URI Online Judge I 2130

Final Mundial de 2008

Por XI Maratona de Programação IME-USP, 2007 ■ Brazil

Timelimit: 1

Preocupado com a atual situação de crise no transporte aéreo, o diretor regional do concurso do ICPC no Brasil já iniciou seus preparativos para fazer as reservas das passagens aéreas para as finais mundiais de Banff em 2008. O primeiro passo foi estudar a malha aérea disponível, em que cada voo tem um certo preço e liga duas cidades (estamos, na verdade, chamando de voo apenas um trecho non stop de um voo comercial). O objetivo do diretor é fazer várias consultas nesta malha de voos.

Em geral desejamos fazer voos sem escalas, mas estes podem ser muito caros. Para contornar este fato o diretor deseja permitir algumas escalas possíveis. Assim, ele ordenou as várias cidades da malha em sua ordem de preferência para fazer escala. Ou seja, a cidade de índice 1 é a que ele prefere fazer escala, seguida pela cidade 2, e assim por diante.

As consultas que o diretor fará são do seguinte tipo. É dada a cidade de partida e de chegada e um número t de cidades em que o diretor permite que sejam feitas escalas. Seu programa deverá encontrar o custo de um voo de custo mínimo entre as cidades que faça, no máximo, escalas nestas cidades. Por exemplo, se t = 1 você deverá encontrar o custo de um voo de custo mínimo entre as duas cidades que seja, ou non stop ou que faça uma escala na primeira cidade.

Entrada

A entrada é composta de diversas instâncias. A primeira linha de cada instância consiste em dois inteiros \mathbf{n} (1 $\leq \mathbf{n} \leq 100$) e \mathbf{m} (1 $\leq \mathbf{m} \leq 100000$), indicando o número de cidades e o número de escalas. Nas \mathbf{m} linhas seguintes temos três inteiros \mathbf{u} , \mathbf{v} e \mathbf{w} (1 $\leq \mathbf{u}$, $\mathbf{v} \leq \mathbf{n}$ e 0 $\leq \mathbf{w} \leq 100$) indicando que existe uma escala que vai de \mathbf{u} para \mathbf{v} com custo \mathbf{w} . Em seguida um inteiro \mathbf{c} (1 $\leq \mathbf{c} \leq 10000$) indicando o número de consultas e nas \mathbf{c} linhas seguintes temos três inteiros \mathbf{o} , \mathbf{d} e \mathbf{t} (1 $\leq \mathbf{o}$, $\mathbf{d} \leq \mathbf{n}$ e 1 $\leq \mathbf{t} \leq \mathbf{n}$) onde \mathbf{o} é a cidade de origem, \mathbf{d} é a cidade de destino e tindica que as cidades 1,2,..., \mathbf{t} podem ser usadas para escalas.

A entrada termina com final de arquivo.

Saída

Para cada instância, você deverá imprimir um identificador Instância **k**, onde **k** é o número da instância atual. Para cada consulta, na ordem da entrada, você deve imprimir o custo mínimo ou -1 caso não exista caminho entre as duas cidades.

Após cada instância imprima uma linha em branco.

Exemplo de Entrada	Exemplo de Saída
4 7	Instância 1
4 1 0	3
2 1 3	0
1 4 20	-1
2 3 15	
4 2 1	Instância 2
3 1 21	-1
1 2 0	13
3	2
2 1 0	-1
4 2 2	
4 3 1	

5 10	
4 5 2	
2 1 4	
1 2 7	
2 4 7	
5 2 1	
4 1 2	
4 5 12	
5 4 4	
5 3 7	
3 5 9	
4	
2 5 0	
3 4 5	
4 5 1	
2 3 2	

XI Maratona de Programação IME-USP, 2007