Lab 10: Halloween Candy Mini-Project

Kira

1. Importing candy data

```
candy_data <- "candy-data.csv"
candy = read.csv(candy_data, row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanu	tyalmondy	nougat	crispedr	ricewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar j	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	C)	0.732	0	.860	66.97173	
3 Musketeers	0	1	C)	0.604	0	.511	67.60294	
One dime	0	0	C)	0.011	0	.116	32.26109	
One quarter	0	0	C)	0.011	0	.511 4	46.11650	
Air Heads	0	0	C)	0.906	0	.511	52.34146	
Almond Joy	0	1	C)	0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

There are 85 different candy types in this dataset.

Q2. How many fruity candy types are in the dataset?

```
table(candy[,2])

0 1
47 38
```

There are 38 fruity candy types in this dataset.

2. What is your favorate candy?

Q3. What is your favorite candy in the dataset and what is its winpercent value?

```
candy["Haribo Sour Bears",]$winpercent
```

```
[1] 51.41243
```

My favorite candy in the dataset is Haribo Sour Bears and its winpercent value is 51.41%.

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat",]$winpercent
```

[1] 76.7686

The winpercent value for Kit Kat is 76.76%.

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars",]$winpercent
```

[1] 49.6535

The winpercent value for Tootsie Roll Snack Bars is 49.65%.

library("skimr")
skim(candy)

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcomp	olete_ra	tmean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

The winpercent variable appears to be on a different scale since its values are as high as (84.18) while all other variables have a maximum value of 1.

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?

I think the 0 and 1 represent whether that candy has that characteristic or not (i.e if a candy contains chocolate, it would be assigned a 1 and would be assigned a 0 if it did not)

hist(candy\$winpercent)

Histogram of candy\$winpercent

Q9. Is the distribution of winpercent values symmetrical?

The distribution of winpercent values is not exactly symmetrical and is shifted slightly to the left (i.e the highest frequency occurs at $\sim 45\%$ rather than $\sim 50\%$).

Q10. Is the center of the distribution above or below 50%?

The center of the distribution is slightly below 50%.

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
# Want to find what is the average of the winpercent values of candies that have a "1" val
mean_chocolate <- mean(candy$winpercent[as.logical(candy$chocolate)])
mean_chocolate
```

[1] 60.92153

```
mean_fruity <- mean(candy$winpercent[as.logical(candy$fruity)])
mean_fruity</pre>
```

[1] 44.11974

On average, chocolate candy is higher ranked that fruity candy.

Q12. Is this difference statistically significant?

We can determine if this different is statistically significant by performing a t-test.

```
t.test(candy$winpercent[as.logical(candy$chocolate)],candy$winpercent[as.logical(candy$fru
```

```
Welch Two Sample t-test
```

```
data: candy$winpercent[as.logical(candy$chocolate)] and candy$winpercent[as.logical(candy$f:
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    11.44563 22.15795
sample estimates:
mean of x mean of y
    60.92153 44.11974
```

The difference is statistically significant because the p-value is less than 0.05.

3. Overall Candy Rankings

Q13. What are the five least liked candy types in this set?

```
head(candy[order(candy$winpercent),], n=5)
```

	chocolate	fruity	caramel	peanutyalmondy	nougat
Nik L Nip	0	1	0	0	0
Boston Baked Beans	0	0	0	1	0
Chiclets	0	1	0	0	0
Super Bubble	0	1	0	0	0
Jawbusters	0	1	0	0	0

	crispedricewa	fer	hard	bar	pluribus	${\tt sugarpercent}$	pricepercent
Nik L Nip		0	0	0	1	0.197	0.976
Boston Baked Bea	ns	0	0	0	1	0.313	0.511
Chiclets		0	0	0	1	0.046	0.325
Super Bubble		0	0	0	0	0.162	0.116
Jawbusters		0	1	0	1	0.093	0.511
	winpercent						
Nik L Nip	22.44534						
Boston Baked Bea	ns 23.41782						
Chiclets	24.52499						
Super Bubble	27.30386						
Jawbusters	28.12744						

The five least liked candies in this dataset are Nik L Nip, Boston Baked Beans, Chiclets, Super Bubble, and Jawbusters.

Q14. What are the top 5 all time favorite candy types out of this set?

tail(candy[order(candy\$winpercent),], n=5)

	${\tt chocolate}$	fruity	caran	nel j	peanutyaln	nondy	nougat
Snickers	1	0		1		1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
Reese's Miniatures	1	0		0		1	0
Reese's Peanut Butter cup	1	0		0		1	0
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugai	rpercent
Snickers		0	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Twix		1	0	1	0		0.546
Reese's Miniatures		0	0	0	0		0.034
Reese's Peanut Butter cup		0	0	0	0		0.720
	priceperce	ent winp	percer	nt			
Snickers	0.6	551 76	6.6737	78			
Kit Kat	0.5	511 76	5.7686	30			
Twix	0.9	906 81	1.6429	91			
Reese's Miniatures	0.2	279 81	1.8662	26			
Reese's Peanut Butter cup	0.6	S51 84	1.1802	29			

The five most liked candies in this dataset are Snickers, Kit Kat, Twix, Reese's Miniatures, and Reese's Peanut Butter cup.

Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy) + aes(winpercent, reorder(rownames(candy), winpercent)) + geom_col()
```


Let's setup a color vector (that signifies candy type) that we can then use for some future plots.

```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"
```

Now let's try our barplot with these colors:

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col(fill=my_cols)
```


Q17. What is the worst ranked chocolate candy?

The worst ranked chocolate candy is Sixlets.

Q18. What is the best ranked fruity candy

The best ranked fruity candy is Starburst.

4. Taking a look at pricepercent

What about value for money? What is the best candy for the least money?

```
library(ggrepel)

# How about a plot of price vs win
ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
   geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Reese's Miniatures have the highest ranked winpercent for the least price.

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

The top five most expensive candies are Nik L Nip, Neslte Smarties, Ring pop, Hershey's Krackel, and Hershey's Milk Chocolate. The least popular of these is Nik L Nip.

5. Exploring the correlation structure

Now that we've explored the dataset a little, we'll see how the variables interact with one another. We'll use correlation and view the results with the corrplot package to plot a correlation matrix.

```
library(corrplot)
```

corrplot 0.92 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Fruity and chocolate variables are anti-correlated.

Q23. Similarly, what two variables are most positively correlated?

Chocolate and winpercent are the most positively correlated.

6. Principal Component Analysis

Now, we can apply PCA to our candy dataset.

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC2
                                        PC3
                          PC1
                                                 PC4
                                                        PC5
                                                                PC6
                                                                        PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                   PC9
                                          PC10
                                                   PC11
                                                           PC12
Standard deviation
                       0.74530\ 0.67824\ 0.62349\ 0.43974\ 0.39760
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

Now, we can plot PC1 vs. PC2:

```
plot(pca$x[,1:2])
```


We can change the plotting character and add some color:

```
plot(pca$x[,1:2], col=my_cols, pch=16)
```


We can make a much nicer plot with the ggplot2 package but we will first need to make a new data.frame() with our PCA results.

We can also use the ggrepel() package to label the plot with the names of the candies in the dataset.

Warning: ggrepel: 59 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

It is also helpful to use the plotly() function to generate an interactive plot that you can mouse over to see labels:

```
library(plotly)
```

Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':

last_plot

The following object is masked from 'package:stats':

filter

The following object is masked from 'package:graphics':

layout

ggplotly(p)

We can wrap up by looking at the loadings of our PCA.

```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

The variables fruity, hard, and pluribus are associated positively with PC1. This signifies that these variables have a strong effect on PC1 and this makes sense when considering the types of candies that the variables represent.