

Data sheet acquired from Harris Semiconductor SCHS045C – Revised October 2003

CMOS Multifunction **Expandable 8-Input Gate**

High-Voltage Types (20-Volt Rating)

CD4048B is an 8-input gate having four control inputs. Three binary control inputs - Ka, Kb, and Kc - provide the implementation of eight different logic functions. These functions are OR, NOR, AND, NAND, OR/AND, OR/NAND, AND/OR and AND/NOR.

A fourth control input, Kd, provides the user with a 3-state output. When control input Kd is high, the output is either a logic 1 or a logic 0 depending on the inner states. When control input Kd is low, the output is an open circuit. This feature enables the user to connect this device to a common bus line.

In addition to the eight input lines, an EXPAND input is provided that permits the user to increase the number of inputs into a CD4048B (see Fig. 2). For example, two CD4048Bs can be cascaded to provide a 16-input multifunction gate. When the EXPAND input is not used, it should be connected to VSS.

The CD4048B-series types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line packages (E suffix), 16-lead small-outline packages (M, M96, MT, and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

FUNCTION CONTROL OUTPUT VSS: 6 VDD=16 9205-22249 Functional Diagram

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE (Voc)

oo oor i zi vozinaz isaitaz, (voo)	
Voltages referenced to VSS Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	0.5V to V _{DD} +0.5V
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	500mW
For T _A = +100°C to +125°C	Derate Linearity at 12mW/°C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	•
FOOT FILL DACKAGE TELLOCOLOUR AND AND AND	

OPERATING-TEMPERATURE RANGE (T_A).....-55°C to +125°C STORAGE TEMPERATURE RANGE (T_{stg}).....-65°C to +150°C LEAD TEMPERATURE (DURING SOLDERING):

Fig. 1 — Basic logic configurations.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CUADACTERISTIC	LIM		
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T_A = Full Package Temperature Range)	3	18	V

Features:

- Three-state output
- Many logic functions available in one package
- Standardized, symmetrical output characteristics

CD4048B Types

- 100% tested for quiescent current at 20 V
- Maximum input current of 1 μA at 18 V (full package-temperature range), 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range) = 1 V at V_{DD} =5 V, 2 V at V_{DD} = 10 V, 2.5 V at V_{DD}=15 V
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Selection of up to 8 logic functions
- Digital control of logic
- General-purpose gating logic
 - Decoding
 - Encoding

TERMINAL ASSIGNMENT

Fig. 2 - Logic diagram.

 ${\it Fig.~3-Actual-circuit~logic~configurations.}$

Fig. 4-12-input OR/AND gate.

Fig. 5 - 16-input NOR gate.

Fig. 6 — Typical output low (sink) current characteristics.

Fig. 7 — Minimum output low (sink) current characteristics.

Fig. 8 — Typical output high (source) current characteristics.

Fig. 9 — Minimum output high (source) current characteristics.

CD4048B Types

STATIC ELECTRICAL CHARACTERISTICS

			_								1	
CHARACTER-	CONI	ļs	LIMITS AT INDICATED TEMPERATURES (°C)									
ISTIC	V _O	VIN	VDD					+25			UNITS	
	(v)	(V)	(V)	55	40	+85	+125	Min.	Тур.	Max.		
Quiescent Device	-	0,5	5	0.25	0.25	7.5	7.5	_	0.01	0.25		
Current,		0,10	10	0.5	0.5	15	- 15	-	0.01	0.5	1	
IDD Max.		0,15	15	1	1	30	30	-	0,01	1	μΑ	
	_	0,20	20	5	5	150	150	-	0.02	5		
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	·		
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	_	1	
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	_]	
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	1	· –	mA	
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	-		
Current, IOH Min.	9.5	0,10	10	~1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-		
тон жит.	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-		
Output Voltage:		0,5	5	0.05				_	0	0.05		
Low-Level, VOL Max.	-	0,10	10		0	.05		_	0	0.05]]	
VUL Max.	-	0,15	15	0.05				÷	0	0.05	v	
Output Voltage:	-	0,5	5	4.95			4.95	5	-			
High-Level,	- "	0,10	10		9.95				10			
VOH Min.		0,15	15	14.95				14.95	15	-		
Input Low	0.5,4.5	_	5		1	.5		-	_	1.5		
Voltage,	1,9		10			3			_	3	l i	
VIL Max.	1.5,13.5	_	15			4		-		4	١ ا	
Input High	0.5,4.5	_	5		. 3	.5		3.5	<u> </u>	_	V	
Voltage,	1,9		10			7		7	_	_		
VIH Min. 1.5,13.5 - 15		11			11		_					
Input Current IJN Max.		0,18	18	±0,1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μΑ	
3-State Output Current, IOUT	0,18	0,18	18	±0.4	±0.4	±12	±12	-	±10 ⁻⁴	±0.4	μΑ	

Fig. 10 -- Typical propagation delay time (logic inputs to output) as a function of load capacitance.

Fig. 11 - Typical transition time vs. load capacitance.

IMPLEMENTATION OF EXPAND INPUT FOR 9 OR MORE INPUTS

OUTPUT FUNCTION	FUNCTION NEEDED AT EXPAND INPUT	OUTPUT BOOLEAN EXPRESSION
NOR	OR	J=(A+B+C+D+E+F+G+H)+(EXP)
OR	OR	J=(A+B+C+D+E+F+G+H)+(EXP)
AND	NAND	J=(ABCDEFGH)·(EXP)
NAND	NAND	J=(ABCDEFGH)·(EXP)
OR/AND	NOR	J=(A+B+C+D) (E+F+G+H) (EXP)
OR/NAND	NOR	J=(A+B+C+D)·(E+F+G+H)·(EXP)
AND/NOR	AND	J=(ABCD)+(EFGH)+(EXP)
AND/OR	AND	J=(ABCD)+(EFGH)+(EXP)

Note: (EXP) designates the EXPAND function (i.e., $x_1+x_2+\ldots x_N$).

NOTE: Refer to FUNCTION TRUTH TABLE for connection of unused inputs.

Fig. 12 — Typical power dissipation as a function of input frequency.

CD4048B Types

DYNAMIC CHARACTERISTICS at TA=25°C, CL=50 pF, Input t_r,t_f=20 ns, RL=200 k Ω unless otherwise specified

	TEST CONDI	TIONS	LIM	ITS		
CHARACTERISTIC		V _{DD}	V _{DD} All Package Ty		es UNITS	
		V	Тур.	Max.		
Propagation Delay: tpHL,tpLH		5	300	600		
Inputs to Output and		10	150	300		
Ka to Output		15	120	240		
Kb to Output		5	225	450		
		10	85	170		
		15.	55	110		
Kc to Output		5	140	280		
		10	50	100		
		15	40	80		
Expand Input to Output		5	190	380	ns	
	<u> </u>	10	90	180		
		15	65	130		
3-State Propagation Delay:		5	80	160		
Kd to Output tpHZ,tpLZ	R _L =1 kΩ	10	35	70		
^t PZH, ^t PZL	See Fig.21	15	25	50		
Transition Time: tTHL,tTLH		5	100	200	•	
11190 11911	!	10	50	100		
		15	40	80		
Input Capacitance: C	Any inp	ut	5	7	pF	
3-State Output Capacitance		:	5	10	pr	

Fig. 13 – Dynamic power dissipation test circuit.

FUNCTION TRUTH TABLE

OUTPUT FUNCTION	BOOLEAN EXPRESSION	Ka	Кb	Kc	UNUSED		
NOR	J≈A+B+C+D+E+F+G+H	0	0	0	V _{SS}		
OR	J=A+B+C+D+E+F+G+H	0	0	1	VSS		
OR/AND	J=(A+B+C+D)•(E+F+G+H)	0	1	0	V _{SS}		
OR/NAND	J=(A+B+C+D)·(E+F+G+H)	0	1	1	V _{SS}		
AND	J=ABCDEFGH	1	0	0	V _{DD}		
NAND	J=ABCDEFGH	1	0	1	V _{DD}		
AND/NOR	J=ABCD+EFGH	1	1	0	V _{DD}		
AND/OR	J=ABCD+EFGH	1	1	1	V _{DD}		
K _d =1 Normal Inverter Action							
K _d =0 High Impedance Output							

EXPAND Input=0

* See Figs. 1,2,3,4, and 5.

TEST CIRCUITS - STATIC MEASUREMENTS

Fig. 14 — Quiescent device current test circuit.

Fig. 15 — Input voltage test circuit.

Fig. 16 - Input current test circuit.

TEST CIRCUITS - DYNAMIC MEASUREMENTS

Fig. 17 — Test circuit for t_{PHL}, t_{THL}, end t_{TLH} (AND) measurements.

Fig. 18 — Waveforms for t_{PHL} and t_{PHL} (AND).

Fig. 19 — Waveforms for t_{THL} and t_{TLH} (AND).

Fig. 20 — Test circuit for t_{PZL} , t_{PZH} , t_{PLZ} , and t_{PHZ} (AND).

Fig. 21 — Waveforms for t_{PZL} , t_{PZH} , t_{PLZ} , and t_{PHZ} (AND).

Dimensions and pad layout for CD4048BH.

Dimensions in parantheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3}) inch).

ti.com 28-Feb-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CD4048BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD4048BF3A	ACTIVE	CDIP	J	16	1	None	Call TI	Level-NC-NC-NC
CD4048BM	ACTIVE	SOIC	D	16	40	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CD4048BM96	ACTIVE	SOIC	D	16	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CD4048BMT	ACTIVE	SOIC	D	16	250	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CD4048BNSR	ACTIVE	SO	NS	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CD4048BPW	ACTIVE	TSSOP	PW	16	90	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
CD4048BPWR	ACTIVE	TSSOP	PW	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AC.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

Texas Instruments

http://www.ti.com

This file is the datasheet for the following electronic components:

CD4048BPW - http://www.ti.com/product/cd4048bpw?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4048BM - http://www.ti.com/product/cd4048bm?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4048BF3A - http://www.ti.com/product/cd4048bf3a?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4048BE - http://www.ti.com/product/cd4048be?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4048B - http://www.ti.com/product/cd4048b?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4048BMT - http://www.ti.com/product/cd4048bmt?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4048BPWR - http://www.ti.com/product/cd4048bpwr?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4048BM96 - http://www.ti.com/product/cd4048bm96?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4048BNSR - http://www.ti.com/product/cd4048bmsr?HQS=TI-null-null-dscatalog-df-pf-null-wwe