

MIDDLE EAST TECHNICAL UNIVERSITY COMPUTER ENGINEERING DEPARTMENT

CENG 280

Formal Languages and Abstract Machines

Homework 1

Devrim Çavuşoğlu 2010023

Date: April 24, 2022

Question 1

- (a) CFG $G_1 = (V_1, \Sigma, R_1, S)$ for L_1 , where
- $V_1 = \{S\} \cup \Sigma$
- $\Sigma = \{a, b\}$
- $R_1 = \{ S \rightarrow aSbSb \mid bSaSb \mid bSbSa \mid e \}$
- (b) CFG $G_2 = (V_2, \Sigma, R_2, T)$ for L_2 , where
- $V_2 = \{T\} \cup \Sigma$
- $R_2 = \{ T \rightarrow aaTb \mid aTb \mid e \}$
- (c) $M_1 = (\{q_0, q_1\}, \Sigma, V_1, \Delta, q_0, \{q_1\})$ is a PDA accepting L_1 , and transitions Δ are given below and the sketch of the PDA is shown in Figure 1.

$$\Delta = \{ ((q_0, e, e), (q_1, S)), \\ ((q_1, e, S), (q_1, aSbSb)), ((q_1, e, S), (q_1, bSaSb)), \\ ((q_1, e, S), (q_1, bSbSa)), ((q_1, e, S), (q_1, e)), \\ ((q_1, a, a), (q_1, e)), ((q_1, b, b), (q_1, e)) \}$$

Figure 1: PDA M_1 recognizing L_1 .

- (d) CFG $G_3 = (V_3, \Sigma, R_3, Q)$ for L_3 , where
- $V_3 = V_1 \cup V_2 \cup \{Q\}$
- $\bullet \ R_2 = R_1 \cup R_2 \cup \{ Q \to S \mid T \}$

Question 2

(a) Let $L_{G_1} = L(G_1)$ and s = 00111 where $s \in L_{G_1}$. The grammar G_1 is ambiguous as there exists at least two parse trees for s to be generated. The two parsing routes to generate s is given in Table 1.

Rule	Application	Result
$Start \rightarrow S$	Start	S
$S \to AS$	S	AS
$A \rightarrow A1$	AS	A1S
$A \rightarrow 0A1$	A1S	0A11S
$A \rightarrow 01$	0A11S	00111S
$S \to e$	00111S	00111

\mathbf{Rule}	Application	Result
$Start \rightarrow S$	Start	S
$S \to AS$	S	AS
$A \rightarrow 0A1$	AS	0A1S
$A \rightarrow A1$	0A1S	0A11S
$A \rightarrow 01$	0A11S	00111S
$S \to e$	00111S	00111

Table 1: Two different generation path for s.

- (b) Let $G_2 = (V, \Sigma, R', S)$ where $R' = \{S \to SA1 \mid e, A \to 0A1 \mid e\}$, and $L(G_2) = L(G_1)$. The language generated by both grammars are the same; however, G_2 is an unambiguous CFG whereas G_1 is ambiguous.
 - (c) The leftmost derivation of s is given in Table 2 and the parse tree is given in Figure 2.

Rule	Application	Result
$Start \rightarrow S$	Start	S
$S \to SA1$	S	SA1
$S \to e$	SA1	A1
$A \rightarrow 0A1$	A1	0A11
$A \rightarrow 0A1$	0A11	00A111
$A \rightarrow e$	00A111	00111

Table 2: The leftmost derivation for s.

Figure 2: Parse tree for derivation of s by G_2 .