

Chapter 16: Acids and Bases

Contents

16-1	The Arrhenius Theory: A Brief Review
16-2	Brønsted-Lowry Theory of Acids and Bases
16-3	The Self-Ionization of Water and the pH Scale
16-4	Strong Acids and Strong Bases
16-5	Weak Acids and Weak Bases
16-6	Polyprotic Acids
16-7	Ions as Acids and Bases
16-8	Molecular Structure and Acid-Base Behavior
16-8	Lewis Acids and Bases
	Focus On Acid Rain

16-1 The Arrhenius Theory: A Brief Review

$$HCl(g) \xrightarrow{H_2O} H^+(aq) + Cl^-(aq)$$

$$NaOH(s) \xrightarrow{H_2O} Na^+(aq) + OH^-(aq)$$

$$Na^{+}(aq) + OH^{-}(aq) + H^{+}(aq) + Cl^{-}(aq) \rightarrow H_2O(1) + Na^{+}(aq) + Cl^{-}(aq)$$

$$H^+(aq) + OH^-(aq) \rightarrow H_2O(1)$$

Arrhenius theory did not handle non OHbases such as ammonia very well.

16-2 Brønsted-Lowry Theory of Acids and Bases

- ◆ An acid is a *proton donor*.
- ♦ A base is a *proton acceptor*.

base acid conjugate acid conjugate base
$$NH_3 + H_2O \Longrightarrow NH_4^+ + OH^-$$

$$NH_4^+ + OH^- \Longleftrightarrow NH_3 + H_2O$$
acid base ?? ??

The Solvated Proton

Base Ionization Constant

base acid conjugate conjugate acid base
$$NH_3 + H_2O \Longrightarrow NH_4^+ + OH^-$$

$$K_{c} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}][H_{2}O]}$$

$$K_b = K_c[H_2O] = \frac{[NH_4^+][OH^-]}{[NH_3]} = 1.8 \times 10^{-5}$$

Acid Ionization Constant

acid base conjugate base acid

$$CH_{3}CO_{2}H + H_{2}O \Longrightarrow CH_{3}CO_{2}^{-} + H_{3}O^{+}$$

$$K_{c} = \frac{[CH_{3}CO_{2}^{-}][H_{3}O^{+}]}{[CH_{3}CO_{2}H][H_{2}O]}$$

$$K_{\rm a} = K_{\rm c}[{\rm H}_2{\rm O}] = \frac{[{\rm CH}_3{\rm CO}_2^{-}][{\rm H}_3{\rm O}^+]}{[{\rm CH}_3{\rm CO}_2{\rm H}]} = 1.8 \times 10^{-5}$$

TABLE 16.1 Relative Strengths of Some Common Brønsted-Lowry Acids and Bases

 NH_3

	Acid		Conjugate Base	
	Perchloric acid	HClO ₄	Perchlorate ion	ClO ₄
4	Hydroiodic acid	HI	Iodide ion	I-
	Hydrobromic acid	HBr	Bromide ion	Br ⁻
	Hydrochloric acid	HCl	Chloride ion	Cl ⁻
strength	Sulfuric acid	H_2SO_4	Hydrogen sulfate ion	HSO ₄ - the substitute of the
en	Nitric acid	$\tilde{HNO_3}$	Nitrate ion	NO_3^{-1}
str	Hydronium ion ^a	H ₃ O ⁺	Water ^a	
acid	Hydrogen sulfate ion	$H\overset{\circ}{SO}_4^-$	Sulfate ion	SO_4^{2-}
	Nitrous acid	HNO_2	Nitrite ion	
Increasing	Acetic acid	$HC_2H_3O_2$	Acetate ion	C ₂ H ₃ O ₂ - HCO ₃ - NH ₃
ea	Carbonic acid	H_2CO_3	Hydrogen carbonate ion	HCO ₃ -
ncı	Ammonium ion	NH_4^+	Ammonia	NH ₃
-	Hydrogen carbonate ion	HCO_3^-	Carbonate ion	$CO_3^{\circ 2-}$
	Water	H ₂ O	Hydroxide ion	OH ⁻
	Methanol	С́H₃OН	Methoxide ion	CH ₃ O ⁻

Caniumata Pasa

Amide ion

 NH_2^-

Ammonia

A -: -

^aThe hydronium ion–water combination refers to the ease with which a proton is passed from one water molecule to another; that is, $H_3O^+ + H_2O \Longrightarrow H_2O + H_3O^+$

A Weak Base

A Weak Acid

A Strong Acid

16-3 The Self-Ionization of Water and the pH Scale

Ion Product of Water

base acid conjugate conjugate acid base
$$H_2O + H_2O \Longrightarrow H_3O^+ + OH^-$$

$$K_{c} = \frac{[H_{3}O^{+}][OH^{-}]}{[H_{2}O][H_{2}O]}$$

$$K_{\text{w}} = K_{\text{c}}[\text{H}_2\text{O}][\text{H}_2\text{O}] = [\text{H}_3\text{O}^+][\text{OH}^-] = 1.0 \times 10^{-14}$$

pH and pOH

◆ The potential of the hydrogen ion was defined in 1909 as the negative of the logarithm of [H⁺].

$$pH = -log[H_3O^+]$$
 $pOH = -log[OH^-]$

$$K_{\rm W} = [{\rm H_3O^+}][{\rm OH^-}] = 1.0 \times 10^{-14}$$

$$-{\rm log}K_{\rm W} = -{\rm log}[{\rm H_3O^+}] - {\rm log}[{\rm OH^-}] = -{\rm log}(1.0 \times 10^{-14})$$

$$pK_{\rm W} = p{\rm H} + p{\rm OH} = -(-14)$$

$$pK_{\rm W} = p{\rm H} + p{\rm OH} = 14$$

pH and pOH Scales

Slide 15 of 52

General Chemistry: Chapter 16

Prentice-Hall © 2007

16-4 Strong Acids and Bases

TABLE 16.2
The Common Strong
Acids and Strong Bases

Acids	Bases
HCl	LiOH
HBr	NaOH
HI	KOH
$HClO_4$	RbOH
HNO_3	CsOH
$H_2SO_4^a$	$Mg(OH)_2$
	$Ca(OH)_2$
	$Sr(OH)_2$
	Ba(OH) ₂

^aH₂SO₄ ionizes in two distinct steps. It is a strong acid only in its first ionization HCl CH₃CO₂H

Thymol Blue Indicator

16-5 Weak Acids and Bases

Weak Acids

Acetic Acid

$$K_{\rm a} = \frac{[{\rm CH_3CO_2}^{-}][{\rm H_3O^{+}}]}{[{\rm CH_3CO_2H}]} = 1.8 \times 10^{-5}$$

$$pK_a = -\log(1.8 \times 10^{-5}) = 4.74$$

Weak Bases

$$K_{\rm b} = \frac{[{\rm CH_3NH_3^+}][{\rm HO^-}]}{[{\rm CH_3NH_2}]} = 4.3 \times 10^{-4}$$

$$pK_b = -\log(4.2 \times 10^{-4}) = 3.37$$

Table 16.3 Ionization Constants of Weak Acids and Bases

	Ionization Equilibrium	Ionization Constant K	p <i>K</i>
Acid		$K_{\mathbf{a}} =$	$pK_a =$
Iodic acid	$HIO_3 + H_2O \rightleftharpoons H_3O^+ + IO_3^-$	1.6×10^{-1}	0.80
Chlorous acid	$HCIO_2 + H_2O \rightleftharpoons H_3O^+ + CIO_2^-$	1.1×10^{-2}	1.96
Chloroacetic acid	$HC_2H_2CIO_2^2 + H_2O \rightleftharpoons H_3O^+ + C_2H_2CIO_2^-$	1.4×10^{-3}	2.85
Nitrous acid	$HNO_2 + H_2O \Longrightarrow H_3O^+ + NO_2^-$	7.2×10^{-4}	3.14
Hydrofluoric acid	$HF + H_2O \Longrightarrow H_3O^+ + F^-$	6.6×10^{-4}	3.18
Formic acid	$HCHO_2 + H_2O \rightleftharpoons H_3O^+ + CHO_2^-$	1.8×10^{-4}	3.74
Benzoic acid	$HC_7H_5O_2^- + H_2O \iff H_3O^+ + C_7H_5O_2^-$	6.3×10^{-5}	4.20
Hydrazoic acid	$HN_3 + H_2O \Longrightarrow H_3O^+ + N_3^-$	1.9×10^{-5}	4.72
Acetic acid	$HC_2H_3O_2 + H_2O \implies H_3O^+ + C_2H_3O_2^-$	1.8×10^{-5}	4.74
Hypochlorous acid	$HOCI + H_2O \Longrightarrow H_3O^+ + OCI^-$	2.9×10^{-8}	7.54
Hydrocyanic acid	$HCN + H_2O \rightleftharpoons H_3O^+ + CN^-$	6.2×10^{-10}	9.21
Phenol	$HOC_6H_5 + H_2O \rightleftharpoons H_3O^+ + C_6H_5O^-$	1.0×10^{-10}	10.00
Hydrogen peroxide	$H_2O_2 + H_2O \rightleftharpoons H_3O^+ + HO_2^-$	1.8×10^{-12}	11.74
Base		$K_{\mathbf{b}} =$	$pK_b =$
Diethylamine	$(C_2H_5)_2NH + H_2O \implies (C_2H_5)_2NH_2^+ + OH^-$	6.9×10^{-4}	3.16
Ethylamine	$C_2H_5NH_2 + H_2O \rightleftharpoons C_2H_5NH_3^+ + OH^-$	4.3×10^{-4}	3.37
Ammonia	$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$	1.8×10^{-5}	4.74
Hydroxylamine	$HONH_2 + H_2O \Longrightarrow HONH_3^+ + OH^-$	9.1×10^{-9}	8.04
Pyridine	$C_5H_5N + H_2O \rightleftharpoons C_5H_5NH^+ + OH^-$	1.5×10^{-9}	8.82
Aniline	$C_6H_5NH_2 + H_2O \rightleftharpoons C_6H_5NH_3^+ + OH^-$	7.4×10^{-10}	9.13

Slide 20 of 52

General Chemistry: Chapter 16

Prentice-Hall © 2007

Determining a Value of K_A from the pH of a Solution of a Weak Acid. Butyric acid, $HC_4H_7O_2$ (or $CH_3CH_2CH_2CO_2H$) is used to make compounds employed in artificial flavorings and syrups. A 0.250 M aqueous solution of $HC_4H_7O_2$ is found to have a pH of 2.72. Determine K_A for butyric acid.

$$HC_4H_7O_2 + H_2O \Longrightarrow C_4H_7O_2 + H_3O^+$$

$$K_{\rm a} = ?$$

Solution:

For $HC_4H_7O_2$ K_A is likely to be much larger than K_W . Therefore assume self-ionization of water is unimportant.

$$HC_4H_7O_2 + H_2O \rightleftharpoons C_4H_7O_2 + H_3O^+$$

Initial conc.

0.250 M

0

()

Changes

-x M

+x M

+x M

Equilibrium

Concentration

(0.250-x) M

x M

x M

$$HC_4H_7O_2 + H_2O \Longrightarrow C_4H_7O_2 + H_3O^+$$

$$Log[H_3O^+] = -pH = -2.72$$

$$[H_3O^+] = 10^{-2.72} = 1.9 \times 10^{-3} = x$$

$$K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+] [{\rm C}_4{\rm H}_7{\rm O}_2^-]}{[{\rm HC}_4{\rm H}_7{\rm O}_2]} = \frac{1.9 \times 10^{-3} \cdot 1.9 \times 10^{-3}}{(0.250 - 1.9 \times 10^{-3})}$$

$$K_{\rm a}=1.5\times10^{-5}$$
 Check assumption: $K_{\rm a}>>K_{\rm W}$.

Percent Ionization

$$HA + H_2O \rightleftharpoons H_3O^+ + A^-$$

Degree of ionization =
$$\frac{[H_3O^+] \text{ from HA}}{[HA] \text{ originally}}$$

Percent ionization =
$$\frac{[H_3O^+] \text{ from HA}}{[HA] \text{ originally}} \times 100\%$$

Percent Ionization

$$K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm A}^-]}{[{\rm HA}]}$$

$$K_{\rm a} = \frac{n_{{\rm H}_3{\rm O}^+} n_{{\rm A}^-}}{n_{{\rm HA}}} \frac{1}{V}$$

16-6 Polyprotic Acids

Phosphoric acid:

A triprotic acid.

$$H_3PO_4 + H_2O \rightleftharpoons H_3O^+ + H_2PO_4^-$$

$$K_a = 7.1 \times 10^{-3}$$

$$H_2PO_4^- + H_2O \rightleftharpoons H_3O^+ + HPO_4^{2-}$$

$$K_a = 6.3 \times 10^{-8}$$

$$HPO_4^{2-} + H_2O \Longrightarrow H_3O^+ + PO_4^{3-}$$

$$K_a = 4.2 \times 10^{-13}$$

Phosphoric Acid

- \bullet $K_{a1} >> K_{a2}$
 - All H₃O⁺ is formed in the first ionization step.
- ◆ H₂PO₄ essentially does not ionize further.
 - Assume $[H_2PO_4^{-}] = [H_3O^+]$.
- ♦ [HPO₄²⁻] ≈ K_{a2} regardless of solution molarity.

Acid	Ionization Equilibria	Ionization Constants, K	p <i>K</i>
Hydrosulfurica	$H_2S + H_2O \iff H_3O^+ + HS^-$	$K_{\rm a_1} = 1.0 \times 10^{-7}$	$pK_{a_1} = 7.00$
	$HS^- + H_2O \iff H_3O^+ + S^{2-}$	$K_{\rm a_2} = 1 \times 10^{-19}$	$pK_{a_2} = 19.0$
Carbonic ^b	$H_2CO_3 + H_2O \iff H_3O^+ + HCO_3^-$	$K_{\rm a_1} = 4.4 \times 10^{-7}$	$pK_{a_1} = 6.36$
	$HCO_3^- + H_2O \rightleftharpoons H_3O^+ + CO_3^{2-}$	$K_{\rm a_2} = 4.7 \times 10^{-11}$	$pK_{a_2} = 10.33$
Phosphoric	$H_3PO_4 + H_2O \implies H_3O^+ + H_2PO_4^-$	$K_{\rm a_1} = 7.1 \times 10^{-3}$	$pK_{a_1} = 2.15$
	$H_2PO_4^- + H_2O \iff H_3O^+ + HPO_4^{2-}$	$K_{\rm a_2} = 6.3 \times 10^{-8}$	$pK_{a_2} = 7.20$
	$HPO_4^{2-} + H_2O \iff H_3O^+ + PO_4^{3-}$	$K_{\rm a_3} = 4.2 \times 10^{-13}$	$pK_{a_3} = 12.38$
Sulfurous ^c	$H_2SO_3 + H_2O \iff H_3O^+ + HSO_3^-$	$K_{\rm a_1} = 1.3 \times 10^{-2}$	$pK_{a_1} = 1.89$
	$HSO_3^- + H_2O \iff H_3O^+ + SO_3^{2-}$	$K_{\rm a_2} = 6.2 \times 10^{-8}$	$pK_{a_2} = 7.21$
Sulfuricd	$H_2SO_4 + H_2O \iff H_3O^+ + HSO_4^-$	K_{a_1} = very large	$pK_{a_1} < 0$
	$HSO_4^- + H_2O \iff H_3O^+ + SO_4^{2-}$	$K_{\rm a_2} = 1.1 \times 10^{-2}$	$pK_{a_2} = 1.96$

^aThe value for K_{a_2} of H_2S most commonly found in older literature is about 1×10^{-14} , but current evidence suggests that the value is considerably smaller.

$$CO_2(aq) + 2 H_2O \Longrightarrow H_3O^+ + HCO_3^-$$

Generally, aqueous solutions of CO_2 are treated *as if* the $CO_2(aq)$ were first converted to H_2CO_3 , followed by ionization of the H_2CO_3 . cH_2SO_3 is a hypothetical, nonisolatable species. The value listed for K_{a_1} is actually for the reaction

$$SO_2(aq) + 2 H_2O \Longrightarrow H_3O^+ + HSO_3^-$$

 $^{^{}b}H_{2}CO_{3}$ cannot be isolated. It is in equilibrium with $H_{2}O$ and dissolved CO_{2} . The value given for $K_{a_{1}}$ is actually for the reaction

^dH₂SO₄ is completely ionized in the first step.

Calculating Ion Concentrations in a Polyprotic Acid **Solution.** For a 3.0 M H₃PO₄ solution, calculate:

(a)
$$[H_3O^+];$$

(b)
$$[H_2PO_4^-];$$

(a)
$$[H_3O^+];$$
 (b) $[H_2PO_4^-];$ (c) $[HPO_4^{2-}]$

(**d**)
$$[PO_4^{3-}]$$

$$H_3PO_4 + H_2O \Longrightarrow H_2PO_4^- + H_3O^+$$

$$+x M$$

$$+x M$$

$$(3.0-x) M$$

$$H_3PO_4 + H_2O \rightleftharpoons H_2PO_4^- + H_3O^+$$

$$K_{a} = \frac{[H_{3}O^{+}][H_{2}PO_{4}^{-}]}{[H_{3}PO_{4}]} = \frac{x \cdot x}{(3.0 - x)} = 7.1 \times 10^{-3}$$

Assume that $x \ll 3.0$

$$x^2 = (3.0)(7.1 \times 10^{-3})$$
 $x = 0.14 \text{ M}$

$$[H_2PO_4^-] = [H_3O^+] = 0.14 \text{ M}$$

$$H_2PO_4^- + H_2O \rightleftharpoons HPO_4^{2-} + H_3O^+$$

Initial conc.

0.14 M

()

0.14 M

Changes

-y **M**

+y M + y M

Equilibrium (0.14 - y) M

y M

(0.14 + y) M

Concentration

$$K_{a} = \frac{[H_{3}O^{+}][HPO_{4}^{2-}]}{[H_{2}PO_{4}^{-}]} = \frac{y \cdot (0.14 + y)}{(0.14 - y)} = 6.3 \times 10^{-8}$$

$$y = [HPO_4^{2-}] = 6.3 \times 10^{-8}$$

$$HPO_4^- + H_2O \Longrightarrow PO_4^{3-} + H_3O^+$$

$$K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+] \ [{\rm HPO}_4^{\ 2^-}]}{[{\rm H}_2{\rm PO}_4^{\ -}]} = \frac{(0.14)[{\rm PO}_4^{\ 3^-}]}{6.3\times10^{-8}} = 4.2\times10^{-13} {\rm M}$$

$$[PO_4^{3-}] = 1.9 \times 10^{-19} M$$

Sulfuric Acid

Sulfuric acid:

A diprotic acid.

$$H_2SO_4 + H_2O \Longrightarrow H_3O^+ + HSO_4^-$$

$$K_a$$
 = very large

$$HSO_4^- + H_2O \Longrightarrow H_3O^+ + SO_4^{2-}$$

$$K_{\rm a} = 1.96$$

General Approach to Solution Equilibrium Calculations

- ◆ Identify species present in any significant amounts in solution (excluding H₂O).
- Write equations that include these species.
 - Number of equations = number of unknowns.
 - Equilibrium constant expressions.
 - Material balance equations.
 - Electroneutrality condition.
- ◆ Solve the system of equations for the unknowns.

16-7 Ions as Acids and Bases

$$CH_3CO_2^- + H_2O \Longrightarrow CH_3CO_2H + OH_3$$

$$NH_4^+ + H_2O \Longrightarrow NH_3 + H_3O^+ \qquad K_a = \frac{[NH_3][H_3O^+]}{[NH_4^+]} = ?$$

$$K_{\rm a} = \frac{[{\rm NH_3}] [{\rm H_3O^+}] [{\rm OH^-}]}{[{\rm NH_4^+}] [{\rm OH^-}]} = \frac{K_{\rm W}}{K_{\rm b}} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10}$$

$$K_{\rm a} K_{\rm b} = K_{\rm w}$$

Hydrolysis

◆ Water (*hydro*) causing cleavage (*lysis*) of a bond.

$$Na^+ + H_2O \rightarrow Na^+ + H_2O$$

No reaction

$$Cl^- + H_2O \rightarrow Cl^- + H_2O$$

No reaction

$$NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$$
 Hydrolysis

16-8 Molecular Structure and Acid-Base Behavior

- ♦ Why is HCl a strong acid, but HF is a weak one?
- ◆ Why is CH₃CO₂H a stronger acid than CH₃CH₂OH?
- ◆ There is a relationship between molecular structure and acid strength.
- ♦ Bond dissociation energies are measured in the gas phase and *not* in solution.

Strengths of Binary Acids

	HI		HBr		HCl		HF	
Bond length	160.9	>	141.4	>	127.4	>	91.7	pm
Bond energy	297	<	368	<	431	<	569	kJ/mol
Acid strength	10^{9}	>	$10^{8} >$	· 1	.3×10 ⁶	>>	6.6×10 ⁻	4

$$HF + H_2O \rightarrow [F^- \cdots H_3O^+] \rightleftharpoons F^- + H_3O^+$$

$$ion \ pair \qquad free \ ions$$

$$H-bonding$$

Strengths of Oxoacids

- ◆ Factors promoting electron withdrawal from the OH bond to the oxygen atom:
 - High electronegativity (*EN*) of the central atom.
 - A large number of terminal O atoms in the molecule.

$$EN_{\rm Cl} = 3.0$$

$$EN_{\rm Br} = 2.8$$

$$K_a = 2.9 \times 10^{-8}$$

$$K_a = 2.1 \times 10^{-9}$$

Strengths of Oxoacids

Strengths of Organic Acids

acetic acid

$$K_a = 1.8 \times 10^{-5}$$

ethanol

$$K_a = 1.3 \times 10^{-16}$$

Focus on the Anions Formed

Ethoxide

Acetate

Structural Effects

$$K_{\rm a} = 1.3 \times 10^{-5}$$

Structural Effects

$$K_{\rm a} = 1.4 \times 10^{-3}$$

Strengths of Amines as Bases

ammonia

$$pK_{b} = 4.74$$

bromamine

$$pK_a = 7.61$$

Strengths of Amines as Bases

methylamine

$$pK_{b} = 4.74$$

ethylamine

$$pK_a = 3.38$$

propylamine

$$pK_b = 3.37$$

Resonance Effects

Inductive Effects

Cl—NH₂

$$para$$
-Chloroaniline, p $K_b = 10.01$

ortho-Chloroaniline, $pK_b = 11.36$

16-9 Lewis Acids and Bases

Lewis Acid

- A species (atom, ion or molecule) that is an electron pair *acceptor*.
- Lewis Base
 - A species that is an electron pair *donor*.

Showing Electron Movement

$$Ca^{2+}:O:^{2-} + S:O: \longrightarrow Ca^{2+} \left[:O-S:O: \right]^{2-}$$

Focus On Acid Rain

$$CO_2 + H_2O \Longrightarrow H_2CO_3$$
 $3 NO_2 + H_2O \Longrightarrow 2 HNO_3 + NO$
 $H_2CO_3 + H_2O \Longrightarrow HCO_3^- + H_3O^+$

End of Chapter Questions

- When you see the correct approach to a problem after going down various wrong paths, you learn about the decision making process that leads to good solutions.
- ◆ Do not go straight to a solution manual after only one attempt at a problem. You will not learn how to make decisions.