Turf and macroalgae productivity on coral reefs: a modelling exercise in Moorea

2022-06-28

Packages

```
library(tidyverse)
library(brms)
library(tidybayes)
library(patchwork)
```

Loading data compiled and reworked by Tebbett and Bellwood 2021 Mar Env Res.

Depth data were added manually by looking at each individual study

```
data <- read_csv('turf_prod_val.csv') |>
    filter(!is.na(depth))

unit <- names(data)[1]
names(data)[1] <- 'prod'

x <- str_split(data$prod, '\xb1')
data$mean_prod <- as.numeric(substr(unlist(lapply(x, function(x)x[1])),1,4))
data$se_prod <- as.numeric(substr(unlist(lapply(x, function(x)x[2])),2,5))

## Warning: NAs introduced by coercion</pre>
```

Now, for the data points we do not have standard error values, determine them from the relationship between mean and se:

data <- data %>% filter(mean_prod != 0)

```
ggplot(data %>% filter(!is.na(se_prod))) +
  geom_point(aes(x=mean_prod,y=se_prod))
```


Predicting variability using the mean for 14 points and also adjusting McClure 2019, ## which is a ci and not se, and also adding a small non zero value to all zero se

```
mod_se <- lm(se_prod ~ mean_prod, data=data)
## Model sucks, but better than to consider zero

data[is.na(data$se_prod),'se_prod'] <- round(predict(mod_se, newdata=data[is.na(data$se_prod),]),2)
data[data$Ref == 'McClure 2019', 'se_prod'] <- data[data$Ref == 'McClure 2019', 'se_prod'] / 1.96
nzmin <- function(x) min(x[x>0])
data[data$se_prod == 0,'se_prod'] <- nzmin(data$se_prod)</pre>
```

And finally modelling algal turf productivity using a meta-analysis

Bayesian model with depth as the only predictor

```
## Compiling Stan program...
## Trying to compile a simple C file
## Running /Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB foo.c
## clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG
                                                                                       -I"/Library/Frame
## In file included from <built-in>:1:
## In file included from /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/StanHeade
## In file included from /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen
## In file included from /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen
## /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen/include/Eigen/src/Cor
## namespace Eigen {
## /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen/include/Eigen/src/Cor
## namespace Eigen {
##
##
## In file included from <built-in>:1:
## In file included from /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/StanHeade
## In file included from /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen
## /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen/include/Eigen/Core:96
## #include <complex>
##
## 3 errors generated.
## make: *** [foo.o] Error 1
## Start sampling
##
## SAMPLING FOR MODEL '10f63a45fd17e5d9181b383b6c1bd659' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 6.1e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.61 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
                          1 / 5000 [ 0%]
## Chain 1: Iteration:
                                            (Warmup)
## Chain 1: Iteration: 500 / 5000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 5000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 1500 / 5000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 2000 / 5000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 2500 / 5000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 2501 / 5000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 3000 / 5000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 3500 / 5000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 4000 / 5000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 4500 / 5000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 5000 / 5000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.631659 seconds (Warm-up)
## Chain 1:
                           0.555303 seconds (Sampling)
## Chain 1:
                           1.18696 seconds (Total)
## Chain 1:
```

```
##
## SAMPLING FOR MODEL '10f63a45fd17e5d9181b383b6c1bd659' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 3.3e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.33 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                          1 / 5000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 500 / 5000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 5000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration: 1500 / 5000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 2000 / 5000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 2500 / 5000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 2501 / 5000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 3000 / 5000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 3500 / 5000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 4000 / 5000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 4500 / 5000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 5000 / 5000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.650477 seconds (Warm-up)
## Chain 2:
                           0.637527 seconds (Sampling)
## Chain 2:
                           1.288 seconds (Total)
## Chain 2:
## SAMPLING FOR MODEL '10f63a45fd17e5d9181b383b6c1bd659' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 3.5e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.35 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
                        1 / 5000 [ 0%]
## Chain 3: Iteration:
                                            (Warmup)
## Chain 3: Iteration: 500 / 5000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 5000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration: 1500 / 5000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 2000 / 5000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 2500 / 5000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 2501 / 5000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 3000 / 5000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 3500 / 5000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 4000 / 5000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 4500 / 5000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 5000 / 5000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.678571 seconds (Warm-up)
## Chain 3:
                           0.702906 seconds (Sampling)
## Chain 3:
                           1.38148 seconds (Total)
## Chain 3:
## SAMPLING FOR MODEL '10f63a45fd17e5d9181b383b6c1bd659' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 3.3e-05 seconds
```

```
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.33 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 5000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 500 / 5000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 5000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration: 1500 / 5000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration: 2000 / 5000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 2500 / 5000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 2501 / 5000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 3000 / 5000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 3500 / 5000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 4000 / 5000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 4500 / 5000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 5000 / 5000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.667764 seconds (Warm-up)
## Chain 4:
                           0.681878 seconds (Sampling)
## Chain 4:
                           1.34964 seconds (Total)
## Chain 4:
saveRDS(brmod, 'turf_prod_brms.RDS')
```

Loading and tidying data to predict for

```
## Constrained max depth of site to 15m

pred_depth <- read.csv('moorea_depth.csv') %>%
    mutate(site=tolower(site)) %>%
    group_by(site) %>%
    mutate(depth=if_else(depth < -15,-15, depth)*-1) %>%
    slice_max(depth)

pred_data <- read.csv('moorea_benthos.csv') %>%
    mutate(site=gsub('\\s','_',tolower(site)))
```

Filtering and manipulating the time series for the categories of interest.

For Moorea, at the moment, these could be algal turfs, halimeda and macroalgae

```
ts_data <- left_join(pred_data,pred_depth, by='site') %>%
filter(Habitat=='Outer slope' & Season=='Mar') %>%
mutate(subs_group=case_when(
    Substrate == 'Dead coral' ~ 'algal_turf',
    Substrate == 'Stegastes Turf' ~ 'algal_turf',
    Substrate == 'Rubble' ~ 'algal_turf',
    Substrate == 'Pavement' ~ 'algal_turf',
    Substrate == 'Macroalgae' ~ 'macroalgae',
```

```
Substrate == 'Turbinaria' ~ 'macroalgae',
   Substrate == 'Halimeda' ~ 'halimeda',
   TRUE ~ Substrate,
)) %>%
filter(subs_group %in% c('algal_turf', 'macroalgae')) %>%
group_by(Year, site, Transect, lat, long, depth, subs_group) %>%
summarise(prop=sum(proportion), .groups='drop_last') %>%
pivot_wider(names_from=subs_group, values_from=prop, values_fill=0)
```

Now, how about trying to predict benthic reef productivity by merging area specific turf productivity predicted using the data compiled by Tebbett and Bellwood and turf cover?

Now plotting

First the time series of turf productivity over time in Moorea

And using Duarte's et al 2022's data to explore a model for macroalgae

It could be possible to do the same for Halimeda, but there are less values

Maybe return to this possibility later?

Get outta here, nothing useful to predict so just including variability in a meta-analysis

Can we predict standard error values from a relationship between mean and se as we did for algal turfs?

```
ggplot(dmachal %>% filter(!is.na(se_prod))) +
geom_point(aes(x=mean_prod,y=se_prod))
```



```
mod_se2 <- lm(se_prod ~ mean_prod, data=dmachal)
## Again, Model sucks, but better than to consider zero

dmachal[is.na(dmachal$se_prod),'se_prod'] <- round(predict(mod_se2, newdata=dmachal[is.na(dmachal$se_prod)))</pre>
```

And finally modelling macroalgae productivity using a meta-analysis

Bayesian model with depth as the only predictor

namespace Eigen {

```
## Compiling Stan program...
## Trying to compile a simple C file

## Running /Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB foo.c
## clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I"/Library/Framework
## In file included from <built-in>:1:
## In file included from /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/StanHeade:
## In file included from /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen,
## In file included from /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen,
## /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen/src/Core
## namespace Eigen {
## ^
```

/Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen/include/Eigen/src/Cor

```
##
##
## In file included from <built-in>:1:
## In file included from /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/StanHeade
## In file included from /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen
## /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen/include/Eigen/Core:96
## #include <complex>
            ^~~~~~~
##
## 3 errors generated.
## make: *** [foo.o] Error 1
## Start sampling
##
## SAMPLING FOR MODEL '65e53fdc92b4dc47b3a716bb70bf19ac' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 3.8e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.38 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 5000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 500 / 5000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 5000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 1500 / 5000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 2000 / 5000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 2500 / 5000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 2501 / 5000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 3000 / 5000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 3500 / 5000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 4000 / 5000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 4500 / 5000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 5000 / 5000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.91558 seconds (Warm-up)
## Chain 1:
                           0.568909 seconds (Sampling)
## Chain 1:
                           1.48449 seconds (Total)
## Chain 1:
## SAMPLING FOR MODEL '65e53fdc92b4dc47b3a716bb70bf19ac' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 2.1e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                          1 / 5000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 500 / 5000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 5000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration: 1500 / 5000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 2000 / 5000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 2500 / 5000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 2501 / 5000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 3000 / 5000 [ 60%]
                                            (Sampling)
```

```
## Chain 2: Iteration: 3500 / 5000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 4000 / 5000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 4500 / 5000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 5000 / 5000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.747871 seconds (Warm-up)
## Chain 2:
                           0.659091 seconds (Sampling)
                           1.40696 seconds (Total)
## Chain 2:
## Chain 2:
##
## SAMPLING FOR MODEL '65e53fdc92b4dc47b3a716bb70bf19ac' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 2e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
                          1 / 5000 [ 0%]
## Chain 3: Iteration:
                                            (Warmup)
## Chain 3: Iteration: 500 / 5000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 5000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration: 1500 / 5000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 2000 / 5000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 2500 / 5000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 2501 / 5000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 3000 / 5000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 3500 / 5000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 4000 / 5000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 4500 / 5000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 5000 / 5000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 1.00686 seconds (Warm-up)
## Chain 3:
                           0.621682 seconds (Sampling)
## Chain 3:
                           1.62854 seconds (Total)
## Chain 3:
## SAMPLING FOR MODEL '65e53fdc92b4dc47b3a716bb70bf19ac' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1.8e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.18 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 5000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 500 / 5000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 5000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration: 1500 / 5000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration: 2000 / 5000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 2500 / 5000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 2501 / 5000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 3000 / 5000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 3500 / 5000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 4000 / 5000 [ 80%]
                                            (Sampling)
                                            (Sampling)
## Chain 4: Iteration: 4500 / 5000 [ 90%]
## Chain 4: Iteration: 5000 / 5000 [100%]
                                            (Sampling)
```

```
## Chain 4:
## Chain 4: Elapsed Time: 0.812984 seconds (Warm-up)
## Chain 4: 0.567903 seconds (Sampling)
## Chain 4: 1.38089 seconds (Total)
## Chain 4:
```

Now, how about trying to predict benthicmacroalgae productivity by merging area specific turf productivity predicted using the data compiled by Duarte et al 2022 and macroalgae cover?

Now plotting

First the time series of macroalgae productivity over time in Moorea

Saving the final estimates fro Moorea

```
write.csv(fts_data,'Moorea_turf_macr_prod.csv', row.names=FALSE)
```