Nama: Adrian Dwi Adinata

Program: Introduction to Python for Data Science

Course Mempelajari Machine Learning dengan Python dibawakan Instruktur Bernama Raka Ardhi. Course ini berisikan 5 chapter yakni Prologue (Chapter 1), Mempersiapkan Data (Chapter 2), Memilih Algoritma (Chapter 3), Melatih Model (Chapter 4), dan Menguji Akurasi Model (Chapter 5).

Chapter 1 – Prologue

1. Apa itu Machine Learning

Machine Learning memberikan kemampuan kepada computer untuk belajar. Membangun model dari contoh input untuk membuat data-driven prediction. Machine Learning tidak membutuhkan traditional programming seperti if, case, while/for, ML membutuhkan Data, Algoritma, Analisis, dan Model. 2 Tipe ML yakni Supervised dan Unsupervised. Contoh supervised adalah prediksi harga rumah. Data => Algorithm => Model => Prediction. Contoh unsupervised adalah data cluster. Supervised : Value Prediction, Perlu hasil prediksi, model prediksi harga data baru, sedangkan Unsupervised : Data clustering, tidak perlu cluster, dan akses data cluster

2. Persiapan

Jupyter Notebook, Python 3, dan Anaconda 3.7.

3. Workflow dari Machine Learning

Permasalahan => Persiapan Data => Memilih Algoritma => Melatih Model => Uji Model

Chapter 2 – Mempersiapkan Data

1. Mendapatkan Data

Tidy Data (Rapih) = Lebih mudah dimanipulasi, variabelnya adalah kolom, observasinya adalah baris. Sumber bisa dari Google, Data Pemerintahan, dan Data Perusahaan.

2. Load, Clean, Inspect Data

Ada di file Kode Machine Learning.ipynb.

3. Merapihkan Data

Ada di file Kode Machine Learning.ipynb

Chapter 3 – Memilih Algoritma

1. Algoritma Machine Learning

Peran Algoritma. Ada beberapa factor yakni Learning Type (Supervised/Unsupervised), Result (Regression: Continue Value, prediksi tidak tetap, ex: berapa harga rumah / Classification: Diskrit Value, prediksi tetap, ex: diabetes atau tidak), Complexity, dan Basic vs Enhanced

2. Memilih Algoritma berdasarkan kasus

Kandidat Algoritma: Naïve Bayes (belajar dari data histori), Logistic Regression (pakai bobot), dan Decision Tree (seperti if/else, menggunakan percabangan node). Naïve Bayes: Probability Based, Bobot fitur sama, membutuhkan sedikit data, mudah dipahami, dan cukup stabil

Nama: Adrian Dwi Adinata

Program: Introduction to Python for Data Science

Chapter 4 – Melatih Model

1. Mengenal Model Training

Data melatih algoritma ML, menghasilkan model, new data better prediction

2. Proses Training

Split data (70% Training & 30% Testing) => Train Model => Evaluasi Model. Tidak bisa testing pake data training, maka diperlukan untuk di split.

3. Training dengan Python

Menggunakan fungsi dari scikit-learn : data splitting, pre-processing, feature selection (mengambil minimal feature), dan model training. <= toolset scikit-learn

4. Training Algoritma

Ada di file Kode Machine Learning.ipynb

Chapter 5 – Menguji Akurasi Model

1. Mengenal Uji Akurasi

Menggunakan data testing, digunakan untuk meningkatkan performa sampai akurat

2. Mengevaluasi Model Naïve Bayes

Ada di file Kode Machine Learning.ipynb

3. Peningkatan Performa

Ada di file Kode Machine Learning.ipynb

4. Apa itu Cross Validation

Digunakan untuk validasi, bermasalah kalo datanya dikit. Bisa dipake di banyak algoritma, tinggal tambahin CV dibelakangnya, contohnya logisticregressionCV