Dynamic Programming

Introduction

▶ The imperialism of Dynamic Programming (Ljunqvist & Sargent)

Markov chain and Markov process

- ▶ Stochastic process: family of random variables indexed by time
- ► A stochastic process has the Markov property if its future evolution depends only on its current state.
- Special cases:

	Discrete States	Continuous States
Discrete Time Continuous Time	Discrete Markov Chain Markov Jump Process	Continuous Markov Chain Markov Process

Stochastic matrices

- ▶ a $n \times n$ matrix is said to be **stochastic** if all the lines lines sum to 1
- let's a vector $\mu_t \in R^n$ with positive components denote a distribution of mass between n different states
- lacksquare if $\sum_{i=1}^n \mu_{i,t} = 1$ then μ_t is a probability density

Simulation

- ► Consider: $\mu'_{i,t+1} = \mu'_t P$
- \blacktriangleright We have $\mu_{i,t+1} = \sum_{k=1}^n \mu_{k,t} P_{k,i}$
- ightharpoonup And: $\sum_i \mu_{i,t+1} = \sum_i \mu_{i,t}$
- Postmultiplication by a stochastic matrix preserves the mass.
- Interpretation: P_{ij} is the fraction of the mass initially in state i which ends up in j

Example

$$\underbrace{\begin{pmatrix}?&?&?\end{pmatrix}}_{\mu'_{t+1}} = \underbrace{\begin{pmatrix}0.5&0.3&0.2\end{pmatrix}}_{\mu'_{t}} \begin{pmatrix}0.4&0.6&0.0\\0.2&0.5&0.3\\0&0&1.0\end{pmatrix}$$

Representation as a graph

```
\{\%\ dot\ attack\_plan.svg\ digraph\ G\ \{\ rankdir=LR\ A\ B\ C\ A\ ->\ B\ [label=0.4]\ A\ ->\ C\ [label=0.6]\ C\ ->\ C\ [label=1.0]\ B\ ->\ A
```

[label=0.2] B -> B [label=0.5] B -> C [label=0.5] } %}

Probabilistic interpretation

- ▶ Denote by $S = (s_1, ...s_n)$ a finite set with n elements (|S| = n).
- A Markov Chain with values in S and with transitions given by a stochastic matrix $P \in \mathbb{R}^n \times \mathbb{R}^n$ is a stochastic process $(X_t)_{t \ge 0}$ such that

$$P_{ij} = Prob(X_{t+1} = s_j | X_t = s_i)$$

In words, line *i* describes the conditional distribution of X_{t+1} conditional on $X_t = s_i$.

What about longer horizons?

- ▶ It is easy to show that for any k, P^k is a stochastic matrix.
- $ightharpoonup P_{ij}^k$ denotes the probability of ending in j, after k periods, starting from i
- ▶ Given an initial distribution $\mu_0 \in R^n$
 - Which states will visited with positive probability between t=0 and t=k?
 - What happens in the very long run?
- We need to study a little bit the properties of Markov Chains

Connectivity

- ightharpoonup Two states s_i and s_i are connected if $P_{ii} > 0$
- We call incidence matrix: $\mathcal{I}(P) = (\delta_{P_{ij}>0})_{ij}$
- Two states i and j communicate with each other if there are k and l such that: $(P^k)_{i,j} > 0$ and $(P^l)_{j,i} > 0$
 - it is an equivalence relation
 - we can define equivalence classes
- ▶ A stochastic matrix *P* is irreducible if all states communicate
 - there is a unique communication class

Aperiodicity

- ► Are there cycles? Starting from a state *i*, how long does it take to return to *i*?
 - ► The **period** of a state is defined as

$$gcd(k \geq 1|(P^k)_{i,i} > 0)$$

▶ If a state has a period d>1 the chain returns to the state only at dates multiple of d.

Aperiodicity example

Stationary distribution

- $\blacktriangleright \mu$ is a **stationary** distribution if $\mu' = \mu' P$
- ▶ Theorem: there always exists such a distribution
 - proof: Brouwer theorem
 - $f: \mu \rightarrow (\mu'P)'$
- ► Theorem:
- 1. if P is irreducible the fixed point μ^* is unique
 - 2. if P is irreducible and aperiodic $|\mu'_0P^k \mu^*| \underset{k \to +\infty}{\longrightarrow} 0$ for any
 - initial distribution μ_0
 - We then say the Markov chain is **ergodic**.

Stationary distribution (proof)

Brower's theorem: Let \mathcal{C} be a compact convex subset of \mathbb{R}^n and f a continuous mapping $\mathcal{C} \to \mathcal{C}$. Then there exists a fixed point $x_0 \in \mathcal{C}$ such that $f(x_0) = x_0$

Stationary distribution?

How do we compute the stationary distribution?

- Simulation
- ► Linear algebra
- Decomposition

Simulating a Markov Chain

- lackbox Very simple idea: start with μ_0 and compute the iterates recursively
 - $\mu'_{n+1} = \mu'_n P$
 - convergence is linear

Using Linear Algebra

- ▶ Find the solution of $\mu'(P-I) = 0$?
 - not well defined, 0 is a solution
 - we need to incorporate the constraint $sum(\mu_i) = 1$
- ▶ Define $M_{ij} = (P I)_{ij}$ if j > 1, 1 if j = 1
- Look for a solution μ of $\mu'M = (\delta_{i=1})$ with a linear algebra solver
 - ▶ if the solution completes, there is a unique solution

Further comments

- Knowledge about the structure of the Markov Chain can help speedup the calculations
- There are methods for potentially very-large linear system
 Newton-Krylov based methods, GMRES
- ▶ Basic algorithms are easy to implement by hand
- QuantEcon toolbox has very good methods to study markov chains

Dynamic Programing: notations

General Formulation

Markov Decision Problem

- ▶ states: $s \in S$
- ightharpoonup actions: $x \in X(s)$
- transitions: $\pi(s'|s,x)$
 - **Probability** of going to s' in state s, given action x

Objective (finite horizon)

- ightharpoonup policy: $x(): s \to x \in S(x)$
 - deterministic policy
 - ightharpoonup given x(), the evolution of s' is a Markov process.
- reward: r(s,x)
- felicity, intratemporal utilityexpected lifetime reward: starting from s
 - $R(s; x(t)) = E_0 \sum_{t=0}^{T} \delta^t [r_t]$
 - ▶ $\delta \in [0,1[: discount factor, T \in \{N,\infty\}: horizon]$

Classes of Dynamic Optimization

The formulation so far is very general. It encompasses several variants of the problem:

- finite horizon vs infinite horizon
- ► discrete-space problem vs continuous-state space problem

 There are also variants not included: non time-separable problems non time homogenous problem learning problems (bayesian
 updating, reinforcement learning)

Finite horizon vs infinite horizon

- ► Recall objective: $V(s; x(t)) = \max E_0 \sum_{t=0}^{T} \delta^t [r(s_t, x_t)]$
- ▶ If $T < \infty$, the decision in the last periods, will be different from before
 - one must find a decision rule $_{_{n}}^{\pi} \pi_{t}()$ per period
 - ▶ or add t to the state space: $\tilde{S} = S \times [0, T]$
- ▶ If $T = \infty$, the continuation value of being in state s_t is independent from t

$$V(s; x()) = E_0 \max \sum_{t=0}^{T_0} \delta^t [r(s_t, x_t)] + \delta^{T_0} E_0 \sum_{t=T_0}^{\infty} \delta^t [r(s_t, x_t)]$$

$$= E_0 \left[\max \sum_{t=0}^{T_0} \delta^t \left[r(s_t, x_t) \right] + \delta^{T_0} V(s_{T_0}; x()) \right]$$

Continuous vs discrete

- State space S:
 - ightharpoonup continuous: $\subset R^n$
 - ightharpoonup discrete: $S = (s_1, ...s_n)$ (today)
- ▶ General approach is the same but implementation is different:
- Continous problem:
 - \triangleright x(s), $V(s;\pi)$ require an infinite number of coefficients
 - one must discretize the initial problem and solve an approximate version
- Discrete problem:
 - there is a finite number of policies, the can be represented exactly
 - unless |S| is very large (cf go game)

Non time separable

► For instance Epstein-Zin preferences:

$$\max V(; c())$$

where
$$V_t = (1-\delta) rac{c_t^{1-\sigma}}{1-\sigma} + \delta \left[E_t V_{t+1}^{lpha}
ight]^{rac{1}{lpha}}$$

- ► Why would you do that?
 - to disentangle risk aversion and elasticity of intertemporal substitution
 - robust control
- You can still use ideas from Dynamic Programming.

Non homogenous preference

▶ Look at the $\alpha - \beta$ model.

$$V_t = \max \sum_{t}^{\infty} \beta_t U(c_t)$$

where $\delta_0 = 1$, $\delta_1 = \alpha$, $\delta_k = \alpha \beta^{k-1}$

▶ Makes the problem time-inconsistent: the optimal policy you would choose for the continuation value after T is not the same if you maximize it in expectation from 0 or at T.

Learning problems

- ▶ Bayesian learning: Uncertainty about some model parameters
 - ex: variance and return of a stock market
 - agent models this uncertainty as a distribution
 - agent updates his priors after observing the result of his actions
 - actions are taken optimally taken into account the revelation power of some actions
- ► Is it good?
 - clean: the rational thing to do with uncertainty
 - ▶ super hard: the state-space should contain all possible priors
 - mathematical cleanness comes with many assumptions
- Used to estimate rather big (mostly linear) models

Learning problems (2)

- ► Reinforcement learning
 - model can be partially or totally unknown
 - decision rule is updated by observing the reward from actions
 - no priors
 - solution does not derive directly from model
 - can be used to solve dynamic programming problems
- Good solutions maximize a criterion similar to lifetime reward but are usually not optimal:
 - usually evaluated by replaying the game many times
 - tradeoff exploration / exploitations

Examples

Examples (2)

Finite horizon DMDP

Finite horizon DMDP

When $T<\infty.$ With discrete action the problem can be represented by a tree.

[Graph]

Finite horizon DMDP

- Intuition: backward induction.
 - ► Find optimal policy $x_T(s_T)$ in all terminal states s_T . Set $V_T(s_T)$ equal to $r(s_T, \pi_T)$
 - For each state $s_{k-1} \in S$ find $x_{k-1} \in X(s_{k-1})$ which maximizes

$$V_{k-1}(s_{k-1}) = \max_{x_{k-1}(s_{k-1}) \in X(s_{k-1})} r(s_{k-1}, x_{k-1}) + \delta \underbrace{\sum_{s_k \in S} p(s_k | s_{k-1}, x_{k-1}) V_k(s_k)}_{expected \ continuation \ value}$$

- Policies $x_0(), ...x_T()$ are "Markov-perfect": they maximize utility on all subsets of the "game"
 - ► also from t=0

Remarks

- Can we do better than this naive algorithm?
 - not really
 - ightharpoonup but we can try to limit S to make the maximization step faster
 - exclude a priori some branches in the tree using knowledge of the problem

Infinite horizon DMDP

Infinite horizon DMDP

Horizon is infinite:

$$V(s;x()) = \max E_0 \sum_{t=0}^{\infty} \delta^t r(s_t,x_t)$$

- ► Intuition:
 - let's consider the finite horizon version $T < \infty$ and T >> 1
 - compute the solution, increase T until the solution doesn't change
 - in practice: take an initial guess for V_T then compute optimal V_{T-1} , V_{T_2} and so on, until convergence of the V_S

Infinite horizon DMDP (2)

- ► This is possible, it's called *Successive Approximation* or *Value Function Iteration*
 - ▶ how fast does it converge? *linearly*
 - can we do better? yes, quadratically

Successive Approximation

Consider the decomposition:

$$V(s;x()) = E_0 \sum_{t=0}^{\infty} \delta^t r(s_t, x_t) = E_0 \left[r(s, x(s)) + \sum_{t=1}^{\infty} \delta^t r(s_t, x_t) \right]$$

or

$$V(s;x()) = r(s,x(s)) + \delta \sum_{s'} p(s'|s,x(s))V(s';x())$$

Successive Approximation (2)

▶ Taking continuation value as given we can certainly improve the value in every state \tilde{V} by choosing $\tilde{x}()$ so as to maximze

$$ilde{V}(s;x(), ilde{x}())=r(s, ilde{x}(s))+\delta\sum_{s'}\pi(s'|s, ilde{x}(s))V(s';x())$$

- By construction: $\forall s, \tilde{V}(s, \tilde{x}(), x()) > V(s, x())$
- it is an "improvement step"
- ► Can $V(s, \tilde{x}())$ be worse for some states than $V(s, \tilde{x}())$? • actually no

Bellman equation

Idea: it should not be possible to improve upon the optimal solution. Hence the optimal value V and policy x^* should satisfy:

$$\forall s \in S, V(s) = \max_{y(s)} r(s, y(s)) + \delta \sum_{s' \in S} \pi(s'|s, y(s))V(s')$$

with the maximum attained at x(s). This is referred to as the **Bellman equation**.

Conversely, it is possible to show that a solution to the Bellman equation is also an optimal solution to the initial problem.

Bellman operator

- ► The function
 - $G:V \to \max_{y(s)} r(s,y(s)) + \delta \sum_{s' \in S} \pi(s'|s,y(s)) V(s')$ is known as the **Bellman operator**.
- Optimal value if a fixed point of G
- ► Can we show it's a contraction mapping ?

Blackwell's theorem

- Let $X \subset \mathbb{R}^n$ and let $\mathcal{C}(X)$ be a space of bounded functions
 - $f: X \to R$, with the sup-metric. $B: \mathcal{C}(X) \to \mathcal{C}(X)$ be an
 - operator satisfying two conditions: 1. (monotonicity) if $f, g \in \mathcal{C}(X)$ and $\forall x \in X, f(x) \leq g(x)$ then $\forall x \in X(Bf)(x) \leq (Bg)(x)$
 - 2. (discounting) there exists some $\delta \in]0,1[$ such that: $B.(f+a)(x) \leq (B.f)(x) + \delta a, \forall f \in \mathcal{C}(X), a \geq 0, x \in X$
 - $B.(t + a)(x) \le (B.t)(x) + \delta a, \forall t \in C(X), a \ge 0, x \in X$ Then B is a contraction mapping with modulus δ .

Successive Approximation

- Using the Blackwell's theorem, we can prove the Bellman operator is a contraction mapping (do it).
- ▶ This justifies the Value Function Iteration algorithm:
 - \triangleright choose an initial V_0
 - ightharpoonup given V_n compute $V_{n+1} = G(V_n)$
 - ightharpoonup iterate until $|V_{n+1} V_n| < \eta$
- ▶ Policy rule is deduced from V as the maximand in the Bellman step

Successive Approximation (2)

- \triangleright Not that convergence of V_n is geometric
 - ▶ But x_n converges in finite time (X is finite)
 - surely the latest iterations are suboptimal
 - they serve only to evaluate the value of x^*
 - ► In fact:
 - $ightharpoonup V_n$ is never the value of $x_n()$
 - should we try to keep both in sync?

Policy iteration for DMDP

- \triangleright Choose initial policy $x_0()$
- ▶ Given initial guess $x_n()$
 - compute the value function $V_n = V(; x_n)$ which satisfies $\forall s, V_n(s) = r(s, x_n(s)) + \delta \sum_{s'} \pi(s'|s, x_n(s)) V_n(s')$
 - improve policy by maximizing in $x_n()$

$$\max_{\mathsf{x}_n()} r(\mathsf{s}, \mathsf{x}_n(\mathsf{s})) + \delta \sum_{\mathsf{s}' \in \mathsf{S}} \pi(\mathsf{s}'|\mathsf{s}, \mathsf{x}_n(\mathsf{s})) V_{n-1}(\mathsf{s}')$$

- ▶ Repeat until convergence, i.e. $x_n = x_{n+1}$
- ightharpoonup One can show the speed of convergence (for V_n) is quadratic
 - it corresponds the the Newton-Raphson steps applied to V o G(V) V

How do we compute the value of a policy?

- Five S_n goal is to find $V_n(s)$ in $\forall s, V_n(s) = r(s, x_n(s)) + \delta \sum_{s'} \pi(s'|s, x_n(s)) V_n(s')$
- ► Two(three) approaches:
 - 1. simulate the policy rule and compute $E\left[\sum_t \delta^t r(s_t, x_t)\right]$ with Monte-Carlo draws
 - 2. successive approximation: put V_k in the rhs and recompute the lhs V_{k+1} , replace V_k by V_{k+1} and iterate until convergence
 - 3. solve a linear system in V_n
 ▶ For 2 and 3 it helps representing a linear operator M such that

 $V_{n+1} = R_n + \delta M_n . V_n$ Another approach consist: compute $(\sum_{t \geq 0} \delta^t M_n^t)$