Observation de l'ionosphère Moyens instrumentaux au sol

Réseaux de magnétomètres au sol

https://www.carisma.ca/

https://space.fmi.fi/image/

Réseaux de magnétomètres au sol

Réseaux de magnétomètres au sol

Caméras plein-ciel

Caméras plein-ciel - keograms

Caméras plein-ciel en réseau

Caméras plein-ciel

Interféromètre de Fabry-Perot

Cercles obtenus dépendent de la vitesse (Doppler) et de la température de l'espèce émettrice.

Interféromètre de Fabry-Perot

Interféromètre de Fabry-Perot

Ionosondes

$$n^2 = 1 - \frac{\omega_P^2}{\omega^2}$$

- Gamme du MHz. Balayage en fréquence jusqu'à obtenir la fréquence plasma.
- Valable tant que Ne croit!
- Pas accès aux altitudes plus hautes que le maximum de région F.

Ionosondes

ftp://ftp.ngdc.noaa.gov/ionosonde/data/

Les radars HF permettent d'étudier les mouvements horizontaux à grande échelle de l'ionosphère. Ils émettent des ondes radioélectriques, de fréquence ajustable entre 8 et 20 MHz, qui sont réfractées dans l'ionosphère. Une partie de l'énergie est rétrodiffusée (diffusion de Bragg) par la structure irrégulière du plasma et revient vers le radar. L'onde rétrodiffusée subit par effet Doppler un changement de fréquence proportionnel à la composante perp. à **B** de la vitesse du plasma.

Radars à diffusion cohérente SuperDARN

SuperDARN

SuperDARN Circulation globale

Accès aux données SuperDARN

http://vt.superdarn.org

Signal rétrodiffusée par les électrons libres (diffusion Thomson)... dont le mouvement est contraint pas les ions.

et neréhoc nl nois uffi De dert ce pS

EISCAT Svalbard Radar (ESR)

EISCAT Svalbard Radar (ESR)

Données EISCAT Le long du champ magnétique

Données EISCAT Scan en azimut

Accès aux données EISCAT et radars (IS)

https://portal.eiscat.se/madrigal/

Tutorial

- Simple Local Data Access
- Full Data Access
- Run Models
- Documentation
 - Web access
 - Script access
- Open Madrigal

Welcome to the Madrigal Database at EISCAT

Madrigal is an upper atmospheric science database used by groups throughout the world. Madrigal is a robust, World Wide Web based system capable of managing and serving archival and real-time data, in a variety of formats, from a wide range of upper atmospheric science instruments. Data at each Madrigal site is locally controlled and can be updated at any time, but shared metadata between Madrigal sites allow searching of all Madrigal sites at once from any Madrigal site.

Data can be accessed from a variety of Madrigal sites, including (but not limited to) Millstone Hill, USA, Arecibo, Puerto Rico, EISCAT, Sweden, SRI International, USA, Cornell University, USA, Jicamarca, Peru, the Institute of Geodesy and Geophysics, the Chinese Academy of Sciences, and finally, the archival CEDAR site. To see a list of all Madrigal sites, choose Full Data Access and select Go to a different Madrigal site. Data can also be accessed directly, using APIs which are available for several popular programming languages (Matlab, python, and IDL). A Subversion archive of all Madrigal software and documentation is available from the Open Madrigal Web site. The latest version of Madrigal and the remote API's may also be downloaded from there.

Suggestions and comments should be directed to Madrigal administrator

madrigal.iggcas.ac.cn/madrigal/

Radars IS dans le monde

Observation de l'ionosphère Missions spatiales

Mesure du champ magnétique AMPERE

Satellites de basse altitude (LEO), orbite polaire *DMSP*

https://www.ngdc.noaa.gov/stp/satellite/dmsp/

Satellites de basse altitude (LEO), orbite polaire Swarm

Curlometer technique: détermination expérimentale du rot. de B et donc de j_{//}.

https://swarm-diss.eo.esa.int/

Satellites de basse altitude (LEO), orbite équatoriale lonospheric CONnection Explorer (ICON)

Altitude 560 km Inclinaison : 27°

Instruments

- MIGHTI: interféromètre de Michelson, mesure la température et la vitesse des neutres
- IVM: Ion Velocity Meter mesure la vitesse des particules chargée
- EUV: imageur extrême UV
- FUV: imageur UV lointain