Project 2: Healthcare

Problem Statement:

- The objective is to predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset.
- Build a model to accurately predict whether the patients in the dataset have diabetes or not.

Dataset: Healthcare data.csv

Project Task:

• <u>Data Exploration:</u>

1. Perform Descriptive Analysis –

Understanding different variables and their corresponding values. Finding missing values, if any. Replacing a value of zero with the variables mean or median accordingly.

- 2. Visually explore these variables using histograms.
- 3. Create a count (frequency) plot describing the data types and the count of variables.
- 4. Check the balance of the data by plotting the count of outcomes by their value.

 Describe your findings
 - The countplot shows the values of outcome variable int the dataset. 0 represents 'no diabetes' whereas 1 represents 'Diabetes'.
 - -The dataset is having Outcome variable (label) values as 0 with count 500 and 1 with count 268. It is an imbalanced data to get analyzed.
 - We have to balance the dataset before Data Classification using Imbalanced dataset technique such as SMOTE. This technique will be applied on training and testing dataset.

- 5. Create scatter charts between the pair of variables to understand the relationships.
- 6. Perform correlation analysis.
 - A function corr() is used to find the correlation between variables in the dataset.
 - A heatmap is used to visualize the correlation pattern in the dataset.

• Data Modelling

- 1. Model Building Strategy
 - -The dataset consists of Outcome variable which is a Categorical Variable. 0 represents 'No diabetes' and 1 represents 'Diabetes' for the Outcome column in the dataset.
- 2. Classification Model Classification Model that will be applied is Logistic Regression as the Outcome Variable is Binary Categorical Variable.
- 3. Compare various models with the results from KNN algorithm.

Other Classification Models:

- Decision Tree
- Random Forest Classifier
- SVM (Support Vector Machine)
- KNN (K- Nearest Neighbours)

4. Create a classification report by analyzing sensitivity, specificity, AUC (ROC curve), etc.

Classification Report:

Classification	Accuracy	Sensitivity	AUC (ROC
Model			Curve)
Logistic Regression (Without SMOTE)	48%	69%	-
Logistic Regression (With SMOTE)	71%	70%	0.83
Decision Tree	57%	67%	0.93
Random Forest Classifier	72%	74%	0.98
SVM	65%	0%	-
KNN	62%	67%	0.86

• Data Reporting:

Create a dashboard in tableau by choosing appropriate chart types and metrics useful for the business. The dashboard must entail the following:

- 1. Pie chart to describe the diabetic or non-diabetic population
- 2. Scatter charts between relevant variables to analyze the relationships
- 3. Histogram or frequency charts to analyze the distribution of the data
- 4. Heatmap of correlation analysis among the relevant variables
- 5. Create bins of these age values: 20-25, 25-30, 30-35, etc. Analyze different variables for these age brackets using a bubble chart.

Link to Tableau dashboard:

 $\underline{https://public.tableau.com/app/profile/ruhi.nehri/viz/HealthCareCapstaoneProject/Fin}\\ alReportDsshboard?publish=yes$