

3.1 Messung von Stromstärke und Spannung:

3.1.1 Überspannungsschutz mit Halbleiterdioden

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

108

3. Messung elektrischer Größen:

3.1 Messung von Stromstärke und Spannung:

3.1.1 Überspannungsschutz mit Halbleiterdioden

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (1)

Scheitelwert (max. Amplitude)	\hat{u},\hat{i}
Kreisfrequenz	$\omega = 2\pi f$
Periodendauer	T = 1/f
Phase	φ
Spannung	$u = \hat{u} \cdot \sin(\omega t + \varphi_u)$
Strom	$i = \hat{i} \cdot \sin(\omega t + \varphi_i)$

Arithmetischer Mittelwert	$\overline{u} = \frac{1}{T} \int_0^T u(t) dt$	
Gleichrichtwert	$\left \overline{ u } = \frac{1}{T} \int_0^T \left u(t) \right dt$	
Effektivwert (quad. Mittelwert)	$u_{eff} = +\sqrt{\frac{1}{T} \int_{0}^{T} u^{2}(t) dt} = +\sqrt{\sum_{i=1}^{n} u_{eff,i}^{2}}$	
Scheitelfaktor (crest factor)	$C = \frac{\hat{u}}{u_{eff}}$	
Formfaktor	$F = \frac{u_{eff}}{ u }$	
Diese Definitionen gelten auch für nicht-sinusförmige		

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

Größen.

110

3. Messung elektrischer Größen:

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (1)

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (2)

(aus: R. Lerch: Elektrische Messtechnik)

Spitzenwert-Gleichrichtung (Spannungs- und Stromverlauf)

(aus: R. Lerch: Elektrische Messtechnik)

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

112

3. Messung elektrischer Größen:

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (3)

Spitzenwertmessung mit Delon-Schaltung

(aus: R. Lerch: Elektrische Messtechnik)

Doppelweg-Gleichrichtung mit Graetz-Schaltung

a: Schaltung, b: Spannungsverlauf

(aus: R. Lerch: Elektrische Messtechnik)

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (Messwandler 1)

Abb. 6.36. Ersatzschaltbild eines Transformators. Der im Ersatzschaltbild enthaltene Übertrager (Übersetzungsverhältnis \ddot{u} : 1) weist ideale Eigenschaften auf.

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

114

3. Messung elektrischer Größen:

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (Messwandler 1)

Abb. 6.37. Transformator-Ersatzschaltbild, bei dem alle sekundärseitig auftretenden Größen und Elemente auf die Primärseite umgerechnet wurden.

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (Messwandler 2)

$$\frac{U_{\text{1eff}}}{U_{\text{2eff}}} = \frac{N_1}{N_2} = \ddot{u} = k_u$$

$$\underline{Z}_1 = \ddot{u}^2 \cdot \underline{Z}_2 = k_u^2 \cdot \underline{Z}_2$$

$$\ddot{u} >> 1 \Rightarrow \underline{Z}_1 >> \underline{Z}_2$$

Spannungswandlerschaltung mit standardmäßiger Bezeichnung der Anschlußklemmen.

U, V : Primäranschlußklemmen; u, v: Sekundäranschlußklemmen.

(aus: Lerch: Elektrische Messtechnik)

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

116

3. Messung elektrischer Größen:

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (Messwandler 2)

$$\frac{I_{1eff}}{I_{2eff}} = \frac{N_2}{N_1} = \frac{1}{\ddot{u}} = k_i$$

$$\underline{Z}_1 = \ddot{u}^2 \cdot \underline{Z}_2 = \frac{1}{k_i^2} \cdot \underline{Z}_2$$

$$\ddot{u} << 1 \Rightarrow \underline{Z}_1 << \underline{Z}_2$$

Stromwandlerschaltung mit standardmäßiger Bezeichnung der Anschlußklemmen.

K, L: Primäranschlußklemmen; k, I:

Sekund aranschlußklemmen.

(aus: Lerch: Elektrische Messtechnik)

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (Messwandler 3)

Stromwandlerschaltung

(aus: W. Pfeiffer: Elektrische Messtechnik)

Strommesszange

a: prinzipielle Anordnung,b: Querschnittsgeometrie

(aus: R. Lerch: Elektrische Messtechnik)

·

118

3. Messung elektrischer Größen:

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (Messwandler 4)

Ersatzschaltbild einer Strommesszange (sekundärseitig)

(aus: R. Lerch: Elektrische Messtechnik)

Transferimpedanz einer Strommesszange

(aus: R. Lerch: Elektrische Messtechnik)

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (Messwandler 5)

Prinzip einer Gleichstrommesszange

(aus: R. Lerch: Elektrische Messtechnik)

Prinzip eines Hallelements

(aus: E. Hering, R. Martin, M. Stohrer: Physik für Ingenieure)

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

120

Literatur für Kap 3.1.2

Autor	Titel	Verlag
R. Lerch	Elektrische Messtechnik Kapitel 6.3	Springer Verlag
E. Schrüfer L. Reindl B. Zagar	Elektrische Messtechnik Kapitel 2.1.3 (Deckung nur teilweise!)	Hanser Verlag
T. Mühl	Einführung in die elektrische Messtechnik Kapitel 5.2 (Deckung nur teilweise!)	Hanser Verlag