

of It is a dimensionality dreduction.

n-dim -> d'-dimen

mout > 789 dim > 2-dim

applications

- 1 To Visualize
- (2) d-drm -> d'-drm . (d'=10)

14.2 Geometric Intuition of PCA

- * The spread on to good & very high whom compared to \$2
- * Spread is Variance
- + If i am jorce to skip date we can skip for and keep fz as here more spread in f2
- x=2 ; z= = = I am preserving the direction with movimal sphoad | Variance move by somation.
 - -) more spread more by dination.

2-dimenedataret, both collum are standardge of mean ffig = mean ffig = 0 Varif fig - von ffig = 1

- + Enough sporced on both the axis
- + In the direction fi' here is lot of Aproad
- * Spread on the << 3 percad on fal
- at drop fz' and proget on to fil

* Rotated fil with Some & & with the Same &
Rotate fil

* fi has maximum Spound, we doop fil

and project on to fil

It we want to find direction fit such that the variance of leis projected on to fits marinum.

+ we supresent direction is 4, 1/4/11-1

of les projeted ontoxi is maximal

Van {x; }; = = = = = (11, x;)

max 1 \(\frac{5}{12} \) (4, \tau_i) \) \(\text{cobjetue of an optimization problem of an optimization problem of the color of the col

14.4 Alternative domination of PCA: Distance minimizate. In M. which maximaizes profected Variance Ri > di : dist from xi to My min & dir 4: unit vetat 4, 74,=1=1141/12 किर्नुस्त वृत्रीं किर्नु पृत्रीं min & (xiTxi - (u,Txi)) mildi = di = ||xi| - (4/1xi)2 : XIXI - (4,TX) luch not UTu=1 14.5 Eigen Valuer and Eigen Vectors (PCA); dimensionality Reduction. slution for optimization problem (man & min) Covariena matrin of X = 5 Cigor Valua (>1,>2-.>2) Solved -> Eigen Value of S = 1, 1/2 /3 . Your -> eigen Value of S = V, V2 V3 . You agn vector (V1, V2 -- . 4/d) + Every Eyen Value More is Corresponden Rijen Veder definition >1, V, = 5 V, 17 dx, vecto >1: Eiger Value of S V1: Eige vector of S corresponden to X

7 2 2223-... 2d for matrin Solved 1 1 1 1 1 VI VZ V2 Vd.

Yilly: Vily=0 = Vi.y;=0

Eyer vector one to Euchollar.

M1: V1 = Eyen Vector of S(=XTx) Correspondin to larget Eyen volue

× = [

(1) col. std of X is done

2 S=XTX

(4) dh = Y, (why?)

2dim d=2 $\lambda_1 \ge h_2$ $v_1 \perp v_2$

RIERIO de 10

I will have 10 Eiger Value of Vedo

12/2-12-10

1 12/2-12-12/20 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

1 10 |

- J

(2hot one his? (1) = 2 = 10)

14.7 Visualize m-10157 detaset

MNJST -> 780 PCA => (V1,1/2)

Yi & 20,1,2,---93

14.8 Cimitations of PCA

Injournation lost is very high profestra on to Vi

I we will look like structur when we project to VI

PCA Code Seample 149 Visualization uring PCA 20 # Lood MNJST Data import numby as no import pandas as pol Pomport matphotlibipy plot as pit import as os. chdin (1 do = pd. Grand Cosv (mount torain Cov) l = do ['label'] do = do. drop ('label', axis=1) print (1. shape) # (42000)) pount (dp. shape) # (42000, 784) # plotting one sow in the dataset pH. figure (figlize: (7,7)) idx = 100 grid-data = do. iloc [idx]. as_matrix (). Treshapo (28, 28) ptt inshow (grid data, interpolation = none', (map = 'gray') gede (by 5) this cetter roges at postura plt. show() #20 Visualzation wing PrA # pick first 15k data-points to work on for time-eyricing

#20 Visualization wing PCA

pick first 15K data-points to work on for time-eyriciency

Exercise: Perform me same analyses on all me 42K data-points

labels: I head (15000)

data: d. head (15000)

point ("The shape of Sample data: ", data. shape)

Data Breprocessin: Standardizing the data

from Skleann. preprocessing import Standard Scaler

Standardized_data = Standard Scaler (). fit_tonaryform(data)

powint (Standardized_data.shape) # (15000,784)

Scaling results in a first

find The Co-Variance matrix which is: AT * A

Sample_data = Standardized_data

Covar_matrix = np. matrix (Sample_data. T, Sample_data)

Brint (covar_matrix. shape) # 784,784

finding The top two eigen-Valuer and Corresponding Eigen vectors
for projecting onto 2- Dim space
forom Scipy. Linally Proport eigh

The parameter 'eigvals' is degined (low value to heigh value)

eigh function will bretwon The Eigen value in ascending order
This code generates only the top2 (782 \$ 783) Eigen Values

Values, Vectos = eigh (covan_matriz, eigvals = (782, 783))

praint ("shape of eigen vectors = ", vectors. shape) # (784, 2)

Converting the Eigen vectors Into (2,d) shape for carynum of further

Vectors = vectors. T

(2,784)

point ("updated shape of eigen vector=", vector. shape) =# (184,2)

here The vectors [1] prepresent the eigen vector corresponding 1 of Rinipal
Component

here the vectos[o] supresent the Eigen Vector Cooresponding of p.c

Brojecting The Briginal data Sample on the plane # famed by two poincipal eigen vectors by vector-vector multiplicationimport matphotlib. puplot as bit new-collidinates = np. mot mul (Vectors, Sample-data · T) point ("oresultant new data points' shape", Vector. shape, "x", Sample_data. T, "=", new_coadinates)

snesultant new data point's shape (2,784) x (784, 15000) = (2x15000)

import pandas as pol # expending label to 2d projected data new coordinates: np: vstack ((new-coordinates, labels)). T # coreating a new data frame for ploting me labeled points dataforame = pd. Dataforame (data = new-coodinates, columns : ('1stpri', 'indpri', 'labol) datframe. shape # (15000,3)

plotting the zid data porints with seabon.

paramage_vior_Breplained = pas. Beplained Import seabon as In Sn. Facet (soid (clata frame, hue = label, Rize = 6). map (ptt. scatter, 1st prin; 2nd pri). add_legend()

PCA wing Sairit - Learn from sklean import decomposition PCaz decomposition. PCA ()

Conjuguring The parameters # The # of Components = 2

pca.n_Components = 2

Pca-data = pca. fit-tnaryorm (sample_data) Print ("shape of Pca-reduced . shape=" fca.data.shape)

(15000,2)

oft figure (1) lighting = (6,4)

Per 180 dimensionality Scedention (not-Visualization) > Virtualization. PCA: 784 -> 2 empc 784 Pot 10 -> ML-models Ex: 794 PLAS 200 dim Cov = XTX X 15000x 784 V7844200 What is the suight demansions (10820 2) 50 8100 87200 87500 2700) Marinize the Variance of projected points 784 -> 10 -> How much of gryginal variance is suplained (784-) 10) # PCA for dimensionality deduction Pca. n. Components = 784 Pca data = pca · fit - transjom (sample - data) pencentage_Var_Explained = pca. Explained_Variance_/np.sum (pca. Explained_Variance) Cum-Van-Suplained = np. Cumsum (percentage_Van-Suplained) # plot no PCA Spectrum pH. figure (1, fig size = (6, 4)) pH·clf() plet. plot (cumvan Emplained, linewidin = 2) plt. axis (tright) pH. grid () plt-xlabel ('n Components') bit. ylabel ('aunalatizery-varias) -) pH-show()