

DESIGNING AND ANALYZING CLINICAL TRIALS IN R

Introduction to Sample Size and Power

Tamuno Alfred, PhD
Biostatistician

Statistical inference

Importance of correct sample size

- Costs
- Study completion time
- Exposure to experimental drug
- Patients receiving no treatment
- Ability to reject null hypothesis

• Trial purpose (compare weight loss between drug and placebo)

- Trial purpose (compare weight loss between drug and placebo)
- Primary endpoint (difference in mean % weight loss)

- Trial purpose (compare weight loss between drug and placebo)
- Primary endpoint (difference in mean % weight loss)
- Statistical analysis of primary endpoint (two-sample t-test)

- Trial purpose (compare weight loss between drug and placebo)
- Primary endpoint (difference in mean % weight loss)
- Statistical analysis of primary endpoint (two-sample t-test)
- Smallest meaningful difference, δ (3)

- Trial purpose (compare weight loss between drug and placebo)
- Primary endpoint (difference in mean % weight loss)
- Statistical analysis of primary endpoint (two-sample t-test)
- Smallest meaningful difference, δ (3)
- Variability (standard deviation=10)

- Trial purpose (compare weight loss between drug and placebo)
- Primary endpoint (difference in mean % weight loss)
- Statistical analysis of primary endpoint (two-sample t-test)
- Smallest meaningful difference, δ (3)
- Variability (standard deviation=10)
- Significance level, α (0.05)

- Trial purpose (compare weight loss between drug and placebo)
- Primary endpoint (difference in mean % weight loss)
- Statistical analysis of primary endpoint (two-sample t-test)
- Smallest meaningful difference, δ (3)
- Variability (standard deviation=10)
- Significance level, α (0.05)
- Power to detect treatment effect (80%)

Hypothesis testing

H0: μ 1 = μ 2, i.e. no treatment difference

Type I error, α (False positive): Falsely reject H₀

Type II error, β (False negative): Do not reject H₀ when H₀ is false

Power: Probability of correctly rejecting H₀ Power=1-Prob(Type II error)

	H ₀ True	H ₀ False
Reject Ho	Type I error, α	True positive
Do not reject Ho	True negative	Type II error, β

Two-sample t-test

```
n = 175.3851

delta = 3

sd = 10

sig.level = 0.05

power = 0.8

alternative = two.sided
```

NOTE: n is number in *each* group

Relationship between power and sample size

```
n = 234.4628

delta = 3

sd = 10

sig.level = 0.05

power = 0.9

alternative = two.sided
```

NOTE: n is number in *each* group

Relationship between power and sample size

Relationship between treatment difference and sample size

Test of proportions

```
power.prop.test(p1=0.3, p2=0.15, power=0.8)
```

Two-sample comparison of proportions power calculation

```
n = 120.4719

p1 = 0.3

p2 = 0.15

sig.level = 0.05

power = 0.8

alternative = two.sided
```

NOTE: n is number in *each* group

DESIGNING AND ANALYZING CLINICAL TRIALS IN R

Let's practice!

DESIGNING AND ANALYZING CLINICAL TRIALS IN R

Sample Size Adjustments

Tamuno Alfred, PhD
Biostatistician

One-sided tests

Null Hypothesis:

$$H_0$$
: $\mu_1 = \mu_2$

Alternative Hypothesis (two-sided):

$$H_A$$
: $\mu_1 \neq \mu_2$

Alternative Hypothesis (one-sided):

$$H_A: \mu_1 > \mu_2$$

One-sided tests

```
n = 175.3851

delta = 3

sd = 10

sig.level = 0.05

power = 0.8

alternative = two.sided
```

NOTE: n is number in *each* group

One-sided tests

```
n = 138.0715

delta = 3

sd = 10

sig.level = 0.05

power = 0.8

alternative = one.sided
```

NOTE: n is number in *each* group

Unequal group sizes

Unequal group sizes

Unequal group sizes

```
$`Total sample size`
[1] 396

$`Sample size group 1`
[1] 264

$`Sample size group 2`
[1] 132

$Fraction
[1] 0.5
```


Unequal variances

$$SD_{pooled} = \sqrt{\frac{SD_1^2 + SD_2^2}{2}}$$

Unequal variances

$$SD_{pooled} = \sqrt{\frac{SD_1^2 + SD_2^2}{2}}$$

```
n.ttest(power = 0.8, alpha = 0.05, mean.diff = 3, sd1 = 9.06, sd2 = 9.06,
    k = 1, design = "unpaired", fraction = "balanced")
```

Unequal variances

$$SD_{pooled} = \sqrt{\frac{SD_1^2 + SD_2^2}{2}}$$

```
n.ttest(power = 0.8, alpha = 0.05, mean.diff = 3, sd1 = 9.06, sd2 = 9.06,
    k = 1, design = "unpaired", fraction = "balanced")
```

```
$`Total sample size`

[1] 290

$`Sample size group 1`

[1] 145

$`Sample size group 2`

[1] 145
```


Loss to follow-up

Q: anticipated dropout rate

Multiply original sample size by

$$\frac{1}{1-Q}$$

Loss to follow-up

Q: anticipated dropout rate

Multiply original sample size by

$$\frac{1}{1-Q}$$

DESIGNING AND ANALYZING CLINICAL TRIALS IN R

Let's practice!

DESIGNING AND ANALYZING CLINICAL TRIALS IN R

Interim Analyses and Stopping Rules

Tamuno Alfred, PhD
Biostatistician

Patients recruited over time

- Patients recruited over time
- Data accumulated gradually

- Patients recruited over time
- Data accumulated gradually
- Safety and efficacy can be monitored regularly

- Patients recruited over time
- Data accumulated gradually
- Safety and efficacy can be monitored regularly
- Investigators must safeguard patients' interests

Efficacy

- Efficacy
- Safety

- Efficacy
- Safety
- Futility

- Efficacy
- Safety
- Futility
- Other
 - Cost
 - Inability to recruit enough patients
 - Poor trial design

 Interim analyses often require increased sample size

- Interim analyses often require increased sample size
- Multiple testing increases chance of
 Type I error

- Interim analyses often require increased sample size
- Multiple testing increases chance of
 Type I error

- Interim analyses often require increased sample size
- Multiple testing increases chance of a
 Type I error
- Stopping rules use p-values or teststatistics

K, number of planned analyses	Nominal significance level, α
1 (No interim analysis)	0.05
2 (1 interim + 1 final analysis)	0.029
3	0.022
4	0.018
5	0.016

K, number of planned analyses	Nominal significance level, a
1 (No interim analysis)	0.05
2 (1 interim + 1 final analysis)	0.029
3	0.022
4	0.018
5	0.016

```
library(gsDesign)
Pocock <- gsDesign(k=3, test.type=2, sfu="Pocock")
2*(1-pnorm(Pocock$upper$bound))</pre>
```


K, number of planned analyses	Nominal significance level, α
1 (No interim analysis)	0.05
2 (1 interim + 1 final analysis)	0.029
3	0.022
4	0.018
5	0.016

```
library(gsDesign)
Pocock<- gsDesign(k=3, test.type=2, sfu="Pocock")
2*(1-pnorm(Pocock$upper$bound))</pre>
```

[1] 0.02205159 0.02205159 0.02205159

K, number of planned analyses	Nominal significance level, α
1 (No interim analysis)	0.05
2 (1 interim + 1 final analysis)	0.029
3	0.022
4	0.018
5	0.016

```
library(gsDesign)
Pocock<- gsDesign(k=3, test.type=2, sfu="Pocock")
2*(1-pnorm(Pocock$upper$bound))
```

[1] 0.02205159 0.02205159 0.02205159

```
Pocock.ss <- gsDesign(k=3, test.type=2, sfu="Pocock", n.fix=200, beta=0.1) ceiling(Pocock.ss$n.I)
```


K, number of planned analyses	Nominal significance level, q
1 (No interim analysis)	0.05
2 (1 interim + 1 final analysis)	0.029
3	0.022
4	0.018
5	0.016

```
library(gsDesign)
Pocock<- gsDesign(k=3, test.type=2, sfu="Pocock")
2*(1-pnorm(Pocock$upper$bound))</pre>
```

[1] 0.02205159 0.02205159 0.02205159

```
Pocock.ss<- gsDesign(k=3, test.type=2, sfu="Pocock", n.fix=200, beta=0.1)
    ceiling(Pocock.ss$n.I)</pre>
```


O'Brien-Fleming Rule

O'Brien-Fleming Rule

```
OF <- gsDesign(k=3, test.type=2, sfu="OF")
2*(1-pnorm(OF$upper$bound))
```

[1] 0.0005183476 0.0141107255 0.0450662542

O'Brien-Fleming Rule

```
OF <- gsDesign(k=3, test.type=2, sfu="OF")
2*(1-pnorm(OF$upper$bound))
```

[1] 0.0005183476 0.0141107255 0.0450662542

```
OF.ss <- gsDesign(k=3, test.type=2, sfu="OF", n.fix=200, beta=0.1) ceiling(OF.ss$n.I)
```

[1] 68 136 204

DESIGNING AND ANALYZING CLINICAL TRIALS IN R

Let's practice!

DESIGNING AND ANALYZING CLINICAL TRIALS IN R

Sample Size for Alternative Trial Designs

Tamuno Alfred, PhD
Biostatistician

Equivalence trials

N- New treatment

S- Standard treatment

$$H_0$$
: $|π_N - π_S| ≥ δ$
 H_A : $|π_N - π_S| < δ$

Equivalence trials: binary outcomes

• Response rate in existing drug: 70%

• Delta: 5%

• Power: 90%

- Two one-sided tests (TOST)
- 90% sure that two-sided 90% CI excludes delta +/-5%

Equivalence trials: binary outcomes

• Response rate in existing drug: 70%

• Delta: 5%

• Power: 90%

- Two one-sided tests (TOST)
- 90% sure that two-sided 90% CI excludes delta +/-5%

Equivalence trials: binary outcomes

Response rate in existing drug: 70%

Delta: 5%

• Power: 90%

- Two one-sided tests (TOST)
- 90% sure that two-sided 90% CI excludes delta +/-5%

The required sample size to achieve 90 % power with equivalence bounds of -0.05 and 0.05 is 1819 [1] 1818.125

Equivalence trials: continuous outcomes

• Delta: 3 units

Pooled standard deviation: 15

• Power: 80%

- Two one-sided tests (TOST)
- 80% sure that two-sided 90% CI excludes delta +/-3

Equivalence trials: continuous outcomes

• Delta: 3 units

Pooled standard deviation: 15

Power: 80%

- Two one-sided tests (TOST)
- 80% sure that two-sided 90% CI excludes delta +/-3

```
The required sample size to achieve 80 % power with equivalence bounds of -3 and 3 is 428.1924 per group, or 858 in total.
[1] 428.1924
```


- Delta: 1 unit
- Pooled standard deviation: 2.5
- Average cluster size: 25
- Intraclass correlation coefficient (ICC): 0.1
- Power: 90%

• Delta: 1 unit

Pooled standard deviation: 2.5

• Average cluster size: 25

Intraclass correlation coefficient (ICC): 0.1

• Power: 90%

```
libarary(CRTSize)
n4means(delta=1, sigma=2.5, m=25, ICC=0.1, alpha=0.05, power=0.90)
```

The required sample size is a minimum of 19 clusters of size 25 in the Experimental Group and a minimum of 19 clusters (size 25) in the Control Group.

Factorial designs

Factorial designs

- Assume independence
- Expected rate in placebo: 40%
- Expected rate in intervention A: 25%
- Expected rate in intervention B: 23%
- Power: 90%

Factorial designs

Two-sample comparison of proportions power calculation

```
n = 202.8095

p1 = 0.4

p2 = 0.25

sig.level = 0.05

power = 0.9

alternative = two.sided
```

NOTE: n is number in *each* group

```
power.prop.test(p1=0.40, p2=0.23,
    power=0.9)
```

Two-sample comparison of proportions power calculation

```
n = 154.8146

p1 = 0.4

p2 = 0.23

sig.level = 0.05

power = 0.9

alternative = two.sided
```

NOTE: n is number in *each* group

DESIGNING AND ANALYZING CLINICAL TRIALS IN R

Let's practice!