

What is a Data Model?

- A data model is a mathematical formalism that consists of three parts:
 - 1. A notation for describing and representing data (<u>structure</u> of the data)
 - 2. A set of operations for manipulating data.
 - 3. A means of describing <u>constraints</u> on the data.
- What is the associated query language for the relational data model?

Two Formal Query Languages

- Codd proposed two different query languages for the relational data model.
 - Relational Algebra
 - Queries are expressed as a sequence of operations on relations.
 - "Procedural" language.
 - Relational Calculus
 - Queries are expressed as formulas of first-order logic.
 - "Declarative" language.
- Codd's Theorem: The Relational Algebra query language has the same expressive power as the Relational Calculus query language.

Procedural vs. Declarative Languages

(Out-of-Scope for Exams)

Procedural program

- The program is specified as a sequence of operations to obtain the desired outcome. I.e., how the outcome is to be obtained
- More explicit about procedures
- E.g., Java, C, ...

Declarative program

- The program specifies what is the expected outcome, and knowledge the system needs to obtain the outcome
- More explicit about knowledge/meaning
- E.g., Scheme, Ocaml, Prolog ...

Procedural vs. Declarative Languages (2)

(Out-of-Scope for Exams)

- Is SQL a procedural or a declarative language?
 - SQL is usually described as declarative, but it's not fully declarative
 - Relational database systems usually try to understand meaning of query, regardless of how query is expressed

Relational Algebra

- Relational Algebra: a query language for manipulating data in the relational data model.
 - Not used directly as a query language in commercial systems
- Internally, Relational Database Systems transform SQL queries into trees/graphs that are similar to relational algebra expressions.
 - Query analysis, transformation and optimization are performed based on these relational algebra expression-like representations.
 - Relational Databases use multi-sets/bags, but Relational Algebra is based on <u>sets</u>.
 - There are variations of Relational Algebra that permit duplicates, but we won't cover those.

Why Study Relational Algebra?

- Reinforces the fundamental ideas / operations embodied in SQL
- Shows a bit of what query planners and optimizers do, and what it's based upon
- It's a significant achievement of theoretical computer science
- Provides a lovely example of how computer science theory supports applications in products
- If you ever work on implementing (certain parts of) a DBMS, you'll need to know it
- If you ever work on database theory, you'll need to know it

Composition

- Each Relational Algebra operator is either a unary or a binary operator.
- A complex Relational Algebra expression is built up from basic ones by composing simpler expressions.
- This is similar to SQL queries and views.

Relation Algebra Operators

- Queries in relational algebra are composed using basic operations or functions.
 - Selection (σ)
 - Projection (π)
 - Set-theoretic operations:
 - Union (U)
 - Set-difference ()
 - Cross-product (x)
 - Intersection (∩)
 - Renaming (ρ)
 - Natural Join (\bowtie), Theta-Join (\bowtie _θ)
 - Division (/ or ÷)

Relational Algebra Operators

- Codd proved that the relational algebra operators (σ , π , x, U, -, ρ) are independent of each other. That is, you can't define any of these operators using the others.
- However, there are other important operators that can be expressed using $(\sigma, \pi, x, U, -)$
 - Natural Join, Theta Join, Semi-Join
 - Set Intersection
 - Division (We will skip this; if slides are present you may ignore them)
 - Outer Join (out of scope for exams, but we may touch on this later)

Selection: $\sigma_{condition}(R)$

- Unary operation
 - Input: Relation with schema R(A₁, ..., A_n)
 - Output: Relation with attributes A₁, ..., A_n
 - Meaning: Takes a relation R and extracts only the rows from R that satisfy the condition
 - Condition is a logical conjunction (using AND, OR, NOT) of expressions of the form:

```
<expr> <op> <expr>
```

where $\langle expr \rangle$ is an attribute name, a constant, a string, and op is one of $(=, \leq, \geq, <, >, <>)$

- E.g., "age > 20 OR height < 6",
- "name LIKE "Anne%" AND salary > 200000"
- "NOT (age > 20 AND salary < 100000)"</p>

Example of σ

• $\sigma_{\text{rating} > 6}$ (Hotels)

Hotels

name	address	rating	capacity	
Windsor	54 th ave	6.0	135	
Astoria	5 th ave	8.0	231	
BestInn	45 th st	6.7	28	
ELodge	39 W st	5.6	45	
ELodge	2nd E st	6.0	40	

name	address	rating	capacity
Astoria	5 th ave	8.0	231
BestInn	45 th st	6.7	28

Example of σ with AND in Condition

• $\sigma_{\text{rating} > 6 \text{ AND capacity} > 50}$ (Hotel)

name	address	rating	capacity
Windsor	54 th ave	6.0	135
Astoria	5 th ave	8.0	231
BestInn	45 th st	6.7	28
ELodge	39 W st	5.6	45
ELodge	2nd E st	6.0	40

name	address	rating	capacity
Astoria	5 th ave	8.0	231

- Is $\sigma_{C1} (\sigma_{C2} (R)) = \sigma_{C1 \text{ AND } C2} (R)$?
- Prove or give a counterexample.
- Is σ_{C1} (σ_{C2} (R)) = σ_{C2} (σ_{C1} (R))?
- Prove or give a counterexample.

(this box is out-of-scope for exams)

Projection: $\pi_{\langle attribute \ list \rangle}(R)$

- Unary operation
 - Input: Relation with schema $R(A_1, ..., A_n)$
 - Output: Relation with attributes in attribute list, which must be attributes of R
 - Meaning: For every tuple in relation R, output only the attributes appearing in attribute list
- May be duplicates; for Codd's Relational Algebra, duplicates are always eliminated (set-oriented semantics)
 - Reminder: For relational database, duplicates matter.

Example of π

• $\pi_{\text{name, address}}$ (Hotels)

name	address
Windsor	54 th ave
Astoria	5 th ave
BestInn	45 th st
ELodge	39 W st
ELodge	2nd E st

 Suppose that name and address form the key of the Hotels relation. Is the cardinality of the output relation the same as the cardinality of Hotels? Why?

Example of π

• π_{name} (Hotel)

name
Windsor
Astoria
BestInn
ELodge

Note that there are no duplicates.

Set Union: RUS

- Binary operator
 - Input: Two relations R and S which must be union-compatible
 - They have the same arity, i.e., the same number of columns.
 - For every column i, the i'th column of R has the same type as the i'th column of S.
 - Note that field names are <u>not</u> used in defining union-compatibility.
 - We can think of relations R and S as being union-compatible if they are sets of records having the same record type.
 - Output: Relation that has the same structure as R (and same as S).
 - Meaning: The output consists of the set of all tuples in either R or S
 (or both)

Example of U

Dell_Desktops U IBM_Desktops

Dell_Desktops

Harddisk	Speed	os
20G	500Mhz	Windows
30G	1.0Ghz	Windows
20G	750Mhz	Linux

IBM_Desktops

Harddisk	Speed	OS
30G	1.2Ghz	Windows
20G	500Mhz	Windows

All tuples in R occurs in R U S.
All tuples in S occurs in R U S.
R U S contains tuples that either occur in R or S (or both).

Harddisk	Speed	os
20G	500Mhz	Windows
30G	1.0Ghz	Windows
20G	750Mhz	Linux
30G	1.2Ghz	Windows

Properties of U

Dell_Desktops U IBM_Desktops

Dell_Desktops

Harddisk	Speed	os
20G	500Mhz	Windows
30G	1.0Ghz	Windows
20G	750Mhz	Linux

IBM_Desktops

Harddisk	Speed	OS
30G	1.2Ghz	Windows
20G	500Mhz	Windows

RUS = SUR (commutativity)
(RUS)UT = RU(SUT) (associativity)
(this box is out-of-scope)

Harddisk	Speed	OS
20G	500Mhz	Windows
30G	1.0Ghz	Windows
20G	750Mhz	Linux
30G	1.2Ghz	Windows

Set Difference: R - S

- Binary operator.
 - Input: Two relations R and S which must be union-compatible
 - Output: Relation with the same type as R (or same type as S)
 - Meaning: Output consists of all tuples in R but <u>not</u> in S

Example of -

Dell_Desktops - IBM_Desktops

Dell_Desktops

Harddisk	Speed	os
20G	500Mhz	Windows
30G	1.0Ghz	Windows
20G	750Mhz	Linux

IBM_Desktops

Harddisk	Speed	OS
30G	1.2Ghz	Windows
20G	500Mhz	Windows

Dell_Desktops – IBM_Desktops

Harddisk	Speed	OS
30G	1.0Ghz	Windows
20G	750Mhz	Linux

Properties of -

• IBM_Desktops – Dell_Desktops

Dell_Desktops

Harddisk	Speed	OS
20G	500Mhz	Windows
30G	1.0Ghz	Windows
20G	750Mhz	Linux

IBM_Desktops

Harddisk	Speed	OS
30G	1.2Ghz	Windows
20G	500Mhz	Windows

IBM_Desktops - Dell_Desktops

Harddisk	Speed	OS
30G	1.2Ghz	Windows

Is it commutative?

Is it associative?

(this box is out-of-scope for exams)

Product: RxS

- Binary operator
 - Input: Two relations R and S, where R has relation schema $R(A_1, ..., A_m)$ and S has relation schema $S(B_1, ..., B_n)$.
 - Output: Relation of arity m+n
 - Meaning:

```
R \times S = \{ (a_1, ..., a_m, b_1, ..., b_n) \mid (a_1, ..., a_m) \in R \text{ and } (b_1, ..., b_n) \in S \}.
```

- Read "|" as "such that"
- Read "∈" as "belongs to"

Example and Properties of Product

R		
Α	В	С
a ₁	b ₁	C ₁
a_2	b_2	c_2

R	Χ	S
---	---	---

Α	В	С	D	Е
a ₁	b ₁	C ₁	d_1	e_1
a ₁	b ₁	C ₁	d_2	e_2
a ₁	b ₁	C ₁	d_3	e_3
a_2	b ₂	C_2	d_1	e ₁
a_2	b ₂	C ₂	d_2	e_2
a_2	b ₂	C ₂	d_3	e_3

S	
D	ш
d_1	e ₁
d_2	e_2
d_3	e_3

- Is it commutative?
- Is it associative?
- Is it distributive across U? That is, does Rx(SUT) = (RxS) U (RxT)?

(this box is out-of-scope for exams)

Product and Common Attributes

 What happens when we compute the Product of R and S if R and S contain common attributes, e.g., for R(A,B,C) and S(A,E)?

R.A	В	С	S.A	Е
a ₁	b ₁	C ₁	d_1	e ₁
a ₁	b ₁	C ₁	d_2	e_2
a ₁	b ₁	C ₁	d_3	e_3
a_2	b_2	C_2	d_1	e_1
a_2	b ₂	C ₂	d_2	e_2
a_2	b ₂	C ₂	d_3	e_3

Renaming: $\rho_{S(A1, ..., An)}$ (R)

- To specify the attributes of a relational expression.
- Input: a relation, a relation symbol R, and a set of attributes {B1, ...,Bn}
- Output: the same relation with name S and attributes A1, ..., An.
- Meaning: rename relation R to S with attributes A1, ..., An.
- Example: $\rho_{BeersInfo(beer, maker)}$ Beers(name, manuf)

Renaming Example

R

А	В	С
a ₁	b ₁	C ₁
a_2	b_2	c_2

 $R \ x \ \rho_{\text{T(X,D)}} \ S$

Α	В	С	Χ	D
a ₁	b ₁	C ₁	d ₁	e ₁
a ₁	b ₁	C ₁	d_2	e_2
a ₁	b ₁	C ₁	d_3	e_3
a_2	b_2	c_2	d_1	e ₁
a_2	b_2	c_2	d_2	e_2
a_2	b ₂	c_2	d_3	e_3

S

С	D
d_1	e ₁
d_2	e_2
d_3	e_3

Derived Operators

- So far, we have learned:
 - Selection
 - Projection
 - Product
 - Union
 - Difference
 - Renaming
- Some other operators can be derived by composing the operators we have learned so far:
 - Set Intersection
 - Natural Join, Theta-Join, Semi-Join
 - Division (won't spend time on this)
 - Outer Join (to be discussed when we get to OLAP)

Set Intersection: R∩S

Find all desktops sold by both Dell and IBM.

Dell_desktops ∩ IBM_desktops

Dell_Desktops

Harddisk	Speed	os
20G	500Mhz	Windows
30G	1.0Ghz	Windows
20G	750Mhz	Linux

HarddiskSpeedOS20G500MhzWindows

IBM_Desktops

Harddisk	Speed	OS
30G	1.2Ghz	Windows
20G	500Mhz	Windows

Intersection

How would you write Dell_desktops ∩ HP_desktops in SQL?

```
SELECT *
FROM Dell_desktops
INTERSECT
SELECT *
FROM HP_desktops;
```

• Intersection is a <u>Derived Operator</u> in Relational Algebra:

$$R \cap S = R - (R - S)$$
$$= S - (S - R)$$

Theta-Join: R ⋈_θ S

- Binary operator
 - Input: $R(A_1, ..., A_m)$, $S(B_1, ..., B_n)$
 - Output: Relation consisting of all attributes A_1 , ..., A_m and all attributes B_1 , ..., B_n . Identical attributes in R and S are disambiguated with the relation names.
 - Meaning of $\sigma_{\theta}(R \times S)$: The θ-Join outputs those tuples from R x S that satisfy the condition θ.
 - Compute R x S, then keep only those tuples in R x S that satisfy θ .
 - Equivalent to writing $\sigma_{\theta}(R \times S)$
- If θ always evaluates to true, then $R \bowtie_{\Theta} S = \sigma_{\theta}(R \times S) = R \times S$.

Example of Theta-Join

Enrollment(esid, ecid, grade)
Course(cid, cname, instructor-name)

Write a Theta-Join on the board where ecid in Enrollment equals cid in Course.

- Joins involving equality predicates (usually just called Joins or Equi-Joins)
 are very common in database; other joins are less common.
 - − Enrollment \bowtie_{Θ} Course, where θ could be: "Enrollment.ecid = Course.cid"
- Could write <u>any</u> condition involving attributes of Enrollment and Course as θ , just as with σ .

Natural Join: R⋈S

- Often a query over two relations can be formulated using Natural Join.
- Binary operator:
 - Input: Two relations R and S where $\{A_1, ..., A_k\}$ is the set of common attributes (column names) between R and S.
 - Output: A relation where its attributes are attr(R) U attr(S). In other words, the attributes consists of the attributes in R x S without duplication of the common attributes { A₁, ..., A_k }
- Meaning:

$$R \bowtie S = \pi_{(attr(R) \cup attr(S))} (\sigma_{R.A1=S.A1 \text{ AND } R.A2 = S.A2 \text{ AND ... AND } R.Ak=S.Ak} (R \times S))$$

- 1. Compute R x S
- 2. Keep only those tuples in R x S satisfying: R.A1=S.A1 AND R.A2 = S.A2 AND ... AND R.Ak=S.Ak
- 3. Output is projection on the set of attributes in R U S

Natural Join Example

Enrollment x Course

Enrollment

studentID	courseID	grade
112	CMPS101	С
327	CMPS101	Α
835	BINF223	В

Course

courseID	description	department
CMPS101	Algo.	CS
BINF223	Intro. to bio.	Biology

Natural Join Example

 $R \bowtie S = \pi_{(attr(R) \cup attr(S))} (\sigma_{R.A1=S.A1 \text{ AND } R.A2 = S.A2 \text{ AND ... AND } R.Ak=S.Ak} (R \times S))$

Step 1: R x S

Enrollment	Course
------------	--------

studentID	courseID	grade	courseID	description	department
112	CMPS101	С	CMPS101	Algo.	CS
112	CMPS101	С	BINF223	Intro. to bio.	Biology
327	CMPS101	А	CMPS101	Algo.	CS
327	CMPS101	А	BINF223	Intro. to bio.	Biology
835	BINF223	В	CMPS101	Algo.	CS
835	BINF223	В	BINF223	Intro. to bio.	Biology

Natural Join Example, cont'd

 $R \bowtie S = \pi_{(attr(R) \cup attr(S))} (\sigma_{R.A1=S.A1 \text{ AND } R.A2=S.A2 \text{ AND ... AND } R.Ak=S.Ak} (R \times S))$

Step 2:

 $\sigma_{R.A1=S.A1 \text{ AND } R.A2=S.A2 \text{ AND } ... \text{ AND } R.Ak=S.Ak}$ (R x S)

Enrollment	Course
------------	--------

studentID	courseID	grade	courseID	description	department
112	CMPS101	С	CMPS101	Algo.	CS
327	CMPS101	Α	CMPS101	Algo.	CS
835	BINF223	В	BINF223	Intro. to bio.	Biology

Natural Join Example, cont'd

 $R \bowtie S = \pi_{(attr(R) \cup attr(S))} (\sigma_{R.A1=S.A1 \text{ AND } R.A2 = S.A2 \text{ AND ... AND } R.Ak=S.Ak} (R \times S))$

Step 3:

 $\pi_{(attr(R) \cup attr(S))} (\sigma_{R.A1=S.A1} \dots_{R.Ak=S.Ak} (R \times S))$

Enrollment	Course
------------	--------

studentID	courseID	grade	description	department
112	CMPS101	С	Algo.	CS
327	CMPS101	А	Algo.	CS
835	BINF223	В	Intro. to bio.	Biology

Natural Join Example, cont'd

Enrollment(sid, cid, grade)
Course(cid, cname, instructor-name)

- Suppose you want: Course-grade(sid, cid, cname, grade)
- $\pi_{\text{(sid, cid, cname, grade)}}$ (Enrollment \bowtie Course)
- What happens when R and S have no common attributes?
- What happens when R and S have only common attributes?

Semi-Join: R ⋉ S

- Meaning: $R \ltimes S = \pi_{attr(R)} (R \bowtie S)$
- Compute <u>Natural Join</u> of R and S
- 2. Output is the projection on just the attributes of R
- Find all courses that have some enrollment:
 Course ➤ Enrollment
- Find all faculty who are advising at least one student:
 Faculty ➤ Student
- How does Semi-Join relate to EXISTS in SQL?

Semi-Join Example: Enrollment × Course

 Start with Natural Join, then project on attributes of the first relation

Enrollment	Course
------------	--------

studentID	courseID	grade	description	department
112	CMPS101	С	Algo.	CS
327	CMPS101	Α	Algo.	CS
835	BINF223	В	Intro. to bio.	Biology

M

studentID	courseID	grade
112	CMPS101	С
327	CMPS101	Α
835	BINF223	В

Enrollment ⋉ Course

Semi-Join Example: Course **×** Enrollment

 Start with Natural Join, then project on attributes of the first relation

Course	Enrollment
--------	------------

courseID	description	department	studentID	grade
CMPS101	Algo.	CS	112	С
CMPS101	Algo.	CS	327	Α
BINF223	Intro. to bio.	Biology	835	В

 \bowtie

courseID	description	department
CMPS101	Algo.	CS
BINF223	Intro. to bio.	Biology

Course ⋉ Enrollment