Contents

\mathbf{C}	ontents	i
1	Vector Spaces, Algebras, and Normed Spaces	1
	1.1 Vector Spaces	1

Last update: 2025 January 22

Chapter 1

Vector Spaces, Algebras, and Normed Spaces

For the entirety of this chapter assume F to be \mathbb{R} or \mathbb{C} .

§ 1.1. Vector Spaces

Definition 1.1.1. A vector space (or linear space) over F is a nonempty set V equipped with two operations:

$$V \times V \xrightarrow{+} V$$
 defined by $(v, w) \mapsto v + w$
 $F \times V \to V$ defined by $(\alpha, v) \mapsto \alpha v$

satisfying:

- (1) (V, +) is an abelian group:
 - (i) u + (v + w) = (u + v) + w for all $u, v, w \in V$;
 - (ii) there exists 0_V such that $v + 0_V = 0_V + v = v$ for all $v \in V$;
 - (iii) for all $v \in V$, there exists $w \in V$ satisfying $v + w = w + v = 0_V$;
 - (iv) v + w = w + v for all $v, w \in V$;
- (2) $\alpha(v + w) = \alpha v + \alpha w$ for all $\alpha \in F$, $v, w \in V$;
- (3) $\alpha(\beta \nu) = (\alpha \beta) \nu$ for all $\alpha, \beta \in F, \nu \in V$;
- (4) $1_{\mathsf{F}} v = v$ for all $v \in V$.

It can be shown that the vector 0_V is unique, the additive inverse in (iii) is unique (which we denote as $-\nu$), that $0\nu = 0_V$, and $(-1)\nu = -\nu$.

Exercise 1.1.1. Show (iv) follows from the other axioms.

Exercise 1.1.2. Show
$$nv = \underbrace{v + v + ... + v}_{n \text{ times}}$$
 for $n \in \mathbb{Z}_{\geq 1}$.

It can be shown that a subspace is a vector space in its own right.

Example 1.1.1. Let $\{W_i\}_{i\in I}$ be a family of vector spaces. Then $\bigcap_{i\in I} W_i$ is also a vector space.

Example 1.1.2. Planes and lines through the origin are subspaces of \mathbb{R}^3 .

Definition 1.1.2. Let V be a vector space and $S \subseteq V$ a subset.

- (1) A linear combination from S is a finite sum $\sum_{j=1}^n \alpha_j \nu_j$ with $\alpha_j \in F$, $\nu_j \in S$.
- (2) The linear span of S is:

$$\mathrm{span}(S) := \left\{ \sum_{j=1}^n \alpha_j \nu_j \; \middle| \; n \in \mathbb{N}, \alpha_j \in F, \nu_j \in S \right\}.$$

Exercise 1.1.3. Show that $span(S) \subseteq V$ is a subspace and:

$$\operatorname{span}(S) = \bigcap \{ W \mid S \subseteq W, W \text{ is a subspace } \},$$

that is, span(S) is the smallest subspace of V containing S.

Definition 1.1.3. Let V be a vector space and $S \subseteq V$ a subset.

- (1) S is spanning for V if span(S) = V.
- (2) S is *independent* if, given $n \in \mathbb{N}$, $\alpha_1, ..., \alpha_n \in F$, $\nu_1, ..., \nu_n \in S$, then $\sum_{j=1}^n \alpha_j \nu_j = 0$ implies $\alpha_j = 0$ for all j.

Our goal is to show that every vector space admits a basis. As such, recall the following definitions from a standard course in Real Analysis.

Definition 1.1.4. An *ordering* on a set X is a relation $R \subseteq X \times X$ on X that is reflexive, transitive, and antisymmetric. We write xRy as $x \leq_R y$. The pair (X, \leq_R) is called an *ordered set*. An ordering \leq on X is called *total* (or *linear*) if for all $x, y \in X$, $x \leq y$ or $y \leq x$.

Note that if (X, \leq) is an ordered set and $Y \subseteq X$ is a subset, then (Y, \leq) is an ordered set as well.

Definition 1.1.5. Let (X, \leq) be an ordered set and $Y \subseteq X$. An *upper bound* for Y is an element $u \in X$ with $u \geq y$ for all $y \in Y$. An element $m \in X$ is called *maximal* if $x \in X$, $x \geq m$ implies x = m.

Lemma 1.1.1 (Zorn's Lemma). Let (X, \leq_X) be an ordered set. Suppose every subset $Y \subseteq X$ for which (Y, \leq_X) is totally ordered has an upper bound in X. Then X admits a maximal element.

The proof of Zorn's Lemma is outside the interest of this text.

Theorem 1.1.2. Every vector space admits a basis. Moreover, every independent set is contained in a basis.

Proof. Let $S \subseteq V$ be linearly independent. Define:

$$\mathfrak{T}(S) = \{ T \subseteq V \mid S \subseteq T, T \text{ linearly independent } \}.$$

Let $\mathfrak{C} \subseteq \mathfrak{T}(S)$ be a totally ordered subset. Set $R = \bigcup_{T \in \mathfrak{C}} T$. Clearly $R \supseteq S$. Assume $\sum_{j=1}^{n} \alpha_{j} \nu_{j} = 0$, where $\alpha_{j} \in F$ and $\nu_{j} \in R$. Since \mathfrak{C} is totally ordered, there exists $T_{0} \in \mathfrak{C}$ with $\nu_{j} \in T_{0}$ for all j = 1, ..., n. Since T_{0} is independent, $\alpha_{j} = 0$ for all j = 1, ..., n. Thus R is independent as well. Whence R is an upper bound for \mathfrak{C} . By Zorn's Lemma, T(S) admits a maximal element, call it R.

Claim: B is a basis for V. Suppose towards contradiction it's not, then there exists $\nu_0 \in V \setminus \text{span}(B)$. Consider $B \cup \{\nu_0\}$ and let $\alpha_0\nu_0 + \sum_{j=1}^n \alpha_j\nu_j = 0_V$. If $\alpha_0 \neq 0$, then $\sum_{j=1}^n \alpha_j\nu_j = -\alpha_0\nu_0$, giving $\nu_0 \in \text{span}(B)$ which is a contradiction. If $\alpha_0 = 0$, then $\sum_{j=1}^n \alpha_j\nu_j = 0_V$. Since B is independent, $\alpha_j = 0$ for all j = 1, ..., n. Thus $B \cup \{\nu_0\}$ is independent, contradicting the maximality of B. Whence B is a basis for V.

Theorem 1.1.3. If B_1 and B_2 are bases for V, then $card(B_1) = card(B_2)$.

Definition 1.1.6. If V is a vector space, its *dimension* is the cardinality of any of its bases.

Corollary 1.1.4. If B is a basis for V, then every $v \in V$ can be written $v = \sum_{j=1}^{n} \alpha_k \beta_k$, $\alpha_k \in F$, $b_k \in B$ in a unique way.

Theorem 1.1.5. Let V be a linear space and $B \subseteq V$ a subset. The following are equivalent:

- (1) B is a basis for V;
- (2) B is a maximal element in $\mathfrak{T} = \{T \subseteq V \mid T \text{ independent}\};$
- (3) B is a minimal element in $\mathfrak{S} = \{S \subseteq V \mid S \text{ spans } V\};$

Definition 1.1.7. Let $\{V_i\}_{i\in I}$ be a family of vector spaces over a field F.

(1) The product of $\{V_i\}_{i\in I}$ is denoted:

$$\prod_{i\in I} V_i := \{(v_i)_{i\in I} \mid v_i \in V_i\}.$$

(2) The co-product (or sum) is denoted

$$\bigoplus_{i\in I} V_i := \left\{ (\nu_i)_{i\in I} \mid \nu_i \in V_i, \, \operatorname{supp}((\nu_i)_{i\in I}) < \infty \right\}.$$

Exercise 1.1.4.

(1) Show that $\prod_{i \in I} V_i$ equipped with pointwise operations:

$$(v_i)_{i \in I} + (w_i)_{i \in I} = (v_i + w_i)_{i \in I}$$

 $\alpha(v_i)_{i \in I} = (\alpha v_i)_{i \in I}$

is a linear space.

(2) Show that $\bigoplus_{i \in I} V_i$ is a subspace of $\prod_{i \in I} V_i$.

Proposition 1.1.6. Let V be a vector space over F and W \subseteq V. The (additive, abelian) quotient group V/W can be made into a vector space by defining multiplication by scalars as $\alpha(v + W) = \alpha v + W$ for all $\alpha \in F$, $v + W \in V/W$.

Example 1.1.3.

- (1) The set $F^n = \{(x_1, ..., x_n) \mid x_j \in F\}$ with component-wise operations is a vector space.
- (2) The set $M_{n,m}(F) = \{(a_{ij}) \mid a_{ij} \in F\}$ with linear operations is a vector space.
- (3) Let Ω be a nonempty set. Then $\mathcal{F}(\Omega, F) = \{f \mid f : \Omega \to F\}$ with pointwise operations is a vector space.
- (4) The set $\ell_{\infty}(\Omega,F)=\{f\in \mathfrak{F}(\Omega,F)\mid \|f\|_{\mathfrak{u}}<\infty\}$ with pointwise operations is a vector space.

Exercise 1.1.5. Show $\ell_{\infty}(\Omega, F) \subseteq \mathcal{F}(\Omega, F)$ is a subspace.

(5) Let $K \subseteq V$ be a convex subset of a vector space V, that is, for all $v, w \in K$ and $t \in [0,1]$, then $(1-t)v + tw \in K$. A function $f: K \to F$ is said to be *affine* if $x,y \in K$ and $t \in [0,1]$ implies f((1-t)x + ty) = (1-t)f(x) + tf(y). The set $Aff(K,F) = \{f \in \mathcal{F}(\Omega,F) \mid f \text{ affine}\}$ with pointwise operations is a vector space.

Exercise 1.1.6. Show $Aff(\Omega, F) \subseteq \mathcal{F}(\Omega, F)$ is a subspace.

(6) The set $C([a,b],F) = \{f : [a,b] \to F \mid f \text{ continuous}\}$ with pointwise operations is a vector space.

Exercise 1.1.7. Explain why $C([a,b],F) \subseteq \ell_{\infty}([a,b],F)$ is a subspace.

- (7) Consider the following sequence spaces:
 - $s = \{(a_k)_k \mid a_k \in F\} = \mathcal{F}(\mathbb{N}, F);$
 - $\ell_{\infty} = \ell_{\infty}(\mathbb{N}, F) = \{(\alpha_k)_k \mid \sup_{k>1} |\alpha_k| < \infty\};$
 - $c = \{(a_k)_k \mid (a_k)_k \text{ converges }\};$
 - $c_0 = \{(a_k)_k \mid (a_k)_k \to 0\};$
 - $c_{00} = \{(a_k)_k \mid \text{supp}(a_k)_k < \infty\};$

• $\ell_1 = \{(\alpha_k)_k \mid \sum_{k=1}^{\infty} |\alpha_k| \text{ converges } \}.$

These are all vector spaces with pointwise operations. In fact, $c_{00} \subseteq c_0 \subseteq c \subseteq \ell_{\infty} \subseteq s$ are all subspaces.

Exercise 1.1.8. Show that $\ell_1 \subseteq c_0$ is a subspace.

- (8) Consider the following continuous function spaces on \mathbb{R} :
 - $C(\mathbb{R}) = \{f : \mathbb{R} \to F \mid f \text{ continuous } \};$
 - $C_b(\mathbb{R}) = C(\mathbb{R}) \cap \ell_\infty(\mathbb{R})$;
 - $C_0(\mathbb{R}) = \{ f \in C(\mathbb{R}) \mid \lim_{x \to \pm \infty} f(x) = 0 \};$
 - Recall that a function is *compactly supported* if for all $\epsilon > 0$, there exists $\alpha > 0$ such that $|x| \ge \alpha$ implies f(x) = 0. The set of compactly supported functions is denoted $C_c(\mathbb{R}) = \{ f \in C(\mathbb{R}) \mid f \text{ compactly supported } \}$.

These are all vector spaces with pointwise operations, and $C_c(\mathbb{R}) \subseteq C_0(\mathbb{R}) \subseteq C_b(\mathbb{R}) \subseteq C(\mathbb{R})$ are all subspace inclusion.

Definition 1.1.8. If V and W are linear spaces over a common field F, a map $T: V \to W$ is called *linear* if $T(v_1 + \alpha v_2) = T(v_1) + \alpha T(v_2)$ for all $v_1, v_2 \in V$ and $\alpha \in F$.

Example 1.1.4. Let $A \in M_{m,n}(F)$. Then $T_A : F^n \to F^m$ defined by $T_A(\nu) = A\nu$ is linear. Let $\{e_1, ..., e_n\}$ be a basis for F^n . If $T : F^n \to F^m$ is linear, set:

$$[\mathsf{T}] = \Big(\mathsf{T}(e_1) \ \Big| \ \mathsf{T}(e_2) \ \Big| \ \dots \ \Big| \ \mathsf{T}(e_n)\Big).$$

This gives $T(\nu) = [T]\nu$ for all $\nu \in F^n$. In fact, we also have $[T_A] = A$ and $T_{[T]} = T$.

Example 1.1.5. The canonical projection is linear:

$$\pi_j: \prod_{i\in I} V_i \to V_j \ \text{ defined by } \ \pi_j\big((\nu_i)_i\big) = \nu_i.$$

We also have that the *coordinate exclusions* are linear:

$$\iota_j: V_j \hookrightarrow \bigoplus_{i \in I} V_i \ \text{ defined by } \ \iota_j(\nu) = (\nu_i)_i \,, \ \text{where } \ \nu_i = \begin{cases} 0_{\nu}, & i \neq j \\ \nu_j, & \text{otherwise.} \end{cases}$$

The evaluation map is linear as well. For $s \in S$, consider:

$$e_s : \mathcal{F}(S, F) \to F$$
 defined by $e_s(f) = f(s)$.