HASHING:

Agenda:

→ Problem (Toy to optimize)

→ Hashing

problem: 1 hr 40 mins

Problem:

→ You are given a list of size N.

→ This list has some numbers. Range [1-1000]

→ Ex: [1,10,78,999,1000,1]

→ You will get Q-queries. This is also a list of size Q.

→ for every query, you have to print True if that query or in list else False

Example:

lst = [4, 5, 80, 999, 1000, 2] query = [80, 500, 899, 1]

Am : True False False False

Approach 1

A Linear Search

$$=)$$
 $N = 100$

$$\Rightarrow \qquad N = 100$$

$$\Rightarrow \qquad Q = 100$$

$$#$$
 10⁸ operations = 10 sec
10⁷ operations = 1 sec

$$\rightarrow 10^8 = 10.8$$

$$\rightarrow$$
 1 opent = $\frac{10}{10^8}$ sec

$$\Rightarrow 10^7 \text{ operatr} = \frac{10}{10^8} \times 10^7 = \frac{10}{10^8}$$

$$N = 10^6$$
$Q = 10^6$

Total operatr =
$$10^6 \times (0^6 = 10^{12})$$

 $time = \frac{10}{40^{-8}} \times 10^{12}$
= 10×10^4 sec
= 10^5 sec
= 1.15 days

* Approach 2

- -> Sort the list and apply binary search for all queries.
- \Rightarrow Binary Search = $O(\log N)$ \Rightarrow Sorting = $N(\log N)$
- -> Total operations = N(log N) + Q x log (N)
 size of lost
 size of query bet

$$\Rightarrow Q = 10^6$$

Total time =
$$10^6 (log 10^6) + 10^6 (log 10^6)$$

= $2 \times 10^6 (log 10^6) \rightarrow 2^8$
= $2 \times 20 \times 10^6$
= 4×10^7
= 4×1 sec
= 4×8

* Approach 3:

list =
$$[0,5,2,3,8,8,2,5]$$

query = $[1,5,9,8,8,5,5,8,5]$

* Total operations:

$$A = 10^6$$
 $CQ = 10^6$

Total fime =
$$2 \times 10^6$$

= 2×0.1
= 0.2 Sec

Range =
$$0 - 1000$$

Range = $1 - 10^{10}$

inefficient in terms of space.

space consumed : multiple Gbx

·-----

Adding data In Set:

$$1 \rightarrow 0 (1)$$
 $N \rightarrow 0 (N)$ # Norst case

Searching data:

$$\Rightarrow 1 \rightarrow 0(1)$$
 $\Rightarrow Q \rightarrow 0(Q)$

$$N = 10^{6}$$
$Q = 10^{6}$

Total operations =
$$N + Q$$

= $10^6 + 10^6$
= 2×10^6

$$\Rightarrow$$
 10⁶ \approx 1 mb