

NEGATIVE VOLTAGE REGULATORS

- OUTPUT CURRENT UP TO 1.5A
- OUTPUT VOLTAGES OF -5; -5.2; -6; -8; -9; -12; -15; -18; -20; -22; -24V
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSITION SOA PROTECTION

DESCRIPTION

The L7900 series of three-terminal negative regulators is available in TO-220, TO-220FP, TO-3 and D²PAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation; furthermore, having the same voltage option as the L7800 positive standard series, they are particularly suited for split power supplies. In addition, the -5.2V is also available for ECL system. If adequate heat sinking is provided, they can deliver over 1.5A output current.

Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

SCHEMATIC DIAGRAM

February 2003 1/16

ABSOLUTE MAXIMUM RATINGS

Symbol	Pai	Parameter ²			
VI	DC Input Voltage	for $V_0 = 5$ to 18V	-35	٧/	
٧١		for V _O = 20, 24V	-40	V	
Io	Output Current	Internally Limited			
P _{tot}	Power Dissipation		Internally Limited		
T _{stg}	Storage Temperature Range		-65 to 150	°C	
T _{op}	Operating Junction Temperatu	re Range	0 to 150	°C	

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

THERMAL DATA

Symbol	Parameter		D ² PAK	TO-220	TO-220FP	TO-3	Unit
R _{thj-case}	Thermal Resistance Junction-case	Max	3	3	5	4	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	62.5	50	60	35	°C/W

CONNECTION DIAGRAM (top view)

ORDERING CODES

TYPE	TO-220	D ² PAK (*)	TO-220FP	TO-3	OUTPUT VOLTAGE
L7905C	L7905CV	L7905ACD2T	L7905CP	L7905CT	-5 V
L7952C	L7952CV	L7952ACD2T		L7952CT	-5.2 V
L7906C	L7906CV	L7906ACD2T	L7906CP	L7906CT	-6 V
L7908C	L7908CV	L7908ACD2T	L7908CP	L7908CT	-8 V
L7912C	L7912CV	L7912ACD2T	L7912CP	L7912CT	-12 V
L7915C	L7915CV	L7915ACD2T	L7915CP	L7915CT	-15 V
L7918C	L7918CV	L7918ACD2T	L7918CP	L7918CT	-18 V
L7920C	L7920CV	L7920ACD2T	L7920CP	L7920CT	-20 V
L7922C	L7922CV	L7922ACD2T		L7922CT	-22 V
L7924C	L7924CV	L7924ACD2T	L7924CP	L7924CT	-24 V

^(*) Available in Tape & Reel with the suffix "-TR".

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS OF L7905C (refer to the test circuits, T_J = 0 to 125°C, V_I = -10V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	-4.8	-5	-5.2	V
V _O	Output Voltage	$I_O = -5 \text{ mA to } -1 \text{ A} P_O \le 15 \text{ W}$ V _I = 8 to 20 V	-4.75	-5	-5.25	V
ΔV _O (*)	Line Regulation	$V_{I} = -7 \text{ to } -25 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			100	mV
		$V_I = -8 \text{ to } -12 \text{ V}$ $T_J = 25^{\circ}\text{C}$			50	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			100	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			50	
I _d	Quiescent Current	T _J = 25°C			3	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = -8 to -25 V			1.3	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-0.4		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C		100		μV
SVR	Supply Voltage Rejection	$\Delta V_I = 10 \text{ V}$ f = 120Hz	54	60		dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $\Delta V_O = 100 \text{ mV}$		1.4		V
I _{sc}	Short Circuit Current			2.1		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7952C (refer to the test circuits, T_J = 0 to 125°C, V_I = -10V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	-5.0	-5.2	-5.4	V
V _O	Output Voltage	$I_O = -5 \text{ mA to } -1 \text{ A} P_O \le 15 \text{ W}$ $V_I = -9 \text{ to } -21 \text{ V}$	-4.95	-5.2	-5.45	V
ΔV _O (*)	Line Regulation	$V_{I} = -8 \text{ to } -25 \text{ V}$ $T_{J} = 25 ^{\circ}\text{C}$			105	mV
		$V_{I} = -9 \text{ to } -12 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			52	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			105	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			52	
I _d	Quiescent Current	$T_J = 25^{\circ}C$			3	mA
ΔI_d	Quiescent Current Change	$I_O = 5 \text{ mA to } 1 \text{ A}$			0.5	mA
		V _I = -9 to -25 V			1.3	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	$I_O = 5 \text{ mA}$		-0.5		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C		125		μV
SVR	Supply Voltage Rejection	$\Delta V_I = 10 \text{ V}$ f = 120Hz	54	60		dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $\Delta V_O = 100 \text{ mV}$		1.4		V
I _{sc}	Short Circuit Current			2		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7906C (refer to the test circuits, T_J = 0 to 125°C, V_I = -11V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	-5.75	-6	-6.25	V
Vo	Output Voltage	$I_O = -5 \text{ mA to } -1 \text{ A} P_O \le 15 \text{ W}$ $V_I = -9.5 \text{ to } -21.5 \text{ V}$	-5.7	-6	-6.3	V
$\Delta V_{O}(*)$	Line Regulation	$V_{I} = -8.5 \text{ to } -25 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			120	mV
		$V_{I} = -9 \text{ to } -15 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			60	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			120	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			60	
I _d	Quiescent Current	T _J = 25°C			3	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = -9.5 to -25 V			1.3	
$\Delta V_O/\Delta T$	Output Voltage Drift	I _O = 5 mA		-0.6		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C		144		μV
SVR	Supply Voltage Rejection	$\Delta V_I = 10 \text{ V}$ f = 120Hz	54	60		dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $\Delta V_O = 100 \text{ mV}$		1.4		V
I _{sc}	Short Circuit Current			2		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7908C (refer to the test circuits, T_J = 0 to 125°C, V_I = -14V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	-7.7	-8	-8.3	V
V _O	Output Voltage	$I_O = -5 \text{ mA to } -1 \text{ A} P_O \le 15 \text{ W}$ V _I = -11.5 to -23 V	-7.6	-8	-8.4	V
ΔV _O (*)	Line Regulation	$V_I = -10.5 \text{ to } -25 \text{ V}$ $T_J = 25^{\circ}\text{C}$			160	mV
		$V_{I} = -11 \text{ to } -17 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			80	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			160	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			80	
I _d	Quiescent Current	T _J = 25°C			3	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = -11.5 to -25 V			1	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-0.6		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25^{\circ}C$		175		μV
SVR	Supply Voltage Rejection	$\Delta V_I = 10 \text{ V}$ f = 120Hz	54	60		dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $\Delta V_O = 100 \text{ mV}$		1.1		V
I _{sc}	Short Circuit Current			1.5		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7912C (refer to the test circuits, T_J = 0 to 125°C, V_I = -19V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	-11.5	-12	-12.5	V
Vo	Output Voltage	$I_O = -5 \text{ mA to } -1 \text{ A} P_O \le 15 \text{ W}$ V _I = -15.5 to -27 V	-11.4	-12	-12.6	V
ΔV _O (*)	Line Regulation	$V_I = -14.5 \text{ to } -30 \text{ V}$ $T_J = 25^{\circ}\text{C}$			240	mV
		$V_I = -16 \text{ to } -22 \text{ V}$ $T_J = 25^{\circ}\text{C}$			120	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			240	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			120	
I _d	Quiescent Current	T _J = 25°C			3	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = -15 to -30 V			1	
$\Delta V_O/\Delta T$	Output Voltage Drift	I _O = 5 mA		-0.8		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C		200		μV
SVR	Supply Voltage Rejection	$\Delta V_I = 10 \text{ V}$ f = 120Hz	54	60		dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $\Delta V_O = 100 \text{ mV}$		1.1		V
I _{sc}	Short Circuit Current			1.5		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7915C (refer to the test circuits, T_J = 0 to 125°C, V_I = -23V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	-14.4	-15	-15.6	V
V _O	Output Voltage	$I_O = -5 \text{ mA to } -1 \text{ A} P_O \le 15 \text{ W}$ V _I = -18.5 to -30 V	-14.3	-15	-15.7	V
ΔV _O (*)	Line Regulation	$V_I = -17.5 \text{ to } -30 \text{ V}$ $T_J = 25^{\circ}\text{C}$			300	mV
		$V_{I} = -20 \text{ to } -26 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			150	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			300	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			150	
I _d	Quiescent Current	T _J = 25°C			3	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = -18.5 to -30 V			1	1
$\Delta V_{O}/\Delta T$	Output Voltage Drift	$I_O = 5 \text{ mA}$		-0.9		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25^{\circ}C$		250		μV
SVR	Supply Voltage Rejection	$\Delta V_I = 10 \text{ V}$ f = 120Hz	54	60		dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $\Delta V_O = 100 \text{ mV}$		1.1		V
I _{sc}	Short Circuit Current			1.3		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7918C (refer to the test circuits, T_J = 0 to 125°C, V_I = -27V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	-17.3	-18	-18.7	V
V _O	Output Voltage	$I_O = -5 \text{ mA to } -1 \text{ A} P_O \le 15 \text{ W}$ $V_I = -22 \text{ to } -33 \text{ V}$	-17.1	-18	-18.9	V
ΔV _O (*)	Line Regulation	$V_{I} = -21 \text{ to } -33 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			360	mV
		$V_{I} = -24 \text{ to } -30 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			180	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			360	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			180	
I _d	Quiescent Current	$T_J = 25^{\circ}C$			3	mA
ΔI_d	Quiescent Current Change	$I_O = 5 \text{ mA to } 1 \text{ A}$			0.5	mA
		V _I = -22 to -33 V			1	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-1		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C		300		μV
SVR	Supply Voltage Rejection	$\Delta V_I = 10 \text{ V}$ f = 120Hz	54	60		dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $\Delta V_O = 100 \text{ mV}$		1.1		V
I _{sc}	Short Circuit Current			1.1		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7920C (refer to the test circuits, T_J = 0 to 125°C, V_I = -29V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	-19.2	-20	-20.8	V
Vo	Output Voltage	$I_O = -5 \text{ mA to } -1 \text{ A} P_O \le 15 \text{ W}$ $V_I = -24 \text{ to } -35 \text{ V}$	-19	-20	-21	V
ΔV _O (*)	Line Regulation	$V_{I} = -23 \text{ to } -35 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			400	mV
		$V_{I} = -26 \text{ to } -32 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			200	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			400	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			200	
I _d	Quiescent Current	$T_J = 25^{\circ}C$			3	mA
ΔI_d	Quiescent Current Change	$I_O = 5 \text{ mA to } 1 \text{ A}$			0.5	mA
		V _I = -24 to -35 V			1	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	$I_O = 5 \text{ mA}$		-1.1		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C		350		μV
SVR	Supply Voltage Rejection	$\Delta V_I = 10 \text{ V}$ f = 120Hz	54	60		dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $\Delta V_O = 100 \text{ mV}$		1.1		V
I _{sc}	Short Circuit Current			0.9		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7922C (refer to the test circuits, $T_J = 0$ to 125°C, $V_I = -31V$, $I_O = 500$ mA, $C_I = 2.2$ µF, $C_O = 1$ µF unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _O	Output Voltage	$T_J = 25^{\circ}C$	-21.1	-22	-22.9	V
Vo	Output Voltage	$I_O = -5 \text{ mA to } -1 \text{ A} P_O \le 15 \text{ W}$ $V_I = -26 \text{ to } -37 \text{ V}$	-20.9	-22	-23.1	V
ΔV _O (*)	Line Regulation	$V_{I} = -25 \text{ to } -37 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			440	mV
		$V_{I} = -28 \text{ to } -34 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			220	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			440	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			220	
I _d	Quiescent Current	$T_J = 25^{\circ}C$			3	mA
ΔI_d	Quiescent Current Change	$I_O = 5 \text{ mA to } 1 \text{ A}$			0.5	mA
		V _I = -26 to -37 V			1	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-1.1		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C		375		μV
SVR	Supply Voltage Rejection	$\Delta V_I = 10 \text{ V}$ f = 120Hz	54	60		dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $\Delta V_O = 100 \text{ mV}$		1.1		V
I _{sc}	Short Circuit Current			1.1		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7924C (refer to the test circuits, $T_J = 0$ to 125°C, $V_I = -33V$, $I_O = 500$ mA, $C_I = 2.2 \,\mu\text{F}$, $C_O = 1 \,\mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	-23	-24	-24.5	V
Vo	Output Voltage	$I_O = -5 \text{ mA to } -1 \text{ A} P_O \le 15 \text{ W}$ $V_I = -27 \text{ to } -38 \text{ V}$	-22.8	-24	-25.2	V
ΔV _O (*)	Line Regulation	$V_{I} = -27 \text{ to } -38 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			480	mV
		$V_{I} = -30 \text{ to } -36 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			240	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			480	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			240	
I _d	Quiescent Current	$T_J = 25^{\circ}C$			3	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		$V_1 = -27 \text{ to } -38 \text{ V}$			1	
$\Delta V_O/\Delta T$	Output Voltage Drift	$I_O = 5 \text{ mA}$		-1		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C		400		μV
SVR	Supply Voltage Rejection	$\Delta V_I = 10 \text{ V}$ f = 120Hz	54	60		dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $\Delta V_O = 100 \text{ mV}$		1.1		V
I _{sc}	Short Circuit Current			1.1		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

APPLICATIONS INFORMATION

Figure 1: Fixed Output Regulator

- 1. To specify an output voltage, substitute voltage value for "XX".

 2. Required for stability. For value given, capacitor must be solid tantalum. If aluminium electrolytics are used, at least ten times value should be selected. C1 is required if regulator is located an appreciable distance from power supply filter.

 3. To improve transient response. If large capacitors are used, a high current diode from input to output (1N4001 or similar) should be introduced to protect the device from momentary input short circuit.

Figure 2 : Split Power Supply (± 15V/1A)

Against potential latch-up problems.

Figure 3 : Circuit for Increasing Output Voltage

C3 Optional for improved transient response and ripple rejection.

Figure 4: High Current Negative Regulator (-5V/4A with 5A current limiting)

Figure 5: Typical ECL System Power Supply (-5.2V/4A)

Optional dropping resistor to reduce the power dissipated in the boost transistor.

TO-3 MECHANICAL DATA

DIM.	mm.			inch			
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А		11.85			0.466		
В	0.96	1.05	1.10	0.037	0.041	0.043	
С			1.70			0.066	
D			8.7			0.342	
E			20.0			0.787	
G		10.9			0.429		
N		16.9			0.665		
Р			26.2			1.031	
R	3.88		4.09	0.152		0.161	
U			39.5			1.555	
V		30.10			1.185		

TO-220 MECHANICAL DATA

DIM.	mm.			inch			
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α	4.40		4.60	0.173		0.181	
С	1.23		1.32	0.048		0.051	
D	2.40		2.72	0.094		0.107	
D1		1.27			0.050		
E	0.49		0.70	0.019		0.027	
F	0.61		0.88	0.024		0.034	
F1	1.14		1.70	0.044		0.067	
F2	1.14		1.70	0.044		0.067	
G	4.95		5.15	0.194		0.203	
G1	2.4		2.7	0.094		0.106	
H2	10.0		10.40	0.393		0.409	
L2		16.4			0.645		
L4	13.0		14.0	0.511		0.551	
L5	2.65		2.95	0.104		0.116	
L6	15.25		15.75	0.600		0.620	
L7	6.2		6.6	0.244		0.260	
L9	3.5		3.93	0.137		0.154	
DIA.	3.75		3.85	0.147		0.151	

TO-220FP MECHANICAL DATA

DIM.	mm.			inch			
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α	4.40		4.60	0.173		0.181	
В	2.5		2.7	0.098		0.106	
D	2.5		2.75	0.098		0.108	
Е	0.45		0.70	0.017		0.027	
F	0.75		1	0.030		0.039	
F1	1.15		1.50	0.045		0.059	
F2	1.15		1.50	0.045		0.059	
G	4.95		5.2	0.194		0.204	
G1	2.4		2.7	0.094		0.106	
Н	10.0		10.40	0.393		0.409	
L2		16			0.630		
L3	28.6		30.6	1.126		1.204	
L4	9.8		10.6	0.385		0.417	
L6	15.9		16.4	0.626		0.645	
L7	9		9.3	0.354		0.366	
DIA.	3		3.2	0.118		0.126	

D²PAK MECHANICAL DATA

DIM	mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А	4.4		4.6	0.173		0.181	
A1	2.49		2.69	0.098		0.106	
A2	0.03		0.23	0.001		0.009	
В	0.7		0.93	0.027		0.036	
B2	1.14		1.7	0.044		0.067	
С	0.45		0.6	0.017		0.023	
C2	1.23		1.36	0.048		0.053	
D	8.95		9.35	0.352		0.368	
D1		8			0.315		
Е	10		10.4	0.393		0.409	
E1		8.5			0.335		
G	4.88		5.28	0.192		0.208	
L	15		15.85	0.590		0.624	
L2	1.27		1.4	0.050		0.055	
L3	1.4		1.75	0.055		0.068	
М	2.4		3.2	0.094		0.126	
R		0.4			0.016		
V2	0°		8°	0°		8°	

Tape & Reel D²PAK-P²PAK-D²PAK/A-P²PAK/A MECHANICAL DATA

DIM.	mm.			inch			
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			180			7.086	
С	12.8	13.0	13.2	0.504	0.512	0.519	
D	20.2			0.795			
N	60			2.362			
Т			14.4			0.567	
Ao	10.50	10.6	10.70	0.413	0.417	0.421	
Во	15.70	15.80	15.90	0.618	0.622	0.626	
Ko	4.80	4.90	5.00	0.189	0.193	0.197	
Ро	3.9	4.0	4.1	0.153	0.157	0.161	
Р	11.9	12.0	12.1	0.468	0.472	0.476	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com