

UESTIO

& STRUCTURED EXPLANATION

CHEMISTRY

Includes detailed question banks for Class 11 & 12 subjects PCMB

FEATURES

Skill-based Learning Develops critical thinking and problem-solving skills essential for cracking tough exams.

Score Boosting

Helps to score maximum marks in CBSE exams and increases competitive exam success potential..

Answer Key & Structured Explanations

Clear, well-structured explanations and step-by-step solutions to enhance understanding.

Exam Pattern Aligned

Questions modeled after the latest exam patterns to ensure students are well-prepared.

Competitive **Exam Focus**

Specially designed to help students excel in IIT, NEET, JEE, CUET, and other competitive exams.

NCERT Integration

Questions and answers are based on the NCERT syllabus, ensuring relevance for both CBSE board exams and entrance tests.

ARTHAM RESOURCES

Class: 11 Chemistry
Competency-based Question Bank with Answer Key
& Structured Explanation

CHEMICAL BONDING AND MOLECULAR STRUCTURE

1.	The hybrid state of S in SO ₃ is similar to that of				
	a) $C \text{ in } C_2H_2$ b) $C \text{ in } C_2H_4$	c) C in CH ₄	d) C in CO ₂		
2.	The hydration energy of Mg ²⁺ is larger than that of:				
	a) Al ³⁺ b) Na ⁺	c) Be ²⁺	d) None of these		
3.	Number of lone pair (s) in XeOF ₄ is/are				
	a) 0 b) 1	c) 2	d) 3		
4.	Van der Waals' forces between molecules depend up	on:			
	a) Number of electrons b) Charge on nucleus	c) Radius of atoms	d) All of these		
5.	XeF ₆ is:				
	a) Octahedral				
	b) Pentagonal pyramidal				
	c) Planar				
	d) tetrahedral				
6.	The bond order in NO is 2.5 while that in NO ⁺ is 3. V species?	Vhich of the following state	ements is true for these two		
	a) Bond length in NO ⁺ is greater than in NO				
	b) Bond length in NO is greater than in NO ⁺				
	c) Bond length in NO ⁺ is equal to than in NO				
	d) Bond length is unpredictable				
7.	An atom with atomic number 20 is most likely to con	nbine chemically with the a	tom whose atomic number		
	is:				
	a) 11 b) 16	c) 18	d) 10		
8.	Which has the largest distance between the carbon h	ydrogen atom?			
	a) Ethane b) Ethene	c) Ethyne	d) Benzene		
9.	Length of hydrogen bond ranges from 2.5Å to:				
	a) 3.0 Å b) 2.75 Å	c) 2.6 Å	d) 3.2 Å		
10.	If $H - X$ bond length is 2.00 Å and $H - X$ bond has di	pole moment 5.12×10^{-30}	C – m,		
	the percentage of ionic character in the molecule wil	l be			
	a) 10% b) 16%	c) 18%	d) 20%		
11.	Which molecule is planar?				
	a) NH ₃ b) CH ₄	c) C_2H_4	d) SiCl ₄		
12.	From the molecular orbital theory, one can show that		ecule as		
	a) 2 b) 1	c) 3	d) 4		
13.	Two ice cubes are pressed over each other until they	unite to form one block. W	hich one of the following		
	forces dominates for holding them together?				
	a) Dipole-dipole interaction	b) Van der Waals' forces			
	c) Hydrogen bond formation	d) Covalent attraction			
14.	Maximum number of covalent bonds between two lil				
	a) Three b) Two	c) Four	d) One		
15.	When sodium and chlorine react, energy is:				
	a) Released and ionic bond is formed				
	b) Released and covalent bond is formed				
	c) Absorbed and covalent bond is formed				
	d) Absorbed and ionic bond is formed	** 0			
16.	The maximum possible number of hydrogen bonds is	=	-		
	a) 1 b) 2	c) 3	d) 4		
17.			12 4 2 0 20 5		
	a) $1s^2, 2s^22p^3$ b) $1s^2, 2s^22p^6, 3s^1$	c) $1s^2$, $2s^22p^6$	d) $1s^2$, $2s^22p^5$		
18.	Bond energies in NO, NO ⁺ and NO ⁻ are such as				

		•	c) $N0^+ > N0 > N0^-$	•		
19.			owing molecules? ($X=S$, $X=S$, $X=S$).			
20	a) SF ₄	b) XeF ₄	c) SF ₆	d) CF ₄		
20.		two nybria orbitaisis 105°.	The percentage of <i>s</i> -charac	ter of hybrid orbital is		
	between	b) 9 – 12%	a) 22 220/	J) 11 120/		
21	a) $50 - 55\%$		c) 22 – 23%	d) 11 – 12%		
21.	Which is electron deficier	b) B ₂ H ₆	c) C H	d) NaBH ₄		
22	a) C₂H₄CCl₄ is insoluble in water		c) C_2H_6	uj Nadri ₄		
22.	a) CCl ₄ is non-polar and v					
	b) Water is non-polar and	-				
	c) Water and CCl ₄ both a					
	d) None of the above	e polai				
23.	_	not correct regarding the n	roperties of ionic compoun	ds?		
20.	•	high metling and boiling p	•			
	= = = = = = = = = = = = = = = = = = =	in aqueous medium is very				
		= =	utions do not conduct elect	ricity		
	d) They are highly soluble	-		- · J		
24.		pi (π) bonds present in be	nzene respectively are			
	a) 12, 6	b) 6, 6	c) 6, 12	d) 12, 3		
25.	Which of the following is	not tetrahedral?				
	a) BF ₄	b) NH ₄ ⁺	c) CO_3^{2-}	d) SO ₄ ²⁻		
26.	In PCl ₅ molecule, P is:					
	a) sp^3 -hybridized	b) dsp^2 -hybridized	c) ds^3p -hybridized	d) sp^3d -hybridized		
27.	The bond angle and % of	d-character in SF ₆ are				
	a) 120°, 20%	b) 90°, 33%	c) 109°, 25%	d) 90°, 25%		
28.	Linear combination of tw	o hybridized orbitals, belor	nging to two atoms and eacl	h having one electron leads		
	to:					
	a) Sigma-bond					
	b) Double bond					
	•	c) Coordinate covalent bond				
	d) Pi-bond					
29.		carbon atoms are joined by	7:			
	a) Three σ -and three π -bo					
	b) Two σ - and one π -bond					
	c) Two σ -and two π -bond	IS				
20	d) Three π -bonds only	:-				
30.	Geometry of SiO ₄ ⁴⁻ anion		a) Tuile a dural	d) Dankaran al		
21	a) Tetrahedral	b) Trigonal	c) Trihedral	d) Pentagonal		
31.	0 1	b) <i>sp</i> ³ -hybridized	c) <i>sp</i> -hybridized	d) None of these		
22		one of the following anion		d) None of these		
54.	a) BF_6^{3-}	b) BH_4^-	c) B(OH) ₄	d) BO ₂		
22	, ,	, ·	then the expected values of	, -		
55.	should be respectively:	i are about 1.54 A cacii,	then the expected values of	atomic raun of K and r		
		b) 2.31 and 0.64 Å	c) 0.64 and 2.31 Å	d) 2.31 and 1.34 Å		
34			tals are formed by the overl			
J T.	a) $s + p_z$	b) $p_x + p_y$	c) $p_z + p_z$	d) $p_x + p_x$		
35.		· ·	~) F% · F%	~) PX		
55.	a) Hydrogen	b) Ionic	c) Covalent	d) Metallic		
	- ,,	-,	-,	· ,		

36.	The total number of valency electrons for PO_4^{3-} ion is	S:	
	a) 32 b) 16	c) 28	d) 30
37.	The ratio of σ and π -bonds in benzene is:	,	,
	a) 2 b) 6	c) 4	d) 8
38.	The geometry of PF ₅ molecule is:	,	,
	a) Planar b) Square planar	c) Trigonal bipyramidal	d) Tetrahedral
39.	Which one of the following linear structure?	, , ,	
	$(I)I_3^ (II)NO_2^-$		
	$(III)I_3^+$ $(IV)SO_2$		
	$(V)N_3^-$		
	a) I, II and III b) I and V	c) II, III and IV	d) All of these
40.	According to MO theory, which of the following lists		•
	order?	0 1	Ü
	a) $N_2^- < N_2^{2-} < N_2$ b) $N_2^- < N_2 < N_2^{2-}$	c) $N_2^{2-} < N_2^{-} < N_2$	d) $N_2 < N_2^{2-} < N_2^{-}$
41.	The equilateral triangle shape has:		, , , , , , , , , , , , , , , , , , , ,
	a) sp -hybridization b) sp^2 -hybridization	c) sn^3 -hybridization	d) sp^3d -hybridization
42.	Which of the following has fractional bond order?	·, ·, ·, · · · · · · · · · · · · · · ·	, , o p - 11 - 13 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	a) O_2^{2+} b) O_2^{2-}	c) F ₂ ²⁻	d) H ₂
43.	For which of the following hybridization the bond an) 2
10.	a) sp^2 b) sp	c) sp^3	d) dsp^2
44.	Experiment shows that H ₂ O has a dipole moment wh	, .	, .
	best illustrate these facts:	, <u>/</u>	
		0	
	a) $O=C=O, H-O-H$ b) $\bigcap_{O}^{C}, H-O-H$	a) 0-c-0 \	9
	a) $O-C=O, H-O-H$		C = O, O - H
		Н Н	
45.	In TeCl ₄ , the central atom tellurium involves	2 -2	
	a) sp^3 hybridisation b) sp^3 d hybridization	c) sp^3d^2 hybridisation	d) dsp^2 hybridisation
46.	Stability of hydrides generally increases with:		
	a) Increase in bond angle		
	b) Decrease in bond angle		
	c) Decrease in resonance		
	d) None of these		
47.	Which of the following is isoelectronic with CO ₂ ?) N 0	D. V. O
4.0	a) NO ₂ b) NO	c) N ₂ 0	d) N_2O_4
48.	Which can be described as a molecule with residual		1) p. gl
40	a) N ₂ b) CH ₄	c) NaCl	d) BeCl ₂
49.	Lattice energy of an ionic compound depends upon	13 75 11 61 1	
	a) Charge on the ion and size of the ion	b) Packing of ions only	
=0	c) Size of the ion only	d) Charge on the ion only	O. I.
50.	Identify the correct statement from below, concerning		-
	a) The molecule is planar	b) one of the three	carbon atoms is in an-
	The molecule is non - planar with the two - CH		e <i>sp-</i> hybridized
	c) groups being in planes perpendicular to each	h	
	other		
51.	(i) H – C – H angle in CH ₄		
	(ii) Cl – B – Cl angle in BCl ₃		
	(iii) $F - I - F$ angle in IF_7 in a plane		
	(iv) $I - I - I$ angle in I_3^-		
	Increasing order of above bond angles is		

	a) $\sigma 2p_x$	b) $\pi 2p_y$	c) π^*2p_y	d) $\sigma^* 2p_x$	
65.	The common feature amo	ng the species CN^- , CO and	NO ⁺ are:		
	a) Bond order three and isoelectronic	b) Bond order three and weak field ligands	c) Bond order two and $\pi\text{-}$ acceptors	d) Isoelectronic and weak field ligands	
66.	Hydrogen bonding is max	imum in			
	a) C ₂ H ₅ OH	b) CH ₃ OCH ₃	c) $(CH_3)_2C = 0$	d) CH ₃ CHO	
67.	The O—H bond distance i	n water molecule is:			
	a) 1.0Å	b) 1.33 Å	c) 0.96 Å	d) 1.45 Å	
68.	O_2^{2+} has a bond order of				
	a) 1	b) 2	c) 3	d) 4	
69.	Which among the following	ng molecules/ ions is diama	ignetic?		
	a) Super oxide ion				
	b) Oxygen				
	c) Carbon molecule				
	d) Unipositive ion of N ₂ m	olecule			
70.	The enolic form of aceton	e contains			
	a) 9 sigma bonds, 1 pi bor	nd and two lone pairs			
	b) 8 sigma bonds, 2 pi bor	nd and two lone pairs			
	c) 10 sigma bonds, 1 pi bo	ond and one lone pairs			
	d) 9 sigma bonds, 2 pi bor	-			
71.		e isoelectronic and isostruc	tural?		
	$NO_3^-, CO_3^{2-}, ClO_3^-, SO_3$				
	a) NO_3^- , CO_3^{2-}	b) SO_3 , NO_3^-	c) ClO_3^-, CO_3^{2-}	d) CO_3^{2-} , SO_3	
72.	Which of the following is j	paramagnetic with bond or	der 0.5?		
	a) F ₂	b) H ₂ ⁺	c) N ₂	d) 0_2^-	
73.	Water has high heat of val	porization due to:			
	a) Covalent bonding	b) H-bonding	c) Ionic bonding	d) None of these	
74.	The C – H bond distance is	s the longest in			
	a) C_2H_6	b) C ₂ H ₂	c) $C_2H_2Br_2$	d) C_2H_4	
75.	If the electronegativity dif	fference between two atom	s A and B is 2.0, then the pe	ercentage of covalent	
	character in the molecule	is			
	a) 54%	b) 46%	c) 23%	d) 72%	
76.	Structure of ICl ₂ is:				
	a) Trigonal				
	b) Octahedral				
	c) Square planar				
	d) Distorted trigonal pyra				
77.	Polar covalent compound				
	a) Polar solvents	b) Non-polar solvents	-	d) All solvents	
78.	N_2 Ois isoelectronic to CO_2 and N_3^- . Which of the following is the structure of N_2 O?				
	a) N	b) $N - O - N$	c) $N - 0 - N$	d) N	
	N N	b) ii o ii	c) iv o iv	N O	
79.	Which does not show hyd	rogen bonding?			
	a) C ₂ H ₅ OH	b) Liquid NH ₃	c) H ₂ 0	d) Liquid HBr	
80.	All bond angles are exactly	y equal to 109° 28` in			
	a) Methyl chloride		b) Iodoform		
	c) Chloroform		d) Carbon tetrachloride		
81.	Which among the following	ng has highest ionic radius?			
	a) F ⁻	b) B ³⁺	c) 0^{2-}	d) Li ⁺	
82.	Zero dipole moment is po	ssessed by			

	a) PCl ₃	b) BF ₃	c) ClF ₃	d) NH ₃
83.	The number of electrons	involved in the bond forma	ation of N ₂ molecule	
	a) 2	b) 4	c) 6	d) 10
84.	Which one of the following	ng orders is not in accordin	g with the property stated	against it?
	a) $F_2 > Cl_2 > Br_2 > I_2$: Electronegativity		
	b) $F_2 > Cl_2 > Br_2 > I_2$: Bond dissociation energ	y	
	c) $F_2 > Cl_2 > Br_2 > I_2$: Oxidising power		
		F : Acidic property in water	•	
85.	What is the dominant int	ermolecular force or bond	that must be overcome in c	onverting liquid CH ₃ OH to a
	gas?			
	a) London dispersion for	ce		
	b) Hydrogen bonding			
	c) Dipole-dipole interact	ion		
	d) Covalent bonds			
86.		s regarding bonding molecu		
	a) Bonding molecular or	bitals possess less energy t	han combining atomic orbit	tals.
	b) Bonding molecular or	bitals have low electron de	nsity between the two nucle	ei.
	= =	-	tributes to attraction betwe	
	•		g atomic orbitals have same	e sign.
87.		ative covalent bond. Which		
	=	=	b) Two atoms form bond	_
	=	d and one of them provide		ond by sharing electrons
00	both electrons	2. 2	obtained from third at	om.
88.		$1 \text{ C} - \text{C}$ bond in sp^2 hybridis	_	D 4 7 4 8
00	a) 1.2 Å	b) 1.39 Å	c) 1.33 Å	d) 1.54 Å
89.			2.5, 2.1, 3.5, 3.0 and 2.5 resp	ectively. Which of the
	following bonds is most) C	D.O. II
00	a) C—H	b) N—H	c) S—H	d) 0—H
90.	Which of the following ha	-	c) Al ²⁺	d) Al ³⁺
01	a) Al	b) Al ⁺	,	
91.	minimum?	ig, the bolid length between	en nybridised carbon aton	and other carbon atom is
	a) Propyne	b) Propene	c) Butane	d) Propane
92	Which is expected to con		c) butane	u) i ropane
74.	a) Diamond	b) Molten sulphur	c) Molten KCl	d) Crystalline NaCl
93	,	ors of electricity because th		a) drystamme radi
, ,	a) Ionic bonds	ors or electricity because th	b) A network structure	
	c) Very few valence elect	rons	d) Free electrons	
94.	The species having pyrar		,	
	a) SO ₃	b) BrF ₃	c) SiO_3^{2-}	d) OSF ₂
95.		, ,	ch other is primarily caused	
	a) Hydrogen bonding			·
	b) Difference in electron	egativities		
	c) High ionisation energy	y		
	d) Van der Waals' forces			
96.	In HCHO carbon atom ha	s hybridisation:		
	a) sp	b) sp^2	c) <i>sp</i> ³	d) None of these
97.	Which of the following sp	pecies has four lone pairs o	f electrons in its outer shell	?
	a) I	b) 0 ⁻	c) Cl ⁻	d) He
98.	For AB bond if per cent i	onic character is plotted ag	gainst electronegativity diff	Ference $(X_A - X_B)$, the shape

of the curve would look like

The correct curve is

a) A

b) *B*

c) C

d) D

99. Chlorine atom, in its third excited state, reacts with fluorine to form a compound *X*. The formula and shape of *X* are

- a) ClF₅, pentagonal
- b) ClF₄, tetrahedral
- c) ClF₄, pentagonal bipyramidal
- d) ClF₇, pentagonal bipyramidal

100. The formation of the oxide ion $O^{2-}(g)$ requires first an exothermic and then an endothermic step as shown below,

 $0(g) + e \rightarrow 0^{-}(g)$;

 $\Delta H = -142 \text{ kJ/mol}$

 $0^{-}(g) + e \rightarrow 0^{2-}(g)$;

 $\Delta H = 844 \text{ kJ/mol}$

This is because:

- a) 0⁻ ion has comparatively larger size than oxygen atom
- b) Oxygen has high electron affinity
- c) O ion will lead to resist the addition of another electron
- d) Oxygen is more electronegative

101. In which of the following molecules are all the bonds not equal?

a) AlF

b) NF₃

c) ClF₃

d) BF₃

102. Which of the following compound is covalent?

a) H

b) KCl

c) Na₂S

d) CaO

103. Which of the following molecular species has unpaired electron (s)?

a) N_2

b) F₂

c) 0_{2}^{-}

d) 0_2^{2-}

104. The correct order of bond angles is:

a)
$$PF_3 < PCl_3 < PBr_3 < PI_3$$

b)
$$PF_3 < PBr_3 < PCl_3 < PI_3$$

c)
$$PI_3 < PBr_3 < PCl_3 < PF_3$$

d)
$$PF_3 > PCl_3 < PBr_3 < PI_3$$

105. If the bond length and dipole moment of a diatomic molecule are 1.25 A and 1.0 D respectively, what is the per cent ionic character of the bond?

a) 10.66

b) 12.33

c) 16.66

d) 19.33

106. The molecule which does not exhibit dipole moment is

a) NH₃

b) CHCl₃

c) H_2O

d) CCl₄

107. N_2 accept electron and convert into N_2^- , where this electron goes?

- a) Antibonding π -molecular orbital
- b) Bonding π -molecular orbital
- c) σ -bonding molecular orbital
- d) σ-antibonding molecular orbital

108.	The correct order of radii	is:		
100.	a) $N < Be < B$	b) $F^- < 0^{2-} < N^{3-}$	c) Na < <i>Li</i> < <i>K</i>	d) $Fe^{3+} < Fe^{2+} < Fe^{4+}$
109.	The bond order is maximu	•	·, · · · · · · · · · · · · · · · · · ·	
207.	a) H ₂	b) H ₂ ⁺	c) He ₂	d) He ₂ ⁺
110.	-	oms has minimum covalent		w 2
110.	a) Si	b) N	c) C	d) B
111.	The screening effect of d -e	•	<i>a</i> , <i>a</i>	., 2
	a) Equal to the <i>p</i> -electron			
	b) Much more than <i>p</i> -elect			
	c) Same as <i>f</i> -electrons			
	d) Less than <i>p</i> -electrons			
112.	Which of the following sta	atement is wrong?		
		es increase from NH ₃ to BiH	I_3 in group 15 of the period	ic table.
	b) Nitrogen cannot form a			
	, ,	eaker than the single P—P l	oond.	
	d) N ₂ O ₄ has two resonance			
113.	The molecule having pern			
	a) SF ₄	b) XeF ₄	c) SiF ₄	d) BF ₃
114.	Unusually high boiling poi	•		, ,
	a) Intermolecular hydroge		b) Intramolecular hydroge	en bonding
		olecular hydrogen bonding		<u> </u>
115.	Which of the following is l			
	a) CaF ₂	b) CaBr ₂	c) CaI ₂	d) CaCl ₂
116.	What bond order does O_2^{2} .		, 2	2
	a) 1	b) 2	c) 3	d) 1/3
117.		Y and Z atoms. The oxidation	on states of <i>X, Y</i> and <i>Z</i> are	+2, +2 and -2 respectively.
	The possible formula of th			
	a) XYZ ₂	b) $Y_2(XZ_3)_2$	c) $X_3(Y_4Z)_2$	d) $X_3(YZ_4)_3$
118.	Which one of the followin		J 3 1 7 2	3 3 173
	a) CCl ₄	b) CHCl ₃	c) CH ₂ Cl ₂	d) CH ₃ Cl
119.		g has the regular tetrahedr	=	
	(Atomic numbers $B = 5$, S	= 16, Ni $= 28$, Xe $= 54$)		
	a) XeF ₄	b) SF ₄	c) BF ₄	d) $[Ni(CN)_3]^{2-}$
120.	If the dipole moment of to	oluene and nitro-benzene a	re 0.43 D and 3.93 D, then	what is the expected dipole
	moment of <i>p</i> -nitro toluene		·	•
	a) 3.50 D	b) 2.18 D	c) 4.36 D	d) 5.30 D
121.	Which of the following is a	=	•	-
	a) Pb ²⁺	b) Ge ²⁺	c) Si ²⁺	d) Sn ²⁺
122.	In which of the following	compound sp^2 hybridisatio	on is absent?	-
	a) $CH_2 = CH - CH = CH_2$		b) $CH \equiv C - CH_2 - CH_3$	
	c) $CH_2 - CH = CH_2$		d) $CH_2 = CH - CH_2 - CH_3$	}
123.	Which one of the followin	g pairs of species has the sa	nme bond order:	
	a) NO ⁺ and CN ⁺	b) CN ⁻ and NO ⁺	c) CN ⁻ and CN ⁺	d) O ₂ and CN ⁻
124.	Which of the following cha	aracteristics regarding halo	gens is not correct?	, <u>-</u>
	a) Ionization energy decre	eases with increase in atom	ic number.	
	-	eases with increase in atom		
		ases with increase in atomic		
	_	eases with increase in atom		
125.	The number of S – S bonds			
	a) Three	b) Two	c) One	d) Zero

126. The low density of ice compared to water is due to a) Induced dipole - induced dipole interactions b) Dipole - induced dipole interaction c) Hydrogen bonding interactions d) Dipole -dipole interaction 127. Consider the following molecules or ions $(i)H_2O(ii)NH_4^+(iii)SO_4^{2-}$ $(iv)ClO_4^-(v)NH_3$ sp^3 hybridisation is involved in the formation of a) (i), (ii) (v) only b) (i), (ii) only d) (i), (ii), (iii), (iv) and (v) c) (ii) only 128. Which of the following compounds has dipole moment approximately equal to that of chlorobenzene? a) o-dichlorobenzene b) *m*-dichlorobenzene c) p-dichlorobenzene d) p-chloronitrobenzene 129. Which of the following overlaps leads to bonding? p-orbital *p*-orbital s-orbital s-orbital *p*-orbital p-orbital d-orbital p-orbital d) c) 130. Which of the following is correct? a) The number of electrons present in the valence shell of S in SF_6 is 12. b) The rates of ionic reactions are very low. c) According to VSEPR theory, SnCI₂ is a linear molecule. d) The correct order of ability to form ionic compounds among Na⁺, Mg²⁺ and Al³⁺ is Al³⁺ > Mg^{2+} > Na^+ . 131. The number of sigma and pi bonds in peroxodisulphuric acid are respectively a) 9 and 4 b) 11 and 4 c) 4 and 8 d) 4 and 9 132. Which is not a paramagnetic species? d) 0_2^{2-} b) 0_{2}^{+} c) 0_{2}^{-} a) 0_2 133. In piperidine -H, N atom has hybridization: b) sp^2 c) sp^3 d) dsp^2 a) sp 134. Electron deficient species are known as: a) Lewis acids b) Hydrophilic c) Nucleophiles d) Lewis bases 135. The molecule having three folds of axis of symmetry is: a) NH₃ b) PCl₅ c) SO_2 d) CO_2

136. The structure of ICl_2^- is:

a) Trigonalb) Octahedral

	c) Square planar			
	d) Distorted trigonal bipy		_	
137.	=	nolecule with the highest d	-	
	a) CH ₃ Cl	b) CH ₂ Cl ₂	c) CHCl ₃	d) CCl ₄
138.		ot isostructural with SiCl ₄ ?		2
	a) PO ₄ ³⁻	b) NH ₄ ⁺	c) SCl ₄	d) SO_4^{2-}
139.	A molecule which cannot	-		
	a) SF ₄	b) OF ₂	c) OF ₄	d) O_2F_2
140.	An atom <i>X</i> has three valer between them will have the	nce electrons and atom <i>Y</i> hance formula	as six valence electrons. Th	e compound formed
	a) X_2Y_6	b) <i>XY</i> ₂	c) X_2Y_3	d) X_3Y_2
141.	Which one is polar molecu	, <u>-</u>	0) 11213	w) 11312
	a) CH ₄	b) CCl ₄	c) CO ₂	d) H ₂ O
142.	Shape of molecules is deci	•		u) 1120
1 12.	a) Sigma bond	idea by:		
	b) π-bond			
	c) Both sigma and π-bond	ls		
	d) Neither sigma nor π -bo			
143.	The shape of carbon dioxi			
1 101	a) Pyramidal	b) Tetrahedral	c) Planar	d) linear
144.	The correct ionic radii ord	•	c) Tianai	u) iiiicui
	a) $N^{3-} > 0^{2-} > F^- > Na^{-1}$			
	b) $N^{3-} > Na^+ > 0^{2-} > 1$	e		
	c) $Na^+ > 0^{2-} > N^{3-} > F^-$			
	d) $0^{2-} > F^{-} > Na^{+} > N^{3-}$	_		
1 4 5		> Mg ²⁺ > Al ³⁺		
145.	Which is not linear?	b) HCM	a) C II	9) II O
116	a) CO ₂	b) HCN	c) C_2H_2	d) H ₂ O
140.	Hybridisation of oxygen in	b) sp^2	-)3	٦٠3 ٦
147	a) Sp What is the effect of more	, .	c) sp^3	d) sp^3d
14/.		electronegative atom on the	=	d) Nana of these
1/10	a) Increases Which of the following two	b) Decreases	c) Remains the same	d) None of these
140.	Which of the following tw		a) CO2- CO2-	a) DCl ICl
140	a) XeF_2 , IF_2^-	b) NH ₃ , BF ₃	c) CO_3^{2-} , SO_3^{2-}	d) PCl ₅ , ICl ₅
149.	NF ₃ is:			
	a) Non-polar compound	. d		
	b) Electrovalent compounc) Having low value of dip			
	d) Having more dipole mo			
150		Br ₂ is nearly same, but boili	na point of ICl is about 100	Chigher than Dr. Thic
150.	might be due to:	or 2 is flearly same, but bom	ing point of ici is about 40	Chigher than br ₂ . This
	a) I—Cl bond is stronger t	than Br. Brhand		
	b) Ionisation energy of I <			
	c) ICl is polar where as Br			
	d) The size of $I > $ size of B	=		
151	Which molecule is linear?			
131.	a) H ₂ S	b) NO ₂	c) ClO ₂	d) CO ₂
152	· -	ows minimum melting poin	· -	u j 002
104.	a) Naphthalene	b) Diamond	c) NaCl	d) Mn
153	_	es not have a lone pair on t		uj Pili
100.	a) NH ₃	b) PH ₃	c) BF ₃	d) PCl ₃
	~, ****3	~,3	~, ~ 3	~, r 0. 3

154. Molecular orbital theory was given by		
a) Kossel b) Mosley	c) Mulliken	d) Werner
155. NH ₃ has a net dipole moment, but boron trifluoride ((BF ₃) has zero dipole mom	ent, because:
a) B is less electronegative than N		
b) F is more electronegative than H		
c) BF ₃ is pyramidal while NH ₃ is planar		
d) NH ₃ is pyramidal while BF ₃ is trigonal planar		
156. Proton plays an important role inbonding.		
a) Electrovalent b) Hydrogen	c) Covalent	d) Coordinate
157. Which represents a collection of isoelectronic specie	s?	
a) Be, Al ³⁺ , Cl ⁻ b) Ca ²⁺ , Cs ⁺ , Br	c) Na^+ , Ca^{2+} , Mg^{2+}	d) N ³⁻ , F ⁻ , Na ⁺
158. An electrovalent compound does not exhibit space is	somerism due to:	
a) Presence of ions		
b) High melting point		
c) Strong electrostatic forces between constituent io	ns	
d) Non-directional nature of electrovalent bond		
159. In which molecule Sulphur atom is not sp^3 -hybridized	ed?	
a) SO ₄ ²⁻ b) SF ₄	c) SF ₂	d) None of these
160. In which one of the following species, the central ato	m has the type of hybridiza	ntion which is not the same
as that present in other three?		
a) SF ₄ b) I ₃	c) SbCl ₅ ²⁻	d) PCl ₅
161. The radii of F, F^- , O and O^{2-} are in the order of:		
a) $0^{2-} > F^- > F > 0$ b) $F^- > 0^{2-} > F > 0$	c) $0^{2-} > 0 > F^- > F$	d) $0^{2-} > F^- > 0 > F$
162. The correct order of decreasing second ionisation en	thalpy of Ti(22), V(23), Cr	(24) and Mn(25) is:
a) $V > Mn > Cr > Ti$ b) $Mn > Cr > Ti > V$	c) Ti $> V > Cr > Mn$	d) $Cr > Mn > V > Ti$
163 . How many σ and π -bonds are present in given comp	ound?	
$Ph - CH = C - C_2H_5$		
CH ₃		
a) 19 σ and 4 π – bonds	b) 22 σ and 4 π – bonds	
c) 25σ and 4π – bonds	d) 26 σ and 4 π – bonds	
164. C — Cl bond is stronger than C – Ibond, because		
a) C – Cl bond is more ionic than C – I	b) C – Cl bond is polar co	
c) C – Cl bond is more covalent than C – I	d) C – Cl bond length is lo	onger than C – I
165. The ICl molecule is:		
a) Purely covalent		
b) Purely electrovalent		
c) Polar with negative end on chlorine		
d) Polar with negative end on iodine		
166. Which of the following silver salts is insoluble in wat		D 4 370
a) $AgClO_4$ b) Ag_2SO_4	c) AgF	d) AgNO ₃
167. Silicon has 4 electrons in the outermost orbit. In form	=	
a) It gains electrons b) It losses electrons	c) It shares electrons	d) None of these
168. The shape of gaseous SnCl ₂ is		N = 1
a) Tetrahedral b) Linear	c) Angular	d) <i>T</i> -shape
169 . Chlorine atom tends to acquire the structure of:	.	D. II.
a) He b) Ne	c) Ar	d) Kr
170. The d – orbital involved in sp^3d – hybridisation is		
a) $d_{x^2-y^2}$ b) d_{xy}	c) d_{z^2}	d) d_{zx}
171. When O_2 is converted into O_2^+ ;		

	a) Both paramagnetic character and bond order increase					
	b) Bond order decreases					
	c) Paramagnetic character increases					
	d) Paramagnetic characte	er decreases and the bond o	order increases			
172	. Intramolecular hydrogen	bond is present in				
	a) Water	b) o-nitrophenol	c) <i>p</i> -nitrophenol	d) methylamine		
173	. A pair of compounds whi	ch have odd electrons in th	e group NO, CO, ClO_2 , N_2O_8	, SO_2 and O_2 are		
	a) NO and ClO ₂	b) COI and SO ₂	c) ClO ₂ and CO	d) SO ₂ andO ₃		
174	. According to VSEPR theo	ry the repulsion between d	ifferent pair (lone or bond)) of electrons obey the order		
	a) <i>lpbplplpbpbp</i>		b) <i>lpbpbpbplplp</i>			
	c) <i>lplplpbpbpbp</i>		d) <i>bpbplplplpbp</i>			
175	. The bond between two ic	dentical non-metal atoms ha	as a pair of electrons:			
	a) Unequally shared between	veen the two				
	b) Equally shared between	en the two				
	c) Transferred fully from	one atom to another				
	d) None of the above					
176	. The bond angle in AsH_3 i	s greater than that in				
	a) NH ₃	b) H ₂ O	c) BCl ₃	d) None of these		
177	. The correct order of incr	easing electropositive chara	acter among Cu, Fe and Mg	is:		
	a) Cu \approx Fe $<$ Mg	b) Fe $< Cu < Mg$	c) Fe $< Mg < Cu$	d) $Cu < Fe < Mg$		
178	. H—O—H bond angle in I	$ m H_2O$ is $ m 104.5^{\circ}$ and not $ m 109^{\circ}2$	8' because of:			
	a) High electronegativity	of oxygen				
	b) Bond pair-bond pair r	epulsion				
	c) Lone pair-lone pair re	pulsion				
	d) Lone pair-bond pair re	epulsion				
179	. The bond order in O_2^+ is ϵ	equal to bond order in:				
	a) N ₂ ⁺	b) CN ⁻	c) CO	d) NO ⁺		
180	. The electron affinity for i	nert gases is likely to be:				
	a) High	b) Small	c) Zero	d) Positive		
181	. The true statements fron	n the following are				
	1.PH ₅ and BiCl ₅ do not ex					
	$2.p\pi - d\pi$ bond is preser	_				
	3.Electrons travel at the					
	4.SeF ₄ and CH ₄ have sam	e shape				
	$5.I_3^+$ has bent geometry					
	a) 1,3	b) 1,2,5	c) 1,3,5	d) 1,2,4		
182	. 1,3-butadiene has:					
	a) 6σ and 2π -bonds	b) 2σ and 2π -bonds	c) 9σ and 2π -bonds	d) 6σ and 2π -bonds		
183	. The bond between atoms	s of two elements of atomic	number 37 and 53 is:			
	a) Covalent	b) Ionic	c) Coordinate	d) Metallic		
184	. In methane the bond ang					
	a) 180°	b) 90°	c) 109°	d) 120°		
185	-	emental form of Cs at room	=			
	a) A network solid b) A metallic solid c) Non-polar liquid d) An ionic liquid					
186	. Which of the following is					
	a) Glycerol has strong hy	= =				
	b) Glycol is a poisonous a					
	=	gher alcohols with higher a				
		her b.p. than corresponding	alcohols			
187	. Ionic radii are:					

- b) $\propto \frac{1}{(\text{effective nuclear charge})^2}$
- c) ∝ effective nuclear charge
- d) \propto (effective nuclear charge)²
- **188.** Which of the following statements is incorrect?
 - a) He2 does not exist because its bond order is zero
 - b) O_2 , O_2^- and O_2^+ are all paramagnetic
 - c) Any two atomic orbitals can combine to form two molecular orbitals
 - d) $\pi(2p_x)$ and $\pi(2p_y)$ are degenerate molecular orbitals
- 189. Which of the following pairs will from the most stable ionic bond?
 - a) Na and Cl
- b) Mg and F
- c) Li and F
- d) Na and F
- 190. Among NaF, NaCl NaBr and NaI, the NaF has highest melting point because:
 - a) It has maximum ionic character
 - b) It has minimum ionic character
 - c) It has associated molecules
 - d) It has least molecular weight
- 191. The planar structure of BF₃ can be explained by the fact that BF₃ is
 - a) *sp* hybridized
- b) *sp*²hybridised
- c) sp^3 hybridised
- d) sp^3 dhybridized

- 192. The correct order of bond order value among the following is
 - (i) $N0^{-}$
- (ii) NO⁺
- (iii)NO
- (iv) $N0^{2+}$
- $(v) N0^{2-}$
- a) (i) < (iv) < (iii) < (v)

b) (iv) = (ii) < (i) < (v) < (iii)

c) (v) < (i) < (iv) = (iii) < (ii)

- d) (ii) < (iii) < (iv) < (i) < (v)
- **193**. The bond between chlorine and bromine in BrCl₃ is:
 - a) Ionic
 - b) Non-polar
 - c) Polar with negative end on Br-
 - d) Polar with negative end on Cl-
- 194. Which of the following has regular tetrahedral shape?
 - a) $[Ni(CN)_4]^{2-}$
- b) SF₄

- c) $[BF_4]^-$
- d) XeF4

195. Which of the following will have large dipole moment?

- 196. PCl₅ exists but NCl₅ does not because:
 - a) Nitrogen has no vacant 2d-orbitals
 - b) NCl₅ is unstable
 - c) Nitrogen atom is much smaller than phosphorus
 - d) Nitrogen is highly mert
- 197. In which of the following pairs the two species are not isostructural?
 - a) PCl₄ and SiCl₄
- b) PF₅ and BrF₅
- c) AlF_6^{3-} and SF_6
- d) CO_3^{2-} and NO_3^{-}
- 198. The molecule having a pyramidal shape out of the following is

	a) CO ₂	b) BF ₃	c) SF ₄	d) NH ₃
199		Mg^{2+} ion and S^{2-} is large	er thanCl [–] ion, which of t	the following will be stable
	soluble in water?			
	•	•	c) Magnesium chloride	, ,
200				of B has six electrons in its
	outermost orbit. The form	rula of the compound betw	een these two will be	
	a) A_3B_6	b) A_2B_3	c) A_3B_2	d) A_2B
201	The energy of σ 2s-orbita	l is greater than $\sigma*$ 1 s orbi	tal because:	
	a) σ 2s orbital is bigger th	an σ* 1s orbital		
	b) σ 2s orbital is a bonding	g orbital whereas, $\sigma*1s$ is	an antibonding orbital	
	c) σ 2s orbital has a great	er value of n than $\sigma*1s$ or	bital	
	d) None of the above			
202	. The bond angle in ammon	ia molecule is		
	a) 90°3′	b) 91°8′	c) 106°45′	d) 109°28′
203	. The compound in which t	he number of d p bonds a	are equal to those present i	n ClO ₄
	a) XeF ₄	b) XeO ₃	c) XeO ₄	d) XeF ₆
204	The correct order of bond	angles (smallest first) in H	H_2S , NH_3 , BF_3 and SiH_4 is	
	a) $H_2S < SiH_4 < NH_3 < R$	BF ₃	b) $NH_3 < H_2S < SiH_4 < I$	BF_3
	c) $H_2S < NH_3 < SiH_4 < R$	BF ₃	d) $H_2S < NH_3 < BF_3 < S$	'iH ₄
205	A covalent molecule AB_3	has pyramidal structure.	Γhe number of lone pair a	nd bond pair of electrons in
	the molecule are respective	vely.		
	a) 2 and 2	b) 0 and 4	c) 3 and 1	d) 1 and 3
206	Be in BeCl ₂ undergoes			
	a) Diagonal hybridisation		b) Trigonalhybridisation	
	c) Tetrahedral hybridisat	ion	d) No hybridisation	
207	. Which statement is wrong	5 ?		
	a) Hybridisation is the mi	xing of atomic orbitals pric	or to their combining into n	nolecular orbitals
	b) sp^2 -hybrid orbitals are	formed from two <i>p</i> -atomic	c orbitals and one s-atomic	orbitals
	c) dsp^2 -hybrid orbitals an	e all at 90° to one another		
			orners of a regular tetrahed	lron
208				ngth. What is the reason for
	it?	• •	•	
	a) Electronic orbits of car	bon atom are hybridised		
	b) The C=O bond is weak			
	c) The anion HCOO ⁻ has t			
	_	y removal of a proton fron	n the acid molecule	
209	=	olecules has three fold axis		
	a) NH ₃	b) C ₂ H ₄	c) CO ₂	d) SO ₂
210	Oxygen and the oxide ion		, ,	, 2
	a) Same proton number		b) Same electronic config	uration
	c) Same electron number		d) Same size	
211	Valence bond theory of m	etallic bond was given by	· y	
	a) Dalton	b) Drudel	c) Fajan	d) Pauling
212			arbon, nitrogen, oxygen an	-
	a) $C > N > 0 > F$	-	c) $0 > F > N > C$	d) $F > O > N > C$
213	The molecule which has T		-,	-,
_10	a) PCl ₃	b) ClF ₃	c) NH ₃	d) BCl ₃
214	As a result of resonance:	5) UII 3	0, 11113	a, buig
<u> 1 </u>	a) Bond length decreases			
	b) Energy of the molecule	s decreases		
	o, micigy of the indictule	o accicases		

	c) Stability of the molecule	e increases		
04 =	d) All are correct			
215.	The pair of species with the			D 0 + 110
	a) NO, CO	b) N ₂ , O ₂	c) O_2^{2-} , B_2	d) 0_2^+ , $N0^+$
216.	Which of the following mo			
	a) PF ₅	b) SF ₆ I	c) XeF ₆	d) $[Fe(CN)_6]^{3-}$
217.		onds between two carbon	atoms in calcium carbide is	
	a) One sigma, two pi	b) One sigma, one pi	c) Two sigma, one pi	d) Two sigma, two pi
218.	The bond angle between I	H—O—H in ice is closest to	0:	
	a) 115°	b) 109°28′	c) 110°	d) 90°
219.	If a molecule MX_3 has zero	o dipole moment the sigm	a bonding orbitals used by h	M (at. No. < 21) is:
	a) Purep	b) <i>sp</i> -hybrid	c) sp^2 -hybrid	d) <i>sp</i> ³ -hybrid
220.	Which combination of ato	ms can form a polar coval	ent bond?	
	a) H and H	b) H and Br	c) N and N	d) Na and Br
221.	The bond strength in O_2^+ , O_2^+	O_2 , O_2^- and O_2^{2-} follows the	order:	
	a) $0_2^{2-} > 0_2^{-} > 0_2 > 0_2^{+}$	b) $0_2^+ > 0_2 > 0_2^- > 0_2^{2-}$	c) $0_2 > 0_2^- > 0_2^{2-} > 0_2^+$	d) $0_2^- > 0_2^{2-} > 0_2^+ > 0_2$
222.	The shape of XeF ₄ molecu	le and hybridisation of xe	non in it are	
	a) Tetrahedral and sp^3	·	b) Square planar and dsp	2
	c) Square planar and sp^3c	l^2	d) Octahedral and sp^3d^2	
223.	In H ₂ ion, the bond order		,	
	a) Zero	b) 1/2	c) -1/2	d) 1
224.	H-bonding is not present i	· ·	, ,	
	a) Glycerine	b) Water	c) H ₂ S	d) HF
225.		•	ic character of the covalent	,
	a) HCl	b) HBr	c) HI	d) HF
226.	The angle between the over	•	•	,
	a) 180°	b) 120°	c) 109°28′	d) 120°60′
227.	How many bonds are ther		,	,
		13.40		13.4.4
	a) 14 σ, 8π	b) 18 σ, 8π	c) 19 σ, 4π	d) 14 σ, 2π
228.			ular orbitals? Statements ar	e
	(i) π -bonding orbitals are	•		
	(ii) π -antibondingorbitals	· ·		
	(iii) σ-antibondingorbitals	-	2 (11)	D (12)
	a) (i) only	b) (ii) and (iii) only	c) (iii) only	d) (ii) only
229.	Among the following state		-	
		donor because the lone p	air of electron occupies sph	ierical <i>s-</i> orbital and is less
	directional		•	
		donor because the lone p	air of electron occupies sp^3	-orbital and is more
	directional			
		donor because the lone p	pair of electron occupies sp^3	orbital and more
	directional			
		donor because the lone p	air of electron occupies sph	erical s-orbital and is less
	directional			
230.	Which is expected to have	linear structure?		
	a) SO ₂	b) CO ₂	c) CO_3^{2-}	d) SO_4^{2-}
231.	The bond angle in PH ₃ is:			
	a) Much lesser than NH ₃	b) Equal to that in NH ₃	c) Much greater than in	d) Slightly more than in

			NH_3	NH_3	
232.	Carnallite in solution in w	ater shows the properties	of		
	a) K^+ , Mg^{2+} , Cl^-	b) K ⁺ , Cl ⁻ , SO ₄ ²⁻ , Br ⁻	c) K^+ , Mg^{2+} , CO_3^{2-}	d) K^+ , Mg^{2+} , Cl^- , Br^-	
233.	A simple of a coordinate c	ovalent bond is exhibited b	у		
	a) HCl	b) NH ₃	c) C_2H_2	d) H_2SO_4	
234.	In the series ethane, ethyle	ene and acetylene, the C—	H bond energy is:		
	a) The same in all the thre	e compounds			
	b) Greatest in ethane				
	c) Greatest in ehtylene				
	d) Greatest in acetylene				
235.		der Waals' force is likely t	o be the most important in	determining the m.p. and	
	b.p.?				
	a) Br ₂	b) CO	c) H ₂ S	d) HCl	
236.	Identify the wrong statem				
	_		oves down the first group o	_	
	b) Atomic radius of the elements decreases as one moves across from left to right in the 2nd period of the				
	periodic table				
		= =	e charge on the cation, sma		
227	-		e charge on the anion, large	er is the ionic radius	
237.	(I) 1, 2-dihydroxy benzene				
	(II) 1, 3-dihydroxy benzer				
	(III) 1, 4-dihydroxy benze (IV) Hydroxy benzene	ile			
	, ,	oiling points of above ment	ioned alcohols is		
	a) $I < II < III < IV$	ming points of above ment	b) I < <i>II</i> < <i>IV</i> < <i>III</i>		
	c) $IV < I < II < III$		d) IV $< II < I < III$		
238	Dipole moment is shown h	าง	ujiv (II (I (III		
200.	a) <i>cis</i> - 1, 2-dichloro ethan	-	b) trans-1, 2-dichloro etha	ine	
	c) <i>trans</i> -1 2-dichloro-2 pe		d) Both (a) and (c)		
239.		$^3d^2$ -hybridization will have			
	a) Square planar	•	C		
	b) Octahedral				
	c) Trigonal bipyramidal				
	d) Pentagonal bipyramida	l			
240.	In which molecular are all	atoms coplanar?			
	a) PF ₃	b) NH ₃	c) BF ₃	d) CH ₄	
241.	-	= -	d orbitals used by the As at	oms for bonding are	
	a) $d_{x^2-y^2}$, d_{z^2} , s , P_x , P_y	b) d_{xy} , s , P_x , P_z	c) $s, P_x, P_y, P_z, d_{z^2}$	d) $d_{x^2-y^2}$, s , P_x , P_y	
242.	The bond order of N ₂ ⁺ is				
	a) 1.5	b) 3.0	c) 2.5	d) 2.0	
243.	CO ₂ is isostructural with				
	a) C_2H_2	b) SnCI ₂	c) NO ₂	d) MgCI ₂	
244.	-	naximum dipole moment ar			
0 4 =	a) <i>p</i> -dichlorobenzene	b) <i>m</i> -dichlorobenzene	c) <i>o</i> -dichlorobenzene	d) Carbon tetrachloride	
245.	-	-	ount of energy to dissociate		
246	a) H—H bond in H ₂	b) C—H bond in CH ₄	<u> </u>	d) $0 = 0$ bond in 0_2	
246.		try describes the relative	bond strength pertaining t	to oxygen molecule and its	
	cation or anion is $0.027 \times 0.7 \times 0.7 \times 0.7$		h) 0 > 0+ > 0- > 0 ² -		
	a) $0_2^{2-} > 0_2^{-} > 0_2^{-} > 0_2^{+}$		b) $0_2 > 0_2^+ > 0_2^- > 0_2^{2-}$		
	c) $0_2^+ > 0_2 > 0_2^{2-} > 0_2^{-}$		d) $0_2^+ > 0_2 > 0_2^- > 0_2^{2-}$		

247.	The type of hybridisation	in XeF ₄ is		
	a) dsp^2	b) sp^3d	c) sp^3d^2	d) sp^3d^3
248.	What bond order does Li ₂	have?	, .	
	a) 3	b) 1	c) 2	d) 0
249.	Which have zero dipole m	ioment?		
	a) 1,1-dichloroethene			
	b) Cis-1, 2-dichloroethene	e		
	c) trans-1, 2-dichlorother	ne		
	d) None of the above			
250.	Strongest bond is formed	by the head on overlapping	of:	
	a) 2s-and 2p-orbitals	b) $2p$ - and $2p$ -orbitals	c) 2s- and 2s- orbitals	d) All of these
251.	Hybridization state of I in	ICl ₂ ⁺ is:		
	a) dsp^2	b) <i>sp</i>	c) sp^2	d) sp^3
252.		npound in order of increasi	ng dipole moment:	
	, ,	nlorobenzene (II)		
	o-dichlorobenzene (III)			
		_	c) $IV < I < III < II$	d) $IV < II < I < III$
253.	Which has maximum cova			
~ . .	a) SiCl ₄	b) MgCl ₂	c) NaCl	d) AlCl ₃
254.	Which species does not ex		. (22) .2	12 (0.01.)?
055	a) $(SnCl_6)^{2-}$	b) (GeCl ₆) ²⁻	c) (CCl ₆) ²⁻	d) $(SiCl_6)^{2-}$
255.		ch has the highest cation to		D.M. E
256	a) CsI	b) CsF	c) LiF	d) NaF
256.		Br is 1.6×10^{-30} cm and in	iter – atomic spacing is 1	Å. The % ionic character of
	HBr is	1.) 10	J 45	.1) 25
257	a) 7	b) 10	c) 15	d) 27
257.	affinity, we get:	low ionisation potential is a	mowed to react with an ele	ement of very high electron
		b) A strong ionic bond	c) A polar covalent bond	d) No hand
258	Ionization potential is low	=	c) A polar covalent bond	a) No bolla
250.	a) Halogens	b) Inert gases	c) Alkaline earth metals	d) Alkali metals
259	, 0	gy level providing the most		a) man metals
20).	a) sp^3-sp^3	b) sp -sp	c) sp^2-sp^2	d) All of these
260.		ICl has the polar character b		,
	-	of hydrogen is greater than t		
		of hydrogen is equal to than		
	,	of chlorine is greater than th		
	d) Hydrogen and chlorine	-	, 0	
261.		lecule in the set of compour	nds given	
	HCl, HF, H ₂ , HBr			
	a) H ₂	b) HCl	c) HF, HBr	d) HBr
262.	Which one of the followin	g compounds has sp^2 hybri	disation?	
	a) CO ₂	b) SO ₂	c) N ₂ 0	d) CO
263.	The increasing order of th	ne ionic radii of the given isc	pelectronic species is:	
	a) S^{2-} , Cl^{-} , Ca^{2+} , K^{+}	b) Ca ²⁺ , K ⁺ , Cl ⁻ , S ²⁻	c) K ⁺ , S ²⁻ , Ca ²⁺ , Cl ⁻	d) Cl^- , Ca^{2+} , K^+ , S^{2-}
264.	Which cannot exist on the	basis of M.O. theory?		
	a) C ₂	b) He ₂ ⁺	c) H ₂ ⁺	d) He ₂
265.	Which of the following do	es not involve covalent bon	d?	
	a) PH ₃	b) CsF	c) HCl	d) H ₂ S
266.	$B_{10}C_2H_{12}$ is isoelectronic	with		

a) $B_{12}H_{12}^{2-}$	b) B ₁₂ H ₁₂	c) $B_{12}H_{12}^+$	d) $B_{12}H_{12}^{2+}$
267. The electronegativit	y of <i>A</i> and <i>B</i> are 1.20 and 4.0	respectively. Therefore, io	nic character in $A - B$ bond
will be			
a) 50%	b) 43%	c) 53.3%	d) 72.23%
268. During the formation	n of a chemical bond		
a) Electron-electron	repulsion becomes more that	anb) Energy of the system o	loes not change
the nucleus-electr	on repulsion attraction		
c) Energy increases		d) Energy decreases	
269. The number of ions f	formed when a molecule of ${ m K_4F}$	'e(CN) ₆ dissociates is:	
a) 4	b) 5	c) 6	d) 2
270. Pair of species havin	g identical shapes for molecule	s is	
a) CF ₄ , SF ₄	b) BF ₃ , PCl ₃	c) XeF ₂ ,CO ₂	d) PF ₅ , IF ₇
271. An example of a pola	r covalent compound is		
a) KCl	b) NaCl	c) CCl ₄	d) HCl
272. Which is not an exce	ption to octet rule?		
a) BF ₃	b) SnCl ₄	c) BeI ₂	d) ClO ₂
273. The molecules havin	g dipole moment are:		
a) 2, 2-dimethylprop	oane		
b) Trans-3-hexene			
c) Trans-2-pentene			
d) 2, 2, 3, 3-tetramet	hylbutane		
274. Which of the following	ng species has a bond order oth	er than 3?	
a) CO	b) CN ⁻	c) NO ⁺	d) O ₂ ⁺
275. Which of the following	ng is planar?		
a) XeF ₂	b) XeO ₃ F	c) XeO_2F_2	d) XeF ₄
276. Among the following	species, identify the pair havin	ng same bond order CN ⁻ , O ₂	, NO ⁺ , CN ⁺
a) CN^- and O_2^-	b) O_2^- and NO^+	c) CN ⁻ and NO ⁺	d) CN ⁻ and CN ⁺
277. The bond angle and	dipole moment of water respec	tively, are	
a) 109.5°, 1.84 D	b) 107.5°, 1.56 D	c) 104.5°, 1.84 D	d) 102.5°, 1.56 D
278. The correct order of	increasing bond angles in the fe	ollowing species is:	
a) $Cl_2O < ClO_2 < Cl$	0_2^- b) $ClO_2 < Cl_2O < ClO_2^-$	c) $Cl_2O < ClO_2^- < ClO_2$	d) $ClO_2^- < Cl_2O < ClO_2$
279. Which compound sh	ows hydrogen bonding?		
a) RCH ₂ NHCH ₃	b) RCH ₂ CHO	c) C_2H_6	d) HCl
280. Chlorine atom differ	s from chloride ion in the numb	er of:	
a) Protons			
b) Neutrons			
c) Electrons			
d) Protons and elect	rons		
281. What is the reason for	or unusual high b.p. of water?		
a) Due to the presen	ce of H^+ and OH^- ions in water	b) Due to dipole - dipole	interactions
c) Due to London for		d) Strong London Forces	
282. The increasing order	of the first ionization enthalpi	es of the elements B, P, S an	d F (lower first) is:
a) $F < S < P < B$	b) $P < S < B < F$	c) $B < P < S < F$	d) B < S < P < F
283. The IP_1 , IP_2 , IP_3 , IP_4 , a	nd IP $_5$ of an element are 7.1, 14	.3, 34.5, 46.8, 162.2 eV resp	ectively. The element is
likely to be:			
a) Na	b) Si	c) F	d) Ca
284. Which of the following	ng is paramagnetic?		
a) B ₂	b) C ₂	c) N ₂	d) F ₂
285. Ionization potential a) Electron affinity o	of Na would be numerically the f Na ⁺	same as:	

	L) Floring CM	+		
	b) Electronegativity of Na	'		
	c) Electron affinity of He			
	d) Ionization potential of	_		
286.			ige in both hybridisation ar	
	a) $CH_4 \rightarrow C_2H_6$	b) $NH_3 \rightarrow NH_4^{\dagger}$	c) $BF_3 \rightarrow BF_4^-$	d) $H_2O \rightarrow H_3O^+$
287.	According to MO theory,			
	=	l bond order greater than (O_2	
	b) 0_2^+ is paramagnetic and			
	c) O_2^+ is diamagnetic and l	bond order is less than 0 ₂		
	d) O_2^+ is diamagnetic and l	bond order is more than 0_2	2	
288.	If the molecule of HCl we	ere totally polar, the expec	ted value of dipole momen	nt is 6.12 D (dbye), but the
	experimental value of dipo	ole moment was 1.03 D. Ca	lculate the percentage ioni	c character
	a) 17	b) 83	c) 50	d) Zero
289.	The order of first electron	affinity of O, S and Se is:		
	a) $0 > S > Se$	b) $S > 0 > Se$	c) Se $> 0 > S$	d) Se $> S > 0$
290.	The nodal plane in the π -b	ond of ethane is located in	:	•
	a) The molecular plane			
	b) A plane parallel to the r	nolecular plane		
		-	ch bisects the carbon-carbo	on σ-bond at right angle
		-	ch contains the carbon-car	
291.	The correct electronegative			
	a) C, N, Si, P	b) N, Si, C, P	c) Si, P, C, N	d) P, Si, N, C
292		identical shapes for molec		<i>a,</i> 1, 51, 11, 6
<i></i> .	a) CF ₄ , SF ₄	b) XeF ₂ , CO ₂	c) BF ₃ , PCl ₃	d) PF ₅ , IF ₅
203	Amongst the following, the	, <u> </u>	c) Di 3,1 di3	4) 115,115
293.	a) SO ₂	b) CO ₂	c) ClO ₂	d) NO ₂
204	· -	· -	· -	, <u>-</u>
294.	a) 0_2^{2+}		ies has the shortest bond le	d) 0^{2-}_{2}
205	, _	b) 0 ₂ ⁺	c) 0 ₂	0 0 0
295.	The hybridisation of carbo		3	12.1.2
006	a) <i>sp</i>	b) <i>sp</i> ²	c) sp^3	d) dsp^2
296.	· ·	nybrid orbitals is 105°. Hyb		
	a) Between 20-21%	b) Between 19-20%	c) Between 21-22%	d) Between 22-23%
297.		rm KHF_2 . The compound c	-	
	a) K^+ , F^- and H^+	b) K ⁺ , F ⁻ and HF	c) K ⁺ and [HF ₂] ⁻	d) [KHF] ⁺ and F ⁻
298.	<i>o</i> -hydroxy benzaldehyde, because:	although contains enolic gi	roup but does not give test	of group with FeCl ₃
	a) It is steam volatile			
	b) Of intermolecular H-bo	nding		
	c) Of intramolecular H-bo	nding		
	d) All of the above			
299.	Iron is tougher than sodiu	m because:		
	a) Iron atom is smaller			
	b) Iron atoms are more clo	osely packed		
	c) Metallic bonds are stro	nger in iron		
	d) None of the above	-		
300.	•	les in NH_3 , PCl_3 and BCl_3 is	S	
	a) $PCl_3 > NH_3 > BCl_3$	5. 5	b) $NH_3 > BCl_3 > PCl_3$	
	c) $NH_3 > PCl_3 > BCl_3$		d) $BCl_3 > NH_3 > PCl_3$	
301.	The number of π - bonds p	resent in propyne is	, , , , , , ,	
	a) 4	b) 1	c) 3	d) 2
	-	-	-	-

302.	A bond with maximur	n covalent character betwee	n non-metallic elements is	formed:	
	a) Between identical atoms				
	b) Between chemically similar atoms				
	c) Between atoms of v	widely different electro-nega	ativities		
	d) Between atoms of t	the same size			
303.	The compound in whi	ch underlined carbon uses o	only its sp^3 hybrid orbitals	for bond formation is	
	a) CH ₃ COOH	b) CH ₃ CONH ₂	c) CH ₃ CH ₂ OH	d) $CH_2\underline{C}H = CH_2$	
304.	Consider the followin	g compounds			
	(i) chloroethene	(ii) benzene			
	(iii) 1, 3-butadiene	(iv) 1,3,5 - hexatriene			
	All the carbon atoms a	are sp^2 hybridised in			
	a) (i), (iii), (iv) only	b) (i), (ii) only	c) (ii), (ii), (iv) only	d) (i), (ii), (iii) and (iv)	
305.	When ionic compound	ds get dissolved in water:			
	a) They involve heat of	changes			
	b) Inter-ionic attraction	on is reduced			
	c) Ions show dipole-io	on attraction with water mo	lecules		
	d) All are correct				
306.	Pick the odd one out (The one having zero dipole	moment):		
	a) NH ₃	b) H ₂ O	c) BCl ₃	d) SO ₂	
307.	Which of the following	g shows minimum bond ang	le?		
	a) H ₂ O	b) H ₂ Se	c) H ₂ S	d) H ₂ Te	
308.	Among the following	isostructural compounds, id	entify the compound which	has the highest lattice energ	
	a) LiF	b) LiCl	c) NaCl	d) MgO	
309.	Which species is diam	agnetic in nature?			
	a) He ₂ ⁺	b) H ₂	c) H ₂ ⁺	d) H ₂	
310.	Which of the following	g compounds would have th	e highest boiling point?		
	a) CH ₃ CH ₂ CH ₂ CH ₃	b) CH ₃ NH ₂	c) CH ₃ OH	d) CH ₂ F ₂	
311.	Hybridisation of centi	ral atom in NF ₃ is			
	a) sp^3	b) <i>sp</i>	c) sp^2	d) dsp^2	
312.	Which of the compour	nds has highest boiling point	t?		
	a) Acetone	b) Diethyl ether	c) Methanol	d) Ethanol	
313.	The number and type	of bonds between two carbo	on atoms in CaC ₂ are:		
	a) One sigma (σ) and	= ' '			
	b) One sigma (σ) and				
	- , ,	one and a half pi (π) -bond			
	d) One sigma (σ) bone				
314.		g hydrogen bonds are strong			
	a) HFHF	b) HFHCl	c) HCLHCl	d) HFHi	
315.		ybridization in ether (CH ₃ O			
	a) 106° 51′, sp ³	b) 104° 31′, sp ³	c) 110° , sp^{3}	d) None of these	
316.	Which has the highest	=-			
	a) Hydrogen bond	b) Triple bond	c) Double bond	d) Single bond	
317.		compounds the one that is p			
	a) H ₂ CO ₃	b) SiF ₄	c) BF ₃	d) HClO ₂	
318.		ent among the following is:			
		potential of Al is less than t			
	•	ion potential of Mg is greate		_	
		potential of Na is less than t	=	_	
240	=	n potential of Mg is greater t	nan the third ionization po	tential of Al	
319.	The bond angle is sma	anest in			

220	a) H ₂ O	b) H ₂ S	c) BeCl ₂	d) N ₂ O
320.		n the valence shell of sulph		۵) 11
221	a) 12 Acetic acid exists as dimer	b) 10	c) 8	d) 11
321.		in benzene due to:		
	a) Condensation reaction			
	b) Hydrogen bonding			
	c) Presence of carboxyl gr	-		
	d) Presence of hydrogen a			51 321
322.		dization of the central aton	n in the following species N	$[H_3, [PtCl_4]^2]$, PCl_5 and
	BCl ₃ is:		2 2 2 2	
		b) sp^3 , dsp^2 , dsp^3 , sp^2	c) dsp^2 , sp^2 , sp^3 , dsp^3	d) dsp^2 , sp^3 , sp^2 , dsp^3
323.	Chemical bond formation	takes place when?		
	a) Energy is absorbed			
	b) Forces of attraction over	ercome forces of repulsion		
	c) Forces of repulsion ove	rcome forces of attraction		
	d) Forces of attraction are	equal to forces of repulsion	1	
324.	NH ₃ has higher boiling po	int than expected, because:		
	a) With water it forms NH	₄ 0H		
	b) It has strong intermole	cular hydrogen bonds		
	c) It has strong intermole	cular covalent bonds		
	d) Its density decreases in			
325.	•	oresents the Lewis structur	e of N ₂ molecule?	
				×× ××
	a) ×N=N×	b) *\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	c) $\stackrel{\times}{\times} \stackrel{\times}{N} \stackrel{\times}{\times} \stackrel{\times}{N} \stackrel{\times}{\times} \times$	d) $\stackrel{\times}{\times} \stackrel{\times}{N} = \stackrel{\times}{\times} \stackrel{\times}{\times} \stackrel{\times}{\times}$
326.	Which of the following has	s a bond order of 1.75?		
	a) ClO_3^-	b) ClO ₄	c) NO_3^-	d) CO_3^{2-}
327.	Higher is the bond order,	greater is:		
	a) Bond dissociation ener			
	b) Covalent character			
	c) Bond length			
	d) Paramagnetism			
328.	Which has the highest ion	isation potential?		
52 0.	a) Na	b) Mg	c) C	d) F
329	Strongest bond is in:	<i>5)</i> ¹¹ 6	c) d	u, 1
02).	a) NaCl	b) CsCl	c) Both (a) and (b)	d) None of these
330	•	not correct with respect to l	. , , , , , , , , , , , , , , , , , , ,	=
550.	a) $C_2 > C_2^{2-}$	b) $B_2^+ > B_2$	c) $\text{Li}_2^+ > \text{Li}_2$	d) $0_2 > 0_2^-$
221	·	,	C) Ll ₂ > Ll ₂	$u_1 u_2 > u_2$
331.	The bond order in O_2^{2-} ion		/ .	D 4
000	a) 3	b) 2	c) 3/2	d) 1
332.	Which is likely to have the		`	N 977 91
	a) He	b) CsF	c) NH ₃	d) CHCl ₃
333.	Which of the following are			
	= =	resent on central atom can	give rise to dipole momen	t
	b) Dipole moment is vector	• •		
	c) CO ₂ molecule has dipol	e moment		
	_	gativities of combining ator	-	ent
334.	In the formation of N_2^+ fro	m N_2 , the electron is lost from	om:	
	a) a σ-orbital	b) a π-orbital	c) a σ^* -orbital	d) a π^* -orbital
335.	Bond angle of 109°28′ is for	ound in		

	a) NH ₃	b) H ₂ O	c) ${}^{\bigoplus}_{\text{C H}_5}$	d) $^{\oplus}_{ m N~H_4}$
336.	The half of the difference l molecular orbitals is know	between the number of electors: on as:	ctrons in bonding molecula	r orbitals and antibonding
	a) Bond order	b) Proton order	c) Molecular order	d) Electron order
337.	Which of the following set	contains species having sa	me angle around the centra	al atom?
	a) SF ₄ , CH ₄ , NH ₃	b) NF ₃ , BCl ₃ , NH ₃	c) BF ₃ , NF ₃ , AlCl ₃	d) BF ₃ , BCl ₃ , BBr ₃
338.	At ordinary temperature a	and pressure, among haloge	ens, the chlorine is a gas, br	omine is a liquid and
	iodine is a solid. This is be	cause:		
	a) The specific heat is in the	he order $Cl_2 > Br_2 > I_2$		
	b) Intermolecular forces a strongest	mong molecules of chloring	e are the weakest and those	e in iodine are the
	c) The order of density is	$I_2 > Br_2 > Cl_2$		
	d) The order of stability is			
339.	Which of the following has			
	a) BeF ₂	b) H ₂ O	c) NH ₃	d) CH ₄
340.	· -	s shortest carbon-carbon be	, ,	
	a) C ₆ H ₆	b) C ₂ H ₆	c) C ₂ H ₄	d) C ₂ H ₂
341.		g constitutes a group of the	· - ·	- 7 - 2 2
		b) NO^+ , C_2^{2-} , CN^- , N_2		d) $N_2 \cdot O_2^- \cdot NO^+ \cdot CO$
342		of central atom of a molecul		uj 112, 02, 110 , 00
0 12.	a) Square planar geometry		e would lead to	
	b) Tetrahedral geometry	y		
	c) Trigonalbipyramidal ge	ometry		
	d) Octahedral geometry	contect y		
343	Methanol and ethanol are	miscible in water due to		
0 10.	a) Covalent character	inisciple in water due to:		
	b) Hydrogen bonding char	racter		
	c) Oxygen bonding charac			
	d) None of the above	.cci		
344	The shape of ClF ₃ is			
511.	-	b) Pyramidal	c) Tetrahedral	d) Trigonal planar
345	Which are true statements		cj retranearar	a) Trigoriai pianai
0 10.	(1) PH ₅ and BiCl ₅ does no			
	(2) $p\pi$ — $d\pi$ bonds are pro-			
	(3) Electrons travel with s			
	(4) SeF ₄ and CH ₄ has sam	=		
	(5) I ₃ ⁺ has bent geometry	Conapo		
	a) 1, 3	b) 1, 2, 5	c) 1, 3, 5	d) 1, 2, 4
346	The actual geometry of NO	=	c, 1, 0, 0	u, 1, 2, 1
5 10.	a) Planar	b) Linear	c) V-shape	d) Tetrahedral
347.	Which has the lowest anio	_	e) v shape	a) retrained a
0171	a) LiF	b) NaF	c) CsI	d) CsF
348.	•	panying the process given l		u) doi
0 10.	$Na^+(g) + Cl^-(g) \rightarrow NaCl(g)$		001011 13)	
	a) Hydration energy	b) Ionization energy	c) Electron affinity	d) Lattice energy
349	Which of the following has	,	o, Licotion anning	a, Lactice energy
517.	a) Na ₂ S	b) AlCl ₃	c) NaH	d) MgCl ₂
350	-	h the $0-0$ bond length inc		wy 1.18012
200.		b) $H_2O_2 < O_3 < O_2$	_	d) $0_2 < H_2 0_2 < 0_3$
351.	N_2 is less reactive than CN		-, -, -, -, -, -, -, -, -, -, -, -, -, -	-, -, -, -, -, -, -, -, -, -, -, -, -, -
	-			

	a) Difference in spin quantum number	b) Presence of more elect	rons in orbitals
	c) Absence of dipole moment	d) None of the above	
352	. According to molecular orbital theory for O_2^+ :		
	a) Bond order is less than O_2 and O_2^+ is paramagnetic	С	
	b) Bond order is more than O_2 and O_2^+ is paramagnet	tic	
	c) Bond order is less than O_2 and O_2^+ is diamagnetic		
	d) Bond order is more than O_2 and O_2^+ is diamagnetic	С	
353	. As compared to covalent compounds, electrovalent	compounds generally have:	
	a) Low melting points and low boiling points		
	b) High melting points and high boiling points		
	c) Low melting points and high boiling points		
	d) High melting points and low boiling points		
354	. Which is present in peroxides?		
001	a) O_2 b) O_2^{2-}	c) 0_2^{2-}	d) 0 ₂
255	. Two hybrid orbitals have a bond angle of 120°. The	, <u>-</u>	
333	-	-	
256	a) 25% b) 33%	c) 50%	d) 66%
356	. Which molecule is T-shaped?) NIII	D. Olf
	a) BeF ₂ b) BCl ₃	c) NH ₃	d) ClF ₃
357	. Which of the following is paramagnetic?		
	a) O ₂ b) CN ⁻	c) CO	d) NO ⁺
358	. Dipole moment is highest for:		
	a) CHCl ₃ b) CH ₄	c) CHF ₃	d) CCl ₄
359	. Which will not conduct electricity?		
	a) Aqueous KOH solution b) Fused NaCl	c) Graphite	d) KCl in solid state
360	. The ionization potential order for which set is corre	ct?	
	a) Li $> K > Cs$ b) B $> Li > K$	c) $Cs > Li > B$	d) $Cs < Li < K$
361	. The bond that determines the secondary structure o	of a protein is:	-
	a) Coordinate bond b) Covalent bond	c) Hydrogen bond	d) Ionic bond
362	. Molecular orbital theory was developed mainly by	, , ,	,
00_	a) Pauling b) Mulliken	c) Thomson	d) Pauling and Slater
363	. Which species has lone pair on central atom?	ej memeen	a) i daming direction
505	a) CCl ₄ b) CH ₄	c) NH ₄ ⁺	d) H ₂ O
364	In which of the following molecules/ions are all the	•	u) 1120
304		-	d) BF ₄
265	a) SF ₄ b) SiF ₄	c) XeF ₄	uj br ₄
305	. Super octet molecule is:	.) MIII	D. N C. I
266	a) F ₃ Cl b) PCl ₃	c) NH ₃	d) None of these
366	. The number of unpaired electrons in a paramagnetic	c diatomic molecule of an e	lement with atomic number
	16 is:		
	a) 4 b) 1	c) 2	d) 3
367	. Which of the following statement is not correct?		
	a) Hybridisation is the mixing of atomic orbitals price	or to their combining into n	nolecular orbitals
	b) sp^2 hybrid orbitals are formed from two p -atomic	orbitals and one s-orbital	
	c) d^2sp^3 hydride orbitals are directed towards the c	corners of a regular octahed	lron
	d) dsp^3 hybrid orbitals are all at 90° to one another		
368	. Which statement is correct?		
	a) Pi-bond always exists with sigma-bond		
	b) Pi-bond can exist independently		
	c) Sigma-bond is weaker than pi-bond		
	d) Pi-bond is less reactive than sigma-bond		
369	. Which of the following pair has same structure?		
	01		

270	a) PCl ₅ and SF ₆		c) PH ₃ and BCl ₃	d) NH_4^+ and SO_4^{2-}
370.	Which of the following ha		a) NII	4) CII
271	a) CO ₂	b) p-dichlorobenzene g is highest melting halide?	c) NH ₃	d) CH ₄
3/1		g is ingliest meiting hande: b) AgBr	c) AgF	d) AgI
272	a) AgClThe hybridisation state of	, ,	tj Agr	u) Agi
3/4	a) sp^3d	b) sp^3d^2	c) sp^3	d) $d^2 s p^3$
272	, .	, .	llowing triatomic species is	, .
373.			c) $NO_2^+ < NO_2^- < NO_2$	
37 <i>4</i> .		isoelectronic. The decreasi		$a_1 n o_2 < n o_2 < n o_2$
3/1	a) $S^{2-} > Cl^{-} > K^{+} > Ca^{2}$		ing of their of their size is.	
	b) $Ca^{2+} > K^{+} > Cl^{-} > S^{2-}$			
	c) $K^+ > Cl^- > Ca^{2+} > S^2$			
	d) $Cl^{-} > S^{2-} > Ca^{2+} > K^{-}$			
375	,	idization orbitals increases	s the hand angle:	
373.	a) Increases	b) Decreases	c) Does not change	d) Becomes zero
376		$_3$ is ionic. This fact can be j	,	a) becomes zero
570	a) Valence bond theory			d) Fajan rule
377			ect to molecule, hybridisation	* *
	a) BeCl ₂ , sp^2 , linear	B 10 tr corr cor cor resp.	b) BeCl ₂ , sp^2 , triangular p	_
	c) BCl_3 , sp^2 , triangular pla	nar	d) BCl_3 , sp^3 , tetrahedral	
378.		pairs occupy equatorial po	, , ,	
	a) Lone pair – bond pair r			
	b) Bond pair - bond pair r	-		
		pulsion and lone pair – bor	nd pair repulsion	
	d) Lone pair – lone pair re	= = = = = = = = = = = = = = = = = = = =	1 1	
379	The correct order of decre	=		
	a) $HF > SO_2 > H_2O > NH$	= = =	b) HF > $H_2O > SO_2 > NH$	I_3
	c) $HF > NH_3 > SO_2 > H_2$	0	d) $H_2O > NH_3 > SO_2 > H_3$	IF
380	The process requiring the	absorption of energy is:		
	a) F – F ⁻	b) $H \rightarrow H^-$	c) $Cl \rightarrow Cl^-$	d) $0 \to 0^{2-}$
381	In O_2^- , O_2 and O_2^{2-} molecul	ar species, the total numbe	er of antibonding electrons	respectively are
	a) 7, 6, 8	b) 1, 0, 2	c) 6, 6, 6	d) 8, 6, 8
382	sp^3 hybridisation is found	l in		
	a) CO_3^{2-}	b) BF ₃	c) NO_3^-	d) NH ₃
383	Among the following meta	als interatomic forces are p	robably weakest in:	
	a) Cu	b) Ag	c) Zn	d) Hg
384	Which of the following ph	enomenon will occur when	two atoms of an element v	vith same spin of electron
	in orbitals approach each	other?		
	a) Orbitals will overlap			
	b) Orbitals will not overla	p		
	c) Bonding will take place			
	d) A diatomic molecule wi			
385	-	ent ionic character, the bon		
	a) Pure covalent	b) Partial covalent	c) Partial ionic	d) Coordinate covalent
386			pole moment for the triator	
	a) $\theta = 90^{\circ}$	b) $\theta = 120^{\circ}$	c) $\theta = 150^{\circ}$	d) $\theta = 180^{\circ}$
387		order different from that in		
	a) NO ⁻	b) NO ⁺	c) CN ⁻	d) N ₂
	The species having octahe	dral shane is:		

	a) SF ₆	b)	BF ₄		c) PCl ₅		d) BO_3^{3-}	
389.	The following	compounds ha	ve been arrange	ed in orde	er of their in	creasing therr	nal stabilities. Identify th	ıe
	correct order:							
	K_2CO_3 (I)	$MgCO_3$ (II)						
	CaCO ₃ (III)							
	0 ()	I < IV b)	IV < II < III <	: I	c) IV < <i>II</i> <	I < III	d) $II < IV < III < I$	
	=	ollowing will sh			=		,	
	a) Ethane	_	Ether		c) Ethanol		d) Water	
	•	minimum bone			-,		2,	
	a) H—Br		H—I		c) I—I		d) H—H	
	-	g ability of whic			-		• ,	
	a) Small highl	=		- 8 -	8			
	b) Large posit							
	c) Small highl							
	d) Large nega	_						
		cted to show pa	ramagnetism?					
	a) ClO_2	-	SO ₂		c) CO ₂		d) SiO ₂	
	,	ent character is	=		-		u) 5102	
	a) CaF ₂		CaCl ₂		c) CaI ₂		d) CaBr ₂	
	-	which has zero	_		c) car ₂		u) cabi ₂	
	a) CH ₃ Cl		NF ₃		c) BF ₃		d) ClO ₂	
	, ,	nd is strongest i			су ы з		u) 610 ₂	
		O b)			c) E	F	d) O——HN	
	,	cule having dip			C) F————————————————————————————————————		u) 0	
	a) 2,2-dimeth		ole moment is					
	b) <i>trans</i> -2-per							
	c) <i>trans</i> -3-hex							
	=	amethylbutane	nd true band na		acout in			
		s of electrons a					- דווא גר	
	a) NH ₃	=	BF ₃		c) CO ₃ ²⁻		d) NH ₂	
399.		thalpy and hydr		of four co	ompounds a	re given below	<i>I</i> .	
	Compound	Lattice	Hydration					
		enthalpy (in kJ mol ⁻¹)	enthalpy (in kJ mol ⁻¹)					
	P	+780	-920					
	Q	+1012	-812					
	Ř	+828	-878					
	S	+632	-600					
	The pair of co	mpounds which	n is soluble in w	ater is				
	a) P and Q	b)	Q and R		c) Rand S		d) Pand R	
400.	The increase i	n bond order re	esults in:					
	a) Decrease in	bond length ar	nd increase in b	ond ener	gy			
	b) Decrease in	bond length ar	nd bond energy					
	c) Increase in	bond length an	d bond energy					
	d) None of the	above						
401.	The correct st	ability order of	the following re	esonance	structure is	}		
	+	+ =N H ₂ CN=	<u>-</u>					
	_	≣N H₂ṒN∃	<u> </u>					
	a) $(I) > (II) > (II)$	(IV) > (III)			b) (I)> (III)	> (II) $>$ (IV)		

	c) $(II) > (I) > (IV)$	d) $(III) > (I) > (IV) > (II)$	
402.	Which is not characteristic of π -bond?		
	a) π -bond is formed when a sigma bond already form	ied	
	b) π -bond is formed from hybrid orbitals		
	c) π -bond may be formed by the overlapping of p -orb	oitals	
	d) π -bond results from lateral overlap of atomic orbit		
403.	A molecule in which sp^2 -hybrid orbitals are used by the		covalent bond is:
	a) He ₂ b) SO ₂	c) PCl ₅	d) N ₂
404.	Which species has the highest bond order?	0) 1 015	w) 1.2
101.	a) O_2 b) O_2^{2-}	c) N ₂	d) Both O_2 and O_2^{2-}
405	Molecular shapes of SF ₄ , CF ₄ , XeF ₄ are	cj nz	a) Both of and of
105.	a) The same with 2, 0 and 1 lone pair of electron resp	pactivaly	
	b) The same with 1, 1 and 1 lone pair of electrons res	_	
	c) Different with 0, 1 and 2 lone pair of electrons resp	•	
	d) Different with 1, 0 and 2 lone pair of electrons resp	<u> </u>	
106	-	•	
400.	The correct sequence of hybridisation of methane, et		d) an ³ an an ²
407		c) sp^3 , sp^2 , sp	d) sp^3 , sp , sp^2
407.	The nature of the bond in diamond is) M . III	D.C. 1: . 1 .
400	a) Ionic b) Covalent	c) Metallic	d) Coordinate covalent
408.	The set representing the correct order of first ionizat	-	1) (1) (1) (1)
	a) $K > Na > Li$ b) Be $> Mg > Ca$	c) $B > C > N$	d) Ge $> Si > C$
409.	Amongst the following, the molecule that is linear is) ala	D 110
	a) SO ₂ b) BeH ₂	c) ClO ₂	d) NO ₂
410.	Which of the following species does not exist under n		
	a) Be ²⁺ b) Be ₂	c) B ₂	d) Li ₂
411.	How many σ and π – bonds are present in toluene?		
	a) $3\pi + 8\sigma$ b) $3\pi + 10\sigma$	c) $3\pi + 15\sigma$	d) $6\pi + 3\sigma$
412.	Octet rule is not valid for the molecule:		
	a) CO ₂ b) H ₂ O	c) 0 ₂	d) CO
413.	CO ₂ has the same geometry as:		
	(A) HgCl_2 , (B) NO_2 , (C) SnCl_4 , (D) $\operatorname{C}_2\operatorname{H}_2$		
	a) A and C b) B and D	c) A and D	d) Cand D
414.	Concept of bond order in the molecular orbital theory	depends on the number o	f electrons in the bonding
	and antibonding orbitals. The bond order:		
	a) Can have a—ve value		
	b) Has always an integral value		
	c) Is a non-zero quantity		
	d) Can assume any +ve value, including zero		
415.	The number of σ and $\pi\text{-bonds}$ in pent-4-en-1-yne are	respectively:	
	a) 3, 10 b) 9, 4	c) 4, 9	d) 10, 3
416.	The Cl—C—Cl angle in 1, 1, 2, 2-tetrachloroethene an	d tetrachloromethane resp	ectively will be about:
	a) 109.5° and 900° b) 120° and 109.5°	c) 90° and 109.5°	d) 109.5° and 120°
417.	Which set has strongest tendency to form anions?		
	a) Ga, In, Te b) Na, Mg, Al	c) N, O, F	d) V, Cr, Mn
418.	From elementary molecular orbital theory we can give	ve the electronic configurat	ion of the singly positive
	nitrogen molecular ion N_2^+ as		
	a) $l\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\pi 2p^4$, $\sigma 2p^1$	b) $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s$	2 , $\sigma 2p^2$, $\pi 2p^3$
	c) $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p^3$, $\pi 2p^2$	d) $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s$	2 , $\sigma 2p^2$, $\pi 2p^4$
419.	NH ₃ has much higher boiling point than PH ₃ because		
	a) NH ₃ has larger molecular weight		

	b) $\mathrm{NH_{3}}$ undergoes umbrella inversion				
	c) NH ₃ forms hydrogen bo	ond			
		ds whereas PH_3 contains c			
420.	In a crystal, the atoms are	located at the positions of:			
	a) Maximum potential ene	ergy			
	b) Minimum potential ene	ergy			
	c) Zero potential energy				
	d) Infinite potential energ	y			
421.	Which substance has the g	greatest ionic character?			
	a) Cl ₂ O	b) NCl ₃	c) PbCl ₂	d) BaCl ₂	
422.	2. The conductivity of the metal decreases with increases in temperature because				
	a) The kinetic energy of the	ne electron increases			
	b) The movement of electronic	rons becomes haphazard			
	c) The kernels start vibrat	ting			
	d) The metal becomes hot	and starts emitting radiati	ions		
423.	Which of the following wh	ien dissolved in water form	ns a solution, <i>i.e.</i> , non-cond	ucting?	
	a) Chile salt petre		b) Potash alum		
	c) Green vitriol		d) Ethyl alcohol		
424.	Which bond is more polar	?			
	a) Cl—Cl	b) N—F	c) C—F	d) 0—F	
425.	The pairs of bases in DNA	are held together by:			
	a) Hydrogen bonds	b) Ionic bonds	c) Phosphate groups	d) Deoxyribose groups	
426.	Which of the following has	s highest bond angle?			
	a) H ₂ 0	b) H ₂ S	c) NH ₃	d) PH ₃	
427.	The compound in which ca	arbon atom uses only sp^3 -	hybrid orbitals for bond for	ormation is	
	a) HCOOH	b) NH ₂ CONH ₂	c) (CH ₃) ₃ COH	d) CH ₃ CHO	
428.	•		an der Waals' forces, (III) H	, ,	
	= =	, ,	ect order of increasing stab		
	a) (I) $<$ (III) $<$ (IV)	-	o .		
	b) (II) $<$ (III) $<$ (IV) $<$ (I				
	c) (II) $<$ (IV) $<$ (III) $<$ (I				
	d) (IV) $<$ (II) $<$ (III) $<$ (I)			
429.	If the ionization potential	for hydrogen atom is 13.6	eV, then the ionization pote	ential for He ⁺ ion should	
	be:	, 0	,		
	a) 72.2 eV	b) 54.4 eV	c) 6.8 eV	d) 13.6 eV	
430.	The hydrogen bonding is s	strongest in:	,	•	
	a) 0—H S	b) S—H O	c) F—H F	d) F—H O	
431.	The correct increasing ord	ler of polarising power is:	,		
	a) $Ca^{2+} < Mg^{2+} < Be^{2+} <$				
	b) $Mg^{2+} < Be^{2+} < K^+ < 0$	Ca ²⁺			
	c) $Be^{2+} < K^+ < Ca^{2+} < M$				
	d) $K^+ < Ca^{2+} < Mg^{2+} < R$	•			
432.	Acetate ion contains:				
	a) One C, O single bond an	d one C. O double bond			
	b) Two C, O single bonds	one of a decision bend			
	c) Two C, O double bonds				
	d) None of the above				
433.	Which one is paramagneti	c and has the bond order h	nalf (0.5)?		
-0.	a) F ₂	b) N ₂	c) 0 ₂	d) H ₂ ⁺	
434.	Which one is correct?	, ,) - <u>L</u>	,	

a) Dinitrogen is paramagne	tic		
b) Dihydrogen is paramagne	etic		
c) Dioxygen is paramagneti	С		
d) Dioxygen is diamagnetic			
435. IP is influenced by:			
a) Size of atom			
b) Charge on nucleus			
c) Electrons present in inne	er shells		
d) All of the above			
436. The hybridization of atomic		0_2^+ , NO_3^- and NH_4^+ are:	
a) sp, sp^3 and sp^2 respective	-		
b) sp, sp^2 and sp^3 respective	-		
c) sp^2 , sp and sp^3 respective	-		
d) sp^2 , sp^3 and sp respectiv	•		
437. The bond between carbon a	toms (1) and (2) in comp		
		(1) (2)	
involves the hybrid orbitals			
, , , ,	,	c) sp, sp^3	d) <i>sp</i> , <i>sp</i>
438. Which of the following has l	= =		
		c) CuCl ₂	d) CsCl
439. When metals react with non			
		c) Gain electrons	d) None of the above
440. Which one has more tenden	_ -		
	•	c) Mg	d) Ca
441 . The order of melting point of			
-		c) $m > p > 0$	d) $p > o > m$
442. Number of non-bonding elec			
-		c) 3, 2, 1	d) 0, 3, 2
443. The hybridization of carbon	~ .	•	
		c) sp^2 , sp^3 , sp	d) $sp, sp^3 sp^2$
444. The molecule, ion which is p	: = = =		
, ,	, .	c) CO_3^{2-}	d) SO_3
445. The number of lone pairs of			
	-	c) 1, 2, 3	d) 6, 4, 2
446. The electronic structure of t		nd D are, $(A) = 1s^2$; $(B) =$	$= 1s^2, 2s^2 2p^2; (C) =$
$1s^2, 2s^22p^5; (D) = 1s^2, 2s^2$	=		
The tendency to form electr			
,		c) <i>C</i>	d) <i>D</i>
447. $C - C$ bond order in benzen			
	•	c) Between 1 and 2	d) None of these
448. For the formation of covaler	nt bond, the difference in t	the value of electronegativ	ities should be:
a) Equal to or less than 1.7			
b) More than 1.7			
c) 1.7 or more			
d) None of the above			
449. Which among the following			N 6
,	•	c) Si	d) C
450. In coordinate bond, the acce	=		
	,	c) With no electron	d) With three electrons
451 . How many σ-and π -bonds a	ire tnere in the molecule o	i tetracyanoethylene?	

470. The shape of sulphate ion is

	$N \equiv C'$ $C \equiv N$			
452.	a) Nine σ - and nine π Paramagnetism of oxygen	b) Five σ - and nine π is explained on the basis of	=	
	a) $(\pi^2 p_x)^1 (\pi^2 p_y)^1$	b) $(\pi^2 p_y)^1 (\pi^2 p_z)^1$	c) $\binom{*}{\sigma 2s}^1 \left(\pi 2p_y\right)^1$	d) $\begin{pmatrix} * \\ \sigma_{2s} \end{pmatrix}^1 (\pi_2 p_y)^1$
453.	The compound possessing a) $SrCl_2$	g most strongly ionic nature b) BaCl ₂	e is: c) CaCl ₂	d) CsCl
	a) $[MnO_4]^-$	s no 'd' electrons in the cen b) $[Co(NH_3)_6]^{3+}$		d) [Cr(H ₂ O) ₆] ³⁺
	Which of the following spea) 0_2	b) 0 ₂ ⁺	c) 0 ₂	d) O ₂ ²⁻
456.		r is 1.6×10^{-30} C-m and into	eratomic spacing is 1Å. The	% ionic character of HBr
457	is a) 7 Which group of atoms have	b) 10 e nearly same atomic radiu	c) 15	d) 27
	a) Na, K, Rb, Cs Bond polarity of diatomic	b) Li, Be, B, C		d) F, Cl, Br, I
	a) Difference in electron ab) Difference in electronesc) Difference in ionisationd) All of the above	ffinity of the two atoms gativities of the two atoms potential		
459.	The hybridization of P in F a) I in ICl ₄		c) N in NO ₃	d) S in SO ²⁻
460.	-	-	-	a_a . Lattice energy of AB is
	$^{\prime}a$		c) $\frac{r_a}{r_c}$	$\mathrm{d})\frac{1}{(r_c+r_a)}$
461.	Which contains a coordina) 110	D.H. O
462	a) BaCl ₂ Covalent radius of Li is 12	b) NH ₄ Cl 3 pm. The crystal radius of	c) HCl Li will be:	d) H ₂ O
102.		b) < 123 pm	c) + 123 pm	$d) = \frac{123}{2} pm$
463.	Which of the following do	es not contain coordinate b		
464.	a) BH_4^- The bond order of C_2^+ is:	b) NH ₄ ⁺	c) CO ₃ ²⁻	d) H ₃ O ⁺
465.	a) 1 With increasing bond order	=	c) 3/2	d) 1/2
466.	a) Increases Molecular orbitals theory		c) Remains unaltered	d) None of these
467	a) Werner The isoelectronic pair is	b) Kossel	c) Moseley	d) Mullikan
	a) Cl_2O , ICl_2^- The compound 1,2-butadi	b) Cl ₂ , ClO ₂	c) IF ₂ ⁺ , I ₃ ⁻	d) ClO ₂ , ClF ₂ ⁺
	a) sp, sp^2 and sp^3 hybridisc) Only sp hybridised carb	ed carbon atoms oon atoms	b) Only sp^2 hybridised cand) Only sp and sp^2 hybrid	
469.	The correct order of ionic a) Fe > Fe^{2+} > Fe^{3+}		c) $I^- > I > I^+$	d) All of these

	a) Canana planan	h) Trigonal	a) Trigonal planer	d) Totach oduol		
171	a) Square planar	b) Trigonal	c) Trigonal planar	d) Tetrahedral		
4/1.		Molecular shape of SF_4 , CF_4 and XeF_4 are: a) The same with 2, 0 and 1 lone pair of electrons respectively				
		1 lone pair of electrons res				
		2 lone pairs of electrons res	= =			
472	_	2 lone pairs of electrons res	spectively.			
4/2.	Which of the following is s) DCI	D AIGI		
472	a) NH ₃	b) BH ₃	c) PCl ₅	d) AlCl ₃		
4/3.	Sodium chloride is soluble in water but not in benzene because					
	$\Delta H_{ m hdydration}$	1 4 **	$\Delta H_{ m hdydration}$	1 4 **		
	a) $< \Delta H_{\text{lattice energy in water}}$ and $\Delta H_{\text{hdydration}}$		b) > $\Delta H_{\text{lattice energy in water}}$ and $\Delta H_{\text{hdydration}}$			
	$>$ $\Delta H_{ m lattice\ energy}$ in benzene		$<\Delta H_{ m lattice}$ energy in benzene			
	$\Delta H_{ m hdydration}$		$\Delta H_{ m Hdydration}$			
	c) = $\Delta H_{\text{lattice energy in water}}$	$_{ m r}$ and $\Delta H_{ m hdydration}$	d) $< \Delta H_{\text{lattice energy in water}}$	and $\Delta H_{\mathrm{Hdydration}}$		
	$< \Delta H_{\text{lattice energy in benze}}$	ene	$= \Delta H_{\text{lattice energy in benze}}$			
474.	==	strongest hydrogen bondi	ng:			
	a) H_2O_2 and H_2O		c) CH ₃ COOH and CH ₃ COO	(d) SiH ₄ and SiCl ₄		
475.	The number of sigma and	pi bonds in 1- butane 3-yne				
	a) 5σ and 5π	b) 6σ and 4π	c) 7σ and 3π	d) 8σ and 2π		
476.	Which is soluble in water?)				
	a) AgF	b) AgCl	c) AgBr	d) AgI		
477.	Which of the following con	npounds has the lowest me	elting point?			
	a) CaF ₂	b) CaCl ₂	c) CaBr ₂	d) CaI ₂		
478.	sp^3 hybridisation is not fo	und in				
	a) H ₂ 0	b) CH ₄	c) BCl ₃	d) NH ₃		
479.	Amongst H ₂ O, H ₂ S, H ₂ Se and H ₂ Te, the one with highest boiling point is:					
	a) H ₂ O because of hydrogen bonding					
	b) H ₂ Te because of higher molecular weight					
	c) H ₂ S because of hydrogen bonding					
	d) H ₂ Se because of lower molecular weight					
480.	Which of the following is false?					
	a) Methane molecule is tetrahedral in shape					
	b) Nickel tetrachloride is square planar in shape					
	c) P ₂ O ₅ is like two pyramids joined at their apices					
	d) Acetylene is non-linear					
481.		h on combination are most				
	a) Na and Ca	b) K and O ₂	c) O ₂ and Cl ₂	d) Al and I ₂		
482.		naximum covalent characte				
	a) FeCl ₂	b) SnCl ₂	c) AlCl ₃	d) MgCl ₂		
483.		rces are strongest betweer				
	a) He	b) CH ₄	c) CO ₂	d) H ₂ O		
484.		of sulphur atom present in				
	a) sp, sp^2	b) sp^2 , sp^2	c) sp^2 , sp^3	d) sp, sp^3		
485.	The electrons used in bonding atoms:					
	a) Belong to outermost shell					
	b) Belong to penultimate shell					
	c) Belong to outermost shell and sometimes penultimate shell					
d) Belong to penultimate shell and sometimes to outermost shell 486. Given are O_2 , O_2^+ , O_2^{2+} and O_2^{2-} respectively. Find the correct increasing bond order						
486.		U ₂ respectively. Find the		ier		
	a) $0_2 < 0_2^{2-} < 0_2^{2+} < 0_2^{+}$		b) $0_2^{2-} < 0_2 < 0_2^+ < 0_2^{2+}$			

3 2 - 2	$1 < O_2^2$	$d) 0_2^+ < 0_2^{2-} < 0_2 < 0$	2+
487. In a homonuclear	molecule which of the following	set of orbitals is degenera	te?
a) σ2sand σ1s	b) $\pi 2 p_x$ and $\pi 2 p_y$	c) $\pi 2p_x$ and $\sigma 2p_z$	d) $\sigma 2 p_z$ and $\mathring{\pi} 2 p_x$
_	wity order of O, F, Cl and Br is: Br b) $F > Cl < Br > O$	c) Br $> Cl > F > 0$	d) $F < Cl < Br < O$
a) In solid NaCl theb) Solid NaCl is concept.c) In solid NaCl the		2:	
490. The number of lon	ne pairs is same in PCl ₃ and:		
a) BCl ₃	b) NCl ₃	c) CCl ₄	d) PCl ₅
	e the same crystal structure and a e approximate lattice of CaO is	approximately the same io	onic radii. If U is the lattice
a) $\frac{U}{2}$	b) <i>U</i>	c) 2 <i>U</i>	d) 4 <i>U</i>
492. In the molecule CF	$H \equiv C - CH = CH_2$, the hybridisa	tion of C – C bond is	
a) $sp^2 - sp$	b) $sp^{3} - sp^{3}$	c) $sp^2 - sp^2$	d) $sp^3 - sp$
a) Trigonal bipyra b) Sea-saw, sp ³ d c) Square pyramic d) Pentagonal pyra	dal, sp^3d^2		
, , , , , ,	wing set of properties belong toF	PCl_?	
	l, 4 valence shell pairs of electron	_	
	bipyramidal, 5 valence shell pairs		
, .	ral, 6 valence shell pairs of electr		
	lanar, 4 valence shell pairs of ele		
,	e, the ionic charge is 4.8×10^{-10}		nce is 1 Å unit, then the dipol
a) 0.48 debye	b) 4.18 debye	c) 4.8 debye	d) 41.8 debye
a) Two sigma-bonb) One sigma-bonc) Two pi-bonds a	between the two carbon atoms in the description of	in ethylene consists of:	
497. The state of hybric			
-	one pair of electron		
	rahedral structure		
SJSP will has tee.			
	trigonal bipyramidal structure		
c) sp^3d and has a	trigonal bipyramidal structure an octahedral structure		
c) sp^3d and has a d) sp^3d^2 and has a		trons are respectively:	
c) sp^3d and has a d) sp^3d^2 and has a	an octahedral structure	trons are respectively: c) 2, 10	d) 2, 9
c) sp^3d and has a d) sp^3d^2 and has a 498. In OF ₂ , number of a) 2, 6	an octahedral structure bond pair and lone pairs of elect	c) 2, 10	d) 2, 9
c) sp^3d and has a d) sp^3d^2 and has a 498. In OF ₂ , number of a) 2, 6	an octahedral structure bond pair and lone pairs of elect b) 2,8	c) 2, 10	d) 2, 9 d) Fe ²⁺ , Fe ³⁺
c) sp^3d and has a d) sp^3d^2 and has a 498. In OF ₂ , number of a) 2, 6 499. In which pair, the a) N, F	an octahedral structure bond pair and lone pairs of elect b) 2,8 first atom or ion is not larger tha	c) 2, 10 an the second? c) 0, S	d) Fe ²⁺ , Fe ³⁺
c) sp^3d and has a d) sp^3d^2 and has a 498. In OF_2 , number of a) 2, 6 499. In which pair, the a) N, F 500. The maximum numa) 1	an octahedral structure bond pair and lone pairs of elect b) 2,8 first atom or ion is not larger tha b) Cl ⁻ , Cl	c) 2, 10 an the second? c) 0, S nolecule of water can have c) 3	d) Fe ²⁺ , Fe ³⁺

	a) I, II, III	b) II, III, IV	c) I, II, IV	d) II, I	
502	O2. Dipole moment is exhibited by:				
	a) 1, 4-dichlorobenzene				
b) 1, 2-dichlorobenzene					
	c) Trans- 1, 2-dichloroetl	hene			
	d) Trans-1, 2-dichloro-2-butene				
503		the energy of a 2 p -orbital i	S:		
	a) Less than that of 2s-or				
	b) More than that of 2s-or				
	c) Equal to that of 2s-orb	ital			
	d) Double that of 2s-orbit				
504.			-hybrid orbitals in its bond	ing?	
	a) NH ₂	b) BeF ₃	c) SO ₂ Cl ₂	d) SO ₄ ²⁻	
505.	$\frac{1}{2}$ RbO ₂ is	-) - 3	0) 0 0 2 0 0 2) 4	
000	a) Peroxide and paramag	netic	b) Peroxide and diamagne	etic	
	c) Superoxide and param		d) Superoxide and diamag		
506		gen is more than oxygen b		Siletie	
500.	a) Nucleus has more attra	=	ccause.		
	b) Half-filled <i>p</i> -orbitals ar				
	c) Nitrogen atom is small				
	d) More penetration effect				
507	•		lvents of sulphanilic acid ar	e due to itsstructure	
307	a) Simple ionic	b) Cubic	c) Bipolar ionic	d) hexagonal	
EUO		oes not have a coordinate bo		u) nexagonai	
506.	_			4) IINO	
500	a) SO ₂	b) H ₂ SO ₃	c) HNO ₂	d) HNO ₃	
509.	-		n potential of coinage meta		
E 10	-	b) $Cu < Ag < Au$	c) $Cu > Ag < Au$	d) $Ag > Cu < Au$	
510.	. Which, molecule has zero	=) Pl 00	DILO	
- 44	a) HBr	b) AgI	c) PbSO ₄	d) H ₂ O	
511.		while NCl ₃ is pyramidal, b	ecause		
	a) N – Cl bond is more cov				
	b) Nitrogen atom is small				
	c) B – Cl bond is more pol				
= 40		f electrons but NCl ₃ has a lo	one pair of electrons		
512.	. Hybridisation of the unde	erline atom changes in	12 H O 1		
	a) AlH ₃ changes to AlH ₄		b) H ₂ Ochanges toH ₃ O ⁺		
	c) NH ₃ changes toNH ₄ ⁺		d) In all cases		
513.	. Which molecule has hydro	•			
	a) CH ₄	b) CH ₃ COOH	c) GeH ₄	d) H ₂ Te	
514.	. The energy released when	-	kes up an electron is called	:	
	a) Ionization energy	b) Solvation energy	c) Electronegativity	d) Electron affinity	
515.	In NO_3^- ion, number of both	nd pair and lone pair electr	ons are respectively:		
	a) 2, 2	b) 3, 1	c) 1, 3	d) 4, 8	
516	. Which has sp^2 -hybridisat	tion?			
	a) CO ₂	b) SO ₂	c) N ₂ 0	d) CO	
517	. A sp^3 -hybrid orbital conta	ains:			
	a) 1/4 s-character	b) 1/2 s-character	c) 2/3 s-character	d) 3/4 s-character	
518	. In the formation of NO^+ fi	rom NO, the electron is rem	noved from		
	a) a σ orbital	b) a π orbital	c) $a\sigma^*$ orbital	d) a π^* orbital	
519	. The decreasing order of the	he second ionization energ	y of K, Ca and Ba is:		

a) $K > Ca > Ba$	b) $Ca > Ba > K$	c) Ba $> K > Ca$	d) $K > Ba > Ca$		
520. The value of n in the molecular formula Be ${}_{n}\mathrm{AI}_{2}\mathrm{Si}_{6}\mathrm{O}_{18}$ is					
a) 1	b) 2	c) 3	d) 4		
521. Compound <i>X</i> is anhydrid	le of sulphuric acid. The nu	mber of σ bonds and the n	umber of $\boldsymbol{\pi}$ - bonds present		
in X are, respectively.					
a) 3, 3	b) 4, 2	c) 2, 4	d) 4, 3		
522. OF ₂ is:					
a) Linear molecule and s					
b) Tetrahedral molecule					
c) Bent molecule and sp ³	³ -hybridized				
d) None of the above					
523. Which is not true in case	of ionic bond?				
a) It is linear bond					
b) It is 100% ionic					
•	two atoms with large electro	onegativity difference			
d) None of the above	ro nossible resenting struc	ture of N O2			
524. Which of the following an	-	ture or N ₂ O?			
н у ===	—N===0 :				
I	II				
:N==N;: N=	+ ••				
:N <u>≡</u> N—0: N=	=0= <u>N</u>				
III	IV				
a) I and II	b) I and III	c) I, II and III	d) All of these		
525. The number of σ and π –	•				
a) 2, 5	b) 3, 4	c) 4, 3	d) 5, 2		
526. Strongest hydrogen bond	d is present in				
a) OF	b) sO	c) O——HS	d) FF		
527. In the cyanide ion, the for	rmal negative charge is on:				
a) C					
b) N					
c) Both C and N					
d) Resonate between C a					
528. The trigonalbipyramidal					
a) dsp^3 or sp^3d	b) dsp^2 or sp^2d	c) d^2sp^3 or sp^3d^2	d) d^3p^2 or d^2p^3		
529. Which one of the following	=	=	D. I.I. C		
a) NH ₃	b) PH ₃	c) H ₂ O	d) H ₂ Se		
	530. O				
	gle in H_2O is 104.5. This fact				
	on pair repulsion (VSEPR	R)b) Molecular orbital theo	ry		
theory		12 =1			
c) Presence of hydrogen	bond		erence between hydrogen		
504 M7 M 1 C M 2 M 3 M M 3 M 3 M 3 M 3 M 3 M 3 M 3 M 3 		and oxygen atoms	1 . 11 .1		
531. Which of the two ions from	_		explained by the same		
-	100_{2}^{-} , 100_{3}^{-} , 100_{2}^{-} , 100_{3}^{-} , 100_{2}^{-}		d) CCM= and MH=		
a) NO ₂ and NH ₂	b) NO ₂ and NO ₃	c) NH ₄ ⁺ and NO ₃ ⁻	d) SCN ⁻ and NH ₂		
532. Which of the following is		c) CS ₂	d) RoCl		
a) SO₃533. Which contains both cov	b) CO_2	cj 632	d) BeCl ₂		
a) CCl ₄	b) KCN	c) CaCl ₂	d) H ₂ O		
aj 001 ₄	oj kon	c) GaG12	u) 1120		

	c) Rusting of iron					
	d) Emission of γ-rays by radioactive iron					
551.	Which is paramagnetic?					
	a) Cl ₂ O ₆	b) Cl ₂ O ₇	c) Cl ₂ O	d) ClO ₂		
552	Which one of the following	g pairs of molecules will ha	ve permanent dipole mom	ents for both members?		
	a) SiF ₄ andNO ₂	b) NO ₂ and CO ₂	c) NO ₂ andO ₃	d) SiF ₄ and CO ₂		
553.		of boron and oxygen atom	in boric acid (H ₃ BO ₃) is re	spectively:		
	a) sp^{3}, sp^{3}	b) sp^2, sp^3	c) sp^3 , sp^2	d) sp^2 , sp^2		
554	The correct order towards	s bond angle is				
	a) $sp^3 < sp^2 < sp$	b) $sp < sp^2 < sp^3$	c) $sp < sp^3 < sp^2$	d) $sp^2 < sp^3 < sp$		
555.	Which orbital is used by o	xygen atom to form a sigm	a bond with other oxyen at	om in O ₂ molecule?		
	a) Pure <i>p</i> -orbital	b) sp^2 -hybrid orbital	c) sp^3 - hybrid orbital	d) <i>sp</i> - hybrid orbital		
556	Which of the following is a	a linear molecule?				
	a) BeCl ₂	b) H ₂ O	c) SO ₂	d) CH ₄		
557	Which involves breaking of	of covalent bond?				
	a) Boiling H ₂ S	b) Melting KCN	c) Melting SiO ₂	d) Boiling CF ₄		
558	For $\overline{N}H_2$, the best three-di	mensional view is				
	-	\odot		Ĥ		
	H	\checkmark	CH			
	a) N H	b) H—N—H	c) N	$d) \bigcirc N \bigcirc$		
	↑ Н	(.)	▼H	\bullet		
	U	O		Η̈́		
559.	For the four successive tra	ansition elements (Cr, Mn, 1	Fe and Co), the stability of -	+2 oxidation state will be		
	there in which of the follow	wing order?				
	a) $Cr > Mn > Co > Fe$					
	b) $Mn > Fe > Cr > Co$					
	c) Fe $> Mn > Co > Cr$					
	Co > Mn > Fe > Cr					
	d) $Co > Mn > Fe > Cr$ (At. no. $Cr = 24$, $Mn = 1$	25, Fe = 26, Co = 27)				
560	In PO_4^{3-} , the formal charge	e on each on each oxygen a	tom and the $P - O$ bond or	der respectively are		
	a) -0.75 , 0.6	b) -0.75, 1.0	c) -0.75 , 1.25	d) −3, 1.25		
561	An element X has 3 electron	ons in p -orbitals and also b	elongs to III period. Its mol	ecular formula should be		
	a) <i>X</i>	b) <i>X</i> ₂	c) X_4	d) <i>X</i> ₅		
562	Elements having six electr	ons in its outermost orbit	generally form:			
	a) Complex ion	b) Negative ion	c) Positive ion	d) Zwitter ion		
563	Oxygen is divalent, but sul	lphur exhibits variable vale	ency of 2, 4 and 6, because:			
	a) Sulphur is less electronegative than oxygen					
	b) Sulphur is bigger atom than oxygen					
	c) Ionisation potential of sulphur is more than oxygen					
	d) Of the presence of <i>d</i> -or	bitals in sulphur				
564	Of the following sets which	h one does not contain isoe	electronic species?			
	a) BO_3^{3-} , CO_3^{2-} , NO_3^{-}	b) SO_3^{2-} , CO_3^{2-} , NO_3^{-}	c) CN^- , N_2 , C_2^{2-}	d) PO_4^{3-} , SO_4^{2-} , ClO_4^-		
565	In which of the following,	unpaired electrons are pre	sent?			
	KO_2 , AlO_2^- , BaO_2 , NO_2^+					
	a) NO_2^+ , BaO_2	b) KO_2 , AlO_2^-	c) Only KO ₂	d) Only BaO ₂		
566	Which transition involves	maximum amount of energ	gy?			
	a) $M^-(g) \rightarrow M(g) + e$					
	b) $M^{-}(g) \to M^{+}(g) + 2e$					
	c) $M^+(g) \to M^{2+}(g) + e$					
	d) $M^{2+}(g) \to M^{3+}(g) + e$					

567.	What is the nature of the	bond between B and O in(C	$_{2}H_{5})_{2}OBH_{3}$?	
	a) Covalent		b) Coordinate covalent	
	c) Ionic bond		d) Banana shaped bond	
568.	Which does not use sp^3 -h	ybrid orbitals in its bonding	g?	
	a) BeF ₃	b) OH ₃ ⁺	c) NH ₄ ⁺	d) NF ₃
569.	Hybridisation of C ₂ andC ₃	of		
	$H_3C - CH = C = CH - CH$	I ₃ are		
	a) sp, sp^3	b) sp^2 , sp	c) sp^2 , sp^2	d) <i>sp</i> , <i>sp</i>
570.	Maximum covalence of an	atom of an element is equa	al to:	
	a) Number of unpaired el	ectrons in the s -and p -orbit	cals of valency shell	
	b) Number of unpaired el	ectrons in the p -orbitals of	valency shell	
	c) Total number of electro	ons in the s -and p -orbitals α	of valency shell	
	d) Total number of electro	ons in the p -orbitals of vale	ncy shell	
571.	Which main group elemen	nts have a different number	of outermost electrons that	an their group number?
	a) Alkali metals	b) Noble gases	c) Halogens	d) None of these
572.	The forces present in the	crystals of naphthalene are	:	
	a) Van der Waals' forces	b) Electrostatic forces	c) Hydrogen bonding	d) None of these
573.	Which does not show iner	rt pair effect?		
	a) Al	b) Sn	c) Pb	d) Thallium
574.	The electronic theory of b	onding was proposed by		
	a) Pauling	b) Lewis	c) Bronsted	d) Mullikan
575.	The correct order of decre	easing first ionization poter	ntial is:	
	a) $C > B > Be > Li$	b) $C > Be > B > Li$	c) $B > C > Be > Li$	d) Be $> Li > B > C$
576.	The hybridisation of orbit	tals of N atom in NO_3^- , NO_2^+ ,	and NH ₄ are respectively	
	a) sp, sp^2, sp^3	b) sp^2 , sp , sp^3	c) sp, sp^3, sp^2	d) sp^2 , sp^3 , sp
577.	Which of the following is	more ionic?		
	a) NaCl	b) KCl	c) MgCl ₂	d) CaCl ₂
578.	The species showing $p\pi$ - a	$d\pi$ overlapping is:		
	a) NO_3^-	b) PO ₄ ³⁻	c) CO_3^{2-}	d) NO_2^-
579.	H ₂ O has a net dipole mon	nent, while BeF ₂ has zero di	pole moment, because:	
	a) H ₂ O molecule as linear	while BeF ₂ is bent		
	b) BeF ₂ molecule is linear	, while H_2O is bent		
	c) Fluorine is more electr	onegative than oxygen		
	d) Be is more electronega	tive than oxygen		
580.	Among the following which	ch is the strongest oxidising	agent?	
	a) Cl ₂	b) F ₂	c) Br ₂	d) I ₂
581.		olecule in its valence shell	has three bond pairs of ele	ectrons and one lone pair of
	electrons?			
	a) NH ₃	b) H ₂ 0	c) BF ₃	d) CO ₂
582.	Which of the following sta			
	=	onds contain a σ - bond and	one or more π - bonds	
	b) All carbon to hydrogen			
		bonds are hydrogen bonds	5	
	d) All carbon to hydrogen			
583.	Which of the following ha			
	a) C ₂ H ₆	b) C ₂ H ₄	c) BeCl ₂	d) C_2H_2
584.		oonds in solids are in accord		
	a) Heisenberg's uncertain	nty principle	b) Bohr's theory	
	c) Ohm's law	a	d) Rutherford's atomic mo	
585.	Which of the following co	nfiguration is associated wi	th biggest jump between 2	nd and 3rd <i>IE</i> ?

586	•	b) $1s^2$, $2s^22p^6$, $3s^1$ olecular forces in hydrogen interaction		d) $1s^2$, $2s^22p^1$
	b) Dipole-dipole interacti			
	c) Hydrogen bond interac	ction		
	d) Dispersion interaction			
587	Correct order of bond len	igth is	2	
	a) $CO_3^{2-} > CO_2 > CO$		b) $CO_2 > CO > CO_3^{2-}$	
	c) $CO > CO_2 > CO_3^{2-}$		d) None of these	
588	-	olecules has pyramidal sha	=	
	a) PCl ₃	b) SO ₃	c) CO_3^{2-}	d) NO_3^-
589	. The molecular electronic	configuration of Be ₂ is		
	a) $\sigma ls^2 \overset{*}{\sigma} ls^2 \sigma 02s^2 \overset{*}{\sigma} 2p^2$	2 b) $KK\sigma 2S^2$	c) $\sigma ls^2 \overset{*}{\sigma} ls^2 \sigma 02s^2 \overset{*}{\sigma} 2s^2$	d) None of the above
590		f 90° angles between bond _l	pair-bond pair of electrons	is observed in
	a) dsp^3 hybridisation		b) $sp^3 d$ hybridization	
	c) dsp^2 hybridisation		d) sp^3d^2 hybridisation	
591	_		ot correct according to pro	perty indicated against it?
	a) Increasing size : Al ³⁺ <	_		
	b) Increasing $IE_1 : B < C$			
	c) Increasing $EA_1 : I < B_1$			
E02	d) Increasing metallic rad . Most covalent halide of al			
392	a) AlCl ₃	b) AlI ₃	c) AlBr ₃	d) AlF ₃
593	· ·	dual carbon-carbon bonds i	, ,	u) Air ₃
370	a) One	tual carbon carbon bonds i	ii belizelle is.	
	b) Two			
	c) Between 1 and 2			
	d) One and two alternate	ly		
594	=		$\pi-p\pi$ bonds are respective	ely
	a) 8 and 2	b) 6 and 2	c) 12 and zero	d) 12 and 2
595	s. The percentage s – charac	cter of the hybrid orbitals in	n methane, ethene and ethy	ne are respectively
	a) 25, 33, 50	b) 25, 50, 75	c) 50, 75, 100	d) 10, 20, 40
596	The types of bonds prese	nt in $CuSO_4 \cdot 5H_2O$ are only	7	
	a) Electrovalent and cov	alent		
	b) Electrovalent and co-o	rdinate		
	=	t and co- ordinate covalent		
	d) Covalent and co-ordina			
597	. Which pair represents is	-		
	a) CH_3^- amd CH_3^+		c) SO_4^{2-} and BF_4^-	
598	-	species, all the three types	of hybrid carbons are prese	
	a) $CH_2 = C = CH_2$		b) $CH_3 - CH = CH - CH_2^+$	
= 00	c) $CH_3 - C \equiv C - CH_2^+$		d) $CH_3 - CH = CH - CH_2^-$	
599	. Which statement is not co			
	a) Double bond is shorter	-		
	b) Sigma bond is weaker			
	c) Double bond is stronged. Covalent bond is strong	-		
600	d) Covalent bond is stron The pair having similar go			
JUL	a) BF ₃ , NH ₃	-	c) BeF ₂ , H ₂ O	d) BCl ₃ , PCl ₃
	uj Di 3, 14113	2, אוו 3 אווי אווי אווי אווי אווי	c) DCI 2,112O	uj D013, 1 013

601	Which of the following i	is largest?		
	a) Cl ⁻	b) S ²⁻	c) Na ⁺	d) F ⁻
602	The AsF ₅ molecule is tr	igonal bipyramidal. The hyb	orid orbitals used by the As	atoms for bonding are
	a) $d_{x^2-y^2}, d_{z^2}, s, p_x, p_y$	b) d_{xy} , s , p_x , p_y , p_z	c) $s, p_x, p_y, p_z, d_{z^2}$	d) $d_{x^2-y^2}$, s, p_x , p_y
603	Consider the following	halogen containing compou	nds	
	(A)CHCl ₃	(B)CCl ₄		
	$(C)CH_2Cl_2$	(D)CH ₃ Cl		
	(E)			
	CI	CI .		
	The compounds with a	net zero dipole moment are	!	
	a) B and E only	b) C only	c) C and D only	d) A and D only
604	Alkali metals in each pe	riod have:		
	a) Largest size			
	b) Lowest <i>IE</i>			
	c) Highest <i>IE</i>			
	d) Highest electronegat	ivity		
605	, ,	-	of $X - M - X$ bonds at 180° is	S
	a) Three	b) Two	c) Six	d) Four
606	Valency means:	,	,	,
	a) Combining capacity	of an element		
	b) Atomicity of an elem			
	c) Oxidation number of			
	d) None of the above			
607	Which does not form tw	yo or more chlorides?		
	a) Na	b) Hg	c) Cu	d) Fe
608	Which has the largest fi	, ,	·, ·	,
	a) Li	b) Na	c) K	d) Rb
609	•	s in acrolein may be writter	,	,
	a) $\overset{\circ}{CH_2} = CH - \overset{\circ}{CH} = O$	b) $_{\text{CH}_2=\text{CH-CH=0}}^{\delta^+}$	c) $\stackrel{\circ}{\text{CH}}_2 = \stackrel{\circ}{\text{CH}} - \text{CH} = \text{O}$	d) $_{\text{CH}_2}^{\delta^+}$ = CH-CH= $_{\text{O}}^{\delta^-}$
610	Which bond has the hig	hest bond energy?		
	a) Coordinate bond	b) Sigma bond	c) Multiple bond	d) Polar covalent bond
611.	In which of the followin	g molecules the van der Wa	ials' forces is likely to be the	most important in
	determining the melting	g and boiling point?		
	a) CO		b) H ₂ S	
	c) Br ₂		d) HCl	
612	The higher values of spe	ecific heat of water in comp	arison to other liquids is du	e to:
	a) High dielectric const	ant		
	b) Polarity			
	c) H-bonding			
	d) None of the above			
613	Which contains both po	lar and non-polar covalent	bonds?	
	a) NH ₄ Cl			
	b) HCN			
	c) H ₂ O ₂			
	d) CH ₄			
614	How many – bonds are	present in naphthalene?		
	a) 4	b) 5	c) 6	d) 7
615	If the electron pair form	ning a bond between two at	oms A and B is not in the ce	ntre, then the bond is

a) Polar bond	b) Single bond ving species in non-linear?	c) π -bond	d) Non-polar bond
a) ICl ₂	b) I ₃	c) N ₃	d) ClO ₂
· -	* *		
	CO molecule on the basis of n		
a) Zero	b) 2	c) 3	d) 1
618. Which one is the st) D	D D G
a) Cl—F	b) F—F	c) Br—F	d) Br—Cl
	ring compound has maximun	n volatility?	
OH I	ОН	ОН	СООН
a) ()	b) (c) C00	H d)
	COOF		
COOH		-	
	ectron-dot structure, calculate	o the formal charge from le	oft to right nitrogen atom.
_	ection-dot structure, calculati	e the formal charge from le	ert to right mitrogen atom,
N==N==N			
a) -1, -1, +1	b) -1, +1,-1	c) +1, -1, -1	d) +1, -1, +1
621. Hybridisation show	vn by carbon and oxygen of –	OH group in phenol are re	spectively
a) sp^2 , sp^2	b) sp^{3} , sp^{3}	c) sp, sp^2	d) sp^2 , sp^3
622. The molecule which	h has pyramidal shape is:		
a) PCl ₃	b) SO ₃	c) CO_3^{2-}	d) NO ₃
, ,	sing bond angles order is:	-7 3	- , - 3
a) $BF_3 < NF_3 < PF_3$	= =		
b) $ClF_3 < PF_3 < N$	*		
c) $BF_3 \approx NF_3 < PF_3$	* *		
d) $BF_3 < NF_3 < PF_3$	* *		
624. Van der Waals' ford			
a) Inert gases only	ces are applied to.		
b) Rare gases only			
c) Mixture of gases			
d) Elementary gase	_		1 1 777 1 11 2
			c molecule XY_2 shown below?
a) 90°	b) 120°	c) 150°	d) 180°
626. Which shows the le	-		
a) CHCl ₃	b) CH ₃ CH ₂ OH	c) CH ₃ COCH ₃	d) CCl ₄
627. Which force is stro			
a) Dipole-dipole fo	rces		
b) Ion-ion forces			
c) Ion-dipole force	S		
d) Ion-induced dip	ole forces		
628. Which molecule ha	s linear structure?		
a) CO ₂	b) H ₂ O	c) SO ₂	d) H_2O_2
, <u>-</u>	nds helow the vanour pressu		,

643. During change of O_2 to O_2^- ion, the electron adds on which one of the following orbitals?

b) π orbital

c) σ* orbital

d) σ orbital

a) π* orbital

644 Pand anargy of gavalant O. II hand in water is		
644. Bond energy of covalent 0—H bond in water is: a) Greater than bond energy of hydrogen bond		
b) Equal to bond energy of hydrogen bond		
c) Less than bond energy of hydrogen bond		
d) None of the above		
645. Which one of the following has a coordinate bond	1 7	
a) NH ₄ Cl b) AlCl ₃	c) NaCl	d) Cl ₂
646. Which carbon is more electronegative?	c) Naci	u) Gi2
a) sp^3 hybridised carbon		
b) <i>sp</i> – hybridised carbon		
c) sp^2 hybridised carbon		
d) Always same irrespective of its hybrid state		
647. Among NH ₃ , BeCl ₂ , CO ₂ and H ₂ O, the non-linear in	nolecules are:	
a) BeCl ₂ and H ₂ O b) BeCl ₂ and CO ₂	c) NH ₃ and H ₂ O	d) NH ₃ and CO ₂
648. Paramagnetism is exhibited by molecules:	, , ,	, , ,
a) Not attracted into a magnetic field		
b) Containing only paired electrons		
c) Carrying a positive charge		
d) Containing unpaired electrons		
649. Which molecule has the largest dipole moment?		
a) HF b) HCl	c) HBr	d) HI
650. The intermolecular attractive forces vary in the c	order:	
a) Water < alcohol < ether		
b) Water > alcohol > ether		
c) Alcohol > water < ether		
d) Ether > water > alcohol		
651. Which of the following species has a linear shape		1) 00
a) NO_2^+ b) O_3	c) NO ₂	d) SO ₂
652. The electronic configuration of 4 elements K, L, N	A and N are,	
$K = 1s^2$, $2s^2 2p^1 L = 1s^2$, $2s^2 2p^6$		
$M = 1s^2$, $2s^22p^4N = 1s^2$, $2s^22p^3$	a with dauble band in	
The element that would form a diatomic molecul a) <i>K</i> b) <i>L</i>	c) M	d) N
653. Which of the following will provide the most efficiency	,	d) <i>N</i>
a) $s - s$ b) $s - p$	c) $sp^2 - sp^2$	d) $sp - sp$
654. The state of hybridization of C_2 , C_3 , C_5 and C_6 of t	, , ,	$a_j s p - s p$
	ine nyurocarbon,	
$ \begin{array}{c cccc} CH_3 & CH_3 \\ & & \\ CH_3 - {}_{6}C - CH = CH - C - C = CH \\ 7 & & 5 & 4 & 3 & 2 & 1 \end{array} $		
~**		
CH_3		
is in the following sequence:		
a) sp, sp^2, sp^3 and sp^2 b) sp, sp^3, sp^2 and sp^3		
655. Four diatomic species are listed below in differen	nt sequences. Which of these r	epresents the correct order
of their increasing bond order?		
a) NO $< C_2^{2-} < O_2^{-} < He_2^+$		
b) $C_2^{2-} < He_2^+ < NO < O_2^-$		
c) $He_2^+ < O_2^- < NO < C_2^{2-}$		
d) $O_2^- < NO < C_2^{2-} < He_2^+$		
656. Which one species has the longest bond length?	c) 0 ⁺	d) N+
a) NO ⁺ b) O ₂ ⁻	c) 0 ₂ ⁺	d) N ₂ ⁺

657. The pair of molecules form	ming strongest hydrogen h	onds are		
oor. The pair of molecules for	ming strongest nythogen b	$CH_3 - C - CH_3$ and CH	$[C]_2$	
a) SiH ₄ and SiF ₆		b)	3	
,		0		
$H-C-OH$ and CH_3-	- C — OH			
c) O		d) H ₂ O and H ₂		
O	0			
658. Which one of the following	ng has not triangular pyram	idal shape?		
a) NH ₃	b) NCl ₃	c) PF ₃	d) BCl ₃	
659. A covalent bond is formed	d between the atoms by the	e overlapping of orbitals co	ntaining:	
a) Single electron				
b) Paired electron				
c) Single electron with pa	-			
d) Single electron with op	= =		and the state of	
660. Which of the following bo	onds required the largest ar	nount of bond energy to al	ssociate the atom	
concerned?	h) 0 = 0 hand in 0	a) N = N hand in N	d) C Chandin C II	
661. The covalency of nitrogen	b) $0 = 0$ bond in 0_2	C) $N = N$ bollu ili N_2	$a_1 c - c$ bolla ili $c_2 n_6$	
a) Zero	1 III 111NO3 15.			
b) 3				
c) 4				
d) 5				
662. Which is distilled first?				
a) Liquid H ₂	b) Liquid CO ₂	c) Liquid O ₂	d) Liquid N ₂	
663. Which one of the followin		, 1 2	, , ,	
a) H_2O , sp^3 , angular		b) H_2O , sp^2 , linear		
c) NH_4^+ , dsp^2 , square plan	nar	d) CH ₄ , dsp^2 , tetrahedral		
664. Which is correct order for	r electron gain enthalpy?			
a) $S < O < Cl < F$	b) $0 < S < F < Cl$	c) $Cl < F < S < 0$	d) $F < Cl < O < S$	
665. Which is a pyramidal stru	icture?			
a) Trimethylamine	b) Methanol	c) Acetylene	d) Water	
666. Among the following mixt	tures, dipole - dipole as the	=		
a) Benzene and ethanol		b) Acetonitrile and acetor		
c) KCl and water		d) Benzene and carbon to	etrachloride	
667. In dry ice there are in b			1) M	
a) Ionic bond	b) Covalent bond	c) Hydrogen bond	d) None of these	
668. The dipole moment of o , p	b) $p > o > m$	c) $m > o > p$	d) $a > m > n$	
a) $o > p > m$ 669. Which formulae does not			d) $o > m > p$	
7+	correctly represents the bo	onuming capacity of the atom	i ilivolveu:	
H H	г F	۷0	0	
a) $H \longrightarrow H$	h) \ /	c) O←N H	d) H-C=C. H	
	0	0	u) ii e o o	
		Ŭ		
670. Which has minimum ionic radius?				
a) N ³⁻	b) K ⁺	c) Na ⁺	d) F ⁻	
671. The bond order is maxim		, -	,	
a) 0 ₂	b) 0 ₂ ⁺	c) 0 ₂	d) 0 ₂ ²⁻	
672. PF ₃ molecule is:	- -	- -		
a) Square planar	b) Trigonal bipyramidal	c) Tetrahedral	d) Trigonal pyramidal	

673.	Resonance is due to:			
	a) Delocalization of σ -electrons			
	b) Delocalization of π -electrons			
	c) Migration of H atoms			
	d) Migration of protons			
674.	Which property is commonly ex	hibited by a covalent	compound?	
	a) High solubility in water			
	b) Low m.p.			
	c) High electrical conductivity			
	d) High b.p.			
675.	Which of the following is an elec	trovalent linkage?		
	a) CH ₄ b) SiG	Cl_4	c) MgCl ₂	d) BF ₃
676.	The decreasing values of bond a	ngles from NH ₃ (106	°) to SbH ₃ (101°) down gr	oup-15 of the periodic
	table is due to:			
	a) Increasing <i>bp</i> - <i>bp</i> repulsion			
	b) Increasing <i>p</i> -orbital character	r in sp^3		
	c) Decreasing <i>lp</i> - <i>bp</i> repulsion	ı		
	d) Decreasing electronegativity			
677.	The shape of ClO_3^- according to V	VSEPR model is:		
0	· ·	ramidal	c) Tetrahedral	d) Square planar
678.	Which metal has a greater tende			a) oqual o planai
070.	a) Cr b) Fe		c) Al	d) Ca
679	The charge/size ratio of a catio		,	,
07).	represents the increasing order	=		
	a) $Mg^{2+} < Be^{2+} < K^+ < Ca^{2+}$	of the polarising pow	b) Be ²⁺ $<$ K ⁺ $<$ Ca ²⁺ $<$ M	_
	c) $K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$		d) $Ca^{2+} < Mg^{2+} < Be^{2+} <$	•
600	A p -block element in which last	oloctron ontors into s	-	
000.			c) No such element exist	
601	a) As b) Ga How many electron pairs are pro		•	•
001.	•			
(02				d) 3
084.	Number of electrons in a the val	ence orbit of nitroger		
(02	a) 8 b) 5	- :l+ :-	c) 6	d) 7
683.	The number of valency electrons	s in carbon atom is:	3.6	D 4
604	a) Zero b) 2	1	c) 6	d) 4
684.	The structure of IF ₅ can be best	described as		D. N
	F		_ F _	d) None of these
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	90°	F 90% F	
	a) $I^{\frac{72^{\circ}}{}}F$ b)	72°	c) 90°	
	F F '	 F	F · · F	
685.	The relationship between the di	ssociation energy and	$d N_2$ and N_2^+ is	
	a) dissociation energy of $N_2 = d$		_	
	b) dissociation energy of N_2 can			energy of No
	c) dissociation energy of $N_2 > d$			OV ^-2
	d) dissociation energy of $N_2^+ > 0$			
686	The bond angle in H_2S (for H—S		·····	
550.	1112 20114 41121C 111 1120 (101 11 0	1,101		

c) Greater than H—Se—H and less than H—O—H d) Same as Cl—Sn— Cl in SnCl₂

a) Same as that of Cl—Be—Cl in BeCl₂b) Greater than H—N—H bond angle in NH₃

687.	Which one among the follo	owing does not have the hy	drogen bond?	
	a) Phenol	b) Water	c) Liquid NH ₃	d) Liquid HCl
688.	Which of the following mo	olecules/ions does not cont	ain unpaired electrons.	
	a) 0_2^{2-}	b) B ₂	c) N ₂ ⁺	d) 0 ₂
689.	The $C - O - H$ bond angle	in ethanol is nearly		
	a) 90	b) 104	c) 120	d) 180
690.	Which one of the following	g does not have <i>sp</i> ² hybrid	ised carbon?	
	a) Acetone	b) Acetic acid	c) Acetonitrile	d) Acetamide
691.		,	rder of increasing atomic ra	
		b) $Cl < P < Mg < Ca$	_	d) $Ca < Mg < P < Cl$
692	Which has a giant covalen	,		a) on view of
0,2.	a) PbO ₂	b) SiO ₂	c) NaCl	d) AlCl ₃
693	-	AsH ₃ andSbH ₃ is in the orde		d) Thois
075.	a) $PH_3 > AsH_3 > SbH_3 >$		b) $SbH_3 > AsH_3 > PH_3 >$	NH-
	c) $SbH_3 > AsH_3 > NH_3 >$	-	d) $NH_3 > PH_3 > AsH_3 >$	
601	, , ,	· ·	figurations, which one of th	3
074.	ionization energy?	in following electronic com	ilgurations, which one of th	em may have the mighest
		b) Ne $[3s^23p^3]$	a) Na[2a22m21	d) Ar $[3d^{10}4s^24p^3]$
60E				u) A1[3a 45 4p]
095.		he number of 90 degree F -		ט וג
(0)	a) 0	b) 1	c) 2	d) 3
696.		g elements has lower value		D C
607	a) Mg	b) Rb	c) Li	d) Ca
697.	The lattice energy order for			
	a) $LiF > LiCl > LiBr > Li$			
	b) LiCl $> LiF > LiBr > Li$			
	c) LiBr $> LiCl > LiF > Li$			
	d) $LiI > LiBr > LiCl > Li$			
698.			which has the weakest $C - C$	
	a) CO	b) CO ₂	c) CO_3^{2-}	d) CH ₃ COO ⁻
699.	Peroxide ion			
	•	ed antibonding molecular o	orbitals	
	(ii) is diamagnetic			
	(iii) has bond order one			
	(iv) is isoelectronic with r			
	Which one of these is corr	ect?		
	a) (ii) and (iii)	b) (i),(ii) and (iv)	c) (i),(ii) and (iii)	d) (i) and (iv)
700.	Which is the weakest amo	ong the following type of bo	nd?	
	a) Ionic bond	b) Covalent bond	c) Metallic bond	d) Hydrogen bond
701.	In which of the following J	pairs of molecules/ions, the	e central atom has sp^2 -hyb	ridization?
	a) NO ₂ and NH ₃	b) BF ₃ and NO ₂	c) NH_2^- and H_2O	d) BF ₃ and NH ₂
702.	Bond length decreases wi	th:		
	a) Decrease in size of the	atom		
	b) Increase in the number	of bonds between the ator	ns	
	c) Decrease in bond order	•		
	d) Decrease in the number	r of bonds between the ato	ms	
703.	Which of the following mo	olecules/ ions does not con	tain unpaired electrons?	
	a) 0_2^{2-}	b) B ₂	c) N ₂ ⁺	d) 0 ₂
704.	The structure of IF ₇ is			
	a) Square pyramid		b) Trigonalbipyramid	
	c) Octahedral		d) Pentagonal bipyramid	

705.	The species C ₂				
	a) Has one σ bond and or	ne π bond	b) Has both π bonds		
	c) Has both σ bonds		d) Does not exist		
706.	In which of the following	bond angle is maximum?			
	a) NH ₃	b) NH ₄	c) PCl ₅	d) SCl ₂	
707.	•	ne in aqueous solution can	be determined by the para	meters indicated below	
	$\frac{1}{2}\operatorname{Cl}_{2}(g) \xrightarrow{\frac{1}{2}\Delta_{\operatorname{diss}H^{\circ}}} \operatorname{Cl}(g) \xrightarrow{\Delta_{\operatorname{EA}}}$	$\xrightarrow{H^{\circ}} \operatorname{Cl}^{-}(g) \xrightarrow{\Delta_{\operatorname{hyd}} H^{\circ}} \operatorname{Cl}^{-}(aq)$			
	~	the conversion of $\frac{1}{2}Cl_2(g)$ to	$Cl^{-}(aq)$ (Using the data)		
	$\Delta_{\mathrm{diss}^{H^{\circ}}\mathrm{Cl}_{2}} = 240 \text{ kJmol}^{-1}$	Z			
	$\Delta_{\text{EA}^{H^{\circ}}\text{Cl}} = -349 \text{ kJmol}^{-1}$				
	Δ_{hyd} $_{H^{\circ}}\text{Cl} = -381 \text{ kJmol}^{\circ}$	⁻¹ will be			
	•	b) -610 kJmol ⁻¹	c) -850 kJmol ⁻¹	d) +120 kJmol ⁻¹	
708.		<i>ipso</i> – carbon dichlorobenzo		· , · · · , ·	
	a) <i>sp</i> hybridized	_	c) $sp^2 dhybridized$	d) <i>sp</i> ³ hybridised	
709.		is maximum dipole momen		., .,,	
	a) NCl ₃	b) NBr ₃	c) NH ₃	d) NI ₃	
710.	•	est dipole moment among t	, ,	-73	
	a) CHl ₃	b) CH ₄	c) CHCl ₃	d) CCl ₄	
711.		atomic molecules would be		=	
	a) C ₂	b) CN	c) N_2	d) 0 ₂	
712.	- -	ossess maximum hydration		w) 0 ₂	
	a) MgSO ₄	b) RaSO ₄	c) SrSO ₄	d) BaSO ₄	
713		hydrogen bond is present?		u) buoo4	
715.	a) H ₂	b) Ice	c) Sulphur	d) Hydrocarbon	
714	· -	easing polarisability of ion	_	a) fry arocar bon	
, 11.		b) F ⁻ , I ⁻ , Br ⁻ , Cl ⁻		d) F ⁻ , Cl ⁻ , Br ⁻ , I ⁻	
715	Which is highest melting	=	c) I , DI , GI , I	aji , di , bi , i	
/13.	a) NaCl		c) NaF	d) NaI	
716	Number of σ and π bonds	•	c) ivai	uj Nai	
710.	a) 3 and 2	b) 2 and 2	c) 2 and 3	d) 4 and 3	
717		llides is least stable and has	•	uj 4 aliu 3	
/1/.	•			ואן על	
710	a) CI ₄	b) GeI ₄	c) SnI ₄	d) PbI ₄	
/18.	C — Chond length is maxi		A Marshallanda	D.E. II	
5 10	a) Diamond	b) Graphite	c) Naphthalene	d) Fullerene	
719.		Ference between N and F is	=	N and H yet the dipole	
	* '	larger than that of NF_3 (0.1)	•		
		the atomic dipole and bond	= = =		
	b) $\frac{\text{In NH}_3}{\text{same direction.}}$	ole and bond dipole are in t	he opposite directions whe	reas in NF $_3$ these are in the	
	c) In NH ₃ as well as in NF	T_3 the atomic dipole and both	nd dipole are in the same d	irection.	
	d) $\frac{\text{In NH}_3}{\text{opposite directions.}}$	ole and bond dipole are in the	he same direction whereas	in NF ₃ these are in	
720.	Resonance is not shown b	oy:			
	a) C ₆ H ₆	b) CO ₂	c) CO_3^{2-}	d) SiO ₂	
721.	The molecular shapes of S	· -	, ,	. <u>.</u>	
	-	2 lone pairs of electrons or	n the central atom, respecti	velv	
	=	-	-	=	
	b) Different with 0, 1 and 2 lone pairs of electrons on the central atom, respectively c) The same with 1, 1 and 1 lone pairs of electrons on the central atoms, respectively				

	d) The same with 2, 0	and 1 lone pairs of electrons of	on the central atom, respe	ctively		
722.	The shape of IF ₇ mole	cule is				
	a) Pentagonal bipyra	midal	b) Trigonalbipyramidal			
	c) Tetrahedral		d) Octahedral			
723.	Decreasing order of C	C – C bond length is				
	$(I)C_2H_4$	$(II)C_2H_2$				
	$(III)C_6H_6$	$(IV)C_2H_6$				
		b) $I > II > IV > III$	c) $II > I > IV > III$	d) $IV > I > III > II$		
724.	In which of the follow	ving compounds, the bonds hav	ve the largest percentage (of ionic character:		
	a) H ₂ 0	b) HF	c) IBr	d) N_2O_4		
725.	, <u>-</u>	both are the member of same	•	<i>'</i> - ·		
	gas because		0 1	2 1 2		
	a) Molecular weight of	of water is more				
	b) Electronegativity of					
	c) H ₂ S is weak acid	•				
		re having strong hydrogen bor	nds between them			
726.	The linear structure i					
	a) SnCl ₂	b) NCO	c) NO ₂ ⁺	d) CS ₂		
727.	-	on state of carbon atom change	, -	· -		
	the hybridized orbitals:					
	a) Decreases gradually					
	b) Decreases considerably					
	c) Is not affected	,				
	d) Increases progress	sivelv				
728.		e maximum number of lone pa	ir of electrons on the cent	ral atom?		
	a) [ClO ₃ ⁻]	b) XeF ₄	c) SF ₄	d) [I ₃]		
729.		explains that o -nitrophenol is m	•			
	a) Resonance		1 1			
	b) Sterichinderance					
	c) Hydrogen bond					
	d) Hyperconjugation					
730.	, , , ,	ectron pairs are present in IF ₇	molecule?			
	a) 6	b) 7	c) 5	d) 8		
731.	The comparatively hi	gh b.p. of HF is due to	,			
	a) High reactivity of f	= = =				
	b) Small size of hydrogen atom					
	= =	ogen bonds and consequent as	ssociation			
	d) High IE of fluroine	_				
732.		owing species is diamagnetic ir	n nature?			
	a) H ₂	b) H ₂ +	c) H ₂	d) He ₂ ⁺		
733.	· -	of bonded pair of electrons bet	-	, <u>-</u>		
	a) Ionic bond			J		
	b) Polar covalent bon	ıd				
	c) Non-polar covalen					
	d) None of the above					
734.	•	ving process energy is liberated	d?			
	a) $Cl \rightarrow Cl^+ + e$	b) $HCl \rightarrow H^+ + Cl^-$		d) $0^- + e \rightarrow 0^{2-}$		
735.	•	ole ion amongst the following:	•	•		
	a) Li ⁻	b) Be ⁻	c) B ⁻	d) C ⁻		
736.		rgy exist in the following bonds	•	•		

a) C—C	b) N—N	c) H—H	d) 0—0
737. Number of lone pair (s) i	n XeOF ₄ is/are		
a) 0	b) 1	c) 2	d) 3
738. Which one is electron de	ficient compound?		
a) NH ₃	b) ICl	c) BCl ₃	d) PCl ₃
739. Which type of bond is pr	esent in H ₂ S molecule?		
a) Ionic bond		b) Covalent bond	
c) Coordinate		d) All of three	
740. In compound X , all the bo	ond angles are exactly 109°2	28' , <i>X</i> is:	
a) Chloromethane	b) Iodoform	c) Carbon tetrachloride	d) Chloroform
741. The hybridisation of P in	PCl ₅ is		
a) sp^2	b) sp^3d	c) sp^3	d) dsp^2
742. Pauling's electronegativi		seful in predicting:	, .
a) Polarity of bonds in m			
b) Position of elements in			
c) Coordination number			
d) Dipole moment of var	ious molecules		
743. The hybridization of carb		nd of $HC \equiv C - CH = CH_2$ is:	
a) sp^3-sp^3	b) $sp^2 - sp^3$	c) $sp-sp^2$	d) sp^3-sp
744. It is thought that atoms of	, , ,		, , ,
	ons. If stability were attained		
the formula of the stable	=		
a) F ³⁺	b) F ⁺	c) F ⁻	d) F ²⁻
745. The number of antibond	,	,	,
a) 4	b) 3	c) 2	d) 5
746. Which has triangular pla	•	c) <u>L</u>	u) 5
a) CH ₃ ⁺	b) ClO ₂	c) H ₃ 0 ⁺	d) ClO ₃
747. Specify the coordination	, <u>-</u>	, ,	, ,
NH ₃ :	geometry around and hybri	dization of N and D atoms	in a 1.1 complex of big and
a) N : tetrahedral, sp^3 ; B	· totrahadral cn3		
b) N : pyramidal, sp^3 ; B :	-		
c) N : pyramidal, sp^3 ; B :			
d) N : pyramidal, sp^3 ; B :			
748. Which of the following m		ormi?	
a) $C - C$	b) N – N	c) 0 – 0	d) F — F
749. The number of oxygen at	•	,	u) r – r
a) 4	b) 3		4) E
750. Bond energies in NO,NO	,	c) 6	d) 5
	b) $N0^+ > N0^- > N0$	a) NO > NO = > NO +	J) NO+ > NO > NO-
•	•		•
751. In XeF_6 , oxidation state a			
a) +6, sp^3d^3 , distorted o	ctanearai	b) +4, sp^3d^2 , square plan	
c) $+6$, sp^3 , pyramidal		d) $+6$, sp^3d^2 , square pyra	imidai
752. Which one of the following			D NO+ 1 CO
a) CN ⁻ and NO ⁺	b) CN ⁻ and CN ⁺	c) O_2^- and CN^-	d) NO ⁺ and CO
753. The bond length of species			D 0 . 0 0 +
a) $0_2^+ > 0_2 > 0_2^-$, , , , ,	c) $0_2 > 0_2^+ > 0_2^-$	d) $0_2 > 0_2^- > 0_2^+$
754. Which hybridization resu	-	. 2	12 1 2
a) <i>sp</i>	b) sp^2	c) sp^3	d) dsp^2
755. The d -orbital involed in s			•
a) $d_{x^2-y^2}$	b) d_{rv}	c) d_{σ^2}	d) d_{zx}

756. The element with strong	electropositive nature is:		
a) Cu	b) Cs	c) Cr	d) Ba
757. Which statement is corre	ct?		•
a) X^+ ion is larger than X	ion		
b) X^- ion is larger in size	than X atom		
c) X^+ and X^- have the sa	me size		
d) X^+ ion is larger in size	than X atom		
758. SF ₂ , SF ₄ and SF ₆ have the	hybridisations at sulphur a	atom respectively, as	
a) sp^2, sp^3, sp^2d^2	b) sp^{3} , sp^{3} , $sp^{3}d^{2}$	c) sp^{3} , $sp^{3}d$, $sp^{3}d^{2}$	d) sp^3, spd^2, d^2sp^3
759. Solid CH ₄ is:			
a) Molecular solid	b) Ionic solid	c) Covalent solid	d) Not exist
760. The bond angles of NH_3 ,	NH_4^+ and NH_2^- are in the orde	er	
	b) $NH_4^+ > NH_3 > NH_2^-$	c) $NH_3 > NH_2^- > NH_4^+$	d) NH > NH $_{4}^{+}$ > NH_{2}^{-}
761. sp^2 -hybridization is show	vn by:		
a) BeCl ₂	b) BF ₃	c) NH ₃	d) XeF ₂
762. $Cl - P - Cl$ bond angles in	n PCl ₅ molecule are		
a) 120 and 90	b) 60 and 90	c) 60 and 120	d) 120 and 30
763. Which one of the following			
, , , , , , , , , , , , , , , , , , , ,		c) [BCl ₃ and BrCl ₃]	, , , , , , , , , , , , , , , , , , , ,
764. Which one of the following			=
	b) Ba ²⁺ , Sr ²⁺ , K ⁺ , Ca ²⁺	c) N^{3-} , O^{2-} , F^{-} , S^{2-}	d) Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺
765. Which molecule has zero	-		
a) HF	b) HBr	c) H ₂ 0	d) CO ₂
766. Four diatomic species are	e listed below. Identify the o	correct order in which the l	oond order is increasing in
them:			
a) $NO < O_2^- < C_2^{2-} < He^2$			
b) $0_2^- < NO < C_2^{2-} < He$			
c) $C_2^{2-} < He_2^+ < O_2^- < Ne_2^+$			
d) $He_2^+ < O_2^- < NO < C_2^2$			
767. Which one of the following			
a) NH ₃	b) H ₂ S	c) H ₂ O	d) CH ₄
768. The hybrid state of sulph	-	. 2.2	2
a) sp^3d	b) sp^3	c) sp^3d^2	d) sp^2
769. In which of the following			
a) CH ₄ and H ₂ O	b) PCl ₅ and SF ₄	c) SF ₆ and XeF ₄	d) BCl ₃ and NCl ₃
770. Which is the most covale			
a) C – F	b) C – 0	c) C – S	d) C – Br
771. The shape of NO_3^- is plant	= = = = = = = = = = = = = = = = = = =		-
a) sp^3 -hybridized	b) sp^2 -hybridized	c) Three <i>p</i> -orbitals	d) None of these
772. Which of the ions has the $\frac{3}{2}$) a 2±	1) a 2±
a) Be ²⁺	b) Mg ²⁺	c) Ca ²⁺	d) Sr ²⁺
773. A σ -bonded molecule MX	X_3 is T-shaped. The number	non-bonding pairs of elect	ron is
a) 0			
b) 2			
c) 1			
•	if atomic number of M is kn	lown	
774. Which of the following is		a) N	d) O2+
a) NO ⁻	b) CN ⁻	c) N ₂	d) 0_2^{2+}
775. In which set of molecules		=	4) D O 1:
a) B_2 , O_2 , N_2	b) B ₂ , O ₂ , NO	c) B_2, F_2, O_2	d) B_2 , O_2 , Li_2

776. Which of the following	has strongest hydrogen bond	ling?	
a) Ethylamine	b) Ammonia	c) Ethyl Alcohol	d) Diethyl ether
777. The bonds present in N	$_{2}0_{5}$ are:		
a) Ionic			
b) Covalent and coording	nate		
c) Covalent			
d) Ionic and covalent			
778. The angle between two	covalent bonds is maximum	in:	
a) CH ₄	b) H ₂ O	c) CO ₂	d) SO_3
779. The pair having similar	_		
a) PCl ₃ , NH ₄	b) BeCl ₂ , H ₂ O	c) CH ₄ , CCl ₄	d) IF ₅ , PF ₅
780. In the electronic structu	ure of acetic acid there are:		
a) 16 shared and 8 uns	hared valency electrons		
_	hared valency electrons		
c) 12 shared and 12 un	shared valency electrons		
-	hared valency electrons		
	r first) of size of the various l		
a) sp, sp^2, sp^3	b) sp^3 , sp^2 , sp	c) sp^2 , sp^3 , sp	d) sp^2 , sp , sp^3
782. Among the following, the	ne compound that contains ic	onic, covalent and coordina	te linkage is
a) NH ₃	b) NH ₄ Cl	c) NaCl	d) CaO
783. How many bridging oxy	ygen atoms are present in P_4 0	O ₁₀ ?	
a) 6	b) 4	c) 2	d) 5
784. Consider the Born-Hal	ber cycle for the formation	of an ionic compound give	ven below and identify the
compound (Z) formed.			
$\begin{bmatrix} M(s) \xrightarrow{\Delta H_1} M(g) \xrightarrow{\Delta H_2} M^+ \\ \frac{1}{2} X_2(g) \xrightarrow{\Delta H_3} X(g) \xrightarrow{\Delta H_4} X^- \end{bmatrix}$	$\left(\mathbf{g}\right)_{\Lambda H_{z}}$		
$1 \dots \Delta H_3 \dots \Delta H_4 \dots$	$\stackrel{\square}{\longrightarrow} Z$		
$\left[\frac{1}{2}X_2(g) \longrightarrow X(g) \longrightarrow X^2\right]$	-(g)]		
a) <i>M</i> ⁺ <i>X</i> ⁻	b) $M^{+}X^{-}(s)$	c) MX	d) $M^+X^-(g)$
785. The bond length is max	imum in:		
a) H ₂ S	b) HF	c) H ₂ O	d) Ice
	l into monocations, N_2^+ and O_2^-		
a) In N_2^+ , $N - N$ bond w	eakens	b) In O_2^+ , the $0 - 0$ bond of	order increases
c) In O_2^+ , paramagnetis	m decreases	d) N ₂ ⁺ become diamagnetic	
787. The number of nodal pl	lanes present in ${}^*\sigma$ s-antibor	idingorbitals is	
a) 1	b) 2	c) 0	d) 3
788. Which of the following	has maximum number of lon	e pairs associated with Xe?	
a) XeO ₃	b) XeF ₄	c) XeF ₆	d) XeF ₂
789. Which is most volatile of	compound?		
a) HI	b) HCl	c) HBr	d) HF
790. The calculated bond or	=		
a) 1	b) 1.5	c) 2	d) 2.5
791. A C \equiv C bond is:			
a) Weaker than C=C bo			
b) Weaker than C—C be			
c) Longer than C—C bo			
d) Shorter than C=C bo			
	ng pairs bond angle is 109°28		
a) [NH ₄], [BF ₄]	b) [NH ₄ ⁺], [BF ₃]	c) $[NH_3], [BF_4^-]$	d) [NH ₃], [BF ₃]
=	molecules has three-fold axis		
a) NH ₃	b) C ₂ H ₄	c) CO ₂	d) SO ₂

794. In which against it	of the following arranger	nents the sequence is n	ot strictly according to	the property written
•	HCl < HBr < HI : increas	sing acid strength		
•	$PH_3 < AsH_3 < SbH_3$: in		1	
-	< 0 < N: increasing firs			
•	$SiO_2 < SnO_2 < PbO_2$:in		er	
	e of the following is para			
a) N_2	b) NO	c) C	20	d) 0 ₃
, <u>-</u>	the following has largest	•		, ,
a) Na ⁺	b) K ⁺	c) L	.i ⁺	d) Cs ⁺
-	ergy of a solid increases	if		
	ions is small		Charges of ions are sma	11
c) Ions a		=	lone of the above	
=	e is most polar?	,		
a) CCl ₄	b) CHC	c) C	CH ₃ Cl	d) CH ₃ OH
799. The high	boiling point of water is	lue to:		-
_	dissociation of water mol			
b) Hydro	gen bonding among wate	r molecules		
c) Its hig	n specific heat			
d) Its hig	n dielectric constant			
	s of hybridisation of bord	n and oxygen atoms in	boric acid (H ₃ BO ₃) ar	e respectively
a) sp²ano			p^3 and sp^2	d) sp^3 and sp^3
801. In which	pair of species, both spec	ies do have the similar	geometry?	
a) CO ₂ , So			$\Sigma O_3^{2-}, SO_3^{2-}$	d) SO ₄ ²⁻ , ClO ₄ ⁻
802. Which of	the following is largest ic		5 5	
a) Na ⁺	b) Mg ²⁻)2-	d) F ⁻
803. The elect	ronic configuration of so	lium and chlorine justif	fies:	
	ohysical state	,		
b) Their i	=			
=	rmation of electrovalent	compound NaCl		
=	of the above	•		
=	disation is found in			
			210-	1) 00
a) $^+_{ m C~H_3}$	b) : C H	I_3 c) C	.IU ₃	d) SO ₃
805. Glycerol	s more viscous than etha	nol due to		
a) High n	olecular weight	b) H	ligh boiling point	
c) Many	nydrogen bonds per mole	cule d) F	ajan's rule	
806. In the cas	e of alkali metals, the cov	alent character decreas	ses in the order:	
a) $MI > I$	MBr > MCl > MF			
b) MCl >	MI > MBr > MF			
c) MF >	MCl > MBr > MI			
d) MF >	MCl > MI > MBr			
807. Two nod	al planes are present in			
a) $\pi^* 2p_x$	b) σ2 <i>p</i> _z	c) π	$a2p_x$	d) $\pi 2p_y$
808 H - hond	is not present in			
a) Water	is not present in	h) G	Glycerol	
-	gen fluoride	=	Hydrogen sulphide	
	of the following pairs mo			tronic?
a) CN ⁻ , C	= =		NO ⁺ , CO ⁺	d) CN ⁻ , O ₂ ⁺
-	the following halides has	-		, , ,

	a) NaF	b) NaCl	c) NaBr	d) NaI
811.	Which atomic orbital is alv	ways involved in sigma bor	nding only?	
	a) <i>s</i>	b) p	c) <i>d</i>	d) <i>f</i>
812.	Which of the following act	ts sometimes as a metal and	d sometimes as a non-meta	1?
	a) Hg	b) Cl	c) K	d) At
813.	Amongst the following ele	ements the configuration ha	nving the highest ionization	energy is:
	a) $[\text{Ne}]3s^23p^1$	b) [Ne] $3s^23p^3$	c) [Ne] $3s^23p^2$	d) [Ar] $3d^{10}4s^24p^3$
814.	,	ecies exhibits the diamagne	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	a) 0_2^{2-}	b) 0 ₂ ⁺	c) 0_2	d) NO
815.	, <u>-</u>	or ionic and polar covalent o	, <u>-</u>	,
	a) H ₂ 0	b) CH ₃ COOH	c) CCl ₄	d) Liquid NH ₃
816.		maximum covalent characte	, ,)13
	a) AlCl ₃	b) MgCl ₂	c) CsCl	d) LaCl ₃
817.		non-zero dipole moment,	•	,
	a) C ₆ H ₆	b) CO	c) SO ₂	d) NH ₃
818.		esent in octahedral SF ₆ mol	· -	w) 11113
010.	a) 3	b) 4	c) 6	d) 5
819	Resonance structures can	•		u) o
01).	a) 0_3	b) NH ₃	c) CH ₄	d) H ₂ O
820	Born-Haber cycle may be	· ·	c) dii4	u) 1120
020.	a) Electronegativity	b) Mass number	c) Oxidation number	d) Electron affinity
Ω21	, ,	of four elements A, B, C, D and	•	d) Licetion anning
021.	(A) $1s^2$ (B) $1s^2$, 2			
	$(C)1s^2, 2s^2, 2p^5(D)1s^2, 2s^2$	•		
		-		
		trovalent bond is largest in		4) D
ດລວ	a) A	b) B	c) <i>C</i>	d) <i>D</i>
822.	In which element shieldin	•	-) D	J) M
000	a) H	b) Be	c) B	d) N
823.		tals of N atom in NO_3^- , NO_2^+		12 2 3
004	a) sp, sp^2, sp^3	b) sp^2 , sp , sp^3	c) sp, sp^3, sp^2	d) sp^2 , sp^3 , sp
824.	_	isoelectronic with carbon a		15 22 1
	a) Na ⁺	b) Al ³⁺	c) 0^{2-}	d) N ⁺
825.	Which of the following sta			
		n is maximum by high charg	ged cation	
	b) Small sized cation mini	•		
	,	oout a large degree of polari		
	=	es a high degree of polariza		
826.		nd CCl_4 , the covalent bond of	character follows the order	:
	a) $LiCl > BeCl_2 > BCl_3 >$			
	b) $LiCl < BeCl_2 < BCl_3 <$	•		
	c) $LiCl > BeCl_2 > CCl_4 >$	BCl_3		
	d) $LiCl < BeCl_2 < BCl_3 >$	CCl_4		
827.	The value of bond order in	n nitrogen and oxygen mole	ecule is:	
	a) 3, 2	b) 4, 2	c) 2, 3	d) 1, 2
828.	Pauling received Nobel Pr	rize for his work on:		
	a) Photosynthesis	b) Atomic structure	c) Chemical bonding	d) Thermodynamics
829.	With which of the given pa	airs CO ₂ resembles?		
	a) HgCl ₂ , C ₂ H ₂	b) C_2H_2 , NO_2	c) HgCl ₂ , SnCl ₄	d) N ₂ O, NO ₂
830.	The enhanced force of coh	nesion in metals is due to:		
	a) The covalent linkages b	oetween atoms		

•	ent linkages between atoms		
c) The lack of exc	change of valency electrons		
d) The exchange	energy of mobile electrons		
831. Among H X , the m	aximum dipole moment is o	of:	
a) HF	b) HCl	c) HBr	d) HI
832. Dative bond is pr	esent in:		
a) SO ₃	b) NH ₃	c) BaCl ₂	d) BF ₃
833. In which of the fo	ollowing molecule, the centra	al atom does not have sp^3 -h	
a) CH ₄	b) SF ₄	c) BF ₄	d) NH ₄ ⁺
•	l electron and shows param	•	
a) NO	b) SO ₂	c) CO ₂	d) H ₂ O
•	soelectronic with 0^{2-} ?	-	- 7 2 -
a) N ³⁻	b) Na ⁺	c) F ⁻	d) Ti ⁺
836. Which species is	,	v) 1	w, 11
a) 0^{-}_{2}	b) CH ₃	c) CO	d) NO ⁺
837. Structure of amm	, ,	c) do	u) No
a) Pyramidal	b) Tetrahedral	c) Trigonal	d) Trigonal pyramidal
			uj irigoliai pyraililuai
	ne <i>p-p-</i> orbital overlapping is	s the formation of:	
a) H ₂ molecule			
b) Cl ₂ molecule			
c) Hydrogen chlo			
d) Hydrogen broi		1 10	
	ellowing $p\pi$ - $d\pi$ bonding is o		N 993
a) NO ₃	b) SO ₃ ²	c) BO_3^{3-}	d) CO ₃ ²⁻
840. The shape of ClO			
a) Square planar	b) Square pyramic	_	d) Trigonal bipyramidal
	erature of water is higher th	an that of 0_2 because H_2O	molecule has:
a) Fewer electror	ns than O ₂		
b) Two covalent l	oonds		
c) V-shape			
d) Dipole momen	t		
842. Compound forme	ed by sp^3d -hybridization wi	ll have structure:	
a) Trigonal bipyr	amidal		
b) T-shaped			
c) Linear			
d) Either of these	depending on number of lo	ne pair of electrons of centr	al atom
843. Which has the lov	= = = = = = = = = = = = = = = = = = =	•	
a) NH ₃	b) BeF ₂	c) H_30^+	d) CH ₄
			are of the diatomic molecule B_2 is
a) 1 and diamagn		· ·	_
b) 0 and diamagn			
c) 1 and paramag			
d) 0 and paramag			
, ,	cibonding molecular orbitals	; is:	
a) Greater than the	=	, 101	
b) Smaller than th	-		
c) Equal to that o	-		
d) None of the ab	_		
	ove ting the correct order of ion	ic radius is:	
a) Na ⁺ > L i ⁺ > M	_	ic raurus is.	
a. wa 21.1 21	/ U.C		

862	a) Solid state of iceb) Its low densityWhich of the following has minimum melting point?	c) Crystalline nature	d) Hydrogen bonding
002.	a) CsF b) HCl	c) HF	d) LiF
863	Geometry of ammonia molecule and the hybridisatio	•	•
005.	a) sp^3 hyridisation and tetrahedral geometry	n or merogen mivorved mite	arc
	b) sp^3 hyridisation and distorted tetrahedral geomet	-1~T 7	
	c) sp^2 hyridisation and triangular geometry	.1 y	
	d) None of the above		
864	The molecule having smallest bond angle is		
004.	a) H ₂ O b) H ₂ S	c) NH ₃	d) H ₂ Te
965	For a covalent solid, the units which occupy lattice po	, ,	u) 112 1 C
005.	a) Atoms b) Ions	c) Molecules	d) Electrons
966	Carbon suboxide (C_3O_2) has recently been shown as	•	•
000.	the following formulation raepresents the correct gro	=	
		c) : Ö::C::C::C:: Ö:	
067			d) :0: C: C: C: 0:
867.	The ionization energy will be maximum for the proce		J2 1 2 - 1 2 +
0.60	a) $Ba \rightarrow Ba^{2+}$ b) $Be \rightarrow Be^{2+}$	c) $Cs \rightarrow Cs^+$	d) Li \rightarrow Li ⁺
868.	Born Haber cycle is used to determine:	N. T	D. Diel C. I
0.60		c) Ionization energy	_
869.	In which of the following molecules/ions BF ₃ , NO ₂ , N		
	a) BF ₃ and NO ₂ b) NO ₂ and NH ₂	c) NH_2^- and H_2O	d) NO_2^- and H_2O
870.	$sp^3 d$ hybridisation results in		
	a) A square planar molecule	b) An octahedron molecul	
	c) A trigonalbipyramidal molecule	d) A tetrahedron molecule	
871.	In the electronic structure of H ₂ SO ₄ , the total numbe		
	a) 20 b) 16	c) 12	d) 8
872.	Which of the following element has higher ionisation	energy?	
	a) Boron b) Carbon	c) Oxygen	d) Nitrogen
873.	The bond length of HCl molecule is 1.275 Å and its		The ionic character of the
	molecule (in per cent) (charge of the electron= 4.8 :	\times 10^{-10} esu) is	
	a) 100 b) 67.3	c) 33.66	d) 16.83
874.	In a double bond connecting two atoms there is a sha	aring of:	
	a) 2 electrons b) 4 electrons	c) 1 electron	d) All electrons
875.	Number of P – O bonds in P_4O_{10} is		
	a) 17 b) 16	c) 15	d) 6
876.	Elements whose electronegativities are 1.2 and 3.0 fo	orm:	
	a) Ionic bond b) Covalent bond	c) Coordinate bond	d) Metallic bond
877.	Which of the following is correct?		
	a) Decreases in bond length means increase in bond	strength	
	b) Covalent radius of carbon is less than that of nitro	gen	
	c) Single bonds are stronger than double bonds		
	d) Fe (III) chloride cannot exist in the dimeric form F	Fe ₂ Cl ₆	
878.	Which of the following is a favourable factor for catio		
	a) Low ionisation potential	b) High electron affinity	
	c) High electronegativity	d) Small atomic size	
879.	A number of ionic compounds, e.g., AgCl, CaF ₂ , BaSO ₄	=	s is because:
	a) Ionic compounds do not dissolve in water		
	b) Water has a high dielectric constant		
	c) Water is not a good ionizing solvent		
	d) These molecules have exceptionally high attractiv	e forces in their lattice	
	1 - 7 0 - 10 - 10 - 10 - 10 - 10 - 10 -		

880. Ionisation potential values of elements are:	of 'd' block elements as co	ompared to ionisation pote	ntial values of 'f' block
	o) Lower	c) Equal	d) Either of these
881. When a metal atom combine	•		a, 2101101 01 011000
a) Lose electrons and decre		,	
b) Lose electrons and increa			
c) Gain electrons and decre			
d) Gain electrons and increa	ase in size		
882. The hydration of ionic comp	oounds involves:		
a) Evolution of heat			
b) Weakening of attractive f	forces		
c) Dissociation into ions			
d) All of the above			
883. Which of the following is dia	=		
	$0) 0_2$	c) Li ₂	d) Fe ₂ ⁺
884. Molecular orbital electronic	_	on is	
$KK(\sigma_{2s})^2 (\overset{*}{\sigma}_{2s})^2 (\pi_2 p_x)^2 (\pi_2 p_x)^2$	$(p_y)^2 (\sigma_2 p_z)^2 (\pi^2 p_x)^1$.		
The anion $'X'$ is			
, .	$0) 0_{2}^{-}$	c) N_2^{2-}	d) 0_2^{2-}
885. According to Fajan's rule po			
a) Small cation and large an			
b) Small cation and small an			
c) Large cation and large an			
d) Large cation and small ar			
886. Organic compounds soluble		c) C, H, O	4) C C
a) C, H. Cl b 887. Atomic radii of fluorine and	o) C, H neon in angetrom unit ar		d) C, S
) 1.60, 1.60	c) 0.72, 0.72	d) 1.60, 0.72
888. The decreasing order of bor		c, 0.72, 0.72	uj 1.00, 0.7 2
a) $NO_2 > NO_2^+ > NO_2^-$		b) $NO_2^- > NO_2 > NO_2^+$	
c) $NO_2^+ > NO_2 > NO_2^-$		d) $NO_2^+ > NO_2^- > NO_2$	
889. The correct order of dipole	moment is:		
a) $CH_4 < NF_3 < NH_3 < H_2O$			
b) $NF_3 < CH_4 < NH_3 < H_2O$	0		
c) $NH_3 < NF_3 < CH_4 < H_2$	0		
d) $H_2O < NH_3 < NF_3 < CH$	4		
890. Which oxide of nitrogen is is	soelectronic with CO_2 ?		
a) NO ₂ b	N_20	c) NO	d) N_2O_2
891. Which of the following mole	ecules does not possess a	permanent electric dipole	moment?
a) H ₂ S			
b) SO ₂			
c) SO ₃			
d) CS ₂			
892. Among O, C, F, Cl, Br the cor	-		Da a a a Francis a R
a) $F < 0 < C < Cl < Br$ b	=	_	=
893. In which of the following dia	· · · · · · · · · · · · · · · · · · ·		
, -	o) CN^- , N_2^+ , N_2	c) N ₂ ⁺ , NO, O ₂ ⁺	d) O_2^+ , CN^- , N_2^+
894. What type of hybridisation (a) sp^2	takes place in the N atom b) sp^3	of NH_3 ? c) dsp^2	15
	ni cn ^o	cl den4	d) <i>sp</i>

895	Identify the correct order	r of solubility of Na ₂ S, CuS	and ZnS in aqueous mediur	n:
	a) $CuS > ZnS > Na_2S$	b) $ZnS > Na_2S > CuS$	c) $Na_2S > CuS > ZnS$	d) $Na_2S > ZnS > CuS$
896			arked by asterisk (*) posses	
	hybridized orbitals:			
	$H_3C - \overset{*}{C} = \overset{*}{C} - CH_3$			
	a) sp^3 -orbital	b) sp^2 -orbital	c) <i>sp</i> -orbital	d) s-orbital
897	Debye an unit of dipole n	•	·) · [· · · · · · · · · · · · · · · · ·	,
	a) 10^{-10} esu cm		c) 10^{-6} esu cm	d) 10 ⁻¹² esu cm
898	•	a favourable factor for cat		u, 10 00 u 0
	a) High electronegativity		b) High electron affinity	
	c) Low ionisation potent		d) Smaller atomic size	
899	•	ule at ground state among		
	a) H ₂	b) 0 ₂	c) N ₂	d) CO
900	, -	n of fluorine molecule will	-	u, co
700	a) Due to $s - s$ overlappi		b) Due to $s - p$ overlappi	nσ
	c) Due to $p - p$ overlapp	•	d) Due to hybridisation	***6
901	The diamagnetic molecul	=	a) Due to hybridisation	
701	a) B ₂ , C ₂ , N ₂	b) O ₂ , N ₂ , F ₂	c) C ₂ , N ₂ , F ₂	d) B_2, O_2, N_2
902	The IP_1 is maximum for:	b) 02,112,12	c) d ₂ , n ₂ , 1 ₂	a, b ₂ , o ₂ , 11 ₂
702	a) K	b) Na	c) Be	d) He
003	•	Cu ²⁺ , there is a decrease in	•	u) He
903	a) Atomic number	cu , there is a decrease in	11.	
	b) Atomic mass			
	=			
	c) Equivalent weightd) Number of valency ele	ctrons		
004			maximum value of hydrog	on hand?
904		b) 0 – H	maximum value of hydrog	
005	a) N - H The hand and on of Otion	•	c) F — H	d) S — H
905	The bond order of O_2^+ is t		-) ((0	1) NO+
006	a) N_2^+	b) CN ⁻	c) CO	d) NO ⁺
906	Structure of XeF ₅ ⁺ ion is		20.1.1.1	D.D
	a) Trigonalbipyramidal	b) Square pyramidal	c) Octahedral	d) Pentagonal
907	The fHOMO in CO is			15 1 1
	a) π - bonding	b) π -antibonding	c) σ -antibonding	d) σ - bonding
908	_	as sp^3 -hybridization on ce		
	a) BF ₂	b) BCl ₃	c) SO ₃	d) CCl ₄
909	Which one has sp^3 hybri			
	a) N_2O	b) CO ₂	c) SO ₂	d) CO
910	Coordinate compounds a	re formed by:		
	a) Transfer of electrons			
	b) Sharing of electrons			
	c) Donation of electron p	air		
	d) None of the above			
911	In P_4O_{10} the			
		is formed by $p\pi - d\pi$ back	k bonding	
	b) $P = 0$ bond is formed			
	c) $P = 0$ bond is formed			
	=	by $d\pi - d\pi - 3\sigma$ back bor	nding	
912	Allene(C_3H_4) contains			
		triple bond and one single	bond	
	b) One triple and two do	uble bonds		

CuS

c) Two triple and one	e double bond		
d) Two double and fo	our single bond		
<mark>913</mark> . Which shows non-dir	rectional bonding?		
a) BCl ₃	b) CsCl	c) NCl ₃	d) BeCl ₃
914. Which one of the follo	owing contains both ionic a	nd covalent bonds?	
a) C ₆ H ₅ Cl	b) H ₂ O	c) NaOH	d) CO_2
, , ,	areisoelectronics. Their ion	-	, 2
a) $Na^+ < Mg^{2+} < Al^3$			
b) $Na^+ > Mg^{2+} < Al^3$			
c) $Na^+ < Mg^{2+} > Al^3$			
d) $Na^+ > Mg^{2+} > Al^3$			
	ng does not apply to metallic	r hond?	
a) Overlapping valen		o bona:	
b) Mobile valence ele			
c) Delocalized electro			
=			
d) Highly directed bo			
917. Van der Waals' forces		a) 1;Cl	d) AaDn
a) HBr	b) LiBr	c) LiCl	d) AgBr
	ance in H ₂ and Ci ₂ molecule	es are 74 and 198 pm respective	very. The bond length of H-
Cl may be:	12.50	3.406	D 0.40
a) 272 pm	b) 70 pm	c) 136 pm	d) 248 pm
919. The molecule having			1) 017
a) CH ₂ Cl ₂	b) BF ₃	c) NF ₃	d) ClF ₃
	e, the value of bond order m		
	nship between stability and	l bond order	
b) Zero			
c) Positive			
d) negative			
921. Which compound am	ong the following has more	covalent character?	
a) AlCl ₃	b) AlI ₃	c) MgI ₂	d) NaI
922. Which among the foll	lowing has the largest dipol	e moment?	
a) NH ₃	b) H ₂ O	c) HI	d) SO_3
923. The hybridization of	phosphorus in POCl ₃ is sam	ie as in:	
a) P in PCl ₃	b) S in SF ₆	c) Cl in ClF ₃	d) B in BCl ₃
9 <mark>24.</mark> A square planar comj	plex is formed by hybridisat	tion of the following atomic or	bitals
a) s, p_x, p_y, p_z	b) s, p_x, p_y, p_z, d	c) d, s, p_x, p_y	d) s, p_x, p_y, p_z, d, d
925. Which of the followin		, - w - y	,,
a) SO_3^{2-} , NO_3^{-}	b) BF ₃ , NF ₃	c) BrO_3^- , XeO_3	d) SF ₄ , XeF ₄
	, , ,	r hydrogen bond is expected	w) 01 4) 1101 4
a) In two	b) In all	c) In all leaving one	d) None of these
•	t ions in aqueous solution is	_	uj None of these
a) Ion – induced dipo		s an example of	
-			
b) Dipole - dipole inte			
c) Dipole – induced d	=		
d) Ion – dipole intera		. 1 91. 11	Lead to the decrease
	$Sect_2$ and $MgCl_2$, the compo	unds with the greatest and the	least ionic character,
respectively a) LiCl and RbCl	b) RbCl and MgCl ₂	c) RbCl and BeCl ₂	d) MgCl ₂ and BeCl ₂
	, , , , , ,		aj mgaizana dealz
a) 25	character in the orbitals for b) 33	c) 50	d) 75
aj 4J	ບງ ວວ	cj do	uj/J

	1 1	
930. Atoms or group of atoms which are electrically charge		D. 4.:
a) Anions b) Cations	c) Ions	d) Atoms
931. Which among the following elements has lowest values		N 6
a) Mg b) Ca	c) Ba	d) Sr
932. IP ₂ for an element is invariably higher than IP ₁ becau	ise:	
a) The size of cation is smaller than its atom		
b) It is difficult to remove 'e' from cation		
c) Effective nuclear charge is more for cation		
d) All of the above		
933. In forming (i) $N_2 \rightarrow N_2^+$ and (ii) $O_2 \rightarrow O_2^+$; the elect	rons respectively are remo	ved from
a) $(\stackrel{*}{\pi} 2 p_y \text{ or } \stackrel{*}{\pi} 2 p_x)$ and $(\stackrel{*}{\pi} 2 p_y \text{ or } \stackrel{*}{\pi} 2 p_x)$		
b) $(\pi 2 p_y \text{ or } \pi 2 p_x)$ and $(\pi 2 p_y \text{ or } \pi 2 p_x)$		
c) $(\pi 2 p_y \text{ or } \pi 2 p_x)$ and $(\pi 2 p_y \text{ or } \pi 2 p_x)$		
d) $(\pi 2 p_y \text{ or } \pi 2 p_x)$ and $(\pi 2 p_y \text{ or } \pi 2 p_x)$		
934. Which one pair of atoms or ions will have same conf	iguration?	
a) Li ⁺ and He ⁻ b) Cl ⁻ and Ar	c) Na and K	d) F ⁺ and Ne
935. Which combination is best explained by the coordination		a) i ana ive
	1	
a) $H^+ + H_2O$ b) $Cl + Cl$	c) Mg + $\frac{1}{2}$ O ₂	d) $H_2 + I_2$
936. The dipole moment of CHCl ₃ is 1.05 debye while that	t of CCl ₄ is zero, because C(Cl₄ is:
a) Linear b) Symmetrical	c) Planar	d) Regular tetrahedral
937. Which shows the highest lattice energy?	,	, 0
a) RbF b) CsF	c) NaF	d) KF
938. In a polar molecule, the ionic charge is 4.8×10^{-10}	•	•
dipole moment is		otanico io 111 anni, chen the
a) 41.8 debye b) 4.18 debye	c) 4.8 debye	d) 0.48 debye
939. The correct order regarding the electronegativity of	•	•
a) $sp < sp^2 > sp^3$ b) $sp < sp^2 < sp^3$	=	d) $sp > sp^2 > sp^3$
940. Which of the following groups all do not have $sp^3 d$		u) 5p > 5p > 5p
a) ClF ₃ , IF ₃ , XeF ₃ ⁺ b) ICl ₂ , ClF ₂ , I ₃ ⁻	c) ClF ₃ , BrF ₃ , IF ₃	d) PCl ₃ , AsCl ₃ , PF ₅
941. Which of the following compounds does not follow t	, , , ,	
a) H ₂ O b) PH ₃	c) PCl ₃	
· -	, ,	d) PCl ₅
942. Which of the following sets represents the collection		d) W+ C-2+ C-3+ CI-
a) Na ⁺ , Mg ²⁺ , Al ³⁺ , Cl ⁻ b) Na ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻	c) K', Cl', Mg-', Sc'	d) K ⁺ , Ca ²⁺ , Sc ³⁺ , Cl ⁻
943. Which of the following has unchanged valency?)	1) 0
a) H b) Na	c) Fe	d) 0
944. The structure of XeF ₄ is:		D.D. (1.1
a) Planar b) Tetrahedral	c) Square planar	d) Pyramidal
945. N_2 and O_2 are converted into N_2^+ and O_2^+ respectively	<i>7</i> .	
Which of the following is not correct?		
a) In N ₂ ⁺ , the N – N bond weakens		
b) In O_2^+ , 0 – 0 bond order increases		
c) In O_2^+ , paramagnetism decreases		
d) N ₂ ⁺ becomes diamagnetic		
946. Which molecule has trigonal planar geometry?		
a) IF ₃ b) PCl ₃	c) NH ₃	d) BF ₃
947. Malleability and ductility of metals can be accounted	due to	

	a) The presence of electrosta	atic force		
	b) The crystalline structure is	n metal		
	c) The capacity of layers of m	netal ions to slide over the	e other	
	d) The interaction of electron	ns with metal ions in the l	attice	
948	Underlined carbon is sp^3 hyb	oridised in		
	a) $CH_3\underline{C}H = CH_2$ b)	CH ₃ CH ₂ NH ₂	c) CH ₃ CONH ₂	d) CH ₃ CH ₂ CN
949	Hydrogen fluoride is a liquid	unlike other hydrogen ha	alides because:	
	a) HF molecules associate du			
	b) F ₂ is highly reactive	, ,		
	c) HF is the weakest acid of a	all hydrogen halides		
	d) Fluorine atom is the small			
950	The number of sigma (σ)and	-	spectively in banzenenitri	le are
			c) 13, 5	d) 16, 2
951.	In which one of the following	•		,
	_	-	c) Boiling of CF ₄	d) Melting of SiO ₂
952	Which compound is soluble i	· ·	, , ,	<i>y</i> 0 2
			c) CCl ₄	d) CHCl ₃
953.	A π -bond is formed by sidew	- 0	-,4	-,3
,,,,,			c) <i>s-p</i> orbitals	d) <i>s-p-s</i> orbitals
954	Which statement is true?	, p p 01210010	o) o p or or or	a, o p o or orona
701	a) Absolutely pure water doe	es not contain any ion.		
	b) Some covalent compounds	-	ueous solution	
	c) In aqueous solution only e			
	d) Very sparingly soluble sub			
955	Formation of π -bond:	ostanees do not dissociate	in aqueous solution	
700	a) Increases bond length			
	b) Decreases bond length			
	c) Distorts the geometry of m	nolecule		
	d) Makes homoatomic molec			
956	In which reaction, the hybrid		m changes from sn² to sn	37
750	a) $NH_3 + H^+ \rightarrow NH_4^+$ b)		c) $H_20 + H^+ \rightarrow H_30^+$	
957	The low solubility of BaSO ₄ in		c) 1120 11 / 1130	u) 62112 2112 / 62116
737	a) Low dissociation energy	ii water is due to.		
	b) Ionic bonds			
	c) High value of lattice energ	17.7		
	d) None of the above	S.Y		
050	The number of lone pairs of e	alactron on Ya in YaOE is	7.	
930.	a) 1 b)		s. c) 3	d) 4
050	,			uj 4
939.	Which compound does not co			4) UCM
060	· - ·	=	c) N ₂	d) HCN
900.	The compound showing max			4) DD"
061	, ,		c) BF ₃	d) BBr ₃
901.	Carbon atoms in $C_2(CN)_4$ are	; ;		
	a) <i>sp</i> -hybridised			
	b) sp^2 -hybridised			
	c) sp - and sp^2 -hybridised	1		
0.00	d) sp, sp^2 and sp^3 -hybridised	a		
962.	Which statement is wrong?			
	a) 2nd ionisation energy sho	· -		
	b) 2nd electron affinity for ha	alogens is zero		

	c) Maximum electron affin	=		
	d) Maximum ionization er			
963.	Value of <i>x</i> in potash alum,			
	K_2SO_4 . $AI_x(SO_4)_3$. $24H_2O_3$			D.M. C.1
064	a) 4	b) 1	c) 2	d) None of these
964.		paramagnetic compound is		12.470
0.4	a) Na_2O_2	b) 0_3	c) N_2O	d) KO ₂
965.	HCl molecule in the vapou	-		15.75
	a) Non-polar bond	b) Ionic bond	c) Polar covalent bond	d) Pure covalent bond
966.		plete outershell are known		
	a) Kernel electrons		c) Shell electrons	d) None of the above
967.		concept the correct order of		
		b) $0_2^- > 0_2 > 0_2^+$		d) $0_2^+ > 0_2 > 0_2^-$
968.		in both hard and soft form		
	a) Fe	b) Si	c) C	d) Al
969.	Which of the following is a			
		es in fact have square pyra		
		ays shorter than correspon	= =	
	=	molecules can act as Lewis	acids.	
	d) The canonical structure			
970.	The bond strength increas			
	a) With increasing bond o			
	b) With increasing extent			
		ence between energies of ov	verlapping orbitals	
	d) All of the above			
971.	The number of unpaired e	electrons in O_2 molecule is:		
	a) Zero	b) 1	c) 2	d) 3
972.	Which has higher bond en	ergy and stronger bond?		
	a) F ₂	b) Cl ₂	c) Br ₂	d) I ₂
973.	Which of the following sta	tements regarding carbon	monoxide is correct?	
	a) It involves <i>sp</i> -orbitals of	of carbon		
	b) It contains a lone pair of	nly on carbon		
	c) It contains a lone pair of	nly on oxygen		
	, ,	d is attached to the metal at		
974.	Which of the following is l	naving highest bond length		
	a) NO ⁻	b) NO ⁺	c) CN ⁻	d) CN ⁺
975.	Which of the following sta	tement is correct for CsBr ₃	?	
	a) It is a covalent compou			
	b) It contains Cs ³⁺ and Br			
	c) It contains Cs ⁺ and Br ₃ ⁻	ions		
	d) It contains Cs ⁺ , Br ⁻ and	d lattice Br ₂ molecule		
976.	In 1 – butene number of σ	- bonds is		
	a) 8	b) 10	c) 11	d) 12
977.	Which does not have pyra	midal geometry?		
	a) SO_3^{2-}	b) NO ₃	c) NH ₃	d) $C(C_6H_5)_3^-$
978.	The nature of bonding in (CCl ₄ and CaH ₂ :		
	a) Electrovalent in both C	Cl ₄ and CaH ₂		
	b) Covalent in CCl ₄ and ele	ectrovalent in CaH ₂		
	c) Electrovalent in CCl ₄ ar	nd covalent in CaH ₂		
	d) None of the above			
979.	Which of the following oxid	des is not expected to react	with sodium hydroxide?	
	-	-	= = = = = = = = = = = = = = = = = = =	d) SiO ₂

1 **(b)**

Molecule	Hybridizatio
	n
SO_3	sp^2
C_2H_2	sp
C_2H_4	$\begin{array}{c} sp^2 \\ sp^3 \end{array}$
CH ₄	sp^3
CO_2	sp

2 **(b**

Mg²⁺is smaller thanNa⁺ and thus, smaller is cation more is hydration energy.

3 **(b**

Number of lone pair in $XeOF_4$ is one (1). The structure of $XeOF_4$ is given as follows:

Xe atom in ground state 5s 5p 5d 1 1 1 1 1 1

One π -bond so remaining six electron pairs form an octahedron with one position occupied by a lone pair.

4 **(d)**

These are the factors on which van der Waals' forces depend.

5 **(b**)

It has sp^3d^3 -hybridization with one lone pair on Xe.

6 **(b)**

Bond order $\propto \frac{1}{Bond length}$

BO of NO<BO of NO⁺

 \div Bond length of NO is greater than the bond length of $NO^{+}.$

7 **(b)**

Element with atomic number 20 is metal (Ca); it will combine with non-metal.

8 **(a)**

A decrease in *s*-character increases bond length.

10 **(b**)

Calculated dipole moment,

$$\begin{split} &\mu_{cal} = 2.0 \times 10^{-10} \text{ m} \times 1.6 \times 10^{-19} \text{ C} \\ &= 3.2 \times 10^{-29} \text{ C} - \text{m}. \end{split}$$

Percentage of ionic character = $\frac{\mu_{exp}}{\mu_{cal}} \times 100$

$$= \frac{5.12 \times 10^{-29}}{3.2 \times 10^{-29}} \times 100 = 16\%$$

11 (c)

 C_2H_4 involves sp^2 -hybridization on carbon atoms.

12 **(b)**

According to molecular orbital theory.

$$F_{2}(18) = \sigma 1s^{2}, \quad {}_{\sigma}^{*}1s^{2}, \sigma 2s^{2}, \quad {}_{\sigma}^{*}2s^{2}, \sigma 2p_{z}^{2}, \pi 2p_{x}^{2}$$

$$\approx \pi 2p_{y}^{2}, \pi 2p_{x}^{2}, \approx \quad {}_{\pi}^{*}2p_{y}^{2}$$

Bond order in $F_2 = \frac{N_{b-}N_a}{2} = \frac{10-8}{2} = 1$

15 **(a**

Bond formation is always exothermic. Compounds of sodium are ionic.

16 **(d)**

In case of water, five water molecules are attached together through four hydrogen bonding

17 **(b)**

Removal of electron is easier in the order of shell 4 > 3 > 2 > 1

18 **(c)**

Bond order of NO⁺, NO and NO⁻ are 3, 2.5 and 2 respectively.

Bond energy \propto bond order.

19 **(a)**

FXF angles of two types are present in sp^3d hybrid orbitals. Since, SF₄ shows sp^3d hybridisation as follows, therefore, it exhibits two different FXF angles.

20 (c)

s-character \propto bond angle

For 25% s character (as in sp^3 hybrid orbital), bond angle is 109.5°, for 33.3% s character (as in sp^2 hybrid orbital),bond angle is 120° and for 50% s character (as in sp hybrid orbital), bond angle is 180°.

Similarly, when the bond angle decreases below $1.9.5^{\circ}$, thes —character will decrease accordingly Decreasing in angle = $120^{\circ} - 109.5^{\circ} = 10.5^{\circ}$

∴ Decrease in *s*-character = 33.3 - 25 = 8.3Actual decrease in bond angle = $109.5^{\circ} - 105^{\circ} = 4.5^{\circ}$

∴ Expected decrease in s-character

$$=\frac{8.3}{10.5}\times4.5=3.56\%$$

Thus, the *s*-character should decrease by about 3.56%, *ie*, *s*-character = 25 - 3.56 = 21.44%

21 **(b)**

B has only six electron in B₂H₆.

22 **(a)**

Like gets dissolved in like. It is theory.

23 **(c)**

Ionic compounds are good conductor of electricity in molten or in solution state. However, they are bad-conductor in solid state.

24 **(d)**

In benzene 12σ and 3π bonds are present. The structure of benzene is

25 **(c)**

In CO_3^{2-} ion the C-atom undergoess p^2 -hybridisation. It has triangular planar structure. While BF_4^- , NH_4^+ and SO_4^{2-} have tetrahedral structure.

26 **(d)**

PCl₅has trigonal bipyramid geometry.

27 **(b**)

 ${\rm SF_6}$ has octahedral geometry, sp^3d^2 hybridisation and bond angle is 90°

% of *d*-character =
$$\frac{2 \text{ (no.of } d\text{-orbitals)}}{6 \text{(total hybridised orbitals)}}$$

- 100
- = 33%

So, SF₆ are bond angle = 90° and *d*-character = 33%.

28 **(a)**

Head on overlapping give rise to σ -bond formation.

29 **(c)**

Alleneis $CH_2 = C = CH_2$.

30 **(a**)

Silicate ion (Sio_4^{4-}) is the basic structural unit of silicates. Silicates are metal derivatives of silicic acid.

31 **(a)**

Due to planar equilateral geometry of graphite.

32 **(a**

Due to non-availability of d-orbitals, boron cannot expand its octet. Therefore, the maximum covalence of boron cannot exceed 4.

33 **(b)**

Cations are always shorter than their parent atom, anion are always larger.

35 **(a)**

H-bonding is weakest bonding.

36 **(a)**

5 of P + 24 of O + 3 of -ve charge = 32.

37 **(c**)

Benzene has 12σ -and 3π -bonds.

38 **(c**)

 PF_5 involves sp^3d -hybridization.

39 **(b**)

 I_3^- ion is made up of an I_2 molecule with an I^- bonded to it by means of a coordinate bond in which I_2 is lone pair acceptor (Lewis acid) and I^- the lone pair donor (Lewis base). There are two bond pairs and three lone pairs in the outer shell of central atom. To minimize the repulsive forces the three lone pairs occupy the equatorial position. The ion is therefore, linear in shape with a bond angle of exactly 180° .

Similarly, N_3^- ion is also linear in shape.

40 (c)

According to M.O. theory, bond order of N_2 , N_2^- and N_2^{2-} are 3, 2.5 and 2 respectively.

41 **(b)**

e.g., BF₃.

42 **(d)**

Bond order for $H_2^- = +1/2$

43 **(b**)

sp-hybridization leads to bond angle of 180°.

44 **(c**)

$$\mu H_2 0 \neq 0$$
, $\mu_{CO_2} = 0$

45 **(b)**

No, of hybrid orbital $=\frac{1}{2}$ [No.of e^- inV-shell of atom + No.of monovalent atoms -charge on cation +charge on anion]

No. of hybrid orbital

6 7

Type of hybridisation $spsp^2sp^3sp^3dsp^3d^2sp^3d^3$ Hybridisation in TeCl $_4$:

No. of hybrid orbital = $\frac{1}{2}[6 + 4 + 0 + 0] = 5$

Hence, $TeCl_4$ shows sp^3d hybridisation.

46 **(a)**

The stability and bond angle order for hybrids in a group is $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$.

47 **(c)**

Isoelectronic species are those species which have equal number of electrons. Hence, CO_2 is isoelectronic with N_2O .

Number of electron in $CO_2 = 22$

Number of electron in N₂0=22

48 **(d)**

In BeCl₂, Be atom has incomplete octet.

49 (a)

Greater the charge, smaller the radius, greater the polarising power and thus greater the covalent nature. This leads to increase in lattice energy.

50 (c

The structure, $CH_2 = C = CH_2$ is non-planar with two $-CH_2$ groups being in planes perpendicular to each other.

52 **(d)**

Electronegativity increases along the period and decreases down the group.

53 **(a)**

Brass in an alloy.

54 (c)

It is head on overlapping and thus, forms more stronger bond.

55 **(c)**

H-bonding in molecule gives rise to increase in its b.p.

56 **(b)**

One bonding molecular orbital and one antibonding.

57 (a)

Follow Fajans' rule.

58 **(b)**

Removal of two electrons (one by one) from an atom requires energy = $IP_1 + IP_2$.

59 **(c)**

The molecular orbital electronic configuration.

Total electrons =17

Hence, this configuration belongs to O_2^- (17 e^-) ion.

60 **(a)**

5

$$H_3O^+: sp^3 ; NO_3^-: sp^2$$

61 **(a)**

62

(a) More is the dipole moment more is ionic nature. $\mu = \delta \times d$; higher is μ , more will be δ on the atom.

63 **(c)**

Due to sp^3 -hybridization.

55 **(a)**

Each species has 14 electrons and bond order for each is three.

66 **(a)**

Among the given choices of compound having oxygen attached to hydrogen will have maximum hydrogen bonding.

 \because Among CH₃OCH₃, (CH₃)₂C = 0, CH₃CHO and C₂H₅OH only C₂H₅OH has oxygen attached to hydrogen atom.

 \therefore C₂H₅OHshows maximum hydrogen bonding.

67 **(c)**

It is experimental value.

68 **(c**)

 O_2^{2+} has 14 electrons. Its electronic configuration is as

$$0_2^+: \sigma 1s^2 \quad {}^*_{\sigma}1s^2, \sigma 2s^2 \quad {}^*_{\sigma}2s^2, \pi 2p_y^2 \pi 2p_z^2 \sigma 2p_x^2$$

Bond order $=\frac{N_{b-}N_a}{2}=\frac{10-4}{2}=3$

69 **(c)**

In diamagnetic molecule, all the electrons are paired

70 **(a)**

lone pairs $H \xrightarrow{\sigma} C \xrightarrow{\sigma} C \xrightarrow{\sigma} C \xrightarrow{\sigma} H$ $H \xrightarrow{\sigma} H \xrightarrow{\sigma} H$

Hence, enolic form of acetone contains 9 sigma bonds, 1 pi bond and two lone pairs.

71 **(a)**

In NO₃ion, total number of electrons = 7+24+1=32 and in it central atom is sp^2 hybrid. No. of hybrid orbitals = $\frac{V-8B}{2} + B = \frac{24-8\times3}{2} + 3$

 $(V \rightarrow \text{total number of electrons in valence shell}$ $B \rightarrow \text{probability of formation of bond})$

In CO_3^{2-} ion, total number of electrons = 6+24+2=32 and in it central atom is sp^2 hybrid. No. of hybrid orbital= $\frac{24-8\times3}{3}+3=3$

Hence, NO_3^- and CO_3^{2-} ions are isoelectronic and isostructural.

72 **(b)**

 $H_2^+ = \sigma 1s^2$ (According to molecular orbital 85 theory)

Bond order = $\frac{\text{bonding electrons-antibonding electrons}}{2}$ = $\frac{1}{2}$ = 0.5

H₂⁺is paramagnetic due to the presence of one unpaired electron.

73 **(b)**

H-bonding in molecules gives rise to increase in b.p.

74 **(a)**

Bond distance is in the order:

$$C - C > C = C > C \equiv C$$

 $sp^3 > sp^2 > sp$

75 (2

% ionic character = $16(x_A - x_B) + 3.5(x_A - x_B)^2$ = $16 \times 2 + 3.5 \times (2^2)$ = 46

 \therefore The % covalent character = 100 - 46 = 54

76 **(d)**

 ICl_2^- has sp^3d -hybridized state (*i. e.*, trigonal bipyramidal shape but distorted due to the presence of lone pair of electron on I atom.)

77 (a)

Like gets dissolved in like.

78 **(c)**

 $\rm N_2O$ is isoelectronic with $\rm CO_2$ and $\rm N_3^-$. Hence, its structure is linear.

$$N - N - O$$

79 **(d)**

H atom attached on N, O, F develops hydrogen bonding molecule.

80 (d)

In CCl₄ all bonds of carbon being identical, the molecule is a regular tetrahedron

81 (c)

In O^{2-} effective nuclear charge is minimum due to more number of electrons and thus the size of O^{2-} is maximum.

82 **(b)**

The zero dipole moment of BF₃ molecule is due to its symmetrical (triangular planar) structure.

84 **(b)**

Bond dissociation energy order:

$$Cl_2 > Br_2 > F_2 > I_2$$

242.6 192.8 158.8 151.1 in kJ mol⁻¹

5 **(b)**

CH₃OHshows H—bonding in liquid state.

86 **(b**)

They have high electron density.

87 (c

A coordinate bond is a dative covalent bond in which two atoms form bond and one of them provides both electrons.

$$X: +Y \longrightarrow X: Y \text{ or } X \longrightarrow Y$$

88 **(b)**

C-Cbond length in $sp^2hybrid$ molecule is= 1.39Å

89 (d)

More is electronegativity differences, more is ionic character.

90 (a)

Cation are always smaller than their parent atoms:

$$Al^{3+} < Al^{2+} < Al^{+} < Al$$
.

91 (a)

We know that the C-C bond length = 1.54 A, C = C bond length = 1.34 A and $C \equiv C$ bond length = 1.20 A. Since propyne has triple bond; therefore, it has minimum bond length.

92 **(c)**

Ionic compounds conduct current in molten state.

93 **(d)**

Metals are good conductor of electricity because they contain free electrons.

94 **(d)**

OSF₂ has pyramidal shape

95 **(d**

Non-polar species exert van der Waals' forces among themselves.

96 **(b)**

It has 3σ -and 1π -bond.

97 **(c)**

 Cl^-has1s^2 , $2s^22p^6$, $3s^23p^6$ configuration.

98 **(c**)

Per cent ionic character is given by % of ionic character.

$$= 16(X_A - X_B) + 3.5(X_A - X_B)^2$$

From the above relation, it is clear that as soon as $(X_A - X_B)$ increases, % ionic character will also increase.

Therefore, curve C shows a correct path.

99 **(d)**

7Cl=1
$$s^2$$
, 2 s^2 , 2 p^6 , 3 s^2 , 3 p_x^2 , 3 p_y^2 , 3 p_z^1
Cl=1 s^2 , 2 s^2 , 2 p^6 , 3 s^1 , 3 p_x^1 , 3 p_y^1 , 3 p_z^1 , 3 d^1 , 3 d^1 3 d^1
(3rd excited state)

Chlorine atom, in its third excited state, reacts with fluorine to form ${\rm ClF}_7$. Its shape is pentagonal bipyramidal.

100 **(c)**

Anion (0^-) repels the test electron because of same charge.

101 (c)

Cl in ClF_3 has sp^3d -hybridization

and possesses two axial Cl— F bonds and one equatorial bond. Two lone pairs are at equatorial position give rise to bent 'T' shape to ClF₃.

103 (c)

O₂ has one unpaired electron in its antibonding

molecular orbital.

104 (d)

 $PCl_3 < PBr_3 < PI_3$, the bond angle order is explained in terms of increasing electronegativity of halogens, whereas, $PF_3 > PCl_3$, bond angle order is explained in terms of $p\pi$ - $d\pi$ bonding in PF_3 .

105 (c)

 $\begin{array}{l} \mu \ experimental = Dipole \ moment \ \times 10^{-18} \\ \mu \ theoretical = Bond \ length \times 4.8 \times 10^{-10} \ esu \\ \times \ cm \end{array}$

 $Percentage\ ionic\ character = \frac{\mu_{experimental}}{\mu_{theoretical}} \times 100$

$$=\frac{1.0\times10^{-18}\times100}{1.25\times4.8\times10^{-10}\times10^{-8}}$$

= 16.66%

106 **(d)**

CCl₄does not exhibit dipole moment due to its symmetrical structure.

107 (a)

 N_2 molecule has 14 electrons. The molecular orbital electronic configuration of the molecule is as

$$N_2: KK(\sigma 2s)^2 ({}^*\sigma_2 2s)^2 (\pi 2p_x)^2$$

= $(\pi 2p_y)^2 (\pi 2p_z)^2$

 N_2^- ion is formed when N_2 accept an electron hence it has15 electrons. The molecular orbital electronic configuration of the molecule is as

$$N_2^-: KK(\sigma 2s)^2 ({*}_{\sigma} 2s)^2 (\pi 2p_x)^2 (\pi 2p_y)^2 (\sigma 2p_z)^2 ({*}_{\pi} 2p_x)^1$$

Hence, this electron goes to antibonding π molecular orbital.

108 **(b)**

The size of isoelectronic decreases with increase in atomic number.

109 (a)

The bond orders for H_2 , H_2^+ , He_2 and He_2^+ are 1.0, 0.5, 0.0 and 0.5 respectively.

110 **(b)**

N atom has smallest radius.

111 (d)

The order of screening effect for a given shell electrons is s > p > d > f.

112 (a)

The stability of hydrides decreases down the gp, i.e., from NH₃ to BiH₃ which can be observed from their bond dissociation enthalpy. The correct order is

$${
m NH_3} < P{
m H_3} < As{
m H_3} < Sb{
m H_3} < Bi{
m H_3}$$
 ${
m Property}$ ${
m NH_3}$ ${
m PH_3}$ ${
m AsH}$ ${
m \Delta_{diss}}H^-(E-H)/{
m kJ}\ {
m mol}^{-1}$ ${
m 389}$ ${
m 322}$ ${
m 297}$

113 (a)

 SF_4 has sp^3d^2 -hybridization and see-saw geometry.

114 (a)

Due to presence of intermolecular hydrogen bonding in H₂O, its molecules are associated with each other which results unusual high boiling point of water.

115 (c)

Larger is anion, more is covalent character.

Molecular orbital configuration of,

$$= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p^2, \pi 2p_x^2, \pi 2p_y^2, \pi^* 2p_y^2$$

117 (a)

Valencies of X, Y and Z is +2, +2 and -2respectively so, they will form a compound having of formula XYZ_2 .

118 (a)

The molecule in which the bond dipoles of all the bonds are cancel out by each other, is called non polar e.g., CCl₄.

InCCl₄, there is a large difference between the electronegativities of C and Cl but all the four C -Cl bond dipoles cancel each other, hence it is a non-polar molecule.

119 (c)

Tetrahedral structure is associated with $sp^3 | 121$ (a) hybridised central atom without any lone pair. The structure of all the compounds given are as follows:

XeF₄

Distorted octahedral

Square planar

Distorted trigonal bipyramidal

Tetrahedral

120 **(c)**

 SF_4

Methyl group has +I effect and-NO₂group has-I effect. Therefore, in p-nitro toluene the dipole moments of -CH3and-NO2 groups act in the same direction. So, the resultant dipole moment is additive.

i.e., 3.93+0.43=4.36 debye

The tendency to show lower ionic state increases down the group due to inert pair effect.

122 **(b)**

$$CH \equiv C - CH_2 - CH_3$$

$$sp \quad sp \quad sp^3 \quad sp^3$$

In butyne – 1, there is no carbon with sp^2 hybridisation.

123 **(b)**

NO⁺:
$$\sigma 1s^2$$
, $\sigma^x 1s^2$, $\sigma 2s^2$, $\sigma^x 2s^2$, $\sigma 2p_x^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2\pi_z^2 \end{bmatrix}$: B. O.
= $\frac{10-4}{2} = 3$

 CN^- :

$$\sigma 1s^2$$
, $\sigma^x 1s^2$, $\sigma 2s^2$, $\sigma^x 2s^2$, $\sigma 2p_x^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix}$:. B. 0. = $\frac{10-4}{2} = 3$

124 **(c)**

Electron affinity order for halogens is Cl > F > Br > I.

125 (d)

Sulphur trioxide has no S-S linkage. It has triangular planar geometry.

127 (d)

All molecules or ions i.e., H_2O , NH_4^+ , SO_4^{2-} , ClO_4^- , and NH_3 are involved in sp^3 hybridisation in their formation.

129 **(b)**

p-orbitals always show lateral overlapping.

130 **(a)**

 ${\rm SF_6}$ does not obey octet rule as in it S-atom has 12 electrons in its valence shell.

131 **(b)**

The structure of peroxodisulphuric acid $(H_2S_2O_8)$ is

Hence, it contains 11σ and 4π -bonds.

132 **(d)**

Paramagnetic species have unpaired electrons

133 (c)

N in it has three σ -bonds and one lone pair of electron.

134 (a)

Electron deficient species can accept lone pair of electron and thus, act as Lewis acid.

135 (a)

NH₃has pyramidal shape and thus, possesses three folds axis of symmetry.

136 (d)

 ICl_2^- has sp^3d -hybridization and has two bond pairs and three lone pairs of electrons.

137 (a)

The dipole moment of a polar molecule depends upon its geometry. A symmetrical molecule is non-polar even though it contain polar bonds. Methane molecule (CH_4) has zero moment value of dipole moment due to its symmetrical structure.

In $CHCl_3$, the resultant of C-H and C-Cl dipole oppose the resultant of two C-Cl dipoles while in CH_2Cl_2 , the resultant of C-H dipoles adds to resultant of two C-Cl. In case CH_3Cl , the resultant of two C-H dipole adds to the resultant of two C-Cl. In case CH_3Cl the resultant of two C-H dipoles add to the resultant of C-H and C-Cl dipoles.

Thus dipole moment of CH_3Cl is highest among the given compounds. The molecule (CCl_4) again becomes symmetrical and dipole moment reduces to zero.

138 (c)

S in SCl_4 is sp^3d -hybridized and possesses seesaw structure whereas $SiCl_4$ is tetrahedral.

139 (c)

Oxygen cannot expand its octet due to absence of d-orbitals in its valence shell.

142 (a)

Geometry is explained by taking an account of single bonds only. However, presence of double bond may distort bond angles, e.g., HCHO has sp^2 -

hybridization but angle H—C—H is 116° and angle H—C—O is 122° due to double bond. In BF₃(sp^2 -hybridization) each angle is of 120° .

143 **(d)**

The shape of carbon dioxide is linear because it has sp hybridisation and bond angle 180°.

0 = C = 0

144 (a)

Addition of electrons to an atom results an increase in its size.

145 **(d)**

H₂Ois V shaped.

146 **(c)**

In diethyl ether oxygen undergoes sp^3 hybridisation forming four sp^3 hybrid orbitals.

147 (a)

As soon as the electronegativity increases, ionic bond strength increases

148 (a)

Both are linear.

149 (c)

Inspite of three polar bond, the lone pair of electron on N atom decreases the dipole moment of NF_3 than NH_3 .

150 (c)

Polarity in a molecule gives rise to an increase in forces of attractions among molecules and thus, more becomes boiling point.

152 (a)

The melting point of naphthalene is minimum because it is non – polar covalent compound and has less melting point.

153 (c)

 BF_3 is a electron deficient compound. So, it has no lone pair orbital over B atom.

154 (c)

Molecular orbital theory was given by Mulliken.

155 (d)

The trigonal geometry of BF_3 with three vectors $(B \to F)$ acting at 120° leads to zero dipole moment. In NH_3 three vectors $(N \leftarrow H)$ act as 107° along with one lone pair giving dipole moment in molecule.

156 (d)

Proton (H^+) can only accept a lone pair from donor atom.

157 (d)

Each has 10 electrons

158 (d)

Isomerism is arised due to directional nature of

covalent bonding.

159 **(b)**

 SF_4 has sp^3d -hybridized sulphur atom.

160 **(c)**

SbCl₅²-has sp^3d^2 -and rest all has sp^3d -hybridisation.

161 **(d)**

Size of anions is larger than their parent atoms. Also more is ENC lesser is size.

162 (d)

$$_{22}\text{Ti}: 3s^2, 4s^2 \xrightarrow{IE_1} 3d^2, 4s^1$$
 $_{23}\text{V}: 3d^3, 4s^2 \xrightarrow{IE_1} 3d^3, 4s^1$
 $_{24}\text{Cr}: 3d^5, 4s^1 \xrightarrow{IE_I} 3d^5 \xrightarrow{IE_2 \text{ from hlaf-filled}} \text{maximum}$
 $_{25}\text{Mn}: 3d^5, 4s^2 \xrightarrow{IE_1} 3d^5, 4s^1$

164 (a)

C – Cl bond is more ionic than C – I bond because of the greater difference in electronegativities of C and Cl as compared to that of carbon and iodine. Therefore, C – Cl bond is stronger than C – I bond.

165 **(c)**

Cl is more electronegative than I.

166 **(b)**

The solubility of a compound depends upon its hydration enthalpy. If hydration enthalpy exceeds the lattice enthalpy than it is soluble in water. For Ag_2SO_4 , hydration enthalpy is lower than lattice enthalpy, so it is insoluble in water.

167 (c

Silicon has the tendency to show covalent bonding because of higher IP values.

168 (c)

In ${\rm SnCl_2}$, ${\rm Sn~has~}sp^2$ hybridisation and hence, has angular shape

169 **(c)**

The inert gas just after chlorine is argon.

170 **(d)**

The *d*-orbital involved in sp^3d -hybridization is d_{zx} .

171 (d)

$$0_{2} = \sigma 1s^{2} \quad {}_{\sigma}^{*}1s^{2}\sigma 2s^{2} \quad {}_{\sigma}^{*}2s^{2}\sigma 2p_{z}^{2}\pi 2p_{x}^{2}$$
$$= \pi 2p_{y}^{2} \quad {}_{\pi}^{*}2p_{xy} = \quad {}_{\pi}^{*}2p_{yy}$$

In O_2^+ , one electron is removed from Na

BO for $O_2 = 2$ and for $O_2^+ = 2.5$

Therefore, paramagnetism decreases, BO increases.

172 **(b)**

Intramolecular H-bonding is present in ortho

nitrophenol.

174 (c)

According to valence shell electron pair repulsion (VSEPR) theory, the order of repulsive interactions between various electron is

$$lp - lp > lp - bp > bp - bp$$

175 **(b)**

In like atoms, electronegativity difference is zero.

176 (d)

BCl₃has bond angle equal to 120° (trigonal planar). NH₃ and H₂O have sp^3 hybridisation but 187 (a) due to the presence of lone pair of electrons, they have bond angle less than 109.28' (NH₃ - 107° , $H_20 - 104.5^{\circ}$), As H_3 (sp^3 hybrid) smaller bond angle than NH₃ due to less electronegativity of As than N.

177 (d)

 E_{op}° order is Mg > Fe > Cu; more is E_{op}° , more is electropositive character.

178 (c)

O atom possesses two lone pair of electrons.

179 (a)

M.O. configuration of O_2^+ is:

$$\sigma 1s^2 \sigma^* 1s^2$$
, $\sigma^* 2s^2 \sigma 2p^2$, $\pi 2p_v^2 \pi 2p_v^2 \pi^* 2p_x^1$

Bond order of
$$O_2^+ = \frac{1}{2}[6-1] = \frac{5}{2}$$

M.O. configuration of N_2^+ is:

$$\sigma 1s^2 \sigma^* 1s^2$$
, $\sigma 2s^2 \sigma^* 2s^2$, $\pi 2p_v^2 \pi 2p_v^2 \sigma 2p^1$

Bond order of $N_2^+ = \frac{1}{2}[5-0] = \frac{5}{2}$

180 (c)

No scope for addition in completely filled valence orbitals of inert gases.

181 **(b)**

SeF₄ has distorted tetrahedral geometry while, CH₄ has tetrahedral geometry Speed of electron \neq speed of light

182 (c)

Butadiene is $CH_2 = CH - CH = CH_2$.

183 **(b)**

37 is atomic number of Rb the electropositive element and 53 is atomic number of iodine (the electronegative element).

184 (c)

In methane bond angle is 109°28'. Methane molecule is tetrahedral in structure.

185 **(b)**

Csis metal and solid.

186 **(d)**

1. Glycerol has strong hydrogen bonding due to presence of 3 - OH groups in it. It is correct statement.

2. Alkyl halides have lower boiling point than alcohols because alcohols have stronger forces of attraction between the hydrogen bonds as compared to weaker van der Waals' forces between molecules of alkyl halide.

∴ Statement (d) is false.

Ionic radii= $\frac{n^2 a_0}{Z_{\text{eff}}}$

188 (c)

Only those atomic orbitals combine, that have nearly equal energy

189 **(b)**

The stability of the ionic bond depends upon the lattice energy which is expected to be more between Mg and F due to +2 charge on Mg atom

190 (a)

Smaller is anion, lesser is its polarization.

191 **(b)**

$$B_{(G.S.)} \underbrace{\begin{array}{c} 2s \\ \hline \mathbf{1} \\ \hline \end{array}} \underbrace{\begin{array}{c} 2p \\ \hline \mathbf{1} \\ \hline \end{array}}$$

$$sp^2$$
- hybridisation

Boron has planar structure due to hybridisation.

192 **(c)**

 $NO^{-}(16)$. According to MOT. 3.

$$\sigma 1s^2$$
, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_x^2$, $\left\{ egin{array}{l} \pi p_y^2 \\ \pi 2p_z^2 \\ \{ & {}^*_{\pi} 2p_y^2 \\ {}^*_{\pi} 2p_z^2 . \end{array} \right.$

Bond order = $\frac{\text{bonding electrons-antibonding electrons}}{2}$ $=\frac{10-6}{2}=2$

4.
$$NO^+(14)$$

$$\sigma 1s^2$$
, $\sigma 1s^2$, $\sigma 2s^2$, $\sigma 2s^2$, $\sigma 2p_x^2$,

Bond order = $=\frac{10-4}{2}=3$

$$\sigma 1s^2, \quad {}^*_\sigma 1s^2 \text{ , } \sigma 2s^2, \quad {}^*_\sigma 2s^2, \sigma 2p_x^2, \quad \left\{ \begin{array}{l} \pi 2p_y^2 \\ \pi 2p_z^2, \\ \pi 2p_y^2 \\ *^*_\pi 2p_y^2 \end{array} \right.$$

Bond order =
$$=\frac{10-5}{2} = 2.5$$

$$(iv)N0^{2+}(13).$$

$$\sigma 1s^2$$
, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_x^2$, $\left\{ \begin{array}{cc} \pi 2p_y^2 \\ \pi 2p_z^2 \end{array} \right.$

Bond order =
$$=\frac{9-4}{2} = 2.5$$

6.
$$N0^{2-}(17)$$

$$\sigma 1s^{2}, \quad {}^{*}_{\sigma} 1s^{2} \text{ , } \sigma 2s^{2}, \quad {}^{*}_{\sigma} 2s^{2}, \sigma 2p_{x}^{2}, \quad \begin{cases} \begin{array}{c} \pi_{2}p_{y}^{2} \\ \pi_{2}p_{z}^{2} \\ \\ \frac{\pi}{\pi}^{2}p_{y}^{2} \end{array} \\ \left\{ \begin{array}{c} \pi_{2}p_{y}^{2} \\ \pi_{2}p_{z}^{2} \end{array} \right.$$

Bond order =
$$=\frac{10-7}{2} = 1.5$$

The order of bond order is

$$N0^{2-} < N0^{-} < N0^{2+} \approx N0 < N0^{+}$$

193 **(d)**

Clis more electronegative than Br.

194 (c)

Boron in $[BF_4]^-$ has regular tetrahedral geometry because of sp^3 -hybridization on boron atom.

195 (d)

Usually symmetrical molecules have less dipole moment in comparison to unsymmetrical molecules.

Hence, NO₂ (*m*-nitroaniline) has the highest dipole moment among the given.

196 (a)

Thus, excitation of 2s-electron in N is not possible.

197 **(b)**

PF₅ has sp^3d hybridization (trigonal bipyramid); BrF₅ has sp^3d^2 hybridization (square pyramidal)

198 (d)

In NH_3sp^3 hybridisation is present but its shape becomes pyramidal due to the presence of one lone pair of electron.

199 (d)

Higher the lattice energy lower the solubility. Out of the four combinations possible, the lattice energy of MgS (bi-bivalent ionic solid) is higher than those of Na₂S, MgCl₂ (uni-bivalent or biunivalent ionic solids) and NaCl (uni-univalent ionic solids) and hence, MgS is the least soluble.

200 **(b)**

Athree electrons in its outermost orbit, its valency is 3. *B* has six electrons in its outermost orbit, its

valency is 2 Element

Valency

Formula of the compound = A_2B_3

201 (c)

A reason for the given fact.

202 **(c)**

In NH₃, sp^3 -hybridization is present but bond angle is 106°45′ because nitrogen has lone pair of electrons, according to VSEPR theory due to bp- and lp repulsion, bond angle decreases from $109^{\circ}28'$ to $106^{\circ}45'$

203 **(b)**

 ClO_4^- and XeO_3 both contain $3d\pi - p\pi$ bonds

204 (c)

r (L)					
Spec	Structure	lp	bp	VSE	Bond
ies				PR	angle
	·S	2	2	lp	90°
H_2S	u - • • • · · · · · · · · · · · · · · · ·	1		-lp	107°
-	••	0	3	lp	120°
	N	0	4	-bp	109°28''
NH_3	H				
3	н ···			-bp	
	,F				
BF ₃				lp	
3	F——B				
SiH₄	_ _E				
	Ï			•	
				bp	
	H H			•	
				bp	
				-bp	
	Spec	Spec ies H ₂ S H H NH ₃ H BF ₃ F SiH ₄ F	Spec Structure lp	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Thus, bond angle $H_2S < NH_3 < SiH_4 < BF_3$.

205 **(d)**

The pyramidal structure of covalent molecule AB_3 is as :

No. of lone pair = 1No. of bond pair = 3

207 **(d)**

 d^2sp^3 -leads to octahedral geometry.

209 (a)

A molecule is said to possess a three-fold axis of symmetry if on rotation around this axis through an angle of 360/3, ie, 120° , gives the same arrangement of atoms. Since NH₃ has a pyramidal geometry, therefore, it has a three fold axis of symmetry

210 (a)

Proton number does not change in ion formation, though number of electrons and size change during this.

211 (d)

Valence bond theory (Resonance theory) of metallic bond was given by Pauling (1937). According to this theory, the metallic bonding is essentially covalent in origin and metallic structure exhibits resonance of electro-pair bonds between each atom and its nearest neighbours. In other words, there is a resonance of a large number of canonical forms.

212 (c)

Notice configuration of N^+ , C^+ , O^+ and F^+ .

213 **(b)**

 ${
m ClF_3hass}p^3d$ hybridisation. Out of five sp^3d hybrid orbitals two are completely filled by lp and three are half filled which overlap with three2 p_z half filled orbitals of three F-atoms. Due to the presence of two lps its geometry is bent T-shaped.

214 (d)

These are characteristics of resonance.

215 (c)

$$\begin{aligned} & \mathbf{0}_{2}^{2-} \ : \sigma 1s^{2}, \sigma^{*}1s^{2}, \sigma 2s^{2}\sigma^{*}2s^{2}\sigma 2p^{2} \begin{bmatrix} \pi 2p_{y}^{2} \\ \pi 2p_{z}^{2} \end{bmatrix} \pi^{*}2p_{y}^{2} \\ & \mathbf{B.0.} = \frac{10-8}{2} = 1 \end{aligned}$$

B₂:
$$\sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2 \begin{bmatrix} \pi 2p_y^1 \\ \pi 2p_z^1 \end{bmatrix}$
B.0. = $\frac{6-4}{2}$ = 1

216 **(c)**

In the formation of XeF_6 molecule, three 5 p electrons are promoted to 5dorbitals. Now, one 5s, three 5p and three 5d-orbitals of Xe atom intermix together and form seven sp^3d^3 hybrid orbitals. One sp^3d^3 hybrid orbital contains one lone pair of electrons while other six are half-filled. The expected geometry is pentagonal bipyramidal.

Shape: Pentagonal bipyramidal

217 (a)

$$CaC_2 \rightleftharpoons Ca^{2+} + C_2^{2-}$$

Carbide ion

In carbide ion, two carbon atoms are joined by triple bond

(If is isoelectronic with N₂)

$$-C \equiv C -$$

with two π and one σ -bonds.

218 **(b)**

 $H_2Ohassp^3$ -hybridization.

219 **(c)**

e. g., BF₃, a non-polar molecule having sp^2 -hybridization.

220 **(b)**

When difference there is less in electronegativities of two atoms (but electronegativities are not same) and large difference in their size, polar covalent bond forms. H and Br: Small difference in electronegativities and large difference in size. Hence, form polar covalent bond.

Na and Br : large difference in electronegativities, hence electrovalent bond is formed.

221 **(b**

The bond order for O_2^{2-} , O_2^{-} , O_2 , O_2^{+} are 1.0, 1.5, 2.0, 2.5 respectively. Higher is bond order, more is bond energy.

222 **(c)**

In XeF_4 , the central atom, Xe, has eight electrons 237 (c) in its outermost shell. Out of these four are used for forming four σ -bonds with F and four remain as lone pairs.

∴ XeF_4 ⇒ 4σ bonds + 2 lone pairs

 \Rightarrow 6 bybridised orbitals, *i. e.*, sp^3d^2 hybridisation Since, two lone pairs of electrons are present, the geometry of XeF₄ becomes square planar from octahedral.

223 **(b)**

Bond order = $\frac{1}{2}$ [no. of bonding electrons—no. of antibonding electrons]

224 (c)

H-bonding is noticed in molecules having H atom attached on N, O or F.

225 (d)

Fis more electronegative.

226 (a)

s-orbitals always lead head on overlapping.

228 **(a)**

According to molecular orbital theory π -bonding orbital are ungerade.

229 (c)

Basic character of hydrides is $NH_3 > PH_3$.

230 **(b)**

CO₂hassp-hybridization.

231 (a)

Bond angles decrease on moving down the group for similar compounds, i. e., $NH_3 > PH_3 >$ $AsH_3 > SbH_3$.

232 (a)

Ionic compounds break into their constituent ions when dissolved in water.

Carnallite is double salt having composition, KCl. MgCl₂. 6H₂O. It gives K⁺, Cl⁻ and Mg²⁺ions when dissolved in water.

234 (d)

An increase in *s*-character give rise to an increase in bond strength.

235 (a)

In rest all dipole-dipole forces also exist.

236 **(c)**

Among the isoelectronic species smaller is +ve charge, larger is ionic radius, e.g.,

Ionic radius : $Na^+ > Mg^{2+} > Al^{3+}$

1, 4-dihydroxy benzene shows the highest boiling point among given compounds because it forms strong intermolecular hydrogen bonds (It does not form intermolecular H-bonding.)

Intermolecular H-bonding

Order of H-bonding in o, m and p-isomers of a compound is given below

Intermolecular H-bonding, o < m < p-isomers intermolecular H-bonding

o > m > pisomers.

Hydroxy benzene do not form a chain of Hbonding . Hence, intermolecular H-bond is stronger than intermolecular H-bonds, so the stability of 1, 4-dihydroxy benzene is highest. Hence its boiling point is highest. The increasing order of the boiling points of the given compound

238 (d)

Molecules in *trans*-1, 2-dichloroethene symmetrical hence, no dipole moment.

239 **(b)**

 sp^3d^2 -hybridization leads to octahedral geometry.

240 (c)

In BF₃,boron is sp^2 hybridised, so its all atoms are coplanar

241 (c)

Since, the geometry of AsF₅ molecule is trigonalbipyramidal, it is sp^3d hybridised. Thus, s,p_x , p_y , p_z and d_{z^2} orbitals are utilised by As atom from bonding.

242 (c)

Molecular orbital configuration of N₂⁺ is

$$N_{2}^{+} = (\sigma 1s)^{2} ({}_{\sigma}^{*} 1s)^{2} (\sigma 2s)^{2} ({}_{\sigma}^{*} 2s)^{2} (\pi 2p_{y})^{2}$$
$$= (\pi 2p_{z})^{2} (\sigma 2p_{x})^{1}$$

Bond order =
$$\frac{N_{b-}N_a}{2} = \frac{9-4}{2} = 2.5$$

243 (a)

Structure of C_2H_2 is linear.

$$H - C \equiv C - H$$

Structure of CO₂ is also linear

$$0 = C = 0$$

So, both are isostructural species.

244 (c)

In *o*-dichlorobenzene, α = 60 $^{\circ}$

∴
$$\cos \alpha = +ve$$

$$\mu = \sqrt{\mu_1^2 + \mu_2^2 + 2\mu_1\mu_2 \cos\alpha}$$

245 (c)

Multiplicity of bonds gives higher bond energy.

246 (d)

Bond order of oxygen molecule = 2

Bond order of oxygen molecule ion = 2.5

Bond order of superoxide ion $(0^-_2) = 1.5$

Bond order of peroxide ion $(0^{2-}) = 1$

Hence, the order of bond strength is as

$$0_2^+ > 0_2 > 0_2^- > 0_2^{2-}$$

247 (c)

Electronic configuration of Xe in ground state

Electronic configuration of Xe in excited state

Electronic configuration of Xe in XeF₄

Note The expected geometry of XeF_4 is octahedral. On account of the fact that lp-lprepulsion >lp-bp repulsion, there is some distortion octahedral geometry with two lone pair of electrons. In other words, it has a square planar geometry.

248 **(b)**

Li₂:
$$KK(\sigma 2s)^2$$
, B0 = $\frac{1}{2}(2-0) = 1$

Hence, structure of Li₂ is [Li – Li].

250 **(b)**

More directionally concentrated orbitals show more overlapping.

251 (d)

It is the hybridization of ICl₂⁺.

252 **(b)**

o-, m-, p-derivatives has $\alpha=60^{\circ}$, 120° and 180° and thus, resultant vector has zero dipole moment in p-derivative. Also dipole moment of m-dichlorobenzene is more than toluene.

253 (a)

Covalent character α charge of cation

254 (c)

Carbon cannot accept $6Cl^-$, since it has no vacant d-orbitals.

255 **(b)**

Cs⁺is largest cation and F⁻ is smallest anion.

256 **(b)**

Charge of $e^- = 1.6 \times 10^{-19}$

Dipole moment of HBr = 1.6×10^{-30}

Inter-atomic spacing = 1 Å

$$= 1 \times 10^{-10}$$
 m

Percentage of ionic character in HBr

Dipole moment of HBr
$$\times$$
 100

inter spacing distance $\times q$

$$= \frac{1.6 \times 10^{-30}}{1.6 \times 10^{-19} \times 10^{-10}} \times 100$$
$$= 10^{-30} \times 10^{29} \times 100$$

$$=10^{-1} \times 100$$

$$= 0.1 \times 100$$

= 10%

257 **(b)**

Lower *IE*, more *EA* and high lattice energy are required conditions for ionic bonding.

258 (d)

Ionisation potential increases along the period.

259 **(b)**

More is *s*-character, smaller is hybridized orbital, more becomes tendency for overlapping, more is bond energy, lesser is bond length.

260 (c)

Larger is the difference in electronegativities of two atom, more is polar character in bond.

261 (a)

The molecules having no difference in electronegativity of bonded atoms are non-polar in nature. They are molecules having same atoms.

 \therefore Among HCl, HF,HBr and H₂.H₂ is non-polar molecule.

262 **(b)**

In SO_2 molecule, S is sp^2 -hybridised.

$$S(16) = 1s^2, 2s^2, 2p^6, 3s^2, 3p^4$$

263 **(b)**

The size of isoelectronic species increases with decrease in effective nuclear charge.

264 (d)

Bond order for He₂ is zero.

265 **(b)**

CsFis ionic compound.

266 **(a)**

Isoelectronic species have same number of electrons

267 (d)

Ionic character=
$$16(E_A - E_B) + 3.5(E_A - E_B)^2$$

= $16(4 - 1.2) + 3.5(4 - 1.2)^2$
= 72.24%

268 **(d)**

During the formation of chemical bond energy decreases

269 **(b)**

$$K_4 \text{Fe}(CN)_6 \rightarrow 4K^+ + \text{Fe}(CN)_6^{4-}$$
.

270 (c)

S

Tetrahedral $(sp^3 \text{ hybridisation})$

Sec-saw structure $(sp^3d \text{ hybridisation})$

: Both have different structure.

Trigonal planar $(sp^2d \text{ hybridisation})$

Pyramidal structure $(sp^3d \text{ hybridisation})$

∴ Both have different structure.

9. XeF_2, CO_2

Trigonal bipyramidal

Pentagonal bipyramidal

: Both have different structure.

10.
$$PF_5, IF_7$$

 $F \longrightarrow Xe \longrightarrow F$ $O \longrightarrow C \longrightarrow O$
Linear Linear

- : Both have linear structure.
- ∴ They have same structure.

271 (d)

Covalent union between two unlike atoms gives rise to the formation of a polar covalent bond in which shared pair of electron shifted towards more electronegative atom. This gives rise to equal but opposite partial charges on two ends. HCl shows polar covalent bond.

272 **(b)**

Rest all either has incomplete (BF₃, BeF₂) octer or expanded octet (ClO₂).

274 **(d)**

CO, CN⁻ and NO⁺ all the three species have 14 electrons.

According to MOT

$$\sigma 1s^2$$
, ${}^*_\sigma 1s^2$, $\sigma 2s^2$, ${}^*_\sigma 2s^2$, $\sigma 2p_x^2(\pi 2p_y^2=\pi 2p_z^2)$
Bond order $=\frac{10-4}{2}=3$

Similarly bond order for $O_2^+ = 2.5$

275 (a)

 ${\rm XeF_2molecule}$ contains two bond pairs and three lone pairs in the outer-shell of central atom and thus its hybridisation is sp^3d^2 but to minimise the repulsive forces the three lone pairs occupy the equatorial position and the molecule becomes linear shape.

276 (c)

Species having the same number of electron, have same bond order.

Species	Number of
	electrons
CN-	6+7+1=14
0-	8+8+1=17
$ \begin{vmatrix} O_2^-\\ NO^+ \end{vmatrix} $	7+8-1=14
CN-	6+7-1=12

Since, CN⁻ and NO⁺ have same number of electrons, they have same bond order, *i. e.*, 3.

CN⁻ or NO⁺ = 14=
$$\sigma 1s^2$$
, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_z^2$, $\pi 2p_z^2 \approx \pi 2p_z^2$

Bond order =
$$\frac{N_{b-}N_a}{2}$$
$$= \frac{10-4}{2} = 3.$$

277 (c)

In water molecule the H-O-H bond angle is 104.5° and dipole moment is 1.84 D.

The bond angle of H_2O is lower than 109.28" due to the presence of two lone pair of electrons on the oxygen atom.

278 **(d)**

Follow text.

279 (a)

RCH₂NHCH₃shows the hydrogen bonding, since H is attached to N atom.

280 **(c)**

Clatom has 17 electrons, Cl⁻ ion has 18 electrons.

281 (a)

High boiling point. of water is due to dipole-dipole interaction.

282 (d)

Ionisation enthalpy increases along the period and decreases down the group.

283 **(b)**

The jump in IP values exist in IP $_5$ and thus, removal of fifth electron occurs from inner shell. Thus, element contains four electrons in its valency shell.

284 (a)

Paramagnetic species has unpaired electron.

$$\begin{split} \mathbf{B}_2 &= 5 + 5 \\ &= 10 \ \sigma 1 s^2, \quad {}^*_{\sigma} 1 s^2 \ , \sigma 2 s^2, \quad {}^*_{\sigma} 2 s^2 \ , \pi 2 p_x^1 = \pi 2 p_y^1 \\ \mathbf{C}_2 &= 6 + 6 = 12 \\ &= \sigma 1 s^2, \quad {}^*_{\sigma} 1 s^2 \ , \sigma 2 s^2, \quad {}^*_{\sigma} 2 s^2 \ , \pi 2 p_x^2 = \pi 2 p_y^2 \\ \mathbf{N}_2 &= 7 + 7 = 14 \\ &= \sigma 1 s^2, \quad {}^*_{\sigma} 1 s^2 \sigma 2 s^2, \quad {}^*_{\sigma} 2 s^2, \pi 2 p_x^2 \\ &= \pi 2 p_y^2, \sigma 2 p_z^2 \end{split}$$

$$\begin{split} &F_2 = 9 + 9 = 18 \\ &= \sigma 1 s^{2}, \quad {}^*_{\sigma} 1 s^2 \text{ , } \sigma 2 s^{2}, \quad {}^*_{\sigma} 2 s^2 \text{ , } \sigma 2 p_z^2 \text{ , } \pi 2 p_x^2 \\ &= \pi 2 p_y^2 \text{ , } \quad {}^*_{\pi} 2 p_x^2 = \quad {}^*_{\pi} 2 p_y^2 \end{split}$$

 \therefore B₂is paramagnetic because it has unpaired electron.

285 (a)

Na \rightarrow Na⁺ +e; *IE* of Na = +ve Na⁺ + $e \rightarrow$ Na; *EA* of Na⁺ =-ve Both are equal but opposite in nature.

286 (c)

(a)
$$CH_4 \rightarrow CH_3 - CH_3$$

 $4bp+0lp \qquad 4bp4bp$

Hybridisation $sp^3sp^3sp^3$

Structure tetrahedral tetrahedral

(b)NH₃
$$\rightarrow$$
 NH₄⁺
3 $bp+1lp$ 4 bp

 $Hybridisation sp^3sp^3 \\$

Structure pyramidal tetrahedral

$$\begin{array}{ccc} (c)BF_3 & \longrightarrow & BF_4^- \\ 3bp & 4bp \end{array}$$

Hybridisation sp^2sp^3

Structure trigonaltetrahedral

planar

$$\begin{array}{ccc} (\mathrm{d})\mathrm{H}_2\mathrm{O} & \longrightarrow & \mathrm{H}_3\mathrm{O}^+ \\ 2\mathit{bp} + 2\mathit{lp} & & 3\mathit{bp} + 1\mathit{lp} \end{array}$$

Hybridisation sp^3sp^3

Structure angularpyramidal

Thus conversion of BF₃ into BF₄ involves change in both hybridisation and shape.

287 (a)

In $\rm O_2$ molecule, the total number of electrons = 16 Electronic distribution in molecular orbital of $\rm O_2$

$$=\sigma 1s^2,\quad {}^*_\sigma 1s^2\,,\sigma 2s^2,\quad {}^*_\sigma 2s^2\,,\sigma 2p_x^2\big(\pi 2p_y^2,\pi 2p_z^2\big)\\,({}^*_\pi 2p_y^1,\quad {}^*_\pi 2p_z^1\big)$$

Bond order in
$$O_2 = \frac{1}{2}[N_{b-}N_a] = \frac{1}{2}[10-6] = 2.0$$

In $O_2^+ = \sigma 1s^2$, ${}^*_{\sigma}1s^2$, $\sigma 2s^2$, ${}^*_{\sigma}2s^2$, $\sigma 2p_x^2$
 $(\pi 2p_y^2 = \pi 2p_z^2)$, $({}^*_{\pi}2p_y^1)$

Bond order in $O_2^+ = \frac{N_{b-}N_a}{2} = \frac{10-5}{2} = 2.5$

288 (a)

Percentage ionic character $= \frac{\text{experimental value of DM}}{\text{theoretical value of DM}} \times 100$ $= \frac{1.03}{6.12} \times 100 = 17\%$

289 **(b)**

Electron affinity decreases down the group, but 'O' has small atomic size and 2p-orbital becomes very compact and already has 6 electrons, hence, there is a repulsive force among the already present and added electrons. Some of the energy evolved, due to addition of electron, is used to reduce the repulsion. Hence, the E.A. of O is less than S, so the order is S > O > Se.

290 (a)

A π -bond has a nodal plane passing through the two bonded nuclei, *i. e.*, molecular plane.

291 (c)

Electronegativity of elements increases along the period and decreases down the group.

292 **(b)**

In CO_2 , C-atom is *sp*-hybridised, thus it has linear 301 (d) structure. In XeF_2 , Xe is sp^3d hybridised with three lone-pairs of electrons on equatorial position. This minimises repulsion, hence it has also linear structure.

293 **(b)**

Structure of CO_2 is linear due to sp-hybridisation.

$$O = C = O$$

294 (a)

Higher the bond order short the bond length O_2^{2+} has the shortest the bond length (B0=3)Bond order of remaining species are:

 $O_2^+(2.5), O_2^-(1.5) \text{ and } O_2^{2-}(1)$

295 **(b)**

- 11. The first bond between any two atoms is σ and rest are π bonds.
- 12. πbond is formed by sideways overlapping of unhybridised *p*-orbital.

Each carbon has 3σ and 1π -bond.

 \therefore All carbon atoms of C₆H₆ are sp^2 hybridised.

296 (d)

Nearer to 25%, the angle is $109^{\circ}28'$ for sp^{3} hybridization.

297 **(c)** $KHF_2 \rightarrow K^+ + HF_2^-$.

298 (c)

Intramolecular H—bonding in salicyl aldehyde prevents its test with $FeCl_3(aq)$.

299 **(c)**

Stronger is metallic bonding (Fe has d-subshell), more is hardness.

300 (d)

Compound Bond angle 107° NH_3 93° PCl₃ BCl₃120°

In propyne there are 2 π – bonds and six sigma bonds.

 $CH_3C \equiv CH$

302 (a)

Like atoms results in covalent bonding leading to the formation of non-polar bond, e.g., H—Hor H₂.

303 (c)

00

Ш

$$CH_3 - C - OHCH_3 - C - NH_2$$

 sp^2sp^2

OH

 $CH_3 - C - OHCH_3 - C - CH_2$

 $|sp^2|$

Η sp^2

304 (d)

chloroethene benzene all carbon atoms are

sp² hybridised chloroethene

1, 3, 5-hexatriene

$$\begin{aligned} \mathrm{CH}_2 &= \mathrm{CH} - \mathrm{CH} = \mathrm{CH}_2 \\ sp^2 & sp^2 & sp^2 & sp^2 \\ \mathrm{CH}_2 &= \mathrm{CH} - \mathrm{CH} = \mathrm{CH} - \mathrm{CH} = \mathrm{CH}_2 \\ sp^2 & sp^2 & sp^2 & sp^2 & sp^2 & sp^2 \end{aligned}$$

305 (d)

If the lattice energy < hydration energy, then only ionic compounds are soluble.

306 (c)

BCl₃has equilateral triangular shape leading to vector sum of polar bonds to zero.

307 (d)

Hybride: H₂O H₂S H₂Se H_2 Te Bond angle: 104° 92° 91° 90°

In all of the given species central atom is sp^3 hybridised. They have angular shape due to the 319 (b) presence of two lone pair of electron. The bond angle decreases with decrease in electronegativity thereforeH₂Te shows minimum bond angle.

308 (d)

Lattice energy \propto charge of ions $\propto \frac{1}{\text{size of ions}}$

309 (b)

 He_2^+ , H_2^- have 3 electrons, one must be unpaired. H₂⁺has one unpaired electron. H₂has two (paired) electrons.

310 (c)

Among only the given, CH_3OH $\mathrm{CH_3NH_2}$ are able to form H-bonds but H-bonding in CH₃OH due to high electronegativity of O-atom is strong. Hence, CH₃OH has the highest boiling point.

311 (a)

$$(\sigma - bps + 1ps = 3 + 1 = 4)$$

In NF₃ N-atoms is sp^3 -hybride, but due to presence of a lone pair of electron, NF3 has pyramidal structure.

312 (d)

The boiling point of ethanol is highest among these due to the presence of hydrogen bonding.

313 **(b)**

 C_2^{2-} has $[C \equiv C]^{2-}$ structure.

314 (a)

A compound having maximum electronegative element will form strong hydrogen bond

315 (c)

The bond angle in CH_3OCH_3 is 110° inspite of sp^3 hybridization of 0 and two lone pair due to stearic $\begin{vmatrix} 325 \end{vmatrix}$ hindrance.

316 **(b)**

Multiplicity in bonding give rise to an increase in bond energy.

317 (a)

Carbon in H₂CO₃ has sp²-hybridization and also polar. BF₃hassp² but non-polar. SlF₄hassp³hybridization. HClO₂hassp³-hybridisation.

The removal of second electron from Mg takes place from 3s-orbital whereas, the removal of second electron from Na takes place from 2porbital. More closer are shells to the nucleus,

difficult is removal of electron.

Bond angle depends on the structure of molecule. If two molecules have same structure, then bond angle is decided by the electronegativity of central atom. Electrongeativity of central atom ∝ bond angle.

The bond angle of H₂S is less than H₂O because S is less electronegativethan H₂O.

Hence,

$$H_2O > H_2S$$

 (104.5°) (92.2°)

Further the BeCl₂ has linear structure, hence its bond angle is 180°. The N₂O molecule also has linear structure with bond angle 180°.

$$CI \xrightarrow{Be} CI$$

$$\vdots N \xrightarrow{+} 0 \xrightarrow{+} N \xrightarrow{=} N$$

320 (a)

S has 6 electrons in its the valence shell and it shares 6 electrons with 6 fluorine atoms.

∴ In SF₆, S has 12 electrons in its valence shell

$$F \times \begin{matrix} F & F \\ \times & \times \\ \bullet & \bullet \end{matrix}$$

$$F \times \begin{matrix} \bullet & S & \bullet \\ \times & \times & \times \\ F & F \end{matrix}$$

322 **(b)**

 NH_3 , $[PtCl_4]^{2-}$, PCl_5 and BCl_3 have sp^3 , dsp^2sp^3d and sp^2 hybridization respectively. Note that hybridization of P in PCl₅ is wrongly reported in problem.

323 **(b)**

The bond formation process is exothermic and thus resultant acquires lower energy level.

324 **(b)**

Due to H-bonding in NH₃.

Lewis structure of N₂ molecule is

326 **(b)**

The resonating structure of ClO₄ are as

 $\Rightarrow Bond\ order = \frac{Total\ number\ of\ bonds\ between\ Cl\ and\ O}{Total\ number\ of\ resonating\ structure}$

$$=\frac{7}{4}=1.75$$

327 **(a)**

Bond energy increases with increase in bond order.

328 **(d)**

Ionisation potential increases along the period.

329 **(b)**

CsClis most ionic because of most electropositive nature of Cs.

330 (d)

 $0_2 < 0_2^-$

Bond order

$$C_2 = 2$$

$$C_2^{2-} = 3$$

$$B_2 = 2$$

$$B_2^+ = 1.5$$

$$Li_2 = 1$$

$$Li_2^+ = 0.5$$

$$N_2 = 3$$

$$N_2^+ = 2.5$$

$$0_2 = 2$$

$$0_2^- = 1.5$$

331 **(d)**

The molecular configuration of 0^-_2 is as $\sigma 1s^2$, ${}^*_\sigma 1s^2$, $\sigma 2s^2$, ${}^*_\sigma 2s^2$, $\sigma 2p_z^2$, $\pi 2p_y^2$ $\approx \pi 2p_z^2$, ${}^*_\pi 2p_x^2 \approx {}^*_\pi 2p_y^2$

Bond order = $\frac{N_{b-}N_a}{2}$ $= \frac{10-8}{2}$

 \therefore Bond order = 1

332 **(b)**

It is an ionic compound. The most ionic compound is CsF

333 (c)

CO₂is linear molecule.

334 **(b)**

M.O. configuration of N_2 is: $\sigma 1s^2 \sigma^* 1s^2$, $\sigma 2s^2 \sigma^* 2s^2$, $\pi 2p_y^2$, $\pi 2p_z^2$, $\sigma 2p_x^2$ M.O. configuration of N_2^+ is: $\sigma 1s^2 \sigma^* 1s^2$, $\sigma 2s^2 \sigma^* 2s^2$, $\pi 2p_y^2$, $\pi 2p_z^2$, $\sigma 2p_x^2$

335 (d)

In NH $_4^+$ ion, N is sp^3 hybridised therefore, bond angle in NH $_4^+$ (tetrahedral shape) is 109°28′.

336 (a)

The definition of bond order.

338 **(b)**

The intermolecular forces increase with increases in mol. wt.

339 **(b)**

Bond angles of BeF_2 , H_2O , NH_3 and CH_4 are 180° , $104^\circ31'$, $106^\circ50'$, $109^\circ28'$ respectively.

340 **(d)**

Bond length decreases with increase in *s*-character.

341 **(b)**

Isoelectronic species have same number of electrons, NO^+, C_2^{2-}, CN^- and N_2 . All have 14 electrons.

342 **(d)**

 sp^3d^2 hybridised molecule have octahedral geometry.

343 **(b)**

344 (a)

The shape of ClF₃ is distorted T-shape due to the presence of two lone pair of electrons.

345 **(b)**

These are facts.

346 (c)

 NO_2^- hass p^2 hybridisation. Its expected geometry is trigonal planar but actual geometry is V-shape due to presence of lone pair of electrons.

347 (d)

Cs⁺is biggest ion among these. F⁻is smallest.

348 (d)

Formation of solid lattice from oppositely charged ionized gaseous atoms give rise to evolution of lattice energy.

349 **(b)**

We know that Al³⁺ cation is smaller than Na⁺ (because of greater nuclear charge). According to Fajan's rule, small cation polarise anion upto greater extent. Hence, Al³⁺ polarise Cl⁻ ions upto greater extent, therefore, AlCl₃ has covalent bond between Al and Cl atoms.

350 **(a)**

$$H-O-O-H, O-O=O, O=O$$

Due to resonance, in O_3 , the O-O bond length will be in between O=O and O-O

352 **(b)**

Bond order for $O_2 = 2$ and for $O_2^+ = 2.5$ Both are paramagnetic (O_2 has 2 unpaired electron, O_2^+ has one unpaired electron).

354 **(c)**
$$[0-0]^{2-}$$

355 **(b)**

For sp^2 hybridization, bond angle is 120° In sp^2 hybridization,

s character =
$$\frac{1}{3} \times 100 = 33\%$$

356 (d)

 ${\it ClF}_3{\it has}sp^3d$ -hybridization with two lone pair of electron on Cl.

357 (a)

13.
$$O_2 = 8 + 8 = 16$$

$$= \sigma 1s^2, \quad {}^*_\sigma 1s^2 \, , \sigma 2s^2, \quad {}^*_\sigma 2s^2 \, , \sigma 2p_z^2, (\pi 2p_x^2 = \pi 2p_y^2), ({}^*_\pi 2p_x^1 = \ {}^*_p 2p_y^1)$$

: It has 2 unpaired electrons.

: It is paramagnetic.

14.
$$CN^- = 6 + 7 + 1 = 14$$

=
$$\sigma 1s^2$$
, ${}^*_\sigma 1s^2$, $\sigma 2s^2$, ${}^*_\sigma 2s^2$, $\sigma 2p_z^2$, $(\pi 2p_x^2 = \pi 2p_y^2)$

: No unpaired electron and no paramagnetic.

15.
$$CO = 6 + 8 = 14$$

=
$$\sigma 1s^2$$
, $\sigma 1s^2$, $\sigma 2s^2$, $\sigma 2s^2$, $\sigma 2p_z^2$, $\sigma 2p_x^2$, $\sigma 2p_x^2$ = $\sigma 2p_y^2$)

: No unpaired electron and no paramagnetic.

16.
$$N0^+ = 7 + 8 - 1 = 14$$

=
$$\sigma 1s^2$$
 $^*_\sigma 1s^2$, $\sigma 2s^2$, $^*_\sigma 2s^2$, $\sigma 2p_z^2$, $(\pi 2p_x^2 = \pi 2p_y^2)$

∴ No unpaired electron and not paramagnetic.

358 (c)

C— Fbond is more polar than C— Cl.

359 (d)

Ionic compounds conduct current only in fused state.

360 **(b)**

 IP_1 of $B > IP_1$ of Li ENC of boron is more than Li. Also IP_1 of Li $> IP_1$ of K because removal of electron in K occurs from 4s.

361 **(c)**

It is a fact.

363 **(d)**

O has two lone pair of electrons.

364 (a)

In SF_4 , S has sp^3d -hybridisation. Thus, it contains two axial and two equatorial bonds to give seesaw structure.

365 (a)

F₃Clhas 10 electrons on Cl atom. A superoctet molecule means for expanded octet on an atom.

366 **(c)**

 S_2 molecule is paramagnetic like O_2 having 2 unpaired electrons.

368 **(a)**

 π -bonding occurs only after σ -bond is formed.

369 **(d**

 NH_4^+ and SO_4^{2-} both show sp^3 hybridisation and tetrahedral geometry

370 **(c)**

Dipole moment is a vector quantity. The dipole moment of symmetrical molecule is zero. Only the molecule which has distorted shape has dipole moment.

 \because CO₂, *p*-dichlorobenzene and CH₄ have regular symmetrical shape.

∴ They don't have dipole moment.

$$\begin{array}{c|c} & & \\ & &$$

NH₃has distorted structure due to presence of lone pair of electron.

∴ It has dipole moment.

371 **(c)**

According to Fajan's rule smaller anion is polarised to lesser extent than the larger anion.

∴compound having smaller anion has more ionic character.

∴ Higher melting

Since, the size of F⁻ ion is smallest, it is polarised.

∴ AgF will have highest ionic character and hence highest melting point.

(: Ionic compounds have greater melting point than covalent compound)

372 (a)

Number of hybrid orbitals for neutral atom = $\frac{1}{2}$ [Number of valence electron in central atom + Number of monovalent atom]

Number of hybrid orbital = $\frac{5+5}{5}$ = 5

Hence, hybridisation is sp^3d .

374 (a)

The size of isoelectronic decreases with increase in atomic number.

375 (a)

Bond angle for sp, sp^2 and sp^3 -orbitals are 180°, 120° and 109°28′ respectively.

378 (d)

In BrF₃ molecule, Br is sp^3d hybrid, but geometry is T-shaped due to distortion of geometry from trigonal-bipyramidal to T-shaped involvement of lone pair-lone pair repulsion.

Here

lp - lp repulsion = 0

lp - bp repulsion = 4

bp - bp repulsion = 2

379 **(b)**

As the distance between the atoms, increases, bond polarity increases

380 (d)

 EA_1 for elements is exothermic and EA_2 is endothermic. Also EA_2 for $0 > EA_1$ for 0.

381 (a)

$$\begin{aligned} & 0_{2}^{-} = 8 + 8 + 1 \\ & = \sigma 1 s^{2}, \quad {}_{\sigma}^{*} 1 s^{2} \sigma^{2} s^{2}, \quad {}_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2} \\ & = \pi 2 p_{y}^{2}, \quad {}_{\pi}^{*} 2 p_{x}^{2} = \quad {}_{\pi}^{*} 2 p_{y}^{1} \end{aligned}$$

 \therefore Total antibonding electrons = 7

$$\begin{aligned} \mathbf{0}_2 &= 8 + 8 = 16 \\ &= \sigma 1 s^2, \quad {}^*_{\sigma} 1 s^2 \text{ , } \sigma 2 s^2, \quad {}^*_{\sigma} 2 s^{2,\sigma} \sigma 2 p_z^2 \text{ , } \pi 2 p_x^2 \\ &= \pi 2 p_y^2 \text{ , } \pi 2 p_x^1 = \quad {}^*_{\pi} 2 p_y^1 \end{aligned}$$

 \therefore Total antibonding electrons = 6

$$\begin{aligned} 0_2^{2^-} &= 8 + 8 + 2 = 18 \\ &= \sigma 1 s^{2,} \quad {}_{\sigma}^* 1 s^{2,} \sigma 2 s^{2,} \quad {}_{\sigma}^* 2 s^{2,} \sigma 2 p_z^2 , \pi 2 p_x^2 \\ &= \pi 2 p_y^2 , \quad {}_{\pi}^* 2 p_x^2 = \quad {}_{\pi}^* 2 p_y^2 \end{aligned}$$

 \therefore Total antibonding electrons = 8

In NH₃, N undergoes sp^3 hybridisation. Due to the presence of one lone-pair, it is pyramidal in shape.

383 (d)

Hg exists in liquid state.

384 **(b)**

According to valence bond theory, overlapping orbitals must possess half-filled nature as well as antispin electron.

385 (a)

Non-polar or pure covalent bond has zero per cent ionic character due to the absence of partial charges on either end.

386 (a)

The dipole moment of two dipoles inclines at an angle θ is given by the equation $\pi =$ $\sqrt{x^2 + y^2 + 2xy \cos \theta}$, $\cos 90 = 0$, since, the angle increases from 90 - 180, the value of $\cos \theta$ becomes more and more -ve and hence resultant decreases. Thus, dipole moment is maximum,

387 **(a)**

when, $\theta = 90^{\circ}$

CO(14) =
$$\sigma 1s^2$$
, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\pi 2p_y^2$
= $\pi 2p_z^2$, $\sigma 2p_x^2$
BO = $\frac{N_{b-}N_a}{2}$ = $\frac{10-4}{2}$ = 3
NO⁻(16) = $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_x^2$, ($\pi 2p_y^2 = \pi 2p_z^2$), ${}^*_{\pi} 2p_y^1 = {}^*_{\pi} 2p_z^1$
BO = $\frac{10-6}{2}$ = 2
NO⁺(13); BO = 3
CN⁻(14); BO = 3
Hence, bond order of NO⁻ is different from that of

388 (a)

CO.

S atom in SF_6 is sp^3d^2 -hybridized state and shows octahedral shape.

389 **(b)**

The stability of carbonates increases with increasing electropositive character of metal.

391 (c)

Larger is the size of atom, lesser is the tendency for overlapping, lesser is bond energy.

392 (a)

The polarising ability is characteristic of cation, smaller the size of cation with large magnitude of 402 **(b)** positive charge, more will be its polarising ability. (: It can cause large distortions in anion cloud.)

393 (a)

ClO₂has 33 electrons, *i. e.*, one unpaired.

394 (c)

Larger anion is polarized more (Fajans' rule).

395 (c)

The molecules having distorted geometry have dipole moment and those having regular geometry have zero dipole moment.

- : NH₃, CH₃Cl and ClO₂have distorted geometry.
- : They have dipole moment.
- : BF₃has regular triangular planar geometry. The dipole moment of BF_3 is zero.

396 (c)

When hydrogen forms hydrogen bonding with fluorine it will be strongest H-bonding because fluorine is strongest electronegative element.

397 **(b)**

Trans 2-pentene has dipole moment.

Because +I effect of ethyl group is more than that of CH₃ group, hence the two dipoles do not cancel each other.

398 (d)

 NH_2^- hass p^3 -hybridization having two covalent bonds and two lone pair of N atom.

399 (d)

The solubility of a compound mainly depend upon its hydration energy. If the hydration energy of a compound is greater than from its lattice enthalpy, then its is soluble in water. Thus, for $\left|_{410}\right|$ (b) solubility

> Hydration enthalpy > lattice

enthalpy

For compounds P and R hydration enthalpy exceeds the lattice enthalpy, so they are soluble in water.

400 (a)

It is a fact derived from bond order.

401 **(b)**

I has maximum covalent bond and negative charge on electronegative nitrogen, most stable. III has more covalent bond than both II and IV, III is second most stable. Between II and IV, II is more stable since it has negative charge on nitrogen while IV has negative charge carbon.

Hybrid orbitals never form π -bond.

404 (c)

$$O_{2}(16) = \sigma 1s^{2}, \quad {}_{\sigma}^{*}1s^{2}, \sigma 2s^{2}, \quad {}_{\sigma}^{*}2s^{2}, \sigma 2p_{z}^{2}, \pi 2p_{x}^{2}$$

$$\approx \pi 2p_{y}^{2}, \quad {}_{\pi}^{*}2p_{x}^{1} \approx \quad {}_{\pi}^{*}2p_{y}^{1}$$

$$BO = \frac{10-6}{2} = 2$$

$$0_2^{2-}(18) = \sigma 1s^2, \quad {}_{\sigma}^* 1s^2, \sigma 2s^2, \quad {}_{\sigma}^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2$$
$$\approx \pi 2p_y^2, \quad {}_{\pi}^* 2p_x^2 \approx {}_{\pi}^* 2p_y^2$$

$$BO = \frac{10-8}{2} = 1$$

$$N_2(14) = \sigma 1s^2$$
, ${}_{\sigma}^* 1s^2$, $\sigma 2s^2$, ${}_{\sigma}^* 2s^2$, $\pi 2p_x^2$
 $\approx \pi 2p_y^2$, $\sigma 2p_z^2$

$$BO = \frac{10-4}{2} = 3$$

Thus, bond order is highest for N₂.

405 **(d)**

Molecular shapes of SF₄, CF₄, XeF₄ are different with 1, 0 and 2 lone pair or electrons respectively.

406 **(c)**

The correct sequence of hybridisation of methane, ethene and ethyneis sp^3 , sp^2 and sp.

407 **(b)**

Diamond has a three-dimensional structure in which a large number of carbon atoms are arranged tetrahedrally by covalent bonds. It is an allotropic form of carbon.

408 **(b)**

The ionisation potential decreases down the group.

409 **(b)**

BeH₂molecule is linear because it has sphybridisation. It has bond angle 180°.

 $Be_2(\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2)$ has bond order equal to zero.

411 (c)

15σ and 3π- bonds are present in toluene.

412 **(b)**

In H₂O, H-atom contains only two electrons.

Both HgCl₂ and C₂H₂ are linear like CO₂ because of sp-hybridization.

414 (d)

Follow concept of bond order in M.O. theory.

415 (d)

$$HC \equiv C - HC = CH - CH_3 10\sigma$$
, 3π

416 **(b)**

 $CCl_2 = CCl_2 hassp^3$ -hybridization. $CCl_4 hassp^3$ hybridization.

417 (c)

All are non-metals.

419 (c)

Boiling point of ammonia is much higher than phosphine. It is due to extensive hydrogen bonding found in ammonia.

420 **(b)**

Lower potential energy level imparts stability.

421 (d)

Covalent character $\propto \frac{1}{\text{size of cation}}$

∝ size of anion

(according to Fajan's rule)

Lower the covalent character, higher will be ionic 434 (c) character.

 Cl_2O , contains O^{2-} , NCl_3 contains N^{3-} , PbCl₂ contains Pb²⁺ and BaCl₂ contains Ba²⁺. Hence, the order of covalent character is $NCl_3 > Cl_2O > PbCl_2 > BaCl_2$

∴ BaCl₂ has the greatest ionic character.

422 (c)

Kernals start vibrating and hence, create hindrance in the flow of electrons

423 (d)

Chile salt petre($NaNO_3$), potash alum $(K_2SO_4.Al_2(SO_4)_3.24H_2O)$ and green vitriol (FeSO₄. 7H₂O) are ionic compounds. They produce ions in their aqueous solutions, so they are conducting in nature. Ethyl alcohol, C₂H₅OH being covalent in nature, does not produce any ion in aqueous solution. Hence, it is non-conducting in nature.

424 (c)

Due to large electronegativity difference in C and F atoms.

425 (a)

Proteins show H-bonding.

426 (c)

Bond angles decreases down the group.

 \therefore H₂O > H₂S. Also bond angle of H₂O < NH₃ due to lone pair effect.

427 **(c)**

In the above compound all bonds are σ bond and hence, carbon atom uses only sp^3 - hybrid orbitals for bond formation.

428 **(b)**

It is the order of stability.

429 **(b)**

 E_1 for He⁺ = E_1 for $H \times Z^2$ (where Z=at.no. of He).

430 **(c)**

H—bonding order:

$$\cdots$$
 H - F > \cdots H - O > \cdots H - N

431 (d)

The charge-size ratio increases and thus polarizing power increases.

O₂has two unpaired electrons.

435 (d)

These are the factors on which IP depends.

436 **(b)**

The hybridised states of N in NO₂⁺, NO₃⁻ and NH₄⁺ are sp, sp^2 and sp^3 respectively.

437 **(b)**

Carbon (1) has 2σ – and 2μ – bonds. Carbon (2) has 3σ and 1π -bond.

438 (c)

According to Fajan's rule, as the size of cation decreases, its polarising power increases. Hence, Cu²⁺ polarise Cl⁻ ions more than Cu⁺. Therefore, CuCl₂ has more covalent character and hence, its boiling point is less.

439 **(b)**

Metals are more electropositive and lose electrons, while non - metals have tendency to gain electron.

440 **(b)**

Behas smallest size and thus, Be cation possesses more polarizing power.

441 **(b)**

Due to intermolecular hydrogen bonding in ortho-isomer, it has least melting point. Due to effective intermolecular hydrogen bonding in para isomer, it has highest melting point among the isomers. So, the order is

Para isomer > meta > ortho (114°C)(97°C) (54°C)

443 (a)

Based on geometry of molecule.

444 **(b)**

The structure of these molecules/species are as follows:

 $(\sigma - bps + lps = 3 + 0 = 3)$

 sp^2 -hybridisation trigonal planar sp^2 -hybridisation pyramidal

 sp^2 -hybridisation trigonal planar sp^2 -hybridisation trigonal planar

 PCl_3 hass p^3 -hybridisation but due to presence of a lone-pair, its shape is pyramidal instead of tetrahedral.

446 (c)

[C]forms anion readily by gaining one electron only.

447 (c)

Number of bonds between two atoms is called bond order.

Resonating structures of benzene are

: In benzene, the carbon - carbon bond is between the double and single bond due to the resonance, so its bond order is 1.5.

448 (a)

If difference in electronegativity in between two atoms is 1.7, the molecule possesses 50% covalent +50% ionic nature.

449 **(b)**

 IP_1 of Pb > IP_1 of Sn (an exception).

450 (c)

Only then it can accept lone pair in that shell.

451 **(a)**

Count σ -and π -bonds.

452 **(b)**

The molecular electronic configuration of O_2 is $O_2 = [KK, (\sigma 2s)^2, ({}^*\sigma 2s)^2, (\sigma 2p_x)^2, (\pi 2p_y)^2]$ $=(\pi 2p_z)^2, (\quad {}^*_{\pi}2p_{\nu})^1=(\pi 2p_z)^1]$

453 **(d)**

Csis more electropositive.

454 (a)

In MnO $_4^-$, the oxidation no. of Mn is +7, i. e., all the 4s and 3d electrons are lost.

455 (d)

456 **(b)**

Charge of $e^- = 1.6 \times 10^{-19}$ C Dipole moment of HBr = 1.6×10^{-30} C-m

Interionic spacing = $1 \text{ Å} = 1 \times 10^{-10} \text{ m}$

% of ionic character in

 $\mathrm{HBr} = \frac{\mathrm{Dipole} \;\; \mathrm{moment} \; \mathrm{of} \; \mathrm{HBr} \times 100}{\mathrm{Interspacing} \; \mathrm{distance} \; \times q}$

 $= \frac{1.6 \times 10^{-30} \times 100}{1.6 \times 10^{-19} \times 10^{-10}}$ $= 10^{-30} \times 10^{29} \times 100 = 0.1 \times 100 = 10\%$

457 (c)

Due to shielding effect of (n-1)d-subshell.

459 (d)

P in PO_4^{3-} has sp^3 -hybridization like S in SO_4^{2-} .

460 **(d)**

The lattice becomes stronger (i.e., the lattice energy Ubecomes more negative). As r the interionic distance decreases. *U* is proportional to

or

 $U \propto \frac{1}{(r_c + r_a)}$

462 (a)

Covalent radius are always smaller than crystal radius as the former involves overlapping region.

463 (c)

CO₃²⁻ has the following structure

It contains only covalent bonds

464 (c)

Molecular orbital configuration of, $C_2^+ = \sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_y^2$, $\pi 2p_y^1$

466 (d)

Mullikan proposed M.O. theory.

467 (d)

 $Cl_2O = 42$ electrons

 $ICl_2^- = 88$ electrons

 $Cl_2^- = 35$ electrons

 $IF_2^+ = 70$ electrons

 $I_3^- = 160$ electrons

 $Cl_2O = 33$ electrons

 $ClO_2^- = 34$ electrons

 $ClF_2^+ = 34$ electrons

 ClO_2^- and ClF_2^+ contain 34 electrons each hence they are isoelectronic.

468 (a)

1, 2-butandiene has the structure.

ННН

Ш

H - C - C = C = C - H

 $|sp^3 sp^2 sp sp^2$

Н

469 (d)

Anions are always larger in size than their parent atom. Cations are always smaller in size than their parent atom.

470 (d)

Sulphade ion $(S0_4^{2-})$ has tetrahedral geometry, as in S-atom undergoes sp^3 hybridisation.

S in II excited state =

1 1 1 1 1 1

Tetrahedral shape of SO₄²

471 (d)

 SF_4 has sp^3d -hybridization with one lone pair, CF_4 has sp^3 -hybridization with no lone pair and XeF_4 has sp^3d^2 -hybridization with two lone pairs.

472 (a)

$$(\sigma - bps + lps = 3 + 1 = 4)$$

Hence, hybridisation= sp^3

In NH_3 N-atoms is sp^3 hybridised, but due to presence of a lone pair of electron on N-atom. It is pyramidal in shape.

473 **(b)**

For a compound to be soluble, the hydration energy must be greater than the lattice energy. Since, NaCl is soluble in water but insoluble in benzene.

 $\Delta H_{
m hydration} > \Delta H_{
m lattice\ energy\ in\ water} \ \Delta H_{
m hydration}$

 $< \Delta H_{\text{lattice energy in benzene}}$

474 **(b)**

and

Dimerization occurs in carboxylic acids which indicates strong H-bonding.

475 (c)

$$\begin{array}{c|c}
H \\
\hline
\sigma \\
\hline
C \\
\hline
\sigma \\
\hline
\sigma \\
\hline
C \\
\hline
\sigma \\
\hline
C \\
\hline
\sigma \\
\hline
H
\end{array}$$

Thus, the number of σ and π bonds respectively are 7 and 3

476 (a)

Solubility order :AgF > AgCl > AgBr > AgI.

477 (d

CaI₂has maximum covalent character due to large size of anion and possesses lowest lattice energy.

Thus melting point is lowest.

478 (c)

Hybridisation= $\frac{1}{2}$ [no. of electron in valence shell | 485 (c) + no. of monovalent atoms-charge on cation+ charge on anion]

17. H_2O

$$H = \frac{1}{2} (6 + 2 + 0 - 0) = \frac{8}{2} = 4$$

 $\therefore sp^3$ hybridisation

18. CH_{4}

$$H=\frac{1}{2}(4+4+0-0)$$

$$=\frac{8}{2}=4$$

 $\therefore sp^3$ hybridisation

19. BCl₃

$$H=\frac{1}{2}(3+3+0-0)$$

$$=\frac{6}{2}=3$$

 $\therefore sp^3$ hybridisation

20. NH_3

$$H=\frac{1}{2}(5+3+0-0)$$

$$=\frac{8}{2}=4$$

 $\therefore sp^3$ hybridisation

 \therefore (c) is correct answer.

479 (a)

H₂Oshows high b.p. (inspite of lowest mol. wt.) on account of strong H-bonding.

480 (d)

 C_2H_2 is a linear molecule with sp-hybridization.

481 **(b)**

KO₂ is an ionic compound.

482 (c)

In all the given compounds, anion is same(Cl⁻), hence polarising power is decided by size and charge of cation. Al3+with maximum charge and smallest size has maximum polarising power hence, AlCl₃ is maximum covalent.

483 (d)

Dipole forces exist only in polar molecule.

484 **(b)**

Both possess sp^2 -hybridization but different geometry.

In transition elements, penultimate shell electrons also participate in bonding.

486 **(b)**

Species $0_20_2^+0_2^{2+}0_2^{2-}$ 2.5 3 **Bond Order**

Hence, the increasing bond order is as follows: $0_2^{2-} < 0_2 < 0_2^+ < 0_2^{2+}$

487 **(b)**

 $π2p_x$ and $π2p_y$ or $^*_{π2p_x}$ and $^*_{π2p_y}$ orbitals have nearly equal energy and thus, are called degenerate orbitals.

488 (a)

The most electronegative element is F and next to F is O.

489 (c)

Ions are held in NaCl by coulombic forces and thus, possess no velocity.

490 **(b)**

Both have one lone pair of electron.

491 (d)

Lattice energy, $U = \frac{q_1 q_2}{r^2}$

Since, interionic distances in CaO and NaCl are similar, (larger cation has smaller anion and vice versa) r is almost the same. Therefore, lattice energy depends only on charge. Since, the magnitude of charge on Na⁺ and Cl⁻ ions is same ie, unity and that on Ca²⁺ and O²⁻ions is 2 each, therefore, the lattice energy of CaO is four times the lattice energy of NaCl, ie, 4U

492 (a)

$$sp$$
 sp sp^2 sp^2
 $CH \equiv C - CH = CH_2$

Hence, carbon atom bonded to each other by

(C - C) are sp and sp^2 hybrid.

493 (c)

In IF₅, halogens are member of VII group. Summation of group number

Bond pair =
$$\frac{42}{8}$$
 = 5(Residue) 2

Lone pair =
$$\frac{2}{2}$$
=1

5 bond pair, 1 lone pair means the geometry is square pyramidal and sp^3d^2 hybridisation.

494 **(b)**

 PCl_5 molecule has $sp^3 d$ hybridiation.

Its geometry is trigonalbipyramidal and it has 5 504 **(b)** valence shell pairs of electrons.

495 (c)

Given, ionic charge = 4.8×10^{-10} esu and, ionic distance = $1 \text{ Å} = 10^{-8} \text{cm}$

We know that

Dipole moment =ionic charge×ionic distance

$$=4.8 \times 10^{-10} \times 10^{-8}$$

$$= 4.8 \times 10^{-18} \text{ esu cm}^{-1}$$

= 4.8 debye

496 **(b)**

 $CH_2 = CH_2 has 1\sigma$ - and 1π - in between two sp^2 hybridized carbon.

497 (c)

S in SF₄ possesses trigonal bipyramidal structure 509 (c) with sp^3d hybridisation.

S in ground state

S in ground state

S in excited state

S in excited state

499 (c)

Atomic size decreases along the period and increases down the gp.

500 (d)

One water molecules is joined to four water molecules-two with H-atoms and other two with 0-atoms. Thus, The maximum number of 514 (d) hydrogen bonds that a molecule of water can have is four as shown below:

501 (d)

CH₃⁺andNH₂⁺ both have 8 electrons.

503 **(b)**

Energy level order 2p > 2s.

Be in BeF $_3^-$ is sp^2 -hybridized

505 (c)

 RbO_2 means Rb^+ and O_2^- , O_2^- is the superoxide ion. $0_2^-(17) = \sigma 1s^2$, ${}^*_{\sigma}1s^2$, $\sigma 2s^2$, ${}^*_{\sigma}2s^2$, $\sigma 2p_z^2$, $\sigma 2p_x^2$ $\approx \pi 2p_{y}^2 \quad {}^*_{\pi}2p_{x}^2 \approx \quad {}^*_{\pi}2p_{y}^1$

As it contains one unpaired electron, thus paramagnetic in nature.

506 **(b)**

A reason for the given fact.

507 **(c)**

Sulphanilic acids have dipolar structure to their melting point is high and insoluble in organic solvent

Atomic size of Ag and Au are closer to each other but nuclear charge is more on Au.

511 (d)

BCl₃ has trigonal planar structure due to 3 bond pairs in the valence shell of boron whereas NCl₃ has distorted tetrahearal structure due to one lone pair and three bond pair in the valence shell of nitrogen.

512 (a)

In AlH_3 , Al is sp^2 hybridised while in AlH_4^- , Al is sp³ hybridised.

513 **(b)**

CH₃COOHdimerises in gaseous state due to Hbonding.

It is the definition of electron affinity.

516 **(b)**

 SO_2 hass p^2 -hybridization.

517 **(a)**

One of *s*-orbital +3 of *p*-orbital = sp^3

518 (d)

$$NO(7 + 8 = 15)$$

$$= \sigma 1s^{2}, \sigma^{*}1s^{2}, \sigma 2s^{2}, \sigma^{*}2s^{2}, \sigma 2p_{z}^{2}, \pi 2p_{x}^{2}$$

$$\approx \pi 2p_{y}^{2}, \pi^{*}2p_{x}^{1}$$

$$NO^{+}(7 + 8 - 1 = 14)$$

$$= \sigma 1s^{2}, \sigma^{*}1s^{2}, \sigma 2s^{2}, \sigma^{*}2s^{2}, \sigma 2p_{z}^{2}, \pi 2p_{x}^{2} \approx \pi 2p_{y}^{2}$$

Thus, in the formation of NO⁺ from NO, the

electron is removed from a π^* orbital

519 (a)

2nd IE_1 of alkali metals is abnormally higher.

520 **(c)**

For Be $_n$ Al $_2$ Si $_6$ O $_{18}$ 2n + 6 + 24 - 36 = 0

n = 3

521 **(a)**

The structure of an hydride of H₂SO₄ is:

$$0 = \frac{1\sigma}{1\pi} \lesssim \frac{1\sigma}{1\pi}$$

$$0 = \frac{1\sigma}{1\pi} \lesssim \frac{1\sigma}{1\pi}$$

522 (c)

O atom possesses sp^3 -hybridization with two lone pair of electron.

523 (a)

Ionic bonds are non-directional.

524 **(b)**

The molecule of N_2O is linear as would be expected for a triatomic molecule with 16 outer shell electrons. Its resonance structure is

525 (d)

Hence, number of σ and π -bond in acetonitrile are 5 and 2 respectively.

526 (a)

More the difference in electronegativity of atoms, stronger will be the hydrogen bond. \because Electronegativity difference between H and F is highest.

(∵F has highest electronegativity)

: F - H - - - - Ohydrogen bond is strongest.

527 **(d)**

Cyanide ion is,

 $-\bar{C} \equiv N \longrightarrow -\bar{N} \equiv C.$

528 (a)

- 21. dsp^3 or sp^3d hybridisation results in trigonal bipyramidal geometry according to VSEPR theory.
- 22. dsp^2 hybridisation has square planar geometry.
- 23. d^2sp^3 ors p^3d^2 hybridisation has

octahedral planar geometry.

529 **(d)**

Bond angles of

$$NH_3 = 107^{\circ}, H_2Se = 91.0^{\circ}, H_2O = 104.5^{\circ}, H_2S$$

= 92.2°

So, the H₂Se molecule has smallest bond angle.

530 (a)

The H H bond angle in H₂O is 104.5° due to the presence of two lone pairs of electrons. This fact can be best explained with the help of valence

shell electron pair repulsion (VSEPR) theory.

531 **(b)**

 $NO_2^-sp^2$

 $NO_3^-sp^2$

 $NH_2^-sp^3$

 $NH_4^+sp^3$

SCN-sp

533 **(b)**

 $K^+[C \equiv N]^-$; K^+ and CN^- ionic, C and N forms covalent bonds.

534 **(c)**

NaClexist as Na⁺Cl⁻.

535 **(c)**

C₂H₂has a linear structure because it has *sp*-hybridisation.

$$H - C \equiv C - H$$

536 (d)

Structure of C₂H₄ is

So, the compound (X) is C_2H_4 .

Geometry of the molecule)

has 537 (a)

Ionization energy increases along the period and decreases down the group.

538 **(b)**

The atomic radius decreases along the period. Also cations are always smaller than their parent atom and anions are always larger than their parent atom.

539 (a)

In N_2 , all electrons are paired. Thus, N_2^+ has one electron unpaired.

540 (c)

Mo lec ule	Hyb ridi sati on	Repulsion	Bond angle
SO_2 OH_2 SH_2	sp^2 sp^3 sp^3	<i>lp.bp, bp – bp</i> <i>lp – lp, bp – lpbp – bp</i> –do–	119° 104.5°
NH ₃	sp^3	lp – bp, bp – bp	90° 107°

541 (a)

 CO_2 is isostructural with N_2O because both have linear structure.

$$0 = C = 0 \qquad \text{in} = N^{+} = \text{in} \qquad N = N^{\oplus} = \text{in} \Theta$$

$$CO_{2} \qquad N_{2}O$$

542 **(c)**

Valencies of L, Q, P and R is-2,-1,+1, and +2 respectively. So, they will form P_2L , RL PQ, and RQ_2

543 **(b)**

NO
$$\rightarrow$$
 NO⁺
(NO⁺) Total e⁻ = 14
 $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\pi 2p_x^{1+1}$
= $\pi 2p_y^{1+1} \sigma 2p_z^2$

Diamagnetic

Bond order =
$$=\frac{10-4}{2}$$
 = 3
(NO) Total e^- = 15
 $\sigma 1s^2 {}^*_{\sigma} 1s^2 \sigma 2s^2 {}^*_{\sigma} 2s^2$, $\sigma 2p_z^2 \pi 2p_x^{1+1} \pi 2p_y^{1+1}$, $^*_{\pi} 2$
= $^*_{\pi} 2p_y$

Paramagnetic

Bond order =
$$=\frac{10-5}{2} = 2.5$$

Electron is taken away from non-bonding molecular orbital that's why bond order increases.

544 (a)

All are isoelectronic species; more is nuclear charge smaller is ionic size.

545 **(b)**

Bond order for $O_2=2$; $O_2^+=2.5$, $O_2^-=1.5$, $O_2^2^-=1$ Thus bond length is $O_2^+ < O_2 < O_2^- < O_2^2^-$

546 **(b)**

The structure of acetylene is

$$H \longrightarrow C \xrightarrow{1\sigma} C \longrightarrow H$$

In acetylene, both the C-atoms are *sp*hybridised. Hence in acetylene molecule, there are one sigma and two pi bonds are present between carbon atoms.

547 (c)

Size of isoelectronics decreases with increasing atomic number.

548 (d)

 0_{2}^{-}

$$: \sigma 1s^{2}, \sigma^{*}1s^{2}, \sigma 2s^{2}, \sigma^{*}2s^{2}, \sigma 2p^{2} \begin{bmatrix} \pi^{2}p_{y}^{2} \\ \pi^{2}p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi^{*}2p_{y}^{2} \\ \pi^{*}2p_{z}^{2} \end{bmatrix}$$
$$\therefore B.0. = \frac{10-7}{2} = 1.5$$

549 (c)

NO has 15 electrons (paramagnetic) whereas NO⁺ has 14 electrons (diamagnetic).

 $2\text{Fe} + 3[0] \rightarrow \text{Fe}_2 0_3 \text{ (rust)}.$

551 **(d)**

ClO₂has 33 electron; one will be unpaired.

552 **(c)**

 NO_2 and O_3 both are having irregular geometry.

554 (a)

s character \propto bond angle

555 **(b)**

Since the two 0 atoms in O_2 are connected by a double bond (0 = 0), therefore, hybridization of 0 is sp^2

556 (a)

$$Cl - Be - Cl$$

In BeCI_2 , Be is $\mathit{sp}\text{-hybridised}$, hence it has linear structure.

557 (c)

On fusion KCN, ionic bonding is disturbed; on boiling H₂S and CF₄ only kinetic energy of molecules increases.

558 (a)

Structure of $\overline{N}H_2$ is as follows

559 **(b)**

 Mn^{2+} is most stable as it has half-filled d-orbitals.

560 **(c)**

The structure of
$$PO_4^{3-}$$
 is
$$\begin{bmatrix} 0 \\ | \\ 0 - P - 0 \\ || \\ 0 \end{bmatrix}^{3-}$$

Here, there units negative charge is shared by four O atoms and five bond pairs are shared between four P-O bonds

∴ Formal charge =
$$\frac{3}{4}$$
 = -0.75
BO of P - O bond = $\frac{5}{4}$ = 1.25

561 **(c)**

The element is P which exists as P₄.

562 **(b)**

Elements having six electrons in valency shell are electronegative elements, *e.*g., 0.

563 **(d)**

In sulphur, the excitation of *np*-electrons to *nd*-subshell gives rise to increase in number of unpaired electrons.

564 **(b)**

Spe cies	Elec tro n in cent ral ele me nt	Electrons in other element	Cha rge gain ed	Tot al
BO ₃ -	5	$3 \times 8 = 24$	+3	32
CO_3^{2-}	6	$3 \times 8 = 24$	+2	32
NO_3^-	7	$3 \times 8 = 24$	+1	32
SO_3^{2-}	16	$3 \times 8 = 24$	+2	42
CN ⁻	6	7	1	14
N_2	7	7	0	14
C_2^{2-}	6	6	+2	14
PO ₄ 3-	15	$4 \times 8 = 32$	+3	50
SO_4^{2-}	16	$4 \times 8 = 32$	+2	50
ClO ₄	17	$4 \times 8 = 32$	+1	50

Thus, (b) SO_3^{2-} , CO_3^{2-} , NO_3^- are not isoelectronic.

565 **(c)**

Unpaired electrons are present in KO_2 , while others have paired electrons.

 $NO_2^+ \rightarrow 22$ electrons

 $BaO_2 \rightarrow 72$ electrons

 $AlO_2^- \rightarrow 30$ electrons

 $KO_2 \rightarrow 35$ electrons

566 **(d)**

$$IP_3 > IP_2 > IP_1$$

567 **(b)**

Coordinate bond is formed.

 $(C_2H_5)_2O \rightarrow BH_3$

 $(C_2H_5)_2$ Ogives one lone pair of electron to BH_3 . So, it is called electron pair donar and BH_3 is called electron pair acceptor.

568 (a)

Be F_3 involves sp^2 -hybridization.

570 (c)

Maximum covalence in most of the atoms (except N, O, F) is given by the number of valency electrons. The paired *s* electrons are also get unpaired during excitation.

571 **(b)**

Noble gases are in zero group however they possess eight electrons in their valence shell.

572 (a)

Solid molecules possess stronger van der Waals' forces.

573 (a)

Inert pair effect is not noticed for elements having their outermost shell (n) if n < 4.

574 **(b)**

- (a) Pauling gave scale of electronegativity.
- (b) **Bronsted**gave concept of acid and base.
- (c) Mullikan determined charge on electron.
- (d) Lewis gave electronic theory of bonding.
- 575 **(b)**

Ionization potential increases along the period. Also Be has $1s^2$, $2s^2$, *i. e.*, removal of electrons from 2s while in Boron it occurs from 2p and therefore, Be has high I.P.

576 **(b)**

	σ-	Lone	Unpaired	Total
	bond	pair	electron	
I.	3	×	×	$3(sp^2)$
II.	2	×	×	2
III.	4	×	×	(sp)
				(sp) $4(sp^3)$

577 **(b**)

Larger cation favours ionic bonding (Fajan's rule).

578 **(b)**

Only P has d-orbitals.

579 **(b)**

 H_2 Ois sp^3 -hybridized; Be F_2 is sp-hybridized.

580 **(b)**

Oxidising power: $F_2 > Cl_2 > Br_2 > I_2$.

581 (a)

NH₃molecule in its valence shell has three bond pairs of electrons and one lone pair of electrons. The shape of NH₃ molecule is pyramidal due to the presence of one lone pair electron. It has sp^3 hybridisation.

582 (d)

All carbon to hydrogen bonds are σ -bonds

583 **(b)**

In C_2H_6 , Cis sp^3 hybridised.

In C_2H_4 , Cis sp^2 hybridised.

In BeCl₂, Beis *sp* hybridised.

In C₂H₂, Cis sp hybridised

584 **(b)**

Energy bonds in solids are formed in accordance 594 (d) with Bohr's theory.

585 (c)

The jump in ionisation energy occurs when valence shell changes during removal of electron.

586 (c)

H atom attached on F is responsible for Hbonding..

587 (a)

$$c = 0 \qquad 0 = 0$$
Bond order = 3 Bond order = 2
Bond order = 1.33
(due to resonance)

Bond length increases when bond order decrease, hence the correct order of bond length is

$$CO_3^{2-} > CO_2 > CO$$

588 (a)

In PCl₃ molecule, phosphorus is sp^3 -hybridised 597 **(c)** but due to presence of lone-pair of electron. It has pyramidal structure.

589 (c)

 $Be_2 = (8 \text{ electrons})$

$$\sigma 1s^2 \sigma 1s^2 \sigma 2s^2$$
 $\sigma 2s^2$

590 (d)

 sp^3d^2 hybridisation has octahedral structure such that four hybrid orbitals are at 90° w.r.t each other and others two at 90° with first four.

591 (b)

 IE_1 of N > IE_1 of O due to half filled nature in N.

592 **(b)**

Larger anion is easily deformed (Follow Fajans' rule).

593 **(c)**

Due to resonance structure of C_6H_6 .

Draw bond structure and then count bonds.

 \Rightarrow 12 σ , 2d π – p π bonds.

In methane, ethene and ethyne, the hybridisations are respectively sp^3 , sp^2 and sp. Hence, % scharacter will be

$$sp^{3} = \frac{1}{4} \times 100 = 25\%$$

 $sp^{2} = \frac{1}{3} \times 100 = 33\%$
 $sp = \frac{1}{2} \times 100 = 50\%$

Both SO_4^{2-} and BF_4^- have sp^3 -hybridization and are tetrahedral.

598 (c)

If there is four σ – bonds, hybridisation is sp^3 , if three σ – bonds, hybridisation is sp^2 and if two

 σ – bonds, hybridisation is *sp*.

(a)
$$CH_2 = C = CH_2$$

 sp^2spsp^2

$$(b)CH_3 - CH = CH - CH_2^+$$

$$sp^3$$
 sp^2 sp^2 sp^2

$$(c)CH_3 - C \equiv C - CH_2^+$$

$$sp^3$$
 sp sp sp^2

$$(d)CH_3 - CH = CH - CH_2$$

$$sp^3$$
 sp^2 sp^2 sp^3

$$(e)CH_2 = CH - CH = CH_2$$

$$sp^2$$
 sp^2 sp^2 sp^2

Hence, in $CH_3 - C \equiv C - CH_2^+$, all the three types of hybrid carbons are present.

599 **(b)**

Sigma bond formation involves more overlapping and thus stronger.

600 **(b)**

Both have sp^2 -hybridization geometry.

601 **(b)**

Anions are always larger than their parent atom. Also atomic radius increases down the group, decreases along the period.

602 **(c)**

AsF₅has sp³d hybridization. In sp^3d hybridization, it is d_{z^2} orbitals which takes part

603 **(a)**

CCl₄and compounds has zero dipole moment due to their symmetrical structure.

604 **(b)**

Ionisation energy increases along the period.

605 (a)

In octahedral structure MX_6 , the six hybrid orbitals (sp^3d^2) are directed towards the corners of a regular octahedral with an angle of 90° . |616 (d) According to following structure of MX_6 the number of X - M - X bonds at 180° must be three.

606 (a)

It is the definition of valency.

607 **(a)**

Only Na shows +1 oxidation state. Rest all have +1, +2(Hg), +1, +2 (Cu) and +2, +3 (Fe) oxidation states.

608 (a)

The ionisation energy of elements decreases down the group.

609 (d)

O is more electronegative than C.

610 (c)

Bond energy increases with multiplicity of bonds.

611 (c)

Br₂is a non-polar molecule and hence, its melting point and boiling point depend only upon van der Waals' forces of attraction while all the remaining molecules have dipole moments and hence, their melting points and boiling points depend upon dipole-dipole interactions

612 (c)

H-bonding in H₂O increases forces of attracting among molecules and develops abnormal properties.

614 **(b)**

In a double bond (=)one σ andone π -bond is present while in a single bond (-) only σ -bond is

The structure of the naphthalene is as

In naphthalene five double bonds are present, hence 5π bonds are present in naphthalene.

$$ICl_2^-, I_3^-, N_3^-$$
 are

linear

 ClO_2^- is angular due to sp^3 hybridisation of Cl atom

So, ClO_2^- is non-linear.

Bond order = $\frac{1}{2}$ [bonding electrons – antibonding electrons]

618 (c)

The difference of electronegativity is more.

619 (c)

*Ortho*hydroxyl benzaldehyde has maximum volatility due to intra molecular H-bonding.

620 **(b)**

Formal charge = Number of electrons in valence shell –

 $(\frac{1}{2} \times \text{numbers of electrons as bond pair} + \text{numbers of electrons as lone pair})$

For N₁ and N₃

Formal charge = $5 - \left(\frac{4}{2} + 4\right) = 5 - (6) = -1$

For $N_2 = 5 - \frac{1}{2} \times 8 - 0 = 5 - 4 = +1$

621 (d)

In phenol each C atom is sp^2 hybridised andO atom is sp^3 hybridised.

622 **(a)**

Due to sp^3 -hybridization on carbon atoms.

623 **(b)**

Bond angles of ClF_3 , PF_3 , NF_3 and BF_3 are (180°, 90°), (101)°, (106°) and (120°) respectively.

624 **(c)**

Operates in each gaseous molecule.

625 (d)

Resultant of two opposite vectors produces zero dipole moment.

626 (d)

Because of its regular tetrahedral geometry, CCl₄ has least dipole moment

627 **(b)**

Coulombic forces are strongest among all.

628 (a)

 ${\rm CO_2}$ has linear structure. It has sp-hybridisation ${\rm O}={\rm C}={\rm O}$

629 (a)

In (A) para-nitro phenol intermolecular (between two molecules) H-bonding exists while in (B) ortho -nitrophenol, intramolecular H-bonding exists.

Because of the presence of intramolecular H-bonding, the boiling point of (B) is lower as compare to (A) and thus, (B) is more volatile i.e., has higher vapour pressure as compare to (A).

630 **(b)**

Small cation has more polarizing power.

632 **(c)**

Polar solute are more soluble in polar solvents.

633 **(b)**

Since, the electronegativity (EN) different is 3.0 - 1.2 = 1.8, which is less than 1.9, therefore, bond is

expected to be covalent

634 (a)

SiF₄and SF₄ are not isostructural because SiF₄ is tetrahedral due to sp^3 hybridisation of Si while SF₄ is not tetrahedral but it is distorted tetrahedral because in it S is sp^3d hybridised and has a lone pair of electron.

635 **(c)**

SiF₄has regular tetrahedral geometry.

636 (d)

Clpossesses 10 electrons in ClF₃.

637 **(a)**

Molec	bp	Hybridisa	Shape
ule	+ lp	tion	
H ₂ 0	2 +2	sp^3	Angular
			Trigonal
BCl_3	3 + 0	sp^2	Planar
NH_4^+	4 + 0	$\begin{array}{c} sp^2 \\ sp^3 \end{array}$	Tetrahedral
CH ₄	4 + 0	sp^3	Tetrahedral

638 **(c)**

Electronegativity and ionisation energy decreases from F to I.

639 (d)

 $CH \equiv CH$; 3for triple bonds and two for C-H bond.

640 **(b)**

The electronic configuration of O_2^{2-} ion is O_2^{2-}

 $-\sigma 1s^2$, ${}^*_{\sigma}1s^2$ $\sigma 2s^2$, ${}^*_{\sigma}2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2$, $\pi 2p_y^2$, ${}^*_{\eta}$ Hence, number of antibonding electron pair in 0_2^{2-} molecular ion are four.

641 (c)

Due to the presence of d-subshell electrons.

642 **(b)**

Due to sp^2 -hybridization.

643 (a)

M.O. configuration of O_2 :

$$\sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma * 2s^2$, $\sigma 2p_x^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix} \begin{bmatrix} \pi^* 2p_y^2 \\ \pi^* 2p_z^2 \end{bmatrix}$

Molecular orbitals $\pi^* 2p_z$ gains electron when O_2^- is formed from O_2

644 **(a)**

H-bonding is weakest bonding.

646 **(b)**

Out of sp^3 , sp, sp^2 hybridised carbon, sp hybridised carbon is more electronegative.

647 (c)

Both NH_3 and H_2O have sp^3 -hybridization. CO_2 and $BeCl_2$ are linear (sp-hybridization).

648 **(d)**

Unpaired electrons give rise to paramagnetism.

649 (a)

HF has largest dipole moment because electronegativity difference of both is high so, it is highly polar

650 **(b)**

Due to H-bonding which is more in water than alcohol and not in ether.

652 (c)

 $1s^2$, $2s^22p^4$ leads a sharing of two electron pairs to form molecule, e. g., 0_2 .

654 **(b)**

Count σ and π bonds.

655 (c)

Bond order
$$C_2^- > NO > O_2^- > He_2^+$$

3 5/2 3/2 1/2

656 **(b)**

Larger is bond order, lesser is bond length.

657 **(c)**

Strongest H-bonds are formed in between HCOOH and CH₃COOH. This is because H- bonding increases with electronegativity and decreases with size of atom

658 **(d)**

 BCl_3hassp^2 -hybridization. Rest all have sp^3 -hybridization having one lone pair of electron and thus, pyramidal in nature.

659 (d)

The overlapping orbitals must possess half-filled nature with anti-spin electron.

661 **(c)**

HNO₃ is HO
$$-$$
N $=$ O, assume one covalence \downarrow O

for each coordinate bond.

662 (a)

B.p. of H_2 is minimum.

663 (a)

 H_2 Ohass p^3 -hybridisation and is angular in shape.

664 **(b)**

Electron gain enthalpy of Cl is maximum.

665 **(a)**

The structure of trimethyl amine is pyramidal.

666 **(b)**

Molecules	Interaction
Benzene and	Dispersion force
ethanol	Dipole-dipole
Acetonitrile and	Ion-dipole
acetone	Dispersion
KCl and water	(London) force
Benzene and	
carbon	
tetrachloride	

667 **(b)**

Dry ice is CO₂ having C—O covalent bonds.

668 (d)

In p-dichlorobenzene, two C — Cl dipole cancel each other

$$\therefore \mu = 0$$

In, o-dichlorobenzene, two C — Cl dipoles (say x) are inclined at an angle of 60° . Therefore, according to parallelogram law of forces, the resultant

$$= \sqrt{x^2 + x^2 + 2x \times \cos 60^{\circ}}$$
$$= \sqrt{x^2 + x^2 + 2x^2 \times 1/2}$$
$$= \sqrt{3x^2} = \sqrt{3x}$$

In m-dichlorobenzene, the two dipoles are inclined to each other at an angle of 120°, therefore, resultant

$$= \sqrt{x^2 + x^2 + 2x \times \cos 120^{\circ}}$$

= $x^2 + x^2 + 2x^2 \times (-1/2)$
= $\sqrt{x^2} = x$

Thus , the decreasing order of dipole moments: o>m>p

669 (d)

One carbon has three bonds and other five where as each should have four bonds.

670 **(c)**

Cations are smaller in size than their parent atoms.

671 **(b)**

$$0_{2}(8+8=16)$$

$$= \sigma 1s^{2}, \sigma^{*}1s^{2}, \sigma 2s^{2}, \sigma^{*}2s^{2}, \sigma 2p_{z}^{2}, \pi 2p_{x}^{2}$$

$$\approx \pi 2p_{y}^{2}, \pi^{*}2p_{x}^{1} \approx \pi^{*}2p_{y}^{1}$$
Bond order = $\frac{10-6}{2}$ = 2
$$0_{2}^{+}(8+8-1=15)$$
Bond order= $\frac{10-5}{2}$ = 2.5
$$0_{2}^{-}(8+8+1=17),$$

Bond order =
$$\frac{10-7}{2}$$
 = 1.5

$$0_2^{2-}(8+8+2=18),$$

Bond order =
$$\frac{10-8}{2}$$
 = 1

Thus, bond order is maximum for O_2^+

672 (d)

Patom has sp^3 -hybridization with one position occupied by lone pair of electron.

673 **(b)**

A characteristic of resonance.

674 **(b)**

Covalent compounds have lower m.p. and b.p. than ionic one.

676 **(d)**

It is a reason for given fact.

677 **(b)**

 ClO_3^- has sp^3 -hybridization with one lone pair of electron.

678 (d)

Greater the stability of oxide, greater is the case of its formation. Generally ionic oxides are more $|_{686}$ (c) stable than covalent oxides and among the given metals only Ca form ionic oxide. Hence, Ca has greater tendency to form oxide.

679 (c)

Higher the charge/size ratio, more is the polarising power.

$$K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$$

680 **(d)**

He has $1s^2$ configuration.

681 (a)

Water molecules has following structure

Therefore, there are 4 pairs of electrons (2 lone pairs and 2-bond pairs) in the valence shell of 0atom in water molecule.

682 (a)

Total electrons in valence shell of nitrogen and hydrogen.

$$H \times_{\bullet N_{\bullet}} \times_{H}$$
 \times
 H

∴ Total electrons in NH₃=5+1+1+1=8

683 (d)

The electronic configuration of carbon is $1s^2, 2s^22p^2$.

684 (c)

Number of hybrid orbitals = no. of bp + no. of lp= 5 + 1 = 6

Thus, hybridization is sp^3d^2 but geometry, due to the presence of one pair, is square pyramidal, ie

685 (c)

(i)N₂ (14 electrons) $=KK^*, \sigma 2s^2, \sigma 2s^2, \pi 2p_x^2 \approx \pi 2p_y^2, \sigma 2p_z^2$

Bond Order =
$$\frac{1}{2}(N_b - N_a)$$

= $\frac{1}{2}(8 - 2) = 3$

(ii)N₂⁺ (13 electrons)

=
$$KK^*$$
, $\sigma 2s^2$, $\sigma 2s^2$, $\sigma 2p_x^2 \approx \pi 2p_y^2$, $\sigma 2p_z^1$

Bond Order =
$$\frac{1}{2}(7-2)=2.5$$

Since, bond dissociation energy \propto bond order. Hence, bond dissociation energy of N2 is greater than that of the bond dissociation energy of N_2^+ .

Bond angles in BeCl₂, NH₃, H₂O and SnCl₂ are 180° , 107° , 104.5° and 119° respectively. Also H_2S , H_2O , H_2Se has sp^3 -hybridization and bond angles of hydrides decreases down the group.

687 **(d)**

LiquidHCl does not from H-bonds

688 (a)

O₂has two unpaired electrons but are paired in 0_2^{2-} .

689 **(b)**

In ethanol the oxygen of -OH group is bonded to the sp^3 hybridised carbon by a sigma bond. The C - O - H bond angle in ethanol is less than the tetrahedral angle (109°, 28") due to larger repulsions between the lone pair of repulsions between the lone pairs of oxygen. Hence, it is 104° in ethanol.

690 (c)

Acetonitrile does not contain sp^2 hybridised carbon.

691 **(b)**

The atomic radii decreases along the period and increases down the gp.

692 **(b)**

SiO₂possesses giant molecular structure due to tetra valence and catenation nature of Si.

693 (d)

According to VSEPR theory the bond angle decreases with increase in the size of the valence shell of the central atom because electronegativity decreases. *i. e.*, decreasing order of bond angles is $NH_3 > PH_3 > AsH_3 > SbH_3$

694 **(b)**

Half-filled orbitals are more stable.

695 (a)

In BrF₅ number of electrons = 6 (1 lp+5 bp)

So, the structure is supposed to be square pyramidal but will be distorted because of additional *lp-bp* interaction.

Additional *lp-bp* interaction reduced the all bond angle and do not let any angle to be 90°.

696 **(b)**

Ionisation energy decreases down the group and increases along the period.

697 (a)

Smaller is size of anion, lesser is its polarization, more is ionic nature, more is lattice energy.

698 (c)

Among the given species, the bond dissociation energy of C-O bond is minimum in case of CO_3^{2-} by which C-O bond become more weaker in CO_3^{2-} or the bond order of CO_3^{2-} (1.33) is minimum so, the bond become weaker

Peroxide ion in O_2^2

$$0_2^{2-}(18) = \sigma 1s^2$$
, ${}^*_{\sigma}1s^2$, ${}_{\sigma}2s^2$, ${}^*_{\sigma}2s^2$, $\sigma 2p_z^2$
 $\pi 2p_x^2 = \pi 2p_y^2$, ${}^*_{\pi}2p_x^2 = {}^*_{\pi}2p_y^2$

Bond order =
$$\frac{N_b - N_a}{2} = \frac{10 - 8}{2} = 1$$

It contains four completely filled antibonding molecular orbitals. Since, all the electrons are paired, O_2^{2-} is diamagnetic.

Peroxide ion is isoelectronic with argon, not with neon.

701 **(b)**

$$BF_3: sp^2NO_2^-: sp^2NH_3: sp^3NH_2^-: sp^3H_2O: sp^3$$

702 **(b)**

Multiplicity in bonds decreases bond length.

703 (a

$$0_2^{2-}$$
 (Total number of electrons =18)
 $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2$

$$= \pi 2p_y^2 \quad {}^*_{\pi} 2p_x^2 = \quad {}^*_{\pi} 2p_y^2$$

704 **(d)** IF₇

 sp^3d^3 hybridisation in excited state

Inclined at 72°

with one each other

ABCDE plane

seven sp^3d^3 hybrid orbitals

forming σ - bonds with F-atoms,

Pentagonal bipyramidal structure

705 **(b)**

In C_2 , only 2π bonds are present

706 **(b)**

NH₄⁺has angle of 109°28′.

707 **(b)**

$$\begin{split} &\frac{1}{2}\text{Cl}_{2}(\text{g}) \to \text{Cl}^{-}(aq) \\ &\Delta H = \frac{1}{2}\Delta H_{\text{diss}}(\text{Cl}_{2}) + \Delta H_{\text{EA}}\text{Cl} + \Delta H_{\text{hyd}}(\text{Cl}^{-}) \\ &= \frac{240}{2} - 349 - 381 \\ &= -610 \text{ kJ mol}^{-1} \end{split}$$

708 **(b)**

The position at which substituent is present, is called *ipso*-position.

Chlorobenzene

The hybridisation of *ipso*-carbon in chlorobenzene is sp^2 .

709 (c)

Electronegativity difference between N (3,0) and Cl (3.0) is zero and hence, N - Cl bonds are nonpolar. As a result, the overall dipole moment of NCl₃ molecule and its direction is just the dipole moment of the lone pair of electrons

On the other hand, N-Br, (3.0-2.8), N-I(3.0-2.5) and N-H(3.0-2.1) are polar and hence, contribute towards the overall dipole moment of the respective moleculas. Since, the EN difference is higher in case of N-H bonds, therefore, NH_3 has the higher dipole moment

710 **(c)**

CHCl₃molecule has largest dipole moment among the given species.

711 **(d)**

In O_2 , there are two electrons in antibonding orbitals. Removal of one electron from the O_2 molecular gives O_2^+ in which the number of antibonding electrons is one less and hence, BO increases. Thus, removal of the electron from O_2 stabilized the molecule

712 (a)

Mg²⁺is a smaller cation in these. Smaller is cation more is hydration energy.

713 **(b)**

Hydrogen bonding ∝ electronegativity

714 (c)

Larger is anion, more is its polarization.

715 **(c)**

NaFis more ionic; F is smallest anion among all and thus, least polarized.

716 (a)

$$H \xrightarrow{\sigma} C \xrightarrow{\sigma} H \text{ and } 2 \pi$$

Hence, In acetylene, there are 3 σ and 2 π bond.

717 **(d)**

+4 ionic state is not possible for head with iodide because I⁻reduces Pb⁴⁺ to Pb²⁺.

718 (a)

The C-C bond length in sp^3 hybridisation is greater than sp^2 hybridisation due to large size of p-orbitals.

In diamond sp^3 hybridisation is present while in graphite, naphthalene and fullerene sp^2 hybridisation is present therefore the C – C bond length is maximum in diamond.

720 **(d)**

SiO₂structure is definite.

721 (a)

Mo lec ule	Structure	Hybr idisa tion of centr al atom	Lone pair
SF ₄	F F F	sp^3d	One
CF ₄	F F - C - F F	sp^3	Zero
XeF	F Xe F	sp^3d^2	Two

722 (a)

We know that the shape of IF_7 (molecule) is pentagonal bipyramidal because central atom I

have sp^3d^3 hybridisation.

723 (a)

C - C bond length= 1.54 Å

C = C bond length = 1.34 Å

 $C \equiv Cbond length = 1.20^{\circ} Å$

Thus, correct decreasing order C to C bond lengths is

IV > III > I > II

724 **(b)**

Due to larger difference in electronegativity.

725 (d)

Both O and S belong to same group but H₂O is a liquid while H₂S is a gas. This can be explained on the basis of electronegativity. In water due to the high electronegativity of oxygen hydrogen bonds are formed. As a result the molecules of H2O get associate together, hence water exists as a liquid at room temperature. On the other hand, the |730 **(b)** electronegativity of S is less and therefore, hydrogen bonding in H₂S is almost negligible. As a result of which molecules of H2S are not associated and H2S exsists as a gas at room temperature.

726 **(d)**

S = C = S.

727 (d)

The bond angles in sp^3 , sp^2 and sp-hybridization are 109°, 120° and 180° respectively.

728 (d)

In ClO_3^- , Cl is central atom, it is sp^3 hybrid and on 732 (c) electrons lone pair of (free pair of electrons) is present.

Pyramidal shape

In XeF₄, Xe is central atom it is sp^3d^2 hybrid and lone electrons it two pair of on are present.

Square planar

In SF₄, S is central atom and sp^3d -hybridised and lone electrons 736 (d) on it one pair of

is present.

Irregular tetrahedral

In I_3^- , I is central atom and it is sp^3d hybridised and on it three lone pair of electrons are present.

Linear shape

Seven atoms of fluorine are covalently bonded with iodine.

731 **(c)**

Intermolecular hydrogen bonding is found in $(HF)_n$ due to higher electronegativity of fluorine

Hydrogen bonding is helpfull in the association of HF molecule, so HF is found in liquid form.

A species is said to be diamagnetic if it has all electrons paired

Sp eci es	El ect ro ns	MO electronic configurati on	Magnetic behaviour
H ₂	3	$\sigma 1s^2 *_{\sigma} 1s^1$	Paramagnetic
H_2^+	1	$\sigma 1s^1$	Paramagnetic
H_2	2	$\sigma 1s^2$	Diamagnetic
He ₂ ⁺	3	$\sigma 1s^2 {}^*_{\sigma} 1s^1$	Paramagnetic

733 **(b)**

This give rise to polarity in bonds.

734 **(c)**

First electron affinity is energy releasing process.

735 **(b)**

 $Li^-: 1s^2, 2s^2; Be^-: 1s^2, 2s^2, 2p^1$; in Li, addition of electron has taken place in 2s orbital; in Be⁻, addition of electron has taken place in 2p orbital loosing its 2s completely filled configuration. EA_1 for Be is more positive than EA_1 for Li. Thus Be⁻ is least stable.

Bond energy for C—C, N—N, H—H and O—Oare :H-H > C-C > N-N > O-O.

737 **(b)**

The number of lone pair in $XeOF_4$ is one (1). The structure of XeOF₄ is given as follows

738 (c)

BCl₃has six electrons in outer shell of boron atom.

739 **(b)**

H₂Scontain only covalent bonds, electronegativity difference between H and S is only (2.6 - 2.1 = 0.5).

lone pair

740 (c)

CCl₄hassp³-hybridization giving regular tetrahedron geometry. In others the geometry is little distorted inspite of sp^3 -hybridization due to different atoms on the vertices of tetrahedron.

741 **(b)**

P undergoes sp^3d hybridisation in PCl₅ and it has $|_{748}$ **(b)** trigonal bipyramidal structure

Trigonalbipyramidal shape of PCl₅

$$PCl_{5} = [Ne] (sp^{3}d)^{1} (sp^{3}d)^{1} (sp^{3}d)^{1} (sp^{3}d)^{1} (sp^{3}d)^{1}$$

$$\begin{bmatrix} \sigma & | \sigma & | \sigma & | \sigma \\ GI & GI & GI & GI \end{bmatrix}$$

742 (a)

Electronegativity difference in two atoms involved in bonding is a measure of polarity in molecule.

743 (c)

 \equiv C—has2 σ -and 2 π - (thus, *sp*-hybridization); -CH= has 3σ - and 1π - (thus, sp^2 -hybridization). Remember hybridized orbitals do not form π bonds.

744 **(b)**

Fhas 7 electrons in its valence shell. Thus, to attain stability, it should have lost one electron.

745 (a)

In O_2^{2-} , 8 electrons are present in antibonding orbitals

$$\sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_x^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix}$, $\begin{bmatrix} \pi^* p_y^2 \\ \pi^* 2p_z^2 \end{bmatrix}$

746 (a)

 CH_3^+ possesses sp^2 - hybridization.

747 (a)

No doubt NH_3 and BF_3 have sp^3 (pyramidal) and sp^2 (coplanar) hybridization respectively having one lone pair of electron on N atom which is responsible for pyramidal shape of NH₃ inspite of sp^3 hybridization. However, as soon as it is coordinated to BF₃, both attain tetrahedral geometry and acquire sp^3 -hybridization.

Nitrogen molecule has highest bond energy due to presence of triple bond

749 **(b)**

P₄O₆has following structure.

Thus, every P-atom is linked to 3 oxygen atoms.

750 (d)

Bond energy ∝ Bond order

751 (a)

In XeF₆, the oxidation state of Xe is +6. The shape of XeF₆ should be pentagonal bipyramid due to sp^3d^3 hybridisation but due tothe presence of one lone pair at one *trans* position its shape becomes distorted octahedral.

752 (a)

CN⁻ and NO⁺both have same number of electrons and same bond order (3).

753 **(b)**

Bond length $\propto \frac{1}{\text{bond order}}$

754 (c)

 sp^3 -hybridization leads to tetrahedral geometry.

756 **(b**)

Alkali metals are most electropositive elements.

757 **(b)**

Anions are always larger than parent atom; cations are always lesser than parent atom.

758 **(c)**

Total number = $4 \rightarrow sp^3$ hybridisation

Total number = $5 \rightarrow sp^3 d$ hybridisation

Total number = $6 \rightarrow sp^3 d^2$ hybridisation

759 (a)

Van der Waals' forces increases in CH₄ to give solid CH₄.

760 **(b)**

As the number of lone pairs of electrons increases, bond angle decreases. Thus, the order of bond angle is

$$NH_4^+ > NH_3 > NH_2^-$$

(no lp) (1 lp) (2 lp)

761 **(b)**

$$BeCl_2-sp$$
, BF_3-sp^2 ; NH_3-sp^3 ; XeF_2-sp^3d

762 **(a)**

 ${\rm Cl-P-Clbond}$ angles in ${\rm PCl_5}$ molecule are 120° and 90°. ${\rm PCl_5}$, having sp^3d hybridised P atom (trigonal bipyramidal geometry) has two types of bonds; axial and equatorial. The two types of bond have different bond lengths 1, 2, 3 and 4 equatorial bonds and 4, 5 axial bonds.

763 **(b)**

Both BF_4^- and NH_4^+ have sp^3 -hybridisation and therefore possess tetrahedral geometry.

 $NF_3 : sp^3BCl_3 : sp^2$ $BF_3 : sp^2BrCl_3 : sp^3d$ $BF_4^- : sp^3NH_3 : sp^3$ $NH_4^+ : sp^3NO_3^- : sp^2$

764 **(a)**

Each possesses 18 electrons.

766 (d)

$$He_2^+(B. O. = 0.5) < O_2^-(B. O. = 1.5)$$

 $< NO(B. O. = 2.5) < C_2^{2-}(B. O. = 3.0)$

768 (d)

In SO_3 molecules, S-atom remains sp^2 hybrid, hence, it has trigonal planar structure

769 (d)

 $BCl_3 = 3\sigma \text{ bonds} + 0lp \text{ of} e^- = 3 \Longrightarrow$ sp²hybridisation

 $NCl_3 = 3\sigma \text{ bonds} + 1lp \text{ of } e^- = 4 \implies$

771 **(b)**

N is sp^2 -hybridized in NO $_3$.

772 **(d)**

The ionic radius increases down the group.

773 **(b)**

The formula of MX_3 shows the presence of 3σbonds. Since, it has T-shape geometry, it must contain 2 lone pairs as

774 (a)

Except NO⁻ (16 electrons), rest all have 14 electrons.

776 **(c)**

Ethyl alcohol forms stronger H-bonds than ethylamine or ammonia due to greater 784 (b) electronegativity of oxygen than nitrogen atom. Diethyl ether, however, does not form H-bonds since, it does not have a H-atom attached to Oatom.

778 (c)

Carbon in CO_2 has sp-hybridization.

In both CH₄and CCl₄, sp³hybridisation is present and both have tetrahedral geometry.

781 (a)

As the s-character increases in hybrid orbitals, bond energy increases, size of the hybridized orbital decreases. s-characters in sp, sp^2 and sp^3 are 1/2, 1/3, 1/4 respectively.

782 **(b)**

NH₄Clcontains ionic, covalent and coordinate linkage.

sp³hybridisation

783 (a)

 P_4O_{10} is

The Born-Haber cycle takes place as follows

Hence, Z is M^+X^- (s)

785 (a)

S atom is larger in size than O and F.

786 (d)

$$N_2(7 + 7 = 14) = \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2p_x^2$$

 $\approx \pi 2p_y^2, \sigma 2p_z^2$
Bond order $= \frac{10-4}{2} = 3$

$$N_2^+(7+7-1=13)$$

$$= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2p_x^2$$

 $=\pi 2p_{\nu}^{2}, \sigma 2p_{\pi}^{1}$ (paramagnetic)

Bond order =
$$\frac{9-4}{2}$$
 = 2.5

Since, N_2^+ has less bond, then N — Nbond gets weak

$$0_2(8+8=16)$$

$$=\sigma1s^2,\sigma^*1s^2,\sigma2s^2,\sigma^*2s^2,\sigma2p_z^2,\pi2p_x^2$$

$$\approx \pi 2 p_y^2, \pi^* 2 p_x^1 \approx \pi^* 2 p_y^1$$

Bond order =
$$\frac{10-6}{2}$$
 = 2

$$0^+_2(8+8-1=15)$$

=
$$\sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2$

$$\approx \pi 2 p_y^2, \pi^* 2 p_x^1$$

Bond order =
$$\frac{10-5}{2}$$
 = 2.5

Thus, in the formation of O_2^+ from

 O_2 , paramagnetism decreases but the bond order increases

787 (a)

In an antibonding molecular orbital, most of the electron density is located away from the space between the nuclei, as a result of which there is a nodal plane (*i.e.*, a plane at which the electron density is zero) between the nuclei.

788 (d)

	Speci	Hybridisa	Lone	Bondin
	es	tion of Xe	pair on	g pairs
			Xe	
(a)	XeO_3	$ \begin{array}{c} sp^3 \\ sp^3 d^2 \\ sp^3 d^3 \end{array} $	1	3
(b)	XeF ₄	sp^3d^2	2	4
(c)	XeF ₆	sp^3d^3	1	6
(d)	XeF ₂	sp^3d	3	2
		•	(Max.)	

789 **(b)**

Boiling point of HF is highest due to H-bonding. For other halogen acids boiling point increase in the order HCl < HBR < HI. Therefore, most volatile (with Lower b.pt.) is HCl.

790 **(b)**

The MO electronic configuration of

$$0^{-}_{2}(8+8+1=17)$$

$$= \sigma 1s^2, \quad {}^*_\sigma 1s^2, \sigma 2s^2, \quad {}^*_\sigma 2s^2, \sigma 2p_z^2, \pi 2p_x^2$$

$$\approx \pi 2p_{y}^{2}$$
, $\pi^{2}2p_{x}^{2}$, $\approx \pi^{2}2p_{y}^{1}$

Bond order =
$$\frac{N_{b-N_a}}{2}$$

$$=\frac{10^2-7}{2}=1.5$$

791 **(d)**

Multiplicity in bonds decreases bond lengths.

792 (a)

Both NH_4^+ and BF_4^- have sp^3 -hybridization.

793 (a)

 ${
m NH_3}$ molecule has three fold axis of symmetry because it has sp^3 hybridisation but due to presence of one lone pair of electron it has pyramidal structure.

794 **(b)**

Basic character of hydrides decreases down the gp.

795 **(b)**

NO is paramagnetic in nature

796 **(d)**

Cation radius increases down the group.

797 (a)

According to Born-lande equation

$$U = \frac{Z^+ Z^- e^2 \operatorname{An}}{r_{\text{node}}} \left(\frac{1}{n} - 1\right)$$

Where , U is lattice energy

 $r_{
m node}$ is interionic distance

$$: U \propto \frac{1}{\text{interionic disance}}$$

 \therefore Ions should be of small size to have high lattice energy.

798 **(d)**

Dipole moment of CH₃OH is maximum in these.

799 **(b)**

Intermolecular H-bonding gives rise to an increase in b.p.

800 **(b)**

H₃BO₃ has structure

Boron has three bonds thus sp^2 hybridised. Each oxygen has two bonds and two

801 (d)

Species having same hybridisation show similar geometry.

 SO_4^{2-} :Hybridisation of $S \rightarrow sp^3$

 ClO_4^- :Hybridisation of $Cl \rightarrow sp^3$

802 (c)

Anions are larger in size than their parent atom.

803 (c)

Na⁺andCl⁻ are formed.

804 **(b)**

: $-CH_3$ has sp^3 hybridisation.

805 **(c)**

Glycerol and ethanol both have intermolecular hydrogen bonding but in glycerol (CH₂OH. CHOH. CH₂OH) hydrogen bonds per molecule is more than ethanol (C2H5OH). It increases attraction between the molecules and hence, glycerol is more viscous than ethanol.

806 (a)

Larger anion is more polarised.

807 (a)

In $_{\pi 2P_x}^*$ orbital, two nodal planes are present.

808 (d)

Hydrogen bond is formed between molecules of compounds having O, F and N with H.

H----shydrogen fluoride hydrogen sulphide (d)

- : H₂Sdoes not have O, F or N.
- ∴ It does not form hydrogen bond.

810 (a)

NaF has maximum melting point, melting point decreases with increases in size of halide ion and their bond energy get lower

s-orbitals never go for lateral overlapping because of non-directional nature.

812 (d)

The metallic character is found in iodine as well as in astatine (At). Note that metallic character increases down the group.

813 **(b)**

Ionization energy increases along the period and decreases down the group. Also (b) has $[Ne]3s^2, 3p^3, i.e.$, half filled configuration, being more stable and thus, have high ionization energy.

814 (a)

The correct option is O_2^{2-} . This species has $18 \mid 823$ **(b)**

electrons, which are filled in such a way that all molecular orbitals are fully filled, so diamagnetic.

$$\sigma 1s^{2} \quad {}^{*}_{\sigma} 1s^{2} , \sigma 2s^{2} \quad {}^{*}_{\sigma} 2s^{2} \sigma 2p_{z}^{2} , \pi 2p_{x}^{2}$$

$$= \pi 2p_{y}^{2} , \quad {}^{*}_{\pi} 2p_{x}^{2} = \quad {}^{*}_{\pi} 2p_{y}^{2}$$

815 (a)

Water is an universal solvent.

816 (a)

According to Fajan's rule, as the charge on cation increase its size decreases. As a result its tendency to polarise anion increases. This brings and covalent character more more electrovalent compounds.

- : AmongAlCl₃, LaCl₃, MgCl₂andCsClsize ofAl³⁺is smallest.
- ∴ Al³⁺polarises anion to highest extent.
- : AlCl₃has maximum covalent character.

817 (a)

C₆H₆has regular hexagonal geometry.

818 **(c)** SF₆has six S–F bonds.

819 (a)

Resonating structure can be written only for such molecules in which multiple bonds are presents, $eg, 0_3$

820 (d)

According to Born-Haber cycle the enthalpy of formation (ΔH_f) of an ionic compound may be given as

$$\Delta H_f = S + \frac{1}{2}D + I + E + U$$

Where, I = ionisation energy

S = sublimation energy

E = electron affinity

D = dissociation energy

U= lattice energy of compound

Born-Haber cycle is used to determine the lattice energy of the compound. It also may be used to calculate electron affinity of an element.

821 **(c)**

Element C has electronic structure $1s^2$, $2s^2$, $2p^5$, it requires only one electron to complete its octet and it will form anion so it will form electrovalent bond

822 (a)

Hatom has 1s¹ configuration. Shielding effect is property of penultimate shell electrons.

 NO_2^+ : The species is linear with sp-hybridisation.

$$O = \stackrel{+}{\underset{sp}{\text{N}}} = O$$

 NO_3^- : The species is trigonal planar with sp^2 -hybridisation.

 $\mathrm{NH_4^+}$: The species is tetrahedral with sp^3 -hybridisation.

824 (d)

Both C and N⁺ have six electrons.

825 (a)

According to Fajans' rule, polarization of anion is influenced by charge of cation, size of cation. More is the charge on cation, more is polarization of anion.

826 (b)

Smaller cation causes more polarization of anion.

827 (a)

Bond order = $\frac{1}{2}$ [no. of bonding electrons-no. of antibonding electron]

828 (c)

Pauling work on chemical bonding.

829 (a)

All have linear structure

$$O = C = O$$
, $Cl - Hg - Cl$, $H - C \equiv C - H$

830 **(d)**

A characteristic of metallic bonding.

831 (a)

Due to larger differences in electronegativity.

833 **(b)**

 SF_4 has sp^3d –hybridization. Rest all have sp^3 -hybridization.

834 (a)

NO has 15 electrons.

835 (d)

Ti⁺has 21 electrons in it. Rest all have 10 electrons.

836 (a)

 O_2^- has one unpaired electron.

837 (a)

Structure of ammonia is pyramidal (Distorted from tetrahedral to pyramidal due to repulsion

between lone pair and bond pair of electrons).

838 **(b)**

 Cl_2 involves3p - 3p overlapping.

839 **(b)**

Only Sulphur has *d*-orbitals.

840 (c)

 ClO_4^- has sp^3 -hybridization on Cl atom.

841 (d)

Due to dipole moment intermolecular forces of attraction becomes stronger and thus, liquefaction becomes easier.

842 (d)

 ${\rm sp}^3 d$ -hybridisation leads to trigonal bipyramidal geometry if no lone pair is present, e.g., ${\rm PCl}_5$; in ${\rm ClF}_3$ geometry is T-shaped due to the presence of two lone pair of electron. In ${\rm XeF}_2$, geometry is linear due to the presence of three lone pair of electrons.

843 (a)

Due to the presence of lone pair on N atom.

844 **(a)**

 B_2 : Total electrons = 10

Configuration : $\sigma 1s^2$ $^*_{\sigma}1s^2\sigma 2s^2$ $^*_{\sigma}2s^2\pi 2p_x^1=\pi 2p_y^1$

If Hund's rule is violated, then

$$\sigma 1s^2 \quad {}^*_{\sigma} 1s^2 \sigma 2s^2 \quad {}^*_{\sigma} \quad 2s^2 \pi 2p_x^2 = \pi 2p_y^0$$

So, diamagnetic

Bond order = $\frac{6-4}{2}$ = 1

845 (a)

Bonding molecular orbitals possess lower energy levels than antibonding orbitals.

846 **(a)**

Be²⁺is smallest and Na⁺ has largest radius.

847 **(b)**

Hydrogen bond is strongest in HF due to higher electronegativity of F.

848 (d)

The structure of $\rm H_2O$ is angular V-shape and has sp^3 - hybridisation and bond angle is 105°. Its dipole moment value is positive or more than zero.

But in BeF₂, structure is linear due to sp-

hybridisation ($\mu = 0$). Thus, due to $\mu > 0$, H_2O is dipolar and due to $\mu = 0$, BeF₂ is non-polar.

849 (d)

These are factors on which effective nuclear charge depends.

850 (a)

$$5(\text{on P}) + 4(\text{on H}) - 1 = 8.$$

851 **(b)**

Phosphoric acid has 3 - OH groups, which are involved in hydrogen bonding.

The type of hydrogen bonding, found , is 861 (d) intermolecular. Due to this, it is syrupy.

852 (c)

853 **(b)**

The metals have low ionization energy. In a piece of metal many free electrons are found which move form one atom to other. The presence of mobile electrons or oscillation of loose electrons are responsible for metallic lusture.

854 (c)

Same spin electrons in two atoms do not take part in bonding.

855 **(b)**

Molecule	Hybridisation
SO_3	sp^2
C_2H_2	
C_2H_4	sp^2
CH ₄	$egin{array}{c} sp \ sp^2 \ sp^3 \end{array}$
CO_2	sp

Hence, the hybrid state of S in SO_3 is similar to that of C in C₂H₄.

856 (d)

 IO_3^- , XeO_3 , (sp^3) hybridisation) pyramidal PF_6^- , SF_6 (sp^3d^2) octahedral $BH_4^-, NH_4^+, SiF_4(sp^3)$ tetrahedral $CO_3^{2-}(sp^2)$ trigonal planar

 $NO_3^-(sp^2)$ trigonal planar

 $SF_4(sp^3d)see - saw$

Hence, SiF₄and SF₄ are not isostructural (same structure).

857 **(b)**

 PCl_3 has sp^3 -hybridisation and possesses one lone pair on P-atom and three bond pair of electron

859 (c)

N atom in NH₃ provides electron pair to H⁺ to form coordinate or dative bond $(H_3N \rightarrow H)$.

Due to H-bonding, $V_{ice} > V_{water}$.

862 **(b)**

The covalent compounds have low melting point due to weaker forces of attraction among them as compared to strong forces of attraction in ionic compounds.

: HCl is covalent compound among CsF, HCl HF and Li

(CsF, HF and LiF are ionic compounds)

: HCl has minimum boiling point.

863 **(b)**

- (i) Hybridisation $=\frac{1}{2}$ (no. of e^- in valence shell of central atom + no. of monovalent atoms + charge on anion - charge on cation)
- (ii) Shape or geometry of molecule depends on lone pair and bond pair of electrons present in it.

Hybridisation of

N in NH₃ =
$$\frac{1}{2}(5+3+0-0) = 4$$

- \therefore sp^3 hybridisation.
- : It has 3 bond pair and 1 lone pair of electrons, so it has distorted tetrahedron shape.

864 (d)

- 24. The bond angle decreases with decrease in electronegativity. It results in decrease in repulsion between bond pair-bond pair electrons and bond angle becomes smaller.
- Between NH³ andH₂O, H₂O has smaller 25. bond angle due to presence of two lone pair of electrons causing more repulsion among electrons as compared of NH³ which has only one lone pair of electron.

Hydrides

$$\mathrm{NH^3H_2O}$$
 $\mathrm{H_2S}$ $\mathrm{H_2Se}$ $\mathrm{H_2Te}$ Bond angles

90°

H₂ Tehas smallest bond angle.

865 (a)

In ionic solids, ions exist at lattice points. In covalent solids atoms lie at lattice points.

107° 105°

866 (c)

In structure (c), all the atoms have complete octet. Thus, it is the correct representation of carbon suboxide

867 **(b)**

Smaller is atom, more is energy needed to remove electron, *i. e.*, ionisation energy. Also removal of two electrons needs more energy.

868 (d)

Born-Haber cycle inter-relates the various energy terms involved in ionic bonding.

869 (a)

$$BF_3(sp^2)$$
, $NO_2^-(sp^2)$, $NH_2^-(sp^3)$ and $H_2O(sp^3)$.

870 (c)

 sp^3 hybridisation Tetrahedron

molecule

 dsp^2 hybridisation Square planar

molecule

 sp^3d hybridisation Trigonal

bipyramidal molecule

 sp^3d^2 or d^2sp^3 Octahedron

molecule

hybridisation

871 **(b)**

Total number of unshared electrons = $4 \times 4 = 16$

872 (d)

Ionisation energy order is B < C < 0 < N.

873 **(d)**

Given,

observed dipole moment = 1.03 D

Bond length of HCl molecule, d = 1.275 Å

 $= 1.275 \times 10^{-8} \text{cm}$

Charge of electron, $e^- = 4.8 \times 10^{-10}$ esu

Percentage ionic character = ?

Theoretical value of dipole moment = $e \times d$

 $=4.8 \times 10^{-10} \times 1.275 \times 10^{-8}$ esu.cm

 $= 6.12 \times 10^{-18}$ esu.cm

= 6.12 D

Percentage ionic character

 $=\frac{1}{\text{theoretical value of dipole moment}} \times 100$

$$= \frac{1.03}{6.12} \times 100 = 16.83\%$$

874 **(b**)

Double bond involves the sharing of two electron pairs or four electrons.

875 **(b)**

There are 16 P - 0 bonds in $P_4 O_{10}$.

876 (a)

Difference of electronegativity > 1.7 produces ionic compound.

877 **(a)**

It is a concept.

878 (a)

Low ionisation potential indicates that element can easily lose electron to form cation.

879 (d)

Ionic compounds having lattice energy higher than hydration energy are insoluble in water.

880 (a)

Removal of electron is easier in f-block elements due to more shielding.

881 (d)

Metals and non-metals combine to complete their octet. Since, non-metals have lack of electrons, in order to complete their octet, they gain electrons, consequently, the size of non-metal atom will increase.

 $Metal + Non - metal \rightarrow Electrovalent bond$ (Na⁺)(Cl) NaCl

882 **(d)**

These are characteristics of hydration.

883 (c)

Molecules or ion having no unpaired electrons are diamagnetic, *e. g.*,

$$\text{Li}_2 = 6e^- = \sigma 1s^2$$
, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$

884 (a)

Given electronic configuration of anion
$$X$$
 is $\sigma 1s^2$, ${}^*\sigma 1s^2$, $\sigma 2s^2$, ${}^*\sigma 2s^2$, $\pi 2p_x^2$ = $\pi 2p_y^2$, $\sigma 2p_z^2$, ${}^*\pi 2p_x^1$

∴ Total number of electrons of anion X = 15Hence, the anion Xis N_2^- .

885 (a)

Small cation causes more polarization in anion. Also larger anions are easily polarized by a cation. More is polarization of anion, more is covalent character.

886 (c)

Hydrogen bonding is responsible for their

solubility.

887 (a)

Nehas van der Waals radius larger than covalent radius of fluorine.

888 (c)

As the number of unpaired electrons (lone pair of electrons) increases, bond angle decreases. Thus, the decreasing order of bond angle is

Species : $NO_{2}^{+} > NO_{2} > NO_{2}^{-}$

Bond angle: 180° 135°

889 (a)

Dipole moment of $CH_4 = 0$.

890 (b)

Each has 22 electrons.

891 (d)

CS₂ is linear having zero dipole moment.

892 (a)

Atomic radius decreases along the period, increases down the group.

894 **(b)**

In NH_3 , the N atom contains a one lone pair of 906 **(b)** electrons and three bond pairs in its valence shell. So, it shows sp^3 hybridisation. Due to presence of one lone pair of electron, its shape deviates from tetrahedral because lone pair shows more repulsion than bond pairs.

$$lp - lp > lp - bp > bp - bp$$

So, its shape is pyramidal and angle 107°.

895 (d)

The K_{sp} value of CuS is less than ZnS and thus, ZnS | 907 **(d)** is more soluble. Also sodium salts are highly soluble in water.

896 (c)

Both carbon atoms have 2σ -and 2π -bonds.

897 **(b)**

 $1 \text{debye} = 10^{-18} \text{esu.}$

898 (c)

Low ionisation energy indicates that electron can be easily lost and cation formation is easier.

899 **(b)**

The paramagnetic species has unpaired electron

(a)
$$H_2 = 1 + 1 = \sigma 1s^2$$

$$(b)N_2 = 7 + 7 = 14 =$$

$$\sigma 1s^2, \quad {}^*_\sigma 1s^2\,, \sigma 2s^2, \quad {}^*_\sigma 2s^2\,, \pi 2p_x^2 = \pi 2p_y^2, \sigma 2p_z^2$$

$$(c)C0 = 6 + 8 = 14 =$$

$$\sigma 1s^2$$
, ${}^*_{\sigma}1s^2$, $\sigma 2s^2$, ${}^*_{\sigma}2s^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\sigma 2p_z^2$

$$(d)0_2 = 8 + 8 = 16 =$$

$$\sigma 1s^2$$
, $\sigma 1s^2$, $\sigma 2s^2$, $\sigma 2s^2$, $\sigma 2p_z^2$, $\sigma 2p_x^2$

$$\pi 2p_y^2$$
), $({ }^*_{\pi} 2p_x^1 = { }^*_{\pi} 2p_y^1)$

 $: O_2$ molecule has unpaired electrons.

 \therefore O₂molecule is paramagnetic.

901 (c)

C2, N2 and F2 has no unpaired electron in their molecular orbital configuration.

902 (d)

IPof inert gases is maximum.

903 **(d)**

Culoses two electron to form Cu²⁺.

905 (a)

$$0_2^+(15 e^-)$$

$$= KK^*(\sigma 2s)^2 ({}^*\sigma 2s)^2 (\sigma 2p_x)^2, (\pi 2p_y)^2$$

$$= (\pi 2p_z)^2 ({ * 2p_y })^1 = ({ * 2p_z })^0$$

Hence, bond order = $\frac{1}{2}(10 - 5) = 2.5$

$$N_2^+(13 e^-) = KK^*(\sigma 2s)^2 ({}^*\sigma 2s)^2 (\pi 2p_y)^2$$

$$= (\pi 2p_z)^2, (\sigma 2p_x)^1$$

Hence, Bond order = $\frac{1}{2}(9-4) = 2.5$

In XeF_5^+ , Xe atom has only seven electrons ,i.e., $5s^2$ $5p^5$. Here two 5p electrons are promoted to 5d-sublevel. Then 5s, three 5p and two 5d orbitals hybridize to give six sp^3d^2 hybrid orbitals in an octahedral geometry. Out of these five orbitals are singly occupied which form sigma bonds with five F atoms. The sixth hybrid orbital is occupied by a lone pair in trans position giving a square pyramid structure.

HOMO, means highest occupied molecular orbital and in CO (14 electron ion), σ bonding molecular orbital in HOMO

CO =
$$\sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\pi 2p_x^2$
= $\pi 2p_y^2$, $\sigma 2p_z^2$

909 (c)

Sulphur is sp^2 hybridised in SO_2 .

$$S = 1s^2, 2s^22p^6, 3s^23p^43d^0$$

Due to sp^2 -hybridisation and presence of one lone pair of electronsSO₂ has angular geometry.

 N_2O , CO_2 and CO, Among all have sphybridisation.

910 (c)

Coordinate bonding involves sharing of an electron pair provided by a donor to acceptor

911 (a)

In the structure of P_4O_{10} , each phosphorus atom is covalently linked with three oxygen atoms and each oxygen atom is bonded to two phosphorus atoms. Each phosphorus atom is also linked with an additional oxygen atom with the help of a 920 (c) coordinate linkage by lone pair of electron present on P atom.

912 (d)

$$H_2C = C = CH_2$$
 or Allene (C_3H_4)

НН

Ш

$$H - C = C = C - H$$

It has 2 double and 4 single bonds

913 **(b)**

CsClis ionic.

914 (c)

In NaOH, Na⁺andOH⁻ ions are bonded together by ionic bond while in OH- ion oxygen and hydrogen atoms are bonded together by covalent bond $Na^{+}[0 - H]^{-}$.

915 (d)

Effective nuclear charge increases in this order.

917 (d)

AgBrhas higher lattice energy.

918 (c)

$$r_H = \frac{74}{2} = 37 \text{pm}, \ r_{Cl} = \frac{198}{2} = 99 \text{pm}.$$

B.L. of HCl $\approx r_H + r_{Cl}$

919 **(b)**

A symmetrical molecule have zero dipole moment. The dipole moment of BF3 molecule is zero due to its symmetrical (triangular planar) structure.

The three fluoride atoms lie at the corners of an equilateral triangle with boron at the centre. Thus, the vectorial addition of the dipole moments of the three bonds gives a net sum of zero.

Hence, for a stable molecule the value of bond order must be positive. When bond order is zero the molecule will not exist.

921 **(b)**

Follow Fajans' rule.

922 **(b)**

It is a fact.

923 (a)

In PCl_3 and $POCl_3$, P atom is sp^3 -hybridized.

Square planar geometry has dsp^2 -hybridisation.

925 (c)

Both BrO_3^- and XeO_3 have sp^3 -hybridisation and one lone pair of electron.

926 (a)

HF and CH₃OH shows intermolecular hydrogen bonding.

927 (d)

During hydration of ions in aqueous solution, there exists an attractive force between ions and water molecules, which are polar in nature and acts as dipole. So, hydrogen of ions in aqueous solution is an example ion-dipole interaction.

928 **(c)**

According to Fajan's rule, largest cation and smallest ions form ionic bond

929 (d)

Phosphorus atom is sp^3 hybridised in P_4 usually. Therefore, p-character 75%

930 (c)

 Na^+is cation; Cl^- , PO_4^{3-} are anion.

931 (c)

Ionisation energy decreases down the group.

932 (d)

The characteristics to be observed during removal of II electron.

933 (c)

$$1.(N_2 \rightarrow (\sigma 1s)^2 (^*_{\sigma} 1s)^2 (\sigma 2s)^2 (^*_{\sigma} 2s)^2$$

$$(\sigma 2p_z)^2\,(\pi 2p_x)^2(\pi 2p_y)^2$$

$$\begin{split} & \mathrm{N_{2}^{+}} \longrightarrow (\sigma 1s)^{2} \, (_{\sigma}^{*}1s)^{2} \, (\sigma 2s)^{2} (_{\sigma}^{*}2s)^{2} \\ & (\sigma 2p_{z})^{2} \, (\pi 2p_{x})^{2} (\pi 2p_{y})^{1} \\ & 1.0_{2} \longrightarrow (\sigma 1s)^{2} \, (_{\sigma}^{*}1s)^{2} \, (\sigma 2s)^{2} (_{\sigma}^{*}2s)^{2} \, (\sigma 2p_{z})^{2} \\ & (\sigma 2p_{x})^{2} (\sigma 2p_{y})^{2} (_{\pi}^{*}2p_{x})^{1} (_{\pi}^{*}2p_{y})^{1} \\ & 0_{2}^{+} \longrightarrow (\sigma 1s)^{2} \, (_{\sigma}^{*}1s)^{2} \, (\sigma 2s)^{2} \, (_{\sigma}^{*}2s)^{2} \, (2p_{z})^{2} \\ & (\pi 2p_{x})^{2} (\pi 2p_{y})^{2} (_{\pi}^{*}2p_{x})^{1} \end{split}$$

Since, $\pi 2p_x$ and $\pi 2p_y$ are nearly same in energy, the electrons can be removed from $(\pi 2p_y \text{ or } \pi 2p_x)$ and $({}^*_{\pi 2p_y} \text{ or } {}^*_{\pi 2p_x})$ respectively.

934 **(b)**

Both possess $1s^2$, $2s^22p^6$, $3s^23p^6$ configuration.

936 (d)

The resultant dipole in regular tetrahedron is zero.

937 **(c)**

Smaller the size of cation, more is ionic character, more is attraction among ions.

938 (c)

Given ionic charge = 4.8×10^{-10} e.s.u. and ionic distance = $1\text{Å} = 10^{-8}$ cm. We know that dipole moment = Ionic charge × ionic distance = $(4.8 \times 10^{-10}) \times 10^{-8}$

= $(4.8 \times 10^{-16}) \times 10^{-6}$ = 4.8×10^{-18} e. s. u. per cm

= 4.8debye.

939 (d)

As the *s*-character increases in hybridised orbitals, its electronegativity increases. $spsp^2sp^3$

s-character 50%

25%

940 (d)

 PCl_3 and $AsCl_3$ have sp^3 hybridisation and PF_5 has sp^3d hybridisation. Hence, in group of PCl_3 , $AsCl_3$ and PF_5 all do not have sp^3d hybridisation.

33.3%

942 (d)

Each has 18 electrons.

943 **(b)**

Alkali metals are always univalent.

944 (c)

 $XeF_4hassp^3d^2$ -hybridized Xe atom having two lone pair of electrons and thus, octahedral geometry changes to square planar due to lone pair effect.

945 (d)

 $PCl_5 = sp^3d$ (Trigonal pyramidal)

 $IF_7 = sp^3d^3$ (Pentagonal bipyramidal)

 $H_3O^+ = sp^3(Pyramidal)$

 ${
m ClO_2}=sp^2({
m Angular})$ bond length are shorter than single bond due to resonance.

 $NH_4^+ = sp^3$ (Tetrahedral)

946 (d)

B in BF₃ has sp^2 -hybridization.

947 **(c)**

In metallic bonds, the valence shell electrons are delocalised and shared between many atoms. These delocalised electrons allow the metal atoms to slide past one another without being subjected strong repulsive forces. The malleability and ductility of metals is due to this sliding capacity of the delocalised electrons.

948 **(b)**

949 (a)

A reason for given fact.

950 **(c)**

Benzene nitrile contains 13σ and 5π bonds.

951 (d)

During melting of SiO_2 , the gient network structure held by covalent bonds breaks to give individual molecules of SiO_2 . In contrast, during boiling of H_2O only change of state occurs from liquid to gaseous; during melting of KCN, electrostatic attraction between K^+ and CN^- ions is overcome; during boiling of CF_4 , van der Waals' forces of attraction breaks

952 **(b)**

Ethyl alcohol $\mathrm{C_2H_5OH}$ is soluble in water due to H-bonding.

953 **(b)**

Only p-orbitals give rise to σ -bond (head on overlapping) and π -bond (lateral overlapping).

954 **(b)**

HClandAlCl₃ are covalent but give ions in solution.

955 **(b)**

As a result of more overlapping. Note that π -bonds are formed after σ -has already formed.

956 **(b)**

(a)
$$NH_3 + H^+ \rightarrow NH_4^+$$

 $(3bp + 1lp) \quad (4bp \Rightarrow sp^3 \text{hybridisation})$
 $\Rightarrow sp^3 \text{hybridisation})$

(b)
$$BF_3 + F^- \rightarrow BF_4^-$$

(3 $bp + sp^2$ hybridisation)

$$(4bp \Rightarrow sp^3 \text{hybridisation})$$

(c)
$$H_2O + H^+ \rightarrow H_3O^+$$

$$(2bp + 2lp (3bp + 1lp$$

$$\Rightarrow$$
 sp^3 hybridisation) \Rightarrow sp^3 hybridisation)

(d)
$$CH \equiv CH + 2H_2 \rightarrow CH_3 - CH_3$$

 $sp \quad spsp^3sp^3$

Hence, reaction given in option (b) involves the change of hybridisation from $sp^2 tosp^3$.

957 **(c)**

Lattice energy of BaSO₄ is appreciable high and predominates over hydration energy.

958 (a)

XeinXeOF₄ has sp^3d^2 -hybridization having one lone pair on Xe atom.

960 **(c)**

Due to back bonding in BF₃.

961 (c)

$$N \equiv C - C - C \equiv N$$
 $C_2(CN)_4$ is
 \parallel
 $N \equiv C - C - C \equiv N$

 $C = Cissp^3$ -hybridization and $C \equiv N$ is sp-hybridized.

962 **(c)**

Electron affinity order for halogens is Cl > F > Br > I.

963 (c)

Potash alum is a double salt. Potash alum, K_2SO_4 . $Al_x(SO_4)_3$. $24H_2O$ (given) Ions $AlSO_4$

Therefore, $Al_3(SO_4)_3$ is compound of Al^{3+} and SO_4^{2-} .

On comparing, x=2

Hence, formula of potash alum is

$$= K_2SO_4.Al_2(SO_4)_3.24H_2O$$

964 **(d)**

For KO_2, O_2^- has unpaired electron so, it is paramagnetic.

$$0_2^-(17)$$

$$\sigma^{1}s^{2}$$
, $\sigma^{2}s^{2}$, $\sigma^{2}s^{2}$, $\sigma^{2}s^{2}$, $\sigma^{2}p_{x}^{2}$, $(\sigma^{2}p_{y}^{2} = \sigma^{2}p_{z}^{2})$, $\sigma^{2}p_{y}^{2} = \sigma^{2}p_{z}^{2}$

965 **(c)**

HClexists as $H^{\delta+}$ — $Cl^{\delta-}$ due to difference in electronegativity of H and Cl.

966 (b

Outer shell electrons are referred as valence electrons.

967 **(d)**

Bond order ∝ stability

Species	Bond order
0+	2.5
02	2.0
0_{2}^{-}	1.5
Hence, the order	of stability is

$$0_2^+ > 0_2 > 0_2^-$$

968 **(c)**

Diamond is hard, graphite is soft.

969 (a)

IF₅is square pyramid (sp^3d^2 -hybridisation in I); PCl₅ is trigonal bipyramid (sp^3d -hybridisation in P).

970 (d)

Characteristics of bond order concept.

971 (c)

M.0. configuration of
$$O_2$$
 is $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma^2 2p^2$, σ

972 **(b)**

Bond energy of Cl₂ is highest among all halogen molecules. B.E. of F₂, Cl₂, Br₂, I₂ are 37, 58, 46 and 36 kcal mol⁻¹ respectively.

974 (a)

Bond length
$$\propto \frac{1}{\text{Bond order}}$$

NO⁻ = 16e⁻
= $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_x^2$, $\pi 2p_y^2$
= $\pi 2p_z^2$, ${}^*_{\pi} 2p_y^1$ = ${}^*_{\pi} 2p_z^1$
BO = $\frac{N_{b-}N_a}{2}$

$$=\frac{10-6}{2}=2$$

Similarly BO of NO^+ will be calculated as

$$NO^{+} = 14e^{-}$$

$$BO = \frac{10-4}{2} = 3$$

$$CN^{-} = 14e^{-}$$
, $BO = 3$

BO =
$$\frac{10-4}{2}$$
 = 3
CN⁻ = $14e^-$, BO = 3
CN⁺ = $13e^-$, BO = $\frac{9-4}{2}$ = 2.5

Bond order is least for NO⁻. So, its bond length is 979 (c) highest.

$$CsBr_3 \rightarrow Cs^+ + Br_3^-$$

976 **(c)**

НННН

$$H - C = C - C - C - H$$

Ш

НН

Number of σ bonds in 1-butene are 11.

977 **(b)**

 NO_3^- has sp^2 -hybridization and possesses coplanar or equilateral triangular geometry.

978 **(b)**

CCl₄involves two non-metals C and Cl and thus, bonding is covalent. CaH_2 is an ionic compound as it involves alkaline earth metal.

CaOis basic oxide.

								-							
1)	b	2)	b	3)	b	4)	d	201)	C	202)	C	203)	b	204)	C
5)	b	6)	b	7)	b	8)	a	205)	d	206)	a	207)	d	208)	c
9)	b	10)	b	11)	C	12)	b	209)	a	210)	a	211)	d	212)	C
13)	c	14)	a	15)	a	16)	d	213)	b	214)	d	215)	C	216)	c
17)	b	18)	C	19)	a	20)	c	217)	a	218)	b	219)	C	220)	b
21)	b	22)	a	23)	C	24)	d	221)	b	222)	C	223)	b	224)	C
25)	C	26)	d	27)	b	28)	a	225)	d	226)	a	227)	c	228)	a
29)	c	30)	a	31)	a	32)	a	229)	c	230)	b	231)	a	232)	a
33)	b	34)	d	35)	a	36)	a	233)	d	234)	d	235)	a	236)	c
37)	C	38)	C	39)	b	40)	c	237)	c	238)	d	239)	b	240)	c
41)	b	42)	d	43)	b	44)	c	241)	c	242)	c	243)	a	244)	c
45)	b	46)	a	47)	C	48)	d	245)	c	246)	d	247)	c	248)	b
49)	a	50)	C	51)	C	52)	d	249)	c	250)	b	251)	d	252)	b
53)	a	54)	C	55)	C	56)	b	253)	a	254)	C	255)	b	256)	b
57)	a	58)	b	59)	c	60)	a	257)	b	258)	d	259)	b	260)	c
61)	a	62)	a	63)	C	64)	c	261)	a	262)	b	263)	b	264)	d
65)	a	66)	a	67)	c	68)	c	265)	b	266)	a	267)	d	268)	d
69)	c	70)	a	71)	a	72)	b	269)	b	270)	c	271)	d	272)	b
73)	b	74)	a	75)	a	76)	d	273)	c	274)	d	275)	a	276)	c
77)	a	78)	C	79)	d	80)	d	277)	c	278)	d	279)	a	280)	c
81)	c	82)	b	83)	c	84)	b	281)	a	282)	d	283)	b	284)	a
85)	b	86)	b	87)	c	88)	b	285)	a	286)	c	287)	a	288)	a
89)	d	90)	a	91)	a	92)	c	289)	b	290)	a	291)	c	292)	b
93)	d	94)	d	95)	d	96)	b	293)	b	294)	a	295)	b	296)	d
97)	c	98)	c	99)	d	100)	С	297)	c	298)	c	299)	c	300)	d
101)	c	102)	a	103)	c	104)	d	301)	d	302)	a	303)	c	304)	d
105)	c	106)	d	107)	a	108)	b	305)	d	306)	c	307)	d	308)	d
109)	a	110)	b	111)	d	112)	a	309)	b	310)	c	311)	a	312)	d
113)	a	114)	a	115)	c	116)	a	313)	b	314)	a	315)	c	316)	b
117)	a	118)	a	119)	c	120)	С	317)	a	318)	b	319)	b	320)	a
121)	a	122)	b	123)	b	124)	С	321)	b	322)	b	323)	b	324)	b
125)	d	126)	c	127)	d	128)	b	325)	a	326)	b	327)	a	328)	d
129)	b	130)	a	131)	b	132)	d	329)	b	330)	d	331)	d	332)	b
133)	c	134)	a	135)	a	136)	d	333)	c	334)	b	335)	d	336)	a
137)	a	138)	c	139)	c	140)	С	337)	d	338)	b	339)	b	340)	d
141)	d	142)	a	143)	d	144)	a	341)	b	342)	d	343)	b	344)	a
145)	d	146)	c	147)	a	148)	a	345)	b	346)	c	347)	d	348)	d
149)	c	150)	c	151)	d	152)	a	349)	b	350)	a	351)	c	352)	b
153)	c	154)	c	155)	d	156)	d	353)	b	354)	c	355)	b	356)	d
157)	d	158)	d	159)	b	160)	С	357)	a	358)	c	359)	d	360)	b
161)	d	162)	d	163)	c	164)	a	361)	c	362)	b	363)	d	364)	a
165)	c	166)	b	167)	c	168)	С	365)	a	366)	С	367)	d	368)	a
169)	c	170)	d	171)	d	172)	b	369)	d	370)	С	371)	c	372)	a
173)	a	174)	c	175)	b	176)	d	373)	a	374)	a	375)	a	376)	d
177)	d	178)	c	179)	a	180)	С	377)	a	378)	d	379)	b	380)	d
181)	b	182)	С	183)	b	184)		381)	a	382)	d	383)	d	384)	b
185)	b	186)	d	187)	a	188)		385)	a	386)	a	387)	a	388)	a
189)	b	190)	a	191)	b	192)		389)	b	390)	a	391)	c	392)	a
193)	d	194)	С	195)	d	196)		393)	a	394)	С	395)	c	396)	c
197)	b	198)	d	199)	d	200)		397)	b	398)	d	399)	d	400)	a
,		- ,					.	,				. ,			

401)	b	402)	b	403)	b	404) c	605)	a	606)	a	607)	a	608)	a
405)	d	406)	c	407)	b	408) b	609)	d	610)	c	611)	c	612)	c
409)	b	410)	b	411)	c	412) b	613)	c	614)	b	615)	a	616)	d
413)	c	414)	d	415)	d	416) b	617)	c	618)	c	619)	c	620)	b
417)	c	418)	a	419)	c	420) b	621)	d	622)	a	623)	b	624)	c
421)	d	422)	c	423)	d	424) c	625)	d	626)	d	627)	b	628)	a
425)	a	426)	c	427)	c	428) b	629)	a	630)	b	631)	a	632)	c
429)	b	430)	c	431)	d	432) a	633)	b	634)	a	635)	c	636)	d
433)	d	434)	c	435)	d	436) b	637)	a	638)	C	639)	d	640)	b
437)	b	438)	c	439)	b	440) b	641)	c	642)	b	643)	a	644)	a
441)	b	442)	c	443)	a	444) b	645)	a	646)	b	647)	c	648)	d
445)	a	446)	c	447)	c	448) a	649)	a	650)	b	651)	a	652)	c
449)	b	450)	c	451)	a	452) b	653)	a	654)	b	655)	c	656)	b
453)	d	454)	a	455)	d	456) b	657)	c	658)	d	659)	d	660)	c
457)	c	458)	b	459)	d	460) d	661)	c	662)	a	663)	a	664)	b
461)	b	462)	a	463)	c	464) c	665)	a	666)	b	667)	b	668)	d
465)	a	466)	d	467)	d	468) a	669)	d	670)	C	671)	b	672)	d
469)	d	470)	d	471)	d	472) a	673)	b	674)	b	675)	c	676)	d
473)	b	474)	b	475)	c	476) a	677)	b	678)	d	679)	c	680)	d
477)	d	478)	c	479)	a	480) d	681)	a	682)	a	683)	d	684)	c
481)	b	482)	c	483)	d	484) b	685)	c	686)	c	687)	d	688)	a
485)	c	486)	b	487)	b	488) a	689)	b	690)	C	691)	b	692)	b
489)	c	490)	b	491)	d	492) a	693)	d	694)	b	695)	a	696)	b
493)	c	494)	b	495)	c	496) b	697)	a	698)	c	699)	a	700)	d
497)	C	498)	b	499)	c	500) d	701)	b	702)	b	703)	a	704)	d
501)	d	502)	b	503)	b	504) b	705)	b	706)	b	707)	b	708)	b
505)	c	506)	b	507)	c	508) c	709)	c	710)	c	711)	d	712)	a
509)	c	510)	b	511)	d	512) a	713)	b	714)	c	715)	c	716)	a
513)	b	514)	d	515)	d	516) b	717)	d	718)	a	719)	d	720)	d
517)	a	518)	d	519)	a	520) c	721)	a	722)	a	723)	a	724)	b
521)	a	522)	c	523)	a	524) b	725)	d	726)	d	727)	d	728)	d
525)	d	526)	a	527)	d	528) a	729)	c	730)	b	731)	c	732)	c
529)	d	530)	a	531)	b	532) a	733)	b	734)	C	735)	b	736)	d
533)	b	534)	c	535)	c	536) d	737)	b	738)	c	739)	b	740)	c
537)	a	538)	b	539)	a	540) c	741)	b	742)	a	743)	c	744)	b
541)	a	542)	c	543)	b	544) a	745)	a	746)	a	747)	a	748)	b
545)	b	546)	b	547)	c	548) d	749)	b	750)	d	751)	a	752)	a
549)	c	550)	c	551)	d	552) c	753)	b	754)	C	755)	c	756)	b
553)	b	554)	a	555)	b	556) a	757)	b	758)	C	759)	a	760)	b
557)	c	558)	a	559)	b	560) c	761)	b	762)	a	763)	b	764)	a
561)	c	562)	b	563)	d	564) b	765)	d	766)	d	767)	b	768)	d
565)	c	566)	d	567)	b	568) a	769)	d	770)	C	771)	b	772)	d
569)	b	570)	c	571)	b	572) a	773)	b	774)	a	775)	b	776)	c
573)	a	574)	b	575)	b	576) b	777)	b	778)	C	779)	c	780)	a
577)	b	578)	b	579)	b	580) b	781)	a	782)	b	783)	a	784)	b
581)	a	582)	d	583)	b	584) b	785)	a	786)	d	787)	a	788)	d
585)	c	586)	c	587)	a	588) a	789)	b	790)	b	791)	d	792)	a
589)	c	590)	d	591)	b	592) b	793)	a	794)	b	795)	b	796)	d
593)	c	594)	d	595)	a	596) c	797)	a	798)	d	799)	b	800)	b
597)	c	598)	c	599)	b	•	801)	d	802)	c	803)	c	804)	b
601)	b	602)	c	603)	a	604) b	805)	c	806)	a	807)	a	808)	d

809)	a	810)	a	811)	a	812)	d	897)	b	898)	c	899)	b	900)	c
813)	b	814)	a	815)	a	816)	a	901)	c	902)	d	903)	d	904)	c
817)	a	818)	c	819)	a	820)	d	905)	a	906)	b	907)	d	908)	d
821)	c	822)	a	823)	b	824)	d	909)	C	910)	C	911)	a	912)	d
825)	a	826)	b	827)	a	828)	c	913)	b	914)	C	915)	d	916)	d
829)	a	830)	d	831)	a	832)	a	917)	d	918)	c	919)	b	920)	c
833)	b	834)	a	835)	d	836)	a	921)	b	922)	b	923)	a	924)	c
837)	a	838)	b	839)	b	840)	c	925)	c	926)	a	927)	d	928)	c
841)	d	842)	d	843)	a	844)	a	929)	d	930)	c	931)	c	932)	d
845)	a	846)	a	847)	b	848)	d	933)	C	934)	b	935)	a	936)	d
849)	d	850)	a	851)	b	852)	c	937)	c	938)	c	939)	d	940)	d
853)	b	854)	c	855)	b	856)	d	941)	d	942)	d	943)	b	944)	c
857)	b	858)	a	859)	c	860)	d	945)	d	946)	d	947)	c	948)	b
861)	d	862)	b	863)	b	864)	d	949)	a	950)	c	951)	d	952)	b
865)	a	866)	c	867)	b	868)	d	953)	b	954)	b	955)	b	956)	b
869)	a	870)	c	871)	b	872)	d	957)	c	958)	a	959)	b	960)	c
873)	d	874)	b	875)	b	876)	a	961)	C	962)	C	963)	c	964)	d
877)	a	878)	a	879)	d	880)	a	965)	C	966)	b	967)	d	968)	c
881)	d	882)	d	883)	c	884)	a	969)	a	970)	d	971)	c	972)	b
885)	a	886)	c	887)	a	888)	c	973)	a	974)	a	975)	c	976)	c
889)	a	890)	b	891)	d	892)	a	977)	b	978)	b	979)	c		
893)	c	894)	b	895)	d	896)	c								

Click here to Download more Question Bank for Additional Chapters.

Dear Teachers and Students,

Join School of Educators' exclusive WhatsApp, Telegram, and Signal groups for FREE access to a vast range of educational resources designed to help you achieve 100/100 in exams! Separate groups for teachers and students are available, packed with valuable content to boost your performance.

Additionally, benefit from expert tips, practical advice, and study hacks designed to enhance performance in both CBSE exams and competitive entrance tests.

Don't miss out—join today and take the first step toward academic excellence!

Join the Teachers and Students Group by Clicking the Link Below

Learn more about groups www.schoolofeducators.com

JOIN OUR WHATSAPP GROUPS

FOR FREE EDUCATIONAL RESOURCES

JOIN SCHOOL OF EDUCATORS WHATSAPP GROUPS FOR FREE EDUCATIONAL RESOURCES

We are thrilled to introduce the School of Educators WhatsApp Group, a platform designed exclusively for educators to enhance your teaching & Learning experience and learning outcomes. Here are some of the key benefits you can expect from joining our group:

BENEFITS OF SOE WHATSAPP GROUPS

- **Abundance of Content:** Members gain access to an extensive repository of educational materials tailored to their class level. This includes various formats such as PDFs, Word files, PowerPoint presentations, lesson plans, worksheets, practical tips, viva questions, reference books, smart content, curriculum details, syllabus, marking schemes, exam patterns, and blueprints. This rich assortment of resources enhances teaching and learning experiences.
- Immediate Doubt Resolution: The group facilitates quick clarification of doubts.
 Members can seek assistance by sending messages, and experts promptly respond
 to queries. This real-time interaction fosters a supportive learning environment
 where educators and students can exchange knowledge and address concerns
 effectively.
- Access to Previous Years' Question Papers and Topper Answers: The group provides access to previous years' question papers (PYQ) and exemplary answer scripts of toppers. This resource is invaluable for exam preparation, allowing individuals to familiarize themselves with the exam format, gain insights into scoring techniques, and enhance their performance in assessments.

- Free and Unlimited Resources: Members enjoy the benefit of accessing an array of educational resources without any cost restrictions. Whether its study materials, teaching aids, or assessment tools, the group offers an abundance of resources tailored to individual needs. This accessibility ensures that educators and students have ample support in their academic endeavors without financial constraints.
- **Instant Access to Educational Content:** SOE WhatsApp groups are a platform where teachers can access a wide range of educational content instantly. This includes study materials, notes, sample papers, reference materials, and relevant links shared by group members and moderators.
- **Timely Updates and Reminders:** SOE WhatsApp groups serve as a source of timely updates and reminders about important dates, exam schedules, syllabus changes, and academic events. Teachers can stay informed and well-prepared for upcoming assessments and activities.
- Interactive Learning Environment: Teachers can engage in discussions, ask questions, and seek clarifications within the group, creating an interactive learning environment. This fosters collaboration, peer learning, and knowledge sharing among group members, enhancing understanding and retention of concepts.
- Access to Expert Guidance: SOE WhatsApp groups are moderated by subject matter experts, teachers, or experienced educators can benefit from their guidance, expertise, and insights on various academic topics, exam strategies, and study techniques.

Join the School of Educators WhatsApp Group today and unlock a world of resources, support, and collaboration to take your teaching to new heights. To join, simply click on the group links provided below or send a message to +91-95208-77777 expressing your interest.

Together, let's empower ourselves & Our Students and inspire the next generation of learners.

Best Regards,
Team
School of Educators

Join School of Educators WhatsApp Groups

You will get Pre-Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here. Join Your Subject / Class WhatsApp Group.

Kindergarten to Class XII (For Teachers Only)

Kindergarten

Class 12 (Commerce)

Subject Wise Secondary and Senior Secondary Groups (IX & X For Teachers Only) Secondary Groups (IX & X)

Senior Secondary Groups (XI & XII For Teachers Only)

Other Important Groups (For Teachers & Principal's)

Principal's Group

<u>Teachers Jobs</u>

IIT/NEET

Join School of Educators WhatsApp Groups

You will get Pre-Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here. Join Your Subject / Class WhatsApp Group.

Kindergarten to Class XII (For Students Only)

Subject Wise Secondary and Senior Secondary Groups (IX & X For Students Only) Secondary Groups (IX & X)

Senior Secondary Groups (XI & XII For Students Only)

Groups Rules & Regulations:

To maximize the benefits of these WhatsApp groups, follow these guidelines:

- 1. Share your valuable resources with the group.
- 2. Help your fellow educators by answering their queries.
- 3. Watch and engage with shared videos in the group.
- 4. Distribute WhatsApp group resources among your students.
- 5. Encourage your colleagues to join these groups.

Additional notes:

- 1. Avoid posting messages between 9 PM and 7 AM.
- 2. After sharing resources with students, consider deleting outdated data if necessary.
- 3. It's a NO Nuisance groups, single nuisance and you will be removed.
 - No introductions.
 - No greetings or wish messages.
 - No personal chats or messages.
 - No spam. Or voice calls
 - Share and seek learning resources only.

Please only share and request learning resources. For assistance, contact the helpline via WhatsApp: +91-95208-77777.

Join Premium WhatsApp Groups Ultimate Educational Resources!!

Join our premium groups and just Rs. 1000 and gain access to all our exclusive materials for the entire academic year. Whether you're a student in Class IX, X, XI, or XII, or a teacher for these grades, Artham Resources provides the ultimate tools to enhance learning. Pay now to delve into a world of premium educational content!

Click here for more details

■ Don't Miss Out! Elevate your academic journey with top-notch study materials and secure your path to top scores! Revolutionize your study routine and reach your academic goals with our comprehensive resources. Join now and set yourself up for success!

Best Wishes,

Team
School of Educators & Artham Resources

SKILL MODULES BEING OFFERED IN MIDDLE SCHOOL

Artificial Intelligence

Beauty & Wellness

Design Thinking & Innovation

Financial Literacy

Handicrafts

Information Technology

Marketing/Commercial **Application**

Mass Media - Being Media **Literate**

Travel & Tourism

Coding

Data Science (Class VIII only)

Augmented Reality / Virtual Reality

Digital Citizenship

Life Cycle of Medicine & **Vaccine**

Things you should know about keeping Medicines at home

What to do when Doctor is not around

Humanity & Covid-19

Food Preservation

<u>Baking</u>

<u>Herbal Heritage</u>

<u>Khadi</u>

Mask Making

Mass Media

Making of a Graphic Novel

<u>Embroidery</u>

<u>Embroidery</u>

Rockets

Satellites

<u>Application of</u> <u>Satellites</u>

<u>Photography</u>

SKILL SUBJECTS AT SECONDARY LEVEL (CLASSES IX - X)

Retail

Information Technology

Security

<u>Automotive</u>

Introduction To Financial Markets

Introduction To Tourism

Beauty & Wellness

<u>Agriculture</u>

Food Production

Front Office Operations

Banking & Insurance

Marketing & Sales

Health Care

<u>Apparel</u>

Multi Media

Multi Skill Foundation **Course**

Artificial Intelligence

Physical Activity Trainer

Data Science

Electronics & Hardware (NEW)

Foundation Skills For Sciences (Pharmaceutical & Biotechnology)(NEW)

Design Thinking & Innovation (NEW)

SKILL SUBJECTS AT SR. SEC. LEVEL (CLASSES XI - XII)

Retail

<u>InformationTechnology</u>

Web Application

Automotive

Financial Markets Management

Tourism

Beauty & Wellness

Agriculture

Food Production

Front Office Operations

Banking

Marketing

Insurance

Horticulture

Typography & Comp. **Application**

Geospatial Technology

Electronic Technology

Multi-Media

Taxation

Cost Accounting

Office Procedures & Practices

Shorthand (English)

Shorthand (Hindi)

<u>Air-Conditioning &</u> <u>Refrigeration</u>

Medical Diagnostics

Textile Design

<u>Design</u>

<u>Salesmanship</u>

Business Administration

Food Nutrition & Dietetics

Mass Media Studies

<u>Library & Information</u> Science

Fashion Studies

Applied Mathematics

<u>Yoga</u>

<u>Early Childhood Care &</u> <u>Education</u>

<u>Artificial Intelligence</u>

Data Science

Physical Activity
Trainer(new)

<u>Land Transportation</u> <u>Associate (NEW)</u>

Electronics & Hardware (NEW)

<u>Design Thinking &</u> <u>Innovation (NEW)</u>

Join School of Educators Signal Groups

You will get Pre-Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here. Join Your Subject / Class signal Group.

Kindergarten to Class XII

Class 11 (Science)

Class 11 (Humanities)

Class 11 (Commerce)

Class 12 (Science)

Class 12 (Humanities)

Subject Wise Secondary and Senior Secondary Groups IX & X

Secondary Groups (IX & X)

Hindi-A

IT Code-402

English

Senior Secondary Groups XI & XII

Geography

Sociology

Hindi Elective

Hindi Core

Psychology

Click Here to Join

Home Science

Political Science

Painting

Vocal Music

Click Here to Join

Physical Education

Comp. Science

APP. Mathematics

Legal Studies

French

IIT/NEET

Artifical intelligence

CUET

Join School of Educators CBSE Telegram Groups

Join School of Educators ICSE Telegram Groups

www.educatorsresource.in