# Lecture 15: Uniformly Most Powerful Tests

Mathematical Statistics II, MATH 60062/70062

Tuesday March 15, 2022

Reference: Casella & Berger, 8.3.2

### Recap: Monotone likelihood ratio

A family of PDFs/PMFs  $\{g_T(t \mid \theta) : \theta \in \Theta\}$  for a univariate random variable T has a **monotone likelihood ratio (MLR)** if for all  $\theta_2 > \theta_1$ , the ratio

$$\frac{g_T(t \mid \theta_2)}{g_T(t \mid \theta_1)}$$

is a nondecreasing function of t on  $\{t: g_T(t \mid \theta_1) > 0 \text{ or } g_T(t \mid \theta_2) > 0\}.$ 

**Note:** If  $T \sim g_T(t \mid \theta) = h(t)c(\theta)e^{w(\theta)t}$ , then  $\{g_T(t \mid \theta) : \theta \in \Theta\}$  has an MLR.

## Recap: Karlin-Rubin Theorem

Consider testing

$$H_0: \theta \leq \theta_0$$
 versus  $H_1: \theta > \theta_0$ .

Suppose that T is a sufficient statistic for  $\theta$  and the family  $\{g_T(t\mid\theta):\theta\in\Theta\}$  has an MLR. Then the test that rejects  $H_0$  if and only if  $T>t_0$  is a UMP level  $\alpha$  test, where

$$\alpha = P_{\theta_0}(T > t_0).$$

Similarly, when testing

$$H_0: \theta \geq \theta_0$$
 versus  $H_1: \theta < \theta_0$ ,

the test that rejects  $H_0$  if and only if  $T < t_0$  is a UMP level  $\alpha$  test, where  $\alpha = P_{\theta_0}(T < t_0)$ .

### Bernoulli/Binomial UMP test

Suppose  $X_1, \ldots, X_n$  are iid  $\mathrm{Bern}(\theta)$ , where  $0 < \theta < 1$ . Consider testing

$$H_0: \theta \leq \theta_0 \quad \text{versus} \quad H_1: \theta > \theta_0.$$

We know that

$$T = \sum_{i=1}^{n} X_i$$

is sufficient for  $\theta$  and  $T \sim \text{Bin}(n, \theta)$ , and  $\{g_T(t \mid \theta) : 0 < \theta < 1\}$  has an MLR.

Therefore, by the Karlin-Rubin Theorem the UMP level  $\alpha$  test is

$$\phi(t) = I(t > t_0),$$

where  $t_0$  satisfies

$$\alpha = P_{\theta_0}(T > t_0) = \sum_{t=|t_0|+1}^n \binom{n}{t} \theta_0^t (1 - \theta_0)^{n-t}.$$

### Normal UMP test

Suppose  $X_1, \ldots, X_n$  are iid  $\mathcal{N}(\mu, \sigma_0^2)$ , where  $-\infty < \mu < \infty$  and  $\sigma_0^2$  is known. Consider testing

$$H_0: \mu \leq \mu_0$$
 versus  $H_1: \mu > \mu_0$ .

We know that  $T(\boldsymbol{X}) = \bar{X}$  is sufficient for  $\theta$  and  $T \sim \mathcal{N}(\mu, \sigma_0^2/n)$ , and  $\{g_T(t \mid \mu) : -\infty < \mu < \infty\}$  has an MLR (exercise).

By the Karlin-Rubin Theorem, the UMP level lpha test is

$$\phi(t) = I(t > t_0),$$

where  $t_0$  satisfies

$$\alpha = P_{\mu_0}(T > t_0) = P\left(\frac{\bar{X} - \mu_0}{\sigma_0/\sqrt{n}} > \frac{t_0 - \mu_0}{\sigma_0/\sqrt{n}}\right) = 1 - F_Z\left(\frac{t_0 - \mu_0}{\sigma_0/\sqrt{n}}\right)$$

$$\implies t_0 = \frac{z_\alpha \sigma_0}{\sqrt{n}} + \mu_0.$$

Thus, the UMP level  $\alpha$  test function for  $H_0$  versus  $H_1$  is

$$\phi(\boldsymbol{x}) = I\left(\bar{x} > \frac{z_{\alpha}\sigma_0}{\sqrt{n}} + \mu_0\right)$$

and the corresponding power function is

$$\beta(\mu) = E_{\mu}[\phi(\boldsymbol{X})]$$

$$= P_{\mu} \left( \bar{X} > \frac{z_{\alpha}\sigma_{0}}{\sqrt{n}} + \mu_{0} \right)$$

$$= P_{\mu} \left( \frac{\bar{X} - \mu}{\sigma_{0}/\sqrt{n}} > z_{\alpha} + \frac{\mu_{0} - \mu}{\sigma_{0}/\sqrt{n}} \right)$$

$$= 1 - F_{Z} \left( z_{\alpha} + \frac{\mu_{0} - \mu}{\sigma_{0}/\sqrt{n}} \right).$$

#### Nonexistence of UMP test

Using the Karlin-Rubin Theorem, we can find UMP level  $\alpha$  tests for

$$H_0: \theta \leq \theta_0$$
 versus  $H_1: \theta > \theta_0$ .

or

$$H_0: \theta \ge \theta_0$$
 versus  $H_1: \theta < \theta_0$ .

Unfortunately, with a *two-sided*  $H_1$  ( $H_1: \theta \neq \theta_0$ ), UMP tests do not exist.

Suppose  $X_1,\ldots,X_n$  are iid  $\mathcal{N}(\mu,\sigma_0^2)$ , where  $-\infty<\mu<\infty$  and  $\sigma_0^2$  is known. Consider testing

$$H_0: \mu = \mu_0$$
 versus  $H_1: \mu \neq \mu_0$ .

If there exists a UMP test, then for all  $\mu \neq \mu_0$  the power function of the test should be greater than the power function of any other level  $\alpha$  test.

#### Nonexistence of UMP test

It is possible to find UMP tests when  $H_1$  is *one-sided*.

• For  $H_0': \mu \leq \mu_0$  versus  $H_1': \mu > \mu_0$ , the UMP level  $\alpha$  test function is

$$\phi'(\mathbf{x}) = I\left(\bar{x} > \frac{z_{\alpha}\sigma_0}{\sqrt{n}} + \mu_0\right)$$

and the corresponding power function is

$$\beta'(\mu) = 1 - F_Z \left( z_\alpha + \frac{\mu_0 - \mu}{\sigma_0 / \sqrt{n}} \right).$$

• For  $H_0'': \mu \ge \mu_0$  versus  $H_1'': \mu < \mu_0$ , the UMP level  $\alpha$  test function is

$$\phi''(x) = I\left(\bar{x} < -\frac{z_{\alpha}\sigma_0}{\sqrt{n}} + \mu_0\right)$$

and the corresponding power function is

$$\beta''(\mu) = F_Z \left( -z_\alpha + \frac{\mu_0 - \mu}{\sigma_0 / \sqrt{n}} \right).$$

Note that both are also size (and level)  $\alpha$  tests for  $H_0$  versus  $H_1$  because

$$\sup_{\mu = \mu_0} \beta'(\mu) = \beta'(\mu_0) = 1 - F_Z(z_\alpha) = \alpha$$

and

$$\sup_{\mu=\mu_0} \beta''(\mu) = \beta''(\mu_0) = F_Z(-z_\alpha) = \alpha.$$

Therefore,

- $\phi'(x)$  is UMP level  $\alpha$  when  $\mu > \mu_0$
- $\phi''(x)$  is UMP level  $\alpha$  when  $\mu < \mu_0$ .

Since  $\phi'(x) \neq \phi''(x)$  for all  $x \in \mathcal{X}$ , no UMP test exists for  $H_0$  versus  $H_1$ .

#### Unbiased tests

When no UMP level  $\alpha$  test within the class of all tests, we could further restrict our attention to a smaller class, the class of unbiased tests.

Consider testing

$$H_0: \theta \in \Theta_0$$
 versus  $H_1: \theta \in \Theta_0^c$ .

not necessary monotonic

A test with power function  $\beta(\theta)$  is **unbiased** if  $\beta(\theta_1) \geq \beta(\theta_0)$  for all  $\theta_1 \in \Theta_0^c$  and for all  $\theta_0 \in \Theta_0$ . In other words, the power is always larger in the alternative parameter space than it is in the null parameter space.

### Uniformly most powerful unbiased tests

The uniformly most powerful unbiased (UMPU) level  $\alpha$  test has power function that satisfies

$$\beta(\theta) \ge \beta^*(\theta)$$

for all  $\theta \in \Theta_0^c$ , where  $\beta^*(\theta)$  is the power function of any other unbiased level  $\alpha$  test.

Suppose  $X_1,\dots,X_n$  are iid  $\mathcal{N}(\mu,\sigma_0^2)$ , where  $-\infty<\mu<\infty$  and  $\sigma_0^2$  is known. Consider testing

$$H_0: \mu = \mu_0$$
 versus  $H_1: \mu \neq \mu_0$ .

The UMPU level  $\alpha$  test rejects  $H_0$  if and only if

$$\frac{\bar{x} - \mu_0}{\sigma_0/\sqrt{n}} < -z_{\alpha/2} \quad \text{or} \quad \frac{\bar{x} - \mu_0}{\sigma_0/\sqrt{n}} > z_{\alpha/2}$$

The rejection region of the UMPU level  $\alpha$  test is

$$R = \left\{ \boldsymbol{x} \in \mathcal{X} : \left| \frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}} \right| > z_{\alpha/2} \right\}.$$

The power function of the test is

$$\begin{split} \beta(\mu) &= P_{\mu}(\boldsymbol{X} \in R) \\ &= P_{\mu}\left(\frac{\bar{X} - \mu_0}{\sigma_0/\sqrt{n}} > z_{\alpha/2} \text{ or } \frac{\bar{X} - \mu_0}{\sigma_0/\sqrt{n}} < -z_{\alpha/2}\right) \\ &= P\left(Z > z_{\alpha/2} + \frac{\mu_0 - \mu}{\sigma_0/\sqrt{n}} \text{ or } Z < -z_{\alpha/2} + \frac{\mu_0 - \mu}{\sigma_0/\sqrt{n}}\right) \\ &= 1 - F_Z\left(z_{\alpha/2} + \frac{\mu_0 - \mu}{\sigma_0/\sqrt{n}}\right) + F_Z\left(-z_{\alpha/2} + \frac{\mu_0 - \mu}{\sigma_0/\sqrt{n}}\right). \end{split}$$

Power function of  $\alpha=0.05$  test with parameters n=10,  $\mu_0=5$ ,  $\sigma_0^2=4$ :



### Appendix: Proof of Karlin-Rubin Theorem

#### Consider testing

$$H_0: \theta \leq \theta_0$$
 versus  $H_1: \theta > \theta_0$ .

Suppose that T is a sufficient statistic for  $\theta$  and the family  $\{g_T(t\mid\theta):\theta\in\Theta\}$  has an MLR. Then the test that rejects  $H_0$  if and only if  $T>t_0$  is a UMP level  $\alpha$  test, where

$$\alpha = P_{\theta_0}(T > t_0).$$

**Lemma 1:** If both g(x) and h(x) are nondecreasing functions of x, then

$$Cov[g(X), h(X)] \ge 0.$$

Let  $X_1$  and  $X_2$  be iid with the same distribution as X. Then

$$E[(h(X_1) - h(X_2))(g(X_1) - g(X_2))]$$

$$= E[h(X_1)g(X_1)] - E[h(X_1)g(X_2)] - E[h(X_2)g(X_1)] + E[h(X_2)g(X_2)]$$

$$= \underbrace{E[h(X_1)g(X_1)] - E[h(X_1)]E[g(X_2)]}_{\text{Cov}[g(X),h(X)]} \underbrace{-E[h(X_2)]E[g(X_1)] + E[h(X_2)g(X_2)]}_{\text{Cov}[g(X),h(X)]}$$

#### Therefore

$$Cov[g(X), h(X)] = \frac{1}{2}E[(h(X_1) - h(X_2))(g(X_1) - g(X_2))] \ge 0.$$

**Lemma 2:** Suppose the family  $\{g_T(t\mid\theta):\theta\in\Theta\}$  has an MLR. If  $\phi(t)$  is a nondecreasing function of t, then  $E_{\theta}[\phi(T)]$  is a nondecreasing function of  $\theta$ .

Suppose  $\theta_2 > \theta_1$ . Because  $\{g_T(t \mid \theta) : \theta \in \Theta\}$  has an MLR,

$$\frac{g_T(t \mid \theta_2)}{g_T(t \mid \theta_1)}$$

is a nondecreasing function of t for  $\theta_2 > \theta_1$ . By Lemma 1, we know

$$\operatorname{Cov}_{\theta_1}\left[\phi(T), \frac{g_T(T \mid \theta_2)}{g_T(T \mid \theta_1)}\right] \ge 0$$

$$\Longrightarrow \underbrace{E_{\theta_1} \left[ \phi(T), \frac{g_T(T \mid \theta_2)}{g_T(T \mid \theta_1)} \right]}_{E_{\theta_2}[\phi(T)]} \ge E_{\theta_1}[\phi(T)] \underbrace{E_{\theta_1} \left[ \frac{g_T(T \mid \theta_2)}{g_T(T \mid \theta_1)} \right]}_{1}$$

$$\Longrightarrow E_{\theta_2}[\phi(T)] > E_{\theta_1}[\phi(T)].$$

Now, consider  $\phi(t)=I(t>t_0)$ , where  $t_0$  is fixed. Clearly,  $\phi(t)$  is a nondecreasing function of t. From Lemma 2, we know that

$$E_{\theta}[\phi(T)] = E_{\theta}[I(T > t_0)] = P_{\theta}(T > t_0)$$

is a nondecreasing function of  $\theta$ .

Consider testing  $H_0: \theta \leq \theta_0$  versus  $H_1: \theta > \theta_0$ , we have shown that the power function

$$\beta(\theta) = P_{\theta}(T > t_0)$$

is a nondecreasing function of  $\theta$ .

In the Karlin-Rubin Theorem, the condition  $\alpha=P_{\theta_0}(T>t_0)$  must be satisfied, where

$$\alpha = \sup_{\theta < \theta_0} \beta(\theta) = \beta(\theta_0) = P_{\theta_0}(T > t_0).$$

This means that  $\phi(t)=I(t>t_0)$  is a size  $\alpha$  (and therefore level  $\alpha$ ) test function. All that remains is to show that this test is uniformly most powerful among level  $\alpha$  tests.

Let  $\phi^*(x)$  be any other level  $\alpha$  test for  $H_0: \theta \leq \theta_0$  versus  $H_1: \theta > \theta_0$ . Fix  $\theta_1 > \theta_0$  and consider testing

$$H_0^*: \theta = \theta_0$$
 versus  $H_1^*: \theta = \theta_1$ 

instead. Because  $\phi^*(x)$  is a level  $\alpha$  test for  $H_0$  versus  $H_1$ ,

$$E_{\theta_0}[\phi^*(\boldsymbol{X})] \le \sup_{\theta < \theta_0} E_{\theta}[\phi^*(\boldsymbol{X})] \le \alpha.$$

This means that  $\phi^*(x)$  is also a level  $\alpha$  test for  $H_0^*$  versus  $H_1^*$ .

By the Neyman-Pearson Lemma with a sufficient statistic T, we know that  $\phi(t)$  is the most powerful level  $\alpha$  test for  $H_0^*$  versus  $H_1^*$ . That is

$$E_{\theta_1}[\phi(T)] \geq E_{\theta_1}[\phi^*(\boldsymbol{X})].$$

Because  $\theta_1 > \theta_0$  was chosen arbitrarily,

$$E_{\theta}[\phi(T)] \geq E_{\theta}[\phi^*(\boldsymbol{X})]$$

holds for all  $\theta > \theta_0$ .