Dynamic Adaptive Scaling Strategy for NFV Routers on Kubernetes

Research Report

R11922202 游凱雯

Implementation

- Environment → local, Docker, Kubernetes
- Implementation → router, proxy
- Monitoring → Prometheus
- Visualization → Grafana

Execution - My Router vs. Proxy

Why?									
deployment.apps/proxy	1/1	1	1	6h2m					
deployment.apps/router	1/1	1	1	94m					
deployment.apps/server	1/1	1 1		94m					
ervice/proxy	LoadBalancer	10.111.199.68		<pending></pending>	8080:32400/TCP	5h58m			
ervice/router	NodePort	10.102.	141.66	<none></none>	8201:31655/TCP	89m			
service/server	ClusterIP	10.96.6	0.20	<none></none>	8001/TCP	89m			

My Stateful Router vs. My Stateless Proxy

NAME	REFERENCE		TARGETS	MINPODS	MAXPODS	REPLICAS	AGE
horizontalpodautoscaler.autoscaling/proxy	Deployment/pro		0%/50%	1	100	1	79m
NAME verticalpodautoscaler.auto <u>s</u> caling.k8s.io/pro	MODE oxy-vpa Auto	CPU 25m		PROVIDED True	AGE 6h1m		

10^21 "curl -v -x socks4://192.168.49.2:32400/ https://translate.google.com/" concurrently executing.

Result - Horizontal Pod Autoscaling on Proxy

Conclusion: HPA vs VPA

HPA

CPU/memory usage across pods

Number of pod replicas

Stateless applications

Achieving the constraint standards

at minimum cost

Needs correct resource specification

Higher

Potential underutilization

	_	•	-	-
	Т			
A = = = = 4				
Aspect				

Based on

Direction

Use

On K8s

Limitations

Complexity

Cost efficiency

CPU/memory usage per pod CPU/memory per pod

VPA

Applications needing more resources

Targeting more on improving reliability than on cost-saving

Pod restart required

Lower

Scales to individual pod needs (but in k8s arch.maybe not!)

Reference

- Horizontal Pod Autoscaling
 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
- Vertical Pod Autoscaler (VPA) not updating
 https://discuss.kubernetes.io/t/vertical-pod-autoscaler-vpa-not-updating-request-limits/1 8603
- 3. Minikube https://kubernetes.io/docs/tutorials/hello-minikube/
- 4. Install and Set Up kubectl on Linux https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
- 5. Prometheus and Grafana setup in Minikube https://brain2life.hashnode.dev/prometheus-and-grafana-setup-in-minikube