Compiler Design

Fatemeh Deldar

Isfahan University of Technology

1402-1403

• Example: Devise predictive parsers and show the parsing tables (You may left-factor and/or eliminate left-recursion from your grammars first.)

nonterminal symbol	Enter symbol		
	0	1	\$
S	S -> 0 A		
Α	A -> 0 A 1	A -> 1	

• Example: Devise predictive parsers and show the parsing tables (You may left-factor and/or eliminate left-recursion from your grammars first.)

nonterminal symbol	Enter symbol			
	()	\$	
S	S -> A	S -> A	S -> A	
Α	A -> (S) SA A -> e	A -> e	A -> e	

• Example:

Left factoring

• Eliminate left recursion

• Example: Give context-free grammars that generate the following languages

```
\{w \in \{0,1\}^* \mid w \text{ contains at least three } 1s\}
```

- $S \rightarrow A1A1A1A$
- $A \rightarrow 0A \mid 1A \mid \epsilon$

$$\{ w \in \{0,1\}^* \mid w = w^{\mathcal{R}} \text{ and } |w| \text{ is even } \}$$

• $S \rightarrow 0S0 | 1S1 | \epsilon$

• Example: Give context-free grammars that generate the following languages

$$\{ a^i b^j c^k \mid i, j, k \ge 0, \text{ and } i = j \text{ or } i = k \}$$

- $S \rightarrow XY \mid W$
- $X \rightarrow aXb \mid \epsilon$
- $Y \rightarrow cY \mid \epsilon$
- $W \rightarrow aWc \mid Z$
- $Z \rightarrow bZ \mid \epsilon$

• Example: Give context-free grammars that generate the following languages

$$\{ a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i + j = k \}$$

- $S \rightarrow aSc \mid A$
- $A \rightarrow bAc \mid \epsilon$

- Example:
- $S \rightarrow S+S \mid SS \mid (S) \mid S^* \mid a$
- Left factoring
 - $S \rightarrow SA \mid (S) \mid a$
 - $A \rightarrow +S \mid S \mid *$
- Eliminate left-recursion
 - $S \rightarrow (S)S' \mid aS'$
 - S' \rightarrow AS' | ϵ
 - $A \rightarrow +S \mid S \mid *$
- Eliminate left-recursion
 - $S \rightarrow (S)S' \mid aS'$
 - A \rightarrow +S | (S)S' | aS' | *
 - S' \rightarrow +SS' | (S)S'S' | aS'S' | *S' | ϵ