Chapitre 11 - Fonctions trigonométriques

Terminales Spécialité Maths

Table des matières

1	Rappels						
	1.1 Le cercle trigonométrique						
	1.2 Formules d'addition et de duplication	•					
	1.3 Equations- Inéquations trigonométriques	į					
2	Fonctions cosinus et sinus						
	2.1 Restriction du domaine d'étude d'une fonction trigonométrique	,					
	2.2 Fonctions cosinus et sinus						
	2.2.1 Dérivées	(

1 Rappels

1.1 Le cercle trigonométrique

- Le cercle trigonométrique est le cercle de rayon 1, orienté dans le sens inverse des aiguilles d'une montre
- La circonférence du cercle trigonométrique est de 2π
- En enroulant la droite des réels sur un cercle trigonométrique, on fait correspondre tout nombre réel à un point du cercle, nommé point-image.
- En enroulant la droite des réels sur le cercle trigonométrique, tout point du cercle est le point-image d'une infinité de réel.

Exemple: :animation

- Soit M un point du cercle trigonométrique, repéré par le nombre x. x est la mesure en radian de l'angle orienté $(\vec{i}, \overrightarrow{OM})$.
 - $x, x + 2\pi, x + 4\pi, \dots$ et $x 2\pi, x 4\pi, x 6\pi$ repèrent le même point M sur le cercle. $(\vec{i}, \overrightarrow{OM}) = x[2\pi](\text{"modulo } 2\pi\text{"})$
- La mesure principale d'un angle orienté est son unique mesure appartenant à l'intervalle $]-\pi,\pi]$

Méthode: Soit $\frac{a\pi}{b}$ où a et b sont deux entiers avec $b \neq 0$ dont on veut trouver la mesure principale.

Pour cela, on cherche un multiple de 2b le plus proche de a en excès ou en défaut, et on décompose $\frac{a\pi}{b}$.

Exemple:

 $\frac{50}{3}$ $16\times 3=48$ est le plus proche multiple de 2b proche de a. En effet $18\times 3=54$ est moins pertinent.

$$\frac{50}{3} = \frac{48\pi}{3} + \frac{2\pi}{3} = \frac{2\pi}{3} + 8 \times 2\pi = \frac{2\pi}{3} [2\pi].$$

$$\frac{2\pi}{3}$$
 est la mesure principale.

EXERCICE 1

Trouver les mesures principales des angles suivants :

- -39π
- \bullet $\frac{77\pi}{1}$
- \bullet -51π
- $\bullet \quad \frac{-538\pi}{3}$

Définition 1.1.

On définit le sinus et le cosinus d'un nombre réel à partir du cercle trigonométrique.

Soit x un réel et son point-image $\mathcal M$ sur le cercle trigonométrique :

- \bullet cos(x) est l'abscisse de M.
- $\sin(x)$ est l'ordonnée de M.
- Pour tout $x \in \mathbb{R}$; $-1 \le \cos(x) \le 1$
- Pour tout $x \in \mathbb{R}$; $-1 \le \sin(x) \le 1$
- Pour tout $x \in \mathbb{R}$; $\cos^2(x) + \sin^2(x) = 1$
- Pour tout $x \in \mathbb{R}$; $\cos(x + 2\pi) = \cos(x)$ et $\sin(x + 2\pi) = \sin(x)$
- Pour tout $x \in \mathbb{R}$; $\cos(-x) = \cos(x)$ et $\sin(-x) = -\sin(x)$
- Pour tout $x \in \mathbb{R}$; $\cos(x + \pi) = -\cos(x)$ et $\sin(x + \pi) = -\sin(x)$
- Pour tout $x \in \mathbb{R}$; $\cos(\pi x) = -\cos(x)$ et $\sin(\pi x) = \sin(x)$

Propriété 1.1.

Valeurs remarquables du sinus et cosinus

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

EXERCICE 2

cos-sin niveau 1

cos-sin niveau 2

construction niveau 1 calculs d'angles

1.2 Formules d'addition et de duplication

Propriété 1.2.

On se place dans un repère orthonormé du plan. Soient $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$. Le produit scalaire de deux vecteurs peut s'obtenir de deux façons suivantes :

$$\vec{u}.\vec{v} = xx' + yy' = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}, \vec{v})$$

Propriété 1.3.

Soient a et b deux nombres réels. Formule d'addition

- $\bullet \cos(a+b) = \cos(a)\cos(b) \sin(a)\sin(b)$
- $\bullet \cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$
- $\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$
- $\bullet \sin(a-b) = \sin(a)\cos(b) \cos(a)\sin(b)$

Conséquence :

Comme pour tout $x \in \mathbb{R}$; $\cos^2(x) + \sin^2(x) = 1$, on obtient $\cos^2(x) = 1 - \sin^2(x)$ ou $\sin^2(x) = 1 - \cos^2(x)$

On en déduit les formules de duplication :

$$\cos(2a) = \cos^2(a) - \sin^2(a) = \cos^2(a) - (1 - \cos^2(a)) = 2\cos^2(a) - 1$$
ou bien

$$\cos(2a) = \cos^2(a) - \sin^2(a) = 1 - \sin^2(a) - \sin^2(a) = 1 - 2\sin^2(a)$$

Explications:

$$\overrightarrow{OA} = \begin{pmatrix} \cos(a) \\ \sin(a) \end{pmatrix}$$
 et $\overrightarrow{OB} = \begin{pmatrix} \cos(b) \\ \sin(b) \end{pmatrix}$

Donc le produit scalaire $\overrightarrow{OB}.\overrightarrow{OA} = \cos(a)\cos(b) + \sin(a)\sin(b)$

et d'autre part

$$\overrightarrow{OB}.\overrightarrow{OA} = \|\overrightarrow{OA}\| \times \|\overrightarrow{OB}\| \times \cos(\overrightarrow{OB},\overrightarrow{OA}) = 1 \times 1 \times \cos(a-b)$$

Ainsi, on voit que $\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$

Exemple:

- 1. Démontrer que $\frac{5\pi}{12} = \frac{\pi}{4} + \frac{\pi}{6}$
- 2. En déduire $\cos(\frac{5\pi}{12})$ et $\sin(\frac{5\pi}{12})$.

1.
$$\frac{\pi}{4} + \frac{\pi}{6} = \frac{3\pi}{12} + \frac{2\pi}{12} = \frac{5\pi}{12}$$

2. d'après les formules de l'addition :

$$\cos(\frac{5\pi}{12}) = \cos(\frac{\pi}{4} + \frac{\pi}{6}) = \cos(\frac{\pi}{4})\cos(\frac{\pi}{6}) - \sin(\frac{\pi}{4})\sin(\frac{\pi}{6}) = \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \times \frac{1}{2} = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

$$\sin(\frac{5\pi}{12}) = \sin(\frac{\pi}{4} + \frac{\pi}{6}) = \sin(\frac{\pi}{4})\cos(\frac{\pi}{6}) + \cos(\frac{\pi}{4})\sin(\frac{\pi}{6}) = \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \times \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

EXERCICE 3

- 1. Calculer $\frac{\pi}{3} + \frac{\pi}{4}$. En déduire la valeur exacte de $\cos(\frac{7\pi}{12})$.
- 2. En remarquant que $\frac{\pi}{4} = 2 \times \frac{\pi}{8}$, calculer la valeur exacte de $\sin(\frac{\pi}{8})$.
- 3. Formules

1.3 Equations- Inéquations trigonométriques

Propriété 1.4.

Soient a et x deux nombres réels.

- $cos(x) = cos(a) \Leftrightarrow x = a + 2k\pi \text{ ou } x = -a + 2k\pi; k \in \mathbb{Z}$
- $\sin(x) = \sin(a) \Leftrightarrow x = a + 2k\pi$ ou $x = \pi a + 2k\pi$; $k \in \mathbb{Z}$

EXERCICE 4

Résoudre dans $]-\pi,\pi]$ et dans $[0,2\pi]$ les inéquations suivantes :

- 1. $\cos(x) = -0.5$
- $2. \sin(x) + \frac{\sqrt{2}}{2} \ge 0$
- 3. $3 2\sqrt{3}\cos(x) < 0$
- 4. $2\cos(x) + \sqrt{3} < 0$
- 5. $1 2\sin(x) > 0$

2 Fonctions cosinus et sinus

2.1 Restriction du domaine d'étude d'une fonction trigonométrique

Définition 2.1. 1. Une fonction f est paire si pour tout $x \in \mathbb{R}, f(-x) = f(x)$

- 2. Une fonction f est impaire si pour tout $x \in \mathbb{R}, f(-x) = -f(x)$
- 3. Une fonction f est périodique de période T si pour tout $x \in \mathbb{R}, f(x+T) = f(x)$

Propriété 2.1. 1. Si une fonction f est paire alors C_f présente une symétrie selon l'axe des abscisses.

- 2. Si une fonction f est impaire alors C_f présente une symétrie centrale de centre O.
- 3. Si f est T-périodique alors C_f est invariante par la translation de vecteur $T\bar{i}$

Remarque.

Conséquences :

- 1. Si la fonction f est paire ou impaire, on peut l'étudier sur \mathbb{R}^+
- 2. Si f est une fonction T-périodique, on peut l'étudier sur tout intervalle d'amplitude T.
- 3. Si f est une fonction paire ou impaire de période T, on peut l'étudier sur l'intervalle $[0, \frac{T}{2}]$

2.2 Fonctions cosinus et sinus

Propriété 2.2. 1. $\cos(-x) = \cos(x)$ donc la fonction cos est paire sur \mathbb{R} .

- 2. $\sin(-x) = -\sin(x)$ donc la fonction sin est impaire sur \mathbb{R} .
- 3. $\cos(x+2\pi)=\cos(x)$ donc la fonction cos est 2π -périodique.
- 4. $\sin(x+2\pi) = \sin(x)$ donc la fonction sin est 2π -périodique.

2.2.1 Dérivées

Propriété 2.3. 1. La fonction sinus est dérivable sur \mathbb{R} et pour tout réel $x, \sin'(x) = \cos(x)$.

2. La fonction cosinus est dérivable sur \mathbb{R} et pour tout réel $x, \cos'(x) = -\sin(x)$

Démonstration. pré-requis :

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \text{ et } \lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0$$

$$\frac{\sin(a+h)-\sin(a)}{h} = \frac{\sin(a)\cos(h)+\cos(a)\sin(h)-\sin(a)}{h} = \frac{\sin(a)(\cos(h)-1)}{h} + \frac{\cos(a)\sin(h)}{h}$$

$$\frac{\sin(a+h) - \sin(a)}{h} = \sin(a)\frac{\cos(h) - 1}{h} + \cos(a)\frac{\sin(h)}{h}$$

D'après les pré-requis, on a $\lim_{h\to 0} \frac{\sin(h)}{h} = 1$ et $\lim_{h\to 0} \frac{\cos(h)-1}{h} = 0$.

Donc $\lim_{h\to 0} \frac{\sin(a+h) - \sin(a)}{h} = \sin(a) \times 0 + \cos(a) \times 1 = \cos(a)$. Donc la fonction sinus est dérivable et $\sin'(x) = \cos(x)$.

Pour tout réel, $\cos(x) = \sin(\frac{\pi}{2} - x)$ donc par composition, $\cos'(x) = -1 \times \sin'(\frac{\pi}{2} - x) = -\cos(\frac{\pi}{2} - x) = -\sin(x)$.

