PROBLEM STATEMENT

To predict the insurance policy charges based on the demographic data

Independent Variables

Age, Sex, BMI, Children, Smoker, Region

NEED

To predicting future medical expenses of individuals that help medical insurance to make decision on charging the premium

DATA UNDERSTANDING

Variableage	Туре	Description
Age	Numeric	age of primary beneficiary (in years)
Gender	Category	gender of insurance contractor, either female or male
ВМІ	Numeric	Body Mass Index which provides an understanding of a body by using a number expressing the ratio of body weight (in kilograms) to height squared (in meters). The value of bmi is ideally between 18.5 and 24.9
Children	Numeric	number of children/dependents covered by health insurance
Smoker	Category	: whether the primary beneficiary smoking or not
Region	Category	the beneficiary's residential area in the US, either northeast, southeast, southwest, or northwest
Charges	Numeric	Individual medical costs billed by health insurance We will use charges as our target variable and the rest as the candidate predictors.

EDA

- Complete data of 1338 Entries with 7 columns
- No missing values
- Average age is 39
- Overweight (Avaerage BMI~30)
- Max insurancecharges 63770
- Target variable not normally distributed

Range	eIndex: 13	38 ent	tries,	0 to	1337	
Data	columns (1	total	7 colu	mns)	:	
#	Column	Non-1	Null Co	unt	Dtype	
0	age	1338	non-nu	11	int64	
1	sex	1338	non-nu	11	object	
2	bmi	1338	non-nu	11	float64	
3	children	1338	non-nu	11	int64	
4	smoker	1338	non-nu	11	object	
5	region	1338	non-nu	11	object	
6	charges	1338	non-nu	11	float64	
dtype	es: float64	4(2),	int64(2),	object(3	j

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

OUTLIER DETECTION AND REMOVAL

OUTLIER DETECTION AND REMOVAL

- Outliers present in BMI, Charges
- Lower and upper ranges are identified
- Entries reduced from 1338 to 1191
- 10.9 percent reduction of records

```
def dropout(df,col):
    for i in col:
        q25,q75 = np.percentile(a = df[i],q=[25,75])
        IQR = q75 - q25
        lowrange=q25-(1.5*IQR)
        uprange=q75+(1.5*IQR)
        print (i," lower = ",lowrange," upper = ",uprange)
        df=df[(df[i]>=lowrange) & (df[i]<=uprange) ]
        return df</pre>
```

```
col = ["bmi","charges"]
newdf = dropout(data,col)
print(newdf.shape)
```

```
bmi lower = 13.7 upper = 47.2900000000000000
charges lower = -13034.076065 upper = 34358.841975
(1191, 7)
```

DUMMY VARIABLES

• Dummay variables for categorical variables - Gender, Smoker, Region

	age	bmi	children	charges	sex_male	smoker_yes	region_northwest	region_southeast	region_southwest
0	19	27.900	0	16884.92400	0	1	0	0	1
1	18	33.770	1	1725.55230	1	0	0	1	0
2	28	33.000	3	4449.46200	1	0	0	1	0
3	33	22.705	0	21984.47061	1	0	1	0	0
4	32	28.880	0	3866.85520	1	0	1	0	0

STEPWISE REGRESSION

SOME IMPORTANT TERMS:

TOP SECTION:

R-SQUARED TELLS ABOUT THE GOODNESS OF THE FIT, RANGES BETWEEN 0 AND 1. THE CLOSER THE VALUE TO 1, THE BETTER IT EXPLAINS THE DEPENDENT VARIABLES VARIATION IN THE MODEL. HOWEVER, IT IS BIASED IN A WAY THAT IT NEVER DECREASES WHEN WE ADD NEW VARIABLES.

ADJ. R-SQUARED HAS A PENALIZING FACTOR. IT DECREASES OR STAYS IDENTICAL TO THE PREVIOUS VALUE AS THE NUMBER OF PREDICTORS INCREASES. IF THE VALUE KEEPS INCREASING ON REMOVING THE UNNECESSARY PARAMETERS GO AHEAD WITH THE MODEL OR STOP AND REVERT.

F-STATISTIC USED TO COMPARE TWO VARIANCES AND THE VALUE IS ALWAYS GREATER THAN 0. IN REGRESSION, IT IS THE RATIO OF THE EXPLAINED TO THE UNEXPLAINED VARIANCE OF THE MODEL.

MID SECTION

COEF IS THE COEFFICIENT/ESTIMATE VALUE OF INTERCEPT AND SLOPE.

P>|T| REFERS TO THE P-VALUE OF PARTIAL TESTS WITH THE NULL HYPOTHESIS HO THAT THE COEFFICIENT IS EQUAL TO ZERO (NO EFFECT).

A LOW P-VALUE (< 0.05) INDICATES THAT THE PREDICTOR HAS SIGNIFICANT EFFECT TO THE TARGET VARIABLE.

STEPWISE REGRESSION

- Step 1: First take all the independent variables and run the Annova Model to check whether the model is significant or not by looking at the probability of F-Statistics. If the probability of F-Statistics is smaller than 0.05 then the model is significant otherwise not.
- Step 2: From the OLS table, the feature sex_male is not significant and hence is to be removed.

OLS Regression Results

Dep. Varia	ble:		-	quared:		0.606
Model:			OLS Adj	. R-squared:		0.603
Method:		Least Squ	ianes F-si	tatistic:	226.9	
Date:		Wed, 02 Nov	2022 Pro) (F-statist	ic):	1.19e-232
Time:		07:0	6:58 Log	-Likelihood:		-11712.
No. Observ	ations:		1191 AIC			2.344e+04
Df Residua	ls:		1182 BIC			2.349e+04
Df Model:			8			
Covariance	Type:	nonro	bust			
========						========
	coef	std err	t	P> t	[0.025	0.975]
Intercent	-2971.4610	818.000	-3.633	0.000	-4576.356	-1366.566
•	244.6000		25.924		226.088	263.112
x[1]	69.1163		2.865		21.788	
	434.0112		4.015			
= =	-348.6055		-1.327	0.185	7	166.903
	1.439e+04		33.578	0.000	1.36e+04	
	-293.5151		-0.793	0.428		432.353
	-1082.8273		-2.840	0.005	-1830.872	-334.782
	-1392.6524	376.421	-3.700	0.000	-2131.180	-654.124
Omnibus:	========	 759	.733 Dur	oin-Watson:		2.054
Prob(Omnib	us):	6	.000 Jar	que-Bera (JB	:):	5449.081
Skew:	,		.046 Prol			0.00
Kurtosis:			.527 Con	* *		325.

STEPWISE REGRESSION

- Step 3: The region_northwest also has an insignificant p-value but region_southeast & region_southwest are significant and hence retained.
- Step 4: Run the model after removing gender variable

Dep. Varia	ble:		У	R-sq	uared:		0.605
Model:			0LS	-	R-squared:		0.603
Method:		Least	Squares	F-st	atistic:		258.9
Date:		Thu, 03	•		(F-statisti	c):	1.71e-233
Time:			08:00:42	Log-	Likelihood:		-11712.
No. Observ	ations:		1191	AIC:			2.344e+04
Df Residua	ls:		1183	BIC:			2.348e+04
Df Model:			7				
Covariance	Type:	n	onrobust				
=======	coe	f std	err	t	P> t	[0.025	0.975]
Intercept	-3127.402	2 809.	772	-3.862	0.000	-4716.152	-1538.652
x[0]	244.901			25.955	0.000	226.389	263.414
x[1]	68.300	3 24.	123	2.831	0.005	20.973	115.629
x[2]	431.6618	3 108.	105	3.993	0.000	219.564	643.760
x[3]	1.438e+04	4 428.	706	33.548	0.000	1.35e+04	1.52e+04
x[4]	-293.302	370.	087	-0.793	0.428	-1019.403	432.798
x[5]	-1077.595	7 381.	374	-2.826	0.005	-1825.841	-329.351
x[6]	-1388.725	5 376.	530	-3.688	0.000	-2127.467	-649.984
====== Omnibus:	======:	=======			======= in-Watson:	=======	2.052
Prob(Omnib	us):		0.000		ue-Bera (JB)	:	5398.767
Skew:	,-			Prob		-	0.00
Kurtosis:				Cond			322.

TESTING FOR LINEARITY

- Checking of linearity between independent variables and dependent variable
- Scatter plot is created

TESTING FOR NORMALITY OF RESIDUALS

• Normality of Residual-Multiple regression assumes that the residuals are normally distributed.

TESTING FOR MULTICOLLINEARITY

• No Multicollinearity—Multiple regression assumes that the independent variables are not highly correlated with each other. This assumption is tested using Variance Inflation Factor (VIF) values.


```
feature VIF
0 age 7.616749
1 bmi 7.935312
2 children 1.768840
```

TESTING FOR HOMOSCEDASTICITY

Homoscedasticity-This assumption states
 that the variance of error terms is similar
 across the values of the independent
 variables. A plot of standardized residuals
 versus predicted values can show whether
 points are equally distributed across all values
 of the independent variables

TESTING FOR AUTOCORRELATION

Durbin Watson test

```
statsmodels.stats.stattools import durbin_watson

form Durbin-Watson test
in_watson(MLR.resid)
te this is within the range of 1.5 and 2.5, we would consider autocorrelation not to be problematic in this regression model.
```

Autocorrelation means the self relationship of errors

if durbinWatson < 1.5
Signs of positive autocorrelation', '\n')</pre>

if durbinWatson > 2.5: Signs of negative autocorrelation

```
      Omnibus:
      753.305
      Durbin-Watson:
      2.052

      Prob(Omnibus):
      0.000
      Jarque-Bera (JB):
      5398.767

      Skew:
      3.035
      Prob(JB):
      0.00

      Kurtosis:
      11.482
      Cond. No.
      322.
```