Reconstruction of Coronal Magnetic Fields using Physics-Informed Neural Networks

전민규

학사졸업논문

The 3D magnetic fields

Loss

$$w_{\rm ff} \mathcal{L}_{\rm ff} \qquad w_{\rm div} \mathcal{L}_{\rm div}$$

$$\hat{\mathbf{B}} = \mathcal{N}(\boldsymbol{x}; \boldsymbol{\theta})$$

$$\mathcal{L}_{\mathrm{ff}}(\boldsymbol{\theta}; \mathcal{T}_f) = \frac{1}{|\mathcal{T}_f|} \sum_{\boldsymbol{x} \in \mathcal{T}_f} \frac{|(\nabla \times \hat{\mathbf{B}}) \times \hat{\mathbf{B}}|^2}{|\hat{\mathbf{B}}|^2}$$

$$\mathcal{L}_{\text{div}}(\boldsymbol{\theta}; \mathcal{T}_f) = \frac{1}{|\mathcal{T}_f|} \sum_{\boldsymbol{x} \in \mathcal{T}_f} |\nabla \cdot \hat{\mathbf{B}}|^2$$

$$\mathcal{L}_b(oldsymbol{ heta}; \mathcal{T}_b) = rac{1}{|\mathcal{T}_b|} \sum_{oldsymbol{x} \in \mathcal{T}_b} |\hat{\mathbf{B}} - \mathbf{B}|^2$$

$$\mathcal{L}_f = w_{\rm ff} \mathcal{L}_{\rm ff} + w_{\rm div} \mathcal{L}_{\rm div} + w_b \mathcal{L}_b$$

The 3D magnetic fields

Figures of merit (Schrijver et al. 2006)

$$C_{\text{vec}} = \frac{\sum_{i} \mathbf{B}_{i} \cdot \mathbf{b}_{i}}{(\sum_{i} |\mathbf{B}_{i}|^{2} \sum_{i} |\mathbf{b}_{i}|^{2})^{1/2}}$$

$$C_{\text{CS}} = \frac{1}{M} \sum_{i} \frac{\mathbf{B}_{i} \cdot \mathbf{b}_{i}}{|\mathbf{B}_{i}||\mathbf{b}_{i}|}$$

$$\epsilon = \frac{\sum_{i} |\mathbf{B}_{i}|^{2}}{\sum_{i} |\mathbf{b}_{i}|^{2}}$$

$$\epsilon_{p} = \frac{\sum_{i} |\mathbf{B}_{i}|^{2}}{\sum_{i} |\mathbf{B}_{i}|^{2}}$$

$$E'_{m} = 1 - \frac{1}{M} \frac{\sum_{i} |\mathbf{B}_{i} - \mathbf{b}_{i}|}{\sum_{i} |\mathbf{b}_{i}|}$$

$$CW_{\text{sin}} = \frac{\sum_{i} \frac{|\mathbf{J}_{i} \times \mathbf{B}_{i}|}{|\mathbf{B}_{i}|}}{\sum_{i} |\mathbf{J}_{i}|}$$

Here, *i* refers to each grid point, M is the total number of grid points, \mathbf{B} is the numerical magnetic field, \mathbf{b} is the reference magnetic field, \mathbf{B}_{p} is the potential magnetic field whose lower boundary condition is the same as that of \mathbf{B} , and $\mathbf{J} = \nabla \times \mathbf{B}$ is the current density in an appropriate unit system.

Figures of merit + Loss

Figures of merit + Loss

Field	C_{vec}	C_{CS}	E'_n	E'_m	ϵ	ϵ_p	$\mathrm{CW}_{\mathrm{sin}}$	\mathcal{L}^{a}
Low-Lou ^b	1.00000	1.00000	1.00000	1.00000	1.00000	1.44490	0.01308^{c}	_
Potential	0.86465	0.86925	0.43003	0.36242	0.69209	1.00000	_d	_
PINN(0)	0.07115	0.33540	-1.37088	-6.07067	0.71824	1.03779	0.55813	40.23570
PINN(100)	0.25771	0.46100	-0.00643	-0.46701	0.08056	0.11640	0.76066	31.32017
PINN(1000)	0.54244	0.32404	-2.31914	-6.41640	5.59377	8.08246	0.71701	6.46577
PINN(10000)	0.98630	0.63065	0.68766	0.28275	0.96939	1.40068	0.38403	0.00848
PINN(25000)	0.99402	0.92134	0.78452	0.55897	0.96481	1.39406	0.07853	0.00006
PINN(50000)	0.99359	0.92271	0.77129	0.50928	0.96247	1.39068	0.06848	0.00005

^aThe total loss of PINN.

^bThe parameters of the Low-Lou model are $(n=1, m=1, l=0.3, \Phi=\pi/2)$.

^cThis is not zero due to numerical grids.

^dThe metric CW_{sin} is undefined for the potential field.