output y(t) are

the following

the following

 $dT = \pi/7$ and ical to x(t).

output y[n] are

of the following

Find the Fourier series representation of the output y[n] for each of the following inputs:

(a) $x[n] = \sum_{k=-\infty}^{\infty} \delta[n-4k]$

(b) x[n] is periodic with period 6 and

$$x[n] = \begin{cases} 1, & n = 0, \pm 1 \\ 0, & n = \pm 2, \pm 3 \end{cases}$$

3.38. Consider a discrete-time LTI system with impulse response

$$h[n] = \begin{cases} 1, & 0 \le n \le 2 \\ -1, & -2 \le n \le -1 \\ 0, & \text{otherwise} \end{cases}$$

Given that the input to this system is

$$x[n] = \sum_{k=-\infty}^{+\infty} \delta[n-4k],$$

determine the Fourier series coefficients of the output y[n].

3.39. Consider a discrete-time LTI system S whose frequency response is

$$H(e^{j\omega}) = \begin{cases} 1, & |\omega| \leq \frac{\pi}{8} \\ 0, & \frac{\pi}{8} < |\omega| < \pi \end{cases}$$

Show that if the input x[n] to this system has a period N=3, the output y[n] has only one nonzero Fourier series coefficient per period.

ADVANCED PROBLEMS

- **3.40.** Let x(t) be a periodic signal with fundamental period T and Fourier series coefficients a_k . Derive the Fourier series coefficients of each of the following signals in terms of a_k :
 - (a) $x(t-t_0) + x(t+t_0)$
 - **(b)** $\mathcal{E}_{\mathcal{V}}\{x(t)\}$
 - (c) $\Re\{x(t)\}$
 - (d) $\frac{d^2x(t)}{dt^2}$
 - (e) x(3t-1) [for this part, first determine the period of x(3t-1)]
- 3.41. Suppose we are given the following information about a continuous-time periodic signal with period 3 and Fourier coefficients a_k :
 - 1. $a_k = a_{k+2}$.
 - **2.** $a_k = a_{-k}$.
 - **3.** $\int_{-0.5}^{0.5} x(t)dt = 1$. **4.** $\int_{1}^{2} x(t)dt = 2$.

Determine x(t).

- **3.42.** Let x(t) be a real-valued signal with fundamental period T and Fourier series coefficients a_k .
 - (a) Show that $a_k = a_{-k}^*$ and a_0 must be real.
 - (b) Show that if x(t) is even, then its Fourier series coefficients must be real and
 - (c) Show that if x(t) is odd, then its Fourier series coefficients are imaginary and odd and $a_0 = 0$.
 - (d) Show that the Fourier coefficients of the even part of x(t) are equal to $\Re\{a_k\}$.
 - (e) Show that the Fourier coefficients of the odd part of x(t) are equal to $j\mathcal{I}m\{a_k\}$.
- **3.43.** (a) A continuous-time periodic signal x(t) with period T is said to be *odd harmonic* if, in its Fourier series representation

$$x(t) = \sum_{k = -\infty}^{+\infty} a_k e^{jk(2\pi/T)t},$$
 (P3.43–1)

 $a_k = 0$ for every non-zero even integer k.

(i) Show that if x(t) is odd harmonic, then

$$x(t) = -x\left(t + \frac{T}{2}\right).$$
 (P3.43–2)

- (ii) Show that if x(t) satisfies eq. (P3.43–2), then it is odd harmonic.
- (b) Suppose that x(t) is an odd-harmonic periodic signal with period 2 such that

$$x(t) = t$$
 for $0 < t < 1$.

Sketch x(t) and find its Fourier series coefficients.

- (c) Analogously, to an odd-harmonic signal, we could define an even-harmonic signal as a signal for which $a_k = 0$ for k odd in the representation in eq. (P3.43–
 - 1). Could T be the fundamental period for such a signal? Explain your answer.
- (d) More generally, show that T is the fundamental period of x(t) in eq. (P3.43–1) if one of two things happens:
 - (1) Either a_1 or a_{-1} is nonzero;

- (2) There are two integers k and l that have no common factors and are such that both a_k and a_l are nonzero.
- **3.44.** Suppose we are given the following information about a signal x(t):
 - 1. x(t) is a real signal.
 - 2. x(t) is periodic with period T = 6 and has Fourier coefficients a_k .
 - **3.** $a_k = 0$ for k = 0 and k > 2.
 - **4.** x(t) = -x(t-3).
 - 5. $\frac{1}{6} \int_{-3}^{3} |x(t)|^2 dt = \frac{1}{2}$.
 - **6.** a_1 is a positive real number.

Show that $x(t) = A\cos(Bt + C)$, and determine the values of the constants A, B. and C.

BASIC PROBLEMS

4.21. Compute the Fourier transform of each of the following signals:

(a)
$$[e^{-\alpha t}\cos\omega_0 t]u(t), \alpha > 0$$

(a)
$$[e^{-\alpha t}\cos \omega_0 t]u(t), \alpha > 0$$

(c) $x(t) = \begin{cases} 1 + \cos \pi t, & |t| \le 1 \\ 0, & |t| > 1 \end{cases}$

(e)
$$[te^{-2t}\sin 4t]u(t)$$

(g) x(t) as shown in Figure P4.21(a)

(i)
$$x(t) = \begin{cases} 1 - t^2, & 0 < t < 1 \\ 0, & \text{otherwise} \end{cases}$$

(b)
$$e^{-3|t|} \sin 2t$$

(d)
$$\sum_{k=0}^{\infty} \alpha^k \, \delta(t-kT), \, |\alpha| < 1$$

(f)
$$\left[\frac{\sin \pi t}{\pi t}\right] \left[\frac{\sin 2\pi (t-1)}{\pi (t-1)}\right]$$

(h) x(t) as shown in Figure P4.21(b)

$$(\mathbf{j}) \quad \sum_{n=-\infty}^{+\infty} e^{-|t-2n|}$$

Figure P4.21

4.22. Determine the continuous-time signal corresponding to each of the following transforms.

(b)

Figure P4.22

lowing

(a)
$$X(j\omega) = \frac{2\sin[3(\omega-2\pi)]}{(\omega-2\pi)}$$

(b)
$$X(j\omega) = \cos(4\omega + \pi/3)$$

(c)
$$X(j\omega)$$
 as given by the magnitude and phase plots of Figure P4.22(a)

(d)
$$X(j\omega) = 2[\delta(\omega - 1) - \delta(\omega + 1)] + 3[\delta(\omega - 2\pi) + \delta(\omega + 2\pi)]$$

(e)
$$X(j\omega)$$
 as in Figure P4.22(b)

4.23. Consider the signal

$$x_0(t) = \begin{cases} e^{-t}, & 0 \le t \le 1\\ 0, & \text{elsewhere} \end{cases}.$$

Determine the Fourier transform of each of the signals shown in Figure P4.23. You should be able to do this by explicitly evaluating *only* the transform of $x_0(t)$ and then using properties of the Fourier transform.

Figure P4.23

4.24. (a) Determine which, if any, of the real signals depicted in Figure P4.24 have Fourier transforms that satisfy each of the following conditions:

(1)
$$\Re\{X(j\omega)\}=0$$

(2)
$$\mathcal{G}m\{X(j\omega)\}=0$$

(3) There exists a real α such that $e^{j\alpha\omega}X(j\omega)$ is real

$$(4) \int_{-\infty}^{\infty} X(j\omega) d\omega = 0$$

$$(5) \int_{-\infty}^{\infty} \omega X(j\omega) d\omega = 0$$

(6)
$$X(j\omega)$$
 is periodic

(b) Construct a signal that has properties (1), (4), and (5) and does *not* have the others.