EA991 - Laboratório de Aprendizado de Máquina

Classificação

Prof. Denis G. Fantinato Prof. Levy Boccato

Introdução

- Classificação é a tarefa de atribuir a cada amostra ou exemplo de entrada um rótulo correspondente à classe à qual aquele dado pertence.
- **Exemplo:** detecção de *posts* relevantes em redes sociais

Event	Positive Images	Negative Images		
National Museum	The state of the s	Name hashed a resident of the Section of Section 1 for the Section		
Notre-Dame Cathedral		S frames, so of the state of th		

Introdução

• **Exemplo:** reconhecimento de atividades humanas

Cenários de classificação

Classificação binária

- Spam
- Not spam

Classificação multi-classe

- Dog
- Cat
- Horse
- Fish
- Bird
- ...

Classificação multirrótulo

- Dog
- Cat
- Horse
- Fish
- Bird
- ..

Classificação

- Conjunto de dados (dataset): $\{\mathbf{x}(i); \mathbf{y}(i)\}_{i=0}^{N-1}$
 - Cada amostra é caracterizada por K atributos e vem acompanhada da saída esperada.
 - Existem ao todo N amostras rotuladas.

• Entrada:

	Renda mensal	Idade	Escolaridade		Altura
	1.800,00	19	Médio	:	1,78
<u> </u>	10.500,00	32	Superior	÷	1,69
	6.870,00	43	Superior		1,99

Vetor ou lista de *K* elementos

Tensor: (3,224,224)

Classificação

Saída desejada:

Caso binário:

$$y(i) = \begin{cases} 0, & \mathbf{x}(i) \in C_1 \\ 1, & \mathbf{x}(i) \in C_2 \end{cases}$$

Multi-classe: neste caso, o classificador produz múltiplas saídas, cada uma representando a possibilidade de o padrão pertencer a uma classe específica.

- Matriz de confusão: contabiliza o número de classificações corretas e incorretas para cada uma das Q classes existentes. O elemento c_{ij} indica quantos padrões da classe i foram designados à classe j. Em sua diagonal, portanto, encontramos o número de classificações corretas.
 - Cada linha está associada a uma classe verdadeira;
 - Cada coluna está associada a uma classe estimada.

		Classe 6	Classe estimada		
		+	-		
Classe	+	Verdadeiro positivo (TP)	Falso negativo (FN)		
verdadeira	1	Falso positivo (FP)	Verdadeiro negativo (TN)		

• Matriz de confusão:

• Taxa de falso positivo: proporção de exemplos da classe negativa (-) classificados incorretamente.

Taxa de falso positivo =
$$\frac{FP}{TN + FP} = \frac{FP}{N_{-}}$$

• Taxa de falso negativo: proporção de exemplos da classe positiva (+) classificados incorretamente.

Taxa de falso negativo =
$$\frac{FN}{TP + FN} = \frac{FN}{N_+}$$

• **Precisão:** corresponde à proporção de amostras da classe positiva corretamente classificadas em relação a todos os exemplos atribuídos à classe positiva.

$$\operatorname{Precisão}(\hat{y}(\mathbf{x})) = \frac{\operatorname{TP}}{\operatorname{TP} + \operatorname{FP}}$$

• **Sensibilidade** (*recall*): também conhecida como taxa de verdadeiro positivo, a sensibilidade corresponde à proporção de amostras da classe positiva corretamente classificadas.

$$recall(\hat{y}(\mathbf{x})) = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$$

• **Especificidade:** também conhecida como taxa de verdadeiros negativos, a especificidade é dada pela proporção de amostras da classe negativa corretamente classificadas.

Especificidade
$$(\hat{y}(\mathbf{x})) = \frac{\text{TN}}{\text{TN} + \text{FP}}$$

		Classe estimada		
		+	-	
Classe	+	Verdadeiro positivo (TP)	Falso negativo (FN)	Recall: TP / (TP + FN)
verdadeira	-	Falso positivo (FP)	Verdadeiro negativo (TN)	Especificidade: TN / (TN + FP)
		Precisão (+): TP / (TP + FP)	Precisão (-): TN / (TN + FN)	Acurácia: (TP + TN) / (TP + TN + FP + FN)

 F₁-score: uma vez que precisão e recall costumam ser analisados juntos, existe uma métrica única, denominada F-medida (ou F-score), que combina as duas informações através de uma média harmônica ponderada:

$$F_1 = 2 \frac{recall(\hat{y}(\mathbf{x})) \times \operatorname{precisão}(\hat{y}(\mathbf{x}))}{recall(\hat{y}(\mathbf{x})) + \operatorname{precisão}(\hat{y}(\mathbf{x}))}$$

• Acurácia balanceada: trata-se de uma métrica competente para medir o desempenho de um classificador em cenários com um significativo desbalanceamento entre as classes, isto é, quando as classes têm quantidades de amostras bem discrepantes. Nela, todas as classes têm a mesma importância, independentemente da quantidade de amostras.

$$BA = \frac{recall_1 + \dots + recall_Q}{O}$$

- **Obs.:** É possível estender de maneira natural estas métricas para o cenário multi-classe; para isto, basta tomar, uma vez, cada classe C_k , k = 1, ..., Q, como sendo a classe positiva, enquanto todas as demais classes formam a classe negativa; assim, obtemos os valores das métricas para cada classe.
- **Curva ROC:** trata-se de um gráfico em que a taxa de verdadeiro positivo, a qual equivale ao *recall*, é exibida em função da taxa de falso positivo conforme se altera o limiar (*threshold*) de decisão.

Métodos de classificação

- Trata-se de uma abordagem de classificação que tenta promover a separação das classes com base em fronteiras de decisão lineares.
 - Originalmente é formulada para o caso de classificação binária, mas pode ser estendida para multi-classe.
- Caso binário: o modelo produz uma única saída por meio do seguinte mapeamento:

$$\hat{y}(\mathbf{x}) = \frac{e^{(w_0 + w_1 x_1 + \dots + w_K x_K)}}{1 + e^{(w_0 + w_1 x_1 + \dots + w_K x_K)}} = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + \dots + w_K x_K)}}$$

Os coeficientes da combinação linear dos atributos de entrada são os parâmetros ajustáveis do modelo

• Função logística: $g(z) = \frac{1}{1 + e^{-z}}$

- A regressão logística aplica a função logística ao resultado da combinação linear dos atributos de entrada (mais um termo adicional). Como a saída gerada está sempre entre 0 e 1, ela é interpretada como a probabilidade de a entrada pertencer à classe positiva, para a qual a saída desejada é y = 1.
- A fronteira de decisão se manifesta quando há uma indeterminação, a saber, quando as probabilidades correspondentes às duas classes são iguais, isto é, 0.5.

$$w_0 + w_1 x_1 + \dots + w_K x_K = 0$$
 Hiperplano

• Função de perda:

Para uma amostra
$$\rightarrow \text{Custo}(\hat{y}(\mathbf{x}); y) = \begin{cases} -\log \hat{y}(\mathbf{x}), & \text{se } y = 1 \\ -\log(1 - \hat{y}(\mathbf{x})), & \text{se } y = 0 \end{cases}$$

• Função de perda:

Para uma amostra: Custo
$$(\hat{y}(\mathbf{x}); y) = \underbrace{-y \log(\hat{y}(\mathbf{x}))}_{\text{Só exerce influência se } y=1} \underbrace{-(1-y) \log(1-\hat{y}(\mathbf{x}))}_{\text{Penaliza apenas se } y=0}$$

Entropia cruzada:

$$J_{CE}(\mathbf{w}) = -\frac{1}{N} \sum_{i=0}^{N-1} y(i) \log \left(\hat{y}(\mathbf{x}(i)) \right) + (1 - y(i)) \log \left(1 - \hat{y}(\mathbf{x}(i)) \right)$$

• **Treinamento:** é feito com o auxílio de algoritmos iterativos que atualizam os parâmetros **w** à medida que os dados são apresentados ao modelo.

• Ideia base: gradiente descendente

$$\mathbf{w}_{i+1} = \mathbf{w}_i - \alpha \nabla J_e(\mathbf{w}_i)^T$$

• Cada iteração do algoritmo corresponde a uma atualização do vetor de parâmetros; uma *época* corresponde a uma apresentação completa do conjunto de amostras de treinamento.

Caso multi-classe:

A estratégia consiste em montar um modelo que produza Q saídas, tal que cada saída represente a probabilidade de cada padrão pertencer a uma classe específica. Isto pode ser feito a partir da função softmax.

$$P(C_k|\mathbf{x}(i)) = \hat{y}_k(\mathbf{x}(i)) = \frac{e^{\left(\mathbf{\phi}(\mathbf{x}(i))^T \mathbf{w}_k\right)}}{\sum_{j} e^{\left(\mathbf{\phi}(\mathbf{x}(i))^T \mathbf{w}_j\right)}}$$

Propriedades:

$$\sum_{k=1}^{Q} \hat{y}_k (\mathbf{x}(i)) = 1$$
 Preenche os requisitos de uma função probabilidade de massa $0 \le \hat{y}_k (\mathbf{x}(i)) \le 1$

• Exemplo:

Fronteiras de decisão obtidas com a regressão logística para um problema com três classes linearmente separáveis

Próximos passos

- Complementar com:
 - o scikit-learn e logistic regression (hiperparâmetros)
 - o kNN
 - Visão geral e hiperparâmetros
 - o SVM
 - Árvore de decisão (overview simples) e random forest