We define $Q_c(z) = z^2 + c$ and

$$Q_c^m(z) = \overbrace{(Q_c \circ \cdots \circ Q_c)}^{m \text{ times}}(z)$$

Note that

$$Q_c^{n+m}(z) = Q_c^n(Q_c^m(z)) \tag{1}$$

Theorem 1 (Triangle Inequalities). For $z, w \in C$,

$$|z+w| \le |z| + |w| \tag{2}$$

$$|z+w| \ge |z| - |w| \tag{3}$$

Lemma 1. Let $z, c \in \mathbb{C}$ and $k = \max(|c|, 2)$. Then for any m

$$|z| > k \implies |Q_c^m(z)| > k$$

Proof. If |z| > k then |z| > |c| and |z| > 2. This implies that there is some $\varepsilon > 0$ such that,

$$|z| - 1 = 1 + \varepsilon > 1$$

By Theorem 1,

$$|Q_c(z)| = |z^2 + c| \ge |z^2| - |c|$$

Since |z| > |c|, we have,

$$|Q_c(z)| > |z^2| - |z|$$

= $(|z| - 1)|z|$
= $(1 + \varepsilon)|z| > z > k$ (4)

Since $Q_c^n(z) = Q_c(Q_c^{n-1}(z))$, we have,

$$Q_c^m(z) > Q_c^{m-1}(z) > \dots > Q_c^2(z) > Q_c^1(z) > z > k \quad \Box$$
 (5)

*Is this already sufficient to prove Theorem 2?

Theorem 2 (Escape Criteria). Let $z, c \in \mathbf{C}$ and $k = \max(|c|, 2)$. Then if $|Q_c^m(z)| > k$ for any m, then $|Q_c^n(z)|$ is unbounded as $n \to \infty$.