Introdução ao Aprendizado de Máquina

Lucas Gonçalves de Moura Leite

Métricas de Avaliação

Métricas de avaliação

- Classificação
 - Acurácia
- Regressão
 - $ightharpoonup R^2$
- Desvantagens destas métricas e alternativas
- Como escolher a métrica mais adequada

Processo de AM

Avaliação

- Aplicações diferentes tem objetivos diferentes
- Acurácia é bastante usada mas outras métricas podem ser usadas
 - Busca na web (satisfação do usuário)
 - Retorno financeiro (Comércio)
 - Aumento na taxa de sobrevivência (aplicações médicas)

- Suponha um problema com duas classes
 - Relevante (R) Classe positiva
 - ▶ Irrelevante (I) Classe negativa
- Exemplo
 - Sistemas de recomendação
 - Identificação de fraudes em cartões
- I em cada 1000 é relevante
- $Acc = \frac{predições\ corretas}{total\ de\ itens}$

- Você projetou um classificador com 99.9% de acurácia.
- Quão bom é esse resultado?

- Você projetou um classificador com 99.9% de acurácia.
- Quão bom é esse resultado?
- Comparar com um classificador muito simples. Ele sempre diz que um item é irrelevante.

- Você projetou um classificador com 99.9% de acurácia.
- Quão bom é esse resultado?
- Comparar com um classificador muito simples. Ele sempre diz que um item é irrelevante.
 - Qual a sua taxa de acerto?

Classificador Dummy

- Verificador de sanidade
- Baseline para classificação
- Tipos
 - Mais frequente (most_frequent)
 - Aleatório (uniform)
 - Aleatório com distribuição igual aos dados de treino (stratified)
 - Constante e configurado pelo usuário (constant)

Classificador = Dummy

- Possíveis causas
 - Erros nos atributos (valores faltantes, errados ...)
 - Overfitting (má escolha dos hiperparâmetros)
 - Desbalanceamento

Regressores Dummy

Tipos

- Média das saidas do treinamento (mean)
- Mediana das saídas do treinamento (median)
- Quantil das saidas de treinamento. 0 para mínimo, 0.5 para média e I para máximo (quantile)
- Constante e configurado pelo usuário (constant)

Matriz de Confusão

True negative TN FP

True positive FN TP

Label 1 = positive class (class of interest)

Label 0 = negative class (everything else)

TP = true positive

FP = false positive (Type I error)

TN = true negative

FN = false negative (Type II error)

Predicted negative

Predicted positive

Métricas

True
negative

True positive

TN = 400	FP = 7	
FN = 17	TP = 26	
Predicted negative	Predicted positive	N = 450

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

Acc = 0.95

Erro de Classificação

True
negative

True positive

TN = 400	FP = 7	
FN = 17	TP = 26	
Predicted negative	Predicted positive	N = 450

$$Err = \frac{FP + FN}{TP + TN + FP + FN}$$

Err = 0.05

Recall

True
negative

True positive

TN = 400	FP = 7	
FN = 17	TP = 26	
Predicted negative	Predicted positive	N = 450

$$Rec = \frac{TP}{TP + FN}$$

Rec = 0.6

Conhecido como:

- Sensitividade
- True Positive Rate (Taxa de verdadeiros positivos)
- Exemplo
 - Detecção de Cancer

Precision

True
negative

True positive

TN = 400	FP = 7	
FN = 17	TP = 26	
Predicted negative	Predicted positive	N = 450

- $Pre = \frac{TP}{TP + FP}$
- Pre = 0.79

Exemplo

Sistemas de recomendação

False Positive Rate

negative

True
negative

True positive

TN = 400	FP = 7	
FN = 17	TP = 26	
Predicted	Predicted	N = 450

positive

- $Pre = \frac{FP}{TN + FP}$
- Pre = 0.02

- Conhecido como:
 - Especificidade

TN	FP
FN	TP

TN = 12	FP = 3
FN = 2	TP = 4

TN = 12	FP = 3
FN = 2	TP = 4

•
$$Pre = \frac{TP}{TP+FP} = \frac{4}{4+3} = 0.57$$

•
$$Rec = \frac{TP}{TP + FN} = \frac{4}{4 + 2} = 0.66$$

TN = II	FP = 4
FN = I	TP = 5

•
$$Pre = \frac{TP}{TP + FP} = \frac{5}{5+4} = 0.55$$

•
$$Pre = \frac{TP}{TP + FP} = \frac{5}{5+4} = 0.55$$

• $Rec = \frac{TP}{TP + FN} = \frac{5}{5+1} = 0.83$

TN = 14	FP = I
FN = 2	TP = 4

•
$$Pre = \frac{TP}{TP + FP} = \frac{4}{4+1} = 0.8$$

•
$$Rec = \frac{TP}{TP + FN} = \frac{4}{4+2} = 0.66$$

Aplicações (Precision e Recall)

Recall

- Aplicações médicas
- Busca por informações
- Apoio humano para filtrar falsos positivos

Precision

- Recomendação
- Aplicações que lidam direto com um cliente humano

F-measure

▶ FI-score

$$F1 = 2 \frac{Precision * Recall}{Precision + Recall} = \frac{2*TP}{2*TP + FN + FP}$$

Confiança em classificadores

Confiança na classificação

- Muitos classificadores fornecem como saida uma medida que indica a certeza da classificação
- Usualmente a classificação é feita com um limiar
- A mudança desse limiar tem como resultado uma série de classificações que formam uma curva de desempenho

Variando o limiar

True Label	Classifier score
0	-27.6457
0	-25.8486
0	-25.1011
0	-24.1511
0	-23.1765
0	-22.575
0	-21.8271
0	-21.7226
0	-19.7361
0	-19.5768
0	-19.3071
0	-18.9077
0	-13.5411
0	-12.8594
1	-3.9128
0	-1.9798
1	1.824
0	4.74931
1	15.234624
1	21.20597

Classifier score threshold	Precision	Recall
-20	4/12=0.34	4/4=1.00
-10	4/6=0.67	4/4=1.00
0	3/4=0.75	3/4=0.75
10	2/2=1.0	2/4=0.50
20	1/1=1.0	1/4 = 0.25

Precision

Curva Precision x Recall

Curva ROC

- ▶ Eixo x − False Positive Rate
- ▶ Eixo y True Positive Rate

Avaliação de classificadores com múltiplas classes

Métricas para Classificadores Multiclasse

- A extensão de algumas métricas é bastante simples
 - Matriz de confusão
- Outras tem como princípio o calculo de uma média da métrica para todas as classes
 - Diferentes formas de calcular médias ponderadas

Micro e Macro Average

- Formas de ponderar os resultados por classe
- Macro
 - Média dos resultados de cada classe
 - Cada classe tem o mesmo peso
- Micro
 - Computa a métrica com o resultado do classificador
 - Não separa por classe
 - Cada exemplo tem o mesmo peso

Macro Average

Class	Predicted Class	Correct?
orange	lemon	0
orange	lemon	0
orange	apple	0
orange	orange	1
orange	apple	0
lemon	lemon	1
lemon	apple	0
apple	apple	1
apple	apple	1

Macro-average:

- Each <u>class</u> has equal weight.
- 1. Compute metric within each class
- 2. Average resulting metrics across classes

<u>Class</u>	<u>Precision</u>
orange	1/5 = 0.20
lemon	1/2 = 0.50
apple	2/2 = 1.00

Macro-average precision: (0.20 + 0.50 + 1.00) / 3 = 0.57

Micro Average

Class	Predicted Class	Correct?
orange	lemon	0
orange	lemon	0
orange	apple	0
orange	orange	1
orange	apple	0
lemon	lemon	1
lemon	apple	0
apple	apple	1
apple	apple	1

Micro-average:

- Each <u>instance</u> has equal weight.
- Largest classes have most influence
- 1. Aggregrate outcomes across all classes
- 2. Compute metric with aggregate outcomes

Micro-average precision: 4/9 = 0.44

Micro x Macro

- Se os dados são balanceados, Micro e Macro são aproximadamente iguais
- Se dados são desbalanceados
 - Se quiser uma métrica enviesada para as classes majoritárias, use Micro.
 - Se quiser uma métrica enviesada para as classes minoritárias, use Macro.
 - Se Micro << Macro</p>
 - Se Micro >> Macro

Micro x Macro

- Se os dados são balanceados, Micro e Macro são aproximadamente iguais
- Se dados são desbalanceados
 - Se quiser uma métrica enviesada para as classes majoritárias, use Micro.
 - Se quiser uma métrica enviesada para as classes minoritárias, use Macro.
 - Se Micro << Macro -> veja as classes majoritárias
 - Se Micro >> Macro

Micro x Macro

- Se os dados são balanceados, Micro e Macro são aproximadamente iguais
- Se dados são desbalanceados
 - Se quiser uma métrica enviesada para as classes majoritárias, use Micro.
 - Se quiser uma métrica enviesada para as classes minoritárias, use Macro.
 - Se Micro << Macro -> veja as classes majoritárias
 - Se Micro >> Macro -> veja as classes minoritárias

Exercício

- Carregar os dados do dataset iris
- Utilizar alguns métodos de classificação e obter as métricas apresentadas

Métricas para regressão

Métricas para Regressão

- Métricas bastante semelhantes
- ▶ R² é bastante utilizado
- Outras métricas
 - Erro absoluto médio
 - Erro quadrático médio
 - Mediana do erro absoluto

Regressões Dummy

- ▶ Teste de sanidade
 - Média (mean)
 - Mediana (median)
 - Constante (constant)
 - Quantil (quantile)

Exercício

- Carregar os dados do dataset diabetes
- Utilizar alguns métodos de regressão e compará-los com os métodos Dummy

Seleção de Modelos

Seleção de modelos

- Treinar e testar nos mesmo dados
 - Overfitting
- Divisão treino\teste
 - Simples
 - Sem informação de variância da métrica
- Validação cruzada
 - Mais confiável
 - Variância da métrica
 - Pode ser combinado com estratégia de grid-search

Seleção de modelos

- CV e grid search para seleção de modelos usando o conjunto de treinamento (não usar o teste)
- Na prática
 - Treinamento (ajuste dos parâmetros)
 - Validação (seleção do modelo)
 - Teste (avaliação do modelo)

Exercício

- Escolha um conjunto de dados de classificação
- Use o SVM com kernel RBF
- Faça 10 divisões de treino e teste
- Para cada divisão use o CV e o grid search para encontrar o melhor conjunto de hyperparâmetros (C e gamma)
- Teste o modelo encontrado no conjunto de teste
- Repita o processo para cada um das 10 divisões.
 Apresente o resultado em termos de todas as métricas de classificação vistas hoje

