Projekt: Rozwiązywanie Sudoku algorytmem kolorowania grafu

Data	Status projektu	Uwagi
2025-03-28	Wybór tematu	
2025-04-16	Rozpoczęty	
2025-05-02	Wykonanie programów	
2025-05-06	Wykonanie testów	

Autorka

Agnieszka Maleszka, 155941

Streszczenie

Celem projektu jest stworzenie solvera do Sudoku dowolnego rozmiaru , gdzie , który wykorzystuje algorytm kolorowania grafu do rozwiązania plansz Sudoku. Zaimplementowano trzy warianty: sekwencyjny, z użyciem OpenMP oraz z wykorzystaniem CUDA. Celem projektu jest porównanie tych podejść pod względem czasu działania i jakości rozwiązań.

Słowa kluczowe

- Sudoku
- · Kolorowanie grafu
- OpenMP
- CUDA
- GPU
- Heurystyka
- · Równoległość danych
- Problem NP-zupełny

Podstawy teoretyczne

- Modelowanie Sudoku jako problem kolorowania grafu:
 - Każde pole planszy Sudoku jest reprezentowane jako wierzchołek w grafie.
 - Krawędzie łączą pary pól znajdujących się w tym samym wierszu, kolumnie lub kwadracie.
 - Rozwiązanie Sudoku odpowiada poprawnemu kolorowaniu grafu przy użyciu kolorów
 bez konfliktów między sąsiadującymi wierzchołkami.
- Klasa złożoności:
 - Sudoku należy do klasy problemów NP.
 - Kolorowanie grafu jest problemem NP-trudnym.
- Wersje implementacyjne:
 - **Sekwencyjna** podstawowe kolorowanie grafu.
 - **OpenMP** przyspieszenie przez wykorzystanie wielu rdzeni CPU.
 - CUDA implementacja na GPU dla dużych plansz i populacji rozwiązań.

- Podejścia heurystyczne:
 - Kolorowanie zachłanne: kolejność odwiedzania wierzchołków wg stopnia lub losowa permutacja.
 - Algorytmy wspinaczkowe i inne metaheurystyki rozważane jako rozszerzenie.

Format danych

- Plansze Sudoku wczytywane i zapisywane w formacie TXT.
- Puste pole jest reprezentowane jako 0.

Model matematyczny problemu

Planszę Sudoku rozmiaru (gdzie) można modelować jako graf nieskierowany , gdzie:

- zbiór wierzchołków, odpowiadających polom planszy (),
- zbiór krawędzi między parami pól, które nie mogą mieć tej samej wartości (czyli należą do tego samego wiersza, kolumny lub bloku).

Cel: Pokolorować wierzchołki grafu przy użyciu dokładnie kolorów (liczb od 1 do), tak aby żadne dwa sąsiednie wierzchołki nie miały tego samego koloru.

Zmienna decyzyjna:

Ograniczenia:

- 1. Dokładnie jedna wartość w każdej komórce:
- 2. Każde sąsiedztwo ma różne wartości (kolory):
- 3. Dane wejściowe (początkowo wypełnione pola):

Dla każdego wierzchołka o znanej wartości : (i dla).

Funkcja celu: (opcjonalna – jeśli np. chcemy minimalizować liczbę kolorów, co w Sudoku nie ma zastosowania, bo kolorów jest z góry)

Słownik pojęć

- Sudoku łamigłówka logiczna na planszy , podzielonej na podkwadraty (gdzie), w której celem jest wypełnienie pól liczbami od 1 do tak, aby w każdym wierszu, kolumnie i podkwadracie każda liczba występowała dokładnie raz.
- Graf struktura matematyczna składająca się ze zbioru wierzchołków i zbioru krawędzi

między nimi. W kontekście Sudoku, każdy wierzchołek reprezentuje jedno pole planszy, a krawędź łączy pola, które nie mogą mieć tej samej wartości.

- Kolorowanie grafu przypisanie kolorów (liczb) wierzchołkom grafu tak, aby żadne dwa sąsiednie wierzchołki nie miały tego samego koloru. W Sudoku odpowiada to przypisaniu liczb do pól planszy zgodnie z regułami.
- **Problem NP-zupełny** klasa problemów obliczeniowych, dla których nie znamy algorytmu rozwiązującego je w czasie wielomianowym, ale dla których można łatwo sprawdzić poprawność danego rozwiązania.
- **OpenMP** biblioteka do równoległego przetwarzania danych na procesorach wielordzeniowych w języku C/C++ lub Fortran.
- **CUDA** platforma programistyczna firmy NVIDIA pozwalająca na wykonywanie obliczeń równoległych na kartach graficznych (GPU).
- **Równoległość danych** technika przetwarzania danych, w której wiele operacji jest wykonywanych jednocześnie na różnych fragmentach danych.

Opis problemu

Rozważany problem polega na rozwiązaniu dowolnej instancji Sudoku , gdzie , przy użyciu metod grafowych. Sudoku można sformalizować jako problem kolorowania grafu, w którym:

- Każde pole Sudoku reprezentowane jest jako wierzchołek grafu.
- Krawędź łączy dwa pola, jeśli należą do tego samego wiersza, kolumny lub bloku .
- Celem jest przydzielenie dokładnie kolorów (liczb 1..) w taki sposób, aby żadne dwa połączone wierzchołki nie miały tej samej wartości.

Problem ten zostanie rozwiązany z wykorzystaniem trzech podejść:

- **Sekwencyjnego** przeszukiwanie i kolorowanie grafu bez równoległości.
- Z użyciem OpenMP przyspieszenie przez równoległe rozpatrywanie wierzchołków.
- Z użyciem CUDA masowe równoległe kolorowanie wielu kandydatów rozwiązania na GPU.

Celem projektu jest ocena skuteczności i wydajności każdej z metod w kontekście różnych instancji Sudoku.

Spis zaimplementowanych algorytmów

L	Algorytm / Narzędzie (KOD)	Kategoria	Przeznaczen	Uwagi
p			ie	
1	[SUDOKU_SEQ](https://github.com/AgnieszkaMaleszka /Sudoku-solver/blob/main/src/seq.cpp)	ny (CPU)	=	Działa dla plansz , gdzie
2	[SUDOKU_OMP](https://github.com/AgnieszkaMaleszk	OpenMP	Równoległe	Przyspieszeni

	a/Sudoku-solver/blob/main/src/omp.cpp)	(CPU)	kolorowanie planszy z użyciem wielu wątków	e przez równoległe kolorowanie wierszy/komó rek
3	[SUDOKU_CUDA](https://github.com/AgnieszkaMaleszk a/Sudoku-solver/blob/main/src/cuda.cu)		Masowe rozwiązywa nie instancji Sudoku na GPU	Jeden blok GPU = jedna plansza
4	[SUDOKU_GEN](https://github.com/AgnieszkaMaleszka/Sudoku-solver/blob/main/src/sudoku_generator.cpp)	danych	Generowani e losowych instancji Sudoku z kontrolowan ą liczbą podpowiedz i	Format danych: TXT
5	[SUDOKU_VIS](https://github.com/AgnieszkaMaleszka/Sudoku-solver/blob/main/src/GUI.py)	Wizualizac ja (Python)	Rysowanie planszy Sudoku (wejściowej i rozwiązania) oraz porównywa nie wyników	Użyto biblioteki matplotlib / seaborn
6	[SUDOKU_TO_GRAPH_JSON](https://github.com/mojus er/sudoku- solver/blob/main/tools/sudoku_to_graph_json.cpp)	danych	Przekształca nie instancji Sudoku do postaci grafowej w formacie JSON	Przydatne do analizy i wizualizacji grafów

Przykładowe dane wejściowe i wyniki działania algorytmu

Input grid	Output grid
------------	-------------

1	7		9	2			4		5				1	7	9		2	3		4	5		6	
							1		7		2		4	3	6		5	8		1	7		9	Ì
	5			6		7	9		3	1	4		2	5	8		6	7		9	3		1	r
3							5		9	7			3	8	4		1	2		5	9		7	
		_									1					_								ļ
						6	8				1		5	9	7		3	6		8	2		4	ļ
	1			4		9			8				6	1	2		4	9		7	8		5	
	4			8					6				7	4	1		8	5		3	6		2	
			3			1	6		4	8	5		9	2	3		7	1		6	4		8	Ī
			5	9		4	2			3			8	6	5		9	4		2	1		3	Ī
2 2			1	5		11	7	8		.1 13	15	_			5 1	3	5	4	9		8 10		13	H
	3			7	8	11	13	15	1	10	16	14	4 4	3	2	6	7	8	11	13	15 1	9	10	H
				1:	8	11		15 4				8	4 4 9	3 1		6 12	7 13	8	11	13 14				
3	3		11	1:	8		13	15 4	1	10	3	8	4 4 9 1 13	3 ! 10 ! 15 !	2 11	6 12	7 13	8	11 2 3	13 14 5	15 1 4 16	9	10 5 4	
3	3	1	11 9 1	1:	8	11	13 14 5 11	15 4 1 6 1	1	10	3 8 7	8 11 1	4 4 9 1 13 5 5	3 1 10 1 15 2	2 7 11 1 9	6 12 10 7	7 13 14	8 15 16 10	11 2 3 6	13 14 5 11	15 1 4 16 6 12	9 1 2	10 5 4	
3	3	1	11 9 1 3	1:00	8		13 14 5 11	15 4 1 6 1 9	1 16 12	10	3 8 7 16 12	14 8 11	4 4 9 1 13 5 7	3 10 15 15 2 4 9 1	5 2 7 11 1 9 3 3	12 10 7 8	7 13 14 4	8 15 16 10	11 2 3 6 15 15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	13 14 5 11 16	15 1 4 16 6 12 9 14	9 1 2 13	10 5 4 15	
1 5	3	1	11 9 1 3	1	8	15	13 14 5 11	15 4 1 6 1 9 13	1 16 12	10 5 4	3 8 7 16 12 10	14 8 13 1 1 3	4 4 9 1 13 5 7 0 15	3 10 115 12 14 11 14 11	5 2 7 11 1 9 3 3 2 14 6 13	6 12 10 7 8 11	7 13 14 4 2	8 15 16 10 6 1	11 2 3 6 15 15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	13 14 5 11 16 12	15 1 4 16 6 12 9 14 13 4	9 1 2 13 5	10 5 4 15 1	
1 5	9	1	11 9 1 3 1 14 13 1	1	8	15	13 14 5 11 12	15 4 1 6 1 9 13	1 16 12 12 18 8	10 5 4	16 3 8 7 16 12 10	14 8 13 1 1 3	4 4 9 9 1 13 5 7 0 15 11	3 ! 10 : 15 : 2 ! 9 ! 4 ! 13 !	5 2 7 11 1 9 3 3 2 14 6 13	6 12 10 7 8 11	7 13 14 4 2 9	8 15 16 10 6 1	11 2 3 6 15 5	13 14 5 11 16 12 1	15 1 4 16 6 12 9 14 13 4 2 3	9 1 2 13 5 6	10 5 4 15 1 8	
3	9 13 7	1 16 14 4	11 9 1 3 1 4 1 1 3 1 1 5 1 8	11 66	5	15	13 14 5 11 12	15 4 1 6 1 9 13 7	1 16 12 12 18 8	10 5 4	3 8 7 16 12 10 7 4 9	113 8 8 113 1 1 3 3 1 1 6 6	4 4 9 1 13 5 7 0 15 11 3 3	3 ! 10 : 15 : 2 ! 9 1 4 1 13 1	2 14 15	6 12 10 7 8 11 16 9	7 13 14 4 2 9 12	8 15 16 10 6 1 5 5	11 2 3 6 15 5 10 1	13 14 5 11 16 12 1 6	15 1 4 16 6 12 9 14 13 4 2 3 7 8	9 1 2 13 5 6 3	10 5 4 15 1 8 2	
3	9 13 7	1 16 14 4	11 9 1 3 1 4 1 1 3 1 1 5 1 8	1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 12 7	15 5	13 14 5 11 12	15 4 1 6 1 9 1 3 7 1 4 1 3 1	1 16 12 8 8	10 5 4 6 8 12	16 3 8 7 16 12 10 7 4 9 13	14 8 8 11 1 3 10 6 6 2 2	4 4 9 1 13 5 7 0 15 11 3 3 1 1 12	3	2 14 6 13 4 15 4 8 3 4 0 5	6 12 10 7 8 11 16 9 14 1	7 13 14 4 2 9 12 10 16 15	8 15 16 10 6 1 5 11 12 7 7	11 2 3 6 15 5 10 1 1 7 8 8 1	13 14 5 11 16 12 1 6 10 2 1	15 1 4 16 6 12 9 14 13 4 2 3 7 8 14 15 3 11 16 13	9 1 2 13 5 6 3 16 8 4	10 5 4 15 1 8 2 12 9 11	
1 5 0 11 1 2 1 2 1 2 5 5 5 1 1 1 1 1 1 1 1 1	9 13 7	1 16 14 4 10 11 11	11 9 1 3 1 1 1 1 5 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1	7 13 13 14 11 11 16 18 3	5 12 7	15 5 1 8 4	13 14 5 11 12	15	1 16 12 8 8 15	10 5 4 66 8 12 4 11	16 12 10 7 4 9 13 2 10 1	14 8 8 11 1 3 10 6 6 2 5 9	4 4 9 1 13 5 7 0 15 11 3 1 1 1 2 5 16	3 1 10 15 15 15 15 17 17 17 17	2 14 15 4 8 3 4 0 5 1 6	6 12 10 7 8 11 16 9 14 1 2	7 13 14 4 2 9 12 10 16 15 3	8 15 10 6 1 1 5 11 12 7 13 13	111	13 14 5 11 16 12 1 6 10 2 9	15 1 4 16 6 12 9 14 13 4 2 3 7 8 14 15 3 11 16 13 12 5	9 1 2 13 5 6 3 16 8 4	10 5 4 15 1 8 2 12 9 11	
3	9 13 7 14 1	1 16 14 4 10 11 2	111 9 1 3 3 1 14 1 13 1 15 1 8 1 1	111	5 12 7	15 5 1 8 4	13 14 5 11 12 10	15	1 16 12 8 8	10 5 4 12 4 11 4 16	16 12 10 7 4 9 13 2 10 1 1 9 9	14 8 8 13 10 6 6 2 5 9 18	4 4 9 1 13 5 7 0 15 1 1 1 2 5 16 6	3 ! 10 15 2 15 17 16 17 16 17 16 17 18	2 14 15 4 8 3 4 4 0 5 1 6 6 12 12 12 12	6 12 10 7 8 11 16 9 14 1 2 5	7	8 15 10 6 1 5 11 12 7 13 3 3	11	13 14 5 11 16 12 1 16 10 2 9 115 15	15 1 4 16 6 12 9 14 13 4 2 3 7 8 14 15 3 11 16 13 12 5	9 1 2 13 5 6 3 16 8 4 14	10 5 4 15 1 8 2 12 9 11 7 16	
1 5 0 11 2 1 2 1 2 5 5 1 2 5 5 1 2 1 2 1 2 1	9 13 7 14 1 12	1 16 14 4 10 11 11	111 9 13 14 13 115 115 115 112 7 112 7 1	111	5 12 7	15 5 1 8 4	13 14 5 11 12 10	15	1 16 12 8 8 15	10 5 4 66 8 12 4 11	16 12 10 7 4 9 13 2 10 1	14 8 8 11 1 3 10 6 6 2 5 9	4 4 9 1 13 5 7 0 15 11 12 5 16 6 6 8	3 ! 10 : 15 :: 2 : i : i : i : i : i : i : i : i :	2 14 15 4 8 3 4 0 5 1 6	6 12 10 7 8 8 11 16 9 14 1 2 5 5 4	7	8 15 16 10 6 1 5 11 12 7 13 3 14 14 14 15 16 17 17 17 17 17 17 17	111	13 14 5 11 16 12 1 6 10 2 9 15 3 1	15 1 4 16 6 12 9 14 13 4 2 3 7 8 14 15 3 11 16 13 12 5	9 1 2 13 5 6 3 16 8 4	10 5 4 15 1 8 2 12 9 11	

Algorytm generowania danych testowych

Algorytm generuje poprawną planszę Sudoku rozmiaru (gdzie), a następnie usuwa z niej cyfry w kontrolowany sposób tak, aby wynikowa plansza miała dokładnie jedno rozwiązanie.

Proces przebiega następująco:

- Wypełnienie przekątnych bloków losowymi permutacjami liczb od 1 do bloki te nie mają ze sobą zależności.
- **Rekurencyjne wypełnienie pozostałych komórek** klasyczny backtracking, sprawdzane są warunki poprawności: wiersz, kolumna, blok.
- **Usuwanie cyfr (maskowanie)** losowe zerowanie komórek z zachowaniem jednoznaczności (czyli po każdej próbie sprawdzana jest liczba możliwych rozwiązań).
- Eksport planszy do pliku tekstowego wartości oddzielone spacją, puste pola zapisane jako `0`.

```
return (unUsedInRow(grid, i, num) &&
unUsedInCol(grid, j, num) &&
unUsedInBox(grid, i - i % boxSize, j - j % boxSize, num));
}
```

Założenia:

- Działa dla Sudoku, gdzie (np. 4, 9, 16).
- Każda wygenerowana plansza ma dokładnie jedno rozwiązanie.
- Możliwość sterowania liczbą pustych pól.

Złożoność czasowa:

- Generowanie pełnej planszy: (rekurencyjne wypełnianie).
- Sprawdzanie jednoznaczności po każdej zmianie: .

—

Przekształcanie planszy sudoku na graf

Plansza Sudoku jest reprezentowana jako graf nieskierowany, w którym: - Każde pole planszy to jeden wierzchołek grafu, - Krawędź łączy dwa pola, jeśli nie mogą zawierać tej samej wartości (czyli leżą w tym samym wierszu, kolumnie lub bloku), - Wartości początkowe (ustalone) są przechowywane w osobnej tablicy `fixedValues`.

Dla planszy o wymiarze `dim x dim` (np. 9×9), graf zawiera `dim * dim` wierzchołków. Dla każdego wierzchołka tworzone są listy sąsiadów (pola, z którymi współdzieli wiersz, kolumnę lub blok). Tworzony w ten sposób graf zawiera wiele klik — w każdej linii, kolumnie i bloku wszystkie wierzchołki są połączone między sobą (grafy całkowite w lokalnych grupach).

Przykład: Pole (0,0) jest połączone z: - wszystkimi polami z tego samego wiersza, - wszystkimi z tej samej kolumny, - wszystkimi z tego samego bloku 3×3 (dla dim=9).

Taka reprezentacja umożliwia wykorzystanie kolorowania grafu (graph coloring) jako modelu do rozwiązywania Sudoku metodami metaheurystycznymi (np. algorytmem genetycznym).

Dane grafu są zapisywane do pliku JSON w postaci: {

```
"dim": 9,
"size": 81,
"fixedValues": [...],
"adjacency": [
      [1,2,3,...],
      [0,2,4,...],
      ...
]
```

Gdzie: - `fixedValues[i]` to wartość początkowa w polu i (0 = puste), - `adjacency[i]` to lista sąsiadów pola i (pola, z którymi i nie może mieć tej samej liczby).

Testowanie rozwiązań

Dla każdej wygenerowanej planszy wykonywane jest porównawcze testowanie trzech wersji

solvera: sekwencyjnej, z użyciem OpenMP oraz CUDA. Proces testowy obejmuje:

1. Iteracja po numerach testów

Dla testów generowane są kolejne pliki wejściowe w katalogu `./input/`.

2. Uruchamianie solverów

- Dla każdego testu uruchamiane są:
 - `seq.exe` wersja sekwencyjna (CPU),
 - `omp.exe` wersja równoległa OpenMP (CPU),
 - `cuda.exe` wersja GPU z wykorzystaniem CUDA.
- Parametry wejściowe:
 - Plik wejściowy z planszą (`.txt`),
 - Plik wyjściowy z rozwiązaniem,
 - Plik pomiarowy zawierający czasy i parametry,
 - Parametry algorytmu: populacja, iteracje, szansa mutacji.

3. Nazewnictwo wyników

• Nazwy plików wynikowych zawierają zakodowane parametry testu, np.: `output/openmp_pop512_iter1500_mut0_05.txt`

Złożoność rozwiązywania:

- Sekwencyjnie: –
- OpenMP: , gdzie liczba wątków
- CUDA: na jeden blok GPU (dla jednej planszy)

_

Założenia testów:

- Każdy algorytm przetwarza tę samą planszę i te same parametry.
- Wyniki zapisywane w osobnych plikach.

Algorytm sekwencyjny (CPU)

1. Reprezentacja Sudoku jako grafu

- Plansza modelowana jest jako graf nieskierowany , gdzie:
 - pola planszy,
 - połączenia między polami, które nie mogą mieć tej samej wartości (wiersz, kolumna, blok).
- Krawędzie są ustalane na podstawie pozycji wiersz/kolumna/blok.

```
for (int i = 0; i < dim; ++i) {
  for (int j = 0; j < dim; ++j) {
    int idx = i * dim + j;
    // Dodajemy sąsiadów z wiersza, kolumny i bloku
    ...
```

```
sort(adjacency[idx].begin(), adjacency[idx].end());
   adjacency[idx].erase(unique(adjacency[idx].begin(), adjacency[idx].end()),
adjacency[idx].end());
  }
}
```

2. Inicjalizacja populacji rozwiązań

• Dla każdego osobnika tworzony jest losowy przydział wartości do zmiennych (komórek), z zachowaniem pól z wartościami ustalonymi.

```
if (graph.fixedValues[idx] != 0) {
  colors[idx] = graph.fixedValues[idx];
} else {
  // Wybierz losowo wartość nieużywaną przez sąsiadów
  ...
  colors[idx] = options[dist(rng)];
}
```

3. Ocena jakości rozwiązania (fitness)

• Liczba konfliktów (takich samych wartości u sąsiadów) liczona jest dla każdego osobnika. Celem jest osiągnięcie `fitness == 0`.

```
for (int u = 0; u < graph.size; ++u) {
    for (int v : graph.adjacency[u]) {
        if (!visited[v] && colors[u] == colors[v])
            fitness++;
        }
        visited[u] = true;
}</pre>
```

4. Krzyżowanie osobników

 Tworzenie potomka na podstawie dwóch rodziców – wybierana jest wartość od rodzica, który ma mniejszą liczbę konfliktów w danym polu.

```
child.colors[i] = (conflicts1 <= conflicts2) ? parent1.colors[i] : parent2.colors[i];
```

5. Mutacja osobnika

- Z określonym prawdopodobieństwem (`mutationRate`) zmieniane są pola powodujące konflikty.
- Wybierana jest losowo wartość, która nie powoduje kolizji (jeśli istnieje).

```
if (conflictCount[i] > 0 && dist(rng) < mutationRate) {
    ...
    colors[i] = options[valueDist(rng)];
}</pre>
```

6. Główna pętla algorytmu genetycznego

- Iteracyjny proces ewolucji osobników: selekcja, krzyżowanie, mutacja i ocena.
- Zatrzymanie przy `fitness == 0` lub po osiągnięciu limitu iteracji.

```
while (generation < maxGenerations) {
  sort(population.begin(), population.end(), ...);
  if (population[0].fitness == 0) break;

  // Selekcja, krzyżowanie, mutacja
  ...
  generation++;
}</pre>
```

7. Zapis rozwiązania i pomiar czasu

- Jeśli znaleziono poprawne rozwiązanie (bez konfliktów), zapisujemy je do pliku.
- Dodatkowo zapisywany jest czas wykonania i rozmiar planszy.

```
auto duration = chrono::duration<double>(endTime - startTime).count();
if (solution.fitness == 0) {
   measurmentOutFile << dim <<" "<< duration << endl;
   printSudoku(solution, dim, outFile);
}</pre>
```

Złożoność czasowa

- Inicjalizacja i ocena populacji:
- Krzyżowanie i mutacja:
- Całość: , gdzie:
 - liczba osobników,
 - - liczba iteracji (generacji),
 - - wymiar planszy Sudoku.

Algorytm równoległy (OpenMP)

Wersja solvera Sudoku z równoległym przetwarzaniem za pomocą OpenMP oparta jest na algorytmie genetycznym. Celem jest przyspieszenie najbardziej kosztownych operacji: inicjalizacji populacji, oceny dopasowania (fitness) oraz tworzenia nowej generacji (krzyżowanie + mutacja).

1. Inicjalizacja populacji osobników (równoległa)

- Każdy osobnik w populacji otrzymuje losowe wartości w zmiennych (polach planszy), przy zachowaniu wartości z pól ustalonych.
- Równoległość osiągnięta poprzez `#pragma omp parallel for`.
- Każdy wątek korzysta z własnego generatora liczb losowych.

#pragma omp parallel for default(none) shared(population, graph) private(i)

```
for (int i = 0; i < populationSize; ++i) {
    mt19937 thread_rng(rng());
    population[i].initialize(graph, thread_rng);
    population[i].evaluate(graph);
}</pre>
```

2. Selekcja i tworzenie nowej populacji (równoległe)

- Najlepszy osobnik jest kopiowany (elitaryzm).
- Pozostali osobnicy są tworzeni równolegle przez:
 - Selekcję turniejową z populacji,
 - Krzyżowanie pary rodziców,
 - Mutację osobnika,
 - Ocena fitness.
- Każdy wątek tworzy własne dzieci.

3. Mutacja i lokalne naprawy

- Dla każdego konfliktowego pola wykonywana jest próba zmiany koloru.
- Jeśli dostępne są kolory niepowodujące konfliktów wybierany jest jeden z nich.
- W przeciwnym wypadku przypisywana jest losowa wartość.

```
if (graph.fixedValues[i] == 0 && conflictCount[i] > 0 && dist(rng) < mutationRate) {
    ...
    colors[i] = options[valueDist(rng)];
}</pre>
```

4. Zatrzymanie ewolucji

- · Algorytm kończy działanie jeśli:
 - znaleziono rozwiązanie (`fitness == 0`),
 - osiągnięto maksymalną liczbę pokoleń ('maxGenerations').

```
if (population[0].fitness == 0) break;
```

5. Pomiar czasu i zapis rozwiązania

- Pomiar czasu całkowitego działania przeprowadzany jest przy użyciu `chrono`.
- Jeśli rozwiązanie jest poprawne zapisywane jest do pliku wynikowego.
- Dodatkowo zapisywana jest liczba sekund i rozmiar planszy.

```
if (solution.fitness == 0) {
   measurementOutFile << dim << " " << duration.count() << endl;
   printSudoku(solution, dim, outFile);
}</pre>
```

Złożoność czasowa

- Teoretyczna złożoność podobna jak w wersji sekwencyjnej:
 - – gdzie to liczba osobników, liczba generacji.
- W praktyce dzięki równoległemu przetwarzaniu osobników realny czas jest skrócony do około:
 - , gdzie to liczba dostępnych wątków.

Różnice względem wersji sekwencyjnej

- Wersja OpenMP znacząco skraca czas działania poprzez:
 - · równoległe tworzenie i ocenę osobników,
 - równoległą mutację i krzyżowanie,
 - niezależne generatory RNG na każdy wątek.

Algorytm równoległy (CUDA)

Wersja CUDA przyspiesza najkosztowniejszy etap algorytmu genetycznego – mutację – poprzez przeniesienie tej operacji na GPU. Każdy osobnik z populacji reprezentuje jedno możliwe rozwiązanie Sudoku, a jego "genotyp" to przydział kolorów do wierzchołków grafu. Implementacja wykorzystuje strukturę grafu do przechowywania sąsiedztwa, a na GPU działają dedykowane kernele do mutacji oraz inicjalizacji stanu pseudolosowego.

1. Przetwarzanie równoległe (GPU) – mutacja osobników

- Mutacja to najintensywniejsza operacja każda komórka analizuje swoje konflikty z sąsiadami i próbuje zmienić wartość, jeśli występuje kolizja.
- Każda komórka planszy jest przetwarzana przez jeden wątek.
- Warunek `fixedValues[idx] != 0` chroni ustalone wartości przed zmianą.

```
...
colors[idx] = newVal;
}
```

2. Losowanie na GPU (curand)

- Dla każdego wątku na GPU inicjalizowany jest stan pseudolosowy (curand).
- Generatory są niezależne, co zapewnia zróżnicowanie mutacji.

```
__global__ void setupKernel(curandState* states, unsigned long seed, int size) {
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx < size) curand_init(seed, idx, 0, &states[idx]);
}
```

3. Inicjalizacja GPU – przygotowanie danych i pamięci

- Dane grafowe (sąsiedzi, stopnie, wartości ustalone) kopiowane są na GPU.
- Po stronie CPU generowana jest wersja spłaszczona list sąsiedztwa ('adjacency').

```
CUDA_CALL(cudaMemcpy(d_adjacency, flatAdj.data(), sizeof(int) * size * maxDegree, cudaMemcpyHostToDevice));
CUDA_CALL(cudaMemcpy(d_fixed, graph.fixedValues.data(), sizeof(int) * size, cudaMemcpyHostToDevice));
```

4. Ocena rozwiązania (fitness) – wersja CPU lub GPU

Obliczana liczba konfliktów – dla każdej pary sąsiadów, które mają identyczną wartość.

```
if (colors[idx] == colors[neighbor] && idx < neighbor)
  conflicts++;</pre>
```

W wersji CUDA kernel 'evaluateKernel()' może być uruchamiany zbiorczo dla wielu osobników.

5. Integracja z algorytmem genetycznym

- GPU wykorzystywane jest w funkcji `mutate()` klasy `GPUMutator`, która zarządza pamięcią GPU oraz wywołaniem kernela.
- Po każdej generacji CUDA wykonuje mutację wektorów kolorów osobników, po czym wynik wraca do CPU w celu dalszego przetwarzania.

```
gpu.mutate(child.colors, mutationRate);
child.evaluate(graph);
```

6. Przykład tworzenia obiektu GPUMutator i użycia mutacji

```
GPUMutator gpu(graph);
for (...) {
```

```
...
gpu.mutate(child.colors, mutationRate);
}
```

Złożoność i korzyści z CUDA

- Złożoność czasowa algorytmu pozostaje bez zmian:
- CUDA przyspiesza najbardziej kosztowny etap mutację zmniejszając jej czas z do na wątek.
- Całkowity czas generacji jest znacząco zredukowany przy większych populacjach lub planszach ().
- Mutacja na GPU minimalizuje wąskie gardło przetwarzania danych każdy osobnik mutowany równolegle.

Różnice względem wersji OpenMP

- OpenMP używa CPU do równoległości poziomu osobnika, CUDA używa GPU do przetwarzania komórek.
- CUDA wymaga alokacji i transferu danych na GPU, ale zapewnia większe przyspieszenie przy dużych instancjach.
- Wersja CUDA lepiej się skaluje dla dużych populacji (np. >1024 osobników).

Środowisko testowe

Testy porównawcze przeprowadzono w jednolitych warunkach, aby zapewnić spójność pomiarów czasów wykonania i jakości rozwiązań. Poniżej przedstawiono parametry sprzętu i oprogramowania użytego w eksperymentach.

System operacyjny

Windows 11 Pro

Kompilatory

g++: 11.2.0 (MinGW)CUDA Toolkit: 12.8.93

• nvcc (CUDA compiler): release 12.8, build cuda 12.8.r12.8/compiler.35583870 0

CPU

- Model: AMD Ryzen 7 5800H with Radeon Graphics
- Liczba rdzeni/watków: 8 rdzeni fizycznych, 16 wątków (SMT)
- Cache:

• L1: 512 KB

• L2: 4 MB

• L3: 16 MB

• Architektura: x86_64 (64-bitowa)

• Pamięć operacyjna: 16 GB

GPU

• Dedykowany GPU: NVIDIA GeForce GTX 1650 Laptop GPU

CUDA Compute Capability: 7.5
Liczba rdzeni CUDA: 1024
Max threads per block: 1024
Liczba multiprocesorów (SM): 16

• Wersja CUDA: 12.8

• Sterownik NVIDIA: 572.61

Skrypt testujący Sudoku Solver

Skrypt `run_tests.cpp` automatyzuje proces **testowania rozwiązywacza Sudoku** w trzech wariantach:

- 'sekwencyjny' ('seq.exe')
- 'OpenMP' ('omp.exe')
- 'CUDA' ('cuda.exe')

W ramach działania:

- Generowane są losowe instancje Sudoku ('sudoku_generator.exe')
- Każda implementacja rozwiązuje te same plansze
- Wyniki i czasy działania zapisywane są do plików

Parametry

Parametry konfiguracyjne ładowane są z pliku `config.json`:

```
{
  "tests": 10,
  "grid_size": 9,
  "empty_ratio": 0.62,
  "population": 512,
  "iterations": 1500,
  "mutation": 0.05
}
```

Parametr	Znaczenie
`tests`	Liczba testów
`grid_size`	Rozmiar planszy (np. 9 dla 9×9)
`empty_ratio`	Ułamek pustych pól (np. 0.62 = 62%)
`population`	Rozmiar populacji algorytmu genetycznego
`iterations`	Liczba iteracji GA
`mutation`	Szansa mutacji (np. 0.05 = 5%)

Fragment kodu

Dane wyjściowe

- Rozwiązania → `output/solution/`
- Czasy i parametry → `output/sequential_*.txt`, `openmp_*.txt`, `cuda_*.txt`

Każda implementacja działa na identycznym zestawie danych wejściowych, co umożliwia uczciwe porównanie wydajności.

Pomiary czasu

Plan testów i pomiarów

Nr	Cel testu	Rozmiar planszy	Puste pola (%)	Populacja	Iteracje	Mutacja	Liczba testów	Algorytmy do porównania
1	Porównanie SEQ / OMP / CUDA	9×9	50	512	1500	0.05	10	SEQ, OMP, CUDA
2	Wpływ pustych pól (skala)	9×9	30 / 40 / 50 / 60 / 70	512	1500	0.05	5– 10/test	SEQ, OMP, CUDA
3	Wpływ wielkości planszy	4×4 / 9×9 / 16×16 / 25×25 / 36×36	50	1024	3000	0.05	3– 5/test	SEQ, OMP, CUDA
4	Wpływ rozmiaru populacji	9×9	50	256 / 512 / 1024 / 2048	1500	0.05	5/test	OMP, CUDA
5	Wpływ liczby iteracji	9×9	50	512	500 / 1000 / 2000 / 3000	0.05	5/test	OMP, CUDA
6	Wpływ prawdopodobieństwa mutacji	9×9	50	512	1500	0.01 / 0.05 / 0.1	5/test	OMP, CUDA

Uwagi

- Wszystkie testy są wykonywane na tych samych instancjach Sudoku (ta sama liczba i rozkład pustych pól).
- W testach CUDA używana jest karta NVIDIA GTX 1650.
- W testach OMP maksymalna liczba wątków: 16.
- Wyniki pomiarów zapisywane są do osobnych plików `.txt` i mogą być analizowane przez skrypt w Pythonie.
- Ponieważ wersja sekwencyjna nie wykorzystuje w pełni zalet parametrów GA (brak równoległości, skalowalność) nie uwzględniamy jej w testach 4-6.

Wyniki testów

2) Wpływ pustych pól (skala)

Rozmiar	Liczba testów	Średni czas SEQ	Średni czas OMP	Średni czas CUDA	Populacja	Iteracje	Mutacja	Puste pola (%)
9×9	5	0.14	0.03	0.16	512	1500	0.05	30
9×9	5	0.57	0.04	0.93	512	1500	0.05	40
9×9	5	0.97	0.07	1.00	512	1500	0.05	50
9×9	5	1.00	0.13	1.33	512	1500	0.05	60
9×9	5	1.51	0.23	2.50	1024	1500	0.05	70

Wnioski:

- Im więcej pustych pól w planszy Sudoku, tym większa liczba potencjalnych konfliktów, co skutkuje rosnącym czasem obliczeń.
- SEQ i CUDA wykazują wyraźny wzrost czasu wraz ze wzrostem trudności instancji (liczby pustych pól).
- OMP pozostaje znacznie szybszy, zachowując niskie czasy nawet dla plansz z 70% pustych komórek.
- CUDA zaczyna tracić przewagę wydajnościową przy bardziej "niedookreślonych" planszach
 być może z powodu większego narzutu synchronizacji GPU.

3) Wpływ wielkości planszy

Rozmiar	Liczba testów	Średni czas SEQ	Średni czas OMP	Średni czas CUDA	Populacja	Iteracje	Mutacja	Puste pola (%)
4×4	5	0.017	0.023	0.196	1024	1500	0.05	50
9×9	5	0.97	0.07	1.00	1024	1500	0.05	50
16×16	5	8.48	6.28	5.01	1024	1500	0.05	50
25×25	3	11.50	9.58	7.86	1024	1500	0.05	50

Wnioski:

- Czas obliczeń rośnie wraz z rozmiarem planszy najbardziej zauważalnie w implementacji sekwencyjnej.
- CUDA zyskuje przewagę przy większych rozmiarach (16×16, 25×25), lepiej skalując się przy wzroście liczby danych.
- OpenMP wypada najlepiej przy średnich rozmiarach (9×9), dzięki niskiemu narzutowi

uruchamiania i efektywnej pracy wielowątkowej.

Wszystkie testy w 4–6 były wykonane na tym samym zestawie planszy.

4) Wpływ rozmiaru populacji

Rozmiar	Liczba testów	Średni czas OMP	Średni czas CUDA	Populacja	Iteracje	Mutacja	Puste pola (%)
9×9	5	0.06	0.62	256	1500	0.05	50
9×9	5	0.07	1.37	512	1500	0.05	50
9×9	5	0.18	1.60	1024	1500	0.05	50
9×9	5	0.29	2.72	2048	1500	0.05	50

Wnioski:

- Większe populacje poprawiają jakość rozwiązań, ale zwiększają czas działania.
- CUDA traci efektywność przy bardzo dużych populacjach z powodu ograniczeń sprzętowych.
- OpenMP skaluje się bardziej przewidywalnie w tym zakresie.

5) Wpływ liczby iteracji

Rozmiar	Liczba testów	Średni czas OMP	Średni czas CUDA	Populacja	Iteracje	Mutacja	Puste pola (%)
9×9	5	0.09	0.81	512	500	0.05	50
9×9	5	0.07	0.95	512	1000	0.05	50
9×9	5	0.10	0.90	512	2000	0.05	50
9×9	5	0.11	0.99	512	3000	0.05	50
9×9	5	0.10	0.79	512	6000	0.05	50
9×9	5	0.11	0.84	512	10000	0.05	50

Wnioski:

- W OMP czas działania stabilizuje się po ~1000 iteracjach możliwe lepsze dopasowanie wcześniej.
- CUDA wykazuje zmienność, ale generalnie zyskuje na większej liczbie iteracji.
- Najlepszy kompromis czas/jakość to zwykle 1500–3000 iteracji.

6) Wpływ prawdopodobieństwa mutacji

Rozmiar	Liczba testów	Średni czas OMP	Średni czas CUDA	Populacja	Iteracje	Mutacja	Puste pola (%)
9×9	5	0.07	0.89	512	1500	0.01	50
9×9	5	0.10	0.94	512	1500	0.05	50
9×9	5	0.12	2.64	512	1500	0.10	50

Wnioski:

- Niskie wartości mutacji dają stabilny czas wykonania.
- CUDA silnie traci wydajność przy zbyt wysokiej mutacji zbyt duży chaos w populacji.
- OMP bardziej odporne na wahania tego parametru.

Wnioski efektywnościowe (speedup)

Współczynniki przyspieszenia (speedup) obliczono względem wersji sekwencyjnej dla tego samego testu:

Rozmiar	Parametry	SEQ [s]	OMP [s]	CUDA [s]	Speedup OMP	Speedup CUDA
9×9	pop=512, iter=1500, mut=0.05	1.00	0.08	1.89	12.5×	0.53×
9×9	pop=512, iter=1500, mut=0.05, empty=30%	0.14	0.23	0.16	0.61×	0.88×
9×9	pop=1024, iter=1500, mut=0.05, empty=70%	1.51	0.023	2.50	65.65×	0.60×
4×4	pop=1024, iter=1500, mut=0.05	0.017	0.023	0.196	0.74×	0.09×
16×16	pop=1024, iter=1500, mut=0.05	8.48	6.28	5.01	1.35×	1.69×
25×25	pop=1024, iter=1500, mut=0.05	11.50	9.58	7.86	1.20×	1.46×

Wnioski:

- CUDA zyskuje znacząco dopiero przy większych planszach najlepiej skalując się dla 16×16 i 25×25.
- OMP osiąga imponujący przyspieszenie przy małych i średnich instancjach (nawet 12.5× na 9×9 z domyślnymi parametrami).
- Dla przypadków z bardzo dużą trudnością (np. 70% pustych pól) CUDA nie zawsze daje zysk czasowy przeciążenie GPU i trudności z konwergencją zwiększają czas.
- CUDA zyskuje efektywność dopiero przy odpowiednio dużej populacji i liczbie iteracji oraz większej planszy wtedy wyraźnie pokonuje OMP i SEQ.
- OpenMP zapewnia dobrą wydajność bez dużych narzutów uruchomieniowych sprawdza się jako rozwiązanie uniwersalne.

Testy na planszach sudoku znalezionych w innych materiałach

Testowanie wykonano dla parametrów: populacja = 1024, iteracje = 3000, mutacja = 5%.

Sudoku	Rozwiązanie Źr	ródło	SE	0	CU
			Q	M	DA
			[s]	Ρ	[s]
				[s]	

			1									Logi-	41.	1 3	3 2
					9	1	7	6	2	4	9	Mix nr		5	0
		5		6		9	8	5	7	6	3	201, marzec			
						4	3	2	8	5	1	2025			
	9		6	3		8	9	7	6	3	5				
6						6	5	4	9	1	2				
3	2				7	3	2	1	4	8	7				
				2	8	7	6	9	5	2	8				
		8			4	5	1	8	3	9	4				
	4		1			2	4	3	1	7	6				
															_
	1					7	1	8	3	4	5		8	2.4 2	_
4			7			4	9	3	7	2	6	poziom Trudny			
5	6			9	1	5	6	2	8	9	1				
		7		3		6	4	7	5	3	8				
				6		9	8	5	1	6	2				
			4	7	9	3	2	1	4	7	9				
			9			2	7	4	9	1	3				
						1	5	9	6	8	7				
					1	8	3	6	2	5	4				
8					4										

	2			9		7	2	3	8	S) 4		1	2.9 8	_
		1		2		5	6	1	3	2	2 7	poziom Ekspert			
	4	9				8	4	9	5	6	5 1				
				7	5	1	3	6	9	7	7 5	5			
	5				8	2	5	7	4	3	3 8	3			
		8				4	9	8	2						
9						9	1	2	6						
	8														
3	7	4			2	6	8	5	7	4					
						3	7	4	1	8	3 2				
2	6		3			2	6	9	3	7	8	sudoku .com –		2.3 0	_
5	8		4			5	8	1	4	2	9	poziom Mistrzo			
				6		4	7	3	5	6	1	wski			
			8	3		6	9	4	8	3	2				
	1	2	7		5	8	1	2	7	4	5				
	5					3	5	7	1	9	6				
	4	6				9	4	6	2	5	7				
7						7	2	8	6	1	3				
	3	5				1	3	5	9	8	4				

Podsumowanie projektu

Projekt dotyczył rozwiązania Sudoku dowolnego rozmiaru przy użyciu algorytmu kolorowania grafu. Zrealizowano trzy wersje implementacji:

- Sekwencyjną (CPU),
- OpenMP (CPU, wielowątkowa),
- CUDA (GPU, masywnie równoległa).

W ramach projektu opracowano również:

• generator plansz z kontrolą liczby pustych pól i jednoznacznością rozwiązania,

- GUI do wizualizacji działania solvera i interakcji z użytkownikiem,
- narzędzia do automatyzacji testów i pomiarów wydajności.

Podsumowanie projektu

Projekt dotyczył rozwiązywania Sudoku dowolnego rozmiaru `n×n` z wykorzystaniem **algorytmu kolorowania grafu**, zaimplementowanego w trzech wariantach:

- Wersja sekwencyjna (jednowątkowa, CPU),
- Wersja równoległa OpenMP (wielowątkowa, CPU),
- Wersja CUDA (masywnie równoległa, GPU).

W ramach prac wykonano również:

- **Generator plansz** z kontrolą liczby pustych pól oraz zapewnieniem jednoznaczności rozwiązania,
- GUI do wizualizacji działania algorytmu oraz interaktywnego rozwiązywania Sudoku,
- **System testów i pomiarów wydajności**, pozwalający porównać implementacje i przeanalizować wpływ parametrów.

_

Wnioski końcowe

- **OpenMP** zapewnia największy zysk czasowy dla plansz 9×9 w wielu przypadkach **2–12**× **szybszy** niż wersja sekwencyjna, dzięki niskim narzutom uruchomieniowym.
- **CUDA** osiąga przewagę przy **większych instancjach** (16×16, 25×25) oraz przy dużych populacjach czas skraca się nawet o **30–40**% względem CPU.
- **Liczba pustych pól** silnie wpływa na trudność problemu im więcej pustych komórek, tym trudniejszy i wolniejszy proces znajdowania poprawnego rozwiązania.
- Parametry algorytmu GA (rozmiar populacji, liczba iteracji, współczynnik mutacji) mają kluczowy wpływ zarówno na czas działania, jak i jakość rozwiązań.
- **Model grafowy** (kolorowanie wierzchołków) jest uniwersalny i dobrze adaptuje się zarówno do środowisk sekwencyjnych, jak i równoległych.
- Projekt potwierdza, że **wykorzystanie równoległości obliczeniowej** (zarówno CPU, jak i GPU) pozwala efektywnie rozwiązywać problemy kombinatoryczne klasy **NP**.

Repozytorium z kodem źródłowym

https://github.com/AgnieszkaMaleszka/Sudoku-solver/tree/main

Literatura

- https://medium.com/code-science/sudoku-solver-graph-coloring-8f1b4df47072
- https://www.geeksforgeeks.org/graph-coloring-set-2-greedy-algorithm/