

Data Sheet

N-Channel Logic Level Power MOSFET 100 V, 12 A, 200 $m\Omega$

These are N-Channel enhancement mode silicon gate power field effect transistors specifically designed for use with logic level (5V) driving sources in applications such as programmable controllers, automotive switching and solenoid drivers. This performance is accomplished through a special gate oxide design which provides full rated conduction at gate biases in the 3V to 5V range, thereby facilitating true on-off power control directly from logic circuit supply voltages.

Formerly developmental type TA09526.

Ordering Information

PART NUMBER	PACKAGE	BRAND
RFP12N10L	TO-220AB	F12N10L

Features

- 12A, 100V
- $r_{DS(ON)} = 0.200\Omega$
- Design Optimized for 5V Gate Drives
- Can be Driven Directly from QMOS, NMOS, TTL Circuits

October 2013

- Compatible with Automotive Drive Requirements
- · SOA is Power-Dissipation Limited
- · Nanosecond Switching Speeds
- · Linear Transfer Characteristics
- · High Input Impedance
- Majority Carrier Device
- · Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards

Symbol

Packaging

JEDEC TO-220AB

RFP12N10L

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RFP12N10L	UNITS
Drain to Source Voltage (Note 1)V _{DS}	100	V
Drain to Gate Voltage ($R_{GS} = 1M\Omega$) (Note 1)	100	V
Continuous Drain Current	12	Α
Pulsed Drain Current (Note 3)	30	Α
Gate to Source Voltage	±10	V
Maximum Power Dissipation	60	W
Above T _C = 25°C, Derate Linearly	0.48	W/oC
Operating and Storage Temperature	-55 to 150	oC
Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s	300 260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	PARAMETER SYMBOL TEST CONDITIONS		IONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	$I_D = 250 \mu A, V_{GS} = 0 V$		100	-	-	V
Gate to Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250\mu A$ (Figure 7)		1	-	2	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 80V		-	-	1	μΑ
		V _{GS} = 0V	$T_{C} = 125^{\circ}C$	-	-	50	μΑ
Gate to Source Leakage Current	I _{GSS}	V _{GS} = 10V, V _{DS} = 0V		-	-	100	nA
Drain to Source On Resistance (Note 2)	r _{DS(ON)}	$r_{DS(ON)}$ $I_D = 12A$, $V_{GS} = 5V$ (Figures 5, 6)		-	-	0.200	Ω
Input Capacitance	C _{ISS}	V _{GS} = 0V, V _{DS} = 25V, f = 1MHz (Figure 8)		-	-	900	pF
Output Capacitance	C _{OSS}			-	-	325	pF
Reverse-Transfer Capacitance	C _{RSS}			-	-	170	pF
Turn-On Delay Time	t _{d(ON)}	$I_D = 6A$, $V_{DD} = 50V$, $R_G = 6.25\Omega$, $V_{GS} = 5V$ (Figures 9, 10, 11)		-	15	50	ns
Rise Time	t _r			-	70	150	ns
Turn-Off Delay Time	t _{d(OFF)}			-	100	130	ns
Fall Time	t _f			-	80	150	ns
Thermal Resistance Junction to Case	$R_{ heta JC}$	TO-220				2.083	oC/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage (Note 2)	V _{SD}	I _{SD} = 6A	-	1	1.4	٧
Diode Reverse Recovery Time	t _{rr}	$I_{SD} = 4A$, $dI_{SD}/dt = 50A/\mu s$	-	150	-	ns

NOTES:

- 2. Pulsed: pulse duration = $80\mu s$ max, duty cycle = 2%.
- 3. Repetitive rating: pulse width limited by maximum junction temperature.

©2005 Fairchild Semiconductor Corporation

Typical Performance Curves Unless Otherwise Specified

FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 3. SATURATION CHARACTERISTICS

FIGURE 5. DRAIN TO SOURCE ON RESISTANCE vs DRAIN CURRENT

FIGURE 2. FORWARD BIAS OPERATING AREA

FIGURE 4. TRANSFER CHARACTERISTICS

FIGURE 6. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 7. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 8. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

NOTE: Refer to Fairchild Applications Notes AN7254 and AN7260

FIGURE 9. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT

Test Circuits and Waveforms

FIGURE 10. SWITCHING TIME TEST CIRCUIT

FIGURE 11. RESISTIVE SWITCHING WAVEFORMS

Test Circuits and Waveforms (Continued)

FIGURE 12. GATE CHARGE TEST CIRCUIT

FIGURE 13. GATE CHARGE WAVEFORMS

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower^T AX-CAP®* BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™

 $\mathsf{CTL}^{\mathsf{TM}}$ Current Transfer Logic™ DEUXPEED® Dual Cool™

EcoSPARK® EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ **FACT®**

FAST® FastvCore™ FETBench™ F-PFS™ FRFFT®

Global Power ResourceSM GreenBridge™ Green FPŠ™

Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX™ ISOPLANAR™

Marking Small Speakers Sound Louder and Better™

MegaBuck™ MICROCOUPLER™ MicroFET™

MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver[®] OptoHiT™ OPTOLOGIC® OPTOPLANAR® (1)_® PowerTrench® PowerXS™

Programmable Active Droop™

OFET[®] QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™ Solutions for Your Success™

STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ SYSTEM ®*
GENERAL TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* μSerDes™

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XSTM

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	ification Product Status Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.	
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right make changes at any time without notice to improve the design.	
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.	

Rev. 166