Design and Analysis of Algorithms

Practice-sheet: NP-completeness

Date: 12th November, 2017

1. Polynomial reduction \leq_P

Let A and B be any two computational problems. Let χ be any algorithm for solving B. Problem A is said to be reducible to problem B in polynomial time if each instance I of A can be solved by

- A polynomial number of executions of χ on instances (of B) each of which are also polynomial of size of I,
- and, if required, basic computational steps (each taking O(1) time) which are also polynomial in the size of I.

Convince yourself that this definition of \leq_P subsumes the definition of polynomial time reducibility discussed in the class.

2. Application of \leq_P

Let problem A be defined as follows. Given any undirected graph and an integer k, determine if the graph has an independent set of size at least k.

Let problem B be defined as follows. Given any undirected graph and an integer t, determine if the graph has a vertex cover of size k.

Using the definition of \leq_P given in the previous exercise, show that $A \leq_P B$.

3. Resolving whether P = NP?

For each of the two questions below, decide whether the answer is (i)**yes**, (ii)**no**, (iii) **unknown**, because it would resolve the question of whether "P=NP". Give a brief explanation of your answer.

- (a) Let us define the decision version of the Interval Scheduling Problem (discussed under the topic of Greedy algorithms) as follows: Given a collection of Intervals on a time-line, and an integer k, does the collection contain a subset of nonoverlapping intervals of size at least k?
 - Question: Is it the case that Interval Scheduling $\leq_P Vertex\ Cover\ ?$
- (b) Question: Is it the case that Independent Set \leq_P Interval Scheduling?

4. Feedback set

Given an undirected graph G = (V, E), a feedback set is a set $X \subseteq V$ with the property that G - X has no cycle. The *Undirected Feedback Set Problem* asks: Given G and k, does there exist a feedback set of size at most k? Prove that *Undirected Feedback Set Problem* is NP-complete.

5. Subgraph Isomorphism

Let G = (V, E) and G' = (V', E') be two graphs. G is said to be isomorphic to G' if we can obtain G' from G by renaming its vertices suitably. In formal words, it means the following.

A 1-1 and onto function $f: V \to V'$ is said to be an isomorphism if for each pair of vertices $u, v \in V$, $(u, v) \in E$ if and only if $(f(u), f(v)) \in E'$.

Subgraph-Isomorphism Problem is defined as follows. Given any two graphs G = (V, E) and G' = (V', E'), does there exist any subgraph of G which is isomorphic to G'. Show that Subgraph-Isomorphism Problem is NP-complete.

6. Clique Problem

A clique is a complete graph (edge exists between each pair of its vertices). Consider the following problem: Given an undirected graph G = (V, E) and an integer k, does G contain a clique of size k?

Show that this problem is NP-complete.

Hint: Use the fact that *Independent Set* is NP-complete.

7. Approximation Algorithm for Vertex Cover

Recall the algorithm for computing vertex cover of a given graph as discussed in the class. Prove that the algorithm computes a vertex cover whose size is at most twice the size of minimum-size vertex cover.

Hint: For each edge picked during the algorithm, at least one of its endpoints must be in the optimal vertex cover.

In this course we discussed bipartite-matching problem. The notion of matching can be extended naturally to any arbitrary undirected graph. Based on the algorithm, what relationship can you draw between the matching of a graph and a vertex cover of the same graph?

Important Note: We discussed the area of approximation algorithm very briefly. So only simple/obvious exercises on approximation algorithms, if at all, may be expected in the exam.