

Practice Mode

Contest scoreboard | Sign in

Round 1B 2009

A. Decision Tree

B. The Next Number

C. Square Math

Contest Analysis

Questions asked 2

Small input 12 points

Solve C-small

Large input 32 points

Guide to get started.

Problem C. Square Math

Solve C-large

Submissions

Decision Tree

10pt Not attempted 1512/1752 users correct (86%)

11pt Not attempted 1266/1544 users correct (82%)

The Next Number

9pt Not attempted 2559/3329 users correct (77%)

26pt Not attempted 1890/2557 users correct (74%)

Square Math

12pt Not attempted
157/422 users correct
(37%)
32pt Not attempted

69/168 users correct (41%)

 Top Scores 	
ACRush	100
ftc	100
bmerry	100
andrewzta	100
ipknHama	100
halyavin	100
mystic	100
Yarin	100
Khuc.Anh.Tuan	100
dgozman	100

Problem

Say we have a square that has \mathbf{W} cells on each side and, therefore, \mathbf{W}^2 cells total. Let's go further and fill each cell with one of the following:

This contest is open for practice. You can try every problem as many times as you

like, though we won't keep track of which problems you solve. Read the Ouick-Start

- A digit from 0 to 9;
- The addition sign (+);
- The subtraction sign (-).

If, finally, we add a constraint that no 2 digits are horizontally or vertically adjacent and no 2 operators (+ or -) are horizontally or vertically adjacent, then our square can be called an "arithmetic square".

Square Math is the name of a puzzle where, given an arithmetic square, we start from any numeric cell and move either horizontally or vertically a cell at a time, finally ending in a numerical cell. The mathematical expression we get from the traversal is evaluated to get a single value. For example:

2+3			
+4-			
2+3 +4- 1+0			
1+0			

The above is a valid arithmetic square of size $\mathbf{W} = 3$. If we start from "2", move horizontally right, then vertically down, we'll get "2+4", which gives a value of "6". If we further move horizontally right, then vertically up, we'll get "2+4-3", which is equal to "3".

In Square Math, there is no limit to how many times you can use a particular cell. It is perfectly legal to move from a cell to its neighbor, then back to the original cell. Given an arithmetic square and a list of queries, your task is to find a Square Math expression which evaluates to each query.

Input

The first line of input contains a single integer, \mathbf{T} . \mathbf{T} test cases follow. The first line of each test case contains 2 integers, \mathbf{W} and \mathbf{Q} . \mathbf{W} lines follow, each containing \mathbf{W} characters, representing the arithmetic square. Don't worry, all arithmetic squares in the input are well-formed. The following line contains a space separated list of \mathbf{Q} integers, representing the values which need to be computed by using Square Math (the queries). You can assume that all given values will have at least one possible Square Math solution.

Output

For each test case, begin output with "Case #X:" on a line by itself, where X is the test case number, starting from 1. Then, for each query within the test case, print the Square Math expression which evaluates to the query on a line by itself.

In the case where there are multiple possible Square Math expressions, print the one that is shortest. If there is still a tie, print the lexicographically smallest expression. Remember that '+' is lexicographically smaller than '-'.

Limits

 $1 \le T \le 60$

Small dataset

 $2 \le W \le 10$ $1 \le Q \le 20$ $1 \le each query \le 50$

Large dataset

 $2 \le \mathbf{W} \le 20$ $1 \le \mathbf{Q} \le 50$ $1 \le \text{each query} \le 250$

Sample

Input	Output
2 5 3 2+1-2 +3-4+ 5+2+1 -4-0- 9+5+1 20 30 40 3 2 2+1 +4+ 5+1 2 20	Case #1: 1+5+5+9 3+4+5+9+9 4+9+9+9+9 Case #2: 2 5+5+5+5

All problem statements, input data and contest analyses are licensed under the Creative Commons Attribution License.

© 2008-2013 Google Google Home - Terms and Conditions - Privacy Policies and Principles

