$$n > \left(\frac{2,575.6}{1}\right)^2 \Rightarrow n > 238,85$$
.

Следователно, обемът на извадката трябва да е около 240. ◆

Общи задачи.

- **1.** За изследването на нормално разпределена случайна величина X е получена извадката 36 34 33 36 38 39 40 32.
- а) Да се намерят точковите оценки на математическото очакване EX и дисперсията DX .
- б) Да се намерят доверителните интервали с доверителна вероятност $\gamma = 0,95$ за EX и DX .
- **2.** Наблюдава се работата на автомат, който произвежда детайли по даден стандарт като за определяне на точността му са взети 30 детайла и е изчислена дисперсията на извадката $s_x^2 = 2.9$.
- а) Коя от числените характеристики на извадката оценява точността на автомата? б) Да се намери доверителният интервал за точността на автомата с доверителна вероятност $\gamma = 0.95$.
- 3. Автомат пълни бутилки като съдържанието им по стандарт е 300 мл. За определяне на точността на дозировката са проверени 10 бутилки и са получени данните 299, 276, 283, 301, 297, 281, 300, 291, 295, 291. а) Да се намери 90%-доверителен интервал за генералното средно квадратично отклонение на количеството течност в бутилките. б) Ако отклонението е по-голямо от 10мл, то автоматът трябва да се настрои. Има ли основание за пренастройка на апарата?
- 4. При измерване на физична величина X са получени резултатите -2, 0, -1, 1, 3. Да се определи с надеждност γ =0,95 доверителният интервал за стойността на величината X, ако е известно, че точността на измерването е \pm 1,9.
- **5.** В резултат на 5 измервания са получени резултатите 10, 9, 12, 15, 10. Да се намерят представителната грешка с доверителна вероятност $\gamma = 0.99$ на оценката за генералната средна на измерваната величина. Какъв трябва да е обемът на извадката, че представтелната грешка да се намали три пъти?
- **6.** Ако се приеме, че са дадени извадки от нормално разпределени величини, да се намерят доверителни интервали за:
- а) средното време , необходимо за почистване на дома, по извадката от зад. 1, **§22**:
- б) средната стойност и средното отклонение от тази стойност на броя X на дефектните изделия по данните от зад. 3. **§22**:
- в) средната стойност и средното отклонение от тази стойност на броя X на пътниците в един автобус по данните от зад. 5, **§21**.
- 7. От автомат за пакетиране на брашно са взети за контролно измерване 15 пакета и е изчислено $\bar{x}\!=\!956g$.
- а) Ако точността на дозиране е 20 g; да се оцени с надеждност $\gamma = 0.9$ средното тегло на пакет брашно;
- б) Ако извадъчната дисперсия е $\tilde{s}_r = 20g$ да се оцени точността на автомата.
- 8. По проект дължината X на детайл трябва да бъде 50,0 см. За контрол на качеството е получена извадката 4,99 4,91 4,95 4,97 5,00 5,01 4,83 4,91 4,83 4,76. Да се оцени дължината на произвежданите детайли по дадената извадка. Какъв трябва да е обемът на извадката, че тази дължина да е оценена с грешка, помалка или равна на 0,5 см.

ПРОВЕРКА НА ХИПОТЕЗИ

§29. Статистически хипотези. Нулева и конкурираща хипотеза. Грешка от първи и грешка от втори род. Статистически критерий.

Ще се спрем на друга основна задача на математическата статистика — проверка на предположение (хипотеза) относно разпределението или параметър на разпределението на случайна величина X. Задачи от такъв характер са често срещани в различни области на науката, например, при обработка на научни резултати, прогнозиране на икономическото и общественото развитие и др. Решаването им преминава през следните етапи:

- 1) събиране на данни;
- 2) изказване на някаква хипотеза;
- 3) приемане или отхвърляне на хипотезата по утвърдени правила.

Нулева и конкурираща хипотеза.

Нека се изучава случайната величина X (дискретна или непрекъсната), разпределението на която е неизвестно, или е неизвестен някой от параметрите на разпределението й.

Всяко предположение относно закона на разпределение или параметрите на разпределението на случайната величина X се нарича статистическа хипотеза.

Статистическите хипотези се разделят на:

<u>Прости</u> - ако еднозначно определят разпределението на величината X. В противен случай хипотезите се наричат <u>сложни</u>.

Например, нека X има показателно разпределение. Хипотезата $\lambda=3$ е проста, тъй като тогава плътността на разпределение е $p_X(x)=3e^{-3x},\ x>0$. Хипотезата $0<\lambda<3$ е сложна хипотеза, тъй като законът на величината не е еднозначно определен.

Нека с H_0 е означена хипотезата, която ни интересува и която трябва да се провери (<u>нулева хипотеза</u>). Заедно с нея се разглежда и една от алтернативните й хипотези H_1 , която се нарича <u>конкурираща</u>.

<u>Конкуриращата</u> хипотеза H_1 определя каква хипотеза би трябвало да приемем, ако отхвърлим хипотезата H_0 .

Например, ако θ е неизвестен параметър на разпределението на величината X, то конкурираща хипотеза на хипотезата H_0 : $\{\theta=\theta_0\}$ може да е една от хипотезите

$$H_1^{(1)}: \{\theta \neq \theta_0\}, H_1^{(2)}: \{\theta > \theta_0\}$$
 или $H_1^{(3)}: \{\theta < \theta_0\}$.

Ще разглеждаме само прости нулеви хипотези.

Грешки от първи и втори род. Ниво на значимост.

Грешките, които може да направим са:

- да отхвърлим правилна хипотеза H_0 грешка от първи род. Вероятността да се допусне грешка от първи род се нарича ниво на значимост и се означава с α :
- да приемем неправилна хипотеза H_0 грешка от втори род. Вероятността да се допусне грешка от втори род се означава с β .

Очевидно, трябва да се предполага, че α и β са малки числа.

Забележка 29.1. Дефинициите и смисъла на грешките от първи и втори род ще обясним със съпоставяне на решението за приемане на нулевата хипотеза с решението на съд за виновността на обвиняемия. Хипотезата H_0 е невинност на обвиняемия като обвинението представя доказателства за отхвърлянето й. Ако доказателствата са убедителни (значими), то хипотезата за невинност се отхвърля. Един от най-важните принципи, от които се ръководи съдът при взимане на решение, е да не бъде осъден невинен човек, (отхвърляне на вярна хипотеза H_0), т.е. да не се допусне грешка от първи род.

На този принцип са организирани и изложените по-долу тестове за проверка на хипотези – заедно с конкуриращата хипотеза се определя и каква е допустимата вероятност α за отхвърляне на вярна хипотеза H_0 . Стойността на нивото на значимост α се избира от порядъка на 0,1, 0,05, 0,01 и т.н. По този начин се гарантира, че вероятността да се направи грешка е минимална.

Тест за приемане или отхвърляне на нулевата хипотеза. Нека са определени хипотезите H_0 и H_1 и нивото на значимост lpha като за проверка на хипотезата H_0 е взета извадка $(X_1,...,X_n)$ с обем n. Тъй като разполагаме единствено с числени данни, то тестовете за проверка са организирани така. Че по определено правило от извадката да се получи едно число (наричано наблюдавана стойност) и в зависимост от стойността му да се вземе решение за приемане или отхвърляне на нулевата хипотеза. За целта:

1. Избира се подходяща статистика $\mathcal{K} = K(X_1, ..., X_n)$, която да има предварително известно разпределение, т.е. разпределение, което не зависи от наблюдаваните стойности на признака X. Тогава изчислената по извадката стойност на $\mathcal K$ е една от нейните възможни стойности. Параметрите на разпределението на случайната величина ${\mathfrak K}$ се наричат <u>степени на свобода</u> и се определят в предположение, че хипотезата H_0 е вярна.

Случайната величина К, чрез която се проверява статистическа хипотеза се нарича статистически критерий или просто критерий. Формулата $K = K(X_1, ..., X_n)$, по която критерият се изразява чрез наблюдавните стойности, се нарича статистика на критерия K. Изчислената стойност на статистиката се означава с $K_{{\it Ha}\bar{0}_{\it L}}$ и се нарича наблюдавана стойност на критерия.

Пример 29.1 Нека X е нормално разпределена величина и от извадка с обем n сме изчислили извадъчната средна \bar{x} , която се явява наблюдавана стойност на величината $\overline{X} = \frac{1}{n}(X_1 + ... + X_n)$ - също нормално разпределена с $E\overline{X} = EX$ и $\sigma\overline{X} = \frac{\sigma X}{\sqrt{n}}$ (виж забележка 15.2). Тогава величината $Z\!=\!rac{\overline{X}\!-\!EX}{\sigma\!X/\sqrt{n}}$ има стандартно нормално разпределе-

- ние. Следователно.
- величината $Z \sim N(0,1)$, може да бъде статистически критерий,
- формулата $Z = \frac{X EX}{\sigma X / \sqrt{n}}$ е статистика на критерия,
- наблюдаваната стойност е $Z_{ha6.1} = \frac{\overline{x} EX}{\sigma X / \sqrt{n}}$.
- **2.** В зависимост от нивото на значимост α и конкуриращата хипотеза H_1 се определя

област D, за която ако $K_{uq\delta\eta} \in D$ хипотезата се H_0 отхвърля. Тази област се нарича критична област.

Определянето на критичната област се основава на принципа, че малко вероятните събития са практически невъзможни. Тогава, ако хипотезата H_0 е вярна, то наблюдаваната стойност $K_{\mu a \delta x}$ практически не попада в областите на малка вероятност на критерия K, Следователно, имаме основание да обявим за критична такава област D, в която величината Ж приема стойности с малка вероятност, при това вероятността $P(K \in D)$ да бъде равна на α . Очевидно, $K_{\mu\alpha\delta x}$ е една от възможните стойности на K. В случай, че $K_{\mu a \delta y}$ попадне в областта Dпри вярна хипотеза H_0 , то ще направим грешка от първи род. Тъй като $P(K_{\mathsf{Hafn}} \in D) = \alpha$, то вероятността за грешка от първи род е равна на α .

Областта D, определена от стойностите на $K_{{\it ha}\bar{6}{\it h}}$, за които имаме основание да отхвърлим нулевата хипотеза, се нарича критична област.

Ако отхвърлим хипотезата H_0 трябва да приемем хипотезата H_1 . Затова освен от нивото на значимост, критичната област зависи и от конкуриращата хипотеза. Критичната област може да бъде :

<u>Двустранна</u> – ако $D = (-\infty, K'_{\kappa p}) \bigcup (K''_{\kappa p}, \infty))$.

На фиг 29.1. е начертана графиката на плътността на критерия (при предположение, че хипотезата е вярна) като $K'_{kp}=K_{\underline{\alpha}\over 2}$ и $K''_{kp}=K_{1-\underline{\alpha}\over 2}$ са квантили

от ред $\frac{lpha}{2}$ и $1 - \frac{lpha}{2}$. Лицата на двете

защриховани области са равни на $\frac{\alpha}{2}$, а

фиг.29.1.

сумата им е равна на нивото на значимост α .

Едностранна -

- ако $D = (-\infty, K_{\kappa p})$ лявостранна (фиг 29.2a)
- ако $D = (K_{\kappa p.}, \infty)$ дясностранна (фиг 29.2б).

Фиг 29.2а.

Фиг 29.2б.

Тук критичните стойности са съответно квантилите K_{α} и $K_{\mathrm{l-}\alpha}$ от ред α и $1-\alpha$, а лицата на защрихованите области са равни на α .

- 3. Взима се решение за приемане или отхвърляне на хипотезата.
- Ако $K_{\text{набл.}} \not\in D$, то нулевата хипотеза H_0 се приема.
- Ако $K_{{\scriptscriptstyle Ha60L}}$ \in D , то нулевата хипотеза H_0 се отхвърля.

Връзка между вероятностите за грешка от първи и втори род. Мощност на критерия.

Нека са определени хипотезите H_0 и H_1 . Има две възможности да вземем правилно решение – когато приемем вярна хипотеза H_0 и когато отхвърлим грешна хипотеза H_0 , а всички случаи са дадени в таблицата

Решение Реалност	${\cal H}_0$ се приема	${\cal H}_0$ се отхвърля
H_0 е вярна	Правилно решение Вероятност: $1-\alpha$	Грешка от I –ви род Вероятност: α (ниво на значимост)
${\cal H}_0$ е грешна	Грешка от II –ри род Вероятност: $oldsymbol{eta}$	Правилно решение Вероятност: $1-\beta$ (мощност на критерия)

Вероятността да отхвърлим грешна хипотеза се нарича мощност на критерия.

Вероятностите α и β за грешки от първи и втори род са зависими една от друга. За да се види тази зависимост, да разгледаме графиките на плътностите на разпределението на критерия $\mathcal K$ съответно при условие, че H_0 е вярна (фиг. 29.3а) и при условие, че H_1 е вярна (29.3б). Защрихованите области определят областта на грешно решение.

Графика на критерия, при условие, че хипотезата H_0 е вярна

Графика на критерия при условие че хипотезата H_1 е вярна

Фиг. 29.3а

фиг.29.3б

На фиг. 29.4. относно обща координатна система са начертани областите на грешни решения при нива на значимост α = 0,1 и α = 0,05. Забелязваме, че с намаляване на вероятността за грешка от първи род от 0,1 на 0,05 (критичната точка се мести надясно), се увеличава вероятността за грешка от втори род.

Области на грешки от първи и втори род при ниво на значимост $\alpha_1 = 0.1$

Области на грешки от първи и втори род при ниво на значимост $\alpha_2 = 0.05$

Фиг.29.4.

На фиг. 29.5. са съпоставени графиките на плътностите на критерия и областите на грешки от първи и втори род при различни стойности на обема на извадката.

- лявата при по-голям обем на извадката,
- дясната при по-малък.

Както се вижда, при нарастване на обема на извадката областите на грешки от първи и втори род се стесняват.

Фиг.29.5.

Следователно.

- При намаляваме на вероятността α на грешка от първи род се увеличава вероятността β за грешка от втори род и обратно.
- При увеличаване на обема на извадката вероятността за грешки от първи и втори ред намалява.

Накрая, ще обобщим резултатите от тази глава:

- За всяка хипотеза H_0 е определен критерий K, и подходяща статистика, чрез която от извадката се пресмята наблюдаваната стойност $K_{\mu\alpha\delta\tau}$ на критерия.
- Параметрите на критерия K се наричат степени на свобода и в повечето случаи зависят от обема на извадката.
- Параметрите на статистиката на критерия се определят в предположение, че хипотезата H_0 е вярна.
- Критичната област (областта на отхвърляне на H_0) зависи от конкуриращата хипотеза H_1 и от нивото на значимост α .
- Проверката на хипотезта H_0 при конкурираща хипотеза H_1 и ниво на значимост α се извършва по следния начин:
- 1) От извадката се пресмята $K_{\mu q ar{ heta} \pi}$.
- 2) В съответствие с H_1 , нивото на значимост α и броя на степените на свобода се определя критичната област D.
- 3) Взима се решение: ако $K_{\mu\alpha\delta\eta} \notin D$ приема се H_0 ,

ако $K_{\mu\sigma\delta\pi} \in D$ - отхвърля се H_0 .

§30. Непараметрични тестове $-\chi^2$ - критерий на Пирсън за вида на разпределението.

Хипотезите и тестовете за приемането им може да разделим на две групи :

<u>Параметрични</u> - хипотези, които се отнасят за някои количествени параметри на разпределението на изучавания признак X,

 ${\color{blue} \underline{Heпараметрични}}$ - хипотези относно други характеристики на признака X.

Към непараметричните хипотези спадат хипотезите относно вида на разпределението, например, хипотезата $H_0 = X \sim B(N,p)$. Проверката за верността на хипотезата H_0 се извършва на базата на извадка с обем n:

$$\frac{X \mid x_1 \quad x_2 \quad \dots \quad x_k}{m_i \mid m_1 \quad m_2 \quad \dots \quad m_k}, \qquad n = \sum_{i=1}^k m_i \quad .$$

Преди проверката, от извадката понякога се намират оценки на необходимите параметри на разпределението (за биномното разпределение това са параметрите N и p).

Нека броят на определените от извадката параметри на разпределението е l.

След като е определен какъв е видът на разпределението (например, биномно разпределение) и какви са параметрите на това

разпределение (параметрите N и p), се пристъпва към сравняване на резултатите от наблюденията с теоретичните резултати, изчислени съгласно издигнатата хипотеза. Разглеждат се разликите m_i-m_i' между набюдаваните честоти m_i и теоретичните честоти m_i' – честотите, които би трябвало да имат вариантите, ако хипотезата H_0 е вярна. Очевидно,

 $\sum (m_i' - m_i)^2$ е оценка за различията им, но се използва статистиката

$$\chi^2_{\text{HaGЛ}} = \sum_{i=1}^k \frac{(m_i - m'_i)^2}{m'_i}$$
 ,

която има χ^2 -разпределение със степени на свобода s = k - l - 1.

Критичната област е дясностранна (защрихованата област на фиг. 30.1), определена от критичната стойност $\chi_{\alpha}^{2^{(kp)}}(s)$ от ред α на случайната величина $\chi^2(s)$ (равна на квантила $\chi_{1-\alpha}^2(s)$ от ред $1-\alpha$).

Фиг. 30.1

Границите за приемане или отхвърляне се определят от избраното ниво на значимост. По този начин:

Проверката на хипотезата H_0 за вида на разпределението при ниво на значимост lpha се провежда по следния начин:

1) намират се теоретичните честоти m_i^\prime и наблюдаваната стойност

$$\chi^2_{\text{Hafin}} = \sum_{i=1}^k \frac{(m_i - m'_i)^2}{m'_i}$$

- 2) изчисляват се степените на свобода s = k l 1, където:
- \bullet k е броят на различните варианти в извадката,
- ullet l е броят на параметрите на разпределението, оценките на които са определени от извадката
- 3) от таблицата се взима $\chi^2_{\text{KP}.} = \chi^2_{\text{I}-\alpha}(s)$, където $\chi^2_{\text{I}-\alpha}(s)$ е квантилът от ред 1- α на χ^2 -разпределението със степени на свобода s.
- 4) Взима се решение:

Ако $\chi^2_{\rm Hafin} < \chi^2_{\rm KD}$, то хипотезата H_0 се приема.

Ако $\chi^2_{\text{набл}} \ge \chi^2_{\text{KD}}$, то H_0 се отхвърля.

Изчисляване на теоретичните честоти. Нека $p_X(x)$ и $F_X(x)$ са съответно плътността и функцията на разпределение на величината X съгласно издигната хипотеза H_0 . Теоретичните честоти изчисляваме по формулата

$$m'_i = np'_i \quad (i = 1,...,k)$$
,

където вероятностите p_i' пресмятаме в зависимост от разпределението на извадката по следния начин:

• Ако статистическото разпределение е неинтервално, т.е. извадката е дадена във вида $\frac{X \mid x_1 \mid x_2 \mid \dots \mid x_k}{m_1 \mid m_1 \mid m_2 \mid \dots \mid m_k}$, то

$$p'_i = P(X = x_i) = p_X(x_i)$$
 (i=1,...,k).

• Ако статистическото разпределение е интервално, т.е. извадката е дадена примерно във вида

$$\frac{[x_{i-1},x_i)|[x_0,x_1)|[x_1,x_2)|...|[x_{k-1},x_k)|}{m_i|m_1|m_2|...|m_k},$$

$$p'_i = P(x_{i-1} < X < x_i) = F_X(x_i) - F_X(x_{i-1}) \quad (i = 1,...,k).$$

Пример 30.1. Проверява се хипотезата H_0 , че 41% от хората имат кръвна група А, 9% - кръвна група В, 46% - нулева кръвна група и 4 % - кръвна група АВ. Да се провери тази хипотеза с ниво на значимост α = 0,02 , ако са получени следните данни: $\frac{\text{кръвна група}}{m_i}$ $\frac{A}{74}$ $\frac{B}{25}$ $\frac{O}{86}$ $\frac{AB}{15}$.

Решение. 1) Тъй като извадката има обем 200, то съгласно хипотезата, $m'_1 = np'_1 = 0.41.200 = 82$, $m'_2 = 0.09.200 = 18$,

$$m_3' = 0.46.200 = 92$$
, $m_4' = 0.04.200 = 8$,

откъдетс

$$\chi^{2}_{\text{HaGn}} = \sum_{i=1}^{4} \frac{(m_{i} - m_{i}')^{2}}{m_{i}'} = \frac{(74 - 82)^{2}}{82} + \frac{(25 - 18)^{2}}{18} + \frac{(86 - 96)^{2}}{96} + \frac{(15 - 8)^{2}}{8} = 10,02$$

- 2) От извадката не сме изчислявали параметри на разпределението, следователно, броят на степените на свобода е $s\!=\!4\!-\!0\!-\!1\!=\!3$
- 3) Определяме $\chi^2_{\text{кр.}} = \chi^2_{1-\alpha}(s) = \chi^2_{1-0.05}(3) = \chi^2_{0.95}(3) = 7.81$.
- 4) Тъй като $\chi^2_{\text{набл.}} > \chi^2_{\text{кр.}}$, то хипотезата се отхвърля. ♦

Забележка 30.1. Ще обърнем внимание, че в този пример беше разгледана не количествена, а качествена величина, която приема 4 различни "стойности" A,B,O и AB.

Пример 30.2. При ниво на значимост $\alpha = 0,1$ да се провери хипотезата, че величината X, за която е получена извадката $\underbrace{(x_{i-1},x_i)}_{m_i} \mid \underbrace{(0,2)}_{6} \mid \underbrace{(4,6)}_{5} \mid \underbrace{(6,8)}_{5}$, има равномерно разпределение.

Решение.

- 1) Определяне на параметрите на разпределението. В пример **26.1** получихме оценки $a^* = 0.18$ и $b^* = 7.82$ за интервала [a,b] от стойности на величината X.
- 2) Пресмятане на $\chi^2_{{\scriptscriptstyle Ha67}}$. Плътността на разпределението на равномерно разпределена величина в интервала [0,18;7,82] е $p_X(x) = \frac{1}{7,82-0,18} = 0,\!131$ за $x \in [0,\!18;7,\!82]$ и $p_X(x) = 0$ при $x \notin [0,\!18;7,\!82]$, а функцията на разпределение е

$$F_X(x) = \begin{cases} 0 & x < 0.18 \\ 0.131x - 0.024 & 0.18 \le x \le 7.82 \\ 1 & x > 1 \end{cases}.$$

Изчисляваме теоретичните вероятности:

$$p'_1 = P(0 < X \le 2) = F_X(2) - F_X(0) = 0.238$$
,
 $p'_2 = P(2 < X \le 4) = F_X(4) - F_X(2) = 0.500 - 0.238 = 0.262$,
 $p'_3 = P(4 < X \le 6) = F_Y(6) - F_Y(4) = 0.262$, $p'_4 = P(6 < X \le 8) = F_Y(8) - F_Y(4) = 0.238$.

Умножавайки по обема n=24, получаваме теоретичните честоти. Пресмятанията подреждаме в таблица:

				•
$(x_{i-1},x_i]$	m_i	$m_i' = np_i'$	$\frac{(m_i - m_i')^2}{m_i'}$	
(0,2]	6	5,71	0,014	
(2,4]	5	6,28	0,261	. Следователно, $\chi^2_{\text{набл.}} = 1{,}192$.
(4,6]	8	6,28	0,828	Тениол.
(6,8]	5	5,71	0.089	
		=	1,192	

3. *Изчисляване на* $\chi^2_{\kappa p}$. При определянето на степените на свобода имаме предвид, че интервалите на извадката са 4 и че от тази извадка са изчислени два параметъра на разпределението – границите интервала [0,18; 7,82], т.е. s=k-l-1=4-2-1=1, Следователно, при $\alpha=0,1$

$$\chi_{\kappa\rho}^2 = \chi_{1-0.1}^2(1) = \chi_{0.9}^2(1) = 2,706$$
.

4. Решение за приемане или отмърляне на хипотезата. Тъй като $\chi^2_{\text{набл.}} < \chi^2_{\text{кр.}}$, то няма основание за отхвърляне на хипотезата за равномерно разпределение на величината X.

Пример 30.3. Контролира се размерът X на детайлите, изработвани на струг (виж таблицата по-долу). С ниво на значимост α =0,1 да се провери хипотезата за нормално разпределение на контролирания размер.

Решение. 1) С помощта на таблицата от извадката изчисляваме оценката \overline{x} на a = EX и оценката \widetilde{s}_x на $\sigma = \sigma X$:

(x_{i-1},x_i)	m_i	$x^* = (x_i + x_{i-1})/2$	$m_i x_i$	$m_i x_i^2$
(3, 4)	5	3,5	17,5	61,25
(4, 5)	15	4,5	67,5	303,75
(5, 6)	23	5,5	126,5	695,75
(6, 7)	19	6,5	123,5	802,75
(8, 9)	6	7,5	45	337,5
Σ=	68	27,5	380	2201

Получаваме: \bar{x} =5,5882, \bar{x}^2 =32,3676, \tilde{s}_x^2 =1,1563, \tilde{s}_x =1,0753.

2) За изчисляване на теоретичните честоти и $\chi^2_{na\delta n}$ използваме таблицата

(x_{i-1},x_i)	m_i	$p_i = F\left(\frac{x_i - \overline{x}}{\widetilde{S}_x}\right)$	$p_{i-1} = F\left(\frac{x_{i-1} - \overline{x}}{\widetilde{s}_x}\right)$	$m_i' = n(p_i - p_{i-1})$	$\frac{(m_i - m_i')^2}{m_i'}$
(3, 4)	5	0,069836	0,008042	4,201982	0,151555
(4, 5)	15	0,292175	0,069836	15,11904	0,000937
(5, 6)	23	0,649114	0,292175	24,27182	0,066642
(6, 7)	19	0,905391	0,649114	17,42689	0,142004
(8, 9)	6	0,987547	0,905391	5,586606	0,03059
				Σ=	0,391729

Следователно, $\chi^2_{\mu q \bar{q} n} = 0.3917$.

3) Изчисляваме $\chi_{\kappa\rho}^2 = \chi_{1-0.1}^2 (5-2-1) = \chi_{0.9}^2 (2) = 4,61$.

4) Тъй като $\chi^2_{\text{набл.}} < \chi^2_{\text{кр.}}$, то приемаме хипотезата за нормално разпределение.

Упражнение.

1. По извадката $\frac{x_i}{m_i} \frac{1}{|110|} \frac{2}{130} \frac{3}{70} \frac{4}{90} \frac{5}{100}$, може ли да се твърди с ниво на значимост 0,01, че дискретният признак X, които приема възможни стойности 1,2,3,4 или 5, е равномерно разпределен?

§31. Параметрични тестове - тестове за математическото очакване и дисперсията на нормално разпределена генерална съвкупност.

Параметричните тестове проверяват хипотези относно стойността на параметър θ на разпределението на изследван количествен признак X на генералната съвкупност. Както вече отбелязахме, предполагаме, че хипотезата H_0 е проста , т.е. $H_0 = \{\theta = \theta_0\}$. Като конкурираща може да се приеме една от хипотезите $H_1^{(1)}: \{\theta \neq \theta_0\}$, $H_1^{(2)}: \{\theta > \theta_0\}$ или $H_1^{(3)}: \{\theta < \theta_0\}$,

от която зависи вида на критичната област.

Пример 31.1. Да разгледаме нормално разпределена случайна величина X с неизвестно математическо очакване и известно средно квадратично отклонение $\sigma = 1$. Нека от извадката (X_1, \ldots, X_9) с обем n = 9 е изчислена извадъчната средна $\overline{x} = 2,5$. Ще проверим хипотезата $H_0 = \{EX = 3\}$ при ниво на значимост $\alpha = 0,1$ и при конкурираща хипотеза:

a)
$$H_1 = \{EX \neq 3\}$$
; 6) $H_1 = \{EX > 3\}$; B) $H_1 = \{EX < 3\}$.

Решение. Ако допуснем, че хипотезата H_0 е вярна, то величината X и величините X_1 , ..., X_9 (резултатите от наблюденията на X) са разпределени по закона N(3,1), т.е. те са нормално разпределени величини с математическо очакване $EX=EX_i=3$ и $\sigma X=\sigma X_i=1$ ($i=1,\ldots,9$). Тогава $\overline{x}=2,5$ е стойност на величината $\overline{X}=\frac{1}{9}(X_1+\ldots+X_9)$, която също е нормално разпределена.

Съгласно свойствата на математическото очакване и дисперсията $E\overline{X} = \frac{1}{9}(EX + \ldots + EX) = \frac{1}{9}9.3 = 3 \; , \quad D\overline{X} = \frac{1}{9^2}(DX + \ldots + DX) = \frac{1}{81}.9.1 = 9.1 = \frac{1}{9} \; ,$ $\sigma\overline{X} = \sqrt{D\overline{X}} = \sqrt{\frac{1}{9}} = \frac{1}{3} \; .$

Следователно, ако H_0 е вярна, то $\overline{X} \sim N\!\!\left(3,\frac{1}{3}\right)$ и \overline{x} = 2,5 е една от нейните възможни стойности. По тази стойност ние трябва да приемем или отхвърлим H_0 при ниво на значимост α и при конкурираща хипотеза H_1 .

Тъй като \overline{X} е неотместена оценка на EX, то е малко вероятно наблюдаваната стойност \overline{x} на \overline{X} да се различава съществено от EX. Следователно, може да приемем, че хипотезата H_0 не е вярна само, ако \overline{x} попадне в област с малка вероятност, т.е. в краищата на реалната права $(-\infty,\infty)$. По този начин ще бъде малко вероятно да отхвърлим вярна хипотеза H_0 и да приемем невярната хипотеза H_1 . Следователно, критичната област D ще определим в зависимост от нивото на значимост α и от конкуриращата хипотеза H_1 по следния начин:

а) $H_1 = \{EX \neq 3\}$, т.е. $H_1 = \{3 < EX \text{ или } 3 > EX\}$ — критичната област съдържа възможни стойности както по-големи, така и по-малки от 3. т.е.

стойности на \overline{x} , за които $|\overline{x}-3|$ е голямо число. Областта ще бъде определена, ако намерим такова число δ , че вероятността за събитието $\{|\overline{x}-3|>\delta\}$ да бъде равна на нивото на значимост $\alpha=0,1$, т.е. P(да приемем хипотезата $H_1)=P(|\overline{x}-EX|>\delta)=0,1$.

Ho $P(|\overline{x}-EX|>\delta)=1-P(|\overline{x}-EX|\leq\delta)\Rightarrow P(|\overline{x}-EX|\leq\delta)=1-0,1=0,9$.

Като използуваме формула (13.3) за величината $\overline{X} \sim N\!\!\left(3,\frac{1}{3}\right)$, за δ

получаваме
$$P(|X-EX| \le \delta) = 2F\left(\frac{\delta}{\sigma}\right) - 1 = 0.9 \Rightarrow 2F(3\delta) = 1.9 \Rightarrow F(3\delta) = 0.95$$
 .

От таблицата за функцията F(x) определяме, че $3\delta = 1,645 \Rightarrow \delta = 0,548$.

Тогава, областта за приемане на нулевата хипотеза е интервалът [2,452;3,548], а областта на отхвърляне е двустранната област $D=(-\infty,2,452) \cup (3,548,\infty)$. На фиг. 29.1 са представени двете области като $K'_{\kappa p.}=2,452$ и $K''_{\kappa p.}=3,548$. Лицето на защрихованите области е равно на нивото на значимост $\alpha=0,1$. Тъй като $\overline{x}=2,5\not\in D$, то нямаме основание да отхвърлим хипотезата H_0 .

б) $H_1 = \{EX > 3\}$. В този случай областта на отхвърляне на H_0 се определя от равенството $P(\overline{x} - 3 > \delta) = 0,1$, т.е. $P(\overline{x} > \delta + 3) = 0,1$ Но

$$P(\bar{x} > \delta + 3) = 1 - P(\bar{x} < \delta + 3) = 1 - F\left(\frac{\delta + 3 - 3}{1/3}\right) = 1 - F(3\delta)$$

Следователно, $F(3\delta) = 0.9 \Rightarrow 3\delta = 1.285 \Rightarrow \delta = 0.43$.

От тук определяме критичната област $D = (\delta + 3, \infty) = (3,43, \infty)$ и областта на приемане $(-\infty, 3,43]$ (фиг. 29.26).

Тъй като $\overline{x}\!=\!2,\!5\!\in\!(-\infty,\ 3,\!48)$, то и в този случай приемаме хипотезата H_0 .

в) $H_1 = \{EX < 3\}$. Областта на отхвърляне на H_0 определяме от равенството

$$P(\overline{x}-3<\delta)=0.1 \Rightarrow P(\overline{x}<\delta+3)=F\left(\frac{\delta+3-3}{1/3}\right)=F(3\delta)=0.1$$
.

Тъй като 0,1<0,5 , то $3\delta<0$ и за да намерим δ , ще използваме, че $F(3\delta)=1-F(-3\delta)$, т.е. $F(-3\delta)=1-0,1=0,9$.

От таблицата получаваме $-3\delta=1,28$. Следователно, $\delta=-0,43$, а критичната област е $D=(-\infty,\ \delta+3)=(-\infty,\ 2,57)$ (фиг. 29.2a).

Тъй като $\overline{x} = 2,5 \in (-\infty, 2,57)$, то нямаме основание да приемем хипотезата $H_0: \{EX = 3\}$ при конкурираща хипотеза $H_1 = \{EX < 3\}$. \blacklozenge

Както се вижда от примера, при едни и същи резултати от наблюденията една хипотеза може да бъде приета или отхвърлена в зависимост от конкуриращата хипотеза.

В разгледания пример, за проверка на хипотезата $H_0\colon \{EX=3\}$ използвахме, че ако хипотезата е вярна, то $\overline{X}\sim N(3,1/3)$. Очевидно, знаем също разпределението на статистиката $Z=\frac{\overline{X}-3}{1/3}\sim N(0,1)$. Намерените критични стойности са квантилите съответно от ред $1-\alpha/2=0.95$, $1-\alpha=0.9$ и $\alpha=0.1$ на стандартното нормално разпределение. Следователно, за хипотезата $H_0=\{EX=a\}$, подходяща за статистически критерий е величината $Z\sim N(0,1)$.

Ако средно квадратичното отклонение не е известно, то от извадката пресмятаме неговата оценка – поправеното средно квадратично отклонение $\widetilde{s_x}$. Тогава като статистика на критерия за

проверка на хипотезата
$$H_0 = \{EX = a\}$$
 се използва величината $\frac{\overline{X} - a}{\widetilde{s}_x/\sqrt{n}}$.

Доказва се, че тази величина има разпределение t(n-1) на Стюдънт (t-разпределение с n-1 степени на свобода. Така обобщаваме:

Тестове за проверка на хипотезата $H_0 = \{EX = a\}$ относно математическото очакване EX на нормално разпределена величина с ниво на значимост α :

• <u>При известно</u> σX : Статистика: $Z_{\text{набл.}} = \frac{\overline{x} - a}{\sigma X / \sqrt{n}} \sim N(0,1)$. (31.1)

Критична област: $|Z_{{\it ha6}{\it n.}} - a| > Z_{{\it 1}-{lpha\over 2}}$, ако $H_1 = \{EX \neq a\}$;

$$Z_{\text{набл.}} > Z_{1-\alpha}$$
 , ако $H_1 = \{EX > a\}$;

$$Z_{\mu\alpha\delta\eta} < Z_{\alpha}$$
,. aко $H_1 = \{EX < a\}$.

• <u>При неизвестно</u> σX : Статистика: $t_{\text{набл.}} = \frac{\overline{x} - a}{\widetilde{s}_{x} / \sqrt{n}} \sim t(n-1)$. (31.2)

Критична област: $|t_{{\it ha}6\bar{\it n}.}-a|>t_{\underline{\alpha}\over 2}$, ако $H_1=\{EX\neq a\}$;

$$t_{\mathit{набл.}}\!>\!t_{1-lpha}$$
 , aко $H_1\!=\!\{EX\!>\!a\}$;

$$t_{\text{набл.}}\!<\!t_{\alpha}$$
 , ако $H_1\!=\!\{EX\!<\!a\}$.

По подобен начин са организирани и тестовете за проверка на хипотезите, касещи дисперсията. Тук като статистически критерий се използва χ^2 -разпределението с n или n-1 степени на свобода:

Тестове за проверка на хипотезата $H_0 = \{DX = c^2\}$ относно дисперсията DX на нормално разпределена величина с ниво на значимост α :

• При известно $EX = \mu$: Статистика:

$$\chi^2_{\text{набл.}} = \frac{ns_0^2}{c^2} \sim \chi^2(n)$$
, където $s_0^2 = \frac{\sum (x_i - \mu)^2 m_i}{n}$.

Критична област: $\chi^2_{{\it нa6n}} < \chi^2_{\frac{\alpha}{2}}(n), \;\; \chi^2_{{\it нa6n}} > \chi^2_{1-\frac{\alpha}{2}}(n)$, ако $H_1 = \{DX \neq c^2\}$;

$$\chi^2_{_{Hd\tilde{\Omega} R}} > \chi^2_{1-lpha}(n) \,,$$
 ако $H_1 = \{DX > c^2\} \;;$ $\chi^2_{_{Hd\tilde{\Omega} R}} < \chi^2_{lpha}(n) \,,$ ако $H_1 = \{DX < c^2\} \;.$

• <u>При неизвестно</u> EX: Статистика: $\chi^2_{набл.} = \frac{(n-1)\widetilde{s}_x^2}{c^2} \sim \chi^2(n-1)$.

Критична област:
$$\chi^2_{na\delta n} < \chi^2_{na\delta n} < \chi^2_{na\delta n} > \chi^2_{na\delta n} > \chi^2_{1-\frac{\alpha}{2}}(n-1)$$
 ако $H_1 = \{DX \neq c^2\}$;
$$\chi^2_{na\delta n} > \chi^2_{1-\alpha}(n-1)\,, \qquad \text{ако } H_1 = \{DX > c^2\}\;;$$

$$\chi^2_{na\delta n} < \chi^2_{\alpha}(n-1)\,, \qquad \text{ако } H_1 = \{DX < c^2\}\;.$$
 Тук с $\chi^2_{\alpha}(s)$ и $t_{\alpha}(s)$ са означени квантилите от ред α на χ^2 -

Тук с $\chi^2_{\alpha}(s)$ и $t_{\alpha}(s)$ са означени квантилите от ред α на χ^2 - разпределението и t-разпределението s степени на свобода, които се взимат от таблиците на стр. 170 и 169.

Забележка 31.1. Освен с определяне на критичната област, проверката на хипотезата $H_0 = \{\theta = \theta_0\}$ може да се извърши и чрез така наречената p-стойност (p-value). Основните етапи тук са:

- 1. От извадката се изчислява наблюдаваната стойност $K_{{\it ha}6\it{n}}$.
- 2. В зависимост от конкуриращата хипотеза::
- При $H_1:\{ heta> heta_0\}$ изчисляваме $p\!=\!P(K\!>\!K_{{\it Ha}\delta n.})$
- При H_1 : $\{\theta < \theta_0\}$ изчисляваме $p = P(K < K_{\text{набл.}})$
- При H_1 : $\{\theta \neq \theta_0\}$ изчисляваме $p = P(K < K_{{\it Habn.}}) + P(K > K_{{\it Habn.}})$
- 3. Взимане на решение.
- Ако $p\!<\!\alpha$, то $K_{{\it Ha}6\pi}$ се намира в критичната област и хипотезата H_0 се отхвърля.
- Ако $p\!\geq\!\alpha$, то нямаме основание за отхвърляне на хипотезата H_0 .

Този начин за проверка на хипотезата е удобен при възможност за пресмятане на стойностите на функцията $F_K(x)$ на разпределение на статистическия критерий или при наличието на подробни таблици за разпределението на статистическия критерий.

Пример 31.2. От голяма партида резистори са избрани 36 резистора. Средната стойност на съпротивлението X на резисторите е $9,5k\Omega$. При ниво на значимост $\alpha=0,1$ да се провери хипотезата, че извадката е взета от партида, за която съпротивлението на резисторите е $10k\Omega$, при двустранна конкурираща хипотеза, ако: а) дисперсията на X е известна и равна на $4k\Omega^2$; б) дисперсията на X е неизвестна, а изборната поправена дисперсия е равна на $2,25k\Omega^2$;

Решение. По извадка, за която \overline{x} = 9,5 , проверяваме хипотезата $H_0 = \{EX = 10\}$ при конкурираща хипотеза $H_1 = \{EX \neq 10\}$.

- а) Средно квадратичното отклонение $\sigma\!X\!=\!\sigma\!=\!\sqrt{4}\!=\!2$ е известно. Тогава статистически критерий е $Z\!\sim\!N(0,\!1)$, а статистиката на критерия е $\frac{\overline{X}-a}{\sigma/\sqrt{n}}$.
- 1) Параметрите на статистиката се определят от обема n=36 и от нулевата хипотеза, според която $a=10,\ \sigma=2$, а наблюдаваната стойност на \overline{X} е 9,5. Следователно, наблюдаваната стойност на критерия е

$$Z_{\text{ha}6\pi} = \frac{9,5-10}{2/\sqrt{36}} = \frac{-0,5}{1/3} = -1,5$$
.

2) При ниво на значимост $\alpha = 0,1$ определяме критичната стойност

$$Z = Z_{1-\frac{\alpha}{2}} = Z_{0,95} = 1,65$$
.

3) Тъй като |-1,5|<1,65, то хипотезата H_0 се приема.

б) Тук оценка на средно квадратичното отклонение е $\widetilde{s}_x=\sqrt{2,25}=1,5$. Като критерий използваме t-разпределението с s=36-1=35 степени на свобода, $t_{na\delta n}=\frac{9,5-10}{1,5\Big/\sqrt{36}}=\frac{-3}{1,5}=-2$, критичната стойност е $t_{1-\frac{\alpha}{2}}(35)=t_{0,95}(35)\approx 1,69$. Тъй като |-2|>1,69 , то хипотезата H_0

се отхвърля.

Пример 31.3. Да се намери мощността на критерия и вероятността за грешка от втори род β в пример 31.2a), ако е вярна конкуриращата хипотеза и действителната средна стойност на съпротивлението на резисторите е равно на $9k\Omega$.

Решение. В пример **31.2a** получихме, че критичната област при ниво на значимост 0,1 и областта на приемане са съответно $D = \{Z < -1,65 \bigcup Z > 1,65\}$ и $\overline{D} = \{Z \in [-1,65; 1,65]\}$. Статистиката на критерия

$$Z = \frac{\overline{X} - 10}{2/\sqrt{36}}$$
 (31.1)

изчислихме при предположение, че хипотезата $H_0 = \{EX = 10\}$ е вярна.

От (31.1) намираме съответната област на приемане за стойностите на величината \overline{X} като решаваме относно \overline{X} неравенството $-1,65 \leq \frac{\overline{X}-10}{1/3} \leq 1,65$, от което получаваме, че $\overline{X} \in [9,45;\ 10,55]$.

Наблюдаваната стойност \bar{x} = 9,5 е число в този интервал и затова нямаме основание да отхвърлим хипотезата H_0 .

Но в действителност е вярна конкуриращата хипотеза, по-конкретно, хипотезата $H_1 = \{EX = 9\}$, т.е. $\overline{X} \sim N\big(9;1/3\big)$. Тогава намерената област $\overline{X} \in [9,45;\ 10,55]$ е област на грешка от втори род.

Първо ще намерим вероятността β за грешка от втори род $\beta = P(9,45 \le \overline{X} \le 10,55)$ като приложим формула (13.2) :

$$\beta = F\left(\frac{10,55-9}{0,3333}\right) - F\left(\frac{9,45-9}{0,3333}\right) = F(4,65) - F(1,35) = 0,9999 - 0,9115 = 0,0884$$
.

Следователно, мощността на критерия е $1-\beta=1-0.0884\approx0.91$, т.е. при вярна хипотеза $H_1=\{EX=9\}$ и обем на извадката n=36 мощността на критерия е 0.91.

Пример 31.4. Точността на автомат, произвеждащ детайли, се характеризира с дисперсията на дължината X на детайлите. Ако тази величина е по-голяма от $4mm^2$, то автоматът трябва да се пренастрои. Извадъчната дисперсия на 15 случайно избрани детайла е равна на $6,8mm^2$. Необходимо ли е да се настройва автоматът, ако приемем ниво на значимост а) 0,01; б) 0,1?

Решение. Приемаме, че дължината X на детайлите има нормално разпределение. Автоматът трябва да се настройва, ако DX>4. Тъй като нулевата хипотеза трябва да бъде проста, то избираме $H_0 = \{DX = 4\}$ и $H_1 = \{DX > 4\}$ като хипотезата H_0 ще проверим при неизвестно математическо очакване. Според правилото за проверка на нулевата

хипотеза изчисляваме
$$\chi^2_{na\delta n} = \frac{(n-1)\widetilde{s}_x^2}{c^2} = \frac{14\left(\frac{15}{14}.6,8\right)}{4} = 25,5$$
.

Критичната стойност и решението за настройване на автомата определяме в зависимост от нивото на значимост:

- а) $\chi^2_{\kappa p}=\chi^2_{1-lpha}(n-1)=\chi^2_{0,99}(14)=29,14$. Тъй като $\chi^2_{\mu a \delta n}<\chi^2_{\kappa p}$, то приемаме нулевата хипотеза, т.е. не е необходимо настройване на автомата.
- б) $\chi^2_{\kappa p} = \chi^2_{1-\alpha}(n-1) = \chi^2_{0,9}(14) = 21{,}06$. Тъй като $\chi^2_{na6n} > \chi^2_{\kappa p}$, то нулевата хипотеза се отхвърля и в този случай е необходима настройка на автомата.

Пример 31.5. По извадка с обем n и при дадено ниво на значимост α да се проверят следните хипотези за нормално разпределената величина X като се използват p-стойности.

а) $H_0=\{EX=10\}$, $H_1=\{EX\ne 10\}$, n=36 , $\alpha=0,1$, ако $\overline{x}=9,5$ и генералната дисперсия е $\sigma^2=4$; б) $H_0=\{EX=10\}$, $H_1=\{EX<10\}$, n=36 , $\alpha=0,1$, ако $\overline{x}=9,3$ и изборната поправена дисперсия е $6,25k\Omega^2$ (виж пример **31.2a**); в) $H_0=\{DX=4\}$, $H_1=\{DX>4\}$, n=15 , $\alpha=0,1$, ако EX е неизвестно.

Решение. а) При използване *p*-стойности извършваме следното:

- 1) Изчисляваме $Z_{na\delta n} = \frac{9,5-10}{2/\sqrt{36}} = \frac{-0,5}{1/3} = -1,5$.
- 2) За двустранна критична област изчисляваме $p=P(|Z|>|-1,5|)=1-P(|Z|\le 1,5)=1-[2F(1,5)-1]=2-2.0,9332=0,1336$.
- 3) Тъй като $p > \alpha$, то наблюдаваната стойност се намира в областта на приемане, т.е. нямаме основание за отхвърляне на хипотезата H_0
- б) Изчисляваме: 1) $t_{\text{набл}} = \frac{9{,}3-10}{2{,}5/\sqrt{36}} = \frac{-4{,}2}{2{,}5} = -1{,}68$.
- 2) хипотезата $H_1 = \{EX < 10\}$ е лявостранна, следователно, за величината $T \sim t(n-1)$ (t-разпределение с n-1=36-1=35 степени на свобода трябва да изчислим вероятността P(T<-1,68). Тъй като плътността на t-разпределението е четна функция, то

$$P(T < -1.68) = P(T > 1.68) = 1 - P(T < 1.68)$$
.

В таблицата за квантилите на t-разпределението не са дадени данни за разпределението с 35, нито има точно стойността 1,68, но може да използваме, че големи стойности на n t-разпределението е близко до N(0,1), затова може да приемем, че P(T<1,68)<0,95. Тогава p=P(T<-1,68)=1-P(T<1,68)>1-0,95=0,05.

3) Следователно, $p\approx0.05<\alpha$ и наблюдаваната стойност се намира в критичната област, т.е. нулевата хипотеза трябва да се отхвърли. (Ако разполагаме с таблица от критичните стойности на t-разпределението, то P(T<-1.68)=P(T>1.68)=0.050932.)

B) 1)
$$\chi_{na\delta n}^2 = \frac{(n-1)\widetilde{s}_x}{c^2} = \frac{14\left(\frac{15}{14}.6,8\right)}{4} = 25,5$$
,

2) Тъй като $H_1=\{DX>4\}$, то трябва да изчислим $p=P(\chi^2(14)>25,5)$, която получаваме като изчислим стойността $1-F_{\chi^2}(25,5;14)=0,02994$ (за 14 степени на свобода). Така определяме, че p=0,02938>0,01 , т.е нямаме основание да отхвърлим нулевата хипотеза.

Забележка. Ако използваме таблицата на стр. 170, то $p=1-P(\chi^2(14)<25,5)$. Тъй като на реда за 14 степени числото 25,5 се намира между квантилите $\chi^2_{0,95}(14)=23,68$ и $\chi^2_{0,975}(14)=26,12$, то $0.95< P(\chi^2_5(14)<25,5)<0.975$ и $p>1-0.975\approx0.025$, откъдето отново заключаваме, че няма основание за отхвърлянето на H_0 . \blacklozenge

Общи задачи (§§30, 31).

- 1. Дадена е извадката 17, 15, 5, 9, 13, 42, 8, 24, 34, 38, 29, 6. Групирайте данните в интервали (0,10), (10,20), (20,30), (30,40) и (40,50). а) да се намерят извадъчните средна и средно квадратично отклонение на извадката; б) да се начертае хистограмата на относителните честоти; в) да се провери хипотезата H_0 , че величината X е разпределена равномерно в интервала [0, 50] (с ниво на значимост α = 0,05).
- 2. При изпълнение на определени условия на експлоатация е установено, че средната продължителност на безотказна работа на голяма партида уреди е 1000 със средно квадратично отклонение 100 часа. Изборната средна на случайна извадка с обем 25 се е оказала 970 часа като средно квадратичното отклонение на извадката съвпада с това на цялата партида. Може ли да твърдим, че условията за експлоатация на цялата партида са спазени, ако приемем ниво на значимост: а) 0,10; б) 0,01?
- 3. Да се реши задача 2 при условие, че средно квадратичното отклонение на партидата е 120.
- 4. Твърди се, че изработваните в завод детайли имат диаметър 10 мм. Използвайки едностранен критерий да се провери с ниво на значимост 0,05 това твърдение, ако за извадка с обем n=16 се е оказало, че средния диаметър е равен на 10,3, считайки, че а) дисперсията е известна и е равна на 1мм²; б) поправената дисперсия на извадката е 1,21мм².
- 5. Изпробва се нов метод за измерване на разстояния. Направени са 10 измервания на един и същ еталон и е изчислено, че поправеното средно квадратично отклонение от еталона е 10 мм. Съгласува ли се този резултат с хипотезата, че дисперсията на грешките от измерванията по този метод не е поголяма от 50 мм² (приемаме ниво на значимост 0,05)
- 6. От генерална съвкупност е извлечена извадка с обем 150:

$$x_i$$
 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33
 m_i | 1 | 4 | 13 | 23 | 22 | 29 | 29 | 16 | 11 | 2

Да се провери с 10%-но ниво на значимост хипотезата за нормално разпределение на признака X на генералната съвкупност.

7. При изпитание на апаратура се отчита броят X на повредите. Резултатите от 60 x = 0.1 = 2.3

изпитания са представени в таблицата: $\frac{x_i \mid 0 \mid 1 \mid 2 \mid 3}{m_i \mid 42 \mid 11 \mid 4 \mid 3}$. Да се провери хипотезата

 $X \sim Po(\lambda)$ с ниво на значимост а) α =0,001; б) α =0,01;

8. Дадена е извадката (X - брой на децата в 25 семейства) 3, 2, 0, 1, 4, 5, 3, 2, 4, 1, 0, 2, 5, 5, 2, 1, 2, 1, 0, 0, 3, 6, 2,1, 0. а) да се начертае полигонът на относителната честота. Изказано е предположение, че 20% от семействата в даден район нямат деца, 30% от семействата имат едно, 30% - две деца, а останалите 20% - повече от две деца. Да се провери това предположение на базата на дадената извадка с ниво на значимост 0,05.