

Demand (vehicles per hour)

	А	В	С	D
А	0	3,800	2,000	6,000
В	500	0	2,000	4,000
С	200	100	0	300
D	600	700	3,000	0

A to B

Tree-building: Possible routes

• A-B

A to B

Tree-building: Possible routes

- A-B
- A-C-B

A to B

Tree-building: Possible routes

- A-B
- A-C-B
- A-C-D-B

Wardrop's equlibrium

 Any two used routes will have an equal travel time, so no traveler can improve her travel time (cost) by switching to a different route.

Effects of congestion

Travel time =
$$t_0 \left[1 + \alpha \left(\frac{v}{c} \right)^{\beta} \right]$$

Use α = 0.5, β = 2

All-or-nothing assignment

	A-B	А-С-В	A-C-D-B
Free-flow time (min)	24	30	54
Volume	3,800	0	0
Capacity	4,000	3,000	3,000
V/C	0.95	0	0
Travel time	35	30	54

Demand (vehicles per hour)

	А	В	С	D
А	0	3,800	2,000	6,000
В	500	0	2,000	4,000
С	200	100	0	300
D	600	700	3,000	0

Congested assignment

$$24\left[1 + 0.5\left(\frac{V_{AB}}{4,000}\right)^{2}\right] = 30\left[1 + 0.5\left(\frac{V_{ACB}}{3,000}\right)^{2}\right]$$

$$V_{AB} + V_{ACB} = 3,800$$

$$24\left[1 + 0.5\left(\frac{V_{AB}}{4,000}\right)^{2}\right] = 30\left[1 + 0.5\left(\frac{3,800 - V_{AB}}{3,000}\right)^{2}\right]$$

$$V_{AB} = 3044$$

$$V_{ACB} = 756$$

	A-B	А-С-В	A-C-D-B
Free-flow time (min)	24	30	54
Volume	3,044	756	0
Capacity	4,000	3,000	3,000
V/C	0.76	0.25	0
Travel time	31	31	54

Travel time =
$$t_0 \left[1 + \alpha \left(\frac{V}{c} \right)^{\beta} \right]$$

Use
$$\alpha$$
 = 0.5, β = 2

Demand (vehicles per hour)

	А	В	С	D
А	0	3,800	2,000	6,000
В	500	0	2,000	4,000
С	200	100	0	300
D	600	700	3,000	0

Incremental assignment

• Divide total volume into equal portions and assign then one at a time.