Math 3A03 - Tutorial 7 Questions - Winter 2019

Nikolay Hristov

March 4/6, 2019

Problem 1. Prove that $\lim_{x\to a} x^3 = a^3$ for every $a \in \mathbb{R}$.

Problem 2. Let

$$f(x) = \begin{cases} \frac{1}{q} & p, q \in \mathbb{N}, & \gcd(p, q) = 1\\ 0 & x \notin \mathbb{Q}\\ 0 & x = 0 \end{cases}.$$

For which $y \in \mathbb{R}$ does the limit exist? Where is this function continuous?

Problem 3. Which of the following are uniformly continuous:

- 1. $f(x) = x^3$ with $x \in \mathbb{R}$
- 2. $f(x) = x^3$ with $x \in [0, 3]$
- 3. $f(x) = \frac{1}{x}$ with $x \in (0, 1)$
- 4. $f(x) = \frac{1}{x}$ with $x \in [1, \infty)$
- 5. $f(x) = \sin\left(\frac{1}{x}\right)$ with $x \in (0,1)$

Problem 4. Suppose that f(x) and g(x) are continuous on \mathbb{R} , with f(x) = g(x) on E, a dense subset of \mathbb{R} . Prove that f(x) = g(x) on \mathbb{R} .