Universität zu Köln

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Praktikum B

${\bf B~3.3} \\ {\bf Reichweite~von~} \alpha {\bf -Strahlen}$

CATHERINE TRAN
CARLO KLEEFISCH
OLIVER FILLA

Contents

1	Ein	leitung	3	
2	Theoretische Grundlagen			
	2.1	Bethe-Bloch-Gleichung	3	
		2.1.1 Herleitung	3	
		· · · · · · · · · · · · · · · · · · ·	5	
		2.1.3 Geltungsbereich	5	
	2.2	Bragg-Kurve	5	
	2.3		6	
3	Durchführung			
	3.1	Versuchsaufbau	7	
	3.2	Eichung	7	
	3.3	Energiestraggling	7	
	3.4		8	
	3.5	Metallfolien	8	
4	$\operatorname{Lit}_{m{\epsilon}}$	eratur	8	

Einleitung

In diesem Versuch wird die Wechselwirkung von α -Teilchen mit den Elektronen der Atomhülle und der damit verbundene Abbremsung durch inelastische Stöße untersucht. Des Weiteren werden das Phänomen des α -Zerfalls, Bremsvermögen, Reichweite in Luft und Folie sowie Energie-Straggling durch die Aufnahme von α -Spektren mithilfe eines Sperrschichtdetektors studiert.

Theoretische Grundlagen

2.1 Bethe-Bloch-Gleichung

Bewegte und geladene Teilchen werden durch Interaktion mit Materie abgebremst, indem sie durch Stöße mit Atomkernen sowie Elektronen wechselwirken. Schwere Teilchen mit einer Ruhemasse $M_0 \gg m_e$ deutlich größer der Elektronen-Ruhemasse m_e werden primär durch die Wechselwirkung mit Atomkernen gebremst, wodurch die Atome angeregt und ionisiert werden können.

Die Bethe-Bloch-Gleichung beschreibt den Verlust von Energie E pro Strecke x durch das Durchfliegen eines homogenen Bremsmediums.

Dazu werden die Dichte ρ , die Atommassenzahl A und die Ladungszahl Z des Bremsmediums benötigt. Dabei wird von einem homogenen Medium mit N Atomen pro Kubikzentimeter und der Kernladungszahl $Z \cdot e$ ausgegangen, wobei e die Elementarladung darstellt. β ist der Quotient aus Geschwindigkeit v und Lichtgeschwindigkeit c, der auch in der Relativitätstheorie verwendet wird.

$$N = \frac{\rho \cdot N_A}{A}$$

$$\beta = \frac{v}{c}$$
(2.1)

$$\beta = \frac{v}{c} \tag{2.2}$$

Ebenso werden die Ladungzahl z und Geschwindigkeit v des Projektils sowie die Elektronen-Ruhemasse m_e verwendet. Weiterhin sind das mittlere Ionisationspotential I, gemittelt über alle Atomschalen des Bremsmediums, sowie eine Korrektur c_K notwendig. Letztere beschreibt den fehlenden Beitrag der K-Schalen-Elektronen bei kleinen Geschossenergien.

$$-\frac{\mathrm{d}E}{\mathrm{d}s} = \frac{4\pi z^2 e^4}{m_e v^2} NZ \left[\ln \left(\frac{2mv^2}{\bar{I}} \right) - \ln \left(1 - \beta^2 \right) - \beta^2 - \frac{c_K}{Z} \right]$$
(2.3)

2.1.1 Herleitung

Im Folgenden werde die Bethe-Bloch-Gleichung für schwere, schnelle und geladene Projektile wie α -Teilchen hergeleitet.

Hierbei wird eine quasi-klassische Betrachtung des Stoßvorganges angenommen. Da das Projektil sehr schwer im Vergleich zu Elektronen ist, kann seine Bewegung als näherungsweise linear angenommen werden. Weiterhin wird das Elektron als schwach gebunden und ruhend angenommen. Diese Annahmen können durch die hohe Geschwindigkeit und Masse des Projektils getätigt werden.

Da das Projektil das Elektron passiert, heben sich sämtliche Wechselwirkungen parallel zur Flugbahn auf. Dadurch muss nur die orthogonale Komponente der Coulomb-Kraft F betrachtet werden, die durch die Ladungen des Projektils Q = ze und des Elektrons q=-eim Abstand \vec{r} erzeugt wird. Der Betrag des Abstands kann durch die Wegstrecke x des Projektils sowie den orthogonalen Abstand b der Flugbahn und des Elektrons als $r^2 = x^2 + b^2$ beschrieben werden.

$$\vec{F} = \frac{Qq}{r^2} \frac{\vec{r}}{|\vec{r}|} \tag{2.4}$$

$$\vec{F} = \frac{Qq}{r^2} \frac{\vec{r}}{|\vec{r}|}$$

$$\vec{F} = -\frac{ze^2}{x^2 + b^2} \frac{\vec{r}}{|\vec{r}|}$$
(2.4)

Weiterhin kann die Kraft durch das elektrische Feld \vec{E} des Projektils und die Ladung des Elektrons q = -e beschrieben werden (2.6). Diese Gleichung wird integriert, um den Betrag des Impulsübertrages $|\Delta p_e|$ zu ermitteln. Dabei wird die Integration nach der Zeit durch eine Integration nach dem Ort substituiert, was durch die konstante Geschwindigkeit v ermöglicht wird. Weiterhin wird die Symmetrie ausgenutzt, wodurch nur noch über die orthogonale Komponente integriert werden muss.

$$\vec{F} = -e\vec{E} \tag{2.6}$$

$$|\Delta p_e| = \int \vec{F} dt \tag{2.7}$$

$$|\Delta p_e| = \frac{e}{v} \int E_{\perp} dx \tag{2.8}$$

Darauf wird der Gauß'sche Integralsatz angewendet. Weiterhin wird der Energieübertrag ΔE durch die kinetische Energie $E = \frac{p^2}{2m_e}$ des Elektrons dargestellt. Dann kann über einen hohlen Zylinder vom Radius b_{\min} bis b_{\max} integriert werden. Sinnvolle Integrationsgrenzen sind notwendig, da das Integral sowohl bei x=0 als auch bei $x=\infty$ divergieren würde.

$$-\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right) = \frac{4\pi z^2 e^4}{m_e v^2} \ln\left[\frac{b_{\mathrm{max}}}{b_{\mathrm{min}}}\right] \propto \frac{z^2}{v^2}$$
 (2.9)

Nun werden relativistische Korrekturen durchgeführt, die zu der vollständigen Bethe-Bloch-Gleichung (2.3) führen.

2.1.2 Diskussion des Kurvenverlaufs

Bei niedrigen Energien steigt die Kurve beinahe linear an. Dies ist darauf zurückzuführen, dass ein langsames α -Teilchen aufgrund der langen Wirkzeit beim Durchqueren des Mediums zufällig Elektronen aufnimmt und abgibt. Dies wiederum reduziert die die effektive Ladung des α -Teilchens und somit den Energieverlust.

Für α -Teilchen findet sich bei kinetischen Energien von etwa $0.5-0.6\,\mathrm{MeV}$ ein Peak. Bei der Verbreiterung des Peaks der Verteilung sind nicht-statistische Effekte von höherer Relevanz, als das statistische Energie-Straggling.

Nach dem Peak sinkt die Kurve erstmal relativ stark ab. Die Energien sind noch gering genug, dass die relativistische Korrektur vernachlässigbar klein ist, daher ist der Energieverlust proportional zu $\frac{\ln(E)}{E}$.

Werden die kinetischen Energien größer, so wird logarithmische Anteil langsam näherungsweise konstant, dann dominiert der $\frac{1}{E}$ -Anteil.

Bei der Ruheenergie des α -Teilchens weist die Kurve ein Minimum auf. Ab diesem Punkt ist die relativistische Korrektur zu berücksichtigen. Physikalisch lässt sich der Verlauf nach dem Peak dadurch erklären, dass das Projektil noch lange den Coulomb-Feldern der Kerne des Bremsmediums ausgesetzt ist und dadurch stark abgebremst wird. Mit steigender kinetischer Energie wird diese Beeinflussung immer kürzer, bis irgendwann der Bereich eintritt, in welchem die relativistischen Effekte eine dominante Rolle einnehmen.

2.1.3 Geltungsbereich

Die Bethe-Bloch-Gleichung gilt weder für sehr kleine, noch für sehr große Projektilenergien.

Bei sehr kleinen Energien kann nicht mehr davon ausgegangen werden, dass die Elektronen relativ zum Projektil in Ruhe liegen.

Bei sehr großen Energien kann z.B. die Wechselwirkung des Projektils mit dem Atomkern relevant werden, die in der hiesigen Betrachtung vernachlässigbar war.

Weiterhin muss das Projektil sehr schwer im Vergleich zu Elektronen sein, da ansonsten die Näherung einer geraden Flugbahn des Projektils nicht mehr angenommen werden kann.

2.2 Bragg-Kurve

Die Bragg-Kurve beschreibt den gesamten Energieverlust eines geladenen Teilchens abhängig von der in einem Bremsmedium zurückgelegten Strecke. Damit wird sie durch die integrierte Bethe-Bloch-Gleichung beschrieben.

$$\frac{\Delta E}{\mathrm{d}x}(x) = \int_0^x \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right) \mathrm{d}x' \tag{2.10}$$

Je weiter das Projektil in das Bremsmedium eindringt, desto größer wird der Energieverlust. Bei der mittleren Reichweite \bar{R} des Projektils ist ein Maximum erreicht,

Figure 1: Abbildung 1: Oberflächensperrschichtzähler Quelle: [5]

dann fällt die Kurve nahezu senkrecht ab. In diesem Bereich kommt das Projektil zum Stillstand. Da dies durch Straggling keine feste Grenze hat, flacht die Kurve ganz am Ende wieder leicht ab.

Extrapoliert man den steilen Abfall, kann man die extrapolierte Reichweite $R_{\rm ex}$ ermitteln. Dabei wird die Abflachung der Kurve durch Straggling herausgerechnet.

Für eine feste Eindringtiefe x kann die Restenergie $E_{\text{Rest}}(x)$ ermittelt werden.

$$E_{\text{Rest}} = E_0 - \int_0^x \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right) \mathrm{d}x' \tag{2.11}$$

2.3 Oberflächensperrschichtzähler

Eine Halbleiterdiode besteht aus einer Abfolge von p- und n-dotierten Halbleiterschichten. In einem mittels Akzeptoren p-dotierten Bereich gibt es Löcher als bewegliche Ladungen, in einem mit Donatoren n-dotierten Halbleiter bilden Elektronen die frei beweglichen Ladungen.

Im Grenzbereich zwischen diesen Schichten rekombinieren sich Elektronen und Löcher, daher ist dieser Bereich frei von Ladungsträgern. Deshalb wird diese Zone *Verarmungszone* genannt, hier sind keine weiteren Rekombinationen möglich.

Wird eine äußere Spannung angelegt, wächst oder schrumpft die Verarmungszone, bei ausreichender Spannung verschwindet sie. In letzterem Fall fließt Strom, daher nennt man diese Richtung *Durchlassrichtung*. Wird ein Strom in *Sperrrichtung* angelegt, so wird die Verarmungszone dagegen vergrößert. Daher kann kein Strom fließen.

Dringt ein α -Teilchen in die Verarmungszone ein, entstehen Elektronen-Loch-Paare, während das α -Teilchen gebremst wird. Die Elektronen und Löcher werden durch eine anliegende Spannung getrennt und sammeln sich an den Enden des jeweiligen Halbleiters. Durch einen empfindlichen Vorverstärker wird ein Spannungsimpuls erzeugt, der von der Energie des Teilchen abhängt. Um die Verarmungszone und damit das Detektionsvolumen zu maximieren, wird eine Spannung in Sperrrichtung angelegt.

Der Si-Oberflächen-Sperrschichtzähler besteht aus einen relativ dicken n-dotierten Schicht und einer dünnen p-dotierten Schicht. Eine sehr dünne Goldschicht sorgt für ein schnelles und verlustarmes Eindringen der α -Teilchen. Der schematische Aufbau eines Oberflächensperrschichtzählers ist in Abbildung 1 dargestellt.

Silizium-Halbleiterdetektoren eignet sich aufgrund ihrer Bandlücke von $1.11\,\mathrm{eV}$ sehr gut für α -Strahlung. Germanium-Halbleiterdetektoren sind prinzipiell ebenfalls geeignet, müssen allerdings auf ca. 70 K abgekühlt werden. Bei Raumtemperatur reicht die thermische Energie aus, um die Bandlücke von $0.7\,\mathrm{eV}$ zu überwinden. [6]

3 Durchführung

3.1 Versuchsaufbau

Eine 241 Am- α -Strahlungsquelle und ein Silizium-Oberflächensperrschichtzähler sind in einer geschlossenen Kammer aufgebaut. Zudem gibt es ein Gerüst, in dem sich drei verschiedene Folien befinden, die zwischen Quelle und Detektor geschoben werden können. Durch eine Vakuumpumpe kann der Luftdruck in der Kammer verringert werden.

Der Abstand zwischen Strahlungsquelle und Detektor kann variiert werden, wobei ein relativer Abstand R in Millimetern einstellbar ist.

Das Signal des Detektors wird elektronisch verstärkt. Das verstärkte Zeitsignal wird an einen digitalen Zähler angeschlossen, das verstärkte Energiesignal kann entweder an ein Oszilloskop oder an einen Vielkanaldetektor (VKA) angeschlossen werden.

3.2 Eichung

Zunächst wurde das Signal des VKA geeicht. Dazu wurde die Luft aus der Kammer abgepumpt, bis ein minimaler Druck von ca. $1.2 \cdot 10^{-2}$ mbar erreicht wurde. Dann wurde eine Messung bei $R = (0 \pm 0.5)$ mm mit dem VKA aufgenommen und mit hdtv [4] ausgewertet.

Hierbei wurde davon ausgegangen, dass der Kanal 0 dem Energienullpunkt entspricht. Weiter wurde angenommen, dass der so gemessene Peak bei der Energie der α -Strahlung von 5486 keV liegt, dies war bei Kanal 10450.4 der Fall. Damit wurde hdtv kalibriert.

3.3 Energiestraggling

Um das Energiestraggling zu untersuchen, wurden bei einem eingestellten relativen Abstand $R=(18\pm0.5)\,\mathrm{mm}$ die Energiespektren bei verschiedenen Drücken p_i zwischen 0 mbar und $1013.25\,\mathrm{mbar}=1\,\mathrm{atm}$ aufgenommen. Es wurden 10 Messungen mit einer Dauer von jeweils $\Delta t=30\,\mathrm{s}$ getätigt. Diese Messungen wurden sogleich mit hdtv [4] ausgewertet.

3.4 Reichweite in Luft

Daraufhin wurde die Reichweite der α -Teilchen gemessen. Dazu wurden 4 verschiedene relative Abstände R_i eingestellt und je R_i Messungen für 10 verschiedene Drücke $p_{i,j}$ aufgenommen. Hierbei sollten die R_i größer als die mittlere Reichweite \bar{R} der α -Teilchen in Luft bei 1 atm sein.

Dabei wurden mittels des digitalen Zählers die Anzahl Detektionen n_i sowie die Dauern der Messungen Δt_i aufgezeichnet, woraus die Zählraten ermittelt werden können. Weiterhin wurden die Impulshöhen mithilfe des Oszilloskops gemessen.

Die Messungsdauern für die Detektionen unterscheiden sich voneinander, da versucht wurde, in den meisten Fällen wenigstens 4500 Ereignisse zu messen. Dies soll den statistischen Fehler gering halten. Für die Messungen mit maximalem Druck wurde dieses Ziel nicht erreicht, hier wurden maximal 2 min lang gemessen.

3.5 Metallfolien

Zuletzt wurden Folien aus Metall zwischen Strahlungsquelle und Detektor geschoben. Eine der Folien bestand aus Aluminium, die andere aus Gold.

Die Messungen erfolgten analog zu den Messungen der Reichweite in Luft (REF), allerdings nur für einen relativen Abstand je Folie. Im Falle von Aluminium war der relative Abstand $R_{\rm Al} = 4 \, \rm mm$, im Falle von Gold $R_{\rm Au} = 8 \, \rm mm$.

4 Literatur

- K. Bethge, Kernphysik: Eine Einführung, 3. aktualisierte und erweiterte Auflage, Springer-Verlag, 2008
- 2. Prior und Rollefson, "Anomalous energy straggling of alpha particles", American Journal of Physics, Mai 1982, DOI 10.1119/1.12834
- 3. "Chart of Nuclides," National Nuclear Data Center, https://www.nndc.bnl.gov/nudat3, ²⁴¹₉₅Am, Abruf am 28.01.2024
- 4. Software hdtv, Kurzanleitung unter https://www.ikp.uni-koeln.de/fileadmin/data/praktikum/hdtv.pdf, Abruf am 28.01.2024
- 5. Lexikon der Physik, Spektrum Verlag, https://www.spektrum.de/lexikon/physik/oberflaechensperrschichtzaehler/10568, 29.01.2024
- 6. G. Knoll, "Radiation Detection and Measurement", Wiley, 2010, ISBN: 9780470131480