Review Session 3

July 15, 2015

Estimation

- p34 4.1.2 Estimation of quantile
- p35 4.2.2 MLE for univariate elliptical variables
- p39 4.3.3 Sample covariance and eigenvalue dispersion
- p41 4.5.1 Influence function of sample mean
- p46 4.8.1 Sample mean
- p47 4.8.2 p-value analytical
- p52 4.8.5 Generalized t-tests, simulations

4.1.2 Estimation of quantile

Assume that we are interested in this functional:

$$G[f_X] \equiv \left(\mathcal{I}[f_X]\right)^{-1}(p), \qquad (165)$$

where $\mathcal{I}[\cdot]$ is the integration operator and $p \equiv 0.5$. Notice that the above is simply the quantile with confidence p, see (1.8) and (1.17) in Meucci (2005):

$$G[f_X] \equiv Q_X(p). \tag{166}$$

In particular, given that $p \equiv 0.5$, the above is the median.

Compute the non-parametric estimator \widehat{q}_p of (165) defined by (4.36) in Meucci (2005). Assume knowledge of the parameters (153) and evaluate the performance of \widehat{q}_p with respect to (165) as in the script S_Estimator by stress-testing the parameter μ_Y in the range [0,0.2].

Hint. Use the function QuantileMixture.

Evaluate the performance of the estimator (156) with respect to (165) as in the script S_Estimator by stress-testing the parameter μ_Y in the range [0, 0.2].

Hint. Use the function QuantileMixture.

$$G[f_x] = (I[f_x])^{-1}(p) = F_x^{-1}(p) = Q_x(p) \rightarrow quantile with confidence p$$

$$p = 0.5 \quad (median)$$

. DISTRIBUTION OF X:

B: Bernoveli
$$\begin{cases} 0 & \text{prob} \quad 1-\alpha = 0.2 \\ 1 & \text{prob} \quad \alpha = 0.8 \end{cases}$$

Z~ logN(0, 0.152)

$$X = BY + (1-B)Z$$

pdf: fx (x)= x fy (x)+ (1-x) fx(x) 13 0.1

MY E [0, 0.2] STRESS TEST SET

ALL DISTRIBUTIONS

cdf $F_x(x) = \alpha F_Y(x) + (1-\alpha) F_x(x)$

1 GENERATE A SAMPLE FROM THE DISTRIBUTION OF X

-> EITHER SIMULATE Y, Z, B INDEPENDENTLY X

XT XI . XI

SIMULATED SAMPLE FROM THE DIST. OF X @ GIVEN THE SAMPLE, COMPUTE THE NON-PARAM ESTIMATOR OF THE QUANTILE

$$\hat{Q}_{x}(p) = \hat{F}_{x}^{-1}(p) = \min \left\{ x \in \mathbb{R} : \hat{F}(x) > p \right\}$$

$$p=0.5$$
 $\hat{Q}_{x}(0.5) = x_{(T.0.5)}$
 $T/2 : POSITION OF \hat{Q}$

IN THE SORTED SAMPLE

→ COMPARE TWO ESTIMATORS POR THE MEDIAN

ORDER STATISTIC P=0.5

SAMPLE MEAN

T=1

Gb [it]

• LUCK US REPLICABILITY

Test the two eshmators repeating simule eshm many himes (1) and plotting the dist of the eshmators

of the eshmators

G[fx]

Repeat the test on a grid of points for my and compute error, bias, ineff of the two eshmators for each value of my.

4.2.2 MLE for univariate elliptical variables

Consider as in (1.28) in Meucci (2005) a symmetrical univariate random variable X. It is easy to check that such distributions are all and only the one-dimensional elliptical distributions. In other words, there exist two numbers μ and σ and a univariate function g such that:

$$X \sim \text{El}\left(\mu, \sigma^2, g\right)$$
. (172)

Assume that you know the functional form of g. Adapt the proof in the technical appendix www.4.2 at symmys.com > Book > Downloads to compute the maximum likelihood estimators $\widehat{\mu}$ and $\widehat{\sigma}^2$ of μ and σ^2 respectively.

pdf:
$$f_{x}(x) = \frac{1}{\sigma} g((\frac{x-\mu}{\sigma})^{2})$$

e.g. NORMAL
$$g(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x}$$

CAUCHY
$$g(x) = \frac{1}{\pi} \frac{1}{1+x}$$

Student t ...

Suppose XNEC(11.03, g) with g known MLE for 1 and 02? data: XI,..., XT iid N X L(x,,,,x,, ,, ,, ,) = T fx (x,, ,, , ,) LIKELIHOOD en L (x1,..., XT; p. o) = & en fx (xe,p,o) LOG-LIKELIHOOD = E en [= g[(x-1)2]] = $= \sum_{k=1}^{\infty} \ln \left(\frac{1}{n} \right) + \sum_{k=1}^{\infty} \ln \left(\frac{x_{k} - \mu}{n} \right)^{2}$ = T. en(s) + = en & (s2(xe-)2) $\frac{1^{st} \text{ order criteriou}}{\frac{\partial \ln L}{\partial \mu}} = \frac{\overline{J}}{\xi=1} \frac{g'(s^2(x_E-\mu)^2)}{g(s^2(x_E-\mu)^2)} \cdot (-2) \cdot S^2(x_E-\mu)$ $= \sum_{k=1}^{N} w_k s^2 (X_k - \mu) = \sum_{k=1}^{N} w_k (X_k - \mu) = 0$ $\frac{\lambda}{\mu} = \frac{1}{\frac{1}{2}} \frac{w_e \times e}{\frac{1}{2}}$ $\frac{\lambda}{\frac{1}{2}} = \frac{1}{\frac{1}{2}} \frac{w_e \times e}{\frac{1}{2}}$ $\frac{\lambda}{\frac{1}{2}} = \frac{1}{\frac{1}{2}} \frac{w_e \times e}{\frac{1}{2}} = \frac{1}{\frac{1}{2}} \frac{w_e \times e}{\frac{1}} = \frac{1}{\frac{1}{2}} \frac{w_e \times e}{\frac{1}} = \frac{1}{\frac{1}{2}} \frac{w_e \times e}{\frac$ = \frac{1}{5} - 5 \frac{1}{62} \times (X_t - \mu)^2 = 0 \rightarrow \frac{1}{62} = \frac{1}{62} = \frac{1}{7} \frac{1}{62} \times (X_t - \mu)^2

4.3.3 Sample covariance and eigenvalue dispersion

Fix $N \equiv 50$, $\mu \equiv 0_N$, $\Sigma \equiv I_N$. Reproduce the surface in Figure 4.15. You do not need to superimpose the true spectrum as in the figure

Hints: Determine a grid of values for the number of observations T in the time series. For each value of T

a) generate an i.i.d. time series

$$i_T \equiv \{\mathbf{x}_1, \dots, \mathbf{x}_T\} \tag{190}$$

from

$$X \sim N(\mu, \Sigma)$$
. (191)

- b) compute the sample covariance $\widehat{\Sigma}$.
- c) perform the PC decomposition of $\widehat{\Sigma}$ and store the sample eigenvalues (i.e. the sample spectrum)
- d) perform a)-c) a large enough number of times (~ 100 times)
- e) compute the average sample spectrum

$$X \sim N(0, I_{50})$$
 (N=50)
Consider T= So, 100, 150,..., 500
(i.e. $T = 1, 2, ..., 10$)

a) · for each T, simulate a sample from X

(x1,..., XT)

SAMPLE:

b) compute the sample cov.

$$\tilde{X}_{t} = X_{t} - \hat{\mu}$$
 (centering)

c). Compute the eigenvalues of \hat{z} $\lambda_{(1)} > \lambda_{(2)} \geq ... \geq \lambda_{(30)}$

For the same T, repeat a)-b)-c) many times and plot the average spectrum

4.5.1Influence function of sample mean

Adapt the proof in the technical appendix www.4.7 at symmys.com > Book > Downloads to the univariate case to compute the influence function of the sample mean.

most of the common statistic functionals are in form of expectahous:

expectations: integrable function
$$G[P] = \int h(x) f(x) dx = E[h(x)]$$

compute the I.F. of G

compute the I.F. of G

PERTURB THE Pdf/cdf

of X by a hay point

$$f_{\varepsilon}(x) = (1-\varepsilon) f_{\varepsilon}(x) + \varepsilon \int_{x_{0}}(x) dx$$

of X by a hay point

at X0

$$\begin{aligned} |f_{G}(x_{0},f) &= \lim_{\epsilon \to 0^{+}} \frac{1}{\epsilon} \left[G[f_{\epsilon}(x)] - G[f] \right] \\ &= \frac{d}{d\epsilon} \Big|_{\epsilon=0} G[f_{\epsilon}] \\ &= \frac{d}{d\epsilon} \Big|_{\epsilon=0} \int h(x) \left((1-\epsilon) f_{x}(x) + \epsilon \int_{x_{0}}(x) \right) dx \\ &= \int h(x) \frac{d}{d\epsilon} \Big|_{\epsilon=0} \left[(1-\epsilon) f_{x}(x) + \epsilon \int_{x_{0}}(x) \right] dx \\ &= \int h(x) \left[-f_{x}(x) + \int_{x_{0}}(x) \right] dx \\ &= -\int h(x) f_{x}(x) dx + h(x_{0}) \\ &= -E[h(x)] + h(x_{0}) \qquad G_{h}[f] \text{ is RoBust} \\ &= -h \text{ must be} \\ &= -h \text{ must be} \end{aligned}$$

SAMPLE MEAN
$$h(x) = x$$
 $G[f] = \int x f(x) dx$
 $If_G(x, f) = -E[x] + x_0 \rightarrow \text{NOT BOUNDED}$

(SAMPLE MEAN IS NOT ROBUST)

4.8 Testing

4.8.1 Sample mean

Consider a time series of independent and identically distributed random variables

$$X_t \sim N(\mu, \sigma^2), \quad t = 1, ..., T.$$
 (223)

Consider the sample mean

$$\widehat{\mu} \equiv \frac{1}{T} \sum_{t=1}^{T} X_t. \tag{224}$$

Compute the distribution of $\hat{\mu}$.

What is the probability that the sample mean (224) exceed a given value $\tilde{\mu}$?

$$X_{t} \sim N(\mu, \sigma^{2})$$
 $t=1...T$ (iid)

$$\hat{\mu} = \frac{1}{T} \sum_{t=1}^{N} X_{t}$$

. DISTRIBUTION OF A?

Sum of iid normal is normal

= 1 -
$$\phi\left(\frac{\widetilde{\mu}-\mu}{\sqrt{q^2}}\right)$$
standard of

4.8.2 p-value analytical

Consider a normal invariant

$$X_t \sim N\left(\mu, \sigma^2\right)$$
 (230)

in a time series of length T. Consider the ML estimator $\widehat{\mu}$ of the location parameter μ . Suppose that you observe a value $\widetilde{\mu}$ for the estimator. Assume that you believe that

$$\mu \equiv \mu_0, \quad \sigma^2 \equiv \sigma_0^2.$$
 (231)

The *p-value* of $\widehat{\mu}$ for $\widetilde{\mu}$ under the hypothesis (231) is the probability of observing a value as extreme as the observed value:

$$p \equiv \mathbb{P}\left\{\widehat{\mu} \leqslant \widetilde{\mu}\right\}. \tag{232}$$

Compute the expression of the p-value in terms of the cdf of the estimator.

Xt ~ N(
$$\mu$$
, σ^{2})

X1,..., XT — $\hat{\mu}$ (=Sample mean in the normal care)

We believe $\mu = \mu_{0}$, $\sigma^{2} = \sigma_{0}^{2}$ we believe

 $\hat{\mu} \sim N(\mu_{0}, \frac{\sigma_{0}^{2}}{T})$

p-value of $\hat{\mu}$ for $\hat{\mu}$ — prob. of observing a value as (or more) extreme as $\hat{\mu}$
 $\hat{\mu} \sim \hat{\mu} \sim \hat{\mu}$
 $\hat{\mu} \sim \hat{\mu} \sim \hat{\mu}$
 $\hat{\mu} \sim \hat{\mu} \sim \hat{\mu} \sim \hat{\mu}$
 $\hat{\mu} \sim \hat{\mu} \sim \hat{\mu} \sim \hat{\mu} \sim \hat{\mu}$
 $\hat{\mu} \sim \hat{\mu} \sim \hat{\mu$

Generalized *t*-tests, simulations

Consider a joint model for the invariants: for t = 1, ..., T. The marginals are

$$X_t \sim \text{LogN}(\mu_X, \sigma_X^2),$$
 (274)

$$F_t \sim \operatorname{Ga}(\nu_F, \sigma_F^2);$$
 (275)

and the copula is the copula of the diagonal entries of Wishart distribution

$$\mathbf{W}_{t} \sim \mathbf{W}\left(\nu_{W}, \mathbf{\Sigma}_{W}\right). \tag{276}$$

Consider the coefficients that define the regression line (3.127)

$$\widetilde{X}_t \equiv \alpha + \beta F_t. \tag{277}$$

Compute the non-parametric estimators $(\widehat{\alpha}, \widehat{\beta})$ of the regression coefficients.

Are $(\widehat{\alpha}, \widehat{\beta})$ the maximum-likelihood estimators of the regression coefficients?

JOINT MODEL FOR THE INVARIANTS

- copula of the diagonal entries of a copula wishart oust. WEN W (UL, EW)

$$\tilde{X}_{t} = \alpha + \beta F_{t}$$
 \rightarrow compute the non param. eshmators $\hat{\alpha}, \hat{\beta}$

$$f_{\varepsilon} = \begin{pmatrix} 1 \\ F_{\varepsilon} \end{pmatrix}$$

$$(\hat{\alpha}, \hat{\beta}) = \begin{pmatrix} \sum_{k} x_{\varepsilon} f_{\varepsilon}^{k} \end{pmatrix} \begin{pmatrix} \sum_{k} f_{\varepsilon} f_{\varepsilon}^{k} \end{pmatrix}^{-1}$$

$$= \hat{\Sigma}_{x_{\varepsilon}} \hat{\Sigma}_{\varepsilon}^{-1}$$

IF THE REGRESSION MODEL IF THE REGRESSION MODE IS CONDITIONALLY NORMAL 2, 3 = MLE estimators

THIS IS NOT THE LASE

HOW TO SIMULATE A SAMPLE FROM THE DIST, of (XIF) ? RECALL WISHART DISTRIBUTION WNW(V. E) Y1, Y2, ..., Yv ~ N(0, E) indep YY + YY + ... + YV Y' ~ W (", ≥) In this example dim (Y)=2 $\rightarrow Y_{1} = \begin{bmatrix} Y_{11} \\ Y_{12} \end{bmatrix}, Y_{2} = \begin{bmatrix} Y_{21} \\ Y_{32} \end{bmatrix}, Y_{3} = \begin{bmatrix} Y_{51} \\ Y_{52} \end{bmatrix}$ assume V=3 Y: N N (O, E) [0, 02] W = Y, Y, + Y2 Y2 + Y3 Y3 = \(\frac{\gamma}{11 + \gamma} + \frac{\gamma}{21 + \gamma} + \frac{\gamma}{21 + \gamma} \) \(\frac{\warma}{12 + \gamma} + \frac{\gamma}{22 + \gamma} \) \(\frac{\warma}{21 + \gamma} + \frac{\gamma}{22} \) \(\frac{\warma}{12 + \gamma} + \frac{\gamma}{22} + \gamma \) \(\frac{\gamma}{21 + \gamma} + \frac{\gamma}{22} \) \(\frac{\gamma}{21 + \gamma} + \frac{\gamma}{22} + \gamma \) \(\frac{\gamma}{21 + \gamma} + \frac{\gamma}{22} + \gamma \) \(\frac{\gamma}{21 + \gamma} + \gamma \gamma \) \(\frac{\gamma}{21 + \gamma} + \gamma (SUM OF INDEP) copula (x,F) = copula (W, Wz) GENERATE GENERATE SCENARIOS FOR THE COPULA -> (XF) 1 SIMULATE Y (3), Y2 (3) 5= 1... 100000 where each Y; N N(O, Ew) @ CALCULATE W(3) = Y(1) Y(3) + ...+ Y3 . Y3 ... 3 RETRIEVE THE DIAGONAL ELEMENTS J=4 J= J (5) JOINT SCENARLOS 4) SCENARLOS FOR (X,F)

ONCE OBTAINED SCENARIOS, COMPUTE &, B

· REPEAT THE ABOVE STEPS

(SIMULATIONS + ESTIMATION) MANY TIMES TO OBTAIN

THE DISTRIBUTION (HIST) OF Q, B

Generate arbitrary values for the parameters in (274)-(276) and for the number of observations T and compute in simulation the distribution of the statistic

$$\widehat{G}_{\alpha} \equiv \sqrt{T - 2} \frac{(\widehat{\alpha} - \alpha)}{\sqrt{\widehat{\sigma}^2 \widehat{\sigma}_{\alpha}^2}}$$
 (278)

and the distribution of the statistic

$$\widehat{G}_{\beta} \equiv \sqrt{T - 2} \frac{\widehat{\beta} - \beta}{\sqrt{\widehat{\sigma}^2 \widehat{\sigma}_{\beta}^2}}.$$
 (279)

Compare the empirical distribution of (278) with the analytical distribution of (261) as well as the empirical distribution of (279) with the analytical distribution of (262) and comment.

Stahshos
$$\hat{G}_{x} = \sqrt{T-2} \frac{\hat{\alpha}-\alpha}{\sqrt{\hat{\sigma}_{RES}^{2}} \hat{\sigma}_{\alpha}^{2}}$$

$$\hat{G}_{p} = \sqrt{T-2} \frac{\hat{\beta}-\beta}{\sqrt{\hat{\sigma}_{RES}^{2}} \hat{\sigma}_{p}}$$
Compare their distribution with
$$St\left(T-2,0,1\right)$$

of X is
$$St(T-2,0,1)$$
 then $F_{St(T-2,0,1)}(X) \sim U$ by U by U by U the hist of U the hist of U