Reduction and Creative Telescoping For Hypergeometric Terms

Hui Huang

KLMM, AMSS, Chinese Academy of Sciences Institute for Algebra, Johannes Kepler University

Joint work with S. Chen, M. Kauers and Z. Li

Content

- 1. Introduction
- 2. Preliminaries
- 3. Sum decomposition for hypergeometric terms
- 4. Reduction-based creative telescoping
- 5. Upper and lower bounds
- 6. Summary

Content

- 1. Introduction
- 2. Preliminaries
- Sum decomposition for hypergeometric terms
- 4. Reduction-based creative telescoping
- Upper and lower bounds
- 6. Summary

Background

f(x, y) a bivariate hypergeometric term.

Hypergeometric summation. Find the "closed form" of

$$\sum_{y=-\infty}^{\infty} f(x,y).$$

Hypergeometric identities. Prove the identity

$$\sum_{y=-\infty}^{\infty} f(x,y) = h(x).$$

Problem. Find the "closed form" of

$$\sum_{y=-\infty}^{\infty} f(x,y).$$

Problem. Find the "closed form" of

$$\sum_{y=-\infty}^{\infty} f(x,y).$$

Method. Gosper 1978, Abramov & Petkovšek 2001

$$f(x,y) = g(x,y+1) - g(x,y)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\sum_{k=-\infty}^{\infty} f(x,y) = g(x,\infty) - g(x,-\infty)$$

Problem. Find the "closed form" of

$$\sum_{y=-\infty}^{\infty} f(x,y).$$

Method. Gosper1978, Abramov & Petkovšek2001, Wilf & Zeilberger1990

$$\sum_{i=0}^{\rho} e_i(x) \sigma_x^i f(x,y) = g(x,y+1) - g(x,y)$$

Problem. Find the "closed form" of

$$\sum_{y=-\infty}^{\infty} f(x,y).$$

Method. Gosper1978, Abramov & Petkovšek2001, Wilf & Zeilberger1990

$$\sum_{i=0}^{\rho}e_i(x)\sigma_x^i \\ f(x,y) = g(x,y+1) - \boxed{g(x,y)}$$
 telescoper

Problem. Find the "closed form" of

$$\sum_{y=-\infty}^{\infty} f(x,y).$$

Method. Gosper1978, Abramov & Petkovšek2001, Wilf & Zeilberger1990

$$\sum_{i=0}^{\rho} e_i(x) \sigma_x^i f(x,y) = g(x,y+1) - \boxed{g(x,y)}$$
 telescoper
$$\sum_{i=0}^{\rho} e_i(x) \left(\sum_{y=-\infty}^{\infty} f(x,y)\right) = g(x,\infty) - g(x,-\infty)$$

Problem. Find the "closed form" of

$$\sum_{y=-\infty}^{\infty} f(x,y).$$

Method. Gosper1978, Abramov & Petkovšek2001, Wilf & Zeilberger1990

Huang, CAS & JKU Reduction & Telescoping

5/39

Problem. Find the "closed form" of

$$\sum_{y=-\infty}^{\infty} f(x,y).$$

Method. Gosper1978, Abramov & Petkovšek2001, Wilf & Zeilberger1990

Huang, CAS & JKU Reduction & Telescoping 5/39

Hypergeometric identities

Problem. Prove the identity

$$\sum_{y=-\infty}^{\infty} f(x,y) = h(x).$$

Method. Wilf & Zeilberger1990

$$\sum_{i=0}^{\rho} e_i(x) \sigma_x^i \left(\sum_{y=-\infty}^{\infty} f(x,y) \right) = g(x,\infty) - g(x,-\infty)$$

Hypergeometric identities

Problem. Prove the identity

$$\sum_{y=-\infty}^{\infty} f(x,y) = h(x).$$

Method. Wilf & Zeilberger1990

$$\sum_{i=0}^{\rho} e_i(x) \sigma_x^i \left(\sum_{y=-\infty}^{\infty} f(x,y) \right) = g(x,\infty) - g(x,-\infty) +$$

$$\sum_{i=0}^{\rho}e_i(x)\sigma_x^i\,h(x)=g(x,\infty)-g(x,-\infty)\text{ \& initial values match}$$

Hypergeometric identities

Problem. Prove the identity

$$\sum_{y=-\infty}^{\infty} f(x,y) = h(x).$$

Method. Wilf & Zeilberger1990

$$\sum_{i=0}^{\rho} e_i(x) \sigma_x^i \left(\sum_{y=-\infty}^{\infty} f(x,y) \right) = g(x,\infty) - g(x,-\infty) +$$

$$\sum_{i=0}^p e_i(x) \sigma_x^i \, h(x) = g(x,\infty) - g(x,-\infty)$$
 & initial values match

Key. Compute a telescoper!

Generations of creative telescoping algorithms:

- 1. Elimination in operator algebras / Sister Celine's algorithm (since ≈ 1947)
- 2. Zeilberger's algorithm and its generalizations (since ≈ 1990)
- 3. The Apagodu-Zeilberger ansatz (since ≈ 2005)

Motivating example

Consider

$$T = \frac{y^{10}}{x + y}$$

▶ The minimal telescoper for T w.r.t. y is

$$L = \sigma_x - \frac{1}{x^{10}}(x+1)^{10}$$

Certificate for the example

```
G = \frac{1}{10} \left( -1/21 \frac{x^3 \left( 175 \, x^7 + 700 \, x^6 + 1234 \, x^5 + 1252 \, x^4 + 790 \, x^3 + 310 \, x^2 + 70 \, x + 7 \right)}{10 \, x^9 + 45 \, x^8 + 120 \, x^7 + 210 \, x^6 + 252 \, x^5 + 210 \, x^4 + 120 \, x^3 + 45 \, x^2 + 10 \, x + 1} \right)
     1 x(1750 x^7 + 5950 x^6 + 9558 x^5 + 9186 x^4 + 5630 x^3 + 2180 x^2 + 490 x + 49) u^2
   \frac{42}{10x^9 + 45x^8 + 120x^7 + 210x^6 + 252x^5 + 210x^4 + 120x^3 + 45x^2 + 10x + 1}
      1 (990 x^9 + 3960 x^8 + 7890 x^7 + 10260 x^6 + 9654 x^5 + 6780 x^4 + 3490 x^3 + 1240 x^2 + 270 x + 27) y^3
                         10 x^9 + 45 x^8 + 120 x^7 + 210 x^6 + 252 x^5 + 210 x^4 + 120 x^3 + 45 x^2 + 10 x + 1
      5 \quad x \left(792 \, x^7 + 2574 \, x^6 + 4020 \, x^5 + 3801 \, x^4 + 2310 \, x^3 + 891 \, x^2 + 200 \, x + 20\right) \, y^4
    \frac{1}{36} \frac{10 x^9 + 45 x^8 + 120 x^7 + 210 x^6 + 252 x^5 + 210 x^4 + 120 x^3 + 45 x^2 + 10 x + 1}{10 x^9 + 45 x^8 + 120 x^7 + 210 x^6 + 252 x^5 + 210 x^4 + 120 x^3 + 45 x^2 + 10 x + 1}
      1 (1320 x^9 + 5280 x^8 + 11352 x^7 + 16566 x^6 + 17540 x^5 + 13535 x^4 + 7410 x^3 + 2721 x^2 + 600 x + 60) y^5
                             10x^{9} + 45x^{8} + 120x^{7} + 210x^{6} + 252x^{5} + 210x^{4} + 120x^{3} + 45x^{2} + 10x + 1
    1 x (660 x^7 + 1980 x^6 + 2948 x^5 + 2717 x^4 + 1630 x^3 + 625 x^2 + 140 x + 14) y^6
     \frac{1}{6} \frac{10 \times 9 + 45 \times 8 + 120 \times 7 + 210 \times 6 + 252 \times 5 + 210 \times 4 + 120 \times 3 + 45 \times 2 + 10 \times + 1}{10 \times 10^{-2}}
      1 (4620 x^9 + 18480 x^8 + 42900 x^7 + 68640 x^6 + 78188 x^5 + 63305 x^4 + 35630 x^3 + 13265 x^2 + 2940 x + 294) u^7
                                  10 \times ^{9} + 45 \times ^{8} + 120 \times ^{7} + 210 \times ^{6} + 252 \times ^{5} + 210 \times ^{4} + 120 \times ^{3} + 45 \times ^{2} + 10 \times + 1
    42
     5 \quad x \left(924 \, x^7 + 2310 \, x^6 + 3168 \, x^5 + 2805 \, x^4 + 1650 \, x^3 + 627 \, x^2 + 140 \, x + 14\right) y^8
    84 10 \times ^{9} + 45 \times ^{8} + 120 \times ^{7} + 210 \times ^{6} + 252 \times ^{5} + 210 \times ^{4} + 120 \times ^{3} + 45 \times ^{2} + 10 \times + 1
      5 (660 x^9 + 2640 x^8 + 6732 x^7 + 11550 x^6 + 13728 x^5 + 11385 x^4 + 6490 x^3 + 2431 x^2 + 540 x + 54) u^9
                            10 x^9 + 45 x^8 + 120 x^7 + 210 x^6 + 252 x^5 + 210 x^4 + 120 x^3 + 45 x^2 + 10 x + 1
    1\  \, \left(495\,{x}^{9}+2145\,{x}^{8}+5610\,{x}^{7}+9702\,{x}^{6}+11550\,{\underline{x}^{5}+9570}\,{x}^{4}+5445\,{x}^{3}+2035\,{x}^{2}+451\,x+45\right){y}^{10}\\ +{y}^{11}\right)
                         10x^{9} + 45x^{8} + 120x^{7} + 210x^{6} + 252x^{5} + 210x^{4} + 120x^{3} + 45x^{2} + 10x + 1
 \cdot (10 x<sup>9</sup> + 45 x<sup>8</sup> + 120 x<sup>7</sup> + 210 x<sup>6</sup> + 252 x<sup>5</sup> + 210 x<sup>4</sup> + 120 x<sup>3</sup> + 45 x<sup>2</sup> + 10 x + 1) (x + y)<sup>-1</sup>
```

Certificate for the example

```
G = \frac{1}{10} \left( -1/21 \, \frac{x^3 \left(175 \, x^7 + 700 \, x^6 + 1234 \, x^5 + 1252 \, x^4 + 790 \, x^3 + 310 \, x^2 + 70 \, x + 7\right)}{10 \, x^9 + 45 \, x^6 + 120 \, x^7 + 210 \, x^6 + 252 \, x^5 + 210 \, x^4 + 120 \, x^3 + 45 \, x^2 + 10 \, x + 100 \, x^2 
                              1 x (1750 x^7 + 5950 x^6 + 9558 x^5 + 9186 x^4 + 5630 x^3 + 2180 x^2 + 490 x + 49) y^2
                   42 10 \times ^{9} + 45 \times ^{8} + 120 \times ^{7} + 210 \times ^{6} + 252 \times ^{5} + 210 \times ^{4} + 120 \times ^{3} + 45 \times ^{2} + 10 \times + 1
                                 1 (990 x^9 + 3960 x^8 + 7890 x^7 + 10260 x^6 + 9654 x^5 + 6780 x^4 + 3490 x^3 + 1240 x^2 + 270 x + 27) y^3
           -\frac{18}{10\,x^9+45\,x^8+120\,x^7+210\,x^6+252\,x^5+210\,x^4+120\,x^3+45\,x^2+10\,x+1}
       +\frac{5}{36}\frac{x(7)\sqrt{7}+2574x^6+4020x^3+3801x^4+2310x^3+891x^2+200x+20)y^4}{10x^9+6y^2+210x^6+252x^3+210x^4+120x^3+45x^2+10x+1}{1\frac{12}{12}\frac{(1320x^9+5280x^4+120x^2+252x^3+210x^4+120x^3+3535x^4+7410x^3+2721x^2+600x+60)y^3}{10x^9+45x^8+120x^2}
                       \frac{1}{6} \ \frac{x \left(660 \, x^7 + 1980 \, x^6 + 2948 \, x^2 + 2717 \, x + 1930 \, x +
                                                                                                                                                                                      10 x^9 + 45 x^8 + 120 x^7 + 210 x^6 + 252 x^5 + 210 x^4 + 120 x^3 + 45 x^2 + 10 x + 10 x^4 + 120 x^3 + 45 x^2 + 10 x + 10 x^4 +
                              5 x (924 x^7 + 2310 x^6 + 3168 x^5 + 2805 x^4 + 1650 x^3 + 627 x^2 + 140 x + 14) y^8
                     84 10 \times ^{9} + 45 \times ^{8} + 120 \times ^{7} + 210 \times ^{6} + 252 \times ^{5} + 210 \times ^{4} + 120 \times ^{3} + 45 \times ^{2} + 10 \times + 1
                              5 (660 \text{ x}^9 + 2640 \text{ x}^8 + 6732 \text{ x}^7 + 11550 \text{ x}^6 + 13728 \text{ x}^5 + 11385 \text{ x}^4 + 6490 \text{ x}^3 + 2431 \text{ x}^2 + 540 \text{ x} + 54) \text{ y}^9
                     1\ \left(495\,{x}^{9}+2145\,{x}^{8}\right.\\ +\left.5610\,{x}^{7}+9702\,{x}^{6}+11550\,{x}^{5}+9570\,{x}^{4}+5445\,{x}^{3}+2035\,{x}^{2}+451\,x+45\right)y^{10}\\ +\left.y^{11}\right)x^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{11}+y^{
       \cdot (10 x^9 + 45 x^8 + 120 x^7 + 210 x^6 + 252 x^5 + 210 x^4 + 120 x^3 + 45 x^2 + 10 x + 1) (x + y)^{-1}
```

Huang, CAS & JKU Reduction & Telescoping 9/39

- Differential case:
 - ▶ Bostan, Chen, Chyzak, Li (2010): bivariate rational functions
 - ▶ Chen, Kauers, Singer (2012): triple rational functions
 - ▶ Bostan, Lairez, Salvy (2013): multivariate rational function
 - ▶ Bostan, Chen, Chyzak, Li, Xin (2013): bivariate hyperexp. fun.
 - Chen, Kauers, Koutschan (2016): bivariate algebraic functions

- Differential case:
 - ▶ Bostan, Chen, Chyzak, Li (2010): bivariate rational functions
 - ▶ Chen, Kauers, Singer (2012): triple rational functions
 - ▶ Bostan, Lairez, Salvy (2013): multivariate rational function
 - ▶ Bostan, Chen, Chyzak, Li, Xin (2013): bivariate hyperexp. fun.
 - ▶ Chen, Kauers, Koutschan (2016): bivariate algebraic functions
- ▶ Shift case: ???

- Differential case:
 - Bostan, Chen, Chyzak, Li (2010): bivariate rational functions
 - Chen, Kauers, Singer (2012): triple rational functions
 - Bostan, Lairez, Salvy (2013): multivariate rational function
 - Bostan, Chen, Chyzak, Li, Xin (2013): bivariate hyperexp. fun.
 - Chen, Kauers, Koutschan (2016): bivariate algebraic functions
- Shift case:
 - Chen, Huang, Kauers, Li (2015): bivariate hypergeom. terms
 - Huang (2016): new bounds for hypergeom. creative telescoping

Content

1. Introduction

2. Preliminaries

- Sum decomposition for hypergeometric terms
- 4. Reduction-based creative telescoping
- Upper and lower bounds
- 6. Summary

Hypergeometric summability

 \mathbb{C} the field of complex numbers.

Definition. A nonzero term T(y) is hypergeometric over $\mathbb{C}(y)$ if $T(y+1)/T(y) \in \mathbb{C}(y)$.

Examples. $f(y) \in \mathbb{C}(y) \setminus \{0\}, c^y \text{ with } c \in \mathbb{C} \setminus \{0\}, y!, \text{ etc.}$

Hypergeometric summability

 \mathbb{C} the field of complex numbers.

Definition. A nonzero term T(y) is hypergeometric over $\mathbb{C}(y)$ if $T(y+1)/T(y) \in \mathbb{C}(y)$.

Examples. $f(y) \in \mathbb{C}(y) \setminus \{0\}$, c^y with $c \in \mathbb{C} \setminus \{0\}$, y!, etc.

Definition. A hypergeom. term T(y) is summable if

$$T(y) = G(y+1) - G(y)$$
 for some hypergeom. term $G(y)$.

Example. $y \cdot y! = (y + 1)! - y!$ is summable; but y! is not.

Multiplicative decomposition

Notation.

- f_d and f_n : the denominator and numerator of $f \in \mathbb{C}(y)$.

Multiplicative decomposition

Notation.

- $\qquad \qquad \quad \sigma_y(T(y)) = T(y+1), \ \Delta_y(T) = \sigma_y(T) T \ \text{for a term} \ T(y).$
- f_d and f_n : the denominator and numerator of $f \in \mathbb{C}(y)$.

For a hypergeom, term T(y), $\exists \ S \in \mathbb{C}(y)$ and H hypergeom, s.t.

- $T(y) = S(y) \cdot H(y)$
- $K := \sigma_u(H)/H$ is shift-reduced, i.e.

$$\gcd\left(K_d,\sigma_y^\ell(K_n)\right)=1\quad\text{for all }\ell\in\mathbb{Z}.$$

Call K a kernel of T, and S the corr. shell.

Multiplicative decomposition

Notation.

- $\qquad \qquad \quad \sigma_y(T(y)) = T(y+1), \ \Delta_y(T) = \sigma_y(T) T \ \text{for a term} \ T(y).$
- f_d and f_n : the denominator and numerator of $f \in \mathbb{C}(y)$.

For a hypergeom. term T(y), $\exists \ S \in \mathbb{C}(y)$ and H hypergeom. s.t.

- $T(y) = S(y) \cdot H(y)$ multi. decomposition
- $K := \sigma_u(H)/H$ is shift-reduced, i.e.

$$\gcd\left(K_d,\sigma_y^\ell(K_n)\right)=1\quad\text{for all }\ell\in\mathbb{Z}.$$

Call K a kernel of T, and S the corr. shell.

Content

- 1. Introduction
- 2. Preliminaries
- 3. Sum decomposition for hypergeometric terms
- 4. Reduction-based creative telescoping
- Upper and lower bounds
- 6. Summary

Abramov-Petkovšek reduction (2001)

Let T(y) be hypergeom. with a kernel K and shell S. Then

$$T = \underbrace{\Delta_y \left(\cdots \right)}_{\text{summable}} + \underbrace{\left(\frac{\alpha}{b} + \frac{p}{K_d} \right) H}_{\text{possibly summable}},$$

where H=T/S, and $\alpha,b,p\in\mathbb{C}[y]$ satisfy proper, shift-free, and strongly-prime conditions.

Abramov-Petkovšek reduction (2001)

Let T(y) be hypergeom. with a kernel K and shell S. Then

$$T = \underbrace{\Delta_y \Big(\cdots \Big)}_{\text{summable}} + \underbrace{\left(\frac{\alpha}{b} + \frac{p}{K_d} \right) H}_{\text{possibly summable}},$$

where H=T/S, and $\alpha,b,p\in\mathbb{C}[y]$ satisfy proper, shift-free, and strongly-prime conditions.

Proposition. T is summable iff

- \bullet a = 0,
- $K_n z(y+1) K_d z(y) = p$ has a solution in $\mathbb{C}[y]$.

Question

Can one determine hypergeometric summability directly without solving any equations?

Question

Can one determine hypergeometric summability directly without solving any equations?

Known results:

- ▶ Hyperexponentional Hermite reduction (Bostan et. al 2013)
- Rational Abramov reduction (1995)

Polynomial reduction

Let $K \in \mathbb{C}(y)$ be shift-reduced, define

polynomial reduction map (w.r.t. K):

$$\begin{array}{cccc} \varphi_K: & \mathbb{C}[y] & \longrightarrow & \mathbb{C}[y] \\ & p & \longmapsto & K_n\sigma_y(p) - K_dp. \end{array}$$

• standard complement of $\operatorname{im}(\varphi_K)$:

$$\mathbb{W}_K = \operatorname{span}_\mathbb{C} \left\{ y^i \, | \, i \neq \operatorname{deg}_y(p) \text{ for all } p \in \operatorname{im} \left(\varphi_K \right) \right\}.$$

Polynomial reduction

Let $K \in \mathbb{C}(y)$ be shift-reduced, define

polynomial reduction map (w.r.t. K):

$$\begin{array}{cccc} \varphi_K: & \mathbb{C}[y] & \longrightarrow & \mathbb{C}[y] \\ & p & \longmapsto & K_n\sigma_y(p) - K_dp. \end{array}$$

• standard complement of $im(\phi_K)$:

$$\mathbb{W}_K = \operatorname{span}_\mathbb{C} \left\{ y^i \, | \, i \neq \operatorname{deg}_y(p) \text{ for all } p \in \operatorname{im} \left(\varphi_K \right) \right\}.$$

Proposition. $\mathbb{C}[y] = \operatorname{im}(\varphi_K) \oplus \mathbb{W}_K$.

Modified Abramov-Petkovšek reduction (2015)

Abramov-Petkovšek reduction:

$$T = \Delta_y \left(\cdots \right) + \left(\frac{a}{b} + \frac{p}{K_d} \right) H$$

Abramov-Petkovšek reduction:

$$T = \Delta_y \left(\cdots \right) + \left(\frac{a}{b} + \frac{p}{K_d} \right) H$$

▶ Polynomial reduction:

Abramov-Petkovšek reduction:

$$T = \Delta_y \left(\cdots \right) + \left(\frac{a}{b} + \frac{p}{K_d} \right) H$$

▶ Polynomial reduction:

Abramov-Petkovšek reduction:

$$T = \Delta_y \left(\cdots \right) + \left(\frac{a}{b} + \frac{p}{K_d} \right) H$$

Polynomial reduction:

Proposition.

T is summable iff $a = p_2 = 0$.

Iverson bracket

nonzero terms of $p_2 \le \max \left(\deg_{\mathfrak{q}}\left(\mathsf{K}_{\mathfrak{n}}\right), \deg_{\mathfrak{q}}\left(\mathsf{K}_{\mathsf{d}}\right)\right)$

Huang, CAS & JKU Reduction & Telescoping 18/39

Abramov-Petkovšek reduction:

$$T = \Delta_y \left(\cdots \right) + \left(\frac{a}{b} + \frac{p}{K_d} \right) H$$

Polynomial reduction:

$$\begin{array}{c} p_1 \in \operatorname{im}(\varphi_K) \\ + \\ p_2 \in \mathbb{W}_K \end{array}$$

$$\downarrow \downarrow$$

$$T = \Delta_y \left(\cdots \right) + \underbrace{ \left(\frac{\alpha}{b} + \frac{p_2}{K_d} \right) }_{\text{a residual form (w.r.t. K)}} +$$

Proposition.

- T is summable iff $a = p_2 = 0$.
- \blacktriangleright # nonzero terms of $p_2 \le \max (\deg_u(K_n), \deg_u(K_d)) \llbracket \cdots \rrbracket$.

Huang, CAS & JKU Reduction & Telescoping 18/39

Consider
$$T = (y^3 + 1) \cdot y!$$
, $K = y + 2$ and $H = (y + 1)y!$.

Consider
$$T = (y^3 + 1) \cdot y!$$
, $K = y + 2$ and $H = (y + 1)y!$.

Consider
$$T = (y^3 + 1) \cdot y!$$
, $K = y + 2$ and $H = (y + 1)y!$.

A.-P.
$$T = \Delta_y(\cdots) + \underbrace{(y^2 - y + 1)}_{p} \cdot H$$

$$K_n z(y+1) - K_d z(y) = p$$

$$\downarrow \downarrow$$

$$z(y) \notin \mathbb{C}[y]$$

Consider
$$T = (y^3 + 1) \cdot y!$$
, $K = y + 2$ and $H = (y + 1)y!$.

Huang, CAS & JKU

Consider
$$T = (y^3 + 1) \cdot y!$$
, $K = y + 2$ and $H = (y + 1)y!$.

Consider
$$T = (y^3 + 1) \cdot y!$$
, $K = y + 2$ and $H = (y + 1)y!$.

Consider
$$T = (y^3 + 1) \cdot y!$$
, $K = y + 2$ and $H = (y + 1)y!$.

$$\sum_{y=0}^{\infty} {x \choose y} = 2^{x}.$$

Example. Prove

$$\sum_{y=0}^{\infty} {x \choose y} = 2^{x}.$$

• A.-P. reduction: $\begin{pmatrix} x \\ y \end{pmatrix} = \Delta_y \begin{pmatrix} 0 \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix}$.

$$\sum_{y=0}^{\infty} {x \choose y} = 2^x.$$

- A.-P. reduction: $\begin{pmatrix} x \\ y \end{pmatrix} = \Delta_y \begin{pmatrix} 0 \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix}$.
- $\text{Modified reduction: } \binom{x}{y} = \Delta_y \left(-\frac{1}{2} \binom{x}{y} \right) + \frac{x+1}{2(y+1)} \binom{x}{y}.$

$$\sum_{y=0}^{\infty} {x \choose y} = 2^x.$$

- A.-P. reduction: $\begin{pmatrix} x \\ y \end{pmatrix} = \Delta_y \begin{pmatrix} 0 \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix}$.
- $\text{Modified reduction: } \binom{x}{y} = \Delta_y \left(-\frac{1}{2} \binom{x}{y} \right) + \frac{x+1}{2(y+1)} \binom{x}{y}.$

$$\sum_{y=0}^{\infty} {x \choose y} = \frac{1}{2} + \sum_{y=0}^{\infty} \frac{x+1}{2(y+1)} {x \choose y} = \frac{1}{2} \sum_{y=0}^{\infty} {x+1 \choose y}.$$

$$\sum_{y=0}^{\infty} {x \choose y} = 2^x.$$

- A.-P. reduction: $\begin{pmatrix} x \\ y \end{pmatrix} = \Delta_y \begin{pmatrix} 0 \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix}$.
- $\text{Modified reduction: } \binom{x}{y} = \Delta_y \left(-\frac{1}{2} \binom{x}{y} \right) + \frac{x+1}{2(y+1)} \binom{x}{y}.$

$$\sum_{y=0}^{\infty} {x \choose y} = \frac{1}{2} + \sum_{y=0}^{\infty} \frac{x+1}{2(y+1)} {x \choose y} = \frac{1}{2} \sum_{y=0}^{\infty} {x+1 \choose y}.$$

$$\sum_{y=0}^{\infty} {x \choose y} = 2^x.$$

- A.-P. reduction: $\begin{pmatrix} x \\ y \end{pmatrix} = \Delta_y \begin{pmatrix} 0 \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix}$.
- $\text{Modified reduction: } \binom{x}{y} = \Delta_y \left(-\frac{1}{2} \binom{x}{y} \right) + \frac{x+1}{2(y+1)} \binom{x}{y}.$
 - ► F(x+1) 2F(x) = 0.

$$\sum_{y=0}^{\infty} {x \choose y} = 2^{x}.$$

- A.-P. reduction: $\begin{pmatrix} x \\ y \end{pmatrix} = \Delta_y \begin{pmatrix} 0 \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix}$.
- $\text{Modified reduction: } \binom{x}{y} = \Delta_y \left(-\frac{1}{2} \binom{x}{y} \right) + \frac{x+1}{2(y+1)} \binom{x}{y}.$
 - F(x+1) 2F(x) = 0.
 - 2^x is a solution, and $2^0 = 1 = F(0)$.

$$\sum_{y=0}^{\infty} {x \choose y} = 2^{x}.$$

- A.-P. reduction: $\begin{pmatrix} x \\ y \end{pmatrix} = \Delta_y \begin{pmatrix} 0 \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix}$.
- $\text{Modified reduction: } \binom{x}{y} = \Delta_y \left(-\frac{1}{2} \binom{x}{y} \right) + \frac{x+1}{2(y+1)} \binom{x}{y}.$
 - F(x+1) 2F(x) = 0.
 - 2^x is a solution, and $2^0 = 1 = F(0)$.
 - $F(x) = 2^x$.

Timings (in seconds)

Consider

$$T = \frac{f(y)}{g_1(y)g_2(y)} \prod_{k=n_0}^{y} \frac{u(k)}{v(k)},$$

where

- $f, p_i \in \mathbb{Z}[y], \deg(p_1) = \deg(p_2) = 10 \text{ and } \deg(f) = 20.$

Content

- 1. Introduction
- 2. Preliminaries
- 3. Sum decomposition for hypergeometric terms
- 4. Reduction-based creative telescoping
- Upper and lower bounds
- 6. Summary

Bivariate hypergeometric terms

Definition. A nonzero term T(x,y) is hypergeometric over $\mathbb{C}(x,y)$ if $\sigma_x(T)/T$, $\sigma_y(T)/T \in \mathbb{C}(x,y)$.

Telescoping problem. Given T(x,y) hypergeom. , find a nonzero operator $L \in \mathbb{C}(x)\langle \sigma_x \rangle$ s.t.

 $L\cdot T=\Delta_{y}(G)\quad \text{for some hypergeom. term}\quad G(x,y).$

Bivariate hypergeometric terms

Definition. A nonzero term T(x,y) is hypergeometric over $\mathbb{C}(x,y)$ if $\sigma_x(T)/T$, $\sigma_y(T)/T \in \mathbb{C}(x,y)$.

Telescoping problem. Given T(x,y) hypergeom. , find a nonzero operator $L \in \mathbb{C}(x)\langle \sigma_x \rangle$ s.t.

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T(x,y) of order ρ w.r.t. y.

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T(x,y) of order ρ w.r.t. y.

$$T = \Delta_y \Big(\cdots \Big) + r_0 H$$

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T(x,y) of order ρ w.r.t. y.

$$T = \Delta_y \Big(\cdots \Big) + r_0 H$$

$$\sigma_x(T) = \Delta_y \Big(\cdots \Big) + r_1 H$$

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T(x,y) of order ρ w.r.t. y.

$$\begin{split} T &= \Delta_y \Big(\cdots \Big) + r_0 H \\ \sigma_x(T) &= \Delta_y \Big(\cdots \Big) + r_1 H \\ \sigma_x^2(T) &= \Delta_y \Big(\cdots \Big) + r_2 H \\ &\vdots \\ \sigma_x^\rho(T) &= \Delta_y \Big(\cdots \Big) + r_\rho H \end{split}$$

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T(x,y) of order ρ w.r.t. y.

$$\begin{split} c_0(x)\,\mathsf{T} &= \Delta_y \Big(\cdots\Big) + c_0(x)\,r_0 \mathsf{H} \\ c_1(x)\,\sigma_x(\mathsf{T}) &= \Delta_y \Big(\cdots\Big) + c_1(x)\,r_1 \mathsf{H} \\ c_2(x)\,\sigma_x^2(\mathsf{T}) &= \Delta_y \Big(\cdots\Big) + c_2(x)\,r_2 \mathsf{H} \\ &\vdots \\ c_\rho(x)\,\sigma_x^\rho(\mathsf{T}) &= \Delta_y \Big(\cdots\Big) + c_\rho(x)\,r_\rho \mathsf{H} \end{split}$$

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T(x,y) of order ρ w.r.t. y.

Idea. Let K and S be a kernel and shell of T, and H = T/S.

$$\begin{cases} c_0(x) T = \Delta_y \left(\cdots \right) + c_0(x) r_0 H \\ c_1(x) \sigma_x(T) = \Delta_y \left(\cdots \right) + c_1(x) r_1 H \\ c_2(x) \sigma_x^2(T) = \Delta_y \left(\cdots \right) + c_2(x) r_2 H \\ \vdots \\ c_\rho(x) \sigma_x^\rho(T) = \Delta_y \left(\cdots \right) + c_\rho(x) r_\rho H \end{cases}$$

$$\left(\mathbf{c}_{0}(\mathbf{x})+\cdots+\mathbf{c}_{\rho}(\mathbf{x})\sigma_{\mathbf{x}}^{\rho}\right)(\mathsf{T})=\Delta_{\mathbf{y}}\left(\cdots\right)+\left(\sum_{j=0}^{\rho}\mathbf{c}_{j}(\mathbf{x})\mathbf{r}_{j}\right)\mathsf{H}$$

Huang, CAS & JKU Reduction & Telescoping 24/39

$$\left(\mathbf{c_0}(\mathbf{x}) + \dots + \mathbf{c_\rho}(\mathbf{x})\sigma_{\mathbf{x}}^{\rho}\right)(\mathsf{T}) = \Delta_{\mathbf{y}}\left(\dots\right) + \left(\sum_{j=0}^{\rho} \mathbf{c_j}(\mathbf{x})\mathbf{r_j}\right) \; \mathsf{H}$$

$$\underbrace{(c_0(x)+\cdots+c_\rho(x)\sigma_x^\rho)}_{\text{a telescoper for T}}(T)=\Delta_y\bigg(\cdots\bigg)+\underbrace{\left(\sum_{j=0}^\rho c_j(x)r_j\right)}_{=0}H$$

$$\underbrace{ \begin{pmatrix} c_0(x) + \dots + c_\rho(x) \sigma_x^\rho \end{pmatrix}}_{\text{a telescoper for } T} (T) = \Delta_y \Big(\dots \Big) + \underbrace{\left(\sum_{j=0}^\rho c_j(x) r_j \right)}_{= 0} H$$

$$\underbrace{ (c_0(x) + \dots + c_\rho(x) \sigma_x^\rho)}_{\text{a telescoper for T}} (T) = \Delta_y \Big(\dots \Big) + \underbrace{\left(\sum_{j=0}^\rho c_j(x) r_j \right)}_{=0} H$$

$$\underbrace{(c_0(x)+\cdots+c_\rho(x)\sigma_x^\rho)}_{\text{a telescoper for }T}(T)=\Delta_y\left(\cdots\right)+\underbrace{\left(\sum_{j=0}^\rho c_j(x)r_j\right)}_{=0}H$$

Sum of residual forms

Example. Let H be hypergeom. with $K = \sigma_y(H)/H = 1/y$.

$$\frac{1}{2y+1} + \frac{1}{2y+3} = \frac{4(1+y)}{(2y+1)(2y+3)}$$
 is not a residual form.

Sum of residual forms

Example. Let H be hypergeom. with $K = \sigma_y(H)/H = 1/y$.

$$\begin{split} \frac{1}{2y+1} + \frac{1}{2y+3} &= \frac{4(1+y)}{(2y+1)(2y+3)} \text{ is not a residual form.} \\ \frac{1}{2y+1} H + \frac{1}{2y+3} H \\ &= \frac{1}{2y+1} H + \left(\Delta_y \left(\cdots \right) + \left(-\frac{3}{2(2y+1)} + \frac{1}{2y} \right) H \right) \\ &= \Delta_y \left(\cdots \right) + \underbrace{\left(-\frac{1}{2(2y+1)} + \frac{1}{2y} \right)}_{\text{a residual form w.r.t. K}} \end{split}$$

Sum of residual forms

Example. Let H be hypergeom. with $K = \sigma_y(H)/H = 1/y$.

$$\frac{1}{2y+1} + \frac{1}{2y+3} = \frac{4(1+y)}{(2y+1)(2y+3)} \text{ is not a residual form.}$$

$$\frac{1}{2y+1}H + \frac{1}{2y+3}H$$

$$= \frac{1}{2y+1}H + \left(\Delta_y(\cdots) + \left(-\frac{3}{2(2y+1)} + \frac{1}{2y}\right)H\right)$$

$$= \Delta_y(\cdots) + \underbrace{\left(-\frac{1}{2(2y+1)} + \frac{1}{2y}\right)H}_{\text{a residual form w.r.t. K}}$$

Theorem. r, s residual forms w.r.t. K, \exists a residual form t s.t.

$$sH=\Delta_y\Big(\dots\Big)+tH\quad\text{and}\quad \textcolor{red}{r+t}\quad\text{is a residual form}.$$

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T(x,y) of order ρ w.r.t. y.

Idea. Let K and S be a kernel and shell of T, and H = T/S.

$$\begin{split} c_0(x)\,\mathsf{T} &= \Delta_y \Big(\cdots\Big) + c_0(x)\,r_0 \mathsf{H} \\ c_1(x)\,\sigma_x(\mathsf{T}) &= \Delta_y \Big(\cdots\Big) + c_1(x)\,r_1 \mathsf{H} \\ c_2(x)\,\sigma_x^2(\mathsf{T}) &= \Delta_y \Big(\cdots\Big) + c_2(x)\,r_2 \mathsf{H} \\ &\vdots \\ c_\rho(x)\,\sigma_x^\rho(\mathsf{T}) &= \Delta_y \Big(\cdots\Big) + c_\rho(x)\,r_\rho \mathsf{H} \end{split}$$

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T(x,y) of order ρ w.r.t. y.

Idea. Let K and S be a kernel and shell of T, and H = T/S.

$$\begin{split} c_0(x)\,\mathsf{T} &= \Delta_y \Big(\cdots\Big) + c_0(x)\,r_0'\mathsf{H} \\ c_1(x)\,\sigma_x(\mathsf{T}) &= \Delta_y \Big(\cdots\Big) + c_1(x)\,r_1'\mathsf{H} \\ c_2(x)\,\sigma_x^2(\mathsf{T}) &= \Delta_y \Big(\cdots\Big) + c_2(x)\,r_2'\mathsf{H} \\ &\vdots \\ c_\rho(x)\,\sigma_x^\rho(\mathsf{T}) &= \Delta_y \Big(\cdots\Big) + c_\rho(x)\,r_\rho'\mathsf{H} \end{split}$$

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T(x,y) of order ρ w.r.t. y.

Idea. Let K and S be a kernel and shell of T, and H = T/S.

$$\begin{aligned} c_0(x)\,\mathsf{T} &= \Delta_y \left(\cdots\right) + c_0(x)\,r_0'\mathsf{H} \\ c_1(x)\,\sigma_x(\mathsf{T}) &= \Delta_y \left(\cdots\right) + c_1(x)\,r_1'\mathsf{H} \\ c_2(x)\,\sigma_x^2(\mathsf{T}) &= \Delta_y \left(\cdots\right) + c_2(x)\,r_2'\mathsf{H} \\ &\vdots \\ c_\rho(x)\,\sigma_x^\rho(\mathsf{T}) &= \Delta_y \left(\cdots\right) + c_\rho(x)\,r_\rho'\mathsf{H} \end{aligned}$$

$$(\mathbf{c_0}(\mathbf{x}) + \dots + \mathbf{c_\rho}(\mathbf{x})\sigma_{\mathbf{x}}^{\rho})(\mathsf{T}) = \Delta_{\mathbf{y}}\left(\dots\right) + \left(\sum_{j=0}^{\rho} \mathbf{c_j}(\mathbf{x})\mathbf{r_j'}\right)\mathsf{H}$$

Huang, CAS & JKU Reduction & Telescoping 27/39

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T(x,y) of order ρ w.r.t. y.

Idea. Let K and S be a kernel and shell of T, and H = T/S.

Huang, CAS & JKU Reduction & Telescoping 27/39

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T(x,y) of order ρ w.r.t. y.

Idea. Let K and S be a kernel and shell of T, and H = T/S.

$$c_0(x)r_0' + c_1(x)r_1' + \dots + c_\rho(x)r_\rho' \stackrel{?}{=} 0$$

$$\downarrow \downarrow$$

a linear system with unknowns $c_i(x)$

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T(x,y) of order ρ w.r.t. y.

Idea. Let K and S be a kernel and shell of T, and H = T/S.

$$\begin{aligned} c_0(x)r_0' + c_1(x)r_1' + \dots + c_\rho(x)r_\rho' &\stackrel{?}{=} 0 \\ & & & & & & & & & & & \end{aligned}$$

a linear system with unknowns $c_i(x)$

a telescoper
$$c_0(x) + c_1(x)\sigma_x + \cdots + c_{\rho}(x)\sigma_x^{\rho}$$

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T(x,y) of order ρ w.r.t. y.

Idea. Let K and S be a kernel and shell of T, and H = T/S.

$$\begin{aligned} c_0(x)r_0' + c_1(x)r_1' + \dots + c_\rho(x)r_\rho' &\stackrel{?}{=} 0 \\ & & & & & & & & & & & \end{aligned}$$

a linear system with unknowns $c_i(x)$

a telescoper
$$c_0(x) + c_1(x)\sigma_x + \dots + c_\rho(x)\sigma_x^\rho$$

Remarks.

- ▶ The first linear depend. leads to a minimal telescoper.
- One can leave the certificate as an un-normalized sum.

Huang, CAS & JKU Reduction & Telescoping 27/39

Algorithm. Given a hypergeom. term T(x,y), compute a minimal telescoper L for T w.r.t. y.

1 Compute a kernel K and shell S. Set H = T/S.

- 1 Compute a kernel K and shell S. Set H = T/S.
- **2** Apply modified A.-P. reduction w.r.t. y: $T = \Delta_y(\cdots) + rH$.

- 1 Compute a kernel K and shell S. Set H = T/S.
- **2** Apply modified A.-P. reduction w.r.t. y: $T = \Delta_y(\cdots) + rH$.
- 3 If r = 0, return L = 1.

- 1 Compute a kernel K and shell S. Set H = T/S.
- **2** Apply modified A.-P. reduction w.r.t. y: $T = \Delta_y(\cdots) + rH$.
- 3 If r = 0, return L = 1.
- 4 If r_d is not integer-linear, return "No telescoper exists!".

- 1 Compute a kernel K and shell S. Set H = T/S.
- **2** Apply modified A.-P. reduction w.r.t. y: $T = \Delta_y(\cdots) + rH$.
- **3** If r = 0, return L = 1. Existence criterion
- 4 If r_d is not integer-linear, return "No telescoper exists!".

Algorithm. Given a hypergeom. term T(x,y), compute a minimal telescoper L for T w.r.t. y.

- 1 Compute a kernel K and shell S. Set H = T/S.
- **2** Apply modified A.-P. reduction w.r.t. y: $T = \Delta_y(\cdots) + rH$.
- 3 If r = 0, return L = 1.
- 4 If r_d is not integer-linear, return " No telescoper exists!" .
- **5** For $\rho = 1, 2, ...$ do

find a telescoper L for T of order ρ and return L.

$$T = \frac{1}{x + 2y} \cdot y!$$

Consider

$$T = \frac{1}{x + 2y} \cdot y!$$

A kernel K = y + 1 and shell S = 1/(x + 2y);

• H = T/S = y!.

$$T = \frac{1}{x + 2y} \cdot y!$$

$$T = \Delta_{y}(g_{0}) + \left(\frac{2}{x + 2y} + \frac{0}{K_{d}}\right)H$$

$$T = \frac{1}{x + 2y} \cdot y!$$

$$T = \Delta_y(g_0) + \left(\frac{2}{x + 2y} + \frac{0}{K_d}\right) H$$

$$\sigma_x(T) = \Delta_y(g_1) + \left(\frac{2}{x + 2y + 1} + \frac{0}{K_d}\right) H$$

$$T = \frac{1}{x + 2y} \cdot y!$$

$$T = \Delta_y(g_0) + \left(\frac{2}{x + 2y} + \frac{0}{K_d}\right) H$$

$$\sigma_x(T) = \Delta_y(g_1) + \left(\frac{2}{x + 2y + 1} + \frac{0}{K_d}\right) H$$

$$T = \frac{1}{x + 2y} \cdot y!$$

$$\left(\frac{2}{x + 2y} + \frac{0}{K_d}\right)$$

$$\left(\frac{2}{x + 2y + 1} + \frac{0}{K_d}\right)$$

$$T = \frac{1}{x + 2y} \cdot y!$$

$$c_0(x) \cdot \left(\frac{2}{x + 2y} + \frac{0}{K_d}\right)$$

$$+ c_1(x) \cdot \left(\frac{2}{x + 2y + 1} + \frac{0}{K_d}\right)$$

$$= 0$$

Consider

$$T = \frac{1}{x + 2y} \cdot y!$$

$$c_0(x) \cdot \left(\frac{2}{x+2y} + \frac{0}{K_d}\right)$$
$$+ c_1(x) \cdot \left(\frac{2}{x+2y+1} + \frac{0}{K_d}\right)$$

No solution in $\mathbb{C}(x)!$

$$= 0$$

$$T = \frac{1}{x + 2y} \cdot y!$$

$$T = \Delta_y(g_0) + \left(\frac{2}{x + 2y} + \frac{0}{K_d}\right) H$$

$$\sigma_x(T) = \Delta_y(g_1) + \left(\frac{2}{x + 2y + 1} + \frac{0}{K_d}\right) H$$

$$\begin{split} T &= \frac{1}{x+2y} \cdot y! \\ T &= \Delta_y(g_0) + \left(\frac{2}{x+2y} + \frac{0}{K_d}\right) H \\ \sigma_x(T) &= \Delta_y\left(g_1\right) + \left(\frac{2}{x+2y+1} + \frac{0}{K_d}\right) H \\ \sigma_x^2(T) &= \Delta_y\left(g_2\right) + \left(-\frac{-4/x}{x+2y} + \frac{2/x}{K_d}\right) H \end{split}$$

$$\begin{split} T &= \frac{1}{x+2y} \cdot y! \\ T &= \Delta_y(g_0) + \left(\frac{2}{x+2y} + \frac{0}{K_d}\right) H \\ \sigma_x(T) &= \Delta_y\left(g_1\right) + \left(\frac{2}{x+2y+1} + \frac{0}{K_d}\right) H \\ \sigma_x^2(T) &= \Delta_y\left(g_2\right) + \left(-\frac{-4/x}{x+2y} + \frac{2/x}{K_d}\right) H \\ \sigma_x^3(T) &= \Delta_y\left(g_3\right) + \left(-\frac{-4/(x+1)}{x+2y+1} + \frac{2/(x+1)}{K_d}\right) H \end{split}$$

$$\begin{split} T &= \frac{1}{x + 2y} \cdot y! \\ T &= \Delta_y(g_0) + \left(\frac{2}{x + 2y} + \frac{0}{K_d}\right) H \\ \sigma_x(T) &= \Delta_y(g_1) + \left(\frac{2}{x + 2y + 1} + \frac{0}{K_d}\right) H \\ \sigma_x^2(T) &= \Delta_y(g_2) + \left(-\frac{-4/x}{x + 2y} + \frac{2/x}{K_d}\right) H \\ \sigma_x^3(T) &= \Delta_y(g_3) + \left(-\frac{-4/(x + 1)}{x + 2y + 1} + \frac{2/(x + 1)}{K_d}\right) H \end{split}$$

$$T = \frac{1}{x + 2y} \cdot y!$$

$$\left(\frac{2}{x + 2y} + \frac{0}{K_d}\right)$$

$$\left(\frac{2}{x + 2y + 1} + \frac{0}{K_d}\right)$$

$$\left(-\frac{-4/x}{x + 2y} + \frac{2/x}{K_d}\right)$$

$$\left(-\frac{-4/(x + 1)}{x + 2y + 1} + \frac{2/(x + 1)}{K_d}\right)$$

$$T = \frac{1}{x + 2y} \cdot y!$$

$$c_0(x) \cdot \left(\frac{2}{x + 2y} + \frac{0}{K_d}\right)$$

$$+ c_1(x) \cdot \left(\frac{2}{x + 2y + 1} + \frac{0}{K_d}\right)$$

$$+ c_2(x) \cdot \left(-\frac{-4/x}{x + 2y} + \frac{2/x}{K_d}\right)$$

$$+ c_3(x) \cdot \left(-\frac{-4/(x + 1)}{x + 2y + 1} + \frac{2/(x + 1)}{K_d}\right)$$

$$= 0$$

$$T = \frac{1}{x + 2y} \cdot y!$$

$$-2 \cdot \left(\frac{2}{x + 2y} + \frac{0}{K_d}\right)$$

$$+2 \cdot \left(\frac{2}{x + 2y + 1} + \frac{0}{K_d}\right)$$

$$-x \cdot \left(-\frac{-4/x}{x + 2y} + \frac{2/x}{K_d}\right)$$

$$+ (x + 1) \cdot \left(-\frac{-4/(x + 1)}{x + 2y + 1} + \frac{2/(x + 1)}{K_d}\right)$$

$$= 0$$

Consider

$$T = \frac{1}{x + 2y} \cdot y!$$

Therefore,

• the minimal telescoper for T w.r.t. y is

$$L = (x+1) \cdot \sigma_x^3 - x \cdot \sigma_x^2 + 2 \cdot \sigma_x - 2$$

Consider

$$T = \frac{1}{x + 2y} \cdot y!$$

Therefore,

the minimal telescoper for T w.r.t. y is

$$L = (x+1) \cdot \sigma_x^3 - x \cdot \sigma_x^2 + 2 \cdot \sigma_x - 2$$

the corresponding certificate is

$$G = (x+1) \cdot g_3 - x \cdot g_2 + 2 \cdot g_1 - 2 \cdot g_0$$
$$= \frac{2y!}{(x+2y)(x+2y+1)}$$

Timing (in seconds)

Consider

$$T = \frac{f(x,y)}{g_1(x+y)g_2(2x+y)} \frac{\Gamma(2\alpha x + y)}{\Gamma(x+\alpha y)}$$

where

- $g_i(z) = p_i(z)p_i(z+\lambda)p_i(z+\mu), \ \alpha, \lambda, \mu \in \mathbb{N},$
- $\ \, \deg(p_1)=\deg(p_2)=m \ \text{and} \ \deg(f)=n.$

$(m, n, \alpha, \lambda, \mu)$	Zeilberger	RCT+cert	RCT	order
(2,0,1,5,10)	354.46	58.01	4.93	4
(2,0,2,5,10)	576.31	363.25	53.15	6
(2,0,3,5,10)	2989.18	1076.50	197.75	7
(2,3,3,5,10)	3074.08	1119.26	223.41	7
(3,0,1,5,10)	18946.80	407.06	43.01	6
(3,0,2,5,10)	46681.30	2040.21	465.88	8
(3,0,3,5,10)	172939.00	5970.10	1949.71	9

Timing (in seconds)

Consider

$$T = \frac{f(x,y)}{g_1(x+y)g_2(2x+y)} \frac{\Gamma(2\alpha x + y)}{\Gamma(x+\alpha y)}$$

where

- $\ \, \deg(p_1)=\deg(p_2)=m \ \text{and} \ \deg(f)=n.$

$(m, n, \alpha, \lambda, \mu)$	Zeilberger	RCT+cert	RCT	order
(2,0,1,5,10)	354.46	58.01	4.93	4
(2,0,2,5,10)	576.31	363.25	53.15	6
(2,0,3,5,10)	2989.18	1076.50	197.75	7
(2,3,3,5,10)	3074.08	1119.26	223.41	7
(3,0,1,5,10)	18946.80	407.06	43.01	6
(3,0,2,5,10)	46681.30	2040.21	465.88	8
(3,0,3,5,10)	172939.00	5970.10	1949.71	9

Timing (in seconds)

Consider

$$T = \frac{f(x,y)}{g_1(x+y)g_2(2x+y)} \frac{\Gamma(2\alpha x + y)}{\Gamma(x+\alpha y)}$$

where

- $\ \, \deg(p_1)=\deg(p_2)=m \ \text{and} \ \deg(f)=n.$

$(m, n, \alpha, \lambda, \mu)$	Zeilberger	RCT+cert	RCT	order
(2,0,1,5,10)	354.46	58.01	4.93	4
(2,0,2,5,10)	576.31	363.25	53.15	6
(2,0,3,5,10)	2989.18	1076.50	197.75	7
(2,3,3,5,10)	3074.08	1119.26	223.41	7
(3,0,1,5,10)	18946.80	407.06	43.01	6
(3,0,2,5,10)	46681.30	2040.21	465.88	8
(3,0,3,5,10)	172939.00	5970.10	1949.71	9

Content

- 1. Introduction
- 2. Preliminaries
- 3. Sum decomposition for hypergeometric terms
- 4. Reduction-based creative telescoping
- 5. Upper and lower bounds
- 6. Summary

New upper bound

Theorem. Assume T has initial reduction

$$T = \Delta_y \left(\cdots \right) + \left(\frac{\alpha_0}{b_0} + \frac{q_0}{K_d} \right) H$$

with $b_0=c\prod_{i=1}^m\prod_{k=0}^{d_i}(\alpha_ix+\beta_iy+\gamma_i+k)^{c_{ik}}$, and for each $i\neq j$, either

$$\alpha_i \neq \alpha_j \quad \text{or} \quad \beta_i \neq \beta_j \quad \text{or} \quad \gamma_i - \gamma_j \notin \mathbb{Z}.$$

Then the order of a minimal telescoper for T w.r.t. y is no more than

$$\begin{split} B_{New} := & \max\{\deg_y(K_n), \deg_y(K_d)\} \\ & - \left[\!\!\left[\deg_y(K_n - K_d) \le \deg_y(K_n) - 1\right]\!\!\right] \\ & + \sum_{i=1}^m \beta_i \cdot \max_{0 \le k \le d_i} \{c_{ik}\}. \end{split}$$

Apagodu-Zeilberger upper bound (2005)

Definition. A hypergeom. term T is said to be proper if

$$T = p(x,y) \prod_{i=1}^m \frac{(\alpha_i x + \alpha_i' y + \alpha_i'')! (\beta_i x - \beta_i' y + \beta_i'')!}{(\mu_i x + \mu_i' y + \mu_i'')! (\nu_i x - \nu_i' y + \nu_i'')!} z^y.$$

Theorem. Assume T is generic proper hypergeom. Then the order of a minimal telescoper for T w.r.t. y is no more than

$$B_{\text{AZ}} = \max \left\{ \sum_{i=1}^m (\alpha_i' + \nu_i'), \sum_{i=1}^m (\beta_i' + \mu_i') \right\}.$$

Apagodu-Zeilberger upper bound (2005)

Definition. A hypergeom. term T is said to be proper if

$$T = p(x,y) \prod_{i=1}^m \frac{(\alpha_i x + \alpha_i' y + \alpha_i'')! (\beta_i x - \beta_i' y + \beta_i'')!}{(\mu_i x + \mu_i' y + \mu_i'')! (\nu_i x - \nu_i' y + \nu_i'')!} z^y.$$

$$\begin{cases} \exists 1 \leq i,j \leq m \text{ s.t.} \\ \{\alpha_i = \mu_j & \& & \alpha_i' = \mu_j' & \& & \alpha_i'' - \mu_j'' \in \mathbb{N} \} \\ \{\beta_i = \nu_j & \& & \beta_i' = \nu_j'' & \& & \beta_i'' - \nu_j'' \in \mathbb{N} \}. \end{cases}$$

Theorem. Assume T is generic proper hypergeom. Then the order of a minimal telescoper for T w.r.t. y is no more than

$$B_{\text{AZ}} = \max \left\{ \sum_{i=1}^m (\alpha_i' + \nu_i'), \sum_{i=1}^m (\beta_i' + \mu_i') \right\}.$$

	New	ΑZ	Order
proper	B _{New}	B_{AZ}	$\leq B_{New}$
non-proper			
example			

	New	AZ	Order
proper	$\begin{split} B_{New} \\ & \parallel \\ B_{AZ} - \llbracket \deg_y(K_n - K_d) \leq \deg_y(K_n) - 1 \rrbracket \end{split}$	B _{AZ}	$\leq B_{New}$
non-proper			
example			

	New	ΑZ	Order
proper	$\begin{split} B_{New} \\ & \parallel \\ B_{AZ} - \llbracket \deg_y(K_n - K_d) \leq \deg_y(K_n) - 1 \rrbracket \end{split}$	B_{AZ}	$\leq B_{New}$
non-proper	B _{New}		
example			

	New	ΑZ	Order
proper	$\begin{split} B_{New} \\ & \parallel \\ B_{AZ} - \llbracket \deg_y(K_n - K_d) \leq \deg_y(K_n) - 1 \rrbracket \end{split}$	B_{AZ}	$\leq B_{New}$
non-proper	B_{New}	?	
example			

	New	AZ	Order
proper	$\begin{aligned} B_{New} \\ & & \ \\ & B_{AZ} - [\![\deg_y(K_n - K_d) \leq \deg_y(K_n) - 1]\!] \end{aligned}$	B _{AZ}	$\leq B_{New}$
non-proper	B_{New}	?	≤ B _{New}
T ₁	9	10	9

$$T_1 = \frac{(x+3y)!(x-3y)!}{(5x+3y)(3x-y)(4x-3y)!(5x+3y)!}.$$

	New	AZ	Order
proper	B _{New}	B _{AZ}	$\leq B_{New}$
	$B_{AZ} - \llbracket \deg_y(K_n - K_d) \le \deg_y(K_n) - 1 \rrbracket$		
non-proper	B_{New}	?	$\leq B_{New}$
T ₂	β	$\alpha+\beta$	β

$$T_2 = \frac{\alpha^2 y^2 + \alpha^2 y - \alpha \beta y + 2 \alpha x y + x^2}{(x + \alpha y + \alpha)(x + \alpha y)(x + \beta y)}, \quad \alpha \neq \beta \text{ in } \mathbb{N} \setminus \{0\}.$$

	New	AZ	Order
proper	$\begin{aligned} B_{New} \\ & & \ \\ B_{AZ} - [\![\deg_y(K_n - K_d) \leq \deg_y(K_n) - 1]\!] \end{aligned}$	B _{AZ}	$\leq B_{New}$
non-proper	B _{New}	?	$\leq B_{New}$
	3	?	3

$$T_3 = \frac{x^4 + x^3y + 2x^2y^2 + 2x^2y + xy^2 + 2y^3 + x^2 + y^2 - x - y}{(x^2 + y + 1)(x^2 + y)(x + 2y)}y!$$

New lower bound

Theorem. Assume T has initial reduction

$$T = \Delta_y \Big(\cdots \Big) + \left(\frac{\alpha_0}{b_0} + \frac{q_0}{K_d} \right) H,$$

with b_0 integer-linear. Then the order of a telescoper for T w.r.t. y is at least

$$\max_{ \substack{p \mid b_0 \text{ irred.} \\ \deg_u(p) \, \geq \, 1}} \ \min_{h \in \mathbb{Z}} \left\{ \rho \in \mathbb{N} \setminus \{0\} : \sigma_y^h(p) \mid \sigma_x^\rho(b_0) \right\}.$$

Abramov-Le lower bound (2005)

Theorem. Assume T has initial reduction

$$T = \Delta_y \left(\cdots \right) + \left(\frac{\alpha_0}{b_0} + \frac{q_0}{K_d} \right) H = \Delta_y \left(\ldots \right) + \frac{\alpha_0'}{b_0} H',$$

with b_0 integer-linear, $a_0'=a_0K_d+b_0q_0$ and $H'=H/K_d$. Let

$$\frac{c'}{d'} := \frac{\sigma_{x}(H')}{H'}.$$

Then the order of the minimal telescoper for T w.r.t. y is at least

$$\max_{ \substack{p \mid b_0 \text{ irred.} \\ \deg_y(p) \geq 1}} \min_{h \in \mathbb{Z}} \left\{ \rho \in \mathbb{N} \setminus \{0\} \colon \begin{array}{c} \sigma_y^h(p) \mid \sigma_x^\rho(b_0) \\ \\ \sigma_y^h(p) \mid \sigma_x^{\rho-1}(d') \end{array} \right\}$$

	New	AL	Order
hypergeom.	$\max_{p} \ \min_{h} \\ \left\{ \rho : \sigma_{y}^{h}(p) \mid \sigma_{x}^{\rho}(b_{0}) \right\}$	$\left\{ \begin{aligned} \max_p & \min_h \\ \sigma_y^h(p) \mid \sigma_x^\rho(b_0) \\ \rho: & \text{or} \\ \sigma_y^h(p) \mid \sigma_x^{\rho-1}(d') \end{aligned} \right\}$	≥
example			

	New	AL	Order
hypergeom.	$\max_{p} \ \min_{h} \\ \left\{ \rho : \sigma_{y}^{h}(p) \mid \sigma_{x}^{\rho}(b_{0}) \right\}$	$\left\{ \begin{aligned} \max_p & \min_h \\ \sigma_y^h(p) \mid \sigma_x^\rho(b_0) \\ \rho: & \text{or} \\ \sigma_y^h(p) \mid \sigma_x^{\rho-1}(d') \end{aligned} \right\}$	≥
T ₁	7	3	17

$$T_1 = \frac{1}{(x+3y+1)(5x-7y)(5x-7y+14)!}.$$

	New	AL	Order
hypergeom.	$\max_{p} \ \min_{h} \\ \left\{ \rho : \sigma_{y}^{h}(p) \mid \sigma_{x}^{\rho}(b_{0}) \right\}$	$\begin{cases} \max_{p} \min_{h} \\ \sigma_{y}^{h}(p) \mid \sigma_{x}^{p}(b_{0}) \\ \rho: \text{or} \\ \sigma_{y}^{h}(p) \mid \sigma_{x}^{p-1}(d') \end{cases} $	≥
T ₂	12	3	29

$$T_2 = \frac{1}{(x+5y+1)(5x-12y)(5x-12y+24)!}.$$

	New	AL	Order
hypergeom.	$\max_{p} \ \min_{h} \\ \left\{ \rho : \sigma_{y}^{h}(p) \mid \sigma_{x}^{\rho}(b_{0}) \right\}$	$\left\{ \begin{aligned} \max_p & \min_h \\ \sigma_y^h(p) \mid \sigma_x^\rho(b_0) \\ \rho: & \text{or} \\ \sigma_y^h(p) \mid \sigma_x^{\rho-1}(d') \end{aligned} \right\}$	≥
T ₃	α	2	α

$$T_3 = \frac{1}{(x - \alpha y - \alpha)(x - \alpha y - 2)!}, \quad \alpha \ge 2 \text{ in } \mathbb{N}.$$

Content

- 1. Introduction
- 2. Preliminaries
- Sum decomposition for hypergeometric terms
- 4. Reduction-based creative telescoping
- Upper and lower bounds
- 6. Summary

Results.

- Modified Abramov-Petkovšek reduction
- A reduction-based telescoping method
- Order bounds for minimal telescopers

Results.

- Modified Abramov-Petkovšek reduction
- ▶ A reduction-based telescoping method
- Order bounds for minimal telescopers

Future work.

▶ Complexity analysis for algorithms

Results.

- Modified Abramov-Petkovšek reduction
- A reduction-based telescoping method
- Order bounds for minimal telescopers

Future work.

- Complexity analysis for algorithms
- ▶ Reduction-based telescoping for q-hypergeometric terms

Results.

- Modified Abramov-Petkovšek reduction
- A reduction-based telescoping method
- Order bounds for minimal telescopers

Future work.

- Complexity analysis for algorithms
- ▶ Reduction-based telescoping for q-hypergeometric terms
- Creative telescoping in multivariate case

Huang, CAS & JKU Reduction & Telescoping 39/39

Results.

- Modified Abramov-Petkovšek reduction
- A reduction-based telescoping method
- Order bounds for minimal telescopers

Future work.

Thank you!

- Complexity analysis for algorithms
- Reduction-based telescoping for q-hypergeometric terms
- Creative telescoping in multivariate case

Huang, CAS & JKU Reduction & Telescoping 39/39