Notes techniques

1. 2D vs. 3D

L'intensité d'une source omnidirectionnelle 2D diminue en $^1\!/_{\!R}$, et non en $^1\!/_{\!R^2} \to$ ce n'est pas une source 3D-isotrope, mais plutôt une source focalisée dans la direction z (comme un phare-fente) ou un barre lumineuse infinie dans la direction z.

Conjecture : les résultats de la simulation sont les mêmes que en 3D avec des objets infinis suivant z.

2. Angles modulo 2π

De façon générale, on ne ramène jamais systématiquement les angles « géométriques » à $[0,2\pi[$ ou $[-\pi,+\pi[$, car cela casse les potentielles relations d'ordres entre les angles (e.g. $-0.1\,\pi\leqslant\theta\leqslant+0.1\,\pi$ n'est pas équivalent à $1.9\,\pi\leqslant\theta\leqslant0.1\,\pi$, qui n'est jamais vrai). Exceptions :

- \bullet $\;$ angles d'incidences : $i \in \left[\,-\frac{\pi}{2}, +\frac{\pi}{2}\,\right]$ systématiquement
- angle du rayon, ramené à $[0,2\pi[$ à chaque émission, pour éviter d'accumumuler des tours

3. Intersection segment / demi-droite

Segment d'extrémités A et B:As+(1-s)B pour $s\in [0,1].$

Demi-droite portée par \vec{u}_{α} d'origine $O:O+t\,\vec{u}_{\alpha}$ pour $t\in[0,\infty[$.

Intersection:

$$\exists s_{\mathsf{i}}, t_{\mathsf{i}} : A s_{\mathsf{i}} + (1 - s_{\mathsf{i}}) B = O + t_{\mathsf{i}} \vec{u}_{\theta} \Leftrightarrow \overrightarrow{BA} s_{\mathsf{i}} + t_{\mathsf{i}} \vec{u}_{\alpha} = \overrightarrow{BO}$$

$$\iff \exists s_{\mathbf{i}} \in [0, 1], t_{\mathbf{i}} \in [0, \infty[: \begin{bmatrix} x_a - x_b & -x_\alpha \\ y_a - y_b & -y_\alpha \end{bmatrix} \begin{bmatrix} s_{\mathbf{i}} \\ t_{\mathbf{i}} \end{bmatrix} = \begin{bmatrix} x_o - x_b \\ y_o - y_b \end{bmatrix}$$

En ignorant le cas où le segment et la demi-droite sont parallèles, il suffit de résoudre ce système linéaire. Si $s \notin [0,1]$ ou si t < 0, alors il n'y a pas intersection. Sinon, le point d'intersection est $P = O + t_{\rm i} \vec{u}_{\alpha}$, et l'angle d'incidence est $i = \alpha - \theta'$, où $\theta = \angle \overrightarrow{BA}$ et $\theta' = \theta - \frac{\pi}{2}$. L'angle de la normale est $\theta_{\rm normale} = \theta' + \pi$.

1

4. Construction d'un arc de cercle à partir de (A, B, R)

Après translation de $-\vec{a}$ et rotation d'un angle $-\theta_0$, on suppose que A est l'origine et que B est à la verticale de A ($x_B'=0$). Le centre C de l'arc de cercle voulu est l'intersection (de droite ici) des ceux cercles centrés en A et B de rayons R. On voit immédiatement que $y_C'=AB/2$. Le centre C est finalement défini par la solution négative de $x_C'^2+y_C'^2=R^2$, c'est-à-dire

$$x_C' = -\sqrt{R^2 - {y_C'}^2} = -\sqrt{R^2 - (AB/2)^2} \quad \text{définie si } AB \leqslant 2\,R$$

Pour obtenir θ'_A et θ'_B , on a simplement

$$\tan(\mp \theta'_{A,B}) = \frac{y'_C}{-x'_C} = 1/\sqrt{(2R/AB)^2 - 1}$$

On obtient finalement $\theta_{A,B} = \theta'_{A,B} + \theta_0$ et C après rotation d'un angle $+\theta_0$ puis une translation de $+\vec{a}$.

5. Intersection arc de cercle / demi-droite

On suppose que $\theta_A < \theta_B$. La distance $\overrightarrow{d} = OC$ est non signée ici, et les angles ne sont pas absolus comme avec le segment, mais relatifs à l'axe \overrightarrow{OC} (on peut regarder la figure dans n'importe quel sens). L'arc est de rayon de courbure R = CA = CB. Clairement, si $|\alpha| > \frac{\pi}{2}$ et d > R, il n'y a pas intersection.

Pour le premier point d'intersection avec le disque (P ici),

$$\underbrace{d\tan\alpha}_{\boxed{1+2}} = \underbrace{(+R\sin\theta_1)}_{\boxed{1}} + \underbrace{\tan\alpha\cdot(-R\cos\theta_1)}_{\boxed{2}} \quad \Longleftrightarrow \quad b\cdot\sin(\alpha) = \sin(\theta_1-\alpha) \quad \text{où} \quad b = \frac{d}{R}$$

La demi-droite intersecte l'arc \widehat{AB} si θ_1 est défini, donc si 1

 $\overline{1. \text{ On a alors } |\sin(\theta_{\mathsf{t}} - \alpha_{\mathsf{t}})|} = 1, \text{ d'où } \theta_{\mathsf{t}} = \alpha_{\mathsf{t}} \pm \frac{\pi}{2}, \text{ d'où }$

$$\cos \theta_{t} = \cos \left(\alpha_{t} \pm \frac{\pi}{2}\right) = \mp \sin(\alpha_{t}) = \mp \frac{R}{d}$$

On peut retrouver cet angle θ_t en écrivant la condition de tengentialité rayon/cercle au point P:

$$\begin{bmatrix} R\cos\theta_{\mathsf{t}} \\ \pm R\sin\theta_{\mathsf{t}} \end{bmatrix} = O + t\,\vec{n}_{\theta_{\mathsf{t}}}^{\perp} = \begin{bmatrix} -d \\ 0 \end{bmatrix} + t \begin{bmatrix} \sin\theta_{\mathsf{t}} \\ \mp\cos\theta_{\mathsf{t}} \end{bmatrix}$$

Pour y, on a $R \sin \theta_t = -t \cos \theta_t$ donc $t = -R \sin \theta_t / \cos \theta_t$. Alors, pour x, on a

$$R\cos\theta_{\mathsf{t}} = -d + \left(-R\frac{\sin\theta_{\mathsf{t}}}{\cos\theta_{\mathsf{t}}}\right)\sin\theta_{\mathsf{t}} \quad \Longleftrightarrow \quad R\cos^2\theta_{\mathsf{t}} = -d\cos\theta_{\mathsf{t}} - R\sin^2\theta_{\mathsf{t}} \quad \Longleftrightarrow \quad \cos\theta_{\mathsf{t}} = -\frac{R}{d}\left(\cos^2 + \sin^2\right) = -\frac{R}{d}\left(\cos^2\theta_{\mathsf{t}}\right)\sin\theta_{\mathsf{t}}$$

$$b |\sin(\alpha)| \leq 1 \iff |\alpha| < \alpha_t = \arcsin(R/d)$$

lorsque d > R. Pour d < R (O à l'intérieur du cercle), il y a toujours une solution, évidemment.

Pour le deuxième point d'intersection avec le disque, on a

$$\underbrace{d \tan \alpha}_{\text{(1)+(2)}} = \underbrace{(+R\sin \theta_2)}_{\text{(1)+(2)+(3)}} - \underbrace{\tan \alpha \cdot (+R\cos \theta_2)}_{\text{(3)}}$$

... ce qui revient au même : $b \cdot \sin(\alpha) = \sin(\theta_2 - \alpha)$.

Cette équation possède en effet, dans $\theta \in [0, 2\pi[$, nos deux solutions (courbes $\theta(\alpha)$ bi-valuées).

Au final, les solution sont

$$\theta_1 = -\arcsin(b \cdot \sin(\alpha)) + \alpha + \pi$$

$$\theta_2 = +\arcsin(b \cdot \sin(\alpha)) + \alpha$$

Pour d>R, la solution correcte est θ_1 si $\theta_A<\theta_1<\theta_B$, et sinon, éventuellement θ_2 si $\theta_A<\theta_2<\theta_B$. Pour d< R, la seule solution correcte est θ_2 (et si on veut rester dans $[0,2\pi[$, on ajoute 2π à θ_2 pour $\alpha<0$).

Les angles d'incidence respectifs sont

$$i_1\!=\!(\pi-\theta_1)+\alpha\quad\text{et}\quad \tfrac{\pi}{2}\!=\!\alpha+(-i_2)+\left(\tfrac{\pi}{2}-\theta_2\right) \Leftrightarrow i_2\!=\!\alpha-\theta_2$$

6. Réflexion et réfraction sur une interface $n_1 \rightarrow n_2$

Réflexion:

toujours, avec un angle
$$i_{\rm r}\!=\!i$$
 \Rightarrow $\alpha_{\rm r}\!=\!\theta_{\rm normale}\!-\!i$

Réfraction (transmission) :

$$\begin{split} n_1 \sin(i) &= n_2 \sin(i_{\mathsf{t}}) & \quad \text{toujours lorsque } n_1 \leqslant n_2 \\ & \quad \text{pour } i \leqslant i_{\mathsf{cr}} = \arcsin(1/\gamma) \text{ lorsque } n_1 > n_2 \end{split} \quad \text{avec} \quad \gamma := \frac{n_1}{n_2} \\ & \quad \Rightarrow \quad \alpha_{\mathsf{t}} = \theta_{\mathsf{anti-normale}} + i_{\mathsf{t}} = \left(\theta_{\mathsf{normale}} + \pi\right) + \arcsin(\gamma \cdot \sin(i)) \end{split}$$

Coefficients de réflexion en puissance (c'est juste $R = |\rho|^2$) :

$$R_{\mathsf{TE}} = \left| \frac{n_1 \cos i - n_2 \cos i_{\mathsf{t}}}{n_1 \cos i + n_2 \cos i_{\mathsf{t}}} \right|^2 \quad \mathsf{et} \quad R_{\mathsf{TM}} = \left| \frac{n_2 \cos i - n_1 \cos i_{\mathsf{t}}}{n_2 \cos i + n_1 \cos i_{\mathsf{t}}} \right|^2$$

développés²:

$$R_{\mathrm{TE,TM}} = \left\{ \begin{array}{ll} \left(\frac{a-b}{a+b}\right)^2 & \text{si } i \leqslant i_{\mathrm{cr}} \\ 1 & \text{(refl. int. tot.)} \end{array} \right. \text{ si } i \leqslant i_{\mathrm{cr}} \qquad \text{avec} \quad \begin{aligned} a_{\mathrm{TE}} &= \gamma \cos i \\ a_{\mathrm{TM}} &= \gamma^{-1} \cos i \end{aligned} \quad \text{et} \quad b = \sqrt{1-\gamma^2 \sin^2 i} \end{aligned}$$

Réflexion nulle (a = b) si :

•
$$R_{\mathsf{TF}} = 0 \iff \cos^2 i + \sin^2 i = 1 = \gamma^2 \iff n_1 = n_2$$

Et puisque $\sin(\arccos(x)) = \sqrt{1-x^2}$ est indépendant du signe de x, on peut tout aussi bien prendre $\cos\theta_{\rm t} = +R/d$.

2.
$$i_{\mathsf{t}} = \arcsin\left(\frac{n_1}{n_2}\sin(i)\right) \quad \Longrightarrow \quad \cos(i_{\mathsf{t}}) = \begin{cases} \sqrt{1 - \gamma^2 \sin^2 i} & \text{si } i \leqslant i_{\mathsf{cr}} \\ i\sqrt{\gamma^2 \sin^2 i - 1} & \text{si } i > i_{\mathsf{cr}} \end{cases} \quad \mathsf{avec} \quad x = \frac{n_1}{n_2}\sin(i)$$

Coefficients de transmission en puissance (ce n'est pas^3 juste $T = |\tau|^2$) :

$$T = 1 - R$$

par conservation de l'énergie. Ici, l'histoire d'angle de vue de l'interface ne rentre pas en compte, puisqu'on a seulement des rayons \rightarrow l'intégration spatiale est déjà faite, et on manipule des *puissances*, pas des intensités. Cela est cohérent avec le fait d'oublier la formule de l'éclairement $\mathcal{E} = I \cos \theta$.

7. Objets diffusants : BRDF

- réciprocité : $f(i,i_{\rm r})=f(i_{\rm r},i)$ (crucial pour avoir l'équivalence 2D \leftrightarrow 3D z-invar. : les rayons « perdus » hors du plan sont compensés par tous rayons « hors plan » (venant des points $z\neq 0$ des sources) réfléchis dans le plan)
- positivité : $f(i, i_r) > 0$
- conservation de l'énergie : $\forall i, \ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\!\mathrm{d}i_{\rm r}\,f(i,i_{\rm r})=2\pi$ (les absorptions sont réglés avec la variable d'albédo dédiée)
- 3. Coefficients de réflexion en amplitude :

$$\rho_{\mathsf{TE}} = \frac{n_1 \cos i - n_2 \cos i_{\mathsf{t}}}{n_1 \cos i + n_2 \cos i_{\mathsf{t}}} \quad \mathsf{et} \quad \rho_{\mathsf{TM}} = \frac{n_2 \cos i - n_1 \cos i_{\mathsf{t}}}{n_2 \cos i + n_1 \cos i_{\mathsf{t}}}$$

développés :

$$\rho_{\mathsf{TE},\mathsf{TM}} = \left\{ \begin{array}{ll} \frac{a-b}{a+b} & \text{si } i \leqslant i_{\mathsf{cr}} \\ \frac{a-i\,b}{a+i\,b} & \text{(de norme 1)} \ \text{si } i > i_{\mathsf{cr}} \end{array} \right. \quad \text{avec} \quad \begin{array}{ll} a_{\mathsf{TE}} = \gamma \cos i \\ a_{\mathsf{TM}} = \gamma^{-1} \cos i \end{array} \quad \text{et} \quad b = \sqrt{|1-\gamma^2 \sin^2 i|}$$

Coefficients de transmission en amplitude :

$$\tau_{\mathsf{TE}} = \frac{2\,n_1\cos i}{n_1\cos i + n_2\cos i_{\mathsf{t}}} \quad \mathsf{et} \quad \tau_{\mathsf{TM}} = \frac{2\,n_1\cos i}{n_2\cos i + n_1\cos i_{\mathsf{t}}}$$

développés :

$$\tau_{\mathsf{TE},\mathsf{TM}} = \left\{ \begin{array}{ll} \frac{c}{a+b} & \text{si } i \leqslant i_{\mathsf{cr}} \\ \frac{c}{a+i\,b} & \text{(ampl. plasmon) si } i > i_{\mathsf{cr}} \end{array} \right. \quad \text{avec} \quad \begin{array}{ll} c_{\mathsf{TE}} = 2\,\gamma\cos i \\ c_{\mathsf{TM}} = 2\cos i \end{array} \quad \longrightarrow \quad T = \frac{n_2\cos i_{\mathsf{t}}}{n_1\cos i} \, |\tau|^2$$