Artificial Intelligence in Highway Safety

Book · September 2022

CITATIONS

READS

104

1 author:

Subasish Das

Texas A&M University

176 PUBLICATIONS 1,122 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Rural Speed Safety for the USDOT Safety Data Initiative View project

Coauthor Network Project View project

Artificial Intelligence in Highway Safety provides cutting-edge advances in highway safety using AI. The author is a highway safety expert. He pursues highway safety within its contexts, while drawing attention to the predictive powers of the AI techniques in solving complex problems for safety improvement. This book provides both theoretical and practical aspects of highway safety. Each chapter contains theory and its contexts in plain language with several real-life examples. It is suitable for anyone interested in highway safety and AI and it provides an illuminating and accessible introduction to this fast-growing research trend.

Material supplementing the book can be found at https://github.com/subasish/Al_in_HighwaySafety. It offers a variety of supplemental materials, including data sets and R codes.

Subasish Das is an Associate Research Scientist at the Texas A&M Transportation Institute (TTI) of the Texas A&M University System. He received his M.S. and Ph.D. in Civil Engineering from the University of Louisiana at Lafayette in 2012 and 2015 respectively. His primary fields of research interest are roadway safety, roadway design, and associated operational issues. He is a Systems Engineer by training with hands-on experience on Six Sigma and Lean Engineering. His major areas of expertise include database management, statistical analysis and machine learning with emphasis in safety and transportation operations, spatial analysis with modern web GIS tools, interactive data visualization, and deep learning tools for CV/AV technologies.

Dr. Das is the author or co-author of over 110 technical papers or research reports. The AASHTO Research Advisory Committee (RAC) awarded one of his research reports as 2014 AASHTO Sweet Sixteen High Value Research Project. He is an active member of ITE, APBP, and ASCE. He is an Eno Fellow. His other awards include 2018 TTI Young Researcher Awards, 2017 Urban Street Symposium Best Paper Award, 2014 and 2015 Gulf Region ITS Best Paper Award.

ARTIFICIAL INTELLIGENCE HIGHWAY SAFETY

ARTIFICIAL INTELLIGENCE IN HIGHWAY SAFETY

SUBASISH DAS

Artificial Intelligence in Highway Safety

Subasish Das

Texas A&M Transportation Institute Texas A&M University, USA

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business A SCIENCE PUBLISHERS BOOK

Cover credits: Debangana Banerjee

First edition published 2022 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2022 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data (applied for)

ISBN: 978-0-367-43670-4 (hbk) ISBN: 978-1-032-20473-4 (pbk) ISBN: 978-1-003-00559-9 (ebk)

DOI: 10.1201/9781003005599

Typeset in Palatino Roman by Innovative Processors

Contents

Preface		7
List of Abbro	eviations	xii
1. Introd	uction	1
1.1.	Highway Safety	1
	Artificial Intelligence	2
	1.2.1. Idea of Artificial Intelligence	2
	1.2.2. History of AI	2 2 3
	1.2.3. Statistical Model vs. AI Algorithm: Two Cultures	3
1.3.	Application of Artificial Intelligence in Highway Safety	6
	Book Organization	6
2. Highw	ay Safety Basics	8
2.1.	Introduction	8
2.2.	Influential Factors in Highway Safety	10
	4E Approach	11
	2.3.1. Engineering	11
	2.3.2. Education	11
	2.3.3. Enforcement	12
	2.3.4. Emergency	12
2.4.	Intervention Tools	13
2.5.	Data Sources	13
2.6.	Crash Frequency Models	14
	Crash Severity Models	14
2.8.	Effectiveness of Countermeasures	14
	2.8.1. Observational B/A Studies	14
	Benefit Cost Analysis	17
	Transportation Safety Planning	18
2.11.	Workforce Development and Core Competencies	19
	2.11.1. Occupational Descriptors	19
	2.11.2. Core Competencies	23

viii Contents

3.	Artifici	al Intelligence Basics	38
	3.1.	Introduction	38
	3.2.	Machine Learning	39
		3.2.1. Supervised Learning	39
		3.2.2. Unsupervised Learning	39
		3.2.3. Semi-supervised Learning	40
		3.2.4. Reinforcement Learning	40
		3.2.5. Deep Learning	40
	3.3.	Regression and Classification	40
		3.3.1. Regression	40
		3.3.2. Classification	45
	3.4.	Sampling	47
		3.4.1. Probability Sampling	48
		3.4.2. Non-probability Sampling	50
		3.4.3. Population Parameters and Sampling Statistics	50
		3.4.4. Sample Size	51
4.	Matrix	Algebra and Probability	62
	4.1.	Introduction	62
	4.2.	Matrix Algebra	63
		4.2.1. Matrix Multiplication	63
		4.2.2. Linear Dependence and Rank of a Matrix	63
		4.2.3. Matrix Inversion (Division)	64
		4.2.4. Eigenvalues and Eigenvectors	65
		4.2.5. Useful Matrices and Properties of Matrices	65
		4.2.6. Matrix Algebra and Random Variables	66
	4.3.	Probability	66
		4.3.1. Probability, Conditional Probability, and Statistical Independence	66
		4.3.2. Estimating Parameters in Statistical Models	68
		4.3.3. Useful Probability Distributions	69
		4.3.4. Mean, Variance and Covariance	72
5.	Superv	ised Learning	78
	-	Introduction	78
		Popular Models and Algorithms	78
		5.2.1. Logistic Regression	78
		5.2.2. Decision Tree	79
		5.2.3. Support Vector Machine	81
		5.2.4. Random Forests (RF)	84
		5.2.5. Naïve Bayes Classifier	86
		5.2.6. Artificial Neural Networks	87
		5.2.7. Cubist	89
		5.2.8. Extreme Gradient Boosting (XGBoost)	90

Contents

		5.2.9. Categorical Boosting (CatBoost)	93
	5.3.	Supervised Learning based Highway Safety Studies	94
6.	Unsup	ervised Learning	113
	6.1.	Introduction	113
	6.2.	Popular Algorithms	113
		6.2.1. K -Means	113
		6.2.2. K-Nearest Neighbors	114
	6.3.	Dimension Reduction Methods in Highway Safety	115
	6.4.	Categorical Data Analysis	118
		6.4.1. The Singular Value Decomposition	118
	6.5.	Correspondence Analysis	120
		6.5.1. Multiple Correspondence Analysis	120
		6.5.2. Taxicab Correspondence Analysis	122
	6.6.	Unsupervised Learning, Semi-Supervised, and Reinforcement	
		Learning based Highway safety Studies	123
7.	Deep I	earning	142
	7.1.	Introduction	142
	7.2.	Popular Algorithms	142
		7.2.1. LSTM	142
		7.2.2. Monte Carlo Sampling	144
	7.3.	Boltzmann Machines	145
		7.3.1. Boltzmann Machine Learning	146
		7.3.2. Generative Adversarial Networks	146
	7.4.	Deep Learning Categories	148
		7.4.1. Convolutional Neural Networks (CNNs)	149
		7.4.2. CNN Structure	149
		7.4.3. CNN Architectures and Applications	150
		7.4.4. Forward and Backward Propagation	151
		7.4.5. Pretrained Unsupervised Networks	153
		7.4.6. Autoencoders	153
		7.4.7. Deep Belief Network	153
	7.5	7.4.8. Recurrent and Recursive Neural Networks	154
	7.3.	Deep Learning based Highway Safety Studies	158
8.		l Language Processing	166
		Introduction	166
		Text Mining	167
	8.3.	Topic Modeling	169
		8.3.1. Latent Dirichlet Allocation	169
		8.3.2. Structural Topic Model (STM)	170
		8.3.3. Keyword Assisted Topic Model	171
		8.3.4. Text Summarization	173

x Contents

	8.4.	Sentence Centrality and Centroid-based Summarization	173
	8.5.	Centrality-based Sentence Salience	174
		8.5.1. Eigenvector Centrality and LexRank	174
		8.5.2. Continuous LexRank	175
	8.6.	NLP Based Highway Safety Studies	175
9.	Explain	nable AI	206
	9.1.	Introduction	206
		9.1.1. Partial Dependence Plot (PDP)	207
		9.1.2. Individual Conditional Expectation (ICE)	208
		9.1.3. Accumulated Local Effects (ALE) Plot	208
		9.1.4. Local Surrogate (LIME)	209
		9.1.5. Shapley Value	209
		9.1.6. SHAP (SHapley Additive exPlanations)	210
10.	Disrup	tive and Emerging Technologies in Highway Safety	221
		Introduction	221
	10.2.	Risks Associated with Emerging and Disruptive Technologies	222
		10.2.1. Connected and Autonomous Vehicles10.2.2. Electric Vehicles	222
		10.2.2. Electric venicles 10.2.3. Mobility as a Service/Mobility on Demand	222 223
		10.2.4. Advanced Air Mobility	223
	10.3.	Studies on Emerging and Disruptive Technologies	223
11		sions and Future Needs	232
11.		Introduction	232
		Highway Safety AI 101	232
		Ethics in Highway Safety AI	232
	11.5.	11.3.1. Ethics and Regulation	233
		11.3.2. Bias, Fairness, Interpretability, Robustness,	
		and Security	233
		11.3.3. Governance	234
	11.4.	AI based Highway Safety Guidances	234
	Appen	dix A: Case Study of Exploratory Data Analysis	236
	Appen	dix B: Steps of Big Data Analysis in Highway Safety	251
	Append	lix C: ML Interpretability and Model Selection	258
	Append	lix D: Develop an Interactive Map	263
	Append	lix E: Develop an interactive Shiny App for Highway Safety	
		Analysis with AI Models	266
	Append	lix F: Develop an Interactive Shiny App with Application	
		Programming Interface (API) based Queries	275
	Annend	lix G: Alternative to Crash Tree Tool	305

xi

Appendix H: Example of Quick Bibliographic Search	308
Appendix I: Example of Self-Organizing Maps	314
Appendix J: Example of Correspondence Analysis	319
Appendix K: Example of Deep Explainer	321
Appendix L: Road Safety Professional (RSP) Certification Needs	
Index	329