# An eye to see subatomic world





#### **SUBJECTS OF PHYSICS**





### Table of Contents

- > Introduction to *High Energy Physics*
- > Accelerator Physics
- > Types of Accelerators
- > Components of Accelerators
- > Detector Physics
- > Types of Detectors
- > Components of a typical Detector

# Introduction to High Energy Physics



- · To propose different models & check their validity
- · To develop mathematical framework for the concept



· To use different computational tools to simulate the concept or to design complex experimental setups prior to real construction



· To make necessary components for the experiments. To check and verify various factors affecting the performance of the device.

# High Energy Physics Instrumentation



# Experimental requirements for HEP

- > A Particle Accelerator
- > A Detector
- > Fast and Special Electronics







Experimental requirements HEP

> A Particle Accelerator

> A Detector

> Fast and Special Electronics







# TYPES OF ACCELERATORS









#### COMPONENTS OF A TYPICAL ACCELERATOR



- > All particle accelerators, whether linacs or circular, have the following basic parts:
- Particle source provides the particles that will be accelerated
- > Copper tube the particle beam travels in a vacuum inside this tube
- > Klystrons microwave generators that make the waves on which the particles ride
- > **Electromagnets** (conventional, superconducting) keep the particles confined to a narrow beam while they are travelling in the vacuum, and also steer the beam when necessary
- Targets what the accelerated particles collide with
- > **Detectors** devices that look at the pieces and radiation thrown out from the collision
- > Vacuum systems remove air and dust from the tube of the accelerator
- > Cooling systems remove the heat generated by the magnets
- **Computer/electronic systems** control the operation of the accelerator and analyze the data from the experiments
- > Shielding protects the operators, technicians and public from the radiation generated by the experiments
- Monitoring systems closed-circuit television and radiation detectors to see what happens inside the accelerator (for safety purposes)
- > Electrical power system provides electricity for the entire device
- > Storage rings store particle beams temporarily when not in use

## Lets See What are Detectors...

- Detectors are Device which detects particle or its property (velocity, charge etc) by exploiting one(or more) of the physical property of Detector material.
- > For example Gas detector exploits the fact that charge particle when pass through a gas, ionizes the gas in to electron and ion pairs.
- > In HEP we don't have one detector but detector system with many sub detectors.

## Types of Particle Detectors



# Types of Elemantary Particles



# HOW ARE THE PARTICLE DETECTED

- A detector system has many layers of different sub-detectors.
- Each Layer has its own role in an experiment.
- The choice of sub detector is based on where that sub-detector is placed and what it will detect.

- > The main equation of HEP is Einstein's relativistic equation.
- $\rightarrow E = p^2c^2 + m^2c^4$
- A detector detects only one property at time ie, Energy or momentum or velocity.
- > For complete information about whole event one also needs position of detector where particle hit the detector.
- > Thus there are three main roles of detector.
- > Tracking, Caloriemetry, Pid.





# Why to have multi-layered detector system

- > Each detector can perform only one task at a time.
- > Any detector system is designed to operate at particular energy only. It will not give desired results if operated below or over the range at which it was designed.
- > Since we need many other information other than physical properties of particle, we need many different detectors in whole system.
- > The data from each of sub system has to be combined and analysed which requires lots of computational power.
- > Electronics required to read detector signals have limited response time.

### **Electronics for Detectors**

- > Nuclear electronics is a subfield of electronics concerned with the design and use of high-speed electronic systems for nuclear physics and elementary particle physics research, and for industrial and medical use.
- > Some of the essential components that make up the elements of a nuclear electronic analysis system include:
- > Detectors
- > Preamplifiers
- > Discriminators
- > Coincidence and veto logic gates.
- Counters
- > Pulse height analysers

- > The Nuclear Instrumentation Module(NIM) standard defines the mechanical and electrical specification of electronic modules used in particle and nuclear physics.
- > NIM standard was first developed by U.S Atomic Energy Commission in 1968-69. It was recently revised in 1990.
- > It provides common foot print for all electronic modules in a larger chasis often called as NIM crate.





NIM crate without modules(Left) and with Modules(Right)

NIM Modules and lemo cables

 $\pi$ 











NIM crate(s) with very simple and easy connection scheme...!!

# Analysing Signals

#### Digital Data Acquisition System



# Analysing Signals

- > It is important to convert signals from detectors in electronic form as its easy to handle.
- > Electronic signals are converted to digital information so that we can store or manipulate as we desired.
- > It is also easy to transmit digital information for long distance via internet and hence one can work remotely also from very far distance.

#### ANALYSING SIGNALS

- It is important to convert signals from detectors in electronic form as its easy to handle.
- Electronic signals are converted to digital information so that we can store or manipulate as we desired.
- It is also easy to transmit digital information for long distance via internet and hence one can work remotely also from very far distance.



Tracks from Bubble chamber(1960s)

Signals from RPC (present)



## Where are we now ...!!!

# Timeline of Particle Physics and Instrumentation





















LHC Beam Pipe 27Km Long









#### References

- > http://detectors.fnal.gov/EDIT2012/Lectures/2\_Nygren\_ HistoryPP.pdf
- > www.Wikipedia.org
- http://www.accelerators-for-society.org/about-accelerators/index.php?id=21
- > http://science.howstuffworks.com/atom-smasher1.htm

# ENOUGH OF BORING LECUTRE...LETS DO SOMETHING CRAZY....

LETS TRY TO CATCH SOME MUONS..SOME ALPA ..SOME BETA PARTICLES...





#### SPECIAL THANKS TO THESE PEOPLE

Top left - Akshay Jariwala

Top Right - Viresh Thakkar

Bottom left - Vipul Kheraj

Bottom Right – Pruthul Desai







