HOLCF-11: A Definitional Domain Theory for Verifying Functional Programs

Brian Huffman

Portland State University

July 13, 2011

PhD Thesis Committee: James Hook (chair)

John Matthews (advisor)

Mark Jones Tim Sheard

Gerardo Lafferriere

The Problem

We write computer programs, and want to know they are correct

Focus: Pure functional programming languages

Haskell

- Based on typed lambda calculus
- Supports equational reasoning (due to purity)
- Arbitrary recursive definitions
- Good for embedding other languages

Haskell expressions and types

```
3 :: Int

(+) :: Int -> Int -> Int

(\x -> x + 3) :: Int -> Int

(\f -> f 3) :: (Int -> a) -> a

(\f x -> f (f x)) :: (a -> a) -> a -> a
```

Verification example: List datatype

List datatype with map function

```
data List a = Nil | Cons a (List a)
  -- includes both finite and infinite lists

map :: (a -> b) -> List a -> List b

map f Nil = Nil
```

map f (Cons x xs) = Cons (f x) (map f xs)

Theorem

The map function preserves composition:

 $\forall f g xs. map f (map g xs) = map (\x -> f (g x)) xs$

Proof.

By induction on xs.

• Base case (Nil): Show map f (map g Nil) = map ($x \rightarrow f (g x)$) Nil.

Proof.

By induction on xs.

- Base case (Nil): Show map f (map g Nil) = map ($x \rightarrow f (g x)$) Nil.
- Inductive case (Cons):
 Assume map f (map g xs) = map (\x -> f (g x)) xs.
 Show map f (map g (Cons x xs)) = map (\x -> f (g x))
 (Cons x xs).

Proof.

By induction on xs.

- Base case (Nil): Show map f (map g Nil) = map ($x \rightarrow f (g x)$) Nil.
- Inductive case (Cons):
 Assume map f (map g xs) = map (\x -> f (g x)) xs.
 Show map f (map g (Cons x xs)) = map (\x -> f (g x))
 (Cons x xs).
- Base case (\bot): Show map f (map g \bot) = map (\xspace x -> f (g x)) \bot .

Proof.

By induction on xs.

- Base case (Nil): Show map f (map g Nil) = map ($x \rightarrow f (g x)$) Nil.
- Inductive case (Cons):
 Assume map f (map g xs) = map (\x -> f (g x)) xs.
 Show map f (map g (Cons x xs)) = map (\x -> f (g x))
 (Cons x xs).
- Base case (\bot): Show map f (map g \bot) = map (\xspace x -> f (g x)) \bot .
- Admissibility condition:
 Check that the goal is admissible in xs.

Verification example: List datatype (HOLCF proof)

```
File Edit Options Buffers Tools Isabelle Proof-General Tokens Help
theory LazyList imports HOLCF begin
domain 'a List = Nil | Cons (lazy "'a") (lazy "'a List")
fixrec map :: "('a → 'b) → 'a List → 'b List"
  where map \cdot f \cdot Nil = Nil
   | \text{map} \cdot f \cdot (\text{Cons} \cdot x \cdot xs) = \text{Cons} \cdot (f \cdot x) \cdot (\text{map} \cdot f \cdot xs)|^{-1}
lemma map strict [simp]: "map·f·\bot = \bot"
by fixrec simp
lemma map map: "map·f·(map·q·xs) = map·(\Lambda x. f·(q·x))·xs"
apply (induct xs)
apply simp all
-uU:--- LazvList.thv
                            Top (14,14)
                                               (Isar Utoks Scripting
proof (prove): step 2
goal:
No subgoals!
                                               (Isar Proofstate Utoks
-uU:%%- *goals*
                             Top (1.0)
```

Thesis statement

HOLCF-11 provides an unprecented combination of these qualities:

Expressiveness

- Can reason about a wide variety of programs
- Can formulate all kinds of properties

Automation

- Tools generate common useful theorems
- Tactics discharge commonly-occurring subgoals in proofs
- Easy proofs are automatic, hard proofs are possible

Confidence

- Theorems derived with primitive inferences from axioms of set theory
- Soundness ensured by construction

Harder example: Tree datatype

```
Tree datatype with map function

data Tree a = Leaf a | Node (List (Tree a))

-- indirect recursion with list type

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f (Leaf x) = Leaf (f x)

mapTree f (Node ts) = Node (map (mapTree f) ts)
```

Theorem

The map function preserves composition:

```
\forall f \ g \ t. \ mapTree \ f \ (mapTree \ g \ t) = mapTree \ (\x -> f \ (g \ x)) \ t
```

Harder example: Tree datatype (informal proof)

Proof.

```
Define abbreviation P(t) \equiv mapTree f (mapTree g t) = mapTree (\x -> f (g x)) t.
```

Show P(t) by induction on t.

- Admissibility condition:
 Check that P(t) is admissible in t.
- Base case: Show $P(\bot)$.
- Base case: Show P(Leaf x).
- Inductive case:

```
Fix arbitrary h :: Tree \ a \rightarrow Tree \ a; assume \forall t . P(h \ t). Show P(Node \ (map \ h \ ts)).
```

Harder example: Tree datatype (HOLCF proof)

Step 1: Derive induction rule

```
8
File Edit Options Buffers Tools Isabelle Proof-General Tokens Help
 domain 'a Tree = Leaf (lazy "'a") | Node (lazy "'a Tree List")
 lemma Tree induct [induct type: Tree]:
   fixes P :: "'a Tree ⇒ bool"
   assumes adm: "adm P"
   assumes bottom: "P 1"
   assumes Leaf: "Ax. P (Leaf·x)"
   assumes Node: "Af ts. \forall t:: 'a \text{ Tree. } P \text{ (f} \cdot t) \implies P \text{ (Node} \cdot (map \cdot f \cdot ts))"
   shows "P t"
 proof (rule Tree.take induct)
show "adm P" by fact
next
   fix n show "P (Tree take n·t)"
   proof (induct n arbitrary: t)
-u-:--- LazvList.thv 40% (44.29)
                                            (Isar Utoks Scripting )
```

Harder example: Tree datatype (HOLCF proof)

Step 2: Prove map theorem

```
File Edit Options Buffers Tools Isabelle Proof-General Tokens Help
 fixrec mapTree :: "('a → 'b) → 'a Tree → 'b Tree"
   where "mapTree·f·(Leaf·x) = Leaf·(f·x)"
   I \text{ "mapTree} \cdot f \cdot (\text{Node} \cdot \text{ts}) = \text{Node} \cdot (\text{map} \cdot (\text{mapTree} \cdot f) \cdot \text{ts})"
 lemma mapTree strict [simp]: "mapTree \cdot f \cdot \bot = \bot"
 by fixrec simp
 lemma mapTree mapTree:
   "mapTree·f·(mapTree·g·t) = mapTree·(\Lambda x, f·(g·x))·t"
apply (induct t)
 apply (simp all add: map map)
done
-u-:--- LazyList.thy
                              Bot (71.4)
                                                  (Isar Utoks Scripting
```

Background

Formalisms for programs and properties

Higher Order Logic (HOL)

- Based on typed lambda calculus
- Quantification over predicates (higher order)
- Has model in set theory

Logic of Computable Functions (LCF)

- Based on typed lambda calculus
- Has fixed-point combinator: fix(f) = f(fix(f))
- ullet Every type has bottom element: ot
- Has model in domain theory

Domain theory

Complete partial orders (cpos)

- partial ordering (□)
- least element (⊥)
- every countable ascending sequence (chain) has least upper bound

Continuous functions

- preserve least upper bounds of chains
- continuous function space between cpos is a cpo

Least fixed-point operator

- fix(f) = f(fix(f)) for continuous f
- lub of chain: \bot , $f(\bot)$, $f(f(\bot))$, $f(f(f(\bot)))$, ...

Interactive theorem proving

Programmable systems for building formal proofs

Every primitive logical inference checked by computer

LCF series of theorem provers (1970s-80s)

- Trusted kernel provides abstract "theorem" type
- Kernel operations ⇔ logical inference rules
- Only the kernel can build theorems

HOL family of theorem provers (1980s-current)

- "LCF style" implementation gives high assurance
- Isabelle/HOL

Combining HOL and LCF

Higher Order Logic of Computable Functions (HOLCF)

- Model of LCF logic, constructed within Isabelle/HOL
- Domain theory built up from axioms of set theory
- Cpos and continuous functions coexist with ordinary types and functions
- Earlier versions (T.U. Munich, 1990s):
 - ► HOLCF-95 (basic domain theory, type constructors)
 - HOLCF-99 (introduces domain command)

Technical Contributions

Original work in three areas

Theory libraries

- Identify more useful concepts from domain theory literature
- Formalize and prove collections of theorems in Isabelle

Proof heuristics

- Configure Isabelle simplifier with default rewrite rules
- Design efficient proof tactics for solving common subgoals (continuity and admissibility)

Definition packages

- Implement commands (fixrec, domain) using definitional approach
- Write code for processing user specifications
- Write code for dynamically generating proofs of theorems

Definitional approach

LCF-style kernel provides a sound foundation

How to extend the system while preserving soundness?

Axioms for new constants

Extending HOL with new constants or types requires axioms

Not all recursive specifications are sound!

Sound axiom

foo :: $nat \Rightarrow nat$

foo n = (if n = 0 then 0 else n + foo (n - 1))

Unsound axiom

 $bar :: nat \Rightarrow nat$

bar n = (if n = 0 then 0 else n + bar (n + 1))

Definitional approach for constants

Non-recursive definition axioms are always safe

• (One definition per constant!)

Definition packages

- Turn recursive spec into non-recursive definition
- Derive original recursive equations as theorems

Definition package for HOLCF: Fixrec

- HOLCF-99: users defined recursive functions with "fix"
- HOLCF-11: users can write recursive functions directly

Axioms for new types

Datatype specifications

- list of constructors with argument types
- constructors assumed to be distinct, injective, exhaustive

Not all datatype specifications are sound!

Sound datatype

```
datatype tree = Tip | Node nat tree tree (asserts set isomorphism T \cong 1 + \mathbb{N} \times T \times T)
```

Unsound datatype

```
datatype object = MkObject nat (object \Rightarrow object) (asserts set isomorphism T \cong \mathbb{N} \times (T \Rightarrow T))
```

Definitional approach for types

Identify new type with nonempty subset of old type

Example: Define lists as subset of right-leaning binary trees

```
File Edit Options Buffers Tools Isabelle Proof-General Tokens
datatype tree = Tip | Node nat tree tree
primrec is list :: "tree ⇒ bool"
  where "is list Tip = True"
   | "is list (Node n l r) = (l = Tip \Lambda is list r)"
typedef list = "{t. is list t}"
-uU:--- Typedef.thy
                         Bot (9.31)
                                          (Isar Utoks
proof (prove): step 0
goal (1 subgoal):
 1. \exists x. x \in \{t. \text{ is list } t\}
-uU:%%- *goals*
                         Top (1.0)
                                          (Isar Proofstate
```

Definitional approach for types

Type definition package for Isabelle/HOL: Datatype

- Start with a sufficiently-fancy tree type (Melham 1989, Gunter 1994)
- Define predicate on trees for each new type
- Introduce each new type definitionally
- Define new constructors in terms of Rep, Abs, tree constructors

Type definition package for HOLCF-99: Domain

Analogous to Isabelle/HOL datatype package

- Defines a cpo instead of an ordinary type
- Constructors are continuous functions

Example

```
domain bintree = Tip | Node bintree bintree (asserts domain isomorphism D \cong \mathbb{O} \oplus (D \otimes D))
```

Isomorphism axioms

```
bintree_abs :: one \oplus (bintree \otimes bintree) \rightarrow bintree bintree_rep :: bintree \rightarrow one \oplus (bintree \otimes bintree) \forall y. bintree_abs·(bintree_rep·y) = y \forall x. bintree_rep·(bintree_abs·x) = x
```

Not definitional: Bugs in implementation can make system unsound!

Building a definitional domain package: Universal domain

Definitional approach for types

- Must define new type as subset of existing type
- Problem: What existing type can we use?

Building a definitional domain package: Universal domain

Definitional approach for types

- Must define new type as subset of existing type
- Problem: What existing type can we use?

Solution: universal domain

- ullet One big cpo ${\cal U}$ with lots of interesting sub-cpos
- Several examples exist in the literature
- Pick a suitable one and formalize it (lots of work!)

Building a definitional domain package: Deflations

Solving domain equations

- Example: $D \cong \mathbb{O} \oplus (D \otimes D)$
- ullet Need type ${\mathcal T}$ whose values identify sub-cpos of ${\mathcal U}$
- \bullet $\, {\cal T}$ must be a cpo, to permit recursive definitions
- ullet Type constructors as continuous functions $\mathcal{T} o \mathcal{T}$

Building a definitional domain package: Deflations

Solving domain equations

- Example: $D \cong \mathbb{O} \oplus (D \otimes D)$
- ullet Need type ${\mathcal T}$ whose values identify sub-cpos of ${\mathcal U}$
- ullet ${\mathcal T}$ must be a cpo, to permit recursive definitions
- \bullet Type constructors as continuous functions $\mathcal{T} \to \mathcal{T}$

Solution: deflations

- Continuous functions $d :: \mathcal{U} \to \mathcal{U}$ where $d(d(x)) = d(x) \sqsubseteq x$
- ullet Image set is a sub-cpo of ${\cal U}$
- Ordered pointwise, deflations form a cpo

Deflation model of types

Universal Haskell datatype

data U = Con String [U]

Deflation for data Bool = True | False

dBool
$$_$$
 = \bot

Image set of dBool \cong type Bool

Con "True" [] Con "False" []

Building a definitional domain package

Deflation combinators represent type constructors

```
Deflation for data Prod a b = Pair a b

dProd :: (U -> U) -> (U -> U) -> (U -> U)

dProd a b (Con "Pair" [x, y]) = Con "Pair" [a x, b y]

dProd a b _ = _
```

Solving domain equations with deflation combinators

```
Deflation for domain equation Stream ≅ Prod Bool Stream
dStream :: (U -> U)
dStream = dProd dBool dStream
```

HOLCF-11 Definitional Domain package

Steps to define a new datatype

- Define deflation using deflation combinators and "fix"
- Define new type as image set of deflation
- Prove isomorphism "axioms" as theorems
- Continue as before

No more axioms!

Conclusions

Evaluation

Expressiveness

- Fixrec and Domain packages can handle a wide variety of programs
- Higher-order logic for expressing properties

Automation

- Fixrec and Domain packages generate lots of useful theorems
- Easy subgoals solved automatically by the simplifier

Confidence

- HOLCF-11 is completely definitional
- To trust HOLCF: only need to trust Isabelle's kernel (and axioms of set theory)

More evidence: Concurrency monad case study

Type used to model concurrent computations (Papaspyrou, 2001)

$$\mathsf{R} \cong \mathsf{A} + (\mathsf{S} o \mathcal{P}^{
atural}(\mathsf{S} imes \mathsf{R}))$$

- Approximated by Haskell datatype:
 data R s a = Done a | More (s -> [(s, R s a)])
- Lots of indirect recursion (functions, pairs, powerdomains)

More evidence: Concurrency monad case study

Type used to model concurrent computations (Papaspyrou, 2001)

$$\mathsf{R} \cong \mathsf{A} + (\mathsf{S} o \mathcal{P}^{
atural}(\mathsf{S} imes \mathsf{R}))$$

- Approximated by Haskell datatype:
 data R s a = Done a | More (s -> [(s, R s a)])
- Lots of indirect recursion (functions, pairs, powerdomains)
- Proofs about map function, sequencing (functor and monad laws)
 - ► Papaspyrou's manual proofs: 9–10 pages
 - ► HOLCF-11: ≈ 90 lines
- Hard proof: Associativity of nondeterministic interleaving
 - Manual proof: (none)
 - ► HOLCF-11: ≈ 40 lines

Using HOLCF-11

Anyone can use HOLCF-11

- Part of Isabelle 2011 release
- http://isabelle.in.tum.de

Published formalizations (Archive of Formal Proofs)

- Verifying Stream Fusion (Huffman, 2009)
- The Worker/Wrapper Transformation (Gammie, 2009)
- Shivers' Control Flow Analysis (Breitner, 2010)
- http://afp.sourceforge.net

The End

Theory libraries

Domain-theoretic concepts added to HOLCF-11:

- Compact (finite) elements (used for admissibility proofs, and more)
- Deflations
- Class of bifinite cpos
- Ideal completion

Significant new libraries:

- Powerdomains (domain-theoretic analog of powersets)
- Universal bifinite domain

Proof heuristics

Continuity prover

- Continuity subgoals are very common (fixed-points, beta-reduction)
- HOLCF-99: exponential-time continuity proofs
- HOLCF-11: new continuity rules give polynomial running time (quadratic number of steps, cubic time)
- Feasible to work with larger programs now

Others:

- New admissibility rules can handle more predicates (using compactness)
- Numerous tweaks to default simplification rules

Contributions to Fixrec Package

Fixrec now supports many new features

- curried functions (i.e. multiple function arguments)
- mutually-recursive functions
- overlapping patterns
- conditional equations
- strictness annotations
- improved induction schemes

A large case study is published on the Archive of Formal Proofs:

• afp.sourceforge.net/entries/Stream-Fusion.shtml

Contributions to Domain Package

The reimplemented domain package supports many new features:

- purely definitional (no new axioms!)
- full (and correct!) support for indirect recursion
- support for unpointed lazy argument types
- integration with fixrec package
- improved support for take induction
- better rewrite rules for definedness, comparisons
- improved speed and scalability

Publications

Relevant Publications

- A Purely Definitional Universal Domain (TPHOLs 2009)
- Verifying Stream Fusion (Archive of Formal Proofs, May 2009)
- Reasoning with Powerdomains in Isabelle/HOLCF (TPHOLs 2008)
- Axiomatic Constructor Classes in Isabelle/HOLCF (with John Matthews and Peter White, TPHOLs 2005)

Meetings

- Isabelle Developer's Workshop (Munich, August 2009)
- Informal Isabelle developer's meeting (CMU, March 2009)