Motion in 1-D

Q1-6: Pg36 Q7-10: Pg37 Q11: Pg 38 Q12-13: Pg39 P XI M1 Pg36

ASSIGNMENT-2 BY: M.R. SIR

Find the derivative of given function w.r.t. corresponding independent variable in question 1 to 4:

1.
$$y = x^2 + x + 8$$

(A)
$$x^3 + x^2$$

(B)
$$2x + 1$$

(D)
$$\frac{x^3}{3} + \frac{x^2}{2}$$

$$2. s = 5t^3 - 3t^5$$

(A)
$$15t^2 - 15t^4$$

(B)
$$15t - 3$$

(D)
$$\frac{5t^4}{4}$$

3.
$$y = 5 \sin x$$

(A)
$$5 \cos x$$

(C)
$$\sin x$$

(D)
$$5 + \cos x$$

4.
$$y = x^2 + \sin x$$

(A)
$$2x \sin x$$

(C)
$$2x + \cos x$$

(B)
$$2x \sin x$$

(B)
$$2x \sin x$$

(D) $2x \cos x$

Find the first derivative & second derivative of given function w.r.t. corresponding independent variable.

5.
$$y = 6x^2 - 10x$$

(A)
$$12x - 10$$
, 12

(C) $12x^3 - 10x^2$, 12x

(B)
$$12x - x$$
, 12

6.
$$r = \frac{12}{x}$$

(A)
$$\frac{12}{x^2}$$

(D)
$$\frac{-12}{x^2}$$

36

Find derivative of given functions w.r.t the independent variable x.

7. $x \sin x$

(A)
$$x \cos x + \sin x$$

(B)
$$x \sin x + \cos x$$

(C)
$$x + \cos x$$

(D)
$$1 + \cos x$$

$$8. y = e^x \ell nx$$

(A)
$$\frac{e^x}{x} + e^x \ell nx$$

(C)
$$\frac{e^x}{x} + x$$

(B)
$$\frac{e^x}{x} - e^x \ell nx$$

(D)
$$\frac{e^x}{x} - x$$

9.
$$y = (x^2 + 1)(x + 5 + \frac{1}{x})$$

(A)
$$2x\left(x+5+\frac{1}{x}\right)+\left(x^2+1\right)\left(1-\frac{1}{x^2}\right)$$

(A)
$$2x\left(x+5+\frac{1}{x}\right)+\left(x^2+1\right)\left(1-\frac{1}{x^2}\right)$$
 (B) $2x\left(x+5+\frac{1}{x}\right)-\left(x^2+1\right)\left(1-\frac{1}{x^2}\right)$

(C)
$$2x+1-\frac{1}{x^2}$$

10.
$$y = x^2 \tan x$$

(A)
$$2x \cot x$$

(C)
$$2x + \cot x$$

(B)
$$2x \sec^2 x$$

(D)
$$2x \tan x + x^2 \sec^2 x$$

11. Suppose that the radius r and surface area $S = 4\pi r^2$ of a sphere are differentiable function of t. Write an equation that

relates
$$\frac{ds}{dt}$$
 to $\frac{dr}{dt}$

(A)
$$\frac{ds}{dt} = 8\pi r \frac{dr}{dt}$$

(C)
$$\frac{ds}{dt} = 4\pi r^2 \frac{dr}{dt}$$

(B)
$$\frac{ds}{dt} = 4\pi r \frac{dr}{dt}$$

(D)
$$\frac{ds}{dt} = \frac{dr}{dt}$$

Find integrals of given function in question:

12.
$$x^2 - 2x + 1$$

(A)
$$\frac{x^3}{3} - x^2 + x$$

(B)
$$\frac{x^3}{3} + x^2 - x$$

(C)
$$2x-2$$

(D)
$$2x + 2$$

13.
$$-3x^{-4}$$

(A)
$$x^{-5}$$
 (C) x^{-4}

(B)
$$x^{-3}$$

	ANSWER KEY		
1.	(B)		
2.	(A)		
3.	(A)		
4.	(C)		
5.	(A)		
6.	(D)		
7.			
8.	(A)		
	(A)		
10.	(D)		
11.	(A)		
	(A)		
13.	(B)		