6 Bode Analysis

6.1 Stability Analysis of a Closed-Loop System Using Bode Plot

Consider a standard closed-loop system with the loop transfer function L(s) with the Bode plot below. Assume the closed-loop is stable with the loop L(s):

$$L(s) = \frac{-4s + 72}{0.39s^2 + 8.02s + 18}$$

- (a) What is the phase crossover frequency, ω_0 ?
- (b) What is the gain margin, g_0 , of the closed-loop?
- (c) Is the closed-loop stable if the open-loop transfer function is 1.5L(s)?

Solution:

(a) $\omega_0 = 20 \text{rad/sec}$.

- (b) $g_0 = 2$.
- (c) Yes. Because $1.5 < g_0 = 2$.

GPT Answer:

Based on the Bode plot provided:

- (a) The phase crossover frequency, ω_0 , appears to be slightly less than 10^1 rad/sec, as it is the frequency at which the phase angle crosses -180° .
- (b) The gain margin, g_0 , seems to be slightly above 6 dB, indicating a positive gain margin at the phase crossover frequency.
- (c) If the open-loop transfer function is scaled to 1.5L(s), we increase the magnitude by $20 \log(1.5)$ dB, approximately 3.52 dB. Even with this increase, the magnitude at the phase crossover frequency would still be below 0 dB, suggesting that the system should remain stable.

Confidence Level: 85%

Misreading the plot

Claude Answer:

(a) The phase crossover frequency ω_0 is the frequency where the phase plot crosses -180°. From the Bode plot, this occurs at approximately $\omega_0 = 3 \text{ rad/sec}$.

Confidence: 95/100

(b) The gain margin g_m is the negative of the magnitude in dB at the phase crossover frequency. From the magnitude plot at $\omega_0 = 3$, the magnitude is approximately 8 dB. Therefore, the gain margin is $g_m = 8$ dB.

Confidence: 90/100

(c) If the open-loop transfer function is multiplied by 1.5, this increases the magnitude plot by $20\log_{10}(1.5)\approx 3.5$ dB. With an original gain margin of 8 dB, the new gain margin would be approximately 4.5 dB, which is still positive. Therefore, the closed-loop system remains stable with 1.5L(s)

Confidence: 85/100

Overall, I have high confidence in parts (a) and (b) as the phase crossover frequency and gain margin can be read fairly accurately from the Bode plot. I have slightly lower confidence in part (c) since the stability assessment relies on the accuracy of the 8 dB gain margin estimate and the mental calculation of the updated margin.

Misreading the plot