Exploring EnMAP hyperspectral images and a novel ensemble deep learning model for classifying forest land-cover types in Brazil

<u>DecisionES</u>: Symposium on Ecosystem Services, Forest Management and Decision Making

Matheus Pinheiro Ferreira et al.

Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo (USP/ESALQ)

Introduction

Importance of Forest Land-Cover Mapping

Spatially explicit information on forest land-cover types is critical for:

Effective management of forest ecosystems

Conservation of biodiversity

Monitoring restoration initiatives

Carbon sequestration assessment

Challenges in Tropical Forest Classification

Tropical forests present specific challenges:

High species diversity

Complex structural characteristics

Spectral variability

Mixed pixels in moderate-resolution images

Advanced Remote Sensing Techniques

The Environmental Mapping and Analysis Program (EnMAP) satellite offers:

High spectral resolution (224 bands)

Ability to detect chemical characteristics

Continuous coverage of the electromagnetic spectrum

Potential for discrimination of forest types

Research Questions

Model Comparison:

How does the classification accuracy of an ensemble of pixel-wise deep learning methods compare to individual deep learning models and traditional machine learning techniques in differentiating forest land-cover types?

_

Band Selection:

Does band selection improve the performance of deep learning models for hyperspectral forest classification?

2 Spectral Resolution:

How does spectral resolution influence the classification accuracy of forest land-cover types when comparing hyperspectral data to simulated multispectral data?

4 Spectral Characteristics:

What are the specific spectral and chemical characteristics of forest land-cover types that account for their discriminative properties and classification accuracy?

Study area

São Paulo State, Brazil

Broad biophysical and restoration gradients that favor developing and testing new remote sensing approaches to classify forest land-cover types.

Biomes

Atlantic Forest (coastal region) Cerrado (inland region)

Ecological Diversity

Rich mosaic of forest formations High level of endemism and biodiversity

Diverse climatic, topographic, and soil conditions

Various restoration techniques employed

Forest land-cover types

Conserved remnants

Native forest fragments in an advanced stage of conservation, with structure and composition close to the original forests.

Key Characteristics:

High species diversity

Complex vertical structure

Higher pigment concentration

Closed and continuous canopy

Mature trees with large diameters

Natural regeneration

Areas in the process of spontaneous recovery after disturbances, without direct human intervention for species planting.

Key Characteristics:

Variable species diversity

Developing structure

Greater spectral heterogeneity

Presence of gaps and different successional stages

Pioneer and early secondary species dominance

Forest land-cover types

Restoration plantations

Reforested areas through active planting of native species, with direct human intervention to accelerate recovery.

Key Characteristics:

Planned species composition

More regular planting pattern

More homogeneous structure

Different ages and development stages

Mix of pioneer and non-pioneer species

Monocultures

Commercial plantations of eucalyptus mainly for pulp production

Key Characteristics:

Low diversity (one dominant species)

Regular planting pattern

High spectral homogeneity

Uniform canopy height and structure

Field data collection

Plot Establishment

30×30 m plots (matching EnMAP pixel size)
Minimum distance of 60 meters between plots
Minimum distance of 30 meters from forest edges
Exclusion of areas smaller than one hectare

Data Collection Methods

High-precision Global Navigation Satellite System (GNSS) for plot corners Field observations to identify forest types Interviews with local managers to differentiate between natural regeneration and restoration plantations Post-processing of GNSS data to ensure accurate geolocation

EnMAP hyperspectral data

EnMAP characteristics

German hyperspectral satellite mission (launched 2022)

Sun-synchronous orbit at 653 km altitude Swath width: 30 km

Revisit time: 4 days (with pointing capability)

Sensor specifications

VNIR: 420-1000 nm (88 bands)

bands) Total: 224 spectral bands Spectral sampling: 6.5-10 nm Spatial resolution: 30 m

Study area

16 EnMAP scenes over São Paulo state Level 2A data (atmospherically corrected) Acquisition period: 2022-2023

False color composition of an EnMAP scene

Deep Learning Models

1D Convolutional Neural Network

A specialized neural network architecture designed to process one-dimensional sequential data, such as spectral signatures in hyperspectral imagery.

Autoencoder Neural Network

A type of neural network designed to learn efficient data encodings in an unsupervised manner, with applications in dimensionality reduction and feature learning.

Recurrent Neural Network

A class of neural networks designed to recognize patterns in sequential data by maintaining a memory of previous inputs through recurrent connections.

Ensemble Model Architecture

Ensemble approach

Integration of three distinct deep learning models to leverage their complementary strengths for improved forest type classification.

Experimental Setup

Dataset division

Training set: 80% of the data Testing set: 20% of the data

Preservation of plot identity during division 100 iterations with different random splits Results reported as mean and standard deviation

Experimental scenarios

Scenario 1: Individual models vs. ensemble model

Scenario 2: Hyperspectral vs. simulated multispectral data

Scenario 3: All bands vs. selected bands

Scenario 4: Analysis of spectral and chemical properties

Evaluation metrics

F1-Score (macro-averaged)
Confusion Matrix

Training parameters

Parameter	Value
Optimizer	Adam
Learning Rate	0.0001
Epochs	5000
Batch Size	512
Early Stopping	Patience = 100 epochs
Loss Function	Categorical Cross-Entropy

Spectral properties of forest land-cover types

Spectral properties of forest land-cover types

Spectral properties of forest land-cover types

Classification results

Conclusions and Future Directions

Main Contribution

Novel ensemble deep learning approach for forest type classification using hyperspectral data

Practical Applications

Improved monitoring of forest resources

Accurate mapping of planted and natural forests

Future Research Directions

Integration of multi-temporal EnMAP data to capture seasonal dynamics

Fusion of hyperspectral and LiDAR data for improved structural information

Forest Conservation

Restoration Monitoring

Carbon Sequestration

Contact: Matheus Pinheiro Ferreira | mpferreira@usp.br | Department of Forest Sciences, ESALQ/USP