What causes Multicollinearity?

- Multicollinearity could occur due to the following problems:
- Multicollinearity could also occur when new variables are created which are dependent on other variables:
 - For example, creating a variable for Seniority level from the 'Age' and 'years of experience' variables would include redundant information in the model.
- Including identical variables in the dataset:
 - For example, including variables for temperature in Fahrenheit and temperature in
- Inaccurate use of dummy variables can also cause a multicollinearity problem. This is called the **Dummy variable trap.**
 - For example, a dataset containing the status of marriage variable with two unique values: 'married', 'single'. Creating dummy variables for both of them would include redundant information. We can make do with only one variable containing 0/1 for 'married'/'single' status.
- Insufficient data in some cases can also cause multicollinearity problems.

Pearson Correlation

- A Pearson correlation is a number between -1 and 1 that indicates the extent to which two variables are linearly related.
- The Pearson correlation is also known as the "product moment correlation coefficient" (PMCC) or simply "correlation".
- The correlation coefficient has values between -1 to 1
 - A value closer to 0 implies weaker correlation (exact 0 implying no correlation)
 - A value closer to 1 implies stronger positive correlation
 - A value closer to -1 implies stronger negative correlation

Here our target variable is "Y" and from above figure we find out strong and weak correlation with independent variable and

How do we detect and remove multicollinearity?

- The best way to identify the multicollinearity is to calculate the Variance Inflation Factor (VIF) corresponding to every independent Variable in the Dataset.
- VIF determines the strength of the correlation between the independent variables. It is predicted by taking a variable and regressing it against every other variable
- VIF score of an independent variable represents how well the variable is explained by other independent variables.
- R^2 value is determined to find out how well an independent variable is described by the other independent variables.
- A high value of R^2 means that the variable is highly correlated with the other variables. This is captured by the VIF which is denoted below:

$$VIF = \frac{1}{1 - R^2}$$

- VIF tells us about how well an independent variable is predictable using the other independent variables.
- Let's understand this with the help of an example.

- Consider that we have 4 independent variables as shown.
- To calculate the VIF of variable X1, we isolate the variable X1 and consider as the target variable and all the other variables will be treated as the predictor (Independent) variables.

- We use all the other predictor variables and train a regression model and find out the corresponding R2 value.
- Using this R2 value, we compute the VIF value gives as the image below.

$$R^2 = 1 - \frac{\text{MSE(model)}}{\text{MSE(baseline)}}$$
 VIF = $\frac{1}{1 - R^2}$

- Looking at the formula, we can clearly see that as the R2 value increases, the VIF value also increases.
- A higher R2 value signifies that: "the target independent variable is very well explained by the other independent variables"
- Now what should be the VIF threshold value to decide whether the variable should be removed or not?
- It is always desirable to have VIF value as small as possible, but it can lead to many significant independent variables to be removed from the dataset.
- Therefore a VIF = 5 is often taken as a threshold. Which means that any independent variable greater than 5 will have to be removed. Although the ideal threshold value depends upon the problem at hand.
- So, the closer the R^2 value to 1, the higher the value of VIF and the higher the multicollinearity with the particular independent variable.
 - VIF starts at 1(when R^2=0, VIF=1 minimum value for VIF) and has no upper limit.
 - VIF = 1, no correlation between the independent variable and the other variables.
 - <u>VIF exceeding 5 or 10 indicates high multicollinearity</u> between this independent variable and the others.
 - Some researchers assume VIF>5 as a serious issue for our model while some researchers assume VIF>10 as serious, it varies from person to person.

Variance Inflation Factor(VIF)

If VIF=1; No multicollinearity

If VIF=<5; Low multicollinearity (moderately correlated)

If VIF=>5; High multicollinearity

If VIF is high.

i.e, high multicollinearity.

If VIF is low.

i.e, low multicollinearity.

• We were able to drop the variable 'X1' from the table-1 because its information was being captured by the 'X3' variable. This has reduced the redundancy in our dataset.

	va	riables	VIF	va	riables	VIF	
Table-1	0	X1	12.170983	0	X2	1.071737	Table-2
	1	X2	1.141542	1		1.345143 1.353161	
	2	X3	10.583793	,			
	3	X4	1.534203	2			

The table-1 contains the original VIF value for variables and the after dropping the 'X1' variable from table-1 and again apply VIF the result will be observed in table-2.

References:

https://www.youtube.com/watch?v=gk7M749HKBs