Splošne naloge

Cauchy-Schwarzeva neenakost: $a_1, \ldots, a_n \in \mathbb{R} \implies \frac{1}{n} (\sum a_i)^2 \leq \sum a_i^2$, enačaj ntk. $a_1 = \cdots = a_n$ Osnovni triki: indukcija ali minimalen protiprimer ali "kr eno shematsko risanje"

Turanov izrek: G ne vsebuje K_p , $p \ge 2 \implies |E(G)| \le \frac{1}{2} \frac{p-2}{p-1} n^2$, enačaj ko p-1|n

Trik: Če moraš dokazati t = 0, lahko raje dokažeš $(-1)^n t > 0$.

Vsak povezan, dvodelen, r-regularen graf je 2-povezan.

Velja: $t(G) + t(\overline{G}) > \ge \frac{1}{24}n(n-1)(n-5)$

Velia: $diam(G) > 3 \implies diam(\overline{G}) < 3$

Turnirji

V turnirju vedno obstaja vozlišče, iz katerega lahko vsako drugo vozlišče dosežemo v največ 2 usmerjenih korakih.

Če turnir vsebuje usmerjen cikel, potem vsebuje usmerjen 3-cikel.

V turnirju obstaja usmerjen 3-cikel \iff vsa vozlišča imajo enako izhodno stopnjo.

Kromatični polinom

P(G,k) = število k-barvanj grafa G, pot $P(P_n,k) = k(k-1)^{n-1}$, drevo isto kot za pot, poln graf $P(K_n,k) = k(k-1)\cdots(k-1)^{n-1}$ n + 1).

 $\chi(G) = \text{najmanj}$ ši k, da je P(G,k) > 0.

Trditev: G graf, e povezava, P(G,k) = P(G-e,k) - P(G/e,k).

Lastnosti P(G,k): koef. pri k^n je 1, koef. pri k^{n-1} je -m, koef. pri k^{n-2} je $\binom{m}{2} - t$ (t=št. trikotnikov), prosti člen je 0, stopnja najnižjega neničelnega člena je št. komponent grafa, predznak koeficientov alternira.

 $P(G,-1)=(-1)^n a(G)\cdot (a(G) \text{ število acikličnih oriantacij } G).$

 $p_G(k) = \sum_{i=0}^n a_i k^{n-i}$ je polinom, koeficienti alternirajo, $a_0 = 1, a_a = -m, a_2 = {m \choose 2} - t, a_n = 0$

Rekurzija: $p_{G}(k) = p_{G-e}(k) - p_{G/e}(k)$

 $\chi(G)$ je najmanjši k, za katerega je $p_G(k) > 0$

 $p_G(-1) = (-1)^n a(G), a(G)$ število acikličnih orientacij G

Gr-vsota grafov G_1,G_2 (tj. presek je K_r): $p_G(k)=\frac{p_{G_1}(k)p_{G_2}(k)}{p_{K_r}(k)}$

 G_1,G_2 disjunktna: $p_{G_1\cup G_2}(k)=p_{G_1}(k)p_{G_2}(k)$ Razširitveni izrek: $\forall G:P_G(k)=\sum_{S\subset E(G)}(-1)^{|S|}k^{c(G[S])}$

 $p_G(k) = \sum_{i=0}^n a_i(G) k^{\underline{i}}, \, a_i$ število barvnih i-razbitji

Primeri: $p_T(k) = k(k-1)^{n-1}$, $p_{C_n}(k) = (k-1)^n + (-1)^n(k-1)$, $p_{W_n}(k) = kp_{C_n}(k-1)$, $p_{L_n}(k) = k(k-1)(k^2 - 3k + 3)^{n-1}$

Če graf vsebuje trikotnik, potem $(k-2)|p_G(k)|$

Večkratnost ničle 1 v krom. polinomu = število prereznih točk + 1 = število blokov.

Max. realna ničla < |V(G)| - 1

Pretoki

 Γ Abelova grupa, utež $f: E(G) \to \Gamma$, usmeritev D(v,u). $\Gamma - pretok$ je urejen par (D,f), za katerega velja pogoj: $\forall v \in V(G)$: $\sum_{u \in N(v)} D(v,u) f(vu) = 0$. Nosilec je množica povezav: $supp(f) = \{f(e) \neq 0, e \in E(G)\}$. Če supp(f) = E(G) imamo nikjer-ničelni pretok. k-pretok je celoštevilski pretok, pri katerem je $\forall e \in E(G) : |f(e)| < k$. Izrek(Tutte): Graf dopušča F(G,k) = (1) 0, G je povezava; (2) k-1, G je zanka; (3) (k-1)*F(G-e,k), e je zanka; (4) F(G-e,k)-F(G/e,k), e ni zanka.

Linearna algebra

Ce je p polinom, λ lastna vrednost od A, potem je $p(\lambda)$ lastna vrednost matrike $p(\lambda)$.

 $rang(A) = k \implies A$ ima največ k lastnih vrednosti različnih od 0.

Naj bo $A \ m \times n$ matrika, $B \ pa \ n \times m$: $\det(AB - \lambda I) = \lambda^{m-n} \det(\lambda I - BA)$

Lastni vektorji različnih lastnih vrednosti simetrične matrike so ortogonalni.

Naj bo $A \ n \times n$ matrika, $p_A(x) = x^n + a_1 x^{n-1} + \dots + a_n$, če je A[J] matrika, ko iz A odstranimo stolpce in vrstice iz J, velja $a_i = (-1)^{n-k} \sum_{|J|=n-k} \det(A[J]).$

Spekter grafa

Matrika sosednosti: A_G , Laplaceova matrika L = D - A. $p_G(x)$ karakteristični polinoma od A_G , $\lambda_1 \geq \ldots \geq \lambda_n$. Graf diametra d ima vsaj d+1 različnih lastnih vrednosti.

Ce ima graf r vozlišč z istimi sosedi, je rang(A) = n - r + 1, zato je $0 \ r - 1$ -kratna lastna vrednost.

Velja:
$$\lambda_1 \leq \sqrt{\frac{2m(n-1)}{n}}$$

Ggraf, vvozlišče stopnje 1, $u \sim v$: $p_G(x) = x p_{G-v}(x) - p_{G-u-v}(x)$

Momenti: $\sum_{i} \lambda_{i} = 0, \sum_{i} \lambda_{i}^{2} = 2m, \sum_{i} \lambda_{i}^{3} = 6t$ Poti: $2\cos(\frac{2\pi i}{n}j) \text{ za } j = 0, 1, \dots, n-1$ $T \text{ gozd, } p_{T}(x) = x^{n} - a_{1}x^{n-1} + \dots + (-1)^{\lfloor n/2 \rfloor}a_{\lfloor n/2 \rfloor}x^{n-2\lfloor n/2 \rfloor}, \ a_{i} = \text{število } k \text{ prirejanj od } T$

 W_n matrika s prvo vrstico $[0,1,0,\ldots,0]$, potem ciklično zamaknjena. Lastne vrednosti so $\omega_j=\exp(\frac{2\pi i j}{n})$ za $j=0,1,\ldots,n-1$.

Če je A cirkulantna matrika s prvo vrstico $[0, a_1, \dots, a_{n-1}]$, je $A = \sum_{i=1}^{n-1} a_i W_n^i$, njene lastna vrednosti pa so $\sum_{i=1}^{n-1} a_i \omega_j^i$

 $\sum_{i=0}^{n-1} \omega_j^i = 0 \text{ razen, če } j = 0, \text{ potem } \sum_{i=0}^{n-1} \omega_j^i = n.$

Cikli: $2\cos(\frac{2\pi j}{\pi})$

 $H_n: 2n-2^{(1)}$ (vektor iz samih 1), -2^{n-1} (vektor iz [1,1,0,0,...,-1,-1,0,0,...]), 0^n

Najmanjša lastna vrednost L(G) je -2.

P incidenčna matrika, na dol so povezave, vodoravno pa vozlišča. Potem je $A_{L(G)} = PP^T - 2I$.

 $\Delta(L(G)) \le 2\Delta(G)$

G povezan, r-regularen, potem je $\vec{1}$ lastni vektor za r, kratnosti 1.

G r-regularen, $\lambda_1, \ldots, \lambda_n$ lastne vrednosti, m povezav: lastne vrednosti L(G) so $\lambda_i + r - 2$ in še -2 kratnosti m - n. Uporabimo $A_G = P^T P - rI.$

 $S_k(G)$ množica vseh k-podgrafov od G, katerih povezane komponente sestavljajo K_2 in cikli (k vozlišč ima)

Za $H \in S_k(G)$ je c(H) število ciklov v H in $r(H) = k - c_H$, kjer je c_H število povezanih komponent H

 $p_G(x) = x^n + a_1 x^{n-1} + \dots + a_n$ Velja: $(-1)^i a_i = \sum_{H \in S_i(G)} (-1)^{r(H)} 2^{c(H)}$

Spotoma opazimo še $\det(A_G) = \sum_{H \in S_n(G)} (-1)^{r_S(H)} 2^{c(H)} = \sum_{H \in S_n(G)} (-1)^{r(H)} 2^{c(H)}$ (r_S je število sodih komponent v H)

Posledica: če je k dolžina najkrajšega lihega cikla v G, potem je število k ciklov = $\frac{-a_k}{2}$

Spekter K_n je $n - 1^{(1)}, -1^{(n-1)}$, preko A = J - I. Laplaceov spekter K_n je $0^{(1)}, n^{(n-1)}$, preko L = nI - J. Spekter $K_{m,n}$ je $\sqrt{mn}^{(1)}, -\sqrt{mn}^{(1)}, 0^{(n+m-2)}$.

za k-regularen graf je $\lambda_i + \mu_i = k$, k je enkratna lastna vrednost in vse lastne vrednosti $|\lambda| \leq k$

Dvodelen graf ima lastne vrednosti plus-minus po parih, ostale so 0.

diam(G) <število različnih lastnih vrednosti

 $f(x) = x^T A x$ doseže ekstrem v lastni vrednosti matrike A, vrednost pa je λ_1 oz. λ_n .

Velja: $\delta \leq \lambda_1 \leq \Delta$

Simetrije grafov

 $Aut(G) \leq Sym(V(G))$ z operacijo $\alpha \cdot \beta = \beta \circ \alpha$, namesto $\alpha(v)$ pišemo v^{α} , potem je $v^{\alpha\beta} = (v^{\alpha})^{\beta}$.

Velja: $Aut(G) = Aut(G^C)$

 $PP: Aut(K_n) = S_n, Aut(K_{m,n}) = S_m \times S_n, Aut(K_{n,n}) = (S_m \times S_m) \times S_2, Aut(C_n) = D_{2n}, Aut(P_n) = \mathbb{Z}_2, Aut(Petersen) = S_5$ Izrek (Frucht): Za vsako končno grupo X obstaja končen graf G, da je Aut(G) = X. Obstaja 3-regularen povezan graf G.

Vozliščno simetričen: če za poljubni vozlišči u, v obstaja $\alpha \in Aut(G) : u^{\alpha} = v$.

Primeri: $K_n, K_n^C, K_{n,n}, C_n, Q_n$, platnoska telesa, Petersenov graf.

Lema o orbiti in stabilizatorju: grupa G deluje na mn. Ω . $G_{\omega} = \{g \in G \; ; \; \omega^g = \omega\}$ stabilizator, $\omega^G = \{\omega^g \; ; \; g \in G\}$ orbita. Tedaj je $|G| = |G_{\omega}||\omega^{G}|$.

Cayleyjev graf: Cay(G; S), vozlišča so elementi grupe $G, h \sim g \iff hg^{-1} \in S \iff h \in Sg$.

Velja: soseščina N(h) = Sh, graf je |S|-regularen, S generira grupo $G \iff Cay(G;S)$ je povezan.

Regularno delovanje: G deluje na Ω regularno, če je G tranzitivna in je $G_{\omega} = 1$ za nek (in potme za vsak) $\omega \in \Omega$.

Lema: G deluje regularno \iff G deluje tranzitivno in $|G| = |\Omega|$.

cayleyjev graf: graf, ki je izomorfen nekemu Cayleyjevemu grafu.

 $\rho \colon G \to Sym(G), g$ identificiramo z ρ_g (desno množenje z g), $\rho(G) \le Aut(Cay(G;S))$ in dejuje tranzitivno na njej.

Izrek (Sabidussi): X je Cayleyjev graf $\iff Aut(X)$ premore podgrupo, ki deluje na V(X) regularno.

Posledica: Vsak Cayleyjev graf je vozliščno simetričen.

Pozor: obstajajo vozliščno simetrični povezni grafi, ki niso Cayleyjevi. Npr. Petersenov graf.

Cayleyjev izrek: $n||G| \implies \text{obstaja } x \in G \text{ reda } n.$

Avtorji: Vesna Iršič, et. al.