

BASARA SARASWATHI BHAVAN_MDP N-120

Section: Senior QUALITATIVE ANALYSIS Date: 18-06-2020

TABLE: REACTION OF METALS WITH FOUR REGENTS

Reagent NaOH (OR) KOH			Reagent NH ₄ OH		
SL.No	Metal ion	Not excess	Excess of reagent	Not excess	Excess of reagent
1	Pb^{2+}	$Pb(OH)_2 \ (amphoteric)$	Soluble and forms $Na_2 \left[Pb \left(OH \right)_4 \right] \xrightarrow{H_2O_2} OR(NH_4)_2S_2O_8} \rightarrow PbO_2 + H_2O_{black\ ppt}$	$Pb(OH)_2$	Insoluble remains as $Pb(OH)_2$
2.	$Hg_2^{\scriptscriptstyle +2}$	Hg_2O	Insoluble but on boiling. $Hg_2O \xrightarrow{boiling} Hg + HgO$ $grey$	Black ppt $(HgO Hg NH_2 NO_3 + H$	Insoluble
3	$Ag^{\scriptscriptstyle +}$	Ag_2O Brown ppt	Insoluble	Ag_2O Brown ppt	Soluble $\left[Ag(NH_3)_2\right]^+$
4	Hg^{+2}	HgO (yellow)	Insoluble	White ppt $(HgO Hg NH_2 NO_3)$	Insoluble
5.	Cu^{+2}	$Cu(OH)_2$ (Blue)	Insoluble but on heating changes to <i>CuO</i> (Black)	$Cu(OH)_2$ (Blue)	Soluble forms $\left[Cu(NH_3)_4\right]^{+2}$
6.	Bi^{+3}	$Bi(OH)_3$ (white ppt)	Slightly soluble or insoluble.	$Bi(OH)_3 ppt$	Insoluble
7.	Cd^{+2}	$Cd(OH)_2$ (white ppt)	Insoluble	$Cd(OH)_2$ white ppt	Soluble $\left[Cd(NH_3)_4\right]^{+2}$

8.	Al^{+3}	$Al(OH)_3$ (white	Soluble $[Al(OH)_4]^-$	$Al(OH)_3$ white	Insoluble
		ppt)		ppt	
9.	Fe^{+3}	$Fe(OH)_3$ R.B	Insoluble	$Fe(OH)_3$ R.B ppt	Insoluble
		ppt			
10.	Cr^{+3}	$Cr(OH)_3$ Green	Soluble $\left\lceil Cr(OH)_{_4} \right\rceil$ green	$Cr(OH)_3$ Green	Slightly soluble and form
		ppt	solution	ppt	pink or violet $\left[Cr(NH_3)_6\right]^{+3}$
11.	$\mathit{Mn}^{\scriptscriptstyle +2}$	$Mr(OH)_2$ White	Insoluble but exposed to air		
		ppt	form $MnO(OH)_2$ or $MnO_2.H_2O$		
12	$Zn^{{\scriptscriptstyle +}2}$	$Zn(OH)_2$ white	Soluble $\left\lceil Zn(OH)_{_4} \right\rceil^{-2}$	$Zn(OH)_2$ white	Soluble $\lceil Zn(NH_3)_{_4} \rceil^{_{+2}}$
		ppt		ppt	[\
13.	Co^{+2}	$Co(OH)_{2}$ Pink	Insoluble	$Co(OH)_2$	Soluble $\lceil Co(NH_3)_6 \rceil^{+2}$
		ppt		/2	[\ 3/6]
14.	Ni ⁺²	$Ni(OH)_2$ green	Insoluble	$Ni(OH)_2$ green ppt	Soluble $\left[Ni(NH_3)_6\right]^{+2}$
		ppt			

		Reagent KCN or Na	CN	Reagent KI	
SL.N	Metal ion	Not excess	Excess of reagent	Not excess	Excess of KI
1	Pb^{+2}	$Pb(CN)_2$ White ppt	Insoluble	PbI ₂ (Yellow ppt)	*Soluble in more conc. KI. $K_2[PbI_4]$
2.	Hg_2^{+2}	$Hg \downarrow +Hg(CN)_2$ Grey ppt	Insoluble	* Hg_2I_2 (Green ppt)	*Disproportionates: $[HgI_4]^{-2} + Hg \downarrow$
3	Ag^+	Ag CN (White ppt)	Soluble $[Ag(CN)_2]^{-1}$	AgI (Yellow ppt)	Insoluble but soluble in KCN and Hypo
4	Hg^{+2}	$Hg(CN)_2$ soluble	No change	HgI_2 (Brown ppt)	Soluble: $[HgI_4]^{-2}$ C.L solution
5.	Cu ⁺²	Cu CN (ppt)	Soluble $K_3[Cu(CN)_4]$	CuI (White ppt)	Insoluble
6.	Bi^{+3}			BiI ₃ (Black ppt)	Soluble: $[BiI_4]^-$ orange solution

7.	Cd^{+2}	<i>Cd(CN)</i> ₂ White ppt	Soluble $[Cd(CN)_4]^{-2}$	No ppt	Distinction from Cu^{+2}
8.	Fe^{+3}	$Fe(CN)_3$ R.B ppt	$\left[Fe(CN)_{6}\right]^{-3}$ yellow soluble	$Fe^{+2} + I_3^-$ (B.solution)	
9.	Fe^{+2}	$Fe(CN)_2$	Soluble $\left[Fe(CN)_6\right]^{-4}$		
		brown ppt	Pale yellow solution		
10.	Co ⁺²	$CO(CN)_2$ R.B ppt	Soluble $[CO(CN)_6]^{-4}$		
11	Ni^{+2}	$Ni(CN)_2$ Green ppt	Soluble $\left[Ni(CN)_4\right]^{-2}$		
12.	Zn^{+2}	$Zn(CN)_2$ ppt.	Soluble: $\left[Zn(CN)_4\right]^{-2}$		

SL.No	Metal ion	Colour	Solubility
1	Ag^+	AgS (black)	Hot Conc. Nitric acid decomposes 'S' remains in the form of ppt. it the mixture is boiled 'S' oxidizes to SO_4^{-2} and ppt of 'S' disappears.
2.	Pb^{+2}	PbS(black)	Decomposed by Conc. HNO ₃ : 2M. HNO ₃ conc. HCl
3	Hg_2^{+2}	Black formed by passing H_2S through solution of Hg_2^{+2}	Which is mixture of Hgs +Hg. But not Hg_2S
4	Hg +2	Hgs(black)	Soluble in aquaregia; Na_2S ; $[HgS_2]^{-2}$, $[HgS_2]^{-2}$ solution $\xrightarrow{H^+\atop dil.acid} H_2S + HgS \downarrow (Black\ ppt)$
5.	Cu ⁺²	CuS (black)	*Soluble in 2M HNO_3 (hot. Conc. HNO_3) insoluble in boiling dil. H_2SO_4 [distinction from Cd]
6.	Bi ⁺³	Bi_2S_3 (Black) or (dark brown)	Soluble in boiling Conc. HCl and dil. HNO ₃

7.	Cd^{+2}	Cds (yellow)	Soluble in conc. HCl and 2M HNO ₃
8.	Fe^{+2}	FeS (black)	Readily soluble in acids with evolution of H_2S .
9.	Fe^{+3}	Fe_2S_3 (black)	Readily dissolves in HCl forms Fe(II) and 'S'
10.	Cr^{+3} , Al^{+3} , Mg^{+1}	2	* Cant form sulphides in aqueous solution as they are completely hydrolysed. These sulphides canbe prepared only under dry conditions
11.	Co^{+2}	CoS(black)	Soluble in hot conc. HNO_3 ; aqua regia; leaving 'S' ppt, Conc Hcl in presence of oxidizing agent.
12	Ni^{+2}	NiS(black)	Soluble in hot conc. HNO_3 ; aqua regia; leaving 'S' ppt. Conc HCl in presence of oxidizing agent
13.	Mn^{+2}	MnS(black)	Soluble in mineral acid even in *CH ₃ COOH
14.	Zn^{+2}	ZnS(white ppt)	*Insoluble in CH_3COOH . Soluble in mineral acid.

Note: Co^{+2} , Ni^{+2} , Mn^{+2} , Zn^{+2} are precipitate by H_2S in neutral or slightly alkaline medium.

- 1. Alkali metal sulphides: Normal and poly sulphides of alkali metals are soluble in water
- 2. Alkaline earth metal sulphides: Normal sulphides are sparingly soluble but changes by contact with water gradually to soluble hydrogen sulphides: $\left\lceil CaS + H_2O \rightarrow Ca^{+2} + SH^- + OH^- \right\rceil$

Most of other metal sulphides are Insoluble in water.

DECOMPOSITION OF SULPHIDES BY ACID:

- 1. Most of the metal sulphides are decomposed by dil. HCl with the evolution of H_2S .
- 2. Sulphides of Pb, Cd, Ni, Co, Sb and Sn(IV) are required Conc.HCl for decomposition to evolve H_2S .
- 3. HgS dissolves aquaregia, with separation of sulphur