

MM54HC4049/MM74HC4049 Hex Inverting Logic Level Down Converter MM54HC4050/MM74HC4050 Hex Logic Level Down Converter

General Description

The MM54HC4049/MM74HC4049 and the MM54HC4050/MM74HC4050 utilize advanced silicon-gate CMOS technology, and have a modified input protection structure that enables these parts to be used as logic level translators which will convert high level logic to a low level logic while operating from the low logic supply. For example, 0–15V CMOS logic can be converted to 0–5V logic when using a 5V supply. The modified input protection has no diode connected to $V_{\rm CC}$, thus allowing the input voltage to exceed the supply. The lower zener diode protects the input from both positive and negative static voltages. In addition each part can be used as a simple buffer or inverter without level translation. The MM54HC4049/MM74HC4049 is pin and functionally

compatible to the CD4049BM/CD4049BC and the MM54HC4050/MM74HC4050 is compatible to the CD4050BM/CD4050BC

Features

- Typical propagation delay: 8 ns
- Wide power supply range: 2V-6V
- Low quiescent supply current: 20 µA maximum (74HC)
- Fanout of 10 LS-TTL loads

Connection Diagrams

Order Number MM54HC4049/MM54HC4050 or MM74HC4049/MM74HC4050

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to $+7.0$ V
DC Input Voltage (V _{IN})	-1.5 to $+18$ V
DC Output Voltage (V _{OUT})	-0.5 to $V_{\mbox{\footnotesize CC}}\!+\!0.5\mbox{\footnotesize V}$
Clamp Diode Current (I _{ZK} , I _{OK})	−20 mA
DC Output Current, per pin (IOUT)	\pm 25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	\pm 50 mA
Storage Temp. Range (T _{STG})	-65°C to $+150$ °C
Power Dissipation (PD)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temp. (T _L) (Soldering 10 seconds)	260°C

Operating Conditions								
	Min	Max	Units					
Supply Voltage (V _{CC})	2	6	V					
DC Input Voltage (V _{IN})	0	15	V					
DC Output Voltage (V _{OUT})	0	V _{CC}	V					
Operating Temp. Range (Ta)							
MM74HC	-40	+85	°C					
MM54HC	-55	+125	°C					
Input Rise or Fall Times								
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns					
$V_{CC} = 4.5V$		500	ns					
$V_{CC} = 6.0V$		400	ns					

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40°C to 85°C	54HC T _A = -55°C to 125°C	Units
				Typ Guaranteed Limits				
V_{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V
		$ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current	$V_{IN} = 15V$ $V_{IN} = V_{CC} \text{ or GND}$ $I_{OUT} = 0 \mu A$	6.0V		±0.5 2.0	±5 20	±5 40	μΑ

 $[\]textbf{Note 1:} \ \ \textbf{Absolute Maximum Ratings are those values beyond which damage to the device may occur.}$

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V ±10% the worst case output voltages (V_{CH} and V_{CL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

**V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $v_{CC}\!=\!5\text{V},\,T_{A}\!=\!25^{\circ}\text{C},\,C_{L}\!=\!15\,\text{pF},\,t_{r}\!=\!t_{f}\!=\!6\,\text{ns}$

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay		8	15	ns

AC Electrical Characteristics $V_{CC} = 2.0V$ to 6.0V, $C_L = 50$ pF, $t_r = t_f = 6$ ns (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40° to 85°C	54HC T _A = -55° to 125°C	Units
				Тур	Guaranteed Limits			
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V 4.5V 6.0V	30 10 9	85 17 15	100 20 18	130 26 22	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	25 7 6	75 15 13	95 19 16	110 22 19	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per gate)		25				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

Order Number MM54HC4049J, MM54HC4050J, MM74HC4049J, or MM54HC4049J, NS Package J16A

Order Number MM74HC4049N, or MM54HC4049N NS Package N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege etevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408