Τεχνικές Βελτιστοποίησης

Αναφορά για την 3^η εργαστηριακή άσκηση

Θεόδωρος Λιούπης ΑΕΜ 9733

Χειμερινό εξάμηνο 2022-2023

Ζητούμενο της $3^{n\varsigma}$ εργαστηριακής άσκησης ήταν: 1) η δοκιμή της Μεθόδου Μέγιστης Καθόδου χωρίς περιορισμούς σε συνάρτηση $f: \mathbb{R}^2 \to \mathbb{R}$ με τέσσερα διαφορετικά βήματα γ_{κ} και τυχαίο σημείο εκκίνησης του αλγορίθμου, 2) η δοκιμή της Μεθόδου Μέγιστης Καθόδου με προβολή σε τρεις διαφορετικές περιπτώσεις (διαφορετικά γ_{κ} , S_{κ} , σημεία εκκίνησης).

Η συνάρτηση στην οποία έγιναν οι δοκιμές είναι η εξής:

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x) = \frac{1}{3}x_1^2 + 3x_2^2, \ x = [x_1 \ x_2]^T.$$

Για την απεικόνιση της γραφικής παράστασης της συνάρτησης γράφτηκε ξεχωριστό script στο MATLAB. Παρακάτω βλέπουμε την τρισδιάστατη απεικόνιση της συνάρτησης αλλά και το διάγραμμα του επιπέδου x1-x2.

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΑΠΘ

Μέγιστη Κάθοδος χωρίς περιορισμούς

Με ακρίβεια ε = 0.001, βήμα i) $\gamma_{\rm K}$ = 0.1, ii) $\gamma_{\rm K}$ = 0.3, iii) $\gamma_{\rm K}$ = 3, iv) $\gamma_{\rm K}$ = 5 και σημείο εκκίνησης το (-10,-8).

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΑΠΘ

Σχολιασμός των αποτελεσμάτων:

Παρατηρούμε ότι ο αλγόριθμος για τις δύο τελευταίες περιπτώσεις βήματος $\gamma_{\rm K}=3$ και $\gamma_{\rm K}=5$ δεν συγκλίνει. Για να καταλάβουμε γιατί, πραγματοποιούμε την εξής μαθηματική ανάλυση:

$$f(x_1, x_2) = \frac{1}{3} * x_1^2 + 3 * x_2^2$$

$$\nabla f(x_1, x_2) = \begin{bmatrix} \frac{2}{3} * x_1 \\ 6 * x_2 \end{bmatrix}$$

$$X_{k+1} = X_k - \gamma_{\kappa} * \nabla f(x_{1k}, x_{2k}) = X_k - \begin{bmatrix} \frac{2}{3} * \gamma_{\kappa} * x_{1k} \\ 6 * \gamma_{\kappa} * x_{2k} \end{bmatrix} = \begin{bmatrix} 1 - \frac{2}{3} * \gamma_{\kappa} \\ 1 - 6 * \gamma_{\kappa} \end{bmatrix} * X_k$$

Για να συγκλίνει ο αλγόριθμος πρέπει:

$$\left|1 - \frac{2}{3} * \gamma_{\kappa}\right| < 1 \Rightarrow 0 < \gamma_{\kappa} < 3$$
$$|1 - 6 * \gamma_{\kappa}| < 1 \Rightarrow 0 < \gamma_{\kappa} < \frac{1}{3}$$

Τελικά
$$0 < \gamma_{\kappa} < \frac{1}{3} = 0.333$$
.

Για αυτό λοιπόν στις περιπτώσεις i) $\gamma_{\rm K}$ = 0.1 και ii) $\gamma_{\rm K}$ = 0.3 όπου $\gamma_{\rm K}$ < 0.333 ο αλγόριθμος φτάνει στο ελάχιστο ενώ στις iii) $\gamma_{\rm K}$ = 3 και iv) $\gamma_{\rm K}$ = 5 όπου $\gamma_{\rm K}$ > 0.333 η μέθοδος δεν συγκλίνει.

Μέγιστη Κάθοδος με προβολή

Εξετάζουμε τρεις περιπτώσεις:

- 1. $S_K = 5$, $\gamma_{K,=} = 0.5$, σημείο εκκίνησης το (5, -5) και ακρίβεια $\varepsilon = 0.01$
- 2. $S_{\rm K}$ = 15, $\gamma_{\rm K,}$ = 0.1, σημείο εκκίνησης το (-5, 10) και ακρίβεια ε = 0.01
- 3. $S_K = 0.1$, $\gamma_{K,=} = 0.2$, σημείο εκκίνησης το (8, –10) και ακρίβεια $\varepsilon = 0.01$

Θεωρούμε επίσης τον περιορισμό:

$$-10 \le X_1 \le 5 \kappa \alpha \iota - 8 \le X_2 \le 12$$

1^η περίπτωση

Το δεύτερο διάγραμμα της πάνω εικόνας «σπάει» σε δύο άλλα, για $0 \le \kappa \le 250$ και $250 \le \kappa \le 500$ ώστε να δούμε καλύτερα ότι η μέθοδος σε αυτήν την περίπτωση ταλαντώνεται μεταξύ δύο σημείων και δεν συγκλίνει στο ελάχιστο.

2^{η} περίπτωση

3^{η} περίπτωση

Σχολιασμός των αποτελεσμάτων:

Στην πρώτη περίπτωση η μέθοδος λειτουργεί εντός των περιορισμών και άρα δεν χρησιμοποιείται κάποια προβολή και ο αλγόριθμος τρέχει σαν την Μέθοδο Μέγιστης Καθόδου χωρίς περιορισμούς. Έτσι ισχύει και εδώ ο περιορισμός ότι $0<\gamma_\kappa<0.333$, με την μόνη διαφορά ότι έχουμε και το S_κ το οποίο πολλαπλασιάζεται με το γ_κ . Άρα τελικά, $0< s_k*\gamma_\kappa<0.333$. Επειδή χρησιμοποιούμε $S_\kappa=5$ και $\gamma_\kappa=0.5$, η μέθοδος δεν συγκλίνει ποτέ σε αυτήν την περίπτωση, αφού $s_k*\gamma_\kappa=2.5>0.333$, και ταλαντώνεται μεταξύ δύο σημείων, όπως φαίνεται στο αντίστοιχο διάγραμμα παραπάνω.

Στην δεύτερη περίπτωση, ο αλγόριθμος συγκλίνει, παρόλο που χρησιμοποιούμε $S_{\rm K}=15$ και $\gamma_{\rm K}=0.1$ που μας δίνει $s_k*\gamma_{\rm K}=1.5>0.333$. Αυτό ίσως συμβαίνει, διότι ικανοποιείται μία εκ των δύο ανισότητες $(0< s_k*\gamma_{\rm K}<3)$. Παρατηρούμε βέβαια ότι η μέθοδος στην περίπτωση αυτή συγκλίνει πολύ αργά. Εάν χρησιμοποιηθεί συνδυασμός s_k , $\gamma_{\rm K}$ ώστε $s_k*\gamma_{\rm K}=0.3$ (π.χ. $s_{\rm K}=1$ και $s_{\rm K}=0.3$ 0) τότε η μέθοδος συγκλίνει γρήγορα.

Δοκιμή στο MATLAB:

Στην τρίτη περίπτωση, το σημείο εκκίνησης δεν είναι εφικτό και έτσι παίρνουμε την προβολή του. Πιο συγκεκριμένα η προβολή του σημείου (8,-10) είναι το (5,-8). Από εκεί και πέρα, αφού το ελάχιστο βρίσκεται εντός της περιορισμένης περιοχής, ο αλγόριθμος συγκλίνει στο ελάχιστο γιατί χρησιμοποιούμε $S_{\rm K}=0.1$ και $\gamma_{\rm K}=0.2$ και ισχύει ότι $s_{\rm K}*\gamma_{\rm K}=0.02<0.333$.