Knight: Chapter 16

A Macroscopic Description of Matter (Solids, Liquids, and Gases, Atoms and Moles, & Temperature)

Prob. 15.60

Water flows from the pipe shown in the figure below with a speed of 4.0 m/s.

- a. What is the water pressure as it exits into the air?
- **b**. What is the height *h* of the standing column of water?

Quiz Question 1

An ideal fluid is pumped steadily up a vertical pipe with a uniform cross-section. The difference in pressure between a point at the top and at the bottom

- (1.) is the same as it would be if the fluid were motionless.
- 2. is greater at higher flow rates than at lower flow rates.
- 3. is less at higher flow rates than at lower flow rates.
- 4. does not depend on the density of the fluid.
- 5. is zero.

$$A_1 = A_2$$
 $Y = V_2$
 $P_1 + \frac{1}{2}\rho V_1^2 + \rho g Y_1 = P_2 + \frac{1}{2}\rho V_2^2 + \rho g Y_2$
 $P_1 = P_2 + \rho g (y_2 - y_1)$
 $P_1 = P_2 + \rho g h$

Solids, Liquids, & Gases

Solids..

- *rigid* macroscopic system consisting of particle-like atoms connected by spring-like molecular bonds.
 - each atom vibrates around an equilibrium position but otherwise has a fixed position.

Liquids..

- nearly *incompressible* (the molecules are about as close together as they can get).
- flow and deform to fit the shape of its container (molecules are free to move around).

© 2013 Pearson Education, Inc

Solids, Liquids, & Gases

Gases..

- a system in which each molecule moves through space as a *free*, *noninteracting particle* until it collides
 - with another molecule
 - with the wall of the container.
- are *fluids*, and highly *compressible*.

© 2013 Pearson Education, Inc

Volume and density

Mass density...

$$ho\equiv rac{M}{V}$$
 w

with SI units:
$$[\rho] = \frac{\text{kg}}{\text{m}^3}$$

M for the *system mass* & *m* for the *mass of an atom*.

Number density...

with SI units: $\frac{1}{\text{m}^3}$

A 100 m³ room has 10,000 tennis balls bouncing around. The number density of tennis balls in the room is $N/V = 10,000/100 \text{ m}^3 = 100 \text{ m}^{-3}$.

If we look at only half the room, we would find 5000 balls in 50 m³, again giving N/V = 5000/50 m³ = 100 m⁻³

In one-tenth of the room, we would find 1000 balls in 10 m³, again giving $N/V = 1000/10 \text{ m}^3 = 100 \text{ m}^{-3}$.

Atomic Mass & Atomic Mass Number

- Mass of an atom is determined primarily by: protons and neutrons.
- Atomic mass number:

$$A = \text{proton } \# + \text{neutron } \#$$

- Atomic mass:
- \simeq atomic mass number.
- u is the *unit of atomic mass*.

$$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg}$$

Element		A
¹ H	Hydrogen	1,
⁴ He	Helium	4
12 C	Carbon	12
^{14}N	Nitrogen	14
¹⁶ O	Oxygen	16
²⁰ Ne	Neon	20
^{27}Al	Aluminum	27
40 Ar	Argon	40
²⁰⁷ Pb	Lead	207

Moles and Molar Mass

Q: What is a mole, n?

□ The # of molecules contained in 1 mole of *any* gas is Avogadro's number, N_A , so

$$n = \frac{N}{N_A}$$

where

- \blacksquare *n* is the # of moles
- *N* is the # of atoms or molecules in a gas
- $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$

More on moles...

The # of moles in a system of mass M consisting of atoms or molecules with molar mass $M_{\rm mol}$ is

$$n = \frac{M}{M_{mol}}$$

□ with SI units:

$$[M_{mol}] = \text{kg/mol}$$

- □ Q: What is the molar mass of Carbon 12?
- □ A: 0.012 kg/mol
- \square Q: What is the molar mass of O_2 ?
- □ A: 0.032 kg/mol

Moles and Molar Mass

If atomic mass m is in kg, the # of atoms in a system of mass M can be found from:

$$N = \frac{M}{m}$$

Quiz Question 2

Which contains more molecules, a mole of hydrogen gas, H_2 , or a mole of oxygen gas, O_2 ?

- 1. H₂.
- 2. O₂.
- They each contain the same # of molecules.
 - 4. Can't tell without knowing their temperatures.

i.e. 16.2: Moles of Oxygen

100 g of oxygen gas is how many moles of oxygen?

$$N = \frac{N}{N_{0}}$$

$$M = 0.1 \text{ kg}$$

$$N = \frac{M}{M}$$

$$N = \frac{0.100 \text{ kg}}{0.032 \text{ kg/mol}} = 3.125 \text{ mol}$$

$$M = 32 \times 1.66 \times 10^{-27} \text{ kg} = 5.312 \times 10^{-26} \text{ kg}$$

$$M = 0.100 \text{ kg}$$

$$N = \frac{0.100 \text{ kg}}{5.312 \times 10^{-26} \text{ kg}} = 1.88 \times 10^{-24}$$

$$N = \frac{N}{1.88 \times 10^{-24}} = 3.127 \text{ mol}$$

Thermometers & Temperature Scales

Thermometers

- are used to measure the temperature of an object or a system.
- The level of the mercury rises due to *thermal expansion*.
- 3 different scales
 - Celsius
 - Kelvin
 - Fahrenheit

Temperature Unit Conversions

$$T_{K} = T_{C} + 273.15$$

 $T_{F} = \frac{9}{5}T_{C} + 32$

$$T_K = T_C + 273.15$$
 $\frac{5}{9}(T_F - 32) = T_C$
 $T_F = \frac{9}{5}T_C + 32$

Kelvin Temperature Scale

- Absolute Zero : T = oK = -273.15 °C (Pressure of a gas -> zero) Celsius Temperature Scale
- $T = 0 \, \text{C}$ Freezing point of H_2O , $T = 100 \, \text{C}$ Boiling point of H_2O Fahrenheit Temperature Scale
 - T = 32°F Freezing point of H_2O , T = 212°F Boiling point of H_2O

Quiz Question 3

Which is the largest increase of temperature?

- 1. An increase of 1°F.
- 2. An increase of 1°C.
- 3. An increase of 1 K.
- 4. Both 2 and 3, which are the same and larger than 1.
- 5. 1, 2, and 3 are all the same increase.