APLICACIÓN DE PUNTO FIJO

Identificación de la Ecuación Original

La ecuación que queremos resolver es:

$$f(x)=x^2-3=0$$

Para poder usar el **Método de Punto Fijo**, necesitamos reescribir esta ecuación en la forma: x=g(x)

Reescritura de la Ecuación

Para aplicar el método, debemos despejar xxx de la ecuación original. Tomemos una función que tenga una forma que permita hacer esta reescritura.

Función Original

la ecuación original que queremos resolver es:

$$x^2-3=0$$

$$x^2=3$$

Por lo tanto, x es

$$\pmb{x}=\sqrt{\pmb{3}}$$

reescribimos la ecuación de modo que sea adecuada para el **Método de Punto Fijo**. De esta forma:

$$x=\sqrt{3+x}$$

Esto es lo que nos da la función g(x), que es:

$$g(x) = \sqrt{3+x}$$

Aplicación del Método de Punto Fijo

Con la función g(x), podemos aplicar el **Método de Punto Fijo** de la siguiente manera:

- 1. Elegir un valor inicial x_0
- 2. Iterar utilizando la fórmula de iteración:

$$x_{i+1}=g(x_i)=\sqrt{3+x_i}$$

Es decir, en cada iteración calculamos un nuevo valor de x_{i+1} tomando el valor anterior xi y aplicando la función.

3. Calcular el error relativo Ea% en cada iteración para verificar si hemos alcanzado una solución adecuada:

$$E_a\% = \left|rac{x_{
m actual} - x_{
m anterior}}{x_{
m actual}}
ight| imes 100$$

4. **Detener las iteraciones** cuando el error relativo sea suficientemente pequeño (por ejemplo, menor al 0.01%).

Convergencia

El método continuará iterando hasta que el valor de xi se estabilice y el error relativo Ea% sea lo suficientemente pequeño, lo que indicará que la raíz ha sido encontrada con una precisión deseada.