

Analysis of Trending Youtube Videos

Daniel Leung, Princeton University

Introduction

- Youtube is a lucrative business, being able to make a video trending would be very useful
- Kaggle Dataset: Likes, views, trending date, categories, thumbnails for 40,950 videos in 2017 and 2018

Related Work

- Thumbnails influence clickthrough rate (views)
 - Could we generate or figure out which thumbnails could increase our views?
- Trending words change over time
 - Could there be a correlation between video titles and descriptions and the date they become trending?
- Subscriber count affects if a video becomes trending
 - Do less popular Youtubers use different words to make their videos trending?

Methods

- Latent Variable Modeling
 - Latent Dirichlet Allocation (5 and 10 components)
 - Principal Component Analysis (5 and 10 components)
- T-distributed Stochastic Neighbor Embedding
- Prediction
- Linear Regression (L2 penalty)
- Ridge Regression
- Ada Boost (50 estimators)
- Generation
- Generative Adversarial Network (100 noise, 64 batch)

Latent Structure

Latent Topic 1	live	tri	cake	one	,	make	,,	V	,,	ft
Latent Topic 2	offici	video	trailer	hd	audio	music	lyric	ft	2	first
Latent Topic 3	2018	makeup	super	,	bowl	V	life	full	challeng	commerci
Latent Topic 4	2017	2018	new	star	last	,	best	award	show	war
Latent Topic 5	make	day	\$	test	food	new	5	break	time	2018

- In the table, we can see the top words for each latent topic
- The plot on the right colors each video with its corresponding latent topic, and then applies TSNE on the data for 2 dimensions to see how well LDA did
- The bar graph shows how performance for views and likes increases with feature selected data, however prediction for dates and categories drop

Feature Selection

We performed feature selection by increasing the count threshold for our bag-of-worlds model. We see that increasing the threshold improves results for titles and descriptions

Thumbnails

- We used a Generative Adversarial
 Network on the thumbnail images of videos in the entertainment category
- We see that the generated image does not look very promising, the chart also shows a high generation loss and low
 D LOSS: 0.03131
 G LOSS: 12.17627
- This means our thumbnail data is still too diverse such that there is not a common format thumbnail that guarantees more views

Prediction

Top weighted words for select topics for each dataset

	titles20				
Music	mv	billboard	bjork	sampl	chainsmok
Sports	espn	gopro	wwe	nba	candid
Entertainment	wwhl	ellen	choreographi	versu	bachelor
Science & Tech	mission	numberphil	tech	smartphon	smarter
	titles20 (f	filtered)		•	
Music	mv	billboard	bjork	chainsmok	audio
Sports	espn	gopro	wwe	candid	nba
Entertainment	wwhl	babish	choreographi	versu	snl
Science & Tech	mission	numberphil	tech	smartphon	smarter
	description	ons300			
Music	coconut	festiv	station	hulkbust	luci
Sports	keep	asmr	health	easi	foot
Entertainment	half	kimmel	blind	fluffi	jona
Science & Tech	roy	celeb	jenner	comput	hope

We see that prediction results on titles data performs much better and different models work better for each metric

	Titles				Description			
	Date	Views	Likes	Category	Date	Views	Likes	Category
LR	0.16	2,928,258	0.070	0.63	0.13	12,262,134	0.38	0.16
ADA	0.050	1,377,108	0.19	0.35	0.077	1,853,795	0.13	0.26
Ridge	0.160	2,087,068	0.052	0.60	0.13	3,394,866	0.091	0.16

Other metrics for predicting select categories of each video

	Titles			Descriptions			
	Precision	Recall	F1	Precision	Recall	F1	
Music	0.84	0.79	0.81	0.20	0.19	0.19	
Sports	0.79	0.84	0.81	0.043	0.024	0.031	
Entertainment	0.60	0.64	0.62	0.26	0.37	0.31	
Science & Tech	0.60	0.63	0.61	0.045	0.020	0.028	

Top weighted words for predicting views, likes, and dislikes

	Views	rewind	offici	infin	lovato	maluma	delic	shape	trap	la	twice
	Likes	sidemen	closer	app	glynn	hustl	speechless	keynot	stirl	span	minnesota
	Dislikes	domest	utah	С	nra	bbq	zombi	fergi	access	net	jess
÷		40 11			** *			A		-	

Previous Channel Success

 We filtered our dataset to include only the top 5000 youtubers and appended subscriber count and total channel video view count to each bag of words data point.
 This would predict views and likes considering the text and the channel's subscriber and view count

We see that this improves our prediction on likes while views prediction does not improve

	Views	Likes
LR	4023199	0.062
ADA	18826038	0.19
Ridge	2390284	0.039