O Problema de Transporte

Dilson Lucas Pereira

DCC-UFMG

Maio 2011

Outline

Introdução

Solução Viável

Simplex

O Problema de Transporte

Seja $O=\{1,\ldots,m\}$ um conjunto de fontes de bens (origens) e $D=\{1,\ldots,n\}$ um conjunto de consumidores (destinos). Assuma que cada fonte i possui disponibilidade o_i , enquanto cada consumidor j tem demanda d_i . Seja c_{ij} o custo de se transportar uma unidade de bens entre $i\in O$ e $j\in D$. O Problema de Transporte (PT) consiste em determinar quanto deve ser enviado de cada origem a cada destino de maneira a minimizar o custo total de transporte.

• O PT pode ser modelado em um bipartido G = (O, D, E).

- Assume-se que E é um conjunto completo de arestas.
 - Caso não exista ligação entre $i \in O$ e $d \in D$, pode-se associar um custo muito elevado a aresta $(i,j) \in E$.
- Assume-se que $\sum_{i \in O} o_i = \sum_{j \in D} d_j$.
 - Caso $\sum_{i \in O} o_i > \sum_{j \in D} d_j$: Cria-se um nó destino artificial n+1 com demanda $d_{n+1} = \sum_{i \in O} o_i \sum_{i \in D} d_i$.
 - Caso $\sum_{i \in O} o_i < \sum_{j \in D} d_j$: Cria-se um nó origem artificial M+1 com disponibilidade $o_{m+1} = \sum_{i \in D} d_i \sum_{i \in O} o_i$.

- Assume-se que *E* é um conjunto completo de arestas.
 - Caso não exista ligação entre $i \in O$ e $d \in D$, pode-se associar um custo muito elevado a aresta $(i,j) \in E$.
- Assume-se que $\sum_{i \in O} o_i = \sum_{j \in D} d_j$.
 - Caso $\sum_{i \in O} o_i > \sum_{j \in D} d_j$: Cria-se um nó destino artificial n+1 com demanda $d_{n+1} = \sum_{i \in O} o_i \sum_{j \in D} d_j$.
 - Caso $\sum_{i \in O} o_i < \sum_{j \in D} d_j$: Cria-se um nó origem artificial M+1 com disponibilidade $o_{m+1} = \sum_{i \in D} d_i \sum_{i \in O} o_i$.

- Assume-se que E é um conjunto completo de arestas.
 - Caso n\(\tilde{a}\) exista liga\(\tilde{a}\) entre i ∈ O e d ∈ D, pode-se associar um custo muito elevado a aresta (i, j) ∈ E.
- Assume-se que $\sum_{i \in O} o_i = \sum_{j \in D} d_j$.
 - Caso $\sum_{i \in O} o_i > \sum_{j \in D} d_j$: Cria-se um nó destino artificial n+1 com demanda $d_{n+1} = \sum_{i \in O} o_i \sum_{j \in D} d_j$.
 - Caso $\sum_{i \in O} o_i < \sum_{j \in D} d_j$: Cria-se um nó origem artificial M+1 com disponibilidade $o_{m+1} = \sum_{i \in D} d_i \sum_{i \in O} o_i$.

- Para cada origem i e destino j, seja $x_{i,j} \in \mathbb{R}$ uma variável que determina a quantidade a ser transportada de i para j.
- O PT pode ser modelado como o seguinte Problema de Programação Linear:

$$\min \sum_{i \in O, j \in D} x_{ij} c_{ij} \tag{1}$$

$$\sum_{j\in D}x_{ij}=o_i \qquad i\in O, \tag{2}$$

$$\sum_{i \in O} x_{ij} = d_i \qquad i \in D, \tag{3}$$

$$x_{ij} \in \mathbb{R}^+ \qquad i \in O, j \in D.$$
 (4)

Tabela

 Em geral, utiliza-se uma tabela semelhante a abaixo para representar/resolver o problema.

Destino Origem	1		n	Disponibilidade
1	c ₁₁		c_{1n}	o_1
:	:	•	:	:
m	c _{m1}		C _{mn}	O _m
Demanda	d_1		d_n	total

Tabela - Exemplo

O D	1	2	3	4	5	6	Disp.
1	5	7	2	9	8	2	7
1	8	2	9	0	3	2	3
1	5	3	7	1	9	4	10
Dem.	3	2	5	4	1	5	20

Solução Básica Viável

- Uma solução básica viável para a adaptação do método simplex que estudaremos adiante é uma solução tal que o número de alocações com valor maior que zero é (m+n-1).
- Se o número de alocações for menor que (m+n-1), a solução é básica viável degenerada.
- Três possíveis métodos para a obtenção de uma solução básica viável são:
 - Método do Canto Noroeste.
 - Método do Custo Mínimo.
 - Método de Vogel.

Método do Canto Noroeste (MCN) - Algoritmo

- $x_{ij} \leftarrow 0 \forall i \in O, j \in D$
- $i \leftarrow j \leftarrow 1$
- Enquanto $i \neq m \land j \neq n$
 - $q \leftarrow \min\{o_i, d_j\}$
 - $x_{ij} \leftarrow x_{ij} + q$
 - $o_i \leftarrow o_i q$
 - $d_j \leftarrow d_i q$
 - se $o_i = 0$, $i \leftarrow i+1$; senão $j \leftarrow j+1$

	1	2	3	4	5	6	Disp.
1	(5)	(7)	(2)	(9)	(8)	(2)	7
2	(8)	(2)	(9)	(0)	(3)	(2)	3
3	(5)	(3)	(7)	(1)	(9)	(4)	10
Dem.	3	2	5	4	1	5	20

O D	1	2	3	4	5	6	Disp.
1	3 (5)	(7)	(2)	(9)	(8)	(2)	4
2	(8)	(2)	(9)	(0)	(3)	(2)	3
3	(5)	(3)	(7)	(1)	(9)	(4)	10
Dem.	0	2	5	4	1	5	20

O D	1	2	3	4	5	6	Disp.
1	3 (5)	2(7)	(2)	(9)	(8)	(2)	2
2	(8)	(2)	(9)	(0)	(3)	(2)	3
3	(5)	(3)	(7)	(1)	(9)	(4)	10
Dem.	0	0	5	4	1	5	20

0	1	2	3	4	5	6	Disp.
1	3 (5)	2(7)	2(2)	(9)	(8)	(2)	0
2	(8)	(2)	(9)	(0)	(3)	(2)	3
3	(5)	(3)	(7)	(1)	(9)	(4)	10
Dem.	0	0	3	4	1	5	20

0	1	2	3	4	5	6	Disp.
1	3 (5)	2(7)	2(2)	(9)	(8)	(2)	0
2	(8)	(2)	3 (9)	(0)	(3)	(2)	0
3	(5)	(3)	(7)	(1)	(9)	(4)	10
Dem.	0	0	0	4	1	5	20

O D	1	2	3	4	5	6	Disp.
1	3 (5)	2(7)	2(2)	(9)	(8)	(2)	0
2	(8)	(2)	3 (9)	(0)	(3)	(2)	0
3	(5)	(3)	0(7)	(1)	(9)	(4)	10
Dem.	0	0	0	4	1	5	20

O D	1	2	3	4	5	6	Disp.
1	3 (5)	2(7)	2(2)	(9)	(8)	(2)	0
2	(8)	(2)	3 (9)	(0)	(3)	(2)	0
3	(5)	(3)	0(7)	4(1)	(9)	(4)	6
Dem.	0	0	0	0	1	5	20

0	1	2	3	4	5	6	Disp.
1	3(5)	2(7)	2(2)	(9)	(8)	(2)	0
2	(8)	(2)	3 (9)	(0)	(3)	(2)	0
3	(5)	(3)	0(7)	4 (1)	1(9)	(4)	5
Dem.	0	0	0	0	0	5	20

0	1	2	3	4	5	6	Disp.
1	3 (5)	2(7)	2(2)	(9)	(8)	(2)	0
2	(8)	(2)	3 (9)	(0)	(3)	(2)	0
3	(5)	(3)	0(7)	4 (1)	1(9)	5(4)	0
Dem.	0	0	0	0	0	0	

Método do Custo Mínimo (MCM)

- Embora o MCN seja computacionalmente rápido, os custos de transporte não são considerados, gerando-se soluções distantes da otimalidade.
- Inicialmente ordena-se o conjunto de arestas pelo custo, de maneira crescente, i.e.,

$$E_{ord} = \{(i_1, j_1), (i_2, i_3), \dots, (i_{m \times n}, j_{m \times n})\}, \text{ tal que } c_{i_k, j_k} \leq c_{i_l, j_l}, 1 \leq k < l \leq m \times n.$$

MCM - Algoritmo

- Enquanto $k \leq m \times n$
 - $q \leftarrow \min\{o_{i_k}, d_{j_k}\}$
 - se $q \neq 0$
 - $x_{ij} \leftarrow x_{ij} + q$
 - $o_i \leftarrow o_i q$
 - $d_j \leftarrow d_i q$
 - $k \leftarrow k + 1$

$$E_{ord} = \{(2,4), (3,4), (1,3), (1,6) \\ (2,2), (2,6), (2,5), (3,2) \\ (3,6), (1,1), (3,1), (1,2) \\ (3,3), (1,5), (2,1), (1,4) \\ (2,3), (3,5)\}$$

0	1	2	3	4	5	6	Disp.
1	(5)	(7)	(2)	(9)	(8)	(2)	7
2	(8)	(2)	(9)	(0)	(3)	(2)	3
3	(5)	(3)	(7)	(1)	(9)	(4)	10
Dem.	3	2	5	4	1	5	20

$$E_{ord} = \{(2,4), (3,4), (1,3), (1,6) \\ (2,2), (2,6), (2,5), (3,2) \\ (3,6), (1,1), (3,1), (1,2) \\ (3,3), (1,5), (2,1), (1,4) \\ (2,3), (3,5)\}$$

(D D	1	2	3	4	5	6	Disp.
	1	(5)	(7)	(2)	(9)	(8)	(2)	7
	2	-	-	-	3(0)	-	-	0
	3	(5)	(3)	(7)	(1)	(9)	(4)	10
	Dem.	3	2	5	1	1	5	20

$$E_{ord} = \{(2,4), (3,4), (1,3), (1,6) \\ (2,2), (2,6), (2,5), (3,2) \\ (3,6), (1,1), (3,1), (1,2) \\ (3,3), (1,5), (2,1), (1,4) \\ (2,3), (3,5)\}$$

0	1	2	3	4	5	6	Disp.
1	(5)	(7)	(2)	-	(8)	(2)	7
2	-	-	-	3(0)	-	-	0
3	(5)	(3)	(7)	1 (1)	(9)	(4)	9
Dem.	3	2	5	0	1	5	20

$$E_{ord} = \{(2,4), (3,4), (1,3), (1,6) \\ (2,2), (2,6), (2,5), (3,2) \\ (3,6), (1,1), (3,1), (1,2) \\ (3,3), (1,5), (2,1), (1,4) \\ (2,3), (3,5)\}$$

O D	1	2	3	4	5	6	Disp.
1	(5)	(7)	5 (2)	-	(8)	(2)	2
2	-	-	-	3(0)	-	-	0
3	(5)	(3)	-	1(1)	(9)	(4)	9
Dem.	3	2	0	0	1	5	20

$$E_{ord} = \{(2,4), (3,4), (1,3), (1,6) \\ (2,2), (2,6), (2,5), (3,2) \\ (3,6), (1,1), (3,1), (1,2) \\ (3,3), (1,5), (2,1), (1,4) \\ (2,3), (3,5)\}$$

O D	1	2	3	4	5	6	Disp.
1	-	-	5 (2)	-	-	2(2)	0
2	-	-	-	3 (0)	-	-	0
3	(5)	(3)	-	1 (1)	(9)	(4)	9
Dem.	3	2	0	0	1	3	20

$$E_{ord} = \{(2,4), (3,4), (1,3), (1,6) \\ (2,2), (2,6), (2,5), (3,2) \\ (3,6), (1,1), (3,1), (1,2) \\ (3,3), (1,5), (2,1), (1,4) \\ (2,3), (3,5)\}$$

0	1	2	3	4	5	6	Disp.
1	-	-	5 (2)	-	-	2(2)	0
2	-	-	-	3(0)	-	-	0
3	(5)	2(3)	-	1(1)	(9)	(4)	7
Dem.	3	0	0	0	1	3	20

$$E_{ord} = \{(2,4), (3,4), (1,3), (1,6) \\ (2,2), (2,6), (2,5), (3,2) \\ (3,6), (1,1), (3,1), (1,2) \\ (3,3), (1,5), (2,1), (1,4) \\ (2,3), (3,5)\}$$

0 D	1	2	3	4	5	6	Disp.
1	-	-	5 (2)	-	-	2(2)	0
2	-	-	-	3(0)	-	-	0
3	(5)	2(3)	-	1(1)	(9)	3(4)	4
Dem.	3	0	0	0	1	0	20

$$E_{ord} = \{(2,4), (3,4), (1,3), (1,6) \\ (2,2), (2,6), (2,5), (3,2) \\ (3,6), (1,1), (3,1), (1,2) \\ (3,3), (1,5), (2,1), (1,4) \\ (2,3), (3,5)\}$$

O D	1	2	3	4	5	6	Disp.
1	-	-	5 (2)	-	-	2(2)	0
2	-	-	-	3(0)	-	-	0
3	3 (5)	2(3)	-	1(1)	(9)	4(4)	1
Dem.	0	0	0	0	1	0	20

$$E_{ord} = \{(2,4), (3,4), (1,3), (1,6) \\ (2,2), (2,6), (2,5), (3,2) \\ (3,6), (1,1), (3,1), (1,2) \\ (3,3), (1,5), (2,1), (1,4) \\ (2,3), (3,5)\}$$

O D	1	2	3	4	5	6	Disp.
1	-	-	5 (2)	-	-	2(2)	0
2	-	-	-	3(0)	-	-	0
3	3(5)	2(3)	-	1 (1)	1(9)	4 (4)	0
Dem.	0	0	0	0	0	0	20

Método do Vogel (MV)

- O MCM apresenta complexidade computacional maior que o MCN, porém, em geral apresenta soluções de qualidade melhor.
- O MV possui complexidade ainda maior, no entando, apresenta soluções melhores no geral.
- Seja p_i^{row} a diferença entre o segundo menor e o menor custo da linha i.
- Seja p_i^{col} a diferença entre o segundo menor e o menor custo da coluna i.

MV - Algoritmo

- Enquanto $O \neq \emptyset \land D \neq \emptyset$
 - $i' \leftarrow \arg\max_{i \in O} p_i^{row}$
 - $j' \leftarrow \arg\max_{j \in D} p_i^{col}$
 - Se $p_{i'}^{row} \geq p_{i'}^{col}$, $j' \leftarrow \arg\min_{j \in D} c_{i'j}$
 - Senão, $i' \leftarrow \arg \min_{i \in O} c_{ij'}$
 - $q \leftarrow \min\{o_{i'}, d_{j'}\}$
 - $x_{i'j'} \leftarrow x_{i'j'} + q$
 - $o'_i \leftarrow o'_i q$
 - $d'_j \leftarrow d'_i q$
 - Se $o'_i = 0$, $O = O \setminus \{i'\}$
 - Senão, $D = D \setminus \{j'\}$
 - Atualize $p_i^{row}, i \in O$, e $p_i^{col}, j \in D$

MV - Exemplo

O D	1	2	3	4	5	6	Disp.	p ^{row}
1	(5)	(7)	(2)	(9)	(8)	(2)	7	0
2	(8)	(2)	(9)	(0)	(3)	(2)	3	2
3	(5)	(3)	(7)	(1)	(9)	(4)	10	2
Dem.	3	2	5	4	1	5	20	
p ^{col}	3	1	5	1	5	0		

MV - Exemplo

O D	1	2	3	4	5	6	Disp.	p ^{row}
1	(5)	(7)	(2)	(9)	(8)	(2)	7	0
2	(8)	(2)	(9)	(0)	(3)	(2)	3	2
3	(5)	(3)	(7)	(1)	(9)	(4)	10	2
Dem.	3	2	5	4	1	5	20	
p ^{col}	3	1	5	1	5	0		

O D	1	2	3	4	5	6	Disp.	p ^{row}
1	(5)	(7)	5(2)	(9)	(8)	(2)	2	3
2	(8)	(2)	-	(0)	(3)	(2)	3	2
3	(5)	(3)	-	(1)	(9)	(4)	10	2
Dem.	3	2	0	4	1	5	20	
p ^{col}	3	1	-	1	5	0		

0 D	1	2	3	4	5	6	Disp.	p ^{row}
1	(5)	(7)	5(2)	(9)	(8)	(2)	2	3
2	(8)	(2)	-	(0)	1(3)	(2)	2	2
3	(5)	(3)	-	(1)	-	(4)	10	2
Dem.	3	2	0	4	0	5	20	
p ^{col}	3	1	-	1	-	0		

0	1	2	3	4	5	6	Disp.	p ^{row}
1	-	(7)	5(2)	(9)	(8)	(2)	2	5
2	-	(2)	-	(0)	1(3)	(2)	2	2
3	3 (5)	(3)	-	(1)	-	(4)	7	2
Dem.	0	2	0	4	0	5	20	
p ^{col}	-	1	-	1	-	0		

0	1	2	3	4	5	6	Disp.	p ^{row}
1	-	-	5(2)	-	-	2(2)	0	-
2	-	(2)	-	(0)	1 (3)	(2)	2	2
3	3 (5)	(3)	-	(1)	-	(4)	7	2
Dem.	0	2	0	4	0	3	20	
p ^{col}	-	1	-	1	-	0		

0 D	1	2	3	4	5	6	Disp.	p ^{row}
1	-	-	5(2)	-	-	2(2)	0	-
2	-	2(2)	-	-	1 (3)	-	0	-
3	3 (5)	(3)	-	(1)	-	(4)	7	2
Dem.	0	0	0	4	0	3	20	
p ^{col}	-	1	-	1	-	0		

0 /	1	2	3	4	5	6	Disp.	p ^{row}
1	-	-	5(2)	-	-	2(2)	0	-
2	-	2(2)	-	-	1 (3)	-	0	-
3	3 (5)	0(3)	-	4 (1)	-	3(4)	0	-
Dem.	0	0	0	0	0	0	20	
p ^{col}	-	-	-	-	-	-		

Simplex

 Devido a propriedade da Total Unimodularidade da matriz de restrições do PT, caso as disponibilidades e demandas forem inteiras, toda solução básica viável será inteira.

Simplex - Algoritmo

- Encontre uma solução básica viável com base $B \subseteq E$.
- Compute o custo reduzido λ_{ij} para toda aresta $(i,j) \in E$.
- Enquanto $\exists (i,j) \in E : \lambda_{ij} < 0$
 - Determine a variável x_{ij} a entrar na base.
 - Realize o pivoteamento .
 - Compute o custo reduzido λ_{ij} para toda aresta $(i,j) \in E$.

Note que a base é composta inclusive por variáveis com valor 0.

Determinação do Custo Reduzido

• Dado uma aresta $e \notin B$, é possível construir um ciclo (único) $p = \{(i_1, j_1), (i_2, j_2), \dots\}$ a partir de e na tabela do simplex (ou pela introdução de e no grafo associado).

0 D	1	2	3	4	5	6
1	-	7	2	-	⊕	-2
2	-	2	-	-	3	-
3	5	3	1	1	1	4

	1	2	3	4	5	6
1		d	?		Q	٦
1	_	Э	4	_	٥	4
2	1	2	ı	1	3	1
3	5	3_	_	-1	_	4

Determinação do Custo Reduzido

 O custo reduzido é dado pela soma dos custos das arestas de índice ímpar no ciclo subtraída da soma das arestas de índice par.

0	1	2	3	4	5	6
1	-	7	2	1	®	-2
2	1	2	-	ı	ىل	-
3	5	σ	_	1	-	4

$$\lambda_{1,5} = 8 + 4 + 2 - 2 - 3 = 9$$

0	1	2	3	4	5	6
1	-	\odot	2	-	8	-2
2	-	2	-	-	3	-
3	5	3_		1	1	_4

$$\lambda_{1,2} = 7 + 4 - 2 - 3 = 6$$

Pivoteamento

- A variável que sai da base é aquela com menor valor dentre as de índice par no ciclo.
- O valor dessa variável é subtraído das variáveis de índice par e acrescido as variáveis de índice ímpar. A variável deixa a base.

0	1	2	3	4	5	6
1	(5)	(7)	5(2)	(9)	(8)	2(2)
2	(8)	2(2)	(9)	(0)	1 (3)	(2)
3	3 (5)	0(3)	(7)	4(1)	(9)	3(4)

0	1	2	3	4	5	6
1	2 (5)	6 (7)	5 (2)	10 (9)	5 (8)	2(2)
2	4 (8)	2(2)	6 (9)	0(0)	1 (3)	-1 (2)
3	3(5)	0(3)	3(7)	4(1)	5 (9)	3(4)

• A variável $x_{2,6}$ apresenta custo reduzido negativo, o ciclo que a envolve é:

0 D	1	2	3	4	5	6
1						
2		2(2)				-1(2)
3		0(3)				3(4)

• A variável a sair da base é x_{2,2}.

Após realizar o pivoteamento, tem-se a solução de custo 50:

O D	1	2	3	4	5	6
1	(5)	(7)	5 (2)	(9)	(8)	2(2)
2	(8)	0(2)	(9)	(0)	1 (3)	2 (2)
3	3 (5)	2(3)	(7)	4(1)	(9)	1(4)

• Os custos reduzidos são dados por:

0	1	2	3	4	5	6
1	2 (5)	6 (7)	5(2)	10 (9)	2(8)	2(2)
2	5 (8)	0(2)	7 (9)	1 (0)	1 (3)	2(2)
3	3 (5)	2 (3)	3 (7)	4 (1)	4 (9)	1 (4)

• Como todos são positivos a solução é ótima.

Obrigado!

- Aula em: www.dcc.ufmg.br/~dilson/transporte.pdf
- Material Robson: www.dcc.ufmg.br/~dilson/aulaspo.zip
- Próxima aula: Dúvidas sobre o trabalho.