Propagation of Voltage in a Neuron The Cable Equation

Darice Guittet, Elise Niedringhaus, Sarah Liddle

Fall 2017

Overview

- 1. Motivation
- 2. Neuronal Cable Equation
- 3. Passive Membrane (Linear Cable Equation)
- 4. Bi-stable Ion Channels

How Do Neurons Communicate?

Within one cell

- ► Electrochemical signals
- ► Membrane Potential:

$$\Delta V_m = V_i - V_e$$

- ► lons: charge-carriers
- ► Ion Channels in Membrane

Between cells

Neurotransmitters

Figure: Mouse neurons, 40X. Bosch Institute Advanced Microscopy Facility, The University of Sydney

Action Potentials

Figure: Changes in axonal membrane voltage due to an action potential. Image from Khan Academy

Derivation of the Cable Equation

Passive Membrane

Green's Functions

Numerical Solutions

Traveling Wave Solutions

Speed of Traveling Wave

Stability of Traveling Wave

Numerical Solutions for Traveling Wave

Conclusion