Example: A single-input single-output clocked sequential circuit is to be designed. The circuit will determine whether a string of four consecutive input bits constitute a valid BCD code or not. The output 2=1 if the four consecutive bits DO NOT constitute a valid BCD representation, and 2=0 otherwise. Least significant bit of the BCD code is applied to the checker input first. X->BCD CHECKES -> Z (after the Ith input)

a b c c c b d e c c f q c	P2 P3 P4	= (a,b,c,h,l) = (a,h,l)(b,c)	(d,f)(e,g)(i,z,k,m,n,p) (d,f)(e,g)(i,z,k,m,n,p) (d,f)(e,g)(i,z,k,m,n,p) (d,f)(e,g)(i,z,k,m,n,p)
to had adda	000000000000000000000000000000000000000	x=0 x=1 x=0 b b 0 d e 0 h i 0 a a 0	state bable —
		est comment of the	

=) h, i must be adjacent

die may be adjacent

i= 100

e= 101

h = 000

d = 001

a = 010

p = 011

PS	NS	Output
	X=0 X=1	X=0 X21
ABC	ABC ABC	7 7
h -> 000	010 010	0 0
9- 001	000 100	0 0
a->010	011011	0 0
p > 011	001 101	0 0
001 < 3	010 010	
e>101	100 100	0 0

6 states
$$\Rightarrow$$
 3 FFs
3 FFs \Rightarrow 8 states
 $2^3 = 8$

-: 2 unused states:

Design the circuit using one IX FF for A, one RS FF for B and one T FF for C.

PS Input	NS output	FIGP-flop Inputs
ABC X	ABC Z	JA KA SB RB TC
000 0	0 00	0 × 1 0 0
000	010 0	0 X 1 0 0
001 0	000 0	OXOXI
001 1	100 0	IXOXI
010 0	0110	0 × × 0 1
010 1	0110	0 x x 0 1
0110	00100	OX OIO
0111		1 X 0 1 0 0
100 0	0100	X 1 10 0
1001	010	x o o x i
101 0	10000	xã ó x
101 1		××××××
1100	X X X X	
1101		X X X X X
1110	X XX X	$\times \times \times \times \times$
1111	xxx x	X X X X

- Excitation Table -

Remember:

PS NS	TK	PS NS ISR	PS NS IT
000		0 0 0 X	0 0 0
1 1	XO	10 01 11 X0	101
			1110

Example: A sequential circuit with two D flip-flops, Acord B; two inputs, x and y; and one output, z, is specified by the following next-state and output equations:

A LETT = XY+XA, BLETT = X'B+XA Z=B

- a) Daw the logic diagram of the circuit
- b) Deeve the state toble
- c) Derive the state diagram

Example: A sequential circuit has three Dflip-flops, A, B, and C, and one input, x. It is described by the following tip-flop input functions: DA= (BC+B'C)X+(BC+B'C')X DB = A Dc = B a) Derive the state table b) Draw hus state chagrams; one for x=0 and the other for x=1 a) Next state equotions: ALL+1)=D= XBC+XBC+XBC+XBC+XBC', BLH1)=A, CLHI)=B DI CL+1) B(HI) ALtH) PS ABC ABC ABC 100000 000 000 100 100 001101 010 101001 011 110010 100 101 010110 110