

AD A0 59287

DDC FILE COPY

UNITED STATES AIR FORCE
AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Base, Ohio

This document has been approved
for public release and sale; its
distribution is unlimited.

78 09 05 038

1

AD A059287

DDC FILE COPY

This document has been approved
for public release and sale; its
distribution is unlimited.

AN ANALYSIS OF THE DEMAND
DISTRIBUTIONS FOR SELECTED INERTIAL
MEASUREMENT UNITS IN THE AIR FORCE
INVENTORY

David R. Johnson, Captain, USAF
Judith M. McCoy, GS-12

LSSR 5-78A ✓

78 09 05 038

The contents of the document are technically accurate, and no sensitive items, detrimental ideas, or deleterious information are contained therein. Furthermore, the views expressed in the document are those of the author and do not necessarily reflect the views of the School of Systems and Logistics, the Air University, the United States Air Force, or the Department of Defense.

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for current and future applications of AFIT thesis research. Please return completed questionnaires to: AFIT/SLGR (Thesis Feedback), Wright-Patterson AFB, Ohio 45433.

1. Did this research contribute to a current Air Force project?

a. Yes b. No

2. Do you believe this research topic is significant enough that it would have been researched (or contracted) by your organization or another agency if AFIT had not researched it?

a. Yes b. No

3. The benefits of AFIT research can often be expressed by the equivalent value that your agency received by virtue of AFIT performing the research. Can you estimate what this research would have cost if it had been accomplished under contract or if it had been done in-house in terms of man-power and/or dollars?

a. Man-years _____ \$ _____ (Contract).

b. Man-years _____ \$ _____ (In-house).

4. Often it is not possible to attach equivalent dollar values to research, although the results of the research may, in fact, be important. Whether or not you were able to establish an equivalent value for this research (3 above), what is your estimate of its significance?

a. Highly Significant b. Significant c. Slightly Significant d. Of No Significance

5. Comments:

ACCESSION for	
NMS	White Section <input checked="" type="checkbox"/>
OPD	Blue Section <input type="checkbox"/>
WRIGHT-PATTERSON	
AFC	
DISPATCHER/MAIL ROOM COPIES	
CIAL	

Name and Grade

Position

Organization

Location

AFIT/LSGR

WRIGHT-PATTERSON AFB OH 45433

**OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300**

**POSTAGE AND FEES PAID
DEPARTMENT OF THE AIR FORCE
DoD-318**

**AFIT/LSGR (Thesis Feedback)
Wright-Patterson AFB OH 45433**

**★ U.S. Government Printing Office 1975-639-906
Region 63-11**

UNCLASSIFIED

~~SECURITY CLASSIFICATION OF THIS PAGE (and all Data Annexes)~~

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

~~SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)~~

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Within the Air Force Logistics Command's Recoverable Item Requirements Computation System (D041), a simple Poisson demand distribution is assumed in order to forecast requirements and, thereby, to establish inventory levels for recoverable items. This study is pursuant to the question of the validity of this assumption. Detailed analysis of failure data for the FLIP, LN-15, and KT-73 inertial measurement units revealed that the demand distribution for these items was not Poisson, but more generally, negative binomial. Use of a negative binomial demand distribution in the Variable Safety Level (VSL) portion of D041, however, requires that the steady state probabilities for that demand distribution be computed. Thus far, this computation has proven to be intractable. Further research uncovered the possibility that a compounded form of the Poisson distribution might also describe the failure data, but research in this area was deferred because SIMFIT, the data analysis program used in the study, did not include subroutines to examine this sort of distribution.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

LSSR 5-78A

AN ANALYSIS OF THE DEMAND DISTRIBUTIONS FOR
SELECTED INERTIAL MEASUREMENT UNITS IN THE
AIR FORCE INVENTORY

A Thesis

Presented to the Faculty of the School of Systems and Logistics
of the Air Force Institute of Technology
Air University

In Partial Fulfillment of the Requirements for the
Degree of Master of Science in Logistics Management

By

David R. Johnson, BBA
Captain, USAF

Judith M. McCoy, BA
GS-12

June 1978

Approved for public release:
distribution unlimited

This thesis, written by

Captain David R. Johnson

and

Judith M. McCoy

has been accepted by the undersigned on behalf of the faculty
of the School of Systems and Logistics in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN LOGISTICS MANAGEMENT

Date: 14 June 1978

A handwritten signature in black ink, enclosed within a large, irregular oval outline. The signature reads "Captain David R. Johnson". Below the signature, the words "COMMITTEE CHAIRMAN" are printed in capital letters.

ACKNOWLEDGEMENTS

To Mr. Daniel E. Reynolds, for his unfailing support, unflagging enthusiasm, and unrestrictive guidance;

To Major John M. Pearson, without whose assistance Chapter IV might never have been completed;

To the entire AFIT Directorate of Data Automation, for technical assistance and cooperation in providing computer support;

To Linda Pearson, whose work in typing and assembling this paper matched her outstanding reputation;

Most of all, to Rita Johnson and James McCoy, who, when they agreed to share us with Academia for a year, had no idea that their shares would be so small;

Our heartfelt thanks and appreciation.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
LIST OF TABLES	vi
LIST OF FIGURES	vii
Chapter	
I. INTRODUCTION	1
Background	1
Statement of the Problem	4
Approach to the Research	5
Justification	6
Objectives of the Research	8
Research Hypotheses	8
II. METHODOLOGY	9
Population Defined	9
Data Collection Plan	13
Data Preparation	15
Research Design	16
Research Assumptions	19
Research Limitations	19
III. ANALYSIS AND FINDINGS	21
The Poisson Distribution	21
The Negative Binomial Distribution . . .	23

Chapter		Page
Other Distributions		31
Summary of Findings		35
IV. APPLICATION OF FINDINGS		37
Computation of Requirements		37
Implications of Research Findings		43
V. CONCLUSIONS AND RECOMMENDATIONS		46
The First Research Hypothesis		46
The Second Research Hypothesis		47
Recommendations		48
APPENDIXES		
A. SIMFIT		51
B. NEGATIVE BINOMIAL TEST RESULTS FOR THE FLIP IMU		57
C. NEGATIVE BINOMIAL TEST RESULTS FOR THE LN-15 IMU		90
D. NEGATIVE BINOMIAL TEST RESULTS FOR THE KT-73 IMU		103
SELECTED BIBLIOGRAPHY		132

LIST OF TABLES

Table	Page
1. VALUES OF THE TEST STATISTIC COMPUTED FOR THE SIMFIT K-S TEST IN THE POISSON DISTRIBUTION ANALYSIS	22
2. DESCRIPTIVE STATISTICS BY BASE PERIOD FLIP FAILURE DATA	25
3. DESCRIPTIVE STATISTICS BY BASE PERIOD LN-15 FAILURE DATA	26
4. DESCRIPTIVE STATISTICS BY BASE PERIOD KT-73 FAILURE DATA	26
5. NEGATIVE BINOMIAL SIMFIT RESULTS FOR THE FLIP FAILURE DATA BY BASE PERIOD	27
6. NEGATIVE BINOMIAL SIMFIT RESULTS FOR THE LN-15 FAILURE DATA BY BASE PERIOD	28
7. NEGATIVE BINOMIAL SIMFIT RESULTS FOR THE KT-73 FAILURE DATA BY BASE PERIOD	29
8. K-S TEST STATISTICS FOR ALL DISTRIBUTIONS AVAILABLE IN SIMFIT FOR THE FLIP FAILURE DATA	32
9. K-S TEST STATISTICS FOR ALL DISTRIBUTIONS AVAILABLE IN SIMFIT FOR THE LN-15 FAILURE DATA	33
10. K-S TEST STATISTICS FOR ALL DISTRIBUTIONS AVAILABLE IN SIMFIT FOR THE KT-73 FAILURE DATA	34

LIST OF FIGURES

Figure	Page
1. Partition of Failure Data by Base Period	11
2. Inclusive Dates of Data for Each IMU . . .	12
3. Number of Failures in Data Base for Each IMU	12
4. Number of Complete Base Periods Available for Analysis for Each IMU . . .	12

CHAPTER I

INTRODUCTION

Logistical support of an operational weapon system requires that spares be available to replace components that fail. The cost of the complex equipment used in modern weapon systems dictates that the number of spares in the logistics system be kept to a minimum. Determination of minimum spares requirements depends upon an accurate prediction of expected failures.

Background

The Air Force distinguishes between initial and replenishment spares. Usually, initial spares support a weapon system from the time of its preliminary operational capability through the item lead time plus three months. In no case, is the initial support period less than twelve months (2:p.l-1). Replenishment spares support the weapon system thereafter.

Spares are classified as either recoverable or expense items. Recoverable items are repaired and returned to service if they fail; expense items are thrown away. Expense item replenishment requirements are computed under Economic Order Quantity procedures (5). More complex procedures for computing recoverable item

replenishment requirements are embodied in the Recoverable Consumption Item Requirements System, designated D041 (3:p.1-1).

The D041 System. The D041 system operates at each of the Air Force Logistics Command's five Air Logistics Centers. A segment of the system also operates at HQ AFLC. D041 is designed to accomplish the following:

- a. Compute requirements for recoverable . . . items . . .
- b. Perform the routine clerical, mathematical, and statistical workload involved in computing recoverable item requirements.
- c. Forecast gross and net requirements using past and future programs, usage history, and asset information maintained within this system.
- d. Produce reports for management evaluation and action.
- e. Produce information for other automated data systems [3:p.2-1].

Recoverable item requirements are computed by the D041 system once every quarter of the fiscal year. The first computation of the fiscal year is used to develop apportionment requests and the third, to develop budget requests. All four computations are used to identify items requiring logistics actions, such as buy, repair, disposal, or termination of existing procurement actions (3:pp.1-1 to 1-2).

The D041 system incorporates a complex requirements computation algorithm. The algorithm first multiplies a forecast of future program activity by a series of factors to generate a gross requirement. The gross requirement

consists of an operating requirement, a base stock level, a depot stock level, plus several miscellaneous categories of requirements that have no bearing on the subject of this research. The next step is to apply to the gross requirement those assets forecast to be available. In so doing, a forecast is made of the base and depot level repair to be accomplished in the computation period. Requirements that cannot be satisfied by the inventory, with maintenance support, must be supported by additional procurement (3:Ch.6).

The D041 computation incorporates a Variable Safety Level (VSL) feature based on the METRIC (Multi-Echelon Technique for Recoverable Item Control) model developed for the Air Force by The RAND Corporation. A description of METRIC can be found in a RAND Memorandum, RM-5078-PR (21). Use of the METRIC model requires specifying the probability distribution associated with the demand process (17:7). In D041, all demands are assumed to occur according to a Poisson distribution (15). This research examined the validity of the assumption as it pertains to computing requirements for specific items.

The Poisson Process. A few comments on the Poisson process will provide the statistical concepts underlying the problem that this research addresses. "A large class of situations in which events occur randomly is the

Poisson process [16:374-375]." Two probability distributions, the Poisson and the exponential, are associated with a Poisson process. The probabilities for the number of times an event occurs in an interval of time follow a Poisson distribution; while the probabilities for the times between occurrences of that event follow an exponential distribution (16:375). One of the assumptions that must be met in order for a Poisson process to apply is that "the process rate ~~A~~ must remain constant for the entire duration considered [16:376]."

Statement of the Problem

Recent research (8) by Captains Lowell R. Crowe and Levi D. Lowman, Jr., addressed the failure patterns experienced by three inertial measurement units (IMUs): the FLIP unit used on the C-5A aircraft, the LN-15 unit used on the B-52G/H aircraft, and the KT-73 unit used on the A-7D/E and AC-130H aircraft. They concluded that the best theoretical distribution for describing the actual operating time to failure of the IMUs was not the exponential (8:44-48). They also reported indications that the IMU failure rates may have changed over time (8:71).

These findings call into question whether the failures of these IMUs can be legitimately considered to be derived from a Poisson process. First, of course, the applicability of the exponential distribution itself

is questioned, although the evidence does not conclusively eliminate it from consideration. The inconclusiveness stems from the decision rule used to determine the best distribution. The best distribution was that which described the most samples from each IMU population. In fact, the exponential did fit some of the samples (8:50-53). Second, the assumption of a constant process rate was undermined.

Unless the failures of the three IMUs can be considered to be derived from a Poisson process, it would be inappropriate to use the Poisson distribution to model demands in the computation of requirements for these items. The problem this research addressed has three basic components. First, there was the question of whether the Poisson process does, in fact, represent the failure pattern for the three IMUs. Second, there was the question of whether substituting the empirical failure distribution for the IMUs (or another appropriate theoretical distribution) in the computation would significantly change the computed requirement. Finally, there is the possibility, if these IMUs do not exhibit Poisson characteristics, that the same would apply to other IMUs.

Approach to the Research

This research was intended to pursue the first two components of the problem just discussed. A two-phased approach was employed. In the first phase, the

question of what probability distribution fits the failure data was to be settled. If the Poisson was discredited, a second phase was to be undertaken to determine whether incorporation of an alternative distribution significantly changes the computed requirement. The final aspect of the problem would have required the collection and evaluation of so much additional failure data that it appeared reasonable not to do so unless there were indications from this research to warrant the effort.

Justification

It can be assumed that a requirements computation reflecting the actual demand distribution experienced by an item would be more accurate than one reflecting an inappropriate distribution. A more accurate computation would have one of two results. In the first case, a smaller requirement would be computed, saving the Air Force the money it would have spent for repair or procurement. In the second, a larger requirement would be computed, necessitating more repair and procurement funds.

Improved accuracy, while desirable, is not free. In order to implement this kind of improvement, it is possible that the Air Force would have to change the data collection system that feeds the requirements process. The current system collects only the total number of failures and total operating time for a component

population (8:6). These data, as previously noted, are used in determining the demand rate. However, they are not sufficient for determining the distribution from which the demands are taken unless that distribution is defined by only one parameter. For distributions that are defined by two or more parameters, unaggregated data would have to be collected in such a way that the parameters could be estimated directly from the data.

The costs associated with providing the additional data to the requirements system are not the only ones that might be incurred. The cost of performing the computation itself could be increased. A 1970 AFLC study cited the computational efficiency of using the Poisson rather than other discrete probability distributions ~ noted that corrections would be required to use continuous distributions to approximate an inherently discrete process such as demand generation (22:29). Additional computational costs could, therefore, be anticipated if any probability distribution other than the Poisson were incorporated into the requirements computation algorithm.

If the requirements computation were not sensitive to the differences in demand embodied in alternative probability distributions, significantly improved accuracy would not be expected. If the requirements computation were, however, sensitive to these differences, the magnitude of the change would influence whether an improved technique

would pay for itself in savings or whether its effect would warrant the costs associated with its implementation. The Air Force Logistics Management Center, Gunter Air Force Station, Alabama, has requested that this sensitivity be investigated (23).

Objectives of the Research

This research had three objectives. Specifically, the research sought to:

1. Identify the distribution that best describes the occurrence of failures for each IMU within a time frame appropriate to the requirements computation.
2. Determine how to modify the D041 computation to incorporate the identified distribution.
3. Determine whether the computation is sensitive to the proposed modification through a comparison of requirements for three inertial measurement units computed using both the standard and the modified D041 process.

Research Hypotheses

1. For each of the inertial measurement units under study, the daily occurrences of failure do not follow a Poisson distribution.
2. Spares computations are sensitive to the probability distribution that is assumed to describe the underlying equipment failure pattern.

CHAPTER II

METHODOLOGY

This chapter presents the methodology used for identification of the distribution that best describes the occurrence of failures for each of the three IMUs. The first subject to be addressed is the organization of the data which was used. The data collection plan, including a discussion of the G078C data processing system from which the data were taken, will follow. Finally, there will be a general discussion of the analysis techniques employed.

Population Defined

Failure data for all aircraft inertial measurement units (IMUs) in the Air Force inventory constitute the universe for this research. Within the universe, three discrete populations were defined as failure data applicable to the FLIP unit used on the C-5A, the LN-15 unit used on the B-52G/H, and the KT-73 unit used on the A-7D/E and the AC-130H.

Failure data associated with each IMU population were arranged in chronological order by failure date. Population subsets were defined by partitioning the data by base period. A base period was defined as eight

consecutive calendar quarters. The eight quarter block was chosen as the basis for investigation because the requirements computation system (D041) uses eight quarters of failure history for its demand forecasts (2:p.1-4).

Figure 1 illustrates the partition of failure data by base period. Base Period 1 includes the eight quarters beginning with the first one in which an IMU failure occurred (e.g., in Figure 1, quarters 70-1 through 71-4). In Base Period 2, the first quarter of the previous base period is dropped and another quarter added at the end (e.g., quarters 70-2 through 72-1). This process is repeated until the last complete eight-quarter base period has been partitioned.

Census data on the occurrences of failure for each IMU from its introduction into the inventory until 30 June 1977 were obtained. Reasons for establishing the 30 June cutoff date will be discussed within the context of the data collection plan. Failures occurring before the first quarter in which at least twenty failures are recorded were eliminated from further consideration. This criterion was arbitrarily established to minimize the effects of system startup on later analysis and to delimit the number of base periods to be investigated. Figures 2, 3, and 4 identify the data that was used in the analysis.

HISTORY OF FAILURES BY CALENDAR QUARTER

Fig. 1. Partition of Failure Data by Base Period

FLIP	LN-15	KT-73
1 July 1971 through 30 June 1977	1 January 1974 through 30 June 1977	1 January 1972 through 30 June 1977

Fig. 2. Inclusive Dates of Data for Each IMU

FLIP	LN-15	KT-73
1,108	723	2,065

Fig. 3. Number of Failures in Data Base for Each IMU

FLIP	LN-15	KT-73
16	6	14

Fig. 4. Number of Complete Base Periods Available for Analysis for Each IMU

Data Collection Plan

Unaggregated failure data for the three IMUs are available in the automated Inertial Guidance Reliability and Configuration Program for Aircraft, designated the G078C data system. The G078C data base contains five types of records: (1) inertial system history, (2) test data, (3 and 4) subindenture records, and (5) nonserialized piece parts (4:p.2-1). This research is concerned with the data contained on the first type of record which is established each time a failed IMU is returned to the depot for repair. The data in G078C were verified by personnel of the Aerospace Guidance and Metrology Center (AGMC), Newark Air Force Station, Ohio, and are considered to be accurate by engineers of the Reliability and Operations Division (AGMC/SNO) who routinely use the data (14; 19).

Among the data recorded when a type 1 record is established is the date of the unit's arrival at the depot. Until approximately 1 July 1977, all three IMUs were managed under SCARS (Serialized Control and Reporting System) procedures. As long as SCARS procedures were in effect, the date of arrival reflected in the G078C data base represented the actual date on which the item arrived at the depot from the base at which the failure actually occurred. Since that time, the date of arrival recorded in the G078C has reflected the date on which the

unit was input to the depot work center for repair (14). The change in reporting procedures provided a logical point at which to establish the data cutoff.

It should be noted that the date of arrival at the repair depot is not the same as the date of failure. The possibility of directly obtaining the failure date was considered. The date on which the failed IMU was removed from an aircraft is reported on AFTO Form 88, Historical Record for Inertial Navigation Unit (24:p.2-4). A complete file of AFTO Forms 88 is maintained at AGMC by the Reliability and Operations Division (14). It was determined that the effort required to extract the data from the forms, validate them against the G078C data, and manually build new data files would be excessive.

As an alternative to obtaining the date of failure directly from AFTO Forms 88, the possibility of adjusting the arrival date, as recorded in G078C, to approximate the actual failure date was also considered. The SCARS Management Indicator Report (RCS:LOG-L07,(Q)71224), prepared quarterly by the SCARS monitor at the Air Logistics Center at which the IMU is managed, reflects the average number of days spent in transit from base to depot for each IMU (26:p.13-6). Adjusting all arrival dates within a quarter by the same amount would only have shifted the data and would not have yielded useful

information concerning actual failure dates. This alternative, therefore, was rejected.

Due to the fact that the actual failure dates are not readily available, it was assumed that the pattern of unserviceable arrivals at the depot accurately reflects the distribution of failures as they actually occurred.

Data Preparation

Arrival dates were extracted from the G078C type 1 records. These dates are located in columns 17 through 21 of the standard, eighty-column, single-card record (4:A5-1). Three files of data were established, one for each IMU. Each of these files was sorted chronologically in order to partition the data into base periods. Once sorted in this manner, multiple arrivals on a given date were indicated by multiple occurrences of that date on the file. Individual files for each base period were extracted from the three chronological master files.

Each of the base period files was then processed using a computer program developed by the authors. The program accomplished the following:

1. The frequency with which each date appeared on the file was recorded.
2. Dates which did not appear on the file were recorded with a frequency of zero.

3. All dates occurring on Saturday and Sunday were eliminated from the file.¹

The resulting data files were in the format required for the analysis procedure described in the following section.

Research Design

The hypothesis that the number of arrivals per day in each base period follows a Poisson distribution was tested using SIMFIT, a computer program on the CREATE² system. SIMFIT, written in FORTRAN IV, uses a histogram construction technique to compare theoretical distributions to data supplied by the user.³

Two nonparametric Goodness-of-Fit tests, the Kolmogorov-Smirnov One Sample (K-S) and the Chi-Square (χ^2), are employed in SIMFIT to determine whether a given theoretical distribution adequately describes the user's

¹With the exception of four arrivals which occurred on weekends in the KT-73 master file, no arrivals were found on either Saturday or Sunday in any of the data files. Since arrivals at the depot could not be expected on weekends, it did not appear reasonable to include weekend dates since they accounted for over 25 percent of the dates in a base period.

²CREATE is an acronym for Computer Resources for Engineering, Analysis, Training, and Education. The system is located at Wright-Patterson AFB OH and supports AFLC and Air Force Institute of Technology (AFIT) activities.

³Appendix A provides a brief description of the SIMFIT computer program.

data. These two particular tests were selected for inclusion in the program because of their distribution-free property. The K-S test is preferred over the χ^2 test because of its relatively greater power in determining goodness-of-fit (25:Ch.2). One limiting factor of the K-S test is that it is not applicable when the population parameters cannot be specified in advance of the test. The χ^2 test should normally be used when the population parameters must be estimated from sample data (12:86).

SIMFIT determines the mean and variance of the input data and uses them to calculate the parameter(s) of the distribution being tested unless the user specifies the parameter(s). In this research, the data for each base period represented a subset of the population rather than a sample from the population. Therefore, the mean and variance of the data were considered to be population parameters rather than estimates derived from a sample, and it was considered appropriate to use the K-S test.

In addition, SIMFIT assumes, for the purposes of the χ^2 test, the parameters are *always* estimated from a sample and reduces the degrees of freedom for the test statistics commensurately (1). For these reasons, the K-S test was used exclusively as the measure of the goodness-of-fit for this research.

The results of the K-S test were used to accept or reject a particular distribution as the underlying distribution for the arrivals in a given base period. SIMFIT offers a choice of three levels of confidence for the G-O-F tests: 90 percent, 95 percent, and 99 percent (25:2). A level of 90 percent was chosen as appropriate because it is the most conservative of the three. This means that $\alpha=.10$ offers the greatest opportunity available to reject a particular distribution for a given set of data.

The statistical hypothesis tested is stated as follows:

Null $H_0: x \sim$ the hypothesized distribution
 with the appropriate parameter(s).

Alternate $H_1: x \not\sim$ the hypothesized distribution
 with the appropriate parameter(s).

where x is the number of arrivals per day. The null hypothesis was rejected at the 90 percent level of confidence using the K-S G-O-F test if the calculated value of D (the K-S statistic) was greater than the critical value of D . The criterion for identifying the theoretical distribution that best describes the distribution of

arrivals for each IMU population was established as the distribution that passed the K-S test for the greatest number of base periods.

Research Assumptions

The following assumptions apply to this research:

1. Individual IMU failures are independent, but the rate at which failures occur may change over time.

2. The data extracted from the G078C data base are accurate.

3. SIMFIT reliably fits known distributions to sample data and accurately estimates the parameters of those distributions.

4. The distribution of unserviceable IMU arrivals at the depot accurately reflects the occurrence of IMU failures.

5. The subset of a population may be treated as a discrete population for statistical purposes.

Research Limitations

The following limitations to the research effort have been identified:

1. There has been no attempt to establish that the three IMUs studied are representative of all aircraft IMUs, therefore, the findings of this research should not be generalized without further corroboration.

2. Findings are limited to an indication of whether there is a problem, in terms of the accuracy of the computation, associated with the using of the Poisson instead of a more appropriate distribution. No attempt has been made to assess the number of items involved, nor to determine the costs associated with rectifying any problem.

CHAPTER III

ANALYSIS AND FINDINGS

The methodology for determining the distribution that best fits the failure data included in each of the base period data files was discussed in the last chapter. The approach taken was first to determine whether, in fact, the Poisson distribution passed the K-S test for any of the base periods. Once that was done, other distributions that might describe the data were examined using the SIMFIT computer program.

The Poisson Distribution

The first hypothesis addressed was that the occurrences of failure do not follow a Poisson distribution. This hypothesis was first examined with respect to the FLIP IMU. A complete analysis of each of the sixteen base periods revealed that none of these subsets of data could be described as the Poisson distribution. In most cases, the difference between the computed value of the K-S test statistic (MAX D) and the critical value (D_{crit}) was substantial. To illustrate the general lack of fit, the values of the test statistics for the tests on the Poisson distribution for the FLIP IMU are summarized in Table 1. The fact that the data for each

TABLE 1

VALUES OF THE TEST STATISTIC COMPUTED FOR THE SIMFIT
K-S TEST IN THE POISSON DISTRIBUTION ANALYSIS

($D_{crit} = 0.053$ for $\alpha = 0.10$)

Base Period	Computed Value of Test Statistic		
	FLIP	LN-15	KT-73
71-3	0.064
71-4	0.070
72-1	0.081	...	0.222
72-2	0.075	...	0.206
72-3	0.076	...	0.208
72-4	0.082	...	0.227
73-1	0.090	...	0.224
73-2	0.103	...	0.216
73-3	0.113	...	0.216
73-4	0.110	...	0.215
74-1	0.120	0.106	0.217
74-2	0.123	0.114	0.225
74-3	0.131	0.121	0.237
74-4	0.139	0.133	0.238
75-1	0.150	0.151	0.246
75-2	0.156	0.157	0.244

base period failed the G-O-F test and that, with only a few exceptions, the failure margin was substantial, indicated that the Poisson distribution could not be accepted as a reasonable descriptor for any of the FLIP failure data.

The test statistics resulting from the SIMFIT analyses of the LN-15 and KT-73 data are also shown in Table 1. As can be readily observed in all cases, the differences between the computed value of the test statistic and the critical value are relatively large, indicating a very poor fit of the Poisson distribution to the base period data. The cumulative result of these thirty-six rejections of the statistical hypotheses (at $\alpha=0.10$) was that the first research hypothesis could be conclusively supported. That is, for these three inertial measurement units, it can be concluded that the daily occurrences of failure do not follow a Poisson distribution.

The Negative Binomial Distribution

At this point in the research, the quest to find a more likely candidate for the underlying failure distribution was begun. The previous SIMFIT products were helpful in this effort. Among the statistics computed in the program for each set of data were the arithmetic mean, the variance, and the variance-to-mean (V/M) ratio.

The V/M ratio was the key to finding a suitable distribution to describe the IMU failure data.

Three theoretical distributions are loosely related through the V/M ratio. These are the Poisson, the binomial, and the negative binomial. The latter two are members of the Bernoulli family of distributions. Considering only these three distributions, for the moment, the following properties can be used as a guide in choosing between them (13:95):

Negative binomial V/M ratio > 1

Binomial V/M ratio < 1

Poisson V/M ratio = 1

Tables 2, 3, and 4 show, by base period, the mean, variance, and V/M ratio of the daily failures for each IMU as computed by SIMFIT.

The V/M ratio for each set of base period data was consistently greater than one. The entire data base was, therefore, analyzed by SIMFIT using the negative binomial as the hypothesized distribution. The results of this effort are shown in Tables 5, 6, and 7 for each IMU by base period. Of the thirty-six data sets examined (sixteen for the FLIP IMU, six for the LN-15 IMU, and fourteen for the KT-73 IMU), twenty-two were successfully fitted with a negative binomial distribution at $\alpha=0.10$.

For each base period, the SIMFIT program computed the arithmetic mean and variance of data. Using these

TABLE 2
DESCRIPTIVE STATISTICS BY BASE PERIOD
FLIP FAILURE DATA

Base Period	Mean	Variance	V/M Ratio
71-3	0.548	0.755	.1.378
71-4	0.566	0.830	1.466
72-1	0.643	1.000	1.555
72-2	0.675	1.014	1.502
72-3	0.688	1.051	1.527
72-4	0.710	1.107	1.559
73-1	0.757	1.190	1.572
73-2	0.791	1.357	1.716
73-3	0.829	1.510	1.822
73-4	0.849	1.603	1.888
74-1	0.839	1.595	1.901
74-2	0.839	1.621	1.932
74-3	0.837	1.656	1.979
74-4	0.834	1.719	2.061
75-1	0.807	1.761	2.182
75-2	0.793	1.788	2.254

TABLE 3
DESCRIPTIVE STATISTICS BY BASE PERIOD
LN-15 FAILURE DATA

Base Period	Mean	Variance	V/M Ratio
74-1	0.692	1.212	1.752
74-2	0.757	1.327	1.753
74-3	0.797	1.404	1.762
74-4	0.864	1.578	1.826
75-1	0.956	1.924	2.012
75-2	1.029	2.076	2.018

TABLE 4
DESCRIPTIVE STATISTICS BY BASE PERIOD
KT-73 FAILURE DATA

Base Period	Mean	Variance	V/M Ratio
72-1	1.378	4.052	2.941
72-2	1.477	4.174	2.826
72-3	1.671	4.670	2.795
72-4	1.758	5.036	2.864
73-1	1.743	4.748	2.724
73-2	1.735	4.580	2.640
73-3	1.647	4.277	2.597
73-4	1.636	4.227	2.584
74-1	1.586	3.940	2.484
74-2	1.595	4.672	2.515
74-3	1.558	3.912	2.511
74-4	1.501	3.744	2.494
75-1	1.501	3.889	2.591
75-2	1.478	3.748	2.536

TABLE 5
 NEGATIVE BINOMIAL SIMFIT RESULTS FOR THE
 FLIP FAILURE DATA BY BASE PERIOD
 $(D_{crit} = 0.053 \text{ for } \alpha = 0.10)$

Base Period	Max D	K-S Test	Negative Binomial Parameters	
			m	p
71-3	0.084	Failed	1	0.726
71-4	0.044	Passed	1	0.682
72-1	0.037	Passed	1	0.643
72-2	0.081	Failed	1	0.666
72-3	0.076	Failed	1	0.655
72-4	0.068	Failed	1	0.642
73-1	0.076	Failed	1	0.636
73-2	0.026	Passed	1	0.582
73-3	0.018	Passed	1	0.549
73-4	0.026	Passed	1	0.529
74-1	0.025	Passed	1	0.526
74-2	0.037	Passed	1	0.518
74-3	0.059	Failed	1	0.505
74-4	0.088	Failed	1	0.485
75-1	0.138	Failed	1	0.458
75-2	0.164	Failed	1	0.444

TABLE 6

NEGATIVE BINOMIAL SIMFIT RESULTS FOR THE
LN-15 FAILURE DATA BY BASE PERIOD

($D_{crit} = 0.053$ for $\alpha = 0.10$)

Base Period	Max D	K-S Test	Negative Binomial Parameters	
			m	p
74-1	0.037	Passed	1	0.571
74-2	0.017	Passed	1	0.571
74-3	0.028	Passed	1	0.568
74-4	0.027	Passed	1	0.548
75-1	0.038	Passed	1	0.497
75-2	0.022	Passed	1	0.495

TABLE 7

NEGATIVE BINOMIAL SIMFIT RESULTS FOR THE
KT-73 FAILURE DATA BY BASE PERIOD

($D_{crit} = 0.053$ for $\alpha = 0.10$)

Base Period	Max D	K-S Test	Negative Binomial Parameters	
			m	p
72-1	0.134	Failed	1	0.340
72-2	0.081	Failed	1	0.354
72-3	0.038	Passed	1	0.358
72-4	0.050	Passed	1	0.349
73-1	0.031	Passed	1	0.367
73-2	0.030	Passed	1	0.379
73-3	0.028	Passed	1	0.385
73-4	0.029	Passed	1	0.387
74-1	0.043	Passed	1	0.403
74-2	0.043	Passed	1	0.398
74-3	0.049	Passed	1	0.398
74-4	0.060	Failed	1	0.401
75-1	0.083	Failed	1	0.386
75-2	0.078	Failed	1	0.394

statistics, the parameters, m and p , of a negative binomial distribution were computed. The theoretical distribution, thus described, was then compared to the data and analyzed using the K-S G-O-F test. The parameters of the distribution used in each test are also shown in the tables cited above.

Complete negative binomial test results, a detailed numerical description of the data, and the associated data histogram for each base period for each IMU, are located in appendixes as follow:

Appendix	IMU
B	FLIP
C	LN-15
D	KT-73

The tables and histogram presented in these appendixes are products of the SIMFIT computer program. Note that some of the tables in Appendix D, the KT-73 analyses, have the tail of the distribution truncated such that the cumulative probability does not reach a value of 1.000. This was done to facilitate the placement of the tables on the page and does not, in any way, affect the test results.

Other Distributions

Having found that the negative binomial distribution adequately described a majority (61.1 percent) of the base period data sets, the research effort was extended to the investigation of other theoretical distributions. Since many of the common statistical distributions are contained in the SIMFIT computer program, it was relatively easy to compare each of them to any given set of data.

Rather than analyzing every data set, which would have required a large amount of computer time, it was decided to sample from the base periods for each IMU population. Any distributions which appeared to closely describe the data could then be investigated further. The base periods for examination were randomly selected for each IMU. Since the FLIP and KT-73 IMUs had a relatively large number of base periods from which selection could be made, three were chosen from each of these populations. Only two base periods were chosen for the LN-15 IMU.

Tables 8, 9, and 10 contain the K-S test results (MAX D values) from these analyses. Note that none of the test statistics except some of those for the negative binomial runs, are less than the critical D value ($D_{crit} = 0.053$). The negative binomial K-S test results which correspond exactly to those presented earlier, are

TABLE 8
 K-S TEST STATISTICS FOR ALL DISTRIBUTIONS AVAILABLE
 IN SIMFIT FOR THE FLIP FAILURE DATA
 $(D_{crit} = 0.053 \text{ for } \alpha = 0.10)$

Distribution	Test Statistics		
	FL-72-2	FL-73-2	FL-74-3
Erlang	• • •	• • •	• • •
Weibull	0.412	0.439	0.433
Gamma	0.414	0.441	0.434
Pearson XI	0.220	0.204	0.183
Lognormal	0.296	0.263	0.268
Normal	• • •	0.127	0.170
Uniform	0.306	0.313	0.345
Beta	• • •	• • •	• • •
Triangular	0.601	0.573	0.561
Poisson	0.075	0.103	0.131
Negative Binomial	0.081	0.026	0.059
Positive Binomial	• • •	• • •	• • •

TABLE 9

K-S TEST STATISTICS FOR ALL DISTRIBUTIONS AVAILABLE
IN SIMFIT FOR THE LN-15 FAILURE DATA

($D_{crit} = 0.053$ for $\alpha = 0.10$)

Distribution	Test Statistics	
	LN-74-2	LN-74-4
Erlang	• • •	• • •
Weibull	0.414	0.440
Gamma	0.415	0.443
Pearson XI	0.192	0.178
Lognormal	0.298	0.273
Normal	0.142	0.160
Uniform	0.332	0.325
Beta	• • •	• • •
Triangular	0.573	0.546
Poisson	0.114	0.133
Negative Binomial	0.017	0.027
Positive Binomial	• • •	• • •

TABLE 10

K-S TEST STATISTICS FOR ALL DISTRIBUTIONS AVAILABLE
IN SIMFIT FOR THE KT-73 FAILURE DATA

($D_{crit} = 0.053$ for $\alpha = 0.10$)

Distribution	Test Statistics		
	KT-72-2	KT-73-2	KT-75-2
Erlang	0.088	0.097	0.113
Weibull	0.548	0.543	0.498
Gamma	0.556	0.552	0.507
Pearson XI	0.121	0.127	0.124
Lognormal	0.168	0.152	0.206
Normal	0.209	0.289	0.241
Uniform	0.376	0.332	0.348
Beta	• • •	• • •	• • •
Triangular	0.459	0.396	0.414
Poisson	0.206	0.211	0.244
Negative Binomial	0.081	0.030	0.078
Positive Binomial	• • •	• • •	• • •

shown for comparison with the other twelve distributions. When, in the tables, no value is indicated for a particular distribution, the data were out of limits for the theoretical distribution and no SIMFIT analysis could be performed. On the basis of this sample, it was concluded that none of the distributions examined, except the negative binomial, could be expected to describe the failure data for these IMUs. Research in this area was, then, discontinued.

Summary of Findings

This phase of the research addressed the hypothesis that, for each of the inertial measurement units under study, the daily occurrences of failure do not follow a Poisson distribution. In attempting to fit the Poisson to data in sixteen base periods for the FLIP unit, six base periods for the LN-15 unit, and fourteen base periods for the KT-73 unit, not a single case was identified in which that distribution could be accepted as a description of the data. The first research hypothesis is supported by these findings.

The negative binomial distribution was found to fit data in seven of sixteen base periods for the FLIP unit, all six base periods for the LN-15 unit, and nine of fourteen base periods for the KT-73 unit. No other distributions were found to fit data from a sample of

base periods for each IMU. Therefore, according to the criterion established for this research, it was concluded that the negative binomial is the best distribution to describe the daily occurrences of failure for each of the three IMUs.

CHAPTER IV

APPLICATION OF FINDINGS

The second phase of this research considered the use of a negative binomial demand distribution in the existing requirements computation process. The last two research objectives identified in Chapter I were addressed at this point. The first objective was to determine how to modify the D041 computation to incorporate the identified demand distribution. The other was to determine whether the computation would be sensitive to the modification.

This chapter begins with a review of some of the theory behind the Variable Safety Level (VSL) feature of the D041 computation. A discussion of the complexities surrounding incorporation of a negative binomial demand distribution in VSL follows. These complexities precluded performance of a sensitivity analysis to meet the final objective of the research.

Computation of Requirements

The Variable Safety Level (VSL) feature of the D041 requirements computation is based upon the METRIC model.

METRIC is a model for determining both requirements and distribution of recoverable items in a two-echelon inventory system. The objective of the model is to determine the base and depot stock levels which minimize total expected backorders for a specific set of items and bases subject to an investment constraint A backorder occurs at a point in time at which there is an unsatisfied demand at base level [17:6].

Backorder Computation. Most aircraft recoverable spare parts are included in a class of items having a high unit cost or a low demand. The optimal inventory policy associated with this class of items is "to place a reorder immediately whenever a demand occurs [11:1]." With this policy, the state⁴ of the inventory at a given time is defined by the number of units in resupply. Units that have been reordered (requisitioned from the depot or due in from base maintenance) are considered to be in resupply until delivered to base supply in serviceable condition. When the number of items in resupply exceeds the spare (safety) stock that is in the system, there are backorders (11:2).

In order to determine the level of spare stock that yields the minimum expected backorders, the steady state⁵ probabilities for the number of units in resupply

⁴ State is variously defined as a specific measurable condition of a system (c:314) or as a specific value for the random variables of a stochastic process (6:582).

⁵ The concept of steady state comes from queueing theory. "In the steady state, probabilities are independent of time [6:468]." On the other hand, in the transient state, probabilities are dependent upon the initial

must be used. These probabilities are also known as the state probabilities, and can be alternatively expressed as the probabilities of the number of demands in a time interval of specified length. Expected backorders are computed by the formula:

$$B(s) = \sum_{x=s+1}^{\infty} (x-s)h(x)$$

where:

s is the stock level

$h(x)$ is the steady state probabilities of x units in resupply.

In VSL, $h(x)$ is a negative binomial probability distribution (7).

Logarithmic Poisson Demand. The literature identifies two different demand processes that have negative binomial state probabilities. The more thoroughly documented of the two processes is that in which demand is assumed to occur according to a logarithmic Poisson process. The logarithmic is one of a family of compound

conditions. For an introduction to queueing theory, see *Principles of Operations Research for Management*, Chapter 12 (6).

Poisson processes that are generalizations of the simple Poisson process introduced in Chapter I. With a compound Poisson process, *customers* arrive (i.e., place demands), according to a (simple) Poisson process. If each customer can demand more than one unit at a time, the number of *demands* occurring within a specified interval of time has a compound Poisson distribution. If customers are limited to demanding one unit at a time, demands occur according to a simple Poisson distribution (20:4). In either case, the distribution of time between events, batches of demand for the compound process or individual demands for the simple process, is exponential (11:4).

The logarithmic Poisson distribution is obtained by considering batches of demand where the number of batches [customer arrivals] follows a Poisson process and the number of demands has a logarithmic distribution [21:8].

The RAND literature cites a theorem regarding system performance under the inventory policy for recoverable items:

. . . if demand is Poisson, then the number of units in resupply in the steady state, x , is also Poisson for any distribution of resupply [times]. The Poisson state probability depends on the mean of the resupply distribution, but not on the distribution itself [11:2].

For a simple Poisson process, with mean *demand rate* (mean number of demands per interval of time), λ , and mean resupply time, T , the state probabilities are simple Poisson with rate λT (11:3). Similarly, for a compound Poisson

process with customer arrival rate, λ , and mean resupply time, T , the state probabilities are compound Poisson with rate λT (11:7). Sherbrooke demonstrated that the state probabilities derived from a logarithmic Poisson demand process can be expressed as a negative binomial distribution (20:12).

Bayesian Inference. In the same discussion, Sherbrooke acknowledged that "there are other non-compound Poisson processes that also yield negative binomial state probabilities [20:12]." One such process is "the probability distribution of demand, where time is broken into intervals of fixed length and demand is Poisson-distributed with period means selected from a gamma distribution [20:12-13]." This statement would be of only passing interest were it not for the concept of Bayesian inference that is prominent in the literature. Four RAND documents, RM-1413 (27), RM-4362-PR (9), RM-4720-PR (10), and RM-5076-PR (21), argue that Bayesian inference can be applied in demand analysis. The discussion that follows describes this application of Bayesian inference.

It is argued that observed mean demand for an item, x , is insufficient to determine the true mean demand for the item, θ . Using the Bayesian approach, "we can increase our knowledge of an item by analyzing the behavior of related items in the supply system [10:6]." If the

specified item is considered to be one of a large, finite group of items (i.e., the recoverable item inventory), each with a true mean demand, θ , there is a distribution of θ values for the whole group. The distribution of θ values becomes the Bayesian prior probability distribution (9:3). Since the true mean demands for the individual items are not known, the distribution of θ values must be estimated.

Estimation of the prior distribution requires that the form of the distribution be specified and that the distribution's parameters be estimated. The form of the prior distribution is chosen to reflect what is known about the inventory as a whole--that "most items have low demand while a few may have very high demand [9:5]." Therefore the distribution chosen should accommodate any nonnegative real value for θ and be skewed to the right. The data used to estimate the parameters of the prior distribution were identified as a cross section of observed demand. This set of data includes the total demand observed over a specified time period for each item in the inventory. It is desirable that the estimated distribution have at least two parameters "so that the first two moments of this prior distribution can be estimated from the cross-sectional data [9:5]."

The essence of the Bayesian approach is that:

. . . the system of inventory items provides the information for a prior distribution common to all items [and this information is combined] with the demand data on a specific item to give a posterior distribution for that item [10:7-8].

Several forms for the prior distribution were proposed in the literature, however, the gamma distribution was specified for the METRIC model. It should be recognized that when the prior distribution is assumed to be gamma and the demand distribution is assumed to be logarithmic Poisson, the posterior probabilities that can be computed are only approximations. However, when the demand distribution is assumed to be simple Poisson, the posterior probabilities can be computed exactly and yield a negative binomial distribution (21:31).

Implications of Research Findings

The fact that the VSL computation incorporates a negative binomial probability distribution to compute expected backorders could be a consequence of one of two lines of reasoning. One accepts the technique of Bayesian inference and assumes the demand distribution to be simple Poisson and the prior distribution to be gamma. The other rejects the technique of Bayesian inference and assumes the demand distribution to be logarithmic Poisson.

The research methodology specifically addressed the assumption that demand for three IMUs follows a simple Poisson distribution. This assumption was not supported by the research. It has been suggested, however, that the fact that the data were aggregated at daily intervals may have masked the existence of a simple Poisson demand process (18).

The assumption of a logarithmic Poisson demand process was not addressed because SIMFIT does not include a logarithmic (or any other compound) Poisson distribution. Although provisions are available for specifying additional distributions, doing so is a major programming and validation effort which could not be completed within the time constraints imposed on the research. However, a comment about this assumption can be made. Sherbrooke established that "any compound Poisson distribution with a positive, discrete compounding distribution has a variance that equals or exceeds its mean [20:5]." It will be recalled that the demand data for all of the base periods have variance-to-mean ratios greater than one (i.e., the variance exceeds the mean). While this fact does not necessarily imply that the demand distributions are compound Poisson, that possibility cannot be dismissed.

The conclusion that the demand distribution for the three IMUs is negative binomial presents a problem.

The literature does not indicate the distribution of the state probabilities associated with negative binomial demand distributions. It was beyond the present capabilities of the authors to identify the appropriate state probability distribution. Therefore, no analysis could be made of the sensitivity of the expected backorder computation to a substitution of distributions.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The conclusions drawn from the research on the failure data for the FLIP, LN-15, and KT-73 inertial measurement units are discussed in this final chapter. Each research hypothesis is addressed in turn. The chapter concludes with several recommendations for future research.

The First Research Hypothesis

The hypothesis first addressed in this research was that: *For each of the inertial measurement units under study, the daily occurrences of failure do not follow a Poisson distribution.* Statistical tests for goodness-of-fit of the Poisson were performed on failure data partitioned by base period. The Poisson distribution could not be fit to any of the base period data sets. These results strongly support this hypothesis.

Additional investigation indicated that the negative binomial distribution adequately described the data in 61.1 percent of the base periods. None of the other distributions available in SIMFIT fit any of the data. In consonance with the criterion stated at the outset of this research effort, it is concluded that the negative

binomial is the best distribution for describing the occurrences of failure for each of the IMUs studied.

The Second Research Hypothesis

The second hypothesis addressed was: *Spares computations are sensitive to the probability distribution that is assumed to describe the underlying failure pattern.* No conclusions can be drawn from this research that either support or refute this hypothesis because a sensitivity analysis could not be performed.

It was reported that the objective of the VSL computation is to determine the base and depot stock levels that minimize total expected backorders, subject to a monetary constraint. The sensitivity of this computation to a change in the demand distribution would be determined by comparing the optimal stock levels and the associated number of expected backorders that result from using different demand distributions. In order to perform the computations, it is necessary to identify the steady state probabilities for the number of items in resupply for the demand distributions under consideration. A review of the literature failed to reveal the state probabilities associated with a negative binomial demand distribution. Without this critical piece of information, the analysis was impossible.

Recommendations

It was concluded that, in the case of three IMUs, it is inappropriate to assume the existence of a simple Poisson demand distribution. Ideally, this research would have identified a modification to the D041 computation, specifically to the VSL segment, that incorporates a more appropriate demand distribution, the negative binomial. Without that modification, and subsequent comparison of its results with those based on the present assumption, no recommendations regarding the D041 can be made. However, the research findings do suggest some avenues for further research.

1. The assumption of a logarithmic Poisson demand distribution should be examined. Since the failure data in all base periods exhibited variances greater than means, one characteristic of this distribution is established. This research would require development of a logarithmic Poisson subroutine for SIMFIT. The type 1 records in the G078C data system identified the base at which each failure occurred, so identifying the distribution of customer arrivals and the distribution of demands per customer should not be difficult.

2. The avenue of research that appears to be most challenging is the identification of the state probability distribution associated with a negative binomial demand distribution. It will be recalled that queueing theory

provided some of the concepts on which METRIC, and later VSL, was based. Budnick et al., suggest that derivation of analytic solutions to queueing problems poses enormous problems to all but the most accomplished of mathematicians. They recommend obtaining the solution by simulation (6:439).

3. Research should be undertaken to determine whether the finding that demand is best described by a negative binomial distribution applies, as well, to other IMUs. That these IMUs are installed on aircraft with such diverse characteristics suggests that the finding may be generic to IMUs rather than attributable to some peculiarity of their operational environments.

4. The G078C system records much more data than was used in this research. One item that can be obtained from the data base is the number of hours the IMU operated before it failed. This type of data could be used in making an actuarial forecast of failures. Since the assumptions of the D041 computation seem to be violated, it may be more reasonable to adopt the actuarial technique, which is currently used by the Air Force only to develop aircraft engine requirements, rather than attempting to modify the D041. The efficacy of this approach, of course, would depend on whether these findings apply across-the-board to all IMUs or only to these three.

APPENDIXES

APPENDIX A
SIMFIT

SIMFIT is a computer program, written in FORTRAN IV, which is used to compare data to theoretical probability distributions. Each distribution available in the program is handled by a separate subroutine which operates independently from the main program and the other distribution subroutines. The following distributions are available in the SIMFIT program (1):

Cumulative
Erlang
Weibull
Gamma
Pearson XI
Lognormal
Normal
Uniform
Beta
Triangular
Poisson
Negative Binomial
Positive Binomial

In addition to the thirteen distributions listed above, the program provides for the inclusion of up to seven subroutines which must be written by the user to specify other theoretical distributions or empirical distributions of his own design.

Goodness-of-Fit Tests

The program employs both the Kolmogorov-Smirnov (K-S) and the Chi-Square (χ^2) tests for goodness-of-fit (G-O-F). The tests are used to determine whether the values of a sample can reasonably be thought to have

come from a population described by the selected theoretical distribution. The SIMFIT user should familiarize himself completely with the mechanics and theory behind each of these G-O-F tests prior to performing any analysis with SIMFIT.

It should be noted that SIMFIT uses each test exactly as it is used in classical nonparametric statistics. The K-S test treats each observation separately and does not cause a loss of information by combining cells which have small numbers of observations. The χ^2 test, on the other hand, combines cells which contain less than five observations and reduces the degrees of freedom used in determining the χ^2 statistic accordingly.

SIMFIT has statistical tables for both G-O-F tests written directly into the program, but only the values for three confidence levels are included: 90, 95, and 99 percent. If the user desires to use a different confidence level, he must change these tables accordingly. This is done by revising the appropriate lines of coding to reflect the desired values (1).

Attractive Features of SIMFIT

Since the program is written in FORTRAN IV, it can be easily extended and modified to fit the specific needs of the user. Care must be taken, however, to investigate fully the impact of a change in SIMFIT on other parts of

the program. For this reason, the user should become thoroughly familiar with the program listing, which is reasonably well documented, before attempting to modify the coding.

The output is formatted in such a manner that it will fit easily into an 8-1/2 by 11 inch format. This feature is especially useful for the thorough documentation of a research effort.

SIMFIT provides an intermediate printout of some of the input variables as well as some statistical information drawn from the data. Items included in the statistics are the mean, standard deviation, variance, variance-to-mean ratio, and the third and fourth moments about the mean. This information is valuable in accurately describing and identifying the data.

As a result of the computer analysis, specific numerical information is printed out for each cell of the data histogram. The user will find this information essential for detailed data analysis.

In addition to the numerical information provided, the program produces a histogram of the data values. For convenience in picturing the shape of the theoretical distribution being investigated, an approximation of the distribution is superimposed onto the data histogram. While the whole picture is not graphically precise, it does

provide the user with a base from which he can make intuitive interpretations of the distribution as it relates to his data.

A separate subroutine is used to read in data to SIMFIT. This enables the researcher to input data from cards, tape, or a time-sharing file with a minimum of data manipulation. The data may be read in either a formatted or free-field mode depending on the desires or needs of the user.

The program incorporates the flexibility for the user to: (1) specify the parameters of the distribution he wishes to test, or (2) allow SIMFIT to estimate distribution parameters from the data. The former option allows the user to examine his data with respect to a specific member of a family of distributions. When the latter option is selected, care must be taken to note that use of the K-S test may not provide reliable results when population parameters are estimated from sample data (12:86). The χ^2 G-O-F test is always used as if the parameters of the distribution have been estimated yielding a χ^2 statistic which indicates a loss of one degree of freedom for each distribution parameter.

Recent Modifications to SIMFIT

In January 1977, the RAND Corporation completed a modification to SIMFIT. Several changes were made to

the original program which include the incorporation of two distributions not in earlier versions: the negative and positive binomial distributions. Other modifications were made to facilitate the input of data, format the output in a more usable form, and correct some of the computational problems which had been identified in earlier usage of the program. The result is a flexible, user-oriented, rapid, and relatively easy to use tool for analyzing the distribution of large or small sets of data.

APPENDIX B
NEGATIVE BINOMIAL TEST RESULTS
FOR THE FLIP IMU

TRIP 140 -- BASE PERIOD 71-3

KOLMOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
NEG BINOMIAL

SAMPLE AVE = 0.548

SAMPLE STD = 0.869
MAX F2OR = 0.024 PROB (0.10, NUM 572) = 0.053
(IF ERROR IS LE PROR ACCEPT THE DISTRIBUTION)

CFIL NO.	X	CHI	PEP SFLL	ACTUAL	THEORY	FREQUENCY	ARSOLUTF	CHI	SQUARE
1	0	0.726	0.726	335	378.9	0.084	5.0772		
2	1.0	0.925	0.199	114	103.9	0.065	0.9839		
3	2.0	0.979	0.055	53	28.5	0.018	71.0900		
4	3.0	0.994	0.015	15	7.8	0.004	6.6138		
5	4.0	0.998	0.004	4	2.1	0.000			
6	5.0	1.000	0.001	1	0.6	0.000			
7	6.0	1.000	0.000	0	0.2	0.000			
8	7.0	1.000	0.000	0	0.0	0.000			
9	8.0	1.000	0.000	0	0.0	0.000			
10	9.0	1.000	0.000	0	0.0	0.000			
11	10.0	1.000	0.000	0	0.0	0.000			
12	11.0	1.000	0.000	0	0.0	0.000			
13	12.0	1.000	0.000	0	0.0	0.000			
14	13.0	1.000	0.000	0	0.0	0.000			
15	14.0	1.000	0.000	0	0.0	0.000			
							CHI SQ	2.710	SUM 33.765
							P =	0.726	H = 1

FLIP 1411 -- BASF PERIOD 71-3

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- CELL DENSITY
- FITTED TO THE NEG BINOMIAL
- * - CUMULATIVE DENSITY MATCHES THEORETICAL

FLIP IMU -- BASE PERIOD 71-4

KOLMOGOROV-SHIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
NEG BINOMIAL

SAMPLE AVF = 0.566

SAMPLE STD = 0.911
MAX ERROR = 0.044 PROB (0.10, NORM 521) = 0.053
(IF ERROR IS LE PROB ACCEPT THE DISTRIBUTION)

CFLL NO.	X	CHI	PROBABILITY PER CFLL	FREQUENCY	ACTUAL	THEORY	ARSONUTF	FERROR	CHI SQUARE
1	0.0	0.582	0.682	332	355.1	0.044	1.5053		
2	1.0	0.899	0.217	115	113.1	0.041	0.0331		
3	2.0	0.968	0.069	53	36.0	0.008	0.0296		
4	3.0	0.990	0.022	13	11.5	0.005	0.0065		
5	4.0	0.997	0.007	5	3.6	0.002			
6	5.0	0.999	0.002	3	1.2	0.001			
7	6.0	1.004	0.001	0	0.4	0.000			
8	7.0	1.000	0.000	0	0.1	0.000			
9	8.0	1.000	0.000	0	0	0.000			
10	9.0	1.000	0.000	0	0	0.000			
11	10.0	1.000	0.000	0	0	0.000			
12	11.0	1.000	0.000	0	0	0.000			
13	12.0	1.000	0.000	0	0	0.000			
14	13.0	1.000	0.000	0	0	0.000			
15	14.0	1.000	0.000	0	0	0.000			
							CHI SQ	4.600	SHY 11.309

P = 0.682 H = 1

FLIP INH -- RASE PERIOD 71-4

HISTOGRAM OF DATA AND CURVF APPROXIMATION

LEGEND:

- ! - CELI DFNSITY
- * - FITTED TO THE NEG BINOMIAL
- CUMULATIVE DFNSITY MATCHES THE OPTICAL

FLIP INII -- BASIC PERIOD 72-1

KOLMOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
NFG BINOMIAL

SAMPLE AVF = 0.643

SAMPLE STD = 1.000		PROB (0.10 , NUM 521) = 0.053	
(IF FREQ IS IF PPN ACCEPT THE DISTRIBUTION)			
CFIL NO.	X	CHI	PER CFLL
1	0	0.643	0.643
2	1.0	0.973	0.229
3	2.0	0.955	0.082
4	3.0	0.984	0.029
5	4.0	0.994	0.010
6	5.0	0.998	0.004
7	6.0	0.999	0.001
8	7.0	1.000	0.000
9	8.0	1.000	0.000
10	9.0	1.000	0.000
11	10.0	1.000	0.000
12	11.0	1.000	0.000
13	12.0	1.000	0.000
14	13.0	1.000	0.000
15	14.0	1.000	0.000
			CHI SO 4.600 SUM 4.278
			P = 0.643 N = 1

FIGURE 141 -- RAST PERIOD 72-1

HISTOGRAM OF DATA AND CURVE APPROXIMATION
 LEGEND:
 I - CDFL DENSITY
 * - FITTED TO THE NFG BINOMIAL
 • - CUMULATIVE DENSITY MATCHES THEORETICAL

FILE 141 -- BASE PERIOD 72--?

KOLMOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
BFG BINOMIAL

SAMPLE AVF = 0.675

N0.	X	CFIL	PROBABILITY	FRDIFNCY	ABSOLUTE		CHI	SQUARE
					CUM	PFR CFIL		
1	0.	0.666	0.666	304	346.3	0.081	5.1622	
2	1.0	0.898	0.222	131	115.7	0.052	2.0277	
3	2.0	0.963	0.074	52	38.6	0.026	4.6132	
4	3.0	0.988	0.025	20	12.9	0.013	3.8919	
5	4.0	0.996	0.008	9	4.3	0.004		
6	5.0	0.999	0.003	4	1.4	0.001	9.1233	
7	6.0	1.000	0.001	0	0.5	0.000		
8	7.0	1.000	0.000	0	0.2	0.000		
9	8.0	1.000	0.000	0	0.1	0.000		
10	9.0	1.000	0.000	0	0.0	0.000		
11	10.0	1.000	0.000	0	0.0	0.000		
12	11.0	1.000	0.000	0	0.0	0.000		
13	12.0	1.000	0.000	0	0.0	0.000		
14	13.0	1.000	0.000	0	0.0	0.000		
15	14.0	1.000	0.000	0	0.0	0.000		
					CHI SQ	4.600	SUM 74.818	

P = 0.666 H = 1

FLIP INI -- BASF PERIOD 79-->

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- 1 - CELL DENSITY
- 2 - FITTED TO THE BINOMIAL
- 3 - CUMULATIVE DENSITY MATCHES THEORETICAL

FILE 140 -- BASE PERIOD 72-3

KOLMOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
HIFC RATIONAL

SAMPLE AVE = 0.688

SAMPLE STD = 1.025
MAX ERROR = 0.076 PPNB (0.10, NUM 520) = 0.054
(IF ERROR IS LE PROB ACCEPT THE DISTRIBUTION)

CFL	No.	PROBABILITY		FREQUENCY		ABSOLUTE	CHI
		CHI	PFR	CFL	ACTUAL	THEORY	ERROR
1	0.	0.655	0.655	301	340.6	0.076	4.6018
2	1.0	0.881	0.226	135	117.5	0.042	2.6031
3	2.0	0.959	0.078	48	40.5	0.028	1.3714
4	3.0	0.986	0.027	21	14.0	0.015	3.5146
5	4.0	0.995	0.009	11	4.8	0.003	
6	5.0	0.998	0.003	4	1.7	0.002	11.1576
7	6.0	0.999	0.001	0	0.6	0.001	
8	7.0	1.000	0.000	0	0.2	0.000	
9	8.0	1.000	0.000	0	0.1	0.000	
10	9.0	1.000	0.000	0	0.0	0.000	
11	10.0	1.000	0.000	0	0.0	0.000	
12	11.0	1.000	0.000	0	0.0	0.000	
13	12.0	1.000	0.000	0	0.0	0.000	
14	13.0	1.000	0.000	0	0.0	0.000	
15	14.0	1.000	0.000	0	0.0	0.000	
							CHI SO 4.600 SIM 23.243

P = 0.655 H = 1

FIGURE 141 -- BASE PERIOD 72-3

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:
I - CDFL DENSITY
• - FITTED TO THE NEG BINOMIAL
* - CUMULATIVE DENSITY MATCHES THEORETICAL.

FILE IAU -- BASE PERIOD 72-4

KULAGOROV-SVIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
HEG BINOMIAL

SAMPLE AVF = 0.710

CELL NO.	Y	CHI PER CELL	FREQUENCY	ACTUAL THEORY	ABSOLUTE ERROR	CHI SQUARE
1	0.	0.642	0.642	299	334.5	0.068
2	1.0	0.872	0.230	133	119.7	0.043
3	2.0	0.954	0.082	52	42.9	0.025
4	3.0	0.984	0.029	29	15.3	0.016
5	4.0	0.994	0.011	12	5.5	0.004
6	5.0	0.998	0.004	5	2.0	0.002
7	6.0	0.999	0.001	0	0.7	0.001
8	7.0	1.000	0.000	0	0.3	0.000
9	8.0	1.000	0.000	0	0.1	0.000
10	9.0	1.000	0.000	0	0.0	0.000
11	10.0	1.000	0.000	0	0.0	0.000
12	11.0	1.000	0.000	0	0.0	0.000
13	12.0	1.000	0.000	0	0.0	0.000
14	13.0	1.000	0.000	0	0.0	0.000
15	14.0	1.000	0.000	0	0.0	0.000
						CHI SQ 4.600 SUM 16.281

P = 0.642 H = 1

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- 1 - CELL DEMAND
- - FITTED TO THE WFG RATIONAL
- * - CUMULATIVE DENSITY HATCHES THEORETICAL

KULMAGOROV-SMIRNOV ANALYSIS
 COMPUTING THE VALUE OF CFDIS GENERATED FOR THE
 NEW POLYNOMIAL

SAMPLE AVF = 0.757

SAMPLE STD = 1.091 P009 (0.10, NWH 522) = 0.053
 MAX ERROR = 0.076 (IF FRROR IS LE PROR ACCPT THE DISTRIBUTION)

CDFL	PROBABILITY	FREQUENCY	ABSOLUTE	CHI			
No.	X	CH4	PFR CDFL	ACTUAL	THEORY	FPROR	SQARF
1	0.	0.635	0.636	292	331.9	0.076	4.7906
2	1.0	0.867	0.852	131	120.9	0.057	0.8477
3	2.0	0.957	0.984	59	44.0	0.028	5.0922
4	3.0	0.982	0.931	19	16.0	0.023	0.5479
5	4.0	0.994	0.011	16	5.8	0.003	17.6711
6	5.0	0.998	0.004	5	2.1	0.002	
7	6.0	0.999	0.001	0	0.8	0.001	
8	7.0	1.000	0.001	0	0.3	0.000	
9	8.0	1.000	0.000	0	0.1	0.000	
10	9.0	1.000	0.000	0	0.0	0.000	
11	10.0	1.000	0.000	0	0.0	0.000	
12	11.0	1.000	0.000	0	0.0	0.000	
13	12.0	1.000	0.000	0	0.0	0.000	
14	13.0	1.000	0.000	0	0.0	0.000	
15	14.0	1.000	0.000	0	0.0	0.000	
				CHI 50	4.600	SUM	26.949

P = 0.636 N = 1

FILIP 140 -- BASE PERIOD 73-1

FLIP 141 -- BASE PERIOD 73-2

KOLMOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
NEG BINOMIAL

SAMPLE AVE = 0.791

SAMPLE STD = 1.165
MAX ERROR = 0.026 PROB (.0.10, NUM 521) = 0.053
(IF ERROR IS LE PROB ACCEPT THE DISTRIBUTION)

CELL No.	X	CUM PER CELL	FREQUENCY	ACTUAL THEORY	ABSOLUTE ERROR	CHI SQUARE
1	0.	0.582	0.582	290	303.4	0.026
2	1.0	0.926	0.243	131	126.7	0.017
3	2.0	0.927	0.102	55	52.9	0.013
4	3.0	0.970	0.042	19	22.1	0.019
5	4.0	0.987	0.018	18	9.2	0.003
6	5.0	0.995	0.007	6	3.9	0.001
7	6.0	0.999	0.003	2	1.6	0.002
8	7.0	0.999	0.001	0	0.7	0.001
9	8.0	1.000	0.001	0	0.3	0.000
10	9.0	1.000	0.000	0	0.1	0.000
11	10.0	1.000	0.000	0	0.0	0.000
12	11.0	1.000	0.000	0	0.0	0.000
13	12.0	1.000	0.000	0	0.0	0.000
14	13.0	1.000	0.000	0	0.0	0.000
15	14.0	1.000	0.000	0	0.0	0.000
						CHI SQ 6.750 SUM 10.739
						P = 0.582 H = 1

FILE 141 -- BASE PERIOD 73-2

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- CELL DENSITY
- FITTED TO THE NEG. BINOMIAL
- * - CUMULATIVE DENSITY MATCHES THEORETICAL

FILE TH.1 -- BASE PERIOD 73-3

KOLMOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THF
FOR RATIONAL

SAMPLE AVF = 0.829

CFILE No.	X	CUH	PFR CELL	PROBABILITY		THEORY	ACTUAL	ABSOLUTE ERROR	CHI SQUARE
				FREQUENCY	FREQUENCY				
1	0.	0.549	0.549	286	285.9	0.000	0.000	0.0001	
2	1.0	0.796	0.748	133	129.0	0.008	0.008	0.1231	
3	2.0	0.908	0.112	52	58.2	0.004	0.004	0.6652	
4	3.0	0.959	0.050	19	26.3	0.018	0.018	2.0147	
5	4.0	0.981	0.023	21	11.9	0.000	0.000	7.0477	
6	5.0	0.992	0.010	7	5.4	0.003	0.003	0.5078	
7	6.0	0.996	0.005	2	2.4	0.002	0.002		
8	7.0	0.998	0.002	1	1.1	0.000	0.000		
9	8.0	0.999	0.001	0	0.5	0.001	0.001		
10	9.0	1.000	0.000	0	0.2	0.000	0.000		
11	10.0	1.000	0.000	0	0.1	0.000	0.000		
12	11.0	1.000	0.000	0	0.0	0.000	0.000		
13	12.0	1.000	0.000	0	0.0	0.000	0.000		
14	13.0	1.000	0.000	0	0.0	0.000	0.000		
15	14.0	1.000	0.000	0	0.0	0.000	0.000		
						CHI SQ	6.256	SUM	10.359

P = 1.549 H = 1

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:
 I - CELL DENSITY
 * - FITTED TO THE NGC RINGMIL
 * - CUMULATIVE DENSITY MATCHES THEORETICAL

FILN 141 -- BASIC PERIOD 73-4

KOLMOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
BASIC POLYNOMIAL

SAMPLE AVE = 0.849

CFLI No.	X CUM PFR CELL	PROBABILITY	FRQNCY	Absolute Error	CHI SQUARE
1	0.0	0.529	0.529	281	276.4
2	1.0	0.779	0.249	139	130.0
3	2.0	0.896	0.117	51	61.2
4	3.0	0.951	0.055	20	28.8
5	4.0	0.977	0.026	21	13.5
6	5.0	0.987	0.012	6	6.4
7	6.0	0.995	0.006	2	3.0
8	7.0	0.998	0.003	1	1.4
9	8.0	0.999	0.001	0	0.7
10	9.0	0.999	0.001	1	0.3
11	10.0	1.000	0.000	0	0.1
12	11.0	1.000	0.000	0	0.0
13	12.0	1.000	0.000	0	0.0
14	13.0	1.000	0.000	0	0.0
15	14.0	1.000	0.000	0	0.0
					CHI SQ 7.780 SUM 10.044

P = 0.529 H = 1

FIGURE 141 -- BASE PERIOD 73-4

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- 1 - CFLL DENSITY
- 2 - FITTED TO THE NEG BINOMIAL
- * - CUMULATIVE DENSITY MATCHES THEORETICAL

F119 141 -- BASE PERIOD 74-1

KULMAGOROV-SMIKHOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
NFG POLYNOMIAL

SAMPLE AVE = 0.939

CFIL No.	X	CHI PFR CELL	ACTUAL	THEORY	FREQUENCY	ABSOLUTE	CHI SQUARE
1	0.	0.526	0.526	288	274.8	0.025	0.6363
2	1.0	0.776	0.249	127	130.1	0.019	0.0756
3	2.0	0.894	0.118	57	61.6	0.010	0.3483
4	3.0	0.950	0.056	20	29.2	0.007	2.8933
5	4.0	0.976	0.026	21	13.8	0.007	3.7243
6	5.0	0.989	0.013	5	6.5	0.004	0.3657
7	6.0	0.995	0.006	2	3.1	0.002	
8	7.0	0.997	0.003	1	1.5	0.001	
9	8.0	0.999	0.001	0	0.7	0.001	0.9744
10	9.0	0.999	0.001	1	0.3	0.001	
11	10.0	1.000	0.000	0	0.2	0.000	
12	11.0	1.000	0.000	0	0.1	0.000	
13	12.0	1.000	0.000	0	0.0	0.000	
14	13.0	1.000	0.000	0	0.0	0.000	
15	14.0	1.000	0.000	0	0.0	0.000	

$$P = 0.526 \quad H = 1$$

FILE 1M1 -- RASF PERIOD 74-1

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- I - CELL DENSITY
- - FITTED TO THE NEG BINOMIAL
- * - CUMULATIVE DENSITY MATCHES THEORETICAL

FILE TWO -- BASE PERIOD 74-2

KOLMOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
NEG RIVONIAL

SAMPLE AVE = 0.839

CFIT No.	X	CIH	PFR	CFIT	ACTUAL	THEORY	FREQUENCY	ABSOLUTE ERROR	CHI SQUARE
							PROBABILITY		
1	0.	0.518	0.518	290	270.7	0.037	1.3746		
2	1.0	0.767	0.250	127	130.6	0.030	0.0986		
3	2.0	0.880	0.120	55	63.0	0.015	1.0145		
4	3.0	0.946	0.058	211	30.4	0.005	3.5510		
5	4.0	0.974	0.028	21	14.7	0.007	2.7431		
6	5.0	0.987	0.014	6	7.1	0.005	0.1623		
7	6.0	0.994	0.007	2	3.4	0.002			
8	7.0	0.997	0.003	1	1.6	0.001	0.8365		
9	8.0	0.999	0.002	0	0.8	0.000			
10	9.0	0.999	0.001	1	0.4	0.001			
11	10.0	1.000	0.000	0	0.2	0.000			
12	11.0	1.000	0.000	0	0.1	0.000			
13	12.0	1.000	0.000	0	0.0	0.000			
14	13.0	1.000	0.000	0	0.0	0.000			
15	14.0	1.000	0.000	0	0.0	0.000			
							CHI SQ 7.780	SHM 9.781	

P = 0.518 H = 1

FIGURE -- RASF PERIOD 74--?

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:
I - CELL DENSITY
- FITTED TO THE NEG. BINOMIAL
* - CUMULATIVE DENSITY MATCHES THE PERTICAL

FILIP 1401 -- BASF PERFIN 71-3

COLLINEARITY-SHIPPING ANALYSIS COMPUTING THE VAULIF OF CELLS GENERATED FOR THF ONES BLOWN

SANPIE AVE = 0-837

$$\text{SAHF ST} = \frac{\text{MAX FR70R}}{\text{MAX FR70R}} = \frac{1.05}{1.05} = 1.05$$

CFIL NO.	χ	PROBABILITY CHI ² PER CELL	FREQUENCY		ARSENITE FRRAP		CHI SQUARE
			ACTUAL	THEORY	FRRAP	FRAP	
1	0.	0.505	295	264.3	0.050	3.5752	
2	1.0	0.755	120	130.7	0.018	0.8915	
3	2.0	0.979	1124	57	64.7	0.024	0.9113
4	3.0	0.940	0.061	19	32.0	0.001	5.2793
5	4.0	0.970	0.030	21	15.8	0.009	1.6889
6	5.0	0.985	0.015	7	7.8	0.007	0.0882
7	6.0	0.993	0.007	2	3.9	0.003	
8	7.0	0.996	0.004	1	2.9	0.002	1.3450
9	8.0	0.998	0.002	0	0.9	0.000	
10	9.0	0.999	0.001	1	0.5	0.001	
11	10.0	1.000	0.000	0	0.2	0.000	
12	11.0	1.000	0.000	0	0.1	0.000	
13	12.0	1.000	0.000	0	0.1	0.000	
14	13.0	1.000	0.000	0	0.0	0.000	
15	14.0	1.000	0.000	0	0.0	0.000	

P = 0:505 K = 1

FIGURE 14H -- BASE PERIOD 74-3

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- CELL DENSITY
- FITTED TO THE NEG. BINOMIAL
- CUMULATIVE DENSITY MATCHES THEORETICAL.

F1 FIP 1401 -- 95 SF PFP100 74-4

COMPUTING THE VAL'IF OF CELLS GENERATED FOR THF ANALYSIS

SAMPLE A VF = 0.831

SAMPLE SIZE = 1.311 PROB (0.10, WITH 573) = 0.053

CFIL NO.	PROBABILITY OF H	CUM PROB	PERCENT FAIL	FREQUENCY ACTUAL	FREQUENCY THEORY	ABSOLUTE ERROR	SQUARE ERROR	CHI SQUARE
1	0.	0.485	0.485	3.00	2.53.7	n.088	n.3864	8.3864
2	1.0	0.735	0.250	1.14	1.30.6	n.056	n.1191	2.1191
3	2.0	0.964	0.129	.57	.67.7	n.037	n.5560	1.5560
4	3.0	0.970	0.066	.22	.34.6	n.013	n.5861	4.5861
5	4.0	0.964	0.034	.19	.17.8	n.015	n.0804	3.0804
6	5.0	0.981	0.018	.6	.9.2	n.000	n.0017	1.0017
7	6.0	0.991	0.009	.2	.4.7	n.004		
8	7.0	0.995	0.005	.1	.2.4	n.001		
9	8.0	0.997	0.002	.1	.1.2	n.001		
10	9.0	0.999	0.001	.1	.0.4	n.001		
11	10.0	0.999	0.001	.0	.0.3	n.001		
12	11.0	1.000	0.000	n	0.7	n.005		
13	12.0	1.000	0.000	0	0.1	n.000		
14	13.0	1.000	0.000	0	0.0	n.000		
15	14.0	1.000	0.000	0	0.0	n.000		

$$P = 0.485 \quad X = 1$$

FLIP INH -- BASE PERIOD 74-4

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- 1 - CFCI DENSITY
- - FITTED TO THE NEG BINOMIAL
- * - CUMULATIVE DENSITY MATCHES THEORETICAL

RIF 141 -- RASF PERIOD 75-1

KOLMOGOROV-SMIRNOV ANALYSIS COMPARING THE VALUE OF CELLS GENERATED FOR THE INFOBRIEF

卷之八

SAMPLE STD = 1.327
MAX ERROR = 0.178 PRIM (0.18, MM 523) =
(IF PRIM ISIE PRIM ACCEPT THE DISTRIBUTION)
n = 0.053

卷之三

THE DAY ACTUAL

卷之三

卷之三

2:0 9:311 8:1335 5:0 7:0-4

3.0 0.914 1.173 22 38.1

卷之三

6.1
6.0
5.9
5.8
5.7
5.6
5.5
5.4
5.3
5.2
5.1
5.0
4.9
4.8
4.7
4.6
4.5
4.4
4.3
4.2
4.1
4.0
3.9
3.8
3.7
3.6
3.5
3.4
3.3
3.2
3.1
3.0
2.9
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

卷之三

卷之三

0 : 5
0 : 6
0 : 7
0 : 8
0 : 9

卷之三

卷之三

卷之三

卷之三

卷之三

FLIP INI -- BASE PERIOD 75-1

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- CELL DENSITY
- FITTED TO THE NFG BINOMIAL
- CUMULATIVE DENSITY MATRICES THORNTON

FILE SH1 -- BASE PERIOD 75-2

KOLMOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
K-FRATIONAL

SAMPLE AVE = 8.793

SAMPLE STD = 1.317
MAX ERROR = 0.164 PPER (.10, NUM 523) = 0.053
(IF ERROR IS LF PPER ACCEPT THE DISTRIBUTION)

CELL No.	Y	CHI CFL	FDP CFL	FREQUENCY	ACTUAL THERAPY	ABSOLUTE FPER	CHI SQUARE
1	0.	0.444	0.444	31.8	232.0	n.164	31.8679
2	1.0	0.690	0.247	10.3	129.1	n.115	5.2721
3	2.0	0.878	0.137	4.9	71.9	n.071	7.2518
4	3.0	0.904	0.076	2.4	40.0	n.040	6.3746
5	4.0	0.947	0.043	1.6	22.7	n.028	1.7475
6	5.0	0.970	0.024	0.8	12.4	n.020	1.5438
7	6.0	0.983	0.013	0	6.9	n.007	6.8825
8	7.0	0.991	0.007	3	3.8	n.005	
9	8.0	0.995	0.004	1	2.1	n.003	
10	9.0	0.997	0.002	1	1.7	n.003	
11	10.0	0.998	0.001	0	0.7	n.002	
12	11.0	0.999	0.001	0	0.4	n.001	
13	12.0	1.000	0.000	0	0.2	n.000	
14	13.0	1.000	0.000	0	0.1	n.000	
15	14.0	1.000	0.000	0	0.1	n.000	
					CHI SQ	9.240	SUM 61.585

P = n.444 N = 1

FILE 141 -- BASE PERIOD 75-?

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:
I - CELL DENSITY
* - FITTED TO THE NEG BINOMIAL
• - CUMULATIVE DENSITY MATCHES THEORETICAL

APPENDIX C
NEGATIVE BINOMIAL TEST RESULTS
FOR THE LN-15 IMU

14-15 1411 -- BASE PFDIG 74-1

VOLUNTEER-SHIPMENT ANALYSIS
HFG ANALYTICAL
COMPUTING THE VALUE OF CELLS GENERATED FOR THF

SAMPLE AVF = 0.697

SAMPLE STD = 1.101
MAX FREQ = 0.037 PROB (0.10, MIN 577) = 0.053
(IF FREQ IS 1% PONI ACCORD THE DISTRIBUTION)

CFIL NO.	X	CH4	PFR SFLL	ACTUAL	FREQUENCY	THEORY	ABSOLUTE ERROR	CHI SQUARE
								CHI SQUARE
1	0.	0.571	0.571	317	297.9	0.037	0.000	1.2238
2	1.0	0.216	0.245	110	127.9	0.002	0.000	2.5027
3	2.0	0.921	0.105	58	54.9	0.008	0.000	0.1747
4	3.0	0.966	0.045	24	23.6	0.009	0.000	0.0078
5	4.0	0.985	0.019	7	10.1	0.003	0.000	0.9611
6	5.0	0.994	0.008	3	4.3	0.001	0.000	0.2353
7	6.0	0.997	0.004	2	1.7	0.001	0.000	0.0000
8	7.0	0.999	0.002	0	0.8	0.001	0.000	0.0000
9	8.0	1.000	0.001	1	0.3	0.000	0.000	0.0000
10	9.0	1.000	0.000	0	0.1	0.000	0.000	0.0000
11	10.0	1.000	0.000	0	0.1	0.000	0.000	0.0000
12	11.0	1.000	0.000	0	0.0	0.000	0.000	0.0000
13	12.0	1.000	0.000	0	0.0	0.000	0.000	0.0000
14	13.0	1.000	0.000	0	0.0	0.000	0.000	0.0000
15	14.0	1.000	0.000	0	0.0	0.000	0.000	0.0000
								CHI SO 6.250 SIRK 5.105

$$P = 0.571 \quad N = 1$$

LN-15 JULY -- BASE PROFILE 74-1

HISTOGRAM OF DATA AND CURVE APPROXIMATION

FIGUREN:

- ! - CELL DENSITY
- FITTED TO THE NEG BINOMIAL
- * - CUMULATIVE DENSITY HATCHES THICKNESS

11-15 110 -- RASE PFRIN 74-->

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- 1 - CELI DENSITY
- - FITTED TO THE NEG BINOMIAL
- * - COMPUTED DENSITY MATCHES THEORETICAL

X-RAY MICROSCOPE-SIMILAR;
 COMPUTING THE VALUE OF CELLS GENERATED FOR THF
 REC ALGORITHM

SAMPLE AVF = n.797

$S_{AVP1F} \text{ STD} = 1.185$
 MAX ERROR = n.028 PROB (0.10, HU4 523) = n.053
 (IF ERROR IS 1% PROB ACCEPT THE DISTRIBUTION)

CFII NO.	X	CUM	PFR CELL	PROBABILITY		FREQUENCY	THEORY	ABSOLUTE ERROR	CHI SQUARE
				FREQUENCY	ACTUAL				
1	0.	0.568	n.568	799	797.7			n.004	0.0114
2	1.0	0.914	n.245	112	128.3			n.028	2.0753
3	2.0	0.919	n.116	67	55.4			n.015	0.7837
4	3.0	0.965	n.046	39	23.9			n.003	1.5413
5	4.0	0.985	n.020	14	10.3			n.004	1.3020
6	5.0	0.994	n.009	3	4.5			n.001	
7	6.0	0.997	n.004	2	1.9			n.001	
8	7.0	0.999	n.002	0	0.8			n.001	
9	8.0	0.999	n.001	1	0.4			n.001	
10	9.0	1.000	n.000	0	0.2			n.000	
11	10.0	1.000	n.000	0	0.1			n.000	
12	11.0	1.000	n.000	0	0.0			n.000	
13	12.0	1.000	n.000	0	0.0			n.000	
14	13.0	1.000	n.000	0	0.0			n.000	
15	14.0	1.000	n.000	0	0.0			n.000	
						CHI 50	6.25n	SUM	6.015

$$P = n.568 \quad N = 1$$

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- † - CELL DENSITY
- - FITTED TO THE NEG BINOMIAL
- ◆ - CUMULATIVE DENSITY MATCHES THEORETICAL

I H-15 1-11 -- RASF PREP 74-4

KOLMOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
RFG PREDICTION

SAMPLE NO.	Avg	C _n H _n	PFR CELL	DURABILITY	FREQUENCY	VIRTUAL	THEORY	ARSON	HTF	CHI	CHI RF
1	0.	0.548	0.548	290	286.6	0	0.07	0.0412			
2	1.0	0.796	0.748	112	129.5	0	0.27	2.3772			
3	2.0	0.908	0.112	62	58.6	0	0.20	0.2013			
4	3.0	0.958	0.051	34	26.5	0	0.06	2.1377			
5	4.0	0.981	0.023	18	12.0	0	0.05	3.0381			
6	5.0	0.991	0.010	3	5.4	0	0.01	1.0744			
7	6.0	0.996	0.005	2	2.4	0	0.00				
8	7.0	0.998	0.002	1	1.1	0	0.00				
9	8.0	0.999	0.001	1	0.5	0	0.001				
10	9.0	1.000	0.000	0	0.2	0	0.000				
11	10.0	1.000	0.000	0	0.1	0	0.000				
12	11.0	1.000	0.000	0	0.0	0	0.000				
13	12.0	1.000	0.000	0	0.0	0	0.000				
14	13.0	1.000	0.000	0	0.0	0	0.000				
15	14.0	1.000	0.000	0	0.0	0	0.000				
								CHI SO	6.250	SUM	6.870

$$P = 0.548 \quad H = 1$$

LK-15 1411 -- RASE PFRN 74-4

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- 1 - CDFL DENSITY
- - FITTED TO THE NEG BINOMIAL
- * - CUMULATIVE DENSITY MATCHES THEORETICAL.

LN-15 TAU -- RASE PERIOD 75-1

KOLMOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
NFG BINOMIAL

SAMPLE AVF = 0.955

SAMPLE STD = 1.387
MAX ERROR = 0.039 PROB (6.10, NUM 523) = 0.053

(IF ERROR IS LE PROB ACCEPT THE DISTRIBUTION)

CELL No.	X	CUM PER CELL	PROBABILITY	FREQUENCY	Absolute	Chi
				ACTUAL	THEORY	SQUARE
1	0.	0.497	0.497	280	266.0	0.036
2	1.0	0.747	0.250	110	130.7	0.001
3	2.0	0.873	0.126	66	65.8	0.001
4	3.0	0.936	0.063	37	33.1	0.007
5	4.0	0.948	0.032	18	16.6	0.009
6	5.0	0.984	0.016	4	8.4	0.001
7	6.0	0.992	0.008	4	4.2	0.000
8	7.0	0.996	0.004	2	2.1	0.000
9	8.0	0.998	0.012	1	1.1	0.000
10	9.0	0.999	0.001	1	0.5	0.001
11	10.0	0.999	0.001	0	0.3	0.001
12	11.0	1.000	0.000	0	0.1	0.000
13	12.0	1.000	0.000	0	0.1	0.000
14	13.0	1.000	0.000	0	0.0	0.000
15	14.0	1.000	0.000	0	0.0	0.000
					CHI SQ	7.780 SUM 7.715

P = 0.497 H = 1

14-15 TWO -- BASE PFR10 75-1

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- CDFL DENSITY
- FITTED TO THE NFG BINOMIAL
- * - CUMULATIVE DENSITY MATCHES THEOPTICAL

LH-15 14U -- NASF PFR10n 75-2

KOLMOGOROV-SMIRNOV ANALYSIS COMPUTING THE VALUE OF CELLS GENERATED FOR THE NEW BINOMIAL

SAMPLE F4YF = 1.029
SAMPLE SIN = 1.441
MAX FPROB = 0.072 **PENR (0.10. 2000 523) =** 0.053
MAX (IF FROR IS LE PPN3 ACCEPT THE DISTRIBUTION)

CFLL NO.	X	PROBABILITY		FREQUENCY		ABSOLUTE ERROR	CHI SQUARE
		CHI	PER CFLL	ACTUAL	THEORY		
1	0	0.495	0.495	269	258.9	0.019	0.391
2	1.0	0.745	0.750	109	130.7	0.022	3.614
3	2.0	0.871	0.876	72	66.0	0.011	0.543
4	3.0	0.935	0.934	39	33.3	0.000	0.965
5	4.0	0.967	0.967	19	16.8	0.004	0.280
6	5.0	0.983	0.983	6	8.5	0.003	0.733
7	6.0	0.992	0.992	4	4.3	0.001	-
8	7.0	0.996	0.996	3	2.2	0.000	-
9	8.0	0.998	0.998	1	1.1	0.000	-
10	9.0	0.999	0.999	1	0.4	0.001	-
11	10.0	0.999	0.999	0	0.3	0.001	-
12	11.0	1.000	1.000	0	0.1	0.000	-
13	12.0	1.000	1.000	0	0.1	0.000	-
14	13.0	1.000	1.000	0	0.0	0.000	-
15	14.0	1.000	1.000	0	0.0	0.000	-
							6.574
		CHI	50	7.783	SUM		

$$P = 0.495 \quad K = 1$$

11-15 140 -- RAISE PFPIN 75-->

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- CDFL DENSITY
- FITTED TO THE NFG RIMOMIAL
- * - CUMULATIVE DENSITY MATCHES THFORTICAL

APPENDIX D
NEGATIVE BINOMIAL TEST RESULTS
FOR THE KT-73 IMU

RT-73 1011 -- 4SF PFPIN 72-1

KINEMATOV-SHIPHOV ANALYSIS
COMPUTING THE VALUE OF CFLLS CONFRATION FOR THF
NFC BIVARIATE

SAMPLE SIZE = 1.378

CALCULATED MAX ERROR = 0.134 PROB (0.10, NUM 521) = 0.053
(IF ERROR IS LE PRIM ACCEPT THE DISTRIBUTION)

CFLL No.	X	CHI	PFR	CFLL	ACTUAL	THEORY	FREQUENCY	ARSENAL	CHI	SQUARE
1	0.	0.340	0.340	247	173.2	0.134	77.4560			
2	1.0	0.565	0.224	107	116.4	0.115	0.8457			
3	2.0	0.713	0.148	69	77.2	0.099	0.8631			
4	3.0	0.810	0.098	32	50.9	0.063	7.0246			
5	4.0	0.875	0.064	21	33.6	0.039	4.7198			
6	5.0	0.917	0.043	22	22.7	0.038	0.0012			
7	6.0	0.946	0.028	6	14.4	0.022	5.0856			
8	7.0	0.962	0.019	7	9.6	0.017	0.7272			
9	8.0	0.976	0.012	1	6.4	0.006	4.5235			
10	9.0	0.984	0.008	5	4.7	0.008				
11	10.0	0.990	0.005	1	2.8	0.005				
12	11.0	0.993	0.004	2	1.8	0.005				
13	12.0	0.996	0.002	0	1.2	0.003				
14	13.0	0.997	0.002	1	0.8	0.003				
15	14.0	0.998	0.001	0	0.5	0.002				
								CHI SO 12.020	SIJM	51.382

$$P = 0.349 \quad n = 1$$

Y1-73 1410 -- PAGE PEPINN 72-1

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- 1 - CELL DENSITY
- - FITTED TO THE NEG. RIMINAL
- * - CUMULATIVE DENSITY MATCHES THURIFTICAL

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:
I - CELL DENSITY

• - FITTED TO THE NFG BINOMIAL

* - CUMULATIVE DENSITY MATCHES THE PERTURBED

KI-73 I-U -- BASE PERIOD 72-3

KOLMOGOROV-SMIRNOV ANALYSIS
CHARTING THE VALUE OF CELLS GENERATED FOR THF
HFC RUMORAL

SAMPLE AVF = 1.671

SAMPLE STD = 2.161

MAX FPROR = 0.038
(IF FPROR IS LE PROB ACCFPT THE DISTRIBUTION) = 0.054

CELL No.	X	CHI	PER CELL	PROBABILITY		THEORY	FREQUENCY	ABSOLUTE	CHI SQUARE
				FREQUENCY	ACTUAL				
1	0.	0.358	0.358	206	186.2	0.038	2.1155		
2	1.0	0.588	0.230	111	119.5	0.022	0.6064		
3	2.0	0.735	0.148	82	76.7	0.032	0.3621		
4	3.0	0.830	0.095	34	49.3	0.003	4.7276		
5	4.0	0.891	0.061	32	31.6	0.003	0.0044		
6	5.0	0.930	0.039	24	20.3	0.010	0.6728		
7	6.0	0.955	0.025	8	13.0	0.001	1.9451		
8	7.0	0.971	0.016	9	8.4	0.002	0.0476		
9	8.0	0.981	0.010	5	5.4	0.003	1.8479		
10	9.0	0.988	0.007	6	3.4	0.002			
11	10.0	0.992	0.004	2	2.2	0.002			
12	11.0	0.995	0.003	2	1.4	0.003			
13	12.0	0.997	0.002	0	0.9	0.001			
14	13.0	0.998	0.001	1	0.6	0.002			
15	14.0	0.999	0.001	0	0.4	0.001			
							CHI SQ 12.020	SUM 12.493	

$$P = 0.358 \quad K = 1$$

KI-73 1'111 -- RAISE PERIOD 77-3

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:
I - CELLI DENSITY
• - FITTED TO THE NEG BINOMIAL
♦ - CUMULATIVE DFNSITY MATCHES THEORETICAL

KI-73 1411 -- BASE PERIOD 72-4

KOLMOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
HEG BINOMIAL

SAMPLE AVE = 1.758

SAMPLE STD = 2.244
MAX ERROR = 0.050 PROB (.0.16, WHICH 521) = 0.053
(IF ERROR IS LE PROB ACCEPT THE DISTRIBUTION)

CELL NO.	PROBABILITY	FREQUENCY	THEORY	ABSOLUTE ERROR	CHI SQUARE
1	0. 349	0.346	20.8	181.8	0.050
2	0. 576	0.227	10.1	118.4	0.017
3	0. 724	0.148	7.9	77.1	0.021
4	0. 826	0.096	3.7	50.2	0.005
5	0. 883	0.063	3.4	32.7	0.002
6	0. 924	0.041	2.5	21.3	0.005
7	0. 950	0.027	1.2	13.0	0.002
8	0. 968	0.017	1.3	9.0	0.003
9	0. 979	0.011	1.3	5.9	0.002
10	0. 985	0.007	6	5.8	0.002
11	0. 991	0.005	3	2.5	0.003
12	0. 994	0.003	2	1.6	0.004
13	0. 996	0.002	0	1.1	0.002
14	0. 999	0.001	1	0.7	0.002
15	0. 998	0.001	0	0.4	0.002
					CHI SQ 12.020 SUM 13.438

P = 0.349 N = 1

KT-73 1-11 -- BASE PFRING 72-4

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- 1 - CELL DENSITY
- - FITTED TO THE NEG BINOMIAL
- * - CUMULATIVE DENSITY MATHEWS THEORETICAL

111

KI-73 INU -- BASF PERIOD 73-1

KOLMOGOROV-SHIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THF
NEG BRONKILL

SAMPLE AVE = 1.743

SAMPLE STD = 2.179
MAX ERROR = 0.031 PROB (0.10, NUM 522) = 0.053
(IF ERROR IS LE PROB ACCEPT THE DISTRIBUTION)

CELL NO.	X	CUM PFP CELL	FREQUENCY	ACTUAL	THEORY	ABSOLUTE ERROR	CHI SQUARE
1	0.	0.367	0.367	203	251.7	0.031	1.3917
2	1.0	0.600	0.232	100	121.3	0.010	3.7374
3	2.0	0.747	0.147	77	76.8	0.009	0.0008
4	3.0	0.840	0.093	41	48.6	0.024	1.1806
5	4.0	0.899	0.059	35	30.7	0.013	0.9009
6	5.0	0.936	0.037	25	19.5	0.001	2.2047
7	6.0	0.959	0.024	11	12.3	0.003	0.1393
8	7.0	0.974	0.015	9	7.8	0.001	0.1881
9	8.0	0.984	0.009	3	4.9	0.005	0.1124
10	9.0	0.991	0.006	5	3.1	0.001	
11	10.0	0.991	0.004	3	2.8	0.003	
12	11.0	0.976	0.002	2	1.7	0.004	
13	12.0	0.997	0.002	0	0.6	0.003	
14	13.0	0.998	0.001	0	0.5	0.002	
15	14.0	0.999	0.001	0	0.3	0.001	
					CHI SQ 10.640	SUM 9.856	

P = 0.367 N = 1

KI-73 (HII) -- RASP PFP100 73-1

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- CELL DENSITY
- FITTED TO THE WFG BINOMIAL
- CUMULATIVE DENSITY MATCHES THEORETICAL

FT-73 1410 -- RASE PFR10A 73-2

KOLMOGOROV-SHIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THF
HEC: BIMONTHL

SAMPLE AVG = 1.735

SAMPLE STD = 2.140 PRNR (0.10, NINH 521) = 0.053
MEAN ERROR = 0.030 (IF ERROR IS LE PRNR ACCEPT THE DISTRIBUTION)

CFIL No.	X	CUM	PFR	CELL	ACTUAL	THEORY	ABSOLUTE ERROR	CHI SQUARE
1	0.	0.379	0.379	202	197.4		0.009	0.1075
2	1.0	0.614	0.235	104	122.6		0.027	2.8235
3	2.0	0.760	0.146	78	76.2		0.023	0.0448
4	3.0	0.851	0.091	44	47.3		0.030	0.2304
5	4.0	0.908	0.056	39	29.4		0.011	3.1498
6	5.0	0.943	0.035	21	18.2		0.006	0.4148
7	6.0	0.964	0.022	10	11.3		0.008	0.1572
8	7.0	0.978	0.014	10	7.0		0.003	1.2442
9	8.0	0.986	0.008	3	4.4		0.005	
10	9.0	0.991	0.005	5	2.7		0.001	0.1170
11	10.0	0.995	0.003	3	1.7		0.001	
12	11.0	0.997	0.002	2	1.0		0.003	
13	12.0	0.998	0.001	0	0.7		0.002	
14	13.0	0.999	0.001	0	0.4		0.001	
15	14.0	0.999	0.000	0	0.3		0.001	
							CHI SUM	0.289
							CHI SO	10.640

P = 0.379 K = 1

KT-73 1411 -- RASE PFRIN 73-2

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- CELL DENSITY
- FITTED TO THE NEG BINOMIAL
- CUMULATIVE DENSITY MATCHES THEORETICAL

KT-73 TAU -- RAFF PERIOD 73-3

KOLMOGOROV-SHIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
REGRESSION

SAMPLE AVF = 1.647

SAMPLE SIGN = 2.068
MAX ERROR = .028 PROB (.0.10, NORM 521) = .0.053
(IF ERROR IS IN PWR ACCEPT THE DISTRIBUTION)

CFLL N.	X	CUM PFR CFLL	PROBABILITY THEORY	FREQUENCY ACTUAL	THEORY	ABSOLUTE ERRR	CHI SQUARE	
							CHI	SQURE
1	0.	0.385	0.385	213	210.7	0.024	0.7538	
2	1.0	0.622	0.237	103	134	0.016	3.3683	
3	2.0	0.768	0.146	71	75.9	0.025	0.3108	
4	3.0	0.857	0.090	45	46.6	0.028	0.0573	
5	4.0	0.912	0.055	41	28.7	0.004	5.3030	
6	5.0	0.946	0.034	18	17.6	0.004	0.0080	
7	6.0	0.967	0.021	10	10.8	0.005	0.0645	
8	7.0	0.980	0.013	9	6.7	0.001	0.8208	
9	8.0	0.987	0.008	3	4.1	0.003	0.0726	
10	9.0	0.992	0.005	4	2.5	0.000		
11	10.0	0.995	0.003	3	1.5	0.003		
12	11.0	0.997	0.002	1	1.0	0.003		
13	12.0	0.998	0.001	0	0.6	0.002		
14	13.0	0.999	0.001	0	0.4	0.001		
15	14.0	0.999	0.000	0	0.2	0.001		
					CHI 50	10.640	SIUH	10.709

$$P = 0.385 \quad N = 1$$

KT-73 1111 -- PAGE PERIOD 73-3

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- 1 - CDFI DENSITY
- - FITTED TO THE NEG BINOMIAL
- - CUMULATIVE DFNSITY MATCHES THEOPTICAL

KI-73 1411 -- RAISE PFPION 73-4

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- 1 - CFDL DENSITY
- 2 - FITTED TO THE NEG. BINOMIAL
- 3 - CUMULATIVE DENSITY HATCHES THEORETICAL

KI-73 140 -- BASE PERIOD 74-1

KOLMOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THF
NFG BIOMIAL

SAMPLE AVF = 1.586

SAMPLE STD = 1.985
MAX ERROR = 0.043 PVAL (0.10, NWH 522) = 0.053
(IF ERROR IS LE PRM ACCEPT THF DISTRIBUTION)

CFLL NO.	X	CNH	PEP	CFLL	PROBABILITY	FREQUENCY	ACTUAL	THEORY	FPOR	ARSALITE	CHI	SQUARE
1	0.	0.403	0.403	220	210.2						0.4603	
2	1.0	0.643	0.241	104	125.5						3.6987	
3	2.0	0.787	0.144	65	75.0						1.3337	
4	3.0	0.873	0.066	44	44.8						0.0145	
5	4.0	0.924	0.051	43	26.8						9.8466	
6	5.0	0.955	0.031	16	16.0						0.012	
7	6.0	0.973	0.018	14	9.6						2.0714	
8	7.0	0.984	0.011	9	5.7						1.6013	
9	8.0	0.990	0.007	3	3.4						0.002	
10	9.0	0.994	0.004	1	2.0						0.000	
11	10.0	0.997	0.002	3	1.2						0.003	
12	11.0	0.998	0.001	0	0.7						0.002	
13	12.0	0.999	0.001	0	0.4						0.001	
14	13.0	0.999	0.000	0	0.3						0.001	
15	14.0	1.000	0.000	0	0.2						0.000	
										CHI SG 10.640	SUM 19.710	

$$P = 0.403 \quad K = 1$$

KI-73 T4U -- PHASE PERIOD 74-1

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:
I - CELL DENSITY
• - FITTED TO THE NEG BINOMIAL
* - CUMULATIVE FREQUENCY MATRICES THEORETICAL

KI-13 140 -- RASE PERIOD 74-2

KOLYANOV-SHIRKOV ANALYSIS
COMPUTING THE VALUE OF CFLLS GENERATED FOR THE
HEC RATIONAL

SAMPLE AVF = 1.595

SAMPLE STD = 2.003 PROB (0.10, NUM 523) = 0.053
MAX ERROR = 0.043 (IF ERROR IS LE PRMT ACCEPT THE DISTRIBUTION)
(IF ERROR IS GE PRMT REJECT THE DISTRIBUTION)

CELL NO.	X	PROBABILITY SUM PER CFLL	FREQUENCY ACTUAL	THEORY	ABSOLUTE ERROR	CHI SQUARE
1	0.	0.398	224	207.9	0.031	1.2474
2	1.0	0.637	0.239	103	125.3	0.012
3	2.0	0.781	0.144	59	75.5	0.043
4	3.0	0.868	0.087	46	45.5	3.5927
5	4.0	0.921	0.052	40	27.4	0.042
6	5.0	0.952	0.032	19	16.5	0.018
7	6.0	0.971	0.019	15	9.9	0.013
8	7.0	0.983	0.011	12	6.0	0.013
9	8.0	0.990	0.007	2	3.6	0.001
10	9.0	0.994	0.004	0	2.2	0.001
11	10.0	0.996	0.003	3	1.3	0.004
12	11.0	0.998	0.002	0	0.8	0.002
13	12.0	0.999	0.001	0	0.5	0.001
14	13.0	0.999	0.001	0	0.3	0.001
15	14.0	0.999	0.000	0	0.2	0.001

P = 0.398 H = 1

CHI SD 10.640 SUM 26.052

RT-73 1410 -- BASE PRECION 74-2

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- CELL DENSITY
- FITTED TO THE NEG BINOMIAL
- CUMULATIVE DENSITY MATCHES THEORETICAL

Y1=73 Y4== PAGE PERIOD 74=3

KOL'CHOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THF
WEIGHTS BIMODAL

卷之三

SAMPLING STDEV = 1.978
MAX ERROR = 0.049 PROB (.0.10, NORM 523) = 0.053
(IF ERROR IS 1% PROB ACCEPT THE DISTRIBUTION)

CELL N.	X	PROBABILITY		FREQUENCY		ABSOLUTE		CHI SQUARE
		SUM	PFP	ACTUAL	THEORY	ERROR		
1	0.	0.398	0.398	234	208.7	0.049	3.1864	
2	1.0	0.638	0.249	95	125.3	0.009	7.3584	
3	2.0	0.792	0.144	55	75.4	0.048	5.5314	
4	3.0	0.869	0.087	49	45.4	0.041	0.2865	
5	4.0	0.921	0.052	42	27.3	0.013	7.8888	
6	5.0	0.952	0.031	18	16.4	0.010	0.1477	
7	6.0	0.971	0.019	14	9.9	0.002	1.7027	
8	7.0	0.983	0.011	11	6.0	0.008	4.2734	
9	8.0	0.990	0.007	3	3.6	0.007		
10	9.0	0.994	0.004	0	2.2	0.002		
11	10.0	0.996	0.002	2	1.3	0.004		
12	11.0	0.998	0.001	0	0.8	0.002		
13	12.0	0.999	0.001	0	0.5	0.001		
14	13.0	0.999	0.001	0	0.3	0.001		
15	14.0	1.000	0.000	0	0.2	0.000		

卷之三

RT-73 140 -- BASE PERIOD 74-3

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:
I - CELL DENSITY
* - FITTED TO THE NFG BINOMIAL
♦ - CUMULATIVE DENSITY MATCHES THEORETICAL

KT-73 IBM -- BASE PRINT 74-4

KOLMOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CFLLS GENERATED FOR THE
NEG BINOMIAL

SAMPLE AVF = 1.501

CFIL No.	X	CHI PER CFIL	PROB (0.10 , NIN 573) = 0.053		ABSOLUTE EPRQ	CHI SQUARE
			PROBABILITY	FREQUENCY		
1	0	0.401	0.401	241	209.6	0.060
2	1.0	0.641	0.240	94	125.6	0.900
3	2.0	0.785	0.144	55	75.3	0.39
4	3.0	0.871	0.086	44	45.1	0.041
5	4.0	0.923	0.052	45	27.0	0.007
6	5.0	0.954	0.031	17	16.2	0.05
7	6.0	0.972	0.019	12	9.7	0.001
8	7.0	0.983	0.011	10	5.8	0.007
9	8.0	0.990	0.007	4	3.5	0.008
10	9.0	0.994	0.004	0	2.1	0.004
11	10.0	0.996	0.002	1	1.3	0.004
12	11.0	0.998	0.001	0	0.7	0.002
13	12.0	0.999	0.001	0	0.4	0.001
14	13.0	0.999	0.001	0	0.3	0.001
15	14.0	1.000	0.000	0	0.2	0.000
					CHI SQ	10.640
					SUM	34.138

P = 0.401 H = 1

KI-73 1411 -- RASE PERIOD 74-4

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- 1 - CDFL DFNSITY
- - FITTED TO THE WFG BINOMIAL
- * - CUMULATIVE DFNSITY MATCHES THE OPTICAL

KT-73 TUU -- BASE PERIOD 75-1

KOLMOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
NEG BINOMIAL

SAMPLE AVF = 1.501

SAMPLE STD = 1.072
MAX ERROR = 0.083 PROB (.0.10, NORM 523) = 0.053
(IF ERROR IS LE PROR ACCEPT THE DISTRIBUTION)

CFLL No.	X	CHI	PER	CFLL	ACTUAL	THEORY	ERROR	SQUARE	CHI
					PROBABILITY	FREQUENCY	ABSOLUTE		
1	0	0	0.386	0.386	245	201.8	0.083	9.2562	
2	1.0	0	0.623	0.237	93	123.9	0.023	7.3200	
3	2.0	0	0.768	0.146	55	76.1	0.017	5.8582	
4	3.0	0	0.858	0.089	39	46.7	0.032	1.2846	
5	4.0	0	0.913	0.055	44	28.7	0.002	8.1394	
6	5.0	0	0.946	0.034	18	17.6	0.002	0.0076	
7	6.0	0	0.967	0.021	12	10.8	0.000	0.1262	
8	7.0	0	0.980	0.013	11	6.7	0.009	2.8417	
9	8.0	0	0.988	0.008	5	4.1	0.011		
10	9.0	0	0.992	0.005	0	2.5	0.006	0.3858	
11	10.0	0	0.995	0.003	1	1.5	0.005		
12	11.0	0	0.997	0.002	0	0.9	0.003		
13	12.0	0	0.998	0.001	0	0.6	0.002		
14	13.0	0	0.999	0.001	0	0.1	0.001		
15	14.0	0	0.999	0.000	0	0.2	0.001		
									CHI SO
									10.640
									SUM 35.619

P = 0.386 H = 1

KT-73 1NU -- BASE PFRION 75-1

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- I - CELL DENSITY
- - FITTED TO THE NEG BINOMIAL
- - CUMULATIVE DENSITY MATCHES THEORETICAL

KT-73 TWO -- BASE PERIOD 75-->

KOLMOGOROV-SMIRNOV ANALYSIS
COMPUTING THE VALUE OF CELLS GENERATED FOR THE
NEG BINOMIAL

SAMPLE AVF = 1.478

SAMPLE STA = 1.936
MAX ERROR = 0.078 PROB (0.10, NIN 573) = 0.053
(IF ERROR IS LF PROB ACCEPT THE DISTRIBUTION)

CFIL NO.	X	CHI PER CELL	PROBABILITY	FREQUENCY	ACTUAL	THEORY	ABSOLUTE ERROR	CHI SQUARE
1	0.	0.394	0.394	247	206.2	206.2	0.078	0.0560
2	1.0	0.633	0.239	91	124.9	124.9	0.013	9.2062
3	2.0	0.778	0.145	57	75.7	75.7	0.023	4.5994
4	3.0	0.865	0.083	39	45.8	45.8	0.036	1.0153
5	4.0	0.919	0.053	43	27.8	27.8	0.006	8.3781
6	5.0	0.951	0.032	18	16.8	16.8	0.004	0.0845
7	6.0	0.970	0.019	12	10.2	10.2	0.001	0.3254
8	7.0	0.982	0.012	11	6.2	6.2	0.009	3.7904
9	8.0	0.989	0.007	5	3.7	3.7	0.011	
10	9.0	0.993	0.004	0	2.3	2.3	0.007	0.1655
11	10.0	0.996	0.003	0	1.4	1.4	0.004	
12	11.0	0.998	0.002	0	0.8	0.8	0.002	
13	12.0	0.999	0.001	0	0.5	0.5	0.001	
14	13.0	0.999	0.001	0	0.3	0.3	0.001	
15	14.0	0.999	0.000	0	0.2	0.2	0.001	
					CHI SQ	10.640	SUM	35.621

$$P = 0.394 \quad H = 1$$

KI-73 140 -- PAGE PFP100 75-2

HISTOGRAM OF DATA AND CURVE APPROXIMATION

LEGEND:

- CPLL DENSITY
- FITTED TO THE NEG BINOMIAL
- * - CUMULATIVE DENSITY MATCHES THE PFT RATE

SELECTED BIBLIOGRAPHY

A. REFERENCES CITED

1. Air Force Institute of Technology. SIMFIT. Computer program, AFIT Library (CREATE), Wright-Patterson AFB OH, January 1977.
2. Air Force Logistics Command. Initial Requirements Determination. AFLCR 57-27. Wright-Patterson AFB OH, 22 December 1976.
3. . Recoverable Consumption Item Requirements System (D041). AFLCM 57-3. Wright-Patterson AFB OH, 25 September 1972.
4. . Repair and Evaluation Data (RED) Management Program for Aircraft Inertial Systems. AFLCM 66-309. Wright-Patterson AFB OH, 27 December 1976.
5. . Requirements Procedures for Economic Order Quantity (EOQ) Items. AFLCR 57-6. Wright-Patterson AFB OH, 22 November 1976.
6. Budnick, Frank S., Richard Mojena, and Thomas E. Vollman. Principles of Operations Research for Management. Homewood IL: Richard D. Irwin, Inc., 1977.
7. Cronin, Mary Karen. Directorate of Materiel Requirements, Office of the DCS/Logistics Operations, HQ AFLC, Wright-Patterson AFB OH. Intermittent personal interviews. 3 January 1978 through 19 May 1978.
8. Crowe, Captain Lowell R., USAF, and Captain Levi D. Lowman, USAF. "An Analysis of the Exponential Function as the Underlying Distribution for Describing Failures in Inertial Measurement Units." Unpublished master's thesis. SLSR 22-77A, AFIT/LS, Wright-Patterson AFB OH, June 1977.
9. Fecney, G. J., and C. C. Sherbrooke. An Objective Bayes Approach for Inventory Decisions. The RAND Corporation, RM-4362-PR, Santa Monica CA, March 1965.

10. . A System Approach to Base Stockage of Recoverable Items. The RAND Corporation, RM-4720-PR, Santa Monica CA, December 1965.
11. . The (s-1,s) Inventory Policy Under Compound Poisson Demand: A Theory of Recoverable Item Stockage. The RAND Corporation, RM-4176-PR, Santa Monica CA, September 1964.
12. Gibbons, Jean Dickinson. Nonparametric Statistical Inference. New York: McGraw-Hill Book Company, 1971.
13. Hasting, N. A. J., and J. B. Peacock. Statistical Distributions. London: Butterworth & Co., Ltd., 1975.
14. Haugen, Captain James A., USAF. Center Inertial Guidance Lead Engineer, Reliability and Operations Division, Directorate of Inertial Engineering, Aerospace Guidance and Metrology Center, Newark AFS OH. Personal interview. 29 November 1977.
15. Kaffenberger, Susan. Requirements Management Division, Office of the DCS/Logistics Operations, HQ AFLC, Wright-Patterson AFB OH. Personal interview. 19 October 1977.
16. Lapin, Lawrence L. Statistics for Modern Business Decisions. New York: Harcourt Brace Javanovich, Inc., 1973.
17. Muckstadt, Captain John A., USAF, and Captain John M. Pearson, USAF. "MOD-METRIC: A Multi-Item, Multi-Echelon, Multi-Indenture Inventory Model." Unpublished technical report, SLTR 2-76, AFIT/SL, Wright-Patterson AFB OH, February 1976.
18. Pearson, Major John M., USAF. Assistant Professor of Operations Research, Department of Quantitative Management, AFIT/LS, Wright-Patterson AFB OH. Intermittent personal interviews. 3 January 1978 through 19 May 1978.
19. Raptoulis, James. Electronics Engineer, Reliability and Operations Division, Directorate of Inertial Engineering, Aerospace Guidance and Metrology Center, Newark AFS OH. Personal interview, 29 November 1977.

20. Sherbrooke, Craig C. Discrete Compound Poisson Processes and Tables of the Geometric Poisson Distribution. The RAND Corporation, RM-4831-PR, Santa Monica CA, July 1966.
21. . METRIC: A Multi-Echelon Technique for Recoverable Item Control. The RAND Corporation RM-5078-PR, Santa Monica CA, November 1966.
22. Sprung, James G. "A Study of Variance-to-Mean Ratios, Probability Distributions, and Demand Prediction in the OFM Marginal Analysis Algorithm." Unpublished Working Paper No. 14, Computer Sciences Division, Office of the DCS/Comptroller, HQ AFLC, Wright-Patterson AFB OH, October 1970.
23. Talbott, Captain Carl M., USAF. Logistics Analysis Directorate, USAF Logistics Management Center, Gunter AFS AL. Intermittent telephone interviews. 1 October 1977 through 20 November 1977.
24. U.S. Department of the Air Force. Historical Documents for Specific Inertial Navigation Systems. T.O. 00-20-10-10. Tinker AFB OK: Oklahoma City Air Logistics Center, 14 October 1974.
25. . SIMFIT II, A Frequency Distribution Analysis. 1ACOMMG Pamphlet 100-20. 1st Aerospace Communications Group, Offutt AFB NE, 22 October 1975.
26. . USAF Supply Manual. AFM 67-1, Vol. 1, Part One: "Basic Air Force Procedures." Washington: Government Printing Office, 14 March 1977.
27. Young, J. W. T., M. A. Geisler, and B. B. Brown. The Prediction of Demand for Aircraft Spare Parts Using the Method of Conditional Probabilities. The RAND Corporation, RM-1413, Santa Monica CA, 17 January 1955.

B. RELATED SOURCES

Deluca, Major General Joseph R., USAF. Deputy Chief of Staff/Comptroller, HQ AFLC/AC. Letter, subject: Advanced Logistics System (ALS) Progress Report, FY71-1, 30 November 1970.

Downs, Captain David B., USAF, and Captain Rolf E. Forseth, USAF. "The Effect of Changes in Release Parameters upon Bomb Impact Distributions: A Computer Model." Unpublished master's thesis. SLSR 18-76A, AFIT/SL, Wright-Patterson AFB OH, June 1976.

Dugas, Captain Louis A., USAF, and Captain David H. Hartman, USAF. "The Effects of Renewal Processes Upon Stochastic Reliability Models." Unpublished master's thesis, SLSR 16-76A, AFIT/SL, Wright-Patterson AFB OH, June 1976.

Erickson, Captain Richard F., USAF, and Captain Donald H. Hammond, USAF. "A Description of Expected Failure Rates of Newly Acquired Components Prior to Steady State." Unpublished master's thesis. SLSR 29-74A, AFIT/SL, Wright-Patterson AFB OH, June 1974.

Feeaney, G. J., and C. C. Sherbrooke. Systems Analysis and Supply Management. The RAND Corporation, RM-4054-PR, Santa Monica CA, April 1964.

Shooman, Martin L. Probabilistic Reliability: An Engineering Approach. New York: McGraw-Hill Book Company, Inc., 1968.