Guía Laboratorio 9 Procesamiento Digital de Señales

Paula Pérez, Alejandro Escobar y Cristian Ríos 2024-1

NOTAS:

- Enviar el informe del laboratorio con el siguiente nombre: Lab9_PDS_Apellido_Nombre.ipynb
- Enviar junto con el informe los archivos adicionales generados y descargados. Todo esto debe ir en un archivo comprimido con el siguiente nombre: Lab9_PDS_Apellido_Nombre.zip
- OJO! Recuerde tener cuidado con la indentación y caracteres como el guión bajo y las llaves cuando copie y pegue el código entregado en esta guía.
- Las preguntas deberán ser resueltas en el notebook indicando sus respectivos numerales.

1. Diseño de Filtros con Respuesta Finita al Impulso (FIR)

- 1. Inicialmente se normalizan las frecuencias de corte, y se pasan a rad/s de acuerdo con la expresion: $w_c = 2\pi \cdot f_c/f_s$
- 2. Se realiza el mismo procedimiento para el ancho de banda de transición: $\mathrm{BW}_n = 2\pi \cdot \mathrm{BW}/f_s$.
- 3. Una regla práctica para determinar el orden del filtro es dividir 4 por el ancho de banda normalizado y tomar la parte entera del resultado, asi: $M = int(4/BW_n)$.
- 4. Se implementa la respuesta al impulso del filtro ideal de acuerdo con las siguientes ecuaciones

Respuesta filtro ideal	Tipo de Filtro
$h_1 = \frac{\omega_c}{\pi} S_a(\frac{\omega_c n}{\pi})$	Pasa-bajas
$h_2 = -\frac{\omega_c}{\pi} S_a(\frac{\omega_c n}{\pi})$	Pasa-altas
$h_3 = \frac{\omega_{c2}}{\pi} S_a(\frac{\omega_{c2}n}{\pi}) - \frac{\omega_{c1}}{\pi} S_a(\frac{\omega_{c1}n}{\pi})$	Pasa-banda
$h_4 = \frac{\omega_{c1}}{\pi} S_a(\frac{\omega_{c1}n}{\pi}) - \frac{\omega_{c2}}{\pi} S_a(\frac{\omega_{c2}n}{\pi})$	Rechaza-banda

En el caso de filtros pasa–altas, pasa-banda y rechaza–banda, adicionalmente se debe truncar la respuesta en el origen, de la siguiente forma.

```
h1[n==0]=1-(wc)/np.pi # cuando es pasa-altas
h1[n==0]=(wc2-wc1)/np.pi # cuando es pasa-banda
h1[n==0]=1-(wc2-wc1)/np.pi # cuando es rechaza-banda
```

5. Para mitigar el fenómeno de Gibbs se utilizan ventanas diferentes a la rectangular, caracterizadas por no tener cambios abruptos en el dominio del tiempo, lo que conduce a lóbulos menores en el dominio de la frecuencia. Algunas ventanas típicas y sus características se presentan en la siguiente tabla:

Ventana	Ecuación
Hamming	$0.54 + 0.46\cos\left(\frac{2\pi n}{M-1}\right)$
Hanning	$0.5\left(1+\cos\left(\frac{2\pi n}{M-1}\right)\right)$

Cuadro 1: Tipos de Ventanas

- 6. Luego se multiplica la respuesta del filtro ideal obtenida (h_x) , por la ventana escogida $(h_{new}[n] = h_x[n] * win[n])$.
- 7. Finalmente se multiplica la respuesta al impulso por la ganancia que se desea del filtro: $h_{new} = h_{new} * A$, donde A se calcula como $A = np.sqrt(10 * *(0,1 * A_{db}))$.

1.1. Procedimiento

1. Implemente un filtro FIR con las siguientes características, de acuerdo a su último número de cédula:

Dígito	Filtro
0,2,4,6,8	Rechaza-banda, fc1=1kHz, fc2=4kHz, fs=16kHz, BW=200Hz, AdB=0
1,3,5,7,9	Pasa-banda, fc1=1kHz, fc2=4kHz, fs=16kHz, BW=200Hz, AdB=0

Cuadro 2: Filtros a diseñar

- 2. Grafique la respuesta al impulso del filtro asignado (h_x de acuerdo con la notación usada). ¿Qué puede observar?
- 3. Grafique la respuesta al impulso del filtro asignado luego de aplicarle una ventana Hamming. ¿Qué diferencia se puede observar respecto a la anterior gráfica?
- 4. Grafique la respuesta en frecuencia para el filtro asignado sin truncar y el truncado a partir de la ventana Hamming. ¿Qué puede observar?

Nota: El archivo adjunto exampleFIR.ipynb contiene un ejemplo del diseño de un filtro pasa-bajas siguiendo el procedimiento anterior. Apóyese de este para la implementación de su filtro.

2. Filtrado de música con filtros FIR

De manera general, existen 4 familias principales de instrumentos musicales: viento, cuerda, percusión y los eléctricos. Aunque se consideran más categorías, estas son las más usadas. Ejemplos de instrumentos en estas categorías son:

- Viento: saxofón, flauta, clarinete, trompeta, oboe.
- Cuerda: guitarra, arpa, violín, piano de cuerdas percutidas, tiple.
- Percusión: timbal, tambor, platillos, bombo, piano.
- Instrumentos eléctricos: bajo eléctrico, guitarra eléctrica, sintetizador.

- Escriba un programa que grafique la señal correspondiente al último número de su cédula. Recuerde, normalizar la señal en amplitud, eliminar su nivel DC y crear su vector de tiempo dependiendo de la frecuencia de muestreo.
 - 0 y 5: audio5.wav
 1 y 6: audio4.wav
 2 y 7: audio3.wav
 3 y 8: audio2.wav
 4 y 9: audio1.wav
- 2. ¿Qué instrumentos logra escuchar en el audio seleccionado?
- 3. Diseñe un filtro FIR pasa-bajas con una banda de transición de 200 Hz, una frecuencia de corte de 600 Hz y un ripple de 60 dB.

Nota: Puede apoyarse del siguiente script que corresponde al diseño de un filtro pasa-altas.

```
from scipy.signal import kaiserord, lfilter, firwin, freqz

nyq_rate = fs / 2.0
roll_off = 200.0
cutoff_hz = 5000.0
width = roll_off/nyq_rate
ripple_db = 60.0 #The desired attenuation in the stop band, in dB.

N, _ = kaiserord(ripple_db, width) # Compute the order and Kaiser param for the FIR filter.

taps = firwin(N, cutoff_hz/nyq_rate, pass_zero=False)

w, h = signal.freqz(taps, [1], worN=2000)
plt.plot(nyq_rate*w/np.pi, np.abs(h))
```

4. Pase la señal de audio por el filtro diseñado y escúchela.

Nota: El siguiente script muestra como aplicar un filtro FIR a una señal x.

```
filtered_x = lfilter(taps, 1.0, x)
```

- 5. ¿Qué instrumentos logra escuchar en el audio filtrado? ¿Fue posible separar algunos instrumentos?, explique.
- 6. Repita los ítems 3 6 para frecuencias de corte de 200 Hz y 15000 Hz. ¿Fue posible separar algunos instrumentos en estos casos?, explique.

3. Conclusiones

Realice conclusiones generales sobre la práctica. Recuerde que las conclusiones son parte fundamental de su evaluación en el laboratorio, tómese el tiempo de pensar las conclusiones.