# **Notes on Differential Calculus**

### **Contents**

| 1. Differentiability                      | 1  |
|-------------------------------------------|----|
| 2. Chain rule                             | 2  |
| 3. Partial derivatives                    | 3  |
| 3.1. Directional derivatives              | 5  |
| 3.2. Differentiation on manifolds *       | 6  |
| 4. Mean value theorem                     | 7  |
| 5. Inverse and implicit function theorems | 9  |
| 6. Taylor's theorem                       | 10 |
| 7. Critical points and extrema            | 11 |

### 1. Differentiability

**Definition 1.1.** Let  $f:(a,b)\to\mathbb{R}^n$ , and let  $f_i=\pi_i\circ f$  be its components. Then, f is differentiable at  $t_0\in(a,b)$  if the following limit exists.

$$f'(t_0)=\lim_{h\to 0}\frac{f(t_0+h)-f(t_0)}{h}.$$

Remark. The vector  $f'(t_0)$  represents the tangent to the curve f at the point  $f(t_0)$ . The full tangent line is the parametric curve  $f(t) + f'(t_0)(t-t_0)$ .

**Definition 1.2.** Let  $U \subseteq \mathbb{R}^n$  be open, and let  $f: U \to \mathbb{R}^m$ . Then, f is differentiable at  $x \in U$  if there exists a linear transformation  $\lambda: \mathbb{R}^n \to \mathbb{R}^m$  such that

$$\lim_{h\to 0}\frac{f(x+h)-f(x)-\lambda h}{\|h\|}=0.$$

The derivative of f at x is denoted by  $\lambda = Df(x)$ .

*Remark.* In a neighbourhood of x, we may approximate

$$f(x+h) \approx f(x) + Df(x)(h).$$

Remark. The statement that this quantity goes to zero means that each of the m components must also go to zero. For each of these limits, there are n axes along which we can let  $h \to 0$ . As a result, we obtain  $m \times n$  limits, which allow us to identify the  $m \times n$  components of the matrix representing the linear transformation  $\lambda$  (in the standard basis). These are the partial derivatives of f, and the matrix of  $\lambda$  is the Jacobian matrix of f evaluated at x.

*Example.* Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. By choosing  $\lambda = T$ , we see that T is differentiable everywhere, with DT(x) = T for every choice of  $x \in \mathbb{R}^n$ . This is made obvious by the fact that the best linear approximation of a linear map at some point is the map itself; indeed, the 'approximation' is exact.

**Lemma 1.1.** If  $f: \mathbb{R}^n \to \mathbb{R}^m$  is differentiable at  $x \in \mathbb{R}^n$ , with derivative Df(x), then

- 1. f is continuous at x.
- 2. The linear transformation Df(x) is unique.

*Proof.* We prove the second part. Suppose that  $\lambda$ ,  $\mu$  satisfy the requirements for Df(x); it can be shown that  $\lim_{h\to 0} (\lambda - \mu)h/\|h\| = 0$ . Now, if  $\lambda v \neq \mu v$  for some non-zero vector  $v \in \mathbb{R}^n$ , then

$$\lambda v - \mu v = \frac{\lambda(tv) - \mu(tv)}{\|tv\|} \cdot \|v\| \to 0,$$

a contradiction.

#### 2. Chain rule

Exercise I. Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation. Then, there exists M > 0 such that for all  $x \in \mathbb{R}^n$ , we have

$$||Tx|| \le M||x||.$$

Solution. Set  $v_i = T(e_i)$  where  $e_i$  are the standard unit basis vectors of  $\mathbb{R}^n$ . Then,

$$\|T\boldsymbol{x}\| = \left\|\sum_i x_i \boldsymbol{v}_i\right\| \leq \sum_i \|x_i \boldsymbol{v}_i\| \leq \max \|\boldsymbol{v}_i\| \sum_i |x_i|.$$

Since each  $|x_i| \leq ||x||$ , set  $M = n \max ||v_i||$  and write

$$||Tx|| \le \max ||v_i|| \sum_i |x_i| \le \max ||v_i|| \cdot n||x|| = M||x||.$$

**Theorem 2.1** (Chain Rule). Let  $f: \mathbb{R}^n \to \mathbb{R}^m$ ,  $g: \mathbb{R}^m \to \mathbb{R}^k$  where f is differentiable at  $a \in \mathbb{R}^n$  and g is differentiable at  $f(a) \in \mathbb{R}^m$ . Then,  $g \circ f$  is differentiable, with  $D(g \circ f)(a) = Dg(f(a)) \circ Df(a)$ . Note that this means that the Jacobian matrices simply multiply.

Proof. Set 
$$b=f(a)\in\mathbb{R}^m, \lambda=Df(a), \mu=Dg(f(a)).$$
 Define 
$$\varphi:\mathbb{R}^n\to\mathbb{R}^m,\quad \varphi(x)=f(x)-f(a)-\lambda(x-a),$$
 
$$\psi:\mathbb{R}^m\to\mathbb{R}^k,\quad \psi(y)=g(y)-g(b)-\mu(y-b).$$

We claim that

$$\lim_{x\to a}\frac{g\circ f(x)-g\circ f(a)-\mu\circ\lambda(x-a)}{\|x-a\|}=0.$$

Write the numerator as

$$g \circ f(x) - g \circ f(a) - \mu \circ \lambda(x - a) = \psi(f(x)) + \mu(\varphi(x)).$$

Note that

$$\lim_{x\to a}\frac{\varphi(x)}{\|x-a\|}=0,\quad \lim_{y\to b}\frac{\psi(y)}{\|y-b\|}=0.$$

Thus, find M > 0 such that

$$\|\mu(\varphi(x))\| \leq \|\varphi(x)\|$$

for all  $x \in \mathbb{R}^n$ , hence

$$\lim_{x\to a}\frac{\|\mu(\varphi(x))\|}{\|x-a\|}\leq \lim_{\{x\to a\}}\frac{M\|\varphi(x)\|}{\|x-a\|}=0.$$

Now write

$$\lim_{f(x) \to b} \frac{\psi(f(x))}{\|f(x) - b\|} = 0,$$

hence for any  $\varepsilon > 0$ , there is a neighbourhood of b on which

$$\|\psi(f(x))\| \le \varepsilon \|f(x) - b\| = \varepsilon \|\varphi(x) + \lambda(x - a)\|.$$

Apply the triangle inequality and find M' > 0 such that

$$\|\psi(f(x))\| \leq \varepsilon \|\varphi(x)\| + \varepsilon M' \|x-a\|.$$

Thus,

$$\lim_{x \to a} \frac{\|\psi(f(x))\|}{\|x - a\|} \le \lim_{x \to a} \frac{\varepsilon \|\varphi(x)\|}{\|x - a\|} + \varepsilon M' = \varepsilon M'.$$

Since  $\varepsilon > 0$  was arbitrary, this limit is zero, completing the proof.

#### 3. Partial derivatives

**Definition 3.1.** Let  $U \subseteq \mathbb{R}^n$  be open, and let  $f: U \to \mathbb{R}$ . The partial derivative of f with respect to the coordinate  $x_j$  at some  $a \in U$  is defined by the following limit, if it exists.

$$\frac{\partial f}{\partial x_j}(a) = \lim_{h \to 0} \frac{f\!\left(a + h e_j\right) - f(a)}{h}.$$

**Lemma 3.1.** If  $f: U \to \mathbb{R}$  is differentiable at a point  $a \in \mathbb{R}^n$ , then

$$Df(a)(x_1,...,x_n)=x_1, \frac{\partial f}{\partial x_1}(a)+...+x_n, \frac{\partial f}{\partial x_n}(a).$$

Example. Consider

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad (x,y) \mapsto \begin{cases} (xy)/(x^2+y^2), & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

Note that f is not differentiable at (0,0); it is not even continuous there. However, both partial derivatives of f exist at (0,0).

**Lemma 3.2.** If  $f: \mathbb{R}^n \to \mathbb{R}^m$  is differentiable at  $a \in \mathbb{R}^n$ , then the matrix representation of Df(a) in the standard basis is given by

$$[Df(a)] = \left[\frac{\partial f_i}{\partial x_j}(a)\right]_{ij}.$$

**Lemma 3.3.** Let  $f: \mathbb{R}^n \to \mathbb{R}^m$  be differentiable at  $a \in \mathbb{R}^n$ , and let  $g: \mathbb{R}^m \to \mathbb{R}^k$  be differentiable at  $f(a) \in \mathbb{R}^m$ . Then, the matrix representation of  $D(g \circ f)(a)$  in the standard basis is the product

$$[D(g\circ f)(a)] = [Dg(f(a))][Df(a)] = \left[\sum_{\ell=1}^m \frac{\partial g_i}{\partial y_\ell} \frac{\partial f_\ell}{\partial x_j}\right]_{ij}.$$

In other words,

$$\frac{\partial}{\partial x_j} \big(g \circ f\big)_{i(a)} = \sum_{\ell=1}^m \frac{\partial g_i}{\partial y_\ell} \big(f(a)\big) \frac{\partial f_\ell}{\partial x_j}(a).$$

*Example.* Let  $f: \mathbb{R}^2 \to \mathbb{R}$  be differentiable, and let  $\Gamma(f) = \{(x, y, f(x, y)) : x, y \in \mathbb{R}\}$  be the graph of f. Now, let  $\gamma: [-1, 1] \to \Gamma(f)$  be a differentiable curve, represented by

$$\gamma(t) = (g(t), h(t), f(g(t), h(t))).$$

Then, we can compute the derivative

$$\gamma'(a) = \left(g'(a), h'(a), g'(a) \frac{\partial f}{\partial x} + h'(a) \frac{\partial f}{\partial y} \Big|_{(g(a), h(a))}\right)$$

*Exercise II.* Consider the inner product map,  $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ . What is its derivative?

*Solution.* We treat the inner product as a map  $g: \mathbb{R}^{2n} \to \mathbb{R}$ , which acts as

$$\langle x, y \rangle := g(x_1, ..., x_n, y_1, ..., y_n) = x_1 y_1 + ... + x_n y_n.$$

Now, note that

$$\frac{\partial g}{\partial x_i} = y_i, \quad \frac{\partial g}{\partial y_i} = x_i.$$

Thus,

$$\begin{split} Dg(\boldsymbol{a},\boldsymbol{b})(\boldsymbol{x},\boldsymbol{y}) &= \sum_{i=1}^n x_i \frac{\partial g}{\partial x_i}(\boldsymbol{a},\boldsymbol{b}) + \sum_{i=1}^n y_i \frac{\partial g}{\partial y_i}(\boldsymbol{a},\boldsymbol{b}) \\ &= \sum_{i=1}^n x_i b_i + \sum_{i=1}^n y_i a_i \\ &= \langle \boldsymbol{x},\boldsymbol{b} \rangle + \langle \boldsymbol{y},\boldsymbol{a} \rangle. \end{split}$$

In other words, the matrix representation of the derivative of the inner product map at the point (a, b) is given by  $[b^{\top}a^{\top}]$ .

*Exercise III.* Let  $\gamma: \mathbb{R} \to \mathbb{R}^n$  be a differentiable curve. What is the derivative of the real map  $t \mapsto \|\gamma(t)\|^2$ ?

*Solution.* We write this map as  $t \mapsto \langle \gamma(t), \gamma(t) \rangle$ . Consider the scheme

$$\mathbb{R} \to \mathbb{R}^{2n} \to \mathbb{R}, \quad t \mapsto \begin{pmatrix} \gamma(t) \\ \gamma(t) \end{pmatrix} \mapsto \langle \gamma(t), \gamma(t) \rangle.$$

Pick a point  $t \in \mathbb{R}$ , whence the derivative of the map at t is

$$\left(\gamma(t)^{\top} \ \gamma(t)^{\top}\right) \left(egin{matrix} \gamma'(t) \ \gamma'(t) \end{array}
ight) = 2 \langle \gamma(t), \gamma'(t) 
angle.$$

Remark. Consider the surface  $S^{n-1}\subset\mathbb{R}^n$ , and pick an arbitrary differentiable curve  $\gamma:\mathbb{R}\to S^{n-1}$ . Now, the tangent vector  $\gamma'(t)$  is tangent to the sphere  $S^{n-1}$  at any point  $\gamma(t)$ . We claim that this tangent drawn at  $\gamma(t)$  is always perpendicular to the position vector  $\gamma(t)$ . This is made trivial by our exercise: the map  $t\mapsto \|\gamma(t)\|^2=1$  is a constant map since  $\gamma$  is a curve on the unit sphere. This means that it has zero derivative, forcing  $\langle \gamma(t), \gamma'(t) \rangle =0$ .

#### 3.1. Directional derivatives

**Definition 3.1.1.** Let  $U \subseteq \mathbb{R}^n$  be open, and let  $f: U \to \mathbb{R}$ . The directional derivative of f along a direction  $v \in \mathbb{R}^n$  at a point  $a \in U$  is defined by the following limit, if it exists.

$$\nabla_v f(a) = \lim_{h \to 0} \frac{f(a+hv) - f(a)}{h}.$$

Example. Consider

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad (x,y) \mapsto \begin{cases} x^3/(x^2+y^2), & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

Note that f is not differentiable at (0,0). However, all directional derivatives derivatives of f exist at (0,0). Indeed, consider a direction  $(\cos \theta, \sin \theta)$ , and examine the limit

$$\lim_{t \to 0} \frac{1}{t} [f(t\cos\theta, t\sin\theta) - f(0,0)] = \cos^3\theta.$$

**Definition 3.1.2.** Let  $f: \mathbb{R}^n \to \mathbb{R}$  be differentiable. The gradient of f is defined as the map

$$\nabla f: \mathbb{R}^n \to \mathbb{R}^n, \quad x \mapsto \left[\frac{\partial f}{\partial x_i}(x)\right]_i.$$

*Remark.* The gradient at a point  $x \in \mathbb{R}^n$  is thought of as a vector. In contrast, the derivative is thought of as a linear transformation. Otherwise, we see that  $\nabla f(x) = [Df(x)]$ .

**Definition 3.1.3.** Let  $C^1(\mathbb{R}^n)$  be the set of real-valued differentiable functions on  $\mathbb{R}^n$ . Fix a point  $a \in \mathbb{R}^n$ , then fix a tangent vector  $v \in \mathbb{R}^n$ . Then, the map

$$\nabla_v:C^1(\mathbb{R}^n)\to\mathbb{R},\quad f\mapsto Df(a)(v)$$

is a linear functional. The quantity  $\nabla_v f$  is called the directional derivative of f in the direction v at the point a.

*Remark.* We can represent  $\nabla_v$  as the operator

$$\nabla_v(\cdot) = D(\cdot)(a)(v) = \sum_i v_i \frac{\partial}{\partial x_i} \bigg|_a = v \cdot \nabla(\cdot).$$

**Lemma 3.1.1.** The directional derivatives  $\nabla_v$  form a vector space called the tangent space, attached to the point  $a \in \mathbb{R}^n$ . This can be identified with the vector space  $\mathbb{R}^n$  by the natural map  $\nabla_v \mapsto v$ . The standard basis can be informally denoted by the vectors

$$\boldsymbol{\nabla}_{\boldsymbol{e}_1} \coloneqq \frac{\partial}{\partial x_1}, \quad \dots \quad , \boldsymbol{\nabla}_{\boldsymbol{e}_n} \coloneqq \frac{\partial}{\partial x_n}.$$

#### 3.2. Differentiation on manifolds \*

**Definition 3.2.1.** A homeomorphism is a continuous, bijective map whose inverse is also continuous.

**Lemma 3.2.1.** Let  $f: \mathbb{R}^n \to \mathbb{R}$  be continuous. Denote the graph of f as

$$\Gamma(f) = \{(x, f(x)) : x \in \mathbb{R}^n\}.$$

Then,  $\Gamma(f)$  is a smooth manifold.

*Proof.* Consider the homeomorphism

$$\varphi: \Gamma(f) \to \mathbb{R}^n, \quad (x, f(x)) \mapsto x.$$

This is clearly bijective, continuous (restriction of a projection map), with a continuous inverse (from the continuity of f). Call this homeomorphism  $\varphi$  a coordinate map on  $\Gamma(f)$ .

**Definition 3.2.2.** Let  $f: M \to \mathbb{R}$  where M is a smooth manifold, with a coordinate map  $\varphi: M \to \mathbb{R}^n$ . We say that f is differentiable at a point  $a \in M$  if  $f \circ \varphi^{-1}: \mathbb{R}^n \to \mathbb{R}$  is differentiable at  $\varphi(a)$ .

**Definition 3.2.3.** Let  $f:M\to\mathbb{R}$  where M is a smooth manifold, let  $\varphi:M\to\mathbb{R}^n$  be a coordinate map, and let  $a\in M$ . Let  $\gamma:\mathbb{R}\to M$  be a curve such that  $\gamma(0)=a$ , and further let  $\gamma$  be differentiable in the sense that  $\varphi\circ\gamma:\mathbb{R}\to\mathbb{R}^n$  is differentiable. The directional derivative of f at a along  $\gamma$  is defined as

$$\frac{d}{dt}f(\gamma(t))|_{t=0} = \lim_{h \to 0} \frac{f(\gamma(t+h)) - f(\gamma(t))}{h} \bigg|_{t=0}.$$

Note that we are taking the derivative of  $f \circ \gamma : \mathbb{R} \to \mathbb{R}$  in the conventional sense.

**Lemma 3.2.2.** Let  $\gamma_1$  and  $\gamma_2$  be two curves in M such that  $\gamma_1(0) = \gamma_2(0) = a$ , and

$$\frac{d}{dt}\varphi\circ\gamma_1(t)\big|_{t=0}=\frac{d}{dt}\varphi\circ\gamma_2(t)\big|_{t=0}.$$

In other words,  $\gamma_1$  and  $\gamma_2$  pass through the same point a at t=0, and have the same velocities there. Then, the directional derivatives of f at a along  $\gamma_1$  and  $\gamma_2$  are the same.

**Definition 3.2.4.** Let M be a smooth manifold, and let  $a \in M$ . Consider the following equivalence relation on the set of all curves  $\gamma$  in M such that  $\gamma(0) = a$ .

$$\gamma_1 \sim \gamma_2 \quad \Longrightarrow \quad \frac{d}{dt} \varphi \circ \gamma_1(t)|_{t=0} = \frac{d}{dt} \varphi \circ \gamma_2(t)|_{t=0}.$$

Each resultant equivalence class of curves is called a tangent vector at  $a \in M$ . Note that all these curves in a particular equivalence class pass through a with the same velocity vector.

The collection of all such tangent vectors, i.e. the space of all curves through a modulo the equivalence relation which identifies curves with the same velocity vector through a, is called the tangent space to M at a, denoted  $T_aM$ .

*Remark.* Each tangent vector  $v \in T_aM$  acts on a differentiable function  $f: M \to \mathbb{R}$  yielding a (well-defined) directional derivative at a.

$$v: C^1(M) \to \mathbb{R}, \quad f \mapsto \frac{d}{dt} f(\gamma_{v(t)})\Big|_{t=0}.$$

Thus, the tangent space represents all the directions in which taking a derivative of f makes sense.

Remark. The tangent space  $T_aM$  is a vector space. Upon fixing f, the map  $Df(a):T_aM\to\mathbb{R}$ ,  $v\mapsto vf(a)$  is a linear functional on the tangent space.

Remark. Given a tangent vector  $v \in T_aM$ , it can be identified with its corresponding velocity vector in  $\mathbb{R}^n$ . Thus, the tangent space  $T_aM$  can be identified with the geometric tangent plane drawn to the manifold M at the point a.

#### 4. Mean value theorem

Consider a differentiable function  $f: \mathbb{R}^n \to \mathbb{R}$ , and fix  $a \in \mathbb{R}^n$ . Define the functions

$$g_i: \mathbb{R} \to \mathbb{R}, \quad g_{i(x)} = f\big(a_1,...,a_{i-1},x,a_{i+1},...,a_n\big).$$

Then, each  $g_i$  is differentiable, with

$$g_{i'}(x) = \frac{\partial f}{\partial x_i} \big(a_1,...,a_{i-1},x,a_{i+1},...,a_n\big).$$

By applying the Mean Value Theorem on some interval [c,d], we can find  $\alpha \in (c,d)$  such that  $g_{i(d)}-g_{i(c)}=g_{i'}(\alpha)(d-c)$ . In other words,

$$f(...,d,...) - f(...,c,...) = \frac{\partial f}{\partial x_i}(...,\alpha,...)(d-c).$$

**Theorem 4.1.** Let  $f: \mathbb{R}^n \to \mathbb{R}^m$  and  $a \in \mathbb{R}^n$ . Then, f is differentiable at a if all the partial derivatives  $\partial f/\partial x_i$  exist in a neighbourhood of a and are continuous at a.

*Proof.* Without loss of generality, let m = 1. We claim that

$$\lim_{h\to 0}\frac{1}{\|h\|} \left\| f(a+h) - f(a) - \sum_{i=0}^n \frac{\partial f}{\partial x_i}(a) h_i \right\| = 0.$$

Examine

$$\begin{split} f(a+h)-f(a) &= f(a_1+h_1,...,a_n+h_n) - f(a_1,...,a_n) \\ &= f(a_1+h_1,...,a_n+h_n) - f(a_1+h_1,...,a_{n-1}+h_{n-1},a_n) + \\ & f(a_1+h_1,...,a_{n-1}+h_{n-1},a_n) - f(a_1+h_1,...,a_{n-1},a_n) + \\ & ... \\ & f(a_1+h_1,a_2,...,a_n) - f(a_1,...,a_n) \\ &= \frac{\partial f}{\partial x_n}(c_n)h_n + ... + \frac{\partial f}{\partial x_1}(c_1)h_1. \end{split}$$

The last step follows from the Mean Value Theorem. As  $h \to 0$ , each  $c_i \to a$ . Thus,

$$\begin{split} \frac{1}{\|h\|} \Bigg\| f(a+h) - f(a) - \sum_{i=0}^n \frac{\partial f}{\partial x_i}(a) h_i \Bigg\| &= \frac{1}{\|h\|} \Bigg\| \sum_{i=0}^n \bigg( \frac{\partial f}{\partial x_i}(c_i) - \frac{\partial f}{\partial x_i}(a) \bigg) h_i \Bigg\| \\ &\leq \sum_{i=0}^n \big| \ \frac{\partial f}{\partial x_i}(c_i) - \frac{\partial f}{\partial x_i}(a) \ \big| \ \frac{|h_i|}{\|h\|} \\ &\leq \sum_{i=0}^n \big| \ \frac{\partial f}{\partial x_i}(c_i) - \frac{\partial f}{\partial x_i}(a) \ \big|. \end{split}$$

Taking the limit  $h \to 0$ , observe that  $(\partial f/\partial x_i)(c_i) \to (\partial f/\partial x_i)(a)$  by the continuity of the partial derivatives, completing the proof.

**Corollary 4.1.1.** All polynomial functions on  $\mathbb{R}^n$  are differentiable.

**Theorem 4.2.** Let  $f: \mathbb{R}^n \to \mathbb{R}$  be differentiable with continuous partial derivatives, and let  $a \in \mathbb{R}^n$  be a point of local maximum. Then, Df(a) = 0.

*Proof.* We need only show that each

$$\frac{\partial f}{\partial x_i}(a) = 0.$$

This must be true, since a is also a local maximum of each of the restrictions  $g_i$  as defined earlier.

### 5. Inverse and implicit function theorems

**Theorem 5.1** (Inverse function theorem). Let  $f: \mathbb{R}^n \to \mathbb{R}^n$  be continuously differentiable on a neighbourhood of  $a \in \mathbb{R}^n$ , and let  $det(Df(a)) \neq 0$ . Then, there exist neighbourhoods U of a and W of f(a) such that the restriction  $f: U \to W$  is invertible. Furthermore,  $f^{-1}$  is continuous on U and differentiable on U.

**Lemma 5.2.** Consider a continuously differentiable function  $f: \mathbb{R}^n \to \mathbb{R}$ , and let M denote the surface defined by the zero set of f. Then, M can be represented as the graph of a differentiable function  $h: \mathbb{R}^{n-1} \to \mathbb{R}$  at those points where  $Df \neq 0$ .

*Proof.* Without loss of generality, suppose that  $\partial f/\partial x_n \neq 0$  at some point  $a \in M$ . It can be shown that the map

$$F: \mathbb{R}^n \to \mathbb{R}^n, \quad x \mapsto (x_1, x_2, ..., x_{n-1}, f(x))$$

is invertible in a neighbourhood W of a, with a continuous and differentiable inverse of the form

$$G: \mathbb{R}^n \to \mathbb{R}^n, \quad u \mapsto (u_1, u_2, ..., u_{n-1}, g(u)).$$

Since  $F \circ G$  must be the identity map on W, we demand

$$(x_1,x_2,...,x_{n-1},f(x_1,x_2,...,x_{n-1},g(x)))=(x_1,x_2,...,x_{n-1},x_n).$$

Thus, the zero set of f in this neighbourhood of a satisfies  $x_n = 0$ , hence

$$f(x_1,x_2,...,x_{n-1},g(x_1,x_2,...,x_{n-1},0))=0.$$

In other words, the part of the surface M in the neighbourhood of a is precisely the set of points

$$(x_1, x_2, ..., x_{n-1}, g(x_1, x_2, ..., x_{n-1}, 0)).$$

Simply set

$$h: \mathbb{R}^{n-1} \to \mathbb{R}, \quad x \mapsto g(x_1, x_2, ..., x_{n-1}, 0),$$

whence the surface M is locally represented by the graph of h.

*Remark.* Note that by using

$$f(x_1, ..., x_{n-1}, h(x_1, ..., x_{n-1})) = 0$$

on the surface, we can use the chain rule to conclude that for all  $1 \le i < n$ , we have

$$\frac{\partial f}{\partial x_i}(a) + \frac{\partial f}{\partial x_n}(a) \frac{\partial h}{\partial x_i}(a_1,...,a_{n-1}) = 0.$$

**Theorem 5.3** (Implicit function theorem). Let  $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$  be continuously differentiable in an open set containing (a,b), with f(a,b)=0. Let  $\det\left(\partial f^j/\partial x_{n+k}(a,b)\right) \neq 0$ . Then, there exists an open set  $U\subset \mathbb{R}^n$  containing a, an open set  $V\subset \mathbb{R}^m$  containing b, and a differentiable function  $g:U\to V$  such that f(x,g(x))=0.

Remark. The condition on the determinant can be rephrased as rank Df(a,b) = m.

**Theorem 5.4.** Let  $f: \mathbb{R}^n \to \mathbb{R}$  be continuously differentiable, and let M be the surface defined by its zero set. Furthermore, let  $\nabla f(a) \neq 0$  for some  $a \in M$ ; thus, M can be locally represented by a graph on  $\mathbb{R}^{n-1}$ . Then,  $\nabla f(a)$  is normal to the tangent vectors drawn at a to M; in fact, the perpendicular space of  $\nabla f(a)$  is precisely the tangent space  $T_aM$ .

*Proof.* Consider a tangent vector drawn at a to M, represented by the differentiable curve  $\gamma: \mathbb{R} \to M$ ,  $\gamma(0) = a$ ; note that we use the identification  $\gamma'(0) = v \in \mathbb{R}^n$ . Then, calculate

$$\frac{d}{dt}f(\gamma(t))|_{t=0} = Df(\gamma(0))(\gamma'(0)) = Df(a)(v).$$

On the other hand, we have  $f(\gamma(t)) = 0$  identically. Thus,

$$v \cdot \nabla f(a) = Df(a)(v) = 0$$

as claimed.

## 6. Taylor's theorem

**Theorem 6.1** (Clairaut). Let  $f: \mathbb{R}^n \to \mathbb{R}$  have continuous second order partial derivatives. Then,

$$\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_i}.$$

**Theorem 6.2** (Taylor). Let  $f: \mathbb{R}^2 \to \mathbb{R}$  have continuous second order partial derivatives, and let  $(x_0, y_0) \in \mathbb{R}^2$ . Then, there exists  $\varepsilon > 0$  such that for all  $\|(x - x_0, y - y_0)\| < \varepsilon$ ,

$$\begin{split} f(x,y) &= f(x_0,y_0) + \frac{\partial f}{\partial x}(x-x_0) + \frac{\partial f}{\partial y}(y-y_0) \\ &+ \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(x-x_0)^2 + \frac{1}{2}\frac{\partial^2 f}{\partial y^2}(y-y_0)^2 \\ &+ \frac{\partial^2 f}{\partial x \partial y}(x-x_0)(y-x_0) + R(x,y), \end{split}$$

where as  $(x, y) \rightarrow (x_0, y_0)$ , the remainder term vanishes as

$$\frac{|R(x,y)|}{\left\|(x-x_0,y-y_0)\right\|^2} \to 0.$$

All partial derivatives here are evaluated at  $(x_0, y_0)$ .

*Proof.* This follows from applying the Taylor's Theorem in one variable to the real function  $g: \mathbb{R} \to \mathbb{R}$ ,  $t \mapsto f((1-t)(x_0,y_0)+t(x,y))$ .

# 7. Critical points and extrema

**Definition 7.1.** We say that  $a \in \mathbb{R}^n$  is a critical point of  $f : \mathbb{R}^n \to \mathbb{R}$  if all  $\partial f/\partial x^j = 0$  there.

#### **Lemma 7.1.** All points of extrema of a differentiable function are critical points.

*Proof.* We already know that Df(a) = 0 where a is either a point of maximum or minimum.

*Example.* In order to find a point of extrema of a  $C^2$ -smooth function  $f: \mathbb{R}^2 \to \mathbb{R}$ , we first identify a critical point  $(x_0, y_0)$ . Next, we must find a neighbourhood of  $(x_0, y_0)$  which contains no other critical points – to do this, apply Taylor's Theorem. Indeed, we see that

$$f(x,y) = f(x_0, y_0) + A(x - x_0)^2 + 2B(x - x_0)(y - y_0) + C(y - y_0)^2 + R_2.$$

For non-degeneracy of solutions, we demand  $AC - B^2 \neq 0$ , i.e. at  $(x_0, y_0)$ , we want

$$\left[\frac{\partial^2 f}{\partial x \partial y}\right]^2 \neq \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2}.$$

If  $AC-B^2>0$  and  $\partial^2 f/\partial x^2>0$ , then we have found a point of minima; if  $\partial^2 f/\partial x^2<0$ , then we have found a point of maximum. If  $AC-B^2<0$ , then we have found a saddle point.

*Example.* Suppose that we wish to maximize the function  $f: \mathbb{R}^2 \to \mathbb{R}$ , given an equation of constraint g = 0, where  $g: \mathbb{R}^2 \to \mathbb{R}$ . Using the method of Lagrange multipliers, we look for solutions of the system

$$\begin{cases} \nabla f(x,y) + \lambda \nabla g(x,y) = 0\\ g(x,y) = 0. \end{cases}$$