

CONTENT

- Work Distribution
- Our Plan
- What we have done this week
- Questions

WORK DISTRIBUTION

- Video: Neo, Delun Zhang,
 Yuya Yuan
- Code: Jeff
- Robotics arm: All

Week 1 (July 5 - July 11)

OUR PLAN

- Objective: Preparation and Local Research
 - * Study the theory and implementation of the three normal estimation methods.
 - * Set up and configure the development environment.
 - * Acquire point cloud datasets for local testing.
 - * Implement the three methods and conduct initial local tests.

Week 2 (July 12 - July 25)

- Objective: Integration, Testing and Data Collection
 - * Integrate the three methods into the robotic system and conduct functional tests.
 - * Collect data from the tests for further analysis.
 - * Develop evaluation criteria, focusing on positioning accuracy and processing speed.

Week 3 (July 26 - July 30)

- Objective: Data Analysis and Video Production
 - * Analyze test data and compare results to identify the best method.
 - * Prepare presentation materials.
 - * Produce a presentation video, covering project background, implementation, test results, and conclusions.

Week 4 (July 31 - August 6)

- Objective: Presentation Preparation
 - * Prepare for possible questions

WHAT WE HAVE DONE THIS WEEK

- Dive into three methods to calculate normal vectors
- Finished the first method (using open3d lib)

WORKFLOW

- 1. Read ply files
- 2. Downsampling
- 3. Calculate normal vectors
- 4. Average K closest points' normal vectors to lower the potential error

QUESTIONS

THANK YOU FOR LISTENING

