ТРЯП, 10-ое Домашнее Задание

Сергей Пучинин, 873

25 ноября 2019 г.

Задача 1. Грамматика

$$\mathsf{Expr} = \Big \langle \big\{ E, \, T, \, F, \, E', \, F' \big\}, \, \big\{ \mathrm{id}, \, +, \, \times, \, (, \,) \big\}, \, P, \, E \Big \rangle$$

имеет множество правил P:

$$E \to TE'; \ E' \to +TE' \mid \varepsilon;$$

$$T \to FT'; \ T' \to \times FT' \mid \varepsilon;$$

$$F \to (E) \mid \text{id.}$$

Вычислите функции FIRST и FOLLOW для всех нетерминалов грамматики Expr.

<u>Решение.</u> Вычисленные функции приведены в Таблицах 1.1 и 1.2.

		E	E'	T	T'	F
\overline{F}	0	Ø	ε	Ø	ε	Ø
\overline{F}	1	Ø	ε , +	Ø	ε, \times	(, id
\overline{F}	2	Ø	ε , +	(, id	ε, \times	(, id
\overline{F}	3	(, id	ε , +	(, id	ε, \times	(, id
\overline{F}	4	(, id	ε , +	(, id	ε, \times	(, id
		()	'			

Таблипа 1.1: FIRST

	$\mid E \mid$	E'	T	T'	F
$\overline{F_0}$	\$	Ø	Ø	Ø	Ø
$\overline{F_1}$	\$,)	\$	+, \$	Ø	×
F_2			+, \$,)	+, \$	×, +, \$
F_3	\$,)	\$,)	+, \$,)	+, \$,)	$\times, +, \$,)$
F_4	\$,)	\$,)	+, \$,)	+, \$,)	$\times, +, \$,)$

Таблица 1.2: FOLLOW

Задача 2. Построить дерево вывода, левые и правые разборы для слова ((id)) в грамматике Expr. <u>Решение.</u> Дерево разбора приведено на Рис. 2.1. Левый и правый разборы — Рис. 2.2, Рис. 2.3.

Рис. 2.1: Дерево разбора ((id))

Рис. 2.2: Левый разбор ((*id*))

Рис. 2.3: Правый разбор ((id))

Задача 3. Постройте LL(1)-анализатор для грамматики Expr. Продемонстрируйте его работу на слове $id + id \times id$ и, в случае успеха, постройте дерево разбора по результатам работы анализатора.

 $\underline{Peшениe}$. Занумеруем правила вывода и построим LL(1)-анализатор (Таблица 3.1).

$$E \xrightarrow{1} TE'; E' \xrightarrow{2} + TE'; E' \xrightarrow{7} \varepsilon;$$

$$T \xrightarrow{3} FT'; T' \xrightarrow{4} \times FT'; T' \xrightarrow{8} \varepsilon;$$

$$F \xrightarrow{5} (E); F \xrightarrow{6} \text{id}.$$

	E	E'	$\mid T \mid$	T'	F
id	1	_	3	_	6
+	_	2	_	8	_
×	_	_	_	4	_
(1	_	3	_	5
)	_	7	_	8	_
-\$	_	7	_	8	_

Таблица 3.1: LL(1)-анализатор

Далее продемонстрируем работу полученного LL(1)-анализатора на слове $\mathrm{id} + \mathrm{id} \times \mathrm{id}$ (Рис. 3.1). Слово было обработано до конца LL(1)-анализатором, поэтому строим для него дерево разбора (Рис. 3.2).

$$\begin{array}{l} (\mathrm{id} + \mathrm{id} \times \mathrm{id}\$ \mid E\$) \\ (\mathrm{id} + \mathrm{id} \times \mathrm{id}\$ \mid TE'\$) \\ (\mathrm{id} + \mathrm{id} \times \mathrm{id}\$ \mid TE'\$) \\ (\mathrm{id} + \mathrm{id} \times \mathrm{id}\$ \mid FT'E'\$) \\ (\mathrm{id} + \mathrm{id} \times \mathrm{id}\$ \mid \mathrm{id}T'E'\$) \\ (+ \mathrm{id} \times \mathrm{id}\$ \mid T'E'\$) \\ (+ \mathrm{id} \times \mathrm{id}\$ \mid E'\$) \\ (+ \mathrm{id} \times \mathrm{id}\$ \mid TE'\$) \\ (\mathrm{id} \times \mathrm{id}\$ \mid TE'\$) \\ (\times \mathrm{id}\$ \mid TE'\$) \\ (\times \mathrm{id}\$ \mid TE'\$) \\ (\times \mathrm{id}\$ \mid TE'\$) \\ (\mathrm{id}\$ \mid TE$$

Рис. 3.2: Дерево разбора $\mathrm{id} + \mathrm{id} \times \mathrm{id}$

Рис. 3.1: Протокол работы на $\mathrm{id} + \mathrm{id} \times \mathrm{id}$

Задача 4. Докажите, что грамматика не является LL(1)-грамматикой, но является LL(2)-грамматикой. Вычислите функции $FIRST_2$ и $FOLLOW_2$ для всех нетерминалов.

$$S \to aAaa \mid bAba$$
$$A \to b \mid \varepsilon$$

<u>Решение.</u> Для начала докажем, что данная грамматика не является LL(1)-грамматикой. Вычислим функции FIRST и FOLLOW для данной грамматики (Таблицы 4.1 и 4.2).

	S	A	
F_0	Ø	Ø	
F_1	a, b	b, ε	
F_2	a, b	b, ε	

Таблица 4.1: FIRST

$$\begin{array}{c|cccc} & S & A \\ \hline F_0 & \$ & \varnothing \\ \hline F_1 & \$ & a, b \\ \hline F_2 & \$ & a, b \\ \end{array}$$

Таблица 4.2: FOLLOW

Заметим, что

$$\varepsilon \in \text{FIRST}(A)$$
; $\text{FIRST}(A) \cap \text{FOLLOW}(A) = \{b\} \neq \emptyset$.

Следовательно, данная грамматика не является LL(1)-грамматикой.

Теперь докажем, что данная грамматика — LL(2)-грамматика. Рассмотрим правила для S:

$$S \to aAaa, S \to bAba.$$

Заметим, что

$$\forall \alpha \ \text{FIRST}_2(aAaa\alpha) \cap \text{FIRST}_2(bAba\alpha) = \varnothing,$$

так как первая цепочка начинается с a, а вторая — с b. Теперь рассмотрим правила для A:

$$A \to b, A \to \varepsilon.$$

Заметим, что все α такие, что

$$S \stackrel{*}{\Rightarrow}_{l} wA\alpha$$
,

начинаются либо на aa, либо на ba, так как

$$S \to aAaa, S \to bAba$$

— все правила вывода, содержащие в левой части А. Значит,

$$\forall \alpha: S \stackrel{*}{\Rightarrow}_{l} wA\alpha \longrightarrow \mathrm{FIRST}_{2}(b\alpha) \cap \mathrm{FIRST}_{2}(\varepsilon\alpha) = \varnothing.$$

Получаем, что данная грамматика является LL(2)-грамматикой.

Теперь найдём функции ${\rm FIRST}_2$ и ${\rm FOLLOW}_2$ (Таблицы 4.3 и 4.4).

	S	A
F_0	Ø	b, ε
F_1	ab, aa, bb	b, ε
F_2	ab, aa, bb	b, ε

Таблица 4.4: FOLLOW₂

Задача 5*. Докажите, что язык $a^* \cup \{a^nb^n \mid n \geqslant 1\}$ не является LL-языком.