

Criptografia RSA com OAEP e <u>SHA3-256</u>

Implementação de Geração de Chaves, Assinatura Digital e Verificação

> Alunos: Lucas Alves Rodrigues Jean Bueno Karia

Introdução Teórica

- Segurança na comunicação assimétrica
 - Proteção contra Ataques
 - Resistência a CPA (Chosen-Plaintext Attacks) via padding estruturado
 - Ataques de Plaintext:
 - OAEP adiciona aleatoriedade ao processo de cifração
 - Evita padrões identificáveis no texto cifrado (ex: mesma mensagem → cifras diferentes)
- Pilares da Segurança:
 - RSA: Baseado na dificuldade de fatoração de primos grandes
 - OAEP: Transforma cifração determinística em probabilística (padding)
 - SHA3-256: Garante unicidade do hash (resistência a colisões)

Introdução Teórica

- Garantias Obtidas
 - Autenticidade:
 - Assinatura vinculada à chave privada única do remetente
 - Verificação via chave pública correspondente
 - Integridade:
 - Hash SHA3-256 detecta alterações de 1 bit na mensagem

Arquitetura do Programa

- Geração de Chaves (Miller-Rabin)
- Primos de 1024 bits
- Cálculo de n, φ(n), e, d
- Assinatura Digital:
 - \circ Hash SHA3-256 \rightarrow OAEP \rightarrow RSA (privada) \rightarrow Base64
- Verificação:
 - Base64 \rightarrow RSA (pública) \rightarrow OAEP⁻¹ \rightarrow Validação do Hash

Geração de Chaves

- Algoritmo Miller-Rabin
 - Teste probabilístico (40 iterações ≈ 2⁻⁸⁰ erro)

- Chaves RSA:
 - o Pública: (n, e)
 - o Privada: (n, d)

Assinatura Digital

- Processo de Codificação OAEP
 - Hash do Rótulo (Label) I_hash = SHA3-256(b"")
 - Construção do Bloco de Dados (DB)
 - DB = I_hash || PS || 0x01 || mensagem
 - PS: Preenchimento com bytes 0x00 para ajustar tamanho
 - 0x01: Delimitador único para separar padding da mensagem
 - Seed aleatório + MGF1 (XOR duplo)
 - Garante aleatoriedade mesmo para mensagens idênticas
 - Função de máscara baseada em SHA3-256
 - Resultado: 0x00 || masked_seed || masked_DB
- SHA3-256:
 - Resistente a colisões
 - Saída fixa de 256 bits

Verificação

- Fluxo de Validação
 - Decodificação Base64 → Inteiro
 - RSA com chave pública: S^e mod n
 - OAEP Decode:
 - Extração do seed
 - Reversão das máscaras MGF1
 - Comparação byte-a-byte dos hashes
- Vantagens:
 - Não repúdio
 - Detecção de adulteração

Implementação

- Desafios e Soluções
 - Manipulação de big integers (os2ip/i2osp)
 - Compatibilidade de encoding (UTF-8/BASE64)/
- Bibliotecas:
 - hashlib (SHA3)
 - secrets (primos seguros)
 - o base64