BUAN 6337 Case Study

The dataset for this exercise is available in VideoGamesSales_Main.7bdat. This dataset contains information on the global sales and critic and user review ratings for videogames launched between 2001 and 2012 (from).

The variables are:

- Name of the game
- Videogame platform on which it was released.

Platform	
DS	Nintendo DS
GBA	Nintendo Game Boy Advance
GC	Nintendo Game Cube
PC	Personal Computer
PS2	Sony PlayStation 2
PS3	Sony PlayStation 2
PSP	Sony PlayStation Portable
Wii	Nintendo Wii
X360	Microsoft XBOX 360
XB	Microsoft XBOX

- Videogame Genre (e.g., Action, Sports, Shooter etc.)
- Publisher
- Developer
- Rating: E = Everyone, E10+ = Everyone 10+, T = Teen, M = Mature
- Global Sales (Millions of units)
- Year of release
- Critic Score (0 100): Average critic rating
- Critic Count: Number of critic ratings
- User Score (0 − 10): Average user rating

Question 1

Develop a regression model that links global sales to video game reviews. Explore ways in which the model fit could be improved through suitable changes to the model specification and variables.

- a) Present the final model and results.
- b) Explain how you developed your model (what was your initial model, what were the key variations you tried and how did you arrive at the final model and the thought process behind these steps).
- c) Interpret the model results.

Answer

a)

Our final model used user and critic scores, user and critic counts, and platforms as the independent variables and global sales as the dependent variable. We saw that this model passed the P-value test and most variables were significant. However, it still struggled with the R-square and we believe that was due to regression assumptions being violated. We did observe R-square increasing as we made

changes to the model (from .05 to .16). We have further improvised the model fit by addressing the skewness of the dependent variable in Q2 which has increased the Adj R-square to 0.4237

Final Regression Model:

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	1	-1.33057	0.20258	-6.57	<.0001	
Critic_Score	1	0.02173	0.00300	7.25	<.0001	
User_Score	1	-0.07697	0.02760	-2.79	0.0053	
Critic_Count	1	0.02425	0.00212	11.46	<.0001	
User_Count	1	0.00082364	0.00006463	12.74	<.0001	
DS	1	0.70089	0.14012	5.00	<.0001	
GBA	1	0.55522	0.17193	3.23	0.0012	
GC	1	0.26251	0.14958	1.76	0.0793	
PC	1	-0.63859	0.13909	-4.59	<.0001	
PS2	1	0.59655	0.11442	5.21	<.0001	
PS3	1	0.27856	0.12790	2.18	0.0295	
PSP	1	0.23465	0.14582	1.61	0.1076	
Wii	1	1.27848	0.13802	9.26	<.0001	
X360	1	0.11625	0.12802	0.91	0.3639	

b)

Our first model was a basic regression analysis that considered Critic_Score and User_Score (the independent variables) on Global Sales (the dependent variable). The resulting model passed the P-value test which rejects the null that the variances are 0 and can conclude that the model is significant, but R-square looked to be weak (we want to see a number closer to 1) which implies it does not explain the variation in the data very well. The P-Values of the parameter estimates also look good stating that the variables are statistically significant with each other and do have an impact on global sales. However, we can see that the User Score variable causes a decrease in global sales for every 1-point increase in user score, and we wanted to explore this further by adding more variables as this does not make sense.

Regression Model with Critic Score and User Score as Independent Variables:

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: Global_Sales

Number of Observations Read	4413
Number of Observations Used	4413

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	2	995.22810	497.61405	114.09	<.0001		
Error	4410	19234	4.36149				
Corrected Total	4412	20229					

Root MSE	2.08842	R-Square	0.0492
Dependent Mean	0.77499	Adj R-Sq	0.0488
Coeff Var	269.47848		

Parameter Estimates							
Variable	DF	Parameter Estimate		t Value	Pr > t		
Intercept	1	-1.19103	0.17992	-6.62	<.0001		
Critic_Score	1	0.03928	0.00281	13.99	<.0001		
User_Score	1	-0.10666	0.02771	-3.85	0.0001		

The second variation included User_Count and Critic_Count as additional independent variables. It seems this strengthened the original outcomes of the prior model, but R-Square was still relatively weak and User_Score was now not showing no relationship based on the P-value and still negative, so we wanted to try a variation of other variables in attempt 3 to see if these significantly contributed to revenue and would smooth out the negative impact of user score. It is interesting to note that this model says User_Score does not have an impact on global sales and User_Count has minor impact on global sales. It is appearing Critic_Score and Critic_Count are influence global sales where as User_Score and User_Count do not or have much less of an impact.

Regression Model Including Critic_Count & User_Count:

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: Global_Sales

Number of Observations Read	4413
Number of Observations Used	4413

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	4	2409.65359	602.41340	149.02	<.0001	
Error	4408	17820	4.04259			
Corrected Total	4412	20229				

Root MSE	2.01062	R-Square	0.1191
Dependent Mean	0.77499	Adj R-Sq	0.1183
Coeff Var	259.43980		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	1	-0.75860	0.17484	-4.34	<.0001	
Critic_Score	1	0.01506	0.00300	5.02	<.0001	
User_Score	1	-0.04013	0.02704	-1.48	0.1379	
Critic_Count	1	0.02351	0.00189	12.43	<.0001	
User_Count	1	0.00066670	0.00006312	10.56	<.0001	

We then compared just Critic_Score and Critic_Count and see both variables pass the P-value test but R-square is still pretty low.

Regression model with just Critic_Score and Critic_Count:

The REG Procedure Model: MODEL1 Dependent Variable: Global Sales

Number of Observations Read 4413

Number of Observations Used 4413

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	2	1918.15682	959.07841	230.98	<.0001			
Error	4410	18311	4.15221					
Corrected Total	4412	20229						

Root MSE	2.03770	R-Square	0.0948
Dependent Mean	0.77499	Adj R-Sq	0.0944
Coeff Var	262.93370		

Parameter Estimates										
Variable	DF	Parameter Estimate		t Value	Pr > t					
Intercept	1	-1.19445	0.15707	-7.60	<.0001					
Critic_Score	1	0.01631	0.00244	6.70	<.0001					
Critic_Count	1	0.02863	0.00186	15.42	<.0001					

For the third variation we thought the platform could have an effect on sales and wanted to compare these different variables. Xbox (XB) is the variable that was left off (similar to Q4 in our lecture). R-square has improved, and we can see all models had higher sales than Xbox besides PC. The P-value for Game Cube, PSP, and Xbox 360 were above the rejection region of .05 which means sales from these platforms are not significantly different than Xbox and all other platform sales are. We also concluded that this would be our final model as we observed outliers and many residuals and wanted to focus on resolving issues in order to build a more accurate model supporting global sales. We anticipate that R-square will improve once changes are made.

Final Regression Model:

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: Global_Sales

Number of Observations Rea	d 4413
Number of Observations Use	d 4413

	Α	nalysis of Va	riance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	13	3268.47303	251.42100	65.21	<.0001
Error	4399	16961	3.85563		
Corrected Total	4412	20229			

Root MSE	1.96358	R-Square	0.1616
Dependent Mean	0.77499	Adj R-Sq	0.1591
Coeff Var	253.36957		

		Parameter	Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr >
Intercept	1	-1.33057	0.20258	-6.57	<.000
Critic_Score	1	0.02173	0.00300	7.25	<.000
User_Score	1	-0.07697	0.02760	-2.79	0.005
Critic_Count	1	0.02425	0.00212	11.46	<.000
User_Count	1	0.00082364	0.00006463	12.74	<.000
DS	1	0.70089	0.14012	5.00	<.000
GBA	1	0.55522	0.17193	3.23	0.001
GC	1	0.26251	0.14958	1.76	0.079
PC	1	-0.63859	0.13909	-4.59	<.000
PS2	1	0.59655	0.11442	5.21	<.000
PS3	1	0.27856	0.12790	2.18	0.029
PSP	1	0.23465	0.14582	1.61	0.107
Wii	1	1.27848	0.13802	9.26	<.000
X360	1	0.11625	0.12802	0.91	0.363

We did perform testing for non-linear effects of independent variables ie., user/critic score and count but did not perceive significant changes in the r-square or to the model overall. We have further improvised the model fit by addressing the skewness of the dependent variable in Q2 which has increased the Adj R-square to 0.4237

C)

Interpreting the results: Our model fell within the rejection region of the P-Value so we could state it as statistically significant. It did have a low R-Square value (.16 on a range of 0 to 1. 1 Being a strong representation of the variances) which we noted as an issue. We tested several variations, and this model had the strongest R-Square value. We also tested for non-linear effects among the key parameters and observed little change in R-Square. The key parameters Critic_Score, User_Score, Critic_Count, and User_Count all fell within the rejection region of the P-Value which meant the variables were statistically significant in changing global sales. It is notable that the Critic_Score and Critic_Count appeared to carry much more weight based on coefficient change than User_Score and User_Count. We further compared platforms which showed that the Wii sold the most and only the PC sold less than Xbox. Most of the platforms were within the rejection region confirming that they were a significantly different sales number than Xbox. Overall, we see the model to be significant, but it did have a high number of residuals which we believe the testing in part 2 will identify the source of issue and fixes will lead to a higher R-Square and a stronger model overall.

Question 2

For the final model you constructed in question 1, verify whether the various regression assumptions discussed in the lecture are satisfied. If an assumption is violated, discuss how it can be handled, and implement the same. Discuss whether this change had a practically significant impact on your model results.

Answer

A) Outliers

We did observe numerous outliers (almost 10%!!!) and after applying the fix, the variable were all considered significant.

It can be seen that most observations fall within the predicted range, but several residuals fall way beyond the predicted range (graphs 1 and 2). Looking at Cooks D plot it can also be observed that many outliers exist. Outliers can either be handled by dropping observations that are beyond the CookD threshold or by running robust regression. We went for robust regression since it doesn't involve any loss of information.

Graphic Interpretation of Model:

After running robust regression, we see that all variables are now significant, but R-Square is still considerably low and went down a few points.

Robust Regression Image:

B) Multi-collinearity

In running a correlation matrix we can see primary variables (Critic_Score, Critic_Count, User_Score, and User_Count) are moderately correlated, some have low correlation. This moderate to low correlation hints that we do not have a multicollinearity problem.

Correlation Matrix:

Furthermore, our variance inflation factors are all 1 or slightly higher which is very low (well below the threshold of 10), and we do not need to be worried about multicollinearity affecting our model. Additionally, our condition index is well below 10 which is a beginning indicator of multicollinearity with 100 or more being strong multicollinearity.

		ı	Depend		del: MOI /ariable:			les			
		N	lumber	of O	bservatio	ns	Read 4	413			
		N	lumber	of O	bservatio	ns	Used 4	413			
				Analy	sis of Va	ıria	nce				
				Τ	Sum of		Mean				
	Source		DF		Squares		Square	F V	alue	Pr > F	
	Model		4	240	9.65359	60	2.41340	14	49.02	<.0001	
	Error		4408	3	17820		4.04259				
	Сопесте	d Tota	4412	2	20229						
	F	Root M	SE		2.0106	2	R-Squar	e 0	.1191		
	ı	Depen	dent M	ean	0.7749	9	Adj R-Sq	0	.1183		
	(Coeff \	/ar		259.4398	0					
										-	
					meterEs						
	Variable	DF	Param Estir	neter nate			t Value	e P	r > t	Varia Infla	
	Intercept	1	-0.7	5860	0.17	484	-4.3	4 <	.0001		0
	Critic_Score	1	0.0	1506	0.00	300	5.0	2 <	.0001	1.92	839
	User_Score	1	-0.0	4013	0.02	704	-1.4	8 0	.1379	1.60	909
	Critic_Coun	t 1	0.0	2351	0.00	189	12.4	3 <	.0001	1.31	811
	User_Count	1	0.0006	6670	0.00006	312	2 10.5	6 <	.0001	1.17	592
		Colli	nearity	Dian	nostics (i	inte	ercent ad	linet	ed)		
				Diag	11 000100 (1		roportio	-		ition	
Number	Eigenvalue		dition Index	Criti	c_Score		-				User_Coun
1	1.99492		00000		0.09855		0.0771	14	0.	09525	0.05235
2	1.0457	5 1	38117		0.02186		0.1981	14	0.	07945	0.41716
3	0.62229	9 1	79047		0.00930		0.0565	50	0.	72710	0.45899
4	0.33704	4 2	43289		0.87029		0.6682	22	0.	09820	0.07150

C) Heteroscedasticity

In checking for heteroscedasticity we do observe that the parameter estimates are mostly significant with User Score being the only insignificant parameter so we may have an issue.

Overall the results of the Whites test show that the regression assumptions are not satisfied by being able to reject the Null Hypothesis. This shows that we do have a Heteroscedasticity problem.

Whites Test:

In reviewing the first two graphs we can see that it does appear that the beginning residuals are expanding as you move further down the x-axis.

Visual Check for Heteroscedasticity:

Finally, the heteroscedasticity Consistent T-Values in all instances are quite different than the parameter T-Values, another indicator of heteroscedasticity.

Parameter Estimates Chart:

			Parame	ter Estim	ates			
						Heterosceda	sticity Co	nsistent
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr> t	Standard Error	t Value	Pr > t
Intercept	1	-0.75860	0.17484	-4.34	<.0001	0.11715	-6.48	<.0001
Critic_Score	1	0.01506	0.00300	5.02	<.0001	0.00194	7.75	<.0001
User_Score	1	-0.04013	0.02704	-1.48	0.1379	0.01715	-2.34	0.0193
Critic_Count	1	0.02351	0.00189	12.43	<.0001	0.00268	8.78	<.0001
User_Count	1	0.00066670	0.00006312	10.56	<.0001	0.00013750	4.85	<.0001

To fix heteroscedasticity we can do so by transforming the dependent variable Global_Sales using the log transform of y variable process. We then see that the T-Values are much closer though not exact, and the P-values are much better. Additionally, observing the first few residual graphs shows a wider distribution that does not resemble the triangles observed earlier. However, it does still appear to slightly shape from left to right in the opposite direction. the Whites test is still within the rejection region which indicates we are still being affected by heteroscedasticity. It is nice to note that our R-Square is improving with a score of .4254 which is a much healthier model than what we started with.

Results of Log Transform of Y Variable:

The REG Procedure Model: MODEL1 Dependent Variable: log_Global_Sales

Number of Observations Read 4413 Number of Observations Used 4413

	A	nalysis of Va	ariance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	13	3605.81417	277.37032	250.55	<.0001
Error	4399	4869.84766	1.10704		
Corrected Total	4412	8475.66183			

Root MSE	1.05216	R-Square	0.4254
Dependent Mean	-1.23985	Adj R-Sq	0.4237
Coeff Var	-84.86174		

Parameter Estimates Heteroscedasticity Consistent Standard Parameter Standard DF Error t Value | Pr > |t| t Value | Pr > |t| Variable Estimate Error -3 92714 0.10855 -36.18 < .0001 0.10440 -37.62 < .0001 Intercept 0.00161 0.00157 Critic_Score 0.03074 19.14 < .0001 19.63 < .0001 User_Score -0.07172 0.01479 -4.85 < .0001 0.01451 -4.94 < .0001 Critic_Count 1 0.02014 0.00113 17.76 < .0001 0.00120 16.85 < .0001 1 0.00048176 0.00003463 13.91 < .0001 0.00005903 8.16 <.0001 DS 7.38 < .0001 0.07986 6.93 <.0001 0.55378 0.07508 0.55702 0.09213 6.05 < .0001 0.10870 5.12 <.0001 GBA GC 0.08015 4.07 < .0001 0.07300 4.47 < .0001 0.32624 PC 0.07453 0.07959 -17.06 < .0001 -1.35801 -18.22 < .0001 PS2 0.85804 0.05740 14.95 < .0001 0.06131 13.99 < .0001 PS3 14.50 < .0001 0.79992 0.06853 11.67 < .0001 0.05517 PSP 0.39035 0.07813 5.00 < .0001 0.07722 5.05 <.0001 Wii 1.09560 0.07396 14.81 < .0001 0.07462 14.68 < .0001 X360 1 0.45278 0.06860 6.60 < .0001 0.05790 7.82 <.0001

D) Normality of error term

In testing for normality of error term we see that in the Goodness of Fit Test in all of the tests the P-Value are significant. We reject the null hypothesis that the residuals follow the normal distribution and thus we do have a normality of error problem. The histogram also shows that the distribution is effected by outliers.

Reviewing Residuals Information with Proc Univariate:

We run a Cooks D Test to remove the outliers and see a much more normal distribution. However, we still reject the null hypothesis due to P=Values falling in the rejection region for all 3 tests. This normality of error problem can also be commonly solved by A Log Transformation of the Y Variable which we performed earlier when checking for heteroscedasticity and saw a positive result.

Reviewing Residuals Information with Proc Univariate after Removing High Cooks D Values:

	Т	he SA	S Sys	tem			
Fitted Norma			IATE Pr sresidua			ized F	Residual
	Paramete	ers for	Nomal	Distri	Distribution		
	Paramete	er S	ymbol	Es	timate		
	Mean	М	u	-0	.06399		
	Std Dev	S	gma	0.3	392712		
God	dness-of-F	it Test	s for No	mal	Distrib	ution	
Test		9	tatistic			p Valı	ıe
Kolmogorov	-Smirnov	D	0.072	2008	Pr > [D	< 0.010
Cramer-von	Mises	W-Sq	7.147	2213	Pr > \	W-Sq	< 0.005
Anderson-Darling		A-Sq	46.254	2243	Pr > /	A-Sq	< 0.005
	Quantile	sforN	omal [Distrib	ution		
			Quan		ntile		
	Percent	Obs	erved	Estimated			
	1.0	-0.	87638	-0.	97758		
	5.0	-0.	61545	-0.	70995		
	10.0	-0.	49388	-0.	56727		
	25.0		30310	-0.3	32887		
	50.0		09678		06399		
	75.0	-	12170		20089		
	90.0		36385		43929		
	95.0		59289		58196		
	99.0	1.	29701	0.1	84959		

