Applied Statistical Analysis

EDUC 6050 Week 8

Finding clarity using data

Homework and Such

Research Portfolio: How's it coming along?

Any questions about the remainder of the class?

TOCAY

- 1. Relationships!
- 2. Correlation and Intro to Regression
- 3. Chapter 13 in Book

https://www.youtube.com/watchesize/h?v=sxYrzzy3cq8

Comparing Means

Is one group different than the other(s)?

- Z-tests
- T-tests
- ANOVA

We compare the means and use the variability to decide if the difference is significant

Assessing Relationships

Is there a relationship between the two variables?

- Correlation
- Regression

We look at how much the variables "move together"

Correlation

- It is a whole class of methods
- Generally used with observational designs
- Has similar assumptions to t-test
- Is a measure of effect size
- Very related (and based on) z-scores
- Tells us direction and strength of a relationship between two variables

Correlation and Z-Scores

- Z-score is a univariate statistic (only uses info from ONE variable)
- Correlation is essentially the z-score between TWO variables

$$r = \frac{\sum Z_x Z_y}{N - 1}$$

Correlation and Z-Scores

- Z-score is a univariate statistic (only uses info from ONE variable)
- Correlation is essentially the z-score between TWO variables

$$r=rac{\sum Z_{x}Z_{y}}{N-1}$$
 z-score of variable x

General Requirements

- 1. Two or more continuous variables,
- 2. Not necessarily directional (one causes the other)

ID	Var 1	Var 2
1	8	7
2	6	2
3	9	6
4	7	6
5	7	8
6	8	5
7	5	3
8	5	5

General Requirements

- 1. Two or more continuous variables,
- 2. Not necessarily directional (one causes the other)
- 3. Linear Relationship
 (or at least
 monotonic)

Hypothesis Testing with Correlation

The same 6 step approach!

- 1. Examine Variables to Assess Statistical Assumptions
- 2. State the Null and Research Hypotheses (symbolically and verbally)
- 3. Define Critical Regions
- 4. Compute the Test Statistic
- 5. Compute an Effect Size and Describe it
- 6. Interpreting the results

Basic Assumptions

- 1. Independence of data
- 2. Appropriate measurement of variables for the analysis
- 3. Normality of distributions
- 4. Homoscedastic

Basic Assumptions

- 1. Independence of data
- 2. Appr pria Individuals are independent of each other (one person's scores does not affect another's)
- 4. Homoscedastic

Basic Assumptions

- 1. Independence of data
- 2. Appropriate measurement of variables for the analysis
- 3. Norm lity of distributions

4. Homo Here we need interval/ratio variables

Basic Assumptions

- 1. Independ Multivariate normality (the two variables are jointly normal)

 for the analysis
- 3. Normality of distributions
- 4. Homoscedastic

Basic Assumptions

- 1. Independence of data
- 2. Appropri Variance around the line should be roughly equal across the
- 3. Normalit whole line
- 4. Homoscedastic

Examining the Basic Assumptions

- 1. Independence: random sample
- 2. Appropriate measurement: know what your variables are
- 3. Normality: Histograms, Q-Q, skew and kurtosis
- 4. Homoscedastic: Scatterplots

State the Null and Research Hypotheses (symbolically and verbally)

Hypothesis Type	Symbolic	Verbal	Difference between means created by:
Research Hypothesis	$\rho \neq 0$	There is a relationship between the variables	True relationship
Null Hypothesis	$\rho = 0$	There is no <i>real</i> relationship between the variables.	Random chance (sampling error)

B Define Critical Regions

How much evidence is enough to believe the null is not true?

generally based on an alpha = .05

Use the table in the book (page 610) Based on alpha and df

If we have an N = 10 and α = .05, then: $r_{critical}(8) = 0.632$

Compute an Effect Size and Describe it

One of the main effect sizes for correlation is r^2

$$r^2 = (r)^2$$

r^2	Estimated Size of the Effect
Close to .01	Small
Close to .09	Moderate
Close to .25	Large

5 Interpreting the results

Put your results into words

Use the example around page 529 as a template

Let's use Jamovi

Correlation

Break Time

Intro to Regression

Intro to Regression

The foundation of almost everything we do in statistics

Can handle many types of outcome and predictor data types Results are interpretable

Two Main Types of Regression

Simple

- Only one predictor in the model
- When variables are standardized, gives same results as correlation
- When using a grouping variable, same results as t-test or ANOVA

Multiple

- More than one variable in the model
- When variables are standardized, gives "partial" correlation
- Predictors can be any combination of categorical and continuous

Logic of Regression

We are trying to find the best fitting line

Logic of Regression

We are trying to find the best fitting line

We do this by minimizing the difference between the points and the line (called the residuals)

Logic of Regression

Questions?

Next week:

More on Regression