Γραμμική Άλγεβρα (Linear Algebra)

ΑΓΓΕΛΟΣ ΣΙΦΑΛΕΡΑΣ Καθηγητής

11η Διάλεξη (Θεωρία)

Έστω ότι έχουμε τα μη μηδενικά $\delta/\tau\alpha v_1, v_2, ..., v_n$ του \mathbf{R}^m . Λέμε ότι αυτά είναι:

- ordogánia, an $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ gia $i \neq j$ kai
- ορθοκανονικά, αν επιπλέον είναι $\mathbf{v}_i \cdot \mathbf{v}_i = 1$ ή $\|\mathbf{v}_i\| = 1$, i = 1, 2, ..., n.

Είναι ορθογώνια ή/και ορθοκανονικά τα παρακάτω δ/τα του R4?

$$\boldsymbol{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \boldsymbol{v}_2 = \begin{bmatrix} -1\\-1\\1\\1 \end{bmatrix}, \quad \boldsymbol{v}_3 = \begin{bmatrix} -1\\1\\-1\\1 \end{bmatrix}, \quad \boldsymbol{v}_4 = \begin{bmatrix} -1\\1\\1\\-1 \end{bmatrix}$$

Είναι μόνο ορθογώνια, όχι όμως και ορθοκανονικά...

Γεωμετρική ερμηνεία ορθογωνίων δ/των

• Γενικά, δοθέντος ενός δ/τος ν μπορούμε να το κανονικοποιήσουμε σε μοναδιαίο δ/μα **u** με τον τύπο:

$$u = \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

• Το χαρακτηριστικότερο παράδειγμα ορθοκανονικών δ/των είναι αυτό των δ/των $\{e_i, i=1, ..., n\}$ της κανονικής βάσης του \mathbb{R}^n .

Ιδιότητα.

Αν τα v_1, v_2, \ldots, v_n είναι ορθογώνια $\delta/\tau \alpha$, τότε είναι γραμμικώς ανεξάρτητα.

Απόδειξη.

Πράγματι για κάθε i με $1 \le i \le n$, είναι:

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \ldots + \lambda_n \mathbf{v}_n = \mathbf{O}$$

$$\Rightarrow (\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_i \mathbf{v}_i + \dots + \lambda_n \mathbf{v}_n) \cdot \mathbf{v}_i = \mathbf{O} \cdot \mathbf{v}_i$$

$$\Rightarrow \lambda_1 \mathbf{v}_1 \cdot \mathbf{v}_i + \lambda_2 \mathbf{v}_2 \cdot \mathbf{v}_i + \dots + \lambda_i \mathbf{v}_i \cdot \mathbf{v}_i + \dots + \lambda_n \mathbf{v}_n \cdot \mathbf{v}_i = 0$$

$$\Rightarrow \lambda_1 0 + \lambda_2 0 + \dots + \lambda_i \mathbf{v}_i \cdot \mathbf{v}_i + \dots + \lambda_n 0 = 0$$

$$\Rightarrow \lambda_i \|v_i\|^2 = 0 \Rightarrow \lambda_i = 0$$

• Aν $\{v_1,v_2,\ldots,v_n\}$ είναι μια βάση του \mathbf{R}^n και $\mathbf{v}\in\mathbf{R}^n$ έτσι, ώστε: $\mathbf{v}=\lambda_1\mathbf{v}_1+\lambda_2\mathbf{v}_2+\ldots+\lambda_n\mathbf{v}_n$ τότε για $1\leq i\leq n$,

$$\lambda_i = \frac{\mathbf{v} \cdot \mathbf{v}_i}{\mathbf{v}_i \cdot \mathbf{v}_i}$$
, αν η βάση είναι ορθογώνια

 $\lambda_i = \mathbf{v} \cdot \mathbf{v}_i$, αν η βάση είναι ορθοκανονική

Απόδειξη.

Υποθέτοντας ότι η βάση είναι ορθογώνια, για $1 \le i \le n$, έχουμε:

$$\mathbf{v} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_n \mathbf{v}_n \implies \mathbf{v} \cdot \mathbf{v}_i = (\lambda_1 \mathbf{v}_1 + \dots + \lambda_i \mathbf{v}_i + \dots + \lambda_n \mathbf{v}_n) \cdot \mathbf{v}_i$$

$$\Rightarrow \mathbf{v} \cdot \mathbf{v}_i = \lambda_1 (\mathbf{v}_1 \cdot \mathbf{v}_i) + \dots + \lambda_i (\mathbf{v}_i \cdot \mathbf{v}_i) + \dots + \lambda_n (\mathbf{v}_n \cdot \mathbf{v}_i) \Rightarrow \mathbf{v} \cdot \mathbf{v}_i = \lambda_1 0 + \dots + \lambda_i (\mathbf{v}_i \cdot \mathbf{v}_i) + \dots + \lambda_n 0$$

$$\Rightarrow \lambda_i (\mathbf{v}_i \cdot \mathbf{v}_i) = \mathbf{v} \cdot \mathbf{v}_i \implies \lambda_i = \frac{\mathbf{v} \cdot \mathbf{v}_i}{\mathbf{v}_i \cdot \mathbf{v}_i}$$

Αν η βάση είναι ορθοκανονική, τότε $\mathbf{v}_i \cdot \mathbf{v}_i = 1$, οπότε $\lambda_i = \mathbf{v} \cdot \mathbf{v}_i$

• Αν A είναι ένας $m \times n$ πίνακας του οποίου οι στήλες είναι τα ορθοκανονικά $\delta/\tau \alpha v_1, v_2, \ldots, v_n, \delta \eta \lambda$.

$$A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_n]$$

τότε

$$A^{\mathrm{T}}A = \mathbf{I}_n$$

γιατί το *i-j* στοιχείο του $A^T\!A$ είναι

$$\mathbf{v}_i^{\mathrm{T}} \mathbf{v}_j = \mathbf{v}_i \cdot \mathbf{v}_j = \begin{cases} 0, & \alpha \mathbf{v} \ i \neq j \\ 1, & \alpha \mathbf{v} \ i = j \end{cases}$$

• Αν τα διανύσματα v_1, v_2, \ldots, v_n είναι ορθογώνια, τότε προφανώς ο πίνακας $A^T\!A$ είναι ένας $n \times n$ διαγώνιος πίνακας.

• Ο πίνακας A λέγεται **ορθογώνιος** αν είναι τετραγωνικός και $A^T = A^{-1}$. Δηλ. ένας ορθογώνιος πίνακας έχει ορθοκανονικές στήλες.

• Θεώρημα 3.3.1

Αν Α τετραγωνικός πίνακας, τότε:

ο A ορθογώνιος $\Leftrightarrow A^{\mathrm{T}} = A^{-1} \Leftrightarrow AA^{\mathrm{T}} = I \Leftrightarrow$ οι στήλες του A είναι ορθοκανονικές.

Θεώρημα 3.3.2

Αν Α είναι η-τετραγωνικός πίνακας, τότε:

• A ορθογώνιος $\Leftrightarrow A \mathbf{u} \cdot A \mathbf{v} = \mathbf{u} \cdot \mathbf{v}$, $\forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ (δηλ. ο A αφήνει αναλλοίωτο το εσωτερικό γινόμενο)

• A ορθογώνιος \Leftrightarrow ||Av|| = ||v|| , $\forall v \in \mathbb{R}^n$ (δηλ. ο A αφήνει αναλλοίωτο το μέτρο).

Θεώρημα 3.3.3 Αν A_1 και A_2 είναι $n \times n$ ορθογώνιοι πίνακες, τότε το γινόμενό τους A_1A_2 είναι ορθογώνιος πίνακας.

• An $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_n]$, tóte an oi stήλες του A είναι ορθογώνιες, η λύση του συστήματος $A\mathbf{x} = \mathbf{b}$ δίνεται από τον τύπο:

$$x_i = \frac{v_i \cdot b}{v_i \cdot v_i}$$

και αν είναι ορθοκανονικές από:

$$x_i = v_i \cdot b$$

• Η επίλυση του συστήματος $A\mathbf{x} = \mathbf{b}$ είναι ακόμα πιο εύκολη αν ο πίνακας A είναι ορθογώνιος, γιατί τότε $A^{-1} = A^{\mathrm{T}}$.

Προβολές

Έστω τα διανύσματα $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$.

Η προβολή του \boldsymbol{u} πάνω στο \boldsymbol{v} είναι το διάνυσμα που δίνεται από τον τύπο:

$$proj_v u = \frac{u \cdot v}{v \cdot v} v$$

Παραδείγματα

• Να βρεθεί η προβολή του διανύσματος $\boldsymbol{u} = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$ πάνω στο διάνυσμα $\boldsymbol{v} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$.

Έχουμε

$$proj_{v}u = \frac{u \cdot v}{v \cdot v}v = \frac{2+0+3}{4+4+1} \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} = \frac{5}{9} \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 10/9 \\ 10/9 \\ 5/9 \end{bmatrix}$$

• Να βρεθεί η προβολή του διανύσματος $\boldsymbol{u} = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$ πάνω στο διάνυσμα $\boldsymbol{v} = \begin{bmatrix} -4 \\ 0 \\ 2 \end{bmatrix}$.

Έχουμε

$$\mathbf{proj}_{v}\mathbf{u} = \frac{\mathbf{u}\cdot\mathbf{v}}{\mathbf{v}\cdot\mathbf{v}}\mathbf{v} = \frac{-8-2}{16+4}\begin{bmatrix} -4\\0\\2\end{bmatrix} = \frac{-10}{20}\begin{bmatrix} -4\\0\\2\end{bmatrix} = \begin{bmatrix} 2\\0\\-1\end{bmatrix} = \mathbf{u} \ (\text{γιατι};)$$

Προβολή διανύσματος σε υπόχωρο

Έστω $\mathbf{u} \in \mathbb{R}^n$ και $V = span\{v_1, v_2, \cdots, v_k\}$ όπου τα v_1, v_2, \cdots, v_k είναι **ορθογώνια**.

Η προβολή του **u** στον δ.χ. V δίνεται από τον τύπο:

$$proj_{V}u = \sum_{i=1}^{k} \frac{u \cdot v_{i}}{v_{i} \cdot v_{i}} v_{i} = \frac{u \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} + \frac{u \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2} + \dots + \frac{u \cdot v_{k}}{v_{k} \cdot v_{k}} v_{k}$$

Παράδειγμα

Να βρεθεί η προβολή του διανύσματος $u = (-1,0,3)^T$ στον διανυσματικό υπόχωρο του R^3 :

$$V = span\{(1,0,0)^T, (0,-1,1)^T\}.$$

Ελέγχουμε πρώτα εάν τα $v_1 = (1,0,0)^T$, $v_2 = (0,-1,1)^T$ είναι ορθόγώνια. Πράγματι, έχουμε:

$$v_1 \cdot v_2 = 0.$$

Εφαρμόζοντας τον τύπο, έχουμε:

$$proj_{V}u = \frac{u \cdot v_{1}}{v_{1} \cdot v_{1}}v_{1} + \frac{u \cdot v_{2}}{v_{2} \cdot v_{2}}v_{2} = \frac{-1}{1}(1,0,0)^{T} + \frac{3}{1+1}(0,-1,1)^{T} = (-1,-3/2,3/2)^{T}$$

Θεώρημα 3.3.4

Θεώρημα 3.3.4 Αν τα δ/τα
$$v_1, v_2, ..., v_n$$
 είναι μια βάση του δ/κού χώρου V, τότε τα δ/τα:
$$w_1 = \frac{1}{\|u_1\|} u_1, w_2 = \frac{1}{\|u_2\|} u_2, ..., w_n = \frac{1}{\|u_n\|} u_n$$

$$u_1 = v_1$$

$$\boldsymbol{u}_2 = \boldsymbol{v}_2 - \frac{\boldsymbol{v}_2 \cdot \boldsymbol{u}_1}{\boldsymbol{u}_1 \cdot \boldsymbol{u}_1} \boldsymbol{u}_1$$

όπου:

$$\boldsymbol{u}_3 = \boldsymbol{v}_3 - \frac{\boldsymbol{v}_3 \cdot \boldsymbol{u}_1}{\boldsymbol{u}_1 \cdot \boldsymbol{u}_1} \boldsymbol{u}_1 - \frac{\boldsymbol{v}_3 \cdot \boldsymbol{u}_2}{\boldsymbol{u}_2 \cdot \boldsymbol{u}_2} \boldsymbol{u}_2$$

$$u_n = v_n - \frac{v_n \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{v_n \cdot u_2}{u_2 \cdot u_2} u_2 \cdot \cdot \cdot - \frac{v_n \cdot u_{n-1}}{u_{n-1} \cdot u_{n-1}} u_{n-1}$$

είναι μια ορθοκανονική βάση του V.

Παράδειγμα 3.3.1

Έστω:
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$
τρία δ/τα του \mathbb{R}^4 .

Μπορούμε να δούμε ότι τα $\delta/$ τα v_1 , v_2 , v_3 , είναι γραμμικώς ανεξάρτητα, οπότε είναι μια βάση ενός $\delta/$ κού υπόχωρου V του R⁴ που παράγουν.

Θα εφαρμόσουμε τη μέθοδο Gram-Schmidt για την καινούργια (ορθοκανονική) βάση $\{w_1, w_2, w_3\}$.

$$u_{1} = v_{1} \Rightarrow w_{1} = \frac{1}{\|u_{1}\|} u_{1} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$u_{2} = v_{2} - \frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3/4 \\ 1/4 \\ 1/4 \end{bmatrix} \Rightarrow w_{2} = \frac{1}{\|u_{2}\|} u_{2} = \frac{1}{2\sqrt{3}} \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$u_{3} = v_{3} - \frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} - \frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \frac{2}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} -3/4 \\ 1/4 \\ 1/4 \end{bmatrix} = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix} \Rightarrow w_{3} = \frac{1}{\|u_{3}\|} u_{3} = \frac{1}{\sqrt{6}} \begin{bmatrix} 0 \\ -2 \\ 1 \\ 1 \end{bmatrix}$$

όπου χρησιμοποιήσαμε τα εσωτερικά γινόμενα:

$$v_2 \cdot u_1 = v_2 \cdot v_1 = 0 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 3$$

 $u_1 \cdot u_1 = v_1 \cdot v_1 = 1 + 1 + 1 + 1 = 4$
 $u_2 \cdot u_2 = 9/16 + 1/16 + 1/16 + 1/16 = 3/4$
 $v_3 \cdot u_1 = v_3 \cdot v_1 = 0 \cdot 1 + 0 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 2$
 $v_3 \cdot u_2 = 0 \cdot (-3/4) + 0 \cdot (1/4) + 1 \cdot (1/4) + 1 \cdot (1/4) = 1/2$

QR παραγοντοποίηση

Θεώρημα 3.3.6.

Αν A είναι ένας πίνακας, τότε υπάρχει ένας ορθογώνιος πίνακας Q και ένας άνω τριγωνικός πίνακας R τέτοιοι, ώστε να είναι:

$$A = QR$$

Δεδομένου ότι το γινόμενο ορθογώνιων πινάκων είναι ορθογώνιος πίνακας, αν μπορέσουμε να βρούμε ορθογώνιους πίνακες Q_1, \ldots, Q_k , τέτοιους, ώστε:

 $Q_k...Q_1A = R$, με R άνω τριγωνικό πίνακα

τότε:

$$A = Q_1^{\mathrm{T}} ... Q_k^{\mathrm{T}} R = QR$$

όπου ο πίνακας:

$$Q = Q_1^{\mathrm{T}} \dots Q_k^{\mathrm{T}}$$

είναι ορθογώνιος (είναι $Q_i^T = Q_i^{-1}$).

- Ενδιαφερόμαστε για τις λύσεις της εξίσωσης $Ax = \lambda x$, όχι μόνο για το $\delta/\mu\alpha$ -λύση x αλλά και για την παράμετρο λ .
- Γενικά προκύπτει ότι, για δεδομένο $n \times n$ πίνακα A, υπάρχουν λύσεις μόνον αν το λ παίρνει τιμές από ένα σύνολο με πληθικό αριθμό n που εξαρτάται από τον πίνακα A.
- Αν A είναι ένας $n \times n$ πίνακας τότε ένα μη μηδενικό $\delta/\mu\alpha x$ λέγεται **ιδιοδιάνυσμα** (eigenvector) του A αν $Ax = \lambda x$ για κάποιον αριθμό λ .
- Το λ λέγεται **ιδιοτιμή** (eigenvalue) του A που αντιστοιχεί στο ιδιοδιάνυσμα x και η παραπάνω εξίσωση λέγεται εξίσωση ιδιοτιμών.

• Για να βρούμε τις μη τετριμμένες (μηδενικές) λύσεις της εξίσωσης ιδιοτιμών γράφουμε:

$$Ax = \lambda x \Leftrightarrow Ax = \lambda Ix \Leftrightarrow (A - \lambda I)x = \mathbf{O}$$

• Αν ο πίνακας $A - \lambda I$ είναι αντιστρέψιμος τότε η παραπάνω σχέση έχει μοναδική λύση την $\mathbf{x} = \mathbf{O}$, ενώ αν δεν είναι αντιστρέψιμος τότε θα έχει και μη μηδενικές λύσεις στην ιδιοτιμή λ .

- Δηλαδή η παραπάνω σχέση έχει μη μηδενικές λύσεις, αν και μόνον αν: $\det(A \lambda I) \coloneqq |A \lambda I| = 0$
- Το σύνολο των λύσεων της είναι ο μηδενοχώρος του πίνακα $A \lambda I$, $null(A \lambda I)$. Έτσι αυτό το σύνολο αποτελεί έναν υπόχωρο του \mathbb{R}^n και λέγεται **ιδιοχώρος** (eigenspace) του A που αντιστοιχεί στην ιδιοτιμή λ . Ο ιδιοχώρος συνίσταται στο μηδενικό δ/μα και σε όλα τα ιδιοδιανύσματα που αντιστοιχούν στην ιδιοτιμή λ .

- Η ανάλυση ιδιαζουσών τιμών ή απλά ιδιοανάλυση (Eigenvalue Decomposition ή απλά Eigendecomposition) παίζει σημαντικό ρόλο σε διάφορες μεθόδους στην μηχανική μάθηση, όπως για παράδειγμα στην μέθοδο της Ανάλυσης Κύριων Συνιστωσών (Principal Component Analysis ή απλά PCA). Η ιδιοανάλυση χρησιμοποιείται στον υπολογισμό των κυρίων συνιστωσών ενός πίνακα στην μέθοδο PCA με στόχο την μείωση της διάστασης των δεδομένων στην μηχανική μάθηση.
- Η ιδιοανάλυση ενός πίνακα αποτελεί έναν μετασχηματισμό ενός τετραγωνικού πίνακα σε ένα σύνολο ιδιοδιανυσμάτων και ιδιοτιμών.
- Δεν μπορούν να μετασχηματιστούν όλοι οι τετραγωνικοί πίνακες σε ιδιοδιανύσματα και ιδιοτιμές. Ο μετασχηματισμός κάποιων τετραγωνικών πινάκων απαιτεί μιγαδικούς αριθμούς.
- Η ιδιοανάλυση μας βοηθάει να αναλύουμε ορισμένες ιδιότητες ενός πίνακα, όπως αντίστοιχα η παραγοντοποίηση ενός ακεραίου αριθμού σε πρώτους παράγοντες μας βοηθάει να κατανοήσουμε την συμπεριφορά εκείνου του ακεραίου αριθμού.

Γεωμετρική ερμηνεία

- Γεωμετρικά, $Ax = \lambda x$, σημαίνει ότι με τη δράση του πίνακα A (μετασχηματισμός) τα ιδιοδιανύσματα υπόκεινται σε αλλαγές μόνο ως προς το μέτρο τους ή το πρόσημό τους —η διεύθυνση του Ax είναι ίδια με αυτή του x. Η ιδιοτιμή λ είναι απλά η ποσότητα της «επιμήκυνσης» ή της «σμίκρυνσης» που συνεπάγεται στο ιδιοδιάνυσμα x όταν αυτό μετασχηματίζεται από τον πίνακα A.
- Ένας πίνακας Α ο οποίος έχει μόνο θετικές ιδιοτιμές ονομάζεται επίσης και θετικά ορισμένος (positive definite) πίνακας, ενώ αν όλες οι ιδιοτιμές του είναι αρνητικές τότε ονομάζεται και αρνητικά ορισμένος (negative definite) πίνακας.

Γεωμετρική ερμηνεία

$$\pi.\chi$$
, αv :

$$A = \begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix}$$

$$\kappa \alpha i \quad \mathbf{V} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix} \quad \text{kat} \quad \mathbf{V} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad \text{tóte}, \qquad A\mathbf{V} = \begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 3\mathbf{V}$$

Παράδειγμα εύρεσης βάσης ιδιοχώρου, (1/3)

Έστω ο πίνακας:
$$A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$$
 ο οποίος έχει μια ιδιοτιμή του ίση με $\lambda = 2$.

Θα βρούμε μια βάση του αντίστοιχου ιδιοχώρου.

Παράδειγμα εύρεσης βάσης ιδιοχώρου, (2/3)

Αρχικά, σχηματίζουμε τον πίνακα:
$$A-2I = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \end{bmatrix}$$

και επιλύουμε το ομογενές σύστημα:

$$(A - 2I)x = O \Leftrightarrow \begin{bmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

με τον επαυξημένο πίνακα:

$$\begin{bmatrix} 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & 6 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Ο επαυξημένος πίνακας αντιστοιχεί στην εξίσωση $2x_1 - x_2 + 6x_3 = 0$.

Παράδειγμα εύρεσης βάσης ιδιοχώρου, (3/3)

Πρόκειται για μια επιβεβαίωση ότι η τιμή $\lambda = 2$ είναι όντως μια ιδιοτιμή του A, αφού για αυτή την τιμή η εξίσωση (το σύστημα) $(A - 2I)x = \mathbf{O}$ έχει ελεύθερους αγνώστους, δηλ. το ομογενές σύστημα έχει άπειρες (μη μηδενικές) λύσεις.

Η γενική μορφή των λύσεων είναι:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}x_2 - 3x_3 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}, \ x_2, x_3 \in \mathbb{R}$$

Tα δ/τα λοιπόν:
$$\mathbf{v}_1 = \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix} \quad \text{και} \quad \mathbf{v}_2 = \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

παράγουν τον ιδιοχώρο που αντιστοιχεί στην ιδιοτιμή $\lambda = 2$ και επειδή, όπως εύκολα μπορούμε να δούμε, είναι γραμμικώς ανεξάρτητα, αποτελούν μια βάση του.

- Η εξίσωση $\det(A \lambda I) := |A \lambda I| = 0$ λέγεται χαρακτηριστική εξίσωση.
- $H \det(A \lambda I)$ λέγεται χαρακτηριστική ορίζουσα.
- Το πολυώνυμο του λ που προκύπτει, αν κάνουμε το ανάπτυγμά της, ονομάζεται χαρακτηριστικό πολυώνυμο του πίνακα Α. Αυτό θα είναι ένα πολυώνυμο βαθμού n και προκύπτει ότι:

$$P(\lambda) = |A - \lambda I| = (\lambda_1 - \lambda)^{\nu_1} (\lambda_2 - \lambda)^{\nu_2} \cdots (\lambda_\rho - \lambda)^{\nu_\rho}$$

όπου, $\lambda_1, \lambda_2, \ldots, \lambda_\rho$ είναι οι διαφορετικές ρίζες του και v_1, v_2, \ldots, v_ρ οι αντίστοιχες πολλαπλότητές τους, με $v_1 + v_2 + \ldots + v_\rho = n$.

Ιδιότητες ιδιοτιμών

- Αν οι ιδιοτιμές είναι διαφορετικές μεταξύ τους τότε, τα αντίστοιχα ιδιοδιανύσματα ενός $n \times n$ πίνακα A είναι γραμμικώς ανεξάρτητα.
- Οι ιδιοτιμές ενός τριγωνικού πίνακα είναι τα διαγώνια στοιχεία του.
- $Av\ A$ και B είναι όμοιοι πίνακες, είναι δηλαδή $B=P^{-1}AP$, τότε A και B έχουν τις ίδιες ιδιοτιμές.
- Οι ιδιοτιμές και οι συνιστώσες των ιδιοδιανυσμάτων ενός συμμετρικού πίνακα είναι πραγματικοί αριθμοί και τα ιδιοδιανύσματα που αντιστοιχούν σε διαφορετικές μεταξύ τους ιδιοτιμές είναι ορθογώνια.
- An A είναι ένας $n \times n$ πίνακας με ιδιοτιμές $\lambda_1, \lambda_2, \ldots, \lambda_n$, τότε:
 - $\det(A) = \lambda_1 \lambda_2 \dots \lambda_n$
 - $\operatorname{tr}(A) = \lambda_1 + \lambda_2 + \ldots + \lambda_n$

$$A = \begin{vmatrix} 5 & 2 & 1 & 0 \\ 2 & 5 & 0 & 1 \\ 1 & 0 & 5 & 2 \\ 0 & 1 & 2 & 5 \end{vmatrix}$$

Η χαρακτηριστική του εξίσωση είναι:

$$|A - \lambda I| = 0 \iff \begin{vmatrix} 5 - \lambda & 2 & 1 & 0 \\ 2 & 5 - \lambda & 0 & 1 \\ 1 & 0 & 5 - \lambda & 2 \\ 0 & 1 & 2 & 5 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow (5-\lambda) \begin{vmatrix} 5-\lambda & 0 & 1 \\ 0 & 5-\lambda & 2 \\ 1 & 2 & 5-\lambda \end{vmatrix} - 2 \begin{vmatrix} 2 & 0 & 1 \\ 1 & 5-\lambda & 2 \\ 0 & 2 & 5-\lambda \end{vmatrix} + \begin{vmatrix} 2 & 5-\lambda & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 5-\lambda \end{vmatrix} = 0$$

$$\Leftrightarrow \dots \Leftrightarrow (5-\lambda)^4 - 10(5-\lambda)^2 + 9 = 0$$

η οποία δίνει, $(5-\lambda) = \pm 1$, ± 3 . Έτσι, οι ρίζες της χαρακτηριστικής εξίσωσης είναι:

$$\lambda_1 = 2, \ \lambda_2 = 4, \ \lambda_3 = 6, \ \lambda_4 = 8$$

Για να βρούμε ένα ιδιοδιάνυσμα που αντιστοιχεί, π.χ., στην ιδιοτιμή λ₂, πρέπει να λύσουμε την εξίσωση:

$$(A-4I)x_2 = \mathbf{O} \qquad \dot{\eta} \qquad \begin{bmatrix} 5-4 & 2 & 1 & 0 \\ 2 & 5-4 & 0 & 1 \\ 1 & 0 & 5-4 & 2 \\ 0 & 1 & 2 & 5-4 \end{bmatrix} \begin{bmatrix} u \\ v \\ x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

ή το ισοδύναμο προς αυτή ομογενές σύστημα
$$\begin{cases} u+2v+x=0\\ 2u+v+y=0\\ u+x+2y=0\\ v+2x+y=0 \end{cases}$$

του οποίου οι λύσεις, μετά από πράξεις, προκύπτουν ότι είναι, $u=-y,\ v=y,\ x=-y,\ y\in \mathbb{R}$

Επομένως τα ιδιοδιανύσματα που αντιστοιχούν στην ιδιοτιμή λ_2 είναι βαθμωτά πολλαπλάσια του:

$$\boldsymbol{x}_2 = \begin{bmatrix} -1 & 1 & -1 & 1 \end{bmatrix}^T$$

, ή κανονικοποιώντας, του μοναδιαίου διανύσματος: $v_2 = \frac{1}{2} \begin{bmatrix} -1 & 1 & -1 & 1 \end{bmatrix}^T$

$$\mathbf{v}_2 = \frac{1}{2} \begin{bmatrix} -1 & 1 & -1 & 1 \end{bmatrix}^T$$

Για τα ιδιοδιανύσματα που αντιστοιχούν στις υπόλοιπες ιδιοτιμές βρίσκουμε, με παρόμοιο τρόπο, ότι αυτά είναι βαθμωτά πολλαπλάσια των:

$$\lambda_1 = 2,$$
 $v_1 = \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & -1 \end{bmatrix}^T$
 $\lambda_3 = 6,$ $v_3 = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix}^T$
 $\lambda_4 = 8,$ $v_4 = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$

Το καθένα απ' αυτά αποτελεί και μια βάση του αντίστοιχου ιδιοχώρου του πίνακα Α.

Παράδειγμα επαλήθευσης με SageMath, (1/2)

Έστω πάλι ο πίνακας:

$$A = \begin{vmatrix} 5 & 2 & 1 & 0 \\ 2 & 5 & 0 & 1 \\ 1 & 0 & 5 & 2 \\ 0 & 1 & 2 & 5 \end{vmatrix}$$

για τον οποίο βρήκαμε στο προηγούμενο παράδειγμα ότι, οι ιδιοτιμές του είναι οι:

$$\lambda_1 = 2, \ \lambda_2 = 4, \ \lambda_3 = 6, \ \lambda_4 = 8$$

Μπορούμε να επαληθεύσουμε τις ιδιότητες που συνδέουν την ορίζουσα και το ίχνος ενός τετραγωνικού πίνακα με τις ιδιοτιμές του.

Παράδειγμα επαλήθευσης με SageMath, (2/2)

```
A = matrix(QQ, 4, 4, [5, 2, 1, 0, 2, 5, 0, 1, 1, 0, 5, 2, 0, 1, 2, 5])
show (A)
print( 'Determinant = ', det(A) )

\begin{pmatrix}
5 & 2 & 1 & 0 \\
2 & 5 & 0 & 1 \\
1 & 0 & 5 & 2 \\
0 & 1 & 2 & 5
\end{pmatrix}

print( 'Trace = ', A.trace() )
                                                                                  Determinant = 384
                                                                                  Trace = 20
Επίσης, έχουμε ότι: \lambda_1 \lambda_2 \lambda_3 \lambda_4 = (2)(4)(6)(8) = 384 = \det(A)
```

 $\kappa\alpha\iota$

$$\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 2 + 4 + 6 + 8 = 20 = tr(A)$$

- Αυτή η μέθοδος είναι επαρκής για 3×3 και μερικές φορές για 4×4 εξισώσεις πινάκων, σε μεγαλύτερα προβλήματα ο μετασχηματισμός της χαρακτηριστικής ορίζουσας σε πολυωνυμική μορφή είναι υπολογιστικά αναποτελεσματικός.
- Δυστυχώς, στη γενική περίπτωση, δεν μπορούμε να βρούμε τις ιδιοτιμές ενός πίνακα ανάγοντας τον σε τριγωνική μορφή με απαλοιφή *Gauss* γιατί, οι γραμμο-πράξεις μεταβάλλουν τις ιδιοτιμές.

- Υπάρχουν βασικά δύο διαφορετικές προσεγγίσεις του προβλήματος:
 - Βρίσκουμε τη χαρακτηριστική εξίσωση χωρίς υπολογισμό οριζουσών ή
 - Μετασχηματίζουμε τον πίνακα σε διαγώνιο έτσι ώστε τα στοιχεία της κυρίας διαγωνίου του να είναι οι ιδιοτιμές του.

1° παράδειγμα

Άσκηση.

Ν.δ.ο. ένας πίνακας είναι μη αντιστρέψιμος (singular), αν.ν. έχει μια μηδενική ιδιοτιμή.

$\Lambda \dot{\nu} \sigma \eta$.

Ένας πίνακας A έχει μηδενική ιδιοτιμή $\Leftrightarrow \det(A - 0I) = 0 \Leftrightarrow \det(A) = 0 \Leftrightarrow o$ A είναι μη αντιστρέψιμος.

20 παράδειγμα

Άσκηση.

Ν.δ.ο. ένας πίνακας και ο ανάστροφος του έχουν τις ίδιες ιδιοτιμές.

Λύση.

Έστω λ μια ιδιοτιμή του πίνακα Α, τότε:

$$0 = \det(A - \lambda I) = \det((A^T)^T - \lambda I^T) = \det(A^T - \lambda I)^T = \det(A^T - \lambda I)$$

Οπότε, η λ αποτελεί ιδιοτιμή και του αναστρόφου πίνακα A^T .

3° παράδειγμα

Άσκηση.

Ν.δ.ο. αν x είναι ένα ιδιοδιάνυσμα που αντιστοιχεί στην ιδιοτιμή λ ενός αντιστρέψιμου πίνακα τότε, το x είναι και ιδιοδιάνυσμα του A^{-1} το οποίο αντιστοιχεί στην ιδιοτιμή $\frac{1}{\lambda}$.

$\Lambda \dot{\nu} \sigma \eta$.

Προφανώς ισχύει και ότι $\lambda \neq 0$ (σύμφωνα με το 1° παράδειγμα..)

Ισχύει ότι: $Ax = \lambda x \Rightarrow A^{-1}(Ax) = (A^{-1})\lambda x \Rightarrow x = \lambda (A^{-1}x) \Rightarrow A^{-1}x = (1/\lambda)x$

Εφαρμογές

• PageRank Algorithm – The Mathematics of Google Search

Bryan, K., & Leise, T. (2006). The \$25,000,000,000 eigenvector: The linear algebra behind Google. *SIAM Review*, 48(3), 569-581.