Lesson 20

Foundations of College Algebra

Function Notation

Definition – Function Notation

For the function y = f(x):

f is the name of the function,

x is the independent variable,

y is the dependent variable.

We read f(x) as "f of x" or "the value of f at x".

Examples

For the function f(x) = 5x - 3, evaluate the function.

• f(2)

f(−1)

For the function $f(x) = 2x^2 + 3x - 1$, evaluate the function.

• *f*(3)

f(−2)

You Try It

For the function f(x) = 3x + 4, evaluate the function.

1. f(2)

2. f(-1)

For the function $2x^2 - x + 3$, evaluate the function.

3. f(3)

4. f(-2)

Exponential Expressions

Review

Rember that an exponent indicates repeated multiplication of the same quantity.

$$a^m = \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{m \text{ factors}}.$$

You Try It

Simplify.

1. 4^3

2. $(-5)^4$

Product Property for Exponents

Fact

If a is a real number and m and n are counting numbers, then

$$a^m \cdot a^n = a^{m+n}.$$

To multiply with like bases, add the exponents.

Examples

Simplify each expression using the Product Property for Exponents.

•
$$d^3 \cdot d^6$$

•
$$q^{27} \cdot q^{15}$$

•
$$w \cdot w^2 \cdot w^3$$

You Try It

Simplify each expression using the Product Property for Exponents.

1.
$$x^4 \cdot x^2$$

2.
$$n^{19} \cdot n^{12}$$

3.
$$y \cdot y^3 \cdot y^5$$

Power Property for Exponents

Fact

If a is a real number, and m and n are whole numbers, then

$$(a^m)^n = a^{m \cdot n}.$$

To raise a power to a power, multiply the exponents.

Examples

Simplify each expression using the Power Property of Exponents.

•
$$(x^2)^3$$

•
$$(y^5)^9$$

You Try It

Simplify each expression using the Power Property of Exponents.

1.
$$(m^4)^2$$

2.
$$(b^2)^7$$

Product to a Power Property

Fact

If a and b are real numbers and m is a whole number, then

$$(a \cdot b)^m = a^m \cdot b^m.$$

To raise a product to a power, raise each factor to that power.

Examples

Simplify each expression using the Product to a Power Property.

• $(6a)^2$

• $(-4m)^3$

• $(3xyz)^4$

You Try It

Simplify each expression using the Product to a Power Property.

1. $(5x)^2$

2. $(-7n)^3$

3. $(5ab)^3$

Using the Properties Together

Examples

Simplify each expression.

•
$$(y^2)^4 \cdot (y^3)^2$$

•
$$(10a^2b)^3$$

•
$$(3pq^4) \cdot (6p^6q)^2$$

You Try It

Simplify each expression.

1.
$$(y^2)^4 \cdot (y^3)^2$$

2.
$$(10a^2b)^3$$

3.
$$(3pq^4) \cdot (6p^6q)^2$$

Quotient Property for Exponents

Fact

If a is a real number, $a \neq 0$, and m and n are whole numbers, then

$$\frac{a^m}{a^n} = a^{m-n}$$
, $m > n$ and $\frac{a^m}{a^n} = \frac{1}{a^{n-m}}$, $n > m$.

Examples

Simplify.

$$\bullet \quad \frac{x^9}{x^7}$$

$$\bullet \quad \frac{y^{43}}{y^{37}}$$

$$\bullet \quad \frac{b^8}{b^{12}}$$

$$\bullet \quad \frac{x^{18}}{x^{22}}$$

Examples

Simplify.

1.
$$\frac{x^{18}}{x^3}$$

2.
$$\frac{y^{20}}{y^{10}}$$

3.
$$\frac{q^{18}}{q^{36}}$$

4.
$$\frac{t^{10}}{t^{40}}$$

Zero Exponent

Fact

If a is a non-zero number, then $a^0 = 1$.

Examples

Simplify.

•
$$(25x)^0$$

•
$$25x^0$$

You Try It

Simplify.

1.
$$(12x)^0$$

2.
$$(-56p^4q^3)^0$$