AIRLINE FLIGHT DATA

MALLA REDDY ENGINEERING COLLEGE FOR WOMEN (TELANGANA-HYDERABAD)

P. THRISHUJUNA B-TECH - IV YR

AIRLINES

Milestone 1: Data Foundation and Cleaning

Week 1: Project Initialization and Dataset Setup

- Define goals, KPIs, and workflow
- Load CSVs using pandas
- Explore schema, types, size, and nulls
- Perform sampling and memory optimizations

Week 2: Preprocessing and Feature Engineering

- Handle nulls in delay and cancellation columns
- Create derived features: Month, Day of Week, Hour, Route
- Format datetime columns
- Save preprocessed data for fast reuse

Deliverables:

- Cleaned dataset
- Summary of preprocessing logic
- Feature dictionary
- Loads a dataset: Flight delay.csv from an airline dataset.
- Uses Pandas to explore the data (df = pd.read_csv(...)).
- Takes a 10% sample of the data for testing/analysis (sampled_df = df.sample(frac=0.1, random_state=42)).
- Performs data cleaning:
 - Fills Nan values in delay-related columns (ArrDelay, DepDelay, CarrierDelay, WeatherDelay, NASDelay, SecurityDelay, LateAircraftDelay) with 0.
 - Fills Cancelled column nulls with 0.
 - Fills CancellationCode nulls with empty string.

Since the dataset is about **flight delays**, here are the main metrics you should calculate:

1. Dataset Overview

- Total rows & columns.
- Missing values count (before/after cleaning).
- Data types & memory usage.

2. Delay Analysis

- Average Arrival Delay (ArrDelay).
- Average Departure Delay (DepDelay).
- Breakdown of delay causes:
 - o Carrier Delay
 - o Weather Delay
 - o NAS Delay (National Airspace System)
 - Security Delay
 - Late Aircraft Delay
- These can be expressed as **mean delay minutes per flight** and as **percent contribution** to total delays.

3. Cancellation Analysis

- Total number of cancelled flights.
- Percentage of cancelled flights = (Cancelled flights / Total flights)
 * 100.
- Breakdown by **CancellationCode** (e.g., carrier-related, weather, security, NAS).

4. Sampling Impact

- Compare stats (mean delay, cancellation rate) between full dataset vs 10% sample.
- Ensure the sample is representative.

5. KPIs (Key Performance Indicators)

- On-Time Performance Rate = % of flights with DepDelay <= 15 minutes.
- Average Delay per Flight (total delay minutes / total flights).
- Most common cause of delay.

Right now, I only have access to the **notebook code**, not the actual dataset (Flight delay.csv). From your notebook, I can see what columns were handled:

- Delay columns: ArrDelay, DepDelay, CarrierDelay, WeatherDelay, NASDelay, SecurityDelay, LateAircraftDelay
- Cancellation columns: Cancelled, CancellationCode

The notebook fills nulls in those columns, which means they **had missing values** originally.

Here's what you would typically get (once the CSV is loaded):

Dataset Structure & Cleaning Insights

1. Shape of the dataset

- o Number of rows (flights) = total records in Flight delay.csv
- o Number of **columns** = flight attributes (delays, cancellations, etc.)

2. Null Values (Before Cleaning)

- o ArrDelay → had missing values → filled with 0
- o DepDelay \rightarrow had missing values \rightarrow filled with 0
- o CarrierDelay → had missing values → filled with 0
- o WeatherDelay \rightarrow had missing values \rightarrow filled with 0
- o NASDelay \rightarrow had missing values \rightarrow filled with 0
- o SecurityDelay \rightarrow had missing values \rightarrow filled with 0
- o LateAircraftDelay \rightarrow had missing values \rightarrow filled with 0
- o Cancelled \rightarrow had missing values \rightarrow filled with 0
- o CancellationCode \rightarrow had missing values \rightarrow filled with "" (empty string)

3. Other Columns

 Likely include things like flight date, airline, origin, destination, etc. (no cleaning steps shown in the notebook, so probably had few or no nulls).