

B1 - Analytische Geometrie

✓ Aufgaben Tipps Lösungen

Drei Punkte A_t , B_t und C_t bewegen sich jeweils entlang einer Geraden:

$$A_t \text{ auf der Geraden } g_a: \quad \vec{a}_t = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

$$B_t$$
 auf der Geraden g_b : $\vec{b}_t = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ und

$$C_t$$
 auf der Geraden g_c : $\vec{c}_t = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

Die Punkte A_t, B_t und C_t bilden für alle $t \in \mathbb{R}$ ein Dreieck $\Delta_t.$

1.

1.1 Zeichnen Sie in das Koordinatensystem (Material 1) die drei Geraden sowie die Dreiecke Δ_0 , Δ_1 und Δ_2 ein.

(4P)

1.2 Untersuchen Sie, ob die Dreiecke Δ_t gleichseitig sind.

(3P)

1.3 Die Punkte A_t , B_t und C_t legen für jedes t eine Ebene E_t fest. Bestimmen Sie eine Ebenengleichung der Ebene E_t in Parameterform.

Zeigen Sie, dass $\vec{n} = \begin{pmatrix} t^2 - t + 1 \\ t^2 - t + 1 \\ t^2 - t + 1 \end{pmatrix}$ ein Normalenvektor von E_t ist, und begründen Sie damit die

Parallelität der Ebenen.

Bestimmen Sie den Abstand zweier beliebiger dieser Ebenen E_t und E_{t+k} mit $k \in \mathbb{R}$.

(11P)

1.4 Erläutern Sie die in Material 2 durchgeführten Rechenschritte und das Ergebnis im Sachzusammenhang.

(4P)

2. Die Punkte A_t , B_t und C_t bilden zusammen mit dem Ursprung eine Schar von Pyramiden in Abhängigkeit von t. Das Volumen einer solchen Pyramide kann mit der Formel

$$V(t) = \frac{1}{6} \cdot \left| \left(\vec{a}_t \times \vec{b}_t \right) \cdot \vec{c}_t \right|$$
 berechnet werden.

2.1 Zeigen Sie, dass $V(t) = \frac{1}{6} \cdot \left| \left(t^3 + 1 \right) \right|$ gilt, und bestimmen Sie t so, dass das Volumen V(t) den Wert $\frac{3}{2}$ annimmt.

(4P)

2.2 Untersuchen Sie, ob die Pyramide mit der minimalen Grundfläche auch die Pyramide mit dem minimalen Volumen ist.

Material 1

Material 2

(1)
$$\overline{AB}$$

$$= \begin{pmatrix} t-1\\1\\-t \end{pmatrix};$$

$$\overline{AC} = \begin{pmatrix} -1\\t\\1-t \end{pmatrix}$$

(2)
$$A(t)$$

$$= \frac{1}{2} \left| \begin{pmatrix} t-1\\1\\-t \end{pmatrix} \times \begin{pmatrix} -1\\t\\1-t \end{pmatrix} \right|$$

$$(3) \quad A(t) \qquad \qquad = \quad \frac{\sqrt{3} \cdot \left(t^2 - t + 1\right)}{2}$$

(4)
$$A'(t)$$
 = $\frac{\sqrt{3} \cdot (2 \cdot t - 1)}{2}$;
 $A''(t)$ = $\sqrt{3}$

$$(5) \quad \frac{\sqrt{3} \cdot (2 \cdot t - 1)}{2} = 0$$

$$\Rightarrow \qquad t \qquad = \frac{1}{2}$$

(6)
$$A''\left(\frac{1}{2}\right) = \sqrt{3} > 0$$

 \Rightarrow Minimum