CS-GY 9223 I: Lecture 8 Coordinate decent and non-convex models.

NYU Tandon School of Engineering, Prof. Christopher Musco

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for cheaper iterations.

Stochastic Coordinate Descent: Only compute a <u>single random</u> entry of $\nabla f(\mathbf{x})$ on each iteration:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \frac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix} \qquad \nabla_i f(\mathbf{x}) = \begin{bmatrix} \frac{\partial}{\partial f}(\mathbf{x}) \\ \vdots \\ 0 \end{bmatrix}$$

Update: $\underline{\mathbf{x}^{(t+1)}} \leftarrow \underline{\mathbf{x}^{(t)}} + \eta \nabla_i f(\mathbf{x}^{(t)}).$

COORDINATE DESCENT

When **x** has *d* parameters, computing $\nabla_i f(\mathbf{x})$ often costs just a 1/d fraction of what it costs to compute $\nabla f(\mathbf{x})$

Example:
$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$
 for $\mathbf{A} \in \mathbb{R}^{n \times d}, \mathbf{x} \in \mathbb{R}^d, \mathbf{b} \in \mathbb{R}^n$.

•
$$\nabla f(\mathbf{x}) = 2\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{\mathsf{T}}\mathbf{b}$$
.

•
$$\nabla_i f(\mathbf{x}) = 2 \left[\mathbf{A}^T \mathbf{A} \mathbf{x} \right]_i - 2 \left[\mathbf{A}^T \mathbf{b} \right]_i$$

•
$$Ax^{(t+1)} = A(x^{(t)} + c \cdot e_i)$$

· 2
$$[A^T (Ax^{(t+1)} - b)]_i$$

$$O(n)$$
 time $O(n)$ time

STOCHASTIC COORDINATE DESCENT

Stochastic Coordinate Descent:

- Choose number of steps T and step size η .
- For t = 1, ..., T:
 - Pick random $j \in 1, \dots, d$.
- $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} \eta \underline{\nabla_j} f(\mathbf{x}^{(i)})$ Return $\hat{\mathbf{x}} = \frac{1}{7} \sum_{t=1}^{7} \mathbf{x}^{(t)}$.

STOCHASTIC COORDINATE DESCENT

Theorem (Stochastic Coordinate Descent convergence)

Given a G-Lipschitz function f with minimizer \mathbf{x}^* and initial point $\mathbf{x}^{(1)}$ with $\underline{\|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2} \neq R$, SCD with step size $\eta = \frac{1}{Rd}$ satisfies the guarantee:

$$\mathbb{E}[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \leq \frac{2GR}{\sqrt{T/d}}$$

$$\leq O\left(\frac{GR}{TT}\right) \text{ for full }$$
Since the same descent desce

5

IMPORTANCE SAMPLING

Often it doesn't make sense to sample i uniformly at random:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -.5 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 & 0 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 10 \\ 42 \\ -11 \\ -51 \\ 34 \\ -22 \end{bmatrix}$$

Select indices *i* proportional to
$$\|\mathbf{a}_i\|_2^2$$
:

indices
$$i$$
 proportional to $\underline{\|\mathbf{a}_i\|_2^2}$:

$$\Pr[\text{select index } i \text{ to update}] = \frac{\|\mathbf{a}_i\|_2^2}{\sum_{j=1}^d \|\mathbf{a}_j\|_2^2} = \frac{\|\mathbf{a}_i\|_2^2}{\|\mathbf{A}\|_F^2}$$

Let's analyze this approach.

STOCHASTIC COORDINATE DESCENT

Specialization of SCD to
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$
:

Rondon Kaczwarz

method

Randomized Coordinate Descent (Strohmer, Vershynin 2007 / Leventhal, Lewis 2018)

•
$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \mathbf{c}\mathbf{e}_j$$
. Here c is a scalar and \mathbf{e}_j is a standard basis vector.

• $\underline{\mathbf{r}^{(t+1)}} = \mathbf{r}^{(t)} - c\mathbf{a}_i$. Here \mathbf{a}_i is the i^{th} column of \mathbf{A} .

$$Ax^{(+n)} - b = A(x^{(+)} - ce_j) - b$$
= $C^{(+)} - ca_j$

STOCHASTIC COORDINATE DESCENT

Typically:
$$U = fixed$$
.

What choice for c minimizes $||r^{(t+1)}||_2^2$?

$$\chi^{(t+1)} = \chi^{(t)} - ce;$$

$$X^{(t+1)} = X^{(t)} - Ce;$$

$$\|C^{(t+1)}\|_{L^{\infty}}^{2} = \|C^{(t)} - Ca_{j}\|_{L^{\infty}}^{2}$$

C= 95 r(t)

$$= \| r^{(4)} \|_{\nu}^{2} - 2(4)^{2} r^{(4)} + 2 c \| q_{j} \|_{\nu}^{2}$$

$$q^{1}(c) = -2q_{j}^{2} r^{(4)} + 2 c \| q_{j} \|_{\nu}^{2}$$

STOCHASTIC COORDINATE DESCENT

Specialization of SCD to $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$:

Randomized Coordinate Descent

- Choose number of steps *T*.
- Let $x^{(1)} = 0$ and $r^{(1)} = b$.
- For $t = 1, \ldots, T$:
 - Pick random $j \in 1, ..., d$. Index j is selected with probability proportional to $\|\mathbf{a}_j\|_2^2/\|A\|_F^2$.
 - Set $c = \mathbf{a}_{i}^{T} \mathbf{r}^{(t)} / \|\mathbf{a}_{j}\|_{2}^{2}$
 - $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} c\mathbf{e}_i$
 - $\cdot \ \mathbf{r}^{(t+1)} = \mathbf{r}^{(t)} c\mathbf{a}_j$
- Return $\mathbf{x}^{(T)}$.

 $\chi^{(1)}$ $\chi^{(1)}$

CONVERGENCE

$$\mathbb{E} \frac{\|\mathbf{r}^{(t+1)}\|_{2}^{2} = \|\mathbf{r}^{(t)}\|_{2}^{2} - \frac{1}{\|\mathbf{A}\|_{F}^{2}} \|\mathbf{A}^{T}\mathbf{r}^{(t)}\|_{2}^{2}}{\|\mathbf{A}^{T}\mathbf{r}^{(t)}\|_{2}^{2}}$$

$$\|\mathbf{r}^{(t+1)}\|_{L^{2}}^{2} = \|\mathbf{r}^{(t)} - \mathbf{c}\mathbf{q}_{1}\|_{2}^{2} = \|\mathbf{r}^{(t)}\|_{L^{2}}^{2} - \mathbf{c}^{2}\|\mathbf{a}_{1}\|_{2}^{2}$$

$$\|\mathbf{r}^{(t+1)}\|_{L^{2}}^{2} = \|\mathbf{r}^{(t)}\|_{2}^{2} - \|\mathbf{r}^{(t)}\|_{2}^{2} + \|\mathbf{r}^{(t)}\|_{2}^{2}$$

$$\| r^{(t+1)} \|_{L^{2}}^{2} = \| r^{(t)} - c \alpha_{i} \|_{L^{2}}^{2} = \| r^{(t)} \|_{L^{2}}^{2} - c^{2} \| \alpha_{i} \|_{L^{2}}^{2}$$

$$= \| r^{(t)} \|_{L^{2}}^{2} - \left(\frac{\alpha_{i}^{T} r^{(t)}}{\| \alpha_{i} \|_{L^{2}}^{2}} \| \alpha_{i} \|_{L^{2}}^{2} - \left(\frac{\alpha_{i}^{T} r^{(t)}}{\| \alpha_{i} \|_{L^{2}}^{2}} - \left(\frac{\alpha_{i}^{T} r^{(t)}}{\| \alpha_{i} \|_{L^{2}}^{2}} \right) \right)^{2}$$

$$= \| r^{(t)} \|_{L^{2}}^{2} - \left(\frac{\alpha_{i}^{T} r^{(t)}}{\| \alpha_{i} \|_{L^{2}}^{2}} - \left(\frac{\alpha_{i}^{T} r^{(t)}}{\| \alpha_{i} \|_{L^{2}}^{2}} \right)^{2} - \left(\frac{\alpha_{i}^{T} r^{(t)}}{\| \alpha_{i} \|_{L^{2}}^{2}} \right)^{2}$$

$$||A||_{F}^{2} = ||r^{(4)} - cq_{1}||_{2}^{2} = ||r^{(4)}||_{2}^{2} - c^{2}||q_{1}||_{2}^{2}$$

$$= ||r^{(4)}||_{2}^{2} - (|q_{1}|^{2}r^{(4)})^{2} ||q_{1}||_{2}^{2}$$

$$= ||r^{(4)}||_{2}^{2} - (|q_{1}|^{2}r^{(4)})^{2} ||q_{1}||_{2}^{2}$$

CONVERGENCE

Any residual **r** can be written as $\underline{\mathbf{r}} = \underline{\mathbf{r}}^* + \overline{\mathbf{r}}$ where $\mathbf{r}^* = \mathbf{A}\underline{\mathbf{x}}^* - \mathbf{b}$ and $\overline{r} = \underline{A(x^t - x^*)}$, Note that $\underline{A^T r^*} = 0$ and $\underline{\overline{r} \perp r^*}$. $(x^{(t)} - x^*)^T \underline{A^T} r^* = 0$ $\mathbb{E}\|\overline{\mathbf{r}}^{(t+1)}\|_{2}^{2} = \|\overline{\mathbf{r}}^{(t)}\|_{2}^{2} - \frac{1}{\|\mathbf{A}\|_{F}^{2}} \|\mathbf{A}^{\mathsf{T}}\overline{\mathbf{r}}^{(t)}\|_{2}^{2}$ $\leq \| \| \overline{\mathbf{r}}^{(t)} \|_{2}^{2} - \frac{\lambda_{\min}(\mathbf{A}^{\mathsf{T}}\mathbf{A})}{\| \mathbf{A} \|_{2}^{2}} \| \overline{\mathbf{r}}^{(t)} \|_{2}^{2}$ $= \left(\| -\lambda_{\min}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) \|_{2}^{2} \right) \| \overline{\mathbf{r}}^{(t)} \|_{2}^{2}$ $= \left(\| -\lambda_{\min}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) \|_{2}^{2} \right) \| \overline{\mathbf{r}}^{(t)} \|_{2}^{2}$ $= \left(\| -\lambda_{\min}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) \|_{2}^{2} \right) \| \overline{\mathbf{r}}^{(t)} \|_{2}^{2}$ $= \left\| \mathbf{r}^{\mathsf{A}} \|_{2}^{2} + \| \mathbf{E} \| \| \overline{\mathbf{r}}^{(t+1)} \|_{2}^{2} \right) \| \overline{\mathbf{r}}^{(t)} \|_{2}^{2}$ 1 (4) 12 = 1 (4) 12 + 1 (4) 12 A47 (ATA) 1/261) 11 AT (4) 11,2 = 11 AT (4) + AT (41) = 11 AT (4) 11=

CONVERGENCE

Theorem (Randomized Coordinate Descent convergence)

After T steps of RCD with importance sampling run on

$$\begin{split} f(\mathbf{x}) &= \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}, \text{ we have:} \\ & \quad \text{on } \|\mathbf{c}(\mathbf{x})\|_{2}^{2}, \|\mathbf{c}(\mathbf{x})\|_{2}^{2} &= \|\mathbf{c}(\mathbf{x})\|_{2}^{2} \\ & \quad \mathbb{E}[f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{*})] \leq \left(1 - \frac{\lambda_{\min}(\mathbf{A}^{\mathsf{T}}\mathbf{A})}{\|\mathbf{A}\|_{F}^{2}}\right)[f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{*})] \end{split}$$

Corollary: After $T = O(\frac{\|\mathbf{A}\|_F^2}{\lambda_{\min}(\mathbf{A}^T\mathbf{A})}\log\frac{1}{\epsilon})$ we obtain error $\epsilon \|\mathbf{b}\|_2^2$.

Is this more or less iterations than the $T = O(\frac{\lambda_{\max}(A^TA)}{\lambda_{\min}(A^TA)}\log\frac{1}{\epsilon})$ required for gradient descent to converge?

COMPARISON

$$(||\mathbf{A}||_F^2) = \operatorname{tr}(\mathbf{A}^T \mathbf{A}) = \sum_{i=1}^d \lambda_i(\mathbf{A}^T \mathbf{A})$$

$$\lambda_{\max}(\mathbf{A}^T \mathbf{A}) \ge ||\mathbf{A}||_F^2 \le d \cdot \lambda_{\max}(\mathbf{A}^T \mathbf{A})$$

For solving $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$,

$$(\underline{\# \text{ GD Iterations}}) \le (\underline{\# \text{ RCD Iterations}}) \le d \cdot (\underline{\# \text{ GD Iterations}})$$

But RCD iterations are cheaper by a factor of d.

COMPARISON

When does
$$\|A\|_F^2 = \operatorname{tr}(A^T A) = \frac{d \cdot \lambda_{\max}(A^T A)?}{A^T}$$

For all i_j :

 $\alpha_j \, \, \, \, \tau \, \alpha_i := 0$

When does
$$||A||_F^2 = \text{tr}(A^T A) = 1 \cdot \lambda_{\max}(A^T A)$$
?

COMPARISON

Roughly:

Stochastic Gradient Descent performs well when $\underline{\text{data points}}$ (rows) are repetitive.

Stochastic Coordinate Descent performs well when <u>data</u> <u>features</u> (columns) are repetitive.

VISUALIZATION

Given f(x) which is potentially non-convex, find \hat{x} such that

We understand very little about optimizing non-convex functions in comparison to convex functions, but not nothing. In many cases, we're still figuring out the right questions to ask.

STATIONARY POINTS

Definition (Stationary point)

For a differentiable function *f*, a <u>stationary point</u> is any **x** with:

$$\nabla f(x) = 0$$
 $\forall f(x^*) = 0$

local/global minima - local/global maxima - saddle points

STATIONARY POINTS

Reasonable goal: Find an approximate stationary point \hat{x} with

$$\|\nabla f(\hat{\mathbf{x}})\|_2 \leq \epsilon.$$

SMOOTHNESS FOR NON-CONVEX FUNTIONS

Definition

A differentiable (potentially non-convex) function f is β smooth if for all x, y,

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le \beta \|\mathbf{x} - \mathbf{y}\|_2$$

Corollary: For all x, y

$$\left|\nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{x}-\mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})]\right| \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

GRADIENT DESCENT FINDS APPROXIMATE STATIONARY POINTS

Theorem

If Gradient Descent is run with step size $\eta = \frac{1}{\beta}$ on a differentiable function f with global minimum \mathbf{x}^* then after $T = O(\frac{\beta[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*)]}{\epsilon})$ we will find an ϵ -approximate stationary point $\hat{\mathbf{x}}$.

1.
$$\nabla f(x^{(4)})^{\top} (x^{(4)} - x^{(4+1)}) - f(x^{(4)}) + f(x^{(4+1)}) \leq \frac{\beta}{2} ||x^{(4)} - x^{(4+1)}||_{\infty}^{\infty}$$

$$= m \nabla f(x^{(4)})$$

$$\frac{1}{T} \sum_{t=1}^{T} \frac{n}{2} \|\nabla f(x^{(t)})\|_{2}^{2} \leq \frac{1}{T} \sum_{t=1}^{T} f(x^{(t)}) - f(x^{(t+1)})$$

$$4. \text{ min } \|\nabla f(x^{(t)})\|_{2}^{2} \cdot \frac{n}{2} \leq \frac{1}{T} \left[f(x^{(t)}) - f(x^{(t+1)})\right]$$

GRADIENT DESCENT FINDS APPROXIMATE STATIONARY POINTS

Theorem

If Gradient Descent is run with step size $\eta = \frac{1}{\beta}$ on a differentiable function f with global minimum \mathbf{x}^* then after $T = O(\frac{\beta[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*)]}{\epsilon})$ we will find an ϵ -approximate stationary point $\hat{\mathbf{x}}$.

(cost.) Let
$$\vec{x} = ard_{t}^{min} \|\nabla f(x^{(t)})\|_{2}$$
.

 $\|\nabla f(\vec{x})\|_{2}^{2} \leq \frac{2}{Tm} [f(x^{(t)}) - f(x^{\bullet})]$
 $= \frac{26}{T}$.

Sethor $T = \frac{26}{2} \cdot [f(x^{(t)}) - f(x^{\bullet})]$ gives the bound.

QUESTIONS IN NON-CONVEX OPTIMIZATION

If GD can find a stationary point and that seems to work for your problem, are there algorithms which find a stationary point faster using preconditioning, acceleration, stocastic methods, etc.?

QUESTIONS IN NON-CONVEX OPTIMIZATION

What if my function only has global minima and stationary points? Randomized methods (SGD, perturbed gradient methods, etc.) can "escape" stationary points under some minor assumptions.

Example: min_x -x^TA^TAx function w/ סקול בשל לפי ליינולים של סקול בשל לפי ליינולים של היינולים בשל לפי ליינולים של היינולים של היינול

- Global minimum: Top eigenvector of A'A (i.e., top principal component of A).
- · Stationary points: All other eigenvectors of A.

Useful for lots of other matrix factorization problems beyond vanilla PCA.

QUESTIONS IN NON-CONVEX OPTIMIZATION

- Can random or careful initialization lead to a good minima?
- · Can we escape "shallow" local minima.
- · Is a global minima even needed?