>>> N-Queens problem and its solutions
Progetto di Ricerca Operativa†

A.A 2021/2022

Name: Francesco Mazza M63001338

Date: Settembre 2022

[1/20]

<sup>†</sup>Prof. Maurizio Boccia

>>> Indice

- 1. Formulazione del problema
- 2. Soluzione Gurobi
- 3. Ricerca locale
- 4. Simulated Annealing

# >>> Formulazione del problema

Il problema delle n regine, ispirato al gioco degli scacchi, fu studiato dal matematico Carl Gauss e formulato nel 1850 come segue:

\* Si vuole trovare la collocazione, in una scacchiera di dimensione NxN, di N regine in modo tale che non possano attaccarsi le une con le altre.



Il numero massimo di regine presenti, dovrà ammontare al numero di righe/colonne della scacchiera considerata: N.

Per  $N \in \{2,3\}$  il problema non ammette alcuna soluzione.

### >>> Modellazione

Una possibile modellazione del problema introduce come variabili decisionali  $x_{i,j}$ .

Dove 
$$x_{i,j} = \begin{cases} 1, & \text{se la posizione (i,j) è occupata} \\ 0, & \text{altrimenti} \end{cases}$$

Pertanto la funzione obiettivo risulta:

$$\max \sum_{i=1}^{N} \sum_{j=1}^{N} x_{i,j}$$

# >>> Modellazione 1/5

A partire dalle regole del gioco degli scacchi, i vincoli devono essere i seguenti:



\* Due regine sulla stessa colonna si attaccano: per ogni colonna dovrà esserci una sola regina.

$$\sum_{i=1}^{N} x_{i,j} = 1$$
 
$$\forall j \in \{1, ..., N\}$$

# >>> Modellazione 2/5

A partire dalle regole del gioco degli scacchi, i vincoli devono essere i seguenti:



\* Due regine sulla stessa riga si attaccano: per ogni riga dovrà esserci una sola regina.

$$\sum_{j=1}^{N} x_{i,j} = 1$$

$$\forall i \in \{1, ..., N\}$$

## >>> Modellazione 3/5

A partire dalle regole del gioco degli scacchi, i vincoli devono essere i seguenti:



\* Per ogni diagonale (2N-1 diagonali) dovrà esserci al massimo una sola regina.

$$\sum_{i,j \in \{1\dots N\}: i-j=k} x_{i,j} \leq 1$$
 
$$\forall k \in \{1-N,...,N-1\}$$

NB: Elementi sulla stessa diagonale
hanno valore di i-j = k (costante e
pari al numero della diagonale!)

# >>> Modellazione 4/5

A partire dalle regole del gioco degli scacchi, i vincoli devono essere i seguenti:



\* Per ogni anti-diagonale (2N-1 diagonali) dovrà esserci al massimo una sola regina.

$$\sum_{i,j \in \{1\dots N\}: i+j=k} x_{i,j} \leq 1$$
 
$$\forall k \in \{2,\dots,2N\}$$

NB: Elementi sulla stessa
anti-diagonale hanno valore di i+j =
k (costante e pari al numero della
anti-diagonale!)

# >>> Modellazione 5/5

Il modello (pli) complessivo risulta:

$$\max \sum_{i=1}^{N} \sum_{j=1}^{N} x_{i,j}$$
 
$$\sum_{j=1}^{N} x_{i,j} = 1 \qquad \forall i \in \{1, ..., N\}$$
 
$$\sum_{i=1}^{N} x_{i,j} = 1 \qquad \forall j \in \{1, ..., N\}$$
 
$$\sum_{i,j \in \{1...N\}: i-j=k} x_{i,j} \leq 1 \qquad \forall k \in \{1-N, ..., N-1\}$$
 
$$\sum_{i,j \in \{1...N\}: i+j=k} x_{i,j} \leq 1 \qquad \forall k \in \{2, ..., 2N\}$$
 
$$x_{i,j} \in \{0,1\} \qquad \forall i, j \in 1, ..., N$$

```
>>> Soluzione Gurobi
```

Si definisce la dimensione del problema da risolvere, si dichiara il modello e la funzione obiettivo, dopo aver introdotto le variabili binarie.

```
1 # Dimensioni scacchiera:
 n = 8
3
  # Creazione modello:
  m = gp.Model("NQUEENS")
6
   # Introduciamo le variabili decisionali:
  x = m.addMVar((n, n), vtype=GRB.BINARY, name="x")
9
   # Funzione obiettivo: massimizzare il numero delle regine ...
10
      presenti (n):
11 m.setObjective(x.sum(), GRB.MAXIMIZE)
```

# >>> Soluzione Gurobi

Introduzione dei vincoli per righe e colonne:

```
# Per ogni riga/colonna valgono i seguenti constraints:
for i in range(n):

# Al massimo una regina per riga:
m.addConstr(x[i, :].sum() == 1, name="row"+str(i))

# Al massimo una regina per colonna:
m.addConstr(x[:, i].sum() == 1, name="col"+str(i))
```

## Per i vincoli sulle diagonali bisogna osservare che:

- \* Sono in numero 2N-1.
- \* Si può ciclare sul numero di diagonali elencando i valori di i e j appartenenti a ciascuna. Si impone allora che la somma sugli gli indici che soddisfano la condizione sia <1.

```
>>> Soluzione Gurobi
```

## Introduzione dei vincoli sulle diagonali:

```
1 # Elenco tutti gli indici da considerare per ogni diag ...
      nella somma (vettori I e J)
2
  for k in range (1-n, n-1):
4
      I = []
  J = []
6 for i in range(n):
           for j in range(n):
7
               if (i-j) == k:
8
                   I.append(i)
                   J.append(j)
10
       m.addConstr(x[I, J].sum() \le 1, name="diag"+str(k))
11
```

Analogo ragionamento per le anti-diagonali.

# >>> Soluzione Gurobi

Si riescono ad ottenere soluzioni in tempi ragionevoli per ordini di grandezza dell'ordine delle centinaia di righe/colonne.







Per la risoluzione di problemi di ottimizzazione combinatoria, spesso si ricorre a metodi euristici i quali permettono di ottenere soluzioni anche per istanze del problema con  $\mathbb N$  elavati.

#### >>> Ricerca locale

- \* In euristiche di tipo migliorativo, può ragionare in termini di numero di conflitti sulle regine posizionate. min{conflicts}.
- \* Mossa: A partire dalla soluzione corrente  $S_i$ , scambia la colonna per due regine poste su righe diverse. Facendolo per ogni colonna si indaga l'introno di  $S_i$





Dove la formattazione è vettoriale, e ogni v[i] rappresenta la pos. di colonna, sulla riga i-esima.

Esempio:  $[1,4,2,3] \longrightarrow [2,4,1,3]$ 

Cioé esprimiamo la soluzione come una permutazione di elementi posti sulle varie colonne:  $\Pi = \{\pi(1), \pi(2), ...\pi(N)\}$ .

[3. Ricerca locale]\$ \_

# >>> Ricerca locale

- 1. Genera randomicamente una soluzione con N regine:
- 2. Data la soluzione corrente  $S_i$ : per una riga random, scambia il valore di colonna con quello di ogni altra riga.
- 3. Seleziona la soluzione migliore  $S^*$ .
  - 3.1 Se  $conflicts(S^*) \leq conflicts(S_i) \longrightarrow S_{i+1} = S^*$ , poi torna allo step 2.
  - 3.2 Se  $conflicts(S^*) = 0$  OR  $i \ge MaxIterations \to Stop$ .

```
(Esempio S: [4,1,3,2] 1, swap riga 4)
```

- $S^1$ : Swap 4 1 [2,1,3,4] conflitti:
- $S^2$ : Swap 4 2 [4,2,3,1] conflitti:
- $S^3$ : Swap 4 3 [4,1,2,3] conflitti: 4

 $S^4$ : Swap 4 4 [4,1,3,2] conflitti: 1  $\rightarrow$  nuova S corrente.

[3. Ricerca locale]\$ \_ Γ15/20<sub>1</sub>

### >>> Tabu search

Si può evitare di indagare soluzioni già visitate in passato, o ad esempio quelle che hanno fornito un numero di conflitti superiore a quello corrente:

Si può costruire una matrice di dimensioni NxN. Ogni elemento  $a_{i,j}$  rappresenta la possibilità di poter effettuare lo scambio tra le regine poste  $\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}$ nelle righe i e j. Se  $a_{i.i} > 0$  allora lo swap non viene eseguito.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}$$

[3. Ricerca locale]\$ \_ Γ16/201

# >>> Simulated Annealing

Un altro approccio di tipo migliorativo prevede l'utilizzo del Simulated Annealing. Con questo tipo di approccio si prevede:

- \* La generazione di una soluzione di partenza generata randomicamente (numero qualsiasi di conflitti).
- \* La generazione di una nuova soluzione, scambiando randomicamente, la colonna in cui si trovano due regine.
- \* L'accettazione della nuova soluzione, obbedisce ad una legge probabilistica:

Dove 
$$P(S^*) = \begin{cases} 1, & \text{se } \Delta C \leq 0 \\ \frac{-\Delta C}{\alpha T}, & \text{se } \Delta C > 0 \end{cases}$$
 e

 $\Delta C = conflicts(S^*) - conflicts(S)$ ,  $\alpha T$  fattore che modella l'abbassamento della temperatura all'aumentare del numero di iterazioni.

>>> Simulated Annealing

- 1. Genera randomicamente una soluzione con N regine:  $S_0$
- 2. Data la soluzione corrente  $S_i$ : Inverti la posizione (colonna) di due regine generando la soluzione candidata  $S^*$ .
- 3. Seleziona  $S^*$ .
  - 3.1 Se  $DeltaC = conflicts(S^*) conflicts(S) \le 0$  allora  $S_{i+1} = S^*$ .
  - 3.2 Se  $DeltaC = conflicts(S^*) conflicts(S) > 0$  allora  $S^*$  viene accettata con probabilitá  $P(S^*)$ .
- 4. Se  $conflicts(S_{i+1}) = 0$  OR  $i \ge MaxIterations$ . Stop, else Torna al passo 2.

>>> Simulated annealing: esempio

Esempio S, conf,  $\alpha * T$ : (N = 4 per avere meno iterazioni)

 $[1, 2, 3, 4] \rightarrow 6, 2$  $[3, 2, 1, 4] \rightarrow 4, 1.714749 \rightarrow \text{accetto}.$ 

 $[3, 4, 1, 2] \rightarrow 4, 1.62901249$  $[4, 2, 3, 1] \rightarrow 2, 1.9$ 

 $[3, 2, 4, 1] \rightarrow 1, 1.805$  $[2,4,1,3] \to 0 \to \text{ opt.}$  >>> Simulated annealing: esempio

Esempio S, conf,  $\alpha * T$ : (N = 4 per avere meno iterazioni)

$$[1, 2, 3, 4] \rightarrow 6, 2$$

$$[4, 2, 3, 1] \rightarrow 2, 1.9$$

$$[3, 2, 4, 1] \rightarrow 1, 1.805$$

$$[3,2,1,4] \rightarrow 4,1.714749 \rightarrow \text{accetto}.$$

$$[3, 4, 1, 2] \rightarrow 4, 1.62901249$$

$$[2,4,1,3] \to 0 \to \text{ opt.}$$







>>> Simulated annealing: esempio

Esempio S, conf,  $\alpha * T$ : (N = 4 per avere meno iterazioni)

$$[1,2,3,4] \rightarrow 6,2$$

$$[4, 2, 3, 1] \rightarrow 2, 1.9$$

$$[3, 2, 4, 1] \rightarrow 1, 1.805$$

$$[3,2,1,4] \rightarrow 4,1.714749 \rightarrow \text{accetto}.$$

$$[3,4,1,2] \rightarrow 4,1.62901249$$

$$[2,4,1,3] \to 0 \to \text{ opt.}$$













### >>> Risultati

Gli algoritmi descritti giungono ad una soluzione ammissibile (verificato per  $N \leq 1024$ ):

- \* Si ottiene una delle soluzioni ammissibili oppure una inammissibile (allo scadere del numero di iterazioni max).
- \* Alcuni esempi di soluzioni ottenute si trovano del file risultati.txt
- [1] Comparison of Heuristic Algorithms for the N-Queen Problem: Ivica Martinjak, M. Golub.
- [2] The n-Queens Problem: Craig Letavec, John Ruggiero.