## Université Paris - Dauphine

## Processus Aléatoires Discrets

Examen du 04-09-2006

Aucun document n'est autorisé. Durée 2 heures.

1. . Soit  $X_0$  une variable aléatoire appartenant à  $\mathbb{N}$ . On définit alors une suite de v.a. pour tout  $n \in \mathbb{N}^*$  par

$$X_{n+1} = \begin{cases} X_n + 1 & \text{avec probabilité } p \in ]0, 1[ \\ 0 & \text{avec probabilité } 1 - p. \end{cases}$$

- (a) Identifier le système dynamique aléatoire correspondant, vérifier que  $(X_n)_{n\geq 0}$  est une chaîne de Markov, et donner sa matrice de transition.
- (b) Chercher les probabilités invariantes par la chaîne.
- (c) Montrer que,  $\forall x, y \in \mathbb{N}$ ,  $\lim_{n\to\infty} \mathbf{P}_y(X_n = x) = \pi(x)$ , où  $\pi$  est une probabilité sur  $\mathbb{N}$  que l'on précisera.
- 2. On considère la chaîne de Markov à valeurs dans  $E = \{1, 2, 3, 4, 5\}$  de matrice de transition

$$\left(\begin{array}{cccccc}
\frac{1}{2} & \frac{1}{3} & 0 & 0 & \frac{1}{6} \\
0 & 0 & 1 & 0 & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{3} & 0 & \frac{2}{3} & 0
\end{array}\right)$$

- 1. Montrer que la chaîne est irréductible et calculer sa probabilité invariante.
- 2. Soit  $N_n(i)$  le nombre de fois où la chaîne passe par l'état i au cours des n premières étapes. Quel est le comportement asymptotique de  $N_n(i)$  quand n tend vers l'infini?
- 3. (a) i. Soit  $M_n$  une martingale par rapport à une filtration  $\{\mathcal{F}_n\}_n$ , telle que  $\mathbb{E}(M_n^2) < +\infty$ . Soit

$$A_n = \sum_{i=1}^n \mathbb{E} ([M_i - M_{i-1}]^2 | \mathcal{F}_{i-1})$$

Montrer que  $M_n^2 - A_n$  est une  $\mathcal{F}_n$ -martingale.

- ii. Application : montrer que si  $(S_n, n \in \mathbb{N})$  est une marche aléatoire symétrique simple à valeurs dans  $\mathbb{N}$ , alors  $S_n^2 n, n \in \mathbb{N}$ , est une martingale par rapport à la filtration naturelle engendrée par  $(S_n, n \in \mathbb{N})$ .
- (b) Soit  $X_n$  une chaîne de Markov sur un espace M fini, avec matrice de transition P. Soit  $f: M \to \mathbb{R}$ . On rappelle que la fonction  $Pf: M \to \mathbb{R}$  est définie à partir de P et f par  $Pf(i) = \sum_{j \in M} P(i,j)f(j), \forall i \in M$ .
  - i. Montrer que

$$M_n = f(X_n) - f(X_0) + \sum_{k=0}^{n-1} [f(X_k) - (Pf)(X_k)]$$

est une martingale par rapport à la filtration  $\{\mathcal{F}_n = \sigma(X_0, X_1, \dots, X_n)\}_{n \geq 0}$ 

ii. Montrer que

$$M_n^2 - \sum_{k=0}^{n-1} \left[ (P(f^2))(X_k) - ((Pf)(X_k))^2 \right]$$

est une  $\mathcal{F}_n$ -martingale (par définition,  $f^2(i) = (f(i))^2, \forall i \in M$ ).