

Source: Juran's Quality Handbook: The Complete Guide to Performance Excellence, 7th Edition

ISBN: 9781259643613 **Authors:** Joseph A. De Feo

16.6. Phase 2: Analyze and Diagnose the Cause

16.6.1. Analyze Symptoms

Analysis of symptoms is an important step in finding the root cause of the problem because this activity enables us to understand the current situation. How often is the problem occurring? How severe is it? What types of failures contribute most to the problem being analyzed? At what point in the process is the failure most often observed? These types of questions about the current situation must be answered to help us better understand where the root cause(s) may lie.

Think of it this way: If you were asked what route to take if driving to Cleveland, what would your response be? Typically, people will respond from their own frame of reference: "Well, go to route 224 east, and then take I-77 north ..." This misses an important point, however; the question didn't specify a starting point. Depending where one starts their journey to Cleveland, the route to get there will be entirely different. The point is that unless you know where you are starting from (the symptoms of the problem), it is difficult to map a route to where you want to be (achievement of the goal). This is why it is so important to do a thorough analysis of symptoms as a first step in diagnosing the cause. This analysis will be of great help when the team gets to the point of brainstorming possible causes and will result in a more thorough list of possible causes than would otherwise be achieved.

Tools that are often used at this step are data collection, process flow diagrams, Juran's Pareto analysis, and stratification.

16.6.2. Formulate Theories

A theory is simply an unproven statement of the cause of a certain condition. A student receiving a poor grade on an exam may tell his or her parents that the cause is that the teacher included material on the exam that was not discussed in class, but the parents may consider this only a theory. The parents may consider a number of other theories as well, such as the student did not read required chapters that explained the material or the student did not attend class every day. In the same way, when determining the cause of a quality problem, there must be speculation about its many possible causes. Jumping to conclusions before considering many theories and proving which one is correct could mean wasting time and resources on an inappropriate solution.

The formulation of theories follows a thought process moving from creative to empirical, divergent to convergent. Beginning with brainstorming, the team and any subject matter experts will attempt to identify as many causes as possible. Next, the team will organize these brainstormed theories into logical groups, probably using the affinity process. Finally, the group will begin to hone in on the most likely root causes by using cause and effect diagramming, FMEA, and possibly other prioritization tools.

These most likely theories of causes are the input for the next step of the diagnostic journey.

16.6.3. Prove Theories to Identify Root Cause(s)

"Before beginning to test theories, the team should be very clear on exactly which theories are being tested. A copy of the cause-effect diagram is an excellent guide for the team at this point. Diagram the theories that will be tested with a particular set of data. If the data demonstrate that a theory is not important, that theory can be crossed off as a possible cause. The cause-effect diagram also helps identify related theories that can be tested together. When the theories to be tested are stated clearly and precisely as they are understood, it is time to plan for collecting data to test them" (Juran Institute, Inc., 2008).

Assessing data that have been collected to answer questions regarding the truth or falsity of a given theory tests theories. The theory is assumed to be false unless the data indicate it to be otherwise. Once the data have been collected, appropriate analysis tools must be applied to convert the data into information. Information then becomes the answer to the question. This process is sometimes referred to as "torturing the data until it confesses."

The project team should recognize that rarely does the answer to one question constitute the end of the exploration. Testing of theories is typically an iterative process. The answer to one question leads to another question, and another, and another. Each time an answer is discovered, the team should ask again, why? Why does the analysis look the way it does? Why is the upper level (not root) cause we have proven occurring? When the "why" questions reach a level that has no more answers or goes beyond a level of cause that can be controlled, the team has arrived at the (operationally defined) root cause.

As an example, take the case of a problem the National Park Service experienced several years ago concerning the Jefferson Memorial^[1]. The stone in the monument was crumbling due to frequent washing to remove bird droppings. The initial (mistaken) approach the Park Service took was to reduce by half the number of times the stone was cleaned. This saved some money and reduced the magnitude of the stone erosion, but it's easy to see how the "solution" led to other problems. People visiting the monument were dissatisfied with the unclean conditions.

So the Park Service undertook a more thorough analysis to find the root cause of the problem. They first asked, "Why are there so many bird droppings?" Of course, they considered several theories to answer the question. Perhaps the birds were attracted to food dropped by visitors. Perhaps they were attracted to the good roosting places in the structure. Perhaps there was an abundant natural food supply. Could they immediately determine which of these theories was true? Of course not, it was necessary that they visit the place where the problem was taking place (what the Japanese call the "gemba"), collect data about the possible causes, and identify the true cause of the proliferation of birds in the monument. It turned out that the third theory was true; hundreds of fat spiders were providing an ample food source for the birds. But was the investigation complete? No, it was not because the investigators had not yet reached the root cause of the problem.

The next question to be answered was, "Why are there so many spiders?" A number of theories could have been forwarded about this question too:

- The crevices in the monument provide a good place to spin webs.
- There are insects there that provide food for the spiders.
- The spiders are attracted to and hide in the shadows inside the monument.

Further data-gathering proved that the second theory was true. Inside the Jefferson Memorial were thousands of tiny midges (a small flying insect that spiders eat). The investigators were nearing the root cause of the problem, but were not there yet.

"Why are there so many midges?" they asked. Possible answers included:

- Midges were attracted to a food supply inside the monument.
- The Jefferson Memorial, like many others in Washington, D.C., is near a body of water (the Potomac River), and the midges lay their eggs in the water.
- The midges are attracted to the lights that illuminate the memorial at night.

The second theory actually did explain why so many midges were in the vicinity of the monument, but not why they were on and inside it. Investigation revealed that the midges came out at sunset each evening in a "mating frenzy" at just the time that the lights were turned on. They were attracted to the illumination of the monument and took up residence where the spiders could feast on them. Now the investigators had found the true root cause of the problem: illuminating the monument each night at dusk. They delayed the lighting by 1 hour (the remedy), the midge population was dramatically reduced, and the food chain was broken. Now the Park Service could substantially reduce the washings and, therefore, the crumbling of the stone (the original problem). This application of the remedy to the true root cause resulted in many multiples of savings compared to the original solution of just reducing the washings. The solution was also one that could be replicated to other D.C. monuments to reap additional savings (The Juran Quality Minute: Jefferson Memorial).

One may ask, "How will I know when to stop asking 'Why?" In other words, when have the investigators drilled down deeply enough to conclude they are at the level of the root cause?

There are two questions that will help you decide whether you have found the root cause:

- 1. Do the data suggest any other possible causes? After each data collection and analysis, it is usually possible to discard some theories and place more confidence in others. Theorizing is not a one-time activity, however. Each data display—the Pareto diagram, histogram, scatter diagram, or other chart—should always be examined by asking whether it suggests additional theories. If you have competing plausible theories that are consistent with the new data and cannot be discarded based on other data, then you have not arrived yet at the root cause.
- 2. Is the proposed root cause controllable in some way? Some causes are beyond our ability to control, like the weather. Turning up the heat or running a humidifier can control the effects of the weather, but the weather cannot be controlled directly. So no useful purpose is served by testing theories about why the weather is cold.

Tools most often used during the steps of formulating and testing theories are data collection, flow diagrams, graphs and charts, histograms, Juran's Pareto analysis, scatter diagrams, and stratification.

These steps of formulating and testing theories complete the diagnosis of the problem's root cause. Some may ask, why should I go to all that trouble just to find the root cause of the problem? Why is it important? Denise Robitaille (2009), an ASQ fellow and leading expert in root cause analysis provides useful answers in an article entitled "Four Things You Should Get from Root Cause Analysis." Emphasis on effective root cause analysis has gotten increased attention in several sectors. Registrars, for example, are requiring more substantial evidence of root cause analysis as part of responses to their requests for corrective action. All of this is good news. Except, my personal experience is that although people understand that they're required to do root cause analysis, they don't comprehend three issues:

- 1. What is root cause analysis?
- 2. How to conduct effective root cause analysis?
- 3. What the results of root cause analysis should yield?

Let's start by reviewing what root cause analysis is. It's an in-depth investigation into the cause of an identified problem. It asks why something happened. It should also investigate how something could have gone wrong, which will help to identify contributing factors and interim breakdowns.

There are two important things to remember at the outset. Root cause analysis is focused on cause, and the ultimate intent is to use the information to develop a corrective action plan. This perception is relevant to the next two issues people need to know.

People don't know how to do root cause analysis. They still treat it like it's a haphazard activity. Organizations fail to train individuals in good investigative techniques. They perpetuate a culture of blame: "Let's find out who screwed up." They simply don't treat root cause analysis like a controlled process.

Apart from the five whys there are many other tools that can be used. There are flowcharts, brainstorming, fish bone diagrams, Pareto charts, and design of experiment—just to name a few. Several tools should be used in concert to achieve the most productive results. For example, use brainstorming or the five whys to conjecture what could have gone wrong, then organize the results in a fish bone diagram that will direct you to the areas where you'll find the evidence you need to objectively conclude what the root cause of the problem really is. Organizations have to stop assigning people to do root cause analysis without giving them the necessary training and tools.

Finally, individuals need to understand what the expected outcome of this process is. It's great to say that we're going to conduct root cause analysis, but do people have any idea what they're supposed to do when they figure out the cause?

You should be able to get four things from root cause analysis:

- 1. Uncover the root cause or causes of the problem. Finding the root cause is the primary output of this process.
- 2. Identify weaknesses or other contributing factors, which, in and of themselves, are not necessarily nonconformance. They may be the outcome of shortsighted decisions to curtail activities so that efficiency or cost savings is perceived. You may have, for example, decided to wait until the first point of use to test components. The time-savings experienced at the receiving process could result in costly delays and scheduling snafus that dwarf any savings that had been anticipated. It wasn't a bad idea at the time, but it may have contributed to late deliveries.
- 3. Better understand the process surrounding the problem, as well as supporting processes. If you don't, you haven't done a thorough root cause analysis. Without that heightened comprehension of the process, you can't understand interrelations, interdependencies, or other factors that are reliant on the outcome of seemingly unrelated processes. This takes us to the final outcome.
- 4. Create an architecture into which you can build your corrective action plan. Corrective action isn't just one activity. It needs to be a plan, reflective of all aspects of the problem. If you've done a good root cause analysis, you'll have identified not only the root cause, but the many different factors that need to be addressed to ensure that the problem doesn't recur, that you don't inadvertently create a new problem, and that your organization experiences some benefit from the action taken.

Your root cause analysis will let you see what processes may need to be modified, what documents and forms will have to be revised, who will require training, and a myriad of other considerations that go into a typical project plan.

Without root cause analysis, effective corrective action is impossible. Without corrective action, root cause analysis is a waste of time.

[1] Paraphrased from Juran Institute, Inc. "The Quality Minutes: The Jefferson Memorial."