

PCB Layout Guide

JMS578

Document No.: LOG-16009 / Revision: 1.1 / Issue Date: 08-02-2017

JMicron Technology Corporation

1F, No. 13, Innovation Road 1, Science-Based Industrial Park,

Hsinchu, Taiwan 300, R.O.C.

Tel: 886-3-5797389 Fax: 886-3-5799566

Website: http://www.jmicron.com

Copyright © 2017, JMicron Technology Corp. All Rights Reserved.

Printed in Taiwan 2017

JMicron and the JMicron Logo are trademarks of JMicron Technology Corporation in Taiwan and/or other countries.

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use implantation or other life supports application where malfunction may result in injury or death to persons. The information contained in this document does not affect or change JMicron's product specification or warranties. Nothing in this document shall operate as an express or implied license or environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will JMicron be liable for damages arising directly or indirectly from any use of the information contained in this document.

For more information on JMicron products, please visit the JMicron web site at http://www.JMicron.com or send e-mail to sales@jmicron.com. For product application support, please send e-mail to fae@jmicron.com.

JMicron Technology Corporation

1F, No.13, Innovation Road 1, Science-Based Industrial Park, Hsinchu, Taiwan 300, R.O.C.

Tel: 886-3-5797389 Fax: 886-3-5799566

Revision 1.1 i Document No.: LOG-16009

Revision History

Revision	Effect Date	Description of Revision		Author	
Revision		Reference	Description of the Change	Author	
1.0	06-06-2014		Initial release.	Mika	
1.1	08-02-2017		1.Add Cin placement rule 2.Add rule for remove area under capacitors	Jason	

Table of Contents

Re	evisio	n Historyii
Та	ble o	f Contentsiii
1	Ove	rviews1
	1.1	Description1
		PCB Stack up
2	USB	3.0 Layout Guide
	2.1	Relative Net Name & Pairs
	2.2	Net Spacing & Trace Length Rule2
3	SAT	A3.0 Layout Guide4
	3.1	Relative Net Name & Pairs
	3.2	Net Spacing & Trace Length Rule
4	USB	2.0 Layout Guide
	4.1	Relative Net Name & Pairs
	4.2	Net Spacing & Trace Length Rule
5	Crys	stal Layout Guide
	5.1	Relative Net Name & Pairs
(5.2	Layout Rule
	(/	
6	Pow	er Layout Guide9
	6.1	Relative Net Name9
	6.2	Layout Rule 9
_		
7	Swit	ching Regulator LC Layout Guide10
	7.1	LC Layout Rule
Re	vision	1.1 iii Document No.: LOG-16009

The information contained in this document is the exclusive property of JMicron Technology Corporation and shall not be used, collected, reproduced, distributed and/or disclosed in whole or in part without prior written permission of JMicron Technology Corporation. Hard copies or electronic files downloaded from JMicron Document Control System are for reference only. Please enter JMicron Document Control System to access updated documents or download updated documents from the authorized FTP site.

1 Overviews

1.1 Description

This layout guide include USB3.0, SATA3.0, USB2.0, Power plane, Crystal and Switching Regulator.

1.2 PCB Stack up

Revision 1.1 Document No.: LOG-16009

2 USB3.0 Layout Guide

2.1 Relative Net Name & Pairs

USB3.0 have 2 differential signal pair, detailed information is as follows:

Net Name	Routing I	_ayer	Reference Layer		
SSTXP, SSTXN, SSRXN, SSRXP	1st laye	er	2nd layer (GND)		
2.2 Net Spacing & Trace Length Rule					
● USB Trace : Trace Width / Trace Separation / Pair Separation ← 6√6 18.0 mil]					
Target differential impedar	nce: 89 Ω /	\sim	$\overline{}$		
·	\sim	\sim / /			
	(
Other			Other		
Signal SSTXN SSTXP	SSR	XN SSF			
W W	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V			
18 - × 6 × 6 × 6 × 6	ipon 3*W 6	J-ж 6 J-ж 6	Unit: mil		
	Substrate 1 Height	H1 4.3000 +/-	Tolerance Minimum Maximum 0.0000		
Edge-Coupled Coated Microstrip 1B	Substrate 1 Dielectric	Er1 4.3000 +/-	0.0000 4.3000 4.3000		
C2 S1 W2	Lower Trace Width	W1 6.0000 +/-	0.0000 6.0000		
CEr C1 T1	Upper Trace Width	W2 6.0000 +/-	0.0000 6.0000		
1 1 1 1 1 1 1 1 1	Trace Separation	S1 6.0000 +/-	0.0000 6.0000		
C3	Trace Thickness	T1 1.4000 +/-	0.0000 1.4000 1.4000		
H1 Er1	Coating Above Substrate	C1 1.0000 +/-	0.0000 1.0000 1.0000		
	Coating Above Trace Coating Between Traces	C2 1.0000 +/- C3 1.0000 +/-	0.0000 1.0000 1.0000 0.0000 1.0000 1.0000		
WI	Coating Dielectric	CEr 3.4000 +/-	0.0000 3.4000 3.4000		
www.polarinstruments.com		3.1000			
	Differential Impedance	Zdiff 88.68	88.68 88.68		

- USB3.0 trace length mismatch < 5mil.
- Away from the Oscillator, Switching Regulator LC, Power components and Power trace.

Revision 1.1 2 Document No.: LOG-16009

 Route all SuperSpeed USB signal traces over continuous planes (VCC or GND), with no interruptions. Avoid crossing over anti-etch, commonly found with plane splits.

 Do not route SuperSpeed USB traces under or near crystals, oscillators, clock signal generators, switching regulators, mounting holes, magnetic devices or IC's that use or duplicate clock signals.

3 SATA3.0 Layout Guide

3.1 Relative Net Name & Pairs

SATA3.0 have 2 differential signal pair, detailed information is as follows:

Net Name	Routing I	_ayer	Reference Layer
TXP, TXN, RXN, RXP	1st laye	er	2nd layer (GND)
Net Spacing & Trace Length Rule	•	$\langle \rangle$	
SATA Trace: Trace Width / Trace Se	paration / Pair Se	paration =	5.5 / 10 / 18.0 mil]
Target differential impe	edance: 100 O	$^{\prime}$	\wedge
. a. gat aa. ap.		\sim	
	(
ther			Other
gnal <u>TXN</u> <u>TXP</u>	RX	N R	χP Signal
W W	W	V	
			_
18 5.5 7 10 5.5	upon 3*W 5.5	10 - 10 5	5 18 5 Unit: mil
18 5.5 7 10 5.5))		Unit: mil
	Substrate 1 Height	H1 4.3000 +	Unit: mil Tolerance Minimum Maximum 4.3000 4.3000
Edge-Coupled Coated Microstrip 1B	Substrate 1 Height Substrate 1 Dielectric	H1 4.3000 +. Er1 4.3000 +	Tolerance Minimum Maximum /- 0.0000 4.3000 4.3000 /- 0.0000 4.3000 4.3000
	Substrate 1 Height	H1 4.3000 + Er1 4.3000 + W1 5.5000 +	Unit: mil Tolerance Minimum Maximum 7- 0.0000 4.3000 4.3000 7- 0.0000 5.5000 5.5000
Edge-Coupled Coated Microstrip 1B	Substrate 1 Height Substrate 1 Dielectric Lower Trace Width	H1 4.3000 + Er1 4.3000 + W1 5.5000 +	Unit: mil Tolerance Minimum Maximum -0.0000 4.3000 4.3000 -0.0000 5.5000 5.5000 -0.0000 5.5000 5.5000
Edge-Coupled Coated Microstrip 1B CET C1 S1 W2 T1 C3 T1	Substrate 1 Height Substrate 1 Dielectric Lower Trace Width Upper Trace Width	H1 4.3000 + Er1 4.3000 + W1 5.5000 + W2 5.5000 +	Tolerance Minimum Maximum 7- 0.0000 4.3000 4.3000 7- 0.0000 5.5000 5.5000 7- 0.0000 5.5000 5.5000 7- 0.0000 10.0000 10.0000
Edge-Coupled Coated Microstrip 1B	Substrate 1 Height Substrate 1 Dielectric Lower Trace Width Upper Trace Width Trace Separation	H1 4.3000 + Er1 4.3000 + W1 5.5000 + W2 5.5000 + S1 10.0000 +	Tolerance Minimum Maximum 7- 0.0000 4.3000 4.3000 7- 0.0000 5.5000 5.5000 7- 0.0000 5.5000 5.5000 7- 0.0000 10.0000 10.0000 7- 0.0000 11.0000 11.4000
Edge-Coupled Coated Microstrip 1B CET C1 S1 W2 T1 C3 T1	Substrate 1 Height Substrate 1 Dielectric Lower Trace Width Upper Trace Width Trace Separation Trace Thickness	H1	Unit: mil Tolerance Minimum Maximum 1. 0.0000 4.3000 4.3000 1. 0.0000 5.5000 5.5000 1. 0.0000 1.0000 1.0000 1. 0.0000 1.0000 1.0000 1. 0.0000 1.0000 1.0000
Edge-Coupled Coated Microstrip 1B	Substrate 1 Height Substrate 1 Dielectric Lower Trace Width Upper Trace Width Trace Separation Trace Thickness Coating Above Substrate	H1	Unit: mil Tolerance Minimum Maximum 7. 0.0000 4.3000 4.3000 7. 0.0000 5.5000 5.5000 7. 0.0000 1.0000 10.0000 7. 0.0000 1.4000 1.4000 7. 0.0000 1.0000 1.0000 7. 0.0000 1.0000 1.0000
Edge-Coupled Coated Microstrip 1B	Substrate 1 Height Substrate 1 Dielectric Lower Trace Width Upper Trace Width Trace Separation Trace Thickness Coating Above Substrate Coating Above Trace	H1	Unit: mil Tolerance Minimum Maximum 0.0000 4.3000 4.3000 0.0000 5.5000 5.5000 0.0000 10.0000 10.0000 0.0000 1.4000 1.4000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000

- SATA3.0 trace length mismatch < 5mil.
- Away from the Oscillator, Switching Regulator LC, Power components and Power trace.

Differential Impedance

Zdiff 100.03

100.03

Revision 1.1 4 Document No.: LOG-16009

- Route all SATA signal traces over continuous planes (VCC or GND), with no interruptions. Avoid crossing over anti-etch, commonly found with plane splits.
- Do not route SATA traces under or near crystals, oscillators, clock signal generators, switching regulators, mounting holes, magnetic devices or IC's that use or duplicate clock signals.

6 / 6 / 18 mil

Unit: mil

4 USB2.0 Layout Guide

4.1 Relative Net Name & Pairs

USB2.0 have a differential signal pair, detailed information is as follows:

	Net Name	Routing Layer	Reference Layer
	DP_USB, DM_USB	1st layer	2nd layer (GND)
4.2	Net Spacing & Trace Length Rule		

Other Signal

W

W

Other Signal

- USB2.0 trace length mismatch < 5mil.
- Away from the Oscillator, Switching Regulator LC, Power components and Power trace.
- Route all high-speed USB signal traces over continuous planes (VCC or GND), with no interruptions. Avoid crossing over anti-etch, commonly found with plane splits.

Revision 1.1 6 Document No.: LOG-16009

 Do not route high-speed USB traces under or near crystals, oscillators, clock signal generators, switching regulators, mounting holes, magnetic devices or IC's that use or duplicate clock signals.

5 Crystal Layout Guide

5.1 Relative Net Name & Pairs

The Oscillator/Crystal detailed information is as follows:

Net Name	Routing Layer	Reference Layer
XIN, XOUT	1st layer	2nd layer (GND)

5.2 Layout Rule

- The crystal unit should then be placed as close as possible to the XIN and XOUT pins to minimize etch lengths.
- Ensure that the ground plane under the IC and its components are of good quality.
- Avoid placing a separate ground under the oscillator and connecting it to the general ground through a single point.
- Avoid long connections to the crystal and to the load capacitor that create a large loop on the PCB.
- Use a short connection between the two crystal load capacitors and route the common connection to the IC ground reference.

Revision 1.1 8 Document No.: LOG-16009

6 Power Layout Guide

6.1 Relative Net Name

Power detailed information is as follows:

6.2 Layout Rule

- The width of 5√ ≥ 60 mil (suggest 80mil)
- The width of AV33O , $VCCO \ge 15$ mil (suggest 30 mil)
- The width of VREG_IN, LXO, VCCK, AVDDL ≥ 30 mil (suggest 40 mil)

7 Switching Regulator LC Layout Guide

7.1 LC Layout Rule

- Place the Cin as close as possible to Pin45 and Pin43.
- C16,CB17,L3 Away from the JMS578.
- C2, CB3, C16, CB17, L3 Away from USB signal and SATA signal.

Layout example for Cin

Note: 1. Cin- as close as possible to Pin43

2. Cin+ as close as possible to Pin45

Layout example for SATA connector

Note: Remove area under capacitors and SATA signals pins

Layout example for SATA connector

Note: Remove area under capacitors and SATA signals pins

JMicron

Serial Link the World