딥러닝 - Part1

2020-12-07 이동환

목차

Part1 - 개념

- 1. 인공지능
 - 1. 약 인공지능과 강 인공지능
- 2. 머신러닝
 - 1. 순서도
 - 2. 지도 학습 분류와 회귀
 - 1. 선형 회귀
 - 2. 경사 하강법
 - 1. 고급 경사 하강법(일차미분 최적화)
 - 2. 이차미분 최적화
 - 3. 다중 선형 회귀
 - 4. 로지스틱 회귀

1. 딥러닝

- 1. 딥러닝 프레임워크(with GPU)
- 2. 퍼셉트론
- 3. 퍼셉트론의 한계(XOR 문제)
- 4. 오차 역전파
- 5. 기울기 소실 문제
 - 1. Activation Function
 - 2. Batch Normalization
- 6. CNN(Convolutional Neural Network)
 - 1. Convolution 연산
 - 2. CNN 구조 Convolution, Pooling, FC layer
 - 3. 유명한 CNN Model ImageNet Challenge

인공지능

약 인공지능과 강 인공지능

약 인공지능 - 알파고

강 인공지능 - 터미네이터

머신러닝

지도학습

- 훈련 데이터와 출력 사이의 연관성을 매핑해 학습하고, 학습하지 않은 데이터에 적용
- 분류, 회귀는 지도 학습 알고리즘의 두 가지 주요 유형

비지도학습

- 입력과 출력 레이블을 연관시키지 않고, 입력 데이터에 내재된 잠재적 패턴, 관계 등 학습
- 군집화, 차원 축소 등

강화학습

• 중심 주체인 에이전트를 일정 기간 환경과 상호 작용하면서 보상/벌칙에 기초해 전략/정책을 반복적으로 배우고 바꾸며, 보상을 극대화하도록 훈련함

순서도

(참고) 모델 평가 방법

$$(Precision) = \frac{TP}{TP + FP}$$

$$(Accuracy) = \frac{TP + TN}{TP + FN + FP + TN}$$

$$Fall-out(FPR) = \frac{FP}{TN + FP}$$

$$(F1-score) = 2 \times \frac{1}{\frac{1}{Precision} + \frac{1}{Recall}} = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

코로나 검사자 10명 중

Accuracy: [(1+6)/(1+2+1+6)] - "검사 키트"가 전체 사람 중 양성은 양성, 음성은 음성으로 분류했다.

-> 실제 걸리지 않았는데, 걸렸다고 판단 / 걸렸는데 걸리지 않았다고 판단하는 경우

Recall: [6/(6+1)] - 실제로 양성(6명), 음성(1명)인 사람 중 검사 키트가 양성(6명)을 찾아냈다.

Precision : [6/(6+2)] - 검사 키트가 8명을 확진자로 판정했고, 그 중 실제 양성은 6명이다.

F1-score : 특정 데이터만 잘 맞추는 경우, precision과 recall의 조화평균을 지표로 사용

ROC 곡선 가로 : FPR 세로 : Recall

세로 : 실제 걸렸는데, 걸렸다고 판단

가로: 실제 걸리지 않았는데, 걸렸다고 판단

지도학습 - 분류

개 vs 고양이 이진분류문제

MNIST 다중분류문제

알고리즘: 로지스틱 회귀 분석, 서포트 벡터 머신(SVM), 신경망, 랜덤 포레스트, k-NN, 의사결정 트리 등

지도학습 - 회귀

알고리즘 단순 선형 회귀 - 하나의 종속변수(출력)과 하나의 독립변수(입력) 사이의 관계 분석 다중 선형 회귀 - 하나의 종속변수(출력)과 여러 독립변수(입력) 사이의 관계 분석

선형 회귀

경사 하강법(오차 최소화)

방향은 올바르지만, 수렴 속도와 learning rate를 결정하기 어렵다.

고급 경사 하강법(1차 미분)

고급 경사 하강법	설명
확률적 경사 하강법 (SGD)	랜덤하게 추출한 일부 데이터만 사용
모멘텀 (Momentum)	운동량을 적용하여 정확도를 개선시킨다. (사발 가장자리에서 구슬을 굴렸을 때, local minima(구덩이)에 빠지면 구슬이 조금 올라갔다가 계속 내려감)
네스테로프 모멘텀 (NAG)	모멘텀이 이동시킬 방향으로 이동하여, 기울기를 계산한 다음 이동한다. (구슬이 사발 밑바닥으로 접근 하면, 구슬에 브레이크를 걸어줌)
아다그라 <u>드</u> (Adagrad)	변수가 자주 변하면 학습률 낮춰주고, 변수가 자주 변하지 않으면 학습률 높여 속도를 조절한다.
알엠에스프롭 (RMSProp)	아다그라드의 속도 조절 민감도를 보완한다.
아담 (Adam)	모멘텀과 알엠에스프롭 방법을 합친 방법

이차미분을 통한 최적화

다중 선형 회귀

- 실제로 공부한 시간 외 다른 요인(과외) 또한 성적 에 영향을 미칠 수 있다.
- 하나의 종속 변수(출력)에 독립 변수(입력)이 2개 인 다중 선형 회귀 문제
- 선형 회귀 문제와 같이 해결 가능

로지스틱 회귀

딥러닝

모형의 복잡도를 주어진 훈련 자료의 양이나 계산 능력에 맞게 손쉽게 조정 가능 - 신경망 구조에 뉴런들을 더 추가하거나 제거

자료 수집 기술이 발전하며 '빅데이터 '시래 도래 - 데이터 쉽게 수집하고 저장 가능

강력한 GPU의 발전

- 계산 속도 증가, 실행 시간 감소를 통한 효율적인 실험과 검사 가능

CNN: 데이터의 특징을 추출하여 특징들의 패턴 파악(영상) RNN: 반복적이고 순차적인 데이터 학습에 특화(음성, 텍스트)

딥러닝 프레임워크(with GPU)

텐서플로(TensorFlow)

- 가장 많이 쓰이는 프레임워크, Static Graph(모델을 구축하고, 같은 그래프를 학습 시 반복적 사용)
- Define-and-Run

케라스(Keras)

• 최소한의 코드로 효율적인 딥러닝 모델을 구축할 수 있는 고수준 API 제공

파이토치(PyTorch)

- 텐서플로보다 성능이 좋음, 코드 간결함, 많은 연구 진행 중, Dynamic Graph(반복마다 새로운 graph 구성 가능)
- Define-by-Run

하드웨어(GPU)의 발전 : 딥러닝 계산은 주로 행렬 연산인데, GPU를 통해 병렬로 빠르게 처리 가능

퍼셉트론

(참고) 편향(bias) 분산(variance) tradeoff

빨간 점 : True, 검은 점 : False

Bias : (검은 점이)빨간 점과 떨어진 정도

Variance : 검은 점이 퍼져 있는 정도

[Underfitting]

모델이 매우 단순하며, 큰 편차는 없으나(Low Variance), Bias는 높다.

[Overfitting]

모델이 매우 복잡하며, 편차가 크지만(High Variance), Bias는 낮다.

퍼셉트론의 한계(XOR 문제)

가중합 – activation function

Y_out 값에서 거꾸로 거슬러 올라가며 가중 지 W(2)와 W(1)이 더 이상 업데이트 되지 않을 때 까지 반복하여 계산하는 것

- → 1. 순전파 방향으로 진행
- 2. 역전파 방향으로 진행
 - 3. 가중치 업데이트

입력층 -> 은닉층

$$Z_{1}^{(3)} = W_{1,1}^{(2)} \alpha_{1}^{(2)} + W_{1,2}^{(2)} \alpha_{2}^{(2)}$$

$$Z_{2}^{(3)} = W_{2,1}^{(2)} \alpha_{1}^{(2)} + W_{2,2}^{(2)} \alpha_{2}^{(2)}$$

$$A_{1}^{(3)} = \phi(Z_{1}^{(3)}) \qquad \qquad \int_{1}^{(3)} \frac{1}{2} (\alpha_{1}^{(3)} - \gamma_{1})^{2}$$

$$A_{2}^{(2)} = \phi(Z_{2}^{(3)}) \qquad \qquad \int_{1}^{(2)} \frac{1}{2} (\alpha_{2}^{(4)} - \gamma_{2})^{2}$$

$$Z_{1}^{(2)} = \phi(Z_{2}^{(3)}) \qquad \qquad \int_{1}^{(2)} \frac{1}{2} (\alpha_{2}^{(4)} - \gamma_{2})^{2}$$

$$Z_{1}^{(2)} = \phi(Z_{2}^{(3)}) \qquad \qquad \int_{1}^{(2)} \frac{1}{2} (\alpha_{2}^{(4)} - \gamma_{2})^{2}$$

$$Z_{1}^{(2)} = \phi(Z_{2}^{(3)}) \qquad \qquad \int_{1}^{(2)} \frac{1}{2} (\alpha_{2}^{(4)} - \gamma_{2})^{2}$$

$$Z_{1}^{(2)} = \psi(Z_{1}^{(3)}) \qquad \qquad \int_{1}^{(2)} \frac{1}{2} (\alpha_{2}^{(4)} - \gamma_{2})^{2}$$

$$Z_{1}^{(2)} = \psi(Z_{1}^{(3)}) \qquad \qquad \int_{1}^{(2)} \frac{1}{2} (\alpha_{2}^{(4)} - \gamma_{2})^{2}$$

$$Z_{1}^{(3)} = \psi(Z_{1}^{(3)}) \qquad \qquad \int_{1}^{(2)} \frac{1}{2} (\alpha_{2}^{(4)} - \gamma_{2})^{2}$$

$$Z_{1}^{(3)} = \psi(Z_{1}^{(3)}) \qquad \qquad \int_{1}^{(2)} \frac{1}{2} (\alpha_{2}^{(4)} - \gamma_{2})^{2}$$

$$Z_{1}^{(3)} = \psi(Z_{1}^{(3)}) \qquad \qquad \int_{1}^{(2)} \frac{1}{2} (\alpha_{2}^{(4)} - \gamma_{2})^{2}$$

$$Z_{1}^{(3)} = \psi(Z_{1}^{(3)}) \qquad \qquad \int_{1}^{(2)} \frac{1}{2} (\alpha_{2}^{(4)} - \gamma_{2})^{2}$$

은닉층 -> 출력층

$$\frac{\partial J_{1}}{\partial a_{1}^{(3)}} = \frac{1}{2} \frac{\partial}{\partial a_{1}^{(3)}} \left(a_{1}^{(3)} - y_{1} \right)^{2} = \left($$

은닉층 <- 출력층

입력층 <- 은닉층

기울기 소실 문제

Activation Function1

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid : 미분 시 기울기 소실 문제 발생

tanh

tanh(x)

tanh : 미분 시 기울기 소실 문제 발생 Sigmoid 범위를 -1에서 1로 확장

ReLU

 $\max(0, x)$

ReLU: 0보다 큰 구간에서 기울기 유지(2010) dead neuron: 학습 속도가 빠르거나, 가중치가 0으로 설정된 경우 해당 뉴런은 어떤 자료가 입력되어도 갱신되지 않는다.

Activation Function2

ELU, SeLU: ReLU의 dead neuron문제 해결 알파 값이 1이 아닌 경우 SeLU라고 부름(2016)

swish : 깊은 레이어 학습 시 ReLU보다 높은 성능 Mobilenet 학습 시 사용(2017)

$$f(x) = x * \tanh(softplus(x)) \quad softplus(x) = \ln(1 + e^x)$$

mish : swish와 거의 비슷하다. (2019)

Batch Normalization

목표: Training 과정 자체를 전체적으로 안정화 하여 학습 속도 가속 불안정화의 원인: Internal Covariance Shift

- Network의 각 층이나 Activation 마다 input의 distribution이 달라지는 현상
- 이 현상을 막기 위해 distribution을 평균 0, 표준편차 1인 input으로 normalize 시키는 방법 적용 시해결 가능(whitening)
- 하지만, covariance matrix의 계산과 inverse의 계산이 필요하기 때문에 계산량이 많고, whitening을 하면 일부 parameter 들의 영향이 무시됨.

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}
```

- 1. 가정 : 각각의 feature들이 이미 uncorrelated 되어있다. feature 각각에 대해서만 scalar 형태로 mean과 variance를 구하고 각각 normalize 한다.
- 2. 단순히 mean과 variance를 0, 1로 고정시키는 것은 오히려 Activation function의 nonlinearity를 없앨 수 있다. 또한, feature가 uncorrelated 되어있다는 가정에 의해 네트워크가 표현할 수 있는 것이 제한될 수 있다. 이 점들을 보완하기 위해, normalize된 값들에 scale factor (gamma)와 shift factor (beta)를 더해주고 이 변수들을 back-prop 과정에서 같이 train 시켜준다.

CNN(Convolutional Neural Network)

추천 구조: Convolution -> (Batch Normalization) -> Activation -> (Dropout) -> Pooling

Convolution 연산

합성곱층(Convolution layer)

(참고) parameter 계산법

```
# SIZEPOIET METE.

# param = input_Channel X Kernel_size(MXM) X filters + filters

Off layer of filters.

(Regard input t channel)
```

동일한 성능을 가진 모델이라면, 파라미터가 적을수록 좋다. – "SENet"(42page)

- More efficient distributed training : 병렬 학습 시 큰 효율
- Less overhead when exporting newmodels to clients : 실시간 서버 소통 시 과부하 감소
- Feasible FPGA and embedded deployment : 모델을 제한된 메모리에 직접 배치 가능

풀링층(Pooling layer)

^{*} output_size = 1 + (Input_size - pool_size + padding*2)/strides (padding 있는 경우)

FC(Fully Connected layer)

(참고) Global Average Pooling

max_pooling2d_1 (MaxPooling2	(None, 7, 7, (128)	0
global_average_pooling2d (Gl	(None, 128)	0
dense (Dense)	(None, 500)	64500
activation_3 (Activation)	(None, 500)	0
dense_1 (Dense)	(None, 10)	5010
activation_4 (Activation)	(None, 10)	0

Total params: 326,534 Trainable params: 326,534 Non-trainable params: 0

차원 변경: (H,W,D) -> (1,1,D)

LeNet-5(1998)

LeNet - 5 Architecture:

초창기 합성곱 신경망(입력: 32x32x1)

- 주로 문자 인식에 사용
- 얕은 합성곱 신경망
- 입력 : gray scale image

```
[LeNet-5 (1998)]
    [ Conv2D (filters= 6, kernel_Size = (5,5), padding="valid", octivation = tanh',
                  input_shape= (32,32, 1))
     => Output: (+(32-5)/1 => (28,28), # forum: (1x 5x5x6)+6 = 156
   [ Avange Pooling 20 (Strides = 2) => output: (14,14)
   3 Conv20 (filters=16, Kernel_size=(5,5), Paddy="Valid", activation="tanh")
      => output: 1+(14-5)/1=)(10,10) #parong: (6x5x5x/6)+16=2,416
  A Average Pooling 20 (strides=2) =) output: (5,5)
  5 Flatten () => Output's 5x5x/6= 200
Dense (120, activation='tanh') => paramo 400x120+120=48,120.

Dense (84, activation='tanh') => # paramo 120x84+84 = 10,164.

Dense (10, activation='Softmax') => # paramo 84x10+10 = 850.
```

AlexNet(2012)

3GB GTX 580 GPU 한 대로 훈련하려 했으나, 메모리 부족으로 두 대의 GPU로 분할함

- Local Response Normalization : ReLU 출력은 양수일 때 입력에 비례한다. 매우 높은 한 픽셀이다른 픽셀에 미치는 영향을 방지하기 위해 사용
- 입력 : (227x227x3)

```
1th: Convolutional Layer: 96 kernels of size 11 \times 11 \times 3
(stride: 4, pad: 0)
55 \times 55 \times 96 feature maps 3x11x11x96+96 = 34,944
Then 3×3 Overlapping Max Pooling (stride: 2)
27×27×96 feature maps
Then Local Response Normalization
27×27×96 feature maps
2nd: Convolutional Layer: 256 kernels of size 5×5×48
(stride: 1, pad: 2)
27 \times 27 \times 256 feature maps 96*5*5*256+256 = 614,656
Then 3×3 Overlapping Max Pooling (stride: 2)
13 \times 13 \times 256 feature maps
Then Local Response Normalization
13 \times 13 \times 256 feature maps
3rd: Convolutional Layer: 384 kernels of size 3\times3\times256
(stride: 1, pad: 1)
                          256*3*3*384+384 = 885,120
13 \times 13 \times 384 feature maps
4th: Convolutional Layer: 384 kernels of size 3×3×192
(3tride: 1, pad: 1) 384*3*3*384+384 = 1,327,488
5th: Convolutional Layer: 256 kernels of size 3\times3\times192
(stride: 1, pad: 1) 384*3*3*256+256 = 884,992
13 \times 13 \times 256 feature maps
Then 3\times3 Overlapping Max Pooling (stride: 2) 6\times6\times256
6th: Fully Connected (Dense) Layer of
4096 neurons
                 (6x6x256)x4096+4096 = 37,752,832
7th: Fully Connected (Dense) Layer of
4096 neurons
                 4096x4096+4096 = 16.781.312
8th: Fully Connected (Dense) Layer of
Output: 1000 neurons (since there are 1000 classes)
Softmax is used for calculating (x) = 4.097.000
```

ZFNet(2013)

AlexNet과 매우 비슷함, 정확도 개선 입력: (227x227x3)

-	AlexNet	ZFNet	
볼륨:	224×224×3	224×224×3	
연산:	합성곱 11×11(보폭 4)	합성곱 7×7(보폭 2), 최댓값 품링	
볼륨:	55×55×96	55×55×96	
연산:	합성곱 5×5, MP	합성곱 5×5(보폭 2), 최댓값 풀링	
볼륨:	27×27×256	13×13×256	
연산	합성곱 3×3, MP	합성곱 3×3	
볼륨.	13×13×384	13×13×512	
연산.	합성곱 3×3	합성곱 3×3	
볼륨:	13×13×384	13×13×1024	
연산:	합성곱 3×3	합성곱 3×3	
볼륨:	13×13×256	13×13×512	
연산:	최댓값 품링, 완전 연결	최댓값 풀링, 완전 연결	
PC6:	4096	4096	
연산:	완전 연결	완전 연결	
FC7:	4096	4096	
견산:	완전 연결	완전 연결	
C8:	1000	1000	
면산:	소프트맥스	소프트맨스	

VGGNet(2014)

3x3 filter를 여러 개 쌓는 구조

- 3x3 2개 = 5x5 1개, 3x3 3개 = 7x7 1개
- 파라미터 수 감소, 학습 속도 향상
- Non-linearity 증가로 인해 유용한 feature 추출 가능

#weight : (no bias)

```
INPUT: [224x224x3]
                        memory: 224*224*3=150K
                                                weights: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M
                                               weights: (3+3+3)+64 = 1,728
CONV3-64: [224x224x64]
                      memory: 224*224*64=3.2M | weights: (3*3*64)*64 = 36.864
memory: 112*112*128=1.6M weights: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128]
                       memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456
CONV3-128: [112x112x128]
POOL2: [56x56x128] memory: 56*56*128=400K @eights: 0
                      memory: 56+56+256=800K
                                               weights: (3*3*128)*256 = 294,912
                      memory: 56+56+256=800K
                                               weights: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256]
                                               weights: (3*3*256)*256 = 589.824
                      memory: 56+56+256=800K
POOL2: [28x28x256] memory: 28*28*256=200K (weights: 0
CONV3-512: [28x28x512]
                      memory: 28+28+512=400K weights: (3+3+256)+512 = 1,179,648
                      memory: 28*28*512=400K\ weights: (3*3*512)*512 = 2.359.296
CONV3-512: [28x28x512] memory: 28+28+512=400K
                                               weights: (3*3*512)*512 = 2.359.296
POOL2: [14x14x512] memory: 14*14*512=100K (weights: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2.359.296
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2.359.296
CONV3-512: [14x14x512] memory: 14*14*512=100K / weights: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K weights: 0
FC: [1x1x4096]
              memory: 4096 | weights: 7+7+512+4096 = 102,760,448
FC: [1x1x4096]
               memory: 4096 | weights: 4096 + 4096 = 16,777,216
              memory: 1000 reights: 4096*1000 = 4,096,000
FC: [1x1x1000]
TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
```

GoogLeNet(2014)

총 22개의 layer, 입력: (224x224x3)

- Incepiton module 사용
 - 1x1 convolution layer를 통해 연산량 감소 효과
- Auxiliary classifier 사용
 - 기울기 소실 문제 해결을 위해 훈련 시에만 사용
 - Pooling->Convolution->Fc->Fc->Softmax 구성

ResNet(2015)

최대 152개 layer, 입력: (224x224x3)

- Residual Block
- "F(x)"를 최소화(0) 하는 것을 목적으로 한다.
- 즉, "H(x)-x"(=residual)를 최소화 하는 것이다.
- H(x): layer를 통과한 출력, x: 입력
- 인접한 층(i와 i+1)만 연결하는 것이 아니라, i와 (i+r) 층 사이의 연결이 허용된다.

- 제 1 구간 (conv1): 7*7 fiter size, 64 filter num, 2 stride (output size: 112*112)
- 제 2 구간 (conv2_x) : 3*3 max pooling, 2 stride & 3개의 Residual Block (output size : 56*56)
- -> conv 2_1: 3*3 filter size, 64 filter num
- -> conv 2_2: 3*3 filter size, 64 filter num
- 제 3 구간 (conv3_x): 4개의 Residual Block (output size: 28*28)
- -> conv 3_1: 3*3 filter size, 128 filter num
- -> conv 3_2: 3*3 filter size, 128 filter num
- 제 4 구간 (conv4_x): 6개의 Residual Block (output size: 14*14)
- -> conv 4_1: 3*3 filter size, 256 filter num
- -> conv 4_2: 3*3 filter size, 256 filter num
- 제 5 구간 (conv5_x) : 3개의 Residual Block (output size : 7*7)
- -> conv 5_1: 3*3 filter size, 512 filter num
- -> conv 5_2: 3*3 filter size, 512 filter num
- 제 6 구간 (avg_pool) : average pooling, 1000-d Fully-Connectde, Softmax (output size : 1*1)

Squeeze-and-Excitation Net, SENet(2017)

- SE Block(fire module) : 컨볼루션을 통해 생성된 특성을 채널당 중요도를 고려하여 재보정(re-calibaration)하는 것
- Squeeze(Fsq)
 - GlobalAveragePooling를 통해 특성맵을 1x1 사이즈 로 변환한다.
 - 각 특성맵에 대한 전체 정보 요약
- Excitation(Fex, Fscale)
 - 각 채널의 상대적 중요도를 알아냄
 - FC -> Activation -> FC -> Activation을 통해 조절 (bottle-neck구조 : 은닉 층의 뉴런 수는 입력 층보다 작게, 출력 층의 뉴런 수는 입력 층과 동일)
 - 연산량 감소 및 일반화 도움을 주기 위함

모델 유연성 – 다른 모델과 결합