ĐÁP ÁN XÁC SUẤT - THỐNG KÊ ỨNG DỤNG

Mã môn học: MATH132901 Ngày thi: 24-07-H2020

Câu	Ý	Đáp án	Điểm
	1	Gọi E là biến cố sinh viên A không lấy được sản phẩm loại 1, F là biến cố sinh viên B không lấy được sản phẩm loại 1. Khi đó $C = EF$ là biến cố sinh viên A và sinh viên B đều không lấy được sản phẩm loại 1 và \bar{C} là biến cố sinh viên A hoặc sinh viên B lấy được ít nhất một sản phẩm loại 1.	0,25
		$P(C) = P(E)P(F E) = \frac{C_{20}^4}{C_{30}^4} \frac{C_{16}^4}{C_{26}^4} = \frac{646}{30015} = 0,021522572$ $P(\bar{C}) = 1 - P(C) = 0,978477428$	0,5
ı	2	Gọi H_i là biến cố lấy được i sản phẩm của nhà máy thứ nhất (i = 0, 1, 2) Khi đó H_0 , H_1 , H_2 là nhóm đầy đủ các biến cố nên $P(X = 0) = P(H_0)P(X = 0 H_0) + P(H_1)P(X = 0 H_1) + P(H_2)P(X = 0 H_2)$ $= \frac{C_{10}^2}{C_{25}^2} + \frac{15.10}{C_{25}^2} 0.04 + \frac{C_{15}^2}{C_{25}^2} 0.04^2 = 0.17056$	0,25
		$C_{25}^{2} C_{25}^{2} C_{25}^{2} C_{25}^{2}$ $P(X = 2) = P(H_{0})P(X = 2 H_{0}) + P(H_{1})P(X = 2 H_{1}) + P(H_{2})P(X = 2 H_{2})$ $= \frac{C_{15}^{2}}{C_{25}^{2}} 0.96^{2} = 0.32256$	0,25
		P(X = 1) = 1 - 0,17056 - 0,32256 = 0,50688 $E(X) = 1,152$ $V(X) = 0,470016$	0,25 0,25
	3 a	$\operatorname{Tr} \int_{0}^{17.5} k(17.5 - x)^{4} dx = 1 \text{ ta duọc } k = \frac{32}{10504375}$	0,5
		Lượng xăng trung bình bán được trong một tuần của trạm này là $E(X) = \int_0^{17.5} kx (17.5 - x)^4 dx = \frac{35}{12}$	0,75
	3 b	Xác suất hết xăng trong một tuần là $p = P(X > 12) = \int_{12}^{17,5} k(17,5-x)^4 dx = \frac{161051}{52521875}$	0,5
		Trong các tuần từ 1 đến 10 có 8 bộ ba tuần liên tiếp là 1-2-3, 2-3-4,,8-9-10 hết xăng và các tuần khác còn xăng với xác suất mỗi trường hợp là $p^3(1-p)^7$ nên xác suất cần tìm là $8p^3(1-p)^7=2,257477101\times 10^{-7}$	0,25 0,25 0,25
11	1. a	Từ bảng số liệu tính được $n=222, \ \bar{x}=98,67117117, \ s=1,64426261$ Với độ tin cậy $\beta=0,96$, tra bảng ta được $z_{\frac{1-\beta}{2}}=2,0537$	0,5 0,25
		$\varepsilon = 2,0538 \frac{s}{\sqrt{n}} = 0,2266484969$	0,25
		Khoảng tin cậy đối xứng cho tuổi thọ trung bình của sản phẩm với độ tin cậy 96% là $(\bar{x} - \varepsilon, \bar{x} + \varepsilon) = (98,44452267, 98,89781967)$	0,25 0,25

Câu	Ý	Đáp án	Điểm
11	1. b	Gọi μ là tuổi thọ trung bình của sản phẩm sau cải tiến kỹ thuật. Giả thuyết H: $\mu=98,4$; Đối thuyết K: $\mu>98,4$ $z=\frac{\bar{x}-98,4}{s}\sqrt{n}=2,4572$	0,25 0,25
		Với mức ý nghĩa 1% thì $z>z_{0,01}=2,3263$ nên ta bác bỏ giả thuyết H và chấp nhận đối thuyết K. Vậy, với mức ý nghĩa 1%, ý kiến cải tiến kỹ thuật không hiệu quả là sai	0,25 0,25
	2 . a	Giả thuyết H: $p_1 = p_2$; Đối thuyết K: $p_1 \neq p_2$	0,25
		Ta tính được $z = \frac{\frac{1500}{1500} - \frac{1}{1600}}{\sqrt{\frac{119}{3100} \frac{3100 - 119}{3100} (\frac{1}{1500} + \frac{1}{1600})}} = -2,3533$	0,25
		Với mức ý nghĩa $\alpha=0.02$ thì $ z >z_{0.01}=2.3263$ nên ta bác bỏ giả thuyết H và chấp nhận đối thuyết K. Vây nghi ngờ của giám đốc công ty là đúng với mức ý nghĩa 2%	0,25
	2 . b	Sai số của khoảng ước lượng cho tỷ lệ sản phẩm ca sáng không đạt chuẩn với độ tin cậy 97% là $\varepsilon = 2.17\sqrt{\frac{45}{1500}} \frac{1500 - 45}{1500} \frac{1}{1500} = 0,00955786$	0,25 0,25
		Khoảng tin cậy cho tỷ lệ sản phẩm ca sáng không đạt chuẩn với độ tin cậy 97% là $(\frac{45}{1500} - \varepsilon, \frac{45}{1500} + \varepsilon) = (0,02044214, 0,03955786)$	0,25 0,25
	3	$r=0.925938168$ nên có sử dụng được hàm hồi quy tuyến tính thực nghiệm $\bar{y}_x=5.309245484+3.145589798x$ để dự báo thời gian mua được ô tô qua số đơn đặt hàng.	0,5 0,25
		Khi có 16 đơn hàng thì trung bình $\bar{y}_{16} = 55,64$ ngày khách hàng mới nhận được ô tô.	0,25