

 Artificial Intelligence & Machine Learning *Processamento de Linguagem Natural*

Agenda

Recuperação de Informação

Bayesian Sets

Trabalho Final

 Anos 90: sistemas de recuperação de informação não eram confiáveis. Por isso, pessoas preferiam obter informações de outras pessoas.

 Exemplo: preferiam um agente de viagens para programar suas viagens do que confiar no que viam na internet.

- Entretanto, ao longo dos anos, a evolução desses sistemas foi tanta que a busca pela web se tornou padrão e a fonte de informação preferida na maioria das vezes.
- É importante salientar que o campo da recuperação de informação não começou com a web, mas sim com publicações científicas e registros de bibliotecas e logo se espalhando para campos como jornalismo, direito e medicina

 Ainda assim, com o advento da World Wide Web, a escala de publicação foi elevada para a casa da dezena de milhares de criadores de conteúdo.

 Porém, essa explosão de publicações seria discutível se a informação não pudesse ser encontrada, anotada e analisada a fim de que o usuário possa achar rapidamente uma informação que é ao mesmo tempo relevante e compreensiva para suas necessidades

- O significado de recuperação de informação pode ser muito amplo. O simples fato de tirar o cartão de crédito da carteira para consultar seu número pode ser entendido como recuperação de informação.
- Contudo, como campo de estudo acadêmico, podemos definir recuperação de informação como:
 - "encontrar material (geralmente documentos)
 de natureza não estruturada (geralmente texto)
 que satisfaça uma necessidade de informação
 a partir de grande coleções de dados"

 Apesar de ser a principal definição, ela não abrange todo campo de estudo. Podemos falar também de classificação e agrupamento de textos, objetos de aulas posteriores.

- Recuperação de informação pode ser definido em termos de escala também:
 - Web search: sistema que provê busca de bilhões de documentos em bilhões de computadores
 - Pessoal: classificação pessoal de email
 - Enterprise search: busca interna de documentos, patentes, artigos, etc.

Source: coleção de livros de Shakspeare

- Busca: peças que contenham a palavra Brutus
 AND Caesar AND NOT Calpurnia
- Como fazer?
 - A partir do começo, ler todo o texto, e encontrar o que foi buscado
 - Isso pode ser feito com GREP (Regex)

Mas isso é escalável?

- Eu preciso de 3 pré-requisitos para uma busca de propósitos múltiplos:
 - Processar grandes coleções de documentos de forma rápida
 - Permitir operações de matching mais flexíveis
 - Permitir busca ranqueada

 Uma maneira de evitar uma procura linear de texto para cada query é indexar os documentos de antemão.

- Além disso, podemos providenciar uma maneira binária de marcar, para cada livro, quais personagens estão presentes ou não.
 - Isso é conhecido como TDM (term-document matrix)

Veja a TDM do exemplo:

	Antony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Antony	î	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
mercy	1	0	1	1	1	1	
worser	1	0	1	1	1	0	
22222							

- Assim, para responder a pergunta, pegamos os vetores de *Brutus, Caesar e Calpurnia* (o complemento)
 - 110100 AND 110111 AND 101111 = 100100

 Assim, definimos um modelo de arquitetura para um sistema de recuperação da informação, conforme diagrama abaixo:

 Por limitação de escopo (técnica e de tempo também), focaremos numa arquitetura mais simples:

basic model of an information retrieval system

 A partir dessa arquitetura, vamos abstrair o conceito de recuperação de informação utilizando como exemplo uma técnica conhecida como Bayesian Sets

Bayesian Sets

- O que Jesus e Darwin tem em comum?
 - Além de estarem associados com duas diferentes visões da origem do homem, ambos também possuem faculdades na universidade de Cambridge em suas homenagens.

 Mas como encontrar esse tipo de relação a partir de um conjunto de dados?

- Conjuntos Bayesianos, indicados para resolver esse tipo de problema, usam um conceito baseado em modelo de um cluster e classifica itens usando uma pontuação que avalia a probabilidade marginal de cada item pertencer a um cluster contendo os itens da consulta.
- O foco são conjuntos de dados esparsos binários cujo score pode ser obtido por uma multiplicação de matriz, tornando o algoritmo possível de ser aplicado a grandes conjuntos de dados.

- Considere um universo de itens D que, dependendo da aplicação, tal conjunto seja composto de páginas web, filmes, pessoas, palavras, frases, imagens ou qualquer outro objeto sobre o qual desejamos formar consultas.
- Considere $\mathcal{D}_c \subset \mathcal{D}$ um conjunto de queries fornecidas pelo usuário cujos elementos são exemplos de algum conceito/classe/cluster dos dados

• O algoritmo, então, deve providenciar uma conclusão ao subconjunto \mathcal{D}_c , isto é, um conjunto $\mathcal{D}_c' \subset \mathcal{D}$ que inclua todos os elementos de \mathcal{D}_c e outros elementos de \mathcal{D} que também estão nesse conceito/classe/cluster.

- Aqui, então, estamos lidando com um problema semi-supervisionado, já que, enquanto a maioria dos algoritmos de clustering são completamente não-supervisionados, as consultas aqui fornecidas proveem dicas supervisionadas (ou restrições) de pertencimento a um cluster particular.
- De certa forma, isso é um problema de Feature Selection, já que, de antemão, eu indico quais características são relevantes para a formação do cluster

Fundamentos - Exemplo

- De outro ponto de vista, o objetivo desse algoritmo é resolver algum tipo de problema de recuperação de informação.
- Como em todo problema desse tipo, o resultado deve ser relevante para a consulta e faz sentido limitar o resultado para os melhores itens ordenados por relevância.
- Assumiremos essa abordagem daqui em diante.

- Seja:
 - $-\mathcal{D}$ um conjunto de dados de itens;
 - $-x \in \mathcal{D}$ um item desse conjunto;
 - $-\mathcal{D}_{c} \subset \mathcal{D}$ um conjunto de consultas provido pelo usuário
- Nosso objetivo é ordenar (ranquear) os elementos de \mathcal{D} por quão bem eles se ajustam (são semelhantes) ao subconjunto \mathcal{D}_c

Intuição:

– Se o conjunto \mathcal{D} é composto por todos os filmes e o conjunto de consultas \mathcal{D}_c consiste em dois filmes animados da Disney, esperamos que outros filmes animados da Disney sejam altamente ranqueados

- Utilizamos um modelo probabilístico para mensurar quão bem os itens se ajustam a \mathcal{D}_c .
- Tendo observado \mathcal{D}_c como pertencente a algum conceito, queremos saber quão provável é que x também pertença a \mathcal{D}_c :

$$-p(x|\mathcal{D}_c)$$

- Entretanto, isso incorre no problema de sensibilidade:
 - a probabilidade de uma imagem diminui com o número de pixels

Para remover esse efeito, computamos a proporção:

$$-score(x) = \frac{p(x|\mathcal{D}_c)}{p(x)}$$
 (1)

Utilizando a Regra de Bayes, podemos reescrever
 (1) da seguinte maneira:

$$-score(x) = \frac{p(x, \mathcal{D}_c)}{p(x)p(\mathcal{D}_c)} (2)$$

- Isto pode ser interpretado como a proporção da probabilidade conjunta de observar $x \in \mathcal{D}_c$ e a probabilidade de independentemente observar $x \in \mathcal{D}_c$.
- Intuitivamente, a figura abaixo mostra o significado da proporção expressa na equação (2):

- Da discussão anterior, ainda não está claro como $p(x|\mathcal{D}_c)$ e p(x) podem ser calculados.
- Uma maneira natural de definir um cluster é assumir que seus pontos vieram independentemente e igualmente distribuídos a partir de algum simples modelo estatístico parametrizável.
- Se todos os pontos em \mathcal{D}_c pertencem a um mesmo cluster, então, do ponto de vista dessa definição, eles foram gerados a partir da mesma configuração de parâmetros. Entretanto, essa configuração é desconhecida, então precisamos calcular a média dos possíveis valores de parâmetros ponderados por alguma densidade anterior nos valores dos parâmetros, $p(\theta)$.

 Assim, usando o teorema de Bayes, podemos estimar os parâmetros:

$$-p(\theta|\mathcal{D}_c) = \frac{p(\mathcal{D}_c|\theta)p(\theta)}{p(\mathcal{D}_c)}$$

 Na prática, usaremos parâmetros empíricos adotados pelos próprios autores, mas que satisfazem a relevância da recuperação da informação.

 Assim, estabelecemos o algoritmo dos conjuntos bayesianos:

Bayesian Sets Algorithm

```
background: a set of items \mathcal{D}, a probabilistic model p(\mathbf{x}|\theta) where
         \mathbf{x} \in \mathcal{D}, a prior on the model parameters p(\theta)
input: a query \mathcal{D}_c = \{\mathbf{x}_i\} \subset \mathcal{D}
for all x \in \mathcal{D} do
                          score(\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{D}_c)}{p(\mathbf{x})}
    compute
end for
```

output: return elements of \mathcal{D} sorted by decreasing score

Detalhes da implementação

- Apesar de todo fundamento matemático da distribuição de Bernoulli, distribuição Beta e função Gama, o score pode ser obtido através de multiplicação de matriz. Vamos entender como chegar até lá:
 - Ler um arquivo csv, fazer o processamento do texto usando tudo que foi visto até agora
 - Criar uma lista de strings que será sua consulta e fazer o mesmo processamento nela
 - Criar um DTM (transposto de TDM) de \mathcal{D}
 - Criar um DTM da lista ajustado (fit) ao DTM de $\ensuremath{\mathcal{D}}$

Detalhes da Implementação

- Assim, o score é obtido da seguinte forma:
 - -s = nc + Xq
 - -X é o DTM de \mathcal{D}

$$-q = \log(\tilde{\alpha}) - \log(\alpha) - \log(\tilde{\beta}) + \log(\beta)$$

$$-nc = \sum \log(\alpha + \beta) - \log(\alpha + \beta + N) + \log(\tilde{\beta}) - \log(\beta)$$

$$-\alpha = c \times m$$

$$-\beta = c \times (1 - m)$$

$$-\tilde{\alpha} = \alpha + \sum x_{ij}$$

$$-\tilde{\beta} = \beta + N - \sum x_{ij}$$

$$-c = 2$$

$$-m = mean\ vector(X)$$

 $-x_{ij} = vetor de características do DTM ajustado$

MBA⁺