Getrennte Variablen

• x und y voneinander trennbar

· Vorgehensweise:

- gegeben: $y'=\frac{f(x)}{g(y)}=\frac{dy}{dx}$ - nach Umformung: g(y)dy=f(x)dx

– nach Integration: G(y) = F(x) + C

$$y' = \frac{f(x)}{g(y)} = \frac{dy}{dx}$$
 $g(y)dy = f(x)dx$ $G(y) = \mp(x) + C$

• Beispiele:

* nicht möglich, da Lösung Definitionsbereich verlässt

Lineare DGL

- y' = a(x)y = y' = a(x)
- wenn $y(x_0) = 0$ ==> laut Satz von P-L y(x) = 0 für alle x
- $ln|y(x)| = \int a(x)dx$
 - $y(x) = C * e^{A(x)}$ ist allgemeine Lösung
- Beispiel:

Inhomogene lineare DGL

- y' = a(x)y + b(x)
 - -b(x) ==> Inhomogenität durch Störfunktion
- Vorgehensweise:
 - homogene GL lösen

$$* \ y_H' = a(x) y_H(x) ==> y_H(x) = C * e^{A(x)}$$

- inhomogene GL lösen
 - $* y_P(x) = C(x) * e^{A(x)}$
 - ullet C(x) gesuchte Funktion
 - ◆ Variation der Konstanten

*
$$y_P = C'(x) * e^{A(x)} + C(x) * e^{A(x)} * a(x) = a(x) * C(x) * e^{A(x)} + b(x)$$

$$ullet$$
 ==> $C'(x) = b(x) * e^{-A(x)}$ ==> $C(x) = \int b(x) * e^{-A(x)} dx$

$$-y(x) = y_P(x) + D * e^{A(x)}$$

- * allgemeine Lösung
- * homogene + partikuläre Lösung
- Beispiel:

Exakte DGL

- $P(x,y)dx + Q(x,y)dy = 0 \le y' = \frac{dy}{dx} = -\frac{P(x,y)}{Q(x,y)}$
 - Stammfunktion existiert, wenn $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$

- * wenn nicht exakt ==> Multiplikation mit integrierenden Faktor $\mu(x)$
 - ullet alternative Formen $\mu(x)$ in Reihenfolge zum Versuchen
 - ◆ desto mehr Versuche desto verzweifelter

* $\mu(x)$ bestimmen

- DGL nach $\mu(x)$ lösen
- * siehe 2. Beispiel
- Stammfunktion: $d\phi = 0 = \phi(x, y) = const$
 - * Lösungen von P(x,y)dx+Q(x,y)dy=0 sind Niveaulinien von ϕ
- Beispiele:
 - ohne $\mu(x)$

- mit $\mu(x)$

- mit $\mu(x*y)$

Lotka-Volterra Räuber-Beute-Modell

- logistisches Wachstum

[[Differentialgleichungen]]