

IIC1253 — Matemáticas Discretas — 1' 2020

TAREA 4

Publicación: Viernes 1 de mayo.

Entrega: Viernes 8 de mayo hasta las 23:59 horas.

Indicaciones

■ Debe entregar una solución para cada pregunta (sin importar si esta en blanco).

■ Cada solución debe estar escrita en L⁴TEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.

 Responda cada pregunta en una hoja separada y ponga su nombre, sección y número de lista en cada hoja de respuesta.

■ Debe entregar una copia digital por el buzón del curso, antes de la fecha/hora de entrega.

• Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.

• La tarea es individual.

Pregunta 1

Un alfabeto es un conjunto finito y no vacío de símbolos $\Sigma = \{a_1, ..., a_n\}$. Por ejemplo, $\Sigma = \{a, b, c\}$ es el alfabeto con las tres primeras letras del abecedario. Concatenando los símbolos de un alfabeto, podemos generar naturalmente palabras. Formalmente, una palabra w de largo m en el alfabeto Σ es una secuencia finita de símbolos $w = w_1w_2...w_m$ tal que $w_i \in \Sigma$ para todo $i \in \{1, ..., m\}$. Luego, definimos el conjunto de todas las palabras bajo el alfabeto Σ como Σ^* . Dado dos palabras u y v en Σ^* , se define como $u \cdot v$ la concatenación de u y v. Por ejemplo, si u = ab y v = bc, entonces $u \cdot v = abbc$. Por último, dada una palabra $w \in \Sigma^*$ y $i \geq 1$ se define la palabra w^i cómo la concatenación de w i-veces, esto es,

$$w^i = w \cdot w \cdot \overset{\text{i-veces}}{\cdots} \cdot w.$$

Por ejemplo, $(abc)^3 = abcabcabc$.

Dado un alfabeto $\Sigma = \{a_1, ..., a_n\}$ se define la relación binaria \sim sobre el conjunto Σ^* de la siguiente manera. Dadas dos palabras u y v en Σ^* , diremos que $u \sim v$ si, y sólo si, existen i, j > 0 tal que $u^i = v^j$.

1. Demuestre que \sim es refleja y simétrica.

2. Demuestre que \sim es transitiva.

Pregunta 2

Sea A un conjunto no vacío cualquiera. Considere el conjunto:

$$\mathcal{R} = \{ R \mid R \subseteq A \times A \}$$

En otras palabras, \mathcal{R} es el conjunto de todas las relaciones binarias en A.

- 1. Sea $\preceq_1 \subseteq \mathcal{R} \times \mathcal{R}$ tal que, para todo $R, S \in \mathcal{R}, R \preceq_1 S$ si, y solo si, $R \circ S = S$. ¿Es \preceq_1 transitiva? Demuestre su afirmación.
- 2. Sea $\leq_2 \subseteq \mathcal{R} \times \mathcal{R}$ tal que, para todo $R, S \in \mathcal{R}, R \leq_2 S$ si, y solo si, $R \circ S \subseteq S$. ¿Es \leq_2 transitiva? Demuestre su afirmación.

Evaluación y puntajes de la tarea

Cada **item** de cada pregunta se evaluará con un puntaje de:

- 0 (respuesta incorrecta),
- 3 (con errores menores),
- 4 (correcta).

Todas las preguntas tienen la misma ponderación en la nota final.