SPRÁVA PROCESŮ

Jak už víme, **každý počítačový program** (soubor na disku/paměťovém médiu obsahující data a instrukce pro jeho běh) **se při jeho spuštění stává procesem.** (spuštění může být inicializováno jak uživatelem, tak jiným procesem). **Každý vzniklý proces** (instance programu) **se ukládá do operační paměti počítače.** Jeden program může běžet jako více procesů (např. vícekrát spuštěný internetový prohlížeč).

Proces (process, task):

- Běžící instance programu (běžící program, umístěný v operační paměti)
- Jedná se o posloupnost instrukcí a zpracovávaných dat
- Může být tvořen několika samostatnými vlákny (v angličtině threads) (pro možnost obsadit jedním procesem více jader procesoru a dosáhnout tak rychlejšího provádění instrukcí procesu)
- Proces může vytvořit nový proces. Vytvářející proces se nazývá "rodičovský".
 Vytvořený proces je jeho "potomek" (podproces). Každý podproces má právě jeden rodičovský proces.

Pro běh procesu jsou nutné následující zdroje systému:

- Procesor
- Paměť
- Další prostředky (I/O (vstupně/výstupní) zařízení, soubory apod.)

Stavy procesů

Proces během svého životního cyklu (od doby kdy je nahrán do operační paměti až do jeho smazání z operační paměti) nabývá několika stavů. Pozorně si všimněte, z jakého a do jakého stavu se proces může dostat. Podrobnější vysvětlení jednotlivých stavů následuje pod obrázkem.

Základní stavy procesu:

- Stav úloha předána (created) úloha je zavedena do paměti, očekává přidělení prostředků
- **Stav připraven (ready)** proces je připraven k akci, a čeká pouze na přidělení CPU. Konkrétně čeká na přidělení takzvaného "časového kvanta" (krátký pevně definovaný okamžik, který pak může proces strávit ve stavu "probíhající")
- **Stav probíhající (running)** procesu je přidělen CPU, provádí se příslušné instrukce
- **Stav čekající (waiting)** proces čeká na určitou událost, např. dokončení I/O operace, na uživatele, na data...
- Stav ukončen (terminated) vypočet úlohy skončil a všechny přidělené prostředky jsou uvolněny k dalšímu použití

Přerušení procesoru (běhu procesu)

Jak už víme, dnešní operační systémy používají takzvaný "**preemptivní multitasking**" pro zajištění běhu dvou a více procesů současně (pseudoparalelní běh). Tento typ multitaskingu aktivně **přerušuje procesor** (zhruba 100x až 1000x za vteřinu), aby operační systém zhodnotil aktuální situaci, a buď nechal stávající proces na procesoru běžet i nadále, nebo je vyměnil za jiný proces čekající ve stavu "připraven". (Více informací o střídaní procesů na CPU získáte, až budeme probírat téma plánování procesů)

Následuje seznam typů přerušení procesoru, které v operačním systému rozpoznáváme.

Přerušení = signál do procesoru, který žádá o obsluhu

Druhy přerušení:

- Vnější přerušení Zdrojem jsou řadiče (zejména I/O zařízení) umístěné
 "vně procesoru". Podle IRQ (Interrupt ReQuest) signálu pozná, které zařízení CPU
 přerušilo (viz praktická hodina). K přerušení dochází bez ohledu na právě prováděné
 místo v programu. Po skončení obsluhy přerušení pokračuje CPU další instrukcí
 v běžícím procesu.
- **Vnitřní přerušení** Je vyvoláno chybou při provádění strojové instrukce (dělení nulou, přetečení, porušení ochrany paměti). Většinou končí ukončením programu, který přerušení vyvolal.
- **Programové přerušení** je vyvoláno instrukcí volání přerušení umístěnou přímo v programu. Používá se pro volání služeb operačního systému nebo pro programátorem definované operace.