

NILE UNIVERSITY of NIGERIA

FACULTY OF ENGINEERING

GET 101 2021. 2nd Intake. Introduction to Engineering.

Presentation 7 - FUNDAMENTAL DIMENSIONS AND BASE UNITS

Abdullahi SB Gimba, PhD

abdullahi.gimba@nileuniversity.edu.ng

8

John Chijioke

john.chijioke@nileuniversity.edu.ng

15th November 2021.

- Dimension is a measurable physical idea
 - consists solely of a word description with no numbers

- Unit allows us to quantify a dimension
 - to state a number describing how much of that dimension exists in a specific situation
 - Units are defined by convention and related to an accepted standard.

- Length is a dimension
 - mile,
 - foot
 - meter
 - light- year
 - fathom.

- Time is a dimension
 - second
 - minute
 - hour
 - day
 - fortnight
 - year
 - century.

- Temperature is a dimension
 - Celsius
 - Fahrenheit
 - kelvin.

Introduction to Dimensions & Units

 The dimensions of length, time, and temperature are familiar to us, but in reality, we do not often use these words since they are fairly vague.

We d	o not	say				
------	-------	-----	--	--	--	--

It is really a long **length** to Lumberton.

Bake the cake for a time.

Set the oven to a high **temperature**.

We do say . . .

Lumberton is about 175 miles away.

Bake the cake for 35 minutes.

Set the oven to 450 degrees

Fahrenheit.

- The difference between the left and the right columns is that
 - the statements on the left refer to dimensions and
 - those on the right refer to established standards or units.

The Metric System

- The SI system (Le Système International d'Unités)
- is the standard set of units for most of the world.
- Originally developed by French scientists under King Louis XVI,
- the SI system was finalised by the international scientific community as the standard unit system in 1971.
- This system defines seven base units, from which all others are derived.
- Table 7-1 below shows the seven base units and their corresponding fundamental dimensions.

The Metric System

Table 7-1 Fundamental dimensions and base units

Dimension	Symbol	Unit	Symbol
Length	L	meter	m
Mass	М	kilogram	kg
Time	Т	second	S
Temperature	Θ	kelvin	K
Amount of substance	Ν	mole	mol
Light intensity	J	candela	cd
Electric current	I	ampere	А

The SI Prefixes

- The SI system is based upon multiples of 10
- By using an **SI prefix** when reporting numbers, we avoid scientific notation or long strings of zeros
- For example, instead of saying, "The distance to Atlanta is 198,000 meters," we would say, "The distance to Atlanta is 198 kilometers."
- For a list of SI prefixes, refer to Table 7-2 below:
- Note that the abbreviations for all SI prefixes
 - from kilo- down to yocto- are lowercase,
 - whereas from Mega- up to Yotta- are uppercase

The SI Prefixes

Table 7-2 SI prefixes (example: 1 millimeter [mm] = 1×10^{-3} meters [m])

Numbers Less than One		Numbers Greater than One			
Power of 10	Prefix	Abbreviation	Power of 10	Prefix	Abbreviation
10 ⁻¹	deci-	d	10 ¹	deca-	da
10 ⁻²	centi-	С	10 ²	hecto-	h
10 ⁻³	milli-	m	10 ³	kilo-	k
10 ⁻⁶	micro-	μ	10 ⁶	Mega-	М
10 ⁻⁹	nano-	n	10 ⁹	Giga-	G
10 ⁻¹²	pico-	р	10 ¹²	Tera-	Т
10 ⁻¹⁵	femto-	f	10 ¹⁵	Peta-	Р
10 ⁻¹⁸	atto-	а	10 ¹⁸	Exa-	Е
10 ⁻²¹	zepto-	Z	10 ²¹	Zetta-	Z
10 ⁻²⁴	yocto-	У	10 ²⁴	Yotta-	Υ

The SI Prefixes - Scientific & Engineering Notation

- Determining the appropriate SI prefix to use becomes simple when the number is placed in engineering notation:
 - just examine the exponent.
- Scientific notation is
 - typically expressed in the form $\#.\#\#\# \times 10^{N}$,
 - where the digit to the left of the decimal point is the most significant nonzero digit of the value being represented.
 - Sometimes, the digit to the right of the decimal point is the most significant digit instead.
 - The number of decimal places can vary, but is usually two to four.
 - N is an integer, and multiplying by 10^N serves to locate the true position of the decimal point.

The SI Prefixes - Scientific & Engineering Notation

Engineering notation

- is expressed in the form ###.### × 10^M,
 - where M is an integer multiple of 3, and
 - the number of digits to the left of the decimal point is
 1, 2, or 3
 - as needed to yield a power of 10 that is indeed a multiple of 3.
- The number of digits to the right of the decimal point is typically between two and four.

Example 7.1 - The SI Prefixes

Express the following values using scientific notation, engineering notation, and using the correct SI prefix.

Standard

- (a) 43,480,000 m
- (b) 0.0000003060 V
- (c) 9,860,000,000 J
- (d) 0.0351 s

Example 7.1 - The SI Prefixes

Solution

Standard	Scientific	Engineering	With Prefix
(a) 43,480,000 m	$4.348 \times 10^7 \text{ m}$	$43.48 \times 10^6 \text{ m}$	43.48 Mm
(b) 0.0000003060 V	$3.060 \times 10^{-7} \text{ V}$	$306.0 \times 10^{-9} \text{ V}$	306.0 nV
(c) 9,860,000,000 J	9.86 × 10 ⁹ J	$9.86 \times 10^{9} \text{J}$	9.86 GJ
(d) 0.0351 s	$3.51 \times 10^{-2} \text{ s}$	$35.1 \times 10^{-3} \text{ s}$	35.1 ms

Note that

- the numeric values of the mantissa are the same in the last two columns, and
- the exponent in engineering notation specifies the metric prefix.

The Official SI Rules

When reporting units using the SI system, follow these official rules.

- 1. If a unit abbreviation appears as a capital letter, it has been named after a person; all other abbreviations appear as lowercase letters.
- 2. Symbols of units are not shown as plural.
- 3. Symbols are not shown with a period unless they appear at the end of a sentence.
- 4. Symbols are written in upright Roman type (m, k, L) to distinguish them from mathematical variables (m, k, l), which are indicated by italics.

- 5. One space separates the number and symbol, except with the degree symbol referring to an angle.
- 6. Spaces or commas may be used to group digits by threes.
- 7. Symbols for derived units formed by multiple units are joined by a space or interpunct (the center dot). Care must be taken to avoid confusing SI prefixes with units.
- 8. Symbols for derived units formed by dividing units are joined by a virgule (the "slash" /) or shown with a negative exponent.
- 9. Do not combine prefixes to form compound prefixes. Use the single correct prefix.

The Official SI Rules

When reporting units using the SI system, follow these official rules.

- 1. If a unit abbreviation appears as a capital letter, it has been named after a person; all other abbreviations appear as lowercase letters.
 - For example, the abbreviation "N" stands for "newton," the SI unit of force named after Isaac Newton.
 - Correct: The book weighs 5 N.
 - Incorrect: The book weighs 5 n.
 - Correct: The rod is 5 m long.
 - Incorrect: The rod is 5 M long.
 - The one exception to this rule is the volumetric unit of liter.
 - The abbreviation is shown as L,
 - since a lowercase I can be confused with both the number 1 and the uppercase letter I.

- 2. Symbols of units are not shown as plural.
 - Correct: 10 centimeters = 10 cm
 - Incorrect: 10 centimeters ≠ 10 cms
- 3. Symbols are not shown with a period unless they appear at the end of a sentence.
 - Correct: The rod is 5 mm long.
 - Incorrect: The rod is 5 mm. long.

- 5. Symbols are written in upright Roman type (m, k, L)
 - to distinguish them from mathematical variables (m, k, l), which are indicated by italics.

- 6. One space separates the number and symbol, except with the degree symbol referring to an angle.
 - Correct: 5 mm or 5°
 - Incorrect: 5mm or 5 °
- 7. Spaces or commas may be used to group digits by threes.
 - Correct: 1 000 000 or 1,000,000

- 7. Symbols for derived units formed by multiple units are joined by a space or interpunct (the center dot).
 - Care must be taken to avoid confusing SI prefixes with units.
 - Correct: kg m or kg . m
 - Incorrect: kgm or mkg
 - This is particularly important when confusion might arise.
 - For example, "ms" stands for millisecond, but "m s" stands for meter second.
 - In cases like this, using a center dot is preferable since it is less likely to be misunderstood.

- 8. Symbols for derived units formed by dividing units are joined by a virgule (the "slash" /) or shown with a negative exponent.
 - Care must be taken to appropriately display the entire denominator.
 - Correct: N/(m s²) or N m⁻¹ s⁻²
 - Incorrect: N/m s²

- 9. Do not combine prefixes to form compound prefixes.
 - Use the single correct prefix.
 - Correct: picojoules (pJ)
 - Incorrect: millinanojoules (mnJ)
 - Correct: Gigaseconds (Gs)
 - Incorrect: kiloMegaseconds (kMs)

Example 7.2 - The Official SI Rules

Indicate if the following units are correctly expressed according to the official SI rules. If the unit is incorrectly displayed, show the correction.

- a. Reading this sentence took 5 Secs.
- b. The average person's pupils are 60mms. apart.
- c. One gallon is the same as 380 microkiloliters

The Other Unit Systems

- Several other systems of units
- The other countries that use non SI units are USA, Liberia and Myanmar, Great Britain to some extent
- It is important to know how to convert between all unit systems.
 - Table 7-3 below compares several systems.
- The system listed as AES (American Engineering System)
 - in common use by the general public in the United States.
- The USCS (United States Customary System)
 - commonly called "English" units.

The Other Unit Systems

Table 7-3 Comparison of unit system, with corresponding abbreviations

Dimension	SI (MKS)	AES	USCS
Length {L}	meter [m]	foot [ft]	foot [ft]
Mass {M}	kilogram [kg]	pound-mass [lb _m]	slug
Time {T}	second [s]	second [s]	second [s]
Relative temperature $\{\Theta\}$	Celsius [°C]	Fahrenheit [°F]	Fahrenheit [°F]
Absolute temperature $\{\Theta\}$	kelvin [K]	Rankine [°R]	Rankine [°R]

The Other Unit Systems

- The units in Table 7-4 are not technically in the SI system,
 - but due to their common usage,
 - are acceptable for use in combination with the base SI units.

Table 7-4 Acceptable non-SI units

Unit	Equivalent SI	Unit	Equivalent SI
Astronomical unit [AU]	$1 \text{ AU} = 1.4959787 \times 10^{11} \text{ m}$	day [d]	1 d = 86,400 s
Atomic mass unit [amu]	1 amu = $1.6605402 \times 10^{-24}$ g	hour [h]	1 h = 3,600 s
Electronvolt [eV]	$1 \text{ eV} = 1.6021773 \times 10^{-19} \text{ J}$	minute [min]	1 min = 60 s
Liter [L]	$1 L = 0.001 m^3$	year [yr]	1 yr = 3.16×10^7 s
		degree [°]	$1^{\circ} = 0.0175 \text{ rad}$ or $1 \text{ rad} = 57.3^{\circ}$

Introduction

- Conversion factors are used to translate from one set of units to another.
- This must be done correctly and consistently to obtain the right answers.

Unit Conversion Procedure

- 1. Write the value and unit to be converted.
- 2. Write the conversion formula between the given unit and the desired unit.
- 3. Make a fraction, equal to 1, of the conversion formula in Step 2, such that the original unit in Step 1 is located either in the denominator or in the numerator, depending on where it must reside so that the original unit will cancel.
- 4. Multiply the term from Step 1 by the fraction developed in Step 3.
- 5. Cancel units, perform mathematical calculations, and express the answer in "reasonable" terms (i.e., not too many decimal places).

Unit Conversion Procedure

LENGTH

$$1 \text{ m} = 3.28 \text{ ft}$$

$$1 \text{ km} = 0.621 \text{ mi}$$

$$1 \text{ ft} = 12 \text{ in}$$

$$1 \text{ in} = 2.54 \text{ cm}$$

$$1 \text{ mi} = 5,280 \text{ ft}$$

$$1 \text{ yd} = 3 \text{ ft}$$

IMPORTANT CONCEPT - Be sure to *always* include units in your calculations *and* your final answer!

Example 7.3 - Unit Conversion

Convert the length 40 yards [yd] into units of feet [ft].

Method	Steps	
(1) Term to be converted	40 yd	
(2) Conversion formula	1 yd = 3 ft	
(3) Make a fraction (equal to one)	3 ft 1 yd	
(4) Multiply	$\frac{40 \text{ yd}}{1 \text{ yd}} \left \frac{3 \text{ ft}}{1 \text{ yd}} \right $	
(5) Cancel, calculate, be reasonable	120 ft	

Example 7.4 - Unit Conversion

Convert the time 456,200 seconds [s] into units of minutes [min].

Method	Steps		
(1) Term to be converted	456,000 s		
(2) Conversion formula	1 min = 60 s		
(3) Make a fraction (equal to one)	1 min 60 s		
(4) Multiply	456,000s 1 min 60s		
(5) Cancel, calculate, be reasonable	7,600 min		

Example 7.5 - Unit Conversion

The highest mountain in the world is Mount Everest in Nepal. The peak of Mount Everest is 29,029 feet above sea level. Convert the height from feet [ft] to miles [mi].

To be considered a full time employee, companies in the United States required you work more than 30 hours in a week. Convert the time 30 hours [h] into units of minutes [min].

ANY QUESTION?

NEXT TOPIC

IS