【A1、A2 卷大部分试题从清华题库摘录或改编,除去: A1 填空第6题、A2 选择第5题为几何光学; A1/A2 选择 9、10 题、填空第 8-10 题、第五大题为量子物理。若已做过清华题库试题请做 B1、B2 卷】

2022年秋季学期

大学物理 IB 复习试题(A1)

2023.2

说明:

- 1. 仅供复习参考,不作猜题押题之用。
- 2. 本次考试为闭卷考试,考试时间为120分钟,总分100分。
- 3. 把握好做题节奏,尽量不要暂停。

备用常数: 玻耳兹曼常量 $k=1.38\times10^{-23}$ J·K⁻¹, 普适气体常量 R=8.31 J·mol⁻¹·K⁻¹

阿伏伽德罗常量 $N_A=6.02\times10^{23}$ mol⁻¹, 普朗克常量 $h=6.63\times10^{-34}$ J·s

电子质量 m_e =9.11×10⁻³¹kg; 电子电量 e=1.6×10⁻¹⁹C;

 $1 \text{nm} = 10^{-9} \text{m}$, 维恩位移公式中的常量 $b = 2.898 \times 10^{-3} \text{ m·K}$, 里德伯常量 $R = 1.097 \times 10^7 \text{ m}^{-1}$ 斯特藩-玻尔兹曼公式中的常量 $\sigma = 5.670 \times 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$

注意行为规范 遵守考场纪律

一、单项选择题(每小题3分,满分30分)

每小题均只有一个选项符合题目要求。请将每小题的答案填在题干末尾的中括号里, 填在 中括号以外的答案无效。

1. 【3396,176】一质点作简谐振动。其运动速度与时间的曲线如图所示。若质点的振动规律 用余弦函数描述,则其初相应为【 1

 $(A) \pi/6$

(B) $5\pi/6$

(C) $-5\pi/6$

(D) $-\pi/6$

C

第3 题图

2. 【3411,229】若一平面简谐波的表达式为 $y = A\cos(Bt - Cx)$,式中 $A \times B \times C$ 为正值常量,则

(A) 波速为 C

- (B) 周期为 1/B (C) 波长为 $2\pi/C$ (D) 角频率为 $2\pi/B$
- 3. 【5648,340】在如图所示的单缝夫琅禾费衍射装置中,将单缝宽度 a 稍稍变宽,同时使单 缝沿 v 轴正方向作微小平移 (透镜屏幕位置不动),则屏幕 C 上的中央衍射条纹将【
 - (A) 变窄,同时向上移 (B) 变窄,同时向下移 (C) 变窄,不移动
- (D) 变宽,同时向上移 (E) 变宽,不移动

【动态分析例题还有: 325-327、333、336、341,注意衍射和干涉分析的区别】

- 4. 【3525, 348】波长为 λ 的单色光垂直入射于光栅常数为 d、缝宽为 a、总缝数为 N 的光 栅上。取 k=0, ± 1 , ± 2 , ... ,则决定出现主极大的衍射角 θ 的公式可写成【 1 (A) $Na\sin\theta = k\lambda$ (B) $a\sin\theta = k\lambda$ (C) $Nd\sin\theta = k\lambda$ (D) $d\sin\theta = k\lambda$
- 5. 【3545,356】自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光, 则知折射光为【 】
 - (A) 完全线偏振光且折射角是 30°
 - (B) 部分偏振光且只是在该光由真空入射到折射率为√3的介质时,折射角是 30°
 - (C) 部分偏振光, 但须知两种介质的折射率才能确定折射角
 - (D) 部分偏振光且折射角是 30°

【问:反射光的性质是什么?】

- 6. 【4316,461】下图为一理想气体几种状态变化过程的p-V图,其中 MT 为等温线, MO 为绝热线,在 AM、BM、CM 三种准静态过程中: (1) 温度降低的是 过程; (2) 气 体放热的是 过程。【 】
 - (A) (1) AM; (2) BM, CM
- (B) (1) AM; (2) BM, AM
- (C) (1) BM, CM; (2) AM (D) (1) BM, AM; (2) CM

- 7. 【4121,426】两个卡诺热机的循环曲线如图所示,一个工作在温度为 T_1 与 T_3 的两个热源 之间,另一个工作在温度为 T_2 与 T_3 的两个热源之间,已知这两个循环曲线所包围的面积 相等。由此可知【]
 - (A) 两个热机的效率一定相等
 - (B) 两个热机从高温热源所吸收的热量一定相等
 - (C) 两个热机向低温热源所放出的热量一定相等
 - (D) 两个热机吸收的热量与放出的热量(绝对值)的差值一定相等
- 8. 【4253,442】一定量的理想气体贮于某一容器中,温度为T,气体分子的质量为m。根据 理想气体分子模型和统计假设,分子速度在x方向的分量的下列平均值:v=

 $\overline{v^2} =$

(A)
$$\sqrt{\frac{8kT}{\pi m}}$$
 , $\sqrt{\frac{3kT}{m}}$

(B)
$$\frac{1}{3}\sqrt{\frac{8kT}{\pi m}}$$
; $\frac{kT}{m}$

(C) 0;
$$\frac{kT}{m}$$

(A)
$$\sqrt{\frac{8kT}{\pi m}}$$
, $\sqrt{\frac{3kT}{m}}$ (B) $\frac{1}{3}\sqrt{\frac{8kT}{\pi m}}$; $\frac{kT}{m}$ (C) 0; $\frac{kT}{m}$ (D) $\frac{1}{3}\sqrt{\frac{8kT}{\pi m}}$; $\frac{1}{3}\sqrt{\frac{3kT}{m}}$

9. 光是由光子组成的。在光电效应中,光电流的大小取决于【】 (A)入射光的强度 (B)入射光的相位和频率 (C)入射光的强度和频率 (D)入射光的频率 10. 假设把白炽灯中的钨丝看作黑体, 若其点亮时的温度为 2900K, 则电磁辐射中单色辐出度 的极大值对应的波长为【 】 (A) 999 nm (B) 645 nm (C) 888 nm (D) 550 nm 二、填空题(每小题 3 分, 满分 30 分) 1. 【5315,218】两个同方向同频率的简谐振动,其合振动的振幅为 20 cm,与第一个简谐振 动的相位差为 $\varphi - \varphi_1 = \pi/6$ 。若第一个简谐振动的振幅为 $10\sqrt{3}$ cm = 17.3 cm,则第二个简 谐振动的振幅为 _____cm,第一、二两个简谐振动的相位差 $\varphi_1 - \varphi_2$ 为_____。 2. 【3835,223】在竖直悬挂的轻弹簧下端系一质量为100g的物体,当物体处于平衡状态时, 再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放。已知物体在 32 s 内完成 48 次 振动,振幅为 5 cm。则上述的外加拉力大小是 N: 当物体在平衡位置以下 1 cm 处时, 此振动系统的动能是 J。 3. 【3294,285】在截面积S的圆管中,有一列平面简谐波在传播,其波的表达式为 $y = A\cos\left[\omega t - 2\pi(x/\lambda)\right]$,管中波的平均能量密度是w,则通过截面积S的平均能流是_____。 4. 【7938,367】空气中有一玻璃劈形膜,其一端厚度为零,另一端厚度为 0.005 cm, 折射率 为 1.5。现用波长为 600 nm 的单色平行光,沿入射角为 30° 角的方向射到劈的上表面, 则在劈形膜上形成的干涉条纹数目为。 5. 【3203,377】用迈克耳孙干涉仪测微小的位移。若入射光波波长 $\lambda = 628.9 \text{ nm}$,当动臂反 射镜移动时,干涉条纹移动了 2048 条,反射镜移动的距离 d=。 6. 自一透镜射出的光向 M 点会聚(如图所示),在 M 点的左方放一厚度为 t 的平行平面玻璃, 折射率为 1.50,玻璃垂直于水平轴,则光线会聚于M'点,即 M 点沿水平轴平移至M'点。 已知玻璃左边一面距 M 点为 6cm, MM' 为 1/8 cm, 则玻璃的厚度为 cm。

- 8. 根据玻尔的氢原子理论,电子在基态轨道运动时,其德布罗意波的波长为____。
- 9. 宽度为 $a=2\times10^{-10}$ m 的一维无限深势阱中的电子由 n=3 的能级跃迁到 n=1 的能级,所发出光波的波长为。
- 10. 在康普顿散射实验中,若用波长为 0.1nm 的光子作为入射源,则散射角 45°的康普顿散射 波长是__________________________。

以下为计算题,每小题 10分,满分 40分。

三、【3099,306】如图所示,两相干波源在x 轴上的位置为 S_1 和 S_2 ,其间距离为 d=30 m, S_1 位于坐标原点 O。设波只沿 x 轴正负方向传播,单独传播时强度保持不变。 $x_1=9$ m 和 $x_2=12$ m 处的两点是相邻的两个因干涉而静止的点。求两波的波长和两波源间最小相位差。

- 四、【3660,400】用波长为500 nm 的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上。在观察反射光的干涉现象中,距劈形膜棱边 $l=1.56\,\mathrm{cm}$ 的A处是从棱边算起的第四条暗条纹中心。
 - (1) 求此空气劈形膜的劈尖角 θ ;
- (2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹, A 处是明条 纹还是暗条纹?
 - (3) 在第(2) 问的情形从棱边到 A 处的范围内共有几条明纹? 几条暗纹?

五、 处于第一激发态的氢原子被外来单色光激发,在其发射的光谱中仅观察到三条巴耳末系谱线。试求这三条光谱线中波长最长的那条谱线的波长以及外来光的频率。

六、【0203,486】1 mol 单原子分子的理想气体,经历如图所示的可逆循环,联结 ac 两点的曲线 III 的方程为 $p=p_0V^2/V_0^2$,a 点的温度为 T_0 。(1) 试以 T_0 ,普适气体常量 R 表示 I、II、III 过程中气体吸收的热量; (2) 求此循环的效率。

2022年秋季学期

大学物理 IB 复习试题(A2)

2023.2

说明:

- 1. 仅供复习参考,不作猜题押题之用。
- 2. 本次考试为闭卷考试,考试时间为120分钟,总分100分。
- 3. 把握好做题节奏,尽量不要暂停。

备用常数: 玻耳兹曼常量 $k=1.38\times10^{-23}$ J·K⁻¹, 普适气体常量 R=8.31 J·mol⁻¹·K⁻¹ 阿伏伽德罗常量 $N_A=6.02\times10^{23}$ mol⁻¹, 普朗克常量 $h=6.63\times10^{-34}$ J·s 电子质量 $m_e=9.11\times10^{-31}$ kg; 电子电量 $e=1.6\times10^{-19}$ C; $1atm = 1.013 \times 10^5 \text{ Pa}$; $1nm = 10^{-9} \text{m}$,里德伯常量 $R = 1.097 \times 10^7 \text{ m}^{-1}$

注意行为规范 遵守考场纪律

一、单项选择题(每小题3分,满分30分)

每小题均只有一个选项符合题目要求。请将每小题的答案填在题干末尾的中括号里, 填在 中括号以外的答案无效。

1. 【5179, 179】一弹簧振子, 重物的质量为 m, 弹簧的劲度系数为 k, 该振子作振幅为 A 的 简谐振动。当重物通过平衡位置且向规定的正方向运动时,开始计时。则其振动方程为

(A)
$$x = A\cos\left(\sqrt{\frac{k}{m}}t + \frac{1}{2}\pi\right)$$

(A)
$$x = A\cos\left(\sqrt{\frac{k}{m}}t + \frac{1}{2}\pi\right)$$
 (B) $x = A\cos\left(\sqrt{\frac{k}{m}}t - \frac{1}{2}\pi\right)$

(C)
$$x = A\cos\left(\sqrt{\frac{m}{k}}t - \frac{1}{2}\pi\right)$$
 (D) $x = A\cos\left(\sqrt{\frac{m}{k}}t + \frac{1}{2}\pi\right)$

(D)
$$x = A\cos\left(\sqrt{\frac{m}{k}}t + \frac{1}{2}\pi\right)$$

- 2. 【3088,249】一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移 处,则它的能量是【 1
 - (A) 动能为零,势能最大 (B) 动能为零,势能为零
 - (C) 动能最大, 势能最大 (D) 动能最大, 势能为零
- 【3162,352】在真空中波长为 λ 的单色光,在折射率为 n 的透明介质中从 A 沿某路径 传播到 B, 若 A、B 两点相位差为 3π ,则此路径 AB 的光程为【 】
 - $(A) 15\lambda$
- (B) $1.5\lambda/n$
- (C) 1.5n λ
- 【5656,393】用波长为 λ 的单色平行光垂直入射在一块多缝光栅上,其光栅常数 d=3 μm , 缝宽 $a = 1 \mu m$, 则在单缝衍射的中央明条纹中共有多少条谱线 (主极大)?【
 - (A) 3
- (B) 5
- (C) 6 (D) 7

- 5. 如图所示,一束黄光和一束蓝光,从O点以相同角度沿PO方向射入横 截面为半圆形的玻璃柱体,其透射光线分别从M、N 两点射出,已知 α = 45°, β =60°, 光速 c=3×10⁸ m/s。则下列说法错误的是【 1

- (A) *OM* 是黄光, *ON* 是蓝光
- (B) 玻璃对 OM 光束的折射率为 $\sqrt{2}$
- (C) OM 光束在该玻璃中传播的速度为√3×108 m/s
- (D) 若将 OM 光束从 N 点沿着 NO 方向射入,不会发生全反射
- 【4955,440】容积恒定的容器内盛有一定量某种理想气体,其分子热运动的平均自由程为 $\overline{\lambda_0}$, 平均碰撞频率为 $\overline{Z_0}$, 若气体的热力学温度降低为原来的 1/4 倍,则此时分子平均自 由程ā和平均碰撞频率Z分别为【】

 - (A) $\overline{\lambda} = \overline{\lambda_0}$, $\overline{Z} = \overline{Z_0}$ (B) $\overline{\lambda} = \overline{\lambda_0}$, $\overline{Z} = \frac{1}{2}\overline{Z_0}$

 - (C) $\overline{\lambda} = 2\overline{\lambda_0}$, $\overline{Z} = 2\overline{Z_0}$ (D) $\overline{\lambda} = \sqrt{2}\overline{\lambda_0}$, $\overline{Z} = \frac{1}{2}\overline{Z_0}$
- 7. 【4124,429】设高温热源的热力学温度是低温热源的热力学温度的 n 倍,则理想气体在 一次卡诺循环中,传给低温热源的热量是从高温热源吸取热量的【
 - (A) n 倍
- (B) n-1 倍
- (C) $\frac{1}{n}$ 倍 (D) $\frac{n+1}{n}$ 倍
- 8. 【4683,463】已知一定量的理想气体经历 p-T 图上所示的循环过程,则图中 1→2、2 →3、3→1 各过程中, 吸热的过程个数是【 】

- (C) 1 (D) 09. 在康普顿效应实验中,若散射光波长是入射光波长的 1.2 倍,则散射光光子能量与反冲电
 - 子的动能之比为【】

(A) 5:6

- (B) 5:1
- (C) 6:1 (D) 1:5
- 10. 德布罗意波也称物质波,是一种概率波,以下正确的是【】
 - (A) 波粒二象性指出微观粒子是沿微小起伏的波的轨迹运动的,且波长 $\lambda = \frac{n}{n}$
 - (B) 黑体辐射、光电效应、康普顿散射实验为光的波动性提供了有力的论据
 - (C) 概率密度 $P = |\Psi^2|$, 其中 Ψ 是粒子的波函数
 - (D) 概率波不是物质作波动运动的形式,而是其在不同位置出现的概率的描述

	祖穴斯	(每小题3分,	港公 20 公)
<u> </u>	块工账	しず小殴りカリ	一切 フローフローフローフ

- 1. 【3817, 201】一简谐振动的表达式为 $x = A\cos(3t + \varphi_0)$,已知 t = 0 时的初位移为 0.04 m,初速度为 0.09 m/s,则振幅 $A = ______$,初相 $\varphi_0 = ______$ 。
- 2. 【3338,242】图示为一简谐波在 t=0 时刻的波形图,波速 u=200m/s,则图中 O 点的振动加速度表达式为

- 4. 【3524,384】平行单色光垂直入射在缝宽为 $a=0.15\,\mathrm{mm}$ 的单缝上。缝后有焦距为 $f=400\,\mathrm{mm}$ 的凸透镜,在其焦平面上放置观察屏幕。现测得屏幕上中央明条纹两侧的两个第三级暗纹之间的距离为 $8\,\mathrm{mm}$,则入射光的波长为 $\lambda=$ _____。
- 5. 【3621,371】用波长为 λ 的单色光垂直照射如图所示的、折射率为 n_2 的劈形膜 $(n_1 > n_2, n_3 > n_2)$,观察反射光干涉。从劈形膜顶(图中左侧)开始,第 2 条明条纹对应的膜厚度 e=
- 6. 【4018,444】有一瓶质量为M kg 的氢气 (视作刚性双原子分子的理想气体),温度为T,则氢分子的平均平动动能为_____,氢分子的平均动能为_____,该瓶氢气的内能为_____。
- 8. 波长为 400nm 的平面光波朝 x 轴正向传播。若波长的相对不确定量为 $\Delta \lambda / \lambda = 10^{-6}$,则光子 坐标的最小不确定量为 。
- 9. 已知金属钾的逸出功是 2.0eV。则其发生光电效应时的红限频率为______Hz,如果入射光波长为 583.9nm,那么遏止电势差等于_____。

以一	下为计算题,每小题 10	分,	满分 40 分	} 。					
	具有的状态数为	_,当	n一定时,	原子中电子中	可能具有	有的状态数	(为		0
10.	原子内电子的量子态由 n ,	$!, m_l,$	ms四个量	子数来表征。		<i>l</i> 一定时,	原子中电	且子可	「能

- 三、【3086, 299+5319, 298 改】一平面简谐波沿 x 轴正向传播,波的振幅 A=10 cm,波的角频率 $\omega=7\pi$ rad/s。当 t=1.0 s 时,x=10 cm 处的 a 质点正通过其平衡位置向 y 轴负方向运动,而 x=20 cm 处的 b 质点正通过 y=5.0 cm 点向 y 轴正方向运动。设该波波长 $\lambda>10$ cm,求
- (1) 该平面波的表达式;
- (2) 写出 t = 4s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置;
- (3) 求 t=4s 时离坐标原点最近的那个波峰通过坐标原点的时刻 t。

四、【3198, 399+5324, 325 改】如图所示,牛顿环装置的平凸透镜与平板玻璃有一小缝隙 e_0 。 现用波长为 λ 的单色光垂直照射,已知平凸透镜的曲率半径为 R,

- (1) 求反射光形成的牛顿环的各暗环半径。
- (2) 当平凸透镜慢慢地向上平移时,由反射光形成的牛顿环条纹间距有什么变化?条纹是向中心收缩,还是向外扩张?

 e_0

五、 微观粒子在一维无限深势阱中运动,其波函数为 $\psi_n(x) = A \sin\left(\frac{n\pi x}{a}\right)$, (0 < x < a). 求:

(1) A 的值; (2) 若粒子处于 n=2 状态,在 $0\sim a/4$ 区间发现该粒子的概率是多少? (3) 势阱内什么位置处发现粒子的概率密度为 0?

六、【4114,489】一定量的某单原子分子理想气体装在封闭的汽缸里。此汽缸有可活动的活塞 (活塞与气缸壁之间无摩擦且无漏气)。已知气体的初压强 $p_1 = 1$ atm,体积 $V_1 = 1$ L,现将该气体在等压下加热直到体积为原来的两倍,然后在等体积下加热直到压强为原来的 2 倍,最后作绝热膨胀,直到温度下降到初温为止。

- (1) 在 p-V 图上将整个过程表示出来; (2) 试求在整个过程中气体内能的改变;
- (3) 试求在整个过程中气体所吸收的热量; (4) 试求在整个过程中气体所作的功。

2022年秋季学期

大学物理 IB 复习试题(B1)

2023.2

说明:

- 1. 仅供复习参考,不作猜题押题之用。
- 2. 本次考试为闭卷考试,考试时间为120分钟,总分100分。
- 3. 把握好做题节奏,尽量不要暂停。

备用常数: 玻耳兹曼常量 k=1.38×10⁻²³ J·K⁻¹,普适气体常量 R= 8.31 J·mol⁻¹·K⁻¹ 阿伏伽德罗常量 N_A =6.02×10²³ mol⁻¹,普朗克常量 h= 6.63×10⁻³⁴ J·s 电子质量 m_e =9.11×10⁻³¹kg;电子电量 e=1.6×10⁻¹⁹C; 1nm=10⁻⁹m,维恩位移公式中的常量 b=2.898×10⁻³ m·K,里德伯常量 R=1.097×10⁷ m⁻¹ 斯特藩-玻尔兹曼公式中的常量 σ =5.670×10⁻⁸ W·m⁻²·K⁻⁴

注意行为规范 遵守考场纪律

一、单项选择题(每小题3分,满分30分)

每小题均只有一个选项符合题目要求。请将每小题的答案填在题干末尾的中括号里,填在中括号以外的答案无效。

1. 利用多普勒效应监测车速,固定在地面上的波源发出频率为 v_0 的超声波,当汽车向波源行驶时,与波源安装在一起的接收器接收到从汽车反射回来的波的频率为 v_1 。已知空气中的声速为u,则车速为【

(A)
$$\frac{v_t + v}{v_t - v}u$$
 (B) $\frac{v_t - v}{v_t + v}u$ (C) $\frac{v_t + v}{v}u$ (D) $\frac{v_t - v}{v}u$

2. 一弹簧振子作简谐振动,当其偏离平衡位置的位移大小为振幅的 $\frac{1}{4}$ 时,其动能为振动总能

量的【 】 (A) $\frac{1}{4}$ (B) $\frac{3}{4}$ (C) $\frac{15}{16}$ (D) $\frac{1}{16}$

3. 光强分别为 *I*₀ 和 4*I*₀ 的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是【 】

- (A) $3I_0$ (B) $5I_0$ (C) $9I_0$ (D) $25I_0$
- 4. 平行单色光垂直入射于宽度为 a 的单缝上,观察夫琅禾费单缝衍射。下列说法正确的是

- (A) 若屏上 P 点处为第二级明纹,则单缝处波面可相应划分为 5 个半波带
- (B) 若将单缝宽度缩小一半,原来第二级暗纹处将显示第一级明纹
- (C) 若将单缝略向上移动而保持其他条件不变,则中央明纹略向上移动
- (D) 当衍射角适合 $a\sin\theta = k\lambda$ ($k=0, \pm 1, \pm 2, ...$) 时,此处为暗纹 (中心)

- 5. 一物置于焦距为 8cm 的薄凸透镜前 12cm 处,现将另一焦距为 6cm 的薄凸透镜放在第一个 透镜右侧 30cm 处,则最后成像的性质是【 1
 - (A) 一个放大的实像
- (B) 一个缩小的实像
- (C) 无像或成像于无穷远 (D) 一个放大的虚像
- 6. 按照麦克斯韦速率分布律 $f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{mv^2}{2kT}} v^2$,下列各图所示的速率分布曲线哪一个可 以是同一温度下氮气和氦气的分子速率分布曲线?【

7. 某单原子理想气体经历图示过程 ab,由初态 a 变到终态 b,则该理想气体在 ab 过程中的摩 尔热容量为 (普适气体常量为R)【

- (B) 2R
- (C) 0.5R
- (D) 2.5R
- 8. 已知某金属的截止频率为 ν_0 ,用频率为 ν_1 和 ν_2 的两种单色光先后照射该金属均能产生光电 效应,测得两次照射时的遏止电势差大小关系为 $U_{01} = \frac{1}{2}U_{02}$,则这两种单色光频率的关系为

- (A) $v_2 = 2v_1 v_0$ (B) $v_2 = v_1 + v_0$ (C) $v_2 = v_1 v_0$ (D) $v_2 = 2v_1 + v_0$
- 9. 低速运动的质子和 α 粒子,若它们的德布罗意波长相同,则动能之比为【
 - (A) 4:1
- (B) 1:4
- (C) 1:1
- (D) 2:1
- 10. 若氢原子处于 n=2, l=1 的状态,其归一化径向波函数为 $R_{21}(r) = \left(\frac{1}{2a_n}\right)^{\frac{2}{2}} \frac{r}{\sqrt{3}a_n} e^{\frac{-r}{2a_0}}$,则电子

径向概率密度最大的的位置是【

- (A) 4a₀
- (B) $2a_0$
- (C) $6a_0$ (D) $3a_0$

二、填空题(每小题3分,满分30分)

1. 如图所示,一质量为m的滑块,两边分别与劲度系数为 k_1 和 k_2 的轻弹簧连接,两弹簧的另外两端分别固定在墙上,滑块可在光滑的水平面上滑动,O点为系统平衡位置。将滑块向右移动到 x_0 ,自静止释放,并从释放时开始计时,取坐标如图所示,则滑块的振动方程为

- 3. 用波长为 λ 的单色光垂直照射如图所示的牛顿环装置,观察从空气膜上下表面反射的光形成的牛顿环。若观察到第 k 级明环的直径为 4mm,该环外第五个明环直径为 6mm,透镜曲率半径为 1.03m,则 k= ,光的波长为 。
- 4. 老鹰眼睛的瞳孔直径约为 6mm,则其最高飞翔高度为_____m 时,才能看清地面上身长为 5cm 的小鼠。(设光在空气中的波长为 600nm)
- 5. 用波长为 λ 的单色光垂直照射到空气劈形膜上,从反射光中观察干涉条纹,距顶点 L 处是暗纹,如图所示。使劈尖角连续变大,直到该点处再次出现暗条纹为止,劈尖角的改变量是_____。

第6题图

7. 某种理想气体,分子总数为 N,每个分子质量为 m,其速率分布函数为 $f(v) = \begin{cases} Cv & (0 \le v \le v_0) \\ 0 & (v > v_0) \end{cases}$,其中 v_0 为已知量,C 为未定常数,则分子的平均速率为_______, $\int_{\frac{v_0}{2}}^{v_0} Nf(v) dv$ 表

示的物理意义是_______, $\int_{\frac{v_0}{2}}^{v_0} \frac{1}{2} m v^2 N f(v) dv$ 表示的物理意义是______。

- 8. 可逆卡诺制冷机的制冷系数为 ω ,可逆卡诺热机的效率为 η ,则两者的关系是_____(用 仅含 ω , η 的式子表示)。
- 9. 角量子数 l=2 的量子态,其轨道角动量为______,其轨道角动量在外磁场 z 方向的投影可能取的值分别为_____。
- 10. 已知某恒星到达地球的每单位面积上的辐射功率为 $P=1.2\times10^{-8}\mathrm{W/m^2}$,恒星距地球 $4.3\times10^{17}\mathrm{m}$,表面温度为 5200K。若恒星辐射可视作黑体辐射,则恒星的半径_____。

以下为计算题,每小题 10分,满分 40分。

三、(本题 10 分)

一平面简谐波,波长为 8m,沿 ox 轴负向传播。如图所示为 x=1.0m 处质点的振动曲线,求:(1)此波的波速;(2)此波的波动方程;(3)若介质的密度为 $\rho=9.0\times10^2$ kg/m³,求该波的能流密度。

四、(本题 10 分)

两束平行光,波长分别为 $\lambda_1 = 500$ nm, $\lambda_2 = 700$ nm(1 nm = 10^{-9} m)。现让它们分别垂直入射到某个光栅上,实验发现,两种波长的谱线重合于衍射角 $\theta = 30^\circ$ 的方向上。

- (1) 求此光栅的光栅常数 d 的最小值。
- (2) 按(1)中求得的光栅常数,当入射光波长为 700nm 时,若光栅的缝宽为 1750nm,则在光屏上能观察到的主极大的级次有哪些?

五、(本题 10 分)

1mol 某理想气体作如图的可逆循环过程,其中 1-2 为直线, 2-3 为绝热线, 3-1 为等温线。 T_1 已知,且 T_2 = $2T_1$, V_3 = $8V_1$ 。普适气体常量为 R。试求:

- (1) 各过程的功,内能增量和外界对理想气体传递的热量;
- (2) 此循环的效率。

六、(本题 10 分)

分别用波长 $\lambda_1 = 400$ nm 的可见光和 $\lambda_2 = 0.04$ nm 的 X 射线与自由电子碰撞。

- (1) 若在 $\theta=\pi/2$ 的方向上观察散射光,两种情况下散射光波长的相对改变量;
- (2) 估算两次散射电子获得的动能比值;
- (3)为了观察到更明显的散射现象,应选用哪种光?若该光与某反冲电子作用后,反冲电子的动能为758eV,求散射光子的波长及散射角。

2022年秋季学期

大学物理 IB 复习试题(B2)

2023.2

说明:

- 1. 仅供复习参考,不作猜题押题之用。
- 2. 本次考试为闭卷考试,考试时间为120分钟,总分100分。
- 3. 把握好做题节奏,尽量不要暂停。

备用常数: 玻耳兹曼常量 $k=1.38\times10^{-23}$ J·K⁻¹, 普适气体常量 R=8.31 J·mol⁻¹·K⁻¹

阿伏伽德罗常量 $N_A=6.02\times10^{23}$ mol⁻¹, 普朗克常量 $h=6.63\times10^{-34}$ J·s

电子质量 m_e =9.11×10⁻³¹kg;电子电量 e=1.6×10⁻¹⁹C;1nm=10⁻⁹m,里德伯常量 R=1.097×10⁷ m⁻¹

注意行为规范 遵守考场纪律

一、单项选择题(每小题3分,满分30分)

每小题均只有一个选项符合题目要求。请将每小题的答案填在题干末尾的中括号里, 填在 中括号以外的答案无效。

- 1. 两相干波源 S_1 和 S_2 相距 $\lambda/3$, S_1 的相位比 S_2 的相位超前 $\pi/3$, 在 S_1 、 S_2 的连线上, S_1 左侧 各点(例如图中 P 点)两列波引起的两谐振动的相位差 $\varphi_1 - \varphi_2 = \mathbb{I}$

- (A) π (B) $\frac{2\pi}{3}$ (C) 0 (D) $-\frac{\pi}{3}$

- 2. 一长为 l 的均匀细棒悬于通过其一端的光滑水平固定轴上, 作成一复摆。

已知细棒绕通过其一端的轴的转动惯量 $J=\frac{1}{3}ml^2$,此棒作微小振动的周期为【

- (A) $2\pi\sqrt{\frac{l}{g}}$ (B) $2\pi\sqrt{\frac{l}{2g}}$ (C) $2\pi\sqrt{\frac{2l}{3g}}$ (D) $\pi\sqrt{\frac{l}{3g}}$
- 3. 折射率为 1.50 的两块标准平板玻璃间形成一个劈尖,用波长 $\lambda = 500$ nm 的单色光垂直入射, 产生等厚干涉条纹。当劈尖内充满液体时,相邻明纹间距为 0.4mm,比劈尖内是空气时的 相邻明纹间距缩小了 $\Delta l = 0.12$ mm,则液体的折射率为【
 - (A) 1.20 (B) 1.40
- (C) 1.30
- (D) 1.35
- 4. 如图所示, L_1 、 L_2 分别为凸透镜和凹透镜,前面放一小物,移动屏幕到 L_2 后 20cm 的 S_1 处 接收到像。现将凹透镜 L_2 撤去,将屏幕移前 $5 \text{cm} \subseteq S_2$ 处,重新接收到像。则凹透镜 L_2 的
 - 焦距为【 1
 - (A) -20 cm
- (B) -40 cm
- (C) -60 cm
- (D) -80 cm
- 5. 在一个以匀速 ν 运动的容器中, 盛有 1mol 单个分子质 量为 m 的某种刚性双原子分子理想气体。若使容器突

然停止运动(动能全部转化为内能),则气体状态达到平衡后,其温度的增量为【 1

- (A) $\frac{mv^2}{5k}$ (B) $\frac{mv^2}{5R}$ (C) $\frac{mv^2}{7k}$ (D) $\frac{mv^2}{7R}$

6.	一定量理想气体,其分子总数为 N ,分子数密度为 n ,每个分子质量为 m ,其速率分布函数
	为 $f(v)$,则下列表达式与其物理意义对应正确的是【 】
	(A) <i>nf</i> (v)dv: 速率 v 附近, dv 区间内的分子数目
	$(B) \int_0^{v_0} v f(v) dv$: 速率 $0 \sim v_0$ 之间的分子的平均速率
	(C) $\int_{v_1}^{v_2} \frac{1}{2} m v^2 f(v) dv$: 速率 $v_1 \sim v_2$ 之间的分子的平均平动动能
	$(\mathbf{D}) f(v) dv$: 气体分子速率处于速率 v 附近单位速率区间内的概率
7.	一定量理想气体,从同一状态开始使其体积由 V_1 膨胀到 $2V_1$,分别经历以下三种过程:
	(1) 等压过程;(2) 等温过程;(3) 绝热过程。其中:过程气体对外作功最多;
	过程气体内能增加最多;过程气体吸收的热量最多。【 】
	(A) 等温, 等压, 等温 (B) 等压, 等压, 等压
	(C) 等压,绝热,等压 (D) 绝热,等压,等温
8.	下列关于热力学第一定律和热力学第二定律的表述,正确的是【 】
	(A) 系统对外作的功不可能大于系统从外界吸收的热量。
	(B) 系统内能的增量等于系统从外界吸收的热量。
	(C) 不可能存在这样的循环过程,在此循环过程中,外界对系统作的功不等于系统传给
外	界的热量。
	(D) 热力学第二定律的开尔文表述指出了热传导的过程是不可逆的。
9.	某氢原子体系,氢原子都处于基态,用能量为12.9eV的电子束去轰击,则氢原子可激发到
	的最高能级是,这些氢原子向低能级跃迁时能发出种不同波长的谱线。
	(A) 3,3 (B) 3,2 (C) 4,3 (D) 4,6
10.	. 原子内电子的量子态由 n , l , m_l , m_s 四个量子数来表征。下列说法正确的是【 】
	(A) 基态的氦原子内两个电子的量子态可由 $\left(1,0,0,\frac{1}{2}\right)$, $\left(1,0,0,-\frac{1}{2}\right)$ 两组量子数表征
	(B) 当 $n=4$ 时, m_l 可能取值为 $0,1,2,3$
	(C) 当 $n=4$ 时, l 可能取值为 $0,1,2,3,4$
	(D) 当 $n=4$ 时,原子内电子所有可能的状态数为 16
<u>=</u>	、填空题(每小题 3 分,满分 30 分)
1.	一端悬挂的轻弹簧下端挂一物体,最初用手将物体托住,使弹簧处于竖直的原长状态,然
	后放手,此系统便在弹簧弹性限度内做简谐振动,物体最低位置在初始位置下方 1 处,则
	该系统的振动频率为,物体第一次运动到初始位置下方31处时所用时间为
	,速度大小为。

2. 一列简谐横波沿 x 轴正方向传播,各质点的振幅为 2cm,某时刻相距 20m 的两质点的位移 都为 1cm,但运动方向相反,则这列波可能的最长波长为。 3. 概念题合集。以下前3题选1道作答,后2题选1道作答。 A) 波在介质中的传输可以用惠更斯原理进行解释,介质中波所到达的每一个点都可以看 成______,新的波前是由_____组成。 B) 菲涅尔以 观点发展了惠更斯原理,从而得到了惠更斯一菲涅尔原理。 C) 坡印廷矢量的物理意义是______, 定义式为_____。 D) 从普通光源获得相干光的方法有 和 等。 E) 牛顿环与等倾干涉的干涉图样都是同心圆环,两者的区别是 。(至少 答出一点,提示:可以从条纹亮暗、级次分布等方面考虑) 4. 要使一束线偏振光通过偏振片之后振动方向转过 90°, 至少需要让这束光通过 片理想 偏振片,在此情况下,透射光强最多是原来的 倍。 5. 波长为 600nm 的单色光垂直入射到一光栅上,第二级主极大出现在 $\sin \varphi = 0.20$ 处,第四级缺 级。则光栅上狭缝的宽度可能是____。 6. 设有 1mol 理想气体从初态 p_0,V_0 开始,经等温过程吸收热量 p_0V_0 后到达终态,则终态体积 为 ,此过程中系统熵的增量是 。 (普适气体恒量为R) 7. 一热力学系统做如图所示的可逆循环过程,其中 ab、cd、ef 均为等 温过程,其相应的温度分别为 $3T_0$ 、 T_0 、 $2T_0$; bc、de、fa 为绝热过程。 设该循环过程所包围的面积为 A_1 , cd 过程曲线下的面积为 A_2 , 则 cdefa 过程中系统熵的增量是_____,循环过程的效率是 8. 一质量为 40g 的子弹以 1000m/s 的速率飞行,测量子弹位置的不确 定量为 0.1 mm。则子弹的德布罗意波长为 ,速率的不确定量为 9. 已知一弹簧振子的质量为 2kg, 以频率 2.0Hz 作简谐振动, 振幅为 0.1m。如果振动能量呈 量子化,那么该振动系统的量子数n为。 $|U_a|$ (V) 10. 如图所示为在一次光电效应实验中,使用某金属材料得出的入射 光频率 v 与遏止电压 U_a 的关系曲线,由图中数据,求出普朗克 恒量 *h*=______,逸出功 *W*₀=_____。

以下为计算题,每小题 10分,满分 40分。

三、 设沿弦线传播的一入射波的表达式为 $y_1 = A\cos\left(\omega t - \frac{2\pi x}{\lambda}\right)$, 波在 x = L 处(B 点)发生反

射,反射点为固定端(如图)。设波在传播和反射过程中振幅不变。

- (1) 求反射波的表达式;
- (2) 若 $L=1.5\lambda$,求入射波和反射波所合成驻波的表达式;
- (3) 在(2) 的条件下, 求在 O、B 之间波节和波腹的位置坐标。

- **四、** 双缝干涉实验装置如图 1、图 2 所示,双缝与屏之间的距离为 D,两缝 S_1 和 S_2 之间的距离为 d。
 - (1)用波长 λ 的单色光垂直照射双缝 (图 1),近似认为 \angle AS₁B 与 \angle PAO 都等于 θ ,且 $\tan \theta \approx \sin \theta$,试推导出屏幕上第 k 级明条纹所在处的坐标 x 的表达式。
 - (2) 在 (1) 问条件下,设上述参数 D=120cm,d=0.50 mm,波长 $\lambda=500$ nm,求原点 O 上方 第五级明条纹的坐标 x。
 - (3) 如果将两个缝隙用厚度均为 e,折射率分别为 n_1 和 n_2 的透明薄膜覆盖,波长为 λ 的单色光斜入射到双缝上(图 2),求在屏幕中央 O 处两束相干光的光程差。

五、 已知一维运动粒子的波函数为 $\psi(x) = \begin{cases} Axe^{-\lambda x}, x \ge 0 \\ 0, x < 0 \end{cases}$, 式中 $\lambda > 0$ 。求:

(1) 该粒子位置坐标的概率分布; (2) 什么位置处发现粒子的概率密度最大?

六、一定量的理想气体,其过程方程为 $pV^2=$ 常数。该气体定容摩尔热容 $C_{v,m}$,普适气体常量为R,已知 $C_{v,m}>R$ 。问:

(1) 该气体的温度和压强有何关系? (2) 气体膨胀时温度是升高还是降低? 吸热还是放热? (3) 利用热容定义 $C = \frac{\mathrm{d}Q}{\mathrm{d}T}$,求此过程中气体的摩尔热容。