Контекстно-свободные грамматики. Удаление &-правил

Определение: Правила вида $A \to \varepsilon$, $A \in V_M$ называются **ε-правилами**.

1. G =
$$(V_T, V_N, P, S), V_T = \{a, b\}, V_N = \{S\},$$

 $P = \{1.S \rightarrow aSb, 2.S \rightarrow \epsilon\}.$

2. G =
$$(V_T, V_N, P, S), V_T = \{d, c, b\}, V_N = \{S\},$$

P= $\{1.A \rightarrow dBc, 2.A \rightarrow d, 3. B \rightarrow Ab, 4. B \rightarrow \epsilon\}.$

Контекстно-свободные грамматики. **Удаление** *E*-правил

Определение: Определим следующее множество $N_{\varepsilon}=\{A \in V_N \mid A \Rightarrow \varepsilon\}$

все нетерминальные символы которые порождают нулевое слово через определенное количество шагов.

Контекстно-свободные грамматики. Удаление Е-правил

Алгоритм создания множества N_s:

Шаг 1: i=1, $N_{\epsilon}^{1} = \{A \mid A \rightarrow \epsilon\}$ Шаг 2: i=i+1, $N_{\epsilon}^{\ i}$ = $N_{\epsilon}^{\ i-1} \cup \{A \mid A-> X_1X_2...X_n \ и X_1,X_2,...X_n \in N_{\epsilon}^{\ i-1}\}$ Шаг 3: Если $N_{\epsilon}{}^{i}
eq N_{\epsilon}{}^{i-1}$ тогда повторяется шаг 2Шаг 4: Если $N_{\epsilon}^{i} = N_{\epsilon}^{i-1}$ тогда стоп.

Пример. $G=(V_T, V_N, P, A), V_T=\{a\}, V_N=\{A, B, C\},$ P={1.A → BC, 2.B → BC, 3.B → ε, 4.C → ε}. Создать множество Nε.

Контекстно-свободные грамматики. Удаление & правил

Теорема: Для любой контекстно свободной грамматики G можно построить эквивалентную грамматику G' без ε-продукций.

Контекстно-свободные грамматики. **Удаление** *E*-правил

Алгоритм создания $G'=\{V_{\overline{\nu}}V_{N}',P',S\}$ без ε правил

- 1. P'={A $\rightarrow \alpha / \alpha \neq \epsilon$ }.
- 2. Для всех правил вида $A \rightarrow \alpha_1 B \alpha_2$, где $B \in N_s$, а $\alpha_1\alpha_2\neq \varepsilon$ определим множество правил $P' = P' \cup \{A \rightarrow \alpha_1 \alpha_2\}.$
- 3. Если $S \in N_{\epsilon}$ тогда $P' = P' \cup \{S \rightarrow \epsilon\}$ (dacă S nu apare in p. dr.) În caz contrar

 $S' \to \varepsilon$ $S' \to S, S'$ neterminal nou

Sarcini

- $G = (V_T, V_N, P, S), V_T = \{a, b\}, V_N = \{S, M, C, K, T\},$
- $P=\{1.S\Rightarrow aaCM, 2.S\Rightarrow aaaKT, 3.M\Rightarrow aMb,4.M\Rightarrow bMa, 5.M\Rightarrow \epsilon,\\ 6.C\Rightarrow aCa, 7.C\Rightarrow bCb, 8.K\Rightarrow bT, 9.K\Rightarrow aT, 10.T\Rightarrow bKa,\\ 11.T\Rightarrow ab\}.$
- G = (V_T, V_N, P, S), V_T={a, b}, V_N={S, T, U, V, W, X, Z},
- $\begin{array}{l} \mathsf{P} \text{=} \{1.\mathsf{S} \to \mathsf{UX}, 2.\mathsf{S} \to \mathsf{VZ}, 3.\mathsf{V} \to \mathsf{aTb}, 4.\mathsf{V} \!\!\to\! \mathsf{bTa}, 5.\mathsf{X} \!\!\to\! \mathsf{Xa}, \\ 6.\mathsf{X} \!\!\to\! \mathsf{Xb}, 7.\mathsf{X} \!\!\to\! \epsilon, 8.\mathsf{Z} \!\!\to\! \mathsf{a}, 9.\mathsf{W} \!\!\to\! \mathsf{ab}, 10.\mathsf{U} \!\!\to\! \mathsf{aUa}, 11.\mathsf{U} \!\!\to\! \mathsf{bUb}, \\ 12.\mathsf{T} \!\!\to\! \mathsf{aa}, 13.\mathsf{T} \!\!\to\! \mathsf{bb}\}. \end{array}$

Sarcini		
1.S→ε 2.S→BC 3.S→Ab 4.B→ε 5.C→c 6.A→Aa 7.A→ε	1.S→AbA 2.S→cAb 3.S→Bb 4.A→aAb 5.A→ε 6.B→AA 7.B→a	1.S→ABC 2. A→BB 3.A→ε 4.B→CC 5.B→ε 6.C→AA 7.C→b