Задача 9-1

Химия неизвестного элемента

При пропускании сероводорода через бесцветный раствор вещества X_1 образуется чёрный осадок X_2 (p-quq q). При длительном прокаливании на воздухе осадок X_2 превращается в оранжево-красный порошок X_3 (p-quq q), причём из 1 кг X_2 может быть получено 955 г X_3 . При действии на вещество X_3 горячего раствора кислоты Y наблюдается выделение фиолетовых паров простого вещества и образование слабо окрашенного раствора (p-quq q), из которого при охлаждении выпадают чешуйчатые золотистые кристаллы X_4 . При обработке вещества X_4 азотной кислотой образуется вещество X_1 (p-quq q). Также раствор вещества X_1 может быть получен введением пластинки из металла X_1 массой X_2 00 г X_3 1 после окончания реакции в растворе осталась только соль X_3 1, а масса промытой и высушенной пластинки стала равной X_3 2.

Вопросы:

- 1) Определите элемент X и неизвестные вещества X_1 , X_2 , X_3 , X_4 , Y, состав вещества X_3 подтвердите расчетом.
- 2) Запишите уравнения реакций.
- 3) Какое применение находит вещество X_3 в промышленности?

Решение задачи 9-1 (автор: Птицын А.Д.)

1. Вещество **X** представляет собой металл, более активный, чем серебро, т. к. вытесняет его из нитрата. Ионы большинства таких металлов имеют в водном растворе степени окисления +2 или +3 (щелочные металлы реагируют с водой).

Запишем уравнение реакции металла с раствором нитрата серебра:

$$X + nAgNO_3 = X(NO_3)_n + nAg$$
, где $n = 2$ или 3.

Так как реакция прошла полностью, то все серебро израсходовалось. $v(Ag) = 17 / 169.87 \approx 0.100$ моль. Масса серебра, выделившегося на пластинке, равна 10.80 г, а масса металла **X**, перешедшего в раствор, равна **x**.

$$m_{\text{исх}} + m_{\text{Ag}} - m_{\mathbf{X}} = 30 + 10.80 - \mathbf{x} = 30.44,$$

откуда $\mathbf{x} = 10.36$ г.

При осаждении 1 моль серебра растворяется 1/n моль X, значит

$$v(\mathbf{X}) = \frac{\mathbf{v}(Ag)}{\mathbf{n}} = \frac{m}{M_{\mathbf{X}}}$$
$$M_{\mathbf{X}} = \frac{m \cdot \mathbf{n}}{\mathbf{v}(Ag)} = \frac{10.36 \cdot \mathbf{n}}{0.1} = 103.6\mathbf{n}$$

При n=2, $M_{\rm X}=207.20$ г/ $_{\rm моль}$, т. е. ${\rm X}-{\rm это}$ свинец, а вещество ${\rm X_1}-{\rm нитрат}$ свинца ${\rm Pb(NO_3)_2}$. При действии на него сероводородом выпадает черный осадок сульфида свинца ${\rm X_2}-{\rm PbS}$.

Выясним формулу продукта, образующегося при прокаливании его на воздухе. Продуктами прокаливания сульфидов на воздухе являются кислородные соединения металлов. Лишь в случае металлов, устойчивых к окислению кислородом, могут быть получены простые вещества. Итак, из 1 кг PbS образуется 955 г оксида **X**₃. Запишем уравнение реакции в общем виде:

$$PbS + (1 + 0.5x) O_2 = PbO_x + SO_2$$

Из 1 кг (1000 г/239.266 $^{\text{г}}$ /моль = 4.179 моль) PbS получили эквимолярное

количество PbOx, что соответствует его молярной массе $\frac{995}{4.179}$ = $228.52 \frac{\text{г/}_{\text{моль}}}{4.179}$, $x = (228.52 - 207.20)/15.999 \approx 1.333 \approx \frac{4}{3}$, следовательно, $X_3 - PbO_{1.33}$, или Pb_3O_4 , свинцовый сурик.

В оксиде Pb_3O_4 свинец частично находится в степени окисления +4, т. е. проявляет окислительные свойства. При действии на него кислотой Y наблюдается выделение фиолетовых паров простого вещества, иода. Это позволяет предположить, что Y – иодоводородная кислота HI, а выделяющийся при охлаждении осадок – иодид свинца PbI_2 (вещество X_4), который известен как «золотой дождь».

2. Уравнения реакций:

- 1) $Pb(NO_3)_2 + H_2S = PbS + 2HNO_3$
- 2) $3PbS + 5O_2 = Pb_3O_4 + 3SO_2$
- 3) $Pb_3O_4 + 8HI = 3PbI_2 + I_2 + 4H_2O$
- 4) $PbI_2 + 4HNO_3 = Pb(NO_3)_2 + I_2 + 2NO_2 + 2H_2O$.
- 5) $Pb + 2AgNO_3 = Pb(NO_3)_2 + 2Ag$
- Сурик используется в стекловарении для производства свинцового хрусталя.

X	X ₁	X ₂	X ₃	X 4	Y
Pb	Pb(NO ₃) ₂	PbS	Pb ₃ O ₄	PbI_2	HI

Система оценивания:

1.	Расчет молярной массы элемента X – 2 балла	9 баллов			
	Формулы веществ X_1, X_2, X_3, X_4, Y – по 1 баллу				
	Расчет состава вещества X ₃ – 2 балла				
2.	Уравнения реакций (1-5) по 2 балла	10 баллов			
3.	Применение сурика (оценивается только пример	1 балл			
	промышленного применения)				
	ИТОГО: 20 баллов				