Calcolo delle probabilità e Statistica 2023-24 (G. Caputo)

Indice

1	Lez 1.1	ione 01 - 06/03/2023 Il Gioco della Zara con 2 Dadi	3							
2	Lezione 02 - 08/03/2023									
	2.1	Principio Fondamentale del Calcolo Combinatorio	5							
	2.2	Esempio Ristorante	5							
	2.3	Fattoriale	5							
	2.4	Coifficiente Binomiale	6							
		2.4.1 Calcolare sottoinsiemi con C.B	6							
		2.4.2 Propietà del C.B. con esempi	6							
	2.5	Problema del Contare	7							
	2.6	Tartaglia	7							
3	Lezione 03 - 13/03/2023									
•	3.1	Disposizioni	8							
	0.1	3.1.1 Esempio del gioco del Tris (Disposizione Semplice)	8							
		3.1.2 Esempio Totocalcio (Disposizione con Ripetezione)	8							
		3.1.3 Esempio di Disposizione	9							
	3.2	Permutazioni	9							
	3.3	Permutazioni con Ripezioni	9							
	3.4	Esempi Permutazioni	9							
	3.5	Combinazioni Semplici	10							
	0.0	3.5.1 Esempio Ruota di Napoli (Combinazione Semplici)	10							
	3.6	Combinazioni con Ripetizioni	10							
	3.7	Recap	11							
4	Lez	ione $04 - 15/03/2023$	12							
•	4.1	Riassunto Algebra	12							
	4.2	Cardinalità Insiemi	13							
	1.4	4.2.1 Insieme Finito	13							
		4.2.2 Insieme Numerabile	13							
		4.2.3 Insieme Continuo	13							
	4.3	Classi (Famiglie)	13							
	1.0	<u> </u>	- 0							

5	Lezione 05 - 16-03-2023								
	5.1	Definizioni simboli Insiemestici ed Eventi	14						
	5.2	Algebra e Sigma Algebra	14						
		5.2.1 Osservazioni	14						
		5.2.2 Casi Particolari	15						
	5.3	Propietà (conseguenze)	15						

1 Lezione 01 - 06/03/2023

1.1 Il Gioco della Zara con 2 Dadi

Prevede l'utilizzo di due dadi (nel gioco originale tre), a turno ogni giocatore chiama un numero e lancia i dadi.

Se la somma dei dadi è pari al numero scelto si vince.

2 dadi onesti danno luogo a 2 punteggi da 1 a 6: P_1, P_2 .

Possiamo rappresentiamo graficamente le coppie di tutti i possibili casi:

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)		2	3	4	5	6	7
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)		3	4	5	6	7	8
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)	Z_{2}	4	5	6	7	8	9
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)	\longrightarrow	5	6	7	8	9	10
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)		6	7	8	9	10	11
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)		7	8	9	10	11	12

Possiamo notare che coppie possibili sono 36, poiché ogni dado ha 6 faccie, quindi $6^2 = 6 * 6 = 36$ possibili risultati.

Espriamo il "Lanciare i dadi" come ξ (e tondo) cioè **ESPERIMENTO ALEATO-RIO**.

L'insieme dei possibili risultati di ξ si può esprimere così:

$$\Omega = \{(i, j) : i, j = 1, 2, ..., 6\} = \{(1, 1), (1, 2), ..., (6, 6)\}$$

Questo insieme Ω (omega) prende il nome di **SPAZIO CAMPIONE**.

La coppia $(i, j) \in \Omega$ è chiamato **PUNTO CAMPIONE**.

Per ogni esper. ale. ξ bisogna prendere una **FAMIGLIA DI EVENTI:**

(f tondo)
$$\mathcal{F} = \mathcal{P}(\Omega)$$

In questo caso tutti i possibili sottoinsiemi cioè l'insieme delle parti dello spazio campione.

 Z_2^1 (Zara due) è una funzione che preso un punto campione restituisce la somma delle ordinate, è definita nel suguente modo:

$$Z_2:\Omega\to\mathfrak{R}$$

(tutte le funzioni finiscono sempre in \Re)

Come si può facilmente notare i risultati possibili sono compresi tra 2 e 12 (inclusi). Possiamo formalizzarlo nel seguente modo:

$$S_{Z2} = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

Questo insieme S_{Z_2} prende il nome di **SPETTRO**.

La possibilità di trovare un numero non appartente a questo insieme è nulla.

 $^{^1\}mathrm{Il}$ pedice 2 sta ad indicare che stiamo considerando due dadi, è utile per distunguirlo da un eventuale $Z_3,$ ma può essere anche omesso.

Per calcolare la probabiltà ci basta mettere a rapporto i seguenti dati:

$$\frac{\#^2 \text{OCCORRENZE DI N}}{\# \text{ SPAZIO CAMPIONE}} = \frac{\# Z_2^{-1}(\{N\})}{\# \Omega}$$

Poniamo che voglia sapere la probabilità che la somma dei 2 dadi faccia 4, allora diremo che la LA PROBABILITÀ DELL'EVENTO:

$$\mathcal{P}(Z=4) = \frac{\#Z_2^{-1}(\{4\})}{\#\Omega} = \frac{\#\{(1,3),(2,2),(3,1)\}}{\#\Omega} = \frac{3}{36}$$

(l'antimmagine finisce sempre in $\mathcal{P}(\Omega)$ e mai in Ω)

Possiano notare che il numero con la più alta probabilità è il 7, poiché figura sei volte, quindi $\frac{6}{36}$.

Possiamo rappresentare la probabilità di ogni numero dello spettro:

$$\mathcal{P}(Z=2) = \frac{1}{36} = \mathcal{P}(Z=12)$$

$$\mathcal{P}(Z=3) = \frac{2}{36} = \mathcal{P}(Z=11)$$

$$\mathcal{P}(Z=4) = \frac{3}{36} = \mathcal{P}(Z=10)$$

$$\mathcal{P}(Z=5) = \frac{4}{36} = \mathcal{P}(Z=9)$$

$$\mathcal{P}(Z=6) = \frac{5}{36} = \mathcal{P}(Z=8)$$

$$\mathcal{P}(Z=7) = \frac{6}{36}$$

Inoltre possiamo notare che a parte la diagonale secondaria, la matrice è speculare, cioé ogni numero opposto ha la stessa probabilità di uscire.

Possiamo verificare che la probabilità che esca un numero pari è uguale ai dispari:

$$Pari = 2 * (\frac{1}{36}) + 2 * (\frac{3}{36}) + 2 * (\frac{5}{36}) = \frac{18}{36} = \frac{1}{2}$$

$$Dispari = 2 * (\frac{2}{36}) + 2 * (\frac{4}{36}) + 1 * (\frac{6}{36}) = \frac{18}{36} = \frac{1}{2}$$

Possiamo affermare che, ogni probabilità è compresa tra 0 e 1 e che la probabilità dello spazio campione è **sempre** uguale 1 (condizione di normalizzazzione), cioè la somma delle probabilità di tutti i valori dello spettro dello spazio campione (Ω) deve essere uguale a 1.

 $^{^2\#}$ indica la cardanalità, è usato come sostituto di \parallel

2 Lezione 02 - 08/03/2023

2.1 Principio Fondamentale del Calcolo Combinatorio

Se una procedura di scelta si può suddividere in r sottoprocedure allora il numero n delle possibili scelte è dato da:

$$n = n_1 * n_2 * \dots * n_r$$

Dove i=1,2,...,r rappresenta il numero delle possibili scelte nella sottoprecedura i-sima.

2.2 Esempio Ristorante

Vogliamo sapere quante possibili combinazioni di menù un ristorante può avere date:

- 3 Antipasti (n_1)
- 4 Primi (n_2)
- 3 Secondi (n_3)
- 2 Dolci (n₄)
- Poniamo r=4

Il numero di combinazione possibile è:

$$n_1 * n_2 * n_3 * n_4 = 3 * 4 * 3 * 2 = 72$$

2.3 Fattoriale

Il fattoriale di $n \ge 0$ si esprime come n! ed è definita come il prodotto di tutti i numeri precendenti, definiamo tramite ricorsione:

$$n! = \begin{cases} 1 & \text{SE } n = 0 \\ n * (n-1)! & \text{SE } n > 0 \end{cases}$$

Esempio:

$$6! = 1 * 2 * 3 * 4 * 5 * 6 = 720$$

$$\frac{13!}{11!} = \frac{13 * 12 * \cancel{\cancel{11}}!}{\cancel{\cancel{11}}!} = 13 * 12 = 156$$

2.4 Coifficiente Binomiale

Presi $n \in k$ con $k \leq n$, definiamo il cofficiente binomiale in questo modo (n su k):

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\binom{6}{4} = \frac{6!}{4!(6-4)!} = \frac{6!}{4! * 2!} = \frac{6 * 5 * \cancel{A}!}{\cancel{A}! * 2!} = \frac{\cancel{6}^3 * 5}{\cancel{2}} = 3 * 5 = 15$$

2.4.1 Calcolare sottoinsiemi con C.B.

Un possibile uso del coifficiente binomiale è quello di poter sapere il numero dei sottoinsiemi di ordine k con n valori.

Esempio poniamo di avere un insieme $S = \{1, 2, 3, 4\}$ con cardilinità #S = 4, vogliamo sapere quanti sono tutti i possibili sottoinsiemi di ordine due:

$$\binom{4}{2} = \frac{4!}{2! * (4-2)!} = \frac{\cancel{4}^2 * 3 * \cancel{2}!}{\cancel{2} * \cancel{2}!} = 2 * 3 = 6$$

$$T = \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\} \# T = 6$$

2.4.2 Propietà del C.B. con esempi

Andiamo ad elencare alcune propietà del coifficiente binomiale con i rispettivi esempi:

Propietà 01

$$\binom{n}{n} = 1 = \binom{n}{0}$$

$$\binom{5}{5} = \frac{5!}{5! * (5-5)!} = 1$$

$$\binom{5}{0} = \frac{5!}{0!} = \frac{5!}{0!(5-0)!} = \frac{5!}{1*5!} = \frac{1}{1} = 1$$

Propietà 02

$$\binom{n}{n-1} = n$$

$$\binom{5}{4} = \frac{5 * \cancel{A}!}{\cancel{A}! * (5-4)!} = 5$$

Propietà 03

$$\binom{n}{k} = \binom{n}{n-k}$$

DIM:

$$\binom{n}{n-k} = \frac{n!}{(n-k)!*(n-(n-k))!} = \frac{n!}{(n-k)!*(\varkappa-\varkappa+k)!} = \frac{n!}{(n-k)!*k!} = \binom{n}{k}$$

$$\binom{12}{4} = \frac{12!}{4! * (12 - 4)!} = \frac{\cancel{2}\cancel{3} * 11 * \cancel{1}\cancel{0}^5 * 9 * \cancel{8}!}{\cancel{2} * \cancel{3} * \cancel{4} * \cancel{8}!} = 5*9*11 = 495 = \frac{12!}{8! * (12 - 8)!} = \binom{12}{8}$$

Propietà 04 Se $n \in \mathbb{N}_0$ $1 \le k \le n-1$

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

2.5 Problema del Contare

Sia S un insieme costituito da un numero n finito di elementi distinti. In problemi coinvolgenti la selezione occorre distungere il caso in cui questa è effettuata con o senza ripetizioni. Si può inoltre porre o meno l'attenzione sull'ordine con cui gli elementi di S si presentano nella selezioni.

2.6 Tartaglia

Applicando le propietà sul coifficienti binomiali è possibile costruire la tabella di Tartaglia:

$$\begin{pmatrix} 1 & * & * & * & * & * & * & * & * & * \\ 1 & 1 & * & * & * & * & * & * & * \\ 1 & 2 & 1 & * & * & * & * & * & * \\ 1 & 3 & 3 & 1 & * & * & * & * & * \\ 1 & 4 & 6 & 4 & 1 & * & * & * & * \\ 1 & 5 & 10 & 10 & 5 & 1 & * & * & * \\ 1 & 5 & 10 & 10 & 5 & 1 & * & * & * \\ 1 & 6 & 15 & 20 & 15 & 6 & 1 & * & * \\ 1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 & * \\ 1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1 \end{pmatrix}$$

Il valore dell'elemento di riga (x_i, y_i) viene calcolato dalla somma tra gli elementi di coordinata $(x_i, y_i - 1) + (x_i - 1, y_i - 1)$ della riga precedente y - 1.

Ogni riga di Tartaglia rappresenta i coefficienti di $(a+b)^n$

Esempio per 2: $(a + b)^2 = a^2 + 2ab + b^2$

Andando a generalizzare:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k * b^{n-k}$$

Proposizione La somma degli elementi della n-esima riga vale 2^n

3 Lezione 03 - 13/03/2023

3.1 Disposizioni

Disposizione: è una selezione dove l'ordinamento è IMPORTANTE.

Per calcolare tutte le k-disposizioni con ripetizione di S usiamo questa formula:

$$D_{n,k}^{(r)} = n^k$$

Per calcolare tutte le k-disposizioni semplici di S usiamo questa formula:

$$D_{n,k} = \frac{n!}{(n-k)!}$$
 $(k <= n)$

(n cardinalità dell'insieme, k la lunghezza della disposizione)

3.1.1 Esempio del gioco del Tris (Disposizione Semplice)

Dati:

- 9 Cavalli in gara \Rightarrow Alfabeto costituito da 9 valori $S = \{C_1, ..., C_n\}$
- Si punta sul podio del cavallo quindi quante terne di cavalli posso avere senza ripetizione e con ordine.

Se un cavallo esce dalla terna allora non potrà ripresentarsi nella prossima posizione, quindi **senza ripetizione**.

Dunque quante sono le sequenze lunghe $k \leq n$ composte dai simboli dell'alfabeto S.

Generalizzando abbiamo:

$$D_{n,k} = n(n-1)...(n-k) = \frac{n!}{(n-k)!} \quad (k <= n)$$

Questo tipo di calcolo combinatorio è chiamato Disposizione /(semplice).

3.1.2 Esempio Totocalcio (Disposizione con Ripetezione)

Consideriamo le schedine Totocalcio, in cui abbiamo n righe in cui si può scomettere su due squadre, l'alfabeto è composta da:

$$S = \{1, x, 2\}$$

Quante sono tutte le schedine del totocalcio che si possono costruire sapendo che ci sono 11 partite?

Ogni scomessa può avere 3 valori possibili, quindi abbiamo 11 caselle con ognuna 3 possibili varianti.

Dato che l'ordine conta parliamo di disposizioni e le ripetizione sono ammesse, quindi possiamo usare la "vecchia" regola moltiplicativa cioé: n^k , quindi le disposizione con ripetizione:

$$D_{n,k}^{(r)} = n^k = 3^1 1 = 177147$$

3.1.3 Esempio di Disposizione

Poniamo caso di voler sapere le possibili di dispozioni normali e semplici di un dato insieme di lettere. Per semplicità consideriamo l'insieme $S = \{c, a\}$, poniamo caso che vogliamo sapere tutte le possibili parole di lunghezza 2.

Quindi n = #S = 2 e k = 2, allora:

$$D_{n,k}^{(r)} = n^k = 2^2 = 4 = \{(c,c), (a,a), (c,a), (a,c)\}$$

$$D_{n,k} = \frac{n!}{(n-k)!} = \frac{2!}{0!} = 2! = 2 = \{(c,a), (a,c)\}$$

3.2 Permutazioni

Ogni n-disposizione semplice è detta una permutazione degli n elementi di S (Possiamo considerare le permutazioni un caso speciale delle disposizioni semplici, cioè avviene quando n=k)

$$(se \ k = n) \ P_n = D_{n,n} = \frac{n!}{(n-n)!} = n!$$

3.3 Permutazioni con Ripezioni

Sia $n = k_1 + k_2 + ... + k_r$, Una n-selezione di S avente k_1 elementi uguali al primo elemento di S, k_2 elementi uguali al secondo elemento di S e così via fino a k_r è detta una $(k_1, k_2, ..., k_r)$ -permutazioni con ripetizioni.

Il numbero di tutte le $(k_1, k_2, ..., k_r)$ -permutazioni con ripetizioni di S è dato da:

$$P_n^{(r)} = \frac{n!}{k_1! * k_2! * \dots * k_r!} = \binom{n}{k_1, \dots, k_r} (k_1 + \dots + k_r) = r$$

3.4 Esempi Permutazioni

$$S = \{A, I, O, S\} \# S = 4 k = n = 4$$

Possiamo formare varie parole: OASI, SAIO, SOIA..., possiamo calcolarle:

$$P_4 = 4! = 24$$

Poniamo caso che vogliamo sapere le possibili combinazioni di *STATISTICA*, possiamo notare che più lettere si ripetono quindi mettiamo al denomitore il numero di volte che la lettere che si ripete al fattoriale, per calcore dobbiamo usare:

$$_{n_1,n_3,n_3,\dots,n_r}P_n\frac{10!}{2!3!2!2!1!}$$

il 10! si riferisce alla lunghezza della parola.

3.5 Combinazioni Semplici

Sia $k \le n$, una k-combinazione semplice di S si ottine indentificando tutte le k-disposizioni semplici di S senza dare importanza all'ordine.

Il numero di tutte le k-combinazioni semplici è dato da:

$$C_{n,k} = \binom{n}{k} \pmod{k} <= n$$

3.5.1 Esempio Ruota di Napoli (Combinazione Semplici)

Il gioco consiste nell'estrarre tre numeri da un alfebeto: $S = \{1, 2, ..., 90\}$, i numeri estratti non possono ripetersi e l'ordine non è importante.

In questo caso dato che l'ordine non conta le disposizioni ci danno un numero troppo grande quindi dobbiamo andare a rimuovere le parte in eccesso:

$$\frac{D_{90,3}}{P_3} = \frac{90!}{(90-3)!} * \frac{1}{3!} = \frac{90!}{87!3!} = \binom{90}{3} = C_{90,3}$$

Quindi quando parliamo di sequenza senza ordine useremo il termine **combinazioni** in questo caso semplici poiché non cononta l'ordine.

3.6 Combinazioni con Ripetizioni

Una k-combinazione con ripetizione di S si ottiene identificando tutte le k-disposizioni con ripetizioni di S aventi i medesii elementi posti in un differente ordine (in altri termini è ammessa la ripetizioni di qualche elemento di S e l'ordine è ininfluente). Il numero di tutte le k-combinazioni con ripetizioni di S è dato da:

$$C_{n,k}^{(r)} = \binom{n+k-1}{k}$$

3.7 Recap

Piccolo recap di tutte le formule:

- Disposizioni con Ripetizioni: $D_{n,k}^{(r)} = n^k$

• Disposizioni senza Ripetizioni: $D_{n,k} = \frac{n!}{(n-k)!}$ $(k \le n)$

• Permutazioni con Ripetizioni: $P_n^{(r)} = \binom{n}{k_1, \dots, k_r} (k_1 + \dots + k_r) = r$

• Permutazioni senza Ripetizioni: $P_n = n!$

- Combinazioni con Ripetizioni: $C_{n,k}^{(r)} = {n+k-1 \choose k}$

 \bullet Combinazioni senza Ripetizioni: $C_{n,k} = \binom{n}{k} \pmod{k} = n$

4 Lezione 04 - 15/03/2023

4.1 Riassunto Algebra

Begin	Algebra degli Insiemi				
\emptyset	Insieme Vuoto				
N	Interi positivi (senza zero)				
\mathbb{N}_0	Numeri Naturali (con zero)				
\mathbb{Z}	Numeri Relativi				
\mathbb{Q}	Numeri Razionali				
\mathbb{R}	Numeri Reali				
Ω	Insieme universo				
A	Insieme				
$A \cup B$	Unione di A e B				
$A \setminus B$	Differenza tra A e B				
A^C	Complementare di A				
$A \cap B$	Intersezione tra A e B				
$A \subset B$	A contenuto in B				
a,b[Intervallo aperto				
[a,b]	Intervallo chiuso				

Le operazioni di uninione e intersezione hanno propietà di idempotenza, associtività, commutatività, distrubutività, identità, complementanzione, de morgan.

4.2 Cardinalità Insiemi

4.2.1 Insieme Finito

Un insieme è **finito** se è possibile mettere ogni elemento dell'insieme in corrispondenza biuniva.

$$|\Omega| = \#\Omega = n$$

4.2.2 Insieme Numerabile

 Ω si dice **numerabile** se è possibile mettere ogni elemento dell'insieme in corrispondenza biuniva con $\mathbb{N} = \{1, 2, ...\}$

$$|\Omega| = \#\Omega = \alpha_0$$

4.2.3 Insieme Continuo

 Ω si dice **continuo** se non ne finito ne numerabile

$$|\Omega| = \#\Omega = c$$

4.3 Classi (Famiglie)

Quando gli elementi di un insieme a sono a loro volta degli insiemi si usa per a la parola **classe**.

$$a = \{\{2, 3\}, \{2\}, \{5, 6\}\}\$$

In particolare se Ω è un insieme, la classe di tutti i sottinisiemi di Ω si dice l'insieme delle parti di Ω e si indica con $P(\Omega)$.

Se Ω è un insieme e a è una classe di sottinsimi di Ω tale che l'unione di essi ha come risultato Ω allora a è detta essere un **ricoprimento** di Ω .

Un ricoprimento a di Ω è detto essere una **partizione** di Ω se i suoi elementi a due a due disgiunti.

Esempio:

$$\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

 $a=\{\{1,3,5\},\{2,6\},\{4,7\},\{7,8,9\}\} \ \ \text{è un ricomprimento ma non una partizione}$ $a=\{\{1,3,5\},\{2,4,6,8\},\{7,9\}\} \ \ \text{è partizione poiché tutti gli insiemi sono disgiunti}$

5 Lezione 05 - 16-03-2023

5.1 Definizioni simboli Insiemestici ed Eventi

Begin	Algebra degli Insiemi	Logica degli Eventi
Ω	Insieme universo	Spazio Campione
A	Insieme	Evento
A^C	Complementare di A	Negato di A
$A \cup B$	Unione di A e B	OR degli eventi, deve verificarli almeno uno tra A e B
$A \cap B$	Intersezione tra A e B	AND degli eventi, devono verificarsi entrambi
$\bigcup_{k=1}^{n} A_k$	Unione finita	n verifica almeno una tra $A_1, A_2,, A_n$
$\bigcup_{k=1}^{n} A_k$ $\bigcup_{k=1}^{\infty} A_k$	Unione numerabile	""
$\bigcap_{k=1}^{n} A_k$	Intersezione finita	Si verifica se tutti gli eventi $A_1,, A_n$ si verificano
$\bigcap_{k=1}^{\infty} A_k$	Unione numerabile	""
Ø	Insieme Vuoto	Evento Impossibile
$A \cap B = \emptyset$	A e B sono disgiunti	Eventi Incompatibili
$A \subset B$	A contenuto in B	Il verificare di A implica il verificare di B
$\biguplus_k A_k = \Omega$	Ricoprimento disgiunto (partizione)	$A_1, A_2,, A_n$ eventi neccessari

5.2 Algebra e Sigma Algebra

Preso un Ω spazio campione e un a (a tondo), classe non vuota di sottinsiemi di Ω allora:

$$a$$
è un algebra \Leftrightarrow

$$ii)A_1, A_2 \in a \Rightarrow A_1 \cup A_2 \in a$$
 (a è chiusa rispetto l'unione finita di due elementi)

C'è un anche una sua variante chiamanta Sigma(numerabile) Algebra definita così:

$$a$$
è una σ -algebra \Leftrightarrow

$$ii)n \in N, A_n \in a \Rightarrow \bigcup_{n=1}^{\infty} A_n \in a$$
 (a è chiusa rispetto l'unione numerabile)

Riassumendo:

"Un'algebra è chiusa rispetto all'unione di due suoi elementi e rispetto al complemento."

"Una σ -algebra è chiusa rispetto all'unione numerabile di suoi elementi e rispetto al complemento."

5.2.1 Osservazioni

Posto $a = \{\{2,3\},\{6\},\{4,5\}\}$, osserviamo i seguenti esempi:

$$\{4,5\} \subseteq a \text{ SBAGLIATO}$$

 $\{4,5\} \in a \text{ CORRETTO}$
 $\{\{4,5\}\} \subseteq a \text{ CORRETTO}$

5.2.2 Casi Particolari

Poniamo $A \subseteq \Omega$, si definisce algebra(sigma) banale, a posto come:

$$a = {\emptyset, \Omega}$$

È l'unica algebra a due elementi, ovviamente entrambe le propietà sono banalmente dimostrate poiché:

$$\Omega^C = \emptyset$$

$$\Omega \cup \emptyset = \Omega \in a$$

Gli elementi \emptyset e Ω sono neccessari per essere un **algebra**. Poniamo caso di un $a = \{A, A^c\}$ questa non è un algebra poiché $A \cup A^c = \Omega \notin a$, se aggiunssimo solo Ω non sarebbe rispettata la prima condizione poiché $\Omega^c = \emptyset \notin a$. Ricapitolando:

$$a = \{A, A^C\}$$
 non è algebra $a = \{A, A^C, \emptyset, \Omega\}$ è algebra (sigma)

Per contrapposizione la (sigma) algebra più grande è $P(\Omega)$, tutte le altre algebra(sigma) sono sottoinsiemi di $P(\Omega)$

5.3 Propietà (conseguenze)

- 1. a è una algebra (sigma) $\Rightarrow \emptyset$, $\Omega \in a$ (come abbiamo osservato prima) Tutti gli elementi dell'algebra banale devono essere presenti in ogni algebra(sigma).
- 2. L'unione finita di elementi di un algebra (sigma) appartiene comunque ad a Per ii) abbiamo visto come l'unione si applica per due elementi, ma essendo \cup associativa nel caso di n-elementi basta operarli a due a due e quindi portare questa propietà fino a n elementi.
- 3. $Sigma algebra \Rightarrow Algebra \ MA \ Sigma algebra \not\Leftarrow Algebra$ Questo poiché un unione finita da 0 a $+\infty$ non appartiene a tutte le algebra, cose che invece accade con le sigma algebra.