통계학에서 가설검정은 귀무가설이 옳다는 가정 하에 시작한다.

귀무 가설 (H0): 통상적인 개념 Vs 대립 가설 (H1): 새로운 개념

P-value란?: 유의확률, 대립가설이 우연히 채택될 확률

유의확률이 작을 수록 귀무가설을 기각할 가능성이 높아지는 것

유의 수준(a): 귀무가설을 기각하기 위한 반대의 증거가 어느정도 강해야 하는지를 의미하는 수준 즉, 귀무가설을 유지하기 위한 최소한의 확률이 어느 정도인지를 정하는 것

유의확률	p-value:
유의수준	α:
귀무가설을 기각하고, 대립가설을 채택	p-value < α:
귀무가설을 기각하지 않음	p-value > α:

α df	0.4	0.25	0.1	0.05	0,025	0.01	0.005	0.0025	0.001	0.0005
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	14.089	22.327	31.599
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	7.453	10.215	12.924
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.437
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.015
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.965
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.922
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.883
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.850
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.792
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.768
24	0.256	0.685	1.318	1./11	2.064	2.492	2.797	3.091	3.467	3.745
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.725
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.707
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.690
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.674
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.659
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.646
40	0.255	0.691	1 202	1 604	2.021	2 422	2 704	2.071	2 207	2 551
40 60	0.255	0.681	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.551
120	0.254	0.679	1.296	1.671	2.000 1.980	2.390	2.660	2.915	3.232	3.460
120 ∞	0.254	0.677	1.289	1.658		2.358	2.617	2.860	3.160	3.373
~	0.253	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291

Normal Distribution & T-Distribution 0.40 0.35 → 유의수준(a) = 0.05 0.30 0.25 € 0.20 0.15 = = 0.272 0.10 0.05 0.00

1.714 는 유의 수준 a에 대한 기각역 (critical value)

즉, A집단과 B집단의 2kg의 차이는 유의수준 a=0.05하에 통계적으로 유의하지 않다.

(B집단이 A집단 보다 몸무게가 더 나간다고 할 수 없다)