

Lecture 27 Cloud Computing & Semantic Web

SE-805 Web 2.0 Programming (supported by Google)

http://my.ss.sysu.edu.cn/courses/web2.0/

School of Software, Sun Yat-sen University

Outline

- Challenges of the Current Web
- Cloud Computing
 - What is cloud computing?
 - Who is in this game?
 - The supporting technologies
- Semantic Web
 - A short history of Web
 - Introduction to semantic web
 - The supporting technologies

Challenges of the Current Web

Size of the current Web → 24.32 billion pages

-- WorldWideWebSize.com, 2010-06-16

 Challenge 1: The size, calling for a new generation of powerful web infrastructure.

Cloud Computing

Challenge 2: The content, calling for a new way of organizing the web.

Semantic Web

What is Cloud Computing?

It's a fuzzy concept! ⊗

Widely distributed, network based, storage, computation, SaaS models.

What is Cloud Computing?

- Bussiness Week: any situation in which computing is done in a remote location (out in the clouds), rather than on your desktop or portable device.
- Wikipedia: Cloud computing is Internet ('Cloud')
 based development and use of computer technology
 ('Computing'). It is a style of computing where ITrelated capabilities are provided "as a service",
 allowing users to access technology-enabled services
 from the Internet without knowledge of, expertise
 with, or control over the technology infrastructure that
 supports them.

What is Cloud Computing?

Key concepts

- Changes the economics of Computing from being a Capital investment to Utilities (You buy electricity you don't buy generators)
- Changes the way software is developed Hardware provisioning, Deployment and Scaling now part of developer lifecycle as a Program / script as compared to a Purchase order
- Automates a whole bunch of infrastructure related tasks and activities leading efficiencies and cost savings

Why We Want It?

Eventually users can focus on what the service delivers rather than how they are implemented or hosted

- Cloud = Less Investment
 (not own data center, hardware; use outside provider of servers, storage, and bandwidth)
- Cloud = Scale (tens of thousands of server computers)
- Cloud = Flexible and Efficiency

The Time is Ready...

Key factors for the popularity of cloud computing

- Commoditization and standardization of technologies
- Virtualization
- Service-oriented computing architects
- The growth of the Internet and bandwidth

8/47

How Big is the Market?

- "There's a whole industry emerging," says Marc Benioff, Salesforce.com's CEO
- Merrill Lynch: 2012 = the annual global market for cloud computing will surge to \$95 billion

Who is in this Game?

- Saleforce.com
 - Startup since 1999, CRM Software as a service
 - Now: 40K customers, 2,500+ full-time employees, 247
 Million quarter revenue
 - Just push out new "platform as service"
- Amazon: Offer EC2/S3 since 2002, most flexible and popular service so far
- Google
 - One of earliest that explores cloud computing architects internally
 - Offer Google App Engine since april 2008.
- A long list: Microsoft, IBM and Sun......

Hardware as a Service: Virtualization

Run multiple virtual computers on one physical box

- Lots of way to do it
 - Xen
 - VMWare
 - Parallels
 - Amazon AMI
 - Microsoft Hype V

Classification of Cloud Computing Services

SaaS – Software as a Service (Platform, Scaling and Hardware transparent)

PaaS – Platform as a Service (Hardware Provisioning Hidden – Automatic Scaling)

HaaS – Hardware as a Service Programmatic Interface for Hardware Provisioning

Bare Metal People Process based hardware provisioning

Flexibility of Offering

Virtualization - Benefit

AppAppAppOSOSOSHardwareHardwareHardware

5 to 15 % utilization only

Virtualization - Benefit

Арр	Арр	App		
os	os	os		
Virtualization Layer				
Hardware				

High utilization and standardization

Platform as a Service

Question: Given 100 computers, how do you use them to compute the frequency of words in 1T text files?

To utilize the underlying computing power, you need

a framework for storing and processing large scale of data

*Storage: Distributed File/Database system

* Processing: Map-reduce

A Brief History in this Area

- 2003, First MapReduce Lib developed in Google
- 2003, 2004, and 2006, Google published papers on GFS/MapReduce/BigTable.
- 2005- Now, Hadoop project (An open source implementation of GFS/BigTable/MapReduce)
 - Yahoo use Hadoop for their underlying search service

HDFS (Hadoop Distributed File Systems)
Hbase (Hadoop Distributed Database)
MapReduce Framework

HDFS - Design

HDFS - Features

- Fault-tolerant
 - Default is 3x replication
 - Dynamic control of replication factor
- Load balancing
 - Balancer application to rebalance cluster in the background

HBase

- Modelled on Google's Bigtable
- Row/Column store
- Billions of rows * millions of columns
- Column-oriented nulls are free
- Untyped stores bytes.

Hbase - Data Model

Row	Timestamp	Column family animal:		Column family repairs:
		animal:type	animal:size	repairs:cost
enclosure1	t2	zebra		1000 EUR
	t1	lion	big	
enclosure2				

Data schema

Column family animal:

(enclosure1, t2, animal:type)	zebra
(enclosure1, t1, animal:size)	big
(enclosure1, t1, animal:type)	lion

Disk storage

Hbase - Design & Features

- Design similar to HDFS
 - Name node → Master server
 - Data node → Region server, organized in columns and cells
- Features
 - Fault tolerant and auto load balancing
 - Fast access to cells, and fast scan over the ranges of rows.
 - More flexible schema than traditional database.

MapReduce

Break up a problem, allocate to many machines, reassemble for use.

Simple programming model: key-value pairs

Map: (K1, V1) \rightarrow list(K2, V2)

Reduce: $(K2, list(V2)) \rightarrow list(K3, V3)$

MapReduce - a "hello world" example

Reduce

MapReduce - Logical Data Flow

MapReduce - Design

Moving computation is cheaper than moving data

Outline

- Challenges of the Current Web
- Cloud Computing
 - What is cloud computing?
 - Who is in this game?
 - The supporting technologies
- Semantic Web
 - A short history of Web
 - Introduction to semantic web
 - The supporting technologies

A Short Web History

Mostly flat information

Some databases but content is very functional

Little engagement or interactivity

A Short Web History

Greater interactivity

Growth of social media / social networking

Online communities created / social capital

A Short Web History

Joining up of information

Data portability

Browsers and search engines become more 'intelligent'

What is Semantic Web?

"The **Semantic Web** is an extension of the current web in which information is given well-defined **meaning**, better enabling computers and people to **work in cooperation**."

[Berners-Lee et al., 2001]

A side note: the same guy invented the Web in 1989.

An Example

Semantic Web allows to recognize *people*, *places*, *events*, *products movies*, etc, and it can understand relationships between things

The Solution

Top-down approach

- Information analysis, web scraping, natural language processing
- Expensive, and need human intervention, hard to maintain!

Bottom-up approach

- Embedding semantical annotations into the data
- Available options:
 - RDFa
 - Microformats

RDF = Resource Description Framework

- A W3C standard for describing resources in the Web
- RDF identifies things using URI (Uniform Resource Identifiers)
- RDF uses simple statements (Triples) to describe things
 Things Property Value, or
 Subject Predicate Object

RDF Graph Representation

RDF/XML

RDFa & SPARQL

- RDFa = RDF in attributes
 - It provides a set of XHTML attributes (Dublin Core vocabulary) that express RDF data
- SPARQL = a query language for RDF data sample query: friends of Alice who created items who title contains 'bob'.

Microformats

- Simple conventions for embedding semantics in HTML
- Designed for human first, and machine second
- No new tags, built upon existing standards:
 vCard, iCalendar, Atom, etcs

vCard Example

Represent people, companies, places, and organizations

hCalendar Example

Represent calendar events

hReview Example

 Represent reviews of products, services, businesses, events etc

```
<div class="hreview">
   <div class="item">
      <h2 class="fn">Aliens</h2>
      My favorite movie.
      >
          <span class="rating">9</span>/
          <span class="best">10</span>
       </div>
</div>
```

Applications

- YahooTech uses hReview for product reviews
- Linkedin uses hResumes for resumes
- YahooUpcoming uses hCal for events

Summary

Challenges of the Current Web

- The size → a new generation of powerful web infrastructure.
- The content → a new way of organizing the web.

Cloud Computing

- What is cloud computing?
- Who is in this game?
- The supporting technologies
 - Virtualization/MapReduce/Bigtable

Semantic Web

- A short history of Web
- Introduction to semantic web
- The supporting technologies
 - RDF
 - Microformat

Further Readings

Academic Papers

- "Map-Reduce-Merge: Simplified Relational Data Processing on Large Clusters" paper by Hung-Chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker; from Yahoo and UCLA; published in Proc. of ACM SIGMOD, pp. 1029--1040, 2007
- MapReduce: Simplified Data Processing on Large Clusters, Jeffrey Dean, Sanjay Ghemawat, OSDI'04: Sixth Symposium on Operating System Design and Implementation, 2004, pp. 137-150.
- Above the Clouds: A Berkeley View of Cloud Computing, Micheal Armbrust etc. from U.C. Berkley.
- Google's Tutorial on Cluster Computing and MapReduce

Reference Books

- Hadoop: The Definitive Guide, by Tom White, published by O'Reilly, June, 2009.
 ISBN: 978-0596521974.
- Pro Hadoop, by Jason Venner, published by APress, June, 2009. ISBN: 978-1430219422.

Online Materials

- Cloud computing A-Z: a complete list
- Hadoop Summit and Data-Intensive Computing Symposium 2008

Thank you & Welcome to Cloud Era!

