

Różniczkowanie numeryczne

K. Kolanowski

26 lutego 2022

1 Wprowadzenie

Różniczkowanie numeryczne jest to jedna z metod numerycznych służących do obliczania pochodnej funkcji. Problem znajdowania pochodnej danej funkcji jest często wykorzystywany w symulacjach komputerowych np. do obliczania prędkości obiektu mając znaną funkcję przemieszczenia.

Istnieje szereg różnych metod różniczkowania numerycznego, przy czym najpopularniejsze są te oparte wprost na definicji pochodnej.

Z analizy matematycznej wiemy iż pochodna funkcji w punkcie definiowana jest jako:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{1}$$

gdzie h jest to krok różniczkowania. Dla dostatecznie małego h, pochodną można przybliżyć wzorem:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h} \tag{2}$$

Jest to obliczenie pochodnej poprzez **różnicę dzieloną w przód**. Korzystając z rozwinięcia funkcji f(x+h) poprzez szereg Taylora, uzyskujemy dokładną postać pochodnej:

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$$
(3)

Wyrażenie O(h) oznacza iż w równaniu (2) występuje błąd liniowy zależny od h.

Analogicznie do (2) można zdefiniować pochodną korzystając z punktów w otoczeniu x. Uzyskamy wówczas wzór na obliczenie pochodnej za pomocą **różnicy centralnej**:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$
(4)

Metoda ta jest dokładniejsza, gdyż wprowadza błąd rzędu $O(h^2)$.

2 Przykłady

Szukamy rozwiązania równania $y'(x)=y^2$ z warunkiem początkowym y(0)=3. Za krok w metodzie Eulera przyjmujemy h=0.002

Mamy $x_0 = 0$, $y_0 = 3$

Stąd

$$x_1 = x_0 + h = 0,002$$

$$y_1 = y_0 + h * f(x_0, y_0) = 3 + 0.002 * 3^2 = 3.018$$

Obliczamy dalej

$$x_2 = x_1 + h = 0.04$$

$$y_2 = y_1 + h * f(x_1, y_1) = 3.018 + 0.002 * (3,018)^2 = 3,036217$$

Postępując w ten sposób otrzymujemy kolejne przybliżone wartości y(x) będącego rozwiązaniem powyższego równania.

W poniższej tabeli mamy zestawione wyniki metody Eulera z rzeczywistym rozwiązaniem

$$y(x) = -3/3x - 1$$

index	x_i	y_i	y(x)	$y(x)-y_i$
0	0	3	3	0.000000
1	0.002	3.018	3.018109	0.000109
2	0.004	3.036217	3.036437	0.000220
3	0.006	3.054654	3.05499	0.000336
4	0.008	3.073316	3.07377	0.000454
5	0.01	3.092206	3.092784	0.000578
6	0.012	3.11133	3.112033	0.000703
7	0.014	3.13069	3.131524	0.000834
8	0.016	3.150293	3.151261	0.000968
9	0.018	3.170142	3.171247	0.001105
10	0.02	3.190241	3.191489	0.001248
11	0.022	3.210596	3.211991	0.001395
12	0.024	3.231212	3.232759	0.001547
13	0.026	3.252094	3.253796	0.001702
14	0.028	3.273246	3.275109	0.001863
15	0.03	3.294674	3.296703	0.002029
16	0.032	3.316384	3.318584	0.002200
17	0.034	3.338381	3.340757	0.002376

Jak można zaobserwować w kolejnych krokach narasta błąd - różnica między y(x) i y_i .

3 Zadania

Rozwiąż poniższe zadania i odpowiedz na pytania, rozwiązanie w formie sprawozdania umieść na serwerze dydaktycznym eKursy w sekcji "Laboratorium 6 - oddaj sprawozdanie".

1. Zaimplementuj w skrypcie funkcję do generowania funkcji trójkątnej danej wzorem:

$$y(x) = \frac{8}{\pi^2} \sum_{k=0}^{\infty} (-1)^k \frac{\sin((2k+1)\omega x)}{(2k+1)^2}$$

Jako argumenty metody przyjmij rząd harmonicznej (k), częstotliwość sygnału oraz argument x.

- 2. Zaimplementuj w skrypcie funkcję obliczania pochodnej za pomocą różnicy dzielonej w przód.
- 3. Zaimplementuj w skrypcie funkcję obliczania pochodnej za pomocą różnicy centralnej.
- 4. Zaimplementuj w skrypcie funkcje rozwiązywania równania różniczkowego opartą o metode Eulera w tył.
- 5. Dokonaj różniczkowania funkcji z punktu 1 korzystając zaimplementowanych wcześniej funkcji dla ω =0.25 porównaj wyniki działania metod Eulera w przód oraz w tył dla h równych: 1, 0.1 oraz 0.02

Czy wartość stałej h ma wpływ na działanie tych metod?

Jaka jest maksymalna różnica w obliczeniu wartości pochodnej przez obie metody?