

Γραμμική Άλγεβρα (Linear Algebra)

ΑΓΓΕΛΟΣ ΣΙΦΑΛΕΡΑΣ Καθηγητής

1η Διάλεξη (Θεωρία)

Ανακοινώσεις

Μετά από κάθε μάθημα, θεωρία ή εργαστήριο, διαφάνειες, κώδικες και υποστηρικτικό υλικό θα ανακοινώνονται στην διεύθυνση

https://openeclass.uom.gr/courses/DAI115

E-mail: sifalera@uom.gr

Όρες γραφείου κάθε Τρίτη 13:00 – 14:00 & Πέμπτη 11:00 – 13:00

Ιστοχώρος μαθήματος

eClass

https://openeclass.uom.gr/courses/DAI115

Μέχρι να σας χορηγηθούν ιδρυματικοί λογαριασμοί από το ΚΥΔ μπορείτε να χρησιμοποιείτε το

Demo account:

user id: tempuser

password: 20uom23

Σύγγραμμα

Σιφαλέρας Α. και Στεφανίδης Γ. Χ., (2021), Γραμμική Άλγεβρα με ΜΑΤLΑΒ και SageMath, 2η έκδοση, Εκδόσεις Τζιόλα.

Εισαγωγή

- Η Γραμμική Άλγεβρα, έχει συνεισφέρει σημαντικά στην ανάπτυξη διαφόρων κλάδων των Μαθηματικών, ενώ επίσης βρίσκει εφαρμογές στην Οικονομία, την Πληροφορική, και τη Μηχανική.
- Στην πρώτη ενότητα του μαθήματος παρουσιάζονται ορισμένες θεμελιώδεις εισαγωγικές έννοιες, σχετικά με πίνακες.
- Στη δεύτερη ενότητα εισάγονται και μελετώνται οι διανυσματικοί χώροι και οι υπό-χωροι τους, καθώς επίσης περιγράφεται και η σχέση της γραμμικής εξάρτησης.
- Τέλος, στην τρίτη ενότητα μελετάται το πρόβλημα των ιδιοτιμών, καθώς και θέματα που αφορούν στη διαγωνιοποίηση πίνακα και στον υπολογισμό των δυνάμεων ενός πίνακα.

Περιεχόμενο μαθήματος

Στα πλαίσια του μαθήματος, θα παρουσιαστούν τα ακόλουθα θέματα:

- Βασικά στοιχεία Γραμμικής Άλγεβρας, πίνακες (ορισμοί ιδιότητες πράξεων)
- Γραμμικά συστήματα
- Διανυσματικοί χώροι εφαρμογές
- Ιδιοτιμές ιδιοδιανύσματα
- Εξοικείωση με το λογισμικό πακέτο SageMath (free open-source mathematics software system http://www.sagemath.org)

Διεθνείς Ερευνητικές Κοινότητες σε Γραμμική Άλγεβρα

SIAM Activity Group on Linear Algebra

http://siags.siam.org/siagla

Διεθνή Συνέδρια σε Γραμμική Άλγεβρα

SIAM Conference on Applied Linear Algebra (SIAM-LA24)

May 13-17, 2024, Paris, France

https://www.siam.org/conferences/cm/conference/la24

25th Conference of the International Linear Algebra Society (ILAS) July 12-16, 2023, Madrid, Spain

https://ilas2023.es

Διεθνή Περιοδικά σε Γραμμική Άλγεβρα

Linear Algebra and its Applications

http://www.journals.elsevier.com/linear-algebra-and-its-applications

Linear and Multilinear Algebra

http://www.tandfonline.com/loi/glma20

Εισαγωγή στις μήτρες (πίνακες)

$$A = \left(a_{ij}\right) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \in M_{m \times n}(F)$$

$$\bullet (i, j) - \text{στοίχε}$$

$$\bullet \text{γραμμές: } m$$

$$\bullet \text{στήλες: } n$$

$$\bullet \text{μέγεθος: } m \times n$$

- (i, j) στοιχείο της μήτρας: a_{ii}

- μέγεθος: m×n

- **Τανυστής** (tensor): n-διάστατος πίνακας (array) / διάταξη αριθμών
- **Μήτρα** (matrix): δισδιάστατος <u>ορθογώνιος</u> πίνακας (array) / διάταξη αριθμών, διάστασης ή μεγέθους m x n ή τανυστής 2^{ης} τάξεως (second order tensor)
- **Διάνυσμα** (vector): μονοδιάστατος πίνακας (array) ή τανυστής 1^{ης} τάξεως (first order tensor)

Ισοι πίνακες:

Έστω
$$A = [a_{ij}]_{m \times n}, B = [b_{ij}]_{m \times n}$$

Tότε
$$A = B \Leftrightarrow \forall (i, j), a_{ij} = b_{ij}$$

Παράδειγμα: (ισότητα πινάκων)

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Av
$$A = B$$

Τότε
$$a = 1$$
, $b = 2$, $c = 3$, $d = 4$

Αν $A \in M_{m,n}(\mathbf{R})$ και $\alpha_{ij} = 0, i = 1, 2, ..., m$, j = 1, 2, ..., n, τότε ο A λέγεται **μηδενικός πίνακας**, (συμβολικά $O_{m,n}$ ή O, αν τα m, n εννοούνται)

$$O_{2,3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Ανάστροφος (transpose) ενός πίνακα A

π.χ., ο πίνακας $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 1 \end{bmatrix}$ είναι ο ανάστροφος πίνακας του $\begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix}$

Παραδείγματα: (αναστροφή πινάκων)

$$A = \begin{bmatrix} 2 \\ 8 \end{bmatrix} \Rightarrow A^T = \begin{bmatrix} 2 & 8 \end{bmatrix}$$

$$(b) \quad A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad \Rightarrow A^{T} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

$$(c) \quad A = \begin{bmatrix} 0 & 1 \\ 2 & 4 \\ 1 & -1 \end{bmatrix} \qquad \Rightarrow A^T = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 4 & -1 \end{bmatrix}$$

Ιδιότητες ανάστροφων πινάκων:

$$(1) (A^T)^T = A$$

(2)
$$(A+B)^T = A^T + B^T$$

$$(3) (cA)^T = c(A^T)$$

$$(4) (AB)^T = B^T A^T$$

Τραπεζοειδής άνω & κάτω πίνακας:

Τραπεζοειδής άνω, όταν $a_{ij} = 0 \quad \forall i > j$.

π.χ.:

$$\begin{bmatrix} 2 & 1 & 4 & 0 & 3 \\ 0 & 6 & 0 & 1 & 1 \\ 0 & 0 & 4 & 3 & 0 \\ 0 & 0 & 0 & 3 & 2 \end{bmatrix}, \begin{bmatrix} 2 & -3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

Τραπεζοειδής κάτω, όταν $a_{ij} = 0 \quad \forall \ i < j$. π.χ.:

$$\begin{bmatrix} 3 & 0 & 0 & 0 \\ 2 & 5 & 0 & 0 \\ 0 & 3 & 6 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 \\ 1 & 3 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Τριγωνικός άνω & κάτω πίνακας:

Ένας <u>τετραγωνικός</u> πίνακας Α λέγεται **τριγωνικός άνω** ή **κάτω**, όταν είναι τραπεζοειδής άνω ή κάτω, αντίστοιχα.

π.χ.:

	•						
$\lceil 2 \rceil$	1	4		3	0 1 0 5	0	0
0	3	0		2	1	0	0
0	0	1		4	0	2	0
L		_		1	5	2	6

Συμμετρικός & αντισυμμετρικός πίνακας:

Ένας τετραγωνικός πίνακας A λέγεται συμμετρικός, όταν $a_{ij} = a_{ji} \, \forall \, (i,j)$, δηλ. όταν $A = A^{\mathrm{T}}$.

$$\pi.\chi.$$
:
$$\begin{bmatrix}
2 & 1 & 0 & 4 \\
1 & 5 & 2 & 0 \\
0 & 2 & 1 & 7 \\
4 & 0 & 7 & 2
\end{bmatrix}$$

Ένας τετραγωνικός πίνακας A λέγεται **αντισυμμετρικός**, όταν $a_{ij} = -a_{ji} \forall (i,j)$, δηλ. όταν $A = -A^{T}$.

τα στοιχεία της κυρίας διαγωνίου

$$(a_{11}, a_{22}, ..., a_{nn}) = 0$$

Διαγώνιος πίνακας:

όταν $a_{ij}=0 \ \forall \ i\neq j$ και γράφουμε συνήθως $A=\mathrm{diag}(a_{11},\,a_{22},\,\ldots,\,a_{nn})$

Παραδείγματα:
$$diag(2,4) = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}, \quad diag(1,0,3) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Κάθε διαγώνιος πίνακας είναι και συμμετρικός.

Μοναδιαίος πίνακας:

Ο
$$n$$
-τετραγωνικός πίνακας $I_n = \mathrm{diag}(1,\,1,\,\ldots,\,1) = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$

λέγεται ότι είναι ο η-τετραγωνικός ταυτοτικός ή μοναδιαίος πίνακας.

Διαγώνιος ζώνης (banded matrix):

Ένας τετραγωνικός πίνακας Α λέγεται διαγώνιος ζώνης (banded matrix), όταν τα στοιχεία a_{ij} είναι μηδέν εκτός απ' αυτά που βρίσκονται στην κύρια διαγώνιο και ορισμένα που βρίσκονται κοντά και παράλληλα προς αυτή.

π.χ.:

$\lceil 2 \rceil$	1	0	0
4	5	2	0
0	1	1	0
0	0	7	2

Διανύσματα

i-οστό διάνυσμα γραμμή:

$$r_i = [a_{i1} \quad a_{i2} \quad \cdots \quad a_{in}]$$
 πίνακας γραμμή $(1 \times n)$

j-οστό διάνυσμα στήλη:

$$c_{j} = \begin{bmatrix} c_{1j} \\ c_{2j} \\ \vdots \\ c_{mi} \end{bmatrix}$$
 συνιστώσες ή συντεταγμένες δ/τος πίνακας στήλη $(m \times 1)$

lacktriangle τετραγωνικός πίνακας: m=n

(γεωμετρική περιγραφή δ/των)

Μέτρο δ/τος

■ Η στάθμη, ή νόρμα (norm), ή μέτρο (μήκος) διανύσματος ορίζεται ως:

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{\mathbf{v}^{\mathrm{T}} \mathbf{v}} = \sqrt{\sum_{i=1}^{n} v_i^2}$$

Το διάνυσμα e_k , είναι ένα διάνυσμα του οποίου όλες οι συνιστώσες είναι 0, πλην της k συνιστώσας που είναι 1, δηλ.:

$$\boldsymbol{e}_{k} = \begin{bmatrix} 0 \\ \vdots \\ 1_{k} \\ \vdots \\ 0 \end{bmatrix}$$

- Ισχύει: $\|\boldsymbol{e}_k\| = 1$

Εσωτερικό γινόμενο δ/των

Αλγεβρική περιγραφή

Έστω **u** και **v** είναι δυο *n*-διάστατα διανύσματα. Τότε το **εσωτερικό τους γινόμενο** (dot product ή inner product) ορίζεται ως ο αριθμός:

$$u \cdot v = u^T v = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$$

Γεωμετρική περιγραφή

Παραδείγματα υπολογισμού εσωτερικού γινομένου

Έστω τα δυο δ/τα:
$$A = \begin{bmatrix} 1 & 3 & -5 \end{bmatrix}$$
 και $B = \begin{bmatrix} 4 & -2 & -1 \end{bmatrix}$

Να βρεθεί το εσωτερικό γινόμενο Α·Β

τότε:
$$A \cdot B = \begin{bmatrix} 1 & 3 & -5 \end{bmatrix} \begin{bmatrix} 4 & -2 & -1 \end{bmatrix} = (1)(4) + (3)(-2) + (-5)(-1)$$

= $4 - 6 + 5$
= 3

Εφαρμογές Γραμμικής Άλγεβρας

- Θεωρία γραφημάτων
- Επεξεργασία εικόνας

• ..

Αναπαράσταση γραφημάτων με χρήση πινάκων

Γράφημα με χρήση βαρών (δίκτυο), κατευθυνόμενο γράφημα, ...

Εφαρμογές σε logistics optimization, social media analysis, $\kappa\lambda\pi$...

- Μία εικόνα μπορεί να οριστεί ως μία συνάρτηση δύο διαστάσεων f(x,y), όπου x και y οι συντεταγμένες, και η τιμή της f για κάθε ζευγάρι συντεταγμένων (x,y) καλείται ως φωτεινότητα της εικόνας στο σημείο αυτό.
- Στις μονοχρωματικές εικόνες συνηθίζεται να χρησιμοποιείται ο όρος "επίπεδο γκρι".
- Μια ψηφιακή εικόνα αποτελείται από ένα δισδιάστατο ή τρισδιάστατο πίνακα εικονοστοιχείων (pixels). Κάθε pixel περιέχει έναν αριθμό ή περισσότερους αριθμούς που μας δείχνει μία τιμή στην κλίμακα του γκρι ή σε έγχρωμη κλίμακα που έχει εκχωρηθεί σε αυτό.

- **Binary**. Κάθε pixel είναι μαύρο ή άσπρο.
- Εφόσον υπάρχουν δύο μόνο τιμές που μπορεί να πάρει ένα pixel χρειαζόμαστε μόνο ένα bit για κάθε pixel.

• **Greyscale**: Κάθε *pixel* παίρνει μία τιμή γκρίζου, από το 0 (μαύρο) μέχρι το 255 (άσπρο) όπως φαίνεται στη διπλανή εικόνα:

- True colour ή RGB: Κάθε pixel έχει μία τιμή χρώματος και το χρώμα περιγράφεται με βάση το ποσοστό που περιέχει σε κόκκινο (Red), μπλε (Blue), και πράσινο (Green).
- Κάθε ένα από αυτά τα RGB στοιχεία μπορεί να πάρει τιμή 0-255 (αυτό μας δίνει 255³ = 16,777,216 διαφορετικά πιθανά χρώματα στην εικόνα).

49	55	56	57	52	53
58	60	60	58	55	57
58	58	54	53	55	56
83	78	72	69	68	69
88	91	91	84	83	82
69	76	83	78	76	75
61	69	73	78	76	76

66	80	77	80	87	77
81	93	96	99	86	85
83	83	91	94	92	88
135	128	126	112	107	106
141	129	129	117	115	101
95	99	109	108	112	109
84	93	107	101	105	102

ed Green Blue


```
import numpy as np
array=np.array(im)
print(array.shape)
array
(346, 300)
I < 1-10 ∨ > >I 346 rows × 300 columns np.ndarray > x
                                                                                                     178
                                                                                                            177
                                                                                                                   176
                                                                           177
                                                                                        177
  1 176
                                                                    177
                                                                          177
                                                                                 177
                                                                                        177
                                                                                               177
                                                                                                     178
                                                                                                            177
                                                                                                                   176
  2 178
                                                             177
                                                                          177
                                                                                        177
                                                                                               177
                                                                                                     178
                                                                                                            177
                                                                                                                   176
                                      176
                                            176
                                                                    177
                                                                                 177
  3 179
                                            175
                                                             177
                                                                    177
                                                                          177
                                                                                 177
                                                                                        177
                                                                                               177
                                                                                                     178
                                                                                                            177
                                                                                                                   176
  4 179
                                176
                                      176
                                                       177
                                                             177
                                                                    177
                                                                          177
                                                                                 177
                                                                                        177
                                                                                               177
                                                                                                     178
                                                                                                            177
                                                                                                                   176
                                            175
  5 178
                                 177
                                      176
                                            176
                                                             177
                                                                    177
                                                                          177
                                                                                 177
                                                                                        177
                                                                                               177
                                                                                                     178
                                                                                                            177
                                                                                                                   176
                                                                           177
                                                                                 177
                                                                                        177
                                                                                               177
                                                                                                     178
                                                                                                            177
                                                                                                                   176
  7 175
                                                                          177
                                                                                 177
                                                                                        177
                                                                                               177
                                                                                                     178
                                                                                                            177
                                                                                                                   176
                                            179
```



```
modified_array = mask - array
modified_array = modified_array.astype(np.uint8)
modified_array
       1-10 > > 346 rows × 300 columns np.ndarray >
                                                                                      13
   0 80
           79
                       78
                                                           78
                                                                 78
                 79
                             78
                                   77
                                         77
                                               76
                                                     78
                                                                        78
                                                                               78
                                                                                      78
                                                                                              78
                                                                                                     78
                                                                                                            77
                                                                                                                   78
                                                                                                                          79
   1 79
                                                                                                                          79
           79
                 78
                       78
                             78
                                   78
                                         77
                                               77
                                                     78
                                                           78
                                                                 78
                                                                        78
                                                                               78
                                                                                      78
                                                                                              78
                                                                                                     78
                                                                                                            77
                                                                                                                   78
   2 77
           77
                 78
                       78
                             78
                                   78
                                         79
                                               79
                                                     78
                                                           78
                                                                 78
                                                                        78
                                                                               78
                                                                                      78
                                                                                                     78
                                                                                                            77
                                                                                                                   78
                                                                                                                          79
                                                                                              78
   3 76
           77
                 77
                       78
                             78
                                   79
                                         79
                                               80
                                                      78
                                                           78
                                                                 78
                                                                        78
                                                                                78
                                                                                      78
                                                                                              78
                                                                                                     78
                                                                                                            77
                                                                                                                   78
                                                                                                                          79
   4 76
           77
                 77
                       78
                             78
                                   79
                                         79
                                               80
                                                     78
                                                           78
                                                                 78
                                                                        78
                                                                               78
                                                                                      78
                                                                                              78
                                                                                                     78
                                                                                                            77
                                                                                                                   78
                                                                                                                          79
   5 77
           77
                 78
                       78
                             78
                                   78
                                         79
                                               79
                                                     78
                                                           78
                                                                 78
                                                                        78
                                                                               78
                                                                                      78
                                                                                              78
                                                                                                     78
                                                                                                            77
                                                                                                                   78
                                                                                                                          79
   6 79
           79
                       78
                                                           78
                                                                 78
                                                                               78
                                                                                                     78
                                                                                                                   78
                                                                                                                          79
                 78
                             78
                                   78
                                         77
                                               77
                                                      78
                                                                        78
                                                                                      78
                                                                                              78
                                                                                                            77
   7 80
           79
                 79
                       78
                             78
                                   77
                                         77
                                               76
                                                     78
                                                           78
                                                                 78
                                                                        78
                                                                               78
                                                                                      78
                                                                                              78
                                                                                                     78
                                                                                                            77
                                                                                                                   78
                                                                                                                          79
```

In 5 1 🗦 # And lastly, lets display this new array. We do this by using the fromarray() function in the python display(Image.fromarray(modified_array))