

Introduction

- Motivation
 - Provide farmers a tool for classifying corn diseases
- Objective
 - Given a picture of a corn leaf, have a model predict what disease the corn may have
- Result
 - Iteratively optimized a model to score as high as possible on test data while minimizing overfitting

Methodology

• Data:

- 4,100+ labelled pictures of corn
- Image Resolution Range: 256x256 4068x3456
- RGB color channels
- Link: https://www.kaggle.com/datasets/smaranjitghose/corn-or-maize-leaf-disease-dataset

Metrics:

Pixel values on each RGB channel

Tools:

 Pandas, Keras, TensorFlow, ImageDataGenerator, Xception, InceptionResNetV2, NASNetLarge, EfficientNetV2L, VGG16, os, glob, sklearn, PIL, numpy, plotly, seaborn, Excel

Methodology Cont.

- EDA
- Preprocess Images to 128x128 with padding
- Linear Regression Baseline
- Employed Transfer Learning:
 - Weights = imagenet
- First Deep-Learning Trade Study:
 - Explored hyperparameters: Mini-Batch Size, Learning Rate, # Hidden Layers, # Perceptrons Per Layer
- Second Trade Study:
 - Explored hyperparameters: Transfer Learning Model, Activation Function
- Third Trade Study:
 - Explore Hyperparameters: With/without data augmentation, # Epochs

EDA – Data Breakdown

EDA – Data Breakdown Cont.

- Initial # Dimensions: 128x128x3 = **49,152**
- Reduced to **2** Dimensions for visualization
 - Explained Variance Ratio: 38.4%
- Blight & Grey Spot Easily Discernable
- Healthy & Rust Difficult to Discern

Results - Linear Regression Baseline Models

- First fit one LR model to 2 PCA axes:
 - With 'lbfgs' solver: 70% Test Accuracy
- Next fit three models on all original 49,152 features:
 - 1) With 'lbfgs' solver: 80.2% Test Accuracy
 - 2) With 'saga' solver: 80.8% Test Accuracy
 - 3) With 'sag' solver: 80.4% Test Accuracy
- Linear functions do capture most of the detail, but we can do better with DL

Results Cont. - First Trade Study Highlights

- Mini Batch Size: 32 vs 64
- Learning Rate: 0.01 vs 0.001
- Hidden Layers: 4 vs 8
- Perceptrons per Layer: 32 vs 64
- Total Test Cases: 16
- Best Overfit Score: 4.3
 - MBS 64
 - LR 0.01
 - HL 8
 - P/L 32
- Test Accuracy: 89.6

Results Cont. - Second Trade Study Highlights

- Transfer Learning Structure:
 - VGG16
 - EfficentNetV2L
 - NASNetLarge
 - InceptionResNetV2
 - Xception
- Activation Functions:
 - ELU
 - RELU
 - LRELU
- Total Test Cases: 15
- Best Overfit Score: 1.4
 - TLS ENV2L
 - AF ELU
- Test Accuracy: 88.4

Average Test Accuracy VS Transfer Learning Base Model

Average Test Accuracy VS Activation Function

Results Cont. - Third Trade Study Highlights

- Data Augmentation:
 - Rotation range = 355
 - Vertical flip = True
 - Horizontal flip = True
 - Validation split = 0.25
- Epochs:
 - 6, 8, 10
- Total Test Cases: 6
- Best Overfit Score: 2.1
 - No Data Augmentation
 - 6 Epochs
- Test Accuracy: 89.7

Test Accuracy VS Epochs

Conclusions

- Refined Setup:
 - Mini-Batch Size 64
 - Learning Rate 0.01
 - Hidden Layers 8
 - Perceptrons per Layer 32
 - Transfer Learning Structure EfficentNetV2L
 - Activation Function ELU
 - Data Augmentation None
 - Epochs 6

- Original Model:
 - Test Accuracy Score of 89.6
 - Overfit Score of 4.3
- Optimized Model:
 - Test Accuracy Score of 89.7
 - Overfit Score of 2.1

- Corn:
 - A Big Lump with Knobs
 - It has the Juice

Future Work

- Run more intensive trade study on all transfer learning structures
- Experiment with other deep learning structures
- Explore deeper ranges in hyperparameters
- Refined Model to have higher accuracy while maintaining low overfit

Appendix

Trade Study Phase 1

Mini-Batch Size	Learning Rate	# Hidden Layers	# Perceptrons Per Layer	Train Accuracy	Val Accuracy	Test Accuracy	Overfit Score
32	1.00E-02	4	32	90.4	82	82.1	8.3
			64	94.6	86	84.4	10.2
		8	32	94.6	90	90	4.6
			64	94.9	89	90.3	4.6
	1.00E-03	4	32	98.3	89	90.8	7.5
			64	99.1	90	90.9	8.2
		8	32	97.2	88	89.8	7.4
			64	98	88	89.6	8.4
64	1.00E-02	4	32	96.7	90	89.4	7.3
			64	96.8	89	89.7	7.1
		8	32	93.9	89	89.6	4.3
			64	95.1	88	89.3	5.8
	1.00E-03	4	32	98.4	89	90.3	8.1
			64	99.6	89	90	9.6
		8	32	98.2	90	90.6	7.6
			64	99	89	91.2	7.8

Appendix

Trade Study Phase 2

Transfer Learning Structure	Activation Functions	Train Accuracy	Val Accuracy	Test Accuracy	Overfit Score
	RELU	93.9	89	89.6	4.3
VGG16	LRELU	96.7	89	89.4	7.3
	ELU	95.9	88	90.2	5.7
	RELU	84	83	82.4	1.6
EfficientNetV2L	LRELU	90.7	86	86.2	4.5
	ELU	89.8	88	88.4	1.4
	RELU	73.6	71	71.5	2.1
NASNetLarge	LRELU	66	69	66.8	0.8
	ELU	71.9	64	63.9	8
	RELU	32.3	28	30	2.3
InceptionResNetV2	LRELU	48.2	56	54.5	6.3
	ELU	31.9	28	30	1.9
	RELU	77.8	73	74.5	3.3
Xception	LRELU	80.1	77	75.4	4.7
	ELU	30.7	28	30	0.7

Appendix

Trade Study Phase 3

Data Augmentation	Epochs	Train Accuracy	Val Accuracy	Test Accuracy	Overfit Score
	6	91.8	73	89.7	2.1
No	8	80.3	86	89.4	9.1
	10	93.6	89	89.4	4.2
	6	83.4	80	79.1	4.3
Yes	8	89.8	87	86.9	2.9
	10	89.5	90	87.2	2.3

