Estructura temporal

Mayra Goicochea Neyra 28/10/2019

Caso ACP

Introducción

Para analizar el rendimiento de bonos norteamericanos, se recoge la información de 978 observaciones de los rendimientos de 10 bonos a distintos plazos entre el 2 de enero de 1995 y el 30 de septiembre de 1998. Se tiene la información en 10 variables.

```
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(ggplot2)
library(readr)
library(kknn)
library(factoextra)
## Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EFCZ
library(FactoMineR)
raw_data <- read.csv("../ACPTIUSD.csv", sep = ";")</pre>
colnames(raw_data[,-1])
    [1] "DEPO.1M"
                   "DEPO.3M"
                               "DEPO.6M"
                                          "DEPO.12M" "IRS.2Y"
                                                                 "IRS.3Y"
                               "IRS.7Y"
                   "IRS.5Y"
    [7] "IRS.4Y"
                                          "IRS.10Y"
```

El objetivo del siguiente analisis es predecir el valor de un bono a 10 años, para cumplir con esa finalidad, se consideró la muestra de las primeras 949 observaciones como activas, y las siguientes 29 observaciones como suplementarias para comprobar el modelo resultante.

Análisis Exploratorio de Datos (EDA)

```
dfData <- rminer::imputation("hotdeck",raw_data,"DEPO.1M")
dfData <- dfData[,-1]
dfData.act <- dfData[1:949,]
dfData.sup <- dfData[950:978,]

m.corr <- cor(dfData)
corrr::rplot(m.corr, legend = TRUE, colours = c("firebrick1", "black","darkcyan"), print_cor = TRUE)</pre>
```

Don't know how to automatically pick scale for object of type noquote. Defaulting to continuous. ## Don't know how to automatically pick scale for object of type noquote. Defaulting to continuous.

det(m.corr)

[1] 3.244602e-21

La matriz de correlaciones muestra alta relacion entre las variables. La determinante es muy cercana a cero, no se puede concluir que sean linealmente dependientes, pero si que hay cierta multicolinealidad.

###Prueba de Bartlett,

```
psych::cortest.bartlett(m.corr)

## Warning in psych::cortest.bartlett(m.corr): n not specified, 100 used

## $chisq

## [1] 4473.98

##

## $p.value

## [1] 0

##

## $df

## [1] 45
```

Según la prueba de bartlett, aparentemente hay multicolinealidad entre las variables.

Prueba KMO (Kaiser-Meyer-Olkin)

```
psych::KMO(dfData[,-10])
## Kaiser-Meyer-Olkin factor adequacy
## Call: psych::KMO(r = dfData[, -10])
## Overall MSA = 0.87
## MSA for each item =
    DEPO.1M DEPO.3M DEPO.6M DEPO.12M
                                          IRS.2Y
                                                   IRS.3Y
                                                             IRS.4Y
                                                                      IRS.5Y
                0.81
                         0.83
                                                                        0.87
##
       0.87
                                   0.91
                                            0.88
                                                     0.85
                                                               0.90
##
     IRS.7Y
##
       0.91
```

Mediante la prueba de Kaiser-Meyer-Olkin, se verifica que la mayoria de variables pueden ser explicadas por otras, es así que un análisis de componentes principales puede ser adecuado para reducir la cantidad de variables.

Análisis de Componentes Principales

```
acp <- PCA(dfData[,-10],scale.unit = TRUE, graph = T)</pre>
```

Individuals factor map (PCA)

Variables factor map (PCA)

Según el PCA, se puede representar la información al 98.31% con dos componentes. Dejando el 77.78% de las variables solo se perdería el 1.69% de la información. También se pueden diferenciar dos grupos de variables. En cuanto a las variables, DEPO.1M estaría mejor explicada por la dimensión 2, a diferencia de las otras, que están mas asociadas a la dimensión 1.

Varianza Explicada

```
fviz_eig(acp, addlabels = TRUE, hjust = -0.3) +
  labs(title = "Scree plot / Gráfico de sedimentación", x = "Dimensiones", y = "% Varianza explicada")
  theme_minimal()
```


Los dos primeros componentes explican el 98.3% de la varianza total. Se puede concluir que los otros 7 componentes no son significativos para la varianza.

Calidad de Representación

Mapa de ejes principales

fviz_cos2(acp, choice = "var", axes = 1:2)

Las variables IRS.3Y, IRS.4Y e IRS.5Y son las mejores representadas por el componente principal 1. Las otras variables también son adecuadamente representadas dado su coeficiente de mayor e igual a 0.98.

Contribución a los CP

```
fviz_contrib(acp, choice = "var", axes = 1 ) +
labs(title = "Contribuciones a la Dim 1")
```


fviz_contrib(acp, choice = "var", axes = 2) +
 labs(title = "Contribuciones a la Dim 2")

Contribuciones a la Dim 2

Las variables DEPO.12M, IRS.2Y, IRS.3Y, IRS.5Y, DEPO.6M, e IRS.7Y son muy bien explicadas por la dimensión 1. En cambio, las variables DEPO.1M y DEPO.3M son mejor representadas por la dimensión 2. Todas las variables contribuyen a demostrar la variabilidad del dataset.

No Rotación o Ajuste de Rotación

```
psych::principal(dfData[,-10], nfactors = 2, rotate = "none")
## Principal Components Analysis
## Call: psych::principal(r = dfData[, -10], nfactors = 2, rotate = "none")
## Standardized loadings (pattern matrix) based upon correlation matrix
##
             PC1
                   PC2
                        h2
                                u2 com
                  0.88 0.97 0.0320 1.5
## DEPO.1M
           0.44
## DEPO.3M
           0.77
                  0.62 0.98 0.0246 1.9
## DEPO.6M
           0.93
                  0.34 0.98 0.0166 1.3
## DEPO.12M 0.99
                  0.04 0.97 0.0273 1.0
## IRS.2Y
            0.98 -0.16 0.99 0.0118 1.1
## IRS.3Y
            0.97 -0.22 1.00 0.0025 1.1
## IRS.4Y
            0.96 -0.26 1.00 0.0025 1.1
## IRS.5Y
            0.95 -0.29 0.99 0.0087 1.2
## IRS.7Y
            0.93 -0.33 0.97 0.0262 1.3
##
                          PC1 PC2
##
## SS loadings
                         7.23 1.62
## Proportion Var
                         0.80 0.18
## Cumulative Var
                         0.80 0.98
## Proportion Explained
                         0.82 0.18
```

```
## Cumulative Proportion 0.82 1.00
##
## Mean item complexity = 1.3
## Test of the hypothesis that 2 components are sufficient.
##
## The root mean square of the residuals (RMSR) is 0.01
## with the empirical chi square 7.2 with prob < 0.99
##
## Fit based upon off diagonal values = 1</pre>
```

Con dos componentes se puede explicar el 98% de la varianza. El primer componente es el que tiene más porcentaje de interpretación de la varianza.

```
#Varimax
psych::principal(dfData[,-10],nfactors = 2, rotate = "varimax")
## Principal Components Analysis
## Call: psych::principal(r = dfData[, -10], nfactors = 2, rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
              RC1 RC2
                        h2
                                112 com
## DEPO.1M -0.01 0.98 0.97 0.0320 1.0
## DEPO.3M
           0.40 0.90 0.98 0.0246 1.4
           0.68 0.72 0.98 0.0166 2.0
## DEPO.6M
## DEPO.12M 0.86 0.48 0.97 0.0273 1.6
## IRS.2Y
            0.95 0.30 0.99 0.0118 1.2
## IRS.3Y
            0.97 0.24 1.00 0.0025 1.1
## IRS.4Y
            0.98 0.20 1.00 0.0025 1.1
## IRS.5Y
            0.98 0.17 0.99 0.0087 1.1
## IRS.7Y
            0.98 0.12 0.97 0.0262 1.0
##
##
                         RC1 RC2
## SS loadings
                         6.08 2.76
## Proportion Var
                         0.68 0.31
## Cumulative Var
                         0.68 0.98
## Proportion Explained 0.69 0.31
## Cumulative Proportion 0.69 1.00
##
## Mean item complexity = 1.3
## Test of the hypothesis that 2 components are sufficient.
##
## The root mean square of the residuals (RMSR) is 0.01
  with the empirical chi square 7.2 with prob < 0.99
## Fit based upon off diagonal values = 1
```

Con una rotación Varimax, se tiene un mejor modelo, donde los pesos de las variables se diferencian mejor, y los componentes principales explican la varianza de forma más equilibrada.

Conclusiones

- Dado que la muestra tiene multicolinealidad, nos permite reducir las dimensiones mediante el Análisis de Componentes Principales.
- Se observó mediante los graficos y calculos generados que se puede explicar el modelo mediante 2 componentes.
- El ajuste Varimex, permite identificar más fácilmente que componente tiende a asociarse con cada variable. Además, permite que se equilibren los autovalores.

Bibliografía

- $\bullet STHDA, en sitio web: http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/112-pca-principal-component-analysis-essentials/\#data-standardization \\$
- Análisis de Componentes Principales, r
pub por Joaquín Amat en sitio web: https://rpubs.com/Joaquin_AR/287787
- Análisis de Componentes Principales, rpub por Cristina Gil en sitio web: https://rpubs.com/Cristina_ Gil/PCA