Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчёт по лабораторной работе №1 по дисциплине «Математическая статистика»

Выполнил студент В. А. Рыженко

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург, 2020 г.

Содержание

1.	Пос	тановка задачи	3
2.	Pac	пределения	3
3.	Pea.	лизация	4
4.	1. Результаты		4
5.	5. Обсуждение		7
C	пис	сок иллюстраций	
	1.	Нормальное распределение (1)	4
	2.	Распределение Коши (2)	
	3.	Распределение Лапласа (3)	5
	4.	Распределение Пуассона (4)	6
	5.	Равномерное распределение (5)	6

1. Постановка задачи

Для 5 распределений:

- Нормальное распределение N(x, 0, 1)
- Распределение Коши С(х, 0, 1)
- Распределение Лапласа $L(x, 0, \frac{1}{\sqrt{2}})$
- Постановка задач исследования Распределение Пуассона P(k, 10)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$

Стенерировать выборки размером 10, 50 и 1000 элементов. Построить на одном рисунке гистограмму и график плотности распределения.

2. Распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \tag{1}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{2}$$

• Распределение Лапласа

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{\sqrt{2}|x|} \tag{3}$$

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{4}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}}, & \text{при } |x| \le \sqrt{3} \\ 0, & \text{при } |x| > \sqrt{3} \end{cases}$$
 (5)

3. Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки Jupyter Notebook. Исходный код лабораторной работы приведён в приложении.

4. Результаты

Рис. 1. Нормальное распределение (1)

Рис. 2. Распределение Коши (2)

Рис. 3. Распределение Лапласа (3)

Рис. 4. Распределение Пуассона (4)

Рис. 5. Равномерное распределение (5)

5. Обсуждение

Из графиков видна чёткая зависимость, увеличение выборки увеличивает точность аппроксимации исходного распределения для всех распределений кроме Коши (2).