## 1D Linear Advection - Sine Wave

## **Problem Specification**

Use Case. Linear Advection

Spatial domain:  $0 \le x < 1$  meters, periodic boundary conditions

Governing equations: 1D Linear Advection Equation

$$\frac{\partial \phi}{\partial t} = -\mathbf{u} \cdot \nabla \phi$$

Initial conditions:

$$\phi(x) = \sin(2\pi x)$$

$$\mathbf{u} = 1 \text{ m/s}$$

The Saiph's code specification can be seen at: Click to Saiph code

## Simulation details

 $\Delta x = 1 \text{ mm}$ 

 $\Delta t = 1 \text{ ms}$ 

 $nsteps=1000\,$ 

Forward in-time integration using Euler method:  $\mathcal{O}(x)$ 

Spatial differentiation accuracy (default):  $\mathcal{O}(x^4)$ 

## Results

Output results at three time-steps, t=0s, t=0.5s and t=1s are presented in Figure 1. The  $L_2$  norm has been computed over the  $\phi$  variable taking the initial conditions as the analytic solution. The output simulation presents no truncation error  $L_2=0$ 



Figure 1: Phi profile at different time-steps.

The Saiph's simulation animation can be seen at: Click to video