Zadaća 5

Inteligentni robotski sustavi

Rok predaje: 9. svibnja u 8:00

Način predaje: Rješenja zadataka smjestiti u mapu irs2022/dz05 postojećeg gitlab repozitorija.

Zadatak 1. (10 bodova)

Prikažite Newton sustav $x(t) = [r(t) \quad v(t) \quad a(t)]^T$ u vremenu od $t_b = 0s$ do $t_e = 15s$ uz početno stanje sustava $x(0) = [0.5 \quad 0.5 \quad 1]^T$ te vrijeme uzorkovanja $\Delta t = 0.01s$.

Informacijskim filtrom estimirajte stanje sustava u istom vremenskom razdoblju uz isto vrijeme uzorkovanja te prikažite¹ kao na donjoj slici. Neka je početno očekivanje i početna kovarijanca² zadano s

$$\boldsymbol{\mu}(0) = [-3 \quad 2 \quad 1]^T,$$

$$\mathbf{\Sigma}(0) = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Neka je moguće izmjeriti brzinu i akceleraciju, ali ne i poziciju. Kovarijanca diskretnog procesnog šuma je

$$\mathbf{R} = \begin{bmatrix} 15.25 & 0 & 0 \\ 0 & 18.5 & 0 \\ 0 & 0 & 15.1 \end{bmatrix}$$

a kovarijanca diskretnog šuma mjerenja

$$\mathbf{Q} = \begin{bmatrix} 10 & 0 \\ 0 & 25 \end{bmatrix}$$
.

¹ Prikazati stvarno stanje sustava te estimirano očekivanje dobiveno preko informacijske matrice i vektora.

² Koje je potrebno pretvoriti u početni informacijski vektor i početnu informacijsku matricu.

Zadatak 2. (15 bodova)

Uz iste parametre Lotka-Volterra sustava kojeg smo estimirali s proširenim Kalmanovim filtrom, estimirajte i prikažite stanje sustava korištenjem "Unscented" Kalman filtra kao na donjoj slici. Za hiperparametre tog filtra³ koristite:

$$\alpha = 2.5$$
, $\beta = 2.0$, $k = 10$.

³ Isti nazivi kao i kod Lotka-Voltera modela – vodite računa da ne pregazite neku veličinu.