$\underset{\mathrm{Corrig\acute{e}}}{\mathbf{Applications}}$

DARVOUX Théo

Décembre 2023

Exercices.	
Images directes, images réciproques	2
Exercice 15.1	2
Exercice 15.2	2
Exercice 15.3	3
Applications injectives, surjectives	3
Exercice 15.4	3
Exercice 15.5	4
Exercice 15.8	4
Exercice 15.13	4

Exercice 15.1 $[\blacklozenge \Diamond \Diamond]$

```
Soit f: E \to F une application. Soient deux parties A \subset E et B \subset F. Montrer l'égalité f(A) \cap B = f(A \cap f^{-1}(B)). Procédons par double inclusion. 
 © Soit y \in f(A) \cap B. Montrons que y \in f(A \cap f^{-1}(B)). On a y \in f(A) et y \in B. \exists x \in A \mid y = f(x) \text{ donc } x \in A \text{ et } x \in f^{-1}(B) \text{ car } y \in B. Ainsi x \in A \cap f^{-1}(B) et f(x) = y \in f(A \cap f^{-1}(B))  © Soit y \in f(A \cap f^{-1}(B)) Montrons que y \in f(A) \cap B. \exists x \in A \cap f^{-1}(B) \mid y = f(x) \text{ donc } x \in A \text{ et } x \in f^{-1}(B). Ainsi, f(x) = y \in f(A) et f(x) = y \in B: y \in f(A) \cap B.
```

Exercice 15.2 $[\blacklozenge \blacklozenge \lozenge]$

```
Soit f: E \to F une application. Soit A une partie de E et B une partie de F.
1. (a) Montrer que A \subset f^{-1}(f(A)).
(b) Montrer que si f est injective, la réciproque est vraie.
2. (a) Montrer que f(f^{-1}(B)) \subset B.
(b) Démontrer que si f est surjective, la réciproque est vraie.
3. Montrer que f(f^{-1}(f(A))) = f(A).
4. Montrer que f^{-1}(f(f^{-1}(B))) = f^{-1}(B).
1.
a) Soit x \in A. Montrons que x \in f^{-1}(f(A)).
On a x \in A alors f(x) \in f(A) et x \in f^{-1}(f(A)).
b) On suppose f injective, soit x \in f^{-1}(f(A)).
On applique f: f(x) \in f(A). Par injectivité de f, x \in A.
2.
a) Soit y \in f(f^{-1}(B)).
On a \exists x \in f^{-1}(B) \mid y = f(x). Ainsi, f(x) \in B : y \in B.
b) Supposons f surjective, soit y \in B.
On a \exists x \in f^{-1}(B) \mid y = f(x) \text{ et } f(x) = y \in f(f^{-1}(B)).
3) Soit y \in f(f^{-1}(f(A))). Montrons que y \in f(A).
On a \exists x \in f^{-1}(f(A)) \mid y = f(x) \text{ et } f(x) \in f(A) \text{ donc } y \in f(A).
Soit y \in f(A). Montrons que y \in f(f^{-1}(f(A))).
On a \exists x \in A \mid y = f(x) alors f(x) \in f(A) et x \in f^{-1}(f(A)). Donc f(x) = y \in f(f^{-1}(f(A))).
4) Soit y \in f^{-1}(f(f^{-1}(B))). Montrons que y \in f^{-1}(B).
On a f(y) \in f(f^{-1}(B)) alors y \in f^{-1}(B).
Soit y \in f^{-1}(B). Montrons que y \in f^{-1}(f(f^{-1}(B))).
On a f(y) \in f(f^{-1}(B)) donc y \in f^{-1}(f(f^{-1}(B))).
```

Exercice 15.3 $[\blacklozenge \blacklozenge \blacklozenge]$

Soit $f: E \to F$ une application. Montrer que

$$f$$
 est injective $\iff [\forall A, B \in \mathcal{P}(E) \ f(A \cap B) = f(A) \cap f(B)]$

 \odot Supposons f injective. Soient $A, B \in \mathcal{P}(E)$.

On sait déjà que $f(A \cap B) \subset f(A) \cap f(B)$.

Montrons alors que $f(A) \cap f(B) \subset f(A \cap B)$.

Soit $y \in f(A) \cap f(B)$. On a que $y \in f(A) \land y \in f(B)$.

Ainsi, $\exists x_A \in A \mid y = f(x_A) \text{ et } \exists x_B \in B \mid y = f(x_B).$

Or f est injective : $x_A = x_B$, ainsi $x_A \in A \cap B$.

On a enfin que $f(x_A) \in f(A \cap B)$, alors $y \in f(A \cap B)$.

 \odot Supposons $[\forall A, B \in \mathcal{P}(E) \ f(A \cap B) = f(A) \cap f(B)]$. Montrons que f est injective.

Soient $A, B \in \mathcal{P}(E)$.

Soient $x, x' \in E$. On suppose que f(x) = f(x'). Montrons que x = x'.

On a que $\{x\}$ et $\{x'\} \in \mathcal{P}(E)$.

Ainsi : $f(\{x\} \cap \{x'\}) = f(\{x\}) \cap f(\{x'\})$.

Supposons que $x \neq x'$. On a alors : $f(\emptyset) = f(\{x\}) \cap f(\{x'\}) : \emptyset = \{f(x)\} \cap \{f(x')\}$.

Or f(x) = f(x') donc $\{f(x)\} \cap \{f(x')\} \neq \emptyset$. C'est absurde : x = x'.

On a bien montré que f est injective.

Exercice 15.4 $[\Diamond \Diamond \Diamond]$

Soient

$$f: \begin{cases} \mathbb{N}^2 \to \mathbb{Z} \\ (n,p) \mapsto (-1)^n p \end{cases}$$
 et $g: \begin{cases} \mathbb{R} \to \mathbb{C} \\ x \mapsto \frac{1+ix}{1-ix} \end{cases}$

Ces fonctions sont-elles injectives? Surjectives?

On a que f n'est pas injective : f(0,1) = f(2,1) = 1.

Montrons que f est surjective.

Soit $y \in \mathbb{Z}$. Montrons que $\exists (n,p) \in \mathbb{N}^2 \mid f(n,p) = y$.

Si $y \ge 0$, on prend n = 0 et p = |y|.

Si $y \leq 0$, on prend n = 1 et p = |y|.

On a que g n'est pas surjective : 0 n'a aucun antécédent par g.

Montrons que g est injective.

Soient $x, x' \in \mathbb{R}$, supposons q(x) = q(x'). Montrons que x = x'.

On a:

$$g(x) = g(x') \iff \frac{1+ix}{1-ix} = \frac{1+ix'}{1-ix'}$$

$$\iff (1+ix)(1-ix') = (1+ix')(1-ix)$$

$$\iff 1-ix'+ix+xx' = 1-ix+ix'+xx'$$

$$\iff 2ix = 2ix'$$

$$\iff x = x'$$

On a bien que g est injective.

Exercice 15.5 $[\Diamond \Diamond \Diamond]$

Dans cet exercice, on admet que π est irrationnel.

Démontrer que $\cos_{\mathbb{Q}}$ n'est pas injective et que $\sin_{\mathbb{Q}}$ l'est.

On sait que cos est paire : $\cos_{\mathbb{Q}}$ l'est aussi.

Alors $\cos_{\mathbb{Q}}(\frac{1}{2}) = \cos_{\mathbb{Q}}(-\frac{1}{2})$. Or $\frac{1}{2} \neq -\frac{1}{2}$: $\cos_{\mathbb{Q}}$ n'est pas injective.

Soient $x, x' \in \mathbb{Q}^2$. Supposons que $\sin_{\mathbb{Q}}(x) = \sin_{\mathbb{Q}}(x')$. Montrons que x = x'.

On a:

$$\sin_{\mathbb{Q}}(x) = \sin_{\mathbb{Q}}(x') \iff x \equiv x'[2\pi] \ (2\pi\text{-p\'eriodicit\'e})$$

 $\iff x = x' + 2k\pi \ (k \in \mathbb{Z})$

Or, $\forall k \in \mathbb{Z}^*, \ x' + 2k\pi \notin \mathbb{Q}$. On a alors que k = 0:

$$\sin_{\mathbb{I}\mathbb{O}}(x) = \sin_{\mathbb{I}\mathbb{O}}(x') \iff x = x' + 2 \cdot 0\pi \iff x = x'$$

Soit E un ensemble et $f: E \to E$ une application.

On suppose que $f \circ f = f$ et que f est injective ou surjective. Montrer que $f = id_E$.

 \odot Supposons f injective. Soit $x \in E$.

On a $f \circ f(x) = f(x)$. Par injectivité de f, f(x) = x donc $f = id_E$.

 \odot Supposons f surjective. Soit $y \in E$.

On a $f \circ f(y) = f(y)$ et $\exists x \in E \mid f(x) = y$ par surjectivité de f.

Donc $f \circ f \circ f(x) = f \circ f(x)$. Alors $f \circ f(x) = f(x)$ et $f(y) = y : f = \mathrm{id}_E$.

Exercice 15.13 [♦♦♦] Théorème de Cantor

Soit $f \in \mathcal{F}(E, \mathcal{P}(E))$. Montrer que f n'est pas surjective.

Indication : on pourra considérer $A = \{x \in E \mid x \notin f(x)\}.$

Montrons que A n'a pas d'antécédent par f.

Supposons qu'il en ait un.

Alors $\exists \alpha \in E \mid A = f(\alpha)$.

 \odot Supposons que $\alpha \in A$. Alors $\alpha \in \{x \in E \mid x \notin f(x)\}$.

Donc $\alpha \notin f(\alpha)$ donc $\alpha \notin A$. Absurde.

 \odot Supposons que $\alpha \notin A$. Alors $\alpha \notin \{x \in E \mid x \notin f(x)\}$.

Donc $\alpha \in A$. Absurde.

 α n'existe pas : A n'a pas d'antécédent par f et f n'est pas surjective.