A Report of Type Theory and Formal Proof

Juan Pablo Royo Sales

Universitat Politècnica de Catalunya

February 9, 2021

Contents

	<i>u</i> .		Untyped lambda calculus]						
2.1	2.1 Definition													6							
	2.1.1	Lambd	la-terms																		4

1 Introduction

This report is going to provide a summary over the book [NG14]. Alongside the different chapters of the book I am going to describe briefly the most important parts of each chapter and, at the same time, I am going to solve 1 or 2 of the exercises proposed by the authors.

The organization of the report is going to be the same as the chapters of the book.

2 Untyped lambda calculus

In this first chapter the authors define and describe Lambda Calculus (λ -calculus) system which encapsulates the formalization of basic aspects of mathematical functions, in particular construction and use. In λ -calculus formalization system there are typed and untyped formalization of the same

SIRI - Guided Work UPC MIRI

system. In this first case authors introduced the first basic and simple formalization which is *untyped*.

2.1 Definition

There are two constructions principles and one evaluation rule

Construction principles:

- Abstraction: Given an expression M and a variable x we can construct the expression: $\lambda x.M$. This is abstraction of x over M Example: $\lambda y.(\lambda x.x y)$ Abstraction of y over $\lambda x.x y$
- Application: Given 2 expressions M and N we can construct the expression: M N. This is the application of M to N. Example: $(\lambda x.x^2+1)(3)$ Application of 3 over $\lambda x.x^2+1$

Evaluation Rule: Formalization of this process is called Beta Reduction $(\beta$ -reduction). β -reduction: An expression $(\lambda x.M)N$ can be rewritten to M[x:=N], which means every x should be replaced by N in M. This process is called β -reduction of $(\lambda x.M)N$ to M[x:=N].

Example: $(\lambda x.x^2 + 1)(3)$ reduces to $(x^2 + 1)[x := 3]$, which is $3^2 + 1$.

In this book, functions on λ -calculus notation are Curried.

2.1.1 Lambda-terms

Expressions in λ -calculus are called Lambda Terms (λ -term)

Definition 1. The set Λ of all λ -term

- 1. (Variable) If $u \in V$, then $u \in \Lambda$
- 2. (Application) If M and $N \in \Lambda$, then $(MN) \in \Lambda$
- 3. (Abstraction) If $u \in V$ and $M \in \Lambda$, then $(\lambda u.M) \in \Lambda$

References

[NG14] Rob Nederpelt and Herman Geuvers. *Type Theory and Formal Proof.* Cambridge University Press, Cambridge CB2 8BS, United Kindom, 2014.