Autonomous Water Taxi

By: AutoPirates

Date: 24th September 2015

Content: Layout for Project Kick-off

Focus on Requirements

- 1. Introduction
 - Team
 - Mentors and Sponsors
- 2. Requirements
 - Project Goals
 - Objectives tree
 - Major functional requirements
 - Performance requirements
- 3. Architecture
 - Functional Architecture
 - Draft cyber physical architecture

Introduction

Team: Here to Achieve the goal together

Interdisciplinary team both technically and culturally

Tushar Chugh

Path Planning, Simulator, PM

Background:
Microsoft (3 Years)

Electronics and Communication

Shiyu Dong

Perception, Simulator

Background: Intelligent Car

Control and Instrumentation

Bikramjot Hanzra

Perception, System Integration

Background: IRSEEM (6 Months)

Electronical and Electronics

Tae-Hyung Kim

Path Planning,
Operator Interface

Background: Samsung(4 Years)

Control and Instrumentation

William Seto

Log Play Back, Perception

Background: UCLA (EE)

Computer Science

Mentors: To help both our team and boat sail successfully

Mentors and Sponsors of the project

Jeremy Searock

Technical Project Manager, NREC

Research Interests:

Autonomous Vehicle Technologies, Multi-Vehicle Coordination, System Integration & Testing

Dr. John Dolan

Principal Systems Scientist, RI

Research Interests:

Autonomous Driving, Telesupervisory human-robot systems, Robot Reliabilty

Dr. Dimitrios Apostolopoulos

Senior Systems Scientist, RI & NREC

Research Interests:

Modeling and Simulation, Electromechanical Design, System Integration & Test

Requirements

Project Goals

Goals defined by the sponsor

- 1. Demonstrate the ability to operate an autonomous taxi service taking passengers to hubs along the Allegheny, Monongahela, and Ohio Rivers. (autonomous docking is not required)
- 2. Write/port/integrate the perception algorithms to track dynamic obstacles (other boats) and identify static obstacles (shore, buoys)
- 3. Write/port/integrate a path planning algorithm to travel to waypoints without hitting anything and not "confusing" other human boaters

Equipment provided

- 1. 2015 SeaHawk OS 2700S
- 2. Velodyne VLP-16
- 3. SimRad 4G FMCW Radar
- Novatel SPAN with IMU positioning
- 5. Laptop

Boat Specifications

27' Length x 8' 6" Width
Twin 150Hp Yamaha engines
180 gal fuel tank
Top cruising speed (40 mph)
9 foot cabin

A/C and heating
10 kw AC generator
Internal Ethernet network
Fathometer
Navigation Screen

Sneak Peak of the Boat and Sensors

Functional Requirements

Autonomy | Log Play-back | OCU

Autonomy of the boat shall

- 1. Provide control for throttling and steering
- 2. Navigate boat through way points given no obstacles
- 3. Detect and avoid Static obstacles
- 4. Drive through bridges

Stretch

- 1. Detect Dynamic Obstacles
- 2. Estimate path of dynamic obstacles

Log Play back feature shall

- 1. Record data from sensors
- 2. Play-back data to boat/simulator
- 3. Find and Integrate simulator

Operator Control Unit (OCU) shall

- 1. Provide interface to enter destination
- 2. Display current location on map (display)

Non-Functional and Performance Requirements

Non-Functional Requirements

- 1. Follow right alignment on path
- 2. Not confuse other manual boats
- 3. Keep 25-30 trails for testing (Budget constraint)

Performance Requirements

- 1. Maximum Speed: 15 MPH
- 2. Testing distance: 2 miles in 15 minutes (5 static obstacles)
- 3. Obstacle size: Proportional to the resolution of sensors
- 4. Types of obstacles: Shore, buoys, other boats

Objectives Tree: Categorizing the Functions

Autonomous Water Taxi Shall

Detect Obstacles: Perception	Plan the path: Planning	Provide User Interface: OCU	Follow Traffic Rules: Safety	Collect data & relay: Play-back
Detect static obstacles	Navigate autonomously given	Provide interface to	• Follow traffic rules of 3 rivers (same as manual	• Record data from
like shores and Buoys	no obstacles	enter destination	boats)	sensors
 Detect dynamic Obstacles like other boat 	• Plan new path in case of static obstacles	User can enter up to12 destinations	 Not confuse other sailing boats 	 Playback data to boat/simulator
Navigate through bridges	• Estimate path of other boats	 Show current location and projected path on map (display) 		• Interface simulator for testing
	Plan and navigate on new estimated path			

Work Division: Playing to our strengths

Technical Work

Perception	Planning	ocu	Log Play Back	Simulatior	System Integration
Bikram	Tushar	Tae-Hyung	William	Shiyu	Bikram
Shiyu	Tae-Hyung		Tushar		
William					

Non-Technical Work

Program Management	Field Management	Web Management	Code Quality Management	Project Kick-off	Team Management
Tushar	William	Bikram	Shiyu	Team	Tae-Hyung
 Release Mgt. Scrum Scheduling meetings Communication Purchasing 	 Logistics for Field Trials Data collection and management 	 Publish content website Handle Latex for documentation 	RepositoryCode ReviewsVersion controlCheck-ins	 Structure to kick-off the project Documentation and presentations 	 Team Culture Stress management COI Management

Architecture

Functional Architecture: Defining functions of the project

Cyberphysical Architecture: Draft

Questions?

Appendix

Risk Assessment and Mitigation

Risks Associated with the Project

- 1. A very challenging project which all team members are passionate about.
- 2. Cold and snow in winters would be the hindrance for field testing.
- 3. Time taken to go to NREC/field testing would be significant
- 4. Might be too much of a work for MRSD project

How we are planning to mitigate the risk?

- 1. Got budget for 25 trails (increased from 4)
- 2. Buying an extra radar to speed up the development on the perception part
- 3. Laying out mechanism to ensure good code quality
- 4. Appointed 'Field Manager' in the team to manage logistics and to keep track of data collection (including deciding what to track) related to field tests.
- 5. Figuring out to find empty ground space near NREC for testing (will save us time and budget)