# Biomedical Signal Analysis



Hsiao-Lung Chan, Ph.D.

Department of Electrical Engineering,
Chang-Gung University, Taiwan
chanhl@mail.cgu.edu.tw

## **Outline**

- Spectral analysis
- Digital filters



Joseph Fourier lived from 1768 to 1830

**Fourier** studied the mathematical theory of heat conduction. He established the partial differential equation governing heat diffusion and solved it by using infinite series of trigonometric functions.

#### Fourier transform

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

Spectrum at frequency *f* 

Basis function for frequency f

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

#### **Inverse Fourier transform**

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{-j2\pi ft}df$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

## Example

$$x(t) = 10 + 14\cos(2\pi(100)t - \pi/3) + 8\cos(2\pi(250)t + \pi/2)$$



# Magnitude and phase

$$X(f) = |X(f)| e^{j\phi(f)}$$

where magnitude and phase spectra

$$|X(f)| = \sqrt{\{\text{Re}[X(f)]\}^2 + \{\text{Im}[X(f)]\}^2}$$

$$\phi(f) = \tan^{-1} \left\{ \frac{\operatorname{Im}[X(f)]}{\operatorname{Re}[X(f)]} \right\}$$

## % Generating two sinusoids and one DC component

```
fs=2000; % sampling at 2 kHz
t=0:1/fs:0.1;
x=10 + 14*\cos(2*pi*100*t-pi/3) + 4*\cos(2*pi*250*t-pi/2);
subplot(2,2,1)
plot(t,x)
ylabel('x(n)')
xlabel('Time, s')
title('Two sinusoids + DC')
axis([min(t) max(t) min(x)*1.1 max(x)*1.1])
```

```
% Spectral analysis
Xf = fft(x);
resolution=fs/length(Xf);
f=(0:length(Xf)-1)*resolution;
Xf_mag = abs(Xf); % magnitude of spectrum
subplot(2,2,2)
plot(f,Xf_mag)
xlabel('Frequency, Hz')
ylabel('Magnitude')
title('Spectrum')
axis([min(f) max(f) 0 max(Xf_mag)*1.1])
```

```
Xf_phase = angle(Xf);
                                 % phase of spectrum
subplot(2,2,3)
plot(f,Xf_phase)
xlabel('Phase, rad'); ylabel('Phase');
axis([min(f) max(f) min(Xf_phase)*1.1 max(Xf_phase)*1.1])
Xf_phase = unwrap(Xf_phase); % Unwrap phase angle
subplot(2,2,4)
plot(f,Xf_phase)
xlabel('Phase, rad'); ylabel('Unwrap phase');
axis([min(f) max(f) min(Xf_phase)*1.1 max(Xf_phase)*1.1])
```



## Effect of data points on spectral analysis

```
fs=500;
t=0:1/fs:0.3;
x = cos(2*pi*25*t) + cos(2*pi*35*t+pi/10);
Xf=fft(x);
resolution=fs/length(Xf);
f=(0:length(Xf)-1)*resolution;
Xf_power = Xf.*conj(Xf); % power spectral density
index=1:length(Xf)/4;
stem(f(index),Xf_power(index))
```

## Effect of data points on spectral analysis

```
% Improve resolution by increase data length
t=0:1/fs:0.3*5;
x = cos(2*pi*25*t) + cos(2*pi*35*t+pi/10);

Xf=fft(x);
resolution=fs/length(Xf);
f=(0:length(Xf)-1)*resolution;
Xf_power = Xf.*conj(Xf); % power spectral density
index=1:length(Xf)/4;
stem(f(index),Xf_power(index))
```









# Data length: truncation



#### Window functions

#### Rectangular:

$$w(n) = 1$$

#### Blackman:

$$w(n) = 0.42 - 0.5\cos\left(\frac{2\pi n}{N-1}\right) + 0.08\cos\left(\frac{4\pi n}{N-1}\right)$$

#### Hamming:

$$w(n) = 0.54 - 0.46\cos\left(\frac{2\pi n}{N - 1}\right)$$

#### Bartlett (Triangular):

$$w(n) = 0.54 - 0.46\cos\left(\frac{2\pi n}{N-1}\right)$$

$$w(n) = \begin{cases} \frac{2n}{N-1}, & 0 \le n \le \frac{N-1}{2} \\ 2 - \frac{2n}{N-1}, & \frac{N-1}{2} \le n \le N-1 \end{cases}$$

#### Hanning:

$$w(n) = 0.5 - 0.5 \cos\left(\frac{2\pi n}{N - 1}\right)$$



```
fs = 500;
t=0:1/fs:0.3;
x = cos(2*pi*25*t) + cos(2*pi*35*t+pi/10);
Xf = fft(x);
resolution=fs/length(Xf);
f=(0:length(Xf)-1)*resolution;
Xf_power = Xf.*conj(Xf); % power spectral density
index=1:length(Xf)/4;
stem(f(index),Xf_power(index))
% Using Hanning window
x=x.*hanning(length(x))';
Xf = fft(x);
resolution=fs/length(Xf);
f=(0:length(Xf)-1)*resolution;
Xf_power = Xf.*conj(Xf); % power spectral density
index=1:length(Xf)/4;
stem(f(index), Xf_power(index))
```



# Spectrogram of C-Scale



# Spectrogram of LAB SONG



From J.H. McClellan, R.W. Schafer, Signal Processing First, Prentice-Hall, 2003.

## Recorded sound

### **"s" "i" "gn" "al**"



# Fourier transform of signals



# Ideal filters



S. Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", Second Edition, 1998.

## **Z** transform



|                    | Digital signal  | z transform     | Analog signal   |
|--------------------|-----------------|-----------------|-----------------|
| Input signal       | x[n]            | X(z)            | x(t)            |
| Delay one sample   | x[n-1]          | Z -1 X(z)       | x(t-T)          |
| Multiply           | a x[n]          | a X(z)          | a x(t)          |
| Linear combination | a x[n] + b y[n] | a X(z) + b Y(z) | a x(t) + b y(t) |

# Example 1: Perform the running average of last six digital sample

$$y[n] = \frac{x[n] + x[n-1] + x[n-2] + x[n-3] + x[n-4] + x[n-5]}{6}$$

$$Y(z) = \frac{X(z) + z^{-1}X(z) + z^{-2}X(z) + z^{-3}X(z) + z^{-4}X(z) + z^{-5}X(z)}{6}$$

#### Transfer function

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 + z^{-1} + z^{-2} + z^{-3} + z^{-4} + z^{-5}}{6}$$

```
fs = 1000;
t=0:1/fs:0.2;
x = \sin(2*pi*50*t) + 0.5*randn(size(t));
Xf = fft(x);
resolution=fs/length(Xf);
f=(0:length(Xf)-1)*resolution;
Xf_{magnitude} = abs(Xf);
subplot(3,2,2)
index=1:length(Xf_magnitude)/2;
plot(f(index),Xf_magnitude(index))
b=[1/6 1/6 1/6 1/6 1/6 1/6];
a = [1];
NFFT=1024;
[h,f] = freqz(b,a,NFFT);
```

```
f=f/pi*fs/2;
h_magnitude=abs(h);
h_phase=phase(h);
subplot(3,2,3)
plot(f,h_magnitude);
subplot(3,2,4)
plot(f,h_phase);
y=filter(b,a,x);
t=(0:length(y)-1)/fs;
Yf=fft(y);
resolution=fs/length(Yf);
f=(0:length(Yf)-1)*resolution;
Yf_magnitude = abs(Yf);
subplot(3,2,6)
index=1:length(Yf_magnitude)/2;
plot(f(index),Yf_magnitude(index)
```



# Example 2: Perform the average of current data and last filter output

$$y(n) = \frac{y(n-1) + x(n)}{2}$$

$$Y(z) = \frac{z^{-1}Y(z) + X(z)}{2}$$

Transfer function

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{2 - z^{-1}}$$



# Frequency response of example 1 and 2

### Magnitude



From Jonathan W. Valvano, Embedded Microcomputer Systems, real time interfacing, Brooks/Cole, 2000.

# Frequency Response of Example 1 and 2

#### Phase



From Jonathan W. Valvano, Embedded Microcomputer Systems, real time interfacing, Brooks/Cole, 2000.

#### Linear Phase



Modified from L.Ludeman, Fundamentals of digital signal processing, Harper & Row, 1986.

#### **Nonlinear Phase**



Delay 12 samples

Modified from L.Ludeman, Fundamentals of digital signal processing, Harper & Row, 1986.

# Group delay

$$\tau = -\frac{d\phi(\omega)}{d\omega}$$

Linear phase yield constant group delay

## Finite impulse response (FIR) filter

$$y(n) = \sum_{k=0}^{M} b_k x(n-k) \qquad H(z) = \frac{Y(z)}{X(z)} = b_0 + b_1 z^{-1} + b_2 z^{-2} \cdots + b_N z^{-M}$$



• FIR posses linear-phase property if filter coefficients are symmetry or anti-symmetry around the center









Transient. Group delay = filter length / 2

#### Infinite impulse response (IIR) filter

$$\sum_{p=0}^{N} a_p y(n-p) = \sum_{q=0}^{M} b_q x(n-q) \qquad H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{q=0}^{M} b_q z^{-q}}{\sum_{p=0}^{N} a_p z^{-p}}$$







Transient. Group delay is not constant, changed as frequency<sub>Biomedical Signal Analysis 43</sub>

### Butterworth approximation



$$|H(j\omega)|^2 = \frac{1}{1 + (\omega/\omega_c)^{2N}}$$

# Type I Chebyshev approximation



# Type II Chebyshev approximation



## Elliptic approximation



- Equiripple in both passband and stopband
- Meet filter requirements with the lowest order

#### Reference

- J.H. McClellan, R.W. Schafer, M.A. Yoder, Signal Processing First, Prentice Hall, 2003.
- R. Rangayyan, Biomedical Signal Analysis, John Wiely & Sons, 2002.
- J. Semmlow, Circuits, Signals, and Systems for Bioengineers: A MATLAB-Based Introduction, Academic Press, 2005.
- M.J. Roberts, Signals and Systems: Analysis of Signals Through Linear Systems, McGraw-Hill, 2003.