《汽轮机原理》习题

- 1. 已知: 渐缩喷嘴进口蒸汽压力 $p_0=8.4MPa$,温度 $t_0=490\,^{\circ}$ 、初速 $c_0=50\,m/s$; 喷嘴后蒸汽压力 $p_1=5.8MPa$,喷嘴速度系数 $\phi=0.97$ 。求
 - (1) 喷嘴前蒸汽滞止焓、滞止压力;
 - (2) 喷嘴出口的实际速度;
 - (3) 当喷嘴后蒸汽压力由 $p_1 = 5.8 MPa$ 下降到临界压力时的临界速度。
- 2. 已知:某汽轮机级的进汽压力 $p_0=1.96MPa$,温度 $t_0=350$ °C;级后蒸汽压力 $p_2=1.47MPa$ 。速度比 $x_1=u/c_1=0.53$,级的平均反动度 $\Omega_m=0.15$,又知喷嘴和动叶栅的速度系数分别为 $\phi=0.97$, $\psi=0.90$,喷嘴和动叶的出口汽流角为 $\alpha_1=18$ °, $\beta_2^*=\beta_1-6$ °。
 - (1) 求解并作出该级的速度三角形;
 - (2) 若余速利用系数 $\mu_0 = 0$, $\mu_1 = 1$,流量 D = 960 t/h,求级的轮周效率 η_u 和轮周功率 P_u ;
 - (3) 定性绘制级的热力过程曲线。
- 3. 某机组冲动级级前蒸汽压力 $p_0=1.96MPa$,温度 $t_0=350$ °C;级后蒸汽压力 $p_2=1.47MPa$ 。该级速度比 $x_1=0.45$,喷嘴出口汽流角为 $\alpha_1=13$ ° ,动叶的进口汽流角与出口汽流角相等($\beta_1=\beta_2^*$),喷嘴和动叶栅的速度系数分别为 $\phi=0.95$, $\psi=0.87$;该级的平均反动度 $\Omega_m=0$ 。试求解:同题 2(1)、(2)、(3)。
- 4. 国产某机组第三级设计工况下级前蒸汽压力 $p_0=5.13MPa$,温度 $t_0=467.5\,^\circ\mathbb{C}$;级后蒸汽压力 $p_2=4.37MPa$,进口汽流的初速动能 $\Delta h_{c_0}=1.214\,kJ/kg$ 全部被利用。设计中选定该级的平均直径 $d_m=998.5mm$,级的平均反动度 $\Omega_m=7.94\%$,喷嘴出口汽流角为 $\alpha_1=10^\circ47'$,动叶的出口汽流角相等 $\beta_2^*=17^\circ54'$ 。又知喷嘴和动叶栅的速度系数分别为 $\phi=0.97$, $\psi=0.935$,汽轮机的转速 $n=3000\,r/\mathrm{min}$, $\mu_1=1$ 。试作出该级的速度三角形,求级的轮周效率 η_u ,定性绘制级的热力过程曲线。

- - (1) 动叶的进出口汽流角 β_1 和 β_2^* ;
 - (2) 单位流量蒸汽作用于动叶片上的作用力 F_{u1} 和 F_{z1} ;
 - (3) 单位流量蒸汽所作的轮周功 P_{u1} ,以及轮周效率 η_u 。
- 6. 已知机组某纯冲动级喷嘴出口汽流速度 $c_1=766.8\,m/s$,喷嘴出口汽流角 $\alpha_1=20^\circ$,动叶圆周速 $u=365.76\,m/s$ 。若动叶进出口汽流角相同,喷嘴速度系数 $\phi=0.96$,动叶速度系数 $\psi=0.80$,通过该级的蒸汽流量 $G=1.2\,kg/s$, $\mu_1=0$,试求:
 - (1) 蒸汽进入动叶的角度 β_1 和相对速度 w_1 ;
 - (2) 蒸汽作用在动叶上的切向力 F_{u} ;
 - (3) 级的轮周功率 P_{μ} 和轮周效率 η_{μ} 。
- 7. 试估算某机组低压缸的级数 z 。已知该级组的理想焓降为 $\Delta H_t = 260 kJ/kg$,级组的第一级和最末级的平均直径分别为 $d_1 = 0.956m$, $d_z = 0.997m$ 。速度比 $x_a = 0.50$,且对于各级均为定数。转速 $n = 3000 \, r/{\rm min}$,重热系数 $\alpha = 0.05$ 。
- 8. 某中压汽轮机的前轴封是由若干段迷宫式轴封组成。其第一段轴封的有关数据如下:轴 封片数 z=17,轴封段直径 $d_l=400mm$,轴封径向间隙 $\delta=0.5mm$,轴封进汽压力 $p_0=1.18MPa$,温度 $t_0=300$ $\mathbb C$ 。试求:
 - (1) 轴封段后汽压 $p_{z1} = 0.294MPa$ 时,该轴封段的漏汽量 ΔG_{11} ;
 - (2) 当轴封段后汽压 $p_{z2}=0.196MPa$ 时的漏汽量 ΔG_{l2} 。
- 9. 已知当喷嘴初压 $p_0=1.96MPa$,背压 $p_1=1.61MPa$ 时,通过喷嘴的流量 G=4kg/s 。 试求当初压维持不变,而喷嘴流量增至 $G_1=5kg/s$ 时的喷嘴背压 p_{11} 。

- 10. 已知渐缩喷嘴前蒸汽压力 $p_0=12.8MPa$,喷嘴后压力 $p_1=9.81MPa$,且保持不变。 当忽略蒸汽初温的变化,问喷嘴前蒸汽必须节流到什么压力 p_{01} ,才能使通过喷嘴的蒸汽流量减少至三分之一?
- 11. 已知某高压凝汽式汽轮机的设计流量 $G=165.75\,kg/s$,设计工况下调节级后蒸汽压力 $p_1=9.71MPa$,温度 $t_1=502.5$ °C,第一段回热抽汽点蒸汽压力 $p_2=3.73MPa$ 。若 工况变动后,调节级后蒸汽压力变化为 $p_{11}=10.69MPa$,温度 $t_{11}=513$ °C,第一段 回热抽汽点蒸汽压力 $p_{21}=4.12MPa$ 。试计算此工况下,通过调节级后至第一段回热抽汽点级组的流量是多少?
- 12. 已知在设计工况下通过某汽轮机的流量 $G_0=132.6t/h$,调节级汽室压力 $p_1=1.67MPa$ 。当机组流量变为 $G_1=90t/h$,试问在正常情况下调节级汽室压力应 为多大?若由于压力级组结垢,使通道面积较原来减少5%,则调节级汽室压力又应是 多少?
- 13. 下图为具有一次调整抽汽式汽轮机的实际工况图。
 - (1) 已知电功率 $N_{el} = 5600kW$, 抽汽量 $G_e = 30t/h$, 求新汽流量 G_0 为多少?
 - (2) 已知新汽量 $G_0 = 50t/h$, 抽汽量 $G_e = 36t/h$, 求电功率 N_{el} 为多少?
 - (3) 已知电功率 $N_{el}=4000kW$,低压缸流量 $G_c=8t/h$,求抽汽量 G_e 为多少?
 - (4) 已知抽汽量 $G_e=20t/h$,低压缸流量 $G_c=15t/h$,求电功率 N_{el} 及新汽量 G_0 为多少?
 - (5) 已知新汽量 $G_0 = 30t/h$,低压缸流量 $G_c = 12t/h$,求电功率 N_{el} 为多少?

- 14. 某单压凝汽器的冷却水进口温度 $t_{w1}=20$ \mathbb{C} ,冷却水温升 $\Delta t=8$ \mathbb{C} ,凝汽器传热端差 $\delta t=5$ \mathbb{C} ,试确定该凝汽器内压力。(不考虑过冷因素)
- 15. 根据下列条件,计算等截面叶片的根部截面上,由于离心力拉应力 σ_c 和汽流弯应力 σ_u 。已知:级的平均直径 $d_m=1.10m$,动叶高度 $l_b=0.05m$,轮周功率 $P_u=600kW$,该级为全周进汽,叶片数 $Z_b=152$,叶型根部抗弯断面系数 $W=0.09cm^3$,转速 $n=3000\,r/{\rm min}$,密度 $\rho=7.85\times 10^3\,kg/m^3$ 。忽略动叶前后压差轴向分力的变化。16. 试求等截面叶片的最大弯应力和最大拉应力。
 - 已知:通过该级的蒸汽流量 G=16.6kg/s,级的平均直径 $d_m=1.252m$,叶片高度 $l_b=0.191m$,动叶前压力 $p_1=0.03903MPa$,级后压力 $p_2=0.03766MPa$,喷嘴 出口汽流速度 $c_1=386m/s$,汽流角 $\alpha_1=15^\circ$, $\alpha_2^*=100^\circ$,余速 $c_2=97m/s$ 。级的轮周速度 u=196.5m/s,动叶片数 $Z_b=144$,叶片最小截面系数 $W_{\min}=0.508cm^3$,部分进汽度 e=1,叶片材料密度 $\rho=7.85\times 10^3~kg/m^3$ 。
- 17. 试求根部夹紧而顶端自由的等截面单个叶片的切向 A 型振动的一、二阶频率。已 知: 叶 高 $l_b=0.191m$, 叶 片 截 面 积 $A_b=3.4\times 10^{-4}m^2$, 最 小 惯 性 矩 $I_{\min}=0.742\times 10^{-8}m^4$,叶片材料的弹性模量 $E=20.59\times 10^{10}~N/m^2$,材料密度 $\rho=7.85\times 10^3~kg/m^3$ 。
- 18. 某级动叶片为调频的自由叶片,已知: A_0 型静频率 $f_{\min}=160Hz$, $f_{\max}=170Hz$,动 频 系 数 B=3 ,振 动 强 度 安 全 倍 率 $A_b=4.06$, 电 网 周 波 允 许 波 动 范 围 $48.5\sim50.5Hz$,各频位下的安全倍率限额见下表。试问:
 - (1) 叶片的频率分散度是否合格?
 - (2) 叶片振动安全倍率是否合格?
 - (3) 正常运行时能否避开危险共振?

K	2~3	3~4	4~5	5~6
$[A_b]$	4.5	3.7	3.5	3.5

- 19. 某厂在低周波运行期间,曾将同步器的工作范围调至 $4\% \sim -6\%$,该调速系统的速度 变动率 $\delta = 5\%$,试问:
 - (1) 当电网周波恢复至 50Hz 时,机组最多能带多少负荷?
 - (2) 当电网周波在何值时才能带上满负荷?
 - (3) 如果调节系统的迟缓率 $\varepsilon = 0.5\%$,机组甩负荷后转速升高的最大静态稳定值是 多少?
- 20. 甲、乙两机的静态特性如下图所示, 当电网周波为 50Hz 时, 甲、乙两机的负荷为 100% 额定值, 试求:
 - (1) 甲、乙两机的转速变动率各为多少?
 - (2) 若电网周波对应于转速升高到 3050rpm,则两机的负荷各为多少?
 - (3) 若电网周波对应于转速升高到 3050rpm, 甲机仍需担负 100%额定负荷,则其静态特性线应移到什么位置?
 - (4) 在甲机静态特性移动后,若该机组甩负荷,试问超调量为 90rpm 时是否引起超速保安器动作?(假定超速保安器的动作转速为112% n_0)

《汽轮机原理》补充习题

补充习题 1. 完成某冲动级的热力计算。

某多级汽轮机转速 n=3000rpm,其某级的动叶平均直径 $d_m=1300mm$,该级的平均反动度 $\Omega_m=0.20$,级的理想焓降 $\Delta h_t=90kJ/kg$,进口初速 $C_0=80m/s$,全部被利用,汽流角 $\alpha_1=15^\circ$, $\beta_2^*=\beta_1-6^\circ$, 离开本级的余速全部被下一级利用; 已知蒸汽流量 D=1700t/h,喷管速度系数 $\varphi=0.97$,动叶速度系数 $\psi=0.95$,除喷管损失、动叶损失 和余速损失外的其它级内损失为 2.10~kJ/kg。

- (1) 按比例绘制级的速度三角形。
- (2) 计算级的轮周效率、轮周功率。
- (3) 计算级的相对内效率、内功率。
- (4) 定性绘制级的热力过程线。

补充习题 2. 完成某反动级的热力计算。

某多级汽轮机转速 n=3000rpm ,其某级的动叶平均直径 $d_m=1250mm$,该级为反动级,级的理想焓降 $\Delta h_t=48kJ/kg$,进口初速 $C_0=50m/s$,全部被利用,汽流角 $\alpha_1=15^\circ$, $\beta_2^*=\alpha_1$,离开本级的余速全部被下一级利用;已知蒸汽流量 D=2500t/h ,喷管速度系数 $\varphi=0.97$,动叶速度系数 $\psi=0.96$,除喷管损失、动叶损失和余速损失外的其它级内损失为 2.10~kJ/kg 。

- (1) 按比例绘制级的速度三角形。
- (2) 计算级的轮周效率、轮周功率。
- (3) 计算级的相对内效率、内功率。
- (4) 定性绘制级的热力过程线。

补充习题 3.

某小型凝汽式汽轮机,额定工况下,主蒸汽流量 $D_0=100(t/h)$,调节级后蒸汽压力 $p_2=2.80(MPa)$,排汽压力 $p_c=5(KPa)$ 且保持不变,机组仅有一个不调整给水回热抽 汽,抽汽压力为 $p_e=1.00(MPa)$,给水回热用抽汽量 D_e 为主蒸汽流量的 12%(保持固定比例不变),试作以下变工况分析计算:

- (2) 在原额定工况流量下,若抽汽停运,求 p_{21} 、 p_{e1} ;
- (3) 在原额定工况流量下,若从抽汽点引额外蒸汽对外界供热, $D_{gr}=40(t/h)$,求 p_{21} 、 p_{e1} :
- (4) 在原额定工况流量下,若从抽汽点引额外蒸汽对外界供热,为保证对外供汽品质,要求抽汽压力 $p_{el} \geq 0.588(MPa)$,求最大可用于供热的蒸汽量 D_{er} :
- (5) 当对锅炉进行改造,主蒸汽流量为 $D_0 = 120(t/h)$,试求解满足(4)中供热压力的最大供热抽汽量 D_{gr} ;
- (6) 分析(1)~(5)中各种情况下汽轮机的调节级、各级组的焓降和功率相对于额定工况时的变化。

补充习题 4. 参照教材 P93 图 3-13 调节级变工况曲线以及相关叙述,考虑在以下三种条件下,调节级在喷嘴依次逐个开启的过程中,各喷嘴组的工作状况,并在图上画出对应的压力、流量变化特性曲线。

- (1) 额定流量下 (三阀全开,流量比达到 1.0 时),调节级汽室压力 $\frac{p_2}{p_0} = 0.40$;
- (2) 额定流量下 (三阀全开,流量比达到 1.0 时),调节级汽室压力 $\frac{p_2}{p_0} = 0.60$;
- (3) 额定流量下(三阀全开,流量比达到 1.0 时),调节级汽室压力 $\frac{p_2}{p_0} = 0.80$ 。