MATH-UA 253/MA-UY 3204 - Fall 2022 - Homework #8

Problem 1. Let $G \in \mathbb{R}^{n \times n}$ be symmetric, $c \in \mathbb{R}^n$, and $d \in \mathbb{R}$. Also, let $A \in \mathbb{R}^{m \times n}$ with m < n have full row rank, and let $b \in \mathbb{R}^m$. An equality-constrained quadratic program (QP) is a minimization problem of the form:

minimize
$$\frac{1}{2}x^{\top}Gx + c^{\top}x + d$$

subject to $Ax = b$. (1)

1. Prove that a set of first-order necessary conditions for optimality for a pair (x^*, λ^*) are given by:

$$\begin{bmatrix} G & -A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} x^* \\ \lambda^* \end{bmatrix} = \begin{bmatrix} -c \\ b \end{bmatrix}. \tag{2}$$

- 2. Let $Z \in \mathbb{R}^{n \times (n-m)}$ be such that range(Z) = null(A). Show that if the reduced Hessian $Z^{\top}GZ$ is positive definte, then (2) has a unique solution.
- 3. Show that if the assumptions for the previous part hold, then x^* is a strict global minimum for (1).

Problem 2. Assume G in (1) is positive definite for this problem. Show that the solution of (2) is given by:

$$x^* = G^{-1}A^{\top} (AG^{-1}A^{\top})^{-1} (AG^{-1}c + b) - G^{-1}c$$

$$\lambda^* = (AG^{-1}A^{\top})^{-1} (AG^{-1}c + b).$$
(3)

(*Hint*: compute the block LU factorization of the matrix in (2).)

Problem 3. Let x be a guess for x^* , let $p = x^* - x$ (the optimal step taking us from x to x^*), let h = Ax - b (the degree to which the equality constraints are violated), and let g = c + Gx (the gradient of the cost function evaluated at x). Further, let $Z \in \mathbb{R}^{n \times (n-m)}$ be a basis matrix for $\operatorname{null}(A)$, and let $Y \in \mathbb{R}^{n \times m}$ be a basis matrix for $\operatorname{null}(A)^{\perp}$. Decompose p into its part in the Y and Z bases, i.e. let v_Y and v_Z be such that $p = Yv_Y + Zv_Z$.

1. Show that (2) can be rewritten as:

$$\begin{bmatrix} G & A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} -p \\ \lambda^* \end{bmatrix} = \begin{bmatrix} g \\ h \end{bmatrix}. \tag{4}$$

- 2. First, show that $AYv_y = -h$.
- 3. Next, show that $Z^{\top}GZv_z = -Z^{\top}GYv_y Z^{\top}g$.
- 4. Assume that $Z^{\top}GZ$ is positive definite. Explain how to solve for p and λ^* .

Problem 4. The methods outlined for solving an equality-constrained QP in Problems 2 and 3 are two commonly used approaches. Explain the trade-offs between these methods. What assumptions do they require? In terms of the parameters m and n, what is the performance of each method like?