Distributed snapshots

- Global states of the system that are consistent with causality
- Such global states can be used for detecting stable properties, e.g.
 - Distributed deadlock detection
 - Distributed garbage collection
 - Distributed termination detection
- Main difficulty
 - System state changes during observation

Distributed snapshots: assumptions

 The system is connected, that is there is a path between every pair of processors

- C_{i,i} channel from p_i to p_i
- Channels are reliable and FIFO
 - Messages sent are eventually received in order

Distributed snapshots: definitions

- Processor state
 - State of a processor (at an instant) is the assignment of a value to each variable of that processor
- Channel state
 - State of C_{i,j} is the ordered list of messages sent by p_i but not yet received at p_i

Distributed snapshots: definitions

- Global state of the system
 - A pair (S,L) where
 - $S = (s_1,..., s_M)$ denotes the processor states and
 - L = channel states
- Note
 - A global state cannot be taken instantaneously
 - It must be computed in a distributed manner

Distributed snapshots

- The problem
 - Devise a distributed algorithm that computes a consistent global state.
- What do we mean by consistent global state?

Distributed snapshot: meaning of consistent global state

Two possible states for each processor: s_0 , s_1

In s_0 : the processor hasn't the token

In s_1 : the processor has the token

The system contains exactly one token which moves back and forth between p and q. Initially, p has the token.

Events: sending/receiving the token

Distributed snapshots: meaning of consistent global state

Distributed snapshots: meaning of consistent global state

A global state G is consistent if it is one that could have occurred

Consider a system with two possible runs (non-determinism!)

Actual transitions

The output of the snapshot algorithm can be G!

Distributed snapshots

- $S = \{s_1, ..., s_M\}$
- o_i: event of observing s_i at p_i
- $O(S)=\{o_1,...,o_M\}$
- Definition
 - S is a consistent cut iff O(S) = {o₁,...,o_M} is consistent with causality

Distributed snapshots

- Definition:
 - {o₁,..,o_M} is consistent with causality iff (\forall e : e in E_i \land e <_H o_i : (\forall e' : e' in E_j \land e ' <_H e : e ' <_H o_j))
- Such an observation cannot indicate the receipt of a message without the sending of that message

Distributed snapshots: intuition

Distributed snapshots

Exercise

Is $O={o_1,o_2,o_3}$ consistent with causality?

Is O'={o'₁,o'₂,o'₃} consistent with causality?

Distributed snapshots: messages sent but not yet received

- Let m be a message, we write
 - s(m): sending event of message m
 - r(m): receipt event of message m
- Let S be an observed global state
 - $O(S) = \{o_1, o_2, \dots, o_M\}$
 - If s(m) <p_i o_i and o_j <p_j r(m) then message m is sent but not received relatively to observation O(S)

Distributed snapshots: messages sent but not yet received

Processor **q** observes its state at **1**Then, **q** sends **special message** to **p**asking **p** to record its state

Processor **p** records its state at **2** then **p** sends a **special message** to **q** saying that it recorded its state

When $\bf q$ receives the **special message** from $\bf p$, processor $\bf q$ determines that messages $\bf m_1$, $\bf m_2$, $\bf m_3$ were sent but were not yet received

In the resulting global state, the state of C_{pq} must be [m1, m2, m3]

Distributed snapshots

 Use of non-consistent global state can lead to wrong conclusions

E.g. a false deadlock can be claimed!

False deadlock illustrated

- Assume
 - r₁ and r₂ two resources
 - Each resource is either available or un-available
 - p₁ and p₂ two processors that access resources
- To access a resource r, a processor p sends Request (Req) to r and p starts to wait until it receives Ok from r

False deadlock illustrated

- When a resource r in status available receives Req from p,
 - r sends Ok to p
 - r becomes un-available
 - r starts to wait until it receives Release (Rel) from p
- A deadlock situation occurs when there is a cycle in the wait-for-graph amongst processors and resources

False deadlock illustrated

Inference from

 o_1 : p_1 waits for r_2

o₂: r₁ waits for p₁

o₃: r₂ waits for p₂

o₄: p₂ waits for r₁

From O={o₁,o₂,o₃,o₄} the deadlock detector concludes there is a deadlock!

What's wrong with O?

- For simplicity
 - We assume only one snapshot computation
- Principle
 - Uses two types of messages
 - SnapshotRequest
 - Serve to start a snapshot computation
 - SnapshotToken
 - Serve to ``propagate" a snapshot computation
 - Each processor records its state and the state of its incoming channels

- A processor that receives SnapshotRequest
 - Records its state
 - Sends a SnapshotToken to each of its outgoing channels
 - Starts to record state of incoming channels
- Recording of the state of an incoming channel is finished when a SnapshotToken is received along it

- A processor p that receives SnapshotToken on channel C_{qp}
 - If this is the first time that SnapshotToken is received then
 - p records its state
 - p records the state of C_{qp} as empty
 - p sends one SnapshotToken to each outgoing channel
 - p starts to record the state of all its other incoming channels
 - Otherwise, p records the state of C_{qp} as the list of messages received from q since the time p recorded its state

- Local termination of a snapshot
 - A processor learns that its participation to a snapshot computation is terminated when it has recorded its state and received a SnapshotToken on each of its incoming channels
- When does an initiating processor learn that the global snapshot computation is terminated?
 - We'll see later

Constants

- Incoming: set of processors from which I receives
- Outgoing: set of processors that receive from me

Variables

- MyVersion: Integer
- StateForSnapshotOf: {1,..,M} → States
- CurrentSnapshotVersionOf: {1,..,M} → Integer
- TokensReceivedForSnapshotOf: {1,..,M} → Integer
- ChannelState: {1,..,M} → ({1,..,M} → MessageLists)

- Variable initialization
 - MyVersion := 0
 - StateForSnapshotOf(i) := ?, 1≤ i ≤ M
 - CurrentSnapshotVersionOf(i) :=0, 1≤ i ≤ M
 - TokensReceivedForSnapshotOf(i) :=?, 1≤ i ≤ M
 - (ChannelState(i))(j) := ?, $1 \le i, j \le M$
 - ?: we don't care!

```
Wait for SnapshotRequest or SnapshotToken(r,v)
on SnapshotRequest do
MyVersion := MyVersion +1
StateForSnapshotOf(self) := relevant local state
CurrentSnapshotVersionOf(self) := MyVersion
for every q in Outgoing do
send(q,SnapshotToken(self, MyVersion))
od
TokenReceivedForSnapshotOf(self) := 0
od
...
```

```
Wait for SnapshotRequest or SnapshotToken(r,v)
```

```
on SnapshotToken(r,v) from q do
 if CurrentSnapshotVersionOf(r) < v then
   StateForSnapshotOf(r) := relevant local state
   CurrentSnapshotVersionOf(r) := v
   (ChannelState(r))(q) := nil
   for every k in Outgoing do
    send(k,SnapshotToken(r,v))
   od
   TokenReceivedForSnapshotOf(r) := 1
   /* prepare for incoming channel state computation*/
 else
```

```
Wait for SnapshotRequest or SnapshotToken(r,v)
...
on SnapshotToken(r,v) from q do
if CurrentSnapshotVersionOf(r) < v then
...
else
if CurrentSnapshotVersionOf(r) = v then
TokensReceivedForSnapshotOf(r) := TokensReceivedForSnapshotOf(r) + 1
(ChannelState(r))(q) := list of msg received from q since I recorded my state
if TokensReceivedForSnapshotOf(r) = | Incoming | then
my local participation is finished for snapshot computation (r,v)
od</p>
```

Distributed snapshots the algorithm's properties

- Shows an important technique for designing distributed algorithms: Diffusing computation
 - The computation starts at one processor, then the computation diffuses through the whole set of processors
- Shows how to distinguish between objects that have same name, but actually different
 - The use of version numbers
- Shows how to flush communication channels
 - The use of SnapshotToken messages
- Can record a global state that never occurred

- The algorithm for the snapshot computation can be easily adapted to construct a spanning tree of the system
- Spanning tree of the system
 - Each node maintains a variable MyParent [1..M]
 - A processor that starts a snapshot computation is the root of the associated spanning tree
 - The processor from which I receive SnapshotToken(r,v)
 for the first time is my parent in spanning tree associated
 to the snapshot computation identified by (r,v)

 Using the spanning tree associated to a snapshot computation, we can let the processor that started that snapshot computation detect when the computation is terminated

Idea

- When I receive a SnapshotToken(r,v) for the first time, I send SnapshotToken(r,v) to all outgoing channels except to the one leading to MyParent(r)
- When I have received SnapshotToken(r,v) on all my incoming channels
 - If r≠ self then I send SnapshotToken(r,v) to MyParent(r)
 - Otherwise, I learn that the global computation is finished

```
Wait for SnapshotRequest or SnapshotToken(r,v)
on SnapshotRequest do
MyVersion := MyVersion +1
StateForSnapshotOf(self) := relevant local state
CurrentSnapshotVersionOf(self) := MyVersion
for every q in Outgoing do
send(q,SnapshotToken(self, MyVesion))
od
TokenReceivedForSnapshotOf(self) := 0
MyParent(self) := self
od
...
```

```
Wait for SnapshotRequest or SnapshotToken(r,v)
 on SnapshotToken(r,v) from q do
   if CurrentSnapshotVersionOf(r) < v then
     MyParent(r) := q
     StateForSnapshotOf(r) := relevant local state
     CurrentSnapshotVersionOf(r) := v
     (ChannelState(r))(q) := nil
     for every k in Outgoing and k ≠ C<sub>self,q</sub> do
      send(k,SnapshotToken(r,v))
     od
     TokenReceivedForSnapshotOf(self) := 1
     /* prepare for incoming channel state computation*/
   else
```

od

```
Wait for SnapshotRequest or SnapshotToken(r,v)
on SnapshotToken(r,v) from q do
if CurrentSnapshotVersionOf(r) < v then
...
else
if CurrentSnapshotVersionOf(r) = v then
TokensReceivedForSnapshotOf(r) := TokensReceivedForSnapshotOf(r) + 1
(ChannelState(r))(q) := list of msg received from q since I recorded my state
if TokensReceivedForSnapshotOf(r) = | Incoming | then
if r = self then
global termination
else
send(MyParent(r),SnapshotToken(r,v))</pre>
```

Distributed snapshots

- Discussion
 - Concurrent observations (see book)
- Exercise
 - Explain why the proposed algorithm computes consistent global states

Modeling a distributed computation

- How to prove that a given distributed algorithm is correct?
- A formal model of a distributed computation serves this purpose
- Idea
 - Model a distributed computation as a sequence of global state transitions where each global state transition is caused by the execution of one event

- Initial state of the system
 - $G^0 = (S^0, L^0)$ where
 - **S**⁰ is the vector of processor initial states
 - L⁰ is the channel initial states, each channel is empty
- Given a global state G, a processor p
 - We write s_p|_G for state of p in global state G
 - We write State(c)|_G for state of channel c in G

- Events
 - An event e is a 5-tuple (p, s, s', m, c) where
 - **p** is a processor
 - s, s' are possible states of p
 - m is a message or Null
 - c is a channel or Null
 - Interpretation of an event e = (p, s, s', m, c)
 - Takes p from s to s'
 - Possibly sends or receives m on c

- Let
 - G=(S,L) be a global state
 - e =(p, s, s', m, c) an event
- Event e can occur in G if
 - There is a global state G' such that executing
 e in G changes the system state from G to G'
 - Notation: G →_e G'

- If $\mathbf{G} \rightarrow_{\mathbf{e}} \mathbf{G}$ ' then \mathbf{G} ' is defined by
 - $s_p|_{G'} = s'$
 - For every $\mathbf{q} \neq \mathbf{p}$, $\mathbf{s}_{\mathbf{q}}|_{\mathbf{G}}$, = $\mathbf{s}_{\mathbf{q}}$
 - If c is an outgoing channel from p, then
 - State(c) $|_{G}$ = [m_1 , m_2 , m_3 , ..., m_k , m]
 - If **c** is an incoming channel to **p** and **State(c)**|_G = [m, m₁, m₂, ..., m_k] then
 - State(c) $|_{G}$ = [m_1 , m_2 , m_3 , ..., m_k ,]
 - For every c' ≠ c, State(c')|_{G'} = State(c')|_G
- Note
 - If c = Null, then for every c', State(c')|_{G'} = State(c')|_G

- Let
 - G be a global state
 - seq = $\langle e_0, e_1, ..., e_j \rangle$ be a sequence of events
- seq can occur in G if there is a sequence of global states <G=G₀, G₁, ..., Gゥ+1=G'> such that Gᵢ→eᵢ Gᵢ+1 for i=0, ..., j
 - Notation: $G \rightarrow_{seq} G'$

- Let G, G' be two global states
- We say that G' is reachable from G if there is a sequence of events seq such that G →_{seq} G'
- We define a computation of the system as a sequence of events seq such that
 - $G^0 \rightarrow_{seq} G'$ for some G'

- Characteristics of this model
 - Each global state transition is caused by the execution of one event that can occur in the current global state
- But several events can occur at a given global state
 - In this case, one of them is randomly selected
 - i.e. non-deterministic computations

- How to prove that a given distributed algorithm is correct in this model
 - We must show that every global state reachable from the initial global state satisfies the correctness properties
- Stable properties
 - A global state predicate Φ such that if Φ(G) is true then Φ(G') is true for every G' reachable from G

- So far, three models for a distributed computation that can be grouped into two classes
- Observational models
 - Model 1
 - Set of events related by Happens-before relation (H-DAG)
 - Model 2
 - Consistent cuts
 - Framework for analyzing what happened in an execution
 - Concurrency of events is explicitly captured

- Predictive model
 - Model 3
 - Global state transitions (interleaving)
 - Given an initial global state G⁰ and a distributed algorithm A, one can say what might occur when A is executed starting from G⁰
 - Captures consistent cuts and causality
 - Concurrency is not explicitly captured, instead non-determinism is used

- Given
 - A a distributed algorithm
 - H-DAG(A), an execution of A
 - E all events in H-DAG(A)
 - Z(E) all consistent cuts of H-DAG(A)
- There is an execution DAG, G(E) that corresponds to H-DAG(A)
 - G(E) shows all possible executions, in the Model 3, that can be derived from H-DAG(A)

- Construction of G(E)
 - Since events in each processor are totally ordered, they can be numbered sequentially
 - Let Number(e) be the number assigned to event e

- Construction of G(E)
 - Let $z_1 = (z_{11}, z_{12}, ..., z_{1M})$ and $z_2 = (z_{21}, z_{22}, ..., z_{2M})$ be two consistent cuts
 - $z_1 <_H z_2$ if
 - Number $(z_{1i}) \le \text{Number}(z_{2i}) \text{ for } j=1,2, ..., M$
 - z₂ immediately follows z₁ if there is a j such that
 - Number(z_{2k}) = Number(z_{1k}) for k=1,2, ..., M and k ≠ j
 - Number(z_{2i}) = Number(z_{1i}) + 1

- Construction of G(E)
 - G(E) is a directed graph where
 - The nodes are elements of Z(E)
 - There is an arc from z₁ to z₂ if z₂ immediately follows z₁
 - Each node $z=(z_1, ..., z_M)$ of G(E) is labeled by a vector $(n_1, n_2, ..., n_M)$ where n_i is the number of z_i
 - Each arc in of *G(E)* represents the execution of one event (a global state transition)

Execution DAG illustrated

H-DAG

Execution-DAG

Predicates on execution DAG

- Useful for
 - Expressing desirable properties
 - Debugging
 - Proving correctness

- Let
 - G(E) be an execution DAG
 - Φ be a global state predicate
 - z be a node of G(E)
- We define Concur(z) as the set of all nodes z' of G(E) such that there is no path from z to z' or from z' to z
 - E.g. 112 and 131 of the example execution DAG

- POSSIBLY predicate
 - POSSIBLY(Φ,G(E)) is true if
 - There is a node z of G(E) such that $\Phi(z)$ is true
- ALLPATH predicate
 - ALLPATH(Φ,G(E)) is true if
 - For every path P from the source to the sink of G(E), there is z in P such that Φ(z) is true

- DEFINITELY predicate
 - DEFINITELY(Φ,G(E)) is true if
 - There is a node z of G(E) such that Φ(z') is true for every z' in Concur(z)
- ALWAYS predicate
 - ALWAYS(Φ,G(E)) is true if
 - For every node z of G(E), Φ(z) is true

Summarizing future executions

- Ways to describe future states of an execution given the current state
- Definition
 - Let G₀ be a global state. A run r on G₀ is defined as a finite or an infinite sequence of events <e₀, e₁, e₂, ...> that can occur in G₀
- Notation:
 - r[i]: sequence formed by the first i+1 events of r,
 0≤i≤|r|-1
 - R(G₀) denotes all possible runs on G₀

Summarizing future executions

- Eventually predicate
 - Let Φ be a global state predicate
 - Let Ψ be a predicate on $\mathbf{R}(G_0)$
 - Eventually(Φ,G₀,Ψ) is true iff
 - For every \mathbf{r} in $\mathbf{R}(G_0)$ such that $\Psi(\mathbf{r})$ is true,
 - There exists i in {0,1, 2, ..., |r|-1}
 - There exists a global state G such that $G_0 \rightarrow_{rii} G$ and $\Phi(G)$ is true

Summarizing future executions

- Always predicate
 - Let Φ be a global state predicate
 - Let Ψ be a predicate on $\mathbf{R}(G_0)$
 - Always(Φ,G₀,Ψ) is true iff
 - For every \mathbf{r} in $\mathbf{R}(G_0)$ such that $\Psi(\mathbf{r})$ is true,
 - For every i in {0,1, 2, ..., |r|-1}
 - There exists a global state G such that $G_0 \rightarrow_{rii} G$ and $\Phi(G)$ is true

Failures in a distributed system

- A distributed system like any other computing system is built on
 - Hardware and software components that can fail from time to time
- A faulty component can behave in an unpredictable manner

Failures in a distributed system

- But, in many cases we must design distributed systems in a way that enables them to achieve their well-defined goals despite the presence of failure of some of its components
 - Hospital
 - Banking
 - Transportation, ...
- The system must be fault-tolerant

Failures in a distributed system

- Fault-tolerance requires
 - Failure semantics
 - Description of the way a faulty component behaves
 - Mechanisms/techniques for handling well-defined failures
- Any interaction between two components of a distributed system can be seen as involving
 - A server: provides service to clients
 - A client: requests service from the server

Failures in a distributed system: failure semantics (F. Cristian 91)

- Omission failure
 - Occurs when a server omits to respond to a request
- Response failure
 - Occurs when a server responds incorrectly to a request
 - Wrong state transition at the server
 - Wrong value is returned to the client
- Timing failure
 - Occurs when a server responds either too earlier or too late

Crash failure

- Occurs when a server repeatedly omits to respond to requests until it is restarted
- Cannot be accurately detected
- Depending upon the state of the server when it restarts (if any restart), several subclasses of crash failure are given

Amnesia-crash

- Crash failure and
- In addition, when the server restarts, it restarts from its initial state, the state by the time of failure is lost

Pause-crash

- Crash failure and
- In addition, when the server restarts, it restarts from the state before the crash

- Halting-crash
 - Crash failure and
 - The server never restart
- Fail-stop
 - A fail-stop server is one that either functions correctly or stops. And when stopped this fact is accurately detected by its clients
 - Very nice but not realistic

- Byzantine failure
 - A Byzantine server can exhibits any of
 - Crash, Timing, Response and Omission failure
 - A Byzantine server can send contradictory messages to different recipients
 - The most general failure semantics, captures malicious behaviors
 - Often assumed for ultra-reliable systems