# ЛЕКЦИЯ 12. Сравнение моделей: AIC, BIC и как выбрать лучшую

# Введение

К этому моменту вы построили уже не одну регрессионную модель.

#### Вы научились:

- выбирать переменные,
- применять регуляризацию (Ridge, Lasso),
- следить за значимостью и простотой модели,
- анализировать R<sup>2</sup>, остатки, коэффициенты.

Но когда вы создали несколько моделей, возникает вопрос:

"А какая из них лучшая?"

- Та, у которой выше R<sup>2</sup>?
- Та, у которой меньше переменных?
- Та, у которой коэффициенты "логичнее"?

Выбор не всегда очевиден.

Иногда одна модель объясняет больше, но сложнее.

Другая — проще, но чуть менее точна.

Чтобы сравнивать модели **объективно**, используются специальные метрики:

AIC и BIC.

## **Что такое AIC и BIC?**

Это критерии качества модели, которые:

- учитывают точность модели,
- штрафуют за лишние переменные,

• помогают сравнивать модели с разным числом факторов.

## **AIC (Akaike Information Criterion)**

- Чем ниже АІС, тем лучше модель
- Баланс между точностью и простотой
- Наказывает за "перегруженность"

## **BIC (Bayesian Information Criterion)**

- Похож на АІС, но штрафует сильнее
- Больше подходит, когда у вас много наблюдений
- Тоже: **меньше = лучше**

# Принцип работы

Формулы (упрощённо, без логарифмов):

```
AIC = -2 * логарифм правдоподобия + 2 * k BIC = -2 * логарифм правдоподобия + k * log(n)
```

#### Где:

к — количество параметров модели (включая свободный член),

n — количество наблюдений

Главное — **не считать вручную**, а сравнивать результаты, которые дают системы анализа (например, Python или R).

# Как сравнивать

| Модель     | AIC   | BIC   | Вывод              |
|------------|-------|-------|--------------------|
| Модель 1   | 128.3 | 134.2 | Точнее, но сложнее |
| Модель 2   | 130.1 | 131.5 | Проще, менее точна |
| Победитель | 128.3 | 134.2 | AIC → модель 1     |

# 💪 Пример из курса

Гипотеза: успеваемость зависит от сна, стресса, и мотивации.

#### Выстроили 2 модели:

- Модель А: сон + стресс
- Модель В: сон + стресс + мотивация

| Модель | R <sup>2</sup> | AIC   | Вывод                             |
|--------|----------------|-------|-----------------------------------|
| Α      | 0.68           | 145.2 | Простая, но не самая точная       |
| В      | 0.75           | 140.6 | Чуть сложнее, но заметно<br>лучше |



**У** Вывод: модель В — предпочтительнее (ниже AIC)

# Почему AIC лучше, чем просто R<sup>2</sup>

| Показатель     | Что делает                          | Проблема                                    |
|----------------|-------------------------------------|---------------------------------------------|
| R <sup>2</sup> | Считает, сколько<br>объясняется     | Всегда растёт при добавлении переменных     |
| AIC            | Балансирует точность и<br>сложность | Может быть выше у<br>"перегруженной" модели |
| BIC            | Делает то же, но строже             | Предпочитает простоту                       |

# Где получить AIC и BIC?

| Среда                         | Поддержка                                              |
|-------------------------------|--------------------------------------------------------|
| Python (sklearn, statsmodels) | <b>√</b> Да                                            |
| R                             | <b>√</b> Да                                            |
| Excel, Google Sheets          | ★ Нет напрямую, но можно обсчитать вручную<br>(сложно) |

# В рамках курса можно:

- сравнить R<sup>2</sup> и количество переменных,
- визуально обсудить: "Что проще?", "Что переобучено?",
- объяснить идею AIC и BIC как логики выбора, а не только цифры.

#### ИИ-поддержка

| Инструмент    | Что делает                                                |
|---------------|-----------------------------------------------------------|
| ChatGPT       | Объясняет разницу между AIC и BIC                         |
| Excel Copilot | Помогает визуализировать сравнение моделей                |
| Notion Al     | Формулирует вывод о том, почему выбрана конкретная модель |

# **О** Запрещено:

- Опираться только на R<sup>2</sup> для выбора модели
- Игнорировать сложность модели (10 переменных ≠ лучше)
- Использовать AIC/BIC, не объяснив, что они значат
- Сравнивать модели с разным у (должна быть одна и та же цель)

## Вывод

AIC и BIC — это не "магические числа".

Это инструменты, которые учат выбирать осознанно:

не просто "что лучше объясняет", а "что делает это экономно, ясно и честно".

Это уже мышление зрелого аналитика:

"Не просто построить модель, а выбрать лучшую из возможных."