Title

Subtitle

Thomas D. Schanzer

Taste of Research 2021

School of Physics Faculty of Science University of New South Wales Sydney, Australia

 $Term\ 3\ 2021$

Abstract

Abstract

Acknowledgements

Acknowledgements

Contents

1	Introduction and theory		2
2	$\operatorname{Lit}\epsilon$	erature review	2
3	8 Methods 8 Results		2
4			2
	4.1	Entrainment reduces downdraft strength	2
	4.2	Initial addition of water increases downdraft strength	5

CONTENTS Page 1

1 Introduction and theory

- 2 Literature review
- 3 Methods

4 Results

4.1 Entrainment reduces downdraft strength

Figure 1: Height and velocity over time of a parcels, initial height 5 km, that are initially cooled by evaporation to the point of saturation. We use sounding data from Sydney for the environmental temperature and dew point profiles.

Figure 2: The results of the same calculation used for Figure 1, but using sounding data from Singapore for the environmental temperature and dew point profiles.

Figure 3: Maximum and height-averaged downdraft velocities from Figure 1, (using Sydney sounding data).

Figure 4: Maximum and height-averaged downdraft velocities from Figure 2, (using Singapore sounding data).

4.2 Initial addition of water increases downdraft strength

Figure 5: Maximum and height-averaged downdraft velocities computed as functions of the amount of water initially added. Dashed lines indicate that enough water is initially evaporated to saturate the parcel; the rest remains in the parcel as liquid and can evaporate during descent. The entrainment rate is fixed at $1\,\mathrm{km^{-1}}$ and we use the Sydney sounding data.

Figure 6: The result shown in Figure 5, now using the Singapore sounding data.