

<u>Home</u> <u>Gameboard</u> <u>Biology</u> <u>Biochemistry</u> <u>Respiration</u> Respiration Introduction

Respiration Introduction

	Respiration is the process by which biological molecules (e.g. carbohydrates) are broken down into
S	maller molecules to produce energy. This energy is used to add a group to group to
)	roducing , which acts as an energy storage molecule. It can then transfer this energy to
)	ther molecules by them.
	Respiration can occur (without oxygen) or (with oxygen). ems:
	adenosine triphosphate (ATP) methyl phosphate adenosine diphosphate (ADP) aerobically
	phosphorylating methylating anaerobically

Part B Aerobic respiration equation

Complete the equation to give the correct (and balanced) general equation for aerobic respiration of one glucose molecule.

$$+ O_2 \longrightarrow 6 CO_2 + 6$$

Part C Aerobic vs anaerobic

Fill in the table below to identify which processes are part of aerobic respiration, which are part of anaerobic respiration, and which are part of both.

Process	Part of which type of respiration		
Glycolysis			
Link reaction (oxidative decarboxylation)			
Krebs cycle (citric acid cycle)			
Oxidative phosphorylation			
Fermentation			
ltems: aerobic respiration anaerobic respiration both types	5		

Created for isaacphysics.org by Lewis Thomson

Home Gameboard Biology Biochemistry Respiration Glycolysis

Glycolysis

Glycolysis is the process by which glucose is broken down into pyruvate. This process is the first step of both anaerobic and aerobic respiration.

Figure 1: An overview of glycolysis. Molecules are labelled with letters (A-E), and individual steps (indicated by arrows) are labelled with numbers (1-4). Note that only some of the intermediate molecules/steps involved in glycolysis are shown.

Part A Match the molecules

Match the molecule names to the letters in Figure 1.

Letter	Molecule name
А	
В	
С	
D	
E	

Part B Phosphorylation

triose bisphosphate

What molecule is responsible for phosphorylating molecule A to help convert it into molecule B during step 1?

How many of these molecules are used up during step 1?

Part	C Oxidation and reduction
	During step 3, molecule C gains another phosphate group via free phosphate ions in the cell. For this to happen, it has to be oxidised (i.e. lose electrons). What molecule accepts these electrons (i.e. is reduced)?
	How many of these molecules are used up during step 3?
Part	D Dephosphorylation
	During step 4, molecule D is dephosphorylated to help convert it into molecule E. These phosphate groups are used to produce which molecule?
	How many of these molecules are produced during step 4?

Part E Net results

Fill in the table below to give the net loss/gain of each molecule during glycolysis.

Molecule	Net result
glucose	-1
pyruvate	
ATP	
NAD ⁺	
NADH	

Items:

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 30

Home Gameboard Biology Biochemistry Respiration The Link Reaction

The Link Reaction

The link reaction (also called pyruvate decarboxylation, or oxidative decarboxylation) is the stage of aerobic respiration that occurs after glycolysis.

Figure 1: An overview of the link reaction. Certain molecules are labelled with letters (A-D). Molecule A is a three-carbon molecule.

Match the names to the molecules in Figure 1.

Molecule	Name
А	
В	
С	
D	

Items:

coenzyme A (CoA)		acetyl coenzyme A (acetyl CoA)		pyruvate		NADH (reduced NAD)
------------------	--	--------------------------------	--	----------	--	--------------------

Part B Net results

Fill in the table below to give the net loss/gain of each molecule during this stage of respiration, **per molecule of glucose**.

Molecule	Net result
NAD ⁺	
NADH	
CO_2	

Items:

,	$\overline{}$	 $\overline{}$	$\overline{}$	 $\overline{}$	$\overline{}$
	-2	-1	0	+1	+2

Part C Cell location

1	Where does the link reaction occur in eukaryotic cells?							
		at the inner mitochondrial membrane						
		in the cytoplasm						
		in the chloroplast stroma						
		in the mitochondrial matrix						
		at the thylakoid membranes						
		at the outer mitochondrial membrane						

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 30

Home Gameboard Biology Biochemistry Respiration Krebs Cycle

Krebs Cycle

Krebs Cycle (also called the citric acid cycle, or the tricarboxylic acid (TCA) cycle) is the stage of aerobic respiration that occurs after the link reaction.

Figure 1: An overview of Krebs cycle. Certain molecules are labelled with letters (A-F). The number of carbons present in each intermediate molecule is shown e.g. 5C. Arrows represent the steps within Krebs cycle. Pi = inorganic phosphate.

Part A Match the molecule

Match the names to the molecules in Figure 1.

Molecule	Name
А	
В	
С	
D	
Е	
F	

Items:

coenzyme A (CoA)	acetyl coenzyme A (acetyl CoA)	citrate	oxaloacetate	NADH (reduced NAD)
FADH ₂ (reduced FAD)				

Part B Net results

Fill in the table below to give the net loss/gain of each molecule during this stage of respiration, **per molecule of glucose**.

Molecule	Net result
ATP	
NAD ⁺	
NADH	
FAD	
FADH ₂	
CO ₂	

Items:

Part C Cell location

Where does Krebs cycle occur in eukaryotic cells?

at the outer mitochondrial membrane
in the chloroplast stroma
in the mitochondrial matrix
at the thylakoid membranes
at the inner mitochondrial membrane

in the cytoplasm

Gameboard:

STEM SMART Biology Week 30

<u>Home</u> <u>Gameboard</u> Biology Biochemistry Respiration Fermentation

Fermentation

Aerobic respiration is the main form of respiration in eukaryotic cells. However, some eukaryotic cells can respire anaerobically. This requires a process called fermentation.

Part A Why ferment?				
Aerobic respiration is much more efficient at producing than anaerobi	c respiration.			
However, aerobic respiration requires oxygen to act as the final electron acceptor	during .			
Without oxygen, this process will stop working.				
Importantly, this means that will no longer be oxidised to regenerate	, which is			
necessary for every other stage of aerobic respiration. Fermentation allows the ce	ell to regenerate this			
molecule when there is not enough oxygen for aerobic respiration, which means t	he cell can keep			
respiring anaerobically (i.e. cycle between and fermentation).				
However, most cells cannot keep doing this indefinitely, as the products of fermentation are toxic at high levels.				
Items:				
ATP ADP oxidative phosphorylation the link reaction Krebs cycle NADH	(reduced NAD)			
glycolysis NAD ⁺				
Part B Mammals				
What is pyruvate reduced to in mammal cells during fermentation?				

Part C Plants and yeast

What is pyruvate reduced to in plant cells and yeast cells during fermentation?

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 30

<u>Home</u> <u>Gameboard</u> <u>Biology</u> <u>Biochemistry</u> <u>Respiration</u> <u>Aerobic vs Anaerobic Respiration</u>

Aerobic vs Anaerobic Respiration

Figure 1: Two alternative pathways in mammalian respiration. Processes are shown as arrows and labelled A-E. Only some steps are shown in each process.

Part A Process names

Processes A, B, and C make up one larger process. What is the name of this process?

What is the name of process D?

Part B	Using ATP		
Se	elect the process/processes in which ATP is used. Select all that apply.		
	A		
	В		
	С		
	D		
	E		
Part C	Oxidising NADH without ATP		
Select the process/processes in which NADH (reduced NAD) is oxidised to NAD ⁺ without ATP formation. Select all that apply.			
	A		
	В		
	С		
	D		
	E		

Part	D Producing ATP	
	Select the process/processes in which ATP is produced outside the mitochondria. Select all that apply.	
	A	
	В	
	_ c	
	D	
	E	
Part	E Using oxygen	
	Select the process/processes for which oxygen is required. Select all that apply.	
	A	
	В	
	_ c	
	D	
	E	

Part F Reducing NAD

Select the process/processes in which NAD ⁺ is reduced to form N apply.	ADH (reduced NAD). Select all that
A	
В	
_ c	
D	
E	

Adapted with permission from OCR A Level June 1999, Science Modular Central Concepts in Biology, Question 1