Image Thresholding (Week 5)

Image Histogram Binary Thresholding

- In digital image processing, thresholding is the simplest method of segmenting images.
 - For a grayscale image, thresholding can be used to create binary images.
- The simplest thresholding methods replace each pixel in an image with a black/white pixels depending upon pixel intensity.
- Challenges in image thresholding which leads to imperfect binary image with false positive and false negative regions. Some challenges are as follows:
 - High level of noise,
 - Lower variance between background and foreground groups,
 - Non-homogeneous lighting, etc.

Image Histogram Binary Thresholding (Within-Class variance)

Adaptive Thresholding

- Both simple thresholding (like mean/median/mode) and within-class variance thresholding are global thresholding techniques using a single threshold value in image thresholding.
- But a single threshold value may not be sufficient because it may work well in a certain part of the image but may fail in another part.
- To resolve these limitations, adaptive thresholding can be used.

Adaptive Thresholding

- Adaptive thresholding is a local thresholding technique.
 - This technique considers each pixel and its neighborhood.
- The arithmetic mean of pixels intensity is commonly used to calculate the threshold of the neighborhood; then the threshold value is used to classify the pixel.

Entropy Based Thresholding

- In this method, two probability distributions are derived for a matrix through threshold t. For example, one defined for discrete values [1,t] and the other for values [t+1,L].
- The total entropy $\psi(t)$ is the sum of the entropies associated with each distribution.

$$\psi(t)=\ln p_t(1-p_t)+\frac{e_t}{p_t}+\frac{e_T-e_t}{1-p_t}$$
 where, $e_t=-\sum_{i=1}^t p(i)\ln p(i)$, $e_T=-\sum_{i=1}^L p(i)\ln p(i)$, $p_t=\sum_{i=1}^t p(i)$

- It is required to obtain the maximum information between the object and background distributions in the matrix.
- The discrete value t which $\max_{\psi(t)}$ is to be opted as the threshold value.

Entropy Based Thresholding: DIY

• Assume a 6-level matrix.

• Form a group, and assume threshold t as 0, 1, 2, 3, 4 or 5.

Entropy Based Thresholding: DIY

Minimum Cross-Entropy Thresholding

- Minimum cross-entropy-based thresholding describes the threshold by minimizing the variance between two class entropies.
- Consider an image I(x, y) is given with its corresponding histogram. The threshold t divides L-level matrix into two parts:

$$D(t) = \sum_{i=1}^{L} i * p(i) * \log(i) - \sum_{i=1}^{t} i * p(i) * \log(\mu_1(t)) - \sum_{i=t+1}^{L} i * p(i) * \log(\mu_2(t))$$

• The result of optimal threshold can be estimated using $\min_t(D(t))$.

Minimum Cross-Entropy Thresholding: DIY

• Assume a 6-level matrix.

• Form a group, and assume threshold t as 0, 1, 2, 3, 4 or 5.

Minimum Cross-Entropy Thresholding: DIY

Noise & Thresholding: Surveillance

Input image

Binary image

Noise & Thresholding: Surveillance

Input image

Improved image

Binary image

Extracted information

Multi Level Histogram Thresholding

- In digital image processing, MLHT is a technique to segment images into more than 2 segments.
- Similar to Binary thresholding, the MLHT methods replace each pixel in an image with gray pixels depending upon pixel intensity.
- Challenges associated with MLHT are as follows:
 - High level of noise,
 - Lower variance between backgrounds and foregrounds,
 - Non-homogeneous lighting, etc.

Minimum Cross-Entropy Thresholding: MLHT scenario

- First threshold:
 - Consider an image I(x, y). Let threshold t divides L-level matrix into two parts, defined as $L_{lower} \cup L_{upper} = L$.

$$D(t_1) = \sum_{i=1}^{L} i * p(i) * \log(i) - \sum_{i=1}^{t_1} i * p(i) * \log(\mu_1(t_1)) - \sum_{i=t_1+1}^{L} i * p(i) * \log(\mu_2(t_1))$$

The optimal threshold is $\min_t(D_1(t))$

Second threshold:

$$D(t_2) = \sum_{i=1}^{L_{lower}} i * p(i) * \log(i) - \sum_{i=1}^{t_2} i * p(i) * \log(\mu_1(t_2)) - \sum_{i=t_2+1}^{L_{lower}} i * p(i) * \log(\mu_2(t_2))$$

$$D(t_3) = \sum_{i=L_{lower}+1}^{L} i * p(i) * \log(i) - \sum_{i=Llower+1}^{t_3} i * p(i) * \log(\mu_1(t_3)) - \sum_{i=t_3+1}^{L} i * p(i) * \log(\mu_2(t_3))$$

Write possible expressions of 2nd level threshold.

Minimum Cross-Entropy Thresholding: DIY

Assume a 6-level matrix.

• Form a group, and assume 1^{st} level of threshold t=3. Estimate 2^{nd} level in lower and upper thresholds.

Multi Level Histogram Thresholding

Multi Level vs Binary Histogram Thresholding

