EXPERIMENT 08

Problem Definition:

This network consists of 4 nodes (n0, n1, n2, n3) as shown in above figure. The duplex links between n0 and n2, and n1 and n2 have 2 Mbps of bandwidth and 10 ms of delay. The duplex link between n2 and n3 has 1.7 Mbps of bandwidth and 20 ms of delay. Each node uses a DropTail queue, of which the maximum size is 10. A "tcp" agent is attached to n0, and a connection is established to a tcp "sink" agent attached to n3. As default, the maximum size of a packet that a "tcp" agent can generate is 1KByte. A tcp "sink" agent generates and sends ACK packets to the sender (tcp agent) and frees the received packets. A "udp" agent that is attached to n1 is connected to a "null" agent attached to n3. A "null" agent just frees the packets received. A "ftp" and a "cbr" traffic generator are attached to "tcp" and "udp" agents respectively, and the "cbr" is configured to generate 1 KByte packets at the rate of 1 Mbps. The "cbr" is set to start at 0.1 sec and stop at 4.5 sec, and "ftp" is set to start at 1.0 sec and stop at 4.0 sec.

Code:

```
#Create a simulator object
set ns [new Simulator]
#Define different colors for data flows (for NAM)
$ns color 1 Blue
$ns color 2 Red
#Open the NAM trace file
set nf [open out.nam w]
$ns namtrace-all $nf
#Define a 'finish' procedure
proc finish {} {
        global ns nf
        $ns flush-trace
        #Close the NAM trace file
        close $nf
        #Execute NAM on the trace file
        exec nam out.nam &
        exit 0
}
#Create four nodes
```

set n0 [\$ns node]
set n1 [\$ns node]
set n2 [\$ns node]
set n3 [\$ns node]

#Create links between the nodes
\$ns duplex-link \$n0 \$n2 2Mb 10ms DropTail
\$ns duplex-link \$n1 \$n2 2Mb 10ms DropTail
\$ns duplex-link \$n2 \$n3 1.7Mb 20ms DropTail

#Set Queue Size of link (n2-n3) to 10
\$ns queue-limit \$n2 \$n3 10

#Give node position (for NAM)
\$ns duplex-link-op \$n0 \$n2 orient right-down
\$ns duplex-link-op \$n1 \$n2 orient right-up
\$ns duplex-link-op \$n2 \$n3 orient right

#Monitor the queue for link (n2-n3). (for NAM) \$ns duplex-link-op \$n2 \$n3 queuePos 0.5

#Setup a TCP connection
set tcp [new Agent/TCP]
\$tcp set class_ 2
\$ns attach-agent \$n0 \$tcp
set sink [new Agent/TCPSink]
\$ns attach-agent \$n3 \$sink
\$ns connect \$tcp \$sink
\$tcp set fid 1

#Setup a FTP over TCP connection
set ftp [new Application/FTP]
\$ftp attach-agent \$tcp
\$ftp set type_ FTP

```
#Setup a UDP connection
set udp [new Agent/UDP]
$ns attach-agent $n1 $udp
set null [new Agent/Null]
$ns attach-agent $n3 $null
$ns connect $udp $null
$udp set fid 2
#Setup a CBR over UDP connection
set cbr [new Application/Traffic/CBR]
$cbr attach-agent $udp
$cbr set type_ CBR
$cbr set packet_size_ 1000
$cbr set rate 1mb
$cbr set random false
#Schedule events for the CBR and FTP agents
$ns at 0.1 "$cbr start"
$ns at 1.0 "$ftp start"
$ns at 4.0 "$ftp stop"
$ns at 4.5 "$cbr stop"
#Detach tcp and sink agents (not really necessary)
$ns at 4.5 "$ns detach-agent $n0 $tcp; $ns detach-agent $n3 $sink"
#Call the finish procedure after 5 seconds of simulation time
$ns at 5.0 "finish"
#Print CBR packet size and interval
puts "CBR packet size = [$cbr set packet_size_]"
puts "CBR interval = [$cbr set interval ]"
#Run the simulation
$ns run
```

Output:

C:\Users\asus\Desktop\NotesBE2020-

21\MCC\NS2executableDir\NS2executableDir\bin>ns p1.tcl

CBR packet size = 1000

CBR interval = 0.0080000000000000002

C:\Users\asus\Desktop\NotesBE2020-21\MCC\NS2executableDir\NS2executableDir\bin>