Laboratoria Podstawy Elektroniki				
Kierunek	Specjalność	Rok studiów	Symbol grupy lal	b.
Informatyka	_	I	I1	
Temat Laboratorium Numer lab.			Numer lab.	
Ćwiczenia wprowadzające				1
Skład grupy ćwiczeniowej oraz numery indeksów				
Stanisław Jasiewicz(116753), Krzysztof Michalak(132281), Wojciech Regulski(132312), Ewa Rudol(132314)				
Uwagi			Ocena	

1 Cel

Zapoznanie się z elementami służącymi do budowy obwodów, skojarzonymi z nimi jednostkami oraz aparaturą służącą do wykonywania pomiarów.

Uzyskanie umiejętności budowania podstawowych obwodów i porównywania uzyskanych danych pomiarowych z danymi obliczonymi z wyprowadzonych wzorów.

2 Pomiary

2.1 ZADANIE A

2.1.1 Część I

R	Barwy	Odczyt	Pomiar
R1	żółty, fioletowy, brązowy, złoty	$470 \pm 5\% \Omega$	462Ω
R2	brązowy, czarny, czerwony, złoty	$1000 \pm 5\% \Omega$	992 Ω
R3	czerwony, czarny, czerwony, złoty	$2000 \pm 5\% \Omega$	1971 Ω
R4	szary, czerwony, brązowy, złoty	$820 \pm 5\% \Omega$	819 Ω
R5	pomarańczowy, pomarańczowy, czerwony, złoty	$3300 \pm 5\% \Omega$	3246Ω
R6	czerwony, czerwony, brązowy, złoty	$220 \pm 5\% \Omega$	216 Ω

Tablica 1: Odczyt barw, ich interpretacja oraz wartość pomiarów rezystencji multimetrem

2.1.2 Część II

С	Oznaczenie	Odczyt	Pomiar
C1	10 μF	10 μF	10,7 μF
C2	$1 \mu F$	1 μF	$0.96 \ \mu F$
C3	472	4.7 nF	$4,76 \mathrm{nF}$
C4	10 nF	10 nF	$8,35 \mathrm{nF}$
C5	$47 \mu F$	$47 \mu F$	$43,6 \ \mu F$
C6	$22 \mu F$	$22 \mu F$	$21,2 \mu F$

Tablica 2: Odczyt oznaczeń oraz wartości pomiarów pojemności dla różnych kondensatorów

2.1.3 Część III

L	Pomiar
L1	33,67 mH
L2	29,2 mH
L3	$38,2 \mu \text{H}$

Tablica 3: Wartości pomiarów indukcyjności poszczególnych cewek

2.2 ZADANIE B

2.2.1 Część I

Wzór na rezystencję zastępczą danego obwodu:

$$R_z = R_7 + \frac{R_5 R_6}{R_6 + R_5} + \frac{R_1 R_2 R_3 R_4}{R_1 R_3 R_4 + R_2 R_3 R_4 + R_1 R_2 R_3 + R_1 R_2 R_4} + \frac{R_8 R_9}{R_8 + R_9}$$

Po podstawieniu danych:

$$R_z = 1248, 26\Omega$$

2.2.2 Część II

obwód 1. Wzór: $R_z = \frac{R_1 R_2 + R_1 R_3}{R_1 + R_2 + R_3}$

Po podstawieniu: 800 Ω

Pomiar: 787,4 Ω

Rysunek 1: Obwód 1

obwód 2. Wzór:
$$R_z = \frac{R_4(\frac{R_1R_2}{R_1+R_2} + R_3 + R_5)}{\frac{R_1R_2}{R_1+R_2} + R_3 + R_4 + R_5}$$

Po podstawieniu: 94,64 Ω

Pomiar: 94,2 Ω

Rysunek 2: Obwód 2

obwód 3. Wzór: $R_z = R_1$

Po podstawieniu: 2000Ω

Pomiar: 1966,1 Ω

Rysunek 3: Obwód 3

obwód 4. Wzór:
$$R_z = \frac{R_4(\frac{R_3R_2}{R_3+R_2} + R_1 + R_5)}{\frac{R_3R_2}{R_3+R_2} + R_1 + R_4 + R_5}$$

Po podstawieniu: 677,42 Ω

Pomiar: 664,3 Ω

Rysunek 4: Obwód 4

obwód 5. Wzór:
$$R_z = \frac{R_1(\frac{R_3R_4}{R_3+R_4} + R_2)}{\frac{R_3R_4}{R_3+R_4} + R_1 + R_2}$$

Po podstawieniu: 1142,92 $\!\Omega$

Pomiar: 1124,2 Ω

Rysunek 5: Obwód 5

obwód 6. Wzór:
$$R_z = \frac{R_4(\frac{R_1R_2}{R_1+R_2} + R_3)}{\frac{R_1R_2}{R_1+R_2} + R_3 + R_4} + R_5$$

Po podstawieniu: 1707,69 Ω

Pomiar: 1681,5 Ω

Rysunek 6: Obwód 6

2.3 ZADANIE C

2.3.1 Część I

U	Pomiar	Odczyt
1 [V]	1,15	1
3 [V]	3,13	3
4,5[V]	4,69	4,5
11 [V]	11,19	11
13 [V]	13,18	13
25 [V]	$25,\!17$	25
28 [V]	$28,\!24$	28

Tablica 4: Pomiar napięcia z sekcji DC

2.3.2 Część II

Wzór dla dzielnika napięcia danego na rysunku:

$$I = \frac{U_{we}}{R_1 + R_2} \Rightarrow U_{wy} = I * R_2 = U_{we} \frac{R_2}{R_1 + R_2}$$

Rysunek 7: Schemat zaprojektowanego dzielnika napięcia

2.3.3 Część III

Rysunek 8: Obwód dany w zadaniu

Spadek napięcia na rezystorze R_1 :

$$U_{r1}=5[V]$$

Natężenie prądu w obwodzie:

$$I=2,45[mA]$$

Napięcie źródła równa się spadkowi napięcia na jedynym elemencie pasywnym obwodu zgodnie z drugim prawem Kirchoffa.

2.3.4 Część IV

Rysunek 9: Obwód 1.

Pierwsze prawo Kirchoffa

$$I_4 - I_3 - I_2 = 0$$

 $I_1 - I_2 - I_3 = 0$
 $I_1 = I_4$
 $3,96 \approx 3,94$

Drugie prawo Kirchoffa

$$E - U_1 - U_2 - U_3 - U4 = 0$$

$$E = U_1 + U_2 + U_3 + U4$$

$$5V \approx 3.92V + 0.664V + 0.66V + 0.39V$$

Wejściowe i wyjściowe napięcia i natężenia są równe co do wartości.

R	Napięcie	Natężenie
R1	3,92 V	$3,96~\mathrm{mA}$
R2	0,664 V	$0.36~\mathrm{mA}$
R3	0,66 V	3,58 mA
R4	$392,425~\mathrm{mV}$	$3,94~\mathrm{mA}$

Tablica 5: Wartość pomiarów na poszczególnych gałęziach

3 Wnioski

Zgodnie z założeniami ćwiczenia wprowadzającego przeprowadzony został szereg pomiarów, jednakże łatwo zauważyć, że odbiegają one od danych uzyskanych droga rachunkową. Dzieje się tak, gdyż w obliczeniach nie bierzemy pod uwagę kilku czynników. Jednym z nich jest fakt, że dane otrzymywane na wyjściu sprzętu pomiarowego, nigdy nie będą w stu procentach dokładne – niemożliwe jest stworzenie miernika idealnego. Tak samo jak rachunki nie biorą pod uwagę błędu ludzkiego i warunków środowiskowych.

Właśnie w tym celu wprowadzane są tolerancje i marginesy błędu, jak można to zaobserwować w Części I Zadania A. Łatwo policzyć, że w każdym pomiarze błąd mieścił się w podanej tolerancji błędu.

Kolejnym negatywnym czynnikiem jest rezystencja własna przewodów, której nijak nie da się uniknąć, oraz nieprecyzyjne wykonanie elementów pasywnych.

Problematyka jaką mogliśmy napotkać w trakcie wykonywania ćwiczeń wynikała z czysto teoretycznego opanowania materiału – umiejętność interpretacji schematów (wiedza, które rezystory są połączone szeregowo, tudzież równolegle) czy odczytywania kolorowego oznaczenia rezystorów. Przydatna była biegłość wyszukiwania i łączenia substytutów dla oporników, których nie mieliśmy fizycznie, a były nam potrzebne opory o danych wartościach.

Następnym zadaniem było wykonanie wyprowadzeń wzorów oraz sprawdzenie, czy są one zgodne z teorią obliczania rezystancji, czy prawami Kirchoffa.

Po uwzględnieniu tolerancji błędów potwierdzone zostały podstawowe prawa fizyki, reguły wyznaczania oporu zastępczego, a także pierwsze i drugie prawo Kirchoffa.