EUROVENT 2/3 - 1996

SHEET METAL AIR DUCTS

STANDARD FOR DIMENSIONS

EUROVENT 2/3 - 1996

SHEET METAL AIR DUCTS

STANDARD FOR DIMENSIONS

EUROVENT 2/3

Second edition 1996

Published by EUROVENT/CECOMAF

15 rue Montorgueil

F-75001 PARIS

Tel 33 1 40 26 00 85 Fax 33 1 40 26 01 26

FOREWORD

The present document gives recommendations on dimensions of ducts with circular and rectangular cross sections. The previous edition published in 1993 based on various national, manufacturers or contractor standards was used as a basic document for the preparation of the European Standards in the CEN/TC 156. The relevant European Standards:

- pr EN 1505 : Sheet metal air ducts and fittings with rectangular cross section
- pr EN 1506 : Sheet metal air ducts and fittings with circular cross section

are expected to be published in 1997.

This second edition of the EUROVENT 2/3 is in full accordance with these European Standards

In addition to the standardised dimensions the fundamental factors affecting the choice of dimension steps and a number of diagrams intended to facilitate the use of standardised duct dimensions in practical design work are presented.

Dimensions of fittings are given in the EUROVENT 2/4.

CONTENTS

I. DEFINITIONS	. 3
I. DEFINITIONS	
1.1 - NOMINAL SIZE	٠,
1.2 - EFFECTIVE LENGTH L	
1.3- CROSS-SECTIONAL AREA A _C	. 3
1.4 - DUCT SURFACE AREA A,	
1.5 - ASPECT RATIO FOR DUCTS WITH RECTANGULAR CROSS-SECTION K	
1.6 - HYDRAULIC DIAMETER D _H	. 5
1.7 - EQUIVALENT DIAMETER DE	5
1.8 - TOLERANCE	6
1.9 - CLEARANCE (FOR DUCT CONNECTIONS)	6
2. STANDARDISATION OF DUCT DIMENSIONS	6
3. BASIS OF THE STANDARD	7
3.1 - STANDARD FOR DIMENSIONING OF DUCTS WITH CIRCULAR CROSS-SECTION	7
3.2 - STANDARD FOR DIMENSIONING OF DUCTS WITH RECTANGULAR CROSS-SECTION	8
4. STANDARDISED DIMENSIONS AND DATA	9
4.1 - STANDARDISED DIMENSIONS AND DATA FOR DUCTS WITH CIRCULAR CROSS-	
SECTION	9
5. SELECTION OF DUCTS	. 10
6. TOLERANCES AND CLEARANCE	10
6.1 - TOLERANCES FOR DUCTS WITH CIRCULAR CROSS-SECTION	10
6.2 - CLEARANCE FOR DUCTS WITH CIRCULAR CROSS-SECTION	
6.3 - TOLERANCES FOR DUCTS WITH RECTANGULAR CROSS-SECTION	
7 TADI ES AND EIGHDES	11

1. DEFINITIONS

1.1 - NOMINAL SIZE

The nominal size is the reference dimension used for the purpose of designation, calculation and application of ducts.

For practical purposes the nominal size is given in mm.

For ducts with circular cross-section the nominal size d is the internal diameter of the duct.

For ducts with rectangular cross-section the nominal size is the internal dimension of the duct.

There are two dimensions a and b:

a = the long side of the duct

b = the short side of the duct

1.2 - EFFECTIVE LENGTH L

Length by which the duct contributes to the length of the air distribution system.

1.3- CROSS-SECTIONAL AREA Ac

For ducts with circular cross-section the cross-sectional area A_{c} is equal to :

$$A_c = \frac{\pi d^2}{4} \cdot 10^{-6} \text{ (m}^2)$$

For ducts with rectangular cross-section the cross-sectional area Ac is equal to :

$$A_c = ab \cdot 10^{-6} (m^2)$$

1.4 - DUCT SURFACE AREA Ai

Duct surface area Ai is the product of the internal perimeter and the duct length. For ducts with circular cross-section the duct surface area per meter length is : $A_i = \pi d \cdot 10^{-3} \, (m^2)$

For ducts with rectangular cross-section the duct surface area per meter length is :

$$A_i = 2 (a+b) \cdot 10^{-3} \text{ m}^2$$

1.5 - ASPECT RATIO FOR DUCTS WITH RECTANGULAR CROSS-SECTION k

The aspect ratio k is the ratio between the sides a and b :

$$k = \frac{a}{b}$$

1.6 - HYDRAULIC DIAMETER dh

The hydraulic diameter d_h for a duct is that diameter of a circular duct which will cause the same pressure drop at equal air velocity *.

If the friction coefficients for the ducts are equal then:

$$d_h = \frac{4(cross-sectional area)}{(international perimeter)}$$

For ducts with circular cross-section the hydraulic diameter d_h is equal to the nominal size d of the duct.

For ducts with rectangular cross section the hydraulic diameter d_h is :

$$d_h = \frac{2ab}{a+b}$$
 (mm)

1.7 - EQUIVALENT DIAMETER de

The equivalent diameter d_e for a duct is that diameter of a circular duct, which will cause the same pressure drop at equal air flow and at equal friction coefficients.

* Air velocity v (in m/s) is given by $v = q/A_c$ where q is the volume air flow rate (in m^3/s) and A_c is the cross-sectional area (in m^2)

For ducts with circular cross-section the equivalent diameter d_e is equal to the nominal size d of the duct.

For ducts with rectangular cross-section and with an aspect ratio of $\frac{a}{b} \le 4$.

the equivalent diameter de is:

$$d_{e} = 2b \quad \frac{\pi^{2-n}(1+\frac{a}{b})^{1+n}}{\binom{a}{b}} \right]^{\frac{1}{n-5}} mm$$
 where $n \approx \frac{1}{1.05.logRe-0.45}$

1.8 - TOLERANCE

The tolerance is the difference between the upper and lower limits of size for a given nominal dimension (see figure 1).

1.9 - CLEARANCE (for duct connections)

Clearance is the actual dimensional difference between size of a female connector or duct and of a male connector (see fig. 1).

2. STANDARDISATION OF DUCT DIMENSIONS

To facilitate an industrialised building process building components have to be dimensionally standardised.

As a basis for this standardisation ISO recommendations R 1789, R 1790, R 1791, R 1040 (1+2) and R 1006 are being used. In R 1006 the basic module M (=100 mm) is recommended as the international standard.

** Reynolds'number Re = v. D_h/v
where v = the kinematic viscosity (m²/s)
d_h = the hydraulic diameter (m)
v = the mean air velocity (m/s)

Many components of an air duct system (such as air terminal devices and heat exchangers) are directly connected to the building structure and are adapted to the bacis module of M, consequently so also are duct dimensions.

In this standard the basic module M has been used for ducts with rectangular cross-section, although for some installations such as mounting over false ceilings the step 0,5 M has been introduced for duct dimensions smaller than 300 mm.

Spaces and holes in structural work are also given dimensions in increments of M.

For ducts of circular cross-section the module 11 has been used for spaces and holes in structural work. The recommended nominal diameters d have because of common usage been chosen from the Renard series R 10 with a base of 100 mm. The additional sizes have mostly been chosen from the Renard series R 20.

3. BASIS OF THE STANDARD

3.1 - STANDARD FOR DIMENSIONING OF DUCTS WITH CIRCULAR CROSS-SECTION

The standard for dimensioning of ducts with circular cross-section has been established in accordance with existing European standard pr EN 1506

The standard for recommended sizes is based on the Renard series R 10 which has a ratio between consecutive diameters of 1,25.

The additional sizes except size 150 and 300 are based on R 20, which has a ratio between consecutive diameters of 1,125.

Basic size for the series is d = M(100 mm). The nominal diameter is within the range of $63 \le d \le 1.250 \text{ mm}^*$

i.e. at values of A_c within a range of 0,0031 m² to 1,2300 m².

3.2 - STANDARD FOR DIMENSIONING OF DUCTS WITH RECTANGULAR CROSS-SECTION

The standard for dimensioning of ducts with rectangular cross-section has been established in accordance with the European standard pr EN 1505.

The standard for dimensioning of ducts with rectangular cross-section is applicable for ducts with nominal sizes within the range of :

```
200 \le a \le 2,000 \text{ mm} **
100 \le b \le 1,200 \text{ mm} **
and an aspect ratio of k \le 4,
```

i.e. at values of A_c within a range of 0,02 m² to 2,40 m². **

By considering the different ways of installating duct systems and the requirement for a reasonable number of duct sizes, the standard has been based on the following:

3.2.1 - For each value of cross-sectional area A_c within the range of 0.88 A_c to 1.12 A_c at least three different duct aspect ratios shall exist *** (see fig. 4)

For small ducts where A_c < 0,04 m2, the number of ducts has been reduced because in this case circular ducts are more often used.

^{*} Sizes of ducts with larger dimensions than given above should preferably be based on R 20

^{**} Sizes for ducts with larger dimensions than given above should preferably be based on multiples of M.

^{***} A decrease of 12% of the cross-sectional area in a fitting will by a corresponding increase of the air velocity cause an increase of approximately 3 dB in sound pressure level.

3.2.2 - For each height b, at least four cross-sectional areas Ac shall exist (see fig. 5)

In table 4 the number of long sides (a) and the relationship between the largest and smallest cross-sectional areas for a given short side (b) according to the standard are shown

4. STANDARDISED DIMENSIONS AND DATA

4.1 - STANDARDISED DIMENSIONS AND DATA FOR DUCTS WITH CIRCULAR CROSS-SECTION

Nominal diameter d, cross-sectional area A_c and duct surface area A_i are given in table 1 and figure 2. *

4.2 - STANDARDISED DIMENSIONS AND DATA FOR DUCTS WITH RECTANGULAR CROSS-SECTION

Duct dimensions a and b, cross-sectional area A_c and duct surface area A_i are given in table 3 and figure 6. **

Hydraulic diameters d_h for the ducts (included in the standard) are given in figure 9. Equivalent diameters d_e for the ducts are given in figure 10.

^{*} Should smaller steps be needed the following intermediate nominal dimensions shall be used : 71, 90, 112, 140, 180, 224 and 280 mm.

^{**} In normal cases the dimensional steps given are sufficient. Should there be a need for smaller steps these should be half the steps given in this EUROVENT Recommendation with a minimum step of 100 mm.

5. SELECTION OF DUCTS

A choice of duct dimensions with respect to total costs may be made with the aid of figure 3 for ducts with circular cross-section and figure 8 for ducts with rectangular cross-section. Additional sizes should be avoided.

Considerations should be given to the « economic range of air velocities » in the ducts which will depend on installation costs and running costs.

6. TOLERANCES AND CLEARANCE

6.1 - TOLERANCES FOR DUCTS WITH CIRCULAR CROSS-SECTION

The accuracy of manufacture for ducts and fittings (spigots and sockets) with reference to the nominal diameter d is given in table 2.

For each duct dimension the tolerance zone for both the duct and fitting is equal except when $d \ge 800$ mm.

6.2 - CLEARANCE FOR DUCTS WITH CIRCULAR CROSS-SECTION

Minimum diametrical clearance is a constant of 0,7 mm.

6.3 - TOLERANCES FOR DUCTS WITH RECTANGULAR CROSS-SECTION

The tolerance is a constant of 0/-4 mm.

The tolerance of the length L of a straight duct is 0,005 L.

7. TABLES AND FIGURES

Table 1 Ducts with circular cross-section, standardised dimensions

Nominal diameter	Cross-sectional area	Duct surface area		
mm	m ²	m²/mm		
	Recommended sizes			
63	3,12 . 10 ⁻³	0,197		
80	5,03 . 10 ⁻³	0,251		
100	7,85 . 10 ⁻³	0,314		
125	12,3 . 10 ⁻³	0,393		
160	20,1 . 10 ⁻³	0,502		
200	31,4 . 10 ⁻³	0,628		
250	49,1 . 10 ⁻³	0,785		
315	77,9 . 10 ⁻³	0,990		
400	0,126	1,26		
500	0,196	1,57		
630	0,312	1,98		
800	0,503	2,51		
1000	0,785	3,14		
1250	1,23	3,93		
	Additional sizes			
150	17,7 . 10 ⁻³	0,421		
300	70,7 . 10 ⁻³	0,943		
355	355 98,9 . 10 ⁻³			
450	0,159	1,41		
560	0,246	1,76		
710	0,396 2,23			
900	0,636 2,83			
1120	0,985	3,52		

Table 2 - Ducts and fittings with circular cross section, tolerances and clearance

d	В	С	D ₁	D ₂	E	F	G	Н	
Recommended sizes in mm									
63	0,7	1,7	0,5	0,5	61,87	62,3	63,0	63,5	
80	0,7	1,7	0,5	0,5	78,8	79,3	80,0	80,5	
100	0,7	1,7	0,5	0,5	98,8	99,3	100,0	100,5	
125	0,7	1,7	0,5	0,5	123,8	124,3	125,0	125,5	
160	0,7	1,9	0,6	0,6	158,7	159,3	160,0	160,6	
200	0,7	2,1	0,7	0,7	198,6	199,3	200,0	200,7	
250	0,7	2,3	0,8	0,8	248,5	249,3	250,0	250,8	
315	0,7	2,5	0,9	0,9	313,4	314,3	315,0	315,9	
400	0,7	2,7	1,0	1,0	398,3	399,3	400,0	401,0	
500	0,7	2,9	1,1	1,1	498,2	499,3	500,0	501,1	
630	0,7	3,1	1,2	1,2	628,1	629,3	630,0	631,2	
800	0,7	3,6	1,3	1,6	798,0	799,3	800,0	801,6	
1000	0,7	4,1	1,4	2,0	997,9	999,3	1000,0	1002,0	
1250	0,7	4,7	1,5	2,5	1247,8	1249,3	1250,0	1252,5	
	L	l	Additi	onal sizes	in mm		·····		
150	0,7	1,9	0,6	0,6	148,7	149,3	150,0	150,6	
300	0,7	2,5	0,9	0,9	298,4	299,3	300,0	300,9	
355	0,7	2,7	1,0	1,0	353,3	354,3	355,0	356,0	
450	0,7	2,9	1,1	1,1	448,2	449,3	450,0	451,1	
560	0,7	3,1	1,2	1,2	558,1	559,3	560,0	561,2	
710	0,7	3,5	1,3	1,6	708,0	709,0	710,0	711,5	
900	0,7	4,1	1,4	2,0	897,9	899,3	900,0	902,0	
1120	0,7	4,7	1,5	2,5	1117,8	1119,3	1120,0	1122,5	

Figure 1 - Ducts and fittings with circular cross section, tolerances and clearance

- d Nominal diameter
- B Minimum diameteral clearance
- C Maximum diameteral clearance
- D₁ Tolerance of the diameter of the male end
- D₂ Tolerance of the diameter of the female end
- E Minimum diameter of the male end
- F Maximum diameter of the male end
- G Minimum diameter of the female end
- H Maximum diameter of the female end

Table 3 - Ducts with rectangular cross-section : standardised dimensions

Side lengths mm					···				,	,		
	100	150	200	250	300	400	500	600	800	1000	1200	
200	0.020 133 149 0.60	0,030 171 186 0,70	0,040 200 218 0,80									Ac dh de A
250	0,725 143 165 0,70	0,038 188 206 0,80	0,050 222 241 0,90	0,063 250 273 1,00								4 d d 4.
300	0,030 150 180 0,80	0,045 200 224 0,90	0,060 240 262 1,00	0,075 273 296 1,10	0,090 300 327 1,20							4 4 4 4
400	0.040 160 205 1.00	0,060 218 255 1,10	0,080 267 299 1,20	0,10 308 337 1,30	0,12 343 373 1,40	0,16 400 436 1,60						4 6 6 6 A
500		0,075 231 283 1,30	0,10 286 331 1,40	0,13 333 374 1,50	0,15 375 413 1,60	0,20 444 483 1,80	0,25 500 545 2,00					4 0 0 A
600		0.090 - 240 307 1.50	0,12 300 359 1,60	0,15 353 406 1,70	0,18 400 448 1,80	0,24 480 524 2,00	0,30 545 592 2,20	0,36 600 654 2,40				A dh de
800			0,16 320 410 2,00	0,20 381 463 2,10	0,24 436 511 2,20	0,32 533 598 2,40	0,40 615 675 2,60	0,48 686 745 2,80	0,64 800 872 3,20			4 de A
1000				0,25 400 512 2,50	0,30 462 566 2,60	0,40 571 662 2,80	0,50 667 747 3,00	0,60 750 825 3,20	0.80 889 965 3.60	1,00 1000 1090 4,00		A o de A
1200					0.36 480 614 3.00	0,48 600 719 3,20	0,60 706 812 3,40	0,72 800 896 3,60	0,96 960 1049 4,00	1,20 1091 1184 4,40	1,44 1200 1308 4,80	4 0 0
1400						0,56 622 771 3,60	0,70 737 871 3,80	0,84 840 962 4,00	1,12 1018 1125 4,40	1,40 1167 1270 4,80	1,68 1292 1403 5,20	4 d d d
1600			•	,		0,64 640 819 4,00	0.80 762 925 4,20	0,96 873 1022 4,40	1,28 1067 1195 4,80	1,60 1231 1350 5,20	1,92 1371 1491 5,60	A 0 0 A
1800							0,90 783 976 4,60	1.08 900 1078 4.80	1.44 1108 1261 5,20	1.80 1286 1424 5,60	2,16 1440 1573 6,00	4 4 44
2000							1,00 800 1024 5,00	1.20 923 1131 5.20	1.60 1143 1323 5.60	2,00 1333 1494 6,00	2,40 1500 1650 6,40	4 0 0 4

A_C = Cross-sectional area d_h = Hydraulic diameter d_e = Equivalent diameter A_i = Duct surface area

(m²)

(mm)

(mm) (m²)

Figure 2 - Ducts with circular cross-section : duct surface area A_i and cross-section A_c as a function of nominal diameter d.

Figure 3 - Ducts with circular cross-section : air velocity $\overline{\nu}$ as a function of air flow rate q_{nom} and diameter d

Figure 4 - Ducts with rectangular cross-section : number n of ducts with different aspect ratios as a function of A_{c}

Figure 5 - Ducts with rectangular cross-section : relation between b and A_{c} for normalised values of a

Figure 6 - Ducts with rectangular cross-section : cross-sectional area A_{c} as a function of the values of a and b

Figure 7 - Ducts with rectangular cross-section : air velocity $\bar{\nu}$ as a function of air flow q_{nom} and duct dimensions b x a.

Table 4 - Ducts with rectangular cross-section : number of values possibles and ratio between the largest values of a

Value of b	Number of values possible	Ratio between the largest
	of a	values of a
100	4	2
150	6	3
200	7	4
250	7	4
300	7	4
400	8	4
500	9	4
600	8	3 1/3
800	7	2 1/2
1000	6	2
1200	5	1 2/3

Figure 9 - Ducts with rectangular cross-section : equivalent diameter

$$d_{e} = 2_{b} \left[\pi^{2-n} \frac{(1+\frac{a}{b})^{1+n}}{(\frac{a}{b})^{3}} \right]^{\frac{1}{n-5}}$$
 where $n \approx \frac{1}{1,05 \log Re - 0,45}$

LIST OF THE MEMBER ASSOCIATIONS

BELGIUM	ITALY
FABRIMETAL	ANIMA - CO.AER
21 rue des Drapiers - B-1050 BRUXELLES	Via Battistotti Sassi, 11 - I-20133 MILANO
Tel 32/2/5102518 - Fax 32/2/5102562	Tel 39/2/73971 - Fax 39/2/7397316
GERMANY	NORWAY
FG ALT im VDMA	NVEF
Postfach 710864 - D-6000 FRANKFURT/MAIN 71	P.O.Box 850 Sentrum - N-0104 OSLO
Tel 49/69/66031227 - Fax 49/69/66031218	Tel 47/2/413445 - Fax 47/2/2202875
SPAIN	SWEDEN
AFEC	ктв
Francisco Silvela, 69-1°C - E-28028 MADRID	P.O. Box 55 10 - S-11485 STOCKHOLM
Tel 34/1/4027383 - Fax 34/1/4027638	Tel 46/8/20800 - Fax 46/8/6603378
FRANCE	SWEDEN
UNICLIMA (Syndicat du Matériel Frigorifique,	SWEDVENT
Syndicat de l'Aéraulique)	Box 17537 - S-11891 STOCKHOLM
Cedex 72 - F-92038 PARIS LA DEFENSE	Tel 46/8/6160400 - Fax 46/8/6681180
Tel 33/1/47176292 - Fax 33/1/47176427	
UNITED KINGDOM	FINLAND
FETA (HEVAC and BRA)	FREA
Sterling House - 6 Furlong Road - Bourne End	PL 37
GB-BUCKS SL 8 5DG	FIN-00801 HELSINKI
Tel 44/1628/531186 - Fax 44/1628/810423	Tel 358/9/759 11 66 - Fax 358/9/755 72 46
NETHERLANDS	FINLAND
VLA	AFMAHE
Postbus 190 - NL-2700 AD ZOETERMEER	Etalaranta 10 - FIN-00130 HELSINKI
Tel 31/79/531258 - Fax 31/79/531365	Tel 358/9/19231 - Fax 358/9/624462
NETHERLANDS	TURKEY
NKI	ISKID
Postbus 190 - NL-2700 AD ZOETERMEER	ARCELIK S.A.
Tel 31/79/3531258 - Fax 31/79/3531365	Klima Isletmesi - 81719 TUZLA ISTANBUL
	Tel 90/216 3954515 - Fax 90/216 4232359