Tutorium 11: Folgen und Reihen und Polarkoordinaten-Darstellung von komplexen Zahlen · Fragen? · Folgen und Reihen **9.2.3** Zeigen Sie, dass die Folge  $a_n = \frac{1}{n} - \frac{1}{n+1}$  streng monoton fallend ist. theili: ann < an 2.7.: Beweis: any < an | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 | + 1 (=) 1 - 1 - 1 - 1 - 1+1 € 前+前 ○ 計+前  $\frac{2 \cdot n \cdot (n+2)}{n \cdot (n+1) \cdot (n+2)} < \frac{(2n+2) \cdot (n+1)}{n \cdot (n+1) \cdot (n+2)}$ 1. (n (n+1).(n+2)) ()  $2 \cdot n^2 + 4n < 2n^2 + 2n + 2n + 2$ w.A. q e. d. 0 < 2  $\Leftrightarrow$ **Aufgabe 99** Es sei q > 0 und  $a_n = q^{\frac{1}{n}}$  für  $n \in \mathbb{N}$ . Zeigen Sie, dass für q < 1 die Folge  $(a_n)_{n\in\mathbb{N}}$  streng monoton steigend und für q>1 streng monoton fallend ist. Zeigen Sie weiter, dass nach dem Hauptsatz über monotone Folgen  $(a_n)_{n\in\mathbb{N}}$  damit konvergent für alle q > 0 ist.



- **10.1.1** Wie ist ausgehend von einer Folge  $(a_n)$  eine **Reihe** über dieser Folge definiert?
- 10.1.4 Wenn sie wissen, dass eine Reihe  $\sum_{v=m}^{\infty} a_v$  konvergent ist, was können sie daraus über die Folge  $(a_n)$  schließen?
- 10.1.5 Wenn sie wissen, dass die Folge  $(a_n)$  keine Nullfolge ist, was können sie dann über die Konvergenz der Reihe  $\sum_{v=m}^{\infty} a_v$  über dieser Folge aussagen?
- **10.1.6** Beschreiben Sie das Majorantenkriterium für Reihen. (Seien  $(a_n)_{n\geq m}$  und  $(b_n)_{n\geq k}$  Folgen.)
- 10.2.1 Zeige, dass die Reihe  $\sum_{v=0}^{\infty} \frac{1}{v!}$  konvergent ist.



Aufgabe 102 Berechnen Sie die Reihenwerte der folgenden Reihen: **a**)  $\sum_{\nu=0}^{\infty} \left( 3 \frac{1}{3^{\nu}} - 2 \frac{1}{5^{\nu}} \right),\,$ b)  $\sum_{\nu=0}^{\infty} \left( \frac{1}{2^{\nu}} + \frac{1}{4^{\nu}} \right)^2.$ Aufgabe 104 Welche der folgenden Reihen ist nach Satz 7.32 sicher divergent: a)  $\sum_{\nu=0}^{\infty} 4,$  $-\mathbf{b}) \sum_{\nu=0}^{\infty} (100 - \nu),$ c)  $\sum_{\nu=0}^{\infty} (1 - \frac{1}{2^{\nu}}),$ d)  $\sum_{\nu=0}^{\infty} \frac{2^{\nu}}{\nu!}.$ 

- 0) Wann können Sie (Mithilfe von Satz 7.32) keine Aussage treffen?
- i)  $\sum_{\nu=0}^{\infty} \pi$
- ii)  $\sum_{\nu=0}^{\infty} (-1337 \cdot \nu)$
- iii)  $\sum_{\nu=0}^{\infty} (1 \frac{1}{n})$
- iv)  $\sum_{\nu=0}^{\infty} (-1)^{\nu}$
- $\mathbf{v}$ )  $\sum_{\nu=0}^{\infty} \frac{2023}{2^{\nu}}$

· Polarkoordinaten-Darstellung von komplexen Zahlen

- 11.1.1 Geben Sie die Definition der Komplexen Exponentialfunktion (exp :  $\mathbb{C} \to \mathbb{C}$ ) an.
- 11.1.2 Wie lautet die Eulersche Identität?
- 11.1.3 Dank der Komplexen Exponentialfunktion erhalten wir eine weitere Darstellungsform für Komplexe Zahlen. (a) Welchen Namen hat diese? (b) Wie wird eine Zahl  $z \in \mathbb{C}$  mit dieser ausgedrückt? (c) Wie ist der Zusammenhang mit der bekannten Schreibweise ( $z \in \mathbb{C}$ , z = a + ib,  $a, b \in \mathbb{R}$ )? (d) Welchen Vorteil bietet die neue Schreibweise?
- 11.1.4 Geben Sie die Definition der Komplexen Sinusfunktion (sin :  $\mathbb{C} \to \mathbb{C}$ ) an.
- 11.1.5 Geben Sie die Definition der Komplexen Kosinusfunktion ( $\cos : \mathbb{C} \to \mathbb{C}$ ) an.



-Aufgabe 111 Es sei  $z \in \mathbb{C} \setminus \{0\}$  mit Polarkoordinaten  $z = |z| e^{i\varphi}$ . Bestimmen Sie die Polarkoordinaten-Darstellung von  $z^{-1}$ .

**Aufgabe 109** Schreiben Sie die folgenden Zahlen in Polarkoordinaten:  $z_1=1, z_2=3, z_3=-1, z_4=i, z_5=1+i, z_6=-1-i$ 

**Aufgabe 110 a)** Finden Sie jeweils für n=2,3,4,5 alle  $z\in\mathbb{C}$  mit  $z^n=1$ . Skizzieren Sie diese in der gaußschen Zahlenebene.

b) Begründen Sie, dass es für ein festes  $n \in \mathbb{N}$  genau n komplexe Zahlen z gibt, für die gilt  $z^n = 1$  (Hinweis: Fundamentalsatz der Algebra).