Максимальный размер исходных файлов не указывается, поэтому при решении заданий на файлы не следует использовать вспомогательные массивы, содержащие все элементы исходных файлов, однако допускается использование вспомогательных файлов. Все исходные файлы считаются существующими и непустыми, за исключением специально оговоренных случаев (см., например, задания File4, File5, File9), в которых существование исходных файлов требуется проверять в ходе выполнения задания.

Если при выполнении заданий не используется электронный задачник Programming Taskbook, то следует позаботиться о генерации исходных файлов, а также о наглядном выводе содержимого результирующих двоичных файлов. Для этих целей целесообразно применять специальные процедуры, которые может разработать либо преподаватель, либо сами учащиеся.

Указатели

В заданиях этой группы используется особые типы данных: записи типа TNode и указатели на них типа PNode. Описание этих типов на языках Pascal и C++ приводится в начале раздела «Указатели». При использовании электронного задачника Programming Taskbook эти типы не следует описывать в программе учащегося, так как они уже описаны в модулях задачника, подключаемых к программе.

Для *нулевого указателя* в формулировках заданий используется обозначение nil, заимствованное из языка Pascal.

Если при выполнении заданий не используется электронный задачник Programming Taskbook, то следует позаботиться о подготовке тестовых динамических структур (и размещении их в динамической памяти в начале работы программы), а также о наглядном выводе содержимого результирующих структур. Здесь, как и в случае с файлами, могут оказаться полезными специальные процедуры, разработанные либо преподавателем, либо самими учащимися.

3 Ввод и вывод данных, оператор присваивания: группа Begin

Все входные и выходные данные в заданиях этой группы являются вещественными числами.

Begin 1. Дана сторона квадрата a. Найти его периметр $P = 4 \cdot a$.

Begin2. Дана сторона квадрата a. Найти его площадь $S=a^2$.

Begin3°. Даны стороны прямоугольника a и b. Найти его площадь $S = a \cdot b$ и периметр $P = 2 \cdot (a + b)$.

Begin4. Дан диаметр окружности d. Найти ее длину $L = \pi \cdot d$. В качестве значения π использовать 3.14.

- Begin5. Дана длина ребра куба a. Найти объем куба $V = a^3$ и площадь его поверхности $S = 6 \cdot a^2$.
- Begin6. Даны длины ребер a, b, c прямоугольного параллелепипеда. Найти его объем $V = a \cdot b \cdot c$ и площадь поверхности $S = 2 \cdot (a \cdot b + b \cdot c + a \cdot c)$.
- Begin7°. Найти длину окружности L и площадь круга S заданного радиуса R:

$$L = 2 \cdot \pi \cdot R$$
, $S = \pi \cdot R^2$.

В качестве значения π использовать 3.14.

- Begin8. Даны два числа a и b. Найти их *среднее арифметическое*: (a + b)/2.
- Begin9. Даны два неотрицательных числа a и b. Найти их cpedнее ceomempuчe-ckoe, то есть квадратный корень из их произведения: $\sqrt{a \cdot b}$.
- Begin10. Даны два ненулевых числа. Найти сумму, разность, произведение и частное их квадратов.
- Begin11. Даны два ненулевых числа. Найти сумму, разность, произведение и частное их модулей.
- Begin12. Даны катеты прямоугольного треугольника a и b. Найти его гипотенузу c и периметр P:

$$c = \sqrt{a^2 + b^2}, \qquad P = a + b + c.$$

Begin13. Даны два круга с общим центром и радиусами R_1 и R_2 ($R_1 > R_2$). Найти площади этих кругов S_1 и S_2 , а также площадь S_3 кольца, внешний радиус которого равен R_1 , а внутренний радиус равен R_2 :

$$S_1 = \pi \cdot (R_1)^2$$
, $S_2 = \pi \cdot (R_2)^2$, $S_3 = S_1 - S_2$.

В качестве значения π использовать 3.14.

- Begin14. Дана длина L окружности. Найти ее радиус R и площадь S круга, ограниченного этой окружностью, учитывая, что $L = 2 \cdot \pi \cdot R$, $S = \pi \cdot R^2$. В качестве значения π использовать 3.14.
- Begin15. Дана площадь S круга. Найти его диаметр D и длину L окружности, ограничивающей этот круг, учитывая, что $L = \pi \cdot D$, $S = \pi \cdot D^2/4$. В качестве значения π использовать 3.14.
- Begin16. Найти расстояние между двумя точками с заданными координатами x_1 и x_2 на числовой оси: $|x_2 x_1|$.
- Begin17. Даны три точки A, B, C на числовой оси. Найти длины отрезков AC и BC и их сумму.
- Begin18. Даны три точки A, B, C на числовой оси. Точка C расположена между точками A и B. Найти произведение длин отрезков AC и BC.
- Begin19. Даны координаты двух противоположных вершин прямоугольника: $(x_1, y_1), (x_2, y_2)$. Стороны прямоугольника параллельны осям координат. Найти периметр и площадь данного прямоугольника.

Begin20. Найти расстояние между двумя точками с заданными координатами (x_1, y_1) и (x_2, y_2) на плоскости. Расстояние вычисляется по формуле

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$
.

Begin21. Даны координаты трех вершин треугольника: (x_1, y_1) , (x_2, y_2) , (x_3, y_3) . Найти его периметр и площадь, используя формулу для расстояния между двумя точками на плоскости (см. задание Begin20). Для нахождения площади треугольника со сторонами a, b, c использовать ϕ ормулу Γ ерона:

$$S = \sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)},$$

где p = (a + b + c)/2 — полупериметр.

- Begin22°. Поменять местами содержимое переменных A и B и вывести новые значения A и B.
- **Begin23**. Даны переменные A, B, C. Изменить их значения, переместив содержимое A в B, B в C, C в A, и вывести новые значения переменных A, B, C.
- **Begin24**. Даны переменные A, B, C. Изменить их значения, переместив содержимое A в C, C в B, B в A, и вывести новые значения переменных A, B, C.
- Begin25. Найти значение функции $y = 3 \cdot x^6 6 \cdot x^2 7$ при данном значении x.
- Begin26. Найти значение функции $y = 4 \cdot (x-3)^6 7 \cdot (x-3)^3 + 2$ при данном значении x.
- Begin27°. Дано число A. Вычислить A^8 , используя вспомогательную переменную и три операции умножения. Для этого последовательно находить A^2 , A^4 , A^8 . Вывести все найденные степени числа A.
- **Begin28**. Дано число A. Вычислить A^{15} , используя две вспомогательные переменные и пять операций умножения. Для этого последовательно находить A^2 , A^3 , A^5 , A^{10} , A^{15} . Вывести все найденные степени числа A.
- Begin29. Дано значение угла α в градусах (0 < α < 360). Определить значение этого же угла в радианах, учитывая, что $180^{\circ} = \pi$ радианов. В качестве значения π использовать 3.14.
- Begin30. Дано значение угла α в радианах ($0 < \alpha < 2 \cdot \pi$). Определить значение этого же угла в градусах, учитывая, что $180^\circ = \pi$ радианов. В качестве значения π использовать 3.14.
- Begin31. Дано значение температуры T в градусах Фаренгейта. Определить значение этой же температуры в градусах Цельсия. Температура по Цельсию T_C и температура по Фаренгейту T_F связаны следующим соотношением:

$$T_C = (T_F - 32) \cdot 5/9.$$

Begin32. Дано значение температуры T в градусах Цельсия. Определить значение этой же температуры в градусах Фаренгейта. Температура по Цельсию T_C и температура по Фаренгейту T_F связаны следующим соотношением:

$$T_C = (T_F - 32) \cdot 5/9$$
.

- Begin33. Известно, что X кг конфет стоит A рублей. Определить, сколько стоит 1 кг и Y кг этих же конфет.
- Begin34. Известно, что X кг шоколадных конфет стоит A рублей, а Y кг ирисок стоит B рублей. Определить, сколько стоит 1 кг шоколадных конфет, 1 кг ирисок, а также во сколько раз шоколадные конфеты дороже ирисок.
- Begin35. Скорость лодки в стоячей воде V км/ч, скорость течения реки U км/ч (U < V). Время движения лодки по озеру T_1 ч, а по реке (против течения) T_2 ч. Определить путь S, пройденный лодкой (путь = время · скорость). Учесть, что при движении против течения скорость лодки уменьшается на величину скорости течения.
- Begin36. Скорость первого автомобиля V_1 км/ч, второго V_2 км/ч, расстояние между ними S км. Определить расстояние между ними через T часов, если автомобили удаляются друг от друга. Данное расстояние равно сумме начального расстояния и общего пути, проделанного автомобилями; общий путь = время · суммарная скорость.
- Begin37. Скорость первого автомобиля V_1 км/ч, второго V_2 км/ч, расстояние между ними S км. Определить расстояние между ними через T часов, если автомобили первоначально движутся навстречу друг другу. Данное расстояние равно модулю разности начального расстояния и общего пути, проделанного автомобилями; общий путь = время · суммарная скорость.
- Begin38. Решить линейное уравнение $A \cdot x + B = 0$, заданное своими коэффициентами A и B (коэффициент A не равен 0).
- Ведіп39. Найти корни *квадратного уравнения* $A \cdot x^2 + B \cdot x + C = 0$, заданного своими коэффициентами A, B, C (коэффициент A не равен 0), если известно, что дискриминант уравнения положителен. Вывести вначале меньший, а затем больший из найденных корней. Корни квадратного уравнения находятся по формуле $x_{1,2} = (-B \pm \sqrt{D})/(2 \cdot A)$, где $D \partial u c \kappa p u m u h a h b i <math>B^2 4 \cdot A \cdot C$.
- Begin40. Найти решение системы линейных уравнений вида

$$\begin{cases} A_1 \cdot x + B_1 \cdot y = C_1, \\ A_2 \cdot x + B_2 \cdot y = C_2, \end{cases}$$

заданной своими коэффициентами A_1 , B_1 , C_1 , A_2 , B_2 , C_2 , если известно, что данная система имеет единственное решение. Воспользоваться формулами

$$x = (C_1 \cdot B_2 - C_2 \cdot B_1)/D,$$
 $y = (A_1 \cdot C_2 - A_2 \cdot C_1)/D,$ где $D = A_1 \cdot B_2 - A_2 \cdot B_1.$