Data Structures and Algorithm

Xiaoqing Zheng zhengxq@fudan.edu.cn

Representations of undirected graph

Adjacency-list representation of graph

$$G = (V, E)$$

Representations of undirected graph

Adjacency-matrix representation of graph

$$G = (V, E)$$

Representations of directed graph

Adjacency-list representation of graph

$$G = (V, E)$$

Representations of directed graph

Adjacency-matrix representation of graph

$$G = (V, E)$$

Graphs

Definition. A directed graph (digraph)

G = (V, E) is an ordered pair consisting of

- a set *V* of *vertices* (singular: *vertex*),
- a set $E \subseteq V \times V$ of *edges*.

In an *undirected graph* G = (V, E), the edge set E consists of *unordered* pairs of vertices.

In either case, we have $|E| = O(V^2)$. Moreover, if G is connected, then $|E| \ge |V| - 1$.

Representations of graph

Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.

- For undirected graphs, |Adj[v]| = degree(v).
- For directed graphs, |Adj[v]| = out-degree(v).

Adjacency-matrix representation

The *adjacency matrix* of a graph G = (V, E), where $V = \{1, 2, ..., n\}$, is the matrix A[1 ... n, 1 ... n] given by

$$A[i,j] = \begin{cases} 1 \text{ if } (i,j) \in E, \\ 0 \text{ if } (i,j) \notin E. \end{cases}$$

Breadth-first search

Given a graph G = (V, E) and a distinguished source vertex s, breadth-first search systematically explores the edges of G to "discover" every vertex that is reachable from s.

Why not x?

Breadth-first search algorithm

```
BFS(G, s)
1. for each vertex u \in V[G] - \{s\}
         do color[u] \leftarrow WHITE
              d[u] \leftarrow \infty
             \pi[u] \leftarrow \text{NIL}
5. color[s] \leftarrow GRAY
6. d[s] \leftarrow 0
7. \pi[s] \leftarrow \text{NIL}
8. Q \leftarrow \emptyset
9. ENQUEUE(Q, s)
```

Breadth-first search algorithm

```
BFS(G, s)
10. while Q \neq \emptyset
       do u \leftarrow \text{DEQUEUE}(Q)
           for each v \in Adj[u]
13.
                do if color[v] = WHITE
14. O(E)
                       then color[v] \leftarrow GRAY
15.times
                             d[v] \leftarrow d[u] + 1
                                                     times
16.
                             \pi[v] \leftarrow u
                             ENQUEUE(Q, v)
17.
            color[u] \leftarrow BLACK
18.
               Running time is O(V+E)
```

Shortest paths

```
PRINT-PATH(G, s, v)

1. if v = s

2. then print s

3. else if \pi[v] = NIL

4. then print "no path from" s "to" v "exists."

5. else PRINT-PATH(G, s, \pi[v])

6. print v
```

Predecessor subgraph of BFS

Depth-first search

Given a graph G = (V, E), depth-first search is to search deeper in the graph whenever possible. Edges are explored out of the most recently discovered vertex v that still has unexplored edges leaving it.

Depth-first search algorithm

```
DFS(G)

1. for each vertex u \in V[G]

2. do color[u] \leftarrow WHITE

3. \pi[u] \leftarrow NIL

4. time \leftarrow 0

5. for each vertex u \in V[G]

6. do if color[u] = WHITE

7. then DFS-VISIT(u)

color[u] = WHITE
```

Depth-first search algorithm

```
DFS-VISIT(u)
1. color[u] \leftarrow GRAY
2. time \leftarrow time + 1
3. d[u] \leftarrow time
4. for each vertex v \in Adj[u]
        do if color[v] = WHITE
               then \pi[v] \leftarrow u
                                          times
                     DFS-VISIT(\nu)
8. color[u] \leftarrow BLACK
9. f[u] \leftarrow time \leftarrow time + 1
          Running time is O(V+E)
```

Predecessor subgraph of DFS

Predecessor subgraph of DFS

Each edge (u, v) can be classified by the color of the vertex v that is reached when the edge is first explored:

- WHITE indicates a tree edge;
- GRAY indicates a back edge;
- **BLACK** indicates a forward (if d[u] < d[v]) or cross edge (if d[u] > d[v]).

Precedence among events

Precedence among events

Precedence among events

Curriculum

Topological sort

TOPOLOGICAL-SORT(G)

- 1. call DFS(G) to compute finishing times f[v] for each vertex v.
- 2. as each vertex is finished, insert it onto the front of a linked list.
- 3. **return** the linked list of vertices.

Topological sort

A topological sort of a directed acyclic graph or "dag" G = (V, E) is a linear ordering of all its vertices such that if G contains an edge (u, v), then u appears before v in the ordering.

- Topological sort of a graph can be viewed as an *linear ordering* of its vertices.
- Topological sorting is *different* from the usual kind of "sorting" studied before.
- If the graph is *not acyclic*, then no linear ordering is possible.

Edge processed	Collection of disjoint sets											
initial sets	<i>{a}</i>	$\{b\}$	<i>{c}</i>	<i>{d}</i>	{ <i>e</i> }	<i>{f}</i>	{g}	{ <i>h</i> }	$\{i\}$	$\{j\}$		

Edge processed	Collection of disjoint sets									
initial sets	<i>{a}</i>	<i>{b}</i>	{ <i>c</i> }	{ <i>d</i> }	{e}	<i>{f}</i>	{g}	{ <i>h</i> }	$\{i\}$	<i>{j}</i>
(b,d)	<i>{a}</i>	$\{b,d\}$	<i>{c}</i>		{ <i>e</i> }	<i>{f}</i>	{ g }	{ <i>h</i> }	$\{i\}$	$\{j\}$

Edge processed	Collection of disjoint sets									
initial sets	<i>{a}</i>	<i>{b}</i>	{ <i>c</i> }	<i>{d}</i>	{e}	<i>{f}</i>	{ <i>g</i> }	{ <i>h</i> }	$\{i\}$	$\{j\}$
(b,d)	<i>{a}</i>	$\{b,d\}$	{ <i>c</i> }		{ <i>e</i> }	<i>{f}</i>	{ <i>g</i> }	{ <i>h</i> }	$\{i\}$	$\{j\}$
(e,g)	<i>{a}</i>	$\{b,d\}$	{ <i>c</i> }		$\{e,g\}$	{ <i>f</i> }		{ <i>h</i> }	$\{i\}$	$\{j\}$

Edge processed	Collection of disjoint sets									
initial sets	<i>{a}</i>	{b} {c	} {d}	{ <i>e</i> }	{ <i>f</i> }	{ <i>g</i> }	{ <i>h</i> }	$\{i\}$	$\{j\}$	
(b, d)	<i>{a}</i>	$\{b,d\}$ $\{c\}$	}	{ <i>e</i> }	<i>{f}</i>	{ <i>g</i> }	{ <i>h</i> }	$\{i\}$	$\{j\}$	
(e,g)	<i>{a}</i>	$\{b,d\}$ $\{c\}$	}	$\{e,g\}$	<i>{f}</i>		{ <i>h</i> }	$\{i\}$	$\{j\}$	
(a, c)	$\{a,c\}$	$\{b,d\}$		$\{e,g\}$	<i>{f}</i>		{ <i>h</i> }	$\{i\}$	$\{j\}$	

Edge processed	Collection of disjoint sets										
initial sets	<i>{a}</i>	<i>{b}</i>	{ <i>c</i> }	{ <i>d</i> }	{ <i>e</i> }	<i>{f}</i>	{ <i>g</i> }	{ <i>h</i> }	$\{i\}$	$\{j\}$	
(b,d)	<i>{a}</i>	$\{b,d\}$	{ <i>c</i> }		{ <i>e</i> }	<i>{f}</i>	{ <i>g</i> }	{ <i>h</i> }	$\{i\}$	$\{j\}$	
(e,g)	<i>{a}</i>	$\{b,d\}$	{ <i>c</i> }		$\{e,g\}$	<i>{f}</i>		{ <i>h</i> }	$\{i\}$	$\{j\}$	
(a, c)	$\{a,c\}$	$\{b,d\}$			$\{e,g\}$	<i>{f}</i>		{ <i>h</i> }	$\{i\}$	$\{j\}$	
(h, i)	$\{a,c\}$	$\{b,d\}$			$\{e,g\}$	<i>{f}</i>		$\{h, i\}$	}	$\{j\}$	
(a,b)	$\{a, b, c, d\}$				$\{e,g\}$	<i>{f}</i>		$\{h, i\}$	}	$\{j\}$	
(e,f)	$\{a,b,c,d\}$				$\{e,f,g\}$	}		$\{h, i\}$	}	$\{j\}$	
(b, c)	$\{a,b,c,d\}$				$\{e,f,g\}$	}		$\{h, i\}$	}	$\{j\}$	

Disjoint set operations

- MAKE-SET(x) creates a new set whose only member is x.
- UNION(x, y) unites the dynamic sets that contain x and y, say S_x and S_y , into a new set that is the union of these two sets. The two sets are assumed to be disjoint prior to the operation.
- FIND-SET(x) returns a pointer to the representative of the unique set containing x.

Linked list representation of disjoint sets

Analysis of linked list representation

Linked list representation of the UNION operation requires an average of $\Phi(n)$ time per call because we may be appending a longer list onto a shorter list.

Weighted-union heuristic: Suppose that each list also includes the length of the list and that we always append the smaller list onto the longer.

• A sequence of m MAKE-SET, UNION, and FIND-SET operations, n of which are MAKE-SET operations, takes O(m + nlgn) time.

Disjoint set forests

Union by rank

Path compression

Disjoint set forests

MAKE-SET(x)

- 1. $p[x] \leftarrow x$
- 2. $rank[x] \leftarrow 0$

FIND-SET(x)

- 1. **if** $x \neq p[x]$
- 2. then $p[x] \leftarrow \text{FIND-SET}(p[x])$
- 3. return p[x]

Disjoint set forests

```
UNION(x, y)

1. LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)

1. if rank[x] > rank[y]

2. then p[y] \leftarrow x

3. else p[x] \leftarrow y

4. if rank[x] = rank[y]

5. then rank[y] \leftarrow rank[y] + 1
```

Union by rank and path compression

When we use both *union by rank* and *path compression*, the worst-case running time is $O(m \alpha(n))$, where $\alpha(n)$ is a very *slowly* growing function.

$$\alpha(n) \begin{cases} 0 & \text{for } 0 \le n \le 2, \\ 1 & \text{for } n = 3, \\ 2 & \text{for } 4 \le n \le 7, \\ 3 & \text{for } 8 \le n \le 2047, \\ 4 & \text{for } 2047 \le n \le A_4(1) >> 10^{80}. \end{cases}$$

$$A_k(j) \begin{cases} j+1 & \text{if } k = 0, \\ A_{k+1}^{(j+1)}(j) & \text{if } k \ge 1. \end{cases}$$

Minimum spanning tree

Minimum spanning tree

Total weight = 1 + 2 + 2 + 4 + 4 + 7 + 8 + 9 = 37

Minimum spanning tree

Input: A *connected*, *undirected graph* G = (V, E) with weight function $w: E \to \mathbb{R}$.

Output: A spanning tree T— a tree that connects all vertices — of minimum weight:

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$

Destroy cycles

Destroy cycles

Destroy cycles

Total weight = 1 + 2 + 2 + 4 + 4 + 7 + 8 + 9 = 37

Avoid cycles

Total weight = 1 + 2 + 2 + 4 + 4 + 7 + 8 + 9 = 37

Kruskal's algorithm

```
MST-KRUSKAL(G, w)
1. A \leftarrow \emptyset
2. for each vertex v \in V[G]
       do MAKE-SET(v)
4. sort the edges of E into nondecreasing order by weight w.
5. for each edge (u, v) \in E, taken in nondecreasing order by
   weight.
       do if FIND-SET(u) \neq FIND-SET(v)
6.
             then A \leftarrow A \cup \{(u, v)\}
                  UNION(u, v)
9. return A
```

Running time is O(ElgE)

Minimum spanning tree T of G = (V, E).

Minimum spanning tree T of G = (V, E).

Remove any edge $(u, v) \in T$.

Minimum spanning tree T of G = (V, E).

Remove any edge $(u, v) \in T$.

Then, T is partitioned into two subtrees T_1 and T_2 .

Theorem. The subtree T_1 is an MST of $G_1 = (V_1, E_1)$, the subgraph of G induced by the vertices of T_1 :

$$V_1$$
 = vertices of T_1 ,
 E_1 = { $(x, y) \in E: x, y \in V_1$ }.

Similarly for T_2 .

Proof of optimal substructure

Proof. Cut and paste:

$$w(T) = w(u, v) + w(T_1) + w(T_2).$$

If T_1 ' were a lower-weight spanning tree than T_1 for G_1 , then $T' = \{(u, v)\} \cup T_1' \cup T_2$ would be a lower-weight spanning tree than T for G.

- Do we also have overlapping subproblems? Yes!
- Great, then dynamic programming may work! Yes!

But minimum spanning tree exhibits another powerful property which leads to an even more efficient algorithm.

Hallmark for "greedy" algorithms

Greedy-choice property
A locally optimal choice
is globally optimal.

Theorem. Let T be the minimum spanning tree of G = (V, E), and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting A to V - A. Then, $(u, v) \in T$.

Consider the unique simple path from u to v in T.

Consider the unique simple path from u to v in T.

Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in V - A.

Consider the unique simple path from u to v in T.

Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in V - A.

A lighter-weight spanning tree than *T* results.

Prim's algorithm

IDEA: Maintain V - A as a priority queue Q. Key each vertex in Q with the weight of the least weight edge connecting it to a vertex in A.

```
MST-PRIM(G, w, r)
                                    Minimum spanning tree A for G is
1. for each u \in V[G]
                                    thus A = \{ (v, \pi[v]) : v \in V - \{r\} \}
2. do key[u] \leftarrow \infty
3. \pi[u] \leftarrow \text{NIL}
4. key[r] \leftarrow \emptyset
                    6. while Q \neq 0
5. Q \leftarrow V[G]
                                do u \leftarrow \text{EXTRACT-MIN}(Q)
                     8.
                                    for each v \in Adj[u]
                     9.
                                         do if v \in Q and w(u, v) < key(v)
                     10.
                                                then \pi[v] \leftarrow u
                                                       kev[v] \leftarrow w(u, v)
                     11.
```

Analysis of Prim algorithm

```
MST-PRIM(G, w, r)
1. for each u \in V[G]

2. do key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL total
4. key[r] \leftarrow 0
5. Q \leftarrow V[G]
6. while Q \neq \emptyset
                  do u \leftarrow \text{EXTRACT-MIN}(Q)
                  for each v \in Adj[u]
9. degree(u) do if v \in Q and w(u, v) < key(v) then \pi[v] \leftarrow u 11. key[v] \leftarrow w(u, v)
 \Theta(E) implicit DECREASE-KEY's.
 Time = \Theta(V) \cdot Time_{EXTRACT-MIN} + \Theta(E) \cdot Time_{DECREASE-KEY}
```

Analysis of Prim algorithm

 $Time = \Theta(V) \cdot Time_{EXTRACT-MIN} + \Theta(E) \cdot Time_{DECREASE-KEY}$

Q	Time _{EXTRACT-MIN}	Time _{DECREASE-KEY}	Total
Array	O(V)	<i>O</i> (1)	$O(V^2)$
Binary h	eap $O(lgV)$	O(lgV)	O(ElgV)

Running time of Prim's algorithm is O(ElgV)

Pudong Shanghai

Shortest paths

Shortest paths problem

Consider a directed graph G = (V, E), with weight function $w: E \to \mathbb{R}$ mapping edges to real-valued weights. The *weight* of path $p = v_1 \to v_2 \to \dots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

We define the shortest path weight from u to v by

$$\delta(u,v) = \begin{cases} \min\{w(p): u \xrightarrow{p} v\} & \text{If there is a path from } u \text{ to } v, \\ \infty & \text{Otherwise.} \end{cases}$$

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$. If all edge weights w(u, v) are *nonnegative*, all shortest-path weights must exist.

IDEA: Greedy.

- **1.** Maintain a set *S* of vertices whose shortest path distances from *s* are known.
- 2. At each step add to S the vertex $v \in V S$ whose distance estimate from s is minimal.
- 3. Update the distance estimates of vertices adjacent to *v*.

Example of Dijkstra's algorithm

Dijkstra's algorithm

```
DIJKSTRA(G, w, s)
1. for each vertex v \in V[G]
2. do d[v] \leftarrow \infty
3. \pi(v) \leftarrow \text{NIL}
4. d[s] \leftarrow 0
5. S \leftarrow \emptyset
6. Q \leftarrow V[G]
                                                 Relaxation step.
7. while Q \neq \emptyset
           do u \leftarrow \text{EXTRACT-MIN}(Q) Implicit DECREASE-KEY.
8.
9.
               S \leftarrow S \cup \{u\}
10.
               for each vertex v \in Adj[u]
                    do if d[v] > d[u] + w(u, v)
11.
12.
                           then d[v] \leftarrow d[u] + w(u, v)
13.
                                 \pi(v) \leftarrow u
```

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Proof. Suppose not. Let v be the first vertex for which $d[v] < \delta(s, v)$, and let u be the vertex that caused d[v] to change: d[v] = d[u] + w(u, v). Then, $d[v] < \delta(s, v)$ supposition $\leq \delta(s, u) + \delta(u, v)$ triangle inequality $\leq \delta(s, u) + w(u, v)$ sh. path \leq specific path $\leq d[u] + w(u, v)$ v is first violation

Contradiction

```
Lemma. Let u be v's predecessor on a shortest path
from s to v. Then, if d[u] = \delta(s, u) and edge (u, v) is
relaxed, we have d[v] = \delta(s, v) after the relaxation.
Proof. Observe that \delta(s, v) = \delta(s, u) + w(u, v).
Suppose that d[v] > \delta(s, v) before the relaxation.
(Otherwise, we're done.) Then, the test d[v] > d[u] +
w(u, v) succeeds, because d[v] > \delta(s, v) = \delta(s, u) +
w(u, v) = d[u] + w(u, v), and the algorithm sets
d[v] = d[u] + w(u, v) = \delta(s, v).
```

Theorem.

Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u] > \delta(s, u)$. Let y be the first vertex in V - S along a shortest path from s to u, and let x be its predecessor:

Just before adding u.

Since u is the first vertex violating the claimed invariant, we have $d[x] = \delta(s, x)$. When x was added to S, the edge (x, y) was relaxed, which implies that

$$d[y] = \delta(s, y) \le \delta(s, u) < d[u].$$

But, $d[u] \le d[y]$ by our choice of u. Contradiction.

Analysis of Dijkstra's algorithm

```
DIJKSTRA(G, w, s)
      for each vertex v \in V[G]
           do d[v] \leftarrow \infty
3. \pi(v) \leftarrow \text{NIL} Time = \Theta(V) \cdot Time_{\text{EXTRACT-MIN}} +
                                                \Theta(E) \cdot Time_{DECREASE-KEY}
4. d[s] \leftarrow 0
S \leftarrow \emptyset
6. Q \leftarrow V[G]
7. while Q \neq \emptyset
              do u \leftarrow \text{EXTRACT-MIN}(Q)
9.
                  S \leftarrow S \cup \{u\}
                for each vertex v \in Adj[u]
10.
                                                                 times
                 do if d[v] > d[u] + w(u, v)
11. degree(u)
                     then d[v] \leftarrow d[u] + w(u, v)
12. times
13.
                           \pi(v) \leftarrow u
```

Analysis of Dijkstra's algorithm

 $Time = \Theta(V) \cdot Time_{EXTRACT-MIN} + \Theta(E) \cdot Time_{DECREASE-KEY}$

Q	Time _{EXTRACT-MIN}	Time _{DECREASE-KEY}	Total
Array	O(V)	<i>O</i> (1)	$O(V^2)$
Binary h	eap $O(lgV)$	O(lgV)	O(ElgV)

Running time of Dijkstra's algorithm is O(ElgV)

Unweighted graphs

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

- Breadth-first search.
- Use a simple **FIFO** queue instead of a **priority** queue.

```
    while Q≠ Ø
    do u ← DEQUEUE(Q)
    for each vertex v ∈ Adj[u]
    do if d[v] = ∞
    then d[v] ← d[u] + 1
    ENQUEUE(Q, v)
```

Running time is O(V+E).

Shortest paths in weighted dag

What is dag?

A dag is a directed acyclic graph.

DAG-SHORTEST-PATH(G, w, s)

- 1. Topologically sort the vertices of *G*
- 2. **for** each vertex $v \in V[G]$
- 3. **do** $d[v] \leftarrow \infty$
- 4. $\pi(v) \leftarrow \text{NIL}$
- 5. $d[s] \leftarrow 0$
- 6. **for** each vertex *u*, taken in topologically sorted order
- 7. **do for** each vertex $v \in Adj[u]$
- 8. **do if** d[v] > d[u] + w(u, v)
- 9. then $d[v] \leftarrow d[u] + w(u, v)$
- 10. $\pi(v) \leftarrow u$

Positive-weight cycle

Shortest path cannot contain a positive-weight cycle.

0-weight cycle

0-weight cycle can be removed from the shortest path.

Negative-weight cycle

If a graph contains a negativeweight cycle, then some shortest paths may not exist.

Algorithm for negative weight cycle

Bellman-Ford algorithm: Finds all shortest-path lengths from a source $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Initialization.

Order of edge relaxation.

End of pass 1.

End of pass 2.

End of pass 3.

End of pass 4.

End

Bellman-Ford algorithm

```
BELLMAN-FORD(G, w, s)
1. for each vertex v \in V[G]
2. do d[v] \leftarrow \infty
3. \pi(v) \leftarrow \text{NIL}
4. d[s] \leftarrow 0
5. for i \leftarrow 1 to |V[G]| - 1
      do for each edge (u, v) \in E[G]
               do if d[v] > d[u] + w(u, v)
                     then d[v] \leftarrow d[u] + w(u, v)
8.
9.
                          \pi(v) \leftarrow u
10. for each edge (u, v) \in E[G]
        do if d[v] > d[u] + w(u, v)
12. then return FALSE
13. return TURE
```

Theorem. If G = (V, E) contains no negative weight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. Let $v \in V$ be any vertex, and consider a shortest path p from s to v with the minimum number of edges.

Since *p* is a shortest path, we have

$$\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i).$$

Initially, $d[v_0] = 0 = \delta(s, v_0)$,

- After 1 pass through E, we have $d[v_1] = \delta(s, v_1)$.
- After 2 passes through E, we have $d[v_2] = \delta(s, v_2)$.
- After k passes through E, we have $d[v_k] = \delta(s, v_k)$. Since G contains no negative-weight cycles, p is simple. Longest simple path has $\leq |V| - 1$ edge

If a value d[v] fails to converge after |V| - 1 passes, there exists a negative-weight cycle in G reachable from S.

Conversely, suppose that graph G contains a negative-weight cycle that is reachable from the source s; let this cycle be $c = v_0 \rightarrow v_1 \rightarrow ... \rightarrow v_k$, where $v_0 = v_k$. Then, $\sum_{k=1}^{k} w(v_{i-1}, v_i) < 0$

If the Bellman-Ford algorithm returns TRUE, then,

$$d[v_i] \le d[v_{i-1}] + w(v_{i-1}, v_i) \text{ for } i = 1, 2, ..., k, \text{ and}$$

$$\sum_{i=1}^k d[v_i] \le \sum_{i=1}^k (d[v_{i-1}] + w(v_{i-1}, v_i))$$

$$= \sum_{i=1}^k d[v_{i-1}] + \sum_{i=1}^k w(v_{i-1}, v_i)$$

$$\sum_{i=1}^{k} d[v_i] \le \sum_{i=1}^{k} d[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Since $v_0 = v_k$, and so,

$$\sum_{i=1}^{k} d[v_i] = \sum_{i=1}^{k} d[v_{i-1}], \text{ thus,}$$

$$0 \le \sum_{i=1}^k w(v_{i-1}, v_i)$$
 contradicts with $\sum_{i=1}^k w(v_{i-1}, v_i) < 0$

Initialization and order of edge relaxation.

End of pass 1.

End of pass 2.

End of pass 3.

Single-source shortest-paths algorithms

Algorithms	Unweighted	Positive	Negative	Cycle	Time
Breadth-first search		X	×		O(V+E)
Dag shortest paths		0	0	×	O(V+E)
Dijkstra	0	0	×	0	O(ElgV)
Bellman- Ford	O	0	0	0	O(VE)

All-pairs shortest paths

```
Input: Digraph G = (V, E), where V = \{1, 2, ..., n\}, with edge-weight function w: E \to \mathbb{R}.

Output: n \times n matrix of shortest-path lengths \delta(i, j) for all i, j \in V.
```

IDEA:

- Run Bellman-Ford once from each vertex.
- Time = $O(V^2E)$.
- Dense graph $(n^2 \text{ edges}) \Longrightarrow \Theta(n^4)$ time in the worst case.

Dynamic programming

Consider the $n \times n$ adjacency matrix $A = (a_{ij})$ of the digraph, and define

 $d_{ij}^{(m)}$ = weight of a shortest path from i to j that uses at most m edges.

Claim: We have

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j. \end{cases}$$

and for m = 1, 2, ..., n - 1,

$$d_{ij}^{(m)} = \min_{k} \{ d_{ik}^{(m-1)} + a_{kj} \}.$$

Proof of claim

Note: No negative-weight cycles implies

$$\delta(i,j) = d_{ij}^{(m-1)} = d_{ij}^{(m)} = d_{ij}^{(m+1)} = \dots$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\Pi^{(1)} = \begin{pmatrix} \varnothing & 1 & 1 & \varnothing & 1 \\ \varnothing & \varnothing & \varnothing & 2 & 2 \\ \varnothing & 3 & \varnothing & \varnothing & \varnothing \\ 4 & \varnothing & 4 & \varnothing & \varnothing \\ \varnothing & \varnothing & \varnothing & 5 & \varnothing \end{pmatrix}$$

$$D^{(1)} = \begin{bmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{bmatrix}$$

$$d_{ij}^{(m)} = \min_{k} \{ d_{ik}^{(m-1)} + a_{kj} \}$$

$$d_{14}^{(2)} = \min_{k} \{ d_{ik}^{(1)} + a_{kj} \}.$$

$$d_{14}^{(2)} = \min\{(d_{11}^{(1)} + a_{14}), (d_{12}^{(1)} + a_{24}), (d_{13}^{(1)} + a_{34}), (d_{14}^{(1)} + a_{44}), (d_{15}^{(1)} + a_{54})\}.$$

$$d_{14}^{(2)} = \min\{(0+\infty), (3+1), (8+\infty), (\infty+0), (-4+6)\} = 2$$

Length 2

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

$$\Pi^{(2)} = \begin{pmatrix} \varnothing & 1 & 1 & 5 & 1 \\ 4 & \varnothing & 4 & 2 & 2 \\ \varnothing & 3 & \varnothing & 2 & 2 \\ 4 & 3 & 4 & \varnothing & 1 \\ 4 & \varnothing & 4 & 5 & \varnothing \end{pmatrix}$$

Length 3

$$D^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$
$$\begin{pmatrix} \varnothing & 1 & 4 & 5 & 1 \\ 4 & \varnothing & 4 & 2 & 1 \\ 4 & \varnothing & 4 & 2 & 2 \end{pmatrix}$$
$$\Pi^{(3)} = \begin{pmatrix} 4 & 3 & \varnothing & 2 & 2 \end{pmatrix}$$

Length 4

$$D^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\Pi^{(4)} = \begin{pmatrix} \varnothing & 3 & 4 & 5 & 1 \\ 4 & \varnothing & 4 & 2 & 1 \\ 4 & 3 & \varnothing & 2 & 1 \\ 4 & 3 & 4 & \varnothing & 1 \\ 4 & 3 & 4 & 5 & \varnothing \end{pmatrix}$$

Matrix multiplication

All-pairs shortest paths for graph G = (V, E).

- Dynamic programming: compute $D^{(|V|-1)}$.
- $d_{ij}^{(m)} = \min_{k} \{ d_{ik}^{(m-1)} + a_{kj} \}.$

Observe that if we make the substitutions

$$D^{(m-1)} \rightarrow a,$$

$$D^{(0)} \rightarrow b,$$

$$D^{(m)} \rightarrow c,$$

$$\min \rightarrow +,$$

$$+ \rightarrow \cdot$$

Problem change to compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Matrix multiplication

Consequently, we can compute

$$D^{(1)} = D^{(0)} \cdot D^{(0)}$$

$$D^{(2)} = D^{(1)} \cdot D^{(0)}$$

$$\vdots$$

$$D^{(n-1)} = D^{(n-2)} \cdot D^{(0)}$$

Yielding $D^{(n-1)} = \delta(i,j)$. Time $= \Theta(n \cdot n^3) = (n^4)$. No better than running Bellman-Ford once from each vertex.

Improved matrix multiplication

```
Repeated squaring: D^{(2k)} = D^{(k)} \cdot D^{(k)}.

Compute D^{(2)}, D^{(4)}, \dots, D^{2^{\lceil \lg n - 1 \rceil}}.

O(\lg n) squarings

Note: D^{(n-1)} = D^{(n)} = D^{(n+1)} = \cdots.

Time = \Theta(n^3 \lg n).
```

To detect *negative-weight cycles*, check the diagonal for negative values in O(n) additional time.

Floyd-Warshall algorithm

Also dynamic programming, but faster!

```
Define d_{ij}^{(k)} = weight of a shortest path from i to j with intermediate vertices belonging to the set \{1, 2, ..., k\}.
```

Thus, $\delta(i,j) = d_{ij}^{(n)}$. Also, $d_{ij}^{(0)} = w_{ij}$.

Floyd-Warshall algorithm

all intermediate vertices all intermediate vertices

in
$$\{1, 2, ..., k-1\}$$
 in $\{1, 2, ..., k-1\}$

p: all intermediate vertices in $\{1, 2, ..., k\}$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & \text{if } k \ge 1. \end{cases}$$

$$d_{ij}^{(m)} = \min_{k} \{d_{ik}^{(m-1)} + a_{kj}\}.$$

Initialization

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\Pi^{(0)} = \begin{pmatrix} \emptyset & 1 & 1 & \emptyset & 1 \\ \emptyset & \emptyset & \emptyset & 2 & 2 \\ \emptyset & 3 & \emptyset & \emptyset & \emptyset \\ 4 & \emptyset & 4 & \emptyset & \emptyset \\ \emptyset & \emptyset & \emptyset & 5 & \emptyset \end{pmatrix}$$

Node 1

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \boxed{5} & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \varnothing & 1 & 1 & \varnothing & 1 \\ \varnothing & \varnothing & \varnothing & 2 & 2 \\ \emptyset & \varnothing & \varnothing & 5 & \varnothing \end{pmatrix}$$

Node 2

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 1 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\Pi^{(2)} = \begin{pmatrix} \varnothing & 1 & 1 & 2 & 1 \\ \varnothing & \varnothing & \varnothing & 2 & 2 \\ \varnothing & 3 & \varnothing & 2 & 2 \\ 4 & 1 & 4 & \varnothing & 1 \\ \varnothing & \varnothing & \varnothing & 5 & \varnothing \end{pmatrix}$$

Node 3

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\Pi^{(3)} = \begin{pmatrix} \emptyset & 1 & 1 & 2 & 1 \\ \emptyset & \emptyset & \emptyset & 2 & 2 \\ \emptyset & 3 & \emptyset & 2 & 2 \\ 4 & 3 & 4 & \emptyset & 1 \\ \emptyset & \emptyset & \emptyset & 5 & \emptyset \end{pmatrix}$$

Node 4

$$Path_{13} = 1 \rightarrow 2 \rightarrow 4 \rightarrow 3$$

 $d_{13}^{(4)} = 3 + 1 + -5 = -1$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & \bigcirc 1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\Pi^{(4)} = \begin{pmatrix} \varnothing & 1 & 4 & 2 & 1 \\ 4 & \varnothing & 4 & 2 & 4 \\ 4 & 3 & \varnothing & 2 & 4 \\ 4 & 3 & 4 & \varnothing & 1 \\ 4 & 4 & 4 & 5 & \varnothing \end{pmatrix}$$

Node 5

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\Pi^{(5)} = \begin{pmatrix} \varnothing & 5 & 4 & 5 & 1 \\ 4 & \varnothing & 4 & 2 & 4 \\ 4 & 3 & \varnothing & 2 & 4 \\ 4 & 3 & 4 & \varnothing & 1 \\ 4 & 4 & 4 & 5 & \varnothing \end{pmatrix}$$

Floyd-Warshall algorithm

FLOYD-WARSHALL(W)

```
1. n \leftarrow rows[W]

2. d_0 \leftarrow W

3. for k \leftarrow 1 to n

4. do for i \leftarrow 1 to n

5. do for j \leftarrow 1 to n

6. do d_{ij}^{(k)} \leftarrow \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})

7. return D^{(n)}
```

Running time is $\Phi(n^3)$

Is it any possible to change all *negative-weight* edges to *nonnegative*?

Then, we can use *Dijkstra's algorithm* to compute the shortest path for all edges.

Graph reweighting properties.

- For all pairs of vertices $u, v \in V$, a path p is a shortest path from u to v using weight function w if and only if p is also a shortest path from u to v using weight function \hat{w} after reweighting.
- For all edges (u, v), the new weight $\hat{w}(u, v)$ is nonnegative.

Theorem.

Given a function $h: V \to \mathbb{R}$, reweight each edge $(u, v) \in E$ by $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$. Then, for any two vertices, all paths between them are reweighted by the same amount.

Proof. Let $p = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$ be a path in G. We have

$$\hat{w}(p) = \sum_{i=1}^{k} \hat{w}(v_{i-1}, v_i)$$

$$= \sum_{i=1}^{k} (w(v_{i-1}, v_i) + h(v_{i-1}) - h(v_i))$$

$$= \sum_{i=1}^{k} w(v_{i-1}, v_i) + h(v_0) - h(v_k)$$
Same amount!
$$= w(p) + h(v_0) - h(v_k)$$

Run Bellman-Ford algorithm for vertex v_0

Run Bellman-Ford algorithm for vertex v_0

Run Dijkstra's algorithm for each v_k

Why is $\hat{w}(u, v)$ nonnegative?

Johnson's algorithm

```
JOHNSON(G)
1. Compute G', where V[G'] = V[G] \cup \{s\},
                         E[G'] = E[G] \cup \{(s, v): v \in V[G]\}, \text{ and }
                         w(s, v) = 0 for all v \in V[G]
2. if BELLMAN-FORD(G', w, s) = FALSE
      then print "the input graph contains a negative-weight cycle"
      else for each vertex v \in V[G]
5.
               do set h(v) to the value of \delta(s, v)
          for each edge (u, v) \in E[G']
6.
               do \hat{w}(u,v) \leftarrow w(u,v) + h(u) - h(v)
7.
          for each vertex u \in V[G]
              do run DIJKSTRA(G, \hat{w}, u) to compute \delta(u, v)
9.
                                                for all v \in V[G]
```

Johnson's algorithm

```
10. for each vertex v \in V[G]
11. do d_{uv} \leftarrow \hat{\delta}(u, v) + h(v) - h(u)
12. return D
```

Analysis of Johnson's algorithm

- 1. Run Bellman-Ford to solve the difference constraints $h(v) h(u) \le w(u, v)$, or determine that a negative-weight cycle exists.
 - Time = O(VE).
- **2.** Run Dijkstra's algorithm for each vertex $u \in V[G]$.
 - Time = O(VElgV).
- **3.** For each $(u, v) \in E[G]$, compute $\delta(u, v)$.
 - Time = O(E).

Total time = O(VElgV).

Johnson's algorithm is particularly suitable for sparse graph.

All-pairs shortest-paths algorithms

Algorithms	Time	Data structure
Brute-force (run Bellman- Ford once from each vertex)	$O(V^2E)$	Adjacency-list or adjacency-matrix
Dynamic programming	$O(V^4)$	Adjacency-matrix only
Improved dynamic Programming	$O(V^3 lgV)$	Adjacency-matrix only
Floyd-Warshall algorithm	$O(V^3)$	Adjacency-matrix only
Johnson algorithm	O(VElgV)	Adjacency-list or adjacency-matrix

Flow networks

Flow networks

Definition.

A *flow network* is a directed graph G = (V, E) with two distinguished vertices: a *source* s and a *sink* t. Each edge $(u, v) \in E$ has a nonnegative *capacity* c(u, v). If $(u, v) \notin E$, then c(u, v) = 0.

Flow networks

Definition.

A *positive flow* on *G* is a function $f: V \times V \rightarrow \mathbb{R}$ satisfying the following:

- Capacity constraint: For all $u, v \in V$, we require $0 \le f(u, v) \le c(u, v)$.
- Skew symmetry: For all $u, v \in V$, we require f(u, v) = -f(v, u)
- *Flow conservation*: For all $u \in V \{s, t\}$, we require $\sum_{v \in V} f(u, v) = 0$

A flow on a network

Flow conservation:

- Flow into x is 8 + 4 = 12.
- Flow out of x is 1 + 11 = 12.

The *value* of this flow is 11 + 8 = 19.

Maximum-flow problem

Maximum-flow problem.

Given a flow network G, find a flow of maximum value on G.

The *maximum flow* is 23.

Cuts

Definition.

A *cut* (S, T) of a flow network G = (V, E) is a partition of V such that $s \in S$ and $t \in T$. If f is a flow on G, then the *flow across the cut* is f(S, T).

Maximum flow in a network is bounded by the capacity of *minimum cut* of the network.

Why?

Cuts of flow networks

The net flow across this cut is

$$f(u, v) + f(x, v) + f(x, y) = 12 + (-4) + 11 = 19.$$

and its capacity is
 $c(u, v) + c(x, v) = 12 + 14 = 26.$

Flow cancellation

Without loss of generality, positive flow goes either from u to v, or from v to u, but not both.

The capacity constraint and flow conservation are preserved by this transformation.

Residual network

Definition.

Let f be a flow on G = (V, E). The *residual network* $G_f(V, E_f)$ is the graph with strictly positive *residual capacities*

$$c_f(u, v) = c(u, v) - f(u, v) > 0.$$

Edges in E_f admit more flow.

Augmenting paths

Definition.

Any path from s to t in G_f is an augmenting path in G with respect to f. The flow value can be increased along an *augmenting path* p by

$$c_f(p) = \min_{(u,v \in p)} \{c_f(u,v)\}$$

Example of maximum-flow problem

Example of maximum-flow problem

Example of maximum-flow problem

Example of maximum-flow problem

Example of maximum-flow problem

Example of maximum-flow problem

Ford-Fulkerson algorithm

```
FORD-FULKERSON(G, s, t)
1. for each edge (u, v) \in E[G]
        \mathbf{do} f[u, v] \leftarrow 0
           f[v, u] \leftarrow 0
      while there exists a path p from s to t in the residual
               network G_f
               do c_f(p) \leftarrow \min\{c_f(u, v): (u, v) \text{ is in } p\}
5.
                  for each edge (u, v) in p
                       do f[u, v] \leftarrow f[u, v] + c_f(p)
                           f[v, u] \leftarrow -f[v, u]
```

Analysis of Ford-Fulkerson algorithm

- Find a path in a residual netork is O(V + E) if we use either depth-first search or breadth-first search.
- f^* denote the maximum flow found by the algorithm.
- Running time of Ford-Fulkerson algorithm is $O(E|f^*|)$.

Running time is 10,000.

Edmonds-Karp algorithm

Edmonds and Karp noticed that many people's implementations of Ford-Fulkerson augment along a **breadth-first augmenting path**: a shortest path in G_f from s to t where each edge has weight 1. These implementations would always run relatively fast.

Since a breadth-first augmenting path can be found in O(V+E) time, their analysis, which provided the first polynomial-time bound on maximum flow, focuses on bounding the number of flow augmentations.

Edmonds-Karp algorithm's running time is $O(VE^2)$.

Any question?

Xiaoqing Zheng Fundan University