УДК 62-533.65

ПРОГРАММНЫЙ МОДУЛЬ ПРЕДУПРЕДИТЕЛЬНОЙ СИГНАЛИЗАЦИИ, АВАРИЙНОЙ ЗАЩИТЫ И ПОМОЩИ ОПЕРАТОРУ ВАКУУМНОЙ СИСТЕМЫ ТОКАМАКА КТМ

А.Г. Коровиков, В.М. Павлов*, Д.А. Ольховик

Институт атомной энергии НЯЦ Республики Казахстан, г. Курчатов *Томский политехнический университет E-mail: Korovikov@nnc.kz

Исследована система форвакуумной откачки вакуумной камеры токамака КТМ на модели, реализованной с помощью сетей Петри. Определены качественные характеристики модели. На основе данных модели запрограммирован модуль предупредительной сигнализации, аварийной защиты и помощи оператору.

Ключевые слова:

Система управления, математическая модель, сеть Петри, вакуумирование.

Key words:

Control system, mathematical model, Petri nets, vacuum pumping.

Введение

В настоящее время в г. Курчатов, Республика Казахстан, ведутся работы по реализации проекта строительства термоядерной установки «Казахстанский материаловедческий токамак КТМ».

Эффективность проведения экспериментальных исследований на термоядерных установках типа токамак определяется количеством и составом остаточного газа в объеме и состоянием поверхности разрядной камеры, которая является источником поступления в плазму различных примесей: паров воды, кислорода, углерода и т. п. Поэтому на этапе подготовки установки к эксперименту должна быть обеспечена откачка газов из рабочей камеры до 10^{-8} Topp.

Вакуумная система токамака KTM относится к дискретно-событийным системам и состоит из двух подсистем:

- форвакуумная откачка обеспечивает получение в вакуумной камере давления 10⁻³ Торр, необходимого для последующего включения высоковакуумных средств откачки — турбомолекулярных насосов дежурной откачки;
- дежурная откачка обеспечивает получение в вакуумной камере давления 10⁻⁸ Торр.

При вакуумировании большой удельный вес имеют технологические процессы дискретного (переключательного) типа, характеризующиеся большим количеством логических операций, необходимых для управления вакуумной системой. Управление процессами переключательного типа осуществляется в соответствии с некоторой стратегией переключения, получаемой в виде алгоритма управления. Для составления формализованного описания данного производственного процесса переключательного типа с последующей реализацией по нему логического управления широко используется аппарат дискретной математики [1–3].

Алгоритм работы форвакуумной системы

Форвакуумная система выполнена на базе трех пластинчато-роторных насосов 2НВР-250Д с азотными ловушками (NL1.1-NL1.3) (рис. 1). Предель-

ное остаточное давление в системе измеряется приборами Varian: шестью низковакуумными термопарными датчиками ConvecTorr (PT1.1-PT1.6) и одним вакуумметром Multi-Gauge. В начале процесса вакуумирования производится включение насосов 2HBP-250Д, параллельно производится включение вакуумметра и закрытие клапанов-натекателей соответствующего насоса (VF1.1-VF1.3). При достижении вакуума 10^{-3} Торр производится открытие задвижек 23B9-100 (VTM1.2-VTM1.4), при достижении вакуума 10^{-3} Торр в объеме до клапана КУЭТ-100 (VM1.1) клапан плавно открывается, а при достижении вакуума 10^{-3} Торр в объеме до задвижки Vat (VTP1.1) задвижка открывается.

При плановой или аварийной остановке любого из насосов необходимо последовательно закрыть его задвижку, открыть (подать питание) его клапан-натекатель и отключить соответствующий насос. При плановой или аварийной остановке последнего из ранее работавших насосов необходимо закрыть все клапана и задвижки системы, открыть все клапаны-натекатели и отключить насосы.

Моделирование

В качестве граф-модели дискретного процесса применена сеть Петри, позиции которой сопоставлены с операциями, а переходы — с условиями смены операций. Применение такой модели позволяет решать ряд задач [4, 5]:

- определить классы дискретных процессов (циклических, конвейерных и т. д.), их свойства, способы отображения, провести анализ и синтез через формальные понятия и методы сетей Петри;
- свести задачу проверки корректности дискретного процесса к исследованию сетей Петри;

Модель функционирования форвакуумной системы представлена сетью Петри (рис. 2), а ее содержательный смысл приведен в табл. 1 и 2. Сеть содержит 36 позиций b_1-b_{36} и 23 перехода d_1-d_{23} . Начальная маркировка соответствует состоянию, при котором все насосы системы выключены, клапаны и задвижки закрыты, открыты клапаны-натекатели. Записывая

Рис. 1. Система форвакуумной откачки

Таблица 1. Содержательный смысл позиций сети Петри

Позиция	События технологического агрегата
b_1	Готовность насоса <i>NL</i> 1.1
b_2	Готовность насоса <i>NL</i> 1.2
<i>b</i> ₃	Готовность насоса <i>NL</i> 1.3
<i>b</i> ₄	Насос <i>NL</i> 1.1 включен
<i>b</i> ₅	Насос <i>NL</i> 1.2 включен
<i>b</i> ₆	Насос <i>NL</i> 1.3 включен
<i>b</i> ₇	Открыт клапан-натекатель <i>VF</i> 1.1
<i>b</i> ₈	Открыт клапан-натекатель <i>VF</i> 1.2
<i>b</i> ₉	Открыт клапан-натекатель <i>VF</i> 1.3
b ₁₀ -b ₁₂	Откачка вакуума до задвижки 23ВЭ-100
<i>b</i> ₁₃	Открыт клапан <i>VTM</i> 1.2
b ₁₄	Открыт клапан <i>VTM</i> 1.3
<i>b</i> ₁₅	Открыт клапан <i>VTM</i> 1.4
b ₁₆ -b ₁₈	Уровень вакуума менее 0,001 Торр
b ₁₉ -b ₂₁	Откачка вакуума до клапана вакуумного <i>VM</i> 1.1
b ₂₂	Открыт клапан <i>VM</i> 1.1
b ₂₃	Уровень вакуума менее 0,001 Торр
b ₂₄	Откачка вакуума до задвижки <i>VTP</i> 1.1
b ₂₅	Уровень вакуума менее 0,001 Торр
b ₂₆	Открыт клапан <i>VTP</i> 1.1
b ₂₇	Откачка вакуума в вакуумной камере
b ₂₈	Аварийная ситуация \ стоп системы
$b_{29}-b_{31}$	Готовность к откачке вакуума до задвижки 23ВЭ-100
b ₃₂ -b ₃₄	Готовность к откачке вакуума до клапана вакуумного VM1.1
b ₃₅	Готовность к откачке вакуума до задвижки <i>VTP</i> 1.1
b ₃₆	Готовность к откачке вакуума в вакуумной камере

Таблица 2. Содержательный смысл переходов сети Петри

Позиция	События технологического агрегата
d ₁	Включить насос <i>NL</i> 1.1
d_2	Включить насос <i>NL</i> 1.2
d ₃	Включить насос <i>NL</i> 1.3
$d_4 - d_6$	Останов процесса откачки
d ₇	Открыть клапан <i>VTM</i> 1.2
d ₈	Открыть клапан <i>VTM</i> 1.3
d_9	Открыть клапан <i>VTM</i> 1.4
$d_{10}-d_{12}$	Начать откачку вакуума до клапана вакуумного <i>VM</i> 1.1
$d_{13}-d_{15}$	Останов процесса откачки
$d_{16}-d_{18}$	Открыть клапан <i>VM</i> 1.1
d ₁₉	Начать откачку вакуума до задвижки <i>VTP</i> 1.1
d ₂₀	Останов процесса откачки
<i>d</i> ₂₁	Открыть клапан <i>VTP</i> 1.1
d ₂₂	Начать откачку вакуума в вакуумной камере
d ₂₃	Останов процесса откачки

По результатам анализа сети Петри, описывающей процесс форвакуумной откачки, определены некоторые важные для приложений характеристики сетей [2, 6]: ограниченность, безопасность, наличие тупиков, достижимость, живость. Для исследования перечисленных свойств применяется один из двух методов анализа, основанных на представлении сети в виде матричных выражений или в виде дерева (множества) достижимости. В работе используется второй метод анализа. Дерево достижимости сети Петри для системы форвакуумной откачки показано на рис. 3.

Модель форвакуумной системы в виде сети Петри является:

- ограниченной, т. к. число достижимых маркировок конечно. Тем самым отсутствует опасность неограниченного роста длин очередей;
- безопасной, т. к. число меток в каждой позиции не может превышать 1;

Рис. 2. Модель функционирования форвакуумной системы в виде сети Петри

- живой, имеется возможность срабатывания любого перехода при функционировании моделируемого объекта, и отсутствуют тупики;
- достижимой, имеется возможность перехода сети из одного заданного состояния (характеризуемого распределением меток) в другое. Дерево представляет все возможные последовательности запусков переходов. Всякий путь в дереве, начинающийся в корне, соответствует допустимой последовательности переходов.

Разработка программного модуля

Алгоритмы работы систем форвакуумной и дежурной откачки требуют четкого и согласованного управления исполнительными агрегатами систем (клапаны, задвижки, насосы) как во время регламентных работ, так и во время аварийных ситуаций или процедуры останова работы систем. Процесс вакуумирования камеры КТМ занимает длительное время (несколько суток), и постоянное участие оператора в управлении процессом нерациональ-

Рис. 3. Дерево достижимости сети Петри

Рис. 4. Экран оператора форвакуумной системы

но. Кроме того, ошибочные действия оператора или программного модуля автоматики могут привести к выходу из строя дорогостоящего оборудования.

С целью уменьшения человеческого фактора в управлении данными системами и, как следствие, увеличения их надежности разработан программный модуль предупредительной сигнализации, аварийной защиты и помощи оператору СУТП токамака КТМ, алгоритм работы которого основан на логике управления отработанной модели. Модуль выполняет следующие функции:

- переключение ручного и автоматического управления системами;
- предупредительное оповещение оператора;
- аварийная защита систем;
- динамическая настройка параметров каналов контроля;
- регистрация действий оператора и состояния агрегатов в лог-файл.

В качестве программного продукта реализации модуля используется SCADA-система TraceMode 6 и встроенный язык программирования ST стандарта МЭК 6-1131/3.

На рис. 4 показан экран оператора системы, на котором отображается состояние технологической схемы форвакуумной откачки.

🖫 Уставки КИП								
Датчик	Расположение	Верхняя А3	Верхняя ПС	Значение	Нижняя ПС	Нижняя АЗ	Контроль уставки	
PT2.1	Куб ТТ2.1	18,0	16,0	2,0	1,0	0,3	ВКЛ	
PT2.2	Куб ТТ2.2	15,0	13,5	4,8	1,0	0,3	ВКЛ	
PT2.3	Куб ТТ2.3	15,0	13,5	3,5	1,0	0,3	ВКЛ	
PT2.4	Проставок ТТ2.4	13,0	12,0	2,1	1,0	0,3	ВКЛ	
PM2.1	Куб 2.1	18,0	16,0	5,2	2,0	1,0	ВКЛ	
PM2.2	Куб 2.2	18,0	16,0	6,1	2,0	1,0	ВКЛ	
PM2.3	Куб ТТ2.3	16,0	14,5	4,7	1,0	0,3	ВКЛ	
PM2.4	Проставок ТТ2.4	14,0	12,5	2,8	1,0	0,3	ВКЛ	
PT1.1	Крестовина ТТ1.3	14,0	12,5	4,4	1,0	0,3	вкл	
PT1.2	Крестовина ТТ1.5	14,0	12,5	4,6	1,0	0,3	вкл	
PT1.3	Крестовина ТТ1.6	14,0	12,5	4,3	1,0	0,3	ВКЛ	

Рис. 5. Экран «Уставки КИП»

Настройка значений верхних и нижних предупредительных и аварийных границ датчиков систем осуществляется оператором системы с помощью экрана «Уставки КИП» (рис. 5). В соответствии с заданными критическими параметрами будут выводиться сообщения отчёта тревог и записываться сообщения в лог-файл. Сообщения оператору определяются в словарях на этапе наладки системы. Для удобства оператора состояние всех агрегатов вакуумных систем отображается на отдельном экране «Состояние агрегатов» (рис. 6).

СПИСОК ЛИТЕРАТУРЫ

- 1. Васильев В.В., Кузьмук В.В. Сети Петри, параллельные алгоритмы и модели мультипроцессорных систем. Киев: Наукова думка, 1990. 216 с.
- 2. Захаров В.Н., Поспелов Д.А., Хазацкий В.Е. Системы управления. Задание. Проектирование. Реализация. М.: Энергия, 1977. 424 с.
- Лескин А.А., Мальцев П.А., Спиридонов А.М. Сети Петри в моделировании и управлении. – Л.: Наука, 1989. – 133 с.

Турбомолекулярные насосы подсистемы дежурной откачки работают под управлением собственных контроллеров. Программный модуль производит опрос контроллеров и производит анализ показаний датчиков (напряжение и ток на якоре, потребляемая мощность, частота вращения, температура на фланце и роторе). При выходе этих значений за допустимые пределы система управления производит отключение соответствующего турбомолекулярного насоса, выдавая при этом предупредительное или аварийное сообщение оператору.

Агрегаты				
Система форваку	умной откачки	Система дежурной откачки		
Название агрегата	Состояние агрегата	Название агрегата	Состояние агрегата	
Hacoc NL1.1	Отключен	Hacoc NR1.1	Отключен	
Hacoc NL1.2	Отключается	Hacoc NR1.2	Отключен	
Hacoc NL1.3	Включен	Клапан VE2.1	Закрыт	
Клапан VE1.1	Закрыт	Клапан VE2.2	Закрыт	
Клапан VE1.2	Закрыт	Задвижка VP2.1	Открыта	
Клапан VE1.3	Закрыт	Задвижка VP2.2	Открываетс	
Клапан VM1.1	Открыт			
Задвижка VM1.2	Открыта			
Задвижка VM1.3	Закрыта			
Задвижка VM1.4	Закрыта			
Задвижка VM1.5	Закрыта			
Задвижка VM1.6	Закрыта			
Задвижка VTP1.1	Закрыта			

Рис. 6. Экран «Состояние агрегатов»

Выводы

На основе теории сетей Петри разработана модель функционирования технологических агрегатов, задействованных в процессе форвакуумной откачки вакуумной камеры токамака КТМ. Результаты анализа систем с помощью моделей послужили основой для разработки программного модуля предупредительной сигнализации, аварийной защиты и помощи оператору СУТП. Модуль позволил управлять длительными процессами вакуумирования камеры КТМ в автоматическом режиме и объединить в одной системе оборудование различных производителей. Таким образом, с применением программного контроля действий оператора и обеспечения предупредительной сигнализацией событий решена такая важная задача процесса подготовки вакуумной камеры к экспериментам, как обеспечение заданного уровня вакуума в камере с максимальной защитой дорогостоящего оборудования от выхода из строя при нештатных ситуациях и надежностью.

Исследование выполнено при поддержке Министерства образования и науки Российской Федерации, соглашение 14.В37.21.0457 «Разработка высокопроизводительного модульного приборного комплекса для автоматизированных систем экспериментальных исследований и управления электрофизическими установками ядерной энергетики».

- Юдицкий С.А., Магергут В.З. Логическое управление дискретными процессами. Модели. Анализ. Синтез. — М.: Машиностроение, 1987. — 176 с.
- Юдицкий С.А., Тагаевская А.А., Ефремова Т.К. Проектирование дискретных систем автоматики. – М.: Машиностроение, 1980. – 232 с.
- Питерсон Дж. Теория сетей Петри и моделирование систем / пер. с англ. – М.: Мир. 1984. – 264 с.