## UNIVERSIDAD PERUANA LOS ANDES FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS Y COMPUTACIÓN



# **ESTUDIANTE**: AGUILAR QUISPE GABRIELA

**DOCENTE:** 

FERNANDEZ BEJARANO RAUL

**CATEDRA:** 

ARQUITECTURA DE SOFTWARE

HUANCAYO – PERÚ 2025

### Proyecto Integrador – Evaluación Arquitectónica

Caso de Estudio: Sistema de Intranet – Universidad Peruana Los Andes

#### 1. Introducción

La Universidad Peruana Los Andes requiere un sistema de intranet robusto, escalable y seguro que permita gestionar procesos académicos y administrativos de manera eficiente. Este proyecto integrador tiene como objetivo aplicar criterios de evaluación arquitectónica al diseño de dicho sistema, considerando atributos de calidad definidos por el estándar ISO/IEC 25010 y buenas prácticas de ingeniería de software. El análisis se realiza desde una perspectiva técnica, utilizando diagramas UML, patrones arquitectónicos y métricas de evaluación.

#### 2. Definición de Requerimientos de Calidad

Los atributos de calidad seleccionados para este sistema son:

| Atributo          | Descripción técnica aplicada al sistema                                                                                 |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|
| Escalabilidad     | Capacidad de atender miles de usuarios simultáneos mediante arquitectura distribuida, balanceo de carga y contenedores. |
| Mantenibilidad    | Modularidad, bajo acoplamiento, uso de patrones como MVC y documentación clara para facilitar actualizaciones.          |
| Seguridad         | Autenticación basada en tokens (JWT), cifrado de contraseñas, validación de entradas, y pruebas con OWASP ZAP.          |
| Disponibilidad    | Infraestructura redundante y monitoreo en tiempo real para garantizar acceso continuo.                                  |
| Interoperabilidad | APIs RESTful para integración con sistemas externos como biblioteca, pagos, y correo institucional.                     |

Estos atributos fueron priorizados en función de los requerimientos institucionales, el volumen de usuarios, y la criticidad de los procesos académicos.

#### 3. Aplicación de Criterios de Evaluación

#### Escalabilidad

- Se propone una arquitectura orientada a servicios (SOA), donde cada módulo funcional (matrícula, notas, trámites) se implementa como un microservicio.
- Se utiliza Docker para contenerizar los servicios y Kubernetes para orquestar su despliegue.
- Se realizan pruebas de carga con JMeter simulando hasta 5,000 usuarios concurrentes, evaluando el tiempo de respuesta y el uso de recursos.

#### Mantenibilidad

- Se aplica el patrón MVC para separar la lógica de presentación, negocio y persistencia.
- Los módulos están desacoplados mediante interfaces REST, lo que permite modificar o reemplazar componentes sin afectar el sistema global.
- Se evalúa la mantenibilidad mediante métricas como complejidad ciclomática,
  duplicación de código y cobertura de pruebas automatizadas.

#### Seguridad

- Se implementa autenticación basada en tokens JWT y autorización por roles (estudiante, docente, administrador).
- Las contraseñas se cifran con berypt y se validan las entradas para prevenir inyecciones SQL y ataques XSS.
- Se realizan pruebas de penetración con OWASP ZAP, identificando vulnerabilidades y proponiendo soluciones.

#### 4. Modelado Arquitectónico

A continuación se presentan los diagramas UML que representan la arquitectura del sistema:

#### Diagrama de Componentes



Diagrama de Clases



Diagrama de Secuencia - Proceso de Matrícula

# Secuencia - Matrícula



Diagrama de Capas



Diagrama de Despliegue



#### 5. Recomendaciones Técnicas

- Migrar a infraestructura en la nube (Azure, AWS) para escalar automáticamente según demanda.
- Implementar integración continua (CI) y entrega continua (CD) para facilitar actualizaciones.
- Documentar las APIs con Swagger para mejorar la interoperabilidad.
- Integrar Prometheus y Grafana para monitoreo y alertas.
- Realizar auditorías de seguridad semestrales y actualizar dependencias vulnerables.

#### 6. Presentación y Defensa

La propuesta será presentada ante el comité académico, explicando cada decisión arquitectónica, los diagramas utilizados y los resultados obtenidos en la evaluación. Se

incluirá una simulación de carga, métricas de seguridad y una defensa técnica con retroalimentación. El equipo deberá justificar la elección de estilos y patrones arquitectónicos, así como demostrar la alineación con estándares internacionales.