Day 3

1. Search in sorted rotated array[Medium]

https://interviewprep.appliedroots.com/lecture/2/interview-preparation-course/1006/search-in-rotated-sorted-array/18/module-5-problem-solving

2. Sort colors [Medium] [Microsoft, Amazon, Facebook, Adobe]

https://interviewprep.appliedroots.com/lecture/2/interview-preparation-course/1007/sort-colors/18/module-5-problem-solving

3. Inversion in an array[Hard] [Flipkart, Amazon, Microsoft, Adobe, BankBazaar, Myntra]

https://interviewprep.appliedroots.com/lecture/2/interview-preparation-course/1012/inversions-in-an-array/18/module-5-problem-solving

4. Increasing Triplet sequence [Medium] [Google, Amazon, Bloomberg]

https://interviewprep.appliedroots.com/lecture/2/interview-preparation-course/1019/increasing-triplet-subsequence/18/module-5-problem-solving

5. Partition equal subset sum [Easy]

https://interviewprep.appliedroots.com/lecture/2/interview-preparation-course/1031/partition-equal-subset-sum/18/module-5-problem-solving

Practice Problems

1. There is an integer array nums sorted in ascending order (with distinct values).

Prior to being passed to your function, nums is rotated at an unknown pivot index k (0 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[k-1], nums[k-1], nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2].

Given the array nums after the rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums.

You must write an algorithm with O(log n) runtime complexity.

[Medium] [Amazon, Facebook, LinkedIn, Microsoft, Apple, Oracle, Expedia, Adobe]

Practice Link: https://leetcode.com/problems/search-in-rotated-sorted-array/

2. You are given an integer array nums of length n which represents a permutation of all the integers in the range [0, n - 1].

The number of global inversions is the number of the different pairs (i, j) where:

- 0 <= i < j < n
- nums[i] > nums[j]

The number of local inversions is the number of indices i where:

- 0 <= i < n 1
- nums[i] > nums[i + 1]

Return true if the number of global inversions is equal to the number of local inversions. [Medium] [Amazon, Bloomberg, Yahoo]

Practice link: https://leetcode.com/problems/global-and-local-inversions/

3. Given a non-empty array nums containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal. [Medium] [Amazon, Facebook, Microsoft, Expedia]

Practice link: https://leetcode.com/problems/partition-equal-subset-sum/