GESTURE GENERATION USING TRANSFORMER DECODER ARCHITECTURE

Motive : Given (Having predicted) t clips each containing T frames along with the word embeddings, Φ_t from a pre-trained model, predicting $(t+1)^{th}$ clip, with the help of self-attention and attention w.r.t word embeddings.

Attention Block

The attention block consists of -

- 1. Masked Separable self-attention block
- 2. Frame level attention block with text embeddings

Masked Separable self-attention block

Let the real video be represented as v, with dimensions $H \times W \times N \times C$, where H is the height and W is the width and C is the number of channels, and N is the total number of frames in the video clip. The whole video is divided into K different clips of T frames each, where $v \in R^{H \times W \times N \times C}$ and $v^t \in R^{H \times W \times T \times C}$

Separable attention operation is performed across Time, Height and Width

Across Time

Video clip v^j is reshaped to v^j_n such that $v^j_n \in R^{(H^*W) \times T \times C}$, and with the current clip, v^t_n as query, and the other video clips being keys and values, it is attended with the other masked (K-t+1) blocks and unmasked t blocks of the video frames.

For each $j \in \{0, 1, ... K-1\}$ and for each $i \in \{0, 1, ... T-1\}$,

$$Q_1^i = v_n^t(i).q_1$$
 ... (1)

$$K_1^{i} = v_n^{j}(i).k_1$$
 ... (2)

$$V_1^{i} = v_n^{j}(i).v_1$$
 ... (3)

Where, $v_n^j(i)$ is the i^{th} 2D matrix of v_n^j across time dimension, and $\{q_1, k_1, v_1\} \in R^{C \times C'}$ are shared weights for all the T frames and $\{Q_1^i, K_1^i, V_1^i\} \in R^{H^*W \times C'}$

$$A_1^i = \text{softmax} (Q_1^i. (K_1^i)^T).V_1^i \dots (4)$$

 $A_1^i = A_1^i. (W_1^0)^T \dots (5)$

Where, $W_1^0 \in \mathbb{R}^{C \times C'}$ Finally

the attention output is given as $A_1 = [A_1^{\ 0}, \ A_1^{\ 1}, \ \dots, \ A_1^{\ T-1}]$, such that $A_1 \in R^{\ H*W\ x\ T\ x\ C}$

The Video frames are hence updated as $v_n^t = A_1$. This is then reshaped and used for attention across height, followed by width.

Across Height

Video clip v_n^j is reshaped to v_h^j such that $v_h^j \in R^{(W^*T) \times H \times C}$, and with the current clip, v_h^t as query, and the other video clips being keys and values, it is attended with the other masked (K-t+1) blocks and unmasked t blocks of the video frames.

For each $j \in \{0, 1, ... K-1\}$ and for each $i \in \{0, 1, ... H-1\}$,

$$Q_2^{i} = v_h^t(i).q_2$$
 ... (6)

$$K_2^{i} = v^{j}_{h}(i).k_2$$
 ... (7)

$$V_2^{i} = v_h^{j}(i).v_2$$
 ... (8)

Where, $v_h^j(i)$ is the i^{th} 2D matrix of v_h^j across height dimension, and $\{q_2, k_2, v_2\} \in R^{C \times C'}$ are shared weights for all the T frames and $\{Q_2^i, K_2^i, V_2^i\} \in R^{W^*T \times C'}$

$$A_2^i = \text{softmax} (Q_2^i \cdot (K_2^i)^T) \cdot V_2^i \qquad \dots (9)$$

 $A_2^i = A_2^i \cdot (W_2^0)^T \qquad \dots (10)$

Where, $W_2^0 \in \mathbb{R}^{C \times C'}$

Finally,

the attention output is given as $A_2 = [A_2^0, A_2^1, \dots, A_2^{H-1}]$, such that $A_2 \in \mathbb{R}^{W*T \times H \times C}$

The Video frames are hence updated as $v_h^t = A_2$. This is then reshaped and used for attention across width.

Across Width

Video clip v_w^j is reshaped to v_w^j such that $v_w^j \in R^{(H^*T) \times W \times C}$, and with the current clip, v_w^t as query, and the other video clips being keys and values, it is attended with the other masked (K-t+1) blocks and unmasked t blocks of the video frames.

For each $j \in \{0, 1, ... K-1\}$ and for each $i \in \{0, 1, ... W-1\}$,

$$Q_3^i = v_w^t(i).q_3$$
 ... (11)

$$K_3^i = v_w^j(i).k_3 \dots (12)$$

$$V_3^{i} = v_w^{j}(i).v_3$$
 ... (13)

Where, $v_w^j(i)$ is the i^{th} 2D matrix of v_w^j across width dimension, and $\{q_3, k_3, v_3\} \in \mathbb{R}^{C \times C'}$ are shared weights for all the T frames and $\{Q_3^i, K_3^i, V_3^i\} \in \mathbb{R}^{H*T \times C}$

$$A_{3}^{i} = \operatorname{softmax} (Q_{3}^{i}. (K_{3}^{i})^{T}).V_{3}^{i} \qquad \dots (14)$$

$$A_{3}^{i} = A_{3}^{i}. (W_{3}^{0})^{T} \qquad \dots (15)$$
Where, $W_{3}^{0} \in \mathbb{R}^{C \times C'}$

$$A_3^1 = A_3^1 \cdot (W_3^0)^T$$
 ... (15)

Finally,

the attention output is given as $A_3 = [A_3^0, A_3^1, \dots, A_3^{W-1}]$, such that $A_3 \in \mathbb{R}^{H*T \times W \times C}$

The Video frames are hence updated as $v_w^t = A_3$. This is then reshaped and used for attention across width.

After all the above steps v_w^t is reshaped to $v^{temp} \in R^{H \times W \times T \times C}$, followed by addition with v^t and Layer Normalisation as follows,

$$\begin{aligned} v_t &= (v_{temp} + v_t) \\ \mu_t &= \frac{1}{T} \sum_{i=1}^{T} v_t(i) , & \sigma_t^2 &= \frac{1}{T} \sum_{i=1}^{T} (v_t(i) - \mu_t)^2 \\ v_t(i) &= (v_t(i) - \mu_t) / \sqrt{(\sigma_t^2)} \end{aligned}$$

Frame level attention block with text embeddings

Masked self attention is followed by this block, where each frame of v^t is attended w.r.t the word embeddings, where every frame acts a query, and word embeddings act as keys and values. Inspired from AttnGan paper.

Let word embeddings be obtained from a pretrained model and be represented as Φ_t , such that $\Phi_t \in \mathbb{R}^{D \times L}$. Φ_t is brought to the same semantic space as v^t using a perceptron layer such that,

$$e' = U.\Phi_t$$
, where $U \in R^{H*W \times D}$

L is the number of words and D is the dimensionality of the word feature vector, and $e' \in R$ H*W x L

The video frames are divided into T matrices $v_i^t \in R^{H^*W \times C}$ for $i \in \{0, 1, T-1\}$ Let $v_i^t(j)$ denote the j^{th} feature of v_i^t , such that $v_i^t(j) \in R^{H^*W \times 1}$ and $j \in \{0, 1, C-1\}$ Also, let e'(k) denote the k^{th} column of e', such that $e'(k) \in R^{H^*W \times 1}$ and $k \in \{0, 1, D-1\}$

$$a_i(j, k) = \sum_k \text{softmax}((v_i^t(j))^T \cdot e'(k)) \cdot e'(k)$$
, such that $a_i(j, k) \in \mathbb{R}^{H^*W \times 1}$

When all j features of frame with all the k word features, we get $a_i \in R^{H^*W \times C}$ and after all the attentions across all the frames are calculated we get,

$$a = [a^0, a^1, \dots, a^{T-1}]$$
, such that $a \in \mathbb{R}^{H^*W \times C \times T}$

Attention output, a, is then reshaped to $H \times W \times C \times T$, and then added to the input v^t and then normalized, just like the previous layer

This completes the attention block.

Generator

Each attention block will be followed by a series/(single) of convolution layer(s) to downscale the image, to bring it down to $v_m^t \in R^{h \times w \times t \times c}$. Randomness (z) is introduced (experimental) such that, $z \sim N(0, I)$, derived from Gaussian Distribution, such that $z \in R^{h \times w \times t \times c}$ and concatenated with v_m^t along the channel dimension.

The generator, G is then defined as,

$$G: \{R^{h \times w \times t \times c}, R^{h \times w \times t \times c'}\} \rightarrow R^{H \times W \times T \times C}, i.e,$$

$$G(z \mid v_m^t) = v^{pred}, \text{ such that } v^G = \{f_1^G, f_2^G, \dots f_T^G\}$$

$$\text{Where, } f_t^G \in R^{H \times W \times C}$$

Discriminator

Inspired by the paper, "To create what you tell", there are 3 different discriminator networks namely,

- 1. Video Discriminator (D₀)
- 2. Frame Discriminator (D₁)
- 3. Motion Discriminator (D₂)

Let s be the sentence embedding given by the pre-trained text encoder model

$$D_0(v, s) : \{R^{dv}, R^{ds}\} \rightarrow \{0, 1\}$$

$$D_{1}(f_{i}, s) : \{R^{df}, R^{ds}\} \rightarrow \{0, 1\}$$

$$D_{2}(f_{i}, f_{i-1}) : \{R^{df}, R^{ds}\} \rightarrow R^{c0 \times h0 \times w0}$$

Where, dv is the dimensionality of input video (either generated or ground truth), ds is the dimensionality of the sentence embedding, f_i is the i^{th} frame of the video clip and c0, h0, w0 are the dimensions of the downsampled frame m_f^i

Losses

Video-level Matching aware loss

Let v^+ be the real video with the correct sentence, v^- be the real video with mismatched sentence and v^{pred} be the generated video from G. This loss is calculated across the whole video produced, i.e $v \in \mathbb{R}^{H \times W \times T \times C}$

$$L_{v} = -\frac{1}{3} \left[\log(D_{0}(v^{+}, s)) + \log(1 - D_{0}(v^{-}, s)) + \log(1 - D_{0}(v^{pred}, s)) \right]$$

Frame-level Matching aware loss

Let $f^+(i)$ be the i^{th} frame from the real video with the correct sentence, $f^-(i)$ be the i^{th} frame from the real video with mismatched sentence and $f^{pred}(i)$ be the i^{th} frame from the generated video from G. This loss is calculated from a single frame produced, i.e $f(i) \in \mathbb{R}^{H \times W \times C}$

$$L_{f} = -\frac{1}{3N} \left[\sum_{i=1}^{N} \log(D_{1}(f^{+}(i), s)) + \sum_{i=1}^{N} \log(1 - D_{1}(f(i), s)) + \sum_{i=1}^{N} \log(1 - D_{1}(f^{pred}(i), s)) \right]$$

Temporal Coherence loss

Let $m^f(i)$ be the downscaled i^{th} frame from the generated video from G. This loss is calculated from 2 consecutive frames produced, i.e $m^f(i) \in R^{h0 \times w0 \times c0}$. Simply calculates the Euclidean Distance between 2 consecutive frames. This loss function corresponds only to the generator.

$$L_{t} = \frac{1}{N-1} \sum_{i=2}^{N} ||\mathbf{m}^{f}(i) - \mathbf{m}^{f}(i-1)||_{2}^{2}$$

Discriminator Loss: $L_D = \frac{1}{2} (L_v + L_f)$

Generator Loss:
$$L_G = -\frac{1}{3} [\log(D_0(v^{pred}, s)) + \frac{1}{N} \sum_{i=1}^{N} \log(D_1(f^{pred}(i), s)) - L_t]$$