Logique II

Paul Rozière - Notes prises par Pierre Gervais

January 21, 2017

 $\rm https://www.irif.fr/{\sim}roziere/logiqueL3MIS2/$

Contents

1	Axi	omatisation de l'arithmétique	2
	1.1	Définition inductive	2
		Approche axiomatique (définition implicite)	
		1.2.1 Axiomes de Peano	2
		1.2.2 Définition par récurrence	9

1 Axiomatisation de l'arithmétique

On cherche à décrire la notion d'entier naturel. (fin 19e siècle, Dedekind et Peano).

1.1 Définition inductive

On suppose se placer dans un contexte où 0 et la fonctions successeur s sont définis avec $s(x) \neq 0$ pour tout x et s injectif.

Un ensemble A possède la propriété de clôture cl(A) si $0 \in A$ et $\forall x \in A, \ s(x) \in A$.

 \mathbb{N} peut être défini comme le plus petit ensemble A vérifiant cl(A), c'est-à-dire

$$\mathbb{N} = \bigcap_{A : cl(A)} A$$

Pour que cela fonctionne, on doit

- 1. avoir au moins un A vérifiant cl(A)
- 2. pour toute famille $(A_i)_{i \in I}$ vérifiant chacun $cl(A_i)$, on a $cl\left(\bigcap_{i \in I} A_i\right)$

La propriété (1) est admise, pour la propriété 2 :

- Pour tout $i \in I$, $cl(A_i)$, alors $0 \in Au_i$ et si $x \in \bigcap_i A_i$ alors $\forall i \in I, x \in A_i$ et $s(x) \in A_i$ donc $s(x) \in \bigcap_i A_i$ et $cl(\bigcap_i A_i)$

Propriété 1. Propriété de récurrence

Pour toute propriété "bien définie" sur \mathbb{N} P vérifiant :

- P(0)
- $\forall n \in \mathbb{N}, (P(n) \Longrightarrow P(n+1))$

on obtient, en posant $A = \{n \in \mathbb{N} \mid P(n)\}\$ que $0 \in A$ et $\forall n \in A, n+1 \in A$ donc $A = \mathbb{N}$

1.2 Approche axiomatique (définition implicite)

1.2.1 Axiomes de Peano

Soient $\mathbb{N}, 0, s$ où $0 \in \mathbb{N}$ et $s : \mathbb{N} \longrightarrow \mathbb{N}$, les axiomes de Peano sont les suivants :

- 1. Pour tout $x \in \mathbb{N}$, $s(x) \neq 0$
- 2. s est injectif
- 3. propriété de récurrence : $\mathbb N$ est l'unique partie de $\mathbb N$ qui contient 0 et le successeur de tout ses éléments

1.2.2 Définition par récurrence

Exemple 1. L'addition : x + 0 = x et x + s(y) = s(x + y)

Théorème 1. Définition par récurrence (énoncé par Dedekind)

Soit E un ensemble, $a \in E$ et $h : E \longrightarrow E$, il existe une et une seule fonction $f : \mathbb{N} \longrightarrow E$ vérifiant

$$(*) \begin{cases} cf(0) = a \\ \forall n \in \mathbb{N}, \ f(s(n)) = h(f(n)) \end{cases}$$

On a besoin que \mathbb{N} soit "librement engendré" à partir de 0 Preuve 1.

Unicité Par récurrence ✓

Existence on va donner une définition inductive du graphe de f (qui est un sous ensemble de $\mathbb{N} \times E$). Soit $A \subseteq \mathbb{N} \times E$, on définit une nouvelle propriété de cloture pour A, notée cl(A):

- $-(0,a) \in A$
- si $(n, x) \in A$ alors $(s(n), h(x)) \in A$

Montrons $G := \bigcap_{A : cl(A)} A$ est le graphe d'une fonction f vérifiant (*)

- Pour tout $n \in \mathbb{N}$ il existe $y \in E$ tel que $(n, y) \in G$ (partout définie)
- Pour tout $n \in \mathbb{N} \ \forall x, y \in E \ (n, x) \in G \ \text{et} \ (n, y) \in G \Longrightarrow x = y \ (\text{unicité de l'image})$

Premier point par récurrence sur n:

- $n = 0 : (0, a) \in G \operatorname{car} cl(G)$
- n > 0: supposons $(n, x) \in G$ alors ar cl(G): $(s(n), h(x)) \in G$

Second point par récurrence sur n:

- $(0, x) \in G$ et $(0, y) \in G$, $x \neq a$ ou $y \neq a$ (disons $x \neq a$) $G' := G \setminus \{(0, x)\}$ vérifie la propriété de cloture cl(G), $(0, a) \in G'$.

Si $(n,y) \in G'$, $(s(n),h(y)) \in G'$ car $s(n) \neq 0$, on a urait $G \subseteq G'$, contradiction.

- suppososns $(n, x) \in G$ et $(x, y) \in G \Longrightarrow x = y$

soit f_n tel que $(n, f_n) \in G$ (on a vu l'existence) supposons $(s(n), x) \in G$ et $(s(n), y) \in G$

supposons $x \neq h(f_n)$, si m = n alors $(n, f_n) \in G$ donc $\in G'$ car $n \neq s(n)$

 $x \neq h(z)$, donc $(n, h(f_n)) \in G'$, on a bien l'unicité.

Corollaire~1. Définition par récurrence avec paramètres

Soit A un ensemble et E un ensemble non-vide, deux fonctions $g:A\longrightarrow E$ et $h:(E\times A)\longrightarrow E$ alors il existe une unique fonction $f:\mathbb{N}\times A\longrightarrow E$ vérifiant

- f(0,y) = g(y)
- f(s(n), y) = h(f(n, y), y)