CSE 258 – Lecture 1.5

Web Mining and Recommender Systems

Supervised learning – Regression

What is supervised learning?

Supervised learning is the process of trying to infer from labeled data the underlying function that produced the labels associated with the data

What is supervised learning?

Given labeled training data of the form

$$\{(\mathrm{data}_1, \mathrm{label}_1), \ldots, (\mathrm{data}_n, \mathrm{label}_n)\}$$

Infer the function

$$f(\text{data}) \stackrel{?}{\rightarrow} \text{labels}$$

Suppose we want to build a movie recommender

e.g. which of these films will I rate highest?

Q: What are the labels?

A: ratings that others have given to each movie, and that I have given to other movies

Q: What is the data?

A: features about the movie and the users who evaluated it

Movie features: genre, actors, rating, length, etc.

Product Details

Genres	Science Fiction, Action, Horror
Director	David Twohy
Starring	Vin Diesel, Radha Mitchell
Supporting actors	Cole Hauser, Keith David, Lewis Fitz-Gerald, Claudia Black, Rhiana Gr Angela Moore, Peter Chiang, Ken Twohy
Studio	NBC Universal
MPAA rating	R (Restricted)
Captions and subtitles	English Details 🔻
Rental rights	24 hour viewing period. Details ▼
Purchase rights	Stream instantly and download to 2 locations Details 💌
Format	Amazon Instant Video (streaming online video and digital download)

User features: age, gender,
A. Phillips location, etc.

Reviewer ranking: #17,230,554

90% helpful

votes received on reviews (151 of 167)

ABOUT ME

Enjoy the reviews...

ACTIVITIES

Reviews (16)

Public Wish List (2)

Listmania Lists (2)

Tagged Items (1)

Movie recommendation:

$$f(\text{data}) \stackrel{?}{\rightarrow} \text{labels}$$

 $f(\text{user features}, \text{movie features}) \xrightarrow{?} \text{star rating}$

Design a system based on **prior knowledge**, e.g.

```
def prediction(user, movie):
    if (user['age'] <= 14):
        if (movie['mpaa_rating']) == "G"):
            return 5.0
        else:
            return 1.0
    else if (user['age'] <= 18):
        if (movie['mpaa_rating']) == "PG"):
            return 5.0
.... Etc.</pre>
```

Is this supervised learning?

Identify words that I frequently mention in my social media posts, and recommend movies whose plot synopses use **similar** types of language

Identify which attributes (e.g. actors, genres) are associated with positive ratings. Recommend movies that exhibit those attributes.

Is this supervised learning?

(design a system based on prior knowledge)

Disadvantages:

- Depends on possibly false assumptions about how users relate to items
- Cannot adapt to new data/information Advantages:
- Requires no data!

(identify similarity between wall posts and synopses)

Disadvantages:

- Depends on possibly false assumptions about how users relate to items
- May not be adaptable to new settings Advantages:
- Requires data, but does not require labeled data

(identify attributes that are associated with positive ratings)

Disadvantages:

Requires a (possibly large) dataset of movies with labeled ratings

Advantages:

- Directly optimizes a measure we care about (predicting ratings)
- Easy to adapt to new settings and data

Supervised versus unsupervised learning

Learning approaches attempt to model data in order to solve a problem

Unsupervised learning approaches find patterns/relationships/structure in data, but **are not** optimized to solve a particular predictive task

Supervised learning aims to directly model the relationship between input and output variables, so that the output variables can be predicted accurately given the input

Regression

Regression is one of the simplest supervised learning approaches to learn relationships between input variables (features) and output variables (predictions)

Linear regression

Linear regression assumes a predictor of the form

(or
$$Ax = b$$
 if you prefer)

Motivation: height vs. weight

Q: Can we find a line that (approximately) fits the data?

Motivation: height vs. weight

Q: Can we find a line that (approximately) fits the data?

- If we can find such a line, we can use it to make **predictions** (i.e., estimate a person's weight given their height)
 - How do we formulate the problem of finding a line?
 - If no line will fit the data exactly, how to approximate?
 - What is the "best" line?

Recap: equation for a line

What is the formula describing the line?

Recap: equation for a line

What about in more dimensions?

Recap: equation for a line as an inner product

What about in more dimensions?

Linear regression

Linear regression assumes a predictor of the form

$$X\theta = y$$

Q: Solve for theta

A:

How do preferences toward certain beers vary with age?

Beeradvocate

Beers:

Displayed for educational use only; do not reuse.

Ratings/reviews:

4.35/5 rDev -5.2%

look: 4 | smell: 4.25 | taste: 4.5 | feel: 4.25 | overall: 4.25

Serving: 355 mL bottle poured into a 9 oz Libbey Embassy snifter ("bottled on: 08AUG14 1109").

Appearance: Deep, dark near-black brown. Hazy, light brown fringe of foam and limited lacing; no head.

Smell: Roasted malt, vanilla, and some warming alcohol.

Taste: Roasted malts, cocoa, burnt caramel, molasses, vanilla and dark fruit. Bourbon barrel is hinted at but never takes over.

Mouthfeel: Medium to full body and light carbonation with a very lush, silky smooth feel.

Overall: Not as complex or intense as some newer barrel-aged stouts, but so smooth and balanced with all the elements tightly integrated.

HipCzech, Yesterday at 05:38 AM

User profiles:

50,000 reviews are available on http://jmcauley.ucsd.edu/cse258/data/beer/beer 50000.json (see course webpage)

Real-valued features

How do preferences toward certain beers vary with age? How about **ABV**?

Real-valued features

What is the interpretation of:

$$\theta = (3.4, 10e^{-7})$$

Categorical features

How do beer preferences vary as a function of **gender**?

- θ_0 is the (predicted/average) rating for males
- θ_1 is the **how much higher** females rate than males (in this case a negative number)
 - We're really still fitting a line though!

Random features

What happens as we add more and more **random** features?

Exercise

How would you build a feature to represent the **month**, and the impact it has on people's rating behavior?