STAT 401A - Statistical Methods for Research Workers Multiple regression models

Jarad Niemi (Dr. J)

Iowa State University

last updated: November 7, 2014

Multiple regression

Recall the simple linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

The multiple regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_{i,1} + \cdots + \beta_p X_{i,p}, \sigma^2)$$

where

- Y_i is the response for observation i and
- $X_{i,p}$ is the p^{th} explanatory variable for observation i.

We may also write

$$Y_i \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$$
 or $Y_i = \mu_i + e_i, e_i \stackrel{iid}{\sim} N(0, \sigma^2)$

where

$$\mu_i = \beta_0 + \beta_1 X_{i,1} + \cdots + \beta_p X_{i,p}.$$

Explanatory variables

There is a lot of flexibility in the mean

$$\mu_i = E[Y_i | X_{i,1}, \dots, X_{i,p}] = \beta_0 + \beta_1 X_{i,1} + \dots + \beta_p X_{i,p}$$

as there are many possibilities for the explanatory variables $X_{i,1},\ldots,X_{i,p}$:

- Higher order terms (X^2)
- Additional explanatory variables $(X_1 + X_2)$
- ullet Dummy variables for categorical variables $(X_1=\mathrm{I}())$
- Interactions (X₁X₂)
 - Continuous-continuous
 - Continuous-categorical
 - Categorical-categorical

Interpretation

Model:

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_{i,1} + \cdots + \beta_p X_{i,p}, \sigma^2)$$

The interpretation is

- β_0 is the expected value of the response Y_i when all explanatory variables are zero.
- β_p , $p \neq 0$ is the expected increase in the response for a one-unit increase in the p^{th} explanatory variable when all other explanatory variables are held constant.
- ullet R^2 is the proportion of the variance in the response explained by the model

Higher order terms (X^2)

Let

- Y_i be the distance for the i^{th} run of the experiment and
- H_i be the height for the i^{th} run of the experiment.

Simple linear regression assumes

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 H_i)$$
 , σ^2

The quadratic multiple regression assumes

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 H_i + \beta_2 H_i^2 , \sigma^2)$$

The cubic multiple regression assumes

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 H_i + \beta_2 H_i^2 + \beta_3 H_i^3, \sigma^2)$$

Case1001

SAS code and output

DATA case1001:

```
INFILE 'case1001.csv' DSD FIRSTOBS=2;
INPUT distance height;
height2 = height*height;
height3 = height*height2;

# PROC REG allows multiple MODEL statements
PROC REG DATA=case1001;
MODEL distance = height;
MODEL distance = height height2;
MODEL distance = height height2 height3;
RUN;
```

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	269.71246 0.33334	24.31239 0.04203	11.09 7.93	0.0001
height	1	0.33334	0.04203	7.93	0.0005
Intercept	1	199.91282	16.75945	11.93	0.0003
height	1	0.70832	0.07482	9.47	0.0007
height2	1	-0.00034369	0.00006678	-5.15	0.0068
Intercept	1	155.77551	8.32579	18.71	0.0003
height	1	1.11530	0.06567	16.98	0.0004
height2	1	-0.00124	0.00013842	-8.99	0.0029
height3	1	5.477104E-7	8.327329E-8	6.58	0.0072

SAS code and output

```
DATA case1001:
 INFILE 'case1001.csv' DSD FIRSTOBS=2;
 INPUT distance height;
 height2 = height ** 2:
 height3 = height ** 3:
PROC GLM DATA=case1001:
 MODEL distance = height height2 height3;
/* PROC GLM allows the variable construction within the MODEL statement
   and provides nicer output (not shown here) */
DATA case1001:
  INFILE 'case1001.csv' DSD FIRSTOBS=2;
 INPUT distance height;
/* This shorthand puts in H, H^2, and H^3 */
PROC GLM DATA=case1001:
 MODEL distance = height|height|height:
/* This only puts H^3 */
PROC GLM DATA=case1001;
 MODEL distance = height*height*height:
```

R code and output

```
# Construct the variables by hand
case1001$Height2 = case1001$Height^2
case1001$Height3 = case1001$Height^3
m1 = lm(Distance~Height,
                                         case1001)
m2 = lm(Distance~Height+Height2,
                                       case1001)
m3 = lm(Distance~Height+Height2+Height3, case1001)
coefficients(m1)
(Intercept)
                 Height
   269.7125
                 0.3333
coefficients(m2)
(Intercept)
                 Height
                          Height2
  1 999e+02
             7 083e-01 -3 437e-04
coefficients(m3)
(Intercept)
                 Height
                           Height2
                                        Height3
  1.558e+02
             1.115e+00 -1.245e-03
                                      5.477e-07
```

R code and output

```
# Let R construct the variables for you
m = lm(Distance polv(Height, 3, raw=TRUE), case1001)
summarv(m)
Call:
lm(formula = Distance ~ poly(Height, 3, raw = TRUE), data = case1001)
Residuals:
-2 4036 3 5809 1 8917 -4 4688 -0 0804 2 3216 -0 8414
Coefficients:
                             Estimate Std. Error t value Pr(>|t|)
(Intercept)
                            1.56e+02 8.33e+00 18.71 0.00033 ***
poly(Height, 3, raw = TRUE)1 1.12e+00 6.57e-02 16.98 0.00044 ***
poly(Height, 3, raw = TRUE)2 -1.24e-03 1.38e-04 -8.99 0.00290 **
poly(Height, 3, raw = TRUE)3 5.48e-07 8.33e-08 6.58 0.00715 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.01 on 3 degrees of freedom
Multiple R-squared: 0.999, Adjusted R-squared: 0.999
F-statistic: 1.6e+03 on 3 and 3 DF, p-value: 2.66e-05
```

Longnose Dace Abundance

From http://udel.edu/~mcdonald/statmultreg.html:

I extracted some data from the Maryland Biological Stream Survey. ... The dependent variable is the number of Longnose Dace (Rhinichthys cataractae) per 75-meter section of [a] stream. The independent variables are the area (in acres) drained by the stream; the dissolved oxygen (in mg/liter); the maximum depth (in cm) of the 75-meter segment of stream; nitrate concentration (mg/liter); sulfate concentration (mg/liter); and the water temperature on the sampling date (in degrees C).

Consider the model

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2}, \sigma^2)$$

where

- Y_i: count of Longnose Dace in stream i
- $X_{i,1}$: maximum depth (in cm) of stream i
- $X_{i,2}$: nitrate concentration (mg/liter) of stream i

Exploratory

DATA dace:

INFILE 'Longnose Dace.csv' DSD FIRSTOBS=2;

INPUT stream \$ count acreage do2 maxdepth no3 so4 temp:

PROC REG DATA=dace;

MODEL count = maxdepth no3; RUN:

> The REG Procedure Model: MODEL1 Dependent Variable: count

Number of Observations Read 67 Number of Observations Used 67

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	28930	14465	7.68	0.0010
Error	64	120503	1882.85220		
Corrected Total	66	149432			
Root M	ISE	43.39184	R-Square	0.1936	
Depend	lent Mean	39.10448	Adj R-Sq	0.1684	

Coeff Var 110.96388

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-17.55503	15.95865	-1.10	0.2754
maxdepth	1	0.48106	0.18111	2.66	0.0100
no3	1	8.28473	2.95659	2.80	0.0067

R code and output

```
d = read.csv("longnosedace.csv")
m = lm(count~no3+maxdepth,d)
summary (m)
Call:
lm(formula = count ~ no3 + maxdepth, data = d)
Residuals:
  Min
        10 Median 30 Max
-55.06 -27.70 -8.68 11.79 165.31
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.555 15.959 -1.10 0.2754
no3
            8.285
                      2.957 2.80 0.0067 **
maxdepth 0.481 0.181 2.66 0.0100 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 43.4 on 64 degrees of freedom
Multiple R-squared: 0.194, Adjusted R-squared: 0.168
F-statistic: 7.68 on 2 and 64 DF, p-value: 0.00102
```

Interpretation

- Intercept (β_0): The expected count of Longnose Dace when maximum depth and nitrate concentration are both zero is -18.
- Coefficient for maxdepth (β_1) : Holding nitrate concentration constant, each cm increase in maximum depth is associated with an additional 0.48 Longnose Dace counted on average.
- Coefficient for no3 (β_2): Holding maximum depth constant, each mg/liter increase in nitrate concentration is associated with an addition 8.3 Longnose Dace counted on average.
- Coefficient of determination (R^2) : The model explains 19% of the variability in the count of Longnose Dace.

Using a categorical variable as an explanatory variable.

Regression with a categorical variable

- \bullet Choose one of the levels as the reference level, e.g. N/N85
- Construct dummy variables using indicator functions, i.e.

$$I(A) = \begin{cases} 1 & A \text{ is TRUE} \\ 0 & A \text{ is FALSE} \end{cases}$$

for the other levels, e.g.

 $X_{i,1} = I(\text{diet for observation } i \text{ is N/R40})$ $X_{i,2} = I(\text{diet for observation } i \text{ is N/R50})$ $X_{i,3} = I(\text{diet for observation } i \text{ is NP})$ $X_{i,4} = I(\text{diet for observation } i \text{ is R/R50})$ $X_{i,5} = I(\text{diet for observation } i \text{ is lopro})$

• Estimate the parameters of a multiple regression model using these dummy variables.

SAS code and output

```
DATA case0501;
  INFILE 'case0501.csv' DSD FIRSTOBS=2;
 INPUT lifetime diet $:
PROC GLM DATA=case0501;
 CLASS diet(REF='N/N85'); /* by default, SAS uses the alphabetically last group as the reference level */
 MODEL lifetime=diet / SOLUTION:
 RUN;
                                         The GLM Procedure
Dependent Variable: lifetime
                                                Sum of
       Source
                                               Squares
                                                           Mean Square
                                                                           F Value
                                                                                      Pr > F
                                           12733.94181
                                                            2546.78836
                                                                             57.10
                                                                                      < .0001
       Model
                                   343
                                           15297.41532
                                                              44.59888
       Error
       Corrected Total
                                   348
                                           28031.35713
                      R-Square
                                    Coeff Var
                                                   Root MSE
                                                               lifetime Mean
                      0.454275
                                     17.21323
                                                   6.678239
                                                                     38.79713
                                                       Standard
           Parameter
                                     Estimate
                                                                   t Value
                                                                               Pr > |t|
                                                          Error
           Intercept
                                  32.69122807 B
                                                     0.88455439
                                                                      36.96
                                                                                 <.0001
                                 12.42543860 B
                                                     1.23521298
                                                                     10.06
                                                                                 < .0001
           diet
                     N/R40
                     N/R50
                                                                                 < .0001
           diet
                                  9.60595503 B
                                                     1.18768248
                                                                      8.09
           diet.
                     NP
                                 -5.28918725 B
                                                     1.30100640
                                                                     -4.07
                                                                                 <.0001
           diet
                     R/R50
                                 10.19448622 B
                                                     1.25652099
                                                                      8.11
                                                                                 < .0001
                                                                       5.57
                                                                                 < .0001
           diet
                     lopro
                                  6.99448622 B
                                                     1.25652099
                     N/N85
                                  0.00000000 B
           diet
```

R code and output

```
# by default, R uses the alphabetically first group as the reference level
case0501$Diet = relevel(case0501$Diet, ref='N/N85')
m = lm(Lifetime~Diet, case0501)
summary(m)
Call:
lm(formula = Lifetime ~ Diet, data = case0501)
Residuals:
          10 Median 30
   Min
                                Max
-25.517 -3.386 0.814 5.183 10.014
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 32.691 0.885
                             36.96 < 2e-16 ***
DietN/R40 12.425 1.235 10.06 < 2e-16 ***
DietN/R50 9.606 1.188 8.09 1.1e-14 ***
      -5.289 1.301 -4.07 5.9e-05 ***
DietNP
DietR/R50 10.194 1.257 8.11 8.9e-15 ***
Dietlopro 6.994
                      1.257 5.57 5.2e-08 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 6.68 on 343 degrees of freedom
Multiple R-squared: 0.454, Adjusted R-squared: 0.446
F-statistic: 57.1 on 5 and 343 DF, p-value: <2e-16
```

Interpretation

- $\beta_0 = E[Y_i|\text{reference level}]$, i.e. expected response for the reference level
 - Note: the only way $X_{i,1} = \cdots = X_{i,p} = 0$ is if all indicators are zero, i.e. at the reference level.
- $\beta_p, p>0$: expected change in the response moving from the reference level to the level associated with the p^{th} dummy variable Note: the only way for $X_{i,p}$ to increase by one and all other indicators to stay constant is if initially $X_{i,1}=\cdots=X_{i,p}=0$ and now $X_{i,p}=1$

For example,

- The expected lifetime for mice on the N/N85 diet is 32.7 weeks.
- The expected increase in lifetime for mice on the N/R40 diet compared to the N/N85 diet is 12.4 weeks.
- The model explains 45% of the variability in mice lifetimes.

Using a categorical variable as an explanatory variable.

Interactions

Why an interaction?

Two explanatory variables are said to interact if the effect that one of them has on the mean response depends on the value of the other.

For example,

- Longnose dace: The effect of nitrate (no3) on longnose dace count depends on the maxdepth. (Continuous-continuous)
- Case1002: The effect of mass on energy depends on the species type. (Continuous-categorical)
- Yield: the effect of tillage method depends on the fertilizer brand (Categorical-categorical)

Continuous-continuous interaction

For observation i, let

- Y_i be the response
- $X_{i,1}$ be the first explanatory variable and
- $X_{i,2}$ be the second explanatory variable.

The mean containing only main effects is

$$\mu_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2}.$$

The mean with the interaction is

$$\mu_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \beta_3 X_{i,1} X_{i,2}.$$

Intepretation - main effects only

Let $X_{i,1} = x_1$ and $X_{i,2} = x_2$, then we can rewrite the line (μ) as

$$\mu = (\beta_0 + \beta_2 x_2) + \beta_1 x_1$$

which indicates that the intercept of the line for x_1 depends on the value of x_2 .

Similarly,

$$\mu = (\beta_0 + \beta_1 x_1) + \beta_2 x_2$$

which indicates that the intercept of the line for x_2 depends on the value of x_1 .

Intepretation - with an interaction

Let $X_{i,1} = x_1$ and $X_{i,2} = x_2$, then we can rewrite the mean (μ) as

$$\mu = (\beta_0 + \beta_2 x_2) + (\beta_1 + \beta_3 x_2) x_1$$

which indicates that both the intercept and slope for x_1 depend on the value of x_2 .

Similarly,

$$\mu = (\beta_0 + \beta_1 x_1) + (\beta_2 + \beta_3 x_1) x_2$$

which indicates that both the intercept and slope for x_2 depend on the value of x_1 .

Visualizing the models

SAS code and output - main effects only

```
DATA longnosedace;

INFILE 'longnosedace.csv' DSD FIRSTOBS=2;

INPUT stream $ count acreage do2 maxdepth no3 so4 temp;

PROC GLM DATA=longnosedace;

MODEL count = no3 maxdepth;

RUN;
```

The GLM Procedure

Dependent Variable: count

				Sum of			
Source		DF	5	Squares	Mean Square	F Value	Pr > F
Model		2	2892	29.7279	14464.8639	7.68	0.0010
Error		64	12050	02.5408	1882.8522		
Correcte	ed Total	66	14943	32.2687			
	R-Sq	uare Coef	f Var	Root M	SE count M	ean	
	0.19	3598 110	.9639	43.391	39.10	448	
				Standar	i		
	Parameter	Estima	ite	Erro	r t Value	Pr > t	
	Intercept	-17.555033	30	15.9586499	4 -1.10	0.2754	
	no3	8.284725	02	2.9565940	3 2.80	0.0067	
	maxdepth	0.481059	14	0.1811122	7 2.66	0.0100	

SAS code and output - with an interaction

```
PROC GLM DATA=longnosedace;
  MODEL count = no3|maxdepth;
  RUN;
```

The GLM Procedure

Dependent Variable: count

				Sum of				
Source		DF		Squares	Mea	n Square	F Value	Pr > F
Model		3	346	48.4646	11	549.4882	6.34	0.0008
Error		63	1147	83.8040	1	821.9651		
Corrected Total		66	1494	32.2687				
R-S	quare	Coeff	Var	Root	MSE	count Mea	n	
0.2	31867	109.	1550	42.6	3448	39.1044	18	
				Stan	dard			
Parameter		Estima	te	E	ror	t Value	Pr > t	
Intercept		13.321042	69	23.4557	0999	0.57	0.5721	
no3		-4.646272	11	7.8569	3213	-0.59	0.5564	
maxdepth		-0.009337	87	0.3291	3045	-0.03	0.9775	
no3*maxdepth		0.201218	72	0.1135	7647	1.77	0.0813	

R code and output - main effects only

```
d = read.csv("longnosedace.csv")
mM = lm(count ~ no3+maxdepth, d)
summary (mM)
Call:
lm(formula = count ~ no3 + maxdepth, data = d)
Residuals:
  Min
        10 Median 30 Max
-55.06 -27.70 -8.68 11.79 165.31
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.555 15.959 -1.10 0.2754
           8.285
no3
                      2.957 2.80 0.0067 **
maxdepth 0.481 0.181 2.66 0.0100 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 43.4 on 64 degrees of freedom
Multiple R-squared: 0.194, Adjusted R-squared: 0.168
F-statistic: 7.68 on 2 and 64 DF, p-value: 0.00102
```

R code and output - with an interaction

```
mI = lm(count ~ no3*maxdepth, d)
summary(mI)
Call:
lm(formula = count ~ no3 * maxdepth, data = d)
Residuals:
  Min
         1Q Median 3Q Max
-65.11 -21.40 -9.56 5.95 151.07
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.32104 23.45571 0.57
                                        0.572
no3
          -4.64627 7.85693 -0.59
                                      0.556
maxdepth
          -0.00934 0.32918 -0.03 0.977
no3:maxdepth 0.20122 0.11358 1.77 0.081 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 42.7 on 63 degrees of freedom
Multiple R-squared: 0.232, Adjusted R-squared: 0.195
F-statistic: 6.34 on 3 and 63 DF, p-value: 0.000797
```

Visualizing the model

Continuous-categorical interaction

Let category A be the reference level. For observation i, let

- \bullet Y_i be the response
- ullet $X_{i,1}$ be the continuous explanatory variable,
- \bullet B_i be a dummy variable for category B, and
- C_i be a dummy variable for category C.

The mean containing only main effects is

$$\mu_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 B_i + \beta_3 C_i.$$

The mean with the interaction is

$$\mu_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 B_i + \beta_3 C_i + \beta_4 X_{i,1} B_i + \beta_5 X_{i,1} C_i.$$

Think about this model as a different line for each level of the categorical explanatory variable.

Interpretation for the main effect model

The mean containing only main effects is

$$\mu_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 B_i + \beta_3 C_i.$$

For each category, the line is

Category	Line (μ)				
Α	$eta_{f 0}$	+	$\beta_1 X$		
В	$(\beta_0 + \beta_2)$	+	$\beta_1 X$		
С	$(\beta_0 + \beta_3)$	+	$\beta_1 X$		

Each category has a different intercept, but a common slope.

Interpretation for the model with an interaction

The model with an interaction is

$$\mu_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 B_i + \beta_3 C_i + \beta_4 X_{i,1} B_i + \beta_5 X_{i,1} C_i$$

For each category, the line is

Category	Li	ne (μ)
Α	β_0	$+\beta_1$ X
В	$(\beta_0 + \beta_2)$ $(\beta_0 + \beta_3)$	$+(\beta_1+\beta_4)X$
С	$(\beta_0 + \beta_3)$	$+(\beta_1+\beta_5)X$

Each category has its own intercept and its own slope.

Visualizing the models

Main effects only

Continuous explanatory variable

with an interaction

Continuous explanatory variable

SAS code and output - main effects only

```
DATA case1002;
  INFILE 'case1002.csv' DSD FIRSTOBS=2:
 LENGTH Type $22.;
 INPUT Mass Type $ Energy;
 lMass
         = log(Mass);
 lEnergy = log(Energy);
PROC GLM DATA=case1002;
 CLASS Type(REF='non-echolocating bats'):
 MODEL lEnergy = Type lMass / SOLUTION:
                                               Sum of
       Source
                                              Squares
                                                          Mean Square
                                                                          F Value
                                                                                     Pr > F
                                          29.42148268
                                                           9.80716089
                                                                          283.59
                                                                                     < .0001
       Model
                                   16
                                           0.55331753
       Error
                                                           0.03458235
       Corrected Total
                                   19
                                          29.97480021
                      R-Square
                                   Coeff Var
                                                  Root MSE
                                                              lEnergy Mean
                      0.981541
                                    7 491872
                                                                  2.482201
                                                  0.185963
                                                              Standard
                                                                 Error
                                                                          t Value
                                                                                      Pr > |t|
   Parameter
                                            Estimate
                                        -1.576360194 B
                                                            0.28723642
                                                                            -5.49
                                                                                        <.0001
   Intercept
                                                                             0.39
  Type
             echolocating bats
                                         0.078663681 B
                                                            0.20267926
                                                                                        0.7030
             non-echolocating birds
                                                                             0.90
                                                                                        0.3837
   Type
                                         0.102261918 B
                                                            0.11418264
   Туре
             non-echolocating bats
                                         0.000000000 B
   1Mass
                                         0.814957494
                                                            0.04454143
                                                                            18.30
                                                                                        < .0001
```

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable

SAS code and output - with an interaction

```
CLASS Type(REF='non-echolocating bats'):
MODEL lEnergy = Type | 1Mass / SOLUTION;
                                              Sum of
     Source
                                             Squares
                                                         Mean Square
                                                                         F Value
                                                                                    Pr > F
     Model
                                         29.46993221
                                                           5.89398644
                                                                          163.44
                                                                                     < .0001
     Error
                                  14
                                          0.50486800
                                                           0.03606200
     Corrected Total
                                         29.97480021
                                  19
                    R-Square
                                  Coeff Var
                                                 Root MSE
                                                              lEnergy Mean
                     0.983157
                                  7.650468
                                                0.189900
                                                                 2.482201
                                                               Standard
 Parameter
                                            Estimate
                                                                  Error
                                                                           t Value
                                                                                       Pr > |t|
                                                             1.26133425
                                                                             -0.16
                                                                                         0.8748
 Intercept
                                        -0.202447571 B
                                        -1.268067693 B
                                                                             -0.99
                                                                                         0.3406
 Type
            echolocating bats
                                                             1.28542004
 Туре
            non-echolocating birds
                                        -1.378390198 B
                                                             1.29524130
                                                                             -1.06
                                                                                         0.3053
            non-echolocating bats
Type
                                         0.000000000 B
 1Mass
                                         0.589782057 B
                                                             0.20613801
                                                                              2.86
                                                                                         0.0126
 lMass*Type echolocating bats
                                         0.214874992 B
                                                             0.22362264
                                                                              0.96
                                                                                         0.3529
 lMass*Type non-echolocating birds
                                                             0.21343221
                                                                               1.15
                                                                                         0.2691
                                         0.245588273 B
 lMass*Type non-echolocating bats
                                         0.000000000 B
```

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

PROC GLM DATA=case1002:

R code and output - main effects only

```
case1002$Type = relevel(case1002$Type, ref='non-echolocating bats') # match SAS
summary(mM <- lm(log(Energy)~log(Mass)+Type, case1002))</pre>
Call:
lm(formula = log(Energy) ~ log(Mass) + Type, data = case1002)
Residuals:
   Min
           10 Median 30
                                 Max
-0.2322 -0.1220 -0.0364 0.1257 0.3446
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         -1.5764
                                    0.2872 -5.49 5.0e-05 ***
log(Mass)
                         0.8150 0.0445 18.30 3.8e-12 ***
Typeecholocating bats
                      0.0787 0.2027 0.39 0.70
Typenon-echolocating birds 0.1023 0.1142 0.90 0.38
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.186 on 16 degrees of freedom
Multiple R-squared: 0.982, Adjusted R-squared: 0.978
F-statistic: 284 on 3 and 16 DF, p-value: 4.46e-14
```

R code and output - with an interaction

```
summary(mI <- lm(log(Energy)~log(Mass)*Type, case1002))</pre>
Call:
lm(formula = log(Energy) ~ log(Mass) * Type, data = case1002)
Residuals:
   Min
           10 Median
                                 Max
-0.2515 -0.1264 -0.0095 0.0812 0.3284
Coefficients:
                                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                    -0.202
                                               1.261 -0.16
                                                               0.875
log(Mass)
                                     0.590
                                               0.206 2.86 0.013 *
                                    -1.268 1.285 -0.99 0.341
Typeecholocating bats
Typenon-echolocating birds
                                    -1.378 1.295 -1.06 0.305
log(Mass): Typeecholocating bats
                               0.215 0.224 0.96
                                                             0.353
log(Mass): Typenon-echolocating birds 0.246
                                               0.213 1.15
                                                             0.269
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.19 on 14 degrees of freedom
Multiple R-squared: 0.983, Adjusted R-squared: 0.977
F-statistic: 163 on 5 and 14 DF, p-value: 6.7e-12
```

Visualizing the models

Let category A and type 0 be the reference level. For observation i, let

- Y_i be the response,
- 1_i be a dummy variable for type 1,
- \bullet B_i be a dummy variable for category B, and
- C_i be a dummy variable for category C.

The mean containing only main effects is

$$\mu_i = \beta_0 + \beta_1 1_i + \beta_2 B_i + \beta_3 C_i.$$

The mean with an interaction is

$$\mu_i = \beta_0 + \beta_1 1_i + \beta_2 B_i + \beta_3 C_i + \beta_4 1_i B_i + \beta_5 1_i C_i$$
.

Interpretation for the main effects model

The mean containing only main effects is

$$\mu_{i} = \beta_{0} + \beta_{1} 1_{i} + \beta_{2} B_{i} + \beta_{3} C_{i}.$$

- β_0 is the expected response for category A and type 0
- ullet eta_1 is the change in response for moving from type 0 to type 1
- ullet eta_2 is the change in response for moving from category A to category B
- ullet eta_3 is the change in response for moving from category A to category C

The means are then

		Category		
	Type	A	В	С
-	0	β_0	$\beta_0 + \beta_2$	$\beta_0 + \beta_3$
	1	$\beta_0 + \beta_1$	$\beta_0 + \beta_1 + \beta_2$	$\beta_0 + \beta_1 + \beta_3$

Interpretation for the model with an interaction

The mean with an interaction is

$$\mu_i = \beta_0 + \beta_1 1_i + \beta_2 B_i + \beta_3 C_i + \beta_4 1_i B_i + \beta_5 1_i C_i.$$

- β₀ is the expected response for category A and type 0
- ${\color{red} oldsymbol{\Theta}}$ β_1 is the change in response for moving from type 0 to type 1 for category A
- lacktriangle eta_2 is the change in response for moving from category A to category B for type 0
- lacktriangledown eta_3 is the change in response for moving from category A to category C for type 0
- lacktriangledown eta_4 is the difference in change in response for moving from category A to category B for type 1 compared to type 0
- lacktriangledown eta_5 is the difference in change in response for moving from category A to category C for type 1 compared to type 0

The means are then

	Category				
Туре	Α	В	C		
0	β_0	$\beta_0 + \beta_2$	$\beta_0 + \beta_3$		
1	$\beta_0 + \beta_1$	$\beta_0 + \beta_1 + \beta_2 + \beta_3$	$\beta_0 + \beta_1 + \beta_3 + \beta_5$		

This is referred to as the cell-means model.

Visualizing the models

SAS code and output - main effects only

```
DATA case1301;
  INFILE 'case1301.csv' DSD FIRSTOBS=2;
 INPUT Cover Block $ Treat $:
PROC GLM DATA=case1301;
 WHERE Block IN ('B1', 'B2') AND Treat IN ('L', 'Lf', 'LfF'):
 CLASS Block Treat: /* reference levels default to 1st alphabetically */
 MODEL Cover = Block Treat / SOLUTION:
                                              Sum of
       Source
                                             Squares
                                                         Mean Square
                                                                        F Value
                                                                                   Pr > F
      Model
                                         32.08333333
                                                         10.69444444
                                                                           6.04
                                                                                   0.0188
       Error
                                         14.16666667
                                                          1.77083333
                                  11
                                         46.25000000
       Corrected Total
                      R-Square
                                   Coeff Var
                                                  Root MSE
                                                              Cover Mean
                      0.693694
                                    31.31121
                                                  1.330727
                                                                4.250000
                                                    Standard
            Parameter
                                  Estimate
                                                       Error
                                                                t Value
                                                                           Pr > |t|
                                                  0.76829537
                                                                   6.07
                                                                             0.0003
            Intercept
                               4.666666667 B
            Block
                      R2
                               2 166666667 B
                                                  0.76829537
                                                                   2.82
                                                                             0.0225
            Block
                             0.000000000 B
            Treat Lf
                                                  0.94096582
                                                                  -1.59
                              -1.500000000 B
                                                                             0.1496
                                                  0.94096582
                                                                  -3.19
                                                                             0.0128
            Treat
                              -3.000000000 B
```

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

0.000000000 B

Treat

SAS code and output - with an interaction

```
PROC GLM DATA=case1002;
 WHERE Block IN ('B1', 'B2') AND Treat IN ('L', 'Lf', 'LfF');
 CLASS Block Treat:
 MODEL Cover = Block|Treat / SOLUTION;
                                                Sum of
       Source
                                               Squares
                                                           Mean Square
                                                                          F Value Pr > F
       Model
                                          36.75000000
                                                            7.35000000
                                                                             4.64
                                                                                     0.0443
       Error
                                            9.50000000
                                                            1.58333333
       Corrected Total
                                   11
                                          46.25000000
                       R-Square
                                    Coeff Var
                                                    Root MSE
                                                                Cover Mean
                       0.794595
                                     29.60719
                                                    1.258306
                                                                  4.250000
                                                        Standard
          Parameter
                                     Estimate
                                                           Error
                                                                    t Value
                                                                               Pr > |t|
          Intercept
                                  4.000000000 B
                                                      0.88975652
                                                                       4.50
                                                                                 0.0041
          Block
                                                                       2.78
                      B2
                                  3.500000000 B
                                                      1.25830574
                                                                                 0.0319
          Block
                      R1
                                  0.00000000 B
          Treat
                      I.f
                                  0.00000000 B
                                                      1.25830574
                                                                       0.00
                                                                                 1.0000
                      LfF
                                                      1.25830574
                                                                      -1.99
                                                                                 0.0941
          Treat
                                 -2.500000000 B
                                  0.00000000 B
          Treat
          Block*Treat B2 Lf
                                                      1.77951304
                                                                      -1.69
                                                                                 0.1428
                                 -3.00000000 B
          Block*Treat B2 LfF
                                                      1.77951304
                                                                      -0.56
                                                                                 0.5945
                                 -1.000000000 B
          Block*Treat B2 L
                                  0.000000000 B
          Block*Treat B1 Lf
                                  0.000000000 B
          Block*Treat B1 LfF
                                  0.000000000 B
          Block*Treat B1 L
                                  0.000000000 B
```

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not

R code and output - main effects only

```
# Set the reference levels
case1301$Block = relevel(case1301$Block, ref='B1')
case1301$Treat = relevel(case1301$Treat, ref='L')
summary(mM <- lm(Cover~Block+Treat, case1301, subset=Block %in% c("B1","B2") & Treat %in% c("L","Lff","Lff")))</pre>
Call:
lm(formula = Cover ~ Block + Treat, data = case1301, subset = Block %in%
   c("B1", "B2") & Treat %in% c("L", "Lf", "LfF"))
Residuals:
  Min 10 Median 30 Max
-2.333 -0.667 0.000 0.792 1.833
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.667 0.768 6.07 0.0003 ***
BlockB2
       2.167 0.768 2.82 0.0225 *
TreatLf -1.500 0.941 -1.59 0.1496
TreatLfF -3.000 0.941 -3.19 0.0128 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.33 on 8 degrees of freedom
Multiple R-squared: 0.694, Adjusted R-squared: 0.579
F-statistic: 6.04 on 3 and 8 DF, p-value: 0.0188
```

R code and output - with an interaction

```
summary(mI <- lm(Cover~Block*Treat, case1301, subset=Block %in% c("B1","B2") & Treat %in% c("L","Lff","Lff")))
Call:
lm(formula = Cover ~ Block * Treat, data = case1301, subset = Block %in%
   c("B1", "B2") & Treat %in% c("L", "Lf", "LfF"))
Residuals:
  Min
          10 Median
                       30
                            Max
-1.500 -0.625 0.000 0.625 1.500
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
             4 00e+00 8 90e-01 4 50 0 0041 **
BlockB2
             3.50e+00 1.26e+00 2.78 0.0319 *
TreatLf -2.72e-16 1.26e+00 0.00 1.0000
TreatLfF -2.50e+00 1.26e+00 -1.99 0.0941 .
BlockB2:TreatLf -3.00e+00 1.78e+00
                                    -1.69 0.1428
BlockB2:TreatLfF -1.00e+00 1.78e+00
                                    -0.56 0.5945
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.26 on 6 degrees of freedom
Multiple R-squared: 0.795, Adjusted R-squared: 0.623
F-statistic: 4.64 on 5 and 6 DF, p-value: 0.0443
```

Visualizing the models

When to include interaction terms

From The Statistical Sleuth (3rd ed) page 250:

- when a question of interest pertains to an interaction
- when good reason exists to suspect an interaction or
- when interactions are proposed as a more general model for the purpose of examining the goodness of fit of a model without interaction.

Multiple regression explanatory variables

The possibilities for explanatory variables are

- Higher order terms (X^2)
- Additional explanatory variables $(X_1 \text{ and } X_2)$
- Dummy variables for categorical variables $(X_1 = I())$
- Interactions (X_1X_2)
 - Continuous-continuous
 - Continuous-categorical
 - Categorical-categorical

We can also combine these explanatory variables, e.g.

- including higher order terms for continuous variables along with dummy variables for categorical variables and
- including higher order interactions $(X_1X_2X_3)$.