ទ្រឹស្តីស៊ីលេនិចនៃឧស្ទ័ល The Kinetic Theory of Gases

I. ន្រឹស្តីស៊ីខេនិចនៃឧស្ទ័ន

- ម៉ូលេគុលឧស្ម័នទាំងអស់ធ្វើចលនាឥតឈប់ឈរ និងគ្មានសណ្ដាប់ ធ្នាប់។
- 😈. គ្រប់ការទង្គិចរបស់ម៉ូលេគុលជាទង្គិចខ្ទាត។
- ៣. គេសន្មតថាម៉ូលេគុលនីមួយៗមានល្បឿនថេរជានិច្ច និងអាចអនុវត្តច្បាប់ញ៉ូតុនបានគ្រប់ពេល។
- ៤. គេចាត់ទុកមូលេគុលឮឧស្ម័នជាចំណុចរូបធាតុ ព្រោះវិមាត្ររបស់ ម៉ូលេគុលនីមួយៗតូចធៀបនឹងលំហអន្តរម៉ូលេគុល។
- 💰. ថាមពលស៊ីនេទិចមធ្យមនៃម៉ូលេគុលសមាមាត្រនឹងសីតុណ្ហភាព។

II. សម្ភាអត្ថខធ្រឹស្តីស៊ីលេនិចនៃឧស្ម័ន:

យើងសិក្សាំចលនាម៉ូលេគុលក្នុងធុងមួយ។ យើងបានសម្ពាធដែលសង្គត់លើផ្ទៃធុងគឺជាកម្លាំងទង្គិចរបស់ចលនាម៉ូលេគុល

$$\label{eq:weighted_problem} \text{ with the second problem} \quad : \quad P = \frac{F}{A} \quad \text{thiw}: \quad F = m \frac{\Delta v_x}{\Delta t} = \frac{m \times 2 v_x}{\frac{2L}{v_x}} = \frac{m v_x^2}{L}$$

$$\text{with the second problem} \quad : \quad P = \frac{m v_x^2}{AL} = \frac{m v_x^2}{V}$$

$$\text{if } \quad : \quad v_{av}^2 = v_x^2 + v_y^2 + v_z^2 = 3 v_x^2 \quad \text{if the } \quad \left(v_x = v_y = v_z = \text{with}\right)$$

$$\text{with the second problem} \quad : \quad v_x^2 = \frac{1}{3} \left(v^2\right)_{av}$$

$$\text{with the second problem} \quad : \quad P = \frac{1}{3} \times \frac{m}{V} \left(v^2\right)_{av} \quad \text{with the second problem} \quad \text{with the second problem} \quad : \quad P = \frac{1}{3} \times \frac{m}{V} \left(v^2\right)_{av} = \frac{2N}{3V} \times \frac{1}{2} m_0 \left(v^2\right)_{av}$$

$$\text{with the second problem} \quad : \quad P = \frac{1}{3} \times \frac{N m_0}{V} \left(v^2\right)_{av} = \frac{2N}{3V} \times \frac{1}{2} m_0 \left(v^2\right)_{av}$$

$$\text{with the second problem} \quad : \quad P = \frac{2}{3} \times \frac{N}{V} K_{av}$$

III. ថាមពលស៊ីខេនិច និចសីតុល្អ្នភាព

- 9. សមីអារងាពនៃឧស្ម័នមរិសុខ្លះ តាមពិសោធន៍បង្ហាញថាៈ
 - ullet សម្ពាធសមាមាត្រនឹងសីតុណ្ហភាព : $\mathrm{P} \sim \mathrm{T}$
- ullet សម្ពាធច្រាសសមាមាត្រនឹងមាឌ : $\mathrm{P} \sim rac{1}{\mathrm{V}}$
- ullet សម្ពាធសមាមាត្រនឹងចំនួនម៉ូលេគុល : $P \sim N$

យើងបាន :
$$P \sim \frac{NT}{V}$$
 ឬ $P = k_B \frac{NT}{V}$ នោះ $PV = Nk_B T$ ដែល $k_B = 1.38 \times 10^{-23} J/K$ (បេរបុលស្មាន់) តែ : $N = nN_A$ នោះ $PV = nk_B N_A T$ តាង : $R = k_B N_A$ ដែល $N_A = 6.02 \times 10^{23}$ ម៉ូលេគុល/mol (ចំនួនអាវ៉ូកាដ្រូ) ដូចនេះ : $PV = k_B NT = nRT$

🖰. **សមីអារមម្រែមម្រួលភាពនៃឧស្ម័នមសៃ្ន:** បើឧស្ម័នប្រែប្រួលភាព ពីភាពដើម 1 ទៅភាពស្រេច 2 យើងបាន:

$$ullet$$
 នៅភាពដើម $1\colon \mathrm{P}_1\mathrm{V}_1=\mathrm{nRT}_1$ ឬ $rac{\mathrm{P}_1\mathrm{V}_1}{\mathrm{T}_1}=\mathrm{nR}$

យើងបាន :
$$rac{\mathrm{P_1V_1}}{\mathrm{T_1}} = rac{\mathrm{P_2V_2}}{\mathrm{T_2}} = \mathrm{nR} =$$
េរថ

ច្បាប់ប៊ិយ-ម៉ារ្យ៉ូត :
$$P_1V_1=P_2V_2$$
 (សីតុណ្ហភាពថេរ $T_1=T_2$)

ច្បាប់សាល :
$$rac{\mathrm{P_1}}{\mathrm{T_1}} = rac{\mathrm{P_2}}{\mathrm{T_2}}$$
 (មាខបេរ $\mathrm{V_1} = \mathrm{V_2}$)

ច្បាប់កេលុយសាក់ :
$$rac{P_1V_1}{T_1}=rac{P_2V_2}{T_2}$$

M. ថាមពលស៊ីនេនិច និចសីតុណ្ណភាព:

ភ- អម្តៃទានពលស៊ីខេនិនននាន់ខេន្តំលេងលឧស្ម័ន:

តាមសម្រាយបញ្ជាក់ខាងលើ
$$P=rac{2}{3} imesrac{N}{V}K_{av}$$
 យើងបាន: $PV=rac{2}{3}NK_{av}$

នាំឲ្យ :
$$K_{av}=rac{3}{2} imesrac{PV}{N}=rac{3}{2}k_BT$$
 ព្រោះ $rac{PV}{N}=k_BT$

ដូចនេះ តម្លៃថាមពលស៊ីនេទិចមធ្យមនៃម៉ូលេគុលឧស្ម័នគឺ:
$$K_{\mathrm{av}}=rac{3}{2}k_{\mathrm{B}}T=rac{3}{2}\left(rac{\mathrm{PV}}{\mathrm{N}}
ight)$$

2- អង្គៃថាមពលស៊ីនេនិចសម្រនៃម៉ូលេអុលឧស្ម័ន:

យើងមាន :
$$m K_{av} = rac{3}{2}k_BT$$

នាំឲ្យ :
$$K = N \times K_{av} = \frac{3}{2}Nk_BT = \frac{3}{2}nRT$$

ដូចនេះ តម្លៃថាមពលស៊ីនេទិចសរុបនៃម៉ូលេគុលឧស្ម័នគឺ:
$$K=rac{3}{2}Nk_{B}T=rac{3}{2}nRT$$

🛦. ល្បឿនថ្មសភាពនៃភាពល្បឿនមធ្យម:

យើងមាន :
$$K_{av} = \frac{3}{2}k_BT = \frac{1}{2}m_0\left(v^2\right)_{av}$$

នាំឲ្យ :
$$\sqrt{\left(v^2\right)_{av}} = \sqrt{\frac{3k_BT}{m_0}}$$

តាង :
$$v_{\rm rms} = \sqrt{\left({\rm v}^2\right)_{\rm av}} = \sqrt{\frac{3{\rm k_BT}}{{\rm m_0}}} = \sqrt{\frac{3{\rm RT}}{{\rm M}}}$$
 (Root Means Square)

ដូចនេះ ល្បឿនប្ញសការេនៃការេល្បឿនមធ្យមគឺ:
$$v_{
m rms} = \sqrt{rac{3 k_{
m B} T}{m_0}} = \sqrt{rac{3 RT}{M}}$$

សុមរៀលធ្វើ រៀលស្រាយរួបមន្តដើម្បីឲ្យយល់អាស់ដែច្បាស់លើមេរៀសសេះ!

* ទំណាំ:

- $m{9}$. ល្បឿនមធ្យម: $v_{
 m av}=rac{v_1+v_2+v_3+\cdots+v_{
 m N}}{
 m N}$ ដែល $v_{
 m av}$ គិតជា m m/s
- $m{v}_{
 m rms} = \sqrt{rac{{
 m v}_1^2 + {
 m v}_2^2 + {
 m v}_3^2 + \cdots + {
 m v}_N^2}{N}}$ ដែល $v_{
 m rms}$ គិតជា ${
 m m/s}$
- $m{M}$. ម៉ាសមាឧ ឬដង់ស៊ីតេមាឧនៃឧស្ម័នៈ $ho=rac{m}{V}=rac{m_0N}{V}$ ដែល ho គិតជា $({
 m kg/m^3})$ m ជាម៉ាសឧស្ម័ន គិតជា $({
 m kg})$ m_0 ម៉ាសមូលេគុល គិតជា $({
 m kg})$ V មាឧស្ម័ន គិតជា $({
 m m^3})$
- $m{\ell}$. ចំនួនម៉ូលៈ $n=rac{m}{M}=rac{N}{N_A}=rac{V}{V_{mol}}$ ដែល M ម៉ាសម៉ូលគិតជា (kg) N ចំនួនម៉ូលេគុលសរុប V_{mol} ជាមាឧខស្ម័នក្នុងមួយម៉ូល $\left(m^3/mol
 ight)$ V មាឧឧស្ម័ន $\left(m^3
 ight)$
- $m{\ell}$. ចំនួនម៉ូលេគុលសរុបនៃឧស្ម័នៈ $N=rac{m}{m_0}=nN_A=rac{m}{M} imes N_A$ ដែល n ចំនួនម៉ូល គិតជា (mol)
- f 0. មាឧម៉ូលនៃឧស្ម័នក្នុងលក្ខខ័ណ្ឌគំរូដែលមានសម្ពាធ $P_0=1 {
 m atm}$ និងសីតុណ្ហភាព $T=273 {
 m K}$ គឺ: $V_{
 m mol}=22.4 imes 10^{-3} {
 m m}^3/{
 m mol}$

ទទ់ដោយសទ្ទេម!