Задача 2.3

- $(A, A) \in \stackrel{\alpha}{=}, A \in \Lambda$
- ако $(A_1, A_2) \in \stackrel{\alpha}{=}$, то $(A_2, A_1) \in \stackrel{\alpha}{=}$, $A_1, A_2 \in \Lambda$
- ако $(A_1, A_2) \in \stackrel{\alpha}{=}$ и $(A_2, A_3) \in \stackrel{\alpha}{=}$, то $(A_1, A_3) \in \stackrel{\alpha}{=}$, $A_1, A_2, A_3 \in \Lambda$
- ако $(A_1, B_1) \in \stackrel{\alpha}{=}$ и $(A_2, B_2) \in \stackrel{\alpha}{=}$, то $(A_1B_1, A_2B_2) \in \stackrel{\alpha}{=}$, $A_1, A_2, B_1, B_2 \in \Lambda$
- Нека имаме $M = \lambda_x A, N = \lambda_y B, A, B \in \Lambda$ и $x, y \in V$. Ако $(A, B[y \leadsto x]) \in \stackrel{\alpha}{=}$ и $y \notin FV(A) \cup BV(A)$, то $(M, N) \in \stackrel{\alpha}{=}$ (тук \leadsto е наивна субституция).

Задача 2.1

(1)

Ще напрваим индукция по дефиницията на частичната субституция.

- 1. $M\equiv x$. В този случай $M[x\leadsto N]\equiv N$ и $M[x\hookrightarrow N]\equiv N$.
- 2. $M\equiv y,\,y\not\equiv x$. В този случай $M[x\leadsto N]\equiv y$ и $M[x\hookrightarrow N]\equiv y.$
- 3. $M \equiv M_1 M_2$. Тогава $M[x \leadsto N] = (M_1[x \leadsto N])(M_2[x \leadsto]N)$ и $M[x \hookrightarrow N] = (M_1[x \hookrightarrow N])(M_2[x \hookrightarrow N])$. От ИП $(M_1[x \leadsto N]) \equiv (M_1[x \hookrightarrow N])$ и $(M_2[x \leadsto N]) \equiv (M_2[x \hookrightarrow N])$. Също от ИП знаем, че двете частични субституции са дефинирани. Така получаваме, че $M[x \leadsto N] \equiv M[x \hookrightarrow N]$, а също сме и сигурни, че $M[x \hookrightarrow N]$ е дефинирано.
- 4. $M=\lambda_x P$. Тогава $M[x\leadsto N]\equiv \lambda_x P$ и $M[x\hookrightarrow N]\equiv \lambda_x P$, така получаваме, че $M[x\leadsto N]\equiv M[x\hookrightarrow N]$.
- 5. $M = \lambda_y P$ за $y \not\equiv x$. Ясно е, че ако частичната субституция е дефинирана в този случай, то резултатите от двете субституции ще съпвадат. Това, което трябва да се покаже е, че частичната субституция е дефинирана в този случай. По-конкретно трябва да покажем, че $x \not\in FV(P)$ или $y \not\in FV(N)$. Ще използваме допускането от задачата, че $FV(N) \cap BV(M) = \{\}$.

От дефиницията на BV може да се види, че $y \in BV(M)$. Понеже $FV(N) \cap BV(M) = \{\}$, то излиза, че $y \notin FV(N)$. Това показва, че частичната субституция е дефинирана.

Също така от ИП имаме, че $P[x \hookrightarrow N] \equiv P[x \leadsto N],$ от което и получаваме, че $[x \hookrightarrow N] \equiv [x \leadsto N]$

(2)

Да разгледаме терма $M=\lambda_y\lambda_x y$. Искаме да направим субституция като заместим x с y. Забелязваме, че частичната субституция $M[x\hookrightarrow y]$ е дефинирана и дава $\lambda_y\lambda_x y$. Но наивната субституция не е коректна, понеже $BV(M)=\{x,y\}$, а $FV(N)=\{y\}$ (тук N е y) и съответно нямат празно сечение.

Задача 2.23

Нека дефинираме $c_i = \lambda_n n c_s c_0$

- 1. Да се докаже, че за произволно $n \in \mathbb{N}$ е изпълнено $c_i c_n \stackrel{\beta}{=} c_n$.
- 2. Вярно ли е, че $c_i \stackrel{\beta\eta}{=} I$?

1

Ще докажем твърдението с индукция $n \in \mathbb{N}$. Преди това ще забележим, че $c_i c_n \stackrel{\beta}{=} c_n c_s c_0 = (\lambda_f \lambda_x f^n x) c_s c_0 \stackrel{\beta}{=} c_s^n c_0$.

База

При n=0 имаме, $c_ic_0\stackrel{\beta}{=} c_0c_sc_0=(\lambda_f\lambda_xx)c_sc_0\stackrel{\beta}{=} c_0$, с което базата е доказана.

Индуктивна стъпка

Нека се опитаме да докажем твърдението за n+1. $c_ic_{n+1} \stackrel{\beta}{=} c_{n+1}c_sc_0 = (\lambda_f\lambda_x f^{n+1}x)c_sc_0 \stackrel{\beta}{=} c_s^{n+1}c_0$. Използваме дефиницията за n-кратна композиция на функция и записваме, че $c_s^{n+1}c_0 = c_s(c_s^nc_0)$. От наблюдението горе се сещаме, че $c_s(c_s^nc_0) \stackrel{\beta}{=} c_s(c_ic_n)$. От ИП можем да запишем, че $c_s(c_ic_n) \stackrel{\beta}{=} c_sc_n$. Сега от свойствата на c_s получаваме, че $c_sc_n \stackrel{\beta}{=} c_{n+1}$. По този начин индуктивната стъпка е завършена.

$\mathbf{2}$

Нека разгледаме $K=\lambda_x\lambda_yx$. Нека приложим K на c_i и на I. $IK\stackrel{\beta}{=}K=A_1.$ От друга страна $c_iK\stackrel{\beta}{=}Kc_sc_0\stackrel{\beta}{=}c_s=A_2.$ Използваме дефиницията за c_s от лекции $c_s=\lambda_n\lambda_f\lambda_xf(nfx).$ Вижда се, че A_1 и A_2 са няма как да са бета-еквивалентни, понеже и двете са в бета-нормална форма, но не са равни.

Задача 2.29

- [] $\lambda_f \lambda_e e$.
- $[x_1]$ $\lambda_f \lambda_e((fe)x_1)$
- $[x_1, x_2]$ $\lambda_f \lambda_e(f((fe)x_1))x_2$
- $[x_1,x_2,...,x_{n+1}]$ $\lambda_f \lambda_e(f((l_{[x_1,x_2,...,x_n]}f)e))x_{n+1}$, където $l_{[x_1,x_2,...,x_n]}$ е списъка $[x_1,x_2,...,x_n]$.

Желаните функции са реализирани във файла lists.scm. Append се казва pushBack. Функцията member е написана да сравнява само числа, за да се тества по лесно.

Задача 2.38

Ще направим индукция по дефиницията на M.

Случай 1 - $M \equiv y$, у е променлива

Случай 1.1 - $y \equiv x$

Тогава $M[x \mapsto N] \equiv N$ и $M[x \mapsto N'] \equiv N'$. От условието е ясно, че $(M[x \mapsto N], M[x \mapsto N']) \in D^{\lambda,R,T}$ по условие.

Случай 1.2 - $y \not\equiv x$

Тогава $M[x \mapsto N] \equiv y$ и $M[x \mapsto N'] \equiv y$. От условието е ясно, че $(M[x \mapsto N], M[x \mapsto N']) \in D^{\lambda,R,T}$ заради рефлексивността.

Случай 2 - $M\equiv M_1M_2$

От ИП имаме, че $(M_1[x\longmapsto N],M_1[x\longmapsto N'])\in D^{\lambda,R,T}$ и $(M_2[x\longmapsto N],M_2[x\longmapsto N'])\in D^{\lambda,R,T}$. Тъй като $M[x\longmapsto N]\equiv (M_1[x\longmapsto N])(M_2[x\longmapsto N])$ и $M[x\longmapsto N']\equiv (M_1[x\longmapsto N'])(M_2[x\longmapsto N'])$, то от ламбда затварянето и транзитивността следва, че $(M[x\longmapsto N],M[x\longmapsto N'])\in D^{\lambda,R,T}$.

Случай 3 - $M \equiv \lambda_u P$

Случай 3.1 - $y \equiv x$

 $(\lambda_x P)[x\longmapsto N]\equiv \lambda_x P$ и $(\lambda_x P)[x\longmapsto N']\equiv \lambda_x P$. От рефликсвоност е вярно, че $(M[x\longmapsto N],M[x\longmapsto N'])\in D^{\lambda,R,T}$.

Случай 3.2 - $y \not\equiv x$

 $(\lambda_y P)[x\longmapsto N]\equiv \lambda_y(P[x\longmapsto N])$ и $(\lambda_y P)[x\longmapsto N']\equiv \lambda_y(P[x\longmapsto N']).$ От ИП имаме, че $(P[x\longmapsto N],P[x\longmapsto N'])\in D^{\lambda,R,T}.$ Так от ламбда затварянето имаме, че $(M[x\longmapsto N],M[x\longmapsto N'])\in D^{\lambda,R,T}.$