© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°07

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Solution 1

1. Soit $x \in \mathbb{R}$. Comme ch est à valeurs dans $[1, +\infty[$, la suite $(P_n(x))$ l'est également. A fortiori, elle est strictement positive. De plus,

$$\forall n \in \mathbb{N}^*, \ \frac{P_{n+1}(x)}{P_n(x)} = \operatorname{ch}\left(\frac{x}{n+1}\right) \ge 1$$

donc $(P_n(x))$ est croissante.

2. Soit $x \in \mathbb{R}$. Alors, pour tout $n \in \mathbb{N}^*$,

$$\ln(P_n(x)) = \sum_{k=1}^n \ln\left(\operatorname{ch}(x/k)\right)$$

Comme $\operatorname{ch}(x/n) - 1 \longrightarrow_{n \to +\infty} 0$,

$$\ln(\operatorname{ch}(x/n)) = \ln(1 + (\operatorname{ch}(x/n) - 1)) \underset{n \to +\infty}{\sim} \operatorname{ch}(x/n) - 1 \underset{n \to +\infty}{\sim} x^2 / 2n^2$$

Or $\sum \frac{x^2}{n^2}$ est une série à termes psoitifs convergente donc $\sum \ln(\operatorname{ch}(x/n))$ également. La suite de ses sommes partielles i.e. la suite $(\ln(P_n(x)))$ converge. Par passage à l'exponentielle, la suite $(P_n(x))$ converge également. On en déduit que $J = \mathbb{R}$.

3. a. Comme ch est paire, $P_n(-x) = P_n(x)$ pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$. Par passage à la limite, $\varphi(-x) = \varphi(x)$ pour tout $x \in \mathbb{R}$? φ est donc paire.

Soit x et y deux réels tels que $0 \le x \le y$. Par croissance de ch sur \mathbb{R}_+ ,

$$\forall n \in \mathbb{N}^*, \ \forall k \in \llbracket 1, n \rrbracket, \ 0 \le \operatorname{ch}(x/k \le \operatorname{ch}(y/k))$$

puis

$$\forall n \in \mathbb{N}^*, P_n(x) \leq P_n(y)$$

Enfin, $\varphi(x) \leq \varphi(y)$ par passage à la limite. φ est donc croissante sur \mathbb{R}_+ . Par parité, elle est décroissante sur \mathbb{R}_- .

b. Posons $g_n: x \mapsto \ln(\operatorname{ch}(x/n))$. Soit $a \in \mathbb{R}_+$. Alors

$$||h_n||_{\infty,\lceil -a,a\rceil} = h_n(a)$$

On a vu précédemment que $\sum h_n(a)$ convergeait donc $\sum h_n$ converge normalement et donc uniformément sur [-a,a]. De plus, les h_n sont continues sur $\mathbb R$. On en déduit que la $\sum_{n=0}^{+\infty}h_n=\ln\circ\phi$ est continue sur $\mathbb R$. Par continuité de l'exponentielle, ϕ est également continue sur $\mathbb R$.

4. a. Comme 1/ch est positive, le calcul de l'intégrale vaudra comme preuve de convergence.

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{\mathrm{ch}\,t} = \int_{-\infty}^{+\infty} \frac{\mathrm{ch}\,t\,\,\mathrm{d}t}{1 + \mathrm{sh}^2\,t} = \left[\arctan(\mathrm{sh}\,t)\right]_{-\infty}^{+\infty} = \pi$$

 $\operatorname{car} \lim_{+\infty} \operatorname{sh} = +\infty$ et $\lim_{+\infty} \arctan = \pi/2$ de même que $\lim_{-\infty} \operatorname{sh} = -\infty$ et $\lim_{-\infty} \arctan = -\pi/2$.

b. Comme ch est à valeurs dans $[1, +\infty[$,

$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}^*, \ P_n(x) \ge P_1(x) = \operatorname{ch}(x)$$

puis

$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}^*, \ \frac{1}{P_n(x)} \le \frac{1}{\operatorname{ch}(x)}$$

et enfin, par passage à la limite

$$0 \le \frac{1}{\phi} \le \frac{1}{ch}$$

Comme $\frac{1}{ch}$ est intégrable sur $\mathbb{R},\,\frac{1}{\phi}$ l'est également.

© Laurent Garcin MP Dumont d'Urville

Solution 2

1. Soit $x \in J$. Puisque x > 0, la suite de terme général $\frac{1}{\sqrt{1+nx}}$ est décroissante et de limite nulle. D'après le critère spécial des séries alternées, $\sum f_n(x)$ converge. Ainsi $\sum f_n$ converge simplement sur J.

2. Pour tout $n \in \mathbb{N}$,

$$||f_n||_{\infty,J} = \sup_{x \in J} \frac{1}{\sqrt{1+nx}} = \frac{1}{\sqrt{1+n}} \sim \frac{1}{\sqrt{n}}$$

Or la série $\sum \frac{1}{\sqrt{n}}$ est une série à termes positifs divergente donc $\sum \|f_n\|_{\infty,J}$ diverge également. Autrement dit, $\sum f_n$ ne converge pas normalement.

3. Comme la série $\sum f_n$ converge simplement sur J, il suffit de montrer que la suite de ses restes converge uniformément vers la fonction nulle sur J. Posons $R_n = \sum_{k=n+1}^{+\infty} f_n$. D'après le critère spécial des séries alternées,

$$\forall x \in J, |R_n(x)| \le \frac{1}{\sqrt{1 + (n+1)x}} \le \frac{1}{\sqrt{n+2}}$$

Ainsi

$$\|\mathbf{R}_n\|_{\infty,\mathbf{J}} \le \frac{1}{\sqrt{n+2}}$$

On en déduit que $\lim_{n\to+\infty}\|\mathbf{R}_n\|_{\infty,\mathbf{J}}=0$ i.e. (\mathbf{R}_n) converge uniformément vers la fonction nulle sur J. Par conséquent, $\sum f_n$ converge uniformément sur J.

4. Pour tout $n \in \mathbb{N}^*$, $\lim_{\substack{+\infty \\ +\infty}} f_n = 0$ et $\lim_{\substack{+\infty \\ +\infty}} f_0 = 1$. Comme $\sum_{\substack{+\infty \\ +\infty}} f_n$ converge uniformément sur $J = [1, +\infty[$, on peut utiliser le théorème d'interversion série/limite :

$$\lim_{+\infty} \varphi = \sum_{n=0}^{+\infty} \lim_{+\infty} f_n = 1$$

- 5. a. Il s'agit à nouveau du critère spécial des séries alternées.
 - b. Remarquons que

$$\forall x \in J, \ \varphi(x) - \ell - \frac{a}{\sqrt{x}} = \sum_{n=1}^{+\infty} (-1)^n \left(\frac{1}{\sqrt{1 + nx}} - \frac{1}{\sqrt{nx}} \right)$$

De plus,

$$\left| \frac{1}{\sqrt{1 + nx}} - \frac{1}{\sqrt{nx}} \right| = \frac{1}{\sqrt{nx}} - \frac{1}{\sqrt{1 + nx}} = \frac{\sqrt{1 + nx} - \sqrt{nx}}{\sqrt{nx}\sqrt{1 + nx}} = \frac{1}{\left(\sqrt{1 + nx} + \sqrt{nx}\right)\sqrt{nx}\sqrt{1 + nx}} \le \frac{1}{2(nx)^{3/2}}$$

Ainsi, par inégalité triangulaire.

$$\forall x \in J, \ \left| \varphi(x) - \ell - \frac{a}{\sqrt{x}} \right| \le \sum_{n=1}^{+\infty} \left| \frac{1}{\sqrt{1 + nx}} - \frac{1}{\sqrt{nx}} \right| \le \sum_{n=1}^{+\infty} \frac{1}{2(nx)^{3/2}} = \frac{K}{x^{3/2}}$$

en posant $K = \frac{1}{2} \sum_{n=1}^{+\infty} \frac{1}{n^{3/2}}$. On en déduit bien que

$$\varphi(x) = \ell + \frac{a}{\sqrt{x}} + \mathcal{O}\left(\frac{1}{x^{3/2}}\right)$$

© Laurent Garcin MP Dumont d'Urville

Problème 1

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$. Il existe donc $P \in GL_n(\mathbb{R})$ tel que $B = P^{-1}AP$. Par propriété de la trace, $tr(B) = tr(P^{-1}AP) = tr(APP^{-1}) = tr(A)$. Par propriété du déterminant,

$$\det(\mathbf{B}) = \det(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}) = \det(\mathbf{P}^{-1})\det(\mathbf{A})\det(\mathbf{P}) = \det(\mathbf{P})^{-1}\det(\mathbf{A})\det(\mathbf{P}) = \det(\mathbf{A})$$

Deux matrices semblables sont a fortiori équivalentes et ont donc même rang : rg(B) = rg(A). Soit $\lambda \in \mathbb{R}$. Alors

$$B - \lambda I_n = P^{-1}AP - \lambda I_n = P^{-1}(A - \lambda I_n)P$$

Donc $A - \lambda I_n$ et $B - \lambda I_n$ sont semblables donc ont même déterminant d'après ce qui précède. Ainsi

$$\chi_{\mathbf{B}}(\lambda) = \det(\mathbf{B} - \lambda \mathbf{I}_n) = \det(\mathbf{A} - \lambda \mathbf{I}_n) = \chi_{\mathbf{A}}(\lambda)$$

Ainsi $\chi_B = \chi_A$.

Il est clair que tr(A) = tr(B) = 5. Comme A et B sont triangulaires à coefficients diagonaux non nuls, rg(A) = rg(B) = 3. Comme A et B sont triangulaires, det(A) = det(B) = 4 et $\chi_A = \chi_B = (X - 1)(X - 2)^2$. On a donc $Sp(A) = Sp(B) = \{1, 2\}$.

Posons P = (X-1)(X-2). On vérifie que P(A) = 0. Comme $Sp(A) = \{1, 2\}$, on a donc $\mu_A = P$. Comme μ_A est simplement scindé, A est diagonalisable.

Comme Sp(B) = $\{1,2\}$, si B était diagonalisable, on aurait de même $\mu_B = P$. Or $P(B) \neq 0$ donc $\mu_B \neq 0$. Comme A et B n'ont pas le même polynôme minimal, A et B ne sont pas semblables.

- Comme la matrice de u dans la base (e_1, e_2, e_3) est A, on a $u(e_1) = e_2 + 2e_3$, $u(e_2) = e_1 + e_3$ et $u(e_3) = e_1$. La matrice de u dans la base (e_2, e_1, e_3) est donc B. On en déduit que A et B sont semblables.
 - Un calcul donne $\chi_A = \chi_B = X^3 3X 1$ (en utilisant la règle de Sarrus par exemple). Posons $P = X^3 3X 1$. Alors $P' = 3X^2 3 = 3(X-1)(X+1)$. Ainsi P est strictement croissante sur $]-\infty,-1]$, strictement décroissante sur [-1,1] et strictement croissante sur $[1,+\infty[$. Or $\lim_{N \to \infty} P = -\infty, P(-1) = 1 > 0, P(1) = -3 < 0$ et $\lim_{N \to \infty} P = +\infty$. Comme P est continu sur \mathbb{R} , P s'annule exactement trois fois sur \mathbb{R} en vertu du corollaire du théorème des valeurs intermédiaires. Comme deg P = 3, P possède exactement trois racines toutes réelles. On les note α , β et γ . Comme $\chi_A = \chi_B = P$ est simplement scindé, P0 et P1 est P2. Comme la similitude est une relation d'équivalence, P3 et P3 sont semblables.

Soient $A \in \mathcal{M}_n(\mathbb{R})$ et u l'endomorphisme canoniquement associé à A. D'après le théorème du rang dim Ker u = n-1. Choisissons un supplémentaire S de Ker u. Dans une base adaptée à la décomposition $\mathbb{R}^n = S \oplus \text{Ker } u$, la matrice de u est de la forme de U. Ainsi A est semblable à U.

5 On trouve $U^2 = a_n U$. Or $U^2 \neq 0$ donc $a_n \neq 0$. Ainsi $X^2 - a_n X = X(X - a_n)$ est un polynôme annulateur de U (et donc de u) simplement scindé. u est donc diagonalisable.

6 Posons $A = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix} \in S_2(\mathbb{C})$. Alors $\chi_A = X^2$. Notamment $Sp(A) = \{0\}$. Si A était diagonalisable, elle serait semblable à la matrice nulle et donc nulle, ce qui n'est pas. A n'est donc pas diagonalisable.

Les deux dernières colonnes de A sont les mêmes que les deux premières. Supposons que ces deux colonnes soient liées. Il existerait alors $\lambda \in \mathbb{C}$ tel que $\beta = \lambda \alpha$ et $\alpha = \lambda \beta$ et donc $\alpha = \lambda^2 \alpha$. Comme $\alpha \neq 0$, on aurait donc $\lambda^2 = 1$ i.e. $\lambda = \pm 1$ puis $\alpha = \pm \beta$, ce qui est exclu. Ainsi les deux premières colonnes de A sont linéairements indépendantes de sorte que rg(A) = 2. Notamment rg(A) < 4, A n'est donc pas inversible : $0 \in Sp(A)$.

En posant
$$U = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
, on a $AU = 2(\alpha + \beta)U$ donc $2(\alpha + \beta) \in Sp(A)$. En posant $V = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$, on a $AV = 2(\alpha - \beta)V$ donc $2(\alpha - \beta) \in Sp(A)$.

 $2(\alpha - \beta) \in Sp(A)$.

D'après le théorème du rang dim Ker(A) = 2. On voit facilement que $X = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$ et $Y = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}$ forment une base de

Ker A.

Ainsi (U, V, X, Y) est une base de vecteurs propres de A.

© Laurent Garcin MP Dumont d'Urville

Soit u l'endomorphisme canoniquement associé à $\begin{pmatrix} \lambda & a \\ 0 & \lambda \end{pmatrix}$. En notant (e_1, e_2) la base canonique de \mathbb{R}^2 , on a donc

$$u(e_1) = \lambda e_1 \qquad \qquad u(e_2) = \lambda e_2 + b e_1$$

Posons $f_1 = \frac{a}{b}e_1$ et $f_2 = e_2$. Comme $\frac{a}{b} \neq 0$, (f_1, f_2) est encore une base de \mathbb{R}^2 . De plus,

$$u(f_1) = \frac{a}{b}u(e_1) = \lambda \cdot \frac{a}{b}e_1 = \lambda f_1$$

$$u(f_2) = u(e_2) = \lambda e_2 + be_1 = \lambda e_2 + b \cdot \frac{a}{b}e_1 = \lambda f_2 + bf_1$$

La matrice de u dans la base (f_1, f_2) est donc $\begin{pmatrix} \lambda & b \\ 0 & \lambda \end{pmatrix}$. On en déduit que les matrices $\begin{pmatrix} \lambda & a \\ 0 & \lambda \end{pmatrix}$ et $\begin{pmatrix} \lambda & b \\ 0 & \lambda \end{pmatrix}$ sont semblables.

9 On a PB = AP i.e. (R + iS)B = A(R + iS) ou encore RB + iSB = AR + iAS. Comme les matrices RB, SB, AR et AS sont à coefficients réels, on obtient RB = AR et SB = AS en identifiant parties réelle et imaginaire.

10 On sait que si $A \in \mathcal{M}_n(\mathbb{R})$, det $A = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n A_{\sigma(i),i}$. Comme chaque coefficient de $\det(R + xS)$ est une fonction affine de x, la formule précédente permet d'affirmer que $\varphi : x \mapsto \det(R + xS)$ est une fonction polynomiale en tant que

combinaison linéaire de produits de fonctions affines.

De plus, $\varphi(i) = \det(P) \neq 0$ car P est inversible. Ainsi φ n'est pas identiquement nulle (sur \mathbb{C}). Si φ était nulle sur \mathbb{R} , elle admettrait une infinité de racines : tous ses coefficients seraient nuls donc elle serait nulle sur $\mathbb C$. Il existe donc $x \in \mathbb R$ tel que R + xS est inversible.

11 Comme RB = AR et SB = AS, (R + xS)B = A(R + xS). Puisque $Q = R + xS \in GL_n(\mathbb{R})$, $B = Q^{-1}AQ$ et A et B sont semblables dans $\mathcal{M}_n(\mathbb{R})$.

12
$$\chi_A = X^3 + X = X(X-i)(X+i)$$
 est simplement scindé dans \mathbb{C} donc A est diagonalisable et semblable à $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -i \end{pmatrix}$

dans $\mathcal{M}_3(\mathbb{C})$. Un calcul évident montre que $\chi_B = X^3 + X$. Pour les mêmes raisons que précédemment, B est également semblable à D dans $\mathcal{M}_3(\mathbb{C})$. On en déduit que A et B sont semblables dans $\mathcal{M}_3(\mathbb{C})$. Comme A et B sont à coefficients réels, elles sont également semblables dans $\mathcal{M}_3(\mathbb{R})$ d'après la question précédente.

- 13 | Soit (A, B) $\in \mathcal{M}_2(\mathbb{R})^2$ telle que $\chi_A = \chi_B$ et $\mu_A = \mu_B$.
 - Si $\chi_A = \chi_B$ est simplement scindé dans $\mathbb R$ ou $\mathbb C$, alors A et B sont toutes deux semblables à une même matrice diagonale dans $\mathcal{M}_2(\mathbb{R})$ ou $\mathcal{M}_2(\mathbb{C})$. Elles sont donc semblables dans $\mathcal{M}_2(\mathbb{R})$ ou $\mathcal{M}_2(\mathbb{C})$. Dans le deuxième cas, puisque A et B sont à coefficients réels, le résultat de la partie précédente sont encore semblables dans $\mathcal{M}_{2}(\mathbb{R})$.
 - Sinon, $\chi_A = \chi_B = (X \lambda)^2$ avec $\lambda \in \mathbb{R}$. Comme le polynôme minimal divise le polynôme caractéristique, on a donc $\mu_{A} = \mu_{B} = (X - \lambda) \text{ ou } \mu_{A} = \mu_{B} = (X - \lambda)^{2}.$
 - $-\text{ Si }\mu_A=\mu_B=(X-\lambda), \text{ alors } A \text{ et } B \text{ sont toutes deux \'egales \`a λI_2. A fortiori, elles sont semblables dans $\mathcal{M}_2(\mathbb{R})$.}$
 - Si $\mu_A = \mu_B = (X \lambda)^2$, alors A et B ne sont pas diagonalisables puisque leur polynôme minimal n'est pas simplement scindé mais elles sont quand même trigonalisables dans $\mathcal{M}_2(\mathbb{R})$ puisque leur polynôme caractéristique

est scindé sur \mathbb{R} . Les matrices A et B sont donc respectivement semblables à des matrices $\begin{pmatrix} \lambda & a \\ 0 & \lambda \end{pmatrix}$ et $\begin{pmatrix} \lambda & b \\ 0 & \lambda \end{pmatrix}$

avec a et b non nuls (sinon A et B seraient diagonalisables). Le résultat de la question 8 permet alors d'affirmer que A et B sont encore semblables.

d'indice 2 donc $\mu_A = \mu_B = X^2$. Pourtant, A et B ne sont manifestement pas semblables puisque rg(A) = 1 et rg(B) = 2de sorte que $rg(A) \neq rg(B)$.