МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА

Мельницька А. Р.

ШЕВЧЕНКА

3BIT

Операційні підсилювачі з позитивним зворотним зв'язком

ББК 73Ц

I-72

Укладачі: Мельницька А. Р.

I-72 Звіт. Операційні підсилювачі з позитивним зворотним зв'язком./ укл. А. Р. Мельницька— К. : КНУ ім. Т. Шевченка, 2021. – 9 с. (Укр. мов.)

УДК 001.008 (002.21)

ББК 73Ц

© Київський Національний Університет імені Тараса Шевченка, 2021

РЕФЕРАТ

Звіт про дослідження операційних підсилювачів з позитивним зворотним зв'язком: 9 с., 7 рис.

Об'єкт дослідження: Операційні підсилювачі з позитивним зворотним зв'язком.

Мета роботи: ознайомитися з властивостями схем на операційних підсилювачах (ОП), охоплених позитивним зворотним зв'язком, опанувати способи генерації електричних сигналів за допомогою схем з ОП.

Метод вимірювання: метод співставлення – одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів.

В роботі використано програмне забезпечення для моделювання електронних схем NI Multisim $^{\rm TM}$.

3MICT

Вступ. Те	еоретичні відомості	5
Практичн	иа частина	6
1.	Тригер Шміта	6
2.	Генератор гармонічних коливань	7
3.	Релаксаційний генератор (мультивібратор)	8
Висновки	I	9
Список використаної літератури		9

ВСТУП. ТЕОРЕТИЧНІ ВІДОМОСТІ

Компаратор – це електронний пристрій порівняння двох аналогових сигналів: $U_{\rm Bx1}$ та $U_{\rm Bx2}$. При цьому на виході схеми формуються тільки два значення вихідного сигналу: a) напруга на виході максимальна ($U_{\text{вих}} = U_{max}$), якщо різниця напруг між вхідними сигналами ϵ додатньою $(U_{\rm BX1}-U_{\rm BX2})>0$; б) напруга на виході мінімальна ($U_{\text{вих}} = U_{min}$), якщо різниця напруг між $(U_{\rm BX1}-U_{\rm BX2})$ вхідними від'ємною < 0 сигналами ϵ Передавальна характеристика компаратора – залежність вихідної компаратора від напруги напруги його вході. на **Рівень включення (виключення) компаратора** — значення напруги на вході компаратора $U_{\rm BX} = U_{\rm BKJ}$, при якій вихідна напруга $U_{\rm BMX}$ змінює своє значення від мінімального U_{min} до максимального U_{max} (при включенні); при виключенні $U_{{\scriptscriptstyle \mathrm{BKJ}}} = U_{{\scriptscriptstyle \mathrm{BUKJ}}}$ і вихідна напруга змінюється від U_{max} до U_{min} . Гістерезисний компаратор (тригер Шміта) – це електронний пристрій порівняння, у якого передавальна характеристика є неоднозначною, тобто рівні

включення і виключення не збігаються (на відміну від звичайного компаратора), а відрізняються на величину, яку називають **гістерезисом** переключення.

Генератори – це електронні пристрої, які формують на виході змінну напругу потрібної форми. На відміну від підсилювачів, у таких пристроїв немає

входу. Їх вихідний сигнал з'являється у відповідь на підключення до них джерела живлення. Форма генерованої напруги може бути різноманітною: гармонічною, прямокутною, пилкоподібною або будь-якою іншою.

ПРАКТИЧНА ЧАСТИНА

Усі дані та результати наведені у графіках і рисунках

1. Тригер Шмідт

Рисунок 1. Схема

Рисунок 2. Покази осцилографа

Рисунок 3. Петля гістерезису

Ширина петлі гістерезису – ≈ 11 В ($\beta = 0.1$)

2. Генератор гармонічних коливань

Рисунок 4. Схема

Рисунок 5. Покази осцилографа

3. Релаксаційний генератор (мультивібратор)

Рисунок 2.1. Схема

Рисунок 3.2. Покази осцилографа

ВИСНОВКИ

В ході роботи ми досліджували операційні підсилювачі з позитивним зворотним зв'язком за допомогою NI MultisimTM. У роботі скористалися методом співставлення: одночасно спостерігали вхідний та вихідний сигнал на екрані двоканального осцилографа, виміряли їх і порівняли.

У результаті, ми пересвідчились у можливості створення генераторів коливань струму різноманітної природи за допомогою ОП.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- 1. Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк,
- 2. Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян "Вивчення радіоелектронних схем методом комп'ютерного моделювання" : Методичне видання. К.: 2006.- с.