N-WL: A New Hierarchy of Expressivity for Graph Neural Networks

Qing Wang, Dillon Chen, Asiri Wijesinghe, Shouheng Li, and Muhammad Farhan

Graph Research Lab, School of Computing, Australian National University

Introduction

Is *k*-WL hierarchy a good yardstick for measuring expressivity of GNNs?

Neighbourhood WL Hierarchy

Neighbourhood WL (\mathcal{N} -WL) hierarchy colours nodes via t-order induced subgraphs within d-hop neighbourhoods:

d-hop neighbourhoods

t-order induced subgraphs

A Simple Experiment

A graph isomorphism test on 312 pairs of simple graphs of 8 vertices:

- None-or-all:
- None by 1-WL but all by 3-WL
- Progressive: Varving with d and t by $\mathcal{N}\text{-WL}$

Main Results

• Increasing the order of induced subgraphs, the expressive power increases:

Theorem (Weak Hierarchy)

 $\mathcal{N}^-(t,d)\text{-WL} \subsetneq \mathcal{N}^-(t+1,d)\text{-WL}$

• Increasing the hops of neighbourhoods, the expressive power may decrease:

Theorem

 $\mathcal{N}(t,d)\text{-WL} \subsetneq \mathcal{N}(t+1,d)\text{-WL}$

(Strong Hierarchy)

 $\mathcal{N}(t,d)$ -WL $\subseteq \mathcal{N}(t,d+1)$ -WL

• Induced connected subgraphs remain the same expressive power:

 $\mathcal{N}^c(t, d)\text{-WL} \equiv \mathcal{N}(t, d)\text{-WL}$

implies →

Subgraph counts

Subgraph counts

k-WL vs \mathcal{N} -WL

	k-WL	δ - k -LWL	(k, s)-LWL	$(k, c)(\leq)$ -SETWL	$\mathcal{N}(t,d)$ -WL	$\mathcal{N}^{c}(t,d)$ -WL
#Coloured objects	n^k	n^k	$subset(n^k, s)$	$\operatorname{subset}(\sum_{q=1}^{k} \binom{n}{q}, c)$	n	n
#Neighbour objects	$n \times k$	$a \times k$	$a \times k$	$n \times q$	$\binom{a^d}{t}$	$\operatorname{subset}(\sum_{q=1}^{t} {a^d \choose q}, 1)$
ΔColoured objects	k-tuples	k-tuples	k-tuples	≤k-sets	nodes	nodes
ΔNeighbour objects	k-tuples	k-tuples	k-tuples	$\leq k$ -sets	t-sets	≤t-sets
Sparsity -awareness	X	✓	✓	✓	×	✓

Theorem

$$1\text{-WL} \equiv \mathcal{N}(1,1)\text{-WL} \equiv \mathcal{N}^c(1,1)\text{-WL}$$

Graph Neighbourhood Neural Network

• Graph Neighbourhood Neural Network (G3N) instantiates the ideas of \mathcal{N} -WL algorithms for graph learning.

$$h_u^{(l+1)} = \text{Combine}\left(h_u^{(l)}, \text{Agg}_{(i,j) \in I_t \times J_d}^N \left(\text{Agg}_{S \in \mathcal{S}_u^{(l)}(i,j)}^T \left(\text{Pool}(S)\right)\right)\right)$$

Graph classification

Model	ZINC	ZINC
Model	(no edge features)	(edge features)
GCN	0.459±0.006	0.321±0.009
PPGN	0.407 ± 0.028	_
GIN	0.387 ± 0.015	0.163 ± 0.004
PNA	0.320 ± 0.032	0.188 ± 0.004
DGN	0.219 ± 0.010	0.168 ± 0.003
DEEP LRP*	0.223±0.008	_
GSN*	0.140 ± 0.006	0.115 ± 0.012
CIN*	0.115 ± 0.003	0.079 ± 0.006
G3N-(2,3)	0.165±0.018	0.128±0.015

Model	MolHIV	MolHIV
Model	(test)	(validation)
GCN	0.7606±0.0097	0.8204±0.0141
GIN	0.7558 ± 0.0140	0.8232±0.0090
GraphSNN	$0.7851 \scriptstyle{\pm 0.0170}$	0.8359 ± 0.0096
PNA	$0.7905 \scriptstyle{\pm 0.0132}$	_
DGN	0.7970 ± 0.0097	_
DEEP LRP*	0.7687±0.0180	0.8131±0.0088
GSN*	0.7799 ± 0.0100	0.8658±0.0084
CIN*	0.8094 ± 0.0057	_
G3N-(2,3)	0.7900±0.0134	0.8359±0.0061

Runtime analysis

