Homework 3

46-921, Fall 2020

Due Thursday, September 24 at 9:30 AM EDT

Please submit a pdf file with your responses to the questions.

Question 1:

Suppose that X_1, X_2, \ldots, X_n are iid with the Gamma (α, β) distribution. Determine the method of moments estimators for α and β .

Comment: This is an important case because maximum likelihood does not admit a closed form for the estimators for α and β .

Question 2:

Assume that X_1, X_2, \ldots, X_n are iid with mean μ and variance σ^2 . Both μ and σ^2 are unknown. Assume that the sample mean is $\overline{x} = 14.3$ and the sample standard deviation is s = 4.2.

- a. Without any further information, can you construct a valid 95% confidence interval for μ if n = 40? If so, do it.
- b. Without any further information, can you construct a valid 95% confidence interval for μ if n = 10? If so, do it.
- c. If I told you that the X_i are normal, can you construct a valid 95% confidence interval for μ when n = 10? If so, do it.

Question 3:

Suppose that X_1, X_2, \ldots, X_n are i.i.d. from the Poisson(λ) distribution.

- a. Find the maximum likelihood estimator for λ .
- b. Is the estimator found in part (a) an unbiased estimator of λ ? Explain.
- c. What is the standard error of the estimator found in part (a)?

Question 4:

During lecture we compared three different estimators for λ when working with an iid sample from the Exponential(λ) distribution. We concluded that, based on MSE, the "adjusted" method of moments estimator is the best choice.

Now, conduct a simulation experiment to address the following question: In the case where n=20 and $\lambda=10$, what proportion of the time does the adjusted method of moments estimator come closer to the true value of λ than does the "worst" of the three estimators (the method of moments estimator based on the second moment)? Be sure to submit your code and results.

Question 5:

Let X_1, X_2, \ldots, X_n be a iid from the following distribution:

$$f_X(x;\theta) = \begin{cases} \frac{3x^2}{\theta^3} & 0 \le x \le \theta \\ 0 & \text{otherwise} \end{cases}$$

Here are some facts regarding estimation of θ :

- Method of moments estimator is $\hat{\theta}_1 = \frac{4\bar{X}}{3}$
- The maximum likelihood estimator is $\hat{\theta}_2 = X_{(n)}$, where $X_{(n)}$ is the maximum of the X_i .

Here are some useful results about this distribution that will help you do this problem.

$$\bullet \ E(X) = \frac{3}{4}\theta$$

$$V(X) = \frac{3}{80}\theta^2$$

•
$$f_{X_{(n)}}(x) = \frac{3nx^{3n-1}}{\theta^{3n}}, \quad 0 \le x \le \theta$$

•
$$V(X_{(n)}) = \frac{3n}{(3n+2)(3n+1)^2} \theta^2$$

Now, do the following:

- a. Show that $\hat{\theta}_1$ is an unbiased estimator for θ .
- b. Show that $\hat{\theta}_2$ is *not* an unbiased estimator for θ , and find bias $(\hat{\theta}_2) = [E(\hat{\theta}_2) \theta]$.
- c. Show that for n > 2, even though $\hat{\theta}_1$ is unbiased and $\hat{\theta}_2$ is not, $MSE(\hat{\theta}_2) < MSE(\hat{\theta}_1)$