计算方法

第一章 计算方法概论

课程背景

科学技术发展到今天, 电子计算机的应用已渗透到 社会生活的各个领域。其中,计算模拟是电子计算机处 理实际问题的一种关键手段,从宏观天体运动学到微观 分子细胞学说,从工程系统到非工程系统,无一能离开 计算方法。计算方法这门学科的诞生,使科学发展产生 了巨大飞跃,它使各科学领域从定性分析阶段走向定量 分析阶段, 从粗糙走向精密。由此可见, 计算方法是当 今每一位从事科学研究与应用的人不可缺少的知识。本 章主要介绍数值算法的基本思想。

课程梗概

梗概:

- 数学问题
- 数值算法
- 算法分析

重点:

- 算法构造的思想
- 各种基础数值算法
- 算法分析的方法

课程内容

- 第一章 计算方法概论
- 第二章 非线性方程的数值解法
- 第三章 线性方程组的数值解法
- 第四章 插值方法
- 第五章 数值积分
- 第六章 常微分方程初值问题的数值解法

算法流程

算法特点

当构造一个数值算法时,它既要面向数学模型,使 算法能尽可能地仿真原问题;同时,它也要面向计算机 及其程序设计,要求算法具递推性、简洁性及必要的准 确性,使其能借助于计算机最终在尽可能少的时间内获 得合符原问题精度要求的数值解。

算法思想

简单

重复

算法设计的基本思想:

- 规模缩减的思想
- 校正的思想
- 松弛的思想
- 并行的思想

• . . .

算法分类

直接法:

采用由原模型精确解的递推关系来实现计算机 求解的方法。

数值方法:

利用原模型解的近似递推关系求得问题逼近解的方法,所获逼近解称为原问题的数值解。

例1: 计算积分
$$I_n = \int_0^1 \frac{x^n}{x+5} dx$$
, $n = 0,1,2,...,30$.

解: 通过直接计算可产生递推关系:

$$I_n = -5I_{n-1} + \frac{1}{n}, \quad I_0 = \ln\frac{6}{5} \approx 1.8232e - 001.$$
 (1)

且由经典微积分知识可推得 I_n 具如下性质:

- 1) $I_n > 0$;
- 2) *I*_n单调递减;
- 3) $\lim_{n\to\infty}I_n=0;$

4)
$$\frac{1}{6n} < I_{n-1} < \frac{1}{5n} \quad (n > 1)$$

算法A: 按公式(1),自n=1计算到n=30产生如下计算结果

n	1	2	3	4	5
I_n	8.8392e-002	5.8039e-002	4.3139e-002	3.4306e-002	2.8468e-002
n	6	7	8	9	10
I_n	2.4325e-002	2.1233e-002	1.8837e-002	1.6926 e-002	1.5368e-002
n	11	12	13	14	15
I_n	1.4071e-002	1.2977e-002	1.2040 e-002	1.1229 e-002	1.0522 e-002
n	16	17	18	19	20
I_n	9.8903e-003	9.3719e-003	8.6960e-003	9.1515e-003	4.2426e-003
n	21	22	23	24	25
I_n	2.6406e-002	-8.6575e-002	4.7635e-001	-2.3401e+000	1.1740e+001
n	26	27	28	29	30
I_n	-5.8664e+001	2.9336e+002	-1.4667e + 003	7.3338e+003	-3.6669e+004

算法A:每向前推进一步,计算值的舍入误差增长5倍算法B:

第1步,由性质 4)
$$\frac{1}{6n} < I_{n-1} < \frac{1}{5n}$$
 $(n > 1)$ 取 $I_{30} \approx \frac{\frac{1}{6 \times 31} + \frac{1}{5 \times 31}}{2} = 5.9140e - 003,$

第2步,用递推公式
$$I_{n-1} = -\frac{I_n}{5} + \frac{1}{5n}$$
,自 $n=30$ 计算到 $n=1$ 。

算法B每向后推进一步,其舍入误差便减少5倍。

算法B获得合符原积分模型性态的如下数值结果:

n	29	28	27	26	25
I_n	5.4839e-003	5.7998e-003	5.9829e-003	6.2108e-003	6.4501e-003
n	24	23	22	21	20
I_n	6.7100e-003	6.9913e-003	7.2974e-003	7.6314e-003	7.9975e-003
n	19	18	17	16	15
I_n	8.4005e-003	8.8462e-003	9.3419e-003	9.8963e-003	1.0521e-002
n	14	13	12	11	10
I_n	1.1229e-002	1.2040e-002	1.2977e-002	1.4071e-002	1.5368e-002
n	9	8	7	6	5
I_n	1.6926e-002	1.8837e-002	2.1233e-002	2.4325e-002	2.8468e-002
n	4	3	2	1	0
I_n	3.4306e-002	4.3139e-002	5.8039e-002	8.8392e-002	1.8232e-001

数值方法实例

例2: 两点边值问题

$$\begin{cases} y'' + p(x)y' + q(x)y = f(x), & x \in (a,b) \\ y(a) = \alpha, & y(b) = \beta, \end{cases}$$

解: 1) 将区间[a,b]离散化,即将[a,b]N等分,所得节点为

$$x_i = a + ih$$
 $(i = 0, 1, 2, ..., N; x_0 = a, x_N = b)$

2) 将两点边值问题离散化。由于

$$\frac{y(x_{i+1}) - y(x_{i-1})}{2h} = y'(x_i) + O(h^2),$$

$$\frac{y(x_{i+1}) - 2y(x_i) + y(x_{i-1})}{h^2} = y''(x_i) + O(h^2),$$

数值方法实例

故可略去上两式中的余项,并取 $y_i \approx y(x_i)$ 即得

$$y'(x_i) \approx \frac{y_{i+1} - y_{i-1}}{2h},$$

$$y''(x_i) \approx \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2},$$

代入两点边值问题方程得差分格式

$$\begin{cases} \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + p_i \frac{y_{i+1} - y_{i-1}}{2h} + q_i y_i = f_i, & i = 1, 2, ..., N - 1, \\ y_0 = \alpha, & y_N = \beta, \end{cases}$$