#### **Quadrotor Dynamics**

A friendly introduction

### 1 PHYSICS

#### 1.1 History

Aristotle said a bunch of stuff that was wrong. Galileo and Newton fixed things up. Then Einstein broke everything again. Now, we've basically got it all worked out, except for small stuff, big stuff, hot stuff, cold stuff, fast stuff, heavy stuff, dark stuff, turbulence, and the concept of time.

#### Thanks to these great personalities!

- Aristotle
- Hellenic Dynamics : Archimedes
- Copernicus
- Brahe
- The Renaissance : KeplerThe formation of classical mechanics : Galileo
- Descartes
- Newton
- Analytical mechanics: Leibniz
- Analytical mechanics : Euler
- Maupertuis
- D'Alembert
- Lagrange
- Einstein
- Erwin Schrodinger, Werner Heisenberg, Max Born

#### 1. Why Mathematical Modelling

- It represents the physical world
- To conduct prediction and analysis
- Carry out experiments with pen and paper
- Eliminates ambiguity, necessary to code











#### 2. Kinematics v/s Dynamics

- Kinematics is the study of motion WITHOUT considering the cause of motion
- Dynamics considers the forces and moments in its study of motion

We use rigid body dynamics to study the motion of quadrotors (with rigid frames)

#### 3. Rotation happens w.r.t fixed point



#### What about in free space?

- a. Rotation happens at Center of gravity. Why?: Principle of least action
- b. Equations of motion taken w.r.t. CoG
- c. CoG: isolates translational and rotational equations of motion



#### **5. Reference Frames**

- Inertial and body frames
- Velocity in translation & rotation (https://www.youtube.com/watch?v=d00XI\_UTKQo)



Quadcopter Body Frame and Inertial Frame

#### 6. How does a drone... drone?





#### 6. Forces produced by a propellor



## Forces and moments on a quadcoptor



$$F_{i}^{2} = K_{f} \omega_{i}^{2} M = K_{m} \omega_{i}^{2}$$

#### **Eq of motion: Translations**

$$T = \sum_{i=1}^{4} f_i = k \sum_{i=1}^{4} \omega_i^2, \quad T^B = \begin{bmatrix} 0 \\ 0 \\ T \end{bmatrix},$$

$$m \mathbf{E} = \mathbf{G} + \mathbf{R} T_B,$$

$$m \mathbf{S} = \mathbf{G} + \mathbf{R} T_B,$$

# Forces and moments on a quadcoptor



#### **Eq of motion: Rotations**

$$au_{B} = egin{bmatrix} Lk({\omega_{1}}^{2} - {\omega_{3}}^{2}) \ Lk({\omega_{2}}^{2} - {\omega_{4}}^{2}) \ b\left({\omega_{1}}^{2} - {\omega_{2}}^{2} + {\omega_{3}}^{2} - {\omega_{4}}^{2}
ight) \end{bmatrix}$$

$$(I\dot{\omega}) + \omega \times (I\omega) = |\tau_{B}|$$

#### **Transport Theorem**

 Transport theorem helps us to connect rate of change of a vector in one reference frame with the same vector in a different frame



Proof



How will these equations of motion change for the

drone shown

$$T = \sum_{i=1}^4 f_i = k \sum_{i=1}^4 \omega_i^2, \quad \mathbf{T}^B = \begin{bmatrix} 0 \\ 0 \\ T \end{bmatrix},$$

$$m\ddot{\boldsymbol{\xi}} = \boldsymbol{G} + \boldsymbol{R}\boldsymbol{T}_{B},$$

$$au_{B} = egin{bmatrix} (Lk(\omega_{1}{}^{2} - \omega_{3}{}^{2}) \ Lk(\omega_{2}{}^{2} - \omega_{4}{}^{2}) \ (\omega_{1}{}^{2} - \omega_{2}{}^{2} + \omega_{3}{}^{2} - \omega_{4}{}^{2}) \end{bmatrix}$$

$$I\dot{\omega} + \omega \times (I\omega) = \tau$$



# Now try writing equations of motion for one the following







#### Newtonian v/s variational mechanics

| Vectorial/Newtonian Mechanics             | Analytical/Variational Mechanics           |
|-------------------------------------------|--------------------------------------------|
| Force and momentum                        | Kinetic Energy and Work (Potential energy) |
| Too much attention to coordinate systems  | Generalized coordinate system              |
| Fails at very large and very small scales | Consistent                                 |
| No interesting extensions                 | Can obtain constants of motion             |
| Constraints induce additional unknowns    | Constraints are much easier to deal with   |

#### Ted talk by Raffaello D'Andrea



#### **Good reads**

- Overall drone overview
- 2. <u>Detailed read on propellor forces</u>

you show dyn Ten, hum