Machine Learning Handbook

Xinhe Liu

2018-2-28

Contents

Ι	Hig	h-level Views	1
1	Mat	h Review	2
	1.1	Linear Algebra	2
	1.2	Probability	3
	1.3	Statistics	4
	1.4	Optimization Theory	5
	1.5	Information Theory	6
	1.6	Formal Logic	7
2	Con	nputational Learning Theory	8
II	Su	pervised Learning Models	9
3	Reg	ression	10
	3.1	Linear Regressions	10
		3.1.1 Assumptions	10
		3.1.2 Integrataion	10

CONTENTS 3

	3.1.3 Lasso-Least Absolute Shrinkage and Selection Operator	11
4	Logistic Regression and General Linear Model	12
5	Naive Bayesian	13
6	Tree Models and Ensemble Learning	14
Ш	Unsupervised Learning Models	15
7	Clustering	16
8	Dimension Reduction	17
IV	Deep Learning and Enhanced Learning Theory	18
9	Multi-layer Perceptron	19
10	Multi-layer Perceptron	20
11	Multi-layer Perceptron	21
12	Multi-layer Perceptron	22
13	Multi-layer Perceptron	23
14	Multi-layer Perceptron	24

4 CONTENTS

Part I High-level Views

Math Review

1.1 Linear Algebra

Concepts:

- \bullet scalar, vector, matrix, tensor (n-rank tensor, matrix is a rank 2 tensor)
- Gaussian Elimination, rank
- p-norm

$$|X|_p = (\sum_i |x_i|^p)^{\frac{1}{p}}$$

- inner product $\langle x_i, y_i \rangle$, outer product
- orthogonal dimension, basis, orthogonal basis
- linear transformation Ax = y
- eigenvalue, eigenvector $Ax = \lambda x$ (transformation and speed)
- vector space, linear space(with summation, scalar production), inner product space(inner product space)

3

1.2 Probability

Concepts:

- Classic Probability Model: Frequentist
- Bayesian Probability Theory
- Random variable, continuous RV, discrete RV, probability mass function, probability density function, cumulative density function
- Bernoulli distribution, Binomial distribution(n,p)

$$P(X = k) = \binom{N}{k} p^k (1 - p)^{(n-k)}$$

, Poisson distribution

$$P(X = k) = \lambda^k \frac{e^{-\lambda}}{k!}$$

• uniform distribution, exponential distribution

$$e^{-\frac{x}{\theta}}\theta$$
, $P(x>s+t|X>s)=P(x>t)$

- , normal distribution, t-distribution
- expectation, moments, variance, covariance, correlation coefficient

Theorems:

- Law of Total Probability
- Bayesian Theorem

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

P(H)-prior probability, P(D-H)-likelihood, P(H-D)-posterior probability,

1.3 Statistics

Concepts:

- data, sample, statistics, population
- point estimation, interval estimation, confidence interval(interpretation??)
- method of moments: $E(X^k)$ based on LOLN.
- maximum likelihood estimation. Multiply p.m.f/p.d.f since every sample is independent. Maximize the likelihood of finding samples.
- Estimation criteria
 - unbiased
 - efficient
 - coherent
- Hypotheis test, type-I error(wrongly reject), type-II error(wrongly accept)

Theorems:

- Law of Large Number
- Central Limit Theorem
- Bias/Variance decomposition (error = bias + variance + noise)

$$\begin{split} E[(Y - \hat{\mu}(X))^2] &== E[(Y - f(x) + f(x) - \hat{\mu}(X))^2] \\ &= E[(Y - f(x))^2 + 2E[(Y - f(x))(f(x) - \hat{\mu}(X))] + E[(f(x) - \hat{\mu}(X))^2] \\ &= \sigma_x^2 + Bias(\hat{\mu}(X))^2 + Var(\hat{\mu}(X)) \end{split}$$

1.4 Optimization Theory

- Objective function/Evaluation function, constrained/unconstrained optimizationFeasible Set, Optimal Solution, Optimal Value, Binding Constraints, Shadow Price, Infeasible Price, Infeasibility, Unboundedness
- Linear Programming
- Lagrange Multiplier

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y)$$

• Convex Set, Convex Function $f: S \to R$ is convex if and only if $\nabla^2 f(\mathbf{x})$ is positive semidefinite

Optimization Methods:

- Linear Search Method: Direction First, Step Size second
 - Gradient Descent: Batch Processing(Use all samples) vs
 Stochastic Gradient Descent(Use one sample)
 - Newton's Method: Use Curvature Information
- Trust Region: Step first, direction second. Find optimal direction of second-order approximation. If the descent size is too small, make step size smaller.
- Heuristics Method
 - Genetic Algorithm
 - Simulated Annealing
 - Partical Swarming/Ant Colony Algorithm

Theorems:

•

1.5 Information Theory

Concepts:

• Information

$$h(A) = -log_2 p(A)$$

(bit)

• (Information Source) Entropy

$$H(X) = -\sum_{i=1}^{n} p(a_i)log_2p(a_i) \le log_2n$$

Maximize under equal probability

• Conditional Entropy

$$H(Y|X) = -\sum_{i=1}^{n} p(x_i)H(Y|X = x_i) = -\sum_{i=1}^{n} p(x_i)\sum_{j=1}^{n} p(y_j|x_i)log_2p(y_j|x_i)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} p(x_i, y_j)log_2p(y_j|x_i)$$

• Mutual Information/Information Gain

$$I(X;Y) = H(Y) - H(Y|X)$$

• Kullback-Leibler Divergence (K-L) Divergence

$$D_{KL}(P||Q) = \sum_{i=1}^{n} p(x_i) \log_2 \frac{p(x_i)}{q(x_i)} \neq D_{KL}(Q||P)$$

Measures the Distance of two distributions. The optimal encoding of information has the same bits as the entropy. Measures the extra bits if the real distribution is q rather than p. (Using P to approximate Q)

Theorems:

• The Maximum Entropy Principle. Without extra assumption, max entropy/equal probability has the minimum prediction risk.

7

1.6 Formal Logic

Concepts

- Generative Expert System: Rule+Facts+Deduction Engine
- \bullet Godel's incompleteness theorems

Computational Learning Theory

Part II Supervised Learning Models

Regression

3.1 Linear Regressions

3.1.1 Assumptions

Classic Assumptions for Statistics:

•

3.1.2 Interrataion

$$f(x) = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^n w_i x_i$$

$$\mathbf{w}* = (\mathbf{X^TX})^{-1}\mathbf{X^Ty}$$

RSS Approach:

MLE Approach

Assuming noise is normal, maximize

$$p(\mathbf{x_1}, \mathbf{x_2}...\mathbf{x_n}|\mathbf{w}) = \prod_k \frac{1}{\sqrt{2\pi}\sigma} exp[-\frac{1}{2\sigma^2}(y_k - \mathbf{w_t}\mathbf{x_k})^2]$$

3.1.3 Lasso-Least Absolute Shrinkage and Selection Operator

$$min||y_k - \mathbf{w^T} \mathbf{x}_k||^2 + \lambda ||\mathbf{w}||_1$$

Logistic Regression and General Linear Model

Naive Bayesian

Tree Models and Ensemble Learning

Part III

Unsupervised Learning Models

Clustering

Dimension Reduction

Part IV

Deep Learning and Enhanced Learning Theory