

Figure 1. Regrets of our proposed method and two baselines. The OLS T-learner baseline is a static estimator retrained with all historical data at each round. The OLS baseline encounters numerical stability issues in some rounds and causes extreme values, so we clipped per-round regrets at 20 for better visualization in all figures. Environment parameters are set to u = 0.5, v = 0.5, and $P_T = 0$. Shaded bands indicate standard error.

Figure 2. Regrets of our proposed method and two baselines. Environment parameters are set to u=0.5, v=0.5, and $P_T>0$. Shaded bands indicate standard error.

Figure 3. Regrets of our proposed method and two baselines in a new environment. The new environment changing mechanism replaces the $\delta(h(\boldsymbol{x}_t;\boldsymbol{\theta}_t))$ in the original mechanism with $\delta(MLP(\boldsymbol{x}_t;\boldsymbol{\theta}_t))$, where $MLP(\cdot)$ is a randomly initialized multi-layer perceptron with two hidden layers and ReLU activations meant to simulate more complex environments. Environment parameters are set to u=0.5, v = 0.5, and $P_T = 0$. Shaded bands indicate standard error.

Figure 4. Regrets of our proposed method and two baselines in a new environment as in Fig. 3. Environment parameters are set to u=0.5, v=0.5, and $P_T>0.$ Shaded bands indicate standard error.