GIS with Python!

PyConJP2021 2021/10/15 Chomoku LLC: Hideyuki Ogawa Translate with DEEPL

自己紹介

Name: Hideyuki Ogawa (@ogawahideyuki)

Company: Chomoku LLC (@hijichomoku)

Founder & CEO

We are hiring!!! Sorry we have no english site. (japanese site)

where: Kyoto

hobby: Jogging / Learn Chinese / BTS / No drinking

Talk: PyConJP2019, PyCon China Beijing 2019, PyCon mini HIroshima, PyConJP

2020 Tutorial

On PyConJP Blog

Python Boot Camp in 京都を開催しました

Thank you! PyConJP!!!

Writing

I write about Dash. Dash is plotly's Web Framework.

Hannari Python

- Python community in Kyoto
- Recently held Online!!!
- Once a week
- Social Tipping!!
- Donate
 - PyCharity
 - Red Cross
 - Japanese Student Service Organization
- https://hannari-python.connpass.com/

I appreciate before my talk.

To the medical community and all those who support society

Thank you!

Motivation for the talk.

- I dealt with a lot of location data at work.
- I realized the importance of location data in dealing with the real world we live in.
- On the other hand, the usage is rarely talked about (me too. according to me).
- Expectation that by talking, other people will start to talk about various things.
- I'll talk about the basics and how to use them.
- Also, there may be some mistakes, so if you notice any, please point them out to me!

Main Packages

- shapely
 - Handling geospatial information
- geopandas
 - Handling geospatial information as tabular data
- xarray
 - Handling multidimensional data
- folium / plotly / pydeck
 - Visualization of geospatial information

agenda

- Location data / Geospatial information
- File Formats
- How to use
 - Personal behavior data
 - National census
 - Himawari
 - Satellite Images

agenda

- Location data / Geospatial information
- File Formats
- How to use
 - Personal behavior data
 - National census
 - Himawari
 - Satellite Images

2020/2 ~ 2021/10

- I can't go out.
- In 2019, I'd be at PyConJP in Tokyo in September, and PyCon China Beijing in October.
 - But these days....
- My area of activity (WFH: 2020/3 2021/10 99%)

North: MK BOWL KAMIGAMO

SOUTH: KYOTO STATION (KYOTO TOWER)

WEST: KINKAKUJI

EAST: GINKAKUJI

Use Google Map

- Only people in Kyoto would understand, so let's take a look on Google Maps!
 - Googlemap: My Place
 - https://goo.gl/maps/cFh66Zmg4j7cgfsG7
 google is smart
- Google Maps plots the location by name.
 - ex. Ginkakuji
 - Address: 〒606-8402 京都府京都市左京区銀閣寺町2
 - Maybe it's plotted as place name -> address -> coordinates.
 - Search by GinkakujiCoordinates -> Latitude and Longitude: 35.0270° N, 135.7983° E

GeoCoding

- Don't pass addresses when plotting location data.
- Specify by coordinates such as latitude and longitude.
- Conversion from place names and addresses to latitude and longitude is called geocoding.
- Geocoding example (google's geocoding API: API_KEY required)

Coordinates

- latitude and longitude
 - latitude
 - Represents north and south (up to 90 degrees)
 - 0 degrees from the equator
 - longitude
 - Representation of east and west (up to 180 degrees)
 - 0° prime meridian: 102.478m east of
 - Greenwich Observatory
- Sometimes expressed as decimals, but often expressed in degrees, minutes, and seconds, and the minutes and seconds must be divided by 60.
- Expressing latitude and longitude as numerical values can be used to identify locations.
- On the other hand, there are multiple expressions, and it is very difficult to

Coordinate Reference System (CRS)

- There are multiple definitions for expressing position.
 - A geodesic system that defines what to do with a bumpy elliptical earth.
 - Representing the Earth as a Sphere? Coordinate system for planar representation.
 - A combination of many geodetic and coordinate systems => coordinate reference system
 - According to the GeoRepository site, there are 6547 CRSs.
 - It is run by The International Association of Oil & Gas Producers (IOGP).
 - If you don't pay attention to this, you won't be able to make use of the location data at all.
- Please refer to books and other sources for accurate information.

Shapely

- Use shapely to represent geospatial information
 - https://shapely.readthedocs.io/en/stable/
- Express space using Point, LineString, and Polygon
 - Pass numerical values in the order of x, y (longitude / latitude)
 - There is also Multi * that puts each together.

- Point : MultiPoint

- LineString : MultiString

Polygon : MultiPolygon

- Notebook Link
 - Colab: https://colab.research.google.com/drive/1CU8jzoLs8Hv0NNmHqES3gtYqneX PvNJ?usp=sharing

Express the area of my activity with Point

- Expressed in latitude and longitude
- When set to MultiPoint, it is displayed with 4 points

Express the area of my activity with LineString

- If you pass a Point to multiple LineStrings, it will be represented by a line.
- Let's make a line between east and west, north and south.

```
[32] 1 touzai = shapely.geometry.LineString([df.loc[0, 'geometry'], df.loc[1, 'geometry']])
2 nanboku = shapely.geometry.LineString([df.loc[2, 'geometry'], df.loc[3, 'geometry']])

[35] 1 print(touzai, nanboku)

LINESTRING (135. 7982058 35. 0270213, 135. 7292431 35. 03937) LINESTRING (135. 746086 35. 0668248, 135. 7587667 34. 985849)

[34] 1 shapely.geometry.MultiLineString([touzai, nanboku])
```

Express the area of my activity with Polygon

- When multiple Points are passed, they are represented as Polygon.
- Convert four points to a Polygon.

Plotting

- Plotting with folium.

Measure distances by transforming the coordinate reference system.

- In this case, EPSG4326 => EPSG6674
- By doing so, we can measure the distance between line segments.
- There are various attributes.


```
[70] 1 # 銀閣寺 - 金閣寺の距離
2 shapely. geometry. LineString([df_kyoto. loc[0, 'geometry'],
3 df_kyoto. loc[1, 'geometry']
4 ]). length

6439. 7249422724335

▶ 1 # 京都駅 - MKボウルの距離
2 shapely. geometry. LineString([df_kyoto. loc[2, 'geometry'],
3 df_kyoto. loc[3, 'geometry']
4 ]). length

9056. 920195253735
```

agenda

- Location data / Geospatial information
- File Formats
- How to use
 - Personal behavior data
 - National census
 - Himawari
 - Satellite Images

agenda

- Location data / Geospatial information
- File Formats
- How to use
 - Personal behavior data
 - National census
 - Himawari
 - Satellite Images

File Formats

- Raster Data
 - Data is stored in a grid.
 - File format: GeoTIFF, etc.
 - Packages: rasterio, **xarray**
- Vector Data
 - Data created from points, line strings, and polygons
 - File formats: Shape, GeoJSON, KML, etc.
 - Shapefile consists of about 3-5 files.
 - Packages: **geopandas**

Raster Data

- Data: National Land Information: Land use fine mesh (raster version)
 - https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L03-b r.html
 - Handling the Kyoto area: 5235
 - Unzip the zip and load the tif file with xarray's open_rasterio function.
 - The data are stored in 100m mesh at each location with the values of land cover classification.
 - Actual reading and objects.

Raster Data 2

- Cut out area of my activity.
 - Can be visualized with the plot method.
 - Using xarray makes it easy to cut out data.

Vector Data

- Data used: National Land Data: Administrative Area Data
 - https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-N03-v3_0.html#!
 - As usual, kyoto data.
 - The ZIP contains both shape and geojson.

▼ ■ N03-20210101_26_GML						
KS-META-N03-21_26_210101.xml						
N03-21_26_210101.dbf						
N03-21_26_210101.geojson						
N03-21_26_210101.prj						
N03-21_26_210101.shp						
N03-21_26_210101.shx						
N03-21_26_210101.xml						

0	• 1 data = gpd.read_file(' <u>/content/N03-20210101_26_GML/N03-21_26_210101.shp</u> ') 2 data.head()							
		N03_001	N03_002	N03_003	N03_004	N03_007	geometry	
	0	京都府	None	京都市	北区	26101	POLYGON ((135.72539 35.17080, 135.72552 35.170	
	1	京都府	None	京都市	上京区	26102	POLYGON ((135.75062 35.03822, 135.75079 35.038	
	2	京都府	None	京都市	左京区	26103	POLYGON ((135.80481 35.31708, 135.80586 35.316	
	3	京都府	None	京都市	中京区	26104	POLYGON ((135.73195 35.02251, 135.73195 35.022	

Vector Data 2

- Find out which wards are in my activity.
 - Use intersects method.
 - visualize with folium
 - The light blue area is vector data.
 - With google satellite data.
 - I was surprised by the length of Sakyo Ward.

agenda

- Location data / Geospatial information
- File Formats
- How to use
 - Personal behavior data
 - National census
 - Himawari
 - Satellite Images

agenda

- Location data / Geospatial information
- File Formats
- How to use
 - Personal behavior data
 - National census
 - Himawari
 - Satellite Images

Personal behavior data

- Data: GPS trajectory linked data project
 - https://github.com/koujikozaki/GPS2LOD (CC4.0)
 - CSV file
 - Description: Behavior during a conference
 - We have time and location data, altitude, speed, etc.
 - I'll observe the data to see if everyone was acting seriously.
 - colab: https://colab.research.google.com/drive/1_LNM-AKdpcuJb-vOzPKJt3O81o1jOGia?usp=sharing
- data processing
 - We will use speed, location, and personal information.
 - Converted the data to every 30 minutes.
 - Point type for position information that exists as a float.
 - DataFrame => GeoDataFrame
 - CSV => GeoJson

- What is the central point of everyone's actions?
 - It can be obtained with the centroid attribute of MultiPoint, but it is the center of movement...
 (left)
 - I created a median from position data that is a float (right): Bingo!

- Observe the behavior of all people.
- Use heat maps to observe where the frequency was highest.
- Observe each individual by separating them by color.

- The speed of each individual at a given point in time is represented by the size of the circle.
- Heat map representation of how many people are gathering.

- Compare the daily latitude distance for each individual
- Change the coordinate reference system to express in meters. (EPSG4326 => EPSG6673)

各個人移動距離: 2016-10-18

- Location data / Geospatial information
- File Formats
- How to use
 - Personal behavior data
 - National census
 - Himawari
 - Satellite Images

- Location data / Geospatial information
- File Formats
- How to use
 - Personal behavior data
 - National census
 - Himawari
 - Satellite Images

- Census is the most important statistical survey of the country.
 - We can also get data on the number of people in each household, their ages, etc.
 - Nationwide, divided by town/character, data created by 1km, 500m, 250m mesh.
 - Statistical data and boundary data are kept separately, and regional data is created by merging the two.
 - Can be obtained in csv and shape file(zipped up).
 - https://www.e-stat.go.jp/gis
- In this article, we will show examples of marketing using basic statistics such as population.
 - Marketing to ages 0-14
 - Marketing to foreign residents
- Colab:

https://colab.research.google.com/drive/1QspBpoW9BO_ofXmrLOX3a04YD5SE_3eH?usp=s haring

- We have created a data set that includes the central part of Kyoto.
 - Data on total population, sex ratio, age structure, number of households, etc. on a 250-meter mesh

Merged with KEY CODE.

- Use the 0-14 year old population to find areas that are likely to have a younger population.
 - Separate by total number and ratio (300+, 40%)
 - This area can be created with Pandas-like processing.

- Delivering information to foreign residents.
- The less foreigners they have nearby, the more difficult it will be to get information.
- Find areas with less than 10 people on a 250 meter mesh.

There were more people under 10 than I expected, so I checked for people

over 10.

- Location data / Geospatial information
- File Formats
- How to use
 - Personal behavior data
 - National census
 - Himawari
 - Satellite Images

- Location data / Geospatial information
- File Formats
- How to use
 - Personal behavior data
 - National census
 - Himawari
 - Satellite Images

Meteorological data with xarray

- Data: PTree 「(c) JAXA・気象庁」
 - Colab: https://colab.research.google.com/drive/1J3QU3Hv2iO1EKYGKma96CkkFeVqqzzrD?usp=sharing
- Description https://www.eorc.jaxa.jp/ptree/userguide_j.html
 - Non-commercial use only.
 - Buy it if it's commercial use!
- Data is in NetCDF format
 - Multidimensional Array
 - Use xarray
- What to do
 - See how the amount of sunlight
 - changes over the of a day.

Meteorological data with xarray 2

- Using xarray is intuitive and easy to understand.
 - I think I can get there if I can use pandas.
 - Files can be readed together.

Meteorological data with xarray and plotly

- Using Plotly to visualize hourly data.
 - The more graph move, the more you feel!

Meteorological data with xarray and pydeck

- Express the total for the day.
 - Group by location and total for one day.
 - With pydeck.

- Location data / Geospatial information
- File Formats
- How to use
 - Personal behavior data
 - National census
 - Himawari
 - Satellite Images

- Location data / Geospatial information
- File Formats
- How to use
 - Personal behavior data
 - National census
 - Himawari
 - Satellite Images

Satellite Images

- Data: Sentinel2
 - Colab: https://colab.research.google.com/drive/1hajaEIBbUwGWvm5JbnJ6y0WhsMDwc3Yi?usp=sharing
 - <u>License</u> Copernicus Open Access Hub (<u>Link</u>)
 - There are various files, but the raster data is in a jp2 file.
 - Read and process the file using rioxarray.
 - Read 1pixel / 10m TCI image

- Observe the local Mt. Tanakami (I can only go back a year for convenience, so I will compare

the two)

Satellite Images 2

- Visualization
 - Satellite images of Osaka, Kyoto, Nara, and Shiga
 - Changing the CRS (EPSG:32653 => EPSG:4326)
 - Call up the location data of the part of Mt. Tanakami you want to see that you prepared in advance, and cut it out.

Satellite Images 3 : 2020/10/12

Satellite Images 4: 2021/10/2

conclusion

- It's easy to make use of location data in Python.
- On the other hand, the exact knowledge is quite complex, and I'd like to work with an expert to touch this area.
- Once the data is in place, it will be possible to help solve social issues.
- "How do we act?" may be the challenge for those of us who can touch data or write code.

conclusion 2

from ghibli https://www.ghibli.jp/works/mononoke/#frame

Thank you very much

参考資料

books(only japanese)

- 地図リテラシー入門 羽田康祐 ペレ出版
- その問題、デジタル地図が解決します 中島円 ペレ出版
- GIS地理情報システム 矢野桂司 創元社

for study

- GEO-PYTHON(University of Helsinki) Link

Packeges

- shapely
 - Document: https://shapely.readthedocs.io/en/stable/
- geopandas
 - Document: https://geopandas.org/
- xarray
 - Document: http://xarray.pydata.org/en/stable/
- folium
 - Document: https://python-visualization.github.io/folium/
- plotly
 - Document: https://plotly.com/python/
- pydeck
 - Document: https://deckgl.readthedocs.io/en/latest/

Data

- Behavior data of 11 people
 - GPS trajectory linked data project Link
- kokuse-chosa
 - eStat Statistics GIS https://www.e-stat.go.jp/gis
 - kokuse-chosa (2015) 250meter mesh
- Himawari
 - JAXA HIMAWARI MONITOR: Link
- Sentinel2
 - Copernicus Open Access Hub: Link