Tutorial - 4 MA202 : Calculus II

- 1. Calculate the double integral $\iint_D f(x,y)d(x,y)$ for the given f and D after applying the given transformations.
 - (a) $f(x,y) = e^{x^2+y^2}$ and D be the closed unit disk in \mathbb{R}^2 (transform in to polar co-ordinate)
 - (b) $f = y^3(2x y)e^{(2x y)^2}$ and $D = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le 2, \frac{y}{2} \le x \le \frac{y + 4}{2}\}$. Apply the transformation u = 2x y and v = y.
 - (c) $f(x,y) = y^2$ and $D = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\}$. Apply the transformation $x = ar \cos \theta$ and $y = br \sin \theta$.
 - (d) $f(x,y) = 2x^2 xy y^2$, D =the first quadrant bounded by the line y + 2x = 4, y + 2x = 7, y = x 2 and y = x + 1. Apply the transformation u = x y and v = 2x + y.
- 2. Calculate the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ using double integral (take the integrating function f(x, y) = 1) with the transformation x = au, y = bv.
- 3. Calculate the triple integral $\iiint_D f(x,y)d(x,y)$ for the given f and D after applying the given transformations.
 - (a) $f(x, y, z) = \frac{z}{y+z}$, $D = \{(x, y, z) \in \mathbb{R}^3 : x, y, z \ge 0, \ x \le y+z, \ 1 \le 2(x+y+z) \le 2\}$. Apply the transformation u = x + y + z, $v = \frac{y+z}{x+y+z}$, and $w = \frac{z}{y+z}$.
 - (b) $f(x,y,z)=z\sqrt{1-x^2-y^2},\ D=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2\leq 1,\ 0\leq z\leq 1\}.$ Transform to cylindrical co-ordinates.
 - (c) $f(x,y,z)=z^2,\,D=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+z^2\leq a^2\}.$ Transform to spherical co-ordinates.
 - (d) $f(x,y,z) = \frac{2x-y}{2} + \frac{z}{3}$, $D = \{(x,y,z) \in \mathbb{R}^3 : 0 \le z \le 3, \ 0 \le y \le 4, \ 2x = y, \ y = 2x 2\}$. Apply the transformation $u = \frac{2x-y}{2}, \ v = \frac{y}{2}$, and $w = \frac{z}{3}$.
- 4. Let D be an open subset of \mathbb{R}^3 . Also let $f: D \to \mathbb{R}$ be a scalar field and $F = (F_1, F_2, F_3): D \to \mathbb{R}^3$ be a vector field where the partial derivatives of $f, F_1, F_2, F_3: D \to \mathbb{R}$ exist and continuous. Then prove the following
 - (a) $\nabla \times (\nabla f) = 0$
 - (b) $\nabla \cdot (\nabla \times F) = 0$