

# UNISONIC TECHNOLOGIES CO., LTD

U74HC00 **CMOS IC** 

# **OUADRUPLE 2-INPUT** POSITIVE-NAND GATES

#### **DESCRIPTION**

The UTC U74HC00 devices contain four independent 2-input NAND gates. They perform the Boolean function  $Y = \overline{A \cdot B}$  or  $Y = \overline{A} + B$  in positive logic. The output Y is high when either of inputs A or B is low, or if neither is high.

#### **FEATURES**

\* Operation Voltage Range: 1.0 V ~7.0 V \* Low Power Dissipation:  $I_{CC}=20\mu A(Max)$ \* High Speed: tpd=16ns(Typ)



\*Pb-free plating product number: U74HC00L

# ORDERING INFORMATION

|                                                 | Order I | Number            | Daakaga  | Dooking   |  |  |
|-------------------------------------------------|---------|-------------------|----------|-----------|--|--|
| Normal                                          |         | Lead Free Plating | Package  | Packing   |  |  |
| U74HC00-D14-T U74HC00                           |         | U74HC00L-D14-T    | DIP-14   | Tube      |  |  |
| U74HC00-S14-T<br>U74HC00-S14-R<br>U74HC00-P14-T |         | U74HC00L-S14-T    | SOP-14   | Tube      |  |  |
|                                                 |         | U74HC00L-S14-R    | SOP-14   | Tape Reel |  |  |
|                                                 |         | U74HC00L-P14-T    | TSSOP-14 | Tube      |  |  |



www.unisonic.com.tw 1 of 5 QW-R502-068,B

U74HC00 cmos ic

■ PIN CONFIGURATION



■ LOGIC DIAGRAM (positive logic)



■ FUNCTION TABLE (each inverter)

| INI | OUTPUT |   |  |  |
|-----|--------|---|--|--|
| Α   | Y      |   |  |  |
| Н   | Н      | L |  |  |
| L   | X      | Н |  |  |
| X   | L      | Н |  |  |

U74HC00 cmos ic

# ABSOLUTE MAXIMUM RATING (unless otherwise specified)

| PARAMETER                  | SYMBOL                                                        | RATINGS    | UNIT |
|----------------------------|---------------------------------------------------------------|------------|------|
| Supply Voltage Range       | $V_{CC}$                                                      | 1.0 ~ 7.0  | V    |
| Input Clamp Current        | $I_{IK}$ ( $V_{IN}$ < 0 or $V_{IN}$ > $V_{CC}$ (see Note 1)   | ±20        | mA   |
| Output Clamp Current       | $I_{OK}$ ( $V_{OUT}$ < 0 or $V_{OUT}$ > $V_{CC}$ (see Note 1) | ±20        | mA   |
| Continuous Output Current  | $I_{O}(V_{OUT} = 0 \text{ to } V_{CC})$                       | ±25        | mA   |
| Continuous Current Through | V <sub>CC</sub> or GND                                        | ±50        | mA   |
| Storage Temperature        | T <sub>STG</sub>                                              | -65 ~ +150 |      |

- Note: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
  - 2. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

## ■ THERMAL DATA

| PARAMETER                           |          |     | RATINGS | UNIT |
|-------------------------------------|----------|-----|---------|------|
|                                     | SOP-14   |     | 86      | /W   |
| Thermal Resistance Junction Ambient | DIP-14   | θја | 80      | /W   |
|                                     | TSSOP-14 |     | 113     | /W   |

#### ■ RECOMMENDED OPERATING CONDITIONS

| PARAMETER                          | SYMBOL          | TEST CONDITIONS         | MIN | TYP | MAX      | UNIT |  |
|------------------------------------|-----------------|-------------------------|-----|-----|----------|------|--|
| Supply Voltage                     | V <sub>CC</sub> |                         | 2   | 4.5 | 6        | V    |  |
|                                    | V <sub>IH</sub> | $V_{CC} = 2 V$          | 1.4 |     |          |      |  |
| High-Level Input Voltage           |                 | $V_{CC} = 4.5V$         | 3.0 |     |          | V    |  |
|                                    |                 | V <sub>CC</sub> = 6 V   | 4.2 |     |          |      |  |
|                                    | V <sub>IL</sub> | $V_{CC} = 2 V$          |     |     | 0.7      |      |  |
| Low-Level Input Voltage            |                 | V <sub>CC</sub> = 4.5 V |     |     | 1.5      | V    |  |
|                                    |                 | V <sub>CC</sub> = 6 V   |     |     | 2        |      |  |
| Input Voltage                      | $V_{IN}$        |                         | 0   |     | $V_{CC}$ | V    |  |
| Output Voltage                     | $V_{OUT}$       |                         | 0   |     | $V_{CC}$ | V    |  |
| Input Transition Rise or Fall Rate | dt/dv           | V <sub>CC</sub> = 4.5V  |     |     | 500      | ns   |  |
| Operating Free-Air Temperature     | T <sub>A</sub>  | _                       | -40 |     | 85       |      |  |

Note: All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation.

# ■ ELECTRICAL CHARACTERISTICS (Ta = 25 , unless otherwise specified)

| PARAMETER                 | SYMBOL          | TEST CONDITIONS                                                           | MIN | TYP   | MAX  | UNIT  |  |  |
|---------------------------|-----------------|---------------------------------------------------------------------------|-----|-------|------|-------|--|--|
| High-Level Output Voltage | \/              | $V_{CC}$ = 4.5V, $V_{IN}$ = $V_{IH}$ or $V_{IL}$ , $I_{OH}$ = -20 $\mu$ A | 4.4 | 4.5   |      | V     |  |  |
|                           | V <sub>OH</sub> | $V_{CC}$ = 4.5V, $V_{IN}$ = $V_{IH}$ or $V_{IL}$ , $I_{OH}$ = -4 mA       | 4.3 |       | V    |       |  |  |
| Love Lovel Output Voltage | \ /             | $V_{CC}$ = 4.5V, $V_{IN}$ = $V_{IH}$ or $V_{IL}$ , $I_{OL}$ = 20 $\mu$ A  |     | 0.001 | 0.1  | V     |  |  |
| Low-Level Output Voltage  | $V_{OL}$        | $V_{CC}$ = 4.5V, $V_{IN}$ = $V_{IH}$ or $V_{IL}$ , $I_{OL}$ = 4 mA        |     | 0.17  | 0.26 | \ \ \ |  |  |
| Input Current             | I <sub>IN</sub> | $V_{CC}$ = 6V, $V_{IN}$ = $V_{CC}$ or 0                                   |     | ±0.1  | ±100 | nA    |  |  |
| Quiescent Supply Current  | I <sub>CC</sub> | $V_{CC}$ = 6V, $V_{IN}$ = $V_{CC}$ or 0, $I_{OUT}$ = 0                    |     |       | 20   | μΑ    |  |  |
| Operating Characteristics |                 |                                                                           |     |       |      |       |  |  |
| Power Dissipation         | Cpd             | No load                                                                   |     | 20    |      | рF    |  |  |
| Capacitance Per Gate      | Сри             | INO IOAU                                                                  |     | 20    |      | рг    |  |  |

Note: All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation.

■ SWITCHING CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE (Ta = 25 , C<sub>L</sub> = 50 pF, unless otherwise specified)

| PARAMETER                          | SYMBOL          | FROM(INPUT) | TO(OUTPUT) | $V_{CC}$ | MIN | TYP | MAX | UNIT |
|------------------------------------|-----------------|-------------|------------|----------|-----|-----|-----|------|
| Propagation Delay from A or B to Y |                 | 2V          |            | 35       |     |     |     |      |
|                                    | t <sub>pd</sub> | A or B      | A or B Y   | 4.5V     |     |     | 15  | ns   |
|                                    |                 |             |            | 6V       |     |     | 12  |      |
| Output Rise and Fall Time          |                 |             |            | 2V       |     |     | 30  |      |
|                                    | t <sub>T</sub>  |             | Y 4.5V     | 19       | ns  |     |     |      |
|                                    |                 |             |            | 6V       |     |     | 17  |      |

## TEST CIRCUIT AND WAVEFORMS



Note: C<sub>L</sub> includes probe and jig capacitance.



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.