Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет информационных технологий и управления

Кафедра информационных технологий автоматизированных систем

Отчет

по лабораторной работе №7 «Получение точечных оценок параметров распределения»

Вариант 7

Выполнили: студенты гр. 820601 Пальчик А.М. Шведов А.Р. Проверил: Ярмолик В. И.

1. ЦЕЛЬ РАБОТЫ

- изучение задачи получения интервальных оценок параметров распределений;
- приобретение навыков получения интервальных оценок параметров распределений в системе *Matlab*.

2. ВЫПОЛНЕНИЕ РАБОТЫ

Доверительный интервал для математического ожидания a нормальной генеральной совокупности $N(a,\sigma^2)$ при известной дисперсии σ^2

$$\bar{x} - u_{\frac{1-\gamma}{2}} \frac{\sigma}{\sqrt{n}} < a < \bar{x} + u_{\frac{1-\gamma}{2}} \frac{\sigma}{\sqrt{n}},$$

где выборочное среднее $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, $u_{\frac{1-\gamma}{2}}$ — это $100 \frac{1-\gamma}{2}$ -процентное отклонение нормального распределения N(0,1).

Доверительный интервал для математического ожидания a нормальной генеральной совокупности $N(a,\sigma^2)$ при неизвестной дисперсии σ^2

$$\bar{x} - t_{\frac{1-\gamma}{2}} \frac{\bar{s}}{\sqrt{n-1}} < a < \bar{x} + t_{\frac{1-\gamma}{2}} \frac{\bar{s}}{\sqrt{n-1}}$$

где выборочная дисперсия $\bar{s}^2=\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2$, $\bar{s}=\sqrt{\bar{s}^2}$; $t_{\frac{1-\gamma}{2}}$ — это $100\frac{1-\gamma}{2}$ -процентное отклонение распределения $T_1(n-1)$ (распределение Стьюдента).

Доверительный интервал для дисперсии σ^2 нормальной генеральной совокупности $N(a,\sigma^2)$ при известном математическом ожидании a

$$\frac{n\bar{s}_0^2}{v_{\frac{1-\gamma}{2}}} < \sigma^2 < \frac{n\bar{s}_0^2}{v_{\frac{1+\gamma}{2}}},$$

где выборочная дисперсия при известном математическом ожидании $\bar{s}_0^2 = \frac{1}{n} \sum_{i=1}^n (x_i - a)^2, \quad v_{\frac{1-\gamma}{2}}, \quad v_{\frac{1+\gamma}{2}} \quad \text{- это} \quad 100 \frac{1-\gamma}{2} \text{- и} \quad 100 \frac{1+\gamma}{2} \text{-- процентные}$ отклонения распределения $H_1(n)$ (распределение хи-вадрат).

Доверительный интервал для дисперсии σ^2 нормальной генеральной совокупности $N(a,\sigma^2)$ при неизвестном математическом ожидании a

$$\frac{n\bar{s}^2}{w_{\frac{1-\gamma}{2}}} < \sigma^2 < \frac{n\bar{s}^2}{w_{\frac{1+\gamma}{2}}}.$$

где $w_{\frac{1-\gamma}{2}},~w_{\frac{1+\gamma}{2}}$ — это $100\frac{1-\gamma}{2}$ и $100\frac{1+\gamma}{2}$ -процентные отклонения распределения $H_1(n-1)$.

Для получения доверительных интервалов параметров нормального распределения, напишем следующую собственную функцию getVar(x,a), которая возвращает выборочное среднее значение x по массиву выборки из нормального распределения, выборочную дисперсию при известном и неизвестном математическом ожидании. Листинг функции представлен на рисунке 2.1:

Рисунок 2.1 – Листинг программы. Файл getVar.m

Далее создадим программу, формирующую необходимые данные для анализа. Смоделируем выборку объемом n=1000 из нормального распределения $N(\alpha,\sigma^2)$ с математическим ожиданием $\alpha=2$ и дисперсией $\sigma^2=9$ и получим доверительные интервалы для этих параметров. Так же воспользуемся стандартной функцией *Matlab normfit(x,alpha)*, которая возвращает несмещенные с минимальной дисперсией точечные оценки *muhat*, *sigmahat* и 100(1-*alpha*)-процентные интервальные оценки *muci*, *sigmaci* параметров нормального распределения по выборке, размещенной в векторе x.

```
12: clear, clc;
13: x = [];
14: n = 1000;
15: m = 40;
16: a = 2;
17: sigma = 9;
18: p = m / n;
19: q = 1 - p;
20: for i = 1 : n
        x(i) = normrnd(a, sigma^{(1/2)});
22: end
23: [meanx, s2,s]=getVar(x,a);
24: y = [0.900.950.99];
    for i = 1 : length(y)
        fprintf('\tПроверка при y=%.2f \n', y(i));
26:
27:
         dov = norminv(1 - (1 - y(i)) / 2,0,1) * ((sigma / n) ^ ( 1 / 2));
28:
29:
         result(1,1) = meanx - dov;
         result(1,2) = meanx + dov;
30:
31:
        dov = tinv(1 - (1 - y(i)) / 2,n) * ((s / (n - 1)) ^ (1 / 2)) ;
32:
33:
         result(2,1) = meanx - dov;
        result(2,2) = meanx + dov;
34:
35:
         result(3,1) = n * s / chi2inv(1 - (1 - y(i)) / 2,n);
36:
         result(3,2) = n * s / chi2inv(1 - (1 + y(i)) / 2,n);
37:
38:
         result(4,1) = n * s2 / chi2inv(1 - (1 - y(i)) / 2, n - 1);
39:
40:
         result(4,2) = n * s2 / chi2inv(1 - (1 + y(i)) / 2, n - 1);
41:
         [muhat, sigmahat, muci, sigmaci] = normfit(x, 1 - y(i))
42:
         result
43:
44:
    end
45:
```

Рисунок 2.2 – Листинг программы

Таблица 1 – Сравнение интервальных оценок

	Собственные вычисления		Matlab		
	$\gamma = 0.90$				
	$ heta_{\scriptscriptstyle ext{H}}$	$ heta_{\scriptscriptstyle m B}$	$ heta_{\scriptscriptstyle ext{H}}$	$ heta_{ ext{ iny B}}$	
$I(a,\sigma)$	1,9259	2,2380	_	_	
$I(a,\bar{s})$	1,9265	2,2375	1,9265	2,2375	
$I(\sigma^2, s_0^2)$	8,2949	9,6102	_	_	
$I(\sigma^2, \bar{s}^2)$	8,2967	9,6130	8,2969	9,6131	
	$\gamma = 0.95$				
	$ heta_{\scriptscriptstyle m H}$	$ heta_{\scriptscriptstyle m B}$	$ heta_{ ext{ iny H}}$	$ heta_{\scriptscriptstyle m B}$	
$I(a,\sigma)$	1,8961	2,2679	_	_	
$I(a,\bar{s})$	1,8966	2,2674	1,8967	2,2673	
$I(\sigma^2, s_0^2)$	8,1819	9,7504	_	_	
$I(\sigma^2, \bar{s}^2)$	8,1835	9,7533	8,1836	9,8157	
	$\gamma = 0.99$				
	$ heta_{ ext{ iny H}}$	$ heta_{ ext{ iny B}}$	$ heta_{\scriptscriptstyle ext{H}}$	$ heta_{\scriptscriptstyle m B}$	

$I(a,\sigma)$	1,8376	2,3264	_	_
$I(a,\bar{s})$	1,8382	2,3258	1,8383	2,3257
$I(\sigma^2, s_0^2)$	7,9668	10,0324	_	_
$I(\sigma^2, \bar{s}^2)$	7,9683	10,0354	7,9682	10,03555

Найдем интервальные оценки биномиального распределения. Границы доверительного интервала для вероятности p = P(A) события A определяются выражением

$$\frac{n}{n+u_{\frac{1-\gamma}{2}}^2} \left(\hat{p} + \frac{u_{\frac{1-\gamma}{2}}^2}{2n} \pm u_{\frac{1-\gamma}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n} + \frac{u_{\frac{1-\gamma}{2}}^2}{4n^2}} \right)$$

Помимо собственных функций, воспользуемся стандартной функцией $Matlab\ binofit(m,n,alpha)$, которая возвращает интервальную оценку pci параметра p биномиального распределения $Bi_1(n,p)$ по числу m успехов в n испытаниях Бернулли. Зададим количество испытаний n=200, частота случайного события $p=\frac{m}{n}=\frac{40}{200}=0$,2. Приведем код программы на рисунке 2.3:

```
clear, clc
n = 200;
m = 40;
p = m / n;
b = 0;
y = [0.900.950.99];
for i = 1:n
b = b + binornd(n,p);
p = b/n^2;
q = 1 - p;
for i = 1 : length(y)
u = norminv((1-y(i))/2,0,1);
result(1,1) = n/(n+u^2)*(p+u^2/(2*n)-u*(p*q/n+u^2/(4*n^2))^(1/2));
result(1,2) = n/(n+u^2)*(p+u^2/(2*n)+u*(p*q/n+u^2/(4*n^2))^(1/2));
l = result(1,2) - result(1,1)
[phat,pci] = binofit(m,n,1-y(i))
end
```

Рисунок 2.3 – Листинг программы

Полученные при выполнении программы и использовании стадартных функций Matlab доверительные интервалы для вероятности p = P(A) события A сведём в таблицу 2.

Таблица 2 — Доверительные интервалы для p = P(A)

, , , , , ,		1 ' 1	\ /	
Доверительная	Собственные вычисления		Matlab	
вероятность у	$ heta_{\scriptscriptstyle H}$	$ heta_e$	$ heta_{\scriptscriptstyle H}$	$ heta_e$
0,90	0,1593	0,2524	0,1546	0,2522
0,95	0,1521	0,2629	0,1469	0,2622
0,99	0,1389	0,2840	0,1326	0,2822

3. ВЫВОД

В ходе выполнения лабораторной работы были изучены методы получения интервальных оценок параметров распределений, а также приобретены навыки получения интервальных оценок параметров распределений в системе *Matlab*. Полученные собственным способом интервальные оценки практически совпадают с оценками, полученными средствами *Matlab*.