

1	Point-set Topology 1.1 Sporadic Notes	5 8
2	Solution Manual Folland 2.1 Elements of Functional Analysis	9 9
3	Notes For the Illustrative Analysis Book 3.1 Chapter 11: Linear Operators On Normed Spaces	11 11
4	Random Question	13

4 CONTENTS

We will review some basic notions of the topology, and then we will present solved solutions for the related problems.

Definition 1.1 Let (X, \mathcal{T}) be a topological space an let $A \subseteq X$ be a subset. Then

• The *interior* of A denoted by A° is defined as

$$A^{\circ} = \bigcup_{\substack{V \subset A, \\ V \text{ open}}} V.$$

In words, the interior of a set is the union of all open sets contained in the set.

• The *closure* of A denoted by \overline{A} is defined as

$$\overline{A} = \bigcap_{\substack{F \supset A, \\ F \text{closed}}} F.$$

In words, the closure of a set is the intersection of all closed sets containing A.

• The boundary or A is defined as

$$\partial A = \overline{A} \backslash A^{\circ}.$$

• A is dense in X if

$$\overline{A} = X$$
.

• A is nowhere dense if

$$(\overline{A})^{\circ} = \varnothing.$$

- Remark Consider the following remarks for the definition above.
 - By the definition above, if $x \in A^{\circ}$, then there exists $V \in \mathcal{T}$ such that $x \in V \subset A$. Also, we can interpret the interior of A as the largest open set contained in A.
 - We can interpret \overline{A} as the smallest closed set containing A. There is a very interesting parallel between this definition and the notion of smallest σ -algebra containing a collection. The smallest σ -algebra containing a collection is the intersection of all σ -algebra that contains

that collection.

Proposition 1.1 — Basic Properties. Let (X, \mathcal{T}) be a topological space, and $A, F \subseteq X$ a subset. Then we have

- (a) $A^{\circ} \subseteq A \subseteq \overline{A}$.
- (b) A° is open and \overline{F} is closed.
- (c) A is open iff A = A°.
 (d) F is closed iff F = F̄.
 (e) (Ā)^c = (A^c)°.
 (f) (A°)^c = (Ā^c).

- (g) A is open iff it is a neighborhood of all of its points.
- (a) If A₁ ⊆ A₂ then A₁° ⊆ A₂° as well as Ā₁ ⊆ Ā₂.
 (i) (A°)° = A°, and (Ā) = Ā.
 (j) Ā₁ ∪ Ā₂ = Ā₁ ∪ Ā₂.
 (k) (A₁ ∩ A₂)° = A₁° ∩ A₂°.
 (l) Ā = A ∪ A', where A' is the derived set of A.

- (m) A is closed iff $A' \subset A$. In words, A is closed iff it contains all of its accumulation points.
- *Proof.* (a) Let $x \in A^{\circ}$. Then $\exists V \in \mathcal{T}$ such that $x \in V \subseteq A$. Thus $x \in A$, so $A^{\circ} \subseteq A$. For the second part, Let $x \in A$. Then $x \in F$ for every F that contains A. Consider the intersection of all such Fs that are also closed. x also belongs to their intersection, which is by definition \overline{A} . So $A \subseteq \overline{A}$.
 - (b) A° is open since it is the union of open sets. \overline{F} is closed since it is the intersection of closed sets.
 - (c) First, we assume A is open. Since $A^{\circ} = \bigcup V$ for all $V \subseteq A$ and V open, we can take the collections of open sets on the RHS to be only A, and it proves that $A^{\circ} = A$. For the other direction, we assume $A = A^{\circ}$. We know that A° is open. Thus A is also open.
 - (d) First, we assume that F is closed. Then since $\overline{F} = \bigcap A$ where $F \subseteq A$ and A is closed, we can take the union on the RHS to be F and this proves that $F = \overline{F}$. For the converse, we assume $F = \overline{F}$. Since \overline{F} is open this implies that F is closed.
 - (e) Let $x \in (\overline{A})^c$. This implies $x \in (\overline{A})^c = (\bigcap_{\substack{A \subseteq F, \\ F \text{closed}}} F)^c = \bigcup_{\substack{A \subseteq F, \\ F \text{closed}}} F^c$. Let $F^c = V$. Then we can write

$$x \in \bigcup_{\substack{V \subseteq A^c \ V \text{ open}}} V = (A^c)^{\circ}.$$

So $(\overline{A})^c \subseteq (A^c)^\circ$. For the converse, let $x \in (A^c)^\circ$. This implies $x \in \bigcup_{\substack{V \subseteq A^c, \\ V \text{ open}}} V$. Or equiva-

lently $x \notin \bigcap_{\substack{V \subseteq A^c, \ V \text{ open}}} V^c$. Let $F = V^c$. Then we can write

$$x \notin \bigcap_{\substack{A \subseteq F, \\ F \text{closed}}} F = \overline{A}.$$

So $x \in (\overline{A})^c$. Thus we conclude that $(\overline{A})^c = (A^c)^\circ$.

(f) Let $x \in (A^{\circ})^c$. Then

$$x \in (\bigcup_{\substack{V \subseteq A, \\ V \text{ open}}} V)^c = \bigcap_{\substack{V \subseteq A, \\ V \text{ open}}} V^c = \bigcap_{\substack{A^c \subseteq F, \\ F \text{ closed}}} F = \overline{A^c}.$$

This implies $(A^{\circ})^c \subseteq \overline{A^c}$. For the converse let $x \in \overline{A^c}$. Then $x \in \bigcap_{\substack{A^c \subseteq F, \\ F \text{closed}}} F$. This implies

$$x \notin \bigcup_{\substack{A^c \subseteq F, \\ F \text{closed}}} F^c = \bigcup_{\substack{V \subseteq A, \\ V \text{ open}}} V = A^{\circ}.$$

This implies that $x \in (A^{\circ})^c$. Thus $\overline{A^c} \subseteq (A^{\circ})^c$.

- (g) We assume that A is open. Then for any $x \in A$ we have $x \in A \subseteq A$. Thus A is a neighborhood of x. For the converse, we assume that A is a neighborhood of all of its points. So for any $x \in A$ there exits $V_x \in \mathcal{T}$ such that $x \in V \subseteq A$. A can be written as $A = \bigcup_x V_x$ where V_x is as above. This A is open.
- (h) Let $x \in A_1^{\circ}$. Then $\exists V \in \mathcal{T}$ such that $x \in V \subseteq A_1$. From assumption we also have $x \in V \subseteq A_2$. This implies that $x \in A_2^{\circ}$. For the second statement, let $x \in \overline{A_1}$.
- (i) to be added.
- (j) to be added.
- (k) to be added.
- (1) \Longrightarrow . We want to show $\overline{A} \subseteq A \cup A'$. We will prove by contrapositive. I.e. we equivalently prove $A^c \cap (A')^c \subseteq \overline{A}^c$. Let $x \in A^c \cap (A')^c$. This implies that $x \notin A$ as well as $x \notin A'$. So $\exists U \in \mathcal{T}$ such that $A \cap U = \emptyset$ (note that we both used $x \notin A$ and $x \notin A'$). Thus $x \in U \subseteq A^c$. This implies $x \in (A^c)^\circ = \overline{A}^c$.
 - \sqsubseteq . We know that $A \subseteq \overline{A}$. So it suffices to show $A' \subseteq \overline{A}$. It is easier to prove the contrapositive, i.e. $(\overline{A})^c \subseteq (A')^c$ or equivalently $(A^c)^\circ \subseteq (A')^c$. Let $x \in (A^c)^\circ$. This implies $\exists U \in \mathcal{T}$ such that $x \in U \subset A^c$. So $A \cap (U \setminus \{x\}) = \emptyset$, thus $x \notin A'$, or equivalently $x \in (A')^c$.
- (m) \Longrightarrow . Assume A is closed. Then $A = \overline{A}$. Using above we will have $\overline{A} = A \cup A'$ it implies that $A' \subseteq A$.
 - $\overline{\Leftarrow}$. Assume $A' \subseteq A$. Then from above $\overline{A} = A \cup A'$ it implies that $\overline{A} = A$, hence A is closed.
- Remark In item (e), by taking the complement from both sides we will have

$$\overline{A} = ((A^c)^{\circ})^c$$

1.1 Sporadic Notes

In this section I will include the nodes that do not fit with the current layout of the document and will be added later when I start writing the corresponding sections.

observation 1.1 The subspace topology is the weakest topology that makes the inclusion map continuous. Let (X, \mathcal{T}) be a topological space, and let $A \subseteq X$. The topological space (A, \mathcal{T}_A) is a topological space and \mathcal{T}_A is called the subspace topology. Define the inclusion map

$$\iota:A\to X.$$

The subspace topology is the weakest topology for which ι is continuous. Let $U \in \mathcal{T}$. Then $\iota^{-1}(U) = A \cap U \in \mathcal{T}_A$. TODO: I above I just showed that under the subspace topology, the inclusion map is continuous. However, I also need to show that \mathcal{T}_A is the smallest such topology.

Here is a list of theorems that are used in the problem sets.

Proposition 2.1 — Some properties. 1. Let $T \in L(X, X)$. Then $||T^n|| \le ||T||^n$.

Proof. (a) We demonstrate the statement for the case where n=2, and the general result follows by induction. Observe that

$$||T^2x|| = ||T(Tx)|| \le ||T|| ||Tx|| \le ||T||^2 ||x||.$$

Since $||T^2||$ is smallest constant C such that $||T^2x|| \le C||x||$ for all $x \in X$, the it follows that $||T^2|| \le ||T||^2$.

2.1 Elements of Functional Analysis

■ Problem 2.1 — Folland: Ch5,P7.

Solution (a) First, we want to show that the series $\sum_{n=0}^{\infty} (I-T)^n$ converges. First, observe that this series converges absolutely. Because

$$\sum_{n=0}^{\infty} \left\| (I-T)^n \right\| \leq \sum_{n=0}^{\infty} \left\| I-T \right\|^n \leq \sum_{n=0}^{\infty} \gamma^n = \frac{1}{1-\gamma} < \infty.$$

Using the fact that X is a Banach space (hence complete), it follows that L(X, X) is also complete, thus by Theorem 5.1 Folland the absolutely convergent series converges in L(X, X). Let

$$L(X,X)\ni X=\sum_n(I-T)^n.$$

Now we want to prove that X is left and right inverse of T. To see this we can write

$$(I-T)X = \sum_{n=0}^{\infty} (I-T)^{n+1} = \sum_{n=1}^{\infty} (I-T)^n = \sum_{n=0}^{\infty} (I-T)^n - I = X - I.$$

This implies

$$TX = X$$
.

With a similar argument we can get X(I-T) = X - I, thus XT = I. So we conclude that X is the right and the left inverse of T, thus T is a bijection and $X = T^{-1}$.

■ Remark I think in above, when we proved that $X \in L(\mathcal{X}, \mathcal{X})$, we automatically proved that T^{-1} is bounded. However, in the solution manual that I got the idea of proof, the author separately proves that T^{-1} is bounded. For the sake of completeness I will do the same here as well.

To show that T^{-1} is bounded, consider the sequence of partial sums of T^{-1}

$$S_n = \sum_{i=1}^n (I - T)^n.$$

Using the continuity of $\|\cdot\|$ we can write

$$||T^{-1}x|| = ||\lim_{n} S_{i}x|| = \lim_{n} ||S_{n}x|| \le \lim_{n} \sum_{i=0}^{n} ||(I-T)^{n}x|| \le \lim_{n} \sum_{i=0}^{n} ||I-T||^{n}||x|| \le \frac{||x||}{1-\gamma}.$$

(b) Observe that

$$\left\| (ST^{-1} - I) \right\| = \left\| (ST^{-1} - I)TT^{-1} \right\| = \left\| ST^{-1} - TT^{-1} \right\| \le \left\| (S - T) \right\| \left\| T^{-1} \right\| < 1.$$

So ST^{-1} has an inverse $A \in L(\mathcal{X}, \mathcal{X})$ and we have $A = TS^{-1}$. So $S^{-1} = T^{-1}A$. It is also easy to see that S^{-1} is bounded. Because

$$||S^{-1}x|| \le ||T^{-1}|| ||A|| ||x||.$$

3.1 Chapter 11: Linear Operators On Normed Spaces

observation 3.1 — Elaboration on Example 11.6. Let

$$P:=\{p:[0,1]\to\mathbb{R}\ |\ p\in\mathbb{R}[x]\}.$$

In Example 11.6 we show that the differentiation operator defined as Tp = p' is not a continuous operator in P. In this box I will proved a second way to see this. First, note that the relation between P as a linear subspace of $C([0,1],\mathbb{R})$ is similar to the relation between \mathbb{Q} and \mathbb{R} when they are defined over the field \mathcal{F}_2 . So similar to the dyadic expansion of a real number and representing it as a sequence of zeros and ones, we can also express the elements of $C([0,1],\mathbb{R})$ as a Taylor expansion and record the coefficients as a sequence of real numbers (don't take this analogy to serious, since we have smooth functions that are not analytic, hence do not have a Taylor's expansion!). So the elements of P will be sequences of real numbers with finite support. We summarize our note so far as below.

Summary 3.1 Elements of P can be seen as the sequence of real numbers with finite support. Then the $\|\cdot\|_{\infty}$ of $p \in P$ with coordinates $(\xi_0, \xi_1, \cdots,)$ will be

$$||p||_{\infty} = \sum_{i \in \mathbb{N}} \xi_i,$$

that is a finite sum because the sequence if finitely supported.

Now consider the polynomials $p_n(t) = t^n/n$. The coordinates of this polynomial is

$$p_n = (0, \cdots, 0, \underbrace{1/n}_{n^{\text{th}} \text{ position}}, 0, \cdots),$$

So

$$||p_n||_{\infty} = \frac{1}{n}.$$

It is easy to see

$$p'_n = (0, \cdots, 0, \underbrace{1}_{(n-1)^{\text{th position}}}, 0, \cdots),$$

whose norm is

$$||p_n'||_{\infty} = 1.$$

So with this norm p_n is converging to zero, but p_n' is not. So T is not continuous.

Proposition 3.1 See proposition 11.7 in textbook.

Proof. (i) \Longrightarrow (ii): Let $B \subset X$ by any bounded set. Then $\exists r \in \mathbb{R}$ such that $B \subset \mathbb{B}(0,r)$. We claim that $T\mathbb{B}(0,r) \subset \mathbb{B}_Y(0,Mr)$. Let $y \in TB(0,r)$. So $\exists x \in X$ such that $\|x\| \leq r$ and Tx = y. By hypothesis $\|Tx\| \leq M\|x\| \leq Mr$. So $Tx \in \mathbb{B}_Y(0,Mr)$.

(ii) \implies (i): Image of any bounded set is bounded. In particular $T\mathbb{B}(0,1)\subset\mathbb{B}_Y(0,M)$. So

$$||Tx|| = ||x|| \left| \left| T \frac{x}{||x||} \right| \right| \le M||x||,$$

where we have used the fact that $\frac{x}{\|x\|} \in B(0,1)$.

4. Random Question

■ Problem 4.1 Let $(X, \|\cdot\|)$ be a finite dimensional vector space over K, where $K = \mathbb{R}$ or \mathbb{C} . Then there is a finite basis $(e_i)_{i=1}^n$ for the vector space X. Therefore, the linear map $\phi: K^n \to X$ defined by

$$\phi(a_1, \dots, a_n) = \sum_{i=1}^n a_i e_i \quad \text{for all } (a_1, \dots, a_n) \in K^n,$$

is a bijection. Let K^n be equipped with the norm $\|(a_1, \dots, a_n)\|_1 = \sum_{i=1}^n |a_i|$ for all $i = 1, \dots, n$.

- (a) Show that ϕ is a bounded linear map from $(K^n,\|\cdot\|_1)$ to $(X,\|\cdot\|).$
- (b) Show that the unit sphere $S = \{(a_1, \dots, a_n) \in K^n : \sum_{i=1}^n |a_i| = 1\}$ in $(K^n, \|\cdot\|_1)$ is a compact subset of K^n .
- (c) Show that $\phi^{-1}:(X,\left\|\cdot\right\|)\to (K^n,\left\|\cdot\right\|_1)$ is also bounded.
- (d) Conclude that any two norms on X are equivalent.
- (e) Show that any finite dimensional normed vector space is a Banach space.

Solution (a) First, we will show that ϕ is a linear map. Let $a, b \in K^n$ and $\alpha \in K$. Then

$$\phi(\alpha a + b) = \sum_{i=1}^{n} (\alpha a + b)_i e_i = \sum_{i=1}^{n} (\alpha a_i + b_i) e_i = \alpha \sum_{i=1}^{n} a_i e_i + \sum_{i=1}^{n} b_i e_i = \alpha \phi(a) + \phi(b).$$

Further, we need to show that this operator is bounded. Let $a \in K^n$. Then we can write

$$\|\phi a\| = \left\| \sum_{i=1}^{n} a_i e_i \right\|$$

$$\leq \sum_{i=1}^{n} |a_i| \|e_i\|$$

$$\leq M \sum_{i=1}^{n} |a_i|$$

$$= M \|a\|_1,$$

where $M = \max_i \{ ||e_i|| \}$.

- (b) Recall that the norm function is a continuous function (in the topology that it is generating). So the pre-image of closed sets is closed. This implies that the pre-image of {1} is closed. So the unit balls is closed. Unit ball is also trivially bounded (contained in unit ball which as a finite radius). On the other hand, in finite dimensional vector spaces, the closed and bounded sets are compact. So unit ball is a finite dimensional vector space is compact.
- (c) Since X and K^n are finite dimensional vector spaces, they are Banach spaces. Since ϕ is a bijective linear map (in particular it is surjective), then by open mapping theorem it is an open mapping. Let $V \subset F^n$ be open. Then $(\phi^{-1})^{-1}(V) = T(V)$ is open. So ϕ^{-1} is continuous. Hence bounded. (The proof idea is coming from Theorem 11.30 Illustrative analysis book).
- (d) Let $\|\cdot\cdot\cdot\|$ and $\|\cdot\|_*$ be two norms on X. Then for $v\in X$ we can write

$$\begin{split} \|v\| &= \|\phi x\| \leq \|\phi\| \|x\|_1 \\ &\leq \|\phi\| \left\|\phi^{-1}v\right\|_1 \\ &\leq \|\phi\| \left\|\phi^{-1}\right\| \|v\|_*. \end{split}$$

Similarly, we can write

$$||v||_* \le ||\phi|| ||\phi^{-1}|| ||v||.$$

So we will have

$$\frac{\|v\|_*}{\|\phi\|\|\phi^{-1}\|} \le \|v\| \le \|\phi\| \left\|\phi^{-1}\right\| \|v\|_*.$$