Anticipation des besoins en consommation des bâtiments de Seattle

Contexte générale

Contexte:

La ville de Seattle souhaite devenir une ville neutre en émission Seattle

Mission:

- > Analyser la consommation en énergie et les émissions de G.E.S. des bâtiments non destinés à l'habitation.
- > Tenter de prédire ces deux valeurs à partir des propriétés géographiques, architecturales et d'usage des bâtiments.
- > Tester la pertinence de l'indicateur ENERGYSTARScore, difficile et couteux à acquérir.

Données:

Relevé des différents indicateurs pour les bâtiments de Seattle pour l'année 2016.

Sommaire

- I) Présentation et préparation du jeu de données
- II) Méthodes de prédiction
- III) Prédiction des indicateurs de consommation et d'émission

Résultats 1 : Prédictions de la consommation énergétique

Résultats 2 : Prédictions des émissions de G.E.S.

Partie I : Présentation et préparation des données

Présentation des données et des variables d'intérêts

- Données fournies le 15 mars 2018 par Seattle sur des relevés de 2016.
- 3,376 propriétés
- 46 variables décrivant les propriétés (géographiques, architecturales, usage, consommations, émissions)

GEOGRAPHIQUES	ARCHITECTURAUX	USAGE	EMISSIONS/CONSO
 Longitude Latitude Code de District (District Code) Quartier (Neighborhood) 	 Nombre de bâtiments Nombre d'étages Année de construction Surface totale (propertyGFATotal) 	Type de propriété principale	TotalGHGEmmissionsSiteEnergyUse

Modification et création de variable :

Type de propriété principale : 'Office', 'Small- and Mid-Sized Office', 'Large Office' = Office Parking_per : Surface parking/Surface totale Largest_UseType_per = Surface d'utilisation principale / Surface totale

Répartition empirique et modification des données

Répartition empirique et modification des données

Transformation en logarithme naturel (+1)

Brève analyse de la relation entre les variables

Objectif: Prédire la consommation en énergie et les émissions de GES de façon précise en fonction des propriétés géographiques, d'usage et architecturaux

Partie II: Méthodes de prédiction 8

Présentation de la démarche de modélisation

- 1) Prédictions des valeurs de Consommation et des Emissions de GES
 - Comparaison : 10 modèles de Machine Learning succinctement optimisés par validation croisée
 - 4 critères (métriques)
 - Données standardisées ou non
 - Différents échantillons de départ (Random state de l'échantillonnage (split) des données d'entraînement/test)
- 2) Optimisation plus poussée du meilleur modèle + Courbe d'apprentissage
- 3) Importance des variables (dont ENERGYSTARScore)

Les modèles utilisés : Modèles linéaires

Régression linéaire : Ordinary Least Squares

Régression Ridge : OLS + L1 penalty • Le poids des variables

Régression Lasso : OLS + L2 penalty
• Le nombre de variables

Régression ElasticNet : OLS + L1 + L2 penalty

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_i x_i + \varepsilon$$

Objectif: Minimiser la somme des carrés des erreurs (ou résidus) = Méthode des Moindres Carrés (OLS)

$$L_{OLS}(\hat{\beta}) = \sum_{i=1}^{n} (y_i - x_i' \hat{\beta})^2$$

$$L_{lasso}(\hat{\beta}) = \sum_{i=1}^{n} (y_i - x_i' \hat{\beta})^2 + \lambda \sum_{j=1}^{m} |\hat{\beta}_j|.$$

$$L_{ridge}\left(\hat{eta}
ight) = \sum_{i=1}^{n} (y_i - x_i'\hat{eta})^2 + \lambda \sum_{j=1}^{m} \hat{eta}_j^2$$

$$L_{enet}(\hat{\beta}) = \frac{\sum_{i=1}^{n} (y_i - x_i' \hat{\beta})^2}{2n} + \lambda (\frac{1-\alpha}{2} \sum_{j=1}^{m} \hat{\beta}_j^2 + \alpha \sum_{j=1}^{m} |\hat{\beta}_j|),$$

Les modèles utilisés : Modèles ensemblistes

Méthodes parallèles
 Bagging (tree) + Random Forest

Méthodes séquentielles
 Adaboost + (X)Gradient Boosting

Image: Bakshi, Random Forest Regression. Medium, 2020

Image: Deng et al. BMC Medical Informatics and Decision Making 2021

Les modèles utilisés : Autres modèles

- Méthode de support vector machine
- Méthode des K plus proches voisins
- Méthode de Perceptron multicouches
- Modèle nul (moyenne)

Critères de comparaison : les différentes métriques

• Erreur quadratique moyenne (Mean Squared error MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

• Erreur quadratique moyenne (Mean Squared error)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n}(y_i - \widehat{y}_i)^2}{n}}$$

• Coefficient de détermination R²

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$
variance

• Erreur Moyenne Absolue (Mean Absolute Error MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\widehat{y}_i - y_i|$$

- y_i valeur vraie
- \hat{y}_i valeur prédite
- \overline{y} valeur moyenne

Importance des Variables : Valeurs de Shapley

Lundberg & Lee 2017:

Algorithme basé sur la théorie des jeux coopératifs (Lloyd S. Shapley)
La prédiction d'un individu = somme de contributions de chacune des variables.

15

Partie III : Résultats

Résultats 1 : Prédictions de la consommation énergétique

Résultats 2 : Prédictions des émissions de G.E.S.

Résultats 1 : Prédictions de la consommation énergétique

Modèle	R ² : entrainement (meilleurs param)	R ² : test	MSE: test	RMSE: test	MAE: test
Dummy_regression	-0.006	-0.000	1.178	1.387	0.957
linear_regression	0.857	0.871	0.423	0.179	0.331
Ridge	0.858	0.872	0.422	0.178	0.330
Lasso	0.864	0.871	0.423	0.179	0.329
ElasticNet	0.861	0.872	0.421	0.178	0.328
SVR	0.834	0.868	0.429	0.184	0.319
KNN	0.607	0.658	0.689	0.474	0.533
Bagging_Reg	0.809	0.847	0.460	0.212	0.344
random_forest	0.808	0.841	0.469	0.220	0.350
AdaBoost_Reg	0.740	0.776	0.557	0.310	0.458
GradientBoosting_Reg	0.848	0.884	0.401	0.161	0.300
XGBoost_reg	0.843	0.874	0.419	0.175	0.304
Perceptron_reg	0.713	0.872	0.421	0.177	0.321

Résultats 1 : Optimisation des meilleurs modèles

Résultats 1 : Importances des variables

Résultats 1 : Comparaison des valeurs prédites/vraies

ENERGYSTARScore	R ² : test	MSE: test	RMSE: test	MAE: test
Avec	0.888	0.395	0.156	0.303
Sans	0.793	0.536	0.287	0.406
Ecart	-10,7 %	+35,7 %	+84,0 %	+34,0 %

Résultats 2 : Prédictions des émissions de G.E.S.

Modèle	R ² : entrainement (meilleurs param)	R ² : test	MSE: test	RMSE: test	MAE: test
Dummy_regression	-0.018	-0.003	1.339	1.792	1.062
linear_regression	0.626	0.607	0.839	0.703	0.685
Ridge	0.630	0.606	0.839	0.704	0.685
Lasso	0.630	0.603	0.843	0.710	0.686
ElasticNet	0.630	0.604	0.841	0.707	0.685
SVR	0.616	0.597	0.849	0.720	0.666
KNN	0.390	0.432	1.008	1.015	0.801
Bagging_Reg	0.577	0.598	0.848	0.718	0.676
random_forest	0.578	0.597	0.849	0.721	0.677
AdaBoost_Reg	0.508	0.523	0.923	0.853	0.778
GradientBoosting_Reg	0.622	0.623	0.821	0.674	0.653
XGBoost_reg	0.594	0.582	0.864	0.747	0.683
Perceptron_reg	0.597	0.281	1.134	1.285	0.901

Résultats 2 : Optimisation des meilleurs modèles

Résultats 2 : Importances des variables

Résultats 2 : Comparaison des valeurs prédites/vraies

ENERGYSTARScore	R ² : test	MSE: test	RMSE: test	MAE: test
Avec	0.636	0.806	0.65	0.652
Sans	0.594	0.852	0.726	0.67
Ecart	-6,6 %	+5,7 %	+11,7 %	+2,8 %

Conclusion

1) Le modèle prédit avec précision la consommation énergétique des bâtiments non destinées à l'habitation.

- 2) Les prédictions des émissions de G.E.S. sont moins précises.
- 3) Dans les deux cas, ENERGYSTARScore augmentent la précision des prédictions.

Annexe: Analyse exploratoire des indicateurs

Indicateurs géographiques : Longitude latitude

Indicateurs géographiques : District

Indicateurs géographiques : Quartier

Indicateurs architecturaux:

Indicateurs architecturaux:

Indicateurs d'usages : Type de propriété principale

