${\bf Question: Relational\,Algebra}$

Consider the relations of a database for the 2016 Olympics as shown in Table 1. These relations record the athletes, events, and outcomes/results of the 2016 Olympic games.

athlete_id	country	name	age
A1	U.S.A.	Michael Phelps	31
A2	U.S.A.	Justin Gatlin	34
A3	U.S.A.	Ryan Lochte	32
A4	Canada	Andre De Grasse	21
A5	Jamaica	Usain Bolt	30
A6	France	Christophe Lemaitre	26
A7	Japan	Masato Sakai	24
A8	Japan	Naito Ehara	60
A9	GBR	Duncan Scott	35
A10	GBR	James Guy	32

(a) Athletes Table

event_id	name	
E1	100m Sprint	
E2	200m Sprint	
E3	200m Butterfly	
E4	4x200 Freestyle Relay	

(b) Events Table

event_id	athlete_id	result	
E1	A5 Gold		
E1	A2	Silver	
E1	A4	Bronze	
E2	A5	Gold	
E2	A4	Silver	
E3	A1	Gold	
E3	A7	Silver	
E3	A9	Bronze	
E4	A1	Gold	
E4	A3	Gold	
E4	A7	Silver	
E4	A8	Silver	
E4	A9	Bronze	
E4	A10	Bronze	
п . Б	a. (D. 1.1 / 1	4	

(c) Event_Results Table: the outcome of every event

Table 1: Relations of the Olympic database.

We have the following tables:

- Athletes: For every athlete, we record a unique athlete_id, the country they represent, their name, and their age.
- Events: This table lists all the events that are part of the 2016 Olympic games. Every event has a unique integer event_id and a name.
- Event_Results: Lists the outcomes of all events. Every outcome records the event_id of the event, the athlete_id of the athlete that won a medal in the event, (or was part of the team that won), and the standing of the athlete (i.e., gold, silver or bronze).

Given this database instance, answer the following questions:

(a) [2 points] Which of the following is the meaning of the expression:

```
\sigma_{\tt age}>25({\tt Athletes})
```

- 1. It lists the athlete_id and name of all athletes that are at least 25 years old.
- 2. It lists all attributes of all athletes whose age is greater than or equal to 25.
- 3. It lists all athlete ages that are greater than or equal to 25.
- 4. None of the above. The real answer is

Solution: #2

- (b) [5 points] We want to list the names of the athletes that have won at-least one gold medal (eliminating duplicate names). Which, if any, of the following expressions achieve that? Mark all valid expressions.
 - 1. $\pi_{\mathtt{name}}(\sigma_{\mathtt{result}='Gold'}(\mathtt{Athletes} \bowtie \mathtt{Event_Results}))$
 - 2. $\pi_{\text{name}}(\text{Athletes} \bowtie \sigma_{\text{result}='Gold'}(\text{Event_Results}))$
 - 3. $\pi_{\mathtt{name}}(\sigma_{\mathtt{result}='Gold'}(\mathtt{Athletes} \bowtie \pi_{\mathtt{athlete_id},\mathtt{result}}(\mathtt{Event_Results})))$
 - 4. $\pi_{\mathtt{name}}(\mathtt{Athletes}) \bowtie \sigma_{\mathtt{result}='Gold'}(\mathtt{Event_Results})$
 - 5. $\pi_{\mathtt{name}}(\mathtt{Athletes}) \pi_{\mathtt{name}}(\mathtt{Athletes} \bowtie \sigma_{\mathtt{result} \neq 'Gold'}(\mathtt{Event_Results}))$

```
Solution: #1, #2, and #3
```

Grading info:

- +1 point for each expression correctly listed (or not listed)
- (c) For the following expression:

$$\sigma_{\texttt{age} < 25}(\texttt{Athletes} \bowtie \texttt{Event_Results})$$

i. [O points] Optional: describe in English what the expression does

Solution: List athlete_id, country, name, age, event_id, and result of athletes younger than 25 that have won medals.

ii. [1 point] How many, and which are the columns (= attributes) in the answer?

Solution: Six columns: athlete_id, event_id, country, name, age, and result.

iii. [3 points] How many tuples are in the answer?

Solution: 4

iv. [3 points] List all the tuples in the answer, as a table.

Solution:

athlete_id	country	name	age	event_id	result
A4	Canada	Andre De Grasse	21	E1	Bronze
A4	Canada	Andre De Grasse	21	E2	Silver
A7	Japan	Masato Sakai	24	E3	Silver
A7	Japan	Masato Sakai	24	E4	Silver

Grading info:

- ii. -1 for missing columns or having extra columns
- iii. -1 for being off by one on number of tuples; -3 for getting the wrong number of tuples by more than one
- iv. -1 for missing one tuple; -2 for performing wrong operation (e.g. × instead of ⋈) or getting some columns and tuples wrong; -3 for all tuples and columns wrong
- (d) For the following expression:

 $\pi_{\mathtt{athlete_id,event_id}}(\mathtt{Event_Results}) \div \pi_{\mathtt{event_id}}(\sigma_{\mathtt{athlete_id}='A5'}(\mathtt{Event_Results}))$

i. [O points] Optional: describe in English what the expression does

Solution: List the athlete_ids of all athletes that have won medals in every event that athlete with ID"A5" (i.e., Usain Bolt) has also won a medal in.

ii. [2 points] How many, and which are the columns (= attributes) in the answer?

Solution: One column: athlete_id.

iii. [3 points] How many tuples are in the answer?

Solution: 2

iv. [3 points] List all the tuples in the answer, as a table.

Solution:

$athlete_id$
A4
A5

Grading info:

- ii. -1 for missing columns or having extra columns
- iii. -1 for being off by one on number of tuples; -3 for getting the wrong number of tuples by more than one
- iv. -1 for missing one tuple; -1 for missing column or having extra column; -2 for getting some columns and tuples wrong; -3 for all tuples and columns wrong.
- (e) For the following expression:

 $\pi_{\texttt{A.athlete_id}}\big(\rho_A(\texttt{Athletes})\big) - \pi_{\texttt{ER1.athlete_id}}\big(\\ \rho_{ER1}(\texttt{Event_Results}) \bowtie_{ER1.athlete_id=ER2.athlete_id \land ER1.result \neq ER2.result} \ \rho_{ER2}(\texttt{Event_Results})\big)$

i. [O points] Optional: describe in English what the expression does

Solution: Finds all the athletes (by athlete_id) that did not win two or more types of medals.

ii. [2 points] How many, and which are the columns (= attributes) in the answer?

Solution: One column: A.athlete_id.

iii. [3 points] How many tuples are in the answer?

Solution: 9

iv. [3 points] List all the tuples in the answer, as a table.

Solution:

$A.athlete_id$
A1
A2
A3
A5
A6
A7
A8
A9
A10

Grading info:

- ii. -1 for missing columns or having extra columns
- iii. -1 for being off by one on number of tuples; -3 for getting the wrong number of tuples by more than one
- iv. -1 for missing one tuple; -2 for getting some columns and tuples wrong; -3 for all tuples and columns wrong