CSE 604 Artificial Intelligence

Chapter 3: Solving Problems by Searching

Adapted from slides available in Russell & Norvig's textbook webpage

Dr. Ahmedul Kabir

Remember the Vacuum-cleaner world?

•Percepts: location and contents, e.g., [A, Dirty]

•Actions: Left, Right, Suck

Vacuum world state space graph

State space: Set of all reachable states. In state space graph, nodes/vertices = states, links/edges = actions

Formulation of a Problem

- •A Problem is defined by the following items:
 - Set of states the agent can be in, with a designated initial state
 - Set of actions available to the agent
 - **Transition model** describing what each action does (maps a <state, action> pair to a state)
 - Goal test which determines if a given state is a goal state
 - A path cost function that assigns a numeric cost to each path

Vacuum world state space graph

- states? binary dirt and robot location. Any state can be initial state
- <u>actions?</u> Left, Right, Suck
- Transition model? As seen in the state space graph
- goal test? no dirt at all locations
- path cost? 1 per action

Example: The 8-puzzle

- •states?
- •actions?
- •goal test?
- •path cost?

Example: The 8-puzzle

- •states? locations of tiles
- •actions? move blank left, right, up, down
- •goal test? = goal state (given)
- •path cost? 1 per move

Example: The 8-puzzle

Partial state space graph

Example: robotic assembly

- •states?: real-valued coordinates of robot joint angles parts of the object to be assembled
- •actions?: continuous motions of robot joints
- •goal test?: complete assembly
- •path cost?: time to execute

Example: Romania

Search strategies

- A search strategy is defined by picking the order of node expansion
- •Strategies are evaluated along the following dimensions:
 - completeness: does it always find a solution if one exists?
 - time complexity: number of nodes generated
 - space complexity: maximum number of nodes in memory
 - optimality: does it always find a least-cost solution?
- •Time and space complexity are measured in terms of
 - b: maximum branching factor of the search tree
 - *d*: depth of the least-cost solution
 - *m*: maximum depth of the state space (may be ∞)

Uninformed search strategies

- •Uninformed search strategies use only the information available in the problem definition
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Depth-limited search
 - Iterative deepening search

Basic concept

- Frontier (or fringe): The set of all leaf nodes available for expansion at any given point
- •The basics of each algorithm:
 - Start from initial node
 - Expand adjacent nodes and put them in the frontier
 - Choose the next node from the frontier for expansion
 - Repeat until goal is found, or some ending criteria is met
- The algorithms differ in the way they choose the next node from the frontier

- •Expand shallowest unexpanded node
- •Implementation:
 - frontier is a FIFO queue, i.e., new successors go at end

- •Expand shallowest unexpanded node
- •Implementation:
 - frontier is a FIFO queue, i.e., new successors go at end

- •Expand shallowest unexpanded node
- •Implementation:
 - frontier is a FIFO queue, i.e., new successors go at end

- •Expand shallowest unexpanded node
- •Implementation:
 - frontier is a FIFO queue, i.e., new successors go at end

Properties of breadth-first search

•Complete? Yes (if *b* is finite)

- •<u>Time?</u> $1+b+b^2+b^3+...+b^d = O(b^d)$
- •Space? $O(b^d)$ (keeps every node in memory)
- •<u>Optimal?</u> Yes (if cost = 1 per step)
- •Space is the bigger problem (more than time)

Uniform-cost search

- •Expand least-cost unexpanded node
- •Implementation:
 - frontier = queue ordered by path cost
- Equivalent to breadth-first if step costs all equal
- Complete? Yes, if step cost $\geq \varepsilon$
- •<u>Time?</u> # of nodes with $g \le \cos t$ of optimal solution, $O(b^{ceiling(C^*/\varepsilon)})$ where C^* is the cost of the optimal solution
- •Space? # of nodes with $g \le \text{cost of optimal solution}$, $O(b^{\text{ceiling}(C^*/S)})$
- Optimal? Yes nodes expanded in increasing order of g(n)

- •Expand deepest unexpanded node
- •Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- •Expand deepest unexpanded node
- •Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- •Expand deepest unexpanded node
- •Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- •Expand deepest unexpanded node
- •Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- •Expand deepest unexpanded node
- •Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- •Expand deepest unexpanded node
- •Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- •Expand deepest unexpanded node
- •Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- •Expand deepest unexpanded node
- •Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- •Expand deepest unexpanded node
- •Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- •Expand deepest unexpanded node
- •Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- •Expand deepest unexpanded node
- •Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- •Expand deepest unexpanded node
- •Implementation:
 - frontier = LIFO stack, i.e., put successors at front

Properties of depth-first search

- •Complete? No: fails in infinite-depth spaces, spaces with loops
 - Modify to avoid repeated states along path complete in finite spaces
- •<u>Time?</u> $O(b^m)$: terrible if m is much larger than d
 - but if solutions are dense, may be much faster than breadth-first
- •Space? O(bm), i.e., linear space!
- •Optimal? No

Depth-limited search

= depth-first search with depth limit *l*, i.e., nodes at depth *l* have no successors

- •Complete? No
- •<u>Time?</u> $O(b^l)$
- •Space? O(bl)
- •Optimal? No

= depth-limited search on repeat!Limit / is increased at each iteration until goal is found

```
function Iterative-Deepening-Search (problem) returns a solution, or failure inputs: problem, a problem  \begin{array}{l} \text{for } depth \leftarrow 0 \text{ to } \infty \text{ do} \\ result \leftarrow \text{Depth-Limited-Search} (problem, depth) \\ \text{if } result \neq \text{cutoff then return } result \end{array}
```


Properties of iterative deepening search

• Complete? Yes

• Time?
$$(d+1)b^0 + db^1 + (d-1)b^2 + \dots + b^d = O(b^d)$$

•Space? O(bd)

• Optimal? Yes, if step cost = 1

Summary of algorithms

Criterion	Breadth-	Uniform-	Depth-	Depth-	Iterative
	First	Cost	First	Limited	Deepening
Complete? Time Space Optimal?	Yes^a $O(b^d)$ $O(b^d)$ Yes^c	$\operatorname{Yes}^{a,b}$ $O(b^{1+\lfloor C^*/\epsilon \rfloor})$ $O(b^{1+\lfloor C^*/\epsilon \rfloor})$ Yes	No $O(b^m)$ $O(bm)$ No	No $O(b^\ell)$ $O(b\ell)$ No	Yes^a $O(b^d)$ $O(bd)$ Yes^c