Then since b = f(a), using the above we have

$$(g \circ f)(a+s) = g(f(a+s)) = g(b + Df_a(s) + \epsilon_1(s))$$

= $g(b) + Dg_b(Df_a(s) + \epsilon_1(s)) + \epsilon_2(Df_a(s) + \epsilon_1(s))$
= $g(b) + (Dg_b \circ Df_a)(s) + Dg_b(\epsilon_1(s)) + \epsilon_2(Df_a(s) + \epsilon_1(s)).$

Now by $(*_1)$ and $(*_2)$ we have

$$\|Dg_b(\epsilon_1(s)) + \epsilon_2(Df_a(s) + \epsilon_1(s))\| \le \|Dg_b(\epsilon_1(s))\| + \|\epsilon_2(Df_a(s) + \epsilon_1(s))\|$$

$$\le \eta \|Dg_b\| \|s\| + \eta(\|Df_a\| + 1) \|s\|$$

$$= \eta(\|Df_a\| + \|Dg_b\| + 1) \|s\|,$$

so if we write $\epsilon_3(s) = Dg_b(\epsilon_1(s)) + \epsilon_2(Df_a(s) + \epsilon_1(s))$ we proved that

$$(g \circ f)(a+s) = g(b) + (Dg_b \circ Df_a)(s) + \epsilon_3(s)$$

with $\epsilon_3(s) \leq \eta(\|Df_a\| + \|Dg_b\| + 1) \|s\|$, which proves that $Dg_b \circ Df_a$ is the derivative of $g \circ f$ at a. Since Df_a and Dg_b are continuous, so is $Dg_b \circ Df_a$, which proves our proposition. \square

Theorem 39.6 has many interesting consequences. We mention two corollaries.

Proposition 39.7. Given three normed affine spaces E, F, and G, for any open subset A in E, for any $a \in A$, let $f: A \to F$ such that Df(a) exists, and let $g: F \to G$ be a continuous affine map. Then, $D(g \circ f)(a)$ exists, and

$$D(g \circ f)(a) = \overrightarrow{g} \circ Df(a),$$

where \overrightarrow{g} is the linear map associated with the affine map g.

Proposition 39.8. Given two normed affine spaces E and F, let A be some open subset in E, let B be some open subset in F, let $f: A \to B$ be a bijection from A to B, and assume that Df exists on A and that Df^{-1} exists on B. Then, for every $a \in A$,

$$Df^{-1}(f(a)) = (Df(a))^{-1}.$$

Proposition 39.8 has the remarkable consequence that the two vector spaces \overrightarrow{E} and \overrightarrow{F} have the same dimension. In other words, a local property, the existence of a bijection f between an open set A of E and an open set B of E, such that E is differentiable on E and E and E have the same dimension.

Let us mention two more rules about derivatives that are used all the time.

Let $\iota \colon \mathbf{GL}(n,\mathbb{C}) \to \mathrm{M}_n(\mathbb{C})$ be the function (inversion) defined on invertible $n \times n$ matrices by

$$\iota(A) = A^{-1}.$$