

COMPOSITION OF FAULT LOCALIZATION HEURISTICS

Diogo de Freitas, Plínio Leitão-Júnior, Celso Camilo-Junior, Altino Dantas, Rachel Harrison

Agenda

- 1. Localização de Defeitos
- 2. Localização de Defeitos Baseada em Busca
- 3. Proposta Composição de Heurísticas com PG
- 4. Experimentos
- 5. Considerações Finais

- Identificar no código a localização do defeito que provoca falha observada no teste;
- Eleva custo do projeto;
- Aumento de complexidade e tamanho de projetos;

ID	Código	n = 1	n = 2	n = 3	n = 4
1	if (n % 2 == 0):	1	1	✓	✓
2	x = n + 1 # bug		✓		✓
3	else:	✓		✓	
4	x = n - 1	✓		✓	

ID	Código	$n_s(e)$	$n_f(e)$	n_s	n_f
1	if (n % 2 == 0):	2	2	2	2
2	x = n + 1 # bug	2	0		
3	else:	0	2		
4	x = n - 1	0	2		

Tarantula:

$$S(e) = \frac{\frac{n_f(e)}{n_f}}{\frac{n_s(e)}{n_s} + \frac{n_f(e)}{n_f}}$$

Ochiai:

$$S(e) = \frac{n_f(e)}{\sqrt{n_f \times (n_f(e) + n_s(e))}}$$

Calcular S(e) de cada elemento;

ID	Código	Tarantula	Ochiai	
1	if (n % 2 == 0):	0,5	0,707	
2	x = n + 1 # bug	1	1	
3	else:	0	0	
4	x = n - 1	0	0	

LOCALIZAÇÃO **DE DEFEITOS BASEADA EM BUSCA**

LOCALIZAÇÃO DE DEFEITOS BASEADA EM BUSCA

- Composição de heurísticas de localização de defeitos;
- Aplicação de meta-heurísticas para busca dos pesos;

$$H_{Composite}(e) = \sum_{i=1}^{n} w_i \times H_i(e)$$

LOCALIZAÇÃO DE DEFEITOS BASEADA EM BUSCA

- Search-based Fault Localization
- Combinação linear de heurísticas;
- Siemens Suite;
- Não orientado a projetos (generalizado);

Propost a

COMPOSIÇÃO DE **HEURÍSTICAS COM PG**

COMPOSIÇÃO DE HEURÍSTICAS COM PROGRAMAÇÃO GENÉTICA

- Composição de heurísticas por projeto;
- Programação Genética:
- ► Fórmulas matemáticas estruturadas como árvores;
- ► Funções (nós internos): 18 Heurísticas e o numeral "1";
- ► Terminais (folhas): Quatro operações (+, -, ×, ÷), exponenciação, logaritmo, raiz quadrada e função máximo.

COMPOSIÇÃO DE HEURÍSTICAS COM PROGRAMAÇÃO GENÉTICA

4.
EXPERIMENTOS

Configurações Análises Resultados

EXPERIMENTOS CONFIGURAÇÕES

- Abordagens comparadas;
- Função de avaliação: proporção média de elementos investigados para encontrar todos os defeitos;
- ► 1000 gerações de 100 indivíduos;
- Three-fold cross validation:

EXPERIMENTOS CONFIGURAÇÕES

- Software-artifact Infrastructure Repository (SIR);
 - Siemens Suite (107 versões de 7 programas);
- Single-bug;
- Linha de código;
- ► Icov, gcov e JGAP.

EXPERIMENTOS MÉTRICAS

- Score Médio: Esforço médio para localizar todos os defeitos;
- Accuracy (acc@n): Quantidade de defeitos encontrados nas top n posições;
- Wasted Effort (wef@n): Elementos investigados até encontrar algum defeito nas top n posições;
- \rightarrow n = 1, 3, 5 e 10.

RESULTADOS

Score Médio

acc@1

acc@10

5. CONSIDERAÇÕES FINAIS

CONSIDERAÇÕES FINAIS

- Uma nova abordagem para a composição de heurísticas com Programação Genética;
- Treinamento orientado a projetos;
- Outros trabalhos utilizam espaços de busca mais limitados - GP permite soluções mais complexas;
- Melhores resultados em relação às abordagens anteriores.
- Evolução: Investigar o desempenho do método em projetos maiores, reais e multi-bug.

Obrigado!

Dúvidas?

diogom42@gmail.com

