Econometric 2

Yi Huang(Anr:353686)

Tilburg University

March 15, 2016

Answer A I

A.i.

In this question, *Infl* is the annualized percentage difference of inflation. The difference between current period logarithmic price index for personal consumption expenditures and last period logarithmic price index, the result times 400 is *Infl*. *Infl* is measured percentage per quarter, that is, logarithmic price index change one percentage in a quarter, *Infl* changes 400 percentage points.

A.ii.

Plot the value of *Infl* from 1963: Q1 through 2012: Q4 following. Based on the plot, *Infl* has a stochastic trend since trend is random and varies over time.

Answer A II

Answer B I

B.i.

Compute the first four autocorrelations of Infl, we get following:

Linear regression

```
Number of obs = 200
F(4, 195) = 7.22
Prob > F = 0.0000
R-squared = 0.1402
Root MSE = 1.4051
```

dInfl	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
dInfl						
L1.	3162191	.0640657	-4.94	0.000	4425698	1898684
L2.	2901691	.0842787	-3.44	0.001	4563839	1239543
L3.	0250792	.091814	-0.27	0.785	2061551	.1559967
L4.	1113044	.0845675	-1.32	0.190	2780888	.0554801
_cons	.0031298	.09937	0.03	0.975	1928481	.1991076

Answer B II

B.ii.

The plot looks choppy and jagged. In part (i), we calculated the first autocorrelation of *Infl*, the difference become more usual and changes each period, that is why the plot looks choppy and jagged.

Answer C I

C.i.

The regression of $Infl_t$ on $Infl_{t-1}$:

Answer C II

Answer C III

Since we already known

$$Infl_t = 0 + {}_1Infl_{t1} + u_t, 0 = -0.0029, 1 = -0.2531,$$

that is

$$Infl_t = -0.0029 - 0.2531 Infl_{t1}$$
.

According to constant and coefficient, we could predict the change in inflation next quarter, that is,

$$Infl_{t+1} = -0.0029 - 0.2531 Infl_t$$
.

C.ii.

Estimate an AR(2) model for Infl:

Answer C IV

dInfl	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
dInfl L1.	2531083	.0710989	-3.56	0.000	3933167	1129
_cons	.0028787	.1028673	0.03	0.978	1999774	.2057348

Compare with estimate results in part (i) and part (ii), all lag variables are statistic significant and Adjusted R squared is increased from 0.0593 to 0.1205, so the AR(2) model is better than an AR(1) model. Since the *Infl* may be influenced by last two

Answer C V

periods, adding one more lag variable might increase explanation of the model.

C.iii.

Estimate an AR(p) model for p = 0, .8:

Linear regression Number of obs = 224
F(2, 221) = 15.34
Prob > F = 0.0000
R-squared = 0.1356
Root MSE = 1.4031

dInfl	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	. Interval]
dInfl						
L1.	3537413	.0651424	-5.43	0.000	4821212	2253615
L2.	2439319	.08183	-2.98	0.003	4051988	082665
_cons	011053	.0938173	-0.12	0.906	1959441	.1738381

In general, smaller is better. In this case, lag length is 2 when chosen by AIC, lag length is 2 when chosen by BIC.

Answer C VI

C.iv.

We know the AR(2) model is

$$Infl_t = -0.011 - 0.3537 Infl_{t1} - 0.2439 Infl_{t2}.$$

So

$$Infl_{2013:Q1} = -0.011 - 0.3537Infl_{2012:Q4} - 0.2439Infl_{2012:Q3} \Rightarrow Infl_{2013:Q1} = -0.011 - 0.3537 - 0.0595 - 0.2439 - 0.6153 = 0.0119111 - 0.011911 - 0.0119$$

C.v.

The AR(2) model is

$$Infl_t = 0.4992 + 0.6766 Infl_{t1} + 0.1837 Infl_{t2}.$$

Answer C VII

So

$$\begin{aligned} \textit{Infl}_{2013:Q1} &= 0.4992 + 0.6766 \textit{Infl}_{2012:Q4} + 0.1837 \textit{Infl}_{2012:Q3} \Rightarrow \\ & \textit{Infl}_{2013:Q1} = 0.4992 + 0.67661.6127 + 0.18371.6722 \Rightarrow \textit{Infl}_{2013:Q3} \end{aligned}$$

Answer D I

D.i.

$$H_0$$
: = 0 vs. H_1 : < 0 with two lags of $Infl$
Estimate $Infl$ = $_0 + Infl_{t1} + _1Infl_{t1} + _2Infl_{t2} + u_t$

Answer D II

| Number of obs = 200 | F(2, 197) = 12.65 | Frob > F = 0.0000 | R-squared = 0.1293 | Root MSE = 1.4068 |

dInfl	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
dInfl						
L1.	3199819	.0668389	-4.79	0.000	4517934	1881704
L2.	264144	.0825595	-3.20	0.002	4269579	1013301
_cons	.0026299	.0994813	0.03	0.979	1935551	.1988148

. estat ic, n(200)

Akaike's information criterion and Bayesian information criterion

Model	Obs	11 (null)	11 (model)	df	AIC	BIC
	200	-364.3863	-350.5364	3	707.0729	716.9679

Note: N=200 used in calculating BIC.

