Principles

Notes on Statistical Mechanics for Molecular Simulation

Xufan Gao

March 28, 2022

西安交通大学 Xi'an Jiaotong University

作品信息

➤ 标题: Principles: Notes on Statistical Mechanics for Molecular Simulation

➤ 作者: Xufan Gao

➤ 校对排版: Xufan Gao

➤ 出品时间: March 28, 2022

➤ 总页数: 11

Preface

Oxford Graduate Texts

Tuckerman, M. E. (2010). Statistical mechanics: Theory and molecular simulation.

Oxford: Oxford University Press.

As a freshman in college physics, there must be errors.

For normal examples, I won't number the equations.

Table of Contents

Chapter I Classical Mechanics
§ 1.1 Math recap
§ 1.2 Newton's laws of motion
§ 1.3 Phase space: visualization
§ 1.4 Lagrangian formulation of classical mechanics
1.4.1 Conservative forces
1.4.2 Formulation
1.4.3 Generalized coordinates 3
1.4.4 Example: two-particle system 4
§ 1.5 Legendre transforms
§ 1.6 Hamiltonian formulation
§ 1.7 Summary of chapter
Chapter 2 内容示例
§ 2.1 用户环境示例
§ 2.2 列表样式
§ 2.3 正文示例
§ 2.4 引导命令示例
References

Chapter 1 Classical Mechanics

§ 1.1 Math recap

Take the derivative with respect to vectors

§ 1.2 Newton's laws of motion

Review basic laws.

Newton's second law:

$$\mathbf{F} = m\frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}t^2} = m\ddot{\mathbf{r}} \tag{1.1}$$

And Newton's third law:

$$\boldsymbol{F}_{AB} = -\boldsymbol{F}_{BA} \tag{1.2}$$

The definition of work:

$$W_{AB} = \int_{A}^{B} \mathbf{F} \cdot d\mathbf{l} \tag{1.3}$$

In statistical mechanics, a particle i will experience a force $F_i(r_1, r_2, \dots, r_N, \dot{r}_i)$, which is determined by the positions of all other particles and its velocity.

§ 1.3 Phase space: visualization

We use position and momentum in the phase space because

$$F = \frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} \tag{1.4}$$

Phase space: 3N position variables and 3N momentum variables constitute the microscopic state of the system at time t, if the dimensionality is 3. These variables forms a so-called *phase space vector* x. And by solving the Newton's second law, we obtain a *trajectory*:

$$x_t = (\boldsymbol{r}_1(t), \dots, \boldsymbol{r}_N(t), \boldsymbol{p}_1(t), \dots, \boldsymbol{p}_N(t))$$
(1.5)

We can visualize the trajectory for a single one-dimensional particle. Some examples are (not explained here):

- > a free particle with momentum p.
- a harmonic oscillator, with an elliptical phase space.
- a particle crossing a "hill" potential

Visualizing a many-particle system is hard. Maybe we can consider a particular cut or surface representing a set of variables of interest, known as a *Poincaré section*.

§ 1.4 Lagrangian formulation of classical mechanics

1.4.1 Conservative forces

Conservative forces, means **energy conservation**. Defined as the negative gradient of U, the *potential energy function*

$$\boldsymbol{F} = -\nabla U(\boldsymbol{r}_1, \dots, \boldsymbol{r}_N) \tag{1.6}$$

where $\nabla = \frac{\partial}{\partial r}$. Or for each particle i

$$\boldsymbol{F}_{i} = -\frac{\partial U}{\partial \boldsymbol{r}_{i}} \tag{1.7}$$

An important property is that, the work done by conservative forces only depends on the difference of U of the start and end state, i.e. independent of the path taken.

$$W_{AB} = U_B - U_A$$

The kinetic energy of the system is given by

$$K(\dot{r}_1, \dot{r}_2, \dots, \dot{r}_N) = \frac{1}{2} \sum_{i=1}^N m_i \dot{r}_i^2$$
 (1.8)

1.4.2 Formulation

Here we introduce the Lagrangian of a system

$$\mathcal{L} = K(\dot{\boldsymbol{r}}_1, \dots, \dot{\boldsymbol{r}}_N) - U(\boldsymbol{r}_1, \dots, \boldsymbol{r}_N)$$
(1.9)

which is the difference between the kinetic energy and potential energy. In contrast, the total energy is the sum of the two:

$$E = K(\dot{\boldsymbol{r}}_1, \dots, \dot{\boldsymbol{r}}_N) + U(\boldsymbol{r}_1, \dots, \boldsymbol{r}_N)$$
(1.10)

The Euler-Lagrangian equation

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{r}_i} = \frac{\partial \mathcal{L}}{\partial r_i} \tag{1.11}$$

which can be verified with the substitution of eqn. 1.7 and 1.8 (poco).

This equation helps generate the equations of motion. Take the example of the onedimensional harmonic oscillator, where

$$U(x) = \frac{1}{2}kx^{2}$$

$$K(\dot{x}) = \frac{1}{2}m\dot{x}^{2}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial \mathcal{L}}{\partial \dot{x}} = \frac{\mathrm{d}(m\dot{x})}{\mathrm{d}t} = m\ddot{x}$$

$$\frac{\partial \mathcal{L}}{\partial x} = -kx$$

It also helps to verify conservation of the energy.

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sum_{i=1}^{N} m\dot{\boldsymbol{r}}_{i}\ddot{\boldsymbol{r}}_{i} + \sum_{i=1}^{N} \frac{\partial U}{\partial \boldsymbol{r}_{i}} \frac{\mathrm{d}\boldsymbol{r}_{i}}{\mathrm{d}t}$$

$$= \sum_{i=1}^{N} m\dot{\boldsymbol{r}}_{i}\ddot{\boldsymbol{r}}_{i} - \sum_{i=1}^{N} \boldsymbol{F}_{i}\dot{\boldsymbol{r}}_{i}$$

$$= \sum_{i=1}^{N} m\dot{\boldsymbol{r}}_{i}\ddot{\boldsymbol{r}}_{i} - m\ddot{\boldsymbol{r}}_{i}\dot{\boldsymbol{r}}_{i}$$

$$= 0$$

Generalized coordinates 1.4.3

The power of Lagrangian formulation lies in the fact that the equations in an arbitrary coordinate system can be derived easily in order to address a particular problem. A set of 3N generalized coordinates are related to the original Cartesian coordinate via

$$q_{\alpha} = f_{\alpha}(\boldsymbol{r}_1, \dots, \boldsymbol{r}_N) \qquad \alpha = 1, 2, \dots, 3N$$
(1.12)

It is assumed that the transformation has a unique inverse

$$\mathbf{r}_i = \mathbf{g}_i(q_1, \dots, q_{3N}) \qquad i = 1, 2, \dots, N$$
 (1.13)

Thus, through the chain rule, we have

$$\dot{\boldsymbol{r}}_{i} = \sum_{\alpha=1}^{3N} \frac{\partial \boldsymbol{r}_{i}}{\partial q_{\alpha}} \dot{q_{\alpha}} \tag{1.14}$$

The kinetic energy can then be written as⁽¹⁾

$$K(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \frac{1}{2} \sum_{i=1}^{N} m_{i} \sum_{\alpha=1}^{3N} \frac{\partial \boldsymbol{r}_{i}}{\partial q_{\alpha}} \dot{q}_{\alpha} \sum_{\beta=1}^{3N} \frac{\partial \boldsymbol{r}_{i}}{\partial q_{\beta}} \dot{q}_{\beta}$$

$$= \frac{1}{2} \sum_{\alpha=1}^{3N} \sum_{\beta=1}^{3N} \sum_{i=1}^{N} m_{i} \frac{\partial \boldsymbol{r}_{i}}{\partial q_{\alpha}} \frac{\partial \boldsymbol{r}_{i}}{\partial q_{\beta}} \dot{q}_{\alpha} \dot{q}_{\beta}$$

$$= \frac{1}{2} \sum_{\alpha=1}^{3N} \sum_{\beta=1}^{3N} G_{\alpha\beta} \dot{q}_{\alpha} \dot{q}_{\beta}$$

$$(1.15)$$

where

$$G_{\alpha\beta}(\mathbf{q}) = \sum_{i=1}^{N} m_i \frac{\partial \mathbf{r}_i}{\partial q_{\alpha}} \cdot \frac{\partial \mathbf{r}_i}{\partial q_{\beta}}$$
 (1.16)

is the function of q (so is U(q)). α and β as indices, these elements forms a matrix G, the mass metric matrix. Then the Lagrangian is expressed as a function of q and \dot{q} . Adopting the Euler-Lagrangian equation, considering q_{γ} as q_{α} :

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{\beta=1}^{3N} G_{\gamma\beta} \dot{q}_{\beta} \right) = \sum_{\alpha=1}^{3N} \sum_{\beta=1}^{3N} \frac{\partial G_{\alpha\beta}}{\partial q_{\gamma}} \dot{q}_{\alpha} \dot{q}_{\beta} - \frac{\partial U}{\partial q_{\gamma}}$$
(1.17)

1.4.4 Example: two-particle system

A two particle system subject to a potential ${\cal U}$ which only depends on the distance between them. We can write:

$$\mathcal{L} = \frac{1}{2}m_1\dot{\boldsymbol{r}}_1^2 + \frac{1}{2}m_2\dot{\boldsymbol{r}}_2^2 - U(|\boldsymbol{r}_1 - \boldsymbol{r}_2|)$$
 (1.18)

And knowing that (not important)

$$\begin{split} |\boldsymbol{r}_1 - \boldsymbol{r}_2| &= \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2} \\ \frac{\partial |\boldsymbol{r}_1 - \boldsymbol{r}_2|}{\partial x_1} &= \frac{2x_1}{2\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}} = \frac{x_1}{|\boldsymbol{r}_1 - \boldsymbol{r}_2|} \\ \frac{\partial U(|\boldsymbol{r}_1 - \boldsymbol{r}_2|)}{\partial \boldsymbol{r}_1} &= \frac{\mathrm{d}U(|\boldsymbol{r}_1 - \boldsymbol{r}_2|)}{\mathrm{d}(|\boldsymbol{r}_1 - \boldsymbol{r}_2|)} \frac{\partial |\boldsymbol{r}_1 - \boldsymbol{r}_2|}{\partial \boldsymbol{r}_1} = \frac{\mathrm{d}U(|\boldsymbol{r}_1 - \boldsymbol{r}_2|)}{\mathrm{d}(|\boldsymbol{r}_1 - \boldsymbol{r}_2|)} \frac{\boldsymbol{r}_1}{|\boldsymbol{r}_1 - \boldsymbol{r}_2|} \\ \frac{\partial U(|\boldsymbol{r}_1 - \boldsymbol{r}_2|)}{\partial \boldsymbol{r}_2} &= -\frac{\mathrm{d}U(|\boldsymbol{r}_1 - \boldsymbol{r}_2|)}{\mathrm{d}(|\boldsymbol{r}_1 - \boldsymbol{r}_2|)} \frac{\boldsymbol{r}_2}{|\boldsymbol{r}_1 - \boldsymbol{r}_2|} \end{split}$$

⁽¹⁾separate everything containing q(i) and the \dot{q} velocities, by summing over i first. Imagina a 3D cube, the z-axis is m_i , while on the x-y plane sits pairs of q terms...

using eqn 1.11, we can get

$$m_1 \ddot{\boldsymbol{r}}_1 = -\frac{\mathrm{d}U(|\boldsymbol{r}_1 - \boldsymbol{r}_2|)}{\mathrm{d}(|\boldsymbol{r}_1 - \boldsymbol{r}_2|)} \frac{\boldsymbol{r}_1}{|\boldsymbol{r}_1 - \boldsymbol{r}_2|}$$
$$m_2 \ddot{\boldsymbol{r}}_2 = \frac{\mathrm{d}U(|\boldsymbol{r}_1 - \boldsymbol{r}_2|)}{\mathrm{d}(|\boldsymbol{r}_1 - \boldsymbol{r}_2|)} \frac{\boldsymbol{r}_1}{|\boldsymbol{r}_1 - \boldsymbol{r}_2|}$$

We now want to introduce a more natural set of general coordinates: *center of mass* and *relative position*:

$$m{R} = rac{m_1 m{r}_1 + m_2 m{r}_2}{m_1 + m_2} \ m{r} = m{r}_1 - m{r}_2$$

Let $M = m_1 + m_2$. The inverse of this transformation is

$$egin{aligned} oldsymbol{r}_1 &= oldsymbol{R} + rac{m_2}{M} oldsymbol{r} \ oldsymbol{r}_2 &= oldsymbol{R} - rac{m_1}{M} oldsymbol{r} \end{aligned}$$

Substituted into eqn 1.18, the Lagrangian becomes

$$\mathcal{L} = \frac{1}{2}m_1\left(\dot{\boldsymbol{R}} + \frac{m_2}{M}\dot{\boldsymbol{r}}\right)^2 + \frac{1}{2}m_2\left(\dot{\boldsymbol{R}} - \frac{m_1}{M}\dot{\boldsymbol{r}}\right)^2 - U(|\boldsymbol{r}|)$$
$$= \frac{1}{2}M\dot{\boldsymbol{R}}^2 + \frac{1}{2}\mu\dot{\boldsymbol{r}}^2 - U(|\boldsymbol{r}|)$$

where reduced mass $\mu = \frac{m_1 m_2}{M}$.

Since the energy does not change as the center of mass moves, $\frac{\partial \mathcal{L}}{\partial \mathbf{R}} = 0$. Then the equation of motion will be

$$M\ddot{\mathbf{R}} = 0$$

$$\mu \ddot{\mathbf{r}} = -\frac{\mathrm{d}U}{\mathrm{d}|\mathbf{r}|} \frac{\mathbf{r}}{|\mathbf{r}|}$$

We can also transform r further into spherical coordinates to obtain the one-dimensional equation of motion.

§ 1.5 Legendre transforms

§ 1.6 Hamiltonian formulation

Recall our mass metric matrix G

$$G_{\alpha\beta}(\mathbf{q}) = \sum_{i=1}^{N} m_i \frac{\partial \mathbf{r}_i}{\partial q_\alpha} \frac{\partial \mathbf{r}_i}{\partial q_\beta}$$
(1.19)

§ 1.7 Summary of chapter

Chapter 2 内容示例

§ 2.1 用户环境示例

GRE 备考指南

https://qyxf.site/latest/GRE备考指南-v2.0.pdf

军事理论教程

https://qyxf.site/latest/军事理论教程.pdf

分析力学笔记

https://qyxf.site/latest/分析力学笔记-v1.0.pdf

大学物理题解

https://qyxf.site/latest/大物题解(上).pdf

实变函数习题解答

https://qyxf.site/latest/实变函数习题解答.pdf

计算方法撷英

https://qyxf.site/latest/计算方法撷英-v1.1.pdf

计算机程序设计指南

https://qyxf.site/latest/计算机设计程序指南.pdf

Equation 1 Euler-Lagrangian equation

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{r}}_i} =$$

定义1 极限就是超越自我。

定理1 任何极限都可以直接观察得出。

引理2以上内容, 纯属扯淡。

推论3 这是一个推论。

注记

好好学习,天天向上。

警告

今天你学习了吗?

§ 2.2 列表样式

- > 这是第一层
- > 这也是第一层
 - □ 这是第二层
 - 这是第三层
- 1. 这是第一层
- 2. 这也是第一层
 - 1. 这是第二层
 - (1) 这是第三层

§ 2.3 正文示例

微分学(differential calculus)是微积分的一部分,是通过导数和微分来研究曲线斜率、加速度、最大值和最小值的一门学科,也是探讨特定数量变化速率的学科。微分学是微积分的两个主要分支之一,另一个分支则是积分学,探讨曲线下的面积。

Tab. 2.1 常用导数

原函数	导函数	原函数	导函数
C	0	$\ln x$	$\frac{1}{x}$
x^{μ}	$\mu x^{\mu-1}$	$\sin x$	$\cos x$
e^x	e^x	$\cos x$	$-\sin x$

……几乎所有量化的学科中都有微分的应用。例如在物理学中,运动物体其位移对时间的导数即为其速度,速度对时间的导数就是加速度、物体动量对时间的导数即为物体所受的力,重新整理后可以得到牛顿第二运动定律 F=ma。 化学反

应的化学反应速率也是导数。在运筹学中,会透过导数决定在运输或是设计上最有效率的做法。

Fig. 2.1 V2 版本的封面图片

导数常用来找函数的极值。含有微分项的方程式称为**微分方程**,是自然现象描述的基础。微分以及其广义概念出现在许多数学领域中,例如复分析、泛函分析、微分几何、测度及抽象代数⁽¹⁾。

§ 2.4 引导命令示例

练习1 试用配方法求解方程:

$$ax^2 + bx + c = 0 (2.1)$$

 \mathbf{H} 首先,方程左右两侧同除以 \mathbf{H} ,得到

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0$$

根据一次项来配方,按公式 $(x+A)^2 = x^2 + 2Ax + A^2$ 配出常数项:

$$x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} + \frac{c}{a} - \left(\frac{b}{2a}\right)^{2} = 0$$

配方并移项得到

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a}$$

方程左右开方,得

$$x + \frac{b}{2a} = \pm \sqrt{\frac{b^2}{4a^2} - \frac{c}{a}}$$

⁽¹⁾以上内容摘自维基百科中文词条 — 微分学: https://zh.wikipedia.org/wiki/微分学。

从而得到方程 (2.1) 之解为

$$x = -\frac{b}{2a} \pm \sqrt{\frac{b^2}{4a^2} - \frac{c}{a}} \tag{2.2}$$

该式即为一元二次方程的通用求根公式。

分析 在这一问题中,需要注意以下几点 [1,2]:

- **>**
- **>**
- **>**

References

- [1] KNUTH D E. The TEXbook [M]. Addison-Wesley: Reading, 1986.
- [2] 刘海洋. LATEX 入门 [M]. 人民邮电出版社: 北京, 2013.