

Alice, Bob, and Circuit

Cyberland Circuit Foundation-ը բաղկացած է n անդամներից։ Յուրաքանչյուր անդամ ունի իր սիրելի համարը և եզակի անունը (սիրելի թվերը կարող են տարբեր չլինել)։

m նամակներ են ուղարկվել անդամների միջև։ Յուրաքանչյուր նամակ ունի ուղարկող և ստացող, և նամակի բովանդակությունը ուղարկողի սիրելի թիվն է։

Յուրաքանչյուր անդամ հաշվում է իր ստացած բովանդակության գումարը (ուղարկողների սիրելի համարները) և որպես արդյունք վերցնում է 65536-ի (այսինքն` 2^{16}) բաժանելուց մնացորդը։

Ձեր խնդիրն է պարզել բոլոր արդյունքները։

Այնուամենայնիվ, իրավիճակն այնքան էլ պարզ չէ, որքան թվում է։ Alice-ը, Bob-ը և Circuit-ը որոշում են լուծել այս խնդիրը մի փոքր ավելի բարդ ձևով։

- Alice-ը գիտի բոլոր n անդամներին (նրանց անունները և սիրելի թվերը), սակայն տեղեկություն չունի նամակների մասին։ Նա պետք է Circuit-ին ուղարկի երկուական տող, որի երկարությունը չի գերազանցում 10^5 -ը։
- Bob-ը ունի տեղեկություն բոլոր m նամակների մասին (ուղարկողների և ստացողների անունները), բայց տեղեկություն չունի անդամների մասին։ Նա պետք է Circuit-ին ուղարկի երկուական տող, որի երկարությունը չի գերազանցում 10^5 -ը։
- Circuit-ը կարող է ստանալ Alice-ի և Bob-ի ուղարկած երկուական տողերը, և ելքում հաջորդաբար գեներացնի 16n բիթերից կազմված երկուական տողեր։ Սակայն, իր հաշվողական հզորության սահմանափակության պատճառով, Circuit-ը կարող է կատարել միայն հասարակ տրամաբանական գործողություններ (օրինակ, AND, OR, NOT)։

Հաջորդիվ կևերկայացնենք circuit-ի աշխատանքի մանրամասները։

Circuit-ի մանրամասները

Գեյթը սխեմայի հիմնական տարրն է։ Գեյթը բաղկացած է զրո կամ երկու բուլյան մուտքերից (կախված գեյթի տեսակից) և մեկ բուլյան ելքից։ Գոյություն ունեն երկու տեսակի գեյթեր` մուտքային գեյթեր և հաշվողական գեյթեր։

- Մուտքային գեյթերը մուտք չունեն և ներկայացնում են Alice-ի և Bob-ի ուղարկած երկուական տողերի բիթերը։
 - \circ Լինելու են l_A+l_B հատ մուտքային գեյթեր, համարակալված 0-ից (l_A+l_B-1) թվերով, որտեղ l_A-1 , I_B\$-և, համապատասխանաբար, Alice-ի և Bob-ի ուղարկած տողերի երկարություններն են։
 - $\circ \ 0 \leq i < l_A,$ համար i-րդ գեյթի ելքը Alice-ից ստացված տողի i-րդ բիթն է;
 - $\circ 0 \le i < l_B$ համար $(i+l_A)$ -րդ գեյթի ելքը Bob-ից ստացված տողի i-րդ բիթն է։
- Հաշվողական գեյթերն ունեն երկու մուտք և ներկայացնում են հաշվողական պրոցեսը։
 - \circ Հաշվողական գեյթերի համարները սկսում են (l_A+l_B) -ից։
 - \circ Յուրաքանչյուր հաշվողական գեյթի համար դուք պետք է ներկայացնեք երկու անկախ գեյթերի համարներ որպես մուտք և գործողության $p(0 \le p \le 15)$ տեսակը։
 - Ցիկլիկ կախվածությունից խուսափելու համար երկու անկախ գեյթերի համարները պետք է փոքր լինեն հաշվողական գեյթի համարից։
 - lacktriangle եթե երկու անկախ գեյթերի ելքերը, համապատասխանաբար, x_0 և x_1 են $(x_0,x_1\in\{0,1\})$, ապա հաշվողական գեյթի ելքը լինում է.

$$f(p,x_0,x_1)=\left\lfloor rac{p}{2^{x_0+2x_1}}
ight
floor \mod 2$$

Ահա մի քանի օգտակար օրինակներ.

x_0	x_1	x_0 and x_1 $f(8,x_0,x_1)$	$x_0 OR x_1 \ f(14, x_0, x_1)$	$x_0 \operatorname{XOR} x_1 \ f(6, x_0, x_1)$	NOT x_0 $f(5,x_0,x_1)$
0	0	0	0	0	1
1	0	0	1	1	0
0	1	0	1	1	1
1	1	1	1	0	0

Իրականացման մանրամասներ

Նկատեք, խնդրեմ.

- Բոլոր զանգվածների ինդեքսները սկսվում են 0-ից։ Օրինակ, եթե a-ն n երկարության զանգված t, ապա թույլատրելի արժեքներ են a[0]-ից մինչև a[n-1], այս տիրույթից դուրս գալու դեպքում կարող t hանգեցնել սահմաններից-դուրս-գալու սխալի։
- Բոլոր տողերն ավարտվում են \0 զրոյական սիմվոլով։

Դուք պետք է իրականացնեք հետևյալ ֆունկցիաները.

Alice

int alice(const int n, const char names[][5], const unsigned short numbers[], bool outputs_alice[]);

Direction	Value	Length	Meaning	Constraint
Input	n	1	n	$0 \leq n \leq 700$
	names	n	Յուրաքանչյուր անդամի անունը։	Բոլոր անուններն իրարից տարբեր են, բաղկացած են միայն անգլերեն փոքրատառերից և ունեն առավելագույնը 4 երկարություն։
	numbers	n	Յուրաքանչյուր անդամի սիրելի թիվը։	Բոլոր թվերը 0-ից 65535 սաhմաններում են։
Output	outputs_alice	l_A	Circuit-ին ուղարկվող երկուական տողը։	
	(Return value)	1	l_A	Պետք է համոզված լինեք, որ l_A -ն չի գերազանցում 10^5 -ը և, երբ n -ը նույնն է, l_A -ն պետք է ֆիքսված լինի։

Bob

int bob(const int m, const char senders[][5], const char recipients[][5], bool outputs bob[]);

Direction	Value	Length	Meaning	Constraint
Input	m	1	m	$0 \leq m \leq 1000$
	senders	m	Ուղարկողի անունը յուրաքանչյուր նամակում։	Բոլոր անունները հանդիպում են Alice-ի մուտքային
	recipients	m	Ստացողի անունը յուրաքանչյուր նամակում։	տվյալներում։
Output	outputs_bob	l_B	Circuit-ին ուղարկվող երկուական տողը։	
	(Return value)	1	l_B	Պետք է համոզված լինեք, որ l_B -ն չի գերազանցում 10^5 - ը, և երբ m -ը նույնն է, l_B -ն պետք է ֆիքսված լինի։

Circuit

Ապահովելու համար, որ Circuit-ի հաշվարկման պրոցեսը նման լինի ընդհանրապես սխեմայի հաշվման պրոցեսի, դուք չպետք է ուղղակիորեն ստանաք Alice-ի և Bob-ի Circuit-ին ուղարկած երկուական տողերը։ Դուք միայն գիտեք այդ երկու տողերի երկարությունները և ելքում տալիս եք սխեմայի կառուցվածքը։

int circuit(const int la, const int lb, int operations[], int operands[][2], int outputs_circuit[][16]);

Direction	Value	Length	Meaning	Constraint
Input	la	1	l_A	
	lb	1	l_B	
Output	operations	l	Սխեմայի յուրաքանչյուր գեյթի կողմից կիրառվող գործողության տեսակը։	0-ից 15 տիրույթին պատկանող ամբողջ թիվ։
	operands	l	Սխեմայի յուրաքանչյուր գեյթի կողմից օգտագործվող օպերանդը։	Այս թիվը պետք է փոքր լինի ընթացիկ գեյթից։
	outputs_circuit	n	Սխեմայի ելքի գեյթի համարը։	outputs_circuit[i][j] gnւյց է տալիս <i>i</i> -րդ անդամի վերջնական արդյունքի <i>j</i> -րդ բիթը (համարակալումը սկսած ամենափոքր նշանակությամբ բիթից)։ Անդամները համարակալված են ըստ Alice-ի մուտքային տվյալների։
	(Return value)	1	l, որը ցույց է տալիս գեյթերի ընդհանուր քանակը (ներառյալ մուտքային գեյթերը)։	Պետք է հազմոված լինեք, որ $l \leq 2 imes 10^7$

Թեկուզև դուք կարող եք ձևափոխել l_A+l_B -ից փոքր համարներով գեյթերի ինֆորմացիան operations և operands զանգվածներում, գրեյդերն անտեսելու է նման փոփոխությունները։

Օրինակ

Դիտարկենք հետևյալ կանչերը.

```
alice(3, {"alic", "bob", "circ"}, {10000, 20000, 30000}, outputs_alice);
bob(5, {"alic", "bob", "bob", "circ", "circ", "circ", "circ", "alic", "circ", "circ"}, outputs_bob);
```

Նրանք ներկայացնում են հետևյալ սցենարը․

- Alice-ը գիտի, որ կա 3 անդամ, alic անունով անդամի սիրելի թիվը 10000- ն է, և այլն։ Հնարավոր է, որ alice () -ի ելքը լինի այսպիսին.
 - \circ alice () -ի վերադարձի արժեքը 2 է, այսինքն $l_A=2$ ։
 - \circ alice() ֆունկցիայի ներսում վերագրենք outputs_alice[0] = 1, outputs_alice[1] = 0, այսինքն արդյունարար երկուական տողը լինում է 10։
- Bob-ը գիտի, որ կա 5 նամակ, առաջին նամակը ուղղված է alic-ից circ-ին, և այլն։ Հնարավոր է, որ bob () -ի ելքը լինի այսպիսին.
 - \circ bob () -ի վերադարձի արժեքը 3 է, նշանակում է $l_B=3.$
 - bob() ֆունկցիայի ներսում վերագրենք outputs_bob[0] = 1, outputs_bob[1] = 1, outputs_bob[2] = 0, այսինքն արդյունարար երկուական տողը լինում է 110։

alice()-ի և bob()-ի ելքային տվյալների հիման վրա կարվի հետևյալ կանչը.

```
circuit(2, 3, operations, operands, outputs_circuit);
```

Այս ֆունկցիայի համար կոռեկտ ելքային տվյալները կլինեն այսպիսին.

- circuit () -ի վերադարձի արժեքըs 7 է, որը նշանակում է, որ մենք ավելացրել ենք երկու հաշվողական գեյթեր, որոնց համարներն են 5 և 6։
- circuit()-ի ներսում operations-ին, operands-ին և outputs_circuit-ին արժեքներ ենք տալիս հետևյալ կերպ.
 - o operations = {-1, -1, -1, -1, -1, 8, 14}, որտեղ օգտագործում ենք -1-երը նշելու համար, որ անտեսում ենք մուտքային գեյթերի վերաբերյալ ինֆորմացիան։

- \circ operands = {{-1, -1}, {-1, -1}, {-1, -1}, {-1, -1}, {-1, -1}, {0, 4}, {2, 5}};
- outputs_circuit = {{5, 5, 5, 5, 5, 6, 5, 5, 6, 6, 6, 6, 5, 5, 6, 5}, ...}։ Այս զանգվածի բիթերը շատ են, ամբողջությամբ կարող եք տեսնել խնդրին կցված abc.cpp ֆայլում։

Ըստ ելքային տվյալների հաշվման գործընթացն այսպիսին է.

- Ավելացվում է 8 տեսակի հաշվողական գեյթ, որի մուտքը ստացվում է 0 և 4 գեյթերից։ 0 գեյթի ելյքը Alice-ից ստացված տողի 0-րդ բիթն է, որը 1 է։ 4 գեյթի ելքը Bob-ից ստացված տողի 2-րդ բիթն է, որը 0 է։ <ետևաբար, 5 գեյթի ելքը լինում է f(8,0,1)=0 AND 1=0։
- Ավելացվում է 14 տեսակի հաշվողական գեյթ, որի մուտքը ստացվում է 2 և 5 գեյթերից։ 2 գեյթի երքը Bob-ից ստացված մուտքային տողի 0-րդ բիթն է, որը 1 է։ 5 գեյթի ելքը 0 է։ <ետևաբար, 6 գեյթի ելքը լինում է $f(14,1,0)=1 \ {
 m OR} \ 0=1.$
- output_circuit[0] -n utphujugunid t alic-h whyiniugn, nhu t (0100111000100000) $_2 = 20000$: t which has alic-h utphujugunid t dhuju bob-hg, alic-h utphujugunid whyiniugn 20000 t:
- bob-h վերջնական արդյունքը պետք է լինի 0, քանի որ նա ոչ մի նամակ չի ստանում։ circ-h վերջնական արդյունքը կլինի $(10000 + 20000 + 30000 + 30000) \mod 65536 = 24464$:

Կցված abc.cpp ծրագիրն այս թեստը անց է կացնում, բայց մենք չենք երաշխավորւմ, որ այն կարող է բոլոր թեստերն անցկացնել։

Սահմանափակումներ

Բոլոր թեստերի համար

- $0 \le n \le 700, 0 \le m \le 1000.$
- Բոլոր անունները տարբեր են, բաղկացած են միայն անգլերեն փոքրատառերից, և նրանցից յուրաքանչյուրի երկարությունն առավելագույնը 4 է։
- Յուրաքանչյուր անդամի սիրելի թիվը պատկանում է 0-ից 65535 տիրույթին։
- Բոլոր ուղարկողների և ստացողների անունները հանդիպում են Alice-ի մուտքային ռames զանգվածում։
- alice()-ի և bob()-ի հիշողության սահմանափակումը 2048 MiB է, իսկ ժամանակի սահմանափակումը 0.02 վայրկյան։
- circuit ()-ի հիշողության սահմանափակումը 2048 MiB է, իսկ ժամանակի սահմանափակումը՝ 7 վայրկյան։

Վերջնական գնահատման համար alice() և bob() ֆունկցիաները կարող են միևնույն թեստի համար կանչվել մի քանի անգամ։ 0.02 ժամանակի սահմանափակումը վերաբերում է յուրաքանչյուր կանչին։

Եևթախնդիրներ

A տեսակի ենթախնդիրներ (12 միավոր)

1,2,3 ենթախնդիրներն A տեսակի են, որտեղ n=1։

Յուրաքանչյուր ենթախնդիր բացի այդ ունի այսպիսի սահմանափակումներ.

- ullet Ենթախնդիր 1 (4 միավոր) m=0.
- Եևթախևդիր 2 (4 միավոր) $0 \le m \le 1$.
- Ենթախնդիր 3 (4 միավոր) $0 \le m \le 1000$.

B տեսակի ենթախնդիրներ (54 միավոր)

4,5,6 ե<mark>ն</mark>թախնդիրները B տեսակի են, որտեղ

- $0 \le n \le 30, \frac{n}{2} \le m \le n^2$
- Նույն ուղարկողով և ստացողով երկու նամակ չկա։
- Բոլոր անդամների անունները հանդիպում են Bob-ի մուտքային տվյալներում (այսինքն, յուրաքանչյուր անդամ կամ ուղարկում է մեկ նամակ, կամ ստանում է մեկ նամակ)։

Ենթախնդիրներից լուրաքանչյուրն ունի լրացուցիչ այսպիսի սահմանափակումներ.

- Եևթախնդիր 4 (24 միավոր) n=26, Բոլոր անդամների անունները մեկ տառանոց են և Alice-ի մուտքային տվյալներում նրանք հանդիպում են a-ից z հերթականությամբ։
- ullet ենթախնդիր 5 (24 միավոր) n=26.
- Ենթախնդիր 6 (6 միավոր) Լրացուցիչ սահմանափակումներ չկան։

C տիպի ենթախնդիրներ (34 միավոր)

7,8,9 ենթախնդիրները C տիպի են, որտեղ $0 \le n \le 700, 0 \le m \le 1000$ ։

Ենթախնդիրներից յուրաքանչյուրն ունի այսպիսի լրացուցիչ սահմանափակումներ.

- Ենթախնդիր 7 (18 միավոր) n=676, բոլոր անդամների անունները երկու տառանոց են և Alice-ի մուտքային տվյալներում նարնք հանդիպում են բառարանային կարգով (այսինքն, aa, ab, ac, ..., az, ba, ..., bz, ca, ..., zz)։
- ullet ենթախնդիր 8 (10 միավոր) n=676
- Ենթախնդիր 9 (6 միավոր) Լրացուցիչ սահմանափակումներ չկան։

Գրեյդերի նմուշ

Գրեյդերի նմուշը մուտքային տվյալները կարդում է հետևյալ ձևաչափով.

- Sn η 1. n m
- Sn $\eta 2 + i(0 \le i \le n-1)$. $names_i numbers_i$
- Sn $\eta 2 + n + i(0 \le i \le m 1)$. senders_i recipients_i.

Գրեյդերի նմուշն արտածում է հետևյալ ձևաչափով.

- Եթե ծրագիրը հաջողությամբ է ավարտվում, գրեյդերի նմուշը արտածում է n տող, յուրաքանչյուրը պարունակում է մեկ ամբողջ թիվ, որը ցույց է տալիս յուրաքանչյուր անդամի համար ձեր իրրականացրած ֆունկցիաների հաշված վերջնական արդյունքը։
- Հակառակ դեպքում գրեյդերը ստանդարտ ելքում ոչինչ չի արտածում, այլ տպում է հաղորդագրություն սխալի մասին abc.log ֆայլում։
- Բացի այդ գրեյդերի նմուշը արտածում է l_A, l_B, l արժեքները և ֆունկցիաներից յուրաքանչյուրի աշխատելու ժամանակը abc.log ֆայլում։

Գրեյդերի ևմուշը չի ստուգում հիշողության սահմանափակումը և այն պայմանը, որ միևնույն n / m համար l_A / l_B պետք է լինեն հվասար։