2020 年下半年初中数学网络教学资源学生作业答案

第4周 (9月21日~9月27日)

下载链接: https://pan.baidu.com/s/1mKvN2x8nfshEYXn2gne3lg 提取码: di6s

下载二维码:

课序	课题	作业答案
	数的整除单元复习与小结	1. (1) 18, 30, 46, 102; (2) 30, 65.
12		2. 180, 2.
		3. $A = 24$, $B = 18$, A , B 的最大公因数是 6 , 最小公倍数是 72 .
		4. 素数有 11, 23, 29, 43, 53, 79; 合数有 22, 27, 51, 72.
		5. 9和12的最大公因数为3,最小公倍数为36;12和18的最大公因数
		为 6, 最小公倍数为 36; 18 和 24 的最大公因数为 6, 最小公倍数为 72.
		6. 13 和 17 的最小公倍数为 221, 所以,下一次最早出现这种盛况是 221
		年后,也就是2219年.
	数的整除单元讲评	1. $a+1$, $a+2$.
		2. 1, 2, 4, 5, 10, 20 共 6 个因数.
		3. (1) 错误, 还有 0; (2) 错误, 还有 1; (3) 不对, 如 8 和 9; (4)
		错误,有6个,漏了1和12; (5)正确; (6)正确.
		4. 11 和 7 的最大公因数为 1,最小公倍数为 77;13 和 52 的最大公因数
13		为 13, 最小公倍数为 52; 15 和 25 的最大公因数为 5, 最小公倍数为 75.
		5. 根据题意可知,总价为整数元且能被8整除,因此总价是一位偶数,
		这个数是 7584 元, 单价为 948 元.
		6. 用正方形拼板拼长方形,长和宽一定是整数块,且这个整数能被60整
		除, 因为 60=1×60=2×30=3×20=4×15=5×12=6×10, 所以共能拼出长
		和宽分别为 60, 1; 30, 2; 20, 3; 15, 4; 12, 5; 10, 6 六种不同形状

		的长方形.
		7. 查 100 以内的素数表可知 3 和 5; 5 和 7; 11 和 13 是孪生素数, 3, 5,
		7是三胞胎素数.
		8. 这条 L 型道路至少要安装 12 盏路灯,相邻两盏路灯的间距应为 12 米.
14	专题: 求三 个整数的 小公倍数 2.1 分数与 除法①	 (1) 60; (2) 52; (3) 180; (4) 240. 73 本 (先求出 6, 8, 9 的最小公倍数 72, 72+1=73) 57 个 (先求出 4, 5, 6 的最小公倍数 60, 60-3=57) (1)×; (2) √; (3) ×. (1)2÷5; (2)25÷8; (3)23÷78; (4)1÷23. ¹/₄; ³/₁₂ ¹/₄; ³/₄; ³/₈. ⁴/₅ ¹/₅. 预设几种答案 (1)
		(3) 6. 提示: 通过网络搜索或阅读他人的文献,进行提炼,再用手抄报或 PPT 形式呈现.
16	2.1 分数与除法②	1. $\triangle A \& 3$; $\triangle B \& 5$; $\triangle C \& 5$. 2. $\triangle A \& 5$; $\triangle B \& 5$; $\triangle C \& 5$. 3. $\frac{1}{3}$; $\triangle B \& 5$; $\triangle C \& 5$; $\triangle C \& 5$. 4. $\frac{1}{5}$; $\frac{3}{5}$; $\frac{6}{5}$; $\frac{9}{5}$; $\frac{1}{2}$; $\frac{1}{3}$; $\frac{1}{2}$; $\frac{1}{3}$; $\frac{1}{2}$; $\frac{1}{3}$; $\frac{1}{2}$; $\frac{9}{4}$; $\frac{1}{3}$; $\frac{1}{$

课序	课题	作业答案
12	9.7 同底数 幂的乘法 (1)	1. (练习册第 13 页, 第 2 题) 按要求填空: $ = \left(\frac{5}{3} \times \frac{5}{3} \times \frac{5}{3}\right) \times \left(\frac{5}{3} \times \frac{5}{3} \times \frac{5}{3} \times \frac{5}{3} \times \frac{5}{3}\right) \times \left(\frac{5}{3} \times \frac{5}{3} \times \frac{5}{3}\right) \times \left(\frac{5}{3} \times \frac{5}{3} \times \frac{5}{3} \times \frac{5}{3}\right) \times \left(\frac{5}{3} \times \frac{5}{3} \times \frac{5}{3} \times \frac{5}{3}\right) \times \left(\frac{5}{3} \times \frac{5}{3} \times \frac{5}{3}$
13		1. (1) $(-x)^7$; (2) $(b-a)^3$. 2. (1) $a^2 \cdot a^5 + a \cdot a^3 \cdot a^3$ $= a^{2+5} + a^{1+3+3}$ $= a^7 + a^7$ $= 2a^7$ (2) $a + 2a + 3a + 4a + a \cdot a^2 \cdot a^3 \cdot a^4$ $= (1+2+3+4)a + a^{1+2+3+4}$ $= 10a + a^{10}$ (3) $(-x) \cdot (-x)^2 \cdot (-x)^3 + (-x) \cdot (-x)^5$ $= (-x)^{1+2+3} + (-x)^{1+5}$ $= (-x)^6 + (-x)^6$ $= 2(-x)^6$ $= 2x^6$

		$(4) (2x)^{3} \cdot (2x)^{4} + (-2x)^{3} \cdot (-2x)^{4}$ $= (2x)^{3+4} + (-2x)^{3+4}$ $= (2x)^{7} + (-2x)^{7}$ $= (2x)^{7} - (2x)^{7}$ $= 0$
14	9.8幂的乘方(1)	1. C. 2. (1) 5^{12} ; (2) 2^{20} ; (3) $(x+y)^8$; (4) a^{3n} ; (5) a^{10} ; (6) a^{24} ; (7) a^3 , a^5 ; (8) a^9 . 3. (1) 6^{12} ; (2) x^{18} ; (3) $(-3)^{15}$; (4) $(-a)^{15}$; (5) x^{60} ; (6) $(b-a)^{15}$.
15	9.8幂的乘方(2)	1. (1) a^{18} ; (2) $-x^8$; (3) $(x-y)^7$; (4) a^8-a^{15} ; (5) 0; (6) 0; (7) $3x^{12}$; (8) $2a^6+6a$. 2. 不同意; 因为 $(-a^2)^3 = -a^6$, 而 $(-a^3)^2 = a^6$.
16	9.9 积的乘 方(1)	1. C. 2. (1) a^6b^9 ; (2) $16a^8$; (3) x^2y^4 ; (4) $\frac{1}{8}a^9b^{15}$. 3. $k = 6$.

课序	课题	作业答案
12	17.2 一元二 次方程的解 法①	1. (1) \times ; (2) $$; (3) \times ; (4) \times . 2. (1) $x_1 = 11$, $x_2 = -11$; (2) $x_1 = 4$, $x_2 = -4$; (3) $t_1 = 2\sqrt{2}$, $t_2 = -2\sqrt{2}$; (4) $y_1 = \frac{\sqrt{6}}{2}$, $y_2 = -\frac{\sqrt{6}}{2}$; (5) $y_1 = \frac{3}{2}$, $y_2 = -\frac{3}{2}$; (6) $t_1 = \frac{5}{6}$, $t_2 = -\frac{5}{6}$; (7) $x_1 = 5 + 3\sqrt{2}$, $x_2 = 5 - 3\sqrt{2}$; (8) $x_1 = \sqrt{2} + 2$, $x_2 = \sqrt{2} - 2$; (9) $y_1 = -48$, $y_2 = -52$; (10) $x_1 = b - 2$, $x_2 = 2 - b$.
13	17.2 一元二 次方程的解 法②	1. (1) $x_1 = 0$, $x_2 = 1$; (2) $x_1 = \sqrt{5}$, $x_2 = 3\sqrt{5}$; (3) $x_1 = -\frac{1}{6}$, $x_2 = -4$; (4) $y_1 = 0$, $y_2 = \frac{\sqrt{2}}{5}$; (5) $y_1 = \frac{1}{13}$, $y_2 = -\frac{4}{3}$; (6) $y_1 = -\frac{3}{5}a$, $y_2 = \frac{5}{3}a$. 2. (1) $x_1 = 0$, $x_2 = \frac{1}{2}$; (2) $x_1 = -3$, $x_2 = 1$;

		(3) $x_1 = 6$, $x_2 = -3$; (4) $x_1 = 6$, $x_2 = -2$;
		(5) $x_1 = -5$, $x_2 = -2$; (6) $x_1 = -4$, $x_2 = 2$;
		(7) $x_1 = -1$, $x_2 = -7$; (8) $x_1 = 0$, $x_2 = b - a$.
		3. 答案不唯一. 如: x²+9x+20=0.
		4. $x^2 + y^2 = 4$.
	17.2 一元二 次方程的解 法③	1. (1) 9, 3; (2) 16, 4; (3) $\frac{9}{16}$, $\frac{3}{4}$; (4) $\frac{1}{25}$, $\frac{1}{5}$;
		(5) $\frac{b^2}{4}$, $\frac{b}{2}$.
		2. (1) $x_1 = -4 + 3\sqrt{2}$, $x_2 = -4 - 3\sqrt{2}$; (2) $x_1 = \frac{1}{2} + \frac{\sqrt{5}}{2}$, $x_2 = \frac{1}{2} - \frac{\sqrt{5}}{2}$;
14		(3) $x_1 = \frac{5}{4} + \frac{\sqrt{17}}{4}$, $x_2 = \frac{5}{4} - \frac{\sqrt{17}}{4}$; (4) $x_1 = \frac{1}{4} + \frac{\sqrt{5}}{4}$, $x_2 = \frac{1}{4} - \frac{\sqrt{5}}{4}$.
		3. (1) $x_1 = 7$, $x_2 = -3$; (2) $x_1 = \frac{-3 + \sqrt{5}}{2}$, $x_2 = \frac{-3 - \sqrt{5}}{2}$;
		(3) $x_1 = -1 + \frac{2}{3}\sqrt{3}$, $x_2 = -1 - \frac{2}{3}\sqrt{3}$; (4) $x_1 = 3 + \sqrt{19}$, $x_2 = 3 - \sqrt{19}$;
		(5) $x_1 = 1 + \frac{\sqrt{14}}{2}$, $x_2 = 1 - \frac{\sqrt{14}}{2}$; (6) $x_1 = 96$, $x_2 = -104$.
		1. (1) -24; (2) 19.
	17.2 一元二 次方程的解 法④	2. (1) $x_1 = -2$, $x_2 = \frac{3}{2}$; (2) 无实数根;
		(3) $x_1 = \frac{1 + \sqrt{145}}{6}$, $x_2 = \frac{1 - \sqrt{145}}{6}$; (4) $x_1 = \sqrt{3} + \sqrt{7}$, $x_2 = \sqrt{3} - \sqrt{7}$.
15		3. (1) $x_1 = \frac{7 + \sqrt{13}}{6}$, $x_2 = \frac{7 - \sqrt{13}}{6}$; (2) $x_1 = x_2 = \frac{2}{3}$;
		(3) $x_1 = \frac{-5 + \sqrt{109}}{6}$, $x_2 = \frac{-5 - \sqrt{109}}{6}$; (4) $x_1 = \frac{3 + \sqrt{15}}{2}$, $x_2 = \frac{3 - \sqrt{15}}{2}$.
		4. $x_1 = 2 + \sqrt{k^2 + 4}$, $x_2 = 2 - \sqrt{k^2 + 4}$.
	17.2 一元二 次方程的解 法⑤	1. (1) $x_1 = -1 + \frac{\sqrt{6}}{2}$, $x_2 = -1 - \frac{\sqrt{6}}{2}$; (2) $x_1 = \frac{1}{2}$, $x_2 = \frac{1}{8}$;
		(3) $x_1 = \frac{3}{2}$, $x_2 = -\frac{5}{2}$; (4) $x_1 = \frac{\sqrt{6} + \sqrt{2}}{2}$, $x_2 = \frac{\sqrt{6} - \sqrt{2}}{2}$;
16		(5) $x_1 = -3 + \sqrt{5}$, $x_2 = -3 - \sqrt{5}$; (6) $y_1 = 4$, $y_2 = \frac{2}{3}$.
		2. (1) $x = \pm 3$; (2) $x = \frac{4}{3}$, $\vec{\boxtimes} x = -1$.
		3. (1) $x_1 \approx 1.7$, $x_2 \approx -0.9$; (2) $x_1 \approx 3.1$, $x_2 \approx -1.0$.
		4. (1) $x=5$ 或1; (2) $\frac{7\pm3\sqrt{5}}{2}$.
		5. 6, 7, 8, 或-8, -7, -6.

课序	课题	作业答案
15	24.5 相似三 角形的性质 ③	 1. 略. 2. (1) 100 厘米, 40 厘米; (2) 500 平方厘米, 80 平方厘米. 2. AD=12, BD=9, CD=16. 3. a√SS₁/S.
16	24.5 相似三角形的性质	1. 略. 2. 8. 3. $BP=8$, $CD=\frac{32}{5}$. 4. (1) 提示: 先证明 $\triangle ABE \hookrightarrow \triangle ACF$, 得 $\frac{AE}{AF}=\frac{AB}{AC}$, 再证 $\triangle ABC \hookrightarrow \triangle AEF$. (2) 提示: 在 Rt $\triangle ABE$ 中, $\angle A=60^\circ$,可得 $\frac{AE}{AB}=\frac{1}{2}$, $\frac{S_{\triangle AEF}}{S_{\triangle ABC}}=\frac{1}{4}.$
17	24.6 实数与向量相乘①	 作图略. (1) 正确; (2) 不正确, 改为: ¹/₃ DB = ¹/₃ (a - b); (3) 正确. 3. ma // na. 根据实数与向量相乘的意义,可知ma、na 都与 a 平 行,所以ma 与 na 平行.
18	24.6 实数与 向量相乘②	$1.(1)\overrightarrow{AD} = -\frac{1}{2}\vec{a} - \vec{b}, \overrightarrow{BE} = \vec{a} + \frac{1}{2}\vec{b}, \overrightarrow{CF} = -\frac{1}{2}\vec{a} + \frac{1}{2}\vec{b};$ (2)0.

		2(1) 2 4
		2.(1) - 3a + 4b;
		$(2) - 5\vec{a} + 5\vec{b} + \vec{c};$
		$(3)5\vec{a} + \frac{11}{2}\vec{b} - \frac{8}{3}\vec{c}.$
		3. 作图略.
		1. C ; 2. $ \vec{a} $, $\frac{1}{ \vec{a} }$; 3. 3; 4. $-\frac{5}{6}$; 5. $+7$; 6. $\vec{a} = -\frac{3}{4}\vec{b}$.
		7.提示: $\vec{a} = \vec{b}$ 是平行向量. 理由略.
	24.6 实数与向量相乘3	8.解 :: $DE//BC$, $\frac{AE}{AC} = \frac{3}{4}$,
		$\therefore \frac{DE}{BC} = \frac{3}{4} \qquad \mathbb{R}^{p} \colon DE = \frac{3}{4}BC.$
		$\therefore \overrightarrow{BC} \ni \overrightarrow{DE}$ 反向,
19		$\therefore \overrightarrow{DE} = -\frac{3}{4}\overrightarrow{BC}.$
		$9. \cancel{\text{M}}(1) \overrightarrow{EF} = \frac{1}{2} \overrightarrow{AB} - \frac{1}{2} \overrightarrow{AD}, \overrightarrow{HG} = \frac{1}{2} \overrightarrow{CB} - \frac{1}{2} \overrightarrow{CD};$
		$(2) : \overrightarrow{EF} = \frac{1}{2} \overrightarrow{AB} - \frac{1}{2} \overrightarrow{AD} = \frac{1}{2} (\overrightarrow{AB} - \overrightarrow{AD}) = \frac{1}{2} \overrightarrow{DB},$
		$\overrightarrow{HG} = \frac{1}{2}\overrightarrow{CB} - \frac{1}{2}\overrightarrow{CD} = \frac{1}{2}\left(\overrightarrow{CB} - \overrightarrow{CD}\right) = \frac{1}{2}\overrightarrow{DB},$
		$\therefore \overrightarrow{EF} = \overrightarrow{HG}.$
		可知 \overrightarrow{EF} 与 \overrightarrow{HG} 同向且等长,即 \overrightarrow{EF} // \overrightarrow{HG} , \overrightarrow{EF} = \overrightarrow{HG} ,所以四边形 \overrightarrow{EFGH}
		是平行四边形.
	24.7 向量 的线性运算 ①	1. D; 2. A; 3. $4\vec{a} + 6\vec{b}$; 4. $\vec{a} + 3\vec{b}$; 5. $2\vec{a} + \vec{b}$; 6. $\vec{a} + \frac{1}{2}\vec{b}$;
20		7. $\frac{1}{2}\vec{a} - \frac{1}{2}\vec{b}$.
		8.提示:
		(1)可以先化简得 $\frac{3}{2}$ \overrightarrow{a} +2 \overrightarrow{b} 再作图,图略.
		(2)可以先化简得 $-\frac{1}{2}\vec{a} - \frac{3}{2}\vec{b}$ 再作图,图略.
		9.提示: $\overrightarrow{EC} = 2\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$, 过程略.