Thm 1 G=loc comp group. Then $\exists a \text{ pos lin. functional}$ $I: C_c(G) \to C, \text{ I is left inv, I } \bot D.$ $C_c(G) = \{\text{cont. f: } G \to C \mid \text{supp f is} \}$ $\text{Lemma 1, f } g \in C_c(G), g \neq 0, n$

Lemma 1, $f,g \in C_c(G)$, $g \neq 0$ $\exists C>0 \exists x_1,...,x_n \in G$ st. $f \leq C \underbrace{\sum_{i=1}^{n} L_{x_i} g}$.

Notation $(f:g) = \inf \left\{ \sum_{i=1}^{n} C_i : f \leq \sum_{i=1}^{n} C_i L_{x_i} g \text{ for some } x_1, \neg x_n \in G \right\}$ ("a relative appr. integral" of f rel. to g) (fdx)6

Lemma 2 (1)
$$(cf:g)=c(f:g) \ \forall c>0$$
 "an apprintegral"

(2) $(f_1+f_2:g) \leq (f_1:g)+(f_2:g)$
(3) $(L\times f:g)=(f:g) \ \forall \times \in G$
(4) $(f:g) \geq \frac{|f|_{L_{\infty}}}{|g|_{L_{\infty}}}$ (5) $(f:g) \leq (f:h)(h:g)$ $(h,g\neq t)$

Proof: exer.

Notation Choose $f_0 \in C^+(G)$ $f_0 \neq 0$.

Define, $\forall g \in C^+(G)$ $f_0 \neq 0$.

 $I_g(f) = \frac{(f:g)}{(f_0:g)}$

Define, $\forall g \in C^+(G)$ $f_0 \neq 0$.

 $I_g(f) = \frac{(f:g)}{(f_0:g)}$

Lemma 3 (1)
$$I_{\varphi}(cf) = cI_{\varphi}(f) \forall c \geq 0$$

(2) $I_{\varphi}(f_1 + f_2) \leq I_{\varphi}(f_1) + I_{\varphi}(f_2)$

(3) $I_{\varphi}(L \times f) = I_{\varphi}(f) \forall x \in G$.

(4) $f_{\varphi}(f) \leq I_{\varphi}(f) \leq (f_{\varphi}(f))$

Proof of (4)

(fighthalf) $f_{\varphi}(f) \leq (f_{\varphi}(f))$

(fight

Lemma 4. Let fife Ct(G). Then YE>O Find WDE s.t. $\forall \varphi \in C^{t}(G) \setminus \{0\}$ with supp $\varphi \in C^{t}(G)$, we have $I_{\varphi}(f_1) + I_{\varphi}(f_2) \leq I_{\varphi}(f_1 + f_2) + \mathcal{E}.$ Proof of Thm Let $P=C^+(G)\setminus\{0\}$. $\forall \varphi \in P \quad \mathcal{I}_{\varphi} \in (0,+\infty)^{P}$ let $S_{\ell} = \left[\frac{1}{f_0:f_1} \right] (3:f_0)$

Yulohd Vae let Ku={Ip/YEP, suppyCV} C S $K_{U} \neq \emptyset$ $V \subset V \implies K_{U} \subset K_{V}$. Hence $K_{U_{1}} \cap \dots \cap K_{U_{n}} \supset K_{U_{1}} \cap \dots \cap V_{n} \neq \emptyset$ Hence {Ku:U>e} has the finite intersec property Let IEOKUES Uje (compactness) I.P->(0,+00). Claim: I is poshing, additive, and left invar.

YUDE YESO YJ1, ..., INEP BYEP with suppy CUX(x) s.t. $|I(f_i)-I_{\varphi}(f_i)|<\varepsilon$ $\forall j=1,...,n$ (*) & L3 =) I is pos.hmg, subadd, left invar. (*) & LTH => I is addutive that is, $I(f_1+f_2)=I(f_1)+I(f_2)$ $I(f_2)$ $I(f_2)$ $I(f_2)$. Let I(0)=0.

Let I(0)=0. $\forall f \in C_c(G)$ $f = (f_1-f_2)+i(f_3-f_4)$, where $f_k \in C_c(G)$ (k=1,1,4)Let $I(f) = I(f_1)-I(f_2)+i(I(f_3)-I(f_4))$ Exer. I: C_c(G) -> C is well defined, linear, I+O and left invocr.

Proof of L4. Let $f=f_1+f_2+8u$, where 8>0, and $u \in C_c^+(G)$ s.t. u(x)=1 $\forall x \in supp (f_1+f_2)$ $f_k=fh_k$ (k=1,2) where $h_k \in C_c^+(G)$ (exer). Suppose $f \leq \sum_{i=1}^{\infty} c_i L_{x_i} \varphi$ ($c_i \geq 0, x_i \in G$)

(=1,2) that is, JLS Z CihkLxi 4 $\int_{K} (x) \leq \sum_{i=1}^{\infty} c_{i} h_{K}(x) \varphi(x_{i}^{-1}x)$ \exists a nbhl $U \ni e$ st. $\forall x, y \in G$ substying $x^T y \in U$ we have $|h_K(x) - h_K(y)| < \delta$. (k=1,2)Suppose suppyCV.

If x=1x &U, then the RHS of (*) is 0. 工的人人人人 If $x; x \in U$, then $|h_k(x) - h_l(x;)| \leq \delta$ 1-19

$$=) (f_{k}: \psi) \leq \sum_{i} C_{i} (h_{k}(x_{i}) + \delta) \qquad (k=1,2)$$

$$=) (f_{i}: \psi) + (f_{2}: \psi) \leq \sum_{i} C_{i} (1+\delta) \qquad (because h_{i} + h_{2} \leq 1)$$

$$=) (f_{i}: \psi) + (f_{2}: \psi) \leq (1+\delta) \qquad (f_{3}: \psi) \qquad (f_{3}: \psi)$$

$$=) I_{\psi}(f_{i}) + I_{\psi}(f_{2}) \leq (1+\delta) \qquad I_{\psi}(f_{3}) \leq (1+\delta) \qquad (I_{\psi}(f_{3}) + \delta \qquad I_{\psi}(f_{3}) + \delta \qquad (I_{\psi}(f_{3}) + \delta \qquad (I_{\psi}(f_{3}) + \delta \qquad I_{\psi}(f_{3}) + \delta \qquad (I_{\psi}(f_{3}) + \delta \qquad (I_{\psi$$

The uniqueness of the Haar meering.

Proof (1) Suppose M(U)=0.

Y compact set KCG KC x, V U... U x, V for some x, ..., x, n => $\mu(R)=0$ => $\mu=0$ on open sets (by inner regularity) => $\mu=0$ on all Borel sets (by outer reg.), a conton

2)
$$f = 0$$
 M-a.e., that is, $M\left(\frac{f^{-1}(0,+\infty)}{open}\right) = 0$ Depen

Lemma 2. $G = loc. comp. group. M = a Rad meas on G .

Let $f \in C(G)$; define $g(x) = I_{M}(R_{x}f)$, $h(x) = I_{M}(L_{x}f)$.

Then g , h are cont.

Proof. (continuity of g at e).

 $|g(x) - g(e)| \leq |f(yx) - f(y)| d\mu(y)$$

 $\forall \epsilon > 0 \exists \text{ nbhd } U \ni \epsilon \text{ s.t. } |f(yx) - f(y)| < \epsilon \forall y \in G, \forall x \in U$ Let F=suppf, choose a relicompact, symm. hbhd V>e; let K=F·V. Claim: if $y \notin K$, then f(y) = f(yx) = 0 ($x \in V$). Indeed, if $f(yx) \neq 0$, then $yx \in F \Rightarrow y \in F \cdot x^{1} \subset F \cdot V \subset K$ (a contr) $= |g(x) - g(e)| \le \int |f(yx) - f(y)| d\mu(y) < \varepsilon \mu(K) = g is contained.$ (XEVNU) Exer. Complete the proof D

Thm2. G=loc.comp group, M,V=(left) Haar measures on G. =>33c>0 s.t. V=cµ. Pronf YfeC(G) KerIm define Dj:G-OC, $D_f(x) = \frac{I_J(R_x f)}{I_M f}. \quad L2 \Rightarrow D_f \text{ is cont.}$ Claim De does not depend on f. (x) If (x) is true, then Iv(f) = D(e) In(f) & JEKENIM

 $\Longrightarrow I_J = D(e)I_M$ everywhere on $C_c(G) \Longrightarrow V = C_M$, where c = D(e). Let's prove (x) $I_{n}(f)I_{1}(g) = \iint f(x)g(y)d\nu(y)d\mu(x) = \iint f(x)g(x^{2}y)d\nu(y)d\mu(x)$ $\overline{=} \iint f(x)g(x^{2}y)d\mu(x)d\nu(y) = \iint f(yx)g(x^{2})d\mu(x)d\nu(y)$ $\overline{=} \iint f(x)g(x^{2}y)d\mu(x)d\nu(y) = \iint f(yx)g(x^{2}y)d\mu(x)d\nu(y)$ $(\overline{Fub}) \int \int f(yx)g(x^{-1}) dv(y) d\mu(x) = \int I_v(R_x f)g(x^{-1}) d\mu(x)$ $= \int \int (x) g(x') dy(x)$

Suppose;
$$f, f \in C_c(G) \setminus \text{Ker I}_{\mu}$$
.

 $\Rightarrow \int (D_f - D_{f'}) g d\mu = 0 \quad \forall g \in C_c(G)$

Replace g by $(D_f - D_{f'}) |g|^2 \Rightarrow \int |D_f - D_{f'}| g|^2 d\mu = 0$
 $\Rightarrow \int (D_f - D_{f'}) g = 0 \quad \forall g \in C_c(G) \Rightarrow D_f = D_{f'} \Rightarrow \emptyset$