Arclength and Line Integrals

Department of Mathematics IIT Guwahati

Parametric curves

Definition:

- A continuous mapping $\gamma:[a,b]\to\mathbb{R}^n$ is called a parametric curve or a parametrized path and [a,b] is called the parameter space.
- The set Γ := γ([a, b]) is called a geometric curve or a geometric path in Rⁿ.

Parametric curves

Definition:

- A continuous mapping $\gamma:[a,b]\to\mathbb{R}^n$ is called a parametric curve or a parametrized path and [a,b] is called the parameter space.
- The set $\Gamma := \gamma([a, b])$ is called a geometric curve or a geometric path in \mathbb{R}^n .

Examples:

- The parametric path $\gamma(t) := (\cos t, \sin t)$ for $t \in [0, 2\pi]$ is a circle in \mathbb{R}^2 .
- The parametric path $\gamma(t) := (\cos t, \sin t, t)$ for $t \in [0, 2\pi]$ is helix in \mathbb{R}^3 .

Smooth parametrization

A parametric curve $\Gamma:[a,b]\to\mathbb{R}^n$ is said to be

- smooth if γ is C^1 on [a,b] and $\gamma'(t) \neq 0$ for $t \in (a,b)$,
- piecewise smooth (PC^1) if γ is smooth on $[t_{j-1}, t_j]$ for some partition t_0, \ldots, t_m of [a, b].

Polygonal approximations of paths

Let $\gamma: [a, b] \to \mathbb{R}^n$ be a parametric path. For a partition $P := \{t_0, \dots, t_m\}$ of [a, b], define

$$\ell(P,\gamma) := \sum_{j=1}^m \|\gamma(t_j) - \gamma(t_{j-1})\|$$

and $\mu(P) := \max\{t_j - t_{j-1} : j = 1 : m\}.$

Polygonal approximations of paths

Let $\gamma: [a, b] \to \mathbb{R}^n$ be a parametric path. For a partition $P:=\{t_0, \ldots, t_m\}$ of [a, b], define

$$\ell(P,\gamma) := \sum_{j=1}^m \|\gamma(t_j) - \gamma(t_{j-1})\|$$

and $\mu(P) := \max\{t_j - t_{j-1} : j = 1 : m\}.$

Note that $\ell(P, \gamma) \leq \ell(Q, \gamma)$ if Q is a refinement of P. Hence

$$\lim_{\mu(P)\to 0}\ell(P,\gamma)=\sup_{P}\ell(P,\gamma).$$

Arclength of a curve

Definition: Let $\ell(\gamma) := \sup_{P} \ell(P, \gamma)$. If $\ell(\gamma)$ is finite then γ is said to be rectifiable (finite length) and $\ell(\gamma)$ is said to be the arclength of γ .

Arclength of a curve

Definition: Let $\ell(\gamma) := \sup_{P} \ell(P, \gamma)$. If $\ell(\gamma)$ is finite then γ is said to be rectifiable (finite length) and $\ell(\gamma)$ is said to be the arclength of γ .

Theorem: Let $\gamma:[a.b]\to\mathbb{R}^n$ be a C^1 (or PC^1) path. Then γ is rectifiable and

$$\ell(\gamma) = \lim_{\mu(P)\to 0} \ell(P,\gamma) = \int_a^b \|\gamma'(t)\| dt.$$

Arclength of a curve

Definition: Let $\ell(\gamma) := \sup_{P} \ell(P, \gamma)$. If $\ell(\gamma)$ is finite then γ is said to be rectifiable (finite length) and $\ell(\gamma)$ is said to be the arclength of γ .

Theorem: Let $\gamma:[a.b]\to\mathbb{R}^n$ be a C^1 (or PC^1) path. Then γ is rectifiable and

$$\ell(\gamma) = \lim_{\mu(P)\to 0} \ell(P,\gamma) = \int_a^b \|\gamma'(t)\| dt.$$

Proof: Use $\gamma(t_j) - \gamma(t_{j-1}) = \gamma'(t_{j-1}) \Delta t_j + e(\Delta t_j) \Delta t_j$ with $e(\Delta t_j) \to 0$ as $\Delta t_j \to 0$ and the Riemann sum of $\|\gamma'(t)\|$.

Arclength

ullet If $f:[a,b] \to \mathbb{R}$ is C^1 then the length of the graph of f is given by

$$\int_a^b \sqrt{1+f'(x)^2}\,dx.$$

Arclength

ullet If $f:[a,b]
ightarrow \mathbb{R}$ is C^1 then the length of the graph of f is given by

$$\int_a^b \sqrt{1+f'(x)^2}\,dx.$$

ullet If $\gamma:[a,b] o\mathbb{R}^2$ is \mathcal{C}^1 and $\gamma(t)=(x(t),y(t))$ then

$$\ell(\gamma) = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} dt.$$

Arclength

ullet If $f:[a,b]
ightarrow \mathbb{R}$ is C^1 then the length of the graph of f is given by

$$\int_a^b \sqrt{1+f'(x)^2}\,dx.$$

• If $\gamma:[a,b]\to\mathbb{R}^2$ is C^1 and $\gamma(t)=(x(t),y(t))$ then

$$\ell(\gamma) = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} dt.$$

ullet If $\gamma:[a,b] o\mathbb{R}^3$ is \mathcal{C}^1 and $\gamma(t)=(x(t),y(t)),z(t))$ then

$$\ell(\gamma) = \int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} dt.$$

Examples

• The arclength of the helix $\gamma(t) := (\cos t, \sin t, t)$ for $t \in [0, 2\pi]$ is given by

$$\int_0^{2\pi} \|\gamma'(t)\| dt = \int_0^{2\pi} \sqrt{2} dt = 2\sqrt{2} \pi.$$

Examples

• The arclength of the helix $\gamma(t) := (\cos t, \sin t, t)$ for $t \in [0, 2\pi]$ is given by

$$\int_0^{2\pi} \|\gamma'(t)\| dt = \int_0^{2\pi} \sqrt{2} dt = 2\sqrt{2} \pi.$$

• The arclength of $\gamma(t):=(\cos t,\sin t,\cos(2t),\sin(2t))$ for $t\in[0,\pi]$ is given by

$$\int_0^{\pi} \|\gamma'(t)\| dt = \int_0^{\pi} \sqrt{5} dt = \sqrt{5} \,\pi.$$

Invariance of arclength

Obviously the arclength $\ell(\gamma)$ depends on the parametrization γ . However, $\ell(\gamma)$ is invariant under equivalent parametrization.

Invariance of arclength

Obviously the arclength $\ell(\gamma)$ depends on the parametrization γ . However, $\ell(\gamma)$ is invariant under equivalent parametrization.

Definition: Two parametric curves $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ are said to be equivalent if there exits a continuous function $u:[a,b]\to[c,d]$ such that

- u is strictly increasing
- u([a,b]) = [c,d] and
- $\gamma = \rho \circ u$.

Invariance of arclength

Obviously the arclength $\ell(\gamma)$ depends on the parametrization γ . However, $\ell(\gamma)$ is invariant under equivalent parametrization.

Definition: Two parametric curves $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ are said to be equivalent if there exits a continuous function $u:[a,b]\to[c,d]$ such that

- u is strictly increasing
- u([a,b]) = [c,d] and
- $\gamma = \rho \circ u$.

Theorem: Let $\gamma:[a,b]\to\mathbb{R}^n$ be rectifiable. Then every parametric curve equivalent to γ is rectifiable and has the same arclength $\ell(\gamma)$.

Arclength differential

Let $\gamma:[a,b]\to\mathbb{R}^n$ be a \mathcal{C}^1 path. Define $s:[a,b]\to[0,\ell]$ by

$$s(t) := \int_a^t \|\gamma'(\tau)\| d\tau,$$

where $\ell := \ell(\gamma)$. Then

$$\frac{ds}{dt} = \|\gamma'(t)\|$$
 or equivalently $ds = \|\gamma'(t)\|dt$.

Arclength differential

Let $\gamma:[a,b]\to\mathbb{R}^n$ be a C^1 path. Define $s:[a,b]\to[0,\ell]$ by

$$s(t) := \int_a^t \|\gamma'(\tau)\| d\tau,$$

where $\ell := \ell(\gamma)$. Then

$$rac{ds}{dt} = \|\gamma'(t)\|$$
 or equivalently $ds = \|\gamma'(t)\|dt$.

• ds is called the arclength differential and is written as

$$ds = \sqrt{dx^2 + dy^2}$$
 when $\gamma(t) = (x(t), y(t))$
 $ds = \sqrt{dx^2 + dy^2 + dz^2}$ when $\gamma(t) = (x(t), y(t), z(t))$

Partition of curves

Let Γ be a curve in \mathbb{R}^n paramatrized by $\mathbf{r}:[a,b] \to \mathbb{R}^n$. Then a partion $P:=(a=t_0<\ldots< t_m=b)$ of [a,b] induces a partition of Γ into m subarcs with arclenths $\Delta s_1,\ldots,\Delta s_m$.

Define
$$\mu(P) := \max_{1 \le j \le m} \Delta s_j$$
.

Riemann sum of scalar field w.r.t. arclength

Let $f: \Gamma \to \mathbb{R}$. Then for any \mathbf{p}_j in the j-th subarc, consider the Riemann sum of f w.r.t. to the arclength

$$S(P,f) := \sum_{j=1}^m f(\mathbf{p}_j) \Delta s_j.$$

Line integrals of scalar fields w.r.t. arclength

Definition: Suppose that \mathbf{r} is PC^1 and $f: \Gamma \to \mathbb{R}$. Then the line integral of f along Γ w.r.t. the arclength is given by

$$\int_{\Gamma} f(\mathbf{x}) ds := \lim_{\mu(P) \to 0} S(P, f) = \lim_{\mu(P) \to 0} \sum_{j=1}^{m} f(\mathbf{p}_{j}) \Delta s_{j}$$

if the limit exists.

Line integrals of scalar fields w.r.t. arclength

Definition: Suppose that \mathbf{r} is PC^1 and $f: \Gamma \to \mathbb{R}$. Then the line integral of f along Γ w.r.t. the arclength is given by

$$\int_{\Gamma} f(\mathbf{x}) ds := \lim_{\mu(P) \to 0} S(P, f) = \lim_{\mu(P) \to 0} \sum_{j=1}^{m} f(\mathbf{p}_{j}) \Delta s_{j}$$

if the limit exists.

Fact: If f is continuous and $\mathbf{r}(t)$ is PC^1 then we have

$$\int_{\Gamma} f(\mathbf{x}) ds = \int_{a}^{b} f(\mathbf{r}(t)) \|\mathbf{r}'(t)\| dt.$$

Line integrals of scalar fields w.r.t. arclength

Definition: Suppose that \mathbf{r} is PC^1 and $f: \Gamma \to \mathbb{R}$. Then the line integral of f along Γ w.r.t. the arclength is given by

$$\int_{\Gamma} f(\mathbf{x}) ds := \lim_{\mu(P) \to 0} S(P, f) = \lim_{\mu(P) \to 0} \sum_{j=1}^{m} f(\mathbf{p}_{j}) \Delta s_{j}$$

if the limit exists.

Fact: If f is continuous and $\mathbf{r}(t)$ is PC^1 then we have

$$\int_{\Gamma} f(\mathbf{x}) ds = \int_{a}^{b} f(\mathbf{r}(t)) \|\mathbf{r}'(t)\| dt.$$

Proof: Since $\Delta s \simeq \|\mathbf{r}'(t)\|\Delta t$, i.e., $ds = \|\mathbf{r}'(t)\|dt$ and $t \mapsto f(\mathbf{r}(t))\|\mathbf{r}'(t)\|$ is piecewise continuous, the result follows.

Line integrals of scalar fields

For the plane curve Γ : $\mathbf{r}(t) = (x(t), y(t)), t \in [a, b]$ we have

$$\int_{\Gamma} f(x,y) ds = \int_{a}^{b} f(x(t),y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} dt.$$

Line integrals of scalar fields

For the plane curve Γ : $\mathbf{r}(t) = (x(t), y(t)), t \in [a, b]$ we have

$$\int_{\Gamma} f(x,y) ds = \int_{a}^{b} f(x(t),y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} dt.$$

Example: Evaluate $\int_{\Gamma} (2 + x^2 y) ds$, where Γ is the upper half of the circle $x^2 + y^2 = 1$.

Considering
$$x(t) = \cos t$$
, $y(t) = \sin t$, $0 \le t \le \pi$, we have

$$\int_{\Gamma} (2+x^2y)ds = \int_{0}^{\pi} (2+\cos^2t\sin t)dt = 2\pi + 2/3.$$

Properties of line integrals of scalar fields

Fact: Let Γ be parametrized by a PC^1 curve $\mathbf{r}:[a,b]\to\mathbb{R}^n$ and $f,g:\Gamma\to\mathbb{R}$ be continuous. Then the following hold:

• $\int_{\Gamma} f ds$ is invariant under equivalent parametrization of Γ .

Properties of line integrals of scalar fields

Fact: Let Γ be parametrized by a PC^1 curve $\mathbf{r}:[a,b]\to\mathbb{R}^n$ and $f,g:\Gamma\to\mathbb{R}$ be continuous. Then the following hold:

- $\int_{\Gamma} f ds$ is invariant under equivalent parametrization of Γ .
- $\int_{\Gamma} (f + \alpha g) ds = \int_{\Gamma} f ds + \alpha \int_{\Gamma} g ds$ for $\alpha \in \mathbb{R}$.

Properties of line integrals of scalar fields

Fact: Let Γ be parametrized by a PC^1 curve $\mathbf{r}:[a,b]\to\mathbb{R}^n$ and $f,g:\Gamma\to\mathbb{R}$ be continuous. Then the following hold:

- $\int_{\Gamma} f ds$ is invariant under equivalent parametrization of Γ .
- $\int_{\Gamma} (f + \alpha g) ds = \int_{\Gamma} f ds + \alpha \int_{\Gamma} g ds$ for $\alpha \in \mathbb{R}$.
- Let $\Gamma = \Gamma_1 + \cdots + \Gamma_m$, where Γ_i is parametrized by C^1 curve $\mathbf{r}_i : [a_i, b_i] \to \mathbb{R}^n$. Then

$$\int_{\Gamma} f ds = \int_{\Gamma_1} f ds + \cdots + \int_{\Gamma_m} f ds.$$

Example

Evaluate $\int_{\Gamma} 2xds$, where Γ consists of the arc C_1 of the parabola $y=x^2$ from (0,0) to (1,1) followed by the line segment C_2 from (1,1) to (1,2). Then

$$\int_{\Gamma} 2xds = \int_{C_1} 2xds + \int_{C_2} 2xds = \frac{1}{6} (5\sqrt{5} + 11).$$

Other types of line integrals of scalar fields

Let Γ be parametrized by PC^1 curve $\mathbf{r}(t) := (x_1(t), \dots, x_n(t))$ and $f : \Gamma \to \mathbb{R}$ be continuous. Then the line integral of f along Γ w.r.t. x_i is defined by

$$\int_{\Gamma} f dx_i := \int_a^b f(x_1(t), \dots, x_n(t)) x_i'(t) dt.$$

Other types of line integrals of scalar fields

Let Γ be parametrized by PC^1 curve $\mathbf{r}(t) := (x_1(t), \dots, x_n(t))$ and $f : \Gamma \to \mathbb{R}$ be continuous. Then the line integral of f along Γ w.r.t. x_i is defined by

$$\int_{\Gamma} f dx_i := \int_a^b f(x_1(t), \dots, x_n(t)) x_i'(t) dt.$$

For n = 3, these integrals are denoted by

$$\int_{\Gamma} f(x, y, z) dx, \quad \int_{\Gamma} f(x, y, z) dy \text{ and } \int_{\Gamma} f(x, y, z) dz.$$
*** End ***