Reinforcement Learning for LTL_f/LDL_f : Theory and Implementation

Marco Favorito

M.Sc. in Engineering in Computer Science at Sapienza, University of Rome

A.Y. 2017/2018

Introduction

- Classic Reinforcement Learning:
 - An agent interacts with an environment by taking actions so to maximize rewards;
 - No knowledge about the transition model, but assume Markov property (history does not matter): Markov Decision Process (MDP)
 - Solution: (Markovian) policy $\rho: S \to A$
- RL for Non-Markovian Decision Process (NMRDP):
 - Rewards depend from history, not just the last transition;
 - Specify proper behaviours by using temporal logic formulas;
 - Solution: (Non-Markovian) policy $\rho: S^* \to A$
 - Reduce the problem to MDP (with extended state space)
- In (Brafman et al. 2018) specify reward using:
 - Linear-time Temporal Logic on Finite Traces LTL_f
 - Linear-time Dynamic Logic on Finite Traces LDL_f

Example of NMRDP: BREAKOUT

- Non-Markovian reward: remove columns from left to right
- The solution space is restricted
- Policy must depend from a sequence of states: $\rho: S^* \to A$

Goals of the thesis

- Theoretical foundations for RL over NMRDP with LTL_f/LDL_f rewards by leveraging (Brafman et al. 2018)
- Formalization and solution of a new problem: RL for ${
 m LTL}_f/{
 m LDL}_f$ goals
 - o two-fold representation of the world
 - · Low-level, used by the learning agent
 - High-level, used to specify the goal formulas
- Deal with sparse rewards and design a way to improve exploration
- Implementation of the topics described above

LTL_f and LDL_f (De Giacomo and Vardi, 2013)

- Linear Temporal Logic on finite traces: LTL_f
 - Exactly the same syntax of LTL
 - Interpreted over finite traces
 - Next: Ohappy Until: reply *U* acknowledge
 - Eventually: *◊rich* Always: □*safe*
- Linear Dynamic Logic on finite traces: LTL_f
 - Merging of LTL_f and Regular Expressions
 - $[true^*](safe)$ $\langle A^*; B \rangle End$
- Reasoning in LTL_f/LDL_f:
 - \circ transform formulas φ into NFAs or DFAs \mathcal{A}_{φ}
 - For every trace π and LTL_f/LDL_f formula φ :

$$\pi \models \varphi \iff \pi \in \mathcal{L}(\mathcal{A}_{\varphi})$$

From LTL_f/LDL_f formulas to automata: examples

E.g. For
$$\pi = \langle \{\}, \{A\}, \{A, B\} \rangle$$
,

$$\pi \not\models \Box A \qquad \qquad \pi \models \Diamond A$$

$$\pi \models \Diamond A$$

$$\pi \not\models \langle (A; B)^* \rangle End$$

FLLOAT: From LTL_f/LDL_f tO AutomaTa

- Python package supporting:
 - \circ LTL_f/LDL_f formulas: parsing, syntax and semantics
 - Translation to automata (NFA, DFA, on-the-fly DFA)
- □*A*:

```
from flloat.parser.ltlf import LTLfParser
parser = LTLfParser()
always_A = parser("G(A)")
dfa = always_A.to_automaton(determinize=True)
dfa.to_dot("always_A.svg")
```

• $\langle (A; B)^* \rangle End$:

```
from flloat.parser.ldlf import LDLfParser
parser = LDLfParser()
alternating_AB = parser("<(A;B)*>end")
dfa = alternating_AB.to_automaton(determinize=True)
dfa.to_dot("alternating_AB.svg")
```


RL for NMRDP with LTL_f/LDL_f rewards

- Given an NMRDP N with:
 - \circ rewards specified by LTL_f/LDL_f formulas
 - \circ over a set of propositional symbols ${\mathcal P}$
 - o agent's state space: $S \subseteq 2^{\mathcal{P}}$
- We can transform it into an equivalent MDP ${\cal M}$ (Brafman et al. 2018)
 - \circ the state space of \mathcal{M} is extended:

$$S' = S \times Q_1 \times \cdots \times Q_m$$

- where Q_i is the set of states of \mathcal{A}_{arphi_i}
- \circ reward is given iff q_i is an accepting state of \mathcal{A}_{arphi_i}
- ullet An optimal policy for ${\mathcal M}$ is optimal for ${\mathcal N}$
- ullet We reduced RL for ${\mathcal M}$ to RL for ${\mathcal N}$

RL for LTL_f/LDL_f goals: a new problem

Two-fold representation of the world W:

- An agent learning an MDP with low-level features S, trying to optimize reward R
- LTL_f/LDL_f goals $\{(\varphi_i, r_i)_{i=1}^m\}$ over a set of **high-level features** \mathcal{F} , yielding a set of fluents configurations $\mathcal{L} = 2^{\mathcal{F}}$

Solution: a non-Markovian policy $\rho: S^* \to A$ that is optimal wrt rewards r_i and R.

Our approach:

- ullet Transform each $arphi_i$ into DFA \mathcal{A}_{arphi_i}
- Do RL over an MDP \mathcal{M}' with a transformed state space:

Notice: the agent ignores the fluents \mathcal{L} !

The actual RL relies on standard RL algorithms (e.g. Sarsa(λ))

Automata-based Reward Shaping

 Reward sparsity is the main issue: Hard to learn complex behaviors without heuristics

Idea: Give additional reward if, after a transition on \mathcal{A}_{φ} , we are closer to an accepting state (anticipate rewards)

Based on Potential-Based Reward Shaping (Ng et al., 1999):

$$F(s, a, s') = \gamma \Phi(s') - \Phi(s)$$

Two modes:

- Off-line: $\Phi(q)$ inversely proportional to the distance from any accepting state of \mathcal{A}_{arphi}
- On-line: A_{φ} and Φ are built from scratch and updated while learning and discovering new states/transitions. Using *Dynamic PBRS* (Devlin, 2012)

RLTG (Reinforcement Learning for Temporal Goals)

Reinforcement Learning Python framework that implements our approach

- Depends on flloat for the construction of \mathcal{A}_{arphi_i}
- Works also for classic RL
- Highly customizable, uses OpenAl Gym interface

Example (in pseudocode):

```
env = GymEnvironment()  # a Gym environment
agent = TGAgent(  # the "temporal goal" agent
  FeatureExtractor(...),  # generates the agent's space
  Brain(...), #abstraction of RL algorithms (e.g. Sarsa)
  [TemporalGoal(φ,r), ...] # list of temp. goal managers
)
trainer = TGTrainer(env, agent, stop_conditions=..., ...)
trainer.main(...) # starts the learning process
```

Experiments: BREAKOUT

BREAKOUT: remove columns/rows in a given order

- low-level features: paddle position, ball speed/position;
- high-level features: bricks status (broken/not broken)
- LTL_f/LDL_f **goal** (l_i means: the i_{th} line has been removed.):

$$\langle (\neg I_0 \wedge \neg I_1 \wedge \neg I_2)^*; (I_0 \wedge \neg I_1 \wedge \neg I_2); (I_0 \wedge \neg I_1 \wedge \neg I_2)^*; \dots; (I_0 \wedge I_1 \wedge I_2) \rangle tt$$

Experiments: SAPIENTINO

SAPIENTINO: make a bip in each color, in a given order

- **low-level features**: robot position (x, y);
- high-level features: color of current cell, bip-last-action
- LTL_f/LDL_f goal:

$$\langle (\neg bip)^*; red \wedge bip; (\neg bip)^*; green \wedge bip; \ldots \rangle tt$$

Experiments: MINECRAFT

MINECRAFT: complete tasks by getting resources/using tools

- **low-level features**: robot position (x, y);
- **high-level features**: *get_wood*, *use_workbench* etc.
- LTL_f/LDL_f **goal**: three composite tasks like (approximately):

 $\langle \textit{true}^* \rangle \langle \textit{get_iron}; \textit{get_iron} \wedge \textit{get_wood}; \ldots \wedge \textit{use_factory} \rangle tt$

Discussion

Why a two-fold representation for temporal goals?

- Separation of concerns: It allows to a better design of the RL system by improving modularity and flexibility;
- Reduced state space: It makes easier the learning by exploring a smaller state space and focusing only on relevant low-level features;
- Simpler agent: Move part of the complexity outside the agent.

Other observations:

- Expressive Power: LDL_f expressive as Monadic Second-Order logic (e.g. we can specify procedural constraints);
- No need of new algorithms, one can rely on off-the-shelf RL algorithms (Sarsa(λ), Q-Learning, ...);
- The correlation between the two representations does not need to be formalized.

Conclusions

Thesis results:

- Extended (Brafman et al. 2018) to the context of RL;
- Formalization of *RL* for LTL_f/LDL_f goals, devising of a solution and analysis of the advantages;
- Provided an implementation and given experimental evidence of the goodness of our approach.

Future works:

- Minimal low-level representation to tackle LTL_f/LDL_f goals;
- Optimize FLLOAT, enrich RLTG;
- Try the approach in several real world applications;
- Design of ad-hoc algorithms (e.g. "automata-aware" exploration);
- Extend the approach to the framework of Multi-Agent Systems.

Publication: https://arxiv.org/abs/1807.06333. Status: submitted

