

NO SECOND STAY: PREDICTING 30-DAY HOSPITAL READMISSIONS

DSC450 | Team Presentation

Team Members:

Tyler Heflin – Data Wrangler

Andres Melendez – Data Scientist

Carlos Escamilla – Data Visualizer

Delilah Slabaugh -Presenter

Hospital readmissions within 30 days are costly and common

Goal: use data to predict patients at risk of being readmitted

Approach: machine learning on synthetic EHR dataset (30,000 patients)

INTRODUCTION

BUSINESS PROBLEM / HYPOTHESIS Can we predict 30day readmission using clinical and demographic data?

Hypothesis: Discharge destination and chronic conditions increase risk

METHOD & ANALYSIS

Preprocessing: handled missing values, encoded variables, cleaned features

2

Exploratory Data Analysis (EDA) to check distributions and imbalance 3

Modeling: Random Forest & XGBoost with GridSearchCV tuning

Evaluation: stratified 80/20 split, ROC-AUC, precision, recall, FI - score

FEATURE
IMPORTANCE
(RANDOM
FOREST)

FEATURE IMPORTANCE (XGBOOST)

KEY FEATURE INSIGHTS Top predictor: discharge to rehab or nursing facility

Other drivers: BMI, cholesterol, hypertension, diabetes

XGBoost also picked up gender and BMI category

ROC CURVE: RF VS XGB

MODEL PERFORMANCE

ROC curves show low improvement from random guessing

Random Forest AUC = 0.57, XGBoost AUC = 0.56

Low AUC suggests room for improvement in model design or data quality

Feature Correlation Heatmap

CORRELATION BETWEEN FEATURES

Correlation

READMISSION ANALYSIS DASHBOARD

RISK SCORE DISTRIBUTION BY READMISSION STATUS

Risk Score

RISK & INTERVENTION OPPORTUNITIES

RECOMMENDATIONS & ETHICS

Use Predictions to trigger follow-ups, not automate care decisions Avoid bias and protect patient privacy Validate models with real-world data before deployment

CONCLUSION

OUR
HYPOTHESIS
WAS
SUPPORTED:
DISCHARGE
DESTINATION
AND CHRONIC
CONDITIONS
ARE KEY RISK
FACTORS

BOTH MODELS
IDENTIFIED
STRONG
PREDICTORS LIKE
REHAB
DISCHARGE,
HYPERTENSION,
AND BMI

MODEL
PERFORMANCE
WAS MODEST
(AUC ~0.56–0.57),
BUT SHOWED
MEANINGFUL
PATTERNS

RISK SCORING AND DASHBOARDS OFFER PRACTICAL TOOLS FOR CLINICAL DECISION-MAKING

FUTURE
IMPROVEMENTS
INCLUDE
ADDING NEW
FEATURES,
VALIDATING
WITH REAL
DATA, AND
REFINING MODEL
DESIGN

PREDICTIVE
MODELING CAN
HELP REDUCE
UNNECESSARY
READMISSIONS—
AND SUPPORT
BETTER
OUTCOMES

REFERENCES

- I. Bauder, R.A. & Khoshgoftaar, T.M. (2022). A survey of machine learning techniques for patient readmission prediction. Health Information Science and Systems, 10(1), 1-17. Survey of ML algorithms used in readmission prediction including preprocessing, feature selection, and model evaluation.
- 2. Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., & Elhadad, N. (2015). Intelligible models for healthcare: Predicting pneumonia risk and hospital readmission. Proceedings of the 21st ACM SIGKDD International Conference of Knowledge Discovery and Data Mining, 1721-1730 Demonstrates trade-offs between black-box and interpretable models in critical care predictions.
- 3. Centers for Medicare & Medicaid Services. (2022). Hospital Readmissions Reduction Program (HRRP). Retrieved from http://www.cms.gov/medicare/medicare-fee-for-service-payment/acuteinpatientpps/readmissions-reduction-program Background for policy and financial implications of hospital readmission rates.
- 4. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., & Sun, J. (2016). Doctor Al: Predicting clinical events via recurrent neural networks. Machine Learning for Healthcare Conference (MLHC). Deep learning-based model that simulates clinical decision-making with sequential EHR data.
- 5. Futoma, J., Morris, J., & Lucas, J. (2015). A comparison of models for predicting early hospital readmissions. Journal of Biomedical Informatics, 56, 229-238. Applicable for benchmarking, comparing logistic regression, decision trees, and ensemble methods.
- 6. Johnson, A. E.W., Pollard, T. J., Shen, L., Lehman, L. H., Feng, M., Ghassemi, M., ... & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific Data, 3, 160035. Real-world EHR dataset used for benchmarking of Al healthcare models.
- 7. Kaggle. (2022). Synthetic hospital readmission prediction dataset. Retrieved from https://www.kaggle.com/datasets/siddharth0935/hospital-readmission-predictionsynthetic-dataset Dataset used for this project that, while synthetic, simulates real-world hospital data while preserving patient privacy.
- 8. Lundberg, S. M., & Lee, S. -I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30 (NeurIPS).
- 9. Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216-1219.— Explores ethical concerns, clinical applications, and limitations of machine learning in medicine.
- 10. Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine 380(14), 1347-1358. A broad overview of ML applications across clinical domains with a focus on integration and usability.