Matematická analýza II

Ladislav Láska

30. září 2009

Učební text k předmětu Matematická analýza II pro informatiky. Vytvořen podle požadavků ke zkoušce pro paralelku Y (Šámal). Text je povětšinou výtahem z přednášek uspořádaným do srozumitelných krátkých celků zaměřený na definice, věty a probrané důkazy.

Poděkování za korekce a připomínky: Martin Pelikán, Marek Feňko. Na obsahu se podíleli: Martin Pelikán (rozklad na parciální zlomky)

Pokud najdete chybu nebo nepřesnost, neváhejte mě kontaktovat (třeba na email ladislav.laska@gmail.com)

Upozornění: Tyto poznámky jsou bez jakékoliv záruky. Nemusí být kompletní a mohou obsahovat chyby.

Obsah

1	Primitivní funkce				
	1.1	Definice primitivní funkce	4		
	1.2	Věta o jednoznačnosti primitivní funkce	4		
	1.3	Existenční věta	4		
	1.4	Věta o linearitě primitivní funkce	4		
	1.5	Věta o substituci	4		
	1.6		5		
2		0	6		
	2.1	ı v	6		
	2.2		7		
	2.3		7		
	2.4	Trigonomické funkce	7		
	2.5	\circ \bullet	7		
	2.6	Eulerovy substituce	8		
3	TT ¥5	44 (D:	•		
3	3.1	, 9	9		
	$\frac{3.1}{3.2}$		9		
	3.2 3.3				
		ŭ	9		
	3.4	Věta o zjemnění dělení			
	3.5	Věta o dvou děleních			
	3.6	Norma dělení			
	3.7	Věta o aproximaci Riemannova integrálu pomocí součtů			
	3.8	Kritérium existence Riemannova integrálu			
	3.9	Věta o monotónnii a Riemannovské integrovatelnosti			
		Stejnoměrná spojitost			
		Věta o spojitosti a stejnoměrné spojistosti (bez důkazu)			
		Věta o spojitosti a riemannovské integrovatelnosti			
		Vlastnosti riemannovského integrálu (bez důkazu)			
		Věta o derivace integrálu podle horní meze			
		Newtonův integrál			
		Per-partes pro určitý integrál			
	3.17	Substituce pro určitý integrál (bez důkazu)	5		
1	A pli	kace určitého integrálu 1	G		
4	4.1	Obsah plochy pod křivkou			
	4.1	Délka křivky			
	4.3	Délka křivky v \mathbb{R}^n (bez důkazu)			
	4.3 4.4	Objem a povrch rotačního tělesa			
	4.4	* -			
	4.6	Odhad konečných součtů řad			
	4.0	integraciii kriteriuiii konvergence rad	1		
5	Funl	kce více proměnných 1	8		
	5.1	Funkce více proměnných, okolí	8		
	5.2	Otevřená a uzavřená množina	8		
	5.3	Limita funkce více proměnných			
	5.4	Parciální derivace			
	5.5	Hessova matice			
	5.6	Postačující podmínka pro extrém (bez důkazu)			
	5.7	Spojitost funkce více proměnných			
	5.8	Nutná podmínka na extrém			
		· · · · · · · · · · · · · · · · · · ·			

	5.9	Totální diferenciál	
	5.10	Tvar totálního diferenciálu	
		Věta o aritmetice totálního diferenciálu (bez důkazu)	
		Diferenciál složeného zobrazení (bez důkazu)	
		Věta o existenci extrémů funkce více proměnných	
		Množina funkcí se spojitými prvními derivacemi na množině	
		Lagrangeho věta o vázaných extrémech (bez důkazu)	
6	Met	rické prostory 22	
	6.1	Definice metrického prostoru	
	6.2	Otevřená a uzavřená koule	
	6.3	Otevřená a uzavřená množina	
	6.4	Vlastnosti otevřených množin	
	6.5	Vlastnosti uzavřených množin	
	6.6	Ekvivalence metrik	
	6.7	Konvergentní posloupnost	
	6.8	Vlastnosti konvergence	
	6.9	Charakterizace uzavřených množin	
	6.10	Kompaktní množina	
		Vlastnosti kompaktních množin (důkaz 2. neúplný!)	
		Charakterizace kompaktních množin v \mathbb{R}^n	
		Spojitost vzhledem k množině	
	6.14	Limita vzhledem k množině	
	6.15	Charakterizace spojitých zobrazení (bez důkazu)	

1 Primitivní funkce

1.1 Definice primitivní funkce

Definice Nechť $f:I\to\mathbb{R},\ I\in\mathbb{R}^*$, kde I je otevřený interval. Řekneme, že F je primitivní funkce k f, pokud platí:

$$\forall x \in I \quad F'(x) = f(x)$$

Pozorování F(x) je primitivní fce k $f(x) \Rightarrow F(x) + c$ je primitivní fce k f(x)

1.2 Věta o jednoznačnosti primitivní funkce

Věta Nechť F(x), G(x) jsou primitivní funkce f(x) na intervalu I, pak

$$\exists c \in \mathbb{R} \quad \forall x \in I \quad G(x) = F(x) + c$$

Důkaz

$$F'(x) = f(x) \quad G'(x) = f(x) \qquad \forall x \in I \tag{1}$$

Mějme funkci H(x) = G(x) - F(x). Po zderivování:

$$H'(x) = G'(x) - F'(x) = f(x) - f(x) = 0$$
(2)

Potom ale funkce H je konstantní, proto také existuje konstanta c.

1.3 Existenční věta

Věta Nechť I je otevřený interval a f je spojitá na I. Pak má f prim. funkci.

Důkaz Odložen. (vizte větu o derivaci integrálu podle horní meze)

1.4 Věta o linearitě primitivní funkce

Věta Nechť f má primitivní fci F a g má primitivní fci G na intervalu I. Pak:

$$\int \alpha f + \beta g = \alpha F + \beta G$$

Důkaz Triviálně z linearity derivace:

$$(\alpha F + \beta G)' = \alpha f + \beta g \tag{1}$$

1.5 Věta o substituci

Věta

i. Nechť F je primitivní funkce k f na (a,b). A funkce φ je:

$$\varphi: (\alpha, \beta) \to (a, b)$$

 $\forall x \in (\alpha, \beta) \quad \varphi'(x)$

Pak na intervalu (α, β) platí:

$$\int f(\varphi(t))\varphi'(t) dt = F(\varphi(t)) + c$$

ii. Nechť funkce φ je na (tj. každý bod z (a,b) má vzor) a platí:

$$f: (a,b) \to \mathbb{R}$$

$$\varphi: (\alpha,\beta) \to (a,b) \quad : \quad \forall x \in (\alpha,\beta) \quad \varphi'(x) \neq 0$$

$$\int f(\varphi(t))\varphi'(t) \, dt = G(t)$$

Pak na intervalu (a, b) platí:

$$\int f(x) \, \mathrm{d} x = G(\varphi^{-1}(x)) + c$$

Důkaz

1. Ověříme zderivováním (jako složenou funkci):

$$[F(\varphi(t)) + c]' = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t) \tag{1}$$

2. Ověříme zderivováním (jako složenou funkci):

$$[G(\varphi^{-1}(x)) + c]' = G'(\varphi^{-1}(x))[\varphi^{-1}(x)]'$$
(2)

Z předpokladu $(\varphi' \neq 0)$ je φ neklesající/nerostoucí na celém intervalu. Podle věty o derivaci inverzní funkce potom platí:

$$G'(\varphi^{-1}(x))[\varphi^{-1}(x)]' = G'(\varphi^{-1}(x)) \cdot \frac{1}{\varphi'(\varphi^{-1}(x))}$$
(3)

Do předpokladu ($\int f(\varphi(t))\varphi'(t)$ d
t = G(t)) dosadíme za t = $\varphi^{-1}(x)$ a předpoklad zderivujeme:

$$f(\varphi(\varphi^{-1}(x)))\varphi'(\varphi^{-1}(x)) = G'(\varphi^{-1}(x))$$

$$\tag{4}$$

Což můžeme dosadit do (3):

$$f(\varphi(\varphi^{-1}(x)))\varphi'(\varphi^{-1}(x)) \cdot \frac{1}{\varphi'(\varphi^{-1}(x))}$$
 (5)

Což po zkrácení a upravení je f(x).

1.6 Per-partes

Věta Nechť I je otevřený interval, f a g spojité funkce na I. F je primitivní fce k f na I, G je primitivní fce k g na I. Pak platí:

$$\int F(x)g(x) dx = F(x)G(x) - \int f(x)G(x) dx$$

Důkaz Mějme pomocnou funkci H(x), primitivní funkci k f(x)G(x), tedy:

$$\int f(x)G(x) \, \mathrm{dx} = H(x) \tag{1}$$

Ověříme zderivováním a upravením:

$$F(x)g(x) = (F(x)G(x) - H(x))'$$

$$= F'(x)G(x) + F(x)G'(x) - H(x)$$

$$= f(x)G(x) + F(x)g(x) - f(x)G(x)$$

$$= F(x)g(x)$$
(2)

2 Typové integrace

2.1 Rozklad na parciální zlomky

 ${f V\'eta}$ Nechť jsou P a Q polynomy s reálnými koeficienty takovými, že

- 1. $\deg P < \deg Q$
- 2. Q je ve tvaru $a_n(x-x_1)^{p_1}\dots(x-x_k)^{p_k}(x^2+\alpha_1+\beta_1)^{q_1}\dots(x^2+\alpha_l+\beta_l)^{q_l}$ a platí, že žádné dva nemají společný kořen.

Potom existují jednoznačně určena čísla A_j^i, B_j^i, C_j^i tak, že

$$\frac{P(x)}{Q(x)} = \sum_{i=1}^{k} \sum_{j=1}^{p_k} \frac{A_j^i}{(x - x_i)^j} + \sum_{i=1}^{l} \sum_{j=1}^{q_l} \frac{B_j^i x + C_j^i}{(x^2 + \alpha_i x + \beta_i)^j}$$

Důkaz (pro reálné kořeny) Matematickou indukcí podle stupně Q:

- 1. stupeň $Q=1\Rightarrow$ stupeň $P=0\Rightarrow Q(x)=a_1(x-x_1)$ a $P(x)=C\Rightarrow \frac{P(x)}{Q(x)}=\frac{\alpha}{x-x_1}$
- 2. Zkusíme šikovně zvolit α , aby na $\frac{P(x)}{Q(x)}-\frac{\alpha}{(x-x_1)^{p_1}}$ šel užít indukční předpoklad: zavedeme funkci

$$H(x) = a_n(x - x_2)^{p_2} \dots (x - x_k)^{p_k} = \frac{Q(x)}{(x - x_1)^{p_1}} \qquad H(x_1) \neq 0$$
 (1)

a použijeme ji k vyjádření požadovaného

$$\frac{P(x)}{Q(x)} - \frac{\alpha}{(x-x_1)^{p_1}} = \frac{P(x)}{Q(x)} - \frac{\frac{\alpha Q(x)}{(x-x_1)^{p_1}}}{Q(x)} = \frac{P(x) - \frac{\alpha Q(x)}{(x-x_1)^{p_1}}}{Q(x)} = \frac{P(x) - \alpha H(x)}{Q(x)}$$
(2)

Takže $\exists \alpha : P(x_1) - \alpha H(x_1) = 0$ (x_1 je kořen, takže ho můžeme vytknout)

$$P(x) - \alpha H(x) = (x - x_1)P_1(x)$$
(3)

Tedy pro $\alpha = \frac{P(x_1)}{H(x_1)}$ vypadá upravený výraz takto:

$$\frac{(x-x_1)P_1(x)}{Q(x)} = \frac{P_1(x)}{a_n(x-x_1)^{p_1-1}\dots(x-x_k)^{p_k}}$$
(4)

Snížili jsme o 1 stupeň čitatele i jmenovatele, takže lze výsledek rozložit na parciální zlomky,

$$\frac{P(x)}{Q(x)} - \frac{\alpha}{(x - x_1)^{p_1}} \tag{5}$$

je lineární kombinace výrazů

$$\left\{\frac{1}{(x-x_i)^s}; 1 \le s \le p_i\right\} \setminus \left\{\frac{1}{(x-x_1)^{p_1}}\right\} \tag{6}$$

 \Rightarrow po přidání $\frac{\alpha}{(x-x_1)^{p_1}}$ máme rozklad $\frac{P(x)}{Q(x)}$

2.2 Integrace racionální funkce

Definice Racionální funkce R(x) je funkce tvaru:

$$R(x) = \frac{P(x)}{Q(x)}$$

Postup

1. Částečně vydělíme, pokud $\deg P \geq \deg Q$

$$R(x) = S(x) + \frac{P_1(x)}{Q(x)}$$

- 2. Q(x) rozložíme na součin tvaru $(x-x_1)^{p_1}\cdot\ldots\cdot(x+\alpha_1x+\beta_1)^{q_1}.$
- 3. Rozložíme na parciální zlomky.
- 4. Integrál vypočítáme jako:

$$\int \frac{P(x)}{Q(x)} = \int S(x) + \int \mbox{ parciálních zlomků}$$

2.3 Jednoduché substituce

$$\int R(e^{ax}) \, dx = \left| \begin{array}{c} y = e^{ax} \\ dy = ae^{ax} \, dx \end{array} \right| = \int \frac{R(y)}{ay} \, dy \tag{1}$$

$$\int R(\log x) \frac{1}{x} dx = \begin{vmatrix} y = \log x \\ dy = \frac{1}{x} \end{vmatrix} = \int R(y) dy$$
 (2)

2.4 Trigonomické funkce

$$\int R(\sin x, \cos x) \, \mathrm{d}x$$

- 1. $t = \sin x$
- $2. t = \cos x$
- 3. $t = \operatorname{tg} x$
- 4. $t = \operatorname{tg} \frac{x}{2}$ funguje vždy

2.5 Integrály s odmocninama

$$\int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{\frac{1}{q}}\right) dx$$

2.6 Eulerovy substituce

$$\int R(x, \sqrt{ax^2 + bx + c}) \, \mathrm{d}x$$

Pokud $a \neq 0$ ($a = 0 \Rightarrow$ předchozí případ):

1. kv. polynom má jeden kořen v $\mathbb{R}:$

$$ax^{2} + bx + c = a(x - \alpha)^{2}$$
$$\sqrt{ax^{2} + bx + c} = \sqrt{a}|x - \alpha|$$

Spočítáme $\int R(x, \sqrt{a}|x-\alpha|)$

2. kv. polynom má 2 kořeny v $\mathbb{R}:$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$
$$= \frac{a(x - x_{1})(x - x_{2})^{2}}{x - x_{2}}$$

3. kv. polynom má 0 kořenů v $\mathbb{R} \colon$

$$\sqrt{ax^2 + bx + c} = \sqrt{ax} + t$$

$$ax^2 + bx + c = ax^2 + 2t\sqrt{ax} + t^2$$

$$x = \frac{t^2 - c}{b - 2t\sqrt{a}}$$

Po zbavení se kvadratického členu snadno dopočítáme.

3 Určitý (Riemannův) integrál

3.1 Dělení intervalu

Definice Dělení intervalu [a, b] je posloupnost $D = (x_j)_{j=0}^n$, kde $a = x_0 < x_1 < ... < x_n = b$.

Definice Nechť D, D' jsou dělení intervalu [a, b]. O D' řekneme, že **zjemňuje** D pokud $D \subseteq D'$ (tj. $\forall x \in D \mid x \in D'$)

3.2 Horní a dolní součet

Definice Nechť f je omezená funkce na [a,b], $D=(x_j)$ dělení [a,b]. Potom: **Horní součet** je:

$$S(f, D) = \sum_{j=1}^{n} |x_j - x_{j-1}| \cdot \sup\{f(x) \mid x \in [x_{j-1}, x_j]\}$$

Dolní součet je:

$$s(f, D) = \sum_{j=1}^{n} |x_j - x_{j-1}| \cdot \inf\{f(x) \mid x \in [x_{j-1}, x_j]\}$$

Poznámka Pokud plocha pod křivkou je P: $s(f, D) \le P \le S(f, D)$

3.3 Horní a dolní Riemannův integrál

Definice

$$\begin{split} &(R)\overline{\int_a^b}f(x)\ \mathrm{dx} = \inf\{S(f,D)\quad D\ \mathrm{d\check{e}len\'i}\ [a,b]\}\\ &(R)\int_a^bf(x)\ \mathrm{dx} = \sup\{s(f,D)\quad D\ \mathrm{d\check{e}len\'i}\ [a,b]\} \end{split}$$

Definice Pokud

$$(R) \overline{\int_a^b} f(x) \, dx = (R) \underline{\int_a^b} f(x) \, dx = A$$

Potom

$$(R)$$
 $\int_a^b f(x) dx := A$

a říkáme, že je f Riemannovsky integrovatelná.

Definice

$$R([a,b]) = \{ \text{ Riemannovsky integrovatelných funkcí na } [a,b] \}$$

Poznámka

$$f$$
 spojitá na $[a,b] \Rightarrow f \in R([a,b])$ (1)

$$f \in R([a,b]) \Rightarrow f$$
 je omezená (2)

3.4 Věta o zjemnění dělení

Věta Nechť f je omezená funkce na [a, b], D a D' jsou dělení [a, b] a D' zjemňuje D, potom:

$$s(f, D) \le^{(1)} s(f, D') \le^{(2)} S(f, D') \le^{(3)} S(f, D)$$

Důkaz

1. $s(f, D) \le s(f, D')$ Matematickou indukcí podle počtu přidaných bodů:

i.
$$|D'| = |D| + 1$$

ii.

$$s(f, D) = \sum_{j=1}^{n} |x_j - x_{j-1}| \cdot \inf\{f(x) \mid x \in [x_{j-1}, x_j]\}$$

Pokud přibyde jeden bod do zjemnění, i-tý člen se rozdělí na dva, ty jsou však alespoň stejně tak velké jako původní (protože pokud by existoval menší, muselo by i infinum původního členu být menší).

- 2. triviální: inf $M \leq \sup M$
- 3. analogicky k 1.

3.5 Věta o dvou děleních

Věta Nechť f je omezená funkce na [a, b], D_1 a D_2 jsou dělení na [a, b]. Pak

$$s(f, D_1) \le S(f, D_2)$$

Důkaz Vytvoříme společné zjemnění $D:=D_1\cup D_2$. Pak je podle předchozí věty triviální.

3.6 Norma dělení

Definice Nechť D je dělení $[a,b], D = (x_j)_{j=0}^n$. Potom **normou dělení** nazveme

$$\nu(D) := \max\{|x_i - x_{i-1}|, j = 1..n\}$$

3.7 Věta o aproximaci Riemannova integrálu pomocí součtů

Věta Nechť f je omezená funkce $[a,b] \to \mathbb{R}$. $(D_n)_{n=1}^{\infty}$ je posloupnost dělení taková, že

$$\lim_{n \to \infty} \nu(D_n) = 0$$

Potom:

$$\int_{a}^{b} f(x) dx = \inf S(f, D_n)$$

$$\int_{a}^{b} f(x) dx = \sup s(f, D_n)$$

Poznámka

- 1. Rovnoměrné dělení: $\nu(D_n) = \frac{1}{2}$
- 2. Pokud $\lim S(f, D_n) = \lim s(f, D_n) = a$, potom $\int f(x) dx = A$
- 3. Pokud víme, že je funkce Riemannovsky integrovatelná, stačí jedna z limit.

Bez důkazu.

3.8 Kritérium existence Riemannova integrálu

Věta Nechť f je omezená funkce na [a, b]. Potom:

$$f \in R([a,b]) \Leftrightarrow \forall \varepsilon > 0 \quad \exists D \text{ dělení } [a,b] : \quad S(f,D) - s(f,D) < \varepsilon$$

Důkaz

 $1. \Rightarrow$

$$(R) \int f(x) \, \mathrm{d}\mathbf{x} = A = \sup\{s(f, D)\} \tag{1}$$

$$= \inf\{S(f, D)\}\tag{2}$$

Tedy podle (1) víme, že $A-\frac{\varepsilon}{2}$ není horní závora a podle (2) že $A+\frac{\varepsilon}{2}$ není dolní závora. Tedy:

$$\exists D_1 \quad s(f, D_1) > A - \frac{\varepsilon}{2} \tag{3}$$

$$\exists D_2 \quad S(f, D_2) < A + \frac{\varepsilon}{2} \tag{4}$$

Vytvořme tedy společné zjemnění D dělení D_1 a D_2 . Podle věty o zjemnění dělení tedy:

$$A - \frac{\varepsilon}{2} < s(f, D_1) \le s(f, D) \le S(f, D) \le S(f, D_2) < A + \frac{\varepsilon}{2}$$
 (5)

Po úpravě (odečtení A, přičtení $\frac{\varepsilon}{2}$) získáme:

$$S(f, D) - s(f, D) < \varepsilon \tag{6}$$

2. \Leftarrow

$$\exists D_{\varepsilon} \text{ dělení} \quad S(f, D_{\varepsilon}) - s(f, D_{\varepsilon}) < \varepsilon$$
 (7)

Po rozepsání z definic získáme (ne)rovnosti:

$$s(f, D_{\varepsilon}) \le \sup s(f, D_{\varepsilon}) = \tag{8}$$

$$= \int_{\underline{a}}^{b} f(x) \, dx \le \overline{\int_{a}^{b}} f(x) \, dx = \tag{9}$$

$$=\inf S(f, D_{\varepsilon}) \le S(f, D_{\varepsilon}) \tag{10}$$

Z čehož je vidět, že:

$$0 \le \overline{\int_a^b} f(x) \, dx - \underline{\int_a^b} f(x) \, dx < \varepsilon \tag{11}$$

Pokud to však platí pro ε libovolně malé, pak:

$$\overline{\int_a^b} f(x) \, \mathrm{dx} - \int_a^b f(x) \, \mathrm{dx} = 0 \tag{12}$$

$$\overline{\int_a^b} f(x) \, dx = \underline{\int_a^b} f(x) \, dx \tag{13}$$

Funkce f je tedy Riemannovsky integrovatelná.

3.9 Věta o monotónnii a Riemannovské integrovatelnosti

Věta Je-li f omezená a monotónní na [a, b], pak $f \in R([a, b])$.

Důkaz BÚNO předpokládejme, že f je rostoucí a M je suprémum (z omezenosti existuje):

$$M: \quad \forall x \in [a, b] \quad |f(x)| \le M$$
 (1)

Mějme D_n rovnoměrné dělení s krokem $\frac{a-b}{n}$. Potom:

$$S(f, D_n) - s(f, D_n) = \sum_{j=1}^{n} [f(x_j) - f(x_j - 1)] \cdot \frac{b - a}{n}$$
(2)

$$=\frac{b-a}{n}\left(f(b)-f(a)\right) \tag{3}$$

Ověříme podmínky pro kritérium riemannovské integrovatelnosti: Pro každé ε zvolíme n:

$$\frac{b-a}{r}(f(b)-f(a)) < \varepsilon \tag{4}$$

Podle Archimedovy vlastnosti takové existuje. Použijeme tedy dělení D_n s právě takovým n. Potom platí:

$$S(f, D_n) - s(f, D_n) < \varepsilon \tag{5}$$

A podle kritéria o riemannovské integrovatelnosti je funkce f integrovatelná na [a, b]

3.10 Stejnoměrná spojitost

Definice Řekneme, že funkce f je stejnoměrně spojitá na intervalu I pokud:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \qquad \forall x, y \in I \quad |x - y| < \delta \quad \Rightarrow \quad |f(x) - f(y)| < \varepsilon$$

3.11 Věta o spojitosti a stejnoměrné spojistosti (bez důkazu)

Věta Nechť f je spojitá na [a, b], potom je f stejnoměrně spojitá na [a, b]. (bez důkazu)

3.12 Věta o spojitosti a riemannovské integrovatelnosti

Věta Nechť f je spojitá na [a, b], pak $f \in R([a, b])$.

Důkaz Pro kritérium riemannovské integrovatelnosti chceme:

$$\forall \varepsilon > 0 \quad \exists D \quad S(f, D) - s(f, D) < \varepsilon$$
 (1)

Mějme tedy $\varepsilon>0$, ze stejnoměrné spojistosti existuje $\delta>0$. Vezměme dělení $D\colon \nu(D)<\delta$ (třeba rovnoměrné):

$$S(f,D) - s(f,D) = \sum_{j=1}^{n} |x_j - x_{j-1}| \cdot \underbrace{\left(\sup f(t) - \inf f(t)\right)}_{t \in [x_{j-1}, x_j]}$$
(2)

Shora odhadneme:

$$\sum_{j=1}^{n} |x_j - x_{j-1}| \le (b-a) \tag{3}$$

$$\sup f(t) - \inf f(t) < \varepsilon \tag{4}$$

Vidíme, že (3) je maximálně konstanta a dokážeme, že (4) se dá shora odhadnout jako ε : Ze spojitosti a omezenosti plyne, že f nabývá na $[x_{j-1}, x_j]$ maxima v M a minima v m. Pak tedy platí:

$$|m - M| \le |x_j - x_{j-1}| \le \nu(D) < \delta \tag{5}$$

Což podle stejnoměrné spojitosti dokazuje (4) a postačuje pro kritérium existence riemannovského integrálu.

3.13 Vlastnosti riemannovského integrálu (bez důkazu)

Věta

1. Linearita na [a, b] součtu a násobku $\alpha \in \mathbb{R}$: $(f, g \in R([a, b]))$

$$(R) \int_{a}^{b} f + g = (R) \int_{a}^{b} f + (R) \int_{a}^{b} g$$
$$(R) \int_{a}^{b} \alpha \cdot g = \alpha \cdot (R) \int_{a}^{b} g$$

2. Uspořádání: $(f, g \in R([a, b]))$

$$f \le g \qquad \Rightarrow \qquad (R) \int_a^b f \le (R) \int_a^b g$$

3. Aditivita vzhledem k intervalu: (a < b < c)

(i)
$$f \in R([a,c]) \Leftrightarrow f \in R([a,b]) \land f \in R([b,c])$$

(ii)
$$(R) \int_a^c f = (R) \int_a^b f + (R) \int_b^c f$$

(bez důkazu)

3.14 Věta o derivace integrálu podle horní meze

Věta Nechť J je neprázdný interval, $c \in J$ konstantní bod a f je funkce pro niž platí:

$$\forall \alpha, \beta \in J \quad f \in R([\alpha, \beta])$$

F(x) přiřadíme:

$$F(x) := (R) \int_{c}^{x} f(t) dt \qquad (x > c)$$

$$F(x) := -(R) \int_{T}^{c} f(t) dt \qquad (x < c)$$

Potom:

- 1. F je spojitá na J
- 2. f je spojitá v $x_0 \in J \Rightarrow F'(x_0) = f(x_0)$

Důkaz

1. Ukážeme, že $\forall x_0 \in J$ je F spojitá: **chceme** $\lim_{x \to x_{0+}} F(x) - F(x_0) = 0$ Mějme tedy $c < x_0 < y \in J$. Potom $f \in R([c,y]) \Rightarrow f$ je omezená na $[c,y] \Rightarrow \exists M \quad |f([c,y])| \leq M$.

$$F(x) - F(x_0) = \int_{x_0}^x f(t) \, dt \le \int_{x_0}^x M \, dt = M(x - x_0)$$
 (1)

$$\geq \int_{x_0}^x -M \, dt = -M(x - x_0)$$
 (2)

Podle definice limity potřebujeme:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x, x_0 \in J \quad |x - x_0| < \delta \quad \Rightarrow \quad |F(x) - F(x_0)| < \varepsilon$$
 (3)

Podle (1) a definice limity (3) však víme:

$$|F(x) - F(x_0)| < M|x - x_0| < M\delta = \varepsilon \tag{4}$$

Zvolíme tedy $\delta := \frac{\varepsilon}{M}$

2. Víme, že f je spojitá v $x_0 \in J.$ Rozpisem podle derivace získáme:

$$F'(x_0) = \lim_{x \to x_0 +} \frac{F(x) - F(x_0)}{x - x_0} \tag{5}$$

Podle věty o vlastnostech integrálu upravíme čitatele:

$$= \lim_{x \to x_0} \frac{1}{x - x_0} \int_{x_0}^x f(t) dt$$
 (6)

Kde můžeme integrál odhadnout jako:

$$\int_{x_0}^x (f(x_0) - \varepsilon) \, dt \le \int_{x_0}^x f(t) \, dt \le \int_{x_0}^x (f(x_0) + \varepsilon) \, dt \tag{7}$$

Nyní je již vidět, že podle definice je limita rovna $f(x_0)$

Důsledek f je spojitá na (α, β) \Rightarrow $\int_{\alpha}^{\beta} f(t) dt = [F(t)]_{\alpha}^{\beta}$

3.15 Newtonův integrál

Definice Newtonův integrál funkce f na intervalu (a,b) je:

$$(N) \int_{a}^{b} f(x) dx = \lim_{x \to b^{-}} F(x) - \lim_{x \to a^{+}} F(x)$$

kde F je primitivní funkce k f na (a,b) a limity jsou vlastní. Píšeme:

$$(N) \int_{a}^{b} f(t) dt = [F(t)]_{a}^{b}$$

3.16 Per-partes pro určitý integrál

Věta Nechť f, f', g, g' jsou spojité na [a, b], potom:

$$\int_a^b fg' = [fg]_a^b - \int_a^b f'g$$

Důkaz Nechť H je primitivní funkce k f'g na (a,b), K je primitivní funkce k fg' na (a,b). Víme, že:

$$K(x) = f(x)g(x) - H(x) \tag{1}$$

Analogicky určitý integrál:

$$[K(x)]_a^b = [fg]_a^b - [H]_a^b \tag{2}$$

3.17 Substituce pro určitý integrál (bez důkazu)

Věta

i. Nechť f je spojitá funkce na [a,b]. A funkce φ je:

$$\varphi: [\alpha,\beta] \to [a,b]$$
 φ spojitá na $[\alpha,\beta]$

Potom:

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx$$

ii. Nechť f je spojitá funkce na [a,b]. A funkce φ je:

$$\varphi: [\alpha, \beta] \to [a, b]$$

$$\varphi \text{ spojitá na } [\alpha, \beta]$$

$$\varphi' \neq 0$$

Potom:

$$\int_a^b f(x) \, dx = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(t)) \varphi'(t) \, dt$$

(bez důkazu)

4 Aplikace určitého integrálu

4.1 Obsah plochy pod křivkou

Definice Nechť f je nezáporná funkce spojitá na [a,b]. Pak obsahem plochy pod křivkou S nazveme:

$$S = \int_a^b f(x) \, \mathrm{dx}$$

4.2 Délka křivky

Definice Nechť f je spojitá funkce na [a,b] a $D=(x_j)_{j=0}^n$ dělení intervalu [a,b]. Délkou lomené čáry podle dělení nazveme:

$$L(f,D) = \sum_{k=1}^{n} \sqrt{(x_k - x_{k-1})^2 + (f(x_k) - f(x_{k-1}))^2}$$

Definice Délkou křivky nazveme:

$$L(f([a,b])) = \sup\{L(f,D), D \text{ dělení } [a,b]\}$$

Věta Nechť má funkce f na intervalu [a,b] spojitou první derivaci. Potom:

$$L(f) = \int_{\alpha}^{\beta} \sqrt{1 + (f'(x))^2} \, dx$$

Důkaz Podle definice délky lomené čáry rozepíšeme:

$$L(f,D) = \sum_{k=1}^{n} \sqrt{(x_k - x_{k-1})^2 + (f(x_k) - f(x_{k-1}))^2}$$
 (1)

$$= \sum_{k=1}^{n} (x_k - x_{k-1}) \sqrt{1 + \left(\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}\right)^2}$$
 (2)

Na výraz v závorce lze uplatnit Lagrangeho větu o střední hodnotě a odhadnout pomocí derivace:

$$\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} = f'(\xi_k) \qquad \xi_k \in (x_{k-1}, x_k)$$
(3)

$$\inf\{f'(x), x \in (x_{k-1}, x_k)\} \le f'(\xi) \le \sup\{f'(x), x \in (x_{k-1}, x_k)\}$$
(4)

Tedy můžeme L(f,D) považovat za integrální součty. Tedy:

$$s(\sqrt{1+(f'(x))^2}, D) \le L(f, D) \le S(\sqrt{1+(f'(x))^2}, D)$$
 (5)

Stačí si tedy uvědomit, že L(f) je definovaná jako supremum L(f, D), tedy nutně musí platit:

$$\int_{a}^{b} (\sqrt{1 + (f'(x))^{2}}) \, dx \le L(f) \tag{6}$$

(opačná nerovnost bez důkazu)

4.3 Délka křivky v \mathbb{R}^n (bez důkazu)

Věta Nechť $\varphi:[a,b]\to\mathbb{R}^n$ je spojitá a má spojitou první derivaci. Potom délku křivky vypočteme:

$$L(\varphi([a,b])) = \int_a^b \sqrt{(\varphi_1'(x))^2 + \ldots + (\varphi_n'(x))^2} dx$$

(bez důkazu)

4.4 Objem a povrch rotačního tělesa

Nechť f je nezáporná funkce spojitá na [a,b]. Pak definujeme objem V a povrch P rotačního tělesa vzniklého rotací křivky f okolo osy x jako:

$$V = \int_{a}^{b} \pi f^{2}(x) dx$$

$$P = \int_{a}^{b} \underbrace{2\pi f(x)}_{\text{kruh o } r = f(x)} \underbrace{\sqrt{1 + (f'(x))^{2}}}_{\text{délka křivky}} dx$$

4.5 Odhad konečných součtů řad

Věta Nechť f je nerostoucí funkce na intervalu [a-1,b] (resp. [a,b+1]) a $c_k=f(k)$. Potom (pro nerostoucí):

$$\sum_{k=a}^{b} c_k \le \int_{a-1}^{b} f(x) \, dx$$
$$\ge \int_{a}^{b+1} f(x) \, dx$$

(pro neklesající platí obrácené nerovnsti)

Důkaz Nechť D rovnoměrné dělení s krokem 1 (D = (a - 1, a, ..., b)), potom S(f,D) je jeden z integrálních součtů. Nutně tedy (z definice Riemannova integrálu) platí, že:

$$\int_{a}^{b} f(x) \, d\mathbf{x} \le \overline{\int_{a}^{b}} f(x) \, d\mathbf{x} = \sup\{S(f, D), \forall D \text{ dělení } [a, b]\}$$
 (1)

(pro dolní součty analogicky)

4.6 Integrační kritérium konvergence řad

Věta Nechť f je nezáporná, nerostoucí a spojitá funkce na intervalu $[n_0 - 1, \infty]$ pro nějaké $n_0 \in \mathbb{N}$. Nechť pro posloupnost a_n platí:

$$\forall n \geq n_0 \quad a_n = f(n)$$

Potom:

$$(N) \int_{n_0}^{\infty} f(x) \, dx < \infty \quad \Leftrightarrow \quad \sum_{n=1}^{\infty} a_n \text{ konverguje}$$

Důkaz Triviální důsledek věty o odhadu součtů řad.

5 Funkce více proměnných

5.1 Funkce více proměnných, okolí

Definice Funkce více proměnných je zobrazení $f: M \to \mathbb{R}, M \in \mathbb{R}^n$

Definice Nechť $a \in \mathbb{R}^n$, $a = (a_1, ..., a_n)$. Okolí a prstencové okolí definujeme jako:

$$U(a, \delta) = (a_1 - \delta, a_1 + \delta) \times ... \times (a_n - \delta, a_n + \delta)$$

$$P(a, \delta) = U(a, \delta) \setminus \{a\}$$

5.2 Otevřená a uzavřená množina

Definice Množina G je otevřená množina právě když platí:

$$\forall x \in G \quad \exists \delta > 0 \quad U(x, \delta) \subseteq G$$

Definice Množina F je uzavřená právě když $\mathbb{R}^n \setminus F$ je uzavařená množina

5.3 Limita funkce více proměnných

Definice Nechť $a \in \mathbb{R}^n$, $A \in \mathbb{R}^*$ a $f: M \to \mathbb{R}$. Potom definujeme limitu:

$$\lim_{x \to a} f(x) = A \qquad \Leftrightarrow \qquad \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in P(a, \delta) \quad f(x) \in U(A, \varepsilon)$$

5.4 Parciální derivace

Nechť funkce f je funkce n proměnných. Definujeme **parciální derivaci** funkce f podle x_i jako:

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, ..., x_i + h, ..., x_n) - f(x_1, ..., x_n)}{h}$$

5.5 Hessova matice

Definice Nechť existují všechny druhé parciální derivace funkce f. Potom definujeme **Hessovu** matici předpisem:

$$\left(\frac{\partial^2 f(a)}{\partial x_i \, \partial x_j}\right)_{i,j=1}^n$$

5.6 Postačující podmínka pro extrém (bez důkazu)

Věta Nechť je funkce $f: G \to \mathbb{R}$, $G \subseteq \mathbb{R}^n$ otevřená množina a bod $a \in G$. Nechť jsou všechny první parciální derivace rovny nule nebo neexistují a všechny druhé derivace existují. Potom existenci extrému ověříme následovně:

Matice $H_f(x)$ je:

- i. **pozitivně definitní** v a je lokální **minimum**
- ii. negativně definitní v a je lokální maximum
- iii. indefinitní v a není lokální extrém
- iv. pozitivně/negativně semidefinitní nedává informaci

(bez důkazu)

5.7 Spojitost funkce více proměnných

Definice Funkce $f: M \to \mathbb{R}$ je spojitá v bodě $a \in \mathbb{R}^n$ pokud $\lim_{x \to a} f(x) = f(a)$.

5.8 Nutná podmínka na extrém

Věta Nechť je funkce $f: G \to \mathbb{R}, G \subseteq \mathbb{R}^n$ otevřená množina a bod $a \in G$. Nechť f nabývá v bodě a lokálního extrému. Potom:

$$\forall i \quad \frac{\partial f(a)}{\partial x_i} = 0 \text{ nebo neexistuje}$$

Důkaz Definujeme funkci jedné proměnné $g_i(h) = f(a_1, ..., a_i + h, ..., a_n)$. Pokud má f v a lokální extrém, potom g_i nutně musí mít v 0 také lokální extrém nebo neexistuje $\forall i$. Taktéž je vidět, že $g_i'(0) = \frac{\partial f(a)}{\partial x_i}$.

5.9 Totální diferenciál

Definice Nechť je funkce $f: G \to \mathbb{R}$, $a \in G$ a funkce L definovaná:

$$L: \mathbb{R}^n \to \mathbb{R}$$
 lineární funkce $L(h) = ch = c_1h_1 + c_2h_2...$

L je totální diferenciál pokud platí:

$$\lim_{h \to (0,...)} \frac{f(a+h) - f(a) - L(h)}{h} = 0$$

Značíme:

$$L = Df(a)$$
$$L(h) = Df(a)(h)$$

5.10 Tvar totálního diferenciálu

Věta

- i. Pokud existuje totální diferenciál, existují všechny parciální derivace.
- ii.

$$Df(a)(h) = \sum_{i=1}^{n} \frac{\partial f(a)}{\partial x_i} \cdot h_i = \nabla f(a) \cdot h$$

Důkaz

- i. Triviálně podle ii. (protože obsahuje všechny parciální derivace, které tímto musí existovat)
- ii. Víme, že:

$$\lim_{h \to (0,...)} \frac{f(a+h) - f(a) - Df(a)(h)}{h} = 0 \tag{1}$$

Nechť $h = t \cdot e_i$, tedy:

$$\lim_{t \to 0} \frac{f(a + te_i) - f(a)}{t} - \frac{c_i t}{t} = 0$$
 (2)

$$\Rightarrow c_i = \frac{\partial f}{\partial x_i} \tag{3}$$

Což platí pro každé i.

5.11 Věta o aritmetice totálního diferenciálu (bez důkazu)

Věta Nechť jsou $a \in G \subseteq \mathbb{R}^n$, $f, g : G \to \mathbb{R}$, G otevřená množina a nechť existují Df(a) a Dg(a). Potom:

$$D(f+g)(a) = Df(a) + Dg(a)$$

$$D(c \cdot f)(a) = c \cdot Df(a)$$

$$D(f \cdot g)(a) = f(a) \cdot Dg(a) + g(a) \cdot Df(a)$$

$$D(\frac{f}{g})(a) = \frac{Df(a) \cdot g(a) - f(a) \cdot Dg(a)}{g^2(a)}$$

(bez důkazu)

5.12 Diferenciál složeného zobrazení (bez důkazu)

Věta Nechť $a \in \mathbb{R}^s$, $b \in \mathbb{R}^n$, f je funkce n proměnných a g_j , j = 1...n jsou funkce s proměnných. Nechť:

$$g_j(a) = b_j \text{ pro } j \in \{1, ..., n\}$$

 $\exists Df(b), Dg_1(a), ..., Dg_n(a).$

Definujeme funkci $H: \mathbb{R}^s \to \mathbb{R}$ předpisem:

$$H(x) = f(g_1(x), ..., g_n(x))$$

Pak H má v bodě a totální diferenciál a platí:

$$DH(a)(h) = \sum_{i=1}^{s} \left(\sum_{j=1}^{n} \frac{\partial f}{\partial y_{j}}(b) \frac{\partial g_{j}}{\partial x_{i}}(a) \right) h_{i}$$

Pro všechny $h \in \mathbb{R}^s$, neboli v maticovém zápisu:

$$DH(a)(h) = Df(q(a))Dq(a)h$$

(bez důkazu)

5.13 Věta o existenci extrémů funkce více proměnných

Poznámka Pro důkaz této věty je třeba teorie metrických prostorů uvedená ke konci poznámek. Důkaz je doporučen studovat až po metrických prostorech.

Věta Nechť (P, ρ) je metrický prostor, $K \subseteq P$ je kompaktní a funkce $f: K \to \mathbb{R}$ je spojitá na K. Potom:

- 1. f nabývá na K maxima a minima
- 2. f je na K omezená

Důkaz

1. pro maximum: Mějme $s := \sup\{f(x), x \in K\}$. Z definice suprema víme:

$$\forall n \quad \exists x_n \quad \lim_{n \to \infty} f(x_n) = s \quad \Rightarrow \quad \lim_{k \to \infty} f(y_k \text{vybran\'a}) = s$$
 (1)

K je kompaktní, proto zároveň:

$$\exists y_k \text{ v. p. } z \ x_n \quad \exists y \in K : \lim_{k \to \infty} y_k = y$$
 (2)

Z definice spojitosti v y potom víme, že:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in B_{\rho}(y, \delta) \quad f(x) \in (f(y) - \varepsilon, f(y) + \varepsilon)$$
 (3)

Chceme aby f(y) = s. Sporem $f(y) \neq s$, tedy f(y) < s. Zvolme $\varepsilon := \frac{1}{2}|s - f(y)|$. Z konvergence ale víme:

$$\exists k_0 \quad \forall k > k_0 \quad y_k \in B_{\rho}(y, \delta) \quad \Rightarrow \quad |f(y_k) - f(y)| < \varepsilon \tag{4}$$

Což je spor, protože $\lim f(y_k) = s$.

5.14 Množina funkcí se spojitými prvními derivacemi na množině

Definice O funkci $f:G\to\mathbb{R}$ řekneme, že patří do $C^1(G)$ pokud $\forall i\quad \frac{\partial f}{\partial x_i}$ je spojitá funkce na G.

5.15 Lagrangeho věta o vázaných extrémech (bez důkazu)

Věta Nechť $G \subseteq \mathbb{R}^n$ je otevřená množina, $s < n, f, g_1, ..., g_s \in C^1(G)$ a množina $M = \{x \in \mathbb{R}^n : g_1(x) = = g_s(x) = 0\}.$

Pokud:

- 1. $a \in M$ je bodem lokálního extrému f na M
- 2. vektory $\nabla g_1(a),...,\nabla g_s(a)$ jsou lineárně nezávislé

Potom:

$$\exists \lambda_1, ..., \lambda_s \in \mathbb{R} : \nabla f(a) = \lambda_1 \nabla g_1(a) + ... + \lambda_s \nabla g_s(a)$$

6 Metrické prostory

6.1 Definice metrického prostoru

Definice Metrický prostor je (P, ρ) , kde P je množina bodů a ρ je funkce $P \times P \to \mathbb{R}_0^+$ splňující axiomy:

- 1. $\forall x \in P \quad \rho(x,x) = 0$
- 2. $\forall x, y \in P \quad \rho(x, y) = \rho(y, x)$
- 3. $\forall x, y, z \in P$ $\rho(x, y) \leq \rho(x, z) + \rho(z, y)$

6.2 Otevřená a uzavřená koule

Definice Nechť (P, ρ) je metrický prostor a $x \in P$, $r \in \mathbb{R}$, r > 0. Potom definujeme:

otevřenou kouli: $B(x,r) = \{y \in P \mid \rho(x,y) < r\}$

uzavřenou kouli: $\overline{B(x,r)} = \{y \in P \mid \rho(x,y) \le r\}$

6.3 Otevřená a uzavřená množina

Definice Nechť (P, ρ) je metrický prostor. Potom definujeme:

otevřenou množinu G pokud $\forall x \in G \quad \exists r > 0 \quad B(x,r) \subseteq G$.

uzavřenou množinu F pokud $P \setminus F$ je otevřená.

6.4 Vlastnosti otevřených množin

 $\mathbf{V\check{e}ta}$ Nechť (P, ρ) je metrický prostor. Potom platí:

- 1. \emptyset a P jsou otevřené množiny
- 2. $G_1, ..., G_n \subseteq P$ jsou otevřené množiny, potom $G_1 \cap ... \cap G_n$ je otevřená
- 3. $G_{\alpha}(\alpha \in A)$ jsou otevřené množiny, potom $\bigcup_{\alpha \in A} G_{\alpha}$ je otevřená

Důkaz

- 1. $\emptyset \ \forall x \in \emptyset$ platí cokoliv P triviální
- 2. Mějme $G = G_1 \cap ... \cap G_n$, potom z předpokladů víme:

$$\forall x \in G \quad \forall i \quad \exists r_i > 0 \quad B(x, r_i) \subseteq G_i \tag{1}$$

Mějme tedy $r = \min\{r_1, ..., r_n\} > 0$:

$$B(x,r) \subseteq G_i \forall i \Rightarrow B(x,r) \subseteq G$$
 (2)

3. Mějme $\bigcup_{\alpha \in A} G_{\alpha}$, podle předpokladů víme:

$$\forall x \in G \quad \exists \alpha \in A : x \in G_{\alpha} \quad \Rightarrow \quad \exists r > 0 \quad B(x, r) \in G_{\alpha} \subseteq G$$
 (3)

6.5 Vlastnosti uzavřených množin

Věta Nechť (P, ρ) je metrický prostor. Potom:

- 1. \emptyset , P jsou uzavřené množiny
- 2. $F_1,...,F_n$ jsou uzavřené množiny, potom $F_1\cup...\cup F_n$ je uzavřená
- 3. $F_{\alpha}\ (\alpha\in A)$ jsou uzavřené množiny, potom $\bigcap_{\alpha\in A}F_{\alpha}$ je uzavřená

Důkaz

- 1. triviálně: $P \setminus P$, $P \setminus \emptyset$ jsou otevřené množiny
- 2. $F_1,...,F_n$ uzavřené množiny, potom $\forall i \quad G_i=P\setminus F_i$ otevřené množiny. Tedy $G_1\cap...\cap G_n$ je otevřená množina, $P\setminus (G_1\cap...\cap G_n)$ je uzavřená množina. Stačí tedy nahlédnout, že $G_1\cap...\cap G_n=F_1\cup...\cup F_n$

6.6 Ekvivalence metrik

Definice Metriky ρ, σ na P jsou ekvivalentní právě když:

$$\exists c_1, c_2 > 0 \quad \forall x, y \in P \quad c_1 \sigma(x, y) \le \rho(x, y) \le c_2 \sigma(x, y)$$

Fakt Metriky ρ_1 , ρ_2 , ρ_∞ na \mathbb{R}^n jsou ekvivalentní.

6.7 Konvergentní posloupnost

Definice Nechť (P, ρ) je metrický prostor, $(x_n)_{n=1}^{\infty}$ posloupnost prvků P. Řekneme, že $(x_n)_{n=1}^{\infty}$ konverguje k x $(\lim_{n\to\infty} x_n = x)$) pokud:

$$\lim_{n \to \infty} \rho(x_n, x) = 0$$

$$\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \forall n > n_0 \quad \underline{\left| \rho(x_n, x) - 0 \right|} < \varepsilon$$

$$\rho(x_n, x) < \varepsilon$$

$$x_n \in B(x, \varepsilon)$$

6.8 Vlastnosti konvergence

Věta

- 1. Nechť $(x_n)_{n=1}^{\infty}$ splňuje, že $\exists n_0 \quad \forall n>n_0 \quad x_n=x$ potom $\lim_{n\to\infty}x_n=x$
- 2. Nechť $\lim_{n\to\infty} x_n = x$ a $\lim_{n\to\infty} x_n = y$, potom x=y
- 3. Nechť $\lim_{n\to\infty} x_n = x$ a $(x_{n_s})_{s=1}^{\infty}$ je vybraná posloupnost z $(x_n)_{n=1}^{\infty}$, potom $\lim_{s\to\infty} x_{n_s} = \lim_{n\to\infty} x_n$

Důkaz

1. triviální z definice

2. Mějme $\varepsilon = \frac{1}{2}\rho(x,y)$. Z předpokladů také víme, že:

$$\exists n_0 \quad \forall n \ge n_0 \quad \rho(x_n, x) < \varepsilon$$
 (1)

$$\exists n_1 \quad \forall n \ge n_0 \quad \rho(x_n, y) < \varepsilon$$
 (2)

Vezměme $n = \max\{n_0, n_1\}$, potom:

$$\rho(x_n, x) < \varepsilon \tag{3}$$

$$\rho(x_n, y) < \varepsilon \tag{4}$$

Z trojúhelníkové nerovnosti:

$$\rho(x,y) < \rho(x,x_n) + \rho(x_n,y) \tag{5}$$

$$\langle 2\varepsilon = \rho(x, y) \rangle$$
 (6)

Což je spor.

3. Víme podle věty o vybrané posloupnosti pro \mathbb{R} :

$$\lim_{n \to \infty} \rho(x_n, x) = 0 \quad \Rightarrow \quad \lim_{k \to \infty} \rho(x_{n_k}, x) = 0 \quad \Rightarrow \quad \lim_{k \to \infty} x_{n_k} = x \tag{7}$$

6.9 Charakterizace uzavřených množin

Věta Nechť (P, ρ) je metrický prostor, $F \subset P$. Potom:

$$F$$
 uzavřená $\Leftrightarrow \forall (x_n)_{n=1}^{\infty} x_n \to x: x_n \in F \Rightarrow x \in F$

Důkaz

 $\Rightarrow F$ je uzavřená

Sporem: $x_n \to x \quad \land \quad x \notin F$:

$$x \notin F \Rightarrow x \in P \setminus F \tag{1}$$

Tj. x je v otevřené množině. Potom z definice otevřené množiny:

$$\exists r > 0 \quad B(x,r) \subseteq P \setminus F \tag{2}$$

Podle definice limity však platí (pro $\varepsilon = r$):

$$\exists n_0 \quad \forall n \ge n_0 \quad \rho(x_n, x) < r \quad \Leftrightarrow \quad x_n \in B(x, r) \tag{3}$$

Tedy $x_{n_0} \in B(x,r)$, což je spor s (2) a předpoklady, že $\forall n \ x_n \in F$.

 \Leftarrow Nechť pro spor F není uzavřená množina. Tedy $P \setminus F$ není otevřená množina. Proto platí:

$$\exists x \in P \setminus F \quad \forall r > 0 \quad B(x, r) \cap F \neq \emptyset \tag{4}$$

Vezmeme tedy takové x a sestavíme posloupnost (x_n) z tohoto průniku:

$$x_i \in B(x, \frac{1}{i}) \cap F \tag{5}$$

Je vidět, že tato posloupnost je konvergentní kxa taktéž, že $\forall n \quad x_n \in F.$ Zároveň však $x \in P \setminus F,$ což je spor s předpokladem.

6.10 Kompaktní množina

Definice Nechť (P, ρ) je metrický prostor. Řekneme, že množina $K \subset P$ je **kompaktní** pokud:

$$\forall (x_n)_{n=1}^{\infty} \quad x_n \in \mathbb{K} \quad \exists \text{ v.p. } (x_{n_s})_{s=1}^{\infty} \land \exists x \in \mathbb{K} \text{ t.\check{z}. } x_{n_k} \to x$$

Tj. pro každou posloupnost existuje konvergentní vybraná podposloupnost.

6.11 Vlastnosti kompaktních množin (důkaz 2. neúplný!)

Věta Nechť (P, ρ) je metrický prostor, $K \subseteq P$ kompaktní množina. Potom:

- $1.\ K$ je uzavřená množina
- 2.~K je omezená množina
- 3. $F \subseteq K$, F uzavřená množina $\Rightarrow F$ je kompaktní množina

Důkaz

1. Aby K byla uzavřená množina musí platit:

$$\forall (x_n)_{n=1}^{\infty} \quad x_n \in K \quad x_n \to x \quad \Rightarrow x \in K \tag{1}$$

K je kompaktní, víme tedy:

$$\exists x' \in K \quad \exists x_{n_k} \quad x_{n_k} \to x' \tag{2}$$

Zvolme tedy x := x', což splňuje podmínku podle definice.

2. Sporem - nechť K není omezená: Mějme tedy $a \in P$ libovolné, tedy:

$$\forall n \quad K \nsubseteq B(a,n) \quad \Leftrightarrow \quad \exists x_n \in K : x_n \notin B(a,n) \tag{3}$$

 $(\text{tedy } \rho(x_n, a) > n)$

Protože K je kompaktní, platí:

$$\exists (x_{n_k})_{k=1}^{\infty} \quad \exists x \in K \quad x_{n_k} \to x \tag{4}$$

Tedy podle definice limity

$$\forall \varepsilon > 0 \quad \rho(x_{n_k}, x) < \varepsilon \tag{5}$$

Zvolme $\varepsilon := n_{k_0}$. Speciálně tedy musí platit:

$$\rho(x_{n_{k_0}}, x) < n_{k_0} \tag{6}$$

Což je spor pro $n_k = n_{k_0}$

pozn: v důkazu se na konci využívalo trojúhelníkové nerovnosti mezi body $a,\,x$ a x_n

3. Pro každou posloupnost $x_n \in F \subseteq K$ platí, že konverguje v K. Potom podle věty o charakterizaci uzavřených množin pokud $(x_{n_k}) \to x$, tak $x \in F$, tudíž splňuje podmínky z definice kompaktní množiny.

6.12 Charakterizace kompaktních množin v \mathbb{R}^n

Věta $K \subseteq \mathbb{R}^n$ je kompaktní množina právě když je **uzavřená a omezená**.

Důkaz

⇒ triviálně podle věty o vlastnostech kompaktních množin

$$\Leftarrow$$
 pro $\rho_{\infty} = \max_{i} |x_i - y_i|$

Nechť x(1), x(2), ... je posloupnost v \mathbb{R}^n , K je omezená a uzavřená. Potom:

$$\exists c \in \mathbb{R} \quad K \subseteq [-c, c]^n \tag{1}$$

Ukážeme, že $[-c,c]^n$ je kompaktní, potom je K kompakt triviálně podle části 3 věty o vlastnostech kompaktních množin. Chceme tedy:

$$\forall (x_n) \quad x_n \in [-c, c]^d \quad \exists \text{ kg. podposloupnost}$$
 (2)

Označme $x_n = (x_n^1, ..., x_n^d)$... $\forall n \forall i$ $x_n^i \in [-c, c]^n$. Matematickou indukcí podle souřadnice:

1. $(x_n^1)_{n=1}^{\infty}$ - posloupnost v \mathbb{R} , má vybranou konvergentní posloupnost podle *Bolzano-Weistrassovy* věty pro \mathbb{R}

$$\lim_{k \to \infty} (y_k^1) = y^1(y_k^1) = (x_{n_k}^1)$$
(3)

Mějme tedy $(x_{n_k}^1) := (y_k^1)$.

- 2. analogicky k 1. $\exists (x_{n_k}^2)$
- d. analogicky k 1. $\exists (x_{n_k}^d)$

Víme tedy, že

$$\forall j = 1...d \quad \lim_{i \to \infty} y_i^j = y^j \tag{4}$$

Cheeme $\lim_{i\to\infty} \rho_{\infty}(y_i,y) = 0$. Tedy:

$$\forall \varepsilon > 0 \quad ? \exists n_0 : \tag{5}$$

$$\exists n_1 ... \forall i \ge n_1 \quad |y_i^1 - y^1| < \varepsilon \tag{6}$$

$$\vdots (7)$$

$$\exists n_d ... \forall i \ge n_d \quad |y_i^d - y^d| < \varepsilon \tag{8}$$

Mějme tedy $n_0 = \max\{n_1...n_d\}$. Potom:

$$\forall \varepsilon > 0 \quad \forall i \ge n_0 \quad \rho_{\infty}(y_i, y) < \varepsilon \tag{9}$$

Což splňuje požadovanou limitu.

6.13 Spojitost vzhledem k množině

Definice Nechť (P, ρ) , (Q, σ) jsou metrické prostory. $M \subseteq P$ a funkce $f: M \to Q$, $x_0 \in M$. Řeknem, že f je **spojitá** v x_0 **vzhledem k** M právě když:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall \varepsilon B_{\rho}(x_0, \delta) \cap M : \quad f(x) \in B_{\sigma}(x_0, \varepsilon)$$

Definice Funkce f je spojitá na M právě když je spojitá v každém jejím bodě vzhledem k M.

6.14 Limita vzhledem k množině

Definice Nechť $\forall \delta > 0$ $B_{\rho}(x_0, \delta \setminus \{x_0\} \cap M \neq 0, y \in Q$. Potom definujeme limitu vzhledem kM jako:

$$\lim_{x \xrightarrow{\text{vz. k M}} x_0} f(x) = y \quad \Leftrightarrow \quad \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in B_{\rho}(x_0, \delta) \cap M \setminus \{x_0\} : \quad f(x) \in B_{\sigma}(y, \varepsilon)$$

6.15 Charakterizace spojitých zobrazení (bez důkazu)

Věta Nechť $(P,\rho),\,(Q,\sigma)$ jsou metrické prostory a zobrazení $f:P\to Q.$ Pak následující tvrzení jsou ekvivalentní:

- 1. f je spojité zobrazení na P
- 2. $\forall G$ otevřená množina v (Q,σ) je $f^{-1}(G)$ otevřená množina v (P,ρ)
- 3. $\forall F$ uzavřená množina v (Q,σ) je $f^{-1}(F)$ uzavřená množina v (P,ρ) (bez důkazu)