class08: Halloween Candy Mini-Project

Jiachen Fan (A17662703)

1. Importing candy data

First things first, let's get the data from the FiveThirtyEight GitHub repo.

```
candy_file <- "https://raw.githubusercontent.com/fivethirtyeight/data/master/candy-power-r
candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

	chocolate	fruity	caramel	peanutyalmondy	nougat	crispedricewafer
100 Grand	1	0	1	0	0	1
3 Musketeers	1	0	0	0	1	0
One dime	0	0	0	0	0	0
One quarter	0	0	0	0	0	0
Air Heads	0	1	0	0	0	0
Almond Joy	1	0	0	1	0	0
	hard har i	alurihus	gugarn	ercent priceper	cant wir	nercent

	naru	Dai	prurrous	sugar per cent	bricebercent	winher cent
100 Grand	0	1	0	0.732	0.860	66.97173
3 Musketeers	0	1	0	0.604	0.511	67.60294
One dime	0	0	0	0.011	0.116	32.26109
One quarter	0	0	0	0.011	0.511	46.11650
Air Heads	0	0	0	0.906	0.511	52.34146
Almond Joy	0	1	0	0.465	0.767	50.34755

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

```
85 different candy types.
```

Q2. How many fruity candy types are in the dataset?

```
table(candy$fruity)
```

0 1 47 38

38 fruity candy types.

2. What is your favorate candy?

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

```
candy["Fruit Chews", ]$winpercent
```

```
[1] 43.08892
```

My favorite candy is 'Fruit Chews' and its winpercent value is 43.08892.

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat", ]$winpercent
```

[1] 76.7686

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars", ]$winpercent
```

[1] 49.6535

```
# install.packages('skimr')
library("skimr")
skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency: numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	atmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

Winpercent. Others are on a 0 to 1 scale.

- Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?

 0 means there is no chocolate in ihe candy. 1 means there is chocolate.
 - Q8. Plot a histogram of winpercent values

Histogram of candy\$winpercent

Q9. Is the distribution of winpercent values symmetrical?

No.

Q10. Is the center of the distribution above or below 50%?

Below 50%.

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

mean(candy\$winpercent[as.logical(candy\$chocolate)]) > mean(candy\$winpercent[as.logical(candy\$chocolate)])

[1] TRUE

Yes.

Q12. Is this difference statistically significant?

t.test(candy\$winpercent[as.logical(candy\$chocolate)], candy\$winpercent[as.logical(candy\$fr

Welch Two Sample t-test

```
data: candy$winpercent[as.logical(candy$chocolate)] and candy$winpercent[as.logical(candy$fit = 6.2582, df = 68.882, p-value = 2.871e-08 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 11.44563 22.15795 sample estimates: mean of x mean of y 60.92153 44.11974
```

Yes it is.

3. Overall Candy Rankings

Q13. What are the five least liked candy types in this set?

head(candy[order(candy\$winpercent),], n = 5)

	chocolate	fruity	cara	nel p	peanutyaln	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Bean	s 0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedri	cewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Bean	S	0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
	winpercent	5						
Nik L Nip	22.4453	1						
Boston Baked Bean	s 23.41782	2						
Chiclets	24.52499	9						
Super Bubble	27.30386	3						
Jawbusters	28.1274	1						

Q14. What are the top 5 all time favorite candy types out of this set?

tail(candy[order(candy\$winpercent),], n = 5)

	chocolate	fruity	caran	nel j	peanutyaln	nondy	nougat
Snickers	1	0		1		1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
Reese's Miniatures	1	0		0		1	0
Reese's Peanut Butter cu	1	0		0		1	0
	crispedri	cewafer	${\tt hard}$	bar	pluribus	sugai	percent
Snickers		0	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Twix		1	0	1	0		0.546
Reese's Miniatures		0	0	0	0		0.034
Reese's Peanut Butter cu	þ	0	0	0	0		0.720
	priceperce	ent wing	percer	nt			
Snickers	0.6	651 76	6.6737	78			
Kit Kat	0.	511 76	3.7686	30			
Twix	0.9	906 83	1.6429	91			
Reese's Miniatures	0.2	279 83	1.8662	26			
Reese's Peanut Butter cu	0.6	351 8 ⁴	1.1802	29			

Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, rownames(candy))+
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent))+
  geom_col()
```



```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy),winpercent)) +
   geom_col(fill=my_cols)
```


Q17. What is the worst ranked chocolate candy?

It is 'Sixlets'.

Q18. What is the best ranked fruity candy?

It is 'Starburst'.

4. Taking a look at pricepercent

```
# install.packages('ggrepel')
library(ggrepel)

# How about a plot of price vs win
ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
   geom_text_repel(col=my_cols, size=3.3, max.overlaps = 100)
```


change 'max.overlaps' to 100 after warning

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

It is Reese's Miniatures.

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

Above are the top 5 most expensive candy types and 'Nik L Nip' is the least popular.

Q21. Make a barplot again with geom_col() this time using pricepercent and then improve this step by step, first ordering the x-axis by value and finally making a so called "dot chat" or "lollipop" chart by swapping geom_col() for geom_point() + geom_segment().

5 Exploring the correlation structure

```
# install.packages('corrplot')
library(corrplot)
```

corrplot 0.92 loaded

cij <- cor(candy)
corrplot(cij)</pre>

Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Fruity and chocolate.

Q23. Similarly, what two variables are most positively correlated?

Winpercent and chocolate.

6. Principal Component Analysis

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Standard deviation 2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530

Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539 Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369 PC8 PC9 PC10 PC11 PC12 Standard deviation 0.74530 0.67824 0.62349 0.43974 0.39760 Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000

```
plot(pca$x[,1:2])
```


plot(pca\$x[,1:2], col=my_cols, pch=16)


```
# Make a new data-frame
my_data <- cbind(candy, pca$x[,1:3])

p <- ggplot(my_data) +
    aes(x=PC1, y=PC2,size=winpercent/100,text=rownames(my_data), label=rownames(my_data)
    geom_point(col=my_cols)

p</pre>
```


Again we can use the ggrepel package and the function ggrepel::geom_text_repel() to label up the plot with non overlapping candy names like.

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

```
Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':
    last_plot

The following object is masked from 'package:stats':
    filter

The following object is masked from 'package:graphics':
    layout

ggplotly(p)
```

library(plotly)

```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Fruity, hard and pluribus are picked up strongly by PC1 in the positive direction. Yes, I think fruity candy types are usually hard and packaged in bags or boxes. These variables are positively correlated.