2022 Analog IC Design Final (100%)

- 1. Design a Fully-differential (differential-input, differential output) OP. You can select your structure to meet the specifications (two stage OP is recommended) but have to include the common-mode feedback (CMFB) circuit and OP biasing circuits (current mirror).
 - A. The OP has to design in sub-circuit, and the sub-circuit nodes need to be ".subckt AICopamp iref vdd vin vip vocm von vop vss". The netlist has to be named as "My_op.spi".
 - B. The output has to drive a loading $15k\Omega$ and 50pF.
 - C. The simulation should contain all the corners.
 - D. If the supply voltage is decreased, you will get additional bonus. (2% for 0.1V lower, at most 10%)
 - E. The Demo will use the test-bench offered by TAs, only the current of iref can be adjusted by your design consideration.
 - F. Specification (50%). (ps. Please fill the provided Table)

2. Report Must Contain: (50%)

A. Schematic with device size, component value, node voltage and branch current. (10%)

Must contain core amplifier circuit, common mode feedback, biasing circuits, etc.

B. Simulation results of each specification (AC/DC/transient/...) and contains all corners. (15%)

Please explain how to find the spec for your OP and make the comparison.

C. Design procedure and consideration. (15%)

Briefly express your design consideration and optimization on selected circuit structure, device value, voltage, compensation, and common mode feedback issues.

D. Discussion and conclusion. (10%)

Discuss your experience on this project, problem during design, and conclude what you get and suggest for this course.

- ♦ The following should be included in your report (a) schematic (b) HSPICE netlist & simulation file (c) waveform with cursor values (d) comments.
- Please named your report as AICfinal_xxxxxx_xxxxxx (replaced by your student ID) and saved in PDF format.

Due Date: 06/20/2022

Specification

Design Items	Specifications	TT	SS	SF	FS	FF
Technology	CIC018 pseudo technology					
Supply voltage	<1.8V, low as possible					
Power	<2.5mW (10%) Small as possible					
Loading	50pF / 15KΩ					
DC gain	> 80dB (10%) large as possible					
U.G.B.	> 35MHz (10%) large as possible					
P.M.	> 60° (10%)					
C.M.R.R.@10KHz	> 75db (5%)					
P.S.R.R.+@10KHz	> 75db (7.5%)					
P.S.R.R@10KHz	> 75db (7.5%)					
Unity-gain configuration						
S. R. +(10% ~ 90%)	> 5V/us (7.5%)					
S. R. –(10% ~ 90%)	> 5V/us (7.5%)					
Settling +(1Vpp,0.01)	< 2us (7.5%)					
Settling –(1Vpp,0.01)	< 2us (7.5%)					
Figure of Merit (FoM)						
Small signal	$\frac{\text{U.G.B.(MHz)}}{\text{Power(mW)}}(5\%)$					
Large signal	$\frac{\text{S.R.(V/us)}}{\text{Power(mW)}}(5\%)$					