Knowledge Graph Project (FORWARD Data Lab)

Part 1. ETL Pipeline

Load libraries

```
In [1]: import pyspark as sp
import numpy as np
import string
import re
```

Set environment variable (optional)

```
In [2]: import os
    os.environ["PYSPARK_PYTHON"]="/usr/bin/python3"
    os.environ["PYSPARK_DRIVER_PYTHON"]="/usr/bin/python3"
```

Setup cluster

Load dataset

- Documents: 1.7m documents (arXiv dataset)
- Keyword list: 100,000 keywords (FORWARD Data Lab)
- Download your documents here: https://www.kaggle.com/Cornell-University/arxiv).

```
In [4]: df_keywords = spark.read.csv("./mag_cs_keywords.csv",header=True)
    df_arxiv = spark.read.json("./arxiv-metadata-oai-snapshot.json")

In [5]: df_keywords = df_keywords.repartition(16)
    df_arxiv = df_arxiv.repartition(16)

In [6]: df_keywords.rdd.getNumPartitions()

Out[6]: 16

In [7]: df_keywords.count()

Out[7]: 104654

In [8]: abstracts = df_arxiv.select("id","abstract")
    keywords = df_keywords.select("normalizedName")
```

Cleaning & Normalization

```
In [9]: from pyspark.sql.functions import udf, col
    from pyspark.sql import Row
    from pyspark.sql.types import ArrayType, StructField, StructType, Stri
    ngType, IntegerType

# get only lowercase alphabets
def strip_non_ascii(data_str):
    ''' Returns the string without non ASCII characters'''
    stripped = (c.lower() for c in data_str if 96 < ord(c.lower()) < 1
23 or ord(c)==32) #alphabets

    return ''.join(stripped)
# setup pyspark udf function
    strip_non_ascii_udf = udf(strip_non_ascii, StringType())</pre>
In [10]: abstracts = abstracts.withColumn('normalized', strip non ascii udf(abs
```

only showing top 20 rows

0705.1654

0803.3867

0709.0351

0710.2002

0801.1957

0707.0756

0807.4946

Keyword List for Query

keywords dict: Hash table is used to find whether documents contain keywords

a smallscale tr...

we present a ch...

for precision s...

we present prec...

we calculate th...

many topologica...

we establish lo...

0711.4659 in a newly intr... 0705.1358 we propose two ...

0808.0066 | the reasonablen... | 0801.3027 | in this paper w... | 0707.0344 | in this paper w... |

- My frist attempt was using regular expression (re.findall()).
- When using regular expression, there could be a time complexity issue due to unnecessary computational overhead
- To optimize algorithm, we should search from document to word.

```
In [12]: keywords_list = list(keywords.select('normalizedName').toPandas()['nor
    malizedName'])
    keyword_dict = {word:0 for word in keywords_list}
```

Extract Keyword from the keyword list

```
In [13]: import re, nltk
         # Define the function you want to return
         def extract(s):
             all matches = set()
             ngrams = list()
             ngrams.append(s.split(" "))
             for i in range(1,12): # all ngrams in keyword list
                 ngrams.append(nltk.ngrams(ngrams[0], i))
             for ngram in ngrams:
                 for token in ngram:
                     token = ' '.join(token)
                     if keyword_dict.get(token, -1) >=0:
                          keyword dict[token] += 1
                         all matches.add(token)
             return ','.join(all_matches)
         # Create the UDF, note that you need to declare the return schema matc
         hing the returned type
         extract udf = udf(extract, StringType())
         # Apply it
         df = abstracts.withColumn('extracted', extract_udf(abstracts['normaliz
         ed']))
```

++		++						
id	normalized	extracted						
++								
0705.2030	the group eso s	power,momentum,ro						
0801.0970	this paper is c	selection,minimax						
0709.3236	we present a ge	perturbation theo						
0809.3030		set,crowdsourcing						
0712.0290	the ability to	mechanism, morphol						
0805.2349	this article pr	liquid helium,pha						
0805.1292	we turn the chu	physics,computati						
0712.3567	the random sequ	deposition,initia						
0705.1654	a smallscale tr	thermal, temperatu						
0803.3867	we present a ch	product, term						
0709.0351	for precision s	field,perturbatio						
0711.4659	in a newly intr	square,phase,posi						
0705.1358	we propose two	phase,phase trans						
0710.2002	we present prec	pair production,d						
0801.1957	we calculate th	quantum,phase,fie						
0707.0756	many topologica	generalization, se						
0808.0066	the reasonablen	perturbation theo						
0801.3027	in this paper w	brownian motion,p						
0707.0344	in this paper w	bridge,is a,devia						
0807.4946	we establish lo	inflow,outflow,la						
++		++						

only showing top 20 rows

$$PMI(A, B) = \frac{P(A, B)}{P(A) * P(B)}$$

$$P(A, B) = \frac{c((A, B), C_{\text{pairs}})}{c(C_{\text{pairs}})}$$

$$P(A) = \frac{c(A)}{c(C)}, P(B) = \frac{c(B)}{c(C)}$$

where C stands for word collection

1. Get Word Count

• corpus: It is a dictionary of keywords

2. Get Cooccurence Count

• corpus2: It is a dictionary where key is tuple (pair of keywords) and value is frequency

3. How to avoid bottleneck?

• Use clusters! (Amazon EMR, S3)

4. Save Result Here

• Uncomment to save to text file

```
In [18]: # corpus_temp.repartition(16).saveAsTextFile("./corpus_ngram.txt")
# corpus2_temp.repartition(16).saveAsTextFile("./corpus2_ngram.txt")
```

5. Load From File

• Uncomment to load from file

```
In [ ]: # corpus = spark.sparkContext.textFile("./corpus ngram.txt").countByVa
        lue()
        # corpus2 = spark.sparkContext.textFile("./corpus2 ngram.txt").countBy
        Value()
        n n n
        Clean corpus when read from file
        Since we are loading from a textfile, tuples are converted into string
        .....
        # from collections import defaultdict
        # corpus temp = defaultdict(int)
        \# corpus = dict(map(lambda x: (x[0].strip(), x[1]), corpus.items()))
        # for k, v in corpus2.items():
              k1, k2 = re.sub("'", "", k.strip('"()')).split(",")
        #
              k2 = k2.strip()
        #
              w1, w2 = min(k1, k2), max(k1, k2)
              corpus temp[(w1, w2)] += v
        # corpus2 = corpus temp
```

Part 2. Graph Visualization

Draw Graph

```
In [19]: freq threshold = 0
         PMI threshold = 10
In [20]:
         import networkx as nx
         import math
         import pdb
         G = nx.Graph()
         total word freq = sum(corpus.values())
         total pair freq = sum(corpus2.values())
         for (n1, n2), cooccurence in corpus2.items():
             if corpus[n1] > freq threshold and corpus[n2] > freq threshold and
         cooccurence:
                 pa = corpus[n1] / total word freq
                 pb = corpus[n2] / total word freq
                 pab = cooccurence / total_pair_freq
                 pmi = math.log(pab/(pa*pb), 2)
                 G.add edge(n1, n2, weight=pmi)
```

RUN QUERY HERE

- Type your query here
- Sample queries include

gene, entitiy relationship model, business concept, data mining

```
In [40]: | query = 'entity relationship model'
         sorted(G.adj[query].items(), key=lambda x: x[1]['weight'], reverse=Tru
         e)[:5]
Out[40]: [('requirement document', {'weight': 21.543808138427178}),
          ('data entity', {'weight': 21.543808138427178}),
          ('database design', {'weight': 16.589611828040304}),
          ('business process', {'weight': 13.857307611243959}),
          ('business', {'weight': 10.290551558646024})]
In [41]: | query = 'second language acquisition'
         sorted(G.adj[query].items(), key=lambda x: x[1]['weight'], reverse=Tru
         e)[:5]
Out[41]: [('second language writing', {'weight': 18.958845637706023}),
          ('contrastive analysis', {'weight': 18.958845637706023}),
          ('english as second language', {'weight': 17.37388313698487}),
          ('question analysis', {'weight': 16.958845637706023}),
          ('english as a second language', {'weight': 16.958845637706023})]
         query = 'bernoulli distribution'
In [42]:
         sorted(G.adj[query].items(), key=lambda x: x[1]['weight'], reverse=Tru
         e)[:5]
Out[42]: [('multiple outcome', {'weight': 13.698318087482804}),
          ('dynamic decision making', {'weight': 13.698318087482804}),
          ('multivariate gaussian model', {'weight': 13.43528368164901}),
          ('disorder problem', {'weight': 13.212891260312562}),
          ('simultaneous perturbation stochastic approximation',
           {'weight': 13.020246182370165})]
         query = 'business concept'
In [43]:
         sorted(G.adj[query].items(), key=lambda x: x[1]['weight'], reverse=Tru
         e)[:5]
Out[43]: [('customer segment', {'weight': 21.543808138427178}),
          ('strategic change', {'weight': 21.543808138427178}),
          ('research knowledge', {'weight': 18.736453216369576}),
          ('secondary data', {'weight': 16.685827143299605}),
          ('business model', {'weight': 15.168768707080254})]
```

```
In [52]: query = 'algorithm'
    sorted(G.adj[query].items(), key=lambda x: x[1]['weight'], reverse=Tru
    e)[:5]

Out[52]: [('attribute oriented induction', {'weight': 5.063633283582013}),
        ('coding algorithm', {'weight': 5.063633283582013}),
        ('resource allocation algorithm', {'weight': 5.063633283582013}),
        ('power control algorithm', {'weight': 5.063633283582013}),
        ('extraction algorithm', {'weight': 5.063633283582013})]
```

- Higher than 10 pmi demonstrates a strong relationship between the two words
- Below is the sample pmi table from the wikipiedia dataset.

pmi	co-occurence	count word2	count word 1	word 2	word 1
10.0349081703	1159	1311	1938	rico	puerto
8.41470768304	1384	2749	5578	driver	car
-1.72037278119	3347	3293296	283891	the	it
-3.70663100173	1190	1375396	1761436	and	of

• Reference: https://en.wikipedia.org/wiki/Pointwise_mutual_information)

(https://en.wikipedia.org/wiki/Pointwise_mutual_information)

Top 20 Related Words

- Queries and their related keywords are sorted here by pmi.
- Natural science domain seems to work well

```
In [22]: result = list()
         for i, q in enumerate(list(G.nodes)):
             weight = sorted(G.adj[q].items(), key=lambda x: x[1]['weight'], re
         verse=True)[:3]
             if len(weight) == 0:
                 r1, r2, r3 = 0, 0, 0
                 pmi = 0
             elif len(weight)==1:
                 r1, r2, r3 = weight[0][0], 0, 0
                 pmi = weight[0][1]['weight']
             elif len(weight) == 2:
                 r1, r2, r3 = weight[0][0], weight[1][0], 0
                 pmi = weight[0][1]['weight']
                 r1, r2, r3 = weight[0][0], weight[1][0], weight[2][0]
                 pmi = weight[0][1]['weight']
             result.append((q, r1, r2, r3, pmi))
         result.sort(key=lambda x: x[4], reverse=True)
         for q, r1, r2, r3, _ in result[:20]:
             print("query: {}".format(q))
             print("result: {0}, {1}, {2}\n".format(r1, r2, r3))
         query: gibberellin
         result: brassinosteroid, principal mechanism, signalling pathways
         query: brassinosteroid
         result: gibberellin, principal mechanism, signalling pathways
         query: customer segment
         result: strategic change, business concept, research knowledge
         query: strategic change
         result: customer segment, business concept, research knowledge
         query: business concept
         result: customer segment, strategic change, research knowledge
         query: digital single market
         result: language grid, single market, multilingualism
         query: language grid
         result: digital single market, single market, multilingualism
         query: poor nutrition
         result: mental development, chatbot, immunity
         query: mental development
         result: poor nutrition, chatbot, immunity
```

```
query: coronary ligation
result: isoprenaline, ligation, myocardial infarction
query: isoprenaline
result: coronary ligation, ligation, myocardial infarction
query: synthetic drugs
result: lipolysis, thermogenesis, high morbidity
query: lipolysis
result: synthetic drugs, thermogenesis, high morbidity
query: requirement document
result: data entity, entity relationship model, database design
query: data entity
result: requirement document, entity relationship model, database de
sign
query: entity relationship model
result: requirement document, data entity, database design
query: genetic linkage map
result: superphylum, polyphemus, ecdysozoa
query: superphylum
result: genetic linkage map, polyphemus, ecdysozoa
query: polyphemus
result: genetic linkage map, superphylum, ecdysozoa
query: conductive hearing loss
result: sound stimulation, umbo, eardrum
```

Visualization

The final plot shows that related words form a word cluster

```
In [23]: samples = ["spastic", "hypertonia", "reflex", "muscle", "endophyte", "
    jatropha", "colonization", "crop", "colonialism", "patriarchy", "solid
    arity", "meter"]
```

```
In [24]: matrix = list()
    for i, row in enumerate(samples):
        row_temp = list()
        for j, col in enumerate(samples):
            w1, w2 = samples[i], samples[j]
            if G.adj.get(w1, 0) and G.adj[w1].get(w2, 0) and G.adj[w1][w2]
        .get("weight", 0):
            row_temp.append(G.adj[w1][w2]["weight"])
        else:
            row_temp.append(0)
        matrix.append(row_temp)
```

```
In [25]: from sklearn.decomposition import PCA

pca = PCA(n_components=2)
    result = pca.fit_transform(matrix)
```


<Figure size 1080x1080 with 0 Axes>

Future Directions

- Term Frequency
 - Apply TF transformation when counting words. (Sublinear tranformation, BM25)
 - Apply smoothing
- Embedding
 - Use cooccurence matrix to train word embeddings (Glove)
 - Or, load word embedding from Glove or Word2Vec and project to 2D plot.
 - Evalutate the similarity of two words by using 11 distance, 12 distance, or cosine similarity.
- Different Approach
 - Try query expansion
 - Try information retrieval methods to infinitely expand the knowledge graph
- Metric
 - We may investigate NPMI
 - Entropy

References

- running pyspark in jupyter
 - https://medium.com/@Vatsal410/running-pyspark-on-an-aws-cluster-through-jupyter-notebook-fe28f6ef47a4 (https://medium.com/@Vatsal410/running-pyspark-on-an-aws-cluster-through-jupyter-notebook-fe28f6ef47a4)
 - https://medium.com/@christo.lagali/run-jupyter-notebooks-with-pyspark-on-an-emr-cluster-9630ef54c4e1)
 - https://towardsdatascience.com/getting-started-with-pyspark-on-amazon-emr-c85154b6b921
 (https://towardsdatascience.com/getting-started-with-pyspark-on-amazon-emr-c85154b6b921)

reading and writing in Amazon s3

https://docs.cloudera.com/runtime/7.0.2/developing-spark-applications/topics/spark-examples-of-accessing-s3-data-from-spark.html (https://docs.cloudera.com/runtime/7.0.2/developing-spark-applications/topics/spark-examples-of-accessing-s3-data-from-spark.html)

· textmining in apache spark

- https://runawayhorse001.github.io/LearningApacheSpark/textmining.html
 (https://runawayhorse001.github.io/LearningApacheSpark/textmining.html)
- https://medium.com/@serkansakinmaz/how-to-connect-amazon-s3-via-emr-based-pyspark-42707d540881 (https://medium.com/@serkansakinmaz/how-to-connect-amazon-s3-via-emr-based-pyspark-42707d540881)

• How to setup spark cluster in AWS

https://aws.amazon.com/blogs/big-data/best-practices-for-successfully-managing-memory-for-apache-spark-applications-on-amazon-emr/ (https://aws.amazon.com/blogs/big-data/best-practices-for-successfully-managing-memory-for-apache-spark-applications-on-amazon-emr/)

Extract keywords in document

- https://stackoverflow.com/questions/48869922/how-to-efficiently-check-if-a-list-of-words-iscontained-in-a-spark-dataframe (https://stackoverflow.com/questions/48869922/how-to-efficientlycheck-if-a-list-of-words-is-contained-in-a-spark-dataframe)
- https://stackoverflow.com/questions/46410887/pyspark-string-matching-to-create-new-column (https://stackoverflow.com/questions/46410887/pyspark-string-matching-to-create-new-column)

Useful tutorials

https://spark.apache.org/docs/1.6.3/ml-features.html (https://spark.apache.org/docs/1.6.3/ml-features.html)

Word embeddings and visualization

- https://web.stanford.edu/class/cs224n/assignments/a1_preview/exploring_word_vectors.html
 (https://web.stanford.edu/class/cs224n/assignments/a1_preview/exploring_word_vectors.html)
- https://machinelearningmastery.com/develop-word-embeddings-python-gensim/ (https://machinelearningmastery.com/develop-word-embeddings-python-gensim/)