

2017.10.15 / 中国・杭州

网易云如何基于大规模Kubernetes集群 支撑高并发应用

刘 超 网易云解决方案总架构师

容器的使用场景

大规模云原生应用的支撑痛点

Kubernetes的性能问题

公有云的支撑痛点

Kubernetes的规模问题

容器

虚拟机

我秒级启动

你没算应用吧,我也秒级

我一台机器上启动1000个nginx

然并卵

我有镜像,原子升级回滚

说的谁好像没有似得

我秒级自修复

你确认这一秒没丢啥

我服务发现

Dubbo和springcloud笑而不语,熔断,降级

我弹性伸缩

你听说过autoscaling group么?

如果是个传统应用,启动慢,进程少,不更新,laaS就够了

如果你遇到了以下问题

变化快

扛不住

拆

微服务

微服务

扛不住,进程多

变化快,常更新

容器: 100个进程, 每天一个镜像

虚拟机: 我有点大

虚拟机:可不可以不用镜像,Ansible也能部署

微服务

扛不住, 进程多

变化快,常更新

开发: 运维 10:1.5

运维:开发写完代码就不管了,这么多环境都是我的

容器镜像的本质:

环境交付提前,每个研发5%的工作量,换取运维200%的工作量,增加稳定性

DevOps文化与流程

扛不住 仅仅私有云扛不住 变化快 混合云 微服务 版本多 服务多 跨云 WAR TOWN THE THE PARTY OF THE P 开发: 运维 10:1.5 运维累死 不稳定 环境交付提前 容器镜像作为工具 DevOps流程与文化 标准 轻量级 开发,测试,生产迁移 CLOUD NATIVE COMPUTING FOUNDATION 主办:

容器的使用场景

大规模云原生应用的支撑痛点

Kubernetes的性能问题

公有云的支撑痛点

Kubernetes的规模问题

大规模云原生应用的支撑痛点

现在进行时: 服务化改造 **多**阿易云 网恩云创大会 支撑服务 IOS/ANDROID/FRONTPAGE 2-2100 ZK RECORD NA WEB/SYSTEM/FRONT ORACLE A-91 686 74 -PER 105-107 . **PERSONAL** PRICING DWIEL DWIEL 解决核心问题 20-2-818 RDS. PE-8 488 CHRIST 10-6386 -1.业务复杂程度越来越高 2000 COMPOSE/PROCESS 8-68 2.访问压力越来越大 -NGS BUZNAMB _ -..... --**** . 20889 COMPONET/CORE MH III MCR NKV 10.00 8410-00 8.42 S-11 SA 1100 BMI.H BRO. Berrie GENERIC APRICE OF A 22.00 DOB NOS 22.00 10.00 DO BLOOK BANK BOOK DAMES OF THE PARTY. B1 86-68 REPORT DIS 2002 **CONTRACT** BA MET I

大规模云原生应用的支撑痛点

• 入口: 高性能负载均衡器

• 互访: 高性能私有网络

• 访问PaaS平台:容器网络和虚拟机网络互通

• 高可用: 高性能机房网络

• 服务发现:灵活策略,熔断,降级

主办:

• 配置复杂:统一配置中心

容器的使用场景

大规模云原生应用的支撑痛点

Kubernetes的性能问题

公有云的支撑痛点

Kubernetes的规模问题

网易云容器服务平台架构

2017.10.15 / 中国 - 杭州

2017.10.15 / 中国 - 杭州

2017.10.15 / 中国・杭州

2017.10.15 / 中国・杭州

Client LVS LVS VM nlb-toa nlb-toa Haproxy-toa Haproxy-toa HOST HOST HOST OPTOA OPTOA OPTOA server server server server server server server server server *** *** *** *** *** ***

apiserver Client kube-proxy ServiceIP (iptables) Node Backend Pod 1 Backend Pod 2 Backend Pod 3 labels: app=MyApp labels: app=MyApp labels: app=MyApp port: 9376 port: 9376 port: 9376

租户之间容器网络完全隔离, 无需配置多余的转发规则

只watch本租户的Service,生成iptable 规则

摘要:微服务化是当前电商产品演化的必然趋势,网易考拉海购通过微服务化打破了业务爆发增长的架构瓶颈。本文结合网易考拉海购引用的开源Dubbo框架,分享支持考拉微服务工作的基本原理。文章分析了使用Dubbo过程中遇到的问题,讲解了团队所做的一些问题修复和功能集成工作,在此基础上最终形成了考拉内部持续维护升级的Dubbok框架。

本文背景还要从网易考拉海购(下文简称"考拉")微服务化说起,现在任何大型的互联网应用,尤其是电商应用从 Monolithic单体应用走向微服务化已经是必然趋势。微服务化是一个比较宽泛的概念,涉及到一个产品生命周期的多个方面, 首先它作为一个指导原则指引业务划分、架构解耦等;技术层面实施微服务需要开发测试阶段、运行阶段、发布阶段、部署阶 段等一系列基础框架的支撑。我们在享受服务化易扩展易部署等便利性的同时,也面临新的问题,如数据一致性、分布式调用 链路追踪、异常定位、日志采集等。

Headless services

With selectors

For headless services that define selectors, the endpoints controller creates Endpoints records in the API, and modifies the DNS configuration to return A records (addresses) that point directly to the Pods backing the Service.

Without selectors

For headless services that do not define selectors, the endpoints controller does not create Endpoints records. However, the DNS system looks for and configures either:

- CNAME records for ExternalName -type services.
- A records for any Endpoints that share a name with the service, for all other types.

客户端服务发现

简化外部配置

容器的使用场景

大规模云原生应用的支撑痛点

Kubernetes的性能问题

公有云的支撑痛点

Kubernetes的规模问题

公有云的支撑痛点

租户A应用运维人员负责

租户B应用运维人员负责

云计算运维人员负责

- 一个集群 or 多个集群
- Docker内核隔离不好
- · Node无租户隔离
- 虚拟机启动速度问题
- Kube-proxy转发规则太多
- 集群规模问题

容器的使用场景

大规模云原生应用的支撑痛点

Kubernetes的性能问题

公有云的支撑痛点

Kubernetes的规模问题

Kubernetes的kubelet运行容器

2017.10.15 / 中国・杭州

启动速度优化

- 1.网卡IP初始化
- 2.网络路由注入
- 3.DNS服务IP配置
- 4.网卡udev规则

Scheduler优化

公有云租户间资源完全隔离,天然适合并行调度 预过滤无空闲资源的node 调整predicate调度算法快速过滤

按事件类型进入多优先级workqueue(Add > Update > Delete > Sync)

Apiserver 就是一个proxy代理,而且goroutine对web服务完美支持,最终性能瓶颈在对 etcd 的访问上

