Institut Supérieur d'Informatique et de Multimédia de Sfax — 2 ème ℐnnée ADBD Travaux Dirigés - Probabilité & Statistique

TD 2 - Variables aléatoires discrètes

Exercice 1: Le nombre d'ordinateurs vendus en une journée par un petit magasin est une variable aléatoire *X* de loi

k	0	1	2	3	4	5
$\mathbb{P}(X=k)$	0.1	0.3	0.2	a	0.1	0.1

où a est un paramètre réel.

- 1. Déterminer le réel a.
- 2. Représenter la fonction de répartition F(x) de X.
- 3. Calculer les probabilités $\mathbb{P}(X \le 3)$, $\mathbb{P}(X > 2)$, $\mathbb{P}(X \ge 4)$, et $\mathbb{P}(0 < X < 3)$.

Exercice 2: On lance une fois un dé non pipé. Soit X la variable aléatoire égale au résultat du dé. On pose $Y = X^2$ et $Z = (X - 3)^2$

- 1. Quelle est la loi de *Y* ?
- 2. Donner la loi de *Z* et la représenter sous forme d'un graphique (diagramme en bâtons).

Exercice 3: A travers un canal de communication nous transmettons un message de 4 bits. Le bit transmis peut être décodé d'une manière correcte ou incorrecte. En se basant sur l'historique, nous supposons qu'un bit est décodé correctement avec probabilité 0,9.

- 1. Soit la variable aléatoire *X* représentant le nombre des bits décodés correctement.
 - (a) Quelle est la loi de X?
 - (b) Déterminer $\mathbb{P}(X \ge 1)$.
 - (c) Quelle est la probabilité que le message soit décodé correctement?

Exercice 4: Soit *Y* une variable aléatoire de Poisson de paramètre $\lambda = 2$. Déterminer les probabilités $\mathbb{P}(Y = 4)$, $\mathbb{P}(Y < 4)$, $\mathbb{P}(Y \ge 4)$ et $\mathbb{P}(Y \ge 4/Y \ge 2)$.

Exercice 5: Un moteur de recherche internet correspondant à un certain mot clé dans une suite de sites Web indépendants. On suppose que 20% des sites contenant le mot clé. Soit *X* le nombre de sites Web visités jusqu'à ce que le premier mot clé est trouvé.

- 1. Donner la loi de *X*.
- 2. Déterminer l'espérance et l'écart-type de *X*.
- 3. Sur les 10 premiers sites, soit *Y* le nombre de sites qui contiennent le mot clé.
 - (a) Trouver la distribution de *Y*.
 - (b) Déterminer l'espérance et l'écart-type de *X*.
- 4. Calculer la probabilité qu'au moins 5 des 10 premiers sites contiennent le mot clé.
- 5. Calculer la probabilité que le moteur de recherche devait visiter au moins 5 sites afin d'avoir la première apparition du mot clé.

Exercice 6: Dans une entreprise, une machine produit des pièces dont les dimensions très précises doivent être respectées. On examine n pièces choisies au hasard et on note X la v.a. représentant le nombre de pièces défectueuses.

- 1. Après un premier réglage, on constate une proportion de 30% de pièces défectueuses. Pour n = 5
 - (a) Quelle est la loi de probabilité de la v.a. X ? Calculer son espérance et son écarttype.
 - (b) Quelle est la probabilité que deux pièces soient défectueuses ?
 - (c) Quelle est la probabilité qu'il n'y ait pas plus d'une pièce défectueuse ?
 - (d) Déterminer la valeur de X la plus probable. Calculer la probabilité associée.
- 2. Après un second réglage, la proportion des pièces défectueuses devient 5%. Pour n = 100
 - (a) Par quelle loi peut-on approximer la loi de probabilité de la v.a. *X* ? Justifiez votre réponse.
 - (b) Calculer la probabilité de ne pas trouver de pièces défectueuses.
 - (c) Calculer la probabilité d'obtenir deux pièces défectueuses.
 - (d) Calculer la probabilité que le nombre de pièces défectueuse soit compris entre 2 et 4 (au sens large).

Bon \mathcal{T} ravail, \mathcal{C} hampion(ne)s** ... ♣♡♠ ∇ !