AM115 Section 1: Laptop Battery Lifespan Analysis

Name: _		
Section:		

AM115 Section 1: The Battery Replacement Decision

Background

You need to replace your laptop battery and are comparing two brands based on lifespan data from online reviews.

Brand A: \$45 replacement battery

Brand B: \$65 replacement battery (claims "40% longer life")

Part A: Model Selection (Group Discussion - 10 min)

- 1. **Discuss:** Why can't we use a binomial model for battery lifespans?
- 2. Sketch what you think the distribution of battery lifespans looks like? Sketch it below.

- 3. **Discuss:** Can you think of a distribution(s) that might be appropriate for modeling battery lifespans?
- 4. What type of failures are you assuming? Random events that could happen anytime? Or gradual wear-and-tear that gets worse with age? How does this assumption affect your choice of model?

Part B: Quick Analysis (5 min)

Brand A lifespans (months): 18.2, 24.5, 15.3, 22.1, 28.9, 19.7, 26.3, 21.4

- 1. Calculate the mean lifespan
- 2. If using exponential model, estimate the failure rate λ (failures/month)

3. What's the monthly cost of Brand A's battery?	
Part C: Maximum Likelihood (15 min)	
1. Write down the general form of the likelihood of having the model $f()$ which is parameterized by $\theta.$	ng observed lifespans $\{t_1,t_2,\dots,t_n\}$ under
2. Now, write the likelihood of the same observations ubution you chose).	under your specific model (i.e., the distri-
3. Discuss: Consider the PDF you are using and the are they similar? How are they different?	likelihood for a single observation. How
4. Write the log-likelihood.	
5. Discuss: Why do we use the logarithm of the likeli	hood instead of the likelihood itself?
6. Use calculus to find the maximum likelihood estima	te (MLE)
7. Discuss : What is the interpretation of the MLE in	
8. Discuss: What is the interpretation of your specificata?	fic MLE parameter value for Brand A's

Notes

We'll implement this analysis in Python next, where we can handle larger datasets and create visualizations to support our decision.