STRONG REPRESENTATION OF MEAK CONVERGENCE(U) NORTH CAROLINA UNIV AT CHAPEL HILL DEPT OF STATISTICS 2 D BAI ET AL JUN 87 TR-186 AFOSR-TR-87-1354 F49620-85-C-8144 F/G 12/3 AD-R186 433 1/1 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANLARD (1994)

AD-A186 433

$\Delta I I - \Delta I \times n$	455	وراسانا ورانات المراد ووراد				
AD-A 186	JEHORIT, DOÇU	MENTATION PAG	Ε			
1. REPORT SECURITY CLASSIFICAT	ELECTER	16. RESTRICTIVE N	MARKINGS			
2. SECURITY CLASSIFICATION AUT		3. DISTRIBUTION/A	VAILABILITY O	F REPORT		
NA _		Approved for public release; Distribution				
26. DECLASSIFICATION/DOWNGRAD	HEDULE	Unlimited				
4. PERFORMING ORGANIZATION RE	5. MONITORING OF	5. MONITORING ORGANIZATION REPORT NUMBERIS)				
Technical Report No. 1	AFOSR	AFOSR-TR- 87-1354				
64. NAME OF PERFORMING ORGANI						
University of North Ca	rolina (Mappiicable)	AFOSR/NM				
6c, ADDRESS (City, State and ZIP Code		75. ADDRESS (City, State and ZIP Code) Building 410 Bolling AFB, DC 20332-6448				
Statistics Dept.						
Phillips Hall 039-A Chapel Hill, NC 27514) Borring /iii	J, 50 20002			
8. NAME OF FUNDING/SPONSORING		9. PROCUREMENT	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
ORGANIZATION: AFOSR	(If applicable)	F49620 85 (F49620 85 C 0144			
8c. ADDRESS (City, State and ZIP Code		10. SOURCE OF FU	10. SOURCE OF FUNDING NOS.			
Building 410,	C110	PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT	
Bolling AFB, DC 20332-	-0440	-		45		
11. TITLE Ilneiude Security Classification		6.1102F	2304	7 2/		
Strong Representation	of weak Convergence		<u> </u>	1	<u> </u>	
Bai, Z.D., Liang, W.Q.	and Vervaat, W.				_	
13a TYPE OF REPORT preprint	136. TIME COVERED FROM 9/8 10 9/8		June 1987		15. PAGE COUNT	
16. SUPPLEMENTARY NOTATION	FROM	7 Julie 130	<i>'</i>	1		
17. COSATI CODES	18 SUBJECT TERM	S (Continue on reverse if n	ecessary and ident	ify by block number	•)	
		Keywords and phrases: Skorohod's representation theorem				
		strong representation of weak convergence.				
19. ABSTRACT (Continue on reverse if	necessary and identify by block nut	mberi .			<u> </u>	
The following r	esult is proved. If	S _n is a separat	ole metric :	space for n≤	∞ , ϕ_n :	
$S_n \rightarrow S_\infty$ is measurable	for $n < \infty$, χ_n is an S_n	-valued random	variable fo	or n≤∞ and φ	$(X_n) \rightarrow X_\infty$	
	ist S_n -valued random					
, × ×	tions on S_n and ϕ_n and			~		
context of Polish sp		-				
•						
20. DISTRIBUTION/AVAILABILITY	OF ABSTRACT	i	21. ABSTRACT SECURITY CLASSIFICATION			
UNCLASSIFIED/UNLIMITED 🖾 SAME AS RPT. 🗆 OTIC USERS 🗆		UNCLASSIFIED				
228. NAME OF RESPONSIBLE INDIVIDUAL		226. TELEPHONE N	NUMBER 300	22c. OFFICE SYM	BOL	
Paggy Ravitals Ma	11nclude Area C 919-962-2	1307 50 25	AFOSR/NH			

AFOSR.TR. 87-1354

CENTER FOR STOCHASTIC PROCESSES

Department of Statistics University of North Carolina Chapel Hill, North Carolina

STRONG REPRESENTATION OF WEAK CONVERGENCE

bу

Z.D. Bai

W.Q. Liang

and

W. Vervaat

Technical Report No. 186

June 1987

STRONG REPRESENTATION OF WEAK CONVERGENCE

Z.D. BAI*

Center for Multivariate Analysis, 515 Thackeray Hall, University of Pittsburgh, Pattsburgh, PA 15260, USA

W.Q. LIANG*

Center for Multivariate Analysis, 515 Thackeray Hall, University of Pittsburgh, Pattsburgh, PA 15260, USA

Wim VERVAAT**

Department of Mathematics, Catholic University, Toernooiveld 5, 6525 ED Nijmegen, The Netherlands

The following result is proved. If S_n is a separable metric space for $n \le \infty$, $q_n \colon S_n \to S_\tau$ is measurable for $n < \infty$, X_n is an S_n -valued random variable for $n \le \infty$ and $q_n(X_n) \to_d X_\infty$ in S_∞ , then there exist S_n -valued random variables X_n^* such that $X_n =_d X_n$ for $n \le \infty$ and $q_n(X_n^*) \to X_n^*$ wp1. Conditions on S_n and q_n are presented that allow a construction in the context of Polish spaces.

AMS 1980 Subject Classification: Primary 60B10

Skorohod's representation theorem + strong representation of weak convergence

- This research has been supported by the Air Force Office of Scientific Research Grant No. E49620-85-C-00008
- Research completed during a visit to the Center for Stochastic Processes. University of North Carolina and supported by the Air Force Office of Scientific Research Grant No. E49620-85-C-0144

In this paper we prove the following variant of Skorohod's representation theorem for weak convergence. Equality in distribution is denoted by $=_d$, convergence in distribution by \rightarrow_d .

Theorem 1. Let S_n for $n = 1, 2, ..., \times$ be a separable metric space and let q_n for $n = 1, 2, ..., \times$ be a measurable function from S_n into S_n . If X_n is an S_n -valued random variable for $n = 1, 2, ..., \times$ and $q_n(X_n) \rightarrow_d X$, in S_n , then there exist S_n -valued random variables X_n^* for $n = 1, 2, ..., \times$ defined on one probability space and such that $X_n^* =_d X_n$ in S_n for $n = 1, 2, ..., \times$ and $q_n(X_n^*) \rightarrow X_n^*$ wp1 in S_n .

When $S_n = S$ (separable) and $q_n = \mathrm{id}_S$ for all n, then the above theorem specializes to Dudley's (1968) variant of Skorohod's representation theorem. In Skorohod's (1956) original version S was required to be complete as well. See Wichura (1970) and Blackwell & Dubins (1983) for further extensions. Our proof of the present theorem amounts to the construction of a special metric space T to which Dudley's theorem can be applied.

Theorem 1 turns out to be useful in many instances. It is applied in Bai (1984), Bai & Yin (1986) and Yin (1984). The need for these applications led the first two authors to the present research.

Here is the simplest example of a theorem that can be proved by Theorem 1, but not by the theorem of Skorohod-Dudley in its original form. It is Theorem 4.1 of Billingsley (1968), restricted to separable metric spaces.

Theorem 2. It S is a separable metric space with metric $\varrho_+(X_n,Y_n)$ are S^2 -valued random variables for n=1,2,... and X is an S-valued random variable such that $X_n \to_d X$ in S and $\varrho_+(X_n,Y_n) \to_d 0$ in R, then $Y_n \to_d X$ in S

Proof. By Billingsley (1968, Th.4.4) we have $(X_n, \varrho(X_n, Y_n)) \rightarrow_d (X, 0)$ in $S \times R$. Apply Theorem 1 with $S = S \times R$, $S_n = S^2$, X_n replaced by (X_n, Y_n) and $q_n(x, y) = (x, \varrho(x, y))$, all for $n < \infty$. \square

Proof of Theorem 1. All statements involving n are supposed to hold for $n=1,2,...,\infty$ unless restricted explicitly: limit statements without explicit tendency hold as $n \to \infty$. Let T be the disjoint union of all S_n . Let $v: T \to \{1,2,...,\infty\}$ be defined by v(x) = n if $x \in S_n$. Set $q_n := \mathrm{id}_{S_n}$ and define $q: T \to S_n$ by $q_n(x) := q_{n+n}(x)$. Let q_n be the metric of S_n . Let e_n be positive for $n < \infty$, decreasing to 0 as $n \to \infty$, and set $e_n := 0$. We now define what is going to be the metric on T:

$$(1) \qquad \delta(x,y) := \varrho_{\varepsilon}(q_{\varepsilon}(x),q_{\varepsilon}(y)) + \begin{cases} \varepsilon_{s(x)} \wedge \varrho_{s(x)}(x,y) & \text{if } s(x) = s(y), \\ \varepsilon_{s(x)} \vee \varepsilon_{s(x)} & \text{if } s(x) \neq s(y). \end{cases}$$

Let us first verify that δ is indeed a metric. Obviously, $\delta(x,y) = \delta(y,x)$ and $\delta(x,x) = 0$. If $\delta(x,y) = 0$, then s(x) = s(y) and $g_{-(x)}(x,y) = 0$, so x = y. The triangle inequality can be verified separately for both terms on the right-hand side of (1). We note the following properties of δ -convergence:

- (2) $\delta = \varrho$, on $S_1 \times S_2$.
- (3) If $x, x_k \in S_n$, then $\delta(x, x_k) \to 0$ as $k \to \infty$ iff $\varrho_n(x, x_k) \to 0$ and $\varrho_n(q_n(x), q_n(x_k)) \to 0$ as $k \to \infty$. It follows that the ϱ_n -topology in S_n is coarser than or equal to the trace in S_n of the δ -topology in T, which is homeomorphic via $S_n \ni x \mapsto (x, q_n(x))$ to the trace in the graph of q_n of the product topology in $S_n \times S_n$. The last topology is separable, and so is the trace of the δ -topology in each S_n . Consequently, δ is separable.
- (4) S_n is δ -open for $n < \infty$.
- (5) If $x_n \in S_n$ for each $n < \infty$, then $x_n \to x$ iff $x \in S$, and $g_n(x_n) \to x$ in S.

Having established that T with δ is a separable metric space, we may apply Dudley's theorem to T-valued random variables. However, there is one more barrier to take. We want to identify S_n -valued random variables with T-valued random variables having range in S_n . In the first appearance random variables must be S_n -measurable, where S_n is the Borel field in S_n generated by Q_n . In the

second appearance they must be $\vec{\sigma}_n$ -measurable, where $\vec{\sigma}_n$ is the trace in S_n of $\vec{\sigma}$, the Borel field in T generated by δ . So we must prove $S_n = \vec{\sigma}_n$.

From the second clause in (3) it follows that $\mathcal{S}_n \subset \mathcal{T}_n$. For the converse inclusion we must do a little more. First note that $\tilde{\sigma}$ is already generated by the open δ -balls in T, since δ is separable. This can be phrased equivalently by stating that $\tilde{\tau}$ is the smallest σ -field in T which makes the functions $\delta(x,y)$ measurable for all $x \in T$. Consequently, $\tilde{\sigma}_n$ is the smallest σ -field in S_n which makes the functions $\delta(x,y)$, restricted to S_n , measurable for all $x \in T$. First suppose $n = \kappa$. Then $\delta(x,y) = \varrho_{\beta}(q(x),y) + \varepsilon_{\beta(x)}$ for $x \in T$, $y \in S_n$, which, as a function of y, is obviously β -measurable. So $\tilde{\sigma}_n \subset S_n$. Considering (1) for $x \in T$ as a function of $y \in S_n$ we observe that $\varrho_{\beta}(x,y)$ is S_n -measurable, and that $\varrho_{\beta}(q(x),q_{\beta}(y))$ is S_n -measurable as composition of the S_n -measurable function $\varrho_{\beta}(q(x),y)$.

We now write down the scheme of implications that proves the theorem. We are given S_n -valued random variables X_n such that

(6)
$$g_{-n}(X_n) \longrightarrow_{\mathcal{X}} X_n$$
 in S_n .

The major point, to be proved below, is that this implies

$$(\vec{z}) = X_n \rightarrow_d X_n$$
 in T

By Dudley's theorem there are T-valued random variables Y_n , defined on one probability space, such that $Y_n =_d X_n$ in T and $Y_n \to Y$, wp1 in T. By (4) we have $S_n \in \mathcal{F}$ for each n, so there is a measurable function $f_n \colon T \to S_n$ such that the restriction of f_n to f_n is the identity map on f_n take f_n to be the identity map on f_n and constant on f_n . Set $f_n \colon = f_n Y_n$. Then $f_n \colon = f_n Y_n$ has range in $f_n \colon = f_n Y_n$ wp1 in $f_n \colon = f_n Y_n$ wp1 in $f_n \colon = f_n Y_n$ in $f_n \colon = f_n Y_n$ wp1 in $f_n \colon = f_n Y_n$ in $f_n \colon = f_n Y_n$ wp1 in $f_n \colon =$

$$q(X_n^*) \rightarrow X_n^* \text{ wpl} \text{ in } S_n$$
.

We have arrived at all conclusions of the theorem

It remains to prove the implication (6) \Rightarrow (7). We will interpret (6) and (7) by convergence of probability distributions on continuity sets, so we must compare the boundaries under ϱ , and δ . By (2) we have for $A \subseteq T$:

(8)
$$\mathbb{P}_{\alpha}(A \cap S_{\alpha}) = \mathbb{P}_{\alpha \in \alpha}(A \cap S_{\alpha}) \oplus \mathbb{P}_{\alpha}(A).$$

Let $B(x, \varepsilon) := \{ v \in T : \delta(x, v) \le \varepsilon \}$ and set

$$(9) \qquad \forall \forall := \{B(x,x): x < \ell_{x(x)} \text{ if } x(x) < x, P[X, \in \Im_{\delta} B(x,x)] = 0\}.$$

and let \mathcal{H} consist of the unions of finitely many elements of \mathfrak{D} . By Billingsley (1968, Corollary 2 on p.15) it is sufficient for (7) that

(10)
$$P[X_n \in A] \rightarrow P[X_n \in A]$$
 for $A \in \mathcal{H}$.

If $B(x, \epsilon) \in \mathbb{V}$ with $s(x) < \infty$, then $B(x, \epsilon) \in S_{+(\epsilon)}$, so $P[X_n \in B(x, \epsilon)] = 0$ unless n = s(x). If $B(x, \epsilon) \in \mathbb{V}$ with $x \in S_n$, then

$$[X_n \in B(x,\varepsilon)] = [\varphi_{\varepsilon}(x,\varphi_n(X_n)) < \varepsilon - \varepsilon_n] = [\varphi_n(X_n) \in B(x,\varepsilon - \varepsilon_n) \cap S_{\varepsilon}],$$

50

(11)
$$[q_n(X_n) \in B(x,\varepsilon) \cap S_{\varepsilon}] \subset \liminf [X_n \in B(x,\varepsilon)] \subset \limsup [X_n \in B(x,\varepsilon)]$$

$$\subset [q_n(X_n) \in \overline{B(x,\varepsilon) \cap S_{\varepsilon}}].$$

By (6), (8) and (9) the outmost sides of (11) have equal probabilities. Combining the previous observations for separate $B(x,\varepsilon) \in \mathbb{V}$ we arrive at (11) with $A \in \mathcal{U}$ instead of $B(x,\varepsilon) \in \mathbb{V}$, again with equal probabilities for the outmost sides. This proves (10), hence (7). The proof of the theorem is complete.

Remarks. In general the space T is not complete under δ , even if all S_n are under ϱ_n . To see this, consider the case that all x_n $(n < \infty)$ lie in S_m for one fixed m. Then (x_n) is δ -Cauchy iff $((-x_n, x_n))_{n \in \mathbb{N}}$ is $\varrho_m \times \varrho_n$.-Cauchy. If the latter holds, then $((x_n, y_m(x_n)))$ converges in $S_m \times S_n$, but not necessarily in graph q_m , unless the latter is closed. This combined with the observation that δ -Cauchy sequences $(x_n)_n$, with $x_n \in S_n$ converge if S_n is ϱ_n -complete leads us to the following result.

Theorem 3. Let S_n be separable and ϱ_n -complete for each n. Then T is δ -complete iff graph ϱ_n is closed in $S_n \times S$, for each n.

It is well-known that graph q_n is closed if q_n is continuous, and that q_n is continuous if graph q_n is closed and S_n is compact. Using the fact that a subset of a Polish space is Polish iff it is G_{δ} (Dugundji (1966, Th.XIV.8.3)), we arrive at the following variation on Theorem 3.

Theorem 4. Let S_n be Polish for each n. Then T is Polish if graph q_n is G_δ in $S_n \times S$, for each n.

For results on real functions with G_{δ} graphs, see van Rooij & Schikhof (1982, Exerc. 11.Y,Z). Functions of the first class of Baire (pointwise limits of continuous functions) have G_{δ} graphs. F_{σ} graphs are also G_{δ} .

Acknowledgment. Thomas M. Liggett has contributed to our discussions about this proof.

References

- [1] Bar, Z.D. (1984). A note on the joint distribution of the eigenvalues of noncentral multivariate F-matrix. Center for Multivariate Analysis, University of Pittsburgh. Technical Report 84-49.
- [2] BAI, Z.D., & Y.Q. YIS (1986). Limiting behavior of the norm of products of random matrices and two problems of Geman and Hwang. *Probab. Theory Rel. Fields* 73 555-570.
- [3] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley
- [4] BEXCKWITT, D. & T. E. DUBINS (1983). An extension of Skorohod's almost sure representation theorem. Proc. Amer. Math. Soc. 89 691-692.
- [5] DUDLEY, R.M. (1968). Distances of probability measures and random variables. Ann. Math. Statist. 39 1563-1572.
- [6] DUGUNDII, J. (1966). Topology. Allyn and Bacon.
- [7] Skoronor, A.V. (1956). Limit theorems for stochastic processes. Theory Probab. Appl. 1.3 261-290.
- [8] VAN ROOH, A.C.M., & W.H. SCHIKHOF (1982). A Second Course on Real Functions. Cambridge University Press.
- [9] WICHURA, M.J. (1970). On the construction of almost uniformly convergent random variables with given weakly convergent image laws. Ann. Math. Statist. 41 284-291.
- [10] Yis, Y.Q. (1984) Limiting sepetral distributions for a class of random matrices. Center for Multivariate Analysis, University of Pittsburgh. Technical Report 84-50.

END DATE FILMED DEC. 1987