メモ (形式的冪級数) (書きかけ)

hos

2019年10月8日

大事なこと:収束のことは考えない. その代わり, 知らない演算をしない. № は非負整数全体の集合とする*1. 環と言ったら乗法の単位元の存在を仮定する.

1 形式的冪級数環

以降, R を可換環とする.

X を不定元として,R の加算個の直積 $\prod_{i\in\mathbb{N}}R$ の元 $(a_i)_{i\in\mathbb{N}}$ を形式的に $\sum_{i\in\mathbb{N}}a_iX^i$ (あるいは $a_0+a_1X+a_1X$) $a_2X^2+\cdots$) と書いたものの集合を R[[X]] とする. この元を a(X) のように書くこともある *2 . a_i を a(X)の i 次の係数 (あるいは X^i の係数) と呼び、 $[X^i]a(X)$ のように書く、0 次の係数を定数項と呼ぶ、

$$\sum_{i\in\mathbb{N}}a_iX^i,\sum_{i\in\mathbb{N}}b_iX^i\in R[[X]]$$
に対し、加法と乗法を

$$\sum_{i \in \mathbb{N}} a_i X^i + \sum_{i \in \mathbb{N}} b_i X^i := \sum_{i \in \mathbb{N}} (a_i + b_i) X^i,$$

$$\left(\sum_{i \in \mathbb{N}} a_i X^i\right) \left(\sum_{i \in \mathbb{N}} b_i X^i\right) := \sum_{k \in \mathbb{N}} \left(\sum_{i,j \in \mathbb{N}, i+j=k} a_i b_j\right) X^k$$

で定めると、可換環になることを示す。加法の単位元は $0=0+0X+0X^2+\cdots$ 、乗法の単位元は $1=1+0X+0X^2+\cdots$ 、乗法の結合法則のみやや非自明で、 $\left(\left(\sum_{i\in\mathbb{N}}a_iX^i\right)\left(\sum_{i\in\mathbb{N}}b_iX^i\right)\right)\left(\sum_{i\in\mathbb{N}}c_iX^i\right)$ の m 次の係数が

$$\sum_{l,k\in\mathbb{N},\,l+k=m} \left(\sum_{i,j\in\mathbb{N},\,i+j=k} a_i b_j\right) c_k = \sum_{i,j,k\in\mathbb{N},\,i+j+k=m} a_i b_j c_k$$

となることから従う. この可換環 R[[X]] を、R 係数形式的冪級数環と呼ぶ.

さらに, $r \in R$ はそのまま $r + 0X + 0X^2 + \cdots \in R[[X]]$ とみれるので, 包含 $R \longleftrightarrow R[[X]]$ により R[[X]]は R 代数でもある.

例.
$$(1+X)(1+X+X^2+X^3+\cdots)=1+2X+2X^2+2X^3+\cdots$$

 $^{^{*1}}$ 普段は $\mathbb{Z}_{\geq 0}$ とかを使って $\mathbb N$ という記号を避けようと思っているが, \sum の下にたくさん書くので仕方なく. *2 不定元を書かず単に a のように書くのも綺麗だが,今回は積と合成が混同しないことを重視.

 $a(X) \in R[[X]]$ に対し、集合 $a(X)R[[X]] := \{a(X)b(X) \mid b(X) \in R[[x]]\} \subseteq R[[X]]$ は R[[X]] のイデアルである。 $b(X), c(X) \in R[[X]]$ が $b(X) - c(X) \in a(X)R[[X]]$ を満たすことを $b(X) \equiv c(X) \pmod{a(X)}$ と書く、 $n \in \mathbb{N}$ に対し、 $\max X^n$ での合同は、n 次未満の係数が等しいことを表す。

例.
$$0 + 1X + 2X^2 + 3X^3 + 4X^4 + \dots \equiv X + 2X^2 \pmod{X^3}$$
.

次の命題は、突き詰めると環の位相の話になるが、本稿では技術的な補題として用いる。

命題 1. $a(X),b(X)\in R[[X]]$ について,a(X)=b(X) である必要十分条件は,任意の $n\in\mathbb{N}$ に対して $a(X)\equiv b(X)\pmod{X^n}$ であること.

証明. (必要性) 明らか.

(十分性) 任意の $i\in\mathbb{N}$ に対し,n=i+1 ととって $a(X)\equiv b(X)\pmod{X^{i+1}}$ なので, $a_i=b_i$ となる.

2 形式的 Laurent 級数環

 $S=\{X^n\mid n\in\mathbb{N}\}$ は R[[X]] の積閉集合であるから、局所化 $S^{-1}R[[X]]$ が考えられる.これを R((X)) と書き、R 係数形式的 Laurent 級数環という.S は零因子を含まないので自然な $R[[X]]\longrightarrow R((X))$ は単射であり、 $R[[X]]\subseteq R((X))$ とみなせる.

局所化の構成を確認すれば,R((X)) の元は形式的に $\frac{\sum_{i\in\mathbb{N}}a_iX^i}{X^n}=\sum_{i\in\mathbb{N}}a_iX^{i-n}$ と書いてよく,

$$R((X)) = \left\{ \sum_{i \in \mathbb{Z}} a_i X^i \; \middle| \; a_i \neq 0 \;$$
なる $i \in \mathbb{Z}_{\leq 0} \;$ は有限個 $\right\} = \left\{ \sum_{i \in \mathbb{Z}, \, i \geq m} a_i X^i \; \middle| \; m \in \mathbb{Z} \right\}$

である*3. 環の演算は, $\sum_{i\in\mathbb{Z},\,i\geq m}a_iX^i,\sum_{i\in\mathbb{Z},\,i\geq n}b_iX^i\in R((X))$ に対し,

$$\sum_{i \in \mathbb{Z}, i \ge m} a_i X^i + \sum_{i \in \mathbb{Z}, i \ge n} b_i X^i = \sum_{i \in \mathbb{Z}, i \ge \min\{m, n\}} (a_i + b_i) X^i,$$

$$\left(\sum_{i \in \mathbb{Z}, i \ge m} a_i X^i\right) \left(\sum_{i \in \mathbb{Z}, i \ge n} b_i X^i\right) = \sum_{k \in \mathbb{Z}, k \ge m + n} \left(\sum_{i, j \in \mathbb{Z}, i \ge m, j \ge n, i + j = k} a_i b_j\right) X^k$$

となる (1 式目では i < m のとき $a_i = 0$, i < n のとき $b_i = 0$ とする. 2 式目では内側の \sum が有限和となる).

 $a(X)=\sum_{i\in\mathbb{Z}}a_iX^i\in R((X))$ に対し, $a_i\neq 0$ なる最小の $i\in\mathbb{Z}$ を $\mathrm{ord}(a(X))$ で表す.ただし $\mathrm{ord}(0)=\infty$ とする. $\mathrm{ord}(a(X))$ 次を最低次と呼ぶ.

 $^{^{*3}}$ 以降, $\sum_{i \in \mathbb{Z}} a_i X^i \in R((X))$ と書いたら $a_i \neq 0$ なる $i \in \mathbb{Z}_{\leq 0}$ は有限個であることも主張する.

R が整域ならば,R[[X]] や R((X)) も整域であり(最低次の係数に注目する),ord: $R((X)) \longrightarrow \mathbb{Z} \cup \{\infty\}$ は付値を与える.

3 乗法の逆元

環の単元とは、乗法の逆元をもつ元のこと、可逆元、1 の約数、R の単元全体を R^{\times} と書く、

命題 2.
$$a(X) = \sum_{i \in \mathbb{N}} a_i X^i \in R[[X]]$$
 について, $a(X) \in R[[X]]^{\times} \iff a_0 \in R^{\times}$.

証明. (\Longrightarrow) $b(X)=\sum_{i\in\mathbb{N}}b_iX^i\in R[[X]]$ が a(X)b(X)=1 を満たすとすると,定数項を比較して, $a_0b_0=1$ である.

$$(\Longleftrightarrow)$$
 $a_0\in R^{ imes}$ のとぎ, $a_0r=1$ なる $r\in R$ をとって, $b(X)=\sum_{i\in\mathbb{N}}b_iX^i\in R[[X]]$ を

$$b_0 = r,$$

$$b_i = -r \sum_{j \in \mathbb{N}, 1 \le j \le i} a_j b_{i-j} \quad (i \ge 1)$$

として定めると、a(X)b(X) = 1 を満たす.

 $a(X) \in R[[X]]$ の乗法の逆元が存在するとき、それは一意なので、 $a(X)^{-1}$ や $\frac{1}{a(X)}$ と書く.

例.
$$r \in R$$
 に対し、 $(1-rX)^{-1} = \sum_{i \in \mathbb{N}} r^i X^i$.

命題 3. R を整域とする. $a(X)=\sum_{i\in\mathbb{Z}}a_iX^i\in R((X))\setminus\{0\}$ について、 $\operatorname{ord}(a(X))=m$ とすると、 $a(X)\in R((X))^{\times}\iff a_m\in R^{\times}.$

証明. (\Longrightarrow) $b(X)=\sum_{i\in\mathbb{Z}}b_iX^i\in R((X))\setminus\{0\}$ が a(X)b(X)=1 を満たすとすると, $\operatorname{ord}(b(X))=n$ として, $m+n=\operatorname{ord}(a(X)b(X))=0$ 次の係数を比較して $a_mb_n=1$ である.

(\iff) $a(X)=X^mc(X), c(X)\in R[[X]]$ と書けて, $[X^0]c(X)=a_m\in R^\times$ より c(X) の R[[X]] における 乗法の逆元 $c(X)^{-1}\in R[[X]]$ がとれる.すると, $X^{-m}c(X)^{-1}\in R((X))$ であり, $a(X)(X^{-m}c(X)^{-1})=1$ となる.

とくに、R が体ならば、R((X)) も体である.

例. R が整域でないとき、 $(\mathbb{Z}/6\mathbb{Z})((X))$ において $(2+3X)(3X^{-1}+2)=1$ 、といった場合がある.

ここまでで定めた加減乗除については、一般の R 代数で成り立つことを用いて普通の計算ができるし、普通の表記をする。

例. $a(X) \in R((X))$ に対して, $a(X)^2$ とは a(X)a(X) のことであり, $a(X)^2$ の逆元は $(a(X)^{-1})^2$ であり $a(X)^{-2}$ と書く.

例. 正の整数
$$n$$
 に対し, $(1-X)^{-n} = \sum_{i \in \mathbb{N}} \binom{i+n-1}{n-1} X^i$.

例.
$$\mathbb{Q}((X))$$
 において、 $\frac{X}{X^2+X^3}=X^{-1}-1+X-X^2+X^3-\cdots$.

4 合成

形式的冪級数の合成は、X の部分に「代入」していいものは定数項が 0 でなければならない (すなわち、イデアル XR[[X]] の元である) ことに注意を要する.

定義.
$$a(X)=\sum_{i\in\mathbb{N},\,i\geq 1}a_iX^i\in XR[[X]]$$
 と $b(X)=\sum_{i\in\mathbb{N}}b_iX^i\in R[[X]]$ に対し、 $b(X)$ と $a(X)$ の合成 $(b\circ a)(X)$ を

$$(b \circ a)(X) := \sum_{i \in \mathbb{N}} \left(\sum_{k \in \mathbb{N}, j_1, \dots, j_k \in \mathbb{N}, j_1, \dots, j_k \ge 1, j_1 + \dots + j_k = i} b_k a_{j_1} \cdots a_{j_k} \right) X^i$$

で定める. 内側の \sum について, $k \leq i$ が従うためこれは有限和である. 特に, $(b \circ a)(X)$ の定数項は b_0 である.

4次以下の項を書き下すと

$$(b \circ a)(X) = b_0 + b_1 a_1 X + (b_1 a_2 + b_2 a_1^2) X^2 + (b_1 a_3 + 2b_2 a_1 a_2 + b_3 a_1^3) X^3 + (b_1 a_4 + b_2 (a_1 a_3 + a_2^2) + 3b_3 a_1^2 a_2 + b_4 a_1^4) X^4 + \cdots$$

となる.

 $(b \circ a)(X)$ の i 次の係数は, $b_k a(X)^k$ の i 次の係数を $k \in \mathbb{N}$ について足したものである.つまり,形式的 に $(b \circ a)(X) = \sum_{k \in \mathbb{N}} b_k a(X)^k$ と書きたいが,右辺は R[[X]] の元の無限和であり定義されておらず,各係数ごとに有限和として定義できるための条件が a(X) の定数項が 0 であることに他ならない.このとき,k > i の

項はi次の係数に影響を与えない。言い換えると、

命題 4.
$$a(X)=\sum_{i\in\mathbb{N},\,i\geq 1}a_iX^i\in XR[[X]]$$
 と $b(X)=\sum_{i\in\mathbb{N}}b_iX^i\in R[[X]]$ に対し,

$$(b \circ a)(X) \equiv \sum_{k \in \mathbb{N}, k < n} b_k a(X)^k \pmod{X^n}$$

が成り立つ.

証明. $i \in \mathbb{N}$, i < n に対し, $k \le i$ ならば k < n であるから,

$$(b \circ a)(X) \equiv \sum_{i \in \mathbb{N}, i < n} \left(\sum_{k \in \mathbb{N}, j_1, \dots, j_k \in \mathbb{N}, j_1, \dots, j_k \ge 1, j_1 + \dots + j_k = i} b_k a_{j_1} \cdots a_{j_k} \right) X^i$$

$$= \sum_{i \in \mathbb{N}, i < n} \left(\sum_{k \in \mathbb{N}, k < n, j_1, \dots, j_k \in \mathbb{N}, j_1, \dots, j_k \ge 1, j_1 + \dots + j_k = i} b_k a_{j_1} \cdots a_{j_k} \right) X^i$$

$$= \sum_{i \in \mathbb{N}, i < n} \left(\sum_{k \in \mathbb{N}, k < n} [X^i] b_k a(X)^k \right) X^i$$

$$= \sum_{k \in \mathbb{N}, k < n} \left(\sum_{i \in \mathbb{N}, i < n} [X^i] b_k a(X)^k \right) X^i$$

$$\equiv \sum_{k \in \mathbb{N}, k < n} b_k a(X)^k \pmod{X^n}$$

である.

とくに、a(X) = X ならば $(b \circ a)(X) = b(X)$ であることが命題 1 よりわかる. 合成を「代入」と考えたとき成り立ってほしい性質たちをさらに確認していく.

命題 5. $a(X) \in XR[[X]]$ は R 代数の準同型 $a^* \colon R[[X]] \longrightarrow R[[X]]; b(X) \longmapsto (b \circ a)(X)$ を定め、これは $a^*(X) = a(X)$ を満たす.すなわち, $b(X), c(X), d(X) \in R[[X]]$ に対し,

- (1) b(X) + c(X) = d(X) is if $(b \circ a)(X) + (c \circ a)(X) = (d \circ a)(X)$.
- (2) b(X)c(X) = d(X) ならば $(b \circ a)(X)(c \circ a)(X) = (d \circ a)(X)$.
- (3) b(X) = 1 f(x) = 1 f(x) = 1 (3) f(x) = 1 (3) f(x) = 1 (4)
- $(4) \ b(X)=X \ ならば \ (b\circ a)(X)=a(X).$

証明. (1) 合成の定義から明らか.

$$(2) \ a(X) = \sum_{i \in \mathbb{N}, \, i \geq 1} a_i X^i \ \text{および} \ b(X) = \sum_{i \in \mathbb{N}} b_i X^i, \, c(X) = \sum_{i \in \mathbb{N}} c_i X^i \ \text{とする.} \ n \in \mathbb{N} \ \text{を任意にとる.} \ \text{命題}$$

4 より,

$$(b \circ a)(X)(c \circ a)(X) \equiv \left(\sum_{i \in \mathbb{N}, i < n} b_i a(X)^i\right) \left(\sum_{j \in \mathbb{N}, j < n} c_j a(X)^j\right)$$

$$= \sum_{k \in \mathbb{N}, k < 2n} \left(\sum_{i, j \in \mathbb{N}, i, j < n, i + j = k} b_i c_j\right) a(X)^k$$

$$\equiv \sum_{k \in \mathbb{N}, k < n} \left(\sum_{i, j \in \mathbb{N}, i + j = k} b_i c_j\right) a(X)^k$$

$$= \sum_{k \in \mathbb{N}, k < n} d_k a(X)^k$$

$$\equiv (d \circ a)(X) \pmod{X^n}$$

である. よって、命題 1 より $(a \circ d)(X)(b \circ d)(X) = (c \circ d)(X)$ が従う.

(3)
$$b_0$$
 のみ 1 なので、 $(b \circ a)(X) = \sum_{i \in \mathbb{N}} \left(\sum_{0=i} 1\right) X^i = 1.$

$$(4) \ b_1 \ \mathcal{O} \ \mathcal{A} \ 1 \ \mathcal{T} \ \mathcal{O} \ \mathcal{T}, \ (b \circ a)(X) = \sum_{i \in \mathbb{N}} \left(\sum_{k_1 \in \mathbb{N}, \ k_1 \geq 1, \ k_1 = i} a_{k_1} \right) X^i = \sum_{i \in \mathbb{N}} a_i X^i = a(X).$$

命題 6. $a(X), b(X) \in XR[[X]]$ と $c(X) \in R[[X]]$ に対し、 $(c \circ (b \circ a))(X) = ((c \circ b) \circ a)(X)$.

証明. c(X) = X のとき、命題 5(4)より、

$$(c\circ (b\circ a))(X)=(b\circ a)(X)=((c\circ b)\circ a)(X)$$

である. すなわち $(b \circ a)^*(X) = (a^* \circ b^*)(X)$ である $((b \circ a)(X)$ は形式的冪級数の合成, $a^* \circ b^*$ は R 代数の準同型の合成であることに注意する).

TODO ↓嘘!!!生成されてない. 位相を入れて連続準同型なら決まる

R[[X]] は X で生成されるので、準同型は X の行き先で定まる。よって $(b\circ a)^*=a^*\circ b^*$ であり、任意の c(X) に対し

$$(c \circ (b \circ a))(X) = (b \circ a)^*(c(X)) = (a^* \circ b^*)(c(X)) = ((c \circ b) \circ a)(X)$$

となる.

これらの理解のもと、 $(b \circ a)(X)$ を b(a(X)) とも書く、とくに、b(0) は b(X) の定数項に等しい.

例.
$$a(X)=\sum_{i\in\mathbb{N}}a_iX^i\in R[[X]]$$
 と正の整数 n に対し, $a(X^n)=\sum_{i\in\mathbb{N}}a_iX^{ni}$.

例. $a(X) = \frac{X}{1-X} = \sum_{i \in \mathbb{N}} X^{i+1} \in R[[X]]$ と $n \in \mathbb{N}$ に対し、 $(\underbrace{a \circ \cdots \circ a}_{n})(X) = \frac{X}{1-nX} = \sum_{i \in \mathbb{N}} n^{i} X^{i+1}$ (n 回合成を a^{n} と書くと $a^{n}(X)$ か $a(X)^{n}$ かかなり紛らわしいため避けている).

5 形式微分

多項式の微分を拡張して形式微分が定義できる. 記法についてはいくつかの流儀・用途がある.

定義. R 加群の準同型 $D\colon R((X))\longrightarrow R((X))$ を, $a(X)=\sum_{i\in\mathbb{Z}}a_iX^i\in R((X))$ に対し,

$$D(a(X)) = \sum_{i \in \mathbb{Z}} i a_i X^{i-1}$$

として定める. D(a(X)) を a'(X) とも書く. D を (X による) 形式微分と呼ぶ.

 $0a_0X^{-1}=0$ なので,D を R[[X]] に制限すると R 加群の準同型 D: $R[[X]] \longrightarrow R[[X]]$ が得られる. D は R 加群としては準同型である(線型性を満たす)が R 代数の準同型ではない(積は保たない)ことに注意する.積に関しては,以下のいわゆる Leibniz rule を満たす:

命題 7. $a(X), b(X) \in R((X))$ に対し、D(a(X)b(X)) = D(a(X))b(X) + a(X)D(b(X)).

より成り立つ.

合成に関しては、以下のいわゆる chain rule を満たす*4:

証明. $k \in \mathbb{N}$ に対し, $D(a(X)^k) = ka(X)^{k-1}a'(X)$ である.これは,k = 0 のときはよく, $k \ge 1$ のときは命題 7 を k-1 回用いる.

 $n\in\mathbb{N}$ を任意にとる. 命題 4 より, $(b\circ a)(X)\equiv\sum_{k\in\mathbb{N},\,k< n}b_ka(X)^k\pmod{X^{n+1}}$ なので,

$$D((b \circ a)(X)) \equiv D\left(\sum_{k \in \mathbb{N}, k < n} b_k a(X)^k\right)$$

$$= \sum_{k \in \mathbb{N}, k < n} b_k D(a(X)^k)$$

$$= \sum_{k \in \mathbb{N}, k < n} b_k \cdot k a(X)^{k-1} a'(X)$$

$$= \left(\sum_{k \in \mathbb{N}, k < n} k b_k a(X)^{k-1}\right) a'(X) \pmod{X^n}$$

となる. よって命題 1 より $D((b \circ a)(X)) = b'(a(X))a'(X)$ が従う.

例. $a(X) = \sum_{i \in \mathbb{Z}} a_i X^i \in R((X))$ に対し、 $a'(0) = a_1$ である. より一般に、n 階微分 $(n \in \mathbb{Z})$ を考えると、 $a^{(n)}(X) = \underbrace{D(\cdots D}_n(a(X))\cdots)$ として $a^{(n)}(0) = n!a_n$ である.

例.
$$(1-X)^{-1}=\sum_{i\in\mathbb{N}}X^i$$
 について, $D((1-X)^{-1})=\sum_{i\in\mathbb{N},\,i\geq 1}iX^{i-1}=(1-X)^{-2}$.

6 形式積分

この節では K を標数 0 の体とする.

微分の「逆操作」として積分を考えることができる.

 $^{^{*4}}$ b'(a(X)) が D(b(X)) と a(X) の合成であることに注意 (記法のせいで D で綺麗に書けない).

定義. $a(X)=\sum_{i\in\mathbb{Z}}a_iX^i\in K((X))$ が $a_{-1}=0$ を満たすとき,

$$I(a(X)) = \sum_{i \in \mathbb{Z}, i \neq -1} \frac{1}{i+1} a_i X^{i+1}$$

と定める. I(a(X)) を $\int a(X)dX$ とも書く. I を (X による) 形式積分と呼ぶ.

I は部分 K 加群間の準同型 $\{a(X) \in K((X)) \mid [X^{-1}]a(X) = 0\} \longrightarrow \{a(X) \in K((X)) \mid [X^{0}]a(X) = 0\}$ を与える。また,I を K[[X]] に制限すると K 加群の準同型 I: $K[[X]] \longrightarrow XK[[X]]$ が得られる。

命題 9. $a(X) \in K((X))$ に対し,

- (1) I(D(a(X))) = a(X) a(0).
- $(2) \ [X^{-1}]a(X) = 0$ ならば, D(I(a(X))) = a(X).

証明. 定義より明らか.

7 形式留数

微分で情報が落ちる部分に名前がついている.

定義. $a(X) \in R((X))$ に対し、 $[X^{-1}]a(X)$ を $\mathrm{Res}(a(X))$ とも書き、a(X) の形式留数という.

Res: $R((X)) \longrightarrow R$ は R 準同型である.

命題 10. $a(X), b(X) \in XR[[X]]$ が b(a(X)) = X, a(b(X)) = X を満たすとき、 $m, n \in \mathbb{N}$ に対し、

$$m[X^m]b(X)^n = n[X^{-n}]a(X)^{-m}$$

が成り立つ.

証明. TODO: 体じゃなくて大丈夫?

8 exp

この節では K を標数 0 の体とする.

定義. $\exp(X) \in R[[X]]$ を,

$$\exp(X) = \sum_{i \in \mathbb{N}} \frac{1}{i!} X^i$$

で定める.

定義から、 $D(\exp(X)) = \exp(X)$ がわかる.

exp を左から合成する写像 exp: $XK[[X]] \longrightarrow 1 + XK[[X]]; a(X) \longmapsto \exp(a(X))$ は指数法則を満たす:

命題 11. $a(X), b(X) \in XK[[X]]$ に対し、 $\exp(a(X) + b(X)) = \exp(a(X)) \exp(b(X))$.

証明. $a(X)=\sum_{i\in\mathbb{N},\,i\geq 1}a_iX^i,\,b(X)=\sum_{i\in\mathbb{N},\,i\geq 1}b_iX^i$ とする. $n\in\mathbb{N}$ を任意にとる. 命題 4 より,

$$\begin{split} \exp(a(X) + b(X)) &\equiv \sum_{k \in \mathbb{N}, k < n} \frac{1}{k!} (a(X) + b(X))^k \\ &= \sum_{k \in \mathbb{N}, k < n} \sum_{i,j \in \mathbb{N}, i+j=k} \frac{1}{i!j!} a(X)^i b(X)^j \\ &\equiv \left(\sum_{i \in \mathbb{N}, i < n} \frac{1}{i!} a(X)^i \right) \left(\sum_{j \in \mathbb{N}, j < n} \frac{1}{j!} b(X)^j \right) \\ &\equiv \exp(a(X)) \exp(b(X)) \pmod{X^n} \end{split}$$

となる (2 つ目の \equiv は $a(X)^i \equiv 0 \pmod{X^i}$, $b(X)^j \equiv 0 \pmod{X^j}$ を用いた). よって命題 1 より $\exp(a(X) + b(X)) = \exp(a(X)) \exp(b(X))$ が従う.

- 9 log
- 10 合成逆
- 11 多変数
- 12 アルゴリズム
- 13 数え上げ