Exercícios Teóricos – u01: Fundamentos de Análise de Complexidade

Catarina F. M. Castro (803531) - AEDs II

Exercícios resolvidos

1-

a)
$$2^{10} = 1014$$

b)
$$\lg(1024) = 10$$

c)
$$\lg(17) = 4.08$$

d)
$$\lg(17) = 5$$

2- Plote os Gráficos:

a) $f(n) = n^3$

b)
$$f(n) = n^2$$

c)
$$f(n) = n \times lg(n)$$

$$d) f(n) = n$$

$$e) f(n) = sqrt(n)$$

$$f) f(n) = lg(n)$$

3-

Calcule o número de subtrações que o código abaixo realiza:

```
if (a - 5 < b - 3){
    i--;
    --b;
    a -= 3;
} else {
    j--;
}
```

Melhor caso: f(n) = 3, $\theta(1)$ Pior caso: f(n) = 5, $\theta(1)$

• Calcule o número de subtrações que o código abaixo realiza:

O código realiza f(n) = 2n, $\theta(n)$ subtrações.

5-

Calcule o número de subtrações que o código abaixo realiza:

```
for (int i = 0; i < n; i++){
    for (int j = 0; j < n; j++){
        a--;
        b--;
        c--;
    }
}</pre>
```

O código realiza $f(n) = 3n^2$, $\theta(n^2)$

6-

Calcule o número de multiplicações que o código abaixo realiza:

```
...
for (int i = n; i > 0; i /= 2){
    a *= 2;
}
```

O código realiza $f(n) = piso[\lg(n)] + 1$, $\theta(\ln(n))$

7-

• Apresente a função de complexidade de tempo (número de comparações entre elementos do *array*) da pesquisa sequencial no melhor e no pior caso

```
boolean resp = false;

for (int i = 0; i < n; i++){
    if (array[i] == x){
        resp = true;
        i = n;
    }
}</pre>
```

Este algoritmo é ótimo?

A função de complexidade desse algoritmo no melhor caso é t(n)=1, que acontece quando o elemento buscado está na primeira posição. Já, no pior caso, a função de

complexidade é t(n)=n, que ocorre quando se testam todas as posições, apenas para descobrir que o elemento estava na última posição ou não estava no *array*. Visto isso, esse algoritmo é ótimo, já que é preciso testar todos os elementos para garantir a resposta.

8-

 Um aluno deve procurar um valor em um array de números reais. Ele tem duas alternativas. Primeiro, executar uma pesquisa sequencial. Segundo, ordenar o array e, em seguida, aplicar uma pesquisa binária. O que fazer?

Nessa situação, o aluno deve optar por procurar o elemento por meio de uma pesquisa sequencial, que possui custo $\theta(n)$. Isso ocorre pois ordenar o array e depois aplicar o pesquisa binária teria o custo $\theta(n*lgn)$, e seria menos eficiente.

9-

Responda se as afirmações são verdadeiras ou falsas:

```
a) 3n^2 + 5n + 1 \in O(n): Falsa \longrightarrow O > n^2
b) 3n^2 + 5n + 1 \in O(n^2): Verdadeira
c) 3n^2 + 5n + 1 \in O(n^3): Verdadeira
d) 3n^2 + 5n + 1 \in O(n): Verdadeira
e) 3n^2 + 5n + 1 \in O(n^2): Verdadeira
f) 3n^2 + 5n + 1 \in O(n^3): Falsa \longrightarrow O < n^2
g) 3n^2 + 5n + 1 \in O(n): Falsa \longrightarrow O = n^2
h) 3n^2 + 5n + 1 \in O(n^2): Verdadeira
i) 3n^2 + 5n + 1 \in O(n^2): Verdadeira
i) 3n^2 + 5n + 1 \in O(n^3): Falsa \longrightarrow O = n^2
```

10-

• Sabendo que o Algoritmo de Seleção faz $\Theta(n^2)$ comparações entre registros, quantas dessas comparações temos no código abaixo? Justifique

```
for (int i = 0; i < n; i++){
      seleção();
}</pre>
```

O algoritmo de seleção faz $n * \theta(n^2)$ comparações, ou seja $\theta(n^3)$ comparações.

- Dado $f(n) = 3n^2 5n 9$, g(n) = n.lg(n), $l(n) = n.lg^2(n)$ e $h(n) = 99n^8$, qual é a ordem de complexidade das operações abaixo (use a notação Θ):
 - a) $h(n) + g(n) f(n) = [93 n^3] + [n \cdot lq(n)] [3 n^3 5n 9] = \Theta(n^3)$
 - b) $\Theta(h(n)) + \Theta(g(n)) \Theta(f(n)) = \theta(n^4) + \Theta(n \cdot (g(n)) \Theta(n^2)) = \Theta(n^8)$
 - c) $f(n) \times g(n) = \Theta(n^2) \cdot \theta(n \cdot (q(n))) = \Theta(n^3 \cdot (q(n)))$
 - d) $g(n) \times I(n) + h(n) = \theta(n \cdot lq(n)) \cdot \theta(n \cdot lq^2(n)) + \theta(n^2) = \theta(n^2)$
 - e) $f(n) \times g(n) \times I(n) = \theta(n^2) \cdot \theta(n \cdot lg(n)) \cdot \theta(n \cdot lg^2(n)) = \theta(n^4 \cdot lg^3(n))$
 - f) $\Theta(\Theta(\Theta(\Theta(f(n))))) = \Theta(h)$

a) Mostre os valores de c e m tal que, para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n^2|$, provando que $3n^2 + 5n + 1 \in O(n^2)$

Para que $O(n^2)$, é preciso que c > 3. Um exemplo seria c = 4 e m = 5,2.

13-

b) Mostre os valores de c e m tal que, para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n^3|$, provando que $3n^2 + 5n + 1 \notin O(n^3)$

Assim como a questão anterior, para que $O(n^3)$, é preciso que c>3, visto que a notação O indica qualquer complexidade cujo crescimento seja maior ou igual ao limite justo. Um exemplo seria c=4 e m=5,7.

14-

c) Prove que $3n^2 + 5n + 1$ não é O(n)

Não existe nenhum par (c,m) em que, tal que $n \ge m$, $|3n2+5n+1| \le c |x| |n|$ seja verdadeira.

15-

 Apresente a função e a ordem de complexidade para o número de comparações de registros no pior e melhor caso

```
void imprimirMaxMin(int [] array, int n){
    int max, min;
    if (array[0] > array[1]){
        max = array[0];
        min = array[1];
    } else {
        max = array[1];
        min = array[0];
    }
    for (int i = 2; i < n; i++){
        if (array[i] > max){
            max = array[i];
        } else if (array[i] < min){
            min = array[i];
    }
}</pre>
```

PUC Minas Virtual

No melhor caso, a função de complexidade é f(n)=1+(n-2). Já no pior caso, a função é f(n)=1+2(n-2). Em ambos os casos, a ordem de complexidade é $\theta(n)$ $\Omega(n)$ O(n).

 Apresente a função e a ordem de complexidade para o número de movimentações de registros no pior e melhor caso

```
void imprimirMaxMin(int [] array, int n){
    int max, min;
    if (array[0] > array[1]){
        max = array[0];
        min = array[1];
    } else {
        max = array[1];
        min = array[0];
    }
    for (int i = 2; i < n; i++){
        if (array[i] > max){
        max = array[i];
        } else if (array[i] < min){
        min = array[i];
    }
}</pre>
```

No melhor caso, a função de complexidade é f(n)=2, com ordem de complexidade $\theta(1)$, $\Omega(1)$, e O(1). Já no pior caso, a função é f(n)=2+(n-2), com ordem $\theta(n)$, $\Omega(n)$, e O(n).

PUC

17-

 Apresente a função e a ordem de complexidade para o número de subtrações para o pior e melhor caso

```
i = 0;

while (i < n) {

    i++;    a--;

}

if (b > c) {

    i--;

} else {

    i--;

    a--;

}
```

Melhor caso: f(n) = n + 1, com ordem $\theta(n)$, $\Omega(n)$, e O(n). Pior caso: f(n) = n + 2, com ordem $\theta(n)$, $\Omega(n)$, e O(n).

18-

 Apresente a função e a ordem de complexidade para o número de subtrações para o pior e melhor caso

Todos os casos: f(n) = (2n + 1)n, com ordem $\theta(n^2)$, $\Omega(n^2)$, e $O(n^2)$.

19-

 Apresente a função e a ordem de complexidade para o número de subtrações para o pior e melhor caso

```
for (i = 0; i < n; i++) {
    for (j = 1; j <= n; j *= 2) {
        b--;
    }
}</pre>
```

Todos os casos: $f(n) = n + piso(\lg(n))$, com ordem $\theta(n * \lg(n))$, $\Omega(n * \lg(n))$, e $O(n * \lg(n))$.

• Apresente o tipo de crescimento que melhor caracteriza as funções abaixo (Khan Academy, adaptado)

	Constante	Linear	Polinomial	Exponencial
3n	,		767_	
1	V	/		
(3/2)n		V		
2n ³				
2 ⁿ			1111	
3n ²	,			
1000	V		Alllan	
(3/2) ⁿ		_		

21-

Classifique as funções f₁(n) = n², f₂(n) = n, f₃(n) = 2ⁿ, f₄(n) = (3/2)ⁿ, f₅(n) = n³ e f₆(n) = 1 de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

A primeira função f1 possui crescimento polinomial, f2 possui crescimento linear, f3 e f4 possuem crescimento exponencial, f5 possui crescimento polinomial e, por fim, f6 possui crescimento constante.

Dessa forma:

22-

• Classifique as funções $f_1(n) = n.log_6(n)$, $f_2(n) = lg(n)$, $f_3(n) = log_8(n)$, $f_4(n) = 8n^2$, $f_5(n) = n.lg(n)$, $f_6(n) = 64$, $f_7(n) = 6n^3$, $f_8(n) = 8^{2n}$ e $f_9(n) = 4n$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

23-

 Faça a correspondência entre cada função f(n) com sua g(n) equivalente, em termos de O. Essa correspondência acontece quando f(n) = O(g(n)) (Khan Academy, adaptado)

f(n)			g(n)	
<u> </u>	/	7	3 n⁴	
$n^2 + 2n - 10$		Z	1 3n - 1	
3 n ³ x 3n		\nearrow	4 lg(2n)	
4 lg(n)		7	a n ² + 3n	

Exercícios não-resolvidos

1-

 Encontre o maior e menor valores em um array de inteiros e, em seguida, encontre a função de complexidade de tempo para sua solução

```
void maxMin1 () {
    max = min = array[0];
    for (int i = 1; i < n; i ++) {
        if (array[i] > max) max = array[i];
        if (array[i] < min) min = array[i];
    }
}</pre>
Todos os casos: f(n) = 2(n-1)
```

2-

• Considerando o problema de encontrar o maior e menor valores em um array, veja os quatro códigos propostos e analisados no livro do Ziviani

3-

• Preencha verdadeiro ou falso na tabela abaixo:

	⊖ (1)	⊖ (lg n)	⊖ (n)	Θ (n.lg(n))	⊖ (n²)	Θ (n³)	⊙ (n ⁵)	⊕ (n ²⁰)
$f(n) = \lg(n)$								
$f(n) = n \cdot lg(n)$,					
f(n) = 5n + 1			/				,	
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
f(n) = n ⁵ - 99999n ⁴								

4.

• Preencha verdadeiro ou falso na tabela abaixo:

	O(1)	O(lg n)	O(n)	O(n.lg(n))	O(n²)	O(n ³)	O(n ⁵)	O(n ²⁰)
f(n) = lg(n)			V					
$f(n) = n \cdot lg(n)$				V		/		
f(n) = 5n + 1						<		
$f(n) = 7n^5 - 3n^2$							/	/
$f(n) = 99n^3 - 1000n^2$							/	/
$f(n) = n^5 - 99999n^4$								/

Preencha verdadeiro ou falso na tabela abaixo:

	Ω(1)	Ω(lg n)	Ω(n)	$\Omega(n.\lg(n))$	$\Omega(n^2)$	$\Omega(n^3)$	Ω(n ⁵)	Ω(n ²⁰)
f(n) = Ig(n)				_				
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1			V					
$f(n) = 7n^5 - 3n^2$	V		/	/	1	/	/	
$f(n) = 99n^3 - 1000n^2$	\	/		/		V		
$f(n) = n^5 - 999999n^4$					V	V	/	

6-

a) Mostre os valores de c e m tal que, para $n \ge m$, $|g(n)| \ge c \times |f(n)|$, provando que $3n^2 + 5n + 1 \in \Omega(n^2)$

$$c = 3 e m = 1$$

7-

b) Mostre os valores de c e m tal que, para $n \ge m$, $|g(n)| \ge c \times |f(n)|$, provando que $3n^2 + 5n + 1 \notin \Omega(n)$

$$c = 3 e m = 1$$

8-

c) Prove que $3n^2 + 5n + 1$ <u>não é</u> $\Omega(n^3)$

Não existem valores para c e m que satisfaçam as condições necessárias para, tal que $n \ge m$, $|3n2 + 5n + 1| \ge c x |n3|$ seja considerado verdadeiro

9-

a) Mostre um valor para c_1 , c_2 e m tal que, para $n \ge m$, $c_1 \times |f(n)| \le |g(n)| \le c_2 \times |f(n)|$, provando que $3n^2 + 5n + 1 \in \Theta(n^2)$

$$c = 3 \text{ ou } c2 = 4 \text{ e } m = 5.2.$$

10-

b) Prove que $3n^2 + 5n + 1$ não é $\Theta(n)$

Não existem valores para $c \in m$ que satisfaçam as condições necessárias para que a afirmação seja considerada verdadeira.

11-

c) Prove que $3n^2 + 5n + 1$ não é $\Theta(n^3)$

Não existem valores para $c \in m$ que satisfaçam as condições necessárias para que a afirmação seja considerada verdadeira.

 Suponha um sistema de monitoramento contendo os métodos telefone, luz, alarme, sensor e câmera, apresente a função e ordem de complexidade para o pior e melhor caso: (a) método alarme; (b) outros métodos.

```
void sistemaMonitoramento() {
    alarme(((telefone() == true && luz() == true)) ? 0 : 1);
    for (int i = 2; i < n; i++){
        if (sensor(i- 2) == true){
            alarme (i - 2);
        } else if (camera(i- 2) == true){
            alarme (i - 2 + n);
    }
}</pre>
```

No método alarme():

- A função de complexidade é f(n)=1+(n-2) no pior caso e é f(n)=1 no melhor caso.
- A ordem de complexidade é $\theta(n)$, $\Omega(n)$, e O(n) no pior caso e $\theta(1)$, $\Omega(1)$, e O(1).

Em outros métodos:

- A função de complexidade é f(n)=2+2x(n-2) no pior caso e f(n)=2+(n-2) no melhor caso.
- A ordem de complexidade é $\theta(n)$, $\Omega(n)$, e O(n) em todos os casos.

13-

 Apresente um código, defina duas operações relevantes e apresente a função e a complexidade para as operações escolhidas no pior e melhor caso

```
public class ExercicioComplexidade {
   public static void main(String[] args){
         // Declaração do Scanner
        Scanner in = new Scanner(System.in);
        // Declaração de variáveis
         int n = in.nextInt();
         int arr = new vet[n];
         int cont = 0;
        // Preenchimento do vetor
         for(int i=0, i<n, i++){
               arr[i] = nextInt();
               // Contagem dos números pares
               if(arr[i] \% 2 == 0){
                     cont++;
               }
         }
   }
}
```

No melhor caso, são feitas f(n)=n operações, com um nível de complexidade de $\theta(n)$. Já no pior caso, são feitas f(n)=2n operações, também com um nível de complexidade $\theta(n)$.

Anteriormente, verificamos que quando desejamos pesquisar a existência de um elemento em um array de números reais é adequado executar uma pesquisa sequencial cujo custo é Θ(n). Nesse caso, o custo de ordenar o array e, em seguida, aplicar uma pesquisa binária é mais elevado, Θ(n x lg(n)) + Θ(lg(n)) = Θ(n x lg(n)). Agora, supondo que desejamos efetuar n pesquisas, responda qual das duas soluções é mais eficiente

As n pesquisas sequenciais terão um custo de $n*\theta(n)=\theta(n^2)$ As n pesquisas binárias terão um custo de $\theta(n x lg(n)) + n*\theta(lg(n)) = \theta(n*lg(n))$