System identification and Signal Filtering Laboratory work Identification of a mechanical system

Alban-Félix BARRETEAU Master 1 of Control and Robotics - Signal and Image Processing Ecole Centrale de Nantes

Mail: alban-felix.barreteau@eleves.ec-nantes.fr

January 10, 2021

Professor: Saïd Moussaoui

Abstract

The aim of this project is to identify the continuous-time transfer function of a real system and to link the identified model parameters to some physical parameters of the system. A discrete-time model is firstly identified and then transformed to continuous-time domain.

Please find in appendix the full Matlab code for the laboratory work 2 and 3 about system identifications.

Contents

1	Modeling of the process	1
	1.1 Theorical transfer function of the system	1
	1.2 Identification of the transfer function	1
	1.3 Results	2
2	Laboratory work 2	2
A	Lab 3 Matlab code source	3
В	Lab 2 Matlab code source	5

1 Modeling of the process

1.1 Theorical transfer function of the system

We express the transfer function of the system when considering the velocity as output variable in function of the physical parameters of the process $(P, T1, T2, K_y, K_z)$: (See the calculations at the end of the document)

$$\frac{Z(s)}{Y_c(s)} = P \times \frac{\frac{Z(s)}{U(s)}}{1 + \frac{Y(s)}{U(s)}} = P \times \frac{\frac{k_z \cdot k}{(1 + sT_1)(1 + sT_2)}}{1 + \frac{k_y \cdot k}{s(1 + sT_1)(1 + sT_2)}} \quad \text{where} \quad K_y = k \cdot k_y \quad \text{and} \quad K_z = k \cdot k_z$$

$$= P \times \frac{\frac{K_z}{s^2 T_1 T_2 + s(T_1 + T_2) + 1}}{1 + \frac{K_y}{s(s^2 T_1 T_2 + s(T_1 + T_2) + 1)}} \quad \times \frac{s(s^2 T_1 T_2 + s(T_1 + T_2) + 1)}{s(s^2 T_1 T_2 + s(T_1 + T_2) + 1)}$$

$$= P \times \frac{sK_z}{s(s^2 T_1 T_2 + s(T_1 + T_2) + 1) + K_y}$$

$$= \frac{PK_z s}{s^3 (T_1 T_2) + s^2 (T_1 + T_2) + s + K_y}$$

But the transfer function is normalized on s^3 on Matlab $\frac{Z(s)}{Y_c(s)} = \frac{b_1 s + b_0}{s^3 + a_2 s^2 + a_1 s + a_0}$ so finally :

$$\frac{Z(s)}{Y_c(s)} = \frac{s \frac{PK_z}{T_1 T_2}}{s^3 + s^2 \frac{T_1 + T_2}{T_1 T_2} + s \frac{1}{T_1 T_2} + \frac{K_y}{T_1 T_2}}$$

We identify the physical parameters of the process in function of the coefficients:

$$b_1 = \frac{PK_z}{T_1T_2}$$
 $b_0 = 0$ $a_2 = \frac{T_1 + T_2}{T_1T_2}$ $a_1 = \frac{1}{T_1T_2}$ $a_0 = \frac{K_y}{T_1T_2}$

$$K_z = \frac{b_1}{Pa_1} \qquad K_y = \frac{a_0}{a_1} \qquad \begin{cases} a_1 &= \frac{1}{T_1 T_2} \\ a_2 &= \frac{T_1 + T_2}{T_1 T_2} \end{cases} \Leftrightarrow \begin{cases} T_1 &= \frac{1}{a_1 T_2} \\ T_2 &= \frac{a_2 \pm \sqrt{a_2^2 - 4a_1}}{2a_1} \end{cases}$$

1.2 Identification of the transfer function

I choose to use a OE Output Error model. The orders of the numerator nb and the denominator nf of the discrete transfer function are 3. The delay nk is directly estimated by the Matlab function *delayest* in function of the data. The data is loaded from the *tergane20.mat* file. Once the model constructed, the scipt present several informations about this model.

We identify the parameters a_2 , a_1 , a_0 , b_1 and b_0 from the constructed model, and the physical parameters are therefore calculated.

1.3 Results

I identified the following continuous transfer function H(s) of the processus :

$$H(s) = \frac{10930s}{s^3 + 459, 4s^2 + 28930s + 2102000}$$

We deduce the physical parameters of the process :

$$P=2,91 \qquad K_z=0,130 \qquad K_y=72,7 \qquad T_1=0,0026 \qquad T_2=0,133$$

2 Laboratory work 2

I construct a data object on a BJ Box-Jenkins polynomial model. Then I identified 3 models : ARX, BJ and OE. The informations about those models are presented.

A Lab 3 Matlab code source

```
1 % Alban-F lix Barreteau, M1 CORO SIP
2 % Mail : alban-felix.barreteau@eleves.ec-nantes.fr
3 % Matlab R2020b Update 5 (9.9.0.1538559), Student license
4 % Signal Filtering and System Identification (SISIF)
5 % Labwork 3 : Identification of a mechanical system (session 2)
  % Professor : said.moussaoui@ec-nantes.fr
Q
10
11
  clear all
12 close all
14
15 % Definition of the screen :
hpixels=1440;
vpixels=900;
19
20 %% Parameters
21
22 fs=1000; %Sampling frequency in Hz
23 ts=1/fs; %Sampling period
24 P=2.91; %Gain of the proportionnal controller
26
28 %% Identification of the processus : Z as output
29
30 load tergane20.mat
data=iddata(z,yc,ts);
32
33 nb=3:
34 nf=3;
nk=delayest(data);
mod_oe=oe(data, [nb nf nk]);
38 present(mod_oe); %Displays model properties
39 figure (70); resid(data, mod_oe); %Compute and test the residuals associated with identified models
40 set(figure(70), 'name', 'Residuals associated with identified models', 'position', [hpixels/2 vpixels
      /2 hpixels/2 vpixels/2])
41 [y,rt2val] = compare(mod_oe, data); %Compare system response with the measured data
42 fpeval = fpe(mod_oe); %Extracts the Final Prediction Error from the model
43 aicval = aic(mod_oe); %Computes Akaike's Information Criterion for identified models
44 disp(['RT2 : ',num2str(rt2val),' | AIC : ',num2str(aicval),' | FPE : ',num2str(fpeval)]);
45
47 CT_mod_oe=d2c(mod_oe);
48 present (CT_mod_oe);
49
50
51 %% Transfer function identified
52
53 b1=10930;
54 b0 = 0:
55 a3=1;
a2=459.4;
57 a1=28930;
a0 = 2102000;
59
60
61
62 %% Physical parameters of the model
64 P = 2.91
65 KZ=b1/(P*a1)
```


- 66 KY=a0/a1 67 T2=(a2+(a2^2-4*a1)^0.5)/(2*a1) 68 T1=1/(a1*T2)

B Lab 2 Matlab code source

```
1 % Alban-F lix Barreteau, M1 CORO SIP
2 % Mail : alban-felix.barreteau@eleves.ec-nantes.fr
3 % Matlab R2020b Update 5 (9.9.0.1538559), Student license
4 % Signal Filtering and System Identification (SISIF)
5 % Labwork 2 : System identification (session 1)
  % Professor : said.moussaoui@ec-nantes.fr
Q
10
11
  clear all
12 close all
14
15 % Definition of the screen :
hpixels=1440;
vpixels=900;
18
19 ts=1; %Sampling period
21
22 %% Simulation of the system usinf its polynomial form
23
24 %Polynomial coefficients
25 A = [1];
B = [0 \ 0.04];
27 C = [1 0.1];
D = [1 -1.6 0.64];
F = [1 -1.6 0.64];
30 sigmanoise=0.1;
31
32 mod_exact=idpoly(A,B,C,D,F,sigmanoise,ts) %Constructs a BJ polynomial model
33
35 %PRBS, lenght 1024, division factor 10, amplitude [-5 5]
Nr=1024; %Lenght in nb of samples
37 Nd=10; %Divison factor
38 Np=2:
39 N = [Nr - 1 \ 1 \ Np];
40 band=[]; %Default =[0 1]
a=5; levels=[-a a]; %Input levels in Volts
42 u=idinput(N,'PRBS',band,levels); %Pseudo random binary signal
43
44 figure(10); hold off;
45 plot(u,'-o'); hold on;
46 axis([0, length(u)-1, -1.1*a, 1.1*a]);
47 xlabel('k'); ylabel('u');
48 set(figure(10), 'name', 'PRBS input', 'position', [hpixels/2 vpixels/2 hpixels/2 vpixels/2])
50
51 %Simulation of the output signal
52 option_no_noise=simOptions('AddNoise',false);
53 ywithoutnoise = sim(mod_exact,u,option_no_noise);
option_noise=simOptions('AddNoise',true);
ywithnoise = sim(mod_exact,u,option_noise);
  SNR=20*log10(std(ywithoutnoise)/std(ywithnoise-ywithoutnoise));
58
  disp(['SNR signal noise ratio (dB) = ' num2str(SNR)]);
60
61
62 %QUESTION 6 and 7
63 data=iddata(ywithnoise,u,ts);
64 figure(20); hold off;
65 plot(data); hold on;
66 set(figure(20),'name','Data: y response to PBRS with noise','position',[hpixels/2 vpixels/2
```



```
hpixels/2 vpixels/2])
67 figure(30); hold off;
68 plot(fft(data)); hold on;
69 set(figure(30), 'name', 'Fourier transform of data', 'position', [hpixels/2 vpixels/2 hpixels/2
       vpixels/2])
70
72 %% IR of the system from the simulated data
74 %QESTION1 : identification of the FIR model
75 na=100:
76 IR=cra(data,na); %Estimate impulse response
77 figure (40): hold off:
78 plot(IR); hold on;
79 set(figure (40), 'name', 'Estimation of the impulse response', 'position', [hpixels/2 vpixels/2 hpixels
       /2 vpixels/2])
81
83 %% Identification of an ARX polynomial model
84 na=2:
85 \text{ nb} = 2;
86 nk=delayest(data);
88 mod_arx=arx(data,[na na nk]); %Compute least squares estimate of ARX models
89 present(mod_arx); %Displays model properties
90 figure (50); resid(data, mod_arx); %Compute and test the residuals associated with identified models
91 set(figure(50),'name','Residuals associated with identified models','position',[hpixels/2 vpixels
       /2 hpixels/2 vpixels/2])
92 [y,rt2val] = compare(mod_arx, data); %Compare system response with the measured data
93 fpeval = fpe(mod_arx); %Extracts the Final Prediction Error from the model
94 aicval = aic(mod_arx); %Computes Akaike's Information Criterion for identified models
95 disp(['RT2 : ',num2str(rt2val),' | AIC : ',num2str(aicval),' | FPE : ',num2str(fpeval)]);
96
97
99
100 %% Identification of an BJ polynomial model
102 nb=1;
103 nc=1;
104 nd=2:
105 nf = 2;
106 nk=delayest(data);
107
nod_bj=bj(data,[nb nc nd nf nk]);
present(mod_bj); %Displays model properties
110 figure (60); resid(data,mod_bj); %Compute and test the residuals associated with identified models
set(figure(60), 'name', 'Residuals associated with identified models', 'position', [hpixels/2 vpixels
       /2 hpixels/2 vpixels/2])
112 [y,rt2val] = compare(mod_bj, data); %Compare system response with the measured data
113 fpeval = fpe(mod_bj); %Extracts the Final Prediction Error from the model
114 aicval = aic(mod_bj); %Computes Akaike's Information Criterion for identified models
iii disp(['RT2 : ',num2str(rt2val),' | AIC : ',num2str(aicval),' | FPE : ',num2str(fpeval)]);
118
119 %% Identification of an OE polynomial model
120
121 \text{ nb=2};
122 nf=2:
123 nk=delayest(data);
124
125 mod_oe=oe(data, [nb nf nk]);
present(mod_oe); %Displays model properties
127 figure (70); resid(data,mod_oe); %Compute and test the residuals associated with identified models
128 set(figure (70), 'name', 'Residuals associated with identified models', 'position', [hpixels/2 vpixels
      /2 hpixels/2 vpixels/2])
```



```
129 [y,rt2val] = compare(mod_oe, data); %Compare system response with the measured data
130 fpeval = fpe(mod_oe); %Extracts the Final Prediction Error from the model
131 aicval = aic(mod_oe); %Computes Akaike's Information Criterion for identified models
132 disp(['RT2 : ',num2str(rt2val),' | AIC : ',num2str(aicval),' | FPE : ',num2str(fpeval)]);
```


$$\frac{Z(\lambda)}{V_{1}(\lambda)} = P \cdot \frac{Z(\lambda)}{A + \frac{Y(\lambda)}{Z(\lambda)}} = P_{\lambda} \cdot \frac{\frac{I_{0}}{A + \frac{1}{A_{0}} k}}{A + \frac{1}{A_{0}} k}$$

$$\frac{Z(\lambda)}{A + \frac{1}{A_{0}} k} = P \cdot \frac{A^{2} \cdot \frac{1}{A_{0}} \cdot A \cdot \frac{1}{A_{0}} \cdot \frac{1}{A_{$$

Figure 1: Transfer function of the system with the velocity as output.