Correction Test no. 1

Question no.1

Une source de tension alimente une résistance R et une inductance L connectées en série. La tension aux bornes de la résistance R est donnée.

 $\textbf{Tracer} \ en \ fonction \ du \ temps \ le \ courant \ i_L, \ la \ tension \ v_L, \ la \ puissance \ p_L \ et \ l'énergie \ w_L.$

Question no.2

Soit le circuit montré dans la figure ci-contre.

- a) Déterminer l'équivalent Thévenin de la partie gauche (vue aux bornes a-b) du circuit.
- b) À l'aide du résultat de a, calculer la tension v_x .

a) Équivalent Thévenin de la partie gauche (vue aux bornes a-b) du circuit:

$$R_T = 60\Omega \parallel 40\Omega = \frac{60 \times 40}{60 + 40} = 24\Omega$$

$$v_T = \frac{40}{40 + 60} \times v_s = \frac{40}{100} \times 120 = 48V$$

b) À l'aide du résultat de a, calculer la tension v_x :

$$v_x = \frac{50}{50 + 24} \times 48V = 32.43V$$

Question no.3

Soit le circuit montré dans la figure ci-contre.

Calculer la tension v_x en appliquant **le principe** de superposition.

a) On considère la source v_s seule:

Diviseur de tension:

$$v_{x1} = \frac{40}{40 + 60} \times 60V = 24V$$

b) On considère la source i_s seule:

On a: $v_{x2} = -\left(\frac{40 \times 60}{40 + 60}\right) \times 2.4 = -57.6V$

c) Superposition des deux sources:

$$v_x = v_{x1} + v_{x2} = 24 - 57.6 = -33.6V$$