Trabalho Final - Microeconomia Empírica

Aluno: José Eduardo Sousa 3 de abril de 2019

1 Introdução

O objetivo deste trabalho é estimar uma matriz uma matriz de Slutsky para homens e mulheres solteiros, e assim testar a hipótese de simetria da matriz, oriunda da teoria econômica. Para isso, são utilizados os dados da POF (Pesquisa de Orçamentos Familiares - IBGE) de 2002/2003 e 2008/2009.

Desta forma, este estudo é uma replicação parcial das análises estudadas em Browning e Chiappori (1998), cujo trabalho usou tal estratégia para testar um modelo de coletividade; e Barbosa (2012), que investigou a mesma questão para o Brasil a partir de dados da POF.

2 Teoria

Sabemos que a teoria neoclássica de demanda é desenvolvida para indivíduos, embora seja comum em trabalhos empíricos que esta seja assumida como válida para domicílios com diversos membros.

Neste contexto, Browning e Chiappori (1998) desenvolveram uma extensão da teoria do consumidor para domicílios com diversos habitantes, o que foi denominado de modelo de coletividade. Os autores mostram que no caso coletivo, para a matriz análoga à matriz de slutsky do caso unitário (chamada então de pseudo-slutsky), a hipótese de simetria se generaliza para a hipótese de que a matriz pseudo-slutsky é igual a soma de uma matriz simétrica e uma matriz de posto igual a um.

Para testar a hipotese de simetria e a adequação da teoria de coletividade, se utilizam de dados de pesquisas de orçamentos familiares canadenses e estimam um sistema de demanda baseado no modelo *Quadratic Almost Ideal Demand System* (QUAIDS).

Deste modo, não rejeitam a hipótese de simetria da matriz de slutsky para domicílios com apenas um morador, mas rejeitam tal hipótese para domicílios com duas pessoas. E por fim o teste indica a adequação do modelo de coletividade para domicílios de duas pessoas.

No Brasil, o trabalho de Barbosa (2012) investigou a mesma questão usando dados da POF e obteve conclusões semelhantes.

No presente trabalho, iremos estimar uma matriz de Slutsky para homens e mulheres solteiros, e testar a hipótese de simetria. Deste modo, dada a teoria e evidência empírica discutida acima, espera-se que não se rejeite a hipótese de simetria, uma vez que lidaremos apenas com domicílios com apenas um morador, onde, a princípio, vale a teoria do consumidor tradicional (modelo unitário).

3 Análise Empírica

3.1 Extraindo e organizando dados de despesas e preços

Primeiramente, extraímos as bases de dados da POF (Pesquisa de Orçamentos Familiares - IBGE) de 2002/2003 e 2008/2009), via datazoom.

Feito isso, agregamos os diversos tipos de despesas em sete categorias, além das despesas totais:

0. Despesa total

4. Vestuário.

1. Alimentação.

5. Transporte.

2. Habitação.

6. Saúde e cuidados pessoais.

3. Mobiliários e artigos do lar.

7. D. pesssoais, educação e comunicação.

Para a estimação do sistema de demanda, precisamos dos índices de preços das diversas categorias em cada região para os anos de 2002 e 2008. A partir dos dados disponíveis dos índices em 1999 e dados da inflação ano a ano, obtemos os seguintes índices de preços para os anos de interesse, onde a variável "Preço x" representa o índice de preços da categoria $x \in \{0, 1, 2, 3, 4, 5, 6, 7\}$, tais como descritas anteriormente:

Tabela 1: Índices de preços de 2002 (desagregados por cidade e categoria de consumo).

Cidade	Preço 0	Preço 1	Preço 2	Preço 3	Preço 4	Preço 5	Preço 6	Preço 7
Brasil	162,93	159,83	174,74	141,18	125,70	215,51	160,41	145,91
Belém	155,47	167,46	177,17	133,00	116,39	211,56	148,95	118,34
Fortaleza	144,15	157,41	116,41	132,53	118,76	197,51	151,35	125,08
Recife	146,81	154,20	121,70	132,81	123,00	200,98	171,37	122,23
Salvador	148,62	154,41	131,50	132,84	123,02	204,58	153,38	133,41
Belo Horizonte	151,66	150,57	139,52	144,59	127,16	205,29	153,96	141,62
Rio de Janeiro	169,97	165,06	206,70	142,47	120,36	237,62	151,54	136,46
Săo Paulo	168,22	163,58	195,02	146,50	121,81	210,78	164,01	153,55
Curitiba	163,35	161,03	147,42	153,19	137,32	237,31	183,12	146,26
Porto Alegre	162,45	146,14	174,41	137,76	134,78	217,87	171,47	158,28

Tabela 2: Índices de preços de 2008 (desagregados por cidade e categoria de consumo).

Cidade	Preço 0	Preço 1	Preço 2	Preço 3	Preço 4	Preço 5	Preço 6	Preço 7
Brasil	230,82	225,01	248,45	159,87	190,52	322	227,9	216,54
Belém	228,69	261,49	240,97	157,48	163,62	316,56	224,3	173,18
Fortaleza	199,13	216,36	176,36	144,75	166,83	259,78	216,02	191,82
Recife	212,81	212,81	203,73	152,59	187,05	299,73	247,79	186,82
Salvador	212,27	208,2	186,39	155,65	185,68	345,96	220,59	196,51
Belo Horizonte	228,26	221,58	234,33	176,88	191,92	328,01	219,65	213,65
Rio de Janeiro	242,32	222,11	290,17	162,67	192,82	385,81	209,24	206,85
Săo Paulo	230,14	229,54	253,35	155,63	184,86	309,53	229,5	218,63
Curitiba	220,15	220,51	196,07	177,69	200,35	305,29	253,87	218,52
Porto Alegre	230,42	205,65	253,16	158,3	208,68	320,32	240,81	235,96

3.2 Preparando a base de dados para a estimação

Uma vez agregadas as despesas nas sete categorias mencionadas acima, calculamos também os *budget shares* de cada grupo de gastos, e mantemos na base de dados variáveis que serão necessárias posteriormente, como códigos indicadores do domicílio, uma variável que indica o número de residentes no domicílio, renda e sexo.

Feita essa seleção de variáveis necessárias nas bases de dados das POFs de 2002 e 2008, realizase uma fusão (merge) entre estas bases e os índices de preços calculados para os respectivos anos.

Por fim, de posse destas duas bases com dados de despesas e índices de preços para 2002 e 2008, realiza-se um empilhamento (append) destas, e mantemos na base de dados somente observações cujos domicílios possuem somente um morador e que se localizam em cidades as quais possuímos índices de preços: Belo Horizonte, Belém, Curitiba, Fortaleza, Porto Alegre, Recife, Rio de Janeiro, Salvador e São Paulo.

Com isso, temos o banco de dados final, que nos possibilita realizar a estimação do sistema de demanda desejado.

3.3 Estimação do sistema de demanda e matriz de slutsky

A estimação do sistema de demanda se baseia no método de Quadratic Almost Ideal Demand System (QUAIDS), que permite uma aproximação flexível da estrutura de preferências do consumidor. O QUAIDS generaliza o modelo AIDS, que se baseia em uma aproximação de primeira ordem para os budget shares. Estes são apresentados como uma função dos logaritimos dos preços e da despesa total, mantendo as propriedades derivadas da teoria do consumidor. Ao impor um termo quadrático no logaritimo da despesa total, o modelo QUAIDS apresenta a flexibilidade de curvas de Engel não lineares.

Em tal modelo, é posssível testar algumas hipóteses derivadas da teoria do consumidor diretamente analisando seus parâmetros, pois o modelo permite agregação dos consumidores. As restrições de *adding-up*, homogeneidade e simetria podem ser testadas então nesta abordagem, e nosso objetivo aqui é então usar a estimação QUAIDS para testar a hipótese de simetria da matriz de Slutsky.

Para estimar portanto o sistema QUAIDS no stata, usaremos o pacote que contém o comando aidsills. Tal método de estimação busca superar o antigo método dado pelo comando quaids, e se baseia no estimador de *Iterative linear least-squares* (ILLS). Este comando possui a vantagem de permitir contornar o problema de endogeneidade nas variáveis de preços e/ou despesa total por meio de técnicas de variáveis instrumentais. De fato, na estimação aqui realizada, usamos a variável renda como instrumento para a suspeita endógena variável de despesa total.

A depender da especificação usada, o comando aidsills, após estimar o sistema de demanda e matriz de slutsky, pode nos fornecer testes de homogeneidade e simetria.

3.4 Resultados

Estimamos o sistema de demanda portanto separadamente para uma amostra de homens solteiros e de mulheres solteiras, respectivamente, ambos residentes em áreas urbana. Além disso, utilizamos variáveis de controle sociodemográficas incluídas no termo *intercept*, como *dummies* de tempo e região e variáveis de idade e escolaridade. A estimação é realizada então com a seguinte especificação no *Stata*:

```
aidsills budget* if sexo == 1 & urbano == 1, prices(price_1 - price_7)
expenditure(despesa_0) ivexpenditure(renda) intercept(ano_2008 idade anos_est
casa_propria nordeste norte sudeste) quadratic homogeneity
```

```
aidsills budget* if sexo == 2 & urbano == 1, prices(price_1 - price_7)
expenditure(despesa_0) ivexpenditure(renda) intercept(ano_2008 idade anos_est
casa_propria nordeste norte sudeste) quadratic homogeneity
```

Os outcomes completos do modelo estimado serão omitidos aqui por conta de sua extensão, e constam num arquivo log em anexo. Os resultados apresentam os parâmetros estimados da regressão instrumental que visa contornar a endogeneidade da despesa total, a estimação do modelo QUAIDS e o teste de simetria, um teste cuja hipótese nula é a de simetria da matriz de Slutsky, e que se baseia em uma estatística de teste qui-quadrado a partir da estimativas da relação entre cada budget share e os preços de cada categoria.

O principal objetivo desta análise empírica é realizar testes da simetria. O modelo estimado nos forneceu os seguintes resultados paras os testes:

• Teste de Simetria da matriz de slutsky.

```
H0: Simetria vs H1: Matriz não simétrica.
```

• Teste para homens:

```
SYMMETRY TEST: Chi2 ( 15) = 60.59 Prob > chi2 = 0.0000
```

• Teste para mulheres:

```
SYMMETRY TEST: Chi2 ( 15) = 34.91 Prob > chi2 = 0.0025
```

Como podemos ver, para ambos os sexos os testes rejeitam a hipótese nula de simetria da matriz de slutsky, para todos os níveis de significância.

Portanto, usando dados das pesquisas POF 2002 e POF 2008, concluímos que a hipótese de simetria da matriz de slutsky não é válida para homens e mulheres solteiros. Note que esta conclusão é diferente da obtida nos artigos motivadores deste estudo. É possível que hábitos de consumo da população brasileira tenham se alterado em relação aos anos os quais o trabalho de Barbosa (2012) analisou. Outra hipótese mais plausível é que não tenhamos controlado

por variáveis sociodemográficas suficientes. É possível notar que a medida que adicionamos mais variáveis de controle, a estatística de teste se reduz, o que indica a tendência de que se pudessemos controlar por mais variáveis relevantes, o teste resultaria no resultado de aceitar a hipótese de simetria, como esperado pela literatura.

Referências Bibliográficas

- Browning, Martin, and Pierre-André Chiappori (1998). "Efficient Intra-Household Allocation: A General Characterization and Empirical Tests." Econometrica, 66 (6), 1241-1278.
- Barbosa, Ana Luiza Neves de Holanda. Ensaios sobre diferencial de salários e estimação de demanda no Brasil (2012). Tese de Doutorado FGV