Ejercicios Tema 3 - Intervalos de Confianza. Taller 1

Ricardo Alberich, Juan Gabriel Gomila y Arnau Mir

Curso completo de estadística inferencial con R y Python

Contenidos

1	\mathbf{Est}	imación por intervalos taller 1
	1.1	Ejercicio 1
	1.2	Ejercicio 2
		Ejercicio 3
		Ejercicio 4
		Ejercicio 5

1 Estimación por intervalos taller 1

1.1 Ejercicio 1

De una población de barras de hierro se extrae una muestra de 64 barras y se calcula la resistencia a la rotura por tracción se obtiene que $\overline{X}=1012~Kg/cm^2$. Se sabe por experiencia que en este tipo de barras $\sigma=25$ y que la resistencia a la rotura sigue la distribución normal. Calcular un intervalo de confianza para μ al nivel 0.95.

1.2 Ejercicio 2

Para investigar el C.I. medio de una cierta población de estudiantes, se realiza un test a 400 estudiantes. La media y la desviación típica muestrales obtenidas son $\overline{x}=86$ y $\tilde{s}_X=10.2$. Calcular un intervalo para μ con un nivel de significación del 98%.

1.3 Ejercicio 3

Para investigar un nuevo tipo de combustible para cohetes espaciales, se disparan cuatro unidades y se miden las velocidades iniciales. Los resultados obtenidos, expresados en Km/h, son :19600, 20300, 20500, 19800. Calcular un intervalo para la velocidad media μ con un nivel de confianza del 95%, suponiendo que las velocidades son normales.

1.4 Ejercicio 4

Un fabricante de cronómetros quiere calcular un intervalo de estimación de la desviación típica del tiempo marcado en 100 horas por todos los cronómetros de un cierto modelo. Para ello pone en marcha 10 cronómetros del modelo durante 100 horas y encuentra que $\tilde{s}_X = 50$ segundos. Encontrar un intervalo para el parámetro σ^2 con $\alpha = 0.01$, suponiendo que la población del tiempo marcado por los cronómetros es normal.

1.5 Ejercicio 5

Un auditor informático quiere investigar la proporción de rutinas de un programa que presentan una determinada irregularidad. Para ello observa 120 rutinas, resultando que 30 de ellas presentan alguna

irregularidad. Con estos datos buscar unos límites de confianza para la proporción p de rutinas de la población que presentan esa irregularidad con probabilidad del 95%.		