Linear Algebra

Version: 1.0. August 8, 2024 Ramasamy Kandasamy

1. Matrices and Gaussian Eliminations

1.1. Geometry of linear equations

Matrix representation: Ax = b

- Row picture: Lines in a (\mathbb{R}^2) or planes (\mathbb{R}^3) .
- Column picture: b is linear combination of the columns of A. ∴
 b is in the column space of A.

Singular case: No solution or infinite solution.

1.2. Gaussian Elimination

- Apply row operations and row exchange to convert the system of linear equations to triangular form.
- Use back substitution to solve the system.

Row operations preserve the null space and rowspace of A, but this normally alters the eigenvalues.

Gaussian elimination in matrix form

- Each row operation on A can be represented as a matrix multiplication on A. If a triangular form U is obtained by three row operations on A, each of them can be represented by matrices, say G, F and E.

 Then, $G \times F \times E \times A = U$.
- The product of G, F and E would be a lower triangular matrix
 (L). The matrix A can be written as PA = LU. L can be found by keeping track of the row operations. P is a permutation matrix.
- *LU* can also be written as *LDU* by splitting *U* to *DU*. *D* is a diagonal matrix containing the pivot elements.

1.3. Matrix multiplication

5 ways to multiply matrices

Given, $A \times B = C$

- Standard.
- Each column of C is a linear combination of columns of A. $\begin{bmatrix} Ab_1 & \cdots & Ab_n \end{bmatrix}$, where b_i s are columns of B.
- Each row of C is a linear combination of rows of B.

$$\begin{bmatrix} a_1 B \\ \vdots \\ a_n B \end{bmatrix}$$
, where a_i s are rows of A .

•
$$\sum_{i=1}^{n} [ca_i] \times [rb_i]$$

Where, ca_i and rb_i are *i*-th column and row of A and B, respectively.

• Multiplying Blocks of matrix. Eg:

$$\begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \times \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix} = \begin{bmatrix} C_1 & C_2 \\ C_3 & C_4 \end{bmatrix}$$

 A_i, B_i and C_1 are blocks of the matrices A, B and C. The blocks are treated as a single entity and multiplied like a normal matrix. Eg: $C_1 = A_1B_1 + A_2B_3$

Last approach would be useful for proving matrix theorems by inductions.

Properties

- Associative: (AB)C = A(BC)
- Distributive: A(B+C) = AB + AC; (B+C)D = BD + CD.
- **NOT** commutative: Usually $EF \neq FE$.
- $AB = 0 \implies A = 0 (or)B = 0$.
- $AC = AD \implies C = D$
- Let A, B, C be $n \times n$ matrices. Then:
- If rank(A) = n and AB = AC, then B = C.
- If rank(A) = n, then $AB = 0 \implies B = 0$. If AB = 0 but $A \neq 0$ and $B \neq 0$, then rank(A) < n and rank(B) < n.

1.4. Inverse and Transpose of a Matrix

If the system of equations is non-singular, then it could be solved by using inverse of A.

- A^{-1} is inverse of $A \Leftrightarrow A^{-1}A = A^{-1}A = I$.
- If A^{-1} exist, then A is invertible or non-singular matrix.

Properties

- A square matrix is singular or not invertible if:
 - Its determinant is 0.
 - Dimension(Column Space) < Matrix dimension. Proof (by contradiction): $\exists x \neq 0, \ni Ax = 0$. Assuming A^{-1} exists $\Rightarrow A^{-1}Ax = A^{-1}0 \Rightarrow x = 0$.
- If A is invertible, then the one and only solution to Ax = b is $x = A^{-1}b$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $\bullet \ (AB)^T = B^T A^T$
- $\bullet \ \, (A^{-1})^T = (A^T)^{-1}$
- For any rectangular matrix R, RR^T and R^TR is symmetric.
- ullet A symmetric matrix could be decomposed to $LDL^T.$

Finding inverse by Gauss-Jordan elimination

Start with augmented matrix. Achieve upper triangular matrix on the left part and then identity matrix by row operations:

$$\boxed{[A|I] \longrightarrow [U|X] \longrightarrow [I|A^{-1}]}$$

2. Vector Spaces

2.1. Vector spaces and subspaces

Vector space Set of vectors with vector addition and scalar multiplication, satisfying the following properties.

- Associativity of vector addition.
- Commutativity of vector addition.
- Identity element of vector addition.
- Inverse elements of vector addition.
- Compatibility of scalar multiplication with field multiplication. i.e., $a(b\mathbf{v}) = ab(\mathbf{v})$
- Identity element of scalar multiplication.
- Distributivity of scalar multiplication w.r.t. vector addition. i.e., $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
- Distributivity of scalar addition w.r.t. vector multiplication. i.e. $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$

If S and P are two vector spaces, $S \cup P$ need not be a vector space, but $S \cap P$ is a vector space.

Subspace $Q \subseteq P$ is a subspace of P, if it satisfies the following property in addition to all the properties of a vector space.

- $\mathbf{a} \in Q$ and $\mathbf{b} \in Q \implies \mathbf{a} + \mathbf{b} \in Q$.
- $\mathbf{a} \in Q \implies c\mathbf{a} \in Q$ for all scalar c.

2.2. Solving Ax = b[Revisited]

Augmented matrix $[A|b] \to \text{Row}$ operation leading to echelon form. **Pivot elements** First non-zero element in a row with a column of zeroes below it.

Rank = number of pivot elements.

Free columns = Columns without pivot elements.

Null space: of a matrix A, is the set of all x that satisfies Ax = 0. **General solution:** $x = x_p + x_n$, where x_n is a vector from the nullspace of A.

The existence and number of solutions depends on the rank of A and that of the augmented matrix [A|b].

2.3. Linear independence, basis and dimension

Linear independence: A set of vectors v_1, v_2, \cdots, v_k are said to be linearly independent iff

 $c_1v_1 + c_2v_2 + \dots + c_kv_k \Rightarrow c_1 = c_2 = \dots = c_k.$

Columns of A are linearly independent iff $N(A) = \{0\}$

Spanning a vector space: $W = \{w_1, w_2, \cdots, w_k\}$ is said to span a vector space V, if for all $v \in V$,, $\exists c_1, c_2, \cdots, c_k \in \mathbb{R}$ such that $v = c_1w_1 + c_2w_2 + \cdots + c_kw_k$

Basis: Basis of a vector space is a set of vectors with the following two properties.

- The vectors in the set are linearly independent.
- They span the vector space.

Dimension of a vector space: Number of basis vectors.

2.4. Four fundamental subspaces

For a matrix A of dimensions $m \times n$ and rank r.

• Column space of A, C(A): Smallest subspace containing the columns of A.

 $C(A) \subseteq \mathbb{R}^m$.

Dimension of C(A) is r.

• Row space of A, R(A): Smallest subspace containing the rows of A.

 $R(A) \subseteq \mathbb{R}^n$.

Dimension of R(A) is r.

• Null space of A, N(A): Set of all x such that Ax = 0. $N(A) \subseteq \mathbb{R}^n$.

Dimension of N(A) is n-r.

• Null space of A^T , $N(A^T)$: Set of all x such that $A^Tx=0$. $N(A^T)\subseteq \mathbb{R}^m$. Dimension of $N(A^T)$ is m-r.

Relationship between the subspaces:

- $C(A) \perp N(A^T)$ and $C(A) \cup N(A^T) = \mathbb{R}^m$.
- $R(A) \perp N(A)$ and $R(A) \cup N(A) = \mathbb{R}^n$.

2.5. Linear Transformation

Linear Transformation: A transformation T that converts a vector u to v (= T(x)), is a linear transformation if it satisfies the following properties.

- T(0) = 0.
- T(u+v) = T(u) + T(v)
- T(au) = aT(u)

Important notes:

- Every matrix multiplication to a vector is a linear transformation.
- Every linear transformation can be represented by a matrix multiplication.
- NOTE: The transformation matrix need not be a square matrix.
- If Ax / T(x) is known for all the basis of the vector space, then it is known for all the vectors in vector space.

${\bf Examples\ of\ linear\ transformation:}$

Scaling, Rotation, Reflection, Projection, Differentiation and Integration.

3. Orthogonality

3.1. Orthogonal vectors and subspaces

Orthogonal vectors: x and y are orthogonal iff $x^Ty = 0$. Length of a vector: $||x|| = x^Tx$. If a set of vectors v_1, v_2, \dots, v_k of non-zero length are mutually perpendicular, then those vectors are linearly independent.

Proof:

Assume they are not linearly independent. \therefore there exist non-zero constants c_1, c_2, \cdots, c_k such that,

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k = 0$$

$$\therefore v_1^T (c_1 v_1 + c_2 v_2 + \dots + c_k v_k) = 0$$

 $\implies c_1 = 0$, a contradiction.

Orthogonal subspaces: Two subspaces V and W are said to be orthogonal if $\forall v \in V$ and $\forall w \in W \ v \perp w$.

Fundamental theorem of linear algebra part-I:

Row space is orthogonal to nullspace (in \mathbb{R}^n) and column space if orthogonal to the left nullspace (in \mathbb{R}^m).

Proof-1:

If x is in N(A), Ax = 0. This implies Product of every row in A to x is 0. Therefore $x \perp$ rowspace of A.

Proof-2:

Let
$$x \in N(A) \Longrightarrow Ax = 0$$
 and,
 $y \in \text{Rowspace}(A) \Longrightarrow \exists z \ni y = A^T z.$
 $y^T x = (A^T z)^T x = z^T Ax = z^T \mathbf{0} = \mathbf{0}. \Longrightarrow x \perp y.$

I think:

If V and W are subspaces of dimensions p and q in \mathbb{R}^n and if p+q>n then, V cannot be orthogonal to W.

Orthogonal complement: Given a subspace V in \mathbb{R}^n , the space of all vectors orthogonal to V is called orthogonal complement of V. It is denoted by V^{\perp} .

Fundamental theorem of linear algebra part-II:

Nullspace is orthogonal complement of row-space in \mathbb{R}^n . Left nullspace is orthogonal complement of column-space in \mathbb{R}^m .

A deeper meaning of matrix multiplication

The matrix multiplication Ax transforms the rowspace component of x (x_r) to column-space of A and the nullspace component of x (x_n) to 0

Here $x = x_r + x_n$.

The real action is between rowspace and column space.

Theorem: From rowspace to columnspace A is invertible. Every b in the column space comes from one exactly one x_r in the rowspace.

3.2. Cosines and Projections onto lines

Cosine The cosine of the angle between any two non-zero vectors is defined as follows:

$$cos\theta = \frac{a^Tb}{\|a\|\|b\|}$$

Law of cosines

$$||b - a||^2 = ||a||^2 + ||b||^2 - 2||a|| ||b|| \cos\theta$$

Schwarz inequality

$$||a^Tb|| \le ||a|| ||b||, \because \cos\theta \le 1$$

Projection onto a line (1D subspace)

p is projection of b on a. p = xa for some x.

$$e = b - p$$
 and $e \perp a$,

$$\therefore a^{T}(b - xa) = 0$$

$$xa^{T}a = a^{T}b$$

$$\implies x = \frac{a^{T}b}{a^{T}a}$$

$$p = a \frac{a^T b}{a^T a}$$

This can be written as,

$$p = \frac{aa^T}{a^Ta}b = Pb$$
, where $P = \frac{aa^T}{a^Ta}$ is the projection matrix of a .

Properties of P

- C(P) = line through a.
- Rank(P) = 1.
- P is symmetric: $P = P^T$
- $P^2 = P$

Projection onto a higher dimension subspace Finding projection of b on A

Let p be the projection of b on subspace spanned by columns of A, then there exists \hat{x} such that $A\hat{x} = p$

then there exists
$$x$$
 such that $Ax = p$
 $b - p \perp A \implies A^T(b - A\hat{x}) = 0$
 $\therefore \hat{x} = (A^TA)^{-1}A^Tb$
 $\therefore p = A(A^TA)^{-1}A^Tb$
Here the projection matrix $P = A(A^TA)^{-1}A^T$
If A is invertible then $P = I$

 $A^T A$ has the same nullspace of A

i.e., $A^T A$ is invertible if columns of A are independent.

Least squares problem Solve: Ax = b

• Normal equations: $A^T A \hat{x} = A^T b$

• Best estimate: $\hat{x} = (A^T A)^{-1} A^T b$

• Projection: $p = A\hat{x} = A(A^TA)^{-1}A^Tb$

• b = p + e

• p is in C(A)

• e is in $N(A^T)$

• If b is in C(A), $p = A(A^TA)^{-1}A^Tb = A(A^TA)^{-1}A^TAx = Ax = b$

• If b is in $N(A^T)$, $p = A(A^TA)^{-1}A^Tb = A(A^TA)^{-1}0 = 0$

• If A is invertible, $p = A(A^T A)^{-1} A^T b = b$

• (I think) $||e||^2 = ||b - p||^2$ is the squared error.

3.3. Orthogonal basis and Gram-Schmidt

Orthogonal basis: A set of bases, q_1, q_2, \dots, q_k , is said to be orthogonal bases, if for all $i \neq j$ $q_i T q_j = 0$.

Orthonormal basis: Orthonormal bases, q_1, q_2, \dots, q_k , satisfies the following property:

$$q_i^T q_j = \begin{cases} 1 & \text{if } i = j. \\ 0 & \text{otherwise} \end{cases}$$

Gram-Schmidt process

• Eg: A case with two bases a and b: a' = a $b' = b - \frac{aa^T}{a^Ta}b, \text{ here, } b' = e \text{ and } b = p + e$

• Eg: Case with three bases a, b and c. a' = a

$$a' = a$$

$$b' = b - \frac{aa^T}{a^Ta}b$$

$$c' = c - \frac{aa^T}{a^Ta}c - \frac{bb^T}{b^Tb}c$$

From c subtract projection of c on a and projection of c on b.

4. Determinants

4.1. Properties of determinants

Three most basic properties of determinants

1. $\det I = 1$.

2. Determinant changes sign when two rows are exchanged.

3. Determinant depend linearly on the first row. Eg:

$$\begin{vmatrix} a+a' & b+b' \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a' & b' \\ c & d \end{vmatrix}$$
$$\begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

Derivative properties of determinants

4. $| cA | = c^n | A |$.

5. If two rows of A are equal, then det A = 0 Follows from rule 2.

 Adding a multiple of one row to another does not alter the value of the matrix.
 Follows from rule 3 and rule 4.

7. If A has a row of 0s, then det A = 0. Follows form rule 4 and rule 5.

8. If A is triangular, $det A = \prod d_i$. Proof: Convert A to an equivalent diagonal determinant by row operation. Now apply rule 3 and finally rule 1.

9. If A is singular, then det A=0. If A is invertible, then $det A\neq 0$. Proof:
If A is singular, elimination leads to zero row, $\therefore det A=0$

If A is singular, elimination leads to zero row, \therefore detA = If A is invertible, elimination leads to non-zero pivots. $detA = \prod \text{pivots} \neq 0$.

10. $det(AB) = det(A) \times det(B)$

Proof: For a diagonal matrix D, det(DB) = det(D)det(B)A can be converted to a diagonal matrix D by row operations. Using the exact same row operation as above AB can be converted to DBFor another proof see book.

 $\begin{aligned} &11. & \det(A^T) = \det(A). \\ & \text{Proof:} \\ & PA = LDU \text{ and } \det(PA) = \det(LDU) \\ & \det(A^TP^T) = \det(U^TD^TL^T) = \det(LDU) = \det(PA) \\ & \det(P^T) = \det(P) \therefore \det(A^T) = \det(A). \end{aligned}$

4.2. Formulae for determinant

Based on LDU decomposition

If A is invertible PA = LDU. $det(A) = \pm det(L)det(D)det(U) = \pm (product of pivots)$

Using linearity of determinants

Eg: 2×2 case.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & 0 \end{vmatrix} + \begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & 0 \end{vmatrix} + \begin{vmatrix} 0 & b \\ 0 & d \end{vmatrix} = ad - bc$$

Expansion in cofactors

The determinant of A is any row i times its cofactors

That is, $det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$ Where $C = (-1)^{i+j} det(M)$

Where, $C_{ij} = (-1)^{i+j} det(M_{ij})$ Proof:

Split the $n \times n$ matrix to sum of $n \times n$ matrices by linearity property of deteterminants. Each of the constituent matrices can be converted to LDU form.

Block matrices

 $\bullet \ \det \begin{bmatrix} A & 0 \\ C & D \end{bmatrix} = \det(A) \det(D) = \det \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$

• If A is invertible $\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det(A)\det(D - CA^{-1}B)$

• If blocks are square matrices of the same size. And AC=CA. $det\begin{bmatrix}A&B\\C&D\end{bmatrix}=det(AD-CB)$

• If blocks are square matrices of same size and if A=D and B=C. Here A and B need not commute. $\det \begin{bmatrix} A & B \\ B & A \end{bmatrix} = \det(A-B)\det(A+B)$

4.3. Application of determinants

Definition 4.1 (Adjugate Matrix):

Transpose of cofactor matrix: $adj(A) = C^T$. NOTE: $|adj(A)| = |A|^{n-1}$.

Computation of A^{-1}

$$A^{-1} = \frac{C^T}{\det(A)} = \frac{adj(A)}{\det(A)}$$

C is cofactor matrix.

Proof:

$$A^{-1} = \frac{C^T}{\det(A)} \implies \det(A)I = AC^T$$

Now the diagonal of AC^T will be det(A). To complete the proof we just need to show that the off-diagonal elements are all 0. Each off-diagonal element is represented as:

 $a_{i1}C_{j1} + a_{i2}C_{j2} + \dots + a_{in}C_{jn}$ where $i \neq j$

This is equal to the determinant of modified A where the j'th row is replaced by a copy of i'th row times ± 1 . This determinant = 0

Cramer's rule; Solution to Ax = b

$$x_j = \frac{\det(B_j)}{\det A}$$

Where, B_j is A with it's j'th column replaced by b.

Proof:
$$x = A^{-1}b = \frac{1}{\det(A)}C^{T}b$$

Volume of a box

det(A) represents the volume of a box(higher dimensional parellelogram) whose edges are represented by the row vectors of A (or the column vectors of A, I think).

5. Eigen values and eigen vectors

5.1. Introduction

Solve: $Ax = \lambda x$

This give: $(A - \lambda I)x = 0$

For a non-zero solution x must lie in the nullspace of $A - \lambda I$.

Therefore $det(A - \lambda I) = 0$

This equation gives rise to a n dimensional polynomial equation in

 λ (Characteristic equation). Solving this gives eigen values.

Eigen vectors corresponding to each Eigen value form a vector space.

Algebraic multiplicity (M_{λ}) : Order of the eigenvalue in the characteristic equation.

Geometric multiplicity (m_{λ}) : Dimension of the eigenspace corresponding to the eigenvalue λ .

 $m_{\lambda} \leq M_{\lambda}$

Theorem:

- $\sum \lambda_i = tr(A)$
- $\prod \lambda_i = det(A)$
- For a triangular matrix the Eigen values are along the diagonal.
- If $Ax = \lambda x$, then $A^k x = \lambda^k x$.

5.2. Diagonalization

If a $n \times n$ matrix A has n independent eigen vectors then, it can be written as follows:

$$A = S\Lambda S^{-1}$$

where, each column of S is one of the eigenvectors of $A(e_i)$

$$S = \begin{bmatrix} \vdots & \vdots & \dots & \vdots \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \dots & \vdots \end{bmatrix}$$

and $\bar{\Lambda}$ is a diagonal matrix with corresponding eigen values in the diagonal.

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Proof:

$$AS = \begin{bmatrix} \lambda_1 x_1 & \cdots & \lambda_n x_n \end{bmatrix} = S\Lambda$$

$$\implies A = S\Lambda S^{-1}$$

Corollary: Powers of A $A^n = S\Lambda^n S^{-1}$

${\bf Caley\text{-}Hamilton's\ theorem.}$

Theorem 5.1:

A satisfies it's own characteristic equation.

Proof.

Substitute
$$A = S\Lambda S^{-1}$$
 in $(A - \lambda_1 I)(A - \lambda_2 I) \cdots (A - \lambda_n I)$. \square

5.3. Difference equations and powers A^k

Difference equations

$$u_{k+1} = Au_k$$

In some sense difference equations are analogous to differential equations.

Examples

Fibonacci numbers

$$\begin{split} F_{k+2} &= F_{k+1} + F_k \\ \text{Let, } u_k &= \begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix} \text{then, difference representation of Fibonacci sequence would be:} \end{split}$$

$$u_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix} = Au_k$$

The solution to this difference equation, $u_{k+1} = Au_k$ is

$$u_k = A^k u_0$$

If A can be diagonalized then $u_k = S\Lambda^k S^{-1}u_0$.

Markov matrices

Markov matrix is similar to the above examples along with the following two properties:

- 1. Each column of Markov matrix adds to 1.
- 2. The numbers outside and inside can never become negative.

 $u_{k+1} = Au_k$ and the solution is $u_k = A^k u_0$

If A can be diagonalized, then $u_k = S\Lambda^k S^{-1}u_0$. Steady state (u_∞) : $Au_\infty = u_\infty$.

Properties of a Markov matrix A:

- 1. $\lambda_1 = 1$ is an eigenvalue of A.
- 2. Its eigenvector x_1 is nonnegative and $Ax_1 = x_1$.
- 3. The other eigenvalues satisfy $|\lambda_1| < 1$.
- 4. If A or any power of a A has all positive entries, these other $|\lambda_i|$ are below 1.
- 5. The solution $A^k u_0$ approaches a multiple of x_1 which is the steady state u_{∞} .

Stability of $u_{k+1} = Au_k$

The difference equation $u_{k+1} = Au_k$ is:

- stable if all eigenvalues satisfy $|\lambda_i| < 1$.
- neutrally stable if some $|\lambda_i| = 1$ and all other $|\lambda_i| < 1$.
- unstable if at least one $|\lambda_i| > 1$.

5.4. Differential equations and e^{At}

System of differential equations

Matrices are useful to solve a system of differential equations. Eg:

$$\frac{du_1}{dt} = a_{11}u_1 + a_{12}u_2 + \dots + a_{1n}u_n$$

$$\frac{du_2}{dt} = a_{21}u_1 + a_{22}u_2 + \dots + a_{2n}u_n$$

$$\vdots$$

$$\frac{du_n}{dt} = a_{n1}u_1 + a_{n2}u_2 + \dots + a_{nn}u_n$$

This system in matrix notation is $\frac{du}{dt} = Au$, where

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

Solution:

$$u(t) = e^{At}u(0)$$

Is the above solution valid if A is not diagonalizable.

Proof: If A is diagonalizable then let $v = S^{-1}u$, where S is the eigenvector matrix of A. Using eigenvector matrix the system of linear equations is decoupled.

$$\therefore S \frac{dv}{dt} = ASv$$

$$\implies \frac{dv}{dt} = S^{-1}ASv = \Lambda v$$

$$v(t) = e^{\Lambda t}v(0)$$

$$u(t) = Se^{\Lambda t}S^{-1}u(0) = e^{At}u(0)$$

where e^{At} is the exponential of the matrix A.

Matrix exponential

Matrix exponential is defined as follows:

$$e^{At} = I + At + \frac{(At)^2}{2} + \dots + \frac{(At)^n}{dt} + \dots$$

This series always converges and has the following properties:

- $\bullet (e^{As})(e^{At}) = e^{A(s+t)}$
- $\bullet (e^{At})(e^{-At}) = I$
- $\bullet \ \frac{d}{dt}(e^{At}) = Ae^{At}$
- If A can be diagonalized, $A = S\Lambda S^{-1}$, then du/dt = Au has the solution $u(t) = e^{At}u(0)$.
- e^{At} is never singular. $Proof\ 1$: If λ is an eigenvalue of A, then $e^{\lambda t}$ is the corresponding eigenvalue of e^{At} , which is never 0. $Proof\ 2$: $det(e^{At}) = e^{\lambda_1 t} e^{\lambda_2 t} \cdots e^{\lambda_n t} = e^{trace(At)} \neq 0$.

Stability of differential equations

Behaviour of u(t) as $t \to \infty$: The differential equation du/dt = Au is:

- stable: and $e^{At} \to 0$ whenever, all $Re(\lambda_i) < 0$.
- neutrally stable: when all $Re(\lambda_i) < 0$ and $Re(\lambda_1) = 0$.
- unstable: and e^{At} is unbounded if any eigenvalue has $Re(\lambda_i) > 0$.

These results are true even if A is not diagonalizable.

5.5. Complex matrices

Length of a vector: $||x|| = |x_1| + |x_2| + \cdots + |x_n|$

Hermitian (and symmetric) matrices

Conjugate transpose: $\overline{A}^T = A^H$ (Read as A Hermitian) has entries $(A^H)_{ij} = \overline{A_{ji}}$

Hermitian matrices: A is Hermitian iff $A^H = A$.

Theorem: If $A = A^H$ then $\forall x, x^H Ax$ is real.

Proof: $(x^H A x)^H = x^H A^H x = x^H A x$.

Theorem: If $A = A^H$ then all the eignevalues are real. Proof: $x^H A x = \lambda x^H x$. LHS is real and $x^H x$ is real, therefore λ is real.

Theorem: Eigenvectors of Hermitian matrices that come from two different eigenvalues are orthogonal.

Proof:

Let, $Ax = \lambda x$ and $Ay = \mu y$ $\lambda x^H y = (Ax)^H y = x^H Ay = x^H \mu y \implies x^H y = 0, \because \lambda \neq \mu$ Orthonormal matrices: $QQ^T = I$.

Theorem (Spectral theorem): A real symmetric matrix can be factored into $A = Q\Lambda Q^T$. Its orthonormal eigenvectors are in the columns of Q.

Unitary matrices

$$U^H U = I$$

Multiplication by U has no effect on inner products, angles and lengths.

Property 1:

- \bullet $(Ux)^T(Uy) = x^TU^TUy = x^Ty$
- $||Ux||^2 = x^H U^H Ux = x^H x = ||x||^2$

Property 2:

For every eigenvalue(λ) of U, $|\lambda| = 1$

Property 3:

Eigen vectors corresponding different eigenvalues are orthogonal.

Let, $Ux = \lambda x$ and $Uy = \mu y$. $x^H y = (Ux)^H (Uy) = (\lambda x)^H (\mu y) = \overline{\lambda} \mu x^H y$ By property-2 $\overline{\lambda}\lambda = 1, \therefore \overline{\lambda}\mu \neq 1$ $\Longrightarrow x^H y = 0.$

If A is Hermitian then K = iA is skew-Hermitian.

Theorem: Eigenvalues of K are purely imaginary.

Fourier matrix

THE FOLLOWING IS INCOMPLETE

$$F_n = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^2} \end{bmatrix}$$

Similarity transformation

Definition: A and B are similar if $\exists M \ni B = M^{-1}AM$. Going from one to another is known as similarity transformations. In the case where M = S, $M^{-1}AM$ becomes the diagonal matrix Λ . This is the best case scenario. But other M's are also useful. Usually M is chosen such that, $M^{-1}AM$ is easier to work with than A.

Theorem: Suppose $B = M^{-1}AM$, then A and B have the same

Proof:
$$Ax = \lambda x \implies B(M^{-1}x) = \lambda(M^{-1}x)$$

 $M^{-1}x$ is the eigenvector of B corresponding to λ .

Change of Basis = Similarity transformation

Every linear transformation is represented by a matrix. Similar matrices represent the same transformation T with respect to different

$$\begin{array}{lll} [T]_{\mathrm{V \ to \ V}} &= [I]_{\mathrm{v \ to \ V}} & [T]_{\mathrm{V \ to \ v}} & [I]_{\mathrm{V \ to \ v}} \\ B &= M^{-1} & A & M \end{array}$$

Triangular forms with unitary M

Shcur's lemma:

There is a unitary matrix M = U such that $U^{-1}AU = T$ is triangular. The eigenvalues of A appear along the diagonal of this similar matrix

Diagonalizing Hermitian matrices

Theorem:

If $A = A^H$ This triangular form T, is a diagonal matrix. Proof: $(U^{-1}AU)^H = U^H A^H (U^{-1})^H = U^{-1}AU \implies T = T^H$.

Spectral theorem:

Every real symmetric matrix can be diagonalized by an orthogonal matrix Q. Every Hermitian matrix can be diagonalized by a unitary matrix U:

$$\begin{array}{lll} \text{(real)} & Q^{-1}AQ = \Lambda & \text{or} & A = Q\Lambda Q^T \\ \text{(complex)} & U^{-1}AU = \Lambda & \text{or} & A = U\Lambda U^H \\ \end{array}$$

Normal matrices

The matrix N is normal if it commutes with N^H : $NN^H = N^H N$.

A triangular matrix T that is normal must be diagonal Proof:

Tip: Use induction and multiplication by blocks.

For details see: https://math.stackexchange.com/a/2538528/633346

Theorem:

 $T = U^{-1}AU$ is diagonal if and only if A is a normal matrix. Proof:

$$TT^H = U^{-1}AUU^HA^HU = U^{-1}AA^HU = U^{-1}A^HAU = U^HA^HUU^{-1}AU = T^HT \implies T$$
 is diagonal.

Jordan form

Theorem: If A has s independednt eigenvectors, it is similar to a matrix with s blocks.

Jordan form
$$J = M^{-1}AM = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_s \end{bmatrix}$$

Each Jordan block is a triangular matrix that has only a single eigenvalue (λ_i) along the diagonal corresponding to only one eigenvector. For each missing eigenvector there will be a 1 just above the diagonal.

$$\text{Jordan block } J_i = \begin{bmatrix} \lambda_i & 1 & & \\ & \lambda_i & \cdot & \\ & & \cdot & 1 \\ & & & \lambda_i \end{bmatrix}$$

Positive definite matrices

Definition:

A $n \times n$ symmetric matrix A is positive-definite if $\forall x \neq 0 \in \mathbb{R}^n$ $x^T Ax > 0.$

Test for positive definiteness Each of the following test is a necessary and sufficient condition for a matrix to be positive definite.

- 1. $x^T Ax > 0$ for all nonzero vectors x. Definition.
- 2. All eigenvalues of A satisfy $\lambda_i > 0$. Proof: $x^T A x = \lambda x^T x = \lambda ||x||^2$ Converse: Every $\forall y > 0, \in \mathbb{R}^n, y = a_1 x_1 + \dots + a_n x_n$ Ay = $a_1\lambda_1 + \dots + a_n\lambda_1$ $y^T Ay = a_1^2\lambda_1 + \dots + a_n^2\lambda_n > 0$
- 3. All the upper left submatrices A_k have positive determinants. Clue: $x^T A x = \begin{bmatrix} x_k^T & 0 \end{bmatrix} \begin{bmatrix} A_k & * \\ * & * \end{bmatrix} \begin{bmatrix} x_k \\ 0 \end{bmatrix} = x_k^T A_k x_k$
- 4. All the pivots (without row exchanges) satisfy $d_k > 0$. Proof: Incomplete

Theorem: Another test for positive definiteness

The symmetric matrix A is positive definite if and only if: $\exists R \text{ with independent columns } \ni A = R^T R.$

Positive semidefinite Matrices

The tests for semidefinite matrices will relax to allow zeros. Definition:

 $\forall x \ x^T Ax > 0$

Test for positive semi definiteness

- $\forall x \neq 0 \ x^T A x > 0$.
- All eigenvalues satisfy $\lambda_i > 0$.
- No principal submatrices of A have negative determinants.
- No pivots are negative.
- $\exists R$, possibly with dependent columns such that $A = R^T R$.

Singular value decomposition

Any $m \times n$ matrix A can be decomposed in to:

$$A = U\Sigma V^T$$

 Σ : Diagonal matrix, $m \times n$. This diagonal matrix has eignevalues form $A^T A$, not from A.

The positive entries $\sigma_1, \sigma_2, \cdots, \sigma_s$, form the first r diagonal elements of Σ . These elements are called **singular values**. The remainder of entries in Σ is 0.

U: Orthogonal matrix, $m \times m$.

The columns of U are the eigenvectors of A^TA . V: Orthogonal

matrix, $n \times n$.

The columns of V are the eigenvectors of AA^{T} .

For positive definite matrices, Σ is Λ and $U\Sigma V^T$ is identical to $Q\Lambda Q^T$.

Remark 2

U and V give orthonormal bases for all four fundamental subspaces.

first columns of U: **column space** of Alast columns of U: **left nullspace** of Afirst columns of V: row space of Alast columns of V: **nullspace** of An-r

Remark 3

$$Av_j = \sigma_j u_j \text{ or } AV = U\Sigma$$

Eigenvectors of AA^T and A^TA goes into columns of U and V. $AA^T = (U\Sigma V^T)(V\Sigma^TU^T) = U\Sigma \Sigma^TU^T$, and, $A^TA = V\Sigma^T\Sigma V^T$.

7. Matrix Factorizations

LU factorizability

$$A = LU$$

Requirements:

An invertible matrix A is LU factorizable, if the determinant of all its principal minors are > 0. Or if A has rank k, A is LU factorizable, if all its first k principal minors are > 0.

Procedure:

Do Gaussian elimination without row exchanges.

LDU:

Pivots in U are divided out into D to have 1s in the diagonal of U.

PLU factorization

$$PA = LU$$

Always exists.

Procedure:

Do Gaussian elimination.

If A is invertible, then L are U are invertible. P is always invertible and $P^{-1} = P^T$.