Classification

Vikram Pudi vikram@iiit.ac.in **IIIT Hyderabad**

Talk Outline

- Introduction
 - Classification Problem
 - Applications
 - Metrics
 - Combining classifiers
- Classification Techniques

2

The Classification Problem

Outlook	Temp (°F)	Humidity (%)	Windy?	Class
sunny	75	70	true	play
sunny	80	90	true	don't play
sunny	85	85	false	don't play
sunny	72	95	false	don't play
sunny	69	70	false	play
overcast	72	90	true	play
overcast	83	78	false	play
overcast	64	65	true	play
overcast	81	75	false	play
rain	71	80	true	don't play
rain	65	70	true	don't play
rain	75	80	false	play
rain	68	80	false	play
rain	70	96	false	play
sunny	77	69	true	?
rain	73	76	false	?

Play Outside?

Model relationship between class labels and attributes

⇒ Assign class labels to new data with unknown labels

Applications

- - Classify emails into spam / non-spam
 - Classify web-pages into yahoo-type hierarchy
 NLP Problems
 Tagging: Classify words into verbs, nouns, etc.
- Risk management, Fraud detection, Computer intrusion detection
 - Given the properties of a transaction (items purchased, amount, location, customer profile, etc.)
 Determine if it is a fraud
- Machine learning / pattern recognition applications

 - VisionSpeech recognition
- All of science & knowledge is about predicting future in terms of
 - So classification is a very fundamental problem with ultra-wide scope of applications

Metrics

3

- accuracy
- classification time per new record
- training time
- main memory usage (during classification)
- model size

Accuracy Measure

- Prediction is just like tossing a coin (random variable X)
 - "Head" is "success" in classification; X = 1
 - "tail" is "error"; X = 0
 - X is actually a mapping: {"success": 1, "error": 0}
- In statistics, a succession of independent events like this is called a bernoulli process
 - Accuracy = P(X = 1) = p
 - mean value = $\mu = E[X] = p \times 1 + (1-p) \times 0 = p$
 - variance = σ^2 = E[(X- μ)²] = p (1-p)
- Confidence intervals: Instead of saying accuracy = 85%, we want to say: accuracy ∈ [83, 87] with a confidence of 95%

5

Binomial Distribution

- Treat each classified record as a bernoulli trial
- If there are n records, there are n independent and identically distributed (iid) bernoulli trials, X_i , i = 1,...,n
- Then, the random variable $X = \sum_{i=1,...,n} X_i$ is said to follow a binomial distribution
 - $P(X = k) = {}^{n}C_{k} p^{k} (1-p)^{n-k}$
- Problem: Difficult to compute for large n

7

Normal Distribution

- Continuous distribution with parameters μ (mean), σ^2 (variance)

 - Probability density: $f(x) = (1/\sqrt{(2\pi\sigma^2)}) \exp(-(x-\mu)^2/(2\sigma^2))$
- Central limit theorem:
 - Under certain conditions, the distribution of the sum of a *large number*, of iid random variables is approximately normal
 - lacksquare A binomial distribution with parameters n and p is approximately normal for large n and p not too close to 1 or 0
 - The approximating normal distribution has mean μ = np and standard deviation $\sigma^2 = (n p (1 - p))$

8

Confidence Intervals

Normal distribution with mean = 0 and variance = 1

- To use this we have to transform our random variable to have mean = 0 and variance
- Subtract mean from X and divide by standard deviation

 $Pr[X \ge z]$ 0.1% 3.09 0.5% 2.58 1% 2.33 5% 1 65 10% 1.28 20% 0.84 0.25

9

Estimating Accuracy

- Holdout method
 - Randomly partition data: training set + test set
 - accuracy = |correctly classified points| / |test data points|
- Stratification
 - Ensure each class has approximately equal proportions in both partitions
- Random subsampling
 - Repeat holdout k times. Output average accuracy.
- k-fold cross-validation
 - Randomly partition data: S₁,S₂,...,S_k
 - First, keep S₁ as test set, remaining as training set
 - Next, keep S₂ as test set, remaining as training set, etc.
 - accuracy = |total correctly classified points| / |total data points|
- Recommendation:
 - Stratified 10-fold cross-validation. If possible, repeat 10 times and average results. (reduces variance)

10

Is Accuracy Enough?

- If only 1% population has cancer, then a test for cancer that classifies all people as non-cancer will have 99% accuracy.
- Instead output a confusion matrix:

Actual/ Estimate	Class 1	Class 2	Class 3
Class 1	90%	5%	5%
Class 2	2%	91%	7%
Class 3	8%	3%	89%

Combining Classifiers

- Get k random samples with replacement as training sets (like in random subsampling).
- ⇒ We get k classifiers
- Bagging: Take a majority vote for the best class for each new record
- Boosting: Each classifier's vote has a weight proportional to its accuracy on training data
- Like a patient taking multiple opinions from several doctors

11

Talk Outline

- Introduction
- Classification Techniques
 - Nearest Neighbour Methods
 - **Decision Trees**
 - ID3, CART, C4.5, C5.0, SLIQ, SPRINT
 - 3. Bayesian Methods

 - Naïve Bayes, Bayesian Belief Networks
 Maximum Entropy Based Approaches
 - Association Rule Based Approaches
 - Soft-computing Methods:
 - Genetic Algorithms, Rough Sets, Fuzzy Sets, Neural Networks
 - Support Vector Machines
 - Convolutional Neural Networks, Deep Learning

Nearest Neighbour Methods

k-NN, Reverse Nearest Neighbours

14

k-Nearest Neighbours

- Model = Training data
- Classify record R using the k nearest neighbours of R in the training data.
- Most frequent class among k NNs
- Distance function could be euclidean
- Use an index structure (e.g. R* tree) to find the k NNs efficiently

15

Reverse Nearest Neighbours

- Records which consider R as a k-NN
- Output most frequent class among RNNs.
- More resilient to outliers.

16

Decision Trees

Basic Tree Building Algorithm

```
MakeTree ( Training Data D ):
    Partition ( D )

Partition ( Data D ):
    if all points in D are in same class: return
    Evaluate splits for each attribute A
    Use best split found to partition D into D<sub>1</sub>,D<sub>2</sub>,..., D<sub>n</sub>
    for each D<sub>i</sub>:
        Partition (D<sub>i</sub>)
```

ID3, CART

ID3

- Use information gain to determine best split
- $gain = H(D) \sum_{i=1...n} P(D_i) H(D_i)$
- $H(p_1, p_2, ..., p_m) = -\sum_{i=1...m} p_i \log p_i$
- like 20-question game
 - Which attribute is better to look for first: "Is it a living thing?" or "Is it a duster?"

CART

- Only create two children for each node
- Goodness of a split (Φ) Φ = 2 P(D₁) P(D₂) $\sum_{i=1...m} |P(C_j / D_1) - P(C_j / D_2)|$

20

Shannon's Entropy

- An expt has several possible outcomes
- In N expts, suppose each outcome occurs M times
- This means there are N/M possible outcomes
- To represent each outcome, we need log N/M bits.
 - This generalizes even when all outcomes are not equally frequent.
 - Reason: For an outcome j that occurs M times, there are N/M equi-probable events among which only one cp to j
- Since p_i = M / N, information content of an outcome is -log p_i
- So, expected info content: $H = -\sum p_i \log p_i$

21

Bayesian Methods

22

Naïve Bayes

- New data point to classify: X=(x₁,x₂,...x_m)
- Strategy:
 - Calculate P(C_i/X) for each class C_i.
 - Select C_i for which P(C/X) is maximum

$$\begin{array}{ll} P(C_i/X) & = P(X/C_i) \; P(C_i) \; / \; P(X) \\ & \propto \; P(X/C_i) \; P(C_i) \\ & \propto \; P(x_1/C_i) \; P(x_2/C_i) \ldots P(x_m/C_i) \; P(C_i) \end{array}$$

- Naïvely assumes that each x_i is independent
- We represent P(X/C_i) by P(X), etc. when unambiguous