Formal Methods Fall 2017

S06

Professor : Ultes-Nitsche Ulrich Assistant : Christophe Stammet

Submitted by Sylvain Julmy

Exercise 1

Note: we use a tree representation for all the posibilities of runs for a given word. The nth level of a tree corespond to the nth character of a word.

 (w_1)

Possible runs with tapes:

- $(q_0, q_1, q_1, q_1, q_1, q_{F_1})$, tape = (x, y, y, y, x, B, B, ...)
- $(q_0, q_1, q_1, q_1, q_1, q_2, q_{F_2})$, tape = (x, y, y, B, B, B, ...)

 (w_2)

Possible runs with tapes :

- (q_0, q_1, q_1, q_{F_1}) , tape = (x, y, x, B, B, ...)
- $(q_0,q_1,q_1,q_2,q_{F_2})$, $tape=(x,y,B,B,B,\dots)$, end in an non-accepting state and no possible transition.

 (w_3)

Possible runs with tapes :

- $(q_0, q_{F_3}, q_{F_3}, q_{F_3})$, tape = (x, x, x, B, B, ...)
- $(q_0,q_{F_3},q_{F_3},q_3)$, $tape=(x,x,B,B,B,\dots),$ end in an non-accepting state.
- (q_0, q_{F_3}, q_3) , tape = (x, B, B, B, ...), end in an non-accepting state and no possible transition.

We can also assume that the Turing Machine immediatly accept the word if an accepting state is reached. So, for the word $w_3 = yyy$, the only possible run would be (q_1, q_{F_3}) with the tape tape = (x, ...).

 (w_4)

We can assume that the Turing Machine immediatly accept the word if an accepting state is reached. So, for the word $w_4 = yx$, the only possible run would be (q_1, q_{F_3}) with the tape tape = (x, ...).

If the Turing machine don't stop when reaching q_{F_3} , then the computation tree would be:

$$egin{array}{c} q_0 \ | \ y \ q_{F_3} \ | \ x \ fail \end{array}$$

and the Turing machine will be non-accepting.

 (w_5)

Possible runs with tapes:

- (q_0, q_4, q_4, q_{F_4}) , tape = (B, x, B, B, B, ...)
- (q_0, q_5, q_5, q_{F_4}) , tape = (B, x, y, B, B, ...)

Exercise 2

(1)

If a problem is in \mathcal{P} , it means that the problem could be solve in a polynomial time. In other word, the problem is solved by a deterministic Turing machine in a polynomial complexity.

(2)

If a problem is in \mathcal{NP} , it means that the problem needs a super-polynomial time to be solve. In other word, the problem is solved by a non-deterministic Turing Machine in a polynomial complexity.

(3)

The \mathcal{NP} -complete class is the problem from \mathcal{NP} for which we don't know if it exist a polynomial algorithm on a deterministic Turing Machine which solve them. This class also holds an interresing property: if we can solve 1 problem on the \mathcal{NP} -complete class in a polynomial time on a deterministic Turing machine, then we can solve any \mathcal{NP} -complete problem in a polynomial time on a deterministic Turing machine. Example of \mathcal{NP} -complete problems:

- SAT
- Hamiltonian path
- Knapsack
- ...

(4)

 $\mathcal{P} \subseteq \mathcal{NP}$

Correct, the complexity class \mathcal{P} is contained in \mathcal{NP} , because a deterministic Turing Machine is just a special case of a non-deterministic Turing Machine.

 $\mathcal{NP} \neq \emptyset$

Wrong, \mathcal{NP} contains the problems of \mathcal{P} and from the \mathcal{NP} -complete classes.

 $\mathcal{NP} \subseteq \mathcal{NPC}$

If we prove that $\mathcal{P} = \mathcal{NP}$, then we would have $\mathcal{P} = \mathcal{NP} = \mathcal{NPC}$ so $\mathcal{NP} \subseteq$ would be true. Otherwise it is false, because we have $\mathcal{P} \subseteq \mathcal{NP}$, $\mathcal{NPC} \subseteq \mathcal{NP}$ and $\mathcal{P} \neq \mathcal{NPC}$ so $\mathcal{NP} \subseteq \mathcal{NPC}$ is false.

 $\mathcal{P} \cap \mathcal{NPC} \neq \emptyset$

It is the $\mathcal{P} = \mathcal{NP}$ problem, if $\mathcal{P} = \mathcal{NP}$, so $\mathcal{P} \cap \mathcal{NPC} = \mathcal{P} = \mathcal{NPC} = \mathcal{NP}$. Else, if $\mathcal{P} \neq \mathcal{NP}$, then $\mathcal{P} \cap \mathcal{NPC} = \emptyset$. Or maybe, it is not a decidable problem to prove that $\mathcal{P} = \mathcal{NP}$, but we don't know yet.

(5)

In order to prove that $\mathcal{P} = \mathcal{NP}$, we could find an algorithm in a polynomial time for a \mathcal{NP} complete problem. For example, finding an algorithm in $O(n^{O(1)})$ for the SAT problem is
enough to prove $\mathcal{P} = \mathcal{NP}$.