Föreläsning om OO och UML

Modellering del II

Kristian Ekberg

Dagens föreläsning

- Repetition
 - Förra föreläsningen
 - Seminarium/workshop förra veckan
 - Modeller i systemutvecklingsprojekt
- Inlämningsuppgiften
- Nästa steg?
- Notation
- OOA modell, OOD modell, Implementationsmodell, Testmodell, ...

Repetition: förra föreläsningen

- Presentation Kristian Ekberg
- Model och modellering
 - Vad är en modell och vad är modellering?
 - Vad menas med modellering inom systemutveckling?
- Systemutvecklingsprocess
 - Historik, OO, RUP och UML
 - Rational Unified Process
 - Iterativ och inkrementell systemutveckling
 - Terminologi, vilka modeller talas om?

Repetition: förra föreläsningen

- OO och UML
 - Grundläggande: objekt, instans, klass, attribut, metod
 - Beskrivning av objekt med UML
 - Grundläggande: association, aggregat och arv
- Diskussion: Verksamhetsmodellering, OOA, OOD, OOP ...

- OOA
 - Genomgång inför fredagens workshop

Möjliga resultat av OOA

- Påbörjad identifiering av problemdomänen/terminologi:
 - Identifierade aktörer, objekt, operationer på/i/av systemet
 - Identifierade användningsfall (lista) på formen: aktör verb substantiv, t ex "kund köper biljett".
 - "Fångade" beräkningar, verksamhetsregler, juridiska krav, etiska krav, standarder, säkerhetskrav etc etc ...
- Påbörjad beskrivning av informationsstruktur (statisk)
- Påbörjad beskrivning (textuell och/eller diagram) av centrala användningsfall, innehållande sekvens av händelser

Nästa steg?

- Analysresultatet kan vara underlag f
 ör planering av fortsatt analys, OOD och implementation
- Möjliga resultat av OOD
 - Statisk beskrivning, t ex klassdiagram
 - Dynamisk beskrivning, t ex sekvensdiagram
- Tips
 - Riskminimering, minska antalet "ny"
 - "When you pray, move your feet" (källa okänd) –rörelse "framåt"
 - "Arbeta på bredden över analysmodellen snarare än på djupet"

Diskussion och frågor

- Rita bild !!
- Modeller, modeller, modeller ...

Källa bild: video Marie Åsberg, AFA Försäkring

Inkrementell systemutveckling

Iterativ systemutveckling

Källa bild: Wikipedia (2015-11-11)

Grundläggande UML

- Objekt / Klass / Instans
 - Attribut (data/kunskap)
 - Metod (tjänst/funktion)
- Relationer
 - Association ("känner till")
 - Aggregat ("består av" / "has a")
 - Arv ("är en" / "is a") eng: generalization, inheritance
- Kardinalitet
 - Antalsförhållande

Grundläggande UML

Exempel

Källa bild: Bellekens.com (2015-11-11)

Källa bild: Wikipedia (2015-11-11)

Källa bild: Wikipedia (2015-11-11)

UML är en standard

- Förvaltas/ägs av Object Management Group OMG
- UML senast gällande specifikation:

http://www.omg.org/spec/UML/

Exempel 1: enkel UML notation

Exempel 2: enkel UML notation

Exempel 3: enkel UML notation

Exempel 4: enkel UML notation

Exempel enkel UML notation

- Klassen Objektet Mother kan i alla fyra exemplen implementeras på samma sätt: en medlemsvariabel children som innehåller en mängd Child objekt instanser.
- Tumregel: "a child can have <u>one</u> mother" <u>källa</u>

Exempel 4: om-design (re-factoring)...

Diskussion och frågor

- Fler begrepp att beröra ...
 - Inkapsling principen
 - Interface / gränssnitt
 - Polymorfism, arv ...
 - **–** ?

- Designfrågor exempel
 - Ska vara klass eller attribut?
 - När är designen klar?
 - Kopplingen objekts tjänster, UML metoder, källkod ...

Tack för idag!

Copyright © Kristian Ekberg 2015

Materialet tillhör upphovsmannen där inte annan källa anges. Materialet kan användas helt eller delvis under förutsättning att upphovsman anges som källa vid användning.

