

Nome Completo: Rodrigo Jose Borges Goncalves / Matrícula: A57566093

Mini Paper Individual

Instruções

O trabalho poderá ser feito em até 5 pessoas.

O objetivo do trabalho deve contemplar assuntos da aula (deep neural network, convolutional neural network, recurrent neural network) e deve ser escolhido por cada grupo. Na nossa última aula, dia 15/06, os alunos devem apresentar o grupo e qual o tema e o objetivo específico do trabalho. Ex.: 'O grupo, composto pelos alunos, terá como trabalho a estimativa dos casos de covid no Brasil utilizando arquiteturas de redes recorrentes, como LSTM e GRU.' Os grupos que tiverem dificuldade de escolher projetos, podem entrar em contato comigo. Algumas sugestões/ inspirações podem ser obtidas em sites de competição (ex Kaggle), mas a solução final deve conter elementos originais.

A entrega final deve ser feita individualmente por cada aluno até o dia 31/07 e deverá conter:

Os notebooks/ scripts com o trabalho feito e as soluções produzidas pelo grupo (comum a todos os membros do grupo);

Documentação individual, explicando o que foi feito no trabalho, problemas encontrados e possibilidades de melhoria da solução, em formato de 'mini papers' (2-5 páginas). Cada um deve ter a sua submissão de mini-paper.

31/julho: Entrega do notebook / scripts com o trabalho e o mini paper individual, no EClass.

Sumário

Sumário	2
Introdução	3
Contexto	3
Notebook do Grupo	4
Detalhamento do Desenvolvimento	4
Conclusão	12
Referências	13

Introdução

Este documento se refere a submissão do mini paper individual solicitado como parte da avaliação da disciplina Análise Econômica e Geração de Valor.

O projeto desenvolvido pelo grupo foi uma extensão do tema explorado na disciplina Desafios e Requisitos dos Projetos Analíticos.

Contexto

No contexto atual de propagação da pandemia do COVID-19 optamos, como grupo, por desenvolver um trabalho alinhado ao contexto da nova realidade imposta em nossa sociedade em relação a medidas de controle social, mais especificamente em relação a recomendação e determinação de uso de máscaras faciais em locais de acesso público.

No início de maio de 2020 o estado de São Paulo decretou o uso de máscaras de proteção facial como obrigatório, por tempo indeterminado. A medida, que entrou em vigor em 07/05/2020, estabelece o uso de máscaras em: espaços públicos, estabelecimentos que executem atividades essenciais, repartições públicas estaduais e transporte por aplicativo.

Recentemente, em 3 de Julho de 2020 também foi sancionado pelo presidente da república, com alguns vetos, a <u>Lei nº 14.019 de 02/07/2020</u> que determina o uso obrigatório de máscaras de proteção individual para circulação em espaços públicos e privados acessíveis ao público, em vias públicas e em transportes públicos durante a vigência das medidas para enfrentamento da emergência de saúde pública de importância internacional decorrente da pandemia da Covid-19.

Sob este contexto decidimos aplicar algumas técnicas de *deep learning* para o desenvolvimento de um modelo capaz de detectar a utilização de máscara de proteção individual.

Notebook do Grupo

Este trabalho está disponível em um notebook *Jupyter*, escrito em *Pyhton* 3, desenvolvido na plataforma *kaggle* que pode ser acessado no endereço a seguir: https://www.kaggle.com/leandrodaniel/fgv-mba-analise-economica-e-geracao-de-valor

Este notebook também pode ser executado a partir utilizando o *Binder*, pelo *link*: https://mybinder.org/v2/gh/ldaniel/Artificial-Intelligence-Applications/master

Detalhamento do Desenvolvimento

Para este trabalho utilizamos uma base de dados pública contendo um total de 90.000 imagens de faces sem máscaras e 2.203 imagens de faces com máscaras faciais.

Porém por alguma limitação o *kaggle* não reconheceu as 90.0000 imagens de faces sem máscaras que estão em nosso <u>repositório no *GitHub*</u> e limitou a quantidade de imagens sem máscaras em 56.564 imagens.

Dataset original

58767 imagens no dataset com o tamanho (256, 256)

Proporção

Sem máscara: 56564 Com máscara: 2203

Porém esta limitação do *kaggle* não foi um problema pois executamos um balanceamento de nosso *dataset* onde selecionamos aleatoriamente 2.203 imagens das 56.564 para termos um *dataset* com 50% de imagens com máscaras e 50% de imagens sem máscaras.

Executamos este passo pois vamos utilizar a métrica de acurácia como benchmark de análise da performance dos modelos e se não os fizéssemos um modelo que classificasse todas as amostras como não utilizando máscaras faciais já teria uma acurácia de 97.61%.

Dataset rebalanceado (com seleção aleatória da classe majoritária)

4406 imagens no dataset com o tamanho (256, 256)

Proporção

Sem máscara: 2203 Com máscara: 2203

Para a simplificação do modelo também optamos por transformar as imagens para *GREYSCALE* utilizando as funções do *framework* de *computer vision* para *python* <u>opency-</u>

<u>python</u>. Também executamos o redimensionamento das imagens para as dimensões 256p por 256p.

Este processamento nos retorna um tensor contendo uma matriz por imagem com 256 por 256 pixels com valores variando de 0 a 255 representando as diversas gradações de cinza entre branco e preto. Abaixo podemos visualizar algumas imagens após as transformações mencionadas acima:

Na sequência executamos a normalização dos valores das nossas matrizes dividindo o valor de cara elemento da matriz por 255, de forma que os valores se encontrem entre 0 e 1 para facilitar o processo de treinamento do modelo.

Realizamos o *split* do *dataset*, utilizando a biblioteca <u>scikit-learn</u>, entre base de treino e base de testes na proporção de 80% para treinamento e 20% para teste e validação. E criamos dois tensores para cada *dataset*, um contendo as matrizes representativas dos *pixels* das imagens e um outro vetor representando o *label* de cada imagem.

Tensor de features de treinamento: (3524, 256, 256, 1)Imagens: 3524 Sem máscara: 1762 Com máscara: 1762 Tensor de labels de treinamento: (3524, 1)Quantidade: 3524 Sem máscara: 1762 Com máscara: 1762 Tensor de features de teste: (882, 256, 256, 1) 882 Imagens:

Imagens: 882 Sem máscara: 441 Com máscara: 441

Tensor de labels de teste: (882, 1)

Quantidade: 882 Sem máscara: 441 Com máscara: 441

Na sequência do trabalho desenhamos duas rendes neurais. A primeira rede tratase de uma rede neural simples contendo uma camada *flatten* utilizada para fazer a transformação da matriz representativa da imagem em um vetor, seguida de apenas 3 camadas densas (*hiden layers*) de 512 neurônios cada, utilizando a função de ativação *ReLU* e com um *dropout* de 40%, 30% e 10% entre cada *hiden layers*, seguida de uma camada densa de apenas um neurônio com a função de ativação *sigmoid* que retorna o equivalente a probabilidade de a observação em questão ser uma imagem de uma face utilizando máscara de proteção facial.

Como otimizador utilizados *Stochastic Gradient Descent* onde o cálculo dos ajustes dos pesos e vieses da matriz de pesos é feito com base na derivada parcial de cada *batch* de imagens (utilizamos um *batch size* de 32 imagens), a função de perda utilizada foi a *Binary Crossentropy* que é a recomendada para problemas de solução binária como o nosso caso, e por fim estamos utilizando a métrica acurácia para a seleção da do melhor modelo.

Esta rede neural tem um total de 34.080.769 de parâmetros treináveis.

Model: "NN"		
Layer (type)	Output Shape	Param #
entrada (InputLayer)	[(None, 256, 256, 1)]	0
achatamento (Flatten)	(None, 65536)	0
densa1 (Dense)	(None, 512)	33554944
reducao1 (Dropout)	(None, 512)	0
densa2 (Dense)	(None, 512)	262656
reducao2 (Dropout)	(None, 512)	0

densa3 (Dense)	(None,	512)	262656	
reducao3 (Dropout)	(None,	512)	0	
previsao (Dense)	(None,	1)	513	
Total params: 34,080,769 Trainable params: 34,080,769 Non-trainable params: 0				
=======================================	======		=======	

Após a especificação da rede neural simples, especificamos uma etapa convolucional com um total de 8 camadas convolucionais, utilizando a função de ativação *ReLU* e com diferentes parâmetros de número de filtros e com o *padding* = *same* para a manutenção das dimensões das matrizes entre as camadas, também entre as camadas utilizamos o processo de *MaxPooling2D* utilizado para obter uma representação da uma imagem com a redução de sua dimensionalidade permitindo suposições sobre as *features* contidas nas sub-regiões das imagens.

A saída da etapa convolucional é acoplada a entrada da rede neural densa, especificada inicialmente, para a finalização do processo de predição. A etapa convolucional funciona como uma fase de *feature engineering* para processos de *computer vision* onde a rede aprende como identificar as características importantes das imagens fazendo o *enhance* destas características que facilitam o processo de aprendizado. Nossa rede convolucional, em conjunto com as camadas *full connected*, tem um total de 35,254,369 de parâmetros treináveis.

Esta arquitetura de rede vem sendo utilizada pelo nosso grupo com bastante sucesso em outros trabalhos como detecção de <u>pneumonia em imagens de raio x</u>, (acurácia de 96%) e classificação de <u>classificação</u> de <u>dígitos mnist</u> (acurácia de 99.56%).

Model: "CNN"		
Layer (type)	Output Shape	Param #
entrada (InputLayer)	[(None, 256, 256, 1)]	0
convolucao2d1 (Conv2D)	(None, 256, 256, 32)	320
normalizacao1 (BatchNormaliz	(None, 256, 256, 32)	128
convolucao2d2 (Conv2D)	(None, 256, 256, 32)	9248
normalizacao2 (BatchNormaliz	(None, 256, 256, 32)	128
acumulacao1 (MaxPooling2D)	(None, 128, 128, 32)	0
convolucao2d3 (Conv2D)	(None, 128, 128, 64)	18496
normalizacao3 (BatchNormaliz	(None, 128, 128, 64)	256
convolucao2d4 (Conv2D)	(None, 128, 128, 64)	36928

normalizacao4 (BatchNormaliz	(None,	128, 128, 64)	256
acumulacao2 (MaxPooling2D)	(None,	64, 64, 64)	0
convolucao2d5 (Conv2D)	(None,	64, 64, 128)	73856
normalizacao5 (BatchNormaliz	(None,	64, 64, 128)	512
convolucao2d6 (Conv2D)	(None,	64, 64, 128)	147584
normalizacao6 (BatchNormaliz	(None,	64, 64, 128)	512
acumulacao3 (MaxPooling2D)	(None,	32, 32, 128)	0
convolucao2d7 (Conv2D)	(None,	32, 32, 256)	295168
normalizacao7 (BatchNormaliz	(None,	32, 32, 256)	1024
convolucao2d8 (Conv2D)	(None,	32, 32, 256)	590080
normalizacao8 (BatchNormaliz	(None,	32, 32, 256)	1024
acumulacao4 (MaxPooling2D)	(None,	16, 16, 256)	0
achatamento (Flatten)	(None,	65536)	0
densa1 (Dense)	(None,	512)	33554944
reducao1 (Dropout)	(None,	512)	0
densa2 (Dense)	(None,	512)	262656
reducao2 (Dropout)	(None,	512)	0
densa3 (Dense)	(None,	512)	262656
reducao3 (Dropout)	(None,	512)	0
previsao (Dense)	(None,	1)	513

Também utilizamos algumas técnicas de data augmentation que consiste em aplicar algumas alterações nas imagens originais como rotação, *flip* horizontal, distorções, *rescale* e *zoom* nas imagens de forma a obter uma maior massa de dados para o processo de treinamento.

Treinamos dois modelos, um com a etapa convolucional e outro apenas com a etapa densa por 150 épocas, abaixo podemos visualizar o comportamento da curva de aprendizado de ambos os modelos em função do resultado de nossa função de perda (binary crossentroy) e da acurácia dos mesmos nas bases de treino e testes, conseguimos verificar que o processo de aprendizado da rede CNN apesar de ser mais errático na base

de testes acaba convergindo rapidamente chegando a alcançar uma acurácia em testes de 99.66% frente a 91.5% da rede neural com apenas as camadas densas.

Nossa rede neural simples (sem as camadas convolucionais) 75 erros enquanto nossa rede convolucional alcançou a incrível marca de apenas 3 erros no mesmo dataset.

Um exercício final que realizamos é olhar para algumas imagens que foram classificadas incorretamente para verificarmos o quão razoável são os erros de cada modelo, vamos iniciar pelo modelo mais simples.

predicted: with mask true label: without mask

predicted: without_mask true label: with_mask

predicted: without mask

true label: with_mask

predicted: without_mask true label: with_mask

predicted: without mask

true label: with mask

predicted: without mask

predicted: with mask true label: without mask

predicted: without mask true label: with_mask

predicted: with mask true label: without_mask

predicted: without mask true label: with mask

predicted: without mask true label: with_mask

predicted: without mask true label: with_mask

Como podemos observar no erros do modelo o mesmo não foi bem sucedido em algumas imagens que são muito fáceis de classificação por nós seres humanos, o que indica que o modelo com apenas as camadas densas não é capaz de capturar suficientemente os nuâncias das imagens a fins de fazer um previsão com alta qualidade.

Porém o modelo convolucional foi ainda mais surpreendente, 2 dos míseros 3 erros do modelo na realidade são de pessoas utilizando a mascada de proteção de forma incorreta, estas imagens estavam na realidade mal classificadas em nosso dataset.

predicted: without_mask true label: with_mask

predicted: with_mask true label: without_mask

predicted: without_mask true label: with_mask

Conclusão

A resposta ao problema de negócio referente a detecção de do uso de máscara de proteção facial em imagens de faces foi plenamente atendida no desenvolvimento dos modelos selecionados, para a implementação do mesmos é necessário a aplicação de uma fase preliminar para o recorte das faces presentes em uma imagem que pode ser realizado utilizando um framework aberto como o *OpenCV*, uma vez que as imagens das faces são extraídas nosso modelo é capaz de classificar com acurácia aceitável a utilização ou não de máscara de proteção individual.

Referências

CHOLLET, F. Deep Learning with Python. Manning. ISBN 9781617294433. NY, USA. 2018.

Keras API Reference. Disponível em https://keras.io/api. Acesso em: 18 de Julho de 2020

Scikit Learn Documentation. Disponível em https://scikit-learn.org/stable/. Acesso em 18 de julho de 2020.

OpenCV Python Documentation. Disponível em https://pypi.org/project/opencv-python/. Aceso em 18 de julho de 2020.

CAMPOS, D; DANIEL L; REIS, R; GONCALVES, R; LIMA Y. **FGV-MBA - Detecção de Máscara Facial.** Disponível em https://github.com/ldaniel/Challenges-Requirements-Analytical-Projects.

CAMPOS, D; DANIEL L; REIS, R; GONCALVES, R; LIMA Y. **FGV-MBA - Análise Econômica e Geração de Valor**. Disponível em https://www.kaggle.com/leandrodaniel/fgv-mba-analise-economica-e-geracao-de-valor.

CAMPOS, D; DANIEL L; GONCALVES, R; LIMA Y. **FGV-MBA - Advanced-Predictive-Analysis-CNN-Implementation**. Disponível em https://www.kaggle.com/rodrigonca/advanced-predictive-analysis-cnn-implementation.

GONCALVES, R. **FGV-MBA - Análise Preditiva Avançada** - Trabalho Individual. Disponível em https://www.kaggle.com/rodrigonca/an-lise-preditiva-avan-ada-trabalho-individual.