

INSTITUTO FEDERAL DE BRASÍLIA CAMPUS TAGUATINGA ABI - CIÊNCIA DA COMPUTAÇÃO

FILIPE CAVALCANTE DOS SANTOS RAFAEL WAITI G. UMETSU

CÁLCULO NUMÉRICO - EXERCÍCIO DE IMPLEMENTAÇÃO Prof° - DHIEGO LOIOLA DE ARAUJO

> BRASÍLIA 2018

Questão 1

$f1(x) = \cos(x) + 1$	Dados Iniciais	Χ̈́	fi(x)	Erro	Nº Iterações
Bisseção	Não Converge				
Falsa Posição	Não Converge				
Ponto Fixo	2	3.141591	4.289901x10^-13	10^-6	454
Newton	1	3.140390	7.226030x10^-7	10^-6	10
Secante	(2, 4)	3.142617	5.251701x10^-7	10^-6	13

Analisando a tabela com a função $f(x) = \cos(x) + 1$, não é encontrada a primeira raiz positiva em 10000 iterações. porque o método da bissecção realiza todas as interações e não encontra a raiz, independente do seu intervalo.

O mesmo acontece com o método da falsa posição, o programa realiza todas interações e não consegue encontrar a raiz da função.

$f2(x) = 10 + (x - 2)^2 - 10 \cos(2\pi x)$	Dados Iniciais	Χ̈́	fi(x)	Erro	Nº Iterações
Bisseção	Não Converge				
Falsa Posição	(1.5, 2.7)	1.999929	9.997634x10^-7	10^-6	2922
Ponto Fixo	1	2	0	10^-6	2
Newton	1.6	2.005776	3.762603x10^-7	10^-6	13
Secante	(1, 2.5)	2.000053	5.588788x10^-7	10^-6	78

O método da bissecção, após a 47 interação, o programa não consegue calcular mais e vai até o fim das interações com o mesmo valor e por isso não encontra a raiz.

$f3(x) = x^3 - 3x^2(2^-x) + 3x(4^-x) - 8^-x$	Dados Iniciais	Χ̈́	fi(x)	Erro	Nº Iterações
Bisseção	(0.5, 1)	0.640625	-5.314567x10^-7	10^-6	5
Falsa Posição	(0.5, 1)	0.634269	-9.994192x10^-7	10^-6	1154
Ponto Fixo	0.7	0.648113	9.998295x10^-7	10^-6	4147
Newton	0.5	0.635552	-5.396823x10^-7	10^-6	9
Secante	(0.5, 1)	0.635702	-4.978085x10^-7	10^-6	12

$f4(x) = \sin(x)\sin(x^2/\pi)$	Dados Iniciais	Ż	fi(x)	Erro	Nº Iterações
Bisseção	Não converge			10^-6	
Falsa Posição	(3, 4)	3.140886	9.978566x10^-7	10^-6	193
Ponto Fixo	3	3.1408855	9.998203x10^-7	10^-6	6193
Newton	2.5	3.141239	2.497274x10^-7	10^-6	134
Secante	(3, 3.2)	3.142145	6.122155x10^-7	10^-6	11

Pelo mesmo motivo da primeira função, o método da bissecção não encontra a raiz utilizando todas as interações.

$f5(x) = (x - 1.44)^5$	Dados Iniciais	Χ̈́	fi(x)	Erro	Nº Iterações
Bisseção	(1, 1.5)	1.421975	-1.956095x1 0^-7	10^-6	5
Falsa Posição	(1, 2)	1.376909	-9.995831x1 0^-7	10^-6	19
Ponto Fixo	1	1.431538	-4.337700x1 0^-11	10^-6	236
Newton	1	1.385056	-5.007235x1 0^-7	10^-6	18
Secante	(1, 2)	1.383195	-5.914543x1 0^-7	10^-6	10

Questão 2

$$f(x) = (x - 1)e^{(x-2)^{2}} - 1$$

$$\dot{x} = 2.000000162$$

1.
$$g(x) = x^3 - 8.000002$$

 $x = -1$
 $\varepsilon = 10^{-6}$
 $\dot{x} = 2.000000166666653$
 $f(\dot{x}) = 1.7763568394002505x10^{-15}$
Iterações = 2

Gráfico erro relativo pela iteração 2.1

2.
$$h(x) = x - 2.000000162$$

$$x = -1$$

$$\varepsilon = 10^{-6}$$

 $\dot{x} = 2.000000162$

$$f(\dot{\mathbf{x}}) = 0$$

Iterações = 2

Gráfico erro relativo pela iteração 2.2

3.
$$i(x) = sen(x) + x^2 - 4.90929828$$

$$x = -1$$

$$\epsilon = 10^{-6}$$

 $\dot{x} = 2.0000003156594164$

$$f(\dot{\mathbf{x}}) = 2.781027337306341x10^{-7}$$

Iterações = 9

Quando aplicamos a duas funções g(x) e h(x) que encontramos tem o mesmo tanto de interações e por isso não podemos dizer qual das funções é mais rápida olhando para o número de interações, podemos dizer que a segunda é mais precisa, porque chegou mais perto da raiz da função. E temos que a i(x) é a mais demorada com maior iteração, pois, é a única que não é linear.

Questão 3

Observando o gráfico acima, podemos observar que inicialmente o erro relativo é baixo por causa da inclinação da curva do gráfico da função. Daí, ele vai sobe até certo ponto e depois desce quase no meio do caminho e sobe novamente, fazendo esse movimento até estabilizar no ponto onde é encontrada a raiz.