Cursul 4

Structura Ciclică a Permutărilor. Tehnici Avansate de Numărare

30 octombrie 2015

Permutări și cicluri

Permutările au și rolul de funcții de rearanjare.

Exemplu

• Permutarea $\langle 4, 2, 1, 3 \rangle$ este o funcție bijectivă care mapează 1 la 4, 2 la 2, 3 la 1, și 4 la 3. Putem scrie

$$1 \mapsto 4 \mapsto 3 \mapsto 1, \ 2 \mapsto 2$$

2 Permutarea $\langle 2, 1, 3, 5, 7, 4, 6 \rangle$ este o funcție care mapează

$$1\mapsto 2\mapsto 1, 3\mapsto 3,\ 4\mapsto 5\mapsto 7\mapsto 6\mapsto 4$$

Definiție (Ciclu)

Un ciclu este o funcție $\pi:\{v_1,v_2,\ldots,v_k\} o \{v_1,v_2,\ldots,v_k\}$ care mapează

$$v_1 \mapsto v_2 \mapsto \ldots \mapsto v_{k-1} \mapsto v_k \mapsto v_1$$

Notația matematică a acestui ciclu este (v_1, \ldots, v_k) . Ciclul (v_1) reprezintă funcția $\pi : \{v_1\} \to \{v_1\}$ cu $\pi(v_1) = v_1$.

Structura ciclică a permutărilor

Observație

Orice permutare poate fi reprezentată ca o compoziție de cicluri disjuncte. Această reprezentare se numește structura ciclică a permutării.

Exemplu

- Permutarea $\langle 4, 2, 1, 3 \rangle$ poate fi reprezentată ca o compoziție de 2 cicluri disjuncte: (1, 4, 3)(2).
- Permutarea (2,1,3,5,7,4,6) poate fi reprezentată ca o compoziție de 3 cicluri disjuncte: (1,2)(3)(4,5,7,6).

Structura ciclică a permutărilor Proprietăți

Reprezentarea unui ciclu nu este unică: de exemplu, (2,3,4), (3,4,2) și (4,2,3) sunt cicluri care reprezintă aceeași funcție.

Structura ciclică a permutărilor Proprietăți

Reprezentarea unui ciclu nu este unică: de exemplu, (2,3,4), (3,4,2) și (4,2,3) sunt cicluri care reprezintă aceeași funcție.

- ⇒ Structura ciclică a permutărilor nu este unică: de exemplu următoarele structuri ciclice reprezintă aceeași permutare:
 - \triangleright (1,5)(2,3,4)
 - \triangleright (1,5)(3,4,2)
 - \triangleright (5,1)(4,2,3)
 - $\triangleright (2,3,4)(1,5)$
 - - rotirea ciclurilor din structură, la stanga sau la dreapta, sau
 - permutarea ciclurilor structurii

reprezintă aceeași permutare.

Structura ciclică a permutărilor Proprietăți

Reprezentarea unui ciclu nu este unică: de exemplu, (2,3,4), (3,4,2) și (4,2,3) sunt cicluri care reprezintă aceeași funcție.

- ⇒ Structura ciclică a permutărilor nu este unică: de exemplu următoarele structuri ciclice reprezintă aceeași permutare:
 - \triangleright (1,5)(2,3,4)
 - \triangleright (1,5)(3,4,2)
 - \triangleright (5,1)(4,2,3)
 - $\triangleright (2,3,4)(1,5)$
 - ▷ În general, structurile ciclice care se obţin prin
 - rotirea ciclurilor din structură, la stanga sau la dreapta, sau
 - permutarea ciclurilor structurii

reprezintă aceeași permutare.

- Putem defini o structură ciclică canonică a unei permutări:

 - Ciclurile sunt scrise în ordinea crescătoare a celui mai mic element.

Structuri ciclice Construirea structurii ciclice canonice a unei permutări

Idee de bază

- Se pornește de la 1 calculul secvenței de succesori până se revine la 1. Acest proces construiește primul ciclu.
- Se alege cel mai mic element care nu apare în primul ciclu şi se construieşte al doilea ciclu.
- Se repetă acest proces până când toate elementele apar într-un ciclu.

Structuri ciclice

Construirea structurii ciclice canonice a unei permutări

Idee de bază

- Se pornește de la 1 calculul secvenței de succesori până se revine la 1. Acest proces construiește primul ciclu.
- Se alege cel mai mic element care nu apare în primul ciclu şi se construieşte al doilea ciclu.
- Se repetă acest proces până când toate elementele apar într-un ciclu.

Exercițiu

Care sunt structurile ciclice canonice ale următoarelor permutări:

(1,2,3,4,5,6,7,8,9,10)?

Structuri ciclice

Construirea structurii ciclice canonice a unei permutări

Idee de bază

- Se pornește de la 1 calculul secvenței de succesori până se revine la 1. Acest proces construiește primul ciclu.
- Se alege cel mai mic element care nu apare în primul ciclu şi se construieşte al doilea ciclu.
- Se repetă acest proces până când toate elementele apar într-un ciclu.

Exercițiu

Care sunt structurile ciclice canonice ale următoarelor permutări:

(1,2,3,4,5,6,7,8,9,10)?(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)

Idee de bază

- Se pornește de la 1 calculul secvenței de succesori până se revine la 1. Acest proces construiește primul ciclu.
- Se alege cel mai mic element care nu apare în primul ciclu şi se construieşte al doilea ciclu.
- Se repetă acest proces până când toate elementele apar într-un ciclu.

Exercițiu

Care sunt structurile ciclice canonice ale următoarelor permutări:

- (1,2,3,4,5,6,7,8,9,10)?(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)
- (10, 9, 8, 7, 6, 5, 4, 3, 2, 1)?

Idee de bază

- Se pornește de la 1 calculul secvenței de succesori până se revine la 1. Acest proces construiește primul ciclu.
- Se alege cel mai mic element care nu apare în primul ciclu şi se construieşte al doilea ciclu.
- Se repetă acest proces până când toate elementele apar într-un ciclu.

Exercițiu

Care sunt structurile ciclice canonice ale următoarelor permutări:

- (1,2,3,4,5,6,7,8,9,10)?(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)
- $\langle 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 \rangle$? (1, 10)(2, 9)(3, 8)(4, 7)(5, 6)

Structuri ciclice

Calculul permutării corespunzătoare unei structuri ciclice

Exemplu ilustrat

Permutarea corespunzătoare structurii ciclice (1,3,4)(2,6,7)(5) se poate calcula astfel:

- Se rotesc la dreapta cu o poziție toate ciclurile structurii ciclice inițiale \Rightarrow (4, 1, 3)(7, 2, 6)(5)
- Se aliniază structura ciclică rotită la dreapta peste structura ciclică inițială:

Se poate citi direct permutarea

Structuri ciclice

Tipul unei permutări

Tipul unei permutări π de n elemente este lista $\lambda = [\lambda_1, \dots, \lambda_n]$ în care λ_i este numărul ciclurilor lui π cu lungimea i, pentru 1 < i < n.

Tipul unei permutări

Tipul unei permutări π de n elemente este lista $\lambda = [\lambda_1, \dots, \lambda_n]$ în care λ_i este numărul ciclurilor lui π cu lungimea i, pentru $1 \le i \le n$.

Exemplu

- Permutarea $\langle 1,2,3,4,5,6,7 \rangle = (1)(2)(3)(4)(5)(6)(7)$ are tipul [7,0,0,0,0,0,0]
- ② Permutarea $\langle 7,6,5,4,3,2,1 \rangle = (1,7)(2,6)(3,5)(4)$ are tipul [1,3,0,0,0,0,0]
- Permutarea $\langle 1,3,2,6,7,8,9,4,10,5\rangle = (1)(2,3)(4,6,8)(5,7,9,10)$ are tipul [1,1,1,1,0,0,0,0,0,0]

Tipul unei permutări π de n elemente este lista $\lambda = [\lambda_1, \dots, \lambda_n]$ în care λ_i este numărul ciclurilor lui π cu lungimea i, pentru $1 \le i \le n$.

Exemplu

- Permutarea $\langle 1, 2, 3, 4, 5, 6, 7 \rangle = (1)(2)(3)(4)(5)(6)(7)$ are tipul [7, 0, 0, 0, 0, 0, 0]
- ② Permutarea $\langle 7,6,5,4,3,2,1 \rangle = (1,7)(2,6)(3,5)(4)$ are tipul [1,3,0,0,0,0,0]
- Permutarea $\langle 1,3,2,6,7,8,9,4,10,5\rangle = (1)(2,3)(4,6,8)(5,7,9,10)$ are tipul [1,1,1,1,0,0,0,0,0,0]

Observație: $[\lambda_1,\ldots,\lambda_n]$ este tipul unei permutări dacă și numai dacă $1\cdot\lambda_1+2\cdot\lambda_2+\ldots+n\cdot\lambda_n=n$

 $i \cdot \lambda_i = \text{numărul de elemente ce apar în cicluri cu lungimea } i$.

Întrebare: Câte permutări au tipul $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_n]$?

Întrebare: Câte permutări au tipul $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_n]$?

 Scriem toate cele n! permutări şi inserăm paranteze pentru a construi n! structuri ciclice de forma

$$\underbrace{c_1^1 \dots c_{\lambda_1}^1}_{\text{cicluri cu lung. } 1} \dots \underbrace{c_1^n \dots c_{\lambda_n}^n}_{\text{cicluri cu lung. } n}$$

Întrebare: Câte permutări au tipul $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_n]$?

 Scriem toate cele n! permutări şi inserăm paranteze pentru a construi n! structuri ciclice de forma

$$\underbrace{c_1^1 \dots c_{\lambda_1}^1}_{\text{cicluri cu lung. } 1} \dots \underbrace{c_1^n \dots c_{\lambda_n}^n}_{\text{cicluri cu lung. } n}$$

- Numărăm structurile ciclice care reprezintă aceeași permutare
 - ightharpoonup Fiecare ciclu c_k^i de lungime i poate fi scris in i feluri echivalente \Rightarrow din cauza echivalenței ciclurilor, există $1^{\lambda_1} \cdot 2^{\lambda_2} \cdot \ldots \cdot n^{\lambda_n}$ structuri ciclice care reprezintă aceeași permutare. (am aplicat regula produsului)
 - Orice permutare a ciclurilor din cadrul unui bloc de cicluri cu aceeași lungime reprezintă aceeași permutare
 - ullet există $\lambda_i!$ permutări in fiecare bloc de cicluri de lungime i
 - \Rightarrow există $\lambda_1! \cdot \lambda_2! \cdot \dots \cdot \lambda_n!$ structuri ciclice echivalente din acest motiv. (am aplicat regula produsului)

Întrebare: Câte permutări au tipul $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_n]$?

 Scriem toate cele n! permutări şi inserăm paranteze pentru a construi n! structuri ciclice de forma

$$\underbrace{c_1^1 \dots c_{\lambda_1}^1}_{\text{icluri cu lung. 1}} \dots \underbrace{c_1^n \dots c_{\lambda_n}^n}_{\text{cicluri cu lung. } n}$$

- Numărăm structurile ciclice care reprezintă aceeași permutare
 - ightharpoonup Fiecare ciclu c_k^i de lungime i poate fi scris in i feluri echivalente \Rightarrow din cauza echivalenței ciclurilor, există $1^{\lambda_1} \cdot 2^{\lambda_2} \cdot \ldots \cdot n^{\lambda_n}$ structuri ciclice care reprezintă aceeași permutare. (am aplicat regula produsului)
 - Orice permutare a ciclurilor din cadrul unui bloc de cicluri cu aceeași lungime reprezintă aceeași permutare
 - ullet există $\lambda_i!$ permutări in fiecare bloc de cicluri de lungime i
 - \Rightarrow există $\lambda_1! \cdot \lambda_2! \cdot \dots \cdot \lambda_n!$ structuri ciclice echivalente din acest motiv. (am aplicat regula produsului)

$$\Rightarrow$$
 nr. perm. de tip λ este $\frac{n!}{\lambda_1! \cdot \lambda_2! \cdot \ldots \cdot \lambda_n! \cdot 1^{\lambda_1} \cdot 2^{\lambda_2} \cdot \ldots \cdot n^{\lambda_n}}$

Aplicații ale permutărilor de același tip

O partiție întreagă a unui întreg pozitiv n este un multi-set de întregi pozitivi a căror sumă este n. Se observă că

Numărul partițiilor lui n = Numărul tipurilor de <math>n-permutări.

$$[\lambda_1,\ldots,\lambda_n] \leftrightarrow \{\underbrace{1,\ldots,1}_{\lambda_1 \text{ ori}},\ldots,\underbrace{n,\ldots,n}_{\lambda_n \text{ ori}}\}$$

Exemplu

Partițiile întregi ale numărului 5 sunt multi-seturile $\{5\}, \{4,1\}, \{3,2\}, \{3,1,1\}, \{2,2,1\}, \{2,1,1,1\}, \{1,1,1,1,1\}$. Ele corespund tipurilor [0,0,0,0,1], [1,0,0,1,0], [0,1,1,0,0], [2,0,1,0,0], [1,0,0,2,0], [3,1,0,0,0], [5,0,0,0,0].

Partea 2: Tehnici avansate de numărare Observatii preliminare

- Numeroase probleme de numărare nu pot fi rezolvate cu metodele prezentate până acum.
- Exemple:
 - Câte şiruri de biţi de lungime n nu conţin două zerouri consecutive?
 - ② În câte feluri se pot aloca 7 lucrări la 3 angajați astfel încât fiecare angajat să primească cel puțin o lucrare?

Partea 2: Tehnici avansate de numărare Observații preliminare

- Numeroase probleme de numărare nu pot fi rezolvate cu metodele prezentate până acum.
- Exemple:
 - Câte şiruri de biţi de lungime n nu conţin două zerouri consecutive?
 - 2 In câte feluri se pot aloca 7 lucrări la 3 angajați astfel încât fiecare angajat să primească cel puțin o lucrare?

Scopul părții a 2-a a cursului: prezentarea unor tehnici mai avansate de numărare:

Partea 2: Tehnici avansate de numărare Observații preliminare

- Numeroase probleme de numărare nu pot fi rezolvate cu metodele prezentate până acum.
- Exemple:
 - Câte şiruri de biţi de lungime n nu conţin două zerouri consecutive?
 - ② În câte feluri se pot aloca 7 lucrări la 3 angajați astfel încât fiecare angajat să primească cel puțin o lucrare?

Scopul părții a 2-a a cursului: prezentarea unor tehnici mai avansate de numărare:

Relații de recurență

Partea 2: Tehnici avansate de numărare Observații preliminare

- Numeroase probleme de numărare nu pot fi rezolvate cu metodele prezentate până acum.
- Exemple:
 - Câte şiruri de biţi de lungime n nu conţin două zerouri consecutive?
 - ② În câte feluri se pot aloca 7 lucrări la 3 angajați astfel încât fiecare angajat să primească cel puțin o lucrare?

Scopul părții a 2-a a cursului: prezentarea unor tehnici mai avansate de numărare:

- Relații de recurență
- Rezolvarea relațiilor de recurență liniară

Exemplu

Numărul bacteriilor din o colonie se dublează în fiecare oră. Dacă într-o colonie sunt inițial 5 bacterii, câte vor fi după n ore? RĂSPUNS. Fie a_n numărul de bacterii după n ore.

•
$$a_0 = 5$$
 (cunoștințe inițiale)

•
$$a_n = 2 \cdot a_{n-1}$$
 pentru $n > 0$ (evoluție)

Exemplu

Numărul bacteriilor din o colonie se dublează în fiecare oră. Dacă într-o colonie sunt inițial 5 bacterii, câte vor fi după n ore? Răspuns. Fie a_n numărul de bacterii după n ore.

- ullet $a_0=5$ (cunoștințe inițiale)
- $a_n = 2 \cdot a_{n-1}$ pentru n > 0
- O relație de recurență pentru secvența $\{a_n\}$ este o ecuație care exprimă a_n în funcție de 0 sau mai mulți termeni dintre $a_0, a_1, \ldots, a_{n-1}$ ai secvenței, pentru toți $n \geq n_0$, unde $n_0 \geq 0$.

(evoluţie)

Exemplu

Numărul bacteriilor din o colonie se dublează în fiecare oră. Dacă într-o colonie sunt inițial 5 bacterii, câte vor fi după n ore? Răspuns. Fie a_n numărul de bacterii după n ore.

- $a_0 = 5$ (cunoștințe inițiale)
- $a_n = 2 \cdot a_{n-1}$ pentru n > 0

(evoluţie)

- O relație de recurență pentru secvența $\{a_n\}$ este o ecuație care exprimă a_n în funcție de 0 sau mai mulți termeni dintre $a_0, a_1, \ldots, a_{n-1}$ ai secvenței, pentru toți $n \ge n_0$, unde $n_0 \ge 0$.
- O soluție a relației de recurență este o formulă de calcul direct a lui a_n din n, care satisface relația de recurență.

Exemplu

Numărul bacteriilor din o colonie se dublează în fiecare oră. Dacă într-o colonie sunt inițial 5 bacterii, câte vor fi după n ore? Răspuns. Fie a_n numărul de bacterii după n ore.

- $a_0 = 5$ (cunoștințe inițiale)
- $a_n = 2 \cdot a_{n-1}$ pentru n > 0 (evoluție)
- O relație de recurență pentru secvența $\{a_n\}$ este o ecuație care exprimă a_n în funcție de 0 sau mai mulți termeni dintre $a_0, a_1, \ldots, a_{n-1}$ ai secvenței, pentru toți $n \ge n_0$, unde $n_0 \ge 0$.
- O soluție a relației de recurență este o formulă de calcul direct a lui a_n din n, care satisface relația de recurență.

În continuare vor fi prezentate tehnici de rezolvare a unor tipuri de relații de recurență.

Relații de recurență Exemple

• $a_0 = 3$, $a_1 = 5$, $a_n = a_{n-1} - a_{n-2}$ pentru $n \ge 2$. Toate elementele lui $\{a_n\}$ pot fi calculate recursiv:

$$a_2 = a_1 - a_0 = 5 - 3 = 2$$

 $a_3 = a_2 - a_1 = 2 - 5 = -3$

Putem găsi o formulă generală de calcul direct a lui a_n în funcție de n?

Relații de recurență Exemple

• $a_0 = 3$, $a_1 = 5$, $a_n = a_{n-1} - a_{n-2}$ pentru $n \ge 2$. Toate elementele lui $\{a_n\}$ pot fi calculate recursiv:

$$a_2 = a_1 - a_0 = 5 - 3 = 2$$

 $a_3 = a_2 - a_1 = 2 - 5 = -3$

Putem găsi o formulă generală de calcul direct a lui a_n în funcție de n?

• $a_0 = 0, a_1 = 3, a_n = 2 \cdot a_{n-1} - a_{n-2}$ pentru $n \ge 2$. Toate elementele lui $\{a_n\}$ pot fi calculate recursiv:

$$a_2 = 2 a_1 - a_0 = 6$$

 $a_3 = 2 a_2 - a_1 = 9$

Se poate demonstra prin inducție că $a_n = 3 n$ pentru toți n > 0.

Exemplu: iepuri și numere Fibonacci

O pereche tânără de iepuri începe să se înmulțească la vârsta de 2 luni, dând naștere lunar la o pereche de iepuri. Se presupune că o pereche de iepuri cu vârsta de 0 luni este adusă pe o insulă. Să se determine o relație de recurență pentru numărul de iepuri de pe insulă după *n* luni.

Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
	A 40	i	0	1	1
	040	2	0	Ĭ.	1
040	e* 10	3	1	1	2
040	***	4	1	2	3
240	***	5	2	3	5
なななななな	***	6	3	5	8
	0 to 0 to				- 0

$$f_1 = 1$$
, $f_2 = 1$, $f_n = f_{n-1} + f_{n-2}$ if $n \ge 2$.

Exemplu: Turnul din Hanoi

- Să se mute toate discurile pe axul 2 în ordinea mărimii lor, cu discul cel mai mare așezat dedesubt.
- Discurile pot fi mutate unul câte unul de pe un ax pe altul cu condiția ca niciodată să nu se pună un disc peste unul mai mic.

Întrebare: Care este numărul minim de mutări necesare pentru a rezolva problema turnului din Hanoi cu *n* discuri?

Exemplu: Turnul din Hanoi (continuare)

Răspuns: Fie H_n nr. minim de mutări necesare pentru a pune n discuri în ordinea mărimii, de pe un ax pe altul.

- Pentru a pune cel mai mare disc la baza axului 2, va trebui mai întâi să mutăm n-1 discuri mai mici de pe axul 1 pe axul 3. Nr. minim de mutări pentru a face acest lucru este H_{n-1} .
- După ce am pus cel mai mare disc de pe axul 1 pe axul 2, putem efectua H_{n-1} mutări pentru a muta discurile de pe axul 3 pe axul 2.

Exemplu: Turnul din Hanoi (continuare)

Răspuns: Fie H_n nr. minim de mutări necesare pentru a pune n discuri în ordinea mărimii, de pe un ax pe altul.

- Pentru a pune cel mai mare disc la baza axului 2, va trebui mai întâi să mutăm n - 1 discuri mai mici de pe axul 1 pe axul 3. Nr. minim de mutări pentru a face acest lucru este H_{n-1}.
- După ce am pus cel mai mare disc de pe axul 1 pe axul 2, putem efectua H_{n-1} mutări pentru a muta discurile de pe axul 3 pe axul 2.

Exemplu: Turnul din Hanoi (continuare)

Răspuns: Fie H_n nr. minim de mutări necesare pentru a pune n discuri în ordinea mărimii, de pe un ax pe altul.

- Pentru a pune cel mai mare disc la baza axului 2, va trebui mai întâi să mutăm n - 1 discuri mai mici de pe axul 1 pe axul 3. Nr. minim de mutări pentru a face acest lucru este H_{n-1}.
- După ce am pus cel mai mare disc de pe axul 1 pe axul 2, putem efectua H_{n-1} mutări pentru a muta discurile de pe axul 3 pe axul 2.

Răspuns: Fie H_n nr. minim de mutări necesare pentru a pune n discuri în ordinea mărimii, de pe un ax pe altul.

- Pentru a pune cel mai mare disc la baza axului 2, va trebui mai întâi să mutăm n - 1 discuri mai mici de pe axul 1 pe axul 3. Nr. minim de mutări pentru a face acest lucru este H_{n-1}.
- După ce am pus cel mai mare disc de pe axul 1 pe axul 2, putem efectua H_{n-1} mutări pentru a muta discurile de pe axul 3 pe axul 2.

Răspuns: Fie H_n nr. minim de mutări necesare pentru a pune n discuri în ordinea mărimii, de pe un ax pe altul.

- Pentru a pune cel mai mare disc la baza axului 2, va trebui mai întâi să mutăm n - 1 discuri mai mici de pe axul 1 pe axul 3. Nr. minim de mutări pentru a face acest lucru este H_{n-1}.
- După ce am pus cel mai mare disc de pe axul 1 pe axul 2, putem efectua H_{n-1} mutări pentru a muta discurile de pe axul 3 pe axul 2.

$$\Rightarrow H_n = H_{n-1} + 1 + H_{n-1} = 2H_{n-1} + 1$$
. Se observă că $H_1 = 1$.

• Putem aplica o metodă iterativă de aflare a unei formule de calcul pentru H_n direct din n atunci când n > 1:

$$H_{n} = 2 H_{n-1} + 1$$

$$= 2(2 H_{n-2} + 1) + 1 = 2^{2} H_{n-2} + 2 + 1$$

$$= 2^{2}(2 H_{n-3} + 1) + 2 + 1 = 2^{3} H_{n-3} + 2^{2} + 2 + 1$$

$$\vdots$$

$$= 2^{n-1} H_{1} + 2^{n-2} + \dots + 2 + 1$$

$$= 2^{n-1} + 2^{n-2} + \dots + 2 + 1$$

$$= \frac{2^{n} - 1}{2 - 1} = 2^{n} - 1$$

• Putem aplica o metodă iterativă de aflare a unei formule de calcul pentru H_n direct din n atunci când n > 1:

$$H_{n} = 2 H_{n-1} + 1$$

$$= 2(2 H_{n-2} + 1) + 1 = 2^{2} H_{n-2} + 2 + 1$$

$$= 2^{2}(2 H_{n-3} + 1) + 2 + 1 = 2^{3} H_{n-3} + 2^{2} + 2 + 1$$

$$\vdots$$

$$= 2^{n-1} H_{1} + 2^{n-2} + \dots + 2 + 1$$

$$= 2^{n-1} + 2^{n-2} + \dots + 2 + 1$$

$$= \frac{2^{n} - 1}{2 - 1} = 2^{n} - 1$$

Legenda turnului din Hanoi:

• Putem aplica o metodă iterativă de aflare a unei formule de calcul pentru H_n direct din n atunci când n > 1:

$$H_{n} = 2 H_{n-1} + 1$$

$$= 2(2 H_{n-2} + 1) + 1 = 2^{2} H_{n-2} + 2 + 1$$

$$= 2^{2}(2 H_{n-3} + 1) + 2 + 1 = 2^{3} H_{n-3} + 2^{2} + 2 + 1$$

$$\vdots$$

$$= 2^{n-1} H_{1} + 2^{n-2} + \dots + 2 + 1$$

$$= 2^{n-1} + 2^{n-2} + \dots + 2 + 1$$

$$= \frac{2^{n} - 1}{2 - 1} = 2^{n} - 1$$

Legenda turnului din Hanoi:

▶ Sunt 64 discuri, iar mutarea unui disc durează 1 secundă

• Putem aplica o metodă iterativă de aflare a unei formule de calcul pentru H_n direct din n atunci când n > 1:

$$H_{n} = 2 H_{n-1} + 1$$

$$= 2(2 H_{n-2} + 1) + 1 = 2^{2} H_{n-2} + 2 + 1$$

$$= 2^{2}(2 H_{n-3} + 1) + 2 + 1 = 2^{3} H_{n-3} + 2^{2} + 2 + 1$$

$$\vdots$$

$$= 2^{n-1} H_{1} + 2^{n-2} + \dots + 2 + 1$$

$$= 2^{n-1} + 2^{n-2} + \dots + 2 + 1$$

$$= \frac{2^{n} - 1}{2 - 1} = 2^{n} - 1$$

Legenda turnului din Hanoi:

- Sunt 64 discuri, iar mutarea unui disc durează 1 secundă
- ► Timpul minim de mutare a întregului turn= $(2^{64} 1) s = 18446744073709551615 s \approx 500$ miliarde ani.

Exemplu: Şiruri speciale de biţi

 Să se găsească o relație de recurență și condițiile inițiale pentru numărul de șiruri de biți de lungime n care nu au două zerouri consecutive. Câte astfel de șiruri de lungime 5 există?

A: Avem de numărat a două lucruri distincte:

- Sirurile de n-biţi fără 2 zerouri consec., care se termină cu 1:
- ② Şirurile de n biţi fără 2 zerouri consec. care se termină cu 0:

```
Nr. şiruri de lungime n fără 00: Se termină cu 1: Orice şir de lungime n-1 fără 00 1 a_{n-1} Se termină cu 0: Orice şir de lungime n-2 fără 1 0 a_{n-2}
```

Total: $a_n=a_{n-1}+a_{n-2}$ Şirurile cu lungimea 1 sunt 0 and $1\Rightarrow a_1=2$, iar şirurile cu lungimea 2 fără 00 sunt $01,10,11\Rightarrow a_2=3$.

Exemplu: Şiruri speciale de biţi (continuare)

Numărul a_n de șiruri de biți de lungime n fără 00 satisface relația de recurență

$$a_1 = 2$$
, $a_2 = 3$, $a_n = a_{n-1} + a_{n-2}$ dacă $n \ge 2$.

$$\Rightarrow a_3 = a_1 + a_2 = 2 + 3 = 5$$

$$\Rightarrow a_4 = a_2 + a_3 = 3 + 5 = 8$$

$$\Rightarrow a_5 = a_3 + a_4 = 5 + 8 = 13.$$

Relații de recurență liniară

 O relație omogenă de recurență liniară de gradul k cu coeficienți constanți este o relație de forma

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k},$$

unde $c_1, c_2, \ldots, c_k \in \mathbb{R}$ și $c_k \neq 0$.

Dacă se cunosc cele k condiții inițiale

• $a_0 = C_0$, $a_1 = C_1$, ..., $a_{k-1} = C_{k-1}$,

atunci se poate calcula recursiv a_n pentru toți $n \ge k$.

Exemplu (Relații de recurență liniară)

- $\{f_n\}$ unde $f_0 = f_1 = 1$, și $f_n = f_{n-1} + f_{n-2}$ dacă n > 1.
- $\{P_n\}$ unde $P_0 = 1$, și $P_n = 1.11 P_{n-1}$ dacă n > 0.

Exemplu (Relații de recurență neliniară)

$$a_0 = 1$$
, $a_1 = 1$, $a_n = a_{n-1}^2 + a_{n-2}$ pentru toți $n > 1$.

Relații de recurență liniară

- Apar frecvent în procesul de modelare a problemelor.
- Se poate determina o formulă care calculează a_n direct din n.

Teorema 1

Se consideră relația de recurență

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}, \ a_0 = C_0, \ldots, a_{k-1} = C_{k-1}.$$
 (1)

Se presupune că r_1,\ldots,r_t sunt rădăcinile distincte ale ecuației $r^k-c_1r^{k-1}-\ldots-c_k=0$ cu multiplicitățile m_1,\ldots,m_t , unde $m_i\geq 1$ pentru $i=1,2,\ldots,t$ și $m_1+m_2+\ldots+m_t=k$. Atunci secvența $\{a_n\}$ este o soluție a relației de recurență $\{1\}$ dacă și numai dacă

$$a_{n} = (\alpha_{1,0} + \alpha_{1,1}n + \dots + \alpha_{1,m_{1}-1}n^{m_{1}-1})r_{1}^{n}$$

$$+ (\alpha_{2,0} + \alpha_{2,1}n + \dots + \alpha_{2,m_{2}-1}n^{m_{2}-1})r_{2}^{n}$$

$$+ \dots + (\alpha_{t,0} + \alpha_{t,1}n + \dots + \alpha_{t,m_{t}-1}n^{m_{t}-1})r_{t}^{n}$$

pentru $n \in \mathbb{N}$, unde $\alpha_{i,j}$ sunt constante pentru $1 \le i \le t$ și $0 \le j < m_i$.

• Să se afle soluțiile relației de recurență

$$a_n = -3 a_{n-1} - 3 a_{n-2} - a_{n-3}$$

care satisface condițiile inițiale $a_0 = 1$, $a_1 = -2$, și $a_2 = -1$.

• Să se afle soluțiile relației de recurență

$$a_n = -3 a_{n-1} - 3 a_{n-2} - a_{n-3}$$

care satisface condițiile inițiale $a_0 = 1$, $a_1 = -2$, și $a_2 = -1$.

• RĂSPUNS. Ecuația caracteristică a relației de recurență este $r^3 + 3r^2 + 3r + 1 = 0$, adică $(r+1)^3 = 0$, care are singura rădăcină r = -1 cu multiplicitatea 3.

Să se afle soluțiile relației de recurență

$$a_n = -3 a_{n-1} - 3 a_{n-2} - a_{n-3}$$

care satisface condițiile inițiale $a_0 = 1$, $a_1 = -2$, și $a_2 = -1$.

- RĂSPUNS. Ecuația caracteristică a relației de recurență este $r^3 + 3r^2 + 3r + 1 = 0$, adică $(r+1)^3 = 0$, care are singura rădăcină r = -1 cu multiplicitatea 3.
 - ⇒ soluțiile relației de recurență sunt de forma

$$a_n = \alpha_{1,0}(-1)^n + \alpha_{1,1}n(-1)^n + \alpha_{1,2}n^2(-1)^n.$$

Să se afle soluțiile relației de recurență

$$a_n = -3 a_{n-1} - 3 a_{n-2} - a_{n-3}$$

care satisface condițiile inițiale $a_0 = 1$, $a_1 = -2$, și $a_2 = -1$.

- RĂSPUNS. Ecuația caracteristică a relației de recurență este $r^3 + 3r^2 + 3r + 1 = 0$, adică $(r+1)^3 = 0$, care are singura rădăcină r = -1 cu multiplicitatea 3.
 - \Rightarrow soluțiile relației de recurență sunt de forma

$$a_n = \alpha_{1,0}(-1)^n + \alpha_{1,1}n(-1)^n + \alpha_{1,2}n^2(-1)^n.$$

Mai avem de aflat constantele $\alpha_{1,0}, \alpha_{1,1}, \alpha_{1,2}$, folosind informațiile despre condițiile inițiale:

$$\begin{cases} a_0 = 1 = \alpha_{1,0} \\ a_1 = -2 = -\alpha_{1,0} - \alpha_{1,1} - \alpha_{1,2} \\ a_2 = -1 = \alpha_{1,0} + 2\alpha_{1,1} + 4\alpha_{1,2} \end{cases} \Rightarrow \begin{cases} \alpha_{1,0} = 1 \\ \alpha_{1,1} = 3 \\ \alpha_{1,2} = -2. \end{cases}$$

Să se afle soluțiile relației de recurență

$$a_n = -3 a_{n-1} - 3 a_{n-2} - a_{n-3}$$

care satisface condițiile inițiale $a_0 = 1$, $a_1 = -2$, și $a_2 = -1$.

- RĂSPUNS. Ecuația caracteristică a relației de recurență este $r^3 + 3r^2 + 3r + 1 = 0$, adică $(r+1)^3 = 0$, care are singura rădăcină r = -1 cu multiplicitatea 3.
 - ⇒ soluțiile relației de recurență sunt de forma

$$a_n = \alpha_{1,0}(-1)^n + \alpha_{1,1}n(-1)^n + \alpha_{1,2}n^2(-1)^n.$$

Mai avem de aflat constantele $\alpha_{1,0}, \alpha_{1,1}, \alpha_{1,2}$, folosind informațiile despre condițiile inițiale:

$$\begin{cases} a_0 = 1 = \alpha_{1,0} \\ a_1 = -2 = -\alpha_{1,0} - \alpha_{1,1} - \alpha_{1,2} \\ a_2 = -1 = \alpha_{1,0} + 2\alpha_{1,1} + 4\alpha_{1,2} \end{cases} \Rightarrow \begin{cases} \alpha_{1,0} = 1 \\ \alpha_{1,1} = 3 \\ \alpha_{1,2} = -2. \end{cases}$$

$$\Rightarrow a_n = (1 + 3 n - 2 n^2)(-1)^n$$
.

Definiție

O relație de recurență liniară neomogenă cu coeficienți constanți este

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k} + F(n),$$

unde $c_1, \ldots, c_k \in \mathbb{R}$ și F(n) este o funcție diferită de funcția constantă 0, care depinde doar de n. Recurența liniară

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

se numește relația omogenă asociată.

Definiție

O relație de recurență liniară neomogenă cu coeficienți constanți este

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k} + F(n),$$

unde $c_1, \ldots, c_k \in \mathbb{R}$ și F(n) este o funcție diferită de funcția constantă 0, care depinde doar de n. Recurența liniară

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

se numește relația omogenă asociată.

EXEMPLE

Definiție

O relație de recurență liniară neomogenă cu coeficienți constanți este

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k} + F(n),$$

unde $c_1, \ldots, c_k \in \mathbb{R}$ și F(n) este o funcție diferită de funcția constantă 0, care depinde doar de n. Recurența liniară

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

se numește relația omogenă asociată.

EXEMPLE

• $a_n = a_{n-1} + 2^n$ este o recurență neomogenă. Relația omogenă asociată este $a_n = a_{n-1}$.

Definiție

O relație de recurență liniară neomogenă cu coeficienți constanți este

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k} + F(n),$$

unde $c_1, \ldots, c_k \in \mathbb{R}$ și F(n) este o funcție diferită de funcția constantă 0, care depinde doar de n. Recurența liniară

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

se numește relația omogenă asociată.

EXEMPLE

- **1** $a_n = a_{n-1} + 2^n$ este o recurență neomogenă. Relația omogenă asociată este $a_n = a_{n-1}$.
- ② $a_n = a_{n-1} + a_{n-2} + n^2 + n + 1$ este o recurență neomogenă. Relația omogenă asociată este $a_n = a_{n-1} + a_{n-2}$.

Teorema 2

Dacă $\{a_n^{(p)}\}$ este o soluție particulară a recurenței

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k} + F(n),$$

atunci orice altă soluție este de forma $\{a_n^{(p)} + a_n^{(h)}\}$, unde $\{a_n^{(h)}\}$ unde $\{a_n^{(h)}\}$ este o soluție a recurenței omogene asociate

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$
.

Teorema 2

Dacă $\{a_n^{(p)}\}$ este o soluție particulară a recurenței

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k} + F(n),$$

atunci orice altă soluție este de forma $\{a_n^{(p)}+a_n^{(h)}\}$, unde $\{a_n^{(h)}\}$ unde $\{a_n^{(h)}\}$ este o soluție a recurenței omogene asociate

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}.$$

Observații:

Teorema 2

Dacă $\{a_n^{(p)}\}$ este o soluție particulară a recurenței

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k} + F(n),$$

atunci orice altă soluție este de forma $\{a_n^{(p)} + a_n^{(h)}\}$, unde $\{a_n^{(h)}\}$ unde $\{a_n^{(h)}\}$ este o soluție a recurenței omogene asociate

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}.$$

Observații:

▶ Ştim din Teorema 1 cum să calculăm $\{a_n^{(h)}\}$.

Teorema 2

Dacă $\{a_n^{(p)}\}$ este o soluție particulară a recurenței

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k} + F(n),$$

atunci orice altă soluție este de forma $\{a_n^{(p)} + a_n^{(h)}\}$, unde $\{a_n^{(h)}\}$ unde $\{a_n^{(h)}\}$ este o soluție a recurenței omogene asociate

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}.$$

Observații:

- ▶ Ştim din Teorema 1 cum să calculăm $\{a_n^{(h)}\}$.
- ► Cum putem afla o soluție particulară $\{a_n^{(p)}\}$?

Recurențe liniare neomogene cu coeficienți constanți Aflarea unei soluții particulare

Teorema 3

Dacă
$$F(n) = (b_t n^t + b_{t-1} n^{t-1} + \ldots + b_1 t + b_0) s^n$$
 cu $b_0, \ldots, b_{t-1}, b_t, s \in \mathbb{R}$ atunci

Dacă s nu este o rădăcină a ecuației caracteristice a recurenței liniare omogene asociate, atunci există o soluție particulară de forma

$$(p_t n^t + p_{t-1} n^{t-1} + \ldots + p_1 n + p_0) s^n.$$

② Dacă s este o rădăcină cu multiplicitatea m a recurenței liniare omogene asociate, atunci există o soluție particulară de forma

$$n^{m}(p_{t}n^{t}+p_{t-1}n^{t-1}+\ldots+p_{1}n+p_{0})s^{n}.$$

Să se afle soluția generală a recurenței liniare neomogene

$$a_n = 6 a_{n-1} - 9 a_{n-2} + F(n)$$

dacă
$$F(n) = n^2 2^n$$

Să se afle soluția generală a recurenței liniare neomogene

$$a_n = 6 a_{n-1} - 9 a_{n-2} + F(n)$$

dacă
$$F(n) = n^2 2^n$$

RĂSPUNS: Recurența liniară omogenă asociată este $a_n=6\,a_{n-1}-9\,a_{n-2}$. Ecuația ei caracteristică este $r^2-6\,r+9=0$, care are o singură rădăcină, r=3, cu multiplicitatea 2.

Să se afle soluția generală a recurenței liniare neomogene

$$a_n = 6 a_{n-1} - 9 a_{n-2} + F(n)$$

dacă
$$F(n) = n^2 2^n$$

RĂSPUNS: Recurența liniară omogenă asociată este $a_n = 6 a_{n-1} - 9 a_{n-2}$. Ecuația ei caracteristică este $r^2 - 6 r + 9 = 0$, care are o singură rădăcină, r = 3, cu multiplicitatea 2. \Rightarrow soluția părții omogene este $a_n^{(h)} = (b_1 n + b_0) 3^n$.

Să se afle soluția generală a recurenței liniare neomogene

$$a_n = 6 a_{n-1} - 9 a_{n-2} + F(n)$$

dacă
$$F(n) = n^2 2^n$$

RĂSPUNS: Recurența liniară omogenă asociată este $a_n = 6 \, a_{n-1} - 9 \, a_{n-2}$. Ecuația ei caracteristică este $r^2 - 6 \, r + 9 = 0$, care are o singură rădăcină, r = 3, cu multiplicitatea 2. \Rightarrow soluția părții omogene este $a_n^{(h)} = (b_1 \, n + b_0) \, 3^n$. F(n) este de forma $Q(n) \, s^n$ unde Q(n) este un polinom de gradul t = 2, și s = 2 nu este rădăcină a ecuației caracteristice a recurenței omogene asociate \Rightarrow conform Teoremei 3, o soluție particulară este $a_n^{(p)} = (p_2 \, n^2 + p_1 \, n + p_0) \, 2^n$.

Să se afle soluția generală a recurenței liniare neomogene

$$a_n = 6 a_{n-1} - 9 a_{n-2} + F(n)$$

dacă
$$F(n) = n^2 2^n$$

RĂSPUNS: Recurența liniară omogenă asociată este $a_n = 6 \, a_{n-1} - 9 \, a_{n-2}$. Ecuația ei caracteristică este $r^2 - 6 \, r + 9 = 0$, care are o singură rădăcină, r = 3, cu multiplicitatea 2. \Rightarrow soluția părții omogene este $a_n^{(h)} = (b_1 \, n + b_0) \, 3^n$. F(n) este de forma $Q(n) \, s^n$ unde Q(n) este un polinom de gradul t = 2, și s = 2 nu este rădăcină a ecuației caracteristice a recurenței omogene asociate \Rightarrow conform Teoremei 3, o soluție particulară este $a_n^{(p)} = (p_2 \, n^2 + p_1 \, n + p_0) \, 2^n$. Din $a_n^{(p)} = 6 \, a_{n-1}^{(p)} - 9 \, a_{n-2}^{(p)} + n^2 2^n$ obținem $2^{n-2}((p_2 - 4)n^2 + (p_1 - 12 \, p_2)n + p_0 - 6 \, p_1 + 24 \, p_2) = 0 \Rightarrow p_0 = 192, p_1 = 48, p_2 = 4$

Să se afle soluția generală a recurenței liniare neomogene

$$a_n = 6 a_{n-1} - 9 a_{n-2} + F(n)$$

dacă
$$F(n) = n^2 2^n$$

RĂSPUNS: Recurența liniară omogenă asociată este $a_n = 6 a_{n-1} - 9 a_{n-2}$. Ecuația ei caracteristică este $r^2 - 6 r + 9 = 0$. care are o singură rădăcină, r = 3, cu multiplicitatea 2. \Rightarrow soluția părții omogene este $a_n^{(h)} = (b_1 n + b_0) 3^n$. F(n) este de forma $Q(n) s^n$ unde Q(n) este un polinom de gradul t=2, si s=2 nu este rădăcină a ecuației caracteristice a recurenței omogene asociate ⇒ conform Teoremei 3, o soluție particulară este $a_n^{(p)} = (p_2 n^2 + p_1 n + p_0) 2^n$. Din $a_n^{(p)} = 6 a_{n-1}^{(p)} - 9 a_{n-2}^{(p)} + n^2 2^n$ obtinem $2^{n-2}((p_2-4)n^2+(p_1-12p_2)n+p_0-6p_1+24p_2)=0 \Rightarrow p_0=$ 192, $p_1 = 48$, $p_2 = 4$ $\Rightarrow a_n = a_n^{(p)} + a_n^{(h)} = (4 n^2 + 48 n + 192) 2^n + (b_1 n + b_0) 3^n.$

Să se afle soluția generală a recurenței liniare neomogene $a_n = a_{n-1} + n$ care satisface condiția inițială $a_1 = 1$.

Să se afle soluția generală a recurenței liniare neomogene $a_n = a_{n-1} + n$ care satisface condiția inițială $a_1 = 1$.

RĂSPUNS: Recurența liniară omogenă asociată lui a_n este $a_n = a_{n-1}$. Ecuația caracteristică este r-1=0, deci soluția ei este de forma $a_n^{(h)} = c \cdot 1^n = c$ unde $c \in \mathbb{R}$.

Să se afle soluția generală a recurenței liniare neomogene $a_n = a_{n-1} + n$ care satisface condiția inițială $a_1 = 1$.

RĂSPUNS: Recurența liniară omogenă asociată lui a_n este $a_n = a_{n-1}$. Ecuația caracteristică este r-1=0, deci soluția ei este de forma $a_n^{(h)} = c \cdot 1^n = c$ unde $c \in \mathbb{R}$. Partea neliniară este $F(n) = Q(n) s^n$ unde Q(n) = n și s = 1 este rădăcină cu multiplicitatea 1 a ecuației caracteristice a recurenței liniare omogene asociate \Rightarrow conform Teoremei 3, există o soluție particulară de forma $a_n^{(p)} = p_n^s(p_1 n + p_0) 1^n = p_1 n^2 + p_0 n$.

Să se afle soluția generală a recurenței liniare neomogene $a_n = a_{n-1} + n$ care satisface condiția inițială $a_1 = 1$.

RĂSPUNS: Recurența liniară omogenă asociată lui a_n este $a_n = a_{n-1}$. Ecuația caracteristică este r-1=0, deci soluția ei este de forma $a_n^{(h)} = c \cdot 1^n = c$ unde $c \in \mathbb{R}$.

Partea neliniară este $F(n) = Q(n) \, s^n$ unde Q(n) = n și s = 1 este rădăcină cu multiplicitatea 1 a ecuației caracteristice a recurenței liniare omogene asociate \Rightarrow conform Teoremei 3, există o soluție particulară de forma $a_n^{(p)} = n^s(p_1 \, n + p_0) \, 1^n = p_1 \, n^2 + p_0 \, n$.

Pentru a afla p_0 and p_1 , tinem cont de faptul că $a_n^{(p)}=a_{n-1}^{(p)}+n$, care implică $n(2\,p_1-1)+(p_0-p_1)=0$, deci $p_0=p_1=\frac{1}{2}$. Rezultă că $a_n^{(p)}=\frac{n^2}{2}+\frac{n}{2}=\frac{n(n+1)}{2}$.

Să se afle soluția generală a recurenței liniare neomogene $a_n = a_{n-1} + n$ care satisface condiția inițială $a_1 = 1$.

RĂSPUNS: Recurența liniară omogenă asociată lui a_n este $a_n = a_{n-1}$. Ecuația caracteristică este r-1=0, deci soluția ei este de forma $a_n^{(h)} = c \cdot 1^n = c$ unde $c \in \mathbb{R}$.

Partea neliniară este $F(n) = Q(n) \, s^n$ unde Q(n) = n și s = 1 este rădăcină cu multiplicitatea 1 a ecuației caracteristice a recurenței liniare omogene asociate \Rightarrow conform Teoremei 3, există o soluție particulară de forma $a_n^{(p)} = n^s(p_1 \, n + p_0) \, 1^n = p_1 \, n^2 + p_0 \, n$.

Pentru a afla p_0 and p_1 , tinem cont de faptul că $a_n^{(p)}=a_{n-1}^{(p)}+n$, care implică $n(2\,p_1-1)+(p_0-p_1)=0$, deci $p_0=p_1=\frac{1}{2}$. Rezultă că $a_n^{(p)}=\frac{n^2}{2}+\frac{n}{2}=\frac{n(n+1)}{2}$.

Din Teorema 2, rezultă că $a_n = a_n^{(p)} + a_n^{(h)} = c + \frac{n(n+1)}{2}$. Știm și că $1 = a_1 = c + \frac{1 \cdot 2}{2} = c + 1$, deci c = 0. Prin urmare $a_n = \frac{n(n+1)}{2}$.

Bibliografie

Capitolul 7 din

 Kenneth H. Rosen. Discrete Mathematics and Its Applications. Sixth Edition. McGraw-Hill, 2007.