Лабораторная работа №5 Свойства операций над множествами

Цель работы: изучить свойства операций над множествами.

Содержание работы:

Основные понятия.

- 1. Множество это совокупность, класс отличающихся друг от друга объектов, объединенных каким-либо общим свойством. Объекты, входящие в эту совокупность, называются элементами множества.
- 2. Существует два основных способа задания неупорядоченных множеств:
 - а) перечисление всех его элементов;
 - б) описание характеристического (общего) свойства его элементов
- 3. Множество, не содержащее элементов, называют пустым и обозначают \emptyset .
- 4. Если каждый элемент множества A принадлежит множеству B, то A называют подмножеством множества B. Обозначения: $A \subseteq B$ (A принадлежит B, A включено в B, A содержится в B и т.д.), $B \supseteq A$ (B включает A, B содержит A и т.д.).
- 5. Если $A \subseteq B$ и существует хотя бы один элемент множества B, не принадлежащий множеству A, то A собственная часть B, т.е. A строго включается B B. Обозначение: $A \subseteq B$.
- 6. Множества A и B называются равными, если $A \subseteq B$ и $B \subseteq A$. Обозначение: A = B.
- 7. Объединением (суммой множеств A и B называется множество, обозначаемое через $A \cup B$, содержащее те и только те элементы, которые принадлежат множеству A или B. Краткая запись: $A \cup B = \{x \mid x \in A \text{ или } x \in B\}$. Соответствующая диаграмма Эйлера Венна:

8. <u>Пересечением</u> (произведением) множеств A и В называется множество, обозначаемое через А∩В и состоящее из тех и только из тех элементов, которые принадлежат множеству A и множеству В. Краткая

запись: $A \cap B = \{x \mid x \in A \text{ и } x \in B\}$. Соответствующая диаграмма Эйлера-Венна:

9. Разностью множеств A и B называется множество, обозначаемое через A\B и состоящее из тех и только из тех элементов, которые принадлежат A и не принадлежат B. Краткая запись: $A\B = \{x | x \in A \text{ и } x \notin B\}$. Соответствующая диаграмма Эйлера- Венна

10. Симметрической разностью множеств A и B называется множество, обозначаемое $A\Delta B$ и состоящее из тех и только из тех элементов, которые принадлежат A\B или B\A. Краткая запись: $A\Delta B = \{x \mid x \in A \setminus B \text{ или } x \in B \setminus A\}$. Соответствующая диаграмма Эйлера- Венна:

11. Если множество А⊆ В, то разность В\А называется дополнением множества А до множества В. Соответствующая диаграмма Эйлера- Венна:

- 12. Если I универсальное множество и $A \subseteq I$ то разность $I \setminus A$ называется дополнением множества A до множества I и обозначается A. Краткая запись: $A = \{x \mid x \in I \text{ и } x \notin A\}$.
- 13. Множество всех подмножеств множества A называется булеаном и обозначается $2^A: 2^A = \{B | B \subseteq A\}$.
- 14. Мощностью конечного множества A называют число его элементов и обозначают A. Если A = n, то $2^A = 2^n$
- 15. Свойства операций над множествами: Для любых A, B, $C \subseteq U$ справедливы соотношения:
 - идемпотентность: $A \cup A = A$; $A \cap A = A$;
 - коммутативность: $A \cup B = B \cup A$; $A \cap B = B \cap A$;
- ассоциативность: $A \cup (B \cup C) = (A \cup B) \cup C$; $A \cap (B \cap C) = (A \cap B) \cap C$;
- дистрибутивность: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$; $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$;
 - законы поглощения: $(A \cup B) \cap A = A$; $(A \cap B) \cup A = A$;

- свойства нуля: $A \cup \emptyset = A$; $A \cap \emptyset = \emptyset$; $\overline{\emptyset} = I$;
- свойства единицы: $A \cup \underline{I} = I$; $A \cap I = A$; $I = \emptyset$;
- двойное дополнение: A = A;
- законы де Моргана: $A \cup B = A \cap B$; $A \cap B = A \cup B$;
- свойства дополнения: $A \cup A = I$; $A \cap A = \emptyset$.
- 16. Декартовым (прямым) произведением множеств $A_1,...,A_n$ называется множество $A_1 \times A_2 \times ... \times A_n = \{(a_1; a_2; ... a_n) | a_1 \in A_1; ... a_n \in A_n\}$
- 17. Мощность декартова произведения находится по формуле: $|A_1 \times A_2 \times ... \times A_n| = |A_1 / \cdot |A_2 / \cdot ... \cdot |A_n|$

Задания

- **1** Даны множества A, B, C, D. Универсальное множество латинский алфавит. Найдите множества X и Y. Составьте диаграммы Венна.
 - 2 Проверить с помощью диаграмм Эйлера-Венна:
 - a) $\overline{A \cup B} = \overline{A} \cap \overline{B}$;
 - 6) $\overline{A \cap B} = \overline{A} \cup \overline{B}$;
 - B) $A\Delta B = (A \cup B) \setminus (A \cap B)$
- **3** Дано универсальное множество $I = \{-3; -2; -1; 0; 1; 2; 3; 4; 5; 6\}$, числовой промежуток X и уравнение. Найти:
- а) множество целых чисел A, принадлежащих промежутку X, множество корней заданного уравнения B и декартово произведение $A \times B$;
 - б) множества $A \cup B$; $A \cap B$; $A \setminus B$; $B \setminus A$; $A \triangle B$; A : B;
 - в) множество всех подмножеств 2^{A} и его мощность

Примеры выполнения:

Задание 1

Исходные данные:

 $A = \{a, e, f, j, k\}, B = \{f, i, j, l, y\}, C = \{j, k, l, y\}, D = \{i, j, s, t, u, y, z\}.$ $X = (A \cap C) \cup (B \cap C)$ и $Y = (A \cap \overline{B}) \cup (D \setminus C)$

Решение:

1 Определим элементы множества $X = (A \cap C) \cup (B \cap C)$. Для этого найдем сначала пересечение множеств $(A \cap C)$. Элементы j и κ одновременно принадлежат множеству A и C, следовательно, $(A \cap C) = \{j, \kappa\}$. Аналогично, $(B \cap C) = \{j, l, y\}$. Таким образом, объединение $(A \cap C) \cup (B \cap C) = \{j, k, l, y\}$.

Для построения диаграммы Венна рассмотрим, как связаны между собой множества A, B и C; в примере все три множества пересекаются между собой:

$$(A \cap B) = \{f; j\}; (A \cap C) = \{j; k\}; (B \cap C) = \{j; l; y\}; (A \cap B \cap C) = \{j\}$$

Определим элементы множества $Y = (A \cap \overline{B}) \cup (D \setminus C)$. Найдем дополнение B . Универсальное множество по условию задания состоит их 26 букв $\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$. Если отсюда исключить 5 элементов множества B, то получим множество \overline{B} из 21 элемента $\{a, b, c, d, e, g, h, k, m, n, o, p, q, r, s, t, u, v, w, x, z\}$. Пересечение множеств $(A \cap \overline{B})$ состоит из элементов $\{a, e, \kappa\}$, т.е. всех элементов множества A, которые не принадлежат B. Для нахождения разности множеств D\C вычеркнем нз множества $D = \{i, j, s, t, u, y, z\}$ элементы $\{j,y\}$, принадлежащие $C = \{j, k, l, y\}$. Получим D\C= $\{i, s, t, u, z\}$. В итоге $Y = (A \cap \overline{B}) \cup (D \setminus C) = \{a, e, i, k, s, t, u, z\}$

Строим диаграмму Венна:

$$(A \cap B) = \{f; j\}; (A \cap C) = \{j; k\}; (A \cap D) = \{j\}; (B \cap C) = \{j; l; y\}; (B \cap D) = \{i; j; y\}; (C \cap D) = \{j; y\}; (A \cap B \cap C \cap D) = \{j\}$$

Задание 2 Исходные данные:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

Решение:

1 Построим диаграмму для левой части равенства:

2 Построим диаграмму для правой части равенства:

3 Получили одну и ту же область:

Задание 3

Исходные данные:

$$X = (-3; 0); (x+2)(x^2-2x-3)=0$$

Решение:

а) Решим уравнение: $x_1 = -2$;

$$\begin{split} x^2 - 2x - 3 &= 0 \\ \sqrt{D} &= \sqrt{4 + 12} = \sqrt{16} = 4 \\ x_{2,3} &= \frac{2 \pm 4}{2}; \quad x_2 = 3; \quad x_3 = -1 \\ A &= \{-2; -1; 0\}; B = \{-2; -1; 3\}; \\ A \times B &= \{(-2; -2); (-2; -1); (-2; 3); (-1; -2); (-1; -1); (-1; 3); (0; -2); (0; -1); (0; 3)\} \end{split}$$

6)
$$A \cup B = \{-2; -1; 0; 3\}; A \cap B = \{-2; -1\}; A \setminus B = \{0\}; B \setminus A = \{3\};$$

 $A \triangle B = \{0; 3\}; \overline{A} = \{-3; 1; 2; 3; 4; 5; 6\}; \overline{B} = \{-3; 0; 1; 2; 4; 5; 6\}$

```
B) 2^A = \{\{\emptyset\}; \{-2\}; \{-1\}; \{0\}; \{-2, -1\}; \{-2, 0\}; \{-1, 0\}; \{-2, -1, 0\}\}; |2^A| = 8
```

Задания к практической работе.

Задание 1

1	$A = \{b, e, f, k, t\}; B = \{f, i, j, p, y\};$	2	$A = \{b, c, h, I, j\}; B = \{e, h, I, s, w\};$
	$C=\{j, k, l, y\}; D=\{i, j, s, t, u, y, z\};$		$C=\{a, b, j, k, l, m\};$
	$X = (A \cap C) \cup (B \cap C);$		$D=\{a, h, I, w, x\};$
	$Y = (A \cap \overline{B}) \cup (D \setminus C)$		$X = (A \setminus C) \cap \overline{B}$;
			$Y = (A \cap \overline{B}) \cup (C \setminus D)$
3	$A=\{a, h, m, o, r\}; B=\{j, k, o, u, y\};$	4	$A = \{a, b, h, j, 1\};$
	$C=\{g, h, j\}; D=\{g, j, q\};$		$B=\{b, c, h, l, r, v\};$
	$X = (A \cap C) \cup (D \cap B);$		$C = \{j, k, n, t, z\}; D = \{b, i, k, v, w\};$
	$Y = (A \cap \overline{B}) \cup (D \setminus C)$		$X = (A \cup B) \cap C;$
	$I = (A \cap B) \cup (B \setminus C)$		$Y = (\overline{A} \cap \overline{B}) \setminus (C \cup D)$
5	$A = \{c, e, h, n\}; B = \{e, f, k, n, x\};$	6	$A = \{a, d, k, l, o, s\};$
	$C=\{b, c, h, p, r, s\}; D=\{b, e, g\};$	0	$B = \{d, e, k, s, u, x\};$
	$X = (A \setminus B) \cap (C \cup D);$		$C=\{0, p, w\}; D=\{d, n, r, y, z\};$
	$Y = (A \cap \overline{B}) \cup (C \setminus D)$		$X = (A \setminus B) \cap (C \cap D);$
	$I = (A \cap B) \cup (C \setminus D)$		$Y = (\overline{A} \cap \overline{B}) \setminus (C \cup D)$
7	$A = (h f a m a) \cdot P = (h a h 1 u) \cdot$	8	$A = \{a, f, I, n, o\}; B = \{f, g, o, p, z\};$
'	$A=\{b, f, g, m, o\}; B=\{b, g, h, l, u\};$	0	
	C={e, f, m}; D={e, g, l, p, q, u, v}; $X = (A \cap C) \cup B$;		$C=\{i, j, u, w\};\ D=\{f, h, n, t, u, y, z\};$
			$X = (A \cap B) \cup C;$
	$Y = (A \cap \overline{B}) \cup (C \setminus D)$		$Y = (\overline{A} \cap \overline{B}) \setminus (C \cup D)$
0	A (C ') D (. 1 1)	10	
9	$A = \{a, e, f, i\}; B = \{a, b, k, n\};$	10	$A = \{a, b, h, k, o, r\};$
	$C=\{e, f, n, o, w, x\};$		$B=\{b, g, h, l, s\};$
	$D=\{a,d,e,o,p,t,u\};$		$C=\{k, l, z\}; D=\{g, j, p, q, u, v\};$
	$X = (A \cup B) \cap D;$		$X = (A \cap C) \cup B;$
	$Y = (\overline{A} \cap \overline{B}) \setminus (C \cup D)$		$Y = \left(\overline{A} \cap \overline{B}\right) \setminus (C \cup D)$
11	$A = \{a, h, k\}; B = \{c, d, h, p, r\};$	12	$A = \{b, k, n, o, q\}; B = \{a, b, k, u\};$
	$C=\{h, i, s\}; D=\{c, g, j, v, w\};$		$C=\{0, p\}; D=\{a, m, n, y, z\};$
	$X = (A \cup B) \cap C;$		$X = (A \cup B) \cap D;$
	$Y = \left(\overline{A} \cap \overline{B}\right) \setminus \left(C \cup D\right)$		$Y = (\overline{A} \cap D) \cup (C \setminus B)$
13	()) ())	14	$A = \{b, e, g, h, k, s\};$
	$B = \{b, e, f, l, r\};$		$B=\{c, g, p, q\};$
	$C = \{k, 1, w, x\};$		$C = \{f, g, s, x, y, z\};$
	$D=\{e, j, o, p, q, u, v\};$		$D=\{a, c, d, g, u, v, z\};$
	$X = (A \setminus B) \cap (C \cup D);$		$X = (A \cup B) \cap C;$
	$Y = (\overline{A} \cap \overline{B}) \setminus (C \cup D)$		$Y = (\overline{A} \cap D) \cup (C \setminus B)$

15	$\Lambda = \{a, m, n, a, a\}, P = \{a, d, m, w\},$	16	Λ = (b, d, f, α , 1, μ).
15	$A=\{c, m, n, o, q\}; B=\{c, d, m, w\};$	16	(, , , , <u>,</u> , , , , , , , , , , , , , ,
	$C=\{m, n, q\}; D=\{c, m, p\};$		$B=\{d, e, f, m, n, z\};$
	$X = (A \cup B) \cap C$; $Y = (A \cap \overline{B}) \cup (C \setminus D)$		$C=\{h, i, r, x, y\};$
			$D=\{a, e, f, k, r, s, x\};$
			$X = (A \setminus B) \cap (C \cup D),$
			$Y = (\overline{A} \cap D) \cup (C \setminus B)$
17	$A=\{b, d, l, p\}; B=\{b, d, e, l, p, x\}$	18	$A = \{b, c, g, I, w\};$
	$C=\{k, l, p, t\};$		$B=\{e, g, h, q, w\};$
	$D=\{d, k, o, p, q, u, v\};$		$C=\{c, d, k, l, y\};$
	$X = (A \setminus B) \cap (C \cap D);$		$D=\{a, g, h, u, v, z\};$
	$Y = (A \cap \overline{B}) \cup (C \setminus D)$		$X = (A \cap C) \cup B;$
			$Y = (A \cap D) \cup (C \setminus B)$
19	$A=\{a, b, f, g, i\}; B=\{c, f, g, i, s, v\};$	20	$A = \{c, g, h, k, y\};$
	$C=\{a, g, h, i\}; D=\{f, w, x\};$		$B=\{a, b, k, n, u\};$
	$X = (A \cap B) \cup C;$		$C=\{i, j, o, v, z\};$
	$Y = (A \cap \overline{B}) \cup (C \setminus D)$		$D=\{a, b, f, g, y, z\};$
	$I = (A \cap B) \cup (C \setminus D)$		$X = (A \cup B) \cap D;$
			$Y = (\overline{A} \cap D) \cup (\overline{C} \setminus \overline{B})$
21	$A = \{c, g, h, i, j\}; B = \{c, d, i, o, s\};$	22	$A=\{b, d, j, n, t, v\};$
21	$C=\{i, j, r, z\}; D=\{b, c, f, i, w, x\};$		$B = \{f, g, j, r, t, x\};$
	$X = (A \cup B) \cap C;$		$C=\{0, p, x\}; D=\{a, f, m, s, x, y\};$
			$X = (A \cap B) \cup C;$
	$Y = (A \setminus D) \cup (\overline{C} \setminus \overline{B})$		
2.2		2.4	$Y = (\overline{A} \cap D) \cup (C \setminus B)$
23	$A=\{c, f, g, k\}; B=\{e, f, g, m, q\};$	24	$A=\{a, b, d, I, x\};$
	$C=\{h, i, r, w, x\};$		$B = \{d, e, h, i, n, u\};$
	$D=\{b, e, j, u, v, z\};$		$C=\{e, f, m, n\};$
	$X = (A \setminus B) \cap (C \cup D);$		$D=\{a, c, h, k, r, s, w, x\};$
	$Y = (A \setminus D) \cup (\overline{C} \setminus \overline{B})$		$X = (A \setminus C) \cap \overline{B} ;$
			$Y = (\overline{A} \cap D) \cup (C \setminus B)$
25	$A=\{a, e, g, o, p\}; B=\{e, h, i, o, u\};$	26	$A=\{c, d, k, l, m, z\};$
	$C=\{g, h, p, s, t, w\};$		$B=\{b, c, d, n, w\}; C=\{m, n, y\};$
	$D=\{f, h, n, s, t, x, y\};$		$D=\{b, j, l, r, s, w, x\};$
	$X = (A \setminus C) \cap \overline{B};$		$X = (A \cup D) \cap C;$
	$Y = (\overline{A} \cap \overline{B}) \setminus (C \cup D)$		$Y = (A \setminus D) \cup (\overline{C} \setminus \overline{B})$
27	$A = \{a, b, c, d, e, r\};$	28	$A = \{c, f, h, l, o\}; B = \{d, e, f, p, w\};$
	$B=\{b, c, d, f, n, y\};$		C={ i, k};
	C={b, c, h, k, l, s};		$D=\{b, d, g, k, t, u, y, z\};$
	$D=\{a, b, r, s, w, x\};$		$X = \{A \setminus B\} \cap \{C \cap D\};$
	$X = (A \cup D) \cap C;$		$Y = (A \setminus D) \cap (C \cap D),$ $Y = (A \setminus D) \cup (\overline{C} \setminus \overline{B})$
			$Y = (A \setminus D) \cup (C \setminus B)$
	$Y = (\overline{A} \cap D) \cup (C \setminus B)$		

29	$A=\{a, b, c, e, t\};$	30	$A = \{b, c, h, o\};$
	$B=\{b, c, d, e, m, u\};$		$B = \{d, f, g, o, v, y\};$
	$C=\{b, c, f, g, h, u\};$		$C=\{d, e, j, k\}; D=\{a, b, f, g\};$
	$D=\{a, d, q, r, v, w\};$		$X = (A \cap B) \cup C;$
	$X = (A \setminus B) \cap (C \cap D);$		$Y = (A \setminus D) \cup (\overline{C} \setminus \overline{B})$
	$Y = (\overline{A} \cap D) \cup (C \setminus B)$		

Задание 3

No	X	уравнение	№	X	уравнение
1	[-3;0)	$(x+1)(x^2-4x)=0$;	2	[-2;0)	$(x^2+x)(x-5)=0$;
3	(-2; 1]	$(x-1)^2(x^2-3x)=0$;	4	[-2; 0)	$(x+2)(x^2-4x+3)=0;$
5	(-1; 2]	$x^3(x^2-8x+12)=0$;	6	(0; 3]	$(x-2)(x^2-1)=0$
7	[0; 2]	$x\left(x^2+2x-3\right)=0$	8	(1; 4]	$(x^2-x)(x-2)=0$
9	[1; 3]	$(x-2)(x^2-9x+18)=0$	10	[2; 4]	$(x^2-4)(x-4)=0$
11	(2; 5]	$(x+2)(x^2-9x+20)=0$	12	[0; 2)	$\left(x+1\right)\left(x^2-x\right)=0$
13	(3; 6]	$(x+1)(x^2-11x+30)=0$	14	(-1; 3)	$\left(x-1\right)\left(x^2-3x\right)=0$
15	[3; 5]	$(x^2-9)(x-5)=0$	16	[1; 4)	$x(x^2-4x+3)=0$
17	[4; 6]	$(x^2-1)(x-5)=0$	18	(0; 4)	$(x-2)(x^2-9x+18)=0$
19	[3; 6)	$(x^2-4)(x-4)=0$	20	(1; 5)	$(x^2-9)(x-4)=0$
21	(-3; 0]	$(x+2)(x^2-4x)=0$	22	[2; 5)	$(x^2-4)(x-3)=0$
23	(-2; 1]	$\left(x-2)\left(x^2-x\right)=0$	24	[3; 6)	$(x-5)(x^2-x)=0$
25	[-2; 1)	$x\left(x^2-8x+12\right)=0$	26	(2; 6)	$(x+1)(x^2-9x+20)=0$
27	(-1; 2]	$(x-2)(x^2-1)=0$	28	(3; 6)	$(x-4)(x^2-11x+30)=0$
29	[-1; 2)	$\left(x^2-x\right)\left(x-3\right)=0$	30	(3; 6]	$(x-2)(x^2-16)=0$

Порядок выполнения задания, методические указания: - ознакомиться с теоретическими положениями по данной теме; - изучить схему решения задач; - выполнить задания практической работы; - сформулировать выводы.

Содержание отчета: отчет по лабораторной работе должен содержать: основные понятия, рассуждения по решению задач, необходимые вычисления, ответ; вывод по работе.

Контрольные вопросы:

1 Что такое множество?

- 2 Что такое элемент множества?
- 3 Способы задания множества
- 4 Что такое подмножество?
- 5 Какие множества называются равными?
- 6 Что такое пересечение множеств?
- 7 Что называется объединением множеств?
- 8 Что называется разностью множеств?
- 9 Что называется симметрической разностью множеств?
- 10 Что называется дополнением?
- 11 Что такое пустое множество?
- 12 Что называется дополнением множества?
- 13 Что такое булеан?
- 14 Мощность множества
- 15 Свойства операций над множествами
- 16 Декартово произведение множеств
- 17 Мощность декартова произведения

Литература:

- 1 Горбатов В. А. Дискретная математика: учебник для вузов / В. А. Горбатов, А. В. Горбатов, М. В. Горбатова . М. : АСТ, 2003. 447 с. : рис., табл. (Высшая школа). Библиогр.: с.441-444.
- 2 Новиков Ф. А. Дискретная математика: учебник для вузов / Ф. А. Новиков. СПб : Питер, 2007. 364 с.
- 3 Хаггарти Р. Дискретная математика для программистов / Р. Хаггарти. М.: Техносфера, 2005. 400 с.
- 4 Осипова В.А. Основы дискретной математики/В.А.Осипова М.: ФОРУМ: ИНФА-М, 2012. 160 с.