Chiffrement affine

Schéma symétrique

• On pose
$$\mathcal{M} = \mathscr{C} = \mathbb{Z}_n$$
 et $\mathscr{K} = \mathbb{Z}_n^{\times} \times \mathbb{Z}_n$

$$Enc_{(a,b)}(m) = ma + b \mod n$$

$$Dec_{(a,b)}(c) = (c-b)a^{-1} \mod n$$

Crypto-système RSA

Génération de clés

- On génère p, q de grands nombres premiers
- On calcule n = pq, et $\varphi(n) = (p-1)(q-1)$
- On choisi $e,d\in\mathbb{Z}_{\varphi(n)}^{\times}$ tels que $ed\equiv 1\pmod{\varphi(n)}$
 - Algorithme d'Euclide étendu trouve d tel que $1 = ed + k\varphi(n)$
- (n,e) est la clé de chiffrement et (n,d) la clé de déchiffrement