ECE 231 Project 2

Lawrence Liu, David Zheng, Rohit Bhat

December 12, 2022

1 Problem 1 (Polarization)

1.1 Part (a)

```
I(U_1,U_2;Y_1,Y_2)=I(X_1,X_2;Y_1,Y_2)=(U_1,U_2 \text{ can be determined from }X_1,X_2 \text{ and vice versa}). H(X_1,X_2)-H(X_1,X_2|Y_1,Y_2)=
```

 $H(X_1) - H(X_1|Y_1, Y_2) + H(X_2) - H(X_2|Y_1, Y_2) = (X_1, X_2 \text{ are indepedendent and } X_1, X_2 \text{ are also conditionally independent given } Y_1, Y_2)$

 $H(X_1) - H(X_1|Y_1) + H(X_2) - H(X_2|Y_2) = (X_1 \text{ is conditionally independent from } Y_2 \text{ given } Y_1, \text{ and } X_2 \text{ is conditionally independent from } Y_1 \text{ given } Y_2).$

 $I(X_1; Y_1) + I(X_2; Y_2)$, as desired.

```
We also have:
```

```
\begin{split} &I(U_1,U_2;Y_1,Y_2) = \\ &H(U_1,U_2) - H(U_1,U_2|Y_1,Y_2) = \\ &H(U_1) + H(U_2) - H(U_1,U_2|Y_1,Y_2) = \\ &H(U_1) + H(U_2) - H(U_1|Y_1,Y_2) - H(U_2|Y_1,Y_2,U_1) = \\ &H(U_1) - H(U_1|Y_1,Y_2) + H(U_2) - H(U_2|Y_1,Y_2,U_1) = \\ &I(U_1;Y_1,Y_2) + I(U_2;Y_1,Y_2,U_1), \text{ as desired.} \end{split}
```

1.2 Part (b)

Because X_1, X_2 go through identitical channels with identical capacities to become Y_1, Y_2 , we must have $I(X_1; Y_1) = I(X_2; Y_2)$

To prove the right hand inequality:

```
I(X_2; Y_2) =
H(X_2) - H(X_2|Y_2) \le H(X_2) - H(X_2|Y_1, Y_2, U_1) =
I(X_2; Y_1, Y_2, U_1) =
I(U_2; Y_1, Y_2, U_1), as desired.
To prove the left hand inequality:
I(U_1; Y_1, Y_2) =
I(U_1; Y_1, Y_2) =
```

 $I(U_1; Y_1|Y_2) + I(U_1; Y_2)$

The second term is 0 because Y_2 is independent from U_1 .

We have:

 $I(U_1; Y_1 | Y_2) =$

 $I(X_1 \oplus X_2; Y_1 | Y_2) \le$

 $I(X_1, X_2; Y_1|Y_2) =$ (as X_1, X_2 uniquely determines $X_1 \oplus X_2$)

 $(X_2 \text{ is independent from } X_1, Y_1 \text{ even given } Y_2)$ $I(X_1; Y_1|Y_2) =$

 $(Y_2 \text{ is independent from } X_1, X_2)$

This is what we wanted to prove.

Problem 2 (Polarization of BEC) $\mathbf{2}$

Using the fact that BEC(p) has capacity 1-p, we have:

The capacity of W^- is $1 - 2p + p^2 = (1 - p)^2$

The capacity of W is 1-p

The capacity of W^+ is $1-p^2$

It is clear that $(1-p)^2 \le 1-p$ as $0 \le 1-p \le 1$. It is also clear that $1-p \le 1-p^2$ as $0 \le p \le 1$. Therefore channel W^- is worse than W, and W^+ is better than W.

Problem 3 (Coding Problem: Polarization of BEC)

We get the following plots for p = 0.3

And the following plots for p = 0.6

And the following plots for p = 0.8

This was generated with the following code:

```
% Code snippets for ECE 231A: Information Theory: Porject Module #3
% Problem 3 code snippets
clear all;
clc;
close all;
p = [0.3, 0.6, 0.8]; % Different erasure probabilities for BEC
epsilon = [0.1, 0.01, 0.001, 0.0001];
n = 5:25; \% log2 block length
% output for capacity near 0
\%\ rows:\ corresponding\ to\ different\ n and
\% columns: corresponding to different epsilon
output0 = zeros(length(n),length(epsilon));
% output for capacity
output1 = zeros(length(n),length(epsilon));
%%%%% Enter your code here %%%%%%%%
for i=1:length(p)
  channel_ps = [p(i)^2, 2*p(i)-p(i)^2];
  for n_{-}=2:n(length(n))
    \% \ disp(n_{-})
    new_channel_ps=zeros(1,2*length(channel_ps));
    \% disp(size(new\_channel\_ps))
    for j=1:length(channel_ps)
      new_channel_ps(2*j-1)=channel_ps(j)^2;
      new_channel_ps(2*j)=2*channel_ps(j)-channel_ps(j)^2;
    channel_capacities=ones(1,length(new_channel_ps))-new_channel_ps;
    if any(n=n_-)
      for j=1:length(epsilon)
        % size (channel_capacities)
        \% sum (channel\_capacities < epsilon(j))
```

```
% channel\_capacities < epsilon(j)
                                 \operatorname{output0}(n_--4,j) = \operatorname{sum}(\operatorname{channel\_capacities} \le \operatorname{epsilon}(j)) / \operatorname{length}(\operatorname{channel\_cap}(j)) = \operatorname{channel\_cap}(j) = \operatorname{c
                        for j=1:length(epsilon)
                                 output1(n_-4,j)=sum(channel_capacities>=1-epsilon(j))/length(channel_capacities)
                        end
                channel\_ps{=}new\_channel\_ps \; ;
                \% disp("-
        end
       %I move the plotting inside of the loop because its better that way, so then
       Wyou can see the plots for each p
        f1 = figure;
        for j=1:length(epsilon)
                        plot(n, output1(:, j), '-o', 'DisplayName', ['epsilon == 'num2str(epsilon(j))]
        end
        grid on;
        legend;
        title(['p=' num2str(p(i))] );
        xlabel('n');
        ylabel('Fraction_of_polarized_channels_with_capacity_near_1');
        saveas(f1,['p=' num2str(p(i)) '_near_1.png']);
        f2 = figure;
        for j=1:length(epsilon)
                        plot(n,output0(:,j),'-o','DisplayName',['epsilon_=_' num2str(epsilon(j))]
                        \mathbf{hold} \ \mathrm{on}\,;
        end
        grid on;
        legend;
       xlabel('n');
title(['p=' num2str(p(i))] );
ylabel('Fraction_of_polarized_channels_with_capacity_near_0');
        saveas(f2,['p=' num2str(p(i)) '_near_0.png']);
end
f1 = figure;
for i=1:length(epsilon)
                \textbf{plot} (\texttt{n}, \texttt{output1} (\texttt{:}, \texttt{i}), \texttt{'-o'}, \texttt{'DisplayName'}, [\texttt{'epsilon} \_ \_ \texttt{'} \texttt{num2str} (\texttt{epsilon} (\texttt{i}))]);
end
grid on;
legend;
xlabel('n');
ylabel ('Fraction_of_polarized_channels_with_capacity_near_1');
f2 = figure;
```

```
for i=1:length(epsilon)
    plot(n,output0(:,i),'-o','DisplayName',['epsilon_=_' num2str(epsilon(i))]);
    hold on;
end
grid on;
legend;
xlabel('n');
ylabel('Fraction_of_polarized_channels_with_capacity_near_0');
Note that because the plotting functions provided would only plot for 1 value
```

Note that because the plotting functions provided would only plot for I value of p, I moved them inside the for loop. However because we were instructed to not touch the code beyond the parts we could touch, I left the original plotting functions in the code.

3 Problem 4 (Using Polar codes for BPSK+AWGN channel)

3.1 (a)

Using the formula for the capacity of the BPSK+AWGN channel found in the paper "Analysis and Design of Power-Efficient Coding Schemes With Parallel Concatenated Convolutional Codes" by Simon Huettinger and J. Huber, we have that the capcity is given by

$$C = 1 - \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-1)^2}{2\sigma^2}} \log_2(1 + e^{-\frac{2x}{\sigma^2}}) dx \tag{1}$$

When we computed this integral we only did it from -20 to 20 since values beyond that result in NaN values and thus results in an incorrect integral. The resulting plot looks like

3.2 (b)

We get the following plot for BER vs encoding rate for different SNR values

3.3 (c)

We get the following plot for FER vs encoding rate for different SNR values

note: I modified the code outside of the comments saying to modify the code to have a plotting function, and have the rates be iterated over as a for loop nested inside a for loop for the SNR values. Also I reduced the number of trials to make the code run faster.

The code to do everything for problem 4 is included below:

```
for i=1:length(SNR_db)
       sigma = sqrt(10^(-SNR_db(i)/10));
       f = @(t) 1/(sigma*sqrt(2*pi))*exp(-(t-1).^2/(2*sigma^2)).*log2(1+exp(-2))
       capcity = 1-integral(f, -20, 20);
       capacities (i) = capcity;
   end
   figure (1)
   plot(SNR_db, capacities, '-db')
   xlabel('SNR_(dB)')
   ylabel('Achievable_Rate_(bits/symbol)')
   title ('Achievable_Rate_vs_SNR_(dB)_for_BPSK+AWGN_channel')
   grid on;
   saveas (gcf, 'Achievable_Rate_vs_SNR_(dB)_for_BPSK+AWCN_channel.png')
FERs=zeros (5, length (SNR_db));
BERs=zeros (5, length (SNR_db));
Rs = 0.1:0.2:0.9;
max_trials = 2E3;
seed1 = 0;
seed2 = 0;
n = 10; \% log2 block length
for i=1:length(Rs)
   for snrpoint = 1:length(SNR_db)
       R=Rs(i)*capacities(snrpoint);
       N = 2^n;
       K = \mathbf{round}(N*R);
       % Construct code by using Binary Erasure Channel heuristic
       z = 1-R; % erasure rate (z is a real number)
       %%%%% Enter your code here from Problem 3 here %%%%%%%
       %%%%%% that computes the erasure probabilities %%%%%%%%
       \%\%\%\%\% of N=2 n polarized channels
                                                    777777777
       channel_ps = [2*z - z^2, z^2];
       for n_{-}=2:n(length(n))
           \% \ disp(n_{-})
           new_channel_ps=zeros(1,2*length(channel_ps));
           \% disp(size(new\_channel\_ps))
           for j=1:length(channel_ps)
               new_channel_ps(2*j-1)=2*channel_ps(j)-channel_ps(j)^2;
                        new_channel_ps(2*j)=channel_ps(j)^2;
           channel_ps=new_channel_ps;
           % disp("-
       end
```

```
z = channel_ps;
for n_{-} = 0:N-1
  z(n_++1) = channel_ps(bin2dec(fliplr(dec2bin(n_+, n)))+1);
end
\%\%\%\%\%\%\% Sorting the N=2 n erasure probabilities \%\%\%\%\%
[vals, inds] = sort(z, 'ascend'); % z is a vector of length N=2^n here
freeInds = sort(inds(1:K), 'ascend'); % Choosing first K small erasure
frozInds = sort(inds(K+1:N), 'ascend');
FI = zeros(1,N);
FV = zeros(1,N);
FI(frozInds) = 1;
% initialize statistics
FER = zeros(1,length(SNR_db)); % block error rate
BER = zeros(1,length(SNR_db)); % bit error rate
%% begin test
fprintf('\nN:_%d,_Rate:_%4.3f,_SNR_db_=_%3.2f\n', N, R, SNR_db(snrpoint
%%% Write your code here %%%%
sigma = sqrt(10^{(-SNR_db(snrpoint)/10))};
rand('seed', seed1);
randn('seed', seed2);
% statistics
fer = 0;
ber = 0;
u = zeros(1,N);
for trial = 1: max_trials
   \% Put information bits in the K coordinates of u
   u(freeInds) = round(rand(1,K));
   % Encodes the message bits u to input data to the
   % channel x
   x = polar_encode(u);
   \% Modulate and transmit the data through the channel
    [y,Ly] = bpsk_awgn_channel(x, sigma);
   % Decode the polar code from the observed y
    uh = polar_decode(Ly, FI, FV);
    %%%% Enter your code here %%%%%%
    %%%%% Compute the BER and FER %%%
   BERs(i, snrpoint) = BERs(i, snrpoint)+sum(uh ~= u);
   FERs(i, snrpoint) = FERs(i, snrpoint) + any(uh = u);
```

```
if mod(trial, 1000) == 0
                   \mathbf{fprintf}(\ 'N: \ \ \%d, \ \ \ K: \ \ \%d, \ \ \ SNR = \ \ \%4.2f, \ \ \ FER: \ \ \ \%5.3e, \ \ BER: \ \ \%5.3e, \ \ \ Tr
              end
         end
    end
    BERs=BERs/(N*max_trials);
    FERs=FERs/(max_trials);
     % plot results
end
figure (2)
for snrpoint = 1:length(SNR_db)
     plot(Rs*capacities(snrpoint),BERs(:,snrpoint))
     hold on;
end
xlabel('rate')
ylabel('BER')
title ('BER_vs_rate_for_diffrent_SNR_(dB)_for_BPSK+AWGN_channel')
\mathbf{legend}\,(\,\operatorname{string}\,(\,\operatorname{SNR\_db}) + \text{``\_DB''}\,)
grid on;
saveas (gcf, 'BER_vs_rate_for_diffrent_SNR_(dB)_for_BPSK+AWGN_channel.png')
figure (3)
for snrpoint = 1:length(SNR_db)
     plot(Rs*capacities(snrpoint),FERs(:,snrpoint))
     hold on;
end
hold on;
xlabel('rate')
ylabel ('FER')
title ('FER_vs_rate_for_diffrent_SNR_(dB)_for_BPSK+AWGN_channel')
legend (string (SNR_db)+"_DB")
grid on;
saveas (gcf, 'FER_vs_rate_for_diffrent_SNR_(dB)_for_BPSK+AWGN_channel.png')
```

4 How we divided up the work

David and Rohit did problem 1 and 2, Lawrence did problem 3, and Lawrence and David did problem 4.