JEE 2020

Revise all CONIC SECTION **FORMULAS** in 1 SHOT With Neha Ma'am

- ➤ Chat with teachers
 ➤ Discussions
- >Polls >Assignments
- >Know about the session before it goes live

URL: https://t.me/joinchat/NgOcO1TLwvLLxl5H_YjNkA

VEDANTU MICRO COURSES

- Ŧ
- Complete Chapter Discussion
- Key Formulae and Concepts
- Summary of the Chapter
- Revision
- In-class Quizzes

Start as low as ₹ 11/-

vdnt.in/YTMICRO

Use Code: NAGMIC for 95% off

22413

LEADERBOARD

Awarded

USER'S CHOICE APP AWARD 2019

Download the FREE App 🔪 🁛

PARABOLA

Definition

A parabola is the locus of a point which moves in a plane in such a way that its distance from a fixed point is always equal to its distance from a fixed straight line.

$$\frac{PS}{PM} = e$$
 (eccentricity)

If e = 1, the conic is called as parabola.

Quick Revision- Parabola

Standard form	$y^2 = 4ax$	$y^2 = -4ax$	$x^2 = 4ay$	$x^2 = -4ay$
Coordinates of vertex Coordinates of focus Equation of the directrix Equation of the axis Length of the	(0, 0)	(0, 0)	(0, 0)	(0, 0)
	(a, 0)	(-a, 0)	(0, a)	(0, -a)
	x = -a	x = a	y = -a	y = a
	y = 0	y = 0	x = 0	x = 0
	4a	4a	4a	4a
latusrectum Focal distance of a point	x + a	a - x	y +a	a - y
P(x, y) Parametric coordinates Parametric equations	(at ² , 2at)	(-at ² , 2at)	(2at, at ²)	(2at, -at ²)
	x = at ² ,	x = -at ² ,	x = 2at,	x = 2at,
	y = 2at	y = 2at	y = at ²	y = -at ²

Quick Revision- Parabola

Parabola	Line	Points of contact	Condition of tangency
$y^{2} = 4ax$ $y^{2} = -4ax$ $x^{2} = 4ay$	y = mx + c y = mx + c x = my + c	$ \begin{pmatrix} \frac{a}{m^2}, \frac{2a}{m} \\ -\frac{a}{m^2}, -\frac{2a}{m} \\ \begin{pmatrix} \frac{2a}{m}, \frac{a}{m^2} \end{pmatrix} $	$c=rac{a}{m}$ $c=-rac{a}{m}$ $c=rac{a}{m}$
$x^2 = -4ay$	x = my + c	$\left(-\frac{2a}{m},-\frac{a}{m^2}\right)$	$c=-rac{a}{m}$

Equation of Tangent in different forms:

1. POINT FORM

The equation of the tangent to the parabola $y^2=4ax$ at the point (x_1, y_1) is $yy_1=2a\,(x+x_1)$.

2. PARAMETRIC FORM

The equation of tangent to the parabola $y^2 = 4ax$ at the point $(at^2, 2at)$ is $ty = x + at^2$.

3. SLOPE FORM

The equation of the tangent to parabola $y^2 = 4ax$ in terms of slope 'm' is $y = mx + \frac{a}{m}$.

The coordinates of the point contact are $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$.

ELLIPSE

Definition

It is locus of a point which moves such that ratio of its distance from a fixed point to its distance from a fixed line is always a constant less than 1.

$$\frac{PS}{PM}$$
 = constant = e

where e is eccentricity 0 < e < 1

$$\frac{x^2}{a^2} + \frac{y^2}{a^2(1 - e^2)} = 1$$

This is standard equation of ellipse With focus (ae, 0) and directrix x = a/e

Standard Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, when b > a

$$e^2 = 1 - \frac{a^2}{b^2}$$

Quick Revision- Ellipse

	$rac{x^2}{a^2} + rac{y^2}{b^2} = 1, \ a > b$	$rac{x^2}{a^2} + rac{y^2}{b^2} = 1, a < b$
Coordinates of the centre	(0, 0)	(0, 0)
Coordinates of the vertices	(a, 0) and (-a, 0)	(0, b) and (0, -b)
Coordinates of foci	(ae, 0) and (-ae, 0)	(0, be) and (0, -be)
Length of the minor axis	2 b	2 a
Length of the major axis	2 a	2 b
Equations of the minor axis	x = 0	y = 0
Equation of the major axis	y = 0	x = 0
Equations of the directrices	$x = rac{a}{e} \ and \ x = -rac{a}{e}$	$x=rac{b}{e}andx=-rac{b}{e}$

Quick Revision- Ellipse

$rac{x^2}{a^2} + rac{y^2}{b^2} = 1, a > b$	$rac{x^2}{a^2} + rac{y^2}{b^2} = 1, a < b$
$e=\sqrt{1-rac{b^2}{a^2}}$	$e=\sqrt{1-\frac{a^2}{b^2}}$
$rac{2b^2}{a}$	$rac{2a^2}{b}$
$a\pm ex$	$b\pm ex$
	$e=\sqrt{1-rac{b^2}{a^2}}$ $rac{2b^2}{a}$

Equation of Tangent in different forms:

1. **Point form**: The equation of the tangent to the ellipse $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$ at the point (x_1, y_1) is $\frac{xx_1}{a^2} + \frac{yy_1}{b^2}$

2. **Slopeform**: If the line y=mx+c touches the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \text{ then } c^2=a^2m^2+b^2. \text{ Hence, the straight line} \\ y=mx\pm\sqrt{a^2m^2+b^2} \text{ always represents the tangent to the ellipse.}$

3. **Parametric form**: The equation of the tangent to any point

$$\left(a\cos\theta,\,b\,\sin\theta
ight)is\,rac{x}{a}\,\cos\theta+rac{y}{b}\,\sin\theta=1.$$

HYPERBOLA

Definition

It is locus of a point which moves such that ratio of its distance from a fixed point to its distance from a fixed line is always a constant greater than 1.

where 'e' is eccentricity: e > 1

$$\frac{x^2}{a^2} + \frac{y^2}{a^2(1-e^2)} = 1$$

Here, e > 1 So, $a^2(1 - e^2)$ is negative

We put
$$a^2 (1 - e^2) = -b^2$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

This is standard equation of hyperbola

Standard Hyperbola $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$

Choice of transverse axis and conjugate axis depends on whose sign is negative in equation of hyperbola

☐ We have studied hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

where, transverse axis is along x-axis.

☐ For hyperbola

$$\frac{y^2}{h^2} - \frac{x^2}{a^2} = 1$$

Transverse axis is along y-axis.

Quick Revision- Hyperbola

	Hyperbola $rac{x^2}{a^2}-rac{y^2}{b^2}=1$	Conjugate Hyperbola $-rac{x^2}{a^2}+rac{y^2}{b^2}=1$
Coordinates of the centre	(O, O)	(O, O)
Coordinates of the vertices	(a, 0) and (-a, 0)	(0, b) and (0, -b)
Coordinates of foci	(±ae, o)	(0, ±be)
Length of the transverse axis	2 a	2 b
Length of the conjugate axis	2 b	2 a
Equations of the directrices	$x = \pm \frac{a}{e}$	$y=\pmrac{b}{e}$
Eccentricity	$e=\sqrt{rac{a^2+b^2}{a^2}}$	$e=\sqrt{rac{b^2+a^2}{b^2}}$
	$b^2=a^2\left(e^2-1 ight)$	$a^2=b^2\left(e^2-1 ight)$

Quick Revision- Hyperbola

	Hyperbola	Conjugate Hyperbola
	$rac{x^2}{a^2} - rac{y^2}{b^2} = 1$	$-rac{x^2}{a^2}+rac{y^2}{b^2}=1$
Length of the latusrectum	$\frac{2b^2}{a}$	$rac{2a^2}{b}$
Equation of the transverse axis	y = 0	x = 0
Equation of the conjugate axis	x = 0	y = 0

Equation of Tangent in different forms:

(i) Slope Form :
$$y=mx\pm\sqrt{a^2m^2-b^2}$$
 can be taken as the tangent to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$

(ii) **Point Form**: Equation of tangent to the hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 at the point $(x_1 \ y_1)$ is $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$

(iii) **Parametric Form**: Equation of the tangent to the hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 at the point $\left(a \sec \theta, b \tan \theta\right) \frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1$

Vedantu MATH Let's get Mathaholic!

>9th >10th >11th >12th >Boards >JEE > Olympiads

Thank You

