Pensando en paralelo

Joel A. Trejo-Sánchez, Miguel A. Uh-Zapata, Francisco J. Hernández-López

Centro de Investigación en Matemáticas {joel.trejo,angeluh,fcoj23}@cimat.mx

July 10, 2018

Bosquejo del curso

- Programación multi-procesador (10 de julio)
- Programación con paso de mensajes MPI (11 de julio)
- Programación en GPU (12 de julio)
- Sesión de problemas abiertos (13 de julio)

Programación multi-procesador

En general vamos a utilizar el modelo de memoria compartida. Trabajaremos principalmente con OpenMP.

- Instalación y configuración
- Introducción a la programación concurrente en memoria compartida
- Dos ejemplos triviales de programación concurrente
- Programación de coloreado en gráficas

Linux

- Compilador gcc, g++
- Ya se incluyen las librerías OMP
- Compilar agregando la libreria omp (-fopenmp)

Windows

- CodeBlocks
- MinGW
- Configurar MinGW en CodeBlocks
 - Settings Compiler Other setting Optios –fopenmp
 - Settings- Compiler-Linker Settings C:/MinGW/bin/libgomp-1.dll

Servidor K20 CIMAT-Mérida

- verano2018@10.16.120.200
- cimat2018
- scp programa.cpp verano2018@10.16.120.200:/home/usuario

Introducción

Hola Mundo

En este programa veremos como hacer el clásico "Hola Mundo" pero de forma concurrente.

Puede ver los ejemplos en https://github.com/trejoel/VeranoCIMAT2018

Suma de vectores

- Dados dos vectores $X, Y \in \mathbb{R}^n$, la suma W = X + Y se resuelve sumando cada elemento del vector X con su correspondiente elemento del vector Y. En otras palabras $w_i = x_i + y_i$, $\forall i \in 1, \ldots, n$ para cada $w_i \in W$
- La forma más fácil de paralelizar es cuando no existe dependencia entre los diferentes datos a paralelizar

Coloreado de una gráfica

• El problema de coloreado de una gráfica, consiste en que dada una gráfica G = (V, E), encontrar el mínimo número de colores en que se puede colorear una gráfica, de forma tal que dos vértices vecinos tengan necesariamente colores distintos.

Coloreado de una gráfica

- El problema de coloreado de una gráfica, consiste en que dada una gráfica G = (V, E), encontrar el mínimo número de colores en que se puede colorear una gráfica, de forma tal que dos vértices vecinos tengan necesariamente colores distintos.
- ullet El problema de coloreado de una gráfica pertenece a la clase de problemas $\mathcal{NP}-$ difícil

Algoritmo secuencial voraz para encontrar un "buen" coloreado en una gráfica

Algorithm 1 Algoritmo secuencial para el coloreado de una gráfica G = (V, E)

- 1: **for** i = 1 to |V| **do**
- 2: Asignar al vértice v_i un color NULL
- 3: end for
- 4: **for** i = 1 to |V| **do**
- 5: Sea c_{min} el menor valor posible tal que $c_{min} \notin \{c_1, c_2, \dots, c_k\}$, donde $c_j, j = 1 \dots k$ es el conjunto de colores de los vecinos de v_i
- 6: Asignar al vértice v_i el color c_{min}
- 7: end for

Algoritmo secuencial voraz para encontrar un "buen" coloreado en una gráfica

- ullet El algoritmo no garantiza un coloreado mínimo, pero si un buen coloreado $O(\Delta+1)$
- Complejidad lineal $O(\Delta n)$

Algoritmo **paralelo** voraz para encontrar un "buen" coloreado en una gráfica

Algorithm 2 Algoritmo paralelo para el coloreado de una gráfica G = (V, E)

- 1: Particionar V en p bloques V_1, V_2, \ldots, V_p , donde $\lfloor \frac{|V|}{p} \rfloor \leq |V_i| \leq \lceil \frac{|V|}{p} \rceil$ 2: **for** i=1 to p in parallel **do**
- 3: **for** cada $v_i \in V_i$ **do**
- 4: Sea c_{min} el menor valor posible tal que $c_{min} \notin \{c_1, c_2, \dots, c_k\}$, donde $c_m, m = 1 \dots k$ es el conjunto de colores de los vecinos de v_i
- 5: Asignar al vértice v_j el color c_{min}
- 6: **end for**
- 7: end for

Algoritmo **paralelo** voraz para encontrar un "buen" coloreado en una gráfica

Conflicto en dos bloques

Algoritmo **paralelo** voraz para encontrar un "buen" coloreado en una gráfica (segunda fase)

Algorithm 3 Algoritmo paralelo para el coloreado de una gráfica G=(V,E)

```
1: for i = 1 to p in parallel do
2: for cada v_j \in V_i do
3: for cada vecino u \in N(V_j) do
4: if color(v_j) = color(u) then
5: Agrega min\{u, v_j\} en la tabla de conflictos
6: end if
7: end for
8: end for
9: end for
```

Algoritmo **paralelo** voraz para encontrar un "buen" coloreado en una gráfica (tercera fase)

Algorithm 4 Tercera fase, colorear secuencialmente los colores en la tabla de conflictos

- 1: **for** cada v_i en la tabla de conflictos **do**
- 2: Sea c_{min} el menor valor posible tal que $c_{min} \notin \{c_1, c_2, \ldots, c_k\}$, donde $c_m, m = 1 \ldots k$ es el conjunto de colores de los vecinos de v_j
- 3: Asignar al vértice v_j el color c_{min}
- 4: end for

Preguntas

joel.trejo@cimat.mx