### 第九小組 DBcheckpoint2 報告

組員: A1063329 王新賦、A1063315 許雅涵、A1063306 呂承恩

指導教授:楊子賢教授

\_\_\_\_\_\_

### 一、安裝環境

安裝 appserv(下載網址 <a href="https://www.appserv.org/en/">https://www.appserv.org/en/</a>),根據網站上的步驟進行安裝,讓我們可以用 phpmyadmin。

## 二、如何切割表格

#### (1) 主表格的檔案轉檔

我們採用的是用 phpMyAdmin 去建立資料庫,首先先將 all-mrna.sql 及 sdgGene.sql 轉成 excel 的 xlsx 檔,接著將 all-mrna.xlsx 及 sdgGene.xlsx 分別轉檔為 all-mrna.csv 及 sdgGene.csv,但必須將 xlsx 檔裡的第一行欄位名稱刪掉後,再儲存為 csv 檔。其中 Saccharomyces\_cerevisiae 的資料因為沒有 sql 檔,所以須先手動新增所需要的欄位再轉成 csv 檔。

| d    | 28  | 2     |      | D    | 10  | (F)  | 0    | (#72) | 00 1        |           |       | W   | H D        |         | 0.      | (4))    | 1 | 1          | 1.0         | Y           | W         | - 0      | 400       |          |
|------|-----|-------|------|------|-----|------|------|-------|-------------|-----------|-------|-----|------------|---------|---------|---------|---|------------|-------------|-------------|-----------|----------|-----------|----------|
| 18.3 | 586 | Itte  | 3    |      | R   | P.   |      | - 1   | 16 -        | : CQC11E  | 1796  |     | 1704/64    | Ditte   | 17401   | 3000    |   | HTB.       | 10.         | DWT.        |           |          |           |          |
| 2    | 595 | 127   | - 3  | - 10 | 000 | - 10 | - 1  | - 1   | 10-         | \$300mm   | 121   | - 4 | Utfold     | 2.90218 | 16074   | 19000   |   | 125        | 10,         | HOPOL.      |           |          |           |          |
| 4    | 546 | 125   | - 0  | .00  | 10  | - 10 | - 0  | - 0   | 00-         | 8,03047   | 125   | - 0 | 135 club   | 236219  | 160776  | 180000  |   | 125        | 0,          | HODB.       |           |          |           |          |
|      | 596 | 127   | - 0  | 111  | 16  | 10   |      |       | 16-         | \$.000H   | 123   |     | 137 det    | 29019   | TRENGT  | 155900  |   | 127,       | 16          | 145962.     |           |          |           |          |
| 3.   | 516 | 125   | - 0  | - 10 | 0.  | . 19 |      | - 0   | 10-         | £00042    | 125   |     | 125-del    | Z1027W  | 100001  | 115999  |   | 125        | 0,          | 165864      |           |          |           |          |
| 6    | 560 | 11    |      | .01  | 00  | .10  |      | - 1   | 10.4        | KR0071    | 26    |     | Think!     | 1510003 | 568863  | 190055  |   | 12.        | 10.         | 590000      |           |          |           |          |
| . 2  | 589 | 12    | - 0  | - 0  | 0.0 | - 10 |      | - 4   | H+          | M23398    | - 73  |     | TZ chrfV   | 1511003 | 50063   | 46000   |   | 71.        | II.         | Money).     |           |          |           |          |
|      | 565 | 4185  | - 6  | - 13 | 0.0 | 10   |      | - 1   | 0.5         | MEDIN     | 4993  | - 1 | 4155 jed1  | 817184  | 14065   | 18259   |   | APU.       | 0.          | 1065        |           |          |           |          |
| . 2  | 50  | 219   | - 0. | 0.0  | 00  | - 30 | - 1  | - 1   | 3037+       | 37121121  | 259   |     | 29 chf1    | 913194  | 45612   | 45334   |   | 230227     | 0.10        | 10012,49    | 71.       |          |           |          |
| 11   | 566 | 347   | - 3  | - 11 | - 0 | 11   | +    | - 1   | 384+        | -007596   | .141  |     | 747-Jell   | 913104  | 18641.4 | 9545    |   | THEFT.     | 31,19.      | 38841438    | 49636     |          |           |          |
| 11   | 596 | 2919  |      | - 0  | 11  | - 1  |      | - 1   | 0           | 3/20130   | 3111  |     | 2505 chd1  | 512184  | 177192  | .01740  |   | Z DIOMERO  | 0.35        | 177792.17   | 78114     |          |           |          |
| 12   | 546 | 2456  |      | 11.  | 00. | - 16 | - 1  | - 1   | 10          | M01006    | 7400  |     | (146,341)  | 4131144 | 160900  | 165974  |   | 134,216    | 1,0,795.    | 110802,10   | ST41.     |          |           |          |
| 33   | 587 | 180   | - 0  | 100  | 100 | 1.0  | - 10 | - 0   | III to      | (1)-69(0) | 1,837 | 0.  | D80(468)   | 012104  | APRIL   | (888)   |   | DML        | 33.         | 1000        |           |          |           |          |
| 10   | 567 | 1819  | - 1  | -00  | 0.0 | 11   |      | - 1   | 00-         | EDITE     | 112   | - 1 | 100 cutt   | 813184  | BRHILL  | 11000   |   | 1.000      | 0.          | 300         |           |          |           |          |
| 19.  | 598 | Th.   | - 9  | - 00 | - 6 | 10   |      | - 1   | 500 -       | D17111    | 106   | - 1 | 700 (hd)   | 103014  | 1149(1) | 615214  |   | 2400,15    | 20,691.     | 1201062.0   | 5254      |          |           |          |
| 3.6  | 200 | 127   | - 3  |      | 00  | - 10 | - 1  | - 1   | 307;        | 1071,0125 | 128   | - 8 | 215 (44)   | 813184  | 1000017 | Address |   | £100,28,   | 0.190,      | 428117,40   | 1790      |          |           |          |
| 17   | 386 | 111   | . 7  | 100  | 0.  | +    |      | - 2   | 2           | (8424)78  | 165   | - 4 | 265 dell   | ¥13184  | 400126  | 001466  |   | 9.406,79.2 | 2,004,000,5 | 990000000   | 1218-0113 | 05,40132 | 864315930 | 01361/01 |
| .18  | 59  | - 30  | 0    | 100  | 16  | - 6  | - 4  | - 2   | 191+        | 4727944   | -201  |     | 201 cht1   | 313384  | 462136  | (6)2575 |   | 0.7121403  | 00,11,21    | . 4019.8    | 2395/824  | N)       |           |          |
| .10  | 595 | 1700  | - 5  | . 11 | 0.  | P    |      | - 0   | 00          | 309014    | 1719  |     | 1706-Juli  | \$17104 | 10/8772 | #90179  |   | 1700       | 11%         | -09777      |           |          |           |          |
| 28   | 598 | 1410. | - 0  | - 0  | 0.  | .00  |      | - 0.  | -00-        | APPKKE    | 1907  |     | 18World    | 813104  | 488911  | 4903502 |   | 1481       | 150         | agents,     |           |          |           |          |
| 25   | 5/6 | 10%   | - 12 | - 0  | 11  | 11   |      | - 4   | 16-         | AFRICK    | 1479  |     | (divided)  | 813194  | -pat 15 | (85594) |   | 147%       | 30          | d94715.     |           |          |           |          |
| 22   | 349 | 565   | - 18 | - 0  | 0.0 | - 11 |      | - 1   | 16-         | (1000)2   | 9.60  | - 6 | 585 dell ) | 812184  | 367770  | 569439  |   | 665        | 1.          | 3677%       |           |          |           |          |
| .23  | 500 | 3218  | - 9  |      | 0.0 | . 0  |      | - 2   | 0           | \$10000   | . 其後  |     | 321V chil1 | 313104  | 217/78  | 535000  |   | 1.2226     | 22.         | 30370%      |           |          |           |          |
| 24   | 500 | 475   | - 4  | . 11 | 1   | 1.1  |      |       | · · · III » | M30942    | 461   | - 1 | 402 dell   | 83,3184 | 59(217) | 393252  |   | 2377,294   | 11,238.     | 392171.39   | 7918.     |          |           |          |
| 23   | 295 | 216   | . 1  | - 00 | 11  | 10   |      | 1.0   | 261         | 31F123540 | 296   |     | 259,041    | 813184  | 921313  | 60,960  |   | 2.01200    | 0.43        | 16033110.00 | SALL      |          |           |          |
| 26   | 790 | 96    | - 5  | . 10 | 0.0 | - 10 |      | - 3   | III-        | 1/37900   | 900   | . 2 | 900,000    | 6133184 | 763672  | 79672   |   | 706        | .0,         | 789672.     |           |          |           |          |
| 29   | 931 | 2316  | - 1  | 0.   | U.  | - 16 |      | - 6   | 0.5         | 300203    | -2574 |     | 135.441    | 613194  | 769103  | 701696  |   | 2196       | A           | THOUSE.     |           |          |           |          |

#### (2)主表格檔案的匯入及欄位的建立

接著在 phpMyAdmin 用匯入功能,先匯入 all-mrna.sql、sdgGene.sql、Saccharomyces cerevisiae.sql,以便先將欄位建立起來。



#### (3)資料的匯入

將 all-mrna.csv、sdgGene.csv 檔及 Saccharomyces\_cerevisiae.csv 檔分別匯入已經建立好的 all-mrna 及 sdgGene 及 Saccharomyces\_cerevisiae 的資料表,即會將檔案內的資料值匯入。



#### (4)表格的切割

依據我們所畫的 ER 圖,並且將他轉為 Relational Model 後,可以得知要建立mRna、BlockSizes、qStarts、Target、Matches、tStarts、Chromosome、GENE、exonEnds、exonStarts、Protein 這些 table,接著依據我們所觀察到的關係去下SQL 指令將 table 連結。

#### SQL 的程式碼如下:

(a) 建立 view mRna 時也只需要在 all mrna 中查找出來我們需要的即可。

CREATE VIEW mRNA AS SELECT qname,qend,qbaseinsert,qnuminsert,bin,qsize,qstart,blockCount,mismatches,ncount,repMatches,matches FROM all\_mrna;

(b) 建立 view blockSizes 時只需要在 all\_mrna 中查找出來我們需要的即可。

CREATE VIEW blockSizes AS SELECT blocksizes, qname FROM all\_mrna;

- (c) 建立 view qStarts 時也只需要在 all\_mrna 中查找出來我們需要的即可。

  CREATE view qstarts AS SELECT qname,qstarts from all\_mrna;
- (d) 建立 view target 時也只需要在 all\_mrna 中查找出來我們需要的即可。

  CREATE VIEW target AS SELECT tName,tSize,tStart,tEnd,tstarts,tBaseInsert,tNumInsert FROM all\_mrna;
- (e) 建立 view matches 時,由於我們需要由 matches 查找特定的 mRna 和 target,所以將 all\_mrna 中的 qName、tStart 和 tEnd 查找出來。

  CREATE VIEW matches AS SELECT qname, tstart, tend FROM all mrna;
- (f) 建立 view tStarts 時也只需要在 all\_mrna 中查找出來我們需要的即可。

  CREATE view tstarts AS SELECT tstart, tend, tstarts from all\_mrna;
- (g) 建立 view chromosome 時需要在 sgdgene 中查找出 chrom,由於要加入 tName 所以要加入 chrom=tname,而 tname 和 chrom 多是重複的值,所以 在前面加入 distinct。

  CREATE VIEW chromosome AS SELECT DISTINCT chrom,tName FROM target,sgdgene WHERE chrom=tName;
- (h) GENE

CREATE view gene AS SELECT s.bin,name,chrom,s.strand,cdsStart,cdsEnd,exonCount,proteinid,qname FROM sgdgene s ,all\_mrna a WHERE s.bin=a.bin and s.strand = a.strand;

- (i) 建立 view exonEnds 時也只需要在 sgdgene 中查找出來我們需要的即可。

  CREATE view exonends as SELECT name, exonends FROM sgdgene;
- (j) 建立 view exonStarts 時也只需要在 sgdgene 中查找出來我們需要的即可。

  CREATE view exonstarts As SELECT name, exonstarts FROM sgdgene;
- (k) 建立 view protein 時只要把新增的資料表 BioGRID 中的我們所需要的查找 出來即可。

CREATE view protein as SELECT biogrid, InteractorA, InteractorB FROM biogrid;

# 四、修改後的圖

## 1. Chen's notation w/ cardinality notation



#### 2. UML w/ Crow's notation



### 3. Chen's notation w/ (min, max) notation



## 4. UML w/ (min, max) notation



### 說明:

- 1. 基因裡面包含 name(DNA 的名字)、strand(股)、bin、CDS(編碼區)、proteinID。而 CDS 包含 cdsStarts、cdsEnds、exon,分別為編碼區的開始、結束位置、外顯子。而外顯子又包含 exonCount、exonStarts、exonEnds,分別為外顯子的數量、外顯子開始和結束位置,而編碼區是由外顯子所組成,用來編碼蛋白質的部分。外顯子是基因的一部份,在經過轉錄後仍會被保留下來。
- 2. chromosome 的欄位包含了染色體的名稱 chrom,而基因是被包含在 chrom之中,可以透過查找特定染色體,找到其所包含的基因。
- 3. 基因轉錄成 mRNA,並有記錄轉錄的 txStart(開始)和 txEnd(結束)位置。 mRNA 欄位包含了 bin、qName、qSize、qStart、qEnd、match、qStarts、strand、qBaseInsert、qNumInser、blockCount、blockSizes,分別記錄其查詢名字、大小、查詢的開始位置及結束位置。
- 4. match 包含了 matches、misMatches、repMatches、nCount,可以用來尋找 特定的 Target 值(亦可使用 mRNA 中的其他屬性尋找)。Target 會顯示找到 的對應染色體,而 Target 欄位包含了 tname、tstart、tend、tsize、tstarts、tNumInsert、tBaseInsert,分別記錄其查詢結果所對應到的名字、大小、結果的開始位置及結束位置。
- 5. protein 的欄位包含了 BioGRID(實驗的編號)、InteractorID,而 InteractorID 可以對應到基因中的 name,而在蛋白質交互作用之中 InteractorID 會和另一個 InteractorID 進行實驗。

## 三、ER 圖轉成 relational model



### 說明:

每個 entity 都獨立出來當作一個 table, 而其裡面的屬性就是對應到的 table 欄位,若是屬性為複數,就也將其獨立出來當做一個 table。

- 1. mRna 裡有 qname、qend、qbaseinsert、qnuminsert、q\_bin、qsize、qstart、blockCount、mismatches、ncount、repMatches、matches、strand 這些欄 位。
- 2. BlockSizes 因為是 mRna 裡的複數屬性,因此需要獨立出來,而裡面有本身的 mRna BlockSizes 欄位,也因為他屬於 mRna,因此要多一欄 mRna 的主鍵(qname),指回去 mRna 的 qname。
- 3. qStarts 同 BlockSizes 因為是 mRna 裡的複數屬性,因此需要獨立出來,而裡面有本身的 mRna\_qStarts 欄位,也因為他屬於 mRna,因此要多一欄mRna 的主鍵(qname),指回去 mRna 的 qname。
- 4. target 之中有原本的 tName、tSize、tStart、tEnd、tBaseInsert、tNuminsert 還有用以對應 chromosome 而加入的 chrom。由於 tStarts 是多值,所以將其額外建立一個表格,包含了 tStarts 和 target 中的主鍵 tStart、tEnd。
- 5. 由於 match 是一對多的 relationship,可用以找到特定的 mRna 和 target,所以將 matches 的 relationship 加入 mRna 的主鍵 qName 和 target 的主鍵 tStart 和 tEnd。
- 6. chromosome 由於包含了基因且也可用 target 對應,所以只將 chromosome 的主鍵加入到 target 和基因之中,而 chromosome 只留下 chrom。
- 7. GENE 裡面有 name、cdsEnds、cdStarts、exonCount、bin、strand、chrom、qname 、txEnds 、txStarts、proteinID 這些欄位。其中因為 Gene 與chromosome 為多對一的關係,若是為多對一的關係,就必須在多的那方新增對方的主鍵,因此在 Gene 裡再新增 chromosome 的主鍵(chrom),指回去chromosome 的 chrom。而因為 Gene 與 mRna 為一對一關係,若是為一對一的關係,就在兩個 table 中擇一加入對方的主鍵,而我們是選擇在 Gene裡新增 mRna 的主鍵(qname),指回去 mRna 的 qname,也因為兩者的ralaitonship 有額外的屬性,這些屬性也是可以擇一 table 加入,而我們也是選擇在 Gene 裡新增這些屬性(txEnds 、txStarts)。
- 8. exonStarts 因為是 Gene 裡的複數屬性,因此需要獨立出來,而裡面有本身的 Gene\_exonStarts 欄位,也因為他屬於 Gene,因此要多一欄 Gene 的主鍵 (gname),指回去 Gene 的 gname。
- 9. exonEnds 同 exonStarts 因為是 Gene 裡的複數屬性,因此需要獨立出來,而裡面有本身的 Gene exonEnds 欄位,也因為他屬於 Gene,因此要多一欄 Gene 的主鍵(gname),指回去 Gene 的 gname。
- 10. protein 中有 BioGRID 和 InteractorID,因為 InteractorID 會進行交互作用,所以加入了進行交互作用的兩個 InteractorID(IntercatorA、InteractorB),而 protein 要可以對應到基因,所以加入了基因的主鍵 gname 使其可以找到基因。

# ✓ 王新賦

|     | 評分 | 理由             |
|-----|----|----------------|
| 王新賦 | 5  | 認真討論和和重畫圖      |
| 呂承恩 | 5  | 分割表格,和畫圖       |
| 許雅涵 | 5  | 畫圖、切表格、統整 word |

## ✓ 呂承恩

|     | 評分 | 理由                       |
|-----|----|--------------------------|
| 王新賦 | 5  | 畫圖、切表格                   |
| 呂承恩 | 5  | 切表格、用 phpmyadmin 建<br>表格 |
| 許雅涵 | 5  | 解讀資料表間的關係、 畫圖            |

## ✓ 許雅涵

|     | 評分 | 理由                       |
|-----|----|--------------------------|
| 王新賦 | 5  | 匯入檔案成 excel、畫圖和討論        |
| 呂承恩 | 5  | 建立沒有 sql 檔的檔案、討<br>論和切表格 |
| 許雅涵 | 5  | Word 的統整、討論如何重<br>畫圖     |