Funciones y cardinalidad

Clase 15

IIC 1253

Prof. Pedro Bahamondes

Objetivos de la clase

- □ Comprender conceptos de supremo e ínfimo
- □ Comprender conceptos de cardinalidad y equinumerosidad
- □ Demostrar equinumerosidad construyendo biyecciones

Outline

Elementos extremos (continuación)

Funciones

Cardinalidad

Epílogo

Mínimos y máximos

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$ no vacío. Si S tiene un elemento mínimo, este es único.

Ejercicio

Demuestre el teorema.

Ejercicio (★)

Demuestre el resultado análogo para el máximo.

Esto nos permite hablar de el mínimo o el máximo, que denotaremos por min(S) y max(S) respectivamente.

Mínimos y máximos

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$ no vacío. Si S tiene un elemento mínimo, este es único.

Demostración: Formalmente, debemos demostrar que

 $\forall x \in S \forall y \in S(x \text{ es mínimo} \land y \text{ es mínimo} \rightarrow x = y)$

Mínimos y máximos

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$ no vacío. Si S tiene un elemento mínimo, este es único.

Demostración: Formalmente, debemos demostrar que

$$\forall x \in S \forall y \in S(x \text{ es mínimo} \land y \text{ es mínimo} \rightarrow x = y)$$

Por demostración directa, supongamos que S tiene dos mínimos s_1, s_2 . Como son mínimos, $s_1, s_2 \in S$, y también $s_1 \le s_2$ y $s_2 \le s_1$. Como \le es una relación de orden, es antisimétrica, y luego $s_1 = s_2$. Por lo tanto, si hay un mínimo, este es único.

(*) La demostración de unicidad del máximo es completamente análoga.

Vimos que hay conjuntos sin mínimo o máximo. La siguiente definición extiende estos conceptos.

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$. Diremos que s es un **infimo** de S si es una cota inferior, y para cualquier otra cota inferior s' se tiene que $s' \leq s$.

Vimos que hay conjuntos sin mínimo o máximo. La siguiente definición extiende estos conceptos.

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$. Diremos que s es un **infimo** de S si es una cota inferior, y para cualquier otra cota inferior s' se tiene que $s' \leq s$.

El ínfimo es la mayor cota inferior.

Vimos que hay conjuntos sin mínimo o máximo. La siguiente definición extiende estos conceptos.

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$. Diremos que s es un **infimo** de S si es una cota inferior, y para cualquier otra cota inferior s' se tiene que $s' \leq s$.

El ínfimo es la mayor cota inferior.

Análogamente se define el supremo de un conjunto.

Ejercicio

Dé ejemplos de conjuntos que no tengan mínimo pero sí ínfimo, y lo análogo para máximo y supremo.

Ejercicio

Dé ejemplos de conjuntos que no tengan mínimo pero sí ínfimo, y lo análogo para máximo y supremo.

Un ejemplo típico son los intervalos abiertos en el orden (\mathbb{R},\leq) . Por ejemplo, (0,1) no tiene mínimo pero sí infimo, 0; y no tiene máximo pero sí supremo, 1.

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$. Si S tiene supremo o ínfimo, estos son únicos.

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$. Si S tiene supremo o ínfimo, estos son únicos.

Ejercicio (★)

Demuestre el teorema.

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$. Si S tiene supremo o ínfimo, estos son únicos.

Ejercicio (★)

Demuestre el teorema.

Esto nos permite hablar de **el** supremo o **el** ínfimo, que denotaremos por sup(S) e inf(S) respectivamente.

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$. Si S tiene supremo o ínfimo, estos son únicos.

<u>Demostración:</u> de manera similar a la demostración del mínimo, supongamos que S tiene dos supremos s_1 y s_2 . Por definición de supremo, ambos son cotas superiores de S.

Como s_1 es supremo, para toda cota superior s de S se tiene que $s_1 \le s$, pues el supremo es la menor cota superior, y en particular, $s_1 \le s_2$, pues s_2 es cota superior.

Realizando un razonamiento análogo, obtenemos también que $s_2 \le s_1$, y como \le es antisimétrica, se tiene que $s_1 = s_2$. Concluimos entonces que si existe un supremo, este es único.

(*) La demostración de unicidad del ínfimo es completamente análoga.

¿Existen conjuntos acotados inferiormente (superiormente) que no tengan ínfimo (supremo)?

¿Existen conjuntos acotados inferiormente (superiormente) que no tengan ínfimo (supremo)?

■ En los órdenes (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) y (\mathbb{R}, \leq) no existen.

¿Existen conjuntos acotados inferiormente (superiormente) que no tengan ínfimo (supremo)?

- En los órdenes (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) y (\mathbb{R}, \leq) no existen.
- En (\mathbb{Q}, \leq) sí, por ejemplo $S = \{q \in \mathbb{Q} \mid q^2 \leq 2\}$. Este conjunto está acotado superiormente (por ejemplo por 2), pero no tiene supremo en \mathbb{Q} .

¿Existen conjuntos acotados inferiormente (superiormente) que no tengan ínfimo (supremo)?

- En los órdenes (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) y (\mathbb{R}, \leq) no existen.
- En (\mathbb{Q}, \leq) sí, por ejemplo $S = \{q \in \mathbb{Q} \mid q^2 \leq 2\}$. Este conjunto está acotado superiormente (por ejemplo por 2), pero no tiene supremo en \mathbb{Q} . Uno podría estar tentado de decir que el supremo es $\sqrt{2}$, pero $\sqrt{2} \notin \mathbb{Q}$. El supremo debe pertenecer al conjunto sobre el cual está definido el orden.

Definición

Sea (A, \leq) un orden parcial. Este se dice superiormente completo si para cada $S \subseteq A$ no vacío, si S tiene cota superior, entonces tiene supremo.

De manera similar definimos el concepto de ser inferiormente completo.

Dado el ejemplo anterior, tenemos que (\mathbb{Q}, \leq) no es superiormente completo. Una observación importante es que tampoco es inferiormente completo: basta tomar $S' = \{ q \in \mathbb{Q} \mid 0 \leq q \land 2 \leq q^2 \}.$

Esto motiva el siguiente teorema:

Teorema

 (A, \leq) es superiormente completo si y sólo si es inferiormente completo.

Ejercicio

Demuestre el teorema.

Teorema

 (A, \leq) es superiormente completo si y sólo si es inferiormente completo.

<u>Demostración</u>: Demostraremos la dirección hacia la derecha; la otra dirección es análoga y se deja como ejercicio.

Supongamos que (A, \leq) es superiormente completo; es decir, $\forall S \subseteq A$ no vacío, si S está acotado superiormente, tiene supremo. Queremos demostrar que también es inferiormente completo; es decir, $\forall S \subseteq A$ no vacío, si S está acotado inferiormente, tiene ínfimo. Sea entonces $S \subseteq A$ no vacío. Supongamos que está acotado inferiormente. Demostraremos que tiene ínfimo.

Teorema

 (A, \leq) es superiormente completo si y sólo si es inferiormente completo.

Como S está acotado inferiormente, tiene al menos una cota inferior. Tomemos el siguiente conjunto:

$$S_{ci} = \{ a \in A \mid a \text{ es cota inferior de } S \}$$

Es decir, S_{ci} es el conjunto de todas las cotas inferiores de S. Es claro que $S_{ci} \neq \emptyset$. Por otra parte, como todos los elementos de S_{ci} son cotas inferiores de S, por definición de cota inferior se cumple que

$$\forall x \in Sci \quad \forall y \in S \quad x \leq y$$

de donde es claro que S_{ci} está acotado superiormente (por todos los elementos de S). Luego, como (A, \leq) es superiormente completo, S_{ci} tiene supremo, $sup(S_{ci})$, el que por definición es una cota superior de S_{ci} .

Teorema

 (A, \leq) es superiormente completo si y sólo si es inferiormente completo.

Ahora, como todos los elementos de S son cotas superiores de S_{ci} , se cumple que

$$\forall y \in S \quad sup(S_{ci}) \leq y$$

pues el supremo es la menor cota superior. De esto último se deduce que $sup(S_{ci})$ es una cota inferior de S, y como es una cota superior de S_{ci} , es la mayor cota inferior de S, es decir, es el ínfimo de S:

$$inf(S) = sup(S_{ci})$$

Concluimos entonces que (A, \leq) es inferiormente completo.

Outline

Elementos extremos (continuación)

Funciones

Cardinalidad

Epílogo

Definición

Sea f una relación binaria de A en B; es decir, $f \subseteq A \times B$.

Diremos que f es una función de A en B si dado cualquier elemento $a \in A$, si existe un elemento en $b \in B$ tal que afb, este es único:

$$afb \land afc \Rightarrow b = c$$

Si *afb*, escribimos b = f(a).

- b es la imagen de a.
- a es la preimagen de b.

Notación: $f: A \rightarrow B$

Una función $f: A \rightarrow B$ se dice total si todo elemento en A tiene imagen.

- Es decir, si para todo $a \in A$ existe $b \in B$ tal que b = f(a).
- Una función que no sea total se dice parcial.
- Por simplicidad, de ahora en adelante, toda función será total a menos que se especifique lo contrario.

Definición

Diremos que una función $f: A \rightarrow B$ es:

- 1. Inyectiva (o 1-1) si para cada par de elementos $x, y \in A$ se tiene que $f(x) = f(y) \Rightarrow x = y$. Es decir, no existen dos elementos distintos en A con la misma imagen.
- 2. Sobreyectiva (o sobre) si cada elemento $b \in B$ tiene preimagen. Es decir, para todo $b \in B$ existe $a \in A$ tal que b = f(a).
- 3. Biyectiva si es inyectiva y sobreyectiva a la vez.

Paréntesis: relaciones y funciones como conjuntos

Definición

Dada una relación R de A en B, la relación inversa de R es una relación de B en A definida como

$$R^{-1} = \{(b, a) \in B \times A \mid aRb\}$$

Definición

Dada una función f de A en B, diremos que f es invertible si su relación inversa f^{-1} es una función de B en A.

Paréntesis: relaciones y funciones como conjuntos

Definición

Dadas relaciones R de A en B y S de B en C, la composición de R y S es una relación de A en C definida como

$$S \circ R = \{(a, c) \in A \times C \mid \exists b \in B \text{ tal que } aRb \land bSc\}$$

Proposición

Dadas funciones f de A en B y g de B en C, la composición $g \circ f$ es una función de A en C.

Teorema

Si $f:A\to B$ es biyectiva, entonces la relación inversa f^{-1} es una función biyectiva de B en A.

Ejercicio

Demuestre el teorema.

Corolario

Si f es biyectiva, entonces es invertible.

Teorema

Si $f: A \to B$ es biyectiva, entonces la relación inversa f^{-1} es una función biyectiva de B en A.

- 1. <u>Función:</u> Sean $x_1, x_2 \in A$ e $y \in B$ y supongamos que $yf^{-1}x_1$ e $yf^{-1}x_2$. Por definición de relación inversa, esto significa que $x_1 f y$ y $x_2 f y$. Como f es inyectiva, $x_1 = x_2$, y por lo tanto f^{-1} es función.
- 2. <u>Total:</u> Como f es biyectiva, es sobreeyectiva, por lo que para todo $y \in B$ existe $x \in A$ tal que y = f(x). Luego, para todo $y \in B$ existe $x \in A$ tal que $x = f^{-1}(y)$. Concluimos que f^{-1} es total.

Teorema

Si $f: A \to B$ es biyectiva, entonces la relación inversa f^{-1} es una función biyectiva de B en A.

- 3. Inyectiva: Supongamos que $f^{-1}(y_1) = f^{-1}(y_2) = x$, con $y_1, y_2 \in B$ y $x \in A$. Por definición de relación inversa, esto significa que $f(x) = y_1$ y $f(x) = y_2$. Como f es función, $y_1 = y_2$, y por lo tanto f^{-1} es inyectiva.
- 4. <u>Sobre:</u> como f es total, para todo $x \in A$ existe $y \in B$ tal que y = f(x). Luego, para todo $x \in A$ existe $y \in B$ tal que $x = f^{-1}(y)$, y por lo tanto f^{-1} es sobre.

Teorema

Dadas dos funciones $f: A \rightarrow B \ y \ g: B \rightarrow C$:

- 1. Si f y g son inyectivas, entonces $g \circ f$ también lo es.
- 2. Si f y g son sobreyectivas, entonces $g \circ f$ también lo es.

Ejercicio (propuesto ★)

Demuestre el teorema.

Corolario

Si f y g son biyectivas, entonces $g \circ f$ también lo es.

Teorema

Dadas dos funciones $f: A \rightarrow B$ y $g: B \rightarrow C$:

- 1. Si f y g son inyectivas, entonces $g \circ f$ también lo es.
- 2. Si f y g son sobreyectivas, entonces $g \circ f$ también lo es.
- 1. Supongamos que $(g \circ f)(x_1) = (g \circ f)(x_2)$, con $x_1, x_2 \in A$. Por definición de composición, $g(f(x_1)) = g(f(x_2))$. Como g es inyectiva, se tiene que $f(x_1) = f(x_2)$, y como f también es inyectiva, $x_1 = x_2$. Por lo tanto, $g \circ f$ es inyectiva.
- Sea z ∈ C. Como g es sobre, sabemos que existe y ∈ B tal que z = g(y). Similarmente, como f es sobre, sabemos que existe x ∈ A tal que y = f(x). Entonces, tenemos que z = g(y) = g(f(x)) = (g ∘ f)(x), y por lo tanto para cada z ∈ C existe x ∈ A tal que z = (g ∘ f)(x). Concluimos que g ∘ f es sobre.

Funciones

Una aplicación muy importante de las funciones es que nos permiten razonar sobre el tamaño de los conjuntos. Una propiedad interesante sobre los conjuntos finitos es la siguiente:

Principio del palomar

Se tienen m palomas y n palomares, con m > n. Entonces, si se reparten las m palomas en los n palomares, necesariamente existirá un palomar con más de una paloma.

Principio del palomar (matemático)

Si se tiene una función $f: \mathbb{N}_m \to \mathbb{N}_n$ con m > n, la función f no puede ser inyectiva. Es decir, necesariamente existirán $x, y \in \mathbb{N}_m$ tales que $x \neq y$, pero f(x) = f(y).

Funciones

Principio del palomar (para sobreyectividad)

Si se tiene una función $f: \mathbb{N}_m \to \mathbb{N}_n$ con m < n, la función f no puede ser sobreyectiva.

Corolario

La única forma en que una función $f: \mathbb{N}_m \to \mathbb{N}_n$ sea biyectiva es que m = n.

Funciones

Ejemplo

Si en una sala hay 8 personas, entonces este año necesariamente dos de ellas celebrarán su cumpleaños el mismo día de la semana.

Las 8 personas las podemos modelar como el conjunto $P = \{0, \dots, 7\}$ y los días de la semana como el conjunto $S = 0, \dots, 6$. El día de la semana que se celebra el cumpleaños de cada una resulta ser una función de P en S, por el principio de los cajones, esta función no puede ser inyectiva, luego al menos dos personas distintas celebrarán su cumpleaños el mismo día de la semana.

Outline

Elementos extremos (continuación)

Funciones

Cardinalidad

Epílogo

Queremos resolver el problema de determinar el tamaño de un conjunto, es decir, la cantidad de elementos que contiene.

¿Cómo lo hacemos?

Queremos resolver el problema de determinar el tamaño de un conjunto, es decir, la cantidad de elementos que contiene.

¿Cómo lo hacemos?

Ejemplo

¿Cuántos elementos tiene el conjunto $A = \{a, b, c, d, e, f\}$?

Queremos resolver el problema de determinar el tamaño de un conjunto, es decir, la cantidad de elementos que contiene.

¿Cómo lo hacemos?

Ejemplo

¿Cuántos elementos tiene el conjunto $A = \{a, b, c, d, e, f\}$?

Simplemente contamos...tiene 6.

Ejemplo

¿Cuántos elementos tiene el conjunto $A = \{a, b, c, d, e, f\}$?

```
a \rightarrow 1
```

$$b \rightarrow 2$$

$$c \rightarrow 3$$

$$d \rightarrow 4$$

$$e \rightarrow 5$$

$$f \to 6$$

Ejemplo

¿Cuántos elementos tiene el conjunto $A = \{a, b, c, d, e, f\}$?

$$a \rightarrow 1$$

$$b \rightarrow 2$$

$$c \rightarrow 3$$

$$d \rightarrow 4$$

$$e \rightarrow 5$$

$$f \rightarrow 6$$

Estamos estableciendo una correspondencia entre los elementos de A y los números naturales

Definición

Sean A y B dos conjuntos cualesquiera. Diremos que A es equinumeroso con B (o que A tiene el mismo tamaño que B) si existe una función biyectiva $f: A \rightarrow B$. Lo denotamos como

 $A \approx B$

A y B tienen el mismo tamaño si los elementos de A se pueden poner en correspondencia con los de B.

Notemos que \approx es una relación sobre conjuntos.

Teorema

La relación ≈ es una relación de equivalencia.

Ejercicio (propuesto ★)

Demuestre el teorema.

Teorema

La relación ≈ es una relación de equivalencia.

Demostración:

- Refleja: Para todo conjunto A existe $f:A\to A$ tal que $f(a)=a, \ \forall \ a\in A$ es una función biyectiva, por lo que $A\approx A$.
- Simétrica: Sea A, B conjuntos tal que $A \approx B \Rightarrow$ existe $f : A \rightarrow B$ biyectiva, entonces la función $f^{-1} : B \rightarrow A$ es biyectiva y por lo tanto $B \approx A$.
- Transitiva: Sea A, B, C conjuntos tal que $A \approx B$ y $B \approx C$. Por lo tanto, existen $f: A \rightarrow B$ y $g: B \rightarrow C$ biyectivas. Luego $g \circ f: A \rightarrow C$ es una función biyectiva, por lo que $A \approx C$.

Podemos usar conceptos de las relaciones de equivalencia para hablar sobre el tamaño de los conjuntos.

- ¿Por ejemplo?
- Podemos tomar las clases de equivalencia inducidas por ≈.

Definición

La cardinalidad de un conjunto A es su clase de equivalencia bajo ≈:

$$|A| = [A]_{\approx}$$

Ejemplo

¿Cuál es la cardinalidad del conjunto $A = \{a, b, c, d, e, f\}$?

Es fácil notar que $A \approx \{0, 1, 2, 3, 4, 5\}$.

- Entonces, $|A| = [A]_{\approx} = [\{0, 1, 2, 3, 4, 5\}]_{\approx}$.
- Pero nosotros le pusimos un nombre al último conjunto...

$$|A| = [6]_{\approx}$$

Formalizaremos esto y simplificaremos la notación.

Outline

Elementos extremos (continuación)

Funciones

Cardinalidad

Epílogo

Objetivos de la clase

- □ Comprender conceptos de supremo e ínfimo
- □ Comprender conceptos de cardinalidad y equinumerosidad
- □ Demostrar equinumerosidad construyendo biyecciones

