DR MARIUSZ PIOTROWSKI

Analizy statystyczne i przestrzenne w R

Podstawy analiz i wizualizacji danych.

Spis treści

1.	Informacje wstępne				
2.	Konfiguracja środowiska R				
3.	Połąc	Połączenie z bazą Postgresql			
4.	Typy danych.				
	4.1.	Wektor wartości.	6		
	4.2.	Odwoływanie się do wartości	6		
5.	Pods	tawowe operacje statystyczne	9		
	5.1.	Opis jednej zmiennej	9		
	5.2.	Opis związku dwóch zmiennych. Zmienne nominalne	11		
		5.2.1. Współczynnik asocjacji Q Yule'a	12		
		5.2.2. χ^2 (Chi kwadrat) – test niezależności zmiennych	13		
		5.2.3. Współczynni phi ϕ	14		
		5.2.4. Współczynnik kontygencji C – Pearsona	15		
		5.2.5. V Cramera	15		
		5.2.6. Współczynnik lambda λ Goodmana i Kruskala	15		
	5.3.	Opis związku dwóch zmiennych. Zmienne porządkowe	15		
		5.3.1. Współczynnik γ (gamma) Goodmana i Kruskala	15		
		5.3.2. Współczynnik ρ (rho) Spearmana. Korelacji rang	15		
		5.3.3. Współczynnik $ au$ (tau) b Kendalla. Korelacji rang $\dots \dots$	16		
	5.4.	Opis związku dwóch zmiennych. Zmienne ilościowe.	16		
		5.4.1. Korelacja miarowa/liniowa Pearsona	16		
6.	Tworz	zenie wykresów	17		
	6.1.	Pakiet podstawowy	17		
		6.1.1. Wykres słupkowy	17		
		6.1.2. Wykres pudełkowy	17		
		6.1.3. Wykres kropkowy	17		
	6.2.	Pakiet ggplot2	17		
7.	Wizu	alizacja danych w ggplot2	18		
	7.1.	Wykres słupkowy – porównanie danych.	18		
	7.2.	Wykres skrzypcowy i pudełkowy.	18		
8.	. Tworzenie map. Pakiet ggplot2				
Bil	bliogra	afia	20		

Listings

1.1	Interaktywny kurs R – instalacja i uruchomienie	3
4.1	Tworzenie wektora danych funkcją <i>concatenate</i> c()	6
4.2	Wskazanie konkretynych wartości z wektora	6
4.3	Wskazanie ciągu wartości z wektora.	6
4.4	Wskazanie wartości przez użycie operatora logicznego	7
4.5	Wskazanie wartości z ramki danych – ciąg danych	7
4.6	Wskazanie konkretnych wartości z ramki danych	7
4.7	Wybór jednej kolumny. Wyodrębnienie wektora wartości z ramki	
	danych	7
4.8	Dodawanie nowej kolumny	7
4.9	ldentyfikacja numeru i tworzenie ramki danych z dwóch zmiennych	7
4.10	Liczenie procentów ze zmiennej	8
4.11	Liczenie procentów w tabeli krzyżowej	8
5.1	Podsumowanie statystyk opisowych	9
5.2	Obiczanie średnich	9
5.3	Obiczanie wartości środkowej	10
5.4	Obliczanie odchylenia przeciętnego	10
5.5	obliczanie wariancji i odchylenia standardowego	11
5.6	Obliczanie współczynnika zmienności	11
5.7	Testowanie chi kwadrat	14
5.8	J	16
6.1	Rysowanie wykresu słupkowego	17

1. Informacje wstępne.

Kurs podstawowy R można rozpocząć od zainstalowania pakietu w programie R:

Listing 1.1: Interaktywny kurs R - instalacja i uruchomienie.

```
1 install.packages("swirl")
2 library("swirl")
```

3 swirl()

Dodatkowe kursy można doinstalować później. Znajdują się one na stronie https://github.com/swirldev/swirl_courses.

Zagadnienia bazują na różnorodnych materiałach. Podstawowe strony z analizą przestrzenną to:

- http://spatial-analyst.net/wiki/index.php?title=Software
- http://pakillo.github.io/R-GIS-tutorial/
- http://spatial.ly/r/
- http://oscarperpinan.github.io/spacetime-vis/
 oraz https://www.r-bloggers.com/the-guerilla-guide-to-r/

2. Konfiguracja środowiska R.

3. Połączenie z bazą Postgresql.

4. Typy danych.

Dane w R przechowywane mogą być w formie:

wektora wartości – kolekcja wartości (np. 1,2,3)należące do tej samej klasy. Mogą to być:

- [num] wartości liczbowe z wartościami dziesiętnymi
- [int] liczby całkowite bez wartości dziesiętnych
- [loqi] operator loqiczny prawda/fałsz
- [factor] zmienne jakościowe (jeśli są uporządkowane wówczas mają klase [ordered])

time.series -ts - wektor + zmienna z informacją o dacie

data.frame -(ramka danych) dane przechowywane w układzie:

- kolumny zmienne
- wiersze obserwacje

listy – struktura, która pozwala na zagnieżdżanie w niej innych elementów – np. ramek danych, czy innych list.

4.1. Wektor wartości.

Najprostszy sposób tworzenia wektora wartości to użycie funkcji *concate-nate* /połącz/ (c).

Listing 4.1: Tworzenie wektora danych funkcją concatenate c().

 $1 \quad x < -c(1,2,3,4)$

4.2. Odwoływanie się do wartości

Indeksowanie danych, czyli odwoływanie się do określonych wartości z wektora, lub ramki danych – odbywa się przez użycie nawiasu kwadratowego [].

Wektor wartości Dla wektora [] określa pozycję wartości - np:

Listing 4.2: Wskazanie konkretynych wartości z wektora.

1 $y \leftarrow x[c(2,3)]$

Mogą być użyte ciągi liczbowe:

Listing 4.3: Wskazanie ciągu wartości z wektora.

1 $y \leftarrow x[2:4]$

Mogą być używane operatory logiczne:

Listing 4.4: Wskazanie wartości przez użycie operatora logicznego.

1 y < -x[x > 3]

Ramki danych Dla ramek danych podaje się indeks wiersza, następnie indeks kolumny. W pakiecie R wbudowana jest ramka danych – mtcars. Kolejny przykład odwołuje się do tych danych.

Listing 4.5: Wskazanie wartości z ramki danych - ciąg danych.

1 z <- mtcars[,1:3]

Efektem będzie użycie wszystkich wierszy i kolumn od 1 do 3. W ramach indeksu można filtrować dane używając operatorów logicznych.

Listing 4.6: Wskazanie konkretnych wartości z ramki danych.

1 mtcars[mtcars[, "mpg"] > 21,]

Funkcja pokaże tylko wiersze, które spełniają warunek – w kolumnie mpg wartości sa większe od 21. Pokazane są w wyniku wszystkie kolumny.

W przypadku, kiedy chcemy odwołać się do jednej kolumny (i uzyskać zamiast ramki danych – wektor) należy użyć znaku \$.1

Listing 4.7: Wybór jednej kolumny. Wyodrębnienie wektora wartości z ramki danych.

1 mtcars\$mpg

Dodawanie nowej kolumny w ramce danych. Używając funkcji \$ można dodawać nowe kolumny.

Listing 4.8: Dodawanie nowej kolumny.

1 mtcars\$mpgtest <- mtcars\$mpg * 2</pre>

W efekcie powstanie nowa kolumna mpgtest,której wartości są pomnożonymi razy 2 wartościami z kolumny mpg.

Praca na danych sondażowych - case studies Uczestnictwo w kulturze - Katowice Zbudowanie prostej tabel krzyżowej, zgrupowania zmiennych wg jakichś cech - wymaga odwołania się do indeksu.

Z ramki danych (survey-data) chcę zaprezentować dane o wydarzeniu i poziomie wykształcenia uczestników. [,c(...)] oznacza – wybierz WSZYSTKIE wiersze.

Listing 4.9: Identyfikacja numeru i tworzenie ramki danych z dwóch zmiennych.

```
1 which(colnames(survey.data) == "event")
2 which(colnames(survey.data) == "education_level")
```

³ x <- survey.data[,c(1,13)]</pre>

¹ W RStudio po wpisaniu znaku \$ pojawią się podpowiedzi z nazwami kolumn.

Do analizy danych sondażowych, czyli wszędzie tam, gdzie głównie analizuje się dane mierzone na skalach jakościowych można użyć pakiet «questionr». Przydatne są szczególnie funkcje do analiz procentów i pokazywania procentów w tabelach krzyżowych.

Listing 4.10: Liczenie procentów ze zmiennej.

- 1 library(questionr)
- 2 freq(survey.data\$education_level)

Listing 4.11: Liczenie procentów w tabeli krzyżowej.

```
1 library(questionr)
2 x <- survey.data[,c(1,13)]
3 #zrobienie ramki danych z dwoma zmiennymi
4 y <- table(x)
5 #zrobienie tabeli
6 rprop(y)
7 #tabela żkrzyowa z procentami dla wierszy
8 cprop(y)
9 #tabelea żkrzyowa z procentami dla kolumn</pre>
```

5. Podstawowe operacje statystyczne.

5.1. Opis jednej zmiennej

Zebrane dane z badań porządkowane są w szeregi statystyczne, dzięki czemu możliwe jest określenie rozkładu wartości, które przyjmuje każda z badanych zmiennych. W tym celu stosuje się różnego rodzaju miary. W celu określenia tego co jest typowe dla zmiennej stosuje się miary skupienia, a w celu ustania wewnętrznej różnorodności zmiennej stosuje się miary rozproszenia.

Statystyki opisowe w R - W przypadku zmienny ilościowych [numeric] podstawowe statystyki można uzyskać funkcją - *summary()*.

Odpowiednikiem jest tzw. pięć liczb Turkeya - fivenum():

- wartość minimalna
- granica pierwszego kwartyla
- mediana
- średnia (tylko w funkcji *summary()*)
- granica trzeciego kwartyla
- wartość maksymalna

W przypadku zmiennych jakościowych funkcja *summary()* pokazuje tablicę częstości zmiennej (uwzględniane są braki danych). Dzięki funkcji *table()* można zbudować tabele kontyngencji (bez braków danych).

Listing 5.1: Podsumowanie statystyk opisowych

1 summary(mtcars\$mpg)

Miary tendencji centralnej

Wielkości średnie Najpopularniejszą miarą skupienia jest średnia arytmetyczna. Mierzy się go jako iloraz sumy wartości pomiarów przez ich liczbę

$$\bar{X} = \frac{\sum x_i}{N}$$

W przypadku obliczania **średniej ważonej** każdy pomiar jest mnożony przez wagę, następnie wynik dzielony jest przez liczbę pomiarów. W R średnie można obliczyć następująco:

Listing 5.2: Obiczanie średnich

- 1 mean(dane\$zmienna)
- 2 weighted.mean(dane\$zmienna, dane\$wagi)
- 3 1/mean(1/a) #compute the harmonic mean

W badaniach społecznych może pojawić się potrzeba użycia innego rodzaju średnich. Warto zwrócić uwagę na:

- średnią odciętą (trymowaną) wyliczana jest średnia odejmując 5% dolnych i 5% górnych wyników
- średnia geometryczna (Wskaźniki w HDI są tak obliczane). Stosowana do określenia przeciętnej wielkości jakiejś zmiany zachodzącej w badanym środowisku. Ale zmiana ma charakter względnie regularny. Np. jakieś zwiększenie cechy rośnie w postępie geometrycznym

$$G = \sqrt[n]{x_1 x_2 \dots x_n}$$

i wszystkie $x_i > 0$

— średnia harmoniczna (wykorzystywanej przy obliczeniu średniej liczby mieszkańców na km^2) i

$$H =$$

— średnia krocząca (średnia ruchoma)

Wartość środkowa Obliczanie mediany w R

Listing 5.3: Obiczanie wartości środkowej

l median(dane\$zmienna)

Miary rozproszenia - dyspersji

Odchylenie średnie, przeciętne Miara praktycznie już nie stosowana w statystyce. Odchylenie przeciętne to średnia arytmetyczna wartości bezwzględnych (absolutnych, czyi pomijając znak przed wartością) wszystkich odchyleń poszczególnych wartości pomiarowych od ich średniej arytmetycznej. Uproszczony wzór to

$$d = \frac{\sum |x_i - \bar{x}|}{n}$$

W R do obliczenia można użyć formuły.

Listing 5.4: Obliczanie odchylenia przeciętnego

1 mean(abs(dane\$zmienna-mean(dane\$zmienna)))

Wariancja i odchylenie standardowe Wariancja jest obliczania podobnie jak odchylenie przeciętne, jednak zamiast wartości bezwzględnej, natomiast mianownik to liczba obserwacji pomniejszony o 1. (w przypadku obliczeń dla próby) Wzór to

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$$

Odchylenie standardowe jest pierwiastkiem kwadratowym z wariancji. Wzór

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

W R oblicza się ją jako

to

Listing 5.5: obliczanie wariancji i odchylenia standardowego

1 var(dane\$zmienna)
2 sd(dane\$zmienna)

Wadą odchylenia standardowego jest silna podatność na wartości skrajne danej zmiennej.

Współczynnik zmienności - Coefficent of variation Budzącym kontrowersje parametrem określającym rozproszenie jest współczynnik zmienności Pearsona. Zaletą jego jest łatwe obliczenie, oraz zastosowanie do porównań pomiędzy grupami. Do wyliczenia stosuje się iloraz odchylenia standardowego i średniej arytmetycznej

$$V = \frac{s}{\bar{x}}$$

i $\bar{x} \neg 0$. Wartość współczynnika można podać w procentach

$$V_{zmiennej} = \frac{s}{\bar{x}} * 100$$

= % . O kontrowersjach w użyciu tego współczynnika można poczytać u Sørensen. Aby obliczyć ten współczynnik w R należy zastosować taką formułę:

Listing 5.6: Obliczanie współczynnika zmienności

```
1 sd(Data$Variable, na.rm=TRUE)/
2 mean(Data$Variable, na.rm=TRUE)*100
```

5.2. Opis związku dwóch zmiennych. Zmienne nominalne.

Jakość ustalonej skali rozstrzyga o tym, jakie operacje badawcze moją być wykonane. Jeśli obie zmienne wyrażone są na skalach ilościowych, lub porządkowych wówczas mowa o korelacji, jeśli wyrażone są na skalach nominalnych (jakościowych) mowa o zbieżności, czy asocjacji.

Co ważne – wielkość związku zmiennych w próbie, jedynie określa nam, czy istnieje, czy też nie związek między zmiennymi, nie mówi nam czy przekłada się on na populacje, nie przekłada się on na statystyczną istotność. Test χ^2 określa właśnie to, czy można przenieść wnioski na populację – czy związek jest statystycznie istotny, czy też nie.

¹ https://web.stanford.edu/~sorensen/nomorecv%20revision%20final.pdf

	ilościowa	porządkowa	nominalna
ilościowa	Pearsona współ- czynnik korelacji (r)		
porządkowa		 — Spearmana współczynnik korelacji rangowe- j/pozycyjnej (R) — τ (tau) Kendalla — Kendalla współczynnik zgodności — γ (gamma Goodmana i Kruskala) 	
nominalna	 — stosunek korelacyjny η (eta) — współczynnik korelacji dwuseryjnej punktowej 		 — współczynnik zbieżności/kontyn- gencji (C), — współczynnik aso- cjacji (Q) Yula, — współczynnik φ (phi) (dla cech zdychotomizowa- nych) — V Cramera — λ (lambda) Good- mana i Kruskala

5.2.1. Współczynnik asocjacji Q Yule'a

Najprostszym sposobem do obliczeń asocjacji jest współczynnik asocjacji Q – Yule'a (Yule'a – Kendalla), który można stosować wyłącznie do tabel dwudzielnych (2x2), ale w takiej tablicy nie powinny być wartości 0, gdyż współczynnik Q będzie 1, lub –1.

Do obliczeń stosuje się wzór:

$$Q = \frac{ad - bc}{ad - bc}$$

	Wyrzucanie śmieci	Śmiecenie	Suma
Kobiety	18 (a)	7 (b)	25 (a+b)
Mężczyźni	42 (c)	33 (d)	75 (c+d)
Suma	60 (a+c)	40 (b+d)	100 (N)

W efekcie dla tej tabeli dwudzielnej wynik wynosi Q=0.33, czyli jest to związek słaby. Q może przyjmować wartości od –1 do +1. Dodatnie wartości świadczą, że I wariant cechy x współwystępuje z I cechą y, a II wariant cechy x z II wariantem cechy y. Ujemne wartości oznaczają, że I wariant cechy x kojarzy się z II wariantem cechy y, zaś II wariant cechy x, z I wariantem cechy y. '

5.2.2. χ^2 (Chi kwadrat) – test niezależności zmiennych

Dla zmiennych jakościowych –kategorialnych lub nominalnych możliwe jest określenie różnicy w rozkładzie zmiennej w badanej próbie. Odbywa się to przez przyjęcie, lub odrzucenie hipotezy zerowej H_0 – w brzmieniu – nie ma statystycznej różnicy w rozkładzie cech zmiennej. χ^2 pozwala na określenie, czy dane w próbie (rozkład według kategorii zmiennej nominalnej) wyniki rozłożyły się wedle proporcji, które są przypadkowe, czy też nie.

Dla małych prób, oprócz wykonania testu na nieciągłość przy obliczaniu χ^2 , należy wykonać test Fishera aby uniknąć błędu z odrzuceniem hipotezy. Test dokładny Fishera przeprowadza się dla bardzo małych prób (np. gdy jedna z liczebności w komórek jest < (mniejsza niż 5) i tablic 2x2. Określa on dokładne prawdopodobieństwo, a nie przybliżone. Test χ^2 może podać prawdopodobieństwo pozwalające na odrzucenie hipotezy zerowej, zaś Test Fishera sprzyja nieodrzuceniu hipotezy zerowej.

Przykładem może być rozkład cechy wyrzucanie śmieci a płeć. Dane prezentuje tabela

	Wyrzucanie śmieci	Śmiecenie	Suma
Kobiety	18 (a)	7 (b)	25 (a+b)
Mężczyźni	42 (c)	33 (d)	75 (c+d)
Suma	60 (a+c)	40 (b+d)	100 (N)

Pierwszym krokiem jest określenie wartości oczekiwanych dla rozkładu cechy. Zasada brzmi: suma wiersza pomnożona przez sumę kolumny, podzielona przez sumę ogólną. Można to zrobić wg formuły. Wartość oczekiwana dla komórki a:

$$a_{oczekwiana} = \frac{(a+b)*(a+c)}{N}$$

, czyli

$$a_{oczekiwana} = \frac{25 * 60}{100} = 15$$

a nowa tabela będzie wyglądała następująco

	Wyrzucanie śmieci	Śmiecenie	Suma
Kobiety	18 (15)	7 (10)	25 (a+b)
Mężczyźni	42 (45)	33 (30)	75 (c+d)
Suma	60 (a+c)	40 (b+d)	100 (N)

Wzór na chi kwadrat prezentuje się następująco:

$$\chi^2 = \sum_{k=1}^n \frac{(O_k - E_k)^2}{E_k}$$

qdzie O to wartość obserwowana, a E to wartość oczekiwana.

Dla powyższego przypadku (i prostego zastosowaniu wzoru) $\chi^2=2.0$. Po sprawdzeniu w tabeli – dla 1 stopnia swobody 2 – prawdopodobieństwo wynosi 0.16 (więc jest (większe) > od $\alpha=0.05$ lub $\alpha=0.01$) – więc nie odrzucamy H_0 . Nie ma istotnej różnicy w sposobie postępowania ze śmieciami ze względu na płeć.

Jeśli p $< \alpha = 0.05$ lub $\alpha = 0.01$ (czyli jest mniejsze) wówczas hipotezę o niezależności odrzucamy.

W R, aby obliczyć chi kwadrat wystarczy zastosować test.

Listing 5.7: Testowanie chi kwadrat.

```
1 s \left(-\text{smieci}\left[,c(2,3)\right]\right)
```

- 2 #stworzenie tablicy indeksowanie
- 3 chisq.test(s\$wyrzucanie.smieci, s\$X.1)
- 4 #przprowadzenie testu

Dla powyższych danych R automatycznie dołącza poprawkę Yates'a (dla wartości, które są mniejsze niż 10). Dodatkowo może pojawić się potrzeba przeprowadzenia dokładnego testu Fishera.

Pearson's Chi-squared test with Yates' continuity correction

data: swyrzucanie.smieciandsX.1

X-squared = 1.3889, df = 1, p-value = 0.2386

5.2.3. Współczynni phi ϕ

Dla zmiennych uszeregowanych podwójnie(dychotomicznie), kiedy zmienna zawiera tylko dwie klasy – obliczyć można siłę związku obliczając współczynnik ϕ (phi). Problem z tym współczynnikiem polega na tym, że jeśli tabela jest większa to wartość może być większa niż 1, co utrudnia proces interpretacji współczynnika.

$$\phi = \frac{ad - bc}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}$$

Między ϕ i χ^2 istnieje związek bezpośredni

$$\phi^2 = \frac{\chi^2}{N}$$

stąd

$$\phi = \sqrt{\frac{\chi^2}{N}}$$

² Stopień swobody oblicza się jako iloczyn liczby kolumn -1 i liczy wierszy -1 (k-1)(w-1)

Sprawia to, że przed określeniem siły związku między zmiennymi w tabeli należy określić, czy jest to związek nie wynikający z przypadku przeprowadzając test na niezależność zmiennych χ^2 . Wzór w tej formie może być używany dla tabel większych niż 2x2.

Znak przy ϕ nie określa kierunku związku, jak w przypadku korelacji miarowej(Pearsona), jedynie zależy do uporządkowania danych w tabeli 2x2.

5.2.4. Współczynnik kontygencji C - Pearsona

Współczynnik kontygencji w przeciwieństwie do współczynnika ϕ (phi), czy Q Yule'a można stosować dla tabel wielopolowych, bez ograniczenia do wielkości 2x2 (tabeli czteropolowej). Wartości, które przyjmuje współczynnik kontygencji C są z zakresu od 0 do 1.

$$C = \sqrt{\frac{\chi^2}{\chi^2 + N}}$$

5.2.5. V Cramera

Kiedy współczynnik jest wyliczany dla tabeli 2x2 jego wartość jest taka jak we współczynniku kontygencji C. Zastąpił on używany wcześniej współczynnik Czuprowa T

$$V = \sqrt{\frac{\chi^2}{(m-1)N}}$$

m to liczba kolumn, lub wierszy w zależności od tego, która wielkość jest mniejsza

5.2.6. Współczynnik lambda λ Goodmana i Kruskala

Współczynnik bazuje na koncepcji proporcjonalnej redukcji błędu. Zawiera się w przedziale 0 do 1. Miarę tą można obliczać jako:

- symetryczną, wówczas nie ma znaczenia która zmienna jest zależna, a która niezależna
- niesymetryczną, wówczas test jest wykonywany osobno, więc zmiana kolejności będzie skutkowała innymi wynikami

5.3. Opis związku dwóch zmiennych. Zmienne porządkowe.

5.3.1. Współczynnik γ (gamma) Goodmana i Kruskala

W pakiecie SPSS można go używać do wyliczania współczynnika Q Yula.

5.3.2. Współczynnik ρ (rho) Spearmana. Korelacji rang

Współczynnik używany, kiedy dane są porangowane. Porównujemy uszeregowanie dwóch zbiorów danych: obliczamy różnicę rang, podnosimy je do kwadratu, sumujemy. Wartość tego współczynnika zawiera się w przedziale -1 < 0 < 1.

5.3.3. Współczynnik au (tau) b Kendalla. Korelacji rang

Współczynnik używany, kiedy dane porządkowe są mają powiązane rangi.

5.4. Opis związku dwóch zmiennych. Zmienne ilościowe.

5.4.1. Korelacja miarowa/liniowa Pearsona

- Tworzenie macierzy korelacji odbywa się następująco:

Listing 5.8: Korelacja

- 1 cor(mtcars[,1:5])
 2 #lub wybór konkretnych kolumn
- 3 cor(mtcars[,c(1,4)])

6. Tworzenie wykresów.

6.1. Pakiet podstawowy.

Prosty mechanizm wizualizacji danych pozwalających na prezentacje statystyk.

6.1.1. Wykres słupkowy

Pozwala na prezentację jednej, lub dwóch zmiennych kategorialnych. Do rysowania wykresu słupkowego służy funkcja *barplot()*.

Częstości sa generowane funkcją table().

Listing 6.1: Rysowanie wykresu słupkowego.

```
1 tab <- table(mtcars$cyl)
2 barplot(tab, horiz = FALSE, las = 1)</pre>
```

6.1.2. Wykres pudełkowy.

6.1.3. Wykres kropkowy.

6.2. Pakiet ggplot2.

Tutorial http://r-statistics.co/ggplot2-Tutorial-With-R.html

7. Wizualizacja danych w ggplot2.

Do wizualizacji danych został wykorzystany pakiet ggplot z pakietu R. Podstawowe operacje "czyszczące" i porządkujące dane zostały wykonane w arkuszu kalkulacyjnym, zapisane w formacie csv i zaimportowane do programu RStudio.

7.1. Wykres słupkowy - porównanie danych.

- Rysowanie wykresu w oparciu o przekształcenie danych krótkich "short form" w długie "long form".
- Użycie danych surowych «stat="identity"»
- Obrót wykresu.

7.2. Wykres skrzypcowy i pudełkowy.

8. Tworzenie map. Pakiet ggplot2.

 $Kurs\ online\ https://www.datacamp.com/courses/working-with-geospatial-data-in-r\\ Mapa\ świata\ https://www.r-bloggers.com/how-to-make-a-global-map-in-r-step-by-ste$

Bibliografia

- [1] Przemysław Biecek. *Odkrywac! Ujawniac! Objasniac! Zbior esejow o sztuce prezentowania danych*. Fundacja Naukowa SmarterPoland.pl, Warszawa, drugie edition, 2016. ISBN 9788393969500.
- [2] Przemysław Biecek. *Przewodnik po pakiecie R*. Oficyna Wydawnicza GiS, Warszawa, 2017.
- [3] Roger S Bivand, Edzer J Pebesma, and Virgilio Gómez-Rubio. *Applied spatial data analysis with R.* Springer, New York, Heidelberg, Dordrecht, London, 2013. ISBN 978-1-4614-7618-4. doi: 10.1007/978-1-4614-7618-4. URL http://link.springer.com/content/pdf/10.1007/978-1-4614-7618-4.pdf.
- [4] Winston Chang. *R Graphics Cookbook*. O'Reilly Media, Inc., 2013. ISBN 1449316956, 9781449316952.
- [5] Andrew Field, Jeremy Miles, and Zoe Field. *Discovering Statistics Using R.* SAGE Publications, 2012. ISBN 9781446258460.
- [6] Oscar Perpiñán Lamigueiro. *Displaying Time Series, Spatial, and Space-Time Data with R.* Chapman & Hall/CRC, Madrid, 2014. ISBN 9781466565227.
- [7] Jesper B Sørensen. The use and misuse of the coefficient of variation in organizational demography research. *Sociological methods & research*, 30 (4):475–491, 2002.
- [8] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009. ISBN 978-0-387-98140-6. URL http://ggplot2.org.
- [9] Dennis Zielstra and Francesco Tonini. Analysis of Big Spatial Data with PostgreSQL / PostGIS and R – Case Studies in OpenStreetMap and Interactive Web Mapping from R PostgreSQL / PostGIS. In North Carolina State University Geospatial Analytics Forum, 2015.