Low Drop Voltage Tracker

TLE 4251

Features

- Output tracking tolerance ≤ ± 0.2%
- 400 mA output current capability
- Enable Function
- Very low current consumption in OFF mode
- Wide operation range: up to 40 V
- Wide temperature range: 40 °C ≤ T_i ≤ 150 °C
- · Output protected against short circuit
- Overtemperature protection
- Reverse polarity proof

Туре	Ordering Code	Package		
TLE 4251 D	Q67006-A9439	P-TO252-5-1		
TLE 4251 G	Q67006-A9529	P-TO263-5-1		

Functional Description

The **TLE 4251** is a monolithic integrated low-drop voltage tracker in the very small SMD package P-TO252-5-1. It is designed to supply e.g. sensors under the severe conditions of automotive applications. Therefore the device is equipped with additional protection functions against over load, short circuit and reverse polarity.

Supply voltages up to 40 V are tracked to a reference voltage given to the adjust input via an external resistor.

The output is able to drive loads up to 400 mA while it follows e.g. the 5 V output of a main voltage regulator within an accuracy of 0.5%. For loads up to 300 mA the tracking accuracy is 0.2%.

The **TLE 4251** can be switched in stand-by mode via the enable EN input which causes the current consumption to drop to very low values. This feature makes the IC suitable for low power battery applications.

Figure 1 Pin Configuration (top view)

Pin No.	Symbol	Function
1	I	Input voltage
2	EN	Enable, high-active input
3	GND	Ground
4	ADJ	Adjust; connect to the reference voltage via ext. resistor or micro-controller port
5	Q	Output voltage; must be blocked by a capacitor $C_{\rm Q} \ge 22~\mu{\rm F,~ESR} \le 3~\Omega$ to GND

Figure 2 Block Diagram

Absolute Maximum Ratings

 $-40 \, ^{\circ}\text{C} < T_{\text{j}} < 150 \, ^{\circ}\text{C}$

Parameter	Symbol	Limit	Values	Unit	Remarks
		min.	max.		
Input					
Voltage	V_{I}	- 42	45	V	_
Current	I_{I}	_	_	mA	internally limited
Output					
Voltage	V_{Q}	-2	45	V	_
Current	I_{Q}	_	_	mA	internally limited
Adjust					
Voltage	V_{ADJ}	- 42	45	V	_
Current	I_{ADJ}	_	_	μΑ	internally limited
Enable					
Voltage	V_{EN}	- 42	45	V	_
Current	I_{EN}	_	_	μΑ	internally limited
Temperatures					
Junction temperature	$T_{\rm j}$	- 40	150	°C	-
Storage temperature	$T_{ m stg}$	- 50	150	°C	_
Thermal Resistances					
Junction case	R_{thjc}	_	4	K/W	TLE 4251 D
Junction ambient	R_{thja}	_	78	K/W	TLE 4251 D ¹⁾
Junction case	$R_{ m thjc}$	_	3	K/W	TLE 4251 G
Junction ambient	R_{thja}	_	52	K/W	TLE 4251 G ¹⁾

Worst case, regarding peak temperature; zero airflow; mounted an a PCB $80 \times 80 \times 1.5$ mm³, heat sink area 300 mm².

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

Operating Range

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Input voltage	V_{l}	4 ¹⁾	40	V	_
Adjust input voltage	V_{ADJ}	2.5	40	V	_
Adjust input voltage	V_{ADJ}	0	2.5	V	$V_{\rm Q} \le V_{\rm ADJ} + \Delta V_{\rm Q}$
Enable input voltage	V_{EN}	0	40	V	_
Junction temperature	T_{j}	- 40	150	°C	_

¹⁾ $V_{\rm I}$ > $V_{\rm ADJ}$ + $V_{\rm DR}$

Electrical Characteristics

 $V_{\rm I}$ = 13.5 V; 2.5 V \leq $V_{\rm ADJ}$ \leq $V_{\rm I}$ - 0.5 V; - 40 °C < $T_{\rm j}$ < 150 °C; unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
_		min.	typ.	max.		

Output

Output voltage tracking accuracy $\Delta V_{\rm Q} = V_{\rm ADJ} - V_{\rm Q}$	ΔV_{Q}	- 10	_	10	mV	$V_{\rm I}$ < 13.5 V; - 40 °C < $T_{\rm j}$ < 125 °C; 1 mA < $I_{\rm Q}$ < 300 mA
Output voltage tracking accuracy	ΔV_{Q}	- 10	_	10	mV	$6 \text{ V} < V_{\text{I}} < 40 \text{ V}$ $5 \text{ mA} < I_{\text{Q}} < 200 \text{ mA}$
Output voltage tracking accuracy	ΔV_{Q}	- 25	_	25	mV	6 V < V _I < 28 V 1 mA < I _Q < 300 mA
Drop voltage	V_{dr}	_	280	520	mV	$I_{\rm Q}$ = 300 mA; $V_{\rm ADJ}$ > 4 V; Enable ON; ¹⁾
Output current	I_{Q}	400	450	800	mA	$T_{\rm j} \le 125 {}^{\circ}{\rm C}^{1)}$
Output capacitor	C _Q	22	_	_	μF	ESR ≤ 3 Ω at 10 kHz
Current consumption $I_{q} = I_{l} - I_{Q}$	I_{q}	_	10	20	mA	$I_{\rm Q} = 300 \; {\rm mA}$
Current consumption $I_{q} = I_{l} - I_{Q}$	I_{q}	_	230	300	μΑ	$I_{\rm Q}$ < 1 mA $T_{\rm j}$ < 85 °C $V_{\rm EN}$ in ON state

Electrical Characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V; 2.5 V $\leq V_{\rm ADJ} \leq V_{\rm I}$ – 0.5 V; – 40 °C < $T_{\rm j}$ < 150 °C; unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Quiescent current (stand-by) $I_{q} = I_{l} - I_{Q}$	I_{q}	_	0	10	μΑ	$V_{\rm EN}$ = 0 V $T_{\rm j}$ < 85 °C

Regulator Performance

Load regulation	ΔV_{Q}	- 35	± 5	35	mV	$5 \text{ mA} < I_Q < 300 \text{ mA};$
						$V_{\rm I}$ = 6 V, $V_{\rm ADJ}$ = 5 V
Line regulation	ΔV_{Q}	- 25	± 10	25	mV	12 V < V ₁ < 32 V
						$I_{\rm Q}$ = 5 mA
Power-Supply-Ripple-	PSRR	60	_	_	dB	$f_{\rm r}$ = 100 Hz;
Rejection						$V_{\rm r}$ = 5 $V_{\rm PP}$

Adjust Input

Input biasing current	I_{ADJ}	_	0.1	0.5	μΑ	V_{ADJ} = 5 V

Enable

Enable on voltage range	V_{ENON}	2	_	_	V	V_{Q} ON
Enable off voltage range	V_{ENOFF}	_	_	0.5	V	$V_{\rm Q} \le 0.1 \ { m V}$
Input current	I_{EN}	5	40	70	μΑ	V_{EN} = 5 V

 $^{^{\}rm 1)}$ Measured when the output voltage $V_{\rm Q}$ has dropped 100 mV from the nominal value.

Application Information

Figure 3 Application Circuit

Quiescent Current $I_{\rm q}$ versus Output Current $I_{\rm Q}$

Enable Current $I_{\rm EN}$ versus Enable Voltage $V_{\rm EN}$

Tracking Accuracy $\Delta V_{\rm Q}$ versus Temperature $T_{\rm j},\,V_{\rm ADJ}$ = 5 V

Current Consumption $I_{\rm q}$ versus Input Voltage $V_{\rm I},\,V_{\rm ADJ}$ = 5 V

Tracking Accuracy $\Delta V_{\rm Q}$ versus Output Current $I_{\rm Q}$

Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm

Edition 2001-05-07

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München

© Infineon Technologies AG 2001. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.