NOVEL FUNCTIONAL FORMS AND PARAMETERIZATION METHODS FOR AB INITIO FORCE FIELD DEVELOPMENT

by

Mary J. Van Vleet

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

(Chemistry)

at the

UNIVERSITY OF WISCONSIN-MADISON

2017

Date of final oral examination: 08/15/17

The dissertation is approved by the following members of the Final Oral Committee:

J.R. Schmidt, Associate Professor, Chemistry

Clark R. Landis, Professor, Chemistry

Qiang Cui, Professor, Chemistry

Arun Yethiraj, Professor, Chemistry

Reid Van Lehn, Assistant Professor, Chemical and Biological Engineering

© Copyright by Mary J. Van Vleet 2017 All Rights Reserved Soli Deo gloria.

ACKNOWLEDGMENTS

It is customary for authors of academic books to include in their prefaces statements such as this: "I am indebted to ... for their invaluable help; however, any errors which remain are my sole responsibility." Occasionally an author will go further. Rather than say that if there are any mistakes then he is responsible for them, he will say that there will inevitably be some mistakes and he is responsible for them....

Although the shouldering of all responsibility is usually a social ritual, the admission that errors exist is not — it is often a sincere avowal of belief. But this appears to present a living and everyday example of a situation which philosophers have commonly dismissed as absurd; that it is sometimes rational to hold logically incompatible beliefs.

— David C. Makinson (1965)

Above is the famous "preface paradox," which illustrates how to use the wbepi environment for epigraphs at the beginning of chapters. You probably also want to thank the Academy.

CONTENTS

Co	nten	ts iii			
Lis	t of T	Гables v	<i>r</i> iii		
Lis	t of l	Figures	ix		
Ab	strac	et x			
Pu	blish	ed Wo	rk and Work in Preparation xi		
Ι	Int	roduc	tion	1	
1	Introduction 2				
	1.1	The In	nportance of Molecular Simulation 3		
2	Background 4				
	2.1 Molecular Mechanics and the Theory of Intermolecular Forces 4				
		2.1.1	The Many-Body Expansion	4	
		2.1.2	Energy Decomposition Schemes	4	
			Intramolecular Interactions	4	
			Electrostatics	4	
			Exchange	4	
			Induction	4	
			Dispersion	5	
	2.2	Ab-In	itio Force Field Development 5		
		2.2.1	Electronic Structure Benchmarks	5	
			SAPT	5	
			Coupled-Cluster Methods	5	

2.3 ISA-based methods for force field development 5

П	Put	olishe	d Work	6	
3	Isoti	sotropic Ab Initio Force Fields 6			
4			c Ab Initio Force Fields 7 dimer Fits 7		
II	IUn	publis	shed Work	8	
5	Ab I	nitio Fo	orce Fields using LMO-EDA 9		
	5.1	Preface	2 9		
	5.2	Introdi	uction 10		
	5.3	Backgr	round and Motivation 11		
		eterizing Coordinatively-Unsaturated (CUS)-Metal-Organic Frame-			
		work (I	MOF) force fields with LMO-EDA 14		
	5.5	Сотри	ıtational Methods 18		
		5.5.1	Partial Charge Determination	18	
		5.5.2	Force Field Fitting	18	
	5.6				
		5.6.1	Initial Force Field and Cluster Model Analysis	19	
		5.6.2	Final Mg-MOF-74 CO ₂ Adsorption Isotherm	23	
		5.6.3	Transferability to Other Adsorption Isotherms	24	
		5.6.4	Transferability to Other M-MOF-74 systems	25	
	5.7	Conclu	isions 26		
	5.8	Future	Work 26		
	5.A	Force F	Field Parameters for CO_2 and Mg-MOF-74 29		
	5.B	Simula	ntion Parameters CO ₂ Adsorption in Mg-MOF-74 31		
6	Benchmark Database for Ab Initio Force Field Development 33				

N	VPractical Matters			34
7	Wor	Workflow for Intermolecular Force Field Development 35		
	7.1	Overv	niew 35	
	7.2	Geome	etry Generation 38	
		7.2.1	Guiding Principles	38
		7.2.2	Theory	40
		7.2.3	Practicals	41
	7.3	Symm	netry-Adapted Perturbation Theory (SAPT) Benchmarks 41	
	7.4	CCSE	P(T) Calculations 42	
	7.5	Mono	mer-Based Parameterization 43	
		7.5.1	Distributed Property Calculations using CamCASP	43
		7.5.2	Multipoles	44
			Practicals	44
			Advanced Multipole Parameterization Options	45
		7.5.3	ISA Exponents	47
		7.5.4	Dispersion Coefficients	48
			Theory	48
			Iterative-Distributed Multipole Analysis (DMA)-pol	50
			Theory	50
			Practicals	50
			Iterated Stockholder Atoms (ISA)-pol	53
			Theory	53
			Practicals	54
			Comparison between iDMA-pol and ISA-pol	54
			Dispersion Coefficient Post-processing	56
		7.5.5	Polarization Charges	57
			Theory	57
			Practicals	57
	7.6	Dimer	r-Based Parameterization 58	
	7.A Input Scripts 59			

	7.B	Algori	ithm for Obtaining ISA Exponents 62	
8	POI	nter: A	Program for Intermolecular Force Field Optimization 64	
	8.1	Overv	iew 64	
	8.2	Param	eterization Overview 65	
		8.2.1	Theory	65
	8.3	The P a	arameter O ptimizer for Inter -molecular Force Fields (POInter) Code 70)
		8.3.1	Input	70
		8.3.2	Usage and Output	72
	8.4	Force I	Field Development: Principles and Practice 73	
		8.4.1	General	73
			Atom-typing	73
			Anisotropy	74
			Benchmark Energies and Correction Factors	75
		8.4.2	Exchange	75
			Exponent Fitting	75
		8.4.3	Electrostatics	76
			Off-site models	76
		8.4.4	Induction	77
			Polarization	78
			Polarization Damping	79
			Charge transfer and inductive charge penetration	80
		8.4.5	Dispersion	80
		8.4.6	Many-Body Effects	82
	8.5	Valida	tion: Assessing Fit Quality 82	
		8.5.1	Sanity Checks	82
			Visualization	82
			Error Analysis of the Minimum Energy Region	83
			Error Analysis of the Asymptotic Region	87
		8.5.2	Validation	87
			Trimer Configurations	87

		vii		
	Simulations	. 87		
V	Conclusions and Future Work	98		
9	Future Work 99			
10	10 Conclusions 100			
\mathbf{V}	ICodes	101		
A	Force Field Development Workflow 102			
Bil	pliography106			

Acronyms112

Glossary113

LIST OF TABLES

7.1	Overview of ISA- and DMA-based methods for obtaining distributed	
	monomer properties	44
7.2	Comparison between the iDMA-pol and ISA-pol methods	55

LIST OF FIGURES

5.1	Model potential energy surface (PES) for interactions between CO ₂ and	
	Mg-MOF-74	13
5.2	LMO-EDA vs. SAPT PES for the CO ₂ dimer	16
5.3	LMO-EDA vs. SAPT PES for the CO ₂ /Mg-MOF-74 dimer	17
5.4	Force field fitting quality for the Mg-MOF-74-small cluster	20
5.5	Model clusters for Mg-MOF-74	21
5.6	Force field fitting quality for Mg-MOF-74-Yu	24
5.7	Predicted CO ₂ Adsorption Isotherm for Mg-MOF-74	25
7.1	Generalized form of a PES showing the repulsive wall, minimum energy,	
	and asymptotic regions	38
7.2	Linear extrapolation algorithm for the methyl carbon in acetone	63
8.1	Required parameters for MASTIFF	67
8.2	Pyridine and water – molecular examples of challenges in force field	
	fitting	73
8.3	Comparison with the pyridine dimer	83
8.4	Errors with the pyridine dimer	84
8.5	Comparison with the water dimer	84
8.6	Comparison with the water dimer	85
8.7	Errors with the water dimer	85
A.1	The Semi-Automated Workflow for Force Field Development	105

NOVEL FUNCTIONAL FORMS AND PARAMETERIZATION METHODS FOR AB INITIO FORCE FIELD DEVELOPMENT

Mary J. Van Vleet

Under the supervision of Professor J.R. Schmidt At the University of Wisconsin-Madison

FIXME: basically a placeholder; do not believe

I did some research, read a bunch of papers, published a couple myself, (pick one):

- 1. ran some experiments and made some graphs,
- 2. proved some theorems

and now I have a job. I've assembled this document in the last couple of months so you will let me leave. Thanks!

ABSTRACT

FIXME: basically a placeholder; do not believe

I did some research, read a bunch of papers, published a couple myself, (pick one):

- 1. ran some experiments and made some graphs,
- 2. proved some theorems

and now I have a job. I've assembled this document in the last couple of months so you will let me leave. Thanks!

PUBLISHED WORK AND WORK IN PREPARATION

[62] Van Vleet, M. J.; Misquitta, A. J.; Stone, A. J.; Schmidt, J. R. J. Chem. Theory Comput. **2016**, 12, 3851–3870.

Part I Introduction

1 INTRODUCTION

What are the functions of proteins in the body? How can we identify new and better drugs for improved disease treatment, or optimal materials for designing efficient solar cells? What are the microscopic mechanisms by which chemicals interact, undergo phase transitions, or react to form entirely new species? Increasingly, these and other essential chemical questions can be addressed with the aid of computer simulation, ^{2–8} recently enabling us to (as a small subset of examples) peer into the detailed mechanisms of enzyme catalysis, ⁹ watch proteins fold, ^{10–13} virtually screen for novel drug candidates, ¹⁴ and directly simulate hard-to-understand nucleation processes at an atomistic level. ¹⁵ The question, of course, is: how?

Beginning in the 1950s and 60s,

The aim of computer simulations of molecular systems is to compute macroscopic behavior from microscopic interactions. The main contributions a microscopic consideration can offer are (1) the understanding and (2) interpretation of experimental results, (3) semiquantitative estimates of experimental re- sults, and (4) the capability to interpolate or extrapolate experimental data into regions that are only difficultly accessible in the laboratory.²

The design of materials guided by computation is expected to lead to the discovery of new materials, reduction of materials development time and cost, and the rapid evolution of new materials into products. 1^4

Simulations can provide the ultimate detail concerning individ- ual particle motions as a function of time. Thus, they can be used to address specific questions about the properties of a model sys- tem, often more easily than experiments on the actual system. For many aspects of biomolecular function, it is these details that are of interest (for example, by what pathways does oxygen enter into and exit from the heme pocket in myoglobin?). Of course, experiments play an essential role in validating the simulation methodology: comparisons of simulation and experimental data serve to test the accuracy of the calculated results and to provide criteria for improving the methodology. This is particularly important because

theoretical estimates of systematic errors inherent in simulations have not been possible âL" that is, the errors introduced by the use of empirical potentials are difficult to quantify ... There are three types of applications of simulation methods in the macromolecular area, as well as in other areas involving mesoscopic systems. The first uses simulation simply as a means of sampling configuration space. This is involved in the utiliza- tion of molecular dynamics, often with simulated annealing pro- tocols, to determine or refine structures with data obtained from experiments, as mentioned above. The second uses simulations to obtain a description of the system at equilibrium, including structural and motional properties (for example, atomic mean-square fluctuation amplitudes) and the values of thermodynamic parameters. For such applications, it is necessary that the simula- tions adequately sample configuration space, as in the first appli-cation, with the additional condition that each point be weighted by the appropriate Boltzmann factor. The third area uses simula-tions to examine the actual dynamics. Here not only is adequate sampling of configuration space with appropriate Boltzmann weighting required, but it must be done so as to correctly repre-sent the development of the system over time. For the first two areas, Monte Carlo simulations can be used, as well as molecular dynamics. By contrast, in the third area where the motions and their development with time are of primary interest, only molec- ular dynamics can provide the necessary information. The three sets of applications make increasing demands on simulation methods as to their required accuracy and precision.⁷

1.1 The Importance of Molecular Simulation

This ref¹⁶ is super cool!

What is molecular simulation? What types of problems can it solve? How does molecular simulation work? (Be sure to include solving Newton's EQs of motion and relevant details on the partition function and interaction energies!)

2.1 Molecular Mechanics and the Theory of Intermolecular Forces

What is a force field? What are the important components of a force field, and how do we model them?

2.1.1 The Many-Body Expansion

How do we break apart a force field into manageable pieces? Why does it make sense to break a force field into 2- and many-body components?

2.1.2 Energy Decomposition Schemes

Intramolecular Interactions

Brief commentary on the non-intermolecular portions of a force field

Electrostatics

Conceptual description of electrostatics: long-range multipoles and charge penetration

Exchange

Quantum-mechanically-based Pauli Exclusion. Theoretical grounds for exponential behavior

Induction

Charge transfer. Polarization. Polarization Damping.

Dispersion

Theoretical Formulation. Damping.

2.2 Ab-Initio Force Field Development

2.2.1 Electronic Structure Benchmarks

SAPT

General SAPT methodology. DFT-SAPT.

Coupled-Cluster Methods

CCSD(T). CCSD(T)-f12.

2.3 ISA-based methods for force field development

What is ISA? How can ISA be used to generate parameters for intermolecular force field development? What progress has been made from this approach?

Part II Published Work

Part III Unpublished Work

Part IV Practical Matters

Part V Conclusions and Future Work

Part VI

Codes

BIBLIOGRAPHY

- [2] van Gunsteren, W. F.; Berendsen, H. J. C. *Angew. Chemie Int. Ed. English* **1990**, 29, 992–1023.
- [3] Hospital, A.; Goñi, J. R.; Orozco, M.; Gelpi, J. Adv. Appl. Bioinforma. Chem. 2015, 8, 37–47.
- [4] Chen, L.-Q.; Chen, L.-D.; Kalinin, S. V.; Klimeck, G.; Kumar, S. K.; Neugebauer, J.; Terasaki, I. *npj Comput. Mater.* **2015**, 1–2.
- [5] Jiang, J.; Babarao, R.; Hu, Z. Chem. Soc. Rev. **2011**, 40, 3599–3612.
- [6] Bereau, T.; Andrienko, D.; Kremer, K. APL Mater. 2016, 4.
- [7] Karplus, M.; McCammon, J. A. Nat. Struct. Biol. 2002, 9, 646–652.
- [8] Maurin, G. Chem. Met. Fram. Synth. Charact. Appl. 2016, 765.
- [9] Warshel, A. Annu. Rev. Biophys. Biomol. Struct. **2003**, 32, 425–443.
- [10] Levitt, M.; Warshel, A. *Nature* **1975**, 253, 694–698.
- [11] Lane, T. J.; Shukla, D.; Beauchamp, K. A.; Pande, V. S. *Curr. Opin. Struct. Biol.* **2013**, 23, 58–65.
- [12] Piana, S.; Klepeis, J. L.; Shaw, D. E. Curr. Opin. Struct. Biol. **2014**, 24, 98–105.
- [13] Perez, A.; Morrone, J. A.; Simmerling, C.; Dill, K. A. *Curr. Opin. Struct. Biol.* **2016**, *36*, 25–31.
- [14] De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. J. Med. Chem. **2016**, *59*, 4035–4061.
- [15] Kalikmanov, V. I. Nucleation theory; 2013; p 316.
- [16] Stone, A. J. The Theory of Intermolecular Forces, 2nd ed.; OUP Oxford, 2013.

- [17] Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. *Science* (80-.). **2013**, 341, 1230444–1230444.
- [18] Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998–17999.
- [19] Dietzel, P. D. C. et al. J. Mater. Chem. 2009, 19, 7362.
- [20] Dzubak, A. L.; Lin, L.-C.; Kim, J.; Swisher, J. a.; Poloni, R.; Maximoff, S. N.; Smit, B.; Gagliardi, L. *Nat. Chem.* **2012**, *4*, 810–816.
- [21] Czaja, A. U.; Trukhan, N.; Müller, U. Chem. Soc. Rev. 2009, 38, 1284.
- [22] Krishna, R.; van Baten, J. M. Phys. Chem. Chem. Phys. 2011, 13, 10593–10616.
- [23] Getman, R. B.; Bae, Y.-s.; Wilmer, C. E.; Snurr, R. Q.; Carlo, M. *Adsorpt. J. Int. Adsorpt. Soc.* **2012**, 703–723.
- [24] Yazaydin, a. O.; Snurr, R. Q.; Park, T.-H.; Koh, K.; Liu, J.; Levan, M. D.; Benin, A. I.; Jakubczak, P.; Lanuza, M.; Galloway, D. B.; Low, J. J.; Willis, R. R. J. Am. Chem. Soc. 2009, 131, 18198–9.
- [25] Valenzano, L.; Civalleri, B.; Chavan, S.; Palomino, G. T.; Areal'n, C. O.; Bordiga, S. *J. Phys. Chem. C* **2010**, *114*, 11185–11191.
- [26] Poloni, R.; Lee, K.; Berger, R. F.; Smit, B. 2014,
- [27] Lin, L.-c.; Lee, K.; Gagliardi, L.; Smit, B. *J. Chem. Theory Comput.* **2014**, *10*, 1477–1488.
- [28] Haldoupis, E.; Borycz, J.; Shi, H.; Vogiatzis, K. D.; Bai, P.; Queen, W. L.; Gagliardi, L.; Siepmann, J. I. *J. Phys. Chem. C* **2015**, *119*, 16058–16071.
- [29] Mercado, R.; Vlaisavljevich, B.; Lin, L.-C.; Lee, K.; Lee, Y.; Mason, J. A.; Xiao, D. J.; Gonzalez, M. I.; Kapelewski, M. T.; Neaton, J. B.; Smit, B. *J. Phys. Chem. C* **2016**, acs.jpcc.6b03393.
- [30] Becker, T. M.; Heinen, J.; Dubbeldam, D.; Lin, L.-C.; Vlugt, T. J. H. *J. Phys. Chem. C* **2017**, acs.jpcc.6b12052.

- [31] McDaniel, J. G.; Schmidt, J. R. J. Phys. Chem. C 2012, 116, 14031–14039.
- [32] McDaniel, J. G.; Yu, K.; Schmidt, J. R. J. Phys. Chem. C 2012, 116, 1892–1903.
- [33] McDaniel, J. G.; Li, S.; Tylianakis, E.; Snurr, R. Q.; Schmidt, J. R. *J. Phys. Chem. C* **2015**, *119*, 3143–3152.
- [34] Lao, K. U.; Schaeffer, R.; Jansen, G.; Herbert, J. M. J. Chem. Theory Comput. **2015**, 150417132228001.
- [35] Pastorczak, E.; Corminboeuf, C. J. Chem. Phys. 2017, 146, 120901.
- [36] Żuchowski, P. Chem. Phys. Lett. 2008, 450, 203–209.
- [37] Horn, P. R.; Head-gordon, M. Phys. Chem. Chem. Phys. 2016, 18, 23067–23079.
- [38] Su, P.; Li, H. J. Chem. Phys. 2009, 131, 014102.
- [39] Chen, Y.; Li, H. J. Phys. Chem. A **2010**, 114, 11719–24.
- [40] Su, P.; Jiang, Z.; Chen, Z.; Wu, W. J. Phys. Chem. A 2014, 118, 2531–42.
- [41] Fedorov, D. G.; Kitaura, K. **2006**,
- [42] McDaniel, J. G.; Schmidt, J. R. J. Phys. Chem. A 2013, 117, 2053–2066.
- [43] McDaniel, J. G. Development and Application of Physically-Motivated First-Principles Force Fields for Complex Chemical Systems. Ph.D. thesis, UW-Madison, 2014.
- [44] Yu, K.; Kiesling, K.; Schmidt, J. R. 2012,
- [45] Verma, P.; Xu, X.; Truhlar, D. G. 2013,
- [46] Valenzano, L.; Civalleri, B.; Sillar, K.; Sauer, J. 2011, 21777–21784.
- [47] Haldoupis, E.; Borycz, J.; Shi, H.; Vogiatzis, K. D.; Bai, P.; Queen, W. L.; Gagliardi, L.; Siepmann, J. I. *J. Phys. Chem. C* **2015**, 74, 150616135429005.

- [48] Yu, K.; McDaniel, J. G.; Schmidt, J. R. J. Phys. Chem. B 2011, 115, 10054–10063.
- [49] Misquitta, A. J. J. Chem. Theory Comput. **2013**, 9, 5313–5326.
- [50] Jansen, G.; Scha, R. 2012,
- [51] McDaniel, J. G.; Schmidt, J. R. J. Phys. Chem. B 2014, 118, 8042–8053.
- [52] Frenkel, D.; Smit, B. Acad. Press; 2002; Vol. New York,; p 638.
- [53] Guibas, L. Representing rotations with quaternions. 1992; graphics.stanford.edu/courses/cs164-09-spring/Handouts/handout12.pdf.
- [54] Shoemake, K. *Graph. Gems* 3; 1992; Chapter 6, pp 124–132.
- [55] Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem. Rev. 1994, 94, 1887–1930.
- [56] Szalewicz, K. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 254–272.
- [57] Knizia, G.; Adler, T. B.; Werner, H.-J. J. Chem. Phys. 2009, 130, 054104.
- [58] Misquitta, A. J.; Stone, A. J. CamCASP: a program for studying intermolecular interactions and for the calculation of molecular properties in distributed form, version 5.8. University of Cambridge, 2015.
- [59] Stone, A. J. J. Chem. Theory Comput. 2005, 1, 1128–1132.
- [60] Misquitta, A. J.; Stone, A. J.; Fazeli, F. J. Chem. Theory Comput. 2014, 10, 5405– 5418.
- [61] Misquitta, A. J.; Stone, A. J. J. Chem. Phys. 2006, 124, 024111.
- [62] Van Vleet, M. J.; Misquitta, A. J.; Stone, A. J.; Schmidt, J. R. J. Chem. Theory Comput. **2016**, *12*, 3851–3870.
- [63] Cardamone, S.; Hughes, T. J.; Popelier, P. L. a. *Phys. Chem. Chem. Phys.* **2014**, 16, 10367.
- [64] Kramer, C.; Spinn, A.; Liedl, K. R. J. Chem. Theory Comput. 2014, 10, 4488–4496.

- [65] Dixon, R. W.; Kollman, P. a. J. Comput. Chem. 1997, 18, 1632–1646.
- [66] Chaudret, R.; Gresh, N.; Cisneros, G. A.; Scemama, A.; Piquemal, J.-p. *Can. J. Chem.* **2013**, *91*, 804–810.
- [67] Unke, O. T.; Devereux, M.; Meuwly, M. J. Chem. Phys. 2017, 147, 161712.
- [68] Ferenczy, G. G.; Winn, P. J.; Reynolds, C. a. J. Phys. Chem. A **1997**, 101, 5446–5455.
- [69] Williams, G. J.; Stone, A. J. J. Chem. Phys. 2003, 119, 4620–4628.
- [70] Misquitta, A. J.; Stone, A. J. Mol. Phys. 2008, 106, 1631–1643.
- [71] Halgren, T. A. Curr. Opin. Struct. Biol. 1995, 5, 205–10.
- [72] Misquitta, A. J.; Stone, A. J. J. Chem. Theory Comput. 2016, 12, 4184–4208.
- [73] Hawkins, D. M. 2004, 1-12.
- [74] Rick, S. W.; Stuart, S. J. Potentials and Algorithms for Incorporating Polarizability in Computer Simulations; 2002; Vol. 18.
- [75] Holt, A.; Karlstr?m, G. J. Comput. Chem. **2008**, 29, 2033–2038.
- [76] Misquitta, A. J.; Stone, A. J. J. Chem. Theory Comput. **2007**, 7–18.
- [77] Misquitta, A. J.; Stone, A. J.; Price, S. L. J. Chem. Theory Comput. 2008, 4, 19–32.
- [78] Lopes, P. E. M.; Roux, B.; MacKerell, A. D. *Theor. Chem. Acc.* **2009**, 124, 11–28.
- [79] Cisneros, G. A.; Wikfeldt, K. T.; Ojam??e, L.; Lu, J.; Xu, Y.; Torabifard, H.; Bart??k, A. P.; Cs??nyi, G.; Molinero, V.; Paesani, F. Chem. Rev. 2016, 116, 7501–7528.
- [80] Welch, G. W. A.; Karamertzanis, P. G.; Misquitta, A. J.; Stone, A. J.; Price, S. L. *J. Chem. Theory Comput.* **2008**, *4*, 522–532.

- [81] Cieplak, P.; Dupradeau, F.-Y.; Duan, Y.; Wang, J. J. Phys. Condens. Matter 2009, 21, 333102.
- [82] Thole, B. T. Chem. Phys. 1981, 59, 341–350.
- [83] SlipchenkoâŁ, L. V.; Gordon, M. S. Mol. Phys. 2009, 107, 999-1016.
- [84] Wang, J.; Cieplak, P.; Li, J.; Hou, T.; Luo, R.; Duan, Y. J. Phys. Chem. B **2011**, 115, 3091–3099.
- [85] Wang, J.; Cieplak, P.; Cai, Q.; Hsieh, M.-J.; Wang, J.; Duan, Y.; Luo, R. *J. Phys. Chem. B* **2012**, *116*, 7999–8008.
- [86] Liu, C.; Qi, R.; Wang, Q.; Piquemal, J.-P.; Ren, P. J. Chem. Theory Comput. **2017**, acs.jctc.7b00225.
- [87] Van Vleet, M.; Weng, T.; Schmidt, J. *Chem. Rev.* **2017**, invited, manuscript in preparation.
- [88] Bistoni, G.; Belpassi, L.; Tarantelli, F. J. Chem. Theory Comput. 2016,
- [89] Lao, K. U.; Herbert, J. M. J. Chem. Theory Comput. 2016, acs.jctc.6b00155.
- [90] Tang, K. T.; Toennies, J. P. J. Chem. Phys. 1984, 80, 3726–3741.
- [91] Tang, K. T.; Toennies, J. P. Surf. Sci. 1992, 279, L203–L206.
- [92] Babin, V.; Leforestier, C.; Paesani, F. J. Chem. Theory Comput. **2013**, *9*, 5395–5403.

ACRONYMS

$C \mid D \mid I \mid M \mid P \mid S$

C

CUS Coordinatively-Unsaturated. iv

D

DMA Distributed Multipole Analysis. v, viii

I

isa Iterated Stockholder Atoms. v, viii, Glossary: ISA

M

MOF Metal-Organic Framework. iv

P

PES potential energy surface. ix, 113

POInter Parameter Optimizer for Inter-molecular Force Fields. vi, vii

S

SAPT Symmetry-Adapted Perturbation Theory. v, ix, *Glossary:* SAPT

GLOSSARY

$C \mid I \mid L \mid P \mid S$

C

CCSD(T) Coupled Cluster methods including singles, doubles, and perturbative triples excitations. CCSD(T). Given a sufficiently large (aVQZ or better) basis set, can be used as a 'gold-standard' estimate of the exact potential energy surface. v

Ι

ISA Iterated Stockholder Atoms,FILL . v

L

LMO-EDA FILL . iv, ix

P

POInter FILL . vi

S

SAPT Symmetry-Adapted Perturbation Theory, a perturbative treatment of intermolecular interactions which is pretty cool. v