Semaine 1

15 novembre 2021

Louis Marchal ★★★★☆

Soient a et b deux fonctions continues telles que $a \ge 1$ sur \mathbb{R} .

- 1. Montrer que si $\lim_{x \to +\infty} b(x) = 0$, alors toute solution de l'équation différentielle y' + a(x)y = b(x) vérifie $\lim_{x \to +\infty} y(x) = 0$.
- 2. Montrer que si $b \ge 0$ et $\lim_{x \to -\infty} b(x) = 0$, alors il existe une et une seule solution de l'équation y' + a(x)y = b(x) telle que $\lim_{x \to -\infty} y(x) = 0$. Que peut-on dire des limites des autres solutions?

Pierre-Gabriel Berlureau ★★☆☆

En remplaçant $\tan x$ par $\frac{\sin x}{\cos x}$, calculer l'intégrale suivante

$$I = \int_0^{\frac{\pi}{4}} \ln(1 + \tan x) \mathrm{d}x$$

YANIS GRIGY★★☆☆

Calculer **a)**
$$I_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$$
 b) $I_n = \int_0^{\frac{\pi}{4}} \frac{dx}{\cos^n(x)}$ **c)** $I_n = \int_1^e \log^n x dx$.

Shems ★★★☆

1. Montrer que

$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ \cos((n+1)x) = 2\cos(nx)\cos(x) - \cos((n-1)x).$$

2. En déduire que pour tout $n \in \mathbb{N}$, il existe un polynôme, que l'on note T_n , tel que

$$\forall \theta \in \mathbb{R}, \quad 2\cos(n\theta) = T_n(2\cos(\theta)).$$

- 3. Soit la fonction polynômiale $P: x \in \mathbb{R} \mapsto \sum_{i=0}^k a_i x^i \in \mathbb{R}$, où $k \in \mathbb{N}^*$ et $a_0, \dots, a_{k-1} \in \mathbb{Z}$ et $a_k = 1$. Soit a une racine rationnelle de P. En écrivant a sous la forme $a = \frac{p}{q}$ avec $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$, p et q premiers entre eux, montrer que $a \in \mathbb{Z}$.
- 4. (En bonus) En déduire le théorème de Niven :

Soit
$$\theta \in [0, \frac{\pi}{2}]$$
 tel que $\frac{\theta}{\pi} \in \mathbb{Q}$. Montrer que si $\cos \theta \in \mathbb{Q}$, alors $\cos \theta \in \left\{0, \frac{1}{2}, 1\right\}$.

MATTEO DELFOUR ★★☆☆☆

À l'aide d'un changement de variable judicieux, calculer

$$\int^x \frac{dt}{\sqrt{1+t}-\sqrt[3]{1+t}}$$

1