

NAVAL POSTGRADUATE SCHOOL

9 Master : THESIS,

Marie 1986 - 19 - Anna Barrier Contractor of Physics American States Service Contractor
AN INVESTIGATION OF RESIDUAL STRESSES IN SIMULATED WING PANELS OF 7075-T6 ALUMINUM
by
Edward C./Engle
1) Dec 79 (12) 46
·
Thesis Advisor: G. H. Lindsey

Approved for public release; distribution unlimited

80 2 19 110

mt all

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS SEPORE COMPLETING FORM	
T. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Bushine) AN INVESTIGATION OF RESIDUAL STRE	SSES IN SIMIL	MASTER'S THESIS
LATED WING PANELS OF 7075-T6 ALUM		DECEMBER, 1979
7. Au Thonfai		6. CONTRACT OR BRANT HUMBERYA)
EDNARD C. ENGLE		
S. PERFORMING ORGANIZATION NAME AND ADDRESS		16. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
NAVAL POSTGRADUATE SCHOOL	,	AREA & WORK UNIT RUBUSERS
MONTEREY, CALIFORNIA 93940		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE DECEMBER, 1979
NAVAL POSTGRADUATE SCHOOL		13. NUMBER OF PAGES
MONTEREY, CALIFORNIA 93940		15. SECURITY CLASS, (of this chart)
TA MONITORING ASENCY HAME & ASSERESSIT MINOR	nt from Controlling Office)	
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93940		UNCLASSIFIED
, 2.01.0.1.1.		TEA DECLASSIFICATION/DOWNSRADING
G. DISTRIBUTION STATEMENT (of this Report)		
APPROVED FOR PUBLIC RELEASE; DIST	RIBUTION UNLIMITE	ED
17. DISTRIBUTION STATEMENT (of the abolicus entered	in Block 20, if different fre	p Report)
APPROVED FOR PUBLIC RELEASE; DIST	RIBUTION UNLIMITE	:n
		-
IS. SUPPLEMENTARY NOTES		
NONE		
Residual Stress, Stress Concentra		
Mortal Derect, Derect Concentra	icion, octain con	Cantracton
10. ABSTRACT (Continue on reverse side II necessary on	d identify by block number)	
The advent of onboard aircraf	t microprocessor	fatigue monitoring systems
will establish the opportunity to	fully exploit re	sidual stresses at stress-
critical areas, including their e tal investigation was undertaken		
photoslastic measurements of vest		

photoelastic measurements of residual stresses at notches in simulated wing

DD 1 JAN 73 1473 (Page 1)

EDITION OF 1 HOV 05 IS OBSOLETE S/N 0102-014-6661 |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dote Shiered)

DEUMTY ELASSIFICATION OF THIS PAGETTION Role Entered

BLOCK 20. ABSTRACT (Cot'd.)

panels of 7075-T6 aluminum and to establish the relationships between local stresses, residual stresses, and the far-field or applied stress. The stress concentration factors were found to decrease with increased plastic deformation while the strain concentration factors were found to remain constant. The residual stress levels were found to be immutable despite changes in fatigue loading conditions, notch geometry, or test duration.

Accession For NTIS GRAŁI DDC TAB Unamicunced	1
Justification By Distribution Available	r
Dist Availand/or special	

Approved for public release; distribution unlimited

An Investigation of Residual Stresses In Simulated Wing Panels of 7075-T6 Aluminum

by

Edward C. Engle

Lieutenant Commander, United States Navy B.E.S., The Johns Hopkins University, 1966

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the UNITED STATES NAVAL POSTGRADUATE SCHOOL December 1979

Author

Approved by:

Thesis Advisor

Chairman, Department of Aeronautics

M. F. Pluster

Dean of Science and Engineering

ABSTRACT

The advent of onboard aircraft microprocessor fatigue monitoring systems will establish the opportunity to fully exploit residual stresses at stress-critical areas, including their effects on fatigue predictions. An experimental investigation was undertaken to more fully understand them by making photoelastic measurements of residual stresses at notches in simulated wing panels of 7075-T6 aluminum and to establish the relationships between the local stresses, residual stresses, and the farfield or applied stress. The stress concentration factors were found to decrease with increased plastic deformation while the strain concentration factors were found to remain constant. The residual stress levels were found to be immutable despite changes in fatigue loading conditions, notch geometry, or test duration.

Table of Contents

I.	INT	RODUC	TION		• •	•	•	•	•	• •	•	•	•	•	٠	•	•	٠	•	•	•	•	•	٠	8
II.	EX	PERIN	ŒNTA	L PRO	CEDU	RE	•	•					•	•		•	•						•		10
	A.	SPEC	CIMEN	DESC	RIPT	.10	ι.	•				•	•	•			•		•		•	•	•		10
	B.	CHAF	RACTE	RIZAT	ION	OF	TH	E	7 0'	75-	T 6	Al	LUR	411	IUN	1.	•	•	•	•		•	•		10
		1.	Youn	g's M	odu1	us	•				•	•	•				•	•	•				•		10
		2.	Pois	son's	Rat	io	•				•	•	•		•		•	•	•	•		•	•		16
		3.	Yiel	d and	Pla	sti	ic	Ве	ከፈነ	vio	r.		•				•			•					16
	c.	CHAF	RACTE	RIZAT	ION	OF	TH	E	PS.	-1C	P	HO1	LQE	EL/	\S7	ſΙC	: N	IA1	rer	i I A	L				19
		1.	Stra	in Op	tic	Coe	ff	ic	ie	nt.			•				•							•	19
		2.	Youn	g's M	odul	us	•	•			•		•	•				•						•	19
	D.			NTAL (K _T) .																					20
	E.			NTAL																		•	•	•	21
III	. R	esid	JAL S	TRESS	MEA	SUF	REM	EN	TS		•	•	•	•			•	•				•			22
	A.	UNIA	AXIAL	MODE	L		•	•				•	•			•	•	•				•	•		22
	B .	EVA	LUATI	VE TE	STS.			•				•		•	•	•	•						•		24
IV.	CO	NCLUS	SIONS	AND	RECC	MM	END	AT	.IOI	NS.	•	٠			•			•	•			•	•		33
APP	end i	X A:	EXP	er ime	NTAL	. DA	NΤΑ						•		•			•					•	•	35
LIS	T OF	REFI	ERENC	ES		•	•		•		•	•	•				•		•				•	•	44
INI	TIAL	DIST	r i Bu	TION	LIST	٠.															,				45

List of Figures

1.	SPECIMEN GEOMETRIES	11
2.	UNIAXIAL TENSILE SPECIMENS	12
3.	STRESS-STRAIN CURVES FOR REPETITIVE LOADING	14
4.	STRESS-STRAIN CURVE	15
5.	AVERAGE STRESS vs. AVERAGE STRAINS FOR DETERMINATION OF POISSON'S RATIO (ELASTIC RANGE)	17
6.	AVERAGE STRESS US. AVERAGE STRAINS FOR DETERMINATION OF POISSON'S RATIO (PLASTIC RANGE)	18
7.	RESIDUAL STRESS MODEL	23
8.	PREDICTED vs. MEASURED NOTCH STRESS (SPEC. #1)	27
9.	PREDICTED vs. MEASURED NOTCH STRESS (SPEC. #3, LEFT)	28
0.	PREDICTED vs. MEASURED NOTCH STRESS (SPEC. #3, RIGHT)	29
1.	PREDICTED vs. MEASURED NOTCH STRESS (SPEC. #7, LEFT)	30
2.	PREDICTED US. MEASURED NOTCH STRESS (SPEC. #7, RIGHT)	31

ACKNOWLEDGEMENT

I wish to express my appreciation to Professor G. H. Lindsey for his assistance in the preparation of this paper and his guidance in the conduct of the experiments, especially when unforeseen difficulties arose.

I. INTRODUCTION

With the advent of microprocessor-type fatigue monitors, new in-flight recorded information will be forthcoming with which, it is hoped, more accurate cumulative damage calculations can be made. Newly-available information will include sequence of loading and minimum values of each cycle as well as maximum values, which have been available for some time. With these two kinds of data being collected, it is appropriate to make inquiry into the influence they have upon fatigue life. One of the ways that the load sequence exerts an influence is through the residual stress that is produced at a site of stress concentration.

When a notched specimen has been subjected to nominal stresses below the yield point of the material far removed from the notch, it is possible for that area at the tip of the notch to yield due to the concentration of stress at that point. Then, upon unloading, the surrounding material compresses the locally-yielded area resulting in a residual compressive stress, which has been shown to increase the fatigue life of the specimen [1, 2, 3].

Local stresses and residual stresses must be calculated from a knowledge of the prevailing nominal stresses, which are those stresses which would be present if there were no stress concentration: in other words, those stresses that are present which are out of the influence of the notch. It is the nominal stress that will be determined from the inflight fatigue monitors.

It was the purpose of this thesis to use photoelastic methods to measure residual stresses in typical notches of simulated wing panels

and to relate the residual stress and the local stress to the applied nominal stress.

Classically, Neuber's relationship [4] has been used in such calculations; but Garske [5] found considerable error with the method in some instances, establishing the need for more accurate analyses.

Stuart [6] used photoelastic coatings on notched plate specimens to establish the relationship between cyclic loading and residual stress levels. He found in preliminary tests that the residual stress vs. nominal stress curves could be used to predict the residual stress to within 10% of the measured stress and that once induced, the residual stress was constant during low-cycle fatigue tests at a relatively high stress level. Knowing the value of the residual stress, it would be possible to use the aircraft-mounted microprocessor output to simulate conditions at the notch, or stress-critical area, by reducing the applied load an amount equivalent to the residual stress induced by the highest previously-encountered load.

An experimental investigation of the residual stress and its influence on conditions at the notch was made as a continuation of Stuart's work, using the same notched specimens. Again, photoelastic coatings were used for fatigue testing instead of strain gauges because of the relatively poor fatigue performance of the latter. Strain gauges were used, however, in certain of the static tests.

II. EXPERIMENTAL PROCEDURE

A. SPECIMEN DESCRIPTION

The notched aluminum sheet specimens were the same ones used by Stuart [6]. They were fabricated from 0.080 inch thick 7075-T6 aluminum in 1' x 4' sheets. Two different notch geometries were used (see Figure 1) with nominal stress concentration factors of 2.00 and 3.80. PS-1C photoelastic material, by Photoelastic, Inc., was bonded to the specimens with PC-1 cement. The photoelastic material was designed for use on high-modulus materials like 7075 and for maximum elongations up to 10%. The bonding agent allowed maximum elongations of 3-5%.

Uniaxial tensile test specimens were made from 0.090 inch thick 7075-T6 aluminum sheets in two configurations (see Figure 2); one had a reduced section over the gauge length while the other was uniform.

Strain gauges were mounted on some specimens as shown in Figure 2. The gauges used were EP-08-060CN-120 by Micro Measurements. These gauges were specifically designed for use in the measurement of plastic strains of from 7-10% but were not recommended for fatigue applications.

B. CHARACTERIZATION OF THE 7075-T6 ALUMINUM

1. Young's Modulus

Specimen types A and B (see Figure 2) were both used in the determination of Young's Modulus. The A-type specimens were run on the Riehle machine while the B-type were run on the MTS machine. One of the B-type specimens was instrumented with an MTS 632.13B-20 extensometer on its longitudinal axis in addition to the strain gauge, and a linear

SPECIMEN GEOMETRIES

W. **2**.6 NOMINAL KT

0.3125 R (in)

0.900

1.415

DCid

PS+C P+OTOELASTIC MATERIAL

1.963

0.7136

0.626

REDUCED CROSS-SECTION (in)

NOTES:

1. 7075-T6 ALUMINUM

2. THICKNESS = 0.080 in

FIGURE 1

48°

regression analysis was performed to determine Young's Modulus. The extensometer yielded $E = 9.915 \times 10^6$ psi with a correlation coefficient of 0.999916, while the strain gauge yielded $E = 10.11 \times 10^6$ psi with a correlation coefficient of 0.999994 (see Table 1 of Appendix A). Although the values were within 2% of each other, it was decided to use the latter because it had a slightly better correlation coefficient and is in better agreement with the literature.

Due to the small size of the specimen, the largest scale available on the Riehle machine proved to be too small to accurately determine Young's Modulus (values of $E = 9.7 \times 10^6$ to 9.9×10^6 were generated). However, since repetitive tests were run on each of the A-type specimens into the plastic region, it was established that the unloading curve matched the loading curve (see Figure 3). Figure 4 is a graphical representation of the results of the static tensile tests. The residual strain remaining at the final no-load condition of the specimen was $12,678 \, \mu s$. This provided a value of Young's Modulus for unloading of:

$$E = \frac{81.620-0.000 \text{ (ksi)}}{20.896-12.678 \text{ (us)}}$$
$$E = 9.93 \times 10^6 \text{ psi}$$

The measured values of Young's Modulus from the loading portion of the static tensile tests established a disagreement level given by:

$$\frac{10.11-9.915}{10.11} \times 1004 = 1.94 ,$$

whereas the value measured during unloading yielded a disagreement of

$$\frac{10.11-9.93}{10.11} \times 1004 = 1.84 ,$$

STRESS - STRAIN CURVES FOR REPETITIVE LOADING

within the uncertainty in the measurement of the strain in the static tensile test itself.

2. Poisson's Ratio

The B-type specimen was used to determine Poisson's Ratio. The geometry was developed in accordance with ASTM standards. Extensometers were not used because an extensometer suitable for mounting in the transverse direction was not available. (Since the objective of the experiment was to trace the changes in Poisson's Ratio well into the plastic region, use of a single extensometer and two separate test runs was precluded). Hence, strain gauges were used in conjunction with a longitudinally-mounted extensometer (see Table 2 of Appendix A for data). Corrections were made for transverse effects on the transverse strain gauge. In neither test was Poisson's Ratio observed to shift from 0.3 to 0.5 as dictated by the plastic behavior of a constant-volume specimen (see Figures 5 and 6).

3. Yield and Plastic Behavior

The slopes of the various stress-strain curves generated were very flat above the elastic limit showing almost perfectly plastic behavior. For a plastic, constant-volume material, the sum of the principal strains must be zero--that is, $\varepsilon_1+\varepsilon_2+\varepsilon_3=0$. Substituting in terms of Poisson's ratio, for a uniaxial specimen,

$$-v\varepsilon_3-v\varepsilon_3+\varepsilon_3=0$$
 .

Or,

$$\varepsilon_3(1-2\nu)=0.$$

O LONGITUDINAL STRAIN (STRAIN GAUGE)

Hence, $v = \frac{1}{2}$. As stated above, this phenomenon could not be verified for strain levels up to 2.

C. CHARACTERIZATION OF PS-1C PHOTOELASTIC MATERIAL

A uniaxial tensile test specimen was prepared from a sheet of PS-1C photoelastic material and loaded in a test machine. Compensator readings were taken at the same load levels at the extensometer readings, and the data in Table 3 of Appendix A was generated.

1. Strain Optic Coefficient (a)

A linear regression analysis of the strain-compensator data yielded

$$\varepsilon = 0.0012362N + 0.00000996$$
 (1)
 $r^2 = 0.9989$.

Discarding the non-zero intercept, since it is three orders of magnitude smaller than the strain levels, equation (1) yielded

$$\frac{d\varepsilon}{dN} = \alpha = 0.0012362 \quad . \tag{2}$$

2. Young's Modulus

A separate linear regression analysis of the stress-strain data yielded

$$\sigma = 358,043c - 139.6$$
 (3)
 $r^2 = 0.9989$.

Discarding the non-zero intercept as being small compared to the range of the stress, equation (3) yielded E = 358,043 psi. Photoelastic, Inc., advertised E = 360,000 psi, nominal.

From [7],

$$\varepsilon_x - \varepsilon_y = \frac{\lambda}{2tk}N$$
,

where λ = the wavelength of the light source (22.7 x 10^{-6} in.)

t = thickness of the photoelastic material (0.040 in.)

N = fringe order number

k = sensitivity of the plastic (0.15)

Solving for $\epsilon_{\underline{x}}$ in terms of Poisson's Ratio for a uniaxial field,

$$\varepsilon_x = \frac{\lambda}{(1+\nu)2tk} N \quad . \tag{4}$$

From equation (2),

$$\alpha = \frac{\lambda}{(1+\nu)2tk} . ag{5}$$

Solving equation (5) for Poisson's Ratio,

$$v = \frac{\lambda}{2tk\alpha} - 1 \quad . \tag{6}$$

Substituting numerical values into equation (6), ν = 0.5302, which cannot be. Therefore, since t and α were measured, and the value for λ is generally accepted in the literature, it was concluded that the k value given by the vendor was in error, and the measured value of α was used in the data reduction.

D. EXPERIMENTAL DETERMINATION OF STRESS CONCENTRATION FACTOR (K_T) Stuart determined the individual stress concentration factors for each specimen experimentally [6] by the following method, which models the notch tip as a uniaxial specimen:

Multiplying equation (4) by E, the notch stress below the elastic limit can be written

$$\sigma_{N} = \frac{E}{(1+v)} \cdot \frac{\lambda}{2tk} N = E\alpha N$$
.

If the nominal stress (σ) is defined as the applied load divided by the reduced cross-sectional area, the stress concentration factor is

$$K_T = \frac{\sigma_N}{\sigma}$$
.

By loading the specimen to a known point elastically and then recording the compensator reading, Stuart was able to establish both the nominal stress and the fringe order number at the notch. Hence, $K_{\underline{T}}$ could be determined experimentally. These values were used in the analysis.

E. EXPERIMENTAL DETERMINATION OF STRAIN CONCENTRATION FACTOR ($K_{\rm g}$)

Similar to the stress concentration factor, the strain concentration factor can be determined. The notch strain can be found from equation (4):

$$\epsilon_{N} = \frac{\lambda}{(1+\nu)2tk} N = \alpha N$$

Then, if we define the nominal strain (ε) as the nominal stress (σ) divided by Young's Modulus, the strain concentration factor is

$$K_{\epsilon} = \frac{\epsilon_{N}}{\epsilon}$$
.

By using Stuart's σ_{MAX} data and σ_{MAX} data established in this thesis at 18.00 kips (of. III., RESIDUAL STRESS MEASUREMENTS), it was possible to formulate values of K_{g} at two different loading conditions.

III. RESIDUAL STRESS MEASUREMENTS

A. UNIAXIAL MODEL

The model used in this study is described schematically in Figure 7. The specimen was loaded until the material at the notch exceeded the elastic limit (the remainder of the specimen was still elastic because of the effect of stress concentration). Unloading caused the region at the notch to be placed in a state of compressive residual stress and tensile residual strain. The unloading curve was at the same slope as the loading curve (Young's Modulus was constant). Subsequent reloadings began from this residual state with the material exhibiting the same value of Young's Modulus as all previous loadings/unloadings. The value of the residual stress, $\sigma_{\rm R}$, was, from the geometry of Figure 7,

$$\sigma_{R} = \sigma_{MAX} - E(\varepsilon_{MAX} - \varepsilon_{R})$$
, (7)

where σ_{MAX} = maximum stress to which the notch was exposed ϵ_{MAX} = maximum strain to which the notch was exposed ϵ_{R} = residual tensile strain.

Subsequent values of the notch stress were then given by

$$\sigma_{\text{NOTCH}} = E(\varepsilon_{\text{NOTCH}} - \varepsilon_{\text{R}}) + \sigma_{\text{R}}$$
, (8)

where σ_{NOTCH} = notch stress subsequent to initial loading to σ_{MAX} . ϵ_{NOTCH} = notch strain subsequent to initial loading to σ_{MAX} .

RESIDUAL STRESS MODEL
FIGURE 7

Classically, the value of the stress at the notch can be calculated in the elastic region if the far-field loading, the cross-sectional area, and the stress concentration factor are known:

$$\sigma_{\text{NOTCH}} = K_T \cdot \frac{P_{FF}}{A}$$
, (9)

where P_{FF} = the far-field load

A = the reduced cross-sectional area.

If there is a residual stress present, it changes σ_{NOTCH} linearly (see Figure 7). Therefore, equation (9) would become

$$\sigma_{NOTCH} = K_T \cdot \frac{P_{FF}}{A} + \sigma_R \quad . \tag{10}$$

B. EVALUATIVE TESTS

Since specimens 1, 3, and 7 (nominal $K_T = 3.8$) had only been loaded by Stuart to 13.60, 14.00, and 14.00 kips, respectively, they were chosen to verify the uniaxial model since they could be loaded to 18.00 kips, and thus establish a new value for σ_{MAX} . Other available specimens had already been exposed to high loads and, therefore, the previously-derived values of σ_{MAX} obtained by Stuart's photoelastic readings would have had to be used--deleting an element of operator consistency from the experiment.

Initially, no-load compensator readings were taken of all three specimens previously tested by Stuart, which were to evaluate any decay in residual strain which may have occurred. Only specimen 3 correlated with Stuart's work (see Table 4, Appendix A). No fringes at all could be observed on specimen 7, and only one of the notches on specimen 1 showed any fringe value, which was almost 3 times higher than Stuart's. Other

specimens tested by Stuart were then read photoelastically in an effort to verify Stuart's residual compensator readings, but the data proved inconclusive (see Table 4, Appendix A). Three specimens yielded markedly lower compensator readings, four specimens yielded markedly greater compensator readings, and one specimen yielded one higher (left notch) and one lower (right notch) compensator readings than reported in [6]. Several readings were taken on each specimen and were always within a few points of each other. Therefore, the data was repeatable; and the reason for the disagreement was unknown.

Returning to specimens 1, 3, and 7, each was loaded to 18.00 kips, and the fringe values at maximum and no-load conditions were recorded as listed in Table 5 of Appendix A. Values of ε_{MAX} and ε_{R} could be derived for a particular fringe by use of equation (4). The corresponding value of σ_{MAX} was found by referring to the uniaxial stress-strain data generated in the static tests while σ_{R} was calculated from equation (7), developed from the model (see Table 7, Appendix A).

In order to establish the immutability of the residual stress, specimens 6, 8, 9, 10, and 11 (nominal $K_T = 3.8$) and specimens 7, 13, and 14 (nominal $K_T = 2.6$) were tested in fatigue under various loading conditions in the MTS machine (see Table 6, Appendix A for the load ranges used). The no-load condition compensator readings were recorded periodically during the tests. Each of these specimens had been tested previously by Stuart and had various residual notch stress levels already induced [6]. These readings corresponded to the residual strain level which, by substitution into equations (4) and (7), fixed the value of the residual stress at the notch. Table 6 of Appendix A summarizes the results.

the tests regardless of specimen geometry, residual stress condition, or load levels.

Prior to performing any further fatigue tests, it was necessary to verify the stress levels predicted by equation (10), because these were the values which were to be used to set the loading limits on the MTS machine for the cyclic tests. Hence, each specimen (1, 3, and 7) was loaded in 500-1b. increments to 5.00 kips far-field load and the compensator readings recorded at each level. Knowing σ_{MAX} , σ_{R} , K_T , A, and N, the predictions made by equation (10) could be compared with the actual values given by equation (8). Figures 8-12 illustrate the poor agreement between the predictions of equation (10) and the results of equation (8) using data obtained from the compensator readings recorded at each level.

Using a wide rectangular block (plane strain) with two uniform semicircular notches, Hill [8] showed in 1948 that initial yielding occurred at the point of greatest notch curvature (the tip); but, as the applied end loading was increased, the plastic spread, and "the plastic-elastic boundary was a curve along which the maximum shear stress was constant." Furthermore, the stress concentration was dissipated by the local plastic flow (the remainder of the material being elastic). Therefore, since equation (10) utilized the initial value of K_T as measured by Stuart, the value of σ_{NOTCH} thus calculated should have been higher than physically present due to the reduction in K_T with increased loading. Figures 8-12 show this to be the case. Linear regression analyses were performed on the data to establish the reduced value of K_T . The results are tabulated in Table 7 of Appendix A and show an average reduction in K_T of 23.9% (minimum of 20.6% and maximum of 28.9%).

Using thin, perforated strips of a strain-hardening aluminum, Theocaris and Marketos [9] showed in 1964 that the value of K_T behaved in accordance with Hill's experiments. But, in addition, they showed an increase in K_ε with successively higher loadings for their strain-hardening material. Therefore, K_ε was calculated for each specimen at the σ_{MAX} loading condition of [6] and again for the higher σ_{MAX} loading condition of this thesis. Table 8 of Appendix A summarizes the results. The change in K_ε at the higher stress level ranged from 1.6% lower to 7.5% higher than for the lower stress level. This was about the same spread observed for the K_T reduction data; and, therefore, the change in K_ε was not considered to be significantly different from zero. The lack of any significant change in K_ε with higher stress levels as opposed to the findings of Theocaris and Marketos could be attributed to the near-perfect plastic behavior of the 7075-T6 aluminum as compared to the strain-hardening material used by Theocaris.

IV. CONCLUSIONS AND RECOMMENDATIONS

Cyclic loading did not appear to change the residual stress value appreciably. Eight different specimens with two different notch geometries were tested at peak load levels of from 7.90 kips to 15.96 kips up to 100,000 cycles. Each specimen had a different level of residual stress induced by Stuart [6]. Despite the differences in geometry, loading conditions, test duration, and previous history, the residual stress value remained immutable in every case.

The value of K_T appeared to decrease when the notch was subjected to plastic strain levels as reported in [8] and [9]. Three specimens were loaded to 18.00 kips in order to establish new levels of σ_{MAX} for use in the uniaxial model. This load was sufficiently great to cause plastic deformation in the region of the notch tips and thereby relax the concentration of the stress there [8]. Hence, when the original value of K_T was used to predict the notch stress for the low-load tests (up to 5.00 kips in 0.50 kip increments), the predicted notch stresses were significantly higher than measured photoelastically. The linear regression analyses of the data revealed that the K_T 's must have been reduced an average of 23.9%. No correlation was established between the percent reduction at each notch and either the previous K_T load or the load history of the specimens.

Unlike the strain-hardening aluminum of [9], the 7075-T6 aluminum specimens showed no increase in K_c with additional plastic deformation at the notch. A comparison between the K_c which existed under Stuart's σ_{MAX} conditions and the higher σ_{MAX} conditions of this thesis revealed

no significant change. The 7075-T6 aluminum tensile specimens demonstrated almost perfectly plastic behavior beyond the elastic limit. This material behavior, contrasted with that of [9], could account for the difference in results.

Further work must be done to implement these findings into a notch stress prediction model for use with the forthcoming microprocessor data from the fatigue monitoring systems soon to be installed in operational aircraft.

APPENDIX A: EXPERIMENTAL DATA

Table 1
Uniaxial Tensile Test Results with Aluminum
Type B Specimen

σ	€ _{LE}	€LG	€TG	σ	€ _{LE}	εLG	€TG
(ksi)	(µs)	(µ s)	(µs)	(ksi)	(µs)	(µ s)	(µ s)
1.114	140	86	- 32	46.806	4,704	4,590	-1,514
2.244	240	190	- 67	49.094	4,944	4,817	-1,587
3.744	384	334	- 117	51.278	5,170	5,035	-1,657
4.710	478	428	- 148	53.492	5,398	5,256	-1,727
6.166	616	570	- 196	55.766	5,638	5,482	-1,799
7.459	742	696	- 239	58.039	5,876	5,708	-1,871
8.930	882	840	- 286	59.510	6,030	5,855	-1,917
11.219	1,108	1,066	- 361	61.784	6,266	6,081	-1,989
14.948	1,474	1,433	- 482	63.968	6,492	6,300	-2,058
16.568	1,630	1,593	- 535	65.989	6,704	6,503	-2,121
18.648	1,832	1,798	- 603	68.961	7,012	6,800	-2,214
20.758	2,048	2,006	- 672	70.060	7,134	6,912	-2,249
22.407	2,212	2,169	- 726	70.922	7,230	7,000	-2,276
24.532		2,379	- 794	73.017	7,456	7,211	-2,338
26.806	2,654	2,602	- 869	74.295	7,596	7,346	-2,381
29.034 31.947 34.384 36.464 38.619 40.907 43.136 44.607	2,876 3,178 3,428 3,640 3,862 4,090 4,322 4,476	2,823 3,112 3,353 3,560 3,775 4,002 4,223 4,370	- 940 -1,034 -1,114 -1,181 -1,251 -1,325 -1,396 -1,443	76.019 76.851 78.272 78.782 80.224 81.620 0.000	7,848 8,374 9,404 9,596 14,276 20,896 12,678	7,559 8,148 9,287 9,480 (2)	-2,446 -2,590 -2,890 -2,946 -4,360 -6,422 -3,789

LINEAR REGRESSION: $\sigma = 0.009915\epsilon_{LE} + 0.198$ (R = 0.999916), $\sigma = 0.010110\epsilon_{LG} + 0.422$ (R = 0.999994)

NOTES: 1. Only the first column was used for linear regression.

2. Amplifier saturated.

 $[\]varepsilon_{LF}$ = longitudinal strain by extensometer

e_{I.G} = longitudinal strain by strain gauge

 $[\]epsilon_{TG}$ = corrected transverse strain by strain gauge

Table 2
Poisson's Ratios for Type B Specimen

σ (ksi)	v ₁	v ₂	σ (ksi)	v ₁	v ₂
1.114	. 3721	. 2286	46.806	.3298	.3219
2.244	.3526	.2792	49.094	. 3295	.3210
3.744	.3503	.3047	51.278	.3291	.3205
4.710	.3458	. 3096	53.492	.3286	.3199
6.166	.3421	.3166	55.766	.3282	.3191
7.459	.3420	.3208	58.039	.3278	.3184
8.930	. 3405	.3243	59.510	.3274	.3179
11.219	. 3386	.3258	61.784	.3271	.3174
14.948	. 3364	.3270	63.968	.3267	.3170
16.568	.3358	.3282	65.989	.3262	.3164
18.648	.3354	.3291	68.961	.3256	.3157
20.758	.3350	.3281	70.060	.3254	.3153
22.407	.3347	.3282	70.922	.3251	.3148
24.532	. 3338		73.017	.3242	.3136
26.806	. 3340	.3274	74.295	.3241	.3135
29.034	.3330	. 3268	76.019	. 3236	.3117
31.947	.3323	.3254	76.851	.3179	.3093
34.384	.3322	.3250	78.292	.3112	.3073
36.464	.3317	.3245	78.782	.3108	.3070
38.619	.3314	.3239	80.244	(1)	.3054
40.907	.3311	.3240	81.620	\> 	.3073
43.136	. 3306	. 3230	0.000		.2989
44.607	. 3302	.3224			

$$v_1 = \frac{|\varepsilon_{TG}|}{\varepsilon_{LG}}$$
 $v_2 = \frac{|\varepsilon_{TG}|}{\varepsilon_{LE}}$

NOTE: 1. Amplifier saturated.

Table 3
Tensile Test Data from PS-1C Photoelastic Material

STRESS (psi)	LONGITUDINAL STRAIN (in/in)	COMPENSATOR
346.4	0.00139	50
562.9	0.00201	76
779.3	0.00260	100
995.7	0.00313	120
1,212.1	0.00370	141
1,645.2	0.00487	185
2,077.9	0.00631	238

LINEAR REGRESSION ANALYSIS:

 $\sigma = 358,043\varepsilon - 139.6$

Correlation = 0.9989

 $\varepsilon = 0.0012362N + 0.00000996$

Correlation = 0.9997

Discarding non-zero intercepts,

E = 358,043 psi

 $\alpha = 0.0012362$

Table 4
Comparison of No-Load Residual Compensator Readings

SPEC.	\mathbf{K}_{T} TYPE	COMPENSATOR [REF. 6]	READINGS
1	3.8	27/29	35.5/(1)
3	3.8	19/11.5	17/9.5
7	3.8	22/20	(1)/(1)
6	3.8	89/90	65/87
8	3.8	28/26.5	32.5/30
9	3.8	59.5/57	59.5/42.5
10	3.8	91/98	87/86
11	3.8	9\$.5/85.5	80/52.5
3	2.6	58/43	62/27
7	2.6	75/84.5	84/91
12	2.6	27/22.5	101/96
13	2.6	49/59	54.5/66

NOTE: 1. No fringes visible.

Table 5
Residual Compensator Readings after Loading to 18.00 kips

SPEC.	K_{T} TYPE	COMPENSATOR READINGS
1	3.8	55.5/(1)
3	3.8	56.5/55.5
7	3.8	48/50

NOTE: 1. Not bonded.

Table 6
Cyclic Test Results

SPEC.	NOTCH TYPE (K _{T-NOM})	LOAD RANGE (kips)	CYCLES	RESIDUAL COMPENSATOR (NOTE 1)
6	3.8	1.40-10.32	0	88.5/70.5
			18,000	88/70
			21,726	FAILED
8	3.8	1.40-7.90	10,000	36.5/34.5
			28,000	39/38
			40,000	39/38.5
			50,000	37.5/39
			70,000	37.5/38.5
			100,000	37/37.5
9	3.8	1.40-7.90	0	42/54
			10,000	42/54
,			25,000	41/54
			32,990	41/51.5
			50,000	41/51
			68,000	42/51
			86,000	41/52
			100,000	40/51
10	3.8	1.40-10.32	0	81/80.5
			10,000	81/81
			20,000	82.5/81.5
			30,000	84/83
			48,000	84/82
	7 0	1 40 7 00	57,898	FAILED
11	3.8	1.40-7.90	51,962	54/86
			41,964	56/88.5
			51,965	59/97
			61,966 71,967	58.5/98 50/08 5
			89,968	59/98.5 59.5/102
			101,000	61/100
7	2.6	1.40-13.54	101,000	84.5/87
•	2.0	1.40-13.34	10,000	83.5/86
			20,000	82.5/85.5
			30,000	82/86
			40,000	82.5/85.5
			50,000	82.5/85.5
			60,000	82.5/85.5
			90,000	81/85.5
			100,000	81.5/85.5

Table 6
Cyclic Test Results
(Cot'd.)

2.6	1.40-12.00	0	52/62
		10,000	50/60
		20,000	50/59
		30,000	49.5/59.5
			50/59
		•	50/60
		•	50.5/60.5
		•	51/60
		•	51/60.5
2.6	1.40-15.96	0	63/33
		10,000	63.5/32.5
			63/31.5
		•	61.5/32
		33,043	FAILED
			10,000 20,000 30,000 40,000 60,000 70,090 89,100 100,000 2.6 1.40-15.96 0 10,000 20,000 30,000

NOTE: 1. Left/Right

Table 7 Linear Regression Analysis Results for Variable \mathbf{K}_T

SPEC.	K _T [Ref. 6]	Equation of Data	$\kappa_{T}^{}$	σ _R from Equation (7) (ksi)
1	4.23	$P_{FF} = 0.1903\sigma_N + 3.714$	3.290	-19.52
3 (left)	4.10	$r^2 = 0.99815$ $P_{FF} = 0.1923\sigma_N + 2.867$	3.255	-14.91
		$r^2 = 0.99890$		
3 (right)	4.19	$P_{FF} = 0.1888\sigma_N + 2.952$ $r^2 = 0.99957$	3.316	-15.64
7 (left)	4.11	$P_{FF} = 0.2089\sigma_N + 3.750$ $r^2 = 0.99946$	2.997	-17.95
7 (right)	4.07	$P_{FF} = 0.2165\sigma_N + 3.800$ $r^2 = 0.99929$	2.892	-17.55

Table 8 Results of K_{ϵ} Comparison

SPEC	P _{FF} (kips)	Kε	P _{FF} (kips)	Kε	INCREASE IN K
1	13.60	3.665	18.00	3.903	+ 6.1
3 (left)	14.00	3.632	18.00	3.810	+ 4.7
3 (right)	14.00	3.882	18.00	3.819	- 1.6
7 (left)	14.00	3.632	18.00	3.810	+ 4.7
7 (right)	14.00	3.525	18.00	3.810	+ 7.5

List of References

- 1. Topper, T. H., Wetzel, R. M., and Morrow, J., "Neuber's Rule Applied to Fatigue of Notched Specimens," *Journal of Materials*, March 1969
- 2. Schijve, J., The Accumulation of Fatigue Damage in Aircraft Materials and Structures, paper presented at the Symposium on Random Load Fatigue, Lyngby, Denmark, 13 April 1972
- Rotvel, F., On Residual Stresses During Random Load Fatigue, paper presented at the Symposium on Random Load Fatigue, Lyngby, Denmark, 13 April 1972
- 4. Neuber, H., "Theory of Stress Concentration of Shear Strained Prismatic Bodies with Arbitrary Nonlinear Stress-Strain Law," Journal of Applied Mechanics, December 1961
- 5. Garske, J. C., An Investigation of Methods for Determining Notch Root Stress from Far Field Strain in Notched Flat Plates, Master's Thesis, United States Naval Postgraduate School, Monterey, California, September 1977
- 6. Stuart, G. L., An Investigation of Residual Stress Characterisation of 7075-T6 Aluminum for Application in Fatigue Analysis, Master's Thesis, United States Naval Postgraduate School, Monterey, California, December 1978
- 7. Zandman, F., Redner, S., and Dally, J. W., *Photoelastic Coatings*, The Iowa State University Press and Society for Experimental Stress Analysis, 1977
- 8. Hill, R., "The Plastic Yielding of Notched Bars Under Tension," Quarterly Journal of Mechanics and Applied Mathematics, Vol. II, Part I, 1949
- 9. Theocaris, P. S., and Marketos, E., "Elastic-Plastic Analysis of Perforated Thin Strips of a Strain-Hardening Material," *Journal of Mechanics and Physics of Solids*, Vol. 12, pp. 377-390

Initial Distribution List

		No. Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22314	2
2.	Library, Code 0142 United States Naval Postgraduate School Monterey, California 93940	2
3.	Department Chairman, Code 67 Department of Aeronautics United States Naval Postgraduate School Monterey, California 93940	1
4.	Professor G. H. Lindsey, Code 67Li Department of Aeronautics United States Naval Postgraduate School Monterey, California 93940	1
5.	LCDR Edward C. Engle Naval Electronic Sys Com HQ (PME-106) Washington, D.C. 20360	1