



# Benefits of Diverse News Recommendations for Democracy

Juliane A. Lischka Lucien Heitz, Alena Birret, Bibek Paudel, Suzanne Tolmeijer, Laura Laugwitz, Abraham Bernsteir,

Algorithm and Newssession@ Future of Journalism 2021, 22. Sept 2021

<sup>&</sup>lt;sup>1</sup>Department of Journalism and Communication, University of Hamburg, Germany

<sup>&</sup>lt;sup>2</sup> Department of Informatics, University of Zurich, Switzerland

<sup>&</sup>lt;sup>3</sup> Digital Society Initiative, University of Zurich, Switzerland

<sup>&</sup>lt;sup>4</sup> Department of Communication and Media Research, University of Zurich, Switzerland

<sup>&</sup>lt;sup>5</sup> Stanford University, USA





#### News recommenders could

- a) create selfreinforcing biases that damage public debates (Milano et al., 2020)
- b) powerful tools to shape public opinion and serve as a foundation for public cohesion (Bernstein et al., 2021)

## Background





## Experimental design

#### Kanadier haben die Schönste: Neues 200er-Nötli war chancenlos

Jahr für Jahr werden die schönsten Banknoten der Welt prämiert. Für einmal musste sich die Schweiz geschlagen geben.

Heute, 18:30 Uhr







#### Narrow vs. diverserecommendations for a 0.4 user







#### From article distribution to recommendation list













#### Article use and article distances







## Surveyresults (1/2)

|                              | Instrur      | nental | utility        | Politi    | ical inte | erest          | Political participation |       |                |  |
|------------------------------|--------------|--------|----------------|-----------|-----------|----------------|-------------------------|-------|----------------|--|
|                              | β            | $\rho$ | $\eta_{p}^{2}$ | β         | $\rho$    | $\eta_{p}^{2}$ | β                       | ρ     | $\eta_{P}^{2}$ |  |
| Constant                     | 3.668        | 0.000  | 0.468          | 1.227     | 0.004     | 0.057          | 2.242                   | 0.000 | 0.233          |  |
| Diversity Group              | 0.284        | 0.495  | 0.003          | 0.573     | 0.279     | 0.008          | -0.136                  | 0.754 | 0.001          |  |
| Narrow Group                 | 0.391        | 0.254  | 0.009          | 0.662     | 0.128     | 0.017          | -0.144                  | 0.686 | 0.001          |  |
| Political position           | 0.037        | 0.900  | 0.000          | 0.270     | 0.476     | 0.004          | -0.034                  | 0.912 | 0.000          |  |
| App usage (hrs)              | 0.020        | 0.009  | 0.048          | -0.004    | 0.670     | 0.001          | 0.013                   | 0.113 | 0.018          |  |
| Ext. news usage              | 0.014        | 0.047  | 0.028          | 0.020     | 0.024     | 0.036          | 0.023                   | 0.002 | 0.069          |  |
| Gender ( $f = 1$ ; $m = 2$ ) | -0.035       | 0.783  | 0.001          | 0.702     | 0.000     | 0.123          | 0.370                   | 0.005 | 0.055          |  |
| Age (y)                      | -0.005       | 0.241  | 0.010          | -0.001    | 0.898     | 0.000          | 0.000                   | 0.976 | 0.000          |  |
| Education                    | -0.047       | 0.068  | 0.024          | 0.020     | 0.530     | 0.003          | 0.077                   | 0.005 | 0.057          |  |
| Diversity x Pol. pos.        | -0.424       | 0.537  | 0.003          | -0.855    | 0.329     | 0.007          | -0.016                  | 0.982 | 0.000          |  |
| Narrow x Pol. pos.           | -0.845       | 0.123  | 0.017          | -0.558    | 0.421     | 0.005          | 0.185                   | 0.745 | 0.001          |  |
| F(p)                         | 1.862 (.055) |        |                | 4.467 (.0 | 000)      |                | 5.483 (.000)            |       |                |  |
| Adj. $R^2$                   | .055         |        |                | .189      |           |                | .231                    |       |                |  |
| df                           | 139, 10      |        |                | 139, 10   |           |                | 139, 10                 |       |                |  |





## Surveyresults (2/2)

|            | Social<br>performance of<br>journalism |       |                | Tolerance for opposing views |        |                | News<br>preferences for<br>opposing views |        |                | News<br>preferences for<br>majority views |       |            |
|------------|----------------------------------------|-------|----------------|------------------------------|--------|----------------|-------------------------------------------|--------|----------------|-------------------------------------------|-------|------------|
|            | β                                      | ρ     | $\eta_{p}^{2}$ | β                            | $\rho$ | $\eta_{p}^{2}$ | β                                         | $\rho$ | $\eta_{p}^{2}$ | β                                         | ρ     | $\eta_p^2$ |
| Cons.      | 1.465                                  | 0.000 | 0.087          | 2.869                        | 0.000  | 0.401          | 2.937                                     | 0.002  | 0.068          | 3.770                                     | 0.000 | 0.090      |
| Div.       | 1.098                                  | 0.032 | 0.033          | 1.443                        | 0.000  | 0.097          | 0.903                                     | 0.054  | 0.026          | 0.748                                     | 0.159 | 0.014      |
| Nar.       | 0.883                                  | 0.035 | 0.032          | 0.577                        | 0.061  | 0.025          | 0.487                                     | 0.204  | 0.012          | 0.955                                     | 0.025 | 0.036      |
| Pol. pos.  | 0.731                                  | 0.046 | 0.029          | 0.850                        | 0.002  | 0.068          | 0.373                                     | 0.265  | 0.009          | 0.554                                     | 0.134 | 0.016      |
| App use    | 0.012                                  | 0.195 | 0.012          | 0.013                        | 0.062  | 0.025          | 0.022                                     | 0.009  | 0.049          | 0.017                                     | 0.060 | 0.025      |
| Ext. news  | 0.009                                  | 0.263 | 0.009          | 0.018                        | 0.005  | 0.055          | 0.026                                     | 0.000  | 0.088          | 0.013                                     | 0.095 | 0.020      |
| Gender     | 0.140                                  | 0.361 | 0.006          | -0.059                       | 0.603  | 0.002          | -0.065                                    | 0.647  | 0.002          | -0.144                                    | 0.359 | 0.006      |
| Age (y)    | -0.003                                 | 0.574 | 0.002          | -0.011                       | 0.005  | 0.056          | -0.553                                    | 0.506  | 0.003          | -0.708                                    | 0.441 | 0.004      |
| Edu.       | 0.100                                  | 0.002 | 0.070          | 0.068                        | 0.004  | 0.059          | 0.008                                     | 0.768  | 0.001          | -0.043                                    | 0.173 | 0.013      |
| Div.xPos.  | -1.628                                 | 0.053 | 0.027          | -2.567                       | 0.000  | 0.111          | -1.200                                    | 0.122  | 0.017          | -0.598                                    | 0.492 | 0.003      |
| Nar.xPos.  | -1.052                                 | 0.113 | 0.018          | -0.813                       | 0.098  | 0.020          | -0.687                                    | 0.263  | 0.009          | -1.289                                    | 0.058 | 0.026      |
| F(p)       | 2.978 (.002)                           |       |                | 4.971 (.000)                 |        |                | 2.755 (.004)                              |        |                | 1.635 (.103)                              |       |            |
| Adj. $R^2$ | .119                                   |       |                | .210                         |        |                | .105                                      |        |                | .041                                      |       |            |
| df         | 137, 10                                |       |                | 139, 10                      |        |                | 139, 10                                   |        |                | 139, 10                                   |       |            |





- 1. Audiences find diverse news just asseful
- 2. Diverse news may inductolerance, especially for conservative users
- 3. Diverse news camudge users to prefer diverse news diet
- → Diverse recommendations may have ade-polarizing capacity

## Conclusion





#### From article distribution to recommendation list

#### **Algorithm 1:** Translation Algorithm **Input** : $score_{u}$ , art distribution // $art_distribution$ defined as list of tuples $score_a, n_a$ **Output:** desired distribution 1 max = maxScore(art distribution)// find largest value of $n_a$ among all tuples 2 desired distribution = [] // initialize recommendation list 3 **while** maxScore(art\_distribution) > 1 **do** $tuples_{filter} = filterTuples(art\_distribution, max)$ // get tuples of $art\_distribution$ where $n_a = max$ 4 $tuple_{max} = maxDistance(tuples_{filter}, score_u)$ // get tuple where $|score_a - userScore|$ is maximal 5 $appendScore(tuple_{max}, desired\_distribution)$ // add $score_a$ of $tuple_{max}$ to $desired\_distribution$ $reduceCount(tupel_{max})$ // decrement $n_a$ of $tuple_{max}$ by 1 **if** $maxScore(art\_distribution) \neq max$ **then** max = max - 110 return desired distribution





### **Article scoredistribution**







1

2.

3.

## Outlook





## Thank you!