Problem 7 (1)

October 22, 2019

0.1 Problem 7

0.2 7.1: Weight Update Equations for Five Gradient Descent Optimizers:

0.2.1 a) AdaGrad

Adagrad uses a different learning rate η_i for every parameter θ_i , which it updates during each step t_i Let g_t denote the gradient at time step t. $g_{t,i}$ is then the partial derivative of the objective function w.r.t. to the parameter θ_i at time step t.

Then, the weight update equation: $g_{t,i} = \Delta$

Instead of accumulating all past squared gradients, Adadelta restricts the window of accumulated past gradients to some fixed size *w*. Starting from AdaGrad,

$$\theta_{t+1,i} = \theta_{t,i} + \frac{\eta}{\sqrt{G_{t,i} + \epsilon}} g_t$$

we replace the sum of squares of accumulated weights $G_{t,i}$ with $E[G_{t,i}]$, sum of squares of weights only accumulated through the window, which is nothing but the Root Mean Squared error of the weights within the window. Additionally, to match the dimensions of the learning rate, the LR is also defined as an infinitely decaying RMS parameter. This results in the following weight update equation:

$$\theta_{t+1} = \theta_t - \frac{RMS[\Delta\theta]_{t-1}]}{RMS[g_t]}.g_t$$

0.2.2 c) RMSProp:

Developed to sovle the vanishing gradients problem in AdaDelta- retain η , and apply an exponentially decaying average of square gradients.

$$\theta_{t+1,i} = \theta_{t,i} + \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} g_t$$

HyperParameter: η . the learning rate and ϵ , any small value to smoothen out (avoid division by 0)

0.2.3 d) Adam

In addition to maintaining the average of squared decaying gradients, it also maintains the average of the decaying gradients themselves.

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

Thus, the update rule:

$$heta_t = heta_{t-1} - rac{\eta}{\sqrt{v_t + \epsilon}} \hat{m}_t$$

where \hat{m} and \hat{v} are the gradients of m and v respectively

HyperParameters: β_1 , the factor for momentum calculation, and β_2 , the factor for sum of squared weights.

0.2.4 e) RMSProp + Nesterov: Nadam

Addition of a Momentum term to RMSProp.

$$\theta_t = \theta_{t-1} - \frac{\eta}{\sqrt{\hat{v} + \epsilon}} (\beta \hat{m}_t + \frac{1 - \beta g_t}{1 - \beta})$$

where \hat{m} is the momentum (average of past exponentially decaying gradients) at time t, \hat{v} the average of squares of past exponentially decaying gradients, and β the Adam Rule hyperparameter.

HyperParameters: β_1 , the factor for momentum calculation, and β_2 , the factor for sum of squared weights.

Disclaimer: Using a 300 unit dense layer since a model with 784x1000x1000 does not fit into memory (tried until 4 NVDIA P100 GPUs, 102GB RAM with 16 vCPUs)

```
[1]: from keras.datasets import mnist from keras.utils import np_utils

import time

from keras.optimizers import RMSprop,Adagrad,Adadelta,Adam,Nadam from keras.models import Sequential from keras.layers import Dense,Dropout,Flatten import keras.layers as layers from keras import regularizers
```

```
Using TensorFlow backend.
/usr/local/lib/python3.5/dist-
packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing
(type, 1) or '1type' as a synonym of type is deprecated; in a future version of
numpy, it will be understood as (type, (1,)) / '(1,)type'.
   _np_qint8 = np.dtype([("qint8", np.int8, 1)])
/usr/local/lib/python3.5/dist-
packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing
(type, 1) or '1type' as a synonym of type is deprecated; in a future version of
numpy, it will be understood as (type, (1,)) / '(1,)type'.
   _np_quint8 = np.dtype([("quint8", np.uint8, 1)])
/usr/local/lib/python3.5/dist-
packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing
(type, 1) or '1type' as a synonym of type is deprecated; in a future version of
numpy, it will be understood as (type, (1,)) / '(1,)type'.
```

```
_np_qint16 = np.dtype([("qint16", np.int16, 1)])
/usr/local/lib/python3.5/dist-
packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing
(type, 1) or '1type' as a synonym of type is deprecated; in a future version of
numpy, it will be understood as (type, (1,)) / (1,)type'.
  _np_quint16 = np.dtype([("quint16", np.uint16, 1)])
/usr/local/lib/python3.5/dist-
packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing
(type, 1) or '1type' as a synonym of type is deprecated; in a future version of
numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint32 = np.dtype([("qint32", np.int32, 1)])
/usr/local/lib/python3.5/dist-
packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing
(type, 1) or '1type' as a synonym of type is deprecated; in a future version of
numpy, it will be understood as (type, (1,)) / '(1,)type'.
 np_resource = np.dtype([("resource", np.ubyte, 1)])
/usr/local/lib/python3.5/dist-
packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning:
Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future
version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint8 = np.dtype([("qint8", np.int8, 1)])
/usr/local/lib/python3.5/dist-
packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning:
Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future
version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_quint8 = np.dtype([("quint8", np.uint8, 1)])
/usr/local/lib/python3.5/dist-
packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning:
Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future
version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint16 = np.dtype([("qint16", np.int16, 1)])
/usr/local/lib/python3.5/dist-
packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning:
Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future
version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_quint16 = np.dtype([("quint16", np.uint16, 1)])
/usr/local/lib/python3.5/dist-
packages/tensorboard/compat/tensorflow stub/dtypes.py:545: FutureWarning:
Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future
version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint32 = np.dtype([("qint32", np.int32, 1)])
/usr/local/lib/python3.5/dist-
packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning:
Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future
version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
 np_resource = np.dtype([("resource", np.ubyte, 1)])
```

```
[2]: (x_train, y_train), (x_test, y_test) = mnist.load_data()
     # Set numeric type to float32 from uint8
     x_train = x_train.astype("float32")
     x_test = x_test.astype("float32")
     # Transform lables to one-hot encoding
     y_train = np_utils.to_categorical(y_train, 10)
     y_test = np_utils.to_categorical(y_test, 10)
     # Reshape the dataset into 4D array
     x_train = x_train.reshape(x_train.shape[0], 28,28,1)
     x_test = x_test.reshape(x_test.shape[0], 28,28,1)
     #Normalize input
     x_test /= 255
     x_train /= 255
 [3]: model = Sequential()
     model.add(Dense(300, input_shape=(28,28,1), activation='relu',_
      →kernel_regularizer=regularizers.12(0.1)))
     model.add(Flatten())
     model.add(Dense(300,activation='relu', kernel_regularizer=regularizers.12(0.1)))
     model.add(Dense(10,activation='softmax'))
[29]: opts = ['Adagrad', 'RMSprop', 'Nadam', 'Adadelta', 'Adam']
    histories = []
     times = \Pi
     metrics = []
     for opt in opts:
         model.compile(loss='categorical_crossentropy', optimizer=opt,_
      →metrics=['accuracy'])
         print(" Using Optimizer: "+opt)
         start = time.time()
         history = model.fit(x_train, y_train,
             batch_size=128,
             epochs=200,
             verbose=0,
         t = time.time()-start
         histories.append(history)
         times.append(t)
         metrics.append(model.evaluate(x_test,y_test))
```

Using Optimizer: Adagrad

```
10000/10000 [============= ] - 1s 66us/step
    Using Optimizer: RMSprop
    10000/10000 [============ ] - 1s 67us/step
     Using Optimizer: Nadam
    10000/10000 [============ ] - 1s 68us/step
    Using Optimizer: Adadelta
    10000/10000 [============ ] - 1s 68us/step
    Using Optimizer: Adam
    10000/10000 [============ ] - 1s 70us/step
[30]: print(times)
    print(histories)
    print(metrics)
    [153.77004885673523, 158.54089736938477, 196.96231698989868, 176.2131621837616,
    175.37222576141357]
    [<keras.callbacks.callbacks.History object at 0x7f01840ff5f8>,
    <keras.callbacks.callbacks.History object at 0x7f015c5facc0>,
    <keras.callbacks.callbacks.History object at 0x7f015c3089b0>,
    <keras.callbacks.callbacks.History object at 0x7f0154eb6588>,
    <keras.callbacks.callbacks.History object at 0x7f01549c3e80>]
    [[0.05396905895551717, 0.9846000075340271], [0.17004848983989665,
    0.9818999767303467], [0.08229756782286436, 0.9830999970436096],
    [0.09658989797149968, 0.9858999848365784], [0.07053784349224264,
    0.9854000210762024]]
[34]: import matplotlib.pyplot as plt
    x = [i \text{ for } i \text{ in } range(100)]
    plt.plot(x, histories[0].history['loss'], color='blue', label='Adagrad')
    plt.plot(x, histories[1].history['loss'], color='red', label='RSMProp')
    plt.plot(x, histories[2].history['loss'], color='orange', label='RMS+Nesterov')
    plt.plot(x, histories[3].history['loss'], color='yellow', label='AdaDelta')
    plt.plot(x, histories[4].history['loss'], color='green', label='Adam')
    plt.legend()
    plt.show()
```


0.2.5 A comparison of Test Loss, Accuracy and Training Time for the 5 different optimizers:

Time: AdaGrad trains the fastest , where as RMS+Nesterov trains the slowest (Computationally eexpensive- given a fixed set of epochs). This does not indicate time to convergence. Test Loss: AdaGrad has the least test loss (0.053), whereas RMSProp has the highest (0.17). Test Accuracy: AdaDelta has the highest test Accuracy (98.54), and RMSProp the least (98.18)

	Optimizer	Test Loss	Test Accuracy	Training	g Time
AdaGrad	0.053969	0589555171	7 0.984600007	5340271	153.77004885673523
RMSProp	0.170048	34898398966	5 0.981899976	7303467	158.54089736938477
RMS+Nestero	v 0.082297	75678228643	6 0.983099997	0436096	196.96231698989868
Nadam	0.096589	98979714996	8 0.985899984	8365784	176.2131621837616
AdaDelta	0.070537	78434922426	4 0.985400021	0762024	175.37222576141357

0.2.6 With dropout:

```
[25]: model = Sequential()
  model.add(Dropout(0.2,input_shape=(28,28,1)))
  model.add(Flatten())
  model.add(Dense(300,activation='relu'))
  model.add(Dropout(0.5))
  model.add(Dense(300,activation='relu'))
  model.add(Dropout(0.5))
  model.add(Dropout(0.5))
  model.add(Dense(10,activation='softmax'))
```

```
[31]: opts = ['Adagrad', 'RMSprop', 'Nadam', 'Adadelta', 'Adam']
    histories dropout = []
    times_dropout = []
    metrics_dropout = []
    for opt in opts:
        model.compile(loss='categorical_crossentropy', optimizer=opt,_
     →metrics=['accuracy'])
        print("Using Optimizer: ",opt)
        start = time.time()
        history = model.fit(x_train, y_train,
            batch_size=128,
            epochs=200,
            verbose=0,
        t = time.time()-start
        histories_dropout.append(history)
        times_dropout.append(t)
        metrics_dropout.append(model.evaluate(x_test,y_test))
    Using Optimizer: Adagrad
    10000/10000 [======
                           ========= ] - 1s 70us/step
    Using Optimizer: RMSprop
    10000/10000 [===========] - 1s 71us/step
    Using Optimizer: Nadam
    10000/10000 [=========== ] - 1s 72us/step
    Using Optimizer: Adadelta
    10000/10000 [=========== ] - 1s 75us/step
    Using Optimizer: Adam
    10000/10000 [=========== ] - 1s 77us/step
[36]: x = [i \text{ for } i \text{ in } range(100)]
    plt.plot(x, histories[0].history['loss'], color='blue', label='Adagrad')
    plt.plot(x, histories[1].history['loss'], color='red', label='RSMProp')
    plt.plot(x, histories[2].history['loss'], color='orange', label='RMS+Nesterov')
    plt.plot(x, histories[3].history['loss'], color='yellow', label='AdaDelta')
    plt.plot(x, histories[4].history['loss'], color='green', label='Adam')
    plt.legend()
    plt.show()
```



```
[37]: print(times_dropout)
print(histories_dropout)
print(metrics_dropout)
```

[155.4027111530304, 161.8654146194458, 198.07765197753906, 178.04522228240967, 177.54143357276917]

[<keras.callbacks.callbacks.History object at 0x7f01545e9e10>, <keras.callbacks.callbacks.History object at 0x7f01542c1630>, <keras.callbacks.callbacks.History object at 0x7f0154041fd0>, <keras.callbacks.callbacks.History object at 0x7efd582a7e48>, <keras.callbacks.callbacks.History object at 0x7efd37ecaac8>] [[0.06117173416424048, 0.9864000082015991], [0.24486077860649916, 0.984000027179718], [0.09027380716234537, 0.9817000031471252], [0.12017995868224567, 0.9853000044822693], [0.08639935254225972, 0.9833999872207642]]

	Optimizer	Test Loss	Test Accuracy	Training Tin	ne
AdaGrad	0.061171	7341642404	8 0.9864000082	2015991 155.	4027111530304
RMSProp	0.244860	7786064991	6 0.9840000271	179718 161.	8654146194458
RMS+Nesterov	v 0.090 27 3	8071623453	7 0.9817000031	1471252 198.	07765197753906
Nadam	0.120179	9586822456	7 0.9853000044	1822693 178.	04522228240967
AdaDelta	0.086399	3525422597	2 0.9833999872	2207642 177.	54143357276917