DATA ANALYTICS ASSIGNMENT 1 HADOOP

INTRODUCTION:

Hadoop is an open-source software framework that is used for storing and processing large amounts of data in a distributed computing environment. It is designed to handle big data and is based on the MapReduce programming model, which allows for the parallel processing of large datasets.

HISTORY:

2003	Google released the paper, Google File System (GFS).
2004	Google released a white paper on Map Reduce.
2006	 Hadoop introduced. Hadoop 0.1.0 released. Yahoo deploys 300 machines and within this year reaches 600 machines.
2007	 Yahoo runs 2 clusters of 1000 machines. Hadoop includes HBase.
2008	 YARN JIRA opened Hadoop becomes the fastest system to sort 1 terabyte of data on a 900 node cluster within 209 seconds. Yahoo clusters loaded with 10 terabytes per day. Cloudera was founded as a Hadoop distributor.
2009	 Yahoo runs 17 clusters of 24,000 machines. Hadoop becomes capable enough to sort a petabyte. MapReduce and HDFS become separate subproject.
2010	 Hadoop added the support for Kerberos. Hadoop operates 4,000 nodes with 40 petabytes.

	o Apache Hive and Pig released.
2011	 Apache Zookeeper released. Yahoo has 42,000 Hadoop nodes and hundreds of petabytes of storage.
2012	Apache Hadoop 1.0 version released.
2013	Apache Hadoop 2.2 version released.
2014	Apache Hadoop 2.6 version released.
2015	Apache Hadoop 2.7 version released.
2017	Apache Hadoop 3.0 version released.
2018	Apache Hadoop 3.1 version released.

Hardware Requirements

1. Memory:

• At least 8 GB of RAM per machine (16 GB or more is recommended for production environments).

2. Storage:

- o At least 500 GB of disk space per machine.
- o Use high-speed disks (SSD) for better performance.

3. **CPU:**

o Multi-core processors are recommended. At least 4 cores per machine.

4. Network:

o High bandwidth (1 Gbps or higher) network connection between nodes.

Software Requirements

1. Operating System:

- o Linux-based OS (e.g., CentOS, Ubuntu, Debian).
- o Some versions of Hadoop support Windows, but Linux is preferred for production.

2. Java:

- o Oracle JDK 8 or OpenJDK 8 (Java 8).
- Some versions of Hadoop may support Java 11, but it's crucial to verify compatibility.

3. **SSH**:

o Password-less SSH (Secure Shell) setup for communication between nodes.

4. Hadoop Distribution:

o Latest stable version of Hadoop. You can download it from the <u>Apache Hadoop website</u>.

5. Additional Software:

- o Python (optional, but recommended for certain Hadoop ecosystem tools).
- Various Hadoop ecosystem components (e.g., HDFS, YARN, MapReduce, Hive, HBase, etc.) as required by your specific use case.

Configuration Considerations

1. Cluster Management:

 Use tools like Apache Ambari, Cloudera Manager, or other cluster management tools for easier setup and maintenance.

2. Resource Management:

- o Properly configure YARN for resource allocation.
- Set appropriate heap sizes for NameNode and DataNode based on available memory.

3. Replication Factor:

Set the HDFS replication factor based on data redundancy needs (default is 3).

4. Network Configuration:

- o Ensure proper network configuration and DNS settings.
- Optimize network settings for Hadoop traffic.

INSTALLATION STEPS

```
C:\Windows\System32>java -version
java version "1.8.0_421"
Java(TM) SE Runtime Environment (build 1.8.0_421-b09)
Java HotSpot(TM) 64-Bit Server VM (build 25.421-b09, mixed mode)
```

Check for Hadoop version

C:\Windows\System32>hadoop Usage: hadoop [--config confdir] [--loglevel loglevel] COMMAND where COMMAND is one of: run a generic filesystem user client fs version print the version run a jar file jar <jar> note: please use "yarn jar" to launch YARN applications, not this command. checknative [-a|-h] check native hadoop and compression libraries availability conftest validate configuration XML files distch path:owner:group:permisson distributed metadata changer distcp <srcurl> <desturl> copy file or directories recursively archive -archiveName NAME -p <parent path> <src>* <dest> create a hadoop archive prints the class path needed to get the classpath Hadoop jar and the required libraries interact with credential providers credential jnipath prints the java.library.path kerbname show auth_to_local principal conversion kdiag diagnose kerberos problems manage keys via the KeyProvider key view and modify Hadoop tracing settings trace daemonlog get/set the log level for each daemon CLASSNAME run the class named CLASSNAME Most commands print help when invoked w/o parameters.

add path variables for java and Hadoop

HADOOP_HOME C:\hadoop-3.4.0\hadoop-3.4.0\bin

JAVA HOME C:\java\jdk-1.8

C:\hadoop-3.4.0\hadoop-3.4.0\bin

C:\hadoop-3.4.0\hadoop-3.4.0\sbin

Run start -dfs.cmd

Run start-yarn.cmd

```
C:\Windows\System32\cmd.e × + \

Microsoft Windows [Version 10.0.22631.3880]
(c) Microsoft Corporation. All rights reserved.

C:\hadoop-3.4.0\hadoop-3.4.0>start-dfs.cmd

C:\hadoop-3.4.0\hadoop-3.4.0>start-yarn.cmd

starting yarn daemons

C:\hadoop-3.4.0\hadoop-3.4.0>
```


Run in the localhost using localhost:9870

Run using localhost:8088

