EES Ver. 10.542: #1430: Mech. Engin., Engineering College in Aarhus, Aarhus, Denmark

Beregning af Phi ud fra målte temperaturer i systemet.

Dette bestemmes ud fra energibalancerne for kølemidlet og luften, over fordamperen:

 $q_{mR} \cdot (h_{R,4} - h_{R,1}) + \Phi_{0,R} = 0$ Energibalance for kølemidlet over fordamper

 $q_{mL} \cdot (h_{L,1} - h_{L,2}) - \Phi_{0,L} = 0$ Energibalance for luften over fordamper

----- Måledata indtastes her: -----

p_{R,f} = (2.27 + 1) · 1 [bar] tryk i kølemiddel på fordampersiden

p_{R,k} = (10.1 + 1) · 1 [bar] tryk i kølemiddel på kondensatorsiden

t_{R,3} = 34.1 [C] temperatur i kølemiddel efter kondensator

t_{R,1} = 11 [C] temperatur i kølemiddel efter fordamper

 $p_L = 1$ [bar] luftens tryk

t_{L,1} = 18.5 [C] *luftens temperatur før fordamper*

t_{L,2} = 12.9 [C] luftens temperatur efter fordamper

rpm = 4000 · $0.016666667 \cdot \frac{1/s}{1/min}$ | kompressors rpm

c_L = 3 [m/s] strømningshastighed af luft over fordamper

 $A_f = \left[\frac{0.21}{2}\right]^2 \cdot \pi - 0.083^2$ Tværsnitsareal af luftens vej over fordamper

----- Alt herunder beregnes -----

-----Entalpier:-----

Kølemiddel

der antages at entalpien er konstant over ekspansionventilen

 $h_{R,4} = h$ (R134a , T = $t_{R,3}$, P = $p_{R,k}$) Entalpi af kølemidlet før fordamper beregnet ud fra tryk og temp efter kondensator. $h_{R,4} = h_{R,3}$

 $h_{R,1} = h (R134a, T = t_{R,1}, P = p_{R,f})$ Entalpi af kølemidlet efter fordamper

 $h_{L,1} = h (Air_{ha}, T = t_{L,1}, P = p_L)$ Entalpi af luft før fordamper

 $h_{L,2} = h (Air_{ha}, T = t_{L,2}, P = p_L)$ Entalpi af luft efter fordamper

----- massestrømme: -----

Luft

$$t_{L,m} = \frac{t_{L,1} + t_{L,2}}{2}$$
 luftens middeltemperatur

$$\rho_L = \rho \left(Air_{ha}, T = t_{L,m}, P = p_L \right)$$

luftens densitet

 $q_{VL} = c_L \cdot A_f$ luftens volumenstrøm $q_{mL} = q_{VL} \cdot \rho_L$ luftens massestrøm

disp =
$$5.08 \cdot \left| 0.000001 \cdot \frac{m3}{cm3} \right|$$

kølemiddel

 $q_{mR} = q_{vr} \cdot \rho_{r1}$ massestrøm af kølemiddel

 $q_{vr} = q_{vs} \cdot \eta_v$ volumenstrøm af kølemiddel

q_{vs} = disp · rpm slagvolumenstrøm af kølemiddel

 $\eta_{v} = -0.01696 \cdot \frac{p_{R,k}}{p_{R,f}} + 0.79144$ volumetrisk virkningsgrad

 $\rho_{r1} = \rho \left(R134a, T = t_{R,1}, P = p_{R,f} \right)$ densitet af kølemiddel før kompressor

 $t_{fordamp} = T_{sat} (R134a, P = p_{R,f})$ fordampningstemperatur

 $t_{kondens} = T_{sat} (R134a, P = p_{R,k})$ kondenseringstemperatur

overhedning = $t_{R,1} - t_{fordamp}$ overhedning gennem fordamper

underkøl = t_{kondens} - t_{R,3} underkøling gennem kondensator

usikkerheder

 $U_t = 1.397505$ [K]

 $U_p = 0.065765$ [bar]

Unit Settings: SI C bar J mass deg

Variable±Uncertainty	Partial derivative	% of uncertainty
overhedning = 7.932±1.509 [C]		
$p_{R,f} = 3.27 \pm 0.06577$ [bar]	∂ overhedning $/\partial p_{R,f} = -8.658$	14.24 %
$p_{R,k} = 11.1 \pm 0.06577$ [bar]	∂ overhedning $/\partial p_{R,k} = 0$	0.00 %
$t_{L,1} = 18.5 \pm 1.398$ [C]	∂ overhedning $/\partial t_{L,1} = 0$	0.00 %
t _{L,2} = 12.9±1.398 [C]	∂ overhedning $/\partial t_{L,2} = 0$	0.00 %
$t_{R,1} = 11 \pm 1.398$ [C]	∂ overhedning $/\partial t_{R,1} = 1$	85.76 %
$t_{R,3} = 34.1 \pm 1.398$ [C]	∂ overhedning $/\partial t_{R,3} = 0$	0.00 %
$\Phi_{0,L} = 565.8 \pm 199.7$ [W]		
$p_{R,f} = 3.27 \pm 0.06577$ [bar]	$\partial \Phi_{0,L}/\partial p_{R,f} = 0$	0.00 %
$p_{R,k} = 11.1 \pm 0.06577$ [bar]	$\partial \Phi_{0,L}/\partial p_{R,k} = 0$	0.00 %
t _{L,1} = 18.5±1.398 [C]	$\partial \Phi_{0,L}/\partial t_{L,1} = 100.1$	49.04 %
t _{L,2} = 12.9±1.398 [C]	$\partial \Phi_{0,L}/\partial t_{L,2} = -102$	50.96 %
$t_{R,1} = 11\pm1.398$ [C]	$\partial \Phi_{0,L}/\partial t_{R,1} = 0$	0.00 %
$t_{R,3} = 34.1 \pm 1.398$ [C]	$\partial \Phi_{0,L}/\partial t_{R,3} = 0$	0.00 %
$\Phi_{0,R} = 612.8 \pm 15.97 \text{ [W]}$		
$p_{R,f} = 3.27 \pm 0.06577$ [bar]	$\partial \Phi_{0,R} / \partial p_{R,f} = 211.4$	75.76 %

EES Ver. 10.542: #1430: Mech. Engin., Engineering College in Aarhus, Aarhus, Denmark

$p_{R,k} = 11.1 \pm 0.06577$ [bar]	$\partial \Phi_{0,R} / \partial p_{R,k} = -4.3$	0.03 %
t _{L,1} = 18.5±1.398 [C]	$\partial \Phi_{0,R} / \partial t_{L,1} = 0$	0.00 %
t _{L,2} = 12.9±1.398 [C]	$\partial \Phi_{0,R} / \partial t_{L,2} = 0$	0.00 %
t _{R,1} = 11±1.398 [C]	$\partial \Phi_{0,R} / \partial t_{R,1} = 0.4614$	0.16 %
t _{R,3} = 34.1±1.398 [C]	$\partial \Phi_{0,R} / \partial t_{R,3} = -5.604$	24.04 %

No unit problems were detected.

$A_f = 0.02775 \text{ [m}^2\text{]}$	$c_L = 3 [m/s]$
disp = $0.00000508 \text{ [m}^3\text{]}$	$\eta_{\rm V} = 0.7339$
$h_{L,1} = 291837 [J/kg]$	$h_{L,2} = 286204 [J/kg]$
$h_{R,1} = 407554 [J/kg]$	$h_{R,4} = 247666 [J/kg]$
overhedning = 7.932 [C]	$\Phi_{0,L} = 565.8 \text{ [W]}$
$\Phi_{0,R} = 612.8 \text{ [W]}$	p _L = 1 [bar]
$p_{R,f} = 3.27 [bar]$	$p_{R,k} = 11.1 [bar]$
$q_{mL} = 0.1004 [kg/s]$	$q_{mR} = 0.003833 [kg/s]$
$q_{VL} = 0.08324 \text{ [m3/s]}$	$q_{vr} = 0.0002485 \text{ [m3/s]}$
$q_{vs} = 0.0003387 [m3/s]$	$\rho_L = 1.207 \text{ [kg/m}^3\text{]}$
$\rho_{r1} = 15.42 \text{ [kg/m}^3\text{]}$	rpm = 66.67 [1/s]
t _{fordamp} = 3.068 [C]	$t_{kondens} = 43.29 [C]$
$t_{L,1} = 18.5 [C]$	$t_{L,2} = 12.9 [C]$
$t_{L,m} = 15.7 [C]$	t _{R,1} = 11 [C]
$t_{R,3} = 34.1 [C]$	underkøl = 9.194 [C]
$U_p = 0.06577 [bar]$	$U_t = 1.398 [K]$

No unit problems were detected.

KEY VARIABLES

 $_{\Phi_{0,L}}$ = 565.8 [W] kuldeydelse fra luft overhedning = 7.932 [C] $_{\Phi_{0,R}}$ = 612.8 [W] kuldeydelse fra kølemiddel