SISTEM PEMETAAN STUNTING DI KABUPATEN JAYAPURA BERBASIS WEBSITE MENGGUNAKAN METODE K-MEANS (Studi Kasus: Dinas Kesehatan Kabupaten Jayapura)

TUGAS AKHIR

DISUSUN OLEH: JEKSON TABUNI 19 411 101

PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER DAN MANAJEMEN UNIVERSITAS SAINS DAN TEKNOLOGI JAYAPURA PAPUA SEPTEMBER 2024

SISTEM PEMETAAN STUNTING DI KABUPATEN JAYAPURA BERBASIS WEBSITE MENGGUNAKAN METODE K-MEANS (Studi Kasus: Dinas Kesehatan Kabupaten Jayapura)

TUGAS AKHIR

Diajukan sebagai salah satu syarat untuk menyelesaikan studi program sarjana pada Program Studi Teknik Informatika

DISUSUN OLEH:

JEKSON TABUNI 19 411 101

PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER DAN MANAJEMEN UNIVERSITAS SAINS DAN TEKNOLOGI JAYAPURA PAPUA JUNI 2024

HALAMAN PENGESAHAN

TUGAS AKHIR

SISTEM PEMETAAN STUNTING DI KABUPATEN JAYAPURA BERBASIS WEBSITE MENGGUNAKAN METODE K-MEANS

Disusun Oleh:

JEKSON TABUNI 19 411 101

Menyetujui:

Pembimbing

Yulius Palumpun, M.Cs Lektor

Telah Diuji Dan Dipertahankan Di Depan Dewan Penguji Pada Tanggal 0 September 2024

Susunan Dewan Penguji:

1. Ketua : Rizkial Achmad, S.Kom., MT

Lektor

2. Anggota : Evanita V. Manullang, MT

Lektor

Mengesahkan: Fakultas Ilmu Komputer Dan Manajemen Mengetahui: Program Studi Teknik Informatika

Dekan, Ketua,

Yulius Palumpun, M.Cs Lektor Rizkial Achmad, S.Kom., MT Lektor

KATA PENGANTAR

Puji dan syukur penulis panjatkan kepada Tuhan Yang Maha Esa, karena kasih setianya sehingga penulis dapat menyelesaikan Skripsi yang berjudul "Sistem Pemetaan Stunting Di Kabupaten Jayapura Berbasis Website Menggunakan Metode K-Means". Penulisan Skripsi ini diajukan sebagai salah satu syarat untuk menyelesaikan Pendidikan Program Sarjana di Program Studi Teknik Informatika, Fakultas Ilmu Komputer dan Manajemen, Universitas Sains dan Teknologi Jayapura.

Penulis menyadari bahwa dalam penyusunan Skripsi ini masih banyak terdapat kekurangan baik dari segi bahasa, sistematika penulisan maupun referensi dan lain sebagainya. Sehingga, dalam kesempatan ini jika ada kritik dan saran yang membangun dari pihak kampus serta rekan-rekan mahasiswa sekalian, penulis menerimanya dengan lapang dada demi perbaikan pada penulisan Skripsi di kemudian hari.

Dalam penyusunan dan penulisan Skripsi ini tidak terlepas dari bantuan dan bimbingan serta dukungan dari berbagai pihak. Oleh karena itu pada kesempatan ini, penulis dengan senang hati mengucapkan terimakasih kepada yang terhormat:

- 1. Ibu Dr. Yuyun N. Ali Kastella, M.Pd., selaku Rektor Universitas Sains dan Teknologi Jayapura.
- 2. Bapak Yulius Palumpun, M.Cs., selaku Dekan Fakultas Ilmu Komputer dan Manajemen Universitas Sains dan Teknologi Jayapura, sekaligus Dosen Pembimbing yang dengan setia telah membimbing dalam penyusunan Skripsi ini.
- 3. Bapak Rizkial Achmad, S.Kom., MT., selaku Ketua Program Studi Teknik Informatika Fakultas Ilmu Komputer dan Manajemen, Universitas Sains dan Teknologi Jayapura. Dan Juga selaku Dosen Wali Teknik Informatika Angkatan 2019 yang telah membimbing dan memberikan ilmu pengetahuan kepada penulis selama duduk dibangku perkuliahan.
- 4. Bapak dan Ibu Dosen di lingkungan Program Studi Teknik Informatika yang telah memberikan bekal/ilmu kepada penulis selama perkuliahan.
- 5. Teman-teman Teknik Informatika secara khusus Angkatan 2019 yang ikut memberikan semangat dan motivasi.

6. Semua pihak yang tidak dapat disebutkan satu persatu yang telah membantu memberikan dukungan.

Semoga Tuhan Yang Maha Esa menyertai dan memberkati kalian semua dan kedepannya Skripsi ini dapat bermanfaat bagi semua pihak yang membutuhkannya dan membacanya.

Jayapura, 12 September 2024

Jekson Tabuni

DAFTAR ISI

Halaman S	Sampul	i
Halaman J	udul	ii
Halaman P	Pengesahan	iii
Kata Penga	antar	iv
Daftar Isi.		vi
Daftar Gar	nbar	vii
Daftar Tab	el	viii
Isterasi		ix
	NDAHULUAN	
	Latar Belakang	
	Rumusan Masalah	
	Batasan Masalah	
D.	Tujuan Penelitian	
E.	1,1000d0 1 ollolloldall	
F.	Sistematika Penulisan	4
D . D . T		
	NJAUAN PUSTAKA DAN DASAR TEORI	
	Tinjauan Pustaka	
В.	Dasar Teori	
	1. Sistem	
	2. Informasi	
	3. Sistem Informasi	
	4. Website	
	5. Clustering.	
	6. Algoritma K-Means	
	7. Perangkat Sistem Yang Digunakan	10
D . D *** . :	N	4.6
	NALISA DAN PERANCANGAN SISTEM	
	Analisan Sistem Berjalan	
В.	Perancangan Sistem	
	1. Sistem Usulan	
	2. Flowcart	
	3. Identifikasi Terminator	
	4. Diagram Konteks	
	5. Diagram Berjenjang	
	6. Diagram Overview Level 0	
	7. Diagram Overview Level 1	24

DAFTAR TABEL

Tabel 2.1 Simbol-Simbol Dalam Flowcart	10
Tabel 3.1 Identifikasi Data/Informasi Arah Aliran Dan Terminator	20

DAFTAR GAMBAR

Gambar 2.1 MySQL	12
Gambar 2.2 Laravel	14
Gambar 2.3 JavaScript	14
Gambar 2.4 XAMPP	15
Gambar 3.1 Sistem Berjalan	16
Gambar 3.2 Rancang Sistem	17
Gambar 3.3 Flowchart	19
Gambar 3.4 Diagram Konteks	21
Gambar 3.5 Diagram Berjenjang	22
Gambar 3.6 Diagram Overview Level 0	23
Gambar 3.7 Diagram Overview Level 1	
5	

INTISARI

Stunting merupakan salah satu permasalahan kesehatan serius yang berdampak pada pertumbuhan anak, terutama di daerah Kabupaten Jayapura. Untuk membantu penanganan stunting, dibutuhkan sistem yang dapat memetakan sebaran stunting secara tepat dan efisien. Penelitian ini bertujuan untuk merancang dan mengimplementasikan sistem pemetaan stunting berbasis website dengan menggunakan metode K-Means. Sistem ini dirancang untuk mempermudah visualisasi dan pengelolaan data terkait sebaran stunting, sehingga Dinas Kesehatan Kabupaten Jayapura dapat mengambil langkah preventif dan penanganan yang lebih baik.

Metode K-Means digunakan dalam sistem ini untuk mengelompokkan data berdasarkan faktor-faktor yang mempengaruhi stunting, seperti kondisi sosialekonomi, kesehatan, serta lingkungan. Dengan adanya pengelompokan tersebut, pola sebaran stunting di Kabupaten Jayapura dapat dianalisis dan divisualisasikan secara lebih jelas. Sistem ini dibangun dengan antarmuka yang interaktif dan userfriendly, sehingga memudahkan pengguna dalam mengakses informasi terkait.

Hasil dari penelitian ini menunjukkan bahwa sistem pemetaan yang dikembangkan mampu memberikan informasi yang akurat mengenai wilayah-wilayah dengan tingkat stunting tinggi. Sistem ini diharapkan dapat menjadi alat bantu bagi pemerintah daerah dan pemangku kepentingan dalam merumuskan kebijakan kesehatan yang lebih efektif untuk menurunkan angka stunting di Kabupaten Jayapura.

Kata Kunci: Stunting, Pemetaan, K-Means, Website, Kabupaten Jayapura, Dinas Kesehatan

BABI

PENDAHULUAN

A. Latar Belakang

Kantor Dinas Kesehatan merupakan instansi pemerintahan yang resmi berfungsi untuk membantu penyiapan pelaksanaan, bimbingan, dan pemantauan di bidang surveiles dan amunisasi, pencegahan pencegahan dan pengendalian penyakit menular dan tidak menular, Kesehatan jiwa dan olahraga. Kabupaten jayapura adalah daerah yang mempunyai banyak penduduk dengan Tingkat penyembaran penyakit di berbagai daerah. Tentunnya sangat dibutuhkan pelayanan pegawai kantor dinas Kesehatan yang cepat dan efisien dalam memberikan informasi seputar data sebaran penyakit kepada Masyarakat sehingga dari berbagai daerah dapat mengetahui Tingkat sebaran penyakit di kabupaten Jayapura.

Untuk pihak Dinas Kesehatan Kabupaten Jayapura mengetahui daerah-daerah yang memilik tingkat stunting paling tinggi, sedang, sedikit dan mengapa daerah tersebut banyak balita yang mengali kekurangan gizi, serta pada dinas Kesehatan juga belum memiliki peta wilayah stunting berbasis website, dengan adanya persoalan tersebut maka Pemanfaatan Sistem Pemetaan merupakan salah satu model data spasial (keruangan), mengenai daerah-daerah di kabupaten jayapura untuk kebutuhan tertentu. Akan sangat membantu dan memudahkan pegawai Dinas Kesehatan untuk mengelola data stunting dari masing-masing daerah/kecamatan.

Pemetaan stunting sangat penting untuk memahami distribusi spasial stunting di wilayah tertentu, sehingga memungkinkan pihak terkait, termasuk Dinas Kesehatan Kabupaten Jayapura, untuk mengambil tindakan yang tepat dalam penanggulangan stunting. Dengan adanya kemajuan teknologi yang ada, maka akan dibuat system informasi pemetaan stunting di kabupaten Jayapura yang dapat digunakan untuk mengelola data stunting memberikan informasi yang cepat, efisien dan akurat kepada Masyarakat.

B. Rumusan Masalah

Berdasarkan uraian dalam latar belakang maka rumusan masalah dalam penelitian ini adalah "Bagaimana mengembangkan system pemetaan yang efektif untuk pemetaan lokasi stunting pada dinas Kesehatan kabupaten jayapura dalam mengelola data, peta stunting dan menyampaikan hasil pengelolah data stunting yang berupa informasi kepada masayarakat.

C. Batasan Masalah

Adapun batasan masalah dalam penelitian ini adalah sebagai berikut:

- Manfaat system pemetaan yang di rancang adalah untuk menampilkan informasi lokasi stunting pada distrik-distrik yang mengalami stunting di kabupaten Jayapura.
- 2. Perancangan sistem pemetaan menggunakan Software Google Maps API.
- 3. Sistem yang dibuat adalah sistem berbasis web dengan menggunakan Bahasa pemograman PHP, Javascript dan database MySQL.
- 4. Pengguna yang menggunakan sistem ini adalah Bidang Kesehatan Keluarga dan Gizi Masyarakat.
- 5. Sistem yang dibuat menggunakan metode K-Means Clustering untuk mengelompokkan data ke dalam beberapa kelompok berdasarkan karakteristik atau atribut tertentu.

D. Tujuan Penelitian

Tujuan dari penelitian ini yaitu membangun Sistem Pemetaan Stunting berbasis website yang dapat membantu Dinas Kesehatan Kabupaten Jayapura dan Masyarakat untuk mengetahui informasi tentang jumlah stunting yang ada di distrik-distrik.

E. Metode Penelitian

Data yang dibutuhkan untuk penyusunan laporan yaitu:

- 1. Metode Pengumpulan data
 - a. Data Sekunder

Mengumpulkan data sekunder dari Lembaga Pemerintahan yaitu Dinas Kesehatan Kabupaten Jayapura yang terkait dengan stunting.

b. Konsultasi Ahli

Melakukan konsultasi dengan ahli gizi dan untuk mendapatkan wawasan dan masukan dalam proses pengumpulan data serta analisis.

c. Studi Pustaka

Dilakukan pengumpulan data dengan cara mencari artikel jurnal, tesis dan refrensi lainnya yang terkait dengan laporan penulisan

2. Metode Analisa dan Rancangan Sistem

1. Analisa Sistem

Pada bagian ini dilakukan Analisa terhadap sistem yang sedang dipakai dan yang akan dibuat.

2. Rancangan Sistem

1) Flowchart

Yaitu representasi visual dari serangkaian langkah atau proses dalam bentuk diagram dana akan diterapkan dalam rancang bangun sistem informasi tracer study berbasis web.

2) Data Flow Diagram (DFD)

Penggunaan Diagram Aliran Data pada sistem informasi geografis, dapat membantu dalam memodelkan aliran data dan proses yang terjadi dalam sistem secara visual.

3) Table Relasi

Relasi pada table merupakan hubungan relasi atau hubungan antara table yang satu dengan yang lain pada database.

4) Kodefikasi

Kodefikasi atau penomoran pada sistem pemetaan dapat digunakan untuk mengidentifikasi secara unik entitas atau elemen dalam sistem.

5) Struktur File

Pada tahap ini dibuat struktur file dari setiap data yang ada didalam aplikasi sistem pemetaan.

6) Desain Input/Output

Yaitu design atau pengambaran sistem yang akan dirancang.

3. Pembuatan Aplikasi

Dalam pembuatan program aplikasi ini menggunakan Bahasa pemograman PHP sebagai Bahasa script (script language), MySQL untuk pengelolahan data base dan Microsoft Visio digunakan untuk mendesign tampilan antarmuka atau interface.

4. Uji Coba Aplikasi

Setelah proses pembuatan program selesai akan dilakukan uji coba, apakah sudah layak untuk digunakan?

F. Sistematika Penulisan

Sistematika yang digunakan dalam Menyusun laporan ini adalah sebagai berikut:

BAB I : PENDAHULUAN

Merupakan bab yang menjelaskan tentang latar belakang, rumusan masalah, Batasan masalah, tujuan penelitian, metode penelitian sistematika dan jadwal penelitian.

BAB II : TINJAUAN PUSTAKA DAN DASAR TEORI

Bab ini membahas mengenai penelitian-penelitian terdahulu dan teori-teori yang berhubungan dengan penelitian yang sedang dilakukan serta perancang sistem yang akan diusulkan.

BAB III : ANALISA DAN RANCANGAN SISTEM

Bagian bab ini menjelaskan tentang Analisa dan rancangan sistem yang akan dibuat.

BAB IV : IMPLEMENTASI DAN PEMBAHASAN

Bab ini berisi analisa sistem berjalan dan merancang sistem usulan yang akan dibangun..

BAB V : PENUTUP

Bab ini berisi kesimpulan dan saran. Kesimpulan dari penelitian yang dilakukan. Saran untuk pengembangan lebih lanjut dalam upaya memperbaiki kekurangan yang ada guna mendapatkan hasil yang optimal.

BABII

TINJAUAN PUSTAKA DAN DASAR TEORI

A. Tinjauan Pustaka

Imam Fathurrahman (2022) dalam bentuk jurnal dengan judul Sistem Informasi Geografis Pemetaan Lokasi Stunting Di Desa Gereneng Timur Berbasis Web. Sudah Dihasilkan Rancang Bangun Sistem Informasi Geografis Untuk Pemetaan Lokasi Stunting Berbasis Web Responsive Dengan Google Map API.

I Wayan Widi Karsana (2021) dalam bentuk jurnal dengan judul Sistem Informasi Geografis Pemetaan Lokasi Puskesmas Menggunakan Google Maps Api Di Kabupaten Badung Berbasis Web. Sudah Dihasilkan Rancang Bangun Sistem Informasi Geografis Untuk Pemetaan Lokasi Puskesmas Berbasis Web Responsive Dengan Google Map API.

Nur Halimah (2020) dalam bentuk jurnal dengan judul Proyeksi dan Pemetaan Wilayah Sebaran Balita Stunting Di Kota Makassar Berbasis Sistem Informasi Geografi (SIG). Sudah Dihasilkan Rancang Bangun Sistem Informasi Geografis Untuk Pemetaan Faktor-Faktor Yang Mempengaruhi Angka Kematian Ibu (Aki) Dan Angka Kematian Bayi (Akb) Berbasis Web Responsive Dengan Google Map API.

Muhammad Ali Hasymi (2021) dalam bentuk jurnal dengan judul Sistem Informasi Geografis Pemetaan Warga Kurang Mampu Di Kelurahan Karang Besuki Menggunakan Metode K-Means Clustering. Penelitian Ini Merancang Sebuah Aplikasi Sistem Informasi Geografis Yang Menampilkan Informasi Dari Pemetaan Warga Kurang MampuDi Kelurahan Karang Besuki Berbasis Web.

Neilcy Tjahya Mooniarsih (2020) dalam bentuk jurnal dengan judul Prototipe Sistem Pemantauan Status Gizi Balita Berbasis Sistem Informasi Geografis. Sistem Informasi Geografis Dapat Membantu Pemerintah Untuk Pemantauan Status Gizi Balita. Pada saat ini penulisan dalam Skripsi dengan judul Sistem Pemetaan Stunting Di Kabupaten Jayapura Berbasis Website Menggunakan Metode K-Means. Dengan adanya sistem pemetaan stunting ini diharapkan dapat membantu Dinas Kesehatan Kabupaten Jayapura dalam melakukan evaluasi penyebab stunting di beberapa wilayah-wilayah sehingga Dinas dapat melakukan penanganan stunting.

B. Dasar Teori

1. Sistem

Elisabet Yunaeti Anggraeni dan Rita Irviani dalam buku "Pengantar Sistem Informasi" (2017:11) menyatakan bahwa sistem adalah sekelompok unsur yang erat hubungannya satu dengan yang lain, yang berfungsi bersama- sama untuk mencapai tujuan tertentu.

2. Informasi

Elisabet Yunaeti Anggraeni dan Rita Irviani dalam buku "Pengantar Sistem Informasi" (2017:12) menyatakan bahwa informasi merupakan data yang telah diklasifikasikan atau diolah atau diinterpretasi untuk digunakan dalam proses pengambilan keputusan.

3. Sistem Informasi

Elisabet Yunaeti Anggraeni dan Rita Irviani dalam buku "Pengantar Sistem Informasi" (2017:12) menyatakan bahwa sistem informasi adalah suatu sistem dalam suatu organisasi yang mempertemukan kebutuhan pengolahan transaksi harian yang mendukung fungsi operasi organisasi yang bersifat manajerial dengan kegiatan strategi dari suatu organisasi untuk dapat menyediakan kepada pihak luar tertentu dengan diperlukan untukpengambilan keputusan.

4. Website

Tonni Limbong dan Sriadhi dalam buku "Pemograman Dasar" (2021:4) menyatakan bahwa website merupakan fasilitas hypertext untuk menampilkan data berupa teks, gambar, suara, animasi, dan data multimedia lainnya.

5. Clustering

Menurut Sabrina Aulia Rahmah dalam jurnal "Klasterisasi Pola Penjualan Pestisida Menggunakan Metode K-Means Clustering (Studi Kasus Di Toko Juandatani Kecamatan Hutabayu Raja)" (2020:2) Menyatakan Menurut Metisen dan Sari (2015) Clustering atau klasifikasi adalah metode yang digunakan untuk membagi rangkaian data menjadi beberapa group berdasarkan kesamaan-kesamaan yang telah ditentukan sebelumnya. Cluster adalah sekelompok atau sekumpulan objek-objek data yang similar satu sama lain dalam cluster yang sama dan disimilar terhadap objek-objek yang berbeda cluster. Objek akan dikelompokkan ke dalam satu atau lebih cluster sehingga objek-objek yang berada dalam satu cluster akan mempunyai kesamaan yang tinggi antara satu dengan yang lainnya.

6. Algoritma K-Means

Menurut Sabrina Aulia Rahmah dalam jurnal "Klasterisasi Pola Penjualan Pestisida Menggunakan Metode K-Means Clustering (Studi Kasus Di Toko Juandatani Kecamatan Hutabayu Raja)" (2020:2) Menyatakan K-Means merupakan salah satu metode data clustering non hirarki yang berusaha mempartisi data yang ada ke dalam bentuk satu atau lebih cluster atau kelompok sehingga data yang memiliki karakteristik yang sama dikelompokkan ke dalam satu cluster yang sama dan data yang mempunyai karakteristik yang berbeda dikelompokkan ke dalam kelompok yang lainnya.

Adapun langkah-langkah melakukan clustering dengan metode K-Means adalah sebagai berikut :

- 1. Menentukan jumlah cluster k yang akan dibentuk.
- Inisialisasi k pusat cluster dapat dilakukan dengan berbagai cara.
 Namun yang paling sering dilakukan adalah dengan cara random.
 Pusat- pusat cluster diberikan nilai awal dengan angka- angka random.
- 3. Alokasikan semua data/ objek ke cluster terdekat. Kedekatan dua objek ditentukan berdasarkan jarak kedua objek tersebut. Demikian

juga kedekatan suatu data ke cluster tertentu ditentukan jarak antara data dengan pusat cluster. Dalam tahap ini perlu dihitung jarak tiap data ke tiap pusat cluster. Jarak paling antara satu data dengan satu cluster tertentu akan menentukan suatu data masuk dalam cluster mana. Untuk menghiutng jarak semua data ke setiap tiitk pusat cluster dapat menggunakan teori jarak Euclidean yang dirumuskan sebagai berikut:

$$D_{(i,j)} = \sqrt{(X_{1i} - X_{1j})^2 + (X_{2i} - X_{2j})^2 + \dots + (X_{ki} - X_{kj})^2}$$

dimana: D(i, j) = Jarak data ke i ke pusat cluster j

X ki = Data ke i pada atribut data ke k

X kj = Titik pusat ke j pada atribut ke k

- 4. Hitung kembali pusat cluster dengan keanggotaan cluster yang sekarang. Pusat cluster adalah rata-rata dari semua data/ objek dalam cluster tertentu. Jika dikehendaki bisa juga menggunakan median dari cluster tersebut. Jadi rata-rata (mean) bukan satusatunya ukuran yang bisa dipakai.
- 5. Tugaskan lagi setiap objek memakai pusat cluster yang baru. Jika pusat cluster tidak berubah lagi maka proses clustering selesai. Atau, kembali ke langkah nomor 3 sampai pusat cluster tidak berubah lagi.

7. Perangkat Sistem Yang Digunakan

a. Flowchart

Menurut Rizqi Rosaly dan Andy Prasetyo dalam jurnal yang berjudul "Pengertian Flowchart Beserta Fungsi dan Simbol-simbol Flowchart yang Paling Umum Digunakan" (2019) menjelaskan bahwa flowchart atau sering disebut dengan diagram alir merupakan suatu jenis diagram yang merepresentasikan algoritma atau langkahlangkah instruksi yang berurutan dalam sistem.

Tabel 2.2 Simbol-Simbol Dalam Flowchart

No	Simbol	Nama	Fungsi
1	↓ ↑ ←	Flow Direction Symbol/Connecting Line	Berfungsi untuk menghubungkan simbol yang satu dengan yang lainnya, menyatakan arus suatu proses
2		Connector	Digunakan untuk menyatakan sambungan dari proses berikutnya di halaman yang sama
3		Processing	Digunakan untuk menunjukkan pengolahan yang akan dilakukan dalam kompute
4	\Diamond	Decision	Digunakan untuk memilih proses yangakandilakukan berdasarkan kondisi tertentu
5		Office Connector	Digunakan untuk menyatakan sambungan dari proses yang satu ke proses berikutnya di halaman yang berbeda
6		Disk Stored	Digunakan untuk menyatakan masukandan keluaran yang berasal dari disk
7		Punched Card	Digunakan untuk menyatakan masukandan keluaran yang berasal dari card
8		Terminal	Digunakan untuk memulai ataumengakhiri program
9		Input/Output	Digunakan untuk menyatakan input danoutput tanpa melihat jenisnya
10		Document	Digunakan untuk menyatakan masukandan keluaran yang berasal dari dokumen
11		Display	Digunakan untuk menyatakan masukandan keluaran melalui layer monitor

Sumber: Rizqi Rosaly, Andy Prasetyo (2019)

b) MySQL

Menurut Anhar dalam buku yang berjudul Panduan Menguasai PHP dan MySQL Secara Otodidak (2010;45) menjelaskan bahwa MySQL (My Structure Query Language) adalah salah satu DataBase Management System (DBMS) dari sekian banyak DBMS seperti Oracle, MS SQL, Postagre SQL, dan lainnya. MySQL berfungsi untuk mengolah database menggunakanBahasa SQL. MySQL bersifat open source sehingga kitab isa menggunakannya secara gratis. Pemrograman PHP juga sangatmendukung atau support dengan database MySQL. Gambar 2.2 MySQL

Gambar 2.1 MySQL

c) Framework Laravel

Menurut Yuniar Supardi dan Sulaeman dalam buku Semua Bisa Menjadi Programmer Laravel Basic (2019; 1-2) mengatakan bahwa Larafel adlah sebua framework PHP yang dirilis di bawa lisensi MIT dan dibangun dengan konsep MVC (Model View Controller). Laravel merupakan pengembangan website berbasis MVP yang ditulis dalam PHP yang dirancang untuk meningkatkan kualitas perangkat lunak dengan mengurangi biaya pengembangan awal dan biaya pemeliharaan, serta untuk meningkatkan pengelaman bekerja dengan aplikasi yang menyediakan sintaks yang ekspresif, jelas, dan menghemat waktu.

MVC merupakan sebuah pendekatan perangkat lunak yang memisahkan aplikasi logika dari presentasi. MVC memisakan aplikasi berdasarkan komponen-komponen aplikasi, seperti manipulasi data, *controller*, dan *user interface*.

Model mewakili struktur data. Biasanya model berisi fungsi-

fungsi yang membantu seseorang dalam pengelolaan basis data, seperti memasukkan data ke basis data, pembaruan data, dan lainlain.

View merupakan bagian yang mengatur tampilan ke pengguna, bisa dikatakan berupa halaman *web*.

Controller merupakan bagian yang menjembatani *model* dan *view*.

Beberapa fitur yang terdapat di Laravel sebagai berikut:

- 1. Bundles, yaitu sebuah fitur dengan sistem pengemasan modular dan tersedia beragam di apikasi.
- 2. Eloquent ORM merupakan penerapan PHP lanjutan menyediakan *metode internal* dari pola "*active record*" yang mengatasi masalah pada hubungan objek *database*.
- 3. Application Logic merupakan bagian dari aplikasi menggunakan *controller* atau bagian *Route*.
- 4. Revese Routing mendefinisikan relasi atau hubungan antara *Link* dan *Router*.
- Resful Controllers memisakan logika dalam melayani HTTP GET dan POST.
- 6. Class Auto Loading menyediakan *Loading* otomatis untuk *class* PHP.
- 7. View Composer merupakan kode unit logikal yang dapat dieksekusi Ketika *view* sedang *loading*.
- 8. IoC Container memungkinkan objek baru dihasilkan dengan pembalikan *controller*.
- 9. Migration merupakan penyedia sistem control untuk skema *database*.
- 10. Unit Testing banyak tes untuk mendektesi dan mencegah regresi.
- 11. Automatic Pagination, menyederhanakan tugas dari penerapan halaman.

Gambar 2.2 Laravel

d) JavaScript

Menurut Vivian Siahaan, Rismon Hasiholan Sianipar dalam buku "Buku Pintar Javascript" (2020:1) menyatakan javaScript adalah sebuah Bahasa script dinamis yang dapat dipakai untuk membangun interaktifitas pada halaman HTML statis. Ini dilakukan dengan menanamkan blok-blok javaScript di hampir semua tempat pada halaman web anda.

Gambar 2.3 JavaScript

e) Xampp

Menurut Fadhla Binti Junus dalam buku "Dasar Pemrograman Berbasis Web dengan PHP Native-Procedural& MySQL" (2020:22) menyatakan bahwaa XAMPP Huruf X dalam **XAMPP** mengindikasikan bahwa perangkat ini dapat berjalan pada tiga jenis sistem operasi komputer masa kini yaitu Windows, Linux, dan Macintosh. Aplikasi XAMPP menyediakan kemudahan instalasi komponen pengembangan web, di mana di dalam paketannya telah disediakan aplikasi Apache yang berfungsi sebagai web server, MySQL/MariaDB yang bertindak sebagai sistem basis data, serta dua bahasa pemrograman web PHP dan Perl. Di samping itu, XAMPP juga dilengkapi dengan PHPMyAdmin, sebuah alat bantu administrasi basis data dalam format grafis yang memberikan kemudahan untuk mengelola sistem basis data.

Gambar 2.4 XAMPP

BAB III ANALISA DAN PERANCANGAN SISTEM

A. Analisa Sistem Berjalan

Analisa sistem yang berjalan pada sistem pemetaan stunting pada dinas Kesehatan kabupaten Jayapura.

Gambar 3.1 Sistem Berjalan

Keterangan:

- 1. Posyandu memberikan data stunting kepada Puskesmas
- 2. Puskesmas menginput data stunting ke dalam aplikasi e-PPGBM
- Dinas Kesehatan mendownload data stunting dari aplikasi e-PPGBM

B. Perancangan Sistem

1. Sistem Usulan

Sistem yang akan dibuat secara online, agar mempermudah dinas dalam mengetahui wilayah geografis mana yang stunting paling tinggi di Kabupaten Jayapura.

Gambar 3.2 Rancang Sistem

Keterangan:

- 1. Admin dinas mendownload data stunting di website e-PPGBM dalam bentuk file excel
- 2. Admin dinas mengubah isi data stunting sesuai dengan data yang dibutuhkan. Data stunting yang di eksport tersebut di bagi isinya menjadi tiga file dan type filenya excel diubah ke file Csv. Ketiga file csv tersebut adalah tabel stanting, tabel distrik, tabel kelurahan, tabel puskesmas.
- 3. Admin puskesmas input data faktor-faktor stunting pada wilayah puskesmas masing-masing
- 4. Berdasarkan data-data yang di input admin dinas dapat melakukan proses clustering menggunakan rumus k-means

- 5. Admin dinas dapat melihat peta, grafik dan data hasil proses pada website
- 6. Admin puskesmas dapat melihat grafik, peta dan data hasil proses pada website
- 7. Masyarakat dapat melihat grafik, peta dan data hasil proses pada website
- 8. Kepala Dinas dapat melihat laporan puskesmas dan laporan data stunting hasil clustering

2. Flowchart

Berikut merupakan Flowchart yang menunjukan alur (flow) di dalam sistem dan juga mengambarkan proses Input/Output sebagai sistem.

Gambar 3.3 Flowchart

3. Identifikasi Data/Informasi, Arah Aliran dan Terminator

Berikut merupakan identifikasi terhadap data/informasi serta arah aliran dan terminator.

Tabel 3.1 Identifikasi Data/Informasi Arah Aliran dan Terminator

No	Data/Informasi	Arah	Terminator
		Aliran	
1	Data Puskesmas	Ke Sistem	Admin Dinas
2	Data Admin Puskesmas	Ke Sistem	Admin Dinas
3	Data Stanting	Ke Sistem	Admin Dinas
4	Lap. Data Puskesmas	Dari Sistem	Admin Dinas
5	Lap. Data Stunting Hasil Clustering	Dari Sistem	Admin Dinas
6	Data Faktor Stunting	Ke Sistem	Admin Puskesmas
7	Lap. Data Stunting Hasil Clustering	Dari Sistem	Admin Puskesmas
8	Lap. User Puskesmas	Dari Sistem	Kepala Dinas
9	Lap. Data Stunting Hasil Clustering	Dari Sistem	Kepala Dinas
10	Info. Data Stunting Hasil Clustering	Dari Sistem	Masyarakat

4. Diagram Konteks

Diagram yang terdiri dari suatu proses dan menggambarkan ruang lingkup suatu sistem, yang terdiri dari Kepala Dinas, Admin Dinas, Admin Puskesmas dan Masyarakat.

Gambar 3.4 Diagram Konteks

5. Diagram Berjenjang

Berikut ini adalah diagram berjenjang yaitu penjabaran proses apa saja yang akan terjadi pada sebuah sistem yang akan dibangun.

Gambar 3.5 Diagram Berjenjang

6. Diagram Overview Level 0

Berikut ini adalah diagram overview level 0 dari sistem yang akan dibangun.

Gambar 3.6 Diagram Overview Level 0

7. Diagram Overview Level 1 Proses 4

Berikut ini merupakan diagram overview level 1 Proses 4 pada diagram penjabaran proses *Clustering* data lebih diperjelas sehingga memudahkan perancangan sistem yang akan dibangun. Diagram overview level 1 proses 5 dapat dilihat pada Gambaran berikut:

Gambar 3.7 Diagram Overview Level 1 Proses 4

8. Diagram Overview Level 1 Proses 5

Berikut ini merupakan diagram overview level 1 Proses 5 pada diagram penjabaran proses laporan data lebih diperjelas sehingga memudahkan perancangan sistem yang akan dibangun. Diagram overview level 1 proses 5 dapat dilihat pada Gambaran berikut:

Gambar 3.8 Diagram Overview Level 1 Proses 5

9. Tabel Relasi

Tabel Relasi merupakan hubungan suatu tabel dengan tabel lainnya yang berfungsi untuk mengatur suatu database.

- 10. Kodefikasi
- 11. Struktur file
- 12. Desain
- 13. Input

Desain input/output digunakan untuk perancangan tampilan awal dari program yang akan dibuat. Berikut adalah rencana rancangan input/output atau antarmuka yang diusulkan:

a) Form Login

Form login adalah halaman inputan untuk memasukan username dan password.

Gambar 3.4 Desain Form Login

b) Halaman Dashboard

Halaman dashboard adalah tampilan rangkuman data yang relevan dan mudah dipahami dalam sebuah sistem informasi.

Gambar 3.5 Desain Tampilan Dashboard

c) Halaman Data Stunting

Pada halaman ini admin dinas melakukan import data dan melihat data stunting yang diimport ke dalam sistem, untuk di clustering.

Gambar 3.6 Desain Data Import

d) Halaman Puskesmas

Halaman ini admin dinas mengelola dan melakukan inputan data puskesmas ke dalam sistem.

Gambar 3.7 Desain Puskesmas

e) Halaman User

Halaman ini Dimana admin dinas dapat menginput data diri admin puskesmas dan dapat melihat jumlah admin puskesmas.

Gambar 3.8 Desain form User

f) Halaman Detail Puskesmas

ini menampilkan data puskesmas dan admin puskesmas yang telah di input sebelumnya.

Gambar 3.9 Desain Detail Puskesmas

g) Halaman Faktor

Pada halaman ini admin puskesmas menginput factor-faktor yang mempengarui balita yang kekurangan gizi.

Gambar 3.10 Desain Hasil Clustering

14. Desain Output

a. Halaman Data Cluster

Pada halaman ini menampilakan semua data yang telah di input dan data yang telah di clustering menggunakan metode k-means.

Gambar 3.11 Desain Hasil Clustering

b. Halaman Laporan

Halaman untuk menampilkan dan mencetak data Stunting.

Gambar 3.12 Desain Hasil Clustering

Hasil cetak laporan toko berupa ukuran kertas A4.

Gambar 3.13 Desain Hasil Clustering

c. Halaman Home

Halaman home atau utama merupakan halaman yang pertama kali muncul ketika mengunjungi website.

Gambar 3.14 Desain Tampilan Home

d. Halaman Peta Stunting

Pada Halaman ini kita dapat melihat peta stunting berdasarkan wilayah yang ada di kabupaten Jayapura. Tingkat stunting di tentukan oleh data hasil clastering

Gambar 3.15 Desain Tampilan Peta

e. Halaman Detail Stunting

Pada halaman ini kita dapat melihat detail stunting yang ada di masing-masing kecamatan.

Gambar 3.16 Desain Detail Stunting

f. Halaman Kontak

Halaman ini adalah tempat Dimana Masyarakat dapat bertanya dan menyampaikan keluhan dan saran kepada bidang gizi.

Gambar 3.17 Desain Kontak

C. Studi Kasus

Studi Kasus ini menggunakan salah satu metode dalam *data mining* yaitu metode *K-Means Clustering*. Pelaksanaan metode ini memiliki beberapa tahapan, yaitu:

1. Pengumpulan Data

Pengambilan data yang dibutuhkan, dilakukan dengan melampirkan surat izin penelitian kepada pihak terkait Dinas Kesehatan Kabupaten Jayapura.

2. Pre-processing data

Pada tahap ini, data yang sudah diperoleh selanjutnya dipilih dan dipisahkan agar mendapatkan data yang dibutuhkan. Beberapa proses dalam tahap ini adalah:

- a) mengurangi atribut, dimensi, atau sejumlah data yang tidak dibutuhkan (*data reduction*),
- b) memperbaiki data yang tidak rapi atau tidak sesuai dengan ketentuan (data cleaning),
- c) mengubah data nominal atau data selain angka ke dalam nilai angka dengan proses pengkodean (data transformation).

Tabel 3.1 Tranforsmasi data

Distrik	JB	SP
Kaureh	81	0
Airu	91	14
Yapsi	290	0
Kemtuk	204	6
K Gresik	175	11
G Selatan	70	2
Nimborang	190	0
Namblong	89	0
Nimbokrang	500	8
U Guay	122	6
Demta	188	1
Yokari	144	4
Depapre	199	1
Ravenirara	91	1
S Barat	287	3

Waibhu	579	29
Sentani	2320	87
Embungfauw	117	3
S Timur	410	7

Sumber: Dinas Kesehatan Kabupaten Jayapura

3. Proses clustering

Data yang sudah melalui kedua tahapan di atas selanjutnya diolahmenggunakan algoritma *K-Means*. Proses ini dilakukan menggunakan alat bantu *software microsoft excel*. Data atribut jumlah balita, sangat pendek, dan pendek, dari variabel data tersebut terhadap tiga klaster yang terbentuk.

4. Hasil K-Means Clustering

a) Centroid pada iterasi ke Satu

Centroid ada adalah titik pusat rata-rata data yang nantinya digunakan untuk clastering data pada iterasi pertama.

Tabel 3.2 Centroid iterasi satu

Centroid	JB	SP	P
C1	91	1	19
C2	204	6	18
C3	410	7	43

b) Clustering Iterasi Ke Satu

Data pada tabel 3.3 ini adalah data hasil clustering pertama yang dilakukan, Perhitungan jarak ini menggunakan rumus jarak *euclidean distance*

Tabel 3.3 Iterasi data satu

Distrik	JB	SP	P	C1	C2	С3	JARAK TERDEKAT	CLUSTER
Kaureh	81	0	3	18,89444363	124,0564388	331,4966063	18,89444363	1
Airu	91	14	19	13	113,2872455	319,9781243	13	1
G Selatan	70	2	5	25,25866188	134,6885296	342,1534743	25,25866188	1
Namblong	89	0	7	12,20655562	115,6805947	323,0882232	12,20655562	1
U Guay	122	6	6	33,98529094	82,87339742	290,3687311	33,98529094	1
Yokari	144	4	14	53,31978995	60,16643583	267,5929745	53,31978995	1
Ravenirara	91	1	19	0	113,1149857	319,9578097	0	1
Embungfauw	117	3	15	26,38181192	87,10338685	294,362022	26,38181192	1
Yapsi	290	0	16	199,025124	86,23224455	123,199026	86,23224455	2
Kemtuk	204	6	18	113,1149857	0	207,513855	0	2
K Gresik	175	11	19	84,59314393	29,44486373	236,2562168	29,44486373	2
Nimborang	190	0	0	100,8117057	23,57965225	224,2721561	23,57965225	2
Demta	188	1	4	98,15294188	21,84032967	225,4794891	21,84032967	2
Depapre	199	1	28	108,3743512	12,24744871	211,6175796	12,24744871	2
S Barat	287	3	7	196,3771881	83,77947243	128,2224629	83,77947243	2
Nimbokrang	500	8	51	410,3096392	297,8405614	90,36038955	90,36038955	3
Waibhu	579	29	51	489,8489563	377,1511633	170,6135985	170,6135985	3

Sentani	2320	87	261	2243,747089	2131,446926	1924,064448	1924,064448	3	
S Timur	410	7	43	319,9578097	207,513855	0	0	3	

c) Centroid pada iterasi Ke Dua

Centroid pada tabel 3.4 adalah titik pusat rata-rata data yang nantinya digunakan untuk clastering data pada iterasi kedua.

Tabel 3.4 centroid dua

Centroid	JB	SP	P
C1	100,625	3,75	11
C2	219	3,142857143	13,14285714
C3	952,25	32,75	101,5

d) Hasil Clustering Iterasi Ke Dua

Data pada tabel 3.5 ini adalah data hasil clustering pertama yang dilakukan, Perhitungan jarak ini menggunakan rumus jarak *euclidean distance*. Karena masih ada data yang berpidah cluster atau perubahan nilai centroid, maka akan lanjut proses iterasi berikutnya

Tabel.3.5 Iterasi dua

Distrik	JH	IB	SP	P	C1	C2	С3	JARAK TERDEKAT	CLUSTER
---------	----	----	----	---	----	----	----	-------------------	---------

Kaureh	81	0	3	21,52215	138,4079	871,8705	21,52215428	1
Airu	91	14	19	16,17724	128,5931	861,6636	16,17724096	1
G Selatan	70	2	5	31,25625	149,2267	882,7999	31,25624938	1
Namblong	89	0	7	12,85314	130,183	863,8994	12,85313678	1
U Guay	122	6	6	22,06701	97,30459	830,7025	22,06701441	1
Yokari	144	4	14	43,47934	75,0098	808,8823	43,47934136	1
Ravenirara	91	1	19	12,81418	128,1519	862,0444	12,81417672	1
Embungfauw	117	3	15	16,87315	102,017	835,9142	16,87314805	1
Yapsi	290	0	16	189,4781	71,12693	663,2523	71,12693453	2
Kemtuk	204	6	18	103,6362	16,02358	748,9443	16,02357956	2
K Gresik	175	11	19	75,15453	45,07816	777,7864	45,07816341	2
Nimborang	190	0	0	90,12743	31,99394	762,9532	31,99394075	2
Nimbokrang	500	8	51	401,3956	283,5802	455,789	283,5802446	2
Demta	188	1	4	87,69808	32,3911	764,9197	32,39110485	2
Depapre	199	1	28	99,87093	25,00653	754,4386	25,00652976	2
S Barat	287	3	7	186,4194	68,27705	665,9517	68,27704667	2
Waibhu	579	29	51	480,708	362,9074	376,7368	362,9073644	2
S Timur	410	7	43	311,0425	193,358	544,5614	193,3580268	2
Sentani	2320	87	261	2234,962	2117,231	1393,486	1393,48632	3

e) Centroid pada iterasi Ke Tiga

Centroid ada adalah titik pusat rata-rata data yang nantinya digunakan untuk clastering data pada iterasi tiga.

Tabel 3.6 centroid tiga

Centroid	JB	SP	P
C1	100,625	3,75	11
C2	302,2	6,6	23,7
C3	2320	87	261

f) Hasil Clustering Iterasi Ke Tiga

Data pada tabel 3.7 ini adalah data hasil clustering pertama yang dilakukan, Perhitungan jarak ini menggunakan rumus jarak *euclidean distance*. Karena masih ada data yang berpidah cluster atau perubahan nilai centroid, maka akan lanjut proses iterasi berikutnya

Tabel 3.7 Iterasi tiga

							JARAK	
Distrik	JB	SP	P	C1	C2	C3	TERDEKAT	CLUSTER
Kaureh	81	0	3	21,52215	222,2645	2255,494	21,52215428	1
Airu	91	14	19	16,17724	211,3819	2243,286	16,17724096	1
K Gresik	175	11	19	75,15453	127,3628	2159,946	75,15452831	1
G Selatan	70	2	5	31,25625	232,9972	2266,111	31,25624938	1
Nimborang	190	0	0	90,12743	114,8655	2147,694	90,12742715	1
Namblong	89	0	7	12,85314	213,9549	2247,097	12,85313678	1
U Guay	122	6	6	22,06701	181,0682	2214,224	22,06701441	1

Demta	188	1	4	87,69808	116,0219	2149,155	87,69807937	1
Yokari	144	4	14	43,47934	158,5184	2191,546	43,47934136	1
Depapre	199	1	28	99,87093	103,4412	2135,492	99,87093233	1
Ravenirara	91	1	19	12,81418	211,3265	2243,747	12,81417672	1
Embungfauw	117	3	15	16,87315	185,4392	2218,283	16,87314805	1
Yapsi	290	0	16	189,4781	15,86474	2046,581	15,86474078	2
Kemtuk	204	6	18	103,6362	98,36712	2131,447	98,36711849	2
Nimbokrang	500	8	51	401,3956	199,68	1833,778	199,679969	2
S Barat	287	3	7	186,4194	22,86679	2050,527	22,86678814	2
Waibhu	579	29	51	480,708	279,0435	1754,578	279,0435271	2
S Timur	410	7	43	311,0425	109,5148	1924,064	109,5147935	2
Sentani	2320	87	261	2234,962	2033,296	0	0	3

g) Centroid pada iterasi Ke Empat

Centroid ada adalah titik pusat rata-rata data yang nantinya digunakan untuk clastering data pada iterasi empat.

Tabel 3.8 Centroid iterasi empat

Centroid	JB	SP	P
C1	129,75	3,583333	11,58333
C2	378,3333	8,833333	31

C3	2320	87	261
C3	2320	07	201

h) Hasil Clustering Iterasi Ke Empat

Data pada tabel 3.9 ini adalah data hasil clustering pertama yang dilakukan, Perhitungan jarak ini menggunakan rumus jarak *euclidean distance*. Karena masih ada data yang berpidah cluster atau perubahan nilai centroid, maka akan lanjut proses iterasi berikutnya

Tabel 3.9 Iterasi Empat

							JARAK	
Distrik	JB	SP	P	C1	C2	C3	TERDEKAT	CLUSTER
Kaureh	81	0	3	49,62939	298,7794	2255,494	49,62939037	1
Airu	91	14	19	40,80535	287,6302	2243,286	40,80534755	1
Kemtuk	204	6	18	74,56592	174,8403	2131,447	74,56591975	1
K Gresik	175	11	19	46,44972	203,6986	2159,946	46,44971893	1
G Selatan	70	2	5	60,13243	309,5031	2266,111	60,13243486	1
Nimborang	190	0	0	61,45792	191,0719	2147,694	61,45792373	1
Namblong	89	0	7	41,16321	290,4614	2247,097	41,16320836	1
U Guay	122	6	6	9,852735	257,5651	2214,224	9,852735097	1
Demta	188	1	4	58,79833	192,3984	2149,155	58,79832528	1
Yokari	144	4	14	14,45947	234,9989	2191,546	14,45947402	1
Depapre	199	1	28	71,21617	179,5294	2135,492	71,21617131	1
Ravenirara	91	1	19	39,53787	287,6905	2243,747	39,53786863	1
Embungfauw	117	3	15	13,21274	261,8876	2218,283	13,21273586	1

Yapsi	290	0	16	160,3509	90,03225	2046,581	90,03224731	2
Nimbokrang	500	8	51	372,3684	123,3024	1833,778	123,302361	2
S Barat	287	3	7	157,3179	94,61398	2050,527	94,61398182	2
Waibhu	579	29	51	451,6915	202,6667	1754,578	202,6667352	2
S Timur	410	7	43	282,0261	33,9137	1924,064	33,91369766	2
Sentani	2320	87	261	2205,983	1956,803	0	0	3

i) Centroid pada iterasi KeLima

Centroid ada adalah titik pusat rata-rata data yang nantinya digunakan untuk clastering data pada iterasi lima.

Tabel 3.10 Centroid Lima

Centroid	JB	SP	P
C1	135,4615	3,769231	12,07692
C2	413,2	9,4	33,6
C3	2320	87	261

j) Hasil Clustering Iterasi Ke Lima

Data pada tabel 3.11 ini adalah data hasil clustering pertama yang dilakukan, Perhitungan jarak ini menggunakan rumus jarak *euclidean distance*. Karena masih ada data yang berpidah cluster atau perubahan nilai centroid, maka akan lanjut proses iterasi berikutnya

Tabel 3.11 Iterasi Empat

Distrik	JB	SP	P	C1	C2	С3	JARAK TERDEKAT	CLUSTER
Kaureh	81	0	3	55,34127578	333,7387601	2255,494	55,34127578	1
Airu	91	14	19	46,14570441	322,5634201	2243,286	46,14570441	1
Kemtuk	204	6	18	68,83007977	209,8083888	2131,447	68,83007977	1
K Gresik	175	11	19	40,78606329	238,6523832	2159,946	40,78606329	1
G Selatan	70	2	5	65,86672935	344,4690988	2266,111	65,86672935	1
Nimborang	190	0	0	55,98663196	225,9105133	2147,694	55,98663196	1
Namblong	89	0	7	46,8898369	325,4251988	2247,097	46,8898369	1
U Guay	122	6	6	14,93714642	292,5248024	2214,224	14,93714642	1
Demta	188	1	4	53,22776781	227,2922348	2149,155	53,22776781	1
Yokari	144	4	14	8,755387184	269,9665905	2191,546	8,755387184	1
Depapre	199	1	28	65,56179613	214,4377765	2135,492	65,56179613	1
Ravenirara	91	1	19	45,082436	322,6399851	2243,747	45,082436	1
Embungfauw	117	3	15	18,70733805	296,8524212	2218,283	18,70733805	1
Yapsi	290	0	16	154,6341933	124,8052883	2046,581	124,8052883	2
Nimbokrang	500	8	51	366,6349619	88,53790149	1833,778	88,53790149	2
S Barat	287	3	7	151,6254338	129,1315608	2050,527	129,1315608	2
Waibhu	579	29	51	445,9573573	167,8587501	1754,578	167,8587501	2
S Timur	410	7	43	276,2933974	10,21567423	1924,064	10,21567423	2

Sentani	2320	87	261	2200,249611	1921,878966	0	0	3	I
---------	------	----	-----	-------------	-------------	---	---	---	---

Lampiran 1 Data Balita Stunting di Kabupaten Jayapura

				Jumlah Balita	TB/U			%
No	DISTRIK	PUSKESMAS	Desa/Kelurahan	liukur dan dinput e-PPGBM	Sangat Pendek	Pendek	Jumlah	Stunting
1,00		LEREH	SOSKOTEK	4	0	0	0	0,00
2,00		LEREH	LAPUA	67	0	3	3	4,48
3,00	KALIDELI	LEREH	SEBUM	10	0	0	0	0,00
4,00	KAUREH	LEREH	UMBRON	0	0	0	0	0,00
5,00		LEREH	YADAUW	0	0	0	0	0,00
		DIST	RIK KAUREH	81	0	3	3	3,70
06:00		AIRU	HULU ATAS	42	6	8	14	33,33
07:00		AIRU	AURINA	0	0	0	0	0,00
08:00	AIRU	AIRU	MUARA NAWA	15	3	3	6	40,00
09:00	AIRU	PAGAI	Pagai	12	3	5	8	66,67
10:00		PAGAI	KAMIKARU	6	2	1	3	50,00
11:00		PAGAI	NAIRA	16	2	5	7	43,75
		DISTRIK A	AIRU	91	16	22	38	41,76
12:00		TAJA/YAPSI	TABBEYAN	39	0	0	0	0,00
13:00	YAPSI	TAJA/YAPSI	ONGAN JAYA	57	0	7	7	12,28
14:00		TAJA/YAPSI	KWARJA	23	0	0	0	0,00

15:00		TAJA/YAPSI	BUMI SAHAJA	31	0	0	0	0,00
16:00		TAJA/YAPSI	NAWA MULYA	31	0	4	4	12,90
17:00		TAJA/YAPSI	NAWA MUKTI	35	0	2	2	5,71
18:00		TAJA/YAPSI	TAKWA BANGUN	29	0	0	0	0,00
19:00		TAJA/YAPSI	PURNAWA JATI	19	0	0	0	0,00
20:00		TAJA/YAPSI	BUNDRU	29	0	3	3	10,34
		DISTRIK Y	APSI	293	0	16	16	5,46
21:00		KEMTUK	KWANSU	15	0	2	2	13,33
22:00		KEMTUK	NAMBON	11	0	3	3	27,27
23:00		KEMTUK	NAMEI	26	0	2	2	7,69
24:00:00		KEMTUK	MAMDA	15	0	1	1	6,67
25:00:00		KEMTUK	MANDAYAWAN	14	1	1	2	14,29
26:00:00		KEMTUK	SAMA	20	0	3	3	15,00
27:00:00	KEMTUK	KEMTUK	SOAIB	28	0	4	4	14,29
28:00:00		KEMTUK	SABEAB KECIL	12	1	0	1	8,33
29:00:00		KEMTUK	SEKORI	17	0	0	0	0,00
30:00:00		KEMTUK	SKOAIM	0	0	0	0	0,00
31:00:00		KEMTUK	AIB	8	3	0	3	37,50
32:00:00		KEMTUK	BENGGUIN PROGO	20	0	1	1	5,00
33:00:00		KEMTUK	AIMBE	18	1	1	2	11,11
		DISTRIK KE	MTUK	204	6	18	24	11,76
34:00:00	EMELLY ODESI	SAWOY	NEMBUGRESI	10	1	2	3	30,00
35:00:00	EMTUK GRESI	SAWOY	IBUB	25	0	2	2	8,00
36:00:00]	SAWOY	HATIB	2	0	1	1	50,00

37:00:00		SAWOY	BRING	0	0	0	0	0,00
88:00:00]	SAWOY	PUPEHABU	6	0	0	0	0,00
39:00:00		SAWOY	DAMOI KATI	25	1	2	3	12,00
10:00:00		SAWOY	DEMETIM	11	0	1	1	9,09
11:00:00		SAWOY	BRASO	24	2	3	5	20,83
12:00:00		SAWOY	HYANSIP	13	0	0	0	0,00
13:00:00		SAWOY	JAGRANG	28	4	5	9	32,14
14:00:00		SAWOY	SWENTAB	9	0	1	1	11,11
15:00:00		SAWOY	YANIM	22	3	2	5	22,73
		DISTRIK KEMT	UK GRESI	175	11	19	30	17,14
6:00:00	GRESI	SADUYAP	KLAISU	41	2	5	7	17,07
17:00:00	SELATAN	SADUYAP	BANGAI	13	0	0	0	0,00
18:00:00		SADUYAP	IWON	16	0	0	0	0,00
		DISTRIK GRESI	SELATAN	70	2	5	7	10,00
19:00:00		GENYEM	YENGGU	20	0	0	0	0,00
50:00:00]	GENYEM	OYENGSI	17	0	0	0	0,00
1:00:00]	GENYEM	SINGGRIWAY	15	0	0	0	0,00
52:00:00	NIMBODAN	GENYEM	TABRI	26	0	0	0	0,00
53:00:00	NIMBORAN	GENYEM	GEMEBS	20	0	0	0	0,00
54:00:00]	GENYEM	SINGGRI	20	0	0	0	0,00
55:00:00]	GENYEM	MEYU	15	0	0	0	0,00
6:00:00	7	GENYEM	BENYOM	12	0	0	0	0,00
57:00:00		GENYEM	KUIPONS	2	0	0	0	0,00

8:00:00		GENYEM	IMSAR	14	0	0	0	0,00
59:00:00		GENYEM	KAITEMUNG	18	0	0	0	0,00
50:00:00		GENYEM	KUWASE	9	0	0	0	0,00
51:00:00		GENYEM	POBAIM	0	0	0	0	0,00
52:00:00		GENYEM	YENGGU BARU	2	0	0	0	0,00
		DISTRIK NIM	BORAN	190	0	0	0	0,00
53:00:00		NAMBLONG	SANGGAI	7	0	1	1	14,29
54:00:00		NAMBLONG	SARMAI ATAS	13	0	1	1	7,69
55:00:00		NAMBLONG	SARMAI BAWAH	15	0	1	1	6,67
6:00:00	NAMBI ONG	NAMBLONG	YAKASIB	8	0	0	0	0,00
57:00:00	NAMBLONG	NAMBLONG	BESUM	15	0	1	1	6,67
58:00:00			KARYA BUMI	0	0	0	0	0,00
59:00:00		NAMBLONG	IMESTUM	9	0	0	0	0,00
70:00:00		NAMBLONG	SUMBE	15	0	1	1	6,67
71:00:00		NAMBLONG	HANGGAI HAMONG	7	0	2	2	28,57
		DISTRIK NAM	IBLONG	89	0	7	7	7,87
72:00:00		NIMBOKRANG	BENYOM JAYA I	153	4	17	21	13,73
73:00:00		NIMBOKRANG	BENYOM JAYA II	51	0	5	5	9,80
74:00:00	HMDOKDANC	NIMBOKRANG	NEMBUKRANG	1	0	0	0	0,00
75:00:00	IIMBOKRANG	NIMBOKRANG	NIMBOKRANG SARI	36	1	4	5	13,89
76:00:00		NIMBOKRANG	BERAB	46	1	5	6	13,04
77:00:00		NIMBOKRANG	WAHAB	30	0	2	2	6,67
78:00:00		NIMBOKRANG	HAMONGGRANG	30	0	3	3	10,00

79:00:00		NIMBOKRANG	BUNYOM	25	0	1	1	4,00
30:00:00		NIMBOKRANG	RHEPANG MUAIB	39	0	1	1	2,56
31:00:00		NIMBOKRANG	NIMBOKRANG	89	2	9	11	12,36
		DISTRIK NIMB	OKRANG	500	8	47	55	11,00
32:00:00			GURYAD	0	0	0	0	0,00
33:00:00		UNURUM GUAY	SANTOSA	37	0	0	0	0,00
34:00:00	UNURUM GUAY		BENEIK	0	0	0	0	0,00
35:00:00	GUAI	UNURUM GUAY	GARUSA	53	0	6	6	11,32
36:00:00		UNURUM GUAY	SAWESUMA	15	0	0	0	0,00
37:00:00			NANDALZI	0	0	0	0	0,00
		DISTRIK UNUR	UM GUAY	105	0	6	6	5,71
88:00:00		DEMTA	MUAIF	17	0	0	0	0,00
39:00:00		DEMTA	AMBORA	28	1	1	2	7,14
00:00:00		DEMTA	YAUGAPSA	19	0	0	0	0,00
1:00:00	DEMTA	DEMTA	DEMTA KOTA	62	0	0	0	0,00
2:00:00		DEMTA	MURIS BESAR	2	0	2	2	100,00
93:00:00		DEMTA	MURIS KECIL	15	0	1	1	6,67
94:00:00		DEMTA	TARFIA	45	0	0	0	0,00
		DISTRIK DI	EMTA	188	1	4	5	2,66
5:00:00		YOKARI	MARUWAY	45	0	7	7	15,56
6:00:00		YOKARI	MEUKISI	36	1	2	3	8,33
7:00:00	YOKARI	YOKARI	ENDOKISI	40	1	4	5	12,50
8:00:00		YOKARI	SENAMAI	11	2	2	4	36,36
9:00:00]	YOKARI	BUSERYO	12	0	1	1	8,33

		DISTRIK Y	OKARI	144	4	16	20	13,89
00:00:00		DEPAPRE	KENDATE	26	0	4	4	15,38
01:00:00		DEPAPRE	ENTIYEBO/TABLANUSU	21	0	0	0	0,00
02:00:00		DEPAPRE	WAIYA	19	0	3	3	15,79
03:00:00	DEPAPRE	DEPAPRE	TABLASUPA	48	0	8	8	16,67
04:00:00	DEPAPRE	DEPAPRE	YEPASE	19	0	1	1	5,26
05:00:00		DEPAPRE	WAMBENA	18	1	1	2	11,11
06:00:00		DEPAPRE	YEWENA	19	0	4	4	21,05
07:00:00		DEPAPRE	DORMENA	29	0	7	7	24,14
		DISTRIK DE	EPAPRE .	199	1	28	29	14,57
08:00:00		REVENIRARA	YONGSU SAPARI	11	0	1	1	9,09
09:00:00	RAVENIRARA	REVENIRARA	YONGSU DOSOYO	31	0	5	5	16,13
10:00:00		REVENIRARA	ORMUWARI	35	1	10	11	31,43
11:00:00		REVENIRARA	NECHEIBE (NEHIBA / NACHA TAWA)	14	0	4	4	28,57
		DISTRIK RAV	ENIRARA	91	1	20	21	23,08
12:00:00		DOSAY	SABRON SARI	57	1	3	4	7,02
13:00:00	SENTANI	DOSAY	SABRON YORU	41	0	1	1	2,44
14:00:00	BARAT	DOSAY	DOSAI	42	1	0	1	2,38
15:00:00		DOSAY	WAIBRON	61	0	0	0	0,00
16:00:00		DOSAY	MARIBU	86	1	3	4	4,65
		DISTRIK SENTA	ANI BARAT	287	3	7	10	3,48
17:00:00	WAIBHU	KANDA	DONDAI	31	2	11	13	41,94

18:00:00		KANDA	YAKONDE	1	0	0	0	0,00
19:00:00		KANDA	SOSIRI	33	2	7	9	27,27
20:00:00		WAIBHU	KWADEWARE	12	0	3	3	25,00
21:00:00		WAIBHU	DOYO LAMA	65	4	5	9	13,85
22:00:00		WAIBHU	DOYO BARU	355	15	21	36	10,14
23:00:00		WAIBHU	BAMBAR	82	6	4	10	12,20
		DISTRIK WA	579	29	51	80	13,82	
24:00:00	SENTANI	SENTANI KOTA	SENTANI KOTA	705	12	64	76	10,78
25:00:00		SENTANI KOTA	SEREH	131	5	22	27	20,61
26:00:00		SENTANI KOTA	HINEKOMBE	513	12	67	79	15,40
27:00:00		SENTANI KOTA	YOKE	115	6	28	34	29,57
28:00:00		PUSKESMAS KHOMBA	HOBONG	37	0	2	2	5,41
29:00:00		PUSKESMAS KHOMBA	IFALE / AJAU	98	2	9	11	11,22
30:00:00		PUSKESMAS KHOMBA	DOBONSOLO	499	35	44	79	15,83
31:00:00		PUSKESMAS KHOMBA	YOBEH	82	0	0	0	0,00
32:00:00		PUSKESMAS KHOMBA	IFAR BESAR	63	9	13	22	34,92
33:00:00		PUSKESMAS KHOMBA	YAHIM	77	6	12	18	23,38
		DISTRIK SEI	2320	87	261	348	15,00	
134	EBUNGFAUW	EBUNGFAUW	BABRONGKO	0	0	0	0	0,00
135		EBUNGFAUW	SIMPORO	24	0	3	3	12,50
136		EBUNGFAUW	KHAMAYAKA	27	0	5	5	18,52

137		EBUNGFAUW	PUTALI	20	0	2	2	10,00
138		EBUNGFAUW	ATAMALI	26	2	4	6	23,08
139		EBUNGFAUW	ABAR	20	1	1	2	10,00
		DISTRIK EBUN	117	3	15	18	15,38	
140		HARAPAN	PUAI	24	0	3	3	12,50
141	SENTANI TIMUR	HARAPAN	ITAKIWA	39	0	3	3	7,69
142		HARAPAN	ASEI BESAR	29	1	8	9	31,03
143		HARAPAN	ASEI KECIL	54	1	8	9	16,67
144		HARAPAN	NOLOKLA	132	3	18	21	15,91
145		HARAPAN	NENDALI	111	1	2	3	2,70
146		HARAPAN	YOKIWA	21	1	1	2	9,52
	DISTRIK SENTANI TIMUR				7	43	50	12,20
	JUMLAH KABUPATEN JAYAPURA				179	588	767	12,38

Sumber: Dinas Kesehatan Kabupaten Jayapura

Gambar Saat Pengambilan Data Stunting Di Kantor Dinas Kesehatan Kabupaten Jayapura

