

M5L2764K, -2

65536-BIT (8192-WORD BY 8-BIT)
ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

DESCRIPTION

The Mitsubishi M5L2764K is a high-speed 65536-bit ultraviolet erasable and electrically reprogrammable read only memory. It is suitable for microprocessor programming applications where rapid turn-around is required. The M5L2764K is fabricated by N-channel double polysilicon gate technology and is available in a 28-pin DIL package with a transparent lid.

FEATURES

- 8192 Word x 8-bit Organization
- Access Time M5L2764K-2 200 ns (Max)
 M5L2764K 250 ns (Max)
- Two Line Control OE, CE
- Low Power Current (I_{CC}) Active 150 mA (Max)
 Standby . . . 35 mA (Max)
- Single 5V Power Supply
- 3-State Output Buffer
- Input and Output TTL-Compatible in Read and Program Mode
- Standard 28-pin D1L Package
- Single Location Programming with One 50 ms Pulse
- Fast programming algorithm
- Interchangeable with INTEL 2764

FUNCTION

Read

Set the \overline{CE} and \overline{OE} terminals to the read mode (low level). Low level input to \overline{CE} and \overline{OE} and address signals to the address inputs $(A_0 \sim A_{12})$ make the data contents of the designated address location available at the data input/output $(D_0 \sim D_7)$. When the \overline{CE} or \overline{OE} signal is high, data input/output are in a floating state.

When the \overline{CE} signal is high, the device is in the standby mode or power-down mode.

In the read mode VPP must be at VCC level.

Programming

(Fast programming algorithm)

First set $V_{\rm CC}=6V$, $V_{\rm PP}=21V$ and then set an address to first address to be programmed. After applying 1 ms program pulse ($\overline{\rm PGM}$) to the address, verify is performed. If the output data of that address is not verified correctly, apply one more 1 ms program pulse. The programmer continues 1 ms pulse-then-verify routines until the device verify correctly or fifteen of these pulse-then-verify routines have been completed. The programmer also maintains its total number of 1 ms pulses applied to that address in register X. And then applied a program pulse 4 times of register X value long as an overprogram pulse. When the programming procedure above is finished, step to the next address and repeat this procedure till last address to be programmed. (See P.6-9)

(Conventional programming algorithm)

The device enters the programming mode when 21V is supplied to the V_{PP} power supply input and \overline{CE} is at low level. A location is designated by address signals $(A_0 \sim A_{12})$, and the data to be programmed must be applied at 8-bits in parallel to the data inputs $(D_0 \sim D_7)$. A program pulse to the \overline{PGM} at this state will effect programming. Only one programming pulse is required, but its width must satisfy the condition 45 ms $\leq t_{PW} \leq 55$ ms.

Frase

Erase is effected by exposure to ultraviolet light with a wavelength of 2537Å at an intensity of appoximately 15WS/cm². Sunlight and fluorescent light may contain ultraviolet light sufficient to erase the programmed information. For any operation in the read mode, the transparent lid should be covered with opaque tape.

MODE SELECTION

Pins	CE(20)	OE (22)	PGM (27)	V _{PP} (1)	V _{CC} (28)	Outputs (11~13, 15~19)
Read	VIL	VIL	V _{IH}	Vcc	Vcc	Data out
Standby	ViH	X*	x*	Vcc	Vcc	Floating
Program	VIL	X*	V _{IL}	V _{PP}	Vcc	Data in
Program verify	VIL	ViL	ViH	V _{PP}	Vcc	Data out
Program inhibit	VIH	X*	X*	Vpp	Vcc	Floating

^{★:} X can be either V_{IL} or V_{IH}

ABSOLUTE MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Limits	Unit
Topr	Temperature under bias	- 10~80	°C
Tstg	Storage temperature	−65∼125	°C
V ₁ 1	All input or output voltage (Note 2)	-0.6~7	V
V _{1 2}	V _{PP} supply voltage during programming (Note 2)	-0.6~26.5	V

Note 1: Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods affects device reliability.

2: With respect to Ground.

READ OPERATION

 $\text{Ta}=\text{0}\,^{\circ}\,$ to 70°C, $\text{V}_{\text{CC}}=\text{5V}\pm\text{5}\,\%\text{, V}_{\text{PP}}=\text{V}_{\text{CC}}$

D.C. CHARACTERISTICS

Symbol	Parameter	T		Limits			
39111001		Test conditions	Min	Typ	Ла×	Unit	
ال	Input load current	V _{IN} =5.25V			10	μА	
I _{LO}	Output leakage current	V _{OUT} =5.25 V			10	μА	
I _{PP1}	Vpp current read	V _{PP} =5,25 V			15	mA	
Icc1	V _{CC} current standby	<u>CE</u> = V _{IH}			35	mΑ	
I _{CC2}	V _{CC} current active	$\overline{CE} = \overline{OE} = V_{1L}$			150	mA	
VIL	Low-level input voltage		-0.1		8.0	٧	
V _{IH}	High-level input voltage		2.0	V _C	c+1	V	
Vol	Low-level output voltage	I _{OL} =2.1mA		C	.45	V	
VoH	High-level output voltage	I _{OH} = -400μA	2.4			V	

A.C. CHARACTERISTICS

Combal	P	T	M5L2	764K-2	M5∟2	764K	Unit
Symbol	Parameter	Test conditions	Min	Max	Min	Max	1 01111
ta (AD)	Address to output delay	CE = OE = VIL		200		250	ns
ta (CE)	CE to output delay	OE = VIL		200		250	ns
ta (OE)	Output enable to output delay	CE = V _{IL}	10	70	10	100	ns
tor	Output enable high to output float	CE = VIL	0	60	0	90	ns
tон	Output hold from CE or OE	CE = OE = VIL	O.		0		ns

AC WAVEFORMS

CAPACITANCE (Ta = 25°C, f = 1 MHz)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
CIN	Input capacitance	V _{IN} = 0 V		4	6	pF
Cour	Output capacitance	V _{OUT} = 0 V		8	12	pF

PROGRAM OPERATION

CONVENTIONAL PROGRAMMING ALGORITHM (Ta = 25±5 °C, V_{CC} = 5V±5%, V_{PP} = 21±0.5V unless otherwise noted) D. C. CHARACTERISTICS

		Test conditions		Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
I _{LI}	Input current	VIN=VIL or VIH			10	μА	
VoL	Low-level output voltage (verify)	I _{OL} =2.1mA			0.45	٧	
VoH	High-level output voltage (verify)	I _{OH} = -400μA	2.4			V	
1 _{CC2}	V _{CC} supply current (active)				100	mA	
VIL	Low-level input voltage		-0.1		0.8	V	
V _{IH}	High-level input voltage		2.0		V _{CC} +1	V	
1 _{PP}	Vpp supply current	$\overline{CE} = V_{1L} = \overline{PGM}$			30	mΑ	

A. C. CHARACTERISTICS

	Parameter	T4 d.4	Limits			Unit
Symbol		Test conditions	Min	Тур	Max	Unit
tas	Address setup time		2			μS
toes	OE setup time		20			μs
tos	Data setup time		2			μs
t AH	Address hold time		0			μS
t _{DH}	Data hold time		2			μs
t _{DF}	Chip enable to output delay		0		130	ns
tvs	Vpp setup time		2			μS
tpw	PGM pulse width (programming)		45	50	55	ms
toes	CE setup time		2			μS
t oe	Data valid from OE				150	ns

AC WAVEFORMS

Test Conditions for AC Characteristics Input Voltage: V_{1L} = 0.8V, V_{1H} = 2.2V Input Rise and Fall Times: \leq 20ns Reference Voltage at Timing Measurement: Inputs 1V and 2V

Outputs 0.8V and 2V

FAST PROGRAMMING ALGORITHM

DC CHARACTERISTICS (Ta = 25 \pm 5°C, V_{CC} = 6V \pm 0.25V, V_{PP} = 21V \pm 0.5V, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			
		Test conditions	Min	Тур	Max	Unit	
lų,	Input current	V _{IN} = V _{IL} or V _{IH}			10	μА	
VoL	Output low voltage	I _{OL} =2.1mA			0.45	V	
V _{OH}	Output high voltage	$I_{OH} = -400 \muA$	2.4			V	
VIL	Input low voltage		-0.1		0.8	V	
VIH	Input high voltage		2.0		Vcc	V	
1002	V _{CC} supply current				100	mA	
Грр2	V _{PP} supply current	$\overline{CE} = V_{1L} = \overline{PGM}$			30	mA	

$\textbf{AC CHARACTERISTICS} \ \, (\text{Ta} = 25 \pm 5^{\circ}\text{C}, \ \text{V}_{CC} = 6\text{V} \pm 0.25\text{V}, \ \text{V}_{PP} = 21\text{V} \pm 0.5\text{V}, \ \text{unless otherwise noted})$

	Parameter	Total conditions		Limits		
Symbol		Test conditions	Min	Тур	Max	Unit
tas	Address setup time		2			μs
toes	OE set up time		20			μs
tos	Data setup time		2			μS
t AH	Address hold time		0			μs
t _{DH}	Data hold time		2			μS
t _{DF}	Chip enable to output float delay		0		130	ns
tvcs	V _{CC} setup time		2	l		μs
tvPS	V _{PP} setup time		2			μS
t _{FPW}	PGM initial program pulse width		0,95	1	1.05	ms
t _{OPW}	PGM over program pulse width		3.8		63	ms
toes	CE setup time		2			μs
t _{OE}	Data valid from OE				150	ns

AC WAVEFORMS

Test conditions for A.C. characteristics Input voltage: $V_{IL}=0.8V$, $V_{IH}=2.2V$ Input rise and fall times: ≤ 20 ns Reference voltage at timing measurement: Input 1V and 2V Output 0.8V, and 2V

FAST PROGRAMMING ALGORITHM FLOW CHART

