Lecture 11

Model Selection

STAT 8020 Statistical Methods II September 13, 2019

Variable Selection

Automatic Search
Procedures

Whitney Huang Clemson University

Agenda

Variable Selection Criteria

Automatic Search Procedures

Variable Selection Criteria

2 Automatic Search Procedures

Variable Selection

Variable Selection

Automatic Search

- What is the appropriate subset size?
- What is the best model for a fixed size?

Mallows' C_n Criterion

Variable Selection Criteria

Automatic Search Procedures

$$\begin{split} (\hat{Y}_i - \mu_i)^2 &= (\hat{Y}_i - \mathbf{E}(\hat{Y}_i) + \mathbf{E}(\hat{Y}_i) - \mu_i)^2 \\ &= \underbrace{(\hat{Y}_i - \mathbf{E}(\hat{Y}_i))^2}_{\text{Variance}} + \underbrace{(\mathbf{E}(\hat{Y}_i) - \mu_i)^2}_{\text{Bias}^2}, \end{split}$$

where $\mu_i = \mathrm{E}(Y_i|X_i = x_i)$

- Mean squared prediction error (MSPE): $\sum_{i=1}^{n} \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^{n} (E(\hat{Y}_i) \mu_i)^2$
- \bullet C_p criterion measure:

$$\begin{split} \Gamma_p &= \frac{\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^n (\mathrm{E}(\hat{Y}_i) - \mu_i)^2}{\sigma^2} \\ &= \frac{\sum \mathsf{Var}_{\mathsf{pred}} + \sum \mathsf{Bias}^2}{\mathsf{Var}_{\mathsf{error}}} \end{split}$$

C_n Criterion

Variable Selection Criteria

Automatic Search Procedures

- Do not know σ^2 nor numerator
- Use $MSE_{X_1,\cdots,X_{p-1}}=MSE_F$ as the estimate for σ
- For numerator:
 - Can show $\sum_{i=1}^{n} \sigma_{\hat{Y}_i}^2 = p\sigma^2$
 - Can also show $\sum_{i=1}^{n} (E(\hat{Y}_i) \mu_i)^2 = E(SSE_F) (n-p)\sigma^2$

$$\Rightarrow C_p = \frac{\mathrm{SSE} - (n-p)\mathrm{MSE_F} + p\mathrm{MSE_F}}{\mathrm{MSE_F}}$$

C_p Criterion Cont'd

Model Selection CLEMS UNIVERSITY

Variable Selection Criteria

Automatic Search Procedures

Recall

$$\Gamma_{p} = \frac{\sum_{i=1}^{n} \sigma_{\hat{Y}_{i}}^{2} + \sum_{i=1}^{n} (E(\hat{Y}_{i}) - \mu_{i})^{2}}{\sigma^{2}}$$

- When model is correct $E(C_p) \approx p$
- When plotting models against p
 - Biased models will fall above $C_p = p$
 - Unbiased models will fall around line $C_p = p$
 - By definition: C_p for full model equals p

Adjusted R² Criterion

Model Selection

CLEMS

N I V E R S I T Y

Variable Selection

Automatic Search Procedures

Adjusted R^2 , denoted by $R^2_{\rm adj}$, attempts to take account of the phenomenon of the R^2 automatically and spuriously increasing when extra explanatory variables are added to the model.

$$R_{\mathsf{adj}}^2 = 1 - \frac{\mathsf{SSE}/(n-p-1)}{\mathsf{SST}/(n-1)}$$

- Choose model which maximizes R²_{adj}
- Same approach as choosing model with smallest MSE

Predicted Residual Sum of Squares PRESS Criterion

Variable Selection Criteria

Automatic Search Procedures

- For each observation i, predict Y_i using model generated from other n-1 observations
- $PRESS = \sum_{i=1}^{n} (Y_i \hat{Y}_{i(i)})^2$
- Want to select model with small PRESS

Other Approaches

Model Selection

CLEMS

UNIVERSITY

Variable Selection Criteria

Automatic Search Procedures

Akaikeâs information criterion (AIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + 2k$$

Bayesian information criterion (BIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + k\log(n)$$

Can be used to compare non-nested models

Automatic Search Procedures

Variable Selection Criteria

Automatic Search

- Forward Selection
- Backward Elimination
- Stepwise Search
- All Subset Selection