

TP2

9 de junio de 2025

Introducción a la Investigación Operativa y Optimización

Integrante	LU	Correo electrónico
Laks, Joaquín	425/22	laksjoaquin@gmail.com
Szabo, Jorge	1683/21	jorgecszabo@gmail.com
Wilders Azara, Santiago	350/19	santiago199913@gmail.com

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón Cero + Infinito) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Conmutador: (+54 11) 5285-9721 / 5285-7400 https://dc.uba.ar Basado en Miller, Tucker, y Zemlin

Dada un cliente i definimos D_i como los clientes a distancia menor a $dist_max$ de i.

$$x_{ij} = \begin{cases} 1 & \text{si desde el cliente } v_i \text{ el camión se mueve al cliente } v_j \\ 0 & \text{c.c.} \end{cases}$$

 u_i = posición del cliente i en el circuito del camión (no importa cuando el camión no pasa)

$$b_{ij} = \begin{cases} 1 & \text{si se envi\'o un repartidor en bicicleta desde } v_i \text{ hasta } v_j \\ 0 & \text{c.c.} \end{cases}$$

 r_{ij} solo está definida para $j \in D_i$, en la formulación queda más cómodo escribirl como si estuviera definido para todas las parejas pero se pueden interpretar r_{ij} inválidos como constantes 0

También contamos con el dato de entrada:

$$r_i = \begin{cases} 1 & \text{si al cliente } v_i \text{ se le entrega un producto que necesita refrigeración} \\ 0 & \text{c.c} \end{cases}$$

Con $n = cant_clientes$, buscamos:

$$\underset{i \neq j}{\text{Min}} \quad \sum_{v_i, v_j \in V} c_{ij} x_{ij} + costo_repartidor b_{ij}$$

s.a.

 $x_{ij}, b_{ij} \in \{0, 1\}, u_i \in \mathbb{Z}_{>0}$