

PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization

Junhyeong Cho¹ Gilhyun Nam¹ Sungyeon Kim² Hunmin Yang^{1,3} Suha Kwak²

¹ADD ²POSTECH ³KAIST

Compararions between different setup

Setup	Source	Target	Task Definition
DA	✓	✓	✓
DG	✓	_	✓
Source-free DA	_	✓	✓
Source-free DG	-	_	✓

Table 1: Different requirements in each setup. Source-free DG only assumes the task definition (*i.e.*, what should be predicted) without requiring source and target domain data.

Background

(2) Create dataset classifier from label text

Motivation

 Text features could effectively represent various image styles in a joint vision-language space.

(a)

(b)

PromptStyler
 synthesizes diverse
 styles in a joint vision language space via
 learnable style word
 vectors for pseudo words S* without using
 any images.

PromptStyler: A prompt-driven style generation method To simulate distribution shifts

Style diversity loss

$$\mathcal{L}_{\text{style}} = \frac{1}{i-1} \sum_{j=1}^{i-1} \left| \frac{T(\mathcal{P}_i^{\text{style}})}{\|T(\mathcal{P}_i^{\text{style}})\|_2} \cdot \frac{T(\mathcal{P}_j^{\text{style}})}{\|T(\mathcal{P}_j^{\text{style}})\|_2} \right|.$$

Prompt-driven style generation

 $\begin{array}{ll} P_i^{style} & \text{a S}_i \text{ style of a} \\ P_m^{content} & [class]_m \\ P_i^{style} \circ P_m^{content} & \text{a S}_i \text{ style of a} [class]_m \end{array}$

To learn K style word vectors $\{s_i\}_{i=1}^K$

- Sequentially learn style word vectors
- Feature of s_i orthogonal to all previous(1,2,...,i-1)

Content consistency loss

Define a cosine similarity score z_{imn} as

$$z_{imn} = \frac{T(\mathcal{P}_i^{\text{style}} \circ \mathcal{P}_m^{\text{content}})}{\|T(\mathcal{P}_i^{\text{style}} \circ \mathcal{P}_m^{\text{content}})\|_2} \cdot \frac{T(\mathcal{P}_n^{\text{content}})}{\|T(\mathcal{P}_n^{\text{content}})\|_2}.$$

Calculate the content consistency loss as

$$\mathcal{L}_{\text{content}} = -\frac{1}{N} \sum_{m=1}^{N} \log \left(\frac{\exp(z_{imm})}{\sum_{n=1}^{N} \exp(z_{imn})} \right),$$

Total prompt loss

$$\mathcal{L}_{\mathrm{prompt}} = \mathcal{L}_{\mathrm{style}} + \mathcal{L}_{\mathrm{content}}$$
.

	Inference	e Module							
	Image	Text							
Method	Encoder	Encoder	# Params	FPS					
OfficeHome (65 classes)									
ZS-CLIP [50]	✓	✓	102.0M	1.6					
PromptStyler	✓ -		38.4M	72.9					
DomainNet (345 classes)									
ZS-CLIP [50]	√	✓	102.0M	0.3					
PromptStyler	✓ -		38.7M	72.9					

	Configuration			Accuracy (%)					
	Source	Domain							
Method	Domain	Description	PACS	VLCS	OfficeHome	DomainNet	Avg.		
ResNet-50 [22] with pre-trained weights on ImageNet [6]									
DANN [19]	✓	_	83.6±0.4	78.6 ± 0.4	65.9 ± 0.6	38.3 ± 0.1	66.6		
RSC [25]	✓	_	85.2 ± 0.9	$77.1{\pm}0.5$	65.5 ± 0.9	$38.9{\pm}0.5$	66.7		
MLDG [35]	✓	_	84.9 ± 1.0	$77.2{\pm}0.4$	66.8 ± 0.6	41.2 ± 0.1	67.5		
SagNet [46]	✓	_	86.3 ± 0.2	$77.8{\pm}0.5$	68.1 ± 0.1	40.3 ± 0.1	68.1		
SelfReg [28]	✓	_	$85.6{\pm}0.4$	$77.8{\scriptstyle\pm0.9}$	67.9 ± 0.7	42.8 ± 0.0	68.5		
GVRT [44]	✓	_	85.1 ± 0.3	79.0 \pm 0.2	$70.1 {\pm} 0.1$	44.1 ± 0.1	69.6		
MIRO [5]	✓	_	85.4 ± 0.4	79.0 \pm 0.0	70.5 \pm 0.4	44.3 \pm 0.2	69.8		
	ResNet	-50 [<mark>22</mark>] with pro	e-trained weig	ghts from C	LIP [50]				
ZS-CLIP (C) [50]	_	_	90.6±0.0	76.0 ± 0.0	68.6±0.0	45.6±0.0	70.2		
CAD [53]	✓	_	90.0 ± 0.6	81.2 ± 0.6	70.5 ± 0.3	$45.5{\pm}2.1$	71.8		
ZS-CLIP (PC) [50]	_	✓	90.7 ± 0.0	80.1 ± 0.0	72.0 ± 0.0	46.2 ± 0.0	72.3		
PromptStyler	-	-	93.2 ±0.0	82.3 ± 0.1	73.6 ±0.1	49.5 ±0.0	74.7		
ViT-B/16 [11] with pre-trained weights from CLIP [50]									
ZS-CLIP (C) [50]	_	_	95.7 ± 0.0	76.4 ± 0.0	79.9 ± 0.0	57.8±0.0	77.5		
MIRO [5]	✓	_	95.6	82.2	82.5	54.0	78.6		
ZS-CLIP (PC) [50]	_	✓	96.1 ± 0.0	82.4 ± 0.0	82.3 ± 0.0	57.7 ± 0.0	79.6		
PromptStyler	-	-	97.2 ± 0.1	82.9 ± 0.0	83.6 ±0.0	59.4 ±0.0	80.8		
ViT-L/14 [11] with pre-trained weights from CLIP [50]									
ZS-CLIP (C) [50]	_	_	97.6±0.0	77.5 ± 0.0	85.9 ± 0.0	63.3±0.0	81.1		
ZS-CLIP (PC) [50]	_	✓	$98.5{\scriptstyle\pm0.0}$	82.4 ± 0.0	86.9 ± 0.0	64.0 ± 0.0	83.0		
PromptStyler	-	-	98.6 ±0.0	82.4 ±0.2	89.1 ±0.0	65.5 ±0.0	83.9		

		Accuracy (%)					
$\mathcal{L}_{\mathrm{style}}$	$\mathcal{L}_{\mathrm{content}}$	PACS	VLCS	OfficeHome	DomainNet	Avg.	
_	_	92.6	78.3	72.2	48.0	72.8	
✓	_	92.3	80.9	71.5	48.2	73.2	
_	✓	92.8	80.5	72.4	48.6	73.6	
✓	✓	93.2	82.3	73.6	49.5	74.7	

Table 4: Ablation study on the style diversity loss $\mathcal{L}_{\mathrm{style}}$ and content consistency loss $\mathcal{L}_{\mathrm{content}}$ used in the prompt loss.

Figure 5: Text-to-Image synthesis results using style-content features (from "a S_* style of a **cat**") with 6 different style word vectors. By leveraging the proposed method, we could learn a variety of styles while not distorting content information.

Figure 6: Top-1 classification accuracy on the PACS [34], VLCS [15], OfficeHome [60] and DomainNet [48] datasets with regard to the number of learnable style word vectors K.

Figure 7: Top-1 classification accuracy on the PACS [34], VLCS [15], OfficeHome [60] and DomainNet [48] datasets with regard to the number of training iterations L for learning each style word vector \mathbf{s}_i .

Figure B1: Several examples from the Terra Incognita [1] dataset. We visualize class entities using red bounding boxes, since they are not easily recognizable due to their small sizes and complex background scenes.

	Configuration		Accuracy (%)						
Method	Source Domain	Domain Description	Location100	Location38	Location43	Location46	Avg.		
ResNet-50 [22] with pre-trained weights on ImageNet [6]									
SelfReg [28]	1	_	48.8 ± 0.9	41.3±1.8	57.3±0.7	40.6 ±0.9	47.0		
GVRT [44]	1	_	53.9 ± 1.3	41.8 ± 1.2	58.2 ± 0.9	$38.0{\pm}0.6$	48.0		
ResNet-50 [22] with pre-trained weights from CLIP [50]									
ZS-CLIP (C) [50]	-	-	8.4 ± 0.0	13.7 ± 0.0	32.5 ± 0.0	23.3 ± 0.0	19.5		
ZS-CLIP (PC) [50]	_	✓	9.9 ± 0.0	28.3 ± 0.0	32.9 ± 0.0	24.0 ± 0.0	23.8		
PromptStyler	<u></u>	-	13.8 ± 1.7	39.8 ±1.3	38.0 ± 0.4	30.3 ± 0.3	30.5		

Thanks