CompMath: LATEX-Übung 2

Richard Weiss vs. Asst. Prof. Kevin Sturm June 2019

1

Theorem (Lemma of Lax-Milgram). Let X be a finite dimensional vector space over \mathbb{R} with the basis $\{v_1, \ldots, v_n\}$, $F: X \to \mathbb{R}$ linear and $a(\cdot, \cdot): X \times X \to \mathbb{R}$ a bilinear form on X, i.e. $a(\cdot, \cdot)$ is linear in both components. Further, we assume a(v, v) > 0 for all $v \in X$.

Then there exists a unique $u \in X$ with a(u, v) = F(v) for all $v \in X$.

Proof. a(v,v) > 0 for all $v \in X$, implies that a is not degenerate, i.e.

1. $\forall u \in X \setminus \{\vec{0}\} \exists v \in X : a(u, v) \neq 0$,

2. $\forall v \in X \setminus \{\vec{0}\} \exists u \in X : a(u, v) \neq 0$.

So, now we know, that the linear mapping

$$d_a: \begin{cases} X \to X^* \\ u \mapsto a(u, \cdot) \end{cases}$$

is bijective, which lets us find a unique u for any given $F \in X^*$.

 $\mathbf{2}$

$$p(t) = \det(A - t \cdot \mathrm{Id}) = \begin{vmatrix} a_{11} - t & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - t & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - t \end{vmatrix}$$

3

Theorem. If $A \in \mathbb{R}^{n \times n}$ is a matrix with $\sum_{j,k=1}^{n} x_j A_{jk} x_k > 0$ for all $x \in \mathbb{R}^n$, then A is regular.

Proof. Note, that $\sum_{j,k=1}^{n} x_j A_{jk} x_k = x^T A x$, lets A induce a positive definite bilinear form. Due to the principal minor criterium, det $A \neq 0$, which implies that A is indeed regular.

4

Theorem. Let I be a nonempty open interval. Then it holds for $f, g \in C^{\infty}(I)$ and $n \in \mathbb{N}$ that

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}.$$
 (1)

Proof. (1) is trivial for n = 0. Let (1) be true for n, then one calculates

$$\begin{split} (fg)^{(n+1)} &= \left((fg)^{(n)} \right)' \stackrel{(1)}{=} \\ &= \left(\sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)} \right)' = \\ &= \sum_{k=0}^{n} \binom{n}{k} \left(f^{(k)} g^{(n-k)} \right)' = \\ &= \sum_{k=0}^{n} \binom{n}{k} \left(f^{(k+1)} g^{(n-k)} + f^{(k)} g^{(n-k+1)} \right) = \\ &= \sum_{k=0}^{n} \binom{n}{k} f^{(k+1)} g^{(n-k)} + \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k+1)} = \\ &= \sum_{k=0}^{n-1} \binom{n}{k} f^{(k+1)} g^{(n-k)} + f^{(n+1)} g + f g^{(n+1)} + \sum_{k=1}^{n} \binom{n}{k} f^{(k)} g^{(n-k+1)} = \\ &= \int g^{(n+1)} + \sum_{k=1}^{n} \binom{n}{k-1} f^{(k)} g^{(n-k+1)} + \sum_{k=1}^{n} \binom{n}{k} f^{(k)} g^{(n-k+1)} + f^{(n+1)} g = \\ &= f g^{(n+1)} + \sum_{k=1}^{n} \binom{n}{k-1} f^{(k)} g^{(n+1-k)} + f^{(n+1)} g = \sum_{k=0}^{n+1} \binom{n+1}{k} f^{(k)} g^{(n+1-k)} \end{split}$$

5

Theorem. Let $n \in \mathbb{N}$ It holds:

$$\sqrt{n} \in \begin{cases} \mathbb{N}, & \text{if n is a square number}, \\ \mathbb{R} \backslash \mathbb{Q}, & \text{otherwise}. \end{cases}$$

Proof. Let $m, n \in \mathbb{N}$ be arbitrary and $\sqrt[m]{n} \in \mathbb{Q}$. Then $\exists a, b \in \mathbb{N} : \gcd(a, b) = 1$, $\sqrt[m]{n} = \frac{a}{b}$. This gives us $a^m = b \left(nb^{m-1} \right)$ and thus, $\gcd(a^m, b) = b$. However, because of $\gcd(a, b) = 1$, $\frac{a}{b}$ is irreducible, and so is $\frac{a^m}{b}$. Therefore, $\gcd(a^m, b) = 1 = b$.

We conclude, that all natural roots of an integer are either natural or irrational.

6

$$\int_{-1}^{1} \sqrt{1 - x^2} \, dx = \left[x \sqrt{1 - x^2} \right]_{x = -1}^{1} - \int_{-1}^{1} \frac{x(-2x)}{2\sqrt{1 - x^2}} \, dx$$

$$= \left[x \sqrt{1 - x^2} \right]_{x = -1}^{1} + \int_{-1}^{1} \frac{dx}{2\sqrt{1 - x^2}} \, dx - \int_{-1}^{1} \frac{1 - x^2}{2\sqrt{1 - x^2}} \, dx$$

$$= \left[x \sqrt{1 - x^2} + \arcsin x \right]_{x = -1}^{1} - \int_{-1}^{1} \sqrt{1 - x^2} \, dx.$$

7

Formally, a triangle T with vertices $x, y, z \in \mathbb{R}^2$ is defined as convex hull of these points

$$\operatorname{conv}(x,y,z) \coloneqq \left\{ ax + by + cz : a,b,c \ge 0 \text{ with } a+b+c=1 \right\}.$$

The triangle T is called non-degenerated if the vectors y-x and z-x are linearly independent.

Theorem. Let T = conv(x, y, z) and $\widetilde{T} = conv(\widetilde{x}, \widetilde{y}, \widetilde{z})$ be two non-degenerated triangles. Then, there exists an affine bijection $\Phi : T \to \widetilde{T}$, i.e., a bijective mapping of the form $\Phi(v) = Av + b$ with a matrix $A \in \mathbb{R}^{2 \times 2}$ and a vector $b \in \mathbb{R}^2$.

Proof. Because T, \widetilde{T} are Triangles, their vertices $(x, y, z), (\widetilde{x}, \widetilde{y}, \widetilde{z})$ are affine independent respectively. Therefore, each tuple forms an affine basis and spans out an affine sub room. Now, the continuation theorem for affine mappings gives us a unique affine bijection, if

$$\Phi: \begin{cases} x \mapsto \widetilde{x} \\ y \mapsto \widetilde{y} \\ z \mapsto \widetilde{z}. \end{cases}$$

8

Theorem. Let $\Omega \subseteq \mathbb{R}^d$ (with $d \geq 3$) be a bounded domain with Lipschitz-boundary and $u \in C^2(\Omega)$ a solution of the Laplace equation $\Delta u = 0$ in Ω .¹ Then there holds the representation formula

$$\forall x \in \Omega: \quad u(x) = \frac{1}{4\pi} \int_{\partial \Omega} \frac{1}{|x-y|} \frac{\partial}{\partial \nu(y)} u(y) \, dy - \frac{1}{4\pi} \int_{\partial \Omega} \left(\frac{\partial}{\partial \nu(y)} \frac{1}{|x-y|} \right) u(y) \, dy.$$

¹Recall that the Laplace operator Δ is defined for all $x \in \Omega$ by $(\Delta u)(x) := \sum_{i=1}^{d} \frac{\partial}{\partial x_i} u(x) = 0$.