Dynamical Systems Theory in Machine Learning & Data Science

lecturers: Daniel Durstewitz

tutors: Christoph Hemmer, Alena Brändle, Lukas Eisenmann, Florian Hess

WS2024/25

email to: alena.braendle@zi-mannheim.de

Exercise 6

To be uploaded before the exercise group on December 4, 2024

1 Hopf Bifurcation

In the 1800s, Australia had the idea to combat the invasive rabbits R by introducing another foreign species: foxes F. The following system of population growth rate of both species (kind of) shows why this was a bad idea:

$$\dot{R} = (1 - R)R - \frac{RF}{0.3 + \alpha R}, \quad \dot{F} = -0.5F + \frac{RF}{0.3 + \alpha R}$$

1. Show that the system undergoes two supercritical Hopf bifurcations at $\alpha = 0.5$ and $\alpha = 1.2$. The bifurcation point is *not* the origin. Draw a bifurcation diagram (by hand or computer). Also classify the origin's stability.

Hint: It is strongly recommended to use a symbolic computing library (for example sympy, for python or julia). No calculations by hand are required for this exercise. If you do not manage please write your ideas down anyways.

2 Cantor Set as a Bernoulli process

In the lecture we discussed the Cantor Set. You can model it through a Bernoulli process by drawing from a Bernoulli distribution with $p = \frac{1}{2}$ and defining the following mapping:

if
$$q = 0$$
: $x_{n+1} = \frac{x_n}{3}$
if $q = 1$: $x_{n+1} = \frac{x_n + 2}{3}$

1. Simulate this mapping for an appropriate number of iterations *N* for different initial conditions in the interval between 0 and 1 and plot the resulting set of points. Investigate the self-similar behavior of the set by plotting different slices of the x-axis.

3 Cantor Set and the Tent Map

We went on hinting at an interesting relationship between the Cantor Set and the tent map, defined by

$$x_{n+1} = f_{\mu}(x_n) = \begin{cases} \mu x_n & \text{for } x_n < \frac{1}{2} \\ \mu (1 - x_n) & \text{for } \frac{1}{2} \le x_n \end{cases}$$

This mapping can be interpreted as a simple piecewise discrete-time dynamical system, which will play a crucial role in the rest of the lecture.

