Problema 1 - Soma de Vetores

Quando temos dois vetores de mesma dimensão $\vec{u}=(u_0,u_1,u_2,...,u_n)$ e $\vec{v}=(v_0,v_1,v_2,...,v_n)$, a soma $\vec{u}+\vec{v}$ é dada por:

$$\vec{u} + \vec{v} = (u_0 + v_0, u_1 + v_1, u_2 + v_2, ..., u_n + v_n)$$

Partindo do código q2inicial.c, preencha as funções não implementadas e na função main:

- ler do usuário um inteiro n1, um inteiro n2
- alocar dinamicamente um vetor ${\bf u}$ de ${\bf n1}$ números inteiros e outro ${\bf v}$ de ${\bf n2}$ números inteiros usando a função alocar Vetor
- ullet ler n1 inteiros para u e n2 inteiros para v
- chamar a função soma Vetores
- escrever na tela o vetor resultante da soma dos dois vetores ou 'dimensoes incompativeis' caso $n1 \neq n2$

Exemplos

Input	Output
3 4 1 3 4 3 4 2 4	dimensoes incompativeis
3 3 3 -2 1 4 -2 5	7 -4 6

Problema 2 - Ocorrências no vetor

No código exemplo 12.c (parte 4) vimos como criar uma função que retorna indiretamente o maior número de um vetor de inteiros e o respectivo índice. Agora você deverá fazer algo parecido. A função deve retornar o endereço base de um vetor contendo todos os índices de um determinado número buscado no vetor. Você também deve acrescentar um retorno indireto através de ponteiro para armazenar a quantidade de ocorrências. A função deve seguir a seguinte assinatura:

int * buscaNoVetor(int *v, int n, int valor, int *maior, int *qtd)

onde \mathbf{v} é o endereço base do vetor de inteiros a ser analisado, \mathbf{n} a quantidade de inteiros nesse vetores, valor representa o valor buscado no vetor e \mathbf{qtd} um ponteiro para inteiro que contém o endereço onde será armazenado a quantidade de ocorrências desse inteiro buscado. A função deve retornar NULL caso não encontre ocorrências.

A função main deve ler um inteiro **n** que representa a quantidade de elementos do vetor de inteiros. O vetor deve ser alocado dinamicamente. Em seguida, o programa deve ler do usuário os n inteirose um valor inteiro a ser buscado. Depois o programa deve obter os índices de todas as ocorrências desse valor informado. O programa deve escrever na saída a quantidade de ocorrências e os índices. Lembre-se de liberar todos os vetores alocados dinamicamente.

Exemplos

Input	Output
5 2 5 2 2 1	3 0 2 3
2 3 1 2 3 7	Nenhuma ocorrencia
7 1 1 1 1 1 0 1 1	$\begin{smallmatrix}6\\0&1&2&3&4&6\end{smallmatrix}$

Problema 3 - Sopa de letrinhas

Crie uma função **misturar** que recebe 2 strings como parâmetros e retorna uma nova string (alocada dinamicamente) alternando as letras de ambas as strings. Caso não possuam o mesmo tamanho, as letras restantes da string maior devem ser colocadas ao final da nova string. Por exemplo, ao misturar "teste" e "algo", obtém-se "taelsgtoe". Já ao misturar "asa" e "inconstitucionalidade" obtém-se "aisnaconstitucionalidade".

char * misturar(char *str1, char *str2)

A função main deve ler duas strings (uma por linha, com ou sem espaços) de até 100 caracteres, chamar a função misturar e escrever na tela o resultado. Não se esqueça de liberar a memória do que foi alocado dinamicamente.