Lesson 6 - Conditional Inference Trees and Random Forests

Erin M. Buchanan

02/14/2019

Language Topics Discussed

- Categories
- ▶ Category Structure
- Category Theories

Definition

- What is a category?
 - Category group or organization of related things
 - ► Concept a member of a category (i.e. the thing)
 - ► Animals: dog, cat, bird, fish

Category Structure

- Super-ordinate more abstract (animal, mammal)
- ► Basic level names dog
- Subordinate specific category member (collie, beagle)

Category Theories

- Category formation
 - Based on the way we perceive the world
 - Cognitive economy memory is organized to be efficient, avoiding lots of duplication
- Several ways we learn categories:
 - Feature list theory
 - Probabilistic theories
 - Prototype theories
 - Exemplar theories
 - Theory theories (rule based)

Feature List Theory

- Our semantic knowledge is based around a list of features that make up that concept
 - ▶ Defining features essential to the meaning of words
 - Characteristic features usually true of category members, but not always
- ▶ How might we test this theory?
 - ▶ Sentence verification task: judge if a sentence is true or false

Sentence Verification Task

- A dog is an animal.
- Stage 1: overall feature similarity is computed.
 - ▶ If you have lots of features overlapping, sentence RL is fast.
 - ▶ If you have no overlap, sentence RL is fast.
- Stage 2: consider the "defining" features.
 - These longer RL show the gray areas or fuzzy boundaries of categories.

Probabilistic Feature Model

- Core description essential defining features of the concept
- Identification procedures used to identify instances of a category
- Features are weighted by saliency and probability

Issues

- "Defining" features
- Inter-correlated features relationship between features not captured
- ► Procedural invariance same question gives you different answers it shouldn't with these theories
 - ▶ Is a robin a bird?
 - ▶ Is a bird a robin?

Family Resemblance Models

- Prototype theory versus exemplar theory
 - Prototype an abstraction that is the best example of a category
 - Prototypes are likely a combination of experienced examples, but may not exist in real world
 - Exemplar theory we compare information to a specific stored example
 - ► Instantiation principle category includes detailed information about the range of instances
- These are very similar in their ideas, but the underlying core is distinction

Family Resemblance Models

- You decide that something is in the category by comparing to the prototype or exemplar
- Schema a means for organizing knowledge
- ► Features are said to be schema fillers
- Sentence verification faster for prototypical members

Theory theories

- ▶ People represent categories as miniature theories that describe facts about those categories and how they relate
- Sort of like a dictionary
- Children do something like this

(more on these theories and semanticity over the next few weeks)

The Statistics

- Conditional Inference Trees: method of regression and classification based on binary recursive partitioning
 - ► First, assess the association of the IV with the DV and chose the one with the largest association
 - Second, the data is split into two subsets . . . if the IV is categorical, this is performed along categorical lines, while continuous data might be median split
 - Continue these associations and splits until no variables are related to the DV
 - ▶ Considered a "tree" because we are creating branches and leaves

Advantages

- ► As compared to other recursive partitioning and classification procedures, this procedure:
 - Variable selection is less biased (i.e., does not automatically pick a variable it can split the most)
 - ▶ Do not need to "prune" the tree
 - ▶ Shows you *p*-values for the splits

Permutation

- ▶ To obtain those *p* values, you use permutation
- Permutation means that you rearrange the data, calculate a statistic, and count how many times the effect was present in the rearranged data (want small)
- Note the differences from bootstrapping

Random Forests

- Random Forests show the importance of each variable, averaged over many conditional trees
- Akin to the idea of partial variance
- ▶ Both conditional inference trees and forests are useful when the data is sparse and is non-parametric, thus, reducing assumptions

Getting Started

##

```
#install.packages("party")
library(Rling)
library(party)
## Loading required package: grid
## Loading required package: mvtnorm
## Loading required package: modeltools
## Loading required package: stats4
## Loading required package: strucchange
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
```

as.Date, as.Date.numeric

Dataset

- ▶ DV: category instances: make, have, cause
- ► IVs:
 - CrSem: semanticity of the actor (animate, inanimate)
 - CeSem: semanticity of the actee (animate, inanimate)
 - CdEv: semanticity of the event (mental, physical, social)
 - Neg: negation (negative or not)
 - Coref: yes (you did the thing to you) versus no (you did the thing to others)
 - Poss: possessive yes or no

Cleaning up the data

Getting the model started

Make a plot

plot(tree.output)

Interpretation

- ▶ Tree includes all possible splits that were significant at p < .05
- Ovals are the names of the variables with the best split
- ► The splits are shown on the branches
- Bottom bar chart helps show the number of DV instances in each split

Interpretation

- ▶ The first split is between inanimate and inanimate actors
- ▶ The next split is on the semanticity of the event
- On the left side, that split into mental versus physical and social
 - Make appears to be featurally comprised of mental inanimate events
 - Cause appears to be featurally comprised of physical or social inanimate events

Interpretation

- On the right side, we see another split, but into mental and physical versus social
 - Each verb is equally allocated to animate mental and physical events
- ➤ The animate actor social groupings, then split on the semanticity of the actee
 - Make has another feature set of animate actor, social action, and inanimate actee
 - Have is comprised of animate actor, social action, and animate actees

But how good is the model?

 Like log regression, you can tabulate the predicted probability and the actual outcome

outcomes = table(predict(tree.output), reduced data\$Cx)

Add up the diagonal and divide by the total

```
outcomes

##

## cause_toV have_V make_V

## cause_toV 35 2 9

## have_V 12 42 17
```

```
sum(diag(outcomes)) / sum(outcomes) * 100
```

24

3

```
## [1] 67.33333
```

make V

##

Random Forests

Variable Importance

```
## CrSem CeSem CdEv Neg Coref Poss
## 0.101 0.043 0.041 0.000 0.000 0.000
```

Variable Importance

Conditional Importance of Variables

Model Prediction

```
forest.outcomes = table(predict(forest.output), reduced_da
forest.outcomes
##
##
               cause toV have V make V
##
     cause_toV
                      39
##
     have V
                       8
                             43
                                    17
                       3
##
     make V
                                    24
sum(diag(forest.outcomes)) / sum(forest.outcomes) * 100
## [1] 70.66667
```

Summary

- ▶ We can begin to think about defining features of categories by looking at sentences (or other related category tasks).
- Using a conditional inference tree or random forest, we can see what might be defining or exemplars for each category.
- You can use these models with sparse data or potentials for interactions.