CYBER SECURITYASSIGNMENT-2

REPORT

Name: BASSA SRILAKSHMI

RollNo:1601-23-737-005

Date :05/10/2025

Github Repository: https://github.com/BASSASRILAKSHMI/CS-ASSIGNMENT-2 **Research Paper:** Enhancing Cyber Security Through Predictive Analytics: Real-

Time Threat Detection and Response https://arxiv.org/abs/2407.10864

INTRODUCTION

Modern cybersecurity is hampered by traditional, reactive Intrusion Detection Systems (IDS) that fail against zero-day attacks and produce high false positives. This project implements a proactive, multi-class Network Intrusion Detection System (NIDS) using Machine Learning (ML). We selected and optimized the efficient Random Forest classifier on the CICIDS2017 dataset. The goal is to shift network defense from remedial measures to high-accuracy, real-time predictive analytics

RESEARCH GAP

The primary gap is the lack of systems that combine highly accurate, multi-class threat classification with operational efficiency and an automated response capability. Traditional systems struggle with generalizing accurately to diverse, unseen attack patterns. This project fills the gap by optimizing the Random Forest model for efficiency and integrating its output with a simulated, tangible, real-time alert/response action (email alerts)

METHODOLOGY

We utilized a 200,000-row subset of the real-world CICIDS2017 network traffic dataset. Data preprocessing involved using Label Encoder for attack types and StandardScaler for feature normalization . The Random Forest model was efficiently optimized using RandomizedSearchCV to find the best hyperparameters . The solution culminates in a real-time simulation where the model predicts the threat and immediately triggers automated email alerts for non-benign traffic

Screenshots:

Dataset screenshot:

<class 'pandas.core.frame.dataframe'=""></class>					
RangeIndex: 2520751 entries, 0 to 2520750					
Data columns ((total 53 columns):				
# Column		Dtype			
0 Destinati	on Port	int64			
1 Flow Dura	ntion	int64			
2 Total Fwd	l Packets	int64			
3 Total Len	ngth of Fwd Packets	int64			
4 Fwd Packe	et Length Max	int64			
5 Fwd Packe	et Length Min	int64			
6 Fwd Packe	et Length Mean	float64			
7 Fwd Packe	et Length Std	float64			
8 Bwd Packe	et Length Max	int64			
9 Bwd Packe	et Length Min	int64			
10 Bwd Packe	et Length Mean	float64			
11 Bwd Packe	et Length Std	float64			
12 Flow Byte		float64			
13 Flow Pack	cets/s	float64			
14 Flow IAT	Mean	float64			
15 Flow IAT	Std	float64			
16 Flow IAT	Max	int64			
17 Flow IAT	Min	int64			
18 Fwd IAT T	otal	int64			
19 Fwd IAT M	1ean	float64			
20 Fwd IAT S	Std	float64			
21 Fwd IAT M	lax	int64			
22 Fwd IAT M	1in	int64			
23 Bwd IAT T	otal	int64			
04 0 1 747 1		(1) 164			

Accuracy screenshot:

riccuracy sercensitor.							
Accuracy: 0.99	8325						
Classification	Report: precision	recall	f1-score	support			
0	0.69	0.83	0.75	24			
1	1.00	0.99	1.00	146			
2	1.00	1.00	1.00	2011			
3	1.00	1.00	1.00	3070			
4	1.00	1.00	1.00	33234			
5	0.99	0.99	0.99	1462			
6	1.00	0.94	0.97	53			
accuracy			1.00	40000			
macro avg	0.95	0.97	0.96	40000			
weighted avg	1.00	1.00	1.00	40000			

Confusion matrix Screenshot:

	Confusion Matrix								
	0 -	20	0	0	0	4	0	0	- 30000
	٦ -	0	145	0	0	1	0	0	- 25000
	۲ -	0	0	2011	0	0	0	0	- 20000
Actual	m -	0	0	1	3056	13	0	0	- 15000
	4 -	9	0	1	7	33202	15	0	- 10000
	ი -	0	0	0	0	13	1449	0	- 5000
	9 -	0	0	0	0	3	0	50	
		Ó	i	2	3 Predicted	4	5	6	- 0

Result Screenshot

```
Incoming Packet #1: Predicted - 4
Alert! Possible Attack Detected: 4
Incoming Packet #2: Predicted - 4
Alert! Possible Attack Detected: 4
Incoming Packet #3: Predicted - 4
Alert! Possible Attack Detected: 4
Incoming Packet #4: Predicted - 4
Alert! Possible Attack Detected: 4
Incoming Packet #5: Predicted - 4
Alert! Possible Attack Detected: 4
Incoming Packet #6: Predicted - 3
Alert! Possible Attack Detected: 3
Incoming Packet #7: Predicted - 4
Alert! Possible Attack Detected: 4
Incoming Packet #7: Predicted - 4
Alert! Possible Attack Detected: 4
Incoming Packet #8: Predicted - 4
```

DISCUSSION

The optimized Random Forest model achieved high performance in multi-class threat classification. However, the discussion highlights that purely supervised models risk a drastic drop in recall when facing entirely *novel* (unseen) attacks. Furthermore, simple network features like packet length alone are insufficient for precise classification, and the foundational CICIDS2017 dataset is known to contain duplicate data and mislabels, which risks skewing model training.

FUTUREIMPROVEMENTS

Future research should prioritize rigorous data cleaning to address known imperfections in the underlying dataset. We suggest exploring hybrid models that incorporate unsupervised techniques (e.g., Isolation Forest) to ensure high recall against novel or zero-day threats. Additionally, Deep Learning models (like CNNs or RNNs) should be investigated for their ability to automatically extract complex temporal dependencies from raw traffic flows, which current models may miss.

CONCLUSION

This project successfully implemented a highly accurate, optimized Random Forest-based NIDS for multi-class threat classification. The integration of a real-time detection and automated response mechanism successfully addresses a critical operational gap in cybersecurity . This work provides a functional blueprint for transitioning security operations from reactive logging to proactive, data-driven threat anticipation and mitigation.