# Machine Learning & Intelligence Artificielle







Manuel Simoes manuel.simoes@cpc-analytics.fr

- Machine Learning -

Démarche générale

## **Machine learning**



Le processus d'apprentissage automatique (processus d'automatisation de base en rouge, processus auxiliaires en jaune)

# Préparer et Analyser vos données

- Autant que possible afficher vos données
- Vérifier la compatibilité entre les valeurs des données et ce qu'elles représentent.
- Vérifier la présence d'artefact, d'extremum, NaN...
- Nettoyer les données
- Séparer les données en plusieurs ensembles
  - Un ensemble de données pour l'apprentissage [Training Set]
  - Un ensemble de données pour les tests de qualité de l'algo [Testing Set]
  - En fonction des données et de leur quantité, il est également possible de constituer un ensemble de données utilisées pour ajuster certains paramètres de l'algo [Calibration Set]

Chaque jeux de données est "unique" et des décisions sont à prendre au cas par cas.

### Nettoyer les données

### Ce qu'il faut (entre-autres) pouvoir identifier dans les données

- Les colonnes aux valeurs identiques / constante
- Vérifier les lignes identiques (uniquement si elle correspondent à un artefact)
- La proportion sur les lignes et les colonnes des valeurs manquantes NaN (Not a Number) par rapport aux valeurs connues.
- Les outlier (correspondent-ils à une certaine réalité?)
- Corrélation forte entre 2 ou plusieurs colonnes

### Gérer les valeurs manquantes NaN

- Calculer la proportion de NaN sur les colonnes ou/et sur les lignes.
- Évaluer s'il faut les supprimer ou les remplacer (Imputation).
- Différentes méthodes d'imputation existent
  - Remplacer par une valeur constante, la moyenne de la colonne, une moyenne glissante
  - Autres méthodes (voir les librairies...)

# Analyse de l'erreur

- Commencer avec un algo simple et facile à mettre en place

- **Utiliser la courbe d'apprentissage** pour décider s'il faut plus de données, features...

- **Analyse de l'erreur :** Faites des calcul avec différentes hypothèses et identifiez les exemples pour lequel vous obtenez de mauvais résultats.

Tentez de comprendre ces ensembles.

# Attitude générale

### La Data Science est une science empirique et vous pouvez faire vos propres expériences :

Prenez un jeu de donnée de référence et mesuré la qualité de vos résultats

Modifier votre jeu de données d'entrée et/ou modifier des paramètres de l'algo et/ou changer d'algo ... [Ne modifier qu'un paramètre à la fois et sur plusieurs valeurs]

Mesurez de nouveau la qualité de vos résultats

Faites votre conclusion



# TD 1er contact avec Python / Panda

### The Boston Housing Dataset

A Dataset derived from information collected by the U.S. Census Service concerning housing in the area of Boston Mass.

- Charger les données Boston
  - Charger les données sur les appartements dans le DataFrame df.
  - Charger les prix (boston.target) des appartements dans une nouvelle colonne de df (df["Prix"]).
- Visualiser les 15 premières lignes du tableau df.
- Tracer les features (l'objectif est de voir les dépendances des colonnes entre elles et surtout par rapport au prix).
  - Décrire les features/Colonne qui vous semble les plus importantes pour la détection du Prix dans jupyter (seaborn.pairplot)
- Séparer les données en 2 ensembles [Learning & Testing]. Sklearn.model selection.train test split
  - LinearRegression
- Estimer les prix des maisons à Boston [PRICE en fonction de ?? ] en utilisant une régression linéaire.

#### **Dataset Naming**

The name for this dataset is simply boston. It has two prototasks: nox, in which the nitrous oxide level is to be predicted; and price, in which the median value of a home is to be predicted

#### Miscellaneous Details

#### Origin

The origin of the boston housing data is Natural.

This dataset may be used for Assessment.

#### **▼** Number of Cases

The dataset contains a total of 506 cases.

#### Order

The order of the cases is mysterious.

#### Variables

There are 14 attributes in each case of the dataset. They are:

- CRIM per capita crime rate by town
- 2. ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- 3. INDUS proportion of non-retail business acres per town.
- CHAS Charles River dummy variable (1 if tract bounds river: 0 otherwise)
- 5. NOX nitric oxides concentration (parts per 10 million)
- 6. RM average number of rooms per dwelling
- 7. AGE proportion of owner-occupied units built prior to 1940
- 8. DIS weighted distances to five Boston employment centres
- 9. RAD index of accessibility to radial highways
- TAX full-value property-tax rate per \$10,000
- 11. PTRATIO pupil-teacher ratio by town
- 12. B 1000(Bk 0.63)^2 where Bk is the proportion of blacks by town
- 13. LSTAT % lower status of the population
- 14. MEDV Median value of owner-occupied homes in \$1000's

Variable #14 seems to be censored at 50.00 (corresponding to a median price of \$50,000); Censoring is suggested by the fact that the highest median price of exactly \$50,000 is reported in 16 cases, while 15 cases have prices between \$40,000 and \$50,000, with prices rounded to the nearest hundred. Harrison and Rubinfeld do not mention any censoring.



Source: http://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

# Attitude générale

### **Pendant les TD**

Comprendre les paramètres d'entrées des fonctions utilisées

- Faite rapidement une 1er boucle (des données à l'algorithme de ML)
- [cela n'empêche pas de faire (au début) des tests à l'aveugle ou à l'instinct pour appréhender les outils]
- Consulter les pages techniques et documentation [python, scikit-learn, pandas...]
- Ne pas hésiter à aller dans le code pour plus de documentation ou tout simplement comprendre le code utilisé.
- Google / StartPage / sayhello (<a href="https://www.startpage.com/">https://beta.sayhello.so/</a>)
- StackOverflow (pour les problèmes technique: <a href="https://stackoverflow.com">https://stackoverflow.com</a>)

### Au long court

- Continuer à se tenir au courant [blog, articles, congrès, rencontres...]
- Continuer à se former (publications, cours en ligne...)
- Quitter sa zone de confort (normalement il n'y en a pas beaucoup en Data Science...)

