CODE

 d_{pile} = diameter of pile at footing base, mm

 \vec{D} = effect of service dead load

 D_s = effect of superimposed dead load

 D_w = effect of self-weight dead load of the concrete structural system

 e_h = distance from the inner surface of the shaft of a Jor L-bolt to the outer tip of the J- or L-bolt, mm

 e'_N = distance between resultant tension load on a group of anchors loaded in tension and the centroid of the group of anchors loaded in tension, mm; e'_N is always positive

 e'_V = distance between resultant shear load on a group of anchors loaded in shear in the same direction, and the centroid of the group of anchors loaded in shear in the same direction, mm; e'_V is always positive

E = effect of horizontal and vertical earthquake-induced forces

 E_c = modulus of elasticity of concrete, MPa

 E_{cb} = modulus of elasticity of beam concrete, MPa

 E_{cs} = modulus of elasticity of slab concrete, MPa

EI = flexural stiffness of member, N·mm²

(EI)_{eff} = effective flexural stiffness of member, N⋅mm²

 E_p = modulus of elasticity of prestressing reinforcement, MPa

 E_s = modulus of elasticity of reinforcement and structural steel, excluding prestressing reinforcement, MPa

 f_c' = specified compressive strength of concrete, MPa

 $\sqrt{f'_c}$ = square root of specified compressive strength of concrete, MPa

 f_{ci}' = specified compressive strength of concrete at time of initial prestress, MPa

 $\sqrt{f'_{ci}}$ = square root of specified compressive strength of concrete at time of initial prestress, MPa

 f_{ce} = effective compressive strength of the concrete in a strut or a nodal zone, MPa

 f_d = stress due to unfactored dead load, at extreme fiber of section where tensile stress is caused by externally applied loads, MPa

 f_{dc} = decompression stress; stress in the prestressed reinforcement if stress is zero in the concrete at the same level as the centroid of the prestressed reinforcement, MPa

 f_{pc} = compressive stress in concrete, after allowance for all prestress losses, at centroid of cross section resisting externally applied loads or at junction of web and flange where the centroid lies within the flange, MPa. In a composite member, f_{pc} is the resultant compressive stress at centroid of composite section, or at junction of web and flange where the centroid lies within the flange, due to both prestress

COMMENTARY

 e_{anc} = eccentricity of the anchorage device or group of devices with respect to the centroid of the cross section, mm

