Functional Analysis Homework 4

Deadline: October 7th

1. Problem 1 (4 points)

Let $f \in C_0([0,\infty))$ be a continuous function such that

$$\forall x \in [0, \infty) : \lim_{n \to \infty} f(nx) = 0.$$

Prove that $\lim_{t\to\infty} f(t) = 0$.

Hint: Use Baire's category Theorem similarly to the proof of the Uniform Boundedness Principle.

2. Problem 2 (4 points)

Let X be a normed space. Denote with $c_0(X) = \{(x_n)_{n \in \mathbb{N}} : ||x_n|| \to 0\}$. Show that c_0 is linear. Moreover, given the norm $||x|| = \sup_{n \in \mathbb{N}} ||x_n||$ for $x = (x_n)_{n \in \mathbb{N}} \in c_0(X)$, prove that if X is Banach then $c_0(X)$ is Banach.

3. Problem 3 (6 points)

Let X be Banach and Y be a normed space. Let $(T_n : X \to Y)_{n \in \mathbb{N}}$ be a sequence of continuous and linear operators. Prove the equivalence between the following statements:

- a) For each norm convergent series $\sum_{n=1}^{\infty} x_n$ one has that $T_n(x_n) \to 0$ in norm;
- b) $\sup_{n\in\mathbb{N}} ||T_n|| < \infty$.

Hint: Look at differences of elements x_i and define a new operator with domain $c_0(X)$.

Hint 2: Use the Uniform Boundedness Principle.

4. Problem 4 (6 points)

Let 1 and let <math>q be the Hölder conjugate of p *i.e.*, s.t. $\frac{1}{p} + \frac{1}{q} = 1$. Let X be a Banach space and let $(x_n^*)_{n \in \mathbb{N}}$ a sequence of linear and continuous functionals. Prove the equivalence of the following two statements

- a) Given a series $\sum_{n=1}^{\infty} x_n$ such that $\sum_{n=1}^{\infty} ||x_n||^p < \infty$ (this is known as p-absolutely norm convergence) one has that the series $\sum_{n=1}^{\infty} x^*(x_n)$ converges;
- b) The series $\sum_{n=1}^{\infty} x_n^{\star}$ is q-absolutely norm convergent i.e., $\sum_{n=1}^{\infty} \|x_n^{\star}\|^q < \infty$.

Using the equivalence you just proved, prove that if $(x_n)_{n\in\mathbb{N}}$ is a sequence of scalars then the following assertions are equivalent

- c) $(x_n)_{n\in\mathbb{N}}\in\ell_q;$
- c) for each $(y_n)_{n\in\mathbb{N}}\in\ell_p$ the series $\sum_{n=1}^{\infty}x_ny_n$ converges.