

THE KING'S SCHOOL

2004 Higher School Certificate Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown for every question

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value
- Start a new booklet for each question
- Put your Student Number and the question number on the front of each booklet

Total marks - 84 Attempt Questions 1-7 Ali questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Find
$$\frac{d}{dx}(e^{\tan x})$$
.

2

(b) The interval joining $A(x_1, y_1)$ and $B(x_2, y_2)$ is trisected by the points (-2,3) and Q(1,0). Write down the coordinates of A and B.

3

(c) Find the acute angle, to the nearest degree, between the lines x-y=2 and 2x+y=1.

2`

(d) Use the substitution u=1-x to evaluate $3\int_{-1}^{0} \frac{x}{\sqrt{1-x}} dx$.

3

(e) For a given series $T_{n+1} - T_n = 7$ and $T_1 = 3$. Find the value of S_{100} , where $Sn = T_1 + T_2 + ... + T_n$.

•

(a) Solve $\frac{x^2-2}{x} < 1$.

3

- (b) Find
 - $(i) \qquad \int \frac{e^{2x}}{1+e^{2x}} \, dx \, .$

1

(ii) $\int \frac{3}{5+x^2} dx.$

2

(c) Solve the equation $2\ln(3x+1) - \ln(x+1) = \ln(7x+4)$.

3

(d) Solve $2\tan^3\theta - 3\tan^2\theta - 2\tan\theta + 3 = 0$ for $0 \le \theta \le 360^\circ$, giving your answers to the nearest minute, where necessary.

3

(a) Use one application of Newton's Method to approximate the root of the equation $e^x + x = 2$ which is near 0.5, correct to two decimal places.

3

(b)

In the diagram above ABCD is a cyclic quadrilateral. CD is produced to E. P is a point on the circle through A, B, C, D such that $\angle ABP = \angle PBC$.

- (i) Copy the diagram showing the above information.
- (ii) Explain why $\angle ABP = \angle ADP$.

1

(iii) Show that PD bisects ∠ADE.

2

(iv) If $\angle BAP = 90^{\circ}$ and $\angle APD = 90^{\circ}$, explain where the centre of the circle is located.

2

(c) (i) Write $\cos x - \sqrt{3} \sin x$ in the form $A \cos(x + \alpha)$ where A > 0, $0 < \alpha < \pi$.

2

(ii) Hence or otherwise, solve $\cos x - \sqrt{3} \sin x = 1$ for all values of x.

2

- (a) (i) Find the polynomial P(x), if P(x) has
 - (α) degree 4;
 - (β) factors of $(x+3)^2$ and $(x-3)^2$; and
 - (γ) a remainder of -50 when divided by x+2.

(ii) Sketch the curve.

1

2

- (b) The speed v cm/sec of a particle moving with simple harmonic motion in a straight line is given by $v^2 = 6 + 4x 2x^2$, where x cm is the magnitude of the displacement from a fixed point O.
 - (i) Show $\frac{d^2x}{dt^2} = -2(x-1)$.

2`

(ii) Find the period of the motion.

1

(iii) Find the amplitude of the motion.

- 2
- (c) A and B are the feet of two towers of equal height. B lies due North of A. From a point C, 40m East of A and in the same horizontal plane, the angle of elevation of the top of the tower A is 53°. From the same point the angle of elevation of tower B is 35°. Find the distance between the towers, AB, correct to the nearest metre.

- (a) For the function $y = 3\cos^{-1}\frac{x}{2}$
 - (i) Find the domain and the range.

2

(ii) Sketch the curve.

1

(iii) Find the equation of the tangent to the curve at the point on the curve where x = 0.

3

(b) O is the centre of a circle, radius 1m and $\angle MON = \theta$ radians. The shaded segment formed by MN has an area A square metres and perimeter P metres.

(i) Prove $A = \frac{1}{2}(\theta - \sin \theta)$.

1

and $P = \theta + 2\sin\frac{\theta}{2}$.

1

(ii) P is increasing at a constant rate of R m/s. Find, in terms of R, the rate of increase of

(
$$\alpha$$
) θ when $\angle MON = \frac{2\pi}{3}$; and

2

(
$$\beta$$
) A when $\angle MON = \frac{2\pi}{3}$.

2

- (a) Find the coordinates of the focus and the equation of the directrix of the parabola $x^2 = 4(x + y)$.
- 2
- (b) Prove by Induction that $3^{3n} + 2^{n+2}$ is divisible by 5 for all positive integers n.
- 4

- (c) Consider the variable point $T(-2t, t^2)$ on the parabola $y = \frac{1}{4}x^2$.
 - (i) Prove that the equation of the tangent at T is $y + tx + t^2 = 0$

- 2
- (ii) If A is the x intercept of the tangent at T, find the coordinates of A.
- 1

(iii) Find the coordinates of M, the midpoint of the interval TA.

- 1
- (iv) Find the equation in Cartesian form of the locus of the point M given in part (iii).
- 2

(a) A stone is thrown from the top of a building 15m high with an initial velocity of 26 m/s at an angle of $\tan^{-1} \frac{5}{12}$ to the horizontal.

If the acceleration due to gravity is 10m/sec2, find

(i) the greatest height above the ground reached by the stone

2

(ii) the time of flight

2

(iii) the range of the stone

1

(iv) the velocity after 2 seconds

- •
- (b) Two of the roots of the equation $x^3 + ax^2 + b = 0$ are reciprocals of each other where a and b are real numbers.

Show that

(i) the third root is equal to -b;

. 1

(ii) $a = b - \frac{1}{b}$; and

2

(iii) the two roots, which are reciprocals, will be real if $-\frac{1}{2} \le b \le \frac{1}{2}$.

2

End of Examination