Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 2: Classificazione e Rappresentazione di Sistemi

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2019-2020

In questa lezione

▶ Classificazione di sistemi

▶ Rappresentazione di sistemi

▶ Sistemi lineari in spazio di stato

▶ Esempi di sistemi a tempo continuo

▶ Esempi di sistemi a tempo discreto

Sistema

Definizione (sistema): Un qualunque oggetto fisico o artificiale il cui comportamento temporale è descritto da un insieme di variabili che interagiscono tra di loro.

 $\sigma_1, \sigma_2, \ldots, \sigma_n$ variabili descrittive d'interesse

Esempio: $\Sigma = \text{appartamento}, \ \sigma_1 = \text{temp. cucina}, \ \sigma_2 = \text{temp. soggiorno}, \ \dots$

Giacomo Baggio IMC-TdS-1920: Lez. 2 October 7, 2019 4 / 27

Sistema

Definizione (sistema): Un qualunque oggetto fisico o artificiale il cui comportamento temporale è descritto da un insieme di variabili che interagiscono tra di loro.

 $\sigma_1, \sigma_2, \ldots, \sigma_n$ variabili descrittive d'interesse

 $\Sigma = \mathsf{Modello}$ matematico che descrive la relazione tra $\sigma_1, \sigma_2 \ldots, \sigma_n$

Giacomo Baggio IMC-TdS-1920: Lez. 2 October 7, 2019 5 / 27

Sistema

Definizione (sistema): Un qualunque oggetto fisico o artificiale il cui comportamento temporale è descritto da un insieme di variabili che interagiscono tra di loro.

In molti casi in $\sigma_1, \sigma_2, \dots, \sigma_n$ si possono distinguere variabili di:

ingresso/input u (causa)

uscita/output y (effetto)

Esempio: automobile: u = pedale acc. / sterzo, y = posizione / velocità veicolo motore elettrico: u = tensione / corrente armatura, y = posizione / velocità rotore

Giacomo Baggio IMC-TdS-1920: Lez. 2 October 7, 2019 6 / 27

Perché studiare Σ e le sue proprietà?

Capire il funzionamento di Σ per poi (eventualmente) *controllarlo*!

Ma perché usare la matematica?

Fornisce strumenti che permettono di descrivere e analizzare in maniera $\emph{quantitativa}$ il comportamento di Σ

Dinamico: valore assunto dalle variabili $\sigma_1, \ldots, \sigma_n$ ad un certo istante temporale t dipende dall'evoluzione delle stesse in determinati intervalli

Statico: valore assunto dalle variabili $\sigma_1, \ldots, \sigma_n$ ad un certo istante temporale t dipende solo dal valore assunto dalle stesse in t

Giacomo Baggio IMC-TdS-1920: Lez 2 October 7, 2019

Giacomo Baggio IMC-TdS-1920: Lez. 2 October 7, 2019 10 / 27

Giacomo Baggio IMC-TdS-1920: Lez. 2 October 7, 2019 11 / 27

Rappresentazione esterna o I/O

$$u(t) \longrightarrow \sum y(t)$$

Tempo continuo: $h(y^{(n)}(t),...,\dot{y}(t),y(t),u^{(m)}(t),...,\dot{u}(t),u(t),t)=0+c.i.$

 Σ lineare tempo invariante: F.d.T. (Laplace) G(s) = Y(s)/U(s)

Tempo discreto: $h(y(t-t_n), ..., y(t-1), y(t), u(t-t_m), ..., u(t-1), u(t), t) = 0 + c.i.$

 Σ lineare tempo invariante: F.d.T. (Zeta) G(z) = Y(z)/U(z)

Giacomo Baggio IMC-TdS-1920: Lez. 2 October 7, 2019

Rappresentazione interna o di stato

$$x(t) =$$
(vettore di) variabili di stato (memoria interna!)

Proprietà di separazione: x(t) fornisce tutta l'informazione sulla storia passata di Σ necessaria per valutare x(t) e y(t) ad istanti futuri (una volta noto u(t)).

Giacomo Baggio IMC-TdS-1920: Lez. 2 October 7, 2019 17 / 27

Rappresentazione interna o di stato

$$x(t) =$$
(vettore di) variabili di stato (memoria interna!)

Tempo continuo:
$$\dot{x}(t) = f(x(t), u(t), t) \\ y(t) = h(x(t), u(t), t)$$

$$x(t_0) = x_0$$

f = mappa di transizione di stato

h = mappa di uscita

18 / 27

Giacomo Baggio IMC-TdS-1920: Lez. 2 October 7, 2019

Rappresentazione interna o di stato

$$x(t) =$$
(vettore di) variabili di stato (memoria interna!)

Tempo discreto:
$$x(t+1) = f(x(t), u(t), t) \\ y(t) = h(x(t), u(t), t)$$
 $x(t_0) = x_0$

f = mappa di transizione di stato

h = mappa di uscita

 Σ lineare e tempo invariante $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^p$

 Σ lineare e tempo invariante

$$x(t) \in \mathbb{R}^n$$
, $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^p$

$$\dot{x}(t) = Fx(t) + Gu(t)$$

 $y(t) = Hx(t) + Ju(t)$ $x(t_0) = x_0$

 Σ lineare e tempo invariante

$$x(t) \in \mathbb{R}^n$$
, $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^p$

$$x(t+1) = Fx(t) + Gu(t)$$

$$y(t) = Hx(t) + Ju(t)$$

$$x(t_0) = x_0$$

$$\Sigma$$
 lineare e tempo invariante $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^p$

23 / 27

Sovrapposizione degli effetti

x', y' = stato, uscita di Σ con stato iniziale x'_0 e ingresso u'x'', y'' = stato, uscita di Σ con stato iniziale x_0'' e ingresso u''

$$x_0 = \alpha_1 x_0' + \alpha_2 x_0'', \ u = \alpha_1 u' + \alpha_2 u'' \implies x = \alpha_1 x' + \alpha_2 x'', \ y = \alpha_1 y' + \alpha_2 y''$$

Circuito RLC

$$u_i(t) = \text{input}, \ v(t) = \text{output}$$

Rappresentazione (esterna ed) interna?

Rappresentazione esterna

$$\ddot{v} + \frac{1}{RC}\dot{v} + \frac{1}{LC}v - \frac{1}{C}\dot{u}_i = 0$$

F.d.T.
$$G(s) = \frac{s/C}{s^2 + s/(RC) + 1/(LC)}$$

Rappresentazione interna (di stato)

$$x_1 = v$$
, $x_2 = i_L$, $u = u_i$, $y = x_1 = v$

$$F = \begin{bmatrix} -\frac{1}{R^C} & -\frac{1}{C} \\ \frac{1}{L} & 0 \end{bmatrix}, G = \begin{bmatrix} \frac{1}{C} \\ 0 \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 0 \end{bmatrix}, J = 0$$

Massa-molla-smorzatore

Rappresentazione esterna

$$m\ddot{z}+eta\dot{z}+kz-f=0$$
F.d.T. $G(s)=rac{1}{ms^2+eta s+k}$

$$f(t) = \text{input}, z(t) = \text{output}$$

Rappresentazione (esterna ed) interna?

Rappresentazione interna (di stato)

$$x_1 = z$$
, $x_2 = \dot{x}$, $u = f$, $y = x_1 = z$

$$F = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{\beta}{m} \end{bmatrix}, G = \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 0 \end{bmatrix}, J = 0$$

25 / 27

Giacomo Baggio IMC-TdS-1920: Lez. 2 October 7, 2019

Magazzino merci

ordine di acquisto/richiesta di consegna

y(t)= quantità merce in magazzino al tempo t $u_1(t)=$ quantità merce ordinata (in entrata) al tempo t $u_2(t)=$ quantità merce richiesta (in uscita) al tempo t

$$u_1(t)$$
, $u_2(t) = \text{input}$, $y(t) = \text{output}$

Rappresentazione esterna

$$y(t+1) - y(t) - u_1(t-1) + u_2(t) = 0$$

F.d.T.
$$G_1(z) = \frac{z^{-1}}{z-1}, \ G_2(z) = -\frac{1}{z-1}$$

Rappresentazione interna (di stato)

$$x_1(t) = y(t), x_2(t) = u_1(t-1)$$

$$F = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
, $G = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

$$H = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
, $J = \begin{bmatrix} 0 & 0 \end{bmatrix}$

Estinzione debito

pagamento rata/aggiornamento debito

y(t) = debito al tempo t = outputu(t) = rata al tempo t = inputI =tasso di interesse (decimale)

Rappresentazione esterna

$$y(t+1) - (1+I)y(t) + u(t+1) = 0$$

F.d.T.
$$G(z) = -\frac{z}{z - (1 + I)}$$

Rappresentazione interna (di stato)

$$x_1(t) = x(t) = y(t) + u(t)$$

$$F = 1 + I$$
, $G = -1 - I$
 $H = 1$, $J = -1$