Национальный исследовательский университет ИТМО Прикладная математика и информатика

Методы оптимизации

Отчет по лабораторной работе №2 "Алгоритмы минимизации многомерных функций"

Выполнили:

Михайлов Максим Загребина Мария Кулагин Ярослав

Команда:

 $\forall \bar{R} \in \mathscr{R}^n : \mathbf{R}(\bar{R}) \in \mathscr{R}$

(KaMa3)

Группа: М3237

1 Цели

- 1. Реализовать алгоритмы минимизации функций:
 - Метод градиентного спуска
 - Метод наискорейшего спуска
 - Метод сопряженных градиентов
- 2. Исследовать скорость сходимости в зависимости от выбора алгоритма одномерной оптимизации в методе наискорейшего спуска.
- 3. Проанализировать траектории методов на различных квадратичных функциях
- 4. Исследовать зависимость числа итераций от следующих входных параметров:
 - Число обусловленности
 - Размерность пространства

2 Вычислительная схема методов

- 2.1 Метод градиентного спуска
- 2.2 Метод наискорейшего спуска
- 2.3 Метод сопряженных градиентов
- 3 Ход работы
- 3.1 Скорость сходимости в зависимости от выбора алгоритма одномерной оптимизации

Следующие измерения проводились для функции $f=x^2+y^2-xy+4x+3y-1$ Точка минимума (-3.66667, -3.33333). Начальная точка (2,2) $\varepsilon=10^{-6}$

1. Метод золотого сечения

				Итераций
				одномерного
$N_{\overline{0}}$	x_1	x_2	α	поиска
0	2	2	0.666666	19
1	1.48785	1.57321	0.666666	19
2	0.982971	1.13785	0.666666	19
3	0.484755	0.69488	0.666666	19
4	-0.00744836	0.245237	0.666666	19
5	-0.494338	-0.210155	0.666666	19
6	-0.976651	-0.670391	0.666666	19
7	-1.45515	-1.13459	0.666666	19
8	-1.93063	-1.60188	0.666666	19
9	-2.4039	-2.07141	0.666666	19
10	-2.87578	-2.54234	0.666666	19
11	-3.34709	-3.01384	0.451891	19
12	-3.66675	-3.33325	0.000112783	19
13	-3.66667	-3.33333	8.85782e-07	19
14	-3.66667	-3.33333	0	0

2. Метод фибоначчи

				Итераций
				одномерного
$N_{\overline{0}}$	x_1	x_2	α	поиска
0	2	2	0.666666	30
1	1.48785	1.57321	0.666666	30
2	0.98297	1.13785	0.666666	30
3	0.484754	0.694879	0.666666	30
4	-0.00745045	0.245235	0.666666	30
5	-0.494341	-0.210157	0.666666	30
6	-0.976654	-0.670394	0.666666	30
7	-1.45516	-1.13459	0.666666	30
8	-1.93064	-1.60188	0.666666	30
9	-2.40391	-2.07142	0.666666	30
10	-2.87578	-2.54235	0.666666	30
11	-3.3471	-3.01384	0.451883	30
12	-3.66675	-3.33325	0.000113101	30
13	-3.66667	-3.33333	8.85782e-07	0

3. Метод золотого сечения

				Итераций
				одномерного
$N_{\overline{0}}$	x_1	x_2	α	поиска
0	2	2	0.666666	27
1	1.48785	1.57321	0.666666	27
2	0.982971	1.13785	0.666666	27
3	0.484755	0.69488	0.666666	27
4	-0.00744873	0.245237	0.666666	27
5	-0.494339	-0.210155	0.666666	27
6	-0.976651	-0.670392	0.666666	27
7	-1.45515	-1.13459	0.666666	27
8	-1.93063	-1.60188	0.666666	27
9	-2.4039	-2.07141	0.666666	27
10	-2.87578	-2.54234	0.666666	27
11	-3.34709	-3.01384	0.45189	27
12	-3.66675	-3.33325	0.000113103	27
13	-3.66667	-3.33333	8.85782e-07	0

4. Метод Брента

				Итераций
				одномерного
$N_{\overline{0}}$	x_1	x_2	α	поиска
0	2	2	0.666666	14
1	1.48785	1.57321	0.666666	14
2	0.982971	1.13785	0.666666	14
3	0.484754	0.694879	0.666666	14
4	-0.00744959	0.245236	0.666666	14
5	-0.49434	-0.210156	0.666666	14
6	-0.976653	-0.670393	0.666666	14
7	-1.45515	-1.13459	0.666666	14
8	-1.93064	-1.60188	0.666666	14
9	-2.4039	-2.07142	0.666666	14
10	-2.87578	-2.54235	0.666666	14
11	-3.34709	-3.01384	0.451887	5
12	-3.66675	-3.33325	0.000113191	18
13	-3.66667	-3.33333	8.85782e-07	0

Таким образом, количество итераций метода наискорейшего спуска не зависит от выбора способа одномерного поиска, но это влияет на скорость работы. Метод парабол не практически не работает для данной функции.

3.2 Траектории методов на различных функциях

Во всех вычислениях для алгоритма наискорейшего спуска использовался метод Брента. $\varepsilon=10^{-6}$

Начальная точка (-3, 3)

1. $f_1=x^2+y^2-xy+4x+3y-1$ Точка минимума (-3.66667 -3.33333), $\alpha=0.5$ для метода градиентного спуска.

Метод	x_1	x_2	Количество итераций
Градиентный спуск	-3.66667	-3.33333	33
Наискорейший спуск	-3.66667	-3.33333	22
Сопряженные градиенты	-3.66667	-3.33333	3

2. $f_2=254x^2+506xy+254y^2+50x+130y-111$ Точка минимума (19.9112, -20.0888), $\alpha=0.00196$

Метод	x_1	x_2	Количество итераций
Градиентный спуск	4.26471	-4.44222	1002
Наискорейший спуск	4.26714	-4.44465	1002
Сопряженные градиенты	19.9112	-20.0888	3

3. $f_3=108x^2+116y^2+5xy+43x+33y-211$ Точка минимума (-0.195879, -0.13802), $\alpha=0.00446$

Метод	x_1	x_2	Количество итераций
Градиентный спуск	-0.167826	-0.0843702	973
Наискорейший спуск	-0.167825	-0.0843697	658
Сопряженные градиенты	-0.167826	-0.0843704	3

По данным таблиц видно, что первые 2 метода в общем случае не могут найти минимум овражной функции (вторая) и используют во много раз больше итераций для случайных функций, чем третий метод. И еще что-нибудь на основе траекторий.

3.3 Скорость сходимости в зависимости от числа обусловленности и размерности пространства

• Метод градиентного спуска

• Метод наискорейшего спуска

• Метод сопряженных градиентов

4 Выводы

5 Графический интерфейс

6 Код

6.0.1 Вектор

```
#pragma once
1
2
      #include <functional>
3
      #include <vector>
4
5
      namespace lab2 {
6
7
          /**
           * Вектор
8
           */
9
          class Vector {
10
            private:
11
              std::vector<double> data;
12
13
14
            public:
              Vector(const std::vector<double>& data);
15
              Vector(std::size_t size,
16
                      const std::function<double(std::size_t)>& generator);
17
              double operator[](std::size_t idx) const;
19
              [[nodiscard]] std::size_t size() const;
20
              [[nodiscard]] double norm() const;
21
22
23
              Vector operator+(Vector other) const;
              Vector operator-(Vector other) const;
24
              double operator*(const Vector& other) const;
25
              Vector operator*(double val) const;
26
              bool operator==(const Vector& other) const;
27
          };
28
29
      } // namespace lab2
```

```
#include "lab2/vector.h"
1
2
      #include <cmath>
3
      #include <utility>
4
5
      using namespace lab2;
6
      Vector::Vector(const std::vector<double>& data_) : data(data_) {
8
          if (size() == 0) {
9
              throw "Vector is empty";
10
          }
11
12
^{13}
      Vector::Vector(std::size_t size,
14
                      const std::function<double(std::size_t)>& generator) {
15
          data.reserve(size);
16
          for (std::size_t i = 0; i < size; i++) {
17
              data.push_back(generator(i));
18
```

```
}
19
      }
20
21
      std::size_t Vector::size() const { return data.size(); }
22
23
      double Vector::operator[](std::size_t idx) const { return data[idx]; }
24
25
      double Vector::norm() const { return std::sqrt((*this) * (*this)); }
26
27
      Vector Vector::operator+(Vector other) const {
28
          if (size() != other.size()) {
29
              throw "Size mismatch";
30
          }
31
          return Vector(size(), [this, &other](std::size_t i) {
32
              return (*this)[i] + other[i];
33
          });
34
      }
35
36
      Vector Vector::operator-(Vector other) const {
37
          if (size() != other.size()) {
38
              throw "Size mismatch";
39
40
          return Vector(size(), [this, &other](std::size_t i) {
41
              return (*this)[i] - other[i];
^{42}
          });
43
      }
44
45
      Vector Vector::operator*(double val) const {
46
          std::vector<double> tmp;
47
          return Vector(size(), [this, val](std::size_t i) {
48
              return (*this)[i] * val;
49
          });
50
      }
51
52
      double Vector::operator*(const Vector& other) const {
53
          if (size() != other.size()) {
54
              throw "Size mismatch";
55
56
          double res = 0;
57
          for (std::size_t i = 0; i < size(); i++) {
58
              res += (*this)[i] * other[i];
59
60
61
          return res;
62
      }
63
      bool Vector::operator==(const Vector& other) const {
64
          return data == other.data;
65
      }
66
```

6.0.2 Общий класс матриц

```
1
      #pragma once
2
      #include <functional>
3
      #include <vector>
4
5
      namespace lab2 {
6
          /**
           * Вектор
8
9
          class Vector {
10
            private:
11
              std::vector<double> data;
12
13
            public:
14
              Vector(const std::vector<double>& data);
15
              Vector(std::size_t size,
16
                      const std::function<double(std::size_t)>& generator);
17
18
19
              double operator[](std::size_t idx) const;
20
              [[nodiscard]] std::size_t size() const;
              [[nodiscard]] double norm() const;
21
22
              Vector operator+(Vector other) const;
23
              Vector operator-(Vector other) const;
24
              double operator*(const Vector& other) const;
25
              Vector operator*(double val) const;
26
              bool operator==(const Vector& other) const;
27
          };
28
29
      } // namespace lab2
30
```

```
#include "lab2/vector.h"
1
2
      #include <cmath>
3
      #include <utility>
4
5
      using namespace lab2;
6
      Vector::Vector(const std::vector<double>& data_) : data(data_) {
8
          if (size() == 0) {
9
              throw "Vector is empty";
10
11
      }
12
13
      Vector::Vector(std::size_t size,
14
                      const std::function<double(std::size_t)>& generator) {
15
          data.reserve(size);
16
          for (std::size_t i = 0; i < size; i++) {
17
              data.push_back(generator(i));
18
          }
19
      }
20
^{21}
      std::size_t Vector::size() const { return data.size(); }
22
23
      double Vector::operator[](std::size_t idx) const { return data[idx]; }
24
25
      double Vector::norm() const { return std::sqrt((*this) * (*this)); }
26
```

```
27
      Vector Vector::operator+(Vector other) const {
28
          if (size() != other.size()) {
29
              throw "Size mismatch";
30
31
          return Vector(size(), [this, &other](std::size_t i) {
32
              return (*this)[i] + other[i];
33
          });
34
      }
35
36
      Vector Vector::operator-(Vector other) const {
37
          if (size() != other.size()) {
38
              throw "Size mismatch";
39
40
          return Vector(size(), [this, &other](std::size_t i) {
41
              return (*this)[i] - other[i];
42
          });
43
      }
44
45
      Vector Vector::operator*(double val) const {
46
          std::vector<double> tmp;
47
          return Vector(size(), [this, val](std::size_t i) {
48
              return (*this)[i] * val;
49
          });
50
      }
51
52
      double Vector::operator*(const Vector& other) const {
53
          if (size() != other.size()) {
54
              throw "Size mismatch";
55
          }
56
          double res = 0;
57
          for (std::size_t i = 0; i < size(); i++) {</pre>
              res += (*this)[i] * other[i];
59
60
          return res;
61
      }
62
63
      bool Vector::operator==(const Vector& other) const {
64
          return data == other.data;
65
      }
66
```