§ 3二次曲面

1.椭球面

由方程
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 (标准方程)(a , b , $c>0$)

所表示的曲面称为椭球面 (椭圆面)

特别: 当 a=b=c 时,就是球面。

性质:

对称性: 椭球面关于三个坐标面、三个坐标轴以及原点都对称.

有界性: 椭球面在由六个平面 $x = \pm a$, $y = \pm b$, $z = \pm c$ 所围成的长方体内

椭圆面的顶点和半轴

顶点
$$(\pm a,0,0), (0,\pm b,0), (0,0,\pm c)$$

如果 $a \ge b \ge c$,则 a, b, c 分别称为椭球面的长半轴,中半轴,短半轴。

椭球面与三个坐标面的交线:

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \\ z = 0 \end{cases}$$

$$\begin{cases} \frac{x^2}{a^2} + \frac{z^2}{c^2} = 1, \\ y = 0 \end{cases}$$

$$\begin{cases} \frac{\mathbf{y}^2}{\mathbf{b}^2} + \frac{\mathbf{z}^2}{\mathbf{c}^2} = 1, \\ x = 0 \end{cases}$$

椭球面与平面 $z = z_1$ 的交线为椭圆

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\\ \frac{z^2}{c^2} + \frac{z^2}{c^$$

同理与平面 $x = x_1$ 和 $y = y_1$ 的交线也是椭圆.

椭圆截面的大小随平面位置的变化而变化.

2.双曲面

①单叶双曲面

由
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
 (a, b, c>0) 所确定的曲面称单叶双曲面

性质:

对称性:单叶双曲面关于三个坐标面、三个坐标轴以及原点都对称.

范围:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \ge 1$$

形状: z=0 与曲面的交线为椭圆 $\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \\ z = 0 \end{cases}$

称为腰椭圆。

与平面 $z=z_1$ 的交线为椭圆.

用坐标面 xoz (y = 0)与曲面相截

截得中心在原点的双曲线.

$$\begin{cases} \frac{x^{2}}{a^{2}} - \frac{z^{2}}{c^{2}} = 1 & \text{实轴与} x \text{轴相合,} \\ a & c & \text{虚轴与} z \text{轴相合.} \end{cases}$$

 $(\pm a,0,0),(0,\pm b,0)$ 叫做单叶双曲面的顶点,对称中心(原点)称为它的中心。

渐近锥面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

② 双叶双曲面

(a,b,c>0)所确定的曲面称为双叶双曲面

性质:

对称性:双叶双曲面关于三个坐标面、三个坐标轴以及原点都对称.

范围: $|z| \ge c$

形状: 曲面与 x=k,(或 y=k)的交线为双曲线 曲面与 z=k($|k| \ge c$)的交线为椭圆

顶点 $(0, 0, \pm c)$

渐近锥面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

3.抛物面

1 椭圆抛物面

由
$$\frac{x^2}{p} + \frac{y^2}{q} = 2z$$
 所确定的曲面 称为椭圆抛物面. (p, q) 同号)

性质:

对称性: xoz 面, yoz 是它的对称平面 z 轴是对称轴

范围: $z \ge 0$

顶点(0,0,0)

与平面 $z = z_1 (z_1 > 0)$ 的交线为椭圆.

$$\begin{cases} \frac{x^2}{2pz_1} + \frac{y^2}{2qz_1} = 1 & \exists z_1 变动时,这种椭 \\ z = z_1 & \exists n \in \mathbb{Z} \end{cases}$$

与平面 $z = z_1 \ (z_1 < 0)$ 不相交.

用坐标面 xoz (y = 0)与曲面相截

截得抛物线
$$\begin{cases} x^2 = 2pz \\ y = 0 \end{cases}$$

与平面 $y = y_1$ 的交线为抛物线。

$$\begin{cases} x^2 = 2p \left(z - \frac{y_1^2}{2q}\right) \\ y = y_1 \end{cases}$$

它的轴平行于z轴. 顶点 $\left(0, y_1, \frac{y_1^2}{2q}\right)$

用坐标面 yoz (x = 0) x = x 与曲面相截均可得抛物线。

椭圆抛物面的图形如

②双曲抛物面

由
$$-\frac{x^2}{p} + \frac{y^2}{q} = 2z$$

为双曲抛物面(马鞍面)

(p, q>0) 所确定的曲面称

性质:

对称性: xoz 面, yoz 面是对称平面, z 轴是对称轴.

范围:可向上、下、左、右、前、后,无限伸展

截痕法

用z = a截曲面

用y = 0截曲面

用x = b截曲面

4.二次曲面的种类(共十七种)

(一)、椭球面

特别球面:
$$x^2 + y^2 + z^2 = k^2$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$$

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$$

(二)、双曲面

(三)、抛物面

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

$$\frac{x^2}{p} + \frac{y^2}{q} = 2z$$
 (p, q>0)

$$\frac{x^2}{p} - \frac{y^2}{a} = 2z$$
 (p, q>0)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

(五)、二次柱面

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

$$x^2 = 2py$$

$$x^2 = a^2$$

$$x^{2} = -a^{2}$$

$$x^{2} = 0$$