AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Previously presented) A compound of formula I:

$$\mathbb{R}^3$$
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^2
 \mathbb{R}^2
 \mathbb{R}^2
 \mathbb{R}^3

X is CH;

Y is halo, trifluorophenoxy, or tetrafluorophenoxy;

R² is C₁₋₆ straight chained or branched alkyl;

R³ is hydrogen, halo, OCF₃, CN, or CF₃; and

R⁴ is hydrogen, halo, OCF₃, SR, CN, CF₃, Ar, or T-Ar; wherein:

T is O or S;

R is a C_{1-6} straight chained or branched alkyl;

Ar is a phenyl ring optionally substituted with 1-3 groups selected from halo,

CH₃, CF₃, CN, OMe, OCF₃, and

NR⁵R⁶; and

 R^5 and R^6 each is independently H or C_{1-6} straight chained or branched alkyl, or R^5 and R^6 , taken together, form a 5-7 membered ring optionally containing up to 3 heteroatoms selected from O, S, NH, and N(C_{1-6} -straight chained or branched alkyl); provided that when Y is halo, then both, R^3 and R^4 , are not simultaneously hydrogen.

- 2. (Original) The compound according to claim 1, wherein R² is ethyl, n-propyl, or isopropyl.
- 3. (Original) The compound according to claim 2, wherein Y is F, trifluorophenoxy, or tetrafluorophenoxy.

4. (Original) The compound according to claim 1, having formula IA:

wherein:

R² is ethyl, n-propyl, or isopropyl; and

 R^3 and R^4 are each independently hydrogen, halo, OCF₃, CN, CF₃ or Ar, provided that both, R^3 and R^4 , are not simultaneously hydrogen.

- 5. (Original) The compound according to claim 4, wherein R² is ethyl.
- 6. (Original) The compound according to claim 4, wherein R³ is hydrogen.
- 7. (Original) The compound according to claim 4 or claim 5, wherein R^3 is H, and R^4 is F, Cl, CN, Ar, or CF₃.
 - 8. (Original) The compound according to claim 7, wherein R⁴ is Cl or CF₃.
- 9. (Previously presented) The compound according to claim 1, having the formula IB:

wherein:

X is CH;

R² is ethyl, n-propyl, or isopropyl;

 R^3 and R^4 are each independently hydrogen, halo, OCF₃, CN, or CF₃; and Ar^2 is trifluorophenyl or tetrafluorophenyl.

- 10. (Original) The compound according to claim 9, wherein Ar² is 2,3,5,6-tetrafluorophenyl.
 - 11. (Original) The compound according to claim 9, wherein R² is ethyl.
 - 12. (Original) The compound according to claim 9, wherein X is CH.
 - 13. (Original) The compound according to claim 12, wherein R⁴ is Cl or CF₃.
- 14. (Original) The compound according to any one of claims 9-12, wherein \mathbb{R}^3 is H, and \mathbb{R}^4 is F, Cl, or CF₃.

15-19. (Canceled)

20. (Previously presented) The compound of claim 1, selected from:

3.

- 21. (Original) A pharmaceutical composition comprising:
 - a) a compound according to claim 1; and
 - b) a pharmaceutically acceptable carrier, adjuvant or vehicle.
- 22-30. (Canceled)

21.

and

31. (Previously presented) A method of preparing a compound of formula I,

$$R^3$$
 X
 O
 O
 O
 O
 I

said method comprising:

reacting an acid or acid derivative of formula II,

$$R^3$$
 X
 O
 O
 II

with an amino alcohol of formula B, to provide a compound of formula III,

converting intermediate III to compound I, wherein;

X is CH;

Y is halo, trifluorophenoxy, or tetrafluorophenoxy;

R² is a C₁₋₆ straight chained or branched alkyl;

R³ is hydrogen, halo, OCF₃, CN, or CF₃; and

R⁴ is hydrogen, halo, OCF₃, SR, CN, CF₃, Ar, or T-Ar; wherein:

T is O or S;

R is a C₁₋₆ straight chained or branched alkyl;

Ar is a phenyl ring optionally substituted with 1-3 groups selected from halo, CH_3 , CF_3 , CN, OMe, OCF_3 , and NR^5R^6 ;

 R^5 and R^6 each is independently H or $C_{1\text{-}6}$ straight chained or branched alkyl, or R^5 and R^6 , taken together, form a 5-7 membered ring optionally containing up to 3 heteroatoms selected from O, S, NH, and N($C_{1\text{-}6}$ straight chained or branched alkyl); and

R⁷ is a suitable protecting group;

provided that when Y is halo, then both, R³ and R⁴, are not simultaneously hydrogen.

32. (Previously presented) A compound of formula IIA:

$$R^3$$
 X
 O
 N
 O
 R^2
 IIA

wherein;

X is CH;

R² is a C₁₋₆ straight chained or branched alkyl;

R³ is hydrogen, halo, OCF₃, CN, or CF₃; and

R⁴ is hydrogen, halo, OCF₃, SR, CN, CF₃, Ar, or T-Ar; wherein:

T is O or S;

R is a C₁₋₆ straight chained or branched alkyl;

Ar is a phenyl ring optionally substituted with 1-3 groups selected from halo, CH₃, CF₃, CN, OMe, OCF₃, and

NR⁵R⁶; and

 R^5 and R^6 each is independently H or C_{1-6} straight chained or branched alkyl, or R^5 and R^6 , taken together, form a 5-7 membered ring optionally containing up to 3 heteroatoms selected from O, S, NH, and N(C_{1-6} -straight chained or branched alkyl).

33. (Currently amended) The compound according to claim 31 or 32 wherein R² is ethyl or isopropyl.