编码器和译码器

PB18020616 李明达

实验目的

- 熟悉中规模集成电路编码器、译码器的工作原理和逻辑功能
- 掌握编码器、译码器的级联方法,了解编码器、译码器的应用

实验原理

- 编码:用代码表示特定对象的过程(特定对象可以包括字母、数字、符号等)。
- 编码器:实现编码的逻辑电路。
- 二进制编码的原则: 用 n 位二进制代码可以表示 2ⁿ 个信号, 对 N 个信号编码时, 应由 2ⁿ ≥ N 来确定编码位数 n。
- 提问: 101 键盘编码需要几位二进制代码?
- 1. 二进制编码器:用n位二进制代码对2ⁿ个信号进行编码的电路。

8个输入信号互斥。

当 |1~|7输入为 0 时,输出就是 |0的编码。

输入信号为高电平有效(有效:表示有编码请求)

输出代码编为原码(对应自然二进制数)

2.二—十进制编码器

将 0~9 十个十进制数转换为二进制代码的电路。

下图为 8421BCD 编码器的真值表。

渝			车	前	λ							输	出	
<u>X</u>	 I_0	I_1	\mathbf{I}_2	\mathbf{I}_3	\mathbf{I}_4	\mathbf{I}_5	I_6	I 7	\mathbf{I}_8	I 9	<i>Y</i> ₃	Y_2	Y_1	Y_0
유	1	0	0	0	0	0	0	0	0	0	0	0	0	0
入10个互斥的信号	0	1	0	0	0	0	0	0	0	0	0	0	0	1
Ď	0	0	1	0	0	0	0	0	0	0	0	0	1	0
	0	0	0	1	0	0	0	0	0	0	0	0	1	1
,	0	0	0	0	1	0	0	0	0	0	0	1	0	0
i	0	0	0	0	0	1	0	0	0	0	0	1	0	1
Ż	0	0	0	0	0	0	1	0	0	0	0	1	1	0
Ē	0	0	0	0	0	0	0	1	0	0	0	1	1	1
俞台4岁二生训弋马	0	0	0	0	0	0	0	0	1	0	1	0	0	0
ĭ	0	0	0	0	0	0	o	0	0	1	1	0	0	1

$$Y_3 = I_8 + I_9$$

 $= \overline{I_8 I_9}$
 $Y_2 = I_4 + I_5 + I_6 + I_7$
 $= \overline{I_4 I_5 I_6 I_7}$
 $Y_1 = I_2 + I_3 + I_6 + I_7$
 $= \overline{I_2 I_3 I_6 I_7}$
 $Y_0 = I_1 + I_3 + I_5 + I_7 + I_9$
 $= \overline{I_1 I_3 I_5 I_7 I_9}$

3. 优先编码器

允许同时输入几个编码信号, 而电路只对其中优先级别最高的信号进行编码。下图为 8-3 优先编码器 74LS148 的逻辑图。

	优先级编码器 74LS148 功能表												
\overline{ST}	\bar{I}_0	\bar{I}_1	\bar{I}_2	Ī3	\bar{I}_4	Īs	\bar{I}_6	- I 1	\overline{Y}_2	\overline{Y}_1	\overline{Y}_0	Y ex	Y_S
1	×	×	×	×	×	×	×	×	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0
0	×	×	×	×	×	X	X	0	0	0	0	0	1
0	×	×	×	×	×	×	0	1	0	0	1	0	1
0	X	×	×	X	×	0	1	1	0	1	0	0	1
0	×	×	×	×	0	1	1	1	0	1	1	0	1
0	X	X	X	0	1	1	1	1	1	0	0	0	1
0	×	×	0	1	1	1	1	1	1	0	1	0	1
0	X	0	1	1	1	1	1	1	1	1	0	0	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1

从功能表看出,输入输出的有效信号都是0。在输入中,下标越大,优先级越高。输出为反码输出。

控制输入端(选通输入端) \overline{ST} =0时,编码器工作。 \overline{ST} =1时,输出均为1,不进行编码。 Y_s 为选通输出端。当控制输入端 \overline{ST} =0,但无有效信号输入时, Y_s =0。 \overline{Y}_{EX} 为扩展输出端。当 \overline{ST} =0,且有信号输入时, \overline{Y}_{EX} 才为0,否则为1。

集成3位二进制优先编码器74LS148

注: 从16线-4线优先编码器的功能表和8线-3线优先编码器的功能表的对照去理解。

2. 译码器

译码是编码的逆过程。

译码:将表示特定意义信息的二进制代码翻译出来。

译码器:实现译码功能的逻辑电路;

二进制译码原则: 用 n 位二进制代码可以表示 2ⁿ 个信号,所以对 n 位代码译码时,应

由 2ⁿ ≥N 来确定译码信号位数 N。

3. 二进制译码器

将输入二进制代码译成相应输出信号的电路。

电路结构

译码器有输出高电平有效和输出低电平有效两种类型。输出高电平有效时,每个输出对应输入的一个最小项;输出低电平有效时,每个输出对应输入的一个最小项的非。设二进制译码器的输入端为 n 个,则输出端为 2°个,且对应于输入代码的每一种状态,2°个输出中只有一个为 1 (或为 0),其余全为 0 (或为 1)。

二进制译码器可以译出输入变量的全部状态、故又称为变量译码器。

3 位二进制译码器

2				1	Ĭ	值表					
2	A_2	A_1	A_0	Y_0	Y_1	Y_2	Y_3	Y_4	Y_5	Y_6	Y_7
	0	0	0	1	0	0	0	0	0	0	0
	0	0	1	0	1	0	0	0	0	0	0
	0	1	0	0	0	1	0	0	0	0	0
	0	1	1	0	0	0	1	0	0	0	0
	1	0	0	0	0	0	0	1	0	0	0
	1	0	1	0	0	0	0	0	1	0	0
	1	1	0	0	0	0	0	0	0	1	0
	1	1	1	0	0	0	0	0	0	0	1

③ 输入: 3位二进制代码 输出: 8个互斥的信号

3线-8线译码器

 A_2 、 A_1 、 A_0 为二进制译码输入端, $\overline{Y}_7\sim\overline{Y}_0$ 为译码输出端(低电平有效), G_1 、 \overline{G}_{2A} 、 \overline{G}_{2B} 为选通控制端。当 G_1 = 1、 $\overline{G}_{2A}+\overline{G}_{2B}=0$ 时,译码器处于工作状态;当 G_1 = 0、 $\overline{G}_{2A}+\overline{G}_{2B}=1$ 时,译码器处于禁止状态。

功能扩展: 2片 74LS138 组成 4-16 线译码器

当 E=1 时,两个译码器均不工作,输出都为高电平。

当 E=0 时, 译码器工作。

- 当 A₃=0 时, 1 号片工作, 输出由输入二进制代码 A₂A₁A₀决定。
- 当 $A_3=1$ 时,1 号片不工作,输出全为高电平 1。2 号片工作,输出由输入二进制代码 $A_2A_1A_0$ 决定。

实验内容

一、验证 74LS148(优先编码器)的逻辑功能并记录真值表。 电路图以及典型情况如下,其余在"实验图片"一节中

真值表如下

EI	D0	D1	D2	D3	D4	D5	D6	D7	Α0	A1	A2	GS	E0
1	×	×	×	×	×	×	×	×	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0
0	×	×	×	×	×	×	×	0	0	0	0	0	1
0	×	×	×	×	×	×	0	1	0	0	1	0	1
0	×	×	×	×	×	0	1	1	0	1	0	0	1
0	×	×	×	×	0	1	1	1	0	1	1	0	1
0	×	×	×	0	1	1	1	1	1	0	0	0	1
0	×	×	0	1	1	1	1	1	1	0	1	0	1
0	×	0	1	1	1	1	1	1	1	1	0	0	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1

二、用两块 74LS138 (3—8 线译码器) 级联实现 4—16 线译码器, 画出连线图并验证其逻辑功能 (记录真值表)。

实验电路图以及个别情况如下,其余在"实验图片"一节中

Е	A0	A1	A2	A3	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10	Y11	Y12	Y13	Y14	Y15
1	×	×	×	×	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		1

三、用一片 74LS138 和一片 74LS20 双与非门设计下面的多输出函数:

 $S = \sum m(1,2,4,7)$ $C = \sum m(3,5,6,7)$

画出连线图并列出真值表。

D1	D2	D3	S	С
0	0	0	0	0
1	0	0	1	0
0	1	0	1	0
1	1	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	1	0	1
1	1	1	1	1

实验器材

Multism 中的一些元件,实际如下:

实验思考题 (本次无)

实验图片

