Early stopping points for gradient desccent A survey

Mohammed HSSEIN

¹Centrale Lille Institut Villeneuve d'Ascq, France

Promo: 2021

Plan

- Introduction
 - Context
 - Settings
 - Kernels
- Stopping rules
 - Naive stopping rules
 - Bias variance balance : To a sophisticated stopping rule
 - Analysis
- 3 Conclusion

- Introduction
 - Context
 - Settings
 - Kernels
- Stopping rules
- 3 Conclusion

Figure: Local minimums

Figure: Local minimums

Figure: Time

Running infinite iterations, lead to over-fitting!

Figure: regression problem deep nets

local minimums and over-fitting

Figure: classification problem deep nets

Jettiligs

- Regression model
- data points $\mathcal{D}_{train} = \{(x_i, y_i), i = 1, 2, ..., n\}$ and $\mathcal{D}_{test} = \{(x_i, y_i), i = 1, 2, ..., m\}$

- Regression model
- data points $\mathcal{D}_{train} = \{(x_i, y_i), i = 1, 2, ..., n\}$ and $\mathcal{D}_{test} = \{(x_i, y_i), i = 1, 2, ..., m\}$
- Non parametric scenario :

- Regression model
- data points $\mathcal{D}_{train} = \{(x_i, y_i), i = 1, 2, ..., n\}$ and $\mathcal{D}_{test} = \{(x_i, y_i), i = 1, 2, ..., m\}$
- Non parametric scenario :

•
$$y_i = f^*(x_i) + w_i, i = 1, 2, ..., n$$

- Regression model
- data points $\mathcal{D}_{train} = \{(x_i, y_i), i = 1, 2, ..., n\}$ and $\mathcal{D}_{test} = \{(x_i, y_i), i = 1, 2, ..., m\}$
- Non parametric scenario :
 - $y_i = f^*(x_i) + w_i$, i = 1, 2, ..., n
 - $w_i \sim \mathcal{N}(0,1)$ iid

- Regression model
- data points $\mathcal{D}_{train} = \{(x_i, y_i), i = 1, 2, ..., n\}$ and $\mathcal{D}_{test} = \{(x_i, y_i), i = 1, 2, ..., m\}$
- Non parametric scenario :
 - $y_i = f^*(x_i) + w_i$, i = 1, 2, ..., n
 - $w_i \sim \mathcal{N}(0,1)$ iid
 - $f^* \in \mathcal{H}$

- Regression model
- data points $\mathcal{D}_{train} = \{(x_i, y_i), i = 1, 2, ..., n\}$ and $\mathcal{D}_{test} = \{(x_i, y_i), i = 1, 2, ..., m\}$
- Non parametric scenario :
 - $y_i = f^*(x_i) + w_i$, i = 1, 2, ..., n
 - $w_i \sim \mathcal{N}(0,1)$ iid
 - $f^* \in \mathcal{H}$
- ullet Fix ${\cal H}$ a function space

context

ullet Goal : fit function space ${\mathcal H}$ to the model via gradient descent

context

ullet Goal: fit function space ${\mathcal H}$ to the model via gradient descent

Figure: gradient descent

context

• Goal: fit function space \mathcal{H} to the model via gradient descent

Figure: gradient descent

Figure: gradient descent
$$f_{t+1} = f_t + \alpha \nabla \mathcal{L}(f_t), \quad f^* \in \arg\min_{f \in \mathcal{H}} \mathcal{L}(f), \quad \mathcal{L}(f) = \mathbb{E}_y \frac{1}{n} \sum_{i=1}^n \phi(y_i, f(x_i))$$

Kernels in use

 Many problems in statistics involve optimizing over function spaces.

- Many problems in statistics involve optimizing over function spaces.
- Kernels and their associated Reproducing Kernel Hilbert Spaces, give a broad class of functions

- Many problems in statistics involve optimizing over function spaces.
- Kernels and their associated Reproducing Kernel Hilbert Spaces, give a broad class of functions
- Have geometric properties similar to real euclidean spaces

- Many problems in statistics involve optimizing over function spaces.
- Kernels and their associated Reproducing Kernel Hilbert Spaces, give a broad class of functions
- Have geometric properties similar to real euclidean spaces
- Give some sort of machinery to manipulate such functions

Introduction

- Many problems in statistics involve optimizing over function spaces.
- Kernels and their associated Reproducing Kernel Hilbert Spaces, give a broad class of functions
- Have geometric properties similar to real euclidean spaces
- Give some sort of machinery to manipulate such functions
- What is an RKHS?

Definition

Now let \mathcal{H} be a function Hilbert space, of functions with values on the set \mathbb{K} . \mathcal{H} is said to be a **Reproducing Kernel Hilbert Space** if there exists a kernel k over \mathcal{H} such that :

- $\forall x \in \mathbb{K} : k(.,x) \in \mathcal{H}$
- Reproducing property :

 $\forall (f,x) \in \mathcal{H} \times \mathbb{K} : f(x) = \langle f, k(.,x) \rangle_{\mathcal{H}}$, with $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ denotes the inner product over \mathcal{H} .

kernels : RKHS

Definition

Now let \mathcal{H} be a function Hilbert space, of functions with values on the set \mathbb{K} . \mathcal{H} is said to be a **Reproducing Kernel Hilbert Space** if there exists a kernel k over \mathcal{H} such that :

- \forall *x* ∈ \mathbb{K} : k(.,x) ∈ \mathcal{H}
- Reproducing property :

 $\forall (f,x) \in \mathcal{H} \times \mathbb{K} : f(x) = \langle f, k(.,x) \rangle_{\mathcal{H}}$, with $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ denotes the inner product over \mathcal{H} .

Definition

A symmetric bivariate function $\mathcal{K}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is Positive semidefinite (PSD) if for all integers $n \geq 1$ and all $\{x_i\}_{i=1}^n \subseteq \mathcal{X}$, the $n \times n$ matrix \mathbf{K} with entries $\mathbf{K}_{i,j} = \mathcal{K}(x_i, x_j)$ is Positive semidefinite.

Kernels: theorems

Connection between RKHS and Kernels

Theorem: RKHS from PSD kernels

Given any PSD kernel \mathcal{K} , there is a unique Hilbert space \mathcal{H} , in which the kernel \mathcal{K} satisfies the **reproducing property**. \mathcal{H} is said to be an **RKHS** associated to kernel \mathcal{K} .

Kernels: theorems

Connection between RKHS and Kernels

Theorem: RKHS from PSD kernels

Given any PSD kernel \mathcal{K} , there is a unique Hilbert space \mathcal{H} , in which the kernel \mathcal{K} satisfies the **reproducing property**. \mathcal{H} is said to be an **RKHS** associated to kernel \mathcal{K} .

Theorem: Kernel from RKHS

Given a function Hilbert space \mathcal{H} , suppose the evaluation operator (linear) $L_x: f \in \mathcal{H} \to f(x) \in \mathbb{R}$ is uniformly bounded, ie there is some universal constant M>0 such that : for all $x \in \mathcal{X}$ and for all $f \in \mathcal{H} |L_x(f)| \leq M \|f\|_{\mathcal{H}}$, then there is a **unique** PSD kernel that satisfies the **reproducing property**.

Kernels: mercer's expansion formula

- We already know that for PSD matrices : $\mathbf{K} = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i \mathbf{v}_i^T$
- Is there a generalisation for kernels?

suppose kernel satisfies :

$$\int_{\mathcal{X}} \int_{\mathcal{X}} \mathcal{K}(x,y)^2 d\mathbb{P}(x) d\mathbb{P}(y) < \infty$$

Kernels: mercer's expansion formula

- We already know that for PSD matrices : $\mathbf{K} = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i \mathbf{v}_i^T$
- Is there a generalisation for kernels?

suppose kernel satisfies :

$$\int_{\mathcal{X}} \int_{\mathcal{X}} \mathcal{K}(x, y)^2 d\mathbb{P}(x) d\mathbb{P}(y) < \infty$$

Mercer's theorem

There exists a sequence of eigenfunctions $(\phi_j)_{j=1}^{\infty}$ that form an orthonormal basis of $L^2(\mathcal{X}, \mathbb{P})$ and non-negative eigenvalues $(\mu_i)_{i=1}^{\infty}$ such that :

$$\mathcal{K}(x,y) = \sum_{i=1}^{\infty} \mu_i \phi_i(x) \phi_i(y)$$

Kernels: consequences

- Functions expansion $\forall x \in \mathcal{X}$: $f(x) = \sum_{j=1}^{\infty} \sqrt{\mu_j} a_j \phi_j(x)$ with $a_k = \frac{1}{\sqrt{\mu_k}} \langle f, \phi_k \rangle_{\mathcal{H}}$
- we have the inner products $\langle f,g\rangle_{L^2(\mathcal{X})}=\sum_{j=1}^\infty \mu_j a_j b_j$ and $\langle f,g\rangle_{\mathcal{H}}=\sum_{j=1}^\infty a_j b_j$

Kernels: consequences

- Functions expansion $\forall x \in \mathcal{X}$: $f(x) = \sum_{j=1}^{\infty} \sqrt{\mu_j} a_j \phi_j(x)$ with $a_k = \frac{1}{\sqrt{\mu_k}} \langle f, \phi_k \rangle_{\mathcal{H}}$
- we have the inner products $\langle f,g\rangle_{L^2(\mathcal{X})}=\sum_{j=1}^\infty \mu_j a_j b_j$ and $\langle f,g\rangle_{\mathcal{H}}=\sum_{j=1}^\infty a_j b_j$
- recall the fact that $:\langle f,g\rangle_{L^2(\mathcal{X})}=\int_{\mathcal{X}}f(x)g(x)d\mathbb{P}(x)$

Kernels : consequences

- Functions expansion $\forall x \in \mathcal{X}$: $f(x) = \sum_{j=1}^{\infty} \sqrt{\mu_j} a_j \phi_j(x)$ with $a_k = \frac{1}{\sqrt{\mu_k}} \langle f, \phi_k \rangle_{\mathcal{H}}$
- we have the inner products $\langle f,g\rangle_{L^2(\mathcal{X})}=\sum_{j=1}^\infty \mu_j a_j b_j$ and $\langle f,g\rangle_{\mathcal{H}}=\sum_{j=1}^\infty a_j b_j$
- recall the fact that $:\langle f,g\rangle_{L^2(\mathcal{X})}=\int_{\mathcal{X}}f(x)g(x)d\mathbb{P}(x)$

Representation theorem

Consider a \mathcal{H} to be a **RKHS** defined with a kernel \mathbb{K} over a domain \mathcal{X} . let $(x_1, x_2, ..., x_n) \in \mathcal{X}^n$. Let a functional $\Psi : \mathbb{R}^{n+1} \to \mathbb{R}$ increasing wrt (with respect to) its last variable. Then $\min_{f \in \mathcal{T}} \Psi(f(x_1), ..., f(x_n), \|f\|_{\mathcal{F}}^2)$

is reached at some $f = \sum_{i=1}^{i=n} \alpha_i \mathbb{K}(x_i, .)$

Kernels: consequences

- **Empirical loss** is defined as $:\mathcal{L}_n(f) = \frac{1}{n} \sum_{i=1}^n \phi(Y_i, f(x_i))$ with $\phi(x, y) = (x y)^2$
- Gradient descent iterates $f^{t+1}(x_n^1) = f^t(x_n^1) \alpha_t K(f^t(x_n^1) y_1^n) = \left(I_n \alpha_t K\right) f^t(x_n^1) + \alpha_t K y_1^n$ with K the empirical matrix $K = \frac{1}{n} \mathbb{K}[x_i, x_i]$ (Gramm matrix)

Kernels: consequences

- **Empirical loss** is defined as $:\mathcal{L}_n(f) = \frac{1}{n} \sum_{i=1}^n \phi(Y_i, f(x_i))$ with $\phi(x, y) = (x y)^2$
- Gradient descent iterates $f^{t+1}(x_n^1) = f^t(x_n^1) \alpha_t K(f^t(x_n^1) y_1^n) = \left(I_n \alpha_t K\right) f^t(x_n^1) + \alpha_t K y_1^n$ with K the empirical matrix $K = \frac{1}{n} \mathbb{K}[x_i, x_j]$ (Gramm matrix)
- Let $r = \operatorname{rank}(K)$ and $K = UAU^T$ and $S^t = \prod_{\tau=1}^{t-1} \left(I_n \alpha_{\tau}A\right)$

Kernels : consequences

- **Empirical loss** is defined as $:\mathcal{L}_n(f) = \frac{1}{n} \sum_{i=1}^n \phi(Y_i, f(x_i))$ with $\phi(x, y) = (x y)^2$
- Gradient descent iterates $f^{t+1}(x_n^1) = f^t(x_n^1) \alpha_t K(f^t(x_n^1) y_1^n) = \left(I_n \alpha_t K\right) f^t(x_n^1) + \alpha_t K y_1^n$ with K the empirical matrix $K = \frac{1}{n} \mathbb{K}[x_i, x_j]$ (Gramm matrix)
- ullet Let $r=\mathsf{rank}(K)$ and $K=\mathit{UAU}^T$ and $S^t=\prod_{ au=1}^{t-1}\left(\mathit{I}_{n}-lpha_{ au}\mathit{A}
 ight)$
- Recall A is of form $\operatorname{diag}(\hat{\lambda_1},\hat{\lambda_2},...,\hat{\lambda_r},0,0,...,0)$ where we have supposed $\hat{\lambda_1} \geq \hat{\lambda_2} \geq ... \geq \hat{\lambda_r}$
- Denote $\eta_t = \sum_{\tau=0}^{t-1} \alpha_{\tau}$ the sum of the learning rates.

Conclusion

- Introduction
- Stopping rules
 - Naive stopping rules
 - Bias variance balance : To a sophisticated stopping rule
 - Analysis
- 3 Conclusion

Oracle

Denote by : $R_{OR}(f_t) = ||f^* - f_t||_n^2$. We might attempt for the **Oracle** rule :

$$\hat{\mathcal{T}}_{\mathit{OR}} = \mathop{\mathsf{arg\,min}}\left\{t \in \mathbb{N}, \mid \mathit{R}_{\mathit{OR}}(\mathit{f}_{t+1}) > \mathit{R}_{\mathit{OR}}(\mathit{f}_{t})
ight\} - 1$$

Oracle

Denote by : $R_{OR}(f_t) = ||f^* - f_t||_n^2$. We might attempt for the **Oracle** rule :

$$\hat{\mathcal{T}}_{\mathit{OR}} = \mathop{\mathsf{arg\,min}}\left\{t \in \mathbb{N}, \mid \mathit{R}_{\mathit{OR}}(\mathit{f}_{t+1}) > \mathit{R}_{\mathit{OR}}(\mathit{f}_{t})
ight\} - 1$$

But!

Oracle

Denote by : $R_{OR}(f_t) = ||f^* - f_t||_n^2$. We might attempt for the **Oracle** rule :

$$\hat{\mathcal{T}}_{OR} = \mathop{\mathsf{arg\,min}}\left\{t \in \mathbb{N}, \mid \mathit{R}_{OR}(\mathit{f}_{t+1}) > \mathit{R}_{OR}(\mathit{f}_{t})
ight\} - 1$$

But!

• no mathematical argument showing that the function $t \stackrel{\Phi}{\longrightarrow} R_{OR}(f_t) = ||f^* - f_t||_n^2$, is convex

Oracle

Denote by : $R_{OR}(f_t) = ||f^* - f_t||_n^2$. We might attempt for the **Oracle** rule :

$$\hat{\mathcal{T}}_{OR} = \mathop{\mathsf{arg\,min}}\left\{t \in \mathbb{N}, \mid \mathit{R}_{OR}(\mathit{f}_{t+1}) > \mathit{R}_{OR}(\mathit{f}_{t})
ight\} - 1$$

But!

- no mathematical argument showing that the function $t \xrightarrow{\Phi} R_{OR}(f_t) = ||f^* f_t||_n^2$, is convex
- data independent rule : with $\mathcal{D}_{train} \neq \mathcal{D}'_{train}$ we have the same performance.

Hold out

- Let's suppose that the size of the full data $\{x_i\}_{i=1}^n$ is even. S_{te} , and S_{tr} the train/test sets .
- at each iteration, the training data is used to estimate the risk $R_{HO}(f_t) = \frac{1}{n} \sum_{i \in S_{to}} (y_i f_{tr,t}(x_i))^2$.

Hold out

- Let's suppose that the size of the full data $\{x_i\}_{i=1}^n$ is even. S_{te} , and S_{tr} the train/test sets .
- at each iteration, the training data is used to estimate the risk $R_{HO}(f_t) = \frac{1}{n} \sum_{i \in S_{tr}} (y_i f_{tr,t}(x_i))^2$.
- Possible rule $\hat{T}_{HO}= rg \min \left\{ t \in \mathbb{N}, R_{HO}(f_{tr,t+1}) > R_{HO}(f_{tr,t})
 ight\} 1$

$$\mathbb{E}_{\mathcal{D}}(y - \hat{f})^2 = (y - \mathbb{E}_{\mathcal{D}}\hat{f})^2 + \mathbb{E}_{\mathcal{D}}(\hat{f} - \mathbb{E}_{\mathcal{D}}\hat{f})^2 + \sigma^2$$

$$\mathbb{E}_{\mathcal{D}}(y-\hat{f})^2 = (y - \mathbb{E}_{\mathcal{D}}\hat{f})^2 + \mathbb{E}_{\mathcal{D}}(\hat{f} - \mathbb{E}_{\mathcal{D}}\hat{f})^2 + \sigma^2$$

$$\mathbb{E}_{\mathcal{D}}(y-\hat{f})^2 = (y - \mathbb{E}_{\mathcal{D}}\hat{f})^2 + \mathbb{E}_{\mathcal{D}}(\hat{f} - \mathbb{E}_{\mathcal{D}}\hat{f})^2 + \sigma^2$$

- Bias-Variance decomposition seems good idea!
- How to concertize it ???

Construct a stopping rule

Using basic algebraic manipulations:

Lemma

$$\forall t > 0 : ||f_t - f^*||_n^2 \le B_t^2 + V_t$$

where:

$$B_t^2 = \frac{2}{n} \sum_{j=1}^{J=r} (S^t)_{j,j}^2 [U^T f^*(x_n^1)]_j^2 + \frac{2}{n} \sum_{j=r+1}^{J=n} [U^T f^*(x_n^1)]_j^2$$

and

$$V_t = \frac{2}{n} \sum_{i=1}^{j=r} (1 - S_{j,j}^t)^2 [U^T w]_j^2$$

We have the following properties of matrices S^t :

$$0 \le (S^t)_{j,j}^2 \le \frac{1}{2e\eta_t\hat{\lambda}_j}$$

and

$$\frac{1}{2}\min(1,\eta_t\hat{\lambda_j}) \leq (1-(S^t)_{j,j})^2 \leq \min(1,\eta_t\hat{\lambda_j})$$

Properties of Shrinkage matrices

We have the following properties of matrices S^t :

$$0 \le (S^t)_{j,j}^2 \le \frac{1}{2e\eta_t\hat{\lambda}_j}$$

and

$$\frac{1}{2}\min(1,\eta_t\hat{\lambda_j}) \leq (1-(S^t)_{j,j})^2 \leq \min(1,\eta_t\hat{\lambda_j})$$

With these properties we can prove that :

Lemma

for all iterations t = 1, 2, we have the upper bound :

$$B_t^2 \le \frac{1}{e\eta_t}$$

Now the Bias term is controled!

How to proceed

- Remains to control to variance term and exploit it's dependency on w_i
- With basic computations we have the following lemma :

Lemma

$$V_t = \frac{2}{n} Tr(UQU^T ww^T)$$

and

$$\mathbb{E}V_t = \frac{2}{n}Tr(Q)$$

where
$$Q = diag((1 - S_{j,j}^t)^2)_{1 \leq j \leq n}$$

Using the properties of Shrinkage matrices, we have easily :

Lemma

for all iteration t > 0:

$$\frac{\sigma^2}{4}\eta_t \left(\mathcal{R}_K \left(\frac{1}{\sqrt{\eta_t}} \right) \right)^2 \leq \mathbb{E} V_t \leq 2\eta_t \left(\mathcal{R}_K \left(\frac{1}{\sqrt{\eta_t}} \right) \right)^2$$

where
$$\mathcal{R}_{\mathcal{K}}(\epsilon) = \left[\frac{1}{n}\sum_{i=1}^{n}\min(\hat{\lambda}_{i},\epsilon^{2})\right]^{\frac{1}{2}}$$

Using the properties of Shrinkage matrices, we have easily :

Lemma

for all iteration t > 0:

$$\frac{\sigma^2}{4}\eta_t \left(\mathcal{R}_K \left(\frac{1}{\sqrt{\eta_t}} \right) \right)^2 \leq \mathbb{E} V_t \leq 2\eta_t \left(\mathcal{R}_K \left(\frac{1}{\sqrt{\eta_t}} \right) \right)^2$$

where
$$\mathcal{R}_{\mathcal{K}}(\epsilon) = \left[\frac{1}{n} \sum_{i=1}^{n} \min(\hat{\lambda}_{i}, \epsilon^{2})\right]^{\frac{1}{2}}$$

• For now all the elements are there !

Using the properties of Shrinkage matrices, we have easily :

Lemma

for all iteration t > 0:

$$\frac{\sigma^2}{4}\eta_t \left(\mathcal{R}_K \left(\frac{1}{\sqrt{\eta_t}} \right) \right)^2 \leq \mathbb{E} V_t \leq 2\eta_t \left(\mathcal{R}_K \left(\frac{1}{\sqrt{\eta_t}} \right) \right)^2$$

where
$$\mathcal{R}_{\mathcal{K}}(\epsilon) = \left[\frac{1}{n} \sum_{i=1}^{n} \min(\hat{\lambda}_{i}, \epsilon^{2})\right]^{\frac{1}{2}}$$

- For now all the elements are there!
- Concentration inequality to control V_t suitably

Using the properties of Shrinkage matrices, we have easily :

Lemma

for all iteration t > 0:

$$\frac{\sigma^2}{4}\eta_t \left(\mathcal{R}_K \left(\frac{1}{\sqrt{\eta_t}} \right) \right)^2 \leq \mathbb{E} V_t \leq 2\eta_t \left(\mathcal{R}_K \left(\frac{1}{\sqrt{\eta_t}} \right) \right)^2$$

where
$$\mathcal{R}_{\mathcal{K}}(\epsilon) = \left[\frac{1}{n} \sum_{i=1}^{n} \min(\hat{\lambda}_{i}, \epsilon^{2})\right]^{\frac{1}{2}}$$

- For now all the elements are there !
- ullet Concentration inequality to control V_t suitably
- we can wright : $V_t = \sum_{i,j} a_{i,j} (Z_i Z_j \mathbb{E}(Z_i Z_j))$ with $A = \frac{2}{n} U Q U^T$ and $Z_i = w_i$

Wright in 1973 proved that :

Lemma

For $Q = \sum_{i,j} a_{i,j} (Z_i Z_j - \mathbb{E}(Z_i Z_j))$ with Z_i are iid Sub-Gaussian random variables, then :

$$\mathbb{P}(|V_t - \mathbb{E}V_t| \ge \delta) \le \exp\Big\{ - c \min\Big(\frac{\delta}{\|A\|_{op}}, \frac{\delta^2}{\|A\|_F}\Big) \Big\}$$

Wright in 1973 proved that:

Lemma

For $Q = \sum_{i,j} a_{i,j} (Z_i Z_j - \mathbb{E}(Z_i Z_j))$ with Z_i are iid Sub-Gaussian random variables, then :

$$\mathbb{P}(|V_t - \mathbb{E}V_t| \ge \delta) \le \exp\Big\{ - c \min\Big(\frac{\delta}{\|A\|_{op}}, \frac{\delta^2}{\|A\|_F}\Big) \Big\}$$

As consequence:

$$V_t \leq \mathbb{E}V_t + \delta$$
 (*)

with probability at least

$$1 - \exp\Big\{ - 4 \textit{cn} \delta \min\Big(1, \Big(\eta_t \mathcal{R}_{\mathcal{K}}\Big(\frac{1}{\sqrt{\eta_t}}\Big)\Big)^{-1}\Big) \Big\}$$

Now conditioning on the event (*)

$$||f_t - f^*||_n^2 \le B_t^2 + V_t \le \mathbb{E}V_t + \delta + \frac{1}{e\eta_t}$$

$$\le \frac{1}{e\eta_t} + \delta + 2\sigma^2\eta_t \left(\mathcal{R}_K\left(\frac{1}{\sqrt{\eta_t}}\right)\right)^2$$

Now conditioning on the event (*)

$$||f_t - f^*||_n^2 \le B_t^2 + V_t \le \mathbb{E}V_t + \delta + \frac{1}{e\eta_t}$$

$$\le \frac{1}{e\eta_t} + \delta + 2\sigma^2 \eta_t \left(\mathcal{R}_K\left(\frac{1}{\sqrt{\eta_t}}\right)\right)^2$$

putting
$$\delta = 3\sigma^2 \eta_t \left(\mathcal{R}_K \left(\frac{1}{\sqrt{\eta_t}} \right) \right)^2$$
, yields :

Now conditioning on the event (*)

$$\begin{split} \|f_t - f^*\|_n^2 & \leq B_t^2 + V_t \leq \mathbb{E} V_t + \delta + \frac{1}{e\eta_t} \\ & \leq \frac{1}{e\eta_t} + \delta + 2\sigma^2 \eta_t \Bigg(\mathcal{R}_K \Big(\frac{1}{\sqrt{\eta_t}}\Big) \Bigg)^2 \end{split}$$
 putting $\delta = 3\sigma^2 \eta_t \Bigg(\mathcal{R}_K \Big(\frac{1}{\sqrt{\eta_t}}\Big) \Bigg)^2$, yields :

 $\|f_t-f^*\|_n^2 \leq \frac{1}{e\eta_t} + 5\sigma^2\eta_t \Bigg(\mathcal{R}_K\Big(\frac{1}{\sqrt{\eta_t}}\Big)\Bigg)^2$ as a high probability claim

(1)

How to link the two quantities
$$5\sigma^2\eta_t\left(\mathcal{R}_K\left(\frac{1}{\sqrt{\eta_t}}\right)\right)^2$$
 and $\frac{1}{e\eta_t}$???

Conclusion

How to link the two quantities
$$5\sigma^2\eta_t\left(\mathcal{R}_K\left(\frac{1}{\sqrt{\eta_t}}\right)\right)^2$$
 and $\frac{1}{e\eta_t}$???

• Empirical radius :

$$\hat{\epsilon_n} = \inf \left\{ \epsilon > 0 \mid \mathcal{R}_K(\epsilon) \le \frac{\epsilon^2}{2e\sigma} \right\}$$

How to link the two quantities $5\sigma^2\eta_t\left(\mathcal{R}_K\left(\frac{1}{\sqrt{\eta_t}}\right)\right)^2$ and $\frac{1}{e\eta_t}$???

• Empirical radius :

$$\hat{\epsilon_n} = \inf \left\{ \epsilon > 0 \mid \mathcal{R}_K(\epsilon) \le \frac{\epsilon^2}{2e\sigma} \right\}$$

• Define:

$$\hat{\mathcal{T}} := \mathop{\mathsf{arg\,min}} \left\{ t \in \mathbb{N} \mid \mathcal{R}_k \left(rac{1}{\sqrt{\eta_k}}
ight) > rac{1}{2\mathsf{e}\sigma\eta_k}
ight\} - 1$$

How to link the two quantities $5\sigma^2\eta_t\left(\mathcal{R}_K\left(\frac{1}{\sqrt{\eta_t}}\right)\right)^2$ and $\frac{1}{e\eta_t}$???

• Empirical radius :

$$\hat{\epsilon_n} = \inf \left\{ \epsilon > 0 \mid \mathcal{R}_K(\epsilon) \le \frac{\epsilon^2}{2e\sigma} \right\}$$

Define :

$$\hat{\mathcal{T}} := \mathop{\mathsf{arg\,min}} \left\{ t \in \mathbb{N} \mid \mathcal{R}_k \left(rac{1}{\sqrt{\eta_k}}
ight) > rac{1}{2\mathsf{e}\sigma\eta_k}
ight\} - 1$$

yields:

$$||f_t - f^*||_n^2 \le \frac{4}{en_t}$$

with probability at least $1 - \exp\{-cn\hat{\epsilon}_n^2\}$

Nice theorem :-)

Theorem

Suppose wa have a **valid step-size**. Then define \hat{T} as previous. There are universal positive constants (c_1, c_2) , such that, the following events hold with probability at least $1 - c_1 \exp(-c_2 n \hat{\epsilon}_n^2)$:

(a) : for all iterations $t = 1, 2, ..., \hat{T}$:

$$\|f_t - f^*\|_n^2 \le \frac{4}{e\eta_t}$$

(b) : At the iteration \hat{T} we have :

$$\|f_t - f^*\|_n^2 \le 12\hat{\epsilon}_n^2$$

(c) : Moreover, for all $t > \hat{T}$:

$$\mathbb{E}\left[\left\|f_{t}-f^{*}\right\|_{n}^{2}\right]\geq\frac{\sigma^{2}}{4}\eta_{t}\hat{R}_{k}^{2}\left(\frac{1}{\eta_{k}}\right)$$

alelille

Conclusion

Numerical illustration

Figure: First order Sobolev kernels

Figure: Gaussian kernel

- Gaussian kernel T=9 iterations theoritically
- Sobolev kernel T = 70 iterations theoritically

Numerical illustration

Figure: Different rules

- Introduction
- Stopping rules
- 3 Conclusion

Conclusion

- Garvesh Raskutti, Martin J. Wainwright, Bin Yu, "Early Stopping and Non-parametric Regression: An Optimal Data-dependent Stopping Rule", https://jmlr.org/papers/volume15/raskutti14a/raskutti14a.pdf
- Martin J. Wainwright, **High dimensional statistics**, Cambridge series in statistical and probabilistic mathematics, Cambridge University press, February 2019.
- Yuting Wei, Fanny Yang, Martin J. Wainwright Early stopping for kernel boosting algorithms: A general analysis with localized complexities. https://arxiv.org/abs/1707.01543.

Conclusion

- Michel Ledoux, **The concentraion of measure phenomenon**, *American Mathematical Society*.
- Shahar Mendelson, Geometric Parameters of Kernel

 Machines, Proceedings of the Conference on Learning Theory
 (COLT). https://maths-people.anu.edu.au/~mendelso/
 papers/published/conference/MenKer02.pdf.
- Roman Vershynin, **High dimensional probability**, *Cambridge University Press*.
- Mehryar Mohri, Afshin Rostamizadeh and Ameet Talwalkar Foundations of machine learning, the MIT press.

Thank you!