Gedankenaufschrieb der KI Nachklausur SoSe 2014

1. α - β Pruning

In nicht beschrifteten Tabellen α und β eintragen. In das jeweilige Δ den v-Wert

2. Entscheidungsbaum

Nr	Actor	Genre	Sell-out
1	Mell Gibson	Thriller	yes
2	Tom Cruise	Action	yes
3	Mell Gibson	Thriller	yes
4	Angelina Jolie	Romance	no
5	Mell Gibson	Action	yes
6	Tom Cruise	Romance	no
7	Mell Gibson	Action	ys
8	Angelina Jolie	Thriller	no
9	Angelina Jolie	Romance	no
10	Mell Gibson	Action	yes

- (a) Berechne für *Genre* den R-Wert um zu bestimmen, wie viel es den Gain für Sell-out reduziert.
- (b) Gebe einen Entscheidungsbaum an. Bei Actor bin ich mir mit der Verteilung nicht mehr 100% sicher. Jedoch hat sie für das Genre Thriller die Mengen geteilt.

3. Suchalgorithmen

- (a) Ein Graph gegeben, an den Kanten die g-Werte. In einer Tabelle die h-Werte. Man sollte A* durchführen. F, h und g-Werte an die Knoten. Und die Reihenfolge der Expandierung an Knoten durchnummerieren. Knoten sollten nicht nochmals rückwärts expandiert werden. (Wenn von A -> B und nun B expandiert, dann ist A nicht nochmals Kindsknoten)
- (b) Unter welchen Bedingungen ist Breitensuche vollständig? Unter welchen Bedingungen ist Breitensuche optimal?

4. CSP

Gegeben war die Belegung α wie sie in der unten stehenden Tabelle zu sehen ist.

	1	2	3	4	5
v1		Χ			
v2					
v3					
v4					
v5					

(a) Führe Forwardchecking für Belegung α aus

	v1	v2	v3	v4	v5
	{2}	{1, 2, 3, 4, 5}	{1, 2, 3, 4, 5}	{1, 2, 3, 4, 5}	{1, 2, 3, 4, 5}
Fwc					

(b) Führe ARC-Consistency für Belegung α aus

	v1	v2	v3	v4	v5
ACv1	{2}	{1, 2, 3, 4, 5}	{1, 2, 3, 4, 5}	{1, 2, 3, 4, 5}	{1, 2, 3, 4, 5}
ACv2	{2}		{1, 2, 3, 4, 5}	{1, 2, 3, 4, 5}	{1, 2, 3, 4, 5}
ACv3	{2}			{1, 2, 3, 4, 5}	{1, 2, 3, 4, 5}
ACv4	{2}				{1, 2, 3, 4, 5}
ACv5	{2}				
	{2}				
	{2}				
	{2}				
	{2}				

5. Kann ich mich leider nicht mehr erinnern.

6. Byes' Netzwerk

Man hatte A, B, C, D, E als Knoten und ihre bedingte Abhängigkeiten in Wahrheitstabellen. An die Werte kann ich mich nicht mehr erinnern kann.

D	С	P(E C, B)
t	t	
t	f	
f	t	
f	f	

D	P(A D)		(
t			1
f		•	

С	P(C)	D	С	P(B D, C)
t	0.2			C)
		t	t	
		t	f	
		f	t	

С	P(D C)
t	
f	

(a) Zeichne das Baysche Netz anhand der gegebenen Tabellen ein.

(b) Berechne Joint Probability von P(A, \neg B, C, D, E).

(c) Bedingt Unabhängigkeit ja, nein. Bin mir nicht 100% sicher, jedoch sah Graph so ähnlich aus.

Ind(F, B | D)

 $Ind(E, F \mid C)$

Ind(F, A | C, B, G)

Ind(C, D | F, B)

7. Kann ich mich leider nicht mehr erinnern.

8. Unifizierung

Tabelle war gegeben, die man ausfüllen sollte. Ich erinnere mich nicht mehr 100% an T. Es musste mind. 4 mal substituiert werden.

	T{}	S{}	D { }	V	t
0	$\{R(x, y, f(A, y)), R(A, g(x), f(x, g(x)))\}$	{}			

9. Logik 2. Stufe

- (a) DPLL. Achtung hier war angegeben, dass wenn Splitting-Rule, dann der Buchstabe, der im Alphabet zu erst kommt, gewählt und zu erst auf TRUE gesetzt werden soll.
- (b) Formel in Skolem Normalform überführen