Trabajo 3

Antonio Álvarez Caballero 27 de mayo de 2016

Ejercicio 1

Apartado a)

Parece ser que las variables de las que más depende mpg son displacement, horsepower y weight. Veámoslas con más detalle.

Es claro que existe una dependencia entre estas variables. Además, con el primer plot podemos ver las

correlaciones entre estas 3 variables, que es alta.

Apartado b)

Seleccionamos las variables que hemos decidido para predecir.

```
Auto.selected <- Auto[,c("displacement","horsepower","weight")]
```

Apartado c)

Como nuestro conjunto de datos es grande (392 instancias), podemos realizar un muestreo aleatorio. Así tampoco falseamos las muestras, cosa que podría pasarnos si realizamos un muestreo estratificado.

```
index <- sample(nrow(Auto), size = 0.8*nrow(Auto) )
Auto.train <- Auto.selected[index,]
Auto.test <- Auto.selected[-index,]</pre>
```

Apartado d)

Vamos a crear una nueva variable, $mpg\theta 1$, la cual tendrá 1 si el valor de mpg está por encima de la mediana y -1 en otro caso.

```
mpg01 <- ifelse(Auto$mpg >= median(Auto$mpg), 1, 0)
Auto.selected$mpg01 <- mpg01
Auto.train$mpg01 <- mpg01[index]
Auto.test$mpg01 <- mpg01[-index]</pre>
```

Apartado d1)

Vamos a ajustar un modelo de regresión logística para predecir mpg01.

El error de test de este modelo es 8.8607595.

Apartado d2)

Ahora vamos a ajusart un modelo k-NN.

Apartado d3)

Veamos las curvas ROC de ambos modelos.

ROC curves 1.00 0.75 0.50 0.25 0.00 0.25 False positive rate

```
auc.regLog <- auc(roc.data$x,roc.data$y1, type = 'spline')
auc.knn <- auc(roc.data$x,roc.data$y2, type = 'spline')</pre>
```

El área bajo la curva de la ROC de regresión logística es 0.9651519 y la del k-NN es 0.9651519. Luego k-NN es el modelo que mejor performance tiene.

Apartado e) (Bonus-1)

Para estudiar el error con validación cruzada hacemos uso de cv.glm

```
model.full.LogReg <- glm(mpg01 ~ ., data = Auto.selected)
cv.LogReg <- cv.glm(data = Auto.selected, glmfit = model.full.LogReg, K = 5)
cv.LogReg$delta</pre>
```

```
## [1] 0.1043928 0.1040979
```

El error estimado es el primero de este vector. El segundo es un ajuste para compensar el sesgo introducido al no usar *Leave-One-Out*.

Para el caso del k-NN

Por tanto, vemos que es mejor uno.

Apartado f) (Bonus-2)

Por hacer

Ejercicio 2

Apartado a)

Ajustamos con validación cruzada sobre la variable crim, que es la que está en la posición 1.

```
attach(Boston)
set.seed(123456789)

index <- sample(nrow(Boston), 0.8*nrow(Boston))
Boston.full <- Boston
Boston.train <- Boston[index,]
Boston.test <- Boston[-index,]

model.Boston <- glmnet(as.matrix(Boston.train[,-1]),Boston.train[,1], alpha = 1)</pre>
```

Apartado b)

Ahora utilizamos un método LASSO y seleccionamos las variables que están por encima de un umbral.

```
cv.Boston <- cv.glmnet(as.matrix(Boston[,-1]), Boston[,1], nfolds = 5, alpha = 1)
lasso.coeff <- predict(cv.Boston, type="coefficients", s = cv.Boston$lambda.min)
threshold <- 0.1
selected <- which(abs(lasso.coeff) > threshold)[-1]
```

Con esto afirmamos que las características que superan nuestro umbral 0.1 son 4, 5, 6, 8, 9, 11, 13, 14.

Seguir con regularización.

Apartado c)

Al igual que en el anterior apartado, definimos una nueva variable usando la mediana como umbral.

```
crim1 <- ifelse(Boston$crim > median(Boston$crim), 1, -1)
Boston.full$crim1 <- crim1
Boston.train.crim1 <- Boston.full[index,]
Boston.test.crim1 <- Boston.full[-index,]</pre>
```

Ahora ajustamos varias SVM, probaremos la lineal y con los núcleos disponibles, y veremos cómo se comporta cada uno. 'Ver cuál sería mejor a priori con pairs o similar'.

```
svm.linear <- svm(crim1 ~ ., data = Boston.train.crim1[,-1], kernel = "linear")
svm.linear.prediction <- predict(svm.linear, newdata = Boston.test.crim1[,-1])
confusionMatrix(sign(svm.linear.prediction), Boston.test.crim1$crim1)</pre>
```

```
## Confusion Matrix and Statistics
##
             Reference
## Prediction -1 1
           -1 51 10
##
##
           1 3 38
##
##
                  Accuracy: 0.8725
##
                    95% CI: (0.7919, 0.9304)
##
       No Information Rate: 0.5294
##
       P-Value [Acc > NIR] : 1.616e-13
##
##
                     Kappa: 0.7421
    Mcnemar's Test P-Value : 0.09609
##
##
##
               Sensitivity: 0.9444
##
               Specificity: 0.7917
##
            Pos Pred Value: 0.8361
            Neg Pred Value: 0.9268
##
##
                Prevalence: 0.5294
##
            Detection Rate: 0.5000
##
      Detection Prevalence: 0.5980
##
         Balanced Accuracy: 0.8681
##
##
          'Positive' Class : -1
##
svm.polynomial <- svm(crim1 ~ ., data = Boston.train.crim1[,-1], kernel = "polynomial")</pre>
svm.polynomial.prediction <- predict(svm.polynomial, newdata = Boston.test.crim1[,-1])</pre>
confusionMatrix(sign(svm.polynomial.prediction), Boston.test.crim1$crim1)
```

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction -1 1
## -1 52 8
## 1 2 40
##
## Accuracy: 0.902
## 95% CI: (0.8271, 0.952)
```

```
##
       No Information Rate: 0.5294
##
       P-Value [Acc > NIR] : 5e-16
##
##
                     Kappa: 0.8019
##
    Mcnemar's Test P-Value: 0.1138
##
               Sensitivity: 0.9630
##
##
               Specificity: 0.8333
##
            Pos Pred Value: 0.8667
##
            Neg Pred Value: 0.9524
##
                Prevalence: 0.5294
##
            Detection Rate: 0.5098
##
      Detection Prevalence: 0.5882
         Balanced Accuracy: 0.8981
##
##
##
          'Positive' Class : -1
##
svm.radial <- svm(crim1 ~ ., data = Boston.train.crim1[,-1], kernel = "radial")</pre>
svm.radial.prediction <- predict(svm.radial, newdata = Boston.test.crim1[,-1])</pre>
confusionMatrix(sign(svm.radial.prediction), Boston.test.crim1$crim1)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction -1 1
##
           -1496
##
           1
              5 42
##
##
                  Accuracy : 0.8922
                    95% CI: (0.8152, 0.9449)
##
##
       No Information Rate: 0.5294
       P-Value [Acc > NIR] : 3.774e-15
##
##
##
                     Kappa: 0.7833
    Mcnemar's Test P-Value : 1
##
##
##
               Sensitivity: 0.9074
               Specificity: 0.8750
##
            Pos Pred Value: 0.8909
##
##
            Neg Pred Value: 0.8936
##
                Prevalence: 0.5294
##
            Detection Rate: 0.4804
##
      Detection Prevalence: 0.5392
##
         Balanced Accuracy: 0.8912
##
##
          'Positive' Class : -1
svm.sigmoid <- svm(crim1 ~ ., data = Boston.train.crim1[,-1], kernel = "sigmoid")</pre>
svm.sigmoid.prediction <- predict(svm.sigmoid, newdata = Boston.test.crim1[,-1])</pre>
confusionMatrix(sign(svm.sigmoid.prediction), Boston.test.crim1$crim1)
## Confusion Matrix and Statistics
```

##

```
##
             Reference
## Prediction -1 1
##
           -1 22 18
           1 32 30
##
##
##
                  Accuracy: 0.5098
                    95% CI: (0.4089, 0.6101)
##
##
       No Information Rate: 0.5294
##
       P-Value [Acc > NIR] : 0.69044
##
##
                     Kappa: 0.0319
   Mcnemar's Test P-Value: 0.06599
##
##
               Sensitivity: 0.4074
##
##
               Specificity: 0.6250
##
            Pos Pred Value: 0.5500
            Neg Pred Value: 0.4839
##
##
                Prevalence: 0.5294
##
            Detection Rate: 0.2157
##
      Detection Prevalence: 0.3922
##
         Balanced Accuracy: 0.5162
##
          'Positive' Class : -1
##
##
```

Analizar el error.

Apartado d) (Bonus-3)

Ajustamos con validación cruzada sobre la variable crim.

```
cv.Boston <- cv.glmnet(as.matrix(Boston[,-1]), Boston[,1], nfolds = 5, alpha = 1)</pre>
```

El error de validación cruzada es

```
cv.Boston$cvm
```

```
## [1] 73.44629 69.69340 65.57450 62.15294 59.31050 56.94901 54.98697
## [8] 53.35530 51.92575 50.57490 49.37295 48.37637 47.54303 46.84977
## [15] 46.27829 45.80756 45.42499 45.11508 44.85812 44.63284 44.44202
## [22] 44.28251 44.13463 43.99118 43.87275 43.77272 43.68583 43.61130
## [29] 43.54863 43.49150 43.41694 43.35179 43.29459 43.22690 43.17175
## [36] 43.12449 43.08471 43.03839 42.99640 42.94169 42.87580 42.82081
## [43] 42.76855 42.72311 42.68992 42.66404 42.64521 42.63186 42.62700
## [50] 42.62509 42.62654 42.62972 42.63239 42.63564 42.63938 42.64245
## [57] 42.64645 42.65055 42.65177 42.65493 42.65777 42.66085 42.66415
## [64] 42.66737 42.67058 42.67367 42.67688 42.68009 42.68274 42.68554
## [71] 42.68788 42.69060 42.69247 42.69449 42.69618 42.69745
```

Completar solución.

Ejercicio 3

Apartado a)

Ya tenemos cargado y separado el conjunto de datos en 80% training y 20% test.

Apartado b)

Vamos a ajusar un modelo de Bagging. Para ello usaremos el RandomForest y le diremos que use el total de características disponibles.

```
bagging <- randomForest(medv ~., data = Boston, subset = -index, mtray = ncol(Boston)-1, importance = Total t
```

El error de test del modelo bagging es ¿Esto cómo es?.

Apartado c)

Ahora vamos a ajustar un RandomForest.

```
randomFor <- randomForest(medv ~., data = Boston, subset = -index, importance = TRUE)
randomFor.error <- "¿Esto cómo es?"
```

El número de árboles usado es 500. El error de test es ¿Esto cómo es?.

La diferencia con bagging es ...

Apartado d)

Ajustamos un modelo de regresión con Boosting.

```
boosting <- gbm(medv~., data = Boston.train, distribution = "gaussian")
pred <- predict(boosting, Boston.test, n.trees = 100)
boosting.error <- "¿Esto cómo es?"</pre>
```

El error de test es ¿Esto cómo es?.

La diferencia con bagging y randomForest es...

Ejercicio 4

Apartado a)

Cogemos una muestra aleatoria de 800 elementos y lo usamos como training.

```
index <- sample(nrow(OJ), 800)
OJ.train <- OJ[index,]
OJ.test <- OJ[-index,]</pre>
```

Ajustamos un árbol con la variable *Purchase* como objetivo.

```
model.tree <- tree(Purchase ~ ., data = OJ.train)</pre>
```

Apartado b)

Veamos un resumen del árbol.

```
summary(model.tree)
```

```
##
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.train)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "DiscMM" "SalePriceMM"
## Number of terminal nodes: 10
## Residual mean deviance: 0.7312 = 577.7 / 790
## Misclassification error rate: 0.1713 = 137 / 800
```

El número de nodos terminales es de 8, y tiene un error del 16.38%. Completar.

Apartado c)

Dibujamos el árbol obtenido.

```
plot(model.tree, main="Classification tree")
text(model.tree, all=TRUE, cex=.8)
```


Interpretar.

Apartado d)

Aplicamos el árbol a nuestros datos de test.

```
prediction.tree <- predict(model.tree, OJ.test)
prediction.tree</pre>
```

```
##
                CH
## 13
        0.95785441 0.04214559
        0.95785441 0.04214559
## 16
## 19
        0.53846154 0.46153846
## 20
        0.53846154 0.46153846
##
  27
        0.95785441 0.04214559
## 30
        0.95785441 0.04214559
        0.53846154 0.46153846
## 31
## 43
        0.95785441 0.04214559
## 44
        0.95785441 0.04214559
## 46
        0.95785441 0.04214559
## 48
        0.95785441 0.04214559
##
  50
        0.95785441 0.04214559
## 55
        0.95121951 0.04878049
## 67
        0.95785441 0.04214559
## 71
        0.26666667 0.73333333
##
        0.95785441 0.04214559
  74
##
  78
        0.95785441 0.04214559
## 93
        0.53846154 0.46153846
## 104
        0.95785441 0.04214559
## 105
        0.50000000 0.50000000
## 106
        0.95785441 0.04214559
        0.95785441 0.04214559
## 110
        0.95785441 0.04214559
## 111
        0.95785441 0.04214559
## 113
## 116
        0.95785441 0.04214559
## 122
        0.95785441 0.04214559
        0.95785441 0.04214559
  124
## 133
        0.95785441 0.04214559
## 134
        0.95785441 0.04214559
## 137
        0.95785441 0.04214559
## 141
        0.50000000 0.50000000
## 142
        0.53846154 0.46153846
## 149
        0.18181818 0.81818182
  151
        0.18181818 0.81818182
## 157
        0.95785441 0.04214559
## 159
        0.95785441 0.04214559
## 160
        0.95785441 0.04214559
## 162
        0.95785441 0.04214559
        0.95785441 0.04214559
## 165
        0.95785441 0.04214559
  169
## 176
        0.95785441 0.04214559
        0.95785441 0.04214559
  177
## 178
        0.95785441 0.04214559
        0.95785441 0.04214559
## 180
## 182
        0.95785441 0.04214559
## 183
        0.95785441 0.04214559
        0.95785441 0.04214559
## 194
## 198
        0.95785441 0.04214559
##
  199
        0.95785441 0.04214559
## 209
        0.95785441 0.04214559
## 210
        0.95785441 0.04214559
## 212
       0.95785441 0.04214559
## 213 0.95785441 0.04214559
```

```
## 218
       0.95785441 0.04214559
## 220
        0.95785441 0.04214559
## 223
        0.18181818 0.81818182
  228
        0.53846154 0.46153846
##
  231
        0.26666667 0.733333333
        0.96000000 0.04000000
## 234
        0.95785441 0.04214559
## 239
## 240
        0.95785441 0.04214559
  245
        0.95785441 0.04214559
  246
        0.95785441 0.04214559
  247
        0.95785441 0.04214559
        0.95785441 0.04214559
## 248
##
  250
        0.95785441 0.04214559
##
   256
        0.18181818 0.81818182
  264
        0.50000000 0.50000000
##
##
   265
        1.00000000 0.00000000
        0.96000000 0.04000000
##
  267
   269
        0.53846154 0.46153846
## 276
        0.01886792 0.98113208
## 279
        0.01886792 0.98113208
##
  280
        0.01886792 0.98113208
  281
        0.01886792 0.98113208
        0.01886792 0.98113208
## 291
        0.01886792 0.98113208
## 294
## 301
        0.53846154 0.46153846
   302
        0.26666667 0.733333333
  310
        0.53846154 0.46153846
   311
        0.53846154 0.46153846
        0.50000000 0.50000000
  312
  315
        0.95785441 0.04214559
## 318
        0.95121951 0.04878049
##
   320
        0.53846154 0.46153846
   326
        0.53846154 0.46153846
  330
##
        0.53846154 0.46153846
##
   332
        0.26666667 0.73333333
        0.18181818 0.81818182
##
  334
  335
        0.18181818 0.81818182
  337
        0.18181818 0.81818182
##
  338
        0.18181818 0.81818182
        0.95785441 0.04214559
## 342
        0.95785441 0.04214559
   344
  346
        0.95785441 0.04214559
##
##
   349
        0.95785441 0.04214559
##
   354
        0.26666667 0.733333333
   358
        0.53846154 0.46153846
  359
        0.53846154 0.46153846
##
##
   360
        0.50000000 0.50000000
##
   368
        0.18181818 0.81818182
   369
        0.18181818 0.81818182
##
  370
        0.53846154 0.46153846
##
  373
        0.53846154 0.46153846
## 376
        0.53846154 0.46153846
## 378
        0.18181818 0.81818182
## 379 0.18181818 0.81818182
```

```
## 385
       0.18181818 0.81818182
## 392
        0.18181818 0.81818182
## 405
        0.18181818 0.81818182
## 410
        0.53846154 0.46153846
## 412
        0.26666667 0.733333333
## 414
        0.18181818 0.81818182
## 425
        0.53846154 0.46153846
## 426
        0.26666667 0.73333333
## 429
        0.53846154 0.46153846
## 431
        0.18181818 0.81818182
## 434
        0.26666667 0.73333333
## 435
        0.26666667 0.73333333
##
  436
        0.53846154 0.46153846
## 438
        0.26666667 0.73333333
## 441
        0.95121951 0.04878049
## 442
        0.95121951 0.04878049
        0.95121951 0.04878049
## 443
## 449
        0.50000000 0.50000000
        0.53846154 0.46153846
## 452
## 460
        0.26666667 0.73333333
##
  468
        0.95785441 0.04214559
## 475
        0.18181818 0.81818182
        0.50000000 0.50000000
## 488
        0.95785441 0.04214559
## 490
## 493
        0.95785441 0.04214559
## 507
        0.95785441 0.04214559
## 518
        0.95785441 0.04214559
## 519
        0.53846154 0.46153846
## 521
        0.96000000 0.04000000
## 525
        0.26666667 0.73333333
## 530
        0.96000000 0.04000000
##
  544
        0.18181818 0.81818182
## 549
        0.18181818 0.81818182
        0.50000000 0.50000000
## 563
## 574
        0.18181818 0.81818182
        0.95121951 0.04878049
## 577
## 580
        0.53846154 0.46153846
## 582
        0.95121951 0.04878049
  603
        0.95785441 0.04214559
        0.95785441 0.04214559
## 607
        0.95785441 0.04214559
  608
## 609
        0.95785441 0.04214559
        0.95121951 0.04878049
##
  611
        0.96000000 0.04000000
  615
## 618
        0.95785441 0.04214559
## 620
        0.95785441 0.04214559
## 621
        0.95785441 0.04214559
## 632
        0.96000000 0.04000000
## 633
        0.26666667 0.73333333
## 634
        0.95785441 0.04214559
        0.95785441 0.04214559
## 637
## 638
        0.95121951 0.04878049
## 647
        0.95785441 0.04214559
## 649 0.95785441 0.04214559
```

```
## 655
       0.95785441 0.04214559
       0.53846154 0.46153846
## 663
  666
       0.26666667 0.73333333
  669
       0.18181818 0.81818182
##
##
  680
        0.26666667 0.73333333
       0.18181818 0.81818182
##
  682
        0.18181818 0.81818182
  687
## 688
       0.18181818 0.81818182
  696
       0.01886792 0.98113208
  705
       0.01886792 0.98113208
  712
       0.01886792 0.98113208
  717
        0.01886792 0.98113208
##
##
  719
       0.01886792 0.98113208
## 721
       0.01886792 0.98113208
## 722
       0.01886792 0.98113208
## 723
       0.01886792 0.98113208
       0.01886792 0.98113208
##
  725
  726
       0.01886792 0.98113208
  727
       0.01886792 0.98113208
##
  731
       0.26666667 0.73333333
       0.26666667 0.733333333
##
  732
  737
       0.26666667 0.73333333
## 738
       0.53846154 0.46153846
       0.53846154 0.46153846
  739
## 744
       0.26666667 0.73333333
  747
       0.26666667 0.733333333
  748
       0.18181818 0.81818182
##
##
  755
       0.26666667 0.73333333
       0.53846154 0.46153846
##
  756
  757
       0.53846154 0.46153846
## 761
       0.53846154 0.46153846
##
  762
       0.50000000 0.50000000
  766
       0.95785441 0.04214559
  772
       0.53846154 0.46153846
##
##
  775
        0.18181818 0.81818182
##
       0.96000000 0.04000000
  777
## 781
       0.95121951 0.04878049
## 782
       0.50000000 0.50000000
  796
       0.18181818 0.81818182
       0.50000000 0.50000000
##
  799
       0.95121951 0.04878049
  806
  807
       0.95121951 0.04878049
##
       0.95785441 0.04214559
##
  818
##
       0.95785441 0.04214559
  819
## 825
       0.95785441 0.04214559
## 831
       0.95785441 0.04214559
##
  838
       0.26666667 0.73333333
## 840
       0.18181818 0.81818182
##
  841
       0.18181818 0.81818182
## 842
       0.53846154 0.46153846
       0.18181818 0.81818182
##
  846
## 850
       0.53846154 0.46153846
## 856
       0.95785441 0.04214559
## 858
       0.95785441 0.04214559
```

```
## 859
       0.95785441 0.04214559
        0.96000000 0.04000000
## 867
## 871
        0.96000000 0.04000000
## 874
        0.53846154 0.46153846
## 878
        0.95785441 0.04214559
## 881
        0.95785441 0.04214559
        0.26666667 0.73333333
## 886
## 888
        0.95121951 0.04878049
## 891
        0.53846154 0.46153846
## 892
        0.95121951 0.04878049
## 902
        0.95785441 0.04214559
## 904
        0.95785441 0.04214559
## 906
        0.18181818 0.81818182
## 910
        0.53846154 0.46153846
        0.53846154 0.46153846
## 913
## 924
        0.26666667 0.73333333
## 925
        0.26666667 0.73333333
## 926
        0.26666667 0.73333333
## 931
        0.18181818 0.81818182
## 934
        0.26666667 0.73333333
## 935
        0.18181818 0.81818182
## 937
        0.18181818 0.81818182
        0.01886792 0.98113208
## 944
        0.01886792 0.98113208
## 946
## 947
        0.01886792 0.98113208
## 950
        0.01886792 0.98113208
        0.01886792 0.98113208
## 951
## 957
        0.26666667 0.73333333
## 969
        0.53846154 0.46153846
## 970
        0.26666667 0.73333333
## 974
        0.26666667 0.73333333
## 978
        0.18181818 0.81818182
## 981
        0.26666667 0.73333333
## 992
        0.26666667 0.73333333
## 993
        0.26666667 0.73333333
## 994
        0.53846154 0.46153846
## 998 0.95121951 0.04878049
## 1001 0.26666667 0.73333333
## 1005 0.18181818 0.81818182
## 1008 0.18181818 0.81818182
## 1013 0.95785441 0.04214559
## 1014 0.95785441 0.04214559
## 1015 0.95785441 0.04214559
## 1016 0.95785441 0.04214559
## 1021 0.95785441 0.04214559
## 1027 0.95785441 0.04214559
## 1032 0.95785441 0.04214559
## 1040 0.26666667 0.73333333
## 1045 0.95785441 0.04214559
## 1048 0.95785441 0.04214559
## 1051 0.95121951 0.04878049
## 1056 0.26666667 0.73333333
## 1058 0.53846154 0.46153846
## 1068 0.95121951 0.04878049
```

```
## 1070 0.95121951 0.04878049
```

Valorar resultados.

Apartado e)

Aplicamos la función cv.tree() a los datos de training y veamos qué hace.

```
model.cv.tree <- cv.tree(model.tree, K = 5)</pre>
model.cv.tree
## $size
## [1] 10 9 8 6 5 4 3 2 1
##
## $dev
## [1] 752.4366 721.1024 713.3778 713.3778 713.3778 776.8580 776.8580
## [8] 776.0987 1067.7919
##
## $k
## [1]
           -Inf 11.00549 13.51258 14.02312 17.78698 37.79043 38.60387
## [8] 46.64903 294.32466
##
## $method
## [1] "deviance"
## attr(,"class")
## [1] "prune"
                      "tree.sequence"
```

Apartado f) (Bonus-4)

Podemos ver que el mínimo de error se alcanza en $8,\ 6,\ 5.$