

Medium-density performance line ARM-based 32-bit MCU with up to 256KB Flash,

upto 36KB SRAM, USB, 7 timers, 12-bit ADC, 11 communication interfaces.

Features

- Core: ARM 32-bit Cortex[™]-M3 CPU
 - 96 MHz maximum frequency, 1.25 DMIPS/MHz (Dhrystone 2.1) performance
 - 64 Byte cache for instruction and data bus support 0 wait state memory access
 - Single-cycle multiplication and hardware division
- Memories
 - 256Kbytes of Flash memory
 - > 36 Kbytes of SRAM
- Clock, reset and supply management
 - 2.0 to 3.6 V application supply and I/Os
 - POR, PDR, and programmable voltage detector (PVD)
 - > 4-to-16 MHz crystal oscillator
 - Internal 8 MHz factory-trimmed RC
 - Internal 48 MHz factory-trimmed RC
 - ➤ Internal 32 kHz RC
 - > PLL for CPU clock
 - 32 kHz oscillator for RTC with calibration
- Low power
 - Sleep, Stop and Standby modes
 - VBAT supply for RTC and backup registers
 - > Run mode: ~100uA/MHz
 - Stop mode: ~18.5uA @3.3V
 - > Standby mode: ~4.5uA @3.3V
 - ➤ VBAT with RTC: ~1.1uA @3.3V
- 12-bit mode ADC
 - Max convert rate: 1Msps
 - ➤ Up to 16 A/D channels
 - > Flexible sample and converter modes.
 - > Temperature sensor
- Comparator
 - 2 independent comparators

- Each with 4 positive and 4 negative input channels
- LED driver unit
 - Capable of drive 56 LEDs or 8 Seven-segment LEDs
- 51 fast I/O ports
 - > 51 I/Os, all mappable on 16 external interrupt vectors
- Debug mode
 - Serial wire debug (SWD) interface
- 7 timers
 - Three 20-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
 - 20-bit, motor control PWM timer with dead-time generation and emergencystop
 - 2 watchdog timers (Independent andWindow)
 - > SysTick timer: a 24-bit downcounter
- Up to 11 communication interfaces
 - > 2 x I2C interfaces (SMBus/PMBus)
 - 3 UARTs (IrDA capability, modemcontrol)
 - 3 SPI interfaces, 1 QSPI interface
 - I2S interface
 - USB 2.0 full-speed device interface
- 2 DMA controller, triggered by Timers, ADC,SPIs, I2Cs, UARTs
- CRC calculation unit, 96-bit unique ID
- RNG generate Random number
- Packages are ECOPACK ®

Contents

Chapter 1 Introduction	4
1.1 Description	4
1.2 Features	
Chapter 2 Package	7
2.1 LQFP64 package	
2.2 Pinouts and pin description	88
Chapter 3 Block Diagram	11
Chapter 4 System description	12
4.1 Device Overview	
4.2 ARM Cortex™-M3 core	14
4.3 Memory map	
4.4 System reset	
4.5 NVIC	16
4.6 EXTI	16
4.7 Clocks and startup	16
4.8 Boot mode	16
4.9 Power supply schemes	17
4.10 DMAC	
4.11 RTC (real-time clock) and backup registers	17
4.12 Independent watchdog	
4.13 Window watchdog	
4.14 System Tick	
4.15 General-purpose timers	
4.16 Advanced-control timer	
4.17 I2C bus	
4.18 Inter-integrated sound (I2S)	
4.19 Universal asynchronous receiver transmitters (UART)	
4.20 Serial peripheral interface (SPI)	
4.21 USB	
4.22 GPIOs (general-purpose inputs/outputs)	
4.23 ADC	
4.24 Comparators	
4.25 Random number generator	
4.26 LED Driver	
4.28 Embedded SRAM and Flash memory	
4.29 Power supply supervisor	
4.30 Low-power modes	
4.31 SWD Debug Port	
Chapter 5 Electrical characteristics	
5.1 Absolute maximum ratings	
5.1.1 Voltage characteristics	
5.1.2 Current characteristics	22

	ermal characteristics	
	rating conditions	
5.2.1 Ger	neral operating conditions	23
5.2.2 Em	bedded reset and power control block characteristics	24
5.2.3 Sup	oply current characteristics	25
5.2.4 Ext	ernal clock source characteristics	25
5.2.5 Inte	ernal clock source characteristics	26
5.2.6 PLL	_ characteristics	27
5.2.7 Mei	mory characteristics	28
5.2.8 Abs	solute maximum ratings (electrical sensitivity)	28
	T Characteristics	
	Characteristics	
5.2.11 TI	M characteristics	31
	SB DC electrical characteristics	
	MP characteristics	
5.2.14 AI	DC characteristics	32
Chamtar C	Deckers abarestaristics	2.4
Chapter 6	Package characteristics	
	P64_10X10mm	
6.2 LQFI	P64 7X7mm	30
Chapter 7	Product selection	37
Chapter 8	Ordering information	30
Chapter 6	Ordering information	39
Chapter 9	Revision History	40

Chapter 1 Introduction

1.1 Description

The MG32F104xx performance line family incorporates the high-performance ARM ®Cortex™-M3 32 bit RISC core operating at 96MHz maximum frequency, Memory up to 256KB FLASH, 36KB SRAM, One advanced-controltimer, Three general-purpose timers, Two watchdog timers (Independent and Window), Three SPI and one QSPIinterfaces, Two I2C interfaces, Three UART interfaces, One I2S interface, One USB2.0 Full Speed interface, One 12-bit SAR ADC converter, One LED driver, Two comparators, One RTC.

1.2 Features

- · Supply Management
 - Main supply voltage (VDD): 2.0V 3.6V
 - Battery supply voltage (VBAT): 1.8V 3.6V
 - VBAT for RTC and 84 Byte backup registers
- Low Power
 - Sleep, Stop and Standby modes
 - Run mode: 160uA/MHzStop mode: 18.5uA @3.3V
 - Standby mode: 4.5uA @3.3VVBAT with RTC: 1.1uA @3.3V
- · Operation temperature
 - Industrial temperature range (-40°C ∼ +85°C)
- Reset
 - NRST reset
 - Power On reset
 - Software reset
 - Watchdog (IWDT and WWDT) reset
 - Low power mode reset
- Programmable Voltage Detector (PVD)
 - Adjustable 8 detect levels

- Configurable rising/falling detect edges

Clock

- 4 -16 MHz crystal oscillator, typical 8MHz (HSE)
- 32 kHz oscillator for RTC with calibration (LSE)
- Internal 8 MHz factory-trimmed RC (MHSI)
- Internal 48 MHz factory-trimmed RC (FHSI)
- Internal 32 kHz RC (LSI)
- PLL for CPU clock

· High performance 32-bit ARM CPU Core

- Up to 96MHz ARM Cortex™-M3 Core
- 64 Byte cache for instruction and data bus, support 0 wait state memory access
- Configurable system clock frequency
- Nestable interrupt vector controller
- Single-cycle multiplication and hardware division
- 24-bit System Tick down-counter

Flash

- 256KB Flash

SRAM

- 36KB SRAM
- 12-bit SAR A/D converter
 - Up to 16 A/D input channels
 - Max convert rate: 1Msps
 - Continuous sample and converter mode.
 - Software or Hardware triggered A/D converter mode.
 - Temperature sensor connect to A/D channel 16.

Comparator

- 2 independent comparators
- 4 positive and 4 negative input channels for each comparator

· Debug Port

- Serial wire debug (SWD)
- Cortex-M3 Instrumentation Trace Macrocell (ITM)

· Communication interfaces

- Up to 3 UART interfaces
- 3 SPI interfaces, 1 QSPI interface
- 2 I2C interfaces, support SMBus 2.0/PMBus
- 1 USB2.0 Full Speed interface
- 1 I2S interface

Timers

- Three 20-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental)encoder input
- 20-bit, motor control PWM timer with dead-time generation and emergency stop

- 20-bit PWM counter (Timer 1 \sim 4)
- Trigger A/D convertor
- · General purpose IOs
 - 64-pin production has 51 GPIOs
 - All GPIO mappable on 16 external interrupt vectors
 - Up to 16mA drive current
- Mulit-channel DMA controller, can be triggered by Timers, ADC, SPIs, I2Cs, UARTs
- CRC calculation unit, support 8/16/32 bit CRC algorithms.
- RNG Unit, generate Random number
- LED driver unit, support up to 56 LEDs or 8 Seven-segment LEDs.
- Real-time clock counter (RTC)
- Support software second development
- Support LQFP64 packages

Chapter 2 Package

2.1 LQFP64 package

2.2 Pinouts and pin description

Table 2.1: Pinout description

No. Pin Name Type Main Function Alternate Function 1	Analog Function
1 VBAT S VBAT 2 PC13 I/O PC13 TAMPER/RTC 3 PC14 I/O PC14 4 PC15 I/O PC15 5 PD0 I/O PD0 6 PD1 I/O PD1 7 NRST I/O NRST	
2 PC13 I/O PC13 TAMPER/RTC 3 PC14 I/O PC14 4 PC15 I/O PC15 5 PD0 I/O PD0 6 PD1 I/O PD1 7 NRST I/O NRST	
3 PC14 I/O PC14 4 PC15 I/O PC15 5 PD0 I/O PD0 6 PD1 I/O PD1 7 NRST I/O NRST	
4 PC15 I/O PC15 5 PD0 I/O PD0 6 PD1 I/O PD1 7 NRST I/O NRST	OSC32_IN
5 PD0 I/O PD0 6 PD1 I/O PD1 7 NRST I/O NRST	OSC32_OUT
6 PD1 I/O PD1 7 NRST I/O NRST	OSC_IN
7 NRST I/O NRST	OSC_OUT
	000_00
8 PC0 I/O PC0 I2S_WS/SPIM2_NSS0/SPIS2_NSS	ADC_IN10
9 PC1 I/O PC1 I2S_SCLK/SPIM2_SCK/SPIS2_SCK	ADC_IN11
10 PC2 I/O PC2 I2S_SD0/SPIM2_MI/SPIS2_SO	ADC_IN12
11 PC3 I/O PC3 I2S_SD1/SPIM2_MO/SPIS2_SI	ADC_IN13
12 VSSA S VSSA	
13 VDDA S VDDA	
14 PA0 I/O PA0/WKUP TIM2_CH1_ETR/UART2_CTS/WKUP	ADC_IN0
15 PA1 I/O PA1 TIM2_CH2/UART2_RTS	ADC_IN1
16 PA2 I/O PA2 TIM2_CH3/UART2_TX	ADC_IN2
17 PA3 I/O PA3 TIM2_CH4/UART2_RX	ADC_IN3
18 VSS_4 S VSS_4	
19 VDD_4 S VDD_4	
20	ADC_IN4
21 PA5 I/O PA5 QSPI_SCK/SPIS1_SCK	ADC_IN5
22 PA6 I/O PA6 TIM1_BKIN/TIM3_CH1/QSPI_MI_IO1/SPIS1_S	
23 PA7 I/O PA7 TIM1_CH1N/TIM3_CH2/QSPI_MO_IO0/SPIS1_	
24 PC4 I/O PC4 TRACECK	ADC_IN14
25 PC5 I/O PC5 SPIM2_NSS2/TRACED0	ADC_IN15
26 PB0 I/O PB0 TIM1_CH2N/TIM3_CH3/I2S_MCLK/QSPI_IO2	
27 PB1 I/O PB1 TIM1_CH3N/TIM3_CH4/QSPI_IO3	ADC_IN9
28 PB2 I/O PB2/BOOT	
29 PB10 I/O PB10 TIM2_CH3/TIM4_CH1/I2C2_SCL/QSPI_NSS2/UAR	
30 PB11 I/O PB11 TIM2_CH4/I2C2_SDA/SPIM2_NSS1/UART3_R	XX
31 VSS_1 S VSS_1 32 VDD_1 S VDD_1	
	OTO OK
33 PB12 I/O PB12 TIM1_BKIN/I2S_WS/LED4/SPIM2_NSS0/SPIS2_NSS/UAF 34 PB13 I/O PB13 TIM1_CH1N/I2S_SCLK/LED5/SPIM2_SCK/SPIS2_SCK/UAF	
35	KIO
37 PC6 I/O PC6 TIM3_CH1/I2S_MCLK/LED0	
38 PC7 I/O PC7 TIM3_CH2/I2S_MCLK/LED1	
39 PC8 I/O PC8 TIM3_CH3/LED2	
40 PC9 I/O PC9 TIM3_CH4/LED3/TRACED1	
41 PA8 I/O PA8 TIM1_CH1/LED0/UART1_CK/MCO	CMPA_P0
42 PA9 I/O PA9 TIM1_CH2/LED1/UART1_TX	CMPA NO
43 PA10 I/O PA10 TIM1_CH3/LED2/UART1_RX	J /_110
44 PA11 I/O ISOCLK TIM1_CH4/LED3/UART1_CTS	USBDM
45 PA12 I/O ISODA TIM1_ETR/UART1_RTS	USBDP
46 PA13 I/O SWDIO QSPI_NSS1	CMPA_P3
47 VSS_2 S VSS_2	
48 VDD_2 S VDD_2	
49 PA14 I/O SWDCLK QSPI_NSS2	CMPA_N3
50 PA15 I/O PA15 TIM2_CH1_ETR/I2S_WS/I2C1_SMBAI/QSPI_NSS0/SPIS	1_NSS CMPB_P3
51 PC10 I/O PC10 LED4/UART3_TX/TRACED2	CMPB_P1
52 PC11 I/O PC11 LED5/UART3_RXTRACED3	CMPB_P2

LQFP48 <mark>9 si</mark>	Pin Name	Туре	Main Function	Alternate Function	Analog Function
53	PC12	I/O	PC12	TIM4_ETR/LED6/UART3_CK	CMPB_N0
54	PD2	I/O	PD2	TIM3_ETR/LED7	CMPB_P0
55	PB3	I/O	PB3	SWD_SWO/TIM2_CH2/I2S_SCLK/QSPI_SCK/SPIS1_SCK	CMPB_N3
56	PB4	I/O	PB4	TIM3_CH1/QSPI_MI_IO1/SPIS1_SO	CMPA_P1
57	PB5	I/O	PB5	TIM3_CH2/I2S_SD1/I2C1_SMBAI/QSPI_MO_IO0/SPIS1_SI	CMPA_P2
58	PB6	I/O	PB6	TIM4_CH1/I2C1_SCL/QSPI_NSS1/UART1_TX	CMPA_N1
59	PB7	I/O	PB7	TIM4_CH2/I2C1_SDA/SPIM2_NSS1/UART1_RX	CMPA_N2
60	BOOT0	ı	BOOT0		
61	PB8	I/O	PB8	TIM4_CH3/I2C1_SCL/SPIM2_NSS2/UART1_CTS	CMPB_N1
62	PB9	I/O	PB9	TIM4_CH4/I2C1_SDA/UART1_RTS	CMPB_N2
63	VSS_3	S	VSS_3		
64	VDD_3	S	VDD_3		

MG32F104xx performance line GPIO function selection:

Table 2.2: Pin func selection

AFR	[3:0]	0	1	2	3	4	5	6	7
PORT	PA0	WKUP	TIM2_CH1_ETR						UART2_CTS
Α	PA1		TIM2_CH2						UART2_RTS
	PA2		TIM2_CH3						UART2_TX
	PA3		TIM2_CH4						UART2_RX
	PA4						QSPI_NSS0	SPIS1 NSS	UART2_CK
	PA5						QSPI_SCK		
	PA6		TIM1_BKIN	TIM3_CH1			QSPI_MI_IO1	SPIS1_SO	
	PA7		TIM1_CH1N	TIM3_CH2			QSPI_MO_IO0	SPIS1_SI	
	PA8	MCO	TIM1_CH1			LED0			UART1_CK
	PA9		TIM1_CH2			LED1			UART1_TX
	PA10		TIM1_CH3			LED2			UART1_RX
	PA11		TIM1_CH4			LED3			UART1_CTS
	PA12		TIM1_ETR						UART1_RTS
	PA13	SWD_DIO					QSPI_NSS1		
	PA14	SWD_CLK					QSPI_NSS2		
DODT	PA15		TIM2_CH1_ETR		I2S_WS	I2C1_SMBAI	QSPI_NSS0	SPIS1_NSS	
PORT B	PB0		TIM1_CH2N	TIM3_CH3	I2S_MCLK		QSPI_IO2		
	PB1		TIM1_CH3N	TIM3_CH4			QSPI_IO3		
	PB2	BOOT1			120 00111		0051 0011	00101 0011	
	PB3	SWD_SWO	TIM2_CH2	TIME 0114	I2S_SCLK		QSPI_SCK		
	PB4			TIM3_CH1	100 004		QSPI_MI_IO1		
	PB5			TIM3_CH2	I2S_SD1		QSPI_MO_IO0	SPIS1_SI	LIADTA TV
	PB6			TIM4_CH1		I2C1_SCL	QSPI_NSS1		UART1_TX
	PB7 PB8			TIM4_CH2 TIM4_CH3		I2C1_SDA I2C1_SCL	SPIM2_NSS1 SPIM2_NSS2		UART1_RX UART1_CTS
	PB9			TIM4_CH3		I2C1_SCL	SPIIVIZ_NSSZ		UART1_CTS
	PB9 PB10		TIM2_CH3	TIM4_CH4		12C1_SDA	QSPI_NSS2		UART3_TX
	PB11		TIM2_CH4	111014_0111		12C2_SDA	SPIM2_NSS1		UART3_RX
	PB12		TIM1_BKIN		I2S_WS	LED4	SPIM2_NSS0	SPIS2 NSS	UART3_CK
	PB13		TIM1_CH1N		I2S_SCLK	LED5			UART3_CTS
	PB14		TIM1_CH2N		IZO_OCLIK	LED6	SPIM2_MI	SPIS2_SO	
	PB15		TIM1_CH3N		I2S_SD0	LED7	SPIM2_MO	SPIS2_SI	
PORT	PC0				I2S_WS		SPIM2_NSS0		
С	PC1				I2S_SCLK		SPIM2_SCK		
	PC2				12S_SD0		SPIM2_MI	SPIS2_SO	
	PC3				I2S_SD1		SPIM2_MO	SPIS2_SI	
	PC4	TRACECK						002_0.	
	PC5						SPIM2_NSS2		
	PC6			TIM3_CH1	I2S_MCLK	LED0			
	PC7				I2S_MCLK	LED1			
	PC8			TIM3_CH3		LED2			
	PC9	TRACED1		TIM3_CH4		LED3			
	PC10					LED4			UART3_TX
	PC11	TRACED3				LED5			UART3_RX
	PC12			TIM4_ETR		LED6			UART3_CK
		TAMPER_RTC							
		OSC32_IN							
DOST	PC15	OSC32_OUT							
PORT D	PD0	OSC_IN							
	PD1	OSC_OUT							
	PD2			TIM3_ETR		LED7			

Chapter 3 Block Diagram

MG32F104XX performance line block diagram:

SWD IS FMC 256KB Flash DS. IBUS SS TAMPIN ВКР **BUS Matrix** NRST, OSC_IN, OSC_OUT AHB2APB RCC 36KB SRAM 묶 PWR IWDG USBDP USBDM CRC USB AHB2APB FIFO AHB BUS Matrix MAIN DMA 1 DMA 2 Ш RC 8Mhz Ш AHB BUS Matrix 1 AHB BUS Matrix 2 RCC 4 Channels 3 compl.Chann Brk input LED00~ LED07 TIM1 WWDG LED RC 32Khz NSSx,SCK, MI,MO TIM2 SPIM2 NSS,SCK, 4 Channels ТІМЗ AFIO SPIS2 SMBAI, SDA,SCL 4 Channels GPIOA SDA,SCL RX,TX,CK, RTS,CTS UART1 GPIOB I2C2 RX,TX,CK, RTS,CTS NSSx,SCK, MIO0~MIO3 GPIOC UART2 QSPI RX,TX,CK, RTS,CTS NSS.SCK. GPIOD CH0~CH15 ADC EXTI 125

PD[2:0] PC[15:0] PB[15:0] PA[15:0]

51 PORTs

Figure 3.1: MG32F104XX block diagram

Chapter 4 System description

4.1 Device Overview

Table below show MG32F104xx device features and peripherals:

Table 4.1: MG32F104XX device features and peripheral counts

	Peripheral	MG32F104RBT6
	Flash(KB)	256
	SRAM(KB)	36
Timers	General-purpose	3
j <u>‡</u>	Advanced-Control	1
	QSPI(Master)	1
c	SPIM	1
icatio	SPIS	2
Communication	I ² C	2
	UART	3
	USB	1
	I ² S	1
	GPIOs	51
0	12-bit ADC	1
ADC	ADC channels	16
rators	Number	2
Comparators	CMP channel	16
ŏ	CPU frequency	96MHz
Or	perating voltage	2.0V ~ 3.6V
Opera	ating temperatures	Industrial temperature -40°C ~ +85°C
		Junction temperature -40°C ∼ +125°C
	Packages	LQFP64

4.2 ARM Cortex™-M3 core

Cortex™ M3 is a 32-bit RISC processor core with three levels pipeline. It includes the AMBA-Lite interface and is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), which is a low cost but high performance MCU platform. It has optional hardware debugging function, can execute Thumb-2 instruction, and is compatible with other Cortex-M series. MG32F104xx performance line family incorporates the ARM ®Cortex™-M3 processor core, so it is compatible with all ARM tools and software.

4.3 Memory map

Program memory, data memory, system memory and AHB/APB peripherals are organized within the same linear4-GB address space. The addressable memory space is divided into 8 main blocks, each of 512 MB.

AHB peripheral address space is 64KB, can support up to 64 peripherals. APB peripheral address space is 64KB, each peripheral can use up to 1KB address space. APB peripheral only support word access, byte and half-word accesses are not supported.

System memory address space is 4KB and reserved for ISP

program. The MG32F104xx memory map is organized below:

4.4 System reset

System reset can be triggered by the sources below:

- · POR reset (POR)
- NRST
- WDG reset (IWDG and WWDG)
- · CPU Software reset
- · Exiting standby mode

Any source above can trigger the sysrem reset. When the working voltage is proper, the MHSI will be turned on and keep active. When NRST is asserted to high level, the oscillator will start running, and the flash controllerwill finish the device initilization.

4.5 NVIC

Cortex[™]-M3 is tightly coupled with the Nested Vectored Interrupt Controller (NVIC). This hardware block pro-vides flexible interrupt management features with minimal interrupt latency.

The main feature includes:

- · low latency interrupt processing
- · handle the system exceptions/faults and peripheral interrupts/events
- support up to 43 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3)
- · four programmable levels for the interrupt priority
- · generate the software interrupt
- configurable Non Maskable Interrupt (NMI).

4.6 EXTI

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event re-quests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests.

4.7 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as de-fault CPU clock on reset. An external 4-16 MHz clock, internal RC 48 MHz oscillator or clock output from PLL can be selected as system clock. When An external 4-16 MHz clock is used, it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC 8 MHz oscillator. A software interrupt is generated if enabled.

Several prescalers allow the configuration frequency of the AHB, APB1 and APB2 domains. The maximum frequency of the AHB, APB1 and APB2 is 96MHz, and the frequency of them can be configured independently.

4.8 Boot mode

At startup, boot pins are used to select one of three boot options:

- · Boot from user Flash
- · Boot from system memory
- Boot from embedded SRAM

4.9 Power supply schemes

- VDD = 2.0~3.6V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins.
- VDDA = 2.4~3.6V: external analog power supplies for ADC, and the minimum voltage should be 2.4 V when the ADC is used.
- VBAT = 1.8~3.6V: power supply for RTC, external clock 32 kHz oscillator and backup registers (throughpower switch) when VDD is not present.

Note: VDDA must be the same potential as VDD. It is recommended to power VDD and VDDA from the same source.

4.10 **DMAC**

Two general-purpose DMACs, each have 3 channels and up to 16 hardware DMA requests (16 requests for DMAC0 and 12 requests for DMAC1) are able to manage memory-to-memory, peripheral-to-memory and memory- to-peripheral transfers. The two DMA controllers have internal arbitor to arbitrate the priority of DMA requests.

Each channel can be configured with to hardware DMA requests, or also support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I2C, I2S, UART, TIMx and ADC.

4.11 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on VDD supply whenpresent or through the VBAT pin. The backup registers are forty-two 16-bit registers used to store 84 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.

4.12 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

4.13 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

4.14 System Tick

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter.It features:

- · A 24-bit down counter
- · Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Clock source is fixed to 1/8 of CPU frequency

4.15 General-purpose timers

There are up to 3 synchronizable general-purpose timers (TIM2, TIM3 and TIM4) embedded in the MG32F104XX performance line devices. These timers are based on a 20-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output.

This gives up to 16 input captures / output compares / PWMs on the largest packages.

The general-purpose timers can work together with the advanced-control timer via the Timer Link feature forsynchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1to 3 hall-effect sensors.

4.16 Advanced-control timer

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead-times. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:

- · Input capture
- · Output compare
- PWM generation (edge or center-aligned modes)
- · One-pulse mode output

If configured as a standard 20-bit timer, it has the same features as the TIMx timer. If configured as the 20-bitPWM generator, it has full modulation capability (0-100%). In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.

Many features are shared with those of the general-purpose TIMx timers which have the same architecture. The advanced-control timer can therefore work together with the TIMx timers via the Timer Link feature for syn- chronization or event chaining.

4.17 I2C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard (<=100Kb/s), fast mode (<=400Kb/s) and high speed mode(<=3.4Mb/s).

They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC genera- tion/verification is embedded.

They can be served by DMA and They support SMBus 2.0/PMBus.

4.18 Inter-integrated sound (I2S)

One standard I2S interface is available, it is operated in master mode. The interface can be configured to operate with 16/32 bit resolution, as input or output channels. The master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

4.19 Universal asynchronous receiver transmitters (UART)

Up to three universal asynchronous receiver transmitters (UART1, UART2 and UART3), These three interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode.

UART1, UART2 and UART3 interfaces are able to communicate at speeds of up to 6.0 Mbit/s. They also provide hardware management of the CTS and RTS signals.

All interfaces can be served by the DMA controller.

4.20 Serial peripheral interface (SPI)

Two SPIs are able to communicate up to 18 Mbits/s in slave modes in full-duplex and simplex communicationmodes. One SPI and one QSPI are able to communicate up to 24 Mbits/s in master modes in full-duplex and simplex communication modes. The frame can be configurable to 4bits, 8 bits, 16 bits or 32bits. Both SPIs and QSPI can be served by the DMA controller.

4.21 USB

One USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full- speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

4.22 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital oranalog alternate functions. All GPIOs are high current- capable except for analog inputs.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

4.23 ADC

One 12-bit analog-to-digital converters is embedded into MG32F104XX performance line devices and the ADC support up to 16 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) and the advanced-control timer (TIM1) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchro-nize A/D conversion and timers.

VDDA supply power for ADC, range from 2.4V-3.6V, ADC convert input voltage from 0V to VDDA.

The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert thesensor output voltage into a digital value.

4.24 Comparators

Up to 2 voltage comparators, each of them has 4 positive input channels and 4 negative input channels.

4.25 Random number generator

One Random number generator, used to generte 8/16/32 bit Random number.

4.26 LED Driver

One LED driver, support up to 56 LEDs or 8 Seven-segment LEDs.

4.27 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from an 8/16/32-bit data wordand a fixed generator polynomial.

4.28 Embedded SRAM and Flash memory

Up to 256 Kbytes of embedded Flash is available for storing programs and data.

Up to 36 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

4.29 Power supply supervisor

The device has an integrated power-on reset (POR) /power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2.0V. The device remains in reset mode when VDD is below specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the VDD /VDDA power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when VDD /VDDA drops below the V_{PVD} threshold and/or when VDD /VDDA is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

4.30 Low-power modes

MG32F104XX supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU whenan interrupt/event occurs.

· Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the MHSI RC, the FHSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB wakeup.

· Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the MHSI, the FHSI and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standbymode.

4.31 SWD Debug Port

The ARM SWJ-DP Interface is embedded, and is a serial wire debug port that enables a serial wire debug tobe connected to the target.

Chapter 5 Electrical characteristics

5.1 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 5.1: Voltage characteristics, Table 5.2: Current characteristics, and Table 5.3: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

5.1.1 Voltage characteristics

Table 5.1: Voltage characteristics

Symbel	Ratings	Min	Max	Unit
VDD-VSS	External main supply voltage (including VDDA and VDD)	-0.5	3.6	V
Vin	Input voltage on pins	VSS-0.3	VDD+0.5	V
$ \Delta V DDx $	Variations between different VDD power pins	-	50	m۷
VSSx - VSS	Variations between all the different ground pins	-	50	IIIV

5.1.2 Current characteristics

Table 5.2: Current characteristics

Symbel	Symbel Ratings		Unit
I_{VDD}	Total current into VDD/VDDA power lines (source)	60	
I_{VSS}	Total current out of VSS ground lines (sink)	60	=
	Output current sunk by any I/O and control pin	16	mA
I_{IO}	Output current source by any I/Os and control pin	-16	IIIA
I _{INJ(PIN)}	Injected current on any pin	± 5	7
$^{\perp}$ I $_{INJ(PIN)}$	Total injected current	± 25	

Note1: All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range.

Note2: Negative injection disturbs the analog performance of the device

Note3: A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS , $I_{INJ(PIN)}$ must never be exceeded.

Note4: When several inputs are submitted to a current injection, the maximum $\sum I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

5.1.3 Thermal characteristics

Table 5.3: Thermal characteristics

Symbel	Rating	Value	Unit
T_{STG}	Storage temperature range	-45 ∼ +150	°C
T_J	Maximum junction temperature	100	C

5.2 Operating conditions

5.2.1 General operating conditions

Table 5.4: General operating conditions

Symbel	Parameter	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency	-	96	
f _{PCLK1}	Internal APB1 clock frequency	-	96	MHz
f _{PCLK2}	Internal APB2 clock frequency	-	96	
VDD	Standard operating voltage	2	3.6	V
VDDA	Analog operating voltage	2	3.6	V
VBAT	Backup operating voltage	1.8	3.6	V
Т	Ambient temperature	-40	85	°C

Note1: It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up and operation

Note2: When ADC is used, VDDA operation voltage is 2.4V~3.6V.

5.2.2 Embedded reset and power control block characteristics

Table 5.5: Power on Reset characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T_{delay}	RSTN establish time	-	-	40	-	us
V _{POR/PDR}	Power on reset threshold	rising edge	-	1.92	-	V
	Fower officset tillesiloid	falling edge	-	1.88	-	V

Table 5.6: PVD characteristics

Symbo	I Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0] = 000	-	2.25	-	
		PLS[2:0] = 001	-	2.35	-	
		PLS[2:0] = 010	-	2.45	-	
	Programmable voltage detector	PLS[2:0] = 011	-	2.55	-	
	select rising edge	PLS[2:0] = 100	-	2.65	-	
		PLS[2:0] = 101	-	2.75	-	
		PLS[2:0] = 110	-	2.85	-	
.,		PLS[2:0] = 111	-	2.95	-	V
V_{PVD}		PLS[2:0] = 000	-	2.14	-	\ \
		PLS[2:0] = 001	-	2.24	-	
		PLS[2:0] = 010	-	2.34	-	
	Programmable voltage detector	PLS[2:0] = 011	-	2.44	-	
	select falling edge	PLS[2:0] = 100	-	2.54	-	
		PLS[2:0] = 101	-	2.64	-	
		PLS[2:0] = 110	-	2.74	-	
		PLS[2:0] = 111	-	2.84	-	

5.2.3 Supply current characteristics

Table 5.7: Supply current characteristics

Mode	Conditions	V	DD@25	°C	Unit
Wode	Conditions	2.0V	2.5V	3.6V	Onit
	HCLK=96MHz,Execute from Flash,APB clock enable	12.43	12.92	12.3	mA
	HCLK=96MHz,Execute from Flash,APB clock disable	8.0	8.22	7.73	mA
	HCLK=48MHz(FHSI),Execute from Flash,APB clock enable	9.83	9.55	10.04	mA
Run Mode ¹	HCLK=48MHz(FHSI),Execute from Flash,APB clock disable	6.96	6.41	6.89	mA
Run wode	HCLK=8MHz(HSE),Execute from Flash,APB clock enable	3.35	2.78	3.41	mA
	HCLK=8MHz(HSE),Execute from Flash,APB clock disable	2.84	2.37	2.87	mA
	HCLK=8MHz(MHSI),Execute from Flash,APB clock enable	3.11	2.54	2.79	mA
	HCLK=8MHz(MHSI),Execute from Flash,APB clock disable	2.54	1.91	2.28	mA
Cloop Made	HCLK=96MHz, APB clock disable	3.23	2.79	3.04	mA
Sleep Mode	HCLK=8MHz(MHSI), APB clock disable	1.68	0.93	1.12	mA
Stop Mode	LDO normal mode, HSE/HSI/LSE OFF	240	264	296	uA
Stop Mode	LDO Low power mode,HSE/HSI/LSE OFF	15.98	17.34	20.8	uA
Standby Mode	LSI and IWDG running	4.29	4.52	5.14	uA
VBAT Mode	RTC and LSE running	0.78	1.05	1.25	uA

Note1: Cache is enabled.

Note2: Internal voltage pump is turned on when VDD lower than 2.5V.

Note3: Add an additional power consumption of 0.8 mA in 12-bit mode ADC for the analog part.

5.2.4 External clock source characteristics

Table 5.8: High-speed external user clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{HSE_ext}	User external clock source frequency		-	8	16	MHz
V_{HSEH}	OSC_IN input pin high level voltage		0.7VDD	-	VDD	V
V_{HSEL}	OSC_IN input pin low level voltage		VSS	-	0.3VDD	V
$T_{W(\mathit{HSE})}$	OSC_IN high or low time	-	16	-	-	
$T_{r(HSE)}$ $T_{f(HSE)}$	OSC_IN rise or fall time		-	-	5	ns
$C_{in(HSE)}$	OSC_IN input capacitance	-	-	5	-	pF
DuCy _(HSE)	Duty cycle	-	45	-	55	%

Note1:Based on simulation and avt test results, not tested in production.

Table 5.9: Low-speed external user clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{LSE_ext}	User external clock source frequency		-	32.768	-	KHz
V_{LSEH}	OSC_IN input pin high level voltage		0.7VDD	-	VDD	V
V_{LSEL}	OSC_IN input pin low level voltage		VSS	-	0.3VDD	V
$T_{W(LSE)}$	OSC_IN high or low time	_	450	ı	-	
$T_{r(LSE)}$	OSC IN rise or fall time				50	ns
$T_{f(LSE)}$	OSC_IN lise of fall time		-	-	50	
$C_{in(LSE)}$	OSC_IN input capacitance	-	-	5	-	pF
DuCy _(LSE)	Duty cycle	-	30	ı	70	%
$T_{SU(LSE)}$	startup time	VDD is stabilized	-	2	-	s

Note1:Based on simulation and avt test results, not tested in production.

5.2.5 Internal clock source characteristics

Table 5.10: High-speed internal (MHSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{MHSI}	Frequency	-	-	8	-	MHz
$DuCy_{(MHSI)}$	Duty cycle	-	45	-	55	%
		T _A =-40 to 85°C	TBD	-	TBD	%
ACC _(MHSI)	Accuracy of the MHSI oscillator	T _A =0 to 85°C	TBD	-	TBD	%
		T_A =25°C	TBD	-	TBD	%
$T_{SU(MHSI)}$	MHSI oscillator startup time	$VSS \leq Vin \leq VDD$	1	-	2	us
$I_{DD(MHSI)}$	MHSI oscillator power	-	-	25	-	uA
	consumption					

Table 5.11: High-speed internal (FHSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{FHSI}	Frequency	-	-	48	-	MHz
DuCy _(F HSI)	Duty cycle	-	45	-	55	%
		T _A =-40 to 85°C	TBD	-	TBD	%
ACC _(FHSI)	Accuracy of the FHSI oscillator	T _A =0 to 85°C	TBD	-	TBD	%
		T _A =25°C	TBD	-	TBD	%
$T_{SU(FHSI)}$	FHSI oscillator startup time	$VSS \leq Vin \leq VDD$	200	-	500	ns
$I_{DD(FHSI)}$	FHSI oscillator power	-	-	55	-	uA
	consumption					

Table 5.12: Low-speed internal (LSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{LSI}	Frequency	-	20	-	40	KHz
$T_{SU(LSI)}$	LSI oscillator startup time	-	-	-	85	us
$I_{DD(LSI)}$	LSI oscillator power consumption	-	-	250	-	nA

5.2.6 PLL characteristics

Table 5.13: PLL characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	PLL input clock	-	1	8	16	MHz
f_{PLL_IN}	PLL input clock duty cycle	-	40	-	60	%
f_{PLL_OUT}	PLL multiplier output clock	-	-	96	-	MHz
T_{LOCK}	PLL lock time	-	-	-	200	us
Jitter	Cycle-to-cycle jitter	-	-	-	300	ps

Note1:Based on simulation and avt test results, not tested in production.

5.2.7 Memory characteristics

Table 5.14: Flash memory characteristics

Symbol	Parameter	Min	Тур	Max	Unit		
T_{PROG}	Page program time		2.1	-	ms		
_	Page erase time			-	6.4	-	ms
T_{ERASE}	Mass erase time	-	25.6	-	ms		
IDD_{PROG}	Page program current		-	2	mA		
IDD_{ERASE}	Page erase current	-	-	1.5	mA		
IDD	Read current@48MHz	-	-	4.7	mA		
IDD_{READ}	Read current@24MHz	-	-	2.5	mA		
N _{END}	Endurance		-	-	kcycles		
t _{RET}	Data retention	10	-	-	year		

5.2.8 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size is either 3 parts (cumulative mode) or 3 parts \times (n + 1) supply pins (non-cumulative mode). The human body model (HBM) can be simulated. The tests are compliant with JESD22-A114/C101 standard.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- · A current injection is applied to each input, output and configurable I/O

pinThese tests are compliant with ANSI/ESDA/JEDEC IC latch-up

standard.

Table 5.15:	ESD	absolute	maximum	ratings

Symbol	Parameter	Condition	Maximum value	Unit
$V_{ESD(HBM)}$	Electrostatic discharge voltage (human body model)	$T_A = +25 \text{ °C}$, compliant with JEDEC JS-001-2017	4000	٧
$V_{ESD(CDM)}$	Electrostatic discharge voltage (charge device model)	$T_A = +25 \text{ °C}$, compliant with JEDEC JS-002-2018	500	٧
I_{LU}	Static latch-up class	$T_A = +25 \text{ °C}$, compliant with JEDEC 2016	200	mA

5.2.9 EFT Characteristics

Table 5.16: EFT Characteristics

Symbol	Standard	Voltage	Class
EFT to IO	(IEC61000-4-4)	2KV	Class:4
EFT to Power	(IEC61000-4-4)	4KV	Class:4

Software suggestion

Software flow must contain code to prevent CPU run away, for example

- Crashed Program Counter.
- Unpredicted Reset
- Crashed important data in control register

Increase driven strength of IOs improve the capability of EFT

5.2.10 IO characteristics

Table 5.17: IO static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{IH}	Input high level voltage	-	0.65VDD	-	VDD+0.5	V
V_{IL}	Input low level voltage	-	-0.5	-	0.3VDD	V
V_{hys}	Schmitt trigger voltage	-	5%VDD	-	-	V
	hysteresis					
I_{lkg}	Input leakage current	$VSS \leq Vin \leq VDD$	-	-	±1	uA
R_{pu}	Weak pull-up equivalent	Vin=VSS	30	40	50	kΩ
	resistor					
R_{pd}	Weak pull-down equivalent	Vin=VDD	30	40	50	kΩ
	resistor					
C_{IO}	I/O pin capacitance	-	-	5	-	pF

Table 5.18: Input/output AC characteristics

Ospeed	Parameter	Conditions	Min	Тур	Max	Unit
	f	Maximum			10	MHz
х0	f _{max(IO)out}	frequency	C_L =50pF,VDD=2V to 3.6V		10	IVITIZ
χυ	$\mathfrak{t}_{f(IO)out}$	Output high to low	CE=30pr, VDD=2V to 3.6V	_	125	ns
		level fall time		-	120	115
	t	Output low to high		_	125	ns
	t _{r(IO)out}	level rise time		-	125	115
	f	Maximum		_	50	MHz
x1	† _{max(IO)out}	frequency	C_L =50pF,VDD=2V to 3.6V	-	50	IVII IZ
X1	t	Output high to low	CE=30pr, VDD=2V to 3.6V		25	ns
	$t_{f(IO)out}$	level fall time		-	23	113
	t	Output low to high		-	25	ns
	t _{r(IO)out}	level rise time		_	23	113

5.2.11 TIM characteristics

Table 5.19: TIM characteristics

Symbol	Conditions	Min	Max	Unit
$T_{res(TIM)}$	Timer resolution time	1	-	$T_{TIMxCLK}$
FEXT	Timer external clock frequency on CH1	0	T _{TIMxCLK} /2	MHz
	to CH4			
RESTIM	Timer resolution	-	20	bit
$T_{counter}$	16-bit counter clock period when	1	65536	$T_{TIMxCLK}$
	internal clock is selected			
T_{MAX_COUNT}	Maximum possible count	1	1048576×65536	$T_{TIMxCLK}$

Note1:TTIMxCLK = 96MHz

5.2.12 USB DC electrical characteristics

Table 5.20: USB DC electrical characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
VDD	USB operating voltage		3.0	3.6	V
V_{DI}	Differential input sensitivity	I(USBDP, USBDM)	0.2		V
V_{CM}	Differential common mode range	Includes V _{DI} range	0.8	2.5	V
V_{SE}	Single ended receiver threshold		1.3	2.0	V
V_{OL}	Static output level low	R _L of 1.5 kom to 3.6 V		0.3	V
V _{OH}	Static output level low	R _L of 15 kom to VSS V	2.8	3.6	V

Note1:To be compliant with the USB 2.0 full-speed electrical specification, the USBDP (D+) pin should be pulledup with a 1.5 kom resistor to a 3.0-to-3.6 V voltage range.

Note2:Based on simulation and avt test results, not tested in production.

Note3:RL is the load connected on the USB drivers.

Figure 5.1: USB timings: definition of data signal rise and fall time

Symbol	Parameter	Parameter Conditions				
t_r	Rise time	$C_L = 50 \text{ pF}$	4	20	ns	
t_f	Fall time	$C_L = 50 \text{ pF}$	4	20	ns	
$t_{r\!f\!m}$	Rise/fall time matching	t_r/t_f	90	110	%	
V_{CRS}	Output signal crossover voltage		1.3	2.0	٧	

Note1:Based on simulation and avt test results, not tested in production.

5.2.13 CMP characteristics

Table 5.22: CMP characteristics

Symbol	Parameter	Min	Тур	Max	Unit
Vin	Input voltage	0.6	-	VDD-0.3	V
VHY ST	Hysteresis	-	2	5	mV
VOFF	Input Offset voltage	-	5	15	mV
TPGD	Propagation Delay	-	-	200	nS
lq	Operation Current	-	-	8.5	uA

5.2.14 ADC characteristics

Table 5.23: ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDDA	Power supply	-	2.4	-	3.6	V
f_s	Sampling rate	-	0.05	-	1	MHz
f _{TRIG}	External trigger frequency	f _{ADC} =14MHz	-	-	823	KHz
V_{AIN}	Conversion voltage range	-	0	-	VDDA	V
R _{AIN}	External input impedance	-	-	-	200	Ω
C_{AIN}	External capacitor	-	-	TBD	-	pF
I _{lkg}	Injection current on Analog	-	-	-	10	uA
	input					
R_{ADC}	Sampling switch resistance	-	-	-	1.4	kΩ
C_{ADC}	Internal sample and hold	-	-	15.5	-	pF
	capacitor/12-bit					

Table 5.24: ADC Conversion time

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T_{AD}	ADC clock frequency	-	62.5	-	-	ns
T_{CONV}	Conversion time	sion time 12-bit		13T _{AD}	-	ns
F _{CONV}	Sampling rate	12-bit	-	-	940	KSPS
T_SAMP	Sampling time	12-bit	$3T_{AD}$	-	-	ns
t_{DIS}	Dis-charge time	-	-	$0.5T_{AD}$	-	ns
t_{DPU}	Power-up time	-	-	-	20	us

Chapter 6 Package characteristics

6.1 LQFP64 10X10mm

Figure 6.1: LQFP64 10X10mm, 0.5mm pitch and Recommended footprint

(THERMALLY ENHANCED VARIATIONS ONLY)
Note1: Drawing is not to scale.

Figure 6.2: LQFP64 10X10mm, 64 pin package parameters

	rigate o.z. zavi o riovitettim, o rpin paolago parametere											
Unit		mm			inch							
Symbols	Min.	Nom.	Max.	Min.	Nom.	Max.						
A			1.60			0.062						
A1	0.05		0.15	0.001		0.005						
A2	1.35	1.40	1.45	0.053	0.055	0.057						
ь	0.17	0.22	0.27	0.006	0.008	0.010						
c	0.09		0.20	0.003		0.007						
D	11.75	12.00	12.25	0.462	0.472	0.482						
D1	9.90	10.00	10.10	0.389	0.393	0.397						
E	11.75	12.00	12.25	0.462	0.472	0.482						
E1	9.90	10.00	10.10	0.389	0.393	0.397						
e		0.50 BSC		0.019 BSC								
L	0.45	0.6	0.75	0.017	0.023	0.029						
L1		1.00 REF		0.039 REF.								
S		0.20 REF			0.007 REF.							
Θ		3.5° REF			0.137 REF.							
ө1		5.0° REF			0.196 REF.							
ө2		12° REF			0.472 REF.							
ө3		12° REF		0.472 REF.								
R1		0.16 REF		0.006 REF.								
R2		0.15 REF		0.005 REF.								

	I	E2	D2				
PAD SIZE	Min.	Max.	Min.	Max.			
165*16E	3.99	4.19	3.99	4.19			
210*21E	4.27	5.33	4.27	5.33			
260*26E	5.28	6.60	5.28	6.60			

6.2 LQFP64 7X7mm

CAUCE PLANE OF TANE OF

Figure 6.3: LQFP64 7X7mm, 0.4mm pitch and Recommended footprint

Note1: Drawing is not to scale.

Figure 6.2: LQFP64 7X7mm, 64 pin package parameters

Unit		mm			inch				
Symbols	Min.	Nom.	Max.	Min.	Nom.	Max.			
A			1.60						
A1	0.05		0.15	0.002		0.006			
A2	1.35	1.40	1.45	0.053	0.055	0.057			
ь	0.13	0.18	0.23	0.005	0.007	0.009			
c	0.09		0.20	0.004		0.008			
D		9.00 BSC	;		0.354 BSC				
D1		7.00 BSC	;	0.276 BSC					
e		0.40 BSC	,	0.016 BSC					
Е		9.00 BSC	,		0.354 BSC				
E1		7.00 BSC	;		0.276 BSC				
L	0.45	0.60	0.75	0.018	0.024	0.030			
L1		1.00 REF	1	0.039 REF					
θ	0°	3.5°	7°	0°	7°				

Chapter 7 Product selection

MG32F104x ARM® Cortex®-M3 Performance MCU

	Commercial Product Code	Frequency (MHz)	Core	Flash (Kbytes)	Ram (Kbytes)	Package Name	dNOI	Vmin	Vmax	Nb Timer (20bit)	Nb Motor Control Timer	Nb ADC 10/12 bit Cell	Nb ADC Channels	Nb COMP	Nb COMP Channels	Quad SPI (M)	SPI (M)	SPI (S)	128	12C	UART	BSN	Nb Segment LCD pins
N	MG32F104RCT6	96	Cortex-M3	256	36	LQFP64	51	2	3.6	3	1	1	16	2	16	1	1	2	1	2	3	1	8

Chapter 8 Ordering information

6 = -40°C to 85°C 7 = -40°C to 105°C

MG 32 10 megawin __ **Device family** 32 = 32 bit MCU Application family _ F = Mainstream MCU Series _____ 10 = ARM Cortex-M3 Max Freq. _____ 3 = 72Mhz4 = 96Mhz Pin count ———— **R** = 64 pins C = 48 pins Flash memory Size ——— C = 256 Kbyte **B** = 128 Kbyte 9 = 96 Kbyte Package type — T = LQFP Temperature _

Figure 8.1: MG32F104XX Ordering Information

Chapter 9 Revision History

Revision	Date	Author	Modify
01.00	20220328	zy.yao	Draft version