Biostat 202B Homework 4

Due May 9, 2024 @ 11:59PM

AUTHOR

Hanbei Xiong 605257780

Problem 1

Suppose X_1, \ldots, X_n are iid with pdf $f(x; \theta) = e^{-x/\theta}/\theta$ for $0 < x < \infty$, zero elsewhere. Find the mle of $P(X \le 2)$.

Answer:

$$L(heta) = \prod_{i=1}^n f(x_i; heta) = \prod_{i=1}^n rac{e^{-x_i/ heta}}{ heta} = rac{e^{-\sum x_i/ heta}}{ heta^n}$$

$$l(heta) = \log L(heta) = -\sum x_i/ heta - n\log heta$$

$$rac{dl(heta)}{d heta} = \sum x_i/ heta^2 - n/ heta$$

By setting
$$rac{dl(heta)}{d heta}=0$$
 , we have $\hat{ heta}_{MLE}=rac{\sum x_i}{n}=ar{x}$

$$F_X(x) = \int_0^x rac{e^{-z/ heta}}{ heta} dz = -e^{-z/ heta}igg|_0^x = 1 - e^{-x/ heta}$$
 for $0 < x \le heta$

$$P(X \le 2) = 1 - e^{-2/\theta} = 1 - e^{-2/\bar{x}}$$

Problem 2

Suppose X_1, \ldots, X_n are iid with pdf $f(x; \theta) = 2x/\theta^2$, $0 < x \le \theta$, zero elsewhere.

- **a.** Find the MLE $\hat{\theta}$ for θ .
- **b.** Prove or disprove that $\hat{\theta}_{\text{MLE}}$ is unbiased.
- c. Find the MLE for the median of the distribution.

(a) Answer:

$$L(heta) = \prod_{i=1}^n f(x_i; heta) = rac{2^n \prod_{i=1}^n x_i}{ heta^{2n}} ext{ for } 0 < x_i \leq heta$$

$$L(heta) = rac{2^n \prod_{i=1}^n x_i}{ heta^{2n}}$$
 for $0 < x_{(1)} < x_{(2)} < \ldots < x_{(n)} \leq heta$

$$L(heta) = rac{2^n \prod_{i=1}^n x_i}{ heta^{2n}} I(0 < x_{(1)}) \ldots I(x_{(n)} \leq heta)$$

So, $\hat{ heta}_{MLE} = x_{(n)}$ is the smallest value that maximizes the likelihood

(b) Answer:

$$F_X(x) = \int_0^x rac{2z}{ heta^2} dz = rac{z^2}{ heta^2}igg|_0^x = rac{x^2}{ heta^2} ext{ for } 0 < x \leq heta$$

$$F_{X_{(n)}}(x) = P(X_{(n)} < x) = P(X_1 < x, X_2 < x, \dots, X_n < x) = P(X_1 < x)^n = F_X^n(x)$$

$$E(x_{(n)}) = \int_0^{ heta} x n f_X(x) F_X^{n-1}(x) dx = \int_0^{ heta} x n rac{2x}{ heta^2} (rac{x^2}{ heta^2})^{n-1} dx = rac{2n}{ heta^{2n}} \int_0^{ heta} x^{2n} dx = rac{2n heta}{2n+1}
eq heta$$

Hence, $\hat{ heta}_{MLE}$ is not unbiased

(c) Answer:

The median of distribution means $F_X(m)=0.5$

$$\frac{m^2}{ heta^2}=0.5$$
 $\Rightarrow m=rac{ heta}{\sqrt{2}}$

$$\hat{m}_{MLE} = rac{\hat{ heta}_{MLE}}{\sqrt{2}} = rac{x_{(n)}}{\sqrt{2}}$$

Problem 3

Suppose that X_1, X_2, \ldots, X_{2n} are independently distributed as $X_i \sim N(0, \sigma^2)$ for $i = 1, \ldots, n$ and $X_i \sim N(0, 2\sigma^2)$ for $i = n + 1, \ldots, 2n$. Find $\hat{\sigma}^2$, the maximum likelihood estimate of σ^2 based on the entire sample X_1, \ldots, X_{2n} . What is the **finite-sample** distribution of the appropriately normalized $\hat{\sigma}^2$? Justify your reasoning.

Answer:

$$L(\sigma) = \prod_{i=1}^{n} rac{1}{\sqrt{2\pi}\sigma} e^{-rac{x_{i}^{2}}{2\sigma^{2}}} \prod_{j=n+1}^{2n} rac{1}{2\sqrt{\pi}\sigma} e^{-rac{x_{j}^{2}}{4\sigma^{2}}}$$

If we take log of likelihood, take derivative and set it to 0,

We get
$$\hat{\sigma}_{MLE}^2 = rac{2\sum_{i=1}^n x_i^2 + \sum_{j=i+1}^{2n} x_j^2}{4n} = rac{1}{2n} (\sum_{i=1}^n x_i^2 + rac{1}{2} \sum_{j=i+1}^{2n} x_j^2)$$

Since $rac{\sum_{i=1}^n x_i^2}{\sigma^2}\sim \chi^2(n)$, $rac{\sum_{j=n+1}^{2n} x_i^2}{2\sigma^2}\sim \chi^2(n)$ and X_i are independent r.v.s, we have

$$rac{\sum_{i=1}^{n}x_{i}^{2}}{\sigma^{2}}+rac{\sum_{j=n+1}^{2n}x_{i}^{2}}{2\sigma^{2}}\sim\chi^{2}(2n)$$

$$rac{2n\hat{\sigma}_{MLE}^2}{\sigma^2} = rac{\sum_{i=1}^n x_i^2}{\sigma^2} + rac{\sum_{j=n+1}^{2n} x_i^2}{2\sigma^2} \sim \chi^2(2n)$$

Problem 4

Let X_1, \ldots, X_n be iid Bernoulli(p). The object is to estimate $\theta = 1/p$.

- **a.** Find the maximum likelihood estimator of θ .
- **b.** What is the asymptotic distribution of the appropriately normalized MLE as $n \to \infty$?

(a) Answer:

$$L(p) = \prod_{i=1}^n p(x_i;p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

$$l(p) = \log L(\theta) = (\sum_{i=1}^{n} x_i) \log(p) + (n - \sum_{i=1}^{n} x_i) \log(1-p)$$

$$\frac{dl(p)}{dn} = \frac{\sum_{i=1}^{n} x_i}{\theta} - \frac{n - \sum_{i=1}^{n} x_i}{1 - \theta} = 0$$

$$p=rac{\sum_{i=1}^n x_i}{n}$$

Since
$$heta=rac{1}{p},\hat{ heta}_{MLE}=rac{n}{\sum_{i=1}^{n}x_{i}}=rac{n}{nar{X}}=rac{1}{ar{X}}$$

(b) Answer:

By CLT,
$$\sqrt{n}(ar{X}-p)\stackrel{d}{
ightarrow} N(0,p(1-p))$$

By Delta method,

$$\sqrt{n}(rac{1}{X}-rac{1}{p})\stackrel{d}{
ightarrow} N(0,rac{1}{p^4}p(1-p))=N(0,rac{1-p}{p^3})$$

Problem 5

Let X_1, \ldots, X_n be a random sample from a gamma distribution with $\alpha = 4$ and $\beta = \theta > 0$. (Note that the pdf of $X \sim \Gamma(\alpha, \beta)$ is $f(x) = x^{\alpha-1}e^{-x/\beta}/(\Gamma(\alpha)\beta^{\alpha})$ for $0 < x < \infty$. In addition $EX = \alpha\beta$ and $VarX = \alpha\beta^2$.)

- **a.** Find the mle of θ .
- **b.** Find the limiting distribution of $\sqrt{n}(\hat{\theta} \theta)$, where $\hat{\theta}$ is the mle of θ .
- c. Derive an asymptotic 95% CI for θ . Show all your work and justify each step in the derivation.

(a) Answer:

$$L(heta) = \prod_{i=1}^n p(x_i; heta) = \prod x_i^3 e^{-x_i/ heta}/(6 heta^4)$$

$$l(heta) = \log L(heta) = \sum_{i=1}^n 3\log x_i - x_i/ heta - \log 6 - 4\log heta$$

$$rac{dl(heta)}{d heta} = \sum_{i=1}^n x_i/ heta^2 - 4/ heta = 0$$

$$\hat{ heta}_{MLE}=rac{\sum_{i=1}^{n}x_{i}}{4n}=rac{ar{x}}{4}$$

(b) Answer:

$$\sqrt{n}(ar{X}-E(X))=\sqrt{n}(ar{X}-4 heta)\stackrel{d}{
ightarrow} N(0,4 heta^2)$$

$$\sqrt{n}(rac{ar{X}}{4}- heta)\stackrel{d}{
ightarrow} N(0,rac{ heta^2}{4})$$

$$\sqrt{n}(\hat{ heta}- heta)\stackrel{d}{
ightarrow} N(0,rac{ heta^2}{4})$$

(c) Answer:

$$SE(\hat{\theta}) = \sqrt{rac{Var(\hat{\theta})}{n}} = = \sqrt{rac{\hat{ heta^2}}{4n}}$$

$$CI = (\hat{ heta} - 1.96SE(\hat{ heta}), \hat{ heta} + 1.96SE(\hat{ heta})) = (\hat{ heta} - 1.96\sqrt{rac{\hat{ heta}^2}{4n}}, \hat{ heta} + 1.96\sqrt{rac{\hat{ heta}^2}{4n}}) = (rac{ar{x}}{4} - 1.96\sqrt{rac{ar{x}^2}{64n}}, \hat{ heta} + 1.96\sqrt{rac{ar{x}^2}{64n}})$$

localhost:3933