CURE MATRIX: AI-Powered Precision Tool for Enhanced BreastCancer Detection

TEAM MEMBERS

MAYANK KUMAR SINGH

SUBEENA K.K.

MOHAMMAD SAMEER

SANA KAVYA SRI PRIYA

GORLE VAMSI

DEEPAK VERMA

1.Introduction

Breast cancer remains a significant global health challenge. Al-powered tools such as CURE MATRIX and data-driven models promise to revolutionize early detection and diagnosis, reducing mortality rates. By leveraging machine learning algorithms and precision tools, healthcare providers can achieve greater accuracy and accessibility in diagnostics.

2. Problem Statement

Breast cancer diagnostics face persistent challenges, including:

- High false positive/negative rates.
- Limited access to advanced tools in underserved areas.
- Lack of personalized diagnostics tailored to individual patient profiles.

3. Objectives

Business Goals

- Develop Al-powered precision tools to enhance diagnostic workflows.
- Improve accessibility and affordability of advanced diagnostic techniques.
- Reduce false diagnostic rates and promote early detection.

Technical Goals

- Implement robust data analysis pipelines for model training.
- Evaluate feature importance for diagnosis.
- Train and deploy scalable machine learning models.

4. Dataset Overview

Source

 Breast cancer datasets containing tumor characteristics such as radius, texture, perimeter, and area.

Features

- **Predictor Variables**: Mean values of radius, texture, perimeter, area, and smoothness.
- Target Variable: Diagnosis (benign or malignant).

Data Preprocessing

- Missing values: None found in the dataset.
- Feature scaling: StandardScaler applied to numerical features.

```
# Example of Data Preprocessing
```

from sklearn.preprocessing import StandardScaler

Load dataset

df = pd.read_csv('data.csv')

Drop irrelevant columns

df.drop(columns=['id'], inplace=True)

Standardize features

scaler = StandardScaler()

df_scaled = scaler.fit_transform(df.drop(columns=['diagnosis']))

5. CURE MATRIX Business Model

Value Proposition

- Al-Enhanced Accuracy: Advanced algorithms for image analysis.
- Early Detection: Identifies subtle patterns for timely intervention.
- Personalized Insights: Patient-specific risk assessments.
- **Seamless Integration**: Compatibility with hospital systems.

Target Market

1. Primary Audience:

- o Hospitals and diagnostic centers.
- Oncologists and radiologists.

2. Secondary Audience:

- o Health-tech companies and NGOs.
- o Medical research institutions.

Revenue Model

- Subscription-based models.
- Pay-per-scan models.
- · Licensing and monetizing anonymized data.

6. Technical Workflow

6.1 Model Development

Algorithm: Random Forest Classifier

- Training: 80% training data; 20% testing data.
- Accuracy: 95%.
- Feature Importance: Visualized key contributors like mean_radius and mean_area.

Training Random Forest Classifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

X = df.drop(columns=['diagnosis'])

y = df['diagnosis']

Split dataset

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Train the model

model = RandomForestClassifier(n_estimators=100, random_state=42)

model.fit(X_train, y_train)

Model Evaluation

Metrics:

o **Precision**: 96% for benign cases.

o **Recall**: 93% for malignant cases.

o **F1-Score**: 95% average.

Insights

• High correlation observed between certain features, enabling optimization opportunities.

7. Statistical Analysis

Feature Correlation

A heatmap analysis indicated significant interdependence among tumor characteristics, such as radius, texture, and area.

Correlation Heatmap

import seaborn as sns

import matplotlib.pyplot as plt

```
plt.figure(figsize=(20, 20))
sns.heatmap(df.corr(), annot=True, fmt='.2f', cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```

Principal Component Analysis (PCA)

• Explained variance: Top 5 components captured the majority of data variability, simplifying model complexity.

8. Social and Economic Impact

- Democratizing access to cutting-edge diagnostics for underserved regions.
- Reducing the financial burden on healthcare systems by promoting early intervention.
- Empowering clinicians through Al-driven decision support systems.

9. Development Roadmap

- 1. **Phase 1**: Product development and pilot testing (Year 1).
- 2. **Phase 2**: Regulatory approvals and deployment (Year 2).
- 3. **Phase 3**: Global market expansion and multi-modal diagnostic integration (Year 3).

CODE and DATA ANALYSIS

```
[1]: import pandas as pd
     import seaborn as sns
     import numpy as np
     import matplotlib.pyplot as plt
[2]: | df = pd.read_csv('data.csv')
[3]: df.head()
              id diagnosis
                            radius_mean texture_mean perimeter_mean area_mean \
[3]:
     0
          842302
                         M
                                  17.99
                                                10.38
                                                               122.80
                                                                          1001.0
     1
          842517
                         M
                                  20.57
                                                17.77
                                                               132.90
                                                                          1326.0
     2
        84300903
                         M
                                  19.69
                                                21.25
                                                               130.00
                                                                          1203.0
     3 84348301
                         М
                                  11.42
                                                20.38
                                                                77.58
                                                                           386.1
     4 84358402
                         M
                                  20.29
                                                14.34
                                                               135.10
                                                                          1297.0
        smoothness_mean compactness_mean concavity_mean concave_points_mean \
     0
                0.11840
                                  0.27760
                                                   0.3001
                                                                        0.14710
     1
                0.08474
                                  0.07864
                                                   0.0869
                                                                        0.07017
     2
                                  0.15990
                                                   0.1974
                                                                        0.12790
                0.10960
     3
                0.14250
                                  0.28390
                                                   0.2414
                                                                        0.10520
     4
                0.10030
                                  0.13280
                                                   0.1980
                                                                        0.10430
        ... radius_worst
                         texture_worst
                                        perimeter_worst area_worst \
     0
                  25.38
                                 17.33
                                                 184.60
                                                             2019.0
     1
                  24.99
                                 23.41
                                                  158.80
                                                             1956.0
        ...
     2
                  23.57
                                 25.53
                                                  152.50
                                                              1709.0
     3
                  14.91
                                 26.50
                                                  98.87
                                                               567.7
     4
                  22.54
                                 16.67
                                                 152.20
                                                              1575.0
        smoothness_worst compactness_worst concavity_worst
                                                              concave_points_worst \
     0
                  0.1622
                                     0.6656
                                                      0.7119
                                                                            0.2654
     1
                  0.1238
                                     0.1866
                                                      0.2416
                                                                            0.1860
     2
                  0.1444
                                     0.4245
                                                      0.4504
                                                                            0.2430
     3
                  0.2098
                                     0.8663
                                                      0.6869
                                                                            0.2575
     4
                  0.1374
                                     0.2050
                                                      0.4000
                                                                            0.1625
```

```
0
                0.4601
                                        0.11890
     1
                0.2750
                                        0.08902
     2
                0.3613
                                        0.08758
     3
                0.6638
                                        0.17300
     4
                0.2364
                                        0.07678
     [5 rows x 32 columns]
[4]: # Drop ID column as it is not useful for analysis
     df.drop(columns=['id'], inplace=True)
[5]: df.head()
[5]:
       diagnosis
                  radius_mean texture_mean perimeter_mean area_mean \
     0
                        17.99
                                       10.38
                                                     122.80
                                                                 1001.0
               M
     1
               М
                        20.57
                                       17.77
                                                     132.90
                                                                 1326.0
     2
               М
                        19.69
                                       21.25
                                                     130.00
                                                                 1203.0
     3
               M
                        11.42
                                       20.38
                                                      77.58
                                                                  386.1
     4
                        20.29
                                       14.34
                                                     135.10
               M
                                                                 1297.0
        smoothness_mean compactness_mean concavity_mean concave_points_mean \
     0
               0.11840
                                  0.27760
                                                    0.3001
                                                                       0.14710
               0.08474
     1
                                  0.07864
                                                    0.0869
                                                                       0.07017
     2
               0.10960
                                  0.15990
                                                    0.1974
                                                                       0.12790
     3
               0.14250
                                  0.28390
                                                    0.2414
                                                                       0.10520
     4
               0.10030
                                  0.13280
                                                    0.1980
                                                                       0.10430
        symmetry_mean ... radius_worst texture_worst
                                                        perimeter_worst \
     0
               0.2419
                                 25.38
                                                 17.33
                                                                 184.60
                                 24.99
     1
               0.1812
                                                 23.41
                                                                 158.80
     2
               0.2069
                                 23.57
                                                 25.53
                                                                 152.50
     3
               0.2597
                                 14.91
                                                 26.50
                                                                  98.87
     4
               0.1809
                                 22.54
                                                 16.67
                                                                 152.20
        area_worst smoothness_worst compactness_worst concavity_worst
     0
            2019.0
                              0.1622
                                                  0.6656
                                                                   0.7119
                              0.1238
     1
            1956.0
                                                  0.1866
                                                                   0.2416
     2
            1709.0
                              0.1444
                                                  0.4245
                                                                   0.4504
     3
                              0.2098
             567.7
                                                  0.8663
                                                                   0.6869
     4
            1575.0
                              0.1374
                                                  0.2050
                                                                   0.4000
        concave_points_worst symmetry_worst fractal_dimension_worst
     0
                      0.2654
                                       0.4601
                                                               0.11890
     1
                      0.1860
                                       0.2750
                                                               0.08902
     2
                      0.2430
                                       0.3613
                                                               0.08758
     3
                                                               0.17300
                      0.2575
                                       0.6638
```

symmetry_worst fractal_dimension_worst

4 0.1625 0.2364 0.07678

[5 rows x 31 columns]

```
[6]: # Summary statistics print(df.describe())
```

	radius mean t	exture_mean peri	meter mean	area_mean	\
count	569.000000	569.000000	569.000000	569.000000	,
mean	14.127292	19.289649	91.969033	654.889104	
std	3.524049	4.301036	24.298981	351.914129	
min	6.981000	9.710000	43.790000	143.500000	
25%	11.700000	16.170000	75.170000	420.300000	
50%	13.370000	18.840000	86.240000	551.100000	
75%	15.780000	21.800000	104.100000	782.700000	
max	28.110000	39.280000	188.500000	2501.000000	
					ive_points_mean \
count	569.00000			000000	569.000000
mean	0.09636			088799	0.048919
std	0.01406			079720	0.038803
min	0.05263			000000	0.000000
25%	0.08637			029560	0.020310
50%	0.09587			061540	0.033500
75%	0.10530			130700	0.074000
max	0.16340	0.3454	400 0.4	426800	0.201200
	symmetry mean	n fractal_dimension	n mean ra	adius_worst	\
count	569.000000		.000000	569.000000	1
mean	0.181162		062798	16.269190	
std	0.027414		007060	4.833242	
min	0.106000		049960	7.930000	
25%	0.161900	0.	057700	13.010000	
50%	0.179200	0.	061540	14.970000	
75%	0.195700	0.	066120	18.790000	
max	0.304000	0.	097440	36.040000	
	texture_worst	perimeter_worst	area_worst		•
count	569.000000		569.000000		00000
mean	25.677223	107.261213	880.583128		32369
std	6.146258	33.602542	569.356993		22832
min	12.020000	50.410000	185.200000		71170
25%	21.080000	84.110000	515.300000		16600
50%	25.410000	97.660000	686.500000		31300
50% 75% max		97.660000 125.400000 251.200000	686.500000 1084.000000 4254.000000	0.1	31300 46000 22600

	compactness_worst	concavity_worst	concave_points_worst	
count	569.000000	569.000000	569.000000	
mean	0.254265	0.272188	0.114606	
std	0.157336	0.208624	0.065732	
min	0.027290	0.000000	0.000000	
25%	0.147200	0.114500	0.064930	
50%	0.211900	0.226700	0.099930	
75%	0.339100	0.382900	0.161400	
max	1.058000	1.252000	0.291000	

\

symmetry_worst fractal_dimension_worst 569.000000 569.000000 count 0.290076 0.083946 mean 0.061867 0.018061 std min 0.156500 0.055040 25% 0.250400 0.071460 50% 0.282200 0.080040 75% 0.317900 0.092080 0.663800 0.207500 max

[8 rows x 30 columns]

[7]: # Check for missing values print(df.isnull().sum())

diagnosis	0
radius_mean	0
texture_mean	0
perimeter_mean	0
area_mean	0
smoothness_mean	0
compactness_mean	0
concavity_mean	0
concave_points_mean	0
symmetry_mean	0
fractal_dimension_mean	0
radius_se	0
texture_se	0
perimeter_se	0
area_se	0
smoothness_se	0
compactness_se	0
concavity_se	0
concave_points_se	0
symmetry_se	0
fractal_dimension_se	0
radius_worst	0
texture_worst	0

```
0
perimeter_worst
                           0
area_worst
                           0
smoothness_worst
compactness_worst
                           0
                           0
concavity_worst
                           0
concave_points_worst
                           0
symmetry_worst
fractal_dimension_worst
                           0
dtype: int64
```

```
[8] : # Count plot of the target variable
sns.countplot(x='diagnosis', data=df, palette='coolwarm')
plt.title('Distribution of Diagnosis')
plt.show()
```

C:\Users\samee\AppData\Local\Temp\ipykernel_2700\1045989772.py:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(x='diagnosis', data=df, palette='coolwarm')


```
[9]: # Convert diagnosis to numeric (M=1, B=0)

df['diagnosis'] = df['diagnosis'].map({'M': 1, 'B': 0})
```

```
[10]: # Correlation heatmap
plt.figure(figsize=(20, 20))
sns.heatmap(df.corr(), annot=True, fmt='.2f', cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```



```
[12]: # Distribution plots
for col in selected_features:
    plt.figure(figsize=(8, 4))
    sns.histplot(df, x=col, hue='diagnosis', element='step', stat='density',_
scommon_norm=False)
    plt.title(f'Distribution of {col}')
    plt.show()
```



```
[13]: from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from scipy.stats import skew, kurtosis
```

```
[14]: # Skewness and Kurtosis Analysis
for col in df.columns:
    if df[col].dtype != 'object':
        print(f'{col}: Skewness = {skew(df[col]):.2f}, Kurtosis =_
    s{kurtosis(df[col]):.2f}')
```

```
diagnosis: Skewness = 0.53, Kurtosis = -1.72
radius_mean: Skewness = 0.94, Kurtosis = 0.83
texture_mean: Skewness = 0.65, Kurtosis = 0.74
perimeter_mean: Skewness = 0.99, Kurtosis = 0.95
area_mean: Skewness = 1.64, Kurtosis = 3.61
smoothness_mean: Skewness = 0.46, Kurtosis = 0.84
compactness_mean: Skewness = 1.19, Kurtosis = 1.63
concavity_mean: Skewness = 1.40, Kurtosis = 1.97
concave_points_mean: Skewness = 1.17, Kurtosis = 1.05
symmetry_mean: Skewness = 0.72, Kurtosis = 1.27
fractal_dimension_mean: Skewness = 1.30, Kurtosis = 2.97
radius_se: Skewness = 3.08, Kurtosis = 17.52
texture_se: Skewness = 1.64, Kurtosis = 5.29
perimeter_se: Skewness = 3.43, Kurtosis = 21.20
area_se: Skewness = 5.43, Kurtosis = 48.77
smoothness_se: Skewness = 2.31, Kurtosis = 10.37
```

```
compactness_se: Skewness = 1.90, Kurtosis = 5.05
     concavity_se: Skewness = 5.10, Kurtosis = 48.42
     concave_points_se: Skewness = 1.44, Kurtosis = 5.07
     symmetry_se: Skewness = 2.19, Kurtosis = 7.82
     fractal_dimension_se: Skewness = 3.91, Kurtosis = 26.04
     radius_worst: Skewness = 1.10, Kurtosis = 0.93
     texture_worst: Skewness = 0.50, Kurtosis = 0.21
     perimeter_worst: Skewness = 1.13, Kurtosis = 1.05
     area_worst: Skewness = 1.85, Kurtosis = 4.35
     smoothness_worst: Skewness = 0.41, Kurtosis = 0.50
     compactness_worst: Skewness = 1.47, Kurtosis = 3.00
     concavity_worst: Skewness = 1.15, Kurtosis = 1.59
     concave_points_worst: Skewness = 0.49, Kurtosis = -0.54
     symmetry_worst: Skewness = 1.43, Kurtosis = 4.40
     fractal_dimension_worst: Skewness = 1.66, Kurtosis = 5.19
[15]: # Standardizing the data for PCA
      scaler = StandardScaler()
      df scaled
                     scaler.fit_transform(df.drop(columns=['diagnosis']))
[16]: # PCA analysis
      pca = PCA(n\_components=5)
      pca_results = pca.fit_transform(df_scaled)
      explained_variance = pca.explained_variance_ratio_
[17]: plt.figure(figsize=(8, 5))
      plt.bar(range(1, 6), explained_variance, alpha=0.7, align='center',_
       slabel='Individual Explained Variance')
      plt.step(range(1, 6), np.cumsum(explained_variance), where='mid',_
       slabel='Cumulative Explained Variance')
      plt.xlabel('Principal Components')
      plt.ylabel('Explained Variance Ratio')
      plt.legend()
      plt.title('PCA Explained Variance')
      plt.show()
```

Cumulative Explained Variance Individual Explained Variance

3 Principal Components

C:\Users\samee\AppData\Local\Temp\ipykernel_2700\767013395.py:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(x='diagnosis', y=col, data=df, palette='coolwarm')

2

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Explained Variance Ratio

C:\Users\samee\AppData\Local\Temp\ipykernel_2700\767013395.py:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(x='diagnosis', y=col, data=df, palette='coolwarm')

C:\Users\samee\AppData\Local\Temp\ipykernel_2700\767013395.py:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(x='diagnosis', y=col, data=df, palette='coolwarm')

C:\Users\samee\AppData\Local\Temp\ipykernel_2700\767013395.py:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(x='diagnosis', y=col, data=df, palette='coolwarm')

C:\Users\samee\AppData\Local\Temp\ipykernel_2700\767013395.py:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(x='diagnosis', y=col, data=df, palette='coolwarm')


```
[19]: from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report,_
sconfusion_matrix
```

[21]: # Training a RandomForest Classifier
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

[21]: RandomForestClassifier(random_state=42)

[22] : #Making predictions
y_pred = model.predict(X_test)

[23] : # Evaluating the model
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))

Accuracy: 0.9649122807017544

Classification Report:

	precision	recall	f1-score	support
0	0.96	0.99	0.97	71
1	0.98	0.93	0.95	43
accuracy			0.96	114
macro avg	0.97	0.96	0.96	114
weighted avg	0.97	0.96	0.96	114

Confusion Matrix:

[[70 1] [3 40]]