

EtherCAT Technology Group

Agenda

- EtherCAT Basics
- Slave Structure
- Physical Layer
- Device Model
- Data Link Layer
 - Frame Structure
 - Addressing, Commands
 - Memory, SyncManager, FMMUs
 - Diagnosis
- Application Layer
 - State Machine
 - Mailbox (Mailbox Protocols)
 - Slave Information Interface (EEPROM)
- Device Profiles
- Distributed Clocks
- Device Description
- Tools (Configuration Tool, Monitor, ...)
- EtherCAT Master
- Standard & References

Topology

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

002 07 11 topo.

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Flexible Topology
- Any number of physical layer changes possible
- Standard Ethernet 100m cable distance between 2 devices
- Up to 65.535 devices possible

Functional Principle: Ethernet "on the Fly"

Syricivianagei

EtherCAT Basics Slave Structure

Physical Layer

Data Link Layer Frame Structure

Addressing

Commands

- **FMMU**
- Diagnosis

Application Layer

State Machine

Mailbox

- Mailbox Interface
- EoE Ethernet
- CoE CANopen
- FoE File Access
- SoE Servo Drive

Slave Information /IF **Device Profiles**

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Process data is extracted and inserted on the fly
- Process data size per slave almost unlimited (1 Bit...60 Kbyte, if needed using several frames)
- Compilation of process data can change in each cycle, e.g. ultra short cycle time for axis, and longer cycles for I/O update possible
- In addition asynchronous, event triggered communication

EtherCAT Slave Structure

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer Frame Structure Addressing Commands Memory/Registers SyncManager **FMMU** Diagnosis **Application Layer** State Machine Mailbox Mailbox Interface **EoE** Ethernet CoE CANopen FoE File Access SoE Servo Drive Slave Information /IF **Device Profiles**

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

EtherCAT Slave Evaluation Kit (by Beckhoff)

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

EtherCAT Slave Controller Board

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

COL O/ II TOPOI

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

^{*} Post stamp design, not cost and space optimized

EtherCAT Physical Layers

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

On cables: 100BaseTX or 100BaseFx

Device internal: E-Bus (LVDS)

Physical Layer

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

100 BASE-TX

- Most popular physical layer for Fast Ethernet
- Shielded twisted pair (STP) with 2 pairs of wires
- Cable categories CAT5, 6, 7 can be used
- RJ45 connector standard, M12 connector for IP67
- PHY Support for auto negotiation and auto crossover recommended

100 BASE-FX

- All media options possible
- Simple solution for TX-to-FX converter

E-BUS

- Interface for low cost backplane applications
- Widely used LVDS (Low Voltage Differential Signaling) adopted
- Use Manchester Bit Coding
- LVDS: Low Voltage Differential Signaling according to ANSI/TIA/EIA-644, also used in IEEE 802.3ae (10Gigabit Ethernet)

ISO/OSI Layer Model

EtherCAT Basics Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

EtherCAT Communication

* "empty" means that the layer behavior exists, but is not shown explicitly

Purpose of Data Link Layer

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Data Link Layer links Physical and Application Layer
- Data Link Layer takes care of the underlying communication infrastructure
 - Link Control
 - Access to Transceivers (PHY)
 - Addressing
 - Slave Controller configuration
 - EEPROM access
 - SyncManager configuration and management
 - FMMU configuration and management
 - Process Data Interface configuration
 - Distributed Clock
 - Set Up AL State Machine interactions

Data Link Layer – Overview

EtherCAT Basics
Slave Structure
Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

•

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Standard IEEE 802.3 Ethernet Frame
 - No special requirements for the master
 - Use of standard Ethernet infrastructure
- IEEE Registered EtherType: 88A4h
 - Optimized frame overhead
 - IP stack not required
 - Simple master implementation
- Additionally over UDP (IANA registered Port 88A4h)
 - EtherCAT communication over the Internet possible
 - Using of standard sockets
- Frame processing at Slave side
 - EtherCAT Slave Controller processes the frame in hardware
- Communication Performance independent from processor power
 - no time critical reaction at slave side in software

Ethernet / EtherCAT Frame Structure

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer

Frame Structure
Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

EtherCAT Frame Header

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

11 Bit Length	1 Bit	4 Bit Type	

Type Meaning

0: Reserved

1: EtherCAT Datagram (s)

the only type that is evaluated by the ESC

2,3: Reserved

4: Network Variables

5: Mailbox over IP

6-15: Reserved for future use

EtherCAT Datagrams

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Working Counter Details

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- EtherCAT Datagram ends with a 16 Bit Working Counter
- Working Counter counts the number of interactions of devices addressed by an EtherCAT Datagram
- EtherCAT Slave Controller increments the Working Counter in hardware – if the controller is addressed and the addressed memory is accessible (Sync Manager)
- Each Datagram should have an expected Working counter value – calculated by the configuration tool
- The Master checks the valid processing of EtherCAT Datagrams by comparing the Working Counter with the expected value
- Special case: RW addressing methods will increment WKC by 2 for write access and by 1 for read access

Working Counter Example

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

WKC valid: data of this datagram was written to and

read from all addressed devices

• WKC invalid: memory of one or more devices was not

accessible

Working Counter Example

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer Frame Structure Addressing Commands Memory/Registers SyncManager **FMMU** Diagnosis **Application Layer** State Machine Mailbox Mailbox Interface **EoE** Ethernet CoE CANopen FoE File Access SoE Servo Drive Slave Information /IF **Device Profiles** Modular Devices **Drives Distributed Clocks Device Description Configuration Tool EtherCAT Master** Standards&Implementation

EtherCAT Addressing

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer

Frame Structure
Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

EtherCAT Addressing Overview

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer Frame Structure Addressing Commands Memory/Registers SyncManager **FMMU** Diagnosis **Application Layer** State Machine Mailbox Mailbox Interface **EoE Ethernet** CoE CANopen FoE File Access SoE Servo Drive Slave Information /IF **Device Profiles** Modular Devices **Drives Distributed Clocks Device Description Configuration Tool EtherCAT Master** Standards&Implementation

Segment Addressing by MAC Address

Direct mode (no switch): broadcast MAC Address

Open mode: One MAC-Address for an EtherCAT Segment

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

0.50.0000

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

EtherCAT Datagram Header Address

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer

Frame Structure
Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

COE CANOPEN

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Address Field

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer
Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Davisa

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

- 32 Bit address space
 - used for 16 bit device addressing (65.535 devices possible)
 and 16 bit for addressing local memory space of device (max. 64kByte)

or

32 bit logical addressing

Auto Increment Addressing

16 Bit 16 Bit

Position Offset

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

- Negative Auto Increment Address for every slave depending on position (16 bit)
- Slave which reads address == 0x0000 is addressed
- Every slave increments address by 1
- Offset addresses local memory space of device
- Usually used during scan of hardware configuration

30.05.2007 EtherCAT Communication

© Copyright by Beckhoff, 2007

Fixed Addressing

16 Bit 16 Bit

Address Offset

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Every Slave has a fixed address (16 bit)
- Usually assigned during hardware configuration scan
- Independent from slave position
- Fixed address lost after power loss

Logical Addressing

32 Bit

Position

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

 Slave reads from/ writes its data into the 4 GByte great Ethernet frame (fragmented)

EtherCAT Commands

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

 Different commands to optimize reading and writing for all access methods within a Fieldbus communication system

EtherCAT Commands

EtherCAT Basics Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Broadcast Read
 - Individual Bits of a Byte will be added with a bitwise
 OR operation between incoming data and local data
- Read Write Actions
 - Exchange of incoming data and local data (exception: Broadcast – see broadcast read)
- Read Multiple Write Actions (RMW)
 - Addressed Station will read the others will write

Local Address Space of ESC

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer Frame Structure Addressing Commands Memory/Registers SyncManager **FMMU** Diagnosis **Application Layer** State Machine Mailbox Mailbox Interface **EoE Ethernet** CoE CANopen FoE File Access SoE Servo Drive Slave Information /IF **Device Profiles** Modular Devices **Drives Distributed Clocks Device Description Configuration Tool EtherCAT Master** Standards&Implementation

Local Address Space of ESC

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- 64 kByte address space
- Divided into registers and dual ported RAM (DPRAM)
- First 4 kByte are reserved for registers
- DPRAM starts at 1000h
- DPRAM size depends on Slave Controller implementation (up to 60 kByte, 4kByte in actual FPGA implementation)
- Addressing of registers and DPRAM same
- Register Write is different –
 shadow Register for all Registers integrated
 DPRAM write is not shadowed

Register of EtherCAT Slave Controller

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- First 1000h bytes (4 kbytes) of local address space
- Read access for both sides (EtherCAT and application)
- Write access from EtherCAT for most of the registers
 - Master has to configure the Slave Controller
 - No address settings needed
 - FMMU and Sync Manager configuration can be optimized for available bandwidth and cycle times
 - Exceptions that are writable from the application side:
 - AL Status Register, AL Status Code Register, AL Event Mask Register, Sync Manager Disable Registers, AL Identification Registers
- Process Data Interface (PDI) register initialized from Slave Information interface (Serial EEPROM)

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer

Frame Structure Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Registers might be monitored via configuration tool

Register – ESC Data Sheet

EtherCAT Basics
Slave Structure
Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Register description for every ESC (FPGA/ ASIC)
 - DL Information, DL Control, DL Status, DL Address
 - AL Control, AL Status, AL Event
 - SyncManager + FMMU configuration
 - Distributed Clocks
 - Slave Information interface (Serial EEPROM)

Address	Length (Byte)	Description		EtherCAT Access	PDI Access	
0x0100:0x0103	4	DL Control		r/w	r/-	
0x0108:0x0109	2	Physical Read	d/Write Offset	r/w	r/-	
0x0110:0x0111	2	DL Status	Enable Disable	e Ports	r/-	
0x0120:0x0121	2	AL Control	Control of the	dewice	state	machin
0x0130:0x0131	2	AL Status	Status of the o	device s	state n	nachine
0x0134:0x0135	2	AL Status Co	deError Code	r/-	r/w	
0x0140:0x0141	2	PDI Control	32 Bit I/0, SPI,	μ C rlnte	rface	

SyncManager Overview

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- SyncManager protects a DPRAM section from simultaneous access → data consistency
- Mailbox Type
 - 1 buffer SyncManager supports handshake
 - Data overflow protection
 - Writing side must write before reading side can read
 - Reading side must read before writing side can write again
- Buffered Type
 - 3 buffer SyncManager guarantees consistent data delivery and access to the newest data any time
 - Always a free buffer to write
 - Always a consistent buffer to read (except before the first writing)
 - Usually used for process data communication
- Up to 16 independent SyncManger channels possible
- The SyncManager configuration registers start at address 0x0800

Buffered Type (3 buffers) Write Example

- EtherCAT Basics
- **Slave Structure**
- **Physical Layer**
- **Device Model (ISO/OSI)**
- **Data Link Layer**
 - Frame Structure
 - Addressing
 - Commands
 - Memory/Registers
 - SyncManager
 - **FMMU**
 - Diagnosis
- **Application Layer**
 - State Machine
- Mailbox
 - Mailbox Interface
 - **EoE Ethernet**
 - CoE CANopen
 - FoE File Access
 - SoE Servo Drive
- Slave Information /IF
- **Device Profiles**
- Modular Devices
 - Drives
- **Distributed Clocks**
- **Device Description**
- **Configuration Tool**
- **EtherCAT Master**
- Standards&Implementation

- Characteristic: Data always available for both sides
- Requires 3 (consecutive) memory areas

Mailbox Type (1 buffer) Read Example

- **EtherCAT Basics**
- **Slave Structure**
- **Physical Layer**
- **Device Model (ISO/OSI)**
- **Data Link Layer**
 - Frame Structure
 - Addressing
 - Commands
 - Memory/Registers
 - SyncManager
 - **FMMU**
 - Diagnosis
- **Application Layer**
 - State Machine
- Mailbox
 - Mailbox Interface
 - **EoE Ethernet**
 - CoE CANopen
 - FoE File Access
 - SoE Servo Drive
- Slave Information /IF
- **Device Profiles**
 - Modular Devices
 - Drives
- **Distributed Clocks**
- **Device Description**
- **Configuration Tool**
- EtherCAT Master
- Standards&Implementation

- Allows handshake Communication
- Useful for non-Process Data
- Handshake mechanism one side has control

Ether CAT.

SyncManager channel configuration registers

Fieldbus Memory Management Unit (FMMU)

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer

> Addressing Commands Memory/Registers SyncManager

Frame Structure

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices **Drives**

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Maps a section of the local address space into the global address space and vice versa
- Read and write access distinguishable
- Bitwise configuration of the memory section possible
- Up to 16 independent FMMU channels possible
 - FMMU configuration registers start at address 0x0600
- Operation samples:
- Mapping of process data into the global address space
- Mapping of status bits from the register section
 - Access to device specific status information with a minimum overhead – e.g. fill status of a sync manager channel

FMMU Usage for Addressing

- **EtherCAT Basics**
- **Slave Structure**
- **Physical Layer**
- **Device Model (ISO/OSI)**
- **Data Link Layer**
 - Frame Structure
 - Addressing
 - Commands
 - Memory/Registers
 - SyncManager
 - **FMMU**
 - Diagnosis

Application Layer

- State Machine
- **Mailbox**
 - Mailbox Interface
 - **EoE Ethernet**
 - CoE CANopen
 - FoE File Access

 - SoE Servo Drive

Slave Information /IF

- **Device Profiles**
 - Modular Devices
 - Drives
- **Distributed Clocks**
- **Device Description**
- **Configuration Tool**
- **EtherCAT Master**
- Standards&Implementation

- Global address space
- 4 GByte address space
- Mapping to local addresses by Fieldbus Memory Management Units (FMMU)
- All EtherCAT devices can map data in a single EtherCAT Datagram LRW – depending on the FMMU configuration

Ether CAT.

FMMU entity configuration registers

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer Frame Structure Addressing Commands Memory/Registers SyncManager **FMMU** Diagnosis **Application Layer** State Machine Mailbox Mailbox Interface **EoE Ethernet** CoE CANopen FoE File Access SoE Servo Drive Slave Information /IF **Device Profiles** Modular Devices **Drives Distributed Clocks Device Description Configuration Tool EtherCAT Master** Standards&Implementation

Diagnosis at Data Link – Possible Errors

EtherCAT Basics Slave Structure Physical Layer				
Device Model (ISO/OSI)				
Data Link Layer				
Frame Structure				
Addressing				
Commands				
Memory/Registers				
SyncManager				
FMMU				
Diagnosis				
Application Layer				

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Error situation	Detection
Wrong Station	Check EEPROM, Vendor, Device, SerialNo
Transmission Errors	Check Transmission Error Counter of each station
Change between In and Out Cable	Check Link Status of last device (should have only a single port connected)
Link loss/ Station fault	Check working counter of a Broadcast read
Frame loss	Close loop in the middle
	Check errors again
	If no frame loss repeat this in the 2nd half of segment
	Otherwise repeat this in the first half of segment
	Repeat this until only a single station remains, which should be the station with problems

Ether CAT.

Monitoring of EtherCAT Communication

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer
Frame Structure

Addressing

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Masters sends an EtherCAT Frame (broadcast)
 - → Monitor gets the first copy (unprocessed)
- Frame returns from EtherCAT Slave Devices
 - → Monitor gets the second copy (processed)
- DLL for readable format available on EtherCAT Web site

Monitoring of EtherCAT Communication

Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer
Frame Structure

Addressing Commands

EtherCAT Basics

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

- Masters sends an EtherCAT Frame (broadcast)
 - → Monitor gets the first copy (unprocessed)
- Frame returns from EtherCAT Slave Devices
 - → Monitor gets the second copy (processed)
- DLL for readable format available on EtherCAT Web site

Attention:

At low cycle times order of frames might be mixed because of timing restrictions within NDIS protocol driver

Purpose of Application Layer (AL)

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- EtherCAT State Machine
- Mailbox Interfaces and Protocols
 - Ethernet over EtherCAT
 - CANopen over EtherCAT
 - Filetransfer over EtherCAT
 - Servo Drive over EtherCAT
- Slave Information Interface (SII)

Purpose of EtherCAT State Machine

Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure

Addressing

EtherCAT Basics

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- State Machine is build upon the Data Link Layer
- Defines general communication states of EtherCAT slave devices
- Specifies the initialization and error handling of EtherCAT slave devices → Boot-up of the network
- States correspond to the communication relationship between master and slave
- Requested and current state of a slave device are reflected in the AL Control and AL Status registers
- Five states are defined:
 - 'Init', 'Pre-Operational', 'Safe-Operational', 'Operational'
 - Bootstrap' optional state for firmware updates

Ether CAT.

EtherCAT State Machine

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer Frame Structure Addressing Commands Memory/Registers SyncManager **FMMU** Diagnosis **Application Layer** State Machine Mailbox Mailbox Interface **EoE Ethernet** CoE CANopen FoE File Access SoE Servo Drive Slave Information /IF **Device Profiles Modular Devices Drives**

Distributed Clocks

Device Description
Configuration Tool
EtherCAT Master

State Machine / Init

EtherCAT Basics
Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- 'Init' State
- No communication on the Application Layer
- Master has access to the DL-Information registers

- Transition to 'Pre-Operational'
- Master configures register, at least:
 - DL Address register
 - Sync Manager channels for Mailbox communication
- Master requested 'Pre-Operational' state
 - sets AL Control register
 - wait for AL Status register confirmation

State Machine / Pre-Operational

EtherCAT Basics Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- 'Pre-Operational' State
- Mailbox communication on the Application Layer
- No Process Data communication

- Transition to 'Safe-Operational'
- Master configures parameter using the Mailbox
 - e.g.: Process Data Mapping
- Master configures DL Register
 - SyncManager channels for Process Data communication
 - FMMU channels
- Master requested 'Safe-Operational' state

State Machine / Safe-Operational

EtherCAT Basics Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- 'Safe-Operational' State
- Mailbox communication on the Application Layer
- Process Data communication,
 but only Inputs are evaluated –
 Outputs in 'Safe' state

- Transition to 'Operational'
- Master sends valid Outputs
- Master requested 'Operational' state (AL Control/Status)

State Machine / Operational

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- 'Operational' State
- Inputs and Outputs are valid

State Machine / Bootstrap

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- 'Bootstrap' State
- 'Bootstrap' State is optional but recommended if firmware updates necessary

- Communication via Mailbox on Application Layer
- Special mailbox configuration possible, e.g. larger mailbox size
- Only FoE protocol available (possibly limited "file" range)

State Machine / Control and Status

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Requested and current state of a slave device are reflected in the AL Control and AL Status registers
 - AL Control (0x0120)
 Initiate State Transition of Device State Machine
 - AL Status (0x0130)
 Actual State of Device State Machine
 - AL Status Code (0x0134)
 Reason of error or other status code

Diagnosis at Application Layer

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI)

Data Link Layer
Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

AL Status Code (0x0134)

Error Codes (extract)

Code	Description				
0x0000	No Error				
0x0011	Invalid requested state change				
0x0015 Invalid mailbox configuration					
0x0018	No valid inputs available				
0x0019	No valid outputs				
0x001A	Synchronization error				
0x001B	Sync manager watchdog				

Further Status Codes (extract)

Code	Description			
0x0021 Slave needs INIT				
0x0022 Slave need PREOP				
0x0030	Invalid DC Sync Configuration			
0x0031 Invalid DC Latch Configuration				

Mailbox Transfer

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Simple IO-Device
No Parameter
→ No Mailbox necessary

Purpose of Mailbox Transfer

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Standard way to exchange Parameter Data
- The Mailbox Interface is optional but recommended
- Needed if Process Data configurable or any other non cyclic services
- Full duplex capable (Slave can initiate a communication)
- 2 Sync Manager channels reserved
 - Sync Manager 0 : Master to Slave
 - Sync Manager 1 : Slave to Master
- Available at early stage of communication (State Pre-Operational)
- Multi protocol capable

Mailbox Protocol Types

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)

Data Link Layer
Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Ethernet over EtherCAT (EoE)
 - Tunnels standard Ethernet Frames over EtherCAT
- CANopen over EtherCAT (CoE)
 - Access of a CANopen object dictionary and its objects
 - CANopen Emergency and optional event driven PDO messages
- File Access over EtherCAT (FoE)
 - Download and upload firmware and other 'files'
- Servo Drive over EtherCAT (SoE)
 - Access the Servo Profile Identifier (IDN)
- Vendor specific Profile over EtherCAT (VoE)
 - First DWORD contains the Vendor ID, the next WORD contains a Vendor Type, the rest is vendor specific

Mailbox Interface

- EtherCAT Basics
 Slave Structure
 Physical Layer
 Device Model (ISO/OSI)
- Data Link Layer
 Frame Structure
 - Addressing
 - Commands
 - Memory/Registers
 - SyncManager
 - **FMMU**
 - Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

- **EoE Ethernet**
- CoE CANopen
- FoE File Access
- SoE Servo Drive
- Slave Information /IF

Device Profiles

- **Modular Devices**
- Drives
- **Distributed Clocks**
- **Device Description**
- **Configuration Tool**
- EtherCAT Master
- Standards&Implementation

- Datagram within an EtherCAT Frame
- 2 Sync Manager channels (1 buffer-mode) reserved
 - Sync Manager 0 : Master to Slave Mbx
 - Sync Manager 1 : Slave to Master Mbx

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

30.05.2007

Standards&Implementation

48 Bit										
Mbx Header		Comm	nand	Cmd	specific	data				
16 Bit	1	16 Bit	6	Bit	2 Bit	41	3†t~~~~~	<u>4</u> <u>Bit</u>		
Length	Ad	Address		dress 3. Cha		nnel	Prio	Ty	ре	Cntr

Length	Length of following data				
Address	Station Address of originator				
Channel	reserved for future use				
Priority	reserved for future use				
Туре	Mailbox Type, Protocol identifier for following data 0 Mailbox Error 2 EoE (Ethernet over EtherCAT) 3 CoE (CANopen over EtherCAT) 4 FoE (File Access over EtherCAT) 5 SoE (Servo Drive over EtherCAT) 15 VoE (Vendor specific profile over EtherCAT)				
Counter Sequence number for duplicate detection Increments with every new mailbox service (only the values 1-7 will be used to be compatible with older					

60

EtherCAT Communication © Copyright by Beckhoff, 2007

Resilient Mailbox Procedure

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Reliable way of mailbox data exchange

Mailbox control procedure

Recover from lost frames

No additional frames if no error

Additional receive buffer required

Extra counter in mailbox header needed

- HW/SW solution
 - SyncManager configuration register with toggle flags
 - SW-Mailbox-DL Layer for checking toggle bits

Mailbox Error Handling – Sync Manager

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Sync Manager channel configuration registers

16 Bit	16 Bit	8 Bit	8 Bit	1	1	6 Bit	1	1	6 Bit
_o Start Address	Length	Ctrl	₄₀ Status	E 48	WT	Res.	D 56	RT	Res.

WT – SM Write Toggle

RT – SM Read Toggle

- Following:
 - Mailbox Error Handling Write Example
 - Mailbox Error Handling Read Example

Mailbox Error Handling – Mailbox Write

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Master

FPWR response got lost, Master repeats the Mailbox Write without incrementing the Mbx Hdr Ctr Mailbox Write (Mbx Hdr Ctr=1)

Slave

Slave receives Mailbox Write Event and calls MBX_MailboxWrite Ind to start the handling on the Mailbox Write service

MBX_MailboxWriteInd

Mailbox Write (Mbx Hdr Ctr=1)

→

Slave receives Mailbox Write Event, detects an unchanged counter in the mailbox header and discard the Mailbox Write Service

Ether CAT.

Mailbox Error Handling – Mailbox Read

Ether**CAT**

Ethernet over EtherCAT (EoE)

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Purpose of Ethernet over EtherCAT (EoE)

EtherCAT Basics
Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Tunnels transparently Ethernet Frames over EtherCAT
- Tunneling reduces the cycle times without restrictions and to optimized available bandwidth
- Used for devices with TCP/IP stacks (e.g. Web Server) and for infrastructure devices like Switch Terminals
- Allows to access corresponding devices in the normal IP network in combination with a 'Virtual Ethernet Switch' (Layer 2) on the master side

EoE – Switchport: Any Ethernet Protocol

- EtherCAT Basics
 Slave Structure
- **Physical Layer**
- **Device Model (ISO/OSI)**
- **Data Link Layer**
 - Frame Structure
 - Addressing
 - Commands
 - Memory/Registers
 - SyncManager
 - **FMMU**
 - Diagnosis
- **Application Layer**
 - State Machine
- **Mailbox**
 - Mailbox Interface
 - EoE Ethernet
 - CoE CANopen
 - FoE File Access
 - SoE Servo Drive
- Slave Information /IF
- **Device Profiles**
- Modular Davisos
- DIIVES
- **Distributed Clocks**
- **Device Description**
- **Configuration Tool**
- **EtherCAT Master**
- Standards&Implementation

- Interface to any Ethernet Device or Network
- Ethernet Frames are inserted in EtherCAT Protocol

Ether CAT EoE – Frame Header

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

8 Byte			Max. 1476 Byte							
Mbx Header Type = 2 (EoE)			Cmd specific data							
	4 Bit	4 Bit	1B	1B	1B	5B	6 Bit	6 Bit	4 Bit	
	Туре	Port	LF	ТА	TR	res	Frag. No	Size	Frame No	

Туре	EoE Frame Type 0x00 EoE Fragment Request 0x01 Initiate EoE Request 0x02 IP Parameter Request 0x03 IP Parameter Response 0x04 Set MAC Address Filter Request 0x05 Set MAC Address Filter Response					
Port	Selected Port					
LF	Last fragment					
TA	Time stamp appended (only if LF=1)					
TR	Time stamp request					
Fragment No	Fragment Number of the Ethernet Frame fragment					
Size	Complete size of Ethernet Frame					
Frame No	Number of the Ethernet Frame					

Purpose of CANopen over EtherCAT (CoE)

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Recommended protocol for Service Data Access
 - Configuration of communication parameter
 - Configuration of device specific parameter
- Easy migration path from CANopen Devices to EtherCAT CoE Devices
 - Protocol Stacks can be re-used

CANopen over EtherCAT Device Architecture

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer Frame Structure Addressing Commands Memory/Registers SyncManager **FMMU** Diagnosis **Application Layer** State Machine Mailbox Mailbox Interface **EoE Ethernet** CoE CANopen FoE File Access SoE Servo Drive Slave Information /IF **Device Profiles** Modular Devices **Drives Distributed Clocks**

Device Description
Configuration Tool
EtherCAT Master

CANopen over EtherCAT (CoE)

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

- SDO: Access to a CANopen object dictionary ✓
 - Download and Upload of parameters
 - Standard Process Data Mapping (PDO Mapping)
 - Full Access to CANopen Profiles
- PDO: Process Data Objects
 - Direct PDO transfer
 - Remote Transmission Requests of PDOs
- Emergency Messages
- Network Management

Standard CANopen Features

- + Object Dictionary Information (SDO Information)
 - Upload of object dictionary (identifier lists)
 - Upload of object description
 - Upload of entry descriptions

Ether CAT CoE – Frame Header

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

8 Byte	2	Max. 1478 Byte		
Mbx Header Type = 3 (CoE)	Co	Cmd specific data		
	9 Bit	3 Bit	4 Bit	
	Number	res	Type	

Number	PDO Number (PDO transfer only)						
Туре	Message Type						
	0 reserverd						
	1 Emergency Message						
	2 SDO Request						
	3 SDO Response						
	4 TxPDO						
	5 RxPDO						
	6 Remote transmission request of TxPDO						
	7 Remote transmission request of RxPDO						
	8 SDO information						
	9-15 reserved for future use						

CoE – Standard CANopen Frames

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Standard CANopen Frame

SDO Control	Standard CANopen SDO Services
Index	Object Addressing by Index
Subindex	and Subindex
Data	Data for the SDO-Service
Data (optional)	Optionally more than 4 bytes of data can be sent with one frame. Full mailbox size usable

Ether CAT.

EtherCAT Basics
Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Example: 'Initiate SDO Download' Request

Optional SDO Extensions to CANopen DS 301

EtherCAT Basics
Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Breaking of the 8 byte border
 - Full mailbox size usable
 - → Block transfer unnecessary
 - 'Initiate SDO Download' request /
 'SDO Upload' response can contain data after SDO header
 - 'Download SDO Segment' request /
 'Upload SDO Segment' response can contain more than 7 bytes of data
- Downloading and Uploading all Subindices at once
 - Bit 4 of the Initiate 'SDO Download / Upload' request header indicates a 'Complete Access' to an Index
 - Sub Index field contains the start Subindex
 - 0: Complete Index with all Subindices
 - 1: Complete Index without Subindex 0

CoE: Optional SDO Information Protocol

EtherCAT Basics
Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Access to object lists
 - list of all supported object identifiers
 - list of all object identifiers that can be mapped in PDOs
 - list of all object identifiers that should be included in a backup
- Access to object descriptions
 - Descriptions of objects as defined in DS 301
- Access to entry descriptions
 - Descriptions of object entries (sub index) as defined in DS 301

CoE – Object Dictionary

Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure

Addressing

EtherCAT Basics

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

 Devices with an EtherCAT-CoE and a CANopen interface are possible with the same object dictionary

Index Range	Meaning
0x0000 – 0x0FFF	Data Type Description
0x1000 – 0x1FFF	 Communication objects Device Type, Identity, PDO Mapping – like defined in DS 301 Objects defined in DS 301 not needed are reserved for EtherCAT Additional objects (Sync Manager Communication Type, Sync Manager PDO Assignment) located in unused areas of DS 301
0x2000 – 0x5FFF	Manufacturer specific
0x6000 – 0x9FFF	Profile specific
0xA000 – 0xFFFF	reserved

CoE – Online Object Dictionary

EtherCAT Basics Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Update List Auto Update				
Erweitert.	. All Objects	All Objects		
Index	Name	Flags	Wert	
1018:02	Product Code	RO	0x04602C22 (73411618)	
1018:03	Revision Number	RO	0x00000000 (0)	
1018:04	Serial Number	RO	0x00000000 (0)	
∃ 1600:0	RxPDO Mapping Box 001	RW	>2<	
1600:01	Output Mapping Area 001	RW	0x7000:01, 8	
1600:02	Output Mapping Area 002	RW	0x7000:02, 40	
± 1602:0	RxPDO Mapping Box 003	RW	> 4 <	
± 1603:0	RxPDO Mapping Box 004	RW	>3<	
± 16FF:0		RW	>1<	
∃1A00:0	TxPDO Mapping Box 001	RW	>2<	
1A00:01	Input Mapping Area 001	RW	0x6000:01, 8	
1A00:02	Input Mapping Area 002	RW	0x6000:02, 40	
± 1A01:0	TxPDO Mapping Box 002	RW	> 4 <	
± 1A03:0	TxPDO Mapping Box 004	RW	>3<	
± 1AFF:0		RW	>1 <	
∃ 1C00:0	Sync Manager Type	RO	> 4 <	
1C00:01	SubIndex 001	RO	0x01 (1)	
1C00:02	SubIndex 002	RO	0x02 (2)	
1C00:03	SubIndex 003	RO	0x03 (3)	
1C00:04	SubIndex 004	RO	0x04 (4)	
∃ 1C12:0	SM 002 RxPDO Assign	RW	> 4 <	
1C12:01	SubIndex 001	RW	0x16FF (5887)	
1C12:02	SubIndex 002	RW	0x1600 (5632)	
1C12:03	SubIndex 003	RW	0x1603 (5635)	
1C12:04	SubIndex 004	RW	0x1602 (5634)	
± 1C13:0	SM 003 TxPDO Assign	RW	> 4 <	
± 4000:0	Coupler Table 0 [LO]	RW	> 128 <	
+ 4001:0	Coupler Table 0 [HI]	RW	> 128 <	
± 4012:0	Coupler Table 9 [LO]	RO	>5<	

CoE – New objects for EtherCAT

Index	Meaning
0x1C00	SyncManager Communication Type
0x1C10 - 0x1C2F	SyncManager PDO Assign
0x1C30 - 0x1C4F	SyncManager Parameter

- SyncManager Communication Type
 - Subindex (1-32) defines communication type of the corresponding Sync Manager channel
 - Mailbox Out (= 1 buffer write)
 - Mailbox In (= 1 buffer read)
 - Process Data Out (= 3 buffer write)
 - Process Data In (= 3 buffer read)
- SyncManager PDO Assign
 - Contains a list of assigned PDOs for each Sync Manager channel (Index of PDO mapping objects)
 - Assigned PDO in Subindex 1 to n describe the process data parts of the Sync Manager channel
- SyncManager Parameter
 - SubIdx 1: Synchronization type (Freerun, synchron, DC Sync0, DC Sync1, SyncSm0 .. SyncSm1F)
 - Subldx 2: Cycle time
 - SubIdx 3: Shift time

Device Model (ISO/OSI)

Data Link Layer

EtherCAT Basics
Slave Structure
Physical Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

CoE – Process Data Objects

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Standard CANopen PDO frames can be used
- CANopen PDO mapping used for EtherCAT too
- PDOs usually are related to their "own" Sync Manager channels
 - Cyclic data transmission
 - No PDO communication parameters necessary
- PDOs can be transmitted by the mailbox for acyclic communication

CoE – PDO Process Data mapping

EtherCAT Basics
Slave Structure
Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- No mapping protocol implemented for very simple devices
 - Fixed process data
 - Readable via EEPROM no SDO protocol necessary
- Readable PDO Mapping
 - Fixed process data mapping
 - Readable via SDO
- Selectable PDO Mapping
 - Multiple fixed PDO selectable via CoE object (1C1xh)
 - Selectable via SDO (required)
- Variable PDO Mapping
 - Configurable via CoE or SoE required
 - Writable PDO content

CoE – PDO Configuration

CoE – Emergency Message

6 Bytes 2 Bytes 2 Bytes 1 Byte 5 Bytes 1...n Bytes

Mailbox Header CoE Header ErrorCode Error Register Data Data

Mandatory Header Standard CANopen Emergency frame optional

- Standard CANopen Emergency frames can be used
- More than 5 bytes of data can be send optionally with one frame

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

83

File Access over EtherCAT (FoE)

EtherCAT Basics
Slave Structure
Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF
Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

• Similar to TFTP (Trivial File Transfer Protocol, RFC 1350)

• Simple to implement – suitable for bootstrap loaders

6 Services are defined:

WRQ: Write request with "file name"

RRQ: Read request with "file name"

DATA: Data block (full mailbox size used)

ACK: Acknowledgment of DATA and WRQ requests

ERR: Error notification with predefined error codes

BUSY: Busy notification in case of longer procedures,

extension to TFTP (e.g. erasing of flash

modules)

- Special mailbox configuration for bootstrap mode possible
 - Fixed addresses and fixed size of the mailbox
 - Configuration defined by device (EEPROM)

Servo Drive over EtherCAT (SoE)

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Implements Service Channel
 - Read / Write to several elements of an IDN (Ident number)
 - Support of Procedure Commands
 - Slave Info
- The mapping of the IEC 61800-7-1 Annex D (SERCOS™) on EtherCAT is described in IEC 61800-7-3 Annex D

SoE – Frame Header

6 Byte 4 Byte Max. 1476 Byte **EtherCAT Basics** Mbx Header SoE Cmd Cmd specific data **Physical Layer** Type = 5 (SoE) **Device Model (ISO/OSI)** 3 Bit 1 Bit 1 Bit 3 Bit 8 Bit 16 Bit Frame Structure Err IDN Cmd Element Incomp Drive Addressing

Command	Command Type Read Request, Read Response, Write Request, Write Response, Notification
Incomplete	Indicates if execution of another service is needed to complete the operation
Error	Indicates if an Error has occurred
Drive	Contains the address of the drive inside the slave device that is addressed
Element	Contains the ElementFlags. There is a single Flag for each element of an IDN indicating which elements of the object addressed by the IDN are accessed
IDN	contains IDN according to IEC 61800-7-2 Annex D or an indicator for fragments left in case of segmented service

Slave Structure

Data Link Layer

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Ether**CAT**

SoE Communication phases

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- SERCOS communication phases (CPs) comparable to EtherCAT state machine
- Phases 0 and 1 covered by the 'Init'
- Phase 2 corresponds to 'Pre-Operational' allows access to the IDNs via 'service channel' (SoE).
- Phase 3 mapped to 'Safe-Operational' slave shall transmit valid inputs, ignore outputs from the master.
- 'Operational' corresponds to phase 4 all inputs and outputs are valid.

Purpose of Slave Information Interface

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- The mandatory Slave Information Interface (SII) consists of all objects that can be stored persistently.
- The information is stored in an EEPROM
- EtherCAT Slave Controller has SPI interface to EEPROM
 - 1 kBit ... 4 MBit
- The SII contains
 - boot configuration data
 - device identity (mandatory)
 - Vendor Id, Product Code, Revision No, Serial No
 - Same information in CoE object 0x1018
 - application information data
- Contains additional information (optional)
 - Subdivided in categories

EtherCAT SII – EEPROM content

EtherCAT Basics **Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer** Frame Structure Addressing Commands Memory/Registers SyncManager **FMMU** Diagnosis **Application Layer** State Machine Mailbox Mailbox Interface **EoE** Ethernet CoE CANopen FoE File Access SoE Servo Drive Slave Information /IF **Device Profiles** Modular Devices **Drives Distributed Clocks Device Description Configuration Tool**

EtherCAT Master

SII – EEPROM Layout

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Byte					
10	EtherCAT Slave Controller Configuration Area				
16 32	Vendorld	ProductCode	RevisionNo	SerialNo	
	Hardware Delays		Bootstrap Ma	ailbox Config	
48	Mailbox Sync Man Config				
		Rese	erved		
128	Additional Inform	ation (Cubdivided i	n Catagorica)		
		ation (Subdivided i	n Categories)		
		Category	y Strings		
	Category Generals				
	Category FMMU				
	Category SyncManager				
	Category Tx- / RxPDO for each PDO				

EEPROM – Slave Configuration Area

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

EEPROM Word Address	Parameter	Description	Corresp. Register
0	PDI Control	Initialization value for PDI Control register (EEPROM ADR 0x0000.9 is also mapped to register 0x0110.2)	0x0140 0x0141
1	PDI configuration,	Initialization value for PDI Configuration register Depends on the selected PDI, Configuration of Sync0 and Sync1 Pin	0x0150 0x0151
2	Pulse length of SYNC signals	Initialization value for Pulse Length of SYNC Signals register in Units of 10 ns	0x0982 0x0983
3	Extended PDI configuration	Initialization value for extended PDI Configuration register	0x0152 0x0153
4	Configured Station Alias	Initialization value for Configured Station Alias Address register	0x0012 0x0013
5, 6	Reserved		
7	Checksum	CRC of first 6 words (x^8+x^2+x+1, initial value 0xFF)	

SII – Categories

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

- Contains optional information
- Divided in categories
 - Standard category(s)
 - Vendor category(s)
- Same header for all categories
 - Category Type

Word-Length of data

16 Bit	16 Bit	
Category	Length	Data

Category	Meaning
STRINGS	Text strings
General	Device Information
FMMU	FMMU usage
SyncManger	Modes of operation, Enable
TxPDO	Transmit PDO Entries
RxPDO	Receive PDO Entries

Device Profiles – Motivation

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

- EtherCAT supports complex slaves
- Slaves with multiple channels are common
- Channels consists of
 - Process data (Inputs/Outputs)
 - Configuration
 - Diagnosis
 - ...
- Different channels may have different functionality

→ Profile for Modular Devices

Device Profiles - Overview

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Static Device Profile - No. 5001

Modular Devices with fixed configuration

Dynamic Device Profile - No. 5002 Fieldbus Master Profile - No. 5002

Modular devices with dynamic configuration

Modular Device Profile Framework general profile

Profiles are EtherCAT specific!

Structuring of Object Dictionary

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)

Frame Structure

Addressing

Data Link Layer

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Mapping of PDO like simple devices

- Basic Idea of Mapping SDO is to have
 - Several areas with dedicated functions
 - Each IO Channel can have several objects in this areas
 - The number of objects per IO Channel depends upon implementation
 - Up to 4096 Channels can be managed by a single slave

Object Dictionary of Dynamic Device Profile

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

0x0000 – 0x0FFF Data Type Area

0x1000 – 0x1FFF: Communication Area

0x2000 – 0x5FFF: Manufacturer specific Area

0x6000 – 0x6FFF: Input Area

0x7000 – 0x7FFF: Output Area

0x8000 – 0x8FFF: Configuration Area

• 0x9000 – 0x9FFF: Information Area

0xA000 – 0xAFFF: Diagnosis Area

0xB000 – 0xBFFF: Service Transfer Area

0xC000 – 0xEFFF: Reserved Area

0xF000h – 0xFFFF: Device Area

Example for Dynamic Device Profile

BK1120 + DI 4 + DO 8 + AO 2

RxPDO (Output)	0x1600	0x1601	0x1602	
Ouput Entries	0x7000	0x7010:SI SI0, 1-8	0x7020:SI SI0, 1-2	
TxPDO (Input)	0x1A00	0x1A01	0x1A02	
Input Entries	0x6000:SI SI 0,1-4	0x6010	0x6020:SI SI 0, 1-2	
	Dig. Input 4	Dig. Output 8	Anal. Output 2	
EtherCAT Slave BK1120				
SISubindex (SI0 = number of SIs of this object)				

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Fieldbus Gateway Profile

Slave Structure Physical Layer

EtherCAT Basics

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Gateways from EtherCAT to legacy Fieldbusses like
 - CANopen
 - Profibus
 - DeviceNet

Ether**CAT**

Drive Control - Modes of Operation

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer
Frame Structure
Addressing
Commands
Memory/Registers
SyncManager
FMMU
Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Purpose of Drive Profiles

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Definition of drive specific parameters
- Mapping of the parameters
- State machine of drives
- Synchronization behaviour

Drive Profile

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

EtherCAT is Part of the drives standard in Annex A and D

SERCOS interface™ is a trade name of Interests Group SERCOS interface e.V. Compliance to this profile does not require use of the trade name SERCOS

interface. Use of the trade name SERCOS interface requires permission of the trade name holder.

Purpose of Distributed Clocks (DC)

Precise Synchronization (<< 1 µs!) by exact adjustment of distributed clocks

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

0 - E 0 - - - - D-:

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Distributed Clocks – Features

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Synchronization of EtherCAT devices
- Definition of a System Time
 - Beginning on January, 1st 2000 at 0:00h
 - Base unit is 1 ns
 - 64 bit value (enough for more than 500 years)
 - Lower 32 bits spans over 4.2 seconds
 - Normally enough for communication and time stamping
- Definition of a Reference Clock
 - One EtherCAT Slave will be used as a Reference Clock
 - Reference Clock distributes its Clock cyclically
 - Reference Clock adjustable from a "global" Reference Clock – IEEE 1588

Ether**CAT**

Distributed Clocks Unit

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer Frame Structure Addressing Commands Memory/Registers SyncManager **FMMU** Diagnosis **Application Layer** State Machine Mailbox Mailbox Interface **EoE Ethernet** CoE CANopen FoE File Access SoE Servo Drive Slave Information /IF **Device Profiles** Modular Devices **Drives Distributed Clocks Device Description**

Configuration Tool EtherCAT Master

Features of DC Unit within ESC (I)

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Provider for local time signals
 - Generation of synchronous local output signals (SYNC0, SYNC1 Signals)
 - Generation of synchronous Interrupts
- Synchronous Digital Output updates and Input sampling
- Precise time stamping of input events (Latch unit)

Features of DC Unit within ESC (II)

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices
Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Propagation delay measurement support
 - Each EtherCAT slave controller measures the delay between the two directions of a frame
 - Master calculates the propagation delays between all slaves
- Offset compensation to Reference Clock
 - Offset between local clock and Reference Clock
 - Same absolute system time in all devices
 - Simultaneousness (clear below 100ns difference) in all devices
- Drift compensation to Reference Clock
 - DC Control Unit

Register System Time

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

1 02 1 110 7 100000

SoE Servo Drive
Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Registers:

- System Time (0x0910:0x0917, small systems 0x0910:0x0913)
- System Time
 - Read access from both sides (EtherCAT and μC)
 - Consistent access from μC (access to first byte saves an internal copy)
 - Consistent access from EtherCAT (within a single frame, internally latched with SOF)
 - Write access from EtherCAT starts the DC control
 - ARMW command (auto increment read multiple write) allows to read System Time of the reverence clock and write it to all slave clocks within a single frame

DC – Propagation Delay Measurement (I)

EtherCAT Node measures time difference between leaving and returning frame

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

0.50...........

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

DC – Propagation Delay Measurement (II)

Propagation delays between any nodes can be computed

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Propagation Delay Measurement

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

I OL I IIE ACCESS

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Registers:

- Receive Time Port 0 (0x0900:0x0903)
- Receive Time Port 1 (0x0904:0x0907)
- Receive Time Port 2 (0x0908:0x090B)
- Receive Time Port 3 (0x090C:0x090F)
- System Time Delay (0x0928:0x092B)
- Write access to Receive Time Port 0 activates latch
 - Latch local time of SOF (Start of Frame)
 - At EOF (End of Frame) SOF time is copied to Receive Time Port X
- Receive Time Port X in local clock units (controlled)
- SOF time of all frames are latched on all ports internally
- Master reads all time stamps and calculates the delay times with respect to the topology.
- Individual delay time is written to register System Time Delay

Offset and Drift Compensation

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Same System Time in all devices

Offset Compensation

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Registers:

- System Time Offset (0x0920:0x927, small systems 0x0920:0x0923)
- Difference between the Reference Clock and every slave device's clock is calculated by the master.
- The offset time is written to register System Time Offset
- Each slave calculates its local copy of the System time using its local time and the local offset value:
 - t_{Local copy of System Time} = t_{Local time} + t_{Offset}

Drift Compensation – DC Control

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Registers:

- System Time (0x0910:0x0917, small systems 0x0910:0x0913)
- System Time Offset (0x0920:0x927, small systems 0x0920:0x0923)
- ARMW command (auto increment read multiple write) allows to read System Time of the reverence clock and write it to all slave clocks within a single frame
- DC Control
 - Write access to System Time compares received Time with local time
 - $\Delta t = (t_{Local time} + t_{Offset} + t_{PropagationDelay}) t_{Received Time}$
 - If $(\Delta t > 0)$ then decelerate local clock else if $(\Delta t < 0)$ accelerate local clock

Ether**CAT**

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

SyncSignal Generation

- Output of the Sync unit can be used for
 - Interrupt generation
 - PDI Digital Output Update events
- Can be mapped to
 - AL Event Request Register for PDI IRQ
 - SYNC0 and SYNC1
- SyncSignals can be generated at a specific System Time
- Four Operation modes are supported:
 - Cyclic generation
 - Single shot
 - Cyclic acknowledge
 - Single shot acknowledge
- The second SyncSignal (SYNC1) depends on SYNC0, it can be generated with a predefined delay after SYNC0 pulses
- Initiated alternatively from the EtherCAT master or slave application side

Ether CAT.

SYNC0 Signal Generation modes

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)

Data Link Layer
Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Pulse Length of SYNC Signals	SYNC0 Cycle Time (0x09A0:0x09A3)		
(0x0982:0x0983)	> 0	= 0	
> 0	Cyclic generation	Single Shot	
= 0	Cyclic Acknowledge*	Single Shot Acknowledge*	

^{*} Acknowledge by reading SYNC status register (0x098E, 0x098F)

30.05.2007 EtherCAT Communication © Copyright by Beckhoff, 2007 116

Latch Functionality

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- The Latch Event unit supports time stamping of the system time with two independent input signals
 - LATCH0 and LATCH1 input signals are used (can be the same pins as for SYNC0 and SYNC1, ESC dependent)
 - Time Stamping of SyncManager events is possible
- Latch on positive and/or negative edge
- Single or continuous latch configurable
- The Latch Time register (0x09B0:0x09CF) contain the time stamps
 - Acknowledge by reading the Latch Time register.

Local Synchronization Modes in the Slaves

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Free Run
 - Slave's application is not synchronized to EtherCAT
- Synchronous with SM Event
 - Slave's application is synchronized to the SM2 Event (if cyclic outputs are transmitted) or the SM3 Event (if only cyclic inputs are transmitted)
- Synchronous with SYNC Event
 - Slave's application is synchronized to the SYNC0 or SYNC1 Event
 - Normal Mode
 - Optimized Mode

Free Run

Synchronous to SM2/3 event

Normal DC mode

Optimized DC mode

Device Description Overview

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Device Description File in XML format
- One file suitable for a set of devices (from one Vendor)
- File contains information about:
 - Vendor
 - Vendor ID, Name, Logo, ...
 - Device groups
 - Organization units to help configuration tools
 - Device
 - Device Identity, Name, PDI type
 - PDO Mapping
 - FMMU / SyncManager
 - number and usage
- Schema is defined in "EtherCATInfo.xsd"
- Can be viewed with Browser, Text Editor or XML Editors

Ether CAT.

General Structure

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer Frame Structure Addressing Commands Memory/Registers SyncManager **FMMU** Diagnosis **Application Layer** State Machine Mailbox Mailbox Interface **EoE Ethernet** CoE CANopen FoE File Access SoE Servo Drive Slave Information /IF **Device Profiles Modular Devices Drives Distributed Clocks Device Description**

Configuration Tool

Standards&Implementation

EtherCAT Master

Attributes Vendor, Groupes, Devices

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

FUE FIIE ACCESS

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

- Vendor
 - vendor ID, vendor name
 - Bitmap image and information text

• Groups

- Device groups help configuration tool to sort the devices.
- Configuration tool may use three levels to sort devices: vendor, group and device.
- At least one device group must be provided, each device is assigned to one group
- Devices
 - Device description shall contain Type, Name and Group Type
 - FMMU, SM, PDO, Mailbox and Eeprom are recommended

Type

Name

Image

Groups

Devices

Comment

Vendor Spec

/endoi

Description

EtherCATInfo.xsd

Attributes *Profile*

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Profile
 - Profile Information
 - Object Dictionary
 - Same Structure for CoE and SoE Dictionaries
- Separation of Object and Data Type descriptions
 - Flat list of Objects
 - All Objects derived from a Data Type
 - ARRAY, RECORD (CoE) and Variable Data (SoE) defined as Data Types
 - Data Type describes the complete data of an object exactly as for a "Complete Access" download or upload

Ether CAT.

Data Types and Objects

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer Frame Structure Addressing Commands Memory/Registers SyncManager **FMMU** Diagnosis **Application Layer** State Machine Mailbox Mailbox Interface **EoE** Ethernet CoE CANopen FoE File Access SoE Servo Drive Slave Information /IF **Device Profiles** Modular Devices **Drives Distributed Clocks Device Description Configuration Tool EtherCAT Master**

XML and EEPROM

EtherCAT Basics
Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Configuration Tool generates binary file from device description to update EEPROM on slave

EtherCAT Configuration Tool

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Configure EtherCAT Slave devices
 - Evaluate XML device description
 - Evaluate EEPROM information if online
- Generate network initialization commands
 - Information for the EtherCAT driver
 - Initialization commands correspond to State Machine transitions
- Generates cyclic commands
 - Information for the EtherCAT driver

Network Configuration

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

EtherCAT Configuration Exchange Format

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Vendor and Driver independent format
- Master Vendor must not imperatively develop an own Configuration Tool
- Contains
 - initialization commands per slave device
 - cyclic process data commands
 - information about the mailboxes

EtherCAT Master

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure
Addressing
Commands
Memory/Registers
SyncManager
FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices
Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Configuration with help of an EtherCAT configuration XML file
- Send and receive raw Ethernet frames from a network adapter
- Management of the EtherCAT slaves
 - Sending init commands defined in the XML file
- Mailbox Communication
 - CANopen over EtherCAT protocol (CoE)
 - Servo-Profile over EtherCAT protocol (SoE)
 - Ethernet over EtherCAT protocol (EoE)
 - Filetransfer over EtherCAT protocol (FoE)
- Software-integrated switch functionality
- Cyclic process data communication

What does an EtherCAT Master do?

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Parse XML Hardware configuration file (initialization, state machine, and process data mapping)
- Initialization of Fieldbus
- Runs State Machine
- Interface to application
- Interface to network driver
- Sends cyclic process data commands
- Sends mailbox commands
- Handles various protocols

Ether CAT.

EtherCAT Master Block Diagram

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer Frame Structure Addressing Commands Memory/Registers SyncManager **FMMU** Diagnosis **Application Layer** State Machine Mailbox Mailbox Interface **EoE** Ethernet CoE CANopen FoE File Access SoE Servo Drive Slave Information /IF **Device Profiles**

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Prerequisites for EtherCAT Master (Real Time)

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Hardware

- Standard network controller using DMA
 - NO special plug in card needed
 - Speed and Quality important
- No switches or hubs required
- Cache design, CPU
- Low jitter, x86 Dual Xeon < 2 μs

Software

- Realtime kernel
- Configuration tool

EtherCAT Master Development (Real Time)

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

- 1. XML Parser functionality
- 2. EtherCAT Master driver
 - Interface to configuration tool
 - State machine
 - Interface to application
 - Interface to network card
 - NIC Timing Interface
- 3. Real Time Kernel
- 4. Hardware Configuration Tool
 - 3.rd party configuration tools can be used as the configuration is provided to EtherCAT master in a common format (XML)

necessary

optional

Ether CAT.

Master Sample Code Structure

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer Frame Structure Addressing Commands Memory/Registers SyncManager **FMMU** Diagnosis **Application Layer** State Machine Mailbox Mailbox Interface **EoE Ethernet** CoE CANopen FoE File Access SoE Servo Drive Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Master Sample Code Overview

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Sample EtherCAT Master Communication Software (including Source Code)
 - Non Real Time
 - Realized as Windows Application Program (MS Windows XP/2000)
 - Source Code MS C++

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

 Specification of EtherCAT has been done in the EtherCAT Technology Group (ETG)

- Specifications available at www.EtherCAT.org
 - XML File Style sheet
 - Datasheets of ESC, ...
 - Modular Device Profile
 - Reports of ETG TC meetings
- International standardization efforts

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

 EtherCAT is part of different international standardization efforts

Standard	Title	Status	Remarks
IEC/PAS 62407	Real Time Ethernet control automation technology (ETHERCAT)	PAS	
IEC 61158	Digital data communication for measurement and control – Fieldbus for use in industrial control systems		Type 12: EtherCAT Specification
	Part 1: Overview and guidance	CDV	
	Part 2: Physical Layer service definition and protocol specification	CDV	
	Part 3: Data Link Layer service definition	CDV	
	Part 4: Data Link Layer protocol specification	CDV	
	Part 5: Application Layer service definition	CDV	
	Part 6: Application Layer protocol specification	CDV	

PAS : Public available standard CDV : Committee draft for vote

EtherCAT Basics Slave Structure Physical Layer Device Model (ISO/OSI) Data Link Layer Frame Structure

Addressing Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Standard	Title	Status	Remarks
IEC 61784	Digital data communication for measurement and control		
	Part 1: Profile sets for continuous and discrete manufacturing relative to fieldbus use in industrial control systems	CDV Ed2.0	
	Part 2: Additional profiles for ISO/IEC 8802-3 based communication networks in real-time applications	CDV Ed1.0	CPF12: EtherCAT
IEC 61800	Adjustable speed electrical power drive systems		
	Part 7-1: Generic interface and use of profiles for power drive systems – Interface definition	CDV	Part 7: Drive Profiles
	Part 7-2: Generic interface and use of profiles for power drive systems – Profile specifications	CDV	
	Part 7-3: Generic interface and use of profiles for power drive systems – Mapping of profiles to network technologies	CDV	Mapping EtherCAT to CANopen DS402 and SERCOS

CPF : Communication profile

Standard	Title	Status	Remarks
ISO 15745	Industrial automation systems and integration Open systems application integration framework	Ed 1	CANopen
	Part 4 Amd 2: Profiles for Modbus TCP, EtherCAT and ETHERNET Powerlink	PRF Amd	Mapping EtherCAT to CANopen DS301

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

30.05.2007

Standards&Implementation

PRF Amd: : Proof of a new International Standard, Amendment

142

IEC 61158

EtherCAT Basics
Slave Structure
Physical Layer
Device Model (ISO/OSI)
Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Digital data communication for measurement and control –
 Fieldbus for use in industrial control systems

- The communication standard
- EtherCAT is named Type 12 in IEC 61158 (no brand names allowed)
- Transformation of the communication protocol to a common model

IEC 61158 – DL/AL services and protocols

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

AL Services
Part 5 in IEC 61158

Users

- Model and Concepts
- Data type definitions
- Application Objects
- Service description
- Communication Management

AL Protocol
Part 6 in IEC 61158

Implementers

- · Syntax definition and Coding
- Application Relationship Procedures
- State Machines

DL Services
Part 3 in IEC 61158

- Model and Concepts
- Service description
- Register Description (DL objects)

DL Protocol
Part 4 in IEC 61158

- Coding
- Medium Access
- State Machines

IEC 61800-7

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

EtherCAT is Part of the drives standard in Annex A and D

SERCOS interface™ is a trade name of Interests Group SERCOS interface e.V. Compliance to this profile does not require use of the trade name SERCOS

interface. Use of the trade name SERCOS interface requires permission of the trade name holder.

ESC Overview

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

- Available ESCs:
 - FPGA
 - IP Core
 - ASIC
- Criteria:
 - Features:
 - Number/Type of Ports (MII, EBUS)
 - PDI Type (functionality, speed)
 - RAM
 - DCs, Number of SyncManager, FMMUs
 - ...
- Needed Quantity, Flexibility in relation to price

Step by Step Implementation

EtherCAT Basics

Slave Structure

Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

- Step 1:
- Slave Evaluation Kit Workshop

Step 2:

Setup of a small EtherCAT System with Master, I/O and Evaluation Board.

Step 3:

Build Lab wiring between Evaluation Kit and Standard-Hardware (e.g.) with 16Bit Microcontroller

Step 4:

Start SW-Project with Slave Sample Code

Step by Step Implementation

EtherCAT Basics
Slave Structure
Physical Layer

Device Model (ISO/OSI)

Data Link Layer

Frame Structure

Addressing

Commands

Memory/Registers

SyncManager

FMMU

Diagnosis

Application Layer

State Machine

Mailbox

Mailbox Interface

EoE Ethernet

CoE CANopen

FoE File Access

SoE Servo Drive

Slave Information /IF

Device Profiles

Modular Devices

Drives

Distributed Clocks

Device Description

Configuration Tool

EtherCAT Master

Standards&Implementation

Slave

Controller

 Download Slave Sample Code in Target Hardware and set System into Operation

• Step 5:

Step 6:

Test implementation for PDO- und Mailbox-Transfer

EtherCAT Hardware-Design

Step 7:

Software-Design with EtherCAT Slave Sample Code for existing Fieldbus SW-Architecture