HKDSE MATH EP

M2

HONG KONG EDUCATIONAL PUBLISHING COMPANY

HONG KQNG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

## **MATHEMATICS Extended Part**

## Module 2 (Algebra and Calculus) MOCK EXAM 8 Question-Answer Book

Time allowed: 2½ hours

This paper must be answered in English

## INSTRUCTIONS

- 1. After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1, 3, 5, 7, 9 and 11.
- 2. This paper consists of **TWO** sections, A and B.
- 3. Attempt **ALL** questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Graph paper and supplementary answer sheets will be supplied on request. Write your Candidate Number, mark the question number box and stick a barcode label on each sheet, and fasten them with string **INSIDE** this book.
- 5. Unless otherwise specified, all working must be clearly shown.
- 6. Unless otherwise specified, numerical answers must be exact.
- 7. In this paper, vectors may be represented by bold-type letters such as **u**, but candidates are expected to use appropriate symbols such as **u** in their working.
- 8. The diagrams in this paper are not necessarily drawn to scale.
- 9. No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the 'Time is up' announcement.
- © 香港教育圖書公司 保留版權 Hong Kong Educational Publishing Company All Rights Reserved 2016

| Please              | stick | the | baro | ode | lal | oel | her | e. |
|---------------------|-------|-----|------|-----|-----|-----|-----|----|
|                     |       |     |      |     |     |     |     |    |
| 4                   |       |     | ,    |     |     |     |     |    |
|                     |       |     |      |     |     |     |     |    |
|                     |       |     |      |     |     |     | _   |    |
| Candidate<br>Number |       |     |      |     |     |     |     |    |

| (5 mark | (a) Fin       | d the value   | of $n$ .                              |   |                 |       |   |          |
|---------|---------------|---------------|---------------------------------------|---|-----------------|-------|---|----------|
|         | (b) Fi        | d the coeffic | cient of $x$ .                        |   |                 |       |   |          |
|         |               |               |                                       |   |                 |       |   | (5 marks |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   | <br>            |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   | <br>            |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   | <br><del></del> |       |   |          |
|         |               |               |                                       |   |                 |       | • |          |
|         |               |               |                                       |   | <br>            |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   |                 |       |   | \        |
|         |               |               |                                       |   | <br>            |       |   | •        |
|         |               |               |                                       |   |                 |       |   |          |
|         | •             |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   | <br>            |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         | •             |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   |                 | •     |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   | <br>            | •     |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   | <br>            |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         | -             |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               | · · · · · · · · · · · · · · · · · · · | - |                 |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         |               |               |                                       |   |                 | · ··· |   |          |
|         |               |               |                                       |   |                 |       |   |          |
|         | <del></del> , |               |                                       |   | <br>            |       |   |          |

Please stick the barcode label here.

| 21 | Stem | 15 |
|----|------|----|
|    |      |    |
|    |      |    |

- 3. (a) Find  $\int \tan x \, dx$ .
  - (b) Using integration by substitution, evaluate  $\int_{\frac{\pi^2}{16}}^{\frac{\pi^2}{9}} \frac{\tan \sqrt{x}}{\sqrt{x}} dx$ .

(7 marks)

| <br> | <br> | <br> |  |
|------|------|------|--|
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
| <br> |      | <br> |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      | <br> |      |  |

Please stick the barcode label here.

Answers written in the margins will not be marked.

| <b>2015</b> 3. (a) | Find $\int \tan x  dx$ .                                                                                                    |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------|
| (b                 | Using integration by substitution, evaluate $\int_{\frac{\pi^2}{16}}^{\frac{\pi^2}{9}} \frac{\tan \sqrt{x}}{\sqrt{x}} dx$ . |
|                    | (7 marks)                                                                                                                   |
|                    |                                                                                                                             |
| _                  |                                                                                                                             |
| _                  |                                                                                                                             |
| <u></u>            |                                                                                                                             |
|                    |                                                                                                                             |
| _                  |                                                                                                                             |
| _                  |                                                                                                                             |
|                    |                                                                                                                             |
|                    |                                                                                                                             |
| _                  |                                                                                                                             |
| _                  |                                                                                                                             |

Please stick the barcode label here.

5. Consider the following system of linear equations in real variables x, y, z:

(E): 
$$\begin{cases} x - y + z = 0 \\ 2x + 3y + z = 0 \text{, where } k \text{ is a real number.} \\ kx + 5y - z = 0 \end{cases}$$

It is given that (E) has non-trivial solutions.

- (a) Find the value(s) of k and solve (E).
- (b) If some solution (x, y, z) of (E) satisfies  $25x^2 175y^2 + (z p)^2 = 10$ , find the range of values of p.

(7 marks)

| <br> |      |      |
|------|------|------|
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |

| 1 <mark>201</mark> | <b>3</b><br>Let <i>M</i> = | $\int 1+x$ | -x  | for any real number | er x |
|--------------------|----------------------------|------------|-----|---------------------|------|
| ٠.                 | E01 1.12                   | (x)        | 1-x | ) ,                 |      |

(a) Show that M is invertible.

Hence find  $M^{-1}$ .

(b) If  $M^T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 28 \\ -22 \end{pmatrix}$ , where  $M^T$  is the transpose of M, find the values of x and y.

(6 marks)

Answers written in the margins will not be marked.

|   | <br> |                 |
|---|------|-----------------|
|   |      |                 |
|   |      |                 |
|   |      |                 |
|   |      | <br>            |
|   |      |                 |
|   |      |                 |
|   |      | <br>            |
|   |      |                 |
|   | <br> |                 |
|   |      |                 |
|   | <br> | <br><del></del> |
|   |      |                 |
| , | <br> |                 |
|   |      |                 |
|   |      |                 |
| , |      |                 |
| , |      |                 |
|   |      |                 |
|   |      |                 |
|   |      |                 |
|   |      |                 |
|   |      |                 |

Please stick the barcode label here.

| marked.                                   |
|-------------------------------------------|
| <u>6</u>                                  |
| 100                                       |
| M                                         |
| wers written in the margins will not be i |
| the                                       |
| 드                                         |
| written                                   |
| wers                                      |

| (a |                                                                                                                                                        |                           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| (b | Suppose $L$ is a straight line passing through $C$ and perpendicular to the the acute angle between $L$ and the straight line $OC$ . Find the value of | he plane <i>OAB</i> . Let |
|    | to the dedic angle between 2 and the straight line oc. That the value (                                                                                | 7 mark                    |
|    |                                                                                                                                                        |                           |
| _  |                                                                                                                                                        |                           |
|    |                                                                                                                                                        |                           |
| _  |                                                                                                                                                        |                           |
| _  |                                                                                                                                                        |                           |
| -  |                                                                                                                                                        |                           |
|    |                                                                                                                                                        | ·                         |
|    |                                                                                                                                                        |                           |
|    |                                                                                                                                                        |                           |
|    | •                                                                                                                                                      |                           |

| (b) Using the | the result of (a), simplify $\sum_{n=1}^{n} (r+1) \times 2^{n}$ | r .                                   |           |
|---------------|-----------------------------------------------------------------|---------------------------------------|-----------|
|               | r=1                                                             |                                       | (7 marks) |
|               |                                                                 |                                       |           |
|               |                                                                 |                                       |           |
|               |                                                                 |                                       |           |
|               | · ·                                                             |                                       |           |
|               |                                                                 |                                       |           |
|               |                                                                 |                                       |           |
|               |                                                                 |                                       |           |
|               |                                                                 | · · · · · · · · · · · · · · · · · · · | · ·       |
|               |                                                                 |                                       |           |
|               |                                                                 |                                       |           |
|               |                                                                 |                                       |           |
|               |                                                                 |                                       |           |
|               |                                                                 |                                       |           |
|               |                                                                 |                                       |           |
| <u> </u>      |                                                                 |                                       |           |
|               |                                                                 |                                       |           |
|               |                                                                 |                                       |           |
| <u> </u>      |                                                                 |                                       |           |
|               |                                                                 |                                       |           |
|               |                                                                 |                                       |           |

- 178 **-**

Answers written in the margins will not be marked.

Please stick the barcode label here.

## SECTION B (50 marks)

- 9. (a) (i) Using integration by parts, find  $\int x \ln x \, dx$ .
  - (ii) Figure 3 shows a shaded region enclosed by the curve  $y = \sqrt{x \ln x}$ , the line x = h (h > 1) and the x-axis.



Figure 3

A solid is formed by revolving the shaded region about the x-axis. Show that the volume of the solid is  $\frac{\pi}{4}(2h^2 \ln h - h^2 + 1)$  cubic units.

(6 marks)

Answers written in the margins will not be marked.

(b) By revolving the shaded region about the x-axis, solids X and Y are formed with heights  $(e^2 - 1)$  units and (e - 1) units respectively (see Figure 4 and Figure 5 respectively). Find the volumes of solids X and Y.





| the volumes of water    | in vessels A                          | $I$ and $N$ are $\frac{\pi}{N}$ | $(3e^4 + 1)$ cubic u | nits and $\frac{\pi}{2}(e^2+1)$ cu |
|-------------------------|---------------------------------------|---------------------------------|----------------------|------------------------------------|
| units respectively, the |                                       |                                 |                      |                                    |
| rate of increase of wa  |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      | (5 mar                             |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 | ,                    |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         |                                       |                                 |                      |                                    |
|                         | · · · · · · · · · · · · · · · · · · · |                                 |                      |                                    |

C

10. In Figure 7, OACB is a rectangle. OA = 2OB. AC is produced to D. OD intersects AB and BC at E and F respectively. Let  $\overrightarrow{OA} = \mathbf{a}$ ,  $\overrightarrow{OB} = \mathbf{b}$ ,  $\angle OEA = \theta$  and AD : AC = k : 1, where k is a constant.



Figure 7

- (a) (i) Show that  $|\overrightarrow{OD}| = \sqrt{k^2 + 4} |\mathbf{b}|$ .
  - (ii) Show that  $\cos \theta = \frac{k-4}{\sqrt{5(k^2+4)}}$ .

(5 marks)

Answers written in the margins will not be marked

- (b) It is given that  $AB \perp OD$  and G is a point on OD such that  $CG \parallel AE$ .
  - (i) Find  $\overrightarrow{CG}$  in terms of **a** and **b**.
  - (ii) Someone claims that E is the mid-point of OG. Do you agree? Explain your answer.

(7 marks)

|   |      |   | - |
|---|------|---|---|
|   |      |   |   |
|   |      |   |   |
|   |      |   |   |
| - |      |   |   |
|   | <br> |   |   |
|   | <br> |   |   |
|   | <br> | · |   |
|   | <br> |   |   |

Answers written in the margins will not be marked.

EP(M2) MOCK 8-16

$$P = \frac{1}{\alpha - \beta + 4} (M - \beta I + 2I) \text{ and}$$

$$Q = \frac{1}{\alpha - \beta + 4} (M - \alpha I - 2I),$$

where  $M = \begin{pmatrix} \alpha & 2 \\ \alpha - \beta + 2 & \beta \end{pmatrix}$ .

- (i) Evaluate PQ, QP and P Q.
- (ii) Prove that  $P^2 = P$  and  $Q^2 = -Q$ . (iii) Prove that  $M^n = (\alpha + 2)^n P (\beta 2)^n Q$  for all positive integers n.

(8 marks)

Answers written in the margins will not be marked.

(b) Using (a), or otherwise, evaluate  $\begin{pmatrix} 4 & 1 \\ 5 & 0 \end{pmatrix}^{2017}$ . (4 marks)

Answers written in the margins will not be marked.

EP(M2) MOCK 8-18

| marked.                |
|------------------------|
| þe                     |
| not                    |
| ns will not be ma      |
| written in the margins |
| the                    |
| Ξ.                     |
| written                |
| Answers                |

| 12. | Let $f(x) = x - \frac{x}{x+1}$ , where $x \neq -1$ . |
|-----|------------------------------------------------------|
|     |                                                      |

(a) Find f'(x) and f''(x), where  $x \neq -1$ .

(2 marks)

- (b) (i) Find the relative extreme point(s) of the graph of y = f(x).
  - (ii) Show that the graph of y = f(x) does not have any point of inflexion.

(6 marks)

(c) Find the asymptote(s) of the graph of y = f(x).

(2 marks)

(d) Sketch the graph of y = f(x).

(3 marks)

Answers written in the margins will not be marked.

| <del></del>           |   |          |     |   |             |   |
|-----------------------|---|----------|-----|---|-------------|---|
|                       |   |          |     |   |             |   |
|                       |   |          |     |   |             |   |
|                       |   |          |     |   |             |   |
|                       |   |          |     |   |             |   |
|                       |   |          |     |   |             |   |
|                       |   |          |     |   |             |   |
|                       |   |          |     |   |             |   |
|                       |   | -        |     |   |             |   |
|                       |   |          |     |   |             |   |
|                       |   |          | *** |   |             |   |
|                       |   |          |     |   |             |   |
| 1 - 1 - 1 - 1 - 1 - 1 |   | .,,      |     |   |             |   |
|                       |   |          |     |   | <del></del> |   |
|                       |   |          |     |   |             |   |
| <del></del>           |   |          |     |   |             | , |
|                       |   |          |     | • |             |   |
|                       |   |          |     |   |             |   |
|                       | : |          |     |   | <u> </u>    |   |
|                       |   |          |     |   |             |   |
| 4.00                  |   |          |     |   |             |   |
|                       |   |          |     |   |             |   |
|                       |   |          |     |   |             |   |
|                       |   |          |     |   |             |   |
|                       |   |          |     |   |             |   |
| -                     |   |          |     |   |             |   |
|                       |   |          |     |   |             |   |
|                       |   |          |     |   |             |   |
|                       |   |          |     |   |             |   |
|                       |   | <u> </u> |     |   |             |   |
|                       |   |          |     |   |             |   |
| <u> </u>              |   |          |     |   | <u> </u>    |   |