

CMOS 8-/16-Channel Analog Multiplexers

ADG506A/ADG507A

DECODER

A0 A1 A2 EN

FEATURES

44 V Supply Maximum Rating
V_{SS} to V_{DD} Analog Signal Range
Single/Dual Supply Specifications
Wide Supply Ranges (10.8 V to 16.5 V)
Extended Plastic Temperature Range
(-40°C to +85°C)
Low Power Dissipation (28 mW max)
Low Leakage (20 pA typ)
Available in 28-Lead DIP, SOIC, PLCC, TSSOP and LCCC
Packages
Superior Alternative to:
DG506A, HI-506
DG507A, HI-507

ADG506A ADG507A DA S8A DA S8A DB S1B DB S8B DB

DECODER

A0 A1 A2 A3 EN

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADG506A and ADG507A are CMOS monolithic analog multiplexers with 16 channels and dual 8 channels, respectively. The ADG506A switches one of 16 inputs to a common output, depending on the state of four binary addresses and an enable input. The ADG507A switches one of eight differential inputs to a common differential output, depending on the state of three binary addresses and an enable input. Both devices have TTL and 5 V CMOS logic compatible digital inputs.

The ADG506A and ADG507A are designed on an enhanced LC2MOS process, which gives an increased signal capability of V_{SS} to V_{DD} and enables operation over a wide range of supply voltages. The devices can operate comfortably anywhere in the $10.8\ V$ to $16.5\ V$ single or dual supply range. These multiplexers also feature high switching speeds and low R_{ON} .

PRODUCT HIGHLIGHTS

- 1. Single/Dual Supply Specifications with a Wide Tolerance The devices are specified in the 10.8 V to 16.5 V range for both single and dual supplies.
- 2. Extended Signal Range The enhanced LC 2 MOS processing results in a high breakdown and an increased analog signal range of V_{SS} to V_{DD} .
- 3. Break-Before-Make Switching
 Switches are guaranteed break-before-make so input signals
 are protected against momentary shorting.
- 4. Low Leakage
 Leakage currents in the range of 20 pA make these multiplexers
 suitable for high precision circuits.

ORDERING GUIDE

Model ¹	Temperature Range	Package Option ²
ADG506AKN	−40°C to +85°C	N-28
ADG506AKR	-40° C to $+85^{\circ}$ C	R-28
ADG506AKP	-40° C to $+85^{\circ}$ C	P-28A
ADG506ABQ	-40° C to $+85^{\circ}$ C	Q-28
ADG506ATQ	−55°C to +125°C	Q-28
ADG506ATE	−55°C to +125°C	E-28A
ADG507AKN	−40°C to +85°C	N-28
ADG507AKR	-40° C to $+85^{\circ}$ C	R-28
ADG507AKP	-40° C to $+85^{\circ}$ C	P-28A
ADG507AKRU	-40° C to $+85^{\circ}$ C	RU-28
ADG507ABQ	-40°C to $+85$ °C	Q-28
ADG507ATQ	−55°C to +125°C	Q-28
ADG507ATE	−55°C to +125°C	E-28A

NOTES

¹To order MIL-STD-883, Class B processed parts, add /883B to part number. See Analog Devices' *Military/Aerospace Reference Manual* (1994) for military data sheet.

²E = Leadless Ceramic Chip Carrier (LCCC); N = Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip; R = 0.3" Small Outline IC (SOIC); RU = Thin Shrink Small Outline Package (TSSOP).

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

ADG506A/ADG507A—SPECIFICATIONS

Dual Supply ($V_{DD} = +10.8 \text{ V to } +16.5 \text{ V}, V_{SS} = -10.8 \text{ V to } -16.5 \text{ V unless otherwise noted}$)

Parameter	ADG ADG K Ve	507A rsion -40°C to	ADG ADG B Ver	507A	ADO T Ve	G506A G507A ersion -55°C to +125°C	Units	Comments
ANALOG SWITCH Analog Signal Range R _{ON}	V _{SS} V _{DD} 280 450 300	V _{SS} V _{DD} 600 400	V _{SS} V _{DD} 280 450 300	V _{SS} V _{DD} 600 400	V _{SS} V _{DD} 280 450	V _{SS} V _{DD} 600	V min V max Ω typ Ω max Ω max Ω max	-10 V \leq V _S \leq +10 V, I _{DS} = 1 mA; Test Circuit 1 V _{DD} = 15 V (\pm 10%), V _{SS} = -15 V (\pm 10%) V _{DD} = 15 V (\pm 5%), V _{SS} = -15 V (\pm 5%)
$R_{ m ON}$ Drift $R_{ m ON}$ Match	0.6 5		0.6 5		0.6 5	100	%/°C typ % typ	$ \begin{array}{l} -10 \text{ V} \leq V_{S} \leq +10 \text{ V}, I_{DS} = 1 \text{ mA} \\ -10 \text{ V} \leq V_{S} \leq +10 \text{ V}, I_{DS} = 1 \text{ mA} \end{array} $
I _S (OFF), Off Input Leakage I _D (OFF), Off Output Leakage ADG506A ADG507A I _D (ON), On Channel Leakage ADG506A ADG507A I _{DIFF} , Differential Off Output Leakage (ADG507A Only)	0.02 1 0.04 1 1 0.04 1	50 200 100 200 100 25	0.02 1 0.04 1 1 0.04 1	50 200 100 200 100 25	0.02 1 0.04 1 1 0.04 1	50 200 100 200 100 25	nA typ nA max nA typ nA max nA max nA typ nA max nA max	V1 = ± 10 V, V2 = ∓ 10 V; Test Circuit 2 V1 = ± 10 V, V2 = ∓ 10 V; Test Circuit 3 V1 = ± 10 V, V2 = ∓ 10 V; Test Circuit 4 V1 = ± 10 V, V2 = ∓ 10 V; Test Circuit 5
$\overline{\begin{array}{c} \text{DIGITAL CONTROL} \\ \text{V_{NH}, Input High Voltage} \\ \text{V_{NL}, Input Low Voltage} \\ \text{I_{INL} or I_{INH}} \\ \text{C_{IN} Digital Input Capacitance} \end{array}}$	8	2.4 0.8 1	8	2.4 0.8 1	8	2.4 0.8 1	V min V max µA max pF max	$V_{\rm IN}$ = 0 to $V_{\rm DD}$
$\overline{ \begin{array}{c} \text{DYNAMIC CHARACTERISTICS} \\ t_{\text{TRANSITION}}^{1} \\ t_{\text{OPEN}}^{1} \\ t_{\text{ON}} (\text{EN})^{1} \\ t_{\text{OFF}} (\text{EN})^{1} \end{array} }$	200 300 50 25 200 300 200 300	400 10 400 400	200 300 50 25 200 300 200 300	400 10 400 400	200 300 50 25 200 300 200 300	400 10 400 400	ns typ ns max ns typ ns min ns typ ns max ns typ ns max	$V1 = \pm 10 \text{ V}, V2 = +10 \text{ V}; \text{ Test Circuit 6}$ Test Circuit 7 Test Circuit 8 Test Circuit 8
OFF Isolation C _S (OFF) C _D (OFF) ADG506A ADG507A Q _{INJ} , Charge Injection	68 50 5 44 22 4		68 50 5 44 22 4		68 50 5 44 22 4		dB typ dB min pF typ pF typ pF typ pC typ	$\begin{split} &V_{EN} = 0.8 \ V, R_L = 1 \ k\Omega, C_L = 15 \ pF, \\ &V_S = 7 \ V \ rms, f = 100 \ kHz \\ &V_{EN} = 0.8 \ V \\ &V_{EN} = 0.8 \ V \\ &R_S = 0 \ \Omega, V_S = 0 \ V; Test Circuit 9 \end{split}$
POWER SUPPLY I_{DD} I_{SS}	0.6	1.5 0.2	0.6	1.5 0.2	0.6	1.5 0.2	mA typ mA max μA typ mA max	$V_{IN} = V_{INL}$ or V_{INH} $V_{IN} = V_{IN}$ or V_{INH}
Power Dissipation	10	28	10	28	10	28	mW typ mW max	

NOTES

Specifications subject to change without notice.

-2- REV. C

¹Sample tested at +25°C to ensure compliance.

Single Supply ($V_{DD} = +10.8 \text{ V to } +16.5 \text{ V}, V_{SS} = \text{GND} = 0 \text{ V unless otherwise noted}$)

Parameter	ADG K Ve		ADG: ADG: B Ver	507A	ADO T Ve	6506A 6507A ersion -55°C to +125°C	Units	Comments
ANALOG SWITCH								
Analog Signal Range	$egin{array}{c} V_{SS} \ V_{DD} \end{array}$	V min V max						
R_{ON}	500 700	1000	500 700	1000	500 700	1000	Ω typ Ω max	$0 \text{ V} \le \text{V}_{\text{S}} \le +10 \text{ V}, \text{I}_{\text{DS}} = 0.5 \text{ mA}; \text{ Test Circuit } 1$
R _{ON} Drift R _{ON} Match	0.6	1000	0.6	1000	0.6	1000	%/°C typ % typ	$\begin{array}{l} 0 \text{ V} \le \text{V}_{\text{S}} \le +10 \text{ V}, \text{ I}_{\text{DS}} = 0.5 \text{ mA} \\ 0 \text{ V} \le \text{V}_{\text{S}} \le +10 \text{ V}, \text{ I}_{\text{DS}} = 0.5 \text{ mA} \end{array}$
I _S (OFF), Off Input Leakage	0.02		0.02		0.02		nA typ	V1 = +10 V/0 V, V2 = 0 V/ +10 V;
I _D (OFF), Off Output Leakage	1 0.04	50	1 0.04	50	1 0.04	50	nA max nA typ	Test Circuit 2 V1 = +10 V/0 V, V2 = 0 V/ +10 V;
ADG506A ADG507A	1	200 100	1	200 100	1	200 100	nA max nA max	Test Circuit 3
I _D (ON), On Channel Leakage ADG506A	0.04	200	0.04	200	0.04	200	nA typ nA max	V1 = +10 V/0 V, V2 = 0 V/ +10 V; Test Circuit 4
ADG507A I _{DIFF} , Differential Off Output Leakage (ADG507A Only)	1	100 25	1	100 25	1	100 25	nA max	V1 = +10 V/0 V, V2 = 0 V/ +10 V; Test Circuit 5
DIGITAL CONTROL								
V _{INH} , Input High Voltage		2.4		2.4		2.4	V min	
V _{INL} , Input Low Voltage		0.8		0.8		0.8	V max	
$I_{ m INL}$ or $I_{ m INH}$ $C_{ m IN}$ Digital Input Capacitance	8	1	8	1	8	1	μA max pF max	$V_{IN} = 0$ to V_{DD}
DYNAMIC CHARACTERISTICS								
t _{TRANSITION} ¹	300 450	600	300 450	600	300 450	600	ns typ ns max	V1 = +10 V/0 V, V2 = +10 V; Test Circuit 6
t_{OPEN}^1	50		50		50		ns typ	Test Circuit 7
$t_{ON} (EN)^1$	25 250	10	25 250	10	25 250	10	ns min	Test Circuit 8
ton (EIV)	450	600	450	600	450	600	ns typ ns max	Test Circuit o
$t_{OFF} (EN)^1$	250 450	600	250 450	600	250 450	600	ns typ	Test Circuit 8
OFF Isolation	68	000	68	000	68	000	ns max	V = 0.0 V D = 1 k0 C = 15 mE
OFF Isolation	50		50		50		dB typ dB min	$V_{EN} = 0.8 \text{ V}, R_L = 1 \text{ k}\Omega, C_L = 15 \text{ pF}, $ $V_S = 3.5 \text{ V rms}, f = 100 \text{ kHz}$
C_S (OFF) C_D (OFF)	5		5		5		pF typ	$V_{\rm EN} = 0.8 \text{ V}$
ADG506A	44		44		44		pF typ	$V_{\rm EN} = 0.8 \text{ V}$
ADG507A	22		22		22		pF typ	
Q _{INJ} , Charge Injection	4		4		4		pC typ	$R_S = 0 \Omega$, $V_S = 0 V$; Test Circuit 9
POWER SUPPLY								
$ m I_{DD}$	0.6	1.5	0.6	1.5	0.6	1 5	mA typ	$V_{IN} = V_{INL}$ or V_{INH}
Power Dissipation	10	1.5	10	1.5	10	1.5	mA max mW typ	
2 5 Wel Dissipation		25		25		25	mW max	

Specifications subject to change without notice.

Truth Table (ADG506A)							
A3	A2	A1	A0	EN	On Switch		
X	X	X	X	0	NONE		
0	0	0	0	1	1		
0	0	0	1	1	2		
0	0	1	0	1	3		
0	0	1	1	1	4		
0	1	0	0	1	5		
0	1	0	1	1	6		
0	1	1	0	1	7		
0	1	1	1	1	8		
1	0	0	0	1	9		
1	0	0	1	1	10		
1	0	1	0	1	11		
1	0	1	1	1	12		
1	1	0	0	1	13		
1	1	0	1	1	14		
1	1	1	0	1	15		
1	1	1	1	1	16		

Truth Table (ADG507A)								
A2	A1	A0	EN	On Switch Pair				
X	X	X	0	NONE				
0	0	0	1	1				
0	0	1	1	2				
0	1	0	1	3				
0	1	1	1	4				
1	0	0	1	5				
1	0	1	1	6				
1	1	0	1	7				
1	1	1	1	8				

X = Don't Care

NOTES

Sample tested at +25°C to ensure compliance.

ADG506A/ADG507A

ABSOLUTE MAXIMUM RATINGS¹

Power Dissipation (Any Package)
Up to +75°C 470 mW
Derates above +75°C by 6 mW/°C
Operating Temperature
Commercial (K Version)40°C to +85°C
Industrial (B Version)40°C to +85°C
Extended (T Version) –55°C to +125°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10 secs) +300°C

NOTES

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG506A/ADG507A feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS

LCCC

DIP, SOIC

NC = NO CONNECT

PLCC

NC = NO CONNECT

DIP, SOIC, TSSOP

PLCC

NC = NO CONNECT

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²Overvoltage at A, EN, S or D will be clamped by diodes. Current should be limited to the Maximum Rating above.

Typical Performance Characteristics—ADG506A/ADG507A

The multiplexers are guaranteed functional with reduced single or dual supplies down to 4.5 V.

Figure 1. R_{ON} as a Function of V_D (V_S): Dual Supply Voltage, $T_A = +25^{\circ}C$

Figure 2. Leakage Current as a Function of Temperature (Note: Leakage Currents Reduce as the Supply Voltages Reduce)

Figure 3. $t_{TRANSITION}$ vs. Supply Voltage: Dual and Single Supplies, $T_A = +25^{\circ}C$ (Note: For V_{DD} and V_{SS} / < 10 V; V1 = V_{DD}/V_{SS} , V2 = V_{SS}/V_{DD} . See Test Circuit 6)

Figure 4. R_{ON} as a Function of V_D (V_S) Single Supply Voltage, $T_A = +25^{\circ}C$

Figure 5. Trigger Levels vs. Power Supply Voltage, Dual or Single Supply, $T_A = +25^{\circ}C$

Figure 6. I_{DD} vs. Supply Voltage: Dual or Single Supply, $T_A = +25^{\circ}C$

REV. C –5–

ADG506A/ADG507A—Test Circuits

t_{OPEN}

Note: All Digital Input Signal Rise and Fall Times Measured from 10% to 90% of 3 V. $t_R = t_F = 20$ ns.

Test Circuit 7. Break-Before-Make Delay, topen

*SIMILAR CONNECTION FOR AD507A

Test Circuit 8. Enable Delay, t_{ON} (EN), t_{OFF} (EN)

Test Circuit 9. Charge Injection

SINGLE SUPPLY AUTOMOTIVE APPLICATION

The excellent performance of the multiplexers under single supply conditions makes the ADG506A/ADG507A suitable in applications such as automotive and disc drives where only positive power supply voltages are normally available. The following application circuit shows the ADG507A connected as an 8-channel differential multiplexer in an automotive, data acquisition application circuit.

The AD7580 is a 10-bit successive approximation ADC, which has an on-chip sample-hold amplifier and provides a conversion result in 20 μs . The ADC has differential analog inputs and is configured in the application circuit for a span of 2.5 V over a common-mode range 0 V to + 5 V. Wider common-mode ranges can be accommodated. See the AD7579/AD7580 data sheet for more details. The complete system operates from +12 V (+10%) and +5 V supplies. The analog input signals to the ADG507A contain information such as temperature, pressure, speed etc.

Figure 7. ADG507A in a Single Supply Automotive Data Acquisition Application

REV. C

ADG506A/ADG507A

TERMINOL	OGY	t_{OFF} (EN)	Delay time between the 50% and 10% points of
R_{ON}	Ohmic resistance between terminals D and S		the digital input and switch "OFF" condition
R _{ON} Match	Difference between the R _{ON} of any two channels	t _{TRANSITION}	Delay time between the 50% and 90% points of
R _{ON} Drift	Change in R _{ON} versus temperature		the digital inputs and switch "ON" condition
I _S (OFF)	Source terminal leakage current when the switch		when switching from one address state to
	is off		another
I_D (OFF)	Drain terminal leakage current when the switch	t_{OPEN}	"OFF" time measured between 50% points of
	is off		both switches when switching from one address
I_D (ON)	Leakage current that flows from the closed switch		state to another
	into the body	V_{INL}	Maximum input voltage for Logic "0"
$V_S(V_D)$	Analog voltage on terminal S or D	V_{INH}	Minimum input voltage for Logic "1"
C_S (OFF)	Channel input capacitance for "OFF" condition	I_{INL} (I_{INH})	Input current of the digital input
C_D (OFF)	Channel output capacitance for "OFF" condition	$ m V_{DD}$	Most positive voltage supply
C_{IN}	Digital input capacitance	V_{SS}	Most negative voltage supply
t_{ON} (EN)	Delay time between the 50% and 90% points of	${ m I}_{ m DD}$	Positive supply current
	the digital input and switch "ON" condition	I_{SS}	Negative supply current

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

LEAD NO. 1 IDENTIFIED BY DOT OR NOTCH LEADS ARE SOLDER OR TIN PLATED KOVAR OR ALLOY 42

28-Lead Cerdip (Suffix Q) 1.490 (37.84) MAX 0.525 (13.33) 0.515 (13.08) 0.18(4.57) 0.62 (15.74) 0.59 (14.93) 0.22 (5.59) MAX GLASS SEALANT 0.06 (1.52) • 0.05 (1.27) MAX 0.125 (3.175) MIN 0.012 (0.305) → → 0.11 (2.79) 0.02 (0.5) <u>15°</u> 0.008 (0.203) 0.099 (2.28) 0.016 (0.406) 0

LEAD NO. 1 IDENTIFIED BY DOT OR NOTCH LEADS ARE SOLDER OR TIN PLATED KOVAR OR ALLOY 42

28-Lead SOIC (Suffix R)

28-Terminal Plastic Leaded Chip Carrier (Suffix P)

28-Lead TSSOP (Suffix RU)

28-Terminal Leadless Ceramic Chip Carrier (Suffix E)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

ADG506AKN ADG507AKRU ADG506AKPZ ADG507AKNZ ADG506ATE/883B ADG507AKRZ-REEL ADG506ATQ

ADG506AKRZ ADG507AKRZ ADG506AKR-REEL ADG506AKP ADG506ATQ/883B ADG507AKPZ ADG506ABQ

ADG507AKR-REEL7 ADG507AKP ADG506AKR ADG507AKRZ-REEL7 ADG506AKRZ-REEL ADG507AKR

ADG506AKNZ ADG507AKRUZ