

Segundo Cuatrimestre 2025

Pau Frangi Mahiques, Pablo Pardo Cotos y Diego Rodríguez Cubero $Ciencias\ Matemáticas\ e$ $Ingeniería\ Informática$

¹basado en la apuntes de Jesús Jaramillo

Contents

1	Superficies Paramétricas
2	Integrales de superficie
	2.1 Superficies como Conjuntos
	2.2 Superficies Regulares a Trozos
	2.3 Orientación de Superficies
3	Teorema de Stokes. Teorema de la divergencia de Gauss
	3.1 Teorema de Stokes

1 Superficies Paramétricas

Definición 1.0.1 [Superficie Paramétrica]

Una parametrización de una superficie paramétrica S en \mathbb{R}^3 es una aplicación $\varphi: U \to \mathbb{R}^3$ de clase C^1 definida en un abierto conexo $U \subset \mathbb{R}^2$ tal que:

$$Im(\varphi) = \{ \varphi(u, v) \in \mathbb{R}^3 : (u, v) \in U \} = S$$

Diremos que la parametrización φ es regular cuando la pareja de vectores $\left\{\frac{\partial \varphi}{\partial u}, \frac{\partial \varphi}{\partial v}\right\}$ es linealmente independiente en todo punto de U. Equivalentemente, cuando el vector normal asociado a φ es no nulo en todo punto de U:

$$\vec{N}_{\varphi} = \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \neq \vec{0}$$

En este caso, el plano tangente a la superficie en el punto $\varphi(u_0, v_0)$ tiene como ecuaciones paramétricas:

$$\begin{cases} x = \varphi_1(u_0, v_0) + \lambda \frac{\partial \varphi_1}{\partial u}(u_0, v_0) + \mu \frac{\partial \varphi_1}{\partial v}(u_0, v_0) \\ y = \varphi_2(u_0, v_0) + \lambda \frac{\partial \varphi_2}{\partial u}(u_0, v_0) + \mu \frac{\partial \varphi_2}{\partial v}(u_0, v_0) \\ z = \varphi_3(u_0, v_0) + \lambda \frac{\partial \varphi_3}{\partial u}(u_0, v_0) + \mu \frac{\partial \varphi_3}{\partial v}(u_0, v_0) \end{cases} \qquad \lambda, \mu \in \mathbb{R}$$

Ejemplo

Dada la superficie $z=x^2+y^2$, podemos parametrizarla con $\varphi:\mathbb{R}^2\to\mathbb{R}^3$ dada por $\varphi(x,y)=(x,y,x^2+y^2)$. Calculemos el vector normal:

$$\vec{N}_{\varphi} = \frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y} = \begin{vmatrix} \vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\ \frac{\partial \varphi_{1}}{\partial x} & \frac{\partial \varphi_{2}}{\partial x} & \frac{\partial \varphi_{3}}{\partial x} \\ \frac{\partial \varphi_{1}}{\partial y} & \frac{\partial \varphi_{2}}{\partial y} & \frac{\partial \varphi_{3}}{\partial y} \end{vmatrix} = \begin{vmatrix} \vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\ 1 & 0 & 2x \\ 0 & 1 & 2y \end{vmatrix} = \vec{e}_{1} - 2x\vec{e}_{3} + 2y\vec{e}_{2} \neq (0, 0, 0)$$

Ejemplo

Superficies explícitas: Sean $U \subset \mathbb{R}^2$ abierto conexo y $f: U \to \mathbb{R}$ de clase C^1 . Entonces la gráfica de f es una superficie regular con parametrización $\varphi: U \to \mathbb{R}^3$ dada por $\varphi(x,y) = (x,y,f(x,y))$. Veamos que $\vec{N}_{\varphi} \neq (0,0,0)$:

$$\vec{N}_{\varphi} = \frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y} = \begin{vmatrix} \vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\ \frac{\partial \varphi_{1}}{\partial x} & \frac{\partial \varphi_{2}}{\partial x} & \frac{\partial \varphi_{3}}{\partial x} \\ \frac{\partial \varphi_{1}}{\partial y} & \frac{\partial \varphi_{2}}{\partial y} & \frac{\partial \varphi_{3}}{\partial y} \end{vmatrix} = \begin{vmatrix} \vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\ 1 & 0 & \frac{\partial f}{\partial x} \\ 0 & 1 & \frac{\partial f}{\partial y} \end{vmatrix} = \vec{e}_{1} - \frac{\partial f}{\partial x} \vec{e}_{3} + \frac{\partial f}{\partial y} \vec{e}_{2} \neq (0, 0, 0)$$

$$Im(\varphi) = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in U, z = f(x, y)\}$$

Ejemplo

Dado el cilindro de ecuaciones $x^2 + y^2 = 1$, 0 < z < 1, buscamos una parametrización de la superficie. Tomando la siguiente parametrización:

$$\begin{cases} x = \cos(\theta) \\ y = \sin(\theta) \\ z = z \end{cases} \quad \theta \in \mathbb{R}, \quad z \in (0, 1)$$

entonces vemos que $\underbrace{x^2 + y^2}_{:} = r^2 \implies r = 1.$

Por tanto, obtenemos que nuestra parametrización es:

$$\varphi : \mathbb{R} \times (0,1) \to \mathbb{R}^3 \quad \varphi(\theta,z) = (\cos(\theta),\sin(\theta),z)$$

Calculemos el vector normal:

$$\vec{N}_{\varphi} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \frac{\partial \varphi_1}{\partial \theta} & \frac{\partial \varphi_2}{\partial \theta} & \frac{\partial \varphi_3}{\partial \theta} \\ \frac{\partial \varphi_1}{\partial z} & \frac{\partial \varphi_2}{\partial z} & \frac{\partial \varphi_3}{\partial z} \\ \end{vmatrix} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{vmatrix} = (\cos(\theta), \sin(\theta), 0) \neq (0, 0, 0)$$

Ejemplo

Tomando el cilindro $x^2 + y^2 = 1$, 0 < z < 1 del ejemplo anterior, podemos parametrizarlo de otra forma.

Consideramos el siguiente conjunto:

$$U = \{(u, v) : 1 < \sqrt{u^2 + v^2} < 2, \quad 0 < v < 2\pi\}$$

entonces definimos nuestra parametrización $\varphi: U \to \mathbb{R}^3$ sobre este conjunto tal que

$$\varphi(u,v) = \left(\frac{u}{\sqrt{u^2 + v^2}}, \frac{v}{\sqrt{u^2 + v^2}}, \sqrt{u^2 + v^2} - 1\right)$$

Definición 1.0.2 [Superficies Equivalentes]

Diremos que dos superficies paramétricas $\varphi: U \to \mathbb{R}^3$ y $\psi: V \to \mathbb{R}^3$, definidas respectivamente sobre los conjuntos abiertos conexos $U, V \subset \mathbb{R}^2$, son equivalentes si existe una aplicación biyectiva $h: V \to U$ de clase C^1 (es decir, un difeomorfismo) tal que:

$$\psi = \varphi \circ h.$$

Observación 1.0.1

- 1. En este caso $\varphi(U) = \psi(V)$.
- 2. En la definición se pide que los conjuntos U y V sean conexos. Como $\forall (s,t) \in V$, $D_h(s,t)$: $\mathbb{R}^2 \to \mathbb{R}^2$ es un isomorfismo lineal, sabemos que $det(D_h(s,t)) \neq 0$. Por conexión, $det(D_h(s,t))$ conserva el signo en todo V.

Definición 1.0.3 [Conservación de la Orientación]

- 1. Se dice que h conserva la orientación si $det(D_h(s,t)) > 0$ para todo $(s,t) \in V$, es decir las funciones φ y ψ tienen la misma orientación.
- 2. Se dice que h cambia la orientación si $det(D_h(s,t)) < 0$ para todo $(s,t) \in V$, es decir las funciones φ y ψ tienen orientaciones opuestas.

Lema 1.0.1

Sean $\varphi: U \to \mathbb{R}^3$ y $\psi: V \to \mathbb{R}^3$ dos parametrizaciones equivalentes de una superficie S. Entonces,

para todo $(s,t) \in V$, se cumple que:

$$\frac{\partial \psi}{\partial s} \times \frac{\partial \psi}{\partial t} = \det(D_h(s,t)) \cdot \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v}(h(s,t))$$

Equivalentemente,

$$\vec{N}_{\psi}(s,t) = \det(D_h(s,t)) \cdot \vec{N}_{\varphi}(h(s,t))$$

Demostración. Aplicando la regla de la cadena a $\psi = \varphi \circ h$, obtenemos la siguiente relación entre las matrices jacobianas:

$$D_{\psi}(s,t) = D_{\varphi}(h(s,t)) \cdot D_{h}(s,t).$$

En términos de las derivadas parciales, esto se traduce en:

$$\frac{\partial \psi}{\partial s} = \frac{\partial \varphi}{\partial u} \frac{\partial h_1}{\partial s} + \frac{\partial \varphi}{\partial v} \frac{\partial h_2}{\partial s}, \quad \frac{\partial \psi}{\partial t} = \frac{\partial \varphi}{\partial u} \frac{\partial h_1}{\partial t} + \frac{\partial \varphi}{\partial v} \frac{\partial h_2}{\partial t},$$

donde $h(s,t) = (h_1(s,t), h_2(s,t)).$

Podemos escribir estas ecuaciones en forma matricial como:

$$\left(\frac{\partial \psi}{\partial s}, \frac{\partial \psi}{\partial t}\right) = \left(\frac{\partial \varphi}{\partial u}, \frac{\partial \varphi}{\partial v}\right) \cdot D_h(s, t),$$

donde $D_h(s,t)$ es la matriz jacobiana de h:

$$D_h(s,t) = \begin{pmatrix} \frac{\partial h_1}{\partial s} & \frac{\partial h_1}{\partial t} \\ \frac{\partial h_2}{\partial s} & \frac{\partial h_2}{\partial t} \end{pmatrix}.$$

Ahora, consideremos el producto vectorial de las derivadas parciales de ψ :

$$\frac{\partial \psi}{\partial s} \times \frac{\partial \psi}{\partial t}$$
.

Utilizando las expresiones anteriores, tenemos:

$$\frac{\partial \psi}{\partial s} \times \frac{\partial \psi}{\partial t} = \left(\frac{\partial \varphi}{\partial u} \frac{\partial h_1}{\partial s} + \frac{\partial \varphi}{\partial v} \frac{\partial h_2}{\partial s}\right) \times \left(\frac{\partial \varphi}{\partial u} \frac{\partial h_1}{\partial t} + \frac{\partial \varphi}{\partial v} \frac{\partial h_2}{\partial t}\right).$$

Expandiendo el producto vectorial y usando que $\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial u} = 0$ y $\frac{\partial \varphi}{\partial v} \times \frac{\partial \varphi}{\partial v} = 0$, obtenemos:

$$\frac{\partial \psi}{\partial s} \times \frac{\partial \psi}{\partial t} = \left(\frac{\partial h_1}{\partial s} \frac{\partial h_2}{\partial t} - \frac{\partial h_1}{\partial t} \frac{\partial h_2}{\partial s}\right) \left(\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v}\right).$$

Notamos que el término entre paréntesis a la derecha es el determinante de la matriz jacobiana $D_h(s,t)$:

$$\det(D_h(s,t)) = \frac{\partial h_1}{\partial s} \frac{\partial h_2}{\partial t} - \frac{\partial h_1}{\partial t} \frac{\partial h_2}{\partial s}.$$

Por lo tanto, hemos demostrado que:

$$\frac{\partial \psi}{\partial s} \times \frac{\partial \psi}{\partial t} = \det(D_h(s,t)) \cdot \left(\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v}\right) (h(s,t)).$$

Equivalentemente, para los vectores normales unitarios:

$$\vec{N}_{\psi}(s,t) = \det(D_h(s,t)) \cdot \vec{N}_{\varphi}(h(s,t)),$$

donde \vec{N}_{ψ} y \vec{N}_{φ} son los vectores normales unitarios asociados a las parametrizaciones ψ y φ , respectivamente.

Definición 1.0.4 [Orientación de una Superficie]

Asociadas a las parametrizaciones φ y ψ obtenemos lso vectores normales unitarios

$$\vec{n}_{\varphi} = \frac{\vec{N}_{\varphi}}{||\vec{N}_{\varphi}||} \quad y \quad \vec{n}_{\psi} = \frac{\vec{N}_{\psi}}{||\vec{N}_{\psi}||}$$

Entonces diremos que φ y ψ tienen la misma orientación si:

$$\vec{n}_{\psi}(s,t) = \vec{n}_{\varphi}(h(s,t)) \ o \ \vec{n}_{\psi}(s,t) = -\vec{n}_{\varphi}(h(s,t))$$

2 Integrales de superficie

2.1 Superficies como Conjuntos

Definición 2.1.1 [Superficie Simple Regular]

Diremos que $S \subset \mathbb{R}^3$ es una superficie simple regular si $S = \varphi(\overline{D})$ donde D = Int(C) siendo $C \subset \mathbb{R}^2$ una curva de Jordan regular a trozos, $y \varphi : U \to \mathbb{R}^3$ una parametrización de clase C^1 inyectiva y regular en $\overline{D} \subset U$.

En este caso, el borde de S de define como $\partial S = \varphi(C)$, que es una curva cerrada y regular a trozos en \mathbb{R}^3

Definición 2.1.2 [Superficie Casi-Simple Regular]

Diremos que $S \subset \mathbb{R}^3$ es una superficie casi-simple regular si $S = \varphi(\overline{D})$ donde D = Int(C) siendo $C \subset \mathbb{R}^2$ una curva de Jordan regular a trozos, $y \varphi : U \to \mathbb{R}^3$ una parametrización de clase C^1 inyectiva y regular en D.

Definición 2.1.3 [Área e Integral de una Superficie]

Dada una superficie S en \mathbb{R}^3 simple regular o casi-simple regular, y una parametrización $\varphi: U \to \mathbb{R}^3$ de clase C^1 de S, definimos:

1. El área de la superficie S como:

$$a(S) = \int_{S} 1 dS = \int_{D} \left\| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right\| du dv = \int_{D} \|\vec{N}_{\varphi}\| du dv$$

2. Si $f: S \to \mathbb{R}$ es una función continua, entonces la integral de superficie de f sobre S es:

$$\int_{S} f dS = \int_{D} f(\varphi(u, v)) \left\| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right\| du dv = \int_{D} f(\varphi(u, v)) \|\vec{N}_{\varphi}\| du dv$$

Ejemplo

Consideramos la superficie S de \mathbb{R}^3 resultante de acotar un cono por los planos z=1 y z=2.

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2, \ 1 < z < 2\}$$

Calculemos el área de la superficie S:

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \\ z = r \end{cases} \qquad r^2 = x^2 + y^2 = z^2 \implies r = z \qquad \varphi(\theta, z) = \begin{cases} x = z\cos(\theta) \\ y = z\sin(\theta) \\ z = z \end{cases}$$

$$\overline{D} = \begin{bmatrix} 0, 2\pi \end{bmatrix} \times \begin{bmatrix} 1, 2 \end{bmatrix} \qquad S = \varphi(D)$$

$$\vec{N}_{\varphi} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ -z\sin(\theta) & z\cos(\theta) & 0 \\ \cos(\theta) & \sin(\theta) & 1 \end{vmatrix} = (z\cos(\theta), z\sin(\theta), -z)$$

$$\|\vec{N}_{\varphi}\|^2 = z^2\cos^2(\theta) + z^2\sin^2(\theta) + (-z)^2 = 2z^2 \implies \|\vec{N}_{\varphi}\| = z\sqrt{2} \neq 0 \quad \forall (0, z) \in D$$

Entonces φ es inyectiva y regular en D (aunque no en \overline{D}), luego S es una superficie casi-simple regular.

Por último, el área de la superficie S es:

$$a(S) = \int_{D} \|\vec{N}_{\varphi}\| du dv = \int_{\theta=0}^{\theta=2\pi} \int_{z=1}^{z=2} z\sqrt{2} dz d\theta = \int_{\theta=0}^{\theta=2\pi} \left[\frac{z^{2}}{2}\sqrt{2}\right]_{z=1}^{z=2} d\theta$$
$$= \int_{\theta=0}^{\theta=2\pi} \left(\frac{4}{2}\sqrt{2} - \frac{1}{2}\sqrt{2}\right) d\theta = \int_{\theta=0}^{\theta=2\pi} \frac{3}{2}\sqrt{2} d\theta = \frac{3}{2}\sqrt{2} \cdot 2\pi = 3\pi\sqrt{2}$$

Ejemplo

Dada la función $f(x, y, z) = x^2 + y^2 + z^2$, calculemos la integral de superficie de f sobre la superficie S dada por la sección de cono $x^2 + y^2 = z^2$, 1 < z < 2 del ejemplo anterior.

Entonces, la integral de superficie de f sobre S es:

$$\begin{split} & \int_{S} f dS = \int_{D} f(\varphi(\theta, z)) \|\vec{N}_{\varphi}\| d\theta dz = \int_{\theta=0}^{\theta=2\pi} \int_{z=1}^{z=2} 2z^{2} \cdot z \sqrt{2} dz d\theta = \int_{\theta=0}^{\theta=2\pi} \frac{2\sqrt{2}}{4} \left[z^{4}\right]_{1}^{2} d\theta \\ & = \int_{\theta=0}^{\theta=2\pi} \frac{2\sqrt{2}}{4} (16-1) d\theta = \int_{\theta=0}^{\theta=2\pi} \frac{30\sqrt{2}}{4} d\theta = \int_{\theta=0}^{\theta=2\pi} \frac{15\sqrt{2}}{2} d\theta = \frac{15\sqrt{2}}{2} \cdot (2\pi) = 15\pi\sqrt{2} \end{split}$$

Observemos que $\int_{S} f dA = \int_{S} f dS$.

Ejemplo

Área de la esfera en \mathbb{R}^3 de radio R:

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = R^2\}$$

$$\varphi: U \to \mathbb{R}^3 \qquad \varphi(\theta, \phi) = \begin{cases} x = R\cos(\theta)\sin(\phi) \\ y = R\sin(\theta)\sin(\phi) \\ z = R\cos(\phi) \end{cases} \qquad \overline{D} = \begin{cases} \theta \in [0, 2\pi] \\ \phi \in [0, \pi] \end{cases}$$

Entonces, tenemos que $D=(0,2\pi)\times(0,\pi)$ y $\overline{D}=[0,2\pi]\times[0,\pi]$.

$$\vec{N}_{\varphi} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ -R\sin(\theta)\sin(\phi) & R\cos(\theta)\sin(\phi) & 0 \\ R\cos(\theta)\cos(\phi) & R\sin(\theta)\cos(\phi) & -R\sin(\phi) \end{vmatrix}$$

$$=R^{2}\sin(\phi)\begin{vmatrix}\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\ -\sin(\theta) & \cos(\theta) & 0\\ \cos(\theta)\cos(\phi) & \sin(\theta)\cos(\phi) & -\sin(\phi)\end{vmatrix} = -R^{2}\sin(\phi)\left(\sin(\phi)\cos(\theta),\sin(\phi)\sin(\theta),\cos(\phi)\right)$$

$$\|\vec{N}_{\varphi}\|^{2} = R^{4} \sin^{4}(\phi) + R^{4} \sin^{2}(\phi) \cos^{2}(\phi) = R^{4} \sin^{2}(\phi) \left(\sin^{2}(\phi) + \cos^{2}(\phi)\right) = R^{4} \sin^{2}(\phi)$$
$$\|\vec{N}_{\varphi}\| = R^{2} \sin(\phi)$$

Luego el área de la esfera es:

$$a(S) = \int_{D} \|\vec{N}_{\varphi}\| du dv = \int_{\theta=0}^{\theta=2\pi} \int_{\phi=0}^{\phi=\pi} R^{2} \sin(\phi) d\phi d\theta = \int_{\theta=0}^{\theta=2\pi} \left[-R^{2} \cos(\phi) \right]_{\phi=0}^{\phi=\pi} d\theta$$
$$= \int_{\theta=0}^{\theta=2\pi} -R^{2} \left((-1) - 1 \right) d\theta = \int_{\theta=0}^{\theta=2\pi} 2R^{2} d\theta = 2R^{2} \cdot (2\pi) = 4\pi R^{2}$$

2.2 Superficies Regulares a Trozos

Definición 2.2.1 [Suma de Superficies]

Sean $S_1, S_2 \subset \mathbb{R}^3$ dos superficies simples regulares. Se dice que la superficie S es la suma de S_1 y S_2 , y se denota por $S = S_1 + S_2$, si:

1.
$$S = S_1 \cup S_2$$

2.
$$S_1 \cap S_2 \subset \partial S_1 \cap \partial S_2$$

En este caso, se define el borde de S como:

$$\partial S = \overline{(\partial S_1 \cup \partial S_2) \setminus (\partial S_1 \cap \partial S_2)}$$

 $Si \ \partial S = \emptyset$, entonces se dice que S no tiene borde y es cerrada.

Análogamente, se define la suma de superficies $S_1 + S_2 + \ldots + S_k$ siendo cada S_i una superficie simple regular.

Ejemplo

Consideramos el cubo S formado por la suma de las superficies de los seis lados del cubo $S = S_1, S_2, \ldots, S_6$. En particular tenemos que $\partial S = \emptyset$.

Ejemplo

Consideramos ahora el cilindro S formado por la suma de las superficies de los dos "tapas" del cilindro S_1, S_2 y la superficie lateral dividida en dos partes iguales S_3 y S_4 . En este caso, tenemos que $S = S_1 + S_2 + S_3 + S_4$, y como en el caso anterior, $\partial S = \emptyset$.

Ejemplo

Quitémosle una de las tapas al cilindro, entonces tenemos que $S = S_1 + S_2 + S_3$, y en este caso

$$\begin{cases} \partial(S_1 + S_2) = C_0 \cup C_1 \\ \partial S_3 = C_0 \\ \partial S = \overline{(\partial(S_1 + S_2) \cup \partial S_3) \setminus (\partial S_1 + S_2) \cap \partial S_3} = \overline{(C_0 \cup C_1 \cup C_0) \setminus (C_0)} = \overline{C_1} = C_1 \end{cases}$$

Sea \vec{F} un campo vectorial en \mathbb{R}^3 y S una superficie. Nos preguntamos qué orientación tiene el campo \vec{F} en la superficie S.

Necesitamos, por tanto, orientar S de alguna forma.

2.3 Orientación de Superficies

Definición 2.3.1 [Normal Unitaria de una Superficie]

Sea S una superficie regular en \mathbb{R}^3 . Una **normal unitaria** en S es una función continua

$$\vec{n}: S \to \mathbb{R}^3$$

tal que, para todo punto $p \in S$, se cumple que $\vec{n}(p)$ es un vector **unitario** y **normal** a la superficie en p, es decir:

$$\vec{n}(p) \perp T_p(S) \quad y \quad ||\vec{n}(p)|| = 1,$$

donde $T_p(S)$ denota el plano tangente a S en el punto p.

Definición 2.3.2 [Superficie Orientada]

Una superficie simple regular orientada es un par (S, \vec{n}) , donde S es una superficie regular y simple, y \vec{n} es una normal unitaria que asigna de forma continua a cada punto de S una orientación consistente.

Observación 2.3.1

Una superficie simple y regular admite exactamente dos orientaciones posibles.

Sea $\varphi:\overline{D}\to S$ una parametrización simple y regular de S, según la definición adoptada para S. Consideramos el siguiente campo normal:

$$ec{N}_{arphi} = rac{rac{\partial arphi}{\partial u} imes rac{\partial arphi}{\partial v}}{\left\|rac{\partial arphi}{\partial u} imes rac{\partial arphi}{\partial v}
ight\|}.$$

9

$$\overline{D} \underset{\vec{n}_{\varphi} \downarrow}{\overset{\varphi}{\longleftarrow}} S$$

$$\mathbb{R}^{3}$$

Entonces, la función $\vec{n} = \vec{N}_{\varphi} \circ \varphi^{-1}$ define una normal unitaria en S, ya que $\varphi : \overline{D} \to S$ es un homeomorfismo.

Asimismo, la función $-\vec{n}: S \to \mathbb{R}^3$ también es una normal unitaria en S, lo que muestra que toda superficie simple y regular admite exactamente dos orientaciones opuestas.

Sean ahora $\vec{n}_1, \vec{n}_2: S \to \mathbb{R}^3$ dos normales unitarias en S. Definimos la función

$$h(p) = \langle \vec{n}_1(p), \vec{n}_2(p) \rangle$$

para todo $p \in S$. Esta función $h: S \to \mathbb{R}$ es continua, y como $\vec{n}_1(p)$ y $\vec{n}_2(p)$ son vectores unitarios, se cumple que |h(p)| = 1 para todo $p \in S$.

Dado que S es conexa, la imagen de h debe ser conexa y contenida en el conjunto $\{-1,1\}$. Por tanto, $h(p) \equiv 1$ o $h(p) \equiv -1$ en toda la superficie. En consecuencia, $\vec{n}_1 = \vec{n}_2$ o $\vec{n}_1 = -\vec{n}_2$ en todo S.

Definición 2.3.3 [Integral de un Campo Vectorial sobre una Superficie]

Sean (S, \vec{n}) superficie simple regular orientada y $\vec{F}: S \to \mathbb{R}^3$ un campo vectorial continuo. Se define

$$\int_{(S,\vec{n})} \vec{F} = \int_{S} \langle \vec{F}, \vec{n} \rangle$$

Observación 2.3.2

- 1. $\langle \vec{F}, \vec{n} \rangle$ es un campo escalar continuo en S.
- 2. $Si \varphi : \overline{D} \to S$ es una parametrización simple regular de S tal que $\vec{n}_{\varphi} = \vec{n} \circ \varphi$,

$$\int_{(S,\vec{n})} \vec{F} = \int_{S} \langle \vec{F}, \vec{n} \rangle = \int_{D} \langle \vec{F}(\varphi(u,v)), \vec{n}_{\varphi}(u,v) \rangle \| \vec{N}_{\varphi}(u,v) \| du dv = \int_{D} \langle \vec{F}(\varphi(u,v)), \vec{N}_{\varphi}(u,v) \rangle du dv$$

Ejemplo

Consideremos el paraboloide $S = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2 \le 1\}$ y lo orientamos con la normal exterior (la que apunta hacia afuera del vaso).

Sea el campo vectorial $\vec{F}(x,y,z) = (xz,yz,0)$, entonces queremos encontrar la integral de \vec{F} sobre S.

$$\overline{D} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$
 $\partial D = C = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$

Consideramos la parametrización del paraboloide dada por:

$$\varphi: \overline{D} \to S$$
 $\varphi(x,y) = (x,y,x^2 + y^2)$

Nos preguntamos si \vec{n}_{φ} induce la misma orientación que $\vec{n}.$

$$\vec{N}_{\varphi} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ 1 & 0 & 2x \\ 0 & 1 & 2y \end{vmatrix} = (-2x, -2y, 1)$$

 $\begin{cases} \vec{N}_{\varphi}(0,0) = (0,0,1) \\ \varphi(0,0) = (0,0,0) \end{cases}$ que apunta hacia arriba, es decir, hacia dentro del vaso, luego $\vec{n}_{\varphi} = -\vec{n}$

$$\begin{split} -\int_{D}\langle \vec{F}(\varphi(x,y)), \vec{N}_{\varphi}(x,y)\rangle dx dy &= -\int_{D}\langle (x(x^2+y^2), y(x^2+y^2), 0), (-2x, -2y, 1)\rangle dx dy \\ &= \int_{D} 2x^2(x^2+y^2) + 2y^2(x^2+y^2) dx dy = 2\int_{D} (x^2+y^2)^2 dx dy \end{split}$$

Hacemos el cambio de variables a coordenadas polares:

$$x = r\cos(\theta)$$
 $y = r\sin(\theta)$ $dxdy = rdrd\theta$

$$2\int_{D}(x^{2}+y^{2})^{2}dxdy=2\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=1}r^{4}\cdot rdrd\theta=2\int_{\theta=0}^{\theta=2\pi}\left[\frac{r^{6}}{6}\right]_{r=0}^{r=1}d\theta=2\int_{\theta=0}^{\theta=2\pi}\frac{1}{6}d\theta=2\frac{1}{6}(2\pi)=2\frac{\pi}{3}$$

Definición 2.3.4 [Orientación Inducida en el Borde]

Sea (S, \vec{n}) una superficie simple, regular y orientada, y sea $\varphi : \overline{D} \to S$ una parametrización regular de S que preserva la orientación inducida por \vec{n} , es decir, $\vec{n}_{\varphi} = \vec{n} \circ \varphi$. Consideramos el borde de S denotado por $\partial S = \varphi(\partial D)$.

Entonces se define la orientación de ∂S inducida por \vec{n} como la que se obtiene al recorrer ∂D en sentido positivo y proyectar dicho recorrido a ∂S mediante φ , es decir, haciendo la composición $\varphi \circ \gamma$, donde $\gamma : [a,b] \to \partial D$ es una parametrización de ∂D que recorre ∂D en sentido positivo.

Observación 2.3.3

 $Si \gamma : [a,b] \to \partial D$ es una parametrización de ∂D que recorre esta curva en sentido positivo, entonces la curva $\varphi \circ \gamma : [a,b] \to \partial S$ recorre ∂S con la orientación inducida por \vec{n} .

Geométricamente, esto significa que ∂S se recorre de manera que el sacacorchos avanza en la dirección de \vec{n} , es decir, si imaginamos un sacacorchos girando en el sentido del recorrido de ∂S , este se desplazará en la dirección de \vec{n} .

De manera equivalente, si \vec{n} representa la vertical en el espacio, entonces ∂S se recorre dejando la superficie S a la izquierda, lo que coincide con la orientación inducida por \vec{n} .

Ejemplo

Dada la superficie $S = \{(x,y,z) \in \mathbb{R}^3 : z = x^2 + y^2 \le 1\}$ del ejemplo anterior, orientada con la normal exterior, y una parametrización $\varphi : \overline{D} \to S$ dada por $\varphi(x,y) = (x,-y,x^2+y^2)$, donde $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$, veamos que $\vec{n}_{\varphi} = \vec{n}$.

$$\vec{N}_{\varphi} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ 1 & 0 & 2x \\ 0 & -1 & 2y \end{vmatrix} = (-2x, -2y, -1)$$

Haciendo la evaluación $\vec{N}_{\varphi}(0,0) = (0,0,-1)$, vemos que la normal de φ en el punto (0,0) tiene el mismo sentido que \vec{n} , es decir, $\vec{n}_{\varphi} = \vec{n}$, luego φ preserva la orientación de S.

Ahora consideremos una parametrización γ de $C=\partial D=\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$ en sentido

positivo (antihorario en el plano xy), definida por:

$$\gamma: [0, 2\pi] \to \partial D$$
 $\gamma(t) = (\cos t, \sin t), \quad t \in [0, 2\pi].$

Fijémonos que la curva definida por γ es una curva de Jordan- C^1 que deja el interior de ∂D a la izquierda y el exterior a la derecha, es decir, es positiva.

Componiendo con la transformación φ , obtenemos la curva proyectada en S:

$$\varphi \circ \gamma : [0, 2\pi] \to \partial S$$
 $(\varphi \circ \gamma)(t) = (\cos t, -\sin t, \cos^2 t + \sin^2 t) = (\cos t, -\sin t, 1)$

que tiene sentido horario en el plano xy, tal y como se indica en la figura

En efecto, vemos que la orientación inducida por \vec{n} en ∂S es la que se obtiene por el recorrido $\varphi \circ \gamma$, al ser composición de una parametrización que preserva la orientación de S y otra que recorre ∂D en sentido positivo.

Además, observamos que se cumple la regla del sacacorchos, pues si giramos el sacacorchos en el sentido del recorrido de ∂S , este se desplaza hacia abajo, es decir, en la dirección de \vec{n} .

Nótese que tomando el vector normal $\vec{n} = (0, 0, -1)$ como referencia de eje vertical, al recorrer ∂S con $\varphi \circ \gamma$, la superficie S queda a la izquierda.

Definición 2.3.5 [Orientación Compatible]

Sean (S_1, \vec{n}_1) y (S_2, \vec{n}_2) dos superficies simples y regulares de manera que $S = S_1 + S_2$, entonces se dice que \vec{n}_1 y \vec{n}_2 son compatibles si inducen orientaciones opuestas en $\partial S_1 \cap \partial S_2$.

En este caso, se dice que $\vec{n} = (\vec{n}_1, \vec{n}_2)$ establece una orientación en ∂S que se llama orientación inducida por (\vec{n}_1, \vec{n}_2) .

Se dice que $S = S_1 + S_2$ es orientable si S_1 y S_2 admiten orientaciones compatibles. Análogamente, de manera recursiva, si $S = S_1 + S_2 + \ldots + S_k$ donde (S_i, \vec{n}_i) son superficies orientadas, se define $(\vec{n}_1, \ldots, \vec{n}_k)$ como compatible si las orientaciones inducidas por $(\vec{n}_1, \ldots, \vec{n}_{k-1})$ en $S_1 + S_2 + \ldots + S_{k-1}$ y \vec{n}_k en S_k son opuestas en $\partial(S_1 + S_2 + \ldots + S_{k-1}) \cap \partial S_k$.

Ejemplo

Consideremos el cilindro $(S, \vec{n}) = (S_1, \vec{n}_1) + (S_2, \vec{n}_2)$ sin tapas con la orientación exterior.

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, \ z \in [0, 1]\}$$

donde

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, \ 0 \le y, \ z \in [0, 1]\}$$

$$S_2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, \ y \le 0, \ z \in [0, 1]\}$$

La representación gráfica de S es la siguiente:

donde $C_0 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, z = 0\}$ y $C_1 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, z = 1\}$ son las tapas del cilindro. En particular tenemos que $\partial S = C_0 \cup C_1$.

Veamos que \vec{n}_1 y \vec{n}_2 son compatibles y que, por tanto, S es orientable siendo $\vec{n}=(\vec{n}_1,\vec{n}_2)$ la orientación inducida en S.

Para ello, veamos las orientaciones que inducen \vec{n}_1 y \vec{n}_2 en ∂S_1 y ∂S_2 respectivamente. En efecto, por la regla del sacacorchos, las orientaciones inducidas serán las descritas por las siguientes figuras:

Además en la intersección de los bordes $\partial S_1 \cap \partial S_2$ (parte naranja de la primera figura), las orientaciones inducidas son opuestas, luego \vec{n}_1 y \vec{n}_2 son compatibles, es decir, S es orientable.

Teniendo en cuenta la orientación inducida en el borde de S_1 y S_2 , consideramos dos parametrizaciones γ_0 y γ_1 de C_0 y C_1 respectivamente:

$$\begin{cases} \gamma_0(t) = (\cos(t), \sin(t), 0) & 0 \le t \le 2\pi \\ \gamma_1(t) = (-\cos(t), \sin(t), 1) & 0 \le t \le 2\pi \end{cases}$$

donde γ_1 recorre negativamente C_1 y γ_0 positivamente C_0 , luego $\partial S = C_0^+ \cup C_1^-$.

Ejemplo

Consideramos ahora el cilindro del ejemplo anterior pero con la tapa de abajo:

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, \ z \in [0, 1]\}$$

$$S = \underbrace{S_1 + S_3}_{S_0} + S_3 \text{ donde } S_3 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, \ z = 0\}$$

Consideramos \vec{n}_3 normal hacia abajo en S_3 y obtenemos que \vec{n}_3 induce en $\partial S_3 = C_0$ la orientación opuesta a la de S_0 , luego son compatibles. Lo mismo podemos hacer con la tapa de arriba, y así obtenemos el cilindro completo, que es orientable con $\partial S = \emptyset$.

Superficies no orientables:

1. Banda de Moebius

3. Botella de Klein

Definición 2.3.6 [Integral de Superficie Orientada Regular a Trozos]

Sea (S, \vec{n}) una superficie simple, regular a trozos y orientada, es decir, $S = S_1 + S_2 + \ldots + S_k$ donde (S_i, \vec{n}_i) son superficies simples, regulares y orientadas para $i = 1, \ldots, k$, con $(\vec{n}_1, \ldots, \vec{n}_k)$ orientaciones compatibles.

 $Sea\ \vec{F}: S \to \mathbb{R}^3$ un campo vectorial continuo. Se define entonces

$$\int_{(S,\vec{n})} \vec{F} = \sum_{i=1}^k \int_{(S_i,\vec{n}_i)} \vec{F}$$

Ejemplo

Sea $S = S_1 \cup S_2$, donde:

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z, \ z \in [0, 1]\}, \quad S_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, \ z = 1\}$$

y sea \vec{n} el campo normal exterior. Consideramos el campo vectorial $\vec{F}(x,y,z) = (xz, yz, 0)$, y queremos calcular la integral de \vec{F} sobre la superficie S:

$$\int_S \vec{F} \cdot \vec{n}$$

Aplicando la regla del sacacorchos (regla de la mano derecha), observamos que las superficies orientadas (S_1, \vec{n}_1) y (S_2, \vec{n}_2) inducen sobre la curva

$$C = \partial S_1 \cap \partial S_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, \ z = 1\}$$

orientaciones opuestas.

Por la definición anterior de la integral de superficie orientada, tenemos que

$$\int_{(S,\vec{n})} \vec{F} = \int_{(S_1,\vec{n}_1)} \vec{F} + \int_{(S_2,\vec{n}_2)} \vec{F}$$

Comenzamos definiendo el dominio para las parametrizaciones de S_1 y S_2 :

$$\overline{D} = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$$

La parametrización de S_1 es:

$$\varphi_1: \overline{D} \to S_1, \quad \varphi_1(x,y) = (x,y,x^2 + y^2)$$

Calculamos la normal:

$$\vec{N}_{\varphi_1} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ 1 & 0 & 2x \\ 0 & 1 & 2y \end{vmatrix} = (-2x, -2y, 1)$$

Evaluando la función φ_1 en el origen obtenemos que $\varphi_1(0,0) = (0,0,1)$ que apunta hacia arriba, es decir, en sentido opuesto al vector normal $\vec{n}_1 = (0,0,-1)$, luego $\vec{n}_1 = -\vec{N}_{\varphi_1}$. Calculamos la integral del campo vectorial sobre la superficie (S_1, \vec{n}_1) :

$$\int_{(S,\vec{n}_1)} \vec{F} = \int_D \langle \vec{F}(\varphi_1(x,y)), \vec{N}_{\varphi_1}(x,y) \rangle dx dy = -\int_D \langle (x(x^2 + y^2), y(x^2 + y^2), 0), (-2x, -2y, 1) \rangle dx dy$$

$$= 2 \int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=1} r^4 \cdot r \, dr \, d\theta = 4\pi \left[\frac{r^6}{6} \right]_{r=0}^{r=1} = \frac{4\pi}{6} = \frac{2\pi}{3}$$

Para la parametrización de S_2 tenemos:

$$\varphi_2: \overline{D} \to S_2, \quad \varphi_2(x,y) = (x,y,1)$$

Calculamos la normal:

$$ec{N}_{arphi_2} = egin{vmatrix} ec{e}_1 & ec{e}_2 & ec{e}_3 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{bmatrix} = (0, 0, 1)$$

Al igual que antes, evaluando la función φ_2 en el origen obtenemos que $\varphi_2(0,0)=(0,0,1)$ que apunta hacia arriba, es decir, en el mismo sentido que el vector normal $\vec{n}_2=(0,0,1)$, luego $\vec{n}_2=\vec{N}_{\varphi_2}$. Procedemos a calcular la integral del campo vectorial sobre la superficie (S_2,\vec{n}_2) :

$$\int_{(S,\vec{n}_2)} \vec{F} = \int_D \langle \vec{F}(\varphi_2(x,y)), \vec{N}_{\varphi_2}(x,y) \rangle dx dy = \int_D \langle (x,y,0), (0,0,1) \rangle dx dy = \int_D 0 \, dx dy = 0$$

Por lo tanto, la integral de superficie de \vec{F} sobre S es:

$$\int_{(S,\vec{n})} \vec{F} = \frac{2\pi}{3} + 0 = \frac{2\pi}{3}$$

Ejemplo

Sea la superficie $S = S_1 \cup S_2$, donde:

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2, \ z \in [1, 2]\}$$
 $S_2 = \{(x, y, z) \in \mathbb{R}^3 : z = 2, \ x^2 + y^2 \le 4\}$

y el campo vectorial $\vec{F}(x,y,z)=(x,y,-z)$. Queremos calcular $\int_{(S,\vec{n})}\vec{F}$, donde \vec{n} es la normal exterior.

Observemos que (S_1, \vec{n}_1) y (S_2, \vec{n}_2) tienen orientaciones compatibles, con lo cual (S, \vec{n}) está bien orientada.

$$\int_{(S,\vec{n})} \vec{F} = \int_{(S_1,\vec{n}_1)} \vec{F} + \int_{(S_2,\vec{n}_2)} \vec{F}$$

Comenzamos parametrizando la superficie S_1 con la función $\varphi_1:D\to S_1$ dada por:

$$\varphi_1(r,\theta) = \begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \\ z = r \end{cases}$$
 donde $D = \{(r,\theta) \in \mathbb{R}^2 : 1 \le r \le 2, \ 0 \le \theta < 2\pi\}$

Calculamos la normal:

$$\vec{N}_{\varphi_1} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ -z\sin(\theta) & z\cos(\theta) & 0 \\ \cos(\theta) & \sin(\theta) & 1 \end{vmatrix} = (z\cos(\theta), z\sin(\theta), -z)$$

Teniendo en cuenta la geometría de la figura y que el vector \vec{N}_{φ_1} apunta hacia abajo, entonces es exterior a S, luego los vectores \vec{n}_1 y \vec{N}_{φ_1} son compatibles.

Entonces la integral de \vec{F} sobre S_1 es:

$$\int_{(S_1, \vec{n}_1)} \vec{F} = \int_D \langle \vec{N}_{\varphi_1}, \vec{F} \circ \varphi_1 \rangle = \int_{z=0}^{z=2} \int_{\theta=0}^{\theta=2\pi} \langle (z\cos(\theta), z\sin(\theta), -z), (z\cos(\theta), z\sin(\theta), -z) \rangle d\theta dz$$

$$= \int_{z=1}^{z=2} \int_{\theta=0}^{\theta=2\pi} z^2 + z^2 d\theta dz = 2\pi \int_{z=1}^{z=2} 2z^2 dz = 4\pi \left[\frac{z^3}{3}\right]_{z=1}^{z=2} = 4\pi \left(\frac{8}{3} - \frac{1}{3}\right) = 4\pi \cdot \frac{7}{3} = \frac{28\pi}{3}$$

Ahora consideramos la parametrización $\varphi_2: E \to S_2$ de S_2 dada por:

$$\varphi_2(x,y) = \begin{cases} x = x \\ y = y \\ z = 2 \end{cases}$$
 donde $E = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$

Calculamos la normal:

$$\vec{N}_{\varphi_2} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = (0, 0, 1)$$

La normal \vec{N}_{φ_2} apunta hacia arriba, es decir, hacia el exterior de S, luego \vec{n}_2 y \vec{N}_{φ_2} son compatibles. Entonces la integral de \vec{F} sobre S_2 es:

$$\begin{split} &\int_{(S_2,\vec{n}_2)} \vec{F} = \int_E \langle \vec{N}_{\varphi_2}, \vec{F} \circ \varphi_2 \rangle = \int_{x=0}^{x=2} \int_{y=0}^{y=2\pi} \langle (0,0,1), (x,y,-z) \rangle dy dx \\ &= \int_{x=0}^{x=2} \int_{y=0}^{y=2\pi} -z dy dx = -2\pi \int_{x=0}^{x=2} 2 dx = -4\pi \left[x \right]_{x=0}^{x=2} = -4\pi (2-0) = -8\pi \end{split}$$

Finalmente, la integral de \vec{F} sobre S es:

$$\int_{(S,\vec{n})} \vec{F} = \int_{(S_1,\vec{n}_1)} \vec{F} + \int_{(S_2,\vec{n}_2)} \vec{F} = \frac{28\pi}{3} - 8\pi = \frac{28\pi}{3} - \frac{24\pi}{3} = \frac{4\pi}{3}$$

Proposición 2.3.1

Sea D = Int(C) la parte interior de una curva de Jordan C en \mathbb{R}^2 y sea $f: U \to \mathbb{R}$ una función de clase C^1 definida en un abierto $U \supset \overline{D}$. Consideramos la superficie $S = G_f$.

Para cada (x,y) en D, sea $\theta(x,y)$ el ángulo que forma el vector normal $\vec{n}(x,y)$ a la superficie S en el punto (x,y,f(x,y)) con el vector vertical $\vec{e}_3 = (0,0,1)$. Entonces se tiene que:

$$a(S) = \int_{D} \frac{dxdy}{\cos(\theta(x,y))}$$

Demostración. Consideramos la parametrización $\varphi: D \to S$ de S dada por:

$$\varphi(x,y) = \begin{cases} x = x \\ y = y \\ z = f(x,y) \end{cases}$$
 donde $(x,y) \in D$

Entonces, la normal a la superficie S es:

$$\vec{N}_{\varphi} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ 1 & 0 & \frac{\partial f}{\partial x} \\ 0 & 1 & \frac{\partial f}{\partial y} \end{vmatrix} = \left(-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1 \right)$$

Haciendo el producto escalar con el vector vertical \vec{e}_3 :

$$\langle \vec{N}_{\varphi}, \vec{e}_{3} \rangle = \left(-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1 \right) \cdot (0, 0, 1) = 1$$

$$\langle \vec{N}_{\varphi}, \vec{e}_{3} \rangle = ||\vec{N}_{\varphi}|| \cdot ||\vec{e}_{3}|| \cdot \cos(\theta(x, y)) = ||\vec{N}_{\varphi}|| \cdot 1 \cdot \cos(\theta(x, y)) \implies ||\vec{N}_{\varphi}|| = \frac{1}{\cos(\theta(x, y))}$$

$$a(S) = \int_{D} ||\vec{N}_{\varphi}|| dx dy = \int_{D} \frac{1}{\cos(\theta(x, y))} dx dy$$

Observación 2.3.4

Si S está contenida en un plado cuyo vector normal es \vec{n} , entonces tenemos que $\theta(x,y)$ es el ángulo entre \vec{n} y el vector vertical \vec{e}_3 para cada $(x,y) \in D$.

En este caso, la integral de superficie se puede expresar como:

$$a(S) = \int_{D} \frac{dxdy}{\cos(\theta(x,y))} = \frac{1}{\cos(\theta(x,y))} area(D)$$

Ejemplo

Sean los vectores $\vec{u}, \vec{v} \in \mathbb{R}^3$ no nulos, y sea S el paralepípedo definido por los vectores \vec{u} y \vec{v} . Entonces el área de la superficie S es:

$$a(S) = \|\vec{u} \times \vec{v}\| = \|\vec{u}\| \cdot \|\vec{v}\| \cdot \sin(\theta)$$

donde θ es el ángulo entre los vectores \vec{u} y \vec{v} .

En efecto, si consideramos la parametrización $\varphi: D \to \mathbb{R}^3$ de S dada por:

$$\varphi(\lambda, \mu) = \lambda \vec{u} + \mu \vec{v}$$
 $D = \{(\lambda, \mu) \in \mathbb{R}^2 : 0 \le \lambda, \mu \le 1\}$

entonces tenemos que

$$\varphi(\lambda, \mu) = \begin{cases} x = \lambda u_1 + \mu v_1 \\ y = \lambda u_2 + \mu v_2 \\ z = \lambda u_3 + \mu v_3 \end{cases}$$

Calculamos la normal:

$$ec{N}_{arphi} = egin{array}{ccc} ec{e}_1 & ec{e}_2 & ec{e}_3 \ u_1 & u_2 & u_3 \ v_1 & v_2 & v_3 \ \end{array} = ec{u} imes ec{v}$$

entonces el área de la superficie S es:

$$a(S) = \int_{D} \|\vec{N}_{\varphi}\| dx dy = \int_{0}^{1} \int_{0}^{1} \|\vec{u} \times \vec{v}\| d\lambda d\mu = \|\vec{u} \times \vec{v}\| \int_{0}^{1} d\lambda \int_{0}^{1} d\mu = \|\vec{u} \times \vec{v}\|$$

Observación 2.3.5

En \mathbb{R}^3 , el volumen del paralepípedo definido por los vectores $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$ es el producto mixto:

$$V = \langle \vec{u} \times \vec{v}, \vec{w} \rangle = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

3 Teorema de Stokes. Teorema de la divergencia de Gauss

3.1 Teorema de Stokes

Definición 3.1.1 [Rotacional]

Sean $A \subset \mathbb{R}^3$ un conjunto abierto y $\vec{F}: A \to \mathbb{R}^3$ un campo vectorial de clase C^1 . Se define el rotacional de $\vec{F} = (F_1, F_2, F_3)$ como:

$$rot(\vec{F}) = \nabla \times \vec{F} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right)$$

Observación 3.1.1

En este caso, $rot(\vec{F})$ es un campo vectorial continuo definido en A.

Ejemplo -

Sea $(P,Q): U \to \mathbb{R}^2$ un campo vectorial de clase C^1 definido en un abierto $U \subset \mathbb{R}^2$. Consideramos $A = U \times \mathbb{R}$ y el campo vectorial $\vec{F} = (P,Q,0)$. Entonces el rotacional de \vec{F} es:

$$\nabla \times \vec{F} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & 0 \end{vmatrix} = \left(0, 0, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \qquad \text{"la derivación del toerema de Green"}$$

Teorema 3.1.1 [Teorema de Stokes]

Sea (S, \vec{n}) una superficie orientada y regular a trozos, y sea \vec{F} un campo vectorial de clase C^1 definido en un abierto $U \supset S$. Entonces se cumple la siguiente igualdad:

$$\int_{(S,\vec{n})} rot(\vec{F}) = \int_{\partial S} \vec{F}$$

donde ∂S tiene la orientación inducida por \vec{n} .

Ejemplo

Sea la superficie $S = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2 \le 4\}$ con la norma exterior \vec{n} y el campo vectorial $\vec{F} = (yz, -xz, z)$. Verificamos el teorema de Stokes.

Tenemos que $\partial S = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2 = 4\}$, que es una circunferencia de radio 2 en el plano z = 4. Fijémonos que \vec{n} induce la orientación negativa en la curva $C^- = \partial S$.

19

El rotacional de \vec{F} es:

$$rot(\vec{F}) = \nabla \times \vec{F} = \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz & -xz & z \end{vmatrix} = (x, y, -2z)$$

Consideramos la parametrización natural $\varphi:D\to S$ de S dada por:

$$\varphi(x,y) = \begin{cases} x = x \\ y = y \\ z = x^2 + y^2 \end{cases}$$
 donde $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$

Entonces la normal a la superficie S es:

$$\vec{N}_{\varphi} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ 1 & 0 & 2x \\ 0 & 1 & 2y \end{vmatrix} = (-2x, -2y, 1)$$

La normal \vec{N}_{φ} apunta hacia arriba en el punto (0,0,0), luego tenemos una normal interior.

• Calculamos el rotacional de \vec{F} en S por medio de la parametrización φ :

$$\int_{(S,\vec{n})} rot(\vec{F}) = -\int_{D} \langle \vec{N}_{\varphi}, rot(\vec{F}) \circ \varphi(x, y) \rangle dxdy = -\int_{D} \langle (-2x, -2y, 1), (x, y, -2(x^{2} + y^{2})) \rangle dxdy$$

$$= \int_{D} 2x^{2} + 2y^{2} + 2x^{2} + 2y^{2} dxdy = \int_{D} 4(x^{2} + y^{2}) dxdy = 4 \int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=2} r^{2} \cdot r \, dr \, d\theta$$

$$= 4 \cdot 2\pi \left[\frac{r^{4}}{4} \right]_{r=0}^{r=2} = 4 \cdot 2\pi \cdot 4 = 32\pi$$

• Consideramos la parametrización positiva γ de la curva ∂S dada por:

$$\gamma(t) = \begin{cases} x = 2\cos(t) \\ y = 2\sin(t) \\ z = 4 \end{cases}$$
 donde $t \in [0, 2\pi]$

y calculamos la integral de línea del campo \vec{F} sobre la curva ∂S :

$$\int_{\partial S} \vec{F} = \int_{C^{-}} \vec{F} = -\int_{\gamma} \vec{F} = -\int_{t=0}^{t=2\pi} \langle \vec{F}(\gamma(t)), \gamma'(t) \rangle dt$$

$$= -\int_{t=0}^{t=2\pi} \langle (8\sin(t), -8\cos(t), 4), (-2\sin(t), 2\cos(t), 0) \rangle dt$$

$$= \int_{t=0}^{t=2\pi} 16dt = 16 [t]_{t=0}^{t=2\pi} = 16(2\pi - 0) = 32\pi$$

En efecto, vemos que las integrales coinciden de acorde al teorema de Stokes.

Ejemplo

Sea $S = S_1 \cup S_2$, donde:

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, \ z \in [0, 2]\}$$
 $S_2 = \{(x, y, z) \in \mathbb{R}^3 : z = 2, \ x^2 + y^2 \le 1\}$

con la norma exterior \vec{n} y el campo vectorial $\vec{F}(x,y,z) = (y,x,z)$. El borde de S es:

$$\partial S = C_0^+ = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, \ z = 0\}$$

Calculamos el rotacional del campo \vec{F} :

$$rot(\vec{F}) = \nabla \times \vec{F} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & x & z \end{vmatrix} = (0, 0, 1 - 1) = (0, 0, 0)$$

Consideramos la parametrización γ de la curva C_0 dada por:

$$\gamma(t) = \begin{cases} x = \cos(t) \\ y = \sin(t) \\ z = 0 \end{cases}$$
 donde $t \in [0, 2\pi]$

que tiene orientación positiva. Además, $\gamma'(t) = (-\sin(t), \cos(t), 0)$.

• Calculamos la integral del campo $rot(\vec{F})$ sobre la superficie S:

$$\int_{(S,\vec{n})} rot(\vec{F}) = \int_{(S_1,\vec{n}_1)} \vec{0} = 0$$

• Hacemos la integral de línea del campo \vec{F} sobre la curva C_0^+ :

$$\int_{\partial S} \vec{F} = \int_{C_0^+} \vec{F} = \int_{t=0}^{t=2\pi} \langle (\sin(t), \cos(t), 0), (-\sin(t), \cos(t), 0) \rangle dt$$

$$= \int_{t=0}^{t=2\pi} \cos^2(t) - \sin^2(t)dt = \int_{t=0}^{t=2\pi} \cos(2t)dt = \left[\frac{\sin(2t)}{2}\right]_{t=0}^{t=2\pi} = 0$$

Vemos que el teorema de Stokes se cumple, ya que las integrales son iguales.

Ejemplo

Consideramos el campo vectorial $\vec{F} = (yz, -xz, z)$. Veamos el rotacional de \vec{F} :

$$rot(\vec{F}) = \nabla \times \vec{F} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz & -xz & z \end{vmatrix} = (x, y, -2z)$$

Supongamos que tenemos una superficie S cualesquiera cuyo borde ∂S sea la curva C_0^+ del ejemplo anterior. Entonces tenemos que:

$$\int_{(S,\vec{n})} rot(\vec{F}) = \int_{C_0^+} \vec{F} = \int_{C_0^+} \vec{F} = \int_{t=0}^{t=2\pi} \langle (0,0,0), (-\sin(t),\cos(t),0) \rangle dt = 0$$

Observación 3.1.2

Si S es una superficie cerrada, es decir, $\partial S = \emptyset$, entonces se tiene que:

$$\int_{(S,\vec{n})} rot(\vec{F}) = \int_{\partial S} \vec{F} = 0$$