

<u>Home</u>

<u>Gameboard</u>

Maths

Algebra Series

Expand and Simplify Binomials

Expand and Simplify Binomials

Pre-Uni Maths for Sciences 3.3.1

Part A
$$(x+1)^4$$

Expand and simplify $(x+1)^4$.

The following symbols may be useful: x

Part B
$$(z+2a)^3$$

Expand and simplify $(z+2a)^3$.

The following symbols may be useful: a, z

Part C
$$(a-b)^5$$

Expand and simplify $(a - b)^5$.

The following symbols may be useful: a, b

Created for isaacphysics.org by Julia Riley.

Home Gameboard Maths Algebra Series Find Coefficients 2

Find Coefficients 2

Further A

Pre-Uni Maths for Sciences 3.3.3

Without expanding the binomials, find:

Part A Coefficient of x^4y^6

The coefficient of x^4y^6 in the expansion of $(x^2+3y^2)^5$.

Part B Coefficient of x^{20}

The coefficient of x^{20} in the expansion of $(x^2 + 3x)^{12}$.

Part C The coefficient of ab^7

The coefficient of ab^7 in the expansion of $(a + \frac{1}{4}b)^8$.

Part D Constant term

The constant term in the expansion of $\left(\frac{x^2}{2} - \frac{8}{x}\right)^9$.

Created for isaacphysics.org by Julia Riley.

Gameboard:

STEM SMART Double Maths 27 - Binomial & Maclaurin

Expansions

<u>Home</u> <u>Gameboard</u> Maths Algebra Series Group and Expand

Group and Expand

Further A
PPPP

Pre-Uni Maths for Sciences 3.3.8

Expand $(1-2x+3x^2)^7$ in ascending powers of x as far as x^3 .

The following symbols may be useful: x

Created for isaacphysics.org by Julia Riley.

Gameboard:

STEM SMART Double Maths 27 - Binomial & Maclaurin

Expansions

<u>Home</u>

<u>Gameboard</u>

Maths

Binomial: All Rational n 2i

Binomial: All Rational n 2i

Part A Expansion

Expand $(1-4x)^{\frac{1}{4}}$ in ascending powers of x, up to and including the term in x^3 .

The following symbols may be useful: x

Part B Values of a and b

The term of lowest degree in the expansion of

$$\left(1+ax
ight)\left(1+bx^2
ight)^7-\left(1-4x
ight)^{rac{1}{4}}$$

in ascending powers of x is the term in x^3 . Find the values of the constants a and b.

What is the value of a?

The following symbols may be useful: a

What is the value of b?

The following symbols may be useful: b

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 27 - Binomial & Maclaurin

Expansions

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

<u>Home</u>

<u>Gameboard</u>

Maths

Binomial: All Rational n 1i

Binomial: All Rational n 1i

Part A Partial Fractions

Given that $\frac{3x+4}{(1+x)(2+x)^2}\equiv \frac{A}{1+x}+\frac{B}{2+x}+\frac{C}{(2+x)^2}$, find A, B, and C.

Find A.

The following symbols may be useful: A

Find B.

The following symbols may be useful: B

Find C.

The following symbols may be useful: c

Part B Expand

Hence or otherwise expand $\frac{3x+4}{(1+x)(2+x)^2}$ in ascending powers of x, up to and including the term in x^2 .

The following symbols may be useful: \boldsymbol{x}

Part C Values of x

State the set of values of \boldsymbol{x} for which the expansion in the above part is valid.

Construct your answer from the items below.

Items:

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 27 - Binomial & Maclaurin

Expansions

<u>Home</u> <u>Gameboard</u>

Maths

Series

Algebra

Maclaurin Series - Binomial

Maclaurin Series - Binomial

Part A Expand
$$(1+r)^{\frac{1}{3}}$$
 and find $1.1^{\frac{1}{3}}$ and $9^{\frac{1}{3}}$ Expand $(1+r)^{\frac{1}{3}}$ up to the term in r^3 . The following symbols may be useful: r

Hence, using your expansion, find $(1.1)^{\frac{1}{3}}$ to 3 decimal places.

Part B Electric field on the axis of a charged sheet

The electric field E on the axis of a uniformly charged circular sheet at a distance z from the centre of the sheet is given by

$$E=rac{\sigma}{2\epsilon_0}\left[1-rac{z}{\sqrt{z^2+a^2}}
ight]$$

where σ is the charge per unit area on the sheet and a is the radius of the sheet. Show that in the limit when $z\gg a$ the field on the axis is such that $E\approx \frac{A}{z^2}$ and find A.

The following symbols may be useful: A, a, epsilon_0, sigma, z

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 27 - Binomial & Maclaurin

Expansions

Home Gameboard Maths Algebra Series Maclaurin Series - Cos & Sin 1

Maclaurin Series - Cos & Sin 1

Pre-Uni Maths for Sciences 6.3.6

Part A	Find the	cosine	of the	angle	$0.2\mathrm{rad}$
--------	----------	--------	--------	-------	-------------------

Find, using a Maclaurin expansion, the cosine of the angle $0.2 \, \mathrm{rad}$, correct to 3 decimal places.

Part B Find the sine of the angle $0.08\,\mathrm{rad}$

Find, using a Maclaurin expansion, the sine of the angle 0.08 rad, correct to 2 significant figures.

Part C Potential energy of mass on pendulum

A pendulum consists of a point mass m suspended on a light string of length l. When the string makes an angle of ϕ to the vertical its potential energy relative to the point where $\phi=0$ is given by $mgl(1-\cos\phi)$. Show that for $\phi\ll 1$ the potential energy is given approximately by $A_0\phi^2$ and find an expression for A_0 .

The following symbols may be useful: g, 1, m

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 27 - Binomial & Maclaurin

Expansions

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

<u>Home</u> <u>Gameboard</u> Maths Algebra Series Maclaurin Series - In

Maclaurin Series - In

Further A

Pre-Uni Maths for Sciences 6.3.2

Part A Expand $\ln(1+z)$ and hence $\ln(2+4y)$

(i) Write down the Maclaurin expansion of $\ln(1+z)$ up to the term in z^3 .

The following symbols may be useful: z

(ii) By re-writing $\ln(2+4y)$ in the form $A + \ln(1+z)$, where A is a constant, find the Maclaurin expansion of $\ln(2+4y)$ up to the term in y^3 .

The following symbols may be useful: y, z

Part B Expand $\ln(\frac{1+q}{1-q})$

Find the first 4 non-zero terms in the Maclaurin expansion of $\ln\left(\frac{1+q}{1-q}\right)$.

The following symbols may be useful: q

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 27 - Binomial & Maclaurin

Expansions

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

Home Game

<u>Gameboard</u>

Maths

Series

Maclaurin Series - Exponentials 2

Maclaurin Series - Exponentials 2

Algebra

Further A

Pre-Uni Maths for Sciences 6.3.4

Part A Expand $A\mathrm{e}^{-\alpha t}$

Expand $Ae^{-\alpha t}$ up to the term in t^2 .

The following symbols may be useful: A, alpha, p, t

Part B Expand $\mathrm{e}^p - \mathrm{e}^{-p}$

Find the first two non-zero terms in the Maclaurin expansion of $e^p - e^{-p}$.

The following symbols may be useful: A, alpha, p, t

Part C Energy decay in oscillations

A lightly damped oscillatory system has a period T. The total energy of the system at time t is given by E(t). One period later its energy $E(t+T)=E(t)\mathrm{e}^{-\gamma T}$.

(i) Find an expression for the fractional change in energy in one cycle.

The following symbols may be useful: T, e, gamma

(ii) On the assumption that $\gamma T\ll 1$ find an approximate expression for the fractional change in energy in one cycle.

The following symbols may be useful: T, e, gamma

Created for isaacphysics.org by Julia Riley