線形回帰モデル

 $\{(\mathbf{x}_i,y_i)\}_{i=1}^N$ をラベル付けされたデータとし、N をデータの数、 \mathbf{x}_i を D 次元特徴ベクトル、 y_i を \mathbf{x}_i のラベルとする。 \mathbf{w} を D 次元ベクトル、b を実数とし、

$$f_{\mathbf{w},b}(\mathbf{x}) := \mathbf{w}\mathbf{x} + b$$

とおく。この式を用いて、未知の D 次元特徴ベクトル ${\bf x}$ に対して、ラベル $y=f_{{\bf w},b}({\bf x})$ を予測する。最適な ${\bf w},b$ は

$$\min_{\mathbf{w},b} \frac{1}{N} \sum_{i=1}^{N} (f_{\mathbf{w},b}(\mathbf{x}_i) - y_i)^2$$

で求められる。

例 0.1. (コードは線形回帰モデル.ipynb) D=1 である場合を考える。

#データを生成

import numpy as np

X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression() #線形回帰モデルを選択 lin_reg.fit(X, y) #最適解を求める

lin_reg.coef_ #w の最適解 >array([[2.93623137]])

lin_reg.intercept_ #b の最適解 >array([4.14795994])

参考文献

[1] Andriy Burkov. (2019). The hundred-page machine learning book.

- [2] Marc Peter Deisenroth., A. Aldo Faisal., Cheng Soon Ong. (2020). Mathematics for machine learning. Cambridge University Press.
- [3] Aurëlien Gëron. (2019). Hands-on machine learning with Scikit-Learn, Keras & TensorFlow. 2nd Edition. Oreilly.
- [4] 小縣信也., 斎藤翔汰., 溝口聡., 若杉一幸. (2021). ディープラーニング E 資格エンジニア問題集 インプレス.
- [5] Sebastian Raschka., Vahid Mirjalili. (2019). Python machine learning. Third Edition. Packt.