Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2021-2022

In questa lezione

- ▶ Traiettorie di stato di un sistema
- ▶ Punti di equilibrio di un sistema (con e senza ingressi)
- $\,\triangleright\,$ Stabilità semplice e asintotica di un equilibrio
- ▶ Linearizzazione di sistemi non lineari (con e senza ingressi)

Traiettorie di stato e ritratto di fase

$$\dot{x}(t) = f(x(t)), t \in \mathbb{R}_+$$
 (t.c.

$$x(t+1) = f(x(t)), t \in \mathbb{Z}_+$$
 (t.d.)

Traiettoria di stato del sistema relativa a c.i. $x(0) = x_0$: $\{x(t) \in \mathbb{R}^n, t \ge 0\}$

Ritratto di fase del sistema = insieme delle traiettorie di stato $\forall x_0 \in \mathbb{R}^n$

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

Traiettorie di stato e ritratto di fase: esempi

Sistema lineare tempo invariante scalare ($f \in \mathbb{R}$):

$$\dot{x}(t) = fx(t), \ t \in \mathbb{R}_+$$
 (t.c.)

$$x(t+1) = fx(t), t \in \mathbb{Z}_+$$
 (t.d.)

$$x(t) = e^{ft}x_0 \qquad \text{(t.c.)}$$

$$x(t) = f^t x_0 \qquad \text{(t.d.)}$$

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

Traiettorie di stato e ritratto di fase: esempi

Dinamica preda-predatore $(\alpha, \beta, \gamma, \delta > 0)$:

$$\begin{cases} \dot{x}_1(t) = \alpha x_1(t) - \beta x_1(t) x_2(t) \\ \dot{x}_2(t) = \gamma x_1(t) x_2(t) - \delta x_2(t) \end{cases}$$

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

3 Marzo 2022

Punti di equilibrio

$$\dot{x}(t) = f(x(t)), \ t \in \mathbb{R}_+$$
 (t.c.) \bar{x} equilibrio $\iff f(\bar{x}) = 0$

$$\bar{x}$$
 equilibrio $\iff f(\bar{x}) = 0$

0

$$x(t+1) = f(x(t)), t \in \mathbb{Z}_+$$
 (t.d.) \bar{x} equilibrio $\iff \bar{x} = f(\bar{x})$

$$\bar{x}$$
 equilibrio $\iff \bar{x} = f(\bar{x})$

Definizione: $\bar{x} \in \mathbb{R}^n$ è detto punto di equilibrio del sistema se preso $x_0 = \bar{x}$,

$$x(t) = \bar{x}, \quad \forall t \geq 0.$$

Caso lineare:
$$\bar{x}$$
 equilibrio \iff

$$\bar{x} \in \ker F = \{x \in \mathbb{R}^n : Fx = 0\}$$
 (t.c.)

$$\bar{x} \in \ker(F - I) = \{x \in \mathbb{R}^n : (F - I)x = 0\}$$
 (t.d.)

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

3 Marzo 2022

3 Marzo 2022

Punti di equilibrio: esempi

1.
$$\dot{x} = x(1-x)$$

1.
$$\dot{x} = x(1-x)$$
 \Longrightarrow due equilibri: $\bar{x} = 0, 1$

2.
$$\dot{x} = x^2 + 1$$

⇒ nessun equilibrio

3.
$$\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$$

3. $\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} x \implies \text{unico equilibrio: } \bar{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

4.
$$\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} x$$

4. $\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} x \implies \text{infiniti equilibri: } \bar{x} = \begin{bmatrix} 0 \\ \alpha \end{bmatrix}, \ \alpha \in \mathbb{R}$

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

Punti di equilibrio in presenza di ingressi

$$\dot{x}(t) = f(x(t), u(t)), t \in \mathbb{R}_+$$
 (t.c.)

$$x(t+1) = f(x(t), u(t)), t \in \mathbb{Z}_+$$
 (t.d.)

$$u(t)$$
 costante, $u(t) = \bar{u}$, $\forall t \geq 0$

$$f(\bar{x},\bar{u})=0$$

$$f(\bar{x},\bar{u})=0$$
 $F\bar{x}=-G\bar{u}$

caso lineare

$$\bar{x}$$
 equilibrio \iff

$$\bar{x} = f(\bar{x}, \bar{u})$$

$$\bar{x} = f(\bar{x}, \bar{u})$$
 $\left| (F - I)\bar{x} = -G\bar{u} \right|$ (t.d.)

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

3 Marzo 2022

Punti di equilibrio in presenza di ingressi: esempi

1.
$$\dot{x} = \bar{u}, \ \bar{u} \neq 0$$
 \Longrightarrow nessun equilibrio

2.
$$\dot{x} = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \bar{u} \implies \text{infiniti equilibri } \bar{x} = \begin{bmatrix} \alpha \\ \bar{u} \end{bmatrix}, \ \alpha \in \mathbb{R}$$

nessun equilibrio se
$$\bar{u} > \frac{1}{4}$$

3.
$$\begin{cases} x_1(t+1) = x_2(t) \\ x_2(t+1) = x_1^2(t) + \bar{u} \end{cases} \implies \text{un equilibrio } \bar{x} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \text{ se } \bar{u} = \frac{1}{4}$$

$$\text{due equilibri } \bar{x} = \begin{bmatrix} \frac{1 \pm \sqrt{1 - 4\bar{u}}}{2} \\ \frac{1 \pm \sqrt{1 - 4\bar{u}}}{2} \end{bmatrix} \text{ se } \bar{u} < \frac{1}{4}$$

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

3 Marzo 2022

Stabilità semplice

Definizione: Un punto di equilibrio $\bar{x} \in \mathbb{R}^n$ è detto semplicemente stabile se $\forall \varepsilon > 0$, $\exists \delta > 0$ tale che

$$||x_0 - \bar{x}|| < \delta \implies ||x(t) - \bar{x}|| < \varepsilon, \quad \forall t > 0.$$

Stabilità asintotica

Definizione: Un punto di equilibrio $\bar{x} \in \mathbb{R}^n$ è detto asintoticamente stabile se:

- \bullet \bar{x} è semplicemente stabile e
- 2 $\lim_{t\to\infty} x(t) = \bar{x}$ per ogni $x_0\in\mathbb{R}^n$ "sufficientemente vicino" a \bar{x} .

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

3 Marzo 2022

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

Stabilità semplice e asintotica: osservazioni

- 1. Le definizioni di stabilità semplice/asintotica hanno carattere locale. Se la condizione (ii) della stabilità asintotica vale per ogni $x_0 \in \mathbb{R}^n$ allora si parla di stabilità asintotica globale.
- 2. Per sistemi lineari si può parlare di stabilità del sistema invece che del punto di equilibrio. Infatti, con un opportuno cambio di variabile, si può sempre "spostare" l'equilibrio in $\bar{x} = 0$.

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

3 Marzo 2022

3 Marzo 2022

Linearizzazione attorno ad un equilibrio

 $\dot{x} = f(x), \ t \in \mathbb{R}_+$ sistema scalare, $\bar{x} \in \mathbb{R}$ punto di equilibrio

$$\delta_x \triangleq x - \bar{x}$$

$$f(x) = f(\bar{x}) + \frac{\mathsf{d}}{\mathsf{d}x} f(\bar{x}) \delta_x + \frac{1}{2} \frac{\mathsf{d}^2}{\mathsf{d}x^2} f(\bar{x}) \delta_x^2 + \dots \approx f(\bar{x}) + \frac{\mathsf{d}}{\mathsf{d}x} f(\bar{x}) \delta_x$$

Sistema linearizzato attorno a \bar{x} : $\dot{\delta}_x = \frac{d}{dx} f(\bar{x}) \delta_x$

$$\dot{\delta}_{x} = \frac{\mathsf{d}}{\mathsf{d}x} f(\bar{x}) \, \delta_{x}$$

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

3 Marzo 2022

Linearizzazione attorno ad un equilibrio

$$\dot{x}=f(x)=egin{bmatrix} f_1(x) \ dots \ f_n(x) \end{bmatrix}$$
, $t\in\mathbb{R}_+$ sistema n -dim., $ar{x}\in\mathbb{R}^n$ punto di equilibrio

$$\delta_x \triangleq x - \bar{x}$$

$$f(x) = f(\bar{x}) + J_f(\bar{x})\delta_x + \ldots \approx f(\bar{x}) + J_f(\bar{x})\delta_x$$

$$J_f(x) = \left[\frac{\partial f_i(x)}{\partial x_j}\right]_{\substack{i=1,\dots,n\\i=1}} \in \mathbb{R}^{n \times n} = \text{Jacobiano di } f$$

Sistema linearizzato attorno a \bar{x} :

$$\dot{\delta}_{\mathsf{x}} = J_{\mathsf{f}}(\bar{\mathsf{x}})\,\delta_{\mathsf{x}}$$

Linearizzazione attorno ad un equilibrio: esempi

$$\mathbf{1.} \ \dot{x} = \sin x$$

$$\bar{x} = 0$$
 $\bar{x} = \pi$

1.
$$\dot{x} = \sin x$$
 $\ddot{x} = 0$ \Rightarrow $\dot{\delta}_x = \delta_x$ $\dot{\delta}_x = -\delta_x$, $\delta_x \triangleq x - \pi$

2.
$$\dot{x} = \alpha x^3$$
, $\alpha \in \mathbb{R}$, $\bar{x} = 0$ \Longrightarrow $\dot{\delta}_x = 0$

$$\Rightarrow$$
 $\dot{\delta}_{\mathsf{x}} = 0$

$$\mathbf{3.} \begin{cases} \dot{x}_1 = -x_2 + x_1 x_2^2 \\ \dot{x}_2 = x_1 + x_2^5 \end{cases} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \dot{\delta}_x = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \delta_x$$

$$\begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \quad \dot{\delta}_{\mathsf{x}} = \begin{bmatrix} \mathsf{0} & -\mathsf{1} \\ \mathsf{1} & \mathsf{0} \end{bmatrix} \delta$$

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

Linearizzazione attorno ad un equilibrio in presenza di ingressi

$$\dot{x} = f(x, u), t \in \mathbb{R}_+$$

sistema *n*-dim., $\bar{x} \in \mathbb{R}^n$ punto di equilibrio relativo all'ingresso costante $\bar{u} \in \mathbb{R}^m$

$$\delta_x \triangleq x - \bar{x}, \ \delta_u \triangleq u - \bar{u}$$

$$f(x,u) = f(\bar{x},\bar{u}) + J_f^{(x)}(\bar{x},\bar{u})\delta_x + J_f^{(u)}(\bar{x},\bar{u})\delta_u + \dots$$

$$J_f^{(x)}(x,u) = \left[\frac{\partial f_i(x,u)}{\partial x_j}\right]_{\substack{i=1,\ldots,n\\j=1,\ldots,n}} \in \mathbb{R}^{n\times n}, \quad J_f^{(u)}(x,u) = \left[\frac{\partial f_i(x,u)}{\partial u_j}\right]_{\substack{i=1,\ldots,n\\j=1,\ldots,m}} \in \mathbb{R}^{n\times n}$$

Sistema linearizzato attorno a \bar{x} : $\delta_x = J_f^{(x)}(\bar{x}, \bar{u}) \, \delta_x + J_f^{(u)}(\bar{x}, \bar{u}) \, \delta_u$

