Pemrograman Nonlinear KKT condition

Selesaikan dan kemudian gambarkan soal berikut ini:

Minimize
$$f(x,y) = x^2 + y^2 - 14x - 6y$$
 Dengan kendala
$$g_1(x,y) = x + y - 2 \le 0 \quad ;$$

$$g_2(x,y) = x + 2y - 3 \le 0$$

Penyelesaian:

Minimumkan
$$f(x, y) = x^2 + y^2 - 14x - 6y$$

Dengan kendala:

$$g_1(x,y) = x + y - 2 \le 0$$
;
 $g_2(x,y) = x + 2y - 3 \le 0$

Penyelesaian:

Ada beberapa penyelesaian diantaranya:

- a. Asumsikan g_1 dan g_2 merupakan kendala aktif (kedua-duanya)
- b. Asumsikan g_1 kendala aktif dan g_2 kendala tidak aktif
- c. Asumsikan g_1 kendala tidak aktif dan g_2 kendala aktif
- d. Asumsikan g_1 dan g_2 keduanya kendala tidak aktif

Asumsikan g_1 dan g_2 merupakan kendala aktif (kedua-duanya)

Didefinisikan

$$L(x, y, \lambda_1, \lambda_2) = x^2 + y^2 - 14x - 6y + \lambda_1(x + y - 2) + \lambda_2(x + 2y - 3)$$

Mencari nilai L_x , L_y , L_{λ_1} , dan L_{λ_2} disamadengankan nol

(i)
$$L_x = 2x - 14 + \lambda_1 + \lambda_2 = 0$$

(ii)
$$L_y = 2y - 6 + \lambda_1 + 2\lambda_2 = 0$$

(iii)
$$L_{\lambda_1} = x + y - 2 = 0$$

(iv)
$$L_{\lambda_2} = x + 2y - 3 = 0$$

Dapat ditulis ke bentuk matriks sebagai berikut:

$$\begin{bmatrix} L_x \\ L_y \\ L_{\lambda_1} \\ L_{\lambda_2} \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 0 & 2 & 1 & 2 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 14 \\ 6 \\ 2 \\ 3 \end{bmatrix}$$

(i) Mencari nilai x

$$\text{determinan dari} \begin{bmatrix}
 14 & 0 & 1 & 1 \\
 6 & 2 & 1 & 2 \\
 2 & 1 & 0 & 0 \\
 3 & 2 & 0 & 0
 \end{bmatrix} = \begin{bmatrix}
 14 & 0 & 1 & 1 \\
 6 & 2 & 1 & 2 \\
 2 & 1 & 0 & 0 \\
 3 & 2 & 0 & 0
 \end{bmatrix}$$

Valeriana Matematika ITS

$$x = \begin{vmatrix} 2 & 0 & 1 & 1 \\ 0 & 2 & 1 & 2 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \end{vmatrix} = 14 \begin{vmatrix} 2 & 1 & 2 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \end{vmatrix} - 0 + 1 \begin{vmatrix} 6 & 2 & 2 \\ 2 & 1 & 0 \\ 3 & 2 & 0 \end{vmatrix} - 1 \begin{vmatrix} 6 & 2 & 1 \\ 2 & 1 & 0 \\ 3 & 2 & 0 \end{vmatrix}$$
$$x = 0 + 1(8 - 6) - 1(4 - 3) = 2 - 1 = 1$$

(ii) Mencari nilai y

determinan dari
$$\begin{bmatrix} 2 & 14 & 1 & 1 \\ 0 & 6 & 1 & 2 \\ 1 & 2 & 0 & 0 \\ 1 & 3 & 0 & 0 \end{bmatrix} = \begin{vmatrix} 2 & 14 & 1 & 1 \\ 0 & 6 & 1 & 2 \\ 1 & 2 & 0 & 0 \\ 1 & 3 & 0 & 0 \end{vmatrix}$$

$$y = \begin{vmatrix} 2 & 14 & 1 & 1 \\ 0 & 6 & 1 & 2 \\ 1 & 2 & 0 & 0 \\ 1 & 3 & 0 & 0 \end{vmatrix} = 2 \begin{vmatrix} 6 & 1 & 2 \\ 2 & 0 & 0 \\ 3 & 0 & 0 \end{vmatrix} - 14 \begin{vmatrix} 0 & 1 & 2 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{vmatrix} + \begin{vmatrix} 0 & 6 & 2 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{vmatrix} - \begin{vmatrix} 0 & 6 & 1 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{vmatrix}$$

$$y = 2(0) - 14(0) + (6 - 4) - (3 - 2) = 2 - 1 = 1$$

(iii) Mencari nilai λ_1

determinan dari
$$\begin{bmatrix} 2 & 0 & 14 & 1 \\ 0 & 2 & 6 & 2 \\ 1 & 1 & 2 & 0 \\ 1 & 2 & 3 & 0 \end{bmatrix} = \begin{vmatrix} 2 & 0 & 14 & 1 \\ 0 & 2 & 6 & 2 \\ 1 & 1 & 2 & 0 \\ 1 & 2 & 3 & 0 \end{vmatrix}$$

$$\lambda_1 = \begin{vmatrix} 2 & 0 & 14 & 1 \\ 0 & 2 & 6 & 2 \\ 1 & 1 & 2 & 0 \\ 1 & 2 & 3 & 0 \end{vmatrix} = 2 \begin{vmatrix} 2 & 6 & 2 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{vmatrix} + 14 \begin{vmatrix} 0 & 2 & 2 \\ 1 & 1 & 0 \\ 1 & 2 & 0 \end{vmatrix} - \begin{vmatrix} 0 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & 0 \end{vmatrix}$$

$$\lambda_1 = 2(6-8) + 14(4-2) - 1(4 = 12 - 6 - 6) = 2(-2) + 28 - 4 = -4 + 28 - 4$$

= 20

(iv) Mencari nilai λ_2

determinan dari
$$\begin{bmatrix} 2 & 0 & 1 & 14 \\ 0 & 2 & 1 & 6 \\ 1 & 1 & 0 & 2 \\ 1 & 2 & 0 & 3 \end{bmatrix} = \begin{vmatrix} 2 & 0 & 1 & 14 \\ 0 & 2 & 1 & 6 \\ 1 & 1 & 0 & 2 \\ 1 & 2 & 0 & 3 \end{vmatrix}$$

$$\lambda_2 = \begin{vmatrix} 2 & 0 & 1 & 14 \\ 0 & 2 & 1 & 6 \\ 1 & 1 & 0 & 2 \\ 1 & 2 & 0 & 3 \end{vmatrix} = 2 \begin{vmatrix} 2 & 1 & 6 \\ 1 & 0 & 2 \\ 2 & 0 & 3 \end{vmatrix} + \begin{vmatrix} 0 & 2 & 6 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \end{vmatrix} - 14 \begin{vmatrix} 0 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & 0 \end{vmatrix}$$

$$\lambda_2 = 2(4-3) + (4+12-6-6) - 14(2-1) = 2+4-14 = -8$$

Sehingga diperoleh

$$x = 1; y = 1, \lambda_1 = 20 \ dan \ \lambda_2 = -8$$

Dengan
$$f(x, y) = f(1,1) = -18$$
;

$$g_1(x, y) = g_1(1,1) = 0$$

$$g_2(x,y) = g_2(1,1) = 0$$

Asumsikan g_1 dan g_2 keduanya kendala tidak aktif

Didefinisikan

$$L(x,y) = x^2 + y^2 - 14x - 6y$$

Mencari nilai L_x , L_y , disamadengankan nol

I.
$$L_x = 2x - 14 = 0$$
 diperoleh $x = 7$

II.
$$L_y = 2y - 6 = 0$$
 diperoleh $y = 3$

$$x = 7$$
; $y = 3$, $\lambda_1 = 0 \ dan \ \lambda_2 = 0$

Dengan
$$f(x, y) = f(7,3) = -58$$
;

$$g_1(x,y) = g_1(7,3) = 8$$

$$g_2(x,y) = g_2(7,3) = 10$$

Tidak memenuhi karena menurut syarat Kuhn-Tucker $\lambda_j \geq 0$ untuk j=1,2,3,... jadi λ haruslah tidak boleh bernilai negatif

Asumsikan g_1 kendala aktif dan g_2 kendala tidak aktif

Didefinisikan

$$L(x, y, \lambda_1) = x^2 + y^2 - 14x - 6y + \lambda_1(x + y - 2)$$

Mencari nilai L_x , L_y , L_{λ_1} , dan L_{λ_2} disamadengankan nol

(i)
$$L_x = 2x - 14 + \lambda_1 = 0$$

(ii)
$$L_v = 2y - 6 + \lambda_1 = 0$$

(iii)
$$L_{\lambda_1} = x + y - 2 = 0$$

Dapat ditulis ke bentuk matriks sebagai berikut:

$$\begin{bmatrix} L_x \\ L_y \\ L_{\lambda_1} \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \lambda_1 \end{bmatrix} = \begin{bmatrix} 14 \\ 6 \\ 2 \end{bmatrix}$$

Dengan metode eliminasi dan substitusi diperoleh x = 3, y = -1 dan $\lambda_1 = 8$

Dengan demikian,
$$f(x, y) = f(3, -1) = -26$$
;

Valeriana Matematika ITS

$$g_1(x, y) = g_1(3, -1) = 0$$

Asumsikan g_2 kendala aktif dan g_1 kendala tidak aktif

Didefinisikan

$$L(x, y, \lambda_2) = x^2 + y^2 - 14x - 6y + \lambda_2(x + 2y - 3)$$

Mencari nilai L_x , L_y , L_{λ_1} , dan L_{λ_2} disamadengankan nol

(i)
$$L_x = 2x - 14 + \lambda_2 = 0$$

(ii)
$$L_v = 2y - 6 + 2\lambda_2 = 0$$

(iii)
$$L_{\lambda_1} = x + 2y - 3 = 0$$

Dapat ditulis ke bentuk matriks sebagai berikut:

$$\begin{bmatrix} L_x \\ L_y \\ L_{\lambda_2} \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 14 \\ 6 \\ 3 \end{bmatrix}$$

Dengan metode eliminasi dan substitusi diperoleh x = 5, y = -1 dan $\lambda_1 = 4$

Dengan demikian, f(x, y) = f(5, -1) = -38;

$$g_2(x,y) = g_1(5,-1) = 0$$

Dapat disimpulkan dari 4 penyelesaian di atas bahwa nilai minimum adalah ketika g_1 merupakan kendala aktif sedangkan g_2 tidak

diperoleh
$$x = 3$$
, $y = -1 \, dan \, \lambda_1 = 8$

Dengan demikian, f(x, y) = f(3, -1) = -26;

$$g_1(x, y) = g_1(3, -1) = 0$$

Atau

Soal tersebut dapat dikerjakan dengan menggunakan prinsip/syarat Kuhn-Tucker yaitu:

Didefinisikan

$$L(x, y, \lambda_1, \lambda_2) = x^2 + y^2 - 14x - 6y + \lambda_1(x + y - 2) + \lambda_2(x + 2y - 3)$$

1.
$$\frac{\partial f}{\partial x_i} + \sum_{j=1}^m \lambda_j \frac{\partial g_j}{\partial x_i} = 0$$

Dengan j=1,2,..,m (sebagai banyak kendala) dan i=1,2,3,...,n (sebagai banyak variabel bebas)

Sehingga

$$\frac{\partial f}{\partial x_i} + \lambda_1 \frac{\partial g_1}{\partial x_i} + \lambda_2 \frac{\partial g_2}{\partial x_i} = 0$$

Diperoleh

i.
$$2x - 14 + \lambda_1 + \lambda_2 = 0$$

ii.
$$2y - 6 + \lambda_1 + 2\lambda_2 = 0$$

Pers (i) dikurangi pers (ii) diperoleh $\lambda_2 = 2x - 2y - 8$, dan

$$\lambda_1 = -\lambda_2 + 14 - 2x = 22 - 4x + 2y$$

Disubstitusikan ke syarat yang kedua

2. λ_i . $g_i = 0$, diperoleh:

$$\lambda_1(x+y-2)=0$$

$$\lambda_2(x+2y-3)=0$$

Menjadi:

$$(22 - 4x + 2y)(x + y - 2) = 0$$

$$(2x - 2y - 8)(x + 2y - 3) = 0$$

- 3. $g_i \le 0, j = 1, 2, ...$
- 4. $\lambda_i \geq 0, j = 1, 2, ...$

Uji Titik:

$$(22-4x+2y) = 0, (2x-2y-8) = 0$$

Dieliminasi dan didapat x=7 dan $y=3, \lambda_1=0, \lambda_2=0$ (M) Uji kendala :

$$g_1(7,3) = 7 + 3 - 2 > 0 (TM)$$

$$g_2(7,3) = 7 + 6 - 3 > 0 (TM)$$

$$(22-4x+2y)=0,(x+2y-3)=0$$

Dieliminasi dan didapat x = 5 dan y = -1, $\lambda_1 = 0$, $\lambda_2 = 4$ (M) Uji kendala :

$$g_1(5,-1) = 5 - 1 - 2 > 0$$
 (TM)

$$a_2(5,-1) = 5 - 2 - 3 = 0$$
 (M)

$$(x + y - 2) = 0, (x + 2y - 3) = 0$$

Dieliminasi dan didapat x=1 dan y=1, $\lambda_1=20$, $\lambda_2=-8$ (TM) Uji kendala :

$$g_1(1,1) = 1 + 1 - 2 = 0 (M)$$

$$g_2(1,1) = 1 + 2 - 3 = 0 (M)$$

$$(x + y - 2) = 0, (2x - 2y - 8) = 0$$

Dieliminasi dan didapat x=3 dan y=-1, $\lambda_1=8$, $\lambda_2=0$ (M) Uji kendala :

$$q_1(3,-1) = 3 - 1 - 2 = 0$$
 (M)

$$g_2(3,-1) = 3 - 2 - 3 = -2 (M)$$

f(3,-1) = -26 (minimal/optimum) karena memenuhi syarat **Kuhn Thucker**

Sketsa Grafik

