Curso avanzado sobre Arduino: Protocolos

ElCacharreo.com

Introducción a Arduino: Presente

Introducción a Arduino: Presente

José Antonio Vacas Martínez

i²**C** es un bus de comunicaciones en serie. Su nombre viene de *Inter-Integrated Circuit* (Circuitos Inter-Integrados). La versión 1.0 data del año 1992 y la versión 2.1 del año 2000, su diseñador es Philips. La velocidad es de 100Kbits por segundo en el modo estándar, aunque también permite velocidades de 3.4 Mbit/s. Es un bus muy usado en la industria, principalmente para comunicar microntroladores y sus periféricos en sistemas integrados (*Embedded Systems*) y generalizando más para comunicar circuitos integrados entre si que normalmente residen en un mismo circuito impreso.

| start | A7 A6 A5 A4 A3 A2 A1 | R/W | ACK | ... DATA ... | ACK | stop | idle |

Ejemplo <u>I2C</u>

Dispositivos I2C

- Memorias externas
- Sensores
- GPIO
- Potenciómetros
- ADC
- DAC
-

Librería Wire

Esta librería te permite comunicar con dispositivos I2C / TWI. En la mayoría de las placas Arduino, SDA (línea de datos) está en el pin analógico 4, y SCL (línea de reloj) está en el pin analógico 5. En Arduino Mega, SDA esta en el pin digital 20 y SCL en el 21.

Funciones

- <u>begin()</u>
- <u>begin</u>(address)
- requestFrom(address, count)
- beginTransmission(address)
- endTransmission()
- <u>send()</u>
- byte <u>available()</u>
- byte receive()
- onReceive(handler)
- <u>onRequest</u>(handler)

Comunicaciones: SPI

<u>SPI</u>

Functions

- <u>begin()</u>
- <u>end()</u>
- <u>setBitOrder()</u>
- setClockDivider()
- <u>setDataMode()</u>
- <u>transfer()</u>

Comunicaciones: SPI

Ejemplos:

- Tarjetas SD
- Módulos Ethernet
- RTC
- ...

Arduino ethernet usa el pin 4 para seleccionar la SD y el 10 para la ethernet. Enlace

PINS 1-7, 15	Q0 " Q7	Output Pins
PIN 8	GND	Ground, Vss
PIN 9	Q7"	Serial Out
PIN 10	MR	Master Reclear, active low
PIN 11	SH_CP	Shift register clock pin
PIN 12	ST_CP	Storage register clock pin (latch pin)
PIN 13	OE	Output enable, active low
PIN 14	DS	Serial data input
PIN 16	Vcc	Positive supply voltage

Ejemplo

Comunicaciones: OneWire

Protocolo propietario de Dallas (Maxim-IC)

Único hilo ID único Capacidad parásita

Comunicaciones: OneWire

Implementación

Comunicaciones: ZigBee

Zigbee

- Coordinador
- Router
- Nodo

UGR Julio 2012

Conclusiones

Gracias por vuestra atención

