Отчет по лабораторной работе №3

Дисциплина: Администрирование сетевых подсистем

Иванов Сергей Владимирович

Содержание

1	Цель работы		5
2	Зада	ание	6
3			
	3.1	Установка DHCP-сервера	7
	3.2	Конфигурирование DHCP-сервера	8
	3.3	Анализ работы DHCP-сервера	13
	3.4	Настройка обновления DNS-зоны	17
	3.5	Анализ работы DHCP-сервера после настройки обновления DNS-	
		зоны	21
	3.6	Внесение изменений в настройки внутреннего окружения вирту-	
		альной машины	22
4	4 Ответы на контрольные вопросы		24
5	Выв	оды	27

Список иллюстраций

3.1	Запуск server	7
3.2	Установка dhcp	7
3.3	Сохранение конф. файла	8
3.4	Файл /etc/kea/kea-dhcp4.conf	10
3.5	Файл /etc/kea/kea-dhcp4.conf	10
3.6		10
3.7		11
3.8		11
3.9	Редактирование файлов	11
3.10	Проверка обращения к серверу	12
3.11		12
3.12		12
		13
		13
3.15	Редактирование 01-routing.sh	14
3.16		14
3.17		15
		16
	<u> </u>	17
		17
		17
	Подключение ключа	17
	Редактирование файла /etc/named/user.net	18
3.24	Проверка и перезапуск сервера	18
		18
		19
3.27	Настройка	19
3.28		19
		19
3.30		20
3.31	Проверка ошибок	20
		20
		21
		21
		22
		23

5.37 Редактирование Vagrantfil		23
--------------------------------	--	----

1 Цель работы

Целью данной работы является приобретение практических навыков по установке и конфигурированию DHCP сервера.

2 Задание

- 1. Установите на виртуальной машине server DHCP-сервер (см. раздел 3.4.1).
- 2. Настройте виртуальную машину server в качестве DHCP-сервера для виртуальной внутренней сети (см. раздел 3.4.2).
- 3. Проверьте корректность работы DHCP-сервера в виртуальной внутренней сети путём запуска виртуальной машины client и применения соответствующих утилит диагностики (см. раздел 3.4.3).
- 4. Настройте обновление DNS-зоны при появлении в виртуальной внутренней сети новых узлов (см. раздел 3.4.4).
- 5. Проверьте корректность работы DHCP-сервера и обновления DNS-зоны в виртуальной внутренней сети путём запуска виртуальной машины client и применения соответствующих утилит диагностики (см. раздел 3.4.5).
- 6. Напишите скрипт для Vagrant, фиксирующий действия по установке и настройке DHCP-сервера во внутреннем окружении виртуальной машины server. Соответствующим образом внести изменения в Vagrantfile (см. раздел 3.4.6).

3 Выполнение лабораторной работы

3.1 Установка DHCP-сервера

Загрузим операционную систему и перейдем в рабочий каталог с проектом: cd /var/tmp/user_name/vagrant . Запустим виртуальную машину server: vagrant up server . (рис. 1).

```
C:\Users\1serg>cd C:\work_asp\svivanov\vagrant
C:\work_asp\svivanov\vagrant>vagrant up server
```

Рис. 3.1: Запуск server

На виртуальной машине server войдем под нашим пользователем и откроем терминал. Перейдем в режим суперпользователя: sudo -i . Установим dhcp: dnf -y install kea (рис. 2).

```
[svivanov@server.svivanov.net -]$ sudo -i
[sudo] naponb gnm svivanov:
[root@server.svivanov.net -]# dnf -y install kea
Extra Packages for Enterprise linux 10 - x86_64
Errors during downloading metadata for repository 'epel':
- Gurl error (6): Could not resolve hostname for https://mirrors.fedoraproject.org/metalink?repo=epel-z-10&arch=x86_64 [Go
Error: Failed to download metadata for repo 'epel': Cannot prepare internal mirrorlist: Curl error (6): Could not resolve hos
10&arch=x86_64 [Could not resolve host: mirrors.fedoraproject.org]
[root@server.svivanov.net -]# dnf -y install kea
Extra Packages for Enterprise Linux 10 - x86_64
Extra Packages f
```

Рис. 3.2: Установка dhcp

3.2 Конфигурирование DHCP-сервера

Сохраним на всякий случай конфигурационный файл: cp /etc/kea/kea-dhcp4.conf /etc/kea/kea-dhcp4.conf _\$(date -I) (рис. 3)

```
.

[root@server.svivanov.net ~]# cp /etc/kea/kea-dhcp4.conf /etc/kea/kea-dhcp4.conf__$(date -I)

[root@server.svivanov.net ~]#
```

Рис. 3.3: Сохранение конф. файла

Откроем файл /etc/kea/kea-dhcp4.conf на редактирование. В этом файле: – заменим шаблон для domain-name

```
{
"code": 15,
"data": "example.org"
},
"name": "domain-search",
"data": "srv.world"
},
на описание
"code": 15,
"data": "user.net"
},
"name": "domain-search",
"data": "user.net"
– заменим блок
"name": "domain-name-servers",
```

```
"data": "192.0.2.1, 192.0.2.2"
  },
  на блок
  {
  "name": "domain-name-servers",
  "data": "192.168.1.1"
  },
  - на базе одного из приведённых в файле примеров конфигурирования под-
сети зададим собственную конфигурацию dhcp-сети, задав адрес подсети, диа-
пазон адресов для распределения клиентам, адрес маршрутизатора и broadcast-
адрес:
  "subnet4": [
  {
  "id": 1,
  // specify subnet that DHCP is used
  "subnet": "192.168.1.0/24",
  // specify the range of IP addresses to be leased
  "pools": [{"pool": "192.168.1.30 - 192.168.1.199"}],
  "option-data": [
  // specify your gateway
  "name": "routers",
  "data": "192.168.1.1"
  }
  1
  }
  Остальные примеры задания конфигураций подсетей удалим. (рис. 4)
```

Рис. 3.4: Файл /etc/kea/kea-dhcp4.conf

Настроим привязку dhcpd к интерфейсу eth1 виртуальной машины server:

"interfaces": ["eth1"]

}, (рис. 5)

"Dhcp4": {
 // Add names of your network interfaces to listen on.
 "interfaces-config": {
 "interfaces": ["eth1"]

Рис. 3.5: Файл /etc/kea/kea-dhcp4.conf

Проверим правильность конфигурационного файла: kea-dhcp4 -t /etc/kea/kea-dhcp4.conf (рис. 6)

```
[root@server.svivanov.net kea]# kea-dhcp4 -t /etc/kea/kea-dhcp4.conf
2025-09-15 09:35:04.859 INFO [kea-dhcp4.hosts/18931.140564534962304] HOSTS_BACKENDS_REGISTERED the following ho
st backend types are available: mysql postgresql
2025-09-15 09:35:04.859 MARN [kea-dhcp4.hdcpsrv/18931.140564534962304] DHCPSRV_MT_DISABLED_QUEUE_CONTROL disabl
ing dhcp queue control when multi-threading is enabled.
2025-09-15 09:35:04.859 MARN [kea-dhcp4.dhcp4/18931.140564534962304] DHCP4_RESERVATIONS_LOOKUP_FIRST_ENABLED Mu
lti-threading is enabled and host reservations lookup is always performed first.
2025-09-15 09:35:04.859 INFO [kea-dhcp4.dhcpsrv/18931.140564534962304] DHCPSRV_CFGMGR_NEW_SUBNET4 a new subnet
has been added to configuration: 192.1681.0/24 with params: t1=900, t2=1800, valid-lifetime=3600
2025-09-15 09:35:04.860 INFO [kea-dhcp4.dhcpsrv/18931.140564534962304] DHCPSRV_CFGMGR_SOCKET_TYPE_SELECT using
socket type raw
2025-09-15 09:35:04.860 INFO [kea-dhcp4.dhcpsrv/18931.140564534962304] DHCPSRV_CFGMGR_SOCKET_TYPE_SELECT using
socket type raw
2025-09-15 09:35:04.860 INFO [kea-dhcp4.dhcpsrv/18931.140564534962304] DHCPSRV_CFGMGR_SOCKET_TYPE_DEFAULT *dhcp
-socket-type" not specified , using default socket type raw
[root@server.svivanov.net kea]#
```

Рис. 3.6: Проверка правильности файла

Перезагрузим конфигурацию dhcpd и разрешим загрузку DHCP-сервера при запуске виртуальной машины server:

systemctl –system daemon-reload systemctl enable kea-dhcp4.service (рис. 7)

```
[root@server.svivanov.net kea]# systemctl --system daemon-reload
[root@server.svivanov.net kea]# systemctl enable kea-dhcp4.service
Created symlink '/etc/systemd/system/multi-user.target.wants/kea-dhcp4.service' → 'hcp4.service'.
[root@server.svivanov.net kea]#
```

Рис. 3.7: Перезагрузка конфигурации

Добавим запись для DHCP-сервера в конце файла прямой DNS-зоны /var/named/master/fz/user.net:

dhcp A 192.168.1.1

и в конце файла обратной зоны /var/named/master/rz/192.168.1:

1 PTR dhcp.user.net. (рис. 8, 9)

Рис. 3.8: Редактирование файлов

Рис. 3.9: Редактирование файлов

Перезапустим named: systemctl restart named . Проверим, что можно обратиться к DHCP-серверу по имени: ping dhcp.user.net. (рис. 10)

```
[root@server.svivanov.net rz]# ping dhcp.svivanov.net
PING dhcp.svivanov.net (192.168.1.1) 56(84) bytes of data.
64 bytes from server.svivanov.net (192.168.1.1): icmp_seq=1 ttl=64 time=0.029 ms
64 bytes from server.svivanov.net (192.168.1.1): icmp_seq=2 ttl=64 time=0.047 ms
64 bytes from server.svivanov.net (192.168.1.1): icmp_seq=3 ttl=64 time=0.060 ms
64 bytes from server.svivanov.net (192.168.1.1): icmp_seq=4 ttl=64 time=0.038 ms
64 bytes from server.svivanov.net (192.168.1.1): icmp_seq=5 ttl=64 time=0.038 ms
64 bytes from server.svivanov.net (192.168.1.1): icmp_seq=5 ttl=64 time=0.080 ms
64 bytes from server.svivanov.net (192.168.1.1): icmp_seq=7 ttl=64 time=0.059 ms
64 bytes from server.svivanov.net (192.168.1.1): icmp_seq=8 ttl=64 time=0.056 ms
64 bytes from server.svivanov.net (192.168.1.1): icmp_seq=0 ttl=64 time=0.074 ms
64 bytes from server.svivanov.net (192.168.1.1): icmp_seq=11 ttl=64 time=0.063 ms
```

Рис. 3.10: Проверка обращения к серверу

Внесем изменения в настройки межсетевого экрана узла server, разрешив работу с DHCP:

```
firewall-cmd –list-services
firewall-cmd –get-services
firewall-cmd –add-service=dhcp
firewall-cmd –add-service=dhcp –permanent (рис. 11)
```

```
[root@server.svivanov.net rz]# firewall-cmd --add-service=dhcp
success
[root@server.svivanov.net rz]# firewall-cmd --add-service=dhcp --permanent
success
[root@server.svivanov.net rz]#
```

Рис. 3.11: Изменения в настройках firewall

Восстановим контекст безопасности в SELinux: restorecon -vR /etc

restorecon -vR /var/lib/kea/. (рис. 12)

restorecon -vR /var/named

```
[root@server.svivanov.net rz]# restorecon -vR /etc
Relabeled /etc/NetworkManager/system-connections/eth1.nmconnection
o unconfined_u:object_r:NetworkManager_etc_rw_t:s0
[root@server.svivanov.net rz]# restorecon -vR /var/named
[root@server.svivanov.net rz]# restorecon -vR /var/lib/kea/
[root@server.svivanov.net rz]#
```

Рис. 3.12: Восстановление меток в SELinux

В дополнительном терминале запустим мониторинг происходящих в системе процессов в реальном времени: tail -f /var/log/messages (рис. 13)

```
root@server/var/named/maste/rz - sudo -i swvanov@server.* - sudo tail -f./var/log/messages x

Sep 15 09:53:34 server systemd[1]: systemd-coredump@903-22190-0.service: Deactivated successfully.

Sep 15 09:53:37 server systemd[1]: Started kea-dhcp4.service - Kea DMCPV4 Server.

Sep 15 09:53:37 server kea-dhcp4[22198]: 2025-09-15 09:53:37.194 INFO [kea-dhcp4.dhcp4/22198.140255081506944]

DMCP4_STARTINO Kea DHCPV4 server version 2.6.3 (stable) starting

Sep 15 09:53:37 server kea-dhcp4[22198]: 2025-09-15 09:53:37.194 INFO [kea-dhcp4.commands/22198.140255081506944]

DMCPA_STARTINO Kea DHCPV4 server version 2.6.3 (stable) starting

Sep 15 09:53:37 server kea-dhcp4[22198]: 2025-09-15 09:53:37.194 INFO [kea-dhcp4.hosts/22198.140255081506944]

J HOSTS_BACKENDS_REGISTERED the following host backend types are available: mysql postgresql

Sep 15 09:53:37 server kea-dhcp4[22198]: 2025-09-15 09:53:37.194 WARN [kea-dhcp4.dhcpsrv/22198.140255081506944]

DHCPSRV_MT_DISABLED_QUEUE_CONTROL disabling dhcp queue control when multi-threading is enabled.
```

Рис. 3.13: Запуск мониторинга

В основном рабочем терминале запустим DHCP-сервер: systemctl start keadhcp4.service (рис. 14)

```
[root@server.svivanov.net rz]# systemctl start kea-dhcp4.service
[root@server.svivanov.net rz]#
```

Рис. 3.14: Запуск DHCP-сервера

3.3 Анализ работы DHCP-сервера

Перед запуском виртуальной машины client в каталоге с проектом в подкаталоге vagrant/provision/client отредактируем файл 01- routing.sh. Этот скрипт изменяет настройки NetworkManager так, чтобы весь трафик на виртуальной машине client шёл по умолчанию через интерфейс eth1. (рис. 15)

#!/bin/bash
echo "Provisioning script \$0"

nmcli connection modify "eth1" ipv4.gateway "192.168.1.1"
nmcli connection up "eth1"

nmcli connection modify eth0 ipv4.never-default true
nmcli connection modify eth0 ipv6.never-default true

nmcli connection down eth0
nmcli connection up eth0

systemctl restart NetworkManager

Рис. 3.15: Редактирование 01-routing.sh

Изменения в фале Vagrantfile не требуются.

Запустим виртуальную машину client: vagrant up client (рис. 16)

C:\work_asp\svivanov\vagrant>vagrant up client

Рис. 3.16: Запуск client

После загрузки виртуальной машины client можем увидеть на виртуальной машине server на терминале с мониторингом происходящих в системе процессов записи о подключении к виртуальной внутренней сети узла client и выдачи ему IP-адреса из соответствующего диапазона адресов. Также информацию о работе DHCP-сервера можно наблюдать в файле /var/lib/kea/kea-leases4.csv.

Анализ файла /var/lib/kea/kea-leases4.csv:

• IP адрес: 192.168.1.30

• MAC адрес: 08:00:27:e7:37:d8

• Client ID: 01:08:00:27:e7:37:d8

• Время жизни: 3600 секунд (1 час)

• Время истечения: 1758021328

• Подсеть: 1

• FQDN: client.svivanov.net

• Состояние: 0 (активно) (рис. 17)

```
ddress, hwaddr,client_id,valid_lifetime,expire,subnet_id,fqdn_fwd,fqdn_rev,hostname,state,user_context,pool_id 192.168.1.30,08:00:27:e7:37:d8,01:08:00:27:e7:37:d8,3600,1758021328,1,1,1,client.svivanov.net,0,,0 192.168.1.30,08:00:27:e7:37:d8,01:08:00:27:e7:37:d8,3600,1758021336,1,1,1,client.svivanov.net,0,,0 ...
```

Рис. 3.17: Анализ подключения

Войдем в систему виртуальной машины client под нашим пользователем и откроем терминал. В терминале введем ifconfig.

Анализ выведенной информации:

Интерфейс eth0:

• Cocтoяние: UP, BROADCAST, RUNNING, MULTICAST - интерфейс активен и функционирует

• MTU: 1500 байт - стандартный размер для Ethernet

• IPv4 адрес: 10.0.2.15/24 - частный адрес в сети класса А

• IPv6 адреса:

• fe80::a00:27ff.fe83:f313 - link-local адрес

• fd17:625c:f037:2:a00:27ff.fe83:f313 - уникальный локальный IPv6 адрес

• MAC адрес: 08:00:27:83:f3:13 - виртуальный адрес

• Статистика: 1470 полученных, 1294 отправленных пакетов

Интерфейс eth1:

- Состояние: Аналогично eth0 интерфейс активен
- IPv4 адрес: 192.168.1.30/24 соответствует DHCP
- IPv6 адрес: fe80::a00:27ff.fe83:f313 link-local адрес
- MAC адрес: 08:00:27:87:08
- Проблема: 12 dropped packets при передаче
- Статистика: 157 полученных, 403 отправленных пакетов

Интерфейс lo:

- Внутренний интерфейс для локального трафика
- IPv4: 127.0.0.1/8 стандартный loopback адрес
- IPv6: ::1/128 IPv6 loopback адрес
- MTU: 65536 байт размер для локального трафика (рис. 18)

```
[svivanov@client.svivanov.net ~]$ ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255
    inet6 fe80::a00:27ff:fe83:f313 prefixlen 64 scopeid 0x20inet6 fd17:625c:f037:2:a00:27ff:fe83:f313 prefixlen 64 scopeid 0x0<global> ether 00:00:27:83:f3:13 txqueuelen 1000 (Ethernet)
    RX packets 1470 bytes 182960 (178.6 KiB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 1294 bytes 208451 (203.5 KiB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 192.168.1.30 netmask 255.255.255.0 broadcast 192.168.1.255
    inet6 fe80::4d91:2872:e340:6fb9 prefixlen 64 scopeid 0x20inet of e80:00:27:e7:37:d8 txqueuelen 1000 (Ethernet)
    RX packets 157 bytes 19856 (19.3 KiB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 403 bytes 43773 (42.7 KiB)
    TX errors 0 dropped 12 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    inet6::1 prefixlen 128 scopeid 0x10
    NX packets 23 bytes 2769 (2.7 KiB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 23 bytes 2769 (2.7 KiB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 23 bytes 2769 (2.7 KiB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

[svivanov@client.svivanov.net ~]$
```

Рис. 3.18: Анализ ifconfig

На машине server посмотрим список выданных адресов: cat /var/lib/kea/kea-leases4.csv. Этот файл уже проанализирован. (рис. 19)

```
[root@server.svivanov.net kea]# cat kea-leases4.csv
address,hwaddr,client_id,valid_lifetime,expire,subnet_id,fqdn_fwd,fqdn_rev,hostname,state,user_context,pool_id
192.168.1.30,08:00:27:e7:37:d8,01:08:00:27:e7:37:d8,3600,1758021328,1,1,1,client.svivanov.net,0,,0
192.168.1.30,08:00:27:e7:37:d8,01:08:00:27:e7:37:d8,3600,1758021336,1,1,1,client.svivanov.net,0,,0
[root@server.svivanov.net kea]#
```

Рис. 3.19: Список выданных адресов

3.4 Настройка обновления DNS-зоны

Создадим ключ на сервере с Bind9 (на виртуальной машине server): mkdir -p /etc/named/keys tsig-keygen -a HMAC-SHA512 DHCP_UPDATER > /etc/named/keys/dhcp_updater.key Файл /etc/named/keys/dhcp_updater.key будет иметь следующий вид (рис. 20)

```
[root@server.svivanov.net kea]# mkdir -p /etc/named/keys
[root@server.svivanov.net kea]# stig-keygen -a HMAC-SHA512 DHCP_UPDATER > /etc/named/keys/dhcp_updater.key
[root@server.svivanov.net kea]# cd /etc/named/keys/dhcp_updater.key
[root@server.svivanov.net ~]# cd /etc/named/keys/dhcp_updater.key
-bash: cd: /etc/named/keys/dhcp_updater.key: Это не каталог
[root@server.svivanov.net ~]# cd /etc/named/keys/
[root@server.svivanov.net keys]# cat dhcp_updater.key
key "DHCP_UPDATER" {
    algorithm hnac-sha512;
    secret "zssId9+A8D7+RTpeoxyPG4buhKMdp+0jFmhSidr3Zs272hQi3noG5rixrvRQcVyu7RQUUbPWeISivr2TIClQkw==";
};
[root@server.svivanov.net keys]#
```

Рис. 3.20: Создание ключа

Поправим права доступа: chown -R named:named/etc/named/keys (рис. 21)

```
[root@server.svivanov.net keys]# chown -R named:named /etc/named/keys
```

Рис. 3.21: Права доступа

Подключим ключ в файле /etc/named.conf: include "/etc/named/keys/dhcp_updater.key"; (рис. 22)

```
include "/etc/named/svivanov.net";
include "/etc/named/keys/dhcp_updater.key";
include "/etc/named.rfc1912.zones";
include "/etc/named.root.key";
-- PEXVIM BCTABKU --
```

Рис. 3.22: Подключение ключа

На виртуальной машине server под пользователем с правами суперпользователя отредактируем файл /etc/named/user.net, разрешив обновление зоны: (рис. 23)

```
zone "svivanov.net" IN {
          type primary;
          file "master/fz/svivanov.net";
          update-policy {
              grant DHCP_UPDATER wildcard *.user.net A DHCID;
          };
};

zone "1.168.192.in-addr.arpa" IN {
          type primary;
          file "master/rz/192.168.1";
          update-policy {
                grant DHCP_UPDATER wildcard *.1.168.192.in-addr.arpa PTR DHCID;
          };
};
```

Рис. 3.23: Редактирование файла /etc/named/user.net

Сделаем проверку конфигурационного файла: named-checkconf. Перезапустим DNS-сервер: systemctl restart named (рис. 24)

```
[root@server.svivanov.net named]# vim svivanov.net
[root@server.svivanov.net named]# named-checkconf
[root@server.svivanov.net named]# systemctl restart named
[root@server.svivanov.net named]#
```

Рис. 3.24: Проверка и перезапуск сервера

Сформируем ключ для Kea. Файл ключа назовём /etc/kea/tsig-keys.json: touch /etc/kea/tsig-keys.json. Перенесём ключ на сервер Kea DHCP и перепишем его в формате json (рис. 25)

Рис. 3.25: Формирование ключа

Сменим владельца: chown kea:kea /etc/kea/tsig-keys.json. Поправим права доступа: chmod 640 /etc/kea/tsig-keys.json (рис. 26)

```
[root@server.svivanov.net kea]# chown kea:kea /etc/kea/tsig-keys.json
[root@server.svivanov.net kea]# chmod 640 /etc/kea/tsig-keys.json
[root@server.svivanov.net kea]#
```

Рис. 3.26: Смена владельца и прав

Настройка происходит в файле /etc/kea/kea-dhcp-ddns.conf: (рис. 27)

Рис. 3.27: Настройка

Изменим владельца файла: chown kea:kea /etc/kea/kea-dhcp-ddns.conf. Проверим файл на наличие возможных синтаксических ошибок: kea-dhcp-ddns -t /etc/kea/kea-dhcp-ddns.conf (рис. 28)

```
[root@server.svivanov.net kea]# chown kea:kea /etc/kea/kea-dhcp-ddns.conf
[root@server.svivanov.net kea]# kea-dhcp-ddns -t /etc/kea/kea-dhcp-ddns.conf
2025-09-15 11:15:38.503 INFO [kea-dhcp-ddns.dctl/34228.139883205669184] DCTL_CONFIG_CHECK_COMPLETE server ha
s completed configuration check: listening on 127.0.0.1, port 53001, using UDP, result: success(0), text=Conf
iguration check successful
[root@server.svivanov.net kea]#
```

Рис. 3.28: Смена владельца и проверка ошибок

Запустим службу ddns: systemctl enable –now kea-dhcp-ddns.service. Проверим статус работы службы: systemctl status kea-dhcp-ddns.service (рис. 29)

```
[root@server.svivanov.net kea]# systemctl enable --now kea-dhcp-ddns.service
Created symlink '/etc/systemd/system/multi-user.target.wants/kea-dhcp-ddns.service' → '/usr/lib/syste
m/kea-dhcp-ddns.service'.
[root@server.svivanov.net kea]# systemctl status kea-dhcp-ddns.service
• kea-dhcp-ddns.service - Kea DHCP-DDNS Server
Loaded: loaded (/usr/lib/systemd/system/kea-dhcp-ddns.service; enabled; preset: disabled)
Active: active (running) since Mon 2025-09-15 11:16:00 UTC; 7s ago
Invocation: 4c91603f305245ecbba3e926feb05c42
Docs: man:kea-dhcp-ddns(8)
Main PID: 34413 (kea-dhcp-ddns)
Tasks: 5 (limit: 23144)
Memory: 1.7M (peak: 5.9M)
CPU: 21ms
CGroup: /system.slice/kea-dhcp-ddns.service
34413 /usr/sbin/kea-dhcp-ddns - c /etc/kea/kea-dhcp-ddns.conf
```

Рис. 3.29: Запуск и проверка статуса

Внесем изменения в конфигурационный файл /etc/kea/kea-dhcp4.conf, добавив в него разрешение на динамическое обновление DNS-записей с локального узла прямой и обратной зон: (рис. 30)

Рис. 3.30: Добавление динамического обновления DNS-записей

Проверим файл на наличие возможных синтаксических ошибок: kea-dhcp4 -t /etc/kea/kea-dhcp4.conf (рис. 31)

```
[root@server.svivanov.net kea]# kea-dhcp4 -t /etc/kea/kea-dhcp4.conf
2025-09-15 11:19:41.630 WARN [kea-dhcp4.dhcp4/5101.140069864990848] DHCP4_CONFIG_SYNTAX_WARNING configurati
on syntax warning: /etc/kea/kea-dhcp4.conf:253.36: Extraneous comma. A piece of configuration may have been o
mitted.
2025-09-15 11:19:41.630 INFO [kea-dhcp4.hosts/35101.140069864990848] HOSTS_BACKENDS_REGISTERED the following
host backend types are available: mysql postgresql
2025-09-15 11:19:41.631 WARN [kea-dhcp4.dhcpsrv/35101.140069864990848] DHCPSRV_MT_DISABLED_QUEUE_CONTROL dis
abling dhcp queue control when multi-threading is enabled.
2025-09-15 11:19:41.631 WARN [kea-dhcp4.dhcp4/35101.140069864990848] DHCP4_RESERVATIONS_LOOKUP_FIRST_ENABLED
Multi-threading is enabled and host reservations lookup is always performed first.
2025-09-15 11:19:41.631 INFO [kea-dhcp4.dhcp3/5101.140069864990848] DHCPSRV_CFGMGR_NEW_SUBNET4 a new subn
that hose hear added to energing the lock of the preservation of
```

Рис. 3.31: Проверка ошибок

Перезапустим DHCP-сервер: systemctl restart kea-dhcp4.service. Проверим статус: systemctl status kea-dhcp4.service: (рис. 32)

```
[root@server.svivanov.net kea]# systemctl restart kea-dhcp4.service
[root@server.svivanov.net kea]# systemctl status kea-dhcp4.service

• kea-dhcp4.service - Kea DHCPv4 Server
Loaded: loaded (/usr/lib/systemd/system/kea-dhcp4.service; enabled; preset: disabled)
Active: active (running) since Mon 2025-09-15 11:20:38 UTC; 5s ago
Invocation: 7ffd0a96e40e4a904b50de92fc9610alf
Docs: man:kea-dhcp4(8)
Main PID: 35235 (kea-dhcp4)
Tasks: 9 (limit: 23144)
Memory: 2.6M (peak: 5.8M)
CPU: 26ms
CGroup: /system.slice/kea-dhcp4.service
L35235 /usr/sbin/kea-dhcp4 -c /etc/kea/kea-dhcp4.conf
```

Рис. 3.32: Запуск и проверка статуса

На машине client переполучим адрес:

nmcli connection down eth1 nmcli connection up eth1 (рис. 33)

```
[svivanov@client.svivanov.net ~]$ nmcli connection down eth1
Подключение wethl» успешно деактивировано (активный путь D-Bus: /org/freedesktop/NetworkManager/ActiveConnection/4)
[svivanov@client.svivanov.net ~]$ nmcli connection up eth1
Подключение успешно активировано (активный путь D-Bus: /org/freedesktop/NetworkManager/ActiveConnection/6)
[svivanov@client.svivanov.net ~]$
```

Рис. 3.33: Переполучение адреса

3.5 Анализ работы DHCP-сервера после настройки обновления DNS-зоны

На виртуальной машине client откроем терминал и с помощью утилиты dig убедимся в наличии DNS-записи о клиенте в прямой DNS-зоне:

Анализ выведенной информации: запрос выполнен без ошибок

• запрос: client.svivanov.net

• Status: NOERROR - домен найден

• ANSWER: 1 - есть ответная запись

• ІР адрес: 192.168.1.30 - именно тот, который нужен (рис. 34)

```
[svivanov@client.svivanov.net ~]$ dig @192.168.1.1 client.svivanov.net
; <<>> DiG 9.18.33 <<>> @192.168.1.1 client.svivanov.net
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<- opcode: QUERY, status: NOERROR, id: 62266
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
; COOKIE: 66cf3b60ad1f4f350100000068c976bd63e1f1f36835821e (good)
;; QUESTION SECTION:
;client.svivanov.net. IN A
;; ANSWER SECTION:
client.svivanov.net. 86400 IN A 192.168.1.30

;; Query time: 1 msec
;; SERVER: 192.168.1.1#53(192.168.1.1) (UDP)
;; WHEN: Tue Sep 16 14:39:56 UTC 2025
;; MSG SIZE revd: 92</pre>
```

Рис. 3.34: Анализ запроса

3.6 Внесение изменений в настройки внутреннего окружения виртуальной машины

На виртуальной машине server перейдем в каталог для внесения изменений в настройки внутреннего окружения /vagrant/provision/server/, создадим в нём каталог dhcp, в который поместим в соответствующие подкаталоги конфигурационные файлы DHCP:

```
cd /vagrant/provision/server mkdir -p /vagrant/provision/server/dhcp/etc/kea cp -R /etc/kea/* /vagrant/provision/server/dhcp/etc/kea/ Заменим конфигурационные файлы DNS-cepвepa: cd /vagrant/provision/server/dns/ cp -R /var/named/* /vagrant/provision/server/dns/var/named/ cp -R /etc/named/* /vagrant/provision/server/dns/etc/named/ (рис. 35)
```

```
[root@server.svivanov.net fz]# cd /vagrant/provision/server
[root@server.svivanov.net server]# mkdir -p /vagrant/provision/server/dhcp/etc/kea
[root@server.svivanov.net server]# cp -R /etc/kea/* /vagrant/provision/server/dhcp/etc/kea/
[root@server.svivanov.net server]# cd /vagrant/provision/server/dns/var/named/
[root@server.svivanov.net dns]# cp -R /var/named/* /vagrant/provision/server/dns/var/named/
cp: overwrite '/vagrant/provision/server/dns/var/named/master/rz/192.168.1'? yes
cp: overwrite '/vagrant/provision/server/dns/var/named/master/fz/svivanov.net'? yes
[root@server.svivanov.net dns]# cp -R /etc/named/* /vagrant/provision/server/dns/etc/named/
[root@server.svivanov.net dns]#
```

Рис. 3.35: Замена конф. файлов

В каталоге /vagrant/provision/server создадим исполняемый файл dhcp.sh: cd /vagrant/provision/server touch dhcp.sh chmod +x dhcp.sh
Открыв его на редактирование, пропишем в нём следующий скрипт: (рис. 36)

```
#!/bin/bash
echo "Provisioning script $0"
echo "Install needed packages"
dnf -y install kea
echo "Copy configuration files"
cp -R /vagrant/provision/server/dhcp/etc/kea/* /etc/kea/
echo "Fix permissions"
chown -R kea:kea /etc/kea
chmod 640 /etc/kea/tsig-keys.json
restorecon -vR /etc
restorecon -vR /var/lib/kea
echo "Configure firewall"
firewall-cmd --add-service dhcp
firewall-cmd --add-service dhcp --permanent
echo "Start dhcpd service"
systemctl --system daemon-reload
systemctl enable --now kea-dhcp4.service
systemctl enable --now kea-dhcp-ddns.service
```

Рис. 3.36: Запуск и проверка статуса

Для отработки созданного скрипта во время загрузки виртуальной машины server в конфигурационном файле Vagrantfile необходимо добавить в разделе конфигурации для сервера: (рис. 37)

```
server.vm.provision "server dhcp",
type: "shell",
preserve_order: true,
path: "provision/server/dhcp.sh"
```

Рис. 3.37: Редактирование Vagrantfile

4 Ответы на контрольные вопросы

1. В каких файлах хранятся настройки сетевых подключений?

Настройки сетевых подключений в Linux, использующих NetworkManager, хранятся в файлах по пути:

/etc/sysconfig/network-scripts/ifcfg-

Например: /etc/sysconfig/network-scripts/ifcfg-eth0. Также NetworkManager может хранить настройки в собственной бинарной базе данных. Для управления подключениями через NetworkManager используются утилиты nmcli или nmtui.

2. За что отвечает протокол DHCP?

DHCP (Dynamic Host Configuration Protocol) отвечает за автоматическую настройку сетевых параметров на клиентских устройствах. Он предоставляет:

Динамическое назначение IP-адресов из заданного пула, указание маски подсети (netmask), назначение шлюза по умолчанию (default gateway), указание адресов DNS-серверов, другие параметры сети

3. Поясните принцип работы протокола DHCP. Какими сообщениями обмениваются клиент и сервер, используя протокол DHCP?

Принцип работы DHCP:

DISCOVER - клиент широковещательно ищет доступные DHCP-серверы

OFFER - сервер предлагает клиенту IP-адрес и параметры конфигурации

REQUEST - клиент подтверждает принятие предложения

АСК - сервер подтверждает выделение адреса и параметров

Дополнительные сообщения:

NAK - отказ сервера в предоставлении адреса

RELEASE - клиент освобождает IP-адрес

DECLINE - клиент отказывается от предложенного адреса

4. В каких файлах обычно находятся настройки DHCP-сервера? За что отвечает каждый из файлов?

Для DHCP-сервера Kea:

/etc/kea/kea-dhcp4.conf - основной конфигурационный файл DHCPv4-сервера /etc/kea/kea-dhcp-ddns.conf - конфигурация динамического DNS /etc/kea/tsig-keys.json - файл ключей TSIG для безопасного обновления DNS /var/lib/kea/kea-leases4.csv - база данных выданных аренд (lease database)

5. Что такое DDNS? Для чего применяется DDNS?

DDNS (Dynamic DNS) - технология, позволяющая автоматически обновлять DNS-записи при изменении IP-адресов или появлении новых узлов в сети.

Применение DDNS: Автоматическое создание DNS-записей для клиентов, получающих адреса по DHCP, обновление записей при смене IP-адресов, синхронизация прямой и обратной DNS-зон, упрощение администрирования сетей с динамическими адресами.

6. Какую информацию можно получить, используя утилиту ifconfig? Приведите примеры с использованием различных опций.

ifconfig показывает информацию о сетевых интерфейсах:

Примеры использования:

Показать все активные интерфейсы

ifconfig

Показать конкретный интерфейс

ifconfig eth0

Показать все интерфейсы

• ifconfig -a

Включить интерфейс

• ifconfig eth0 up

Выключить интерфейс

• ifconfig eth0 down

Выводимая информация: ІР-адрес, маска подсети, МАС-адрес, статистика приема/передачи пакетов, флаги состояния интерфейса.

7. Какую информацию можно получить, используя утилиту ping? Приведите примеры с использованием различных опций.

ping используется для проверки доступности сетевых узлов и измерения задержки:

Базовая проверка доступности

• ping example.com

Ограничить количество пакетов - ping -c 5 example.com

Указать размер пакета - ping -s 1000 example.com

Указать интервал между пакетами (в секундах) - ping -i 2 example.com

Непрерывный ping - ping -t example.com

Ping с временными метками - ping -D example.com

5 Выводы

В ходе выполнения лабораторной работы мы приобрели практические навыки по установке и конфигурированию DHCP сервера.