to chemistry
- 5. Two-directionally rolled plate showed only marginally different texture compared to the uni-directionally rolled plate
- 6. Two-directionally rolled plate did not show improvement in L UTS values. Test results showed that two-directional rolling did not improve the ratio of LT UTS / L UTS.

The Effect of Hot Rolling Processes on the Texture and Mechanical Properties of 7050 Plate

VI. Conclusions

- 1. Degree of recrystallization after solution heat treatment is minimal. W- temper plate is essentially unrecrystallized at t/4 location for the plate samples examined
- Two-directionally rolled plate showed only marginally different texture compared to the uni-directionally rolled plate. The plate gage appears to correlate strongly with texture
- 3. Two-directionally rolled plate did not show improvement in L UTS values. Test results showed that two-directional rolling appeared to be detrimental to achieve isotropic strengths between LT UTS and L UTS.
- 4. L UTS and LT UTS values correlate with chemistry more strongly than any other variables examined
- 5. The difference between L UTS and LT UTS values due to anisotropy caused by texture is relatively small compared to the overall variation of L UTS values due to chemistry variation
- 6. The ratio of LT UTS/ L UTS shows a strong correlation with deformation texture and plate gage within 2 inch 4 inch range

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RÉTURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MINI-YYYY)	2. REPORT TYPE		3. DATES COVERED (From - 10)
01-12 - 2007	Contractor Report		3-1-2004 to 9-30-2005
4. TITLE AND SUBTITLE		5a. C0	ONTRACT NUMBER
1 0 1	rovement of Aerospace Aluminum	NNL(04AB64T
Alloys		5b. G	RANT NUMBER
		5c. PF	ROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PF	ROJECT NUMBER
Cho, Alex; Lisagor, W. Barry; an	d Bales, Thomas T.		
		5e. TA	SK NUMBER
		5f. W0	DRK UNIT NUMBER
		23-79	4-40-4L
7. PERFORMING ORGANIZATION NASA Langley Research Center Hampton, VA 23681-2199	NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AG	ENCY NAME(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)
National Aeronautics and Space A Washington, DC 20546-0001	Administration		NASA
20 200 10 0001			11. SPONSOR/MONITOR'S REPORT NUMBER(S)
			NASA/CR-2007-215093
12. DISTRIBUTION/AVAILABILITY S	TATEMENT		

Unclassified - Unlimited Subject Category 26

Availability: NASA CASI (301) 621-0390

13. SUPPLEMENTARY NOTES

Cho: Pechiney Rolled Products, Ravenswood, WV; Lisagor and Bales: Analytical Services & Materials, Inc., Hampton, VA. Langley Technical Representative of the Contracting Officer: John A. Wagner An electronic version can be found at http://ntrs.nasa.gov

14. ABSTRACT

This final report, in multiple presentation format, describes a comprehensive multi-tasked contract study to improve the overall property response of selected aerospace alloys, explore further a newly-developed and registered alloy, and correlate the processing, metallurgical structure, and subsequent properties achieved with particular emphasis on the crystallographic orientation texture developed. Modifications to plate processing, specifically hot rolling practices, were evaluated for Al-Li alloys 2195 and 2297, for the recently registered Al-Cu-Ag alloy, 2139, and for the Al-Zn-Mg-Cu alloy, 7050. For all of the alloys evaluated, the processing modifications resulted in significant improvements in mechanical properties. Analyses also resulted in an enhanced understanding of the correlation of processing, crystallographic texture, and mechanical properties.

15. SUBJECT TERMS

Alloys; Plate processing; Mechanical properties; Texture

16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF	19a. NAME OF RESPONSIBLE PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE		PAGES	STI Help Desk (email: help@sti.nasa.gov)
					19b. TELEPHONE NUMBER (Include area code)
U	U	U	UU	227	(301) 621-0390