

- Método para aplicar Deep Learning sobre bases de datos pequeñas.
- Un convnet preentrenado es una DNN guardada que ha sido entrenada previamente con una base de datos grande.
 - Aplicación en tareas de clasificación de imágenes a gran escala.
 - -Una red entrenada para un tipo de trabajo puede ser reutilizada en un problema totalmente diferente.
 - Imagenet (animales y objetos) —> Reconocimiento mobiliario
 - · La **portabilidad del aprendizaje** (*transfer learning*) es una gran ventaja de las DNN sobre otras técnicas.

Datos ImageNet

- · 1.4 millones de imágenes, 1000 clases.
- Contiene diferentes razas de perros y gatos.
- Esperamos que funcione bien sobre el problema *dogs-vs-cats*.

Arquitectura VGG16

- Karen Simonyan & Andrew Zisserman (2014)
- Es un modelo algo viejo
 - Otros modelos son mejores y menos pesados
 - VGG, ResNet, Inception, Inception_esNet, Xception...

Feature extraction (FE)

- FE y fine-tuning.
 - Dos maneras de usar una red preentrenada.
- FE: usar representaciones aprendidas previamente.
 - Ejecutar las representaciones con un nuevo clasificador.

- Estructura convnets.
 - Empiezan con una serie de capas pooling y de convolución: base convolucional.
 - Acaban con un clasificador conectado densamente.

- FE consiste en extraer la base convolucional.
 - Ejecutar DNN sobre nuevos datos
 - Extraer un nuevo clasificador

¿Por qué usar sólo la base convolucional y no la densa?

- Representaciones convolucionales son más generales.
- Representaciones del clasificador denso son específicas.

Nivel de generalización y reusabilidad

- El nivel de generalización y reusabilidad de las representaciones de cada capa depende de la profundidad en el modelo
 - Primeras capas extraen información más general: ejes, colores, texturas...
 - Capas más profundas extraen información más precisa: oreja de gato, ojo de perro.
 - Si la base de datos difiere mucho de la original utilizada para entrenar la red:
 - Utilizar sólo las primeras capas

- Nuestro caso
 - Imagenet contiene muchas imágenes de perros y gatos
 - Podríamos utilizar hasta la información contenida en las capas densas...
 - Pero no lo vamos a hacer.

Modelos de clasificación de imágenes en Keras

- Todos preentrenados en la base ImageNet
- · Importar desde el módulo keras.applications:
- 1. Xception

3. ResNet50

5. VGG19

- 2. Interception V3
- 4. VGG16

6. Mobile Net

Notas sobre la importación del modelo

Argumentos

- weights: indica con qué pesos se inicializa el modelo.
 - None: aleatorios
 - imagenet: ImageNet preentrenado
 - <file>: ruta a un archivo con los pesos

- include_top: True o False según se use o no el clasificador denso de la red.
 - Ponemos False porque no nos interesan 1000 clases de ImageNet sino sólo 2 (perros y gatos).
- input_shape: Características de los tensores de imágenes.
 - Si no se incluye, el DNN puede procesar imágenes de cualquier tamaño.

Feature maps

- Se importan múltiples capas
 Convolution2D y Maxpooling2D
- Total \approx 15M de parámetros.
- FM final de (4, 4, 512)
- Sobre este FM ponemos el clasificador conectado densamente.

Alternativa 1

- Ejecutar base convolutiva sobre el conjunto de datos
 - Grabar salida sobre array Numpy.
 - Utilizar este array como entrada sobre un clasificador conectado densamente.
- Solución rápida y sencilla
 - La base convolutiva se ejecuta sólo una vez sobre cada imagen.
 - La base convolutiva es la parte más lenta del proceso.
- No permite Data Augmentation.

Alternativa 2

No ejecutar en clase

- Extender el modelo con_base que hemos construido, añadiendo capas densas.
 - Permite usar Data Augmentation
 - Es mucho más tardado que la alternativa 1 (5h)

Extracción rápida sin Data Augmentation

- Ejecutar ImageDataGenerator
 - Imágenes —> arrays Numpy y etiquetas.
 - Obtener características de las imágenes.
 - Método predict del modelo conv_base
 - Output formato (4, 4, 512)
- Alimentar clasificador densamente conectado
 - Entrada FM (4, 4, 512)
 - Aplanar a $4 \times 4 \times 512 = 8192$.
 - Definir modelo de clasificador
 Utilizar dropoutpara regularizar

- · $Validation\ accuracy \sim 90\%$
 - Mucho mejor que los resultados directos (Notebook 5.2, Bases de datos pequeñas, $acc \approx 70\%$)
 - Mucho mejor que los resultados con data augmentation ($acc \approx 82\%$)
- · Sobreajuste después de muy pocas épocas.
 - Incluso con regularización *Dropout* del 50%:

```
model.add(layers.Dropout(0.5))
```

Compilación

- Es muy importante congelar (freeze) el modelo.
 - Impedir actualización de pesos durante entrenamiento.
 - Los pesos iniciales de las capas densas son aleatorios.
 - Propagarán grandes cambios y destruirán lo aprendido por VGG16
 - conv_base.trainable = False
 - Sólo se actualizan pesos de capas densas.

- Compilar el modelo
 - Si se modifica el atributo trainable después de compilar, no se tendrá en cuenta a menos que se recompile.

	_	Data Augme ntation	ned	ned
Acc	70%	82%	92%	96%

Fine-tuning (FT)

NO EJECUTAR

Modelo alternativo a Feature Extraction

- Consiste en descongelar algunas capas convolutivas.
- Se entrenan a la vez el clasificador y las capas descongeladas.
- Permite que las capas convolutivas con la información más abstracta se puedan reajustar para el problema actual.
- · La parte de la red susceptible a FT son los últimos bloques de la base convolutiva.
 - Después de la penúltima capa de MaxPooling2D.

La parte descongelada se especifica después de un entrenamiento inicial para no perder información de la red original.

- 1. Añadir red densa tras la base convolutiva.
- 2. Congelar la base convolutiva.
- 3. Entrenar la red densa (clasificador).
- 4. Descongelar *algunas* de la últimas capas de la base convolutiva.
- 5. Entrenar juntos el clasificador y las capas descongeladas.

Código de Fine tunning

- Descongelamos las 4 últimas capas.
 - Bloques de capas congeladas del 1 al 4.
 - Descongelamos bloque 5.
- Las primeras capas de la base convolutiva representan características generables y reutilizabas.
- Sólo necesitamos reentrenar las capas más específicas.
- Cuanto más parámetros se entrenen, mayor el riesgo de sobreajuste.

Evaluación del modelo

97% accuracy similar a resultados de Kaggle usando sólo el
 10% de las imágenes de la base de datos.

Dogs vs. Cats

Create an algorithm to distinguish dogs from cats

k Kaggle · 213 teams · 2014

#	Team Name	Score
1	Pierre Sermanet	0.98914
8	fastml.com/ cats-and-dogsn	0.98000
23	mymo	0.97017

Recapitulación

- · Convnets son actualmente el **mejor modelo** de *Machine Learning* para problemas de *computer-vision*.
- Para bases de datos pequeñas, el principal problema es el sobreajuste.
 - Data augmentation.
 - Reusar un convnet ya existente
 - Feature extraction
 - Fine-tuning

Lecturas adicionales

- Rohit Thakur, 2019, Towards Data Science: Step by step VGG16 implementation in Keras for beginners
- Renu Khandelwall, 2020, Towards Data Science: Convolutional Neural Network: Feature Map and Filter Visualization

Visualizando cómo aprenden los convnets

El próximo día

KEEP CALM AND SEE YOU NEXT CLASS