heart-disease-analysis

July 20, 2024

1 Heart Disease Diagnostic Analysis

```
[1]: #Import python libraries
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
[2]: data=pd.read_csv(r"C:\Users\amitk\Downloads\Heart Disease data.csv") #read the_
       \hookrightarrow data
[3]: data.head()
[3]:
        age
              sex
                   ср
                       trestbps
                                  chol
                                         fbs
                                              restecg
                                                        thalach
                                                                  exang
                                                                          oldpeak slope
         52
                                   212
                                           0
                                                                              1.0
                                                                                        2
                    0
                             125
                                                     1
                                                             168
                                                                      0
     0
                1
         53
                    0
                             140
                                   203
                                           1
                                                     0
                                                             155
                                                                      1
                                                                              3.1
                                                                                        0
     1
                1
     2
         70
                                                     1
                                                                              2.6
                                                                                        0
                1
                    0
                             145
                                   174
                                           0
                                                             125
                                                                      1
                                                                                        2
     3
         61
                             148
                                    203
                                           0
                                                     1
                                                                      0
                                                                              0.0
                                                             161
         62
                0
                             138
                                   294
                                           1
                                                     1
                                                             106
                                                                              1.9
                                                                                        1
            thal
                   target
        ca
         2
                3
                        0
     0
         0
                3
                         0
     1
     2
         0
                3
                         0
     3
                3
                         0
         1
     4
                2
                         0
         3
[4]: data.shape #rows and columns
[4]: (1025, 14)
[5]:
     data.columns
[5]: Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
             'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
            dtype='object')
```

```
[6]: data.nunique() #unique values in data as per columns
[6]: age
                   41
                    2
     sex
                    4
     ср
     trestbps
                   49
     chol
                  152
     fbs
                    2
                    3
     restecg
     thalach
                   91
                    2
     exang
                   40
     oldpeak
     slope
                    3
                    5
     ca
     thal
                    4
     target
                    2
     dtype: int64
[7]: data.isnull().sum() #null values
                  0
[7]: age
     sex
                  0
                  0
     ср
     trestbps
                  0
     chol
                  0
                  0
     fbs
                  0
     restecg
                  0
     thalach
                  0
     exang
     oldpeak
                  0
                  0
     slope
     ca
                  0
                  0
     thal
                  0
     target
     dtype: int64
```

There is no null value in this data, so we can proceed with the Exploratory Data Analysis part.

2 Exploratory Data Analysis

```
[8]: #Gender wise count
graph=sns.countplot(x='sex', data=data)
graph.bar_label(graph.containers[0], fontsize=10)
[8]: [Text(0, 0, '312'), Text(0, 0, '713')]
```


Males are almost double the number of females.

```
[9]: #Normal distribution of the Age of the people plt.hist(data['age'], bins=np.arange(0,100,10))
```


Age group 50–60 years got more heart disease diagnoses compared to others.

```
[10]: #Chest Pain Type by heart Disease
sns.countplot(x='cp',data=data, hue='target')
plt.title('Chest Pain Type by heart disease')
plt.xlabel('Type of Chest Pain')
plt.ylabel('Count')
plt.legend(title='Heart Disease', labels=['No', 'Yes'])
plt.show()
```

Chest Pain Type by heart disease

Value 0: typical angina ,Value 1: atypical angina, Value 2: non-anginal pain , Value 3: asymptomatic

```
[11]: # Visualize Fasting Blood Sugar by Heart Disease
sns.countplot(x='fbs', hue='target', data=data)
plt.title('Fasting Blood Sugar by Heart Disease')
plt.xlabel('Fasting Blood Sugar > 120 mg/dl')
plt.ylabel('Count')
plt.legend(title='Heart Disease', labels=['No', 'Yes'])
plt.show()
```


[22]:		age	trestbps	chol	thalach
	count	1025.000000	1025.000000	1025.00000	1025.000000
	mean	54.434146	131.611707	246.00000	149.114146
	std	9.072290	17.516718	51.59251	23.005724
	min	29.000000	94.000000	126.00000	71.000000
	25%	48.000000	120.000000	211.00000	132.000000
	50%	56.000000	130.000000	240.00000	152.000000
	75%	61.000000	140.000000	275.00000	166.000000
	max	77.000000	200.000000	564.00000	202.000000

The mean values of Age, BP, cholesterol, and maximum heart rate are 54, 132, 246 and 149. The average cholesterol level is 246 mg/dL, ranging from 126 to 564 mg/dl. The maximum heart rate averages 149.1 bpm (beats per minute), ranging from 71 to 202 bpm.

```
[13]: #there is no data below the 20 years and above the 80 years of age age_bins = [20, 40, 60, 80] age_labels = ['21-40', '41-60', '61-80']
```

```
[13]: 0
              41-60
              41-60
      1
      2
              61-80
      3
              61-80
              61-80
      4
      1020
              41-60
      1021
              61-80
      1022
              41-60
      1023
              41-60
      1024
              41-60
      Name: age_group, Length: 1025, dtype: category
      Categories (3, object): ['21-40' < '41-60' < '61-80']
```

```
[14]: # Heart disease diagnosis according to age
plt.figure(figsize=(10, 6))
sns.countplot(x='age_group', hue='target', data=data)
plt.title('Heart Disease by Age')
plt.xlabel('age_group')
plt.ylabel('Count')
plt.legend(['No Heart Disease', 'Heart Disease'])
plt.show()
```


Age groups 41-60 have the highest number of people with heart disease diagnoses, around 350. The age group 21-40 years has the lowest prevalence of heart disease among the groups.

```
[15]: # Visualize Exercise Induced Angina by Heart Disease
sns.countplot(x='exang', data=data, hue='target')
plt.title('Exercise Induced Angina by Heart Disease Diagnosis')
plt.xlabel('Exercise Induced Angina (0 = No, 1 = Yes)')
plt.ylabel('Count')
plt.legend(title='Heart Disease', labels=['No', 'Yes'])
plt.show()
```

Exercise Induced Angina by Heart Disease Diagnosis

Most of the numbers of people (450 people) are who got heart disease but not include the angina.

```
[16]: # Scatter plot of maximum heart rate and Age
plt.figure(figsize=(10, 6))
sns.scatterplot(x='age', y='thalach', data=data, hue='target', size=5, )
plt.title('Age vs Maximum Heart Rate')
plt.xlabel('Age in Years')
```

```
plt.ylabel('Maximum Heart Rate')
plt.legend(['No Heart Disease found', 'Heart Disease found'])
#plt.show()
```

[16]: <matplotlib.legend.Legend at 0x1c588bf1d90>

Individuals with heart disease tend to have lower maximum heart rates as they age compared to those without heart disease.

```
[17]: #Heart Disease vs Cholestrol
plt.figure(figsize=(10, 6))
sns.boxplot(data=data, x='target', y='chol')
plt.title('Cholesterol Levels by Heart Disease')
plt.xlabel('Heart Disease (0 = No, 1 = Yes)')
plt.ylabel('Cholestoral Level (mg/dl)')
plt.show()
```


Median cholesterol levels are higher in individuals with heart disease compared to those without, indicating cholesterol levels may influence heart disease risk.

```
[18]: #Blood Pressure vs Cholestrol level
plt.figure(figsize=(12, 6))
sns.scatterplot(x='trestbps', y='chol', hue='target', data=data, size=5,
palette='Set1')
plt.title('Blood Pressure vs. Cholesterol level by Heart Disease Status')
plt.xlabel('Resting Blood Pressure')
plt.ylabel('Cholesterol')
plt.legend([['No Heart Disease'], ['Heart Disease']])
plt.show()
```



```
[19]: # Thalassemia by Heart Disease data
sns.countplot(x='thal', hue='target', data=data)
plt.title('Thalassemia by Heart Disease')
plt.xlabel('Thalassemia (0 = No, 1 = Yes)')
plt.ylabel('Count')
plt.show()
```


People with 'reversible defect' or 'fixed defect' thalassemia types are more likely to have heart disease. 'Normal' thalassemia type individuals show a lower incidence of heart disease. Those where thalassemia was 'not found' have a mixed but generally lower prevalence of heart disease.


```
[21]: # Visualize Slope of the Peak Exercise ST Segment by Heart Disease
plt.figure(figsize=(10, 6))
sns.countplot(x='slope', hue='target', data=data)
plt.title('Slope of the Peak Exercise ST Segment by Heart Disease')
plt.xlabel('Slope of the Peak exercise ST Segment')
plt.ylabel('Count')
plt.legend(title='Heart Disease', labels=['No', 'Yes'])
plt.show()
```


0=Up slope, 1=Flat(slop=0), 2=Down slope

'Flat' and 'upsloping' slopes show varying prevalence, with 'upsloping' generally having a lower association with heart disease. The 'downsloping' slope of the peak exercise ST segment is associated with a higher prevalence of heart disease.

3 Attribute Information:

- 1. age
- 2. sex
- 3. chest pain type (4 values) Value 1: typical angina ,Value 2: atypical angina, Value 3: non-anginal pain , Value 4: asymptomatic.
- 4. resting blood pressure 120/80 mmHg
- 5. serum cholesterol in mg/dl represents the amount of total cholesterol in their blood.
- 6. fasting blood sugar > 120 mg/dl common blood test to diagnose prediabetes, diabetes or gestational diabetes.
- 7. resting electrocardiographic results (values 0,1,2) test that can detect abnormalities including arrhythmias, evidence of coronary heart disease, left ventricular hypertrophy and bundle branch blocks.
- 8. maximum heart rate achieved Thalach
- 9. exercise induced angina pain in the chest that comes on with exercise, stress, or other things that make the heart work harder
- 10. oldpeak = ST depression induced by exercise relative to rest ('ST' relates to positions on the ECG plot.)
- 11. the slope of the peak exercise ST segment

- $12.\,$ number of major vessels (0-3) colored by flourosopy , CA- Coronary artery disease
- 13. thal: 0 = normal; 1 = fixed defect; 2 = reversable defect

[]: