Entwicklung und Erprobung einer piezoresistiven Sensor-Schaltung mit drahtloser Energieversorgung im Projekt "MedLast"

Stephan Jobstmann

31. August 2012

Inhaltsverzeichnis

1	Einleitung									
2	Anfo	orderu	ngen	2						
3	Gru	ndlage	en	3						
	3.1	Energ	y-Harvesting	3						
		3.1.1	Piezoelektrisch	3						
		3.1.2	Thermoelektrisch	4						
4	Har	dware		6						
	4.1	Energ	iezuführung	6						
		4.1.1	Energy-Harvesting	6						
		4.1.2	Drahtlose Energieübertragung	8						
	4.2 Energiebereitstellung									
		4.2.1	Superkondensator	9						
		4.2.2	Lithium-Ionen-Akkumulator	10						
	4.3	Arbeit	tsschaltung	16						
		4.3.1	Sensorik	16						
Lit	teratı	urverze	eichnis	17						

A .	1 1	•	1 1			•		1	•
А	hi	71	เด	ungs	ver	7.0	C	nn	18
	\sim			4115	, , ,				

4.1 LTC3108 Board von Ambient Sensors						8
---------------------------------------	--	--	--	--	--	---

1 Einleitung

Die moderne Schulmedizin ist mittlerweile an einem Punkt angelangt, an dem die biochemischen Prozesse innerhalb des Körpers als nahezu komplett erfasst gelten. Die Mechanismen der Informationsweitergabe über die Nervenbahnen, die Belastbarkeit der Anatomie oder die Zerlegungsprozesse des Stoffwechsels sind als solche weitestgehend erforscht. Wie jedoch in jedem Forschungsbereich bedeutet dies auch, dass die Lernkurve beziehungsweise die Anzahl der Ergebnisse an innovativen Erkenntnissen drastisch über die letzten Jahrzehnte abnehmen. Weiter lässt sich feststellen, dass die Fortschritte der modernen Medizin sich hauptsächlich auf die Innovationen aus den Bereichen der Pharmazie und der Medizintechnik berufen. So ermöglichen intelligente Kamerasysteme eine bessere Überwachung von Operationen am schlagenden Herzen oder die Abnahme von elektrischen Nervensignalen eine Steuerung von kybernetischen Prothesen.

Die fortschreitende Entwicklung in der Medizintechnik bietet auch Hilfestellung im Genesungsprozess im Fachbereich der Orthopädie. So wird im Projekt MedLast sowohl eine Unterstützung für den Patienten als auch eine Kontrollmöglichkeit während der Heilung einer Beinfraktur erstrebt. Dabei wird das Gewicht auf dem geschienten Fuß und die Häufigkeit der Auftritte aufgezeichnet. Gleichzeitig sollen diese Daten zur zeitnahen Kontrolle an eine visuelle Ausgabeeinheit, ähnlich einer Armbanduhr, weitergegeben werden. Da dies im Ganzen ein sehr umfangreiches Unterfangen darstellt, wird es sinngemäß in Teilbereiche untergliedert. Für die Konstruktion der Elektronik, welche die Werte für Belastung und Schrittzahl aufnimmt, werden die Gebiete Energieversorgung und Sensorik zusammengefasst. Hierbei kann man leider nur sehr schlecht auf proprietäre Komplettlösungen zurückgreifen. Darum sollen in dieser Arbeit die nötigen Schritte unternommen werden, um ein solches System zu erstellen und in Betrieb zu nehmen.

2 Anforderungen

Als wesentliche Bestandteile der Aufgabenstellung sind zuerst die zu bearbeitenden Teilgebiete zu nennen. Hierzu gehören:

- Energiezuführung
- Energiebereitstellung
- Sensorik-Auswertung

Bei der Energiezuführung sollen dahingehend Überlegungen angestrebt werden, auf welche Art und Weise das komplette Modul mit Spannung versorgt werden kann. Dabei sollen autarke wie auch fremd-gespeiste Quellen betrachtet werden. Die Energiebereitstellung bezieht sich auf die Speicherung im oder am Modul selbst. Hierbei ist die Abstimmung zwischen Bedarf und Bereitstellung ausschlaggebend für die Wahl der zu verwendenden Technologie. In der Sensorik-Auswertung ist natürlich in erster Linie der zu verwendende Sensor ausschlaggebend. Da dieser sich durch den steten Optimierungsverlauf auch im Verhalten sowie in den zu erwartenden Messgrößen ändern kann, sollte diesbezüglich ein Freiheitsgrad in der Implementierung vorhanden sein. Weiter soll im zentralen Mikrocontroller des Moduls eine passende Auslesesoftware erstellt werden. Diese muss die gemessenen Daten aufbereiten und in eine passende SI-Einheit wie Newton [N] oder Kilogramm [kg] zurück rechnen.

3 Grundlagen

3.1 Energy-Harvesting

3.1.1 Piezoelektrisch

Eines der größten abgedeckten Felder im Energy-Harvesting Bereich ist die Gewinnung von nutzbarer elektrischer Energie aus vorhandener mechanischer Energie. Hierbei werden die piezoelektrischen Effekte genutzt, welche bei Druck oder Schwingungsbelastungen auf einem Piezokristall entstehen [Dem11, vgl. S.36 ff]. Dabei entsteht bei bestimmten nichtleitenden Keramiken aufgrund von mechanischem Druck elektrische Ladung an den Oberflächen. Die inneren Ladungskerne driften dabei auseinander, es bildet sich ein Dipol aus. Es werden die grundlegenden Gleichungen des Piezo-Effekts wie folgt beschrieben:

$$D = \mathbf{d} \cdot T + \varepsilon^{\mathrm{T}} \cdot E \tag{3.1}$$

$$S = s^{\mathcal{E}} \cdot T + \mathbf{d} \cdot E \tag{3.2}$$

Mit den Parametern: D: Dielektrische Verschiebung (statt Polarisation)

S: Relative mechanische Dehnung

T: Mechanische Spannung

E: Elektrische Feldstärke

d : piezoelektrische Ladungskonstante s^{E} : Elastizitätskonstante, E = konstant

 ε^{T} : Permittivität, T = konstant

Zum Energy-Harvesting werden vorzüglich Biegebalken¹ verwendet. Diese können technologisch an die angeforderte Kraftaufnahme, die Schwingungsfrequenz und die Amplitude der resultierenden Spannung angepasst werden. Der Aufbau als

¹im Englischen auch bekannt als Cantilever

Biegebalken liefert sein Optimum der Energieumwandlung bei seiner Resonanzfrequenz. Dabei unterscheidet man weiter zwischen Transversalschwingern² (Formel 3.3 und 3.4) und Longitudinalschwingern³ (Formel 3.5 und 3.6).

$$D_3 = \mathbf{d}_{31} \cdot T_1 + \varepsilon_{33}^{\mathrm{T}} \cdot E_3 \tag{3.3}$$

$$S_1 = S_{11}^{\mathcal{E}} \cdot T_3 + \mathbf{d}_{31} \cdot E_3 \tag{3.4}$$

Bei den Transversalschwingern wird quer zur mechanischen Auslenkung eine elektrische Spannung erzeugt. Wenn mechanische Schwingung bzw. Druckbelastung mit dem elektrischen Feld bzw. der dielektrischen Verschiebung gleichgerichtet ist, spricht man von Longitudinalschwingern. Transversalschwinger erzeugen eine rund zehnmal höhere Spannung als Longitudinalschwinger [Dem11, S.39].

$$D_3 = \mathbf{d}_{33} \cdot T_3 + \varepsilon_{33}^{\mathrm{T}} \cdot E_3 \tag{3.5}$$

$$S_3 = s_{33}^{\mathcal{E}} \cdot T_3 + d_{33} \cdot E_3 \tag{3.6}$$

3.1.2 Thermoelektrisch

Eine im Vergleich zu piezoelektrischem Energy-Harvesting hohe Energieumwandlung erzielt man mit der thermoelektrischen Transformation. Dabei wird als physikalische Grundlage der Seebeck-Effekt benutzt. Dieser beschreibt, dass bei zwei
unterschiedlichen Metalllegierungen bei vorliegender Differenz der Temperaturen
am Übergang der Elemente eine Spannung entsteht. Die entstandene Potentialdifferenz nennt man auch Thermospannung [ES12, vgl. S.158]. Die Inverse dieses
Vorgangs wird mit dem Peltier-Effekt beschrieben. Da das Verhalten der spezifischen Elemente reziprok ist, kann man Peltierelemente auch zur Gewinnung von
elektrischer Energie nutzen.

Der Seebeck-Effekt beruht auf den folgenden molekularen Gegebenheiten: Naturgemäß wandern bei einem Metall, welches einem Temperaturunterschied ausgesetzt ist, die Elektronen von der heißen zur kalten Seite. Dies geschieht aufgrund der natürlichen Diffusionsbewegung innerhalb des Metalls. Bei zwei aneinanderliegenden, verlöteten oder verschweißten Legierungen gibt das Metall mit der niedrigeren

²31-Schwingungsmodus

³33-Schwingungsmodus

Austrittsarbeit Elektronen an das andere Metall ab und wird dadurch positiv geladen. Dadurch bildet sich an der Kontaktfläche ein elektrisches Feld. Dieses kann resultierend als direkte Proportionale zur anliegenden Temperaturdifferenz der zwei Kontaktstellen mit einem Voltmeter gemessen werden. Übliche Werte hierfür sind ca. $10\frac{\text{mV}}{100^{\circ}\text{K}}$.

Wenn man den technischen Aufbau nun so gestaltet, dass er zur Energieumwandlung und nicht zur Temperaturmessung verwendet werden soll, erweist es sich als zweckmäßig ein oder mehrere Peltierelemente im umgekehrten Betrieb zu verwenden. [Dem11, vgl. S.30]

4 Hardware

Im Folgenden werden die Fortschritte in der Hardware-Entwicklung chronologisch geordnet und in Teilbereiche separiert aufgeführt.

4.1 Energiezuführung

Als zielführend erweist sich eine Vorüberlegung im Bezug auf die Möglichkeiten der elektrischen Speisung. Grundlegende Anforderungen waren hier die Verwendung in hermetisch isolierten Systemen und die Effizienz. Somit ist beispielsweise von vornherein eine direkte Kopplung an eine Netzversorgungsquelle oder eine Speisung durch wechselbare Batterien ausgeschlossen.

4.1.1 Energy-Harvesting

In diesem Teilbereich werden zwei physikalische Grundarten des Micro Energy Harvesting betrachtet. Diese sind die Umwandlung von mechanischer Schwingungsenergie und thermischer Differenz in elektrische Spannung. Bei der Vorbereitung und Einarbeitung in die entsprechende Thematik wird bei der Umformung von mechanischen Schwingungen in Elektrizität offensichtlich, dass dies eine ungünstige Form der Energiegewinnung für dieses System ist. Dies liegt unter anderem an der unmöglichen Abstimmung der durch den Auftritt erzeugten Erregung auf die Resonanzfrequenz des Schwingungsaufnehmers. Weiter benötigt ein solches Bauelement einen Freiraum um seine abklingende Bewegung harmonisch abbauen zu können. Es müssen auch die maximal auftretenden Beschleunigungen berücksichtigt werden was wiederum zu einer Versteifung des kompletten Federsystems führen würde. Das hätte als Resultat, dass durch die Erhöhung der dynamischen Bandbreite die verhältnismäßig kleineren Anregungen einen schlechteren Wirkungsgrad liefern würden. Diese Umstände schließen die piezoelektrische Wandlung leider für

die Option der Energiezuführung aus. [Dem11, vgl. S.39]

Die thermoelektrische Wandlung beruht auf der Inversen des Peltier-Effekts, dem Seebeck Effekt. Diesem liegt zu Grunde, dass am Übergang von zwei unterschiedlichen Metallen unterschiedlicher Temperierung ein elektrisches Feld aufgebaut wird. Die Verwendung dieses Effekts war zunächst nur bei Temperatur-Messfühlern weit verbreitet. Allerdings ist aufgrund der fortschreitenden Entwicklung der Micro Energy Harvesting Technologien dieser Effekt mittlerweile auch zur Energieversorgung nutzbar.

Als zentralen Baustein für die Erprobung von Micro-Energy-Harvesting Systemen im Bezug auf thermo-elektrische Energiewandlung bietet sich der LTC3108 von der Firma Linear Technology an. Dieser vermag mit geringem Aufwand Eingangsspannungen von 20mV bis 500mV auf ausgangsseitig bis zu 5V aufwärts zu wandeln. Um möglichst schnell Erkenntnisse aus der Wirkungsweise des Bausteins ziehen zu können, wird eine im Internet veröffentlichte Schaltung¹ für Tests verwendet (siehe Abbildung 4.1 auf der nächsten Seite). Diese hält sich strikt an die Vorgaben des Datenblatts² [LTC10]. Beim LTC3108 handelt es sich um einen Spannungs-Aufwärtswandler³ für sehr niedrige Eingangsspannungen. Im Gegensatz zum normalen Aufbau von Aufwärtswandlern wird keine einfache Induktivität sondern ein kleiner Transformator verwendet. Dies reduziert zwar aufgrund des hohen Übersetzungsverhältnisses (1:20 bis 1:100) den Wirkungsgrad, allerdings lassen sich so auch höhere Spannungen erzeugen. Bei dem Versuchsaufbau wird ein 1:100 Transformator verwendet, da sich die Eingangsspannungen, welche experimentell ermittelt wurden, sich zwischen 20mV und 90mV bewegen. Als zu erstrebende Ausgangsspannung wurde schaltungstechnisch 3,3V eingestellt, da dies die zur Zeit am häufigsten bei Mikrocontrollern vorkommende Versorgungsspannung ist. Als externer Energiespeicher wurde ausgangsseitig an die Schaltung ein $2200\mu F$ Kondensator angefügt. Als energieerzeugendes Element wurde ein Peltierelement mit einem Aluminium-Kühlkörper versehen. So muss bei ausreichender zugeführter Wärme nicht einmal aktiv gekühlt werden, es genügt die Wärmeveräußerung durch

¹https://github.com/wa7iut

²http://www.linear.com/product/LTC3108

³Step-Up-Converter

den Kühlkörper.

Abbildung 4.1: LTC3108 Board von Ambient Sensors

4.1.2 Drahtlose Energieübertragung

Zum Laden der internen Speicher, die in Kapitel 4.2 auf der nächsten Seite vorgestellt werden, wird eine vielfach höhere Leistung benötigt als jene, die mit den Mitteln des Energy-Harvesting bereitgestellt werden kann. Allerdings sollen bei die durch die Grundvoraussetzung festgelegten Richtlinien nicht verletzt werden. Durch den betreuenden Professor Harasim kam die Vorgabe ein Evaluations-Kit der Firma Texas Instruments genauer zu untersuchen. Dabei handelte es sich um ein System, welches aus zwei Komponenten bestand:

- Transmitter, Sender: bq500110EVM-688 Evaluation Module
- Receiver, Empfänger: bq51013EVM-725 Evaluation Module

Dieses lässt sich mithilfe einer Gleichspannungsquelle, eingestellt auf eine Speisung von 19V und einer Stromgrenze über 0,5A sehr einfach in Betrieb nehmen. Am Empfängermodul stellt sich bei passgenauer Platzierung der beiden

Übertragerspulen des magnetischen Kopplungssystems eine Tätigkeit der Indikationsanzeige ein. Ein Permanentmagnet hilft beim Zentrieren der beiden Luftspulen. Laut Datenblatt [Ins12b, vgl. S.2] liefert die Beispielschaltung 5V bei 1A. Zum Testen der Kompatibilität wurde die Schaltung mit der in Kapitel 4.2.2 vorgestellten Ladeeinheit gekoppelt. Das erfolgreiche Zusammenarbeiten konnte reproduzierbar getestet werden.

Für das Gesamtkonzept des Fußmoduls vom Projekt MedLast ist die Empfangseinheit vorrangig. Um eine passendes Zusammenspiel von proprietärer Sendeeinheit und selbstentworfener Empfangsschaltung sicherzustellen, wurde der gleiche Baustein (BQ51013) verwendet. Allerdings wurde beim Schaltungsaufbau darauf geachtet, dass der Bauteilumfang sich auf ein Minimum reduziert. Bei dem BQ51013 handelt es sich um ein IC, welches nur in BGA⁴ Gehäusegröße erhältlich ist. Da dies wiederum für das Layoutdesign bedeutete, dass mit Kontaktflächengrößen von $250\mu m$ gearbeitet werden muss, ergab sich eine weitere Problematik. Die typischen Leiterplattenhersteller für Prototypen und Kleinserien haben eine Vorgabe für den Mindestdurchmesser von Durchkontaktierungen mit $300\mu m$

4.2 Energiebereitstellung

Da die Markttauglichkeit bei diesem Projekt eine wesentliche Rolle spielt, wird eine weitverbreitete, einfach zu realisierende und auch günstige Methode gesucht um die Energie für die Elektronik des eingebetteten Moduls bereitzustellen.

4.2.1 Superkondensator

Als Superkondensator bezeichnet man im Allgemeinen hochkapazitive Energieträger, die Ihre elektrische Ladung anders als Keramik-, Tantal-, Elektrolyt- oder Folienkondensatoren speichern. Sie funktionieren nicht wie diese durch Ladungsseparation mittels Dielektrikum sondern bedienen sich anderer Effekte, wie Energiespeicherung in Helmholtz-Doppelschichten⁵, faradayscher Ladungstausch⁶ oder

⁴Ball Grid Array

⁵Doppelschichtkondensator

⁶Pseudokondensator

einer Kombination aus beiden Technologien⁷. Aufgrund dieser anderen Bauweisen lassen sich Kapazitäten erreichen, die das von Elektrolytkondensatoren um das 10000-fache überschreiten. Somit ziehen sie bezüglich der Ladungsdichte mit Akkumulatoren gleich. Anders als bei den üblichen Kondensatoren wird durch den technologischen Unterschied der Funktionsprinzipien eine lineare Lade- beziehungsweise Entladekurve erreicht. Weiter In Miniaturbauweise für Platinenmontage sind so ganzzahlige Farad an Ladungskapazität mit dieser Technologie bereits üblich. Für den praktischen Einsatz für die Arbeit fielen diese Energiespeicher aufgrund ihrer schaltungstechnischen Zusatzbeschaltung zur Spannungsstabilisierung und des, im Gegensatz zu den weit verbreiteten Lithium-Ionen Akkus, hohen Kostenfaktors aus. Weiter ist die Selbstentladung zudem höher als bei konventionellen Akkumulatoren. Aus diesen Gründen wurde eine Lösung der Energiezwischenspeicherung, welche auf Superkondensatoren basiert, nicht weiter verfolgt.

4.2.2 Lithium-Ionen-Akkumulator

Der Lithium-Ionen-Akku hat sich in den letzten Jahren zur Standardtechnologie für wiederaufladbare Energiespeicher entwickelt. Man findet sie in nahezu jedem portablen, elektrisch betriebenen Gerät. Durch weitere Sicherheitsmaßnahmen, wie den in nahezu allen Li-Ion-Akkus verbauten NTC⁸-Widerstand, der mithilfe externer Sicherheits- und Messbeschaltung Rückschlüsse über die interne Temperaturentwicklung des Energiespeichers schließen lässt. Dies verhindert bei einer Fehlfunktion oder einem Schaden des Akkus einen Brand oder gar eine Explosion des Geräts⁹.

Für das Projekt wurde nach einem IC-Baustein gesucht, der selbstständig bei ausreichender Eingangsspannung den Ladungsvorgang bei einem 1-Zellen Li-Ionen Akku vornimmt. Die Wahl eines fertigen ICs bietet einige Vorteile:

• Der Aufbau der Schaltung reduziert sich auf ein Minimum an Bauteilen, so werden zum Beispiel Schmitt-Trigger für die Temperaturüberwachung,

 $^{^7}$ Hybridkondensator

⁸Negative Temperature Coefficient

⁹http://computer.t-online.de/

uelzen-explodiertes-notebook-loest-feuerwehreinsatz-aus/id_42553726/index

Spannungsstabilisatoren und Stromquellen bereits in einem Baustein vereint.

- Die Komplexität des Schaltungslayouts wird auf geringen Ausmaßen festgehalten.
- Berechnungen zur Auslegung der einzelnen Baugruppen werden obsolet oder auf wenige reduziert. Dabei wird meistens der Anwender durch die im Datenblatt aufgezeigten Anwendungsbeispiele mit Vorlagen zur Berechnung unterstützt.
- Die Schaltung ist bereits im Datenblatt festgehalten und muss lediglich bei den Bauteilwerten adaptiert werden.

Nach hinreichendem Vergleich fiel die Wahl des zu verwendenden Bausteins auf den BQ24100 von der Firma Texas Instruments¹⁰. Dieser umfasst eine durch die am Akku anliegende Temperatur gesteuerte Schutzbeschaltung und eine äußerst niedrige Mindestspannung für die Eingangsbeschaltung. Weiter sind diverse Steuereingänge als auch Ausgänge die durch ihre logischen Pegel den aktuellen Status des Ladezyklus wiedergeben im Baustein realisiert. Die Ladelogik erkennt ebenfalls eine Tiefentladung und passt dementsprechend den Ladezyklus an.

Berechnungsschritte nach Datenblatt [Ins12a]

$$\Delta I_L = I_{Charge} \cdot I_{Charge^{Ripple}} \tag{4.1}$$

$$\Delta I_L = 1,33A \cdot 30\% = 0,4A \tag{4.2}$$

$$L_{OUT} = \frac{V_{BAT} \cdot (V_{INMAX} - V_{BAT})}{V_{INMAX} \cdot f \cdot \Delta I_L}$$
(4.3)

$$L_{OUT} = \frac{4,2V \cdot (5V - 4,2V)}{5V \cdot 1, 1 \cdot 10^{6} \frac{1}{s} \cdot 0, 4A}$$
(4.4)

$$L_{OUT} = \frac{3,36V^2}{2,2 \cdot 10^6 \frac{VA}{s}} = 1,527\mu \frac{Vs}{A} = 1,527\mu H$$
 (4.5)

¹⁰https://www.ti.com/product/bq24100

Da das Hybridlabor der Hochschule Landshut während des Aufbaus Induktivitäten mit $6,2\mu H$ im Lager hatte, wurde folgende Rechnung zur Anpassung vorgenommen:

$$\Delta I_L = \frac{V_{BAT} \cdot (V_{INMAX} - V_{BAT})}{V_{INMAX} \cdot f \cdot L_{OUT}} \tag{4.6}$$

$$\Delta I_L = \frac{4,2V \cdot (5V - 4,2V)}{5V \cdot 1,1 \cdot 10^6 \frac{1}{s} \cdot 6,2 \cdot 10^{-6} \frac{Vs}{A}}$$
(4.7)

$$\Delta I_L = \frac{3,36V^2}{34,1\frac{V^2s}{sA}} = 0,0985A = 98,5mA \tag{4.8}$$

Resultierender Spitzenstrom I_{IPK} an der Induktivität:

$$I_{IPK} = I_{OUT} + \frac{\Delta I_L}{2} \tag{4.10}$$

$$I_{IPK} = 1,33A + \frac{0,0985A}{2} = 1,379A$$
 (4.11)

Die ideale Ausgangskapazität berechnet sich über eine optimale Resonanzfrequenz von 16kHz. Grundsätzlich bewegt sich die zulässige Frequenz zwischen 8kHz und 32kHz laut Datenblatt [Ins12a].

$$f_O = \frac{1}{2\pi\sqrt{L_{OUT} \cdot C_{OUT}}} \tag{4.12}$$

$$C_{OUT} = \frac{1}{4\pi^2 \cdot f_O^2 \cdot L_{OUT}} \tag{4.13}$$

$$C_{OUT} = \frac{1}{4\pi^2 \cdot \left(16 \cdot 10^3 \frac{1}{s}\right)^2 \cdot 6, 2 \cdot 10^{-6} \frac{Vs}{A}}$$
 (4.14)

$$C_{OUT} = 1,595 \cdot 10^{-5} \frac{As}{V} \Rightarrow 16\mu F$$
 (4.15)

Wieder wurde Aufgrund von Lagerbeständen eine andere Kapazität gewählt: $10\mu F$

$$f_O = \frac{1}{2\pi\sqrt{L_{OUT} \cdot C_{OUT}}} \tag{4.16}$$

$$f_O = \frac{1}{2\pi\sqrt{6, 2 \cdot 10^{-6} \frac{Vs}{A} \cdot 10 \cdot 10^{-5} \frac{As}{V}}}$$
(4.17)

$$f_O = 20,212kHz (4.18)$$

Die Resonanzfrequenz der passiven Leistungsbauteile am Schaltungsausgang liegen mit rund 20kHz noch innerhalb des gültigen Bereichs.

Der angelegte Speisestrom für den Ladevorgang wird vom IC über einen Shunt-Widerstand (R_{SNS}) bestimmt. Dieser wird über geforderten Ladestrom (I_{CHARGE}) und einer Shuntspannung (V_{RSNS}) dimensioniert. Die Shuntspannung sollte laut Vorgabe zwischen 100mV und 200mV betragen. Für die Berechnung wurde daher ein arithmetisches Mittel von 150mV gewählt.

$$R_{SNS} = \frac{V_{RSNS}}{I_{CHARGE}} \tag{4.19}$$

$$R_{SNS} = \frac{150mV}{1,33A} = 0,1128\Omega \Rightarrow 0,1\Omega$$
 (4.20)

resultierende Shuntspannung

bei einem Widerstand von $0, 1\Omega$:

$$V_{RSNS} = R_{SNS} \cdot I_{CHARGE} = 0, 1\Omega \cdot 1, 33A \Rightarrow 133mV \tag{4.21}$$

Berechnung der Verlustleistung am Shuntwiderstand:

$$P_{RSNS} = I_{CHARGE}^2 \cdot R_{SNS} \tag{4.22}$$

$$P_{RSNS} = (1,33A)^2 \cdot 0, 1\Omega = 176,9mW$$
 (4.23)

Die Steuerwiderstände für die Stromgrenzen berechnen sich wie folgt:

$$R_{ISET1} = \frac{K_{ISET1} \cdot V_{ISET1}}{R_{SNS} \cdot I_{CHARGE}} \tag{4.24}$$

$$R_{ISET1} = \frac{1000\frac{V}{A} \cdot 1,0V}{0,1\Omega \cdot 1,33A} \tag{4.25}$$

$$R_{ISET1} = 7,5k\Omega \tag{4.26}$$

$$R_{ISET2} = \frac{K_{ISET2} \cdot V_{ISET2}}{R_{SNS} \cdot I_{PRECHARGE}} \tag{4.27}$$

$$R_{ISET2} = \frac{1000\frac{V}{A} \cdot 0, 1V}{0, 10 \cdot 0, 133A} \tag{4.28}$$

$$R_{ISET2} = 7,5k\Omega \tag{4.29}$$

Das IC verfügt ebenfalls über eine zeitgesteuerte Sicherheitsabschaltung. Dessen Zeitintervall wird über einen externen Kondensator eingestellt. Man geht im Allgemeinen von einer sicheren Ladezeit von 5 Stunden aus.

$$C_{TTC} = \frac{t_{CHARGE}}{K_{TTC}} \tag{4.30}$$

$$C_{TTC} = \frac{300 \text{ Minuten}}{2, 6 \frac{\text{Minuten}}{nF}}$$
(4.31)

$$C_{TTC} = 115, 4nF (4.32)$$

Ähnlich wie im Beispiel des Datenblatts wurde beim Versuchsaufbau der Berechnungsgrundlage ein NTC-Widerstand des Li-Ionen Akkus von $10k\Omega$ verwendet.

Mit
$$V_{LTF} = \frac{V_{O(VTSB)} \cdot \%_{LTF+100}}{100}$$
(4.33)

$$V_{LTF} = \frac{3,15V \cdot 73,5\%}{100} = 2,31525V$$
 (4.34)

und
$$V_{HTF} = \frac{V_{O(VTSB)} \cdot \%_{HTF+100}}{100} \tag{4.35}$$

$$V_{HTF} = \frac{3,15V \cdot 34,4\%}{100} = 1,0836V$$
 (4.36)

Lassen sich die begrenzenden Widerstände für die interne Sicherheitsschaltung berechnen. Als Grundlage wurden die Widerstandswerte vom Datenblatt übernommen:

 $RTH_{COLD} = 27,28k\Omega$ und $RTH_{HOT} = 4,912k\Omega$.

$$RT2 = \frac{V_{O(VTSB)} \cdot RTH_{COLD} \cdot RTH_{HOT} \cdot \left(\frac{1}{V_{LTF}} - \frac{1}{V_{HTF}}\right)}{RTH_{HOT} \cdot \left(\frac{V_{O(VTSB)}}{V_{HTF}} - 1\right) - RTH_{COLD} \cdot \left(\frac{V_{O(VTSB)}}{V_{LTF}} - 1\right)}$$
(4.37)

$$RT2 = \frac{3,15V \cdot 27,28k\Omega \cdot 4,912k\Omega \cdot \left(\frac{1}{2,31525V} - \frac{1}{1,0836V}\right)}{4,912k\Omega \cdot \left(\frac{3,15V}{1,0836V} - 1\right) - 27,28k\Omega \cdot \left(\frac{3,15V}{2,31525V} - 1\right)}$$
(4.38)

$$RT2 = 442, 235k\Omega \Rightarrow 442k\Omega \tag{4.39}$$

$$RT1 = \frac{\frac{V_{O(VTSB)}}{V_{LTF}} - 1}{\frac{1}{RT2} + \frac{1}{RTH_{COLD}}}$$
(4.40)

$$RT1 = \frac{\frac{3,15V}{2,31525V} - 1}{\frac{1}{442k\Omega} + \frac{1}{27,28k\Omega}} \tag{4.41}$$

$$RT1 = 9,263k\Omega \Rightarrow 9,31k\Omega \tag{4.42}$$

Ein passendes Schaltungslayout wurde mithilfe des Datenblatts [Ins12a] und der Software Multisim¹¹ erstellt. Nach der Adaption der Schaltung auf ein passendes Layout wurde über einen Leiterplattenhersteller ein Prototyp auf FR4¹² bestellt. An der Hochschule Landshut wurde dieser per Hand bestückt und mithilfe der Dampfphasenlötanlage fertig gelötet. Für erste Tests wurde ein handelsüblicher Mobiltelefon-Akku der Firma Huawei verwendet. Dieser war bereits geringfügig vorgeladen und besitzt einen internen NTC-Widerstand von $10k\Omega$. Somit entsprach diese Testumgebung ziemlich dem realen Einsatzgebiet der Ladeschaltung. Über einen fliegenden Aufbau mithilfe einer Experimentierplatine wurde der Akku an die Schaltung angeschlossen. Diese wurde selbst an eine 5V Konstantspannungsquelle angeschlossen, welche während des Versuchs auch im Spannungspegel verändert wurde. Solange sich die anliegende Gleichspannung innerhalb des im Datenblatt

¹¹http://www.ni.com/multisim/d/

¹²Flame Retarding Number 4; Flammhemmendes Substratmaterial auf Epoxydbasis

vermerkten Intervalls bewegt, zeigen die Indikationsausgänge des ICs einwandfreien Betrieb auf. Die Funktion des Moduls konnte einwandfrei nachgewiesen werden und war stets reproduzierbar. Auch die kombinierbare Funktion mit dem Modul aus Kapitel 4.1.2 auf Seite 8 wurde erfolgreich getestet.

4.3 Arbeitsschaltung

4.3.1 Sensorik

Zentrales Element der Schaltung des Fußmoduls des Projekts "MedLast" ist der Druckaufnehmer. Erste Versuche die Druckbelastung über die Kapazitätsänderung von Piezoelementen erwiesen sich als äußerst schwierig. Die Problematik bei dieser Messmethode besteht darin, dass sie aufgrund der Flüchtigkeit der geringen Ladung und der Empfindlichkeit gegenüber parasitären Effekten äußerst aufwendig betrieben werden muss, um repräsentative und reproduzierbare Ergebnisse zu erzielen. Als parasitäre Effekte spielen hier unter anderem Luftfeuchte, Beleuchtung und die Umgebungstemperatur eine entscheidende Rolle. Bei ausführlichen Belastungstests im Bereich bis 200N konnten keine zufriedenstellenden Ergebnisse erzielt werden [Job12].

Darum wurde die Messmethode auf piezoresistive Dehnungsmessstreifen geändert. Diese Technologie bietet auch den Vorteil, dass aufgrund der eigenen Labor Verarbeitung im Hybridlabor der Hochschule Landshut das Layout beliebig angepasst werden.

Literaturverzeichnis

- [Dem11] K. Dembowski. Energy Harvesting für die Mikroelektronik. VDE Verlag GmbH, Berlin, 1. edition, 2011.
 - [ES12] B. Zagar E. Schrüfer, L. Reindl. Elektrische Messtechnik. Hanser Verlag, 10. edition, 2012.
- [Ins12a] Texas Instruments. BQ24100 SYNCHRONOUS SWITCHMODE, LI-ION AND LI-POLYMER CHARGE-MANAGEMENT IC WITH INTE-GRATED POWER FETs. Texas Instruments Incorporated, Post Office Box 655303, Dallas, Texas 75265, 2012. http://www.ti.com/lit/ds/symlink/bq24100.pdf.
- [Ins12b] Texas Instruments. bq51013EVM-725 Evaluation Module. Texas Instruments Incorporated, Post Office Box 655303, Dallas, Texas 75265, 2012. http://www.ti.com/lit/ug/slvu447a/slvu447a.pdf.
- [Job12] S. Jobstmann. Auswertung der Messungen über Kapazitätsänderung von Piezoelementen in Abhängigkeit von eindimensionaler mechanischer Druckbelastung. unpublished, 2012.
- [LTC10] LTC. LTC3108 Ultralow voltage Step-Up Converter and Power Manager. Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035-7417, 2010.
 - http://www.linear.com/product/LTC3108.