UMMUL QURA HIGH SCHOOL

AROWONA BUS-STOP, AMULOKO-AKANRAN ROAD, IBADAN. 2020/2021 SECOND TERM EXAMINATION

SUBJECT: Physics DURATION: 2hrs: 30mins

CLASS: SS 2 INSTRUCTION: Attempt section A and B

OBJECTIVES

- 1. A force of 70N is inclined at an angle 30⁰ to the horizontal. *Calculate* its horizontal and vertical components respectively
 - A. 60.6N AND 35.0N
 - B. 40.4N AND 60.6N
 - C. 40.4N AND 35.0N
 - D. 35.ON AND 60.6N
- 2. The friction which *exists* between two layers of liquid in relative motion *is*
 - A. capillarity
 - B. surface tension
 - C. viscosity
 - D. cohesion
- 3. Which of the following *source of energy* is renewable?
 - A. Sun
 - B. Petroleum
 - C. Coal
 - D. Natural gas
- 4. A steel needle floating on water sinks when kerosene is added to the water. This is *because* the kerosene
 - A. increases the surface tension of water
 - B. reduces the surface tension of water
 - C. reduces the density of water
 - D. reduces upthrust on the needle
- 5. In the figure below, the *workdone* by the force load inclined at an angle of 60⁰ to the object dragged horizontally to a distance of 8m *is*

- A. 100J
- B. 400J
- C. 600J
- D. 800J
- 6. The silver coating in the inside of a vacuum flask *reduces* heat loss *by*
 - A. conduction
 - B. radiation
 - C. condensation
 - D. convection
- 7. Which of the following is *not* correct about the mass and weight of a body?
 - A. Mass is a scalar quantity
 - B. Weight is a function of the gravitational pull
 - C. Mass on earth and in moon is the same
 - D. Weight at the equator and at the pole is the same
- 8. The process by which molecules of different substances move *randomly* is *called*
 - A. Osmosis
 - B. Capillarity
 - C. Diffusion
 - D. Surface tension

Examiner: Mall. AbdulHafeez Page 1

- 9. What *type* of motion does the skin of a talking drum perform when it is struck with a drum?
 - A. Random
 - B. Rotational
 - C. Translational
 - D. Vibratory
- 10. Which of the following physical process *can not* be explained by the molecular theory of matter?
 - A. Evaporation
 - B. Thermal conduction
 - C. Radiation of heat
 - D. Convection currents in fluids
- 11. The expansion of liquids can be considered as *disadvantage* in
 - A. fire alarm system
 - B. thermostat
 - C. riveting of steel
 - D. fitting of a wheel on a rims
- 12. How *far* will a body move in 4s if uniformly accelerated from rest at a rate of 2ms⁻²?
 - A. 32m
 - B. 24m
 - C. 16m
 - D. 12m
- 13. A solid metal cube of side 10cm³ is heated from 10⁰C to 60⁰C. If the linear expansivity of the metal is 1.2 x 10⁻⁵ k-¹, *calculate* the increase in volume
 - A. 0.6cm^3
 - B. 1.2cm³
 - C. 1.8cm³
 - D. 3.6cm³
- 14. Which of the following is *not* a conductor of electricity?
 - A. Human body
 - B. Silver
 - C. Glass
 - D. Earth

- 15. At what *angle* to the horizontal must the nozzle of a machine gun be kept when firing to obtain a *maximum* horizontal range for the bullets?
 - A. 40^{0}
 - B. 45°
 - C. 50^{0}
 - D. 90^{0}
- 16. The heat from the sun reaches the earth by the *process* of
 - A. insulation
 - B. precipitation
 - C. convection
 - D. radiation
- 17. Which of the following is a *scalar* quantity?
 - A. Momentum
 - B. Distance
 - C. Acceleration
 - D. Force
- 18. A 500kg car initially at rest was travelling with acceleration of 5ms⁻². It *kinetic energy* after 4s *was*
 - A. 10^{5} J
 - B. $2.5 \times 10^3 \text{ J}$
 - C. $2 \times 10^3 \text{ J}$
 - D. $5 \times 10^3 \text{ J}$
- 19. Which of the following substance is *most* viscous at room temperature?
 - A. Water
 - B. Alcohol
 - C. Petrol
 - D. Palm oil
- 20. The slope of straight line velocity-time graph *represents*
 - A. Uniform acceleration
 - B. Uniform speed
 - C. Total distance covered
 - D. Work done
- 21. Two forces, whose resultant is 100N, are perpendicular to each other, if one of them makes an angle of 60°

with the resultant. *Calculate* its magnitude. (Sin $60^0 = 0.8660$, Cos $60^0 = 0.500$)

4 200 ON

A. 200.0N

B. 173.2N

C. 115.5N

D. 86.6N

- 22. A room is heated by means of a charcoal fire. A man standing away is from the fire is to armed *by*
 - A. Conduction
 - B. Reflection
 - C. Radiation
 - D. Convection
- 23. Which of the following surfaces will absorb radiant heat energy *best*?
 - A. White
 - B. Red
 - C. Yellow
 - D. Black
- 24. The range of a projectile projected at Θ^0 to the horizontal with a velocity U is given by:
 - A. <u>U²sin 2</u>Θ

g

B. <u>U²sin 2Θ</u>

2 g

C. <u>2U²sin 2</u>Θ

g

D. $U^2 \sin^2 \Theta$

g

- 25. Which of the following *quantities* is a vector?
 - A. Speed
 - B. Distance
 - C. Energy
 - D. Momentum
- 26. A body of mass 25kg, moving at 3ms⁻¹ in a rough horizontal floor, is brought to rest after sliding through a distance of 2.50m on the floor.

Calculate the coefficient of sliding friction ($g = 10 \text{ms}^{-2}$)

- A. 0.09
- B. 0.18
- C. 0.36
- D. 0.54
- 27. It is advisable to wear *white* dresses in the tropics *because*
 - A. absorb sweat readily
 - B. absorb all radiant heat
 - C. conduct heat away more readily from the body
 - D. reflect radiant heat
- 28. Calculate the *acceleration* in the graph below

- A. 5ms⁻¹
- B. 7.5ms⁻²
- C. 2.5ms⁻²
- D. 10ms⁻²
- 29. Which of the following is a reason *why* a concrete floor feels colder to the bare feet *than* a mat in the same floor?
 - A. Mat loses heat to the bare feet than the feet
 - B. Mat loses heat to the bare feet while the concrete floor extracts heat from them
 - C. Concrete floor is a better conductor of heat than the mat
 - D. Mat is a better conductor of heat that the floor

- 30. Solid friction, like viscosity is
 - A. independent of the surface areas in contact
 - B. independent of the relative motion between layers
 - C. dependent on normal reaction
 - D. in opposition to motion
- 31. The reading *accuracy* of a stop watch is
 - A. 1s
 - B. 0.1s
 - C. 0.01s
 - D. 0.001s
- 32. The *energy* possessed by a body by virtue of its position is *known* as
 - A. Kinetic energy
 - B. potential energy
 - C. nuclear energy
 - D. internal energy
- 33. Heat transfer *by convection* takes place in
 - A. solids and liquids
 - B. liquid and gases
 - C. solid and gases
 - D. solids, liquids and gases
- 34. One of the following is *not* an example of practical application of convection
 - A. Cooking utensils
 - B. Use of rugs in floors
 - C. Ventilation
 - D. All of the above
- 35. The *S.I unit* of electric *current* is
 - A. coloumb
 - B. ampere
 - C. watt
 - D. joule
- 36. Which of the following *units* is equivalent to joule?
 - A. Nm⁻²
 - B. Kgms⁻²
 - C. Nm

- D. Nm⁻¹
- 37. A body of mass 2kg is released from rest on a smooth plane inclined at an angle of 60^{0} to the horizontal.

Calculate the acceleration of the body down the plane $(g = kms^{-2})$

- A. 3.1ms⁻²
- B. 5.2ms⁻²
- C. 6.0ms⁻²
- D. 8.7ms⁻²
- 38. A body is projected vertically upwards with a speed of 10ms⁻¹ from a point 2m above the ground.

Calculate the time taken for the body to reach the ground ($g = 10 \text{ms}^{-2}$)

- A. 1s
- B. 2s
- C. 4s
- D. 8s
- 39. The cracking noise produced by aluminium roofing sheets on a house during a hot sunny day is as a *result*

of

- A. thermal expansion of the sheets
- B. thermal equilibrium of the sheets
- C. conduction of heat by the sheets
- D. contraction of the sheets
- 40. The magnitude of the force required to make an object of mass **M** move with speed **V** in a circular path of radius **r** is
 - A. $\frac{mr}{v}$
 - B. $\mathbf{w} = \mathbf{v}\mathbf{r}$
 - C. $\frac{mr^2}{v}$
 - D. $\frac{mv^2}{r}$
- 41. A wooden block of mass 1.6kg rest on a rough horizontal surface. If the limiting frictional force *between* the block and the surface is 8N.

Calculate the coefficient of friction. $(g=10\text{ms}^{-2})$

- A. 0.15
- B. 0.25
- C. 0.35
- D. 0.50
- 42. An object is released from the top at a height of 25m. *Calculate* the time it takes to fall to the ground ($g = 10\text{ms}^{-2}$)
 - A. 25.00s
 - B. 10.00s
 - C. 2.50s
 - D. 2.24s
- 43. The slope of a straight line displacement-time graph *indicates* the
 - A. distance travelled
 - B. uniform velocity
 - C. uniform acceleration
 - D. uniform speed
- 44. Which of the following is *not* a consequence of force field?
 - A. weight
 - B. surface tension
 - C. gravitational force
 - D. magnetic force
- 45. The *unit* of linear expansivity *is*
 - A. K
 - B. K-1
 - C. ${}^{0}C^{-2}$
 - D. K⁻²
- 46. The *dimension* of surface tension *is*
 - A. ML^2T^{-1}

- B. MT⁻¹
- C. MT⁻²
- D. ML^2T^2
- 47. Another term for fusion is
 - A. Freezing
 - B. Vaporization
 - C. Evaporation
 - D. Melting
- 48. Which of the following *can not* be obtained from velocity-time graph?
 - A. Acceleration
 - B. Retardation
 - C. Distance
 - D. Displacement
- 49. A body is said to be moving with uniform acceleration *if* it experience *equal*
 - A. Increase in velocity in equal time interval
 - B. Decreases in velocity at equal time interval
 - C. Increases in speed at equal time interval
 - D. Decreases in speed at equal time interval
- 50. Which of the following *units* is equivalent to watt?
 - A. Js⁻²
 - B. Js⁻¹
 - C. Nm⁻¹
 - D. Nm

SECTION B: THEORY PART INSTRUCTION: ANSWER ANY FOUR QUESTIONS IN THIS SECTION

1(a). Distinguish *between* adhesion and cohesion

2marks

- (b). A tennis ball is thrown vertically upward with initial velocity of 20ms⁻¹. *Find*
 - (i). its velocity after 6seconds

3marks

Examiner: Mall. AbdulHafeez

(ii). the *maximum height* attained and time taken to reach it.

4marks

(iii). the *total time taken* for the ball to return to the ground again (neglect air resistance and take $g = 10 \text{ms}^{-1}$)

4marks

(c). Mention *four* effects of surface tension

4marks

- 2(a). State the parallelogram *law* of vector 2marks
- (b). *Calculate* the resultant of five coplanar forces of values 10N, 12N, 16N, 20N, 15N acting on an object at O as *shown* in the figure *below*.

- (c). Two force whose resultants 50N are perpendicular to each other. If the one of them makes angle of 30^0 with the resultant, calculate its magnitude to the nearest whole number.
- 3(a). A body at rest is given an initial acceleration of 6.0ms⁻² for 20s after which the acceleration is reduced to 4.0ms⁻² for the next 10s. The body maintains speed *attained* for 30s.

Draw the *velocity –time graph* of the motion using the information given above. From the graph, *calculate*:

- (i). *maximum speed* attained during the motion
- (ii). *total distance* travelled during the first 30s.
- (iii). average speed during the same interval as in (ii) above.

- (b). A body thrown vertically upward reaches a maximum height of 60m above the level of projection. *Calculate*:
 - (i). *speed* of the thrown
 - (ii). time taken to reach the maximum height

5marks

- 4(a). Define *projectile* and state *two* (2) *applications* of projectile in our real life experience
 - (b). Define the following:

(i). time of flight

1½ marks

(ii). range of projectiles

1½ marks

- (c). A body of mass $\mathbf{40g}$ projected vertically upward in vacuum returns to the point of projection after 2.4s. *Calculate* the speed of projection (Take $g = 10 \text{ms}^{-2}$) 3marks
- (d). A stone is projected from the ground at an angle Θ to the horizontal with a velocity of 30ms^{-1} . it reaches a maximum height of 11.25m. *Calculate*
 - (i). the *value* of Θ
 - (ii). the *time taken* to strike the ground
 - (iii). the *range* 6marks
- 5(a). Distinguish *between* land and sea breezes

2marks

- (b). Explain the *three* modes of heat transfer and state the major differences between them
- (c). Draw a *labeled diagram* of a vacuum (thermos) flask. *Explain* how its construction minimizes heat exchanges with the surroundings.

 5 marks
- 6(a). What is meant by the *statement*: the linear expansivity of a solid is $1.0 \times 10^{-5} k^{-1}$?
- (b). A piece of brass of mass 170kg has its temperature raised from 0^{0} C to 30^{0} C. *Calculate* its increase in volume, given the density of brass at 0^{0} C as $8.5 \times 10^{3} \text{ Kgm}^{-3}$ and its cubic expansivity as 5.7×10^{-5} k⁻¹.
- (c). State *four* (4) effects of heat energy on a matter.

4marks

(d). State *four* (4) practical application of capillarity.

4marks

Page 7

Examiner: Mall. AbdulHafeez