

international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2024

Practice Problem PD Narrow Passageway

You are a strategist of The ICPC Kingdom. You received an intel that there will be monster attacks on a narrow passageway near the kingdom. The narrow passageway can be represented as a grid with 2 rows (numbered from 1 to 2) and N columns (numbered from 1 to N). Denote (r,c) as the cell in row r and column c. Each cell can be empty, which is represented by the character \cdot ; or blocked, which is represented by the character *.

There are three types of *heroes* that can be deployed to defend the passageway: swordsman, wizard, and defender. Currently, the kingdom has C_s swordsmen, C_w wizards, and C_d defenders. Each swordsman, wizard, and defender has a power of P_s , P_w , and P_d , respectively.

You can only deploy at most **one** hero on an empty cell, while no heroes can be deployed on a blocked cell. Furthermore, there should not be two cells sharing a side and both contain a swordsman; and there should not be two cells sharing a corner and both contain a wizard. Formally,

- if (r, c) contains a swordsman, then (r 1, c), (r, c + 1), (r + 1, c), and (r, c 1) should not contain a swordsman; and
- if (r,c) contains a wizard, then (r-1,c-1), (r-1,c+1), (r+1,c+1), and (r+1,c-1) should not contain a wizard.

Determine the maximum total power that can be deployed to defend the narrow passageway from the monster attacks.

Input

The first line consists of an integer N (1 < N < 1000).

The second line consists of three integers C_s C_w C_d ($0 \le C_s$, C_w , $C_d \le 1000$).

The third line consists of three integers P_s P_w P_d $(1 \le P_s, P_w, P_d \le 100\,000)$.

Each of the next 2 lines consists of a string with N characters. They represent the narrow passageway as a grid. The $c^{\rm th}$ character of the $r^{\rm th}$ string represents (r,c). Each character can only be either . or #.

Output

Output a single integer representing the maximum total power that can be deployed to defend the narrow passageway.

international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2024

Sample Input #1

7
4 4 3
10 30 20
#.##.
.##.

Sample Input #3

2		
1 1 1		
10 10 10		

Sample Output #1

200

Explanation for the sample input/output #1

One possible deployment which achieves the maximum total power can be seen in the following illustration.

Sample Output #3

30

Explanation for the sample input/output #3

One possible deployment which achieves maximum total power can be seen in the following illustration.

Sample Input #2

7		
4 4 3		
40 20 30		
#.##.		
.##.		

Sample Input #4

1
2 1 2
20 10 5

Sample Output #2

290

Explanation for the sample input/output #2

One possible deployment which achieves maximum total power can be seen in the following illustration.

Sample Output #4

30