

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа прикладной математики и информатики

Отчёт о выполнении лабораторной работы 3.7.3 Изучение длинной линии

Автор: Чикин Андрей Павлович Б05-304

Цель работы:

- 1. ознакомится и проверить на практике теорию распространения электрических сигналов вдоль длинной линии
- 2. измерить амплитудо- и фазово-частотные характеристики коаксиальной линии
- 3. определить погонные характеристики такой линии
- 4. на примере модели длинной линии изучить вопрос распределения амплитуды колебаний сигнала по длине линии

Приборы:

- 1. осциллограф АКТАКОМ ADS-6142H
- 2. генератора АКИП 3420/1
- 3. бухта с коаксиальным кабелем pk 50-4-11
- 4. схематический блок "модель длинной линии"
- 5. магазин сопротивления Р33
- 6. соединительные провода

0.1 Теоретические сведения

В данной работе сигналы передаются по длинному коаксиальному кабелю, который представляет из себя систему двух проводников — изолированный коаксиальный медный проводящий цилиндр радиуса r_2 и тонкий медный проводник, имеющий радиус r_1 и расположенный на оси цилиндра. Пространство между ними заполнено веществом, имеющим диэлектрическую проницаемость ε и магнитную восприимчивость μ .

Рассмотрим элемент dx такого кабеля. Такой элемент обладает индуктивностью

$$dL = 2\mu \ln \left(\frac{r_2}{r_1}\right) dx \tag{1}$$

$$L_x = \frac{\partial L}{\partial x} = 2\mu \ln \left(\frac{r_2}{r_1}\right) \tag{2}$$

величина L_x называется погонной индуктивностью.

Так же два проводника обладают взаимной ёмкостью

$$dC = \frac{\varepsilon}{2\ln(r_2/r_1)}dx\tag{3}$$

аналогично определяется погонная ёмкость

$$C_x = \frac{\partial C}{\partial x} = \frac{\varepsilon}{2\ln(r_2/r_1)}$$
 (4)

При передаче сигналов по такому кабелю возникают противоположно направленные токи по внешней оболочке и внутреннему проводнику, а также напряжение между проводниками. При высоких частотах величины I и U будут зависеть от x.

Падение напряжения на концах выбранного элемента связано с возникновением ЭДС индукции и омическим сопротивлением.

$$U(x + dx) - U(x) = -\frac{L_x dx}{c^2} \frac{\partial I}{\partial t} - R_x I dx$$
 (5)

$$R_x = \frac{\partial R}{\partial x} = \frac{1}{\sigma S} \tag{6}$$

где R_x — погонное сопротивление, σ — удельная проводимость, $S=\pi r_1^2$ — площадь поперечного сечения проводника.

Изменение силы тока связано с перетеканием части заряда на ёмкость, т.е

$$I(x + dx) - I(x) = -\frac{\partial q}{\partial t} = -C_x dx \frac{\partial U}{\partial t}$$
 (7)

Разделив уравнения (5) и (7) на dx и продифференцировав первое уравнение по x, а второе по t получим систему.

$$\begin{cases} \frac{\partial^2 U}{\partial x^2} = -\frac{L_x}{c^2} \frac{\partial I}{\partial x \partial t} - R_x \frac{\partial I}{\partial x} \\ \frac{\partial I}{\partial t \partial x} = -C_x \frac{\partial^2 U}{\partial t^2} \end{cases}$$
(8)

Итого получим уравнение

$$\frac{\partial^2 U}{\partial t^2} - V_{\Phi}^2 \frac{\partial^2 U}{\partial x^2} + \gamma \frac{\partial U}{\partial t} = 0 \tag{9}$$

$$V_{\Phi} = \frac{c}{\sqrt{L_{x}C_{x}}} \tag{10}$$

$$\gamma = R_x C_x V_{\rm db}^2 \tag{11}$$

где V_{Φ} – фазовая скорость, γ – декремент затухания.

Подставив погонные характеристики в выражение для фазовой скорости, заметим, что фазовая скорость совпадает со скоростью распространения электромагнитных волн в среде.

$$V_{\Phi} = \frac{c}{\sqrt{\varepsilon \mu}} \tag{12}$$

Решение уравнения (9) ищется в виде

$$U(x,t) = U_0 e^{-i\omega t} e^{(-\alpha + ik)x} \implies (13)$$

$$\alpha = \frac{\omega}{V_{\Phi}} \sqrt{\frac{\sqrt{1 + (\gamma/\omega)^2} - 1}{2}} \approx \frac{\omega}{V_{\Phi}} \sqrt{\frac{\gamma^2}{4\omega^2}} = \frac{\gamma}{2V_{\Phi}} = R_x C_x \frac{V_{\Phi}}{2}$$
(14)

$$k = \frac{\omega}{V_{\Phi}} \tag{15}$$

$$U_{\rm H}(t) = U_0 e^{-\alpha l} e^{ikl} e^{-\omega t} \tag{16}$$

При этом амплитуда колебаний на согласованной нагрузке (в конце длинной линии) имеет вид:

$$U_{\rm H} = U_0 e^{-\alpha l} \tag{17}$$

Так же получена разность фаз

$$\Delta \varphi = kl \tag{18}$$

Из уравнений (17) и (18) получим соотношения для экспериментального определения α и k для различных ω

$$\alpha(\omega) = \frac{1}{l} \ln \frac{U_0}{U_{\rm H}} \tag{19}$$

$$k(\omega) = \frac{\Delta \varphi}{I} \tag{20}$$

$$\omega = kV_{\Phi} \tag{21}$$

0.1.1 Экспериментальная установка

Коаксиальный кабель подключается к генератору и осциллографу. На канал 1 выводится сигнал, подаваемый генератором, а с канала 2 снимается напряжение на нагрузке. Схема экспериментальной установки изображена ниже.

0.2 Ход работы.

Соберем схему согласно рис. 1

Puc. 1: Схема для установки наблюдения распространения сигналов вдоль длинной линии.

Ознакомимся с осциллографом и генератором.

0.2.1 Согласованная линия.

- 1. Выставим сопротивление на осциллографе 50Ом.
- 2. Пронаблюдаем, как меняется сигнал на осциллографе при $\nu \in [1\text{M}\Gamma\text{ц}, 30\text{M}\Gamma\text{ц}]$.
- 3. Определим резонансные частоты. Из ур-ия 20:

$$k = \frac{2\pi n}{l} \implies (22)$$

$$\nu_n = \frac{V_{\Phi}}{l} n \tag{23}$$

$$\nu_n$$
, M Γ II | 3.9 | 7.9 | 11.9 | 15.9 | 19.9 | 23.8 | 27.8

4. Найдем фазовую частоту V_{Φ} . Найдем наклон прямой $\nu(n)$.

$$\frac{V_{\Phi}}{l} \approx 4 \mathrm{M}\Gamma \mathrm{I}$$
 (24)

$$l = 50.1$$
m.

$$V_{\Phi} \approx 2 \cdot 10^8 \cdot M \cdot \Gamma$$
ц (25)

0.2.2 Линия без нагрузки.

5. Выставим сопротивление на осциллографе 1МОм. Выполним пункты 2 и 4.

6.

ν_n , М Γ ц	3.98	7.98	11.98	15.87	19.96	23.97	27.98
107							

7.

8.

$$\frac{V_{\Phi}}{I} \approx 4 \text{M} \Gamma \text{I}$$
 (26)

$$V_{\Phi} \approx 2 \cdot 10^8 \cdot_{\mathrm{M}} \cdot \Gamma_{\mathrm{H}}$$
 (27)

0.2.3 Прямоугольные импульсы.

- 1. Выставим сопротивление на осциллографе 50Ом.
- 2-3. Настроим генератор согласно указаниям.
 - 4. Меняя параметры генератора пронаблюдаем изменение сигнала на осциллографе.
 - 5. Вернем параметры согласно п. 2 (1).
 - 6. Определим резонансные частоты при $\nu \in [1 \text{М}\Gamma\text{ц}, 20 \text{M}\Gamma\text{ц}].$

$$\nu_n$$
, M Γ II | 4 | 8 | 12 | 16 | 20 | 24 | 28

7.

$$\frac{V_{\Phi}}{l} \approx 4 \mathrm{M} \Gamma \mathrm{I} \mathrm{I}$$
 (28)

$$V_{\Phi} \approx 2 \cdot 10^8 \cdot M \cdot \Gamma$$
ц (29)

0.2.4 АЧХ и ФЧХ.

- 1. Выставим сопротивление на осциллографе 50МОм. Выполним пункты 2 и 4.
- 2-4. Настроим генератор согласно указаниям.
 - 5. При $\mu \in [1 \text{М} \Gamma \text{ц}, 40 \text{M} \Gamma \text{ц}]$ снимим АЧХ и ФЧХ. (см. т. ??)

ν, МГц	U, B	$\Delta arphi$, hc
1	25	250.0
3	24	78.0
5	23	53.6
7	23	33.6
8	23	31.2
11	22	21.0
13	22	21.2
16	21	1.3
19	21	12.1
22	21	21.8
25	20	10.7
30	19	15.8
35	18	6.7
40	17	0.7

Таблица 1: АЧХ и ФЧХ

0.2.5 Обработка результатов измерений.

Часть I. Определение параметров коаксиального кабеля.

$$y_1 = \frac{L_x C_x}{c^2} x_1 \tag{30}$$

$$x_1 = \omega^2$$

$$y_1 = k^2 - \alpha^2$$
(31)
$$(32)$$

$$y_1 = k^2 - \alpha^2 \tag{32}$$

$$k = \frac{\Delta \varphi}{l}$$

$$\alpha = \frac{1}{l} \ln \frac{U_0}{U_{\rm H}}$$

ν, МГц	U, B	$\Delta arphi$, рад
1	25	3
3	24	4
5	23	7
7	23	8
8	23	10
11	22	12
13	22	15
16	21	20
19	21	22
22	21	25
25	20	30
30	19	37
35	18	42
40	17	50

$x_1, 10^{14}/c^2$	$y_1, 10^{-2}/\text{M}^2$
0	0
4	1
10	2
19	3
25	4
48	6
67	9
101	16
143	20
191	24
247	35
355	54
484	71
632	101

Наклон:

$$a = (15 \pm 1) \cdot 10^{-18} \frac{c^2}{M^2}$$
$$L_x C_x = 1.4 \pm 0.1$$

Знаем $R_0 = 50$ Ом.

$$R_0 = \frac{1}{c} \sqrt{\frac{L_x}{C_x}}$$
 $L_x^2 = (L_x C_x) R_0^2 c^2$, $C_x = \frac{(L_x C_x)}{L_x}$
 $L_x = (2.0 \pm 0.1)$ ед. СГС
 $C_x = (0.7 \pm 0.1)$ ед. СГС
 $V_\Phi = \frac{c}{\sqrt{L_x C_x}} = (2.54 \pm 0.08) \cdot 10^{10}$ ед. СГС
 $2 \ln \frac{r_2}{r_1} \approx 2.14$
 $\varepsilon = 2 \ln \frac{r_2}{r_1} C_x = (1.5 \pm 1)$ ед. СГС
 $\mu = \frac{L_x}{2 \ln \frac{r_2}{r_1}} = (0.9 \pm 0.1)$ ед. СГС

Часть II. Определение удельной проводимости проводников.

Метод А. Построим график
$$y_2(x_2)$$
, где
$$\begin{cases} x_2 = \sqrt{\nu} \\ y_2 = \alpha(\omega) = \frac{4C_x V_\Phi}{\sqrt{\sigma} dc} \cdot x_2 \end{cases}$$

$$a = \Delta y_2/\Delta x_2$$

$$\sigma = \left(\frac{2C_x V_\Phi}{c da}\right)^2$$

$x_2, 10^3/\sqrt{c}$	$y_2, 10^{-3}/\text{M}^2$
1.0	0.4
1.7	1.0
2.2	1.8
2.6	2.0
2.8	2.1
3.3	2.6
3.6	2.9
4.0	3.2
4.4	3.5
4.7	3.9
5.0	4.6
5.5	5.2
5.9	6.1
6.3	6.6

$$a = (1.13 \pm 0.7) \cdot 10^{-8}$$
 ед. СГС $d = 1.37$ м $\sigma = (61 \pm 6) \cdot 10^{16}$ ед. СГС

Метод В. Построим график
$$y_2(x_2)$$
, где
$$\begin{cases} x_3 = v^{\frac{3}{2}} \\ y_2 = \alpha(\omega)k(\omega) \end{cases}$$

$$a = \Delta y_3/\Delta x_3$$

$$\sigma = \left(\frac{4\pi C_x}{cda}\right)^2$$

x_3 , $10^9/c^{\frac{3}{2}}$	y_3 , $10^{-3}/M^4$
1	0.0
5	0.1
11	0.2
19	0.3
23	0.4
36	0.6
47	0.8
64	1.3
83	1.5
103	1.9
125	2.7
164	3.8
207	5.1
253	7.0

$$a = (26 \pm 1) \cdot 10^{-19}$$
 ед. СГС $d = 1.37$ м $\sigma = (68 \pm 6) \cdot 10^{10}$ ед. СГС

Табличное значение:

$$\sigma_0 \approx 60 \cdot 10^6 \frac{\mathrm{C_M}}{\mathrm{M}} = ?$$
ед. СГС $\approx 60 \cdot 10^{16}$ ед. СГС

0.3 Длинная линия. Модель.

Определим предельную частоту распространения сигнала $v_0=1/\pi\sqrt{LC}=38$ к Γ ц, согласованную нагрузку $R_0=\sqrt{L/C}=178$ Ом.

ν, кГц	1	I								
$\Delta \varphi$	6	17	31	52	63	93	122	160	186	218

Таблица 2: Данные по длинной волне

$$a = \Delta y / \Delta x = (6.2 \pm 0.1) \text{ MC}$$

1	V	1	2	3	4	5	6	7	8	9	10
U	, B	47	30	12	30	45	48	34	9	21	41

Таблица 3: Данные по длинной волне

Построим график зависимости напряжения между ячейками от номера при $\nu = 9.8$ к Γ ц.

0.4 Вывод.

В ходе данной лабораторной работы мы ознакомились и проверили теорию распространения электрических сигналов вдоль длинной линии. Нашли V_{Φ} , L_{x} , C_{x} , ε , μ .

$$L_x = (2.0 \pm 0.1) \; \mathrm{eg. \; C\Gamma C}$$
 $C_x = (0.7 \pm 0.1) \; \mathrm{eg. \; C\Gamma C}$
 $V_\Phi = (2.54 \pm 0.08) \cdot 10^{10} \; \mathrm{eg. \; C\Gamma C}$
 $\varepsilon = (1.5 \pm 0.1) \mathrm{eg. \; C\Gamma C}$
 $\mu = (0.9 \pm 0.1) \mathrm{eg. \; C\Gamma C}$

Сняли АЧХ и ФЧХ. Нашли σ двумя способами.

$$\sigma_1 = (61 \pm 6) \cdot 10^{16}$$
 ед. СГС $\sigma_2 = (68 \pm 6) \cdot 10^{10}$ ед. СГС

 σ_1 похоже на табличное значение.