SEMANA 8 UNSUPERVISED LEARNING

- Clustering
 - > K-means Algorithm
- Reducción de Dimensionalidad
 - > PCA Algorithm

Supervised Learning

Unsupervised Learning

K-means Algorithm

Tiene 2 fases:

- F. Asignación
- F. Movimiento

Objetivo De Optimización

K-means optimization objective

```
> c^{(i)} = index of cluster (1,2,...,K) to which example x^{(i)} is currently assigned
```

$$\mu_k$$
 = cluster centroid \underline{k} ($\mu_k \in \mathbb{R}^n$)

 $\mu_{c^{(i)}}$ = cluster centroid of cluster to which example $x^{(i)}$ has been assigned

Optimization objective:

Random Initialization

Paso 1: elegimos no. de grupos K

Paso 2: elegimos aleatoriamente centroides

Paso 3: Realizar las 2 fases del algoritmo explicados anteriormente.

¿Cómo elegir el numero de clusters?

PCA Algorithm

- Se obtiene rapidez en la ejecución del algoritmo.
- Los datos se pueden visualizar más fácilmente

Principal Component Analysis (PCA) algorithm

APLICACIÓN DE PCA

- Etapa de Pre-Procesamiento de datos.
- Calculamos la Matriz de Covarianzas.
- Con la función svd hallamos la matriz U
- 4. De este matriz U tomamos nuestras primeras vectores K.
- Finalmente hallamos nuestra matriz reducida de variables Z.

Sigma =
$$\frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^{T} \times \begin{bmatrix} -x^{(i)} - x^{(i)} - x^{(i)} \end{bmatrix}$$

$$\Rightarrow [U,S,V] = \text{svd}(\text{Sigma});$$

$$\Rightarrow \text{Ureduce} = U(:,1:k);$$

$$\Rightarrow z = \text{Ureduce}' *x;$$

$$\uparrow \times \in \mathbb{R}^{n} \times f$$

Reconstrucción a partir de la Representación Comprimida

Reconstruction from compressed representation

Elegir el número de componentes principales

 \rightarrow [U,S,V] = svd(Sigma) Pick smallest value of k for which

(99% of variance retained)

TIPS

- Debe definirse ejecutando PCA solo en el set de entrenamiento.
- No es recomendado usar PCA para prevenir Overfitting.

PCA is not linear regression

