

Predicting Wine Type with Deep Learning and CSV Data

A **by**ARUNACHALAM
ARUN PRABU

Introduction to Wine Classification

1 Wine Types

Wine classification encompasses categorizing wines based on factors like grape variety, region, and production methods.

3 Machine Learning

We'll use machine learning techniques to train a model capable of predicting wine types based on characteristics found in the dataset.

2 Deep Learning

Deep learning models, particularly neural networks, are adept at learning complex patterns from data for classification tasks.

4 Data-Driven Insights

Analyzing the data provides insights into the factors that influence wine types and reveals potential trends.

RARAPE VFRIEES

Wine geography Wine

3 3	4 5 9	1% 12	44	0
de la				
М	С	E	F	
,336				
,335		***		
,398				
,559				
,198				
,199				
199				
,199	Wine			
,122				
,198	Wine			
,196	Wine			
,152		1		
,190			h	
,172				
,192				
,198				
,198				
,198				
,178				
,195				
,194				
,268				
.295			- :-	

Dataset: Wine Quality CSV

Feature	Description	
Fixed Acidity	Measured in grams of tartaric acid per liter	
Volatile Acidity	Measured in grams of acetic acid per liter	
Citric Acid	Measured in grams of citric acid per liter	
Residual Sugar	Measured in grams of sugar per liter	
Chlorides	Measured in grams of sodium chloride per liter	
Free Sulfur Dioxide	Measured in milligrams of sulfur dioxide per liter	
Total Sulfur Dioxide	Measured in milligrams of sulfur dioxide per liter	
Density	Measured in grams per cubic centimeter	
рН	A measure of acidity	
Sulphates	Measured in grams of potassium sulphate per liter	
Alcohol	Measured in percentage of alcohol by volume	
Wine Type	Categorical variable indicating the type of wine	

Exploratory Data Analysis

Data Cleaning

Identifying and handling missing data, outliers, and inconsistencies.

Descriptive Statistics

Calculating mean, median, standard deviation, and other summary measures to understand data distribution.

Visualization

Creating histograms, scatter plots, and box plots to visualize relationships between variables.

Feature Engineering and Preprocessing

Feature Scaling

Normalizing features to a common scale, preventing features with larger ranges from dominating the model.

One-Hot Encoding

Converting categorical variables into numerical representation, allowing the model to understand categorical data.

Feature Selection

3

Choosing the most relevant features for prediction, improving model performance and reducing complexity.

Deep Learning Model Architecture

Input Layer

Receives the preprocessed features as input.

Hidden Layers

2

3

Multiple layers of neurons that learn complex patterns from the data.

Output Layer

Generates the prediction of wine type based on the learned patterns.

```
proverber] "feer-tatalbals resestant
    (ffant)= cilstner Sertielı)
    *fircgraly faffentily <dervincs_plicmbed. *
    (cflescriatioy nnicte) ity, lettrande(terucl);
  4 ttrapl=talevgt: fillsssc(Olancrataer lef: (fffadk/Acoccount)
         34.5 *flee=fisstl):
2317 graat itseerfantfrrex((frrgrapertisiction ar(Bileschapellant)
12.8 (ff deas ((lnest)
13/0 | Isterntatnegstan.retante]);
   4 Teferdow ((Inest)
   Treah= firse-raberistetatction_da..s.
     [ saiggs= TIK >
    [ffese-<trointe insroffeesgetshcurk.(timg(U))
    [ffaings=ttruif: 11); rternotoctesetionstectistica(camer (D)
    /ingrow=ctascec(lesteroliy,ftinic;
    [ffessporetiRessper Orinnalty troppGaciants(milet)
   [ffeintt. testsrot\stroffegfatfiell errober prosetoer con
     ISBC= freet.essestentier;
             entitiantce Jerniues)
```

Model Training and Optimization

Training Data

Feeding the model with labeled examples of wine types and their corresponding features.

Hyperparameter Tuning

Optimizing the model's structure and learning rate to achieve optimal performance.

Loss Function

Measuring the difference between the model's predictions and actual wine types.

Epochs and Batches

Iteratively training the model on the data in batches until convergence.

Evaluation and Deployment

Performance Metrics

Evaluating the model's accuracy, precision, recall, and F1-score to assess its effectiveness.

Deployment

Making the trained model available for real-time predictions, potentially as a web service or API.

Continuous Improvement

Monitoring the model's performance over time and retraining it with new data to adapt to changes.

