Special Topics on Basic EECS I VLSI Devices Lecture 21

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Maximum depletion width

• Therefore, maximum depletion width becomes

$$W_d = \sqrt{\frac{4\epsilon_{si}\phi_B}{qN_a}} = \sqrt{\frac{4\epsilon_{si}k_BT \ln(N_a/n_i)}{q^2N_a}}$$
 Taur, Eq. (2.190)

Beyond threshold voltage

It's not perfectly fixed.

- The surface potential is <u>almost</u> fixed. (Surface potential pinning)
 - –Small additional change in $\phi_{\scriptscriptstyle S}$ induces an exponential increase of the electron density.
 - -Remember that $n = n_i \exp\left(\frac{q\phi}{k_BT}\right)$.
 - When $\phi_S=2\phi_B$,

$$n(0) = n_i \exp\left(\frac{q\phi_B}{k_B T}\right) = p(\infty)$$

–Additional potential ($\Delta\phi$) yields

$$n(0) = p(\infty) \exp\left(\frac{q\Delta\phi}{k_B T}\right)$$

It's a high density.

General relation beyond depletion approx. (1)

With the depletion approximation, we obtained

$$Q_d = -qN_aW_d = -\sqrt{2\epsilon_{si}qN_a\phi_s}$$

- We can do much better!
 - -A generation relation for $Q_s = Q_d + Q_i$
 - The Poisson equation

$$\frac{d^2\phi}{dx^2} = -\frac{q}{\epsilon_{si}}[p(x) - n(x) - N_a]$$

Inversion charge

Taur, Eq. (2.175)

General relation beyond depletion approx. (2)

Following Taur's notation,

For a while, $\phi(\infty) = -\phi_B$ is used as the reference value. Therefore,

$$n(x) = n_i \exp\left(\frac{q\phi(x)}{k_BT}\right) \rightarrow n(x) = n(\infty) \exp\left(\frac{q\phi(x)}{k_BT}\right)$$
 Taur, Eq. (2.178)
 $p(x) = n_i \exp\left(-\frac{q\phi(x)}{k_BT}\right) \rightarrow p(x) = p(\infty) \exp\left(-\frac{q\phi(x)}{k_BT}\right)$ Taur, Eq. (2.177)

Taur, Eq. (2.178)

-The Poisson equation

$$\frac{d^2\phi}{dx^2} = -\frac{q}{\epsilon_{si}} \left[N_a \left(\exp\left(-\frac{q\phi}{k_B T}\right) - 1 \right) - \frac{n_i^2}{N_a} \left(\exp\left(\frac{q\phi}{k_B T}\right) - 1 \right) \right]$$

Taur, Eq. (2.179)

General relation beyond depletion approx. (3)

- Multiplying $\frac{d\phi}{dx} dx$,
 - -The Poisson equation

$$\frac{d\phi}{dx}d\left(\frac{d\phi}{dx}\right)
= -\frac{q}{\epsilon_{si}} \left[N_a \left(\exp\left(-\frac{q\phi}{k_B T}\right) - 1 \right) - \frac{n_i^2}{N_a} \left(\exp\left(\frac{q\phi}{k_B T}\right) - 1 \right) \right] d\phi$$

- Integrate the above equation.

Integrate the above equation.
$$\int_{0}^{-E_{x}(x)} \frac{d\phi}{dx} d\left(\frac{d\phi}{dx}\right)$$
 Taur, Eq. (2.180)
$$= -\frac{q}{\epsilon_{si}} \int_{0}^{\phi(x)} \left[N_{a} \left(\exp\left(-\frac{q\phi}{k_{B}T}\right) - 1 \right) - \frac{n_{i}^{2}}{N_{a}} \left(\exp\left(\frac{q\phi}{k_{B}T}\right) - 1 \right) \right] d\phi$$

General relation beyond depletion approx. (4)

• (Square of) Electric field

$$-\text{From } \frac{1}{2}E_{\chi}^{2}(x) = -\frac{q}{\epsilon_{si}} \left[-N_{a} \frac{k_{B}T}{q} \exp\left(-\frac{q\phi}{k_{B}T}\right) - N_{a}\phi + N_{a} \frac{k_{B}T}{q} - \frac{n_{i}^{2}}{N_{a}} \frac{k_{B}T}{q} \exp\left(\frac{q\phi}{k_{B}T}\right) + \frac{n_{i}^{2}}{N_{a}}\phi + \frac{n_{i}^{2}}{N_{a}} \frac{k_{B}T}{q} \right], \text{ we get}$$

$$\begin{aligned} &E_{\chi}^{2}(\chi) \\ &= \frac{2k_{B}TN_{a}}{\epsilon_{si}} \left[\left(\exp\left(-\frac{q\phi}{k_{B}T}\right) + \frac{q\phi}{k_{B}T} - 1 \right) \right. \\ &\left. + \frac{n_{i}^{2}}{N_{a}^{2}} \left(\exp\left(\frac{q\phi}{k_{B}T}\right) - \frac{q\phi}{k_{B}T} - 1 \right) \right] \end{aligned}$$

Taur, Eq. (2.181)

General relation beyond depletion approx. (5)

- At x=0, we have $\phi(0)=\phi_{\mathcal{S}}$.
 - -Then,

$$\begin{aligned} &E_s^2 \\ &= \frac{2k_BTN_a}{\epsilon_{si}} \left[\left(\exp\left(-\frac{q\phi_s}{k_BT} \right) + \frac{q\phi_s}{k_BT} - 1 \right) \right. \\ &+ \frac{n_i^2}{N_a^2} \left(\exp\left(\frac{q\phi_s}{k_BT} \right) - \frac{q\phi_s}{k_BT} - 1 \right) \right] \end{aligned}$$

General relation beyond depletion approx. (6)

$$\begin{split} \bullet & \text{ At } x=0 \text{, we have } \phi(0)=\phi_{S}. \\ & -\text{From } Q_{S}=-\epsilon_{si}E_{S}, \\ & Q_{S} \\ & =\pm\sqrt{2\epsilon_{si}k_{B}TN_{a}}\left[\left(\exp\left(-\frac{q\phi_{S}}{k_{B}T}\right)+\frac{q\phi_{S}}{k_{B}T}-1\right)\right. \\ & \left. +\frac{n_{i}^{2}}{N_{a}^{2}}\left(\exp\left(\frac{q\phi_{S}}{k_{B}T}\right)-\frac{q\phi_{S}}{k_{B}T}-1\right)\right]^{1/2} \end{split}$$
 Taur, Eq. (2.182)

GIST Lecture

9

Homework#4

- Draw $|Q_S|$ as a function of ϕ_S .
 - -Assume that N_a is 4X10¹⁵ cm⁻³. ϕ_s varies from -0.4 V to 1.0 V.

Strong inversion

Beyond strong inversion,

$$\frac{d\phi}{dx} \approx -\sqrt{\frac{2k_BTN_a}{\epsilon_{si}} \left(\frac{q\phi}{k_BT} + \frac{n_i^2}{N_a^2} \exp\left(\frac{q\phi}{k_BT}\right)\right)}$$
 Taur, Eq. (2.191)

-The electrons are distributed extremely close to the surface with an inversion-layer width less than 50 Å.

MOS equation

- Up to now, $Q_s(\phi_s)$ is found. We can control only V_a .
 - Relation between V_g and ϕ_s

veen
$$V_g$$
 and ϕ_s unit area $V_g - V_{fb} = V_{ox} + \phi_s = -\frac{Q_s}{C_{ox}} + \phi_s$ Taur, Eq. (2.195)

 $\frac{\epsilon_{ox}}{t_{ox}}$, oxide capacitance per unit area

– In general, $Q_s(\phi_s)$ is known. We can solve the above equation.

Taur, Eq. (2.182)

12 GIST Lecture

Total silicon

charge per

Thank you!