(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-100208

(43)公開日 平成11年(1999)4月13日

(51) Int.Cl. ⁶		識別記号		FΙ						
C 0 1 B	33/12			C 0	1 B	33/12		Α		
B 0 1 J	20/10			B 0	1 J	20/10		Z		
# A61K	7/02			A 6	1 K	7/02		P		
	7/025					7/025				
	7/031					7/031				
			審査請求	未請求	衣髓	項の数9	FD	(全 17 頁)	最終頁に紹	きく
(21)出願番号(22)出願日	}	特願平9-279465 平成9年(1997)9月26日		(72)	出願力発明和発明和	株式会 東京都 皆 塩 庄 神奈川 式会社	社資生 中央区 一郎 県街英	堂 銀座7丁目5: 市港北区新羽 第一リサーチ	町1050番地	株
				(74)	代理》	式会社	資生堂	市港北区新羽 第一リサーチ 祐司		株

(54) 【発明の名称】 棒状メソポーラス粉体及びその製造方法

(57)【要約】

【課題】本発明の目的は実質的に珪素酸化物からなり、 且つ微細径の棒状メソポーラス粉体を提供することにあ る。

【解決手段】 $0 < SiO_2/Y_2O \le 2$ の珪酸塩(Y: 7 ルカリ金属原子)を $0.3 \sim 1.2$ M濃度でカチオン界面活性剤の存在下、pH11以上で溶解する溶解工程と、30分以内にpHを10.5以下とし、前記カチオン界面活性剤で棒状ミセルを形成し、かつ珪酸を該棒状ミセル上に析出させる棒状形成工程と、前記析出により形成された珪酸塩を外殻としたミセル状析出物よりカチオン界面活性剤を除去する除去工程と、を含むことを特徴とする棒状メソポーラス粉体の製造方法及び該方法に得られた酸化珪素を主成分とし、外径が $30 \sim 200$ nmで、且つ中空の棒状メソポーラス粉体。

【特許請求の範囲】

【請求項1】 酸化珪素を主成分とし、外径が20~200nmで、且つその長手方向にメソ孔が伸長していることを特徴とする棒状メソポーラス粉体。

【請求項2】 請求項1記載の粉体において、複数の棒 状体がネットワーク状に集合して一次粒子を形成してい ることを特徴とする棒状メソポーラス粉体集合体。

【請求項3】 0 < S i O_2/Y_2O < 2 の珪酸塩(Y : アルカリ金属原子)を0. 3 \sim 1. 2 M濃度、カチオン性界面活性剤の存在下、p H 1 以上で溶解する溶解工程と、

pHを30分以内に10.5以下とし、前記カチオン性 界面活性剤で棒状ミセルを形成し、かつ珪酸を該棒状ミセル上に析出させる棒状形成工程と、

前記析出により形成された珪酸塩を外殻としたミセル状 析出物よりカチオン性界面活性剤を除去する除去工程 と、

を含むことを特徴とする棒状メソポーラス粉体の製造方 法。

【請求項4】 請求項2記載の方法において、

珪酸塩は Na_2SiO_3 を主成分とすることを特徴とする棒状メソポーラス粉体の製造方法。

【請求項5】 請求項3ないし4のいずれかに記載の方法において、カチオン性界面活性剤は四級アンモニウム塩であることを特徴とする棒状メソポーラス粉体の製造方法。

【請求項6】 請求項5記載の方法において、四級アン モニウム塩:珪酸塩はモル比で1:1~1:50である ことを特徴とする棒状メソポーラス粉体の製造方法。

【請求項7】 請求項6記載の方法において、四級アン モニウム塩:珪酸塩はモル比で1:3~1:20である ことを特徴とする棒状メソポーラス粉体の製造方法。

【請求項8】 請求項5~7のいずれかに記載の方法に おいて、四級アンモニウム塩は炭素数18を越えるアル キル基を有することを特徴とする棒状メソポーラス粉体 の製造方法。

【請求項9】 請求項5~7のいずれかに記載の方法において、四級アンモニウム塩は炭素数18以下のアルキル基を有し、且つ珪酸以外の酸との塩を0.1~3Mを共存させることを特徴とする棒状メソポーラス粉体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はメソポーラス粉体及びその製造方法、特に外形の改良に関する。

[0002]

【従来の技術】気体ないし液体の吸着剤として、あるいは触媒の担体等として、開口径2~50mmのメソ孔を有するいわゆるメソポーラス粉体が注目されている。例えば特開平8-67578に開示されるメソポーラス粉体

は、珪酸塩よりなる三次元構造体から構成され、1.5 ~10nmの比較的均一な細孔を有している。メソポーラス粉体の製造方法としては、カネマイト等の層状珪酸塩の層間に界面活性剤を導入し、さらに該界面活性剤を焼成などにより除去することで三次元構造を形成する方法、あるいは液中でミセル状に集合した界面活性剤の周囲に珪酸塩を集合させた後、界面活性剤を除去する方法などが開発されている。

[0003]

【発明が解決しようとする課題】しかしながら、層状珪酸塩を用いる前者にあっては、層状珪酸塩の粒径にメソポーラス粉体の粒径が規定され、しかも板状であるためカラム充填剤などとして用いた場合、開口度当たりの流体抵抗が上昇するおそれがある。

【0004】一方、棒状メソポーラス粉体を製造した例も報告されている(サイエンス Vol. 273 pp. 765-76 7)が、いずれもかなり大径なものとなっており、特にアルミニウムを含まない純粋なシリカ系メソポーラス粉体の場合、3μπ程度の外径となってしまう。このため、比表面積が相対的に小さくなってしまい、またモレキュラーシーブ的な用途に制限ができてしまうという課題があった。さらに、アルミニウムを含ませた場合、ある程度微細径の棒状メソポーラス粉体を製造可能であるが、アルミニウムの存在により触媒活性が高くなるおそれがあり、やはり好ましいものではなかった。本発明は前記従来技術の課題に鑑みなされたものであり、その目的は実質的に珪素酸化物からなり、且つ微細径の棒状メソポーラス粉体を提供することにある。

[0005]

【課題を解決するための手段】前記目的を達成するために本発明者等が鋭意検討を行ったところ、特定の珪素/アルカリ金属比の珪酸塩を特定濃度下で反応させることにより、微細径のメソポーラス粉体が得られることを見出し、本発明を完成するに至った。すなわち本発明にかかる棒状メソポーラス粉体は、酸化珪素を主成分とし、外径が20~200mで、且つその長手方向にメソ孔が伸長していることを特徴とする。また、本発明において、複数の棒状体がネットワーク状に集合して一次粒子を形成していることが好適である。

【0006】また、本発明にかかる製造方法は、0<S $iO_2/Y_2O<2$ の珪酸塩(Y: アルカリ金属原子)を $0.3\sim1.2$ M濃度、カチオン性界面活性剤の存在下、pH11以上で溶解する溶解工程と、pHe30分以内に10.5以下とし、前記カチオン性界面活性剤で棒状ミセルを形成し、かつ珪酸を該棒状ミセル上に析出させる棒状形成工程と、前記析出により形成された珪酸塩を外殻としたミセル状析出物よりカチオン性界面活性剤を除去する除去工程と、を含むことを特徴とする。

【0007】また、本発明にかかる方法において、珪酸塩100001、 10001 ないる。まなは10001 ないる。まないる。まないる。まないる。まないる。まないる。まないる。

た、本発明にかかる方法において、カチオン性界面活性 剤は四級アンモニウム塩であることが好適である。ま た、本発明にかかる方法において、四級アンモニウム 塩:珪酸塩はモル比で1:1~1:50であることが好 適である。

【0008】また、本発明にかかる方法において、さらに四級アンモニウム塩:珪酸塩はモル比で1:3~1:20であることが好適である。また、前記方法において、四級アンモニウム塩は炭素数18を越えるアルキル基を有することが好適である。また、前記方法において、四級アンモニウム塩は炭素数18以下のアルキル基を有し、且つ珪酸以外の酸との塩を0.1~3Mを共存させることが好適である。

[0009]

【発明の実施の形態】本発明者らは、珪酸をアルカリにより溶解させた場合の、水溶性成分の挙動について検討を行った。そして、本発明者らが検討を進めたところ、 $0 < SiO_2/Na_2O < 2$ とすることで珪酸塩の良好な溶解状態が得られ、、しかもこの溶解状態にある珪酸イオンを四級アンモニウム塩ミセル上に析出させることにより、極めて均質性の高い棒状メソポーラス粉体が得られることが明らかとされた。

【0010】前記 SiO_2/Y_2O が2を越えると、良好な溶解状態を得ることができず、均質な粉体を得る上で好ましくない。この点で、一般に SiO_2/Y_2O が2を越える水ガラスなどを原料として用いた場合にも、界面活性剤が共存すると完全な溶解状態にならず、均質な棒状メソポーラス粉体を得ることができない。このように SiO_2/Y_2O が2以上の組成よりメソポーラス粉体を形成する技術として特表平5-503499に示すものがあるが、これは実質的にアルミニウム化合物共存のメソポーラス粉体を調製する技術であり、該アルミニウム化合物により触媒活性が高くなってしまう可能性があり、好ましいものではない。また、珪酸塩濃度が特定範囲にあることで、棒状のメソポーラス粉体を調製することができるのである。

【0011】以下、本発明の好適な実施形態を説明する。

珪酸塩

等が挙げられる。

本発明において用いられる珪酸塩は、 $0 < SiO_2/Y_2$ O < 2 (Y: TND) 金属原子)のものであり、前記 TNDり金属原子としては特にNaあるいはKが入手し やすさなどの点で好適である。前記珪酸塩は、各種の「ケイ素を含有する物質」を例えばNaOHなどのTNDリと反応させることにより形成することができる。前 記「ケイ素を含有する物質」としては、酸化ケイ素、珪酸塩、シリコンTNDコキシド、水ガラスなどが挙げられる。珪酸塩としては、Na2SiO3、Na4SiO4等が

【0012】また、シリコンアルコキシドとしては、テ

トラメチルオルトシリケート、テトラエチルオルトシリケートなどが挙げられるが、これら単独での反応性は低いため、たとえば珪酸塩とともに用いられることが好適である。また、水ガラスとしては、例えばJIS1号、JIS2号、JIS3号などが挙げられる。なお、これらの「珪素を含有する物質」は、そのほとんどはSiO $_2$ /N $_2$ Oが2.0を越えている。そこで、たとえば水酸化ナトリウムなどのアルカリ剤を加え、溶解することにより0<SiO $_2$ /Y $_2$ O<2と表示され得る珪酸塩を得ることができる。

【0013】なお、本発明において用いられる珪酸塩は、 $SiO_2/Na_2O<0$.5の場合には、メソポーラス粉体の形成自体には支障無いが、アルカリ剤が過剰で無駄を生じる。また、 $2<SiO_2/Na_2O$ の場合には、その水溶液はカチオン性界面活性剤の共存により白濁状態となり、完全な溶解状態にはなりにくく、棒状メソポーラス粉体の形成自体が困難となる。このため、本発明においては $0<SiO_2/Y_2O<2$ 、特に $0.5\le SiO_2/Y_2O\le 1.9$ が好ましい。

【0014】カチオン性界面活性剤

一方、カチオン性界面活性剤としては、四級アンモニウム塩が好ましい。この四級アンモニウム塩としては、アルキル系四級アンモニウム塩 $[R_4N]$ X、及び環式四級アンモニウム塩

[0015]

【化1】

なお、上記各アンモニウム塩において、

R:H, アルキル基、アリル基、ベンジル基、フェニル 基、水酸基、ヒドロキシアルコキシル基

 $X : C1^{-}, Br^{-}, I^{-}, NO_{3}^{-}$

等の構造を有するものが例示される。これらの四級アンモニウム塩は、水溶液中でpHを10.5以下とすることにより棒状ミセルを形成することが必要である。なお、四級アンモニウム塩のRが炭素数18を越えるアルキル基であると、特に棒状を形成しやすい。また、四級アンモニウム塩のRが炭素数18以下のアルキル基の場合には、珪酸以外の酸残基、例えばC1-, Br-, I-との塩を0.1~3Mを共存させることが好適である。【0016】また、本発明において特徴的なメソポーラス粉体の製造方法は、以下のようにように構成される。

溶解工程

前記珪酸塩と、カチオン性界面活性剤を混合し、室温ないし両者が溶解する温度まで上昇させる。混合時のpHが11以下の場合、ないし $SiO_2/Na_2O>2$ の場合には、アルカリ剤を添加し、 $pH11以上、かつSiO_2/Na_2O<2$ とする。この反応に要する保持時間は、

両者が溶解すれば昇温に要する程度の比較的短時間でよい。

【0017】なお、珪酸塩に対するカチオン性界面活性 剤の割合はモル比で好ましくは0.02~1.0、特に 好ましくは0.05~0.3である。珪酸塩に対しカチ オン性界面活性剤がモル比で0.02未満の場合には、 前記カチオン性界面活性剤の棒状ミセルの生成量が少な くなり、またモル比が1.0を越える場合には未反応カ チオン性界面活性剤が大量に残存し、いずれにしても無 駄を生じる。

【0018】棒状形成工程

上記溶解工程で得られた溶液に対して、酸を添加して p Hを10.5以下にする。この結果、カチオン性界面活性剤ないしその球状ミセルが集合して棒状ミセルを形成する。また、p H 11以上では溶解状態にあった珪酸イオンが p H 10.5以下とすることで縮合し、前記カチオン性界面活性剤の棒状ミセルの外周に珪酸が配置される。この操作によりヘキサゴナル構造の配列を持つ粉体が形成される。p H 10.5を越えていると上記効果が

十分に発揮できない。なお、pHの低下操作は酸添加開始より30分以内に行う必要がある。

【0019】除去工程

上記粉体が析出した分散液を濾過し、その後カチオン性 界面活性剤を除去する。この除去操作としては、水洗お よび焼成が挙げられる。この除去操作によりカチオン性 界面活性剤が除去されメソポーラス粉体を得ることがで きる。

【0020】SiO₂/Y₂Oの検討

まず、本発明において特徴的なSiO₂/Y₂〇について検討を行った。すなわち、試薬特級の水酸化ナトリウム(ナカライテスク社製)適量をイオン交換水1Lに溶解し、市販品の二酸化ケイ素(Aerosil社製#200)300gを加え、撹拌する。この分散液を700℃にて5時間焼成して、珪酸ナトリウムを得た。そして、前記水酸化ナトリウム量を順次変更することにより各種SiO₂/Na₂〇の珪酸ナトリウムを調製した。

[0021]

【表1】

SiO ₂ /Na ₂ O	0.5	1. 0	1. 5	2. 0
рΗ	12.05	11.95	11.65	11.35
溶解状態	完全溶解	完全溶解	完全溶解	半透明
比表面積	1066	1126	1142	1052

【0022】なお、X線回折の測定も同時に行った。この測定は、日本電子製JDX-350を用い、CuKα線をX線源として2度(2θ)/分で行った。スリット幅は、1度-0.2m-1度である。この実験結果より、珪酸ナトリウムが溶解状態にあると、X線回折の結果からヘキサゴナル構造が形成されていることが解った。しかしながら、珪酸ナトリウムが完全に溶解しない状態ではヘキサゴナル構造が形成されない場合もあり、本発明にかかる均質な棒状メソポーラス粉体が得られない。

【0023】上記表より明らかなように、 SiO_2/N a_2O は2. 0未満が好ましく、この点で例えば水ガラスなど2. 0を越えるものをそのまま用いたのでは適正な棒状メソポーラス粉体を製造することができない。なお、 SiO_2/Na_2O が2の場合には、溶解が不能な場

合があり、この場合にはヘキサゴナル構造の形成ができなかった。そして、安定にヘキサゴナル構造を形成するには、 SiO_2/Na_2O が1.9程度までが特に好適であった。

【0024】 珪酸塩濃度

本発明においてメソポーラス粉体を棒状に形成するため、珪酸塩濃度の調整を行うことが好適である。すなわち、メタ珪酸ナトリウム所定モルと、ベヘニルトリメチルアンモニウムクロライド(BTC)所定モルを1Lのイオン交換水に溶解させた。このときの温度は70℃とし、溶解直後に2Nの塩酸水溶液を120ml/minで加えてpHを8~9に調整した。この後、ろ過・水洗を行い、700℃にて3時間焼成して粉末を得た。

【0025】 【表2】

メタ珪酸濃度	(M)	0. 15	0. 5	1. 0	1. 5
BTC	(M)	0. 03	0. 1	0. 2	0. 3
性状		塊状ポーラス 図 1	棒状メソポーラス 図 2	棒状メソポーラス 図3	棒状/ンポーラス 図 4

【0026】同結果より明らかなように、珪酸濃度が 0.15Mではメソポーラスではあるものの塊状とな る。また1.5Mでは棒状ではあるものの開口がほとん ど無くなる。そして、本発明者らの検討により、珪酸塩 濃度が $0.3\sim1.2$ Mまで棒状メソポーラスとなり得 ることが確認された。

【0027】pH調整用酸添加速度

本発明において粉体を棒状に形成するため、前記棒状形成工程において添加するpH調整用酸の添加速度の調整を行うことが好適である。すなわち、前記同様メタ珪酸ナトリウム0.5モルと、ベヘニルトリメチルアンモニウムクロライド(BTC)0.1モルを1Lのイオン交換水に溶解させた。このときの温度は70℃とし、溶解

直後に2Nの塩酸水溶液にてpHを8~9に調整した。 このときの2N-塩酸の添加速度を変化させた。この 後、ろ過・水洗を行い、700℃にて3時間焼成して粉末を得た。

[0028]

【表3】

塩酸添加速度	2ml/mim	120ml/min	
p H変化に要する時間	150分	2.5分	
性状	塊状メソポーラス 図5	棒状メソポーラス 図 2	

【0029】同結果より明らかなように、2N-塩酸添加速度が2ml/minではメソポーラスではあるが、塊状となってしまい、棒状メソポーラス粉体とするためにはむしろ塩酸添加速度が早い方がよいことが理解される。さらに詳細な検討の結果、棒状メソポーラス粉体を調製するには、前記条件で塩酸添加速度は10ml/min以上(pH変化所用時間30分以下)であることが好適である。

【0030】pH調整用酸濃度

本発明において粉体を棒状に形成するため、前記棒状形成工程において添加するpH調整用酸濃度の調整を行う

ことが好適である。すなわち、前記同様、メタ珪酸ナトリウム 0.5 モルと、ベヘニルトリメチルアンモニウムクロライド (BTC) 0.1 モルを1 Lのイオン交換水に溶解させた。このときの温度は70℃とし、溶解直後に各種濃度の塩酸水溶液を120ml/minにてpHを8~9に調整した。この後、前記同様ろ過・水洗を行い、700℃にて3時間焼成して粉末を得た。

[0031]

【表4】

塩酸添加速度	0.2N	2 N	5 N	
pH変化に要する時間	35分	2.5分	1 分	
性状	塊状メソポーラス 図6	棒状メソポーラス 図 2	棒状メソポーラス 図 7	

【0032】同結果より明らかなように、0.2N-塩酸を用いるとメソポーラスではあるが、塊状となってしまい、棒状メソポーラス粉体とするためには2N-塩酸以上であることが好ましい。また、5N-塩酸を用いると棒状メソポーラスではあるが、やや崩れた状態となるため、好ましくは1~5N-塩酸、特に好ましくは1.5~3規定程度である。前記酸添加速度に関する結果と考えあわせると、pH変化速度に要する時間が棒状、塊状の相違を規定していると考えられ、溶解工程より棒状形成工程へ移行する際のpH調整に要する時間が30分以上であると塊状となり、30分以下であると棒状となる傾向がある。

【0033】なお、本発明にかかる棒状メソポーラス粉体には優れた吸油性、及び細孔を有することによる内包物質の保護、徐放効果を有しており、医薬品担体、カラム充填剤、あるいは化粧品、食品などへの応用が期待される。更に、例えば内包物質あるいは使用環境に応じて、疎水化、親水化表面処理などを行うことも好適である。

[0034]

【実施例】以下、本発明のより具体的な実施例について 説明する。

実施例1

メタ珪酸ナトリウム(Na₂SiO₃)0.5Mと、ベヘニルトリメチルアンモニウムクロライド(BTC)0.1Mを1Lのイオン交換水に溶解させた。このときの温度は70℃とし、溶解直後に2N-塩酸を120ml/minの流速で添加し、pHを8~9に調整した。この後、濾過、水洗を行い、700℃にて3時間焼成して粉末を得た。ここで得られたメソポーラス粉体のX線回折図を図8に、窒素吸着等温線を図9に、開口径分布を図10に、それぞれ示す。なお、窒素吸着等温線はB.E.T 法に基づきユアサアイオニクス社販売のオートソーブ全自動ガス吸着量測定装置を用いて測定した。

【0035】図8より、回折強度はヘキサゴナル構造を示す4本の回折ピークを示している。また、図9に示す窒素吸着等温線の、相対蒸気圧(P/p0)=0.45付近の急峻な立ち上がりは開口径の均一性を示してお

り、より具体的には図10に示す開口径分布の通りである。そして、同様な方法で調製した場合の各粉体の物性 値を以下に比較例とともに示す。 【0036】 【表5】

	塊状メソポーラス粉体	棒状メソポーラス粉体	棒状ノンメソポーラス粉体
Na ₂ SiO ₃	0. 5 mol/1	0. 5mol/1	1. 5 mol/l
酸添加速度	2 ml/min	1 2 Oml/min	1 2 0 ml/min
比表面積	$1100\mathrm{m}^2/\mathrm{g}$	$900m^2/g$	50m²/g
吸油量	3 O Oml/100g	5 O Oml/100g	4 O O ml / 100 g
細孔径	3 O Å	3 5 Å	_

【0037】上記表5より明らかなように、棒状メソポーラス粉体は比表面積は塊状メソポーラス粉体よりも小さいにも関わらず吸油量が大きく、優れた吸油特性を有していることが理解される。なお、上記吸油量はJIS規格に準じ、下記のように測定した。すなわち、試料1~5gを測定板上の中央部にとり、スクワランをビュレットから1回に4,5滴ずつ、徐々に試料に滴下し、その都度全体をへらで十分に練り合わせる。滴下及び練り合わせを繰り返し、全体が固いパテ状の固まりとなったら1滴ごとに練り合わせ、へらを用いて螺旋形に巻くことができる状態になった時を終点とする。

【0038】実施例2

【0039】実施例3

【0040】実施例4

メタ珪酸ナトリウム(Na_2SiO_3) $0.5\sim1.2mol$ 、ステアリルトリメチルアンモニウムクロライド(STC) $0.05\sim0.24mol$ 及び臭化ナトリウム(NaBr) $0.5\sim2mol$ を1LOイオン交換水に溶解させる。以後、前記実施例2と同様にして棒状メソポーラス粉体を得た。なお、 Na_2SiO_3 /STC/NaBr

=1/0.1/1~4ないし1/0.2/1~2とした。この範囲内では、いずれも棒状メソポーラス粉体を調製することができた。

【0041】実施例5

オルト珪酸ナトリウム(Na_4SiO_4) $0.5\sim1.2$ mol、ベヘニルトリメチルアンモニウムクロライド(BTC) $0.05\sim0.24$ molを1LOイオン交換水に 溶解させる。以後、前記実施例 2 と同様にして棒状メソポーラス粉体を得た。なお、 $Na_4SiO_4/BTC=1/0.1\sim1/0.2$ とした。この範囲内では、いずれ も棒状メソポーラス粉体を調製することができた。

【0042】実施例6

メタ珪酸ナトリウム(Na_2SiO_3) $0.5\sim1.2mo$ 1、ベヘニルトリメチルアンモニウムクロライド(BTC) $0.05\sim0.24mol$ 及び二酸化ケイ素(SiO_2) $0\sim0.5mol$ を1Lのイオン交換水に溶解させる。この後、前記実施例 <math>2 と同様にして棒状メソポーラス粉体を得た。なお、 $Na_2SiO_3+SiO_2<1.3mol$ とした。この範囲内では、いずれも棒状メソポーラス粉体を調製することができた。

【0043】実施例7

【0044】また、本発明に従って製造された棒状メソポーラス粉体は、前述したように極めて吸油性が高く、例えば化粧品などの皮膚外用剤に配合すると、皮脂を適宜吸着し、皮膚上での保持力を向上させることができる。このように皮膚外用剤中へ棒状メソポーラス粉体を配合する場合の配合量は、化粧料の形態に応じて任意であり、一般的には0.1~80重量%である。乳化、分散系の製品の場合には0.1~50重量%が一般的であ

り、粉末状あるいは粉末プレスド系の製品の場合には 0.1~70重量%が一般的である。

【0045】また、上記のメソポーラス粉体に加え、外 用剤に一般的に配合されるその他の成分を本発明の効果 を損なわない質的、量的範囲で配合することができる。 例えば保湿剤、ワックス、顔料、油分、界面活性剤、防 腐剤、酸化防止剤、キレート剤、アルカリ、水溶性高分 子、油溶性高分子、粘土鉱物などを挙げることができ る。

【0046】下記表6のようなパウダリーファンデーションを調製し、前記メソポーラス粉体の効果を検証した。

【表6】

	配合例1	比較例1	比較例2	比較例3
多孔性粉体				
メソポーラス粉体	5. 0			
シリカゲル		5.0		
ゼオライト			5. 0	
通常粉体				
タルク	10.0	10.0	10.0	15.0
マイカ	52.95	52.95	52.95	52.95
酸化鉄黄	1. 0	1. 0	1. 0	1. 0
酸化鉄赤	0.5	0.5	0.5	0.5
酸化鉄黒	0.05	0.05	0.05	0.05
酸化チタン	5. 0	5. 0	5. 0	5. 0
油分				
流動パラフィン	20.0	20.0	20.0	20.0
ラノリン	5. 0	5.0	5. 0	5.0
エチルパラベン	0.3	0.3	0.3	0.3
香料	0. 2	0.2	0. 2	0.2
すべり	0	Δ	Δ	0
化粧持ち	0	0	0	×

【0047】粉末をそれぞれヘンシェルミキサーに仕込み、均一に撹拌した後に残りの成分を添加し均一に混合した。混合物をアトマイザーで粉砕し、中皿に形成しパウダリーファンデーションを得た。上記表6を参酌すると、シリカゲルあるいはゼオライトなどの多孔性粉体を配合した場合(比較例1,2)、多孔性粉体の配合されていない場合(比較例3)と比較して、化粧持ちの点などで改善が認められる。しかしながら、肌に塗布する際のすべりなどに問題があり、未だ十分な改善とはいえない。

【0048】しかしながら、棒状メソポーラス粉体を配合した場合には、使用性、化粧持ちともに改善が認められ、棒状メソポーラス粉体の優れた特性を示唆するものであった。

化粧持ち(耐汗性)の評価

上記皮膚外用剤を20~29歳の女性パネル各20名に 顔面に塗布させたのち、2時間室内で読書させる。その 時点の化粧持ちを自己判定させたのち屋外で2Kmラン ニングさせる。ランニング終了後発汗による化粧のくず れを下記の評価基準に従い自己判定させた。

<判定基準>

◎: 化粧くずれをしたと回答したパネルの人数が 0名

 \bigcirc : 化粧くずれをしたと回答したパネルの人数が $1\sim5$ 名

 \triangle : 化粧くずれをしたと回答したパネルの人数が $6\sim11$ 名

×: 化粧くずれをしたと回答したパネルの人数が 12名以上

【0049】次に、本発明者等は前記表6の組成物に対し、サリチル酸メチルを添加し、その刺激性および効果

の持続性について検討を行った。

【表7】

	配合例2	比較例4	比較例5	比較例6
多孔性粉体				
メソポーラス粉体	5. 0			
シリカゲル		5. 0		
ゼオライト			5. 0	
通常粉体				
タルク	10.0	10.0	10.0	15.0
マイカ	51.95	51.95	51.95	51.95
酸化鉄黄	1. 0	1. 0	1. 0	1. 0
酸化鉄赤	0.5	0.5	0.5	0.5
酸化鉄黒	0.05	0.05	0.05	0.05
酸化チタン	5. 0	5. 0	5. 0	5. 0
油分	· <u></u>			
流動パラフィン	20.0	20.0	20.0	20.0
ラノリン	5. 0	5. 0	5.0	5.0
エチルパラベン	0.3	0.3	0.3	0.3
サリチル酸メチル	1. 0	1. 0	1. 0	1.0
香料	0.2	0.2	0. 2	0. 2
効果				
皮膚刺激	0	Δ	Δ	×
効果の持続性	0	Δ	Δ	×

【0050】油相に配合されたサリチル酸メチルは紫外線吸収剤として有用であるが、大量に配合した場合には皮膚刺激性を呈する場合があった。これに対して多孔性粉体を配合することにより、該多孔性粉体がサリチル酸メチルを吸着し、外相との平衡関係により徐々にサリチル酸メチルが放出されるため、塗布当初の皮膚刺激性は低減され、また効果の持続性も図られる。

【0051】前記表7を参酌すると、サリチル酸メチルの皮膚刺激性はシリカゲルあるいはゼオライトなどの多孔性粉体によっても軽減されるが、特にメソポーラス粉体により極めて良好に抑制される。また、紫外線吸収効果の持続性も大幅に向上する。

【0052】なお、上記効果の評価は以下のように行った。すなわち、前記組成の試料を男女各25名のパネルの上腕に塗布し、塗布後30分間にヒリヒリ感などの刺

激性について、また3時間後での効果の持続性について 評価した。各判定の基準は以下の通りとした。

皮膚刺激性

- ◎:50人中0~5名が肌にヒリヒリ感を認めた。
- ○:50人中6~20名が肌にヒリヒリ感を認めた。
- △:50人中21~35名が肌にヒリヒリ感を認めた。
- ×:50人中36~50名が肌にヒリヒリ感を認めた。

効果持続性

- ◎:50人中36~50名が効果の持続感を認めた。
- ○:50人中21~35名が効果の持続感を認めた。
- △:50人中6~20名が効果の持続感を認めた。
- ×:50人中0~5名が効果の持続感を認めた。

【0053】次に本発明者等はメソポーラス粉体とその効果の関係について検討した。

【表8】

配合例	3	4	5	6	7	8	9	1 () 11
多孔性粉体 メソポーラス粉体	0. 01	0. 1	0. 5	1. 0	5. 0	10. 0	30. 0 5	0. 0	80. 0
通常粉体					-				
タルク	34. 99	34. 9	34. 5	34.0	30.0	25. 0	5. 0	0	0

	_									
酸化鉄黄				1.						
酸化鉄赤				0.	_					
酸化鉄黒				0.	0 5					
酸化チタン				5.	0					
油分									-	
流動パラフィン				5.	0					
ラノリン				5.	0					
エチルパラベン				0.	3					
サリチル酸メチル				1.	0					
香料				0.	2					
効果										
皮膚刺激	×	Δ	0	0	0	0	0	0	0	
効果の持続性	X	0	0	0	0	0	0	0	0	
ざらつき	0	0	0	0	0	0	0	0	Δ	

【0054】上記表8より明らかなように、メソポーラス粉体の添加効果は0.1%程度から認められ、さらに1.0%程度の配合からその効果が明瞭となる。一方、本発明において特徴的な効果は、その添加量を相当量まで増やしても問題なく発揮される。ただし、メソポーラス粉体の粒径などにもよるが、80重量%となると、や

やざらつきがでる傾向にある。従って、本発明に係る皮 膚外用剤において、メソポーラス粉体の配合量は0.1 %以上、好ましくは1.0%~80重量%である。

【0055】以下、本発明の組成物の具体的配合例を説明する。

配合例12 口紅

ポリエチレンワックス	3%
セレシンワックス	10
カルナバロウ	2
キャンデリラロウ	5
流動パラフィン	3 0
ヒマシ油	1 5
ジー2ーヘプチルウンデカン酸グリセリン	20
オリーブ油	1 1
赤色酸化鉄	0.2
赤色202号	1.8
メソポーラス粉体	2

【0056】<製法>油分およびワックスを85~90 ℃にて加熱溶解し、このものに顔料を加えて分散する。 直ちに減圧脱気し、所定の容器に移し、冷却固化して口 紅を得た。この口紅は塗布後に落ちにくいものであっ た。

配合例13 プレス状アイシャドー

タルク	2 6
マイカ	3 5
チタンコーティッドマイカ	2 0
流動パラフィン	2.8
ジメチルポリシロキサン(6cs)	2
メソポーラス粉体	5
ソルビタンモノオレート	1
群青	8
赤色201号	0. 2

[0057]

【0058】<製法>チタンコーティッドマイカを除く 粉末をヘンシェルミキサーで混合した後、油分、界面活 性剤を加え、パルベライザーにて粉砕した。さらにチタ ンコーティッドマイカを加え、ヘンシェルミキサーにて

配合例14 ベビーパウダー

メソポーラス粉体 タルク クエン酸 ベンガラ 流動パラフィン 香料

【0060】<製法>クエン酸を99%アルコールに溶解し、タルクに添加しヘンシェルミキサーで混合後、80℃にてアルコールを除去する。さらに残部を加え、ア

均一に混合した。このものを所定の中皿に圧縮成型して アイシャドーを得た。

[0059]

40 58.7 0.2 0.01

1

0.09

トマイザーにて粉砕する。所定の容器にそのまま移しベビーパウダーを得る。

冷却して、香料を加えて均一にし、容器に充填して乳化

[0061]

配合例15 乳化ファンデーション

30010 4000000		
ステアリン酸	0.	. 7
イソプロピルミリステート	4	
スクワラン	2 2	
ポリオキシエチレン (10モル) ステアリルエーテル	2	
セチルアルコール	0.	. 3
タルク	7	
メソポーラス粉体	3	
酸化鉄顔料	2.	. 5
赤色202号	0.	. 5
防腐剤	0.	. 09
トリエタノールアミン	0.	. 42
プロピレングリコール	5	
精製水	5 2	. 19
香料	0.	. 3

【0062】<製法>油分、界面活性剤を加熱混合溶解した後、顔料部を添加し、均一に分散する。これにトリエタノールアミン、プロピレングリコールを精製水中に溶解して加熱したものを添加して乳化する。これを撹拌

配合例16 類紅

タルク 30 マイカ 3 5 酸化チタン 3 5. 5 チタンコーティッドマイカ 赤色202号 0.5 メソポーラス粉体 3 ソルビタンジイソステアレート 1 スクワラン メチルフェニルポリシロキサン 15

【0064】 < 製法> 顔料部を混合し、これに他の成分を加熱溶解して加え、混合、粉砕する。これを中皿に成

配合例17 液状アイライナー

イソパラフィン 炭化水素系樹脂 カルナバロウ キャンデリラロウ 型し、プレス状の頬紅を得た。

ファンデーションを得た。

[0063]

[0065]

58.97 5 1 5

コレステロール	2
エチルアルコール	5
精製水	8
有機変性モンモリロナイト	3
酸化鉄黒	1 0
メソポーラス粉体	1
ソルビタンモノステアレート	1
香料	0.03

を得る。

[0067]

【0066】<製法>イソパラフィンの一部に活性剤、水、有機変性モンモリロナイトおよび顔料を加え、均一に分散混合し、85℃にしておく。釜にイソパラフィンの残部、樹脂、ワックスを加え、90℃にて均一に溶解させる。ここに予め調製しておいた分散液を添加し、8

配合例18 両用ファンデーション

シリコーン処理酸化チタン	20	
シリコーン処理マイカ	22	
シリコーン処理酸化鉄	3	
メソポーラス粉体	5	
流動パラフィン	4.	5
メチルポリシロキサン(100cs)	2 5	
メチルハイドロジェンポリシロキサン (20cs)	20	
ソルビタンセスキオレート	0.	5

【0068】<製法>顔料部を均一に混合後、油分、活性剤を加え、混合する。アトマイザーで粉砕後、所定の中皿にプレス成型する。以上説明したように、メソポーラス粉体を配合した皮膚外用剤は、皮膚上での保持性がよく、しかも使用感を良好とすることができる。

[0069]

【発明の効果】以上説明したように本発明にかかる棒状メソポーラス粉体によれば、珪素/アルカリ金属比及び 珪酸塩の濃度が特定範囲で、珪素含有物質の溶解状態か らミセル外殻に析出させることとしたので、均質でしか も微細径の棒状メソポーラス粉体を得ることができる。

【図面の簡単な説明】

【図1】珪酸塩濃度(0.15M)と結晶状態の関係を示す説明図である。

【図2】珪酸塩濃度(0.5M)と結晶状態の関係を示す説明図である。

【図3】珪酸塩濃度(1.0M)と結晶状態の関係を示す説明図である。

5℃~90℃にて分散混合し、香料を加え、徐冷し30 ℃とする。所定の容器に充填し、耐水性のアイライナー

【図4】珪酸塩濃度(1.5M)と結晶状態の関係を示す説明図である。

【図5】pH調整用酸添加速度(2ml/min)と結晶状態の関係を示す説明図である。

【図6】 p H調整用酸の濃度(0.2N)と結晶状態の 関係を示す説明図である。

【図7】 p H調整用酸の濃度(5.0N)と結晶状態の 関係を示す説明図である。

【図8】本発明で得られたメソポーラス粉体のX線回折 図である。

【図9】図8に示したメソポーラス粉体の窒素吸着等温 線図である。

【図10】図9に示したメソポーラス粉体の開口径分布 の説明図である。

図面代用写真

【図2】

図面代用写真

図面代用写真

【図4】

図面代用写真

図面代用写真

【図6】

図面代用写真

図面代用写真

フロントページの続き

(51) Int. Cl. ⁶		識別記号	FΙ	
A 6 1 K	7/032		A 6 1 K	7/032
	7/035			7/035