The Things Network & Azure IoT Platform

Or, how to connect remote devices to IoT Platforms

Sander van de Velde

Microsoft Consultant Professional Services

Flight Forum Office

Industrienummer 5926 Flight Forum 3000 5657 EW Eindhoven The Netherlands

M + 31(0)6 30 531 551 sander.vandevelde@atos.net @svelde atos.net

AtoS

Sander van de Velde Member of the Microsoft Azure Advisory Board

Jan Willem Groenenberg

Smart Mobility Consultant Professional Services

HQ Benelux & the Nordics Office

Burgermeester Rijnderslaan 30 1185 MC Amstelveen The Netherlands

M + 31(0)6 10 97 78 39 janwillem.groenenberg@atos.net @JeeWeetje atos.net

AtoS

Jan Willem Groenenberg

Member of the Microsoft Azure Advisory Board

The 'complete' solution

One of many definitions...

"The Internet of things is the internetworking of physical devices, embedded with electronics, software, sensors, actuators, and network connectivity that enable these objects to collect and exchange data"

https://en.wikipedia.org/wiki/Internet_of_things

Industry 4.0

From: hardware manufacturers delivering silos

To: general availability resulting enterprise integration

Why now?

IoT Platform

An Internet of Things (IoT) platform is **software** (suite and/or platform as a service [PaaS]) that facilitates operations involving **IoT endpoints** (sensors, devices, multidevice systems and systems of systems) and **enterprise resources**.

The platform **provisions and controls** IoT endpoints, **monitors** event streams, enables specialized **analysis** and application development, and **integrates** with back-end IT systems — all to support IoT business solutions.

Its responsibilities may be distributed and fulfilled in part in the cloud or near the devices.

Gartner 2016

Gartner Hype cycle

≡ | •

 \equiv

 \equiv

=1

 \equiv

≡I•

≡I•

 \equiv

LoRa & LoRaWAN

LoRa & LoRaWAN

Compared to others

Parameter	WAVIoT	LoRa (LinkLabs) ¹	Sigfox ²	LTE-M (exp.)	WiFi	Cellular
Minimum Data rate	8+ bps	150 bps	100 bps	64 kbps	High	High
Max Range, meters	50 000	10 000	10 000	5 000	100	Within coverage
Gateway sensitivity, dBm	-154	-137	-142	-123	-96	-114
Gateway antenna gain, dBi	16	9	9	16	8	14
Gateway cable loss, dB	2	2	6	2	2	2
Gateway mode	Full Duplex	Half Duplex	Half Duplex	Full Duplex	Full Duplex	Full Duplex
Nodes per gateway	2 000 000+	250 000	50 000	50 000	200	5 000
Node max output power, dBm	26	26	14	23	20	33
Max Link budget, dBm	194	170	159	163	122	159
Node bandwidth	100 Hz	125 kHz	100 Hz	192 kHz	20 MHz	200 kHz
Spectrum efficiency	High	Very Low	Low	High	High	High
Simultaneous demodulation capacity	8 192	8	25	64	13	64
Scalability	High	Very Low	Low	High	Limited	High
Minimum Node cost, USD	2	29	2	5	25	10
Battery life	20+ years	10 years	10 years	5 years	7 days	1 day

The Things Network

The Things Network

LoRa

Long range communication Low power Uplink & Downlink

Low cost
Community driven provider
You need a network? You are the
network!
Throttled!

The Things Network - Topology

The Things Network - Map

https://thethingsnetwork.org/map

Starting with a device

Demo

The Things Uno

Gateway & packet forwarder

Adding a dual packet forwarder

Demo

Dual packet forwarder with up- & downlink

The Things Network cloud

Adding The Things Network

Demo

The Things Network cloud

Azure IoT Hub

IoT Hub

Demo

Azure IoT Hub

Building a bridge

Demo

TTN – Azure Bridge in Node.js & C#

Stream Analytics

Stream Analytics Job

Stream Analytics Job

Stream Analytics makes it easy to set up real-time analytic computations on data streaming from devices, sensors, web sites, social media, applications, infrastructure systems, and more

Query input sources; Event Hub, IoT Hub, Blob Storage data stream

or Blob Storage reference stream

Query; SQL-ish

Query output sinks:

Blob Storage, Table Storage, Event Hub, SB Queue & Topic, DocumentDB, Power BI, SQL DB or Data Lake Store

Stream Analytics example

```
WITH [StreamData]
AS (SELECT * FROM
      [IoTHubStream]
    WHERE
        [ObjectType] IS NULL )
SELECT * INTO [Telemetry] FROM [StreamData]
SELECT
    DeviceId,
    AVG (Humidity) AS [AverageHumidity],
    MIN(Humidity) AS [MinimumHumidity],
    MAX(Humidity) AS [MaxHumidity],
    5.0 AS TimeframeMinutes
INTO [TelemetrySummary]
FROM [StreamData]
WHERE [Humidity] IS NOT NULL
GROUP BY
    DeviceId,
    SlidingWindow (mi, 5)
```

Stream Analytics Temporal Query

Hopping window

Tumbling window

Sliding window

SELECT DateAdd(minute,-5,System.TimeStamp) AS WinStartTime, System.TimeStamp AS WinEndTime, TollId, COUNT(*) FROM Input TIMESTAMP BY EntryTime GROUP BY TollId, SlidingWindow(minute, 5) HAVING COUNT(*) > 3

Demo

Stream Analytics

Azure Functions

Streaming filtered data to Azure Functions

Demo

Azure Functions – receiving uplink messages

Azure Functions

The faster way to functions

Write any function in minutes - whether to run a simple job that cleans up a database or to build a more complex architecture.

Creating functions is easier than ever before, whatever your chosen OS, platform, or development method. No install required.

Get started quickly with a premade function

1) Choose a scenario:

2) Choose a language:

If you'd prefer another supported language, choose "Create your own custom function".

C# JavaScript

Create this function

Or get started on your own

Create your own custom function or start from source control

Adding The Thing Network

Demo

Azure Functions – sending downlink commands

Resources for BYOL

Resources to do it yourself

- ► The Things Uno https://shop.thethingsnetwork.com/index.php/product/the-things-uno/
- ▶ Dual channel packet forwarder https://github.com/bokse001/dual_chan_pkt_fwd/
- ► TTN Azure Bridge (C#) https://github.com/sandervandevelde/TtnAzureBridge
- ► IoT Device as UWP App https://github.com/sandervandevelde/uwp-iot-device
- ► The Things Network & Azure IoT in unison workshop https://github.com/JeeWeetje/ttn-azure-workshop
- ► Sander's blog http://blog.vandevelde-online.com
- ► Jan Willem's blog https://jeeweetje.net

) Still any questions?

Thanks

For more information please contact: Jan Willem Groenenberg @JeeWeetje M+ 31 6 10 97 78 39 janwillem.groenenberg@atos.net

Sander van de Velde @svelde M+ 31 6 30 53 15 51 sander vandevelde@atos.net

Atos, the Atos logo, Atos Codex, Atos Consulting, Atos Worldgrid, Worldline, BlueKiwi, Bull, Canopy the Open Cloud Company, Unify, Yunano, Zero Email, Zero Email Certified and The Zero Email Company are registered trademarks of the Atos group. December 2016. © 2016 Atos. Confidential information owned by Atos, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied, circulated and/or distributed nor quoted without prior written approval from Atos.

