

				S	ubje	ect (ode	: KI	EE1	101T				
Roll No:														

Printed Page: 1 of 3

BTECH (SEM I) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGINEERING

Time: 3 Hours Total Marks: 100

Notes:

• Attempt all Sections and Assume any missing data.

Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks (10 X2=20)				
Q1(a)	a) What is use of form factor and peak factor?						
Q1(b)	What is the ratio of no-load speed to full load speed of a 200 kVA, 12 poles, 2200 V, 3 phase,						
	60 Hz synchronous motor?						
Q1(c)	Write Difference between EMF and Potential Difference						
Q1(d)	Define power factor						
Q1(e)	Is the superposition theorem valid for direct calculation of power? Explain briefly.						
Q1(f)	What is the need of commutator in DC generator?						
Q1(g)	Why is Transformer Ratings done in Volt Amperes (VA).						
Q1(h)	Draw the no load phasor diagram of a transformer						
Q1(i)	For heavy loads, What is the relation between torque (T) and slip (S) in induction motor.						
Q1(j)	What is the difference between asynchronous motor and synchronous motor?						

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks (3X10=30)				
Q2(a)	(i) Derive the emf equation of a transformer						
	(ii) Derive the condition for maximum efficiency in single phase transformer						
Q2(b)	i) List all	List all the important parts of a D.C. Motor and explain the importance of each					
	ii) Calculate the emf generated by 4 pole wave wound generator having 65 slots with 12 conductors per slot when driven at 1200 rpm. The flux per pole is 0.02 wb.						
Q2(c)							
. , ,		1A	C				
		2Ω 3Ω					

		+					
		⁴ V Ţ-	3 A				
		I T					
Q2(d)	1	l analysis to find the voltage across and current through	1.4Ω resistor				
	in Figure	given below:					
		4Ω					
		{					
		$\S^{2\Omega}$ 8 $\Omega \S$	A				
		Υ					
		† 2∨					

Q2(e) Use superposition theorem to find current I in the circuit shown in Figure below. All resistance are in ohms.

Printed Page: 2 of 3 Subject Code: KEE101T Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGINEERING

SECTION-C Attempt ANY ONE following Question Marks (1X10=10)

Q3(a) Reduce the network of Fig. 1 to obtain the equivalent resistance as seen between nodes ad.

Q3(b) With the help of Norton's theorem, find V_0 in the circuit shown below. All resistances are in Ohms.

SECTION-C Attempt ANY ONE following Question Marks (1X10=10)

Q4(a) A series R - L - C circuit consists of R = 1000 Ohm, L = 100 mH and C = 10 μ F. The applied voltage across the circuit is 100 V.

- (i) Find the resonant frequency of the circuit.
- (ii) Find the quality factor of the circuit at the resonant frequency.
- (iii) At what angular frequencies do the half power points occur?
- (iv) Calculate the bandwidth of the circuit.
- Q4(b) Three impedances of (70.7 + j 70.7) Ohm, (120 + j 160) Ohm and (120 + j 90) Ohm are connected in parallel across a 250 V supply. Determine (i) admittance of the circuit (ii) supply current and (iii) circuit power factor.

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)				
Q5(a)	A transformer on no-load has a core loss of 50W, draws a current of 2A and has an induced						
	emf of 230V. Determine the no-load power factor, core loss current and magnetizing current.						
	Also, calculate the no-load circuit parameters of the transformer. Neglect winding resistance						
	and leakage flux.						
Q5(b)	Explain th	e performance of principal of operation of single ph	ase transformer.				

Roll No: Subject Code: KEE101T

Printed Page: 3 of 3

BTECH (SEM I) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGINEERING

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)					
Q6(a)	A 4-pole	generator with 400 armature conductors has a useful	flux of 0.04Wb per pole. What					
	is the							
	emf produced if the machine is wave wound and runs at 1200rpm? What must be the speed							
	at which the machine should be driven to generate the same emf if machine is lap wound?							
Q6(b)	An 8-pole	e, 400V shunt motor has 960 wave connected arma	ture conductors. The full load					
	armature	current is 40A and flux per pole is 0.02Wb. The arm	ature resistance is 0.1Ω and the					
	contact drop is 1V per brush. Calculate the full load speed of the motor.							
CECT	TON C	A44ANN ONTE C-11	(17/10–10)					
	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)					
Q7(a)	(i) Explain the slip torque characteristics of the three-phase induction motor							
	(ii) The voltage applied to the stator of a three phase, 4 pole induction motor has frequency of							
	50 Hz. Th frequency of the emf induced in the rotor is 15.5 Hz. Determine the slip and speed							
	at which r	notor is running.						
Q7(b)	(i) Write s	hort notes on MCB and MCCB						
	(ii) Write	short notes on characteristics of batteries.						