ACC RPM Monitor - Primary Algorithms

Technical Documentation

October 27, 2025

1 Introduction

This document describes the primary algorithms used in ACC RPM Monitor for shift point optimization, lap performance analysis, and audio feedback generation. The application operates in three distinct modes: Standard (fixed shift points), Adaptive (continuous 15-second learning), and Performance Learning (machine learning-based optimization).

Contents

1	Introduction				
2	Shift Pattern Detection Algorithm 2.1 Overview	3 3			
3	Lap Performance Analysis	3			
	3.1 Overview	3			
4	Optimal Shift Point Analysis	4			
	4.1 Overview	4			
5	Adaptive Learning Algorithm	4			
	5.1 Overview	4			
	5.2 Algorithm: Continuous Shift Point Update	4			
6	Audio Feedback System	6			
	6.1 Overview	6			
	6.2 Algorithm: Tone Profile Selection	6			
	6.3 Algorithm: Intelligent Audio Stop Condition	8			
7	RPM Rate Calculation	8			
	7.1 Algorithm: Rolling RPM Rate	8			
8	Data Quality Metrics	8			
	8.1 Algorithm: Learning Rate Calculation	8			
9	Performance Metrics	8			
	9.1 Off-Track Detection	8			
	9.2 Lap Time Calculation	8			
	9.3 Shift Quality Metrics	8			
10	Audio Profile Specifications Table	9			
11	Summary	9			

2 Shift Pattern Detection Algorithm

2.1 Overview

The Shift Pattern Detection algorithm monitors real-time telemetry data to detect gear changes and correlate them with lap performance metrics. This forms the foundation for learning optimal shift points.

2.2 Algorithm: Shift Event Detection

Algorithm 1 Shift Event Detection

```
1: Input: current_gear, previous_gear, current_rpm, previous_rpm, throttle, speed
2: Output: shift_detected (boolean)
3: if current_gear ≠ previous_gear then
       // Check for valid shift
5:
       if current\_gear \ge 1 and previous\_gear \ge 1 then
          is\_upshift \leftarrow current\_gear > previous\_gear
6:
          if is_upshift then
7:
              if throttle \geq 0.3 and previous_rpm \geq 3000 then
8:
                  return true
9:
              end if
10:
          else
11:
              if current_rpm \geq 3000 then
12:
                  return true
13:
              end if
14:
          end if
15:
       end if
17: end if
18: return false
```

Parameters:

- MinThrottleForUpshift = 0.3 (30% throttle required for upshift to count)
- MinRPMForShift = 3000 RPM (filters engine braking/neutral shifts)

3 Lap Performance Analysis

3.1 Overview

The Lap Performance Analysis algorithm tracks lap completion, validates laps based on off-track metrics, and associates shift events with lap outcomes to enable performance correlation.

3.2 Algorithm: Lap Validity Determination

Key Parameters:

- Off-track time threshold: 3.0 seconds cumulative (changed from 2.0 in v3.4.0)
- Off-track detection threshold: 0.5f = 50% vertical position delta from racing line

Algorithm 2 Lap Validity Determination

- 1: Input: lap_time_ms, off_track_time_sec, is_valid_by_acc
- 2: Output: lap_valid (boolean)
- 3: THRESHOLD_TIME $\leftarrow 3.0$ // seconds cumulative off-track
- 4: THRESHOLD_RATIO $\leftarrow 0.5$ // 50% of track considered off-track
- 5: // Primary check: ACC validity flag
- 6: $is_valid_acc \leftarrow is_valid_by_acc$
- 7: // Secondary check: Metrics-based validation
- 8: is_valid_metrics \leftarrow (lap_time_ms > 0) and
- 9: (lap_time_ms < INT_MAX) and
- 10: (off_track_time_sec < THRESHOLD_TIME)
- 11: // Both checks must pass
- 12: return is_valid_acc and is_valid_metrics
 - Validation requires both ACC flag and metrics checks to pass

4 Optimal Shift Point Analysis

4.1 Overview

The Optimal Shift Point Analysis algorithm groups shift events by RPM buckets, correlates them with lap performance, and identifies the RPM bracket that produces the best average lap times.

4.2 Algorithm: RPM Bucket Performance Analysis

Scoring Function:

$$Score = \overline{LapTime} + (1000 \times \overline{OffTrackTime})$$

This composite score weighs lap time (primary) and off-track time (secondary) to find the shift point that maximizes performance while maintaining track control.

5 Adaptive Learning Algorithm

5.1 Overview

The Adaptive Learning algorithm continuously updates shift points every 15 seconds based on real-time throttle and RPM data. It provides fast feedback for drivers who want quick optimization without waiting for full lap analysis.

5.2 Algorithm: Continuous Shift Point Update

Data Collection Criteria:

- Throttle > 85%: Ensures acceleration phase data
- Speed > 5 km/h: Filters standing starts and slow sections
- RPM rising at > 100 RPM/sec: Captures actual acceleration
- Update every 15 seconds: Balances responsiveness with statistical significance

Algorithm 3 Optimal Shift Point Analysis

```
1: Input: shift_events (list of ShiftEvent), lap_performances (list of LapPerformance)
 2: Output: optimal_shift_points (Dictionary of gear to RPM)
 3: MIN_VALID_LAPS \leftarrow 2 // for report generation
 4: MIN_SHIFTS_PER_GEAR \leftarrow 5 // samples needed per gear
 5: RPM_BUCKET_SIZE \leftarrow 200 // RPM grouping granularity
 6: for each gear g from 1 to 6 do
 7:
       valid_{laps} \leftarrow filter(lap_performances, is_valid = true)
 8:
       if count(valid_laps) < MIN_VALID_LAPS then
 9:
           continue
       end if
10:
       gear_shifts \leftarrow filter(shift_events, gear = q, is_upshift = true)
11:
       if count(gear_shifts) < MIN_SHIFTS_PER_GEAR then
12:
13:
           continue
       end if
14:
       // Group shifts by RPM buckets
15:
       buckets \leftarrow group\_by(gear\_shifts, rpm)
16:
       // Calculate composite score for each bucket
17:
       for each bucket b in buckets do
18:
           if count(b) \geq 2 then
19:
              avg\_lap\_time \leftarrow mean(lap\_times in b)
20:
21:
              avg\_off\_track \leftarrow mean(off\_track\_times in b)
22:
              score \leftarrow avg\_lap\_time + (avg\_off\_track \times 1000)
23:
              if score is minimum then
                  optimal_shift_points[g] \leftarrow b.rpm
24:
              end if
25:
           end if
26:
       end for
27:
28: end for
29: return optimal_shift_points
```

Algorithm 4 Adaptive Shift Point Learning

```
1: Input: telemetry stream (real-time data), update interval = 15 seconds
2: Output: updated shift points (periodic updates)
3: THROTTLE_THRESHOLD \leftarrow 0.85 // 85 percent
4: SPEED_THRESHOLD \leftarrow 5.0 // \text{ km/h minimum}
5: RPM_RATE_THRESHOLD \leftarrow 100 // RPM/sec rising
6: last\_update \leftarrow current\_time
7: collected_data \leftarrow empty list
   while true do
9:
       for each telemetry frame do
          if throttle > THROTTLE_THRESHOLD and speed > SPEED_THRESHOLD and
10:
   rpm_rate > RPM_RATE_THRESHOLD then
11:
              collect(current_rpm, current_gear, lap_position)
          end if
12:
          if current\_time - last\_update \ge update\_interval then
13:
              shift\_points \leftarrow analyze(collected\_data)
14:
              apply(shift_points)
15:
              emit(AudioFeedback)
16:
              collected\_data \leftarrow clear
17:
              last\_update \leftarrow current\_time
18:
19:
       end for
20:
21: end while
```

6 Audio Feedback System

6.1 Overview

The Audio Feedback System generates real-time pitch-based guidance indicating whether the driver should shift earlier (high pitch), at the optimal point (neutral pitch), or later (low pitch). Two audio profiles are available: Normal (responsive) and Endurance (low-fatigue).

6.2 Algorithm: Tone Profile Selection

Audio Feedback Interpretation:

- High Pitch: Current RPM is too low (shifted too early) shift later next time
- Neutral Pitch: Current RPM is in optimal range shifting at correct point
- Low Pitch: Current RPM is too high (shifted too late) shift earlier next time

Algorithm 5 Audio Feedback Tone Selection

```
1: Input: current_rpm, recommended_shift_rpm, audio_profile
2: Output: tone_profile (ToneProfile object)
3: OPTIMAL_BAND \leftarrow 175 // RPM band around recommended point
4: // Calculate RPM distance from recommended
5: rpm_delta ← current_rpm − recommended_shift_rpm
6: if rpm_delta > OPTIMAL_BAND then
      // Shifting too late: use low pitch to indicate shift earlier
8:
      if audio_profile == Normal then
          return ToneProfile(400 Hz, 0 Hz, 150 ms)
9:
10:
      else
          return ToneProfile(400 Hz, -15 Hz glide, 120 ms)
11:
12:
      end if
13: else if rpm_delta < -OPTIMAL_BAND then
      // Shifting too early: use high pitch to indicate shift later
14:
      if audio_profile == Normal then
15:
          return ToneProfile(950 Hz, +10 Hz glide, 100 ms)
16:
17:
          return ToneProfile(650 Hz, +10 Hz glide, 60 ms)
18:
      end if
19:
20: else
21:
      // Optimal range: use neutral mid pitch
      \mathbf{if} audio_profile == Normal \mathbf{then}
22:
          return ToneProfile(600 Hz, no glide, 140 ms)
23:
24:
      else
25:
          return ToneProfile(500 Hz, no glide, 130 ms)
      end if
26:
27: end if
```

Algorithm 6 Audio Stop Decision Logic

```
1: Input: rpm_rate (RPM/sec), tone_duration_elapsed, tone_duration_limit
2: Output: should_stop_audio (boolean)
3: RPM_RATE_THRESHOLD ← 50 // RPM/sec
4: if rpm_rate < RPM_RATE_THRESHOLD then
5: // Driver stopped accelerating
6: return true
7: end if
8: if tone_duration_elapsed ≥ tone_duration_limit then
9: // Tone natural duration expired
10: return true
11: end if
12: return false
```

Algorithm 7 Calculate RPM Rate of Change

```
1: Input: rpm_history (queue of rpm, timestamp pairs)
2: Output: rpm_rate (RPM/sec)
3: WINDOW_MS \leftarrow 200 // Lookback window
4: current\_time \leftarrow now
5: window_start ← current_time − WINDOW_MS
6: // Remove old entries outside window
7: while rpm_history.front().timestamp < window_start do
      remove(rpm_history.front())
9: end while
10: if count(rpm\_history) < 2 then
      return 0
12: end if
13: // Calculate rate over window
14: rpm_delta \leftarrow rpm_history.back().rpm - rpm_history.front().rpm
15: time_delta \leftarrow (rpm_history.back().timestamp - rpm_history.front().timestamp) / 1000
16: return rpm_delta / time_delta
```

6.3 Algorithm: Intelligent Audio Stop Condition

7 RPM Rate Calculation

- 7.1 Algorithm: Rolling RPM Rate
- 8 Data Quality Metrics
- 8.1 Algorithm: Learning Rate Calculation
- 9 Performance Metrics

9.1 Off-Track Detection

The application detects off-track events using normalized position delta:

```
is_off_track = |\Delta normalized_position| > 0.5
```

This corresponds to approximately 50% distance from the racing line, with cumulative tracking across the lap.

9.2 Lap Time Calculation

Lap times are measured in milliseconds and include all sectors from S/F line crossing to the next crossing. Incomplete laps or laps exceeding a logical maximum are marked invalid.

9.3 Shift Quality Metrics

For each shift, the following metrics are tracked:

• Shift RPM: Engine speed at moment of gear change

Algorithm 8 Calculate Learning Quality Score

```
1: Input: valid_laps, total_shifts, data_consistency
2: Output: quality_score (0.0 to 1.0)
3: EXCELLENT_THRESHOLD \leftarrow 5 // \text{ laps}
4: GOOD_THRESHOLD \leftarrow 3 // laps
5: // Base score from lap count
6: if valid_laps > EXCELLENT_THRESHOLD then
7:
       lap\_score \leftarrow 1.0
   else if valid_laps > GOOD_THRESHOLD then
9:
       lap\_score \leftarrow 0.7
10: else
       lap\_score \leftarrow valid\_laps / GOOD\_THRESHOLD
11:
12: end if
13: // Consistency bonus from shift variance
14: if shift_variance is low then
       consistency_bonus \leftarrow 0.2
15:
16: else
17:
       consistency_bonus \leftarrow 0.0
18: end if
19: return min(1.0, lap_score + consistency_bonus)
```

- Post-Shift RPM: Engine speed immediately after shift completes
- Speed Loss: Velocity change during shift (indicator of smooth execution)
- Throttle Position: Percent throttle during shift (70%+ indicates aggressive driving)

10 Audio Profile Specifications Table

11 Summary

The ACC RPM Monitor employs a multi-layered approach to shift point optimization:

- 1. **Real-time detection** via the Shift Event Detection algorithm
- 2. Statistical analysis through RPM Bucket Performance Analysis
- 3. Continuous learning with the Adaptive algorithm (15-second updates)
- 4. Intuitive feedback via the Audio Feedback System with dual profiles
- 5. Quality validation ensuring only meaningful data influences recommendations

These algorithms work in concert to provide drivers with scientifically-grounded shift point recommendations that maximize lap performance while maintaining vehicle control.

Audio feedback uses an intuitive pitch-based system: high pitch indicates shifting too early (shift later), neutral pitch indicates optimal shifting, and low pitch indicates shifting too late (shift earlier).

Parameter	Too Early (High)	Optimal (Neutral)	Too Late (Low)		
Normal Profile					
Frequency (Hz)	950	600	400		
Duration (ms)	130	140	150		
Attack (ms)	5	5	5		
Decay (ms)	120	135	145		
Sustain Level	60%	55%	50%		
dB Level	-3	0	-2		
Glide	$+10 \; Hz/100 ms$	None	None		
Waveform	Rounded	Sine	Triangle		
Endurance Profile					
Frequency (Hz)	650	500	400		
Duration (ms)	110	130	140		
Attack (ms)	8	10	8		
Decay (ms)	130	100	160		
Sustain Level	57%	52%	48%		
dB Level	-3	0	-3		
Glide	$+10~\mathrm{Hz}/60\mathrm{ms}$	None	$-15 \; \mathrm{Hz}/120 \mathrm{ms}$		
Waveform	Sine	Sine	Sine		

Table 1: Audio Profile Specifications (v3.4.0) - Column headers show RPM situation relative to recommended shift point