Zurikela is creating a graph with a special graph maker. At the begining, it is empty and has no nodes or edges. He can perform 3 types of operations:

- 1. \boldsymbol{A} \boldsymbol{x} : Create a set of \boldsymbol{x} new nodes and name it \boldsymbol{set} - \boldsymbol{K} .
- 2. B x y: Create edges between nodes of set-x and set-y.
- 3. Cx: Create a set composed of nodes from set-x and its directly and indirectly connected nodes, called set-K. Note that each node can only exist in one set, so other sets become empty.

The first set's name will be set-1. In first and third operation K is referring to the index of new set:

```
K = [index of last created set] + 1
```

Create the graph by completing the Q operations specified during input. Then calculate the <u>maximum number of independent nodes</u> (i.e.:how many nodes in the final graph which don't have direct edge between them).

Input Format

The first line contains Q.

The $oldsymbol{Q}$ subsequent lines each contain an operation to be performed.

Constraints

```
1 \le Q \le 10^5.
```

For the first operation, $1 \le x \le 10^4$.

For the second operation, $\overline{x} < \overline{y}$ and all ys are distinct.

For the second and third operation, it's guaranteed that set-x and set-y exist.

Output Format

Print maximum number of *independent nodes* in the final graph (i.e.: nodes which have no direct connection to one another).

Sample Input

8

A 1

A 2

B 1 2

C 1 A 2

A 3 B 3 4

D 4 F

Sample Output

5

Explanation

There are **8** operations.

After first operation (A 1):

After second operation (A 2):

After third operation (B 1 2):

After fourth operation ($C\ 1$):

After fifth and sixth operation $(A\ 2)$ and $(A\ 3)$:

After seventh operation ($B\ 3\ 4$):

After eigth operation (B45):

T	here are $oldsymbol{2}$ independent nodes in ur answer.	$set ext{-3}$ and 3 indepe	ndent nodes in $m{set}$	- 5 , so we print their s	sum (5) as