CM535 Data science development

Week 2: Data preparation and data cleaning

Benjamin Lacroix b.m.e.lacroix@rgu.ac.uk

February 4, 2020

Introduction

Data preparation and data cleaning in R

- Loading data
- Type conversion
- Consistent data
- Data transformation
- Feature selection

Data type in R

Data types in R:

- numeric: Numeric data (approximations of the real numbers, R)
- integer: Integer data (whole numbers, Z)
- factor: Categorical data (simple classifications, like gender)
- ordered: Ordinal data (ordered classifications, like educational level)
- character: Character data (strings)
- logical: TRUE or FALSE values

```
class(c(1, 2))
## [1] "numeric"
class(c("abc", "bca"))
## [1] "character"
```

Special values in R: NA

NA: Not Available. NA is a placeholder for a missing value. Most operation work with NA but will return NA

```
c(NA, 1, 2)

## [1] NA 1 2

sum(c(NA, 1, 2))

## [1] NA
```

Special values in R: NULL

NULL: An empty set, it has no length and no class.

```
c(NULL, 1, 2)

## [1] 1 2

sum(c(NULL, 1, 2))

## [1] 3
```

Special values in R: Inf

Inf: stands for infinity. It is a numeric.

```
3/0

## [1] Inf

Inf+Inf

## [1] Inf

sort(c(Inf,3, 10,-5,-Inf))

## [1] -Inf -5 3 10 Inf
```

Special values in R: Nan

NaN: Not a Number. It is the result of a calculation where the result is unknown.

```
1+NaN

## [1] NaN

sqrt(-2)

## Warning in sqrt(-2): NaNs produced

## [1] NaN
```

Data structures

Collection which can only hold ony type/class of variables

- Vectors: one dimensional
- Matrices: two dimensional
- Arrays: 3+ dimensional

```
class(c(1,"2",TRUE))
## [1] "character"
class(matrix(1:16,nrow = 4, ncol = 4))
## [1] "matrix"
```

Data structures

Lists: an R object which can contain elements of different types

```
person <- list(age = 3, children = c("John", "Kate"), unemployed = FALSE)</pre>
person
## $age
## [1] 3
  $children
   [1] "John" "Kate"
##
   $unemployed
   [1] FALSE
person$children
## [1] "John" "Kate"
person[[2]]
## [1] "John" "Kate"
person[[3]]
```

Data structures

Data frames: tabular data object. Unlike a matrix in data frame each column can contain different modes of data.

```
stIds < -c(1,2,3,4,5)
stNames <- c("John", "Mark", "Dave", "Kate", "Anna")
stGrades <-c ("Excellent", "Good", "Bad", "Very Bad", "Bad")
df <- data.frame(student id=stIds.student name=stNames.student grades=stGrades)
df
     student_id student_name student_grades
##
                                    Excellent
## 1
                         .Iohn
                                          Good
## 2
                         Mark
## 3
                         Dave
                                           Bad
## 4
                         Kate
                                     Very Bad
                         Anna
                                           Bad
## 5
```

Loading data in R

In practice, you'll be brought to import data from external files, typically a 'comma seperated value' (.csv) file

```
adult.csv
age, workclass, fnlwgt, education, education-num, marital-status, occupation, relationship, race, sex, capital-gain, capital-loss, hours-per-week, native-country, labe
39. State-gov, 77516, Bachelors, 13. Never-married, Adm-clerical, Not-in-family, White, Male, 2174, 0, 40, United-States, <=50K
50, Self-emp-not-inc, 83311, Bachelors, 13, Married-civ-spouse, Exec-managerial, Husband, White, Male, 0, 0, 13, United-States, <=50K
38, Private, 215646, HS-grad, 9, Divorced, Handlers-cleaners, Not-in-family, White, Male, 0, 0, 40, United-States, <=50K
53, Private, 234721, 11th, 7, Married-civ-spouse, Handlers-cleaners, Husband, Black, Male, 0, 0, 40, United-States, <=50K
28, Private, 338409, Bachelors, 13, Married-civ-spouse, Prof-specialty, Wife, Black, Female, 0, 0, 40, Cuba, <=50K
37, Private, 284582, Masters, 14, Married-civ-spouse, Exec-managerial, Wife, White, Female, 0, 0, 40, United-States, <=50K
49, Private, 160187, 9th, 5, Married-spouse-absent, Other-service, Not-in-family, Black, Fenale, 0, 0, 16, Janaica, <=50K
52, Self-emp-not-inc, 209642, MS-grad, 9, Married-civ-spouse, Exec-managerial, Musband, White, Male, 0, 0, 45, United-States, >50K
31, Private, 45781, Masters, 14, Never-married, Prof-specialty, Not-in-family, White, Female, 14084, 0, 50, United-States, >50K
42, Private, 159449, Bachelors, 13, Married-civ-spouse, Exec-managerial, Husband, White, Male, 5178, 0, 40, United-States, >50K
37, Private, 280464, Some-college, 10, Married-civ-spouse, Exec-managerial, Musband, Black, Male, 0, 0, 80, United-States, >50K
30, State-gov, 141297, Bachelors, 13, Married-civ-spouse, Prof-specialty, Husband, Asian-Pac-Islander, Male, 0, 0, 40, India, > 50K
23, Private, 122272, Bachelors, 13, Never-married, Adm-clerical, Own-child, White, Fenale, 0, 0, 30, United-States, <=50K
32, Private, 205019, Assoc-acdm, 12, Never-married, Sales, Not-in-family, Black, Male, 0, 0, 50, United-States, <=50K
40, Private, 121772, Assoc-voc, 11, Married-civ-spouse, Craft-repair, Husband, Asian-Pac-Islander, Male, 0, 0, 40, 7, >50
34, Private, 245487, 7th-8th, 4, Married-civ-spouse, Transport-moving, Husband, Amer-Indian-Eskimo, Male, 0, 0, 45, Mexico, <=50K
25. Self-emp-not-inc, 176756. HS-grad, 9. Never-married, Farming-fishing, Own-child, White, Male, 0, 0, 35. United-States, <=50K
32, Private, 186824, HS-grad, 9, Never-married, Machine-op-inspct, Unmarried, White, Male, 0, 0, 40, United-States, <=50K
38, Private, 28887, 11th, 7, Married-civ-spouse, Sales, Husband, White, Male, 0, 0, 50, United-States, <=50K
43, Self-emp-not-inc, 292175, Masters, 14, Divorced, Exec-managerial, Unmarried, White, Female, 0, 0, 45, United-States, >50K
40, Private, 193524, Doctorate, 16, Married-civ-spouse, Prof-specialty, Husband, White, Male, 0, 0, 60, United-States, >50K
54, Private, 302146, HS-grad, 9, Separated, Other-service, Unmarried, Black, Female, 0, 0, 20, United-States, <=50K
35,Federal-gov,76845,9th,5,Married-civ-spouse,Farming-fishing,Husband,Black,Male,0,0,40,United-States,<=50K
43, Private, 117037, 11th, 7, Married-civ-spouse, Transport-moving, Husband, White, Male, 0, 2042, 40, United-States, <=50K
59, Private, 189815, HS-grad, 9, Divorced, Tech-support, Unmarried, White, Female, 8, 8, 48, United-States, <=50k
56, Local-gov, 216851, Bachelors, 13, Married-civ-spouse, Tech-support, Husband, White, Male, 0, 0, 40, United-States, >50K
19, Private, 168294, HS-grad, 9, Never-married, Craft-repair, Own-child, White, Male, 0, 0, 40, United-States, <=50K
54,?,180211,Some-college,10,Married-civ-spouse,?,Husband,Asian-Pac-Islander,Male,0,0,60,South,>50K
39, Private, 367260, HS-grad, 9, Divorced, Exec-managerial, Not-in-family, White, Male, 0, 0, 80, United-States, <=50K
49, Private, 193366, HS-grad, 9, Married-civ-spouse, Craft-repair, Husband, White, Male, 0.0, 40, United-States, <=50K
23, Local-gov, 190789, Assoc-acdm, 12, Never-married, Protective-serv, Not-in-family, White, Male, 0, 0, 52, United-States, <=58K
20, Private, 266015, Some-college, 10, Never-married, Sales, Own-child, Black, Male, 0, 0, 44, United-States, <=50K
45, Private, 386940, Bachelors, 13, Divorced, Exec-managerial, Own-child, White, Male, 0, 1408, 40, United-States, <=500
30, Federal-gov, 59951, Some-college, 10, Married-civ-spouse, Adm-clerical, Own-child, White, Male, 0, 0, 40, United-States, <=50K
22, State-gov, 311512, Some-college, 10, Married-civ-spouse, Other-service, Husband, Black, Male, 0, 0, 15, United-States, <=50K
48. Private, 242486, 11th, 7. Never-married, Machine-op-inspct, Unmarried, White, Male, 8, 8, 48. Puerto-Rico, <=50K
21, Private, 197200, Some-college, 10, Never-married, Machine-op-inspct, Own-child, White, Male, 0, 0, 40, United-States, <=50K
19, Private, 544891, HS-grad, 9, Married-AF-spouse, Adm-clerical, Wife, White, Female, 0, 0, 25, United-States, <=50K
31. Private, 84154, Some-college, 10. Married-civ-spouse, Sales, Husband, White, Male, 0, 0, 38.7. >50K
```

- read.table() function is the most flexible function. And the following functions actually use read.table() with some fixed parameters
- read.csv(): comma separated values with period as decimal separator.
- read.csv2(): semicolon separated values with comma as decimal separator. Week 2: Data preparation and data cleaning

Loading data in R

```
adultData <- read.csv("adult.csv")
class(adultData)
## [1] "data.frame"</pre>
```

Argument	Description
header	Does the first line contain column names?
col.names	character vector with column names
na.string	Which strings should be considered NA?
colClasses	character vector with the types of columns.
stringsAsFactors	If TRUE, converts all character vectors into factor vectors.
sep	Field separator

First look at your data

Once you have loaded your data it is important to have a first look at it using

- head(): shows the first few rows of your data frame
- summary(): provides basic statistics on each column
- str(): displays the internal structure of your data

First look at your data: head

head(adultData)

```
##
    age
                workclass fnlwgt education education.num marital.status
## 1
     39
                State-gov 77516 Bachelors
                                                      13
                                                             Never-married
     50 Self-emp-not-inc 83311 Bachelors
## 2
                                                      13 Married-civ-spouse
## 3
     38
                 Private 215646
                                  HS-grad
                                                                   Divorced
## 4
     53
                 Private 234721
                                      11th
                                                       7 Married-civ-spouse
## 5
     28
                 Private 338409 Bachelors
                                                      13 Married-civ-spouse
## 6
     37
                 Private 284582
                                  Masters
                                                      14 Married-civ-spouse
##
           occupation relationship race sex capital.gain capital.loss
         Adm-clerical Not-in-family White
                                            Male
                                                          2174
## 1
##
      Exec-managerial
                            Husband White Male
    Handlers-cleaners Not-in-family White Male
    Handlers-cleaners
                            Husband Black
                                            Male
## 5
      Prof-specialty
                                Wife Black Female
      Exec-managerial
                                Wife White Female
## 6
##
    hours.per.week native.country label
                    United-States <=50K
## 1
## 2
                    United-States <=50K
## 3
                40
                    United-States <=50K
## 4
                    United-States <=50K
                40
## 5
                40
                              Cuba <=50K
```

40

6

United-States <=50K

First look at your data: str

```
str(adultData)
  'data.frame': 32561 obs. of 15 variables:
##
   $ age
            : int 39 50 38 53 28 37 49 52 31 42 ...
   $ workclass : Factor w/ 9 levels "?", "Federal-gov",..: 8 7 5 5 5 5 7 5 5
##
##
   $ fnlwgt : int 77516 83311 215646 234721 338409 284582 160187 209642 45
##
  $ education : Factor w/ 16 levels "10th","11th",..: 10 10 12 2 10 13 7 12 1
## $ education.num : int 13 13 9 7 13 14 5 9 14 13 ...
##
   $ marital.status: Factor w/ 7 levels "Divorced", "Married-AF-spouse",...: 5 3 1 3
##
   $ occupation : Factor w/ 15 levels "?", "Adm-clerical",..: 2 5 7 7 11 5 9 5 1
##
   $ relationship : Factor w/ 6 levels "Husband", "Not-in-family", ...: 2 1 2 1 6 6
##
   $ race
                   : Factor w/ 5 levels "Amer-Indian-Eskimo",..: 5 5 5 3 3 5 5 5
            : Factor w/ 2 levels "Female". "Male": 2 2 2 2 1 1 1 2 1 2 ...
##
   $ sex
   $ capital.gain : int 2174 0 0 0 0 0 0 14084 5178 ...
##
##
   $ capital.loss : int 0 0 0 0 0 0 0 0 0 ...
   $ hours.per.week: int 40 13 40 40 40 40 16 45 50 40 ...
##
##
   $ native.country: Factor w/ 42 levels "?", "Cambodia",..: 40 40 40 40 6 40 24 40
##
   $ label : Factor w/ 2 levels "<=50K",">50K": 1 1 1 1 1 1 1 2 2 2 ...
```

First look at your data: summary

Sales

Beniamin Lacroix

summary(adultData) ## age workclass fnlwgt ## Min. :17.00 Private :22696 Min. : 12285 1st Qu.:28.00 Self-emp-not-inc: 2541 1st Qu.: 117827 ## ## Median : 37.00 Local-gov : 2093 Median : 178356 Mean :38.58 ? : 1836 Mean : 189778 ## 3rd Qu.:48.00 State-gov : 1298 3rd Qu.: 237051 ## Max. :90.00 Self-emp-inc : 1116 Max. :1484705 ## (Other) : 981 education education.num marital.status ## ## HS-grad :10501 Min. : 1.00 Divorced : 4443 Some-college: 7291 1st Qu.: 9.00 Married-AF-spouse : 23 ## ## Bachelors : 5355 Median :10.00 Married-civ-spouse :14976 Masters : 1723 Mean :10.08 ## Married-spouse-absent: 418 Assoc-voc : 1382 3rd Qu.:12.00 Never-married :10683 ## 11th : 1175 Max. :16.00 ## Separated : 1025 (Other) : 5134 Widowed 993 ## occupation relationship ## race Prof-specialty:4140 Husband :13193 Amer-Indian-Eskimo: ## ## Craft-repair :4099 Not-in-family: 8305 Asian-Pac-Islander: 1039 ## Exec-managerial:4066 Other-relative: 981 Black : 3124 Adm-clerical :3770 Own-child :5068 ## Other 271

:27816

First look at your data

Beniamin Lacroix

```
adultData <- read.csv("adult.csv", na.string = "?")</pre>
summary(adultData)
##
       age
                           workclass
                                           fnlwgt
   Min.
##
         :17.00 Private
                                :22696 Min.
                                              : 12285
##
   1st Qu.:28.00 Self-emp-not-inc: 2541 1st Qu.: 117827
   Median : 37.00 Local-gov : 2093 Median : 178356
##
##
   Mean
         :38.58
                 State-gov : 1298 Mean
                                              : 189778
##
   3rd Qu.:48.00 Self-emp-inc : 1116 3rd Qu.: 237051
##
   Max. :90.00 (Other) : 981 Max. :1484705
##
                 NA's
                               : 1836
##
         education
                     education.num
                                                marital.status
              :10501 Min. : 1.00
                                    Divorced
##
   HS-grad
                                                      : 4443
##
   Some-college: 7291 1st Qu.: 9.00
                                    Married-AF-spouse
                                                          23
##
   Bachelors : 5355 Median :10.00
                                    Married-civ-spouse :14976
   Masters : 1723 Mean
                            :10.08
                                    Married-spouse-absent: 418
##
##
   Assoc-voc : 1382 3rd Qu.:12.00
                                    Never-married :10683
             : 1175
                                                      : 1025
##
   11t.h
                      Max.
                            :16.00
                                    Separated
   (Other) : 5134
                                    Widowed
                                                         993
##
            occupation
##
                               relationship
                                                           race
                                     :13193 Amer-Indian-Eskimo:
   Prof-specialty: 4140 Husband
##
##
   Craft-repair : 4099 Not-in-family : 8305 Asian-Pac-Islander: 1039
##
   Exec-managerial: 4066
                        Other-relative: 981 Black
                                                             : 3124
##
   Adm-clerical: 3770 Own-child
                                  : 5068 Other
                       Week 2 : Data preparation and data cleaning
                                                        February 4, 2020
```

Technically correct data

Ensuring that your data is in the right type.

```
str(df)
   'data.frame': 5 obs. of 3 variables:
##
    $ student id : num 1 2 3 4 5
## $ student_name : Factor w/ 5 levels "Anna", "Dave",..: 3 5 2 4 1
##
   $ student_grades: Factor w/ 4 levels "Bad", "Excellent",..: 2 3 1 4 1
newStudent <- c(6,"Nath","Average")</pre>
rbind(df.newStudent)
## Warning in '[<-.factor'('*tmp*', ri, value = "Nath"): invalid factor level,
NA generated
## Warning in '[<-.factor'('*tmp*', ri, value = "Nath"): invalid factor level,
NA generated
     student id student name student grades
##
## 1
                        John
                                  Excellent
                        Mark
                                       Good
## 2
## 3
                        Dave
                                        Bad
## 4
                        Kate
                                   Very Bad
## 5
                        Anna
                                        Bad
                        <NA>
                                       <NA>
## 6
```

Technically correct data

Dates

Dates and times in a dataset will come in two form

- a string of character such as "2011-03-27 01:30:00"
- a timestamp that corresponds to the number of seconds since the 'Unix Epoch'. That is the time 00:00:00 UTC on 1 January 1970.

```
dts <- c("2005-10-21 18:47:22","2005-12-24 16:39:58","2005-10-28 07:30:05")
as.POSIXct(dts, format="%Y-%m-%d %H:%M:%S", tz = "GMT")
## [1] "2005-10-21 18:47:22 GMT" "2005-12-24 16:39:58 GMT"
## [3] "2005-10-28 07:30:05 GMT"
dts <- c(1127056501,1104295502,1129233601,1113547501,1119826801)
dts <- as.POSIXct("January 1, 1970", format = "%B %d, %Y", tz="GMT")+dts
dts
## [1] "2005-09-18 15:15:01 GMT" "2004-12-29 04:45:02 GMT"
   [3] "2005-10-13 20:00:01 GMT" "2005-04-15 06:45:01 GMT"
## [5] "2005-06-26 23:00:01 GMT"
#get details from dates
format(dts,"%H")
## [1] "15" "04" "20" "06" "23"
```

Manipulating Dates

Extracting dates information

```
format(dts,"%H")
## [1] "15" "04" "20" "06" "23"

format(dts,"%Y")
## [1] "2005" "2004" "2005" "2005" "2005"

format(dts,"%m")
## [1] "09" "12" "10" "04" "06"
```

Differences between dates

```
difftime(dts[1],dts[2], units = "mins")
## Time difference of 379350 mins
difftime(dts[1],dts[2], units = "days")
## Time difference of 263.4375 days
```

Consistent data

Consistent data = data fit for statistical purposes.

Where:

- Missing data
- Special values
- Errors
- Outliers

Are removed or corrected

Missing data

- Represented by NA in R
- The most common issue you can find in data
- Most operations with data containing NAs will simply return NA
- But some function include the option 'na.rm' to ignore them

```
a <- c(1,2,NA,3)
mean(a)
## [1] NA
mean(a, na.rm = TRUE)
## [1] 2</pre>
```

Identifying missing data

```
dfWithNA <- df
dfWithNA[2,3] <- NA
dfWithNA[5,c(1,3)] \leftarrow NA
dfWithNA
##
     student_id student_name student_grades
                                  Excellent
## 1
                        .Iohn
                       Mark
                                       <NA>
## 2
## 3
                       Dave
                                        Bad
                       Kate Very Bad
## 4
## 5
     <NA>
                       Anna
                                       <NA>
complete.cases(dfWithNA)
## [1]
      TRUE FALSE TRUE TRUE FALSE
# Number of NA in each column
apply(dfWithNA, 2,function(x){return(sum(is.na(x)))})
##
      student_id student_name student_grades
##
```

Dealing with missing data: Removal

The easiest way to deal with missing data is to simply remove the instances containing them from your data set

Dealing with missing data: Imputation

Estimating or deriving values for fields where data is missing.

Using the mean value of the feature

```
x <- c(NA,2,3,4,5,4,NA,5,1,NA)
x
## [1] NA 2 3 4 5 4 NA 5 1 NA
x[is.na(x)] <- mean(x, na.rm = TRUE)
x
## [1] 3.428571 2.000000 3.000000 4.000000 5.000000 4.000000 3.428571
## [8] 5.000000 1.000000 3.428571</pre>
```

A random value from that feature

```
x <- c(NA,"a","b","c","d",NA,"z",NA)
x
## [1] NA "a" "b" "c" "d" NA "z" NA
xNotNA <- x[!is.na(x)]
x[is.na(x)] <- xNotNA[sample(1:length(xNotNA), size = sum(is.na(x)))]
x
## [1] "z" "a" "b" "c" "d" "a" "z" "b"</pre>
```

Dealing with missing data: Imputation

Advanced methods:

- Regression methods
- K-Nearest Neighbour

R packages for imputation

- Hmisc
- mi
- mice
- VIM

Outliers

Outliers: observations which appear inconsistent with that set of data.

- Difficult to differentiate incorrect from extraordinary values
- May require domain expert input
- Sources:
 - Instrument failure
 - Human error (data entry, labelling error...)

```
x <- c(1:10, 20, 30)
boxplot.stats(x)$out
## [1] 20 30
boxplot(x)</pre>
```


Data consistency

Countless number of cases where you will need to transform some column:

- Correct values: age>0, distances>0...
- Correct aggregation of values:

```
houseChores <- data.frame(person = c("Jack", "Jane", "John"),
                          cleaning = c(2,0,4),
                          cooking = c(0,0,5),
                          laundry = c(0,6,0),
                          total = c(2.6.0))
houseChores
     person cleaning cooking laundry total
##
## 1
      Jack
## 2
      .Jane
## 3
      John
houseChores$total == houseChores$cleaning +
                    houseChores$cooking +
                    houseChores$laundry
       TRUE TRUE FALSE
```

Data consistency

```
sizes <- c("1.5 m", "122 cm", "20 inch")
sizes <- as.data.frame(matrix(unlist(strsplit(sizes, " ")), nrow = 3, byrow = TRUE)</pre>
colnames(sizes) <- c("measure", "unit")</pre>
str(sizes)
## 'data frame': 3 obs. of 2 variables:
## $ measure: Factor w/ 3 levels "1.5", "122", "20": 1 2 3
## $ unit : Factor w/ 3 levels "cm", "inch", "m": 3 1 2
sizes$measure <- as.numeric(as.character(sizes$measure))</pre>
sizes
## measure unit
## 1 1.5 m
## 2 122.0 cm
## 3 20.0 inch
sizes$measure[sizes$unit == "m"] <- sizes$measure[sizes$unit == "m"]*100
sizes$measure[sizes$unit == "inch"] <- sizes$measure[sizes$unit == "m"]*2.54
```

Data transformation

Converting data from numerical to categorical:

```
df$gpa <- runif(1:nrow(df),20,90)</pre>
df$student_grades <- ifelse(df$gpa>=80,"Excellent",
                             ifelse(df$gpa>=70, "Very Good",
                                     ifelse(df$gpa>=50, "Good",
                                          ifelse(df$gpa>=40,"Bad","Very Bad"))))
df
##
     student_id student_name student_grades
                                                    gpa
                                    Excellent 80.92944
## 1
                         .Iohn
## 2
                         Mark
                                         Good 50.87671
                         Dave
                                          Bad 43.91822
## 3
## 4
                         Kate
                                    Very Bad 27.47128
## 5
                         Anna
                                     Very Bad 27.97652
```

Data transformation

Making new features from old:

Feature selection

- Use only the relevant features
- Discard irrelevant features

```
#removing constant features
persons <- data.frame(size = c(1.50, 1.95, 1.75, 1.62, 1.62),
                           weight = c(52, 90, 120, 50, 50),
                           age = c(40,40,40,40,40),
                            gender = c("M", "M", "M", "M", "M"),
                          body.mass = c(52, 90, 120, 50, 50)
# get for each columns the number of
apply(persons, 2, function(x){return(length(unique(x)))})
##
        size weight age gender body.mass
##
#remove columns that have only one unique value
persons <- persons[, apply(persons, 2,
                           function(x){return(length(unique(x)))}) != 1]
# remove duplicate rows
persons <- persons[duplicated(persons),]</pre>
#remove duplicate columns
persons <- persons[,duplicated(t(persons))]</pre>
```

4 D > 4 A > 4 B > 4 B

Up next

Today's lab in N533

- Data preparation and data cleaning in R
- Loading data
- Detecting NA
- Data transformation

Next week:

Exploratory data analysis