Package 'BATools'

September 30, 2015

Type Package	
Title An R Package for Whol	le Genomic Analysis with Bayesian Models
Version 1.0.0	
Date 2015-09-22	
Author Chunyu Chen, Wenz	hao Yang, Heng Wang ,Robert J. Tempelman
Maintainer Chunyu Chen <	chench57@msu.edu>
Depends R (>= 2.15.0), msm	n, synbreed, coda
Description Bayesian Antede	ependence Model
License GPL-3	
Suggests knitr	
VignetteBuilder knitr	
R topics documente	
•	3
•	
•	
stu_geno	
Index	10
bafit	Fitting various Bayesian models

Description

bafit function can fit various Bayesian models including rrBLUP, BayesA/B/C, antedependence models and etc. Input data can be either a 'baData' object or specify the fixed and random effects seperately.

2 baplot

Usage

```
bafit(dataobj = NULL, op = NULL, y = NULL, Z = NULL, X = NULL,
    trait = NULL)
```

Arguments

dataobj A list of baData including phenotypes, genotypes and etc.

op A list of options to run Bayesian models

y A numeric vector of phenotypes

trait A string indicating the trait for analysis

A matrix of genotypes

Value

The result of the analysis as a ba object, a list of estimate of fixed and random effects as well as variance components.

Examples

```
########Loading and preparing data########
library(BATools)
data("MSUPRP_sample")
summary(MSUPRP_sample)
pheno<-data.frame(MSUPRP_sample$pheno[,,])</pre>
geno<-MSUPRP_sample$geno[,1:500]</pre>
ped<-MSUPRP_sample$pedigree</pre>
map=MSUPRP_sample$map
sex<-ped$sex
sex<-as.factor(sex)</pre>
x<-model.matrix( ~ sex -1,contrasts.arg=list(sex=contrasts(sex, contrasts=F)))
colnames(x)<-c("female","male")</pre>
rownames(x) < -ped$ID
pig=create.baData(pheno=pheno,geno=geno,map=map,pedigree=ped,fixed=x,makeAinv=F)
#############Setting up options##############
init=list(df=5, scale=0.01, pi=1)
run_para=list(niter=2000,burnIn=1000,skip=10)
print_mcmc=list(piter=200)
update_para=list(df=FALSE, scale=TRUE, pi=FALSE)
op<-create.options(model="BayesA",method="MCMC",ante=FALSE,priors=NULL,init=init,
              update\_para\_run\_para=run\_para, save.at="BayesA", cv=NULL, print\_mcmc=print\_mcmc)
ba<-bafit(dataobj=pig,op=op,trait="driploss")</pre>
ba
```

baplot

plot result for bafit

Description

Plot the results for the Bayesian models

BATools 3

Usage

```
baplot(dataobj = NULL, BAout = NULL, y = NULL, Z = NULL, yNa = NULL, type = NULL, op = NULL)
```

Arguments

dataobj	baData object
BAout	BAout object contains all the output of the Bayesian model
у	numeric vector of phenotypes
Z	matrix of genotypes
yNa	numeric vector of phenotypes used in cross validation
type	string defines the type of the plot, which can be "pre","man","trace"
	"pre" plot the predicted value against the true value "man" Manhattan plot "trace" Traceplot

Details

op

You can either provide baData or y and Z for this function. If they're provided at the same time, dataobj will be used for the analysis

op object created by create.options that is used for the analysis

Examples

```
baplot(dataobj=pig,BAout=ba,type="pre")
baplot(dataobj=pig,BAout=ba,type="trace",op=op)
```

Description

BATools is an R Package for Whole Genomic Analysis with Bayesian Models

Details

Package: BATools
Type: Package
Version: 1.0.0
Date: 2015-09-22
License: GPL-3

4 create.baData

Author(s)

Chunyu Chen, Wenzhao Yang, Heng Wang ,Robert J. Tempelman

Maintainer: Chunyu Chen <chench57@msu.edu>

References

W. Yang, R. J. Tempelman. 2012. A Bayesian Antedependence Model for Whole Genome Prediction. *Genetics*, vol. 190 (4) pp. 1491-1501.

create.baData

create ba object

Description

create ba object

Usage

```
create.baData(synbreedobj = NULL, pheno = NULL, geno = NULL, map = NULL,
pedigree = NULL, family = NULL, covar = NULL, reorderMap = TRUE,
map.unit = "cM", repeated = NULL, modCovar = NULL, A = NULL,
Ainv = NULL, fixed = NULL, random = NULL, makeA = FALSE,
makeAinv = FALSE)
```

Arguments

map

synbreedobj A pre-created synbreed data object

pheno data. frame with individuals organized in rows and traits organized in columns.

For unrepeated measures unique rownames should identify individuals. For repeated measures, the first column identifies individuals and a second column

indicates repetitions (see also argument repeated).

geno matrix with individuals organized in rows and markers organized in columns.

Genotypes could be coded arbitrarily. Missing values should be coded as NA. Colums or rows with only missing values not allowed. Unique rownames identify individuals and unique colnames markers. If no rownames are available, they are taken from element pheno (if available and if dimension matches). If no colnames are used, the rownames of map are used if dimension matches.

data.frame with one row for each marker and two columns (named chr and

pos). First columns gives the chromosome (numeric or character but not factor) and second column the position on the chromosome in centimorgan or the physical distance relative to the reference sequence in basepairs. Unique rownames indicate the marker names which should match with marker names in geno. Note that order and number of markers must not be identical with the order in geno. If this is the case, gaps in the map are filled with NA to ensure the same number and order as in element geno of the resulting gpData object.

pedigree Object of class pedigree.

family data. frame assigning individuals to families with names of individuals in rownames

This information could be used for replacing of missing values with function

codeGeno in synbreed.

create.baData 5

covar data. frame with further covariates for all individuals that either appear in pheno, geno or pedigree\$ID, e.g. sex or age. rownames must be specified to identify

individuals. Typically this element is not specified by the user.

reorderMap logical. Should markers in geno and map be reordered by chromosome number

and position within chromosome according to map (default = TRUE)?

map.unit Character. Unit of position in map, i.e. 'cM' for genetic distance or 'bp' for

physical distance (default = 'cM').

repeated This column is used to identify the replications of the phenotypic values. The

unique values become the names of the third dimension of the pheno object in

the gpData. This argument is only required for repeated measurements.

modCovar vector with colnames which identify columns with covariables in pheno. This

argument is only required for repeated measurements.

A matrix of additive genetic relationship matrix

Ainv matrix of inverse of A

fixed matrix or factor of fixed effects
random matrix or factor of random effects

makeA logical indicating if create A matrix based on the pedigree information

makeAinv logical indicating if create A inverse matrix based on the pedigree information,

A will be created before creating Ainv is created

Details

The object baData is designed to provide a unified data object for whole genome prediction. It inherits the gpData object from synbreed package and is extended with more optional data item for whole genome prediction. So baData can be used in any functions in synbreed package including data imputation and etc.

Examples

```
#####create baData from gpData#####
data("MSUPRP_sample") #load Michigan State University pig data
pheno<-data.frame(MSUPRP_sample$pheno[,,])</pre>
geno<-MSUPRP_sample$geno[,1:500]</pre>
ped<-MSUPRP_sample$pedigree</pre>
map=MSUPRP_sample$map
sex<-ped$sex
sex<-as.factor(sex)</pre>
x<-model.matrix( ~ sex -1,contrasts.arg=list(sex=contrasts(sex, contrasts=F)))
colnames(x)<-c("female", "male")</pre>
rownames(x) < -ped ID
#create baData object using symbreed object
pig.syn<-create.baData(synbreedobj=MSUPRP_sample,fixed=x,makeAinv=T)</pre>
names(pig.syn)
#create baData object using raw data
\verb|pig=create.baData| (pheno=pheno, geno=geno, map=map, pedigree=ped, fixed=x, makeAinv=F)|
```

6 create.options

create.options

create op object

Description

Create object for options of bayesian model

Usage

```
create.options(model = NULL, method = NULL, ante = NULL, poly = NULL,
priors = NULL, init = NULL, D = "V", update_para = NULL,
run_para = NULL, save.at = NULL, cv = NULL, print_mcmc = NULL,
ncore = 1, seed = 1, convcrit = 1e-04)
```

Arguments

model string indicate the model for the analysis, model can be "GBLUP", "BayesA", or

"BayesB"

method string indicate the method for the analysis, model can be "MCMC" or "EM"

ante logical, must be TRUE or FALSE

priors list contains priors for the Bayesian model, elements in priors can be "nu_e", "tau2_e",

"shape_scale", "rate_scale", "cdef", "alphapi", "betapi", "mu_m_t", "sigma2_m_t",

"df_var_t", "scale_var_t"

nu_e numeric, prior degrees of freedom for residual variance, default value -1

tau2_e numeric, prior scale for residual variance, default value 0

shape_scale numeric, prior shape for scale parameter, default value 0.1 rate_scale numeric, prior rate for scale parameter, default value 0.1

cdef numeric, cdef is scale parameter for proposal density on df, default value

0.5

alphapi numeric, prior α for pi, default value 1 $\,$

betapi numeric, prior β for pi, default value 9

mu_m_t numeric, prior mean for μ_t , default value 0

sigma2_m_t numeric, prior variance for μ_t , default value 0.01

df_var_t numeric, prior degrees of freedom for σ_t^2 , default value -1

scale_var_t numeric, prior scale for σ_t^2 , default value 0, the scale and degrees

of freedom for σ_t^2 are non-informative priors based on the original paper

init list contains initial values for the Bayesian model, elements in init can be

"df", "scale", "pi", "mut", "vart"

 $\hbox{ df numeric, the starting value of degrees of freedom parameter for SNP effect}\\$

variance, default value 5

scale numeric, the starting value of scale parameter for SNP effect variance,

default value 0.02

pi numeric, the starting value of π , which is the percentage of SNP that has variantion to the phenotype, default value 0.1 for BayesB, 1 for other models

mut numeric, the starting value of μ_t , default value 0

vart numeric, the starting value of σ_t^2 , default value 0.5

string indicate use relative variances ("V") or relative precisions ("P"), default is "V"

D

create.options 7

update_para list of logical indicate whether a parameter is sampled in the Bayesian model,

elements in update_para can be "df", "scale", "pi", "mut", "vart" df logical, TRUE if degrees of freedom parameter for SNP effect variance needs to be sampled scale logical, TRUE if scale parameter for SNP effect variance needs to be

ampled

pi logical, TRUE if π needs to be sampled mut logical, TRUE if μ_t needs to be sampled vart logical, TRUE if σ_t^2 needs to be sampled

run_para list elements in run_para can be "niter","burnIn","skip" niter numeric, the

number of iterates for MCMC sampling

burnIn numeric, burnIn period for MCMC sampling

skip numeric, skip for MCMC sampling

save.at string define the directory to save the results

cv k*n matrix of logical, k is the number of folds and n is the number of obser-

vations. TRUE indicates the observation is in the training datasets.

print_mcmc list define the monitor options for the Bayesian model, elements in print_mcmc

can be "piter", "time_est", "print_to"

piter numeric, print status every piter. If piter=0, the program don't print any status time_est logical, TRUE mean display time left estimates print_to string, "disk" means print to disk in file "log.txt"; "screen" means print to screen

ncore numeric, the number of cpu cores for the analysis seed numeric, seed for random number generator

converit numeric, convergence criteria for EM, default is 1E-4

Examples

```
init=list(df=NULL,scale=NULL,vare=NULL)
run_para=list(maxiter=100)
update_para=list(df=FALSE,scale=TRUE)
op<-create.options(model="rrBLUP",method="EM",ante=FALSE,priors=NULL,init=init,
  update_para=update_para,run_para=run_para,save.at="rrBLUP",cv=NULL,print_mcmc=NULL,convcrit=1E-4)
init=list(df=5,scale=NULL,vare=NULL)
run_para=list(niter=200000,burnIn=100000,skip=10)
print_mcmc=list(piter=10000)
update_para=list(df=FALSE,scale=TRUE)
op<-create.options(model="rrBLUP",method="MCMC",ante=FALSE,priors=NULL,init=init,
  update_para=update_para,run_para=run_para,save.at="rrBLUP",cv=NULL,print_mcmc=print_mcmc,convcrit=1E-4)
init=list(df=5, scale=0.01, pi=1)
run_para=list(niter=20000,burnIn=10000,skip=10)
print_mcmc=list(piter=2000)
update_para=list(df=FALSE, scale=TRUE, pi=FALSE)
op<-create.options(model="BayesA",method="MCMC",ante=FALSE,priors=NULL,init=init,
```

update_para=update_para,run_para=run_para,save.at="BayesA",cv=NULL,print_mcmc=print_mcmc)

set_init

print.ba print ba object

Description

A print method for ba objects

Usage

```
## S3 method for class 'ba'
print(ba)
```

Arguments

ba

an object of the class ba generated by bafit

Value

Null. This function only prints to the screen.

set_init

Set initial values for hyperparameters

Description

Set initial values for hyperparameters

Usage

```
set_init(x, ...)
## Default S3 method:
set_init(y, Z, df = 5, pi_snp = 0.05, h2 = 0.5,
    c = 1000, model = "rrBLUP", centered = T)
## S3 method for class 'baData'
set_init(baobj, df = 5, pi_snp = 0.05, h2 = 0.5,
    c = 1000, model = "rrBLUP", centered = T, trait = 1)
```

Arguments

у	'numeric' of phenotypes
Z	genotype matrix
df	degrees of freedom parameter
pi_snp	proportion of SNP that have non-zero effect for BayesB and SSVS
h2	hertiability
С	ratio for the smaller variance
model	the model used for analysis, can be 'rrBLUP', 'BayesA', 'BayesB', or "SSVS"
centered	logical indicating if Z is centered
baobj	'baData' object

std_geno 9

Value

a list of initial values

std_geno

Re-center genotype matrix

Description

Re-center genotype matrix

Usage

```
std_geno(x, ...)
## Default S3 method:
std_geno(x, method = "s")
## S3 method for class 'baData'
std_geno(x, method = "s")
```

Arguments

x genotype matrix

method the method used for centering, 'c' is centering and 's' is standardizing

baobj 'baData' object

Value

centered genotype matrix or 'baData' object with centered genotype matrix

Index

```
ba, 4, 8
bafit, 1, 8
baplot, 2
BATools, 3
create.baData, 4
create.options, 6
op, 6
print.ba, 8
set_init, 8
std_geno, 9
```