

Extended Data Figure 8 | Optical spectra of water-treated SNO. a, b, Reflectivity (a) and absorptivity (b) of pristine and water-treated $(-4.0\,\text{V},\,30\,\text{s},\,\text{in}\,0.01\,\text{M}$ KOH aqueous solution) SNO thin film deposited on a Si substrate. After the treatment, the SNO sensing device shows reduction in both reflectivity and free-electron absorptivity, concurrent with a large increase in electrical resistance. c, Finite-difference time-domain simulation of optical spectra of water-treated SNO/SiO₂/Si thin film devices. The experimental results of the transmissivity and reflectivity of water-treated SNO are compared with finite-difference time-domain simulation results of HSNO/SiO₂/Si thin film devices, where the optical parameters of samples treated with gas-phase hydrogen²⁷ were adopted for HSNO. The good agreement between experimental and simulation

results indicates the occurrence of a phase transition from SNO to HSNO during water treatment with no material decomposition. The thickness of SNO and SiO_2 was obtained from neutron reflectivity data. The SiO_2 layer between the SNO thin film and Si, which is formed during film synthesis, contributes to the absorption feature observed at 9.2 μm in the transmission spectra. d, An infrared image of a SNO/LaAlO $_3$ sample with water treatment on a selected area (FLIR, infrared camera). SNO becomes more transparent (red colour) in the infrared wavelength range at $\lambda=8~\mu m$ after the treatment. The inset shows a photograph of the sample, where the transparency of the treated area can be observed in the visible wavelength range.