Logică computațională Curs 7

Lector dr. Pop Andreea-Diana

Rafinările rezoluției

• impun restricții asupra clauzelor care rezolvă, pentru a eficientiza procesul rezolutiv

Notație

• $S \mid_{-\text{Res}}^{st} \square$ "din mulțimea S de clauze s-a derivat clauza vidă prin aplicarea strategiei st a rezoluției propoziționale"

Completitudinea și corectitudinea

- Toate rafinările și strategiile rezolutive păstrează completitudinea și corectitudinea.
- Combinarea lor poate impune prea multe restricții și deși mulțimea inițială de clauze este inconsistentă, s-ar putea să nu se poată deriva clauza vidă.
- sunt complete:
 - rezoluția generală + strategia eliminării
 - rezoluţia generală + strategia mulţimii suport
 - rezoluţia generală + strategia mulţimii suport + strategia eliminării
 - rezoluția liniară + strategia eliminării
 - rezoluția liniară + strategia mulțimii suport
- nu sunt complete:
 - rezoluția blocării + strategia eliminării
 - rezoluția blocării + strategia mulțimii suport
 - rezoluția blocării + rezoluția liniară
 - rezoluţia unitară
 - rezoluția de intrare

Rezoluţia blocării (lock resolution)

- introdusă de Boyer în 1971
- fiecare apariție de literal din mulțimea de clauze este indexat arbitrar cu un întreg
- restricția: literalii care rezolvă din clauzele părinți trebuie să aibă **cei mai mici indici** din aceste clauze
- literalii din rezolvenți moștenesc indicii de la clauzele părinți, iar în cazul moștenirii a doi literali identici, se păstrează cel cu indicele mai mic
- este foarte eficientă și ușor de implementat, se recomandă combinarea ei cu strategia saturării pe nivele

Teorema de corectitudine și completitudine

- Teorema de completitudine
 - Fie *S* o mulțime de clauze în care fiecare literal este indexat în mod arbitrar cu un întreg. Dacă *S* este inconsistentă, atunci există o deducție din mulțimea *S* a clauzei vide prin rezoluția blocării.
- Teorema de corectitudine
 - Fie *S* o mulțime de clauze în care fiecare literal este indexat în mod arbitrar cu un întreg. Dacă din *S* se deduce prin rezoluția blocării clauza vidă, atunci *S* este inconsistentă.

Exemple (1)

•
$$S = \{ \neg r, p \lor \neg q, r \lor p \lor q, \neg q \lor \neg p \}$$

Rezolvare

$$S = \{ (1) \neg r, (6) p \lor (2) \neg q, (8) r \lor (3) p \lor (5) q, (4) \neg q \lor (7) \neg p \}$$

$$C_{1} \stackrel{\text{not.}}{=}_{(1)} \neg r$$

$$C_{2} \stackrel{\text{not.}}{=}_{(2)} \neg q \vee_{(6)} p$$

$$C_{3} \stackrel{\text{not.}}{=}_{(3)} p \vee_{(5)} q \vee_{(8)} r$$

$$C_{4} \stackrel{\text{not.}}{=}_{(4)} \neg q \vee_{(7)} \neg p$$

$$\stackrel{\text{TCC}}{\Longrightarrow}$$
 S este consistentă

Exemple (2)

•
$$S = \{ \neg r, p \lor \neg q, r \lor p \lor q, \neg q \lor \neg p \}$$

•
$$S = \{ p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q \}$$

Rezolvare

$$S = \{ (5) p \lor (4) q, (1) \neg p \lor (6) q, (7) p \lor (2) \neg q, (8) \neg p \lor (3) \neg q \}$$

$$C_{1} \stackrel{\text{not.}}{=}_{(4)} q \vee_{(5)} p$$

$$C_{2} \stackrel{\text{not.}}{=}_{(1)} \neg p \vee_{(6)} q$$

$$C_{3} \stackrel{\text{not.}}{=}_{(2)} \neg q \vee_{(7)} p$$

$$C_{4} \stackrel{\text{not.}}{=}_{(3)} \neg q \vee_{(8)} \neg p$$

$$C_{5} = \operatorname{Res}_{q}^{lock} (C_{1}, C_{3}) =_{(5)} p$$

$$C_{6} = \operatorname{Res}_{p}^{lock} (C_{2}, C_{5}) =_{(6)} q$$

$$C_{7} = \operatorname{Res}_{q}^{lock} (C_{4}, C_{6}) =_{(8)} \neg p$$

$$C_{8} = \operatorname{Res}_{p}^{lock} (C_{5}, C_{7}) = \square$$

$$\stackrel{\text{TCC}}{=} S \text{ este inconsistent } S \text{ este inconsistent } S \text{ este inconsistent } S \text{ este } S \text{ est$$

Observație!!!!!

$$C_1 \stackrel{\text{not.}}{=} q \lor p$$

$$C_4 \stackrel{\text{not.}}{=} \neg q \lor \neg p$$

$$A \lor l, B \lor \neg l \mid_{res} A \lor B$$
 $\operatorname{Res}_{p}(C_{1}, C_{4}) = q \lor \neg q \equiv T$
 $\operatorname{Res}_{q}(C_{1}, C_{4}) = p \lor \neg p \equiv T$

$$\mathbf{U} \wedge \neg \mathbf{U} \equiv \mathbf{F} \qquad \neg (q \vee p) \equiv \neg q \wedge \neg p \neq \neg q \vee \neg p$$

- rezoluția blocării + strategia eliminării nu e completă
 - $S = \{p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q\}$ $C_1 =_{(2)} p \lor_{(1)} q, C_2 =_{(3)} \neg p \lor_{(4)} q, C_3 =_{(5)} p \lor_{(6)} \neg q, C_4 =_{(8)} \neg p \lor_{(7)} \neg q$

- rezoluția blocării + strategia eliminării nu e completă
 - $S = \{p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q\}$ $C_1 =_{(2)} p \lor_{(1)} q, C_2 =_{(3)} \neg p \lor_{(4)} q, C_3 =_{(5)} p \lor_{(6)} \neg q, C_4 =_{(8)} \neg p \lor_{(7)} \neg q$
- $C_? = \operatorname{Res}_p^{lock}(C_2, C_3) = \overline{A_3 q \vee_{(6)} q}$ conform str. eliminării este o clauză tautologică, deci se va elimina
- $C_{?} = \operatorname{Res}_{q}^{lock}(C_{1}, C_{4}) =_{(2)} p \vee_{(8)} \neg p \text{ conform str.}$ eliminării este o clauză tautologică, deci se va elimina
- Nu se mai rezolvă clauze noi, deci nu putem ajunge la
- □, deci, am ajunge la concluzia greșită că S nu e inconsistentă.

• rezoluția blocării fără strategia eliminării e completă

•
$$S = \{p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q\}$$
 $C_{1} = (2)p \lor_{(1)}q, C_{2} = (3)\neg p \lor_{(4)}q, C_{3} = (5)p \lor_{(6)}\neg q, C_{4} = (8)\neg p \lor_{(7)}\neg q$
 $C_{5} = \operatorname{Res}_{p} \stackrel{lock}{}(C_{2}, C_{3}) = (4)q \lor_{(6)}\neg q$
 $C_{6} = \operatorname{Res}_{q} \stackrel{lock}{}(C_{4}, C_{5}) = (6)\neg q \lor_{(8)}\neg p$
 $C_{8} = \operatorname{Res}_{q} \stackrel{lock}{}(C_{6}, C_{1}) = (2)p \lor_{(8)}\neg p$
 $C_{9} = \operatorname{Res}_{p} \stackrel{lock}{}(C_{8}, C_{2}) = (4)q \lor_{(8)}\neg p$
 $C_{10} = \operatorname{Res}_{q} \stackrel{lock}{}(C_{9}, C_{4}) = (8)\neg p$
 $C_{11} = \operatorname{Res}_{p} \stackrel{lock}{}(C_{10}, C_{3}) = (6)\neg q$
 $C_{12} = \operatorname{Res}_{q} \stackrel{lock}{}(C_{11}, C_{1}) = (2)p$
 $C_{13} = \operatorname{Res}_{p} \stackrel{lock}{}(C_{12}, C_{10}) = (10)$

- rezoluția blocării + strategia eliminării nu e completă
 - $S = \{p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q\}$ $C_1 =_{(2)} p \lor_{(1)} q, C_2 =_{(3)} \neg p \lor_{(4)} q, C_3 =_{(5)} p \lor_{(6)} \neg q, C_4 =_{(8)} \neg p \lor_{(7)} \neg q$
- rezoluția blocării + strategia mulțimii suport nu e completă
 - $p \to (q \to r), r \land s \to t, u \to s \land \neg t \mid \neg p \land q \to \neg u$ $C_1 =_{(3)} \neg p \lor_{(2)} \neg q \lor_{(1)} r, C_2 =_{(6)} \neg r \lor_{(5)} \neg s \lor_{(4)} t, C_3 =_{(8)} \neg u \lor_{(7)} s,$ $C_4 =_{(10)} \neg u \lor_{(9)} \neg t, C_5 =_{(11)} p, C_6 =_{(12)} q, C_7 =_{(13)} u$ $Y = \{C_5, C_6, C_7\}$

- rezoluția blocării + strategia mulțimii suport nu e completă
 - $p \to (q \to r), r \land s \to t, u \to s \land \neg t \models p \land q \to \neg u$ $C_1 =_{(3)} \neg p \lor_{(2)} \neg q \lor_{(1)} r, C_2 =_{(6)} \neg r \lor_{(5)} \neg s \lor_{(4)} t, C_3 =_{(8)} \neg u \lor_{(7)} s,$ $C_4 =_{(10)} \neg u \lor_{(9)} \neg t, C_5 =_{(11)} p, C_6 =_{(12)} q, C_7 =_{(13)} u$ $Y = \{C_5, C_6, C_7\}$

În această indexare, nu rezolvă nici o clauză urmând strategia mulțimii suport, deci am ajunge la falsa concluzie că S este consistentă.

• rezoluția blocării fără strategia mulțimii suport:

$$p \to (q \to r), r \land s \to t, u \to s \land \neg t \mid \neg p \land q \to \neg u$$

$$C_{1} = (3) \neg p \lor (2) \neg q \lor (1)^{r}, C_{2} = (6) \neg r \lor (5) \neg s \lor (4)^{t}, C_{3} = (8) \neg u \lor (7)^{s},$$

$$C_{4} = (10) \neg u \lor (9) \neg t, C_{5} = (11)^{p}, C_{6} = (12)^{q}, C_{7} = (13)^{u}$$

$$C_{8} = \operatorname{Res}_{t}^{lock}(C_{2}, C_{4}) = (5) \neg s \lor (6) \neg r \lor (10) \neg u$$

$$C_{9} = \operatorname{Res}_{s}^{lock}(C_{8}, C_{3}) = (6) \neg r \lor (8) \neg u$$

$$C_{10} = \operatorname{Res}_{t}^{lock}(C_{1}, C_{9}) = (2) \neg q \lor (3) \neg p \lor (8) \neg u$$

$$C_{11} = \operatorname{Res}_{t}^{lock}(C_{10}, C_{6}) = (3) \neg p \lor (8) \neg u$$

$$C_{12} = \operatorname{Res}_{t}^{lock}(C_{11}, C_{5}) = (8) \neg u$$

$$C_{13} = \operatorname{Res}_{u}^{lock}(C_{12}, C_{7}) = \square$$

$$C_{14} = \operatorname{Res}_{u}^{lock}(C_{12}, C_{7}) = \square$$

$$C_{15} = \operatorname{Res}_{u}^{lock}(C_{12}, C_{7}) = \square$$

$$C_{16} = \operatorname{Res}_{u}^{lock}(C_{11}, C_{5}) = (8) \neg u$$

$$C_{17} = \operatorname{Res}_{u}^{lock}(C_{12}, C_{7}) = \square$$

$$C_{18} = \operatorname{Res}_{u}^{lock}(C_{12}, C_{7}) = \square$$

Rezoluţia liniară

- Loveland 1970
- procesul rezolutiv este liniar: la fiecare pas una dintre clauzele părinte este rezolventul obținut la pasul anterior
- Arborele de derivare corespunzător procesului rezolutiv liniar are forma:
 - C_0 clauză vârf
 - $C_1, C_2, ..., C_n$ clauze centrale
 - B_0, B_1, \dots, B_{n-1} clauze laterale
 - $\forall i=1,2,...,n$, are loc: $C_i = \text{Res}(C_{i-1}, B_{i-1})$

Teorema de corectitudine și completitudine

• Mulțimea S de clauze este inconsistentă, dacă și numai dacă $S \mid_{-\mathrm{Res}}^{lin} \square$.

•
$$S = \{p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q\}$$

$$C_1 = p \vee q$$

$$C_2 = \neg p \lor q$$

$$C_3 = p \lor \neg q$$

$$C_1 = p \lor q \mid C_2 = \neg p \lor q \mid C_3 = p \lor \neg q \mid C_4 = \neg p \lor \neg q$$

Verificați inconsistența mulțimilor următoare de clauze utilizând rezoluția liniară:

•
$$S = \{p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q\}$$

• $S = \{ \neg r, p \lor \neg q, r \lor p \lor q, \neg q \lor \neg p \}$ (+strategia eliminării)

$$C_1 = \neg r$$

$$C_2 = p \vee \neg q$$

$$| \mathbf{C}_1 = \neg r | | \mathbf{C}_2 = p \vee \neg q | | \mathbf{C}_3 = r \vee p \vee q | | \mathbf{C}_4 = \neg q \vee \neg p |$$

$$C_4 = \neg q \lor \neg p$$

$$C_1 = \neg r$$

$$C_2 = p \lor \neg q$$

$$C_3 = r \vee p \vee q$$

$$C_3 = r \lor p \lor q \mid C_4 = \neg q \lor \neg p$$

3. Mai sus...

Începem cu alte 2 clauze care revolvă Şi reîncercăm (backtracking)... Tot nu ajungem la clauza vidă

 $\stackrel{\text{TCC}}{\Longrightarrow} S$ este consistentă

$$C_4 = \neg q \vee \underline{\neg p}$$

$$C_9 = \underline{\neg q} \vee \underline{r}$$

$$C - r$$

$$C_3 = \underline{r} \lor p \lor q$$

$$C_5 = p \vee q \mid C_2 = p \vee \underline{\neg q}$$

$$C_6 = \underline{p}$$

$$C_4 = \neg q \lor \underline{\neg p}$$

$$C_7 = \underline{\neg q} \quad C_3 = r \lor p \lor \underline{q}$$

$$C_8 = \underline{r} \vee \underline{p} \qquad C_1 = \underline{\neg r}$$

$$C_6 = \underline{p}$$

1. Nu îl mai luăm tot pe C_4 , nu avem altă opțiune, revenim un pas mai sus

$$C_3 = r \vee p \vee q$$

$$C_7 = \underline{\neg q}$$

$$C_5 = p \vee q$$

$$C_8 = r \vee p$$

$$C_6 = p$$

2. nu avem altă opțiune, revenim mai sus

Observație:

- rezoluția liniară furnizează o strategie la nivel de implementare: *căutarea cu revenire*
 - la fiecare iterație, pentru clauza centrală pot exista mai multe posibile clauze laterale
 - după ce au fost utilizate toate posibilele clauze laterale, dar nu s-a obținut clauza vidă, se revine la iterația precedentă
 - consistența mulțimii de clauze este demonstrată după o căutare completă fără derivarea clauzei vide

Cazuri particulare ale rezoluției liniare

- **Rezoluția unitară** (*unit*): clauzele centrale au *cel puțin* o *clauză părinte unitară* (conține un singur literal)
- **Rezoluția de intrare** (*input*): clauzele *laterale* sunt clauze *inițiale* (de intrare)

Teorema de echivalență dintre rezoluția unit și cea input

- Fie mulţimea S de clauze. $S \mid -\frac{input}{Res} \square$ dacă şi numai dacă $S \mid -\frac{unit}{Res} \square$.
- corectitudinea: Dacă $S \mid_{\mathsf{Res}}^{input/unit} \square$ atunci S este inconsistentă
- incompletitudinea: există mulțimi inconsistente de clauze din care nu se poate deriva clauza vidă folosind rezoluția input sau rezoluția unit.

Verificați inconsistența mulțimilor următoare de clauze utilizând rafinările input și unit:

•
$$S = \{ \neg r, p \lor \neg q, r \lor q, \neg q \lor \neg p \}$$

$$C_1 = \neg r$$

$$C_2 = p \vee \neg q$$

$$C_3 = r \vee q$$

$$| \mathbf{C}_1 = \neg r | | \mathbf{C}_2 = p \vee \neg q | | \mathbf{C}_3 = r \vee q | | \mathbf{C}_4 = \neg q \vee \neg p |$$

Input (cl. lat. sunt din mulț. init.) și unit (C₅,...C₈ au cel puțin un părinte unit.)

$$\begin{array}{c|c} C_1 = \neg r & C_2 = p \lor \neg q & C_3 = r \lor q \\ \hline C_1 = \neg r & C_3 = \underline{r} \lor q \\ \hline C_5 = \underline{q} & C_2 = p \lor \neg \underline{q} \\ \hline C_6 = \underline{p} & C_4 = \neg q \lor \neg \underline{p} \\ \hline C_7 = \neg \underline{q} & C_3 = r \lor \underline{q} \\ \hline \hline C_8 = \underline{r} & C_1 = \neg r \\ \hline \hline C_8 = \underline{r} & C_1 = \neg r \\ \hline \hline \end{array}$$

$$\xrightarrow{TCC} S \text{ este inconsistent § } S \text{$$

Tipuri de metode

	Semantice	Sintactice
Directe	Tabela de adevăr FNC	Deducția (mp)
prin Respingere	FND Tabele semantică	Rezoluția (generală, strategia eliminării, strategia saturării pe nivele, strategia mulțimii suport, rafinarea rezoluției blocării, rafinarea rezoluției liniare, cazuri particulare: input și unit)