[Grupa 3] Praca Domowa nr3 Kacper Kurowski

April 19, 2021

1 [WUM] PD3

1.1 Kacper Kurowski

Wpierw wczytajmy dane

```
[1]: import os
      os.getcwd()
 [1]: '/home/kurowskik'
 [2]: import numpy as np
      import pandas as pd
      import seaborn as sns
      sns.set_theme(style="darkgrid")
      import matplotlib.pyplot as plt
      import warnings
      warnings.filterwarnings("ignore")
      import requests
 [3]: aus_wheather = pd.read_csv( "/home/kurowskik/kaggle/weatherAUS.csv", sep = ",",_
       →header=0)
[51]:
      aus_wheather
[51]:
                    Date Location MinTemp MaxTemp Rainfall Evaporation
      0
              2008-12-01
                           Albury
                                       13.4
                                                22.9
                                                            0.6
                                                                         NaN
                                        7.4
                                                25.1
                                                            0.0
      1
              2008-12-02
                           Albury
                                                                         NaN
      2
              2008-12-03
                           Albury
                                       12.9
                                                25.7
                                                            0.0
                                                                         NaN
              2008-12-04
                           Albury
                                        9.2
                                                28.0
                                                            0.0
                                                                         NaN
              2008-12-05
                           Albury
                                       17.5
                                                32.3
                                                            1.0
                                                                         NaN
                                         •••
                                        2.8
                                                23.4
      145455 2017-06-21
                            Uluru
                                                            0.0
                                                                         NaN
      145456 2017-06-22
                            Uluru
                                        3.6
                                                25.3
                                                            0.0
                                                                         NaN
      145457 2017-06-23
                            Uluru
                                        5.4
                                                26.9
                                                            0.0
                                                                         NaN
```

145458	2017-06-24	Uluru	7.8 27.0	0.0	N	aN	
145459	2017-06-25	Uluru 1	14.9 NaN	0.0	N	aN	
•			ndGustSpeed Wi		-		
0	NaN	W	44.0				
1	NaN	WNW	44.0 NNW			4.0	
2	NaN	WSW	46.0			8.0	
3	NaN	NE	24.0			5.0	
4	NaN	W	41.0			2.0	
 145455	 NaN	 E	31.0	αE	 	1 0	
145456		NNW				51.0 56.0	
145457	NaN NaN	N	22.0 37.0	~=		3.0	
145458	NaN NaN	SE Nan	28.0 NaN	SSE		1.0	
145459	NaN	NaN	IValv	ESE	6	2.0	
	Humidity3pm	Pressure9am	Pressure3pm	Cloud9am	Cloud3pm	Temp9am \	
0	22.0	1007.7	1007.1	8.0	NaN	16.9	
1	25.0	1010.6	1007.8	NaN	NaN	17.2	
2	30.0	1007.6	1008.7	NaN	2.0	21.0	
3	16.0	1017.6	1012.8	NaN	NaN	18.1	
4	33.0	1010.8	1006.0	7.0	8.0	17.8	
•••	•••	•••		•••	•••		
145455	24.0	1024.6	1020.3	NaN	NaN	10.1	
145456	21.0	1023.5	1019.1	NaN	NaN	10.9	
145457	24.0	1021.0	1016.8	NaN	NaN	12.5	
145458	24.0	1019.4	1016.5	3.0	2.0	15.1	
145459	36.0	1020.2	1017.9	8.0	8.0	15.0	
	Temp3pm Rai	·	Tomorrow				
0	21.8	No	No				
1	24.3	No	No				
2	23.2	No	No				
3	26.5	No	No				
4	29.7	No	No				
145455	22.4	No	No				
145456	24.5	No	No				
145457	26.1	No	No				
145458	26.0	No	No				
145459	20.9	No	NaN				

[145460 rows x 23 columns]

Możemy szybko zapoznać się z danymi

[7]: from pandas_profiling import ProfileReport

```
[33]: profile = ProfileReport(aus_wheather, title="Pandas Profiling Report")
```

```
[1]: #profile.to_notebook_iframe() #Jak chcemy zobaczyć
```

Możemy zauważyć, że zmienne Date, Location, WindGustDir, WindDir9am, WindDir3pm, RainToday i RainTomorrow mają wartości nieliczbowe. Dlatego postaramy się zakodować je przy pomocy liczb. Możemy również zauważyć, że jest dużo wierszy z Evaporation i Sunshine na NaN. Podobnie Cloud9am i Cloud3pm. Z tego powodu usuniemy te kolumny.

```
[4]: del aus_wheather["Evaporation"]
  del aus_wheather["Sunshine"]
  del aus_wheather["Cloud9am"]
  del aus_wheather["Cloud3pm"]
```

```
[5]: direction_to_encoding = {
         "N" : [1.0,0.0,0.0,0.0],
         "NNW" : [0.75,0.25,0.0,0.0],
         "NW" : [0.5,0.5,0.0,0.0],
         "WNW" : [0.25,0.66,0.0,0.0],
         "W" : [0.0, 1.0, 0.0, 0.0],
         "WSW" : [0.0,0.75,0.25,0.0],
         "SW" : [0.0,0.5,0.5,0.0],
         "SSW" : [0.0,0.75,0.66,0.0],
         "S" : [0.0,0.0,1.0,0.0],
         "SSE" : [0.0,0.0,0.75,0.25],
         "SE" : [0.0,0.0,0.5,0.5],
         "ESE" : [0.0,0.0,0.25,0.75],
         "E" : [0.0,0.0,0.0,1.0],
         "ENE" : [0.25,0.0,0.0,0.75],
         "NE" : [0.5,0.0,0.0,0.5],
         "NNE" : [0.75,0.66,0.0,0.25],
         "nan" : [0.0,0.0,0.0,0.0]
     }
```

```
GustDir3pm = pd.DataFrame(
          aus_wheather["WindDir3pm"].fillna("nan").map(direction_to_encoding).
       →tolist(),
          columns=['WindDir3pmN','WindDir3pmW','WindDir3pmS','WindDir3pmE'],
          index = aus_wheather.index)
      aus wheather = aus wheather.merge(GustDir3pm, left index=True, right index=True)
 [7]: def encode_dates(x):
          tmp = x.split("-")
          return [float( tmp[0]), float(tmp[1]), float(tmp[2]) ]
 [8]: dates = pd.DataFrame(
          aus_wheather['Date'].map( encode_dates).tolist(),
          columns=["Year", "Month", "Day"],
          index = aus wheather.index)
      aus_wheather = aus_wheather.merge(dates, left_index=True, right_index=True)
 [9]: def encodeRain(x):
          if x == "Yes":
              return 1
          elif x == "No":
              return 0
[10]: aus_wheather['RainTomorrow'] = aus_wheather['RainTomorrow'].map( encodeRain)
      aus_wheather['RainToday'] = aus_wheather['RainToday'].map( encodeRain)
[11]: aus_wheather.columns
[11]: Index(['Date', 'Location', 'MinTemp', 'MaxTemp', 'Rainfall', 'WindGustDir',
             'WindGustSpeed', 'WindDir9am', 'WindDir3pm', 'WindSpeed9am',
             'WindSpeed3pm', 'Humidity9am', 'Humidity3pm', 'Pressure9am',
             'Pressure3pm', 'Temp9am', 'Temp3pm', 'RainToday', 'RainTomorrow',
             'WindGustDirN', 'WindGustDirW', 'WindGustDirS', 'WindGustDirE',
             'WindDir9amN', 'WindDir9amW', 'WindDir9amS', 'WindDir9amE',
             'WindDir3pmN', 'WindDir3pmW', 'WindDir3pmS', 'WindDir3pmE', 'Year',
             'Month', 'Day'],
            dtype='object')
[12]: tmp = aus wheather['Location'].map( lambda x: sum(bytearray(x, 'utf-8'))+len(x),
       →) # Kodujemy lokację, niestety nieróżnowartościowo
[13]: print( len(pd.unique(aus_wheather['Location'])))
      print( len(pd.unique(tmp))) # Niestety kodowanie nie jest różnowartościowe w
       \rightarrow tym \ przypadku. Trudno.
     49
     46
```

```
[14]: aus_wheather['Location'] = tmp
[15]: aus_wheather.head()
                                                   Rainfall WindGustDir
[15]:
               Date Location
                                MinTemp
                                          MaxTemp
         2008-12-01
                           629
                                    13.4
                                             22.9
                                                         0.6
      1 2008-12-02
                           629
                                    7.4
                                             25.1
                                                         0.0
                                                                     WNW
      2 2008-12-03
                           629
                                    12.9
                                             25.7
                                                         0.0
                                                                     WSW
      3 2008-12-04
                           629
                                     9.2
                                             28.0
                                                         0.0
                                                                      NE
      4 2008-12-05
                           629
                                    17.5
                                             32.3
                                                                       W
                                                         1.0
         WindGustSpeed WindDir9am WindDir3pm
                                               WindSpeed9am
                                                                  WindDir9amW
                   44.0
      0
                                 W
                                           WNW
                                                         20.0
                                                                          1.00
                                                          4.0 ...
                   44.0
                               NNW
                                           WSW
                                                                          0.25
      1
                  46.0
                                                         19.0 ...
      2
                                 W
                                           WSW
                                                                          1.00
      3
                   24.0
                                SE
                                             Ε
                                                         11.0 ...
                                                                          0.00
      4
                  41.0
                               ENE
                                            NW
                                                          7.0 ...
                                                                          0.00
         WindDir9amS
                      WindDir9amE
                                    WindDir3pmN
                                                 WindDir3pmW
                                                                WindDir3pmS \
                              0.00
                                            0.25
                                                          0.66
                                                                        0.00
      0
                 0.0
      1
                  0.0
                              0.00
                                            0.00
                                                          0.75
                                                                       0.25
      2
                 0.0
                              0.00
                                            0.00
                                                          0.75
                                                                       0.25
      3
                 0.5
                              0.50
                                            0.00
                                                          0.00
                                                                       0.00
      4
                 0.0
                              0.75
                                            0.50
                                                          0.50
                                                                       0.00
         WindDir3pmE
                         Year Month
                                      Day
                                      1.0
                      2008.0
                                12.0
      0
                  0.0
                  0.0 2008.0
      1
                                12.0 2.0
      2
                 0.0
                       2008.0
                                12.0 3.0
                  1.0 2008.0
      3
                                12.0 4.0
                 0.0 2008.0
                                12.0 5.0
      [5 rows x 34 columns]
     Usuwamy kolumny zakodowane (przy pomocy innych kolumn)
[15]: del aus_wheather["Date"]
      del aus_wheather["WindGustDir"]
      del aus_wheather["WindDir9am"]
      del aus_wheather["WindDir3pm"]
[16]: aus_wheather.head()
[16]:
                             MaxTemp
                                                 WindGustSpeed WindSpeed9am \
         Location
                   MinTemp
                                      Rainfall
                       13.4
                                                           44.0
                                                                          20.0
      0
              629
                                22.9
                                            0.6
                                                           44.0
      1
              629
                        7.4
                                25.1
                                            0.0
                                                                           4.0
      2
                       12.9
                                25.7
                                            0.0
                                                                          19.0
              629
                                                           46.0
      3
              629
                        9.2
                                28.0
                                            0.0
                                                           24.0
                                                                          11.0
```

4	629	629 17.5 32.3		3	1.0	41.0		7.0	
	WindSpeed3pm	n Humidity9am		Humid	ity3pm	Pressure9am		WindDir9amW	\
0	24.0	71.0			22.0	1007.7	•••	1.00	
1	22.0	44.0			25.0	1010.6	•••	0.25	
2	26.0	38.0			30.0	1007.6	•••	1.00	
3	9.0	45.0			16.0	1017.6	•••	0.00	
4	20.0		82.0		33.0	1010.8	•••	0.00	
	WindDir9amS	WindDir	9amE	WindDi	r3pmN	WindDir3pmW	Win	dDir3pmS \	
0	0.0	0.00			0.25	0.66		0.00	
1	0.0	0.00			0.00	0.75	0.25		
2	0.0	0.00			0.00	0.75		0.25	
3	0.5	0.50			0.00	0.00		0.00	
4	0.0	.0 0.75			0.50	0.50		0.00	
	WindDir3pmE	Year	Month	ı Day					
0	0.0	2008.0	12.0	1.0					
1	0.0	2008.0	12.0	2.0					
2	0.0	2008.0	12.0	3.0					
3	1.0	2008.0	12.0	4.0					
4	0.0	2008.0	12.0	5.0					

[5 rows x 30 columns]

Możemy również popatrzeć na wykresy samodzielnie (może coś sie uda zauważyć)

```
[25]: aus_wheather.hist(figsize=(18, 12), bins=30)
plt.show()
```



```
[26]:
      import seaborn as sns
[17]:
      aus_wheather.columns
[17]: Index(['Location', 'MinTemp', 'MaxTemp', 'Rainfall', 'WindGustSpeed',
             'WindSpeed9am', 'WindSpeed3pm', 'Humidity9am', 'Humidity3pm',
             'Pressure9am', 'Pressure3pm', 'Temp9am', 'Temp3pm', 'RainToday',
             'RainTomorrow', 'WindGustDirN', 'WindGustDirW', 'WindGustDirS',
             'WindGustDirE', 'WindDir9amN', 'WindDir9amW', 'WindDir9amS',
             'WindDir9amE', 'WindDir3pmN', 'WindDir3pmW', 'WindDir3pmS',
             'WindDir3pmE', 'Year', 'Month', 'Day'],
            dtype='object')
     sns.histplot(data=aus_wheather, x="MaxTemp", hue="RainTomorrow", element="poly")
[18]: <matplotlib.axes._subplots.AxesSubplot at 0x7f8d22f0dca0>
```


[133]: sns.histplot(data=aus_wheather, x="MinTemp", hue="RainTomorrow", element="poly")

[133]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd005c48130>


```
[134]: sns.histplot(data=aus_wheather, x="Cloud9am", hue="RainTomorrow", ⊔

→multiple='dodge')
```

[134]: <matplotlib.axes._subplots.AxesSubplot at 0x7fcff10c1730>


```
[137]: sns.histplot(data=aus_wheather, x="Pressure3pm", hue="RainTomorrow",⊔

⇔element="poly")
```

[137]: <matplotlib.axes._subplots.AxesSubplot at 0x7fcff6630fd0>

[138]: sns.histplot(data=aus_wheather, x="Humidity9am", hue="RainTomorrow", ⊔

⇔element="poly")

[138]: <matplotlib.axes._subplots.AxesSubplot at 0x7fcff64c6160>


```
[33]: sns.histplot(data=aus_wheather, x="Humidity3pm", hue="RainTomorrow", u ⇔element="poly")
```

[33]: <matplotlib.axes._subplots.AxesSubplot at 0x7f38115338e0>

[43]: <matplotlib.axes._subplots.AxesSubplot at 0x7f3811c27c70>

1.2 Dzielenie zbiorów

Podział na zbiór treningowy (a ten na treningowy i walidacyjny) i na zbiór testowy

```
[24]: X_fill["RainToday"] = X_fill["RainToday"].astype(int)
      X_fill.drop(columns = ["RainTomorrow"], inplace=True)
      y_fill["RainTomorrow"] = y_fill["RainTomorrow"].astype( int)
[25]: X_train, X_test, y_train, y_test \
          = train_test_split(X_fill, y_fill, stratify = y_fill, test_size=0.2,_
       →random state=1)
      X_train, X_val, y_train, y_val \
          = train_test_split(X_train, y_train, stratify = y_train, test_size=0.25, __
       →random state=1)
     1.3 AdaBoostClassifier
[26]: from sklearn.ensemble import AdaBoostClassifier
      from sklearn.metrics import accuracy_score
      from sklearn.metrics import f1_score
[27]: alf = AdaBoostClassifier(n_estimators=100, random_state=0, learning_rate=0.9)
      alf.fit(X_train, y_train)
[27]: AdaBoostClassifier(learning_rate=0.9, n_estimators=100, random_state=0)
[28]: y_val_hat = alf.predict(X_val)
      y_test_hat = alf.predict(X_test)
[29]: alf.score(X_test, y_test)
[29]: 0.844218341812182
[30]: conf_matrix = confusion_matrix(y_true=y_val, y_pred=y_val_hat.round())
      fig, ax = plt.subplots(figsize=(5, 5))
      ax.matshow(conf matrix, cmap=plt.cm.Oranges, alpha=0.3)
      for i in range(conf_matrix.shape[0]):
          for j in range(conf_matrix.shape[1]):
              ax.text(x=j, y=i,s=conf_matrix[i, j], va='center', ha='center',
      ⇔size='xx-large')
      plt.xlabel('Predictions', fontsize=18)
      plt.ylabel('Actuals', fontsize=18)
      plt.title('Confusion Matrix', fontsize=18)
      plt.show()
```



```
[31]: print('F1 Score: %.3f' % f1_score(y_test, y_test_hat))
F1 Score: 0.571

[32]: print( accuracy_score(y_val, y_val_hat))
    print( accuracy_score(y_test, y_test_hat))

    0.84084971813557
    0.844218341812182
    Jak widzimy, predykcje Adaboosta są nieidalne.

1.4 GradientBoostingClassifier

[33]: from sklearn.ensemble import GradientBoostingClassifier
```

[34]: clf = GradientBoostingClassifier(n_estimators=90, learning_rate=0.8, max_depth=1, random_state=0).fit(X_train, y_train)

clf.score(X_test, y_test)

```
[34]: 0.8430496356386635
```

```
[35]: y_val_hat = clf.predict(X_val)
y_test_hat = clf.predict(X_test)
```



```
[37]: print('F1 Score: %.3f' % f1_score(y_test, y_test_hat))
```

```
F1 Score: 0.562
```

```
[38]: print( accuracy_score(y_val, y_val_hat)) print( accuracy_score(y_test, y_test_hat))
```

- 0.840609102158669
- 0.8430496356386635

GradientBoostingClassifier zdaje się być nieco gorszy od Adaboosta.

1.5 HistGradientBoostingRegressor

```
[49]: from sklearn.experimental import enable_hist_gradient_boosting from sklearn.ensemble import HistGradientBoostingRegressor
```

```
[50]: est = HistGradientBoostingRegressor( 12_regularization= 2, learning_rate=0.7).

→fit(X_train, y_train)

est.score(X_val, y_val)
```

[50]: 0.34110104593782364

```
[51]: y_val_hat = est.predict(X_val).round()
y_test_hat = est.predict(X_test).round()
```

```
[52]: from sklearn.metrics import precision_score, recall_score, f1_score,

→accuracy_score
from sklearn.metrics import confusion_matrix
```

```
[53]: conf_matrix = confusion_matrix(y_true=y_test, y_pred=y_test_hat)
```



```
[55]: print('F1 Score: %.3f' % f1_score(y_test, y_test_hat))
   F1 Score: 0.600
[56]: print( accuracy_score(y_val, y_val_hat))
   print( accuracy_score(y_test, y_test_hat))
```

0.8475182180668225

0.8500618726797745

Zdaje się zatem, że to HistGradientBoostingRegressor daje najlepsze rezultaty.

1.6 Wnioski

Zasadniczo każdy klasyfikator daje nieidealny rezultat. Należy jednak zaznaczyć, że ostatni z nich, HistGradientBoostingRegressor zdaje się dawać nieznacznie lepsze rezultaty od pozostałych.