

Overview of Mixed-integer Nonlinear Programming

Ignacio E. Grossmann
Center for Advanced Process Decision-making
Department of Chemical Engineering
Carnegie Mellon University
Pittsburgh, PA 15213

Outline

- MINLP models in planning and scheduling
- Overview MINLP methods
- Brief reference to Generalized Disjunctive Programming
- Overview of global optimization of MINLP models

- Challenges
 - How to develop effective algorithms for nonlinear discrete/continuous?
 - How to improve relaxation?
 - How to solve nonconvex GDP problems to global optimality?

Observation for EWO problems

-Most Planning, Scheduling, Supply Chain models are linear = > MILP

Major reasons: Simplified performance models (fixed rates, processing times) Fixed-time horizon, minimization makespan problems

See recent reviews in area:

Mendez, C.A., J. Cerdá, I. E. Grossmann, I. Harjunkoski, and M. Fahl, (2006). "State-Of-The-Art Review of Optimization Methods for Short-Term Scheduling of Batch Processes," *Computers & Chemical Engineering* 30, 913-946.

Burkard, R., & Hatzl, J. (2005). Review, extensions and computational comparison of MILP formulations for scheduling of batch processes. *Computers and Chemical Engineering*, 29, 2823–2835.

Kelley, J..D., "Formulating Production Planning Problems," Chemical Engineering Progress,", Jan. p.43 (2004)

Floudas, C. A., & Lin, X. (2004). Continuous-time versus discrete-time approaches for scheduling of chemical processes: A review. *Computers and Chemical Engineering*, 28, 2109–2129.

Kallrath, J. (2002). Planning and scheduling in the process industry. *OR Spectrum*, 24, 219–250.

When are nonlinearities required?

Cyclic scheduling problems: infinite horizon (only nonlinear objective)

Sahinidis, N.V. and I.E. Grossmann, "MINLP Model for Cyclic Multiproduct Scheduling on Continuous Parallel Lines," *Computers and Chemical Engineering* 15, 85 (1991).

Pinto, J. and I.E. Grossmann, "Optimal Cyclic Scheduling of Multistage Multiproduct Continuous Plants," *Computers and Chemical Engineering*, 18, 797-816 (1994)

Performance models:

Jain, V. and I.E. Grossmann, "Cyclic Scheduling and Maintenance of Parallel Process Units with Decaying Performance", *AIChE J.*, 44, pp. 1623-1636 (1998) **Exponential decay furnaces**

Van den Heever, S.A., and I.E. Grossmann, "An Iterative Aggregation/Disaggregation Approach for the Solution of a Mixed Integer Nonlinear Oilfield Infrastructure Planning Model," *I&EC Res.*39, 1955-1971 (2000).

Pressure and production curves reservoir

Bizet, V.M., N. Juhasz and I.E. Grossmann, "Optimization Model for the Production and Scheduling of Catalyst Changeovers in a Process with Decaying Performance," *AIChE Journal*, 51, 909-921 (2005). **Reactor model**

Flores- Tlacuahuac, A. and I.E. Grossmann, "Simultaneous Cyclic Scheduling and Control of a Multiproduct CSTR," *Ind. Eng. Chem. Res.* 45, 6698-6712 (2006). **Dynamic models CSTR reactor**

Karuppiah, R., K. Furman, and I.E. Grossmann, "Global Optimization for Scheduling Refinery Crude Oil Operations," in preparation (2007). **Crude blending**

MINLP

Mixed-Integer Nonlinear Programming

$$min Z = f(x, y)$$
 Objective Function
$$s.t. \quad g(x, y) \leq 0 \qquad \qquad Inequality \ \textit{Constraints}$$

$$x \in X, \ y \in Y$$

$$X = \{x \mid x \in R^n, x^L \leq x \leq x^U, Bx \leq b\}$$

$$Y = \{y \mid y \in \{0,1\}^m, Ay \leq a\}$$

- f(x,y) and g(x,y) assumed to be convex and bounded over X.
- f(x,y) and g(x,y) commonly linear in y

Generalized Disjunctive Programming (GDP)

•Raman and Grossmann (1994) (Extension Balas, 1979)

$$\min \ Z = \sum_k c_k + f(x) \qquad \text{Objective Function}$$

$$s.t. \quad r(x) \leq 0 \qquad \text{Common Constraints}$$

$$OR \ \text{operator} \longrightarrow \bigvee_{j \in J_k} \begin{bmatrix} Y_{jk} & & \\ g_{jk}(x) \leq 0 \\ c_k = \gamma_{jk} \end{bmatrix} \quad k \in K \qquad \text{Constraints}$$

$$\sum_{j \in J} Y_{jk} & \text{Fixed Charges}$$

$$\sum_{j \in J} Y_{jk} & \text{Logic Propositions}$$

$$\Omega(Y) = true$$

$$x \in R^n, c_k \in R^1 \qquad \text{Continuous Variables}$$

$$Y_{jk} \in \{ true, \ false \ \}$$
Boolean Variables

Can be transformed into MINLP or solved directly as a GDP

See previous work Sangbum Lee (2002) and Nick Sawaya (2006)

Jobshop Scheduling Problem

CAPD Carnegie ACENTER

Processing times T(hr)

Jobs/Stages	1	2	3
A	5	0	3
В	0	3	2
C	2	4	0

Find sequence, times to minimize makespan

GDP: min
$$MS = T$$

$$st \quad T \ge t_A + 8$$
$$T \ge t_B + 5$$

$$\iota \geq \iota_B + \mathfrak{I}$$

$$T \ge t_C + 6$$

$$(t_A - t_B \le -5) \lor (t_B - t_A \le 0)$$

$$(t_A - t_C \le -5) \lor (t_C - t_A \le -2)$$

$$(t_B - t_C \le -1) \lor (t_C - t_B \le -6)$$

$$T, t_A, t_B, t_C \ge 0$$

A before B or B before A

A before C or C before A

B before C or C before B

MILP:

Big-M reformulation

Parameter M "sufficiently" large

min
$$MS = T$$

 $st \ T \ge t_A + 8$
 $T \ge t_B + 5$
 $T \ge t_C + 6$
 $t_A - t_B \le -5 + M(1 - y_{AB})$
 $t_B - t_A \le 0 + M(1 - y_{BA})$
 $t_A - t_C \le -5 + M(1 - y_{AC})$
 $t_C - t_A \le -2 + M(1 - y_{CA})$
 $t_B - t_C \le -1 + M(1 - y_{BC})$
 $t_C - t_B \le -6 + M(1 - y_{CB})$
 $y_{AB} + y_{BA} = 1$
 $y_{AC} + y_{CA} = 1$
 $y_{AC} + y_{CB} = 1$
 $y_{AB}, y_{BA}, y_{AC}, y_{CA}, y_{BC}, y_{CB} = 0,1$
 $T, t_A, t_B, t_C \ge 0$

Continuous multistage plants

Pinto, Grossmann (1994)

Cyclic schedules (constant demand rates, infinite horizon)

Intermediate storage

Given:

N Products

Transition times (sequence dependent)

Demand rates

Determine:

PLANNING

Amount of products to be produced Inventory levels

SCHEDULING

Cyclic production schedule Sequencing Lengths of production

Cycle time

Objective: Maximize Profit = + Sales of products - inventory costs - transition costs

Optimal Trade-offs

Optimal length of cycle determined largely by transition and inventory costs

Critical to model properly inventory levels and transition times

MINLP Model (1)

Assumption:

Each product is processed in the same sequence at each stage

Basic ideas:

- a. NP products
- b. NP time slots at each stage

Binary variable

 $y_{ik} = \begin{cases} 1 & \text{if product i assigned to slot } k \\ 0 & \text{otherwise} \end{cases}$

a) Assignments of products to slots and vice versa

$$\sum_{i} y_{ik} = 1 \qquad \forall i$$

$$\sum_{i} y_{ik} = 1 \qquad \forall k$$

MINLP Model (2)

b) **Definition of transition variables**

$$z_{ijk} \ge y_{ik} + y_{jk-1} - 1 \qquad \forall i, j \quad \forall k$$

$$\forall i, j \ \forall k$$

$$z_{ijk}$$
 treated as continuous

c) Processing rates, mass balances and amounts produced

$$Wp_{ikm} = \gamma p_{im} Tpp_{ikm}$$

 $\forall k$ $\forall m$

$$W_{km} = \gamma_{km} T p_{km}$$

 $\forall k$ $\forall m$

$$Wp_{ikm} = \alpha_{im+1}Wp_{ikm+1}$$

$$\forall i \qquad \forall$$

$$\forall k \qquad m=1...M-1$$

d) **Timing constraints**

$$Tpp_{ikm} - U_{im}^T y_{ik} \leq 0$$

$$Tp_{km} = \sum_{i} Tpp_{ikm}$$

$$Tp_{km} = Te_{km} - Ts_{km}$$

$$Ts_{k+1m} = Te_{km} + \sum_{i} \sum_{j} \tau_{ijm} z_{ijk+1} \quad k = 1...NP - 1 \quad \forall m$$

$$Ts_{11} = \sum \sum \tau_{ij1} z_{ij1}$$

$$Ts_{11} = \sum_{i} \sum_{j} \tau_{ij1} z_{ij1}$$

$$Te_{km} \le Te_{km+1} \qquad \forall k \qquad m = 1...M-1$$

$$m = 1...M - 1$$

$$Ts_{km} \le Ts_{km+1}$$
 $\forall k \qquad m = 1...M-1$

$$m = 1...M - 1$$

$$Tc \ge \sum_{k} \left(Tp_{km} + \sum_{i} \sum_{j} \tau_{ijm} z_{ijk} \right)$$

Processing time

MINLP Model (3)

Inventories:

time

e) Inventory levels for intermediates

← Tpkm+1

$$II_{km} = \gamma_{km} \min\{Tp_{km}, Ts_{km+1} - Ts_{km}\} + IO_{km}$$

Tskm+1 - Tskm Tekm+1 - Tekm

$$II_{km} = \gamma_{km} \min\{Tp_{km}, Ts_{km+1} - Ts_{km}\} + I0_{km} \qquad \forall k \qquad m = 1...M - 1$$

$$I2_{km} = (\gamma_{km} - \alpha_{km+1}\gamma_{km+1})\max\{0, Te_{km} - Ts_{km+1}\} + II_{km} \qquad \forall k \qquad m = 1...M - 1$$

$$as 0-1 linear inequalities$$

$$\forall k \qquad m = 1...M-1$$

$$O I3_{km} = -\alpha_{km+1}\gamma_{km+1}\min\{Te_{km+1} - Te_{km}, Tp_{km+1}\} + I2_{km}$$

$$\forall k \qquad m = 1...M-1$$

3km

time

$$0 \le II_{km} \le Imax_{km}$$

I0km

 \leftarrow Tpkm \rightarrow I

$$0 \le I2_{km} \le Imax_{km}$$

$$0 \le I3_{km} \le Imax_{km}$$

$$Imax_{km} = \sum_{i} Ip_{ikm}$$
$$Ip_{ikm} - U_{im}^{I} y_{ik} \le 0$$

$$\forall k \qquad m = 1...M-1$$

$$\forall k \qquad m = 1...M-1$$

$$\forall k \qquad m = 1...M-1$$

$$\forall k \quad \forall m$$

$$\forall i \qquad \forall k \qquad m = 1...M$$

MINLP Model (4)

f) Demand constraints

$$\sum_{k} W p_{ikM} \ge d_i T c$$

 $\forall i$

Note: Linear

g) Objective function: Maximize Profit

Note: Nonlinear (divide by Tc)

$$Profit = \sum_{i} \sum_{k} p_{i} \frac{Wp_{ikM}}{Tc}$$

$$-\sum_{i}\sum_{j}\sum_{k}Ctr_{ij}\frac{z_{ijk}}{Tc}$$

TRANSITION COST

$$-\sum_{i}\sum_{k}\sum_{m}Cinv_{im}\frac{Ip_{ikm}}{Tc}$$

$$-\frac{1}{2}\sum_{i}\sum_{k}Cinvf_{i}\bigg(\gamma p_{iM}-\frac{Wp_{ikM}}{Tc}\bigg)Tpp_{ikM}$$

Solution Algorithms for MINLP

Branch and Bound method (BB)

Ravindran and Gupta (1985) Leyffer and Fletcher (2001)

Branch and cut: Stubbs and Mehrotra (1999)

- *Generalized Benders Decomposition (GBD)

 Geoffrion (1972)
- Outer-Approximation (OA)

Duran & Grossmann (1986), Yuan et al. (1988), Fletcher & Leyffer (1994)

- LP/NLP based Branch and Bound
 - Quesada and Grossmann (1992)
- **Extended Cutting Plane (ECP)**

Westerlund and Pettersson (1995)

Basic NLP subproblems

a) NLP Relaxation Lower bound

$$\min Z_{LB}^{k} = f(x, y)$$

$$s.t. \ g_{j}(x, y) \leq 0 \quad j \in J$$

$$x \in X, \ y \in Y_{R}$$

$$y_{i} \leq \alpha_{i}^{k} \ i \in I_{FL}^{k}$$

$$y_{i} \geq \beta_{i}^{k} \ i \in I_{FU}^{k}$$
(NLP1)

b) NLP Fixed *ykUpper bound*

$$\min Z_U^k = f(x, y^k)$$
s.t. $g_j(x, y^k) \le 0$ $j \in J$ (NLP2)
$$x \in X$$

c) Feasibility subproblem for fixed y^k .

min
$$u$$

s.t. $g_j(x, y^k) \le u$ $j \in J$ $u > 0 => infeasible$
 $x \in X, u \in R^1$ (NLPF)

Infinity-norm

Cutting plane MILP master

(Duran and Grossmann, 1986)

Based on solution of K subproblems (x^k, y^k) k=1,...K

Lower Bound

M-MIP

$$\min Z_L^K = \alpha$$

$$st \ \alpha \ge f(x^k, y^k) + \nabla f(x^k, y^k)^T \begin{bmatrix} x - x^k \\ y - y^k \end{bmatrix}$$

$$g_j(x^k, y^k) + \nabla g_j(x^k, y^k)^T \begin{bmatrix} x - x^k \\ y - y^k \end{bmatrix} \le 0 \ j \in J$$

$$x \in X, y \in Y$$

Notes:

- a) Point (x^k, y^k) k=1,...K normally from NLP2
- b) Linearizations accumulated as iterations K increase
- c) Non-decreasing sequence lower bounds

Linearizations and Cutting Planes

Supporting hyperplanes

Underestimate Objective Function

Branch and Bound

NLP1:

$$\min Z_{LB}^k = f(x, y)$$

Tree Enumeration

 $s.t. \quad g_j(x,y) \le 0 \quad j \in J$

$$x \in X$$
, $y \in Y_R$

$$y_i \le \alpha_i^k \quad i \in I_{FL}^k$$

$$y_i \ge \beta_i^k \quad i \in I_{FU}^k$$

Successive solution of NLP1 subproblems

Advantage:

Tight formulation may require one NLP1 ($I_{FL}=I_{FU}=\varnothing$)

Disadvantage:

Potentially many NLP subproblems

Convergence global optimum:

Uniqueness solution NLP1 (sufficient condition)

Carnegie Mellon

Less stringent than other methods

Outer-Approximation

Alternate solution of NLP and MIP problems:

NLP2:
$$\min Z_U^k = f(x, y^k)$$
s.t. $g_j(x, y^k) \le 0$ $j \in J$

$$x \in X$$

M-MIP:

$$min \ Z_L^K = \alpha$$

$$st \ \alpha \ge f(x^k, y^k) + \nabla f(x^k, y^k)^T \begin{bmatrix} x - x^k \\ y - y^k \end{bmatrix}$$

$$g_j(x^k, y^k) + \nabla g_j(x^k, y^k)^T \begin{bmatrix} x - x^k \\ y - y^k \end{bmatrix} \le 0 \ j \in J^k$$

$$x \in X, \ y \in Y$$

Property. Trivially converges in one iteration if f(x,y) and g(x,y) are linear

- If infeasible NLP solution of feasibility NLP-F required to guarantee convergence.

Find new y^{k+1} such that predicted objetive lies below current upper bound UB^K :

(M-MIPF)
$$\min \ Z_L^K = 0\alpha$$
s.t. $\alpha \ge UB^K - \varepsilon$

$$\alpha \ge f(x^k, y^k) + \nabla f(x^k, y^k)^T \begin{bmatrix} x - x^k \\ y - y^k \end{bmatrix}$$

$$g_j(x^k, y^k) + \nabla g_j(x^k, y^k)^T \begin{bmatrix} x - x^k \\ y - y^k \end{bmatrix} \le 0 \quad j \in J$$

$$x \in X, \ y \in Y$$

Remark.

M-MIPF will tend to increase number of iterations

Generalized Benders Decomposition

Benders (1962), Geoffrion (1972)

Particular case of Outer-Approximation as applied to (P1)

1. Consider Outer-Approximation at (x^k, y^k)

$$\alpha \ge f(x^{k}, y^{k}) + \nabla f(x^{k}, y^{k})^{T} \begin{bmatrix} x - x^{k} \\ y - y^{k} \end{bmatrix}$$

$$g(x^{k}, y^{k}) + \nabla g_{j} (x^{k}, y^{k})^{T} \begin{bmatrix} x - x^{k} \\ y - y^{k} \end{bmatrix} \le 0 \quad j \in J^{k}$$

$$(1)$$

2. Obtain linear combination of (1) using Karush-Kuhn-Tucker multipliers μ^k and eliminating x variables

$$\alpha \ge f \left(x^{k}, y^{k} \right) + \nabla_{y} f \left(x^{k}, y^{k} \right)^{T} \left(y - y^{k} \right)$$

$$+ \left(\mu^{k} \right)^{T} \left[g \left(x^{k}, y^{k} \right) + \nabla_{y} g \left(x^{k}, y^{k} \right)^{T} \left(y - y^{k} \right) \right]$$

$$(2)$$

Lagrangian cut

Remark. Cut for infeasible subproblems can be derived in

a similar way.

$$\left(\lambda^{k}\right)^{T} \left[g\left(x^{k}, y^{k}\right) + \nabla_{y} g\left(x^{k}, y^{k}\right)^{T} \left(y - y^{k}\right) \right] \leq 0$$

Generalized Benders Decomposition

Alternate solution of NLP and MIP problems:

NLP2:
$$\min Z_U^k = f(x, y^k)$$
s.t. $g_j(x, y^k) \le 0$ $j \in J$

$$x \in X$$

$$\begin{aligned}
 &\text{min } Z_L^K = \alpha \\
 &\text{M-GBD:} \quad st \quad \alpha \geq f(x^k, y^k) + \nabla_y f(x^k, y^k)^T \left(y - y^k \right) \\
 &\quad + \left(\mu^k \right)^T \left[g(x^k, y^k) + \nabla_y g(x^k, y^k)^T \left(y - y^k \right) \right] \quad k \in KFS \\
 &\quad \left(\lambda^k \right)^T \left[g(x^k, y^k) + \nabla_y g(x^k, y^k)^T \left(y - y^k \right) \right] \leq 0 \quad k \in KIS \\
 &\quad x \in X, \alpha \in R^1 \end{aligned}$$

Property 1. If problem (P1) has zero integrality gap, Generalized Benders Decomposition converges in one **Sahinidis, Grossmann (1991)** iteration when optimal (x^k, y^k) are found.

=> Also applies to Outer-Approximation

Extended Cutting Plane

Westerlund and Pettersson (1995)

Add linearization most violated constraint to M-MIP

$$J^{k} = \{\hat{j} \in \arg\{\max_{j \in J} g_{j}(x^{k}, y^{k})\}\$$

Remarks.

- Can also add full set of linearizations for M-MIP
- Successive M-MIP's produce non-decreasing sequence lower bounds
- Simultaneously optimize xk, yk with M-MIP
 - = > Convergence may be slow

LP/NLP Based Branch and Bound

Quesada and Grossmann (1992)

(a.k.a Branch & Cut; Hybrid)

Integrate NLP and M-MIP problems

Solve NLPs at selected nodes of tree from master MILP and add cutting planes

Remark.

Fewer number branch and bound nodes for LP subproblems

May increase number of NLP subproblems

Numerical Example

$$\min Z = y_1 + 1.5y_2 + 0.5y_3 + x_1^2 + x_2^2$$
s.t. $(x_1 - 2)^2 - x_2 \le 0$
 $x_1 - 2y_1 \ge 0$
 $x_1 - x_2 - 4(1-y_2) \le 0$
 $x_1 - (1 - y_1) \ge 0$
 $x_2 - y_2 \ge 0$
 $x_1 + x_2 \ge 3y_3$
 $y_1 + y_2 + y_3 \ge 1$
 $0 \le x_1 \le 4, \quad 0 \le x_2 \le 4$
 $y_1, y_2, y_3 = 0, 1$

$$(MIP-EX)$$

Optimum solution: $y_1=0$, $y_2=1$, $y_3=0$, $x_1=1$, $x_2=1$, Z=3.5.

Starting point $y_1 = y_2 = y_3 = 1$.

Summary of Computational Results

Method	Subproblems	Master problems (LP's solved)
BB	5 (NLP1)	
OA	3 (NLP2)	3 (M-MIP) (19 LP's)
GBD	4 (NLP2)	4 (M-GBD) (10 LP's)
ECP	-	5 (M-MIP) (18 LP's)

Mixed-Integer Quadratic Programming

Carnegie CENTER

Fletcher and Leyffer (1994)

Quadratic-Approximation may not provide valid bounds for convex function

Add quadratic objective to feasibility M-MIPF Proceed as OA

$$\min Z^{K} = \alpha + \frac{1}{2} \left(\frac{x - x^{k}}{y - y^{k}} \right)^{T} \nabla^{2} L(x^{k}, y^{k}) \left(\frac{x - x^{k}}{y - y^{k}} \right)$$

$$s.t. \quad \alpha \leq UB^{K} - \varepsilon$$

$$\alpha \geq f(x^{k}, y^{k}) + \nabla f(x^{k}, y^{k})^{T} \begin{bmatrix} x - x^{k} \\ y - y^{k} \end{bmatrix}$$

$$g(x^{k}, y^{k}) + \nabla g(x^{k}, y^{k})^{T} \begin{bmatrix} x - x^{k} \\ y - y^{k} \end{bmatrix} \leq 0$$

$$x \in X, \quad y \in Y, \quad \alpha \in \mathbf{R}^{1}$$

Remark. Faster convergence if problems nonlinear in y

Effects of Nonconvexities

- 1. NLP supbroblems may have local optima
- 2. MILP master may cut-off global optimum

Handling of Nonconvexities

1. Rigorous approach (global optimization):

Replace nonconvex terms by underestimtors/convex envelopes Solve convex MINLP within spatial branch and bound

2. Heuristic approach:

Assume lower bound valid Add slacks to linearizations MILP Search until no improvement in NLP

Handling nonlinear equations

$$h(x,y)=0$$

- 1. In branch and bound no special provision-simply add to NLPs
- 2. In GBD no special provision- cancels in Lagrangian cut
- 3. In OA equality relaxation

$$T^{k}\nabla h(x^{k}, y^{k})^{T}\begin{bmatrix} x - x^{k} \\ y - y^{k} \end{bmatrix} \leq 0$$

$$T^{k} = \begin{bmatrix} t_{ii}^{k} \end{bmatrix}, \quad t_{ii}^{k} = \begin{cases} 1 & \text{if } \lambda_{i}^{k} > 0 \\ -1 & \text{if } \lambda_{i}^{k} < 0 \\ 0 & \text{if } \lambda_{i}^{k} = 0 \end{cases}$$

Lower bounds may not be valid

Rigorous if eqtn relaxes as $h(x,y) \le 0$, h(x,y) is convex

MIP-Master Augmented Penalty

Viswanathan and Grossmann, 1990

Carnegie Mellon

Slacks: p^k , q^k with weights w^k

$$\min \quad Z^{K} = \alpha + \sum_{k=1}^{K} \left[w_{p}^{k} p^{k} + w_{q}^{k} q^{k} \right]$$

$$s.t. \quad \alpha \ge f(x^{k}, y^{k}) + \nabla f(x^{k}, y^{k})^{T} \begin{bmatrix} x - x^{k} \\ y - y^{k} \end{bmatrix}$$

$$T^{k} \nabla h(x^{k}, y^{k})^{T} \begin{bmatrix} x - x^{k} \\ y - y^{k} \end{bmatrix} \le p^{k}$$

$$g(x^{k}, y^{k}) + \nabla g(x^{k}, y^{k})^{T} \begin{bmatrix} x - x^{k} \\ y - y^{k} \end{bmatrix} \le q^{k}$$

$$\sum_{i \in B^{k}} y_{i} - \sum_{i \in N^{k}} y_{i} \le |B^{k}| - 1 \quad k = 1, ...K$$

$$x \in X, \ y \in Y, \ \alpha \in \mathbb{R}^{1}, \ p^{k}, q^{k} \ge 0$$

If convex MINLP then slacks take value of zero => reduces to OA/ER

Basis DICOPT (nonconvex version)

- 1. Solve relaxed MINLP
- 2. Iterate between MIP-APER and NLP subproblem until no improvement in NLP

Mixed-integer Nonlinear Programming

MINLP Codes:

SBB Bussieck, Drud (2003) (B&B)
MINLP-BB (AMPL)Fletcher and Leyffer (1999)(B&B-SQP)

Bonmin (COIN-OR) Bonami et al (2006) (B&B, OA, Hybrid)

FilMINT Linderoth and Leyffer (2006) (Hybrid-MINTO-FilterSQP)

DICOPT (GAMS) Viswanathan and Grossman (1990) (OA) AOA (AIMSS) (OA)

α-ECP Westerlund and Peterssson (1996) (ECP)
MINOPT Schweiger and Floudas (1998) (GBD, OA)

Global MINLP code:

BARON Sahinidis et al. (1998) (Global Optimization)

MIQP codes:

CPLEX-MIQP ILOG (Branch and bound, cuts)
MIQPBB (Fletcher, Leyffer, 1999)

http://egon.cheme.cmu.edu/ibm/page.htm

Continuous multistage plants

Cyclic schedules (constant demand rates, infinite horizon) Intermediate storage

Given:

N Products

Transition times (sequence dependent)

Demand rates

Determine:

PLANNING

Amount of products to be produced Inventory levels

SCHEDULING

Cyclic production schedule Sequencing Lengths of production Cycle time

Objective : Maximize Profit = + Sales of products - inventory costs - transition costs

Example 3 stages, 8 products, 3

MINLP model

448 binary 0-1 variables, 2050 continuous variables, 3010 constraints DICOPT (CONOPT/CPLEX): 38.2 secs

Bonmin (COIN-OR)

Bonami, Biegler, Conn, Cornuejols, Grossmann, Laird, Lee, Lodi, Margot, Sawaya, Wächter

Single computational framework (C++) that implements:

- NLP based branch and bound (Gupta & Ravindran, 1985)
- Outer-Approximation (Duran & Grossmann, 1986)
- LP/NLP based branch and bound (Quesada & Grossmann, 1994)
 - a) Branch and bound scheme
 - b) At each node LP or NLP subproblems can be solved NLP solver: IPOPT MIP solver: CLP
 - c) Various algorithms activated depending on what subproblem is solved at given node

I-OA Outer-approximation

I-BB Branch and bound

I-Hyb Hybrid LP/NLP based B&B (extensions)

http://projects.coin-or.org/Bonmin

Convex MINLP Test Problems

http://egon.cheme.cmu.edu/ibm/page.htm

not more than p time worse than the best solver

Computational performance: Comparison of 3 variants with DICOPT and SBB

10000

Safety Layout Problem

MIQP

Sawaya (2006)

Determine placement a set of rectangles with fixed width and length such that the Euclidean distance between their center point and a pre-defined "safety point" is minimized.

$$\begin{aligned} & \textit{Min} \qquad Q = \sum_{i} \sum_{j} c_{ij} (delx_{ij} + dely_{ij}) + \sum_{i} Cost_{i} ((x_{i} - x^{0}_{i})^{2} + (y_{i} - y^{0}_{i})^{2}) \\ & \textit{s.t.} \\ & \textit{delx}_{ij} \geq x_{i} - x_{j} & \forall i, j \in N, i < j \\ & \textit{delx}_{ij} \geq x_{j} - x_{i} & \forall i, j \in N, i < j \\ & \textit{dely}_{ij} \geq y_{i} - y_{j} & \forall i, j \in N, i < j \\ & \textit{dely}_{ij} \geq y_{j} - y_{i} & \forall i, j \in N, i < j \\ & \begin{bmatrix} Z^{1}_{ij} \\ x_{i} + L_{i} / 2 \leq x_{j} - L_{j} / 2 \end{bmatrix} \vee \begin{bmatrix} Z^{2}_{ij} \\ x_{j} + L_{j} / 2 \leq x_{i} - L_{i} / 2 \end{bmatrix} \vee \begin{bmatrix} Z^{3}_{ij} \\ y_{i} + H_{i} / 2 \leq y_{j} - H_{j} / 2 \end{bmatrix} \vee \begin{bmatrix} Z^{4}_{ij} \\ y_{j} + H_{j} / 2 \leq y_{i} - H_{i} / 2 \end{bmatrix} \forall i, j \in N, i < j \\ & \forall i \in N \\ & x_{i} \geq \textit{LB}^{1}_{i} & \forall i \in N \\ & y_{i} \leq \textit{UB}^{2}_{i} & \forall i \in N \\ & y_{i} \geq \textit{LB}^{2}_{i} & \forall i \in N \\ & \textit{delx}_{ij}, \textit{dely}_{ij} \in \mathbb{R}^{1}_{+}, Z^{1}_{ij}, Z^{2}_{ij}, Z^{3}_{ij}, Z^{4}_{ij} \in \{\textit{True}, False\} \end{aligned}$$

Numerical results MIQP

Small instance: 5 rectangles

40 0-1 vars, 31 cont. vars., 91 constr.

SBB (CONOPT) 281 nodes, 2.4 sec

DICOPT (CONOPT/CPLEX) 19 major iterations, 5.2 sec

CPLEX-MIQP 18 nodes, 0.06 secs

Larger instance: 10 rectangles

180 0-1 vars, 111 cont. vars., 406 constr.

Bonmin-BB (IPOT) 16,072 nodes, 514.6 sec

Bonmin-Hybrid (Cbc, IPOPT) 6,548 nodes (563 NLPs) 197.9 sec

CPLEX-MIQP 1,093 nodes, 1.6 secs

Global Optimization Algorithms

• Most algorithms are based on spatial branch and bound method (Horst & Tuy, 1996)

Nonconvex NLP/MINLP

◆ **aBB** (Adjiman, Androulakis & Floudas, 1997; 2000)

BARON (Branch and Reduce) (Ryoo & Sahinidis, 1995, Tawarmalani and Sahinidis (2002))

OA for nonconvex MINLP (Kesavan, Allgor, Gatzke, Barton, 2004)

Branch and Contract (Zamora & Grossmann, 1999)

Nonconvex GDP

◆Two-level Branch and Bound (Lee & Grossmann, 2001)

Nonconvex MINLP

$$\min Z = f(x, y)$$

$$s.t. \quad g(x, y) \le 0$$

$$x \in X, y \in Y$$

$$f(x, y), g(x, y) \quad nonconvex$$

Convex MINLP (relaxation)

$$\min Z = \hat{f}(x, y)$$
s.t. $\hat{g}(x, y) \le 0$ => Lower bound
$$x \in X, y \in Y$$

 $\hat{f}(x,y)$, $\hat{g}(x,y)$ convex underestimators, convex envelopes

Concave function g(x)

Convex envelope: secant

$$\hat{g} = g(x^L) + \left(\frac{g(x^U) - g(x^L)}{x^U - x^L}\right)(x - x^L)$$

$$x^L \le x \le x^U$$

Bilinear terms w=xy

$$w = xy$$

$$w = xy$$
 $x^L \le x \le x^U, \ y^L \le y \le y^U$

McCormick (1976) under/over estimators

$$w \ge x^{L}y + y^{L}x^{i} - x^{L}y^{iL}$$

$$w \ge x^{U}y + y^{U}x - x^{U}y^{U}$$

$$w \le x^{L}y + y^{U}x - x^{L}y^{U}$$

$$w \le x^{U}y + y^{L}x - x^{U}y^{L}$$

For other convex envelopes/underestimators see:

Tawarmalani, M. and N. V. Sahinidis, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Vol. 65, Nonconvex Optimization And Its Applications series, Kluwer Academic Publishers, Dordrecht, 2002

Spatial Branch and Bound Method

1. Generate subproblems by branching on continuous variables (subregions)

- 2. Compute lower bound from convex MINLP (relaxation)
- 3. Compute upper bound from local solution to nonconvex MINLP

Continue until tolerance of bounds within tolerance

► Guaranteed to converge to global optimum given a certain tolerance between lower and upper bounds

good upper bound, generation cutting planes

Global optimum search

Global optimum search

Global optimum search

Global optimum search

Global optimum search

Global optimum search

Global optimum search

Global optimum search

Global optimum search

Global optimum search

Global optimum search

Global optimum search

Recent development in BARON Sahinidis (2005)

26 PROBLEMS FROM globallib AND minlplib

	Minimum	Maximum	Average	
Constraints	2	513	76	
Variables	4	1030	115	
Discrete	0	432	63	
variables				

EFFECT OF CUTTING PLANES

	Without cuts	With cuts	% reduction
Nodes	23,031,434	253,754	99
Nodes in memory	622,339	13,772	98
CPU sec	275,163	20,430	93

Cutting planes:

Supporting hyperplanes (outer-approximations) of convex functions

Application Global MINLP in Planning/Scheduling

Currently limited due to problem size

=> Need special purpose methods

Example: Karuppiah, Furman, Grossmann (2007)

Scheduling Refinery Crude Oil Operations

Source non-convexities: bilinearities in mass balances

Variant of Outer-Approximation (Duran and Grossmann, 1986)

- 1. Decompose using Lagrangean Decomposition
- 2. Globally optimize each subsystem with BARON
- 3. Derive Lagrangean cutting planes

$$z_n^* \le w_n s(x, y) + r_n(u_n, v_n) + (\overline{\lambda}_n^x - \overline{\lambda}_{n-1}^x)^T(x) + (\overline{\lambda}_n^y - \overline{\lambda}_{n-1}^y)^T(y)$$

Iterate on Lagrange multipliers

- Network is split into two decoupled sub-structures D1 and D2
 - Physically interpreted as cutting some pipelines (Here a, b and c)
 - Set of split streams denoted by p ∈ {a, b, c}

Numerical Results

Size MINLP Problems

3 Supply streams -3 Storage tanks -3 Charging tanks -2 Distillation units

3 Supply streams – 3 Storage tanks – 3 Charging tanks – 2 Distillation units

3 Supply streams – 6 Storage tanks – 4 Charging tanks – 3 Distillation units

Example	Original MINLP model (P)			
	Number of Binary Variables	Number of Continuous Variables	Number of Constraints	
1	48	300	946	
2	42	330	994	
3	57	381	1167	

Results for Proposed Algorithm Root Node

Example	Lower bound [obtained by solving relaxation $(RP)] (z^{RP})$	Upper bound [on solving (P-NLP) usind PARON] (z ^{P-NLP})		Relaxation gap (%)	Total time taken for one iteration [1] of algorithm (CPUsecs)	Local o	Local optimum (using DICOPT	
1	281.14	282.19	\	0.37	827.7		291.93	
2	351.32	359.48		2.27	6913.9		361.63	
3	383.69	383.69	Γ	0	8928.6		383.69	

Total time includes time for generating a pool of cuts, updating Lagrange multipliers, solving the relaxation (RP using CPLEX and solving (P-NLP) using BARON

Chemical ENGINEERING

Conclusions

1. MINLP Optimization

Not widespread in planning/scheduling but increasing interest

Significant progress has been made

More software is available: commercial, open-source

MINLP problems of significant size can be solved

Convex case: rigorous global optimality

Modeling, efficiency and robustness still issues

2. Global Optimization Nonconvex MINLP

Convex MINLP used as a basis

Key: spatial branch and bound

Main issue is scaling

Special purpose techniques may be required

Open-source: Work is under way CMU-IBM: Margot, Belotti (Tepper)

Practical approach: ignore nonconvexities, or use heuristics