1 Inflating sequence (from the Exam 2017) A sequence $x_1 < x_2 < ... < x_n$ of integers is *inflating* if $x_i - x_{i-1} < x_{i+1} - x_i$ for all 1 < i < n. For example, the sequence 3, 5, 8, 13 is an inflating sequence, since 5 - 3 < 8 - 5 < 13 - 8, whereas 3, 4, 6, 7 is not, since 6 - 4 > 7 - 6.

Given a sequence $X = [x_1, ..., x_n]$ of integers, where $x_1 < x_2 < ... < x_n$, we want to find the longest inflating *subsequence* of X. For example, the sequence 6, 8, 12 is a longest inflating subsequence of 3, 6, 8, 10, 12.

For $1 \le i \le j \le n$, let D(i, j) be the length of the longest inflating subsequence of x_1, \dots, x_j , where x_i and x_j are respectively the second last and last elements in the subsequence. Let D(i, i) = 1 for all i.

1.1 Fill out the table below for the sequence X = [1, 4, 5, 7, 9].

D(i,j)	1	2	3	4	5
1					
2					
3					
4					
5					

1.2 Which of the following recurrences correctly computes D(i, j):

$$\boxed{ \textbf{C} } \qquad D(i,j) = \begin{cases} 1 & \text{if } i=j \\ 1 + \max\{D(\ell,i) \mid 1 \leq \ell \leq i \text{ and } x_i - x_\ell < x_j - x_i\} & \text{otherwise} \end{cases}$$

1.3 Write pseudocode for an algorithm *based on dynamic programming and the recurrence you chose in Question 1.2* that computes the maximum total score you can achieve. The input to your algorithm is an array X[1...n] of increasing integers.

Analyze the space usage and running time of your algorithm in terms of n.