Aufgaben 4.1

1. Übergangsfunktion und Zustandsfolgetabelle

Stellen Sie die Zustandsfolgetabelle für die Übergangsfunktion $Q_{t+1} = U \overline{V} + (U + V)Q_t$ auf.

2. Zähler mit Periode 1, 2, 3, 5, 7

Es ist ein synchrone "Modulo"-Schaltung zu entwerfen, die reihum die Zahlen 1, 2, 3, 5 und 7 an den Q-Ausgängen von D-Flipflops produziert (Q2 = MSB).

- a) Zeichnen Sie das Zustandsdiagramm dieser Schaltung.
- b) Verwenden Sie das unten gegebene Template (vgl. auch *counterTemplates.circ*) zur Realisierung der Schaltung unter Angabe von
 - Zustandsfolge-Tabelle mit Codierung der Zustände,
 - Minimierung des Schaltnetzes (Ausnutzen von don't cares) und
 - einer Schaltungsergänzung, so dass die Q-Ausgänge mit der Zahl 1 initialisiert werden können.

c) Ergänzen Sie das Zustandsdiagramm in a) mit den fehlenden Zuständen.

3. Synchroner Modulo-11-Vorwärtszähler

Mit der minimal nötigen Anzahl D-FF ist in Logisim ein synchroner Modulo-11-Vorwärtszähler zu realisieren.

Tipp: Verwenden Sie das vorbereitete Zähler-Template counterTemplates.circ.

4. Vorwärts-/Rückwärts-Zähler mit Periode 1, 2, 3, 5, 7

Es ist ein synchrone "Modulo"-Schaltung zu entwerfen, die reihum die Zahlen 1, 2, 3, 5 und 7 an den Q-Ausgängen von D-Flipflops produziert (Q2 = MSB) oder umgekehrt (=zurück). Die Richtung werde mit dem Eingang Forward/ \sim Backward (F/ \overline{B}) festgelegt.

Die zugehörige Zustandsfolgetabelle ist unten angegeben.

Finden Sie das SN1 mit Logisim und testen Sie die Schaltung mit D-FF.

Zustandsfolgetabelle:

t	t	t	t	t+1	t+1	t+1
Q2	Q1	Q0	F/B	Q2	Q1	Q0
0	0	0	0	X	X	X
0	0	0	1	X	X	X
0	0	1	0	1	1	1
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	0	1	1
0	1	1	0	0	1	0
0	1	1	1	1	0	1
1	0	0	0	X	X	X
1	0	0	1	X	X	X
1	0	1	0	0	1	1
1	0	1	1	1	1	1
1	1	0	0	X	X	X
1	1	0	1	X	X	X
1	1	1	0	1	0	1
1	1	1	1	0	0	1

Ergänzen Sie die Schaltung mit einem asynchronen Reset R, welches bei Aktivierung wie folgt wirkt:

Ist $F/\overline{B}=1$, so sollen die Ausgänge des Zählers sofort die Dezimaläquivalenz 1 als Zustand einnehmen. Ist $F/\overline{B}=0$, dann werde sofort die Dezimaläquivalenz 7 als Zustand eingenommen.