Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

УНИВЕРСИТЕТ ИТМО

Группа	К работе допущен
Студен	Работа выполнена
Преподаватель	. Отчет принят

Рабочий протокол и отсчет по лабораторной работе №1

Исследование распределения случайной величины

1. Цель работы.

- 1) Провести измерения конкретного интервала времени
- 2) Построить гистограмму результатов измерения
- 3) Вычислить среднее значение и дисперсию
- 4) Сравнить гистограмму с графиком функции Гаусса с таким же распределением средним значением и дисперсией

2. Задачи, решаемые при выполнении работы.

- 1) Провести 50 измерений, устанавливая промежуток времени в 7 секунд. Результаты вносить в таблицу;
 - 2) Построить гистограмму по алгоритму, прописанному в выполнении работы;
- 3) По данным таблицы вычислить выборное значение среднего $\langle t \rangle N$ и выборочное среднеквадратичное отклонение σN ;
 - 4) Записать результаты в таблицу;
- 5) По формуле вычислить максимальное значение плотности распределения $\rho_m ax$ соответствующее $t = \langle t \rangle$, занести его в таблицу;
- 6) Найти значение t, соответствующие серединам выбранных ранее интервалов, занести их в столбец новой таблицы номер 2. Для этих значений, используя параметры $\langle t \rangle N$ и σN в качестве $\langle t \rangle$ и σ , вычислить значение плотности распределения $\rho(t)$, занести их в новую таблицу номер 2. Нанести все расчетные точки на график, на котором изображена гистограмма и провести через них плавную кривую;
- 7) Проверить, насколько точно выполняется в наших опытах соотношение между вероятностями и долями $\frac{\Delta N_{\sigma}}{N}$, $\frac{\Delta N_{2\sigma}}{N}$, $\frac{\Delta N_{3\sigma}}{N}$. Для этого вычислить границы интервалов для найденных нами значений $\langle t \rangle N$ и σN , занести их в таблицу номер 3;
- 8) По данным первой таблицы подсчитать и занести в таблицу номер 3 количество ΔN измерений, попадающих в каждый их этих интервалов, и отношение $\frac{\Delta N}{N}$ этого количества к общему числу измерений. Сравнить их с соответствующими нормальному распределению значениями P вероятности;
 - 9) Рассчитать среднеквадратичное отклонение среднего значения
- 10) Найди табличное значение коэффициента Стьюдента $t_{\alpha,N}$ для доверительной вероятности $\alpha = 0,95$. Записать доверительный интервал для измеряемого в работе промежутка времени

3. Объект исследования.

Промежуток времени длительностью в 7 секунд

4. Метод Экспериментального исследования

Стрелочным секундомером задается интервал времени, который многократно измеряется цифровым секундомером

5. Рабочие формулы и исходные данные

и табо то формуны поподные данные			
$\langle t \rangle N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^{N} t_i$	$\langle t angle N$ - выборочное значение		
$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right)$	ho(t) - плотность вероятности или закон распределения		
,	исследуемой величины		
$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$	σN - выборочное среднеквадратичное отклонение		
$\rho_{\text{max}} = \frac{1}{\sigma\sqrt{2\pi}}$ $[\langle t \rangle_N - \sigma_N, \langle t \rangle_N + \sigma_N],$	$ ho_{ m max}$ - максимальная высота гистограммы		
$[\langle t \rangle_N - \sigma_N, \langle t \rangle_N + \sigma_N],$	Р - вероятность попадания результата каждого		
$[\langle t \rangle_N - 2\sigma_N, \langle t \rangle N + 2\sigma_N],$	измерения в интервал $[t_1, t_2]$		
$[\langle t \rangle_N - 3\sigma_N, \langle t \rangle_N + 3\sigma_N]$			
$\sigma_{\langle t \rangle} = \sqrt{rac{1}{N(N-1)} \sum\limits_{i=1}^{N} (t_i - \langle t angle_N)^2}$	σ - среднеквадратичное отклонение среднего значения		
	$t_{\alpha,N}$ - коэффициент Стьюдента,		
$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}, \ \alpha = 0,95$			
	lpha - доверительная вероятность		

6. Измерительные приборы

	$N_{ar{o}} n/n$	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
	1	Секундомер	Механический	7 секунд	$\pm 0.1c$
Ī	2	Секундомер	Электронный	7 секунд	$\pm (9.6 \cdot 10^{-6} + 0.01)c$

7. Результаты измерений и их обработки

$N_{\overline{0}}$	t_i , c	$t_i - \langle t \rangle_N$,c	$(t_i - \langle t \rangle_N)^2, c^2$	
1	6.78	0.203	0.0412	
2	7.1	-0.117	0.0137	
3	7.04	-0.057	0.0032	
4	6.95	0.033	0.0011	
5	6.61	0.373	0.1391	
6	7.06	-0.077	0.0059	
7	6.94	0.043	0.0018	
8	7.0	-0.017	0.0003	
9	6.94	0.043	0.0018	
10	7.0	-0.017	0.0003	
11	7.03	-0.047	0.0022	
12	7.13	-0.147	0.0216	
13	6.78	0.203	0.0412	
14	7.02	-0.037	0.0014	
15	6.99	-0.007	0.0	
16	6.82	0.163	0.0266	
17	6.82	0.163	0.0266	
18	7.03	-0.047	0.0022	
19	7.13	-0.147	0.0216	
20	7.02	-0.037	0.0014	
$\frac{20}{21}$	6.97	0.013	0.0002	
22	7.21	-0.227	0.0515	
23	7.02	-0.037	0.0014	
$\frac{20}{24}$	6.93	0.053	0.0028	
25	7.0	-0.017	0.0003	
$\frac{26}{26}$	6.9	0.083	0.0069	
$\frac{20}{27}$	6.82	0.163	0.0266	
28	7.1	-0.117	0.0137	
29	6.94	0.043	0.0018	
30	6.79	0.193	0.0372	
31	7.13	-0.147	0.0216	
32	7.0	-0.017	0.0003	
33	6.94	0.043	0.0018	
34	6.99	-0.007	0.0	
35	7.13	-0.147	0.0216	
36	7.08	-0.097	0.0094	
37	6.98	0.003	0.0	
38	6.95	0.033	0.0011	
39	7.14	-0.157	0.0246	
40	6.87	0.113	0.0128	
41	7.12	-0.137	0.0188	
42	7.0	-0.017	0.0003	
43	6.94	0.043	0.0018	
44	7.1	-0.117	0.0137	
45	7.0	-0.017	0.0003	
46	7.0	-0.017	0.0003	
47	6.97	0.013	0.0002	
48	6.98	0.003	0.0	
49	7.01	-0.027	0.0007	
50	6.95	0.033	0.0011	
	$\langle t \rangle N = 6.983$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = -2.5e^{-14}$	$\sigma_N = 0.0128$	
		" -	$ \rho_{\text{max}} = 31.2146 $	
		-		

8. Расчет результатов косвенных измерений.

Границы интер-	ΔN	$\frac{\Delta N}{N\Delta t}$, c ⁻¹	t, c	ρ, c^{-1}
валов, с				
[6.61; 6.6957]	1	0.2333	6.6529	0.0153
[6.6957; 6.7814]	2	0.4667	6.7386	0.1398
[6.7814; 6.8671]	4	0.9333	6.8243	0.7199
[6.8671; 6.9529]	11	2.5667	6.91	2.0873
[6.9529; 7.0386]	19	4.4333	6.9957	3.4056
[7.0386; 7.1243]	7	1.6333	7.0814	3.1273
[7.1243; 7.21]	6	1.4	7.1671	1.6161

9. Расчет погрешностей измерений

	Интервал, с			
	От и До	ΔN	$\frac{\Delta N}{N}$	P
$\langle t \rangle_N \pm \sigma_N$	6.9958, 6.9702	4	0.08	0.683
$\langle t \rangle_N \pm 2\sigma_N$	7.0086, 6.9574	13	0.26	0.954
$\langle t \rangle_N \pm 3\sigma_N$	7.0213, 6.9491	20	0.4	0.997

10. Графики.

11. Выводы и анализ результатов работы.

В данном эксперименте я не могу гарантировать, что все действия были совершены идеально, ведь человеческие руки не в состоянии точно нажимать на кнопку "стоп"и "старт"и из-за этого появлялись погрешности и из-за этого таблица имела отличия с нормальным распределением Гаусса. Также на результат повлияла малое число измерений. При большим числе (к примеру 1000) результат мог бы быть более точным. Однако, можно заметить, что они имеют схожую динамику.

12. Дополнительные задания

13. Выполнение дополнительных заданий

14. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт.