Gelfand-Pettis integrals and weak holomorphy

Jordan Bell
jordan.bell@gmail.com
Department of Mathematics, University of Toronto

April 3, 2014

1 Convexity

The Hahn-Banach separation theorem¹ states that if A and B are disjoint nonempty closed convex subsets of a locally convex space X and A is compact, then there is some $\lambda \in X^*$ and some $\gamma_1, \gamma_2 \in \mathbb{R}$ such that

$$\operatorname{Re} \lambda a < \gamma_1 < \gamma_2 < \operatorname{Re} \lambda b, \quad a \in A, b \in B.$$

If X is a vector space and E is a subset of X, the convex hull of E is defined to be the intersection of all convex sets containing E, and is denoted by co(E). One checks that the convex hull of E is equal to the set of all finite convex combinations of elements of E. If X is a topological vector space, the closed convex hull of E is the intersection of all closed convex sets containing E, and is denoted by $\overline{co}(E)$. The closed convex hull of E is equal to the closure of the convex hull of E.

2 The Gelfand-Pettis integral

If X is a topological vector space over F, where F is either $\mathbb C$ or $\mathbb R$, and $\mathscr F$ is a set of functions $X \to F$, we say that $\mathscr F$ separates X if $x,y \in X$ being distinct implies that there is some $f \in \mathscr F$ satisfying $f(x) \neq f(y)$. It follows from the Hahn-Banach separation theorem that if X is a locally convex space then its dual space X^* separates X: if $a,b \in X$ are distinct then apply the Hahn-Banach separation to the sets $\{a\}$ and $\{b\}$.

Let μ be a positive measure on a measure space Q and let X be a topological vector space over F, where F is either \mathbb{C} or \mathbb{R} , such that X^* separates X. If $f:Q\to X$ is a function and $\lambda\in X^*$, we define $\lambda f:Q\to F$ by $(\lambda f)(q)=\lambda f(q)$. If λf is integrable with respect to μ for each $\lambda\in X^*$ and there is some $I_f\in X$ such that

$$\lambda I_f = \int_Q \lambda f d\mu, \qquad \lambda \in X^*, \tag{1}$$

¹Walter Rudin, Functional Analysis, second ed., p. 59, Theorem 3.4

²John B. Conway, A Course in Functional Analysis, second ed., p. 102, Corollary 1.13.

then we define

$$\int_{O} f d\mu = I_f,$$

which we call the Gelfand-Pettis integral of f. Because X^* separates X, there is at most one $I_f \in X$ satisfing (1), so if the Gelfand-Pettis integral of f exists it is unique. If the Gelfand-Pettis integrals of f and g exist and g exist

$$\lambda(\alpha I_f + I_g) = \alpha \lambda I_f + \lambda I_g$$

$$= \alpha \int_Q \lambda f d\mu + \int_Q \lambda g d\mu$$

$$= \int_Q \alpha \lambda f + \lambda g d\mu$$

$$= \int_Q \lambda(\alpha f + g) d\mu,$$

therefore the Gelfand-Pettis integral of $\alpha f + g$ exists and satisfies

$$\int_{Q} \alpha f + g d\mu = \alpha \int_{Q} f d\mu + \int_{Q} g d\mu,$$

namely, Gelfand-Pettis integration is linear.

The following theorem gives conditions under which the Gelfand-Pettis integral of a function taking values in a real topological vector space exists. 3

Theorem 1. Suppose that

- X is a real topological vector space such that X^* separates X
- μ is a Borel probability measure on a compact Hausdorff space Q

If $f:Q\to X$ is continuous and $\overline{\operatorname{co}}(f(Q))$ is a compact subset of X, then the Gelfand-Pettis integral

$$\int_{O}fd\mu$$

exists, and $\int_Q f d\mu \in \overline{\text{co}}(f(Q))$.

Proof. If L is a finite subset of X^* , let E_L be those $y \in \overline{\operatorname{co}}(f(Q))$ such that

$$\lambda y = \int_{Q} \lambda f d\mu, \qquad \lambda \in L.$$

If $y_{\alpha} \in E_L$ is a net that converges to some $y \in \overline{\text{co}}(f(Q))$ and $\lambda \in L$, then, because λ is continuous,

$$\lambda y = \lambda y_{\alpha} = \int_{Q} \lambda f d\mu,$$

³Walter Rudin, Functional Analysis, second ed., p. 78, Theorem 3.27. cf. Paul Garrett, Vector-valued integrals, http://www.math.umn.edu/~garrett/m/fun/notes_2012-13/07e_vv_integrals.pdf

showing that $y \in E_L$ and thus that E_L is closed. By hypothesis $\overline{\operatorname{co}}(f(Q))$ is compact, hence E_L is compact. With $L = \{\lambda_1, \ldots, \lambda_n\}$, define $F_L \in \mathcal{B}(X, \mathbb{R}^n)$ by

$$F_L x = (\lambda_1 x, \dots, \lambda_n x),$$

write $K = F_L f(Q)$, and define

$$m_i = \int_Q \lambda_i f d\mu, \qquad 1 \le i \le n.$$

Since Q is compact and f and F_L are continuous, the set $K \subset \mathbb{R}^n$ is compact, and hence its convex hull $\operatorname{co}(K)$ is compact.⁴ If $t = (t_1, \ldots, t_n) \in \mathbb{R}^n \setminus \operatorname{co}(K)$, then applying the Hahn-Banach separation theorem to $\operatorname{co}(K)$ and $\{t\}$, we get that there is some $c \in (\mathbb{R}^n)^*$ and some $c \in \mathbb{R}$ such that

$$ca < \gamma < ct, \qquad a \in \operatorname{co}(K),$$

i.e. there is some $(c_1, \ldots, c_n) \in \mathbb{R}^n$ and some $\gamma \in \mathbb{R}$ such that

$$\sum_{i=1}^{n} c_i a_i < \gamma < \sum_{i=1}^{n} c_i t_i, \qquad a \in \operatorname{co}(K).$$

If $q \in Q$ then $F_L f(q) \in K \subseteq co(K)$, hence

$$\sum_{i=1}^{n} c_i \lambda_i f(q) < \gamma < \sum_{i=1}^{n} c_i t_i, \qquad q \in Q.$$

Because μ is a probability measure, integrating the above inequality gives

$$\int_{Q} \sum_{i=1}^{n} c_i \lambda_i f(q) d\mu < \sum_{i=1}^{n} c_i t_i,$$

hence

$$\sum_{i=1}^{n} c_i m_i < \sum_{i=1}^{n} c_i t_i,$$

and it follows that $m \neq t$. Therefore $m \in co(K)$, and as $K = F_L f(Q)$, it follows that m is a convex combination of finitely many points of the form $F_L f(q)$, i.e., m is of the form $F_L g$ for some $g \in co(f(Q))$. To say that $m = F_L g$ means that

$$\lambda_i y = m_i = \int_{\mathcal{O}} \lambda_i f d\mu, \qquad 1 \le i \le n,$$

and thus $y \in E_L$. Therefore, if L is a finite subset of X^* then $E_L \neq \emptyset$.

If \mathscr{S} is a set of sets, we say that \mathscr{S} has the *finite intersection property* if \mathscr{S}_0 being a finite subset of \mathscr{S} implies that $\bigcap_{S \in \mathscr{S}_0} S \neq \emptyset$. It is a fact that a topological space is compact if and only if every collection \mathscr{S} of closed subsets

⁴Walter Rudin, Functional Analysis, second ed., p. 72, Theorem 3.20.

with the finite intersection property satisfies $\bigcap_{C \in \mathscr{C}} C \neq \emptyset$. It follows from this that if \mathscr{C} is a collection of compact subsets of a Hausdorff space and \mathscr{C} has the finite intersection property, then $\bigcap_{C \in \mathscr{C}} C \neq \emptyset$. If L, M are finite subsets of X^* , then $E_L \cap E_M = E_{L \cup M}$. We have shown that if L is a finite subset of X^* then $E_L \neq \emptyset$, and therefore the collection of all E_L , where L is a finite subset of X^* , has the finite intersection property. As each E_L is a compact set, we obtain

$$\bigcap_{L\subset X^*, |L|<\infty} E_L\neq\emptyset,$$

i.e. there is some $y \in \overline{\text{co}}(f(Q))$ such that

$$\lambda y = \int_Q \lambda f d\mu, \qquad \lambda \in X^*.$$

This satisfies (1), so

$$y = \int_{\mathcal{O}} f d\mu,$$

which proves the claim.

In a Fréchet space, the closed convex hull of a compact set is itself compact.⁶ Thus, if X is a Fréchet space then the set $\overline{\text{co}}(f(Q))$ in the above theorem will be compact.

The following is the triangle inequality for Gelfand-Pettis integrals.⁷

Corollary 2. If Q is a compact Hausdorff space, X is a real Banach space, $f: Q \to X$ is continuous, and μ is a Borel probability measure on Q, then

$$\left\| \int_{Q} f d\mu \right\| \le \int_{Q} \|f\| \, d\mu.$$

Proof. The Hahn-Banach extension theorem⁸ states that if X is a normed space and $x_0 \in X$, then there is some $\lambda \in X^*$ such that $\lambda x_0 = ||x_0||$ and

$$|\lambda x| < ||x||, \quad x \in X.$$

Let $y = \int_Q f d\mu \in X$, and applying the Hahn-Banach extension theorem we get that there is some $\lambda \in X^*$ such that $\lambda y = \|y\|$ and $|\lambda x| \leq \|x\|$ for all $x \in X$. If $q \in Q$ then $f(q) \in X$, and so $|\lambda f(q)| \leq \|f(q)\|$ for all $q \in Q$, and integrating this inequality gives us

$$\int_{Q} |\lambda f(q)| d\mu \le \int_{Q} ||f(q)|| d\mu.$$

⁵James Munkres, *Topology*, second ed., p. 169, Theorem 26.9.

⁶Walter Rudin, Functional Analysis, second ed., p. 72, Theorem 3.20.

⁷Walter Rudin, Functional Analysis, second ed., p. 81, Theorem 3.29.

⁸Walter Rudin, Functional Analysis, second ed., p. 59, Corollary to Theorem 3.3.

Therefore,

$$\left\|\int_Q f d\mu\right\| = \|y\| = \lambda y = \int_Q \lambda f d\mu \le \int_Q |\lambda f(q)| d\mu \le \int_Q \|f(q)\| \, d\mu,$$
 proving the claim. \Box

3 Holomorphy

A path in \mathbb{C} is a continuous piecewise C^1 function from a compact interval to \mathbb{C} , and a closed path is a path whose initial point is equal to its final point. We denote by γ^* the image of a path. If $\gamma: [\alpha, \beta] \to \mathbb{C}$ and $f: \gamma^* \to \mathbb{C}$ is a continuous function (where γ^* has the subspace topology inherited from \mathbb{C}), the contour integral of f along γ is defined to be

$$\int_{\gamma} f(z)dz = \int_{\alpha}^{\beta} f(\gamma(t))\gamma'(t)dt.$$

The length of γ , denoted $|\gamma|$, is defined to be $\int_{\alpha}^{\beta} |\gamma'(t)| dt$, and we have

$$\left| \int_{\gamma} f(z)dz \right| \leq \sup_{z \in \gamma^*} |f(z)| \cdot \int_{\alpha}^{\beta} |\gamma'(t)|dt.$$

If γ is a closed path in \mathbb{C} and $\Omega = \mathbb{C} \setminus \gamma^*$, we define

$$\operatorname{Ind}_{\gamma}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{d\zeta}{\zeta - z}, \qquad z \in \Omega.$$

We call $\operatorname{Ind}_{\gamma}(z)$ the *index of* z *with respect to* γ . It is a fact that $\operatorname{Ind}_{\gamma}$ takes integer values, is constant on each connected component of Ω , and is 0 on the unique unbounded component of Ω .

Let X is a complex topological vector space and let Ω be an open subset of \mathbb{C} . A function $f:\Omega\to X$ is said to be weakly holomorphic in Ω if $\lambda f:\Omega\to\mathbb{C}$ is holomorphic for every $\lambda\in X^*$, i.e., for every $\lambda\in X^*$ and $z\in\Omega$, the limit

$$\lim_{w \to z} \frac{(\lambda f)(w) - (\lambda f)(z)}{w - z}$$

exists. A function $f:\Omega\to X$ is said to be $strongly\ holomorphic$ if for every $z\in\Omega$ the limit

$$\lim_{w \to z} \frac{f(w) - f(z)}{w - z}$$

exists. Check that a strongly holomorphic function is weakly holomorphic.

In the following theorem we show that if a function taking values in a complex locally convex topological vector space is weakly holomorphic then it is continuous. 10

⁹Walter Rudin, *Real and Complex Analysis*, third ed., p. 203, Theorem 10.10; cf. Paul Garrett, *Holomorphic vector-valued functions*, http://www.math.umn.edu/~garrett/m/fun/Notes/09_vv_holo.pdf

¹⁰Walter Rudin, Functional Analysis, second ed., p. 82, Theorem 3.31(a).

Theorem 3. If Ω is an open subset of \mathbb{C} , X is a complex locally convex topological vector space space, and $f: \Omega \to X$ is weakly holomorphic, then $f: \Omega \to X$ is continuous.

Proof. Let $\lambda \in X^*$. I assert that it suffices to prove the claim in the case that $0 \in \Omega$, and in this case just to prove that f is continuous at 0.

Since Ω is an open set containing 0, there is some closed disc Δ_R of radius R>0 with $0\in\Delta_R\subset\Omega$. Define $\gamma_r=re^{it},\ t\in[0,2\pi]$, with $0< r\leq R$. By assumption $\lambda f:\Omega\to\mathbb{C}$ is holomorphic, and applying Cauchy's integral formula, 1 if $z\in\Delta_r$ then

$$(\lambda f)(z)\operatorname{Ind}_{\gamma_r}(z) = \frac{1}{2\pi i} \int_{\gamma_r} \frac{(\lambda f)(\zeta)}{\zeta - z} d\zeta.$$

As $\operatorname{Ind}_{\gamma_r}(z) = 1$ for $z \in \Delta_r$, we have for every z with $0 < |z| \le r$ that

$$\frac{(\lambda f)(z) - (\lambda f)(0)}{z} = \frac{1}{z} \cdot \frac{1}{2\pi i} \int_{\gamma_r} \frac{(\lambda f)(\zeta)}{\zeta - z} d\zeta - \frac{1}{z} \cdot \frac{1}{2\pi i} \int_{\gamma_r} \frac{(\lambda f)(\zeta)}{\zeta} d\zeta$$
$$= \frac{1}{2\pi i} \int_{\gamma_r} \frac{(\lambda f)(\zeta)}{(\zeta - z)\zeta} d\zeta.$$

Setting $M(\lambda) = \sup_{z \in \Delta_R} |(\lambda f)(z)|$, applying the above with $r = \frac{R}{2}$ we get that if $0 < |z| \le \frac{R}{2}$ then

$$\left|\frac{(\lambda f)(z)-(\lambda f)(0)}{z}\right| \leq \frac{1}{2\pi} \cdot |\gamma_{\frac{R}{2}}| \cdot M(\lambda) \cdot \frac{1}{\inf_{|\zeta|=\frac{R}{2}}|\zeta-z||\zeta|} = \frac{2M(\lambda)}{r}.$$

Define

$$Y = \left\{ \frac{f(z) - f(0)}{z} : 0 < |z| \le \frac{R}{2} \right\} \subseteq X.$$

We have shown that if $y \in Y$ and $\lambda \in X^*$, then

$$\lambda y = \lambda \frac{f(z) - f(0)}{z} = \frac{\lambda f(z) - \lambda f(0)}{z} = \frac{(\lambda f)(z) - (\lambda f)(0)}{z},$$

for some $0 < |z| \le \frac{R}{2}$, hence

$$|\lambda y| \le \frac{2M(\lambda)}{r}, \quad y \in Y, \lambda \in X^*.$$

To say that a subset E of X is weakly bounded means that it is a bounded set in the weak topology on X, i.e. for every weak neighborhood N of 0 there is some c such that $E \subseteq cN$. E is weakly bounded if and only if for every $\lambda \in X^*$ there is some constant $\gamma(\lambda)$ such that $x \in E$ implies that $|\lambda x| \leq \gamma(\lambda)$. We have thus established that Y is a weakly bounded subset of X. It is a fact that

¹¹Walter Rudin, Real and Complex Analysis, third ed., p. 207, Theorem 10.15.

¹²cf. Walter Rudin, Functional Analysis, second ed., p. 66, §3.11.

a subset of a locally convex topological vector space is bounded if and only if it is weakly bounded,¹³ so Y is a bounded subset of X: if N is a neighborhood of 0, then there is some c such that 0 < |z| < r implies that

$$\frac{f(z) - f(0)}{z} \in cN.$$

Therefore if $0 < |z| \le r \wedge \frac{1}{|c|}$ then

$$f(z) - f(0) \in N,$$

showing that f is continuous at 0.

Theorem 4 (Cauchy integral formula). If Ω is an open subset of \mathbb{C} , X is a complex Fréchet space, $f: \Omega \to X$ is weakly holomorphic, $\gamma: [0,1] \to \Omega$ is a closed C^1 path, $z \notin \gamma^*$, and $\operatorname{Ind}_{\gamma}(z) = 1$, then the Gelfand-Pettis integral of $\frac{f \circ \gamma}{\gamma - z} \cdot \gamma': [0,1] \to X$ exists and satisfies

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{[0,1]} \frac{f(\gamma(t))}{\gamma(t) - z} \gamma'(t) dt.$$

Proof. By Theorem 3, $f:\Omega\to X$ is continuous. Because γ^* is compact and $z\not\in\gamma^*$, the function $t\mapsto\frac{1}{\gamma(t)-z}$ is continuous $[0,1]\to\mathbb{C}$. As γ is C^1 , the function $\gamma':[0,1]\to\mathbb{C}$ is continuous. Thus $F(t)=\frac{f(\gamma(t))}{\gamma(t)-z}\gamma'(t)$ continuous $[0,1]\to X$. We apply Theorem 1, which tells us that the Gelfand-Pettis integral of F exists. Let

$$I = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{[0,1]} \frac{f(\gamma(t))}{\gamma(t) - z} \gamma'(t) dt.$$

If $\lambda \in X^*$, then

$$\lambda I = \int_{[0,1]} \lambda \left(\frac{1}{2\pi i} F\right) dt = \frac{1}{2\pi i} \int_{[0,1]} \frac{\lambda f(\gamma(t))}{\gamma(t) - z} \gamma'(t) dt.$$

We apply the Cauchy integral formula for holomorphic functions on \mathbb{C} to λf :

$$(\lambda f)(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{(\lambda f)(\zeta)}{\zeta - z} d\zeta.$$

Therefore $\lambda I=(\lambda f)(z)=\lambda(f(z)).$ As this is true for all $\lambda\in X^*,$ we have I=f(z).

One can use the above statement of the Cauchy integral formula to prove that a weakly holomorphic function that takes values in a complex Fréchet space is strongly holomorphic.¹⁴

Theorem 5. If Ω is an open subset of \mathbb{C} , X is a complex Fréchet space, and $f:\Omega\to X$ is weakly holomorphic, then f is strongly holomorphic.

¹³Walter Rudin, Functional Analysis, second ed., p. 70, Theorem 3.18.

¹⁴Walter Rudin, Functional Analysis, second ed., p. 82, Theorem 3.31(c); Paul Garrett, Holomorphic vector-valued functions, http://www.math.umn.edu/~garrett/m/fun/notes_2012-13/08b_vv_holo.pdf