

| Data: 30/05/2022 |
|------------------|
| Nota:            |
| Valor: 35,0      |

| CURSO:        | Engenharia de Controle e Automação | Turma: | 9º Período |
|---------------|------------------------------------|--------|------------|
| Disciplina:   | Sistemas Supervisórios             | _      |            |
| Professor(a): | Luiz Soneghet Nascimento           |        |            |
| Alunos(as):   |                                    | _      |            |

**OBS1:** O trabalho será realizado em grupo de até três pessoas.

Objetivo: Desenvolver um sistema supervisório para controle de sistemas de primeira e de segunda ordens simulados no WINPLC7.

O sistema supervisório deverá ter uma tela de abertura (tela inicial) em que o usuário entrará com seu LOGIN e senha. Após realizado o login com sucesso, aparecerão os botões para acesso às plantas de primeira e segunda ordem, conforme exemplificado na Figura 1.

Existirão dois tipos de usuários, o operador e a engenharia. Para esta aplicação, o nível de acesso dos usuários não é relevante.



Figura1 - Exemplo de tela de abertura

Para cada sistema (um de primeira ordem e outro de segunda ordem), haverá uma tela conforme ilustrada na Figura 2. A tela deverá ter:

- 1) Um gráfico de tendência, que plotará os valores do Setpoint e da saída da planta (variável de processo);
- 2) Um grupo de Alarmes, configurado como histórico;
- 3) Botões para limpar os alarmes e reconhecer os alarmes;
- 4) Botão para abrir o Histórico da planta;
- 5) Objeto do tipo Setpoint para que possa ser passado ao controlador o valor do Setponit;
- 6) Display para visualizar o valor atual da saída da planta;
- 7) Botão Manual / Automático, responsável por colocar a planta em malha aberta manual ou em malha fechada automático;
- 8) Botão para resetar a planta. Durante a simulação, o sistema pode se tornar instável. O botão reset, do tipo retentivo, será responsável por zerar a saída da planta (Lógica implementada no CLP).
- 9) Objetos do tipo Sliders para as ações de controle KP (ganho proporcional) e KI (ganho integral);
- 10) Botões para acessar a tela de abertura e a outra planta.



Figura 2 – Exemplo de tela de controle das plantas

OBS: Os objetos para controle da planta (Botões Manual/Automático e Reset, Sliders de KP e KI, Setpoint e Display) deverão aparecer quando um clique com o botão esquerdo do mouse for feito no objeto gráfico de tendência, e desaparecerão quando um clique com o botão direito do mouse for feito no objeto gráfico de tendência.

## Configuração do ALARME

Criar um Arquivo para cada grupo alarme.

Cada grupo de alarmes será configurado com Histórico, e monitorará a tag da saída da planta (Alarme alto >= 85 e Alarme muito alto >= 95).

## Configuração do HISTÓRICO

O recurso histórico de cada planta deverá ter um Arquivo fonte próprio e conterá as seguintes tags: Setpoint; Variável de processo (saída da planta); KP e KI.

O acesso será a todo o banco de dados, sendo permitido: dar zoom na área desejada pelo usuário; saber o valor de qualquer uma das variáveis a qualquer instante (Análise gráfica).

## Usuários

A única diferença entre o usuário operador e engenharia, será os limites dos objetos Sliders dos KPs e KIs das plantas.

Quando o usuário logado for **operador**, os valores dos sliders serão:

**Planta de Primeira Ordem** -> KP (Limite mínimo: 0 / Limite máximo: 70) - Passo 1

KI (Limite mínimo: 0 / Limite máximo: 30) – Passo 1

Planta de Segunda Ordem -> KP (Limite mínimo: 0 / Limite máximo: 0,060) – Passo 0,001

KI (Limite mínimo: 0 / Limite máximo: 0,040) – Passo 0,001

Quando o usuário logado for engenharia, os valores dos sliders serão:

Planta de Primeira Ordem -> KP (Limite mínimo: 0 / Limite máximo: 150) - Passo 1

KI (Limite mínimo: 0 / Limite máximo: 50) – Passo 1

Planta de Segunda Ordem -> KP (Limite mínimo: 0 / Limite máximo: 0,110) — Passo 0,001

KI (Limite mínimo: 0 / Limite máximo: 0,08) – Passo 0,001

Criar variáveis do tipo PLC para os seguintes elementos e associá-las aos seus respectivos objetos: (Utilize o Scan de 50 ms para as Tags PLC).

| Variável                                                         | Endereço | Tipo de dado |
|------------------------------------------------------------------|----------|--------------|
| Setpoint da planta de 1ª ordem                                   | MD0      | Real         |
| Variável de processo da planta de 1ª ordem                       | MD8      | Real         |
| Ganho proporcional (KP) da planta de 1ª ordem                    | MD500    | Real         |
| Ganho integral (KI) da planta de 1ª ordem                        | MD504    | Real         |
| Setpoint da planta de 2ª ordem                                   | MD30     | Real         |
| Variável de processo da planta de 2ª ordem                       | MD42     | Real         |
| Ganho proporcional (KP) da planta de 2ª ordem                    | MD512    | Real         |
| Ganho integral (KI) da planta de 2ª ordem                        | MD516    | Real         |
| Alterna entre malha aberta e malha fechada da planta de 1ª ordem | M2000.1  | Bool         |
| Reset dos valores da planta de 1ª ordem                          | M2000.2  | Bool         |
| Alterna entre malha aberta e malha fechada da planta de 2ª ordem | M2000.3  | Bool         |
| Reset dos valores da planta de 2ª ordem                          | M2000.4  | Bool         |