Introduction

Delhivery is the largest and fastest-growing fully integrated player in India by revenue in Fiscal 2021. They aim to build the operating system for commerce, through a combination of world-class infrastructure, logistics operations of the highest quality, and cutting-edge engineering and technology capabilities.

The Data team builds intelligence and capabilities using this data that helps them to widen the gap between the quality, efficiency, and profitability of their business versus their competitors.

Problem Statement

The data in it's raw form doesn't offer much insights of what factors are driving the business. Let's dig and dive into the data, clean it and transform it and bring it to the suitable format so that we can conduct various statistical tests that provide better insights of the factors affecting the business.

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
1 data = pd.read_csv('delhivery_data.txt')
```

In [3]:

```
1 data.head(4)
```

Out[3]:

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_c
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812

4 rows × 24 columns

```
In [4]:
    pd.set option('display.max columns', None)
In [5]:
    data.shape
Out[5]:
(144867, 24)
In [6]:
    # Dropping complete row duplicates
   data.drop duplicates(keep=False, inplace=True)
In [7]:
   data.shape
Out[7]:
(144867, 24)
In [8]:
    data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 144867 entries, 0 to 144866
Data columns (total 24 columns):
 #
     Column
                                     Non-Null Count
                                                       Dtype
                                     _____
 0
     data
                                     144867 non-null object
 1
     trip creation time
                                     144867 non-null object
 2
                                     144867 non-null
     route schedule uuid
                                                      object
 3
     route_type
                                     144867 non-null object
 4
     trip uuid
                                     144867 non-null object
 5
     source center
                                     144867 non-null object
 6
                                     144574 non-null object
     source name
 7
                                     144867 non-null object
     destination center
 8
     destination name
                                     144606 non-null object
 9
                                     144867 non-null
     od start time
                                                      object
 10
    od end time
                                     144867 non-null
                                                      object
 11
                                                      float64
    start scan to end scan
                                     144867 non-null
 12
    is cutoff
                                     144867 non-null bool
     cutoff factor
 13
                                     144867 non-null
                                                       int64
    cutoff_timestamp
                                     144867 non-null object
 14
     actual distance to destination 144867 non-null float64
     actual time
                                     144867 non-null float64
 16
 17
     osrm time
                                     144867 non-null
                                                      float64
 18
    osrm distance
                                     144867 non-null float64
 19
    factor
                                     144867 non-null float64
                                     144867 non-null float64
 20
     segment_actual_time
 21
     segment_osrm_time
                                     144867 non-null float64
                                     144867 non-null float64
     segment osrm distance
     segment_factor
                                     144867 non-null
                                                      float64
dtypes: bool(1), float64(10), int64(1), object(12)
memory usage: 26.7+ MB
```

```
In [9]:
```

```
1 data.describe()
```

Out[9]:

	start_scan_to_end_scan	cutoff_factor	actual_distance_to_destination	actual_time	
count	144867.000000	144867.000000	144867.000000	144867.000000	144
mean	961.262986	232.926567	234.073372	416.927527	
std	1037.012769	344.755577	344.990009	598.103621	
min	20.000000	9.000000	9.000045	9.000000	
25%	161.000000	22.000000	23.355874	51.000000	
50%	449.000000	66.000000	66.126571	132.000000	
75%	1634.000000	286.000000	286.708875	513.000000	
max	7898.000000	1927.000000	1927.447705	4532.000000	1

Missing Values Treatment

```
In [10]:
```

```
1 data.isnull().sum()
Out[10]:
```

do+-

data	0
trip_creation_time	0
route_schedule_uuid	0
route_type	0
trip_uuid	0
source_center	0
source_name	293
destination_center	0
destination_name	261
od_start_time	0
od_end_time	0
start_scan_to_end_scan	0
is_cutoff	0
cutoff_factor	0
cutoff_timestamp	0
actual_distance_to_destination	0
actual_time	0
osrm_time	0
osrm_distance	0
factor	0
segment_actual_time	0
segment_osrm_time	0
segment_osrm_distance	0
segment_factor	0
dtype: int64	

• Since we have source_id and destination_id having missing values in the names is ok, since we anyhow group the data based on the id and not based on the name

```
In [ ]:
1
```

Creating New Features

• Before grouping the rows,let's see if we can make new features so that even they can be aggregated while grouping by

Creating Difference in start to end time in minutes

```
In [11]:

1  #converting to datetime
2  data['od_end_time'] = pd.to_datetime(data['od_end_time'])
3  data['od_start_time'] = pd.to_datetime(data['od_start_time'])

In [12]:

1  # Creating a new column which is a difference of od_start_time & od_end_time in data['diff_start_end'] = round((data['od_end_time'] - data['od_start_time']).cd
```

Source State & Destination State

```
In [13]:

1   import re
2   pattern = re.compile('\([A-Za-z]*[\s\S]*[A-Za-z]*\)')

In [14]:

1   # extracting source state from source_name
2   data['source_state'] = data['source_name'].apply(lambda x : np.nan if pd.isnull(else pattern.search(x))

In [15]:

1   # extracting destination state from destination_name
2   data['destination_state'] = data['destination_name'].apply(lambda x : np.nan if else pattern.search(x))
```

Extracting year, month & day of trip creation

```
In [18]:

1 data['trip_month'] = data['trip_creation_time'].dt.month
```

```
In [19]:
```

```
data['trip_day'] = data['trip_creation_time'].dt.day
```

In [20]:

```
1 data.head(3)
```

Out[20]:

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_c
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812

In [21]:

```
1 data.shape
```

Out[21]:

(144867, 30)

Grouping the data

- Since for each product there are multiple records, we aggregate all using the suitable aggregation functions.
- Eg: For distance aggregation is done on sum as it represents the total distance between the source and destination. Similary based on the data suitable aggregation functions are used

In [22]:

```
1
 2
   data = data.groupby(['trip_uuid','source_center','destination_center']).agg(
 3
                         {'actual time':'last',
 4
                          'osrm time':'last',
 5
                          'segment actual time': 'sum',
                          'segment_osrm_time':'sum',
 6
 7
                          'osrm distance':'last',
 8
                          'segment_osrm_distance':'sum',
 9
                          'route type':pd.Series.mode,
10
                          'start scan to end scan': 'last',
                          'actual_distance_to_destination':'last',
11
                          'diff start end': 'last',
12
                          'destination_state':'last',
13
14
                          'source state':'last',
                          'trip year':'last',
15
                          'trip_month':'first'
16
                          'trip day':'first'})
17
```

In [23]:

1 data

Out[23]:

trin mid

actual_time osrm_time segment_actual_

trip_uulu	source_center	destination_center			
trip- 153671041653548748	IND209304AAA	IND00000ACB	732.0	329.0	
	IND462022AAA	IND209304AAA	830.0	388.0	
trip-	IND561203AAB	IND562101AAA	47.0	26.0	
153671042288605164	IND572101AAA	IND561203AAB	96.0	42.0	
trip- 153671043369099517	IND00000ACB	IND160002AAC	611.0	212.0	
•••		•••			
trip-	IND628204AAA	IND627657AAA	51.0	41.0	
153861115439069069	IND628613AAA	IND627005AAA	90.0	48.0	
	IND628801AAA	IND628204AAA	30.0	14.0	
trip-	IND583119AAA	IND583101AAA	233.0	42.0	1
153861118270144424	IND583201AAA	IND583119AAA	42.0	26.0	

source center destination center

26368 rows × 15 columns

In [24]:

```
1 data = data.reset_index()
```

```
In [25]:
```

```
1 data.head(5)
```

Out[25]:

	trip_uuid	source_center	destination_center	actual_time	osrm_time	segment_actı
0	trip- 153671041653548748	IND209304AAA	IND00000ACB	732.0	329.0	
1	trip- 153671041653548748	IND462022AAA	IND209304AAA	830.0	388.0	
2	trip- 153671042288605164	IND561203AAB	IND562101AAA	47.0	26.0	
3	trip- 153671042288605164	IND572101AAA	IND561203AAB	96.0	42.0	
4	trip- 153671043369099517	IND00000ACB	IND160002AAC	611.0	212.0	

In [26]:

```
1 data.shape
```

Out[26]:

(26368, 18)

- Let's further group by based on the trip uuid. This results in a single row for a single product
- Also this time we have to use the aggregation function sum for all the numeric variables, since in the previous group by the aggregation function 'last' captured the total value for each segment.

In [27]:

```
data = data.groupby(['trip_uuid']).agg(
 1
 2
                         { 'actual time': 'sum',
 3
                           'osrm_time':'sum',
                          'segment actual time': 'sum',
 4
 5
                           'segment osrm time':'sum',
 6
                           'osrm distance': 'sum',
 7
                          'segment osrm distance':'sum',
 8
                          'route type':pd.Series.mode,
                          'start scan to end scan': 'sum',
 9
10
                           'actual_distance_to_destination':'sum',
                          'diff start end': 'sum',
11
12
                          'destination_state':'last',
                          'source state':'last',
13
                          'trip_year':'last',
14
                          'trip month': 'first',
15
                           'trip day':'first'})
16
```

In [28]:

```
1 data = data.reset_index()
```

```
In [29]:
```

1 data.shape

Out[29]:

(14817, 16)

In [30]:

1 data

Out[30]:

	trip_uuid	actual_time	osrm_time	segment_actual_time	segment_osrm_time
0	trip- 153671041653548748	1562.0	717.0	1548.0	1008.0
1	trip- 153671042288605164	143.0	68.0	141.0	65.0
2	trip- 153671043369099517	3347.0	1740.0	3308.0	1941.0
3	trip- 153671046011330457	59.0	15.0	59.0	16.0
4	trip- 153671052974046625	341.0	117.0	340.0	115.0
14812	trip- 153861095625827784	83.0	62.0	82.0	62.0
14813	trip- 153861104386292051	21.0	12.0	21.0	11.0
14814	trip- 153861106442901555	282.0	48.0	281.0	88.0
14815	trip- 153861115439069069	264.0	179.0	258.0	221.0
14816	trip- 153861118270144424	275.0	68.0	274.0	67.0

14817 rows × 16 columns

In [31]:

```
1 data['trip_uuid'].nunique()
```

Out[31]:

14817

In [32]:

```
cols = ['actual_time','osrm_time','segment_actual_time','segment_osrm_time','osr
'segment_osrm_distance','start_scan_to_end_scan','actual_distance_to_de
'diff_start_end']
```

In [33]:

```
for col in cols:
    print(sns.boxplot(data['route_type'],data[col]))
    plt.show()
```

AxesSubplot(0.125,0.125;0.775x0.755)

AxesSubplot(0.125,0.125;0.775x0.755)

AxesSubplot(0.125,0.125;0.775x0.755)

AxesSubplot(0.125,0.125;0.775x0.755)

AxesSubplot(0.125,0.125;0.775x0.755)

In [34]:

```
for col in cols:

plt.subplot(121)
sns.distplot(data[col], hist=False)

plt.subplot(122)

sns.distplot(data[col].apply(lambda x : np.log(x)), kde=True, hist=False, color plt.show()
```


Insight

• Almost every variable follows log-normal distribution

```
In [35]:
```

```
data['trip_day'].value_counts()
Out[35]:
18
      791
15
      783
13
      750
      747
12
22
      740
21
      740
17
      722
14
      712
      704
20
25
      697
      685
26
19
      676
24
      660
27
      652
23
      631
3
      631
16
      616
28
      608
29
      607
      605
1
2
      552
30
      508
Name: trip_day, dtype: int64
In [36]:
   data.head()
```

Out[36]:

	trip_uuid	actual_time	osrm_time	segment_actual_time	segment_osrm_time	osrm
0	trip- 153671041653548748	1562.0	717.0	1548.0	1008.0	
1	trip- 153671042288605164	143.0	68.0	141.0	65.0	
2	trip- 153671043369099517	3347.0	1740.0	3308.0	1941.0	
3	trip- 153671046011330457	59.0	15.0	59.0	16.0	
4	trip- 153671052974046625	341.0	117.0	340.0	115.0	

In [37]:

```
#creating bins based on the day of month the trip occured
bins = [1,10,20,31]
group = ['start','middle','end']
data["part_of_month"] = pd.cut(data["trip_day"],bins,labels=group)
```

```
In [38]:

1 data["part_of_month"].value_counts()

Out[38]:
end    6528
middle    6501
start    1183
Name: part_of_month, dtype: int64
```

Insight

· we see that maximum number of trips occured in the end of the month

actual_time vs osrm_time

Hypothesis Testing for actual_time and osrm_time

This is to infer if there is any significant difference between the actual_time and osrm_time(An open-source routing engine time calculator which computes the shortest path between points in a given map (Includes usual traffic, distance through major and minor roads) and gives the time)

H0:

There is no significant difference between actual_time and osrm_time

H1:

There is significant difference between actual_time and osrm_time

significance level (alpha = 0.95)

```
In [39]:

1  from scipy.stats import ttest_ind

In [40]:

1  ttest_ind(data['actual_time'],data['osrm_time'])
```

```
Out[40]:
```

Ttest indResult(statistic=38.215453905833165, pvalue=0.0)

- Since p-value is almost 0 we can conclude that there is significant difference between actual_time and osrm_time
- · Let's see which is greater

```
In [41]:
```

```
1 # H0 : actual_time > osrm_time
2 # H1 : actual_time < osrm_time
3 ttest_ind(data['actual_time'],data['osrm_time'],alternative = 'less')</pre>
```

Out[41]:

Ttest indResult(statistic=38.215453905833165, pvalue=1.0)

Insight

• Since p-value is greater than alpha we fail to reject null hypothesis and conculde that the mean of actual_time is greater than the mean of osrm_time

```
In [42]:
```

```
1 sns.scatterplot(data['actual_time'],data['osrm_time'])
```

Out[42]:

<AxesSubplot:xlabel='actual_time', ylabel='osrm_time'>


```
In [ ]:
```

actual_time and segment actual time

Hypothesis Testing for actual_time and segment_actual_time

This is to infer if there is any significant difference between the actual_time and segment_actual_time

H0:

There is no significant difference between actual_time and segment_actual_time

H1:

There is significant difference between actual_time and segment_actual_time

significance level (alpha = 0.95)

Insight

• Since p-value is greater than alpha we fail to regject null hypothesis and conclude that there is no significant difference between actual_time and segment_actual_time

In [44]:

```
1 sns.scatterplot(data['actual_time'],data['segment_actual_time'])
```

Out[44]:

<AxesSubplot:xlabel='actual time', ylabel='segment actual time'>

osrm distance and segment osrm distance

Hypothesis Testing for osrm_distance and segment_osrm_distance

This is to infer if there is any significant difference between the osrm distance and segment osrm distance

H0:

There is no significant difference between osrm distance and segment osrm distance

H1:

significance level (alpha = 0.95)

```
In [45]:

1 ttest_ind(data['osrm_distance'],data['segment_osrm_distance'])
Out[45]:
Ttest_indResult(statistic=-4.117367046483823, pvalue=3.842631473353718 e-05)
```

Insight

• Since p-value is less than alpha we reject null hypothesis and conclude that there is a significant difference in the means of osrm_distance and segment_osrm_distance

In [46]:

```
1 # H0 : osrm_distance > segment_osrm_distance
2 # H1 : osrm_distance =< segment_osrm_distance
3 ttest_ind(data['osrm_distance'],data['segment_osrm_distance'],alternative = 'lest_osrm_distance']</pre>
```

Out[46]:

```
Ttest_indResult(statistic=-4.117367046483823, pvalue=1.921315736676859 e-05)
```

• Since p-value is less than alpha we reject null hypothesis and conclude that segment_osrm_distance is greater than the osrm_distance

```
In [47]:
```

```
1 sns.scatterplot(data['osrm_distance'],data['segment_osrm_distance'])
```

Out[47]:

<AxesSubplot:xlabel='osrm_distance', ylabel='segment_osrm_distance'>

osrm time and segment osrm time

Hypothesis Testing for osrm_time and segment_osrm_time

This is to infer if there is any significant difference between the osrm time and segment osrm time

H0:

There is no significant difference between osrm_time and segment_osrm_time

H1:

There is significant difference between osrm_time and segment_osrm_time

significance level (alpha = 0.95)

```
In [48]:

1    ttest_ind(data['osrm_time'],data['segment_osrm_time'])
Out[48]:

Ttest_indResult(statistic=-5.733106696963521, pvalue=9.956426798219171 e-09)
```

Insight

• Since p-value is less than alpha we reject null hypothesis and conclude that there is a significant difference in the means of osrm_time and segment_osrm_time

In [49]:

```
1  # H0 : osrm_time > segment_osrm_time
2  # H1 : osrm_time =< segment_osrm_time
3  ttest_ind(data['osrm_time'],data['segment_osrm_time'],alternative = 'less')</pre>
```

Out[49]:

```
Ttest_indResult(statistic=-5.733106696963521, pvalue=4.978213399109586 e-09)
```

• Since p-value is less than alpha we reject null hypothesis and conclude that segment_osrm_time is greater than the osrm_time

In [50]:

```
1 sns.scatterplot(data['osrm_time'],data['segment_osrm_time'])
```

Out[50]:

<AxesSubplot:xlabel='osrm_time', ylabel='segment_osrm_time'>

start scan to end scan vs diff start end

• start_scan_to_end_scan is the total time taken for a product to reach its final destination from the initial source and diff_start_end is the calculated time by aggregating the duration of various destinations from initila source to final destination

Hypothesis Testing for start_scan_to_end_scan and diff_start_end

This is to infer if there is any significant difference between the start_scan_to_end_scan and diff_start_end

H0:

There is no significant difference between start_scan_to_end_scan and diff_start_end

H1:

There is significant difference between start_scan_to_end_scan and diff_start_end

significance level (alpha = 0.95)

Insight

• Since p-value is greater than alpha we fail to reject null hypothesis and conclude that there is no significant difference in the total time as per the scanned records and the calulated time by aggregating the time between various destinations

```
In [52]:
```

```
1 sns.scatterplot(data['start_scan_to_end_scan'],data['diff_start_end'])
```

Out[52]:

<AxesSubplot:xlabel='start_scan_to_end_scan', ylabel='diff_start_end'>

Outlier Treatment

```
In [53]:
```

```
cols = ['actual_time','osrm_time','segment_actual_time','segment_osrm_time','osr
'segment_osrm_distance','start_scan_to_end_scan','actual_distance_to_de
'diff_start_end']
```

In [54]:

```
for col in cols:

plt.subplot(121)

sns.distplot(data[col])

plt.subplot(122)
data[col].plot.box(figsize=(16,5))
plt.show()
```


In [55]:

```
for col in cols:

plt.subplot(121)
sns.distplot(data[col], hist=False)

plt.subplot(122)

sns.distplot(data[col].apply(lambda x : np.log(x)), kde=True, hist=False, color plt.show()
```


In [56]:

```
from numpy import percentile
1
2
  for col in cols:
3
      q25, q75 = percentile(data[col], 25), percentile(data[col], 75)
4
      igr = q75 - q25
5
      cut off = igr * 1.5
      lower, upper = q25 - cut_off, q75 + cut_off
6
7
      outliers = [x for x in data[col] if x < lower or x > upper]
8
      print(f'The percentage of outliers in {col} is {len(outliers)/len(data[col])
9
```

```
The percentage of outliers in actual_time is 0.11088614429371668
The percentage of outliers in osrm_time is 0.10238239859620706
The percentage of outliers in segment_actual_time is 0.110886144293716
68
The percentage of outliers in segment_osrm_time is 0.1006951474657488
The percentage of outliers in osrm_distance is 0.10285482891273537
The percentage of outliers in segment_osrm_distance is 0.1044745899979
7529
The percentage of outliers in start_scan_to_end_scan is 0.085509887291
62448
The percentage of outliers in actual_distance_to_destination is 0.0977
930755213606
The percentage of outliers in diff start end is 0.08544239724640615
```

- If we drop the outliers we end up loosing lot of useful information. For example if we have an outlier in actual_time then we have to delete the entire row corresponding to that value. But all the other values in that row might not be outliers. Thus we end up loosing a lot of useful information.
- so instead of dropping the outliers we replace them with q25 cut_off, q75 + cut_off where q25,q75 are 25th percentile and 75th percentile values respectively

In [57]:

In [58]:

```
1 data.head()
```

Out[58]:

	trip_uuid	actual_time	osrm_time	segment_actual_time	segment_osrm_time	osrm
0	trip- 153671041653548748	824.5	376.5	818.5	416.0	
1	trip- 153671042288605164	143.0	68.0	141.0	65.0	
2	trip- 153671043369099517	824.5	376.5	818.5	416.0	
3	trip- 153671046011330457	59.0	15.0	59.0	16.0	
4	trip- 153671052974046625	341.0	117.0	340.0	115.0	

Relationship among different features

In [59]:

In [60]:

sns.pairplot(rel)

Out[60]:

<seaborn.axisgrid.PairGrid at 0x7fa348a5f3d0>

In [61]:

```
plt.figure(figsize = (10,10))
sns.heatmap(rel.corr(),cmap="Reds", annot=True)
```

Out[61]:

<AxesSubplot:>

A very huge multi-collinearity exists in the data

```
In [62]:
```

```
1 data.head()
```

Out[62]:

	trip_uuid	actual_time	osrm_time	segment_actual_time	segment_osrm_time	osrm
0	trip- 153671041653548748	824.5	376.5	818.5	416.0	
1	trip- 153671042288605164	143.0	68.0	141.0	65.0	
2	trip- 153671043369099517	824.5	376.5	818.5	416.0	
3	trip- 153671046011330457	59.0	15.0	59.0	16.0	
4	trip- 153671052974046625	341.0	117.0	340.0	115.0	

Handling categorical variables

we have 3 categorical variables. route_type,destination_state,source_state

```
In [63]:
   data['route_type'].value_counts()
Out[63]:
Carting
          8908
           5909
Name: route_type, dtype: int64
In [64]:
   final_data = data.copy()
In [65]:
   final data['route type'] = final data['route type'].apply(lambda x: 1 if x ==
In [66]:
 1 final data['route type'].value counts()
Out[66]:
     8908
     5909
```

Name: route_type, dtype: int64

```
In [67]:
```

```
final_data['destination_state'].value_counts()
```

Out[67]:

Maharashtra	2561	
Karnataka	2295	
Haryana	1643	
Tamil Nadu	1084	
Uttar Pradesh	819	
Telangana	784	
Gujarat	734	
West Bengal	697	
Delhi	653	
Punjab	617	
Rajasthan	550	
Andhra Pradesh	442	
Bihar	367	
Madhya Pradesh	358	
Kerala	270	
Assam	232	
Jharkhand	181	
Uttarakhand	122	
Orissa	119	
Chandigarh	65	
Goa	52	
Chhattisgarh	43	
Himachal Pradesh	42	
Arunachal Pradesh	25	
Jammu & Kashmir	20	
Dadra and Nagar Haveli	17	
Meghalaya	8	
Mizoram	6	
Daman & Diu	1	
Tripura	1	
Nagaland	1	
Name: destination state.	dt.vpe: in	۱

Name: destination_state, dtype: int64

In [68]:

```
#ignoring categories with frequency less than 300 and creating dummies for n-1
k = final_data['destination_state'].value_counts()
k = k.index[k>300][:-1]
for i in k:
    name = 'destination'+'_'+i
    final_data[name] = (final_data['destination_state'] == i).astype(int)
```

```
In [69]:
```

```
1 final_data['source_state'].value_counts()
```

Out[69]:

Maharashtra	2654
Karnataka	2270
Haryana	1535
Tamil Nadu	1092
Uttar Pradesh	793
Gujarat	757
Delhi	720
Telangana	719
West Bengal	639
Punjab	547
Rajasthan	500
Andhra Pradesh	428
Bihar	378
Madhya Pradesh	376
Kerala	297
Assam	219
Jharkhand	175
Orissa	170
Uttarakhand	154
Himachal Pradesh	103
Chandigarh	77
Goa	47
Arunachal Pradesh	44
Chhattisgarh	43
Jammu & Kashmir	24
Dadra and Nagar Haveli	15
Meghalaya	12
Pondicherry	8
Mizoram	5
Nagaland	5
Tripura	1
<pre>Name: source_state, dtype:</pre>	int64

In [70]:

```
#ignoring categories with frequency less than 300 and creating dummies for n-1
k = final_data['source_state'].value_counts()
k = k.index[k>300][:-1]
for i in k:
    name = 'source'+'_'+i
    final_data[name] = (final_data['source_state'] == i).astype(int)
```

In [71]:

```
final_data.drop(['destination_state','source_state'],axis=1,inplace=True)
```

In [72]:

```
final_data.head()
```

Out[72]:

	trip_uuid	actual_time	osrm_time	segment_actual_time	segment_osrm_time	osrm
0	trip- 153671041653548748	824.5	376.5	818.5	416.0	
1	trip- 153671042288605164	143.0	68.0	141.0	65.0	
2	trip- 153671043369099517	824.5	376.5	818.5	416.0	
3	trip- 153671046011330457	59.0	15.0	59.0	16.0	
4	trip- 153671052974046625	341.0	117.0	340.0	115.0	

In [73]:

```
1 final_data['trip_month'].value_counts()
```

Out[73]:

9 1302910 1788

Name: trip month, dtype: int64

- since all orders happened in the same year (2018) we ignore that.
- Also there are various days on which a delivery has happened, let's ignore this too and create dummy variable for just month

In [74]:

```
final_data['trip_month'] = final_data['trip_month'].apply(lambda x : 1 if x == 9
```

In [75]:

```
final_data.drop(['trip_day','trip_year'],axis=1,inplace=True)
```

In [76]:

```
1 final_data.head()
```

Out[76]:

	trip_uuid	actual_time	osrm_time	segment_actual_time	segment_osrm_time	osrm
0	trip- 153671041653548748	824.5	376.5	818.5	416.0	
1	trip- 153671042288605164	143.0	68.0	141.0	65.0	
2	trip- 153671043369099517	824.5	376.5	818.5	416.0	
3	trip- 153671046011330457	59.0	15.0	59.0	16.0	
4	trip- 153671052974046625	341.0	117.0	340.0	115.0	

In [77]:

```
# creating dummy variables for categories in part_of_month
k = final_data['part_of_month'].value_counts()
k = k.index[:-1]
for i in k:
   name = 'month'+'_'+i
   final_data[name] = (final_data['part_of_month'] == i).astype(int)
```

In [78]:

```
final_data.drop(['part_of_month'],axis=1,inplace=True)
```

In []:

```
1
```

```
In [79]:
```

```
final_data.head()
```

Out[79]:

_West engal	source_Punjab	source_Rajasthan	source_Andhra Pradesh	source_Bihar	month_end	month_middle
0	0	0	0	0	0	1
0	0	0	0	0	0	1
0	0	0	0	0	0	1
0	0	0	0	0	0	1
0	0	0	0	0	0	1

Top States based on the no.of orders

```
In [80]:
```

```
1 top_states = pd.DataFrame(data['destination_state'].value_counts()[0:7])
```

In [81]:

```
1 top_states = top_states.reset_index()
```

In [82]:

```
1 top_states
```

Out[82]:

	index	destination_state
0	Maharashtra	2561
1	Karnataka	2295
2	Haryana	1643
3	Tamil Nadu	1084
4	Uttar Pradesh	819
5	Telangana	784
6	Gujarat	734

In [83]:

```
plt.figure(figsize=(10,10))
plt.bar(data=top_states,height = 'destination_state',x='index',color = 'r')
plt.title('Top 7 states based on the number of orders')
```

Out[83]:

Text(0.5, 1.0, 'Top 7 states based on the number of orders')

Insight

· we see that the maximum number of orders came from Maharahtra followed by Karnataka and Haryana

Busiest Corridor

• we define the busiest corridor as those two states where there are maximum number of trips.(ignoring the interstate trips)

```
In [84]:
 1 df = data.copy()
In [85]:
   df['col for count'] = '#'
In [86]:
 1 df.head()
Out[86]:
            trip_uuid actual_time osrm_time segment_actual_time segment_osrm_time osrm
                          824.5
                                    376.5
                                                      818.5
                                                                        416.0
   153671041653548748
                trip-
                          143.0
                                     68.0
                                                      141.0
                                                                         65.0
   153671042288605164
                          824.5
                                    376.5
                                                      818.5
                                                                        416.0
   153671043369099517
                trip-
                           59.0
                                                       59.0
                                     15.0
                                                                         16.0
   153671046011330457
                trip-
                          341.0
                                    117.0
                                                      340.0
                                                                        115.0
   153671052974046625
In [87]:
    busiest = df.groupby(['destination_state','source_state']).agg({'col_for_count':
 2
                                                                             'actual distance
                                                                             'start scan to er
 3
In [88]:
 1 busiest.shape
Out[88]:
(148, 3)
In [89]:
 busiest = busiest.sort values('col for count', ascending=False)
In [90]:
 busiest = busiest.reset index()
In [91]:
   busiest corridor = busiest[busiest['destination state'] != busiest['source state']
```

```
In [92]:
```

```
busiest_corridor[0:10]
```

Out[92]:

	destination_state	source_state	col_for_count	actual_distance_to_destination	start_scan_to_e
8	Haryana	Delhi	437	78.199177	365
13	Delhi	Haryana	313	47.469693	248
21	Delhi	Uttar Pradesh	88	131.424602	504
22	Uttar Pradesh	Haryana	79	101.207251	397
23	Haryana	Punjab	79	283.542010	910
24	Punjab	Chandigarh	76	50.129700	251
25	Rajasthan	Haryana	68	175.012421	474
26	Chandigarh	Punjab	64	86.922130	318
27	Punjab	Himachal Pradesh	63	185.632284	918
28	Haryana	Uttar Pradesh	60	135.979619	494

• We can conclude that Haryana - Delhi is the busiest corridor, followed by Delhi - Uttar Pradesh

Standardization

```
In [93]:
```

```
1  X = final_data.drop('trip_uuid',axis=1)
```

In [94]:

```
from sklearn.preprocessing import StandardScaler, MinMaxScaler

scaler = StandardScaler()
std_data = scaler.fit_transform(X)
```

In [95]:

```
1 std_data = pd.DataFrame(std_data, columns=X.columns)
2 std_data.head()
```

Out[95]:

	actual_time	osrm_time	segment_actual_time	segment_osrm_time	osrm_distance	segment_o:
0	2.148616	2.249470	2.149256	2.256743	2.277563	
1	-0.463140	-0.403038	-0.465311	-0.475861	-0.361545	
2	2.148616	2.249470	2.149256	2.256743	2.277563	
3	-0.785059	-0.858737	-0.781760	-0.857336	-0.804486	
4	0.295668	0.018268	0.302658	-0.086601	0.056009	

Insights

- There is significant difference between actual_time and osrm_time and the mean of actual_time is greater than the mean of osrm_time
- There is no significant difference between actual_time and segment_actual_time
- There is a significant difference in the means of osrm_distance and segment_osrm_distance and segment_osrm_distance is greater than the osrm_distance
- There is a significant difference in the means of osrm_time and segment_osrm_time and segment_osrm_time is greater than the osrm_time.
- There is no significant difference in the total time as per the scanned records and the calulated time by aggregating the time between various destinations
- we see that maximum number of trips occured in the end of the month
- we see that the maximum number of orders came from Maharahtra followed by Karnataka and Haryana
- We can conclude that Haryana Delhi is the busiest corridor, followed by Delhi Uttar Pradesh

Recommendations

- Since Haryana is the busiest corridor we can optimize warehouse management for maximum productivity
- Since majority of orders came from Maharastra we can study the behaviour patterns of these orders to provide better supply chain solutions at the lowest costs
- we can have further data on expected delivery date and compare it with the product reaching destination date and study the reasons behind the delay in the delivery for the delayed deliveries and thus enhance customer experience.

- Since there is a significant difference in the actual_time and osrm_time(An open*source routing engine time calculator which computes the shortest path between points in a given map) we can further study the reasons dehind this difference and try to minimoze it
- we can further ask for the data the customer has received the order and calculate the gap between the
 customer receiving the order and the product being deliverd to the destination warehouse and check if the
 gap is huge. If the gap is huge we could further study the reasong behind late delivery although the
 product is shipped to the destination warehouse

In	[]:			
1				