

Context of the research

Large scale hydrogen production with High Temperature Electrolysis Facilities (HTEF) coupled with Nuclear Power Plants (NPP)

The **licensing** of the integrated plants **requires assessing the increased risk to the NPP** due to the HTEF

Problem statement

Limitations

- No uncertainty quantification
- No imprecision
- No Bayesian update as new evidence becomes available
- No tool to perform inference

Proposed solution: Enhanced Imprecise Bayesian Network

Proposed solution: Enhanced Imprecise Bayesian Network

Added values

- Uncertainty quantification
- Imprecise CPTs
- Inference (forward and backward)
- Bayesian update

Time-dependent variables discretization (too many states!)

LOCA	P(LOCA)
t = 0	
t = 1	
t = 1199	
t = 1200	

Proposed solution: Dynamic Enhanced Imprecise Bayesian Network

Added values

- Uncertainty quantification
- Imprecise CPTs
- Inference (forward and backward)
- Bayesian update

Inference on temporal nodes

(e.g., failure times, physical quantities...)

LOCA	P(LOCA)
Yes	
No	

Only two states

Context of the research

Risk assessment in O&G facilities by Bayesian Network (BN) Modeling

Mitigative safety barriers Process Fire Pressure Control Management System Toxic Protection Emergency System Containment Response System Task Management Consequence Ignition Loss of Primary Jet Fire Fire Proofing Consequences Containment **Pool Fire BRANN** Process Flash Fire Safety Explosion Management System Spill Containment Design Isolation & Operating Integrity Depressurization Integrity Blast Proofing

Preventive safety barriers

Problem statement

We want to perform backward inference to identify the optimal maintenance schedule and/or design improvements

Problem statement

We want to perform backward inference to identify the optimal maintenance schedule and/or design improvements

Proposed solution: Enhanced Bayesian Network

Forward and backward inference on the risk and on the KPIs

