1 Basics of generating functions

- Introduction [Wilf 1–3]:
 - how to define a sequence: exact formula, recurrent relation (Fibonacci), algorithm (the sequence of primes); there are uncomputable sequences (programs that do not stop)
 - a new way: power series (members of the sequence as coefficients in the series)
 - advantages: many advanced tools from analytical theory of functions
 - very powerful: works on many sequences where nothing else is known to work
 - allows to get asymptotic formulas and statistical properties
 - powerful way to prove combinatorial identities
 - "Konečne vidím, že je tá matalýza aj na niečo dobrá. Keby mi to bol niekto predtým povedal..."
- Two examples [Wilf 3–7]:
 - $-a_{n+1} = 2a_n + 1$ for $n \ge 0$, $a_0 = 0$
 - write few members, guess $a_n = 2^n 1$, provable by induction
 - multiply by x^n , sum over all n, assign gf: $\frac{A(x)}{x} = 2A(x) + \frac{1}{1-x}$
 - partial fraction expansion: $A(x) = \frac{x}{(1-x)(1-2x)} = \frac{1}{1-2x} \frac{1}{1-x}$
 - the method stays basically the same for harder problems
 - $-a_{n+1} = 2a_n + n$ for $n \ge 0$, $a_0 = 1$
 - exact formula not obvious; no unqualified variables in the recurrence
 - obstacle: $\sum_{n\geq 0} nx^n = x/(1-x)^2$; solution: differentiation
 - concern: is differentiation allowed? discussed later, but in principle yes: in formal power series (as an algebraic ring) or via convergence (if we care about analytical properties)

$$-A(x) = \frac{1 - 2x + 2x^2}{(1 - x)^2(1 - 2x)} = \frac{A}{(1 - x)^2} + \frac{B}{1 - x} + \frac{C}{1 - 2x} = \frac{-1}{(1 - x)^2} + \frac{2}{1 - 2x}$$

- $-1/(1-x)^2$ is just $x/(1-x)^2$ (see above) shifted by 1
- $a_n = 2^{n+1} n 1$
- The method [Wilf 8]:
 - -1. make sure variables in the recurrence are qualified (e.g. range for n)
 - 2. name and define the gf
 - -3. multiply by x^n , sum over all n in the range
 - -4. express both sides in terms of the gf
 - 5. solve the equation for gf
 - 6. calculate coefficients of gf power series expansion
 - useful notation: $[x^n]f(x)$; e.g.

$$[x^n]e^x = 1/n!$$
 $[t^r]\frac{1}{1-3t} = 3^r$ $[v^m](1+v)^s = \binom{s}{m}$

• Solve $a_n = 5a_{n-1} - 6a_{n-2}$ for $n \ge 2$, $a_0 = 0$, $a_1 = 1$. $\left[G(x) = \frac{x}{(1-2x)(1-3x)}; a_n = 3^n - 2^n \right]$

1

- Fibonacci [Wilf 8–10]:
 - three-term recurrence: $F_{n+1} = F_n + F_{n-1}$ for $n \ge 1$, $F_0 = 0$, $F_1 = 1$.

- apply the method $(r_{\pm} = (1 \pm \sqrt{5})/2)$:

$$F(x) = \frac{x}{1 - x - x^2} = \frac{x}{(1 - xr_+)(1 - xr_-)} = \frac{1}{r_+ - r_-} \left(\frac{1}{1 - xr_+} - \frac{1}{1 - xr_-} \right)$$

- $-F_n = \frac{1}{\sqrt{5}}(r_+^n r_-^n)$
- the second term is < 1 and goes to zero, so the first term $\frac{1}{\sqrt{5}}(\frac{1+\sqrt{5}}{2})^n$ gives a good approximation
- Find ogf for the following sequences (always $n \ge 0$) [W1.1]:

(a)
$$a_n = n$$
 [introduce xD ; $(xD)\frac{1}{1-x} = \frac{x}{(1-x)^2}$]

(b)
$$a_n = \alpha n + \beta$$
 $\left[\alpha x/(1-x)^2 + \beta/(1-x) \right]$

(c)
$$a_n = n^2$$

$$\left[(xD)^2 \frac{1+x}{(1-x)^3} \right]$$

(d)
$$a_n = n^3$$
 $[(xD)^3 1/(1-x)]$

(e)
$$a_n = P(n)$$
; P is a polynomial of degree m $P(xD) \frac{1}{1-x}$

(f)
$$a_n = 3^n$$

$$\left[\frac{1}{(1-3x)} \right]$$

(g)
$$a_n = 5 \cdot 7^n - 3 \cdot 4^n$$
 $\left[\frac{5}{(1-7x)} - \frac{3}{1-4x} \right]$

(h)
$$a_n = (-1)^n$$
 $\begin{bmatrix} 1/(1+x) \end{bmatrix}$

• Find the following coefficients [W1.5]:

(a)
$$[x^n]e^{2x}$$
 $[2^n/n!]$

(b)
$$[x^n/n!]e^{\alpha x}$$
 $[\alpha^n]$

(c)
$$[x^n/n!] \sin x$$
 [$(-1)^m$ if $n = 2m + 1$ is odd, 0 otherwise]

(d)
$$[x^n] 1/(1-ax)(1-bx) (a \neq b) [(a^{n+1}-b^{n+1})/(a-b)]$$

(e)
$$[x^n](1+x^2)^m$$
 $[2 \mid n]\binom{m}{n/2}]$

- Compute $\Box_n = \sum_{k=1}^n k^2$.

- assign ogf to the sequence
$$1^2, 2^2, \dots, n^2$$
: $f(x) = \sum_{k=1}^n k^2 x^k$ - $(xD)^2[(x^{n+1}-1)/(x-1)] = x^{\frac{-2n^2x^{n+1}+n^2x^{n+2}+n^2x^n-2nx^{n+1}+x^{n+1}+2nx^n+x^n-x-1)}{(x-1)^3}$

- note that
$$\Box_n = f(1) = \lim_{x \to 1} (xD)^2 [(x^{n+1} - 1)/(x - 1)] = n(n+1)(2n+1)/6$$

- Find the sequence with gf $1/(1-x)^3$.
- Find a linear recurrence going back two sequence members that has a solution that contains $n \cdot 3^n$ (possibly plus some linear combination of other exponential or polynomial factors).
- Find explicit formulas for the following sequences [W1.6, R2, R3, R7]:

(a)
$$a_{n+1} = 3a_n + 2$$
 for $n \ge 0$; $a_0 = 0$
$$[3x/(1-x)(1-3x); 3^n - 1]$$

(c)
$$a_{n+1} = a_n/3 + 1$$
 for $n \ge 0$; $a_0 = 1$
$$\left[\frac{3/2}{1-x} - \frac{1/2}{1-x/3}; \quad \frac{3^{n+1}-1}{2\cdot 2^n} \right]$$

(d)
$$a_{n+2} = 2a_{n+1} - a_n$$
 for $n > 0$, $a_0 = 0$, $a_1 = 1$ $\left[x/(1-x)^2; n \right]$

(e)
$$a_{n+2} = 3a_{n+1} - 2a_n + 3$$
 for $n \ge 0$; $a_0 = 1$, $a_1 = 2$ $\left[\frac{4}{1-2x} - \frac{3}{(1-x)^2}; 2^{n+2} - 3n - 3 \right]$

(f)
$$a_n = 2a_{n-1} - a_{n-2} + (-1)^n$$
 for $n > 1$; $a_0 = a_1 = 1$
$$\left[\begin{array}{cc} \frac{1/2}{(1-x)^2} - \frac{1/4}{1-x} + \frac{1/4}{1+x}; & \frac{2n+3+(-1)^n}{4} \end{array}\right]$$
(g) $a_n = 2a_{n-1} - n \cdot (-1)^n$ for $n \ge 1$; $a_0 = 0$
$$\left[\begin{array}{cc} \frac{x/9 - 2/9}{(1+x)^2} + \frac{2/9}{1-2x}; & \frac{2^{n+1} - (3n+2)(-1)^n}{9} \end{array}\right]$$

(g)
$$a_n = 2a_{n-1} - n \cdot (-1)^n$$
 for $n > 1$: $a_0 = 0$
$$\left[\frac{x/9 - 2/9}{2} + \frac{2/9}{2} : \frac{2^{n+1} - (3n+2)(-1)^n}{2^{n+1} - (3n+2)(-1)^n} \right]$$

(h)
$$a_n = 3a_{n-1} + \binom{n}{2}$$
 for $n \ge 1$; $a_0 = 2$
$$\left[\frac{1}{8} (19 \cdot 3^n - 2n(n+2) - 3) \right]$$

(i)
$$a_n = 2a_{n-1} - a_{n-2} - 2$$
 for $n \ge 2$; $a_0 = a_{10} = 0$ $\left[n(a_1 + 1 - n), \text{ so with } a_{10}, a_n = n(10 - n) \right]$

(j)
$$a_n = 4(a_{n-1} - a_{n-2}) + (-1)^n$$
 for $n \ge 2$; $a_0 = 1$, $a_1 = 4$ $\left[\frac{1+x+x^2}{(1+x)(1-2x)^2}; \frac{(-1)^n}{9} - \frac{5}{18} \cdot 2^n + \frac{7}{6}(n+1)2^n \right]$

(k)
$$a_n = -3a_{n-1} + a_{n-2} + 3a_{n-3}$$
 for $n \ge 3$; $a_0 = 20$, $a_1 = -36$, $a_2 = 60$ $\begin{bmatrix} 5(-3)^n + 18(-1)^n - 3 \end{bmatrix}$

Ordinary generating functions 2

• From the homework: solve $a_n = 2a_{n-1} - a_{n-2} - 2$ for $n \ge 1$; $a_0 = a_{10} = 0$. Applying the standard method, while keeping a_1 as a parameter, we get

$$A(x) = \frac{a_1x - a_1x^2 - 2x^2}{(1-x)^3} = \frac{a_1x}{(1-x)^2} + \frac{x(1-x)}{(1-x)^3} - \frac{x^2 + x}{(1-x)^3},$$

so $a_n = (a_1 + 1)n - n^2$. From $a_{10} = 0$ we get $a_1 = 9$, thus $a_n = n(10 - n)$.

- Another way for boundary problems (this particular example is motivated by splines, Wilf 10–11):
 - consider $au_{n+1} + bu_n + cu_{n-1} = d_n$ for $1 \le n \le N 1$; $u_0 = u_N = 0$.
 - similar to Fibonacci with two given non-consecutive terms (but more general)
 - define $U(x) = \sum_{j=0}^{N} u_j x^j$ (unknown); $D(x) = \sum_{j=1}^{N-1} d_j x^j$ (known)
 - derive $a \cdot \frac{U(x) u_1 x}{x} + bU(x) + cx(U(x) u_{N-1} x^{N-1}) = D(x)$
 - $(a + bx + cx^{2})U(x) = xD(x) + au_{1}x + cu_{N-1}x^{N}$ (*)
 - plug in suitable values of x (roots r_+ and r_- of the quadratic polynomial on the LHS)
 - solve the system of two linear equations and two uknowns u_1, u_{N-1}
 - if the roots are equal, differentiate (*) to obtain the second equation
- Mutually recursive sequences [Knuth 343, Example 3]
 - consider the number u_n of tilings of $3 \times n$ board with 2×1 dominoes
 - define v_n as the number of tilings of $3 \times n$ board without a corner
 - $-u_n = 2v_{n-1} + u_{n-2}; \quad u_0 = 1; u_1 = 0$
 - $-v_n = v_{n-2} + u_{n-1}; v_0 = 0; v_1 = 1$
 - derive

$$U(x) = \frac{1 - x^2}{1 - 4x^2 + x^4}, \qquad V(x) = \frac{x}{1 - 4x^2 + x^4}$$

- consider $W(z) = 1/(1-4z+z^2)$; $U(x) = (1-x^2)W(x^2)$, so $u_{2n} = w_n w_{n-1}$
- hence $u_{2n} = \frac{(2+\sqrt{3})^n}{3-\sqrt{3}} + \frac{(2-\sqrt{3})^n}{3+\sqrt{3}} = \left[\frac{(2+\sqrt{3})^n}{3-\sqrt{3}}\right]$ (derivation as a homework)
- Given $f(x) \stackrel{\text{ogf}}{\longleftrightarrow} (a_n)_{n \geq 0}$, express ogf for the following sequences in terms of f [W1.3]:
 - [f(x) + c/(1-x)](a) $(a_n+c)_{n\geq 0}$
 - [xDf(x)]; napísať im $(P(n)a_n)_{n\geq 0} \longleftrightarrow P(xD)f(x)$ (b) $(na_n)_{n>0}$

 - (c) $0, a_1, a_2, a_3, \dots$ [$f(x) a_0$] (d) $0, 0, 1, a_3, a_4, a_5, \dots$ [$f(x) a_0 a_1x + (1 a_2)x^2$]
 - (e) $(a_{n+2} + 3a_{n+1} + a_n)_{n \ge 0}$ $[(f a_0 a_1 x)/x^2 + 3(f a_0)/x + f]$
 - (f) $a_0, 0, a_2, 0, a_4, 0, a_6, 0 \dots$ [(f(x) + f(-x))/2]
 - (g) $a_0, 0, a_1, 0, a_2, 0, a_3, 0 \dots$ $[f(x^2)]$
 - (h) $a_1, a_2, a_3, a_4, \dots$ $\left[(f(x)-a_0)/x \right]$
 - $\left[(f(\sqrt{x}) + f(-\sqrt{x}))/2 \right]$ (i) a_0, a_2, a_4, \dots

• introducing a new variable and changing the order of summation can help

$$\sum_{n\geq 0} \binom{n}{k} x^n = [y^k] \sum_{m\geq 0} \left(\sum_{n\geq 0} \binom{n}{m} x^n \right) y^m = [y^k] \sum_{n\geq 0} (1+y)^n x^n$$

$$= [y^k] \frac{1}{1-x(1+y)} = \frac{1}{1-x} [y^k] \frac{1}{1-\frac{x}{1-x}y} = \frac{x^k}{(1-x)^{k+1}}$$
(1)

• alternatively, one can use binomial theorem (Knuth 199/5.56 and 5.57):

$$\frac{1}{(1-z)^{n+1}} = (1-z)^{-n-1} = \sum_{k\geq 0} {\binom{-n-1}{k}} (-z)^k$$
$$= \sum_{k\geq 0} \frac{(-n-1)(-n-2)\dots(-n-k)}{k!} (-z)^k = \sum_{k\geq 0} {\binom{n+k}{n}} z^k$$

Formal power series [Wilf chapter 2]

- a ring with addition and multiplication $\sum_n a_n x^n \sum_n b_n x^n = \sum_n \sum_k (a_k b_{n-k}) x^n$
- if $f(0) \neq 0$, then f has a unique reciprocal 1/f such that $f \cdot 1/f = 1$
- composition f(g(x)) defined iff g(0) = 0 or f is a polynomial (cf. $e^{e^x 1}$ vs. e^{e^x})
- formal derivative D: D $\sum_n a_n x^n = \sum_n n a_n x^{n-1}$; usual rules for sum, product etc.
- exercise: find all f such that Df = f

Rules for manipulation [Wilf 2.1, Knuth 334]. Assume that $f \stackrel{\text{ogf}}{\longleftrightarrow} (a_n)_{n=0}^{\infty}$.

- Rule 1: for a positive integer h, $(a_{n+h}) \stackrel{\text{ogf}}{\longleftrightarrow} (f a_0 \ldots a_{h-1}x^{h-1})/x^h$
- Rule 2: if P is a polynomial, then $P(xD)f \stackrel{\text{ogf}}{\longleftrightarrow} (P(n)a_n)_{n\geq 0}$
 - example: $(n+1)a_{n+1} = 3a_n + 1$ for $n \ge 0$, $a_0 = 1$; thus f' = 3f + 1/(1-x)
 - example: $\sum_{n\geq 0} \frac{n^2+4n+5}{n!}$; thus $f=\sum_{n\geq 0} (n^2+4n+5)\frac{x^n}{n!}=((x\mathbf{D})^2+4x\mathbf{D}+5)e^x=(x^2+5x+5)e^x$ we need f(1)=11e; works because the resulting f is analytic in a disk containing 1 in the complex plane (that is, it converges to its Taylor series)
- Rule 3: if $g \stackrel{\text{ogf}}{\longleftrightarrow} (b_n)$, then $fg \stackrel{\text{ogf}}{\longleftrightarrow} (\sum_{k=0}^n a_k b_{n-k})_{n \geq 0}$

$$\sum_{k=0}^{n} (-1)^{k} k = (-1)^{n} \sum_{k=0}^{n} k \cdot (-1)^{n-k} = (-1)^{n} [x^{n}] \frac{x}{(1-x)^{2}} \cdot \frac{1}{1+x} = \frac{(-1)^{n}}{4} (2n+1-(-1)^{n})$$

- Rule 4: for a positive integer k, we have $f^k \stackrel{\text{ogf}}{\longleftrightarrow} \left(\sum_{n_1+n_2+\cdots+n_k=n} a_{n_1} a_{n_2} \dots a_{n_k} \right)_{n \geq 0}$
 - example: let p(n, k) be the number of ways n can be written as an ordered sum of k nonnegative integers
 - according to R4, $(p(n,k))_{n\geq 0} \stackrel{\text{ogf}}{\longleftrightarrow} 1/(1-x)^k$, so $p(n,k) = \binom{n+k-1}{n}$ thanks to (1)
- Rule 5: $\frac{f}{(1-x)} \stackrel{\text{ogf}}{\longleftrightarrow} \left(\sum_{k=0}^{n} a_k\right)_{n>0}$
 - example: $(\Box_n)_{n\geq 0} \stackrel{\text{ogf}}{\longleftrightarrow} \frac{1}{1-x} \cdot (x\mathbf{D})^2 \frac{1}{1-x} = \frac{x(1+x)}{(1-x)^4}$, so by (1), $\Box_n = \binom{n+2}{3} + \binom{n+1}{3}$

- 1. Using Rule 5, prove that $F_0 + F_1 + \cdots + F_n = F_{n+2} 1$ for $n \ge 0$ [Wilf 38, example 6]. [Compare gfs of both sides, left is f/(1-x), where $f = x/(1-x-x^2)$, i.e. Fibonacci.]
- 2. Solve $g_n = g_{n-1} + g_{n-2}$ for $n \ge 2$, $g_0 = 0$, $g_{10} = 10$. [$g_n = \frac{g_{10}}{F_{10}} F_n$, try the "boundary method" described above, computer necessary]
- 3. Solve $a_n = \sum_{k=0}^{n-1} a_k$ for n > 0; $a_0 = 1$. [R16] $a_n = 2^{n-1}$ for $n \ge 1$
- 4. Solve $f_n = 2f_{n-1} + f_{n-2} + f_{n-3} + \dots + f_1 + 1$ for $n \ge 1$, $f_0 = 0$ [Knuth 349/(7.41)] [$F(x) = x/(1-3x+x^2)$; $f_n = F_{2n}$]
- 5. Solve $g_n = g_{n-1} + 2g_{n-2} + \dots + ng_0$ for n > 0, $g_0 = 1$. [K7.7] $\left[G(x) = 1 + x/(1 3x + x^2); g_n = F_{2n} + [n = 0] \right]$
- 6. Solve $g_n = \sum_{k=1}^{n-1} \frac{g_k + g_{n-k} + k}{2}$ for $n \ge 2$, $g_1 = 1$.
- 7. Solve $g_n = g_{n-1} + 2g_{n-2} + (-1)^n$ for $n \ge 2$, $g_0 = g_1 = 1$. [Knuth 341, example 2] $\left[G(x) = \frac{1+x+x^2}{(1-2x)(1+x)^2}; g_n = \frac{7}{9}2^n + \frac{1}{9}(3n+2)(-1)^n \right]$
- 8. Solve $a_{n+2} = 3a_{n+1} 2a_n + n + 1$ for $n \ge 0$; $a_0 = a_1 = 1$. [R24] $\left[A(z) = \frac{2}{1-2z} \frac{1}{(1-z)^3}; \ a_n = 2^{n+1} \binom{n+2}{2} \right]$
- 9. Prove that $\ln \frac{1}{1-x} = \sum_{n>1} \frac{1}{n} x^n$. [consider $\int \frac{1}{1-x}$]

3 Skipping sequence elements, Catalan numbers

———— Discovering combinatorial identities via gfs [Knuth 198, Vandermonde and 5.55]

- $(1+x)^r = \sum_{k>0} {r \choose k} x^k$; consider $(1+x)^r (1+x)^s = (1+x)^{r+s}$
- comparison of coefficients yields $\sum_{k\geq 0}^{n} {r \choose k} {s \choose n-k} = {r+s \choose n}$ Vandermonde
- by considering $(1-x)^r(1+x)^r = (1-x^2)^r$, we obtain

$$\sum_{k=0}^{n} {r \choose k} {r \choose n-k} (-1)^k = (-1)^{n/2} {r \choose n/2} [2 \mid n]$$

Every third binomial coefficient [Wilf 51, example 4]

- why $\frac{1}{2}(A(x) + A(-x)) \stackrel{\text{ogf}}{\longleftrightarrow} a_0, 0, a_2, 0, a_4, \dots$ works: $\frac{1}{2}(1^n + (-1)^n) = [2 \mid n]$
- in general, for ω being r-th root of unity, $\frac{1}{r}\sum_{j=0}^{r-1}(\omega^j)^n=\frac{1}{r}\sum_{j=0}^{r-1}e^{2\pi i j n/r}=[r\mid n]$ just a geometric progression, or a consequence of $t^r-1=(t-1)(t^{r-1}+\cdots+t+1)$
- problem: find $S_n = \sum_k (-1)^k \binom{n}{3k}$
- if we knew $f(x) = \sum_{k} {n \choose 3k} x^{3k}$, we would have $S_n = f(-1)$
- for $A(x) = (1+x)^n$, we have $f(x) = \frac{1}{3}(A(x) + A(x\omega^1) + A(x\omega^2))$ for $\omega = e^{2\pi i/3}$
- and so $S_n = f(-1) = \frac{1}{3}[(1-\omega)^n + (1-\omega^2)^n)] =$

$$= \frac{1}{3} \left[\left(\frac{3 - \sqrt{3}i}{2} \right)^n + \left(\frac{3 + \sqrt{3}i}{2} \right)^n \right] = 2 \cdot 3^{\frac{n}{2} - 1} \cos \left(\frac{\pi n}{6} \right)$$

- consider the number of possibilities c_n of how to specify the multiplication order of $A_0A_1...A_n$ by parentheses; let $C(x) = \sum_{n>0} c_n x^n$
- divide possibilities by the place of last multiplication; $c_n = \sum_{k=0}^{n-1} c_k c_{n-1-k}$ for n > 0; $c_0 = 1$
- many ways to deal with the recurrence:
 - (1) shift the recurrence to $c_{n+1} = \sum_{k=0}^{n} c_k c_{n-k}$ and use Rules 1 and 3; $\frac{C(x)-1}{x} = C(x)^2$
 - (2) RHS as a convolution of c_n with c_{n-1} , i.e. $C(x) \cdot xC(x)$
 - (3) RHS as a convolution of c_n with c_n shifted by Rule 1, i.e. $x \cdot C(x)^2$
 - (4) rewriting through sums and changing the order of summation:

$$\sum_{n\geq 1} x^n \sum_{k=0}^{n-1} c_k c_{n-1-k} = \sum_{k=0}^{\infty} x^k c_k \sum_{n\geq k+1} c_{n-1-k} x^{n-k} = \sum_{k=0}^{\infty} x^k c_k x C(x) = x C(x) \cdot C(x)$$

- consequently, $C(x) 1 = xC(x)^2$ and thus $C(x) = \frac{1 \pm \sqrt{1 4x}}{2x} = \frac{1}{2x} \left(1 \sqrt{1 4x}\right)$
- we want C continuous and C(0) = 1, so we choose the minus sign (note that the resulting function below is analytical since $\binom{2n}{n}/(n+1) < 2^{2n}$; it would be analytical also if we chose the plus sign)
- ullet binomial theorem yields

$$\sqrt{1-4x} = (1-4x)^{1/2} = \sum_{k\geq 0} {1/2 \choose k} (-4x)^k = 1 + \sum_{k\geq 1} \frac{1}{2k \cdot (-4)^{k-1}} {2k-2 \choose k-1} (-4)^k x^k$$
$$= 1 - \sum_{k\geq 1} \frac{2}{k} {2k-2 \choose k-1} x^k$$

- we used $\binom{1/2}{k} = \frac{1/2}{k} \binom{-1/2}{k-1} = \frac{1}{2k(-4)^{k-1}} \binom{2k-2}{k-1}$ because $\binom{-1/2}{m} = \frac{1}{(-4)^m} \binom{2m}{m}$
- therefore,

$$C(x) = \frac{1}{2x} \sum_{k \ge 1} \frac{2}{k} \binom{2k-2}{k-1} x^k = \sum_{n \ge 0} \frac{1}{n+1} \binom{2n}{n} x^n$$

Exercises

- 1. Assume that $A(x) \stackrel{\text{off}}{\longleftrightarrow} (a_n)$. Express the generating function for $\sum_{n\geq 0} a_{3n}x^n$ in terms of A(x). $\left[\begin{array}{c} \frac{1}{3}(A(x^{1/3}) + A(\omega x^{1/3})) + A(\omega^2 x^{1/3}), \text{ where } \omega = e^{2\pi i/3} \end{array}\right]$
- 2. Compute $S_n = \sum_{n\geq 0} F_{3n} \cdot 10^{-n}$ (by plugging a suitable value into the generating function for F_{3n}). [The gf is $\frac{2x}{1-4x-x^2}$ and $S_n = 20/59$.]
- 3. Compute $\sum_{k} {n \choose 4k}$. $\left[2^{\frac{n}{2}-2} \left(2^{\frac{n}{2}} + \cos\left(\frac{1}{4}n\pi\right) + (-1)^n \cos\left(\frac{3}{4}n\pi\right) \right) \right]$
- 4. Compute $\sum_{k} {6m \choose 3k+1}$. [Compute it for general n and then plug in n = 6m; $(2^{6m} 1)/3$]
- 5. Evaluate $S_n = \sum_{k=0}^n (-1)^k k^2$. $\left[f(x) = \frac{-x}{(1+x)^3}; S_n = \frac{1}{2} (-1)^n n(n+1) \right]$
- 6. Find ogf for $H_n = 1 + 1/2 + 1/3 + \dots$ $\left[-\ln(1-x)/(1-x) \right]$
- 7. Find the number of ways of cutting a convex n-gon with labelled vertices into triangles. [C_{n-2} (shifted Catalan numbers)]

4 Snake Oil

The Snake Oil method [Wilf 118, chapter 4.3] – external method vs. internal manipulations within a sum.

- 1. identify the free variable and give the name to the sum, e.g. f(n)
- 2. let $F(x) = \sum f(n)x^n$
- 3. interchange the order of summation; solve the inner sum in closed form
- 4. find coefficients of F(x)
- Example 0

– let's evaluate
$$f(n) = \sum_{k} {n \choose k}$$
; after Step 2, $F(x) = \sum_{n>0} x^n \sum_{k} {n \choose k}$

$$-F(x) = \sum_{k} \sum_{n} \binom{n}{k} x^{n} = \sum_{k>0} \frac{x^{k}}{(1-x)^{k+1}} = \frac{1}{1-x} \cdot \frac{1}{1-\frac{x}{1-x}} = \frac{1}{1-2x}$$

• Example 1 [Wilf 121]

– let's evaluate
$$f(n) = \sum_{k>0} {k \choose n-k}$$
; after Step 2, $F(x) = \sum_n x^n \sum_{k>0} {k \choose n-k}$

$$-F(x) = \sum_{k \geq 0} \sum_{n} \binom{k}{n-k} x^{n} = \sum_{k \geq 0} x^{k} \sum_{n} \binom{k}{n-k} x^{n-k} = \sum_{k \geq 0} x^{k} (1+x)^{k} = \frac{1}{1-x-x^{2}}$$

$$- so f(n) = F_{n+1}$$

• Example 2 [Wilf 122]

– let's evaluate
$$f(n) = \sum_{k} {n+k \choose m+2k} {2k \choose k} \frac{(-1)^k}{k+1}$$
, where m, n are nonnegative integers

$$F(x) = \sum_{n\geq 0} x^n \sum_{k} \binom{n+k}{m+2k} \binom{2k}{k} \frac{(-1)^k}{k+1}$$

$$= \sum_{k} \binom{2k}{k} \frac{(-1)^k}{k+1} x^{-k} \sum_{n\geq 0} \binom{n+k}{m+2k} x^{n+k}$$

$$= \sum_{k} \binom{2k}{k} \frac{(-1)^k}{k+1} x^{-k} \frac{x^{m+2k}}{(1-x)^{m+2k+1}}$$

$$= \frac{x^m}{(1-x)^{m+1}} \sum_{k} \binom{2k}{k} \frac{1}{k+1} \left(\frac{-x}{(1-x)^2}\right)^k$$

$$= \frac{-x^{m-1}}{2(1-x)^{m-1}} \left(1 - \sqrt{1 + \frac{4x}{(1-x)^2}}\right) = \frac{x^m}{(1-x)^m}$$

$$- so f(n) = \binom{n-1}{m-1}$$

- Example 6 [Wilf 127]
 - prove that $\sum_{k} {m \choose k} {n+k \choose m} = \sum_{k} {m \choose k} {n \choose k} 2^k$, where m, n are nonnegative integers
 - the ogf of the left-hand side is

$$L(x) = \sum_{k} {m \choose k} x^{-k} \sum_{n \ge 0} {n+k \choose m} x^{n+k} = \frac{(1+x)^m}{(1-x)^{m+1}}$$

7

- we get the same for the right-hand side

- 1. Prove that $\sum_{k} k \binom{n}{k} = n2^{n-1}$ via the snake oil method. $[L(x) = P(x) = \frac{x}{(1-2x)^2}]$
- 2. Evaluate $f(n) = \sum_{k} k^2 \binom{n}{k} 3^k$.

$$\left[F(x) = \frac{3x(1+2x)}{(1-4x)^3} = \frac{3/8}{1-4x} - \frac{3/2}{(1-4x)^2} + \frac{9/8}{(1-4x)^3}; f(n) = 3 \cdot 4^{n-2} \cdot n(1+3n) \right]$$

3. Find a closed form for $\sum_{k>0} {k \choose n-k} t^k$. [W4.11(a)]

$$F(x) = 1/(1 - tx - tx^2)$$

4. Evaluate $f(n) = \sum_{k} {n+k \choose 2k} 2^{n-k}$, $n \ge 0$. [Wilf 125, Example 4]

$$\left[F(x) = \frac{1-2x}{(1-x)(1-4x)} = \frac{2}{3(1-4x)} + \frac{1}{3(1-x)}; f(n) = (2^{2n+1}+1)/3 \right]$$

5. Evaluate $f(n) = \sum_{k \le n/2} (-1)^k \binom{n-k}{k} y^{n-2k}$. [Wilf 122, Example 3]

$$[F(x) = 1/(1 - xy + x^2)]$$

6. Evaluate $f(n) = \sum_{k} {2n+1 \choose 2p+2k+1} {p+k \choose k}$. [W4.11(c)]

[replace 2n+1 by m and solve for $f(m)=\binom{m-p-1}{p}2^{m-2p-1}; \ f(2n+1)=\binom{2n-p}{p}4^{n-p};$

$$F(x) = \frac{x}{(1-x)^2} \sum_{k>0} \binom{p+k}{p} \left(\frac{x}{1-x}\right)^{2(p+k)} = \frac{x^{p+1}}{2^p} \cdot \frac{(2x)^p}{(1-2x)^{p+1}} \]$$

7. Try to prove that $\sum_{k} \binom{n}{k} \binom{2n}{n+k} = \binom{3n}{n}$ via the snake oil method in three different ways: consider the sum

$$\sum_{k} \binom{n}{k} \binom{m}{r-k}$$

and the free variable being one of n, m, r.

5 Asymptotic estimates

- Purpose of asymptotics [Knuth 439]
 - sometimes we do not have a closed form or it is hard to compare it to other quantities

$$-S_n = \sum_{k=0}^n {3n \choose k} \sim 2 {3n \choose n}; S_n = {3n \choose n} \left(2 - \frac{4}{n} + O\left(\frac{1}{n^2}\right)\right)$$

- how to compare it with F_{4n} ? we need to approximate the binomial coefficient
- purpose is to find accurate and concise estimates:

$$H_n$$
 is $\sum_{k>1}^n 1/k$ vs. $O(\log n)$ vs. $\ln n + \gamma + O(n^{-1})$

- Hierarchy of log-exp functions [Hardy, see Knuth 442]
 - the class \mathcal{L} of logarithmico-exponential functions: the smallest class that contains constants, identity function f(n) = n, difference of any two functions from \mathcal{L} , e^f for every $f \in \mathcal{L}$, $\ln f$ for every $f \in \mathcal{L}$ that is "eventually positive"
 - every such function is identically zero, eventually positive or eventually negative
 - functions in \mathcal{L} form a hierarchy (every two of them are comparable by \prec or \approx)
- Notations

$$-f(n) = O(g(n))$$
 iff $\exists c : |f(n)| \le c|g(n)|$ (alternatively, for $n \ge n_0$ for some n_0)

$$-f(n) = o(g(n))$$
 iff $\lim_{n\to\infty} f(n)/g(n) = 0$

$$-f(n) = \Omega(g(n))$$
 iff $\exists c : |f(n)| \ge c|g(n)|$ (alternatively, ...)

$$-f(n) = \Theta(g(n))$$
 iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

- basic manipulation:
$$O(f) + O(g) = O(|f| + |g|)$$
, $O(f)O(g) = O(fg) = fO(g)$ etc.

- meaning of O in sums
- relative vs. absolute error

• Warm-ups

- 1. Prove or disprove: O(f+g)=f+O(g) if f and g are positive. [K9.5] [false]
- 2. Multiply $\ln n + \gamma + O(1/n)$ by $n + O(\sqrt{n})$. [K9.6] $\left[n \ln n + \gamma n + O(\sqrt{n} \ln n) \right]$
- 3. Compare $n^{\ln n}$ with $(\ln n)^n$. $\lceil \prec \rceil$
- 4. Compare $n^{\ln \ln \ln n}$ with $(\ln n)!$. $\lceil \prec \rceil$
- 5. Prove or disprove: $O(x+y)^2 = O(x^2) + O(y^2)$. [K9.11] [true]

• Common tricks

- cut off series expansion (works for convergent series, Knuth 451)
- substitution, e.g. $\ln(1+2/n^2)$ with precision of $O(n^{-5})$ $\left[\frac{2}{n^2} \frac{4}{n^4} + O(n^{-6}) \right]$
- factoring (pulling the large part out), e.g. $\frac{1}{n^2+n} = \frac{1}{n^2} \frac{1}{1+\frac{1}{n}} = \frac{1}{n^2} \frac{1}{n^3} + O(n^{-4})$

- division, e.g.
$$\frac{H_n}{\ln(n+1)} = \frac{\ln n + \gamma + O(n^{-1})}{(\ln n)(1 + O(n^{-1}))} = 1 + \frac{\gamma}{\ln n} + O(n^{-1})$$

- exp-log, i.e. $f(x) = e^{\ln f(x)}$
- Typical situations for approximation

- Stirling formula:
$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n} + \frac{1}{288n^2} + O(n^{-3})\right)$$

– harmonic numbers:
$$H_n = \ln n + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + O(n^{-4})$$

- rational functions, e.g.
$$\frac{n+1}{n+2} = \frac{1+\frac{1}{n}}{1+\frac{2}{n}} = \left(1+\frac{1}{n}\right)\left(1-\frac{2}{n}+\frac{4}{n^2}+O(n^{-3})\right) = 1-\frac{1}{n}+\frac{2}{n^2}+O(n^{-3})$$

- exponentials: $e^{H_n} = ne^{\gamma}e^{O(1/n)} = ne^{\gamma}(1 + O(1/n)) = ne^{\gamma} + O(1)$
- rational function powered to n, e.g.

$$\left(\frac{n-3}{n}\right)^n = e^{n\ln\left(1-\frac{3}{n}\right)} = \exp\left(n\left(\frac{-3}{n} + O\left(n^{-2}\right)\right)\right) = e^{-3+O(n^{-1})} = \frac{1}{e^3} + O(n^{-1})$$

- binomial coefficient, e.g. $\binom{2n}{n}$: factorials and Stirling formula

$$\binom{2n}{n} = \frac{\sqrt{4\pi n} \left(\frac{2n}{e}\right)^{2n} (1 + O(n^{-1}))}{2\pi n \left(\frac{n}{e}\right)^{2n} (1 + O(n^{-1}))^2} = \frac{2^{2n}}{\sqrt{\pi n}} (1 + O(n^{-1}))$$

Exercises

- 1. Estimate $\ln(1+1/n) + \ln(1-1/n)$ with abs. error $O(n^{-3}) \left[-1/n^2 + O(n^{-4}) \right]$
- 2. Estimate $\ln(2+1/n) \ln(3-1/n)$ with abs. error $O(n^{-2})$ $\left[\ln \frac{2}{3} + \frac{5}{6n} + O(n^{-2}) \right]$
- 3. Estimate $\lg(n-2)$, abs. error $O(n^{-2}) \left[\frac{\ln n}{\ln 2} \frac{2}{n \ln 2} + O(n^{-2}) \right]$
- 4. Evaluate H_n^2 with abs. error $O(n^{-1})$. $\left[(\ln n)^2 + 2\gamma \ln n + \gamma^2 + (\ln n)/n + O(1/n) \right]$
- 5. Estimate $n^3/(2+n+n^2)$ with abs. error $O(n^{-3})$ $[n-1-\frac{1}{n}+\frac{3}{n^2}+O(n^{-3})]$
- 6. Prove or disprove: [K9.20] (b) $e^{(1+O(1/n))^2} = e + O(1/n)$ (c) $n! = O\left(((1-1/n)^n n)^n\right)$ [yes, no]
- 7. Evaluate $(n+2+O(n^{-1}))^n$ with rel. error $O(n^{-1})$. [K9.13] $[n^n \cdot e^2(1+O(n^{-1}))]$
- 8. Compare H_{F_n} with $F_{\lceil H_n \rceil}^2$ [K9.2] $\left[H_{F_n} \sim n \ln \varphi, F_{\lceil H_n \rceil}^2 = O(n^{\ln \varphi^2}) = o(n) \right]$
- 9. Estimate $\sum_{k>0} e^{-k/n}$ with abs. error $O(n^{-1})$. [K9.7] $[n+1/2+O(n^{-1})]$
- 10. Estimate $H_n^5/\ln(n+5)$ with abs. error $O(n^{-2})$. $\left[2 + \frac{\gamma}{\ln n} \frac{6}{n \ln n} \frac{3\gamma}{n \ln^2 n} + O(n^{-2})\right]$
- 11. Estimate $\binom{2n}{n}$ with relative error $O(n^{-2})$. [A1] $\left[\begin{array}{c} \frac{2^{2n}}{\sqrt{\pi n}} \left(1 \frac{1}{8n} + O(n^{-2})\right) \end{array}\right]$
- 12. Estimate $\binom{2n+1}{n}$ with relative error $O(n^{-2})$. [A2] $\left[\begin{array}{c} \frac{2^{2n+1}}{\sqrt{\pi n}} \left(1 \frac{1}{5n} + O(n^{-2})\right) \end{array}\right]$
- 13. Compare (n!)! with $((n-1)!)! \cdot (n-1)!^{n!}$. [K9.2c] (Homework if not enough time is left.)

6 Estimates of sums and products

\bullet Warm-ups

- 1. Let $f(n) = \sum_{k=1}^n \sqrt{k}$. Show that $f(n) = \Theta(n^{3/2})$. Find g(n) such that $f(n) = g(n) + O(\sqrt{n})$. $\left[\int_0^n \sqrt{x} \, \mathrm{d}x \le S_n \le \int_1^{n+1} \sqrt{x} \, \mathrm{d}x; \ g(n) = \frac{2}{3} n \sqrt{n} \right]$
- 2. Estimate (n-2)!/(n-1) with abs. error $O(n^{-2})$. [TODO consider $\frac{n!}{n(n-1)^2}$]
- 3. For a constant integer k, estimate $n^{\underline{k}}/n^k$ with abs. error $O(n^{-3})$. [A5]

$$\left[1 - \binom{k}{2} \frac{1}{n} + \frac{3k^4 - 10k^3 + 9k^2 - 2k}{24} \frac{1}{n^2} + O\left(\frac{1}{n^3}\right) \right]$$

- Find a good estimate of $P_n = \frac{(2n-1)!!}{n!}$.
 - obviously $1.5^{n-1} \le \frac{1}{1} \cdot \frac{3}{2} \cdot \frac{5}{3} \cdot \dots \cdot \frac{(2n-1)}{n} \le 2^{n-1}$
 - we split the product into a "small" part (first k terms, each at least 3/2 except the first one) and a "large" part (remaining n-k terms); then

and a "large" part (remaining
$$n-k$$
 terms); then
$$P_n \geq \left(\frac{2k+1}{k+1}\right)^{n-k} \cdot 1.5^{k-1} = Q_n \cdot 1.5^{k-1}; \text{ we estimate } Q_n$$

- if we try $k = \alpha n$, then

$$Q_n = 2^{n-\alpha n} \exp\left((n-\alpha n) \ln\left(1 - \frac{1}{2(\alpha n + 1)}\right)\right) = 2^{n(1-\alpha)} e^{\frac{\alpha - 1}{2\alpha}} (1 + O(n^{-1})),$$

so
$$P_n \ge (2^{1-\alpha} \cdot 1.5^{\alpha})^n \Theta(1)$$

- if we try $k = \ln n$, then

$$Q_n = \exp\left((n - \ln n)\left[\ln 2 + \ln\left(1 - \frac{1}{2(1 + \ln n)}\right)\right]\right);$$

if we expand ln into Taylor series, the error will be $1/\ln^k n = \omega(n^{-1})$, so we can get relative error O(1) at best;

anyway, if we carry it through, we get $P_n = \Omega(2^n n^{-c} e^{-0.5n/\ln n})$

– if we try $k = \sqrt{n}$, then

$$Q_n = \exp\left((n - \sqrt{n}) \left[\ln 2 + \ln\left(1 - \frac{1}{2(1 + \sqrt{n})}\right)\right]\right)$$

$$= 2^{n - \sqrt{n}} \exp\left((n - \sqrt{n}) \left[\frac{-1}{2\sqrt{n}} + \frac{3}{8n} - \frac{7}{24n^{3/2}} + O(n^{-2})\right]\right)$$

$$= 2^{n - \sqrt{n}} \exp\left(-\frac{\sqrt{n}}{2} + \frac{7}{8} - \frac{2}{3\sqrt{n}} + O(n^{-1})\right),$$

thus
$$P_n \ge 2^n \cdot 0.75^{\sqrt{n}} \cdot e^{\frac{-\sqrt{n}}{2} + \frac{7}{8} - \frac{2}{3\sqrt{n}}} (1 + O(n^{-1})) = \Omega\left(2^n c^{\sqrt{n}}\right)$$
 for $c \in (0, 1)$.

- TODO compare with previous estimate from $k = \ln n$; which is better?
- another approach: $P_n = \frac{(2n)!}{n!2^n n!} = {2n \choose n}/2^n = \frac{2^n}{\sqrt{\pi n}}(1 + O(n^{-1}))$
- Estimate $S_n = \sum_{k=1}^n \frac{1}{n^2+k}$ with absolute error (a) $O(n^{-3})$, (b) $O(n^{-7})$. [Knuth 458/Problem 4] First approach: $\frac{1}{n^2+k} = \frac{1}{n^2(1+k/n^2)}$ etc.; second approach: $S_n = H_{n^2+n} H_n$. (DU)
- Sums gross bound on the tail: $S_n = \sum_{0 \le k \le n} k! = n! \left(1 + \frac{1}{n} + \frac{1}{n(n-1)} + \dots\right)$, all the terms except the first two are at most 1/n(n+1), so $S_n = n! \left(1 + \frac{1}{n} + n \frac{1}{n(n-1)}\right) = n! (1 + O(n^{-1}))$
- Sums make the tail infinite:

$$n! \sum_{k=0}^{n} \frac{(-1)^k}{k!} = n! \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} - \sum_{k \ge n+1} \frac{(-1)^k}{k!} \right)$$
$$= n! \left(e^{-1} - O\left(\frac{1}{(n+1)!}\right) \right) = \frac{n!}{e} + O(n^{-1})$$

• Estimate $S_n = \sum_{k=0}^n {3n \choose k}$ with relative error $O(n^{-2})$. We split the sum into a "small" and a "large" part at b (which is yet to be determined).

$$\begin{split} \sum_{k=0}^{n} \binom{3n}{k} &= \sum_{k=0}^{n} \binom{3n}{n-k} = \sum_{0 \leq k < 0} \binom{3n}{n-k} + \sum_{b \leq k \leq n} \binom{3n}{n-k}. \\ \binom{3n}{n-k} &= \binom{3n}{n} \frac{n(n-1) \cdot \ldots \cdot 1}{(2n+1)(2n+2) \cdot \ldots (2n+k)} = \\ &= \binom{3n}{n} \cdot \frac{n^k}{(2n)^k} \frac{\prod_{j=0}^{k-1} \left(1 - \frac{j}{n}\right)}{\prod_{j=1}^{k} \left(1 + \frac{j}{2n}\right)} = \binom{3n}{n} \cdot \frac{1}{2^k} \cdot \left[1 - \frac{3k^2 - k}{4n} + O\left(\frac{k^4}{n^2}\right)\right]. \\ \sum_{b \leq k \leq n} \binom{3n}{n-k} &\leq n \cdot \binom{3n}{n-b} = \binom{3n}{n} \cdot \frac{1}{2^b} O(n) = \binom{3n}{n} \cdot O\left(n^{-2}\right) \text{ if } \sqrt{n} > b \geq 3 \lg n. \\ \sum_{0 \leq k < 3 \lg n} \frac{1}{2^k} &= 2 - \frac{1}{2^3 \lg n} = 2 + O(n^{-3}). \\ -\frac{3}{4n} \sum_{0 \leq k < 3 \lg n} \frac{k^2}{2^k} &= \frac{-9}{2n} + O(n^{-3}). \\ +\frac{1}{4n} \sum_{0 \leq k < 3 \lg n} \frac{k^2}{2^k} &= \frac{1}{2n} + O(n^{-3}). \\ O(n^{-2}) \cdot \sum_{0 \leq k \leq 2 \lg n} \frac{k^4}{2^k} &= O(n^{-2}) \end{split}$$

$$\sum_{k=0}^{n} \binom{3n}{k} = \binom{3n}{n} \cdot \left[2 - \frac{4}{n} + O(n^{-2}) \right]$$

• Estimate $S_n = \sum_{k=0}^n \binom{4n+1}{k+1}$ with relative error $O(n^{-2})$.

- How many bits are needed to represent a binary tree with n internal nodes?
 - we need just the internal vertices to capture the structure; what is the relation between the number of internal vertices and total number of vertices?
 - imagine labeling the vertices by 1, 2, ..., n in such a way that we get a binary search tree (descendants in the left subtree are smaller, in the right subtree are larger); by summing over possible roots of the tree we get $t_n = \sum_{i=1}^n t_{i-1} t_{n-i}$; $t_0 = 1$
 - this is the same as for Catalan numbers, so $t_n = \binom{2n}{n} \frac{1}{n+1}$
 - and so we need $\log_2 t_n \sim 2n 1.5 \lg n 0.5 \lg \pi + O(n^{-1})$ bits