Parallel PySAL

Autoregression and Complex System Framework Integration

Jason Laura, Robert Pahle, Sergio Rey, Luc Anselin

GeoDa Center for Geospatial Analysis and Computation Arizona State University

August 17, 2014

Outline

PySAL

Substantive Application: Spatial Econometrics

Implementation

PySAL

- ► Spatial analysis library
- ► Big data world
- ▶ v 1.8 July 2014

pPySAL

- contiguity builder
- ► max-p region
- ▶ p-lisa
- ▶ fisher jenks
- spatial regimes

Lessons Learned

- Hardware dependence
- ▶ No holy grail of automatic parallelization
- ▶ Need a roadmap = Taxonomy
 - Guidance on "best practice"
 - Identify dead ends

Specification Strategies

Spatial Econometrics

Specification Strategies

${\sf GeoDaSpace}$

- ► GUI ontop of spreg
- Subset of spreg functionality
- ► Cross-platform

Specification Searches

- Specific to General
 - $y = X\beta + \epsilon$
 - OLS + Lagrange Multiplier Tests
- General to Specific
 - $y = \rho Wy + X\beta + (I \lambda W)^{-1}\nu$
 - ► ML + Restrictions

Specification Strategies

LM Based Specification

Parallel PySAL

Substantive Application: Spatial Econometrics

ArcGIS Toolbox

ArcGIS Toolbox

ArcGIS Toolbox

ArcGIS Toolbox

Parallel PvSAL

Implementation

Parallelization

Root Node: Ordinary Least Squares Regresion

Then

- A. If Lagrange Multiplier Test for Spatial Error Model < p-value AND Lagrange Multiplier Test for Spatial Lag Model < p-value
 - 1. If Robust Lagrange Multiplier Test for Spatial Error p-value < p-value and Robrust Lagrange Multiplier Test for Spatial Lag Model p-value < p-value > p-value = p-v
 - a. If NOT combo i. twosls sp.GM Lag
 - ii. "Spatial Lag with Spatial Error HAC"
 - b. Elif Koenker Basset Statistic p-value < p-value
 - i. error_sp_het.GM_Combo_Het 11. "Spatial Lag with Spatial Error - Heteroskedastic"
 - c. Else
 - i. error_sp_hom.GM_Combo_Hom
 - ii. "Spatial Lag with Spatial Error Homoskedastic"
 - 2. Else If Robust Lagrange Multiplier Test for Spatial Error p-value < p-value and RLM for Spatial Lag p-value > p-value > a. If OLS Koenker Basset Statistic p-value < p-value
 - 1. error sp het.GM Error Het ii. "Spatial Error - Heteroskedastic"
 - b. Else If OLS Koenker Basset Statistic p-value > p-value
 - i. error_sp_hom.GM_Error_Hom
 - ii. "Spatial Error Homoskedastic"
 - 3. Else If RLM for Spatial Error > p-value and RLM for Spatial Lag < p-value
 - a. If OLS Koenker Basset Statistic p-value < p-value i. twosls sp.GM Lag (robut:white)
 - ii. "Spatial Lag Heteroskedastic"
 - b. Else If OLS Koenker Basset Statistic p-value > p-value i. twosls_sp.GM_Lag
 - ii. "Spatial Lag Honoskedastic" 4. Else If RLM for Spatial Error > p-value and RLM for Spatial Lag > p-value

 - b. No Model Robust Test not Significant Check Model.
- B. Else If Lagrange Mutiplier Test for Spatial Error Model < p-value AND Lagrange Mutiplier Test for Spatial Lag > p-value 1. If OLS Koenker Basset Statistic p-value < p-value
 - 1. error sp het.GM Error Het
 - ii. "Spatial Error Heteroskedastic" 2. Else If OLS Koenker Basset Statistic p-value > p-value

 - i. error_sp_hom.GM_Error_Hom ii. "Spatial Error - Homoskedastic"
- C. Else If Lagrange Multiplier Test for Spatial Error Model > p-value AND Lagrange Multiplier Test for Spatial Lag < p-value 1. If OLS Koenker Basset Statistic p-value < p-value
- i. twosls sp.GM Lag (robust-white)
 - ii. "Spatial Lag Heteroskedastic"
 - 2. Else If OLS Koenker Basset Statistic p-value > p-value
 - i. twosls_sp.GM_Lag
 - ii. "Spatial Lag Homoskedastic"
- D. Else Lagrange Multiplier Test for Spatial Error Model > p-value AND Lagrange Multiplier Test for Spatial Lag > p-value
 - 1. If OLS Koenker Basset Statistic p-value < p-value
 - i. ols.OLS (robust-white) 11. "No Space - Heteroskedastic"
 - 2. Else If OLS Koenker Basset Statistic p-value > p-value 1. 014 01.8
 - ii. "No Space Homoskedastic"

Parallel Strategy

- Speculative Parallelism
 - ► Solve' all branches of a search tree
 - Leverage an excess computation model
 - No dependency in execution order
 - Synchronization at the completion of all computation
- Implementation
 - Utilize a processing queue
 - One manager, and n workers
 - Workers draw a regression model from the queue, process, and return the result
 - Scales to where n = number of models to compute
 - Potential to extend to variable parameter specification (larger tree)

Complex Systems Framework

Autoreg in CSF

Model Path

Next Steps

Parallel Autoreg

- Ensemble of search strategies
 - ► short
 - full
 - hybrid
- Candidate Variables
- Candidate Ws

Integration

- CyberGIS Gateway
- Strategies

Come see the demo!

