Course Code	Course Title	L	T	Р	С
MACSE502	Programming for Data Science	3	0	2	4
Pre-requisite	NIL	Syllabus Version			
		1.0			

Course Objectives

- 1. Master Python data structures and object-oriented programming for data analysis and web development.
- 2. Dive deep into the Pandas libraryfor data processing, modelling and visualization.
- 3. Understand Scala functional programming concepts, data structures, objectoriented programming and exception handling.
- 4. Explore Scala libraries, Apache Spark architecture and its functions for big data processing and analytics.
- 5. Learn criteria for selecting the appropriate programming language.

Course Outcomes

- 1. Demonstrate proficiency in implementing complex data structures and userdefined data structures in Python.
- 2. Analyse and manipulate data using advanced features of Pandas
- 3. Evaluate the use of Scala's case classes, companion objects, and traits in building robust applications.
- 4. Design and deploy scalable data processing pipelines using Scala libraries and Apache Spark.
- 5. Select the most suitable programming language based on the project requirements.
- 6. Apply Python and Scala programming skills to design, develop, and deploy real-world applications.

Module:1 | Python Data Structures

8 hours

Condition and Branching Statements, Built- in data structures: List, Tuple, Dictionary, Set, User defined data structures: Stack, Queue, Priority Queue, String handling methods, Exception Handling, Object-Oriented Concepts, APIs and Data Collection, Simple API and REST APIs- HTTP Requests, File Handling- Read/Write Frameworks and Libraries, NLTK, ChatterBot

Module:2 Python Libraries

9 hours

Pandas-Series, DataFrame, Handling Missing Values, Built-in functions, Data Operations, Filtering Data in DataFrame, Data Extraction, Working with Text Data, Merging DataFrames - Data Mining – Scrapy - Beautiful Soup - Data Processing and Modelling: NumPy - SciPy - Pandas - Keras - Scikit - Learn - PyTorch -TensorFlow, XGBoost, Data Visualization: Matplotlib – Seaborn – Bokeh – Plotly - Folium.

Module:3 Scala Data Structures and Object-Oriented Programming

12 hours

Expanded Function Format, Variables and Strings, Getting user input, Numbers, Variable types, Operators, Booleans Data Structures-Arrays, Lists, Tuple, Sets, Hash set, Maps - Functional Combinators Map, Scala Object and Class, Anonymous object-Singleton, Companion Object-Case Classes, Objects-Constructors-Method Overloading - This Keyword – Inheritance - Field Overriding - Final, Abstract Class-Trait, Trait Mixins, Access Modifiers, Scala Array-REPL

Module:4 | Scala Libraries and Spark Basics

8 hours

Scala Libraries- Breeze, saddle, Exception Handling, Apache Spark Architecture -Spark Big Data - Apache Spark Components. Programming language selection criteria Module:5 6 hours Size of the Deployment: Data, Resource and Load - Security - Skill Set - The targeted platform - The elasticity of a language - The time to production - The performance - The support and community - Purpose - Programmer experience -Ease of Development and Maintenance - Efficiency - Availability of an IDE -Error Checking and Diagnosis Module:6 **Contemporary Issues** 2 hours Total Lecture hours: 45 hours **Textbooks** Alvaro Fuentes, Become a Python Data Analyst - By Packt Publishing Bharti Motwani, Data Analytics using Python – By Wiley (2020) Jules S. Damji, Learning Spark: Lightning-Fast Data Analytics, Second 3 Edition – By Shroff/O'Reilly (2020) Data Science and Machine Learning using Python – 10 August 2022, MGH, 2022 **Reference Books** Tome, E., Bhattacharjee, R. and Radford, D. Data Engineering with Scala 1. and Spark: Build streaming and batch pipelines that process massive amounts of data using Scala. Packt Publishing Ltd. (2024) Perrin, J.-G. Spark in Action, Second Edition: Covers Apache Spark 3 with 2. Examples in Java, Python, and Scala. Manning. (2020) 3. Wes McKinney, Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter, OReilly, (2022) https://www.coursera.org/learn/python-for-applied-data-science-ai 4. 5. https://www.datacamp.com/blog/top-python-libraries-for-data-science https://www.udemy.com/course/completescala3/?couponCode=IND21PM 6. 7... https://www.aalpha.net/blog/factors-to-consider-when-choosing-aprogramming-language/ Mode of Evaluation: Quiz, Assignment, Design Project, Case Study, Seminar, CAT and FAT **List of Experiments (Indicative)** Basic Data Manipulation with Pandas: Create a DataFrame with columns 1. Name, Age, and City containing data for five individuals. Perform the following operations: select only the Name and Age columns, filter rows where Age is greater than 25, add a new column Country with a default value, and sort the DataFrame by Age in descending order. Finally, calculate the average age of the individuals. 2. Data Cleaning and Preprocessing with Pandas: Create a DataFrame with some missing values in columns Name, Age, and City. Perform the following operations: fill missing values in the Age column with the mean age, drop rows where Name or City is missing, and convert the Age column to integer

	type Finally normalize the Age column using min-may scaling					
3.	type. Finally, normalize the Age column using min-max scaling.					
ა.	Creating and Manipulating Arrays: Using NumPy, create a 2D array of shape					
	(3, 4) with random integers between 0 and 10. Perform the following					
	operations: calculate the mean and standard deviation of the entire array, slice					
	the array to get the first two rows and last two columns, reshape the array to					
	shape (4, 3), and perform element-wise multiplication with another array of the					
4	same shape.					
4.	Feature Engineering, Exploratory Data Analysis: Create a DataFrame with					
	columns Feature1, Feature2, and Target containing random data. Perform the					
	following operations: create a new feature that is the logarithm of Feature1,					
	bin Feature2 into three categories (low, medium, high), and calculate the					
	correlation matrix of the DataFrame. Finally, create a scatter plot of Feature1					
_	vs. Feature2 colored by Target, and interpret any visible patterns.					
5.	Scrape data from a webpage and store it in a structured format like CSV or JSON.					
6.						
0.	Interactive Bar Chart with Plotly. Create an interactive bar chart showing the population of different cities.					
7.	Interactive Scatter Plot with Plotly. Create an interactive scatter plot showing					
١.	the relationship between house size and price.					
8.	Interactive Line Plot with Bokeh. Create an interactive line plot showing the					
0.	daily temperatures over a week using Bokeh.					
9.	Interactive Bar Chart with Bokeh: Problem Statement: Create an interactive					
J.	bar chart showing the sales figures of different products using Bokeh.					
10.	Interactive Scatter Plot with Bokeh: Problem Statement: Create an interactive					
10.	scatter plot showing the relationship between petal length and petal width					
	from the Iris dataset using Bokeh.					
11.	Visualizing Clusters with scikit-learn and Plotly Problem Statement: Perform					
	K-means clustering on the Iris dataset and visualize the clusters using an					
	interactive 3D scatter plot in Plotly.					
12.	Visualizing PCA with scikit-learn and Plotly: Problem Statement: Perform					
	Principal Component Analysis (PCA) on the Iris dataset and visualize the first					
	two principal components using an interactive 2D scatter plot in Plotly.					
13.	Introduction to arrays in Scala: Create an array of integers with the values 2,					
	5, 9, 14, 20. Write a function that takes this array and returns the sum of its					
	elements. Next, create an array of strings with the names of five different					
	fruits. Write a function that concatenates all elements of this array, separated					
	by commas. Finally, iterate over the array of integers and print each element					
	to the consol.					
14.	Understanding lists, sets, and tuples in Scala: Create a list of the first five					
	prime numbers. Write a function that takes this list and returns a new list with					
	each element squared. Then, create a set of unique characters from the string					
	"hello world" and write a function that takes two sets and returns their					
	intersection. Create a tuple with three elements: an integer, a string, and a					
	boolean, then access and print each element.					
	-					

15.	5. Handling collisions and resolving conflicts in HashMap's: Create a Hash							
	with keys representing student names and values representing th							
	then insert multiple entries includ	ing a duplicat	e key wi	th a diffe	erent grade.			
	Write a function to merge two HashMap's, resolving conflicts by taking the							
	higher grade. Finally, write a func	tion to handle	collision	s by cha	ining, using			
	lists to store multiple values for a s			•	3,			
16.	Exploring advanced functional com	Exploring advanced functional combinators beyond the basic set: Create a						
	of integers from 1 to 10, then us	e filter to crea	ate a nev	v list witl	h only even			
	numbers. Use map to create a new	v list where ea	ach eleme	nt is mu	Itiplied by 3.			
	Use flatMap to create a list of tu	ples where e	ach integ	er is pa	ired with its			
	square. Finally, use foldLeft to calc	ulate the prod	uct of all	elements	s in the list.			
17.	Case Classes: Create a case cla							
	Create a list of Person objects representing five different individuals. Write a							
	function to filter out people older	than 30. Next	, write a	function	that groups			
	people by their city. Then, write a f				•			
	into a string in the format "Name				-			
	write a function to sort the list of people by age in ascending order.							
18.	Use Saddle to load and manipulate a dataset of fruit prices and quantitie							
	filtering for apples and calculating their average price. You will then visualize							
	the price trend over time using	_	-					
	manipulation with Saddle and inter							
19.	Use Breeze library to calculate total revenue for each fruit type by multiplying							
	price and quantity from a dataset. You will then create a bar chart to vis							
	these revenues using Plotly. So							
	computations with Breeze and dyn							
20.	Analyse fruit prices using Spire							
	manipulation. You will compute the	•						
	and visualize these trends over tim			•				
	the use of Spire for numerical precision, advanced data manipulation with							
	Saddle, and effective visualization with Vegas.							
	1		Total	hours:	30 hours			
Mode of Evaluation: Continuous Assessments and FAT								
Reco	Recommended by Board of Studies							
Appr	Approved by Academic Council		Date					