ii)	600
	COLU.

Steps of Construction:

- i) Draw an angle ∠ABC of 60°.
- (ii) Draw BP bisector of angle ∠ABC.
- (iii) Take any point O on BP.
- (iv) Drop $\overrightarrow{OM} \perp \overrightarrow{BA}$.
- (v) Take O as centre and draw a circle with radius m OM.

This circle touches arm BC at N also.

SOLVED MISCELLANEOUS EXERCISE - 13

Q1. Multiple Choice Questions:

Three possible answers are given for the following questions. Tick (✓) the correct answer.

- (i) The circumference of a circle is called
 - (a) chord
- (b) segment
- (c) boundary
- (li) A line intersecting a circle is called:
 - (a) tangeht
- (b) secant
- (c) chord
- (iii) The portion of a circle between two radii and an arc is called
 - (a) sector
- (b) segment
- (c) chord
- (iv) Angle inscribed in a semi-circle is
 - (a) $\frac{\pi}{2}$

- (b) $\frac{\pi}{3}$
- (c) $\frac{\pi}{4}$
- (v) The length of the diameter of a circle is how many times the radius of the circle
 - (a) 1

- (b) 2
- (c) 3
- (vi) The tangent and radius of a circle at the point of contact are
 - (a) parallel
- (b) not perpendicular(c)perpendicular
- (vii) Circles having three points in common:
 - (a) over lapping
- (b) collinear
- (c) not coincide
- (viii) If two circles touch each other, their centres and point of contact are

	(a)	coi	ncident	(b) non-	collinear	(c) c	ollinear			
(ix)	The	: m	easure o	f the ex	ternal 1	ingle of s	regula	r heves	on is		
	(a)	$\frac{\pi}{8}$			b) $\frac{\pi}{6}$		(c) 1/2		JH 18		
(x)	If ti (a)	be in an i	n centro soscene	and ci	rcumve b) a rig	enter of a	triangl e (c) a	le coinci n equilat	de, the teral	riangle i	9
(xi)	The	. me	asure o			ingle of a					
	(a)				b) $\frac{\pi}{6}$	-	(c) $\frac{1}{8}$	_	1 <i>3</i>		
(xii)	Tan (a)	ger para	its draw allei	n at the	end po	oints of the	he diam (c) li	eter of a	a circle :	are	
(xiii)	The	ler une	gths of qual	two tra	nsverse b) equa	tangent 		ir of cir verlappi			
(xiv)	Hov (a)		any tao		n be da	rawa fro	m a poi (c) 3	nt outsid	le the ci	rcle?	
(xv)	ther	ı tb	istance e circle: rsect	will:		entres of ot interse					of their radi
(xvi)	equa (a) ((b) :	al to diffi sum	the erence of of their	of their ra	ndii	ternally,	then t	he dista	nce bet	ween the	eir centres i
(xvii)	How (a)		any con		ngents) 3	can be d	rawn fo (c) 4	r two to	uching	circles?	
(zviii)	(a) 2		many co		tangen) 3	ts can be	drawn (c) 4	for two	disjoint	circles?	
Answ	er:										
	ı		С	2	b	3.	a	4	а	5	b
j	6		С	7	8	8	C	9	a	10	С
[13		8	12	a	13	ь	14	Ь	15	С
	16	,]	Ь	17	b	18	С				
Q2.	Wri	te s	hort at	iswers	of the	followin	g ques	tions:			

- - (i) Define and draw the following geometric figures:

 (a) The segment of a circle.

 (b) The ta

 (c) The sector of a circle.

 (d) The ir

 (e) The circumscribed circle,

 (f) The definition of th

- (b) The tangent to a circle.(d) The inscribed circle.
- (f) The described circle;

(a) The segment of a circle

The area contained between a chord and the arc which it cuts off is called a segment of the circle.

(b) The tangent to a circle.

A line that touch a circle is called its tangent. APB is tangent to the circle with centre O at point P.

(c) The sector of a circle.

The area contained between two radii and the arc of the circle which they intercept, is called a sector of the circle.

(d) The inscribed circle.

Solution

The sides of triangle touch a circle internally, such a circle is called inscribed circle of the triangle.

(e) The circumscribed circle.

Solution

A circle that passes through the vertices of a triangle is called circumscribed circle of the triangle.

(f) The described circle;

Solution

A circle that touches two sides of a triangle internally and one side externally is called an described circle.

(ii) The length of each side of a regular octagon is 3 cm. Measure its perimeter.

Solution

Length of side = 3 cm

Number of sides of an octagon = 8

(iii) Ans.	Write down the formula for finding the angle subtended by the r.ide of a n-sided polygon at the centre of the circle.
	360°
	n
(iv) Solut	The length of the side of a regular pentagon is 5 cm what is its perirecter?
	Length of each side = 5 cm
	Number of sides = 5
	Perimeter = $5 \times 5 = 25$ cm
Q3.	Fill in the blanks:
1)	The boundary of a circle is called
2)	The circumference of a circle is called of the circle.
3) ′	The line joining the two points of circle is called
	The point of intersection of perpendicular bisectors of two non-parallel chords of a circle is called the
5) (Circles having three points in common will
6)	The distance of a point inside the circle from its centre is than the radius.
7)	The distance of a point outside the circle from its centre is than the radius,
8) /	A circle has only centre.
	One and only one circle can be drawn through three points.
	Angle inscribed in a semi-circle is a angle.
	f two circles touch each other, the point of and their are collinear.
	f two circles touch each other, their point of contact and centres are
	rom a point outside the circle tangents can be drawn.
-	tangent is to the radius of a circle at its point of contact.
	the straight line drawn ± to the radius of a circle is called the to the circle.
	wo circles cannot out each other at more than points.
	he \perp bisector of a chord of a circle passes through the
	he length of two direct common tangents to two circles are to each other.
	he length of two transverse common tangents to two circles are to each ther.
20) If	the in-centre and circum-centre of a triangle coincide the triangle is
21) T	wo intersecting circles are not
22) T	he centre of an inscribed circle is called
23) 11	ne centre of a circumscribed circle is called

24)	The	radius	of an	inscribed	circle	is	called	

25) The radius of a circumscribed circle is called

Answer:

,	*****						_	_	
	Circumference	2	Boundary	3	Chord	4	Centre	5	Coincide
6	Less	7	Greater	8	One	9	Non-	10	Right
ŀ							collinear	l	
11	Contact, centers	12	Collinear	13	Two	14	Centre	15	Equal
16	Equal	20	Equilateral	21	Concenirio	22	In centre	23	Circumventer
24	In-radius	25	Circum-radius.						

SUMMARY

- A Girele of any radius can be traced by rotating a compass about fixed point.
- The perpendicular bisectors of two non-parallel chords of a circle intersect at a point which is known as centre of circle.
- A circle can be drawn through given three non-collinear points.
- When a part of circumference of a circle is given, the circle can be completed.
- If a triangle, the circumscribed circle, inscribed circle and escribed circle opposite to each vertex can be constructed.
- If a circle is given, then the circumscribed and inscribed equilateral triangles can be constructed.
- For a given circle, the circumscribed and inscribed squares can be drawn.
- For a given circle, (he circumscribed and inscribed regular hexagon can be constructed.
- We can draw tangents to a given are as its midpoint, its any end point, and a point not on the arc.
- Tangents can be drawn, to a given circle;, when a point is an its circumference and from a point outside the circle.
- Tangents to two unequal touching circles can be traced.
- Direct or transverse common tangents of two equal circles or two unequal circles can be drawn.
- We can construct a circle touching the arms of a given angle.
- A circle passing through a graven point between two converging lines and touching each of them, can be traced.