Metody numeryczne zadanie nr 3

Mateusz Miotk Sylwia Kaczmarczyk Michał Kulesz

December 18, 2012

1 Treść zadania

Zadanie 3.1 Zagadnienie różniczkowe: $y' = 2y^2 - 2x(x^3 - 1), y(1) = 1$ rozwiązać na przedziale [1,3] metodą Eulera oraz zmodyfikowaną metodą Eulera zwaną metodą punktu środkowego. Wyniki porównać z rozwiązaniem dokładnym $y(x) = x^2$.

2 Podstawy teoretyczne

2.1 Metoda Eulera

Niech będzie dane równanie różniczkowe zwyczajne y' = f(x, y(x)) z warunkiem początkowym $y(x_0) = y_0$ Metoda Eulera polega na zastąpieniu krzywej całkowej y = y(x) przechodzącej przez punkt $M_0(x_0, y_0)$, odpowiadający warunkom początkowym, łamaną $M_0, M_1, M_2, ...$, o wierzchołkach $M_i(x_i, y_i), i = 0, 1, 2, ...$, składającą się z odcinków prostych.

Wykorzystywane jest tutaj dane rownanie rekurencyjne:

$$\begin{cases} y_0 = y(x_0) \\ y_1 = y_0 + hf(x_0, y_0) \\ y_{i+1} = y_i + hf(x_i, y_i) \end{cases}$$

gdzie h jest krokiem na osi x.

2.2 Zmodyfikowana metoda Eulera

Idea jest podobna ale wykorzystywany jest inny wzór rekurencyjny:

$$\begin{cases} y_0 = y(x_0) \\ y_1 = y_0 + hf(x_0 + \frac{h}{2}, y_0 + f(x_0, y_0) \cdot \frac{h}{2}) \\ y_{i+1} = y_i + hf(x_i + \frac{h}{2}, y_i + f(x_i, y_i) \cdot \frac{h}{2}) \end{cases}$$

3 Algorytm realizujący zadanie

3.1 Algorytm

- 1. Program bedzie wymagał od użytkownika "dopóki mu sie nie znudzi" parametru h
 gdzie $h \in [0,1]$
- 2. Następnie dla danego parametru h w przedziale [1,3] będzie liczone rozwiązanie metodą Eulera oraz Zmodyfikowaną metodą Eulera według wzorów podanych powyżej.
- 3. Zostanie wypisana tabela ilustrująca poszczególne kroki metody a na końcu zostaną wypisane minimalne i maksymalne błędy osiągane przez obydwie metody.

3.2 Przykładowe rozwiązanie

Dla h = 0.5 rozwiązanie wynosi:

x_0	Y_{euler}	Y_{mid}	Dokładne	B łą d_{euler}	B łą $d_{midpoint}$
1.500000	2.000000	2.058594	2.250000	0.250000	0.191406
2.000000	2.437500	0.171691	4.000000	1.562500	3.828309
2.500000	-5.621094	23.217517	6.250000	11.871094	16.967517
3.000000	-10.586899	75298.618184	9.000000	19.586899	75289.618184

Dla h = 0.25 rozwiązanie wynosi:

x_0	Y_{euler}	Y_{mid}	Dokładne	B łą d_{euler}	B łą $d_{midpoint}$
1.250000	1.500000	1.542847	1.562500	0.062500	0.019653
1.500000	2.029297	2.136079	2.250000	0.220703	0.113921
1.750000	2.307070	2.309015	3.062500	0.755430	0.753485
2.000000	1.153902	-1.428743	4.000000	2.846098	5.428743
2.250000	-5.180353	-0.800476	5.062500	10.242853	5.862976
2.500000	-3.451778	5.506390	6.250000	9.701778	0.743610
2.750000	-15.775641	-9.136616	7.562500	23.338141	16.699116
3.000000	81.439086	-40.096835	9.000000	72.439086	49.096835

4 Opis programu

- 4.1 Opis struktur danych oraz funkcji w programie
- 4.2 Opis wejścia-wyjścia
- 4.3 Treść programu

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
double abs_double(double x){
         if(x < 0)
         return -1.0*x;
         else
         return x;
double f dokladne (double x) {
         return x*x;
double f(double x, double y){
         return 2*y*y - 2*x*x*x*x+2*x;
void Euler(double h){
double x_0, y_0;
double x_temp, y_temp, blad;
double y_0_mid, y_temp_mid, blad_mid;
double max_blad_Euler, max_blad_Mid;
double min blad Euler, min blad Mid;
max\_blad\_Euler = max\_blad\_Mid = 0.0;
min_blad_Euler = min_blad_Mid = INFINITY;
x_0 = 1;
y 0 = 1;
y_0_mid=1;
printf("X_0
                               \t | Y_mid \t | Dokladne\t | Blad_Euler\t | Blad_MidPoint\n");
                 \t \t \t \Y
printf("-
while (1) {
         x_t = x_0 + h;
         if(x_{temp} \ll 3)
         y_{temp} = y_{0} + h * f(x_{0}, y_{0});
         y_{mid} = y_{0mid} + f(x_{0} + (h/2), y_{0mid} + (f(x_{0}, y_{0mid}) + h/2));
         x_0 = x_{temp};
         y_0 = y_{temp};
         y_0_{mid=y_temp_mid};
         blad=abs\_double(f\_dokladne(x\_0) - y\_0);
         blad_mid=abs_double(f_dokladne(x_0)-y_0_mid);
         if (max_blad_Euler < blad){
         \max_{\text{blad}} Euler = blad;
         }
         if (max_blad_Mid < blad_mid){</pre>
         max_blad_Mid = blad_mid;
         if (min_blad_Euler > blad){
```

```
min_blad_Euler=blad;
       if (min_blad_Mid > blad_mid) {
               min_blad_Mid = blad_mid;
else {
printf("Maksymalny blad w metodzie Eulera wynosi: %lf\n", max_blad_Euler);
printf("Maksymalny blad w metodzie Mid_Point wynosi: %lf\n",max_blad_Mid);
printf("Minimalny blad w metodzie Eulera wynosi: %lf\n", min_blad_Euler);
printf("Minimalny blad w metodzie Mid_point wynosi: %lf\n",min_blad_Mid);
break;
}
   poprawnosc_h(double h){
       if(h \le 0 \mid | h \ge 1)
       return -1;
       else
       return 1;
}
void pobranie_danych(){
       double h;
       while (1) {
               printf("Podaj h: Ctrl+c konczy dzialanie programu\n");
               scanf("%lf",&h);
               if (poprawnosc h(h)==1){
               Euler(h);
               }
               else
               printf("Wartosc h nie jest w przedziale (0,1)");
       }
}
int main(){
       pobranie_danych();
       return EXIT_SUCCESS;
```

4.4 Zrzuty wybranego programu

```
sigma.ug.edu.pl - PuTTY
mmiotk@sigma:~/Metody$ ./a.out
Podaj h: Ctrl+c konczy dzialanie programu
0.5
                                                                   |Blad Euler
                 ΙY
                                 Y mid
                                                  |Dokladne
                                                                                   |Blad MidPoir
 .500000
                 12.000000
                                 2.058594
                                                  [2.250000
                                                                   [0.250000
                                                                                   |0.191406
2.000000
                 12.437500
                                 [0.171691
                                                  |4.000000
                                                                  |1.562500
                                                                                   |3.828309
                 |-5.621094
2.500000
                                 23.217517
                                                  |6.250000
                                                                  |11.871094
                                                                                   |16.967517
3.000000
                 |-10.586899
                                 |75298.618184
                                                  19.000000
                                                                   |19.586899
                                                                                   |75289.618184
Maksymalny blad w metodzie Eulera wynosi: 19.586899
Maksymalny blad w metodzie Mid Point wynosi: 75289.618184
Minimalny blad w metodzie Eulera wynosi: 0.250000
Minimalny blad w metodzie Mid point wynosi: 0.191406
```

0.25					
X_0	ĮΥ	Y_mid	Dokladne	Blad_Euler	Blad_MidPoin
1.250000	11.500000	11.542847	1.562500	10.062500	10.019653
1.500000	12.029297	12.136079	12.250000	10.220703	0.013033
1.750000	2.307070	2.309015	3.062500	0.755430	0.753485
2.000000	11.153902	-1.428743	4.000000	2.846098	5.428743
2.250000	-5.180353	-0.800476	5.062500	10.242853	5.862976
2.500000	-3.451778	5.506390	6.250000	9.701778	0.743610
2.750000	-15.775641	-9.136616	7.562500	23.338141	16.699116
3.000000	81.439086	-40.096835	19.000000	72.439086	49.096835
Maksymalny bla	ad w metodzie Eul	lera wynosi: 72.4	139086		
Maksymalny bla	ad w metodzie Mid	d_Point wynosi: 4	49.096835		
Minimalny blac	d w metodzie Eule	era wynosi: 0.062	2500		
Minimalny blac	d w metodzie Mid	_point wynosi: 0.	.019653		

X_0	ΙY	Y_mid	Dokladne	Blad_Euler	Blad_MidPoin
1.100000	1.200000	1.208899	1.210000	0.010000	0.001101
1.200000	1.415180	1.436856	11.440000	0.024820	0.003144
1.300000	1.641007	1.682771	1.690000	[0.048993	0.007229
1.400000	1.868368	1.943931	1.960000	0.091632	0.016069
1.500000	2.078207	2.213163	[2.250000	0.171793	0.036837
1.600000	2.229496	2.470183	[2.560000	[0.330504	0.089817
1.700000	2.232907	2.654230	[2.890000	0.657093	0.235770
1.800000	1.899661	2.579451	3.240000	1.340339	0.660549
1.900000	0.881883	1.734919	3.610000	2.728117	1.875081
2.000000	-1.188993	-0.596606	4.000000	5.188993	4.596606
2.100000	-3.706252	-2.949693	4.410000	8.116252	7.359693
2.200000	-4.428611	-3.883213	4.840000	9.268611	8.723213
2.300000	-4.751212	-4.512884	5.290000	10.041212	9.802884
2.400000	-5.373229	-5.052722	5.760000	11.133229	10.812722
2.500000	-5.754431	-5.547062	6.250000	12.004431	11.797062
2.600000	-6.444236	-5.987198	6.760000	13.204236	12.747198
2.700000	-6.758121	-6.309295	7.290000	14.048121	13.599295
2.800000	-7.712502	-6.325395	7.840000	15.552502	14.165395
2.900000	-7.549085	-5.532252	8.410000	15.959085	13.942252
Maksymalny b	lad w metodzie Eu	lera wynosi: 15.	959085		

Maksymalny blad w metodzie Eulera wynosi: 15.959085 Maksymalny blad w metodzie Mid_Point wynosi: 14.165395 Minimalny blad w metodzie Eulera wynosi: 0.010000