10182100359-郑佳辰-第八周实验练习题

2021年4月20日

1 Week8 Multicollinearity-PCR

1.1 背景描述

数据集来源: Longley's(1967)

我们构造了16个观测的6个自变量,具体请见下表:

1.2 数据描述

变量名	变量含义	变量类型	变量取值范围
(自变量) X1	国民生产总值隐含价格评价指数 (1954=100)	continuous variable	\mathbb{R}^+
(自变量) X2	国民生产总值	continuous variable	\mathbb{R}^+
(自变量) X3	失业人数	continuous variable	\mathbb{R}^+
(自变量) X4	武装力量的规模	continuous variable	\mathbb{R}^+
(自变量) X5	14 岁及以上的非机构人口	continuous variable	\mathbb{R}^+
(自变量) X6	时间 (年份)	continuous variable	\mathbb{R}^+
(因变量) Y	总就业人数	continuous variable	\mathbb{R}^+

1.3 问题

注: 这里使用 $\alpha = 0.05$ 的显著性水平

- 1. 判断所给数据是否具有多重共线性.
- 2. 若具有多重共线性, 选择适当的主成分.
- 3. 对降维后的数据进行回归分析.

1.4 解决方案

Q1:

多重共线性是指自变量 $x_1, x_2, ..., x_p$ 之间不完全线性相关但是相关性很高的情况。此时,虽然可以得到最小二乘估计,但是精度很低。随着自变量之间相关性增加,最小二乘估计结果的方差会增大。

```
[1]: # Import standard packages
    import numpy as np
    import pandas as pd
    import scipy.stats as stats
    import matplotlib.pyplot as plt
    import math
    # Import additional packages
    from itertools import combinations
    import statsmodels.api as sm
    from statsmodels.stats.outliers_influence import variance_inflation_factor
    from sklearn.decomposition import PCA # 进行主成分分析
    alpha = 0.05
    p = 6
    n = 16
    x = pd.read_csv('Project8.csv')
    x.insert(0, 'intercept', np.ones(len(x)))
    data = x.values * 1.0
    df = pd.DataFrame(data)
    print(df.head())
    # 对数据进行分割
    X = data[:,0:p+1]
    Y = data[:,-1]
```

```
0 1 2 3 4 5 6 7
0 1.0 830.0 234289.0 2356.0 1590.0 107608.0 1947.0 60323.0
1 1.0 885.0 259426.0 2325.0 1456.0 108632.0 1948.0 61122.0
2 1.0 882.0 258054.0 3682.0 1616.0 109773.0 1949.0 60171.0
```

```
3 1.0 895.0 284599.0 3351.0 1650.0 110929.0 1950.0 61187.0
4 1.0 962.0 328975.0 2099.0 3099.0 112075.0 1951.0 63221.0
```

```
[2]: # Do the multiple linear regression——对原始数据
# OLS (endog, exog=None, missing='none', hasconst=None) (endog:因变量, exog= 自变量)
model = sm.OLS(Y, X).fit()
beta = model.params
model.summary()
```

/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/scipy/stats/stats.py:1604: UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=16
"anyway, n=%i" % int(n))

[2]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Var	iable:		у	R-sq	 uared:		0.995
Model:			OLS	Adj.	R-squared:		0.992
Method:		Least Squ	ares	F-st	atistic:		330.3
Date:		Tue, 20 Apr	2021	Prob	(F-statisti	lc):	4.98e-10
Time:		22:1	9:01	Log-	Likelihood:		-109.62
No. Obse	rvations:		16	AIC:			233.2
Df Resid	uals:		9	BIC:			238.6
Df Model	:		6				
Covariance Type:		nonro	bust				
======	========		=====	=====	========	:=======	=======
	coet	std err		t	P> t	[0.025	0.975]
const	-3.482e+06	8.9e+05	-3	3.911	0.004	-5.5e+06	-1.47e+06
x1	1.5062	8.491	0	.177	0.863	-17.703	20.715
x2	-0.0358	0.033	-1	.070	0.313	-0.112	0.040
хЗ	-2.0202	0.488	-4	.136	0.003	-3.125	-0.915
x4	-1.0332	0.214	-4	.822	0.001	-1.518	-0.549
x5	-0.051	0.226	-0	.226	0.826	-0.563	0.460
x6	1829.151	455.478	4	.016	0.003	798.788	2859.515

 Omnibus:
 0.749
 Durbin-Watson:
 2.559

 Prob(Omnibus):
 0.688
 Jarque-Bera (JB):
 0.684

 Skew:
 0.420
 Prob(JB):
 0.710

 Kurtosis:
 2.434
 Cond. No.
 4.86e+09

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.86e+09. This might indicate that there are strong multicollinearity or other numerical problems.

数据预处理:

```
[3]: # 对数据进行标准化
    # 自变量 X 的均值
    X_{mean} = []
    for i in range(p):
        X_mean.append(np.mean(X[:, i+1]))
    # 自变量 X 的标准差
    X_L = []
    for i in range(p):
        X_L.append(sum((X[:, i+1] - X_mean[i]) ** 2))
    # 对自变量 X 标准化 (截距项不用标准化)
    X \text{ std} = X * 1.0
    X_{std}[:,1:p+1] = (X[:,1:p+1] - X_{mean}) / np.sqrt(X_L)
    # 对因变量 Y 标准化
    Y_std = (Y - np.mean(Y)) / np.sqrt(sum((Y - np.mean(Y))**2))
    df_std = pd.DataFrame(X_std)
    df_std['Y'] = Y_std
    print(df_std)
```

```
0
                           2
                                     3
                                               4
                                                          5
    1.0 \; -0.446968 \; -0.398513 \; -0.231355 \; -0.377210 \; -0.364354 \; -0.406745 \; -0.367157
0
    1.0 - 0.315375 - 0.333214 - 0.239921 - 0.426926 - 0.326344 - 0.352512 - 0.308415
    2
    1.0 \;\; -0.291449 \;\; -0.267822 \quad 0.043570 \;\; -0.354949 \;\; -0.241084 \;\; -0.244047 \;\; -0.303636
3
    1.0 - 0.131144 - 0.152546 - 0.302366 0.182657 - 0.198546 - 0.189814 - 0.154097
4
    1.0 \; -0.085685 \; -0.105725 \; -0.348509 \quad 0.366311 \; -0.154190 \; -0.135582 \; -0.123366
5
    1.0 - 0.064152 - 0.057964 - 0.365640 0.348873 - 0.086486 - 0.081349 - 0.024114
6
7
    1.0 -0.040226 -0.063868 0.106292 0.275783 -0.044728 -0.027116 -0.114397
8
    1.0 \; -0.011514 \quad 0.025381 \; -0.079939 \quad 0.163735 \; -0.001336 \quad 0.027116 \quad 0.051611
9
    1.0 0.069834 0.081780 -0.102596 0.092871 0.048625 0.081349 0.186740
10 1.0 0.160753 0.143057 -0.071097 0.070980 0.112134 0.135582 0.209678
   1.0 \quad 0.218175 \quad 0.147673 \quad 0.411058 \quad 0.011246 \quad 0.167998 \quad 0.189814 \quad 0.087930
11
12 1.0 0.261242 0.246797 0.171224 -0.020290 0.220557 0.244047 0.245409
13 1.0 0.299524 0.298483 0.203828 -0.034389 0.294868 0.298279 0.312238
14 1.0 0.335413 0.338935 0.445597 -0.012870 0.387070 0.352512 0.295108
15 1.0 0.364124 0.434325 0.224827 0.081740 0.469807 0.406745 0.384802
```

做多元线性回归分析:

先后对未经标准化和已标准化的数据进行回归分析,得到的 $\hat{\beta}$ 分别如表所示。

```
[4]: # Do the multiple linear regression——对标准化后的数据
    model_std = sm.OLS(Y_std, X_std).fit()
    beta std = model std.params
    model_std.summary()
```

/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/sitepackages/scipy/stats/stats.py:1604: UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=16 "anyway, n=%i" % int(n))

[4]: <class 'statsmodels.iolib.summary.Summary'> 11 11 11

OLS Regression Results

Dep. Variable: R-squared: 0.995 У OLS Adj. R-squared: 0.992

Model:

Method:		Least Squ	ares	F-st	atistic:		330.3
Date:		Tue, 20 Apr	2021	Prob	(F-statistic)	:	4.98e-10
Time:		22:1	9:01	Log-	Likelihood:		42.670
No. Obser	rvations:		16	AIC:			-71.34
Df Residu	uals:		9	BIC:			-65.93
Df Model:	:		6				
Covariano	ce Type:	nonro	bust				
=======				=====			
	coe	f std err		t	P> t	[0.025	0.975]
const	-1.128e-1	7 0.006	-2.0	1e-15	1.000	-0.013	0.013
x1	0.046	0.261	(0.177	0.863	-0.544	0.637
x2	-1.013	7 0.948	-:	1.070	0.313	-3.158	1.130
x3	-0.537	5 0.130		4.136	0.003	-0.832	-0.244
x4	-0.204	7 0.042		4.822	0.001	-0.301	-0.109
x5	-0.101	0.448	-(0.226	0.826	-1.114	0.912
x6	2.479	7 0.617	4	4.016	0.003	1.083	3.876
=======			=====	=====		=======	=======
Omnibus:		(.749	Durb	in-Watson:		2.559
Prob(Omnibus):		(.688	Jarq	ue-Bera (JB):		0.684
Skew:		(.420	Prob	(JB):		0.710
Kurtosis:	:	2	2.434	Cond	. No.		206.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

求 $(X^*)^{'}(X^*)$ 矩阵的特征值和特征向量:

如果求得的特征值至少一个非常接近 0,则可以认为存在多重共线性。

[5]: # (X*)'(X*) 矩阵等价于原始矩阵 X 样本相关矩阵

R = df.corr()

R = R.iloc[1:-1,1:-1]

```
# 求 (X*)'(X*) 矩阵, 结果与样本相关矩阵一致
    \# R1 = np.dot(X_std.T, X_std)
    \# R1 = pd.DataFrame(R1[1:,1:])
    R
[5]:
                                3
                                                   5
                                         4
                                                            6
    1 1.000000 0.991589 0.620633 0.464744 0.979163 0.991149
    2 0.991589 1.000000 0.604261 0.446437 0.991090 0.995273
    3 0.620633 0.604261 1.000000 -0.177421 0.686552 0.668257
    4 0.464744 0.446437 -0.177421 1.000000 0.364416 0.417245
    5 0.979163 0.991090 0.686552 0.364416 1.000000 0.993953
    6\ 0.991149\ 0.995273\ 0.668257\ 0.417245\ 0.993953\ 1.000000
[6]: # 求特征值 & 特征向量
    W, V = np.linalg.eig(R)
    W_diag = np.diag(W)
```

```
[6]: # 求特征值 & 特征向量
W, V = np.linalg.eig(R)
W_diag = np.diag(W)
V = V.T # 这里需要转置

print('特征值:', W)
# print(W_diag)
# print(sum(W)) # 验证特征值求和值为 p
# VV = np.dot(V, V.T)
# VV = pd.DataFrame(VV)
# print(VV) # 验证矩阵 V'V 结果为单位阵
```

特征值: [4.60337710e+00 1.17534050e+00 2.03425372e-01 1.49282587e-02 2.55206576e-03 3.76708133e-04]

判断 X 矩阵是否具有多重共线性:

```
[7]: # 定义" 判断多重共线性" 的函数
# 参数: (X_list: 设计矩阵 X, thres_vif: VIF 方法判断多重共线性的阈值, thres_kappa:
→ 特征值方法判断多重共线性的阈值)
def judge_col(X_list, thres_vif, thres_kappa):
    var_num = X_list.shape[1]
    print('VIF 方法判断结果 (阈值为 %d): '% thres_vif)
    vif = [variance_inflation_factor(X_list, i) for i in range(var_num)]
```

```
for i in range(var_num):
       if vif[i] >= thres_vif:
          print('设计矩阵 X 存在多重共线性.')
          break
       elif i == var_num-1:
          print('设计矩阵 X 不存在多重共线性.')
   print('\n特征值判定法判断结果(阈值为 %d): '% thres_kappa)
   kappa = []
   for i in range(var_num):
      kappa.append(np.sqrt(max(W) / W[i]))
   if np.max(kappa) >= thres_kappa:
      print('设计矩阵 X 存在多重共线性, 其中 kappa 值为: %.4f'% np.max(kappa))
   else:
      print('设计矩阵 X 不存在多重共线性, 其中 kappa 值为: %.4f'% np.max(kappa))
# 判断多重共线性
judge_col(X_std[:,1:p+1], 5, 10)
```

VIF 方法判断结果 (阈值为 5): 设计矩阵 X 存在多重共线性.

特征值判定法判断结果 (阈值为 10): 设计矩阵 X 存在多重共线性, 其中 kappa 值为: 110.5442

Q2:

本题需要构造出主成分矩阵,然后利用累计贡献率和特征值选择出适当的要保留的主成分的数量, 并选择出需要保留的主成分。

构造主成分矩阵 Z:

```
[8]: # 构造主成分矩阵 Z
Z = np.dot(X_std[:,1:p+1],V.T)
# ZZ = np.dot(Z.T,Z)
# ZZ = pd.DataFrame(ZZ)
# print(ZZ) # 验证主成分矩阵 Z 各列之间正交,主对角线元素对应的是特征值
```

```
[9]: D = np.linalg.det(R) print('(X*)\'X* 的行列式: ', D)
```

(X*)'X* 的行列式: 1.5796154862477436e-08

由于 $|(X^*)'(X^*)| \approx 0$, 则存在一个 k, 使得 $\lambda_{k+1}, \dots, \lambda_p$ 均近似为 0. 因此 $\mathbf{z}_{k+1}, \dots, \mathbf{z}_p$ 近似为 **0**

选主成分:

```
[10]: # 对特征值按降序排序
W_srt = W.tolist()
W_srt.sort(reverse=True)
W_idx = np.argsort(-W) # 返回的是元素值降序排序后的索引值的数组
print('特征值为: ', W_srt)
print('排序后特征值对应的原索引值: ', W_idx)
```

特征值为: [4.603377095768392, 1.1753404992571477, 0.20342537240143493, 0.014928258677276958, 0.002552065763074821, 0.0003767081326775469] 排序后特征值对应的原索引值: [0 1 2 3 4 5]

```
[11]: # 绘制主成分的累计贡献率 (响应变量中解释的方差百分比) 与组件数量的碎石图 comp = range(0, p+1) # 主成分的累计贡献率 (计算方差百分比) summ = 0 W_sum = [0] for i in range(p): summ += W_srt[i] W_sum.append(summ / p) plt.plot(comp, W_sum) plt.rlabel('Number of PCR components') plt.ylabel('Percent Variance Explained in Y') for i,j in zip(comp, W_sum): plt.text(i, j, '%.4f' % float(j))
```



```
[12]: #保留累计贡献率比重大的主成分
      c_pc = 0.8
      cnt = True
      thres = p * c_pc
      while cnt:
          W_sum = 0
          W_summ = W_srt[0]
          for i in range(p-1):
             k1 = i + 1
             W_sum += W_srt[i]
             W_summ += W_srt[i+1]
              # print(i, W_sum, W_summ, thres)
              if (W_sum < thres) & (W_summ >= thres):
                  cnt = False
                  break
              elif i == p - 2:
                  cnt = False
                 k1 = i + 1
```

```
break
k1 = k1 + 1
print('保留变量个数为: ', k1)
```

保留变量个数为: 2

```
[13]: # 删除特征值接近于零的主成分
for i in range(p):
    if W_srt[i] < 1:
        k2 = i
        break
print('保留变量个数为: ', k2)
```

保留变量个数为: 2

```
[14]: # 均方误差确定 k
mse = 0
for i in range(p):
    k3 = p
    mse += 1 / W_srt[i]
    print(5 * (i + 1), mse)
    if mse > 5 * (i + 1):
        k3 = i
        break
    elif i == p-1:
        k3 = p
        break
print('保留变量个数 <=', k3)
```

5 0.21723182333231833

10 1.0680490976728447

15 5.983856738553664

20 72.97090604003378

保留变量个数 <= 3

根据选择的累计贡献率、特征值、均方误差三个指标、综上、我们选择保留变量的个数为 2.

Q3:

在设计矩阵 X 具有多重共线性时,选择合适的 k,可以降低回归系数的均方误差。在进行主成分回归时,代码有两种编写方法:一为利用矩阵拆分的原理进行主成分回归,二为直接调用 PCA 库进行主成分分析。以下依次是两种方法的代码。

```
[15]: #矩阵拆分
     k = k1
     list_var1 = W_idx[0:k] # 记录降序排序后的前 k 个主成分
     list_var2 = W_idx[k:]
     # list_var1 = [0,2]
     # list_var2 = [1,3]
     Z_1 = Z[:,list_var1]
     Z_2 = Z[:,list_var2]
     W_diag_1 = np.diag(W_diag[list_var1,list_var1])
     W_diag_2 = np.diag(W_diag[list_var2,list_var2])
     # 按行进行拆分
     V_1 = V[list_var1,:]
     V 2 = V[list var2,:]
     # 的估计
     \# alpha_hat = np.linalg.inv(W_diag) @ Z.T @ Y_std
     alpha1_hat = np.linalg.inv(W_diag_1) @ Z_1.T @ Y_std
     print('系数:', alpha1_hat)
     # 主成分估计
     \# beta_pc = np.dot(V_1.T, alpha1_hat)
     # print(beta_pc)
     # print(V_1.T @ V_1 @ beta_std[1:]) # 验证 PPT 99 页的性质 1
```

系数: [0.44565109 0.11156928]

```
[16]: #使用拆分后的数据用线性回归模型进行建模
X_pc = Z_1
model_pc = sm.OLS(Y_std, X_pc).fit()
model_pc.summary()
```

/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/scipy/stats/stats.py:1604: UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=16
"anyway, n=%i" % int(n))

[16]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

======

Dep. Variable: y R-squared (uncentered):

0.929

Model: OLS Adj. R-squared (uncentered):

0.919

Method: Least Squares F-statistic:

91.43

Date: Tue, 20 Apr 2021 Prob (F-statistic):

9.20e-09

Time: 22:19:03 Log-Likelihood:

20.625

No. Observations: 16 AIC:

-37.25

Df Residuals: 14 BIC:

-35.71

Df Model: 2
Covariance Type: nonrobust

========	=======	========	========		========	=======
	coef	std err	t	P> t	[0.025	0.975]
x1	0.4457	0.033	13.416	0.000	0.374	0.517
x2	0.1116	0.066	1.697	0.112	-0.029	0.253
Omnibus:		0.	210 Durb	in-Watson:		1.919
<pre>Prob(Omnibus):</pre>		0.	900 Jarq	Jarque-Bera (JB):		
Skew: -0.201		201 Prob	Prob(JB):			
Kurtosis: 2.371		371 Cond	Cond. No.			
=======================================						

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

[17]: # 判断多重共线性 【k > 1 时才可能存在多重共线性问题】

judge_col(X_pc, thres_vif=5, thres_kappa=10)

VIF 方法判断结果 (阈值为 5):

设计矩阵 X 不存在多重共线性.

特征值判定法判断结果 (阈值为 10):

设计矩阵 X 不存在多重共线性, 其中 kappa 值为: 1.9790

[18]: # 创建 pca 模型

pca = PCA(n_components=2)

对模型进行训练

 $X_pc_ = X_std * 1.0$

pca.fit(X_pc_)

返回降维后数据

X_pc_ = pca.transform(X_pc_)

使用返回后的数据用线性回归模型进行建模

model_pc_ = sm.OLS(Y_std, X_pc_).fit()

model_pc_.summary()

/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/scipy/stats/stats.py:1604: UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=16
"anyway, n=%i" % int(n))

[18]: <class 'statsmodels.iolib.summary.Summary'>

..

OLS Regression Results

======

Dep. Variable: y R-squared (uncentered):

0.929

Model: OLS Adj. R-squared (uncentered):

0.919

Method: Least Squares F-statistic:

91.43

Date: Tue, 20 Apr 2021 Prob (F-statistic):

9.20e-09

Time: 22:19:03 Log-Likelihood:

20.625

No. Observations: 16 AIC:

-37.25

Df Residuals: 14 BIC:

-35.71

Df Model: 2
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]	
x1	-0.4457	0.033	-13.416	0.000	-0.517	-0.374	
x2	0.1116	0.066	1.697	0.112	-0.029	0.253	
=======		=======	=======	========	.=======	=======	
Omnibus:		0	.210 Dur	bin-Watson:		1.919	
Prob(Omnibus):		0	.900 Jar	que-Bera (JI	0.371		
Skew:		-0	.201 Pro	b(JB):		0.831	
Kurtosis:		2	2.371 Con	d. No.		1.98	

Notes:

[1] R^{2} is computed without centering (uncentered) since the model does not contain a constant.

[2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

[19]: # 判断多重共线性 【k 值大于 1 时才可能存在多重共线性问题】

judge_col(X_pc_, thres_vif=5, thres_kappa=10)

VIF 方法判断结果 (阈值为 5): 设计矩阵 X 不存在多重共线性.

特征值判定法判断结果 (阈值为 10):

设计矩阵 X 不存在多重共线性, 其中 kappa 值为: 1.9790

可以看出,选择合适的 k 用于进行主成分回归,可以使得到的设计矩阵 X 不再具有多重共线性。故主成分回归可用于数据具有多重共线性的情形。