

planetmath.org

Math for the people, by the people.

continuous image of a compact set is compact

 ${\bf Canonical\ name} \quad {\bf Continuous Image Of A Compact Set Is Compact}$

Date of creation 2013-03-22 15:53:14 Last modified on 2013-03-22 15:53:14 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 16

Author Wkbj79 (1863)

Entry type Theorem Classification msc 54D30

 $\label{eq:Related topic} Related\ topic \qquad Compactness Is Preserved Under A Continuous Map$

Theorem 1. The continuous image of a compact set is also compact.

Proof. Let X and Y be topological spaces, $f: X \to Y$ be continuous, A be a compact subset of X, I be an indexing set, and $\{V_{\alpha}\}_{{\alpha}\in I}$ be an open cover of

$$f(A)$$
. Thus, $f(A) \subseteq \bigcup_{\alpha \in I} V_{\alpha}$. Therefore, $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\bigcup_{\alpha \in I} V_{\alpha}) = \bigcup_{\alpha \in I} f^{-1}(V_{\alpha})$.

Since f is continuous, each $f^{-1}(V_{\alpha})$ is an open subset of X. Since $A \subseteq \bigcup_{\alpha \in I} f^{-1}(V_{\alpha})$ and A is compact, there exists $n \in \mathbb{N}$ with $A \subseteq \bigcup_{j=1}^{n} f^{-1}(V_{\alpha_{j}})$ for

some
$$\alpha_1, \ldots, \alpha_n \in I$$
. Hence, $f(A) \subseteq f\left(\bigcup_{j=1}^n f^{-1}(V_{\alpha_j})\right) = f\left(f^{-1}\left(\bigcup_{j=1}^n V_{\alpha_j}\right)\right) \subseteq f\left(\int_{-\infty}^{\infty} f^{-1}(V_{\alpha_j})\right) = f\left(\int_{-\infty}^{\infty} f^{-1}(V_{\alpha_j})\right) =$

$$\bigcup_{j=1}^{n} V_{\alpha_{j}}.$$
 It follows that $f(A)$ is compact.