EE561- PCB Design of closed loop operation of Boost converter

Murtaza Nimachwala (21410206) Ashish Meena (214102110) Shubham Gaikwad (214102105)

1 Objective

Aim- Realize a closed loop control of boost converter controlled by analogue PI controller. The specifications for boost converter are given below: Input voltage Vin=96v Vo=200v fsw=20kHz output voltage ripple= 10% Inductor current ripple=20% Po=500w

2 Calculations

1. Output Current, Input Current:

$$Po = \frac{Vo^{2}}{R}$$

$$R = \frac{200^{2}}{500} = 80ohm$$

$$Io = Imin = \frac{Po}{Vo} = \frac{500}{200} = 2.5amps \qquad Iin = \frac{Po}{Vin} = \frac{500}{96} = 5.21amps$$

2. Duty Ratio:

$$Vo = \frac{Vin}{1 - D}$$
$$200 = \frac{96}{1 - D}$$
$$D = 0.52$$

3.Inductance:

$$\begin{split} L &= \frac{DVs}{\triangle IL * fs} \quad but \ ; \frac{\triangle I_L}{I_L} = 0.2 \\ also \ , \quad Is &= IL = \frac{Io}{1-D} \\ therefore, \qquad L &= \frac{0.52 * 96(1-0.520}{20*10^3*0.2*2.5} = 2.396mh \end{split}$$

4. Capacitance:

$$C = \frac{D * I_o}{\triangle V_o * f} \quad but \ ; \frac{\triangle V_o}{V_o} = 0.1$$
 therefore,
$$C = \frac{0.52 * 2.5}{0.1 * 200 * 20 * 10^3} = 3.25 uF$$

5. Mosfet rating:

$$V_{ds} = V_d + V_o$$

$$Thus, \quad V_{ds} \approx 200V$$

$$I_d = D * I_{in} = 0.52 * 5.21 \approx 2.7 Amp$$

6.**Diode**:

$$V_{RBmax} \approx 200V$$

$$I_d = I_o = 2.5 Amp$$

3 Controller Design

3.1 Transfer function

$$\frac{V_o(S)}{D(S)} = \frac{-1.88*10^{-6}s^2 - 21.05s + 1.73*10^5}{3.155*10^{-8}s^2 + 0.000146s + 1}$$

3.2 PI controller

Gain cross-over frequency was found out to be 1.02 kHz. The corresponding PI values were derived using SISO tool.

$$K_p \approx 0.0012, K_i \approx 0.3$$

$$V_{cc} = 10V, V_{EE} = -10V$$

3.2.2 Triangular Wave Generator and comparator

The output of PI controller is reversed and compared with a triangular wave to generate gate drive signals.

4 Components Selection

Component	Manufacturer ID	Description	Quantity
MOSFET	TK4A60D	$V_ds=600V$, $I_d=4amp$	1
Diode	QH03TZ600	$V_{rrm}=600V$, $I_{f}=3amp$	1
Resistor	1712-HCH335J82RJ-ND	R=82ohm ,wire wound , P_rating=500W	1
Opamp	NJM2122D	Slew rate= $2.4V/us$, Supply voltage= $+/-(10)V$	4
Capacitor	200LLE3RMEFC6.3X11	$C=3.3uf$, $V_rated=200V$	1
Rheostat	3362P-1-103LF	R=10 kohm and 30 kohm , P=0.5W	2
Inductor	SS28V-25045-CH	L=4.5 mh , $I=2.5 amp$, $R=160 mohm$	2

5 Spice Model

Figure 1: SPICE MODEL

6 PCB Model

Figure 2: PCB MODEL