Navigation – Labs

Terrestrial navigation

Examples from marine navigation that were not covered in the labs

1 Dead reckoning plotting procedures

Fig. 1: Example of a DR plot (National Imagery and Mapping Agency 1995, Chap. 7)

Symbols and plotting rules

- Circle ... position fix
- Semicircle ... DR position
- Rectangle ... estimated position (DR corrected for drift)
- All symbols should be labeled by their time next to the full minute. In case of a
 position fix, the time is written upright; in case of DR, the time is written inclined by
 about 45° (counter-clockwise).
- The course should be plotted using solid lines.
- The course angle is noted above the course line (usually, true courses are used).
- The speed is noted below the course line.

DR rules

The DR position of the vessel should be plotted:

- 1. At least every hour on the hour.
- 2. After every change of course or speed.
- 3. After every fix or running fix.
- 4. After plotting a single line of position.

Accuracy of DR positions

Fig. 2: Accuracy of DR positions

2 Non-simultaneous observations - Running fix

Fig. 3: Running fix

Mathematical quantities

- α course angle
- ullet v speed of the vessel
- v velocity vector of the vessel
- $\bullet \quad \Delta t \qquad \text{time interval the vessel takes to get from unknown position } P_1 \text{ to } P_2 \\$
- Δx difference vector between P_1 and P_2
- $\bullet \quad \vartheta_{{\scriptscriptstyle A(P_1)}} \quad \text{bearing from P_1 to landmark A}$
- $\bullet \quad \vartheta_{{\cal B}(P_2)} \quad \text{bearing from P_2 to landmark B}$
- A' advanced position of landmark A
- [P] position result if the motion of the vessel was neglected
- $oldsymbol{\vartheta}_{A(P_2)}$ bearing from P_2 to landmark A (if only one landmark is visible)

Procedure

- Using Δx , the position of landmark A is advanced to A'
- Theta-theta fix using either ($\vartheta_{A(P_1)}$ and $\vartheta_{B(P_2)}$) or ($\vartheta_{A(P_1)}$ and $\vartheta_{A(P_2)}$) at P_2
- Usually, a graphical solution is constructed within the Mercator chart (result is less accurate than in case of "conventional" theta-theta fixing).

3 Reference

National Imagery and Mapping Agency (1995): The American practical navigator.

Publication no. 9, Bethesda (Maryland).

Available at: http://www.irbs.com/bowditch/ (March 2004)