1. Fuerza bruta

En el enfoque de fuerza bruta, se deben probar todas las combinaciones posibles de los objetos, evaluando si cumplen con la restricción de peso y cuál maximiza el valor.

Los objetos son:

- Objeto 1: peso 2, valor 4
- Objeto 2: peso 5, valor 2
- Objeto 3: peso 6, valor 1
- Objeto 4: peso 7, valor 6
- Capacidad máxima de la mochila: 10

Posibles combinaciones:

No seleccionar ningún objeto: Costo = 0, Valor = 0

Seleccionar solo Objeto 1: Costo = 2, Valor = 4

Seleccionar solo Objeto 2: Costo = 5, Valor = 2

Seleccionar solo Objeto 3: Costo = 6, Valor = 1

Seleccionar solo Objeto 4: Costo = 7, Valor = 6

Seleccionar Objeto 1 y Objeto 2: Costo = 2 + 5 = 7, Valor = 4 + 2 = 6

Seleccionar Objeto 1 y Objeto 3: Costo = 2 + 6 = 8, Valor = 4 + 1 = 5

Seleccionar Objeto 1 y Objeto 4: Costo = 2 + 7 = 9, Valor = 4 + 6 = 10

Seleccionar Objeto 2 y Objeto 3: Costo = 5 + 6 = 11 (excede la capacidad, no válido)

Seleccionar Objeto 2 y Objeto 4: Costo = 5 + 7 = 12 (excede la capacidad, no válido)

Seleccionar Objeto 3 y Objeto 4: Costo = 6 + 7 = 13 (excede la capacidad, no válido)

Seleccionar todos los objetos (1, 2, 3, 4): Costo = 2 + 5 + 6 + 7 = 20 (excede la capacidad, no valido)

Resultados validos:

Combinación 6: Costo = 7, Valor = 6

Combinación 7: Costo = 8, Valor = 5

Combinación 8: Costo = 9, Valor = 10

Resultado: Seleccionar Objeto 1 y Objeto 4, con un valor total de 10 un costo de 9.

2. Programación Dinámica

Dado que la capacidad máxima de la mochila es 10, el objetivo es llenar una tabla dp donde dp[i][j] representa el valor máximo que se puede obtener con los primeros i objetos y una capacidad de mochila de j.

Los objetos son:

• Objeto 1: peso 2, valor 4

• Objeto 2: peso 5, valor 2

• Objeto 3: peso 6, valor 1

• Objeto 4: peso 7, valor 6

• Capacidad máxima de la mochila: 10

En este enfoque, creamos una tabla que nos ayudará a tomar decisiones óptimas almacenando los resultados intermedios.

La tabla se organiza considerando las capacidades desde 0 hasta 10 y los objetos disponibles. Se evalúa para cada capacidad si es mejor incluir o no el objeto actual, comparando el valor acumulado.

Objeto / Capacidad	0	1	2	3	4	5	6	7	8	9	10
objeto 1	0	0	4	4	4	4	4	4	4	4	4
objeto 2	0	0	4	4	4	2	4	6	6	6	6
objeto 3	0	0	4	4	4	2	4	6	6	6	6
objeto 4	0	0	4	4	4	2	4	6	6	10	10

Explicación de la tabla:

Para el Objeto 1 (peso 3, valor 4), la tabla se actualiza a partir de la capacidad 3, donde se puede obtener el valor 4 si se incluye este objeto.

Para el Objeto 2 (peso 4, valor 5), se actualiza la tabla en la capacidad 4, donde se puede obtener un valor de 5 si se incluye el Objeto 2.

Para el Objeto 3 (peso 2, valor 3), se actualizan las combinaciones de los valores anteriores, obteniendo el valor máximo de 8 en la capacidad del 6 al incluir los objetos 2 y 3.

Resultado: La solución óptima es obtener un valor de 8 con un peso de 6, seleccionando los objetos 2 y 3.