- **2.1.** Изобразите на диаграмме (P,V) изменения состояния рабочего газа за цикл работы двигателя.
- **2.2.** Найдите коэффициент полезного действия двигателя η .

Часть 3.

Рассмотрите работу двигателя в рамках следующих допущений:

- сила атмосферного давления на поршень постоянна и равна силе упругости пружины в начальной точке цикла F_0 ;
- сила трения, действующая на поршень со стороны стенок, постоянна по модулю и равна $0.10F_0$;
- все газовые процессы являются равновесными и обратимыми.
- 3.1. Изобразите на диаграмме (P,V) изменения состояния рабочего газа за цикл работы двигателя.
- 3.2. На сколько процентов изменится коэффициент полезного действия устройства из-за наличия трения?

Часть 4

Сейчас вам предстоит оценить влияние неравновесности реально протекающих процессов.

4.1. По очень длинной горизонтальной трубе может двигаться без трения поршень. С обеих сторон поршня находится воздух (средняя молярная масса $M = 29 \cdot Monb^{-1}$) при температуре T = 800 K. Давление газа с одной стороны поршня равно $P = 5,0 \cdot 10^5 \, \Pi a$, а с

другой на $\Delta P = 5.0 \cdot 10^2 \, \Pi a$ больше. Оцените скорость установившегося движения поршня.

4.2. Оцените, на сколько изменится КПД рассматриваемого двигателя при учете неравновесности процесса расширения, процесс сжатия считайте равновесным. Считайте, что рабочим газом является воздух, средняя температура газа в этом процессе T = 800K, среднее давление $P = 5.0 \cdot 10^5 \, \Pi a$.

Задача 11-3. «Магнитная регулировка»

В данной задаче исследуется возможность управлением течением жидкости помощью магнитного поля. В качестве жидкости используется растительное масло, смешанное с железными опилками. Эта мелкими протекает по длинной узкой горизонтальной

трубке, которая проходит через тонкую кольцевую катушку, по которой пропускают постоянный электрический ток. Ось катушки совпадает с осью трубки.

Параметры устройства:

- внутренний радиус трубки $r_0 = 1,0$ мм;
- радиус катушки R = 1,0см; катушка содержит N = 100 витков;
- опилки можно считать железными шариками диаметром a=0,10мм, плотность железа $\rho=7,8\cdot 10^3 \frac{\kappa c}{M^3}$; ускорение свободного падения $g=9,8\frac{M}{c^2}$;
- плотность масла $\rho_0 = 0.80 \cdot 10^3 \frac{\kappa z}{M^3}$;
- концентрация опилок в неподвижном масле $n_0 = 10 \frac{umy\kappa}{m^3}$;
- на концах трубки поддерживается постоянная разность давлений $\Delta P_0 = 1,0 \; \kappa \Pi a$;
- магнитная проницаемость масла равна 1, магнитная постоянная $\mu_0 = 4\pi \cdot 10^{-7} \, \frac{\Gamma_H}{_M} \, .$

При отсутствии электрического тока в катушке расход масла (объем, протекающий через трубку в единицу времени) постоянен и равен $q_0 = 10 \frac{c \mathit{M}^3}{\mathit{мин}} \,.$

Скорости движения различных слоев масла внутри трубки различаются и зависят от расстояния до оси. Однако, для упрощения задачи будем считать, что скорость течения постоянна в поперечном сечении (см. также примечание к задаче 1.2). Также будем считать, что сила, действующая на отдельную частицу со стороны магнитного поля, зависит только от расстояния до катушки и не зависит от расстояния до оси.

Часть 1. «Магнитное поле»

1.1 Покажите, что модуль вектора индукции магнитного поля на оси катушки на расстоянии z от ее центра определяется формулой

$$B_z = \mu_0 IN \frac{R^2}{2(R^2 + z^2)^{\frac{3}{2}}} = B_0 \left(1 + \frac{z^2}{R^2} \right)^{-\frac{3}{2}}, \tag{1}$$

где I - сила тока в катушке. Вычислите значение величины

 B_0 при силе тока в катушке $I_0 = 1.0A$.

1.2 Можно, считать, что проекция вектора индукции на ось катушки B_z на заданном расстоянии от центра остается постоянной в поперечном сечении на небольшом расстоянии от оси. **Найдите радиальную составляющую вектора магнитной индукции** B_r , как функцию расстояний до центра катушки z и до ее оси r.

Часть 2. «Опилки»

2.1 При движении опилок в масле на отдельную частицу действует сила сопротивления,, которая пропорциональна диаметру частицы и ее относительной скорости

$$F = \beta v$$
.

Определите численное значение параметра β , если известно, что скорость оседания опилок в неподвижном масле равна $0,10\frac{MM}{c}$.

В дальнейшем используйте обозначение этой величины и ее численное значение.

2.2 При помещении опилок в магнитное поле, каждая частица приобретает наведенный магнитный момент $p_{\scriptscriptstyle m} = \chi \frac{B}{\mu_{\scriptscriptstyle 0}} V$, где V - объем частицы, χ -

магнитная восприимчивость материала, которая для используемых опилок равна $\chi = 800$. Магнитным гистерезисом материала опилок и их взаимодействием следует пренебречь.

Покажите, что сила, действующая на отдельную частицу пропорциональна квадрату силы тока в кольце.

Простейшей системой, обладающей магнитным моментом является контур с током, магнитным моментом такого контура является произведение площади контура на силу тока в нем $p_m = IS$.

2.3 Найдите зависимость силы, действующей на отдельную частицу опилок со стороны магнитного поля кольца, от расстояния до центра кольца, $F_m(z)$ при силе тока в катушке $I_0 = 1,0A$. Считайте, что частица находится на оси системы. **Постройте график этой зависимости**.

Для дальнейших расчетов сделаем еще одно упрощение — будем считать, что сила притяжения опилок к центру кольца постоянная и равна f_0 на расстоянии равном l_0 , а на больших расстояниях пренебрежимо мала. В качестве величины f_0 возьмите половину максимального значения силы

 $F_m(z)$, а в качестве l_0 - удвоенное расстояние от центра кольца, до точки, в которой сила $F_m(z)$ максимальна.

Определите численное значение величины l_0 , а также коэффициент пропорциональности A между параметром f_0 и квадратом силы тока в кольце $f_0 = AI^2$.

Также в дальнейшем используйте эти параметры и их численные значения.

Часть 3. «Течение и расход»

- **3.1** Найдите зависимость концентрации опилок в потоке масла от расстояния до центра кольца при скорости течения масла равной u.
- **3.2** Какую дополнительную разность давлений на масло создает сила магнитного взаимодействия опилок с полем кольца при скорости течения масла равной u?
- **3.3** Чему равно относительное изменение расхода масла $\frac{\delta q}{q_0}$, при силе тока через катушку $I_0 = 1,0A$? Как зависит относительное изменение расхода масла от силы тока в катушке?
- 3.4 При какой силе тока в катушке течение масла прекратится?